

复变函数与积分变换试题(二)

一、填空题

- (1) 复数 $\frac{-2i}{1+i}$ 的模为____, 辐角主值为_____。
- (3) $\operatorname{Ln}(\sqrt{3}+i)^2$ 的值为______
- (4) 函数 $f(z) = \frac{1}{z^2 (1+i)z + i}$ 在 z = 0 处展开成泰勒级数的收敛半径为___。

(5)
$$z = 0$$
 为函数 $f(z) = \exp\left(\frac{1 - \cos z}{z^2}\right)$ 的何种类型的奇点?

- (6) 积分 $\oint_{|z|=1} \frac{1-\sin z}{z(z-2)} dz$ 的值为_____
- (7) 映射 $f(z) = z^2 + 2z$ 在 z = -i 处的旋转角为_____。 伸缩率为____。
- (8) 函数 $f(t) = 1 + 2\cos 2t$ 的 Fourier 变换为。

二、计算下列积分。

1.
$$\oint_{|z|=2} \frac{e^z-1}{z(z-1)^2} dz$$
.

1.
$$\oint_{|z|=2} \frac{e^z-1}{z(z-1)^2} dz$$
. 2. $\oint_{|z|=2} z^2 e^{\frac{1}{z}} \sin \frac{1}{z} dz$.

3.
$$\int_0^{2\pi} \frac{d\theta}{2\cos\theta - \sqrt{5}}$$
 4.
$$\int_0^{+\infty} \frac{x\sin 2x}{x^2 + 1} dx$$
.

4.
$$\int_0^{+\infty} \frac{x \sin 2x}{x^2 + 1} dx$$
.

三、已知 $u(x, y) = 4xy^3 + ax^3y$, 求常数 a 以及函数 v(x, y), 使得 f(z) = u + iv 为解析函数,且满足 f(1) = 0.

五、求区域 $D = \{z: -\frac{\pi}{2} < \text{Im} z < \frac{\pi}{2}, \text{Re} z < 0\}$ 在映射 $w = \frac{e^z - i}{e^z + i}$ 下的像区域。

六、求把区域 $D = \{z: |z-1| > 1, \text{Re } z > 0\}$ 映射到单位圆内部的 保形映射。

七、利用 Laplace 变换求解微分方程组:

$$\begin{cases} x''(t) - y''(t) - y(t) = t e^t, & x(0) = y(0) = 0, \\ x'(t) - y'(t) - x(t) = -\sin t, & x'(0) = y'(0) = 1. \end{cases}$$

八、设函数 f(z) 在 |z| < 2 内解析,且满足 |f(z) - 2| < 2,

证明:
$$\oint_{|z|=1} \frac{f''(z)-4f'(z)}{f^2(z)-4f(z)} \, \mathrm{d}z = 0.$$

复变函数与积分变换试题(二)解答

一、填空题

- (1) 复数 $\frac{-2i}{1+i}$ 的模为 $\frac{\sqrt{2}}{1+i}$, 辐角主值为 $\frac{-\frac{3\pi}{4}}{4}$ 。
- (2) 函数 $f(z) = y^2 ix^2$ 在何处可导? <u>在直线 x = y上</u>; 何处解析? <u>处处不解析</u>。
- (3) $\operatorname{Ln}(\sqrt{3}+i)^2$ 的值为 $\frac{\ln 4+i(\pi/3+2k\pi)}{\ln 4+i(\pi/3+2k\pi)}$ 。
- (4) 函数 $f(z) = \frac{1}{z^2 (1+i)z + i}$ 在 z = 0 处展开成泰勒级数的收敛半径为_1_。

- (5) z=0 为函数 $f(z)=\exp(\frac{1-\cos z}{z^2})$ 的何种类型的奇点? <u>可去奇点</u>。
- (6) 积分 $\oint_{|z|=1} \frac{1-\sin z}{z(z-2)} dz$ 的值为 $\frac{-\pi i}{z}$.
- (7) 映射 $f(z) = z^2 + 2z$ 在 z = -i 处的旋转角为 $\frac{-4}{4}$ 。 伸缩率为 $2\sqrt{2}$ 。
- (8) 函数 $f(t) = 1 + 2\cos 2t$ 的 Fourier 变换为 $2\pi [\delta(\omega) + \delta(\omega + 2) + \delta(\omega 2)]$ 。

$$\equiv$$
, 1. $\oint_{|z|=2} \frac{e^z-1}{z(z-1)^2} dz$.

解 (1) 令
$$f(z) = \frac{e^z - 1}{z(z-1)^2}$$
, 则有

$$z_1 = 0$$
 为 $f(z)$ 的可去奇点, Res[$f(z)$, 0] = 0.

$$z_2 = 1$$
 为 $f(z)$ 的二阶极点,

Res
$$[f(z), 1] = \lim_{z \to 1} [(z-1)^2 f(z)]'$$

$$= \lim_{z \to 1} \left(\frac{e^z - 1}{z} \right)' = \lim_{z \to 1} \frac{z e^z - e^z + 1}{z^2} = 1.$$

(2) 原式 =
$$2\pi i (\text{Res}[f(z), 0] + \text{Res}[f(z), 1]) = 2\pi i$$
.

$$\Box$$
, 2. $\oint_{|z|=2} z^2 e^{\frac{1}{z}} \sin \frac{1}{z} dz$.

解 令 $f(z) = z^2 e^{\frac{1}{z}} \sin \frac{1}{z}$, 则 z = 0 为 f(z) 的<u>本性奇点</u>,

$$f(z) = z^{2} \left(1 + \frac{1}{z} + \frac{1}{2!z^{2}} + \frac{1}{3!z^{3}} + \cdots\right) \left(\frac{1}{z} - \frac{1}{3!z^{3}} + \frac{1}{5!z^{5}} + \cdots\right)$$

$$=\cdots+\left(-\frac{1}{3!}+\frac{1}{2!}\right)\frac{1}{z}+\cdots,$$

Res
$$[f(z), 0] = -\frac{1}{3!} + \frac{1}{2!} = \frac{1}{3}$$
.

原式 =
$$2\pi i \operatorname{Res}[f(z), 0] = \frac{2\pi i}{3}$$
.

$$\equiv$$
, 3.
$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2\cos\theta - \sqrt{5}}$$
.

解 (1) 令
$$z = e^{i\theta}$$
, 则 $\cos \theta = \frac{z^2 + 1}{2z}$, $d\theta = \frac{dz}{iz}$,

原式 =
$$\oint_{|z|=1} \frac{1}{2\left(\frac{z^2+1}{2z}\right) - \sqrt{5}} \cdot \frac{\mathrm{d}z}{iz} = \oint_{|z|=1} \frac{\mathrm{d}z}{i(z^2-\sqrt{5}z+1)}.$$

(2) 令
$$f(z) = \frac{1}{i(z^2 - \sqrt{5}z + 1)}$$
, 则 $f(z)$ 有两个一阶极点:

$$z_1 = (\sqrt{5}-1)/2$$
, $z_2 = (\sqrt{5}+1)/2$. $(z_2 \pi \triangle |z| < 1 \triangle)$

原式 =
$$2\pi i \operatorname{Res}[f(z), z_1] = 2\pi i \frac{1}{i(2z-\sqrt{5})}\bigg|_{z=z_1} = -2\pi.$$

$$=$$
 4. $\int_0^{+\infty} \frac{x \sin 2x}{x^2 + 1} dx$.

解 (1) 令
$$f(z) = \frac{ze^{i2z}}{z^2+1}$$
,

则 f(z) 在<u>上半平面</u>只有一个<u>一阶极点</u> z=i,

Res
$$[f(z), i] = \frac{ze^{i2z}}{2z}\bigg|_{z=i} = \frac{1}{2e^2}.$$

(2) 原式 =
$$\frac{1}{2} \int_{-\infty}^{+\infty} \frac{x \sin 2x}{x^2 + 1} dx$$

$$= \frac{1}{2} \operatorname{Im} (2 \pi i \operatorname{Res} [f(z), i]) = \frac{\pi}{2 e^{2}}.$$

三、已知 $u(x, y) = 4xy^3 + ax^3y$, 求常数 a 以及函数 v(x, y), 使得 f(z) = u + iv 为解析函数,且满足 f(1) = 0.

解 (1) 首先 u(x, y) 必须为n 過和函数,即

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$\Rightarrow 6axy + 24xy = 0,$$

$$\Rightarrow a = -4$$

即得
$$u(x, y) = 4xy^3 - 4x^3y$$
.

三、已知 $u(x, y) = 4xy^3 + ax^3y$, 求常数 a 以及函数 v(x, y), 使得 f(z) = u + iv 为解析函数,且满足 f(1) = 0.

 \mathbf{P} (1) $u(x, y) = 4xy^3 - 4x^3y$.

(2) 方法1 利用偏积分法求解。

由
$$u_x = 4y^3 - 12x^2y = v_y$$
,得

$$v = \int (4y^3 - 12x^2y) dy = y^4 - 6x^2y^2 + \underline{\varphi(x)},$$

由
$$u_v = 12xy^2 - 4x^3 = -v_x = 12xy^2 - \varphi'(x)$$
, 得

$$\varphi'(x) = 4x^3, \Rightarrow \varphi(x) = x^4 + c,$$

即得
$$v(x, y) = x^4 + y^4 - 6x^2y^2 + c$$
.

三、已知 $u(x, y) = 4xy^3 + ax^3y$,求常数 a 以及函数 v(x, y),使得 f(z) = u + iv 为解析函数,且满足 f(1) = 0.

 \mathbf{P} (1) $u(x, y) = 4xy^3 - 4x^3y$.

(2) 方法2 利用全微分法求解。

曲
$$v_y = u_x = 4y^3 - 12x^2y$$
, $v_x = -u_y = 4x^3 - 12xy^2$,
得 $dv = (4x^3 - 12xy^2)dx + (4y^3 - 12x^2y)dy$
 $= dx^4 - 6y^2dx^2 + dy^4 - 6x^2dy^2$
 $= d(x^4 + v^4 - 6x^2v^2)$,

即得 $v(x, y) = x^4 + y^4 - 6x^2y^2 + c$.

三、已知 $u(x, y) = 4xy^3 + ax^3y$, 求常数 a 以及函数 v(x, y), 使得 f(z) = u + iv 为解析函数,且满足 f(1) = 0.

 \mathbf{P} (1) $u(x, y) = 4xy^3 - 4x^3y$.

(2)
$$v(x, y) = x^4 + y^4 - 6x^2y^2 + c$$
.

(3) $f(z) = 4xy^3 - 4x^3y + i(x^4 + y^4 - 6x^2y^2 + c),$ $f(1) = 0, \implies c = -1,$

即得 $f(z) = 4xy^3 - 4x^3y + i(x^4 + y^4 - 6x^2y^2 - 1)$.

$$\mathbf{f}(z) = \frac{1-i}{(z-1)(z-i)} = \frac{1}{z-1} - \frac{1}{z-i}.$$

- (1) $\underline{t} = 0$ 处展开。
 - ① 当 | z | < 1 时,

$$f(z) = -\frac{1}{1-z} + \frac{1}{i} \cdot \frac{1}{1-\frac{z}{i}}$$

$$=-\sum_{n=0}^{+\infty}z^n+\frac{1}{i}\sum_{n=0}^{+\infty}\frac{z^n}{i^n}=\sum_{n=0}^{+\infty}\left[\frac{1}{i^{n+1}}-1\right]z^n.$$

$$\mathbf{R}$$
 $f(z) = \frac{1-i}{(z-1)(z-i)} = \frac{1}{z-1} - \frac{1}{z-i}$.

- (1) $\underline{c} z = 0$ 处展开。
 - ② 当 |z|>1 时,

$$f(z) = \frac{1}{z} \cdot \frac{1}{1 - \frac{1}{z}} - \frac{1}{z} \cdot \frac{1}{1 - \frac{i}{z}}$$

$$=\frac{1}{z}\sum_{n=0}^{+\infty}\frac{1}{z^n}-\frac{1}{z}\sum_{n=0}^{+\infty}\frac{i^n}{z^n}=\sum_{n=0}^{+\infty}(1-i^n)\frac{1}{z^{n+1}}.$$

解
$$f(z) = \frac{1-i}{(z-1)(z-i)}$$
.

- (2) $\underline{c} = 1$ 处展开。
 - ① 当 $0 < |z-1| < \sqrt{2}$ 时,

$$f(z) = \frac{1-i}{z-1} \cdot \frac{1}{(z-1)+(1-i)} = \frac{1}{z-1} \cdot \frac{1}{1-\frac{z-1}{i-1}}$$

$$=\frac{1}{z-1}\sum_{n=0}^{+\infty}\frac{(z-1)^n}{(i-1)^n}=\sum_{n=0}^{+\infty}\frac{(z-1)^{n-1}}{(i-1)^n}.$$

解
$$f(z) = \frac{1-i}{(z-1)(z-i)}$$
.

- (2) $\underline{c} = 1$ 处展开。
 - ② 当 $|z-1| > \sqrt{2}$ 时,

$$f(z) = \frac{1-i}{z-1} \cdot \frac{1}{(z-1)+(1-i)} = \frac{1-i}{(z-1)^2} \cdot \frac{1}{1-\frac{i-1}{z-1}}$$

$$=\frac{1-i}{(z-1)^2}\sum_{n=0}^{+\infty}\frac{(i-1)^n}{(z-1)^n}=-\sum_{n=0}^{+\infty}\frac{(i-1)^{n+1}}{(z-1)^{n+2}}.$$

五、求区域 $D = \{z: -\frac{\pi}{2} < \text{Im} z < \frac{\pi}{2}, \text{Re} z < 0\}$ 在映射 $w = \frac{e^z - i}{e^z + i}$ 下的像区域。

解 令 $w_1 = e^z$, 则 $w = \frac{w_1 - i}{w_1 + i}$.

即所求的像区域为第三象限。

六、求把区域 $D = \{z: |z-1| > 1, \text{Re } z > 0\}$ 映射到单位圆内部的 保形映射。

七、利用 Laplace 变换求解微分方程组:

$$\begin{cases} x''(t) - y''(t) - y(t) = t e^t, & x(0) = y(0) = 0, \\ x'(t) - y'(t) - x(t) = -\sin t, & x'(0) = y'(0) = 1. \end{cases}$$

 \mathbf{M} (1) 令 $X(s) = \mathcal{L}[x(t)], Y(s) = \mathcal{L}[y(t)],$

对方程组两边取 Laplace 变换,并代入初值,得

$$\begin{cases} s^{2}X(s) - s^{2}Y(s) - Y(s) = \frac{1}{(s-1)^{2}}, \\ sX(s) - sY(s) - X(s) = -\frac{1}{s^{2} + 1}. \end{cases}$$

七、利用 Laplace 变换求解微分方程组:

$$\begin{cases} x''(t) - y''(t) - y(t) = t e^t, & x(0) = y(0) = 0, \\ x'(t) - y'(t) - x(t) = -\sin t, & x'(0) = y'(0) = 1. \end{cases}$$

解 (2) 求解代数方程组,得到像函数:

$$\begin{cases} X(s) = \frac{1}{(s-1)^2}, \\ Y(s) = -\frac{s+1}{(s-1)(s^2+1)} = \frac{1}{(s-1)} - \frac{s}{s^2+1}. \end{cases}$$

(3) 求 Laplace 逆变换,即得
$$\begin{cases} x(t) = te^{t}, \\ y(t) = e^{t} - \cos t. \end{cases}$$

八、设函数 f(z) 在 |z| < 2 内解析,且满足 |f(z) - 2| < 2,

证明:
$$\oint_{|z|=1} \frac{f''(z)-4f'(z)}{f^2(z)-4f(z)} dz = 0.$$

证明 (1) 由函数 f(z) 在 |z| < 2 内解析,

$$\Rightarrow f'(z), f''(z), f^2(z)$$
 都在 $|z| < 2$ 内解析; (A)

由 |f(z)-2|<2,可得

$$f(z) \neq 0$$
 且 $f(z) \neq 4$,

$$\Rightarrow f^{2}(z) - 4f(z) = f(z) \cdot [f(z) - 4] \neq 0.$$
 (B)

八、设函数 f(z) 在 |z| < 2 内解析,且满足 |f(z) - 2| < 2,

证明:
$$\oint_{|z|=1} \frac{f''(z)-4f'(z)}{f^2(z)-4f(z)} dz = 0.$$

证明 (2) 由 (A) 和 (B), 可知

$$\frac{f''(z)-4f'(z)}{f^2(z)-4f(z)}$$
 在 $|z|<2$ 内解析,

根据柯西积分定理,即得

$$\oint_{|z|=1} \frac{f''(z)-4f'(z)}{f^2(z)-4f(z)} dz = 0.$$

放松一下吧!