AI24BTECH11014 Charitha Sri

QUESTION

X and **Y** are two points with position vectors $3\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - 3\overrightarrow{b}$ respectively. Write the position vector of a point **V** which divides the line segment XY in the ratio 2:1 externally.

Solution: Given,

Variable	Description
point X	$(3 1)\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$
point Y	$(1 -3)$ $\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$
Ratio of $\frac{VX}{VY}$	$\frac{2}{1}$
point V	Point on line XY

$$\mathbf{FORMULA}$$

$$\mathbf{Y} = \frac{V + nX}{1 + n}$$

As, the point V divides the line XY externally,

$$XY = VX - VY \tag{0.1}$$

$$\frac{VX}{VY} = \frac{2}{1} \tag{0.2}$$

$$\frac{VY}{YX} = \frac{1}{1} \tag{0.3}$$

$$= 1 \tag{0.4}$$

(0.5)

1

Y divides the line joining the points V and X internally in the ratio n:1 By section formula, Y can be expressed as

$$\mathbf{Y} = \frac{1}{2} \left(\mathbf{V} + \mathbf{X} \right) \tag{0.6}$$

$$\mathbf{V} = 2\mathbf{Y} - \mathbf{X} \tag{0.7}$$

$$\mathbf{V} = 2 \begin{pmatrix} 1 & -3 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} - \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$
 (0.8)

$$\mathbf{V} = \begin{pmatrix} -1 & -7 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \tag{0.9}$$

(0.10)

Therefore the position vector of point **V** is $-\overrightarrow{a} - 7\overrightarrow{b}$

Fig. 0.1