Check Comprehension $|8\rangle$

質量 m, エネルギー E の粒子が, x < 0 の領域からポテンシャル V(x) に入射する. ステップポテンシャル

$$V(x) = \begin{cases} 0 & (x < 0) \\ V_0 & (x > 0) \end{cases}$$

の場合, $0 < E < V_0$ のとき,x < 0 における波動関数は,入射波 $\mathrm{e}^{\mathrm{i}kx}$ と反射波 $\boxed{1}$ の重ね合わせになる.ディラック定数を \hbar とすると,波数 k は $k = \boxed{2}/\hbar$ で与えられる.x > 0 における波動関数は,エバネッセント波 $\mathrm{e}^{-\alpha x}$ になる. α^{-1} はポテンシャルに侵入する深さであり, $\alpha = \boxed{3}/\hbar$ と表される.一方, $0 < V_0 < E$ のときの波動関数は,x < 0 では入射波 $\mathrm{e}^{\mathrm{i}kx}$ と反射波 $\boxed{1}$ の重ね合わせに,x > 0 では透過波 $\mathrm{e}^{\mathrm{i}\kappa x}$ になる.波数 κ は $\kappa = \boxed{4}/\hbar$ で与えられる.

ポテンシャル障壁

$$V(x) = \begin{cases} 0 & (|x| > a) \\ V_0 & (|x| < a) \end{cases}$$

の場合, $0 < E < V_0$ のときの波動関数は,x < -a では入射波 e^{ikx} と反射波 1 の重ね合わせに,|x| < a では $e^{-\alpha x}$ と 5 の和に,x > a では透過波 6 になる.ポテンシャル障壁が十分薄いと粒子は障壁をすり抜ける.このような現象は 7 と呼ばれる.一方, $0 < V_0 < E$ のときの波動関数は,x < -a では入射波 e^{ikx} と反射波 1 の重ね合わせに,|x| < a では $e^{i\kappa x}$ と 8 の重ね合わせに,x > a では透過波 6 になる.エネルギー E がある値のとき,粒子がポテンシャル障壁を通り越す確率が急激に大きくなる 9 が起こる.

1: e^-ikx 2: √(2mE) 3: √(2m(V_0-E)) 4: √(2m(E-V_0))

5: e^ax 6: e^ikx 7: トンネル効果 8: e^-кx