

ERDEC-TR-186

AD-A285 267

> **USER MANUAL FOR VEHTRK 2.0 MODEL** (CHEMVVAM WITH STAND-OFF DETECTORS)

Ronald O. Pennsyle

RESEARCH AND TECHNOLOGY DIRECTORATE

July 1994

Approved for public release; distribution is unlimited.

Aberdeen Proving Ground, MD 21010-5423

475 94-31617

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis lighway, Suite 1204, Arlington, VA 22202-4192, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 1994 July	3. REPORT TYPE AND DATES Final, 92 Oct -	
4. TITLE AND SUBTITLE User Manual for VEHTRK Stand-Off Detectors)	2.0 Model (CHEMVVA		DING NUMBERS PR-10162622A553L
6. AUTHOR(S) Pennsyle, Ronald O.			
7. PERFORMING ORGANIZATION NAM		REPO E.	ORMING ORGANIZATION DRY NUMBER RDEC-TR-186
DIR, ERDEC, ATTN: SCE	BRD-RTM, APG, MD 2	21010-5423	
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		NSORING/MONITORING NCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		<u> </u>	
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT	12b. DI	TRIBUTION CODE
Approved for public release;	distribution is unlimited	l.	
13. ABSTRACT (Maximum 200 words)			
This user manual is an updathe Chemical Vehicle Vulner revisions (italics). Revisions Engineering Center modification and program usage.	rability Model. All the tage is are based upon the U.S.	ext is identical to that in S. Army Edgewood Reserve	the original except for arch, Development and
14. SUBJECT TERMS			15. NUMBER OF PAGES
User guide Chemical	agents Detection		17 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. OF REPORT UNCLASSIFIED	SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	9. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT UL

Blank

PREFACE

The work described in this report was authorized under Project No. 10162622A553L, CB Defense and General Investigation. This work was started in October 1992 and completed in September 1993.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for release to the public. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

Accesio	on For	
	CRA&I	
DTIC		
Unann	ounced 🔲	İ
Justific	cation	
<u></u>	outio : / Availability Codes	
Dist	Avail and or Special	
A-	4	

Blank

LIST OF FIGURES

		Page
1	VEHTRK Coordinate Systems	7
2	VEHTRK Sample Scenario Data File	8
3	VEHTRK 2.0 Scenario Data Description	9
4	VEHTRK Sample Ventilation Data File	10
5	VEHTRK 2.0 Ventilation File Data Description	11
6	VEHTRK Sample Point Alarm Data File	12
7	VEHTRK 2.0 Alarm File Data Description	13
8	VEHTRK Sample Stand-Off Alarm Data File	13
9	VEHTRK 2.0 Stand-Off Alarm File Data Description	14
10	Specifications for a Single Cloud in a VEHTRK 2.0 Cloud File	15
11	VEHTRK Sample Output (Input Echo)	.6
12	Output Column Heading Descriptions	17

Blank

USER MANUAL FOR VEHTRK 2.0 MODEL (CHEMVVAM WITH STAND-OFF DETECTORS)

This user manual is an update of a revised excerpt of the original Honeywell-produced manual for the Chemical Vehicle Vulnerability Model (CHEMVVAM). All the text is identical to that in the original except for revisions (italics). Revisions are based upon ERDEC modifications to the code and implications deduced from the original manual and program usage.

The Vehicle Track (VEHTRK) model was developed by Honeywell to interface with cloud transport and diffusion models in computing chemical agent concentration and dosage histories outside and inside combat vehicles. The VEHTRK 2.0 model, which is VEHTRK modified to accept stand-off detectors with alarms, allows the user to plot a route for one cr more combat vehicles, to move the vehicles along that route, to generate a chemical attack somewhere along that route, to measure the external and internal concentrations of chemical agent, and to integrate these concentrations into dosages outside and inside the vehicle.

This is done by utilizing previously-developed partial dosage grids to obtain the dosage at any point (x,y) on the grid at any given time t. From two consecutive times, t_1 and t_2 , the current concentration can be *estimated* by differentiation. This concept was combined with a point-to-point vehicle movement model. The results were dosage and concentration histories outside the vehicle at any time (t_i) and any point on the battle grid (x_i, y_i) . The model also makes use of a pair of ventilation parameters, f and g, which are related to the ingress and egress rates for the chemical agent and the combat vehicle.

The VEHTRK 2.0 model also allows the simulation of both point and stand-off chemical agent alarm systems by including data to describe the alarm response time, the communication network for a group of vehicles. communication network time delays and delay times to attain a protective posture, given an alarm.

The input data for the VEHTRK 2.0 model is organized into three distinct data groups: scenario, ventilation, and alarm. These groupings allow the user to easily set up parametric studies by swapping large segments of data via the three data type files.

Figure 1. VEHTRK Coordinate Systems

Figure 1 illustrates the two coordinate systems used in VEHTRK 2.0. The lead vehicle of a group is assumed to be at the origin of the group system and move from point to point, the other vehicles maintaining their position relative to the lead vehicle. The left-most vehicle is the one with the greatest positive offset GY, the rightmost is at the least GY value. An annotated sample scenario data file is shown in Figure 2. A description of each of the variables and the size of the data field for each variable in each record is shown in Figure 3.

Figure 2. VEHTRK Sample Scenario Data File

Record	Variable	Format	Column	Unit	Description
1	MGRP	15	1-5		Number of vehicle groups
2	NGRP	15	1-5		Number of vehicles in I-th group, $1 \le I \le MGRP$
	NVPGL	15	6-10		Index number of leftmost vehicle in the group
	NVPGR	15	11-15		Index number of rightmost vehicle in the group
3	IIV	15	1-5		Vehicle index number within group
	GX	F10.0	6-15	m.	X-offset from lead vehicle
	GY	F10.0	16-25	m.	Y-offset from lead vehicle
4	NPPT	15	1-5		Number of points in group route
5	IPT	15	1-5		Route point index number
	TX	F10.0	6-15	m.	X-coordinate of route point
	TY	F10.0	16-25	m.	Y-coordinate of route point
	TV	F10.0	26-35	m/s	Velocity of vehicle as it leaves this point
	TSTOP	F10.0	36-45	sec	Length of time the vehicle is stationary at this point before leaving.
6	TMIN	F10.0	1-10	sec	Time at which simulation begins
	TMAX	F10.0	11-20	sec	Maximum simulation time
	TDELT	F10.0	21-30	sec	Incremental time step
	TATTCK	F10.0	31-40	sec	Time of chemical attack relative to first vehicle point
	RDELT	F10.0	41-50	m	Step-size for line-of-sight integration
7	NCLD	15	1-5		Number of partial dosage clouds in cloud file
Note: I	Records 2-5 mu	ist be repeated	d for each gr	oup before	re continuing to Record 6.

Figure 3. VEHTRK 2.0 Scenario Data Description (continued on next page)

Record	Variable	Format	Column	Unit	Description
8	TCLD	5F10.0	1-10 11-20	sec	Times of sampling for partial dosage clouds
9	IG	15	1-5		Group index
	IV	15	6-10		Vehicle index within group
	CONFIG	1015	11-15 16-20		Configuration index at each point on the vehicle route (NPPT values for each vehicle)
10	NCONF	I 5	1-5		Total number of hatch configurations

Figure 3. VEHTRK 2.0 Scenario Data Description (concluded)

The next group of data to be input is the ventilation parameters F (ingress) and G (egress) for each of the vehicle hatch configurations. These are shown in Figure 4, an *annotated* sample ventilation data file. A description of each of the variables and the sime of the data field for each of the variables in each record for the ventilation data file is shown in Figure 5.

Figure 4. VEHTRK Sample Ventilation Data File

The definitions of the ventilation coefficients F and G are the incoming and outgoing exchange rates of the vehicle, determined empirically from test data. In terms of the first order differential equation for the ventilation process:

$$\frac{dC_i}{dt} = F \cdot C_i + G \cdot C_{\cdot}$$

where C_i is the inside concentration and C_x is the outside concentration at time t. If S_1 and S_2 are defined as the volumetric flow rates into and out of the vehicle, which has total interior volume V, then $F = (S_1 - S_2)/V$ and $G = S_1/V$, and each has dimensions of time. The differential model has been replaced in VEHTRK 2.0 with a discretized model based on the incremental time

volume V, then $F = (S_1 - S_2)/V$ and $G = S_1/V$, and each has dimensions of time⁻¹. The differential model has been replaced in VEHTRK 2.0 with a discretized model based on the incremental time TDELT. Consequently F and G must be defined with units of TDELT⁻¹, i.e. the fractional volume exchange per time period, a concept similar to compound interest rates.

Record	Variable	Format	Column	Unit	Description
11	IC	15	1-5		Configuration index
	F	E12.6	6-17	TDELT-1	Ingress coefficient, volumetric exchange per time period
	G	E12.6	18-29	TDELT-1	Egress coefficient, volumetric exchange per time period
12	AFLAG	I5	1-5		Alarm flag: 0=omit alarms 1=use point alarms 2=use stand-off alarms 3=use both types
	NDL	15	6-10		Number of dosage levels used for casualty assessment
	EPCON	F10.0	11-20	mg/m³	Smallest agent concentration to consider in the simulation
13	DOSLEV	F10.0	1-10	mg-min/ m³	Dosage level table for casualty assessment

Figure 5. VEHTRK 2.0 Ventilation File Data Description

A sample set of data for description of the alarm system is shown in Figure 6. This file is not included if AFLAG = 0 or 2 on record 12. Some notes on the data structure are very important:

- a. Records 17 and 18 occur in pairs for each point on the alarm response curve.
- b. The response curve is input for each vehicle; that is, for the card 17 shown there are four values of 0.19 corresponding to each of the four vehicles with alarms.
- c. The first two C19 records correspond to the alarm warning delays from vehicle 1 to each of the other 20 vehicles in the group.

```
C14/NVA
        -9 -10 -19
                                                                  C15/LVA
                                                                  C16/NRT
0.19 0.19 0.19 0.19
                                                                  C17/ACON
34.2 34.2 34.2 34.2
                                                                  C18/RTIM
0.27 0.27 0.27 0.27
                                                                 C17/ACON
30.6 30.6 30.6 30.6
                                                                 C18/RTIM
28.2 28.2 28.2 28.2
                                                                 C17/ACON
 12. 12.
             12.
                                                                 C18/RTIM
45.0 45.0 45.0 45.0
                                                                 C17/ACON
10.8 10.8 10.8 10.8
                                                                 C18/RTIM
141. 141. 141. 141.
                                                                 C17/ACON
              6.
5
10
        6.
5
                                                                  C18/RTIM
                     5
                          5
10
5
10
                                                    55055550
                                                          55550555
                                                                 C19/AWD
        10
                    10
                                 10
                                      10
                                            10
  10
                                                                 C19/AWD
                                5
10
                                      5
10
 5
10
5
5
5
10
        10
              10
                    10
                                             5
                                                                 C19/AWD
                                            10
        10
              10
                    10
                                                                 C19/AWD
        10
              10
                    10
                                10
                                      10
                                            10
                                                                 C19/AWD
        5
10
                    5
10
                          5
10
                                10
10
10
               5
                                      10
                                            10
                                                                 C19/AWD
              10
                                      10
                                            10
                                                                 C19/AWD
                    10
                                            10
                                                                 C19/AWD
                                                                 C20/TREACT
```

Figure 6. VEHTRK Sample Point Alarm Data File

A description of each of the variables and the size of the data field for each of these variables for the alarm data file is shown in Figure 7. If stand-off alarms are being used (AFLAG=2 or 3), a slightly different set of records must be provided, as shown in Figure 8, either additionally or instead. Note the record numbers follow the point-alarm data, if needed. The program reads point-alarm data, followed by stand-off alarm data, as specified by AFLAG. It is assumed that the reaction time of personnel is independent of the alarm source, so TREACT is only read once, from the first alarm data file. While users may use this as an excuse to omit the TREACT data from stand-off alarm files, the safest rule is to include this final record in the input stream to allow the exchange of input file elements when changing scenarios.

Record	Variable	Format	Column	Unit	Description
14	NVA	15	1-5		Number of vehicles with point alarms
15	LVA	1015	1-5 6-10 11-15		List of vehicles with alarms, by index number LVA < 0 for alarm inside vehicle, LVA > 0 outside
16	NRT	I 5	1-5		Number of points in alarm response time curve
17	ACON	10F5.0	1-5 6-10	mg/m³	Agent concentration at alarm
18	RTIM	10F5.0	1-5 6-10	sec	Alarm response time for corresponding conc.
19	AWD	10F5.0	1-5 6-10	sec	Alarm warning delay for i,j-th vehicle pair
20	TREACT	F5.0	1-5	sec	Crew reaction time to don protective gear

Figure 7. VEHTRK 2.0 Alarm File Data Description

1 5 45. 2000. 1 150. 30. 5 10	5 5 10 10	5 10	0 5	10 10	10 10	10 10	5	5 5	C21/NVASO C22/LVASO C23/HANG C24/RANGE C: NRTSO C26/ACL C27/RTIMSO C28/AWDSO C28/AWDSO C29/TREACT
---	--------------	---------	-----	----------	----------	----------	---	--------	--

Figure 8. VEHTRK Sample Stand-off Alarm Data File

Record	Variable	Format	Column	Unit	Description
21	NVASO	15	1-5		Number of vehicles with stand-off alarms
22	LVASO	1015	1-5 6-10 11-15		List of vehicles with SO alarms, by index no. LVA > 0 (outside)
23	HANG	10F5.0	1-5 6-10	degrees	Horizontal angle of LOS with forward direction
24	RANGE	10F5.0	1-5 6-10	meters	Functional range
25	NRTSO	<i>15</i>	1-5		Number of points in alarm response time curve
26	ACL	10F5.0	1-5 6-10	mg/m²	Agent CL at alarm
27	RTIMSO	10F5.0	1-5 6-10	sec	Alarm response time for corresponding CL
28	AWDSO	10F5.0	1-5 6-10	sec	Alarm warning delay for i,j-th vehicle pair
29	TREACT	F5.0	1-5	sec	Crew reaction time to don protective gear; needed only if AFLAG=2

Figure 9. VEHTRK 2.0 Stand-off Alarm File Data Description

The reader has possibly noted that the input specifications above do not include the specifications for the partial-dosage cloud file. Because many models exist to generate such files, and they may or may not produce files with a format compatible with VEHTRK 2.0, Figure 10 is provided to describe the data specifications expected by VEHTRK 2.0. The program reads all the clouds from a single file assigned to I/O device 15. The clouds must be ordered by ascending time and the grid points must be constant throughout the file. Figure 8 provides the format expected for each cloud in the file.

Record	Variable	Format	Column	Unit	Description
1	NX	15	1-5		Number of points on x-axis
	NY	15	6-10		Number of points on yaxis
	TIME	F10.0	11-20	sec	Elapsed time after munition function
2	GRDX	10(E11.5,1X)	1-11 13-24 	m	x coordinates in cloud reference system
3	GRDY	10(E11.5,1X)	1-11 13-24 	т	y coordinates in cloud reference system
4	GRDD	10(E11.5,1X)	1-11 13-24 	mg-min/m³	dosages at grid points, reading all y values for each x

Figure 10. Specifications for a Single Cloud in a VEHTRK 2.0 Cloud File

A sample output from the sample input is shown in Figure 11. The first part of the output is a listing of pertinent input data to be used in identifying the case run. Figure 12 provides a description of the output column headings. Note that the stand-off detector/alarm was not played in this sample.

```
MGRP =
IG, NVPGI, NVPGRI =
                                             5
IIV,GX,GY =
                                0.0000E+00
                   0.0000E+00
IIV,GX,GY =
                2 -0.500CE+02
                                0.2000E+03
IIV,GX,GY =
                3 -0.5000E+02
                                0.1500E+03
IIV,GX,GY =
                4 -0.5000E+02
                                0.5000E+02
IIV,GX,GY =
                5 -0.5000E+02 -0.5000E+02
IIV,GX,GY =
                6 -0.1000E+03
                                0.2000E+03
IIV,GX,GY =
                7 -0.1000E+03
                                0.1500E+03
```

Figure 11. VEHTRK Sample Output (input echo)

```
NGRP = 2

IG.NEWGI.NEGGLI.NEGGI = 1 9 2 5

IIV.GL.GY = 1 0.00000-00 0.00008-00 0.00008-00

IIV.GL.GY = 2 -0.50008-00 0.00008-00 0.0008-00

IIV.GL.GY = 3 -0.50008-00 0.50008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 0.0008-00 
        NGRP = 2
IG, NVPGI, NVPGRI = 1 9 2
IIV, CX, CY = 1 0.00008+00 0.00008+01
IIV, CX, CY = 2 -0.50008+02 0.20008+03
IIV, CX, CY = 3 -0.50008+02 0.50008+02
IIV, CX, CY = 4 -0.50008+02 0.50008+02
IIV, CX, CY = 5 -0.50008+02 0.50008+02
IIV, CX, CY = 5 -0.50008+02 0.50008+02
IIV, CX, CY = 6 -0.10008+03 0.20008+03
IIV, CX, CY = 8 -0.10008+03 0.50008+02
IIV, CX, CY = 8 -0.10008+03 0.50008+02
IIV, CX, CY = 9 -0.10008+03 0.00008+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                10.
0.
0.
0.
0.
10.
0.
0.
0.
0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5.
0.
0.
0.
0.
10.
10.
0.
0.
0.
0.
                                                                                                                                                                                                                                                                                                                             10.
0.
0.
0.
0.
0.
5.
10.
0.
0.
0.
0.
                                                                                                                                                                                                                                                                                                                                                                              10.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
                                                                                                                                                                                                                                                                                                                                                                                                                              10.
0.
0.
0.
0.
10.
10.
0.
0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      10.
0.
0.
0.
0.
10.
0.
0.
0.
0.
0.
0.
                                                                                                                         5.
0.
0.
0.
10.
10.
0.
0.
0.
0.
                                                                                                                                                                            5.
0.
0.
0.
0.
10.
10.
0.
0.
0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.
0.
5.
```

Figure 11. VEHTRK Sample Output (input echo)

IG	MBIL		_		WEXDL			IDLA								
1	9	9	•	1	9	9 6	1	9	3	0 0						
2	11	11		0	11	11 9	5	11	2	0 0						
3	20	30	14	1	20	20 15		20	5	0 0						
	IVG	IV	MAX 3		MAX IC	LAST I			DOSE EG				ARH ED	VEH ID/A	TWARN	ASET
1	1	1	369.		12.1	11.			133.0				193.1	5 . 6	48.5	1
1	2	2	7.		0.7	0.			7.0			7.6	10.9	0.0	53.5	1
1	3	3	68.		2.8	2.			31.6			5.4	45.5	0.8	53.5	1
1	4	4	62.		3.3	3.			36.8			1.1	52.6	0.6	53.5	1
1	ف	5	120.		3.9	3.			43.9			9.7	63.3	1.3	53.5	1
1	6	6	29.		0.5	8.			17.0			5.9	28.4	1.1	50.5	9
1	7	7	26.	. 2	9.0	9.			17.9			9.9	31.5	1.6	50.5	9
1			180.	4	19.4	14.	4 600	. 0	28.9	34	6 63	3.5	66.0	12.5	50.5	9
1	9	9	223.	3	16.9	14.	3 599	. 0	28.6	27.	6 50	6.2	59.2	6.6	45.5	9
2	1	10	228	6	3.3	3.	0 2375	. 0	34.0	5	4 39	9.8	50.9	1.7	49.5	10
2	2	11	170.		4.4	4.	3 2617	. 0	48.6			5.9	71.0	2 1	54.5	10
2	3	12	316.	3	4.5	4.	3 2619	. 0	48.7	7.	8 50	6.6	71.8	2.5	54.5	10
2	4	13	245		5.6	5.			59.5	9.		9.3	87.7	3.2	54.5	10
2	5	14	136.		2.7	2.			28.3			2.5	41.8	1.0	54.5	10
2	6	15	165		19.7	12.			20.5			. 0	65.6	9.6	50.5	9
2	7	16	149.		21.2	12.		. 0	21.4	31.		3 . 3	68.8	11.5	55.5	9
2		17	53.		10.1	6.			10.4	12		3.0	29.8	2.8	55.5	9
2	9	16	98.		9.5	5.			9 6	13.		2.7	29.4	3.4	55.5	9
2	10	19	222		5.3	5.			60.2				87.0	1.8	47.6	19
2	ii	20	174		5.1	5.			57.5	7.		5.3	82 7	1.6	50.5	9
•				-		•	• • • • • •	. 🕶	37.3	, .	•		52 '	1.0	30.3	•

Figure 11. VEHTRK Sample Output (concluded)

EIDL EIDLA	Number of vehicles exceeding internal dosage level (DOSLEV) Number of vehicles exceeding external dosage level (DOSLEV) Number of vehicles exceeding internal dosage level (DOSLEV) when alarms are used
	Dosage Level Index
	(see input record 13)
	1 2 3 4
	Group 1 9 9 6 1
	Group 2 11 11 8 2 Total 20 20 14 3
	Total 20 20 14 3
IG	I-th group
I VG	I-th vehicle within group
IV	I-th vehicle within entire scenario
MAX XC	Maximum external concentration encountered by vehicle
MAX IC	Maximum internal concentration
LAST IC	Internal concentration when vehicle leaves the cloud
TIME EG	Time in seconds needed for egress of agent to EPCON level
DOSE EG	Dosage accumulated during TIME EG
DOSE IN	Dosage accumulated during agent ingress
VEH ID	Vehicle internal dosage (DOSE EG + DOSE IN)
VEH ED	Dosage accumulated just outside of vehicle
VEH IDA	Vehicle internal dosage with alarms
TWARN	Time at which vehicle received an alarm signal
ASET	Index number of the vehicle which transmitted the alarm

Figure 12. Output Column Heading Descriptions