Introduction to Big Data, Predictive Analytics, and Data Science

Big Data and Data Science Everywhere

Web search and online ads

Insurance

Telcos

Online Education

Online Retail

Social Networks

Entertainment

Healthcare

Big Data and Data Science Everywhere

AND MANY OTHER PLACES....

Online Shopping

Best Value

redict Who Will Click, Buy, Lie, or Die and get How to Measure Anything: Finding the Value of Intangibles in Buy Predictive Analytics: The Pow Business at an additional 5% off Amazon.com's everyday low price.

Buy together today: \$45.43

Add both to Cart

Show availability and shipping details

Customers Who Bought This Item Also Bought

Predictive Analytics:

Microsoft Excel > Conrad Carlberg

********(10)

Paperback \$24.36

Big Data: A Revolution That Will Transform ...

Viktor Mayer-Schonberger

*********(32)

Hardcover

\$15.84

Big Data, Big Analytics: Emerging Business ...

> Michael Minelli

****** (6)

Hardcover

\$32.82

How to Measure Anything: Finding the Value of ... > Douglas W. Hubbard

******* (56)

Hardcover \$31.96

Secrets of Analytical Leaders: Insights ... Wayne Eckerson

******(10)

Perfect Paperback \$44.96

\$10.45

Paperback

Analytics

Big Data Analytics:

Disruptive ...

Dr. Arvind Sathi

★★★★★ (5)

Social Networks

facebook

Online Entertainment

Web Search

Brainstorming

• What are some other applications?

Connecting the Dots

 The underlying magic behind what we saw is 'big data' and 'predictive analytics'

Big Data Pipeline

• Output: Target data

Stage: Data influx

• Output: Data stream

Stage: Preprocessing

• Output: Preprocessed data

Stage: Transformation

• Output: Transformed data

Stage: Data Mining

• Output: Patterns

Stage: Interpretation and Evaluation

• Output: Knowledge discovery and actionable insights

Big Data – Technology, Platforms & Products

Data Mining Tasks

• Descriptive Methods:

- Find human-interpretable patterns that describe the data
- Techniques: Clustering, Association Analysis, x-point summaries

• Predictive Methods:

- Use available data to build models that can predict the outcome of future data
- Techniques: Classification, Regression, Anomaly, and Deviation Detection

Prescriptive Methods:

- Predict future outcomes and suggest actions that may prevent or mitigate the impact of the predicted outcomes
- Techniques: Various optimization techniques

Traffic Management

Descriptive [Informing Role]:

- Traffic jam has happened already.
- [Implicit: Do something about it.]

Traffic Management

Predictive [Informing and Warning Role]:

- Traffic jam is about to happen in the next 30 minutes.
- [Implicit: Do something before it happens.]

Traffic Management

Prescriptive [Informing, Warning, and Advisory Role]:

Take action so traffic jam does not happen OR

Traffic jam is about to happen in the next 30 minutes and you could possibly take the following courses of action:

- Route traffic to service road near I-5
- Block more traffic from entering the WA-520 bridge

Online Travel

Descriptive Analytics: Historical price trend and variation **Predictive Analytics:** Price may rise in next 7 days **Prescriptive Analytics:** *Advice: Buy Confidence:* 85%

Action

Decision

Insights

Information

Descriptive Analytics:

What happened?

What is the attrition in last six months?
Which customers have we lost?

Diagnostic Analytics:

Why did it happen?

Why did we lose these customers?

Predictive Analytics:

What will happen?

Which customers are likely to leave in next 6 months?

Prescriptive Analytics:

It will or has happened. What can we do about it?

Which customers might stop if we try?
What if?

Preemptive Analytics:

What steps to take to prevent any possibility of it happening?

What should we do to prevent the situation when a customer is already considering leaving?

Data Mining and Predictive Analytics

In the next few slides, we will take a look at some of the most common data mining tasks.

Classification: A Simple Example

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?		
Yes	Divorced	90K	?		
No	Single	40K	?	\	
No	Married	80K	?	·	Test
					Set
					1
ning e	C	Learn Iassifi	er –	→	Model

Classification

- Given a collection of records (training set)
 - Each record contains a set of *attributes*; one of the attributes is the *class label*.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.

Classification: More Examples

Direct Marketing

 Goal: reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product

Fraud Detection

Goal: predict fraudulent cases in credit card transactions

Customer Attrition/Churn

Goal: predict whether a customer is likely to be lost to a competitor

Clustering: An Illustration

Clustering in 3-D space using Euclidean distance

Clustering: Examples

 Subdivide the market into distinct subsets of customers where any subset may conceivably be selected as a segment to be reached with a particular offer

Clustering

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that:
 - Data points within a cluster have more similarities with one another
 - Data points in different clusters have less similarities with one another

Clustering: Similarity Measures

- Similarity Measures:
 - Euclidean Distance if attributes are continuous
 - Other problem-specific measures
 - Example: If a particular word occurs in two documents or not

Clustering: Examples

 To find groups of documents that are similar to each other based on the important terms appearing in them

Association Analysis

Your behavior is being predicted, not by studying you, but by studying others.

Association Rule Discovery

- Given a set of records each of which contain some number of items from a given collection:
 - Produce dependency rules which will predict the occurrence of an item based on the occurrences of other items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered:

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Association Analysis: Supermarket Shelf Management

- Goal: To identify items that are bought together by a sufficient amount of customers
- Place the items close to each other on supermarket shelves

Association analysis examples

- Marketing and sales promotion:
 - Users who buy item A usually also buy item B
 - If users bought item A, suggest item B or even offer discount on item B
- Inventory management:
 - Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with the right parts to reduce the number of visits to consumer households

Regression Example: Predict Housing Prices

Regression

 Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency

Regression: Ad Clicks

Predict the probability of whether or not an ad will be clicked

Deviation/Anomaly Detection

 Detect significant deviations from normal behavior

- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Bot detection in web traffic

Challenges in Data Mining

5 Vs Of Big Data

Questions?