PROVA SUBSTITUTIVA DE TERMODINÂMICA I (EOE-363) (Profs. Frederico W. Tavares)

1) (50 pontos) Uma mistura, em estado de líquido saturado, contendo 60%, em mols, de n-butano, 20%, em mols, de n-hexano e 20%, em mols, de n-octano é alimentada a unidade de flash a 1 atm. O tanque de flash trabalha a 1 atm e 50 °C. Fazendo-se as suposições pertinentes, calcular a temperatura da corrente de entrada, as composições das correntes de saída e o calor (aproximado) envolvido no processo.

Compostos	Tc(K)	Pc(atm)	W	< Cp > V (cal/gmolK)	$< Cp >^{L} (cal/gmolK)$
n-butano	425,2	38,0	0,166	28	35
n-hexano	507,5	30,0	0,295	20	25
n-octano	568,8	24,5	0,394	19	22

$$P^{SAT} = P_C \exp[5.4(w+1)(1-T_C/T)]$$
 $\Delta S_n^{VAP}(cal/gmolK) = 8.0 + 1.897 \ln(T_n)$

- 2) (30 pontos) Duas correntes de água, corrente 1 (100 lbm/s de líquido 10 psia e 20% de vapor) e corrente 2 (nas condições de 10 psia e 350 °F), são misturadas em um misturador de correntes e depois passa em um trocador de calor, produzindo uma corrente 3. A corrente 3 passa por um compressor (com eficiência de compressão de 80%) e produz uma corrente 4 que deve ter a seguinte especificação: 750 psia e 750 °F. Encontre as propriedades termodinâmicas (T, P, H e S) das correntes e calcule a taxa de calor e a potência elétrica envolvidas no processo.
- 3) (20 Pontos) O enchimento de um tanque pode ser considerado como um processo adiabático (se for rápido). Supondo que o tanque encontra-se vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a temperatura final e a quantidade de massa alimentada a um tanque de 500 ft³ supondo que corrente de alimentação é água a 750 psia e 507 °F.

ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE, 200	DEG F 250	300	350
(101.74)	V HU	0.0161 69.73 69.73 0.1326	333.60 1044.1 1106.8 1.9781	392.5 1077.5 1150.2 2.0609	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445
(162.24)	VHS	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9054	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664
10 (193.21)	V UHS	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892
14.696 (212.00)	V U H S	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460
ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE 700	, DEG F 750	800	900
725 (507.01)	Y U HS	0.0206 493.5 496.3 0.6975	0.6318 1116.5 1201.3 1.4268	0.8729 1227.0 1344.1 1.5624	0.9240 1249.9 1373.8 1.5876	0.9732 1272.0 1402.6 1.6109	1.068 1315.3 1458.5 1.6536
750 (510.84)	V H S	0.0207 498.0 500.9 0.7022	0.6095 1116:1 1200:7 1.4232	0.8409 1225.8 1342.5 1.5577	0.8907 1248.9 1372.5 1.5830	0.9386 1271.2 1401.5 1.6065	1.031 1314.6 1457.6 1.6494

$$\Delta S_{n}^{VAP} = 8.0 + 1.897 \ln(T_{n})$$
 e $\frac{\Delta H_{a}^{VAP}}{\Delta H_{b}^{VAP}} = \left(\frac{T_{a} - T_{C}}{T_{b} - T_{C}}\right)^{0.38}$

 $R = 1.987 cal/(gmol K) = 82.05(atmcm^3)/(gmol K)$

 $144 \text{ Btu/lbm} = 778 \text{ ft}^3 \text{psia/lbm}$

 $T(^{0}F) = T(R) - 459.7$; $T(^{0}C) = T(K) - 273.15$ e T(R) = 1.8T(K)