PSALTer results panel $S = \iiint \left(\frac{1}{3}\left(3t_{1} \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{i} + 3\mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 3f^{\alpha\beta} \tau(\Delta + \mathcal{K})_{\alpha\beta} - 6t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i}f^{\alpha_{i}} + 6t_{1} \mathcal{A}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 3t_{1} \partial_{i}f^{\theta}_{\theta} \partial^{i}f^{\alpha}_{\alpha} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} + 6t_{1} \partial^{i}f^{\alpha}_{\alpha} \partial_{\theta}f^{\theta}_{i} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} + 6t_{1} \partial^{i}f^{\alpha}_{\alpha} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} + 6t_{1} \partial^{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} - 3t_{1} \partial_{\theta}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_$ $4r_{.1}\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r_{.1}\partial_{\beta}\mathcal{A}_{\alpha\theta_{i}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 8r_{.1}\partial_{\beta}\mathcal{A}_{_{i}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2r_{.1}\partial_{i}\mathcal{A}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r_{.1}\partial_{\theta}\mathcal{A}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r_{.1}\partial_{\theta}\mathcal{A}_{_{\alpha_{i}\beta}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2r_{.0}\partial_{\alpha}\mathcal{A}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r_{.0}\partial_{\theta}\mathcal{A}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.0}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 3r_{.$ $t. \,\, \mathcal{A}_{\alpha\theta_{i}} \,\, (\,\mathcal{A}^{\alpha_{i}\theta} + 4\,\partial^{\theta}f^{\alpha_{i}}) \, - \, 3\,r. \,\, \partial_{\alpha}\mathcal{A}^{\alpha_{i}\theta} \,\partial_{\kappa}\mathcal{A}_{i\,\,\theta}^{\,\,\kappa} + \, 6\,r. \,\, \partial^{\theta}\mathcal{A}_{\alpha\,\,\alpha}^{\alpha_{i}}\partial_{\kappa}\mathcal{A}_{i\,\,\theta}^{\,\,\kappa} + \, 3\,r. \,\, \partial_{\alpha}\mathcal{A}^{\alpha_{i}\theta} \,\partial_{\kappa}\mathcal{A}_{\theta\,\,i}^{\,\,\kappa} - \, 6\,r. \,\, \partial^{\theta}\mathcal{A}_{\alpha\,\,\alpha}^{\alpha_{i}}\partial_{\kappa}\mathcal{A}_{\theta\,\,i}^{\,\,\kappa}))[t,\,x,\,y,\,z] \,dz \,dy \,dx \,dt$

Wave operator

Saturated propagator

	$^{0.}\sigma^{\parallel}$	0.7°	$^{\circ}$. τ^{\perp}	⁰. σ∥											
^{0,+} σ †	$-\frac{1}{(1+2k^2)^2t.}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	0	0											
0. ⁺ τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t.}$	0	0											
$0.^{+}\tau^{\perp}$ †	0	0	0	0											
⁰⁻ σ †	0	0	0	0	$^{1^+_{\cdot}}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1^+}{\cdot}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$1 \sigma_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	1 τ^{\perp}_{α}				
				$1.^+\sigma^{\parallel} + \alpha^{\alpha\beta}$	$\frac{1}{k^2 (2r.+r.)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r + r)}$		0	0	0	0				
				1^+ σ^{\perp} $\uparrow^{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r + r)}$	$\frac{6k^{2}(2r.+r.)+t.}{2(k+k^{3})^{2}(2r.+r.)t.}$	$\frac{i (6 k^2 (2 r. + r.) + t.)}{2 k (1 + k^2)^2 (2 r. + r.) t.}$	0	0	0	0				
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$		$-\frac{i\left(6k^2\left(2r_{.}\!+\!r_{.}\right)\!+\!t_{.}\right)}{2k\left(1\!+\!k^2\right)^2\left(2r_{.}\!+\!r_{.}\right)t_{.}}$		0	0	0	0				
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$				
				$\frac{1}{2}\sigma^{\perp} + \sigma^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_2) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i \sqrt{2} k (2 k^{2} (r_{1}+r_{5})-t_{1})}{(t_{1}+2 k^{2} t_{1})^{2}}$				
				$\frac{1}{2} \tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0				
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i \sqrt{2} k (2 k^{2} (r_{1} + r_{5}) - t_{1})}{(t_{1} + 2 k^{2} t_{1})^{2}}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	$2^+_{\alpha\beta}$	$2^+ \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$			
											$^{2^{+}}\tau^{\parallel}$ † lphaeta	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0	
											$\frac{2}{3} \sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$	

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{\circ} \sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k^{0^{+}} \sigma^{\parallel} + 0^{+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{1}{2ik \cdot 1 \cdot \sigma^{\perp}^{\alpha} + 1 \cdot \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1 \cdot \tau^{\parallel^{\alpha}}}{1 \cdot \tau^{\parallel^{\alpha}}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i} k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) = 0$	
Total expected gauge g	enerators:	17

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$				
Square mass:	$-\frac{\frac{t_{\cdot}}{1}}{2r_{\cdot}} > 0$				
Spin:	2				
Parity:	Odd				

Massless spectrum

Massless particle $2p^{2}(t.+(2r.+r.)p^{2})$

Pole residue:	$\frac{9}{2r_1+r_2}+$	t.2	> 0
Polarisations:	2		

Unitarity conditions

r. < 0 && r. > -2 r. && t. > 0