

Galton board

Recomended video and applet:

http://www.youtube.com/watch?v=6YDHBFVIvIs

http://www.disfrutalasmatematicas.com/datos/quincunce.html

A frequency distribution is **symmetric** when a vertical line can be drawn through the middle of a graph of the distribution and the resulting halves are approximately the mirror images.

A frequency distribution is **uniform** (or **rectangular**) when all entries, or classes, in the distribution have equal frequencies. A uniform distribution is also symmetric.

A frequency distribution is skewed if the "tail" of the graph elongates more to one side than to the other. A distribution is **skewed left** (**negatively skewed**) if its tail extends to the left. A distribution is **skewed right** (**positively skewed**) if its tail extends to the right.

Summary of distribution shapes

Distribution Shape and Boxplot

Left-Skewed

Symmetric

Right-Skewed

Pearson Correlation Coefficient r

Measures the strength of the linear relationship between two quantitative variables.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Features of Correlation Coefficient

- Unit free
- Ranges between –1 and 1
- The closer to −1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Correlation coefficient

Shows strength and direction of correlation

Negative correlation

Positive correlation

Scatter Plots of Data with Various Correlation Coefficients

Coeficiente de correlación de Spearman ρ

El coeficiente de correlación de Spearman, ρ (rho) es una medida de la correlación entre dos variables aleatorias x e y continuas.

$$\rho = 1 - \frac{6\sum D^2}{N(N^2 - 1)}$$

donde D es la diferencia entre los correspondientes estadísticos de orden de x-y. N es el número de parejas.

El coeficiente de correlación de Spearman es menos sensible que el de Pearson para los valores muy lejos de lo esperado. En este ejemplo: Pearson = 0.30706 Spearman = 0.76270

Tips

What your scientific figure looks like, vs. what the audience sees

What your figure looks like

Results

What the audience sees

Results

I can see that these are results, thanks.

How about telling me what they mean?

Task?

Task?

Presumably some aspect of these lines tells me something?

Dark-grey vs. black lines.

More visual contrast, please

Cond? Cond? Cond? I can't remember what the arbitrary labels A, B, C, 1 or 2 refer to

Chartjunk

Chartjunk refers to all visual elements in charts and graphs that are not necessary to comprehend the information represented on the graph, or that distract the viewer from this information.

https://en.wikipedia.org/wiki/Chartjunk

An example of a chart containing gratuitous chartjunk. This chart uses a large area and a lot of "ink" (many symbols and lines) to show only five hard-to-read numbers, 1, 2, 4, 8, and 16.

A map with chartjunk: the gradients inside each province

Data-ink ratio formula

Maximize Data-Ink Ratio

Data-Ink Ratio =
$$\frac{\text{Data ink}}{\text{Total ink used in graphic}}$$

Data-ink ratio formula

The value of *telling stories* with data as opposed to merely displaying it.

What do you think about the picture?

