Programowanie Funkcyjne

Rafał Włodarczyk

INA 4, 2025

Contents

1 H 1. 1.:	2 Operator Kleisli'ego		
1	Haskell 03.06		
1.1	Monada Writer		
	$\mathcal{M} = (M, \cdot, e)$ $W_{\mathcal{M}}(X) = X \times M$ $f : X \to Y$ $W_{\mathcal{M}}(f) : W_{\mathcal{M}}(X) \to W_{\mathcal{M}}(Y)$ $W_{\mathcal{M}}(f) : X \times M \to Y \times M$ $W_{\mathcal{M}}(f)(x, m) = (f(x), m)W_{\mathcal{M}}(Y^X)$ $(Y^X \times M) \to (X \times M) \to (Y \times M)$ $(f, m) < * > (x, n) = (f(x), m + n)$ $< > \cdot W_{\mathcal{M}}(X) \to W_{\mathcal{M}}(Y) \to W_{\mathcal{M}}(X \times Y)$ $(x, m) < > (y, n) = ((x, y), m + n)$	$\to W_{\mathcal{M}}(X) \to W_{\mathcal{M}}(Y)$	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
i i	>>=) :: m a -> (a -> m b) -> mb :: X -> Y x M (x,m) \in X x M : (x) = (f1 (x), f2 (x)) = (f1, f2)		
(f(x,m) >>= f) = let (y, n) = f(x) in (y, m * n)		
(f(x,m) >>= (f1, f2)) = (f1(x), m * f2(x))		
I	oure $x = return x = (x,e)$		

W parserach do gramatyk bezkontekstowych możemy wykorzystać jedynie <*>

Pozostałe własności można sprawdzić automatycznie tą samą techniką.

1.2 Operator Kleisli'ego

Rybka. W języku Kleisli'ego własności monadyczne są jasno widoczne.

```
(>=>) :: (a -> mb) -> (b -> mc) -> (a -> mc)
(f >=> g) =def= (\x -> f(x) >>= g)
(f >=> return)(x) = (f(x) >>= return) =A1= f(x)
(A1') f >=> return = f

(return >=> g)(x) = (return x) >>= g =A2= g(x)
(A2') return >=> f = f
(A3') (f >=> g) >=> h = f >=> (g >=> h)

id >=> id // dla listy to konkatenacja listy list (operator spłaszczania)
```

1.3 Monada State