

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação PS Prof. Adriano Barbosa

Eng. de Energia	07/12/2018

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

Avaliação P1:

- 1. Resolva a integral indefinida $\int e^x \cos x \ dx$.
- 2. Resolva a integral definida $\int_0^{\pi/2} \sin x \ e^{\cos x} \ dx$.
- 3. Calcule a integral $\int \frac{x+2}{x^2-9} dx$.
- 4. Determine se a integral imprópria $\int_1^\infty \frac{\ln x}{x} dx$ é convergente ou divergente.
- 5. Resolva a integral definida $\int_0^{\pi} x + x \cos x \ dx$.

Avaliação P2:

- 1. Resolva a equação diferencial $y' = xe^{-\cos x} + y \sin x$.
- 2. Resolva o problema de valor inicial $y' = 3x^2e^y$, y(0) = 1.
- 3. Aplique a mudança de variáveis u=y'' e resolva a equação diferencial $y^{(4)}-y''=0$.
- 4. Resolva as equações lineares de segunda ordem:

(a)
$$y'' - 2y' - 3y = 0$$

(b)
$$y'' - 2y' - 3y = x + 2$$

5. Verifique se a função $y(x) = c_1 e^x + c_2 e^{-x}$ é solução da equação diferencial y''' - y' = 0.

Avaliação P3:

1. Calcule $\lim_{n\to\infty} x_n$, onde:

(a)
$$x_n = \frac{2 + n^{2018}}{1 + 2n^{2019}}$$

$$(b) x_n = \frac{1}{2^n}$$

- 2. Escreva o número 4,17326326326... como uma fração.
- 3. Determine se as séries são convergentes:

(a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n+1}$$

(b)
$$\sum_{n=1}^{\infty} n^{-\pi}$$

- 4. Determine para quais valores de x a série $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$ é convergente.
- 5. Escreva a série de Maclaurin da função $f(x) = \sin x$.

Avaliação P1:

$$u = e^{x}$$

$$du = e^{x}dx$$

$$du = e^{x}dx$$

$$du = e^{x}dx$$

$$I = \int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$

Resolvendo I por partis:

$$u = e^{x}$$
 $du = e^{x}dx$

$$\Rightarrow ds = s_{mx} dx$$
 $to = -cos x$

$$: I = \int e^{x} \sin x \, dx = -e^{x} \cos x + \int e^{x} \cos x \, dx.$$

$$I = \int e^{x} \cos x \, dx = e^{x} \sin x - \left(-e^{x} \cos x + \int e^{x} \cos x \, dx\right)$$

$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

$$\Rightarrow \int e^{x} \cos x \, dx = \frac{e^{x} \sin x + e^{x} \cos x}{2}$$

2) Tomando
$$u = \cos x$$
, temos $du = -\sin x dx$, $x = 0 \Rightarrow u = 1 e$
 $x = \frac{\pi}{2} \Rightarrow u = 0$, $\log 0$

$$\int_{0}^{\pi/2} \sin x \, e^{\cos x} \, dx = \int_{0}^{0} e^{u} \, du = \int_{0}^{1} e^{u} \, du = \left. e^{u} \right|_{0}^{1} = e^{-1} \, dx.$$

$$\chi^{2}-9=0$$
 (4) $\chi^{2}=9$ (4) $\chi=3$ ou $\chi=-3$.

$$\Rightarrow x^2 - 9 = (x - 3)(x + 3)$$

Logo, escrevendo o integrando como somo de frações farciais:

$$\frac{x+2}{x^2-9} = \frac{A}{x-3} + \frac{B}{x+3} = \frac{A(x+3) + B(x-3)}{(x-3)(x+3)}$$

$$\Rightarrow x+2 = A(x+3) + B(x-3)$$

Para
$$x = 3$$
: $3+2 = A(3+3) + B(3-3) \Rightarrow A = \frac{5}{6}$.

Para
$$x = -3$$
: $-3+2 = A(-3+3) + B(-3-3) \Rightarrow B = \frac{1}{6}$

Assim,

$$\frac{x+2}{x^2-9} = \frac{5}{6} \cdot \frac{1}{x-3} + \frac{1}{6} \cdot \frac{1}{x+3}$$

$$\Rightarrow \int \frac{x+2}{x^2-9} dx = \frac{5}{6} \int \frac{1}{x-3} dx + \frac{1}{6} \int \frac{1}{x+3} dx$$
$$= \frac{5}{6} \cdot \ln|x-3| + \frac{1}{6} \ln|x+3| + C$$

(4)
$$\int_{1}^{\infty} \frac{\ln x}{x^{4}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} dx$$
, caso o limite existo.

Tomando
$$u = \ln x$$
, temos $du = \frac{1}{x} dx$, $x = 1 \Rightarrow u = 0$ e $x = t \Rightarrow u = \ln t$, $\log u$

$$\int_{1}^{t} \frac{\ln x}{x} dx = \int_{0}^{\ln t} u du = \frac{u^{2}}{2} \Big|_{0}^{\ln t} = \frac{(\ln t)^{2}}{2}.$$

Assim,

$$\lim_{t\to\infty} \int_{1}^{t} \frac{\ln x}{x} dx = \lim_{t\to\infty} \frac{\left(\ln t\right)^{2}}{2} = \infty.$$

Portanto, a integral é divergente.

$$\int_{0}^{\pi} x + x \cos x \, dx = \int_{0}^{\pi} x \, dx + \int_{0}^{\pi} x \cos x \, dx$$

Resolvendo I:

$$T = \int_0^{\pi} x \, dx = \frac{\chi^2}{2} \Big|_0^{\pi} = \frac{\pi^2}{2}$$

Resolvendo II por partes:

$$u = x$$

$$du = dx$$

$$d\sigma = \cos x \, dx$$

$$\forall x = \sin x$$

$$= \pi \zeta_{m} \pi - 0 \cdot \zeta_{m} 0 + \omega \zeta_{n} \zeta_{0}^{T} = \omega \zeta_{m} - \omega \zeta_{0} 0 = -\lambda - \lambda = -2.$$

$$\int_0^{\pi} x + x \cos x \, dx = \frac{\pi^2}{2} - 2.$$

Calculando o fator integrante:

$$\varphi(x) = e^{\int -\sin x \, dx} = e^{\int -\sin x \, dx}$$

$$\therefore e^{\cos x} \left(y - 3mx \cdot y \right) = e^{\cos x} \left(x e^{-\cos x} \right) \Rightarrow e^{\cos x} \cdot y - 5enx \cdot e \cdot y = x$$

$$\Rightarrow \left(e^{\cos x} \cdot y\right)' = x \Rightarrow \int \left(e^{\cos x} \cdot y\right)' dx = \int x dx$$

$$\Rightarrow e^{\cos x} y = \frac{x^2}{2} + C \Rightarrow y = \frac{x}{2} \cdot e^{-\cos x} + C \cdot e^{-\cos x}$$

2)
$$y' = 3x^2e^y$$
 $\Leftrightarrow \frac{1}{e^y} \cdot \frac{dy}{dx} = 3x^2 \left(1^2 \text{ ordern separatel}\right)$

$$\int \frac{1}{e^y} dy = \int 3x^2 dx \Rightarrow -e^y = x^3 + c \Rightarrow e^y = -\frac{1}{x^3 + c}$$

$$\Rightarrow y = \ln\left(-\frac{1}{x^{3}+c}\right) = \ln 1 - \ln\left(-x^{3}-c\right) = -\ln\left(-x^{3}-c\right)$$

Resolvendo o PVI:

Resolven do
$$0 + 1/2$$

$$\lambda = y(0) = -\ln(-0^3 - c) \Rightarrow \ln(-c) = -1 \Rightarrow -c = e^{-1} \Rightarrow c = -e^{-1}$$
Portanto,

$$y(x) = -\ln(-x^3 + e^i)$$

(3) Fazendo
$$u=y''$$
, temos $u''=y^{(4)}$ e

$$y^{(4)} - y'' = 0 \Rightarrow u'' - u = 0$$
 (2° ordin linear homog. com coef. cts.)

Pesolvendo a eq. auxiliar: $\Gamma^2 - \lambda = 0 \Rightarrow \Gamma^2 = \lambda \Rightarrow \Gamma = \pm \lambda$.

Logo, $u = c_1 e^{x} + c_2 e^{-x}$ é solução de u'' - u = 0.

Integrando duas vezes:

$$\int c_1 e^{x} + c_2 e^{-x} dx = c_1 e^{x} - c_2 e^{-x} + c_3$$

$$e \int c_1 e^{x} - c_2 e^{-x} + c_3 dx = c_1 e^{x} + c_2 e^{-x} + c_3 x + c_4$$

Portanto, $y(x) = C_1 e^x + C_2 e^{-x} + C_3 x + C_4 \neq sol. do eq. inicial.$

(4) a) Resolvendo a eq. auxiliar:
$$r^2 - 2r - 3 = 0 \Rightarrow r = 3$$
 ou $r = -1$.
Assim, $y(x) = c_1 e^{3x} + c_2 e^{-x}$ é solução da equação.

b) Já timos a sol. do eq. homogêneo, $y_h = C_1 e^{3x} + C_2 e^{-x}$. Tomando as sol. LT $y_1 = e^{3x} + 2 \cdot y_2 = e^{-x}$ do eq. homogênea, vamos diterminar u_1 e u_2 tais que $y_1 = u_1 e^{3x} + u_2 e^{-x}$ sije umo sol. particular do eq. nou - homogênea. Pelo método do variação de parâmetros basta resolver o sistema

$$\begin{cases} u_{1}^{\prime} y_{1}^{\prime} + u_{2}^{\prime} y_{2}^{\prime} = \chi + 2 \\ u_{1}^{\prime} y_{1} + u_{2}^{\prime} y_{2}^{\prime} = 0 \end{cases} \Rightarrow \begin{cases} 3z & u_{1}^{\prime} - e^{-\chi} u_{2}^{\prime} = \chi + 2 \\ 3e^{-\chi} u_{1}^{\prime} - e^{-\chi} u_{2}^{\prime} = \chi + 2 \end{cases}$$

$$\begin{cases} 3z & u_{1}^{\prime} - e^{-\chi} u_{2}^{\prime} = \chi + 2 \\ e^{-\chi} u_{1}^{\prime} + e^{-\chi} u_{2}^{\prime} = 0 \end{cases}$$

$$(1)$$

Somando (1) e (2):

$$4e^{3x}u'_{1} = x+2 \Rightarrow u'_{1} = \frac{x+2}{4e^{3x}}$$

Substituindo em (2):

$$e^{3x} \cdot \frac{x+2}{4e^{3x}} + e^{x} \cdot u_{2}^{1} = 0 \quad \Rightarrow e^{-x} \cdot u_{2} = -\frac{x+2}{4} \quad \Rightarrow u_{2}^{1} = -\frac{x+2}{4e^{-x}}.$$

Assim,

$$u_{1} = \int u_{1}^{1} dx = \int \frac{x+2}{4e^{3x}} dx = \frac{1}{4} \int (x+2)e^{3x} dx$$

$$e \quad u_{2} = \int u_{2}^{1} dx = \int -\frac{x+2}{4e^{-x}} dx = -\frac{1}{4} \int (x+2)e^{x} dx$$
I

Integrando por partes:

$$u = x+2 \qquad du = dx$$

$$ds = e^{-3x} dx \qquad 5 = -\frac{e^{-3x}}{3}$$

$$\exists u_1 = \frac{1}{4} \left[-\frac{(x+2)}{3} e^{-3x} - \frac{e^{-3x}}{9} + C_A \right] = \frac{e^{-3x}}{4} \left(-\frac{x+2}{3} - \frac{1}{9} \right) + \frac{C_1}{4} = \frac{e}{4} \left(-\frac{3x-7}{9} \right) + K_A$$

$$U = x+2 \qquad du = dx$$

$$d\sigma = e^{x} dx \qquad \sigma = e^{x} dx$$

$$\Rightarrow U_2 = -\frac{1}{4} \left[(x+2)e^{x} - e^{x} + C_2 \right] = -\frac{e^{x}}{4} (x+1) + k_2.$$

Assim,
$$y_{p} = \frac{e^{-3x}}{4} \left(-\frac{3x-7}{9} \right) \cdot e^{3x} - \frac{e^{x}}{4} \left(x+1 \right) \cdot e^{x} + k_{1} + k_{2}$$

$$= \frac{1}{4} \left(-\frac{3x-7}{9} - x - 1 \right) + k = \frac{1}{4} \left(\frac{-3x-7-9x-9}{9} \right) + k$$

$$= \frac{1}{4} \left(-\frac{12x-16}{9} \right) + k = -\frac{3x-4}{9} + k$$

Portanto, a solução geral do 29. não-homogêneo é $y = c_1 e^{3x} + c_2 e^{-x} - \frac{3x+4}{9} + K$

$$\bigcirc$$
 Derivando $y = c_1 e^{x} + c_2 e^{-x}$:

$$y' = C_{1}e^{x} - C_{2}e^{x}$$
 $y'' = C_{1}e^{x} + C_{2}e^{-x}$
 $y''' = C_{1}e^{x} - C_{2}e^{-x}$

Logo,

$$y''' - y' = (c_1 e^x - c_2 e^{-x}) - (c_1 e^x - c_2 e^{-x}) = 0$$
.
Portanto, $y = c_1 e^x + c_2 e^{-x} \neq sol.$ de $y''' - y' = 0$.

Avaliação P3:

(1) a)
$$\chi_n = \frac{2 + n^{20/8}}{1 + 2 n^{20/9}} \cdot \frac{\frac{1}{n^{10/9}}}{\frac{1}{n^{10/9}}} = \frac{\frac{2}{n^{20/9}} + \frac{1}{n}}{\frac{1}{n^{10/9}}} + 2$$

$$\Rightarrow \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{\frac{2}{n^{2015}} + \frac{1}{n}}{\frac{1}{n^{2015}} + 2} = 0.$$

b)
$$x_n = \frac{1}{2^n} = \left(\frac{1}{2}\right)^n$$
. Como $0 < \frac{1}{2} < 1$, temos $0 < \left(\frac{1}{2}\right)^{n+1} < \left(\frac{1}{2}\right)^n$, logo $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0$.

Temos uma série geométrica com $a = \frac{326}{10^5}$ e razão $r = \frac{1}{10^3}$.

Como $|r| = \frac{1}{10^3} < 1$, a série é convergent e sua soma é dada

$$\frac{a}{1-r} = \frac{\frac{326}{10^5}}{1-\frac{1}{10^3}} = \frac{326}{10^5} \cdot \frac{10^3}{999} = \frac{326}{99900}.$$

Logo,

$$4,17326326... = \frac{417}{100} + \frac{326}{99900} = \frac{416583 + 326}{99900} = \frac{416909}{99900}$$

3 a) Observe que:

$$\lim_{N\to\infty}\frac{n^3}{n+1} = \lim_{N\to\infty}\frac{1}{\frac{1}{n^3}} = \infty.$$

Pelo teste de divergência, a série diverge.

b)
$$\sum_{n=1}^{\infty} n^{-T} = \sum_{n=1}^{\infty} \frac{1}{n^{T}}$$
 é uma série p com $p=T>1$, $\log p$ a

série converge.

(4) Aplicando o teste da razãos:

$$\left|\frac{\varkappa_{n+1}}{\varkappa_{n}}\right| = \left|\frac{(-1)^{n+1}}{(n+1)^{2}} \frac{n+1}{5} \cdot \frac{n^{2} 5^{n}}{(-1)^{n} x^{n}}\right| = \left|(-1) \cdot \varkappa \cdot \frac{1}{5} \cdot \left(\frac{n}{n+1}\right)^{2}\right| = \frac{\left|\varkappa\right|}{5} \cdot \left(\frac{n}{n+1}\right)^{2}$$

$$=\left(\frac{1}{1+\frac{1}{n}}\right)^2\cdot\frac{|x|}{5} \xrightarrow{n\to\infty} \frac{|x|}{5}$$

Logo, a série converge para valores de x tais que

$$\frac{|x|}{5} < \lambda \quad \Leftrightarrow \quad |z| < 5 \quad \Leftrightarrow \quad -5 < x < 5.$$

A série diverge para valores de x tais que:

$$\frac{|x|}{5} > 1$$
 (3) $|x| > 5$ (4) $|x| > 5$ (4) $|x| > 5$ (6) $|x| < -5$.

Para x = 5, temos $\sum_{n=1}^{\infty} (-1)^n \frac{5^n}{n^2 5^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$. Aplicando o teste do série alternado:

•
$$\lim_{n\to\infty} \frac{1}{n^2} = 0$$

•
$$n^2 < n^2 + 2n + 1 = (n+1)^2$$
, $\forall n \in IN$. Logo, $\frac{1}{(n+1)^2} < \frac{1}{n^2}$,

Assim, a série é convergente.

Para
$$x = -5$$
, temos $\sum_{n=1}^{\infty} (-1)^n \frac{(-5)^n}{n^2 5^n} = \sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n 5^n}{n^2 5^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ uma

série p com p=2>1, logo convergente

Portanto, a série de potências converge para x € [-5,5].

(5) Calulando as derivadas de f(x)=senx e avaliando em x=0:

$$f(x) = \operatorname{Sen} x$$
 $\Rightarrow f(0) = \operatorname{Sen} 0 = 0$
 $f'(x) = \operatorname{cos} x$ $\Rightarrow f'(0) = \operatorname{cos} 0 = 1$

$$f''(x) = -\operatorname{Sen} x \Rightarrow f''(0) = -\operatorname{Sen} 0 = 0$$

$$f''(x) = -\sin x \quad \Rightarrow f''(0) = -\sin 0 = 0$$

$$f'''(x) = -\cos x \quad \Rightarrow f'''(0) = -\cos 0 = -1$$

$$f^{(4)}(x) = sen x = f(x) e o ciclo se repete$$

A série de Maclaurin é dodo por

$$\sum_{n=0}^{\infty} \frac{f(0)}{n!} x^{n} = f(0) + f(0) x + \frac{f'(0)}{2!} x^{2} + \frac{f''(0)}{3!} x^{3} + \frac{f'(0)}{4!} x^{4} + \cdots$$

$$= 0 + 1 \cdot x + \frac{0}{2!} x^{2} + \frac{(-1)}{3!} x^{3} + \frac{0}{4!} x^{4} + \cdots$$

$$= x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{4}}{4!} + \cdots$$

$$= \frac{\infty}{n=0} (-1) \frac{x^{2n+1}}{(2n+1)!}$$