1 Билет 1. Приведение к каноническому виду в точке дифференциальных уравнений в частных производных (ДУЧП) 2 порядка в \mathbb{R}^n с линейной старшей частью. Классификация уравнений. Приведение уравнений 2 порядка к каноническому виду на плоскости

Пусть $\Omega \subset \mathbb{R}^n$. ДУЧП 2 порядка с линейной старшей частью:

$$\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + F(x, u, \nabla u) = 0; \qquad u(x) \in C^{2}(\Omega); \quad a_{ij}(x) \in C(\Omega)$$

Считаем $a_{ij}(x) = a_{ji}(x)$, что не сужает класса, т.к. $u_{x_ix_j} = u_{x_jx_i}$. Хотим сделать замену так, чтобы все смешанные частные производные обратились в 0. В точке это сделать можно. Возьмём преобразование

$$y = y(x) = \begin{cases} y_1 = y_1(x_1, \dots, x_n) \\ \dots \\ y_n = y_n(x_1, \dots, x_n) \end{cases} \in C^2(U(x^0)), \quad y^0 = y(x^0); \quad U(x^0) \to V(y^0)$$

(диффеоморфизм класса C^2 окр. $U(x^0)$ на $V(y^0)$)

Будем предполагать \exists обратного: x=x(y) Наша функция: $u=u(x_1\dots x_n)$. Введём $\hat{u}(y)=u[x(y)]\in C^2(V(y^0))$ Производные:

$$\frac{\partial u}{\partial x_i} = \sum_{k=1}^n \frac{\partial \hat{u}}{\partial y_k} \frac{\partial y_k}{\partial x_i}; \qquad \frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{k,l=1}^n \frac{\partial^2 \hat{u}}{\partial y_k \partial y_l} \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j} + \sum_{k=1}^n \frac{\partial \hat{u}}{\partial y_k} \frac{\partial^2 y_k}{\partial x_i \partial x_j}$$

Подставляем:

$$\sum_{i,j=1}^{n} a_{ij}(x(y)) \sum_{k,l=1}^{n} \frac{\partial^{2} \hat{u}}{\partial y_{k} \partial y_{l}} \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} + \hat{F}(y, \hat{u}, \nabla_{y} \hat{u}) = 0$$

$$\sum_{k,l=1}^{n} \left[\sum_{i,j=1}^{n} a_{ij}(x(y)) \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} \right] \frac{\partial^{2} \hat{u}}{\partial y_{k} \partial y_{l}} + \hat{F}(y, \hat{u}, \nabla_{y} \hat{u}) = 0,$$

$$\sum_{i,j=1}^{n} a_{ij}(x(y)) \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} = \hat{a}_{kl}(y)$$

Введём матрицы: $A(x^0) = \|a_{ij}(x^0)\|_{i,j=1}^n$; $\hat{A}(y^0) = \|\hat{a}_{ij}(y^0)\|_{i,j=1}^n$. $J(x^0) = \left\|\frac{\partial y_i}{\partial x_j}(x^0)\right\|_{i,j=1}^n$ - в малой $U(x^0)$ задаёт преобразование $\hat{A}(y^0) = J(x^0)A(x^0)J^T(x^0)$

 $A=A^T\Rightarrow \hat{A}^T=\hat{A}^T$. Вопрос в выборе J, так что \hat{A} диагональна.

Пусть в \mathbb{R}^n заданы элемент h и квадратичная форма $\Phi(h)$.

Введём 2 базиса:
$$(e_1 \dots e_n) \atop (e'_1 \dots e'_n)$$
 В них $h \sim \begin{cases} \xi = (\xi_1 \dots \xi_n)^T \\ \eta = (\eta_1 \dots \eta_n)^T \end{cases}$; $\Phi \sim \frac{\|c_{ij}\|}{\|\hat{c}_{ij}\|}$; $\Phi(h) = \begin{cases} \xi^T c \xi \\ \eta^T \hat{c} \eta \end{cases}$

Пусть $\xi = S\eta$. Тогда $\Phi(h) = \eta^T S^T C S \eta = \eta^T \hat{C} \eta \to \hat{c} = S^T C S$. Существует такой базис, что $\hat{C} = diag(\underbrace{+1, +1 \cdots + 1}_{p \text{ intyk}}, \underbrace{-1, -1 \cdots - 1}_{q \text{ intyk}}, 0, 0 \dots 0)$ $\Phi(h) = \eta_1^2 + \dots + \eta_p^2 - \eta_{p+1}^2 - \dots - \eta_{p+q}^2$

$$\Phi(h) = \eta_1^2 + \dots + \eta_p^2 - \eta_{p+1}^2 - \dots - \eta_{p+q}^2$$

В равенстве $\hat{A}(y^0) = J(x^0) A(x^0) J^T(x^0)$ нужно взять $J(x^0) = S^T$

Такие преобразования существуют, их много. Например, $y = y^0 + S^T(x^0)(x - x^0)$

В этих переменных уравнение принимает вид:

$$\frac{\partial^2 \hat{u}}{\partial y_1^2} + \dots + \frac{\partial^2 \hat{u}}{\partial y_p^2} - \frac{\partial^2 \hat{u}}{\partial y_{p+1}^2} - \dots - \frac{\partial^2 \hat{u}}{\partial y_{p+q}^2} + \hat{F}(y, \hat{u}, \nabla_y \hat{u}) = 0.$$

Классификация уравнений:

- 1. Эллиптический тип: p = n или q = n
- 2. Ультрагиперболический тип: p + q = n
- 3. Гиперболический тип: p = 1, q = n 1
- 4. Ультрапараболический тип: p + q < n
- 5. Параболический тип: q = 0, p = n 1

Замечание.
$$\hat{A}(y^0) = J(x^0)A(x^0)J^T(x^0) \Rightarrow \mathrm{sign} \left|\hat{A}(y^0)\right| = \mathrm{sign} \left|A(x^0)\right|$$

В случае n=2 тип уравнения в точке определяется по знаку определителя:

- 1. Эллиптический вид: $\hat{A}(y^0) = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \rightarrow \left| \hat{A}(y^0) \right| = 1$
- 2. Гиперболический вид: $\hat{A}(y^0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rightarrow \left| \hat{A}(y^0) \right| = -1$
- 3. Параболический вид: $\left| \hat{A}(y^0) \right| = 0$.

Приведение уравнения 2 порядка к каноническому виду на плоскости:

Рассмотрим в \mathbb{R}^2 уравнение $a(x,y)u_{xx}+2b(x,y)u_{xy}+c(x,y)u_{yy}+F(x,y,u,\nabla u)=0$ Для определения в точке используем $d=\left|\begin{array}{cc}a&b\\b&c\end{array}\right|$

Введём преобразование $y=y(x)=\begin{cases} \xi=\xi(x,y) \\ \eta=\eta(x,y) \end{cases}$ — диффеоморфизм класса $C^2.$

В новых координатах $\hat{a}\left(\xi,\eta\right)\hat{u}_{\xi\xi}+2\hat{b}\left(\xi,\eta\right)\hat{u}_{\xi\eta}+\hat{c}\left(\xi,\eta\right)\hat{u}_{\eta\eta}+\hat{F}\left(\xi,\eta,\hat{u},\nabla_{\xi\eta}\hat{u}\right)=0$

$$\hat{A}\left(\xi,\eta\right) = \left(\begin{array}{cc} \hat{a} & \hat{b} \\ \hat{b} & \hat{c} \end{array}\right); \quad A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right); \quad \hat{A} = JAJ^T; \quad J = \left(\begin{array}{cc} \xi_x & \xi_y \\ \eta_x & \eta_y \end{array}\right)$$

1.1 Гиперболический случай

Выбираем $(x_0, y_0) \in \Omega$, пусть $d(x_0, y_0) = ac - b^2 < 0$. В силу непрерывности есть $U_{\varepsilon}(x_0, y_0)$, где d < 0.

Во всех точках этой окрестности тип-гиперболический.

Определение 1.1. Второй канонический тип: $\hat{u}_{\xi\eta} + \hat{F}(\xi, \eta, \hat{u}, \nabla \hat{u}) = 0$, то есть $\hat{a} \equiv \hat{c} \equiv 0 \ \forall \xi, \eta \in V(\xi^{\circ}, \eta^{\circ})$.

Введём переменную w, которая обозначает либо ξ , либо η .

Запишем характеристическое уравнение:

$$a(x,y)w_x^2 + 2b(x,y)w_xw_y + c(x,y)w_y^2 = 0,$$

От решений хотим grad $w \neq 0$, так как если $\nabla \eta = 0$ или $\nabla \xi = 0$, то J = 0.

Замечание. w(x)=0 - характеристическая $\Rightarrow \tilde{w}(x)=w(x)-c=0$ - также характеристическая: $\tilde{c}\in C^2,\ \nabla \tilde{w}\neq 0,\ \tilde{w}$ - удовлетворяет характеристическому уравнению.

Определение 1.2. Переменные ξ, η - xарактеристические; поверхности $\xi = C_1, \ \eta = C_2$ - xарактеристические.

а) Пусть $a(x^{\circ}, y^{\circ}) \neq 0$, для $c(x^{\circ}, y^{\circ}) \neq 0$ рассуждения такие же. В окрестности, где $a(x, y) \neq 0$ ($u_{\varepsilon}(x^{\circ}, y^{\circ})$), делим:

$$w_x^2 + \frac{2b}{a}w_x w_y + \frac{c}{a}w_y^2 = \left(w_x + \frac{b}{a}w_y\right)^2 - \frac{b^2 - ac}{a}w_y = \left[w_x + \lambda_+(x, y)w_y\right] \cdot \left[w_x + \lambda_-w_y\right] = 0,$$

где введены обозначения $\lambda_{\pm} = \frac{1}{a}(b \pm \sqrt{b^2 - ac})$, верно, что $\lambda_{-} \neq \lambda_{+} \ \forall \ (x,y) \in U_{\varepsilon}(x^{\circ},y^{\circ})$, так как $d = ac - b^2 < 0$.

Рассмотрим ЛДУЧП 1-го порядка $w_x + \lambda(x,y)w_y = 0$.

Из теории: у однородного ДУЧП $a_1(x,y)w_x+a_2(x,y)w_y=0$ при условии $a_1^2+a_2^2>0$ решение есть:

$$\exists \ w(x,y) \in C^2(\Omega), \ \nabla w \neq 0$$
 и $\frac{dx}{a_1} = \frac{dy}{a_2}$ — первый интеграл

В нашем случае $\frac{dx}{1}=\frac{dy}{\lambda}\Leftrightarrow dy-\lambda dx=0$ - ПИ этого уравнения даёт решение исходного ДУЧП.

Значит, в обеих скобках есть по решению, причём $\nabla w \neq 0$.

Покажем невырожденность:

$$\begin{cases} \xi_x + \lambda_+ \xi_y = 0, \\ \eta_x + \lambda_- \eta_y = 0. \end{cases}$$

$$|J(x^{\circ}, y^{\circ})| = \det\begin{pmatrix} \xi_{x} & \xi_{y} \\ \eta_{x} & \eta_{y} \end{pmatrix} = \det\begin{pmatrix} -\lambda_{+}\xi_{y} & \xi_{y} \\ -\lambda_{-}\eta_{y} & \eta_{y} \end{pmatrix} = \underbrace{(\lambda_{-} - \lambda_{+})}_{\text{funepGo-nuthoctu}} \cdot \xi_{y} \eta_{y} \neq 0$$

(если
$$\xi_y = 0$$
, то $\xi_x = 0 \Rightarrow \nabla \xi = 0$)

Итак, $(\xi(x,y),\eta(x,y))$ - диффеорморфизм класса C^2 . Оно зануляет \hat{a} и \hat{c} . Получается уравнение второй канонической форме.

Замечание. От II канонической форме к I:

$$\begin{cases} \alpha = \xi + \eta, \\ \beta = \xi - \eta \end{cases} \Rightarrow \hat{u}(\xi, \eta) = \tilde{u}(\underbrace{\xi + \eta}_{\alpha}, \underbrace{\xi - \eta}_{\beta}), \ \hat{u}_{\xi} = \tilde{u}_{\alpha} + \tilde{u}_{\beta}, \ u_{\xi\eta} = \tilde{u}_{\alpha\alpha} - \tilde{u}_{\beta\beta} \end{cases}$$

Тогда наше уравнение:

$$\tilde{u}_{\alpha\alpha} - \tilde{u}_{\beta\beta} + \tilde{F}(\alpha, \beta, \tilde{u}, \nabla_{\alpha\beta}\tilde{u}) = 0 - 1$$
 каноническая форма

- б) Если $a(x,y) \equiv c(x,y) \equiv 0 \ \forall (x,y) \in U(x^\circ,y^\circ)$, то $b \neq 0$, иначе уравнение в нуле функции в не второго порядка. Уравнение имеет II каноническую форму, преобразование в I - выше.
- в) Если $a(x^0,y^0)=c(x^0,y^0)=0,$ но в любой окрестности $W(x^0,y^0)$ есть точки, где

$$|a(x^*, y^*)| + |c(x^*, y^*)| > 0,$$

то заменим $\xi = x + y, \eta = x - y,$ и получим случай а.