## 39 ЭДС индукции в движущемся проводе

Пусть прямой провод перемещается в постоянном магнитном поле (рис. 1).



Рис. 1. Движение провода в магнитном поле

Провод CD движется в магнитном поле B в плоскости, перпендикулярной линиям поля, поступательно так, что его скорость  $\vec{v}$  образует прямой угол с осью провода  $(\vec{v} \perp CD)$ . Опыт показывает, что в этом случае между концами провода возникает напряжение. В проводе как бы появляется «невидимая батарейка» с ЭДС индукции (без внутреннего сопротивления).

ЭДС **индукции в движущемся проводе** при его движении в магнитном поле равна:

$$\mathscr{E}_i = Bvl\cos\alpha,\tag{1}$$

где B — индукция магнитного поля, v — скорость провода, l — длина провода (находящегося в магнитном поле;  $\vec{v} \perp l$ ),  $\alpha$  — угол между вектором  $\vec{B}$  и перпендикуляром к плоскости движения провода.

На рис. 2 изображен пример к определению ЭДС индукции в движущемся проводе.



Рис. 2. К определению ЭДС индукции в движущемся проводе

В магнитном поле с индукцией  $\vec{B}$  поступательно движется провод длиной l со скоростью  $\vec{v}$  (причем  $\vec{v} \perp l$ ), при этом вектор  $\vec{B}$  образует угол  $\alpha$  с перпендикуляром  $\Pi$  к плоскости движения. Формула (1) дает ЭДС индукции в этом проводе:  $\mathscr{E}_i = Bvl\cos\alpha$ .