Predicate Abstraction: A Tutorial Predicate Abstraction

Daniel Kroening

May 28 2012

Outline

Introduction

Existential Abstraction

Predicate Abstraction for Software

Counterexample-Guided Abstraction Refinement

Computing Existential Abstractions of Programs

Checking the Abstract Model

Simulating the Counterexample

Refining the Abstraction

Model Checking with Predicate Abstraction

- A heavy-weight formal analysis technique
- Recent successes in software verification, e.g., SLAM at Microsoft
- The abstraction reduces the size of the model by removing irrelevant detail
- The abstract model is then small enough for an analysis with a BDD-based Model Checker
- Idea: only track predicates on data, and remove data variables from model
- Mostly works with control-flow dominated properties

Reminder Abstract Interpretation

Abstract Domain

Approximate representation of sets of concrete values

$$S \xrightarrow{\alpha} \hat{S}$$

Predicate Abstraction as Abstract Domain

- ▶ We are given a set of predicates over S, denoted by Π_1, \ldots, Π_n .
- An abstract state is a valuation of the predicates:

$$\hat{S} = \mathbb{B}^n$$

The abstraction function:

$$\alpha(s) = \langle \Pi_1(s), \dots, \Pi_n(s) \rangle$$

Concrete states over variables x, y:

Concrete states over variables x, y:

Predicates:

$$p_1 \iff x > y$$

 $p_2 \iff y = 0$

Concrete states over variables x, y:

Predicates:

$$p_1 \iff x > y$$
 $p_2 \iff y = 0$

Concrete states over variables x, y:

Predicates:

$$p_1 \iff x > y$$

$$p_2 \iff y = 0$$

Abstract Transitions?

Existential Abstraction¹

Definition (Existential Abstraction)

A model $\hat{M}=(\hat{S},\hat{S}_0,\hat{T})$ is an *existential abstraction* of $M=(S,S_0,T)$ with respect to $\alpha:S\to \hat{S}$ iff

- lacksquare $\exists s \in S_0. \, lpha(s) = \hat{s} \quad \Rightarrow \quad \hat{s} \in \hat{S}_0 \quad \text{ and } \quad$
- $\exists (s, s') \in T. \, \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \quad \Rightarrow \quad (\hat{s}, \hat{s}') \in \hat{T}.$

¹Clarke, Grumberg, Long: *Model Checking and Abstraction*, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a given α .

Definition (Minimal Existential Abstraction)

A model $\hat{M}=(\hat{S},\hat{S}_0,\hat{T})$ is the *minimal existential abstraction* of $M=(S,S_0,T)$ with respect to $\alpha:S\to \hat{S}$ iff

- lacksquare $\exists s \in S_0. \ lpha(s) = \hat{s} \iff \hat{s} \in \hat{S}_0$ and
- $\exists (s,s') \in T. \ \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \quad \iff \quad (\hat{s},\hat{s}') \in \hat{T}.$

This is the most precise existential abstraction.

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Lemma

Let \hat{M} be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in \hat{M} .

$$\pi \in M \quad \Rightarrow \quad \alpha(\pi) \in \hat{M}$$

Proof by induction.

We say that \hat{M} overapproximates M.

Abstracting Properties

Reminder: we are using

- ▶ a set of atomic propositions (predicates) *A*, and
- ▶ a state-labelling function $L: S \to \mathscr{P}(A)$

in order to define the meaning of propositions in our properties.

Abstracting Properties

We define an abstract version of it as follows:

First of all, the negations are pushed into the atomic propositions.

E.g., we will have

$$x = 0 \in A$$

and

$$x \neq 0 \in A$$

Abstracting Properties

An abstract state \hat{s} is labelled with $a \in A$ iff all of the corresponding concrete states are labelled with a.

$$a \in \hat{L}(\hat{s}) \iff \forall s | \alpha(s) = \hat{s}. \ a \in L(s)$$

▶ This also means that an abstract state may have neither the label x = 0 nor the label $x \neq 0$ – this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let ϕ be a \forall CTL* formula where all negations are pushed into the atomic propositions, and let \hat{M} be an existential abstraction of M. If ϕ holds on \hat{M} , then it also holds on M.

$$\hat{M} \models \phi \quad \Rightarrow \quad M \models \phi$$

We say that an existential abstraction is conservative for ∀CTL* properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of ϕ . The converse usually does not hold.

Conservative Abstraction

We hope: computing \hat{M} and checking $\hat{M} \models \phi$ is easier than checking $M \models \phi$.

Let's try a Property

$$x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$$

Let's try a Property

$$x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$$

$$x > y \iff p_1$$

$$x > y \iff p_1$$

$$x > y \iff p_1$$

Property:

$$x > y \iff p_1$$

But: the counterexample is spurious

SLAM

- Microsoft blames most Windows crashes on third party device drivers
- The Windows device driver API is quite complicated
- Drivers are low level C code
- SLAM: Tool to automatically check device drivers for certain errors
- SLAM is shipped with Device Driver Development Kit
- Full detail available at http://research.microsoft.com/slam/

SLIC

- Finite state language for defining properties
 - Monitors behavior of C code
 - Temporal safety properties (security automata)
 - familiar C syntax

- Suitable for expressing control-dominated properties
 - e.g., proper sequence of events
 - can track data values

SLIC Example


```
state {
 enum {Locked, Unlocked}
   s = Unlocked:
KeAcquireSpinLock.entry {
  if (s==Locked) abort;
 else s = Locked:
KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
 else s = Unlocked;
```

SLIC Example


```
state {
 enum {Locked, Unlocked}
   s = Unlocked:
KeAcquireSpinLock.entry {
  if (s==Locked) abort;
  else s = Locked:
KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
 else s = Unlocked;
```

Refinement Example


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```

Refinement Example

Does this code obey the locking rule?

```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock();
} while(*);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock();
} while(*);
KeReleaseSpinLock();
```



```
do {
    if (*) {
} while(*);
KeReleaseSpinLock();
```

```
KeAcquireSpinLock();
   KeReleaseSpinLock ();
```

Is this path concretizable?


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock ();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

This path is spurious!


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

Let's add the predicate nPacketsOld==nPackets


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
                                 b=true:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

Let's add the predicate nPacketsOld==nPackets


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
                                 b=true:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
                                 b=b?false:*:
        nPackets++:
} while(nPackets != nPacketsOld); !b
                          Let's add the predicate
KeReleaseSpinLock();
                         nPacketsOld==nPackets
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
         b=b?false:*;
 while( !b );
KeReleaseSpinLock ();
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
         b=b?false:*;
 while( !b );
KeReleaseSpinLock ();
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
        b=b?false:*;
 while(!b);
KeReleaseSpinLock ();
```



```
do {
                 KeAcquireSpinLock();
                 b=true;
                 if (*) {
                     KeReleaseSpinLock();
                     b=b?false:*;
!b(t
              while(!b);
            KeReleaseSpinLock ();
```



```
!b(1
```

```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
         b=b?false:*;
 while( !b );
KeReleaseSpinLock ();
```



```
!b(\(\tau\)
```

```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
        b=b?false:*;
 while( !b );
KeReleaseSpinLock();
                          The property holds!
```

Counterexample-guided Abstraction Refinement

▶ "CEGAR"

 An iterative method to compute a sufficiently precise abstraction

Initially applied in the context of hardware [Kurshan]

CEGAR Overview

Counterexample-guided Abstraction Refinement

Claims:

- 1. This never returns a false error.
- 2. This never returns a false proof.

- 3. This is complete for finite-state models.
- 4. But: no termination guarantee in case of infinite-state systems


```
int main() {
   int i;
   i = 0;
   while (even(i))
        i ++;
}
```

C Program

C Program

Predicates


```
void main() {
                                         bool p1, p2;
int main() {
  int i;
                                         p1=TRUE;
                                         p2=TRUE;
  i = 0;
                                         while (p2) {
  while (even(i))
                                            p1= p1 ? FALSE: *;
    i++;
                                           p2 = !p2;
  C Program
                    Predicates
                                        Boolean Program
```



```
void main() {
                                         bool p1, p2;
int main() {
  int i;
                                         p1=TRUE;
                                         p2=TRUE;
  i = 0;
                                         while (p2) {
  while (even(i))
                                            p1= p1 ? FALSE: *;
    i++;
                                           p2 = !p2;
  C Program
                    Predicates
                                        Boolean Program
```

Minimal?

Predicate Images

Reminder:

$$Image(X) = \{ s' \in S \mid \exists s \in X. T(s, s') \}$$

We need

$$\widehat{Image}(\hat{X}) = \{\hat{s}' \in \hat{S} \mid \exists \hat{s} \in \hat{X}.\, \hat{T}(\hat{s},\hat{s}')\}$$

 $\widehat{Image}(\hat{X})$ is equivalent to

$$\{\hat{s}, \hat{s}' \in \hat{S}^2 \mid \exists s, s' \in S^2. \, \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \land T(s, s')\}$$

This is called the predicate image of T.

Enumeration

Let's take existential abstraction seriously

▶ Basic idea: with n predicates, there are $2^n \cdot 2^n$ possible abstract transitions

Let's just check them!

Predicates

p_1	\iff	i = 1
p_2	\iff	i = 2
p_3	\iff	even(i)

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

Basic Block

Predicates

 $p_1 \iff i = 1$ $\begin{array}{ccc} p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$ Basic Block

i++;

i' = i + 1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

$$i' = i + 1$$

p_1	p_2	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

Basic Block

T

$$i' = i + 1$$

p_1	p_2	p_3	
0	0	0	?
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	p_1'	p_2'	p_3'
\rightarrow	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3		p_1'
0	0	0	-? →	0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \overline{\mathsf{even}(i)} \land \\ i' = i + 1 \land \\ i' \neq 1 \land i' \neq 2 \land \overline{\mathsf{even}(i')}$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3		p_1'
0	0	0	─★	0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$\begin{aligned} i \neq 1 \wedge i \neq 2 \wedge \overline{\mathsf{even}(i)} \wedge \\ i' = i + 1 \wedge \\ i' \neq 1 \wedge i' \neq 2 \wedge \overline{\mathsf{even}(i')} \end{aligned}$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3	
0	0	0	
0	0	1	·
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \operatorname{even}(i) \land$$
 $i' = i + 1 \land$ $i' \neq 1 \land i' \neq 2 \land \operatorname{even}(i')$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \operatorname{even}(i) \land i' = i + 1 \land i' \neq 1 \land i' \neq 2 \land \operatorname{even}(i')$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Query to Solver

... and so on ...

Predicate Images

- Computing the minimal existential abstraction can be way too slow
 - Use an over-approximation instead
 - ✓ Fast(er) to compute
 - X But has additional transitions
 - Examples:
 - Cartesian approximation (SLAM)
 - FastAbs (SLAM)
 - Lazy abstraction (Blast)
 - Predicate partitioning (VCEGAR)

Checking the Abstract Model

Checking the Abstract Model

No more integers!

- But:
 - All control flow constructs, including function calls
 - (more) non-determinism

BDD-based model checking now scales

1 Variables

```
VAR b0_argc_ge_1: boolean;
                                    -- argc >= 1
VAR b1_argc_le_2147483646: boolean; — argc <= 2147483646
                                    -- argv[argc] == NULL
VAR b2: boolean:
VAR b3_nmemb_ge_r: boolean;
                                    -- nmemb >= r
VAR b4: boolean:
                                    -- p1 == &array[0]
                                    -- i >= 8
VAR b5_i_ge_8: boolean;
VAR b6_i_ge_s: boolean;
                                    -- i >= s
                                    --1 + i >= 8
VAR b7: boolean:
                                    --1 + i >= s
VAR b8: boolean;
VAR b9_s_gt_0: boolean;
                                    -- s > 0
VAR b10_s_gt_1: boolean;
                                    -- s > 1
```

. . .

2 Control Flow

```
- program counter: 56 is the "terminating" PC
VAR PC: 0..56;
ASSIGN init (PC):=0; — initial PC
ASSIGN next(PC):=case
    PC=0: 1; -- other
    PC=1: 2; -- other
    PC=19: case — goto (with guard)
      guard19: 26;
      1: 20:
    esac:
```


3 Data

```
TRANS (PC=0) -> next(b0_argc_ge_1)=b0_argc_ge_1
               & next(b1_argc_le_213646)=b1_argc_le_21646
               & next(b2)=b2
               & (!b30 | b36)
               & (!b17 | !b30 | b42)
               & (!b30 | !b42 | b48)
               & (!b17 | !b30 | !b42 | b54)
               & (!b54 | b60)
TRANS (PC=1) \rightarrow next(b0\_argc\_ge\_1)=b0\_argc\_ge\_1
               & next(b1_argc_le_214646)=b1_argc_le_214746
               & next(b2)=b2
               & next(b3_nmemb_ge_r)=b3_nmemb_ge_r
               & next(b4)=b4
               & next(b5_i_ge_8)=b5_i_ge_8
               & next(b6_{i_qe_s}) = b6_{i_qe_s}
```


- 4 Property
- the specification
- file main.c line 20 column 12
- function $c::very_buggy_function$

SPEC AG $((PC=51) \rightarrow !b23)$

▶ If the property holds, we can terminate

If the property fails, SMV generates a counterexample with an assignment for all variables, including the PC

Simulating the Counterexample

Lazy Abstraction

The progress guarantee is only valid if the minimal existential abstraction is used.

Thus, distinguish spurious transitions from spurious prefixes.

- ► Refine spurious transitions separately to obtain minimal existential abstraction
- ▶ SLAM: Constrain

Lazy Abstraction

 One more observation: each iteration only causes only minor changes in the abstract model

 Thus, use "incremental Model Checker", which retains the set of reachable states between iterations (BLAST)


```
int main() {
                                       main() {
                                            bool b0; // y>x
    int x, y;
    y=1;
                                            b0=*:
                                            b0=*:
    x=1;
    if (y>x)
                                            if (b0)
                          Predicate:
                                                b0=*;
        y--;
                           y>x
    else
                                            else
        y++;
                                                b0=*;
    assert(y>x);
                                            assert(b0);
```



```
int main() {
                                        main() {
                                            bool b0; // y>x
    int x, y;
    y=1;
                                             b0=*:
                                             b0=*;
    x=1;
    if (y>x)
                                             if (b0)
                          Predicate:
                                                b0=*:
        y--;
                           y>x
    else
                                             else
                                                 b0=*;
        y++;
    assert(y>x);
                                            assert(b0);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
    if (y>x)
    else
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
    if (y>x)
    else
    assert(y>x);
```

We now do a path test, so convert to SSA.


```
int main() {
     int x, y;
     y_1 = 1;
     x_1 = 1;
     if (y_1>x_1)
         y_2 = y_1 - 1;
     else
     assert(y_2>x_1);
```


$$y_1 = 1 \quad \land$$

$$x_1 = 1 \quad \land$$

$$y_1 > x_1 \quad \land$$

$$y_2 = y_1 - 1 \quad \land$$

$$\neg(y_2 > x_0)$$

This is UNSAT, so $\hat{\pi}$ is spurious.

Refining the Abstraction


```
int main() {
     int x, y;
    y=1;
     x=1;
     if (y>x)
        y--;
     else
         y++;
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    {y = 1}
    x=1;
     if (y>x)
        y--;
    else
         y++;
    assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     \{x = 1 \land y = 1\}
     if (y>x)
         y--;
     else
         V++;
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     {x = 1 \land y = 1}
     if (y>x)
          y--;
     else
          \{x = 1 \land y = 1 \land \neg y > x\}
          V++;
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     {x = 1 \land y = 1}
      if (y>x)
          V--:
     else
          \{x = 1 \land y = 1 \land \neg y > x\}
          V++:
     \{x=1 \land y=2 \land y>x\}
     assert(y>x);
```

This proof uses strongest post-conditions


```
int main() {
     int x, y;
     y=1;
     x=1;
     if (y>x)
        y--;
     else
         y++;
     assert(y>x);
```



```
int main() {
     int x, y;
    y=1;
     x=1;
     if (y>x)
         y--;
    else
         y++;
    \{y > x\}
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
     if (y>x)
         y--;
    else
         {y+1 > x}
         y++;
    \{y > x\}
    assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     x=1;
     \{\neg y > x \Rightarrow y + 1 > x\}
     if (y>x)
          y--;
     else
          {y+1 > x}
          y++;
     \{y > x\}
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     \{\neg y > 1 \Rightarrow y + 1 > 1\}
     x=1;
     \{\neg y > x \Rightarrow y + 1 > x\}
      if (y>x)
          y--;
     else
           {y+1 > x}
           y++;
     \{y > x\}
     assert(y>x);
```



```
int main() {
      int x, y;
      y=1;
      \{\neg y > 1 \Rightarrow y + 1 > 1\}
      x=1;
      \{\neg y > x \Rightarrow y + 1 > x\}
      if (y>x)
           V--:
      else
           \{y+1>x\}
           V++;
      \{y > x\}
      assert(y>x);
```

We are using weakest pre-conditions here

```
\begin{split} wp(x \coloneqq & E, P) = P[x/E] \\ wp(S; T, Q) &= wp(S, wp(T, Q)) \\ wp(\texttt{if}(c) \ A \ \texttt{else} \ B, P) &= \\ & (B \Rightarrow wp(A, P)) \land \\ & (\neg B \Rightarrow wp(B, P)) \end{split}
```

The proof for the "true" branch is missing

Refinement Algorithms

Using WP

- 1. Start with failed guard G
- 2. Compute wp(G) along the path

Using SP

- 1. Start at beginning
- 2. Compute $sp(\ldots)$ along the path

- Both methods eliminate the trace
- Advantages/disadvantages?

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$ $\Rightarrow y_2 = 30$

$$x_1 = 10$$
 \wedge $y_1 = x_1 + 10$ \wedge $y_2 = y_1 + 10$ \wedge $y_2 \neq 30$ $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$ $\Rightarrow y_2 = 30$ \Rightarrow false

Recall the decision problem we build for simulating paths:

$$\overbrace{x_1 = 10}^{A_1} \wedge \overbrace{y_1 = x_1 + 10}^{A_2} \wedge \overbrace{y_2 = y_1 + 10}^{A_3} \wedge \overbrace{y_2 \neq 30}^{A_4}$$

$$\Rightarrow \underbrace{x_1 = 10}_{A'_1} \qquad \Rightarrow \underbrace{y_1 = 20}_{A'_2} \qquad \Rightarrow \underbrace{y_2 = 30}_{A'_3} \qquad \Rightarrow \underbrace{\text{false}}_{A'_4}$$

For a path with n steps:

For a path with n steps:

- ▶ Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- A'_0 = true and A'_n = false
- $(A'_{i-1} \wedge A_i) \Rightarrow A'_i \text{ for } i \in \{1, \dots, n\}$

For a path with n steps:

- Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- A'_0 = true and A'_n = false
- $(A'_{i-1} \wedge A_i) \Rightarrow A'_i \text{ for } i \in \{1, \dots, n\}$
- ▶ Finally, $Vars(A'_i) \subseteq (Vars(A_1 ... A_i) \cap Vars(A_{i+1} ... A_n))$

Special case n=2:

- $ightharpoonup A \wedge B =$ false
- $A \Rightarrow A'$
- $ightharpoonup A' \wedge B =$ false
- $ightharpoonup Vars(A') \subseteq (Vars(A) \cap Vars(B))$

Special case n=2:

- $ightharpoonup A \wedge B =$ false
- $A \Rightarrow A'$
- $ightharpoonup A' \wedge B =$ false
- $ightharpoonup Vars(A') \subseteq (Vars(A) \cap Vars(B))$

W. Craig's Interpolation theorem (1957): such an A' exists for any first-order, inconsistent A and B.

Predicate Refinement with Craig Interpolants

- \checkmark For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (\rightarrow SAT!) in linear time
- Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions
- Not possible for every fragment of FOL:

$$x = 2y$$
 and $x = 2z + 1$ with $x, y, z \in \mathbb{Z}$

Predicate Refinement with Craig Interpolants

- ightharpoonup For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (ightharpoonup SAT!) in linear time
- Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions
- Not possible for every fragment of FOL:

$$x = 2y$$
 and $x = 2z + 1$ with $x, y, z \in \mathbb{Z}$

The interpolant is "x is even"

Craig Interpolation for Linear Inequalities

$$\frac{0 \le x \quad 0 \le y}{0 \le c_1 x + c_2 y} \quad \text{with } 0 \le c_1, c_2$$

"Cutting-planes"

Naturally arise in Fourier-Motzkin or Simplex

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$

$$B = (0 \le z - x)$$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$
 $B = (0 \le z - x)$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$0 \le y - z - 1 \qquad 0 \le z - x$$

$$0 \le z - x$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$
 $B = (0 \le z - x)$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$0 \le y - z - 1 \qquad 0 \le z - x$$

$$0 \le y - x - 1$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$

$$B = (0 \le z - x)$$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$
 $B = (0 \le z - x)$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$
 $B = (0 \le z - x)$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

$$A = (0 \le x - y) \land (0 \le y - z - 1)$$
 $B = (0 \le z - x)$

$$B = (0 \le \mathbf{z} - \mathbf{x})$$

Just sum the inequalities from A, and you get an interpolant!


```
int x, y;  x=y=0; \\ x=y=0; \\ sp(x=y=0, true) = x=0 \land y=0 \\ while (x!=10) \{ \\ x++; \\ y++; \} \\ assert (y==10);
```



```
int x, y;
x=y=0;
while(x!=10) {
    x++;
    y++;
}
assert(y==10);
```

The SP refinement results in

$$\begin{array}{lcl} sp(\mathbf{x}=\mathbf{y}=\mathbf{0},\mathsf{true}) & = & x=0 \land y=0 \\ sp(\mathbf{x}+\mathbf{+};\,\mathbf{y}+\mathbf{+},\ldots) & = & x=1 \land y=1 \end{array}$$


```
int x, y;
x=y=0;
while(x!=10) {
    x++;
    y++;
}
assert(y==10);
```

The SP refinement results in

```
sp(x=y=0, true) = x = 0 \land y = 0

sp(x++; y++,...) = x = 1 \land y = 1

sp(x++; y++,...) = x = 2 \land y = 2
```


- **×** 10 iterations required to prove the property.
- \mathbf{X} It won't work if we replace 10 by n.


```
int x, y;
x=y=0;
while(x!=10) {
    x++;
    y++;
}
assert(y==10);
```

The WP refinement results in

$$wp(\mathbf{x} = \mathbf{10}, y \neq 10) = y \neq 10 \land x = 10$$

 $wp(\mathbf{x} + +; \mathbf{y} + +, ...) = y \neq 9 \land x = 9$


```
int x, y;
x=y=0;
while(x!=10) {
    x++;
    y++;
}
assert(y==10);
```

The WP refinement results in

```
\begin{array}{lcl} wp({\bf x==10},y\neq 10) & = & y\neq 10 \land x=10 \\ wp({\bf x++;y++,\ldots}) & = & y\neq 9 \land x=9 \\ wp({\bf x++;y++,\ldots}) & = & y\neq 8 \land x=8 \end{array}
```



```
int x, y;
x=y=0;
while(x!=10) {
    x++;
    y++;
}
assert(y==10);
```

The WP refinement results in

```
\begin{array}{lll} wp({\sf x==10},y\neq 10) & = & y\neq 10 \land x=10 \\ wp({\sf x++;y++,\ldots}) & = & y\neq 9 \land x=9 \\ wp({\sf x++;y++,\ldots}) & = & y\neq 8 \land x=8 \\ wp({\sf x++;y++,\ldots}) & = & y\neq 7 \land x=7 \end{array}
```



```
int x, y;  x = y = 0; \\ while (x! = 10) \{ & wp(x = = 10, y \neq 10) = y \neq 10 \land x = 10 \\ x + +; & wp(x + +; y + +, \ldots) = y \neq 9 \land x = 9 \\ y + +; & wp(x + +; y + +, \ldots) = y \neq 8 \land x = 8 \\ y + +; & wp(x + +; y + +, \ldots) = y \neq 7 \land x = 7 \\ & \cdots \\ assert (y = = 10); \\ \end{cases}
```

- X Also requires 10 iterations.
- **X** It won't work if we replace 10 by n.

$$x_1 = 0$$
$$y_1 = 0$$

/ 10 / 10	
$ \begin{aligned} x_1 &= 0 \\ y_1 &= 0 \end{aligned} \qquad \begin{vmatrix} x_1 \neq 10 & x_2 \neq 10 \\ x_2 &= x_1 + 1 & x_3 = x_2 + 1 \\ y_2 &= y_1 + 1 & y_3 = y_2 + 1 \end{vmatrix} $	1 1

	1st lt.	2nd It.	3rd It.
$x_1 = 0$	$x_1 \neq 10$	$x_2 \neq 10$	$x_3 \neq 10$
$y_1 = 0$ $y_1 = 0$	$x_2 = x_1 + 1$	$x_3 = x_2 + 1$	$x_4 = x_3 + 1$
91 — 0	$y_2 = y_1 + 1$	$y_3 = y_2 + 1$	$y_4 = y_3 + 1$
	i	I	

	1st lt.	2nd It.	3rd lt.	Assertion
$x_1 = 0$ $y_1 = 0$		$x_{2} \neq 10$ $x_{3} = x_{2} + 1$ $y_{3} = y_{2} + 1$	$ \begin{array}{c} x_3 \neq 10 \\ x_4 = x_3 + 1 \\ y_4 = y_3 + 1 \end{array} $	$x_4 = 10$ $y_4 \neq 10$

	1st lt.	2nd It.	3rd It.	Assertion
$x_1 = 0$ $y_1 = 0$	$x_2 = x_1 + 1$	$x_{2} \neq 10$ $x_{3} = x_{2} + 1$ $y_{3} = y_{2} + 1$	$x_4 = x_3 + 1$	
x_1	=0	ı	'	
y_1	=0			

	1st lt.	2nd It.	3rd It.	Assertion
_	$x_2 = x_1 + 1$	$y_3 = y_2 + 1$		

	1st lt.	2nd It.	3rd It.	Assertion
_	$x_2 = x_1 + 1$ $y_2 = y_1 + 1$ $= 0$ x_2	$y_3 = y_2 + 1$ $= 1 \qquad x_3$	$ x_{3} \neq 10 x_{4} = x_{3} + 1 y_{4} = y_{3} + 1 = 2 = 2 $	

	1st lt.	2nd lt.	3rd It.	Assertion
$x_1 = 0$ $y_1 = 0$		$ x_2 \neq 10 x_3 = x_2 + 1 y_3 = y_2 + 1 $		
-	_	•	_	$\stackrel{ }{=} 3$ $\stackrel{ }{=} 3$

Consider an SSA-unwinding with 3 loop iterations:

★This proof will produce the same predicates as SP.

Split Provers

Idea:

- ▶ Each prover P_i only knows A_i , but they exchange facts
- We require that each prover only exchanges facts with common symbols
- \blacktriangleright Plus, we restrict the facts exchanged to some language $\mathcal L$

	1st lt.	2nd It.	3rd lt.	Assertion
$x_1 = 0$ $y_1 = 0$	$ x_1 \neq 10 x_2 = x_1 + 1 y_2 = y_1 + 1 $	$x_{2} \neq 10 x_{3} = x_{2} + 1 y_{3} = y_{2} + 1$	$x_3 \neq 10$ $x_4 = x_3 + 1$ $y_4 = y_3 + 1$	$x_4 = 10$ $y_4 \neq 10$

	1st It.	2nd It.	3rd lt.	Assertion
-	$x_2 = x_1 + 1$		$x_3 \neq 10$ $x_4 = x_3 + 1$ $y_4 = y_3 + 1$	

	1st lt.	2nd It.	3rd It.	Assertion
_	$\begin{cases} x_2 = x_1 + 1 \\ y_2 = y_1 + 1 \end{cases}$	$y_3 = y_2 + 1$ $= 1$	$x_4 = x_3 + 1$	

1st It.	2nd It.	3rd It.	Assertion
 $\begin{cases} x_2 = x_1 + 1 \\ y_2 = y_1 + 1 \end{cases}$		$x_4 = x_3 + 1$	$x_4 = 10$ $y_4 \neq 10$

	1st lt.	2nd It.	3rd It.	Assertion
$y_1 = 0$ x_1	$x_2 = x_1 + 1$	$y_3 = y_2 + 1$ $= 1 \qquad x_3 = 0$, ,	$x_4 = 10$ $y_4 \neq 10$

	1st lt.	2nd It.	3rd It.	Assertion
$x_1 = 0$ $y_1 = 0$	$x_2 = x_1 + 1$			
-	$= 0 x_2 = 0$ $= 0 y_2 = 0$	$x_2 =$	$=y_3$	

	1st lt.	2nd It.	3rd It.	Assertion
$x_1 = 0$ $y_1 = 0$	$x_2 = x_1 + 1$	$x_{2} \neq 10 x_{3} = x_{2} + 1 y_{3} = y_{2} + 1$	$x_4 = x_3 + 1$	$\begin{array}{c} x_4 = 10 \\ y_4 \neq 10 \end{array}$
_	$\stackrel{\cdot}{=} 0 \qquad x_2 = 0 = 0 \qquad y_2 = 0$	$x_2 =$	$= y_3 \qquad x_4$	$=y_4$

Invariants from Restricted Proofs

- ✓ The language restriction forces the solver to generalize!
 - Algorithm:
 - ▶ If the proof fails, increase \mathcal{L} !
 - If we fail to get a sufficiently strong invariant, increase n.

 \checkmark This does work if we replace 10 by n!

Invariants from Restricted Proofs

- ✓ The language restriction forces the solver to generalize!
 - Algorithm:
 - ▶ If the proof fails, increase \mathcal{L} !
 - ► If we fail to get a sufficiently strong invariant, increase n.

- \checkmark This does work if we replace 10 by n!
- ? Which $\mathcal{L}_1, \mathcal{L}_2, \ldots$ is complete for which programs?