If ... Then

Example

p: Today is Friday

q: I go to yoga today

We can combine two propositions using IF ... THEN

 $p \Rightarrow q$: If today is Friday then I go to yoga today

What does this tell you?

If today is Friday then it tells you that I go to yoga today.

If today is not Friday then it tells you nothing.

If I go to yoga today then it tells you nothing.

If I do not go to yoga today then it tells you that today is not Friday.

The only way

If today is Friday then I go to yoga today

can be false, is if:

today is Friday, is true

and I go to yoga today, is false.

The only way $p \Rightarrow q$ can be false is if p is true and q is false.

So we have this truth table:

p	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

 $p \Rightarrow q$ can be read as:

if p then q

p implies q

q if p

p only if q

q is necessary for p

p is sufficient for *q*

 $p \Rightarrow q$ is not the same as $p' \Rightarrow q'$

Compare:

If today is Friday then I go to yoga today

If today is not Friday then I do not go to yoga today

 $p \Rightarrow q$ is not the same as $q \Rightarrow p$

Compare:

If today is Friday then I go to yoga today If I go to yoga today then today is Friday

Note: $q \Rightarrow p$ is called the converse of $p \Rightarrow q$

 $p \Rightarrow q$ is the same as $q' \Rightarrow p'$

Compare:

If today is Friday then I go to yoga today

If I do not go to yoga today then today is not Friday

Note: $q' \Rightarrow p'$ is called the contrapositive of $p \Rightarrow q$

Note: A common error or fudge is to prove $p \Rightarrow q$ and then pretend you have proved $q \Rightarrow p$ For example, in the chapter Euler Tours, we proved:

If a closed Euler tour exits then every vertex is even.

We then pretended to have proved:

If every vertex is even then a closed Euler tour exists.

This is very naughty.

see Exercise 1

We can combine two propositions using IF AND ONLY IF

 $p \Leftrightarrow q$: Today is Friday if and only if I go to yoga today

What does this tell you?

If today is Friday then it tells you that I go to yoga today.

If today is not Friday then it tells you that I do not go to yoga today.

If I go to yoga today then it tells you that today is Friday.

If I do not go to yoga today then it tells you that today is not Friday.

So $p \Leftrightarrow q$ is true if p and q are both true or both false, otherwise it is false.

Truth table:

p	q	p⇔q
0	0	1
0	1	0
1	0	0
1	1	1

 $p \Leftrightarrow q$ can be read as:

p if and only if q

p is necessary and sufficient for q

To prove $p \Leftrightarrow q$ we have to prove $p \Rightarrow q$ and we have to prove $q \Rightarrow p$

For example, in the chapter Rationals and Irrationals, we proved:

x is rational \Leftrightarrow x is a terminating or recurring decimal

See Exercise 2

EXERCISE 1

1.

Use a truth table to show that:

 $p \Rightarrow q$ is not the same as $p' \Rightarrow q'$

 $p \Rightarrow q$ is not the same as $q \Rightarrow p$

 $p \Rightarrow q$ is the same as $q' \Rightarrow p'$

2.Use a truth table to show that:

$$(p \Rightarrow q) = (p' \lor q)$$
 and $(p \Rightarrow q) = (p \land q')'$

3.

Fill in the truth table

p	q	r	$p \Rightarrow q$	q⇒r	$(p \Rightarrow q) \land (q \Rightarrow r)$	p⇒r	$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					

1	1	0			
1	1	1			

SOLUTIONS 1

1.

р	q	$p \Rightarrow q$	p'	q'	$p' \Rightarrow q'$	$q \Rightarrow p$	$q' \Rightarrow p'$
0	0	1	1	1	1	1	1
0	1	1	1	0	0	0	1
1	0	0	0	1	1	1	0
1	1	1	0	0	1	1	1

2.

р	q	$p \Rightarrow q$	p'	p'∨q	q'	p∧q'	(<i>p</i> ∧ <i>q</i> ′)′
0	0	1	1	1	1	0	1
0	1	1	1	1	0	0	1
1	0	0	0	0	1	1	0
1	1	1	0	1	0	0	1

3.

p	q	r	$p \Rightarrow q$	q⇒r	$(p \Rightarrow q) \land (q \Rightarrow r)$	p⇒r	$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

So $((p\Rightarrow q)\land (q\Rightarrow r))\Rightarrow (p\Rightarrow r)$ is always true, regardless of the truth of p , q , r We call this a tautology.

EXERCISE 2

For each of the following, does $p \Rightarrow q$ or $q \Rightarrow p$ or $p \Leftrightarrow q$?

x=4a)

n is a multiple of 5 b)

n is not a multiple of 10 c)

d) *ABCD* is a parallelogram

 $x^2 - 6x + 8 = 0$ e)

 $x^2 - 4x + 4 = 0$ f)

x=4g)

h) *x*>7

x is an integer i)

x>2j)

k) *x*<4

2x = 8

n is a multiple of 15

n is a prime

ABCD is a square

x=2

x=2

 $x^2 = 16$

x>4

x is rational

 $x^2 > 4$

 $x^2 < 16$

SOLUTIONS 2

a)
$$p \Leftrightarrow q$$
 b) $q \Rightarrow p$ c) $q \Rightarrow p$ d) $q \Rightarrow p$ e) $q \Rightarrow p$ f) $p \Leftrightarrow q$

g)
$$p \Rightarrow q$$
 h) $p \Rightarrow q$ i) $p \Rightarrow q$ j) $p \Rightarrow q$ k) $q \Rightarrow p$