

Hochschule RheinMain Prof. Dr. Marc Zschiegner B.Sc. Jens Möhrstedt

22. Dezember 2020

ProbeKlausur WS 2020 / 2021

zur Vorlesung

Diskrete Strukturen

Nachnan	ne:			Vorna	ame:			
Matrikel	nummer:			_ Untersc	hrift:			
		•	ige ich, dass earbeitet, so		_		_	
• D	ie Klausurda	auer beträgt	90 Minuter	n				
• B	itte legen Si	e Studieren	denausweis	s und Lichth	oildausweis	auf Ihren T	isch.	
В	lätter dieser	Klausur daı	ch. Unleser of nicht enti	fernt werder	n. Sie dürfer	•		_
		•	ellung volls turze Frage i			l der Klausu	r Unklarheit	ten
• H	ilfsmittel: k	eine						
	•		Art werden n Wiederhol		•			
K	ameras) und	erlaubte Hi	e, dass elek Ifemittel sin Prüfung ste	nd! Bereits d	as Berühre	n eines nich		atches oder
Si gl	ie sie möglid eichzeitig. N	chst vor der Melden Sie s Bei jeder Au	der Prüfung Prüfung. W sich bei der ufgabe könne	enn es trotzo Aufsicht an	dem sein mu und warten	ss: Es darf i Sie auf das	mmer nur e	ine Person
	6							
Aufgabe	1	2	3	4	5	6	Summe	Note

Aufgabe 1 (Logik)

(5 Punkte)

1. Gegeben sei die Formel $H = (x_1 \rightarrow x_2) \land (x_2 \lor x_3)$. Füllen Sie die folgende Wahrheitswertetabelle korrekt aus. Verwenden Sie die Wahrheitswerte 1 (wahr) und 0 (falsch). Leserlich auf dem roten Feld eintragen.

X _A	X2	X ₃	X1 → X2	X2 v X3	Н
0	0	0	λ		
0	0	1	A		
O	1			1	
	1			1	
		0		Ó	
1		1		1	
1	1	0	1	1	
1		$ \lambda $	1		

(1 Punkt)

- 2. Kreuzen Sie an, was eine korrekte logische Äquivalenz ist.
 - \square $A \wedge (A \vee B) \equiv A$
 - $\Box \neg (A \lor B) \equiv \neg A \lor \neg B$

 - $\square \quad A \to B \equiv (\neg B) \to (\neg A)$
 - $\Box \quad C \wedge (A \vee B) \equiv (C \vee A) \wedge (C \vee B)$

(4 Punkte)

3. Bilden Sie für die folgenden Aussagen jeweils eine Negation und geben Sie die Wahrheitswerte der Aussage und Ihrer Negation an.

(a)
$$\forall x \in \mathbb{N} \quad \forall y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad x + y = z$$

(b) $\exists z \in N \ \forall x \in N \ \forall y \in N \ x+y=z$

2. Aufgabe (Mengen)

(3 Punkte)

- 1. Gegeben seien vier Mengen A, B, C und D. Kreuzen Sie an, welche der folgenden Formeln die eingefärbte Fläche beschreiben.
 - \square A \cup \overline{B} \cup (C \cap D)
 - $\square (A \cap B) \cup (B \cap C) \cap D$
 - \square (A \ B) \cup (C \cap D) \ B
 - \square $(A \cup B) \cap (B \cup C) \cup D$
 - $\square (A \cup B) \cap (C \cup D)$
 - $\square (A \cap B) \cup (C \cap B) \cap D$

(2 Punkte)

2. Gegeben seien zwei Mengen $A = \{ 2, 4, 6 \}$ und $B = \{ 1, 3, 5 \}$. Erzeugen Sie ein neue Menge C, indem Sie das Kreuzprodukt von A und B bilden.

$$C = {$$

}

(2 Punkte)

3. Gegeben sei die Menge $D = \{ 2, 4, 5 \}$. Bilden Sie die Potenzmenge P(D).

$$P(D) = \{$$

}

(3 Punkte)

4. Sie haben die Menge C in der Aufgabe 2.2 gebildet. Gegeben zu Ihrer Menge C sei folgende Menge noch gegeben E = { (2,1), (2,5), (4,1), (4,3), (6,6) }. Bilden Sie eine neue Menge F, indem Sie die Schnittmenge von C und E ermitteln.

$$F = {$$

}

3. Aufgabe (Relationen und Funktionen)

(3 Punkte)

1. Gegeben seien die Mengen $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ und $C = \{8, 9\}$. Bestimmen Sie für die Relationen

$$\mathbf{R}^{-1} = \{ (a,1), (a,2), (b,3), (c,3) \} \text{ und } S = \{ (a,8), (c,9) \}$$

- a) von der Umkehrrelation \mathbb{R}^{-1} die Relation R,
- b) die Komposition R o S

(5 Punkte)

2. Welche der Eigenschaften "reflexiv, symmetrisch, transitiv" gelten? Geben Sie für reflexiv = r, symmetrisch = s und für transitiv = t an. Liegt eine Äquivalenzrelation vor, geben Sie bitte zusätzlich noch ein Ä an.

Andere Buchstaben oder Lösungen, welche von oben abweichen, werden nicht gewertet !!!

- a) Die Person x und y sind im selben Bus.
- b) Person x hat mit Person y ein gemeinsames Hobby.
- c) Student x und Student y sind in derselben Hochschule.
- d) Für zwei reelle Zahlen gilt: X ≤ Y.
- e) Person x ist der Bruder von Person y. _____

(2 Punkte)

- 3. Kreuzen Sie an: Die abgebildete Funktion $X \rightarrow Y$ ist
 - ☐ injektiv,
 - ☐ surjektiv,
 - □ bijektiv,
 - ☐ nichts von alledem.

(5 Punkte)

1. Beweisen Sie mit Hilfe des Schubfachprinzip, dass es unter je neun natürlichen Zahlen mindestens zwei gibt, deren Differenz durch 8 teilbar ist.

(5 Punkte)

2. Beweisen Sie mit einer vollständigen Induktion das $\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$ für jede natürliche Zahl n \geq 1 gilt.

TUTORING TEAM

5. Aufgabe (Graphen)

(4 Punkte)

- 1. Gegeben sei der ungerichtete Graph $G_6 = (\{a,b,c,d,e,f\}, \{(a,b), (a,c), (c,d), (b,d), (d,e), (d,f)\})$
 - a) Geben Sie eine graphische Repräsentation von G_6 an:
 - b) Hat G_6 einen Kreis, wenn ja begründen Sie Ihre Aussage!

(6 Punkte)

- 2. Untersuchen Sie die vollständig bipartiten Graphen $K_{m,n}$ wie folgt.
 - a) Zeichnen Sie K 3,4.
 - b) Wie viele Ecken und wie viele Kanten hat K 3,4?
 - c) Gegeben sei ein Graph K 3,3. Berechnen Sie mit der eulerschen Polyederformel, wieviele Gebiete dieser Graph haben müsste, wenn er planar wäre.

6. Aufgabe (Algebraische Grundstrukturen)

(6 Punkte)

1.	Allgemeine Fragen: Kreuzen Sie die richtigen Aussagen an:
	☐ Eine Gruppe besitzt das Gesetz der Abgeschlossenheit
	☐ Eine Gruppe besitzt nicht das Gesetz des inversen Elements
	☐ Abelsche Gruppen haben keine weiteren Eigenschaften zu Gruppen
	☐ Abelsche Gruppen besitzen die Eigenschaft der Kommutativität
	$\square 15 \bmod 5 = 0$
	\square 21 mod 4 = 1
	☐ Ein Ring besitzt nur eine Verknüpfung
	☐ Ein Ring besitzt zwei Verknüpfungen
	☐ Ein Ring hat folgende Gesetze: Addition, Multiplikation, Division
	☐ Ein Ring hat folgende Gesetze: Addition, Multiplikation, Distributivgesetze
	(4 Punkte)
2.	Berechnen Sie mit dem euklidischen Algorithmus
	a) ggT(225, 34)
	b) ggT(125,12)

Ab

Rier

die

Losung o

Aufgabe 1 (Logik)

(5 Punkte

1. Gegeben sei die Formel $H = (x_1 \rightarrow x_2) \land (x_2 \lor x_3)$. Füllen Sie die folgende Wahrheitswertetabelle korrekt aus. Verwenden Sie die Wahrheitswerte 1 (wahr) und 0 (falsch). Leserlich auf dem roten Feld eintragen.

Хл	X2	X ₃	X1 -> X2	X2 v X3	Н
0	0	0	λ		0
0	0	1	Л	1	1
0	1	0	1	1	1
0	1	1	Λ	1	1
1	0	0		Ö	
1	0	1	6		
1	1	0	1	1	1
1		$ \lambda $	1		Λ

(1 Punkt)

2. Kreuzen Sie an, was eine korrekte logische Äquivalenz ist.

$$A \wedge (A \vee B) \equiv A$$

$$\Box \neg (A \lor B) \equiv \neg A \lor \neg B$$

$$A \wedge A \wedge B \wedge B \equiv A \wedge B$$

$$\square \quad A \to B \equiv (\neg B) \to (\neg A)$$

$$\square$$
 $C \wedge (A \vee B) \equiv (C \vee A) \wedge (C \vee B)$

(4 Punkte)

3. Bilden Sie für die folgenden Aussagen jeweils eine Negation und geben Sie die Wahrheitswerte der Aussage und Ihrer Negation an.

(a)
$$\forall x \in \mathbb{N} \quad \forall y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad x+y=z$$

Negation: $\exists x \in \mathbb{N} \quad \exists y \in \mathbb{N} \quad \forall z \in \mathbb{N}$
 $x+y \neq z \quad (f)$

(b)
$$\exists z \in \mathbb{N} \quad \forall x \in \mathbb{N} \quad \forall y \in \mathbb{N} \quad x+y=z$$

Negation: $\forall z \in \mathbb{N} \quad \exists x \in \mathbb{N} \quad \exists y \in \mathbb{N}$
 $x+y \neq z \quad (\omega)$

2. Aufgabe (Mengen)

(3 Punkte)

1. Gegeben seien vier Mengen A, B, C und D. Kreuzen Sie an, welche der folgenden Formeln die eingefärbte Fläche beschreiben.

$$(A \cap B) \cup (B \cap C) \cap D$$

- \square (A\B) \cup (C \cap D) \B
- \square (A \cup B) \cap (B \cup C) \cup D
- \square $(A \cup B) \cap (C \cup D)$
- $(A \cap B) \cup (C \cap B) \cap D$

(2 Punkte)

2. Gegeben seien zwei Mengen $A = \{2, 4, 6\}$ und $B = \{1, 3, 5\}$. Erzeugen Sie ein neue Menge C, indem Sie das Kreuzprodukt von A und B bilden.

$$C = \{ (2,1), (2,3), (2,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5) \}$$

(2 Punkte)

3. Gegeben sei die Menge $D = \{2, 4, 5\}$. Bilden Sie die Potenzmenge P(D).

(3 Punkte)

4. Sie haben die Menge C in der Aufgabe 2.2 gebildet. Gegeben zu Ihrer Menge C sei folgende Menge noch gegeben $E = \{ (2,1), (2,5), (4,1), (4,3), (6,6) \}$. Bilden Sie eine neue Menge F, indem Sie die Schnittmenge von C und E ermitteln.

$$F = \{ (2,1), (2,5), (4,1), (4,3) \}$$

TUTORING TEAM

3. Aufgabe (Relationen und Funktionen)

(3 Punkte)

1. Gegeben seien die Mengen $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ und $C = \{8, 9\}$. Bestimmen Sie für die Relationen

$$\mathbf{R}^{-1} = \{ (a,1), (a,2), (b,3), (c,3) \} \text{ und } S = \{ (a,8), (c,9) \}$$

a) von der Umkehrrelation \mathbb{R}^{-1} die Relation R,

$$R = \{ (A_1 a), (2_1 a), (3_1 b), (3_1 c) \}$$

b) die Komposition R o S

(5 Punkte)

- 2. Welche der Eigenschaften "reflexiv, symmetrisch, transitiv" gelten? Geben Sie für reflexiv = r, symmetrisch = s und für transitiv = t an. Liegt eine Äquivalenzrelation vor, geben Sie bitte zusätzlich noch ein Ä an.

 Andere Buchstaben oder Lösungen, welche von oben abweichen, werden nicht
 - a) Die Person x und y sind im selben Bus.
 - b) Person x hat mit Person y ein gemeinsames Hobby.
 - c) Student x und Student y sind in derselben Hochschule.
 - d) Für zwei reelle Zahlen gilt: X ≤ Y. ___t_
 - e) Person x ist der Bruder von Person y. _______

(2 Punkte)

- 3. Kreuzen Sie an: Die abgebildete Funktion $X \to Y$ ist \square injektiv,
 - surjektiv,

gewertet!!!

- □ bijektiv,
- ☐ nichts von alledem.

4. Aufgabe (Beweise)

(5 Punkte)

1. Beweisen Sie mit Hilfe des Schubfachprinzip, dass es unter je neun natürlichen Zahlen mindestens zwei gibt, deren Differenz durch 8 teilbar ist.

C	1	0 1			
Oc	hub	ach	oprin	eip:	

Ko	K ₄	Ka	k3
Kч	K5	Ke	K ₇

Objekte = 9 natürliche Jahlen. Diese werden in 8 Kalegorien Ko, Ky, ..., Ky eingeleilt:

- No = alle Zahlen die Vielfacke von 8 sind Division durch
 8 den Rest O ergeben.
 Na = alle Zahlen die bei Division durch 8 den
 - Rest 1 ergeben.
 - · K2 = alle Zahlen, die bei Division durch 8 den Rest 2 ergeben.
 - · K3 = alle Zahlen, die bei Division durch 8 den Rest 3 ergeben.
 - · 1/2 = alle Zahlen, die bei Division durch 8 den Rest 7 ergeben.

Dann ist jede Zahl in mindestens einer dieser 8 Kalegorien enthallen. Nach dem Schubfachprinzip gibt es genau eine Kategorie mit zwei Objekten. Das bedeutet:

- · Es gibt zwei Zahlen, die bei Division durch 8 denselben Rost ergeben.
- · Wenn wir die Differenz dieser Zahlen bilden, "hebt sich der Rest weg D.h. Wenn man die Differenz dieser Zahlen durch 8 teilt, geht diese ohne Rest auf. Die Differenz ist durch 8 teilbar.

(5 Punkte)

Beweisen Sie mit einer vollständigen Induktion das $\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$ für jede natürliche 2. Zahl n ≥ 1 gilt.

$$1^3 + 2^3 + 3^3 + ... + n^3 = \sum_{k=1}^{n} k^3 = \frac{n^2 (n+1)^2}{4} = (1+2+3+...+n)^2$$

Induktionsanfang: n = 1: linke Seite: 13 = 1

rechte Seite:
$$\frac{1^2(1+1)^2}{4} = 1$$

Induktionsschluss:

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$= \frac{(n+1)^2 \cdot [n^2 + 4(n+1)]}{4} = \frac{(n+1)^2 \cdot (n^2 + 4n + 4)}{4} = \frac{(n+1)^2 \cdot (n+2)^2}{4} \quad \text{q.e.d.}$$

5. Aufgabe (Graphen)

(4 Punkte)

- 1. Gegeben sei der ungerichtete Graph $G_6 = \{(a,b,c,d,e,f\}, \{(a,b), (a,c), (c,d), (b,d), (d,e), (d,f)\}\}$
 - a) Geben Sie eine graphische Repräsentation von G_6 an:

b) Hat G_6 einen Kreis, wenn ja begründen Sie Ihre Aussage!

(6 Punkte)

- 2. Untersuchen Sie die vollständig bipartiten Graphen $K_{m,n}$ wie folgt.
 - a) Zeichnen Sie K 3,4.
 - b) Wie viele Ecken und wie viele Kanten hat K 3,4?

c) Gegeben sei ein Graph K 3,3. Berechnen Sie mit der eulerschen Polyederformel, wieviele Gebiete dieser Graph haben müsste, wenn er planar wäre.

$$n-m+g = 2$$
 $6-9+g = 2$ $-3+g = 2$ $g=5$ $-3+5=2$

6. Aufgabe (Alegbraische Grundstrukturen)

(6 Punkte)

- 1. Allgemeine Fragen: Kreuzen Sie die richtigen Aussagen an:
 - ĭ Eine Gruppe besitzt das Gesetz der Abgeschlossenheit
 - ☐ Eine Gruppe besitzt nicht das Gesetz des inversen Elements
 - ☐ Abelsche Gruppen haben keine weiteren Eigenschaften zu Gruppen

 - $21 \mod 4 = 1$
 - ☐ Ein Ring besitzt nur eine Verknüpfung
 - ☑ Ein Ring besitzt zwei Verknüpfungen
 - ☐ Ein Ring hat folgende Gesetze: Addition, Multiplikation, Division
 - ☒ Ein Ring hat folgende Gesetze: Addition, Multiplikation, Distributivgesetze

(4 Punkte)

- 2. Berechnen Sie mit dem euklidischen Algorithmus
 - a) ggT(225, 34)
 - b) ggT(125,12)

$$225 = 6.34 + 21$$

$$34 = 1 \cdot 21 + 13$$

$$21 = 1 \cdot 13 + 8$$

$$8 = 1.5 + 3$$

$$5 = 1.3 + 2$$