

DJ

**PCT**WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br><b>C12Q 1/68, C12P 19/34, C07H 21/02,<br/>21/04</b>                                               | A1 | (11) International Publication Number: <b>WO 99/51773</b><br>(43) International Publication Date: <b>14 October 1999 (14.10.99)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (21) International Application Number: <b>PCT/US99/07203</b>                                                                                      |    | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |
| (22) International Filing Date: <b>31 March 1999 (31.03.99)</b>                                                                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (30) Priority Data:<br><b>60/080,686 3 April 1998 (03.04.98) US</b>                                                                               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (71) Applicant: <b>PHYLOS, INC. [US/US]; 128 Spring Street, Lexington, MA 02421 (US).</b>                                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (72) Inventors: <b>KUIMELIS, Robert, G.; 21 Malbert Road, Brighton, MA 02135 (US). WAGNER, Richard; 1007 Lowell Road, Concord, MA 01742 (US).</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (74) Agent: <b>ELBING, Karen, L.; Clark &amp; Elbing LLP, 176 Federal Street, Boston, MA 02110-2214 (US).</b>                                     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(54) Title: ADDRESSABLE PROTEIN ARRAYS

## (57) Abstract

Disclosed herein are arrays of nucleic acid-protein fusions which are immobilized to a solid surface through capture probes which include a non-nucleosidic spacer group and an oligonucleotide sequence to which the fusion (such as an RNA-protein fusion) is bound. Also disclosed herein are solid supports on which these arrays are immobilized as well as methods for their preparation and use (for example, for screening for protein-compound interactions such as protein-therapeutic compound interactions).

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |
| EE | Estonia                  |    |                                       |    |                                           |    |                          |

## ADDRESSABLE PROTEIN ARRAYS

### Background of the Invention

5       The invention relates to fixed arrays of nucleic acid-protein fusions and, in particular, RNA-protein fusions, on solid supports.

Certain macromolecules, such as proteins, are known to interact specifically with other molecules based on the three-dimensional shapes and electronic distributions of those molecules. For example, proteins interact  
10      selectively with other proteins, with nucleic acids, and with small-molecules. Modern pharmaceutical research relies on the study of these interactions; the development of new drugs depends on the discovery of compounds that bind specifically to biologically important molecules.

The discovery of a single drug candidate can require the screening of  
15      thousands of compounds. It is therefore important to be able to screen large numbers of compounds rapidly and efficiently. One method for screening a large number of compounds is to fix possible binding partners, such as proteins, to a solid support.

It is difficult to prepare arrays of isolated proteins on solid supports,  
20      however, for a variety of reasons. First of all, proteins cannot always be easily attached to the planar surfaces traditionally used to make other fixed arrays, such as nucleic acid microchips. More importantly, because proteins can interact with the functional groups on the surfaces of these supports, the proximity of the protein to the surface can lead to disruption of the protein  
25      structure.

Summary of the Invention

In general, the invention features a solid support including an array of immobilized capture probes; each of the capture probes includes a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound (for example, hybridized or covalently bound). In preferred embodiments, the nucleic acid-protein fusion is an RNA-protein fusion, and the protein component is encoded by the nucleic acid (for example, the RNA). The spacer group can include a polyalkylene oxide, for example, polyethylene oxide. A preferred spacer group includes hexaethylene oxide.

10    The capture probe may also include a photocleavable linker.  
The oligonucleotide sequence can include a modified base, such as 5-propyne pyrimidine. It can also include an internucleotide analog (such as 3'-phosphoramidate) or a carbohydrate modification (such as a 2'-O-methyl group). The nucleic acid-protein fusion can include a hybridization tag sequence. The hybridization tag sequence can also include a modified base, an internucleotide analog, or a carbohydrate modification.

15    In a preferred embodiment, the capture probe further includes a reactive moiety (for example, a nucleophilic group), such as a primary amino group. In another preferred embodiment, the nucleic acid-protein fusion is covalently linked to the capture probe (for example, by photo-crosslinking); in one preferred approach, this is accomplished by including one or more psoralen moieties in the capture probe or in the capture probe-fusion hybridization reaction mixture. A preferred solid support is a glass or silica-based chip.

20    In a related aspect, the invention features a solid support including an array of immobilized capture probes; each of the capture probes is attached to the surface of the solid support through a non-nucleosidic spacer group, and

-3-

each of the capture probes includes an oligonucleotide sequence to which a nucleic acid-protein fusion (for example, an RNA-protein fusion) is bound (for example, hybridized or covalently bound).

In another related aspect, the invention features a solid support  
5 including an array of immobilized capture probes; each of the capture probes includes a non-nucleosidic spacer group and an oligonucleotide sequence to which a ribosome display particle is bound (for example, hybridized or covalently bound).

In yet another related aspect, the invention features a method for  
10 preparing a solid support. The method includes the steps of: (a) preparing a capture probe by linking a spacer group to an oligonucleotide sequence; (b) attaching the capture probe to the solid support; and (c) binding (for example, hybridizing or covalently binding) a nucleic acid-protein fusion (for example, an RNA-protein fusion) to the capture probe.

15 The invention also features a second general method for preparing a solid support. This method includes the steps of: (a) attaching a spacer group to a surface of the solid support; (b) attaching a bifunctional linker to the spacer group; (c) attaching a capture probe to the bifunctional linker; and (d) binding (for example, hybridizing or covalently binding) a nucleic acid-protein fusion  
20 (for example, an RNA-protein fusion) to the capture probe.

In a second aspect, the invention features a method for detecting an interaction between a protein and a compound. The method includes the steps of: (a) providing a solid support including an array of immobilized capture probes, where each of the capture probes includes a non-nucleosidic spacer  
25 group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound (for example, hybridized or covalently bound); (b) contacting the solid support with a candidate compound under conditions which allow an

interaction between the protein portion of the nucleic acid-protein fusion and the compound; and (c) analyzing the solid support for the presence of the compound as an indication of an interaction between the protein and the compound.

5        Alternatively, the invention features another method for detecting an interaction between a protein and a compound; this method involves the steps of: (a) providing a population of nucleic acid-protein fusions; (b) contacting the population of nucleic acid-protein fusions with a candidate compound under conditions which allow an interaction between the protein portion of the

10      nucleic acid-protein fusion and the compound; (c) contacting the product of step (b) with a solid support that includes an array of immobilized capture probes, each of the capture probes including a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion binds (for example, hybridizes or covalently binds); and (d) analyzing the solid

15      support for the presence of the compound as an indication of an interaction between the protein and the compound.

In a preferred embodiment of each of the above methods, the nucleic acid-protein fusion is an RNA-protein fusion. In another preferred embodiment, the compound is labeled. Compounds that can be screened using

20      these methods include, without limitation, proteins, drugs, therapeutics, enzymes, and nucleic acids.

In a third aspect, the invention features an array (for example, an addressable array) of nucleic acid-protein fusions including at least  $10^2$  different fusions/cm<sup>2</sup>. Preferably, the nucleic acid-protein fusions are RNA-protein fusions, and the array includes at least  $10^4$  different fusions/cm<sup>2</sup>.

In a related aspect, the invention features a method for generating an addressable array of molecules. The method involves: (a) providing a solid

-5-

support on which an array of nucleic acid molecules is immobilized; (b) contacting the solid support with a population of addressable molecules; and (c) allowing the addressable molecules to orient themselves on the solid support by sequence-dependent recognition and binding of the immobilized nucleic acid  
5 molecules.

In preferred embodiments of this method, the addressable array of molecules is an array of nucleic acid-protein fusions (for example, an array of RNA-protein fusions); the addressable molecules orient themselves on the solid support by base pairing (for example, hybridization) with the immobilized  
10 nucleic acid molecules; the solid support is a glass or silica-based chip; and the nucleic acid molecules immobilized on the solid support are capture probes, each including a non-nucleosidic spacer group and an oligonucleotide sequence to which the addressable molecule binds.

As used herein, by an "array" is meant a fixed pattern of  
15 immobilized objects on a solid surface or membrane. Typically, the array is made up of nucleic acid-protein fusion molecules (for example, RNA-protein fusion molecules) bound to capture nucleic acid sequences which themselves are immobilized on the solid surface or membrane. The array preferably includes at least  $10^2$ , more preferably at least  $10^3$ , and most preferably at least  
20  $10^4$  different fusions, and these fusions are preferably arrayed on a 125 x 80 mm, and more preferably on a 10 x 10 mm, surface. By an "addressable array" is meant that the locations, or addresses, on the solid support of the members of the array (for example, the nucleic acid-protein fusions) are known; the members of the array are referred to as "addressable molecules" and are  
25 utilized in methods for screening for subsequent molecular interactions (for example, for screening for interactions between the addressable nucleic acid-protein fusions and candidate therapeutics).

-6-

By "nucleic acid-protein fusion" is meant a nucleic acid covalently bound to a protein. By "nucleic acid" is meant any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA. By "protein" is  
5 meant any two or more amino acids, or amino acid analogs or derivatives, joined by peptide or peptoid bond(s), regardless of length or post-translational modification. As used herein, this term includes, without limitation, proteins, peptides, and polypeptides.

By "hybridization tag" is meant a non-coding oligonucleotide  
10 sequence that differs sufficiently in sequence from other nucleic acid sequences in a given population or reaction mixture that significant cross-hybridization does not occur. When multiple hybridization tags are utilized in a single reaction mixture, these tags also preferably differ in sequence from one another such that each has a unique binding partner under the conditions employed.  
15 By a "population" is meant more than one molecule.

By a "solid support" is meant any solid surface including, without limitation, any chip (for example, silica-based, glass, or gold chip), glass slide, membrane, bead, solid particle (for example, agarose, sepharose, or magnetic bead), column (or column material), test tube, or microtiter dish.

20 Brief Description of the Drawings

Figure 1 is a drawing showing the silylation of a glass surface, the derivatization of the resulting amino groups, and the attachment of a capture probe to the modified surface.

25 Figure 2 is a drawing illustrating a capture probe containing a non-nucleosidic spacer group and a reactive moiety.

Figure 3 is a schematic diagram of the layout of the FLAG and

-7-

HA11 fusion chip capture probes utilized in Figures 4 and 5. In this Figure, t7, tag, au1, au5, flag, ha1, irs, and kt3 represent the capture probes CPt7 (positive control), CPtag (positive control), CPau1 (negative control), CPau5 (negative control), CPflag, CPha11, CPIrs (negative control), and CPkt3 (negative control), respectively.

5 Figure 4 is a phosphorimage demonstrating hybridization of nucleic acid-protein fusions (FLAG and HA11) to capture probes immobilized on a chip.

Figure 5 is a fluorimage demonstrating hybridization of nucleic acid-10 protein fusions (FLAG and HA11) to capture probes immobilized on a chip and subsequent recognition with anti-HA11 monoclonal antibodies.

Figure 6 is a schematic diagram of the layout of the Myc fusion chip capture probes utilized in Figures 7 and 8. In this Figure, capture probes CP01, CP33, CP80, CP125, CPmm, and CPns (described herein) were arranged on the 15 chip as follows: CP01 at locations A1, B1, C1, A4, B4, and C4; CP33 at locations D1, E1, F1, D4, E4, and F4; CP80 at locations A2, B2, C2, A5, B5, and C5; CP125 at locations D2, E2, F2, D5, E5, and F5; CPmm at locations A3, B3, C3, A6, B6, and C6; and CPns at locations D3, E3, F3, D6, E6, and F6.

Figure 7 is a phosphorimage demonstrating hybridization of nucleic acid-protein fusions (Myc) to capture probes immobilized on a chip.

Figure 8 is a fluorimage demonstrating hybridization of nucleic acid-protein fusions (Myc) to capture probes immobilized on a chip and subsequent 20 recognition with anti-Myc monoclonal antibodies.

#### Description of the Preferred Embodiments

25 The invention features support-based, addressable arrays of proteins, and methods for preparing and using these arrays. The arrays are prepared by

-8-

fixing oligonucleotide sequences, the capture probes (or capture oligos), to a support in a defined array. The capture probes are then used to bind nucleic acid-protein fusions, such as RNA-protein fusions. Such binding may occur through base pairing (for example, through Watson-Crick base pairing, pseudo  
5 Watson-Crick base pairing involving modified bases, or Hoogsteen base pairing) between the nucleic acid component of the fusion and a complementary capture probe, or may occur through any other type of sequence-dependent recognition and binding of the capture probe (including, without limitation, polyamide-mediated nucleic acid groove binding or specific  
10 binding by nucleic acid-binding proteins such as transcription factors). The result of the binding interactions between the fusions and the capture probes is a defined, addressable array of proteins attached to a solid support.

A variety of materials can be used as the solid support. Examples of such materials include polymers (e.g., plastics), aminated surfaces, gold coated  
15 surfaces, nylon membranes, polyacrylamide pads deposited on solid surfaces, silicon, silicon-glass (e.g., microchips), silicon wafers, and glass (e.g., microscope slides). Microchips, and particularly glass microchips, represent a preferred solid support surface.

If the surface is not already aminated, it can be modified to provide a  
20 layer of amino groups. For example, a glass microscope slide can be treated with a silylating agent such as trialkoxyaminosilane to provide a surface of primary amino groups that exists as a monolayer or 3-8 molecular layers. This reaction is illustrated in Figure 1. The silane-treated surface is then derivatized with a homobifunctional or heterobifunctional linker that permits the  
25 attachment of oligonucleotides at discrete positions. Phenylene 1,4-diisothiocyanate is a useful homobifunctional linker; amino-surfaces derivatized with this reagent have isothiocyanate functionalities that are

-9-

available to covalently react with the primary amino groups on the termini of oligonucleotides to form stable thiourea bonds, as shown in Figure 1.

The capture probes, i.e., the oligonucleotide sequences that are to be attached to the surface, are selected from the reverse-complements of the

5 nucleic acid components of the nucleic acid-protein fusions (the targets).

Capture probes preferably have between 5 and 30 nucleotide units, and more preferably have about 20 nucleotide units. Considerations for the selection of the exact sequence for a particular capture probe include melting temperature (T<sub>m</sub>), interference from competing target sequences, and potential secondary

10 structure in the target sequence. Ideally, each unique capture probe has the same T<sub>m</sub>, i.e., they are isoenergetic, so a single hybridization and washing temperature can be used successfully for all capture-target pairs. Commercially available computer programs (e.g., Oligo 4.0) can be used to help identify sets of capture probes with similar thermodynamic properties based on nearest

15 neighbor treatments.

The capture probes are modified before they are attached to the surface. One or more non-nucleosidic spacers, such as polyethylene oxide, are added to the terminus of the oligo. Preferably, 1-20 spacers and, most preferably, 4 spacers are utilized. These spacers may be added to either the 5'

20 or preferably the 3' end of the oligonucleotide. A nucleophilic moiety is then attached to the spacer group. The result is a derivatized capture probe, as shown in Figure 2. A preferred spacer monomer includes hexaethylene oxide.

Non-nucleosidic spacers are preferred over nucleosidic spacers, such as poly-T, because non-nucleosidic spacers have greater flexibility. In addition, their physical properties can be tailored relatively easily, and it is possible to minimize specific and non-specific nucleic acid interactions.

The spacers provide physical separation between the oligonucleotide

-10-

and the solid surface and prevent interaction of the proteins with the support surface. This separation is important to ensure effective hybridization between the support-bound capture probe and the nucleic acid-protein fusion. In addition, the separation helps to minimize denaturation of the protein; the 5 proteins are therefore able to adopt their native folded structures and remain functional.

Alternatively, the spacer groups can be attached directly to the solid support surface, instead of to the capture probes. For example, the spacer group can be attached to the amino groups on the surface. The bifunctional 10 linker can then be attached to the other end of the spacer group.

In addition to spacer groups, the capture probes may contain modifications that improve their hybridization properties and mismatch discrimination. For example, they may contain base analogs, such as 5-propyne pyrimidines, internucleotide analogues such as peptide nucleic acids 15 (PNA), in which the bases are connected by peptide-like linkages, or carbohydrate modifications.

The capture probes are suspended in an aqueous alkaline solution, then applied to defined positions of the support surface; the nucleophilic moieties at the termini of the capture probes react with the active sites of the 20 bifunctional linkers to form covalent bonds. The density of the capture probes can be controlled by adjusting reaction time and oligo concentration. Alternatively, the density can be controlled by doping the solution with capture oligos that lack nucleophilic moieties or doping with simple organic compounds that possess amine functional groups.

25 The capture probes can be applied using liquid deposition techniques, such as inkjet delivery, robotic quill delivery or spotting, and other similar deposition methods. They can also be applied using manual methods,

such as pipetting. The feature sizes of the capture probes can range from one square micron (e.g., when robotic techniques are used) to one square millimeter (e.g., when a 0.2 microliter pipette is used). The result of the application of the capture probes is a defined, regular array of nucleic acid sequences.

5

After a sufficient reaction time, the excess capture probe is washed away, and the remaining unreacted isothiocyanate groups are blocked off. Dilute ammonia can be used as the blocking agent, resulting in a surface of phenyl thiourea groups. Blocking agents can also be selected to modify the 10 surface energy, i.e., the hydrophobicity of the solid support surface. The hydrophobicity of the solid support surface is important because it affects the background signal level and the extent of unwanted interaction of the protein portion of a nucleic acid-protein fusion with the surface. Examples of blocking agents that modify hydrophobicity are methylamine, amino alcohols, and 15 suitable amino-containing polyethylene oxide moieties.

10

15

20

25

Non-covalent blocking agents can also be used to further minimize non-specific interactions between the fusion and the solid support (e.g., glass) surface. Examples of such blocking agents include non-specific proteins such as BSA or casein, or similar commercially available blocking reagent formulations marketed for use with membranes.

The capture probes arrayed on the surface of the solid support are then bound (for example, by hybridization) to nucleic acid-protein fusions, such as RNA-protein fusions. A solution containing the mixture of fusions is adjusted to an appropriate salt concentration, applied to the surface, and 18  
23  
28  
33  
38  
43  
48  
53  
58  
63  
68  
73  
78  
83  
88  
93  
98  
103  
108  
113  
118  
123  
128  
133  
138  
143  
148  
153  
158  
163  
168  
173  
178  
183  
188  
193  
198  
203  
208  
213  
218  
223  
228  
233  
238  
243  
248  
253  
258  
263  
268  
273  
278  
283  
288  
293  
298  
303  
308  
313  
318  
323  
328  
333  
338  
343  
348  
353  
358  
363  
368  
373  
378  
383  
388  
393  
398  
403  
408  
413  
418  
423  
428  
433  
438  
443  
448  
453  
458  
463  
468  
473  
478  
483  
488  
493  
498  
503  
508  
513  
518  
523  
528  
533  
538  
543  
548  
553  
558  
563  
568  
573  
578  
583  
588  
593  
598  
603  
608  
613  
618  
623  
628  
633  
638  
643  
648  
653  
658  
663  
668  
673  
678  
683  
688  
693  
698  
703  
708  
713  
718  
723  
728  
733  
738  
743  
748  
753  
758  
763  
768  
773  
778  
783  
788  
793  
798  
803  
808  
813  
818  
823  
828  
833  
838  
843  
848  
853  
858  
863  
868  
873  
878  
883  
888  
893  
898  
903  
908  
913  
918  
923  
928  
933  
938  
943  
948  
953  
958  
963  
968  
973  
978  
983  
988  
993  
998  
1003  
1008  
1013  
1018  
1023  
1028  
1033  
1038  
1043  
1048  
1053  
1058  
1063  
1068  
1073  
1078  
1083  
1088  
1093  
1098  
1103  
1108  
1113  
1118  
1123  
1128  
1133  
1138  
1143  
1148  
1153  
1158  
1163  
1168  
1173  
1178  
1183  
1188  
1193  
1198  
1203  
1208  
1213  
1218  
1223  
1228  
1233  
1238  
1243  
1248  
1253  
1258  
1263  
1268  
1273  
1278  
1283  
1288  
1293  
1298  
1303  
1308  
1313  
1318  
1323  
1328  
1333  
1338  
1343  
1348  
1353  
1358  
1363  
1368  
1373  
1378  
1383  
1388  
1393  
1398  
1403  
1408  
1413  
1418  
1423  
1428  
1433  
1438  
1443  
1448  
1453  
1458  
1463  
1468  
1473  
1478  
1483  
1488  
1493  
1498  
1503  
1508  
1513  
1518  
1523  
1528  
1533  
1538  
1543  
1548  
1553  
1558  
1563  
1568  
1573  
1578  
1583  
1588  
1593  
1598  
1603  
1608  
1613  
1618  
1623  
1628  
1633  
1638  
1643  
1648  
1653  
1658  
1663  
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
1713  
1718  
1723  
1728  
1733  
1738  
1743  
1748  
1753  
1758  
1763  
1768  
1773  
1778  
1783  
1788  
1793  
1798  
1803  
1808  
1813  
1818  
1823  
1828  
1833  
1838  
1843  
1848  
1853  
1858  
1863  
1868  
1873  
1878  
1883  
1888  
1893  
1898  
1903  
1908  
1913  
1918  
1923  
1928  
1933  
1938  
1943  
1948  
1953  
1958  
1963  
1968  
1973  
1978  
1983  
1988  
1993  
1998  
2003  
2008  
2013  
2018  
2023  
2028  
2033  
2038  
2043  
2048  
2053  
2058  
2063  
2068  
2073  
2078  
2083  
2088  
2093  
2098  
2103  
2108  
2113  
2118  
2123  
2128  
2133  
2138  
2143  
2148  
2153  
2158  
2163  
2168  
2173  
2178  
2183  
2188  
2193  
2198  
2203  
2208  
2213  
2218  
2223  
2228  
2233  
2238  
2243  
2248  
2253  
2258  
2263  
2268  
2273  
2278  
2283  
2288  
2293  
2298  
2303  
2308  
2313  
2318  
2323  
2328  
2333  
2338  
2343  
2348  
2353  
2358  
2363  
2368  
2373  
2378  
2383  
2388  
2393  
2398  
2403  
2408  
2413  
2418  
2423  
2428  
2433  
2438  
2443  
2448  
2453  
2458  
2463  
2468  
2473  
2478  
2483  
2488  
2493  
2498  
2503  
2508  
2513  
2518  
2523  
2528  
2533  
2538  
2543  
2548  
2553  
2558  
2563  
2568  
2573  
2578  
2583  
2588  
2593  
2598  
2603  
2608  
2613  
2618  
2623  
2628  
2633  
2638  
2643  
2648  
2653  
2658  
2663  
2668  
2673  
2678  
2683  
2688  
2693  
2698  
2703  
2708  
2713  
2718  
2723  
2728  
2733  
2738  
2743  
2748  
2753  
2758  
2763  
2768  
2773  
2778  
2783  
2788  
2793  
2798  
2803  
2808  
2813  
2818  
2823  
2828  
2833  
2838  
2843  
2848  
2853  
2858  
2863  
2868  
2873  
2878  
2883  
2888  
2893  
2898  
2903  
2908  
2913  
2918  
2923  
2928  
2933  
2938  
2943  
2948  
2953  
2958  
2963  
2968  
2973  
2978  
2983  
2988  
2993  
2998  
3003  
3008  
3013  
3018  
3023  
3028  
3033  
3038  
3043  
3048  
3053  
3058  
3063  
3068  
3073  
3078  
3083  
3088  
3093  
3098  
3103  
3108  
3113  
3118  
3123  
3128  
3133  
3138  
3143  
3148  
3153  
3158  
3163  
3168  
3173  
3178  
3183  
3188  
3193  
3198  
3203  
3208  
3213  
3218  
3223  
3228  
3233  
3238  
3243  
3248  
3253  
3258  
3263  
3268  
3273  
3278  
3283  
3288  
3293  
3298  
3303  
3308  
3313  
3318  
3323  
3328  
3333  
3338  
3343  
3348  
3353  
3358  
3363  
3368  
3373  
3378  
3383  
3388  
3393  
3398  
3403  
3408  
3413  
3418  
3423  
3428  
3433  
3438  
3443  
3448  
3453  
3458  
3463  
3468  
3473  
3478  
3483  
3488  
3493  
3498  
3503  
3508  
3513  
3518  
3523  
3528  
3533  
3538  
3543  
3548  
3553  
3558  
3563  
3568  
3573  
3578  
3583  
3588  
3593  
3598  
3603  
3608  
3613  
3618  
3623  
3628  
3633  
3638  
3643  
3648  
3653  
3658  
3663  
3668  
3673  
3678  
3683  
3688  
3693  
3698  
3703  
3708  
3713  
3718  
3723  
3728  
3733  
3738  
3743  
3748  
3753  
3758  
3763  
3768  
3773  
3778  
3783  
3788  
3793  
3798  
3803  
3808  
3813  
3818  
3823  
3828  
3833  
3838  
3843  
3848  
3853  
3858  
3863  
3868  
3873  
3878  
3883  
3888  
3893  
3898  
3903  
3908  
3913  
3918  
3923  
3928  
3933  
3938  
3943  
3948  
3953  
3958  
3963  
3968  
3973  
3978  
3983  
3988  
3993  
3998  
4003  
4008  
4013  
4018  
4023  
4028  
4033  
4038  
4043  
4048  
4053  
4058  
4063  
4068  
4073  
4078  
4083  
4088  
4093  
4098  
4103  
4108  
4113  
4118  
4123  
4128  
4133  
4138  
4143  
4148  
4153  
4158  
4163  
4168  
4173  
4178  
4183  
4188  
4193  
4198  
4203  
4208  
4213  
4218  
4223  
4228  
4233  
4238  
4243  
4248  
4253  
4258  
4263  
4268  
4273  
4278  
4283  
4288  
4293  
4298  
4303  
4308  
4313  
4318  
4323  
4328  
4333  
4338  
4343  
4348  
4353  
4358  
4363  
4368  
4373  
4378  
4383  
4388  
4393  
4398  
4403  
4408  
4413  
4418  
4423  
4428  
4433  
4438  
4443  
4448  
4453  
4458  
4463  
4468  
4473  
4478  
4483  
4488  
4493  
4498  
4503  
4508  
4513  
4518  
4523  
4528  
4533  
4538  
4543  
4548  
4553  
4558  
4563  
4568  
4573  
4578  
4583  
4588  
4593  
4598  
4603  
4608  
4613  
4618  
4623  
4628  
4633  
4638  
4643  
4648  
4653  
4658  
4663  
4668  
4673  
4678  
4683  
4688  
4693  
4698  
4703  
4708  
4713  
4718  
4723  
4728  
4733  
4738  
4743  
4748  
4753  
4758  
4763  
4768  
4773  
4778  
4783  
4788  
4793  
4798  
4803  
4808  
4813  
4818  
4823  
4828  
4833  
4838  
4843  
4848  
4853  
4858  
4863  
4868  
4873  
4878  
4883  
4888  
4893  
4898  
4903  
4908  
4913  
4918  
4923  
4928  
4933  
4938  
4943  
4948  
4953  
4958  
4963  
4968  
4973  
4978  
4983  
4988  
4993  
4998  
5003  
5008  
5013  
5018  
5023  
5028  
5033  
5038  
5043  
5048  
5053  
5058  
5063  
5068  
5073  
5078  
5083  
5088  
5093  
5098  
5103  
5108  
5113  
5118  
5123  
5128  
5133  
5138  
5143  
5148  
5153  
5158  
5163  
5168  
5173  
5178  
5183  
5188  
5193  
5198  
5203  
5208  
5213  
5218  
5223  
5228  
5233  
5238  
5243  
5248  
5253  
5258  
5263  
5268  
5273  
5278  
5283  
5288  
5293  
5298  
5303  
5308  
5313  
5318  
5323  
5328  
5333  
5338  
5343  
5348  
5353  
5358  
5363  
5368  
5373  
5378  
5383  
5388  
5393  
5398  
5403  
5408  
5413  
5418  
5423  
5428  
5433  
5438  
5443  
5448  
5453  
5458  
5463  
5468  
5473  
5478  
5483  
5488  
5493  
5498  
5503  
5508  
5513  
5518  
5523  
5528  
5533  
5538  
5543  
5548  
5553  
5558  
5563  
5568  
5573  
5578  
5583  
5588  
5593  
5598  
5603  
5608  
5613  
5618  
5623  
5628  
5633  
5638  
5643  
5648  
5653  
5658  
5663  
5668  
5673  
5678  
5683  
5688  
5693  
5698  
5703  
5708  
5713  
5718  
5723  
5728  
5733  
5738  
5743  
5748  
5753  
5758  
5763  
5768  
5773  
5778  
5783  
5788  
5793  
5798  
5803  
5808  
5813  
5818  
5823  
5828  
5833  
5838  
5843  
5848  
5853  
5858  
5863  
5868  
5873  
5878  
5883  
5888  
5893  
5898  
5903  
5908  
5913  
5918  
5923  
5928  
5933  
5938  
5943  
5948  
5953  
5958  
5963  
5968  
5973  
5978  
5983  
5988  
5993  
5998  
6003  
6008  
6013  
6018  
6023  
6028  
6033  
6038  
6043  
6048  
6053  
6058  
6063  
6068  
6073  
6078  
6083  
6088  
6093  
6098  
6103  
6108  
6113  
6118  
6123  
6128  
6133  
6138  
6143  
6148  
6153  
6158  
6163  
6168  
6173  
6178  
6183  
6188  
6193  
6198  
6203  
6208  
6213  
6218  
6223  
6228  
6233  
6238  
6243  
6248  
6253  
6258  
6263  
6268  
6273  
6278  
6283  
6288  
6293  
6298  
6303  
6308  
6313  
6318  
6323  
6328  
6333  
6338  
6343  
6348  
6353  
6358  
6363  
6368  
6373  
6378  
6383  
6388  
6393  
6398  
6403  
6408  
6413  
6418  
6423  
6428  
6433  
6438  
6443  
6448  
6453  
6458  
6463  
6468  
6473  
6478  
6483  
6488  
6493  
6498  
6503  
6508  
6513  
6518  
6523  
6528  
6533  
6538  
6543  
6548  
6553  
6558  
6563  
6568  
6573  
6578  
6583  
6588  
6593  
6598  
6603  
6608  
6613  
6618  
6623  
6628  
6633  
6638  
6643  
6648  
6653  
6658  
6663  
6668  
6673  
6678  
6683  
6688  
6693  
6698  
6703  
6708  
6713  
6718  
6723  
6728  
6733  
6738  
6743  
6748  
6753  
6758  
6763  
6768  
6773  
6778  
6783  
6788  
6793  
6798  
6803  
6808  
6813  
6818  
6823  
6828  
6833  
6838  
6843  
6848  
6853  
6858  
6863  
6868  
6873  
6878  
6883  
6888  
6893  
6898  
6903  
6908  
6913  
6918  
6923  
6928  
6933  
6938  
6943  
6948  
6953  
6958  
6963  
6968  
6973  
6978  
6983  
6988  
6993  
6998  
7003  
7008  
7013  
7018  
7023  
7028  
7033  
7038  
7043  
7048  
7053  
7058  
7063  
7068  
7073  
7078  
7083  
7088  
7093  
7098  
7103  
7108  
7113  
7118  
7123  
7128  
7133  
7138  
7143  
7148  
7153  
7158  
7163  
7168  
7173  
7178  
7183  
7188  
7193  
7198  
7203  
7208  
7213  
7218  
7223  
7228  
7233  
7238  
7243  
7248  
7253  
7258  
7263  
7268  
7273  
7278  
7283  
7288  
7293  
7298  
7303  
7308  
7313  
7318  
7323  
7328  
7333  
7338  
7343  
7348  
7353  
7358  
7363  
7368  
7373  
7378  
7383  
7388  
7393  
7398  
7403  
7408  
7413  
7418  
7423  
7428  
7433  
7438  
7443  
7448  
7453  
7458  
7463  
7468  
7473  
7478  
7483  
7488  
7493  
7498  
7503  
7508  
7513  
7518  
7523  
7528  
7533  
7538  
7543  
7548  
7553  
7558  
7563  
7568  
7573  
7578  
7583  
7588  
7593  
7598  
7603  
7608  
7613  
7618  
7623  
7628  
7633  
7638  
7643  
7648  
7653  
7658  
7663  
7668  
7673  
7678  
7683  
7688  
7693  
7698  
7703  
7708  
7713  
7718  
7723  
7728  
7733  
7738  
7743  
7748  
7753  
7758  
7763  
7768  
7773  
7778  
7783  
7788  
7793  
7798  
7803  
7808  
7813  
7818  
7823  
7828  
7833  
7838  
7843  
7848  
7853  
7858  
7863  
7868  
7873  
7878  
7883  
7888  
7893  
7898  
7903  
7908  
7913  
7918  
7923  
7928  
7933  
7938  
7943  
7948  
7953  
7958  
7963  
7968  
7973  
7978  
7983  
7988  
7993  
7998  
8003  
8008  
8013  
8018  
8023  
8028  
8033  
8038  
8043  
8048  
8053  
8058  
8063  
8068  
8073  
8078  
8083  
8088  
8093  
8098  
8103  
8108  
8113  
8118  
8123  
8128  
8133  
8138  
8143  
8148  
8153  
8158  
8163  
8168  
8173  
8178  
8183  
8188  
8193  
8198  
8203  
8208  
8213  
8218  
8223  
8228  
8233  
8238  
8243  
8248  
8253  
8258  
8263  
8268  
8273  
8278  
8283  
8288  
8293  
8298  
8303  
8308  
8313  
8318  
8323  
8328  
8333  
8338  
8343  
8348  
8353  
8358  
8363  
8368  
8373  
8378  
8383  
8388  
8393  
8398  
8403  
8408  
8413  
8418  
8423  
8428  
8433  
8438  
8443  
8448  
8453  
8458  
8463  
8468  
8473  
8478  
8483  
8488  
8493  
8498  
8503  
8508  
8513  
8518  
8523  
8528  
8533  
8538  
8543  
8548  
8553  
8558  
8563  
8568  
8573  
8578  
8583  
8588  
8593  
8598  
8603  
8608  
8613  
8618  
8623  
8628  
8633  
8638  
8643  
8648  
8653  
8658  
8663  
8668  
8673  
8678  
8683  
8688  
8693  
8698  
8703  
8708  
8713  
8718  
8723  
8728  
8733  
8738  
8743  
8748  
8753  
8758  
8763  
8768  
8773  
8778  
8783  
8788  
8793  
8798  
8803  
8808  
8813  
8818  
8823  
8828  
8833  
8838  
8843  
8848  
8853  
8858  
8863  
8868  
8873  
8878  
8883  
8888  
8893  
8898  
8903  
8908  
8913  
8918  
8923  
8928  
8933  
8938  
8943  
8948  
8953  
8958  
8963  
8968  
8973  
8978  
8983  
8988  
8993  
8998  
9003  
9008  
9013  
9018  
9023  
9028  
9033  
9038  
9043  
904

-12-

(Sigma Chemical Co.) at concentrations of about 0.02% to about 1.0%; it may also include non-specific proteins, such as BSA.

The experimental variables of salt concentration, temperature, and hybridization time are a function of the capture oligo design. A preferred range 5 for the salt concentration is 25 mM to 2 M, with a concentration of about 750 mM being especially preferred. A preferred temperature range is from 5°C to 70°C, with 30°C being especially preferred. Preferred reaction times can be from 1 to 24 hours, with 3 hours being especially preferred. The variables for each experiment are determined empirically by standard methods. The 10 hybridization step can be performed in a simple chamber device that constrains the liquid sample and prevents evaporation.

When RNA-protein fusions are utilized as addressable arrays, the solution may also contain one or more components to suppress nuclease degradation of the RNA moiety. Preferred additions include (a) metal chelators 15 (e.g., EDTA or EGTA) at concentrations of between 1 - 10 mM, (b) placental RNase inhibitor protein (Promega) at concentrations of between 0.1 - 1 Unit/μl; and (c) Anti-RNase protein (Ambion) at concentrations of between 0.1 - 1 Unit/μl. A separate strategy to specifically suppress 5'-exonuclease degradation involves capping the 5'-terminus of the fusion RNA with a binding 20 molecule. The capping strategy may be used in conjunction with one or more of the components listed above. In one particular capping approach, a native or analog (e.g., PNA) nucleic acid sequence complementary to the 5'-terminus of the fusion RNA is added to generate a stable duplex at the 5'-end. The complementary sequence is preferably between 10 - 50 bases in length, and 25 most preferably about 20 bases in length. This added nucleic acid sequence may also contain pendant groove-binding, intercalating, or cross-linking moieties. Alternatively, native or analog nucleic acid sequences may be added

-13-

that form stable intermolecular hairpin, tetraloop, or pseudoknot secondary structures with the 5'-terminus of the RNA. In the latter case, these nucleic acids are preferably about 20 - 100 bases in length, with about 35 bases being especially preferred.

5 To the extent possible, the mixture of nucleic acid-protein fusions should be free of un-fused nucleic acids. Un-fused nucleic acids that are complementary to the capture probes will compete with the fusions for binding and will limit the amount of a given protein that can be displayed on the solid support. Preferably, at least 1% of the nucleic acid (for example, the RNA  
10 message) is fused to protein.

Unique non-coding regions can be incorporated into the nucleic acid component of the fusion for the specific purpose of being "captured" by the capture probe; these non-coding regions are referred to as "hybridization tag sequences." The hybridization tag sequences may include the same analogue  
15 units as are described above for the capture probes. In some cases, both the capture probe and the tag sequences can be modified so they hybridize preferentially with each other, thereby minimizing interference from the coding fusion sequences.

Upon completion of the binding step, unbound nucleic acid-protein  
20 fusion is washed away with a buffer that has a higher stringency and a lower salt concentration than that used for the hybridization step. Again, the optimal buffer composition is determined empirically by standard methods. What remains upon completion of washing is an addressable array of proteins on the solid surface, attached via sequence-dependent recognition between the nucleic  
25 acid component of the fusion and the surface-bound capture oligo. The position of each protein is defined, because each fusion corresponds to the complementary capture probe.

-14-

In addition, if desired, the nucleic acid component of the fusion may be covalently linked to a part of the solid support, the linker, or the capture probe. Such covalently linked fusions provide particularly robust and versatile addressable arrays that may be used, for example, in the screening methods 5 described herein. Covalently linked fusion arrays may be generated by any standard approach. According to one general technique, the fusions are addressed to specific locations on a solid surface via hybridization with corresponding capture probes, and a chemical cross-linking or attachment reaction is triggered to fix the location of the fusions on the solid support. One 10 method to achieve such a covalent link involves functionalizing the DNA capture oligos during chemical synthesis with one or more pendant psoralen moieties, preferably positioned near adenine bases. After hybridizing the nucleic acid-protein fusion (for example, the RNA-protein fusion) to the support-bound capture oligos, the surface is exposed to long-wavelength UV 15 light (for example, at 350 nm). Light of this wavelength triggers a photoreaction between psoralen and an adjacent thymidine or uridine base in the duplex region, forming a cyclobutane linkage and permanently attaching the fusion to the solid support. Alternatively, psoralen itself (i.e., not linked to a capture probe) may be included in the hybridization solution or in a 20 subsequent separate solution. The psoralen molecule intercalates between bases in double-stranded regions. Upon irradiation with long-wavelength UV light, the intercalated psoralen cross-links with thymidine or uridine bases (intrastrand and interstrand) in a bifunctional mode, forming covalent links between the capture probe and the nucleic acid component of the fusion. Other 25 reactive, cross-linking reagents may also be used in place of psoralen in combination with triggering conditions appropriate for those reagents.

Ordered, addressable arrays of peptide fragments can also be

-15-

prepared. To prepare these arrays, the fusion library is generated from short synthetic DNA sequences or fragments of cDNAs or genomic DNAs. In another variation, ribosome display particles, such as those described in Gold et al., WO 93/03172, can be hybridized to the solid support to generate the protein array. Again, these particles are immobilized on the solid support through a hybridization reaction between the capture oligo and the protein-coding RNA.

Use

The addressable protein arrays of the present invention have many uses. For example, a library of proteins can be displayed on a support, such as 10 a microchip. This microchip can then be used to identify previously unknown protein-protein interactions. A probe protein can be detectably labeled, for example, with a radioisotope, chromophore, fluorophore, or chemiluminescent species, then incubated with the microchip. After the excess probe protein is washed away, the chip surface is analyzed for signal from the label. Detection 15 of a signal indicates interaction of the labeled protein with one or more unique members of the protein library. The identity of proteins that are able to bind to the probe protein can then be determined from the location of the spots on the chip that become labeled due to binding of the probe. The same approach can also be used to screen protein libraries for protein-ligand interactions and 20 protein-nucleic acid interactions.

Other methods can be used to detect protein-protein, protein-ligand, or protein-nucleic acid interactions. For example, when the solid surface used to form the protein array is a gold layer, surface plasmon resonance (SPR) can be used to detect mass changes at the surface. When gold surfaces are 25 employed, the reactive moiety on the oligonucleotide capture probe is a thiol group (rather than an amino group) and the gold surface need not be

-16-

functionalized to achieve capture probe attachment. Mass spectrometry (especially, Maldi-ToF) can also be used to analyze species bound to unique members of the protein library.

Another application of protein arrays is the rapid determination of  
5 proteins that are chemically modified through the action of modifying enzymes such as protein kinases, acyl transferases, and methyl transferases. By incubating the protein array with the enzyme of interest and a radioactively labeled substrate, followed by washing and autoradiography, the location and hence the identity of those proteins that are substrates for the modifying  
10 enzyme may be readily determined. Further localization of the modification sites can be achieved using ordered displays of fragments of these proteins.

The protein arrays can also be used to identify the unknown protein targets of therapeutically active compounds. For example, a therapeutic compound may be applied to a protein array derived from cellular RNA.  
15 Detection of the captured therapeutic compound, either through its bound label or directly (for example, by mass spectrometry or surface plasmon resonance) reveals the compound's binding partner or partners. In addition, arrays can also be used in the development of protein-based diagnostics. For example, a solid support containing a variety of proteins associated with various illnesses can be  
20 prepared. A single patient sample, which might contain one or more proteins whose interactions with the support-bound proteins would be indicative of certain illnesses, can then be contacted with the support. Thus, a single sample can be used to simultaneously detect the presence of several conditions, or to distinguish between conditions. Alternatively, addressable arrays may be used  
25 to quantify target molecules in a sample. In one particular example, addressable arrays of single chain antibodies or antibody mimics may be used for quantifying a target protein (or proteins) in a biological sample. The arrays

-17-

can also be used in the emerging fields of proteomics and functional genomics.

The specific fusions that are identified as binding specifically to a probe molecule can be removed from the support surface. In one method, the fusion is released by disrupting hybridization with the capture probe. In one 5 particular approach, the specified fusion is physically separated from the rest of the fusions, then treated with a denaturing agent, such as a chemical reagent or heat, to disrupt the base pairing with the capture oligo. The liberated fusion is then recovered from the solution.

Alternatively, the entire capture probe can be detached. During solid 10 support preparation, a light-sensitive linker can be used to attach the capture probe to the solid surface. Following identification of the active fusion, a laser beam of the appropriate wavelength can be used to cleave the linker, thus releasing the desired fusion. Following release from the surface by any of the above methods, the fusion can be specifically recovered and manipulated, for 15 example, using PCR, and further characterized.

There now follow particular examples of the preparation of protein arrays according to the invention. These examples are provided for the purpose of illustrating the invention, and should not be construed as limiting.

Example 1: Silylation of a Glass Surface

20 Select grade, low-iron content, pre-cleaned 1 x 3 inch glass microscope slides (VWR Scientific) are prepared by heating with 1 M hydrochloric or nitric acid for 30 minutes at 70°C. The slides are then subjected to three 5-minutes washes, using fresh distilled water for each wash. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95% 25 acetone/5% water is prepared and allowed to hydrolyze for at least five minutes. The glass slides are immersed in the hydrolyzed silane solution for

-18-

2-20 minutes with gentle agitation. Excess silane is removed by subjecting the slides to ten 5-minute washes, using fresh portions of 95% acetone/5% water for each wash, using gentle agitation. The slides are then cured by heating at 110°C for 20-45 minutes.

5    Example 2: Derivatization with a Homobifunctional Linker

Silane treated slides from Example 1 are immersed in a freshly prepared 0.2% solution of phenylene 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF/10% pyridine for two hours, with gentle agitation. The slides are washed sequentially with 90% DMF/10% pyridine, methanol, and 10 acetone. After air drying, the functionalized slides are stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

Example 3: Synthesis of Capture Probes

Oligonucleotides are chemically synthesized in the 3'→5' direction by coupling standard phosphoramidite monomers with an automated DNA 15 synthesizer. Typically, 500 angstrom controlled-pore glass supports are used at the 0.2 micromole scale. After the desired probe sequence has been assembled (using A, G, C, and T monomers), hexaethylene oxide phosphoramidite monomer (Glen Research) is added to the 5' terminus. The coupling wait time is extended to 15 minutes by modifying the synthesizer program. Additional 20 hexaethylene oxide monomer units are added in the same way. C-6 Amino phosphoramidite (Glen Research) is then added to the 5' terminus; the coupling wait time is again extended to 15 minutes. The acetic anhydride capping step and the final acidic detritylation step are eliminated. Capture probe sequences are cleaved from the solid support and deprotected with ammonium hydroxide, 25 concentrated to dryness, precipitated in ethanol, and purified by reverse-phase

HPLC using an acetonitrile gradient in triethylammonium acetate buffer.

Example 4: Attachment of Capture Probes

The purified, amine-labeled capture probes from Example 3 are adjusted to a concentration of 500 micromolar in 100 mM sodium carbonate buffer (pH 9.0), and are applied to the derivatized glass surface from Example 2 at defined positions. For manual deposition, aliquots of 0.2 microliter each are applied with a pipetman. The array is incubated at room temperature in a moisture-saturated environment for at least two hours. The attachment reaction is terminated by immersing the glass surface in an aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface is then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. The array is then soaked in 1 M phosphate buffered saline (PBS) solution for 2 hours at room temperature, then rinsed again for 5 minutes in distilled water.

15    Example 5: Surface Modification

The ammonia solution from Example 4 is replaced with a 1-5% aqueous solution of a different primary amine-containing molecule. A small amount (10%) of methanol or acetonitrile cosolvent is added, if necessary.

20    The glass surface is then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. The surface is soaked in 1 M phosphate buffered saline (PBS) solution for 2 hours, then washed again for 5 minutes with distilled water. The glass surface is immersed in a dilute, aqueous solution of a protein-containing blocking solution for several minutes, then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. Finally, the surface is air dried.

-20-

Example 6: Fusion Hybridization

5        50 microliters of a solution containing the RNA-protein fusions and consisting of 25 mM Tris-HCl (pH 8.0) and 100 mM potassium chloride are applied to the glass microchip surface in a chamber that can contain and seal  
10      the liquid. The solution is maintained at a specific temperature (determined by the capture oligo design) for at least three hours. Excess, non-hybridized RNA-protein fusions are removed by washing with 25 mM Tris-HCl (pH 8.0) and 50 mM potassium chloride for several minutes at the incubation temperature. The protein chip is subjected to two 15-minute washes, using a  
15      buffer that is more stringent and contains a lower salt concentration than the buffer used for the hybridization reaction.

Example 7: Generation of an Exemplary FLAG and HA11 Fusion Chip

Using the techniques essentially as described above, exemplary FLAG and HA11 fusion chips were generated as follows.

15        For silylation of the glass microchip surface, pre-cleaned 1 x 3 inch glass microscope slides (Goldseal, #3010) were treated with Nanostrip (Cyantek) for 15 minutes, 10% aqueous NaOH at 70°C for 3 minutes, and 1% aqueous HCl for 1 minute, thoroughly rinsing with deionized water after each solution. The slides were then dried in a vacuum desiccator over anhydrous  
20      calcium sulfate for several hours. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95% acetone / 5% water was prepared and allowed to hydrolyze for 20 minutes. The glass slides were immersed in the hydrolyzed silane solution for 5 minutes with gentle agitation. Excess silane was removed by subjecting the slides to ten 5-minute washes,  
25      using fresh portions of 95% acetone / 5% water for each wash, with gentle agitation. The slides were then cured by heating at 110°C for 20 minutes.

-21-

To derivatize with a homobifunctional linker, the silane treated slides were immersed in a freshly prepared 0.2% solution of phenylene 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF / 10% pyridine for two hours, with gentle agitation. The slides were washed sequentially with  
5 90% DMF / 10% pyridine, methanol, and acetone. After air drying, the functionalized slides were stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

Capture oligos were then designed and synthesized by standard techniques. In particular, the RNA employed to make the FLAG epitope fusion  
10 (17 amino acids total) consisted of 5'-r(UAA UAC GAC UCA CUA UAG GGA CAA UUA CUA UUU ACA AUU ACA AUG GAC UAC AAG GAC GAU GAC GAU AAG GGC GGC UGG UCC CAC CCC CAG UUC GAG AAG) (SEQ ID NO: 1). The RNA employed to make the HA11 epitope fusion (20 amino acids total) consisted of 5'-r(UAA UAC GAC UCA CUA UAG GGA CAA UUA CUA UUU ACA AUU ACA AUG UAC CCC UAC GAC GUG CCC GAC UAC GCC GGC GGC UGG UCC CAC CCC CAG UUC GAG AAG) (SEQ ID NO: 2). In addition, in each case, the following DNA linker, which also contained the essential puromycin moiety at its 3'-end, was ligated to the 3'-terminus of the RNA message:  
15 5'-d(AAAAAAAAAAAAAAAAAAAAAACC) (SEQ ID NO: 3).

Specific, non-interacting, and thermodynamically isoenergetic sequences along the target RNAs were identified to serve as capture points. The software program HybSimulator v2.2 (Advanced Gene Computing Technology, Inc.) facilitated the identification and analysis of potential capture  
25 probes. A single specific capture probe for each RNA was ultimately identified (CPflag and CPha11). In addition, two sequences common to each RNA (CPt7, CPtag) were also identified to serve as positive controls. Four non-sense

-22-

sequences (CPau1, CPau5, CPirs, CPkt3) were generated as well to serve as negative controls. In total, eight unique sequences were selected. These oligonucleotides were prepared so that they could be attached to the chip surface at either the 3'- or 5'-terminus. Therefore, 16 capture probes were  
5 prepared comprising eight unique sequences. The following is a list of these capture probe sequences (5' to 3') (SEQ ID NOS: 4-11):

|    |         |                     |
|----|---------|---------------------|
|    | CPt7:   | TGTAAATAGTAATTGTCCC |
|    | CPtag:  | CTTCTCGAACTGGG      |
|    | CPau1:  | CCTGTAGGTGTCCAT     |
| 10 | CPau5:  | CAGGTAGAACGTCGGT    |
|    | CPflag: | CATCGTCCTTGTAGTC    |
|    | CPha11: | CGTCGTAGGGGTA       |
|    | CPirs:  | CCGCTCCTGATGTA      |
|    | CPkt3:  | TCGGGAGGCATTG.      |

15 Oligonucleotide capture probes were chemically synthesized in the 3' to 5' direction by coupling standard phosphoramidite monomers using an automated DNA synthesizer (PE BioSystems Expedite 8909). Typically, 500 angstrom controlled-pore glass supports were used at the 0.2 micromole scale. In the case of 5'-attachment, after the desired probe sequence had been  
20 assembled (using A, G, C, and T monomers), four hexaethylene oxide phosphoramidite monomers (Glen Research) were added to the 5'-terminus. The coupling wait time was extended to 15 minutes by modifying the synthesizer program. Additional hexaethylene oxide monomer units were added in the same way. C-6 Amino phosphoramidite (Glen Research) was then  
25 added to the 5' terminus; the coupling wait time was again extended to 15

-23-

minutes. The acetic anhydride capping step and the final acidic detritylation were eliminated. In the case of 3'-attachment, oligonucleotide synthesis began with a controlled-pore glass support bearing orthogonally protected primary hydroxyl and amino functionalities (Glen Research). Chain elongation began  
5 on the hydroxyl group, and the amino group remained protected during oligomer assembly, only being unveiled during the final deprotection. The first four monomers to be added were hexaethylene oxide units, followed by the standard A, G, C, and T monomers. All capture oligo sequences were cleaved from the solid support and deprotected with ammonium hydroxide,  
10 concentrated to dryness, precipitated in ethanol, and purified by reverse-phase HPLC using an acetonitrile gradient in triethylammonium acetate buffer. Appropriate fractions from the HPLC were collected, evaporated to dryness in a vacuum centrifuge, and then coevaporated with a portion of water.

To attach the purified, amine-labeled capture oligos, the oligos were  
15 adjusted to a concentration of 250 micromolar in 50 mM sodium carbonate buffer (pH 9.0) containing 10% glycerol. The oligos were then robotically applied (MicroGrid, BioRobotics) to the derivatized glass surface described above at defined positions in a 5 x 5 x 16 array pattern (384 spots) within a 20 x 20mm area. The layout of these capture probes is shown schematically in  
20 Figure 3. A 16-pin tool was used to transfer the liquid, producing 200 micron features with a pitch of 600 microns. Each sub-grid of 24 spots represented a single capture probe (i.e., 24 duplicate spots). The array was incubated at room temperature in a moisture-saturated environment for 12-18 hours. The attachment reaction was terminated by immersing the glass surface in an  
25 aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface was then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. The array was then soaked in a 10X PBS

-24-

(phosphate buffered saline) solution for 2 hours at room temperature, and then rinsed again for 5 minutes in distilled water.

RNA-protein fusions between the peptides containing the FLAG and HA11 epitopes and their corresponding mRNAs were produced as generally described by Szostak et al., WO 98/31700; and Roberts and Szostak, Proc. Natl. Acad. Sci. USA 94:12297-12302, 1997. The polymerase chain reaction using Taq polymerase (Promega) was used to amplify the sequences 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG GAC TAC AAG GAC GAT GAC GAT AAG GGC GGC TGG TCC CAC CCC CAG TTC GAG AAG (SEQ ID NO: 12) and 5'-TAA TAC GAC TCA CCC CAC GAC GTG CCC GAC TAC GCC GGC GGC TGG TCC CAC CCC CAG TTC GAG AAG (SEQ ID NO: 13) for FLAG and HA11, respectively, using the oligonucleotide primers 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT (SEQ ID NO: 14) and 5'-AGCGGATGCCTCTCGAACTGGGGTGGGA (SEQ ID NO: 15). The resulting PCR products were transcribed in vitro using T7 RNA polymerase (Ambion) to produce an mRNA containing the coding region for the FLAG and HA11 epitopes and the TMV untranslated region. This RNA was ligated to a DNA linker 5'-AAA AAA AAA AAA AAA AAA AAA AAA AAA CC (SEQ ID NO: 3) containing a 5' phosphate and a 3' puromycin by T4 DNA ligase (Promega) in the presence of an 80:20 mixture of the following two DNA splints: 5'-TGCAACGACCAACTTTTTTAGCGCATGC (SEQ ID NO: 16) and 5'-TGCAACGACCAACTTTTTNAGCGCATGC (SEQ ID NO: 17), each containing two biotin moieties at the 5' terminus. The resulting RNA-DNA chimera was purified by binding to Immobilized NeutrAvidin (Pierce), washing to remove unligated material, and eluting by displacement

-25-

using the sequence 5'-GCATCCGCTAAAAAAAAAGTTGGTCGTTGC (SEQ ID NO: 18). Subsequent translations were performed in rabbit reticulocyte lysate (Ambion) according to the manufacturer's instructions except that MgCl<sub>2</sub> (150 mM) and KCl (425 mM) were added after 30 minutes

5 to promote the formation of the puromycin-peptide bond. The RNA-peptide fusions were then purified by oligo dT affinity chromatography (Pharmacia), quantitated by scintillation counting of the incorporated vs. added <sup>35</sup>S methionine (Amersham), and concentrated to a low volume via membrane filtration (MicroCon).

10 For hybridization of the fusions to the immobilized capture probes, aliquots of each of the FLAG and HA11 fusions, corresponding to 1.0 picomole each, were combined and adjusted to 5X SSC (saline sodium citrate) + 0.02% Tween-20 in a volume of 20 microliters. The solution was applied to the glass chips described above, coverslips were placed on top, and the slides were

15 placed in a moisture-saturated chamber at room temperature. After 18 hours the coverslips were removed, and the slides were washed sequentially with stirred 500 mL portions of 1X SSC + 0.02% Tween-20, 1X SSC + 0.02% Tween-20, and 1X SSC for 5 minutes each, followed by a brief rinse with 0.2X SSC. After removal of liquid the slides were allowed to briefly air-dry.

20 To detect hybridization, the FLAG and HA11-fusion chip was exposed to a phosphorimage screen (Molecular Dynamics) for 60 hours by direct contact between the screen and the chip. This allowed identification of the areas that contained hybridized fusions, since the peptides contained a <sup>35</sup>S methionine radiolabel which was detectable by the phosphor storage screen.

25 As shown in Figure 4, analysis of the phosphorimage revealed that the fusions had successfully hybridized to their respective capture probes targeting specific areas of the RNA message (i.e., CPflag and CPha11). In addition, the four

-26-

non-sense capture probes, which were not complementary to any region of the FLAG or HA11 RNA, did not give any appreciable signal (i.e., CPau1, CPau5, CPirs, CPkt3). The positive control capture probe CPtag produced the expected signal, but the corresponding positive control capture probe CPt7 did 5 not, likely due to degradation (e.g., exonuclease contamination) of the 5'-region of the targeted RNA. These results demonstrated the feasibility of addressing a mixture of peptides (as fusions) to specific locations on the surface of a chip. Both the 3'-attached capture probes and the 5'-attached capture probes were effective.

10        A duplicate chip was probed with a monoclonal antibody that recognized the HA11 epitope. All of the following steps were performed at 4°C. Nonspecific sites were first blocked with a solution containing 1X PBS (phosphate buffered saline) + 1% BSA (bovine serum albumin, RNase free grade, Ambion) + 0.02% Tween-20 for 1 hour under a coverslip. The blocking 15 solution was removed and 50 microliters of HA.11 monoclonal antibody (100:1 dilution, Berkeley Antibody Co.) in 1X PBS + 0.02% Tween-20 was applied to the chip under a coverslip. After 2 hours the coverslip was removed, and the chip was washed with three 50mL portions of 1X PBS + 0.02% Tween-20 for 5 minutes each, with gentle agitation. Excess liquid was removed and then 50 20 microliters of Cy3-labeled goat anti-mouse IgG (400:1 dilution, Amersham Pharmacia Biotech) in 1X PBS + 0.02% Tween-20 was added under a coverslip. After 1 hour the coverslip was removed, and the chip was washed in three 50mL portions of 1X PBS + 0.02% Tween-20 for 5 minutes each, with gentle agitation. Excess liquid was removed, and the chip was allowed to 25 air-dry at room temperature. The chip was subsequently analyzed at 10 micron pixel resolution with a confocal laser scanner (ScanArray 3000, General Scanning) using preset excitation and emission wavelengths tuned to the Cy3

-27-

fluorophore. As shown in Figure 5, the resulting fluorimage was in accord with the phosphorimage and demonstrated that the HA11 peptide, which was covalently linked to its RNA message and fixed to the chip surface, was functional and was available to interact with its binding partner (the HA11 5 monoclonal antibody). Moreover, although both the FLAG-fusion and the HA11-fusion were presented on the chip surface, the HA11 monoclonal antibody was specific for its own epitope. In addition, the 3'-attachment capture probes generally provided a better signal than the 5'-attachment capture probes. Without being bound to a particular theory, this may reflect the greater 10 accessibility of the epitope when it is oriented away from the chip surface.

Example 8: Generation of an Exemplary Myc Fusion Chip

Using the techniques essentially as described above, an exemplary Myc fusion chip was also generated as follows.

For silylation of the glass surface, select grade, low-iron content, 15 pre-cleaned 25 x 75mm glass microscope slides (VWR Scientific, #48311-950) were used as supplied. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95% acetone / 5% water was prepared and allowed to hydrolyze for 20 minutes. The glass slides were immersed in the hydrolyzed silane solution for 5 minutes with gentle agitation. Excess silane was removed by subjecting the 20 slides to ten 5-minute washes, using fresh portions of 95% acetone / 5% water for each wash, with gentle agitation. The slides were then cured by heating at 110°C for 20 minutes.

To derivatize with a homobifunctional linker, the silane treated slides 25 were immersed in a freshly prepared 0.2% solution of phenylene 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF / 10% pyridine for two hours, with gentle agitation. The slides were washed sequentially with

-28-

90% DMF / 10% pyridine, methanol, and acetone. After air drying, the functionalized slides were stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

The capture oligos were synthesized based on the Myc sequence. In 5 particular, the RNA employed to make the c-myc fusion (33 amino acids total) consisted of the following sequence:

5'-r(UAAUACGACUCACUAUAGGGACAAUUACAUUUACAAUUACA  
AUGGGGACAAUUACUAUUACAAUUACAAUGCUGAAGAACAGA  
AACUGAUCUCUGAAGAAGACCUGCUGCGUAAACGUCGUGAACAGC  
10 UGAAACACAAACUGGAACAGCUGCGUAACUCUUGCGCU) (SEQ ID  
NO: 19). In addition, the following DNA linker, which also contains the essential puromycin moiety, was ligated to the 3'-terminus of the RNA message: 5'-d(AAAAAAAAAAAAAAAAAAAAAAAAACC) (SEQ ID  
NO: 3). Three non-overlapping and thermodynamically isoenergetic 20-mer  
15 sequences along the RNA were identified to serve as capture points. In addition, dA25 (on the ligated DNA) was selected as a fourth target area. The targeted sequences began at nucleotide positions 1, 33, 80, and 125 (CP01,  
CP33, CP80 and CP125, respectively). A mismatch sequence, derived from target sequence 33 and containing four internal and adjacent nucleotide  
20 mismatches, was also designed (CPmm). A non-sense sequence, corresponding to the reverse-orientation of CP33, was also utilized as a negative control (CPns). The following is a list of the capture probe sequences that were employed (5' to 3') (SEQ ID NOS: 20-25):

25 CP01: TTGTAAATAGTAATTGTCCC  
CP33: AGAGATCAGTTCTGTTCTT  
CP80: AGTTTGTGTTTCAGCTGTT

-29-

CP125: TTTTTTTTTTTTTTTTTTTTTTT

Cpmm: AGAGATCTCAATCTGTTCTT

Cpns: TTCTTGTCCTTGACTAGAGA

Oligonucleotide capture probes were chemically synthesized in the 3'  
5' to 5' direction by coupling standard phosphoramidite monomers with an  
automated DNA synthesizer (PE BioSystems Expedite 8909). Typically, 500  
angstrom controlled-pore glass supports were used at the 0.2 micromole scale.  
After the desired probe sequence had been assembled (using A, G, C, and T  
monomers), hexaethylene oxide phosphoramidite monomer (Glen Research)  
10 was added to the 5'-terminus. The coupling wait time was extended to 15  
minutes by modifying the synthesizer program. Additional hexaethylene oxide  
monomer units were added in the same way. C-6 Amino phosphoramidite  
(Glen Research) was then added to the 5' terminus; the coupling wait time was  
again extended to 15 minutes. The acetic anhydride capping step and the final  
15 acidic detritylation were eliminated. Capture oligo sequences were cleaved  
from the solid support and deprotected with ammonium hydroxide,  
concentrated to dryness, precipitated in ethanol, and purified by reverse-phase  
HPLC using an acetonitrile gradient in triethylammonium acetate buffer.  
Appropriate fractions from the HPLC were collected, evaporated to dryness in  
20 a vacuum centrifuge, and then coevaporated with a portion of water.

To attach these purified, amine-labeled capture oligos, the oligos  
were adjusted to a concentration of 500 micromolar in 100 mM sodium  
carbonate buffer (pH 9.0) and were applied to the derivatized glass surface at  
defined positions in a 6 x 6 array pattern (36 spots) within a 20 x 20mm area  
25 (as shown in Figure 6). CP01 was applied to locations A1, B1, C1 and A4, B4,  
C4. CP33 was applied to locations D1, E1, F1 and D4, E4, F4. CP80 was

-30-

applied to locations A2, B2, C2 and A5, B5, C5. CP125 was applied to locations D2, E2, F2 and D5, E5, F5. Cpmm was applied to locations A3, B3, C3 and A6, B6, C6. Cpns was applied to locations D3, E3, F3 and D6, E6, F6. For manual deposition, aliquots of 0.2 microliter each were applied with a

5 pipetman. The array was incubated at room temperature in a moisture-saturated environment for 12-18 hours. The attachment reaction was terminated by immersing the glass surface in an aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface was then subjected to three 5-minute washes, using fresh portions of distilled water for each wash.

10 The array was then soaked in a 10X PBS (phosphate buffered saline) solution for 2 hours at room temperature, and then rinsed again for 5 minutes in distilled water.

RNA-protein fusions between a 33 amino acid peptide containing the c-myc epitope and its mRNA were produced as described by Szostak et al.,

15 WO 98/31700; and Roberts and Szostak, Proc. Natl. Acad. Sci. USA 94:12297-12302, 1997. The polymerase chain reaction using Taq polymerase (Promega) was used to amplify the sequence 5'-AGC GCA AGA GTT ACG CAG CTG TTC CAG TTT GTG TTT CAG CTG TTC ACG ACG TTT ACG CAG CAG GTC TTC TTC AGA GAT CAG TTT CTG TTC TTC AGC CAT (SEQ ID NO: 26) using oligonucleotide primers 5'-AGC GCA AGA GTT ACG CAG CTG (SEQ ID NO: 27) and 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG GCT GAA GAA CAG AAA CT (SEQ ID NO: 28). The resulting PCR product was transcribed in vitro using T7 RNA polymerase (Ambion) to produce an mRNA containing the coding region for

20 the c-myc epitope and the TMV untranslated region. This RNA was ligated to a DNA linker 5'-AAA AAA AAA AAA AAA AAA AAA AAA CC (SEQ ID NO: 3) containing a 5' phosphate and a 3' puromycin by T4 DNA

25

-31-

ligase (Promega) in the presence of a DNA splint with the sequence TTT TTT TTT TAG CGC AAG A (SEQ ID NO: 29). The resulting 154mer RNA-DNA chimera was purified by denaturing polyacrylamide gel electrophoresis (6% acrylamide). Translation was performed in rabbit reticulocyte lysate (Ambion)

5 according to the manufacturer's instructions except that KCl (500 mM) was added after 30 minutes to promote the formation of the puromycin-peptide bond. The RNA-peptide fusion was purified by oligo dT affinity chromatography (Pharmacia), quantitated by scintillation counting of the incorporated vs. added  $^{35}$ S methionine (Amersham), and dried to a pellet. 2.5

10 pmol of the c-myc fusion was produced.

To hybridize to the capture probes, the dry myc-fusion pellet was taken up with 20 microliters of 5X SSC (saline sodium citrate) + 0.02% SDS, mixed, and then briefly centrifuged. The solution was applied to the slide described above, a coverslip was placed on top, and the slide was placed in a

15 moisture-saturated chamber at room temperature. After 18 hours the coverslip was removed, and the slide was washed sequentially with stirred 500 mL portions of 5X SSC + 0.02% SDS, 2.5X SSC + 0.01% SSC, 2.5X SSC, and 1.25X SSC for 5 minutes each. After removal of liquid the slide was allowed to briefly air-dry.

20 To detect hybridization of the Myc fusions, the glass chip was exposed to a phosphorimage screen (Molecular Dynamics) for four hours by direct contact between the screen and the chip. This allowed identification of the areas that contained hybridized myc-fusion, since the myc peptide contained a  $^{35}$ S methionine radiolabel which was detectable by the phosphor

25 storage screen. As shown in Figure 7, analysis of the phosphorimage revealed that the myc-fusion had successfully hybridized to each of the four capture probes that targeted the myc RNA message and DNA linker sequence. In

-32-

addition, the non-sense capture probe, which was not complementary to any region of the myc RNA, did not give any appreciable signal. The capture probe sequence that contained several mismatches produced only a small amount of signal. These results demonstrated that it was possible to address a peptide (as  
5 a fusion) to a specific location on the surface of a chip.

After phosphorimage analysis, the same chip was probed with a monoclonal antibody that recognized the c-myc epitope. All of the following steps were performed at 4°C. Nonspecific sites were first blocked with a solution containing 1X PBS (phosphate buffered saline) + 1% BSA (bovine  
10 serum albumin, Sigma Chemical Co.) + 0.1 unit per microliter RNase inhibitor (Ambion) for 1 hour under a coverslip. The blocking solution was removed, and 50 microliters of 9E10 monoclonal antibody in 1X PBS (400:1 dilution, Berkeley Antibody Co.) was applied to the chip under a coverslip. After 1 hour the coverslip was removed, and the chip was washed with three 50mL portions  
15 of 1X PBS for 5 minutes each, with gentle agitation. Excess liquid was removed, and then 50 microliters of Cy3-labeled goat anti-mouse IgG in 1X PBS (400:1 dilution, Amersham Pharmacia Biotech) was added under a coverslip. After 1 hour the coverslip was removed, and the chip was washed in three 50mL portions of 1X PBS for 5 minutes each, with gentle agitation.  
20 Excess liquid was removed, and the chip was allowed to air-dry at room temperature. The chip was subsequently analyzed at 10 micron pixel resolution with a confocal laser scanner (ScanArray 3000, General Scanning) using preset excitation and emission wavelengths tuned to the Cy3 fluorophore. As shown in Figure 8, the resulting fluorimage was in accord with the phosphorimage and  
25 demonstrated that the myc peptide, which was covalently linked to its RNA message and fixed to the chip surface, was functional and was available to interact with its binding partner (the monoclonal antibody).

-33-

All publications and patents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

5

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

10

What is claimed is:

-34-

Claims

1. A solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound.
2. A solid support comprising an array of immobilized capture probes, wherein each of said capture probes is attached to the surface of said solid support through a non-nucleosidic spacer group, and wherein each of said capture probes comprises an oligonucleotide sequence to which a nucleic acid-protein fusion is bound.
3. A solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a ribosome display particle is bound.
4. The solid support of claim 1, 2, or 3, wherein said nucleic acid-protein fusion is an RNA-protein fusion.
5. The solid support of claim 1, 2, or 3, wherein said capture probe is bound to said nucleic acid-protein fusion by base pairing.
6. The solid support of claim 1, 2, or 3, wherein said protein is encoded by said nucleic acid.
- 20 7. The solid support of claim 1, 2, or 3, wherein said spacer group

-35-

comprises a polyalkylene oxide, polyethylene oxide, or hexaethylene oxide.

8. The solid support of claim 1, 2, or 3, wherein said capture probe comprises a photocleavable linker.

9. The solid support of claim 1, 2, or 3, wherein said oligonucleotide sequence comprises a modified base, an internucleotide analog, or a carbohydrate modification.

10. The solid support of claim 9, wherein said modified base is 5-propyne pyrimidine, said internucleotide analog is a 3'-phosphoramidate linkage, or said carbohydrate modification is a 2'-O-methyl group.

11. The solid support of claim 1, 2, or 3, wherein said nucleic acid-protein fusion comprises a hybridization tag sequence.

12. The solid support of claim 11, wherein said hybridization tag sequence comprises a modified base, an internucleotide analog, or a carbohydrate modification.

13. The solid support of claim 1, 2, or 3, wherein said capture probe further comprises a reactive moiety.

14. The solid support of claim 13, wherein said reactive moiety is a primary amino group.

15. The solid support of claim 1, 2, or 3, wherein said solid support

-36-

is a glass or silica-based chip.

16. The solid support of claim 1, 2, or 3, wherein said nucleic acid-protein fusion is covalently linked to said capture probe.

17. The solid support of claim 16, wherein said capture probe  
5 comprises one or more psoralen moieties.

18. A method for preparing a solid support, said method comprising the steps of:

- (a) preparing a capture probe by linking a spacer group to an oligonucleotide sequence;
- 10 (b) attaching said capture probe to said solid support; and
- (c) binding a nucleic acid-protein fusion to said capture probe.

19. A method for preparing a solid support, said method comprising the steps of:

- (a) attaching a spacer group to a surface of said solid support;
- 15 (b) attaching a bifunctional linker to said spacer group;
- (c) attaching a capture probe to said bifunctional linker; and
- (d) binding a nucleic acid-protein fusion to said capture probe.

20. The method of claim 18 or 19, wherein said nucleic acid-protein fusion is an RNA-protein fusion.

20 21. A method for detecting an interaction between a protein and a compound, said method comprising the steps of:

-37-

(a) providing a solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound;

5 (b) contacting said solid support with a candidate compound under conditions which allow an interaction between the protein portion of said nucleic acid-protein fusion and said compound; and

(c) analyzing said solid support for the presence of said compound as an indication of an interaction between said protein and said compound.

10 22. A method for detecting an interaction between a protein and a compound, said method comprising the steps of:

(a) providing a population of nucleic acid-protein fusions;

(b) contacting said population of nucleic acid-protein fusions with a candidate compound under conditions which allow an interaction between the 15 protein portion of said nucleic acid-protein fusion and said compound;

(c) contacting the product of step (b) with a solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion binds; and

20 (d) analyzing said solid support for the presence of said compound as an indication of an interaction between said protein and said compound.

23. The method of claim 21 or 22, wherein said nucleic acid-protein fusion is an RNA-protein fusion.

24. The method of claim 21 or 22, wherein said compound is

labeled.

25. The method of claim 21 or 22, wherein said compound is a protein, a therapeutic, an enzyme, or a nucleic acid.

26. An array of nucleic acid-protein fusions, said array comprising  
5 at least  $10^2$  different fusions/cm<sup>2</sup>.

27. The array of claim 26, wherein said array comprises at least  $10^4$  different fusions/cm<sup>2</sup>.

28. The array of claim 26, wherein said nucleic acid-protein fusions are RNA-protein fusions.

10 29. A method for generating an addressable array of molecules, said method comprising:

(a) providing a solid support on which an array of nucleic acid molecules is immobilized;

15 (b) contacting said solid support with a population of addressable molecules; and

(c) allowing said addressable molecules to orient themselves on said solid support by sequence-dependent recognition and binding of said immobilized nucleic acid molecules.

30. The method of claim 29, wherein said addressable array of  
20 molecules is an array of nucleic acid-protein fusions.

-39-

31. The method of claim 30, wherein said nucleic acid-protein fusions are RNA-protein fusions.

32. The method of claim 29, wherein said sequence-dependent recognition and binding comprises base pairing.

5           33. The method of claim 29, wherein said solid support is a glass or silica-based chip.

10         34. The method of claim 29, wherein said nucleic acid molecules immobilized on said solid support are capture probes, each comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which said addressable molecule binds.



FIGURE 1



FIGURE 2

|      |     |     |     |
|------|-----|-----|-----|
| t7   | tag | au1 | au5 |
| flag | ha1 | irs | kt3 |
| t7   | tag | au1 | au5 |
| flag | ha1 | irs | kt3 |

FIGURE 3



FIGURE 4



FIGURE 5



FIGURE 6



FIGURE 7



FIGURE 8

## SEQUENCE LISTING

&lt;110&gt; Phlyos, Inc.

&lt;120&gt; ADDRESSABLE PROTEIN ARRAYS

&lt;130&gt; 50036/009WO2

&lt;150&gt; 60/080,686

&lt;151&gt; 1998-04-03

&lt;160&gt; 29

&lt;170&gt; FastSEQ for Windows Version 3.0

&lt;210&gt; 1 ;

&lt;211&gt; 99 .

&lt;212&gt; RNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Oligonucleotide employed to construct FLAG epitope fusion

&lt;400&gt; 1

uaauacgacu cacuauaggg acaaauacua uuuacaauua caauggacua caaggacgau  
gacgauaagg gggcugguc ccaccccccag uucgagaag

60

99

&lt;210&gt; 2

&lt;211&gt; 102

&lt;212&gt; RNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Oligonucleotide employed to construct HA11 epitope fusion

&lt;400&gt; 2

uaauacgacu cacuauaggg acaaauacua uuuacaauua caauguaccc cuacgacgug  
cccgacuacg cggcggcug gucccacccc caguucgaga ag

60

102

&lt;210&gt; 3

&lt;211&gt; 29

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Oligonucleotide used for attaching puromycin

&lt;400&gt; 3

aaaaaaaaaaa aaaaaaaaaaa aaaaaaaacc

29

&lt;210&gt; 4

<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 4  
tgtaaatagt aattgtccc 19

<210> 5  
<211> 14  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 5  
cttctcgaac tggg 14

<210> 6  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 6  
cctgttagtg tccat 15

<210> 7  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 7  
caggtagaag tcggg 15

<210> 8  
<211> 16  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 8  
catcgccctt gtagtc 16

<210> 9

<211> 13  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 9  
cgtcgtaggg gta 13

<210> 10  
<211> 14  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 10  
ccgctcctga tгta 14

<210> 11  
<211> 13  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 11  
tcggaggca ttg 13

<210> 12  
<211> 99  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> FLAG amplification sequence

<400> 12  
taatacgact cactataggg acaattacta ttтacaatta caatggacta caaggacgat 60  
gacgataagg gcggctggtc ccaccccccag ttсgagaag 99

<210> 13  
<211> 102  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> HAI1 amplification sequence

<400> 13  
taatacgact cactataggg acaattacta ttтacaatta caatgtaccc ctacgacgtg 60  
cccactacg cggcggctg gtcccccccc cагttcgaga ag 102

<210> 14  
<211> 39  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 14  
taatacgact cactataggg acaattacta tttacaatt 39

<210> 15  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 15  
agcggatgcc ttctcgaact ggggtggga 30

<210> 16  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint containing biotin moiety at 5' terminus

<400> 16  
tgcaacgacc aactttttt ttagcgcat gc 32

<210> 17  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint containing biotin moiety at 5' terminus

<400> 17  
tgcaacgacc aactttttt ttnagcgcat gc 32

<210> 18  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oigonucleotide used for elution displacement

<400> 18

gcatccgcta aaaaaaaaaag ttggtcgttg c 31

<210> 19  
<211> 169  
<212> RNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used to make c-myc fusion

<400> 19  
uaauacgacu cacuauaggg acaaauuacua uuuacaauua caauggggac auuuacuauu 60  
uacaaauuaca auggcugaag aacagaaacu gaucutugaa gaagaccugc ugcguaaacg 120  
ucgugaacag cugaaacaca aacuggaaca gcugcguac ucuugcgcu 169

<210> 20  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 20  
ttgtaaatag taatttgtccc 20

<210> 21  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 21  
agagatcagt ttctgttctt 20

<210> 22  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 22  
agtttgtgtt tcagctgttc 20

<210> 23  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 23  
ttttttttttt tttttttttt tttttt 25

<210> 24  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 24  
agagatctca atctgttctt 20

<210> 25  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 25  
ttcttgatctt tgactagaga 20

<210> 26  
<211> 99  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> c-myc epitope amplification sequence

<400> 26  
agcgcaagag ttacgcagct gttccagttt gtgtttcagc tgttcacgac gtttacgcag 60  
cagggtttct tcagagatca gtttctgttc ttcagccat 99

<210> 27  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 27  
agcgcaagag ttacgcagct g 21

<210> 28  
<211> 62  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 28  
taatacgact cactataggg acaattacta tttacaatta caatggctga agaacagaaa 60  
ct

<210> 29  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint

<400> 29  
ttttttttt agcgcaaga 19

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/US99/07203

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C12Q 1/68; C12P 19/34; C07H 21/02, 21/04  
US CL : 435/6, 91.1, 91.2; 536/23.1, 24.3, 24.31, 24.32

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 91.1, 91.2; 536/23.1, 24.3, 24.31, 24.32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                      | Relevant to claim No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 5,545,531 A (RAVA et al) 13 August 1996 (13.08.96), see entire document esp. abstract & column 4, lines 4-12.                                                                                                                        | 26,32,33              |
| X         | WO 92/10588 A1 (AFFYMAX TECHNOLOGIES N.V..) 25 June 1992 (25.06.92), see entire document.                                                                                                                                               | 29,32                 |
| X         | MASKOS, U. et al. Parallel analysis of oligodeoxyribonucleotide interactions. I. Analysis of factors influencing oligonucleotides duplex formation. Nucleic Acids Research. 1992, Vol. 20, No. 7, pages 1675-1678, see entire document. | 29,32                 |
| Y         | US 5,556,752 A (LOCKHART et al) 17 September 1996 (17.09.96), see entire document.                                                                                                                                                      | 1-34                  |

|                                     |                                                                                                                                                                     |                          |                                                                                                                                                                                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> | Further documents are listed in the continuation of Box C.                                                                                                          | <input type="checkbox"/> | See patent family annex.                                                                                                                                                                                                                     |
| *A*                                 | Special categories of cited documents:                                                                                                                              | "T"                      | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| *B*                                 | document defining the general state of the art which is not considered to be of particular relevance                                                                | "X"                      | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| *E*                                 | earlier document published on or after the international filing date                                                                                                | "Y"                      | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| *L*                                 | document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "A"                      | document member of the same patent family                                                                                                                                                                                                    |
| *O*                                 | document referring to an oral disclosure, use, exhibition or other means                                                                                            |                          |                                                                                                                                                                                                                                              |
| *P*                                 | document published prior to the international filing date but later than the priority date claimed                                                                  |                          |                                                                                                                                                                                                                                              |

|                                                                                                                                                       |                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of the actual completion of the international search<br><br>27 JUNE 1999                                                                         | Date of mailing of the international search report<br><br>14 JUL 1999                                                                                          |
| Name and mailing address of the ISA/US<br>Commissioner of Patents and Trademarks<br>Box PCT<br>Washington, D.C. 20231<br>Facsimile No. (703) 305-3230 | Authorized officer<br><br>BRADLEY SISSON <br>Telephone No. (703) 308-0196 |

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/US99/07203 |
|-------------------------------------------------|

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                        | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | GUO, Z. et al. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research. 1994, Vol. 22, No. 24, pages 5456-5465, see entire document. | 1-34                  |
| Y         | WO 93/03172 A1 (UNIVERSITY RESEARCH CORPORATION) 18 February 1993 (18.02.93), see entire document.                                                                                                                        | 1-34                  |
| A,P       | WO 98/31700 A1 (THE GENERAL HOSPITAL CORPORATION) 23 July 1998 (23.07.98), see entire document, especially the abstract.                                                                                                  | 1-34                  |

**INTERNATIONAL SEARCH REPORT**

International application No.  
PCT/US99/07203

**B. FIELDS SEARCHED**

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN, BIOSIS, MEDLINE, CANCERLIT, BIOTECHDS, LIFESCI, CAPLUS, EMBASE  
search terms: solid support, chip,microchip, array, probe, oligonucleotide, capture, nucleic acid protein fusion,ma  
protein fusion, ribosome display particle, spacer, non-nucleosidic spacer, tag

CORRECTED  
VERSION\*

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>6</sup> :<br><b>C12Q 1/68, C12P 19/34, C07H 21/02,<br/>21/04</b>                                    | A1 | (11) International Publication Number: <b>WO 99/51773</b><br>(43) International Publication Date: <b>14 October 1999 (14.10.99)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (21) International Application Number: <b>PCT/US99/07203</b>                                                                                      |    | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,<br>BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,<br>KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,<br>MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,<br>SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,<br>ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,<br>ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,<br>TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,<br>FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent<br>(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,<br>SN, TD, TG). |
| (22) International Filing Date: <b>31 March 1999 (31.03.99)</b>                                                                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (30) Priority Data:<br><b>60/080,686 3 April 1998 (03.04.98) US</b>                                                                               |    | (Published)<br><i>With international search report.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (71) Applicant: <b>PHYLOS, INC. [US/US]; 128 Spring Street, Lexington, MA 02421 (US).</b>                                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (72) Inventors: <b>KUIMELIS, Robert, G.; 21 Malbert Road, Brighton, MA 02135 (US). WAGNER, Richard; 1007 Lowell Road, Concord, MA 01742 (US).</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (74) Agent: <b>ELBING, Karen, L.; Clark &amp; Elbing LLP, 176 Federal Street, Boston, MA 02110-2214 (US).</b>                                     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

(54) Title: ADDRESSABLE PROTEIN ARRAYS

(57) Abstract

Disclosed herein are arrays of nucleic acid-protein fusions which are immobilized to a solid surface through capture probes which include a non-nucleosidic spacer group and an oligonucleotide sequence to which the fusion (such as an RNA-protein fusion) is bound. Also disclosed herein are solid supports on which these arrays are immobilized as well as methods for their preparation and use (for example, for screening for protein-compound interactions such as protein-therapeutic compound interactions).

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | MW | Malawi                                    | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | ML | Mali                                      | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MN | Mongolia                                  | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MR | Mauritania                                | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MW | Malawi                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | MX | Mexico                                    | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NE | Niger                                     | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NL | Netherlands                               | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NO | Norway                                    | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | NZ | New Zealand                               |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PL | Poland                                    |    |                          |
| CN | China                    | KZ | Kazakhstan                            | PT | Portugal                                  |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RO | Romania                                   |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | RU | Russian Federation                        |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SD | Sudan                                     |    |                          |
| DK | Denmark                  | LR | Liberia                               | SE | Sweden                                    |    |                          |
| EE | Estonia                  |    |                                       | SG | Singapore                                 |    |                          |

## ADDRESSABLE PROTEIN ARRAYS

### Background of the Invention

5       The invention relates to fixed arrays of nucleic acid-protein fusions and, in particular, RNA-protein fusions, on solid supports.

Certain macromolecules, such as proteins, are known to interact specifically with other molecules based on the three-dimensional shapes and electronic distributions of those molecules. For example, proteins interact  
10      selectively with other proteins, with nucleic acids, and with small-molecules. Modern pharmaceutical research relies on the study of these interactions; the development of new drugs depends on the discovery of compounds that bind specifically to biologically important molecules.

15      The discovery of a single drug candidate can require the screening of thousands of compounds. It is therefore important to be able to screen large numbers of compounds rapidly and efficiently. One method for screening a large number of compounds is to fix possible binding partners, such as proteins, to a solid support.

It is difficult to prepare arrays of isolated proteins on solid supports,  
20      however, for a variety of reasons. First of all, proteins cannot always be easily attached to the planar surfaces traditionally used to make other fixed arrays, such as nucleic acid microchips. More importantly, because proteins can interact with the functional groups on the surfaces of these supports, the proximity of the protein to the surface can lead to disruption of the protein  
25      structure.

Summary of the Invention

In general, the invention features a solid support including an array of immobilized capture probes; each of the capture probes includes a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound (for example, hybridized or covalently bound). In preferred embodiments, the nucleic acid-protein fusion is an RNA-protein fusion, and the protein component is encoded by the nucleic acid (for example, the RNA). The spacer group can include a polyalkylene oxide, for example, polyethylene oxide. A preferred spacer group includes hexaethylene oxide.

10 The capture probe may also include a photocleavable linker.  
The oligonucleotide sequence can include a modified base, such as 5-propyne pyrimidine. It can also include an internucleotide analog (such as 3'-phosphoramidate) or a carbohydrate modification (such as a 2'-O-methyl group). The nucleic acid-protein fusion can include a hybridization tag

15 sequence. The hybridization tag sequence can also include a modified base, an internucleotide analog, or a carbohydrate modification.

In a preferred embodiment, the capture probe further includes a reactive moiety (for example, a nucleophilic group), such as a primary amino group. In another preferred embodiment, the nucleic acid-protein fusion is

20 covalently linked to the capture probe (for example, by photo-crosslinking); in one preferred approach, this is accomplished by including one or more psoralen moieties in the capture probe or in the capture probe-fusion hybridization reaction mixture. A preferred solid support is a glass or silica-based chip.

In a related aspect, the invention features a solid support including an array of immobilized capture probes; each of the capture probes is attached to the surface of the solid support through a non-nucleosidic spacer group, and

-3-

each of the capture probes includes an oligonucleotide sequence to which a nucleic acid-protein fusion (for example, an RNA-protein fusion) is bound (for example, hybridized or covalently bound).

In another related aspect, the invention features a solid support  
5 including an array of immobilized capture probes; each of the capture probes includes a non-nucleosidic spacer group and an oligonucleotide sequence to which a ribosome display particle is bound (for example, hybridized or covalently bound).

In yet another related aspect, the invention features a method for  
10 preparing a solid support. The method includes the steps of: (a) preparing a capture probe by linking a spacer group to an oligonucleotide sequence; (b) attaching the capture probe to the solid support; and (c) binding (for example, hybridizing or covalently binding) a nucleic acid-protein fusion (for example, an RNA-protein fusion) to the capture probe.

15 The invention also features a second general method for preparing a solid support. This method includes the steps of: (a) attaching a spacer group to a surface of the solid support; (b) attaching a bifunctional linker to the spacer group; (c) attaching a capture probe to the bifunctional linker; and (d) binding (for example, hybridizing or covalently binding) a nucleic acid-protein fusion  
20 (for example, an RNA-protein fusion) to the capture probe.

In a second aspect, the invention features a method for detecting an interaction between a protein and a compound. The method includes the steps of: (a) providing a solid support including an array of immobilized capture probes, where each of the capture probes includes a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound (for example, hybridized or covalently bound); (b) contacting the solid support with a candidate compound under conditions which allow an

interaction between the protein portion of the nucleic acid-protein fusion and the compound; and (c) analyzing the solid support for the presence of the compound as an indication of an interaction between the protein and the compound.

5        Alternatively, the invention features another method for detecting an interaction between a protein and a compound; this method involves the steps of: (a) providing a population of nucleic acid-protein fusions; (b) contacting the population of nucleic acid-protein fusions with a candidate compound under conditions which allow an interaction between the protein portion of the  
10      nucleic acid-protein fusion and the compound; (c) contacting the product of step (b) with a solid support that includes an array of immobilized capture probes, each of the capture probes including a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion binds (for example, hybridizes or covalently binds); and (d) analyzing the solid  
15      support for the presence of the compound as an indication of an interaction between the protein and the compound.

In a preferred embodiment of each of the above methods, the nucleic acid-protein fusion is an RNA-protein fusion. In another preferred embodiment, the compound is labeled. Compounds that can be screened using  
20      these methods include, without limitation, proteins, drugs, therapeutics, enzymes, and nucleic acids.

In a third aspect, the invention features an array (for example, an addressable array) of nucleic acid-protein fusions including at least  $10^2$  different fusions/cm<sup>2</sup>. Preferably, the nucleic acid-protein fusions are RNA-protein fusions, and the array includes at least  $10^4$  different fusions/cm<sup>2</sup>.

In a related aspect, the invention features a method for generating an addressable array of molecules. The method involves: (a) providing a solid

-5-

support on which an array of nucleic acid molecules is immobilized; (b) contacting the solid support with a population of addressable molecules; and (c) allowing the addressable molecules to orient themselves on the solid support by sequence-dependent recognition and binding of the immobilized nucleic acid  
5 molecules.

In preferred embodiments of this method, the addressable array of molecules is an array of nucleic acid-protein fusions (for example, an array of RNA-protein fusions); the addressable molecules orient themselves on the solid support by base pairing (for example, hybridization) with the immobilized  
10 nucleic acid molecules; the solid support is a glass or silica-based chip; and the nucleic acid molecules immobilized on the solid support are capture probes, each including a non-nucleosidic spacer group and an oligonucleotide sequence to which the addressable molecule binds.

As used herein, by an "array" is meant a fixed pattern of  
15 immobilized objects on a solid surface or membrane. Typically, the array is made up of nucleic acid-protein fusion molecules (for example, RNA-protein fusion molecules) bound to capture nucleic acid sequences which themselves are immobilized on the solid surface or membrane. The array preferably includes at least  $10^2$ , more preferably at least  $10^3$ , and most preferably at least  
20  $10^4$  different fusions, and these fusions are preferably arrayed on a 125 x 80 mm, and more preferably on a 10 x 10 mm, surface. By an "addressable array" is meant that the locations, or addresses, on the solid support of the members of the array (for example, the nucleic acid-protein fusions) are known; the members of the array are referred to as "addressable molecules" and are  
25 utilized in methods for screening for subsequent molecular interactions (for example, for screening for interactions between the addressable nucleic acid-protein fusions and candidate therapeutics).

-6-

By "nucleic acid-protein fusion" is meant a nucleic acid covalently bound to a protein. By "nucleic acid" is meant any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA. By "protein" is 5 meant any two or more amino acids, or amino acid analogs or derivatives, joined by peptide or peptoid bond(s), regardless of length or post-translational modification. As used herein, this term includes, without limitation, proteins, peptides, and polypeptides.

By "hybridization tag" is meant a non-coding oligonucleotide 10 sequence that differs sufficiently in sequence from other nucleic acid sequences in a given population or reaction mixture that significant cross-hybridization does not occur. When multiple hybridization tags are utilized in a single reaction mixture, these tags also preferably differ in sequence from one another such that each has a unique binding partner under the conditions employed.

15 By a "population" is meant more than one molecule.

By a "solid support" is meant any solid surface including, without limitation, any chip (for example, silica-based, glass, or gold chip), glass slide, membrane, bead, solid particle (for example, agarose, sepharose, or magnetic bead), column (or column material), test tube, or microtiter dish.

20 Brief Description of the Drawings

Figure 1 is a drawing showing the silylation of a glass surface, the derivatization of the resulting amino groups, and the attachment of a capture probe to the modified surface.

25 Figure 2 is a drawing illustrating a capture probe containing a non-nucleosidic spacer group and a reactive moiety.

Figure 3 is a schematic diagram of the layout of the FLAG and

-7-

HA11 fusion chip capture probes utilized in Figures 4 and 5. In this Figure, t7, tag, au1, au5, flag, ha1, irs, and kt3 represent the capture probes CPt7 (positive control), CPtag (positive control), CPau1 (negative control), CPau5 (negative control), CPflag, CPha11, CPirs (negative control), and CPkt3 (negative control), respectively.

5 Figure 4 is a phosphorimage demonstrating hybridization of nucleic acid-protein fusions (FLAG and HA11) to capture probes immobilized on a chip.

Figure 5 is a fluorimage demonstrating hybridization of nucleic acid-10 protein fusions (FLAG and HA11) to capture probes immobilized on a chip and subsequent recognition with anti-HA11 monoclonal antibodies.

Figure 6 is a schematic diagram of the layout of the Myc fusion chip capture probes utilized in Figures 7 and 8. In this Figure, capture probes CP01, CP33, CP80, CP125, CPmm, and CPns (described herein) were arranged on the 15 chip as follows: CP01 at locations A1, B1, C1, A4, B4, and C4; CP33 at locations D1, E1, F1, D4, E4, and F4; CP80 at locations A2, B2, C2, A5, B5, and C5; CP125 at locations D2, E2, F2, D5, E5, and F5; CPmm at locations A3, B3, C3, A6, B6, and C6; and CPns at locations D3, E3, F3, D6, E6, and F6.

Figure 7 is a phosphorimage demonstrating hybridization of nucleic acid-protein fusions (Myc) to capture probes immobilized on a chip.

Figure 8 is a fluorimage demonstrating hybridization of nucleic acid-protein fusions (Myc) to capture probes immobilized on a chip and subsequent 20 recognition with anti-Myc monoclonal antibodies.

#### Description of the Preferred Embodiments

25 The invention features support-based, addressable arrays of proteins, and methods for preparing and using these arrays. The arrays are prepared by

-8-

fixing oligonucleotide sequences, the capture probes (or capture oligos), to a support in a defined array. The capture probes are then used to bind nucleic acid-protein fusions, such as RNA-protein fusions. Such binding may occur through base pairing (for example, through Watson-Crick base pairing, pseudo  
5 Watson-Crick base pairing involving modified bases, or Hoogsteen base pairing) between the nucleic acid component of the fusion and a complementary capture probe, or may occur through any other type of sequence-dependent recognition and binding of the capture probe (including, without limitation, polyamide-mediated nucleic acid groove binding or specific  
10 binding by nucleic acid-binding proteins such as transcription factors). The result of the binding interactions between the fusions and the capture probes is a defined, addressable array of proteins attached to a solid support.

A variety of materials can be used as the solid support. Examples of such materials include polymers (e.g., plastics), aminated surfaces, gold coated  
15 surfaces, nylon membranes, polyacrylamide pads deposited on solid surfaces, silicon, silicon-glass (e.g., microchips), silicon wafers, and glass (e.g., microscope slides). Microchips, and particularly glass microchips, represent a preferred solid support surface.

If the surface is not already aminated, it can be modified to provide a  
20 layer of amino groups. For example, a glass microscope slide can be treated with a silylating agent such as trialkoxyaminosilane to provide a surface of primary amino groups that exists as a monolayer or 3-8 molecular layers. This reaction is illustrated in Figure 1. The silane-treated surface is then derivatized with a homobifunctional or heterobifunctional linker that permits the  
25 attachment of oligonucleotides at discrete positions. Phenylene 1,4-diisothiocyanate is a useful homobifunctional linker; amino-surfaces derivatized with this reagent have isothiocyanate functionalities that are

-9-

available to covalently react with the primary amino groups on the termini of oligonucleotides to form stable thiourea bonds, as shown in Figure 1.

The capture probes, i.e., the oligonucleotide sequences that are to be attached to the surface, are selected from the reverse-complements of the 5 nucleic acid components of the nucleic acid-protein fusions (the targets). Capture probes preferably have between 5 and 30 nucleotide units, and more preferably have about 20 nucleotide units. Considerations for the selection of the exact sequence for a particular capture probe include melting temperature (T<sub>m</sub>), interference from competing target sequences, and potential secondary 10 structure in the target sequence. Ideally, each unique capture probe has the same T<sub>m</sub>, i.e., they are isoenergetic, so a single hybridization and washing temperature can be used successfully for all capture-target pairs. Commercially available computer programs (e.g., Oligo 4.0) can be used to help identify sets 15 of capture probes with similar thermodynamic properties based on nearest neighbor treatments.

The capture probes are modified before they are attached to the surface. One or more non-nucleosidic spacers, such as polyethylene oxide, are added to the terminus of the oligo. Preferably, 1-20 spacers and, most preferably, 4 spacers are utilized. These spacers may be added to either the 5' 20 or preferably the 3' end of the oligonucleotide. A nucleophilic moiety is then attached to the spacer group. The result is a derivatized capture probe, as shown in Figure 2. A preferred spacer monomer includes hexaethylene oxide.

Non-nucleosidic spacers are preferred over nucleosidic spacers, such as poly-T, because non-nucleosidic spacers have greater flexibility. In 25 addition, their physical properties can be tailored relatively easily, and it is possible to minimize specific and non-specific nucleic acid interactions.

The spacers provide physical separation between the oligonucleotide

-10-

and the solid surface and prevent interaction of the proteins with the support surface. This separation is important to ensure effective hybridization between the support-bound capture probe and the nucleic acid-protein fusion. In addition, the separation helps to minimize denaturation of the protein; the 5 proteins are therefore able to adopt their native folded structures and remain functional.

Alternatively, the spacer groups can be attached directly to the solid support surface, instead of to the capture probes. For example, the spacer group can be attached to the amino groups on the surface. The bifunctional 10 linker can then be attached to the other end of the spacer group.

In addition to spacer groups, the capture probes may contain modifications that improve their hybridization properties and mismatch discrimination. For example, they may contain base analogs, such as 5-propyne pyrimidines, internucleotide analogues such as peptide nucleic acids 15 (PNA), in which the bases are connected by peptide-like linkages, or carbohydrate modifications.

The capture probes are suspended in an aqueous alkaline solution, then applied to defined positions of the support surface; the nucleophilic moieties at the termini of the capture probes react with the active sites of the 20 bifunctional linkers to form covalent bonds. The density of the capture probes can be controlled by adjusting reaction time and oligo concentration.

Alternatively, the density can be controlled by doping the solution with capture oligos that lack nucleophilic moieties or doping with simple organic compounds that possess amine functional groups.

25 The capture probes can be applied using liquid deposition techniques, such as inkjet delivery, robotic quill delivery or spotting, and other similar deposition methods. They can also be applied using manual methods,

-11-

such as pipetting. The feature sizes of the capture probes can range from one square micron (e.g., when robotic techniques are used) to one square millimeter (e.g., when a 0.2 microliter pipette is used). The result of the application of the capture probes is a defined, regular array of nucleic acid sequences.

5

After a sufficient reaction time, the excess capture probe is washed away, and the remaining unreacted isothiocyanate groups are blocked off. Dilute ammonia can be used as the blocking agent, resulting in a surface of phenyl thiourea groups. Blocking agents can also be selected to modify the 10 surface energy, i.e., the hydrophobicity of the solid support surface. The hydrophobicity of the solid support surface is important because it affects the background signal level and the extent of unwanted interaction of the protein portion of a nucleic acid-protein fusion with the surface. Examples of blocking agents that modify hydrophobicity are methylamine, amino alcohols, and 15 suitable amino-containing polyethylene oxide moieties.

15

Non-covalent blocking agents can also be used to further minimize non-specific interactions between the fusion and the solid support (e.g., glass) surface. Examples of such blocking agents include non-specific proteins such as BSA or casein, or similar commercially available blocking reagent 20 formulations marketed for use with membranes.

20

The capture probes arrayed on the surface of the solid support are then bound (for example, by hybridization) to nucleic acid-protein fusions, such as RNA-protein fusions. A solution containing the mixture of fusions is adjusted to an appropriate salt concentration, applied to the surface, and 25 incubated at a suitable temperature to allow for efficient binding (for example, hybridization) between the capture probe and the target sequence. The solution may also contain surfactants such as TWEEN-20, TRITON X-100, or SDS

-12-

(Sigma Chemical Co.) at concentrations of about 0.02% to about 1.0%; it may also include non-specific proteins, such as BSA.

The experimental variables of salt concentration, temperature, and hybridization time are a function of the capture oligo design. A preferred range 5 for the salt concentration is 25 mM to 2 M, with a concentration of about 750 mM being especially preferred. A preferred temperature range is from 5°C to 70°C, with 30°C being especially preferred. Preferred reaction times can be from 1 to 24 hours, with 3 hours being especially preferred. The variables for each experiment are determined empirically by standard methods. The 10 hybridization step can be performed in a simple chamber device that constrains the liquid sample and prevents evaporation.

When RNA-protein fusions are utilized as addressable arrays, the solution may also contain one or more components to suppress nuclease degradation of the RNA moiety. Preferred additions include (a) metal chelators 15 (e.g., EDTA or EGTA) at concentrations of between 1 - 10 mM, (b) placental RNase inhibitor protein (Promega) at concentrations of between 0.1 - 1 Unit/μl; and (c) Anti-RNase protein (Ambion) at concentrations of between 0.1 - 1 Unit/μl. A separate strategy to specifically suppress 5'-exonuclease degradation involves capping the 5'-terminus of the fusion RNA with a binding 20 molecule. The capping strategy may be used in conjunction with one or more of the components listed above. In one particular capping approach, a native or analog (e.g., PNA) nucleic acid sequence complementary to the 5'-terminus of the fusion RNA is added to generate a stable duplex at the 5'-end. The complementary sequence is preferably between 10 - 50 bases in length, and 25 most preferably about 20 bases in length. This added nucleic acid sequence may also contain pendant groove-binding, intercalating, or cross-linking moieties. Alternatively, native or analog nucleic acid sequences may be added

-13-

that form stable intermolecular hairpin, tetraloop, or pseudoknot secondary structures with the 5'-terminus of the RNA. In the latter case, these nucleic acids are preferably about 20 - 100 bases in length, with about 35 bases being especially preferred.

5 To the extent possible, the mixture of nucleic acid-protein fusions should be free of un-fused nucleic acids. Un-fused nucleic acids that are complementary to the capture probes will compete with the fusions for binding and will limit the amount of a given protein that can be displayed on the solid support. Preferably, at least 1% of the nucleic acid (for example, the RNA  
10 message) is fused to protein.

Unique non-coding regions can be incorporated into the nucleic acid component of the fusion for the specific purpose of being "captured" by the capture probe; these non-coding regions are referred to as "hybridization tag sequences." The hybridization tag sequences may include the same analogue  
15 units as are described above for the capture probes. In some cases, both the capture probe and the tag sequences can be modified so they hybridize preferentially with each other, thereby minimizing interference from the coding fusion sequences.

Upon completion of the binding step, unbound nucleic acid-protein  
20 fusion is washed away with a buffer that has a higher stringency and a lower salt concentration than that used for the hybridization step. Again, the optimal buffer composition is determined empirically by standard methods. What remains upon completion of washing is an addressable array of proteins on the solid surface, attached via sequence-dependent recognition between the nucleic  
25 acid component of the fusion and the surface-bound capture oligo. The position of each protein is defined, because each fusion corresponds to the complementary capture probe.

-14-

In addition, if desired, the nucleic acid component of the fusion may be covalently linked to a part of the solid support, the linker, or the capture probe. Such covalently linked fusions provide particularly robust and versatile addressable arrays that may be used, for example, in the screening methods 5 described herein. Covalently linked fusion arrays may be generated by any standard approach. According to one general technique, the fusions are addressed to specific locations on a solid surface via hybridization with corresponding capture probes, and a chemical cross-linking or attachment reaction is triggered to fix the location of the fusions on the solid support. One 10 method to achieve such a covalent link involves functionalizing the DNA capture oligos during chemical synthesis with one or more pendant psoralen moieties, preferably positioned near adenosine bases. After hybridizing the nucleic acid-protein fusion (for example, the RNA-protein fusion) to the support-bound capture oligos, the surface is exposed to long-wavelength UV 15 light (for example, at 350 nm). Light of this wavelength triggers a photoreaction between psoralen and an adjacent thymidine or uridine base in the duplex region, forming a cyclobutane linkage and permanently attaching the fusion to the solid support. Alternatively, psoralen itself (i.e., not linked to a capture probe) may be included in the hybridization solution or in a 20 subsequent separate solution. The psoralen molecule intercalates between bases in double-stranded regions. Upon irradiation with long-wavelength UV light, the intercalated psoralen cross-links with thymidine or uridine bases (intrastrand and interstrand) in a bifunctional mode, forming covalent links between the capture probe and the nucleic acid component of the fusion. Other 25 reactive, cross-linking reagents may also be used in place of psoralen in combination with triggering conditions appropriate for those reagents.

Ordered, addressable arrays of peptide fragments can also be

-15-

prepared. To prepare these arrays, the fusion library is generated from short synthetic DNA sequences or fragments of cDNAs or genomic DNAs. In another variation, ribosome display particles, such as those described in Gold et al., WO 93/03172, can be hybridized to the solid support to generate the protein array. Again, these particles are immobilized on the solid support through a hybridization reaction between the capture oligo and the protein-coding RNA.

#### Use

The addressable protein arrays of the present invention have many uses. For example, a library of proteins can be displayed on a support, such as 10 a microchip. This microchip can then be used to identify previously unknown protein-protein interactions. A probe protein can be detectably labeled, for example, with a radioisotope, chromophore, fluorophore, or chemiluminescent species, then incubated with the microchip. After the excess probe protein is washed away, the chip surface is analyzed for signal from the label. Detection 15 of a signal indicates interaction of the labeled protein with one or more unique members of the protein library. The identity of proteins that are able to bind to the probe protein can then be determined from the location of the spots on the chip that become labeled due to binding of the probe. The same approach can also be used to screen protein libraries for protein-ligand interactions and 20 protein-nucleic acid interactions.

Other methods can be used to detect protein-protein, protein-ligand, or protein-nucleic acid interactions. For example, when the solid surface used to form the protein array is a gold layer, surface plasmon resonance (SPR) can be used to detect mass changes at the surface. When gold surfaces are 25 employed, the reactive moiety on the oligonucleotide capture probe is a thiol group (rather than an amino group) and the gold surface need not be

-16-

functionalized to achieve capture probe attachment. Mass spectrometry (especially, Maldi-Tof) can also be used to analyze species bound to unique members of the protein library.

Another application of protein arrays is the rapid determination of 5 proteins that are chemically modified through the action of modifying enzymes such as protein kinases, acyl transferases, and methyl transferases. By incubating the protein array with the enzyme of interest and a radioactively labeled substrate, followed by washing and autoradiography, the location and hence the identity of those proteins that are substrates for the modifying 10 enzyme may be readily determined. Further localization of the modification sites can be achieved using ordered displays of fragments of these proteins.

The protein arrays can also be used to identify the unknown protein targets of therapeutically active compounds. For example, a therapeutic compound may be applied to a protein array derived from cellular RNA. 15 Detection of the captured therapeutic compound, either through its bound label or directly (for example, by mass spectrometry or surface plasmon resonance) reveals the compound's binding partner or partners. In addition, arrays can also be used in the development of protein-based diagnostics. For example, a solid support containing a variety of proteins associated with various illnesses can be 20 prepared. A single patient sample, which might contain one or more proteins whose interactions with the support-bound proteins would be indicative of certain illnesses, can then be contacted with the support. Thus, a single sample can be used to simultaneously detect the presence of several conditions, or to distinguish between conditions. Alternatively, addressable arrays may be used 25 to quantify target molecules in a sample. In one particular example, addressable arrays of single chain antibodies or antibody mimics may be used for quantifying a target protein (or proteins) in a biological sample. The arrays

-17-

can also be used in the emerging fields of proteomics and functional genomics.

The specific fusions that are identified as binding specifically to a probe molecule can be removed from the support surface. In one method, the fusion is released by disrupting hybridization with the capture probe. In one  
5 particular approach, the specified fusion is physically separated from the rest of the fusions, then treated with a denaturing agent, such as a chemical reagent or heat, to disrupt the base pairing with the capture oligo. The liberated fusion is then recovered from the solution.

Alternatively, the entire capture probe can be detached. During solid  
10 support preparation, a light-sensitive linker can be used to attach the capture probe to the solid surface. Following identification of the active fusion, a laser beam of the appropriate wavelength can be used to cleave the linker, thus releasing the desired fusion. Following release from the surface by any of the above methods, the fusion can be specifically recovered and manipulated, for  
15 example, using PCR, and further characterized.

There now follow particular examples of the preparation of protein arrays according to the invention. These examples are provided for the purpose of illustrating the invention, and should not be construed as limiting.

Example 1: Silylation of a Glass Surface

20 Select grade, low-iron content, pre-cleaned 1 x 3 inch glass microscope slides (VWR Scientific) are prepared by heating with 1 M hydrochloric or nitric acid for 30 minutes at 70°C. The slides are then subjected to three 5-minutes washes, using fresh distilled water for each wash. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95%  
25 acetone/5% water is prepared and allowed to hydrolyze for at least five minutes. The glass slides are immersed in the hydrolyzed silane solution for

-18-

2-20 minutes with gentle agitation. Excess silane is removed by subjecting the slides to ten 5-minute washes, using fresh portions of 95% acetone/5% water for each wash, using gentle agitation. The slides are then cured by heating at 110°C for 20-45 minutes.

5    Example 2: Derivatization with a Homobifunctional Linker

Silane treated slides from Example 1 are immersed in a freshly prepared 0.2% solution of phenylene 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF/10% pyridine for two hours, with gentle agitation. The slides are washed sequentially with 90% DMF/10% pyridine, methanol, and acetone. After air drying, the functionalized slides are stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

Example 3: Synthesis of Capture Probes

Oligonucleotides are chemically synthesized in the 3'→5' direction by coupling standard phosphoramidite monomers with an automated DNA synthesizer. Typically, 500 angstrom controlled-pore glass supports are used at the 0.2 micromole scale. After the desired probe sequence has been assembled (using A, G, C, and T monomers), hexaethylene oxide phosphoramidite monomer (Glen Research) is added to the 5' terminus. The coupling wait time is extended to 15 minutes by modifying the synthesizer program. Additional hexaethylene oxide monomer units are added in the same way. C-6 Amino phosphoramidite (Glen Research) is then added to the 5' terminus; the coupling wait time is again extended to 15 minutes. The acetic anhydride capping step and the final acidic detritylation step are eliminated. Capture probe sequences are cleaved from the solid support and deprotected with ammonium hydroxide, concentrated to dryness, precipitated in ethanol, and purified by reverse-phase

-19-

HPLC using an acetonitrile gradient in triethylammonium acetate buffer.

Example 4: Attachment of Capture Probes

The purified, amine-labeled capture probes from Example 3 are adjusted to a concentration of 500 micromolar in 100 mM sodium carbonate buffer (pH 9.0), and are applied to the derivatized glass surface from Example 2 at defined positions. For manual deposition, aliquots of 0.2 microliter each are applied with a pipetman. The array is incubated at room temperature in a moisture-saturated environment for at least two hours. The attachment reaction is terminated by immersing the glass surface in an aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface is then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. The array is then soaked in 1 M phosphate buffered saline (PBS) solution for 2 hours at room temperature, then rinsed again for 5 minutes in distilled water.

15    Example 5: Surface Modification

The ammonia solution from Example 4 is replaced with a 1-5% aqueous solution of a different primary amine-containing molecule. A small amount (10%) of methanol or acetonitrile cosolvent is added, if necessary.

16    The glass surface is then subjected to three 5-minute washes, using  
fresh portions of distilled water for each wash. The surface is soaked in 1 M  
phosphate buffered saline (PBS) solution for 2 hours, then washed again for 5  
minutes with distilled water. The glass surface is immersed in a dilute, aqueous  
solution of a protein-containing blocking solution for several minutes, then  
subjected to three 5-minute washes, using fresh portions of distilled water for  
each wash. Finally, the surface is air dried.

-20-

Example 6: Fusion Hybridization

50 microliters of a solution containing the RNA-protein fusions and consisting of 25 mM Tris-HCl (pH 8.0) and 100 mM potassium chloride are applied to the glass microchip surface in a chamber that can contain and seal  
5 the liquid. The solution is maintained at a specific temperature (determined by the capture oligo design) for at least three hours. Excess, non-hybridized RNA-protein fusions are removed by washing with 25 mM Tris-HCl (pH 8.0) and 50 mM potassium chloride for several minutes at the incubation temperature. The protein chip is subjected to two 15-minute washes, using a  
10 buffer that is more stringent and contains a lower salt concentration than the buffer used for the hybridization reaction.

Example 7: Generation of an Exemplary FLAG and HA11 Fusion Chip

Using the techniques essentially as described above, exemplary FLAG and HA11 fusion chips were generated as follows.

15 For silylation of the glass microchip surface, pre-cleaned 1 x 3 inch glass microscope slides (Goldseal, #3010) were treated with Nanostrip (Cyantek) for 15 minutes, 10% aqueous NaOH at 70°C for 3 minutes, and 1% aqueous HCl for 1 minute, thoroughly rinsing with deionized water after each solution. The slides were then dried in a vacuum desiccator over anhydrous  
20 calcium sulfate for several hours. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95% acetone / 5% water was prepared and allowed to hydrolyze for 20 minutes. The glass slides were immersed in the hydrolyzed silane solution for 5 minutes with gentle agitation. Excess silane was removed by subjecting the slides to ten 5-minute washes,  
25 using fresh portions of 95% acetone / 5% water for each wash, with gentle agitation. The slides were then cured by heating at 110°C for 20 minutes.

-21-

To derivatize with a homobifunctional linker, the silane treated slides were immersed in a freshly prepared 0.2% solution of phenylene 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF / 10% pyridine for two hours, with gentle agitation. The slides were washed sequentially with  
5 90% DMF / 10% pyridine, methanol, and acetone. After air drying, the functionalized slides were stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

Capture oligos were then designed and synthesized by standard techniques. In particular, the RNA employed to make the FLAG epitope fusion  
10 (17 amino acids total) consisted of 5'-r(UAA UAC GAC UCA CUA UAG GGA CAA UUA CUA UUU ACA AUU ACA AUG GAC UAC AAG GAC GAU GAC GAU AAG GGC GGC UGG UCC CAC CCC CAG UUC GAG AAG) (SEQ ID NO: 1). The RNA employed to make the HA11 epitope fusion (20 amino acids total) consisted of 5'-r(UAA UAC GAC UCA CUA UAG GGA CAA UUA CUA UUU ACA AUU ACA AUG UAC CCC UAC GAC GUG CCC GAC UAC GCC GGC GGC UGG UCC CAC CCC CAG UUC GAG AAG) (SEQ ID NO: 2). In addition, in each case, the following DNA linker, which also contained the essential puromycin moiety at its 3'-end, was ligated to the 3'-terminus of the RNA message:  
15 5'-d(AAAAAAAAAAAAAAAAAAAAAAACC) (SEQ ID NO: 3).

Specific, non-interacting, and thermodynamically isoenergetic sequences along the target RNAs were identified to serve as capture points. The software program HybSimulator v2.2 (Advanced Gene Computing Technology, Inc.) facilitated the identification and analysis of potential capture  
25 probes. A single specific capture probe for each RNA was ultimately identified (CPflag and CPha11). In addition, two sequences common to each RNA (CPt7, CPtag) were also identified to serve as positive controls. Four non-sense

-22-

sequences (CPau1, CPau5, CPirs, CPkt3) were generated as well to serve as negative controls. In total, eight unique sequences were selected. These oligonucleotides were prepared so that they could be attached to the chip surface at either the 3'- or 5'-terminus. Therefore, 16 capture probes were  
5 prepared comprising eight unique sequences. The following is a list of these capture probe sequences (5' to 3') (SEQ ID NOS: 4-11):

|    |         |                     |
|----|---------|---------------------|
|    | CPt7:   | TGTAAATAGTAATTGTCCC |
|    | CPtag:  | CTTCTCGAACTGGG      |
|    | CPau1:  | CCTGTAGGTGTCCAT     |
| 10 | CPau5:  | CAGGTAGAACGTCGGT    |
|    | CPflag: | CATCGTCCTTAGTC      |
|    | CPha11: | CGTCGTAGGGTA        |
|    | CPirs:  | CCGCTCCTGATGTA      |
|    | CPkt3:  | TCGGGAGGCATTG.      |

15 Oligonucleotide capture probes were chemically synthesized in the 3' to 5' direction by coupling standard phosphoramidite monomers using an automated DNA synthesizer (PE BioSystems Expedite 8909). Typically, 500 angstrom controlled-pore glass supports were used at the 0.2 micromole scale. In the case of 5'-attachment, after the desired probe sequence had been  
20 assembled (using A, G, C, and T monomers), four hexaethylene oxide phosphoramidite monomers (Glen Research) were added to the 5'-terminus. The coupling wait time was extended to 15 minutes by modifying the synthesizer program. Additional hexaethylene oxide monomer units were added in the same way. C-6 Amino phosphoramidite (Glen Research) was then  
25 added to the 5' terminus; the coupling wait time was again extended to 15

-23-

minutes. The acetic anhydride capping step and the final acidic detritylation were eliminated. In the case of 3'-attachment, oligonucleotide synthesis began with a controlled-pore glass support bearing orthogonally protected primary hydroxyl and amino functionalities (Glen Research). Chain elongation began  
5 on the hydroxyl group, and the amino group remained protected during oligomer assembly, only being unveiled during the final deprotection. The first four monomers to be added were hexaethylene oxide units, followed by the standard A, G, C, and T monomers. All capture oligo sequences were cleaved from the solid support and deprotected with ammonium hydroxide,  
10 concentrated to dryness, precipitated in ethanol, and purified by reverse-phase HPLC using an acetonitrile gradient in triethylammonium acetate buffer. Appropriate fractions from the HPLC were collected, evaporated to dryness in a vacuum centrifuge, and then coevaporated with a portion of water.

To attach the purified, amine-labeled capture oligos, the oligos were  
15 adjusted to a concentration of 250 micromolar in 50 mM sodium carbonate buffer (pH 9.0) containing 10% glycerol. The oligos were then robotically applied (MicroGrid, BioRobotics) to the derivatized glass surface described above at defined positions in a 5 x 5 x 16 array pattern (384 spots) within a 20 x 20mm area. The layout of these capture probes is shown schematically in  
20 Figure 3. A 16-pin tool was used to transfer the liquid, producing 200 micron features with a pitch of 600 microns. Each sub-grid of 24 spots represented a single capture probe (i.e., 24 duplicate spots). The array was incubated at room temperature in a moisture-saturated environment for 12-18 hours. The attachment reaction was terminated by immersing the glass surface in an  
25 aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface was then subjected to three 5-minute washes, using fresh portions of distilled water for each wash. The array was then soaked in a 10X PBS

-24-

(phosphate buffered saline) solution for 2 hours at room temperature, and then rinsed again for 5 minutes in distilled water.

RNA-protein fusions between the peptides containing the FLAG and HA11 epitopes and their corresponding mRNAs were produced as generally described by Szostak et al., WO 98/31700; and Roberts and Szostak, Proc. Natl. Acad. Sci. USA 94:12297-12302, 1997. The polymerase chain reaction using Taq polymerase (Promega) was used to amplify the sequences 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG GAC TAC AAG GAC GAT GAC GAT AAG GGC GGC TGG TCC CAC CCC CAG TTC GAG AAG (SEQ ID NO: 12) and 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG TAC CCC TAC GAC GTG CCC GAC TAC GCC GGC GGC TGG TCC CAC CCC CAG TTC GAG AAG (SEQ ID NO: 13) for FLAG and HA11, respectively, using the oligonucleotide primers 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT (SEQ ID NO: 14) and 5'-AGCGGATGCCTCTCGAACTGGGGTGGGA (SEQ ID NO: 15). The resulting PCR products were transcribed in vitro using T7 RNA polymerase (Ambion) to produce an mRNA containing the coding region for the FLAG and HA11 epitopes and the TMV untranslated region. This RNA was ligated to a DNA linker 5'-AAA AAA AAA AAA AAA AAA AAA AAA CC (SEQ ID NO: 3) containing a 5' phosphate and a 3' puromycin by T4 DNA ligase (Promega) in the presence of an 80:20 mixture of the following two DNA splints: 5'-TGCAACGACCAACTTTTTTTAGCGCATGC (SEQ ID NO: 16) and 5'-TGCAACGACCAACTTTTTTTNAGCGCATGC (SEQ ID NO: 17), each containing two biotin moieties at the 5' terminus. The resulting RNA-DNA chimera was purified by binding to Immobilized NeutrAvidin (Pierce), washing to remove unligated material, and eluting by displacement

-25-

using the sequence 5'-GCATCCGCTAAAAAAAAAGTTGGTCGTTGC (SEQ ID NO: 18). Subsequent translations were performed in rabbit reticulocyte lysate (Ambion) according to the manufacturer's instructions except that MgCl<sub>2</sub> (150 mM) and KCl (425 mM) were added after 30 minutes

5 to promote the formation of the puromycin-peptide bond. The RNA-peptide fusions were then purified by oligo dT affinity chromatography (Pharmacia), quantitated by scintillation counting of the incorporated vs. added <sup>35</sup>S methionine (Amersham), and concentrated to a low volume via membrane filtration (MicroCon).

10 For hybridization of the fusions to the immobilized capture probes, aliquots of each of the FLAG and HA11 fusions, corresponding to 1.0 picomole each, were combined and adjusted to 5X SSC (saline sodium citrate) + 0.02% Tween-20 in a volume of 20 microliters. The solution was applied to the glass chips described above, coverslips were placed on top, and the slides were

15 placed in a moisture-saturated chamber at room temperature. After 18 hours the coverslips were removed, and the slides were washed sequentially with stirred 500 mL portions of 1X SSC + 0.02% Tween-20, 1X SSC + 0.02% Tween-20, and 1X SSC for 5 minutes each, followed by a brief rinse with 0.2X SSC. After removal of liquid the slides were allowed to briefly air-dry.

20 To detect hybridization, the FLAG and HA11-fusion chip was exposed to a phosphorimage screen (Molecular Dynamics) for 60 hours by direct contact between the screen and the chip. This allowed identification of the areas that contained hybridized fusions, since the peptides contained a <sup>35</sup>S methionine radiolabel which was detectable by the phosphor storage screen.

25 As shown in Figure 4, analysis of the phosphorimage revealed that the fusions had successfully hybridized to their respective capture probes targeting specific areas of the RNA message (i.e., CPflag and CPha11). In addition, the four

-26-

non-sense capture probes, which were not complementary to any region of the FLAG or HA11 RNA, did not give any appreciable signal (i.e., CPau1, CPau5, CPirs, CPkt3). The positive control capture probe CPtag produced the expected signal, but the corresponding positive control capture probe CPt7 did

5 not, likely due to degradation (e.g., exonuclease contamination) of the 5'-region of the targeted RNA. These results demonstrated the feasibility of addressing a mixture of peptides (as fusions) to specific locations on the surface of a chip. Both the 3'-attached capture probes and the 5'-attached capture probes were effective.

10 A duplicate chip was probed with a monoclonal antibody that recognized the HA11 epitope. All of the following steps were performed at 4°C. Nonspecific sites were first blocked with a solution containing 1X PBS (phosphate buffered saline) + 1% BSA (bovine serum albumin, RNase free grade, Ambion) + 0.02% Tween-20 for 1 hour under a coverslip. The blocking  
15 solution was removed and 50 microliters of HA.11 monoclonal antibody (100:1 dilution, Berkeley Antibody Co.) in 1X PBS + 0.02% Tween-20 was applied to the chip under a coverslip. After 2 hours the coverslip was removed, and the chip was washed with three 50mL portions of 1X PBS + 0.02% Tween-20 for 5 minutes each, with gentle agitation. Excess liquid was removed and then 50  
20 microliters of Cy3-labeled goat anti-mouse IgG (400:1 dilution, Amersham Pharmacia Biotech) in 1X PBS + 0.02% Tween-20 was added under a coverslip. After 1 hour the coverslip was removed, and the chip was washed in three 50mL portions of 1X PBS + 0.02% Tween-20 for 5 minutes each, with gentle agitation. Excess liquid was removed, and the chip was allowed to  
25 air-dry at room temperature. The chip was subsequently analyzed at 10 micron pixel resolution with a confocal laser scanner (ScanArray 3000, General Scanning) using preset excitation and emission wavelengths tuned to the Cy3

-27-

fluorophore. As shown in Figure 5, the resulting fluorimage was in accord with the phosphorimage and demonstrated that the HA11 peptide, which was covalently linked to its RNA message and fixed to the chip surface, was functional and was available to interact with its binding partner (the HA11 monoclonal antibody). Moreover, although both the FLAG-fusion and the HA11-fusion were presented on the chip surface, the HA11 monoclonal antibody was specific for its own epitope. In addition, the 3'-attachment capture probes generally provided a better signal than the 5'-attachment capture probes. Without being bound to a particular theory, this may reflect the greater accessibility of the epitope when it is oriented away from the chip surface.

Example 8: Generation of an Exemplary Myc Fusion Chip

Using the techniques essentially as described above, an exemplary Myc fusion chip was also generated as follows.

For silylation of the glass surface, select grade, low-iron content, 15 pre-cleaned 25 x 75mm glass microscope slides (VWR Scientific, #48311-950) were used as supplied. A 1% solution of aminopropyltrimethoxysilane (Gelest, Inc.) in 95% acetone / 5% water was prepared and allowed to hydrolyze for 20 minutes. The glass slides were immersed in the hydrolyzed silane solution for 5 minutes with gentle agitation. Excess silane was removed by subjecting the 20 slides to ten 5-minute washes, using fresh portions of 95% acetone / 5% water for each wash, with gentle agitation. The slides were then cured by heating at 110°C for 20 minutes.

To derivatize with a homobifunctional linker, the silane treated slides were immersed in a freshly prepared 0.2% solution of phenylene 25 1,4-diisothiocyanate (Aldrich Chemical Co.) in 90% DMF / 10% pyridine for two hours, with gentle agitation. The slides were washed sequentially with

-28-

90% DMF / 10% pyridine, methanol, and acetone. After air drying, the functionalized slides were stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate.

The capture oligos were synthesized based on the Myc sequence. In 5 particular, the RNA employed to make the c-myc fusion (33 amino acids total) consisted of the following sequence:

5'-r(UAAUACGACUCACUAUAGGGACAUUACUAUUACAAUUACA  
AUGGGGACAAUUACUAUUACAAUUACAAUGGCUGAAGAACAGA  
AACUGAUCUCUGAAGAAGACCUGCUGCGUAAACGUCGUGAACAGC  
10 UGAAACACAAACUGGAACAGCUGCGUAACUCUUGCGCU) (SEQ ID NO: 19). In addition, the following DNA linker, which also contains the essential puromycin moiety, was ligated to the 3'-terminus of the RNA message: 5'-d(AAAAAAAAAAAAAAAAAAAAAAAAACC) (SEQ ID NO: 3). Three non-overlapping and thermodynamically isoenergetic 20-mer sequences along the RNA were identified to serve as capture points. In 15 addition, dA25 (on the ligated DNA) was selected as a fourth target area. The targeted sequences began at nucleotide positions 1, 33, 80, and 125 (CP01, CP33, CP80 and CP125, respectively). A mismatch sequence, derived from target sequence 33 and containing four internal and adjacent nucleotide mismatches, was also designed (CPmm). A non-sense sequence, corresponding 20 to the reverse-orientation of CP33, was also utilized as a negative control (CPns). The following is a list of the capture probe sequences that were employed (5' to 3') (SEQ ID NOS: 20-25):

CP01: TTGTAAATAGTAATTGTCCC  
25 CP33: AGAGATCAGTTCTGTTCTT  
CP80: AGTTTGTGTTTCAGCTGTT

-29-

CP125: TTTTTTTTTTTTTTTTTTTTTTTTT

Cpmm: AGAGATCTCAATCTGTTCTT

Cpns: TTCTTGTCCTTGACTAGAGA

Oligonucleotide capture probes were chemically synthesized in the 3' 5 to 5' direction by coupling standard phosphoramidite monomers with an automated DNA synthesizer (PE BioSystems Expedite 8909). Typically, 500 angstrom controlled-pore glass supports were used at the 0.2 micromole scale. After the desired probe sequence had been assembled (using A, G, C, and T monomers), hexaethylene oxide phosphoramidite monomer (Glen Research) 10 was added to the 5'-terminus. The coupling wait time was extended to 15 minutes by modifying the synthesizer program. Additional hexaethylene oxide monomer units were added in the same way. C-6 Amino phosphoramidite (Glen Research) was then added to the 5' terminus; the coupling wait time was again extended to 15 minutes. The acetic anhydride capping step and the final 15 acidic detritylation were eliminated. Capture oligo sequences were cleaved from the solid support and deprotected with ammonium hydroxide, concentrated to dryness, precipitated in ethanol, and purified by reverse-phase HPLC using an acetonitrile gradient in triethylammonium acetate buffer. Appropriate fractions from the HPLC were collected, evaporated to dryness in 20 a vacuum centrifuge, and then coevaporated with a portion of water.

To attach these purified, amine-labeled capture oligos, the oligos were adjusted to a concentration of 500 micromolar in 100 mM sodium carbonate buffer (pH 9.0) and were applied to the derivatized glass surface at defined positions in a 6 x 6 array pattern (36 spots) within a 20 x 20mm area 25 (as shown in Figure 6). CP01 was applied to locations A1, B1, C1 and A4, B4, C4. CP33 was applied to locations D1, E1, F1 and D4, E4, F4. CP80 was

-30-

applied to locations A2, B2, C2 and A5, B5, C5. CP125 was applied to locations D2, E2, F2 and D5, E5, F5. Cpmm was applied to locations A3, B3, C3 and A6, B6, C6. Cpns was applied to locations D3, E3, F3 and D6, E6, F6. For manual deposition, aliquots of 0.2 microliter each were applied with a

5      pipetman. The array was incubated at room temperature in a moisture-saturated environment for 12-18 hours. The attachment reaction was terminated by immersing the glass surface in an aqueous 1% ammonia solution for five minutes with gentle agitation. The glass surface was then subjected to three 5-minute washes, using fresh portions of distilled water for each wash.

10     The array was then soaked in a 10X PBS (phosphate buffered saline) solution for 2 hours at room temperature, and then rinsed again for 5 minutes in distilled water.

RNA-protein fusions between a 33 amino acid peptide containing the c-myc epitope and its mRNA were produced as described by Szostak et al.,

15     WO 98/31700; and Roberts and Szostak, Proc. Natl. Acad. Sci. USA 94:12297-12302, 1997. The polymerase chain reaction using Taq polymerase (Promega) was used to amplify the sequence 5'-AGC GCA AGA GTT ACG CAG CTG TTC CAG TTT GTG TTT CAG CTG TTC ACG ACG TTT ACG CAG CAG GTC TTC TTC AGA GAT CAG TTT CTG TTC TTC AGC CAT (SEQ ID NO: 26) using oligonucleotide primers 5'-AGC GCA AGA GTT ACG CAG CTG (SEQ ID NO: 27) and 5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG GCT GAA GAA CAG AAA CT (SEQ ID NO: 28). The resulting PCR product was transcribed in vitro using T7 RNA polymerase (Ambion) to produce an mRNA containing the coding region for

20     the c-myc epitope and the TMV untranslated region. This RNA was ligated to a DNA linker 5'-AAA AAA AAA AAA AAA AAA AAA AAA CC (SEQ ID NO: 3) containing a 5' phosphate and a 3' puromycin by T4 DNA

25

-31-

ligase (Promega) in the presence of a DNA splint with the sequence TTT TTT  
5 TTT TAG CGC AAG A (SEQ ID NO: 29). The resulting 154mer RNA-DNA  
chimera was purified by denaturing polyacrylamide gel electrophoresis (6%  
acrylamide). Translation was performed in rabbit reticulocyte lysate (Ambion)  
10 according to the manufacturer's instructions except that KCl (500 mM) was  
added after 30 minutes to promote the formation of the puromycin-peptide  
bond. The RNA-peptide fusion was purified by oligo dT affinity  
chromatography (Pharmacia), quantitated by scintillation counting of the  
incorporated vs. added  $^{35}$ S methionine (Amersham), and dried to a pellet. 2.5  
15 pmol of the c-myc fusion was produced.

To hybridize to the capture probes, the dry myc-fusion pellet was  
taken up with 20 microliters of 5X SSC (saline sodium citrate) + 0.02% SDS,  
mixed, and then briefly centrifuged. The solution was applied to the slide  
described above, a coverslip was placed on top, and the slide was placed in a  
15 moisture-saturated chamber at room temperature. After 18 hours the coverslip  
was removed, and the slide was washed sequentially with stirred 500 mL  
portions of 5X SSC + 0.02% SDS, 2.5X SSC + 0.01% SSC, 2.5X SSC, and  
1.25X SSC for 5 minutes each. After removal of liquid the slide was allowed  
to briefly air-dry.

20 To detect hybridization of the Myc fusions, the glass chip was  
exposed to a phosphorimage screen (Molecular Dynamics) for four hours by  
direct contact between the screen and the chip. This allowed identification of  
the areas that contained hybridized myc-fusion, since the myc peptide  
contained a  $^{35}$ S methionine radiolabel which was detectable by the phosphor  
25 storage screen. As shown in Figure 7, analysis of the phosphorimage revealed  
that the myc-fusion had successfully hybridized to each of the four capture  
probes that targeted the myc RNA message and DNA linker sequence. In

-32-

addition, the non-sense capture probe, which was not complementary to any region of the myc RNA, did not give any appreciable signal. The capture probe sequence that contained several mismatches produced only a small amount of signal. These results demonstrated that it was possible to address a peptide (as  
5 a fusion) to a specific location on the surface of a chip.

After phosphorimage analysis, the same chip was probed with a monoclonal antibody that recognized the c-myc epitope. All of the following steps were performed at 4°C. Nonspecific sites were first blocked with a solution containing 1X PBS (phosphate buffered saline) + 1% BSA (bovine  
10 serum albumin, Sigma Chemical Co.) + 0.1 unit per microliter RNase inhibitor (Ambion) for 1 hour under a coverslip. The blocking solution was removed, and 50 microliters of 9E10 monoclonal antibody in 1X PBS (400:1 dilution, Berkeley Antibody Co.) was applied to the chip under a coverslip. After 1 hour the coverslip was removed, and the chip was washed with three 50mL portions  
15 of 1X PBS for 5 minutes each, with gentle agitation. Excess liquid was removed, and then 50 microliters of Cy3-labeled goat anti-mouse IgG in 1X PBS (400:1 dilution, Amersham Pharmacia Biotech) was added under a coverslip. After 1 hour the coverslip was removed, and the chip was washed in three 50mL portions of 1X PBS for 5 minutes each, with gentle agitation.  
20 Excess liquid was removed, and the chip was allowed to air-dry at room temperature. The chip was subsequently analyzed at 10 micron pixel resolution with a confocal laser scanner (ScanArray 3000, General Scanning) using preset excitation and emission wavelengths tuned to the Cy3 fluorophore. As shown in Figure 8, the resulting fluorimage was in accord with the phosphorimage and  
25 demonstrated that the myc peptide, which was covalently linked to its RNA message and fixed to the chip surface, was functional and was available to interact with its binding partner (the monoclonal antibody).

-33-

All publications and patents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

5

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

10

What is claimed is:

-34-

Claims

1. A solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound.
2. A solid support comprising an array of immobilized capture probes, wherein each of said capture probes is attached to the surface of said solid support through a non-nucleosidic spacer group, and wherein each of said capture probes comprises an oligonucleotide sequence to which a nucleic acid-10 protein fusion is bound.
3. A solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a ribosome display particle is bound.
4. The solid support of claim 1, 2, or 3, wherein said nucleic acid-15 protein fusion is an RNA-protein fusion.
5. The solid support of claim 1, 2, or 3, wherein said capture probe is bound to said nucleic acid-protein fusion by base pairing.
6. The solid support of claim 1, 2, or 3, wherein said protein is encoded by said nucleic acid.
- 20 7. The solid support of claim 1, 2, or 3, wherein said spacer group

-35-

comprises a polyalkylene oxide, polyethylene oxide, or hexaethylene oxide.

8. The solid support of claim 1, 2, or 3, wherein said capture probe comprises a photocleavable linker.

9. The solid support of claim 1, 2, or 3, wherein said oligonucleotide sequence comprises a modified base, an internucleotide analog, or a carbohydrate modification.

10. The solid support of claim 9, wherein said modified base is 5-propyne pyrimidine, said internucleotide analog is a 3'-phosphoramidate linkage, or said carbohydrate modification is a 2'-O-methyl group.

11. The solid support of claim 1, 2, or 3, wherein said nucleic acid-protein fusion comprises a hybridization tag sequence.

12. The solid support of claim 11, wherein said hybridization tag sequence comprises a modified base, an internucleotide analog, or a carbohydrate modification.

13. The solid support of claim 1, 2, or 3, wherein said capture probe further comprises a reactive moiety.

14. The solid support of claim 13, wherein said reactive moiety is a primary amino group.

15. The solid support of claim 1, 2, or 3, wherein said solid support

-36-

is a glass or silica-based chip.

16. The solid support of claim 1, 2, or 3, wherein said nucleic acid-protein fusion is covalently linked to said capture probe.

17. The solid support of claim 16, wherein said capture probe  
5 comprises one or more psoralen moieties.

18. A method for preparing a solid support, said method comprising  
the steps of:

- (a) preparing a capture probe by linking a spacer group to an oligonucleotide sequence;
- 10 (b) attaching said capture probe to said solid support; and
- (c) binding a nucleic acid-protein fusion to said capture probe.

19. A method for preparing a solid support, said method comprising  
the steps of:

- (a) attaching a spacer group to a surface of said solid support;
- 15 (b) attaching a bifunctional linker to said spacer group;
- (c) attaching a capture probe to said bifunctional linker; and
- (d) binding a nucleic acid-protein fusion to said capture probe.

20. The method of claim 18 or 19, wherein said nucleic acid-protein fusion is an RNA-protein fusion.

20 21. A method for detecting an interaction between a protein and a compound, said method comprising the steps of:

-37-

- (a) providing a solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion is bound;
- 5 (b) contacting said solid support with a candidate compound under conditions which allow an interaction between the protein portion of said nucleic acid-protein fusion and said compound; and
  - (c) analyzing said solid support for the presence of said compound as an indication of an interaction between said protein and said compound.
- 10 22. A method for detecting an interaction between a protein and a compound, said method comprising the steps of:
  - (a) providing a population of nucleic acid-protein fusions;
  - (b) contacting said population of nucleic acid-protein fusions with a candidate compound under conditions which allow an interaction between the protein portion of said nucleic acid-protein fusion and said compound;
  - 15 (c) contacting the product of step (b) with a solid support comprising an array of immobilized capture probes, each of said capture probes comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which a nucleic acid-protein fusion binds; and
  - (d) analyzing said solid support for the presence of said compound as an indication of an interaction between said protein and said compound.
- 20 23. The method of claim 21 or 22, wherein said nucleic acid-protein fusion is an RNA-protein fusion.
- 24. The method of claim 21 or 22, wherein said compound is

labeled.

25. The method of claim 21 or 22, wherein said compound is a protein, a therapeutic, an enzyme, or a nucleic acid.

26. An array of nucleic acid-protein fusions, said array comprising  
5 at least  $10^2$  different fusions/cm<sup>2</sup>.

27. The array of claim 26, wherein said array comprises at least  $10^4$  different fusions/cm<sup>2</sup>.

28. The array of claim 26, wherein said nucleic acid-protein fusions are RNA-protein fusions.

10 29. A method for generating an addressable array of molecules, said method comprising:

(a) providing a solid support on which an array of nucleic acid molecules is immobilized;

15 (b) contacting said solid support with a population of addressable molecules; and

(c) allowing said addressable molecules to orient themselves on said solid support by sequence-dependent recognition and binding of said immobilized nucleic acid molecules.

30. The method of claim 29, wherein said addressable array of  
20 molecules is an array of nucleic acid-protein fusions.

-39-

31. The method of claim 30, wherein said nucleic acid-protein fusions are RNA-protein fusions.

32. The method of claim 29, wherein said sequence-dependent recognition and binding comprises base pairing.

5           33. The method of claim 29, wherein said solid support is a glass or silica-based chip.

10          34. The method of claim 29, wherein said nucleic acid molecules immobilized on said solid support are capture probes, each comprising a non-nucleosidic spacer group and an oligonucleotide sequence to which said addressable molecule binds.

1/6



Fig. 1

SUBSTITUTE SHEET (RULE 26)

2/6



Fig. 2

3/6

|      |     |     |     |
|------|-----|-----|-----|
| t7   | tag | au1 | au5 |
| flag | ha1 | irs | kt3 |
| t7   | tag | au1 | au5 |
| flag | ha1 | irs | kt3 |

Fig. 3

4/6



Fig. 4



Fig. 5

5/6

|   | A | B | C | D | E | F |
|---|---|---|---|---|---|---|
| 1 | . | . | . | . | . | . |
| 2 | . | . | . | . | . | . |
| 3 | . | . | . | . | . | . |
| 4 | . | . | . | . | . | . |
| 5 | . | . | . | . | . | . |
| 6 | . | . | . | . | . | . |

Fig. 6

6/6



Fig. 7



Fig. 8

## SEQUENCE LISTING

<110> Phlyos, Inc.

<120> ADDRESSABLE PROTEIN ARRAYS

<130> 50036/009WO2

<150> 60/080,686  
<151> 1998-04-03

<160> 29

<170> FastSEQ for Windows Version 3.0

<210> 1  
<211> 99  
<212> RNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide employed to construct FLAG epitope fusion

<400> 1  
uaauacgacu cacuauaggg acaauuacua uuuacaauua caauggacua caaggacgau 60  
gacgauaagg gcgccugguc ccaccccccag uucgagaag 99

<210> 2  
<211> 102  
<212> RNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide employed to construct HA11 epitope fusion

<400> 2  
uaauacgacu cacuauaggg acaauuacua uuuacaauua caauguaccc cuacgacgug 60  
cccgacuacg cccgcggcug gucccacccc caguucgaga ag 102

<210> 3  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for attaching puromycin

<400> 3  
aaaaaaaaaaaa aaaaaaaaaa aaaaaaacc 29

<210> 4

<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 4  
tgtaaatagt aattgtccc 19

<210> 5  
<211> 14  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 5  
cttctcgaac tggg 14

<210> 6  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 6  
cctgttaggtg tccat 15

<210> 7  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 7  
caggtagaag tcgggt 15

<210> 8  
<211> 16  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 8  
catcgccctt gtagtc 16

<210> 9

<211> 13  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 9  
cgtcgttaggg gta 13

<210> 10  
<211> 14  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 10  
ccgctcctga tgta 14

<210> 11  
<211> 13  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for chip attachment

<400> 11  
tcgggaggca ttg 13

<210> 12  
<211> 99  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> FLAG amplification sequence

<400> 12  
taatacgact cactataggg acaattacta tttacaatta caatggacta caaggacgat 60  
gacgataagg gcggctggtc ccaccccccag ttcgagaag 99

<210> 13  
<211> 102  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> HA11 amplification sequence

<400> 13  
taatacgact cactataggg acaattacta tttacaatta caatgtaccc ctacgacgtg 60  
cccgactacg ccggcggctg gtccccccccc cagttcgaga ag 102

<210> 14  
<211> 39  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 14  
taatac~~gact~~ cactataggg acaattacta tttacaatt 39

<210> 15  
<211> 30  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 15  
agcggatgcc ttctcgaa~~c~~ ggggg~~t~~ggga 30

<210> 16  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint containing biotin moiety at 5' terminus

<400> 16  
tgcaac~~cgacc~~ aactttttt tttagcgc~~at~~ gc 32

<210> 17  
<211> 32  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint containing biotin moiety at 5' terminus

<400> 17  
tgcaac~~cgacc~~ aactttttt ttnagcgc~~at~~ gc 32

<210> 18  
<211> 31  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oigonucleotide used for elution displacement

<400> 18

gcatccgcta aaaaaaaaaag ttggtcgttg c 3.1

<210> 19  
<211> 169  
<212> RNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used to make c-myc fusion

<400> 19  
uaauacgacu cacuauaggg acaauuacua uuuacaauua caauggggac aauuacuauu 60  
uacaaauuaca auggcugaag aacagaaacu gaucucugaa gaagaccugc ugcuuaaacg 120  
ucgugaacag cugaaacaca aacuggaaca gcugcguac ucuugcgcu 169

<210> 20  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 20  
ttgtaaatag taattgtccc 20

<210> 21  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 21  
agagatcagt ttctgttctt 20

<210> 22  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 22  
agtttgtgtt tcagctgttc 20

<210> 23  
<211> 25  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 23  
ttttttttttt tttttttttt tttttt 25

<210> 24  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 24  
agagatctca atctgttctt 20

<210> 25  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Capture probe sequence

<400> 25  
ttcttggtctt tgacttagaga 20

<210> 26  
<211> 99  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> c-myc epitope amplification sequence

<400> 26  
agcgcaagag ttacgcagct gttccagttt gtgtttcagc tgttcacgac gtttacgcag 60  
cagggtttct tcagagatca gtttctgttc ttcagccat 99

<210> 27  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 27  
agcgcaagag ttacgcagct g 21

<210> 28  
<211> 62  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used for PCR

<400> 28  
taatacgact cactataggg acaattacta tttacaatta caatggctga agaacagaaa 60  
ct

<210> 29  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Oligonucleotide used as a splint

<400> 29  
ttttttttt agcgcaaga 19

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/US99/07203

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(6) : C12Q 1/68; C12P 19/34; C07H 21/02, 21/04

US CL : 435/6, 91.1,91.2; 536/23.1, 24.3, 24.31,24.32

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 91.1,91.2; 536/23.1, 24.3, 24.31,24.32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                      | Relevant to claim No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 5,545,531 A (RAVA et al) 13 August 1996 (13.08.96), see entire document esp. abstract & column 4, lines 4-12.                                                                                                                        | 26,32,33              |
| X         | WO 92/10588 A1 (AFFYMAX TECHNOLOGIES N.V..) 25 June 1992 (25.06.92), see entire document.                                                                                                                                               | 29,32                 |
| X         | MASKOS, U. et al. Parallel analysis of oligodeoxyribonucleotide interactions. I. Analysis of factors influencing oligonucleotides duplex formation. Nucleic Acids Research. 1992, Vol. 20, No. 7, pages 1675-1678, see entire document. | 29,32                 |
| Y         | US 5,556,752 A (LOCKHART et al) 17 September 1996 (17.09.96), see entire document.                                                                                                                                                      | 1-34                  |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special category of cited documents:                                                                                                                                  | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| *A* document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| *B* earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "A" | document member of the same patent family                                                                                                                                                                                                    |
| *O* document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| *P* document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

27 JUNE 1999

Date of mailing of the international search report

14 JUL 1999

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

BRADLEY SISSON 

Telephone No. (703) 308-0196

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/US99/07203 |
|-------------------------------------------------|

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                        | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | GUO, Z. et al. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research. 1994, Vol. 22, No. 24, pages 5456-5465, see entire document. | 1-34                  |
| Y         | WO 93/03172 A1 (UNIVERSITY RESEARCH CORPORATION) 18 February 1993 (18.02.93), see entire document.                                                                                                                        | 1-34                  |
| A,P       | WO 98/31700 A1 (THE GENERAL HOSPITAL CORPORATION) 23 July 1998 (23.07.98), see entire document, especially the abstract.                                                                                                  | 1-34                  |

**INTERNATIONAL SEARCH REPORT**

International application No.  
PCT/US99/07203

**B. FIELDS SEARCHED**

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN, BIOSIS, MEDLINE, CANCERLIT, BIOTECHDS, LIFESCI, CAPLUS, EMBASE  
search terms: solid support, chip,microchip,array,probe, oligonucleotide, capture, nucleic acid protein fusion,rna  
protein fusion, ribosome display particle, spacer, non-nucleosidic spacer, tag