COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Polygons (part 2)

Paul Rosen Assistant Professor University of South Florida

Some slides from Valentina Korzhova

POINT INSIDE A POLYGON TEST

• How can we tell if point A is inside of polygon P?

POINT INSIDE A POLYGON TEST

- EVEN—ODD RULE ALGORITHM
 - If a point A moves along a ray from infinity to A
 - If it crosses the boundary of a polygon, possibly several times, then it alternately goes from the outside to inside to outside
 - After every two "border crossings" the moving point goes outside.
 - This observation may be mathematically proved using the Jordan curve theorem.

POINT INSIDE A POLYGON TEST

• How can we tell if point A is inside of polygon P?

SUM OF ANGLES

• THE SUM OF THE INTERNAL ANGLES OF A POLYGON OF N VERTICES IS?

SUM OF ANGLES

• Use the Triangle Angle-Sum Theorem to find the sum of the measures of the angles of a polygon.

- TRIANGLE ANGLE-SUM THEOREM
 - The sum of the measures of the angles of a triangle measure 180°

SUM OF ANGLES

• THEOREM: THE SUM OF THE MEASURES OF THE INTERNAL ANGLES OF AN N-GON IS (N - 2) *180.

PROOF BY INDUCTION

TRIANGULATION THEORY

- Theorem: Every triangulation of an N-vertex polygon P uses n-3 diagonals and consists of n-2 triangles.
 - Proof by induction:
 - Base case N=3
 - Assume true for any polygon < N sides
 - Given a N sided polygon partition it into two (N1 and N2) by adding a diagonal Total number of diagonals:

$$(N1-3)+(N2-3)+1=(N1+N2-2)-3=N-3$$

Total number of triangles:

$$(N1-2) + (N2-2) = (N1+N2)-4 = N+2-4 = N-2$$

TRIANGULATION EXAMPLE

AREA OF A POLYGON

• WHAT IS THE AREA OF THE POLYGON

AREA OF A TRIANGLE

$$area = 0.5|a - b||c - d|$$

SUM OF AREAS

 AREA OF THE POLYGON CAN BE FOUND BY ADDING THE AREAS OF A TRIANGULATION

ANOTHER WAY OF COMPUTING AREA

$$Area(T) = Area(p, b, c) + Area(p, c, a) + Area(p, a, b)$$

AREA OF POLYGON

• THEOREM: LET A POLYGON (CONVEX OR NON-CONVEX) P HAVE VERTICES v_0, v_1, \dots, v_{n-1}

$$Area(P) = A(p, v_0, v_1) + A(p, v_1, v_2) + A(p, v_2, v_3)$$

$$+ \dots + A(p, v_{n-2}, v_{n-1}) + A(p, v_{n-1}, v_0)$$

PROOF IS BY INDUCTION

