

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame final, 2^a parte

18 de Janeiro de 2010	Duração: 1 hora e 30 minuto					
Nome:						
Curso:	N° folhas suplementares:					
Uma desistência nesta 2 ^a parte do Exame fir Caso pretenda desistir assine a seguinte decl	nal corresponde a uma desistência ao Exame final. aração.					
Doclaro que desiste						

Questão	1a	1b	1c	2a	2b	2c	2d	3a	3b	total
Cotação	10	15	15	12	13	15	15	15	10	120
Classificação										

Classificação	
total	
valores	

IMPORTANTE: Justifique resumidamente todas as suas afirmações, indique os cálculos que efectuou e explicite a sua resposta.

Os alunos que obtiverem uma classificação (efectiva, sem arredondamentos) inferior a 3,0 valores, dos 12 valores correspondentes à cotação desta segunda parte do exame final, ficam automaticamente reprovados no exame final.

- 1. Considere os vectores linearmente independentes X = (1, 0, 1), Y = (1, 1, 1) e Z = (1, -1, 0).
 - (a) Considere a matriz A cujas colunas são os vectores $X, Y \in Z$. Indique a característica da matriz A, car(A).
 - (b) Considere o subespaço vectorial S gerado pelos vectores X e Y, S = < X, Y >. Determine S e indique a sua dimensão.
 - (c) Calcule a projecção ortogonal do vector W=(0,0,3) sobre o subespaço vectorial \mathcal{P} gerado pelos vectores Y e Z, $\mathcal{P}=< Y, Z>$.
- 2. Considere a transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^2$ dada por L(x,y,z) = (2x,2y) para todos os $(x,y,z) \in \mathbb{R}^3$.
 - (a) Determine uma base para o núcleo de L, ker(L).
 - (b) L é injectiva? E sobrejectiva? Justifique.
 - (c) Encontre a matriz A da transformação L relativamente às bases S = ((1, 1, 0), (1, 0, 1), (0, 1, 1)) e T = ((1, 1), (0, 1)).
 - (d) Usando a matriz A (obtida na alínea anterior), calcule L(2,0,0). (NOTA: Se não determinou a matriz A na alínea (c), suponha que A é uma matriz com todos os seus elementos iguais a 2.)

- 3. Seja A uma matriz **simétrica** 3×3 com valores próprios 1 e -3. Sabe-se que (1,0,0) e (0,1,1) são vectores próprios associados ao valor próprio 1 e que (0,-1,1) é um vector próprio associado ao valor próprio -3.
 - (a) Diga se A é diagonalizável e, se possível, determine a matriz A.
 - (b) Verifique se a quádrica $x^2-y^2-z^2+4yz-1=0$ é um elipsóide, um hiperbolóide ou um parabolóide.