Wydział FiIS	Mikołaj Gralczyk Karolina Nowosad		Rok III	Grupa VII	Zespół III
Pracownia Izotopowa WFiIS	Tema	Nr ćwiczenia 12			
Data wykonania 25.03.2015	Data oddania 8.04.2015	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

0. Cel ćwiczenia

Celem ćwiczenia było:

- wydzielenie ²³⁴Th, z azotanu uranylu metodą beznośnikowej ekstrakcji rozpuszczalnikiem,
- oznaczenie współczynnika ekstrakcji Th(NO₃)₄.

1. Wstęp teoretyczny

²³⁴**Th** jest jednym z produktów rozpadu promieniotwórczego uranu. Próbka oczyszczonych chemicznie związków naturalnego uranu po upływie pewnego czasu zawiera kilka izotopów promieniotwórczych z rodziny uranowców, znajdujących się we wzajemnej równowadze.

Metody wyodrębniania mikroilości pierwiastków promieniotwórczych:

- **nośnikowe**(otrzymuje się preparaty o niższej aktywności właściwej),
- **beznośnikowe**(można otrzymać preparaty o wysokiej aktywności właściwej).

Najczęściej stosowanymi metodami beznośnikowymi wydzielania izotopów są:

- metody chromatograficzne(chromatografia jonowymienna, chromatografia gazowa)
- · metody ekstrakcji rozpuszczalnikiem.

Ekstrakcja rozpuszczalnikiem obejmuje ekstrakcję w układzie ciecz – ciecz, oraz ciecz – ciało stałe(ługowanie). Podczas ekstrakcji stykanie się roztworu zawierającego jedną lub więcej dających się ekstrahować substancji z nie mieszającym się rozpuszczalnikiem doprowadza do podziału ekstrahowanej substancji pomiędzy obie te fazy (wodną i organiczną).

Prawo podziału Nersta(współczynnik podziału)

$$k = \frac{C_1}{C_2}$$
 (1) gdzie: C_1 – stężenie (aktywność) substancji w rozpuszczalniku (I), C_2 – stężenie (aktywność) substancji w rozpuszczalniku (II).

Współczynnik ekstrakcji D

$$D = \frac{\sum C_1}{\sum C_2} \quad (2)$$

Jeżeli substancja nie ulega w czasie procesu ekstrakcji żadnym zmianom w obu fazach, wodnej i organicznej, to współczynnik ekstrakcji jest równy współczynnikowi podziału.

Procent ekstrakcji

$$E=\frac{m_1}{m_0}$$
 (3) gdzie: m_1 – ilość związku, która przeszła z fazy wodnej do fazy organicznej, m_0 – początkowa ilość związku w fazie wodnej.

Zależność między procentem ekstrakcji, a współczynnikiem podziału

$$E = \frac{D \cdot 100}{D + V_1 / V_2}$$
 (4) gdzie: V_1 – objętość fazy wodnej, V_2 – objętość fazy organicznej.

2. Układ pomiarowy

W skład układu pomiarowego wchodzą:

- urządzenie do pomiaru aktywności z licznikiem scyntylacyjnym,
- rozdzielacz,
- szklane i automatyczne pipety o różnych objętościach,
- cylinder, zlewki.

Odczynniki wykorzystane podczas ćwiczenia:

- 10% roztwór azotanu uranylu,
- nasycony roztwór (NH₄)₂CO₃,
- 3M HNO₃,
- 6% roztwór cupferronu,
- · chloroform,
- woda bromowa.

3. Metody pomiaru

W pierwszej kolejności odmierzono cylindrem 10 cm³ roztworu azotanu uranylu i przelano do zlewki. Następnie kroplami dodano nasycony roztwór węglanu amonowego, nastąpiło wytrącenie osadu, który z dalszym dozowaniem mieszaniny uległ rozpuszczeniu. Roztwór przelano do rozdzielacza, dodano 2 cm³ 6 % roztworu cupferronu i 10 cm³ chloroformu. Otrzymaną mieszaninę wytrzęsiono przez 8 minut i zostawiono do rozdzielenia. Następnie oddzielono fazę chloroformową (dolna warstwa) zawierającą ²³⁴Th od wodnej, pobrano 4 cm³ każdej z faz i zmierzono ich aktywność.

W drugiej części ćwiczenia do fazy chloroformowej dodano 10 cm³ 3M HNO₃ i 4 cm³ wody bromowej. Otrzymaną mieszaninę przelano do rozdzielacza, wytrzęsiono przez 8 minut i zostawiono do rozdzielenia. Następnie oddzielono fazę chloroformową (dolna warstwa) od wodnej, pobrano 4 cm³ każdej z faz i zmierzono ich aktywność.

4. Wyniki pomiarów

tabela 1 Zestawienie wyników pomiarów dla fazy wodnej(W) i organicznej(O) dla pierwszej i drugiej części ćwiczenia.

	area	u(area) [%]	integral
O_1	10540	1,39	16980
\mathbf{W}_{1}	310	10,70	770
O_2	109	19,10	299
W_2	7167	1,65	11160

- 5. Opracowanie wyników
- 5.1. Procent ekstrakcji toru
- 5.2. Współczynnik ekstrakcji D azotanu toru w układzie chloroform/woda
- 5.3. Masy toru i protaktynu w badanej próbce