1	WHAT	r is CL	AIMED IS:
2		A at	hod for obtaining seismic data comprising the steps of:
3	1.	Ame	flod for obtaining soloring data solver
4 5		(a)	translating a constellation of seismic energy sources along a
6		(α)	survey path, the seismic energy sources including a reference
7			energy source and at least one satellite energy source;
8			·
9		(b)	activating the reference energy source and the at least one
10		` ,	satellite energy source at a time delay relative to the activation
11			of the reference energy source once each at spaced apart
12			activation locations along the survey path to generate a series of
13			superposed wavefields which propagate through a subsurface
14			and are reflected from and refracted through material
15			heterogeneities in the subsurface, the time delay being varied
16			between the spaced apart activation locations; and
17			troops gaparated by
18		(c)	recording seismic data including seismic traces generated by
19			the series of superposed wavefields utilizing spaced apart
20			receivers.
21			and the comprising:
22		The	method of claim 1 further comprising:
23			the time delays to separate signals
24		processing the seismic data using the time delays to separate sign generated from the respective energy sources.	
25		ger	nerated from the respective energy doubtes.
26		The	e method of claim 2 wherein:
27		1 116	e Method of Claim 2 Whorem.
28		the	step of recording seismic data includes recording amplitudes of the
29		en	perposed wavefields, the location of the receivers, the locations of
3(the	e energy sources, and the time delays between the activations of the
3:		ref	erence energy source and the at least one satellite energy source.
ن.	-	, 01	C.C

1	4.	The method of claim 2 wherein:
2		
3		processing the seismic data further includes sorting into a common-
4		geometry domain and replicating the seismic traces of data into
5		multiple datasets associated with each particular energy source;
6		
7		time adjusting each trace in each replicated dataset in the common-
8		geometry domain using the time delays associated with each particular
9		source to make signals generated from that particular energy source
10		generally coherent while rendering signals from the other energy
11		sources generally incoherent.
12		
13	5.	The method of claim 4 wherein:
14		
15		the common-geometry domain is one of common-midpoint, common-
16		offset, common-receiver and common-azimuth.
17		
18	6.	The method of claim 4 further comprising:
19		
20		attenuating the incoherent signals from the datasets of coherent signal
21		and incoherent signal associated with the respective energy sources to
22		produce enhanced data sets associated with the respective energy
23		sources.
24		
25	7.	The method of claim 6 wherein:
26		
27		the attenuation step includes using at least one of Radon filtering, FX
28		filtering, dynamic noise attenuation, stacking, and migration.

1	8.	The method of claim 6 wherein:
2		
3		the step of attenuation includes using dynamic noise attenuation
4		wherein the relative amplitudes of the coherent signals from each of
5		the respective energy sources are preserved.
6	•	
7	9.	The method of claim 1 wherein:
8		
9		the at least one satellite energy source includes a plurality of energy
10		sources, and time delays are variable between each of the plurality of
11		energy sources in the constellation at each of the activation locations.
12		
13	10.	The method of claim 1 wherein:
14		
15		the time delay includes a constant portion $t_{\mbox{\scriptsize c}}$ which remains constant for
16		any particular source for the duration of the seismic survey and a
17		variable portion t _v , which varies for each source and for each activation
18		location.
19		
20	11.	The method of claim 10 wherein:
21		
22		the constant portion $t_{\rm c}$ is different for each satellite source.
23		
24	12.	The method of claim 1 wherein:
25		
26		the receivers are disposed generally in a linear alignment along a
27		predetermined length.
28		
29	13.	The method of claim 12 wherein:
30		
31		an elongate streamer includes a cable and the receivers and the
32		streamer is towed by a marine vessel.

1	14.	The method of claim 13 wherein:
2		
3		the reference energy source and the at least one satellite energy
4		source is generally collinear with the streamer.
5		
6	15.	The method of claim 13 wherein:
7		
8		at least one of the energy sources is located laterally outboard from the
9		linear alignment of receivers a distance of at least one-tenth of the
10		length of the receiver cable.
11		
12	16.	The method of claim 13 wherein:
13		the street in
14		the energy source located farthest upstream from the streamer is
15		located at least one half the length of streamer upstream from the
16		streamer.
17		
18	17.	The method of claim 13 wherein:
19		i and the streamer is
20		the energy source located farthest downstream from the streamer is
21		located at least one half the length of streamer downstream from the
22		streamer.
23	40	The method of claim 4 whorein:
24	18.	The method of claim 1 wherein:
25		the receivers are fixed relative to the earth.
26		the receivers are fixed relative to the curti.
27	40	The method of claim 1 wherein:
28	19.	The menion of claim 1 who can
29		an elongated cable of receivers resides inside a well bore.
30		all clorigated capie of recorded resides included a treat before

1 20. The method of claim 1 wherein:

2

3 the variable time delays range from plus to minus one-half the time

4 interval between successive activation locations.