Shinkansen Bullet Train

By: Maria Le, Chris Nguyen, Christina Ni

Introduction

- Japanese Shinkansen
 - Network of High Speed Railways across Japan
 - The Shinkansen has a 50-plus year history carrying over 10 billion passengers.
 - The network has 2,764.6 km of lines with maximum speeds of 240–320 km/h.
 - The original Tōkaidō Shinkansen, connecting Tokyo, Nagoya and Osaka, three of Japan's largest cities, is one of the world's busiest high-speed rail lines.
 - In the one-year period, it carries 159 million passengers!

Historical Background

- World War II
 - Connections between East and West Japan
 - Railroad infrastructure
- Services began 1964
 - Economic expansionism
 - Incentive to "modernize" Japan
 - Connected Tokyo to Osaka
- 1960s-1980s
 - Period of extreme economic growth
 - Shinkansen facilitated growth

Public Opinion

- Positive
 - Better Mobility
 - Modernizing
 - Economic Opportunity
- Negative
 - Decrease in Rural population
 - Displacement due to construction
 - Wealth concentrated in larger cities

Costs

- Construction
 - Very large initial investment
 - Split costs
 - Company
 - National Government
 - Local Government
- Maintenance
 - Local Rails
 - "Third-Sector" Companies
 - Shinkansen
 - Rail Companies

Construction

- Existing Infrastructure
 - Through dense cities
 - Limited Time and Space
- Geography
 - Mountains
 - Low water season
 - Unstable ground
- Bridge Construction
 - Steel: Lightweight, Long Spans
 - Cranes
 - Fast and cheap
 - Disruptive
 - Block Erection
 - Nondisruptive
 - Large construction space

Construction

- Bridge Construction Cont.
 - Lateral Transfer
 - Nondisruptive
 - Small Construction Area
 - Assembly must be near operation site
 - Rotation Method
 - Non disruptive
 - Cheap
 - Time efficient
 - Small Construction Area
 - Jack Up Method
 - Built Top to Bottom
 - Each lower layer is jacked up

Operations

- ☐ The Shinkansen uses 1,435 mm in standard gauge
- ☐ The rails are also continuously welded with swingnose crossing points.
- The Shinkansen operation employs the Automatic Train Control System and Automatic Train Protection.

Materials

- 5083 Aluminium Alloy (Trains)
 - Prominent use in aerospace
 - Lightweight
 - Corrosion Resistance
 - Formable
- Reinforced/Prestressed Concrete (Tunnels)
 - Prevents track slab from moving
- Steel (Bridges)
 - Lightweight
 - Long Spans

Aesthetics/Design

- Bullet Aesthetic
 - aerodynamic design
 - facilitates high speed
 - sleek exteriors
 - biomimicry (talked about further later on)

Important Engineers

- □ Eiji Nakatsu, an engineer and an avid bird watcher, is one of the most famous directors responsible for testing the Shinkansen during construction.
 - biomimicry
 - vortex generator
 - Mr. Seiichi Yajima
- Owls and kingfishers

Problems and Safety

- Weather
 - Heavy Snowfall
 - Tsunamis and Earthquakes
- Safety
 - No Injuries
 - No Fatalities
 - High Performance Brakes
 - Training and Certification
- Noise Pollution
 - High population density
 - High Speed

Environmental Impacts

- Bullet trains greatly reduce air pollution and traffic.
 - example: airports
- The Shinkansen railways account for 7% of CO2 emissions in Japan.
- The Tokaido Shinkansen line between Tokyo and Osaka
 - consumes 1/8th the amount of energy per seat
 - discharges 1/12th CO2 emissions
- Noise pollution

That's a Wrap!

- The Shinkansen bullet train revolutionized the transportation system globally and brought back the widespread use of trains as public transit.
- During the construction of the bullet train system, it utilized new innovations such as different construction methods, and the development of modern train designs.
- Not only has the Shinkansen provided economic growth in Japan but it has cultural significance that identifies Japan's constant growing innovation in civil engineering and technology.

References

- Annual Report 2019. 2020, https://global.jr-central.co.jp/en/company/ir/annualreport/ pdf/annualreport2019.pdf.
- Central Japan Railway Company. *Central Japan Railway Company Annual Report 2018 For the Year Ended March 31, 2018.* 2018, global.jr-central.co.jp/en/company/ir/annualreport/_pdf/annualreport2018.pdf.
- Djukanovic, Goran. "Aluminium Use In The Production Of Trains Steams Ahead". Aluminiuminsider.Com, 2017, https://aluminiuminsider.com/aluminium-use-production-trains-steams-ahead/.
- Hata, Yoshiya et al. "Ground Motion Estimation For The Elevated Bridges Of The Kyushu Shinkansen Derailment Caused By The Foreshock Of The 2016 Kumamoto Earthquake Based On The Site-Effect Substitution Method". Springer Open, 2016, http://Ground motion estimation for the elevated bridges of the Kyushu Shinkansen derailment caused by the foreshock of the 2016 Kumamoto earthquake based on the site-effect substitution method.
- Hornyak, Tim. "Shinkansen High-Speed Train Network in Japan." *Japan Station*, www.japanstation.com/shinkansen-high-speed-train-network-in-japan/.
- Iida, Masanobu. "Combating Noise from the Shinkansen." <u>International Railway Journal</u> 55.7 (2015): 26-8. <u>ProQuest</u>. 29 Apr. 2020.
- Kobayashi, Kazunori. "JFS Newsletter." 31 Mar. 2005.
- Minami, Kuniaki et al. "Erection Of Steel Bridges For Shinkansen High-Speed Rail".
 Journals-Sagepub-Com. Ezproxy. Lib. Utexas. Edu, 2012,
 https://journals-sagepub-com.ezproxy.lib.utexas.edu/doi/pdf/10.3141/2268-13.
- Morimura, T., and M. Seki. "The Course of Achieving 270 km/h Operation for Tokaido Shinkansen Part 1: Technology and Operations Overview." <u>Proceedings of the Institution of Mechanical Engineers</u> 219.1 (2005): 21-6. <u>ProQuest</u>. 29 Apr. 2020
- Hood, Christopher P. "The Shinkansen's Local Impact." *Social Science Japan Journal.*, vol. 13, no. 2, Oxford University Press, pp. 211–25, doi:info:doi/.

References Continued

- Pletcher, Kenneth. "Shinkansen." *Encyclopædia Britannica*, Encyclopædia Britannica, Inc., 31 Oct. 2018, www.britannica.com/topic/Shinkansen.
- Masatoshi, Hatoko, and Nakagawa Dai. *THE RECENT PROGRESS OF HOKURIKU SHINKANSEN AND ITS WAY TO COMPLETION*. wr19.osaka-sandai.ac.jp/ce/rt/research/02/02ICIT.pdf.
- "Safety." JR Central, Central Japan Railway Company, 2020, global.jr-central.co.jp/en/.
- "Shinkansen High-Speed Trains Run Safe". Web-Japan.Org, 2013, https://web-japan.org/niponica/niponica10/en/feature/feature03.html.
- Tanabe, Makoto et al. "Simulation Of A Shinkansen Train On The Railway Structure During An Earthquake".
 Link-Springer-Com.Ezproxy.Lib.Utexas.Edu, 2011,
 https://link-springer-com.ezproxy.lib.utexas.edu/content/pdf/10.1007/s13160-011-0022-4.pdf.
- YAMANOUCHI, SHUICHIRO. "COSTS OF HIGH SPEED RAILWAYS (CAPITAL PROCUREMENT AND MANAGEMENT) THE JAPANESE EXPERIENCE." *Rivista Internazionale Di Scienze Sociali*, vol. 101, no. 3, 1993, pp. 567–573. *JSTOR*, www.jstor.org/stable/41623803. Accessed 29 Apr. 2020.