Tsinghua-Berkeley Shenzhen Institute INFERENCE AND INFORMATION Fall 2017

Problem Set 4

Issued: Tuesday 21st November, 2017 **Due:** Monday 27th November, 2017

4.1. Assume we have n i.i.d. random variables $\mathsf{x}_1, \mathsf{x}_2, \cdots, \mathsf{x}_n$ with mean μ and variance σ^2 . Prove that the mean estimator m_n and variance estimator v_n are unbiased, i.e., $\mathbb{E}[\mathsf{m}_n] = \mu, \mathbb{E}[\mathsf{v}_n] = \sigma^2$, where m_n and v_n are defined as

$$\begin{split} \mathbf{m}_n &\triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i, \\ \mathbf{v}_n &\triangleq \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \mathbf{m}_n)^2. \end{split}$$

- 4.2. Let x be a scalar random variable with a known distribution that is symmetrical about zero. Define $g_k \triangleq \mathbb{E}[x^k]$. Let $y = x^3$. Express your answers in terms of the g_k 's.
 - (a) Find $\hat{x}_{BLS}(y)$ the Bayes Least-Squares estimator of x given y.
 - (b) Find $\hat{x}_{LLS}(y)$ the Linear Least-Squares estimator of x given y.
 - (c) Suppose we are given two more observations $z_1 = x + w$ and $z_2 = x 2w$, where $w \sim \mathcal{N}(0, 1)$, independent of x and y. Find $\hat{x}_{\mathrm{LLS}}(y, z_1, z_2)$.
 - (d) Suppose now that $v = x^2$. Find $\hat{x}_{BLS}(v)$.
- 4.3. (a) Let

$$p_{y}(y;x) = \begin{cases} x & \text{if } 0 \le y \le 1/x \\ 0 & \text{otherwise} \end{cases}$$

for x > 0. Show that there exist no unbiased estimators $\hat{x}(y)$ for x. (Note that because only x > 0 are possible values, an unbiased estimator need only be unbiased for x > 0 rather than all x.)

(b) Suppose instead that

$$p_{y}(y;x) = \begin{cases} 1/x & \text{if } 0 \le y \le x \\ 0 & \text{otherwise} \end{cases}$$

for x > 0. Does a minimum-variance unbiased estimator for x based on y exist? If your answer is yes, determine $\hat{x}_{MVU}(y)$. If your answer is no, explain.

4.4. The data $x[n] = ar^n + w[n]$ for $n = 0, \dots, N-1$ are observed. The random variables $w[0], \dots, w[N-1]$ are i.i.d. Gaussian random variables with zero mean and variance σ^2 . r is a non-zero constant. Find the Cramér-Rao bound for a. Does an efficient estimator exist? If so, what is it and what is its variance?