Package 'radiant'

October 6, 2015

```
Title Business Analytics using R and Shiny
Version 0.3.35
Date 2015-10-4
Description A platform-independent browser-
      based interface for business analytics in R, based on the Shiny package.
Depends R (>= 3.2.0),
      magrittr (>= 1.5),
      ggplot2 (>= 1.0.0),
      lubridate (>= 1.3.3),
      tidyr (>= 0.3.1),
      dplyr (>= 0.4.3)
Imports DiagrammeR(>= 0.7),
      car (>= 2.0.22),
      MASS (>= 7.3),
      gridExtra (>= 2.0.0),
      AlgDesign (>= 1.1.7.3),
      psych (>= 1.4.8.11),
      GPArotation (>= 2014.11.1),
      wordcloud (>= 2.5),
      markdown (>= 0.7.4),
      knitr (>= 1.8),
      ggdendro (>= 0.1.17),
      broom (>= 0.3.7),
      pryr (>= 0.1),
      shiny (>= 0.12.2),
      shinyAce (>= 0.2.1),
      DT (>= 0.1.39),
      MathJaxR (>= 0.11),
      readr (>= 0.1.1),
      data.tree(>= 0.2.1),
      yaml(>= 2.1.13),
      scales(>= 0.2.5),
      curl(>= 0.9.1),
      stringr (>= 1.0)
Suggests rmarkdown (>= 0.4.2),
      devtools (>= 1.8.0),
      testthat (>= 0.10.0),
      covr (>= 1.2.0)
```

2 R topics documented:

URL https://github.com/vnijs/radiant, http://vnijs.github.io/radiant/

BugReports https://github.com/vnijs/radiant/issues

License AGPL-3 | file LICENSE

LazyData true

R topics documented:

as_character					 				 								5
as_distance					 				 								6
as_dmy					 				 								6
as_dmy_hm					 				 								7
as_dmy_hms					 				 								 7
as_duration					 				 								8
as_factor																	 8
as_hm																	 9
as_hms					 				 								 9
as_integer					 				 								 10
as_mdy					 				 								 10
as_mdy_hm																	11
as_mdy_hms					 				 								 12
as_numeric					 				 								 12
as_ymd					 				 								 13
as_ymd_hm																	13
as_ymd_hms					 				 								 14
avengers					 				 								 14
center					 				 								 15
changedata					 				 								 15
city																	16
clean_loadings .					 				 								 16
combinedata																	17
compare_means .																	18
compare_props .					 				 								 19
computer					 				 								 20
conjoint					 				 								 20
conjoint_profiles					 				 								 21
copy_all					 				 								 22
copy_from					 				 								 22
correlation																	 23
cross_tabs					 				 								 24
cv					 				 								 25
decile_split					 				 								 25
diamonds					 				 								 26
does_vary																	26
dtree																	27
dtree_parser																	 27
explore																	 28
factorizer					 				 								 29
ff_design																	 29
filterdata																	 30
a:																	30

full_factor
getclass
getdata
getsummary
glm_reg
hier_clus
inverse
is_empty
is_string
iterms
kmeans_clus
kurtosi
launcher
lin_launcher
loadcsv
loadcsv_url
loadrda_url
mac_launcher
make_dt
make_expl
make_funs
make_train
max_rm
mds
mean_rm
median_rm
median_split
min_rm
mode_rm
mp3
mutate_each
newspaper
normalize
n_missing
p05
p25
p75
p95
pivotr
plot.compare_means
plot.compare_props
plot.conjoint
plot.correlation
plot.cross_tabs
plot.dtree
plot.full_factor
plot.glm_predict
plot.glm_reg
plot.hier_clus
plot.kmeans_clus
plot.mds
plot.pivotr
* *

. 1 1	64
plot.pre_factor	65
olot.prob_binom	66
	66
olot.prob_unif	67
plot.regression	67
	68
	69
olot.simulater	70
olot.single_mean	71
	71
	72
. 1	73
	74
	7 5
	75
ϵ	76
-	
prob_norm	77
orob_unif	77
	78
	78
	79
	79
1	80
	80
	81
sampling	82
save_factors	82
save_membership	83
sdp_rm	84
sd_rm	84
	85
set_class	85
-	86
	86
_ :	87
<u>e</u>	87
	88
e –	89
6 -1 1	90
	90
	91
	91
	92
-	92
····-	93
6	94
=	95
	95
summary.compare_means	96
summary.compare_props	97
summary.conjoint	97

as_character 5

Index		
		122
	win_launcher	120
	visualize	
	viewdata	
	var_rm	
	var_check	
	varp_rm	
	toothpaste	
	titanic_pred	
	titanic	
	the_table	
	test_specs	
	superheroes	
	sum_rm	
	summary.single_prop	
	summary.single_mean	
	summary.simulater	
	summary.sampling	
	summary.sample_size	
	summary.repeater	
	summary.regression	
	summary.prob_unif	
	summary.prob_norm	
	summary.prob_binom	
	summary.pre_factor	
	summary.pmap	
	summary.pivotr	
	summary.mds	
	summary.kmeans_clus	
	summary.hier_clus	
	summary.full_factor	
	summary.explore	
	summary.dtree	
	summary.cross_tabs	
	summary.correlation	
	summary.conjoint_profiles	

Description

Wrapper for as.character

Usage

as_character(x)

6 as_dmy

Arguments

x Input vector

as_distance

Distance in kilometers or miles between two locations based on lat-long Function based on http://www.movable-type.co.uk/scripts/latlong.html. Uses the haversine formula

Description

Distance in kilometers or miles between two locations based on lat-long Function based on http://www.movable-type.co.uk/scripts/latlong.html. Uses the haversine formula

Usage

```
as_distance(lat1, long1, lat2, long2, unit = "km", R = c(km = 6371, miles = 3959)[[unit]])
```

Arguments

lat1	Latitude of location 1
long1	Longitude of location 1
lat2	Latitude of location 2
long2	Longitude of location 2
unit	Measure kilometers ("km", default) or miles ("miles")

R Radius of the earth

Value

Distance bewteen two points

Examples

```
as_distance(32.8245525,-117.0951632, 40.7033127,-73.979681, unit = "km") as_distance(32.8245525,-117.0951632, 40.7033127,-73.979681, unit = "miles")
```

as_dmy

Convert input in day-month-year format to date

Description

Convert input in day-month-year format to date

Usage

```
as_dmy(x)
```

as_dmy_hm 7

Arguments

x Input variable

Value

Date variable of class Date

Examples

```
as_dmy("1-2-2014")
```

as_dmy_hm

Convert input in day-month-year-hour-minute format to date-time

Description

Convert input in day-month-year-hour-minute format to date-time

Usage

```
as_dmy_hm(x)
```

Arguments

Х

Input variable

Value

Date-time variable of class Date

Examples

```
as_mdy_hm("1-1-2014 12:15")
```

as_dmy_hms

Convert input in day-month-year-hour-minute-second format to datetime

Description

Convert input in day-month-year-hour-minute-second format to date-time

Usage

```
as_dmy_hms(x)
```

Arguments

Х

Input variable

8 as_factor

Value

Date-time variable of class Date

Examples

```
as_mdy_hms("1-1-2014 12:15:01")
```

as_duration Wrapper for lubridate's as.duration function. Result converted to numeric

Description

Wrapper for lubridate's as.duration function. Result converted to numeric

Usage

```
as_duration(x)
```

Arguments

x Time difference

as_factor Wrapper for as.factor

Description

Wrapper for as.factor

Usage

```
as_factor(x)
```

Arguments

x Input vector

as_hm

as_hm

Convert input in hour-minute format to time

Description

Convert input in hour-minute format to time

Usage

```
as_hm(x)
```

Arguments

Х

Input variable

Value

Time variable of class Period

Examples

```
as_hm("12:45")
## Not run:
as_hm("12:45") %>% minute
## End(Not run)
```

as_hms

Convert input in hour-minute-second format to time

Description

Convert input in hour-minute-second format to time

Usage

```
as_hms(x)
```

Arguments

Χ

Input variable

Value

Time variable of class Period

10 as_mdy

Examples

```
as_hms("12:45:00")
## Not run:
as_hms("12:45:00") %>% hour
as_hms("12:45:00") %>% second
## End(Not run)
```

as_integer

Convert variable to integer avoiding potential issues with factors

Description

Convert variable to integer avoiding potential issues with factors

Usage

```
as_integer(x)
```

Arguments

Х

Input variable

Value

Integer

Examples

```
as_integer(rnorm(10))
as_integer(letters)
as_integer(5:10 %>% as.factor)
as.integer(5:10 %>% as.factor)
```

as_mdy

Convert input in month-day-year format to date

Description

Convert input in month-day-year format to date

Usage

```
as_mdy(x)
```

Arguments

Х

Input variable

as_mdy_hm 11

Details

Use as.character if x is a factor

Value

Date variable of class Date

Examples

```
as_mdy("2-1-2014")
## Not run:
as_mdy("2-1-2014") %>% month(label = TRUE)
as_mdy("2-1-2014") %>% week
as_mdy("2-1-2014") %>% wday(label = TRUE)
## End(Not run)
```

as_mdy_hm

Convert input in month-day-year-hour-minute format to date-time

Description

Convert input in month-day-year-hour-minute format to date-time

Usage

```
as_mdy_hm(x)
```

Arguments

Х

Input variable

Value

Date-time variable of class Date

```
as_mdy_hm("1-1-2014 12:15")
```

12 as_numeric

as_mdy_hms

Convert input in month-day-year-hour-minute-second format to datetime

Description

Convert input in month-day-year-hour-minute-second format to date-time

Usage

```
as_mdy_hms(x)
```

Arguments

Х

Input variable

Value

Date-time variable of class Date

Examples

```
as_mdy_hms("1-1-2014 12:15:01")
```

as_numeric

Convert variable to numeric avoiding potential issues with factors

Description

Convert variable to numeric avoiding potential issues with factors

Usage

```
as_numeric(x)
```

Arguments

Χ

Input variable

Value

Numeric

```
as_numeric(rnorm(10))
as_numeric(letters)
as_numeric(5:10 %>% as.factor)
as.numeric(5:10 %>% as.factor)
```

as_ymd 13

as_ymd

Convert input in year-month-day format to date

Description

Convert input in year-month-day format to date

Usage

```
as_ymd(x)
```

Arguments

Х

Input variable

Value

Date variable of class Date

Examples

```
as_ymd("2013-1-1")
```

as_ymd_hm

Convert input in year-month-day-hour-minute format to date-time

Description

Convert input in year-month-day-hour-minute format to date-time

Usage

```
as_ymd_hm(x)
```

Arguments

Χ

Input variable

Value

Date-time variable of class Date

```
as_ymd_hm("2014-1-1 12:15")
```

14 avengers

as_ymd_hms	Convert input in year-month-day-hour-minute-second format to date-
	time

Description

Convert input in year-month-day-hour-minute-second format to date-time

Usage

```
as_ymd_hms(x)
```

Arguments

Х

Input variable

Value

Date-time variable of class Date

Examples

```
as_ymd_hms("2014-1-1 12:15:01")
## Not run:
as_ymd_hms("2014-1-1 12:15:01") %>% as.Date
as_ymd_hms("2014-1-1 12:15:01") %>% month
as_ymd_hms("2014-1-1 12:15:01") %>% hour

## End(Not run)
```

avengers

Avengers

Description

Avengers

Usage

```
data(avengers)
```

Format

A data frame with 7 rows and 4 variables

Details

List of avengers. The dataset is used to illustrate data merging / joining. Description provided in attr(avengers, "description")

center 15

center Center

Description

Center

Usage

center(x)

Arguments

Х

Input variable

Value

If x is a numberic variable return x - mean(x)

changedata

Change data

Description

Change data

Usage

```
changedata(dataset, vars = c(), var_names = names(vars))
```

Arguments

dataset Name of the dataframe to change vars New variables to add to the data.frame

var_names Names for the new variables to add to the data.frame

Value

None

```
r_data <<- list()
r_data$dat <<- data.frame(a = 1:20)
changedata("dat",20:1, "b")
head(r_data$dat)
rm(r_data, envir = .GlobalEnv)</pre>
```

16 clean_loadings

city

City distances

Description

City distances

Usage

```
data(city)
```

Format

A data frame with 45 rows and 3 variables

Details

Distance in miles between nine cities in the USA. The dataset is used to illustrate multi-dimensional scaling (MDS). Description provided in attr(city, "description")

clean_loadings

Sort and clean loadings

Description

Sort and clean loadings

Usage

```
clean_loadings(floadings, cutoff = 0, fsort = FALSE, dec = 8)
```

Arguments

floadings Data frame with loadings

cutoff Show only loadings with (absolute) values above cutoff (default = 0)

fsort Sort factor loadings

dec Number of decimals to show

Details

```
See \label{lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html
```

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
clean_loadings(result$floadings, TRUE, .5, 2)</pre>
```

combinedata 17

COM	_ :		
COIII	n ı	nea	ата

Combine datasets using dplyr's bind and join functions

Description

Combine datasets using dplyr's bind and join functions

Usage

```
combinedata(dataset, cmb_dataset, by = "", type = "inner_join", name = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

cmb_dataset Dataset name (string) to combine with 'dataset'. This can be a dataframe in the

global environment or an element in an r_data list from Radiant

by Variables used to combine 'dataset' and 'cmb dataset'

type The main bind and join types from the dplyr package are provided. **inner_join**

returns all rows from x with matching values in y, and all columns from x and y. If there are multiple matches between x and y, all match combinations are returned. **left_join** returns all rows from x, and all columns from x and y. If there are multiple matches between x and y, all match combinations are returned. **right_join** is equivalent to a left join for datasets y and x. **full_join** combines two datasets, keeping rows and columns that appear in either. **semi_join** returns all rows from x with matching values in y, keeping just columns from x. A semi join differs from an inner join because an inner join will return one row of x for each matching row of y, whereas a semi join will never duplicate rows of x. **anti_join** returns all rows from x without matching values in y, keeping only columns from x. **bind_rows** and **bind_cols** are also included, as are **intersect**, **union**, and **setdiff**. See http://vnijs.github.io/radiant/base/combine.

html for further details

name Name for the combined dataset

Details

See http://vnijs.github.io/radiant/base/combine.html for an example in Radiant

Value

If list 'r_data' exists the combined dataset is added as 'name'. Else the combined dataset will be returned as 'name'

```
combinedata("titanic","titanic_pred",c("pclass","sex","age")) %>% head
titanic %>% combinedata("titanic_pred",c("pclass","sex","age")) %>% head
titanic %>% combinedata(titanic_pred,c("pclass","sex","age")) %>% head
avengers %>% combinedata(superheroes, type = "bind_cols")
combinedata("avengers", "superheroes", type = "bind_cols")
avengers %>% combinedata(superheroes, type = "bind_rows")
```

18 compare_means

compare_means Compare means for two or more variables	
---	--

Description

Compare means for two or more variables

Usage

```
compare_means(dataset, var1, var2, samples = "independent",
  alternative = "two.sided", conf_lev = 0.95, adjust = "none",
  test = "t", data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
var1	A numeric variable or factor selected for comparison
var2	One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of va1r
samples	Are samples indepent ("independent") or not ("paired")
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
test	T-test ("t") or Wilcox ("wilcox")
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See \ http://vnijs.github.io/radiant/quant/compare\_means.html \ for \ an \ example \ in \ Radiant
```

Value

A list of all variables defined in the function as an object of class compare_means

See Also

```
summary.compare_means to summarize results
plot.compare_means to plot results
```

```
result <- compare_means("diamonds","cut","price")
result <- diamonds %>% compare_means("cut","price")
```

compare_props 19

	compare_props	Compare proportions across groups	
--	---------------	-----------------------------------	--

Description

Compare proportions across groups

Usage

```
compare_props(dataset, var1, var2, levs = "", alternative = "two.sided",
  conf_lev = 0.95, adjust = "none", data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
var1	A grouping variable to split the data for comparisons
var2	The variable to calculate proportions for
levs	The factor level selected for the proportion comparison
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant
```

Value

A list of all variables defined in the function as an object of class compare_props

See Also

```
summary.compare_props to summarize results
plot.compare_props to plot results
```

```
result <- compare_props("titanic", "pclass", "survived")
result <- titanic %>% compare_props("pclass", "survived")
```

20 conjoint

com	out.	er
COIII	puc	CI

Perceptions of computer (re)sellers

Description

Perceptions of computer (re)sellers

Usage

```
data(computer)
```

Format

A data frame with 5 rows and 8 variables

Details

Perceptions of computer (re)sellers. The dataset is used to illustrate perceptual maps. Description provided in attr(computer, "description")

$\alpha \alpha n$	_	\sim 1	nt
con	- 1	OT	HL

Conjoint analysis

Description

Conjoint analysis

Usage

```
conjoint(dataset, dep_var, indep_var, reverse = FALSE, data_filter = "")
```

Arguments

dataset	Dataset name (string).	This can be a dat	aframe in the global	environment or an
---------	------------------------	-------------------	----------------------	-------------------

element in an r_data list from Radiant

dep_var The dependent variable (e.g., profile ratings) indep_var Independent variables in the regression

reverse Reverse the values of the dependent variable ('dep_var')

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class conjoint

conjoint_profiles 21

See Also

```
summary.conjoint to summarize results
plot.conjoint to plot results
```

Examples

```
result <- conjoint("mp3", dep_var = "Rating", indep_var = "Memory:Shape")
result <- mp3 %>% conjoint(dep_var = "Rating", indep_var = "Memory:Shape")
```

conjoint_profiles

Create fractional factorial design for conjoint analysis

Description

Create fractional factorial design for conjoint analysis

Usage

```
conjoint_profiles(dataset)
```

Arguments

dataset

Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant

Details

```
See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant
```

Value

A list with all variables defined in the function as an object of class conjoint_profiles

See Also

```
summary.conjoint_profiles to summarize results
```

22 copy_from

copy_all

Source all package functions

Description

Source all package functions

Usage

```
copy_all(.from)
```

Arguments

.from

The package to pull the function from

Details

Equivalent of source with local=TRUE for all package functions. Adapted from functions by smbache, author of the import package. See https://github.com/smbache/import/issues/4 for a discussion. This function will be depracated when (if) it is included in https://github.com/smbache/import

Examples

```
copy_all(radiant)
```

copy_from

Source for package functions

Description

Source for package functions

Usage

```
copy_from(.from, ...)
```

Arguments

```
. from The package to pull the function from. . . Functions to pull
```

Details

Equivalent of source with local=TRUE for package functions. Written by smbache, author of the import package. See https://github.com/smbache/import/issues/4 for a discussion. This function will be depracated when (if) it is included in https://github.com/smbache/import

```
copy_from(radiant, state_init)
```

correlation 23

Description

Calculate correlations for two or more variables

Usage

```
correlation(dataset, vars, type = "pearson", data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	Variables to include in the analysis
type	Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant
```

Value

A list with all variables defined in the function as an object of class compare_means

See Also

```
summary.correlation_ to summarize results
plot.correlation_ to plot results
```

```
result <- correlation("diamonds", c("price","carat","clarity"))
result <- correlation("diamonds", "price:table")
result <- diamonds %>% correlation("price:table")
```

24 cross_tabs

cross_	tabs	Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

```
cross_tabs(dataset, var1, var2, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

var1 A categorical variable

var2 Another categorical variable

expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant
```

Value

A list of all variables used in cross_tabs as an object of class cross_tabs

See Also

```
summary.cross_tabs to summarize results
plot.cross_tabs to plot results
```

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
result <- newspaper %>% cross_tabs("Income", "Newspaper")
```

cv 25

C۷

Coefficient of variation

Description

Coefficient of variation

Usage

```
cv(x, na.rm = TRUE)
```

Arguments

x Input variable

na.rm If TRUE missing values are removed before calculation

Value

Coefficient of variation

Examples

```
cv(runif (100))
```

decile_split

Create deciles

Description

Create deciles

Usage

```
decile_split(x)
```

Arguments

x Input variable

Value

Factor variable

26 does_vary

diamonds

Diamond prices

Description

Diamond prices

Usage

data(diamonds)

Format

A data frame with 3000 rows and 10 variables

Details

A sample of 3,000 from the diamonds dataset bundeled with ggplot2. Description provided in attr(diamonds,"description")

does_vary

Does a vector have non-zero variability?

Description

Does a vector have non-zero variability?

Usage

```
does_vary(x)
```

Arguments

Х

Input variable

Value

```
Logical. TRUE is there is variability
```

```
summarise_each(diamonds, funs(does_vary)) %>% as.logical
```

dtree 27

dtree

Create a decision tree

Description

Create a decision tree

Usage

```
dtree(y1, opt = "max")
```

Arguments

yl A yaml string or a list (e.g., from yaml::yaml.load_file())

opt Find the maximum ("max") or minimum ("min") value for each decision node

Details

See http://vnijs.github.io/radiant/base/dtree.html for an example in Radiant

Value

A list with the initial tree and the calculated tree

See Also

```
summary.dtree to summarize results
plot.dtree to plot results
```

dtree_parser

Parse yaml input for dtree to provide (more) useful error messages

Description

Parse yaml input for dtree to provide (more) useful error messages

Usage

```
dtree_parser(y1)
```

Arguments

yl A yaml string

Details

See http://vnijs.github.io/radiant/base/dtree.html for an example in Radiant

Value

An updated yaml string or a vector messages to return to the users

28 explore

See Also

```
dtree to calculate tree
summary.dtree to summarize results
plot.dtree to plot results
```

explore

Explore data

Description

Explore data

Usage

```
explore(dataset, vars = "", byvar = "", fun = "mean_rm", tabfilt = "",
  tabsort = "", data_filter = "", shiny = FALSE)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	(Numerical) variables to summaries
byvar	Variable(s) to group data by before summarizing
fun	Functions to use for summarizing
tabfilt	Expression used to filter the table. This should be a string (e.g., "Total > 10000")
tabsort	Expression used to sort the table (e.g., "-Total")
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
shiny	Logical (TRUE, FALSE) to indicate if the function call originate inside a shiny app

Details

```
See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant
```

Value

A list of all variables defined in the function as an object of class explore

See Also

```
summary.explore to show summaries
```

```
result <- explore("diamonds", "price:x")
summary(result)
result <- explore("diamonds", c("price", "carat"), byvar = "cut", fun = c("n_missing", "skew"))
summary(result)
diamonds %>% explore("price", byvar = "cut", fun = c("length", "n_distinct"))
```

factorizer 29

factorizer

Convert character to factors as needed

Description

Convert character to factors as needed

Usage

```
factorizer(dat, safx = 20)
```

Arguments

dat Data.frame

safx Values to levels ratio

Value

Data.frame with factors

ff_design

Function to generate a fractional factorial design

Description

Function to generate a fractional factorial design

Usage

```
ff_design(attr, trial = 0, rseed = 172110)
```

Arguments

attr Attributes used to generate profiles

trial Number of trials that have already been run

rseed Random seed to use

Details

See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant

See Also

```
conjoint_profiles to calculate results
summary.conjoint_profiles to summarize results
```

30 flip

filterdata	fil	tei	rdata	
------------	-----	-----	-------	--

Filter data with user-specified expression

Description

Filter data with user-specified expression

Usage

```
filterdata(dat, filt = "")
```

Arguments

dat Data.frame to filter

filt Filter expression to apply to the specified dataset (e.g., "price > 10000" if dataset

is "diamonds")

Value

Filtered data.frame

flip

Flip the DT table to put Function, Variable, or Group by on top

Description

Flip the DT table to put Function, Variable, or Group by on top

Usage

```
flip(expl, top = "fun")
```

Arguments

expl Return value from explore

top The variable (type) to display at the top of the table ("fun" for Function, "var"

for Variable, and "byvar" for Group by. "fun" is the default

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant

See Also

```
explore to generate summaries
make_expl to create the DT table
```

full_factor 31

Examples

```
result <- explore("diamonds", "price:x") %>% flip("var")
result <- explore("diamonds", "price", byvar = "cut", fun = c("length", "skew")) %>% flip("byvar")
```

full_factor

Factor analysis (PCA)

Description

Factor analysis (PCA)

Usage

```
full_factor(dataset, vars, method = "PCA", nr_fact = 2,
  rotation = "varimax", data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	Variables to include in the analysis
method	Factor extraction method to use
nr_fact	Number of factors to extract
rotation	Apply varimax rotation or no rotation ("varimax" or "none")
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class full_factor

See Also

```
summary.full_factor to summarize results
plot.full_factor to plot results
```

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
result <- full_factor("diamonds",c("price","carat","table","x","y"), method = "maxlik")
result <- diamonds %>% full_factor(c("price","carat","table","x","y"), method = "maxlik")
```

32 getdata

getclass

Get variable class

Description

Get variable class

Usage

```
getclass(dat)
```

Arguments

dat

Dataset to evaluate

Details

Get variable class information for each column in a data.frame

Value

Vector with class information for each variable

Examples

```
getclass(mtcars)
```

getdata

Get data for analysis functions

Description

Get data for analysis functions

Usage

```
getdata(dataset, vars = "", filt = "", rows = NULL, na.rm = TRUE)
```

Arguments

dataset	Name of the dataframe
vars	Variables to extract from the dataframe
filt	Filter to apply to the specified dataset. For example "price > 10000" if dataset is "diamonds" (default is "")
rows	Select rows in the specified dataset. For example "1:10" for the first 10 rows or " $n()$ -10: $n()$ " for the last 10 rows (default is NULL)
na.rm	Remove rows with missing values (default is TRUE)

getsummary 33

Value

Data.frame with specified columns and rows

Examples

```
r_data <<- list()
r_data$dat <<- mtcars
getdata("dat","mpg:vs", filt = "mpg > 20", rows = 1:5)
rm(r_data, envir = .GlobalEnv)
```

getsummary

Create data.frame summary

Description

Create data.frame summary

Usage

```
getsummary(dat, dc = getclass(dat))
```

Arguments

dat Data.frame

dc Class for each variable

Details

Used in Radiant's Data > Transform tab

glm_reg

Generalized linear models (GLM)

Description

Generalized linear models (GLM)

Usage

```
glm_reg(dataset, dep_var, indep_var, lev = "", link = "logit",
  int_var = "", check = "", data_filter = "")
```

34 hier_clus

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant dep_var The dependent variable in the logit (probit) model indep_var Independent variables in the model The level in the dependent variable defined as _success_ lev Link function for _glm_ ('logit' or 'probit'). 'logit' is the default link int_var Interaction term to include in the model (not implement) Optional output or estimation parameters. "vif" to show the multicollinearity check diagnostics. "confint" to show coefficient confidence interval estimates. "odds" to show odds ratios and confidence interval estimates. "standardize" to output standardized coefficient estimates. "stepwise" to apply step-wise selection of variables data_filter

Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant
```

Value

A list with all variables defined in glm_reg as an object of class glm_reg

See Also

```
summary.glm_reg to summarize the results
plot.glm_reg to plot the results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex"), lev = "Yes")
result <- glm_reg("titanic", "survived", c("pclass", "sex"))</pre>
```

hier_clus

Hierarchical cluster analysis

Description

Hierarchical cluster analysis

Usage

```
hier_clus(dataset, vars, distance = "sq.euclidian", method = "ward.D",
   data_filter = "")
```

inverse 35

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

vars Vector of variables to include in the analysis

distance Distance method Method

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

Value

A list of all variables used in hier_clus as an object of class hier_clus

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

Examples

```
result <- hier_clus("shopping", vars = c("v1:v6"))</pre>
```

inverse

Calculate inverse of a variable

Description

Calculate inverse of a variable

Usage

inverse(x)

Arguments

Χ

Input variable

Value

1/x

is_string

is_empty

Is a character variable defined

Description

Is a character variable defined

Usage

```
is_empty(x, empty = "")
```

Arguments

x Character value to evaluate

empty Indicate what 'empty' means. Default is empty string (i.e., "")

Details

Is a variable NULL or an empty string

Value

TRUE if empty, else FALSE

Examples

```
is_empty("")
is_empty(NULL)
```

is_string

Is input a string?

Description

Is input a string?

Usage

```
is_string(x)
```

Arguments

Χ

Input

Details

Is input a string

Value

TRUE if string, else FALSE

iterms 37

Examples

```
is_string("")
is_string("data")
is_string(c("data","data"))
is_string(NULL)
```

iterms

Create a vector of interaction terms

Description

Create a vector of interaction terms

Usage

```
iterms(vars, nway, sep = ":")
```

Arguments

vars Variables lables to use

nway 2-way (2) or 3-way (3) interactions labels to create sep Separator between variable names (default is:)

Value

Character vector of interaction term labels

Examples

```
paste0("var", 1:3) %>% iterms(2)
paste0("var", 1:3) %>% iterms(3)
paste0("var", 1:3) %>% iterms(2, sep = ".")
```

kmeans_clus

K-means cluster analysis

Description

K-means cluster analysis

```
kmeans_clus(dataset, vars, hc_init = TRUE, distance = "sq.euclidian",
  method = "ward.D", seed = 1234, nr_clus = 2, data_filter = "")
```

38 kurtosi

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

vars Vector of variables to include in the analysis

hc_init Use centers from hier_clus as the starting point

distance Distance for hier_clus
method Method for hier_clus

seed Random see to use for kmeans if hc_init is FALSE

nr_clus Number of clusters to extract

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

Value

A list of all variables used in kmeans_clus as an object of class kmeans_clus

See Also

```
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
save_membership to add cluster membership to the selected dataset
```

Examples

```
result <- kmeans_clus("shopping", c("v1:v6"))</pre>
```

kurtosi *Exporting*

Exporting the kurtosi function from the psych package

Description

Exporting the kurtosi function from the psych package

launcher 39

launcher	Create a launcher on the desktop for Windows (.bat), Mac (.com-
	mand), or Linux (.sh)

Description

Create a launcher on the desktop for Windows (.bat), Mac (.command), or Linux (.sh)

Usage

```
launcher(app = c("analytics", "marketing", "quant", "base"))
```

Arguments

app App to run when the desktop icon is double-clicked ("analytics", "marketing", "quant", or "base"). Default is "analytics"

Details

On Windows/Mac/Linux a file named radiant.bat/radiant.command/radiant.sh will be put on the desktop. Double-click the file to launch the specified Radiant app

See Also

```
win_launcher to create a shortcut on Windows
mac_launcher to create a shortcut on Mac
lin_launcher to create a shortcut on Linux
```

lin_launcher

Create a launcher and updater for Linux (.sh)

Description

Create a launcher and updater for Linux (.sh)

Usage

```
lin_launcher(app = c("analytics", "marketing", "quant", "base"))
```

Arguments

app App to run when the desktop icon is double-clicked ("analytics", "marketing", "quant", or "base"). Default is "analytics"

Details

On Linux a file named 'radiant.sh' and one named 'update_radiant.sh' will be put on the desktop. Double-click the file to launch the specified Radiant app or update Radiant to the latest version

40 loadcsv

Examples

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Linux") {
      lin_launcher()
      fn <- paste0("/home/",Sys.getenv("USER"),"/Desktop/radiant.sh")
      if (!file.exists(fn))
        stop("Linux launcher not created")
      else
        unlink(fn)
   }
}</pre>
```

loadcsv

Load a csv file with read.csv and read_csv

Description

Load a csv file with read.csv and read_csv

Usage

```
loadcsv(fn, header = TRUE, sep = ",", dec = ".", saf = TRUE,
  safx = 20)
```

Arguments

fn	File name string
header	Header in file (TRUE, FALSE)
sep	Use, (default) or; or \t
dec	Decimal symbol. Use . (default) or ,
saf	Convert character variables to factors if (1) there are less than 100 distinct values (2) there are X (see safx) more values than levels
safx	Values to levels ratio

Value

Data.frame with (some) variables converted to factors

loadcsv_url 41

loadcsv_url	Load a csv file with from a url
-------------	---------------------------------

Description

Load a csv file with from a url

Usage

```
loadcsv_url(csv_url, header = TRUE, sep = ",", dec = ".", saf = TRUE,
    safx = 20)
```

Arguments

csv_url	URL for the csv file
header	Header in file (TRUE, FALSE)
sep	Use, (default) or; or \t
dec	Decimal symbol. Use . (default) or ,
saf	Convert character variables to factors if (1) there are less than 100 distinct values (2) there are X (see safx) more values than levels
safx	Values to levels ratio

Value

Data.frame with (some) variables converted to factors

loadrda_url	Load an rda file from a url	

Description

Load an rda file from a url

Usage

```
loadrda_url(rda_url)
```

Arguments

rda_url URL for the csv file

Value

Data.frame

42 make_dt

mac_launcher

Create a launcher and updater for Mac (.command)

Description

Create a launcher and updater for Mac (.command)

Usage

```
mac_launcher(app = c("analytics", "marketing", "quant", "base"))
```

Arguments

арр

App to run when the desktop icon is double-clicked ("analytics", "marketing", "quant", or "base"). Default is "analytics"

Details

On Mac a file named 'radiant.command' and one named 'update_radiant.command' will be put on the desktop. Double-click the file to launch the specified Radiant app or update Radiant to the latest version

Examples

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Darwin") {
     mac_launcher()
     fn <- paste0("/Users/",Sys.getenv("USER"),"/Desktop/radiant.command")
     if (!file.exists(fn))
        stop("Mac launcher not created")
     else
        unlink(fn)
   }
}</pre>
```

make_dt

Make a pivot tabel in DT

Description

Make a pivot tabel in DT

```
make_dt(pvt, format = "none", perc = FALSE, search = "",
    searchCols = NULL, order = NULL)
```

make_expl 43

Arguments

pvt Return value from pivotr

format Show Color bar ("color_bar"), Heat map ("heat"), or None ("none")

perc Display numbers as percentages (TRUE or FALSE)

search Global search. Used to save and restore state

searchCols Column search and filter. Used to save and restore state

order Column sorting. Used to save and restore state

Details

See http://vnijs.github.io/radiant/base/pivotr.html for an example in Radiant

See Also

```
pivotr to create the pivot-table using dplyr summary.pivotr to print a plain text table
```

Examples

```
pivotr("diamonds", cvars = "cut") %>% make_dt
pivotr("diamonds", cvars = c("cut","clarity")) %>% make_dt(format = "color_bar")
ret <- pivotr("diamonds", cvars = c("cut","clarity"), normalize = "total") %>%
    make_dt(format = "color_bar", perc = TRUE)
```

make_expl

Make a tabel of summary statistics in DT

Description

Make a tabel of summary statistics in DT

Usage

```
make_expl(expl, top = "fun", dec = 3, search = "", searchCols = NULL,
    order = NULL)
```

Arguments

expl Return value from explore

top The variable (type) to display at the top of the table ("fun" for Function, "var"

for Variable, and "byvar" for Group by

dec Number of decimals to show

search Global search. Used to save and restore state

searchCols Column search and filter. Used to save and restore state

order Column sorting. Used to save and restore state

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant

44 make_train

See Also

```
pivotr to create the pivot-table using dplyr summary.pivotr to print a plain text table
```

Examples

```
tab <- explore("diamonds", "price:x") %>% make_expl
tab <- explore("diamonds", "price", byvar = "cut", fun = c("length", "skew")) %>%
    make_expl(top = "byvar")
```

make_funs

Make a list of functions-as-formulas to pass to dplyr

Description

Make a list of functions-as-formulas to pass to dplyr

Usage

```
make_funs(x)
```

Arguments

Х

List of functions as strings

Value

List of functions to pass to dplyr in formula form

Examples

```
make_funs(c("mean", "sum_rm"))
```

make_train

Generate a variable used to selected a training sample

Description

Generate a variable used to selected a training sample

Usage

```
make_train(n = 0.7, nr = 100)
```

Arguments

n Number (or fraction) of observations to label as training

nr Number of rows in the dataset

max_rm 45

Value

0/1 variables for filtering

Examples

```
make_train(.5, 10)
```

 \max_rm

 $Max \ with \ na.rm = TRUE$

Description

Max with na.rm = TRUE

Usage

```
max_rm(x)
```

Arguments

Х

Input variable

Value

Maximum value

Examples

```
max_rm(runif (100))
```

mds

(Dis)similarity based brand maps (MDS)

Description

(Dis)similarity based brand maps (MDS)

```
mds(dataset, id1, id2, dis, method = "metric", nr_dim = 2,
    data_filter = "")
```

46 mean_rm

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
id1	A character variable or factor with unique entries
id2	A character variable or factor with unique entries
dis	A numeric measure of brand dissimilarity
method	Apply metric or non-metric MDS
nr_dim	Number of dimensions
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class mds

See Also

```
summary.mds to summarize results
plot.mds to plot results
```

Examples

```
result <- mds("city", "from", "to", "distance")
summary(result)
result <- mds("diamonds", "clarity", "cut", "price")
summary(result)</pre>
```

mean_rm

 $Mean \ with \ na.rm = TRUE$

Description

Mean with na.rm = TRUE

Usage

 $mean_rm(x)$

Arguments

x Input variable

Value

Mean value

median_rm 47

Examples

```
mean_rm(runif (100))
```

median_rm

 $Median\ with\ na.rm = TRUE$

Description

Median with na.rm = TRUE

Usage

```
median_rm(x)
```

Arguments

Χ

Input variable

Value

Median value

Examples

```
median_rm(runif (100))
```

median_split

Median split

Description

Median split

Usage

```
median_split(x)
```

Arguments

Χ

Input variable

Value

Factor variable deciles

48 mode_rm

min_rm

 $Min\ with\ na.rm = TRUE$

Description

Min with na.rm = TRUE

Usage

min_rm(x)

Arguments

Х

Input variable

Value

Minimum value

Examples

```
min_rm(runif (100))
```

 ${\sf mode_rm}$

 $Mode\ with\ na.rm = TRUE$

Description

Mode with na.rm = TRUE

Usage

 $mode_rm(x)$

Arguments

Χ

Input variable

Value

Mode value

```
mode_rm(diamonds$cut)
```

mp3 49

mp3

Conjoint data for MP3 players

Description

Conjoint data for MP3 players

Usage

```
data(mp3)
```

Format

A data frame with 18 rows and 6 variables

Details

Conjoint data for MP3 players. Description provided in attr(mp3, "description")

mutate_each

Add tranformed variables to a data frame (NSE)

Description

Add tranformed variables to a data frame (NSE)

Usage

```
mutate_each(tbl, funs, ..., ext = "")
```

Arguments

tbl Data frame to add transformed variables to
funs Function(s) to apply (e.g., funs(log))
... Variables to transform
ext Extension to add for each variable

Details

Wrapper for dplyr::mutate_each that allows custom variable name extensions

```
mutate_each(mtcars, funs(log), mpg, cyl, ext = "_log")
```

50 normalize

newspaper

Newspaper readership

Description

Newspaper readership

Usage

```
data(newspaper)
```

Format

A data frame with 580 rows and 2 variables

Details

Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

normalize

Normalize a variable x by a variable y

Description

Normalize a variable x by a variable y

Usage

```
normalize(x, y)
```

Arguments

x Input variable

y Normalizing variable

Value

x/y

n_missing 51

n_missing

Number of missing values

Description

Number of missing values

Usage

```
n_missing(x)
```

Arguments

Х

Input variable

Value

number of missing values

Examples

```
n_missing(c("a","b",NA))
```

p05

5th percentile

Description

5th percentile

Usage

```
p05(x, na.rm = TRUE)
```

Arguments

Χ

Input variable

na.rm

If TRUE missing values are removed before calculation

Value

5th percentile

```
p05(rnorm(100))
```

52 p75

p25

25th percentile

Description

25th percentile

Usage

```
p25(x, na.rm = TRUE)
```

Arguments

Х

Input variable

na.rm

If TRUE missing values are removed before calculation

Value

25th percentile

Examples

```
p25(rnorm(100))
```

p75

75th percentile

Description

75th percentile

Usage

```
p75(x, na.rm = TRUE)
```

Arguments

Х

Input variable

na.rm

If TRUE missing values are removed before calculation

Value

75th percentile

```
p75(rnorm(100))
```

p95 53

p95 95th percentile

Description

95th percentile

Usage

```
p95(x, na.rm = TRUE)
```

Arguments

x Input variable

na.rm If TRUE missing values are removed before calculation

Value

95th percentile

Examples

```
p95(rnorm(100))
```

pivotr

Create a pivot table using dplyr

Description

Create a pivot table using dplyr

Usage

```
pivotr(dataset, cvars = "", nvar = "None", fun = "mean",
  normalize = "None", tabfilt = "", tabsort = "", data_filter = "",
  shiny = FALSE)
```

Arguments

dataset Name of the dataframe to change

cvars Categorical variables nvar Numerical variable

fun Function to apply to numerical variable

normalize Normalize the table by "row" total, "colum" totals, or overall "total"

tabfilt Expression used to filter the table. This should be a string (e.g., "Total > 10000")

tabsort Expression used to sort the table (e.g., "-Total")

10000")

shiny Logical (TRUE, FALSE) to indicate if the function call originate inside a shiny

app

54 plot.compare_means

Details

Create a pivot-table. See http://vnijs.github.io/radiant/base/pivotr.html for an example in Radiant

Examples

```
result <- pivotr("diamonds", cvars = "cut")$tab
result <- pivotr("diamonds", cvars = c("cut","clarity","color"))$tab
result <- pivotr("diamonds", cvars = "cut:clarity", nvar = "price")$tab</pre>
```

plot.compare_means

Plot method for the compare_means function

Description

Plot method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
plot(x, plots = "bar", shiny = FALSE, ...)
```

Arguments

X	Return value from compare_means
plots	One or more plots ("bar", "box", or "density")
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

See Also

```
compare_means to calculate results
summary.compare_means to summarize results
```

```
result <- compare_means("diamonds","cut","price")
plot(result, plots = c("bar","density"))</pre>
```

plot.compare_props 55

plot.compare_props

Plot method for the compare_props function

Description

Plot method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
plot(x, plots = "props", shiny = FALSE, ...)
```

Arguments

```
x Return value from compare_props

Did the function call originate inside a shiny app

further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
summary.compare_props to summarize results
```

Examples

```
result <- compare_props("titanic", "pclass", "survived")
plot(result, plots = c("props","counts"))</pre>
```

plot.conjoint

Plot method for the conjoint function

Description

Plot method for the conjoint function

```
## S3 method for class 'conjoint'
plot(x, plots = "pw", scale_plot = FALSE,
    shiny = FALSE, ...)
```

56 plot.correlation_

Arguments

X	Return value from conjoint
plots	Show either the part-worth ("pw") or importance-weights ("iw") plot
scale_plot	Scale the axes of the part-worth plots to the same range
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results
summary.conjoint to summarize results
```

Examples

```
result <- conjoint(dataset = "mp3", dep_var = "Rating", indep_var = "Memory:Shape")
plot(result, scale_plot = TRUE)
plot(result, plots = "iw")</pre>
```

plot.correlation_

Plot method for the correlation function

Description

Plot method for the correlation function

Usage

```
## S3 method for class 'correlation_' plot(x, ...)
```

Arguments

x Return value from correlation

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results
summary.correlation_ to summarize results
```

plot.cross_tabs 57

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
plot(result)
diamonds %>% correlation("price:clarity") %>% plot
```

plot.cross_tabs

Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, ...)
```

Arguments

Х	Return value from cross_tabs
check	Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

See Also

```
cross_tabs to calculate results
summary.cross_tabs to summarize results
```

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
plot(result, check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% plot(c("observed","expected"))
```

58 plot.full_factor

_	
nlot	dtree
DIOL.	utice

Plot method for the dtree function

Description

Plot method for the dtree function

Usage

```
## S3 method for class 'dtree'
plot(x, symbol = "$", dec = 3, final = FALSE,
    shiny = FALSE, ...)
```

Arguments

Χ	Return value from dtree
symbol	Monetary symbol to use (\$ is the default)
dec	Decimal places to round results to
final	If TRUE plot the decision tree solution, else the initial decision tree
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/quant/dtree.html for an example in Radiant
```

See Also

```
dtree to generate the result summary. dtree to summarize results
```

```
plot.full_factor
```

Plot method for the full_factor function

Description

Plot method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
plot(x, shiny = FALSE, ...)
```

Arguments

x	Return value from full_factor
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

plot.glm_predict 59

Details

See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant

See Also

```
full_factor to calculate results plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","table"))
plot(result)
result <- full_factor("computer","high_end:business")
summary(result)</pre>
```

plot.glm_predict

Plot method for the predict.glm_reg function

Description

Plot method for the predict.glm_reg function

Usage

```
## S3 method for class 'glm_predict'
plot(x, xvar = "", facet_row = ".", facet_col = ".",
    color = "none", conf_lev = 0.95, ...)
```

Arguments

Х	Return value from predict.glm_reg.
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different colour
conf_lev	Confidence level to use for prediction intervals (.95 is the default). Note that the error bars for predictions are approximations at this point.
	further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant
```

60 plot.glm_reg

See Also

```
glm_reg to generate the result
summary.glm_reg to summarize results
plot.glm_reg to plot results
predict.glm_reg to generate predictions
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex", "age"), lev = "Yes")</pre>
pred <- predict(result, pred_cmd = "pclass = levels(pclass)")</pre>
plot(pred, xvar = "pclass")
pred <- predict(result, pred_cmd = "age = 0:100")</pre>
plot(pred, xvar = "age")
pred <- predict(result, pred_cmd = "pclass = levels(pclass), sex = levels(sex)")</pre>
plot(pred, xvar = "pclass", color = "sex")
pred <- predict(result, pred_cmd = "pclass = levels(pclass), age = seq(0,100,20)")</pre>
plot(pred, xvar = "pclass", color = "age")
plot(pred, xvar = "age", color = "pclass")
pred <- predict(result, pred_cmd="pclass=levels(pclass), sex=levels(sex), age=seq(0,100,20)")</pre>
plot(pred, xvar = "age", color = "sex", facet_col = "pclass")
plot(pred, xvar = "age", color = "pclass", facet_col = "sex")
pred <- predict(result, pred_cmd="pclass=levels(pclass), sex=levels(sex), age=seq(0,100,5)")</pre>
plot(pred, xvar = "age", color = "sex", facet_col = "pclass")
plot(pred, xvar = "age", color = "pclass", facet_col = "sex")
```

plot.glm_reg

Plot method for the glm_reg function

Description

Plot method for the glm_reg function

Usage

```
## S3 method for class 'glm_reg'
plot(x, plots = "", conf_lev = 0.95, intercept = FALSE,
    shiny = FALSE, ...)
```

Arguments

X	Return value from glm_reg
plots	Plots to produce for the specified GLM model. Use "" to avoid showing any plots (default). "hist" shows histograms of all variables in the model. "scatter" shows scatter plots (or box plots for factors) for the dependent variable with each independent variable. "dashboard" is a series of four plots used to visually evaluate model. "coef" provides a coefficient plot
conf_lev	Confidence level to use for coefficient and odds confidence intervals (.95 is the default)
intercept	Include the intercept in the coefficient plot (TRUE or FALSE). FALSE is the default
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

plot.hier_clus 61

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate results
plot.glm_reg to plot results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex"), lev = "Yes")
plot(result, plots = "coef")</pre>
```

plot.hier_clus

Plot method for the hier_clus function

Description

Plot method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
plot(x, plots = c("scree", "diff"), cutoff = 0.02,
    shiny = FALSE, ...)
```

Arguments

Χ	Return value from hier_clus
plots	Plots to return. "diff" shows the percentage change in within-cluster heterogeneity as respondents are group into different number of clusters, "dendro" shows the dendrogram, "scree" shows a scree plot of within-cluster heterogeneity
cutoff	For large datasets plots can take time to render and become hard to interpret. By selection a cutoff point (e.g., 0.05 percent) the initial steps in hierarchical cluster analysis are removed from the plot
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

62 plot.kmeans_clus

Examples

```
result <- hier_clus("shopping", vars = c("v1:v6"))
plot(result, plots = c("diff", "scree"), cutoff = .05)
plot(result, plots = "dendro", cutoff = 0)
shopping %>% hier_clus(vars = c("v1:v6")) %>% plot
```

plot.kmeans_clus

Plot method for kmeans_clus

Description

Plot method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
plot(x, shiny = FALSE, ...)
```

Arguments

```
    x Return value from kmeans_clus
    shiny Did the function call originate inside a shiny app
    further arguments passed to or from other methods
```

Details

```
See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant
```

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
save_membership to add cluster membership to the selected dataset
```

```
result <- kmeans_clus("shopping", vars = c("v1:v6"))
plot(result)</pre>
```

plot.mds 63

plot.mds

Plot method for the mds function

Description

Plot method for the mds function

Usage

```
## S3 method for class 'mds'
plot(x, rev_dim = "", fontsz = 1.3, ...)
```

Arguments

```
    x Return value from mds
    rev_dim Flip the axes in plots
    fontsz Font size to use in plots
    further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results summary.mds to plot results
```

Examples

```
result <- mds("city","from","to","distance")
plot(result)
plot(result, rev_dim = 1:2)
plot(result, rev_dim = 1:2, fontsz = 2)</pre>
```

plot.pivotr

Plot method for the pivotr function

Description

Plot method for the pivotr function

```
## S3 method for class 'pivotr'
plot(x, type = "dodge", perc = FALSE, flip = FALSE,
    shiny = FALSE, ...)
```

64 plot.pmap

Arguments

X	Return value from pivotr
type	Plot type to use ("fill" or "dodge" (default))
perc	Use percentage on the y-axis
flip	Flip the axes in a plot (FALSE or TRUE)
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/base/pivotr for an example in Radiant

See Also

```
pivotr to generate summaries
summary.pivotr to show summaries
```

Examples

```
pivotr("diamonds", cvars = "cut") %>% plot
pivotr("diamonds", cvars = c("cut","clarity")) %>% plot
pivotr("diamonds", cvars = c("cut","clarity","color")) %>% plot
```

plot.pmap

Plot method for the pmap function

Description

Plot method for the pmap function

Usage

```
## S3 method for class 'pmap'
plot(x, plots = "", scaling = 2.1, fontsz = 1.3, ...)
```

Arguments

Х	Return value from pmap
plots	Components to include in the plot ("brand", "attr"). If data on preferences is available use "pref" to add preference arrows to the plot
scaling	Arrow scaling in the brand map
fontsz	Font size to use in plots
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

plot.pre_factor 65

See Also

```
pmap to calculate results
summary.pmap to plot results
```

Examples

plot.pre_factor

Plot method for the pre_factor function

Description

Plot method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
plot(x, ...)
```

Arguments

x Return value from pre_factor... further arguments passed to or from other methods

Details

See $\verb|http://vnijs.github.io/radiant/marketing/pre_factor.html| for an example in Radiant| for an ex$

See Also

```
pre_factor to calculate results
summary.pre_factor to summarize results
```

```
result <- pre_factor("diamonds",c("price","carat","table"))
plot(result)</pre>
```

66 plot.prob_norm

plot.prob_binom

Plot method for the probability calculator function (binomial)

Description

Plot method for the probability calculator function (binomial)

Usage

```
## S3 method for class 'prob_binom'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_binom

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

plot.prob_norm

Plot method for the probability calculator (normal)

Description

Plot method for the probability calculator (normal)

Usage

```
## S3 method for class 'prob_norm'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_norm

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

plot.prob_unif 67

plot.prob_unif

Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```
## S3 method for class 'prob_unif'
plot(x, type = "values", shiny = FALSE, ...)
```

Arguments

x Return value from prob_norm

type Probabilities or values

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

plot.regression

Plot method for the regression function

Description

Plot method for the regression function

Usage

```
## S3 method for class 'regression'
plot(x, plots = "", lines = "", conf_lev = 0.95,
  intercept = FALSE, shiny = FALSE, ...)
```

Arguments

Χ

Return value from regression

plots

Regression plots to produce for the specified regression model. Enter "" to avoid showing any plots (default). "hist" to show histograms of all variables in the model. "correlations" for a visual representation of the correlation matrix selected variables. "scatter" to show scatter plots (or box plots for factors) for the dependent variables with each independent variable. "dashboard" for a series of six plots that can be used to evaluate model fit visually. "resid_pred" to plot the independent variables against the model residuals. "coef" for a coefficient plot with adjustable confidence intervals. "leverage" to show leverage plots for each independent variable

68 plot.reg_predict

lines	Optional lines to include in the select plot. "line" to include a line through a scatter plot. "loess" to include a polynomial regression fit line. To include both use c("line", "loess")
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
intercept	Include the intercept in the coefficient plot (TRUE, FALSE). FALSE is the default
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the results
summary.regression to summarize results
predict.regression to generate predictions
```

Examples

```
result <- regression("diamonds", "price", c("carat","clarity"))
plot(result, plots = "dashboard")
plot(result, plots = "dashboard", lines = c("line","loess"))
plot(result, plots = "coef", intercept = TRUE)
plot(result, plots = "coef", conf_lev = .99, intercept = TRUE)
plot(result, plots = "hist")
plot(result, plots = "scatter", lines = c("line","loess"))
plot(result, plots = "correlations")
plot(result, plots = "leverage")
plot(result, plots = "resid_pred", lines = "line")</pre>
```

plot.reg_predict

Plot method for the predict.regression function

Description

Plot method for the predict.regression function

```
## S3 method for class 'reg_predict'
plot(x, xvar = "", facet_row = ".", facet_col = ".",
    color = "none", conf_lev = 0.95, ...)
```

plot.repeater 69

Arguments

X	Return value from predict. regression.
xvar	Variable to display along the X-axis of the plot
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different colour
conf_lev	Confidence level to use for prediction intervals (.95 is the default). Note that the error bars for predictions are approximations at this point.
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the result
summary.regression to summarize results
plot.regression to plot results
predict.regression to generate predictions
```

Examples

```
result <- regression("diamonds", "price", c("carat","clarity"))
pred <- predict(result, pred_cmd = "carat = 1:10")
plot(pred, xvar = "carat")
result <- regression("diamonds", "price", c("carat","clarity"), int_var = "carat:clarity")
dpred <<- getdata("diamonds") %>% slice(1:100)
pred <- predict(result, pred_data = "dpred")
plot(pred, xvar = "carat", color = "clarity")
rm(dpred, envir = .GlobalEnv)</pre>
```

plot.repeater

Plot repeated simulation

Description

Plot repeated simulation

```
## S3 method for class 'repeater'
plot(x, sum_vars = "", byvar = "sim", fun = c("sum_rm",
    "mean_rm", "sd_rm"), shiny = FALSE, ...)
```

70 plot.simulater

Arguments

x	Return value from repeater
sum_vars	(Numerical) variables to summaries
byvar	Variable(s) to group data by before summarizing
fun	Functions to use for summarizing
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

plot.simulater

Plot method for the simulater function

Description

Plot method for the simulater function

Usage

```
## S3 method for class 'simulater'
plot(x, shiny = FALSE, ...)
```

Arguments

x Return value from simulatershiny Did the function call originate inside a shiny appfurther arguments passed to or from other methods

Details

 $See \ http://vnijs.github.io/radiant/quant/simulater \ for \ an \ example \ in \ Radiant$

See Also

```
single_mean to generate the result
summary.single_mean to summarize results
```

plot.single_mean 71

plot.	cina	۵ ا	ma an

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE, ...)
```

Arguments

X	Return value from single_mean
plots	Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
•••	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the result
summary.single_mean to summarize results
```

Examples

```
result <- single_mean("diamonds", "price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))</pre>
```

```
plot.single_prop
```

Plot method for the single_prop function

Description

Plot method for the single_prop function

```
## S3 method for class 'single_prop'
plot(x, plots = "hist", shiny = FALSE, ...)
```

72 pmap

Arguments

X	Return value from single_prop
plots	Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample proportion and the confidence interval. "simulate" shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the result
summary.single_prop to summarize the results
```

Examples

```
result <- single_prop("diamonds", "clarity", lev = "IF", comp_value = 0.05)
plot(result, plots = c("hist", "simulate"))
result <- single_prop("titanic", "pclass", lev = "1st")
plot(result, plots = c("hist", "simulate"))</pre>
```

ртар

Attribute based brand maps

Description

Attribute based brand maps

Usage

```
pmap(dataset, brand, attr, pref = "", nr_dim = 2, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
brand	A character variable with brand names
attr	Names of numeric variables
pref	Names of numeric brand preference measures
nr_dim	Number of dimensions
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

predict.glm_reg 73

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class pmap

See Also

```
summary.pmap to summarize results plot.pmap to plot results
```

Examples

```
result <- pmap("computer","brand","high_end:business")</pre>
```

predict.glm_reg

Predict method for the glm_reg function

Description

Predict method for the glm_reg function

Usage

```
## S3 method for class 'glm_reg'
predict(object, pred_vars = "", pred_data = "",
    pred_cmd = "", prn = TRUE, ...)
```

Arguments

object	Return value from glm_reg
pred_vars	Variables selected to generate predictions
pred_data	Provide the name of a dataframe to generate predictions (e.g., "titanic"). The dataset must contain all columns used in the estimation
pred_cmd	Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable use a ',' (e.g., 'pclass = levels(pclass), age = seq(0,100,20)')
prn	Print prediction results (default is TRUE)
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate the result
summary.glm_reg to summarize results
plot.glm_reg to plot results
plot.glm_predict to plot prediction output
```

74 predict.regression

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex"), lev = "Yes")
predict(result, pred_cmd = "pclass = levels(pclass)")
glm_reg("titanic", "survived", c("pclass", "sex"), lev = "Yes") %>%
    predict(pred_cmd = "sex = c('male', 'female')")
glm_reg("titanic", "survived", c("pclass", "sex"), lev = "Yes") %>%
    predict(pred_data = "titanic")
```

predict.regression

Predict method for the regression function

Description

Predict method for the regression function

Usage

```
## S3 method for class 'regression'
predict(object, pred_vars = "", pred_data = "",
    pred_cmd = "", conf_lev = 0.95, prn = TRUE, ...)
```

Arguments

```
object Return value from regression

pred_vars Variables to use for prediction

pred_data Name of the dataset to use for prediction

pred_cmd Command used to generate data for prediction

conf_lev Confidence level used to estimate confidence intervals (.95 is the default)

prn Print prediction results (default is TRUE)

... further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the result
summary.regression to summarize results
plot.regression to plot results
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
predict(result, pred_cmd = "carat = 1:10")
predict(result, pred_cmd = "clarity = levels(clarity)")
result <- regression("diamonds", "price", c("carat","clarity"), int_var = c("carat:clarity"))
dpred <<- getdata("diamonds") %>% slice(1:10)
predict(result, pred_data = "dpred")
rm(dpred, envir = .GlobalEnv)
```

pre_factor 75

	· ·
pre	factor

Evaluate if data are appropriate for PCA / Factor analysis

Description

Evaluate if data are appropriate for PCA / Factor analysis

Usage

```
pre_factor(dataset, vars, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

vars Variables to include in the analysis

expression should be a string (e.g., "price > 10000")

Details

See $\verb|http://vnijs.github.io/radiant/marketing/pre_factor.html| for an example in Radiant| for an ex$

Value

A list with all variables defined in the function as an object of class pre_factor

See Also

```
summary.pre_factor to summarize results
plot.pre_factor to plot results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))</pre>
```

print.gtable

Print/draw method for grobs produced by gridExtra

Description

Print/draw method for grobs produced by gridExtra

Usage

```
## S3 method for class 'gtable' print(x, ...)
```

76 prob_binom

Arguments

x a gtable object

... further arguments passed to or from other methods

Details

Print method for ggplot grobs created using arrangeGrob. Code is based on https://github.com/baptiste/gridextra/blob/master/inst/testing/shiny.R

Value

A plot

prob_binom

Probability calculator for the binomial distrubution (binomial)

Description

Probability calculator for the binomial distrubution (binomial)

Usage

```
prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

n	Number of trials
р	Probability
1b	Lower bound on the number of successes
ub	Upper bound on the number of successes
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

prob_norm 77

prob_norm	Probability calculator for the normal distrubution

Description

Probability calculator for the normal distrubution

Usage

```
prob_norm(mean, stdev, lb = -Inf, ub = Inf, plb = NA, pub = NA,
  dec = 3)
```

Arguments

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

prob_unif Probability calculator for the uniforem distrubution	prob_unif	Probability calculator for the uniforem distrubution
--	-----------	--

Description

Probability calculator for the uniforem distrubution

Usage

```
prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

min	Minmum value	
max	Maximum value	
1b	Lower bound	
ub	Upper bound	
plb	Lower probability bound	
pub	Upper probability bound	
dec	Number of decimals to show	

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

78 radiant

publishers

Comic publishers

Description

Comic publishers

Usage

```
data(publishers)
```

Format

A data frame with 3 rows and 2 variables

Details

List of comic publishers from http://stat545-ubc.github.io/bit001_dplyr-cheatsheet.

httml. The dataset is used to illustrate data merging / joining. Description provided in attr(publishers, "description")

radiant

radiant

Description

radiant

Launch Radiant in the default browser

Usage

```
radiant(app = c("analytics", "marketing", "quant", "base"))
```

Arguments

арр

Choose the app to run. One of "base", "quant", "analytics", "marketing". "analytics" is the default

Details

See http://vnijs.github.io/radiant for documentation and tutorials

```
if (interactive()) {
  radiant("base")
  radiant("quant")
  radiant("marketing")
  radiant("analytics")
}
```

recode 79

recode	Exporting the recode function from the car package	

Description

Exporting the recode function from the car package

|--|

Description

Linear regression using OLS

Usage

```
regression(dataset, dep_var, indep_var, int_var = "", check = "",
  data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
dep_var	The dependent variable in the regression
indep_var	Independent variables in the regression
int_var	Interaction terms to include in the model
check	"standardize" to see standardized coefficient estimates. "stepwise" to apply stepwise selection of variables in estimation
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Value

A list of all variables used in regression as an object of class regression

See Also

```
summary.regression to summarize results plot.regression to plot results predict.regression to generate predictions
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
result <- regression("diamonds", "price", c("carat","clarity"), check = "standardize")</pre>
```

80 rndnames

r	er	e.	at	ρ	r

Repeat simulation

Description

Repeat simulation

Usage

```
repeater(nr = 12, vars = "", grid = "", seed = "", name = "",
    sim = "")
```

Arguments

nr	Number times to repeat the simulation
vars	Variables to use in repeated simulation
grid	Expression to use in grid search for constants
seed	To repeat a simulation with the same randomly generated values enter a number into Random seed input box.
name	To save the simulated data for further analysis specify a name in the Sim name input box. You can then investigate the simulated data by choosing the specified name from the Datasets dropdown in any of the other Data tabs.
sim	Return value from the simulater function

Examples

rndnames

100 random names

Description

100 random names

Usage

```
data(rndnames)
```

Format

A data frame with 100 rows and 2 variables

Details

A list of 100 random names generated by ${\tt listofrandomnames.com}$. Description provided in attr(rndnames,"description")

sample_size 81

	-		
sam	nle	_size	

Sample size calculation

Description

Sample size calculation

Usage

```
sample_size(type = "mean", err_mean = 2, sd_mean = 10, err_prop = 0.1,
p_prop = 0.5, zval = 1.96, incidence = 1, response = 1,
pop_correction = "no", pop_size = 1000000)
```

Arguments

type	Choose "mean" or "proportion"
err_mean	Acceptable Error for Mean
sd_mean	Standard deviation for Mean
err_prop	Acceptable Error for Proportion
p_prop	Initial proportion estimate for Proportion
zval	Z-value
incidence	Incidence rate (i.e., fraction of valid respondents)
response	Response rate
pop_correction	Apply correction for population size ("yes","no")
pop_size	Population size

Details

See http://vnijs.github.io/radiant/quant/sample_size.html for an example in Radiant

Value

A list of variables defined in sample_size as an object of class sample_size

See Also

```
summary.sample_size to summarize results
```

```
result <- sample_size(type = "mean", err_mean = 2, sd_mean = 10)</pre>
```

82 save_factors

	-		
sam	nΙ	1	ng

Simple random sampling

Description

Simple random sampling

Usage

```
sampling(dataset, var, sample_size, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

var The variable to sample from sample_size Number of units to select

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/sampling.html for an example in Radiant

Value

A list of variables defined in sampling as an object of class sampling

See Also

```
summary.sampling to summarize results
```

Examples

```
result <- sampling("rndnames", "Names", 10)</pre>
```

save_factors

Save factor scores to active dataset

Description

Save factor scores to active dataset

Usage

```
save_factors(object)
```

Arguments

object Return value from full_factor

save_membership 83

Details

See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant

Examples

```
result <- full_factor("diamonds",c("price","carat","table"))
save_factors(result)
head(diamonds)</pre>
```

save_membership

Add a cluster membership variable to the active dataset

Description

Add a cluster membership variable to the active dataset

Usage

```
save_membership(object)
```

Arguments

object

Return value from kmeans_clus

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
```

```
result <- kmeans_clus("shopping", vars = c("v1:v6"))
save_membership(result)
head(shopping)</pre>
```

84_rm

sdp_rm

 $Standard\ deviation\ for\ the\ population\ na.rm = TRUE$

Description

Standard deviation for the population na.rm = TRUE

Usage

```
sdp_rm(x)
```

Arguments

Х

Input variable

Value

Standard deviation for the population

Examples

```
sdp_rm(rnorm(100))
```

sd_rm

 $Standard\ deviation\ with\ na.rm = TRUE$

Description

Standard deviation with na.rm = TRUE

Usage

```
sd_rm(x)
```

Arguments

Х

Input variable

Value

Standard deviation

```
sd_rm(rnorm(100))
```

serr 85

serr

Standard error

Description

Standard error

Usage

```
serr(x, na.rm = TRUE)
```

Arguments

x Input variable

na.rm

If TRUE missing values are removed before calculation

Value

Standard error

Examples

```
serr(rnorm(100))
```

set_class

Alias used to set the class for analysis function return

Description

Alias used to set the class for analysis function return

Usage

```
set_class()
```

```
foo <- function(x) x^2 %>% set_class(c("foo", class(.)))
```

86 show_duplicated

shopping

Shopping attitudes

Description

Shopping attitudes

Usage

```
data(shopping)
```

Format

A data frame with 20 rows and 7 variables

Details

Attitudinal data on shopping for 20 consumers. Description provided in attr(shopping, "description")

show_duplicated

Show all rows with duplicated values (not just the first or last)

Description

Show all rows with duplicated values (not just the first or last)

Usage

```
show_duplicated(tbl, ...)
```

Arguments

Data frame to add transformed variables toVariables used to evaluate row uniqueness

Details

If an entire row is duplicated use "duplicated" to show only one of the duplicated rows. When using a subset of variables to establish uniqueness it may be of interest to show all rows that have (some) duplicate elements

```
bind_rows(mtcars, mtcars[c(1,5,7),]) %>%
    show_duplicated(mpg, cyl)
bind_rows(mtcars, mtcars[c(1,5,7),]) %>%
    show_duplicated
```

sig_stars 87

sig_stars	Add stars '***' to a data.frame (from broom's 'tidy' function) based
	on p.values

Description

Add stars '***' to a data.frame (from broom's 'tidy' function) based on p.values

Usage

```
sig_stars(pval)
```

Arguments

pval

Vector of p-values

Details

Add stars to output from broom's 'tidy' function

Value

A vector of stars

Examples

```
sig_stars(c(.0009, .049, .009, .4, .09))
```

simulater

Simulate data for decision analysis

Description

Simulate data for decision analysis

Usage

```
simulater(const = "", norm = "", unif = "", discrete = "", form = "", seed = "", name = "", nr = 1000, dat = NULL)
```

Arguments

A string listing the constants to include in the analysis (e.g., "cost = 3; size = 4")

A string listing the normally distributed random variables to include in the analysis (e.g., "demand 2000 1000" where the first number is the mean and the second is the standard deviation)

A string listing the uniformly distributed random variables to include in the analysis (e.g., "demand 0 1" where the first number is the minimum value and the

second is the maximum value)

88 single_mean

discrete	A string listing the random variables with a discrete distribution to include in the analysis (e.g., "price 5 .3 8 .7" where for each pair of numbers the first is the value and the second the probability
form	A string with the formula to evaluate (e.g., "profit = demand * (price - cost)")
seed	To repeat a simulation with the same randomly generated values enter a number into Random seed input box.
name	To save the simulated data for further analysis specify a name in the Sim name input box. You can then investigate the simulated data by choosing the specified name from the Datasets dropdown in any of the other Data tabs.
nr	Number of simulation runs
dat	Data list from previous simulation. Used by repeater function

Details

See http://vnijs.github.io/radiant/quant/simulater.html for an example in Radiant

Value

A data.frame with the created variables

See Also

```
summary.simulater to summarize results plot.simulater to plot results
```

Examples

single_mean

Compare a sample mean to a population mean

Description

Compare a sample mean to a population mean

Usage

```
single_mean(dataset, var, comp_value = 0, alternative = "two.sided",
  conf_lev = 0.95, data_filter = "")
```

single_prop 89

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

var The variable selected for the mean comparison comp_value Population value to compare to the sample mean

alternative The alternative hypothesis ("two.sided", "greater", or "less")

conf_lev Span for the confidence interval

data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

```
summary.single_mean to summarize results
plot.single_mean to plot results
```

Examples

```
single_mean("diamonds", "price")
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```
single_prop(dataset, var, lev = "", comp_value = 0.5,
   alternative = "two.sided", conf_lev = 0.95, data_filter = "")
```

Arguments

dataset	Dataset name (string).	This can be a dataframe in	the global environment or an

element in an r_data list from Radiant

var The variable selected for the proportion comparison

lev The factor level selected for the proportion comparison

comp_value Population value to compare to the sample proportion

alternative The alternative hypothesis ("two.sided", "greater", or "less")

conf_lev Span of the confidence interval

expression should be a string (e.g., "price > 10000")

90 square

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop

See Also

```
summary.single_prop to summarize the results
plot.single_prop to plot the results
```

Examples

```
result <- single_prop("diamonds","cut")
result <- single_prop("diamonds","clarity", lev = "IF", comp_value = 0.05)</pre>
```

skew

Exporting the skew function from the psych package

Description

Exporting the skew function from the psych package

square

Calculate square of a variable

Description

Calculate square of a variable

Usage

```
square(x)
```

Arguments

Χ

Input variable

Value

x^2

sshh 91

sshh

Hide warnings and messages and return invisible

Description

Hide warnings and messages and return invisible

Usage

```
sshh(...)
```

Arguments

... Inputs to keep quite

Details

Adapted from http://www.onthelambda.com/2014/09/17/fun-with-rprofile-and-customizing-r-startup/

Examples

```
sshh( library(dplyr) )
```

sshhr

Hide warnings and messages and return result

Description

Hide warnings and messages and return result

Usage

```
sshhr(...)
```

Arguments

... Inputs to keep quite

Details

Adapted from http://www.onthelambda.com/2014/09/17/fun-with-rprofile-and-customizing-r-startup/

```
sshhr( library(dplyr) )
```

92 state_init

standardize

Standardize

Description

Standardize

Usage

```
standardize(x)
```

Arguments

Χ

Input variable

Value

If x is a numberic variable return center(x) / mean(x)

state_init

Set initial value for shiny input

Description

Set initial value for shiny input

Usage

```
state_init(inputvar, init = "")
```

Arguments

inputvar

Name shiny input

init

Initial value to use if state value for input not set

Details

Useful for radio button or checkbox

Value

value for inputvar

See Also

```
state_single
state_multiple
copy_from
```

state_multiple 93

Examples

```
r_state <<- list()
state_init("test")
state_init("test",0)
r_state$test <- c("a","b")
state_init("test",0)
shiny::radioButtons("rb", label = "Button:", c("a","b"), selected = state_init("rb", "a"))
r_state$rb <- "b"
shiny::radioButtons("rb", label = "Button:", c("a","b"), selected = state_init("rb", "a"))
rm(r_state)</pre>
```

state_multiple

Set initial values for shiny input from a list of values

Description

Set initial values for shiny input from a list of values

Usage

```
state_multiple(inputvar, vals, init = character(0))
```

Arguments

inputvar Name shiny input

vals Possible values for inputvar

init Initial value to use if state value for input not set

Details

Useful for select input with multiple = TRUE and when you want to use inputs selected for another tool (e.g., pre_factor and full_factor or hier_clus and kmeans_clus in Radiant)

Value

value for inputvar

See Also

```
state_init
state_single
copy_from
```

94 state_single

Examples

```
r_state <- list()
state_multiple("test",1:10,1:3)
r_state$test <- 8:10
state_multiple("test",1:10,1:3)
shiny::selectInput("sim", label = "Select:", c("a","b"),
    selected = state_multiple("sim", c("a","b")), multiple = TRUE)
r_state$sim <- c("a","b")
shiny::selectInput("sim", label = "Select:", c("a","b"),
    selected = state_single("sim", c("a","b")), multiple = TRUE)</pre>
```

state_single

Set initial value for shiny input from a list of values

Description

Set initial value for shiny input from a list of values

Usage

```
state_single(inputvar, vals, init = character(0))
```

Arguments

inputvar Name shiny input

vals Possible values for inputvar

init Initial value to use if state value for input not set

Details

Useful for select input with multiple = FALSE

Value

value for inputvar

See Also

```
state_init
state_multiple
copy_from
```

```
r_state <- list()
state_single("test",1:10,1)
r_state$test <- 8
state_single("test",1:10,1)
shiny::selectInput("si", label = "Select:", c("a","b"), selected = state_single("si"))
r_state$si <- "b"
shiny::selectInput("si", label = "Select:", c("a","b"), selected = state_single("si", "b"))</pre>
```

store_glm 95

store_glm Store residuals or predicted values generated in the glm_reg function

Description

Store residuals or predicted values generated in the glm_reg function

Usage

```
store_glm(object, data = object$dataset, type = "residuals",
  name = paste0(type, "_glm"))
```

Arguments

object Return value from glm_reg or predict.glm_reg
data Dataset name

type Residuals ("residuals") or predictions ("predictions"). For predictions the dataset

name must be provided

name Variable name assigned to the residuals or predicted values

Details

```
See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant
```

Examples

```
result <- glm_reg("titanic", "survived", "pclass", lev = "Yes")
store_glm(result)</pre>
```

store_reg Store residuals or predicted values generated in the regression function

Description

Store residuals or predicted values generated in the regression function

Usage

```
store_reg(object, data = object$dataset, type = "residuals",
  name = paste0(type, "_reg"))
```

Arguments

name

object	Return value from regression or predict.regression
data	Dataset name
type	Residuals ("residuals") or predictions ("predictions"). For predictions the dataset name must be provided

Variable name assigned to the residuals or predicted values

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Examples

```
result <- regression("diamonds", "price", c("carat","clarity"))
store_reg(result)</pre>
```

summary.compare_means Summary method for the compare_means function

Description

Summary method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
summary(object, ...)
```

Arguments

object Return value from compare_means
... further arguments passed to or from other methods

Details

 $See \ http://vnijs.github.io/radiant/quant/compare_means.html \ for \ an \ example \ in \ Radiant$

See Also

```
compare_means to calculate results
plot.compare_means to plot results
```

```
result <- compare_means("diamonds","cut","price")
summary(result)
result <- diamonds %>% tbl_df %>% compare_means("x","y")
summary(result)
result <- diamonds %>% tbl_df %>% group_by(cut) %>% compare_means("x",c("x","y"))
summary(result)
```

summary.compare_props Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
summary(object, ...)
```

Arguments

object Return value from compare_props
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
plot.compare_props to plot results
```

Examples

```
result <- compare_props("titanic", "pclass", "survived")
summary(result)
titanic %>% compare_props("pclass", "survived") %>% summary
```

summary.conjoint

Summary method for the conjoint function

Description

Summary method for the conjoint function

Usage

```
## S3 method for class 'conjoint'
summary(object, mc_diag = FALSE, ...)
```

Arguments

object Return value from conjoint mc_diag Shows multicollinearity diagnostics.

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results plot.conjoint to plot results
```

Examples

```
result <- conjoint("mp3", dep_var = "Rating", indep_var = "Memory:Shape")
summary(result, mc_diag = TRUE)
mp3 %>% conjoint(dep_var = "Rating", indep_var = "Memory:Shape") %>% summary(., mc_diag = TRUE)
```

```
summary.conjoint_profiles
```

Summary method for the conjoint_profiles function

Description

Summary method for the conjoint_profiles function

Usage

```
## S3 method for class 'conjoint_profiles'
summary(object, ...)
```

Arguments

```
object Return value from conjoint_profiles
... further arguments passed to or from other methods.
```

Details

See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant

See Also

conjoint_profiles to calculate results

summary.correlation_ 99

```
summary.correlation\_ Summary method for the correlation function
```

Description

Summary method for the correlation function

Usage

```
## S3 method for class 'correlation_'
summary(object, cutoff = 0, covar = FALSE, ...)
```

Arguments

```
object Return value from correlation

cutoff Show only corrlations larger than the cutoff in absolute value. Default is a cutoff of 0

covar Show the covariance matrix (default is FALSE)

... further arguments passed to or from other methods.
```

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results plot.correlation_ to plot results
```

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
summary(result, cutoff = .3)
diamonds %>% correlation("price:clarity") %>% summary
```

```
summary.cross\_tabs Summary method for the cross\_tabs function
```

Description

Summary method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
summary(object, check = "", ...)
```

100 summary.dtree

Arguments

object Return value from cross_tabs

check Show table(s) for variables var1 and var2. "observed" for the observed frequen-

cies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

. . . further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

See Also

```
cross_tabs to calculate results
plot.cross_tabs to plot results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
summary(result, check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% summary("observed")
```

summary.dtree

Summary method for the dree function

Description

Summary method for the dree function

Usage

```
## S3 method for class 'dtree'
summary(object, ...)
```

Arguments

object Return value from simulater

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/dtree.html for an example in Radiant

See Also

```
dtree to generate the results plot.dtree to plot results
```

summary.explore 101

summary.explore

Summary method for the explore function

Description

Summary method for the explore function

Usage

```
## S3 method for class 'explore'
summary(object, top = "fun", ...)
```

Arguments

object Return value from explore

top The variable (type) to display at the top of the table
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant

See Also

explore to generate summaries

Examples

```
result <- explore("diamonds", "price:x")
summary(result)
result <- explore("diamonds", "price", byvar = "cut", fun = c("length", "skew"))
summary(result)
diamonds %>% explore("price:x") %>% summary
diamonds %>% explore("price", byvar = "cut", fun = c("length", "skew")) %>% summary
```

 $\verb|summary.full_factor|\\$

Summary method for the full_factor function

Description

Summary method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
summary(object, cutoff = 0, fsort = FALSE, ...)
```

102 summary.glm_reg

Arguments

```
object Return value from full_factor

cutoff Show only loadings with (absolute) values above cutoff (default = 0)

fsort Sort factor loadings

... further arguments passed to or from other methods
```

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

See Also

```
full_factor to calculate results plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","depth","table","x"))
summary(result)
summary(result, cutoff = 0, fsort = FALSE)
summary(result, cutoff = 0, fsort = TRUE)
summary(result, cutoff = .5, fsort = TRUE)
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary(cutoff = .5)
```

summary.glm_reg

Summary method for the glm_reg function

Description

Summary method for the glm_reg function

Usage

```
## $3 method for class 'glm_reg'
summary(object, sum_check = "", conf_lev = 0.95,
  test_var = "", ...)
```

Arguments

object	Return value from glm_reg
sum_check	Optional output or estimation parameters. "rsme" to show the root mean squared error. "sumsquares" to show the sum of squares table. "vif" to show multicollinearity diagnostics. "confint" to show coefficient confidence interval estimates.
conf_lev	Confidence level to use for coefficient and odds confidence intervals (.95 is the default)
test_var	Variables to evaluate in model comparison (i.e., a competing models Chi-squared test)
	further arguments passed to or from other methods

summary.hier_clus 103

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate the results
plot.glm_reg to plot the results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", "pclass", lev = "Yes")
summary(result, test_var = "pclass")
res <- glm_reg("titanic", "survived", c("pclass", "sex"), int_var="pclass:sex", lev="Yes")
summary(res, sum_check = c("vif", "confint", "odds"))
titanic %>% glm_reg("survived", c("pclass", "sex", "age"), lev = "Yes") %>% summary("vif")
```

summary.hier_clus

Summary method for the hier_clus function

Description

Summary method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
summary(object, ...)
```

Arguments

object Return value from hier_clus
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

```
result <- hier_clus("shopping", vars = c("v1:v6"))
summary(result)</pre>
```

104 summary.mds

summary.kmeans_clus

Summary method for kmeans_clus

Description

Summary method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
summary(object, ...)
```

Arguments

object Return value from kmeans_clus

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

See Also

```
kmeans_clus to generate results
plot.kmeans_clus to plot results
save_membership to add cluster membership to the selected dataset
```

Examples

```
result <- kmeans_clus("shopping", vars = c("v1:v6"))
summary(result)
shopping %>% kmeans_clus(vars = c("v1:v6"), nr_clus = 3) %>% summary
```

summary.mds

Summary method for the mds function

Description

Summary method for the mds function

Usage

```
## S3 method for class 'mds'
summary(object, dec = 1, ...)
```

summary.pivotr 105

Arguments

object Return value from mds

dec Rounding to use for output (default = 0). +1 used for coordinates. +2 used for

stress measure. Not currently accessible in Radiant

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results plot.mds to plot results
```

Examples

```
result <- mds("city", "from", "to", "distance")
summary(result)
summary(result, dec = 2)
city %>% mds("from", "to", "distance") %>% summary
```

summary.pivotr

Summary method for pivotr

Description

Summary method for pivotr

Usage

```
## S3 method for class 'pivotr'
summary(object, chi2 = FALSE, shiny = FALSE, ...)
```

Arguments

object Return value from pivotr

chi2 If TRUE calculate the chi-square statistic for the (pivot) table

shiny Did the function call originate inside a shiny app

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/base/pivotr.html for an example in Radiant

See Also

```
pivotr to create the pivot-table using dplyr
```

106 summary.pmap

Examples

```
pivotr("diamonds", cvars = "cut") %>% summary
pivotr("diamonds", cvars = "cut") %>% summary
pivotr("diamonds", cvars = "cut:clarity", nvar = "price") %>% summary
```

summary.pmap

Summary method for the pmap function

Description

Summary method for the pmap function

Usage

```
## S3 method for class 'pmap'
summary(object, cutoff = 0, ...)
```

Arguments

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

See Also

```
pmap to calculate results
plot.pmap to plot results
```

```
result <- pmap("computer","brand","high_end:business")
summary(result)
summary(result, cutoff = .3)
result <- pmap("computer","brand","high_end:dated", pref = c("innovative","business"))
summary(result)
computer %>% pmap("brand","high_end:dated", pref = c("innovative","business")) %>%
summary
```

summary.pre_factor 107

summary.pre_factor

Summary method for the pre_factor function

Description

Summary method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
summary(object, ...)
```

Arguments

object Return value from pre_factor

... further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/marketing/pre_factor.html for an example in Radiant
```

See Also

```
pre_factor to calculate results
plot.pre_factor to plot results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))
summary(result)
diamonds %>% pre_factor(c("price","carat","table")) %>% summary
result <- pre_factor("computer","high_end:business")
summary(result)</pre>
```

summary.prob_binom

Summary method for the probability calculator function

Description

Summary method for the probability calculator function

Usage

```
## S3 method for class 'prob_binom'
summary(object, type = "values", ...)
```

108 summary.prob_unif

Arguments

object Return value from prob_binom

type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

summary.prob_norm

Summary method for the probability calculator function (normal)

Description

Summary method for the probability calculator function (normal)

Usage

```
## S3 method for class 'prob_norm'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_norm

type Probabilities or values

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

summary.prob_unif

Summary method for the probability calculator function (normal)

Description

Summary method for the probability calculator function (normal)

Usage

```
## S3 method for class 'prob_unif'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_norm

type Probabilities or values

... further arguments passed to or from other methods

summary.regression 109

Details

See http://vnijs.github.io/radiant/quant/probability.html for an example in Radiant

summary.regression

Summary method for the regression function

Description

Summary method for the regression function

Usage

```
## $3 method for class 'regression'
summary(object, sum_check = "", conf_lev = 0.95,
  test_var = "", ...)
```

Arguments

object	Return value from regression
sum_check	Optional output or estimation parameters. "rsme" to show the root mean squared error. "sumsquares" to show the sum of squares table. "vif" to show multicollinearity diagnostics. "confint" to show coefficient confidence interval estimates.
conf_lev	Confidence level used to estimate confidence intervals (.95 is the default)
test_var	Variables to evaluate in model comparison (i.e., a competing models F-test)
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the results
plot.regression to plot results
predict.regression to generate predictions
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
summary(result, sum_check = c("rmse","sumsquares","vif","confint"), test_var = "clarity")
result <- regression("shopping", "v1", c("v2","v3"))
summary(result, test_var = "v2")
shopping %>% regression("v1", "v2:v6") %>% summary
```

110 summary.sample_size

summary.repeater

Summarize repeated simulation

Description

Summarize repeated simulation

Usage

```
## S3 method for class 'repeater'
summary(object, sum_vars = "", byvar = "",
fun = c("sum_rm", "mean_rm", "sd_rm"), ...)
```

Arguments

object Return value from repeater

sum_vars (Numerical) variables to summaries

byvar Variable(s) to group data by before summarizing

fun Functions to use for summarizing

... further arguments passed to or from other methods

summary.sample_size

Summary method for the sample_size function

Description

Summary method for the sample_size function

Usage

```
## S3 method for class 'sample_size'
summary(object, ...)
```

Arguments

object Return value from sample_size

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/sample_size for an example in Radiant

See Also

```
sample_size to generate the results
```

```
result <- sample_size(type = "mean", err_mean = 2, sd_mean = 10)
summary(result)</pre>
```

summary.sampling 111

summary.sampling

Summary method for the sampling function

Description

Summary method for the sampling function

Usage

```
## S3 method for class 'sampling'
summary(object, print_sf = TRUE, ...)
```

Arguments

object Return value from sampling

print_sf Print full sampling frame. Default is TRUE

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/sampling for an example in Radiant

See Also

sampling to generate the results

Examples

```
set.seed(1234)
result <- sampling("rndnames", "Names", 10)
summary(result)</pre>
```

summary.simulater

Summary method for the simulater function

Description

Summary method for the simulater function

Usage

```
## S3 method for class 'simulater'
summary(object, ...)
```

Arguments

object Return value from simulater

... further arguments passed to or from other methods

112 summary.single_mean

Details

See http://vnijs.github.io/radiant/quant/simulater.html for an example in Radiant

See Also

```
simulater to generate the results
plot.simulater to plot results
```

Examples

```
result <- simulater(norm = "demand 2000 1000")</pre>
summary(result)
```

summary.single_mean

Summary method for the single_mean function

Description

Summary method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
summary(object, ...)
```

Arguments

. . .

object Return value from single_mean further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the results
plot.single_mean to plot results
```

```
result <- single_mean("diamonds","price")</pre>
summary(result)
diamonds %>% single_mean("price") %>% summary
```

summary.single_prop 113

summary.single_prop

Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
summary(object, ...)
```

Arguments

object Return value from single_prop

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the results
plot.single_prop to plot the results
```

Examples

```
result <- single_prop("diamonds","clarity", lev = "IF", comp_value = 0.05)
summary(result)
diamonds %>% single_prop("clarity", lev = "IF", comp_value = 0.05) %>% summary
```

 sum_rm

 $Sum\ with\ na.rm = TRUE$

Description

Sum with na.rm = TRUE

Usage

 $sum_rm(x)$

Arguments

Χ

Input variable

Value

Sum of input values

114 test_specs

Examples

```
sum_rm(1:200)
```

superheroes

Super heroes

Description

Super heroes

Usage

data(superheroes)

Format

A data frame with 7 rows and 4 variables

Details

List of super heroes from http://stat545-ubc.github.io/bit001_dplyr-cheatsheet.html. The dataset is used to illustrate data merging / joining. Description provided in attr(superheroes, "description")

test_specs

Add interaction terms to list of test variables if needed

Description

Add interaction terms to list of test variables if needed

Usage

```
test_specs(test_var, int_var)
```

Arguments

test_var List of variables to use for testing for regression or glm_reg

int_var Interaction terms specified

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Value

A vector of variables names to test

```
test_specs("a", c("a:b", "b:c"))
```

the_table 115

the_table

Function to calculate the PW and IW table for conjoint

Description

Function to calculate the PW and IW table for conjoint

Usage

```
the_table(model, dat, indep_var)
```

Arguments

model Tidied model results (broom) output from conjoint passed on by summary.conjoint

dat Conjoint data

indep_var Independent variables used in the conjoint regression

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results
summary.conjoint to summarize results
plot.conjoint to plot results
```

Examples

```
result <- conjoint(dataset = "mp3", dep_var = "Rating", indep_var = "Memory:Shape")
the_table(result$model, result$dat, result$indep_var)</pre>
```

titanic

Survival data for the Titanic

Description

Survival data for the Titanic

Usage

```
data(titanic)
```

Format

A data frame with 1043 rows and 10 variables

Details

Survival data for the Titanic. Description provided in attr(titanic, "description")

116 toothpaste

titanic_pred

Predict survival

Description

Predict survival

Usage

data(titanic_pred)

Format

A data frame with 6 rows and 3 variables

Details

Prediction data.frame for glm_reg based on the Titanic dataset

toothpaste

Toothpaste attitudes

Description

Toothpaste attitudes

Usage

data(toothpaste)

Format

A data frame with 60 rows and 10 variables

Details

Attitudinal data on toothpaste for 60 consumers. Description provided in attr(toothpaste, "description")

varp_rm 117

varp_rm

Variance for the population na.rm = TRUE

Description

Variance for the population na.rm = TRUE

Usage

```
varp_rm(x)
```

Arguments

Х

Input variable

Value

Variance for the population

Examples

```
varp_rm(rnorm(100))
```

var_check

Check if main effects for all interaction effects are included in the model If ':' is used to select a range _indep_var_ is updated

Description

Check if main effects for all interaction effects are included in the model If ':' is used to select a range _indep_var_ is updated

Usage

```
var_check(iv, cn, intv = "")
```

Arguments

iv List of independent variables provided to _regression_ or _glm_

cn Column names for all independent variables in _dat_

intv Interaction terms specified

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Value

'vars' is a vector of right-hand side variables, possibly with interactions, 'iv' is the list of independent variables, and into are interaction terms

118 viewdata

Examples

```
var_check("a:d", c("a","b","c","d"))
var_check(c("a", "b"), c("a", "b"), "a:c")
```

var_rm

 $Variance\ with\ na.rm = TRUE$

Description

Variance with na.rm = TRUE

Usage

```
var_rm(x)
```

Arguments

Х

Input variable

Value

Variance

Examples

```
var_rm(rnorm(100))
```

viewdata

View data

Description

View data

Usage

```
viewdata(dataset, vars = "", filt = "", rows = NULL, na.rm = FALSE)
```

Arguments

dataset	Name of the dataframe to change
vars	Variables to show (default is all)
filt	Filter to apply to the specified dataset. For example "price > 10000 " if dataset is "diamonds" (default is "")
rows	Select rows in the specified dataset. For example "1:10" for the first 10 rows or "n()-10:n()" for the last 10 rows (default is NULL)
na.rm	Remove rows with missing values (default is FALSE)

visualize 119

Details

View, search, sort, etc. your data

Examples

```
if (interactive()) {
viewdata(mtcars)
viewdata("mtcars")
mtcars %>% viewdata
}
```

visualize

Visualize data using ggplot2 http://docs.ggplot2.org/current/

Description

Visualize data using ggplot2 http://docs.ggplot2.org/current/

Usage

```
visualize(dataset, xvar, yvar = "", type = "hist", facet_row = ".",
facet_col = ".", color = "none", fill = "none", bins = 10,
smooth = 1, check = "", axes = "", alpha = 0.5, data_filter = "",
shiny = FALSE, custom = FALSE)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
xvar	One or more variables to display along the X-axis of the plot
yvar	Variable to display along the Y-axis of the plot (default = "none")
type	Type of plot to create. One of Histogram ('hist'), Density ('density'), Scatter ('scatter'), Line ('line'), Bar ('bar'), or Box-plot ('box')
facet_row	Create vertically arranged subplots for each level of the selected factor variable
facet_col	Create horizontally arranged subplots for each level of the selected factor variable
color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different color
fill	Group bar, histogram, and density plots by group, each with a different color
bins	Number of bins used for a histogram (1 - 50)
smooth	Adjust the flexibility of the loess line for scatter plots (not accessible in Radiant)
check	Add a regression line ("line"), a loess line ("loess"), or jitter ("jitter") to a scatter plot
axes	Flip the axes in a plot ("flip") or apply a log transformation (base e) to the y-axis ("log_y") or the x-axis ("log_x")
alpha	Opacity for plot elements (0 to 1)
data_filter	Expression used to filter the dataset. This should be a string (e.g., "price $>$ 10000")

120 win_launcher

shiny Logical (TRUE, FALSE) to indicate if the function call originate inside a shiny

app

custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects)

should be returned. This opion can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org/

for options.

Details

See http://vnijs.github.io/radiant/base/visualize.html for an example in Radiant

Value

Generated plots

Examples

```
visualize("diamonds", "carat", "price", type = "scatter", check = "loess")
visualize("diamonds", "price:x", type = "hist")
visualize("diamonds", "carat:x", yvar = "price", type = "scatter")
visualize(dataset = "diamonds", yvar = "price", xvar = "carat", type = "scatter", custom = TRUE) +
    ggtitle("A scatterplot") + xlab("price in $")
visualize(dataset = "diamonds", xvar = "price:carat", custom = TRUE) %>%
{.[[1]] + ggtitle("A histogram") + xlab("price in $")}
diamonds %>% visualize(c("price", "carat", "depth"), type = "density")
```

win_launcher

Create a launcher and updater for Windows (.bat)

Description

Create a launcher and updater for Windows (.bat)

Usage

```
win_launcher(app = c("analytics", "marketing", "quant", "base"))
```

Arguments

app App to run when the desktop icon is double-clicked ("analytics", "marketing", "quant", or "base"). Default is "analytics"

Details

On Windows a file named 'radiant.bat' and one named 'update_radiant.bat' will be put on the desktop. Double-click the file to launch the specified Radiant app or update Radiant to the latest version

win_launcher 121

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Windows") {
      win_launcher()
      fn <- paste0(Sys.getenv("USERPROFILE") ,"/Desktop/radiant.bat")
      if (!file.exists(fn))
           stop("Windows launcher not created")
      else
           unlink(fn)
   }
}</pre>
```

Index

*Topic datasets	copy_all, 22
avengers, 14	copy_from, 22, 92-94
city, 16	correlation, 23, 56, 99
	cross_tabs, 24, 57, 100
computer, 20	
diamonds, 26	cv, 25
mp3, 49	decile_split, 25
newspaper, 50	diamonds, 26
publishers, 78	does_vary, 26
rndnames, 80	dtree, 27, 28, 58, 100
shopping, 86	dtree_parser, 27
superheroes, 114	uti ee_pai sei , 27
titanic, 115	explore, 28, 30, 43, 101
titanic_pred, 116	CXP101 C, 20, 30, 43, 101
toothpaste, 116	factorizer, 29
an almost a f	ff_design, 29
as_character,5	filterdata, 30
as_distance, 6	flip, 30
as_dmy, 6	full_factor, 31, 58, 59, 82, 102
as_dmy_hm, 7	1011_100001, 31, 30, 32, 62, 102
as_dmy_hms, 7	getclass, 32
as_duration, 8	getdata, 32
as_factor, 8	getsummary, 33
as_hm, 9	glm_reg, 33, 60, 61, 73, 95, 102, 103
as_hms, 9	gim_1 cg, 33, 00, 01, 73, 33, 102, 103
as_integer, 10	hier_clus, 34, 61, 103
as_mdy, 10	
as_mdy_hm, 11	inverse, 35
as_mdy_hms, 12	is_empty, 36
as_numeric, 12	is_string, 36
as_ymd, 13	iterms, 37
as_ymd_hm, 13	
as_ymd_hms, 14	kmeans_clus, 37, 62, 83, 104
avengers, 14	kurtosi, 38
center, 15	1 1 20
changedata, 15	launcher, 39
_	lin_launcher, 39, 39
city, 16 clean_loadings, 16	loadcsv, 40
- '	loadcsv_url, 41
combinedata, 17	loadrda_url,41
compare_means, 18, 54, 96	1
compare_props, 19, 55, 97	mac_launcher, 39, 42
computer, 20	make_dt, 42
conjoint, 20, 56, 97, 98, 115	make_expl, 30, 43
conjoint_profiles, 21, 29, 98	make_funs, 44

INDEX 123

make_train,44	radiant, 78
max_rm, 45	radiant-package (radiant), 78
mds, 45, <i>63</i> , <i>105</i>	recode, 79
mean_rm, 46	regression, 67-69, 74, 79, 95, 109
median_rm, 47	repeater, 70, 80, 110
median_split, 47	rndnames, 80
min_rm, 48	
mode_rm, 48	sample_size, 81, 110
mp3, 49	sampling, 82, 111
mutate_each, 49	save_factors, 82
	save_membership, 38, 62, 83, 104
n_missing, 51	sd_rm, 84
newspaper, 50	sdp_rm, 84
normalize, 50	serr, 85
05.51	set_class, 85
p05, 51	shopping, 86
p25, 52	show_duplicated, 86
p75, 52	sig_stars,87
p95, 53	simulater, 70, 87, 100, 111, 112
pivotr, 43, 44, 53, 64, 105	single_mean, 70, 71, 88, 112
plot.compare_means, 18, 54, 96	single_prop, 72, 89, 113
plot.compare_props, 19, 55, 97	skew, 90
plot.conjoint, 21, 55, 98, 115	square, 90
plot.correlation_, 23 , 56 , 99	sshh, 91
plot.cross_tabs, 24, 57, 100	sshhr, 91
plot.dtree, 27, 28, 58, 100	standardize, 92
plot.full_factor, 31, 58, 59, 102	state_init, 92, 93, 94
plot.glm_predict, 34, 59, 61, 73, 103	state_multiple, <i>92</i> , <i>93</i> , <i>94</i>
plot.glm_reg, 34, 60, 60, 61, 73, 103	state_single, <i>92</i> , <i>93</i> , 94
plot.hier_clus, <i>35</i> , <i>61</i> , <i>61</i> , <i>103</i>	store_glm, 95
plot.kmeans_clus, 38, 62, 83, 104	store_reg, 95
plot.mds, 46, 63, 105	sum_rm, 113
plot.pivotr, 63	$summary.compare_means, 18, 54, 96$
plot.pmap, 64, 73, 106	$summary.compare_props, 19, 55, 97$
plot.pre_factor, 65, 75, 107	summary.conjoint, 21, 56, 97, 115
plot.prob_binom,66	summary.conjoint_profiles, 21, 29, 98
plot.prob_norm, 66	summary.correlation_, 23 , 56 , 99
plot.prob_unif, 67	summary.cross_tabs, 24, 57, 99
plot.reg_predict, 68	summary.dtree, 27, 28, 58, 100
plot.regression, 67, 69, 74, 79, 109	summary.explore, 28, 101
plot.repeater, 69	summary.full_factor, 31, 101
plot.simulater, 70, 88, 112	summary.glm_reg, 34, 60, 73, 102
plot.single_mean, 71, 89, 112	summary.hier_clus, 35, 61, 103, 103
plot.single_prop, 71, 90, 113	summary.kmeans_clus, 38, 62, 83, 104
pmap, 64, 65, 72, 106	summary.mds, 46, 63, 104
pre_factor, 65, 75, 107	summary.pivotr, 43, 44, 64, 105
predict.glm_reg, 34, 59-61, 73, 95, 103	summary.pmap, 65, 73, 106
predict.regression, 68, 69, 74, 79, 95, 109	summary.pre_factor, 65, 75, 107
print.gtable, 75	summary.prob_binom, 107
prob_binom, 66, 76, 108	summary.prob_norm, 108
prob_norm, 66, 67, 77, 108	summary.prob_unif, 108
prob_unif, 77	summary.regression, 68, 69, 74, 79, 109
publishers, 78	summary.repeater, 110
	• • •

124 INDEX

```
summary.sample_size, 81, 110
\verb|summary.sampling|, 82, 111|
summary.simulater, 88, 111
summary.single_mean, 70, 71, 89, 112
summary.single_prop, 72, 90, 113
superheroes, 114
test_specs, 114
the_table, 115
titanic, 115
titanic_pred, 116
toothpaste, 116
var_check, 117
var_rm, 118
varp_rm, 117
viewdata, 118
visualize, 119
win_launcher, 39, 120
```