一、单项选择题

1. 曲线 $y = \frac{1}{x}, y = x$ 及 x = 2 所围成的图形面积为 S, 则 S = (B).

(A)
$$\int_{1}^{2} \left(2 - \frac{1}{x}\right) dx$$
; (B) $\int_{1}^{2} \left(x - \frac{1}{x}\right) dx$; (C) $\int_{\frac{1}{2}}^{2} (2 - y) dy$; (D) $\int_{\frac{1}{2}}^{2} \left(2 - \frac{1}{y}\right) dy$.

2. 设点 $A(x,\sin x)$ 是曲线 $y=\sin x (0 \leqslant x \leqslant \pi)$ 上一点,记 S(x) 是直线 OA (O 为原点)与曲线 $y=\sin x$ 所围成图形的面积,则当 $x\to 0^+$ 时, S(x) 与(D).

(A) x 为同阶无穷小; (B) x^2 为同阶无穷小;

(C) x^3 为同阶无穷小; (D) x^4 为同阶无穷小.

3. 设 0 < g(x) < f(x) < m(常数), 则由 y = f(x), y = g(x)x = a, x = b 所围成图形 绕直线 y = m 旋转所形成的立体的体积等于(B)

(A)
$$\int_{a}^{b} \pi [2m - f(x) + g(x)][f(x) - g(x)]dx;$$

(B)
$$\int_{a}^{b} \pi [2m - f(x) - g(x)][f(x) - g(x)]dx;$$

(C)
$$\int_{a}^{b} \pi [m - f(x) + g(x)][f(x) - g(x)]dx;$$

(D)
$$\int_{a}^{b} \pi [m - f(x) - g(x)][f(x) - g(x)]dx$$
.

4. 下列反常积分发散的是(A).

(A)
$$\int_0^{+\infty} \frac{x}{1+x^2} dx$$
; (B) $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx$; (C) $\int_0^{+\infty} x e^{-x} dx$; (D) $\int_0^{+\infty} x e^{-x^2} dx$.

5. 设函数
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e, \\ \frac{1}{x \ln^{\alpha+1} x}, & x \geqslant e, \end{cases}$$
 若反常积分 $\int_{1}^{+\infty} f(x) dx$ 收敛, 则

(C).

(A)
$$\alpha < -2$$
; (B) $\alpha > 2$; (C) $0 < \alpha < 2$; (D) $-2 < \alpha < 0$.

二、填空题

1.
$$f(x) = \frac{1}{1+x^2}$$
 在 $[1,\sqrt{3}]$ 上的平均值为_____. 答案 $\frac{(1+\sqrt{3})\pi}{24}$.

- 4. 已知反常积分 $\int_0^{+\infty} x e^{ax^2} dx$ 收敛, 且值为 1 ,则 a =______.

答案
$$-\frac{1}{2}$$
.

5.
$$\int_0^{+\infty} \frac{\ln(1+x)}{(1+x)^2} dx = \underline{\qquad}.$$

答案 1.

三、计算题

1. 计算由 x 轴,曲线 $y = \sqrt{x-1}$ 及其经过原点的切线围成的平面图形面积及该图形绕 x 轴旋转一周所得立体体积.

解 设切点为
$$(x_0, y_0)$$
 , 则过切点的切线方程为 $Y - y_0 = \frac{1}{2\sqrt{x_0 - 1}}(X - x_0)$,令 $X = 0, Y = 0$,,得 $x_0 = 2, y_0 = 1$.

围成平面图形的面积
$$S = \frac{1}{2} \times 2 \times 1 - \int_{1}^{2} \sqrt{x - 1} dx = \frac{1}{3}$$
.

旋转体体积
$$V = \frac{1}{3}\pi \times 1^2 \times 2 - \pi \int_1^2 (x - 1) dx = \frac{\pi}{6}.$$

2. 设 A > 0, D 是由曲线段 $y = A \sin x \left(0 \le x \le \frac{\pi}{2} \right)$ 及直线 y = 0, $x = \frac{\pi}{2}$ 所围成的平面区域. V_1, V_2 分别表示 D 绕 x 轴与 y 轴旋转而成旋转体的体积, 若 $V_1 = V_2$, 求 A 的值.

解
$$V_1 = \pi \int_0^{\frac{\pi}{2}} A^2 \sin^2 x dx = \frac{A^2 \pi^2}{4}$$
. $V_2 = 2\pi A \int_0^{\frac{\pi}{2}} x \sin x dx = 2\pi A$. 由已知有 $\frac{A^2 \pi^2}{4} = 2\pi A$, 解得 $A = \frac{8}{\pi}$.

3. 求曲线 $r^2 = \cos 2\theta$ 所围成图形的面积.

解
$$S = 4S_1 = 4 \times \frac{1}{2} \int_0^{\frac{\pi}{4}} \cos 2\theta d\theta = 1.$$

4. 求摆线
$$\begin{cases} y = 1 - \cos t, \\ x = t - \sin t \end{cases} \quad (0 \leqslant t \leqslant \pi) \text{ 的弧长.}$$

解
$$ds = \sqrt{x'42(t) + y'^2(t)}dt = 2\left|\sin\frac{t}{2}\right|dt$$
, 弧长 $s = \int_0^\pi 2\sin\frac{t}{2}dt = 4$.

5. 某水坝中有一个三角形的闸门,这闸门笔直竖立在水中,它的底边与水平面相齐,已知三角形底边长为10米,高8米,求闸门所受的水压力.

解 三角形顶点向底边作垂线. 垂足为坐标原点,向下过顶点为 x 轴,则 $x \in [0,8]$. 水压力为

$$\int_0^8 \rho g x \frac{5(8-x)}{4} dx = \frac{5\rho g}{4} \int_0^8 x(8-x) dx = \frac{320\rho g}{3}.$$

四、判断下列反常积分的收敛性

(1)
$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x^3}} dx;$$
 (2) $\int_{0}^{+\infty} x^{p-1} e^{-x} dx.$

解 (1) 由于
$$\left| \frac{\sin x}{\sqrt{x^3}} \right| \leqslant \frac{1}{\sqrt{x^3}}$$
,而 $\int_1^{+\infty} \frac{1}{\sqrt{x^3}} dx$ 收敛,从而 $\int_1^{+\infty} \left| \frac{\sin x}{\sqrt{x^3}} \right| dx$ 收敛,

因此
$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x^3}} \mathrm{d}x$$
 收敛.

(2) 当 p < 1 时, x = 0 是暇点. $p \ge 1$ 时,该积分为无穷积分.

当
$$p \ge 1$$
 时,由于 $\lim_{x \to +\infty} x^2 x^{p-1} e^{-x} = 0$, 因此 $\int_0^{+\infty} x^{p-1} e^{-x} dx$ 收敛.
当 $p < 1$ 时, $\int_0^{+\infty} x^{p-1} e^{-x} dx = \int_0^1 x^{p-1} e^{-x} dx + \int_1^{+\infty} x^{p-1} e^{-x} dx$.

由于

$$\lim_{x \to 0^+} x^{1-p} x^{p-1} e^{-x} = 1,$$

当 1-p < 1, 即 p > 0 时,级数收敛,当 $1-p \ge 1$ 即 $p \le 0$ 时,级数发散. 综上,当 p > 0 时,积分收敛.