

Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports

All Technical Reports Collection

1980

A study of the properties of a new goodness-of-fit test

Franke, Richard

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/30226

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

A STUDY OF THE PROPERTIES OF A NEW GOODNESS-OF-FIT TEST

by

Richard Franke

and

Toke Jayachandran

Technical Report for Period January-March 1980

Approved for public release; distribution unlimited

Prepared for: Chief of Naval Research

Arlington, Virginia 22217

FEDDOCS D 208.14/2:NPS-53-80-003

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J.J. Ekelund Superintendent

Jack R. Borsting Provost

The work reported herein was supported in part by the Foundation Research Program of the Naval Postgraduate School with funds provided by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NPS-53-80-003	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
A STUDY OF THE PROPERTIES OF A NEW	Technical Report
GOODNESS-OF-FIT TEST	January-March 1980
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)
Richard Franke and Toke Jayachandran	
Toke Jayachandran	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School	
Monterey, CA 93940	61152N, RR000-01-10
· ·	N0001480WR00054
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Chief of Naval Research	1 May 1980
Arlington, VA 22217	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	onclassified
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	an Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Goodness-of-Fit tests, Chi squared test, K-S test comparison, random stable distributions, Pearson' mixtures of normals	, Foutz test, power
We investigate the power properties of a new good by Foutz (1980). This new test is compared with Kolmogorov-Smirnov (K-S) test for normality when family of asymmetric stable distributions, (ii) m and (iii) the Pearson family. The general concluperforms better than the Chi squared and the K-S bution is heavy tailed. If the hypothesized dist	the Chi squared test and the the samples come from (i) the ixture of normal distributions sion is that the new test test when the parent distri-

ABSTRACT

We investigate the power properties of a new goodness-of-fit test proposed by Foutz (1980). This new test is compared with the Chi squared test and the Kolmogorov-Smirnov (K-S) test for normality when the samples come from (i) the family of asymmetric stable distributions, (ii) mixtures of normal distributions, and (iii) the Pearson family. The general conclusion is that the new test performs better than the Chi squared and the K-S test when the parent distribution is heavy-tailed. If the hypothesized distribution differs from the true distribution in location only, the new test does not do as well as the other two.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	5
2.	F _n TEST	7
3.	DESCRIPTION OF SIMULATION	14
4.	RESULTS	20
5.	CONCLUDING REMARKS	31
	APPENDICES	

LIST OF FIGURES

Figure	1			22

LIST OF TABLES

		rage
1.	EMPIRICAL SIGNIFICANCE LEVEL OF FOUTZ F_n TEST USING ASYMPTOTIC APPROXIMATION	9
2.	MONTE CARLO SIMULATION VS EXACT VALUES OF CDF	11
3.	CRITICAL VALUES FOR F _n TEST OBTAINED BY MONTE CARLO SIMULTAION	12
4.	EMPIRICAL SIGNIFICANCE LEVEL OF FOUTZ F_n TEST USING MONTE CARLO APPROXIMATION	13
5.	FOUTZ F _n TEST VS CHI SQUARED TEST RANDOM STABILIZED STANDARD DISTRIBUTIONS	23
6.	FOUTZ F _n TEST VS KOLMOGOROV-SMIRNOV TEST RANDOM STABILIZED STANDARD DISTRIBUTIONS	24
7.	FOUTZ F _n TEST VS CHI SQUARED TEST MIXED NORMAL DISTRIBUTIONS	25
8.	FOUTZ F _n TEST VS KOLMOGOROV-SMIRNOV TEST MIXED NORMAL DISTRIBUTIONS	26
9.	FOUTZ F _n TEST VS CHI SQUARED TEST MIXED NORMAL DISTRIBUTIONS	27
LO.	FOUTZ F _n TEST VS KOLMOGOROV-SMIRNOV TEST MIXED NORMAL DISTRIBUTIONS	28
11.	FOUTZ F _n TEST VS CHI SQUARED TEST PEARSON DISTRIBUTIONS	29
12.	FOUTZ F _n TEST VS KOLMOGOROV-SMIRNOV TEST PEARSON DISTRIBUTIONS	30

1. INTRODUCTION

In a recent article Foutz (1980) introduced a new test for goodness-of-fit, to be called the \mathbf{F}_n test in the sequel. Although the test was proposed for fitting a continuous p-variate distribution, it applies equally well to univariate problems. The null distribution of the test statistic was shown to be distribution free as well as being independent of the number of variates p. Foutz obtained an integral representation for the null CDF of \mathbf{F}_n ; explicit expressions for this CDF were given for sample sizes 2 and 3. Closed form solutions for the CDF for larger sample sizes are quite hard to derive and Foutz has provided a large sample normal approximation to the null distribution of \mathbf{F}_n .

In a preliminary comparison with ten replications of 50 simulated samples from (I) a mixture of uniform distributions and (II) a standard normal distribution, Foutz found that the \mathbf{F}_n test outperformed both the Chi squared test and the Kolmogorov-Smirnov (K-S) test.

In this paper we present the results of an extensive investigation to compare the three goodness-of-fit tests, the Chi squared test, the K-S test and the F test. Members from three families of distributions, viz., the family of asymmetric stable distributions, mixtures of normals, and the Pearson family have been selected to represent the true underlying distribution of the samples. The goodness-of-fit tests are applied to test the hypothesis that the samples are from a standard normal distribution. The measure of comparison used in the study is the empirical power, based on 5000 replications of each of the tests.

The Chi squared and Kolmogorov-Smirnov statistics were computed using the ${\rm IMSL}^+$ routines GFIT and NKS1. The number of cells used in the Chi

^{*}International Mathematical and Statistical Libraries, 7500 Bellaire Boulevard, Houston, TX 77036

squared computation was 6, 8, and 8 for sample sizes of 20, 30, and 50, respectively.

A brief discussion of the F_n test is given in Section 2 and a description of the simulation is in Section 3. The results of the simulation are presented in Section 4. FORTRAN codes used for the simulation and detailed tables of simulation results are in Appendices I and II.

2. F TEST

The F_n test is based on a comparison of a continuous empirical distribution function (CEDF) with the hypothesized CDF. The CEDF is obtained by "spreading" the total mass over "statistically equivalent blocks" generated by the sample. As shown in Anderson (1966) and Foutz (1980), given the order statistics of a random sample of size (n-1), n statistically equivalent blocks that partition the sample space can be constructed in many different ways by choosing what are called cutting functions. An intuitively appealing set of blocks, which is the one used in this study is obtained by choosing the identity functions for the cutting functions. In this case, the n statistically equivalent blocks are $B_1 = (-\infty, x_{(1)}]$, $B_2 = (x_{(1)}, x_{(2)}]$,..., $B_n = (x_{(n-1)}, \infty)$ where $x_{(1)}, x_{(2)}, \ldots, x_{(n-1)}$ are the order statistics of a sample of size n-1. The CEDF is constructed by spreading a mass $\frac{1}{n}$ conttinuously and in the same proportion as the hypothesized CDF over each block. If H_0 is the hypothesized CDF and \hat{H}_n the CEDF, the test statistic

$$F_{n} = \sup_{x} \left| H_{n}(x) - H_{0}(x) \right| \tag{1}$$

Let D_i , i = 1,2,...,n be the probability contents of the blocks B_i under the null CDF H_o , i.e., D_i = $P[x \in B_i | H_o]$. A computationally convenient form for F_n can be shown to be

$$F_n = \sum_{i=1}^{n} \max(0, \frac{1}{n} - D_i)$$
 (2)

Foutz has provided the null distribution of F_n in integral form and derived closed form solutions for n=3,4. Simplifying the expressions given by Foutz for n=3,4 yields

$$P(F_{3} \le x) = \begin{cases} 6x^{2} & 0 \le x \le \frac{1}{3} \\ 1 - 3(\frac{1}{2} - x)^{2} & \frac{1}{3} < x \le 2/3 \\ 1 & x > 2/3 \end{cases}$$
 (3)

and

$$P(F_{4} \le x) = \begin{cases} 20x^{3} & 0 \le x \le \frac{1}{4} \\ -20x^{3} + 18x^{2} - \frac{9}{4}x + \frac{1}{16} & \frac{1}{4} \le x \le \frac{1}{2} \\ 1 - 4(\frac{3}{4} - x)^{3} & \frac{1}{2} \le x \le \frac{3}{4} \end{cases}$$

$$(4)$$

We have also obtained the expression for the null CDF for n = 5,

$$P(F_{5} \le x) = \begin{cases} 70x^{4} & 0 \le x \le \frac{1}{5} \\ -105x^{4} + 80x^{3} - 12x^{2} + \frac{16}{25}x - \frac{1}{125} & \frac{1}{5} < x \le \frac{2}{5} \\ 45x^{4} - 80x^{3} + \frac{228}{5}x^{2} - \frac{176}{25} + \frac{31}{125} & \frac{2}{5} < x \le \frac{3}{5} \\ 1 - 5(\frac{4}{5} - x)^{4} & \frac{3}{5} < x \le \frac{4}{5} \end{cases}$$

$$(5)$$

As is evident the exact distribution is quite difficult to obtain for higher sample sizes. A large sample normal approximation, due to Foutz is given by

$$\lim_{n \to \infty} P \left[F_n < x \right] = \Phi \left[\frac{n(x - e^{-1})}{(2e^{-1} - 5e^{-2})^{\frac{1}{2}}} \right]$$
 (6)

where Φ is the standard normal CDF. For n-1 = 20,30,50 we used this approximation to test the hypothesis that a simulated sample from U[0,1], a uniform distribution on [0,1], is in fact from that distribution. In 80,000 replications, the observed significance level (number of hypothesis rejections/80,000) was consistently smaller than the nominal value as can be seen from

EMPIRICAL SIGNIFICANCE LEVEL OF FOUTZ F_n TEST USING ASYMPTOTIC APPROXIMATION (80,000 REPLICATIONS)

TABLE 1

Sample Size	20	30	50
Significance Level			
.10	.0757	.0800	.0859
.05	.0372	.0399	.0428
.01	.0082	.0083	.0093

Table 1. We therefore constructed a Monte Carlo CDF of F_n for n-1=2,3,4,20,30,50 based on 25,000 computer generated F_n values; these represent values of the F_n statistic for testing the hypothesis that a set of samples from U[0,1] is in fact from U[0,1]. A comparison of the Monte Carlo CDF with the exact CDF for n-1=2,3,4 is provided in Table 2. It can be seen that the Monte Carlo CDF provides a reasonable approximation even for small n.

The power properties of the F_n test detailed in this paper are based on the Monte Carlo CDF of F_n . Critical values obtained from the Monte Carlo simulation for significance levels .01, .05, .1 and n-1=20,30,50 are in Table 3. In Table 4 we present the observed significance level in 225,000 replications when testing if a set of samples from U[0,1] is in fact from U[0,1].

TABLE 2

MONTE CARLO SIMULATION VS EXACT VALUES OF CDF

	n=3		n=	:4	n=5	
	MC	EXACT	MC	EXACT	MC	EXACT
х						
.40	.7883	.7867	.7624	.7625	.7607	.7600
.45	.8604	.8592	.8725	.8725	.8671	.8693
. 50	.9182	.9167	.9396	.9375	.9405	.9405
.55	.9598	.9592	.9694	.9680	.9768	.9778
.60	.9864	.9867	.9860	.9865	.9915	.9920
.65	.9989	.9991	.9952	.9960	.9975	.9975

TABLE 3 $\begin{array}{cccc} \text{CRITICAL VALUES FOR } \mathbf{f}_n & \text{TEST} \\ \text{OBTAINED BY MONTE CARLO SIMULATION} \end{array}$

Sample Size	20	30	50
Significance Level			
.10	.42714	.41903	.40816
.05	.44865	.43553	.42116
.01	.48659	.46579	.44487

EMPIRICAL SIGNIFICANCE LEVEL OF FOUTZ F_n TEST USING MONTE CARLO APPROXIMATION (225,000 REPLICATIONS)

TABLE 4

Sample Size	20	30	50
Significance Level			
.10	.1006	.0970	.1003
.05	.0486	.0486	.0498
.01	.0103	.0101	.0102

3. DESCRIPTION OF SIMULATION

In our simulation we generated deviates from three families of distributions. The family of asymmetric stable distributions has been previously used by Saniga and Miles (1979) to investigate the power of several goodness-of-fit tests. We used the same set of parameter values, $\alpha = 1.0(.3)1.9$ and $\beta = 0(.25)1.00$ they used. Mixed normal distributions have often been used for such tests, and we have included a family which is a composite of N(0,1) and N(0, σ), $\sigma \neq 1$, and another set which is a composite of N(.5,1) and N(0, σ). Pearson distributions considered include a variety of shapes, from 'hear' normal to U and J shaped. Discussion of the procedures used to generate pseudorandom deviates from each of these families follows.

The sample data was obtained by starting with one or more uniformly distributed pseudorandom deviates. These were generated using the IMSL subroutine GGUBS, the basis of which is discussed in Lewis, Goodman, and Miller (1969).

3.1 Generation of Asymmetric Stable Deviates (Random Stabilized Standard Form)

This family of distributions contains as a special case the normal distribution (α = 2, β = 0) and the Cauchy distribution (α = 1, β = 0). For α < 2 the distributions have infinite variance, which makes them useful for determining the ability of a goodness-of-fit test to detect heavy tailed distributions. The deviates were generated using the program given in Chambers, Mallows, and Stuck (1976). This subroutine, RSTAB, used one deviate from U[0,1] and one exponentially distributed deviate to generate one RSSF deviate.

3.2 Generation of Mixed Normal Deviates

Mixed normals of the form $(1-\gamma)N(\mu_1,\sigma_1)+\gamma N(\mu_2,\sigma_2)$ were generated using the IMSL routine MDNRIS to convert uniform samples into standard normal samples. To obtain a set of N mixed normal variates we proceeded as follows: (i) 2N uniform random variates $\{u_i\}$ were generated using GGUBS; (ii) for each $i=1,\ldots,N$, MDNRIS was used to convert u_i to a standard normal z_i . z_i was then transformed to a normal with mean μ_1 and variance σ_1 , or with mean μ_2 and variance σ_2 , depending on whether $u_{i+N} \geq \gamma$, or $u_{i+N} < \gamma$, respectively.

3.3 Generation of Pearson Type I, II Deviates

The generation of samples from Pearson Type I and II distributions was done via table look up and linear interpolation on the inverse cumulative distribution function. Sufficient entries to assure four significant decimal places in the final answer was achieved adaptively using numerical integration. Before discussion of the precise details of the process, we digress for a discussion of the Pearson distributions, and particularly types I and II.

Following Johnson and Kotz (1970), the Pearson probability density function p(x) is given by

$$\frac{1}{p} \frac{dp}{dx} = \frac{a + x}{c_0 + c_1 x + c_2 x^2} .$$

It can be shown that a, c_0 , x_1 , and c_2 can be expressed in terms of non-negative parameters β_1 , β_2 , and the variance μ_2 , obtaining

$$c_{0} = (4\beta_{2} - 3\beta_{1})(10\beta_{2} - 12\beta_{1} - 18)^{-1}\mu_{2}$$

$$a = c_{1} = \sqrt{\beta_{1}} \quad (\beta_{2} + 3)(10\beta_{2} - 12\beta_{1} - 18)^{-1} \sqrt{\mu_{2}}$$

$$c_{2} = (2\beta_{2} - 3\beta_{1} - 6)(10\beta_{2} - 12\beta_{1} - 18)^{-1}.$$
(7)

Type I distributions are characterized by

$$\kappa := \frac{1}{4} c_1^2 (c_0 c_2)^{-1} < 0$$
,

while Type II have κ = 0 with β_1 = 0, β_2 < 3. For Type I and II the probability density function is of the form

$$p(x) = K(x - a_1)^{m_1} (a_2 - x)^{m_2}. (8)$$

Generation of a sequence of pseudorandom Pearson Type I and II deviates involves the following steps: (i) generate a sequence of deviates $\{u_i\}$, from U[0,1]; (ii) transform these to Pearson deviates by finding v_i so that $\int_{a_1}^{v_i} p(x) dx = u_i.$ This necessitates being able to efficiently obtain the inverse CDF, i.e., if $F(v) = \int_{a_1}^{v} p(x) dx$, then we need $v_i = F^{-1}(u_i)$. We will denote F^{-1} by G in order to simplify notation.

Representation of the inverse CDF, G(s), was achieved by linear interpolation in a table generated by numerical integration of p(x). The adaptive process used to assure four decimal place accuracy, i.e., magnitude of the error less than $.5 \times 10^{-4}$ is described now.

The error in linear interpolation between points (s_i, G_i) and (s_{i+1}, G_{i+1}) is no more than $\frac{1}{8}(s_{i+1} - s_i)^2 \mathbf{G}_2$, where $\mathbf{G}_2 = \max_{\substack{s_i \le s \le s_{i+1}}} |G''(s)|$.

Since the intervals will be small, we can approximate

$$\mathbf{G}_2$$
 by $\frac{G'(s_{i+1}) - G'(s_i)}{s_{i+1} - s_i}$, and then using the fact that

$$G'(s) = (F^{-1}(s))' = \frac{1}{F'(G)} = \frac{1}{p(G)}$$
, we obtain

$$\mathbf{G}_{2} \approx \frac{\frac{1}{p(G_{i+1})} - \frac{1}{p(G_{i})}}{s_{i+1} - s_{i}}$$
.

Thus, an error estimate in (s_i, s_{i+1}) is given by

$$\frac{\frac{1}{p(G_{i+1})} - \frac{1}{p(G_{i})}}{s_{i+1} - s_{i}} \left| \frac{(s_{i+1} - s_{i})^{2}}{8} - \frac{1}{8} \right| \frac{1}{p(G_{i+1})} - \frac{1}{p(G_{i})} \left| (s_{i+1} - s_{i}) \right|. \tag{9}$$

Potential problems occur if p(G) = 0, as may happen at a_1 and a_2 . Since we require error less than .5 x 10^{-4} , it is clear this must be the case when $|G_{i+1} - G_i| < .5 \times 10^{-4}$; hence if p(G) is very small in the interval (s_i, s_{i+1}) we have an alternative scheme for accepting an interval, one which came into play for ranges where p is small.

These ideas were the basis for adaptive construction of a suitable table (s_i, G_i) for the inverse cumulative distribution function. We have $s_0 = 0$, $G_0 = a_1$. We describe the general scheme for obtaining (s_{i+1}, G_{i+1}) given (s_i, G_i) and note how an estimate of G_{i+1} is generated afterwards. Given an estimate for G_{i+1} , the value of $\Delta s_i = s_{i+1} - s_i$ is obtained by numerical

numerical integration of $\int_{G_i}^{G_i+1} p(x)dx$. This is accomplished by the

adaptive quadrature routine, DCADRE, from the IMSL library. If m_1 or m_2 are negative, subtracting out the singularity was used for intervals near a_1 and a_2 , respectively. The double precision version of DCADRE is used and an absolute error tolerance of 10^{-6} is requested. The routine returns Δs_i and the error estimate (9) is computed. If it is less than .5 x 10^{-4} , the result is accepted, we set $s_{i+1} = s_i + \Delta s_i$, and proceed to the next interval. Suppose the error estimate, $E_{est} > .5 \times 10^{-4}$. Since $E_{est} = O((\Delta G)^2)$, and

 $O(\Delta G_i) = O(\Delta s_i)$, we obtain a new estimate for ΔG_i by taking it to be $\frac{\Delta G_i}{2} \left(\sqrt{\frac{.25 \times 10^{-4}}{E_{est}}} + 1 \right)$

This takes the error based on the new ΔG_i to approximately midway between its current value and .25 x 10^{-4} . More than one correction of this sort may be required, in particular initially where a reasonable estimate of ΔG_0 is not available.

Once an interval has been accepted (or rather, a point (s_i, G_i)) we increment the interval counter i, and then estimate the new interval size $^{\Delta G} i \overset{\text{by}}{=} \frac{^{\Delta G} i - 1}{2} \left(\sqrt{\frac{.475 \times 10^{-4}}{E_{\text{est}}}} + 1 \right) .$ This yields, based on the above assumptions, a $^{\Delta G} G_i$ which should give an error for the next interval which is midway between the previous one and .475 x $^{10} I_i$.

An initial value for ΔG_0 is required. Although not very sophisticated, we simply take $\Delta G_0 = \frac{a_2 - a_1}{1000}$, and depend on the adaptive machinery described above to decrease it to meet the error tolerance, or increase successive intervals as required for efficient representation.

It is true that the final value of s_i , call it s_N , should be equal to one. Because of the numerical integration, this is never exactly the case. In the worst case, β_1 = .01, β_2 = 1.9, we obtained the final value $s_N \approx .9999999845$ an error of about 1.55 x 10^{-8} . In order to avoid any problems due to the table not covering [0,1] exactly the simplest procedure was to replace each computed s_i by s_i/s_N , thus distributing the error over the entire interval and yielding a consistent table. Note that this is well within the error tolerance of .5 x 10^{-4} .

The procedure has been thoroughly tested for its efficiency in representing the inverse CDF as well as for accuracy. For the particular cases

in which we were interested, the inverse CDF was represented by a table with no more than 729 entries. This occurred for the case β_1 = .25, β_2 = 3.2, which has an inverse CDF with very large slopes. For more gently sloping inverse CDF's we were able to use as few as 101 intervals, as in the case β_1 = .01, β_2 = 1.75. Most intervals had an error estimate of between .4 x 10⁻⁴ and .5 x 10⁻⁴, which shows that the interval sizing process we have used worked quite efficiently, with few initial estimates being rejected for being too large, without also resulting in intervals much too small.

The routine was checked against the published tables of Johnson, Nixon, Amos and Pearson (1963) for many values of the parameters and at most of the percentage points. With a few exceptions, where a difference of one in the fourth decimal place was noted, the results check exactly. Generally in these cases the fifth place was four or five so that the actual error was probably well within our tolerance.

4. RESULTS

The results of the simulation are summarized in Tables 5-12. The empirical power, in 5000 replications, of the Foutz F_n fest compared with that for the Chi squared test or the K-S test is presented as a percent improvement in the probability of rejecting the null hypothesis that the distribution of the samples is the standard normal. A negative entry means that the power of the F_n test was smaller than that for the Chi squared test or the K-S test, whichever is appropriate.

The simulation has revealed that the F_n test is better than the Chi squared test which in turn is better than the K-S test when the true distribution of the samples is heavy tailed. Many such distributions are included in the asymmetric stable family as well as the family of mixtures of normals. For the mixed normal family, if the two normals involved in the mixture differ in the means the K-S test performed better than the F_n test even when the variances differed. We now discuss in more detail the results for each of the three families of distributions.

4.1 Asymmetric Stable Family

The results for the F_n test versus the Chi squared test are summarized in Table 5. The F_n test outperformed the Chi squared test for n equal to 21 and 31. When n = 51, as α + β increased the performance of the F_n test deteriorated as can be seen from the lower right part of Table 5. Another general observation is that as the significance level is decreased the improvement in power for the F_n test is accentuated.

The comparative figures for the \mathbf{F}_n test versus the K-S test are presented in Table 6. Here again the \mathbf{F}_n test did much better than the K-S test;

the results also indicate that for the asymmetric stable family the Chi squared test has a higher power than the K-S test.

4.2 Mixtures of Normals

The mixed normal distributions that we considered were of two basic types. The first type is of the form $(1-\gamma)N(0,1)+\gamma N(0,\sigma)$ with $\sigma=2,3,4$ and $\gamma=.1,.2,.3,1.0$; note that when $\gamma=1.0$ the distribution is not a true mixture but $N(0,\sigma)$. The second type is a mixture of the form $(1-\gamma)N(.5,1)+\gamma N(0,\sigma)$ with $\sigma=3, \gamma=.2,.3$ and $\sigma=4, \gamma=.2$.

The F test did significantly better than the Chi squared test except for n = 51 and γ = 1.0 (see Table 7); in the latter case the Chi squared test turned out to be the better of the two tests.

When the F test was compared with the K-S test the F test turned out to be consistently better (Table 8).

In the case of a mixture of the second type, which included a location shift (Tables 9, 10), the K-S test proved to be superior to the \mathbf{F}_n test while the comparison between the \mathbf{F}_n test and the Chi squared test appeared to be inconclusive.

4.3 Pearson Family

We chose ten distributions of types I and II to encompass a variety of shapes as shown in figure 1; the standard normal is superimposed as a dotted curve in each of the graphs. The comparison of the F_n test versus the Chi squared test proved to be inconclusive. However, the K-S test appeared to have a higher power than the F_n test when the shape of the distribution was "near" normal such as the ones for $(\beta_1,\beta_2)=(0,2.3), (0,2.8)$ and (.25,3.2).

	Sig	β→	0.0	0.25	0.50	0.75	1.00
1	.10	1.0 1.3 1.6 1.9	102.0 96.1 72.0 54.3	102.7 88.6 68.3 55.4	101.6 69.1 59.5 55.4	95.8 49.1 49.0 53.9	96.9 11.7 29.2 55.8
n=21	.05	1.0 1.3 1.6 1.9	120.2 97.9 71.2 49.8	117.2 98.2 63.4 45.6	121.6 71.2 58.6 51.1	114.9 49.6 41.4 49.8	110.3 - 1.4 20.1 44.2
	.01	1.0 1.3 1.6 1.9	256.0 174.8 118.5 81.6	215.9 158.6 130.3 73.0	238.0 131.8 107.9 99.0	234.5 71.7 62.1 89.7	233.8 - 8.0 21.7 78.7
	.10	1.0 1.3 1.6 1.9	37.9 35.9 26.6 17.6	36.8 34.0 26.2 19.5	38.1 28.4 16.5 19.4	39.3 13.8 11.1 13.4	37.0 -10.4 0.9 16.7
n=31	.05	1.0 1.3 1.6 1.9	47.4 41.8 28.8 12.0	44.6 38.9 25.7 15.8	46.6 31.5 13.0 13.3	50.2 11.7 5.2 8.4	46.7 -18.6 - 7.6 14.4
	.01	1.0 1.3 1.6 1.9	74.7 55.8 32.2 14.5	75.2 46.2 30.7 18.1	73.8 31.2 11.0 10.1	73.5 3.9 - 6.0 8.0	70.2 -33.7 -21.3 1.0
	.10	1.0 1.3 1.6 1.9	11.4 9.6 1.2 -10.8	13.3 12.3 - 0.5 - 8.9	11.1 6.1 - 4.9 -11.0	10.6 - 1.1 - 7.3 -11.1	11.4 -11.1 -13.9 -11.2
n=51	.05	1.0 1.3 1.6 1.9	17.4 12.6 0.5 -14.3	18.5 12.2 - 3.5 -12.9	17.1 5.0 - 8.7 -15.1	16.3 3.5 -12.0 -16.3	17.1 -18.2 -21.7 -15.9
	.01	1.0 1.3 1.6 1.9	17.4 12.6 0.5 -14.3 30.5 14.1 - 5.4 -24.2	30.5 13.8 - 8.3 -24.2	31.2 3.1 -20.6 -24.1	28.4 -12.2 -23.5 -24.2	25.8 -35.2 -37.0 -26.1

TABLE 6

FOUTZ F TEST VS KOLMOGOROV-SMIRNOV TEST RANDOM RANDOM STABILIZED STANDARD DISTRIBUTIONS

	Sig	β-	→ 0.0	0.25	0.50	0.75	1.00
	Level	1.0 1.3 1.6 1.9	120.2 102.8 87.7 65.5	123.8 100.6 77.2 61.7	110.0 76.0 61.3 62.9	120.4 43.5 49.6 65.1	115.2 0.9 22.7 57.8
n=21	.05	1.0 1.3 1.6 1.9	197.5 170.8 131.3 83.7	196.0 151.2 110.4 90.5	186.7 111.3 8 9. 9 87.5	185.9 68.1 67.0 85.6	192.1 - 2.8 30.4 74.4
	.01	1.0 1.3 1.6 1.9	601.5 396.4 305.7 140.1	465.5 338.1 243.9 147.5	530.4 245.0 165.2 176.2	522.7 121.4 117.7 176.5	526.8 - 0.6 45.6 163.8
	.10	1.0 1.3 1.6 1.9	82.1 83.6 63.8 49.5	80.6 77.6 59.5 55.6	83.3 56.7 42.6 48.2	84.7 25.5 29.4 44.8	81.6 - 9.2 7.3 40.3
n=31	.05	1.0 1.3 1.6 1.9	150.9 147.3 107.8 77.2	149.8 129.2 98.9 86.7	145.6 88.1 65.0 69.5	152.7 40.5 41.1 72.5	151.5 - 13.0 11.4 68.2
	.01	1.0 1.3 1.6 1.9	428.5 386.1 267.3 190.8	429.5 316.4 210.3 186.2	447.0 190.6 136.9 153.0	399.0 76.4 79.9 146.8	471.3 - 16.2 24.1 136.8
n=51	.10	1.0 1.3 1.6 1.9	38.5 49.3 40.0 24.4	42.7 49.4 35.7 31.4	38.9 29.6 24.0 26.1	37.5 8.4 11.4 22.2	37.7 - 10.3 - 6.7 19.5
	.05	1.0 1.3 1.6 1.9	77.6 94.4 79.4 49.8	81.2 85.2 61.4 54.6	78.0 53.2 37.9 50.6	78.3 14.7 17.0 42.0	76.0 - 16.4 - 8.1 35.4
	.01	1.0 1.3 1.6 1.9	285.4 287.6 196.2 130.4	287.0 243.0 173.3 126.3	275.2 138.7 91.2 115.4	270.9 37.7 41.0 111.8	262.6 - 26.1 - 7.9 99.6

		γ	1.00	0.30	0.20	0.10
	Sig	N(0, \sigma)				
	.10	N(0,2) N(0,3) N(0,4)	55.8 32.8 20.5	69.3 86.8 101.4	76.3 75.9 89.0	40.7 44.7 75.7
n=21	.05	N(0,2) N(0,3) N(0,4)	47.0 30.5 22.6	46.4 71.3 91.1	64.5 69.0 76.8	23.7 34.7 48.1
	.01	N(0,2) N(0,3) N(0,4)	62.0 61.2 49.0	262.1 109.8 118.3	107.5 145.8 131.1	88.6 86.3 125.0
	.10	N(0,2) N(0,3) N(0,4)	13.8 4.3 1.8	46.9 56.7 55.8	42.4 50.6 58.7	22.0 51.5 39.2
n=31	.05	N(0,2) N(0,3) N(0,4)	12.0 3.1 1.0	38.3 53.2 57.4	29.2 48.4 61.5	28.6 53.2 44.4
	.01	N(0,2) N(0,3) N(0,4)	1.2 0.6 0.1	62.1 47.3 84.0	46.0 103.1 95.5	52.1 104.7 61.5
n=51	.10	N(0,2) N(0,3) N(0,4)	-13.1 - 5.9 - 1.4	23.6 19.3 26.2	26.1 28.4 29.5	9.7 25.7 35.6
	.05	N(0,2) N(0,3) N(0,4)	-16.2 - 9.4 - 2.5	28.9 29.2 34.1	45.5 43.4 45.4	17.4 38.0 39.7
	.01	N(0,2) N(0,3) N(0,4)	-26.9 -17.7 - 7.9	83.8 41.6 24.5	54.8 45.9 78.3	67.4 67.9 51.4

TABLE 8

FOUTZ F TEST VS KOLMOGOROV-SMIRNOV TEST MIXED NORMAL DISTRIBUTIONS

		γ→	1.00	0.30	0.20	0.10
	Sig	N(0,σ)				
	Level	N(0,2)	60.5	36.1	31.8	8.7
	.10	N(0,3) N(0,4)	52.6 38.8	59.3 71.5	42.9 54.0	19.3 40.2
n=21	.05	N(0,2) N(0,3) N(0,4)	87.4 91.8 74.4	49.5 75.4 90.2	36.4 49.8 66.6	6.8 16.9 43.7
	.01	N(0,2) N(0,3) N(0,4)	156.3 223.6 198.1	94.4 112.3 107.0	43.1 71.0 101.2	15.8 41.8 26.6
	.10	N(0,2) N(0,3) N(0,4)	42.6 31.3 18.5	19.3 52.9 66.2	27.8 38.8 52.9	13.9 24.1 21.1
n=31	.05	N(0,2) N(0,3) N(0,4)	69.3 60.8 38.7	29.9 65.7 101.4	27.8 52.9 61.9	20.6 36.8 36.2
	.01	N(0,2) N(0,3) N(0,4)	135.8 183.9 129.8	52.9 107.5 163.9	67.3 120.3 152.2	55.3 66.0 72.1
n=51	.10	N(0,2) N(0,3) N(0,4)	22.4 9.6 3.1	26.8 47.8 66.4	23.6 39.4 51.1	9.7 21.2 36.3
	.05	N(0,2) N(0,3) N(0,4)	45.7 24.5 10.6	30.0 74.0 110.7	39.9 52.2 73.3	9.0 29.9 52.3
	.01	N(0,2) N(0,3) N(0,4)	117.6 96.0 53.0	61.9 215.7 170.9	81.1 83.3 164.5	20.3 39.1 86.7
		•				

TABLE 9 $\begin{tabular}{ll} FOUTZ & F_n & TEST & VS & CHI & SQUARED & TEST \\ \hline MIXED & NORMAL & DISTRIBUTIONS \\ \end{tabular}$

		SIGNIFICANCE LEVEL		
	MIXED NORMAL	.10	.05	.01
n=21	0.76xN(0.5,1)+0.30xN(0.0,3)	24.0	- 0.7	-20.8
	0.80xN(0.5,1)+0.20xN(0.0,3)	14.4	- 9.2	-27.2
	0.80xN(0.5,1)+0.20xN(0.0,4)	17.2	- 3.2	-21.1
n=31	0.70×N(0.5,1)+0.30×N(0.0,3)	9.6	- 6.8	-28.6
	0.80×N(0.5,1)+0.20×N(0.0,3)	3.3	-12.4	-33.3
	0.80×N(0.5,1)+0.20×N(0.0,4)	3.7	-10.7	-30.2
n=51	0.70xN(0.5,1)+0.30xN(0.0,3)	25.1	-24.1	-43.6
	0.80xN(0.5,1)+0.20xN(0.0,3)	- 2.3	-23.6	-48.6
	0.80xN(0.5,1)+0.20xN(0.0,4)	- 4.1	-26.3	-45.5

TABLE 10

FOUTZ F TEST VS KOLMOGOROV-SMIRNOV TEST
MIXED NORMAL DISTRIBUTIONS

SIGNIFICANCE LEVEL .01 .10 .05 MIXED NORMAL 0.70xN(0.5,1)+0.30xN(0.0,3)-28.9 -33.7-17.0-38.2 -40.70.80xN(0.5,1)+0.20xN(0.0,3)-27.3 n = 21-32.5 -35.1 -25.50.80xN(0.5,1)+0.20xN(0.0,4)-43.4 -25.4-34.50.70xN(0.5,1)+0.30xN(0.0,3)-45.5 -50.7 -34.8 $0.80 \times N(0.5,1) + 0.20 \times N(0.0,3)$ n = 31-45.9 -34.6 -40.2 $0.80 \times N(0.5,1) + 0.20 \times N(0.0,4)$ -47.6 -56.7 $0.70 \times N(0.5,1) + 0.30 \times N(0.0,3)$ -28.7 -64.9 -48.7 -57.4 0.80xN(0.5,1)+0.20xN(0.0,3)n = 51-61.0 -43.3 -51.30.80xN(0.5,1)+0.20xN(0.0,4)

TABLE 11 $\begin{tabular}{ll} FOUTZ & F & TEST & VS & CHI & SQUARED & TEST \\ & & PEARSON & DISTRIBUTIONS \\ \end{tabular}$

			,	SIGNIFICANCE LEVEL	
	β ₁	^β 2	.10	.05	.01
	0.0	2.30	3.4	-10.5	-20.6
	0.0	2.80	21.1	- 0.9	-12.4
	0.01	1.75	12.8	41.1	57.8
	0.01	1.90	- 9.1	- 2.4	18.9
n=21	0.25	3.20	16.6	- 0.4	- 2.3
11-21	0.50	3.00	17.5	5.8	- 9.3
	1.00	3.40	-12.5	-16.2	-15.8
	1.00	3.60	9.1	-31.4	-30.9
	1.00	3.80	16.1	-17. 6	-24.8
	2.00	5.50	-16.1	-14.9	-20.7
	0.0	2.30	- 6.6	-19.0	-22.5
	0.0	2.80	10.7	-12.1	- 5.4
	0.01	1.75	- 5.3	39.4	83.5
	0.01	1.90	-18.7	- 6.9	26.9
n=31	0.25	3.20	0.7	-11.8	- 3.6
11-31	0.50	3.00	- 1.1	- 0.6	-12.2
	1.00	3.40	-25.5	- 23.5	-23.4
	1.00	3.60	- 5.7	-41.4	-41.7
	1.00	3.80	0.0	-26.9	-32.9
	2.00	5.50	-29.5	-19.4	-26.5
· · · · · · · · · · · · · · · · · · ·	0.0	2.30	30.4	-39.0	-19.7
	0.0	2.80	34.9	-40.0	-17.3
	0.01	1.75	6.6	68.1	132.9
	0.01	1.90	-11.8	-15.8	20.7
n=51	0.25	3.20	33.3	-10.8	- 15.6
11-21	0.50	3.00	2.5	-19.9	-20.2
	1.00	3.40	-37.4	-35.7	- 35.6
	1.00	3.60	-13.6	- 53.7	-56.7
	1.00	3.80	- 4.7	-40.6	-46.5
	2.00	5.50	-38.5	-28.7	-38.0

TABLE 12 $\begin{tabular}{ll} FOUTZ & F & TEST & VS & KOLMOGOROV-SMIRNOV & TEST \\ & & PEARSON & DISTRIBUTIONS \\ \end{tabular}$

	•	0		SIGNIFICANCE L	
	β1	β2	.10	.05	.01
n=21	0.0 0.0 0.01 0.01 0.25 0.50 1.00 1.00 2.00	2.30 2.80 1.75 1.90 3.20 3.00 3.40 3.60 3.80 5.50	-22.8 5.4 - 9.4 -33.3 - 8.1 9.9 84.8 52.9 38.4 62.4	-25.0 -18.8 20.6 -15.3 -14.8 21.7 94.4 64.5 44.0 74.7	-26.2 - 7.2 66.0 16.5 - 4.1 34.9 95.9 76.7 59.4 70.4
n=31	0.0 0.0 0.01 0.01 0.25 0.50 1.00 1.00 2.00	2.30 2.80 1.75 1.90 3.20 3.00 3.40 3.60 3.80 5.50	-28.9 11.2 -14.1 -36.7 -12.9 - 0.6 100.0 55.5 39.9 63.3	-36.8 -20.8 27.6 -15.4 -14.0 25.0 134.3 79.4 46.2 91.0	-36.9 -13.0 89.1 19.4 - 9.3 31.3 131.7 91.8 65.3 100.0
n=51	0.0 0.0 0.01 0.01 0.25 0.50 1.00 1.00 2.00	2.30 2.80 1.75 1.90 3.20 3.00 3.40 3.60 3.80 5.50	- 9.1 - 4.9 -18.4 -37.4 - 8.1 0.0 169.9 64.9 42.1 103.0	-48.6 -38.9 62.0 -22.9 - 9.6 25.9 225.8 138.9 69.0 151.0	-40.0 -35.8 171.8 26.6 -13.8 47.0 245.5 154.4 85.2 164.7

5. CONCLUDING REMARKS

The superior performance of the Foutz \mathbf{F}_n test in detecting certain types of deviations from the hypothesized distribution leads to several more problems to be considered. Of primary importance is the generation of percentage points for the distribution of \mathbf{F}_n for various values of \mathbf{n} . The intractability of the problem of obtaining the exact distribution requires an empirical approach to finding a correction to the asymptotic approximation given by Foutz.

Since the test is also applicable to p-variate distributions, an investigation of ways to obtain the statistically equivalent blocks, and then the probability content of them, at least for p = 2, is to be considered. The problems of obtaining these blocks and their contents becomes increasingly complicated in higher dimensions.

The authors wish to acknowledge extensive use of the IBM 360/67 computer system at the Naval Postgraduate School, on which all computations were performed.

REFERENCES

- Anderson, T.W. (1966), "Some Nonparametric Procedures Based on Statistically Equivalent Blocks", Proceedings of the International Symposium on Multivariate Analysis (P.R. Krishnaiah, ed.), Academic Press, New York, 5-27.
- Foutz, R.V. (1980), "A Test for Goodness-of-Fit Based on an Empirical Probability Measure", (To appear in Annals of Statistics).
- Johnson, N.L., Nixon, E., Amos, D.E., Pearson, E.S. (1963), "Table of Percentage Points of Pearson Curves, for Given $\sqrt{\beta_1}$ and β_2 , Expressed in Standard Measure", BIOMETRIKA, 50, 459-498.
- Johnson, N.L., Kotz, S. (1970), "Continuous Univariate Distributions 1 & 2", John Wiley & Sons, Inc.
- Lewis, P.A.W., Goodman, A.S., Miller, J.M. (1969), "Pseudorandom Number Generator for the System/360", IBM Systems Journal, 8, 136-146.
- Saniga, E.M., Miles, J.A. (1979), "Power of Some Standard Goodness-of-Fit Tests of Normality Against Asymmetric Stable Alternatives", Journal of the American Statistical Association, 74, 861-865.

110

```
THIS PROGRAM GENERATES DEVIATES IN RANDOM STABILIZED STANDARD FORM BLOCKS OF 20. 30, AND 50 DEVIATES ARE CONSIDERED BY GENERATING 50. THEN CONSIDERING THE FIRST 20. THE NEXT 30, AND ALL 50. THE HYPOTHESIS THAT THEY CAME FROM A NORMAL DISTRIBUTION WITH MEAN AND VARIANCE AS GIVEN IN INPUT IS TESTED.
                THE TESTS PERFORMED ARE THE CHI SQUARED, KOLMOGOROV-SMIRNOV, AND FOUTZ TEST AT THE CONFIDENCE LEVELS OF 10, 5, AND 1 PERCENT. THE INPUT VALUES ARE MEAN, VARIANCE, ISSED, AND THE NUMBER OF REPORTIONS.
               IMPLICIT REAL*8 (A-Z)
INTEGER*4 T.IER.N.I.NP1.N1,N2,N3,ISEED,NR,NSTOP,IDF,IQ,ISEED1
.NCEL(3).NST(3).NSNP(3).NCHI(3,3),NCHIN(3,3),NKS(3,3),
NKSN(3,3).NFNN(3,2).NFNN(3,3),NSR
DIMENSICN RD(55).CFISQU(2).
LKOLSMR(2).FOUTZL(2).FNTST(3,3),ZALF(3).RN(55)
REAL*4 CELLS(50).CCMP(50),Q.CHI,R(55),PDIF(6),QTST(3),RNN(55),
STST(3,3)
DATA STST/.26473..21756..16959,.29408..24170..18841..35241.
.28987,.22604/
DATA NCEL/8,10.10/.NST/1.21.1/,NSMP/20,30.50/.QTST/.1..05..01/
.CHISQU/'CHI SQUA'.'RED TEST'/,KOLSMR/'KOLMOG-S','MIR TEST'/
.FOUTZL/'FOUTZ TE'.'ST'/.ZALC1.ZALC2/.243069D0..367879D0/
DATA WTI.MEAN1.VAR1.WT2.MEAN2.VAR2/.8D0.0.D0.1.D0..2D0.0.D0.3.D0/
3.ZALF/1.28155C0.1.64485D0.2.32635D0/
                    THE NEXT 4 CARDS PUT IN THE EMPIRICAL CRITICAL VALUES FOR THE
                     FOUTZ DISTRIBUTION.
                                                                                          DIMENSION FNEMP(3.3)
DATA FNEMP/.42714D9..41903D0..4)816D9.
.44865C0..43553D0..42116D0..48659D0.
.46579D0..44487D0/
            12
                REAL*4 ALPHA, BETA, BPRIME
COMMON/NCRPRM/MEAN, VARI, SVARI
EXTERNAL NORM, UNIF
                 T = 1
PIB2 = CATAN(1.DC)*2.DO
              PIB2 = CATAN(1.DC)*2.DO

PRINT 1

READ 2.MEAN.VARI
IF(MEAN+VARI.LE.G.CO)STOP

FORMAT(2E5.0)

SVARI = DSORT(VARI)
WRITE(4.14)
FORMAT(1H1)
FORMAT(1H1)
FORMAT(+INPUT MEAN AND VARIANCF, FORMAT(2E5.0)*)
PRINT 17
READ 12.ALPHA.BETA
FORMAT('+INPUT ALPHA AND BETA, FORMAT(2F5.0)*)
FORMAT(5F5.0)
PRINT 3
READ 5.ISEED.NR
ISEED1 = ISEED
BPRIME = BETA
IF(ALPHA.EG.O.)GO TC 110
PHIZ = -PIB2*BETA*(1. - ABS(1. - ALPHA))/ALPHA
BPRIME = DTAN(PIB2*(1. - ALPHA))*DTAN(PHIZ*ALPHA)
CONTINUE
100
               BPRIME = DTAN(PIB2*(1)
CONTINUE
DSEED = DFLOAT(ISEEC)
FORMAT(I10.I5)
FORMAT(!+INPUT SEED A
CO 205 IQ=1.3
DO 205 N1=1.3
NCHI(N1.IQ) = C
NKS(N1.IC) = 0
NKS(N1.IC) = 0
NKSN(N1.IQ) = C
                                                                               SEED AND NUMBER OF REPLICATIONS, FORMAT(110,15)')
```

```
NFN(N1, IC) = 0
FNTST(N1, IC) = ZALC1*ZALF(IC)/DSQRT(DFLOAT(NSMP(N1)+1)) + ZALC2
                          FOLLOWING CARD PUTS IN THE EMPIRICAL VALUES FOR THE FOUTZ TEST
               FNTST(N1,IQ) = FNEMP(N1,IQ)
205 NFNN(N1,IQ) = 0
DO 300 I=1,NR
               CALL RANSRV(50,RN,RD,DSEED,ALPHA,BPRIME)
                CO 250
N2 = N
                                 0 N1=1
NST(N1)
N2 = NSMP(N1)

CALL VSRTAD(RD(N2), N3)

CALL VSRTAD(RN(N2), N3)

DO 210 NSR=1, N3

RNN(NSR) = RN(NSR + N2-1)

210 R(NSR) = RD(NSR+N2-1)
            K(NSR) = RD(NSR+N2-1)
IDF = 0
CALL GFIT(UNIF,NCEL(N1),RNN,N3,CFLLS,COMP,CHI,IDF,Q,IER)
ED 241 IC=1,3
IF(0.LT.GTST(IQ))NCHI(N1,IQ) = NCHI(N1,IQ) + 1
CONTINUE
CALL NEGOTION
 241
              CALL NKS1(UNIF,RAN,A3,PDIF,IER)

DD 242 IG = 1,3

IF(PDIF(1).GT.STST(N1,IQ))NKS(N1,IQ) = NKS(N1,IQ) + 1

CONTINUE

CALL FGUTZ(UNIF,RNN,N3,Q)

DD 243 IG=1,3

IF(Q.GT.FNTST(N1,IQ))NFN(N1,IQ) = NFN(N1,IQ) + 1

CONTINUE
               CONTINUE
IDF = 0
IDF = 0
CALL GFIT(NORM,NCEL(N1),R,N3,CELLS,COMP,CHI,IDF,Q,IER)
DO 244 IC = 1,3
IF(0.LT.OTST(IQ))NCHIN(N1,IQ) = NCHIN(N1,IQ) + 1
CONTINUE
CALL NKS1(NORM,R,N3,PDIF,IER)
DO 245 IQ=1,3
IF(PDIF(1).GT.STST(N1,IQ))NKSN(N1,IQ) = NKSN(N1,IQ) + 1
CONTINUE
CALL FOUTT(NORM,R,N3,Q)
              CALL FOUTZ(NORM,R,N3,Q)
DO 246 IC=1,3
IF(0.GT.FNTST(N1,IC))NFNN(N1,IC) = NFNN(N1,IQ) + 1
CONTINUE
CONTINUE
246
250
           CONTINUE
ISEED = CSEED
WRITE(4,7) MEAN, VARI, NR, ISEED1, ISEEC
WRITE(4,11) ALPHA, BETA
FORMAT(//' RANDOM STABLE STANDARDIZED FORM (RSSF), ALPHA =',F5.2,

1', BETA =',F5.2//)
WRITE(4,E)CHISQU,((NCHI(N1,IQ),

1 N1=1,3), IQ=1,3), ((NCHIN(N1,IQ),

2 N1=1,3), IQ=1,3),
WRITE(4,E)KOLSMR,((NKS(N1,IQ),N1=1,3),IQ=1,3),

1 ((NKSN(N1,IQ),N1=1,3),IQ=1,3)
WRITE(4,E)FOUTZL,((NFN(N1,IQ),N1=1,3),IQ=1,3),((NFNN(N1,IQ),N1=1,3),IQ=1,3)

YRITE(4,E)FOUTZL,((NFN(N1,IQ),N1=1,3),IQ=1,3),((NFNN(N1,IQ),N1=1,3),IQ=1,3)

FORMAT(//' THE VALUES OF MEAN (U) AND VARIANCE (V) ARE', 2F12.5///
               CONTINUE
      7 FORMAT (// THE VALLES OF MEAN (U) AND VARIANCE (V) ARE, 2F12.5///
9 THE RESULTS OF ',15,' PEPLICATIONS, STARTING WITH SEED',
1 I12//33X, 'ENDING WITH NEXT SEEC', I12//)
8 FORMAT (///20X, 2AE//20X, '20 PTS',
2 6X, '30 PTS', 6X, '50 PTS'//10X, '10%', 3I12/' CONTROL', 2X, '5%',
3 3I12/10X, '1%', 3I12//' RSSF ',2X, '10%', 3I12/' VS',5X,' 5%',
4 3I12/' N (U,V)', 2X, '1%', 3I12)
WRITE (4,9) ((FNTST(N1,10),N1=1,3), IC=1,3)
PORMAT (/'0 THIS WAS BASEC ON THE FOLLLOWING TEST VALUES',
GO TO 100
```

```
SUBROUTINE RANSRV(ND,RAN,R,DSEED,ALPHA,BPRIME)
IMPLICIT REAL*8 (A-M,O-Z)
DIMENSION R(1),RAN(1)
REAL*4 RN(100),ALPHA,BPRIME,RSTAB,W
CALL GGUBS(DSEEC,2*ND,RN)
                                                                          CALL GGUES (DSEEC, 2*RC, RN)
DO 200 NN=1, ND
RAN(NN) = RN (NN)
W = -DLOG(1.DO - RN (NN+ND))
R(NN) = RSTAB(ALPHA, BPRIME, RN (NN), W)
CONTINUE
RETURN
RETURN
                             200
                                                                            END
                                                                          SUBROUTINE NCRM(X,P)
REAL*8 MEAN, VARI, SVARI
COMMON/NCRPRM/MEAN, VARI, SVARI
T = (X - MEAN)/SVARI
P = .5*ERFC(-T*.7071068)
ANDOW STABLE STANDARDIZED FORM (WHATEVER)

APPIME = CHARACTSPISTIC EXPONENT
BPPIME = SKEWNESS IN REVISED PARAMETERIZATION

WENT OF THE CONTROL ON THE CONTROL OF THE CONTRO
                                                                            RETURN
                                                                            END
                                                                           A2 = 1.00 - DA

A2P = 1.00 + DA

B2 = 1. - DB

D2P = 1. + DB

COMPUTE COEFFICIENT
```

```
Z = A2P*(B2 + 2.*PHIBY2*BB*TAU)/(W*A2*B2P)

COMPUTE THE EXPONENTIAL-TYPE EXPRESSION

ALOGZ = ALOG(Z)

D = D2(EPS*ALOGZ/(1. - EPS))*(ALOGZ/(1. - EPS))

COMPUTE STABLE

RSTAB = (1. + EPS*D)*2.*((A - B)*(1. + A*B) - PHIBY2*TAU*BB*(B*A2-2.*A))/(A2*E2P) + TAU*D
C
                             RE TURN
END
                           FUNCTION D2(Z)

EVALUATE (EXP(X) - 1)/X

DOUBLE PRECISION F1.F2.Q1.Q2.Q3,PV.ZZ

DATA P1.P2.Q1.Q2.Q3/.840066852536483239D3..2)0011141589964569D2.

.168013370507926648C4..1800133704C739J023D3.1.D0/

THE APPROXIMATION 1801 FOR HART ET AL (1968.P213)

IF(ABS(Z).GT.O.1)GC TO 100

ZZ = Z*Z

PV = P1 + ZZ*P2

EZ = 2.C0*PV/(Q1 + ZZ*(Q2 + ZZ*Q3) - Z*PV)

RETURN
C
C
                            C2 = 2
RETURN
D2 = (1
RETURN
                   IANGENT FUNCTION
LOGICAL NEG.INV
DATA PO.PI.P2.Q0.Q1.Q2/.129221035E3,-.887662377E1..528644456E-1
1-164529332E3,-.451320561E2.1./
THE APPROXIMATION 4283 FROM HAPT ET AL (1968, P. 251)
DATA PIBY4 /.785398163/.PIBY2/1.57C79633/.PI/3.14159265/
NEG = FALSE.
INV = FALSE.
X = XARG
NEG = X.LT.00.
X = ABS(X)
PERFORM RANGE RECUCTION IF NECESSARY
IF(X.LE.PIBY4)GC TC 50
X = AMOD(X.PI)GC TC 50
X = PI - X
IF(X.LE.PIBY4)
IF(X.LE.PIBY4)
IF(X.LE.PIBY4)
IF(X.LE.PIBY4)
          100
                                       = (EXP(Z) - 1.)/Z
C
C
C
                            X = PI - X

IF(X.LE.PIBY4) GC TC 50

INV = .TRUE.

X = PIBY2 - X
                            X = PIBY2 - X

X = X/PIBY4

CONVERT TO RANGE OF RATIONAL

XX = X * X

TAN = X * (PO + XX * (P1 + XX * P2))/(CO + XX * (O1 + XX * Q2))

IF(NEG)TAN = -TAN

IF(INV)TAN = 1./TAN

RETURN
               50
C
                             RE TURN
                             END
                           FUNCTION TAN2(XARG)

COMPUTE TAN(X)/X

FUNCTION DEFINED CNLY FCR ABS(XARG).LE.PI BY 4

FOR OTHER ARGUMENT RETURNS TAN(X)/X, COMPUTED DIRECTLY

DATA PO.P1.P2.C0.C1.C2/.129221035E3,-.887662377E1,.528644456E-1,

.164529232E3.-.45122056152.1./

THE APPRCXIMATION 4283 FROM FART ET AL (1968, P. 251)

DATA PIBY4.PIBY2.PI/.785398163,1.57079633.3.14159265/

X = ABS(XARG)

IF(X.GT.PIBY4) GC TC 200

X = X/PIBY4

CONVERT TO RANGE CF RATIONAL
C
```

```
THE TESTS PERFCRMED ARE THE CHI SQUARED, KOLMOGOROV-SMIRNOV, AND FOUTZ TEST AT THE CONFIDENCE LEVELS OF 10, 5, AND 1 PERCENT. THE INPUT VALUES ARE MEAN, VARIANCE, ISEED, AND THE NUMBER OF REPLACATIONS.
           IMPLICIT REAL*8 (A-Z)
INTEGER*4 T.IER.N.I.NP1.NI.N2.N3.ISEED.NR.NSTOP.IDF.IQ.ISEED1
1 .NCEL(3).NST(3).NSMP(3).NCHI(3.3).NCHIN(3.3).NKS(3.3).
2 NKSN(3.3).NFNN(3.3).NFN(3.3).NSR
DIMENSION RD(55).CHISQU(2).
1 KOLSMR(2).FOUTZL(2).FNTST(3.2).ZALF(3).RN(55)
REAL*4 CELLS(50).CCMP(50).Q.CHI.R(55).PDIF(6).QTST(3).RNN(55).
1 STST(3.2)
DATA STST/.26473..21756..16959..29408..24170..18841..35241.
1 .28987..226C4/
CATA NCEL/8.10.10/.NST/1.21.1/.NSMP/20.30.50/.QTST/.1..05..01/
1 .CHISQL/'CHI SQUA'.RED TEST'/.KOLSMR/'KOLMOG-S'.MIR TEST'/
2 .FOUTZL/'FOUTZ TE'.ST'/.ZALC1.ZALC2/.243069D0..367879D0/
DATA WT1.MEAN1.VAR1.WT2.MEAN2.VAR2/.8D0.0.D0.1.D0..2D0.0.D0.3.D0/
3 .ZALF/1.28155C0.1.64485D0.2.32635D0/
                                        NEXT 4 CARDS PUT IN THE EMPIRICAL CRITICAL VALUES FOR THE Z TEST.
                      FOUTZ
                                                                                                 CIMENSION FNEMP(3,3)
DATA FNEMP/.42714D0,.41903D0,.40816D0,
.44865D0,.43553D0,.42116D0,.48659D0,
.46579D0,.44487D0/
             12
                  COMMON/NCRPRP/PEAL, VARI, SVARI
EXTERNAL NORM, UNIF
               EXTERNAL NORM, UNIF

T = 1

PRINT 1

READ 2, MEAN, VARI

IF (MEAN+VARI.LE.O.CO)STOP

FORMAT(2E5.O)

SVARI = CS GRT (VAFI)

WRITE(4,14)

FORMAT(1+1)

FORMAT(1+1)

PRINT 17

READ 12.WT1, MEAN 1, VARI, MEAN2, VAR2

WT2 = 1.CO - WT1

FORMAT(1+ INPUT WT1, MEAN1, VAR1, MEAN2, VAR2, FORMAT(5F5.O))

PRINT 3
100
               FORMAT (5 F5 .0)
PRINT 3
READ 5 . I SEED .NR
ISESD1 = ISESD

DSEED = CFLOAT (I SEEC)
FORMAT (!10 . I5)
FORMAT (!10 . I5)
FORMAT (!+INPUT SEEC AND NUMBER OF REPLICATIONS, FORMAT (!10 , I5))
DO 205 I G=1 . 3
DO 205 N = 1 . 3
NCHI (N1 . I G) = 0
NCHI (N1 . I G) = 0
NCHI (N1 . I G) = 0
NKS (N1 . I G) = 0
NKS (N1 . I G) = 0
NKS (N1 . I G) = 0
FNTST (N1 . I G) = ZALC1*ZALF(IQ)/DSQRT(DFLOAT(NSMP(N1)+1)) + ZALC2
FNTST (N1 . I G) = FNEMF(N1 . I G)
DO 300 I = 1 .NR
205
```

THIS PREGRAM GENERATES MIXED NORMAL DEVIATES WT1*N(MEAN1, VAR1) (1 - WT1)*N(MEAN2, VAR2).
BLOCKS OF 20. 30. AND 50 DEEVIATES ARE CONSIDERED BY GENERATING 50. THEN CONSIDERING THE FIRST 20. THE NEXT 30. AND ALL 50. THE HYPOTHESIS THAT THEY CAME FROM A NORMAL DISTRIBUTION WITH MEAN AND VARIANCE AS GIVEN IN INPUT IS TESTED.

WT1*N(MEAN1, VAR1)

```
CALL MIXNRM(50,RN,RD,DSEFD,WT1,MEAN1,VAR1,MEAN2,VAR2)
CO 250 N1=1,3
                       N2 = NST(N1)
                     N3 = NSMP(N1)
CALL VSRTAD(RD(N2),N3)
CALL VSRTAD(RN(N2),N3)
 DO 210 NSR=1+N3
RNN(NSR) = RN(NSR + N2-1)
210 R(NSR) = RD(NSR+N2-1)
                        IDF =
                    IDF = 0
CALL GFIT(UNIF,NCEL(N1),RNN,N3,CELLS,COMP,CHI,IDF,Q,IER)
EO 241 IO=1,3
IF(Q.LT.CTST(IQ))NCHI(N1,IQ)..= NCHI(N1,IQ) + 1
CONTINUE
CALL NKS1(UNIF,RNN,N3,PDIF,IER)
DO 242 IC = 1,3
IF(PDIF(1).GT.STST(N1,IQ))NKS(N1,IQ) = NKS(N1,IQ) + 1
CONTINUE
242 CONTINUE

CALL FGUTZ(UNIF,RNN,N3,Q)

DO 243 IO=1,3

IF(Q.GT.FNTST(N1,IC))NFN(N1,IQ) = NFN(N1,IQ) + 1
                      IDF = 0
CALL GFIT(NORM,NCEL(N1),R,N3,CELLS,COMP,CHI,IDF,Q,IER)
DD 244 IC = 1.3
IF(Q.LT.OTST(IQ))NCHIN(N1,IQ) = NCHIN(N1,IQ) + 1
 244 CONTINUE
                      245 CONTINUE
                     CALL FOUTZ(NORM,R,N3,Q)
DO 246 IG=1,3
IF(0.GT.FNTST(N1,IC))NFNN(N1,IG) = NFNN(N1,IQ) + 1
CONTINUE
 246
                     CONTINUE
CONTINUE
ISEED = CSEED
               ISEED = CSEED

WRITE(4,7)MEAN, VARI, NR, ISEED1, ISEEC

WRITE(4,11)WT1, MEAN1, VARI, WT2, MEAN2, VAR2

FORMAT(//' MIXED NORMAL (MIXNCRM) = ', F5.2, '*N(', F3.1, ', ', F3.1, ') +', F5.2, '*N(', F3.1, ', F3.1, ') +', F5.2, ', N(', F3.1, ', F3.1, ', F3.1, ') +', F5.2, '*N(', F3.1, ', F3.1, ') +', F5.2, ', N(', F3.1, ', F3.1, ') +', N(', F3.1, ', F3.1, ', N(', F3.1, ', F3.1, ') +', N(', F3.1, ', F3.1, ', N(', N(', F3.1, ', N(', F3.1, ', N(', F3.1, ', N(', F3.1, ', N(', F3.
          1 ), IO=1,3)
7 FORMAT(// THE VALUES OF MEAN (U) AND VARIANCE (V) ARE ,2F12.5//
9 ' THE RESULTS OF ',15,' REPLICATIONS, STARTING WITH SEED',
1 112//33x,'ENDING WITH NEXT SEEC',112//)
8 FORMAT(///20x,2AE//20x,'20 PTS',
2 6x,'30 PTS',6x,'50 PTS'//10x,'10%',3112/' CONTROL',2x,'5%',
3 3112/10x,' 1%',3112//' MIXNOPM',2x,'10%',3112/' VS',5x,'5%'
4 3112/' N (U,V)',2x,' 1%',3112)
WRITE(4,9)((FNTST(N1,10),N1=1,3),IC=1,3)
9 FORMAT(/'0 THIS WAS BASED ON THE FOLLLOWING TEST VALUES',
                 1 /(13x.3F12.5))
GD_TO 100
                       END
                     SUBROUTINE MIXNRM(ND,RAN,R,DSEED,WT1,MEAN1,VAR1,MEAN2,VAR2)
IMPLICIT REAL*8 (A-F,C-Z)
DIMENSION R(1),RAN(1)
REAL*4 RN(100),RNN,RNNN
SVAR1 = DSQRT(VAR1)
SVAR2 = DSQRT(VAR2)
                                        = 1.00 - WT1
```

RETURN END

```
XX = X*X

TAN2 = (PO + XX*(P1 + XX*P2))/(PIBY4*(Q0 + XX*(Q1 + XX*Q2)))

RETURN

TAN2 = TAN(XARG)/XARG

RETURN

END
 200
             SUBROUTINE FOUTZ (PCCF, XT, NXT, FN)
THIS SUBROUTINE GENERATES THE STATISTIC FOR THE FOUTZ FN TEST.
INPUT VARIABLES ARE:
PCDF - THE CUMULATIVE DISTRIBUTION FUNCTION AGAINST WHICH THE DEVIATES ARE BEING TESTED. CALLING SEQUENCE MUST BE OF THE FORM 'CALL PCDF(X,P)', WHERE X IS AN INPUT VALUE, AND THE VALUE OF THE CUMULATIVE DISTRIBUTION FUNCTION IS RETURNED IN P.
P MUST BE BETWEEN O AND 1.
XT - THE ARRAY OF DEVIATES, IN INCREASING ORDER.
NXT - THE NUMBER OF DEVIATES IN THE ARRAY XT (= N - 1)
              THE RETURNED VALUE IS FN, THE VALUE OF THE STATISTIC.
              NXT IS PRESENTLY LIMITED TO A MAXIMUM OF 50 BY THE DIMENSION OF THE VARIABLE XTD.
DIMENSION XT(1)
             REAL*8 XTD(51), PN, FND
N = NXT + 1
DO 200 I=1, NXT
K = N - I
             K = N - I

CALL PCDF(XT(K),P)

XTD(K+1) = P

RN = 1.DQ/N

XTD(1) = RN - XTC(2)

DO 300 I=2.NXT

XTD(I) = RN - XTC(I+1) + XTD(I)

XTD(N) = RN - 1.CC + XTD(N)

FND = 9.

CO 400 I=1.N

FND = FNC + CMAX1(XTC(I),0.DO)

FN = FND

RETURN
200
300
400
```

```
CALL GGUBS(DSEED,2*ND,RN)
CO 200 NN=1,ND
RAN(NN) = RN(NN)
CALL MDNRIS(RN(NN),RNN,IER)
IF(RN(NN+ND).GT.WT2)GO TO 150
R(NN) = RNN*SVAR2 + MEAN2
GO TO 200
R(NN) = RNN*SVAR1 + MEAN1
150
200
              CONTINUE
              RETURN
              END
              SUBROUTINE NCRM(X,P)
REAL*8 MEAN, VARI, SVARI
COMMON/NORPRM/MEAN, VARI, SVARI
T = (X - MEAN)/SVARI
P = .5*ERFC(-T*.7071C68)
              RETURN
              END
               SUBROUTINE UNIF(X,P)
              P = X
RETURN
END
             SUBROUTINE FOUTZ (FCDF, XT, NXT, FN)
THIS SUBROUTINE GENERATES THE STATISTIC FOR THE FCUTZ FN TEST.
INPUT VARIABLES ARE:
PCDF - THE CUMLLATIVE DISTRIBUTION FUNCTION AGAINST WHICH T
DEVIATES ARE BEING TESTED. CALLING SEQUENCE MUST B
THE FCRM ' CALL PCCF(X,P) ', WHERE X IS AN INPUT VA
AND THE VALUE OF THE CUMULATIVE DISTRIBUTION FUNCTI
IS RETURNED IN P.
P MUST BE BETWEEN O AND 1.
XT - THE ARRAY OF DEVIATES, IN INCREASING ORDER.
NXT - THE NUMBER OF DEVIATES IN THE ARRAY XT (= N - 1)
                                                                                                                                                                                                                   PUT VALU
              THE RETURNED VALUE IS FN. THE VALUE OF THE STATISTIC.
             NXT IS PRESENTLY LIMITED TO A MAXIMUM OF 50 BY THE DIMENSION OF THE VARIABLE XTD.
DIMENSICA XT(1)
REAL*8 XTD(51),RA,FAD
N = NXT + 1
              DO 200 I=1,NXT
             DO 200 I=1,NXT

K = N - I

CALL PCDF(XT(K),P)

XTD(K+1) = P

RN = 1.DO/N

XTD(1) = RN - XTD(2)

DO 300 I=2,NXT

XTD(I) = RN - XTD(I+1) + XTD(I)

XTD(N) = RN - 1.EQ + XTD(N)

FND = Q
200
300
             XID(N) = KN - 1.LQ + XID(N)
FND = 0.
CO 400 I=1.N
FND = FND + CMAX1(XTD(I).9.D0)
FN = FND
RETURN
400
              END
```

100

```
THIS PROGRAM GENERATES PEARSON TYPE I OR II RANDOM DEVIATES.
THE PARAMETERS ARE CALCULATED IN TERMS OF B1 AND B2 IN
SUBROUTINE PRM. SUBROUTINE ACINT1 IS USED TO CALCULATE THE
COF TABLE. GGUBS IS USED TO GENERATE RANDOM (0.1) DEVIATES
(UNIFORMLY DISTRIBUTED, AND THEN SUBROUTINE RANDP1 DOES
AND INVERSE CALCULATION TO OBTAIN THE RANDOM
PEARSON CEVIATE.)
A SET OF 50 RANDOM CEVIATES ARE GENERATED, THEN THE CHI
SOUARED TEST. THE KOLMOLGOROV-SMIRNOV TEST, AND THE FOUTZ EN
TEST ARE APPLIED. THE UNIFORM DEVIATES ARE TESTED AGAINST
THE HYPOTHESIS THEY CAME FROM A UNIFORM DISTRIBUTION AS A COUTHEN THE PEARSON DEVIATES ARE TESTED AGAINST
THEN THE PEARSON DEVIATES ARE TESTED AGAINST THE HYPOTHESIS
THAT THEY CAME FROM A NORMAL DISTRIBUTION.
THIS TEST IS REPLICATED A NUMBER OF TIMES.
                                                                                                                                                                                                                                                                                                                                  ONTROL .
       THE TESTS ARE APPLIED TO THE FIRST 20, THE NEXT 30, AND ALL 50.
       THE SET
THIS IS
                                              OF DEVIATES IS ALSO TESTED AGAINST THE NORMAL DISTRIBUTION REPEATED FOR THE SAME SETS.
      THE INPUT VALUES ARE B1, B2, I SEED, AND THE NUMBER OF REPLICATIONS
     IMPLICIT REAL*8 (A-Z)
INTEGER*4 T,IER,N,I,NP1,N1,N2,N3,ISEED,NR,NSTOP,IDF,IQ,ISEED1
.NCEL(3),NST(3),NSMP(3),NCHI(3,3),NCHIN(3,3),NKS(3,3),
.NKSN(3,3),NFNN(2,3),NFN(3,3),NAFNN(3,3),NSR
DIMENSION X(2001),CDF(2001),A(2001),B(2001),RD(55),CHISQU(2),
.KOLSMR(2),FOUTZL(2),ASFL(2),FNTST(3,3),ZALF(3),RN(55)
COMMON /PPARM/CO.C1,C2,A1,A2,BCO,BC1,M1,M2,KINV,XL,XR,MEAN,T
COMMON /CDF/X,CDF,A,B,NP1
REAL*4 CELLS(50),CCMP(50),Q,CHI,R(55),PDIF(6),QTST(3),RNN(55),
.STST(3,3)
     COMMON /(DF/X,CDF,A,E,NP1

REAL*4 CELLS(50),CCMP(50),Q,CHI,R(55),PDIF(6),QTST(3),RNN(55),

STST(3,3)

DATA STST/.26473,.21756,.16959,.29408,.24170,.18841,.35241,

.28987,.22604/

CATA NCEL/8,10,10/,NST/1,21,1/,NSMP/20,30.50/,QTST/.1,.05,.01/
.CHISCU/CHI SQUA'.'RED TEST'/,KCLSMR/'KQLMOG-S','MIR TEST'/
.CHISCU/CHI SQUA'.'RED TEST'/,ZALC1,ZALC2/.243069E0,.367879D0/
.TEMP FOUT', Z TEST'/,ZALC1,ZALC2/.243069E0,.367879D0/
.ZALF/1.28155E0,1.64485D0,2.32635E0/

OIMENSICN FNEMP(3.3)

DATA FNEMP/.42714D0,.41903D0,.40816D0,
.44865P00,.43553D0,.42116D0,
.48659D0,.46579D0,.44487D0/
EXTERNAL NCRM,UNIF
T = 1
T = 1

PRINT 1

READ 2,81,82

IF(81+82.LE.O.DG)STCP

FORMAT(2E5.O)

WRITE(4.14)

FORMAT(1H1)

FORMAT(1H1)

FORMAT(1+81 AND 82.FORMAT(2E5.O)*)

CALL PR M(81,82.1.CO.ISR)

IF(IER.NE.O)GO TO SCO

A(1) = 0.DO

CDF(1) = 0.

CALL INTSZ(N,X)

NP1 = N + 1

PRINT 3

READ 5, ISEED.NR

ISEED1 = ISEED

DSEED = DFLOAT(ISEED)

FORMAT(110.IS)

FORMAT(1+INPUT SEED AND NUMBER OF RE

CD 205 IQ=1,3

NCHI(N1,IQ) = 0

NCUIN(N1,IQ) = 0
                                                                                     SEED AND NUMBER OF REPLICATIONS, FORMAT(110,15)*)
       NCHI(N1, IQ) =
NCHIN(N1, IQ) =
NKS(N1, IC) = 0
```

```
NKSN(N1.I0) = 0

NFN(N1.I0) = 0
                FNTST(N1,10) = ZALC1*ZALF(10)/DSORT(DFLOAT(NSMP(N1)+1)) + ZALC2
 FNTST(N1,IQ) = ZALC1*ZALF(I

NAFNN(N1,IQ) = 0

NAFN(N1,IQ) = 0

205 NFNN(N1,IQ) = 0

DO 300 I=1,NR

CALL RANPD1(50,RN,RE,DSEFD)

DO 250 N1=1,3

N2 = NST(N1)

N3 = NSMP(N1)

CALL VSRTAD(RD(N2),N3)

CALL VSRTAD(RN(N2),N3)

DO 210 NSR=1,N3

RNN(NSR) = RD(NSR+N2-1)
               R(NSR) = RD(NSR+N2-1)
  210
                IDF = 0
               CALL GFIT (UNIF, NCEL (N1), RNN, N3, CELLS, COMP, CHI, IDF, Q, IER)
DC 241 IC=1,3
IF (0.LT.QTST(IQ)) NCHI(N1, IQ) = NCHI(N1, IQ) + 1
CONTINUE
CALL NKS1(UNIF, RNN, N3, PDIF, IER)
DC 242 IQ = 1, E
IF (PDIF(1).GT.STST(N1, IQ)) NKS(N1, IQ) = NKS(N1, IQ) + 1
  242 CONTINUE
                CALL FOUTZ (UNIF, RNN, N3,Q)
DO 243 I C=1,3
 IF(0.GT.FNEMP(N1,IQ))NFN(N1,IQ) = NFN(N1,IQ) + 1
IF(0.GT.FNTST(N1,IQ))NAFN(N1,IQ) = NAFN(N1,IQ) + 1
243 CONTINUE
 IDF = 0
CALL GFIT(NORM,NCEL(N1),R,N3,C5LLS,COMP,CHI,IDF,Q,IER)
DO 244 IQ = 1.3
IF(0.LT.QTST(IQ))NCHIN(N1,IQ) = NCHIN(N1,IQ) + 1
244 CONTINUE
               CALL NKS1(NORM, R, N3, PDIF, IER)
DO 245 IQ=1, 3
                \tilde{I}\tilde{F}(\tilde{P})\tilde{I}\tilde{F}(\tilde{1})\tilde{G}\tilde{T}.STST(N1,IQ))NKSN(N1,IQ) = NKSN(N1,IQ) + 1
              CALL FOUTZ(NORM,R,N3,Q)
DO 246 IQ=1.3
IF(Q.GT.FNEMP(N1,IC))NFNN(N1,IC) = NFNN(N1,IQ) + 1
IF(G.GT.FNTST(N1,IC))NAFNN(N1,IQ) = NAFNN(N1,IQ) +
CONTINUE
CONTINUE
  245 CONTINUE
  246
250
300
                CONTINUE
                ISEED = DSEED
           WRITE(4.7)B1,B2,A1,A2,M1,M2,NR,ISEED1,ISEED

WRITE(4.8)CHISQU.((NCHI(N1,IC),

1 N1=1.3),IQ=1.3),((NCHIN(N1,IQ),

2 N1=1.3),IQ=1.3)

WRITE(4.8)KCLSMR.((NKS(N1,IQ),N1=1.3),IQ=1.3),

1 ((NKSN(N1,IQ),N1=1.3),IQ=1.3)

WRITE(4.8)FOUTZL.((NFN(N1,IQ),N1=1.3),IQ=1.3),((NFNN(N1,IQ),N1=1.3),IQ=1.3),
WRITE(4,8):FOUTZL.((NFN(N1.IQ),N1=1.3),IQ=1.3),

1):IQ=1.3)
WRITE(4,8)ASFL.((NAFN(N1.IQ),N1=1.3),IQ=1.3),

1(NAFNN(N1.IQ).N1=1.3).IQ=1.3)

7FORMAT(//' THE VALUES OF B1 AND B2 ARE',2F12.5///

A' VALUES OF A1, A2. M1. AND M2 ARE'//4F12.6///

9' THE RESULTS OF '.I5,' REPLICATIONS, STARTING WITH SEED',

1I2//33X,'ENDING WITH NEXT SEED',112//)

8 FORMAT(///20X.2A8//20X.'20 PTS',

2 6X.'30 PTS'.6X.'5C PTS'//10X.'10X'.3I12/' CONTROL',2X.'5%',

3 3112/10X.'1%'.3I12//' PEARSON',2X.'10%',3I12/' VS',5X.'

4 3112/' NORMAL',3X.'1%',3I12)

900 PRINT 4.N.IER.B1.B2.ERROR

4 FORMAT('N.IER.B1.B2',2I10.1P3C15.6)

STOP
END
                END
```

```
SUBROUTINE RANPD1 (NC,RAN,R,DSEED)
IMPLICIT REAL*E (A-N,O-Z)
CIMENSION R(1),RAN(1)
REAL*4 RN(100),RNN
CALL GGUBS(DSEED,ND,RN)
DO 200 NN=1,ND
           RAN(NN) = RN(NN)
CALL CDFINV(RAN(NN),RNN)
R(NN) = RNN
CONTINUE
200
            RETURN
            END
            SUBROUTINE NORM(X,P)
P = .5*ERFC(-X*.7C71C68)
            RETURN
            END
            SUBROUTINE UNIF(X,P)
           RETURN
END
            SUBROUTINE PRM(B1, B2, U2, IER)
IMPLICIT REAL*8 (A-Z)
COMMON /PPARM/CO,C1,C2,A1,A2,BIGCO,BIGC1,M1,M2,KINV,XL,XR,MEAN,TINTEGER*4 T,IER
           IER = 0

IF(T.EQ.3)B2 = (6. + 3.*B1)/2.

IF(T.EQ.5)B1 = 4.*(2.*B2 - 6.)*(4.*B2-3.)/((B2+3.)**2+12.*(4.*B2-3.))
           12.*(4.*82-3.))
DEN = 10.*82 - 12.*81 - 18.
C0 = (4.*82 - 3.*81)*U2/DEN
C1 = DSQRT(U2*81)*(82 + 3.)/DEN
C2 = (2.*82 - 3.*81 - 6.)/DEN
A1 = 0.
A2 = 0.
BIGC0 = 0.
BIGC1 = C.
M1 = 0.
M2 = 0.
G0 TD (100.200.3GC.400.500.600.
           GO TO (100,200,300,400,500,600,700),T

CALL RCCTS (CO,C1,C2,A1,A2,IER)

IF (IER.NE.O) RETURN

M1 = (C1 + A1)/C2/(A2 - A1)

M2 = -(C1 + A2)/C2/(A2 - A1)

KINV = (A2 - A1)**(M1+ M2 + 1.)*DGAMM.

// DGAMMA(M1 + M2 + 2.)
100
                                                                                             1.)*DGAMMA(M1+1.)*DGAMMA(M2+1.)
           XR = A2
GD TO 750
GD TO 100
M1 = (CO/C1 - C1)/C1
C2 = 04
200
           C2 = 0.

KINV = DGA MMA(M1+1.)*DEXP(C9/C1**2)*DABS(C1)**(2.*M1+1.)

XL = -C0/C1
XL = -C0/C1

XR = 1.050

GD TO 750

400 BI GCO = C0 - C1**2/C2/4.

BI GC1 = C1/C2/2.

M1 = (C1 - BIGC1)/DSQRT(2.D0)/BIGCO

M2 = DSQRT(BIGCO/C2)

KINV = 1.00

XL = -1.050

XR = 1.050

GO TO 750

500 BIGC1 = C1/2./C2
```

```
M1 = (C1 - BIGC1)/C2

IF(C2.GT.1.DC)GO TO 800

KINV = CABS(M1)**(1./C2 - 1.)/DGAMMA(1./C2-1.)

XL = -BIGC1

XR = 1.D50

GO TO 750
    GO TO 750

CALL ROGTS(CO+C1+C2+A1+A2+IER)

M1 = -(C1 + A1)/C2/(A2 - A1)

M2 = (C1 + A2)/C2/(A2 - A1)

IF (M2.GE.-1.DO.OR.M1 + M2.GE.O.DO)GO TO 800

KINV = (A2 - A1)**(M1 + M2 + 1.)*DGAMMA(M2+1.)*DGAMMA(-M1-M2-1.)

1 /DGAMMA(-M1)

XL = A2

XR = 1.D50

GO TO 750

700 KINV=C0**(-.5D0/C2)*DSQRT(CO/C2)*DGAMMA(.5D0)*DGAMMA(.5D0/C2-.5D0/C2)
     1 /DGAMMA(.5D0/C2)

C1 = 0.

XL = -1.D50

XR = 1.C50

750 MEAN = (4.D0*B2 - 3.D0*B1)/3.D0/(B2 - B1 - 1.D0)*U2*PDF(0.D0)
                 RETURN
                IER = 1
     800
                RETURN
END
                SUBROUTINE ROOTS (CO.C1,C2,A1,A2,IER)
IMPLICIT REAL*8 (A-Z)
INTEGER*4 IER
                INTEGER*4 IER
IER = 0
IF(C2.EC.0.D0)GC TC 530
DIS = C1**2 - 4.CC*C0*C2
IF(DIS.LT.0.D0)GC TC 600
SDIS = DSQRT(DIS)
DNUM = -C1 - SDIS
IF(C1.LT.0.D0)DNUM = -C1 + SCIS
X2 = DNUM/2.D0/C2
X1 = C0/C2/X2
A1 = DMIN1(X1.X2)
A2 = DMAX1(X1,X2)
RETURN
                 RETURN
               A2 = 1.075
A1 = -00/01
      500
                 RETURN
               IER = RETURN END
      600
                 FUNCTION PDF(X)
THIS FUNCTION EVALUATESTHE PEARSON DISTRIBUTION FOR A GIVEN X, THE PARAMETERS HAVING PREVIOUSLY BEEN CALCULATED IN SUBROLTINE PRM.
                IMPLICIT REAL*8 (A-Z)
INTEGER*4 ITY
COMMON/PPARM/ CO,C1,C2,A1,A2,BIGCO,BIGC1,M1,M2,KINV,X1,X2,MEAN,I
GO TO (100,200,300,400,500,600,700),ITY
IF(X.LE.A1.OR.X.GE.A2)GO TO 140
PDF = (X - A1)**M1*(A2 - X)**M2/KINV
                 RE TURN
                IF(X.LE.A1.AND.M1.LT.O.DO)GO TO 150
IF(X.GE.A2.AND.M2.LT.O.DO)GO TO 150
PDF = 1.D-25
                 RETURN
     150 PDF = 1.C25
RETURN
      200
                GO TO 100
```

```
309 PDF = (CO + C1*X)***1*DEXP(-X/C1)/KINV
         RETURN
         PDF = (BIGCO + C2*(X+BIGC1)**2)**(-1./C2)*
DEXP(-N1*DATAN((X + PIGC1)/M2))/KINV
400
         RETURN
500
         PDF = (X + BIGC1)**(-1./C2)*DEXP(M1/(X + BIGC1))/KINV
          RETURN
         PDF = (X - A1) **M1*(X - A2) **M2/KINV
RETURN
600
         PDF =
RETURN
700
                        (CC + C2*X**2)**(-.5D0/C2)/KINV
         END
         SUBROUTINE INTSZ(N,X)
IMPLICIT REAL*E (A-Z)
COMMON /FPARM/CO,C1,C2,A1,A2,ECO,BC1,M1,M2,KINV,XL,XR,MEAN,T
COMMON/CDF/XDUM(2001),CDF(2001),A(2001),B(2001),NP1
CIMENSICN X(1)
INTEGER*4 T,N,NN,INT,IEND,NP1,IER
X(1) = A1
B(1) = PCF(A1)
         CDF(1) =
INT = 1
                               3.D0
         NN = 1
          DXM = (A2 - A1)/1.C7
         DX = DXM * 1.D3

GO TO 160

DX = DX * (1.D0 +DSGRT(.475D-4/EREST))/2.
1 50

INT = 1 

X(NN+1) = X(NN) + CX

160
         IEND = 1
IF(X(NN+1).LT.A2)GO TO 170
X(NN+1) = A2
DX = X(NN+1) - X(NN)
        DX = X(NN+1) - X(NN)

IEND = 2

B(NN+1) = PDF(X(NN+1))

ESTINT = (B(NN+1) + B(NN))*DX/2.DO

IF(ESTINT.LT.1.C-8)GD TO 301

DCDF = ADINT1(X(NN), X(NN+1), ERRCR, IER)

IF(IER.GT.100)GD TC 900

IF(DCDF.GT..025D0)GC TO 309

EREST = (1.DO/B(NN+1) - 1.DO/B(NN))*DCDF/8.DO

A(NN) = EREST

EREST = CABS(EREST)

GO TO (3C2.308), INT

DCDF = ESTINT

EREST = 5.27777777770-6

A(NN) = EREST

GO TO 308
170
300
301
         GO TO 308

IF(EREST.LE..5D-4)GO TO 308

CX = DX*(DSQRT(.25D-4/EREST) + 1.DO)*.5DO

IF(DX.GT.DXM)GC TC 304

DX = DXM
302
          X(NN+1) = X(NN) + CX
         INT = 2

GO TO 17C

X(NN+1) = X(NN) +CX

IEND = 1
304
         GO TO 170

CDF(NN+1) = CDF(NN) + D

NN = NN + 1

IF(NN.GT.2000)GO TO 910

GO TO (150.310).IEND

DX = DX*.0125D0/CCDF

GO TO 160

N = NN - 1

NP1 = NN
                                 = CDF(NN) + DCDF
308
309
310
NP1 = NN

DD 400 NN=1,N

400 CDF(NN+1) = CDF(NN+1)/CDF(N+1)
```

```
FORMAT( CDF(NN) = ',F20.15)
RETURN
PRINT 1,NN,X(NN),X(NN+1),EFRCR
STOP
FORMAT(' I,XI,XI+1,ERPGR',I5,1P3C15.6)
900
                     PRINT 4.x(NN)
FORMAT(' RUN CUT OF SPACE AT X=',F12.5)
910
                      STOP
                      END
                    SUBROUTINE CDFINV(C,P)
REAL*8 X,CDF,A,B,CC,DDC,ADINT1,XC,E
COMMON/CDF/X(2001),CDF(2001),A(2001),B(2001),NP1
CALL TABLOC(CDF,CBLE(C),NP1,I)
XC = X(I) + (C-CCF(I))/(CDF(I+1) - CDF(I))*(X(I+I)) + (CDF(I)) + (CDF(
                                                                                                                                                                                                    - CDF(I))*(X(I+1) - X(I))
                     CO 400 J=1,10

DC = ADINT1(X(I),XC,E,IEF)

DDC = (CDF(I) + DC - C)/PDF(XC)

XC = XC - DDC
300
                     XC = XC - DDC

IF(DABS(DDC).LT..5C-4)GQ TQ 410

IF(XC.LE.X(I))GQ TQ 350

IF(XC.GE.X(I+1))GC TQ 360

GO TO 4QC

XC = X(I) + (C - CDF(I))/DC*(XC

GO TQ 4QC

XC = X(I+1) + (C - CDF(I+1))/(CQC)
350
                                                                         + (C - CDF(I))/DC*(XC - X(I))
                     ĜŎ TO 40
XC = X(Î
CONTIŅUE
                                                                                                            - CDF(I+1))/(CDF(I) + DC - CDF(I+1))*(X(I+1)-X)
360
400
                      WRITE(6.1)C,XC
FORMAT(' 10 ITERATIONS IN CDFINV, C AND XC =',2E12.4)
410
                      RETURN
                      END
                     SUBROUTINE TABLOC(XT, X, M, NL)
REAL*8 XT(1),X
NT = ALOG(FLOAT(M))/.301 + 1.
                     NU = M
                      NL
                    NL = 1

DO 200 I=1,NT

NG = (NU + NL)/2

IF(X.GE.XT(NG))GC TC

NU = NG

GO TO 200

NL = NG

CONTINUE

RETURN
 100
 200
                      END
                     FUNCTION ADINT1(X1,X2,ERROR,IER)
THIS SUBROUTINE USES DCADRE TO OBTAIN THE INTEGRAL OF A
PEARSON TYPE I OR II DISTRIBUTION FUNCTION. SUBTRACTING
OUT THE SINGULARITY IS USED.
                    IMPLICIT REAL*8 (A-Z)
INTEGER*4 T,IER
EXTERNAL F1,F2,PCF
COMMON/PPARM/CO,C1,C2,A1,A2,BC0,BC1,M1,M2,KINV,XL,XR,MEAN,T
IF(X1.GT.(XL+XR)/2.D0)G0 T0 200
IF(M1.GT.0.D0)GG TC 300
PR = DCADRE(F1,X1,X2,1.C-6,0.D0,ERROR,IER)
ADINT1 = PR + (A2-A1)**M2*((X2-A1)**(M1+1.D0)-(X1-A1)**(M1+1.D0)
                1 /(M1 + 1.E9)/KINV
                      RETURN
                    IF(M2.GT.O.DO)GO TC 300
PR = DCACRE(F2.X1.X2.1.D-6.3.C0.ERFOR.IER)
ADINT1 = PR-(A2 - A1)**M1*((A2-X2)**(M2+1.DO)-(A2-X1)**(M2+1.DO)
200
```

RETURN END

```
/(M2+1.CO)/KINV
RETURN
ADINT1 = DCADRE(
300
                              = DCADRE(PDF, X1, X2, 1.D-6, 0.D0, ERROR, IEP)
           RETURN
END
          FUNCTION F1(X)
IMPLICIT REAL*8 (A-Z)
COMMON /FPARM/C0,C1,C2,A1,A2,BC0,BC1,M1,M2,KINV,XL,XR,MEAN,T
IF(X.LE.A1)GO TO 20C
F1 = (X-A1)**M1*((A2 - X)**M2 - (A2 - A1)**M2)/KINV
           RETURN
F1 = 0.DC
200
           RETURN
           END
           FUNCTION F2(X)
IMPLICIT REAL*8(A-Z)
           CGMMON/PFARM/CO,C1,C2,A1,A2,BC3,BC1,M1,M2,KINV,XL,XR,MEAN,T
IF(X.GE.A2)GO TG 2CO
F2 = (A2- X)**M2*((X-A1)**M1 - (A2-A1)**M1)/KINV
           RETURN
F2 = 0
200
                = 0.DC
           RETURN
           END
          SUBROUTINE FOUTZ (PCDF, XT, NXT, FN)
THIS SUBROUTINE GENERATES THE STATISTIC FOR THE FOUTZ FN TEST.
INPUT VARIABLES ARE:
PCDF - THE CUMULATIVE DISTRIBUTION FUNCTION AGAINST WHICH THE DEVIATES ARE BEING TESTED. CALLING SEQUENCE MUST BE OF THE FORM ' CALL PCDF(X,P)'. WHERE X IS AN INPUT VALUE, AND THE VALUE OF THE CUMULATIVE DISTRIBUTION FUNCTION IS RETURNED IN P.
P MUST BE BETWEEN 2 AND 1.
XT - THE ARRAY OF DEVIATES, IN INCREASING ORDER.
NXT - THE NUMBER OF DEVIATES IN THE ARRAY XT (= N - 1)
           THE RETURNED VALUE IS FN. THE VALUE OF THE STATISTIC.
          NXT IS PRESENTLY LIMITED TO A MAXIMUM OF 50 BY THE DIMENSION OF THE VARIABLE XTO.
DIMENSION XT(1)
REAL*8 XTD(51),RN,FND
N = NXT + 1
           DO 200 I =1 NXT
          K = N - I
CALL PCDF(XT(K),P)
XTD(K+1) = P
200
          XTD(K+1) = P

RN = 1.DC/N

XTD(1) = RN - XTC(2)

DO 300 I=2,NXT

XTD(I) = RN - XTC(I+1) + XTD(I)

XTD(N) = RN - 1.CO + XTD(N)

FND = 0.

CO 400 I=1,N

FND = FNC + CMAX1(XTD(I).3.D3)
300
400
           FN = FND
```

APPENDIX 2

		CHI SQUAR ED	TEST	
		20 PTS	30 PTS	50 FTS
CONTROL	1 C % 5 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	410 240 48	429 240 55	4 8 1 2 2 9 5 6
RSSF VS N (0,1)	10%	1784 1362 532	2908 2384 1410	4125 3645 2673
		KOLMOG-SMIR	TEST	
		2C PTS	30 PTS	50 PTS
CENTFOL	10% 5% 1%	4 9 1 2 5 3 4 9	495 253 58	4 8 3 2 3 4 4 6
RSSF V S N (0,1)	1 C % 5 % 1 %	1636 1008 270	220 2 1401 466	331 & 2410 905
		FOUTZ FN TE	ST	
		20 PTS	30 PTS	50 PTS
(ONTROL	10%	5 2 5 2 2 5 4 C	481 250 35	488 253 63
RSSF VS N (0,1)	10% 5% 1%	36 03 29 99 18 94	4010 3515 2463	4597 4279 3488

CCNTRCL IS THE TEST CF UNIFORM(0,1) VS UNIFCRM(C,1)

RSSF IS THE FANDOM STABILIZED STANDARD FORM

ALPHA = 1.00, BETA = C.0

		CHI SQLAR	ED TEST	
		20 PTS	3C PTS	50 PTS
CENTFOL	10 %	3 9 0	421	498
	5 %	2 2 0	219	242
	1 %	4 9	57	54
RSSF	1 C ₹	1460	2407	3616
VS	5%	1084	1889	3039
N (C,1)	1 %	401	1011	1967
		K CL MOG - SM	IR TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	488	46 C	500
	5%	260	244	231
	1%	64	5 O	38
RSSF	10%	1412	1782	2654
VS	5%	792	1083	1760
N (0,1)	1%	222	324	575
		FOUTZ FN 1	FEST	
		20 PTS	3C PTS	50 PTS
CENTFOL	10%	503	494	5 C 1
	5%	256	257	2 4 I
	1%	60	43	4 2
RSSF	10%	28 6 3	3272	3963
VS	5%	21 4 5	2678	3422
N (0,1)	1%	11 C2	1575	2244

'(CNTRGL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

'RSSF' IS THE FANDOM STABILIZED STANDARD FORM

ALPHA = 1.30, EETA = 0.0

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	5C FTS
CENTFCL	10% 5% 1%	3 95 221 39	39 <u>5</u> 199 40	505 231 45
RSSF V 5 N (0,1)	1 C % 5 % 1 %	1441 1054 390	2116 1598 817	3268 2692 1663
		KOLMOG-SMIR	R TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	493 245 50	472 215 47	502 265 52
PSSF VS N (0,1)	10% 5% 1%	1321 780 210	1635 591 294	2363 1508 531
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CONTRCL	103.	468 1 88 27	449 222 51	498 237 40
FSSF VS N (0.1)	10% 5% 1%	2479 1804 852	2678 2059 1080	3308 2705 1573

CONTROL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

RSSF IS THE RANDOM STABILIZED STANDARD FORM

ALPHA = 1.60, EETA = 0.0

		CHI SQUARE	D TEST	
		2 C PTS	30 PTS	50 PTS
CONTROL	10%	389	4 C5	451
	5%	230	221	235
	1%	43	47	48
RSS F	108	1326	1933	3046
VS	5%	932	1469	2428
N (0,1)	1%	320	688	1440
		KOLMOG-SM1	IR TEST	
		20 PTS	3 C PTS	50 PTS
CONTROL	10%	5 2 7	474	489
	5%	2 7 5	236	262
	1%	5 9	38	54
RSSF	10%	1236	1521	2184
VS	5%	760	929	1389
N (0,1)	1%	242	271	474
		FOUTZ FN T	EST	
		20 PTS	30 PTS	50 PTS
CENTFOL	1 C%	531	505	516
	5%	265	263	262
	1%	53	49	54
RSSF	1 C 2	2046	2274	2716
VS	5 3	1396	1646	2081
N (C,1)	1 3	581	788	1092

RSSF IS THE RANDOM STABILIZED STANDARD FORM

ALPHA = 1.90, BETA = 0.0

		CHI SQUAREE	TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	1 C % 5 % 1 %	4 0 0 2 3 4 4 0	457 242 51	496 246 57
PSSF VS N (0,1)	10%	1728 1316 555	2935 2435 1454	40 5 6 36 29 26 12
		KOLMOG-SMIF	R TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	1 C % 5% 1%	504 252 68	474 235 52	477 234 47
FSSF VS N (0,1)	109 58 18	1565 966 310	2222 1410 481	3221 2372 901
		FOUTZ EN TS	ST	
		20 PTS	3C PTS	50 FTS
CONTROL	102	493 238 49	5 2 3 25 5 5 3	467 250 46
RSSF VS N (0,1)	10% 5% 1%	3502 2859 1753	4014 2522 2547	4596 4255 3467

CCNTFOL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

RSSF IS THE RANDOM STABILIZED STANDARD FORM ALPHA = 1.00, BETA = 0.25

		CHI S CU A	RED TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	372 225 42	416 232 56	465 204 45
RSSF \S N (0,1)	107	1521 1128 454	2451 1533 1057	3593 3106 2046
		KOL MOG-S	MIR TEST	
		20 FTS	3C PTS	50 PTS
CONTROL	10%	4 86 2 42 48	512 272 62	48 3 E 2 5 4 5
RSSF VS N (0,1)	1 C % 5% 1 %	1430 890 268	1849 1171 271	2701 1882 679
		FCUTZ FN	TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	103	461 232 37	465 252 53	459 228 47
FSSF VS N (0,1)	10% 5% 1%	2868 2236 1174	3284 2684 1545	40 26 3486 2325

CCNTRCL IS THE TIST OF UNIFORM(0,1) VS UNIFORM(0,1)

RSSF IS THE RANDOM STABILIZED STANDARD FORM ALPHA = 1.30, EETA = 0.25

		CHI SQUA	RED TEST	
		20 PTS	3C PTS	50 PTS
CON TROL	10552	3 5 5 2 2 3 3 1	390 212 54	467 242 53
RSSF VS N (C,1)	10%	14 16 1 C39 357	2100 1610 786	3277 2705 1607
		KOL MOG-S	MIR TEST	
		20 PTS	30 PTS	50 PTS
CENTFOL	10% 5% 1%	514 260 50	518 282 61	504 278 65
RSSF V (C,1)	1 C % 5 % 1 %	1345 807 239	1661 1017 331	24C2 1618 539
		FOUTZ FN	TEST	
		2C PTS	30 PTS	50 PTS
CCNTRCL	102	493 248 45	502 260 35	495 240 53
FSSF VS N (0,1)	10% 5% 1%	23 83 16 98 8 22	2650 2023 1027	3260 2611 1473

RSSF IS THE FANDOM STABILIZED STANDARD FORM

ALPHA = 1.60, BETA = 0.25

		CHI SQUAREE	TEST	
		20 PTS	3C PTS	50 PTS
CGNTROL	107	402 222 43	441 230 45	497 237 48
R \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	103 5% 13	1289 933 319	1916 1458 652	3 044 2409 1328
		KOLMOG-SMI F	RITEST	
		20 PTS	3 C PT S	50 PTS
CONTROL	10%	488 234 40	469 235 52	487 242 53
RSSF VS N (0,1)	103 58 13	1239 713 223	1471 904 269	2111 1357 445
		FOUTZ EN TE	ST	
		20 PTS	3 C PTS	50 PTS
CONTROL	1 C % 5 % 1 %	484 215 56	470 246 50	494 242 49
RSSF VS N (0,1)	108	2003 1358 552	2299 1688 770	2773 2098 1007

'CCNTRCL' IS THE TEST OF UNIFORM(0.1) VS UNIFORM(0.1)
'RSSF' IS THE FANDOM STABILIZED STANDARD FORM
ALPHA = 1,90, EETA = 0.25

		CHI SQUAR	ED TEST	
		20 PTS	30 PTS	50 FTS
CCNTRCL	102	3 83	427	455
	5%	212	248	253
	17	45	56	37
RSSF	10%	1732	2905	4113
VS	5%	1308	2395	3668
N (0,1)	1%	539	1432	2660
		KCL MCG-SM	IR TEST	
		20 PTS	30 PTS	50 PTS
CENTFOL	10%	5 C7	492	484
	5%	2 45	233	232
	1%	38	47	37
RSSF	1 C Z	1663	2188	3252
VS	5 Z	1011	1430	2414
N (0,1)	1 Z	289	455	930
		FOUTZ FN	TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	507	492	534
	5%	259	237	271
	1%	53	58	50
RSSF	10%	34 92	4011	4571
VS	5%	28 99	3512	4297
N (0,1)	1%	18 22	2489	3489

'CCNTRCL' IS THE TEST CF UNIFORM(0,1) VS UNIFCRM(C,1)
'RSSF' IS THE FANDOM STAELLIZED STANDARD FORM
#LPHA = 1.00, BETA = 0.50

		CHI SQUARED	TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	107 53 18	382 213 45	406 195 38	443 207 38
RSSF VS N (0,1)	10% 5% 1%	1665 1266 509	2552 2038 1178	3 6 9 5 3 2 2 2 2 2 C 2
		KCL MCG-SMIF	RITEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	501 248 45	5 03 256 55	486 253 57
PSSF VS N (0,1)	10% 5% 1%	16CC 1026 342	2092 1425 532	30 25 2 2 0 8 9 5 1
		FOUTZ EN TS	ST	
		20 PTS	3C PTS	50 PTS
CONTROL	1 C % 5 % 1 %	5 06 2 46 44	467 236 46	471 228 43
RSSF VS N (0,1)	10%	28 16 21 68 1180	3278 2680 1546	3920 3382 2270

		CHI SQUARE	D TEST	
		20 FTS	3C PTS	50 PTS
CONTROL	1 C % 5 %	413 251 36	440 222 48	470 2 C 5 4 1
R \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 C% 5% 1%	1451 1063 366	2269 1794 948	3435 2841 1826
		KUL MCG-SMI	R TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	478 252 49	518 278 65	513 277 60
RSS F VS N (0,1)	10% 5% 1%	1435 888 2 67	1853 1229 444	2636 1881 758
		FOUTZ FN T	EST	
		20 PTS	3 C PTS	50 PTS
CCNTFOL	1 C % 5 % 1 %	493 241 47	463 220 47	488 227 40
RSSF VS N (0,1)	102	2314 1686 761	2643 2028 1052	3268 2594 1449

CENTREL IS THE TEST OF UNIFERM(0,1) VS UNIFORM(0,1)

RSSF IS THE FANDOM STAEILIZED STANDARD FORM

ALPHA = 1.60, EETA = 0.50

	CHI SQUARED TEST				
		20 PTS	30 PTS	50 PTS	
CCNTFOL	10%	419	411	466	
	5%	218	230	234	
	1%	38	54	52	
RSSF	1 C %	1299	1934	3 C42	
VS	5 %	916	1438	2 4 C7	
N (C,1)	1 %	297	680	1 3 4 8	
		KOLMOG-SMI	R TEST		
		20 FTS	30 PTS	50 PTS	
CONTROL	10%	5 C2	494	483	
	5%	2 6 G	255	248	
	1%	4 7	58	63	
RSSF	1 C%	1239	1559	2148	
VS	5%	738	961	1357	
N (C,1)	1%	214	296	475	
	FOUTZ FN TEST				
		20 PTS	30 PTS	50 PTS	
CONTROL	10%	473	479	508	
	5%	259	229	240	
	13	55	53	52	
RSSF	10%	2018	2310	2708	
VS	5%	1384	1629	2043	
N (0,1)	1%	591	749	1023	

'CCNTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

'RSSF' IS THE FANDOM STAEILIZED STANDARD FORM

ALPH 4 = 1.90, BETA = 0.50

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	1 CZ 5% 1 %	410 229 30	445 236 49	486 221 46
RSSF VS N (0,1)	10% 5% 1%	1831 1358 566	2913 291 1438	41 C8 3659 2690
		KOL MOG-SMI	R T EST	
		20 PTS	30 PTS	50 PTS
CENTFOL	10% 5% 1%	524 250 46	505 259 53	527 251
RSSF V 5 N (0,1)	10% 5% 1%	1627 10 51 3 04	2196 1421 500	33C4 23&7 931
			EST	50 DT6
	107	2C PTS	30 PTS	50 PTS
CONTROL	10%	515 229 51	497 254 59	505546
PSSF VS N (0,1)	103 5% 1%	3586 3005 1893	4057 3591 2495	4542 4256 3453

CCNTRCL IS THE TEST CF UNIFORM(0,1) VS UNIFORM(0,1)

RSSF IS THE RANDOM STABILIZED STANDARD FORM

ALPH# = 1.00, EETA = C.75

	CHI SQUARED TEST				
		20 PTS	3C PTS	50 PTS	
CONTROL	10% 5% 1%	368 2 C C 43	44 7 241 58	505 223 39	
RSSF VS N ((,1)	10% 5% 1%	1941 1495 704	2511 2429 1535	4097 3670 2762	
		KOLMOG-SM	IR TEST		
		20 PTS	3C PTS	50 PTS	
CCNTFCL	10% 5% 1%	475 242 47	50 4 23 7 45	524 264 47	
RSSF VS N (C,1)	10% 5% 1%	20 17 1331 546	2640 1930 904	3736 3089 1762	
		FCUTZ FN	TEST		
		20 PTS	30 PTS	50 PTS	
CCNTPOL	10%	461 226 45	513 248 54	490 248 55	
RSSF VS N (0.1)	1 C % 5 % 1 %	2895 2237 1209	3312 2712 1595	4051 3542 2426	

RSSF IS THE RANDOM STABILIZED STANDARD FORM

ALPHA = 1.30, BETA = 0.75

CHI SQUARED TEST	
20 PTS 3C PTS	50 PTS
10% 400 407 CONTROL 5% 243 225 1% 48 51	501 256 46
RSSF 10% 1628 2451 VS 5% 1240 1965 N (0,1) 1% 509 1126	3633 3099 2110
KOLMOG-SMIR TEST	
20 PTS 36 PTS	50 FTS
CONTFOL 5% 491 509 227 244 1% 48 54	476 243 50
FSSF 10% 1622 2104 VS 5% 1050 1465 N (0+1) 1% 379 588	3023 2330 1145
FDUTZ FN TEST	
20 PTS 3G PTS	50 FTS
CONTROL 10% 522 490 267 267 1% 52 60	49C 243 56
RSSF 10% 2426 2722 VS 5% 1753 2067 N (0,1) 1% 825 1C58	3367 2727 1614

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

RSSF IS THE RANDOM STABILIZED STANDARD FORM ALPHA = 1.60, BETA = 0.75

		CHI SQUARE	D TEST	
		2C PTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	405 238 54	4C7 229 49	469 215 46
FSSF VS N (0,1)	10% 5% 1%	1366 987 341	1989 1490 704	3088 2487 1415
		KOL MOG-SMI	R TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	501 246 57	505 268 53	483 245 46
FSSF VS N (0,1)	10%	1273 797 234	1558 936 308	2246 1465 508
		FOUTZ FN T	EST	
		20 PTS	30 PTS	50 FTS
CONTROL	1 C % 5 % 1 %	497 242 58	457 227 48	478 242 48
RSSF VS N (C,1)	10% 5% 1%	2102 1479 647	2256 1615 760	2745 2081 1076

'CCNTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

'RSSF' IS THE RANDOM STABILIZED STANDARD FORM

ALPHA = 1.50, EETA = 0.75

		CHI SQUARE	D TEST	
		20 PTS	3 C PTS	50 PTS
CONTROL	1 C % 5 % 1 %	3 95 2 13 35	441 238 53	495 243 62
RSSF VS N (0,1)	10%	1793 1395 554	252C 2386 1413	4109 3658 2707
		KOL MOG-SMI	R TEST	
		20 PTS	30 PTS	50 PTS
CCNTFCL	10% 5% 1%	493 241 50	504 231 43	457 238 43
RSSF VS N (C,1)	1 C % 5 % 1 %	1640 1004 295	2203 1392 421	3325 2434 939
		FOUTZ FN T	EST	
		20 FTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	526 260 54	488 247 58	481 223 50
RSSF VS N (G,1)	102	3530 2933 1849	4001 3501 2405	4577 4284 3405

"CCNTRCL" IS THE TEST OF UNIFORM(0,1) VS UNIFORM(G,1)

"FSSF" IS THE RANDOM STABILIZED STANCARD FORM

ALPHA = 1.00, BETA = 1.00

			CHI SQUAR	ED TEST	
			20 PTS	3C PTS	50 PTS
CONTROL	1 C% 5% 1%		363 218 45	428 226 44	518 243 55
RSSF VS N ((,1)	1 C % 5 % 1 %		2651 2291 1344	3826 3457 2572	4682 4472 3935
			KOL MOG - SM	IR TEST	
			20 FTS	30 PTS	50 PTS
CCNTFCL	10% 5% 1%		526 243 51	533 268 48	524 282 70
RSSF VS N (0,1)	10% 5% 1%		2937 2326 1245	3776 3235 2035	463 € 4378 3452
	FCUTZ FN TEST				
			20 PTS	30 PTS	50 PTS
CONTROL	10%		488 259 54	477 216 53	500 23 8 44
RSSF VS N (0,1)	10% 5% 1%		2962 2260 1237	3429 2813 1705	4162 3660 2550

CCNTROL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

RSSF IS THE FANDOM STABILIZED STANDARD FORM

ALPH # = 1.30, EETA = 1.00

		CHI SQUAR	ED TEST	
		20 PTS	3C PTS	50 FTS
CCNTFOL	10 ₹ 5% 1%	412 230 30	443 237 50	472 220 46
RSSF VS N (C,1)	102 5% 1%	1868 1487 701	2768 2294 1427	3 5 5 8 3 5 4 1 2 5 7 8
		K CL MOG - SN	IR TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	513 268 56	477 251 56	514 251 49
RSSF VS N (0,1)	10% 5% 1%	1968 1370 586	2603 1903 905	3652 3016 1765
		FOUTZ FN	TECT	
		FOUTZ FN 20 PTS	TEST 3C PTS	50 PTS
	102			
CONTROL	10% 5% 1%	507 250 58	504 240 45	505 252 58
RSSF VS N (C.1)	10% 5% 1%	2414 1786 853	2792 2120 1123	3409 2771 1625

'(CNTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

RSSF IS THE RANCOM STABILIZED STANDARD FORM
ALPHA = 1.60, EETA = 1.00

		CHI SQUARED	TEST	
		20 FTS	3C PTS	50 PTS
CONTROL	1 C % 5 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	374 231 48	431 232 57	5 2 5 2 6 3 5 8
RSSF VS N (0,1)	10% 5% 1%	1339 977 347	1953 1438 708	3107 2466 1459
		KOL MO G-SMIR	TEST	
		20 PTS	3C PTS	50 FTS
CENTROL	1 C % 5 % 1 %	494 239 54	48 1 240 47	516 241 43
RSSF VS N (C,1)	10% 5% 1%	1322 8C6 235	1625 978 302	23¢e 1533 540
		FOUTZ FN TE	ST	
		20 PTS	30 PTS	5C PTS
CENTFEL	10% 5% 1%	525 236 50	523 271 67	520 296 55
RSSF VS N (C,1)	1 C% 5% 1%	2086 1409 620	2280 1645 715	2758 2075 1078

CONTROL IS THE TEST OF UNIFORM(C,1) VS UNIFORM(0,1)

FSSF IS THE FANDOM STABILIZED STANDARD FORM

ALPHA = 1.90, BETA = 1.00

		CHI SQUAR S	D TEST	
		20 PTS	3C PTS	50 PTS
CENTFOL	10% 5% 1%	3 8 8 2 2 9 3 9	469 238 48	4 £ 6 2 2 4 4 3
MIXNERM VS N (C,1)	1 C % 5 % 1 %	1272 909 329	1925 1407 664	30C4 23E1 1337
		KOL MOG-SMI	R TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	525 254 42	513 260 46	5 10 2 4 9 6 4
MIXNORM VS N (C,1)	103 52 13	1235 713 208	1537 931 285	2133 1369 449
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	508 245 50	476 222 38	523 250
MIXNORM VS N (0,1)	10% 5% 1%	1 982 1336 533	2191 1576 672	26 10 1 9 9 5 9 7 7

CCNTROL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

"MIXNORM" IS THE MIXED NORMAL DISTRIBUTION

C. C *N(.O,1) + 1.0C*N(C,2)

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	5C FTS
CCNTFCL	10% 5% 1%	4 C 9 2 3 3 2 9	411 205 34	458 234 46
MIXNORM VS N (0,1)	10% 5% 1%	2513 2088 1028	3558 3080 2052	462C 4342 36C9
		KOL MOG – SMI	R TEST	
		20 PTS	3 C PTS	50 PTS
CONTROL	10% 5% 1%	475 238 46	463 229 35	500 242 38
MIVACON	102	21.60	2027	20 / 5
MIXNCRM VS N (0,1)	10% 52 1%	21 88 1420 512	2827 1974 727	3965 3161 1515
			EST	
		20 PTS	3C PTS	50 PTS
CONTFOL	10% 5% 1%	5 2 2 2 3 6 4 7	454 217 41	481 226 52
MIXNCFM VS N (0,1)	10%	3338 2724 1657	3712 3174 2064	4346 3935 2970
. (0,1)	2.73	1001	200.	27.0

		CHI SQUARED	TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	407 234 48	425 232 48	511 252 50
MIXNOFM VS N (0,1)	10%	3427 3006 1781	4423 4154 3377	4935 4863 4639
		KOL MOG-SMIR	TEST	
		20 PTS	3C PTS	50 PTS
CCNTROL	1 C % 5 % 1 %	510 261 59	490 241 48	511 250 47
MIXNCRM VS N ((+1)	1 C % 5 % 1 %	29 7 6 2113 890	3799 3025 1471	4717 42 86 2792
		FOUTZ FN TE	ST	
		20 FTS	30 PTS	50 PTS
C CNT FOL	10% 5% 1%	518 242 68	501 268 66	528 276 62
MIXNERM VS N (C.1)	10% 5% 1%	4131 3686 2653	4502 4195 3380	4865 4742 4272

CCNTRCL IS THE TEST OF UNIFORM(C,1) VS UNIFORM(O,1)

MIXNORM IS THE MIXED NORMAL DISTRIBUTION

0.0 *N(.0.1) + 1.00*N(0,4)

		CHI SQUA	RED TEST	
		20 PTS	30 PTS	50 PTS
CCNTFOL	10 % 5 % 1 %	3 82 215 41	422 187 38	510 254 46
MIXNCRM VS N (C,1)	103	472 2 93 29	542 308 66	713 370 74
		KOLMOG-S	MIR TEST	
		20 PTS	30 PTS	50 PTS
CCNTFCL	1 C3 52 13	488 238 46	537 250 50	525 265 53
MIXNORM VS N (C,1)	1 C % 5 % 1 %	587 287 54	667 328 70	695 367 84
		FOUTZ FN	TEST	
		20 FTS	3C PTS	50 PTS
CONTROL	10% 5% 1%	468 220 46	480 258 64	517 247 56
MIXNERM VS N (0,1)	1 0% 5% 1%	799 429 105	796 426 107	8 E 1 4 7 7 1 3 6

'CCNTRCL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)
'MIXNORM' IS THE MIXED NORMAL DISTRIBUTION

C.7C*N(.0,1) + C.30*N(0,2)

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	50 PTS
CONTFOL	10%	421	457	510
	5%	245	244	221
	1%	49	52	38
MIXNORM	1 C%	551	727	1 C 4 7
VS	5%	345	438	60 2
N (C,1)	1%	82	131	1 8 5
		KOL MOG-SMI	R TEST	
		20 PTS	30 PTS	50 PTS
CCNTFOL	10%	490	504	527
	5%	251	256	239
	1%	46	58	42
MIXNORM	108	646	745	845
VS	52	337	405	447
N (0,1)	18	81	93	83
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	5 19	494	507
	5%	2 40	242	256
	1%	55	46	51
MIXNOFM	10%	1029	1139	1249
VS	5%	591	671	778
N (0,1)	1%	172	193	262

CCNTRCL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

"MIXNORM" IS THE MIXED NORMAL DISTRIBUTION

0.7(*N(.0,1) + 0.30*N(0,3)

		CHI SQUAREC	TEST	
		20 PTS	3 C PTS	50 PTS
CCNTROL	1 C%	400	435	515
	5%	237	223	240
	1%	45	50	52
MIXACRM	102	636	51 0	1320
VS		4C5	564	836
N (0,1)		109	175	322
		KOLMOG-SMIR	TEST	
		20 PTS	30 PTS	50 PTS
CCNTFCL	10%	508	531	5 C E
	5%	259	255	2 4 8
	1%	54	51	5 4
MIXNERN	10%	747	853	1001
VS	5%	407	441	532
N (C,1)	1%	115	122	148
		FOUTZ FN TE	ST	
		20 FTS	30 PTS	50 PTS
CCNTRCL	10%	452	478	511
	5%	229	232	241
	1%	61	47	43
MIXNCRM	103	1281	1418	1666
VS	52	774	888	1121
N (0,1)	12	238	322	401

CCNTRCL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

MIXNORM IS THE MIXED NORMAL DISTRIBUTION

C.7C*N(.0,1) + 0.30*N(0,4)

		CHI SQU	ARED TEST	
		20 PTS	30 PTS	50 FTS
CCNTFOL	10%	3 8 0 2 2 1 4 0	431 245 59	5 C 7 2 2 0 5 6
MIXNORM VS N (0,1)	1 C % 5 % 1 %	388 214 40	48 4 27 4 6 3	545 275 62
		KOL MO G-	SMIR TEST	
		20 PTS	30 PTS	50 PTS
(CNTROL	108	468 220 53	480 236 46	481 232 38
MIXNCRM VS N (0,1)	10% 5% 1%	519 258 58	539 277 55	55 6 286 53
		FOUTZ F	NITEST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	10% 5% 1%	487 234 42	498 242 49	502 265 54
WIXNCFM VS N (0,1)	103 53 13	684 352 83	689 354 92	687 400 96

'CONTROL' IS THE TEST OF UNIFORM (0,1) VS UNIFORM (C,1)

MIXNORM IS THE MIXED NORMAL DISTRIBUTION

C.EC*N(.0,1) + 0.20*N(0,2)

		CHI SQUARED	TEST		
		20 PTS	30 PTS		5C PTS
CCNTFOL	108 58 18	417 218 43	405 211 38		492 243 42
N (C,1)	1 C % 5 % 1 %	477 281 48	544 306 64	٥	736 364 98
		KOLMOG-SMIR	TEST		
		20 PTS	30 PTS		50 PTS
CENTREL	10% 1%	5 C C 2 6 7 4 7	469 222 46		5 3 7 2 6 C 4 E
MIXNCRM VS N-(C,1)	10% 5% 1%	587 317 69	590 297 59		678 343 78
		FCUTZ FN TE	ST		
		20 PTS	30 PTS		50 PTS
CONTROL	10%	495 234 49	462 213 44		479 245 48
MIXNCRM VS N (C.1)	10% 5% 1%	839 475 118	819 454 130		945 522 143

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

		CHI SQUAR ED	TEST	
		20 PTS	3 C PTS	50 PTS
CCNIFCL	10%	402 225 43	450 242 49	539 247 60
MIXNORM VS N (C,1)	1 C 7 5 7 1 7	5 0 7 3 1 0 7 4	637 361 89	902 496 138
		KOL MOG-SMIR	TEST	
		20 FTS	30 PTS	50 PTS
CCNTRCL	10% 5% 1%	511 253 51	502 252 43	542 270 63
MIXNERM VS N (0,1)	10% 5% 1%	622 329 85	661 360 69	772 416 53
		FOUTZ FN TE	ST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	485 238 48	496 243 48	514 255 55
MIXNORM VS N (0,1)	10% 5% 1%	958 548 171	1011 583 174	1168 721 246

"CCNTROL" IS THE TEST CF UNIFORM(0,1) VS UNIFORM(0,1)

"MI>NCRM" IS THE MIXED NCRMAL DISTRIBUTION

C. 8(*N(.0,1) + 0.20*N(C,4)

	CHI SQUARE	D TEST	
	20 PTS	3C PTS	50 PTS
103	420 231 40	470 240 51	47C 23E 44
102 52 12	41 C 228 35	478 241 48	5257 247 46
	KOLMOG-SMI	R TEST	
	20 PTS	3C PTS	50 PTS
1 C ? 5 % 1 %	499 244 54	490 245 44	519 251 55
102	531 264 57	512 257 47	535 266 64
	FOUTZ FN T	EST	
	20 PTS	30 PTS	50 PTS
103 53 13	493 245 43	490 256 62	4 E G 2 2 9 4 7
1 C # 5 % 1 %	577 282 66	583 310 73	587 250 77
	151 C51 C51 C51 C51 C51	20 PTS 102 420 231 13 40 102 231 13 40 102 228 35 KOLMOG-SMI 20 PTS 102 499 244 54 102 531 264 57 FOUTZ FN T 20 PTS 103 493 245 13 493 245 43	20 PTS 3C PTS 10% 420 470 231 240 1% 40 51 10% 41C 478 228 241 1% 35 48 KOLMOG-SMIR TEST 20 PTS 3C PTS 10% 244 245 1% 54 44 10% 521 512 264 257 1% 57 47 FOUTZ FN TEST 20 PTS 30 PTS 10% 5% 245 43 490 245 43 490 256 62

CENTROL IS THE TEST OF UNIFORM(0,1) VS JNIFORM(0,1)

MIXNORM IS THE MIXED NORMAL DISTRIBUTION

0.90*N(.0,1) + 0.10*N(0,2)

		CHI SQU	R ED TEST	
		20 PTS	30 PTS	50 FTS
CCNTRCL	10% 5% 1%	432 246 43	416 214 41	4 8 6 2 1 5 4 C
MIXNCRM VS N (C.1)	102 52 12	456 262 51	431 233 43	537 258 53
		KOL MOG-S	SMIR TEST	
		20 PTS	30 PTS	50 PTS
CCNTFOL	10% 5₹ 1%	5 C 9 2 7 1 5 5	495 239 46	505 252 55
MIXNORM VS N (0,1)	1 CZ 5% 1%	553 302 67	5-26 26 1 53	557 274 64
		FOUTZ F	TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	516 271 58	471 239 51	520 252 4 7
MIXNCRM VS N (0,1)	10% 5% 1%	66C 353 95	653 357 88	675 356 89

CONTROL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

MIXNCRM IS THE MIXEC NCRMAL DISTRIBUTION

C. 9C*N(.0,1) + 0.10*N(0,3)

		CHI SQUARED	TEST	
		20 PTS	30 PTS	50 PTS
CON TROL	1 C % 5 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	3 9 7 2 4 0 3 1	439 244 53	509 246 55
MIXNCRM VS N (C,1)	1 C % 5 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	419 260 36	508 266 65	551 3 C2 74
		KOLMOG-SMIR	T EST	
		2 C PTS	30 PTS	50 PTS
CENTFOL	10% 5% 1%	4 84 2 4 0 5 6	516 247 47	488 239 46
MIXNERM VS N (0,1)	1 C % 5 % 1 %	525 268 64	584 282 61	54 E 2 1 1 6 C
		FOUTZ FN TE	ST	
		2C PTS	30 PTS	50 PTS
CONTROL	10% 5% 1%	514 247 48	511 253 50	491 245 58
MIXNCRM VS N (0,1)	10% 5% 1%	736 385 81	707 384 105	747 422 112

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

"MIXNERM" IS THE MIXEC NERMAL CISTRIBUTION

C.90*N(.0,1) + 0.10*N(0,4)

		CHI SQUAR	ED TEST	
		20 PTS	30 PTS	50 FTS
CCNTRCL	10% 5% 1%	3 £6 2 25 3 9	417 241 44	454 238 46
MIXNERM VS N (C,1)	10% 5% 1%	1459 1093 407	2008 1533 793	3146 2556 1568
		KOL MOG-SM!	IR TEST	
		20 FTS	3C PTS	5C PTS
CENTFOL	10% 5% 1%	493 267 52	483 246 53	487 238 38
MIXNORM VS N (C,I)	1 C Z 5 Z 1 Z	2179 1606 714	2806 2181 1148	3756 3226 2043
		FOUTZ FN	TEST	
		2C PTS	30 PTS	50 PTS
CONTROL	10%	5 3 5 2 5 0 5 4	495 246 43	499 248 41
MIXNORM VS N (0,1)	10% 5% 1%	18C9 1198 509	1994 1428 602	2492 1825 885

		CHI SQU	AR ED TEST	
		20 PTS	30 PTS	50 FTS
CCNTRCL	10% 5% 1%	377 205 46	449 239 46	512 257 44
MIXNCRM VS N (0,1)	1 C% 5% 1%	15 57 11 70 473	2112 1563 750	3304 2660 1640
		KOLMCG-	SMIR TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	482 229 45	481 260 69	538 271 56
MIXNCRM VS N (0.1)	10% 5% 1%	2450 1855 901	3101 2510 1344	4056 3596 2400
		FOUTZ FI	TEST	
		20 PTS	3 C PTS	50 PTS
CCNTROL	107	4 7 9 233 50	512 262 53	531 253 53
MIXN(RM VS N (0,1)	10%	1781 1209 462	1917 1369 573	2405 1774 843

'CCNTRCL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)
'MIXNORM' IS THE MIXED NORMAL DISTRIBUTION

0.8C*N(.5,1) + 0.20*N(0,3)

		CHI SQUAR	ED TEST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	10%	389 221 38	439 251 55	490 221 49
NIXNCRM VS N (C.1)	1 C 7 5 2 1 3	1568 1177 507	2228 1736 951	3377 2832 1796
		KOL MO G- SM	IR TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	535 258 55	489 253 54	490 249 35
MIXNORM VS N (0,1)	10% 5% 1%	2467 1865 857	3194 2593 1438	41 05 3659 2511
		FCUTZ FN	TEST	
		20 PTS	30 PTS	50 PTS
CONTROL	10%	50 2 2 52 6 2	496 250 51	495
MIXNCFM VS N (0,1)	10% 5% 1%	1838 1220 486	2156 1551 701	2665 1978 979

"CONTROL" IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

MI)NCRM IS THE MIXED NORMAL DISTRIBUTION

C. E(*N(.5,1) + 0.20*N(C,4)

		CHI SQUARED	TEST	
		20 PTS	3C PTS	50 PTS
CENTREL	10% 5% 1%	431 240 40	413 200 42	528 249 53
FEARSON VS N (C,1)	10% 5% 1%	465 258 46	478 242 59	626 302 71
		KOLMOG-SMIR	TEST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	10% 5% 1%	5 2 8 2 7 5 4 5	478 242 49	525 283 54
FEARSON VS N (0,1)	10% 5% 1%	623 339 66	571 310 70	673 371 95
		FOUTZ FN TES	, ST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	1 C % 5 % 1 %	512 248 56	458 207 48	53C 263 58
PEARSON VS N (C,1)	1 C % 5 % 1 %	481 241 60	428 196 36	497 234 57

CENTREL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 0.0 , BETA 2 = 2.30

	CHI SQUARED TEST				
		20 PTS	3C PTS	50 PTS	
CCNTFCL	10%	435	443	541	
	5%	237	241	247	
	1%	49	52	49	
PEARSON	10%	432	445	533	
VS	5%	243	247	241	
N (C.1)	1%	43	55	52	
		KOLMOG-SMI	R TEST		
		20 PTS	3C PTS	50 PTS	
CCNTFCL	10%	489	528	489	
	5%	238	252	245	
	1%	55	50	64	
FEARSON	10%	496	543	503	
VS	5%	242	274	262	
N (0,1)	1%	61	54	67	
		FOUTZ FN T	EST		
		20 PTS	3C PTS	50 PTS	
CCNTFOL	10%	536	467	487	
	5%	275	227	240	
	1%	61	34	43	
FEARSON	107	523	441	467	
VS	58	269	217	228	
N (C,1)	17	58	33	43	

'CENTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 0.0 , BETA 2 = 2.80

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	1 C Z 5 % 1 %	408 230 35	390 214 50	453 213 52
FEARSON VS N (C,1)	10% 5% 1%	756 495 121	992 634 1 85	1576 973 343
		KOLMCG-SMI	R TEST	
		20 PTS	3 C PTS	50 PTS
CONTFOL	10%	492 252 55	515 255 49	520 264 52
FEARSON VS N (C,1)	10% 5% 1%	942 546 158	1161 693 192	1498 944 294
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	10%	55 50 50 50 50 50	478 261 56	5 C 4 5 5 5 4 8
PEARSON VS N (0.1)	10% 5% 1%	853 469 129	1400 884 311	2487 1785 799

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 0.01, BETA 2 = 1.75

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	10%	428 239 40	410 205 43	493 233 52
FEARSON VS N (C.1)	10% 5% 1%	614 375 93	744 435 120	1082 610 193
		KOLMOG-SMI	R TEST	
		20 PTS	3C PTS	50 PTS
CONTROL	102 52 13	543 290 41	470 229 50	5C6 274 48
FEARSON VS N (C,1)	10% 5% 1%	837 482 131	857 479 131	1106 648 184
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	10% 5% 1%	511 240 55	474 214 49	515 259 54
PEARSON VS N (C.1)	102 52 12	558 305 82	726 405 101	1288 774 233

CONTROL IS THE TEST OF UNIFORM(C,1) VS UNIFORM(O,1)

PEARSON IS THE PEARSON DISTRIBUTION
BETA 1 = 0.01, BETA 2 = 1.90

		CHI SQUARED	TEST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	10% 5% 1%	408 230 48	442 237 41	510 241 47
FEARSON VS N (C,1)	10% 5% 1%	458 267 51	556 321 74	702 366 96
		KOLMOG-SMIR	TEST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	10% 5% 1%	492 240 55	485 272 50	5 C 2 2 5 8 6 5
PEARSON VS N (C,1)	10% 5% 1%	581 3 C S 7 4	650 329 73	715 369 94
		FOUTZ FN TE	ST	
		20 FTS	30 PTS	50 PTS
CCNTFCL	10% 5% 1%	529 241 62	479 241 56	546 285 54
FEARSON VS N (C,1)	10% 5% 1%	534 269 68	554 283 66	6 8 6 3 5 3 8 1

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

*PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 0.25, BETA 2 = 3.20

		CHI SQUARE	D TEST	
		20 PTS	3 C PTS	50 PTS
CONTROL	10%	373	419	502
	5%	220	230	211
	1%	55	49	34
FEARSON	10%	739	1030	1673
VS	5%	476	664	1099
N (C,1)	1%	118	231	431
		KOLMOG-SMI	R TEST	
		20 PTS	3C PTS	50 PTS
CCNTFOL	107	516	483	475
	57	253	227	231
	17	48	51	38
FEARSON	10%	790	896	1125
VS	5%	474	528	735
N (C,1)	1%	121	147	234
		FOUTZ FN T	EST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	1 C %	499	481	477
	5 %	237	238	253
	1 %	46	49	50
PEARSON	102	868	1090	1518
VS	53	471	660	965
N (C,1)	13	121	185	344

CONTROL IS THE TEST OF UNIFORM(0,1).VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION EETA 1 = 0.50, BETA 2 = 3.00

		CHI SQUARE	D TEST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	1 C % 5 % 1 %	401 236 43	428 225 39	5 ? ? ? ? ? 5 4
FEARSON VS N (C.1)	10% 5% 1%	2440 1960 931	3386 2820 1632	4654 4320 3267
		KOLMOG-SM1	R TEST	
		20 PTS	3C PTS	50 PTS
CCNTFCL	1 C % 5 % 1 %	482 239 47	513 254 52	509 245 61
FEARSON VS N (C.1)	1 C % 5 % 1 %	1155 730 216	1459 920 322	2001 1428 609
		FOUTZ FN T	EST	
		20 PTS	30 PTS	50 PTS
CCNTFCL	198 58 18	531 250 57	492 250 51	55C 277 61
FEARSON VS N (C,1)	1C7 5% 1%	2135 1460 583	2837 2156 1049	392C 3309 21C4

CCNTFCL IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 1.0C, BETA 2 = 3.40

	CHI SQUARED	TEST		
	20 PTS	30 PTS	50 PTS	
10% 5% 1%	411 226 34	427 238 49	475 227 34	
102 52 12	1446 1070 403	3151 2546 1368	4513 4039 2895	
	KOLMOG-SMIR TEST			
	20 PTS	3C PTS	50 PTS	
107 57 17	499 249 55	495 260 64	504 269 60	
10% 5% 1%	1032 645 211	1314 832 265	1765 1227 493	
	FCUTZ FN TE	ST		
	20 PTS	3C PTS	50 PTS	
10% 5% 1%	482 251 51	481 251 45	485 207 43	
10% 5% 1%	1578 1009 348	2161 1493 633	3119 2354 1254	
	1051 1051 1051 1051 1051 1051 1051	20 PTS 10% 411 226 34 10% 1446 1070 1% 403 KOLMOG-SMIN 20 PTS 10% 249 5% 249 1% 55 10% 249 1% 55 10% 25% 249 1% 55 10% 482 251 1% 51	2C PTS 30 PTS 10% 411 427 226 238 14 49 10% 1446 2151 157 1070 2546 17 403 1368 KOL MOG - SMIR TEST 20 PTS 30 PTS 10% 249 260 1% 25% 249 260 1% 55% 249 260 1% 55% 249 260 1% 55% 249 265 1% 64 10% 645 832 211 265 FCUTZ FN TEST 20 PTS 30 PTS 482 481 25% 251 251 1% 45	

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(C,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 1.00, BETA 2 = 3.60

		CHI SQUAR	ED TEST		
		20 PTS	3C PTS	50 PTS	
CENTFOL	10% 5% 1%	397 232 41	427 233 60	489 234 56	
FEARSON VS N (C,1)	1 C % 5 % 1 %	1086 764 255	2009 1463 651	3236 2543 1382	
		KOLMOG-SMIR TEST			
		20 PTS	3 C PTS	50 PTS	
CCNTFCL	10%	524 267 51	501 250 56	499 252 62	
FEARSON VS N (C,1)	10% 5% 1%	911 546 171	1150 732 229	1528 1032 399	
		FOUTZ FN TEST			
		20 PTS	3C PTS	50 PTS	
CONTROL	10% 5% 1%	521 258 50	460 248 63	529 260 46	
FEARSON VS N (C,1)	10%	1261 764 243	1656 1070 387	2435 1706 739	

'CONTROL' IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 1.00, BETA 2 = 3.80

			CHI SQUA	RED TEST	
			20 PTS	30 PTS	50 PTS
CCNTFOL	10%		371 206 37	431 237 48	464 227 45
FEARSON VS N (0,1)	10%		2231 1745 763	3C39 2383 1242	4476 3538 2652
		KOLMOG-SMIR TEST			
			20 PTS	3C PTS	50 PTS
CCNTFOL	10%		498 250 42	48 2 261 48	517 261 54
FEARSON VS N (C,1)	102 5% 1%		1153 753 231	1481 1005 353	2082 1447 621
FOUTZ FN TEST					
			20 PTS	30 PTS	50 PTS
CENTFOL	10% 5% 1%		450 258 44	498 255 45	486 248 61
FEARSON VS N (C.1)	1 C% 5% 1%		1872 1230 469	2587 1520 886	3548 2854 1644

"CONTROL" IS THE TEST OF UNIFORM(0,1) VS UNIFORM(0,1)

PEARSON IS THE PEARSON DISTRIBUTION BETA 1 = 2.00, BETA 2 = 5.50

DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22217	2
2.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Dean of Research Code 012 Naval Postgraduate School Monterey, California 93940	2
4.	Department of Mathematics Naval Postgraduate School Monterey, California 93940	
	Professor C.O. Wilde, Code 53Wm Chairman	1
	Professor F.D. Faulkner, Code 53Fa Professor A. Schoenstadt, Code 53Zh Professor R. Franke, Code 53Fe Professor T. Jayachandran, Code 53Jy	1 1 10 15
5.	Dr. Richard Lau Office of Naval Research 1030 East Green Street Pasadena, California 91106	1
6.	Professor R.E. Barnhill Department of Mathematics University of Utah Salt Lake City, Utah 84112	1
7.	Professor G.M. Nielson Department of Mathematics Arizona State University Tempe, Arizona 85281	1
8.	Chief of Naval Research Attn: Mathematics Program Arlington, Virginia 22217	2
9.	Professor Robert V. Foutz Department of Mathematics VPI Blocksburg, Virginia 24061	1

U191420

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01057738 0

U191420