Down to Zero II

You are given $m{Q}$ queries. Each query consists of a single number $m{N}$. You can perform any of the $m{2}$ operations on $m{N}$ in each move:

1: If we take 2 integers a and b where $N=a\times b(a\neq 1,b\neq 1)$, then we can change N=max(a,b)

2: Decrease the value of N by 1.

Determine the minimum number of moves required to reduce the value of N to 0.

Input Format

The first line contains the integer Q.

The next Q lines each contain an integer, N.

Constraints

$$1 \le Q \le 10^3$$

$$0 \le N \le 10^6$$

Output Format

Output $m{Q}$ lines. Each line containing the minimum number of moves required to reduce the value of $m{N}$ to $m{0}$.

Sample Input

2 3 4

Sample Output

3 3

Explanation

For test case 1, We only have one option that gives the minimum number of moves. Follow $3 \to 2 \to 1 \to 0$. Hence, 3 moves.

For the case 2, we can either go $4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$ or $4 \rightarrow 2 \rightarrow 1 \rightarrow 0$. The 2nd option is more optimal. Hence, 3 moves.