

Code : 20SC01T

Register			7 1	42		
Number)				

I/II Semester Diploma Examination, Oct./Nov.-2021

ENGINEERING MATHEMATICS

Time: 3 Hours]

[Max. Marks : 100

Special Note: Students can answer for max. of 100 marks, selecting any sub-section from any main section.

SECTION - I

- 1. (a) If the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 3 & 2 & x \end{bmatrix}$ is singular, then find 'x'.
 - (b) If $A = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$, then find 2A + 3B.
 - (c) Solve the system of equations 2x + 3y = 5 and x + 4y = 5 by Cramer's Rule. 5
 - (d) Find the characteristic roots for the matrix $\begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$.
- 2. (a) If $A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 3 & 6 \end{bmatrix}$, then find $(A + B)^2$.
 - (b) If $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix}$, then find $(AB)^T$.
 - (c) Find the characteristic equation and Eigen roots of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$.
 - (d) Find the Inverse of the matrix $A = \begin{bmatrix} 5 & 1 & 3 \\ 1 & 4 & -1 \\ 2 & 0 & 4 \end{bmatrix}$.

SECTION - II

- Find the slope of the straight line passing through the points (1, 2) and (3, 4). 3. (a)
- 4

5

5

- If the x-intercept of the line is 3 units and y-intercept is 2 times x-intercept, then (b) find the equation of the line.
- If a straight line makes an angle of inclination of 60° with respect to positive (c) x-axis and passes through the point (1, -1), then find the equation of the straight line.
- Find the equation of the straight line parallel to the line joining the points (d) (3,-1) and (4,-2), passing through the point (2,2). 6
- Write the slope and x-intercept of the line 2x + 4y + 5 = 0. 4. (a)
 - Find the equation of the straight line passing through the points (4, 2) and (1, 3). 5 (b)
 - Find the equation of the straight line perpendicular to the line 4x 2y + 3 = 0(c) and passing through the points (1, 2). 5
 - Find the acute angle between the lines 7x 4y = 0 and 3x 11y + 5 = 0. 6 (d)

SECTION – III

- Express 75° in radian measure and $\frac{7\pi}{2}$ in degree. 5.
 - Simplify: $\frac{\sec (360 A) \cot (90 A)}{\tan (360 + A) \csc (90 + A)}$ 5 (b)
 - Prove that : $\cos 2\theta = \cos^2 \theta \sin^2 \theta$ 5 (c)
 - Prove that : $\sin 20 \cdot \sin 40 \cdot \sin 80 = \frac{\sqrt{3}}{8}$ 6 (d)

6. (a) Find the value of cos (15°)

4

(b) Prove that : $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$

5

(c) Prove that : $\sin 600^{\circ} \cos 390^{\circ} + \cos 480^{\circ} \sin 150^{\circ} = -1$

5

(d) Show that : $\cos 55 + \cos 65 + \cos 175 = 0$

6

SECTION - IV

7. (a) Find the derivative of $y = x^3 + e^{3x} + \sin 3x - 4 \log x$ w.r.t. 'x'.

4

(b) Find $\frac{dy}{dx}$ for $y = \frac{1 + \cos x}{1 - \cos x}$

5

5

- (c) Find $\frac{dy}{dx}$ for $y = e^{\sin x} + \sin(x^3) + \tan x$
- (d) If $S = t^2 + 6t + 5$ represents the displacement of the particle in motion at time 't', then find the velocity of the particle and acceleration at t = 3 secs.
- 8. (a) If $y = e^x \sin x$, then find $\frac{dy}{dx}$.

4

(b) If $y = \tan^{-1} \left(\frac{1+x}{1-x} \right)$, then find $\frac{dy}{dx}$.

- 5
- (c) Find the equation of the tangent to the curve $y = x^3$ at the point (1, 2).
- (d) If $y = \tan^{-1} x$, show that $(1 + x^2)y_2 + 2xy_1 = 0$.

SECTION - V

- 9. (a) Evaluate: $\int \left(x^2 + \sin x + \frac{1}{x} + e^{2x} \right) dx$
 - (b) Evaluate: $\int_{0}^{\pi/2} \cos^2 x \, dx$
 - (c) Evaluate: $\int xe^x dx$
 - (d) Find the area bounded by the curve $y = x^2 + 3$, x-axis and co-ordinates x = 1 & x = 2.
- 10. (a) Evaluate: $\int_{1}^{2} \frac{1}{x} dx$
 - (b) Evaluate: $\int \frac{\tan^{-1} x}{1+x^2} dx$
 - (c) Evaluate: $\int x \sec^2 x \, dx$
 - (d) Find the volume of the solid generated by revolving the curve $y = \sqrt{x^2 + 1}$ between x = 0 and x = 2.

GOVERNMENT OF KARNATAKA

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION I/II SEMESTER DIPLOMA EXAMINATIONS, OCT/NOV-2021

Sub: Engineering Mathematics Code: 20SC01T

SCHEME AND SOLUTION

	SECTION 1				
	a) Expansion, Simplification, Answer	2+1+1			
	b) Finding 2A and 3B, 2A+3B, Sum	2+2+1			
1	c) Finding Δ , Δ_1 , Δ_2 , x and y	1+1+1+1+1			
	d) General CE, Particular CE, Roots	1+3+2			
	a) A+B, Writing (A+B) ² , Product	1+1+2			
2	b) Writing AB, Product, Transpose	1+3+1			
2	c) General CE, Particular CE, Roots	1+2+2			
	d) Δ, Adjoint, Formula, Inverse	1+3+1+1			
	SECTION 2				
	a) Formula, Substitution, Slope	2+1+1			
	b) Writing intercepts, General form, Equation	1+2+2			
3	c) Slope formula, slope, line formula, Equation of the line	1+1+2+1			
	d) Finding slope of lines, General equation of the line, equation of the line.	2+2+2			
	a) Slope formula, intercept formula,	2+2			
	slope and x-intercept				
	b) Slope formula, slope, line formula, Equation of the line	1+1+2+1			
4	c)Finding slopes of lines,				
	General equation of the line,	2+2+1			
	Equation of the line.				
	d) Finding slopes, formula, Angle	2+2+2			
	SECTION 3				
	a) Conversion radian to degree, vice-versa	2+2			
	b) Finding each term, Simplification	4+1			
5	c) cos(A+B) ,Writing 2A=A+A ,	2+1+2			
	simplification	_			
	d) sinAsinB formula, Simplification, Applying sinAcosB formula,	2+2+2			
	a) Writing cos15= cos(45-30),cos(A-B)	1+1+1+1			
6	formula, simplification, Answer	1.1.1.1			
J	b) Writing $\sin 3\theta = \sin(2\theta + \theta)$, $\sin 2\theta$ formula, Simplification	2+2+1			
	c) Finding each term, Simplification	n 4+1			

	 d) Applying cosC+cosD formula Writing cos120, Simplification and solution. 	3+1+2
	SECTION 4	
	a) Each term derivative	1+1+1+1
	b) Applying quotient rule, Each	2+1+2
	Simplification, Answer	
	c) Finding derivative of $\sin(x^3)$	2+2+1
7	Finding derivative of e^{sinx}	
	Finding derivative of tanx	
	d) Differentiating w.r.t, t, Finding	2+1+2+1
	velocity, Finding 2 nd derivative,	
	Finding Acceleration.	
	a) Product rule, Each derivative	2+1+1
	b) Apply chain rule, Apply quotient	2+2+1
	rule, Simplification and Answer	
	c) Finding derivative, Finding	1+1+2+1
8	slope,	
	Equation of tangent slope point	
	form, Simplification	
	d) Finding y ₁ , second derivative,	2+2+2
	Proof	
	SECTION 5	
	a) Evaluation of each integrand	1+1+1+1
	b) Integrand simplification,	2+3
	Evaluation.	
9	c) Choosing first and second function	
	Applying by part rule Integral of e ^x	2+2+1
	,Derivative of x	0.00
	d) Applying data in Area formula,	2+2+2
	Integration, tending the limits.	2+1+1
	a) Integration, Applying limit, Solution.	2+1+1
	b) Substitution, Integration,	2+2+1
	Evaluation by tending limits	2+2+1
10	c) Rule of parts, integrand	2+3
10	Evaluation	213
	d) Volume formula, Substituting,	2+1+2+1
	Integrating each term, Applying	2.1.2.1
	limit	
		1

GOVERNMENT OF KARNATAKA

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION I/II SEMESTER DIPLOMA EXAMINATIONS, OCT/NOV-2021

Sub: Engineering Mathematics

SOLUTION

Code: 20SC01T

Qno	SECTION 1	MARK
	If $A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 3 & 2 & x \end{bmatrix}$ is Singular Matrix, Find x	
	Solution:	
1a)	Given A is singular i.e $ A = 0$	1
,	$ \mathbf{A} = \begin{vmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 3 & 2 & x \end{vmatrix} = 0$	1
	1 (2x - 8) - 3(0x - 12) + (-1)(0 - 6) = 0 x = -17	1 1
41)	If $A = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ find $2A + 3B$ Solution:	
1b)	$2A = \begin{bmatrix} 2X2 & 2X3 \\ 2X1 & 2X(-1) \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 2 & -2 \end{bmatrix}$	2
	$3B = \begin{bmatrix} 3X3 & 3X4 \\ 3X1 & 3X2 \end{bmatrix} = \begin{bmatrix} 9 & 12 \\ 3 & 6 \end{bmatrix}$ $2A+3B = \begin{bmatrix} 4 & 6 \\ 2 & -2 \end{bmatrix} + \begin{bmatrix} 9 & 12 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 13 & 18 \\ 5 & 4 \end{bmatrix}$	2
	$2A+3B = \begin{bmatrix} 4 & 6 \\ 2 & -2 \end{bmatrix} + \begin{bmatrix} 9 & 12 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 13 & 18 \\ 5 & 4 \end{bmatrix}$	1
	Solve $2x + 3y = 5$, $x + 4y = 5$ by Cramer's rule. Solution: Given system of the equations is $2x + 3y = 5$ & $x + 4y = 5$	
	let $\Delta = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 8 - 3 = 5$	1
1c)	$\Delta_1 = \begin{vmatrix} 5 & 3 \\ 5 & 4 \end{vmatrix} = 20 - 15 = 5$	1
	$\Delta_{1} = \begin{vmatrix} 5 & 3 \\ 5 & 4 \end{vmatrix} = 20 - 15 = 5$ $\Delta_{2} = \begin{vmatrix} 2 & 5 \\ 1 & 5 \end{vmatrix} = 10 - 5 = 5;$	1
	$\therefore x = 1 \text{ and } y = 1$	1+1
	Find the characteristic roots for the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$	
	Solution: Given $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$	1
1d)	C.E is given by $ A - \lambda I = 0$ $\begin{vmatrix} 2 & 3 \\ 0 & 4 \end{vmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 0$	1
		1
	$\begin{vmatrix} 2 - \lambda & 3 \\ 0 & 4 - \lambda \end{vmatrix} = 0$ $(2 - \lambda)(4 - \lambda) = 0$	1
	$\lambda = 2$ or $\lambda = 4$ are characteristic roots.	2

Qno	SECTION 1	MARK
	If $A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -1 \\ 3 & 6 \end{bmatrix}$ find $(A + B)^2$	
2a)	Solution: $A + B = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 2+1 & 1-1 \\ 0+3 & 4+6 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 3 & 10 \end{bmatrix}$ $(A + B)^2 = \begin{bmatrix} 3 & 0 \\ 3 & 10 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3x3 + 0x3 & 3x0 + 0x10 \\ 3x3 + 10x3 & 3x0 + 10x10 \end{bmatrix}$ $= \begin{bmatrix} 9+0 & 0+0 \\ 9+30 & 0+100 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 39 & 100 \end{bmatrix}$	1 1+1 1
	Find $(AB)^T$ if $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix}$	
	Solution: $AB = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$	1
2b)	$AB = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix}$ $= \begin{bmatrix} 2+12-1 & 1+6-3 & 3+3+2 \\ 6+8+0 & 3+4+0 & 9+2+0 \\ 8+4+3 & 4+2+9 & 12+1-6 \end{bmatrix}$	1
	$\begin{bmatrix} = \begin{bmatrix} 6+8+0 & 3+4+0 & 9+2+0 \\ 8+4+3 & 4+2+9 & 12+1-6 \end{bmatrix} \\ = \begin{bmatrix} 13 & 4 & 8 \\ 14 & 7 & 11 \\ 15 & 15 & 7 \end{bmatrix} \\ (AB)^{T} = \begin{bmatrix} 13 & 14 & 15 \\ 4 & 7 & 15 \end{bmatrix}$	2
	$ (AB)^{T} = \begin{bmatrix} 13 & 14 & 15 \\ 4 & 7 & 15 \\ 8 & 11 & 7 \end{bmatrix} $	1
	Find the characteristic equation and Eigen roots for the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$	
	Solution: Given $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ C.E is given by $ A - \lambda I = 0$	1
2c)	$\begin{vmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{vmatrix} = 0$ $\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 1 - \lambda \end{vmatrix} = 0$	1
	$\lambda^2 - 2\lambda - 5 = 0$ $\lambda = 1 \pm \sqrt{6}$	1+1
	Find the inverse of the matrix $A = \begin{bmatrix} 5 & 1 & 3 \\ 1 & 4 & -1 \\ 2 & 0 & 4 \end{bmatrix}$	
2d)	Solution: Given $A = \begin{bmatrix} 5 & 1 & 3 \\ 1 & 4 & -1 \\ 2 & 0 & 4 \end{bmatrix}$; $ A = \begin{vmatrix} 5 & 1 & 3 \\ 1 & 4 & -1 \\ 2 & 0 & 4 \end{vmatrix} = 50$	1
	$adjA = \begin{bmatrix} 16 & -4 & -13 \\ -6 & 14 & 8 \\ -8 & 2 & 19 \end{bmatrix}, A^{-1} = Adj(A)/ A $	3+1
	$A^{-1} = \frac{1}{50} \begin{bmatrix} 16 & -4 & -13 \\ -6 & 14 & 8 \\ -8 & 2 & 19 \end{bmatrix}$	1

Qno	SECTION 2	MARK
3a)	Find the slope of a straight line passing through the points $(1, 2) \& (3, 4)$ Solution: Let $A = (x_1, y_1) = (1, 2)$ and $B = (x_2, y_2) = (3, 4)$ \therefore Slope of $AB = \frac{y_2 - y_1}{x_2 - x_1}$ $\Rightarrow m = \frac{4 - 2}{3 - 1}$ =1	2 1 1
3b)	If x- intercept of the line is 3 units and y-intercept is 2 times x-intercept, the find the equation of the line. Solution: Given that: $a = 3$ and $b = 2a = 2X3 = 6$ Equation of a straight line is $\frac{x}{a} + \frac{y}{b} = 1$ $\Rightarrow \frac{x}{3} + \frac{y}{6} = 1$	1 2 1
	$\Rightarrow \frac{2x + y}{6} = 1$ $\Rightarrow 2x + y - 6 = 0$ If a straight line makes an angle of 60° with the positive direction of the	1
	x-axis and passes through the point (1, -1), then find the equation of the	
3c)	straight line. Solution: Given 0 = 600 clone is m = ten 0	1
30)	Solution: Given $\theta = 60^{\circ}$ slope is $m = \tan \theta$ then, $m = \tan \theta = \tan 60^{\circ} = \sqrt{3}$	1
	$y - y_1 = m(x - x_1)$	2
	$\sqrt{3}x - y - 1 - \sqrt{3} = 0$	1
3d)	Find the equation of the straight line parallel to the line joining the points (3, -1) and (4, -2) and passing through the point (2,2). Solution: $\mathbf{m} = -1$ Since the given line is parallel to required line $m_1 = m_2 = -1$ $y - y_1 = m(x - x_1)$ $y - 2 = -x + 2$ $x + y - 4 = 0$ is the required equation of line.	1+1 2 1 1

Qno	SECTION 2	MARK
4 a)	Write the slope and x-intercept of line $2x + 4y + 5 = 0$. Solution: Here $a = 2$, $b = 4$ and $c = 5$ Slope, $m = -\frac{a}{b} = -\frac{2}{4} = -\frac{1}{2}$ $x - \text{intercept} = -\frac{c}{a} = -\frac{5}{2}$	1+1 1+1
4b)	Find the equation of the line passing through the points $(4, 2)$ and $(1, 3)$. Solution: $\mathbf{m} = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) = -1/3$ $y - y_1 = (x - x_1)$ $y - 2 = \left(\frac{3 - 2}{1 - 4}\right)(x - 4)$ $-x - 3y + 6 + 4 = 0$ $x + y - 10 = 0$ is the required equation of the line.	1+1 2 1
4c)	Find the equation of line perpendicular to the line $4x-2y+3=0$ and passing through the point $(1,2)$. Solution: $m=\frac{-4}{-2}=\frac{2}{4}=2$; $m_1\times m_2=-1$; $m_2=\frac{-1}{2}$ $y-y_1=m(x-x_1)$ $y-2=\frac{-1}{2}(x-1)$ $x+2y-5=0$ is the required equation of line. Find the acute angle between the two lines $7x-4y=0$ and $3x-11y+5=0$	1+1 2
4d)	Solution: Given line l_1 $7x - 4y = 0$ and l_2 $3x - 11y + 5 = 0$ Let the slope of l_1 be $m_1 = -\frac{a}{b} = -\frac{7}{-4} = \frac{7}{4}$ Slope of l_2 be $m_2 = -\frac{a}{b} = -\frac{-3}{-11} = \frac{3}{11}$ $\tan \theta = \left(\frac{m_1 - m_2}{1 + m_1 m_2}\right)$	1 1 2
	$\tan \theta = \left(\frac{\frac{7}{4} - \frac{3}{11}}{1 + \frac{7}{4} \cdot \frac{3}{11}}\right) = \left(\frac{77 - 12}{44 + 21}\right) = \left(\frac{65}{65}\right) = 1$ $\theta = \tan^{-1}(1) = 45^{0}$	1

Qno	SECTION 3	MARK
5a)	Convert 75° in radians measure and $\frac{7\pi}{2}$ in degree. Solution: x degree = $\frac{\pi}{180}$ × x radians; $75^{\circ} = \frac{5\pi}{12}$ radians x radians = $\frac{180^{\circ}}{\pi}$ × x degree; $\frac{7\pi}{2}$ radians = 630 degree	1+1 1+1
5b)	Simplify: $\frac{s \operatorname{ec}(360-A) \cot(90-A)}{\tan(360+A) \operatorname{cosec}(90+A)}$ Solution: Consider $\frac{s \operatorname{ec}(360-A) \cot(90-A)}{\tan(360+A) \operatorname{cosec}(90+A)}$ $= \frac{s \operatorname{ec}A \times \tan A}{\tan A \times \sec A} = 1$	1+1+1+1
5c)	Prove that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$. Proof: We have $\cos(A + B) = \cos A \cos B - \sin A \sin B$ put $B = A = \theta$ $\cos(\theta + \theta) = \cos \theta \cos \theta - \sin \theta \sin \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$. Show that $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$.	2 1 1 1
5d)	Solution: $\sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $= \frac{1}{2} [\cos(40^{\circ} - 20^{\circ}) - \cos(40^{\circ} + 20^{\circ})] \sin 80^{\circ}$ $= \frac{1}{2} [\cos 20^{\circ} - \cos 60^{\circ}] \sin 80^{\circ}$ $= \frac{1}{2} (\cos 20^{\circ} - \frac{1}{2}) \sin 80^{\circ}$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $= \frac{1}{4} [\sin(80^{\circ} + 20^{\circ}) + \sin(80^{\circ} - 20^{\circ})] - \frac{1}{4} \sin(180 - 100^{\circ}) = \frac{1}{4} \sin 60^{\circ} = \frac{\sqrt{3}}{8}$	2 1 1 1

Qno	SECTION 3	MARK
	Find the value of cos15°	
	Solution: Given $\cos 15^\circ = \cos (45^\circ - 30^\circ)$	1
6a)	We know that $cos(A - B) = cosA cosB + sinA sinB \rightarrow (1)$	1
	Substitute $A = 45^{\circ}$, $B = 30^{\circ}$ in equation (1), then we get	
	$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$	1
	$\cos 15^{\circ} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$	
	$\frac{\cos 13}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{2} - \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$	1
	Prove that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$.	
	Proof: $\sin 3\theta = \sin(2\theta + \theta)$	1
	$\sin 3\theta = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
	$\sin 3\theta = 2\sin\theta\cos\theta \times \cos\theta + (1 - 2\sin^2\theta)\sin\theta$	1
6b)	$\sin 3\theta = 2\sin \theta \cos^2 \theta + \sin \theta - 2\sin^3 \theta$ $\sin 3\theta = 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$	1
	$\sin 3\theta = 2\sin \theta (1 - \sin^{2}\theta) + \sin \theta - 2\sin^{2}\theta$ $\sin 3\theta = 2\sin \theta - 2\sin^{3}\theta + \sin \theta - 2\sin^{3}\theta$	
	$\sin 3\theta = 2\sin \theta - 2\sin^{2}\theta + \sin^{2}\theta = 2\sin^{2}\theta$ $\sin 3\theta = 3\sin \theta - 4\sin^{3}\theta$	1
	Show that $\sin 600^{\circ} \cos 390^{\circ} + \cos 480^{\circ} \sin 150^{\circ} = -1$	
	Solution: $\sin 600^\circ = \frac{-\sqrt{3}}{2}$; $\cos 390^\circ = \frac{\sqrt{3}}{2}$; $\cos 480^\circ = -\frac{1}{2}$; $\sin 150^\circ = \frac{1}{2}$	1+1+1+1
6c)	Now, Consider LHS = $\sin 120^{\circ} \cos 330^{\circ} + \cos 420^{\circ} \sin 30^{\circ}$	
oc)	$= \left(\frac{-\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{-1}{2}\right) \left(\frac{1}{2}\right) = \frac{-3}{4} - \frac{1}{4} = \frac{-4}{4} = -1 = \text{RHS}$	1
	Prove that $\cos 55 + \cos 65 + \cos 175 = 0$.	
	Solution: $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$	1
	$=\cos 55 + \cos 175 + \cos 65$	1
		1
6d)	$= \cos 55 + 2 \cos \left(\frac{175 + 65}{2}\right) \cos \left(\frac{175 - 65}{2}\right)$	1
,	$= \cos 55 + 2 \cos 12 \cos 55$	1
	$= \cos 55 + 2\cos(180 - 60)\cos 55$	1
	= cos55 - cos55 = 0	1

Qno	SECTION 4	MARK
	If $y = x^3 + e^{3x} + \sin 3x - 4 \log x$ then find $\frac{dy}{dx}$.	
7a)	Solution: $y = x^3 + e^{3x} + \sin 3x - 4 \log x$; $\frac{dy}{dx} = 3x^2 + 3e^{3x} + 3\cos 3x - 4(\frac{1}{x})$	1+1+1+1
	Find $\frac{dy}{dx}$ where $y = \frac{1 + \cos x}{1 - \cos x}$	
	Solution: $\frac{dy}{dx} = \frac{(1-\cos x)\frac{d}{dx}(1+\cos x)-(1+\cos x)\frac{d}{dx}(1-\cos x)}{(1-\cos x)^2}$	
	Solution: $\frac{1}{dx} = \frac{dx}{(1-\cos x)^2}$	1
	$-\frac{(1-\cos x)(0-\sin x)-(1+\cos x)(0+\sin x)}{(1-\cos x)(0-\sin x)}$	1
	$= \frac{(1 - \cos x)(0 - \sin x) - (1 + \cos x)(0 + \sin x)}{(1 - \cos x)^2}$ $= \frac{-\sin x (1 - \cos x) - \sin x (1 + \cos x)}{(1 - \cos x)^2}$ $= \sin x + \sin x \cos x - \sin x \cos x$	1
	$=\frac{-\sin x (1 - \cos x) - \sin x (1 + \cos x)}{-\cos x}$	1
	$(1-\cos x)^2$	1
7b)	$= \frac{-\sin x + \sin x \cos x - \sin x \cos x}{(1 - \cos x)^2}$	
70)	$(1-\cos x)^2$	1
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-2\sin x}{(1 - \cos x)^2}$	
	$\int dx (1-\cos x)^2$	
	Find $\frac{dy}{dx}$ for $y = e^{\sin x} + \sin(x^3) + \tan x$	
_ 、	Solution: $y = \sin(x^3) + e^{\sin x} + \tan x$	2+2+1
7c)	$\frac{dy}{dx} = \frac{d(e^{\sin x} + \sin(x^3) + \tan x)}{dx}$	2+2+1
	ux ux	
	$=e^{\sin x}(\cos x) + \cos(x^3)(3x^2) + \sec^2 x$	
	The displacement of a particle from one point to another is given by $s = t^2 +$	
7.3)	6t + 5, find the velocity and acceleration at the end of $t=3$ sec	
7d)	Solution: $\frac{ds}{dt} = 2t + 6 + 0$; $\frac{ds}{dt} = 2t + 6$; $\frac{d^2s}{dt^2} = 2 + 0$; $\frac{d^2s}{dt^2} = 2$	2+2
	Velocity =12 unit/sec; Acceleration = 2 unit/s ²	1+1

Qno	SECTION 4	MARK
8a)	If $y = e^x \sin x$ then find $\frac{dy}{dx}$. Solution: $y = e^x \sin x$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$	2
·	$\frac{dy}{dx} = e^{x} \frac{d}{dx} (sinx) + sinx \frac{d}{dx} (e^{x})$ $\frac{dy}{dx} = e^{x} cosx + sinx e^{x}$	1+1
	If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$ then find $\frac{dy}{dx}$.	
	Solution: $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$ $\frac{dy}{dx} = \frac{d}{dx}\left(\tan\left(\frac{1+x}{1-x}\right)\right) = \frac{1}{1+\left(\frac{1+x}{1-x}\right)^2} \times \frac{d}{dx}\left(\frac{1+x}{1-x}\right) \text{w. k. } t \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	2
8b)	$\frac{dy}{dx} \frac{(1-x)^2}{(1-x)^2 + (1+x)^2} X \frac{(1-x)\frac{d}{dx}(1+x) - (1+x)\frac{d}{dx}(1-x)}{(1-x)^2}$	1
	$\frac{dy}{dx} = \frac{(1-x)(0+1) - (1+x)(0-1)}{(1-x)^2 + (1+x)^2}$	
	$\frac{dy}{dx} = \frac{2}{2(1+x^2)} = \frac{1}{(1+x^2)}$ Obtain the equation of tangent to the curve $y = x^3$ at the point $(1,2)$	1
8c)	Solution: $y = x^3$; $\frac{dy}{dx} = 3x^2$; $\left(\frac{dy}{dx}\right)_{at(1,2)} = 3(1) = 3$ m = 3	1+1
	The equation of tangent to the curve at the point $(1, 2)$ with slope m=3 is $Y - y_1 = m(x - x_1)$ $y - 2 = 3(x - 1)$	2
	y - 2 = 3x - 3 $3x - y - 1 = 0$	1
	If $y = \tan^{-1} x$ then prove that $(1 + x^2)y_2 - 2xy_1 = 0$ Solution: $y = \tan^{-1} x$	
	$y_1 = \frac{d}{dx}(\tan^{-1}x)$	1
8d)	$y_1 = \frac{1}{1 + x^2}$ $(1 + x^2)y_1 = 1$ Again differentiate w. r. t. x	1
	$(1+x^2)\frac{d}{dx}(y_1) + y_1\frac{d}{dx}(1+x^2) = \frac{d}{dx}(1)$	1+1
	(1+x2)y2 + y1(0 + 2x) = 0 (1+x ²)y ₂ + 2xy ₁ = 0	1

Qno	SECTION 5	MARK
	Evaluate $\int \left(x^2 + \sin x + \frac{1}{x} + e^{2x}\right) dx$	
9a)	Solution: $I = \frac{x^3}{3} - \cos x + \log x + \frac{e^{2x}}{2} + c$	1+1+1+1
	Evaluate $\int_0^{\frac{\pi}{2}} \cos^2 x dx$	
9b)	Solution: $\int_0^{\frac{\pi}{2}} \cos^2 x dx = \int_0^{\frac{\pi}{2}} \left(\frac{1 + \cos 2x}{2} \right) dx = \frac{1}{2} \left[x + \frac{\sin 2x}{2} \right]_0^{\frac{\pi}{2}}$	1+1
,	$= \frac{1}{2} \left[\left(\frac{\pi}{2} + \frac{\sin 2\frac{\pi}{2}}{2} \right) - \left(0 + \frac{\sin 2(0)}{2} \right) \right]$	1+1
	$= \frac{1}{2} \left[\left(\frac{\pi}{2} + \frac{0}{2} \right) - \left(0 + \frac{0}{2} \right) \right] = \frac{\pi}{4}$	1
	Evaluate: $\int x e^x dx$ Solution: Here x is Algebraic function and e^x is Exponential function.	
	According to the ILATE rule of choosing the first function,	
00)	$u = I \text{ fn} = x$ and $v = II \text{ fn} = e^x$	1+1 1
9c)	$\int (I \text{ fn} \times II \text{ fn}) dx = I \text{ fn} \int (II \text{ fn}) dx - \int (\int (II \text{ fn}) dx) \frac{d}{dx} (I \text{ fn}) dx$	1
	$I = \int x e^x dx$	1
	$= x \int e^x dx - \int \left(\int e^x dx \right) \frac{d}{dx}(x) dx$	
	$ = x e^{x} - \int e^{x} \times 1 dx $ $= x e^{x} - \int e^{x} dx $	
	$= x e^{x} - \int e^{x} dx$ $= x e^{x} - e^{x} + c$	1
	Find the area bounded by the curve $y = x^2 + 3$, $x - axis$ and the ordinates	
9d)	x = 1 & x = 2.	
Ju)	Solution: Area enclosed by a curve is $A = \int_a^b y dx \to (1)$	1
	$A = \int_{a}^{b} y dx = \int_{1}^{2} (x^{2} + 3) dx$	1
	$= \left[\frac{x^3}{3} + 3x\right]_1^2$	1+1
	$= \left[\frac{2^3}{3} + 3 \times 2\right] - \left[\frac{(1)^3}{3} + 3(1)\right]$	1
	$= \left[\frac{8}{3} + 6\right] - \left[\frac{1}{3} + 3\right]$	
	$= \left[\frac{26}{3}\right] - \left[\frac{10}{3}\right] = \frac{16}{3} \therefore A = \frac{16}{3} \text{ Square units}$	1

Qno	SECTION 5	MARK
10a)	Evaluate: $\int_{1}^{2} \frac{1}{x} dx$ Solution: $\int_{1}^{2} \frac{1}{x} dx = logx _{1}^{2} = [log2 - log1] = [log2 - 0] = log2$	1+1+1+1
10b)	Evaluate: $\int \frac{\tan^{-1} x}{1+x^2} dx$ Solution: Put $\tan^{-1} x = t : \frac{1}{1+x^2} dx = dt$ Let $I = \int \frac{\tan^{-1} x}{1+x^2} dx$ $= \int \tan^{-1} x \frac{1}{1+x^2} dx$ $= \int t . dt$ $= \frac{t^{1+1}}{1+1} + c$ $= \frac{(\tan^{-1} x)^2}{2} + c = \frac{t^2}{2} + c$	1+1 1 1 1
10c)	Evaluate: $\int x \sec^2 x dx$ Solution: Let $I = \int x \sec^2 x dx$ Here x is Algebraic function and $\sec^2 x$ is Trigonometric function. According to the ILATE rule of choosing the first function, $u = I$ fn = x and $v = II$ fn = $\sec^2 x$ $\int (I \text{ fn} \times II \text{ fn}) dx = I \text{ fn} \int (II \text{ fn}) dx - \int (\int (II \text{ fn}) dx) \frac{d}{dx} (I \text{ fn}) dx$ $I = \int x \sec^2 x dx$ $= x \int \sec^2 x dx - \int (\int \sec^2 x dx) \frac{d}{dx} (x) dx$ $= x (\tan x) - \int (\tan x) \times 1 dx$ $= x \tan x - \log (\sec x) + c$ Find the volume of the solid generated by revolving the curve $y = \sqrt{x^2 + 1}$	1+1 1 1
10d)	between x=0 and x=2 Solution: We know that, the volume of the solid formed by revolving the curve y=f(x) and the x-axis between x=a and x=b about the x-axis is $V = \pi \int_a^b y^2 dx$ $= \pi \int_0^2 (\sqrt{x^2 + 1})^2 dx$ $= \pi \int_0^2 x^2 + 1 dx$ $= \pi \left[\frac{x^3}{3} + x \right]_0^2$ $= \pi \left[(\frac{2^3}{3} + 2) - 0 \right] \therefore V = \frac{14}{3} \pi \text{ cubic units}$	1 1 1 1+1