Some Set Properties Underlying Geometry and Physics

George. M. Van Treeck

ABSTRACT. Euclidean volume and the Minkowski distances (Manhattan, Euclidean, etc. distances) are derived from a set and limit-based foundation without referencing the primitives and relations of geometry. Sequencing a strict linearly ordered set in all n-at-a-time orders via successor/predecessor relations is proved to be a cyclic set of at most 3 members. A cyclic set of 3 distance domain interval lengths are related to other types of domain interval lengths by constant unit-factoring ratios. The geometry proofs and ratios are used to provide simple and short derivations of: the gravity (G), charge (k_e) , and Planck (h) constants, Newton's, Gauss's, and Poisson's laws of gravity, Coulomb's charge law, the spacetime, simplified general relativity, Schwarzchild's gravitational time dilation, Einstein's gravitational lens, Planck relation, Compton wavelength, de Broglie wavelength, and quantum-relativity equations. All the proofs are verified in Coq.

Contents

1.	Introduction	1
2.	Ruler measure and convergence	2
3.	Volume	3
4.	Distance	3
5.	Applications to physics	7
6.	Insights and implications	11
References		14

1. Introduction

Mathematical analysis can construct differential calculus from a set and limit-based foundation without referencing the primitives and relations of Euclidean geometry, like straight line, angle, etc., which provides a more rigorous foundation and deeper understanding of geometry and physics. But Euclidean volume in the Riemann integral, Lebesgue integral, measure theory, and distance in the vector magnitude and metric space criteria are definitions motivated by Euclidean geometry [Gol76] [Rud76] rather than derived from a set and limit-based foundation.

An intuitive, set-based motivation of Euclidean volume is the number, v_c , of ordered combinations (n-tuples): $v_c = \prod_{i=1}^n |x_i|$, where $|x_i|$ is the cardinal of the countable, disjoint set, x_i . But, some well-known analysis textbooks do not provide a proof that, $\lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa \Rightarrow v = \prod_{i=1}^n s_i$, where each set, x_i , is a set of size κ subintervals of each interval, $[a_i, b_i] \subset \mathbb{R}$, and where $s_i = b_i - a_i$. [Gol76] [Rud76]. In this article, that proof is provided.

 $v_c = \prod_{i=1}^n |x_i| = f(|x_1|, \dots, |x_n|, n)$. If f is a bijective function, then $\exists d_c : d_c = f^{-1}(v_c, n)$ and $v_c = f(d_c, n) = f(|x_1|, \dots, |x_n|, n)$. If f is also isomorphic, then $\forall |x_i|, d_c = |x_1| = \dots = |x_n|$ and $v_c = \prod_{i=1}^n |x_i| = \prod_{i=1}^n d_c = d_c^n$.

Where $v_c = f(|x_1|, \dots, |x_n|, n)$ is a bijective and isomorphic function, it will be proved that $\lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\sum_{j=1}^m v_{c_i}) \cdot \kappa \Rightarrow d^n = \sum_{i=1}^m d_i^n$. d is the ρ -norm (Minkowski distance) [Min53], which will be proved to imply the metric space properties [Rud76].

Sequencing the domain sets, x_1, \dots, x_n , from i=1 to n, is a strict linear (total) order, where a total order is defined in terms of successor and predecessor relations [CG15]. Sequencing a set, via successor and predecessor relations, in all n-at-atime orders, requires a "symmetry" constraint, where every set member is either a successor or predecessor to every other set member. A strict linearly ordered and symmetric set will be proved to be a cyclic set, where $n \leq 3$.

Therefore, if $\{s_1, s_2, s_3\}$ is a strict linearly ordered and symmetric set of 3 "distance" dimensions, then another dimension, s_4 , must have a different type (is a member of different set). In an orthogonal Cartesian grid around a local origin point, there are constant, unit-factoring ratios, eigenvalues, between a unit of a 3-dimensional distance, r, and the units of other types dimensions: $r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q = \cdots$.

The ratio constants are used for simple and short derivations of: the gravity (G), charge (k_e) , and Planck (h) constants. And the ratio constants are also used for simpler and shorter derivations of: Newton's, Gauss's, and Poisson's laws of gravity, and the spacetime, simplified general relativity, Schwarzchild's gravitational time dilation, Einstein's gravitational lens, Planck relation, Compton wavelength, de Broglie wavelength, quantum-relativity gravity and charge equations.

All the proofs in this article have been verified using using the Coq proof verification system [Coq23]. The formal proofs are in the Coq files, "euclidrelations.v" and "threed.v," at: https://github.com/treeck/RASRGeometry.

2. Ruler measure and convergence

A ruler (measuring stick) measures the size of each interval approximately as the sum of the nearest integer number, p, of size κ subintervals. The ruler is both an inner and outer measure of an interval.

Definition 2.1. Ruler measure, $M = \sum_{i=1}^{p} \kappa = p\kappa$, where $\forall [a, b] \subset \mathbb{R}$, $s = b - a \land 0 < \kappa \leq 1 \land (p = floor(s/\kappa) \lor p = ceiling(s/\kappa))$.

Theorem 2.2. Ruler convergence: $M = \lim_{\kappa \to 0} p\kappa = s$.

The formal proof, "limit_c_0_M_eq_exact_size," is in the file, euclidrelations.v.

PROOF. (epsilon-delta proof) By definition of the floor function, $floor(x) = max(\{y : y \le x, y \in \mathbb{Z}, x \in \mathbb{R}\})$:

 $(2.1) \quad \forall \; \kappa > 0, \; p = floor(s/\kappa) \; \; \wedge \; \; 0 \leq |floor(s/\kappa) - s/\kappa| < 1 \; \; \Rightarrow \; \; |p - s/\kappa| < 1.$

Multiply both sides of inequality 2.1 by κ :

$$(2.2) \forall \kappa > 0, |p - s/\kappa| < 1 \Rightarrow |p\kappa - s| < |\kappa| = |\kappa - 0|.$$

$$(2.3) \quad \forall \ \epsilon = \delta \quad \land \quad |p\kappa - s| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |p\kappa - s| < \epsilon \quad := \quad M = \lim_{\kappa \to 0} p\kappa = s. \quad \Box$$

The following is an example of ruler convergence for the interval, $[0,\pi]$: $s=\pi-0$, and $p=floor(s/\kappa) \Rightarrow p \cdot \kappa = 3.1_{\kappa=10^{-1}},\ 3.14_{\kappa=10^{-2}},\ 3.141_{\kappa=10^{-3}},...,\pi_{\lim_{\kappa\to 0}}$.

Lemma 2.3. $\forall n \geq 1, \quad 0 < \kappa < 1 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$

Proof. The formal proof , "lim_c_to_n_eq_lim_c," is in the Coq file, euclid relations.v.

$$(2.4) \quad n \ge 1 \quad \land \quad 0 < \kappa < 1 \quad \Rightarrow \quad 0 < \kappa^n < \kappa \quad \Rightarrow \quad |\kappa - \kappa^n| < |\kappa| = |\kappa - 0|.$$

$$(2.5) \quad \forall \ \epsilon = \delta \quad \land \quad |\kappa - \kappa^n| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |\kappa - \kappa^n| < \delta = \epsilon \quad := \quad \lim_{\kappa \to 0} \kappa^n = 0.$$

$$(2.6) \qquad \lim_{\kappa \to 0} \kappa^n = 0 \quad \wedge \quad \lim_{\kappa \to 0} \kappa = 0 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa. \qquad \Box$$

3. Volume

DEFINITION 3.1. A countable n-volume is the number of ordered combinations (n-tuples), v_c , of the members of n number of disjoint, countable domain sets, x_i :

(3.1)
$$\exists n \in \mathbb{N}, v_c \in \{0, \mathbb{N}\}, x_i \in \{x_1, \dots, x_n\}: \bigcap_{i=1}^n x_i = \emptyset \land v_c = \prod_{i=1}^n |x_i|.$$

Theorem 3.2. Euclidean volume,

(3.2)
$$\forall [a_i, b_i] \in \{[a_1, b_1], \dots [a_n, b_n]\}, [v_a, v_b] \subset \mathbb{R}, s_i = b_i - a_i, v = v_b - v_a : v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i.$$

The formal proof, "Euclidean_volume," is in the Coq file, euclid relations.v.

Proof.

$$(3.3) \ v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v_c \kappa = (\prod_{i=1}^n |x_i|) \kappa \Leftrightarrow \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa.$$

Apply the ruler (2.1) and ruler convergence (2.2) to equation 3.3:

$$(3.4) \quad \exists \ v, \kappa \in \mathbb{R}: \ v_c = floor(v/\kappa) \quad \Rightarrow \quad v = \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa.$$

Apply lemma 2.3 to equation 3.4:

$$(3.5) v = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_i| \right) \kappa = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_i| \right) \kappa^n = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_i| \kappa \right).$$

Apply the ruler (2.1) and ruler convergence (2.2) to s_i :

$$(3.6) \exists s_i, \kappa \in \mathbb{R} : floor(s_i/\kappa) = |x_i| \Rightarrow \lim_{\kappa \to 0} (|x_i|\kappa) = s_i.$$

$$(3.7) v = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_i| \kappa \right) \wedge \lim_{\kappa \to 0} \left(|x_i| \kappa \right) = s_i \Rightarrow v = \prod_{i=1}^{n} s_i$$

4. Distance

DEFINITION 4.1. Countable distance, $d_c = f(v_c, n) = f(|x_1|, \dots, |x_n|, n) = \prod_{i=1}^n |x_i|$ is bijective and isomorphic: $v_c = \prod_{i=1}^n |x_i| = \prod_{i=1}^n d_c = d_c^n$.

4.1. Minkowski distance (ρ -norm).

Theorem 4.2. Minkowski distance (ρ -norm):

$$v_c = \sum_{j=1}^m v_{c_i} \quad \Rightarrow \quad \exists d, d_i \in \mathbb{R} : d^n = \sum_{i=1}^m d_i^n.$$

 $The \ formal \ proof, \ "Minkowski_distance," \ is \ in \ the \ Coq \ file, \ euclidrelations.v.$

Proof. Apply the countable distance definition (4.1) to the assumption:

$$(4.1) \quad v_c = \prod_{i=1}^n |x_i| = \prod_{i=1}^n d_c = d_c^n \quad \land \quad v_{c_i} = \prod_{j=1}^n |x_{i_j}| = \prod_{i=1}^n d_{c_i} = d_{c_i}^n$$

$$\land \quad v_c = \sum_{j=1}^m v_{c_i} \quad \Rightarrow \quad d_c^n = \sum_{j=1}^m d_{c_i}^n.$$

Multiply both sides of equation 4.1 by κ and take the limit:

$$(4.2) d_c^n = \sum_{j=1}^m d_{c_i}^n \Leftrightarrow \lim_{\kappa \to 0} d_c^n \kappa = \lim_{\kappa \to 0} \sum_{j=1}^m d_{c_i}^n \kappa.$$

Apply lemma 2.3 to equation 4.1:

$$(4.3) \quad \lim_{\kappa \to 0} d_c^n \kappa = \lim_{\kappa \to 0} \sum_{j=1}^m d_{c_i}^n \kappa \quad \wedge \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Leftrightarrow \lim_{\kappa \to 0} d_c^n \kappa^n = \lim_{\kappa \to 0} \sum_{j=1}^m d_{c_i}^n \kappa^n \Leftrightarrow \lim_{\kappa \to 0} (d_c \kappa)^n = \lim_{\kappa \to 0} \sum_{j=1}^m (d_{c_i} \kappa)^n.$$

Apply the ruler (2.1) and ruler convergence theorem (2.2) to equation 4.3:

$$(4.4) \quad \exists \ d, d_i : \ d_c = floor(d/\kappa), \ d = \lim_{\kappa \to 0} d_c \kappa$$

$$\land \quad d_{c_i} = floor(d_i/\kappa), \ d_i = \lim_{\kappa \to 0} d_{c_i} \kappa \quad \Rightarrow$$

$$d^n = \lim_{\kappa \to 0} (d_c \kappa)^n = \lim_{\kappa \to 0} \sum_{i=1}^m (d_{c_i} \kappa)^n = \sum_{i=1}^m d_i^n. \quad \Box$$

4.2. Distance inequality. The formal proof, distance_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.3. Distance inequality

$$\forall n \in \mathbb{N}, \ v_a, v_b \ge 0: \ (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}.$$

PROOF. Expand $(v_a^{1/n} + v_b^{1/n})^n$ using the binomial expansion:

$$(4.5) \quad \forall \ v_a, v_b \ge 0: \quad v_a + v_b \le v_a + v_b + \\ \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^{n-k} (v_b^{1/n})^k + \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^k (v_b^{1/n})^{n-k} = (v_a^{1/n} + v_b^{1/n})^n.$$

Take the n^{th} of both sides of the inequality 4.5:

$$(4.6) \ \forall \ v_a, v_b \geq 0, n \in \mathbb{N} : v_a + v_b \leq (v_a^{1/n} + v_b^{1/n})^n \Rightarrow (v_a + v_b)^{1/n} \leq v_a^{1/n} + v_b^{1/n}. \quad \ \Box$$

4.3. Distance sum inequality. The formal proof, distance_sum_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.4. Distance sum inequality

$$\forall m, n \in \mathbb{N}, \ a_i, b_i \ge 0: \ (\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

PROOF. Apply the distance inequality (4.3):

$$(4.7) \quad \forall m, n \in \mathbb{N}, \ v_a, v_b \ge 0: \quad v_a = \sum_{i=1}^m a_i^n \quad \land \quad v_b = \sum_{i=1}^m b_i^n \quad \land$$

$$(v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n} \quad \Rightarrow \quad ((\sum_{i=1}^m a_i^n) + (\sum_{i=1}^m b_i^n))^{1/n} =$$

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}. \quad \Box$$

4.4. Metric Space. All Minkowski distances (ρ -norms) have the properties of metric space.

The formal proofs: triangle_inequality, symmetry, non_negativity, and identity_of_indiscernibles are in the Coq file, euclidrelations.v.

Theorem 4.5. Triangle Inequality:

$$d(s_1, s_2) = (\sum_{i=1}^{2} s_i^p)^{1/p} \implies d(u, w) \le d(u, v) + d(v, w).$$

PROOF. $\forall p \geq 1, \quad k > 1, \quad u = s_1, \quad w = s_2, \quad v = w/k$:

$$(4.8) (u^p + w^p)^{1/p} \le ((u^p + w^p) + 2v^p)^{1/p} = ((u^p + v^p) + (v^p + w^p))^{1/p}.$$

Apply the distance inequality (4.3) to the inequality 4.8:

$$(4.9) \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \wedge (v_{a} + v_{b})^{1/n} \leq v_{a}^{1/n} + v_{b}^{1/n}$$

$$\wedge \quad v_{a} = u^{p} + v^{p} \wedge v_{b} = v^{p} + w^{p}$$

$$\Rightarrow \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p}$$

$$\Rightarrow \quad d(u, w) = (u^{p} + w^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p} = d(u, v) + d(v, w). \quad \Box$$

Theorem 4.6. Symmetry: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, v) = d(v, u)$.

PROOF. By the commutative law of addition:

(4.10)
$$\forall p : p \ge 1$$
, $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} = (s_1^p + s_2^p)^{1/p}$
 $\Rightarrow d(u, v) = (u^p + v^p)^{1/p} = (v^p + u^p)^{1/p} = d(v, u)$. \square

Theorem 4.7. Non-negativity: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \ge 0$.

PROOF. By definition, the length of an interval is always > 0:

$$(4.11) \forall [a_1, b_1], [a_2, b_2], u = b_1 - a_1, v = b_2 - a_2, \Rightarrow u \ge 0, v \ge 0.$$

(4.12)
$$p \ge 1, u, v \ge 0 \Rightarrow d(u, v) = (u^p + v^p)^{1/p} \ge 0.$$

Theorem 4.8. Identity of Indiscernibles: d(u, u) = 0.

PROOF. From the non-negativity property (4.7):

(4.13) $d(u, w) \ge 0 \quad \land \quad d(u, v) \ge 0 \quad \land \quad d(v, w) \ge 0$

$$\Rightarrow \exists d(u, w) = d(u, v) = d(v, w) = 0.$$

$$(4.14) d(u,w) = d(v,w) = 0 \Rightarrow u = v.$$

$$(4.15) d(u,v) = 0 \wedge u = v \Rightarrow d(u,u) = 0.$$

4.5. Set properties limiting a set to at most 3 members.

Definition 4.9. Totally ordered set:

$$\forall i \ n \in \mathbb{N}, \ i \in [1, n-1], \ \forall x_i \in \{x_1, \dots, x_n\},$$

$$successor \ x_i = x_{i+1} \ \land \ predecessor \ x_{i+1} = x_i.$$

Definition 4.10. Symmetry (every set member is sequentially adjacent to every other member):

 $\forall i, j, n \in \mathbb{N}, \ \forall x_i, x_j \in \{x_1, \dots, x_n\}, \ successor \ x_i = x_j \Leftrightarrow predecessor \ x_j = x_i.$

Theorem 4.11. A strict linearly ordered and symmetric set is a cyclic set.

$$i = n \land j = 1 \Rightarrow successor x_n = x_1 \land predecessor x_1 = x_n.$$

The formal proof, "ordered_symmetric_is_cyclic," is in the Coq file, threed.v.

PROOF. A total order (4.9) assigns a unique label to each set member and assigns unique successors and predecessors for all set members except for the successor of x_n and the predecessor of x_1 . Therefore, the only member that can be a successor of x_n , without creating a contradiction, is x_1 . And the only member that can be a predecessor of x_1 , without creating a contradiction, is x_n . Applying the symmetry property (4.10):

$$(4.16) i = n \land j = 1 \land successor x_i = x_j \Rightarrow successor x_n = x_1.$$

Applying the definition of the symmetry property (4.10) to conclusion 4.16:

(4.17) successor
$$x_i = x_j \Rightarrow predecessor x_j = x_i \Rightarrow predecessor x_1 = x_n$$
.

Theorem 4.12. An ordered and symmetric set is limited to at most 3 members.

The formal proofs in the Coq file threed.v are:

Lemmas: adj111, adj122, adj212, adj123, adj133, adj233, adj213, adj313, adj323, and not_all_mutually_adjacent_gt_3.

The following proof uses Horn clauses (a subset of first order logic), which makes it clear which facts satisfy a proof goal.

PROOF.

It was proved that an ordered and symmetric set is a cyclic set (4.11).

Definition 4.13. (Cyclic) Successor of m is n:

 $(4.18) \ Successor(m, n, setsize) \leftarrow (m = setsize \land n = 1) \lor (n = m + 1 \le setsize).$

Definition 4.14. (Cyclic) Predecessor of m is n:

$$(4.19) \quad Predecessor(m, n, setsize) \leftarrow (m = 1 \land n = setsize) \lor (n = m - 1 \ge 1).$$

DEFINITION 4.15. Adjacent: member m is sequentially adjacent to member n if the successor of m is n or the predecessor of m is n. Notionally: (4.20)

 $Adjacent(m, n, setsize) \leftarrow Successor(m, n, setsize) \lor Predecessor(m, n, setsize).$

Every member is adjacent to every other member, where $setsize \in \{1, 2, 3\}$:

- $(4.21) \qquad \textit{Adjacent}(1,1,1) \leftarrow Successor(1,1,1) \leftarrow (m = setsize \land n = 1).$
- $(4.22) \qquad Adjacent(1,2,2) \leftarrow Successor(1,2,2) \leftarrow (n=m+1 \leq setsize).$
- $(4.23) \qquad Adjacent(2,1,2) \leftarrow Successor(2,1,2) \leftarrow (n = setsize \land m = 1).$
- $(4.24) \qquad Adjacent(1,2,3) \leftarrow Successor(1,2,3) \leftarrow (n=m+1 \leq setsize).$
- $(4.25) \qquad Adjacent(2,1,3) \leftarrow Predecessor(2,1,3) \leftarrow (n=m-1 \geq 1).$
- $(4.26) \qquad Adjacent(3,1,3) \leftarrow Successor(3,1,3) \leftarrow (n = setsize \land m = 1).$
- $(4.27) \qquad Adjacent(1,3,3) \leftarrow Predecessor(1,3,3) \leftarrow (m=1 \land n=setsize).$
- $(4.28) \qquad Adjacent(2,3,3) \leftarrow Successor(2,3,3) \leftarrow (n=m+1 \leq setsize).$
- $(4.29) \qquad Adjacent(3,2,3) \leftarrow Predecessor(3,2,3) \leftarrow (n=m-1 \geq 1).$

Member 2 is the only successor of member 1 for all $setsize \geq 3$, which implies member 3 is not (\neg) a successor of member 1 for all $setsize \geq 3$:

$$(4.30) \quad \neg Successor(1, 3, setsize \ge 3)$$

$$\leftarrow Successor(1, 2, setsize \ge 3) \leftarrow (n = m + 1 \le setsize).$$

Member n = setsize > 3 is the only predecessor of member 1, which implies member 3 is not (\neg) a predecessor of member 1 for all setsize > 3:

$$(4.31) \quad \neg Predecessor(1, 3, setsize \ge 3)$$

$$\leftarrow Predecessor(1, set size, set size > 3) \leftarrow (m = 1 \land n = set size > 3).$$

For all $setsize \geq 3$, some elements are not (\neg) sequentially adjacent to every other element (not symmetric):

$$(4.32) \quad \neg Adjacent(1,3,setsize > 3) \\ \leftarrow \neg Successor(1,3,setsize > 3) \land \neg Predecessor(1,3,setsize > 3). \quad \Box$$

5. Applications to physics

From the volume proof (3.2), two disjoint distance intervals, $[0, r_1]$ and $[0, r_2]$, define a 2-volume. From the Minkowski distance proof (4.2), $\exists r : r^2 = r_1^2 + r_2^2$. And from the 3D proof (4.12), for some non-distance type, $\tau : \tau \in \{t \ (time), \ m \ (mass), \ q \ (charge), \dots \}$, there exist unit-factoring ratios, μ , ν_1 , ν_2 :

(5.1)
$$\forall r, r_1, r_2 : r^2 = r_1^2 + r_2^2 \land r = \mu \tau \land r_1 = \nu_1 \tau \land r_2 = \nu_2 \tau$$

 $\Rightarrow (\mu \tau)^2 = (\nu_1 \tau)^2 + (\nu_2 \tau)^2 \Rightarrow \mu \ge \nu_1 \land \mu \ge \nu_2.$

 μ is the maximum-possible ($\mu \geq \nu_1, \nu_2$), constant, unit-factoring ratio, where:

(5.2)
$$\mu \in \{r_c/t_c, r_c/m_c, r_c/q_c, \dots\}: r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q = \dots$$

5.1. Space-time-mass-charge equations. Form equation **5.1**:

(5.3)
$$\forall r, r', r_{\nu}, \mu, \nu : r^{2} = r'^{2} + r_{\nu}^{2} \quad \land \quad r = \mu \tau \quad \land \quad r_{\nu} = \nu \tau$$

$$\Rightarrow \quad r' = \sqrt{(\mu \tau)^{2} - (\nu \tau)^{2}} = \mu \tau \sqrt{1 - (\nu/\mu)^{2}}.$$

Rest distance, r', contracts relative to coordinate distance, r, as $\nu \to \mu$:

(5.4)
$$r' = \mu \tau \sqrt{1 - (\nu/\mu)^2} \quad \land \quad \mu \tau = r \quad \Rightarrow \quad r' = r \sqrt{1 - (\nu/\mu)^2}.$$

Coordinate length, τ , dilates relative to the rest length, τ' , as $\nu \to \mu$:

(5.5)
$$\mu \tau = r' / \sqrt{1 - (\nu/\mu)^2} \quad \land \quad r' = \mu \tau' \quad \Rightarrow \quad \tau = \tau' / \sqrt{1 - (\nu/\mu)^2}.$$

Where τ is time, the space-like flat Minkowski spacetime event interval is:

(5.6)
$$dr^2 = dr'^2 + dr_{\nu}^2 \wedge dr_{\nu}^2 = dx_1^2 + dx_2^2 + dx_3^2 \wedge d(\mu\tau) = dr$$

$$\Rightarrow dr'^2 = d(\mu\tau)^2 - dx_1^2 - dx_2^2 - dx_3^2.$$

5.2. The constant G, and Gauss's, Poisson's, Newton's gravity laws. From equation 5.2:

(5.7)
$$r = (r_c/m_c) \land r = (r_c/t_c) = ct \Rightarrow r/(ct)^2 = (r_c/m_c)m/r^2$$

 $\Rightarrow r/t^2 = (r_c/m_c)c^2/r^2 = Gm/r^2,$

where Newton's constant, $G = (r_c/m_c)c^2$, conforms to the SI units: $m^3 \cdot kg^{-1} \cdot s^{-2}$.

In vector form, if \vec{r} is the radial vector at distance, r, then Gauss's gravitational field, \mathbf{g} , and Poisson's scalar potential per unit mass, $\Phi(\vec{r},t)$, are defined as:

$$(5.8) r/t^2 = Gm/r^2 \Rightarrow \vec{r}/t^2 = -Gm/|\vec{r}|^2 = -Gm\vec{r}/|\vec{r}|^3 := \mathbf{g} = \nabla\Phi(\vec{r}, t).$$

The magnitude of \vec{r} is the surface element size, dS, on a sphere having the area, $4\pi|r|^3$. And where ρ is the mass density on the surface of that sphere, yields the differential forms of Gauss's and Poisson's gravity equations:

(5.9)
$$\mathbf{g} = \nabla \Phi(\vec{r}, t) = -Gm\vec{r}/|\vec{r}|^3 = (-Gm\vec{r}/|\vec{r}|^3)(4\pi/4\pi) \quad \wedge \quad \rho = m/4\pi|\vec{r}|^3$$

$$\Rightarrow \quad \mathbf{g} = \nabla \Phi(\vec{r}, t) = -4\pi G\rho\vec{r} \quad \Rightarrow \quad \nabla \cdot \mathbf{g} = \nabla^2 \Phi(\vec{r}, t) = -4\pi G\rho.$$

Newton's law follows from multiplying both sides equation 5.7 by m:

(5.10)
$$mr/t^2 = Gm^2/r^2 \quad \land \quad \forall \ m_1, m_2, m \in \mathbb{R} : \ m_1m_2 = m^2$$

$$\Rightarrow \quad F := mr/t^2 = Gm_1m_2/r^2.$$

5.3. Simplifying Einstein's general relativity (field) equation. Einstein was motivated by Gaussian curvature, hence the terms, $\mathbf{G}_{\mu,\nu}$, and $g_{\mu,\nu}$, in the Einstein's field equation (EFE), $\mathbf{G}_{\mu,\nu} + \Lambda g_{\mu,\nu} = k\mathbf{T}_{\mu,\nu}$, [Ein15] [Wey52]. The $4\pi G$ in Einstein's constant, $k = (2/c^4)4\pi G$, and energy density were motivated by Gauss's gravity law. But, Gaussian curvature cannot be extended beyond 3 dimensions. Therefore, the much more complex 4-dimensional (4D) Ricci curvature, \mathbf{R} , and scalar curvature, R, are used, where $\mathbf{G}_{\mu,\nu} = \mathbf{R}_{\mu,\nu} - g_{\mu,\nu}R/2$.

Here, the EFE follows from the spacetime interval equation being derived from the 2-dimensional (2D) equation, $-dr'^2 = -d(ct)^2 + dr_v^2$, where $dr_v^2 = dx_1^2 + dx_2^2 + dx_3^2$ (5.6). The 2D derivation simplifies the process of finding solutions to the 4D EFE by using a divide and conquer strategy:

First: The 2D spacetime interval equation allows replacing the 4D time-like metric tensor, $g_{\mu,\nu} = diag(-\alpha_0, \alpha_1, \alpha_2, \alpha_3)$ with the 2D tensor, $g_{\mu,\nu} = diag(-\alpha_0, 1)$, where the α_i terms are functions returning scalar values. The 2D metric tensor allows using the 2D Gaussian curvature, $K = det(\mathbf{H})$, in the Einstein tensor, $\mathbf{G}_{\mu,\nu}$, such that $\mathbf{G}_{\mu,\nu} = \mathbf{H} - Kg_{\mu,\nu}$, where \mathbf{H} is the 2 × 2 Hessian matrix:

(5.11)
$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_0^2} & \frac{\partial^2 f}{\partial x_0 \partial x_1} \\ \frac{\partial^2 f}{\partial x_0 \partial x_1} & \frac{\partial^2 f}{\partial x_1^2} \end{bmatrix}.$$

(5.12)
$$K = \det(\mathbf{H}) = \frac{\partial^2 f}{\partial x_0^2} \frac{\partial^2 f}{\partial x_1^2} - \left(\frac{\partial^2 f}{\partial x_0 \partial x_1}\right)^2.$$

The 2D Gaussian curvature is much simpler to calculate than the 4D Ricci curvature, $\mathbf{R}_{\mu,\nu}$, and scalar, R. And the 2D tensors reduce the number of independent equations to solve.

Second: All valid functions are constrained to being derived from the ratios, $r = (r_c/t_c)t = ct$ and $r = (r_c/m_c)m$. All spacetime curvature (acceleration) functions, f(r,t), are ratios of r and t. For example, r/r = r/ct = f(r,t). All functions in the stress-energy tensor, $T_{\mu\nu}$, are also ratios. For example, $r^3/r^3 = (r_c/m_c)mc^2t^2/r^3$. All ratios where the units balance on both sides of the 2D EFE are valid solutions.

Third: Translate the 2D solutions to the 4D EFE solutions by expanding the spatial component, dr_v^2 to $\alpha_1 dx_1^2 + \alpha_2 dx_2^2 + \alpha_3 dx_3^2$. The $\mathbf{T}_{0,0}$ component in the 4D

stress-energy tensor is set to the $\mathbf{T}_{0,0}$ component in the 2D energy-stress tensor. The $\mathbf{T}_{1,1}$ component in the 2D stress-energy tensor is divided across the spatial $\mathbf{T}_{i,i}$ components in the 4D stress-energy tensor in proportion to the $\alpha_1, \alpha_2, \alpha_3$ values in the 4D metric tensor. And so on.

5.4. Schwarzchild's gravitational time dilation. [Che10] From equations 5.5 and 5.2:

(5.13)
$$t' = t\sqrt{1 - (v^2/c^2)(r/r)}$$
 \wedge $r = (r_c/m_c)m$
 \Rightarrow $t' = t\sqrt{1 - ((r_c/m_c)m)v^2/rc^2}.$

(5.14)
$$t' = t\sqrt{1 - (r_c/m_c)mv^2/rc^2} \quad \land \quad KE = mv^2/2 = mv_{escape}^2$$

 $\Rightarrow \quad t' = t\sqrt{1 - 2(r_c/m_c)mv_{escape}^2/rc^2}.$

Combine equation 5.14 with the derivation of G (5.9):

(5.15)
$$(r_c/m_c)c^2 = G$$
 \wedge $t' = \lim_{v_{escape} \to c} t \sqrt{1 - 2(r_c/m_c)mv_{escape}^2/rc^2}$
= $t\sqrt{1 - 2(r_c/m_c)mc^2/rc^2}$ \Rightarrow $t' = t\sqrt{1 - 2Gm/rc^2}$.

5.5. Einstein's gravitational lens. [Che10] Using the same steps to derive Schwarzchild's gravitational time dilation equation (5.15):

(5.16)
$$r' = r\sqrt{1 - (v^2/c^2)(r/r)} \quad \Rightarrow \quad r' = r\sqrt{1 - 2Gm/rc^2}.$$

The incremental deflection of light (work), $ds = f(r-r') = 2Gm/rc^2$. Therefore, an increment of deflection, ds, must correspond to an incremental distance, dr : r = dr.

(5.17)
$$ds = 2Gm/rc^2 \quad \wedge \quad dr = r \quad \Rightarrow \quad ds/dr = 2Gm/r^2c^2.$$

There are two deflections: 1) deflection as the light approaches a mass, and 2) deflection as light passes the same mass. Therefore, the total deflection is doubled:

(5.18)
$$2ds/dr = 2(2Gm/r^2c^2)$$
 \Rightarrow $s = 2 \int ds = 2 \int 2Gm/r^2c^2dr = 4Gm/rc^2$.

5.6. Coulomb's charge force and constant, k_e . From equation 5.2:

(5.19)
$$\forall q_1, q_2, q, r \in \mathbb{R} : q_1 q_2 = q^2 \land r = (r_c/q_c)q$$

 $\Rightarrow q_1 q_2 = ((q_c/r_c)r)^2 \Rightarrow (r_c/q_c)^2 q_1 q_2/r^2 = 1.$

(5.20)
$$r = (r_c/t_c)t = ct \implies mr = (m_c/r_c)(ct)^2 \implies ((r_c/m_c)/c^2)mr/t^2 = 1.$$

(5.21)
$$((r_c/m_c)/c^2)mr/t^2 = 1 \quad \land \quad (r_c/q_c)^2 q_1 q_2/r^2 = 1$$

$$\Rightarrow \quad F := mr/t^2 = ((m_c/r_c)c^2)(r_c/q_c)^2 q_1 q_2/r^2.$$

(5.22)
$$r_c/t_c = c$$
 \wedge $F = ((m_c/r_c)c^2)(r_c/q_c)^2q_1q_2/r^2$
 \Rightarrow $F = (m_c(r_c/t_c^2))(r_c/q_c)^2q_1q_2/r^2 = k_eq_1q_2/r^2,$

where Coulomb's constant, $k_e = (m_c(r_c/t_c^2))(r_c/q_c)^2$, conforms to the SI units: $N \cdot m^2 \cdot C^{-2}$.

5.7. 3 fundamental direct proportion ratios. c_t , c_m , and c_q :

(5.23)
$$c_t = r_c/t_c \approx 2.99792458 \cdot 10^8 m \ s^{-1}.$$

$$(5.24) G = (r_c/m_c)c_t^2 = c_m c_t^2 \quad \Rightarrow \quad c_m = r_c/m_c \approx 7.4261602691 \cdot 10^{-28} m \ kg^{-1}.$$

$$(5.25) \quad k_e = (c_t^2/c_m)(r_c/q_c)^2 \quad \Rightarrow \quad c_q = r_c/q_c \approx 8.6175172023 \cdot 10^{-18} m \ C^{-1}.$$

5.8. 3 fundamental inverse proportion ratios. c_t , c_m , and c_q (5.7) $\Leftrightarrow k_t$, k_m , and k_q :

$$(5.26) \quad r/t = r_c/t_c, \quad r/m = r_c/m_c \quad \Leftrightarrow \quad (r/t)/(r/m) = (r_c/t_c)/(r_c/m_c) \quad \Leftrightarrow \\ (mr)/(tr) = (m_c r_c)/(t_c r_c) \quad \Leftrightarrow \quad mr = m_c r_c = k_m, \quad tr = t_c r_c = k_t.$$

$$(5.27) \quad r/t = r_c/t_c, \quad r/q = r_c/q_c \quad \Leftrightarrow \quad (r/t)/(r/q) = (r_c/t_c)/(r_c/q_c) \quad \Leftrightarrow \quad (qr)/(tr) = (q_cr_c)/(t_cr_c) \quad \Leftrightarrow \quad qr = q_cr_c = k_q, \quad tr = t_cr_c = k_t.$$

(5.28)
$$k_m = m_c r_c = h/c \approx 2.21022 \cdot 10^{-42} \text{ kg m}.$$

(5.29)
$$k_t = t_c r_c = k_m / (c_t / c_m) \approx 5.47494 \cdot 10^{-78} \text{ s m.}$$

(5.30)
$$k_q = q_c r_c = (c_t/c_q)k_t \approx 1.90466 \cdot 10^{-52} \ C \ m.$$

5.9. Planck relation and constant, h. [Jai11] Applying both the direct proportion (5.23), $r/t = r_c/t_c = c$, and inverse proportion (5.26), $mr = m_c r_c = k_m$, ratios:

$$(5.31) \quad m(ct)^2 = mr^2 \quad \land \quad m = m_c r_c / r = k_m / r \quad \Rightarrow \quad m(ct)^2 = (k_m / r) r^2 = k_m r.$$

(5.32)
$$m(ct)^2 = k_m r$$
 \wedge $r/t = r_c/t_c = c$
 \Rightarrow $E := mc^2 = k_m r/t^2 = (k_m(r/t)) (1/t) = (k_m c)(1/t) = hf$, where the Planck constant, $h = k_m c$, and the frequency, $f = 1/t$.

5.10. Compton wavelength. [Jai11] From equations 5.26 and 5.32:

(5.33)
$$mr = k_m \implies r = k_m/m = (k_m/m)(c/c) = h/mc.$$

5.11. de Broglie wavelength. [Jai11] From equations 5.3 and 5.33:

(5.34)
$$v = r'/t = c\sqrt{1 - (v'/c)^2} \quad \land \quad r = h/mc \quad \Rightarrow \quad r = (h/mv)\sqrt{1 - (v'/c)^2}$$
, where $r_{\nu}/t = v'$ is the rest frame of reference velocity and $r'/t = v$ is the velocity observed from the stationary frame of reference.

5.12. Total mass. The total mass of a particle is $m = \sqrt{m_0^2 + m_{ke}^2}$, where m_0 is the rest mass and m_{ke} is the kinetic energy-equivalent mass. Applying both the direct (5.23) and inverse proportion ratios (5.26):

(5.35)
$$m_0 = (m_c/r_c)r$$
 \wedge $m_{ke} = m_c r_c/r$ \wedge $m = \sqrt{m_0^2 + m_{ke}^2}$ \Rightarrow $m = \sqrt{((m_c/r_c)r)^2 + ((m_c r_c)/r)^2}.$

The quantum effect, $((m_c r_c)/r)^2$, is easier to express and understand by extending Newtonian gravity than by extending general relativity.

5.13. Quantum-special relativity extensions to Newton's gravity force.

(5.36)
$$\exists m : m_1 m_2 = m^2 = ((m_c/r_c)r)^2 + ((m_c r_c)/r)^2$$

 $\Rightarrow m_1 m_2 / (((m_c/r_c)r)^2 + ((m_c r_c)/r)^2) = 1.$

Applying the spacetime equation 5.4 to equation 5.8:

(5.37)
$$r' = r\sqrt{1 - (v/c)^2} \wedge ((r_c/m_c)/c^2)mr/t^2 = 1$$

 $\Rightarrow ((r_c/m_c)/c^2\sqrt{1 - (v/c)^2})mr'/t^2 = 1,$

where r'/t^2 is the acceleration observed from a stationary frame of reference. Combining equations 5.36 and 5.37:

$$(5.38) F = (c^2 \sqrt{1 - (v/c)^2} / (r_c/m_c)) m_1 m_2 / (((m_c/r_c)r)^2 + ((m_c r_c)/r)^2).$$

Using the derived gravitational time dilation (5.15) and distance dilation (5.16):

$$(5.39) \quad F = (c^2 \sqrt{1 - 2Gm/rc^2}/(r_c/m_c))m_1m_2/(((m_c/r_c)r)^2 + ((m_cr_c)/r)^2).$$

5.14. Quantum-special relativity extensions to Coulomb's charge force.

(5.40)
$$F = (c^2 \sqrt{1 - (v/c)^2}/(r_c/m_c))(r_c/q_c)^2 q_1 q_2/(((q_c/r_c)r)^2 + ((q_c r_c)/r)^2).$$

6. Insights and implications

- (1) Combinatorics, the ordered combinations of countable, disjoint sets (n-tuples), generates both Euclidean volume (3.2) and the Minkowski distances (4.2).
- (2) Combinatorics, all n-at-time permutations of an ordered and symmetric set of distance dimensions, limits the set to 3 dimensions (4.12).
- (3) Deriving Euclidean volume (3.2) and the Minkowski distances (4.2) from the same abstract, countable set of n-tuples (3.1) provides a single, unifying set and limit-based foundation under Euclidean geometry without relying on the geometric primitives and relations in Euclidean geometry [Joy98], axiomatic geometry [Lee10], and vector analysis [Wey52].
- (4) The definition of a metric space [Rud76] ignores the intimate relation between distance and volume. A simpler and more sufficient definition that has the metric space properties (4.4) is: a distance measure is an inverse (bijective), isomorphic function of volume (4.1).
- (5) Euclid's proof that Euclidean distance is the smallest distance between two distinct points equate Euclidean distance to a straight line, where it is assumed that the straight line length is the smallest distance [Joy98]. And analytic proofs that the straight line length is the smallest distance equate the straight line length to Euclidean distance.

Without using the notion of a straight line: Euclidean volume was derived from a set of n-tuples (3.2). And all distance measures (bijective, isomorphic functions of n-volumes) derived from Euclidean 2-volumes (areas) are Minkowski distances (4.2), where $n \in \{1,2\}$: n=1 is the Manhattan (largest) distance case, $d = \sum_{i=1}^m s_i$. n=2 is the Euclidean (smallest) distance case, $d = (\sum_{i=1}^m s_i^2)^{1/2}$. For the case, $n \in \mathbb{R}$, $1 \le n \le 2$: d decreases monotonically as n goes from 1 to 2.

(6) The left side of the distance sum inequality (4.4),

(6.1)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n},$$

differs from the left side of Minkowski's sum inequality [Min53]:

(6.2)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n)^{\mathbf{n}})^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n}.$$

The two inequalities are only the same where n=1. The distance sum inequality is a more fundamental inequality because the proof does not require the convexity and Hölder's inequality assumptions required to prove the Minkowski sum inequality. And the distance sum inequality term, $(a_i^n + b_i^n)^{1/n}$, is the Minkowski distance spanning the n-volume, $a_i^n + b_i^n$, which makes it directly related to geometry (for example, the metric space triangle inequality was derived from the m=1 case (4.5)). But the Minkowski sum inequality term, $\forall n: (n \neq 1). ((a_i^n + b_i^n)^n)^{1/n}$, is **not** a distance spanning the same n-volume, $a_i^n + b_i^n$.

- (7) The derivations of the spacetime equations, in this article (5.1), differ from other derivations:
 - (a) The derivations, here, do not rely on the Lorentz transformations or Einsteins' postulates [Ein15]. The derivations do not even require the notion of light.
 - (b) The derivations, here, rely only on the Euclidean volume proof (3.2), the Minkowski distances proof (4.1), and the 3D proof (4.12), which provides the insight that the properties of physical space creates a maximum speed, the spacetime equations, and 3 dimensions of distance. For example, from the direct proportion equations 5.1 and 5.2, $\mu = r_c/t_c$ is always the maximum ratio (the speed of light).
 - (c) The same derivations are also valid for spacemass and spacecharge.
 - (d) In special and general relativity, covariance, states that the equations expressing the laws of physics are invariant in every frame of reference. Here, a more fundamental covariance assertion is made: The ratio of any 3-dimensional distance, r, to another type remains constant in all frames of reference.

For example, the special relativity time dilation equation 5.5 was derived from constant distance-to-time ratios and combined with a constant distance-to-mass ratio (5.7) yields Schwarzchild's gravitational time dilation equation (5.15) [Che10].

- (8) The direct proportion ratios, $r_c/t_c = c_t$, $r_c/m_c = c_m$, $(r_c/q_c) = c_q \Leftrightarrow$ the inverse proportion ratios, $t_c r_c = k_t$, $m_c r_c = k_m$, and $q_c r_c = k_q$ (5.8) are the properties of a symmetry group.
 - (a) The inverse square law for gravity (5.7) and charge (5.19) is a result of the direct proportion ratios.
 - (b) The combination of direct and inverse proportion ratios create the particle-wave equations: Planck relation (5.9), Compton wavelength (5.33), and de Broglie wavelength (5.34).
 - (c) The gravity, G (5.9), charge k_e (5.22), and Planck h (5.32) constants were all derived from the constant proportion ratios. Therefore, G, k_e , and h are **not** "fundamental" constants.
 - (d) G, k_e , and h all depend on the speed of light ratio, c_t : $G = c_m c_t^2$, $k_e = (c_g^2/c_m)c_t^2$, and $h = k_m c_t$.

- (e) $k_e = (c_q^2/c_m)c_t^2 = ((m_c/r_c)(r_c/t_c)^2)c_q^2 = (m_c(r_c/t_c^2))c_q^2$, where the term, r_c/t_c^2 , suggests a maximum acceleration constant.
- (f) The ratios used to derive k_e (5.22) do not contain the value, 4π , which indicates the current standard definitions of k_e in terms of vacuum permitivity, ε_0 , and permeability, μ_0 , where $k_e = 1/4\pi\varepsilon_0$ and $k_e = \mu_0 c^2/4\pi$, are **not** logically derived in orthogonal Cartesian coordinates. Likewise, the logic of the reduced Planck constant, $\hbar = h/2\pi$, in orthogonal coordinates, might need to be reconsidered.
- (9) The quantum-special relativity extensions to Newton's gravity force (5.38) and Coulomb's charge force (5.40) make quantifiable predictions.
 - (a) $\lim_{r\to 0} F = 0$. The distance, r, where **both** the gravity and charge forces peak is: $r = \sqrt{c_m k_m} = \sqrt{c_q k_q} = \sqrt{r_c^2} \approx 4.05135 \cdot 10^{-35} m$.
 - (i) Gravitational time dilation peaks at $r \approx 4.05135 \cdot 10^{-35} \ m$.
 - (ii) Black holes might have measurable sizes > 0.
 - (iii) The finite gravity-charge well allows radioactivity and quantum tunneling.
 - (iv) As the kinetic energy (temperature) decreases, more particles will stay within their gravity-charge well distance, $r << 4.05135 \cdot 10^{-35} m$, allowing superconductivity and Bose-Einstein condensates.
 - (v) $r_c \approx 4.05135 \cdot 10^{-35}~m$ suggests a quantum distance, time, mass, and charge.
 - (b) The term, r'/t^2 , in equation 5.38 is the acceleration observed from the stationary frame. From earth, as a stationary frame, equations 5.38 and ?? predict the planet Mercury's orbiting velocity (angular acceleration) around the sun would appear to be slightly slower than predicted by Newton's gravity equation 5.9.
- (10) A constant ratio cannot map a constant value to continuously varying values. Therefore, the discrete spin states of two quantum entangled particles and the polarization states of two quantum entangled photons are independent of continuously varying distance and time interval lengths.
- (11) The set-based, first-order logic proof that a strict linearly ordered and symmetric set is a cyclic set of at most 3 members (4.12) is a simpler and more logically rigorous hypothesis for observing only 3 dimensions of physical space than: parallel dimensions that cannot be detected or extra dimensions rolled up into infinitesimal balls that are too small to detect.
 - (a) Higher order dimensions must have different types (members of different sets), for example, dimensions of time, mass, and charge.
 - (b) Each of 3 ordered and symmetric dimensions of space can have at most 3 sequentially ordered and symmetric state values, for example, an ordered and symmetric set of 3 vector orientations, {-1,0,1}, per dimension of space and at most 3 spin states per plane, etc.

 If the states are not sequentially ordered (a bag of states), then a state value is undetermined until observed (like Schrodinger's cat being both alive and dead until the box is opened). That is, there

would be no "axiom of choice" that allows selecting a particular state.

References

- [CG15] W. Conradie and V. Goranko, Logic and discrete mathematics, Wiley, 2015. ↑2
- [Che10] T.P. Cheng, Relativity, gravitation and cosmology: A basic introduction, Oxford Master Series in Physics, OUP Oxford, 2010. ↑9, 12
- [Coq23] Coq, Coq proof assistant, 2023. https://coq.inria.fr/documentation. \^2
- [Gol76] R. R. Goldberg, Methods of real analysis, John Wiley and Sons, 1976. ↑1, 2
- [Jai11] M.C. Jain, Quantum mechanics: A textbook for undergraduates, PHI Learning Private Limited, New Delhi, India, 2011. ↑10
- [Joy98] D. E. Joyce, Euclid's elements, 1998. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html. 111
- [Lee10] J. M. Lee, Axiomatic geometry, American Mathematical Society, 2010. \darksquare.
- [Min53] H. Minkowski, Geometrie der zahlen, Chelsea, 1953. reprint. †2, 12
- [Rud76] W. Rudin, Principles of mathematical analysis, McGraw Hill Education, 1976. ↑1, 2, 11
- [Wey52] H. Weyl, Space-time-matter, Dover Publications Inc, 1952. \dagger{8}, 11

George Van Treeck, 668 Westline Dr., Alameda, CA 94501