MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

2112 írásbeli vizsga 3 / 18 2021. május 4.

I.

1. a)		
A négyzetgyök értelmezési tartománya és értékkészlete miatt $-1 \le x \le 3$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
Négyzetre emelve: $-2x + 6 = x^2 + 2x + 1$.	1 pont	
$x^2 + 4x - 5 = 0$	1 pont	
Az egyenlet gyökei –5 és 1.	1 pont	
Ellenőrzés: behelyettesítéssel vagy (a [-1; 3] halmazon) ekvivalens átalakításokra hivatkozással kapjuk, hogy az 1 megoldása, a –5 pedig nem megoldása az eredeti egyenletnek.	1 pont	
Összesen:	5 pont	

1. b) első megoldás		
Az egyenlet értelmezési tartománya: $x > 0$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A logaritmus azonosságait alkalmazva: $4\log_4 x + 9\log_4 x = 4\log_4 x + 9\log_4 8$.	2 pont	
$9\log_4 x = 9\log_4 8$, azaz $\log_4 x = \log_4 8$, amiből a logaritmusfüggvény kölcsönös egyértelműsége miatt $x = 8$.	2 pont	
Ellenőrzés: behelyettesítéssel vagy (az $x > 0$ halmazon) ekvivalenciára hivatkozással.	1 pont	
Összesen:	6 pont	

1. b) második megoldás		
Az egyenlet értelmezési tartománya: $x > 0$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A logaritmus és a hatványozás azonosságait alkalmazva: $\log_4 x^4 + \log_4 x^9 = \log_4 x^4 + \log_4 8^9$.	2 pont	
$\log_4 x^9 = \log_4 8^9$ A logaritmusfüggvény kölcsönös egyértelműsége miatt $x^9 = 8^9$, amiből (az $x \mapsto x^9$ függvény kölcsönös egyértelműsége miatt) $x = 8$.	2 pont	
Ellenőrzés: behelyettesítéssel vagy (az $x > 0$ halmazon) ekvivalenciára hivatkozással.	1 pont	
Összesen:	6 pont	

2. a)		
A A A A A A A A A A	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
A <i>BCD</i> háromszög területe $\frac{BC \cdot CD \cdot \sin 100, 3^{\circ}}{2} = \frac{60 \cdot 70 \cdot \sin 100, 3^{\circ}}{2} \approx 2066 \text{ (m}^{2}\text{)}.$	1 pont	
A BCD háromszögben koszinusztétellel: $BD^2 = 60^2 + 70^2 - 2 \cdot 60 \cdot 70 \cdot \cos 100,3^{\circ}.$	1 pont	
Ebből $BD \approx 100$ (m).	1 pont	
Az ABD háromszögben szinusztétellel (az ábra szerint): $\frac{\sin \varepsilon}{\cos \theta} = \frac{50}{100}.$	1 pont*	
\sin ε ≈ 0,4919, (mivel ε hegyesszög, ezért) ε ≈ 29,5°.	1 pont*	
$ABD \ll = (180^{\circ} - 100,3^{\circ} - 29,5^{\circ} =) 50,2^{\circ},$	1 pont*	
ezért az ABD háromszög területe $\frac{AB \cdot BD \cdot \sin 50, 2^{\circ}}{2} = \frac{50 \cdot 100 \cdot \sin 50, 2^{\circ}}{2} \approx 1921 \text{ (m}^2\text{)}.$	1 pont*	
A négyszög területe $2066 + 1921 = 3987 \text{ m}^2$.	1 pont	
Összesen:	9 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Legyen $AD = x$ (méter). Az ABD háromszögben koszinusztétellel: $50^2 + x^2 - 2 \cdot 50 \cdot x \cdot \cos 100, 3^\circ = 100^2$.	1 pont	
Rendezve: $x^2 + 17,88x - 7500 = 0$.	1 pont	
Az egyenlet pozitív gyöke (egy tizedesjegyre kerekítve) 78,1 (a negatív gyök –96,0).	1 pont	
Ezért az ABD háromszög területe $\frac{AB \cdot AD \cdot \sin 100, 3^{\circ}}{2} = \frac{50 \cdot 78, 1 \cdot \sin 100, 3^{\circ}}{2} \approx 1921 \text{ (m}^{2}\text{)}.$	1 pont	

2. b) első megoldás		
A felhasznált 3 színt $\binom{4}{3}$ = 4-féleképpen választhat-	1 pont	
juk ki.		
Mivel négy háromszög van, és csak 3 szín, ezért két háromszögnek azonos színűnek kell lennie. Ezek csak szemköztiek lehetnek.	1 pont	
A két azonos színű szemközti háromszöget 2-féle- képpen választhatjuk ki.	1 pont	
Az azonos színű háromszögek színét 3-féleképpen választhatjuk meg,	1 pont	
a maradék két háromszöget pedig 2-féleképpen színezhetjük (a maradék két színnel).	1 pont	
A lehetséges színezések száma ezért $4 \cdot 2 \cdot 3 \cdot 2 = 48$.	1 pont	
Összesen:	6 pont	

2. b) második megoldás		
Mivel négy háromszög van, és csak 3 szín, ezért az egyik színt kétszer is fel kell használnunk.	1 pont	
Ezt a színt 4-féleképpen választhatjuk ki.	1 pont	
Ezzel a színnel két szemközti háromszöget kell kiszíneznünk, ezeket 2-féleképpen választhatjuk ki.	1 pont	
A maradék két háromszög a maradék 3 szín közül kettővel 3 · 2 = 6-féleképpen színezhető ki.	2 pont	
A lehetséges színezések száma ezért $4 \cdot 2 \cdot 6 = 48$.	1 pont	
Összesen:	6 pont	

2. b) harmadik megoldás		
Az <i>AB</i> oldalra illeszkedő háromszög színe 4, a <i>BC</i> oldalra illeszkedő háromszög színe ezek után 3-féle lehet.	1 pont	
Ez a két háromszög tehát $4 \cdot 3 = 12$ -féleképpen színezhető ki.	1 pont	
Tegyük fel, hogy az <i>AB</i> oldalra illeszkedő háromszöget pirosra, a <i>BC</i> -re illeszkedőt pedig kékre színeztük. Vagy a piros vagy a kék színt még egyszer használnunk kell.	1 pont*	
Vagy a <i>CD</i> oldalra illeszkedő háromszög piros, vagy a <i>DA</i> oldalra illeszkedő háromszög kék. A negyedik háromszög mindkét esetben sárga vagy zöld lehet. Az első két háromszög bármely színezéséhez tehát 4-féleképpen színezhetjük az utolsó két háromszöget,	2 pont*	
így a lehetséges színezések száma 12 · 4 = 48.	1 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Tegyük fel, hogy az AB oldalra illeszkedő háromszö-		
get pirosra, a BC-re illeszkedőt pedig kékre színez-		
tük. Ha a <i>CD</i> oldalra illeszkedő háromszög is piros,	1 pont	
akkor 2-féleképpen fejezhető be a színezés (sárga		
vagy zöld színnel).		
Ha a CD oldalra illeszkedő háromszög nem piros, ak-		
kor 2-féle lehet (sárga vagy zöld). Mindkét esetben a	2 pont	
DA-ra illeszkedő háromszög csak kék lehet.		

3. a) első megoldás		
Tegyük fel, hogy x db 6600 Ft-os, és y db 4800 Ft-os		
részvényünk van.		
6600x + 4800y = 131400	2 pont	
$6600\left(x + \frac{y}{3}\right) + 4800 \cdot \frac{2}{3}y = 140400$	•	
A második egyenletből az elsőt kivonva:	1 nont	
2200y - 1600y = 9000,	1 pont	
ahonnan $y = 15$,	1 pont	
majd visszahelyettesítve $x = 9$.		
(Tehát 9 db 6600 Ft-os, és 15 db 4800 Ft-os részvé-	1 pont	
nyünk van.)		
Ellenőrzés:		
$6600 \cdot 9 + 4800 \cdot 15 = 131400.$		
A 15 db 4800 Ft-os részvény harmadát, 5 db-ot cse-	1 mant	
rélnénk 6600 Ft-osra. Így lenne 10 db 4800 Ft-os és	1 pont	
14 db 6600 Ft-os. Ezek összértéke		
$4800 \cdot 10 + 6600 \cdot 14 = 140 \ 400 \ valóban.$		
Összesen:	6 pont	

3. a) második megoldás		
A cserével a részvénycsomag értéke	1 mant	
(140 400 - 131 400 =) 9000 Ft-tal none.	1 pont	
A kétfajta részvény névértéke közötti különbség		
1800 Ft, tehát (9000: 1800 =) 5 db 4800 Ft-os rész-	2 pont	
vényt cserélnénk 6600 Ft-osra.		
Ez az összes 4800 Ft-os részvény harmada,	1 mant	
tehát $(5 \cdot 3 =) 15$ db 4800 Ft-os részvényünk,	1 pont	
$68 \cdot (131400 - 15.4800) : 6600 = 9 \text{ db } 6600 \text{ Ft-os}$	2 mont	
részvényünk van.	2 pont	
Összesen:	6 pont	

3. b)		
(Jelölje <i>n</i> a keresett hónap sorszámát.) $450000\cdot 1,013^n > 500000\cdot 1,01^n$	2 pont	
$\left(\frac{1,013}{1,01}\right)^n > \frac{50}{45} = \frac{10}{9}$	1 pont	
A tízes alapú logaritmus függvény szigorúan monoton növekedő,	1 pont	Az 1-nél nagyobb alapú logaritmusfüggvény szigorúan monoton növe- kedő, ezért
ezért $n \lg \frac{1,013}{1,01} > \lg \frac{10}{9}$, (közelítő értékekkel) $n \lg 1,003 > \lg 1,111$.	1 pont	$n > \log_{\frac{1,013}{1,01}} \left(\frac{10}{9}\right).$
(Az egyenlőtlenséget pozitív számmal osztjuk:) $n > \frac{\lg 1,111}{\lg 1,003} \approx 35,1.$	1 pont	$\log_{\frac{1,013}{1,01}} \left(\frac{10}{9}\right) \approx 35,5$
Tehát a 36. hónap végén lesz először több pénz a második befektetésben.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó egyenlőtlenség helyett egyenlettel dolgozik, akkor $n \approx 35,1$ megállapításáért legfeljebb 5 pontot kaphat. További 1-1 pont a helyes válaszért, és az egyenlőtlenség irányának megfelelő indoklásáért jár.

2112 írásbeli vizsga 8 / 18 2021. május 4.

4. a)		
(Azt kell belátni, hogy a pontok koordinátái igazzá teszik a görbe egyenletét.) Az origó esetében: $0.25 \cdot 0 \cdot (0-5)^2 = 0$ igaz,	1 pont	
az (5; 0) pont esetében: $0,25 \cdot 5 \cdot (5-5)^2 = 0$ igaz. (Tehát mindkét pont valóban rajta van a görbén.)	1 pont	
Összesen:	2 pont	

4. b)		
A kérdezett valószínűség a trapéz és a korlátos síkidom területének hányadosa.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(A görbe az $f:[0;5] \rightarrow \mathbf{R}$; $f(x) = 0,25x(x-5)^2$ függvény grafikonja.) A síkidom területe: $\int_{0}^{5} 0,25x(x-5)^2 dx =$	1 pont	
$= \int_{0}^{5} 0,25(x^{3} - 10x^{2} + 25x)dx =$	1 pont	
$= 0,25 \left[\frac{x^4}{4} - 10 \frac{x^3}{3} + 25 \frac{x^2}{2} \right]_0^5 =$	2 pont	
$=\frac{625}{48}\approx 13{,}02.$	1 pont	
D pont első koordinátája 1, második koordinátáját (a trapéz egyik alapjának hosszát) behelyettesítéssel kapjuk: $0,25\cdot1\cdot(1-5)^2=4$. (Tehát $D(1;4)$.)	1 pont	
Hasonlóan C pont első koordinátája 3, második koordinátája (a trapéz másik alapjának hossza): $0.25 \cdot 3 \cdot (3-5)^2 = 3$. (Tehát $C(3; 3)$.)	1 pont	
Mivel a trapéz magassága (az AB szakasz hossza) 2, így a trapéz területe $\frac{4+3}{2} \cdot 2 = 7$.	1 pont	
A kérdezett valószínűség $\frac{7}{13,02} \approx 0,538.$	1 pont	A valószínűség pontos értéke $\frac{7}{625} = 0,5376$.
Összesen:	10 pont	

II.

5. a)		
Pontosan akkor van két valós gyök, ha az $x^2 - 2x - mx + 4 = 0$ egyenlet diszkriminánsa pozitív.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(Az egyenlet $x^2 - (2+m)x + 4 = 0$, ezért) $D = (2+m)^2 - 16$	1 pont	
$D = m^2 + 4m - 12 > 0$	1 pont	
Az $m^2 + 4m - 12 = 0$ egyenlet megoldásai –6 és 2.	1 pont	
Az $m \mapsto m^2 + 4m - 12$ másodfokú függvény képe "felfelé nyitott" parabola,	1 pont	Ez a pont jár egy megfe- lelő ábráért is.
tehát $m < -6$ vagy $m > 2$ esetén igaz a megadott kijelentés.	1 pont	$m \in]-\infty; -6[\cup]2; +\infty[$
Összesen:	6 pont	

Megjegyzés: Az ábra a megoldásban kapott m értékeknek megfelelő egyeneseket szemlélteti.

5. b)		
$Mivel -1 \le \cos x \le 1,$	1 pont	
$ezért 0 \le (1 + \cos x)^2 \le 4,$	1 pont	
$2 \le (1 + \cos x)^2 + 2 \le 6.$	1 pont	
(A pozitív számok halmazán az $x \mapsto \frac{1}{x}$ függvény szigorúan monoton csökkenő, ezért) $\frac{1}{2} \ge \frac{1}{(1+\cos x)^2 + 2} \ge \frac{1}{6}.$	1 pont	
Ebből következik, hogy $\frac{3}{2} \ge \frac{3}{(1+\cos x)^2 + 2} \ge \frac{3}{6} = \frac{1}{2}$, tehát a megadott kijelentés valóban igaz (hiszen f folytonos függvény).	1 pont	
Összesen:	5 pont	

5. c) első megoldás						
Az $(A \wedge B) \vee C$ kijelentés pontosan akkor igaz, ha $A \wedge B$, illetve C közül legalább az egyik igaz.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.				
$A \wedge B$ igaz és C igaz (vagyis mindhárom kijelentés igaz) valószínűsége: $0.6^3 = 0.216$.	1 pont					
$A \wedge B$ igaz és C hamis valószínűsége: $0.6^2 \cdot 0.4 = 0.144$.	1 pont					
$A \wedge B$ hamis és C igaz valószínűsége: $(1-0.6^2) \cdot 0.6 = 0.384$.	1 pont					
Tehát a keresett valószínűség: 0,216 + 0,144 + 0,384 = 0,744.	1 pont					
Összesen:	5 pont					

5. c) második megoldás						
Az $(A \wedge B) \vee C$ kijelentés pontosan akkor igaz, ha $A \wedge B$, illetve C közül legalább az egyik igaz.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.				
$A \wedge B$ igaz valószínűsége $0.6^2 = 0.36$.	1 pont					
C igaz valószínűsége 0,6.	1 pont					
Mindkétszer figyelembe vettük azt az eseményt, hogy $A \wedge B$ igaz és C is igaz; ennek $0.36 \cdot 0.6 = 0.216$ a valószínűsége.	1 pont					
A szitaformula szerint a kérdezett valószínűség $0.36 + 0.6 - 0.216 = 0.744$.	1 pont					
Összesen:	5 pont					

5. c) harmadik megoldás						
Az $(A \wedge B) \vee C$ kijelentés pontosan akkor igaz, ha C igaz, vagy ha C hamis és $A \wedge B$ igaz.	2 pont	Ez a 2 pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.				
C igaz valószínűsége 0,6.	1 pont					
$A \wedge B$ igaz és C hamis valószínűsége: $0.6^2 \cdot 0.4 = 0.144$.	1 pont					
Tehát a kérdezett valószínűség: 0,6 + 0,144 = 0,744.	1 pont					
Összesen:	5 pont					

5. c) negyedik megoldás					
(A komplementer esemény valószínűségét határoz-		Ez a pont akkor is jár, ha			
zuk meg.) Az $(A \wedge B) \vee C$ kijelentés pontosan akkor	1 pont	ez a gondolat csak a meg-			
hamis, ha $A \wedge B$ hamis és C is hamis.		oldásból derül ki.			
Az $A \wedge B$ hamis, ha legalább az egyik kijelentés ha-	2 mont	$1-0.6^2$			
mis; ennek $2 \cdot 0.6 \cdot 0.4 + 0.4^2 = 0.64$ a valószínűsége.	2 pont	1-0,0			

Annak a valószínűsége, hogy A \wedge B hamis és C is hamis 0,64 \cdot 0,4 = 0,256.	1 pont	
Annak a valószínűsége tehát, hogy $(A \land B) \lor C$ kijelentés igaz: $1 - 0.256 = 0.744$.	1 pont	
Összesen:	5 pont	

5.	c) i	itödi	k me	egoldás				
						és az igaz ese-		
іек	vaic	SZIN	useg	enek me	gadása.)	-		
	A	В	C	$A \wedge B$	$(A \wedge B) \vee C$	valószínű- sége		A 8 lehetséges eset és
	i	i	i	i	i	0.6^{3}		azok logikai értékének
	i	i	h	i	i	$0.6^2 \cdot 0.4$		helyes megadása 2 pont,
	i	h	i	h	i	$0.6^2 \cdot 0.4$	4 pont	az öt "igaz" logikai ér-
	i	h	h	h	h			tékű lehetőség valószínű-
	h	i	i	h	i	$0.6^2 \cdot 0.4$		ségek helyes kiszámítása 2 pont.
	h	i	h	h	h			2 pont.
	h	h	i	h	i	$0,6\cdot 0,4^2$		
	h	h	h	h	h			
				színűség			1 nont	
0,6	$5^3 + 3$	0.6	$^{2} \cdot 0,4$	+0,6.0	$0.4^2 = 0.744.$		1 pont	
						Összesen	5 pont	

Megjegyzés: A feladat szövege (bár feltételezte) nem jelentette ki kifejezetten, hogy az A, B és C események függetlenek. Ha a vizsgázó megoldásában nem feltételezte, hogy a három esemény (kijelentés) független, ezért (megfelelő indoklással) azt válaszolta, hogy a kérdezett esemény valószínűsége 0,6 és 1 között lehet, akkor teljes pontszámot kapjon.

6. a)		
(Az ismeretségi gráfban a pontokat a nevek betűivel		Az ismeretségi gráfban az
jelöljük, az ismeretségek a gráf élei.)	1 pont	élek száma négyféle le-
A $\{D, E, F\}$ részgráfban 3 él lehet.		<i>het</i> : 0, 1, 2, 3.
A 3 él bármelyike vagy szerepel a gráfban (ha a két személy ismeri egymást), vagy nem,	1 pont	Ezek rendre 1, $\binom{3}{1} = 3$, $\binom{3}{2} = 3$, illetve 1 lehető-séget jelentenek.
ezért 2 ³ = 8-féle ismeretségi gráf (háló) lehetséges.	1 pont	Összesen $1+3+3+1=8$ lehetőség van.
Összesen:	3 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha a nyolc lehetséges ismeretségi gráfot felrajzolja, és ez alapján helyesen válaszol.

6. b)		
Az ismeretségi gráfban A ötödfokú pont, ezért minden más ponttal össze van kötve, továbbá a D, E, F pontok mindegyike össze van kötve a másik kettővel.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ha a fentieknek megfelelő éleket berajzoljuk, akkor a <i>B</i> -ből még további 3, <i>C</i> -ből még további 2 élt kell meghúznunk.	1 pont	
Két esetet vizsgálunk aszerint, hogy a <i>BC</i> él benne van-e a gráfban, vagy sem.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
I. eset: Ha a BC él nincs benne a gráfban, akkor a negyedfokú B pont össze van kötve a D , E , E pontok mindegyikével. Ez csak egyféleképpen lehetséges.	1 pont	
A harmadfokú <i>C</i> -ből kiinduló maradék 2 élt ekkor 3-féleképpen húzhatjuk be (<i>C</i> -t összekötjük a <i>D</i> , <i>E</i> , <i>F</i> pontok közül valamelyik kettővel). Az I. esetben tehát 3 lehetőség van összesen.	1 pont	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
II. eset: Ha a <i>BC</i> él benne van a gráfban, akkor a <i>B</i> -ből kiinduló maradék 2 élt 3-féleképpen húzhatjuk be (<i>B</i> -t összekötjük a <i>D</i> , <i>E</i> , <i>F</i> pontok közül valamelyik kettővel).	1 pont	Például:
Szintén 3-féleképpen húzható be a <i>C</i> -ből induló harmadik él (<i>C</i> -t öszszekötjük a <i>D</i> , <i>E</i> , <i>F</i> pontok valamelyikével).	1 pont	
Ekkor $3 \cdot 3$ (= 9) esetet kapunk.	1 pont	Például:
Az ismeretségi háló tehát $(3 + 3 \cdot 3 =)$ 12-féle lehet.	1 pont	
Összesen:	9 pont	

Megjegyzés: Ha a vizsgázó az összes lehetséges ismeretségi gráfot felrajzolja, és ez alapján helyesen válaszol, akkor ezért 6 pont jár. A további 3 pontot annak indoklásáért kaphatja meg, hogy miért nincs több lehetőség.

6. c) első megoldás		
Azon csoportok száma, amelyben A benne van,		
de <i>B</i> nincs: $\binom{4}{2} = 6$.	1 pont	
(A maradék 4 személyből 2 kerül A mellé.)		
Hasonlóan $\binom{4}{2}$ = 6 azon csoportok száma, amelyben	1 pont	
B benne van, de A nincs (szimmetria).		
Azon csoportok száma, amelyben sem A , sem B nincs benne: $\binom{4}{3} = 4$.	1 pont	
A megfelelő csoportok száma $6 + 6 + 4 = 16$, ennyi kihallgatást kell szervezni.	1 pont	
Összesen:	4 pont	

6. c) második megoldás		
A komplementer összeszámolás módszerét alkalmazzuk.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A 3 fős csoportok száma $\binom{6}{3}$ = 20 (összes eset).	1 pont	
$\binom{4}{1}$ = 4 olyan csoport van, melynek A és B is a tagja (kedvezőtlen esetek). (A maradék 4 személyből 1 kerül A és B mellé.)	1 pont	
A megfelelő csoportok száma $20 - 4 = 16$, ennyi kihallgatást kell szervezni.	1 pont	
Összesen:	4 pont	

7. a)		
A nyolc szám átlaga (48:8 =) 6.	1 pont	
(A nagyság szerint rendezett adatok: 3, 4, 6, 6, 7, 7, 7, 8, ezért) a medián 6,5.	1 pont	
A szórás: $\sqrt{\frac{(-3)^2 + (-2)^2 + 3 \cdot 1^2 + 2^2}{8}} =$	1 pont	Ez a pont akkor is jár, ha a vizsgázó a szórást szá- mológéppel helyesen ha- tározza meg.
$\left(=\sqrt{\frac{20}{8}}\right)\approx 1,58.$	1 pont	
Összesen:	4 pont	

7. b)		
A parabola az $f: x \mapsto ax^2 + bx + c$ másodfokú függvénynek a grafikonja $(a \neq 0, b, c \in \mathbf{R})$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A szöveg alapján $f(0) = 2$, tehát $c = 2$.	1 pont	
$f'(0) = m = \text{tg}45^{\circ} = 1.$	1 pont	
Mivel $f'(x) = 2ax + b$,	1 pont	
ezért $f'(0) = b = 1$.	1 pont	
$f(4,6) = a \cdot 4, 6^2 + b \cdot 4, 6 + c = 3,$	1 pont	
$21,16a = -3,6,$ ebből $a \approx -0,17.$	1 pont	$a = -\frac{90}{529}$
A keresett parabola egyenlete $y = -0.17x^2 + x + 2$.	1 pont	
Összesen:	8 pont	

A kosárlabda röppályájának íve a parabolán:

7. c)		
Az inverzfüggvény értelmezési tartománya [–2; 5],	1 pont	
értékkészlete [–2; 3],	1 pont	
zérushelye 1,	1 pont	
szigorúan monoton növekedő.	1 pont	
Összesen:	4 pont	

Közös koordináta-rendszerben ábrázolva f-et és az inverzfüggvényét:

8. a)		
A sorsjegy árát 200 (= $20 \cdot 10$) Ft-tal csökkentették, tehát $n = 20$.	1 pont	
Ekkor az eladott sorsjegyek száma $10n^2 = 4000$ -rel több, azaz $5000 + 4000 = 9000$ db,	1 pont	
a havi bevétel pedig 9000 · 300 = 2 700 000 Ft.	1 pont	
Összesen:	3 pont	

8. b)		
Tegyük fel, hogy n -szer csökkentették 10 Ft-tal az árat, ekkor az új ár $500 - 10n$ (Ft) (ahol $n < 50$),	1 pont	
és a havi eladott darabszám $5000 + 10n^2$.	1 pont	
Az eladásból származó bevétel Ft-ban: $(500 - 10n)(5000 + 10n^2) =$ $= -100n^3 + 5000n^2 - 50000n + 2500000$.	1 pont	
Tekintsük a pozitív valós számok halmazán értelmezett $f(x) = -100x^3 + 5000x^2 - 50000x + 2500000$ függvényt.	1 pont	
Ennek deriváltfüggvénye $f'(x) = -300x^2 + 10000x - 50000 \ (x \in \mathbf{R}),$	1 pont	
melynek zérushelyei $x_1 \approx 6,13$ és $x_2 \approx 27,21$.	1 pont	
A deriváltfüggvény pontosan a két gyök között pozitív, és x_2 -ben pozitívból negatívba vált, ezért x_2 az f maximumhelye (x_1 -ben negatívból pozitívba vált a deriváltfüggvény).	1 pont	$f''(x_1) > 0$ és $f''(x_2) < 0$, ezért f-nek x_2 a maxi- mumhelye.
(n értéke csak egész lehet:) f(27) = 2826700 > f(28) = 2824800, ezért (a modell szerint) 27-szer 10 Ft-tal (230 Ft-ra) kell csökkenteni a sorsjegy árát ahhoz, hogy az érté- kesítésből származó havi bevétel maximális legyen.	2 pont	
Összesen:	9 pont	1 \ 1/1 \ \ 1

Megjegyzés: Az alábbi grafikon a havi bevételt (1000 Ft-ban megadva) szemlélteti az árcsökkentés függvényében.

8. c)		
(Az 50 000 Ft nyeremény valószínűsége p , ekkor) $p + 24p = 0.05$,	1 pont	nyere- mény
ahonnan $p = 0.002$ és $24p = 0.048$.	1 pont	valószí- nűsége 0,95 0,048 0,002
A nyeremény várható értéke $(0.95 \cdot 0 +) 0.048 \cdot 2500 + 0.002 \cdot 50\ 000 = 220\ Ft.$	2 pont	
Összesen:	4 pont	

Megjegyzés: A táblázat helyes kitöltése indoklás nélkül is elfogadható.

9. a)		
A farönköket szemléltető egybevágó, 24 cm átmérőjű körökből (alulról kezdve a számozást) a páratlan sorszámú sorokban 10, a párosakban pedig 9 kör fér el a 240 cm-en.	1 pont	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 pont	
szabályos háromszögrács egy részletét határozzák meg.) Az ábra ABC szabályos háromszögének magassága $12\sqrt{3}~(\approx 20{,}78)$ (cm). (A körök középpontja ennyivel lesz magasabban minden következő sorban az előző sorban elhelyezkedő körközéppontokhoz képest.)		
Ha k db sort raktak a teherautóra, akkor a rakomány $(k-1)\cdot 12\sqrt{3} + 2\cdot 12$ cm magasságig tölti meg a rakteret.	1 pont*	
A rakomány nem nyúlhat túl a raktéren, ezért $(k-1)\cdot 12\sqrt{3} + 2\cdot 12 \le 200$.	1 pont*	
$k \le \frac{176}{12\sqrt{3}} + 1 \approx 9,47$	1 pont*	
Legfeljebb 9 sorban rakhattak fákat a raktérbe.	1 pont*	
5 sorban $5 \cdot 10 = 50$ db, 4 sorban $4 \cdot 9 = 36$ db farönk, összesen tehát legfeljebb $50 + 36 = 86$ farönk lehet a raktérben. (Ezt kellett igazolni.)	1 pont	
Összesen:	8 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

9 sor magassága $8.12\sqrt{3} + 2.12 \approx 190,3$ cm, tehát 9 sor még befér a raktérbe.	2 pont		
10 sor magassága $9.12\sqrt{3} + 2.12 \approx 211,1$ cm, tehát 10 sor már nem fér be a raktérbe.	2 pont		

9. b)		
A raktér térfogata: $V_{rt} = 2.4 \cdot 2 \cdot 7 = 33.6 \text{ m}^3$.	1 pont	
A 86 darab fa térfogata: $V_{fa} = 0.12^2 \cdot \pi \cdot 7 \cdot 86 \approx 27.2 \text{ m}^3.$	1 pont	
$\frac{V_{fa}}{V_{rt}} \approx \frac{27.2}{33.6} \approx 0.81 \text{ (azaz 81\%)}$	1 pont	
Tehát a raktér térfogatának 19%-a lesz üres.	1 pont	
Összesen:	4 pont	

9. c)		
(0,96 a valószínűsége, hogy egy fában nincs szú.)	1 pont	
$P(0 \text{ darab szúrágta fa}) = 0.96^{50} \approx 0.130$	1 point	
$P(1 \text{ darab szúrágta fa}) = {50 \choose 1} \cdot 0.96^{49} \cdot 0.04 \approx 0.271$	2 pont	
A keresett valószínűség ezek összege:	1 nont	
0,130 + 0,271 = 0,401.	1 pont	
Összesen:	4 pont	