Experiment No. 5

Title: Implementation of 3 bit synchronous up-down counter using T flips flops

Batch: B1 Roll No.: 16010420133 Experiment No.: 5

Aim: Implementation of 3 bit synchronous up-down counter using T flips flops

Resources needed: Simulation Software, (Circuitverse).

Theory:

Synchronous Counter Operation

Synchronous counters have a common clock pulse applied simultaneously to all flip-flops.

A 2-Bit Synchronous Binary Counter

Note that both the J and K inputs are connected together. The flip-flop will toggle when both are a 1 (FF0) Also the transition at clock pulse 2 works because of propagation delay effects. Q0 is still high on the input of Q1 at the instant clock 2 hits so FF1 changes state. A short time later clock 2 has propagated through FF0 and it goes low.

Truth table of J K flip flop

110011 00010 01 0 12 1110 1100										
	Inputs		Out	comments						
J	K	CLK	Q ₁	Q'1						
0	0	1	Q_0	Q'0	No change					
0	1	1	0	1	Reset					
1	0	1	1	0	Set					
1	1	1	Q'0	Q_0	Toggle					

Design procedure of Synchronous counter

- 1. Find the number of flip-flops.
- 2. Write the count sequence in tabular form
- 3. Determine the flip-flop inputs which must be present for desired next state from the present state using excitation table of the flip-flops.
- 4. Prepare K-map for each flip-flop input in terms of flip-flop outputs as the input variables.
- 5. Simplify the K-maps and get the minimized expressions for each flip-flop input.
- 6. Connect the circuit using flip-flops and other gates corresponding to the minimized expression.

Design A 3-Bit Synchronous up- down Binary Counter using T flip-flops: (Include the timing diagram)

Solution: (Design the counter step by step- Create a soft copy or use separate assignment sheet and scan for solution)

9		0				1 0	.1.	:0	-a1 4	5-
	with Toble		sent :		9 ±	0,+	ate, ost	Tz	Of i	FIF To
No	(ontrolip	0	0,	0	0	0	OSO	0	0	10
0	0 .	.0	0	1	0	1	0	0	1	1
-			1.	0	0	,	1	.0	0	1
2	0	0	l.	-1	10	0	0	1	1	1
3	0	0	0	0	1	0	1	0	0	1
4	6		0	1	1	1	0	0	1	i
5		-	1	0	1	,	1	0	0	
6	0	1		1,	1	.0	0.	1	1	1
7	0	1		0	ь	1	1	'n	1	1
8	1	0	0		1		1			,
9	4		0.	11	1	. 0	0	0	0	1
10	-	8	1,,	-	. 0		0	0		1
11		0	_1=	-1	0	- 1	1		0	1
12		1	0	0	0	1	0	1	1	1
13)	- 1	0	1	-	0	-	00	0	1
14	_ \	1	1	0	-1	0	1	1	0	i.
15	1 1	1	1:	1	١4.	1	0	0	0	1
			_							
K	мор: -			-			7.1			
	•	5,00	- :		,		-			
.1.	02 00000	91 90	\$100	1000	•					
MO		01	HT			τ	Mai	<u> </u>	<u></u>	0.1
M		3 1	1 3	2		12 =	110/1	O.o.		Q1 I
M I	(S2 4	5	1) 7	4				-		
1 W	G2 1 8	13	. 15	14				-	-	-

Procedure:

- 1. Design a 3 bit synchronous counter using T flip-flop as per the design procedure mentioned in theory.
- 2. Simulate the logic design using T flip-flops on the simulation software.
- 3. Verify the output of the designed and simulated counter for the proper sequence.
- 4. Generate the output timing diagram on simulator.
- 5. Upload Schematic and Timing Diagram generated on Simulator as instructed during lab session.

Observations and Results: Observe the UP-DOWN counter timing diagram as per actual outputs and identify the changes needed in the counter circuit to make the circuit work only as 3bit UP counter.

Outcomes: Design the combinational and sequential circuits using basic building blocks.

Conclusion: We have successfully implemented a 3 bit synchronous up-down counter using T flips flops.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. http://www.electronics-tutorials.ws/counter/count_4.html

