Relatório de Análise de Algoritmos de Ordenação

Este relatório apresenta uma análise comparativa de três algoritmos de ordenação — Bubble Sort, Insertion Sort e Quick Sort — aplicados a conjuntos de dados de diferentes tamanhos: 100, 1000 e 10000 elementos. A avaliação dos tempos de execução foi realizada em três cenários distintos: dados aleatórios, dados ordenados crescentemente e dados ordenados de forma decrescente.

Tipo	Bubble	Insertion	Quick
Aleatório	198200	201300	31400
Crescente	3200	100300	21400
Decrescente	6700	78700	12600

Como ilustrado, o Quick Sort se destaca em termos de tempo de execução quando o conjunto de dados é aleatório, oferecendo o melhor desempenho nesse cenário. Nos casos em que os dados estão ordenados de forma crescente ou decrescente, o desempenho dos algoritmos Bubble e Quick se aproxima, com variações menores nos tempos de execução, já o Insertion tem um tempo elevado. Estes resultados indicam que, em listas pequenas e já organizadas, o algoritmo Insertion Sort não deve ser escolhido, enquanto o Quick Sort é a opção mais eficiente em dados aleatórios.

Relatório de Análise de Algoritmos de Ordenação

Tipo	Bubble	Insertion	Quick
Aleatório	2519800	4789800	272200
Crescente	175100	407500	1914100
Decrescente	411200	507100	381700

No conjunto de tamanho 1000, o Quick Sort novamente demonstra seu potencial com o menor tempo de execução em dados aleatórios. Nos conjuntos decrescentes os tempos de execução dos três algoritmos são mais semelhantes, sugerindo que, em listas médias e organizadas, a diferença de eficiência entre eles é menos pronunciada. Esses resultados mostram que o Quick Sort é mais vantajoso em listas aleatórias, enquanto em listas decrescentes, qualquer um dos três algoritmos pode ter desempenho similar e na crescente o Quick Sort teve um tempo elevado.

Relatório de Análise de Algoritmos de Ordenação

Tipo	Bubble	Insertion	Quick
Aleatório	39246500	51360400	823400
Crescente	22314800	35087100	40387100
Decrescente	36907600	54521400	40976500

Para o conjunto de tamanho 10000, o Quick Sort continua a ser a escolha mais eficiente em dados aleatórios, mostrando tempos de execução consideravelmente mais baixos que os outros dois algoritmos. Em dados ordenados, o desempenho dos três algoritmos é novamente bastante próximo, com variações pequenas, visto que nano segundo é uma unidade de tempo muito pequena. Esses resultados confirmam que, em listas grandes e desordenadas, o Quick Sort é significativamente mais rápido, enquanto, em listas grandes e já organizadas, os três algoritmos apresentam tempos de execução relativamente parecidos.