BUGS functions

BUGS functions		
Function	Usage	Definition
Complementary	cloglog(p)<-a+b*x	$\log[-\log(1-p)] = a + bx$
$\log \log$	y<-cloglog(p)	$y = \log[-\log(1-p)]$
Logical equals	y < -equals(x,z)	y = 1 if $x = z$
		$y = 0 \text{ if } x \neq z$
Exponential	y < -exp(x)	$y = e^x$
Inner product	y < -inprod(a[],b[])	$y = \sum_{i} a_i b_i$
Matrix inverse	y[,] < -inverse(x[,])	$y = x^{-1}$
		$y, x \text{ both } n \times n \text{ matrices}$
Natural logarithm	log(lambda)<-a+b*x	$\log(\lambda) = a + bx$
	y<-log(x)	$y = \log x$
Log determinant	y<-logdet(x[,])	$y = \log x $
		x is a $n \times n$ matrix
Log factorial	y < -logfact(x)	$y = \log(x!)$
Log(gamma function)	y < -loggam(x)	$y = \log[\Gamma(x)]$
Logit	y<-logit(p)	$y = \log[p/(1-p)]$
	logit(p)<-a+b*x	$\log[p/(1-p)] = a + bx$
Maximum	c<-max(a,b)	$c = \max(a, b)$
Mean	x.bar < -mean(x[])	$\bar{x} = \sum_{i} x_i / n$
Minimum	c<-min(a,b)	$c = \min(a, b)$
Standard Gaussian	p<-phi(x)	$p = \int_{-\infty}^{x} (2\pi)^{-1/2} e^{-t^2/2} dt$
distribution function		i.e. $p = \Phi(x)$
Power	z < -pow(x,y)	$z = x^y$
Probit	y<-probit(p)	$y = \Phi^{-1}(p)$
	probit(p)<-a+b*x	$\Phi^{-1}(p) = a + bx$
Standard deviation	s < -sd(x[])	$s = \sqrt{\sum_{i} (x_i - \bar{x})^2 / n}$
Square root	sigma<-sqrt(tau)	$\sigma = \sqrt{\tau}$
Unit step	y<-step(x)	y = 0 if $x < 0$
		$y = 1 \text{ if } x \ge 0$
Sum	x.sum < -sum(x[])	$x_{\text{sum}} = \sum_{i} x_{i}$

BUGS distributions

BUGS distantion	Usage	Definition
Bernoulli	r~dbern(p)	$f(r \mid p) = p^r (1-p)^{1-r};$
		r = 0, 1
beta	p~dbeta(a,b)	$f(p \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1};$
		0
binomial	r~dbin(p,n)	$f(r \mid p, n) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r};$
		$r = 0, \dots, n$
categorical	r~dcat(p[])	$f(r \mid p_1, \dots, p_R) = p_r;$
		$r = 1, 2,, R$ where $R = \dim(\mathbf{p})$
chi-squared	x~dchisq(k)	$f(x \mid k) = 2^{-k/2} x^{k/2-1} e^{-x/2} / \Gamma(\frac{k}{2});$
111.	~11 (x > 0
double	x~ddexp(mu,tau)	$f(x \mid \mu, \tau) = \frac{\tau}{2} e^{-\tau x - \mu };$ $-\infty < x < \infty$
exponential	F3 ~ / F3 \	
Dirichlet	<pre>p[]~ddirch(alpha[])</pre>	$f(\mathbf{p} \mid \alpha) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \prod_{i} p_{i}^{\alpha_{i}-1};$
		$0 < p_i < 1, \sum_i p_i = 1$
exponential	$x^dexp(lambda)$	$f(x \mid \lambda) = \lambda e^{-\lambda x};$
	~ 1	x > 0
gamma	x~dgamma(r,mu)	$f(x \mid r, \mu) = \mu^r x^{r-1} e^{-\mu x} / \Gamma(r);$ x > 0
lognormal	x~dlnorm(mu,tau)	1 / 0
10811011111		$^{-1}\exp[-\frac{\tau}{2}(\log x - \mu)^2]; x > 0$
logistic	$f(x \mid \mu, \tau) = \sqrt{2\pi}^{x}$ x~dlogis(mu,tau)	$\exp\left[-\frac{1}{2}(\log x - \mu)\right], x > 0$
logistic	•	$(1 + e^{\tau(x-\mu)})^2; -\infty < x < \infty$
multivariate	$x[]^{\alpha}dmnorm(mu[],T[,])$, ,
normal		$(2 \mathbf{T} ^{1/2}\exp[-\frac{1}{2}(\mathbf{x}-\mu)'\mathbf{T}(\mathbf{x}-\mu)];$
	J (F)) (~)	$-\infty < x_i < \infty$
multinomial	x[]~dmulti(p[],N)	$f(\mathbf{x} \mid \mathbf{p}, N) = \frac{(\sum_{i} x_{i})!}{\prod_{i} x_{i}!} \prod_{i} p_{i}^{x_{i}};$
	$0 < p_i < 1, \sum_i p_i = 1$	$\sum_{i} x_{i} = N$
negative		$f(x \mid p, r) = \frac{(x+r-1)!}{x!(r-1)!} p^r (1-p)^x;$
binomial	v anegomi(h'i)	$f(x \mid p, r) = \frac{1}{x!(r-1)!} p(1-p),$ $x = 0, 1, 2, \dots$
normal	x~dnorm(mu,tau)	$\omega = 0, 1, 2, \dots$
110111101		$\operatorname{cp}[-\tau(x-u)^2] \cdot -\infty < x < \infty$
Domoto	$\int (x \mid \mu, \tau) = \sqrt{2\pi} ex$	$\exp\left[-\frac{\tau}{2}(x-\mu)^2\right]; -\infty < x < \infty$ $f(x \mid \alpha, c) = \alpha c^{\alpha} x^{-(\alpha+1)};$
Pareto	x~dpar(alpha,c)	
		x > c

RIICS	distributions	continued
DUU	aisittouitous	сопитичеа

Usage	Definition	
r~dpois(lambda)	$f(r \mid \lambda) = e^{-\lambda} \frac{\lambda^r}{r!};$	
	$r=0,1,\ldots$	
<pre>x~dt(mu,tau,k)</pre>		
$f(x \mid \mu, \tau, k) = \frac{\Gamma([k+1]/2)}{\Gamma(k/2)}$	$\frac{2}{\sqrt{\frac{\tau}{k\pi}}} \left[1 + \frac{\tau}{k} (x - \mu)^2\right]^{-(k+1)/2};$	
	$-\infty < x < \infty$	
x~dunif(a,b)	$f(x \mid a, b) = 1/(b - a);$	
	a < x < b	
<pre>x~dweib(v,lambda)</pre>		
$f(x \mid v, \lambda) = v\lambda x^{v-1} \exp(-\lambda x^v);$		
	x > 0	
$x[,]^dwish(R[,],k)$		
$f(\mathbf{x} \mid \mathbf{R}, k) \propto \mathbf{R} ^{k/2}$	$\mathbf{x} ^{(k-p-1)/2}\exp(-\frac{1}{2}\mathrm{tr}[\mathbf{R}\mathbf{x}]);$	
x symmetric and positive definite		
	r~dpois(lambda) $ \begin{aligned} &\textbf{x}~\text{dt}(\texttt{mu},\texttt{tau},\texttt{k}) \\ &f(x \mid \mu, \tau, k) = \frac{\Gamma([k+1]/2)}{\Gamma(k/2)} \\ &\textbf{x}~\text{dunif}(\texttt{a},\texttt{b}) \\ &\textbf{x}~\text{dweib}(\texttt{v},\texttt{lambda}) \\ &f(x \mid v, \lambda) = \\ &\textbf{x}[,]~\text{dwish}(\texttt{R}[,],\texttt{k}) \\ &f(\textbf{x} \mid \textbf{R}, k) \propto \textbf{R} ^{k/2} \end{aligned} $	