put statt into groups
Classification
· fisher's Iris: classifying flowers
· thre types
· measurement: size of petal
. Analysis of political leanings of blogs:
mining text /NLP
. predict disease from several covariates/features
Mand withing Oloit Marifications
Headwriting Digit classification
, 16x16 image = 256 covariates/features
Program Classification (Lucy amout)
Binary Classification (two groups)
- people who will / will not default based on
1. credit and bolance
2. In come
5 2 4 2
- Labels = {0, 1}
not default covariate space
- binary classifier h is a function from X - fo, 1
J
income 2 balance
- a linear classifier would be
a straight line splitting the data
- $H(x) = \beta_0 + \beta^T x$ such that $h(x) = I(H(x) > 0)$
linear discriminaal
- Function
- decision boundary: the line /points at which $H(x) =$

. Classification risk perfor rate actual predict $R(h) = |Probability(Y \neq h(X))$ prob of making a mistake

. training error / how many times mistake $\hat{R}(h) = \frac{1}{n} \sum_{j=1}^{n} I(h(x_j) \neq y_j)$

 $h^{4}(x) = \begin{cases} 1 & \text{if } m(x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$

. Theorem: the rule h that minimizes R(h) is

e.g if: P(Y=1 | X=2) 0.7

 $P(Y=0|X=x)^{0.3}$ Then you say $x \in 1$ where $M(x) = \mathbb{E}(y \mid X = x) = \mathbb{P}(y=1 \mid X = x)$ is the regression function

- The set { a ∈ X : m(x) = 0.5 } is the Baye's decision boundary P(Y=y) ~ P(X=n)

P() = y | X = x) = P(X=X) = P(x=x | Y=y)P(Y=y) = P(x=x | y=y) P(y=y) IP(x=x

Bayes Rule

Bayes' classifier in mactice - you don't know the probabilities e.g. P(Y=11 X=n) - so you need to know underlying distribution of the date or assume some sort of model Bayes principles in k-nearest neighborry if you don't know the priors, you can still take an average by looking at surrounding points, for each point.

Logistic Regression

Logistic Regression

$$y = x \beta + \epsilon$$

Data-one prediction

 $p(y_i = 1 \mid x = x_i) = p(x_i)$

 $P\left(y_{i=0} \mid X-x_{i}\right) = 1-P(x_{i})$ we want relation between $P(x_i)$ and R_i

maps [0,1] to (-0,0)

logit
$$(p) = \log \left(\frac{p}{1-p} \right)$$

Logit transform

Lagistic regression	is linear model	followed by	Logit transform
Decision boundary is li	inear in X		