Stabla Odlučivanja

Milan M.Milosavljević

Primer stabla odlučivanja

http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/decisionTree.html

Splitting Attributes Refund **Marital Taxable** Cheat **Status** Income No Yes Single 125K Refund 2 No Married 100K No Yes No 3 No Single 70K No NO **MarSt** Yes Married 120K No 4 Married 95K 5 No Divorced Yes Single, Dixorced 6 No Married 60K No **TaxInc** NO Yes Divorced 220K No < 80K> 80K 8 No Single 85K Yes 9 75K No No Married NO YES 90K Yes 10 No Single

Obučavajući skup

Model: Stabla odlučivanja

Primer stabla odlučivanja

categorical continuous

			•	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Može biti više različitih stabala za zadati obučavajući skup

Startovati iz korena stabla.

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Test podaci

Test podaci

Indukcija po stablu odlučivanja

- Najpopularniji algoritmi algoritama:
 - Hantov algoritam
 - CART
 - □ ID3, C4.5
 - SLIQ,SPRINT

Hantov algoritam

Earl B. Hunt (1933 – 2016)

Opšta struktura Hantovog algoritma

- Neka je D_t skup slogova za trening koji se nalaze u čvoru t
- Opšta procedura:
 - Ako D_t sadrži slogove koji pripadaju istoj klasi y_t, tada je t list označen sa y_t
 - Ako je D_t prazan skup tada je t list označen sa predefinisanom klasom Y_d
 - Ako D_t sadrži slogove koji se nalaze u više od jedne klase, tada se koristi test atribut radi podele podataka u manje podskupove.
 Ova procedura se rekurzivno primenjuje na svaki podskup.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hantov algoritam

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Indukcija po stablu

- Strategija
 - Podeliti slogove prema testnom atributu koji optimizuje određeni kriterijum.

- Odluke koje treba doneti
 - Kako podeliti slogove
 - Kako navesti uslove testiranja za atribute?
 - Kako odrediti najbolju podelu?
 - Kada treba stati sa podelom

Kako navesti uslove testiranja za atribute?

- Zavisnost od tipa atributa
 - Imenski (Nominalni)
 - Redni (Ordinarni)
 - Neprekidni
- Zavisnost od broja načina za deobu
 - Podela na 2 grane
 - Podela na više grana

Podela zasnovana na imenskim atributima

 Podela na više grana: koristi se toliko delova koliko ima različitih vrednosti

Binarna podela: vrednosti se dele u dva podskupa.
 Treba naći optimalnu podelu.

Podela zasnovana na rednim atributima

Podela na više grana: koristi se toliko delova koliko ima različitih vrednosti.

Binarna podela: vrednosti se dele u dva podskupa. Treba naći optimalnu podelu.

Small

Medium

Large

Podela zasnovana na neprekidnim atributima

- Različiti načini rada
 - Diskretizacijom se formiraju redni kategorički atributi
 - Statički diskretizacija jednom na početku rada
 - Dinamički opsezi mogu da se odrede podelom na jednake intervale, jednaku frekvenciju, precentile, klastere, ...
 - □ Binarna podela: (A < v) ili $(A \ge v)$
 - razmatraju se sve moguće podele i pronalazi najbolja
 - računarski intenzivan posao

Podela zasnovana na neprekidnim atributima

(i) Binary split

(ii) Multi-way split

Kako odrediti najbolju podelu

Pre podele: 10 slogova klase 0,

10 slogova klase 1

Koji testni uslov daje najbolje rezultate?

Kako odrediti najbolju podelu

- Greedy algoritam:
 - Prvenstvo imaju čvorovi sa homogenom distribucijom klasa
- Potrebno je naći meru nečistoće čvora:

C0: 5

C1: 5

Nehomogeno,

Visok nivo nečistoće

C0: 9

C1: 1

Homogeno,

Nizak nivo nečistoće

Mera nečistoće čvora

Ginijev indeks (Gini)

Entropija

Greške u klasifikaciji

Kako naći nabolju podelu?

GINI index

Corrado Gini (1884 – 1965)

Mera nečistoće: GINI

Ginijev (Corrado Gini, italijanski statističar) indeks za dati čvor t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(Primedba: $p(j \mid t)$ je relativna frekvencija klase j u čvoru t).

- □ Maksimum $(1 1/n_c)$ kada su slogovi ravnomerno distribuirani u svim klasama podrazumeva najmanje interesantne informacije
- Minimum (0.0) kada svi slogovi pripadaju jednoj klasi, podrazumeva najinteresantije informacije

Gini=	n nnn
C2	6
C1	0

C1	1
C2	5
Gini=0.278	

C1	2	
C2	4	
Gini=0.444		

C1	3	
C2	3	
Gini=0.500		

Primeri izračunavanja GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - (2/6)² - (4/6)² = 0.444

Podela zasnovana na GINI

- Koristi se u CART, SLIQ, SPRINT.
- Kada se čvor p deli u k delova (dete čvor) kvalitet se računa kao,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

gde je n_i = broj slogova u dete čvoru i, n = broj slogova u čvoru p.

Binarni atributi: izračunavanje GINI indeksa

- Skup se deli u dve particije
- Efekti težina particija: poželjne su veće i čistije particije

	Parent	
C1	6	
C2	6	
Gini = 0.500		

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.4082

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.320

	N1	N2
C1	5	1
C2	2	4
Gini=0 333		

Gini(Children)

= 7/12 * 0.4082 +

5/12 * 0.320

= 0.3715

Kategorički atributi: izračunavanje Gini indeksa

- Za svaku od različitih vrednosti izračuna se broj u svakoj klasi skupa podataka
- U donošenju odluka koristi se matrica brojanja

Multi-way split

	CarType		
	Family	Sports	Luxury
C1	1	2	1
C2	4	1	1
Gini	0.393		

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury}		
C1	3	1	
C2	2	4	
Gini	0.400		

	CarType						
	{Sports}	{Family, Luxury}					
C1	2	2					
C2	1	5					
Gini	0.419						

Kategorički atributi: izračunavanje Gini indeksa

- Koriste se binarne pitalice zasnovane na jednoj vrednosti
- Više izbora za vrednost po kojoj se deli
 - Broj mogućih vredosti za podelu = broju različitih vrednosti
- Svaka vrednost po kojoj se deli ima pridruženu matricu brojanja
 - U svakoj od particija se prebrojavaju klase,
 A < v i A > v
- Jednostavan način za izbor najboljeg v
 - Za svako v, skenirati bazu podataka da bi se dobila matrica brojeva i izračunao Hinijev indeks
 - Zahteva ponavljanje posla i neefikasno je sa stanovišta izračunljivosti

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Neprekidni atributi: izračunavanje Gini indeksa

- Za efikasno izračunavanje se za svaki
 - Sortira atribut po vrednostima
 - Dobijene vrednosti linearno skeniraju uz ažuriranje matrice brojanja i izračunavanje Ginijevog indeksa
 - □ Bira se pozicija za podelu sa najmanjim Ginijevim indeksom

	Cheat	heat No			No No		0	Yes		Yes		Ye	es N		lo N		lo N		0		No		
		Taxable Income																					
Sortirane vrednosti →		60 70		75		5	85		90		95		10	00 1		20 1:		25		220			
Pozicije podele		55 65		7	72 8		80 8		7	92		9	97 1		0 1		22	17	72	230			
i ozicije podele		"	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	>	\=	^
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.4	0.400		0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		75	0.400		0.420	

Alternativni kriterijumi podele

Entropija u datom čvoru t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(Primedba: $p(j \mid t)$ je relativna frekvencija klase j u čvoru t).

- Mera homogenosti čvora
 - Maksimum (log n_c) kada su slogovi ravnomerno distribuirani u svim klasama podrazumeva najmanje informacija
 - Minimum (0.0) kada svi slogovi pripadaju jednoj klasi, podrazumeva najviše informacij
- Izračunavanja zasnovana na entropiji i Ginijevom indeksu su slična

Primer računanja entropije

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0
C2	6

P(C1) =
$$0/6 = 0$$
 P(C2) = $6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Entropy = - (2/6) $log_2(2/6) - (4/6) log_2(4/6) = 0.92$

Alternativni kriterijumi podele

Sticanje informacija (eng. information gain):

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

gde se roditelj čvor p se deli u k particija, a n_i je broj slogova u particiji i

- Mera redukcije u entropiji se ostvaruje zbog podele. Podela se bira tako da se dobija najveća redukcija (maksimizira GAIN)
- Ovaj način se koristi u ID3 i C4.5
- Nedostaci: ima tendenciju da formira veliki broj malih ali čistih particija

Alternativni kriterijumi podele

- Gain odnos se koristi za određivanje valjanosti podele
- U C4.5 se kao kriterijum valjanosti koristi

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

gde se roditelj čvor p se deli u k particija, a n_i je broj slogova u particiji i

Kriterijumi deobe zasnovani na greškama pri klasifikaciji

Greška klasifikacije u čvoru t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Mera greške pri klasifikaciji
 - □ Maksimum $(1 1/n_c)$ kada su slogovi ravnomerno distribuirani u svim klasama podrazumeva najmanje interesantne informacije
 - Minimum (0.0) kada svi slogovi pripadaju jednoj klasi, podrazumeva najinteresantije informacije

Primer greške pri izračunavanju

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Poređenje među kriterijumima podele

Za problem 2-klase:

Greške u klasifikaciji / Gini

	Parent	
C1	7	
C2	3	
Gini = 0.42		

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

Gini(N2)
=
$$1 - (4/7)^2 - (3/7)^2$$

= 0.489

	N1	N2
C1	3	4
C2	0	3
Gini=0.361		

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.489

= 0.342

Gini daje poboljšanje!!

Kriterijum zaustavljanja indukcije po stablu

 Širenje se zaustavlja kada svi slogovi pripadaju istoj klasi

 Širenje se zaustavlja kada svi slogovi imaju iste vrednosti atributa

Klasifikacija zasnovana na stablima odlučivanja

Prednosti:

- Jednostavna konstrukcija
- Brza klasifikacija neklasifikovanih instanci
- Laka za interpertaciju za stabla male veličine
- Preciznost je uporediva sa ostalim tehnikama klasifikacije za jednostavne tipove podataka

Praktični problemi pri klasifikaciji

Obučavanje

Nedostajuće vrednosti

Cena klasifikacije

Fitovanje modela

- Greške u klasifikaciji
 - Greške pri treniranju (greške resubstitucije).
 - Broj grešaka u klasifikaciji za dati skup podataka za trening
 - Greške genetalizacije
 - Očekivana greška modela u odnosu na unapred nepoznate primere
- Dobar model mora korektno da klasifikuje i trening podatke i unapred nepoznate primere

Fitovanje modela

- Model koji isuviše dobro klasifikuje podatke za trening može da ima lošije karakteristike pri generalizaciji od modela koji ima veću grešku u procesu treninga – previše prilagođen model (eng. model overfitting)
 - U daljem tekstu preprilagođen model
- Ako je model isuviše jednostavan i greška pri treniranju i greška generalizacije mogu da budu jako velike – premalo prilagođen model (eng. model underfitting)
 - U daljem tekstu potprilagođen model

Preprilagođen i potprilagođen

500 kružnih i 500 trouglastih tačaka

Kružne tačke: 0.5 \leq sqrt($x_1^2+x_2^2$) \leq 1

Trougaone tačke: $sqrt(x_1^2+x_2^2) > 0.5$ ili $sqrt(x_1^2+x_2^2) < 1$

30% tačaka se bira za trening, ostale za test

Na trening podatke se primenjuju stabla sa Ginijevim indeksom kao merom nečistoće

Preprilagođen i potprilagođen

Potkresivanjem stabla na različitim nivoima dobijaju se različite veličine grešaka

Preprilagođenost zbog šuma

Granice podele se deformišu zbog postojanja šuma

Preprilagođenost zbog nepostojanja reprezentativnih primera

Modeli koji formiraju kriterijum klasifikacije na osnovu malog skupa za trening su podložni preprilagođenosti. Npr. nedostatak tačaka u donjoj polovini dijagrama onemogućava korektno predviđanje oznaka klasa u tom delu. U procesu klasifikacije se koriste ostali trening primeri koji su irelelvantni za klasifikaciju u tom delu.

Preprilagođenost: neki komentari

 Preprilagođenost se javlja kod stabla odlučivanja koja su kompleksnija nego što je potrebno

 U tom slučaju greške pri treniranju ne daju korektnu procenu načina ponašanja stabla u slučaju pojave prethodno nepoznatih podataka

Zahteva nove načine procene greške

Procena greške u generalizaciji

 Neka je T stablo, t čvor, N broj listova u stablu T, e(t) broj pogrešno klasifikovanih slogova u t, e(T) ukupan broj grešaka u klasifikaciji po stablu T

- \blacksquare Greška resubstitucije: greška pri treniranju (Σ e(t))
- \blacksquare Greška pri generalizaciji: greška pri testiranju (Σ e'(t))
- Metode za procenu greške pri generalizaciji:
 - Optimistički pristup: e'(t) = e(t)

Procena greške u generalizaciji

- Metode za procenu greške pri generalizaciji:
 - Optimistički pristup: e'(t) = e(t)
 - Pesimistički pristup:
 - \blacksquare Za svaki list: e'(t) = (e(t)+0.5)
 - Ukupan broj grešaka: $e'(T) = e(T) + N \times 0.5$
 - Za stabl sa 30 listova i 10 grešaka na treningu sa 1000 stavki:
 Greška treninranja = 10/1000 = 1%

Greška uopštavanja = $(10 + 30 \times 0.5)/1000 = 2.5\%$

Princip škrtosti

- Naziva se još i Okamov (eng. Occam) rezač
- Od dva modela sa sličnom greškom generalizacije treba izabrati onaj koji je jednostavniji
- Kod složenijih modela veća je šansa za pogrešnim fitovanjem ukoliko u podacima postoje greške
- Pri proceni modela treba uključiti i njegovu složenost

Princip najmanje dužine opisa (MDL)

X	у
X_1	1
X_2	0
X_3	0
X_4	1
X _n	1

X	у
X_1	
X_2	?
X_3	?
X_4	?
X _n	?

- Cena (model,podaci) = Cena(podaci|model) + Cena(model)
 - Cena je broj bitova potreban za kodiranje.
 - Traži se najmanje skup model.
- Cena(podaci|model) kodira pogrešno označene slogove pri klasifikaciji.
- Cena(model) koristi kodiranje modela (čvorovi + uslov podele)

Kontrola overfitinga

- Pre-potkresivanje (pravilo ranijeg zaustavljanja)
 - Algoritam se zaustavlja pre nego što stabl naraste do maksimalne veličine
 - tipični uslovi zaustavljanja za određeni čvor su:
 - Zaustavi se ako sve instance pripadaju istoj klasi
 - Zaustavi se ako su sve vrednosti atributa iste
 - Dodatna ograničenja:
 - Zaustavi se ako je broj instanci manji od neke unapred zadate granice
 - Zaustavi se ako je distribucija instanci nezavisna od raspoloživih osobina (npr. vidi se primenom χ^2 testa)
 - Zaustavi se ako širenje tekućeg čvora ne poboljšava meru čistoće (npr.
 Gini ili informaciono pojačanje (information gain)).

Kontrola overfitinga

- Potkresivanje po završetku
 - stablo odlučivanja raste do krajnjih granica
 - Iseku se čvorovi u stablu od dna ka vrhu
 - Ako se greška generalizacije poboljša posle otsecanja podstablo se zameni sa listom.
 - Labele kalse lista se određuju prema dominantnoj klasi instanci podstabla
 - Za potkresivanje po završetku se može koristiti MDL (minimum description length)

Primer potkresivanja po završetku

Class = Yes

Class = No

Trening greška (pre deobe) = 10/30

Pesimistička greška = (10 + 0.5)/30 =10.5/30

Trening greška (posle deobe) = 9/30

Pesimistička greška (posle deobe)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

POTKRESATI stablo!

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

A3

A4

Class = Yes	5
Class = No	1

Rukovanje atributima sa nedostajućim vrednostima

- Nedostajuće vrednosti utiču na stablo odlučivanja na različite načine:
 - Kako računati meru nečistoće
 - Kako distribuirati instance sa nedostajućim vredostima na decu čvorove
 - Kako klasifikovati test instancu sa nedostajućom vrednošću

Izračunavanje mere nečistoće

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Nedostajuća vredost Pre podele:

Entropy(Parent)

 $= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$

	Class = Yes	
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Podela na REFUND:

Entropy(Refund=Yes) = 0

Entropy(Refund=No)

 $= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$

Entropy(Children)

$$= 0.3 (0) + 0.6 (0.9183) = 0.551$$

Gain =
$$0.9 \times (0.8813 - 0.551) = 0.3303$$

Ditribucija instanci

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Tid	Refund		Taxable Income	Class
10	?	Single	90K	Yes

Verovatnoća da je Refund=Yes is 3/9
Verovatnoća da je Refund=No is 6/9
Dodeliti slog levom detetu sa težinom = 3/9 i desnom detetu sa težinom = 6/9