© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

- 1 On sait que la convergence absolue d'une intégrale impropre implique sa convergence. On en déduit que $E \subset E'$.
- Supposons E non vide. Soit $a \in E$. Soit également $x \in [a, +\infty[$. Comme λ est à valeurs positives, pour tout $t \in \mathbb{R}_+$,

$$|f(t)e^{-\lambda(t)x}| \le |f(t)e^{-\lambda(t)a}|$$

Par hypothèse, $t \mapsto f(t)e^{-\lambda(t)a}$ est intégrable sur \mathbb{R}_+ donc $t \mapsto f(t)e^{-\lambda(t)x}$ également i.e. $x \in \mathbb{E}$. On a donc montré que pour tout $a \in \mathbb{E}$, $[a, +\infty[\subset \mathbb{E}, ce qui signifie que <math>\mathbb{E}$ est un intervalle non majoré de \mathbb{R} .

- 3 On utilise le théorème de continuité des intégrales à paramètre. Soit $a \in E$.
 - Pour tout $x \in [a, +\infty[$, $t \mapsto f(t)e^{-\lambda(t)x}$ est continue par morceaux sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto f(t)e^{-\lambda(t)x}$ est continue sur $[a, +\infty[$.
 - Pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+,$

$$|f(t)e^{-\lambda(t)x}| \le |f(t)e^{-\lambda(t)a}|$$

et $t \mapsto |f(t)e^{-\lambda(t)a}|$ est intégrale sur \mathbb{R}_+ .

On en déduit que Lf est continue sur $\bigcup_{a \in E} [a, +\infty[= E.$

- **4** Si f est positive, pour tout $x \in E$, les fonctions $t \mapsto |f(t)e^{-\lambda(t)x}|$ et $t \mapsto e^{-\lambda(t)x}$ sont égales donc E = E'.
- 5 Dans les trois cas de figure suivants, la fonction f est positive donc E = E'.
- **5.a** Comme λ est croissante et non majorée, $\lim_{t \to \infty} \lambda = +\infty$.
 - On en déduit que $\int_0^{+\infty} \lambda'(t) dt$.
 - Pour $x \in \mathbb{R}^*$, $t \mapsto -\frac{1}{x}e^{-\lambda(t)x}$ est une primitive de $t \mapsto \lambda'(t)e^{-\lambda(t)x}$ et

$$\lim_{t \to +\infty} -\frac{1}{x} e^{-\lambda(t)x} = \begin{cases} +\infty & \text{si } x < 0 \\ 0 & \text{si } x > 0 \end{cases}$$

On en déduit que $\int_0^{+\infty} \lambda'(t) e^{-\lambda(t)x} dt$ diverge si x < 0 et converge si x > 0.

On peut alors conclure que $E = E' = \mathbb{R}_+^*$.

Remarque. On peut aussi affirmer que si x > 0,

$$Lf(x) = \frac{e^{-\lambda(0)x}}{x}$$

1

© Laurent Garcin MP Dumont d'Urville

5.b Soit $x \in \mathbb{R}$. Alors pour tout $t \in [x, +\infty] \cap \mathbb{R}_+$,

$$e^{t\lambda(t)}e^{-\lambda(t)x} = e^{\lambda(t)(t-x)} > 1$$

On en déduit que $\int_{-\infty}^{+\infty} e^{t\lambda(t)} e^{-\lambda(t)x} dt$ diverge. Ainsi $E = E' = \emptyset$.

5.c Soit $x \in \mathbb{R}$. Alors, pour tout $t \in [-x, +\infty[\cap \mathbb{R}_+,$

$$0 \le \frac{e^{-t\lambda(t)}}{1+t^2}e^{-x\lambda(t)} \le \frac{1}{1+t^2}$$

Or $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ (on peut dire au choix que $1/(1+t^2) \sim 1/t^2$ ou que arctan admet une limite finie en $+\infty$), donc $x \in E$. Finalement $E = \mathbb{R}$.

6 6.a Soit $x \in \mathbb{R}$.

• Si $x \ge 0$, alors pour tout $t \in \mathbb{R}_+$,

$$0 \le \frac{e^{-xt^2}}{1+t^2} \le \frac{1}{1+t^2}$$

et $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ donc $x \in \mathbb{E}$.

• Si x > 0, on remarque que $\frac{e^{-xt^2}}{1+t^2} \underset{t \to +\infty}{\sim} e^{-xt^2} t^2$ donc, quitte à poser $u = t^2$, $\lim_{t \to +\infty} \frac{e^{-xt^2}}{1+t^2} = +\infty$. On peut alors par exemple minorer $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ par 1 au voisinage de $+\infty$, ce qui prouve que $x \notin E$.

En conclusion, $E = \mathbb{R}_+$. Par ailleurs,

$$Lf(0) = \int_0^{+\infty} \frac{dt}{1+t^2} = \lim_{+\infty} \arctan - \arctan(0) = \frac{\pi}{2}$$

- **6.b** Posons $\varphi(x,t) = \frac{e^{-xt^2}}{1+t^2}$ pour $(x,t) \in (\mathbb{R}_+)^2$.
 - Pour tout $x \in \mathbb{R}_+$, $t \mapsto \varphi(x,t)$ est intégrable sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto \varphi(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ .
 - Pour tout $x \in \mathbb{R}_+$, $t \mapsto \frac{\partial \varphi}{\partial x}(x,t) = -\frac{t^2 e^{-xt^2}}{1+t^2}$ est continue par morceaux sur \mathbb{R}_+ . Soit $a \in \mathbb{R}_+^*$. Pour tout $(x,t) \in [a,+\infty[\times \mathbb{R}_+,$

$$\left| \frac{\partial \varphi}{\partial x}(x,t) \right| \le e^{-at^2}$$

Or $e^{-at^2} = o(1/t^2)$ donc $t \mapsto e^{-at^2}$ est intégrable sur \mathbb{R}_+ .

On en déduit que Lf est de classe \mathcal{C}^1 (et a fortiori dérivable) sur $\bigcup_{a \in \mathbb{D}^*} [a, +\infty[=\mathbb{R}^*_+]$

6.c Soit $x \in \mathbb{R}_+^*$. On sait de plus que

$$(Lf)'(x) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt$$

On en déduit que

$$Lf(x) - (Lf)'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

En effectuant le changement de variable $u = t\sqrt{x}$ (licite car linéaire),

$$Lf(x) - (Lf)'(x) = \frac{A}{\sqrt{x}}$$

en posant $A = \int_{a}^{+\infty} e^{-u^2} du$. Comme A est l'intégrale d'une fonction continue, positive et non constamment nulle sur

Remarque. Avec l'égalité précédente et la continuité de Lf en 0, $\lim_{\Omega \to 0} (Lf)' = -\infty$. D'après le théorème de la limite de la dérivée, $\lim_{x \to 0^+} \frac{Lf(x) - Lf(0)}{x - 0} = -\infty$ et donc Lf n'est pas dérivable en 0.

© Laurent Garcin MP Dumont d'Urville

6.d D'après ce qui précède, la fonction g est dérivable sur \mathbb{R}_+^* et

$$\forall t \in \mathbb{R}_+^*, \ g'(t) = e^{-t} (Lf(t) - (Lf)'(t)) = \frac{Ae^{-t}}{\sqrt{t}}$$

Si l'on se donne $(x, y) \in (\mathbb{R}_+^*)^2$, on peut alors écrire

$$g(x) - g(y) = A \int_{v}^{x} \frac{e^{-t}}{\sqrt{t}} dt$$

Comme Lf est continue en 0, g l'est également et $\lim_{y\to 0^+} g(y) = g(0) = Lf(0) = \frac{\pi}{2}$. Par ailleurs, $\int_0^x \frac{e^{-t}}{\sqrt{t}} dt$ converge

puisque
$$\frac{e^{-t}}{\sqrt{t}} \underset{t \to 0^+}{\sim} \frac{1}{\sqrt{t}}$$
. On en déduit que $\lim_{y \to 0^+} \int_{y}^{x} \frac{e^{-t}}{\sqrt{t}} \ \mathrm{d}t = \int_{0}^{x} \frac{e^{-t}}{\sqrt{t}} \ \mathrm{d}t$.

On obtient alors l'égalité voulue en faisant tendre y vers 0⁺ dans l'égalité initiale.

6.e Pour tout $x \in \mathbb{R}_+$,

$$0 \le g(x) \le e^{-x} \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi e^{-x}}{2}$$

donc $\lim_{t\to\infty} g = 0$. Avec la question précédente, on obtient la convergence et l'égalité

$$A \int_0^{+\infty} e^{-t} \sqrt{t} \, dt = \frac{\pi}{2}$$

Par le changement de variable $u = \sqrt{t}$, on obtient

$$\int_0^{+\infty} e^{-t} \sqrt{t} \, dt = 2 \int_0^{+\infty} e^{-u^2} \, du = 2A$$

et donc $A^2 = \frac{\pi}{4}$. Comme A > 0, $A = \frac{\sqrt{\pi}}{2}$.