ΔΙΑΓΡΑΜΜΑ POHΣ MHXANHΣ TURING

ΑΠΟΦΑΣΙΣΙΜΕΣ ΚΑΙ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Προκειμένου να κατασκευάσουμε μηχανές Turing που κάνουν μία ουσιαστική δουλειά, ορίζουμε απλές μηχανές που θα R_∓: «Δεξιά μέχρι να συναντήσεις μη κενό»

χρησιμοποιήσουμε ως δομικά στοιχεία σε πιο περίπλοκες μηχανές.

Οι μηχανές που ορίζει το βιβλίο του ΕΑΠ είναι οι εξής (* σημαίνει «οτιδήποτε»):

Μ_σ ή **σ** : «Γράψιμο Συμβόλου σ»

Μ_L ή **L** : «Κίνηση Αριστερά»

M_R ή **R** : «Κίνηση Δεξιά»

M_> ή > «Μηχανή αρχή»

(*/* σημαίνει «ότι αφήνουμε την ταινία ανέπαφη»):

M_h ή h «Μηχανή-Τέλος»

R2: «Δύο θέσεις δεξιά»

Ομοίως μπορούμε να χρησιμοποιήσουμε την μηχανή L2

Γενικότερα μπορούμε να χρησιμοποιή-

σουμε τις μηχανές Lk, Rk για k κάποιον φυσικό αριθμό.

R_#: «Δεξιά μέχρι να συναντήσεις #»

Σχηματικά Διαβάζεται: «Όσο δεν διαβάζεις # πήγαινε δεξιά Ομοίως ορίζεται η μηχανή L#

>R = #

>R _)#

Σχηματικά Διαβάζεται: «Όσο διαβά-

Ομοίως ορίζεται η μηχανή $L_{\overline{x}}$

ζεις # πήγαινε δεξιά

Υποχρεωτική Μετάβαση (την ακολουθούμε υποχρεωτικά)

Μετάβαση αν η κεφαλή δείχνει στο σύμβολο χ

Μετάβαση με αποθήκευση συμβόλου. Η μηχανή θυμάται ότι διάβασε το σύμβολο σ και μπορούμε έπειτα να γράψουμε το σύμβολο σ στην ταινία με την μηχανή σ.

Παράδειγμα Διαγράμματος Ροής Μ.Τ. που υπολογίζει τη συνάρτηση $(s, \#w\#) = (h, \#w\#w^R\#)$

ΙΔΙΟΤΗΤΕΣ ΑΠΟΦΑΣΙΣΙΜΩΝ ΓΛΩΣΣΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Μία μηχανή Turing θα λέμε ότι αποφασίζει μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- Τερματίζει με σχηματισμό (h, #Υ $\underline{\text{#}}$) αν $w \in L$
- Τερματίζει με σχηματισμό (h, #N $\underline{\#}$) αν $w \notin L$

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την αποφασίζει λέγεται Turing-Αποφασίσιμη (ή Αναδρομική ή Επιλύσιμη ή Αποφασίσιμη Γλώσσα)

Kanonikéc $L = \{ w \in \{0,1\}^* | w \pi \varepsilon \rho \iota \varepsilon \gamma \varepsilon \iota \tau o 00 \}.$

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

ΘΕΩΡΗΜΑ: Έστω $\mathbf{L_1} \leq \mathbf{L_2}$ (Υπάρχει αναγωγή από την $\mathbf{L_1}$ στην $\mathbf{L_2}$). Τότε ισχύουν τα εξής:

- 1. Αν η L_2 είναι Turing-Αποφασίσιμη, τότε και η L_1 είναι Turing-Αποφασίσιμη
- 2. Αν η L_1 δεν είναι Turing-Αποφασίσιμη, τότε και η L_2 δεν είναι Turing-Αποφασίσιμη
- 3. Αν η $m L_2$ είναι Turing-Αποδεκτή, τότε και η $m L_1$ είναι Turing-Αποδεκτή
- 4. Aν η L_1 είναι μη Turing-Αποδεκτή, τότε και η L_2 είναι μη Turing-Αποδεκτή

Απόδειξη: Γνωστή μη επιλύσιμη γλώσσα: $L_1 = \{ \langle M, w \rangle | H M με τερματίζει$ με είσοδο w} Αγνωστή μη επιλύσιμη γλώσσα: $L_2 =$ $\{< M, w, q > | H M με είσοδο w$ περνάει από την κατάσταση q} Έστω ότι η γλώσσα L2 είναι αποφασίσιμη, άρα υπάρχει μια μηχανή Turing που την standard αποφασίζει, εστω Μ2. Κατασκευάζουμε μια μηχανή Turing M₁ που αποφασίζει τη γλώσσα L_1 ως εξής: Η Μ₁ με είσοδο <Μ,w> θέτει Μ'=Μ, w'=w και Περιγραφή του q=τελική κατάσταση του Μ. Έπειτα περνάει την μετασχηματισμού είσοδο <Μ',w',q> στη μηχανή Μ₂ 1. Av η M₂ απαντήσει NAI, τότε η Μ περνάει από την τελική YES στο ερώτημα του αγνωστού κατάσταση h, με είσοδο w, άρα η Μ τερματίζει με είσοδο w. YES στο ερώτημα του γνωστού θέτουμε τη Μ1 να απαντήσει ΝΑΙ. 2. Αν η Μ₂ απαντήσει ΟΧΙ, τότε η Μ δεν περνάει από την τελική ΝΟ στο ερώτημα του αγνωστού κατάσταση h, με είσοδο w, άρα η Μ δεν τερματίζει με είσοδο w, ΝΟ στο ερώτημα του γνωστού θέτουμε τη M₁ να απαντήσει ΟΧΙ. Κατασκευάσαμε μια Μ.Τ. που αποφασίζει την standard L₁. Άτοπο. Άρα η L₂ δεν είναι αποφασίσιμη

Μία Μηχανή Turing θα λέμε ότι **αποδέχεται** (ή ημι-αποφασίζει ή αναγνωρίζει) μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- <u>Τερματίζει</u> με σχηματισμό (h, #uav#) αν $w \in L$
- Δεν Τερματίζει αν $w \notin L$ (πέφτει σε βρόχο)

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την ημι-αποφασίζει **λέγεται Turing Αποδεκτή** (ή Αναδρομικά Απαριθμήσιμη ή Turing-Απαριθμήσιμη ή Αναγνωρίσιμη) Γλώσσα

Σχηματικά απεικονίζουμε μια αποδεκτή γλώσσα ως εξής:

ΘΕΩΡΗΜΑ: Κάθε Turing-Αποφασίσιμη γλώσσα είναι Turing-Αποδεκτή γλώσσα.

(Σκιαγράφηση Απόδειξης αν Μ αποφασίσιμη:)

Θεώρημα: Η γλώσσα $H = \{ < M, w > | H M τερματίζει με είσοδο w<math>\}$ είναι αποδεκτή γλώσσα

Απόδειξη του Θεωρήματος:

Δείχνουμε ότι η Η είναι αποδεκτή γλώσσα κατασκευάζοντας μία μηχανή Turing M' η οποία ημι-αποφασίζει την Η ως εξής. Η Μ' με είσοδο <Μ,w> λειτουργεί όπως η καθολική μηχανή Turing U, δηλαδή προσομοιώνει την λειτουργία της μηχανής Truing M με είσοδο w.

Είναι προφανές ότι:

- Αν η Μ με είσοδο w τερματίζει, τότε θέτουμε την Μ' να τερματίζει.
- Αν η Μ με είσοδο w κρεμάει, μπορούμε να το «πιάσουμε» (π.χ. θέτοντας έναν ειδικο χαρακτήρα στο αριστερό άκρο της ταινίας της Μ και αν διαβαστεί αυτός ο χαρακτήρας, τότε η Μ΄ θα πέφτει σε ατέρμονα βρόχο).
- Αν η Μ με είσοδο w δεν τερματίζει, τότε και η Μ' δεν τερματίζει.

Συνεπώς η Μ' ημι-αποφασίζει την Η, άρα η Η είναι αποδεκτή γλώσσα.

ΑΠΟΔΕΙΞΕΙΣ ΑΠΑΡΙΘΜΗΣΙΜΟΤΗΤΑΣ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

<u>Ορισμός:</u>

- Μία γλώσσα θα λέγεται λεξικογραφικά Turing-Απαριθμήσιμη αν και μόνο αν διαθέτει λεξικογραφικό Turing-Απαριθμητή
 - **Λεξικογραφικός Turing Απαριθμητής** είναι μία Μ.Τ. που εκτυπώνει μία-μία τις συμβολοσειρές της γλώσσας με λεξικογραφική σειρά

Ορισμός:

- Μία γλώσσα θα λέγεται **Turing-Απαριθμήσιμη** αν και μόνο αν διαθέτει Turing-Απαριθμητή
- Turing Απαριθμητής είναι μία Μ.Τ. που και πάλι εκτυπώνει όλες τις συμβολοσειρές της γλώσσας:
 - Ωστόσο τις εκτυπώνει με τυχαία σειρά και πιθανώς με επαναλήψεις
 - Όμως αν μία συμβολοσειρα ανήκει στην γλώσσα, τότε εγγυημένα σε κάποιο βήμα εκτύπωσης αυτή θα εκτυπωθεί!

Θεώρημα:

 Μία γλώσσα είναι λεξικογραφικά Turing-Απαριθμήσιμη αν και μόνο αν είναι Turing-Αποφασίσιμη γλώσσα

Θεώρημα:

 Μία γλώσσα είναι Turing-Απαριθμήσιμη αν και μόνο αν είναι Turing-Αποδεκτή γλώσσα

Η Γλώσσα L={Μ | |L(Μ)|>3} είναι απαριθμήσιμή

Δοθείσης μιας μηχανής Turing M, μπορούμε να κατασκευάσουμε μια μηχανή Turing M' η οποία με τη διαδικασία της χελιδονοούρας απαριθμεί τις λέξεις της L(M). Συγκεκριμένα χρησιμοποιεί τη λεξικογραφική σειρά του αλφαβήτου της M και συγκεκριμένα: Επαναλαμβάνει σε φάσεις:

- Στην 1^η φάση παράγει την πρώτη συμβολοσειρά του Σ*
- Στην 2^η φάση παράγει τις 2 πρώτες συμβολοσειρές του Σ*
- Στην 3^η φάση παράγει τις 3 πρώτες συμβολοσειρές του Σ*
 κ.οκ.
- Στην η-οστή φάση προσομοιώνουμε την Μ κατά η βήματα στις η πρώτες συμβολοσειρές.

Κάθε συμβολοσειρά με την οποία η Μ τερματίζει, τυπώνεται και προχωράμε στην επόμενη φάση.

Τρέχουμε την Μ΄ και αν σε κάποια φάση οι λέξεις που απαριθμήσει γίνουν 4, τερματίζει. Αλλιώς δεν τερματίζει.

Κατασκευάσαμε Μ.Τ. η οποία ημιαποφασίζει την L άρα αυτή είναι αποδεκτή, άρα και απαριθμήσιμη.

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΦΑΣΙΣΙΜΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Η L₁ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω Μ₁ Η L $_2$ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω Μ $_2$

Κλειστότητα των Αποφασισίμων Γλωσσών στην Ένωση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ₁ με είσοδο w. Αν η Μ₁ απαντήσει NAI, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η Μ₁ απαντήσει ΌΧΙ προχωράει στο βήμα 2: 2) Τρέχει την Μ, με είσοδο w. Αν η η Μ, απαντήσει ΝΑΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η Μ, απαντήσει ΌΧΙ τότε απαντά ΌΧΙ και
- τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στην **Τομή**

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ₁ με είσοδο w. Αν η Μ₁ απαντήσει ΟΧΙ, τότε η Μ' απαντά ΟΧΙ και τερματίζει. Αν η Μ₁ απαντήσει NAI προχωρά στο βήμα 2: 2) Τρέχει την Μ₂ με είσοδο w. Αν η η Μ2 απαντήσει ΟΧΙ, τότε η Μ' απαντά
- ΟΧΙ και τερματίζει. Αν η Μ, απαντήσει ΝΑΙ τότε η Μ' απαντά ΝΑΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στην **Παράθεση** Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w

λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w_1w_2 .)
- Για κάθε δυνατό διαχωρισμό: Τρέχει την Μ₁ με είσοδο w₁ και την Μ₂ με είσοδο w₂. Αν και οι δύο μηχανές απαντήσουν ΝΑΙ, τότε η Μ' τερματίζει απαντώντας ΝΑΙ

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ΄ τερματίζει απαντώντας ΌΧΙ.

Κλειστότητα των Αποφασισίμων Γλωσσών στο

Συμπλήρωμα

Η L είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ με είσοδο w.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντάει ΌΧΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στο Αστέρι

Kleene

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1.. | w | συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|)
- Για κάθε δυνατό διαχωρισμό: Τρέχει την Μ διαδοχικά με 2. εισόδους $w_1, w_2, ..., w_k$. Αν η Μ απαντήσει NAI για όλες τις συμβολοσειρές τότε η Μ' τερματίζει απαντώντας ΝΑΙ.

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ΄ τερματίζει απαντώντας ΌΧΙ.

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΔΕΚΤΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Η ${\sf L}_1$ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω ${\sf M}_1$ $\mathsf{H} \mathsf{L}_2$ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_2

Κλειστότητα των Αποδεκτών Γλωσσών στην Ένωση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής: Εκτελεί **εναλλάξ** τις M_1 και M_2 , δηλαδή τρέχει εναλλάξ ένα βήμα στην M_1 ,

ένα βήμα στην M_2 κ.ο.κ. Εάν σε κάποιο βήμα μία από τις δύο τερματίσει, τότε θέτουμε την Μ΄ να τερματίσει.

<u>Κλειστότητα των Αποδεκτών Γλωσσών στην **Τομή**</u>

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- <u>1) Τρέχει την Μ₁ με είσοδο w.</u>
- Αν η M_1 δεν τερματίσει (άρα η w δεν ανήκει στην L_1), τότε και η M' δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$) Αν η Μ₁ τερματίσει (άρα η w ανήκει στην L₁), τότε και η Μ' προχωρά στο επόμενο βήμα.

2) Τρέχει την M₂ με είσοδο w. Aν η M_2 δεν τερματίσει (άρα η w δεν ανήκει στην L_2), τότε και η M' δεν

τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$) Αν η M_2 τερματίσει (άρα η w ανήκει στην L_2), τότε και η M' τερματίζει. Κλειστότητα των Αποδεκτών Γλωσσών στην Παράθεση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους 1. τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂.)
- 2. Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στην παράθεση ως εξής: Για τον πρώτο διαχωρισμό: Τρέχει ένα βήμα στην Μ1
 - με είσοδο w₁ ένα βήμα της Μ₂ με είσοδο w₂. Για τον δεύτερο διαχωρισμό: Τρέχει ένα βήμα στην Μ1 με είσοδο w₁ ένα βήμα της M₂ με είσοδο w₂.
 - Για τον τελευταίο διαχωρισμό: Τρέχει ένα βήμα στην M_1 με είσοδο W_1 ένα βήμα της M_2 με είσοδο W_2 .
- 3. Αν σε κάποιο βήμα τερματίσουν οι δύο μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

Κλειστότητα των Αποδεκτών Γλωσσών στο **Αστέρι Kleene**

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1.. |w| συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|)
 - Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στο αστέρι Kleene:
 - Για τον πρώτο διαχωρισμό, έστω $w_1w_2...w_i$: Τρέχει ένα βήμα στην M με είσοδο w_1 , ένα βήμα της M με είσοδο $w_2,...$, ένα βήμα της M με είσοδο w_i.
 - Για τον τελευταίο διαχωρισμό $w_1w_2...w_i$: Τρέχει ένα βήμα στην M_1 με είσοδο w_1 ένα βήμα της M_2 με είσοδο $w_2...$, ένα βήμα της M_1 με είσοδο $w_2...$ είσοδο w_i.
- Αν σε κάποιο βήμα τερματίσουν όλες οι μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.