11/13/2019 OneNote

#### Course 07: Extended Information Filter (EIF)

Saturday, November 9, 2019 9:41 PM



# **Robot Mapping**

## **Extended Information Filter**

### **Cyrill Stachniss**



1

## **Gaussians**

• Gaussian described by moments  $\mu$ 

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$





### **Canonical Parameterization**

- Alternative representation for Gaussians
- Described by information matrix  $\Omega$ and information vector  $\xi$

3

### **Canonical Parameterization**

- Alternative representation for Gaussians
- Described by information matrix  $\Omega$

$$\Omega = \Sigma^{-1}$$

$$\xi = \Sigma^{-1}\mu$$

 $\Omega = \Sigma^{-1}$ Note: somethings that are easy in regular space could be difficult in information Vice Versa.

4

## **Complete Parameterizations**

canonical moments

$$\Sigma = \Sigma$$

$$\mu = \Omega^{-1} \xi$$

$$\Sigma = \Sigma^{-1} \mu$$

### **Towards the Information Form**

$$p(x)$$
  
=  $\det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$ 

6

### **Towards the Information Form**

$$\begin{split} p(x) &= & \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) & \text{simply split it.} \\ &= & \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu - \frac{1}{2}\mu^T \Sigma^{-1}\mu\right) \end{split}$$

7

#### **Towards the Information Form**

$$\begin{split} p(x) &= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \\ &= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^T\Sigma^{-1}x + x^T\Sigma^{-1}\mu - \frac{1}{2}\mu^T\Sigma^{-1}\mu\right) \\ &= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mu^T\Sigma^{-1}\mu\right) \quad \text{Special 37?} \\ &\exp\left(-\frac{1}{2}x^T\Sigma^{-1}x + x^T\Sigma^{-1}\mu\right) \quad \text{This independent w/} \quad \chi \\ &\text{our variable.} \end{split}$$

## **Towards the Information Form**

$$p(x)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu - \frac{1}{2}\mu^T \Sigma^{-1}\mu\right)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mu^T \Sigma^{-1}\mu\right)$$

$$= \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu\right)$$

$$= \eta \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu\right)$$

### Towards the Information Form

11/13/2019 OneNote

$$p(x)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu - \frac{1}{2}\mu^T \Sigma^{-1}\mu\right)$$

$$= \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mu^T \Sigma^{-1}\mu\right)$$

$$\exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu\right)$$

$$= \eta \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu\right)$$

$$= \eta \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \Sigma^{-1}\mu\right)$$

$$= \eta \exp\left(-\frac{1}{2}x^T \Omega x + x^T \xi\right)$$

10

# **Dual Representation**

$$p(x) = \frac{\exp(-\frac{1}{2}\mu^T \xi)}{\det(2\pi\Omega^{-1})^{\frac{1}{2}}} \exp\left(-\frac{1}{2}\underbrace{x^T\Omega x + x^T \xi}_{\text{quadratic form}}\right)$$

canonical parameterization

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

moments parameterization

11

## **Marginalization and Conditioning**

11/13/2019



## From the Kalman Filter to the Information Filter

- ⊕ Σ¹→Ω ⊕ Σ⁻μ⁻ζ
   Two parameterization for Gaussian
- Same expressiveness
- Marginalization and conditioning have different complexities
- We learned about Gaussian filtering with the Kalman filter in Chapter 4
- Kalman filtering in information from is called information filtering

13

# Kalman Filter Algorithm

1: Kalman\_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2:  $\bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ u_t$ 
3:  $\bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^T + R_t$ 

4: 
$$K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1}$$

5: 
$$\mu_t = \bar{\mu}_t + K_t(z_t - C_t \bar{\mu}_t)$$

6: 
$$\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$$

7: return 
$$\mu_t, \Sigma_t$$

= At Et-1 At + Rt  $\widetilde{\Omega}_{t} = \widetilde{\Sigma}_{t}^{-1} = (A_{t}\widetilde{\Sigma}_{t-1}A_{t}^{+} + A_{t}^{+})$   $= (A_{t}\Omega_{t-1}^{-1}A_{t}^{+})$   $\widetilde{\beta}_{t} = \widetilde{\Omega}_{t}\widetilde{\mu}_{t}$ = \overline{\mathcal{D}\_t} (Appt-1+But)  $= \overline{\Omega}_{+}(A\Omega_{t-1}^{-1})_{t-1} + BU$ 

# **Prediction Step (1)**

- Transform  $\bar{\Sigma}_t = A_t \; \Sigma_{t-1} \; A_t^T + R_t$
- Using  $\Sigma_{t-1} = \Omega_{t-1}^{-1}$
- Leads to

$$\bar{\Omega}_t = (A_t \; \Omega_{t-1}^{-1} \; A_t^T + R_t)^{-1}$$

15

# **Prediction Step (2)**

- Transform  $\bar{\mu}_t = A_t \; \mu_{t-1} + B_t \; u_t$
- Using  $\bar{\mu}_{t-1} = \Omega_{t-1}^{-1} \xi_{t-1}$
- Leads to

$$\bar{\xi}_t = \bar{\Omega}_t (A_t \, \mu_{t-1} + B_t \, u_t) 
= \bar{\Omega}_t (A_t \, \Omega_{t-1}^{-1} \xi_{t-1} + B_t \, u_t)$$

16

# Information Filter Algorithm

1: Information\_filter( $\xi_{t-1}, \Omega_{t-1}, u_t, z_t$ ):

2:  $\bar{\Omega}_t = (A_t \Omega_{t-1}^{-1} A_t^T + R_t)^{-1}$  prediction step becomes costly.

4: 5:

6:

17

## **Correction Step**

 Use the Bayes filter measurement update and replace the components

18

# **Correction Step**

 Use the Bayes filter measurement update and replace the components

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

$$= \eta' \ \exp\left(-\frac{1}{2} (z_t - C_t x_t)^T \ Q_t^{-1} (z_t - C_t x_t)\right) \ \exp\left(-\frac{1}{2} (x_t - \bar{\mu}_t)^T \ \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)\right)$$

$$= \eta' \ \exp\left(-\frac{1}{2} (z_t - C_t x_t)^T \ Q_t^{-1} (z_t - C_t x_t) - \frac{1}{2} (x_t - \bar{\mu}_t)^T \ \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)\right)$$

19

### **Correction Step**

 Use the Bayes filter measurement update and replace the components

20

## **Correction Step**

 Use the Bayes filter measurement update and replace the components

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

$$= \eta' \exp\left(-\frac{1}{2} (z_t - C_t x_t)^T Q_t^{-1} (z_t - C_t x_t)\right) \exp\left(-\frac{1}{2} (x_t - \bar{\mu}_t)^T \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)\right)$$

$$= \eta' \exp\left(-\frac{1}{2} (z_t - C_t x_t)^T Q_t^{-1} (z_t - C_t x_t) - \frac{1}{2} (x_t - \bar{\mu}_t)^T \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)\right)$$

$$= \eta'' \exp\left(-\frac{1}{2} x_t^T C_t^T Q_t^{-1} C_t x_t + x_t^T C_t^T Q_t^{-1} z_t - \frac{1}{2} x_t^T \bar{\Omega}_t x_t + x_t^T \bar{\xi}_t\right)$$

$$= \eta'' \exp\left(-\frac{1}{2} x_t^T \underbrace{[C_t^T Q_t^{-1} C_t + \bar{\Omega}_t]}_{\Omega_t} x_t + x_t^T \underbrace{[C_t^T Q_t^{-1} z_t + \bar{\xi}_t]}_{\bar{\xi}_t}\right)$$

21

## **Correction Step**

This results in a simple update rule

$$bel(x_t) = \eta \exp\left(-\frac{1}{2}x_t^T \underbrace{\begin{bmatrix} C_t^T Q_t^{-1} C_t + \bar{\Omega}_t \end{bmatrix}}_{\Omega_t} x_t + x_t^T \underbrace{\begin{bmatrix} C_t^T Q_t^{-1} z_t + \bar{\xi}_t \end{bmatrix}}_{\xi_t} \right)$$

$$\sum_{\Omega_t} = C_t^T \underbrace{Q_t^{-1}}_{T} C_t + \bar{\Omega}_t$$

$$\xi_t = C_t^T \underbrace{Q_t^{-1}}_{T} z_t + \bar{\xi}_t$$

$$\sum_{\Omega_t} \dim \sigma_t = 0 \text{ bservation}$$

$$\sum_{\Omega_t} \dim \sigma_t = 0 \text{ bservation}$$

$$\sum_{\Omega_t} \dim \sigma_t = 0 \text{ bservation}$$

# **Information Filter Algorithm**

1: Information\_filter(
$$\xi_{t-1}, \Omega_{t-1}, u_t, z_t$$
):

2:  $\bar{\Omega}_t = (A_t \Omega_{t-1}^{-1} A_t^T + R_t)^{-1}$ 
3:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 

4:  $\Omega_t = C_t^T Q_t^{-1} C_t + \bar{\Omega}_t$ 
5:  $\xi_t = C_t^T Q_t^{-1} z_t + \bar{\xi}_t$ 
6: return  $\xi_t, \Omega_t$ 

1: Information\_filter( $\xi_{t-1}, \Omega_{t-1}, u_t, z_t$ ):

1:  $\bar{\Omega}_t = (A_t \Omega_{t-1}^{-1} A_t^T + R_t)^{-1}$ 
1:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 
1:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 
1:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 
2:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 
3:  $\bar{\xi}_t = \bar{\Omega}_t (A_t \Omega_{t-1}^{-1} \xi_{t-1} + B_t u_t)$ 

23

### **Prediction and Correction**

Prediction

$$\bar{\Omega}_t = (A_t \, \Omega_{t-1}^{-1} \, A_t^T + R_t)^{-1}$$

$$\bar{\xi}_t = \bar{\Omega}_t (A_t \, \Omega_{t-1}^{-1} \, \xi_{t-1} + B_t \, u_t)$$

Correction

$$\Omega_t = C_t^T Q_t^{-1} C_t + \bar{\Omega}_t$$

$$\xi_t = C_t^T Q_t^{-1} z_t + \bar{\xi}_t$$

Discuss differences to the KF!

expensive in correction step.

24 Exactly the opposite

Note: "sparse" matrix v.s.

"dense" matrix

# **Complexity**

Kalman filter

• Efficient prediction step:  $\mathcal{O}(n^2)^*$ 

• Costly correction step:  $\mathcal{O}(n^2 + k^{2.4})$ 

Information filter

• Costly prediction step:  $\mathcal{O}(n^{2.4})$ 

• Efficient correction step:  $\mathcal{O}(n^2)^*$ 

• Transformation between both parameterizations is costly:  $\mathcal{O}(n^{2.4})$ 

\*Potentially faster, especially for SLAM; depending on type of controls and observations

In the note to proceed to had it im

### **Extended Information Filter**

- As the Kalman filter, the information filter suffers from the linear models
- The extended information filter (EIF) uses a similar trick as the EKF
- Linearization of the motion and observation function

Ethan:

> should be

non-linear, right?

11/13/2019 OneNote

### Linearization of the EIF

 Taylor approximation analog to the EKF (see Chapter 3)

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$
  
 $h(x_t) \approx h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t)$ 

ullet with the Jacobians  $G_t$  and  $H_t$ 

27

#### **Prediction: From EKF of EIF**

 Substitution of the moments brings us from the EKF

$$\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t 
\bar{\mu}_t = g(u_t, \mu_{t-1})$$

to the EIF

$$\bar{\Omega}_t = (G_t \ \Omega_{t-1}^{-1} \ G_t^T + R_t)^{-1}$$

$$\bar{\xi}_t = \bar{\Omega}_t \ g(u_t, \Omega_{t-1}^{-1} \ \xi_{t-1})$$

28

### **Prediction: From EKF of EIF**

1: Extended\_Kalman\_filter( $\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$ ):

2:  $\bar{\mu}_t = g(u_t, \mu_{t-1})$ 

3:  $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$ 

1: Extended\_information\_filter( $\xi_{t-1}, \Omega_{t-1}, u_t, z_t$ ): 2:  $\mu_{t-1} = \Omega_{t-1}^{-1} \, \xi_{t-1}$ 3:  $\bar{\Omega}_t = (G_t \, \Omega_{t-1}^{-1} \, G_t^T + R_t)^{-1}$ 4:  $\bar{\mu}_t = g(u_t, \mu_{t-1})$ 5:  $\bar{\xi}_t = \bar{\Omega}_t \, \bar{\mu}_t$ 

29

# **Correction Step of the EIF**

 As from the KF to IF transition, use substitute the moments in the measurement update

$$bel(x_t) = \eta \exp\left(-\frac{1}{2} (z_t - h(\bar{\mu}_t) - H_t (x_t - \bar{\mu}_t))^T Q_t^{-1} \right)$$
$$(z_t - h(\bar{\mu}_t) - H_t (x_t - \bar{\mu}_t)) - \frac{1}{2} (x_t - \bar{\mu}_t)^T \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)$$

This leads to

$$\Omega_t = \bar{\Omega}_t + H_t^T Q_t^{-1} H_t 
\xi_t = \bar{\xi}_t + H_t^T Q_t^{-1} (z_t - h(\bar{\mu}_t) + H_t \bar{\mu}_t)$$

### **Extended Information Filter**

1: Extended\_information\_filter( $\xi_{t-1}, \Omega_{t-1}, u_t, z_t$ ):

2: 
$$\mu_{t-1} = \Omega_{t-1}^{-1} \, \xi_{t-1}$$

3: 
$$\bar{\Omega}_t = (G_t \ \Omega_{t-1}^{-1} \ G_t^T + R_t)^{-1}$$

4: 
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

5: 
$$\xi_t = \bar{\Omega}_t \; \bar{\mu}_t$$

6: 
$$\Omega_t = \bar{\Omega}_t + H_t^T Q_t^{-1} H_t$$

11/13/2019

### EIF vs. EKF

- The EIF is the EKF in information form
- Complexities of the prediction and correction steps differ
- Same expressiveness than the EKF
- Unscented transform can also be used
- Reported to be numerically more stable than the EKF
- In practice, the EKF is more popular than the EIF

32

### Summary

- Gaussians can also be represented using the canonical parameterization
- Allow for filtering in information form
- Information filter vs. Kalman filter
- KF: efficient prediction, slow correction
- IF: slow prediction, efficient correction
- The application determines which filter is the better choice!

33

### Literature

### Extended Information Filter

11/13/2019 OneNote

> Thrun et al.: "Probabilistic Robotics", Chapter 3.5