SCO Program/Product Report

CNE emalign

Cluster-optimized software tools for alignment of Zeiss multi Scanning Electron Microscopy (mSEM) acquired 3D datasets.

Marcelo Cintra, Omar Valerio

November 17, 2021

I. Summary

This is a collection of software tools to support CNE's emalign pipeline on the HPC cluster.

II. Description

a. Image Cross-Correlation Module (rcc-xcorr)

Repository: https://github.com/research-center-caesar/rcc-xcorr

This component performs a series of cross-correlations on a specified batch of images and templates and returns the best template matches for each image.

The code contains various implementations such as sequential CPU, single-node parallel CPU, multi-node parallel CPU, single GPU, single-node multi-GPU and multi-node multi-GPU. The code is parameterize to allow the caller to optionally specify the implementation to be used. The module includes a test harness that verifies the accuracy of the output as well as timing infrastructure to measure and report the execution time as well as the top bottlenecks.

The code implements a stateless and side-effect-free interface. Code optimizations include: change of order of image-template cross correlations in order to maximize data reuse in caches and GPU memory.

III. Development History

a. Meetings

Date	Attendants	Outcomes	
2021-11-10	Omar Valerio (SCO) Paul Watkins, Eric Jelli (CNE)	 Defined API for Image Cross-Correlation Module The INPUT would be the following: A list of images. The images are passed as float arrays. (This is a constraint from emalign.) A list of templates. Also passed as floats. A list of cross-correlations: between images and templates. The OUTPUT would be a list with: Peak cross correlation value (float). The 2D indices of the peak location with respect to the image. 	

b. Program Increments

1	•	•	•
Progr	am Increment :	1	Status
Compo			
Duratio			
1.	Perform batch of (image, template)	Open
	correlations using	open-source CPU	
	correlation in Pyth	on3 with no ordering	
	optimization and o	n a single CPU core	
2.	Benchmark execut	ion time of baseline CPU	Open
	open-source-based	d implementation	
			Open

3.	Document API, implementation, benchmark	
	results	Open
4.	Test harness that calls the module using	
	known outcomes and verifies the accuracy of	
	the output	

IV. Performance Results

TODO