

Group actions of prime order on local normal rings

Franz Király¹ and Werner Lütkebohmert²

Dept. of Pure Mathematics, University of Ulm, 89069 Ulm, Germany

14 April 2011

In the theory of singularities, an important class of singularities is built by the famous Hirzebruch-Jung singularities. They arise by dividing out a finite cyclic group action on a smooth surface. The resolution of these singularities is well understood and have nice arithmetic properties related to continued fractions; cf. [H] and [J].

One can also look at such group actions from a purely algebraic point of view. So let B be a regular local ring and G a finite cyclic group of order n acting faithfully on B by local automorphisms. In the tame case; i.e. the order of G is prime to the characteristic of the residue field k of B , there is a central result of J.P. Serre [S1] saying that the action is given by multiplying a suitable system of parameters (y_1, \dots, y_d) by roots of unity $y_i \mapsto \zeta^{n_i} \cdot y_i$ for $i = 1, \dots, d$ where ζ is a primitive n^{th} -root of unity. Moreover, the ring of invariants $A := B^G$ is regular if and only if $n_i \equiv 0 \pmod{n}$ for $d-1$ of the parameters. The latter is equivalent to the fact that $\text{rk}((\sigma - \text{id})|T) \leq 1$ for the action of $\sigma \in G$ on the tangent space $T := \mathfrak{m}_B/\mathfrak{m}_B^2$. For more details see [B, Chap. 5, ex. 7].

Only very little is known in the case of a wild group action; i.e., $\gcd(n, \text{char } k) > 1$. In this paper we will restrict ourselves to the case of p -cyclic group actions; i.e. $n = p$ is a prime number. We will present a sufficient condition for the fact that the ring of invariants A is regular. Our result is also valid in the tame case; i.e. where n is a prime different from $\text{char } k$. As the method of Serre depends on an intrinsic formula for writing down the action explicitly, we provide also an explicit formula for presenting B as a free A -module if our condition is fulfilled.

The interest in our problem stems from the investigation on the relationship between the regular and the stable R -model of a smooth projective curve X_K over the field of fractions K of a discrete valuation ring R . In general, the curve X_K admits a stable model X' over a finite Galois extension $R \rightarrow R'$. Then the Galois group $G = G(R'/R)$ acts on X' . Our result provides a means to construct a regular model over R starting from the stable model X' . We intend to work this out in a further article.

Finally, we want to mention that S. Wewers obtained partial results of ours by different methods cf. [W]

In this paper we will study only local actions of a cyclic group G of prime order p on a normal local ring B . We fix a generator σ of G and obtain the *augmentation map*

$$I := I_\sigma := \sigma - \text{id} : B \longrightarrow B ; b \mapsto \sigma(b) - b .$$

¹Franz.Kiraly@uni-ulm.de

²Werner.Luetkebohmert@uni-ulm.de

We introduce the B -ideal

$$I_G := (I(b) ; b \in B) \subset B$$

which is generated by the image $I(B)$. This ideal is called *augmentation ideal*. If this ideal is generated by an element $I(y)$, we call y an *augmentation generator*. Note that this ideal does not depend on the chosen generator σ of G . Moreover, if y is an augmentation generator with respect to a generator σ of G , then y is also an augmentation generator for any other generator of G . Since B is local, the ideal I_G is generated by an augmentation generator if I_G is principal. Namely, $I_G/\mathfrak{m}_B I_G$ is a vector space over the residue field $k_B = B/\mathfrak{m}_B$ of B of dimension 1. So it is generated by the residue class of $I(y)$ for some $y \in B$ and, hence, due to Nakayama's Lemma, I_G is generated by $I(y)$.

Definition 1 An action of a group G on a regular local ring B by local automorphisms is called a *pseudo-reflection* if there exists a system of parameters (y_1, \dots, y_d) of B such that y_2, \dots, y_d are invariant under G .

Theorem 2 Let B be a normal local ring with residue field $k_B := B/\mathfrak{m}_B$. Let p be a prime number and G a p -cyclic group of local automorphisms of B . Let I_G be the augmentation ideal. Let A be the ring of G -invariants of B . Consider the following conditions:

- (a) $I_G := B \cdot I(B)$ is principal.
- (b) B is a monogenous A -algebra.
- (c) B is a free A -module.

Then the following implications are true:

$$(a) \longleftrightarrow (b) \longrightarrow (c)$$

Assume, in addition, that B is regular. Consider the following conditions:

- (d) A is regular.
- (e) G acts as a pseudo-reflection.

Then the condition (c) implies (d).

Moreover if, in addition, the canonical map $k_A \xrightarrow{\sim} k_B$ is an isomorphism. Then condition (a) is equivalent to condition (e).

We start the proof of the theorem by several preparations.

Remark 3 For $b_1, b_2, b \in B$, the following relations are true:

- (i) $I(b_1 \cdot b_2) = I(b_1) \cdot \sigma(b_2) + b_1 \cdot I(b_2)$
- (ii) $I(b^n) = \left(\sum_{i=1}^n \sigma(b)^{i-1} b^{n-i} \right) \cdot I(b)$
- (iii) $I\left(\frac{b_1}{b_2}\right) = \frac{I(b_1)b_2 - b_1 I(b_2)}{b_2 \sigma(b_2)}$ if $b_2 \neq 0$.

Proof. (i) follows by a direct calculation and (ii) by induction from (i).

(iii) The formula (i) holds for elements in the field of fractions as well. Therefore it holds

$$I(b_1) = I\left(\frac{b_1}{b_2}b_2\right) = I\left(\frac{b_1}{b_2}\right)\sigma(b_2) + \frac{b_1}{b_2}I(b_2)$$

and the formula follows. \square

For the implication (a) \rightarrow (b) we need a technical lemma.

Lemma 4 Let $y \in B$ be an augmentation generator. Then set, inductively,

$$\begin{aligned} y_i^{(0)} &:= y^i && \text{for } i = 0, \dots, p-1 \\ y_i^{(1)} &:= \frac{I(y_i^{(0)})}{I(y_1^{(0)})} && \text{for } i = 1, \dots, p-1 \\ y_i^{(n+1)} &:= \frac{I(y_i^{(n)})}{I(y_{n+1}^{(n)})} && \text{for } i = n+1, \dots, p-1 . \end{aligned}$$

Then

$$y_i^{(n)} = \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n} \prod_{j=1}^{i-n} \sigma^{k_j}(y) \quad \text{for } i = n, \dots, p-1$$

and, in particular,

$$\begin{aligned} y_n^{(n)} &= 1 \\ y_{n+1}^{(n)} &= \sum_{j=1}^{n+1} \sigma^{j-1}(y) \\ I(y_{n+1}^{(n)}) &= \sigma^{n+1}(y) - y \end{aligned}$$

Furthermore, $y_{n+1}^{(n)}$ is again an augmentation generator for $n = 0, \dots, p-2$.

Proof. We proceed by induction on n . For $n = 0$ the formulae are obviously correct. For the convenience of the reader we also display the formulae for $n = 1$. Due to Remark 3 one has

$$\begin{aligned} y_i^{(1)} &= \frac{I(y_i^{(0)})}{I(y_1^{(0)})} = \frac{I(y^i)}{I(y)} = \sum_{j=1}^i \sigma(y)^{j-1} y^{i-j} \\ &= \sum_{0 \leq k_1 \leq \dots \leq k_{i-1} \leq 1} \prod_{\nu=1}^{i-1} \sigma^{k_\nu}(y) \end{aligned}$$

since the last sum can be viewed as a sum over an index j where $i-j$ is the number of the $k_\nu = 0$. In particular, the formulae are correct for $y_1^{(1)}$ and $y_2^{(1)}$. Moreover

$$I(y_2^{(1)}) = I(\sigma(y) - y) = \sigma^2(y) - y .$$

Since σ^2 is generator of G for $2 < p$, the element $y_2^{(1)}$ is an augmentation generator as well. Now assume that the formulae are correct for n . Since $y_{n+1}^{(n)}$ is an augmentation generator, $I(y_{n+1}^{(n)})$ divides $I(y_i^{(n)})$ for $i = n+1, \dots, p-1$. Then it remains to show

$$I(y_i^{(n)}) = (\sigma^{n+1}(y) - y) \cdot y_i^{(n+1)} \text{ for } i = n+1, \dots, p-1 .$$

For the left hand side one computes

$$\begin{aligned} LHS &= I\left(\sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n} \prod_{j=1}^{i-n} \sigma^{k_j}(y)\right) = \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n} I\left(\prod_{j=1}^{i-n} \sigma^{k_j}(y)\right) \\ &= \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n} \cdot \left(\prod_{j=1}^{i-n} \sigma^{k_j+1}(y) - \prod_{j=1}^{i-n} \sigma^{k_j}(y) \right) \\ &= \sum_{1 \leq k_1 \leq \dots \leq k_{i-n} \leq n+1} \prod_{j=1}^{i-n} \sigma^{k_j}(y) - \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n} \prod_{j=1}^{i-n} \sigma^{k_j}(y) . \end{aligned}$$

Now all terms occurring in both sums cancel. These are the terms with $k_{i-n} \leq n$ in the first sum and $1 \leq k_1$ in the second sum.

For the right hand side one computes

$$\begin{aligned} RHS &= (\sigma^{n+1}(y) - y) \cdot \sum_{0 \leq k_1 \leq \dots \leq k_{i-n-1} \leq n+1} \prod_{j=1}^{i-n-1} \sigma^{k_j}(y) \\ &= \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} = n+1} \prod_{j=1}^{i-n} \sigma^{k_j}(y) - \sum_{0 \leq k_1 \leq \dots \leq k_{i-n} \leq n+1} \prod_{j=1}^{i-n} \sigma^{k_j}(y) . \end{aligned}$$

Comparing both sides one obtains $LHS = RHS$. In particular we have

$$\begin{aligned} y_{n+1}^{(n+1)} &= 1 \\ y_{n+2}^{(n+1)} &= \sum_{0 \leq k_1 \leq n+1} \prod_{j=1}^1 \sigma^{k_1}(y) = \sum_{j=1}^{n+2} \sigma^{j-1}(y) \\ I(y_{n+2}^{(n+1)}) &= \sigma^{n+2}(y) - y . \end{aligned}$$

So $y_{n+2}^{(n+1)}$ is an augmentation generator for $n+2 < p$, since σ^{n+2} generates G . This concludes the technical part. \square

Proposition 5 Assume that the augmentation ideal I_G is principal and let $y \in B$ be an augmentation generator. Then B decomposes into the direct sum

$$B = A \cdot y^0 \oplus A \cdot y^1 \oplus \dots \oplus A \cdot y^{p-1} .$$

Proof. Since $I(y) \neq 0$, the element y generates the field of fractions $Q(B)$ over $Q(A)$. Therefore

$$Q(B) = Q(A) \cdot y^0 \oplus Q(A) \cdot y^1 \oplus \dots \oplus Q(A) \cdot y^{p-1} .$$

Then it suffices to show the following claim:

Let $a, a_0, \dots, a_{p-1} \in A$. Assume that a divides

$$b = a_0 \cdot y^0 + a_1 \cdot y^1 + \dots + a_{p-1} \cdot y^{p-1} .$$

Then a divides a_0, a_1, \dots, a_{p-1} .

If $b = a \cdot \beta$, then $I(b) = a \cdot I(\beta)$. Since $I(\beta) = \beta_1 \cdot I(y)$, we get $I(b) = a\beta_1 \cdot I(y)$. So we see that a divides $I(b)/I(y) \in B$. Using the notations of Lemma 4, set

$$\begin{aligned} b^{(0)} &:= b &= a_0 \cdot y^0 + a_1 \cdot y^1 + \dots + a_{p-1} \cdot y^{p-1} \\ b^{(1)} &:= \frac{I(b^{(0)})}{I(y)} &= a_1 + a_2 \frac{I(y^2)}{I(y)} + \dots + a_{p-1} \frac{I(y^{p-1})}{I(y)} \\ &&= a_1 \cdot y_1^{(1)} + a_2 \cdot y_2^{(1)} + \dots + a_{p-1} \cdot y_{p-1}^{(1)} \\ b^{(n)} &:= \frac{I(b^{(n-1)})}{I(y_n^{(n-1)})} &= a_n \cdot y_n^{(n)} + a_{n+1} \cdot y_{n+1}^{(n)} + \dots + a_{p-1} \cdot y_{p-1}^{(n)} . \end{aligned}$$

Due to the observation above, we see by induction that a divides $b^{(0)}, b^{(1)}, \dots, b^{(p-1)}$, since $y_{n+1}^{(n)}$ is an augmentation generator for $n = 1, \dots, p-2$. So we obtain

$$a \mid b^{(p-1)} = a_{p-1} \cdot y_{p-1}^{(p-1)} = a_{p-1} .$$

Now proceeding downwards, one obtains

$$\begin{aligned} a \mid b^{(p-2)} &= a_{p-2} + a_{p-1} \cdot y_{p-1}^{(p-2)} \text{ and, hence, } a \mid a_{p-2} \\ a \mid b^{(n)} &= a_n + a_{n+1} \cdot y_{n+1}^{(n)} + \dots + a_{p-1} \cdot y_{p-1}^{(n)} \text{ and, hence, } a \mid a_n \end{aligned}$$

for $n = p-1, p-2, \dots, 0$. □

Proof of the first part of Theorem 2.

(a) \rightarrow (b): This follows from Proposition 5.

(b) \rightarrow (a): If $B = A[y]$ is monogenous, then $I_G = B \cdot I(y)$ is principal.

(b) \rightarrow (c) is clear. Namely, if $B = A[y]$, the minimal polynomial of y over the field of fraction is of degree p and the coefficients of this polynomial belong to A . Then B has y^0, y^1, \dots, y^{p-1} as an A -basis.

Next we do some preparations for proving the second part of the theorem where B is assumed to be regular.

Lemma 6 *Let R be a local subring of B which is invariant under G such that the canonical map $R/\mathfrak{m}_R \xrightarrow{\sim} B/\mathfrak{m}_B$ is an isomorphism. Let (y_1, \dots, y_d) be a generating system of the maximal ideal \mathfrak{m}_B . Then I_G is generated by $I(y_1), \dots, I(y_d)$.*

Proof. Due to the assumption, we have $B = R + \mathfrak{m}_B$ and, hence, $I(B) = I(\mathfrak{m}_B)$. Furthermore, we have

$$\mathfrak{m}_B = \mathfrak{m}_B^2 + \sum_{i=1}^d R \cdot y_i .$$

Since I is R -linear, we get

$$I(\mathfrak{m}_B) = I(\mathfrak{m}_B^2) + \sum_{i=1}^d R \cdot I(y_i) .$$

Due to Remark 3, one knows $I(\mathfrak{m}_B^2) \subset \mathfrak{m}_B \cdot I(\mathfrak{m}_B)$. So one obtains

$$I(\mathfrak{m}_B) \subset \mathfrak{m}_B \cdot I(\mathfrak{m}_B) + \sum_{i=1}^d R \cdot I(y_i) .$$

Since B is local, Nakayama's Lemma yields

$$I_G = B \cdot I(B) = B \cdot I(\mathfrak{m}_B) = \sum_{i=1}^d B \cdot I(y_i) .$$

Thus the assertion is proved. \square

Proposition 7 *Keep the assumption of the second part of the theorem; namely that B is regular and that the canonical morphism $k_A \xrightarrow{\sim} k_B$ is an isomorphism. Let (y_1, \dots, y_d) be a generating system of the maximal ideal \mathfrak{m}_B . Then the following assertions are true:*

- (i) $I_G = B \cdot I(y_1) + \dots + B \cdot I(y_d)$
- (ii) *If the ideal $I_G = B \cdot I(B)$ is principal, then there exists an index $i \in \{1, \dots, d\}$ with $I_G = B \cdot I(y_i)$.*

Proof. Let \widehat{B} be the \mathfrak{m}_B -adic completion of B . Recall that a regular ring is noetherian by definition. Therefore the extension $B \rightarrow \widehat{B}$ is faithfully flat and $\mathfrak{m}_B \widehat{B} = \mathfrak{m}_{\widehat{B}}$; cf. [AM, 10.14 & 10.15]. Since G acts by local morphism, any $\sigma \in G$ extends to a local automorphism $\widehat{\sigma}$ of \widehat{B} . Due to the assumption that the canonical morphism $k_A \xrightarrow{\sim} k_B$ is an isomorphism, any $b \in B$ can be written as $B = a + m$ where $a \in A$ is invariant under G and $m \in \mathfrak{m}_B$ and, hence, $I(b) = I(m) \in I(\mathfrak{m}_B)$. Therefore I_G is generated by $I(\mathfrak{m}_B)$.

- (i) Since $B \rightarrow \widehat{B}$ is faithfully flat and $\widehat{B} \cdot \mathfrak{m}_B = \mathfrak{m}_{\widehat{B}}$, it suffices to prove the assertion for the completion \widehat{B} . For complete local rings there exists a G -stable lift R of the residue field k . Namely, in the case of mixed characteristic $(0, p)$, one can choose the ring of Witt vectors $W(k) \subset \widehat{A}$ as R and, in the equal characteristic case, the residue field k lifts into \widehat{A} ; cf. [C]. Now we can apply Lemma 6 and obtain the assertion.
- (ii) Since I_G is principal, $I_G/\mathfrak{m}_B I_G$ is generated by one of the $I(y_i)$ and, hence, again by Nakayama's Lemma $I_G = B \cdot I(y_i)$ for a suitable $i \in \{1, \dots, d\}$. \square

Proof of the second part of Theorem 2.

- (c) \rightarrow (d) follows from [M, Theorem 51]. Namely, B is noetherian due to the definition of a regular ring. Since $A \rightarrow B$ is faithfully flat, so A is noetherian. Then one can apply loc.cit.
- (a) \rightarrow (e) We assume that the canonical map $k_A \rightarrow k_B$ of the residue fields is an isomorphism. If I_G is principal, one can choose an augmentation generator $y \in \mathfrak{m}_B$ which is part of a system of parameters (y, y_2, \dots, y_d) due to Proposition 7. Due to Proposition 5, we know that B decomposes into the direct sum

$$B = A \cdot y^0 \oplus A \cdot y^1 \oplus \dots \oplus A \cdot y^{p-1} .$$

Now we can represent

$$y_j = \sum_{i=0}^{p-1} a_{i,j} \cdot y^i \text{ for } j = 2, \dots, d .$$

Then set

$$\tilde{y}_j := y_j - \sum_{i=1}^{p-1} a_{i,j} y^i = a_{0,j} \in A \cap \mathfrak{m}_B = \mathfrak{m}_A \text{ for } j = 2, \dots, d .$$

So $(y, \tilde{y}_2, \dots, \tilde{y}_d)$ is a system of parameters of B as well. Thus G acts by a pseudo-reflection.
(e) \rightarrow (a): If G is a pseudo-reflection, I_G is generated by $I(y)$ due to Proposition 7 where y, x_2, \dots, x_p is a system of parameters with $x_i \in \mathfrak{m}_A$ for $i = 2, \dots, p$ if $k_A = k_B$. \square

If $k_A \rightarrow k_B$ is not an isomorphism, the implication (e) \rightarrow (a) is false as the following shows.

Example 8 Let k be a field of positive characteristic p and look at the polynomial ring

$$R := k[Z, Y, X_1, X_2]$$

over k . We define a p -cyclic action of $G = \langle \sigma \rangle$ on R by

$$\sigma|k := \text{id}_k, \sigma(Z) = Z + X_1, \sigma(Y) = Y + X_2, \sigma(X_i) = X_i \text{ for } i = 1, 2 .$$

This is a well-defined action of order p , since $p \cdot X_i = 0$ for $i = 1, 2$, and it leaves the ideal $\mathfrak{I} := (Y, X_1, X_2)$ invariant. Furthermore, for any $g \in k[Z] - \{0\}$ the image is given by $\sigma(g) = g + I(g)$ with $I(g) \in X_1 \cdot k[Z, X_1]$.

Then consider the polynomial ring

$$S := k(Z)[Y, X_1, X_2]$$

over the field of fractions $k(Z)$ of the polynomial ring $k[Z]$. Then S has the maximal ideal $\mathfrak{m} = (Y, X_1, X_2)$. Then set

$$B := S_{\mathfrak{m}} = k(Z)[Y, X_1, X_2]_{(Y, X_1, X_2)} .$$

We can regard all these rings as subrings of the field of fractions of R

$$R \subset S \subset B \subset k(Z, Y, X_1, X_2) .$$

Clearly, σ acts on R and, hence, it induces an action on its field of fractions; denote this action by σ as well. Then we claim that the restriction of σ to B induces an action on B by local automorphisms. For this, it suffices to show that for any $g \in R - \mathfrak{I}$ the image $\sigma(g)$ does not belong to \mathfrak{I} . The latter is true, since

$$\sigma(g) = g + I(g) \text{ with } I(g) \in \mathfrak{I} .$$

The augmentation ideal $I_G = B \cdot X_1 + B \cdot X_2$ is not principal although G acts through a pseudo-reflection. \square

Remark 9 In the tame case $p \neq \text{char}(k_B)$, the converse (d) \rightarrow (a) is also true due to the theorem of Serre as explained in the introduction.

In the case of a wild group action; i.e. $p = \text{char}(k_B)$, it is not known whether the converse is true, but we would conjecture it.

Conjecture 10 Let B be a regular local ring and let G be a p -cyclic group acting on B by local automorphisms. Then the following conditions are *conjectured* to be equivalent:

- (1) I_G is principal.
- (2) $A := B^G$ is regular.

The implication $(1) \rightarrow (2)$ was shown in Theorem 2. Of course the converse is true if $\dim A \leq 1$. In higher dimension, the converse $(2) \rightarrow (1)$ is uncertain, but it holds for small primes $p \leq 3$ as we explain now. Since A is regular, the ring B is a free A -module of rank p ; cf. [S2, IV, Prop. 22]. So,

$$(*) \quad B/B\mathfrak{m}_A^n \text{ is a free } A/\mathfrak{m}_A^n\text{-module of rank } p \text{ for any } n \in \mathbb{N}.$$

In the case $p = 2$ the rank of $\mathfrak{m}_B/B\mathfrak{m}_A$ is 0 or 1. In the first case, k_B is an extension of degree $[k_B : k_A] = 2$ over k_A and $\mathfrak{m}_B = B\mathfrak{m}_A$. So there exists an element $\beta \in B$ such that $B/B\mathfrak{m}_A$ is generated by the residue classes of 1 and β . Due to Nakayama's Lemma $B = A[\beta]$ is monogenous and, hence, I_G is principal. In the second case, where $k_A \rightarrow k_B$ is an isomorphism, then there exists an element $\beta \in \mathfrak{m}_B$ such that $\mathfrak{m}_B = B\beta + B\mathfrak{m}_A$. Then G acts as a pseudo-reflection and, hence, I_G is principal.

In the case $p = 3$ we claim that $B\mathfrak{m}_A \not\subset \mathfrak{m}_B^2$!

If we assume the contrary $B\mathfrak{m}_A \subset \mathfrak{m}_B^2$ then these ideals coincide; $B\mathfrak{m}_A = \mathfrak{m}_B^2$. Namely, the rank of $B/B\mathfrak{m}_A$ as A/\mathfrak{m}_A -module is 3 and the rank of B/\mathfrak{m}_B^2 is at least 3 due to $d := \dim B \geq 2$, so $B\mathfrak{m}_A = \mathfrak{m}_B^2$. Therefore the length of $B/B\mathfrak{m}_A^2 = B/\mathfrak{m}_B^4$ is 3 times the length of A/\mathfrak{m}_A^2 which is $3 \cdot (\dim A + 1)$. On the other hand the rank of B/\mathfrak{m}_B^4 is equal to

$$(1 + \dim \mathfrak{m}_B/\mathfrak{m}_B^2) + \dim \mathfrak{m}_B^2/\mathfrak{m}_B^3 + \dim \mathfrak{m}_B^3/\mathfrak{m}_B^4 = \sum_{n=0}^3 \binom{d+n-1}{d-1}$$

which is larger than

$$(1 + \dim \mathfrak{m}_A/\mathfrak{m}_A^2) + (1 + \dim \mathfrak{m}_A/\mathfrak{m}_A^2) + (1 + \dim \mathfrak{m}_A/\mathfrak{m}_A^2)$$

since for $d \geq 2$ holds

$$\binom{d+1}{d-1} = \frac{(d+1)d}{2} \geq 1 + d = 1 + \dim \mathfrak{m}_A/\mathfrak{m}_A^2$$

and

$$\binom{d+3-1}{d-1} = \frac{(d+2)(d+1)d}{2 \cdot 3} > 1 + d$$

Here we used the formula for the number $\lambda_{n,d}$ of monomials $T_1^{m_1} \dots T_d^{m_d}$ in d variables of degree $n = m_1 + \dots + m_d$

$$\lambda_{n,d} = \binom{d+n-1}{d-1}.$$

So, using only the condition $(*)$ and proceeding by induction on $\dim(A)$, we see that here exists a system of parameters $\alpha_1, \dots, \alpha_d$ of A such that $\alpha_2, \dots, \alpha_d$ is part of a system of parameters of B . In the case, where $k_A \rightarrow k_B$ is an isomorphism, G acts as a pseudo-reflection and, hence, I_G is principal. If $k_A \rightarrow k_B$ is not an isomorphism, then we must have $\mathfrak{m}_B = B\mathfrak{m}_A$; otherwise the rank of B/\mathfrak{m}_B is at least 4. Since $[k_B : k_A] \leq 3$, the field extension $k_A \rightarrow k_B$ is monogenous and, hence, $A \rightarrow B$ is monogenous due to the Lemma of Nakayama. \square

References

- [AM] Atiyah, M.F.; Macdonald, I.G.: *Commutative Algebra*. Addison Wesley Publishing Company, 1969.
- [B] Bourbaki, N.: *Groupes et algèbre de Lie*. Masson, Paris, 1981
- [BGR] Bosch, S.; Günzer, U.; Remmert, R.: *Non-Archimedean Analysis*. Grundlehren **261**, Springer-Verlag, 1984.
- [C] Cohen, I.S.: *On the structure and ideal theory of complete local rings*. Trans. Amer. Math. Soc. **59**, 54-106 (1946).
- [E] Edixhoven, B.: *Néron models and tame ramification*. Compositio Math. **31**, 291-306, 1992.
- [H] Hirzebruch, F.: *Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen*. Math. Ann. **126**, 1-22, 1953.
- [J] Jung, H. W. E.: *Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlicher x, y in der Umgebung einer Stelle $x = a, y = b$* . J. Reine Angew. Math. **133**, 289-314, 1908.
- [M] Matsumura, H.: *Commutative Algebra*. Benjamin, Mathematics Lecture Notes Series **56**, 1980.
- [S1] Serre, J.-P.: *Groupes finis d'automorphismes d'anneaux locaux réguliers*. In Colloque d'Algèbre (Paris, 1967), Exp. 8. Secrétariat mathématique, 1967.
- [S2] Serre, J.-P.: *Algèbre Locale - Multiplicités*. Lecture Notes in Math. **11**, Springer-Verlag, 1965.
- [W] Wewers, S.: *Regularity of quotients by an automorphism of order p* . ArXiv:1001.0607, 2010.