Отчет по лабораторной работе №1

Основы информационной безопасности

Бызова Мария Олеговна, НПИбд-01-23

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выполнение дополнительного задания	17
5	Ответы на контрольные вопросы	20
6	Выводы	22
7	Список литературы	23

Список иллюстраций

3.1	Окно создания виртуальной машины
3.2	Окно установки гостевой ОС
3.3	Окно выбора основных характеристик для гостевой ОС
3.4	Окно выбора объема памяти
3.5	Итоговые настройки
3.6	Загруза операционной системы Rocky
3.7	Подключенные носители
3.8	Выбор языка установки
3.9	Окно настроек
	Выбор раскладки
	Изменение часового пояса
	Настройка аккаунта root
	Настройка пользователя
3.14	Выбор окружения
	Отключение kdump
	Выбор сети
	Установка
	Проверка носителей
3.19	Окно входа в операционную систему
4.1	Окно терминала
4.2	Версия ядра
4.3	Частота процессора
4.4	Модель процессора
4.5	Объем доступной оперативной памяти
4.6	Тип обнаруженного гипервизора
4.7	Тип файловой системы
4.8	Последовательность монтирования файловых систем

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (CPU0).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела.

3 Выполнение лабораторной работы

Я выполняю лабораторную работу на домашнем оборудовании, поэтому создаю новую виртуальную машину в VirtualBox, выбираю имя, местоположение и образ ISO, устанавливать будем операционную систему Rocku DVD (рис. 1).

Рис. 3.1: Окно создания виртуальной машины

Предварительно выбираю имя пользователя и имя хоста (рис. 2).

Рис. 3.2: Окно установки гостевой ОС

Выставляю основной памяти размер 2048 Мб, выбираю 2 процессора, чтобы ничего не висло (рис. 3).

Рис. 3.3: Окно выбора основных характеристик для гостевой ОС

Выделаю 40 Гб памяти на виртуальном жестком диске (рис. 4).

Рис. 3.4: Окно выбора объема памяти

Соглашаюсь с проставленными настройками (рис. 5).

Рис. 3.5: Итоговые настройки

Начинается загрузка операционной системы (рис. 6).

Рис. 3.6: Загруза операционной системы Rocky

При этом должен быть подключен в носителях образ диска! (рис. 7).

Рис. 3.7: Подключенные носители

Выбираю язык установки (рис. 8).

Рис. 3.8: Выбор языка установки

В обзоре установки будем проверять все настройки и менять на нужные (рис. 9).

Рис. 3.9: Окно настроек

Язык раскладки должен быть русский и английский (рис. 10).

Рис. 3.10: Выбор раскладки

Часовой пояс поменяла на московское время (рис. 11).

Рис. 3.11: Изменение часового пояса

Установила пароль для администратора (рис. 12).

Рис. 3.12: Настройка аккаунта root

Для пользователя так же сделала пароль и сделала этого пользователя администратором (рис. 13).

Рис. 3.13: Настройка пользователя

В соответствии с требованием лабораторной работы выбираю окружение сервер с GUB и средства разработки в дополнительном программном обеспечении (рис. 14).

Рис. 3.14: Выбор окружения

Отключаю kdump (рис. 15).

Рис. 3.15: Отключение kdump

Проверяю сеть, указываю имя узла в соответствии с соглашением об именовании (рис. 16).

Рис. 3.16: Выбор сети

Начало установки (рис. 17).

Рис. 3.17: Установка

После заврешения установки образ диска сам пропадет из носителей (рис. 18).

Рис. 3.18: Проверка носителей

После установки при запуске операционной системы появляется окно выбора пользователя (рис. 19).

Рис. 3.19: Окно входа в операционную систему

4 Выполнение дополнительного задания

Открываю терминал, в нем прописываю dmesg | less (рис. 20).

Рис. 4.1: Окно терминала

Версия ядра 5.14.0-362.8.1.el9_3.x86_64 (рис. 21).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Linux version"

[ 0.000000] Linux version 5.14.0-503.14.1.e19_5.x86_64 (mockbuild@iadl-prod-build001.bld.equ.rockylinux.org) (gcc

(GCC) 11.5.0 20240719 (Red Hat 11.5.0-2), GNU ld version 2.35.2-54.el9) #1 SMP PREEMPT_DYNAMIC Fri Nov 15 12:04:32

UTC 2024

[mobihzova@mobihzova ~]$ |
```

Рис. 4.2: Версия ядра

Частота процессора 1993 МГц (рис. 22).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Detected"
[ 0.000000] Hypervisor detected: KVM
[ 0.000007] tsc: Detected 2688.004 MHz processor
```

Рис. 4.3: Частота процессора

Модель процессора Intel Core i7-8550U (рис. 23).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "CPU0"
[ 0.137261] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i7-12650H (family: 0x6, model: 0x9a, stepping: 0x3)
[mobihzova@mobihzova ~]$
```

Рис. 4.4: Модель процессора

Доступно 260860 Кб из 2096696 Кб (рис. 24).

Рис. 4.5: Объем доступной оперативной памяти

Обнаруженный гипервизор типа KVM (рис. 25).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 4.6: Тип обнаруженного гипервизора

sudo fdish -l показывает тип файловой системы, типа Linux, Linux LVM (рис. 26).

```
[mobihzova@mobihzova ~]$ sudo fdisk -l

Мы полагаем, что ваш системный администратор изложил вам основы
безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде что-то вводить.

№3) С большой властью приходит большая ответственность.

[sudo] пароль для mobihzova:

Диск /dev/sda: 40 GiB, 42949672960 байт, 83886080 секторов

Disk model: VBOX НАБОДІКК

Единицы: секторов по 1 * 512 = 512 байт
Размер секторов (логический/физический): 512 байт / 512 байт
Размер секторо (логический/физический): 512 байт / 512 байт
Тип метки диска: dos
Идентификатор диска: 0хfесс2ed7

Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sdal * 2048 2099199 2097152 16 83 Linux
/dev/sdal * 2048 2099199 2097152 16 83 Linux
```

Рис. 4.7: Тип файловой системы

Далее показана последовательно монтирования файловых систем (рис. 27).

Рис. 4.8: Последовательность монтирования файловых систем

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

7 Список литературы

- 1. Купер М. Искусство программирования на языке сценариев командной оболочки.— 2004. —URL: https://www.opennet.ru/docs/RUS/bash scripting guide/.
- 2. NewhamC.Learning the bash Shell: Unix Shell Programming.—O'Reilly Media,2005.— (In a Nutshell).
- 3. Робачевский А., Немнюгин С., Стесик О. Операционная система UNIX.—2-е изд.— БХВ-Петербург,2010.
- 4. Колисниченко Д. Н. Самоучитель системного администратора Linux.—СПб. : БХВ Петербург, 2011.—(Системный администратор).
- 5. DashP.Getting Started with OracleVMVirtualBox.—Packt Publishing Ltd,2013.
- 6. Colvin H.VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox.—Create Space Independent Publishing Platform, 2015.
- 7. Таненбаум Э., Бос X. Современные операционные системы.—4 еизд.—СПб.:Питер, 2015. —(Классика Computer Science).
- 8. GNU Bash Manual. 2016. —URL:https://www.gnu.org/software/bash/manual/.
- 9. Robbins A. Bash Pocket Reference.—O'Reilly Media, 2016.
- 10. Vugt S.van.Red Hat RHCSA/RHCE 7cert guide: Red Hat Enterprise Linux 7 (EX200 and EX300). —Pearson IT Certification, 2016.—(Certification Guide).
- 11. Zarrelli G. Mastering Bash.—Packt Publishing, 2017.
- 12. Unix и Linux: руководство системного администратора / Э. Немет, Г. Снайдер, Т. Хейн, Б. Уэйли, Д. Макни.—5-е изд.—СПб. : ООО«Диалектика», 2020