R09: Summarizing data with tidyverse

Nicky Wakim 2024-11-20

Where are we?

Data	Probability	Sampling Variability, and Statistical						
Collecting data	Probability rules	Inference Sampling distributions	One sample t-test	3+ independent samples	Simple linear regression / correlation			
Categorical vs. Numeric	Independence, conditional	Central Limit	2 sample tests: paired and independent	Power and sample size	Non-parametric tests			
variab	Random variables and probability	Theorem	Inference for categorical data/outcomes					
Summary statistics	distributions	Confidence	One proportion	Fisher's exact	Non-parametric			
Statistics	Linear combinations	Intervals	test	test	tests			
Data visualization	Binomial, Normal, and Poisson	Hypothesis tests	Chi-squared test	2 proportion test	Power and sample size			
R Basics	Reproducibility	Quarto Pack	ages Data visualizatio	Data wrangling	R Projects			

What is the tidyverse? (revisited)

The **tidyverse** is a collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

- ggplot2 data visualisation <
- **dplyr** data manipulation $\sqrt{}$
- tidyr tidy data 🗸
- readr read rectangular data
- purrr functional programming
- **tibble** modern data frames
- **stringr** string manipulation
- forcats factors
- and many more ...

Tidy data (long data)

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Pipe operator (magrittr)

• The pipe operator (%>%) allows us to step through sequential functions in the same way we follow if-then statements or steps from instructions

I want to find my keys, then start my car, then drive to work, then park my car.

Nested

Piped

```
1 find("keys") %>%
2 start_car() %>%
3 drive(to = "work") %>%
4 park()
```

Using summarize()

group_by (): group by one or more variables

- What if I want to quickly look at group differences?
- It will not change how the data look, but changes the actions of following functions

I want to group my data by sex assigned at birth.

```
R work
PD & wlout
PD
Shumarize har
```

```
1 dds.discr5 = dds.discr2 %>%
      group by (SAB)
    glimpse(dds.discr5)
Rows: 1,000
Columns: 7
Groups: SAB [2]
$ id
              <int> 10210, 10409, 10486, 10538, 10568, 10690, 10711, 10778, 1...
$ age.cohort <fct> 13-17, 22-50, 0-5, 18-21, 13-17, 13-17, 13-17, 13-17, 13-...
$ age
               <int> 17, 37, 3, 19, 13, 15, 13, 17, 14, 13, 13, 14, 15, 17, 20...
$ SAB
               <fct> Female, Male, Male, Female, Male, Female, Female, Male, F...
$ expenditures <int> 2113, 41924, 1454, 6400, 4412, 4566, 3915, 3873, 5021, 28...
               <fct> White not Hispanic, White not Hispanic, Hispanic, Hispani...
$ R E
$ exp to age
              <dbl> 124.2941, 1133.0811, 484.6667, 336.8421, 339.3846, 304.40...
```

• Let's see how the groups change something like the summarize() function in the next slide

summarize(): summarize your data or grouped data into one row

- What if I want to calculate specific descriptive statistics for my variables?
- This function is often best used with group_by ()
- If only presenting the summaries, functions like tbl_summary() is better
- summarize() creates a new data frame, which means you can plot and manipulate the summarized data

Over whole sample:

Grouped by sex assigned at birth:

Using get_summary_stats()

get_summary_stats() from rstatix package

```
1 dds.discr2 %>% get summary_stats()
# A tibble: 4 \times 13
  variable
                          max median
               n
                    min
                                         q1
                                                 q3
                                                       iqr
                                                              mad
                                                                     mean
                                                                               sd
           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
  <fct>
                                                                    <dbl>
                                                                            <dbl>
1 id
            1000 1.02e4 99898 55384. 31809. 76135. 44326
                                                           3.27e4 54663. 25644.
                                         12
            1000 0
                           95
                                 18
                                                26
                                                       14
                                                           1.04e1
                                                                     22.8
                                                                             18.5
2 age
                                       2899. 37713. 34814 7.76e3 18066.
3 expendi... 1000 2.22e2 75098 7026
                                                                          19543.
4 exp to ... 1000 2.76e1
                          Inf
                                462. 274.
                                               938.
                                                      664. 3.54e2
                                                                    Inf
                                                                            NaN
# i 2 more variables: se <dbl>, ci <dbl>
  1 dds.discr2 %>%
       group by (R E) %>%
       get summary stats(expenditures, type = "common")
# A tibble . 8 × 11
            variable
                             min
                                   max median
  R E
                         n
                                                  iqr
                                                        mean
                                                                 sd
                                                                        se
                                                                               ci
  <fct>
            <fct>
                     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 American... expendi...
                          4
                            3726 58392 41818. 34085. 36438. 25694. 12847. 40885.
                             374 75098 9369
2 Asian
            expendi...
                      129
                                               30892
                                                      18392. 19209.
                                                                    1691. 3346.
3 Black
            expendi...
                        59
                             240 60808
                                        8687
                                               37987
                                                      20885. 20549.
                                                                     2675.
                                                                            5355.
4 Hispanic
            expendi...
                      376
                             222 65581
                                        3952
                                                7961. 11066. 15630.
                                                                    806.
                                                                           1585.
5 Multi Ra... expendi...
                        26
                             669 38619
                                        2622
                                                2060. 4457.
                                                              7332.
                                                                    1438. 2962.
6 Native H... expendi...
                         3 37479 50141 40727
                                                6331 42782.
                                                              6576.
                                                                    3797. 16337.
            expendi...
                            2018 4615 3316.
                                                1298. 3316.
                                                              1836.
7 Other
                                                                     1298. 16499.
            aae
```

How to force all output to be shown? (1/2)

Use kable () from the knitr package.

1 dds.discr2 %>% get_summary_stats() %>% kable() variable min median **q1** q3 igr n max mad id 1000 10210.000 99898 55384.500 31808.750 76134.750 44326.000 32734.325 1000 0.000 95 18.000 12.000 26.000 14.000 10.378 age expenditures 222.000 75098 7026.000 2898.750 37712.750 34814.000 7760.670 1000 1000 27.571 Inf 461.752 273.881 938.125 664.244 353.971 exp_to_age

How to force all output to be shown? knitr (2/2)

Use kable () from the knitr package.

```
1 dds.discr2 %>%
2 group_by(R_E) %>%
3 get_summary_stats(expenditures, type = "common") %>%
4 kable()
```

R_E	variable	n	min	max	median	iqr	mean	sd	S
American Indian	expenditures	4	3726	58392	41817.5	34085.25	36438.250	25693.912	12846.95
Asian	expenditures	129	374	75098	9369.0	30892.00	18392.372	19209.225	1691.27
Black	expenditures	59	240	60808	8687.0	37987.00	20884.593	20549.274	2675.28
Hispanic	expenditures	376	222	65581	3952.0	7961.25	11065.569	15629.847	806.04
Multi Race	expenditures	26	669	38619	2622.0	2059.75	4456.731	7332.135	1437.95
Native Hawaiian	expenditures	3	37479	50141	40727.0	6331.00	42782.333	6576.462	3796.92
Other	expenditures	2	2018	4615	3316.5	1298.50	3316.500	1836.356	1298.50

R_E	variable	n	min	max	median	iqr	mean	sd	S
White not Hispanic	expenditures	401	340	68890	15718.0	39157.00	24697.549	20604.376	1028.93

Making a Table 1

Table 1 example

- Often, research studies will show a table with all the summary statistics (lovingly called "Table 1")
- Basic Table 1 will show all variables with:
 - Mean and SD for the numeric variables
 - n(%) for categorical variables

Are We on the Same Page?: A Cross-Sectional Study of Patient-Clinician Goal Concordance in Rheumatoid Arthritis J Barton et al.

Arthritis Care & Research.

2021 Sep 27

https://pubmed.ncbi.nlm.nih.gov/34569172/

Table 1. Patient characteristics, overall and by concordance

		Total Discordant Concordant			p-value
\sim		N=204	N=40	N=164	
Site, n (%)	OHSU	122 (52.7%)	26 (65.0%)	96 (62.2%)	0.86
	VA	76 (37.3%)	14 (35.0%)	62 (37.8%)	
Gender, n (%)	Male	85 (41.7%)	18 (45.0%)	67 (40.9%)	0.72
	Female	119 (58.3%)	22 (55.0%)	97 (59.1%)	
Age (years), mean (SD)		57.2 (14.2)	58.2 (15.1)	56.9 (14.0)	0.62
Language, n (%)	English	168 (84.4%)	35 (92.1%)	133 (82.6%)	0.21
	Spanish	31 (15.6%)	3 (7.9%)	28 (17.4%)	
Limited English language proficiency, n (%)		30 (15.1%)	3 (7.9%)	27 (16.8%)	0.17
Coupled, n (%)		110 (57.9%)	22 (61.1%)	88 (57.1%)	0.71
Education, n (%)	High school or less	60 (31.6%)	15 (40.5%)	45 (29.4%)	0.24
	Some college or more	130 (68.4%)	22 (59.5%)	108 (70.6%)	
Income, >\$40,000, n (%)	Less than \$40,000	85 (45.5%)	12 (33.3%)	73 (48.3%)	0.14
	Greater than \$40,000	102 (54.5%)	24 (66.7%)	78 (51.7%)	
People in household, median (IQR)		2 (2-4)	2 (2-3)	2 (2-4)	0.92
Race/Ethnicity, n (%)	White	123 (68.3%)	25 (78.1%)	98 (66.2%)	0.62
	Black	6 (3.3%)	0 (0.0%)	6 (4.1%)	
	Latinx/Hispanic	39 (21.7%)	6 (18.8%)	33 (22.3%)	
	Other	12 (6.7%)	1 (3.1%)	11 (7.4%)	
Limited health literacy, n (%)		55 (28.6%)	13 (35.1%)	42 (27.1%)	0.42
Disease duration (years), median (IQR)		8 (4-16)	13 (5-21)	7 (4-15)	0.039
Number of medications, median (IQR)		1 (1-2)	1 (0-2)	1 (1-2)	0.10
Depressive symptoms, n (%)		38 (20.8%)	3 (8.1%)	35 (24.0%)	0.040
PTSD, n (%)		13 (7.1%)	2 (5.6%)	11 (7.5%)	1.00
Self-efficacy score, mean (SD)		6.3 (2.1)	6.3 (2.1)	6.3 (2.1)	0.96
Trust in Physician, n (%)		106 (53.8%)	19 (51.4%)	87 (%)	0.74
Disease activity score (CDAI), mean (SD)		12.8 (10.5)	10.5 (9.7)	13.2 (10.8)	0.21
Medication Adherence, n (%)	High	63 (33.5%)	7 (20.6%)	56 (36.4%)	0.11
	Low/Medium	125 (66.5%)	27 (79.4%)	98 (63.6%)	

Abbreviations: IQR, interquartile range; PTSD, post-traumatic stress disorder; SD, standard deviation; OHSU, Oregon Health & Science University; VA, Veterans Affairs; CDAI, Clinical Disease Activity Index

tbl_summary(): table summary(1/2)

• What if I want one of those fancy summary tables that are at the top of most research articles?

```
1 library(gtsummary)
2 tbl_summary(dds.discr2)
```

Characteristic	$N = 1,000^{\circ}$
id	55,385 (31,759, 76,205)
age.cohort	
0-5	82 (8.2%)
6-12	175 (18%)
13-17	212 (21%)
18-21	199 (20%)
22-50	226 (23%)
51+	106 (11%)
age	18 (12, 26)
SAB	
Female	503 (50%)
Male	497 (50%)
expenditures	7,026 (2,898, 37,718)
R_E	
American Indian	4 (0.4%)
Asian	129 (13%)
Black	59 (5.9%)
Hispanic	376 (38%)
Multi Race	26 (2.6%)
Native Hawaiian	3 (0.3%)
Other	2 (0.2%)
White not Hispanic	401 (40%)
exp_to_age	462 (273, 938)
¹ Median (Q1, Q3); n (%)	

tbl_summary(): table summary(2/2)

• Let's make this more presentable

Characteristic	N = 1,000	
Age	23 (18)	mean (
Sex Assigned at Birth		
Female	503 (50%)	n (%)
Male	497 (50%)	
expenditures	18,066 (19,543)	
Race/Ethnicity		
American Indian	4 (0.4%)	
Asian	129 (13%)	
Black	59 (5.9%)	
Hispanic	376 (38%)	
Multi Race	26 (2.6%)	
Native Hawaiian	3 (0.3%)	
Other	2 (0.2%)	
White not Hispanic	401 (40%)	

Resources

dplyr resources

• More dpylr functions to reference!

Additional details and examples are available in the vignettes:

- column-wise operations vignette
- row-wise operations vignette

and the dplyr 1.0.0 release blog posts:

- working across columns
- working within rows

R programming class at OHSU!

You can check out Dr. Jessica Minnier's R class page if you want more notes, videos, etc.

The larger tidy ecosystem

Just to name a few...

- janitor
- kableExtra
- patchwork
- gghighlight
- tidybayes

Credit to Mine Çetinkaya-Rundel

- These notes were built from Mine's notes
 - Most pages and code were left as she made them
 - I changed a few things to match our class
- Please see her Github repository for the original notes