Práctica Nº 6 - Lógica de primer orden

Aclaraciones:

Los ejercicios marcados con el símbolo ★ constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

SINTAXIS DE LA LÓGICA DE PRIMER ORDEN

Ejercicio 1

Dados $\mathcal{F} = \{d, f, g\}$, donde d itene aridad 0, f aridad 2 y g aridad 3. ¿Cuáles de las siguientes cadenas son términos sobre \mathcal{F} ?

- I. g(d,d)
- II. f(X, g(Y, Z), d)
- III. g(X, f(d, Z), d)
- IV. g(X, h(Y, Z), d)
- v. f(f(g(d, X), f(g(d, X), Y, g(Y, d)), g(d, d)), g(f(d, d, X), d), Z)

Ejercicio 2

Sean c una constante, f un símbolo de función de aridad 1 y S y B, dos símbolos de predicado binarios. ¿Cuáles de las siguientes cadenas son fórmulas?

- I. S(c,X) $\text{VII. } (S(X,Y)\Rightarrow S(Y,f(f(X))))$ $\text{VIII. } B(X,Y)\Rightarrow f(X)$
- III. f(c)
- IX. $S(X,f(Y)) \wedge B(X,Y)$
- v. S(B(c), Z) x. $\forall X.B(X, f(X))$
- VI. $(B(X,Y) \Rightarrow (\exists Z.S(Z,Y)))$ XI. $\exists X.B(Y,X(c))$

Ejercicio 3

Sea
$$\sigma = \exists X. P(Y, Z) \land \forall Y. \neg Q(Y, X) \lor P(Y, Z)$$

- I. Identificar todas las variables libres y ligadas.
- II. Calcular $\sigma\{X:=W\}$, $\sigma\{Y:=W\}$, $\sigma\{Y:=f(X)\}$ y $\sigma\{Z:=g(Y,Z)\}$.

Ejercicio 4

Dada
$$\sigma = \neg \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z)$$

- I. Identificar todas las variables libres y ligadas.
- II. Calcular $\sigma\{X := t\}$, $\sigma\{Y := t\}$ y $\sigma\{Z := t\}$ con t = g(f(g(Y, Y)), Y).
- III. Calcular $\sigma\{X := t, Y := t, Z := t\}$ con t = g(f(g(Y, Y)), Y).
- IV. Calcular $\sigma(\{X := t\} \circ \{Y := t\}) \circ \{Z := t\})$ con t = g(f(g(Y, Y)), Y).

Unificación

Ejercicio 5 ★

Unir con flechas las expresiones que unifican entre sí (entre una fila y la otra). Para cada par unificable, exhibir el mgu ("most general unifier"). Asumir que a es una constante, X, Y, Z son variables, f y g son símbolos de función, y P y Q predicados.

$$P(f(X)) \qquad P(\mathsf{a}) \qquad P(Y) \qquad Q(X,f(Y)) \qquad Q(X,f(Z)) \qquad Q(X,f(\mathsf{a})) \qquad X \qquad \qquad f(X)$$

$$P(X) \qquad P(f(\mathsf{a})) \quad P(g(Z)) \quad Q(f(Y),X) \quad Q(f(Y),f(X)) \quad Q(f(Y),Y) \quad f(f(c)) \quad f(g(Y)) = f(f(X)) \quad f(f(X)) \quad f(f(X)) \quad f(f(X)) \quad f(f(X)) \quad f(f(X)) \quad f(X) = f(X) \quad f(X)$$

Ejercicio 6 ★

Determinar, para cada uno de los siguientes pares de términos de primer orden, si son unificables o no. En cada caso justificar su respuesta exhibiendo una secuencia exitosa o fallida (según el caso) del algoritmo de Martelli-Montanari. Asimismo, en caso de que los términos sean unificables indicar el mgu ("most general unifier"). Notación: X, Y, Z variables; a, b, c constantes; f, g símbolos de función.

- I. f(X, X, Y) y f(a, b, Z)
- II. Y y f(X)
- III. f(g(c,Y),X)) y f(Z,g(Z,a))
- IV. f(a) y g(Y)
- v. f(X) y X
- VI. g(X,Y) y g(f(Y), f(X))

Ejercicio 7

Preguntas para pensar.

- I. La relación entre términos unifica con, ¿es reflexiva? ¿Es simétrica? ¿Es transitiva?
- II. ¿Existe algún término t tal que todo término s unifique con él?
- III. ¿Cómo aplicaría el algoritmo de unificación al problema de determinar si, dado un conjunto finito de términos, existe un unificador común a todos?

Ejercicio 8 ★

Sean las constantes Nat y Bool y la función binaria \to (representada como un operador infijo), determinar el resultado de aplicar el algoritmo MGU ("most general unifier") sobre las ecuaciones planteadas a continuación. En caso de tener éxito, mostrar la sustitución resultante.

$$\begin{array}{ll} \text{I. MGU } \{\mathbf{T}_1 \to \mathbf{T}_2 \doteq \mathsf{Nat} \to \mathsf{Bool}\} & \text{V. MGU } \{\mathbf{T}_2 \to \mathbf{T}_1 \to \mathsf{Bool} \doteq \mathbf{T}_2 \to \mathbf{T}_3\} \\ \\ \text{II. MGU } \{\mathbf{T}_1 \to \mathbf{T}_2 \doteq \mathbf{T}_3\} & \text{VI. MGU } \{\mathbf{T}_1 \to \mathsf{Bool} \doteq \mathsf{Nat} \to \mathsf{Bool}, \mathbf{T}_1 \doteq \mathbf{T}_2 \to \mathbf{T}_3\} \\ \\ \text{III. MGU } \{\mathbf{T}_1 \to \mathbf{T}_2 \doteq \mathbf{T}_2\} & \text{VII. MGU } \{\mathbf{T}_1 \to \mathsf{Bool} \doteq \mathsf{Nat} \to \mathsf{Bool}, \mathbf{T}_2 \doteq \mathbf{T}_1 \to \mathbf{T}_1\} \\ \\ \text{IV. MGU } \{(\mathbf{T}_2 \to \mathbf{T}_1) \to \mathsf{Bool} \doteq \mathbf{T}_2 \to \mathbf{T}_3\} & \text{VIII. MGU } \{\mathbf{T}_1 \to \mathbf{T}_2 \doteq \mathbf{T}_3 \to \mathbf{T}_4, \mathbf{T}_3 \doteq \mathbf{T}_2 \to \mathbf{T}_1\} \\ \end{array}$$

DEDUCCIÓN NATURAL

Ejercicio 9 ★

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas, sin usar principios de razonamiento clásicos, salvo que se indique lo contrario:

- I. Intercambio (\forall) : $\forall X. \forall Y. P(X, Y) \iff \forall Y. \forall X. P(X, Y)$.
- II. Intercambio (\exists): $\exists X.\exists Y.P(X,Y) \iff \exists Y.\exists X.P(X,Y)$.
- III. Intercambio (\exists/\forall) : $\exists X.\forall Y.P(X,Y) \implies \forall Y.\exists X.P(X,Y)$.
- IV. Universal implica existencial: $\forall X.P(X) \implies \exists X.P(X)$.
- v. Diagonal (\forall) : $\forall X. \forall Y. P(X, Y) \implies \forall X. P(X, X)$.
- VI. Diagonal $(\exists): \exists X.P(X,X) \implies \exists X.\exists Y.P(X,Y).$
- VII. de Morgan (I): $\neg \exists X. P(X) \iff \forall X. \neg P(X)$.
- VIII. de Morgan (II): $\neg \forall X.P(X) \iff \exists X.\neg P(X)$. Para la dirección \Rightarrow es necesario usar principios de razonamiento clásicos.
 - IX. Universal/conjunción: $\forall X.(P(X) \land Q(X)) \iff (\forall X.P(X) \land \forall X.Q(X)).$
 - X. Universal/disyunción: $\forall X.(P(X) \lor \sigma) \iff (\forall X.P(X)) \lor \sigma$, asumiendo que $X \notin \mathsf{fv}(\sigma)$. Para la dirección \Rightarrow es necesario usar principios de razonamiento clásicos.
 - XI. Existencial/disyunción: $\exists X.(P(X) \lor Q(X)) \iff (\exists X.P(X) \lor \exists X.Q(X)).$
- XII. Existencial/conjunción: $\exists X.(P(X) \land \sigma) \iff (\exists X.P(X) \land \sigma)$, asumiendo que $X \notin \mathsf{fv}(\sigma)$.
- XIII. Principio del bebedor: $\exists X.(P(X) \Longrightarrow \forall X.P(X))$. En este ítem es necesario usar principios de razonamiento clásicos.

Ejercicio 10 ★

Demostrar en deducción natural: $(\forall X. \forall Y. R(X, f(Y))) \Rightarrow (\forall X. R(X, f(f(X))))$.

Ejercicio 11

Una fórmula σ está en forma normal negada (f.n.n.) si se puede producir con la siguiente gramática:

$$\sigma ::= P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n) \mid \sigma \wedge \sigma \mid \sigma \vee \sigma \mid \forall X. \sigma \mid \exists X. \sigma$$

Es decir, una fórmula está en f.n.n. si no tiene ocurrencias del conectivo de la implicación (\Rightarrow) y todas las ocurrencias del conectivo de la negación (\neg) acompañan a fórmulas atómicas (es decir, la negación sólo puede encontrarse en las "hojas" de la fórmula). Demostrar que toda fórmula σ es equivalente a una fórmula en forma normal negada. Es decir, para cada fórmula σ existe una fórmula σ' en f.n.n. tal que $\vdash \sigma \iff \sigma'$.

Ejercicio 12

Una fórmula σ está en forma normal prenexa (f.n.p.) si es de la forma $Q_1X_1...Q_nX_n.\tau$ donde cada Q_i es un cuantificador (\forall o \exists) y τ es una fórmula en forma normal negada sin ocurrencias de cuantificadores. Demostrar que toda fórmula σ es equivalente a una fórmula en forma normal prenexa. Es decir, para cada fórmula σ existe una fórmula σ' en f.n.p. tal que $\vdash \sigma \iff \sigma'$.

SEMÁNTICA

Ejercicio 13 ★

Sea \mathcal{L} el lenguaje de primer orden que incluye (junto con las variables, conectivos y cuantificadores) la constante a_1 , el símbolo de función f de aridad 2 y el símbolo de predicado P de aridad 2. Sea σ la fórmula

$$\forall X_1. \forall X_2. (P(f(X_1, X_2), a_1) \Rightarrow P(X_1, X_2))$$

Definamos una interpretación I para \mathcal{L} como sigue. D_I es \mathbb{Z} , \overline{a}_1 es 0, $\overline{f}(X,Y)$ es X-Y, $\overline{P}(X,Y)$ es X< Y. Escribir la interpretación de σ en castellano. ¿El enunciado es verdadero o falso? Hallar una interpretación de σ en la cual el enunciado tenga el valor de verdad opuesto.

Ejercicio 14 ★

Sea N la interpretación aritmética donde $D_I = \mathbb{N}$ y

$$\begin{array}{ll} \overline{c}^0 & \text{ es el } 0, \\ \overline{P}^2 & \text{ es } =, \\ \overline{f}_1^1 & \text{ es la función sucesor,} \\ \overline{f}_2^2 & \text{ es } +, \\ \overline{f}_3^2 & \text{ es } \times \end{array}$$

Hallar, si es posible, asignaciones que satisfagan y que no satisfagan las siguientes fórmulas.

I.
$$P(f_2(X_1, X_1), f_3(f_1(X_1), f_1(X_1)))$$

II.
$$P(f_2(X_1, c), X_2) \Rightarrow P(f_2(X_1, X_2), X_3)$$

III.
$$\neg P(f_3(X_1, X_2), f_3(X_2, X_3))$$

IV.
$$\forall X_1.P(f_3(X_1, X_2), X_3)$$

$$V. \forall X_1.(P(f_3(X_1,c),X_1) \Rightarrow P(X_1,X_2))$$

Ejercicio 15

Demostrar que ninguna de las siguientes fórmulas es lógicamente válida.

I.
$$\forall X_1. \exists X_2. P(X_1, X_2) \Rightarrow \exists X_2. \forall X_1. P(X_1, X_2)$$

II.
$$\forall X_1. \forall X_2. (P(X_1, X_2) \Rightarrow P(X_2, X_1))$$

III.
$$\forall X_1. \neg Q(X_1) \Rightarrow Q(c)$$

IV.
$$(\forall X_1.P(X_1, X_1)) \Rightarrow \exists X_2. \forall X_1.P(X_1, X_2)$$

EJERCICIOS EXTRA DE DEDUCCIÓN NATURAL (OPCIONAL)

Ejercicio 16

Dar derivaciones en DN de las siguientes fórmulas.

I.
$$(\forall X.P(X)) \Rightarrow P(a)$$

II.
$$P(a) \Rightarrow \exists X.P(X)$$

III.
$$(\forall X. \forall Y. (R(X,Y) \Rightarrow \neg R(Y,X))) \Rightarrow \forall X. \neg R(X,X)$$

IV.
$$(\forall X. \forall Y. R(X, Y)) \Rightarrow \forall X. R(X, X)$$

$$V. (\exists X. P(X)) \Rightarrow (\forall Y. Q(Y)) \Rightarrow \forall X. \forall Y. (P(X) \Rightarrow Q(Y))$$

VI.
$$(\forall X.(P(X) \Rightarrow Q(X))) \land (\exists X.P(X)) \Rightarrow \exists X.Q(X)$$

VII.
$$(\neg \forall X.(P(X) \lor Q(X))) \Rightarrow \neg \forall X.P(X)$$

VIII.
$$(\exists X.(P(X) \Rightarrow Q(X))) \Rightarrow (\forall X.P(X)) \Rightarrow \exists X.Q(X)$$

IX.
$$(\forall X.(P(X) \Rightarrow Q(X))) \land (\neg \exists X.Q(X)) \Rightarrow \forall X.\neg P(X)$$

$$X. (\forall X. (\exists Y. R(Y, X) \Rightarrow P(X))) \Rightarrow (\exists X. \exists Y. R(X, Y)) \Rightarrow \exists X. P(X)$$

XI.
$$(\exists X.(P(X) \lor Q(X))) \Rightarrow (\forall X.\neg Q(X)) \Rightarrow \exists X.P(X)$$

XII.
$$(\neg \forall X.\exists Y.R(X,Y)) \Rightarrow \neg \forall X.R(X,X)$$

XIII.
$$(\neg \exists X. \forall Y. R(Y, X) \Rightarrow \exists X. \exists Y. \neg R(X, Y))$$

XIV.
$$\neg(\forall X.P(X) \land \exists X.\neg P(X))$$

XV.
$$(\exists X.(R(X,X) \land P(X))) \Rightarrow \neg \forall X.(P(X) \Rightarrow \neg \exists Y.R(X,Y))$$

XVI.
$$(\exists X.P(X) \Rightarrow \forall X.Q(X)) \Rightarrow \forall Y.(P(Y) \Rightarrow Q(Y))$$

XVII.
$$\neg(\forall X.(P(X) \land Q(X))) \land \forall X.P(X) \Rightarrow \neg \forall X.Q(X)$$

XVIII.
$$(\forall X.(R(X,X)\Rightarrow Q(X))) \land \exists X.\forall Y.R(X,Y) \Rightarrow \exists X.Q(X)$$