

Edsger Wybe Dijkstra (1930 – 2002)

Greedy Algorithms:

A Recap of Dijkstra's Algorithm and MST

Shah Jamal Alam

Single-source shortest path in a graph with non-negative weights

A single-pair shortest path problem on a weighted directed graph

Dijkstra's algorithm: the premise

- Named after Edsger Wybe Dijkstra (1930 2002)
- Used for finding **shortest path** from a single-source vertex to all other vertices in a graph with weighted edges.
- All edge weights must be nonnegative.
- The underlying graph may contain cycles.

Finding Single-source Shortest Path: A discrete event simulation

Order Added to Known Set:

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A

vertex	known?	cost	path
Α	Yes	0	
В		≤ 2	А
С		≤ 1	А
D		≤ 4	А
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C

vertex	known?	cost	path
Α	Yes	0	
В		≤ 2	А
С	Yes	1	А
D		≤ 4	Α
E		≤ 12	С
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C, B

vertex	known?	cost	path
Α	Yes	0	
В	Yes	2	А
С	Yes	1	А
D		≤ 4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

Vertex	known?	cost	path
Α	Yes	0	
В	Yes	2	А
С	Yes	1	А
D	Yes	4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D, F

vertex	known?	cost	path
Α	Yes	0	
В	Yes	2	А
С	Yes	1	А
D	Yes	4	А
E		≤ 12	С
F	Yes	4	В
G		??	
Н		≤ 7	F

Order Added to Known Set:

A, C, B, D, F, H

vertex	known?	cost	path
Α	Yes	0	
В	Yes	2	Α
С	Yes	1	А
D	Yes	4	Α
E		≤ 12	С
F	Yes	4	В
G		≤ 8	Η
Н	Yes	7	F

Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
Α	Yes	0	
В	Yes	2	А
С	Yes	1	А
D	Yes	4	Α
E		≤ 11	G
F	Yes	4	В
G	Yes	8	Н
Н	Yes	7	F

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Yes	0	
В	Yes	2	А
С	Yes	1	А
D	Yes	4	А
E	Yes	11	G
F	Yes	4	В
G	Yes	8	Н
Н	Yes	7	F

Dijkstra's algorithm: the skeleton

Initially, source node has cost **0** and all other nodes have cost ∞.

At each step:

- Pick **closest** unknown vertex **v**.
- Add it to the 'set' of known vertices.
- Update distances for nodes with edges from **v**.

Dijkstra's algorithm: key features

- Reminiscent of BFS, but adapted to handle weights.
- Grow the set of nodes whose shortest distance has been computed.
- Nodes not in the set will have a "best distance so far".
- When a vertex is marked **known**, the cost of the shortest path to that node is known [the path is known as well].
- While a vertex is still **not known**, another shorter path to it might still be found.
- To keep track of which vertex should be added next in the **known** set, we use a **priority queue**. Each of the |V| vertices will need to be added into the priority queue.

Dijkstra's algorithm: the pseudocode

1. For each node \mathbf{v} , set $\mathbf{v}.cost = \infty$ and $\mathbf{v}.known = false$. 2. Set source.cost = 0. 3. While there are unknown nodes in the graph a) Select the unknown node \boldsymbol{v} with the lowest cost. **b)** Mark **v** as known. c) For each edge (v, u) with weight w, $c1 \leftarrow v.cost + w$ # cost of best path through v to u. $c2 \leftarrow u.cost$ # cost of best path to u previously known. **if** c1 < c2 # if the path through \mathbf{v} is lesser cost. $\mathbf{u}.cost \leftarrow c1$

u.path $\leftarrow v$ # for computing actual paths.

Dijkstra's algorithm: the pseudocode

Dijkstra(G, w, s):

- 1. InitializeSingleSource(G, s)
- 2. $S = \emptyset$ #A set of vertices whose final shortest path from s is determined.
- 3. Q = G.V #Inserting all vertices.
- 4. while $Q \neq \emptyset$
- 5. $u \leftarrow ExtractMin(Q)$ #Remove from the priority queue.
- 6. $S = S \cup \{u\}$
- 7. for each vertex $v \in G.Adj[u]$ #for each edge O(E)
- 8. Relax(u,v,w) #Decrease-key operation.

The Priority Queue ADT

The key operations of the priority queue ADT are:

- Insert (Q, v): insert an element v (vertex) into the set Q.
- Extract_Min (Q): remove the element (vertex) in Q with the minimum (shortest) value and return this element (vertex) to the caller.
- **Decrease_Key** (Q, v): record that the 'shortest' value associated with an element (vertex) v is decreased (updated).

The Priority Queue ADT can be implemented using, e.g., a **simple array**, a **binary heap**, or a **Fibonacci heap** data structures.

Binary Heap (a recap?)

- A full binary tree (i.e., completely filled except possibly the last level) where a new node is added from left to first available slot.
- The heap property must be satisfied.
- The **min-heap** (we can define max-heap) property is given as follows:

For every node i except the root, parent(i). $_{value} \le i$. $_{value}$ i.e., the value of every node must not be greater than its children.

→ The smallest element in min-heap is at the root.

Binary Heap (a recap?)

All three Priority Queue operations can be performed in $O(\lg n)$ time using binary heaps.

Dijkstra's algorithm: Analysis

Dijkstra's algorithm relies on a **priority queue**, the implementation of the data structure influences the overall performance of the algorithm.

So, let's analyze the Binary Heap ADT operations [see the handwritten notes].

Spanning Trees

Given an **undirected** graph, a **spanning tree** T is a subgraph of G, where T:

- Is connected.
- Is acyclic.

These two properties make it a tree.

Includes all of the vertices.

This makes it spanning.

Example:

Spanning tree is the black edges and vertices.

A *minimum spanning tree* is a spanning tree of minimum total weight.

• Example: Directly connecting buildings by power lines.

Prim's & Dijkstra's

Prim's and Dijkstra's algorithms are same, except Dijkstra's considers "distance from the source", and Prim's considers "distance from the tree."

Visit order:

- Dijkstra's algorithm visits vertices in order of distance from the source.
- Prim's algorithm visits vertices in order of distance from the MST under construction.

Relaxation:

- Relaxation in Dijkstra's considers an edge better based on distance to source.
- Relaxation in Prim's considers an edge better based on distance to tree.

Prim's Algorithm: pseudocode

```
MST-PRIM(G, w, r)
    for each u \in G.V
         u.key = \infty
                                             11
                                   (i)
         u.\pi = NIL
    r.key = 0
    Q = G.V
     while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
         for each v \in G.Adj[u]
              if v \in Q and w(u, v) < v.key
10
                   \nu . \pi = u
                   v.key = w(u, v)
```


Kruskal's Algorithm: pseudocode

```
MST-Kruskal(G, w)
   A = \emptyset
   for each vertex \nu \in G.V
        MAKE-SET(\nu)
   sort the edges of G.E into nondecreasing order by weight w
   for each edge (u, v) \in G.E, taken in nondecreasing order by weight
6
        if FIND-SET(u) \neq FIND-SET(v)
            A = A \cup \{(u, v)\}
            Union(u, v)
   return A
```


