CS2102 Database Systems

Slides adapted from Prof. Chan Chee Yong

LECTURE 09
DECOMPOSITION

Functional dependencies

What

- Abstraction of "uniquely identifies" to any arbitrary attributes
- $a \rightarrow b$ means that the same set of values a will always give the same set of values b

Why

• **Superkey** "uniquely identifies" the entire relation R

 $a \rightarrow R$

Key minimal set of superkey

Prime attribute attributes in some key

Non-prime attribute

 \Rightarrow cannot be used to "uniquely identify" R

Armstrong's axiom

Basic

- Reflexivity if $b \subseteq a$ then $a \to b$
- Augmentation if $a \rightarrow b$ then $ac \rightarrow bc$
- Transitivity if $a \to b$ and $b \to c$ then $a \to c$

Extended

Union

- if $a \to b$ and $a \to c$ then $a \to bc$
- Decomposition if $a \to b$ then $a \to b'$ where $b' \subseteq b$

Properties

Sound

any derived FD is implied by F

Complete

all FDs in F^+ can be derived

Closures

 F^+

- Set of all FDs implied by F
- ${}^{\circ} F^{+} = \{ f \mid F \models f \}$

How

- Start with F
- Apply Armstrong's axiom until none can produce new FDs

Properties

- Maximum size: $2^n \times 2^n$
- Most FDs are uninteresting (e.g., trivial)
 - Wasted computation

Closures

 a^+

- Set of all attributes functionally depends on a
- $^{\circ} a^{+} = \{ A \in R \mid F \models a \rightarrow A \}$

How

- Invariant: $a \rightarrow \theta$ is always implied
 - Start with $\theta = a$
 - Consider any $b \to c$ such that $b \subseteq \theta$
 - By invariant we have $a \to \theta$; $\theta \to b$; $b \to c$
 - By transitivity we have $a \rightarrow c$
 - By union we have $a \to \theta \cup c$
 - Thus, we can set $\theta = \theta \cup c$ and still maintain invariant
 - \circ We can stop once θ cannot be expanded anymore

Closures

 a^{+}

- Set of all attributes functionally depends on a
- $a^+ = \{ A \in R \mid F \models a \rightarrow A \}$

Properties

- Invariant: $a \to \theta$ is always implied
 - Let $a^+ = \theta$
 - By decomposition $a \to b$ where $b \subseteq a^+$
 - Hence, $F \models a \rightarrow b$ if and only if $b \subseteq a^+$
- Maximum size: n
- $a \rightarrow a^+$ can be decomposed into two components
 - Trivial

$$a \rightarrow a$$

• Completely non-trivial $a \to (a^+ - a)$

Minimal covers

What

- Set G of FDs such that
 - Every FD in G is of the form $a \rightarrow A$
 - For each FD $a \rightarrow A$ in G, α has no redundant attributes
 - There are no redundant FDs in G
 - G and F are equivalent

Redundant attributes

- Let $F_1 = G \cup \{aA \rightarrow B\}$ and $F_2 = G \cup \{a \rightarrow B\}$
- If $F_1 \equiv F_2$ then A is redundant
 - In other words, having $a \to B$ instead of $aA \to B$ does not change the amount of information
- How
 - Compute a^+ w.r.t. F_1 ; if $B \in a^+$, then $a \to B$
 - So $F_1 \models F_2$ and $F_2 \models F_1$ which means $F_1 \equiv F_2$
 - $F_2 \vDash aA \rightarrow a \text{ and} F_2 \vDash a \rightarrow B \text{ means} F_2 \vDash aA \rightarrow B$

Minimal covers

What

- Set G of FDs such that
 - Every FD in G is of the form $a \rightarrow A$
 - For each FD $a \rightarrow A$ in G, α has no redundant attributes
 - There are no redundant FDs in G
 - G and F are equivalent

Redundant FD

- Let $F = G \cup \{a \rightarrow B\}$
- If $F \equiv G$ then $a \rightarrow B$ is redundant
 - In other words, not having $a \to B$ does not change the amount of information
- How
 - Compute a^+ w.r.t. G; if $B \in a^+$, then $a \to B$
 - So $G \vDash F$ and $F \vDash G$ which means $F \equiv G$
 - $F \models G$ trivially because $G \subseteq F$

Lossless-join decomposition

Dependency-preserving decomposition

Overview

Lossless-join decomposition

Dependency-preserving decomposition

Schema decomposition

Definition

- The decomposition of schema R is a set of schemas $\{R_1, R_2, \dots, R_n\}$ (called fragments) such that
 - $R_i \subseteq R$ for each R_i
 - Each fragment is simpler than the original schema
 - $\circ R = R_1 \cup R_2 \cup \cdots \cup R_n$
 - No attributes are missing
- Consider a relation r of R, the decomposition of r into $\{r_1, r_2, \dots, r_n\}$ is
 - $\circ r_i = \pi_{R_i}(r)$
 - Projection operation!

Useful properties

- The decomposition must preserve information
 - Information in original relation must be equivalent to the information in decomposed relations
 - After performing joins (e.g., natural join)
 - Crucial for correctness!
- The decomposition should preserve FDs
 - FDs in original schema must be equivalent to the FDs in decomposed schemas
 - Facilitates checking of FD violations without performing joins or relying on triggers

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

A	В	С
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B)$ and $R_2(B, C)$ a decomposition of R?

R1

A	В
a1	b1
a2	b1

 R_2

В	С
b1	c1
b1	c2

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

Α	В	С
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B)$ and $R_2(A, C)$ a decomposition of R?

R1

A	В
a1	b1
a2	b1

R2

A	C
a1	c1
a2	c2

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

Α	В	С
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B, C)$ and $R_2(B, C)$ a decomposition of R?

R1

Α	В	С
a1	b1	c1
a2	b1	c2

R2

В	С
b1	c1
b1	c2

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

A	В	C
a1	b1	c1
a2	b1	c2

• Is $R_1(A)$, $R_2(B)$, and $R_3(C)$ a decomposition of R?

R1

A

a1

a2

R2

В

b1

R3

с

c2

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

A	В	C
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B)$ and $R_2(B)$ a decomposition of R?

R1

Α	В
a1	b1
a2	b1

R2

В	
b1	
b1	

Definition

- Consider a schema R decomposed into $\{R_1, R_2, ..., R_n\}$ and the natural join operation \bowtie
 - Let the relation r of R be decomposed into $\{r_1, r_2, \dots, r_n\}$ such that

$$r_1 = \pi_{R_1}(r), r_2 = \pi_{R_2}(r), ..., r_n = \pi_{R_n}(r)$$

- $\{R_1, R_2, ..., R_n\}$ is a lossless-join (or lossless) decomposition w.r.t. F <u>if</u>
 - $\circ r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$
 - In other words, no information is lost by performing a join
 - But tuple (i.e., data) may increase!
 - If not a lossless-join, we call it a lossy-join (or lossy) decomposition

Lemma 1

- If $\{R_1, R_2, \dots, R_n\}$ is a decomposition of R, then for any relation r or R
 - $\circ \ r \subseteq \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$
 - Lossy-join decomposition produces more tuple!

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

A	В	С
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B)$ and $R_2(B, C)$ a lossless-join decomposition of R?

R1

A	В
a1	b1
a2	b1

В	С
b1	c1
b1	c2

 $R1 \bowtie R2$

A	В	C

Example

• Let R(A, B, C) with FDs $F = \{A \rightarrow B\}$

R

A	В	С
a1	b1	c1
a2	b1	c2

• Is $R_1(A, B)$ and $R_2(A, C)$ a lossless-join decomposition of R?

R1

A	В
a1	b1
a2	b1

R2

A	С
a1	c1
a2	c2

 $R1 \bowtie R2$

A	В	C

Theorem 1

- The decomposition of R with FDs F into $\{R_1, R_2\}$ is a lossless-join decomposition w.r.t. F <u>if</u>
 - $\circ F \vDash R_1 \cap R_2 \to R_1$ OR
 - $\circ F \vDash R_1 \cap R_2 \rightarrow R_2$

Intuition

- Let $\{R_1, R_2\}$ be a decomposition of R with FDs F
- Let $R_1 \cap R_2 = a$, $R_1 R_2 = b$, and $R_2 R_1 = c$
- Let r be an instance of R, $r_1 = \pi_{R_1}(r)$ and $r_2 = \pi_{R_2}(r)$
 - If $F \models a \rightarrow b$

R	

Α	В	С
a1	b1	c1
a2	b1	c2

R1

Α	В
a1	b1
a2	b1

R2

A	С
a1	c1
a2	c2

*R*1 ⋈ *R*2

A	В	C

Theorem 1

- The decomposition of R with FDs F into $\{R_1, R_2\}$ is a lossless-join decomposition w.r.t. F <u>if</u>
 - $\circ F \vDash R_1 \cap R_2 \to R_1$ OR
 - $\circ F \vDash R_1 \cap R_2 \rightarrow R_2$

Intuition

- Let $\{R_1, R_2\}$ be a decomposition of R with FDs F
- Let $R_1 \cap R_2 = a$, $R_1 R_2 = b$, and $R_2 R_1 = c$
- Let r be an instance of R, $r_1 = \pi_{R_1}(r)$ and $r_2 = \pi_{R_2}(r)$
 - If $F \not\models a \rightarrow b$ and $F \not\models a \rightarrow c$

R

Α	В	С
a1	b1	c1
a1	b2	c2

R1

A	В
a1	b1
a1	b2

R2

A	С
a1	c1
a1	c2

 $R1 \bowtie R2$

A	В	С

Corollary 1

- If $a \to b$ is a completely non-trivial FD that holds on R, then the decomposition of R into $\{R-b,ab\}$ is a lossless-join decomposition
 - Since $(R b) \cap ab = a$ and $a \to b$ so $a \to ab$

Theorem 2

- If $\{R_1, R_2, \ldots, R_n\}$ is a lossless-join decomposition of R, and $\{R_{1,1}, R_{1,2}\}$ is a lossless-join decomposition of R_1 m then $\{R_{1,1}, R_{1,2}, R_2, \ldots, R_n\}$ is a lossless join decomposition of R
- Combine corollary 1 and theorem 2 to decompose any R into more than 2 fragments

- Let R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, C \rightarrow D, CE \rightarrow A\}$
- Is $\{R_1(A,B), R_2(C,D), R_3(A,C,E)\}$ a lossless-join decomposition?
- Steps:
 - Since this is a decomposition into 3 fragments, we need to find an intermediate decomposition
 - Let the intermediate be R_I , then either
 - 1. $\{R_I, R_3\}$ is a lossless-join decomposition of R and $\{R_1, R_2\}$ is a lossless-join decomposition of R_I where $R_I(A, B, C, D)$
 - 2. $\{R_I, R_2\}$ is a lossless-join decomposition of R and $\{R_1, R_3\}$ is a lossless-join decomposition of R_I where $R_I(A, B, C, E)$
 - 3. $\{R_I, R_1\}$ is a lossless-join decomposition of R and $\{R_2, R_3\}$ is a lossless-join decomposition of R_I where $R_I(A, C, D, E)$

- Let R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, C \rightarrow D, CE \rightarrow A\}$
- Is $\{R_1(A,B), R_2(C,D), R_3(A,C,E)\}$ a lossless-join decomposition?
- Steps:
 - Case #1
 - Check $\{R_I(A, B, C, D), R_3(A, C, E)\}$ is a lossless-join decomposition of R
 - $R_I \cap R_1 = AC$ and $AC \rightarrow R_I$ (since $AC^+ = ABCD$)
 - \checkmark { $R_I(A, B, C, D)$, $R_3(A, C, E)$ } is a lossless-join decomposition of R
 - Check $\{R_1(A, B), R_2(C, D)\}$ is a lossless-join decomposition of R_I
 - $R_1 \cap R_2 = \emptyset$ but neither $\emptyset \to R_1$ nor $\emptyset \to R_2$
 - $R_1(A,B)$, $R_2(C,D)$ is **not** a lossless-join decomposition of R_I

- Let R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, C \rightarrow D, CE \rightarrow A\}$
- Is $\{R_1(A,B), R_2(C,D), R_3(A,C,E)\}$ a lossless-join decomposition?
- Steps:
 - Case #2
 - Check $\{R_I(A, B, C, E), R_2(C, D)\}$ is a lossless-join decomposition of R
 - $R_I \cap R_2 = C$ and $C \rightarrow R_2$
 - \checkmark { $R_I(A, B, C, E)$, $R_2(C, D)$ } is a lossless-join decomposition of R
 - Check $\{R_1(A, B), R_3(A, C, E)\}$ is a lossless-join decomposition of R_I
 - $R_1 \cap R_2 = A \text{ and } A \rightarrow R_1$
 - \checkmark { $R_1(A,B)$, $R_3(A,C,E)$ } is a lossless-join decomposition of R_I

- Let R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, C \rightarrow D, CE \rightarrow A\}$
- Is $\{R_1(A,B), R_2(C,D), R_3(A,C,E)\}$ a lossless-join decomposition?
- Steps:
 - Case #3
 - Check $\{R_I(A, C, D, E), R_1(A, B)\}$ is a lossless-join decomposition of R
 - $R_I \cap R_1 = A$ and $A \to R_1$
 - \checkmark { $R_I(A, C, D, E)$, $R_1(A, B)$ } is a lossless-join decomposition of R
 - Check $\{R_2(C,D), R_3(A,C,E)\}$ is a lossless-join decomposition of R_I
 - $R_2 \cap R_3 = C$ and $C \rightarrow R_2$
 - \checkmark { $R_2(C,D)$, $R_3(A,C,E)$ } is a lossless-join decomposition of R_I

- Let R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, C \rightarrow D, CE \rightarrow A\}$
- Is $\{R_1(A,B), R_2(C,D), R_3(A,C,E)\}$ a lossless-join decomposition?
- Notes:
 - We can stop after case #2 since we have found one intermediate decomposition
 - If it is a lossy-join decomposition, then we have to check until all cases have been exhausted
 - $\circ \left(\neg \exists_d \cdot \mathsf{lossless}(d) \right) = \left(\forall_d \cdot \neg \mathsf{lossless}(d) \right) = \left(\forall_d \cdot \mathsf{lossy}(d) \right)$
 - Corollary 1 can be used to guide the decomposition
 - The decomposition is based on FDs f in F

- Consider a schema R with FDs F, and $a \subseteq R$
- \circ The projection of F on a denoted by F_a is the set of FDs such that
 - ${}^{\circ} F_a \subseteq F^+$
 - The projection is a subset of the closure

$$^{\circ} F_a = \{ b \rightarrow c \in F^+ \mid bc \subseteq a \}$$

- The projection involves only attributes in a
- Example: Let R(A, B, C) with FDs $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$

FD	In F ⁺ ?	In F _{AB} ?	In F _{AC} ?
$C \to A$			
$A \rightarrow AB$			
$B \rightarrow C$			
$A \rightarrow C$			

- Consider a schema R with FDs F, and $a \subseteq R$
- \circ The projection of F on a denoted by F_a is the set of FDs such that
 - ${}^{\circ} F_a \subseteq F^+$
 - The projection is a subset of the closure
 - $^{\circ} F_a = \{ b \rightarrow c \in F^+ \mid bc \subseteq a \}$
 - The projection involves only attributes in a
- How to compute?
 - Consider any $b \subseteq a$ and compute b^+
 - Then $b \to b^+$ is in F^+ as well as $b \to c$ for any $c \subseteq b^+$
 - Let $c = b^+ \cap a$, we know that $c \subseteq b^+$
 - Then $b \to (b^+ \cap a)$ is in F^+
 - But $b \subseteq a$ and $(b^+ \cap a) \subseteq a$, so $b \to (b^+ \cap a)$ in F_a

- Algorithm #3
- **Input** A set of attributes $a \subseteq R$ and a set of FDs F on R
- \circ Output F_a
 - 1. initialize $\theta = \emptyset$
 - 2. for each $(b \subseteq a \text{ such that } b \neq \emptyset)$
 - 3. $\theta = \theta \cup \{b \rightarrow (b^+ \cap a)\}$ // w.r.t. F
 - 4. return θ
- How to compute?
 - Consider any $b \subseteq a$ and compute b^+
 - Then $b \to b^+$ is in F^+ as well as $b \to c$ for any $c \subseteq b^+$
 - Let $c = b^+ \cap a$, we know that $c \subseteq b^+$
 - Then $b \to (b^+ \cap a)$ is in F^+
 - But $b \subseteq a$ and $(b^+ \cap a) \subseteq a$, so $b \to (b^+ \cap a)$ in F_a

- Algorithm #3
- **Input** A set of attributes $a \subseteq R$ and a set of FDs F on R
- Output F_a
 - 1. initialize $\theta = \emptyset$
 - 2. for each $(b \subseteq a \text{ such that } b \neq \emptyset)$
 - 3. $\theta = \theta \cup \{b \rightarrow (b^+ \cap a)\}$ // w.r.t. F
 - 4. return θ
- Example: Let R(A, B, C) with FDs $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
 - Compute F_{AB}
 - initialize

$$\Rightarrow \theta = \emptyset$$

• let
$$b = A$$
, $A^+ = ABC$ $\Rightarrow \theta = \{$

$$\Rightarrow \theta = \{$$

• let
$$b = B$$
, $B^+ = ABC$ $\Rightarrow \theta = \{$

$$\Rightarrow \theta = \{$$

• let
$$b = AB$$
, $AB^+ = ABC \implies \theta = \{$

$$\Rightarrow \theta = \{$$

- Algorithm #3
- **Input** A set of attributes $a \subseteq R$ and a set of FDs F on R
- Output F_a
 - 1. initialize $\theta = \emptyset$
 - 2. for each $(b \subseteq a \text{ such that } b \neq \emptyset)$
 - 3. $\theta = \theta \cup \{b \rightarrow (b^+ \cap a)\}$ // w.r.t. F
 - 4. return θ
- Example: Let R(A, B, C) with FDs $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
 - Compute F_{RC}
 - initialize

$$\Rightarrow \theta = \emptyset$$

• let
$$b = B$$
, $B^+ = BC$ $\Rightarrow \theta = \{$

$$\Rightarrow \theta = \{$$

• let
$$b = C$$
, $C^+ = BC$ $\Rightarrow \theta = \{$

$$\Rightarrow \theta = \{$$

• let
$$b = BC$$
, $BC^+ = BC$ $\Rightarrow \theta = \{$

$$\Rightarrow \theta = \{$$

Why projection?

- Consider a schema R(A, B, C, D, E) and a decomposition $\{R_1(A, B, C), R_2(C, D, E)\}$
 - An FD $a \rightarrow b$ is enforced as candidate key
 - PRIMARY KEY
 - NOT NULL and UNIQUE
 - Candidate key constraints in R_1 cannot enforce an FD $a \rightarrow b$ where $b \in R_2$
 - Projection captures which FDs can be enforced by each fragments

Definition

- Decomposition $\{R_1, R_2, \dots, R_n\}$ of R is dependency-preserving \underline{if}
 - $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$ is equivalent to F
 - $\circ (F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n}) \equiv F$

 - $\circ \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right) \vDash F \land F \vDash \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right)$

Guarantees that for each update to a decomposed relation $r_i = \pi_{R_i}(r)$, FD violations for r can be detected without computing joins

- Consider R(A, B, C) with FDs $F = \{A \rightarrow B, B \rightarrow C\}$
 - Is $\{R_1(A,B), R_2(B,C)\}$ dependency-preserving?
- Steps:

$$F_{AB} = \{$$

$$F_{BC} = \{$$

$$F_{AB} \cup F_{BC} = F$$

$$(F_{AB} \cup F_{BC})^+ = F^+$$

- Note:
 - $A \to C$ is neither in F_{AB} nor in F_{BC}
 - but $A \to C$ is in $(F_{AB} \cup F_{BC})^+$

- Consider R(A, B, C) with FDs $F = \{A \rightarrow B, B \rightarrow C\}$
 - Is $\{R_1(A,B), R_2(B,C)\}$ dependency-preserving?
- Steps:

$$\circ F_{AB} = \{$$

$$\circ F_{RC} = \{$$

$$\circ F_{AB} \cup F_{BC} = F$$

$$(F_{AR} \cup F_{RC})^{+} = F^{+}$$

<u>A</u>	В	С
a1	b1	c1
a2	b1	c2
a1	b1	c2

R1

<u>A</u>	В
a1	b1
a2	b2
a1	b1

R2

<u>B</u>	С
b1	c1
b2	c2
b1	c2

- Consider R(A, B, C) with FDs $F = \{A \rightarrow B, A \rightarrow C\}$
 - Is $\{R_1(A,B), R_2(B,C)\}$ dependency-preserving?
- Steps:

```
\circ F_{AB} = \{
```

$$\circ F_{BC} = \{$$

$$^{\circ} F_{AB} \cup F_{BC} = \{$$
 }

$$\circ (F_{AB} \cup F_{BC})^+ = \{$$

$$(F_{AB} \cup F_{BC})^+ = \{ \} \neq F^+ = \{A \to B, A \to C\}$$

Example

- Consider R(A, B, C) with FDs $F = \{A \rightarrow B, A \rightarrow C\}$
 - Is $\{R_1(A, B), R_2(B, C)\}$ dependency-preserving?
- Steps:

$$\circ F_{AB} = \{$$

$$\circ F_{RC} = \{ \}$$

$$(F_{AB} \cup F_{BC})^{+} = \{$$

$$\} \neq F^+ = \{A \rightarrow B, A \rightarrow C\}$$

<u>A</u>	В	C
a1	b1	c1
a2	b1	c2
a1	b1	c2

R

<u>A</u>	В	
a1	b1	
a2	b2	
a1	b1	

R1

В	С
b1	c1
b2	c2
b1	c2

R2

Checking

- Given a decomposition $\{R_1, R_2, ..., R_n\}$ of R, how to check if it is a dependency-preserving decomposition
 - $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$ is equivalent to F
 - $^{\circ} \left(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n} \right) \equiv F$

 - $\bullet \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right) \vDash F \land F \vDash \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right)$
 - How to compute F^+ and $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})^+$ efficiently?
 - Given lemma 2, we simply have to check $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n}) \models F$

Lemma 2

- For every decomposition $\{R_1, R_2, ..., R_n\}$ of R
 - $\circ F \vDash (F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n})$
 - By definition, $F_{R_i} = \{ b \rightarrow c \in F^+ \mid bc \subseteq R_i \}$
 - For all $b \to c$ in F_{R_i} , we also have $b \to c$ in F^+

Checking

- Given a decomposition $\{R_1, R_2, ..., R_n\}$ of R, how to check if it is a dependency-preserving decomposition
 - $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$ is equivalent to F• $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n}) \models F$
- Idea
 - Let $G = F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n}$
 - ∘ For each f ∈ F
 - Check $G \models f$
 - \circ Let $f = a \rightarrow b$
 - \circ Compute a^+ w.r.t. G
 - \circ If $b \subseteq a^+$ then $G \models a \rightarrow b$
 - \circ Alternatively, if $b \nsubseteq a^+$ then $G \not\equiv F$
 - \circ If pass all $b \subseteq a^+$ then $G \models F$

Checking

- Algorithm #4
- **Input** A decomposition $\{R_1, ..., R_n\}$ of R with FDs F
- **Output** YES (if dependency-preserving) or NO (otherwise)
 - 1. for each $(R_i \in \{R_1, ..., R_n\})$
 - 2. compute F_{R_i}
 - 3. let $G = F_{R_1} \cup \cdots \cup F_{R_n}$
 - **4.** for each (FD $a \rightarrow b \in F$)
 - 5. compute a^+ w.r.t. G
 - 6. if $(b \nsubseteq a^+)$ then return NO
 - 7. return YES

Summary

- Decomposition
 - Lossless-join
 - $ightharpoonup r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$ No information is lost
 - □ Theorem 1: $F \vDash R_1 \cap R_2 \rightarrow R_1 \lor F \vDash R_1 \cap R_2 \rightarrow R_2 \Rightarrow lossless$
 - Can be used to check for lossless-join
 - \square Corollary 1: Completely non-trivial $a \rightarrow b \Rightarrow \{R b, ab\}$ is lossless
 - Can be used to decompose!
 - □ Theorem 1: lossless($\{R_{1,1}, R_{1,2}\}, R_1$) \land lossless($\{R_1, R_2\}, R$) \Rightarrow lossless($\{R_{1,1}, R_{1,2}, R_2\}, R$)
 - Can be used to further decompose
 - Dependency-preserving

 - ☐ FD can be checked without performing the join
 - \square Projection: $F_a = \{b \rightarrow c \in F^+ \mid bc \subseteq a\}$
 - \square Algorithm #3: computes F_a
 - Algorithm #4: check $\{R_1, R_2, ..., R_n\}$ of R is dependency-preserving