

PRÁCTICA 1 - INTRODUCCIÓN

EJERCICIO 1

Antes de ejecutar el programa preveo

Canal R

En este canal destacaran la parte roja de la bandera y la parte amarilla ya que está formada por rojo y verde.

Además de la barra que mantiene la bandera ya que su gris se acerca al blanco que contiene todas las componentes

Canal G

En este canal destacara la parte amarilla ya que está formada por rojo y verde.

Además de la barra que mantiene la bandera ya que su gris se acerca al blanco que contiene todas las componentes

Canal B

En este canal destacará el cielo y la parte azul marino de la bandera

Además de la barra que mantiene la bandera ya que su gris se acerca al blanco que contiene todas las componentes

Una vez ejecutado el programa he comprobado que se cumple todo lo dicho con la excepción de que el cielo parece tener una gran componente verde además de azul.

EJERCICIO 2

En este ejercicio se puede comentar que primero se leen las imágenes y se decide cuál es la grande y cual la pequeña con dos if's usando el parámetro .size para luego crear una copia de la imagen grande. Para colocar la imagen pequeña primero se rota gracias a numpy y se calcula los indices x,y donde empezamos a colocar los píxeles de la imagen pequeña en la grande simplemente calculando las diferencias entre los centros (o la mitad de sus longitudes en los ejes x,y)

EJERCICIO 3

En las siguientes tablas podemos ver los distintos errores en las distintas bandas de las distintas imágenes. Podemos observar que la banda azul posee los mayores errores seguida de la roja, siendo la verde la que tiene menores errores. Esto confirma las prioridades que tienen las distintas bandas como hemos estudiado en clase ya que la banda verde es la que percibimos en mayor proporción y la azul la que menos. Cabe destacar que los errores medios aumentan dependiendo de la calidad pero poco en comparación a los errores cuadráticos medios que si aumentan exponencialmente. Por último comentar que con estas librerías el jpg al 100% de calidad contiene un error aunque bajo el cuál debería ser nulo al no perder calidad supuestamente.

Imagen 100%	Máximo Error	Error Medio	Error cuadrático medio
Banda Roja	28.000000000000014	1.7846875295256992	5.8326585890915
Banda Verde	14.0	0.9319450677647603	1.6635098773305619
Banda Azul	39.0	2.2635528700291845	9.184411857914462

Imagen 75%	Máximo Error	Error Medio	Error cuadrático medio
Banda Roja	46.0	3.6737871170844882	22.709052776203073
Banda Verde	22.0	2.219772901444528	8.177008370863778
Banda Azul	50.000000000000014	4.232943741732805	29.817931170346224

Imagen 15%	Máximo Error	Error Medio	Error cuadrático medio
Banda Roja	58.0	5.632524788464768	51.60810769137902
Banda Verde	42.0	3.4390723254965567	19.309659545724156
Banda Azul	60.0	5.383839584251911	48.664302560337404

EJERCICIO 4

En este ejercicio podemos comentar como ignoramos la banda transparente al referenciar la banda original con solo las tres bandas RGB, además de las rotaciones que efectuamos las cuáles no son en el sentido que queremos pero basta con intercambiar el orden en el que las apilamos para el gif con tal de obtener el mismo resultado que si las rotamos en el orden deseado. Por última destacar a la hora de guardar el gif que indicamos los parámetros loop=0 y fps=4 para obtener un bucle infinito de 4 imágenes por segundo.