Contents

1	Functions			2
	1.1	poly.groebner – Gröbner Basis		2
		1.1.1	buchberger – naïve algorithm for obtaining Gröbner basis	2
		1.1.2	normal_strategy – normal algorithm for obtaining Gröb-	
			ner basis	2
		1.1.3	reduce_groebner – reduce Gröbner basis	3
		1.1.4	s polynomial – S-polynomial	3

Chapter 1

Functions

1.1 poly.groebner – Gröbner Basis

The groebner module is for computing Gröbner bases for multivariate polynomial ideals.

This module uses the following types:

polynomial

polynomial is the polynomial generated by function poly.multiutil.polynomial.

order :

order is the order on terms of polynomials.

1.1.1 buchberger – naïve algorithm for obtaining Gröbner basis

$\texttt{buchberger}(\texttt{generating:}\ \textit{list},\ \texttt{order:}\ \textit{order}) \rightarrow [\textit{polynomials}]$

Return a Gröbner basis of the ideal generated by given generating set of polynomials with respect to the order.

The argument generating is a list of poly.multiutil.Polynomial; the argument order is an order.

Be careful, this implementation is very naive.

1.1.2 normal_strategy - normal algorithm for obtaining Gröbner basis

 $normal strategy(generating: list, order: order) \rightarrow [polynomials]$

Return a Gröbner basis of the ideal generated by given generating set of polynomials with respect to the order. This function uses the 'normal strategy'.

The argument generating is a list of poly.multiutil.Polynomial; the argument

order is an order.

$1.1.3 \quad reduce_groebner-reduce~Gr\"{o}bner~basis$

 $reduce_groebner(gbasis: \textit{list}, order: order) \rightarrow [polynomials]$

Return the reduced Gröbner basis constructed from a Gröbner basis. It satisfies that:

- $\mathrm{lb}(f)$ divides $\mathrm{lb}(g) \Rightarrow g$ is not in reduced Gröbner basis, and
- monic.

The argument gbasis is a list of polynomials, a Gröbner basis.

1.1.4 s polynomial – S-polynomial

s_polynomial(f: polynomial, g: polynomial, order: order) \rightarrow [polynomials]

Return S-polynomial of f and g with respect to the order.

$$S(f,g) = (lc(g) * T/lb(f)) * f - (lc(f) * T/lb(g)) * g,$$

where $T = \operatorname{lcm}(\operatorname{lb}(f), \operatorname{lb}(g))$.