7 (a) $v = 0 \Rightarrow 5\cos 2t = 0$ and solve to $t =$	M1
$t = \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4}$ or 0.7853 (accept 0.785 or better)	A1 [2]
$(b) a = -10\sin 2t$	M1A1
$\left a_{\text{max}} \right = 10 \left(\text{ m/s}^2 \right)$	A1 [3]
(c) $s = \int 5\cos 2t dt = \frac{5}{2}\sin 2t (+c)$	M1A1
$t = 0 s = 0.2 \Rightarrow c = 0.2$	dM1
$t = \frac{\pi}{4}$ $s = \frac{5}{2}\sin\frac{\pi}{2} + 0.2 = 2.7$ oe (m)	A1 [4]
$s - 0.2 = \int_0^{\frac{\pi}{4}} 5\cos 2t dt = \left[\frac{5}{2}\sin 2t\right]_0^{\frac{\pi}{4}}$	{dM1A1}
Substitute limits M1 Correct answer A1	Total 8 marks

Notes		
(a)	M1	Sets $5\cos 2t = 0$ and finds a value for t. Allow work in degrees for this mark.
	A1	$t = \frac{\pi}{4}$ (accept 0.785 or better)
		4
(b)	M1	Attempts to differentiate the given v to achieve as a minimum $-k \sin 2t$ $k \neq 0$
	A1	For $a = -10\sin 2t$
	A1	For $10 \text{ (m/s}^2)$ do not accept -10 for this mark
(c)	M1	For an attempt to integrate the given v to achieve as a minimum $\frac{k \sin 2t}{2}$, $k \neq 2$
	A1	For the correct integrated expression for s , $+c$ not required for this mark.
	dM1	For an attempt to find c when $t = 0$ and uses $t = \frac{\pi}{4}$ (allow 45°) to find a value for s.
		Some are adding 0.2 at the end of their calculation which is fine for this mark.
	A1	s = 2.7
ALT		
(c)	M1	For an attempt to integrate the given v to achieve as a minimum $\frac{k \sin 2t}{2}$, $k \neq 2$
	A1	For the correct integrated expression for <i>s</i>
	dM1	Substitutes in both limits of $\frac{\pi}{4}$ and 0 (allow 45°) into a changed expression, and
		adds 0.2 to find a value of s
	A1	For $s = 2.7$