Makroekonomia zaawansowana - lista 1 termin oddania: zajęcia 24 października

Zadanie 1 (1p) Rozpatrzmy gospodarkę wymiany $E = \{(X_i, u_i, w_i)\}_{i=1}^N$, gdzie $(\forall i)w_i \in X_i = \mathbb{R}_+^K$ oraz $u_i : X_i \to \mathbb{R}$. Załóżmy, że dla $i = 1, \ldots, N$ funkcje u_i są ciągte i ostro rosnące z każdym argumentem. Pokaż, że jeżeli dostępna alokacja $x = (x_1, \ldots, x_N)$ nie jest Pareto optymalna, wtedy istnieje alokacja dostępna $x' = (x'_1, \ldots, x'_N)$ dla której zachodzi $(\forall i)u_i(x'_i) > u_i(x_i)$.

Zadanie 2 (2p) Rozpatrzmy liniowe równanie dynamiczne:

$$x_{t+1} = (1 - \alpha)x_t + \lambda(1 - x_t),$$

gdzie $\alpha \in (0,1)$, $\lambda \in (0,1)$ oraz $x_0 \in [0,1]$. To typowe równanie ruchu spotykane w wielu modelach ekonomicznych (np. zatrudnienia na rynku pracy, gdzie x_t jest poziomem bezrobocia, α szansą znalezienia pracy, λ szansą na zwolnienie i powiększenie zasobu bezrobotnych).

- $Poka\dot{z}, \dot{z}e \ x_t \in [0,1] \quad (\forall t).$
- Ile stanów ustalonych ma powyższa dynamika? Wyznacz ją jako funkcje parametrów.
- Pokaż, że dla każdego x_0 ciąg $\{x_t\}_{t=0}^{\infty}$ zbiega to stanu ustalonego.
- Znajdž warunki kiedy ta zbieżność jest monotoniczna.

Zadanie 3 (2p) Rozpatrz model Solowa z produkcją Cobba-Douglasa i postepem technologicznym wzbogacającym pracę:

$$y_t = k_t^{\theta} ((1 + \gamma_A)^t l_t)^{1-\theta}.$$

Załóż, że $l_t=1$. Rozpatrz dwie gospodarki z różnymi (ale dodatnimi) stopami oszczędności s_1 oraz s_2 i (dodatnimi) początkowami zasobami kapitału: $k_{1,0}$ oraz $k_{2,0}$. Wyprowadź wzór na asymptotyczny stosunek kapitałów w obu gospodarkach jako funkcje parametrów modelu.

Zadanie 4 (1.5p) W tym zadaniu rozpatrzysz model wzrostu Solowa bez postępu technologicznego, ale ze wzrostem populacji (identycznych, reprezentatywnych, pracujących gospodarstw domowych). Niech N_t oznacza wielkość populacji w okresie t z $N_0 = 1$ i stałym tempem wzrostu N_t na poziomie $1 + \gamma_N$. Wykorzystując metody analizy w modelu Solowa dla postępu technologicznego wzbogacającego pracę:

- a) pokaż, że rozpatrując wartości c, k, y per capita gospodarka ma stan ustalony i k_{pc} zbiega (monotonicznie) to tego poziomu,
- b) rozpatrz i wyjaśnij ekonomicznie dynamikę konsumpcji pc dla dwóch identycznych gospodarek z różnym tempem wzrostu populacji,
- c) rozpatrz gospodarkę ze stałym tempem wzrostu populacji w stanie ustalonym. Graficznie poddaj analizie wpływ jednookresowej zmiany wielkości populacji (dopływ pracowników z zagranicy, po której tempo wzrostu populacji wraca do poprzedniego poziomu $1 + \gamma_N$) na per capital wartości y, k, c.

Zadanie 5 (1.5p) W modelu wzrostu optymalnego niech $f(k) = k^{\alpha}$, dla $\alpha = 0.3$, $\beta = .97$, $\delta = .1$. Preferencje są zadane funkcją $u(c) = \frac{1}{1-\sigma}c^{1-\sigma}$ dla $\sigma = 1.01$. Stosunek kapitału początkowego do kapitału w stanie ustalonym wynosi $\lambda = .1$.

- a) Oblicz stan ustalony dla modelu wzrostu optymalnego, i wyznacz k_0 .
- b) Oblicz jaka część produktu (w stanie ustalonym) jest przeznaczana na inwestycje w modelu wzrostu optymalnego i oznacz tą liczbę przez s.
- c) Jak sądzisz, czy ścieżka kapitału z modelu wzrostu optymalnego będzie odpowiadała tej dla otrzymanej z modelu Solowa dla policzonego poziomu s??