Walace de Souza Rocha

Algoritmo GRASP para o Problema de Tabela-horário de Universidades

Vitória - ES, Brasil 28 de Fevereiro de 2013

Walace de Souza Rocha

Algoritmo GRASP para o Problema de Tabela-horário de Universidades

Dissertação apresentada para obtenção do Grau de Bacharel em Ciência da Computação pela Universidade Federal do Espírito Santo.

Orientador: Maria Claudia Silva Boeres

Co-orientador: Maria Cristina Rangel

DEPARTAMENTO DE INFORMÁTICA CENTRO TECNOLÓGICO UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Vitória - ES, Brasil

28 de Fevereiro de 2013

Dissertação de Projeto Final de Graduação sob o título "Algoritmo GRASP para o Problema de Tabela-horário de Universidades", defendida por Walace de Souza Rocha e aprovada em 28 de Fevereiro de 2013, em Vitória, Estado do Espírito Santo, pela banca examinadora constituída pelos professores:

Profa. Dr. Maria Claudia Silva Boeres Orientadora

Profa. Dr. Maria Cristina Rangel Co-orientadora

Prof. Dr. Fulano de Tal Universidade Federal do Espírito Santo

Resumo

Escreva aqui o texto do seu resumo.

Abstract

Write here the English version of your "Resumo".

Dedicatória

Dedico este trabalho a ...

Agradecimentos

Agradeço a ...

Sumário

Lista de Figuras

Lista de Tabelas

1	Intr	odução	p. 11
	1.1	Apresentação do problema	p. 12
	1.2	Motivação para o problema	p. 12
	1.3	Objetivos deste trabalho	p. 12
	1.4	Organização do texto	p. 12
2	Esta	do da Arte	p. 14
	2.1	Introdução	p. 15
	2.2	Conceitos e definições	p. 15
	2.3	Abordagens existentes	p. 15
	2.4	Trabalhos relacionados	p. 15
3	Proj	posta do trabalho	p. 16
	3.1	Formulação do ITC-2007	p. 17
	3.2	Algoritmo GRASP	p. 17
4	Resi	ultados Computacionais	p. 18
	4.1	Descrição das instâncias utilizadas	p. 19
	4.2	Detalhes de implementação	p. 20
	4.3	Sintonia da Meta-heurística	p. 20

	4.4 Análise dos resultados	p. 20			
5	Conclusões e trabalhos futuros	p. 21			
	5.1 Conclusões	p. 22			
Re	Referências Bibliográficas				
Aı	Anexo A – Ferramentas utilizadas				

Lista de Figuras

Lista de Tabelas

4.1	Tabela com i	nformações	sobre cada	instância	do ITC-2007			p. 19
-----	--------------	------------	------------	-----------	-------------	--	--	-------

1 Introdução

1.1 Apresentação do problema

O problema de tabela-horário consiste em alocar um conjunto de aulas em um número pré-determinado de horários, satisfazendo diversas restrições envolvendo professores, alunos e o espaço físico disponível. A solução manual deste problema não é uma tarefa trivial e as instituições de ensino precisam resolvê-lo anualmente ou semestralmente. Nem sempre a alocação manual é satisfatória, por exemplo, quando um aluno não consegue matricular em duas disciplinas porque elas são alocadas no mesmo horário.

Por esta razão, atenção especial tem sido dada a solução automática de tabela-horário. Nos últimos cinquenta anos, começando com [Gotlieb 1962], este problema ganhou grande destaque na área de otimização combinatória, tendo diversos trabalhos publicados.

1.2 Motivação para o problema

1.3 Objetivos deste trabalho

O objetivo principal deste trabalho é resolver o problema de tabela-horário de universidades usando a meta-heurística GRASP (*Greedy Randomized Adaptive Search Procedures*). Pelo fato de existirem diversas formulações para o problema, será escolhida uma que tem sido bastante utilizada na área: a que é proposta no ITC-2007 (*International Timetabling Competition - 2007*) [PATAT 2008]. A razão principal desta escolha é facilitar a comparação dos resultados com outros algoritmos propostos na literatura.

Para atingir este objetivo será necessário estudar a formulação do ITC-2007 e propor uma implementação eficiente dos dados. Além de aplicar o GRASP para o problema, pretende-se implementar algumas melhorias que já foram propostas na literatura e que visam melhorar a versão básica do algoritmo.

Deseja-se por fim coletar na literatura resultados obtidos para o problema com diferentes técnicas de solução, a fim de comparar com o algoritmo proposto.

1.4 Organização do texto

No capítulo 2 é apresentado o estado da arte listando as principais técnicas de solução do problema. No capítulo 3 são apresentados a formulação do problema segundo o ITC-2007,

13

o algoritmo GRASP e sua aplicação no problema. No capítulo 4 são apresentados detalhes de implementação, instâncias de testes e os resultados obtidos. No capítulo 5 são listadas as conclusões obtidas no trabalho e enumerados alguns trabalhos futuros.

2 Estado da Arte

"Navegar é preciso, viver não." Luís de Camões 2.1 Introdução

2.1 Introdução

A internet hoje é um fato. Todos estão, ou querem estar, de alguma forma, conectados na internet, seja para prestar serviço, mostrar produtos, estudar, diversão, ou por simplesmente estar conectado. Estar fora deste mundo é como viver no passado. Mas estar conectado a maior rede de computadores do mundo, além de suas vantagens, tem suas desvantagens e problemas, e o maior problema existente na internet é a segurança.

2.2 Conceitos e definições

2.3 Abordagens existentes

2.4 Trabalhos relacionados

	<i>3 1</i>	Proposta	do	trabalho
--	------------	----------	----	----------

"Nada se cria, nada se perde, tudo se transforma."

Lavousier

- 3.1 Formulação do ITC-2007
- 3.2 Algoritmo GRASP

4 Resultados Computacionais

"Nada se cria, nada se perde, tudo se transforma."

Lavousier

4.1 Descrição das instâncias utilizadas

As instâncias utilizadas foram as mesmas submetidas aos competidores do ITC-2007. São 21 instâncias ao todo, com grau de dificuldade variado. A organização garante que existe solução viável para todas as instâncias, fato que foi comprovado nos testes. Mas nada foi informado sobre a quantidade de violações fracas em cada instância. Em [PATAT 2008] podem ser obtidas todas as instâncias.

Na tabela 4.1 são apresentados os dados mais relevantes de cada instância. A quantidade de horários de aula numa semana não varia muito de instância para instância. Já a quantidade de currículos e disciplinas varia bastante e tem relação direta com o tempo de execução do algoritmo e a quantidade de violações fracas.

Tabela 4.1:	Tabela com	informações	sobre cada	instância	do ITC-2007
1aucia 1 .1.	Tabela com	miomacocs	Soore cauc	i mstancia	UU 11 C-2007

Instância	Currículos	Salas	Disciplinas	Horários por dia	Dias
comp01	14	6	30	6	5
comp02	70	16	82	5	5
comp03	68	16	72	5	5
comp04	57	18	79	5	5
comp05	139	9	54	6	6
comp06	70	18	108	5	5
comp07	77	20	131	5	5
comp08	61	18	86	5	5
comp09	75	18	76	5	5
comp10	67	18	115	5	5
comp11	13	5	30	9	5
comp12	150	11	88	6	6
comp13	66	19	82	5	5
comp14	60	17	85	5	5
comp15	68	16	72	5	5
comp16	71	20	108	5	5
comp17	70	17	99	5	5
comp18	52	9	47	6	6
comp19	66	16	74	5	5
comp20	78	19	121	5	5
comp21	78	18	94	5	5

4.2 Detalhes de implementação

4.3 Sintonia da Meta-heurística

Duas estruturas de vizinhança foram usadas neste trabalho para a fase de busca local: *MOVE* e *SWAP*. Em [Ceschia, Gaspero e Schaerf 2011] essas duas estruturas também são usadas, só que aplicadas de maneira diferente. Na geração do vizinho sempre é usado o *MOVE*. Em alguns casos ocorre *SWAP* juntamente com o *MOVE*. Essa probabilidade de ocorrer o *SWAP* foi parametrizada. Experimentalmente foi escolhido um valor de 40%.

Testes mostraram que aplicar *MOVE* e *SWAP* separadamente é mais eficiente. Foi observado que separadamente eles produzem melhores soluções e de forma mais rápida. Cada um ocorre com a mesma probabilidade de 50%.

• Temperatura inicial do SA para busca local

4.4 Análise dos resultados

5 Conclusões e trabalhos futuros

"Nada se cria, nada se perde, tudo se transforma."

Lavousier

5.1 Conclusões 22

5.1 Conclusões

Alguns itens interessantes para a conclusão de um projeto de graduação

Qual foi o resultado do seu trabalho? melhora na área, testes positivos ou negativos? Você acha que o mecanismo gerado produziu resultados interessantes? Quais os problemas que você encontrou na elaboração do projeto? E na implementação do protótipo? Que conclusão você tirou das ferramentas utilizadas? (heurísticas, prolog, ALE, banco de dados). Em que outras áreas você julga que este trabalho seria interessante de ser aplicado? Que tipo de continuidade você daria a este trabalho? Que tipo de conhecimento foi necessário para este projeto de graduação? Para que serviu este trabalho na sua formação?

Referências Bibliográficas

- [Ceschia, Gaspero e Schaerf 2011]CESCHIA, S.; GASPERO, L. D.; SCHAERF, A. Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem. *Computers & Operations Research*, v. 39, n. 7, p. 1615–1624, 2011. ISSN 0305-0548.
- [Gotlieb 1962]GOTLIEB, C. C. The construction of class-teacher time-tables. In: *IFIP Congress*. [S.l.: s.n.], 1962. p. 73–77.
- [Insecure org 2002]Insecure org. *The Network Explotation Tool and Security Scanner*. 2002. URL: http://www.insecure.org/nmap. Last Visited: 22/07/2002.
- [PATAT 2008]PATAT. International Timetabling Competition. 2008. URL: http://www.cs.qub.ac.uk/itc2007.
- [Saint Corporation 2002]Saint Corporation. *Security Administrator's Integrated Tool.* 2002. URL: http://www.saintcorporation.com/index.html. Last Visited: 22/07/2002.
- [The Nessus Project 2002] The Nessus Project. *The Nessus Project*. 2002. URL: http://www.nessus.org. Last Visited: 22/07/2002.

ANEXO A - Ferramentas utilizadas

Foi feita uma análise de algumas ferramentas que são muito usadas por atacantes (hackers) para a confecção de ataques. Estas ferramentas são muito úteis em vários aspectos, tais como: (1) o levantamento de informações sobre o alvo, (2) que tipo de serviços estão disponíveis no alvo, (3) quais as possíveis vulnerabilidades do alvo, entre outras informações. As ferramentas analisadas foram o *nmap* [Insecure org 2002], o *nessus* [The Nessus Project 2002], o *saint* [Saint Corporation 2002], além de alguns comandos de sistemas operacionais (UNIX-Like e Windows-Like) usados para rede, tais como o *ping*, *nslookup e whois*.