Lineare Algebra 2 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 29, 2023)

Problem 1. Betrachten Sie eine obere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ mit den Zahlen $d_1, \dots d_n \in \mathbb{R}$ auf der Diagonalen.

- (a) Zeigen Sie, dass A genau dann invertierbar ist, wenn $D := d_1 \dots d_n \neq 0$ gilt. Beweisen Sie, dass in diesem Fall die zu A inverse Matrix ebenfalls eine obere Dreiecksmatrix ist.
- (b) Seien nun alle Einträge von A ganze Zahlen und A invertierbar. Zeigen Sie, dass die inverse Matrix A^{-1} aus rationalen Einträgen besteht, wobei (im gekürzten Fall) als Nenner höchstens D auftritt.
- Proof. (a) Es genügt zu zeigen, dass $\det(D) = d_1 \dots d_n$ für ein Dreiecksmatrix gilt. Wir beweisen es per Induktion auf n. Für n = 1 ist $\det(M) = M_{11}$. Wir nehmen an, dass die Behauptung für n 1 gilt, wobei $n \in \mathbb{N}$ beliebig ist. Wir betrachten ein $n \times n$ Dreiecksmatrix D_n und ein Laplaceentwicklung auf der ersten Spalte.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
0 & a_{22} & a_{23} & \dots & a_{2n} \\
0 & 0 & a_{33} & \dots & a_{3n} \\
& & & & & & & \\
D_{n-1} & & & & & \\
\vdots & & \vdots & \ddots & & \vdots \\
0 & 0 & 0 & \dots & a_{nn}
\end{pmatrix}$$

Also $\det(D_n) = a_{11}\det(D_{n-1})$. Als Induktionsannahme haben wir angenommen, dass $\det(D_{n-1}) = a_{22}a_{33}\dots a_{nn}$. Daraus folgt:

$$\det(D_n) = a_{11}a_{22}\dots a_{nn}.$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Die Ergebnis folgt daraus und aus Proposition 6.28.

Problem 2. Es sei im Folgenden $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Wir definieren die Spur

$$\operatorname{tr}: M_n(\mathbb{K}) \to \mathbb{K}, \qquad A \to \sum_{i=1}^n (A)_{ii}.$$

Zeigen Sie:

- (a) Die Spur ist ein lineares Funktional in $M_n(\mathbb{K})^*$.
- (b) Für $A, B \in M_n(\mathbb{K})$ gilt

$$tr(AB) = tr(BA).$$

(c) Für $A \in GL_n(\mathbb{K})$ und $B \in M_n(\mathbb{K})$ gilt

$$\operatorname{tr}(ABA^{-1}) = \operatorname{tr}(B).$$

(d) Ist $f \in M_N(\mathbb{K})^*$ ein lineares Funktional mit

$$f(AB) = f(BA), \qquad f(1) = n$$

für $A, B \in M_n(\mathbb{K})$, dann gilt bereits f = tr.

Proof. (a) Sei $x, y \in \mathbb{R}$ und $A, B \in M_n(\mathbb{K})$. Es gilt

$$tr(xA + yB) = \sum_{i=1}^{n} (xA + yB)_{ii}$$

$$= \sum_{i=1}^{n} [(xA)_{ii} + (yB)_{ii}]$$

$$= \sum_{i=1}^{n} (xA)_{ii} + \sum_{i=1}^{n} (yB)_{ii}$$

$$= x\sum_{i=1}^{n} (A)_{ii} + y\sum_{i=1}^{n} (B)_{ii}$$

$$= xtr(A) + ytr(B).$$

(b) Es gilt

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Dann ist

$$\sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} A_{ik} B_{ki} \qquad \text{wir dürfen endliche Summe umordnen}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ki} B_{ik} \qquad \text{wir vertauschen } i \text{ und } k$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} B_{ik} A_{ki} \qquad \mathbb{K} \text{ ist kommutativ}$$

$$= \operatorname{tr}(BA)$$

(c) Es gilt

$$tr(ABA^{-1}) = tr((AB)A^{-1})$$
$$= tr(A^{-1}(AB))$$
$$= tr(A^{-1}AB)$$
$$= tr(AB)$$

Problem 3. Bestimmen Sie zu den folgenden linearen Abbildungen jeweils alle Eigenwerte und Eigenräume. Entscheiden Sie weiterhin, ob die entsprechende Abbildung diagonalisierbar ist.

(a)
$$T: \mathbb{R}^n \to \mathbb{R}^n, \qquad x \to Ax,$$
 mit

 $A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ -4 & 2 & 2 \end{pmatrix}.$

(b)
$$T:\mathbb{C}^n\to\mathbb{C}^n \qquad x\to Ax,$$
 mit A wie in (a).

$$T: M_n(\mathbb{K}) \to M_N(\mathbb{K}), \qquad A \to \operatorname{tr}(A)1.$$

(d)

$$T: M_n(\mathbb{K}) \to M_n(\mathbb{K}), \qquad A \to A^T.$$

Proof. (a)

$$\det(A - \lambda I) = \det\begin{pmatrix} -1 - \lambda & 0 & 1\\ 1 & -1 - \lambda & 0\\ -4 & 2 & 2 - \lambda \end{pmatrix}$$
$$= (-1 - \lambda)(-(1 + \lambda)(2 - \lambda) - 0) + (2 - (1 + \lambda)(4))$$
$$= -\lambda - \lambda^{3}$$
$$= -\lambda(1 + \lambda^{2})$$

also $\lambda = 0$ ist ein Eigenwert, aber $1 + \lambda^2 = 0$ hat keine Lösung in \mathbb{R} , also es gibt nur ein Eigenwert, also T ist nicht diagonaliserbar.

- (b) Das charakteristische Polynom hat 3 unterschiedliche Eigenwerte, $\lambda = 0$ und $\lambda = \pm 1$. Weil alle Eigenwerte unterschiedlich sind und der Eigenraum mindestens Dimension 1 hat, ist es diagonalisierbar.
- (c) Sei $A \in M_n(\mathbb{K})$. A ist ein Eigenvektor von T genau dann, wenn

$$A = \lambda \operatorname{tr}(A) 1_n$$
.

Also gilt, dass A diagonal ist und

$$n \operatorname{tr}(A) = \lambda \operatorname{tr}(A)$$

also es gibt nur ein Eigenwert n und der Eigenraum ist gespannte durch

span
$$(1_n)$$
,

was ein 1-dimensionaler Vektorraum ist. Für n > 1 kann es kein Basis sein, und T ist nicht diagonaliserbar. Für n = 1 ist T das Identität, also es ist schon diagonal.

(d) Sei $A \in M_n(\mathbb{K})$. A ist ein Eigenvektor genau dann, wenn

$$A^T = \lambda A$$
.