PLSC 503 – Spring 2020 Bivariate Regression II: Inference

January 21, 2020

Setup

For:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Estimators:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

and

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$
$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

The Key Point

The estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables.

Due to (inter alia):

- **Sampling variability**: Random samples from a population \rightarrow slightly different $\hat{\beta}_0$ s and $\hat{\beta}_1$ s.
- Random variability in X: In cases where X is also a random variable...
- Intrinsic variability in **Y**: Because $Y_i = \mu + u_i$.

$Var(\hat{eta}_1)$

$$u_i \sim \text{i.i.d. } N(0, \sigma^2)$$

meaning:

$$Var(Y|X,\beta) = \sigma^2$$

so:

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{Var}\left[\frac{\sum_{i=1}^{N}(X_{i}-\bar{X})Y_{i}}{\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}}\right]$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\operatorname{Var}(Y)$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum(X_{i}-\bar{X})^{2}}.$$

$Var(\hat{eta}_0)$ and $Cov(\hat{eta}_0,\hat{eta}_1)$

Similarly:

$$Var(\hat{\beta}_0) = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2$$

and:

$$\mathsf{Cov}(\hat{eta}_0,\hat{eta}_1) = \frac{-X}{\sum (X_i - \bar{X})^2} \sigma^2$$

Important Things

- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto \sigma^2$
- ${\sf Var}(\hat{eta}_0)$ and ${\sf Var}(\hat{eta}_1) \propto -\sum (X_i \bar{X})^2$
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -N$
- $\operatorname{sign}[\operatorname{Cov}(\hat{eta}_0,\hat{eta}_1)] = -\operatorname{sign}(\bar{X})$

Gauss-Markov Theorem

Imagine:

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

Rewrite:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

k are "weights":

$$\hat{\beta}_1 = \sum k_i Y_i$$

with
$$k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$
.

Gauss-Markov (continued)

Alternative (non-LS) estimator:

$$\tilde{\beta}_1 = \sum w_i Y_i$$

Unbiasedness requires:

$$E(\tilde{\beta}_1) = \sum w_i E(Y_i)$$

$$= \sum w_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum w_i + \beta_1 \sum w_i X_i$$

Gauss-Markov (continued)

Variance:

$$Var(\tilde{\beta}_{1}) = Var\left(\sum w_{i}Y_{i}\right)$$

$$= \sigma^{2} \sum w_{i}^{2}$$

$$= \sigma^{2} \sum \left[w_{i} - \frac{X_{i} - \bar{X}}{\sum(X_{i} - \bar{X})^{2}} + \frac{X_{i} - \bar{X}}{\sum(X_{i} - \bar{X})^{2}}\right]^{2}$$

$$= \sigma^{2} \sum \left[w_{i} - \frac{X_{i} - \bar{X}}{\sum(X_{i} - \bar{X})^{2}}\right]^{2} + \sigma^{2} \left[\frac{1}{\sum(X_{i} - \bar{X})^{2}}\right]$$

Gauss-Markov (continued)

Because $\sigma^2 \left[\frac{1}{\sum (X_i - \overline{X})^2} \right]$ is a constant, min[Var($\tilde{\beta}_1$)] minimizes

$$\sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}\right]^2.$$

Minimized at:

$$w_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}.$$

implying:

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{\sum (X_i - \bar{X})^2}$$

= $Var(\hat{\beta}_1)$

Inference

If $u_i \sim N(0, \sigma^2)$, then:

$$\hat{eta}_0 \sim N[eta_0, Var(\hat{eta}_0)]$$

and

$$\hat{\beta}_1 \sim N[\beta_1, Var(\hat{\beta}_1)]$$

Means:

$$z_{\hat{\beta}_1} = \frac{(\hat{\beta}_1 - \beta_1)}{\sqrt{\mathsf{Var}(\hat{\beta}_1)}}$$
$$= \frac{(\hat{\beta}_1 - \beta_1)}{\mathsf{s.e.}(\hat{\beta}_1)}$$
$$= \sim N(0, 1)$$

A Small Problem...

$$\sigma^2 = ???$$

Solution: use

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{N - k}$$

Yields:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = \frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2},$$

and

$$\widehat{\operatorname{Var}(\hat{\beta}_0)} = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \hat{\sigma}^2$$

Inference (continued)

$$\widehat{s.e.(\hat{\beta}_1)} = \sqrt{\widehat{\operatorname{Var}(\hat{\beta}_1)}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}}$$

$$= \frac{\hat{\sigma}}{\sqrt{\sum (X_i - \bar{X})^2}}$$

implies:

$$t_{\hat{\beta}_{1}} \equiv \frac{(\hat{\beta}_{1} - \beta_{1})}{\widehat{\mathsf{s.e.}}(\hat{\beta}_{1})} = \frac{(\hat{\beta}_{1} - \beta_{1})}{\frac{\hat{\sigma}}{\sqrt{\sum (X_{i} - \bar{X})^{2}}}}$$

$$= \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{\sum (X_{i} - \bar{X})^{2}}}{\hat{\sigma}}$$

$$\sim t_{N-k}$$

Predictions and Variance

Point prediction:

$$\hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$$

 Y_k is unbiased:

$$E(\hat{Y}_k) = E(\hat{\beta}_0 + \hat{\beta}_1 X_k)$$

$$= E(\hat{\beta}_0) + X_k E(\hat{\beta}_1)$$

$$= \beta_0 + \beta_1 X_k$$

$$= E(Y_k)$$

Variability:

$$\begin{aligned} \operatorname{Var}(\hat{Y}_k) &= \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2 + \left[\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right] X_k^2 + 2 \left[\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2 \right] X_k \\ &= \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Variability of Predictions

$$\mathsf{Var}(\hat{Y}_k) = \sigma^2 \left[rac{1}{N} + rac{(X_k - ar{X})^2}{\sum (X_i - ar{X})^2}
ight]$$

means that $Var(\hat{Y}_k)$:

- Decreases in N
- Decreases in Var(X)
- Increases in $|X \bar{X}|$

Predictions and Inference

Standard error of the prediction:

$$\widehat{\text{s.e.}(\hat{Y}_k)} = \sqrt{\sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]}$$

 \rightarrow (e.g.) confidence intervals:

95% c.i.
$$(\hat{Y}_k) = \hat{Y}_k \pm \widehat{[1.96 \times \text{s.e.}(\hat{Y}_k)]}$$

Back to the Example

```
> IMdata<-na.omit(Data[c("infantmortalityperK","DPTpct")])</pre>
> IMDPT<-with(Data,lm(infantmortalityperK~DPTpct,na.action=na.exclude))</pre>
> summary(IMDPT)
Call:
lm(formula = infantmortalityperK ~ DPTpct, data = IMdata)
Residuals:
  Min 10 Median 30 Max
 -56.8 -16.3 -5.1 11.8 86.6
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 173.277 8.489 20.4 <2e-16 ***
DPTpct -1.576 0.101 -15.6 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 26.2 on 175 degrees of freedom
Multiple R-Squared: 0.582, Adjusted R-squared: 0.58
F-statistic: 244 on 1 and 175 DF, p-value: <2e-16
```

Things

```
Var(\hat{\beta}):
> vcov(IMDPT)
            (Intercept) DPTpct
(Intercept) 72.0677 -0.83317
DPTpct
               -0.8332 0.01018
95 percent c.i.s:
> confint(IMDPT)
              2.5 % 97.5 %
(Intercept) 156.523 190.032
DPTpct -1.775 -1.377
```

Predictions

```
> SEs<-predict(IMDPT,interval="confidence")
> SEs
      fit
          lwr
                upr
    25.10 20.53
                29.68
3
    17.22 12.05 22.40
    23.53 18.84 28.21
<rows omitted>
189 21.95 17.15 26.75
190
    39.29 35.36 43.23
191 17.22 12.05
                22.40
```

A Plot, With Confidence Intervals

Scatterplot of Infant Mortality and DPT Immunizations, along with Least-Squares Line and 95% Prediction Confidence Intervals

