

Ch 10.5 Euler and Hamilton Paths (Week 13)

Euler Paths and Circuits

- An *Euler circuit* in a graph G is a simple circuit containing every edge of G. An *Euler path* in G is a simple path containing every edge of G.
- Path/Walk: edges travel from vertex to vertex

 Simple Path/Trial: walk with no repeated edge (path → trail with no repeated vertices)

 (when trail is used)
- Circuit/Cycle: a path of length > 0 + start = end
 Simple Circuit: no repeated edge
- **Euler circuit:** simple circuit with every edge | start = end + no repeated edge
- Euler path:
 simple path with every edge | start ≠ end + no repeated vertex
- Theorem 1 A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree.
- Theorem 2 A connected multigraph has an Euler path but not an Euler circuit *iff* it has exactly two vertices of odd degree.

Hamilton Paths and Circuits

- A simple path in a graph G that passes through every vertex exactly once is called a $Hamilton\ path$, and a simple circuit in a graph G that passes through every vertex exactly once is called a $Hamilton\ circuit$. That is, the simple path $x_0, x_1, ..., x_{n-1}, x_n$ in the graph G = (V, E) is a $Hamilton\ path$ if $V = \{x_0, x_1, ..., x_{n-1}, x_n\}$ and $x_i \neq x_j$ for $0 \leq i < j \leq n$, and the simple circuit $x_0, x_1, ..., x_{n-1}, x_n, x_0$ (with n > 0) is a $Hamilton\ circuit$ if $x_0, x_1, ..., x_{n-1}, x_n$ is a $Hamilton\ path$.
- a graph with a vertex of degree one cannot have a Hamilton circuit
- the more edges a graph has, the more likely it is to have a Hamilton circuit
- Dirac's Theorem If G is a simple graph with n vertices with $n \geq 3$ such that the degree of every vertex in G is at least n/2, then G has a Hamilton circuit.
- Ore's Theorem If G is a simple graph with n vertices with $n \geq 3$ such that $\deg(u) + \deg(v) \geq n$ for every pair of nonadjacent vertices u and v in G, then G has a Hamilton circuit.

Applications of Hamilton Circuits

▼ Example 8

Gray Codes: a labeling of the arcs of the circle such that adjacent arcs are labeled with bit strings that differ in eactly one bit.

(b) is a Gray code

We can model this problem using the n-cube Q_n .

