संख्या-जगत में खेल-कूद

पी.के. श्रीनिवासन

भारत ज्ञान विज्ञान समिति

संख्या-जगत में खेल-कूद

पी.के. श्रीनिवासन

नव जनवाचन आंदोलन

इस किताब का प्रकाशन भारत ज्ञान विज्ञान समिति ने 'सर दोराबजी टाटा ट्रस्ट' के सहयोग से किया है। इस आंदोलन का मकसद आम जनता में पठन-पाठन संस्कृति विकसित करना है।

संख्या-जगत में खेल-कृद पी. के. श्रीनिवासन Sankhya-Jagat Men Khel-Kood

P.K. Srinivasan

हिंदी अनुवाद योगेश अग्रवाल Hindi Translation Yogesh Agarwal

कॉपी संपादक

Copy Editor

राधेश्याम मंगोलपुरी

Radheshyam Mangolpuri

ग्राफिक्स

Graphics

अभय कुमार झा Abhay Kumar Jha

कवर

Cover

गॉडफ्रे दास

Godfrey Das

प्रथम संस्करण

First Edition

जनवरी 2008

January 2008

सहयोग राशि

Contributory Price

30 रुपये

Rs. 30.00

मुद्रण

Printing

सन शाइन ऑफॅसेट नई दिल्ली - 110 018

Sun Shine Offset New Delhi - 110 018

Publication and Distribution

Bharat Gyan Vigyan Samiti

Basement of Y.W.A. Hostel No. II, G-Block, Saket, New Delhi - 110017 Phone: 011 - 26569943, Fax: 91 - 011 - 26569773 Email:bgvs_delhi@yahoo.co.in, bgvsdelhi@gmail.com

BGVS JAN 2008 2K 3000 NJVA 0128/2008

समर्पण

यह पुस्तक उन कल्पनाशील माता-पिताओं और कर्मनिष्ठ अध्यापकों को समर्पित है जो मानवजाति के हित के हेतु, गणित में मेधाशील छात्रों को खोजने और संवारने में संलग्न हैं।

क्रमणिका

	आमुख	7
1.	आओ मेरे साथ	9
2.	संख्याओं के प्रकार	17
	सम और विषम	17
	गुणज और गुणक	18
	अभाज्य और मिश्र	21
	वर्ग और अ-वर्ग	23
	घन और अ-घन	25
	त्रिकोणीय और अ-त्रिकोणीय	28
	पिछली और अगली संख्याएं	32
3.	नया रोमांच	35
3.4.		35 39
·		
·	खोज अभियान	39
·	खोज अभियान पहला दौर	39 39
·	खोज अभियान पहला दौर दूसरा दौर	39 39 42
·	खोज अभियान पहला दौर दूसरा दौर तीसरा दौर	39 39 42 45
·	खोज अभियान पहला दौर दूसरा दौर तीसरा दौर चौथा दौर	39 39 42 45 51
4.	खोज अभियान पहला दौर दूसरा दौर तीसरा दौर चौथा दौर पांचवां दौर	39 42 45 51

आमुख

बच्चे स्वभाव से ही जिज्ञासु होते हैं। वे हर नई वस्तु को अपनी कौतूहल-भरी नजरों से देखते हैं। वे अपनी परिपक्वता और क्षमता के अनुरूप हमेशा वस्तुओं के आपसी संबंधों को खोजने के लिए उत्सुक रहते हैं – न केवल भौतिक वस्तुओं के बीच, अपितु अमूर्त विचारों के बीच भी।

इन संबंधों में छिपे नक्शों को खोजना मानव-मन का मूलभूत स्वभाव है। अवसर तथा प्रोत्साहन मिलने पर हर बालक इस कार्य में आनन्द का अनुभव करता है और उसमें छिपा खोजकर्ता विकसित होने लगता है। प्राकृतिक संख्या तंत्र में इस प्रकार के अनिगनत अद्भुत पैटर्न छिपे हैं, सीधे-सादे से लेकर अति-जिटल तक, और अति-सरल से लेकर अति-गहरे भी। प्राकृतिक संख्याओं से बच्चों का परिचय प्राथमिक स्कूल में ही हो जाता है। वे इन संख्याओं के साथ जोड़ना-घटाना, गुणा-भाग करना इत्यादि सीखते हैं।

इस पुस्तक का प्रयास यही है कि बच्चे किस प्रकार संख्या-तंत्र के इस अद्भृत रोमांचकारी जगत की ड्यौढ़ी को लांघकर उसमें प्रवेश कर सकें, वह भी मात्र जोड़ने-घटाने व गुणा-भाग करने की अपनी योग्यता का प्रयोग करके; और अपनी अंतर्बोध-शक्ति के द्वारा इस तंत्र की सरल व सुन्दर विशिष्टताओं की स्वतः ही खोज कर सकें। इस खोज में बच्चों को जिस आनन्द और आत्मविश्वास की अनुभूति होगी, उसके द्वारा ही वे गणित के अध्ययन के प्रति उत्साहित हो सकेंगे।

आशा है कि सभी कल्पनाशील माता-पिता व रुचिशील अध्यापक इस नए प्रयास का स्वागत करेंगे और इस विधि को प्रयोग में लाकर इसके परिणामों की जानकारी लेखक को अवश्य देंगे।

इस पुस्तक के भावी संस्करणों में सुधार के लिए सभी सुझावों का स्वागत है।

- पी.के. श्रीनिवासन

1 आओ मेरे साथ

कक्षा सात में पढ़ता हूं। मुझे कहानियां पढ़ना और खेलना बहुत अच्छा लगता है। मेरे चाचाजी गणित के प्रोफेसर हैं। वे अक्सर मुझसे कहते हैं, "तुम भी नई खोजों के द्वारा गणित का असली आनन्द ले सकते हो, यदि तुम विभिन्न प्राकृतिक संख्याओं को भली-भांति जान लो, बेझिझक उन्हें पहचानो, और उनके साथ खेलो। इसके लिए तुम्हें केवल सीधे-सादे जोड़-घटाव व गुणा-भाग का अच्छा अभ्यास होना चाहिए, जिसका ज्ञान तुम छोटी कक्षाओं में पहले ही प्राप्त कर चुके हो।" कुछ समय तक मैंने उनके सुझाव को बहुत गम्भीरता से नहीं लिया।

एक दिन चाचाजी को एक विद्यालय के गणित क्लब के सदस्यों को सम्बोधित करने का निमंत्रण मिला। गणित क्लब का नामकरण महान् गणितज्ञ ऑयलर के नाम पर किया गया था। मैं भी चाचाजी के साथ गया। मैं उन्हें छोटी उम्र में बच्चों को सम्बोधित करते हुए सुनना चाहता था और देखना चाहता था कि बच्चे उनकी बातों को कैसे ग्रहण करते हैं। चाचाजी ने बच्चों को बताया कि कैसे वे खुद भी गणितशास्त्री बनकर गणित के रोमांच का अनुभव कर सकते हैं। उन्होंने बच्चों से कहा:

"आजकल बहुत-सी बड़ी खोजें की जा रही हैं। सारे विश्व में और जीवन के सभी क्षेत्रों में खोजकर्ताओं की बहुत आवश्यकता है। अच्छे खोजकर्ता बनने के लिए हमें बचपन से ही खोजकार्य में रुचि लेनी होगी। खोजकार्य के लिए एक उत्तम क्षेत्र है संख्याएं, क्योंकि संख्याओं पर खोज करने के लिए धन खर्च करने की कोई जरूरत नहीं है, और साथ ही यह बहुत आनन्दमयी भी है। शायद तुम्हें जिज्ञासा होगी कि ऐसा कैसे सम्भव है। एक बार यदि कोई जोड़-घटाव व गुणा-भाग में महारत हासिल कर ले, तो वह स्वयं ही संख्याजगत के अद्भुत सौन्दर्य का अन्वेषण कर सकता है।

चूंकि तुम सभी गुणा-भाग आदि भली-भांति जानते हो, तुम भी इस अन्वेषण के लिए तैयार हो। तुम जितनी अधिक खोजने की चेष्टा करोगे, उतने ही सफल खोजकर्ता बन सकते हो।

संख्याओं में मौजूद किसी नक्शे, आकृति या स्वरूप, या जिसे अंग्रेजी में पैटर्न कहते हैं, को पहचान पाना ही संख्याजगत के अन्वेषण की कुंजी है। यह तुम सभी के लिए संभव है। संख्याजगत को तुम संख्याओं के एक अद्भुत सागर के समान समझो, जिसमें छिपे अनिगनत बहुमूल्य रत्न तुम जैसे खोजियों की प्रतीक्षा कर रहे हैं। किसी पैटर्न की खोज संख्याओं के परस्पर संबंधों को दर्शाती है। इन संबंधों के अध्ययन से तुम संख्याजगत के सुन्दर सिद्धांतों व मोहक विशिष्टताओं तक पहुंच सकते हो।

संख्याओं के अध्ययन के लिए मैं कुछ चार्ट लेकर आया हूं। अब इस चार्ट को देखो।

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

तुम सोचते होगे कि इस चार्ट की सभी पंक्तियां एक जैसी क्यों हैं? सभी में एक से दस तक की संख्याएं क्रम से लिखी हैं। परन्तु ध्यान दो कि कुछ संख्याएं लाल रंग से लिखी गई हैं, जो तीन-तीन संख्याओं के क्रमवार समूहों को दर्शाती हैं। ऐसे हर समूह को हम तिकटी का नाम दे सकते हैं। एक से दस तक की संख्याओं में मौजूद ऐसी सारी तिकटियां इस चार्ट में दिखाई गई हैं, जैसे: (1,2,3), (2,3,4), ... (8,9,10)।

अब एक-एक तिकटी को देखो। हर तिकटी की कुछ या सभी संख्याओं का योग या गुणनफल निकालो, और उनका अध्ययन कर उसमें छिपे नक्शों को खोजने का प्रयास करो। कभी ऐसा पैटर्न स्वत: ही दिखाई देगा, और कभी उसे खोजने के लिए थोड़ा गहराई में जाना होगा।

जो बात सभी समूहों पर लागू नहीं होती, उसे मात्र एक विचित्रता समझना चाहिए। शुरू में हमें ऐसी विचित्रताओं पर समय नहीं गंवाना चाहिए। हमें ऐसे सिद्धांतों को खोजना है जो सभी समूहों पर लागू होते हों।

उदाहरण के लिए, पहली तिकटी (1,2,3) से शुरू करके सब समूहों को देखो। इस तिकटी के लिए 1+3=2x2 निश्चय ही सत्य है, यानि तिकटी की पहली व तीसरी संख्याओं का योग बिचली संख्या के वर्ग के बराबर है। परन्तु दूसरी तिकटी (2,3,4) में 2+4 और 3x3 बराबर नहीं हैं। इसलिए यह नियम हर तिकटी पर लागू नहीं होता, और इसे केवल पहली तिकटी की विचित्रता ही मानना उचित होगा, एक सिद्धांत नहीं।

परन्तु अब इसे देखो – (1, 2, 3)1+3 = 2 x 2 (2,3, 4) 2+4 = 2 x 3

(3, 4, 5)3+5 = 2 x 4 आदि

तुम देखोगे कि हर तिकटी में पहली व आखिरी संख्या का योग बिचली संख्या का दोगुना है। यह वास्तव में एक सिद्धांत का उदाहरण है।

इसे इस प्रकार समझो। मान लो कि तुम्हारें प्रधानाचार्य तुम्हें यह प्रमाणपत्र दें कि तुम कभी-कभी बड़ी बुद्धिमानी दिखते हो। क्या तुम ऐसा प्रमाणपत्र पाकर प्रसन्न होगे? क्या तुम नहीं चाहोगे कि प्रमाणपत्र केवल इतना कहे कि तुम बहुत बुद्धिमान हो, यानि हमेशा बुद्धिमान, न कि सिर्फ कभी-कभी।

इसलिए तुम्हें संख्याओं में छिपे सिद्धांतों को खोजना चाहिए। यदि कुछ विचित्रताएं मिलें तो केवल उन्हें नोट कर अलग रखो और भूल जाओ। उन्हें ऐसी ही कौतूहल की वस्तु समझो– जैसे, किसी के हाथ में पांच के स्थान पर छह उंगलियां।

यदि कोई पैटर्न बार-बार सामने आए, तो समझो कि उसमें एक सिद्धांत की गन्ध आ रही है। याद रखो कि यह मात्र एक अनुमान है। जरूरी नहीं कि हर पैटर्न के पीछे कोई सिद्धांत हो। किसी पैटर्न को सिद्धांत तभी माना जाएगा जब उसे सिद्ध किया जा सके। कोई पैटर्न कितनी अधिक बार सामने आया, यह उसे सिद्ध करने के लिए काफी नहीं। किसी सिद्धांत को सिद्ध करना वाकई काफी रोमांचक काम है। लेकिन इसे हम बाद में देखेंगे। पहले हम इन सिद्धांतों के बारे में अनुमान लगाएंगे। हमें यह ध्यान रखना है कि हमारा अनुमान ऐसा हो जो बहुत-से संख्या समूहों पर सही बैठता हो, और उसके वास्तव में एक सिद्धांत होने की संभावना प्रतीत होती हो।

चलो, अब हम देखते हैं कि तुममें से कितने जूनियर गणितज्ञ बन सकने के लिए तैयार हैं। अब एक बार फिर चार्ट को देखो। तुम देख चुके हो कि हर तिकटी में पहली और तीसरी संख्या का योग बीच की संख्या का दोगुना है। ऐसे ही और पैटर्न भी खोजो।"

सभी बच्चे लिखने लगे या एक-दूसरे से फुसफुसा-कर कुछ पूछने लगे। फिर कुछ ने अपने हाथ उठाए। मुझे भी हर तिकटी में संख्याओं का योग निकालने पर एक पैटर्न दिखाई दिया।

1+2+3 = 6

2+3+4 = 9

3+4+5 = 12

4+5+6 = 15 इत्यादि।

मैंने इस पैटर्न को कागज पर नोट किया: हर तिकटी में संख्याओं का योगफल तीन से विभाजित होता है। यह नोट मैंने चाचाजी को दे दिया। उन्होंने उसे पढ़ा और मेरी ओर एक स्वीकृतिसूचक मुस्कान के साथ देखा, जिससे मुझे गौरव का अनुभव हुआ।

जिन बच्चों ने अपने हाथ उठाए थे, उनमें से कुछ को चाचाजी ने अपनी-अपनी खोज प्रस्तुत करने के लिए बुलाया। मुझे बड़ी खुशी हुई जब मैंने देखा कि उन्होंने भी वही पैटर्न खोजा था, जो मैंने। कुछ औरों ने तीनों संख्याओं के गुणनफल में एक पैटर्न देखा था। उन्होंने बोर्ड पर लिखा— $1 \times 2 \times 3 = 6$

 $2 \times 3 \times 4 = 24$

 $3 \times 4 \times 5 = 60$

4 x 5 x 6 = 120 इत्यादि।

खोजियों से कहा गया कि वे अपनी खोज को शब्दों में बताएं। उन्होंने कुछ इस प्रकार कहा :

तीन लगातार संख्याओं का गुणनफल छह से विभाजित होता है। छह की संख्या किसी भी तीन लगातार प्राकृतिक संख्याओं के गुणनफल का एक गुणक है। किन्हीं भी तीन लगातार संख्याओं को गुणा करो और फिर छह से भाग दो, तो वह पूर्णत: विभाजित होती है। इन सभी का अर्थ लगभग एक ही था।

इस काम में बच्चों के उत्साहपूर्वक भाग लेने से चाचाजी बड़े प्रसन्न हुए। वह बच्चों को उनकी खोजों के लिए बधाई दे ही रहे थे, िक बाई ओर बैठे बच्चों में से तीन ने एक साथ अपने हाथ खड़े िकए। चाचाजी ने उस ओर देखा तो तीनों ने खड़े होकर कहा िक उन्होंने एक पैटर्न खोजा है जो कहीं अधिक रोचक लगता है। उन्हें बुलाया गया िक वे आकर पूरी कक्षा को अपनी खोज बताएं और अपने खोजे हुए पैटर्न को बोर्ड पर लिखकर सभी को दिखाएं। उन्होंने बोर्ड पर इस प्रकार लिखा:

 $1 \times 3 = 2 \times 2 - 1$

 $2 \times 4 = 3 \times 3-1$

 $3 \times 5 = 4 \times 4 - 1$

4 x 6 = 5 x 5-1 इत्यादि

 $1 \times 3 + 1 = 2 \times 2$

 $2 \times 4 + 1 = 3 \times 3$

 $3 \times 5 + 1 = 4 \times 4$

4 x 6+1 = 5 x 5 इत्यादि।

उनमें से एक को इस खोज को शब्दों में बताने के लिए कहा गया। उसने कहा :

"यदि किसी तिकटी की पहली और तीसरी संख्या को गुणा किया जाए तो गुणनफल बीच की संख्या के वर्ग से एक कम होता है।"

मुझे उन बच्चों से कुछ ईर्ष्या-सी हुई, क्योंकि मैं स्वयं यह खोज नहीं कर पाया था।

चाचाजी ने उन बच्चों की पीठ थपथपाई और सभी छात्रों से पूछा, "बताओ, अब तक जो दो खोजें की गईं, उनमें से किसमें अधिक गहराई है?" सभी जोश से चिल्लाकर बोले, "दूसरी, दूसरी।" चाचाजी ने बताया, "किसी खोज में जितनी गहराई होती है, उतनी ही वह खोज आनन्ददायक होती है।" इस प्रकार चाचाजी ने खोज करने का एक माहौल-सा तैयार कर दिया।

फिर चाचाजी ने कहा कि प्राकृतिक संख्याएं कई प्रकार की होती हैं। अब और नई खोजें करने के लिए तुम्हें संख्याओं के इन विभिन्न प्रकारों को जानना और पहचानना होगा। चाचाजी ने उन्हें सम और विषम संख्याओं, गुणक (factor) व गुणज (multiple), वर्ग और घन संख्याओं, तथा अभाज्य (prime) व मिश्र (composite) संख्याओं के बारे में बताया, और उनसे इन सभी के उदाहरण देने को कहा। चाचाजी ने उन्हें समझाया कि कैसे इन संख्याओं को पहचाना जा सकता है। उन्होंने बच्चों को गणित की शब्दावली के नए शब्दों से परिचित कराया, जैसे अगली संख्या (successor), पिछली संख्या (predecessor), सम्बन्धित संख्या (corresponding number), इत्यादि। उन्होंने कहा कि इस शब्दावली को जानकारी इस विषय पर बातचीत में बहुत सहायक है। उन्होंने यह भी कहा कि सभी बच्चों को 1 से 100 के बीच इन सभी प्रकार की सभी संख्याओं की सूचियां बनानी चाहिए, और घन संख्याओं के लिए यह सूची 1000 तक जानी चाहिए।

जब चाचाजी यह सब कह रहे थे, एक बच्चे ने अपना हाथ

उठाया। चाचाजी ने रुक कर उससे पूछा कि क्या उसने कोई और गहरी खोज की है? वह बोला कि उसने एक अनोखी विशिष्टता खोजी है।

 $1+2+3 = 1 \times 2 \times 3$ रास्तु $2+3+4 \neq 2 \times 3 \times 4$

उसे बधाई देने के बाद चाचाजी ने कहा कि इस प्रकार की विशिष्टता मिलने पर हमें उन सभी संख्या समूहों को ढूंढने का प्रयत्न करना चाहिए जिन पर यह विशिष्टता लागू होती हो। इस पर उस बच्चे ने कहा कि यह विशेषता और किसी भी संख्या समूह पर लागू नहीं होती। चाचाजी ने उससे कहा कि जरूरी नहीं कि संख्या समूह तीन क्रमवार संख्याओं की तिकटी ही हो। यानि ऐसी संख्याएं खोजो जिनके सभी गुणकों का योग उन संख्याओं के बराबर हो। बच्चे ने कहा कि इसमें तो बहुत समय लगेगा। असल में वह चाहता था कि चाचाजी ही इसका उत्तर बता दें। चाचाजी ने कहा कि इन संख्याओं को देखो : 1, 2, 4, 7, और 14 । बच्चे ने इन संख्याओं का योगफल निकाला और पाया कि उस योगफल में वाकई वह विशिष्टता मौजूद थी। उसने कहा कि वह ऐसी अन्य संख्याएं स्वयं खोजना चाहता है।

चाचाजी ने उसके उत्साह की प्रशंसा की और आगे बोले, "यदि तुम ऐसी अन्य संख्याएं जमा कर लो, तो यह विशिष्टता उन संख्याओं से सम्बन्धित एक सिद्धान्त बन जाता है। यह कितनी सुन्दर बात है।" मुझे व अन्य बच्चों को भी चाचाजी की यह बात बड़ी रोचक लगी। एक बच्चे ने उठकर पूछा : ऐसी संख्याएं कौन-सी हैं? चाचाजी ने इस प्रकार समझाया :

1+2+3=6, 1+2+4+7+14=28। अब देखो 1, 2 और 3, ये सभी 6 के गुणक हैं, यानि 6 को पूर्णत: विभाजित करते हैं। इसी तरह 28 के गुणक हैं 1, 2, 4, 7 और 14। ऐसी संख्याओं, जैसे 6 और 28, की विशेषता यह है कि उनके सभी गुणकों का योग उस

संख्या के बराबर होता है। एक बच्चे ने पूछा कि ऐसी संख्याओं को कहते क्या हैं? चाचाजी ने उत्तर दिया कि ऐसी संख्याओं को आदर्श संख्याएं (perfect number) कहते हैं।

अपनी बातचीत समाप्त करते समय चाचाजी ने उन सभी बच्चों को स्नेहपूर्ण बधाई दी जिन्होंने इस दौरान नई खोजें की थीं। उन्होंने बाकी बच्चों को भी इस विषय के प्रति उत्साह व रुचि दिखाने के लिए बधाई दी। उन्होंने कहा, "यदि तुम थोड़ा धैर्य रखो, और विषय में रुचि जगाए रखो, तो तुममें हर कोई एक जूनियर गणितज्ञ बन कर दिखा सकता है।" उन्होंने अपने साथ लाए हुए कुछ चार्ट क्लब को भेंटस्वरूप दिए।

गोष्ठी समाप्त हो गई। घर वापस जाते समय मैंने चाचाजी को बताया कि मुझे गहरी खोजें करने वाले बच्चों से ईर्ष्या हो रही थी। मैंने कहा कि अब मैं हर रविवार को आपके पास आया करूंगा, और आपके साथ बैठकर नई खोजें करने का प्रयास किया करूंगा। यह सुनकर चाचाजी प्रसन्न हुए और बोले, "तुम्हारी यह बात मुझे बहुत अच्छी लगी। मैं अवश्य तुम्हारे लिए कुछ समय नियत रखूंगा।"

इस प्रकार संख्याजगत में मेरा भ्रमण शुरू हुआ। मैं चाचाजी के साथ अपना वार्तालाप अक्षरश: सबको सुनाता हूं, जिससे वे मेरे अनुभव से लाभ उठा सकें। क्या तुम भी इस सफर में मेरे सहयात्री बनोगे?

2

संख्याओं के प्रकार

चाचाजी के साथ मेरी खोजयात्रा का यह पहला रिववार था। वह चाहते थे कि मैं विभिन्न प्रकार की संख्याओं के बारे में अपने ज्ञान को फिर से दोहरा लूं, ताकि उन्हें देखते ही पहचान सकूं।

सम और विषम संख्याएं

उन्होंने कुछ कंचे उठाए और मुझसे पूछा, "क्या बिना गिने बता सकते हो कि इनकी संख्या सम है या विषम?" मुझे समझ में नहीं आया कि ऐसा कैसे सम्भव है। उनकी गिनती करके मैं उत्तर दे सकता था, यदि संख्या का आखिरी, यानि इकाई वाला अंक, दो से विभाजित होता हो तो सम. वरना विषम।

उन्होंने सुझाव दिया कि मैं कंचों के दो-दो के जोड़े बनाकर देखूं कि क्या होता है। मैंने ऐसा करना शुरू किया तो पाया कि उनकी संख्या तो सम है, क्योंकि जोड़े बनाने के बाद कोई कंचा अकेला नहीं बचा था। फिर उन्होंने मुझे कुछ और कंचे दिए। इस बार मैंने जोड़े बनाए तो अन्त में एक कंचा अकेला बच गया, इसलिए उनकी संख्या विषम थी। मैंने पूछा, "यदि कंचों को गिनकर, उनकी संख्या के इकाई अंक को देखकर, कि वह दो से विभाजित होता है या नहीं, उत्तर दिया जाए, तो क्या हानि है?"

उन्होंने मेरे प्रश्न को सराहा और पूछा, "हम जो संख्याएं प्रयोग करते हैं, उनका आधार (base) क्या है?" मैंने कहा कि हम दस के आधार वाली संख्याएं प्रयोग करते हैं, यानि इकाई के बाद अगला अंक दहाई (10 गुना) और उससे अगला सैकड़ा (10x10) इत्यादि होता है। उन्होंने कहा, "यदि हम 7 को आधार बनाएं, तो 12 को किस प्रकार लिखोगे?" मैंने उत्तर दिया, 15, क्योंकि इकाई से अगले अंक

का मान अब 7 है, 10 नहीं। इसलिए आधार 7 होने पर 15 का अर्थ है 7+5 = 12 । अब मुझे अचानक समझ में आया कि इकाई के अंक को देखने की अपेक्षा जोड़े बनाना क्यों बेहतर है। 12 तो सम संख्या है, पर आधार 7 होने पर इकाई का अंक 5 हो जाता है, जो कि 2 से विभाजित नहीं होता। यानि हम गलत निर्णय पर पहुंचते। जोड़े बनाने की विधि हमेशा सही उत्तर देगी, आधार चाहे जो भी हो। चाचाजी ने कहा, हां यह अवश्य सही है कि यदि संख्या दो से विभाजित होती है तो वह सम है, अन्यथा विषम।

अंतत: उन्होंने मुझसे 100 तक की सभी सम और विषम संख्याओं की सूची बनाने को कहा जिसमें सम और विषम संख्याएं अलग-अलग तलों पर हों। यह तो बहुत ही आसान काम था। मैंने

	2		4		6		8		10		12		14		16		18		20
1		3		5		7		9		11		13		15		17		19	
	22		24		26		28		30		32		34		36		38		40
21		23		25		27		29		31		33		35		37		39	
	42		44		46		48		50		52		54		56		58		60
41		43		45		47		49		51		53		55		57		59	
	62		64		66		68		70		72		74		76		78		80
61		63		65		67		69		71		73		75		77		79	
	82		84		86		88		90		92		94		96		98		100
81		83		85		87		89		91		93		95		97		99	

निम्न सूची बनाई-

जैसा कि यह सूची दर्शाती है, दस के आधार वाली प्रणाली में सम संख्याओं का अंतिम अंक होता है 0, 2, 4, 6 या 8 और विषम संख्याओं का 1, 3, 5, 7 या 9।

गुणज और गुणक

फिर चाचाजी ने मुझसे पूछा, "क्या वस्तुओं का कोई ऐसा संग्रह संभव है जिसे एक कतार में लगाना सम्भव न हो?" मैंने तुरन्त कहा, "ऐसा कोई संग्रह नहीं हो सकता।" फिर उन्होंने मुझसे पूछा, "इस बात का विभाजन के संदर्भ में क्या अर्थ है?" कुछ हिचिकचाते हुए मैंने कहा, "एक की संख्या सभी प्राकृतिक संख्याओं की गुणक है और हर प्राकृतिक संख्या स्वयं का गुणक है।" उन्होंने यही बात गुणक (Factor) के स्थान पर गुणज (Multiple) शब्द प्रयोग कर कहने को कहा। मैंने कहा, "हर एक प्राकृतिक संख्या एक की गुणज है, और स्वयं की गुणज भी है।"

उन्होंने मुझे अलमारी से निकालकर एक कटोरा दिया, जिसमें सोडावाटर बोतलों के बहुत से ढक्कन रखे थे, और कहा कि मैं उन ढक्कनों से एक आयताकार संरचना बनाऊं, जिसमें कुछ कतारें (rows) और स्तम्भ (columns) हों। मुझे समझ में नहीं आया। फिर उन्होंने समझाया कि ढक्कनों की एक के ऊपर एक कई कतारें बनाओ, और हर कतार में बराबर संख्या में ढक्कन हों। मैंने इस प्रकार

संरचना बनाई-

यानि तीन कतारें, और पांच स्तम्भ।

"इस संरचना में कुल कितने ढक्कन हैं?"

"पन्द्रह।"

"कतारें कितनी हैं?"

"तीन।"

"हर कतार में कितने ढक्कन हैं?"

"पांच।"

"अब देखो, पांच-पांच ढक्कनों को तीन बार दोहराया गया, इससे वे पन्द्रह हुए, समझे न?"

"हां, समझा। इस प्रकार 15 यहां गुणज है, और 3 व 5 उसके गुणक।"

"बिल्कुल ठीक, 15 गुणज है 3 व 5 का। 5 और 3, दोनों

उसके गुणक हैं।"

"जब कोई संख्या कुछ अन्य संख्याओं का गुणनफल होती है तो गुणनफल को गुणज कहते हैं, और जिन संख्याओं को गुणा करके उसे प्राप्त किया गया, वे सब हैं उस संख्या के गुणक।"

"क्या सम संख्याएं गुणज होती है?"

"हां, वे सभी 2 की गुणज हैं।"

"और विषम संख्याएं?"

"हां, उनमें भी बहुत-सी गुणज हो सकती हैं, जैसे 21 गुणज है 7 का।"

"असल में हर एक संख्या कम से कम 1 की गुणज तो अवश्य ही है, अर्थात् वह संख्या स्वयं ही गुणज भी अवश्य है। ठीक?"

"हां. मैं समझ गया।"

"एक ऐसी संख्या बताओ, जो एक सम और एक विषम, दोनों संख्याओं का गुणक हो।"

"पर संख्याओं को देखे बिना कैसे बताऊं?"

"क्यों नहीं?"

"अच्छा, समझा। उत्तर है संख्या, 1 ठीक?"

"बिल्कुल ठीक। कम से कम एक संख्या ऐसी अवश्य है, जो किसी सम, और किसी विषम संख्या, दोनों की गुणक हो? ऐसा गुणक कौन-सा हो सकता है?"

"वह तो 1 की संख्या ही हो सकती है।"

"क्या तुम मुझे ऐसी एक सम और एक विषम संख्या का उदाहरण दे सकते हो?"

"देखें तो […] हां […] 2 और 3।"

"कोई और उदाहरण?"

"3 और 4।"

"क्या तुम्हारा मतलब है कि वे दोनों क्रमवार संख्याएं होनी चाहिए?"

"यह जरूरी नहीं, लेकिन उत्तर देने में यह आसान है।"

"बहुत अच्छा। अब हम अगले हफ्ते मिलेंगे।"

मैं बोतलों के कुछ ढक्कन अपने साथ खेलने के लिए घर ले गया।

अभाज्य और मिश्र संख्याएं

उस हफ्ते मैंने बोतल के ढक्कनों से बहुत-सी आयताकार संरचनाएं बनाईं। मैंने पाया कि ढक्कनों के प्रत्येक समूह के लिए ऐसा करना संभव नहीं हो पाता। हां, हर समूह को एक कतार में अवश्य लगाया जा सकता है।

अगले हफ्ते जब मैं चाचाजी से मिला, तो मैंने उन्हें अपना अनुभव बताया, "वस्तुओं के कुछ समूह ऐसे होते हैं, जिन्हें आयताकार संरचना में नहीं सजाया जा सकता।"

"हां, यह सही है। ऐसे समूहों की संख्याओं को अनायताकार कहते हैं। हालांकि, ऐसे समूहों की वस्तुओं को एक कतार में अवश्य लगाया जा सकता है। यह क्या दर्शाता है?"

"इससे यही पता चलता है कि किसी भी अनायताकार संख्या के केवल दो ही गुणक होते हैं। उदाहरण के लिए 7 एक अनायताकार संख्या है और इसके केवल दो ही गुणक है, 1 और 7 ।"

"बिल्कुल ठीक। अनायाताकार संख्याओं को ही अभाज्य संख्या (prime number) कहा जाता है, और आयताकार संख्या को मिश्र संख्या (composite number)।"

"ओह, अब मैं समझा। अभाज्य संख्या के केवल दो ही गुणक होते हैं, और मिश्र संख्याओं के दो से अधिक। ठीक है न, और 1 और

2 के बारे में कैसे निर्णय हो?"

"हां, 1 और 2 के बारे में यह निर्णय आयताकार संरचना बनाकर नहीं हो सकता। लेकिन इनके गुणकों की संख्या को देखकर यह निर्णय किया जा सकता है।"

"बिल्कुल। 2 के केवल दो ही गुणक हैं, 1 और 2। इसलिए यह अभाज्य है। लेकिन 1 का तो केवल एक ही गुणक है, यानि 1। इसलिए यह न तो अभाज्य हुआ, और न ही मिश्र! मैंने ठीक कहा न?"

"तुमने बिल्कुल ठीक कहा। क्या अब तुम कुछ संख्या-पहेलियां हल करना चाहोगे?"

"बड़ी प्रसन्नता से।"

"बताओ. सबसे पहली अभाज्य संख्या है?"

"दो।"

"ठीक। और सबसे पहली विषम अभाज्य संख्या?"

"तीन।"

"बहुत अच्छे। सबसे पहली मिश्र संख्या कौन-सी है?"

"चार। यह भी सम संख्या है।"

"ठीक। पहली विषम मिश्र संख्या कौन-सी है?"

"जरा सोचने दीजिए। हां, मिल गई, वह है 9। ठीक है न?"

"हां, बिल्कुल ठीक। अब प्राकृतिक संख्याओं की दो तलों वाली एक तालिका तैयार करो, जिसमें अभाज्य संख्याएं ऊपरी तल पर हों, और मिश्र संख्याएं निचले तल पर।"

मैं तालिका बनाने में लग गया। यह थोड़ा मुश्किल अनुभव था। सम और विषम संख्याओं की ऐसी तालिका बनाना आसान है, क्योंकि ये एक के बाद एक अदल-बदल कर आती हैं। लेकिन अभाज्य और मिश्र संख्याओं के साथ ऐसा नहीं है। मैंने तालिका इस प्रकार बनाई—

2	3		5		7				11		13				17		19		
		4		6		8	9	10		12		14	15	16		18		20	21
	23						29		31						37				41
22		24	25	26	27	28		30		32	33	34	35	36		38	39	40	
	43				47						53						59		61
42		44	45	46		48	49	50	51	52		54	55	56	57	58		60	
					67				71		73						79		
62	63	64	65	66		68	69	70		72		74	75	76	77	78		80	81
	83						89								97				
82		84	85	86	87	88		90	91	92	93	94	95	96		98	99	100	

"एक और सौ के बीच कितनी अभाज्य संख्याएं हैं?"

"देखा जाए तो " 1 न तो अभाज्य है, और न मिश्र। इसलिए 1 से 100 तक मिश्र संख्याओं की संख्या होगी 99-25, यानि 74।"

वर्ग और अ-वर्ग संख्याएं

"आयताकार संरचना बनाते समय क्या कभी ऐसा हुआ कि कतारों की संख्या, और हर कतार में वस्तुओं की संख्या, दोनों बराबर रही हों?"

"हां, ऐसा कई बार हुआ। उदाहरण के लिए जैसे 9 वस्तुएं हों, तब तीन कतारें बनती हैं, और हर कतार में तीन ही वस्तुएं होती हैं।"

"ऐसी संख्याएं एक विशेष प्रकार की आयताकार संरचना से

0 0 0

संबद्ध होती हैं। जानते हो, ऐसे आयत को क्या कहते हैं?" "कहीं वर्ग तो नहीं?"

[&]quot;पच्चीस।"

[&]quot;और मिश्र संख्याएं?"

[&]quot;सौ को मिला कर?"

[&]quot;हां–हां।"

"हां, ठीक कहा। चूंकि ऐसी संख्याएं वर्गाकार संरचना से संबंध रखती हैं, उन्हें वर्ग संख्याएं कहते हैं। क्या आयताकार संख्याएं वर्ग हो सकती हैं?"

"केवल तभी, जब कतारों की संख्या हर कतार में वस्तुओं की संख्या के बराबर हो।"

"तो क्या प्रत्येक वर्ग संख्या आयताकार है?"

"हां, निश्चय ही।"

"यानि हर वर्ग संख्या आयताकार है, लेकिन हर आयताकार संख्या वर्ग नहीं। अच्छा, वर्ग संख्या के गुणकों के बारे में क्या कहोगे?"

" $9 = 3\times3$, $4 = 2\times2$, इत्यादि। यानि यदि संख्या को दो समान गुणकों के गुणनफल के रूप में लिखा जा सके, तो वह वर्ग संख्या है. ठीक?"

"हां, ठीक। अब यह बताओ, क्या 1 वर्ग संख्या है?"

"अब यह कैसे पता लगाएं, क्योंकि केवल एक वस्तु को वर्गाकार संरचना में कैसे सजाएं?"

"एक वर्ग संख्या के दो समान गुणक होते हैं। अर्थात् वह दो समान संख्याओं का गुणनफल है। लेकिन 1 के दो से अधिक समान गुणक हो सकते हैं, क्योंकि हम 1 को इस प्रकार लिख सकते हैं: 1×1×1... इत्यादि।"

"हां, बिल्कुल, एक है 1×1 । इस प्रकार यह वर्ग संख्या हुई। ठीक?"

"हां। अब प्राकृतिक संख्याओं को दो तलों वाली एक सूची बनाओ, जिसमें वर्ग संख्याएं ऊपरी तल पर हों, और अ-वर्ग निचले तल पर।"

सूची इन प्रकार बनी-

1			4					9							16				
	2	3		5	6	7	8		10	11	12	13	14	15		17	18	19	20
				25											36				
21	22	23	24		26	27	28	29	30	31	32	33	34	35		37	38	29	40
								49											
41	42	43	44	45	46	47	48		50	51	52	53	54	55	56	57	58	59	60
			64																
61	62	63		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81																			100
	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

संख्याओं की इस प्रकार दो तल वाली सूची बनाना मुझे अच्छा लगा, क्योंकि दो क्रमवार वर्ग संख्याओं के बीच कितनी अ-वर्ग संख्याएं पड़ती हैं, इसमें भी एक पैटर्न है।

"दो वर्ग संख्याओं के बीच पड़ने वाली इन अ-वर्ग संख्याओं को तुम अन्तराल क्रम (interval sequence) भी कह सकते हो।"

"ठीक, हरेक अन्तराल क्रम में अ-वर्गों की संख्या 2 से विभाजित होती है।"

"यह तो बड़ा रोचक पैटर्न है।"

"बिल्कुल ठीक।"

घन और अ-घन

अब चाचाजी ने घन संख्याओं की चर्चा शुरू की। उन्होंने मुझे कुछ बोतलों के ढक्कन दिए और कहा कि मैं ऐसी आयताकार संरचना बनाऊं जिसमें हर स्थान पर एक की बजाय कई ढक्कन तल-ऊपर रखे जाएं। हर ढेरी के तल-ऊपर ढक्कनों की संख्या उतनी ही हो जितनी कतारों और स्तम्भों की।

मैंने यह काम आसानी से कर लिया। पहली संरचना में हर ढेरी के तल-ऊपर दो ढक्कन थे।

"मान लो कि तुम्हें तीन तलों वाला घन बनाना हो, तो कैसे बनाओगे?"

"यानि जिसमें हर ढेरी में तल-ऊपर तीन ढक्कन हों, हर कतार में तीन ढेरियां हों, और कतारों की संख्या भी तीन ही हो?"

"बिल्कुल ठीक। एक वर्ग संख्या दो समान गुणकों का गुणनफल है। एक घन संख्या के लिए कितने समान गुणकों की जरूरत होगी?"

" $8 = 2 \times 2 \times 2$, $27 = 3 \times 3 \times 3$ । हरेक घन संख्या तीन समान गुणकों का गुणनफल है।"

"ठीक। अब एक के बारे में क्या कहोगे? वह वर्ग संख्या तो है ही, क्या घन संख्या भी है?"

"हां, एक को हम लिख सकते हैं, $1\times1\times1$, इसलिए यह घन संख्या भी हुई। ठीक है न?"

"तुमने बिल्कुल ठीक कहा। यदि किसी संख्या को तीन समान गुणकों के गुणनफल के रूप में लिखा जा सकता है, तो वह अवश्य ही घन संख्या है। अब 8 की संख्या 2 का घन है। क्या तुम जानते हो 2 और 8 का क्या रिश्ता है? यानि, 8 तो 2 का घन है, पर दो 8 का क्या है?" " $2\times2=4$ । 4 की संख्या 2 का वर्ग है, और 2 है 4 का वर्गमूल। इसी प्रकार, क्योंकि $2\times2\times2=8$ । अतः 2 हुआ 8 का घनमूल। मैंने ठीक कहा न?"

"एकदम सही कहा। अब 1 से 100 तक की संख्याओं की एक द्वितलीय सूची बनाओ, जिसमें घन और अ-घन संख्याएं ऊपरी व निचले तल पर दर्शाई गई हों।"

जिस प्रकार मैंने वर्ग और अ-वर्ग संख्याओं की द्वितलीय सूची बनाई थी, उसी प्रकार यह सूची बनाना भी मुझे बड़ा रोचक कार्य लगा। यह सूची नीचे दी हुई है।

1							8												
	2	3	4	5	6	7		9	10	11	12	13	14	15	16	17	18	19	20
						27													
21	22	23	24	25	26		28	29	30	31	32	33	34	35	36	37	38	29	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
			64																
61	62	63		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100

इस सूची के अंतराल क्रम काफी लम्बे हैं। इन अंतराल क्रमों में अ-घनों की संख्या क्रमश: 6, 18, 36, 60, 90 इत्यादि है, जो सभी 6 के गुणक हैं।

"अच्छा, अब 1000 तक की संख्याओं में केवल घन संख्याओं की एक सूची बनाओ। बताओ, कैसे बनाओगे?"

"तीन समान गुणकों का गुणनफल लेकर, गुणक संख्याएं होंगी 1, 2, 3... इत्यादि। मैं यह आसानी से कर सकता हूं।"

"बहुत खूब, अब बनाओ घनों की सूची।"

"1, 8, 27, 64, 125, 216, 343, 512, 729, और 1000।"

"बहुत अच्छा। अगले हफ्ते हम त्रिकोणीय संख्याओं के बारे में जानेंगे।"

"यह त्रिकोणीय संख्याएं क्या होती हैं?"

"धीरज के साथ थोड़ी प्रतीक्षा करो, अगले हफ्ते तक।"

त्रिकोणीय और अ-त्रिकोणीय संख्याएं

चाचाजी ने मुझसे कहा कि जो कुछ वे करने जा रहे थे, मैं उसे ध्यान से देखूं। उन्होंने कुछ ढक्कन लिए और क्रम से नीचे दिखाई गई संरचनाएं बनाने लगे।

अब उन्होंने मुझसे इस क्रम में अगली दो संरचनाएं बनाने को कहा। पहले मैंने उनकी बनाई हुई संरचनाओं का ध्यानूपर्वक अध्ययन किया।

"हर कतार में ढक्कनों की संख्या समान नहीं है। संरचना की हर कतार में पिछली कतार की अपेक्षा एक ढक्कन अधिक है।" इस पैटर्न को समझने के बाद इस क्रम की अगली दो संरचनाएं मैंने इस प्रकार बनाई—

[&]quot;हरेक संरचना का आकार क्या है?"

"हां, इन्हीं से त्रिकोणीय संख्याएं बनी हैं। अब गिन कर देखों कि हर संरचना में कुल कितने ढक्कन हैं, और इन संख्याओं की एक सूची बनाओ।"

[&]quot;त्रिकोणीय।"

[&]quot;ओह, समझा। 3, 6, 10, 15, 21, 28<mark>।"</mark>

"और त्रिकोणीय संरचनाएं बनाए बिना क्या तुम इस सूची की अगली दो संख्याएं बता सकते हो?"

"पहले त्रिकोण की आखिरी कतार में 2 ढक्कन थे। अगले त्रिकोण में एक नई कतार जुड़ी, जिसमें एक ढक्कन अधिक, यानि 3 ढक्कन थे। पहले त्रिकोण में कुल तीन ढक्कन थे, तो दूसरे में हुए 3+3 =6। अगले त्रिकोण में 4 और जुड़े, यानि 6+4 = 10। इसी प्रकार अगले में 10+5 =15, और उससे अगले में 16+6 = 21, 21+7 = 28, 28+8 =36, 36+9 = 45 । मैंने ठीक कहा न?"

"हां, ठीक कहा। क्या 1 त्रिकोणीय संख्या है?"

"1 वर्ग है, और घन भी है। अब प्रश्न यह है कि क्या त्रिकोणीय भी है? हूं, यदि मैं उलटी दिशा में चलकर देखूं तो?""

15-5 = 10

10-4 = 6

6-3 = 3

इसलिए अगली संख्या होनी चाहिए 3-2 = 1

"इस प्रकार 1 भी त्रिकोणीय हुआ। ठीक है न?"

"अति सुन्दर। तुमने बड़ी कुशलता से इस प्रश्न का उत्तर दिया है। अच्छा, अब तुम प्राकृतिक संख्याओं की एक तालिका बना सकते हो, जिसमें ""

"दो तलों पर 1 से 100 तक की त्रिकोणीय और अ-त्रिकोणीय संख्याएं दिखाई गई हों। ठीक?"

"आजकल तुम बड़ी तीव्रता से मेरा आशय समझ जाते हो! चलो, फटाफट तालिका बनाओ।"

मुझे तालिका बनाने में कोई परेशानी नहीं हुई। क्योंकि जल्द ही मैंने पाया कि यदि त्रिकोणीय संख्याओं के बीच के अंतराल क्रम में लम्बाई एक से शुरू होकर हर बार एक से बढ़ जाती है। यानि अंतराल क्रम की लंबाई 1 से शुरू होकर प्राकृतिक संख्याओं की तरह, यानि 1, 2, 3, " बढ़ती जाती है। तालिका इस प्रकार बनी:

1		3			6				10					15					
	2		4	5		7	8	9		11	12	13	14		16	17	18	19	20
21							28								36				
	22	23	24	25	26	27		29	30	31	32	33	34	35		37	38	29	40
				45										55					
41	42	43	44		46	47	48	49	50	51	52	53	54		56	57	58	59	60
					66												78		
61	62	63	64	65		67	68	69	70	71	72	73	74	75	76	77		79	80
										91									
81	82	83	84	85	86	87	88	89	90		92	93	94	95	96	97	98	99	100

"क्या अब तुम एक परीक्षा के लिए तैयार हो?"

"एक के बाद अगली कौन-सी संख्या है, जो वर्ग भी है और त्रिकोणीय भी।"

"तालिका का अध्ययन करने के बाद मैंने कहा, 36 ।"

"बिल्कुल ठीक। एक और 100 के बीच कितनी त्रिकोणीय संख्याएं हैं?"

"बारह।"

"सही। अब पहली त्रिकोणीय संख्या 1 है, दूसरी 3, तीसरी 6, चौथी 10 इत्यादि। यदि मैं तुमसे पूछूं कि बीसवीं त्रिकोणीय संख्या कौन-सी है, तो कैसे बताओगे?"

"देखता हूं। एक सूची बनाकर देखता हूं।" क्रमांक त्रिकोणीय संख्या

"मुझे लगता है कि मुझे क्रमवार जोड़ना चाहिए, जैसे 1 में 2 जोड़ने पर 3 मिला, फिर 3 में 3 जोड़ने पर 6 मिला, 6 में 4 जोड़ा तो 10, 10 में 5 जोड़ा तो 15, 15 में 6 जोड़ने पर 21, इत्यादि। मैं

[&]quot; अवश्य।"

यह क्रम जारी रख सकता हूं, जब तक कि बीसवीं त्रिकोणीय संख्या तक न पहुंच जाऊं। क्या इससे और आसान तरीका नहीं हो सकता?"

चाचाजी ने मुझसे कहा कि मैं किसी भी त्रिकोणीय संख्या के दो त्रिकोण लूं, और उनमें से एक को उल्टा करके दूसरे के ऊपर रखूं, जैसा कि नीचे दिए चित्र में।

"ऐसा करने से क्या बना?"

"यह तो एक आयताकार संख्या बन गई।"

"इन आयताकार संख्याओं में तुम्हें कोई विशेषता दिखाई देती है? जरा गौर से देखो, हर आयत में कितनी कतारें हैं, और हर कतार में कितनी वस्तुएं?"

"ओह, समझा। हर आयताकार संख्या में एक कतार में वस्तुओं की संख्या कतारों की संख्या से एक अधिक है, यानि क्रमवार प्राकृतिक संख्याएं जैसे (2,3), (3,4), (4,5) इत्यादि। क्या ऐसी आयताकार संख्याओं का कोई विशेष नाम होता है?"

"हां, इन्हें कहते हैं अंडाकार (oblong) संख्याएं। क्या तुम ऐसी संख्याओं की सूची बना सकते हो?"

"इनमें हर संख्या एक त्रिकोणीय संख्या को दोगुना करके बनी है, इसिलए इनकी सूची इस प्रकार होगी : 6, 12, 20, \cdots इत्यादि।"

"हां, तुमने बिल्कुल ठीक कहा।"

"अब मैं समझा। हर त्रिकोणीय संख्या दो क्रमवार संख्याओं के गुणनफल की आधी है। इसलिए पहली त्रिकोणीय संख्या होगी $(1\times2)/2=1$ । दूसरी त्रिकोणीय संख्या होगी $(2\times3)/2=3$, और

इसी तरह आगे ही त्रिकोणीय संख्याएं आसानी से निकाली जा सकती हैं। इसलिए 10 वीं त्रिकोणीय संख्या होगी, $(10\times11)/2 = 55$ । ठीक है न?"

"हां, तुम बिल्कुल ठीक समझे। अब बताओ, सबसे पहली प्राकृतिक संख्या कौन-सी है, जो वर्ग भी हो, घन भी, और त्रिकोणीय भी।"

"वह तो । ही है है न?"

"बहुत अच्छे, बिल्कुल 1 ही है। अब, घन संख्याओं के बीच के मध्यान्तर क्रम में कितनी संख्याएं हैं, इस पर ध्यान दो।"

"आपका मतलब है, 6, 18, 36, 60 और 90 इत्यादि?"

"हां, वही। तुम देख सकते हो कि ये सब 6 के गुणज हैं। अब देखों कि 6 को किन संख्याओं से गुणा करने पर 6, 18, 36, 60, 90 इत्यादि संख्याएं मिलती हैं।"

"आपका तात्पर्य है, 1, 3, 6, 10, 15 । अरे, इन संख्याओं के ये गुणक तो त्रिकोणीय संख्याएं निकले। अरे वाह, आश्चर्य है।"

अगली (successor) व पिछली (predecessor) संख्याएं

"अब तुम्हारे वार्तालाप की सरलता के लिए कुछ और शब्दों का प्रयोग सीखना होगा। क्या तुम प्राकृतिक संख्याएं क्रम से बता सकते हो?"

"1, 2, 3, 4, 5, 6, 7, इत्यादि।"

"अब किसी संख्या की 'पिछली संख्या' (predessor) का अर्थ है उससे तुरन्त पहले आने वाली संख्या। तो बताओ, वह कौन-सी संख्या है जिसकी पिछली संख्या है ही नहीं?"

"1 1"

"किसी संख्या की 'अगली संख्या' (successor) का अर्थ है उसके तुरन्त बाद आने वाली संख्या। कोई संख्या बताओ जिनकी अगली संख्या मौजूद हो।" "वह तो हरेक संख्या की है।"

"किस संख्या की अगली संख्या नहीं है?"

"ऐसी कोई संख्या नहीं है।"

"यह तुमने कैसे जाना?"

"मुझे कोई भी प्राकृतिक संख्या दीजिए, मैं उसमें 1 जोड़कर अगली संख्या बता सकता हूं।"

"ठीक कहा। अब पूर्ण संख्याएं (whole numbers) क्रम से बताओ।"

"0, 1, 2, 3, 4, 5, " इत्यादि।"

"क्या इस क्रम में 1 की कोई पिछली संख्या है?"

"हां, 1 से पहले 0 आता है।"

"तो क्या हम कह सकते हैं कि कोई संख्या व उसकी अगली संख्या, तथा कोई संख्या व उसकी पिछली संख्या, की क्रमवार संख्याएं हैं?"

"हां, अवश्य हम ऐसा कह सकते हैं।"

"अब एक कतार में प्राकृतिक संख्याएं लिखो, और उसके ठीक नीचे दूसरी कतार में सम संख्याएं लिखो।"

"1 2 3 4 5 6 7 8 9 10 ···

2 4 6 8 10 12 14 16 18 20 ... "

"ठीक, अब बताओ, दूसरी कतार की संख्याएं पहली कतार की संख्याओं में किस प्रकार पा सकते हो?"

"पहली कतार की हर संख्या को 2 से गुणा करके।"

"यानि 1 से संबंधित (corresponding) सम संख्या हुई 2 और 2 से संबंधित सम संख्या हुई 4। तो 7 से संबंधित सम संख्या क्या है?"

"चौदह।"

"शाबाश। अब बताओ, सम संख्या 18 से संबंधित प्राकृतिक संख्या क्या है?"

" नौ।"

चाचाजी ने मेरी अबतक की सफलता पर मुझे बधाई दी, और बताया कि अगले हफ्ते से संख्याजगत की इस यात्रा का कहीं अधिक रोमांचक दौर शुरू होगा।

"चाचाजी, इसे संख्याजगत की बजाय संख्या-सागर क्यों नहीं कहते?"

"यदि तुम चाहो तो वह भी कह सकते हो।"

3 नया रोमांच

इस बार चाचाजी से बहुत आशान्वित होकर मिला। उन्होंने मुझे याद दिलाया कि इस यात्रा में मेरे लिए जोड़-घटाव, गुणा-भाग, वर्ग व घन संख्याएं निकालना, केवल इतना ही ज्ञान काफी होगा। उन्होंने मुझे सलाह दी कि मैं संख्याओं के परस्पर संबंधों, और उनके बीच जो पैटर्न उभर कर आएं, उन पर अपनी नजर लगातार बनाए रखूं। उन्होंने मुझे यह विश्वास भी दिलाया कि इस यात्रा में नई खोजें करने में विभिन्न प्रकार की संख्याओं के बारे में मेरी जानकारी विशेष रूप से सहायक होगी।

उन्होंने मुझे कुछ पत्रक (flash cards) दिखाए। पहले पत्रक पर यह तालिका थी :

क	ख	ग	घ
3	4	7	13
8	1	9	9
5	7	12	36
9	2		

"तालिका का ध्यान से अध्ययन करो। पहले यह जानने की कोशिश करो कि स्तम्भ **ग** की संख्याओं का स्तम्भ **क** और **ख** की संख्याओं से क्या संबंध है। फिर उसके आधार पर स्तम्भ **ग** की आखिरी कतार में उचित संख्या भरो।"

"मुझे तो ऊपरी तौर पर कुछ ऐसा पैटर्न दिखता है :

3+4 = 7

8+1 = 9

5+7 = 12

इसलिए स्तम्भ **ग** में आखिरी संख्या होनी चाहिए, 9+2 = 11 । क्या हम कह सकते हैं कि स्तम्भ **ग** स्तम्भ **क** और **ख** का योग है?"

"शाबाश! ऐसा बिल्कुल कह सकते हैं। इसे हम इस प्रकार भी कह सकते हैं: ग = क+ख। अब पता लगाओ कि घ संख्याओं का क और ख संख्याओं से क्या संबंध है, और फिर स्तम्भ घ में रिक्त स्थान को भरो।"

"यहां पैटर्न एकदम साफ तो दिखाई नहीं देता। मुझे कई रास्ते आजमाने होंगे। जोड़ तो मैंने पहले ही निकाल रखा है। स्तम्भ घ का क और ख के योग से कोई रिश्ता नजर नहीं आता। घटाने से भी कुछ फायदा होता नहीं दिखाई देता। स्तम्भ क और ख का गुणनफल आजमाता हूं। वह काम करेगा क्या?"

"एक तालिका बनाओ, जिसके एक स्तम्भ में **क** और **ख** का गुणनफल हो, और दूसरे में स्तम्भ **घ** की संख्याएं।"

तालिका नीचे दी हुई है।

क $ imes$ ख	घ
12	13
8	9
35	36

"ओह। तो अब खुला इनका भेद। दोनों स्तम्भों की तुलना करने से यह बिल्कुल साफ है कि स्तम्भ \mathbf{u} की संख्या \mathbf{a} और \mathbf{u} के गुणनफल की अगली संख्या है। इसिलए स्तम्भ \mathbf{u} की आखिरी कतार में जो संख्या होनी चाहिए, वह है $9\times2+1=19$, ठीक है न?"

"शाबाश, बहुत अच्छा। तो हम कह सकते हैं, घ = क × ख + 1, ठीक?"

"हां, बिल्कुल। मैं खुद भी यही कहना चाहता था। यह बिल्कुल सही है।" "अब इस पत्रक को देखो,

च	छ	ज
3	8	10
5	24	26
6	35	37
4		

और खोज कर बताओ, कि **च** संख्याओं का **छ** और **ज** संख्याओं से क्या संबंध है, और फिर आखिरी कतार में खाली स्थानों को भरो।"

"यह पैटर्न खोजने के लिए क्या मैं **च** संख्या को अपने-आप में जोड़्ं या स्वयं से गुणा करूं?

"ठीक है, तुम यह दोनों चीजें आजमा सकते हो। लेकिन हर आजमाइश की तालिका बनाना मत भूलना।"

"पहले मैं जोड़कर तालिका बनाता हूं।"

च + च	छ
6	8
10	24
12	35

यहां तो मुझे कोई पैटर्न नजर नहीं आता। अब **च** को स्वयं से गुणा करके तालिका बनाता हूं।

ਚ X ਚ	छ
9	8
25	24
36	35

अब पैटर्न एकदम साफ है। प्रत्येक **छ** संख्या **च** संख्या के वर्ग से पिछली संख्या है। इसलिए यदि **च** संख्या 4 है, तो **छ** संख्या होगी 16-1 = 151"

चाचाजी मेरे काम को लगातार देख रहे थे, और जब उन्होंने मुझे 15 लिखते हुए देखा तो प्रसन्न होकर उन्होंने मेरे कार्य की सराहना की।

"अब **च** और **ज** संख्याओं का पारस्परिक संबंध तुम आसानी से निकाल सकते हो।"

मैंने **च** संख्याओं के वर्गों और **ज** संख्याओं की ओर ध्यान दिया, तो पैटर्न दिखाई दिया।

"ज संख्याएं च संख्याओं के वर्गों की अगली संख्याएं हैं, इसलिए च संख्या 4 की कतार में ज संख्या होगी। 16+1 = 171"

मेरी इस सफलता से चाचाजी के चेहरे पर प्रसन्नता की झलक साफ दिखाई दे रही थी। उन्होंने कहा कि अगले हफ्ते से शुरू होने वाले खोज अभियान के लिए अब मैं एकदम तैयार हो चुका हूं।

4

खोज अभियान : पहला दौर

प्राकृतिक संख्याओं के क्रमवार जोड़े

मैंने देखा कि चाचाजी की मेज पर बहुत से चार्ट पड़े हुए थे। ये वैसे ही चार्ट थे, जैसे चाचाजी ने गणित-क्लब को सम्बोधित करते समय प्रयोग किए थे।

उन्होंने मुझसे गुलाबी चार्ट उठाकर उसका अध्ययन करने के लिए कहा।

उन्होंने कहा, "तुम्हें क्रमवार आने वाले संख्याओं के जोड़ों की ओर ध्यान देना है।"

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

"इनका अध्ययन करके बताओ, तुम्हें क्या नजर आता है?"

"मुझे इस चार्ट में संख्याओं के क्रमवार जोड़े नजर आ रहे हैं, जैसे (1,2), (2,3), (3,4) इत्यादि।

में हर जोड़े की संख्याओं का योग निकालकर देखता हूं।

$$1+2 = 3$$
 $4+5 = 9$

$$2+3 = 5$$
 $5+6 = 11$

ये संख्याएं, 3, 5, 7, 9, 11 वगैरह, सभी विषम संख्याएं हैं। समझा। हर क्रमवार जोड़े की संख्याओं का योग एक विषम संख्या है। ठीक?"

"बिल्कुल सही। लेकिन क्या इसके अलावा तुम कोई और विशेषता भी ढूंढ़ सकते हो?"

"एक विशेषता जोड़ने से मिली, तो एक घटाने से भी मिलनी चाहिए। कोशिश करता हूं।

2-1 = 1

3-2 = 1

4-3 = 1 इत्यादि।

दो क्रमवार संख्याओं का अंतर हमेशा एक होता है।"

"क्या तुम्हारे विचार में यह बात भी उतनी ही रोचक या महत्वपूर्ण है, जो इन जोड़ों का योग लेने से मिली थी?"

"नहीं, यह तो बिल्कुल मामूली बात लगती है।"

"इसलिए ऐसी विशेषता को मामूली (trivial) विशेषता कहते हैं।" "अच्छा, अब मैं गुणा करके देखता हूं।''

 $1 \times 2 = 2$ $4 \times 5 = 20$

 $2 \times 3 = 6$ $5 \times 6 = 30$

 $3 \times 4 = 12$ $6 \times 7 = 42$ इत्यादि।

2, 6, 12, 20, 30, 42 इत्यादि में सभी सम संख्याएं हैं। यानि, दो क्रमवार संख्याओं का गुणनफल सदा सम होता है।"

"यह परिणाम भी उतना ही अच्छा है, जितना इन जोड़ों के योग से मिला था।"

"क्या मैं इससे भी गहरा एक परिणाम खोजने की कोशिश करूं?"

"यदि तुम ऐसा कर पाओ, तो बहुत अच्छा होगा।"

"यदि मैं हर जोड़े में पहली संख्या का वर्ग लूं, और इसे दूसरी संख्या से विभाजित करके एक तालिका बनाऊं, तो क्या होगा?"

"करके देखो।"

"1/2 = 0, शेष 1 4/3 = 1, शेष 1

9/4 = 2, शेष 1

16/5 = 3, शेष 1

25/6 = 4, शेष 1 इत्यादि।

अरे वाह, यह तो बहुत अद्भुत पैटर्न है। किसी संख्या के वर्ग को यदि उस संख्या की अगली संख्या से विभाजित किया जाए, तो शेष हमेशा 1 ही बचता है।"

"और भागफल के बारे में क्या कह सकते हो?"

"भागफल, जिस संख्या का वर्ग लिया गया था (यानि विभाजित संख्या के वर्गमूल) की पिछली संख्या है।"

"अति उत्तम। अच्छा, अब यदि तुम जोड़े की दूसरी संख्या के वर्ग को पहली संख्या से भाग दो, तो भी क्या ऐसा ही पैटर्न मिलेगा?"

"मैं अभी करके देखता हूं।

4	4	5	6
1)4	2)9	3) 16	4) 25
4	8	15	24
0	1	1	1

1	1	1	1
1	1	1	1
35	48	63	80
5) 36	6 <u>8</u> 6 <u>4</u> 9	7 <u>9</u> 7) 64	8) 81

पहले जोड़े को छोड़कर, बाकी सभी जोड़े एक जैसा पैटर्न दर्शाते हैं। हर बार भागफल विभाजक से दो अधिक है, और शेषफल हमेशा एक है।"

[&]quot;बहुत सुन्दर। अब हम अगले हफ्ते मिलते हैं।"

खोज अभियान : दूसरा दौर

क्रमवार संख्याओं की तिकटियां

इस हफ्ते चाचाजी ने मुझसे लाल चार्ट लेकर उसका अध्ययन करने को कहा। यह वहीं चार्ट था जिसका प्रयोग चाचाजी ने ऑयलर गणित-क्लब के समक्ष किया था।

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

"यह वही चार्ट है न, जो आपने गणित-क्लब के छात्रों की सभा में दिखाया था, जब मैं भी आपके साथ था?"

"हां। यह वही है। क्या तुम्हें याद है, तीन क्रमवार संख्याओं की तिकटियों की कौन-सी विशेषताएं उस दिन खोजी गई थीं?"

"हां, बिल्कुल। मैं भूल कैसे सकता हूं! मेरे मस्तिष्क में वे अभी भी ताजा हैं। ये रहीं वे विशेषताएं :

- हर तिकटी की पहली और आखिरी संख्या का योग बीच की संख्या का दोगुना होता है।
- 2. हर तिकटी की पहली और आखिरी संख्या का गुणनफल बीच की संख्या के वर्ग से एक कम होता है। यानी, बीच की संख्या के वर्ग से पिछली संख्या बाकी दो संख्याओं के गुणनफल के बराबर होती है।
- 3. हर तिकटी की तीनों संख्याओं का योग हमेशा 3 का गुणज होता है।
- 4. तिकटी की तीनों संख्याओं का गुणनफल सदा 6 का गुणज होता है।

बताइए, मैंने ठीक कहा न?"

"अति सुन्दर। तुमने तिकटियों की विशेषताओं को उनके महत्व

व रोचकता के अनुरूप क्रम से बताया है। तुम्हारी इतनी अच्छी याददाश्त पर मैं तुम्हें बधाई देता हूं। अच्छा, अब कुछ और विशेषताएं खोजो।"

"यदि हम तिकटी की पहली दो संख्याओं के गुणनफल को आखिरी संख्या से विभाजित करें, तो क्या पैटर्न उभरेगा? चलो, देखता हूं।

2/3 = 0, शेष 2 30/7 = 4, शेष 2

6/4 = 4, शेष 2 42/8 = 5, शेष 2

12/5 = 2, शेष 2 56/7 = 6, शेष 2

20/6 = 3, शेष 2 72/10 = 7, शेष 2 इत्यादि।

ओह, हां। समझ गया। जब तिकटी की पहली दो संख्याओं के गुणनफल को आखिरी संख्या से विभाजित किया जाता है, तो हमेशा 2 शेष रहता है।"

"बिल्कुल ठीक। आगे चलो।"

"अब यदि मैं तिकटी की छोर वाली, यानि पहली और आखिरी, संख्याओं के गुणनफल को बिचली संख्या से विभाजित करूं? क्या होगा? देखता हूं?

3/2 = 1, शेष 1 24/5 = 4, शेष 4

8/3 = 2, शेष 2 35/6 = 5, शेष 5

15/4 = 3, शेष 3 47/7 = 6, शेष 6 इत्यादि।

कितना अद्भुत पैटर्न है। यदि तिकटी की छोर वाली संख्याओं के गुणनफल को मध्य की संख्या से विभाजित किया जाए, तो भागफल और शेषफल दोनों सदा ही समान आते हैं।"

"क्या भागफल और शेषफल का मध्य की संख्या से कोई रिश्ता नजर आता है?"

"अरे हां। मैं उस तरफ ध्यान देने ही वाला था। शेषफल और भागफल, दोनों ही मध्य की संख्या से पिछली संख्या है।" "बढ़ते रहो।"

"अब यही देखना बाकी है कि यदि तिकटी की आखिरी दो संख्याओं के गुणनफल को पहली संख्या से विभाजित किया जाए, तो क्या होगा। क्या वैसा की कोई पैटर्न निकलेगा? चलो, देखता हूं।

1) 6 6	2) 12 12	$\frac{6}{20}$	4) 30 28
0	0	2	2
8	9	_10	11
5)42	6) 56	7) 72 70	8) 90
40	54	70	88
2	2	2	2

यदि पहली दो तिकटियों को छोड़ दें, तो बाकी में एक पैटर्न दिखाई देता है। शेषफल हमेशा 2 है, और भागफल 6 से शुरू होकर प्राकृतिक संख्याओं की शृंखला के समान चलता है। पहली दो तिकटियों को छोड़कर, भागफल हमेशा विभाजक से 3 अधिक है।"

खोज अभियान : तीसरा दौर

चार क्रमवार प्राकृतिक संख्याएं (चौकड़ी)

"आज के चार्ट में तुम्हें क्या मिलने की उम्मीद है?"

"पहले चार्ट में प्राकृतिक संख्याओं के जोड़े थे, और दूसरे में तिकटियां। अगर यही क्रम चालू रहा, तो आज के चार्ट में चार लगातार संख्याओं के समूह होने चाहिए। ठीक?"

"अच्छा, लो, यह देखो आज का चार्ट:

1	2	3	4	5	6	7	8	9	10	11
1	2	3	4	5	6	7	8	9	10	11
1	2	3	4	5	6	7	8	9	10	11
1	2	3	4	5	6	7	8	9	10	11
1	2	3	4	5	6	7	8	9	10	11

अब जरा कोशिश करो।"

"यहां मुझे जरा अधिक प्रयत्न करना पड़ेगा, क्योंकि हर क्रमवार समूह में अब ज्यादा संख्याएं हैं। शायद भाग्य मेरा साथ दे। चलो, हर समूह में दोनों वाली संख्याओं का योग लेकर उनकी तुलना करता हूं। क्या इसमें कोई पैटर्न निकलेगा? एक तालिका बना कर देखता हूं।

छोर वाली दो संख्याओं का योग	बीच की दो संख्याओं का योग
(1+4=)5	(2+3=) 5
(2+5=)7	(3+4=) 7
(3+6=)9	(4+5=) 9
(4+7=)11	(5+6=) 11 इत्यादि।

इस पैटर्न में एक सादगी और सुन्दरता है। हर चौकड़ी में छोर वाली दो संख्याओं का योग बीच की दो संख्याओं के योग के बराबर होता है। यही नहीं, यहां एक और पैटर्न भी है। ये सारी विषम संख्याएं हैं। अब यदि मैं जोड़ने के स्थान पर गुणा करूं, तो क्या मिलेगा? फिर से तालिका बनाकर देखता हूं।

छोर वाली दो संख्याओं का	बीच की दो संख्याओं का
गुणनफल	गुणनफल
$(1 \times 4 =)4$	$(2 \times 3 =) 6$
$(2 \times 5 =) 10$	$(3\times4=) 12$
$(3 \times 6 =) 18$	$(4 \times 5 =) 20$
$(4 \times 7 =)28$	$(5 \times 6 =) 30$
$(5 \times 8 =)40$	(7×6=) 42 इत्यादि।

हां, इसमें भी एक सुन्दर पैटर्न है। सारे गुणनफल सम संख्याएं हैं। इसके अलावा, हर चौकड़ी की छोर वाली संख्याओं का गुणनफल बीच की संख्याओं के गुणनफल से हमेशा 2 कम है।"

"ठीक। अब सारे गुणनफल को क्रम से लिखो, क्या इसमें कोई रोचक बात दिखाई देती है?"

"ये गुणनफल क्रम से इस प्रकार हैं: 4, 6, 10, 12, 18, 20, 28, 30, 40, 42, इत्यादि।"

"अफसोस, इसमें कोई पैटर्न खोजना तो जरा टेढ़ा काम लगता है। क्योंकि संख्याओं के अन्तर कभी घटते हैं, तो कभी बढ़ते हैं। यदि क्रमवार संख्याओं के अन्तर लें, तो ये होंगे: 2, 4, 2, 6, 2, 8, 2, 10, 2, इत्यादि।"

"अरे क्या तुम्हें इसमें कुछ अद्भुत नहीं लगता?"

"अरे हां, यह तो निश्चय ही बड़ा रोचक है। यदि इस क्रम में एक छोड़कर हर बार आने वाली 2 की संख्याओं को हटा दें, तो यह 4 से शुरू होकर सम संख्याओं की शृंखला बन जाती है।"

"तो अब क्या करोगे?"

"अभी मैंने हर चौकड़ी की संख्याओं के योगफल का अध्ययन नहीं किया है।" "ठीक है. तो यह भी करके देखो।"

"इन चौकडियों के योग इस प्रकार हैं:

1+2+3+4=10

2+3+4+5=14

3+4+5+6=18

4+5+6+7=22

5+6+7+8=26 इत्यादि।

यह पैटर्न अधिक रोचक तो नहीं लगता, फिर भी है तो यह एक पैटर्न ही। ये योगफल 10 से शुरू होने वाला एक संख्याक्रम बनाते हैं, जो हर बार 4 के अन्तर से बढ़ता जाता है।"

"इस क्रम को इतनी आसानी से दरिकनार मत करो। मैं तुम्हें इसके बारे में एक रोचक बात बताता हूं। अच्छा, अब कुछ बोतलों के ढक्कन लो, और इन चौकिड़ियों के योगफलों के वैसे ही डिजाइन बनाओ, जैसे तुमने त्रिकोणीय संख्याओं के बनाए थे।"

में ऐसा करने लगा, तो नतीजा यह निकला:

"इनकी बनावट कैसी लगती है?"

"समझा, पहले को छोड़कर बाकी सबकी आकृति समलंब या ट्रैपीजियम (trapezium) जैसी है, ठीक?" "बिल्कुल ठीक। इसीलिए इन संख्याओं को समलंबक संख्याएं (trapezoidal numbers) कहते हैं।"

"और पहली संख्या का क्या?"

"वह भी एक समलंबक है, लेकिन एक विशेष प्रकार की। वैसे ही जैसे कि वर्ग एक विशेष प्रकार का आयत है।"

"यानि त्रिकोणीय संख्याएं एक विशेष प्रकार की समलंबक संख्याएं हैं, या फिर यों भी वह सकते हैं कि समलंबक संख्याएं त्रिकोणीय संख्याओं को व्यापकता प्रदान करती हैं। ठीक है न?"

"तुमने ठीक समझा। तुम बड़ी तेजी से एक जूनियर गणितज्ञ बनते जा रहे हो। क्या तुम्हें लगता है कि तुम इन चौकड़ियों में कुछ और पैटर्न खोज सकते हो?"

"हां, इन चौकड़ियों की संख्याओं के गुणनफल की ओर तो मैंने अभी तक ध्यान ही नहीं दिया।"

"ठीक है, तो उसे भी देखो।"

"इनके गुणनफल हैं,

 $1 \times 2 \times 3 \times 4 = 24$

 $2 \times 3 \times 4 \times 5 = 120$

 $3 \times 4 \times 5 \times 6 = 360$

 $4 \times 5 \times 6 \times 7 = 840$

 $5 \times 6 \times 7 \times 8 = 1680$

 $6 \times 7 \times 8 \times 9 = 3024$ इत्यादि।

लेकिन इनमें तो कोई पैटर्न दिखाई नहीं देता।"

"इन गुणनफलों की अगली व पिछली संख्याओं की ओर ध्यान दो, और देखो कि कोई पैटर्न उभरकर आता है या नहीं।"

"हां-हां, यह करके देखता हूं। इनकी पिछली संख्याएं हैं 23, 119, 359, 839, 1679, 3023, इत्यादि। अब अगली संख्याओं को

देखता हूं, ये हैं 25, 121, 361, 841, 1681, 3025 वगैरह। इनमें से 25 और 121 तो वर्ग संख्याएं हैं. और बाकी'''।"

"यहां मेज पर रखी किताब में वर्ग संख्याओं की तालिका दी हुई है, जरा उसमें देखो।"

"हां, बिल्कुल। 361, 841, 1681, 3025, ये सभी वर्ग संख्याएं हैं। यानि यह पैटर्न जरा गहरा है। हर चौकड़ी की चारों संख्याओं के गुणनफल में एक जोड़ने पर हमेशा वर्ग संख्या मिलती है।"

"अति उत्तम। तुम्हें इस खोज में आनन्द आ रहा है, है न? चलो, अब देखो कि क्या तुम इन वर्ग संख्याओं का चौकड़ियों से सीधा संबंध खोज सकते हो? यानि केवल चौकड़ी को देखकर बिना गुणा किए यह जान सकते हो कि गुणनफल में एक जोड़ने पर किस संख्या का वर्ग प्राप्त होगा? हर चौकड़ी को ध्यान से देखो, और पता लगाने की कोशिश करो।"

"अच्छा, कोशिश करता हूं। $25=5^2=(4+1)^2$, यानि 1 से 4 वाली चौकड़ी से मिला (4+1) का वर्ग। $121=11^2=(10+1)^2$, यानि 2 से 5 की चौकड़ी से मिला (10+1) का वर्ग। इसी तरह और आगे बढ़ें तो इनकी तालिका बनेगी :

चौकड़ी	वर्ग	संख्या जिसका वर्ग
1:4	25	4+1
2:5	121	10+1
3:6	361	18+1
4:7	841	28+1

अब समझ में आया। हर चौकड़ी से सम्बन्धित वर्ग उस चौकड़ी की पहली और आखिरी संख्या के गुणनफल से अगली संख्या का वर्ग है। यह प्रश्न पूछने के लिए धन्यवाद। अब मैं हर चौकड़ी की छोर वाली संख्याओं, और मध्य की संख्याओं का योग लेकर तुलना करना चाहता हं। उनकी एक तालिका बनाता हं।

चारों संख्याओं	मध्य की दो संख्याओं	छोर की दो संख्याओं
का योग	का योग	का योग
10	5	5
14	7	7
18	9	9 इत्यादि।

पैटर्न बिल्कुल सीधा है। चौकड़ी की चारों संख्याओं का योग मध्य की दो संख्याओं के योग का दोगुना है, और छोर वाली दो संख्याओं के योग का भी दोगुना।"

"बहुत अच्छे, और कुछ?"

"यदि चौकड़ी की पहली और तीसरी संख्या के योग, और दूसरी व चौथी संख्या के योग की तुलना करूं, तो? एक तालिका बनाकर देखता हूं कि इससे क्या उभरता है।

पहली व तीसरी संख्या का योग	दूसरी व चौथी संख्या का योग
4	6
6	8
8	10
10	12

यहां भी पैटर्न एकदम सीधा है, लेकिन अधिक गहरा नहीं। हर चौकड़ी में पहली व तीसरी संख्या का योग दूसरी व चौथी संख्या के योग से 2 कम है।

चाचाजी, मेरा एक प्रश्न है। हम केवल क्रमवार संख्याओं को ही क्यों देख रहे हैं?"

"अच्छा, तो क्या अब तुम्हारा मन इस कार्य से उचटने लगा है?"

"ऐसी बात नहीं है। मुझे आपके दिए चार्टों में भी एक पैटर्न नजर आने लगा है, और मैं अब अनुमान लगा सकता हूं कि अगला चार्ट कौन-सा होगा। मेरा मतलब है कि अब इसमें उतना आनन्द नहीं रहा जो शुरू में था।"

"अच्छा, तो ठीक है, अगले हफ्ते की मुलाकात में तुम्हें कुछ नया मिलेगा।"

खोज अभियान : चौथा दौर

त्रिकोणीय संख्याओं के क्रमवार जोड़े

"तो यह रहा आज के खोज अभियान का चार्ट। इसे देखकर बताओ कि क्या तुम्हें ऐसे चार्ट की अपेक्षा थी?"

1	3	6	10	15	21	28	36	45	55	66
1	3	6	10	15	21	28	36	45	55	66
1	3	6	10	15	21	28	36	45	55	66

"नहीं, मैंने बिल्कुल नहीं सोचा था कि आज का चार्ट ऐसा होगा। धन्यवाद। तो आप चाहते हैं कि मैं इस चार्ट में दर्शाए त्रिकोणीय संख्याओं के क्रमवार जोड़ों का अध्ययन करूं। ठीक?"

"हां। बिल्कुल ठीक। चलो, शुरू हो जाओ।"

"पहले मैं हर जोड़े की संख्याओं के योग की ओर ध्यान देता हूं। ये योग है:

$$1 + 3 = 4$$
 $10 + 15 = 25$ $3 + 6 = 9$ $15 + 21 = 36$

$$6 + 10 = 16$$
 $21 + 28 = 49$

बहुत सुन्दर। दो क्रमवार त्रिकोणीय संख्याओं का योग तो वर्ग संख्या हैं।"

"बहुत अच्छे। अब यदि मैं तुमसे दसवें ऐसे जोड़े का योग बिना उसे देखे निकालने को कहं? क्या कर सकते हो?"

"कोशिश करता हूं। पहले जोड़े का योग है 2 का वर्ग। दूसरे का है 3 का वर्ग, और तीसरे का है 4 का वर्ग। समझा, तो इस प्रकार दसवें जोड़े का योग होगा 11 का वर्ग, यानि 121। ठीक?"

"शानदार। आगे बढ़ो।"

"अब मैं इन जोड़ों के गुणनफलों की ओर देखता हूं। ये गुणनफल

हैं:

$$1 \times 3 = 3$$
 $10 \times 15 = 150$ $3 \times 6 = 18$ $15 \times 21 = 315$ $6 \times 10 = 60$ इत्यादि।

इस पैटर्न में कुछ खास नहीं दिखता। बस, सभी गुणनफल 3 से विभाजित होते हैं। इनको दो गुणकों में तोड़कर देखता हूं, जिनमें से एक 3 हो, शायद कुछ नया सामने आए।

$$3 = 3 \times 1$$
 $150 = 50 \times 3$ $18 = 6 \times 3$ $315 = 105 \times 3$

3, इत्यादि।

 $60 = 20 \times 3$

बस मैंने तो हार मान ली। चाचाजी, अब मैं तीन लगातार त्रिकोणीय संख्याओं को देखना चाहता हूं।"

1	3	6	10	15	21	28	36	45	55	66
1	3	6	10	15	21	28	36	45	55	66
1	3	6	10	15	21	28	36	45	55	66
1	3	6	10	15	21	28	36	45	55	66

"ठीक है, वह हरा चार्ट ले लो, और शुरू हो जाओ।"

"पहले मैं इन तिकटियों के छोर वाली संख्याओं के योग की तुलना हर तिकटी की बीच वाली संख्या से करता हूं। इसकी तालिका इस प्रकार बनेगी।

छोर वाली संख्याओं का योग	मध्य की संख्या
(1+6 =) 7	3
(3+10 =) 13	6
(6+15 =) 21	10
(10+21 =) 31	15
(15+28=) 43	21

पैटर्न साफ तो दिखाई नहीं देता। चलो, हर योगफल को तिकटी की मध्य संख्या से विभाजित करता हूं, शायद कुछ मिले।

$$13 \div 6 = 2$$
, शोष 1
 $43 \div 21 = 2$, शोष 1

 $21 \div 10 = 2$, शोष 1
 $57 \div 28 = 2$, शोष 1

अब समझ आया। हर तिकटी में छोर की संख्याओं का योग बीच की संख्या के दोगुने की अगली संख्या है।"

"यह तो तुमने कमाल कर दिखाया। और आगे बढो़।"

"अब हर तिकटी की छोर वाली संख्याओं का गुणनफल लेता हूं, और उसकी बीच की संख्या से तुलना करता हूं। तालिका ऐसे बनेगी:

छोर वाली संख्याओं का गुणनफल	मध्य की संख्या
$(1 \times 6 =) 6$	3
$(3 \times 10 =) 30$	6
$(6 \times 15 =) 90$	10
$(10 \times 21 =) 210$	15
$(15 \times 28 =)420$	21 इत्यादि।

हां, समझ में आया। क्रमवार त्रिकोणीय संख्याओं की हर तिकटी में छोर वाली संख्याओं का गुणनफल 3 से विभाजित होता है। अब इन गुनफलों को दो सबसे नजदीकी गुणकों में विभाजित करके लिखता हूं।

गुणनफल	दो सबसे नजदीकी गुणक
6	2×3
30	5×6
90	9×10
210	14×15
420	20 imes 21 इत्यादि।

पहली बात यह कि हर बार दोनों गुणक क्रमवार संख्याएं हैं। अब पहले गुणकों की शृंखला (2, 5, 9, 14, 20, ***) पर ध्यान दें तो इसमें दो क्रमवार संख्याओं के अन्तर हैं: 3, 4, 5, 6 इत्यादि, जो 3 से शुरू होकर प्राकृतिक संख्याओं की शृंखला है। इसके अलावा, हर गुणनफल के दो गुणकों में से एक त्रिकोणीय संख्या है।

चाचाजी, हम हमेशा क्रमवार संख्याओं के समूहों का ही अध्ययन क्यों करते हैं?"

"यह जरूरी नहीं। अगली बार जब हम मिलेंगे, तो तुम्हें कुछ और नया मिलेगा।"

खोज अभियान : पांचवां दौर

विषम संख्याओं की शृंखलाओं के योगफल

"इस निचले चार्ट को देखो। कोई खास बात दिखाई देती है?"

1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19

"ये तो विषम संख्याओं की शृंखलाएं हैं। आप चाहते हैं कि मैं क्रमवार आने वाली विषम संख्याओं का अध्ययन करूं?"

"हां, लेकिन शृंखला की लम्बाई को एक-एक कर बढ़ते हुए, जैसा कि चार्ट में दिखाया गया है।"

"ठीक है, मैं पहले इनके योगफलों का अध्ययन करता हूं।

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

$$1 + 3 + 5 + 7 + 9 = 25 इत्यादि ।$$

यहां भी एक सटीक और सुन्दर पैटर्न मौजूद है। एक से शुरू होने वाली विषम संख्याओं की हर शृंखला का योगफल एक वर्ग संख्या होती है।"

"ठीक। अब इस चार्ट को उठाओ। इसमें भी विषम संख्याएं हैं। देखो कि इसमें क्या करना है?"

1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19
1	3	5	7	9	11	13	15	17	19

"चाचाजी, आपने तो मुझे अचम्भे में डाल दिया। यह तो वास्तव में बड़ा रोचक खोज अभियान है। ठीक है, मैं हर कतार की संख्याओं को देखता हूं।

> 1 = 1 3 + 5 = 8 7 + 9 + 11 = 27 13 +15 + 17 + 19 = 64 21 + 23 + 25 + 27 + 29 = 125 इत्यादि।

महान आश्चर्य! ये सभी योगफल तो घन संख्याएं हैं। इसका अर्थ है कि पहली विषम संख्या, यानि 1, घन संख्या है। उससे अगली दो विषम संख्याओं का योग भी घन संख्या है। उससे अगली तीन विषम संख्याओं का योग भी घन संख्या है। और यह क्रम इसी प्रकार जारी रहता है।"

"यानि हम इन्हें समूहों की शृंखला कहें तो?"

"आपका मतलब है कि पहले समूह में केवल एक विषम संख्या है, और वह है 1;

दूसरे समूह में अगली दो विषम संख्याएं हैं, 3 और 5, जिनका योग है 8;

तीसरे समूह में उससे अगली तीन विषम संख्याएं हैं, 7, 9, और 11, योगफल 27;

चौथे समूह में अगली चार विषम संख्याएं हैं, 13, 15, 17, और 19, योगफल 64, इत्यादि।"

"क्या तुम बता सकते हो कि ऐसे दसवें समूह में आने वाली पहली विषम संख्या कौन-सी है?"

"आप चाहते हैं कि इन समूहों में आने पहली संख्याओं का अध्ययन करूं। ठीक?"

"हां, तुम ठीक समझे। आगे बढ़ो।"

"मैं पहले समूह को छोड़ देता हूं। दूसरे से शुरू करके यदि तालिका बनाऊं, तो इस प्रकार बनेगी:

समूह क्रम-संख्या	समूह की पहली विषम संख्या
2	3
3	7
4	13 इत्यादि।

दूसरे स्तम्भ की संख्या को यदि पहले स्तम्भ की संबंधित संख्या से विभाजित करूं, तो मिलेगा:

2)3	3)7	4) 13	5)21
2	6	12	20
1	1	1	1

यह तो वाकई आश्चर्यजनक है। शेषफल हमेशा 1 आता है, और भागफल विभाजक से एक कम। और विभाजक तो समूह की क्रम-संख्या ही है। जिस संख्या को विभाजित किया जा रहा है, वह है समूह की पहली विषम संख्या। मैं समझ गया। चाचाजी, अब मैं आपके प्रश्न का उत्तर दे सकता हूं। दसवां समूह 91 से शुरू होगा, क्योंकि विभाजक है 10, भागफल 9, और शेषफल 1, यानि समूह की पहली विषम संख्या होगी $10 \times 9 + 1 = 911$ "

"भई, यह तो तुमने कमाल ही कर दिया। अब बताओ कि दसवें समूह में विषम संख्याओं का योगफल क्या होगा?"

"मैं दसवें समूह की सारी विषम संख्याएं, और उनका योग आपको बताता हूं। ठीक है?,"

"ठीक है, बताओ।"

"91 + 93 +95 + 97 + 99 + 101 + 103 + 105 +107 +
$$109 = 1000$$
"

"लाजवाब।"

"तो चाचाजी, क्या इस प्रकार का और कोई चार्ट अभी बाकी है?" "यदि तुम ऐसा एक और चार्ट चाहते हो, तो यह चार्ट उठा लो।"

1	3	5	7	9	11	13	15	17	19	21
1	3	5	7	9	11	13	15	17	19	21
1	3	5	7	9	11	13	15	17	19	21
1	3	5	7	9	11	13	15	17	19	21
1	3	5	7	9	11	13	15	17	19	21

"ओह, समझा। आप चाहते हैं कि मैं चार क्रमवार विषम संख्याओं के समूहों का अध्ययन करूं। इनके योगफल निकालकर उन्हें देखता हूं।

$$1 + 3 + 5 + 7 = 16$$

$$3 + 5 + 7 + 9 = 24$$

$$5 + 7 + 9 + 11 = 32$$

समझ गया। चार लगातार विषम संख्याओं का योग 8 से विभाजित होता है। ठीक?"

"अब तुम बड़ी जल्दी पैटर्न को पहचानने लगे हो।"

"चाचाजी, क्या आपके पास वर्ग और घन संख्याओं के चार्ट भी हैं?"

"अच्छा, तुम ऐसा क्यों नहीं करते कि ऐसे चार्ट खुद बनाओ, और जैसे चाहो उनका अध्ययन करो।"

"धन्यवाद, मैं ऐसा ही करूंगा, और अपनी खोजों के बारे में आपको अगले हफ्ते बतलाऊंगा।"

खोज अभियान : छठा दौर

वर्ग संख्याओं के क्रमवार जोड़े

पहले मैंने वर्ग संख्याओं को लेकर उनके दो चार्ट बनाए, जिनमें पहला नीचे दिया हुआ है:

1	4	9	16	25	36	49	64	81	100
1	4	9	16	25	36	49	64	81	100
1	4	9	16	25	36	49	64	81	100

यह चार्ट वर्ग संख्याओं के क्रमवार जोड़ों के अध्ययन का न्यौता देता है। यदि इन जोड़ों की संख्याओं का योगफल लिया जाए, तो उसमें कोई रोचक पैटर्न नहीं निकलता, सिवाय इसके कि सभी योगफल विषम संख्याएं हैं। दो क्रमवार वर्गों का अन्तर भी विषम संख्या ही है।

इन जोड़ों के योगफल सभी एक-दूसरे से भिन्न हैं, अत: मेरी जिज्ञासा इन योगफलों की शृंखला की ओर बढ़ी, यानि 5, 13, 25, 41, 61, 85 आदि।

मैंने इस शृंखला के हर क्रमवार जोड़े के अन्तर को देखना शुरू किया, तो यह मिला 8, 12, 16, 20, 24, " इत्यादि।

अब यदि इस शृंखला के जोड़ों का भी अन्तर लिया जाए, तो मिलता है: 4, 4, 4, ... है न यह रोचक?

अब मैंने वर्ग संख्याओं के हर जोड़े के अन्तर की ओर ध्यान दिया, क्योंकि ये भी एक-दूसरे से भिन्न थे। 3, 5, 7, 9, 11, ... आदि।

इस शृंखला के जोड़ों का अन्तर लिया जाए, तो मिलता है 2, 2, 2, 2, ...

मैंने कुछ नया खोज निकाला था। वर्गों के जोड़ों के योगफल के साथ तो शृंखला का अन्तर दूसरे चरण में जाकर बराबर हुआ, लेकिन जब जोड़ों के अन्तर की शृंखला बनाई गई तो पहले चरण में ही उसका अन्तर समान हो गया। मेरे लिए यह खोज एक नया और भिन्न अनुभव था, और इसने मेरे अध्ययन के लिए एक नई राह खोल दी। मैंने जो दूसरा चार्ट बनाया, वह नीचे दिया गया है :

1	4	9	16	25	36	49	64	81	100
1	4	9	16	25	36	49	64	81	100
1	4	9	16	25	36	49	64	81	100
1	4	9	16	25	36	49	64	81	100

यह चार्ट दावत देता है वर्ग संख्याओं की क्रमवार तिकटियों के अध्ययन की।

हर तिकटी की छोर वाली संख्याओं का योगफल निकालकर मैंने जब उसकी तुलना मध्य की संख्या से की, तो एक बड़ा गहरा पैटर्न सामने आया।

तिकटी की छोर वाली संख्याओं का योग	मध्य की संख्या
(1 + 9 =) 10	4
(4 + 16 =) 20	9
(9 + 25 =) 34	16
(16+36=)52	25

यदि पहले स्तम्भ की संख्या को दूसरे स्तम्भ की संख्या से विभाजित करें, तो मिला

$$10 \div 4 = 2$$
 शोष 2
 $20 \div 9 = 2$ शोष 2
 $34 \div 16 = 2$ शोष 2
 $52 \div 25 = 2$ शोष 2 इत्यादि।

यानि, वर्ग संख्याओं की क्रमवार तिकटियों की छोर वाली संख्याओं का योगफल मध्य की संख्या के दोगुने से दो अधिक है। मैंने जो तीसरा चार्ट बनाया, वह घन संख्याओं पर आधारित था।

1	8	27	64	125	216	343	512	729	1000
1	8	27	64	125	216	343	512	729	1000
1	8	27	64	125	216	343	512	729	1000
1	8	27	64	125	216	343	512	729	1000

यह चार्ट हमारा ध्यान आकर्षित करता है घन संख्याओं की शृंखलाओं पर जो 1 से शुरू होती है, और उनकी लम्बाई क्रमश: बढ़ती जाती है। यानि पहली शृंखला में केवल एक घन संख्या (1), दूसरी में पहली दो घन संख्याएं (1, 8), फिर पहली तीन (1, 8, 25), फिर चार (1, 8, 25, 64), इत्यादि।

मैंने इन शृंखलाओं के योगफल निकाले, तो मैं चिकत रह गया, कि वे सभी वर्ग संख्याएं निकलीं।

$$1 + 8 = 9$$
 $1 + 8 + 27 = 36$
 $1 + 8 + 27 + 64 = 100$ इत्यादि।

एक से शुरू होने वाली घन संख्याओं की प्रत्येक शृंखला का योगफल एक वर्ग संख्या है। यदि शृंखला के स्थान पर समूह शब्द का प्रयोग करें तो यों भी कह सकते हैं:

पहली दो घन संख्याओं के समूह का योगफल 3 का वर्ग है।
पहली तीन घन संख्याओं के समूह का योगफल 6 का वर्ग है।
पहली चार घन संख्याओं के समूह का योगफल 10 का वर्ग है।
मुझे तुरन्त यह आभास हुआ कि 3, 6, 10, ये सभी त्रिकोणीय
संख्याएं हैं। इससे मुझे अपनी खोज को एक नए प्रकार से व्यक्त करने
का मार्ग मिला।

पहली दो घन संख्याओं का योगफल दूसरी त्रिकोणीय संख्या का वर्ग है।

पहली तीन घन संख्याओं का योगफल तीसरी त्रिकोणीय संख्या का वर्ग है।

इत्यादि।

अलविदा

र्ग और घन संख्याओं की अपनी खोजों को लेकर मैं चाचाजी से मिलने गया। वह मेरे कार्य को देखकर बहुत प्रसन्न हुए और मुझे गले लगाया। मेरे साथ-साथ चाचाजी को भी इस सफलता पर गर्व का अनुभव हो रहा था। उन्होंने मुझे 'संख्याओं के साथ आमोद-प्रमोद' नामक पुस्तक भेंट में दी। उन्होंने बताया कि अगले छह महीने वह विदेशों में व्याख्यान देने के लिए दौरे पर जा रहे हैं और वापस आकर मेरे साथ सप्ताहांत की मुलाकातें फिर से शुरू करेंगे।

मुझे थोड़ा दुख हुआ कि इतने हफ्तों तक मैं उनसे नहीं मिल सकूंगा।

मैंने उनसे पूछा कि कई विषयों, जैसे सम संख्याएं, अभाज्य संख्याएं, मिश्र संख्याएं इत्यादि पर कोई चार्ट क्यों नहीं है।

उन्होंने कहा, "तुम अब एक जूनियर गणितज्ञ बन चुके हो और इस खोज अभियान को बिना किसी सहायता के अपनी स्वयं की क्षमता और ज्ञान के आधार पर जारी रख सकते हो। इसलिए तुम्हें चाहिए कि स्वयं, जैसा चाहो वैसा नए चार्ट तैयार करो, जो उन संख्याओं पर आधारित हों जिनपर खोज करने में तुम्हारी रुचि है। मेरी शुभकामनाएं तुम्हारे साथ हैं।"

चाचाजी की बातें सुनकर मैं अपने-आप को सातवें आसमान पर महसूस कर रहा था। मैंने उनकी सलाह पहले न मानने के लिए क्षमा मांगी।

"कोई खेद न करो, ऐसा बहुतों के साथ होता है", उन्होंने कहा। चलने के पहले उन्होंने मुझसे बैंगनी चार्ट लेने को कहा।

1+2 = 3 4+5+6 = 7+8 9+10+11+12 = 13+14+15 16+17+18+19+20 = 21+22+23+24

और उन्होंने मुझसे इस प्रकार दसवां समीकरण बताने को कहा, लेकिन बिना बीच के समीकरणों को लिखे। अभी तक जो मैं करता आया था, यह उससे एकदम भिन्न था, और इसलिए काफी चुनौतीपूर्ण। मैं इस चुनौती में सफल होने का आनन्द अवश्य पाना चाहता था। हमेशा की तरह मैंने एक नियमित रूप से इस प्रश्न का अध्ययन शुरू किया।

समीकरण क्रम-संख्या	बाईं ओर की पहली संख्या
1	1
2	4
3	9
4	16 इत्यादि।

यह साफ था कि हर समीकरण एक वर्ग संख्या से प्रारंभ हो रहा था। पहला समीकरण 1 के वर्ग से प्रारम्भ हुआ। दूसरा समीकरण 2 के वर्ग से प्रारम्भ हुआ, और इसी प्रकार आगे भी।

इसलिए दसवां समीकरण 10 के वर्ग, यानि 100 से शुरू होना चाहिए।

लेकिन यह चाचाजी के प्रश्न का आंशिक उत्तर ही था। अब मुझे यह पता करना था कि समीकरण की बाई ओर कितनी संख्याएं होनी चाहिए, और दाहिनी ओर कितनी।

समीकरण	बाई ओर संख्याओं	दाहिनी ओर संख्याओं
क्रम संख्या	की संख्या	की संख्या
1	2	1
2	3	2
3	4	3
4	5	4 इत्यादि।

इस प्रकार पहले समीकरण में बाई ओर दो संख्याएं हैं, और दाहिनी ओर एक। दूसरे में बाई ओर तीन, और दाहिनी ओर दो, और यह पैटर्न जारी रहता है। इसलिए दसवें समीकरण में बाई ओर 11 संख्याएं होनी चाहिए, और दाहिनी ओर 10 । इन निष्कर्ष पर पहुंचते ही, मैंने दसवां समीकरण लिख दिया। 100+101+102+103+104+105+106+107+108+109+110 = 111+112+113+114+115+116+117+118+119+120

चाचाजी प्रसन्न होकर खड़े हो गए और मुझसे हाथ मिलाकर उन्होंने मेरे कार्य को सराहा। उन्होंने कहा कि गणित के क्षेत्र में नई खोज करने के लिए उचित प्रश्न उठाने की योग्यता होना सबसे अधिक आवश्यक है। उन्होंने मुझसे पूछा कि इस चार्ट में दिखाए पैटर्न से संबंधित और कौन-से प्रश्न उठाए जा सकते हैं।

मैंने कहा :

- किसी समीकरण में दाहिनी ओर की पहली संख्या कौन-सी होगी?
- 2. किसी समीकरण की बाई ओर की संख्याओं का योगफल क्या है?
- 3. किसी समीकरण की दाहिनी ओर की संख्याओं का योगफल क्या है?
- 4. किसी समीकरण की दाहिनी ओर की अन्तिम संख्या कौन-सी है?
- 5. किसी समीकरण की बाई ओर की अन्तिम संख्या कौन-सी है?
- 6. क्या सम संख्याओं या किसी संख्या के गुणजों को लेकर हम ऐसे ही समीकरण बना सकते हैं?

"देखा, निश्चय ही तुम ऐसे प्रश्न उठाने और स्वयं उनके उत्तर खोजने की क्षमता और बुद्धिमत्ता रखते हो। शोधकार्य करने के लिए इसी की आवश्यकता है। मैं घोषणा करता हूं कि तुम अब एक नन्हें शोधक गणितज्ञ बन गए हो।"

"चाचाजी, नन्हें गणितज्ञ से एक पूर्ण वरिष्ठ गणितज्ञ बनने में कितना समय लगेगा?" "जब किसी में अपने अनुमानों को सही या गलत सिद्ध करने की क्षमता और कुशलता विकसित होने लगे तो समझना चाहिए कि यह विरिष्ठ गणितज्ञ बनने की राह पर चल पड़ा है। आखिरकार, ये सभी विशिष्टताएं जो तुमने खोजी हैं, इन्हें अभी केवल एक मुनासिब अनुमान ही माना जा सकता है, यानि ये सत्य प्रतीत तो होती हैं, पर निश्चयपूर्वक नहीं कहा जा सकता। वापस लौटने के बाद शीघ्र ही मैं तुम्हें गणित के अनुमानों को सिद्ध करने के विषय में बताऊंगा।"

"ठीक है, चाचाजी। नए आनन्द तो मैं खोजता ही रहता हूं, पर इन कुछ हफ्तों में आपने जीवन के एक अनूठे आनन्द से मेरा परिचय कराया है। मैं किस प्रकार आपको धन्यवाद दूं।" यह कहते मेरी आंखें भर आई।

मैंने चाचाजी को प्रणाम किया और उनसे विदा लेकर चल पड़ा— अब अकेले ही संख्या-जगत के इस खेल-कूद भरे खोज-अभियान पर आगे बढ़ने के लिए।

संख्या-विशिष्टताएं : संक्षेप में

- 1. दो क्रमवार संख्याओं का योगफल एक विषम संख्या होती है।
- 2. दो क्रमवार संख्याओं का अन्तर सदा एक होता है।
- 3. दो क्रमवार संख्याओं का गुणनफल सम संख्या होती है।
- किसी संख्या के वर्ग को उसकी अगली संख्या से विभाजित करने पर शेषफल एक मिलता है।
- 5. (1, 2) को छोड़कर, क्रमवार संख्याओं के हर जोड़े में, बड़ी संख्या के वर्ग को छोटी से विभाजित करने पर शेषफल एक मिलता है।
- तीन क्रमवार संख्याओं की टिकटी में पहली और आखिरी संख्या का योग मध्य की संख्या का दोगुना होता है।
- 7. तिकटी की छोर की संख्याओं का गुणनफल मध्य की संख्या के वर्ग से एक कम, यानि उसकी पिछली संख्या होती है।
- तीन क्रमवार संख्याओं का योगफल तीन का गुणज है, यानि तीन से पूर्णत: विभाजित होता है।
- 9. तीन क्रमवार संख्याओं का गुणनफल छह का गुणज है।
- 10. तिकटी की पहली दो संख्याओं के गुणनफल को तीसरी संख्या से विभाजित करने पर शेषफल 2 मिलता है।
- 11. तीन क्रमवार संख्याओं की तिकटी की छोर वाली संख्याओं के गुणनफल को यदि बीच वाली संख्या से विभाजित किया जाए, तो भागफल और शेषफल एक समान होता है, और यह संख्या बीच की संख्या की पिछली संख्या होती है।
- 12. 3 या उससे बड़ी संख्या से शुरू होने वाली किसी भी तिकटी में, यदि अन्तिम दो संख्याओं के गुणनफल को पहली संख्या से

- विभाजित किया जाए, तो भागफल विभाजक से 3 अधिक होता है।
- 13. किसी भी चार क्रमवार संख्याओं के समूह (चौकड़ी) में बीच की दो संख्याओं का योग छोर वाली संख्याओं के योग के बराबर होता है।
- 14. किसी भी चौकड़ी में छोर वाली संख्याओं का गुणनफल मध्य की दो संख्याओं के गुणनफल से 2 कम होता है।
- 15. दो या उससे अधिक किसी संख्या से शुरू होने वाली किसी भी लम्बाई की क्रमवार शृंखला के योगफल को समलंबक संख्या कहते हैं। हर त्रिकोणीय संख्या एक समलंबक संख्या है, परन्तु हर समलंबक संख्या त्रिकोणीय नहीं।
- 16. किसी चौकड़ी की चारों संख्याओं का गुणनफल, चौकड़ी की छोर वाली संख्याओं के गुणनफल की अगली संख्या के वर्ग से एक कम होता है।
- 17. किसी चौकड़ी की चारों संख्याओं का योग मध्य की दो संख्याओं के योग का दोगुना होता है, और छोर की दो संख्याओं के योग का भी दो गुना।
- 18. चौकड़ी की पहली और तीसरी संख्या का योग दूसरी और चौथी संख्या के योग से दो कम होता है।
- 19. चौकड़ी की चारों संख्याओं का योगफल 8 का गुणज होता है।
- 20. दो क्रमवार त्रिकोणीय संख्याओं का योग सदा एक वर्ग संख्या होती है।
- 21. तीन क्रमवार त्रिकोणीय संख्याओं में छोर वाली दो संख्याओं का योग बीच की संख्या के दोगुने की अगली संख्या होती है।
- 22. तीन क्रमवार त्रिकोणीय संख्याओं में छोर वाली दो संख्याओं का गुणनफल 3 का एक गुणज है, यानि वह 3 से पूर्णत: विभाजित होता है।

- 23. किसी प्राकृतिक संख्या 'क' के लिए (क) (क-1) + 1 से प्रारंभ करके 'क' क्रमवार विषम संख्याओं का योगफल 'क' के घन के बराबर होता है। उदाहरण के लिए, यदि क= 3, तब 7+9+11=27, जो कि 3 का घन है।
- 24. एक से शुरू होने वाली विषम संख्याओं की किसी भी क्रमवार शृंखला का योग एक वर्ग संख्या होती है। उदाहरण के लिए 1+3+5+7 = 16, यानि 4 का वर्ग।
- 25. विषम संख्याओं के क्रमवार जोड़ों के योगफलों की यदि एक शृंखला बनाई जाए तो इस शृंखला के पदों का सामान्य अन्तर दूसरी अवस्था में 4 होता है।
- 26. विषम संख्याओं के क्रमवार जोड़ों के अन्तरों की यदि एक शृंखला बनाई जाए, तो इस शृंखला के पदों का सामान्य अन्तर पहली अवस्था में 2 होता है।
- 27. तीन क्रमवार वर्ग संख्याओं की तिकटी में छोर वाली संख्याओं का योगफल मध्य की संख्या के दोगुने से 2 अधिक होता है।
- 28. एक से शुरू होकर 'क' क्रमवार घन संख्याओं का योगफल, त्रिकोणीय संख्या की शृंखला में 'क' स्थान पर आने वाली संख्या का वर्ग होता है।
- 29. (क-1)×2 से प्रारम्भ होने वाली प्राकृतिक संख्याओं की शृंखला में पहली 'क' संख्याओं का योग, उससे अगली (क-1) संख्याओं के योग के बराबर होता है। □

प्राकृतिक संख्या-तंत्र में अनिगनत अद्भृत पैटर्न छिपे हैं – कुछ अत्यंत सरल हैं तो कुछ अति-जिटल। कुछ सीधे-साधे हैं तो कुछ अति-गहरे। जोड़ना-घटाना, गुणा-भाग करना इत्यादि सीख चुके प्राथमिक स्कूल के बच्चे अपनी योग्यता का प्रयोग करके संख्या-तंत्र के रोमांचकारी जगत में प्रवेश कर सकते हैं और मजे-मजे में अनेक खोजें कर सकते हैं। इस खोज में बच्चों को जिस आनंद और आत्मविश्वास की अनुभृति होगी, उसके द्वारा वे गणित के अध्ययन के प्रति उत्साहित होंगे। संख्याओं से खेल-कूद के आनंदलोक में ले जाती है यह पुस्तक।

भारत ज्ञान विज्ञान समिति