Sufficient Statistics

Consider a family of probability distributions P_X^{θ} which is parametrized by θ . Let T(X) be any statistic (i.e. a function of sample X). It then holds that

$$\theta \to X \to T(X)$$
.

Hence, by the data-processing inequality, it holds that $I(\theta;X) \geq I(\theta;T(X))$, with equality if $I(\theta;X\mid T(X))=0$, or in other words, equality holds if $\theta \leftrightarrow T(X) \leftrightarrow X$ is also a Markov chain. As we want to make sure that our statistic does not lose any information about the parameter θ , we define the following.

Definition: Sufficient statistic

 $\mathsf{T}(\mathsf{X})$ is a sufficient statistic if $P_{X|T(X)}$ is independent of θ for any distribution of θ .

Example: Coin Flips

Let X_1,X_2,\ldots,X_n be iid coinflips, i.e. Bernoulli(p) variables and let $T(X_1,X_2,\ldots,X_n)=\sum_{i=1}^n X_i$ be a statistic. We have that

$$p o X_1,\ldots,X_n o \sum_{i=1}^n X_i=T(X_1,\ldots,X_n).$$

The probability of a particular outcome $x_1 \dots x_n$ is given by

$$P_{X_1 \dots X_n}(x_1, \dots, x_n) = p^{T(x)} (1-p)^{n-T(x)}.$$

Observe that given that the number of 1's is T(x), all strings with that property are evenly likely (and therefore independent of p). Hence $T(X) = \sum_{i=1}^{n} X_i$ is a sufficient statistic according to the definition above.

created: 2018-12-12