Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_MCQ

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: MCQ

1. The following function reverse() is supposed to reverse a singly linked list. There is one line missing at the end of the function.

What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function correctly reverses a linked list?

```
struct node {
  int data;
  struct node* next;
};
static void reverse(struct node** head_ref) {
  struct node* prev = NULL;
  struct node* current = *head_ref;
  struct node* next;
  while (current != NULL) {
    next = current->next;
}
```

```
current->next = prev;
prev = current;
current = next;
}
/*ADD A STATEMENT HERE*/
}

Answer
*head_ref = prev;

Status : Correct

Marks : 1/1
```

2. Given the linked list: 5 -> 10 -> 15 -> 20 -> 25 -> NULL. What will be the output of traversing the list and printing each node's data?

Answer

5 10 15 20 25

Status: Correct Marks: 1/1

3. The following function takes a singly linked list of integers as a parameter and rearranges the elements of the lists.

The function is called with the list containing the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What will be the contents of the list after the function completes execution?

```
struct node {
   int value;
   struct node* next;
};

void rearrange (struct node* list) {
   struct node *p,q;
   int temp;
   if (! List || ! list->next) return;
   p=list; q=list->next;
   while(q) {
```

```
temp=p->value; p->value=q->value;
q->value=temp;p=q->next;
q=p?p->next:0;
}
}
Answer
2, 1, 4, 3, 6, 5, 7
Status : Correct
```

4. Which of the following statements is used to create a new node in a singly linked list?

Marks: 1/1

Marks: 1/1

```
struct node {
   int data;
   struct node * next;
}
typedef struct node NODE;
NODE *ptr;
Answer
ptr = (NODE*)malloc(sizeof(NODE));
Status : Correct
```

5. Consider the singly linked list: 13 -> 4 -> 16 -> 9 -> 22 -> 45 -> 5 -> 16 -> 6, and an integer K = 10, you need to delete all nodes from the list that are less than the given integer K.

What will be the final linked list after the deletion?

Answer

13 -> 16 -> 22 -> 45 -> 16

Status: Correct Marks: 1/1

6. Linked lists are not suitable for the implementation of?

Answer

Binary search

Status: Correct Marks: 1/1

7. Consider the singly linked list: $15 \rightarrow 16 \rightarrow 6 \rightarrow 7 \rightarrow 17$. You need to delete all nodes from the list which are prime.

What will be the final linked list after the deletion?

Answer

15 -> 16 -> 6

Status: Correct Marks: 1/1

8. In a singly linked list, what is the role of the "tail" node?

Answer

It stores the last element of the list

Status: Correct Marks: 1/1

- 9. Consider an implementation of an unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operations can be implemented in O(1) time?
 - i) Insertion at the front of the linked list
 - ii) Insertion at the end of the linked list
 - iii) Deletion of the front node of the linked list
 - iv) Deletion of the last node of the linked list

Answer

I and III

Status : Correct Marks : 1/1

10. Given a pointer to a node X in a singly linked list. If only one point is given and a pointer to the head node is not given, can we delete node X from the given linked list?

Answer

Possible if X is not last node.

Status: Correct Marks: 1/1

21901118

041901118

241901118

047901718

24,1901118

041901118

247901718

047907775

24,1901,118

24,1901,118

241901118

24,1901,118

Name: THULASIS

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Janani is a tech enthusiast who loves working with polynomials. She wants to create a program that can add polynomial coefficients and provide the sum of their coefficients.

The polynomials will be represented as a linked list, where each node of the linked list contains a coefficient and an exponent. The polynomial is represented in the standard form with descending order of exponents.

Input Format

The first line of input consists of an integer n, representing the number of terms in the first polynomial.

The following n lines of input consist of two integers each: the coefficient and the exponent of the term in the first polynomial.

The next line of input consists of an integer m, representing the number of terms in the second polynomial.

The following m lines of input consist of two integers each: the coefficient and the exponent of the term in the second polynomial.

Output Format

The output prints the sum of the coefficients of the polynomials.

Sample Test Case

```
Input: 3
22
3,1,1
40
22
31
40
Output: 18
Answer
// You are using GCC
#include<stdio.h>
#include<stdlib.h>
typedef struct poly{
  int coeff;
int expo;
  struct poly* next;
}Node:
Node* newnode(int coeff,int expo){
  Node*newnode=(Node*)malloc(sizeof(Node));
  newnode->coeff=coeff:
  newnode->expo=expo;
  newnode->next=NULL;
  return newnode;
void insertNode(Node** head,int coeff,int expo){
  Node* temp = *head;
  if(temp == NULL){
    *head=newnode(coeff,expo);
    return:
```

```
while(temp->next!=NULL){

temp=temp->nev**
      temp->next=newnode(coeff,expo);
    int main(){
      int n,coeff,expo;
      scanf("%d",&n);
      Node* poly1;
      Node* poly2;
      for(int i=0;i<n;i++){
         scanf("%d %d",&coeff,&expo);
       insertNode(&poly1,coeff,expo);
      scanf("%d",&n);
      for(int i=0;i<n;i++){
         scanf("%d %d",&coeff,&expo);
        insertNode(&poly2,coeff,expo);
      }
      int sum=0;
      while(poly1!=NULL){
        sum+=poly1->coeff;
        poly1=poly1->next;
      while(poly2!=NULL){
                                                     241901118
        sum+=poly2->coeff;
        poly2=poly2->next;
      printf("%d",sum);
    }
```

241901118

241901118

Status: Correct Marks: 10/10

241901118

24,1901,118

241901118

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Arun is learning about data structures and algorithms. He needs your help in solving a specific problem related to a singly linked list.

Your task is to implement a program to delete a node at a given position. If the position is valid, the program should perform the deletion; otherwise, it should display an appropriate message.

Input Format

The first line of input consists of an integer N, representing the number of elements in the linked list.

The second line consists of N space-separated elements of the linked list.

The third line consists of an integer x, representing the position to delete.

Position starts from 1.

Output Format

The output prints space-separated integers, representing the updated linked list after deleting the element at the given position.

If the position is not valid, print "Invalid position. Deletion not possible."

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
82317
    Output: 8 3 1 7
    Answer
    #include <stdio.h>
    #include <stdlib.h>
    void insert(int);
    void display_List();
    void deleteNode(int);
   struct node {
      int data:
      struct node* next;
    } *head = NULL, *tail = NULL;
    // You are using GCC
    void insert(int value){
      if(head==NULL){
        head=(struct node*)malloc(sizeof(struct node));
        head->data=value;
        head->next=NULL;
      else{
        struct node* temp=head;
        while(temp->next!=NULL)
```

```
temp=temp->next;
    temp->next=(struct node*)malloc(sizeof(struct node));
    temp->next->data=value;
    temp->next->next=NULL;
  }
void displaylist(){
  struct node* list=head:
  while(list!=NULL){
    printf("%d",list->data);
   list=list->next;
void deleteNode(int pos){
  int size=0;
  struct node* temp=head;
  while(temp!=NULL){
    size++;
    temp=temp->next;
  if(size<pos){</pre>
    printf("Invalid position. Deletion not possible.");
  else
    pos-=1;
    if(pos==0){
      temp=head->next;
      free(head);
      head=temp;
    }
    else{
      temp=head;
      while(--pos){
        temp=temp->next;
                                                                          241901118
                                                241901118
      struct node* temp1=temp->next;
      temp->next=temp->next->next;
      free(temp1);
```

```
displaylist();
}
}
                                                                           24,901,18
     int main() {
       int num_elements, element, pos_to_delete;
       scanf("%d", &num_elements);
       for (int i = 0; i < num_elements; i++) {
insert(element);
                                                                           241901118
         scanf("%d", &element);
       scanf("%d", &pos_to_delete);
       deleteNode(pos_to_delete);
       return 0;
     }
     Status: Correct
                                                                    Marks: 10/10
241901118
```

241901118

24,1901,118

241901118

24,1901,118

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 3

Attempt : 2 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine you are working on a text processing tool and need to implement a feature that allows users to insert characters at a specific position.

Implement a program that takes user inputs to create a singly linked list of characters and inserts a new character after a given index in the list.

Input Format

The first line of input consists of an integer N, representing the number of characters in the linked list.

The second line consists of a sequence of N characters, representing the linked list.

The third line consists of an integer index, representing the index(0-based) after

which the new character node needs to be inserted.

The fourth line consists of a character value representing the character to be inserted after the given index.

Output Format

If the provided index is out of bounds (larger than the list size):

- 1. The first line of output prints "Invalid index".
- 2. The second line prints "Updated list: " followed by the unchanged linked list values.

Otherwise, the output prints "Updated list: " followed by the updated linked list after inserting the new character after the given index.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5

```
a b c d e
2
X
Output: Updated list: a b c X d e
Answer

// You are using GCC
#include<stdio.h>
#include<stdlib.h>
int main(){
   int n;
   scanf("%d",&n);
   char *ptr;
   ptr=(char *)malloc((n+1)*sizeof(char));
   for(int i=0;i<n;i++){
      scanf(" %c",(ptr+i));
   }
   int pos;</pre>
```

```
241901118
                                                                                       24,901,18
scanf("%d",&pos);
scanf(" %c" &lore
       scanf(" %c",&letter);
       if(pos<n){
          for(int i=n;i>pos;i--){
            *(ptr+i)=*(ptr+(i-1));
          *(ptr+(pos+1))=letter;
          n++;
          printf("Updated list: ");
          int i:
          for(int i=0;i<n;i++){
            printf("%c ",*(ptr+i));
                                                                                       24,1901,118
       printf("\n");
}
       else{
          printf("Invalid index\n");
          printf("Updated list: ");
          for(int i=0;i<n;i++){
            printf("%c ",*(ptr+i));
         }
       }
     }
                                                                               Marks : 10/10
     Status: Correct
247901
```

241901118

241901118

241901118

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

As part of a programming assignment in a data structures course, students are required to create a program to construct a singly linked list by inserting elements at the beginning.

You are an evaluator of the course and guide the students to complete the task.

Input Format

The first line of input consists of an integer N, which is the number of elements.

The second line consists of N space-separated integers.

Output Format

The output prints the singly linked list elements, after inserting them at the beginning.

241901118

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
    78 89 34 51 67
    Output: 67 51 34 89 78
    Answer
    #include <stdio.h>
#include <stdlib.h>
    struct Node {
      int data:
      struct Node* next;
    };
    // You are using GCC
    typedef struct Node node;
    void insertAtFront(node** head,int x){
      node *newnode;
                                                  241901118
      newnode=(node *)malloc(sizeof(node));
      newnode->data=x;
      newnode->next=*head;
      *head=newnode;
    void printList(node *head){
      Node *current=head;
      while(current!=NULL){
        printf("%d ",current->data);
        current=current->next;
      }
struct Node* head = NULL;
```

```
241901118
                                                     241901118
scanf("%d", &n);
      for (int i = 0; i < n; i++) {
         int activity;
         scanf("%d", &activity);
         insertAtFront(&head, activity);
       }
       printList(head);
       struct Node* current = head;
       while (current != NULL) {
         struct Node* temp = current;
                                                                                 241901718
                                                     241901118
        current = current->next;
free(temp);
       return 0;
    }
    Status: Correct
                                                                         Marks: 10/10
```

241901118

241901118

241901118

24,1901,118

241901118

241901118

24,190,11,18

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine you are tasked with developing a simple GPA management system using a singly linked list. The system allows users to input student GPA values, insertion should happen at the front of the linked list, delete record by position, and display the updated list of student GPAs.

Input Format

The first line of input contains an integer n, representing the number of students.

The next n lines contain a single floating-point value representing the GPA of each student.

The last line contains an integer position, indicating the position at which a student record should be deleted. Position starts from 1.

Output Format

After deleting the data in the given position, display the output in the format "GPA: " followed by the GPA value, rounded off to one decimal place.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 4
   3.8
   3.2,8
   3.5
   4.1
   Output: GPA: 4.1
   GPA: 3.2
   GPA: 3.8
   Answer
   // You are using GCC
   #include<stdio.h>
   #include<stdlib.h>
   typedef struct gpa{
                                                  241901118
     float value;
     struct gpa* next;
}Node;
Node* newnode(float value){
     Node* newgpa=(Node*)malloc(sizeof(Node));
     newgpa->value=value;
     newgpa->next=NULL;
      return newgpa;
   Node* insertAtStart(Node* head,float value){
     Node* newgpa=newnode(value);
      newgpa->next=head;
     return newgpa;
   void traverse(Node* head){
     while(head!=NULL){
```

```
241901118
    printf("GPA: %.1f\n",head->value);
    head=head->next;
void deleteAtPosition(Node** head,int pos){
  pos-=1;
  Node* temp=*head;
  if(pos==0)
    *head=temp->next;
    free(temp);
    return;
  }
  while(--pos){
   temp=temp->next;
  Node* temp1=temp->next;
  temp->next=temp->next->next;
  free(temp1);
}
int main(){
  int n,pos;
  float value;
  scanf("%d",&n);
  Node* head=NULL;
  for(int i=0;i<n;i++){
                                               241901118
   scanf("%f",&value);
    head=insertAtStart(head,value);
  scanf("%d",&pos);
  deleteAtPosition(&head,pos);
  traverse(head);
}
```

Status: Correct Marks: 10/10

241901118

241901118

241901118

24,1901,118

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 6

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is tasked with creating a program to manage student roll numbers using a singly linked list.

Write a program for John that accepts students' roll numbers, inserts them at the end of the linked list, and displays the numbers.

Input Format

The first line of input consists of an integer N, representing the number of students.

The second line consists of N space-separated integers, representing the roll numbers of students.

Output Format

The output prints the space-separated integers singly linked list, after inserting the roll numbers of students at the end.

241901118

241901118

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
    23 85 47 62 31
    Output: 23 85 47 62 31
    Answer
   // You are using GCC
#include<stdio.h>
    #include<stdlib.h>
    struct node{
      int data:
      struct node *next;
    };
    typedef struct node Node;
    void insert(Node **head,int x){
      Node *newnode;
      newnode=(Node *)malloc(sizeof(Node));
      newnode->data=x;
      newnode->next=NULL;
   if(*head==NULL){
        *head=newnode;
        return;
      Node *current=*head:
      while(current->next!=NULL){
        current=current->next;
      current->next=newnode;
      return;
    void display(Node *head){
while(current!=NULL){
printf("%d" -
        printf("%d ",current->data);
```

```
current=current->next;
}
return;
}
int main(){
    Node *head=NULL;
    int n;
    scanf("%d",&n);
    int a;
    for(int i=0;i<n;i++){
        scanf("%d",&a);
        insert(&head,a);
    }
    display(head);
}

Status: Correct

Marks: 10/10</pre>
```

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 7

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Dev is tasked with creating a program that efficiently finds the middle element of a linked list. The program should take user input to populate the linked list by inserting each element into the front of the list and then determining the middle element.

Assist Dev, as he needs to ensure that the middle element is accurately identified from the constructed singly linked list:

If it's an odd-length linked list, return the middle element. If it's an evenlength linked list, return the second middle element of the two elements.

Input Format

The first line of input consists of an integer n, representing the number of elements in the linked list.

The second line consists of n space-separated integers, representing the elements of the list.

Output Format

The first line of output displays the linked list after inserting elements at the front.

The second line displays "Middle Element: " followed by the middle element of the linked list.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5

```
10 20 30 40 50
   Output: 50 40 30 20 10
   Middle Element: 30
   Answer
   #include <stdio.h>
   #include <stdlib.h>
   struct Node {
     int data:
  struct Node* next;
   // You are using GCC
   typedef struct Node node;
   node *push(node *head,int x){
     node *newnode;
     newnode=(node *)malloc(sizeof(node));
     newnode->data=x;
     newnode->next=head;
     head=newnode;
     return head;
int printMiddle(node *head){
```

```
node *fast=head;
    node *slow=head;
       while(fast!=NULL && fast->next!=NULL){
         slow=slow->next; V
         fast=fast->next->next;
       }
       return slow->data:
     int main() {
       struct Node* head = NULL;
       int n;
int value;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &value);
         head = push(head, value);
       }
       struct Node* current = head;
       while (current != NULL) {
         printf("%d ", current->data);
         current = current->next;
printf("\n");
                                                    241901118
       int middle_element = printMiddle(head);
       printf("Middle Element: %d\n", middle_element);
       current = head;
       while (current != NULL) {
         struct Node* temp = current;
         current = current->next;
         free(temp);
                                                                              241901118
                                                    241901118
return 0;
```

Status: Correct

Marks: 10/10

A1901118 2A1901118

Name: THULASIS 1

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_week 1_CY

Attempt : 1 Total Mark : 30 Marks Obtained : 20

Section 1: Coding

1. Problem Statement

Rani is studying polynomials in her class. She has learned about polynomial multiplication and is eager to try it out on her own. However, she finds the process of manually multiplying polynomials quite tedious. To make her task easier, she decides to write a program to multiply two polynomials represented as linked lists.

Help Rani by designing a program that takes two polynomials as input and outputs their product polynomial. Each polynomial is represented by a linked list of terms, where each term has a coefficient and an exponent. The terms are entered in descending order of exponents.

Input Format

The first line of input consists of an integer n, representing the number of terms

The following n lines of input consist of two integers each: the coefficient and the exponent of the term in the first polynomial.

The next line of input consists of an integer m, representing the number of terms in the second polynomial.

The following m lines of input consist of two integers each: the coefficient and the exponent of the term in the second polynomial.

Output Format

The first line of output prints the first polynomial.

The second line of output prints the second polynomial.

The third line of output prints the resulting polynomial after multiplying the given polynomials.

The polynomials should be displayed in the format, where each term is represented as ax^b, where a is the coefficient and b is the exponent.

Refer to the sample output for the exact format.

Sample Test Case

Input: 2

23

3 2

2

3 2

21

Output: $2x^3 + 3x^2$

 $3x^2 + 2x$

 $6x^5 + 13x^4 + 6x^3$

Answer

// You are using GCC #include<stdio.h> #include<stdlib.h>

```
void multiply(int poly[],int size1,int poly2[],int size2,int res[])
  for(int i=0;)
    for(term *q=p2;q!=NULL;q=q->next)
      insertterm(&result,p1->coef * q->coef,p1->exp + q->exp);
  return result;
void print(term *head)
  if(!head)
    print("0\n");
    return;
  while(head)
    printf("%dx^%d",head->coef,head->exp);
    head=head->next;
  printf("\n");
void freeterm( term *head)
  head *temp;
  while(head)
    temp=head;
    head=head->next;
    free(temp);
int main(void)
  term *head1=NULL,term *head2=NULL,*product=NULL;
```

```
while(1)
      int coef,exp;
        scanf("%d %d",&coef,&exp);
        if(exp==0) break;
        insertterm(&head1,coef,exp);
      while(1
        scanf("%d %d",&coef,&exp);
        if(exp==0) break;
        insert(&head2,&coef,&exp);
      product=multiply(head1,head2);
      print(product);
      freeterm(head1);
      freeterm(head2);
      freeterm(product);
      return 0;
    }
```

Status: Wrong Marks: 0/10

2. Problem Statement

Hayley loves studying polynomials, and she wants to write a program to compare two polynomials represented as linked lists and display whether they are equal or not.

The polynomials are expressed as a series of terms, where each term consists of a coefficient and an exponent. The program should read the polynomials from the user, compare them, and then display whether they are equal or not.

Input Format

The first line of input consists of an integer n, representing the number of terms in the first polynomial.

The following n lines of input consist of two integers, each representing the coefficient and the exponent of the term in the first polynomial.

The next line of input consists of an integer m, representing the number of terms in the second polynomial.

The following m lines of input consist of two integers, each representing the coefficient and the exponent of the term in the second polynomial.

Output Format

The first line of output prints "Polynomial 1: " followed by the first polynomial.

The second line prints "Polynomial 2: " followed by the second polynomial.

The polynomials should be displayed in the format ax^b, where a is the coefficient and b is the exponent.

If the two polynomials are equal, the third line prints "Polynomials are Equal."

If the two polynomials are not equal, the third line prints "Polynomials are Not Equal."

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 2
```

12

21

2

Output: Polynomial 1: $(1x^2) + (2x^1)$

Polynomial 2: $(1x^2) + (2x^1)$

Polynomials are Equal.

Answer

// You are using GCC #include<stdio.h> #include<stdlib.h>

```
typedef struct term{
  onint co;
     int ex;
     struct term* next;
   }term;
   term* createterm (int co,int ex){
     term* newterm=(term *)malloc(sizeof(term));
     newterm->co=co:
     newterm->ex=ex;
     newterm->next=NULL;
     return newterm;
void insertterm(term **head,int co,int ex)
     term *newterm=createterm(co,ex);
     if(*head==NULL){
       newterm->next=*head:
       *head=newterm;
     }
     else{
        term* temp= *head;
        while(temp->next!=NULL && temp->next->ex>=ex)
          temp=temp->next;
        newterm->next=temp->next;
       temp->next=newterm;
     }
   void printpoly(term* head){
     term* temp=head;
     int firstterm=1;
     while(temp!=NULL)
       if(!firstterm){
        printf(" + ");
        printf("(%dx^%d)",temp->co,temp->ex);
```

```
241901118
        firstterm=0;
        temp=temp->next;
    int arepolyeq(term* poly1,term* poly2)
      while(poly1!=NULL && poly2!=NULL)
        if(poly1->ex!=poly2->ex || poly1->co!=poly2->co){
           return 0;
         poly1=poly1->next;
        poly2=poly2->next;
return (poly1==NULL && poly2==NULL);

yoid freeset (
    void freepoly(term* head){
      term* temp;
      while(head!=NULL){
        temp=head;
        head=head->next;
        free(temp);
      }
    }
    int main()
term* poly1=NULL;
      scanf("%d",&n);
      for(int i=0;i<n;i++){
        scanf("%d %d",&co,&ex);
        insertterm(&poly1,co,ex);
      scanf("%d",&m);
      for(int i=0;i< m;i++){
        scanf("%d %d",&co,&ex);
        insertterm(&poly2,co,ex);
      }
                                                    241901118
printf("\n"\.
      printf("Polynomial 1:");
```

247901118

241901118

```
printf("Polynomial 2:");
printpoly(poly2);
printf("\n");
if(arepolyeq(poly1,poly2))
{
    printf("Polynomials are Equal.\n");
}
else{
    printf("Polynomials are Not Equal.\n");
}
freepoly(poly1);
freepoly(poly2);
return 0;
}
```

Status: Correct Marks: 10/10

3. Problem Statement

Timothy wants to evaluate polynomial expressions for his mathematics homework. He needs a program that allows him to input the coefficients of a polynomial based on its degree and compute the polynomial's value for a given input of x. Implement a function that takes the degree, coefficients, and the value of x, and returns the evaluated result of the polynomial.

241901118

```
Example
```

```
Input:

degree of the polynomial = 2

coefficient of x2 = 13

coefficient of x1 = 12

coefficient of x0 = 11

x = 1

Output:

36
```

Explanation:

Calculate the value of 13x2: 13 * 12 = 13.

Calculate the value of 12x1: 12 * 11 = 12.

Calculate the value of 11x0: 11*10 = 11.

Add the values of x2, x1, and x0 together: 13 + 12 + 11 = 36.

Input Format

The first line of input consists of an integer representing the degree of the polynomial.

The second line consists of an integer representing the coefficient of x2.

The third line consists of an integer representing the coefficient of x1.

The fourth line consists of an integer representing the coefficient of x0.

The fifth line consists of an integer representing the value of x, at which the polynomial should be evaluated.

Output Format

The output is an integer value obtained by evaluating the polynomial at the given value of x.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 2

13

12

11

1

Output: 36

Answer

// You are using GCC #include<stdio.h>

```
24,1901,118
                                                  241901118
    #include<stdlib.h>
    #include<math.h>
    typedef struct poly
      int x;
      int expo;
      struct poly* next;
    }Node;
    Node* newnode(int x,int expo)
      Node* node=(Node*)malloc(sizeof(Node));
      node->x=x;
      node->expo=expo;
                                                                           241901118
                                                  241901118
return node;
      node->next=NULL;
    void insertNode(Node** head,int x,int expo)
      Node* temp=*head;
      if(temp==NULL)
      {
        *head=newnode(x,expo);
        return;
      }
      while(temp->next!=NULL)
                                                  241901118
       temp=temp->next;
      temp->next=newnode(x,expo);
    int main()
      int deg,x;
      scanf("%d",&deg);
      Node* head=NULL;
      for(int i=0;i<=deg;i++)
        scanf("%d",&x);
        insertNode(&head,x,deg-i);
                                                                           241901118
                                                  241901118
int value=0;
int n;
```

```
241901118
                                             241901118
while(head!=NULL)
        value+=head->x * pow(n,head->expo);
        head=head->next;
      }
      printf("%d",value);
    }
    Status: Correct
                                                              Marks: 10/10
                                                                     241901118
241901118
                       241901118
                                             241901118
241901118
                       241901118
                                              241901118
                                                                     24,190,1,18
```

241901118

241901118

Rajalakshmi Engineering College

Name: THULASIS

Email: 241901118@rajalakshmi.edu.in

Roll no: 241901118 Phone: 9087270835

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_PAH_modified

Attempt : 1 Total Mark : 5 Marks Obtained : 3

Section 1: Coding

1. Problem Statement

Write a program to manage a singly linked list. The program should allow users to perform various operations on the linked list, such as inserting elements at the beginning or end, deleting elements from the beginning or end, inserting before or after a specific value, and deleting elements before or after a specific value. After each operation, the updated linked list should be displayed.

Input Format

The first line contains an integer choice, representing the operation to perform:

- For choice 1 to create the linked list. The next lines contain space-separated integers, with -1 indicating the end of input.
- For choice 2 to display the linked list.
- For choice 3 to insert a node at the beginning. The next line contains an integer

data representing the value to insert.

- For choice 4 to insert a node at the end. The next line contains an integer data representing the value to insert.
- For choice 5 to insert a node before a specific value. The next line contains two integers: value (existing node value) and data (value to insert).
- For choice 6 to insert a node after a specific value. The next line contains two integers: value (existing node value) and data (value to insert).
- For choice 7 to delete a node from the beginning.
- For choice 8 to delete a node from the end.
- For choice 9 to delete a node before a specific value. The next line contains an integer value representing the node before which deletion occurs.
- For choice 10 to delete a node after a specific value. The next line contains an integer value representing the node after which deletion occurs.
- For choice 11 to exit the program.

Output Format

For choice 1, print "LINKED LIST CREATED".

For choice 2, print the linked list as space-separated integers on a single line. If the list is empty, print "The list is empty".

For choice 3, 4, 5, and 6, print the updated linked list with a message indicating the insertion operation.

For choice 7, 8, 9, and 10, print the updated linked list with a message indicating the deletion operation.

For any operation that is not possible print an appropriate error message such as "Value not found in the list".

For choice 11 terminate the program.

For any invalid option, print "Invalid option! Please try again".

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 1

3 7 -1 2 11

Output: LINKED LIST CREATED

537

Answer

-

Status: Skipped Marks: 0/1

2. Problem Statement

Emily is developing a program to manage a singly linked list. The program should allow users to perform various operations on the linked list, such as inserting elements at the beginning or end, deleting elements from the beginning or end, inserting before or after a specific value, and deleting elements before or after a specific value. After each operation, the updated linked list should be displayed.

Your task is to help Emily in implementing the same.

Input Format

The first line contains an integer choice, representing the operation to perform:

- For choice 1 to create the linked list. The next lines contain space-separated integers, with -1 indicating the end of input.
- For choice 2 to display the linked list.
- For choice 3 to insert a node at the beginning. The next line contains an integer data representing the value to insert.
- For choice 4 to insert a node at the end. The next line contains an integer data representing the value to insert.
- For choice 5 to insert a node before a specific value. The next line contains two integers: value (existing node value) and data (value to insert).
- For choice 6 to insert a node after a specific value. The next line contains two integers: value (existing node value) and data (value to insert).
- For choice 7 to delete a node from the beginning.
- For choice 8 to delete a node from the end.

- For choice 9 to delete a node before a specific value. The next line contains an integer value representing the node before which deletion occurs.
- For choice 10 to delete a node after a specific value. The next line contains an integer value representing the node after which deletion occurs.
- For choice 11 to exit the program.

Output Format

For choice 1, print "LINKED LIST CREATED".

For choice 2, print the linked list as space-separated integers on a single line. If the list is empty, print "The list is empty".

For choice 3, 4, 5, and 6, print the updated linked list with a message indicating the insertion operation.

For choice 7, 8, 9, and 10, print the updated linked list with a message indicating the deletion operation.

For any operation that is not possible print an appropriate error message such as "Value not found in the list".

For choice 11 terminate the program.

For any invalid option, print "Invalid option! Please try again".

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 1

5

3

7

-1

2

11

Output: LINKED LIST CREATED

537

Answer

Status : Skipped Marks : 0/1

3. Problem Statement

Bharath is very good at numbers. As he is piled up with many works, he decides to develop programs for a few concepts to simplify his work. As a first step, he tries to arrange even and odd numbers using a linked list. He stores his values in a singly-linked list.

Now he has to write a program such that all the even numbers appear before the odd numbers. Finally, the list is printed in such a way that all even numbers come before odd numbers. Additionally, the even numbers should be in reverse order, while the odd numbers should maintain their original order.

Example

Input:

6

3 1 0 4 30 12

Output:

12304031

Explanation:

Even elements: 0 4 30 12

Reversed Even elements: 12 30 4 0

Odd elements: 31

So the final list becomes: 12 30 4 0 3 1

Input Format

The first line consists of an integer n representing the size of the linked list.

The second line consists of n integers representing the elements separated by

space.

Output Format

The output prints the rearranged list separated by a space.

The list is printed in such a way that all even numbers come before odd numbers and the even numbers should be in reverse order, while the odd numbers should maintain their original order.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 6
3 1 0 4 30 12
Output: 12 30 4 0 3 1
```

```
Answer
   // You are using GCC
   #include<stdio.h>
   #include<stdlib.h>
   struct Node{
     int data:
      struct Node *next;
   };struct Node*ptr,*newnode,*head=NULL,*last=NULL;
   int main(){
int a;
      scanf("%d",&a);
     int even[a],odd[a],n=0,m=0;
     for(int i=0;i<a;i++){
        newnode=(struct Node*)malloc(sizeof( struct Node));
        scanf("%d",&newnode->data);
        newnode->next=NULL;
        if(head==NULL){
          head=newnode;
        else{
          last->next=newnode;
        last=newnode;
```

```
}ptr=head;
while(ptr!=NULL)
{
    if ((ptr->data) %2==0)
    {
        even[n++]=ptr->data;
    }
    else{
        odd[m++]=ptr->data;
    }
    ptr=ptr->next;
}
for(int i=n-1;i>=0;i--){
    printf("%d ",even[i]);
}
for(int i=0;i<m;i++){
    printf("%d ",odd[i]);
}
return 0;
}</pre>
```

Status: Correct Marks: 1/1

4. Problem Statement

Imagine you are managing the backend of an e-commerce platform.

Customers place orders at different times, and the orders are stored in two separate linked lists. The first list holds the orders from morning, and the second list holds the orders from the evening.

Your task is to merge the two lists so that the final list holds all orders in sequence from the morning list followed by the evening orders, in the same order

Input Format

The first line contains an integer n , representing the number of orders in the morning list.

The second line contains n space-separated integers representing the morning orders.

The third line contains an integer m, representing the number of orders in the evening list.

The fourth line contains m space-separated integers representing the evening orders.

Output Format

The output should be a single line containing space-separated integers representing the merged order list, with morning orders followed by evening orders.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 3

```
101 102 103
   2
   104 105
   Output: 101 102 103 104 105
   Answer
   // You are using GCC
   #include<stdio.h>
   #include<stdlib.h>
typedef struct Node{
     int data:
     struct Node* next;
   }Node:
   Node* append(Node* tail,int val){
     Node* node=(Node*)malloc(sizeof(Node));
     node->data=val;
     node->next=NULL;
     if (tail)tail->next=node;
     return node;
   void print(Node* head){
     while(head){
```

```
printf("%d ",head->data); 💉
     head=head->next;
 int main(){
   int n,m,x;
   Node *head=NULL,*tail=NULL;
   scanf("%d",&n);
   for(int i=0;i<n;i++){
     scanf("%d",&x);
     tail=append(tail,x);
     if(!head)head=tail;
scanf("%d",&m);
   for(int i=0;i< m;i++){
     scanf("%d",&x);
     tail=append(tail,x);
     if(!head)head=tail;
   }
   print(head);
   return 0;
}
```

Status: Correct Marks: 1/1

241901118

241901118

5. Problem Statement

John is working on evaluating polynomials for his math project. He needs to compute the value of a polynomial at a specific point using a singly linked list representation.

Help John by writing a program that takes a polynomial and a value of x as input, and then outputs the computed value of the polynomial.

Example

Input:

12

11

1

Output:

36

Explanation:

The degree of the polynomial is 2.

Calculate the value of x2: 13 * 12 = 13.

Calculate the value of x1: 12 * 11 = 12.

Calculate the value of x0: 11 * 10 = 11.

Add the values of x2, x1 and x0 together: 13 + 12 + 11 = 36.

Input Format

The first line of input consists of the degree of the polynomial.

The second line consists of the coefficient x2.

The third line consists of the coefficient of x1.

The fourth line consists of the coefficient x0.

The fifth line consists of the value of x, at which the polynomial should be evaluated.

Output Format

The output is the integer value obtained by evaluating the polynomial at the given value of x.

Refer to the sample output for formatting specifications.

```
241901118
    Sample Test Case
   Input: 2
13
    12
    11
    1
    Output: 36
    Answer
    // You are using GCC
    #include<stdio.h>
    #include<stdlib.h>
    #include<math.h>
    typedef struct Node
      int coef, power;
      struct Node *next;
    }Node:
    Node* insert(Node* head,int coef,int power){
      Node* newnode=(Node*)malloc(sizeof(Node));
         newnode->coef=coef;
        newnode->power=power;
        newnode->next=head;
        return newnode;
                                                   241901118
    int evaluate(Node* head,int x){
int sum=0;;
      while(head){
        sum+=head->coef*pow(x,head->power);
        head=head->next;
      }
      return sum;
    int main(){
      int deg,coef,x;
      scanf("%d",&deg);
for(int i=deg;i>=0;i--){
scanf("%d".&^^^^
                                                   241901118
```

241901118

```
poly=insert(poly,coef,i);
}
scanf("%d",&x);
printf("%d"," -
                                                                                 241901118
                                                      241901118
       printf("%d\n",evaluate(poly,x));
      return 0;
    }
                                                                            Marks: 1/1
    Status: Correct
                                                                                 241901118
                          241901118
                                                      241901118
                                                      241901118
                                                                                 241901118
```

241901118

24,1901,118