NETWORK SCIENCE OF ONLINE INTERACTIONS

Critical Phenomena on Networks

Joao Neto 16/Jun/2023

SUMMARY

- Many models with different applicability
- Threshold models
 - Deterministic compounded influence of neighbours
 - Depends on network and starting point
- Cascade models
 - Probabilistic single-node influence
- Epidemic spreading
 - Various components for different types of diseases
- Opinion dynamics
 - Different spreading rules: majority, probabilistic, bounded effect

DYNAMICS ON NETWORKS

- Dynamics
 - Models on networks
 - Threshold models
 - Cascade models
 - Epidemic spreading
 - Opinion dynamics

- Critical Phenomena on Networks
 - Adaptive networks
 - Phase Transitions
 - Branching and autoregressive processes
 - Properties of networks at criticality
 - Self-organized criticality

- Networks can evolve (temporal networks)
- Networks can have dynamical models on them
- Previously: bounded confidence model
 - Essentially a temporal network with random K=1 rewiring at each timestep
 - Models instantaneous, independent interactions
 - Fairly robust dynamics (convergence speed doesn't matter)
- What if interactions are not independent (e.g. complex contagion)?
- What if the network structure changes more slowly than the dynamics on it?

- Adaptive networks: co-evolution between topology and dynamics
 - Can lead to much more sophisticated dynamics
 - Including conditions not possible otherwise
 - Many examples
 - Brain networks
 - Technological networks
 - Social networks
 - Disease spreading
 - Polarization dynamics
 - Reference: book by Gross & Sayama

- SIS network
 - Random network with average degree K
 - Nodes spread a disease with probability p
 - Nodes recover with probability r
 - $R_0 = pK/r$
 - Critical transmission rate: $p^* = r/K$
 - Reminder: no p^* in scale-free networks
- SIS adaptive network [1]
 - An S node can rewire a link from an I node to another
 S node with probability w
 - Rewiring stops transmission, but also can create hyperconnected susceptible hubs
 - Critical transmission rate: $p_{AN}^{\star} = \frac{w}{K(1 \exp(-w/r))}$

- Term expansion: $p_{AN}^{\star} \approx r/K + w/2K + O(w^2)$
 - Recovers non-adaptive case for w = 0
 - If $w \gg r$, $p_{AN}^{\star} \approx w/K$
- Increasing rewiring (e.g. isolation) stops the spreading
- Decreasing K also does it
- Can also model content spreading in social networks
 - The topic is the disease, stays in the mind of users for a variable amount of time
 - No threshold because social media is scale-free

- What happens to the network structure?
 - Degree distribution of susceptible (circles) and infected (dots)
 - Completely random rewiring: random network
 - No disease spreading: two unconnected clusters
 - Adaptive model: broad tail
 - Broader with susceptible
 - Creates hubs
 - Structure is dynamic: if a hub gets infected it stops being a hub
 - Degree correlation: $\langle k_{nn} \rangle (k)$
 - Adaptive model is assortative

- What happens to the dynamics?
 - Base SIS:
 - Endemic if p > r/K
 - Healthy if p < r/K
 - Adaptive model
 - Complex phase space
 - Can generate bistable dynamics
 - Can generate oscillatory dynamics
- Dynamics gets much richer by only by adding a simple rewiring rule

- Models can get even richer with more sophisticated dynamics
- Example: resource diffusion model [1]
 - Nodes produce a resource (e.g. value) x
 - Resource is produced/dissipated to $x \to 1$
 - Resource diffuses between nodes depending on connection strength
 - Adaptation: connection gets stronger between richer nodes
 - Results:
 - Power-laws in resource, weight and strength distributions
 - Creates inequality even if basal resource generation is equal

- Brief definition
 - Phenomena with distinct phases, with a critical point separating them
 - The critical point has many interesting properties

- Example: 2D Ising model
 - N magnetic spins with orientation $s_i = \pm 1$
 - Hamiltonian $H(\vec{s}) = \sum_{\langle ij \rangle} s_i s_j$, $\langle ij \rangle$ neighbors
 - Probability of observing a state \vec{s} is $P(\vec{s}) \sim e^{-H(\vec{s})/T}$
 - Temperature T
 - Magnetization $m = \frac{1}{N} \sum_{i} s_{i}$

 $T = T_c \approx 2.27$

- Example: 2D Ising model
 - Correlation function:
 - $\Gamma(i-j) = \langle s_i s_j \rangle \langle s_i \rangle \langle s_j \rangle$
 - Correlation length $\xi(T)$:
 - $\Gamma(x) \sim e^{-x/\xi(T)}$
 - Scaling: $\xi(T) \sim |T T_c|^{-1}$
- Correlation length diverges at criticality
- Many computationally-useful properties are maximized at criticality
 - Computational power [1-6]
 - Dynamical repertoire [7-9]
 - Dynamic range [10]

(Beggs & Timme, 2012)

- [1] Chris G. Langton. Phys. D Nonlinear Phenom. 42.1-3 (1990)
- [2] Stephen Wolfram. Phys. D Nonlinear Phenom. 10.1-2 (1984)
- [3] James P. Crutchfield and Karl Young. Phys. Rev. Lett. 63.2 (1989)
- [4] Nils Bertschinger and Thomas Natschläger. Neural Comput. 16.7 (2004)
- [5] T. Toyoizumi and L. F. Abbott. Phys. Rev. E 84.5 (2011)
- [6] Lars Büsing et al. Neural Comput. 22.5 (2010)
- [7] Clayton Haldeman and John M Beggs. Phys. Rev. Lett. 94.5 (2005)
- [8] Peter Krawitz and Ilya Shmulevich. Phys. Rev. Lett. 98.15 (2007)
- [9] Lucilla De Arcangelis and Hans J. Herrmann. Proc. Natl. Acad. Sci. U. S. A. 107.9 (2010)
- [10] Osame Kinouchi and Mauro Copelli. Nature Physics, 2(5), 348-351 (2006)

COARSE GRAINING/SCALE-FREE DYNAMICS

- Systems at a critical point can also be coarse-grained
- The idea: at the critical point, the dynamics is scale-free
- Thus we can rescale the system and keep its properties
- But it is only valid at the critical point

- For a phase transition you need
 - A control parameter
 - An order parameter
 - A continuous transition from zero to non-zero values of the order parameter
- Properties of critical systems
 - Around the critical point x_c , some observables χ scale as power-laws

$$\chi \sim |x - x_c|^{-\gamma}$$

- Universality: as $x \to x_c$, model details vanish
- The **critical exponents** γ determines the universality class of the dynamics
- These exponents are subject to scaling laws

BRANCHING AND AUTOREGRESSIVE PROCESSES

- The branching process:
 - Stochastic process where each node at time t produces a random number of offspring at time t+1

- Branching parameter $m = \langle \sum_j p_{ij} \rangle$
- Criticality: m = 1
- Spreading timescale: $\tau \sim 1/\ln m$
 - As $m \to 1$, the dynamics spreads exponentially longer

BRANCHING AND AUTOREGRESSIVE PROCESSES

- What can we measure out of a critical branching process?
- Full set of observables
 - $p(S) \sim S^{-\alpha}$ with $\alpha = 3/2$
 - $p(D) \sim D^{-\beta}$ with $\beta = 2$
 - Average size
 - $\langle S \rangle \sim D^{\gamma}$ with $\gamma = 2$
 - Avalanche profile
 - $s(t,D) \sim D^{\gamma-1} F(t/D)$
 - Plotting t/D vs $s(t,D)/D^{\gamma-1}$ results in a data collapse
 - Scaling law
 - $(\beta 1)/(\alpha 1) = \gamma$

SELF-ORGANIZED CRITICALITY AND GRIFFITHS PHASES

- Critical dynamics has interesting and often-observed properties
- But it requires parameter fine-tuning (e.g. m=1)
- Two ways of getting the critical dynamics properties
 - Griffiths Phase
 - Self-Organized Criticality

Griffiths Phase

- The idea: get critical system properties (power-laws, etc) by introducing heterogeneity in the structure
- Example: dynamics on hierarchical modular networks

ARTICLE

Received 15 Apr 2013 | Accepted 28 Aug 2013 | Published 3 Oct 2013

OI: 10.1038/ncomms3521

Griffiths phases and the stretching of criticality in brain networks

SELF-ORGANIZED CRITICALITY

- Self-Organized Criticality (SOC)
 - Widely studied in complexity science in the 1990s
 - Some rule (e.g. adaptive network) drives the system towards the phase transition
 - Relies on the concept of drive and dissipation
 - A slow adaptation drives the system towards the critical point
 - A fast dissipation drives it away
 - Most famous example: the Abelian sandpile model

SELF-ORGANIZED CRITICALITY

- Abelian sandpile model
 - Nodes in a 2D grid, with a resource (sand grain) Z
 - If Z > 4, the node topples and sends one grain to each neighbour
 - One variation: random initial condition, keep adding grains in the middle and dissipating at the borders
 - Results:
 - Fractal structures
 - Power-law avalanche size distribution
 - Power-law event sizes with similar exponents are seen in many phenomena

SUMMARY

- Adaptive networks can have much richer dynamics
 - They can reach states and topologies not possible in the static networks
- Branching processes can easily create many of the power-laws we've seen in the course
- Mechanisms like self-organized criticality can also explain those power-laws without fine-tuning

