- 阅读论文MOHONE: Modeling Higher Order Network Effects in Knowledge Graphs via Network Infused Embeddings
 - Task Definition
 - 动机
 - 作者认为现有的graph embedding的方法只考虑了局部信息,因为只考虑和实体相关的三元组的信息。但是没有考虑到高阶信息,所以作者考虑将整个知识图谱看作一个网络,利用network embedding的信息去得到高阶信息。
 - 主要模型:

$$\Theta(\mathbf{Q}) = \sum_{i=1}^{|E|} \left[\alpha_i \|\mathbf{q_i} - \hat{\mathbf{q_i}}\|^2 + \sum_{(i,j) \in \Omega_i} \beta_{ij} \|\mathbf{q_i} - \mathbf{q_j}\|^2 \right]$$

- 上述公式表明了主要模型,其中 q_i 为待求的实体表示, $\widehat{q_i}$ 为knwoledgegraph embedding求得的实体表示, q_i 为network embedding求得的和实体j最接近的几个顶点。
- 初始化时,qi使用qi'初始化,由上述公式可以看出,整个的思路是利用network embedding 得到的信息去修正knowledgegraph embedding的实体向量,边的向量再通过修正的实体向量knowledgegraph embedding的方法得到。
- network embedding
 - 由上述步骤也可以看出来,network embedding的部分是高度模块化的,所以除了作者提出的network embedding的方法,也可以由其他的network embedding的方法来代替
 - 作者提出了两种network embedding的方法,第一种是类似于LINE的思想的含有相同邻居的结点应该类似。第二种是具有相同结构的结点应该类似,相同结构的定义下面会详细说明

如上图所示,7,8,9应该相似,0,1,2应该相似,因为含有共同的邻居。0,1,2,7,8,9应该相似,因为含有相同的结构。

■ 作者将两类network embedding的方法整理成一个统一的框架:

$$\log \Pr(\mathcal{N}(u)|u) = \sum_{v \in \mathcal{N}(u)} \log \Pr(v|u)$$

- 上述公式同work2vec的skip-gram雷同,思想也一样,对于不同类型的network embedding 只需要定义N(u)和N(u)的权重即可
- 作者通过计算整个网络结构的拉普拉斯矩阵和扩散矩阵,下文通过对于扩散矩阵的提取来计算 两类network embedding扩散矩阵定义为

$$\Psi = \mathbf{U} \mathrm{Diag}(g_s(\lambda_1), \dots, g_s(\lambda_N)) \mathbf{U^T}$$

- 第一类network embedding通过定义为N(u)为所有节点,结点和当前结点的边的权重为 $\Psi_u(v)$
- 第二类network embedding通过定义为N(u)为所有节点,结点和当前结点的边的权重为 D(u,v)其中D(u,v)为 Ψ_u 和 Ψ_v 的Jensen-Shannon divergence

■ 实验结果

■ 实验结果如下图所示:

MRR	BASELINE	BASELINE+MOHONE		INCREASE (ABSOLUTE)		INCREASE (RELATIVE)	
		SHMB	STRUCT	SHMB	STRUCT	SHMB	STRUCT
TRANSE	29.6	31.5*	30.3^{*}	+1.9	+0.7	+6.4%	+2.3%
TRANSH	24.2	28.5*	24.4	+4.3	+0.2	+17.8%	+0.8%
TRANSR	28.0	28.7*	27.4	+0.7	-0.6	+2.5%	-2.1%
TRANSD	25.1	29.0*	25.5	+3.9	+0.4	+15.5%	+1.6%
RESCAL	26.8	29.2*	27.9^{\star}	+2.4	+1.1	+9.0%	+4.1%
DISTMULT	26.1	28.5*	26.4	+2.4	+0.3	+9.2%	+1.1%
COMPLEX	26.1	30.0*	28.4^{\star}	+3.9	+2.3	+14.9%	+8.8%
ANALOGY	26.6	29.2*	27.8^{\star}	+2.6	+1.2	+9.8%	+4.5%

(a) Mean Reciprocal Rank on FB15K-237

		3 7	1				
HITS@10	BASELINE	BASELINE+MOHONE		INCREASE (ABSOLUTE)		INCREASE (RELATIVE)	
		SHMB	STRUCT	SHMB	STRUCT	SHMB	STRUCT
TRANSE	47.3	49.4*	48.0^{\star}	+2.1	+0.7	+4.4%	+1.5%
TRANSH	41.7	46.4^{\star}	41.3	+4.7	-0.4	+11.2%	-1.0%
TRANSR	45.2	45.5*	44.2	+0.3	-1.0	+0.7%	-2.2%
TRANSD	43.0	46.8*	42.3	+3.8	-0.7	+8.8%	-1.6%
RESCAL	43.7	46.5^{\star}	45.2^{\star}	+2.8	+1.5	+6.4%	+3.4%
DISTMULT	44.9	45.0	44.5	+0.1	-0.4	+0.2%	-0.9%
COMPLEX	45.4	46.7*	44.9	+1.3	-0.5	+2.8%	-1.1%
ANALOGY	45.5	45.9*	44.7	+0.4	-0.8	+0.9%	-1.8%

(b) Hits@10 Performance on FB15K-237

MOHONE为作者提出的整体框架,SHMB为第一类network embedding的方法,STRUCT为第二类network embedding的方法。通过实验结果可得作者的方法相比于简单的knowledge embedding的方法有了一定的提高。其中SHMB的方法提升更加明显

■ 总结

- 这种方法的核心是将图的network embedding信息融入到graph embedding中,吸收了 network embedding的信息来改善graph embedding的效果。
- 此方案将network embedding和knowledgegraph embedding结合的方法值得借鉴。在实验 阶段可以考虑对此种方案进行实验,最后得到结果。