Public Key Cryptography

Public Key Cryptography

- Symmetric Key:
 - Same key used for encryption and decrypiton
 - Same key used for message integrity and validation
- Public-Key Cryptography
 - Use one key to encrypt or sign messages
 - Use another key to decrypt or validate messages
- Keys
 - Public key known to the world and used to send you a message
 - Only your private key can decrypt the message

Public Key Cryptography

- Motivations
 - In symmetric key cryptography, a key was needed between every pair of users wishing to securely communicate
 - *O*(*n*²) keys
 - Problem of establishing a key with remote person with whom you wish to communicate
- Advantages to Public Key Cryptography
 - Key distribution much easier: everyone can known your public key as long as your private key remains secret
 - Fewer keys needed
 - *O*(*n*) keys
- Disadvantages
 - Slow, often up to 1000x slower than symmetric-key cryptography

Cryptography and Complexity

- Three classes of complexity:
 - P: solvable in polynomial time, O(n^c)
 - NP: nondeterministic solutions in polynomial time, deterministic solutions in exponential time
 - EXP: exponential solutions, O(cⁿ)
- Cryptographic problems should be:
 - Encryption should be P
 - Decryption should be P with key
 - Decryption should be NP for attacker
- Need problems where complexity of solution depends on knowledge of a key

Modular Arithmetic Review

- Integers modulo prime p form an algebraic ring
- Example:
 - $-Z \pmod{7} = \{0, 1, 2, 3, 4, 5, 6\}$
 - Addition: 4 + 5 = 9 = 2 (mod 7)
 - Multiplication: $4 * 5 = 20 = 6 \pmod{7}$
 - Additive Identity: $4 + 0 = 4 \pmod{7}$
 - Multiplicative Identity: 4 * 1 = 4 (mod 7)
 - Inverse: 4 * 2 = 8 = 1 (mod 7)
 - $4^{-1} = 2 \pmod{7}$
 - $2^{-1} = 4 \pmod{7}$
 - Can use Euclidean Algorithm to find inverses (mod p) in polynomial time

- Finding subset of items that completely fill a knapsack
- Cast mathematically, find a binary selection vector $\mathbf{v_i}$ such that: $\sum v_i a_i = T$
- Vector a_i represents the size of the items and, and T is the total size of the knapsack
- Example:
 - $-a = \{5, 8, 2, 9, 11, 4\}$
 - -T = 14
 - Solution: $v = \{0, 1, 1, 0, 0, 1\}$

- Finding vector v for an arbitrary knapsack is an NP problem
 - Deterministic exponential solution: try every vector 2ⁿ
 - More efficient: recursive algorithm on sorted knapsack
- Superincreasing knapsack:
 - $a_n > \sum_i a_i$ Special case where
 - Polynomial-time solution exists
- Example:
 - $-a = \{1, 3, 6, 13, 25, 51\}$
 - T = 32
 - Solution
 - Can't have 51
 - Must have 25, result is 7
 - Can't have 13,
 - Must have 6, result is 1, etc

- Use knapsack problem for cryptography
 - Plaintext is vector v
 - Ciphertext is target T
 - Key is vector a
- Need two equivalent knapsacks
 - Regular knapsack for encryption, k_e (public key)
 - Superincreasing knapsack for decryption k_d (private key)
 - Need a way to convert a superincreasing knapsack to a regular knapsack
 - Technique: use modular arithmetic
 - $k_e = c k_d \pmod{n}$

Example:

- $-k_d = \{1, 3, 6, 13, 25, 53\}$
- $-k_{e} = 51 k_{d} \pmod{107} = \{51, 46, 92, 21, 98, 28\}$
- Message M = {0, 1, 1, 0, 1, 1}
- Ciphertext T = 264
- Decrypt using k_d
 - Need to "undo" multiplication by 51 (mod 107), use Euclidean algorithm to determine that 51 * 21 (mod 107) = 1, so $21 = 51^{-1}$
 - Compute new ciphertext T' = 264 * 21 (mod 107) = 87
 - Must have 53, result is 34
 - Must have 25, result is 9
 - Cannot have 13
 - Must have 6, 3, result is {0, 1, 1, 0, 1, 1}

- Proposed in 1978 as a public-key encryption scheme
- Analysis in 1983 showed flaws
 - Heuristic techniques for determining multiplier and modulus
 - Results in a polynomial-time algorithm to derive k_d
 from k_e
 - Flaw means that cryptosystems based on transforming a superincreasing knapsack are insecure

- Rivest-Shamir-Adleman
- Also introduced in 1978
- Based on the difficulty of factoring a large composite number into two large primes
 - Believed to be an exponential-time problem
 - Polynomial-time algorithms exist for Quantum computers
- Relies on generalization of Fermat's theorem:

$$x^{\varphi(n)} = 1 \pmod{n}$$

- φ(n) is the number of numbers less than n, coprime with n
 - Euler's Totient Function
 - For n = p, φ (n) = n-1, for any prime p
 - For n = pq, $\varphi(n) = \varphi(p) \varphi(q) = (p-1)(q-1)$, for any primes p, q

Uses modular arithmetic, for plaintext P, ciphertext C

$$C = P^e \pmod{n}$$
 $P = C^d \pmod{n}$

- Need values d, e, n to make it work
- Using Fermat's Theorem:
 - Let n = pq for primes p, q, test for prime is polynomial
 - Let $d = e^{-1}$ (mod $\varphi(n)$), Euclidean algorithm is polynomial
- Then: $P = C^d \pmod{n}$ $=(P^e)^d \pmod{n}$ $=P^{ed} \pmod{n}$ $=P^1 \pmod{n}$

- Direct Attack
 - Attacker needs to be able to compute "Discrete Logarithm"
 - That is, $C = P^e \pmod{n}$
 - If C, e, n known, compute P
 - $\log_{P}(C) = e \pmod{n}$
 - Solving in R is easy, but in Z (mod n) is EXP
- Rather than attack directly, try to find private key
 - Adversary needs to know $\varphi(n)$ to compute d from e
 - To know $\varphi(n)$, attacker must know p, q used to compute n
 - Attack requires factorization

- Security of RSA
 - Used in nearly every secure transaction over the Internet
 - Originally n was 512 bits (RSA-512)
 - Now crackable in under a year on a standard desktop computer
 - Roughly equivalent to DES
 - Most current Internet sites use RSA-1024
 - Infeasible to crack given current processing power
 - Most new standards and systems recommend RSA-2048
 - RSA-2048 keys are as difficult to crack as AES-128

El Gamal Encryption

- RSA can be cracked either by:
 - Solving Discrete Logarithm (DL) problem
 - Factoring public key
- Factoring is easier
- Need a cryptosystem that doesn't involve factoring, and based solely on DL problem
- Result would be more secure
 - Shorter key length for the same level of security
- Invented by El Gamal in 1984

El Gamal Encryption

- Use multiplicative group of integers (mod p)
 - Any algebraic group will work
- Key generation
 - Select prime p, integers a, x < p / private key $\{x\}$
 - Compute $r = a^x \pmod{p}$ / public key {p, a, r}
- Encryption
 - Select random integer v < p
 - Compute $c_1 = a^y$, $c_2 = Mr^y$ / ciphertext $\{c_1, c_2\}$
- Decryption
 - Compute plaintext = $c_1^{-x} c_2$
 - $-c_1^{-x}c_2 = (a^y)^{-x}Mr^y = Ma^{-xy}(a^x)^y = Ma^{xy}a^{-xy} = M \pmod{p}$

El Gamal Encryption

- Basic security provided by the discrete logarithm problem
- Other attacks: security actually limited
 - Computational Diffie-Hellman problem
 - Decisional Diffie-Hellman problem
 - Will discuss these in detail next week
- System is malleable
 - Example: adversary can change c₂'=2c₂
 - Adversary decrypts $c_1^{-x}c_2' = 2M$
 - Deterministic change to ciphertext yields deterministic change in plaintext
 - Still need integrity protection

Elliptic Curve Cryptography

- Elliptic curves can be used to create an algebraic group
- Combined with El Gamal Encryption to perform Elliptic Curve Cryptography
- Basic idea:
 - Points on a curve are group elements
 - Can be "added together" by:
 - Find third point colinear with first two
 - Reflect across axis
 - Efficient algorithm exists for computation
 - Exponentiation: Compute c * A, where c is an integer constant, as c * A= A+A+A+...+A (*c* times)
 - Forms an algebraic group with difficult discrete logarithm problem

Elliptic Curve Cryptography

Advantages

- Security bounded by DL problem rather than factoring problem
- Can use significantly shorter key sizes
- ECC-160 roughly equivalent to RSA-1024
 - MUCH shorter key sizes, better for storage, transmission
- Still secure even if someone finds polynomial time for factoring integers
- As RSA keys get longer, equivalently-secure ECC is more efficient in both hardware and software

Disadvantages

Less institutionalized, most certificates don't support it

Future of ECC

- Patents by Certicom discourage use, expiring soon
- USG pushing for use within USG systems

Digital Signatures

- Before, MIC provided message integrity
- Need a public-key equivalent
- Basic approach:
 - Most public-key systems have interchangable keys
 - RSA: could use either d or e to encrypt or decrypt, one undoes the other
 - Compute a hash of the message, and "encrypt" it with the private key
 - Recipient "decrypts" with the public key, verifies the hash

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Digital Signatures

Overall Architecture:

RSA Digital Signatures

- As mentioned before: simply "encrypt" with the private key
 - M = Message, S = Signature
 - To sign: $S = Hash(M)^d \pmod{n}$
 - To verify, see if $Hash(M) = S^e \pmod{n}$
- Relies on security of hash function
 - If a collision can be found, an attacker can change M to M' such that Hash(M)=Hash(M')
 - Same signature S would be valid for both M and M'

Digital Signature Algorithm (DSA)

- DSA is NIST standard for digital signatures
- Based on El Gamal signature scheme
 - Similar to El Gamal Encryption
 - Relies on DL problem rather than factorization
- Key Generation:
 - Select prime p, integers a, x < p / private key = $\{x\}$
 - Compute $y = a^x \pmod{p}$ / public key = {p, a, y}
- Signature:
 - Select random integer k < p-1
 - Compute $r = a^k \pmod{p}$
 - Compute $s = k^1$ (Hash(M) xr) (mod p-1)
 - Signature: {r, s}
- Verify:
 - Compute $v = y^r r^s \pmod{p}$
 - Determine if $v = a^{Hash(M)} \pmod{p}$

$$y^r r^s = (a^x)^r r^{\left(k^{-1}(Hash(M) - xr)\right)} \pmod{p}$$

$$= a^{xr} (a^k)^{(k^{-1}(Hash(M)-xr))} \pmod{p}$$

$$= a^{(xr+kk^{-1}(Hash(M)-xr))} \pmod{p}$$

$$=a^{xr+Hash(M)-xr} \pmod{p}$$

$$=a^{Hash(M)} \pmod{p}$$

Digital Signature Algorithm

- DSA can also be used with Ellipitic Curve Group rather than multiplicative integers
 - Called ECDSA
 - Again requires shorter key for equivalent security
 - Based on El Gamal Signatures
- Most digital signature systems use DSA rather than RSA signatures
- Very few use ECDSA

Quantum Cryptography

- Drastically different than mathematical cryptography explored so far
- Encodes data as photons of light
- Photons can spin in different orientations: ⇒☆♥৴
- Polarized filters can detect photons
 - + filter: detects ⇒ û correctly, ▷ Ø randomly
 - X filter: detects ♥♂ correctly, ⇒û randomly
- Sender's message {0, 1, 1, 0, 1} to {⋄, û, ⋄, ⋄, û}
- Receiver uses random filters to detect {+, +, X, X, X}
- Receiver detects {1, 1, 1, 0, 1} (first, last filters incorrect)
- Receiver sends filter list to sender, sender indicates which were correct
- Receiver now correctly knows {?, 1, 1, 0, ?}
- Use error-correcting code to communicate over channel

Quantum Cryptography

- Security is based on the Heisenberg Uncertainty Principle
 - If you measure the rotation of a photon, you randomly change the rotation
 - Sender/Receiver could detect statistically abnormal error rate in the channel
- Implementation issues
 - Currently difficult to send exactly one photon of light
 - Approaches use a laser and attenuate the output such that statistically the expected number of photons is 1 per bit
- **Applications**
 - Doesn't rely on DL or factorization, therefore immune to Quantum Cryptanalysis; may be one of the only viable cryptosystems
 - Currently geared toward satellite communications

Public-Key Cryptosystems (PKCS)

- PKCS encapsulations
 - RSA has defined proprietary encapsulations of data into encrypted, signed blobs
 - PKCS #1, #2, etc, defined different encodings
 - Some offer encryption, others signatures, or both
- Transaction Layer Security (TLS)
 - Fundamental basis of secure communications over the Internet
 - Uses RSA, etc., for key agreement (discuss in detail next week)
- Email standards
 - CMS (Cryptographic Message Syntax) used for SMIME, use RSA/DSS
 - PGP and GPG are commonly used for email encryption, use El Gamal

Public Key Infrastructure

- ANSI X.509 standards
 - Define how to format public keys for exchange over networks
 - Major use: definition of certificate format
- Certificates are public keys signed by an external authority
 - e.g. Verisign
 - Trusted third party, called Certificate Authority (CA)
- Prevents MITM attacks
 - Someone sends you a public key to communicate with them securely
 - How do you know it's really the public key of the person you want to communicate with?
 - Have a trusted third party sign the key as actually being owned by someone
 - Anyone can create a CA, but popular software applications only list major companies, others have to be added manually

WAYLES