COURSERA DATASCIENCE CAPSTONE

Anshuman H

INTRODUCTION

- Predicting Severity of Accident is important
 - To understand the factors leading to severity
 - Understand measure which can be implemented
 - Testing the impact of measures

DATA ACQUISITION AND CLEANING

- Data file used is "Collision All Years" which has been sourced from SDOT Traffic Management Division.
- The data has 38 attributes and covers the time period from 2004 to present date.
- The data is split into 2 kinds of severity "Injury collision" and "Property Damage Only Collision".

METHODOLOGY

- Recursive Feature Elimination (RFE) has been used to further refine the selected features
 - Predictor_Matrix_N=['PERSONCOUNT','PEDCOUNT','PEDCYLCOUNT','VEHCOUNT',' SDOT_COLCODE',
 'INTKEY','LIGHTCOND_N','ROADCOND_N','WEATHER_N',
 'INATTENTIONIND_N','UNDERINFL_N','HITPARKEDCAR_N','SPEEDING_N',
 'COLLISIONTYPE_N','JUNCTIONTYPE_N','PEDROWNOTGRNT_N']
- The performance of the below models would be compared
 - Logistic Regression
 - Gaussian Naïve Bayes
 - Random Forest Classifier

RESULT

CONCLUSION

- Based on the dataset a model to predict severity was initially developed using LogisticRegression and then further modelled using the below 3 models.
 - Logistic Regression
 - Gaussian Naïve Bayes
 - Random Forest Classifier
- Random Forest Classifier model was able to achieve 75% success rate based on the test data.