Jack Jin

(347) 798-7976 | jinj@alum.mit.edu | LinkedIn | Portfolio | Elmhurst, New York

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

Bachelor of Science in Computer Science and Engineering (GPA: 4.5/5.0)

Class of 2024

Coursework: Intro to Machine Learning, Design and Analysis Algorithms, Software Construction, System Engineering, Computer Graphics, Computer Vision, Intro to Algorithms, Computer Security, Statistical Thinking and Data Analysis

EXPERIENCE

Massachusetts Institute of Technology UROP

Cambridge, MA

Research Fellow

June 2023 - Jan. 2024

Collaborated with an MIT researcher to develop a space-weather forecasting model from the ground up, using AI-driven tools. Achieved an 88% accuracy after thorough fine-tuning and dynamic data splitting.

- Scoped out existing models and research to deepen understanding of machine learning applications.
- Meticulously analyzed and cleaned a naturally messy dataset to make it training ready.
- Achieved base accuracy of 71% with diverse data sampling techniques and hyper-tuned space weather parameters.
- Rigorously tested model to verify reliability and boosted performance to 88% validation accuracy using fine-tuning and smart data splitting.

PROJECTS

Disaster Tweets Classifier Nov. 2024 - Dec. 2024

Participated in the "NLP with Disaster Tweets - EDA, Cleaning and BERT" Kaggle competition, achieving an impressive 81.92% accuracy model after fine-tuning.

- Thoroughly cleaned dataset of tweets and prepped data using text-hammer and WordCloud.
- Used an open-sourced embedding model to initially obtain a baseline accuracy of 60%.
- Observed areas of improvement in the model such as adding additional Dense and dropout layers and rigorously fine-tuned the hyperparameters of the model while preventing overfitting.

Image Classifier Aug. 2024 - Sep. 2024

Created an image classifier for the CIFAR10 dataset using convolutional neural network and other cutting edge optimization techniques to achieve 79.51% accuracy.

- Initialized and prepped CIFAR10 dataset and created DataLoaders using PyTorch.
- Efficiently analyze spatial information of the dataset using a CNN. Achieved baseline accuracy of 69% using the ReLU activation function, cross-entropy loss function and Adam optimizer.
- Strengthened model by adding more convolution layers, using batch normalization and introducing dropout.

Python-based Voxel Engine

Nov. 2023 - Dec. 2023

Engineered a voxel engine using ModernGL, resulting in realistic landscape generation during run-time. Allowed for real-time and continuous updates to landscape by optimizing resource utilization by 10x.

- Grouped individually rendered voxels into chunk objects to allow for more efficient world generation.
- Utilized GLM simplex noise algorithm to generate realistic world landscapes and applied MIPmap textures to voxels to improve visuals.
- Implemented face-culling of hidden voxel faces to drastically improve computational efficiency by reducing renderable faces.

Realistic Physics Simulator

Sep. 2023 - Dec. 2023

Developed a realistic physics simulator using OpenGL and GLOO to model systems such as pendulums and water particle dynamics with high fidelity.

- Leveraged principles of mechanics and fluid dynamics to ensure accurate representation of physical interactions.
- Implemented advanced algorithms such as Smoothed Particle Hydrodynamics and efficient spatial partitioning techniques to enhance the computational and rendering performance.

SKILLS

Software	Python, C++, TypeScript, Java, HTML/CSS, R, SQL, Assembly, ModernGL, Algorithms, Data Structures,
	Data Modelling, MongoDB, Data Analysis
ML	Pytorch, Deep Learning, Reinforcement Learning, Pre-training/Fine-tuning, Natural Language Models, Retrieval Augmented Generation, Embedding Models, LangChain, Tensorflow, Keras, Transformers
Math	Linear Algebra, Multivariable Calculus, Differential Equations, Statistics, Data Science, Regression