I pledge that I have neither given nor received any unauthorized aid on this assignment.

Problem 1 [COMPLETE]

Observations of the execution times in all cases among the selected strategies indicates that the worst cases for executing the Quicksort algorithm $(O(n^2))$ are on sorted sets of data, when the selected pivot is at the extent (min or max value) of the set.

From experimentation, the most effective pivot selection strategies were the midpoint and the median of the start, end, and midpoint values of the data structure. The variance between results on unsorted and sorted sets of data was minimal. This is due to the fact that, in both sorted and unsorted sets, these strategies are more likely to coincide with the better-case selection $(O(n \log n))$ than the worst-case values (a min or max value of an ordered set).

	Pivot Selection Strategy					
	Left	Right	Midpoint	Random	Median	
A_{10}	0.0000200272	0.0000231266	0.0000281334	0.0000565847	0.0000238419	
A_{100}	0.000315189	0.000272989	0.000282049	0.000634352	0.000262022	
A_{200}	0.000636101	0.000571966	0.000596046	0.00131194	0.000585079	
A_{300}	0.000967026	0.000821829	0.000961065	0.00202727	0.000841141	
A_{400}	0.00136995	0.00123906	0.00129414	0.003012977	0.00120401	
A_{500}	0.00158596	0.00159287	0.00162983	0.003496647	0.00161004	
A_{600}	0.00226998	0.001827	0.00196195	0.004216033	0.00203514	
A_{700}	0.00219393	0.00222182	0.00243902	0.004988033	0.00223088	
A_{800}	0.00279117	0.00291491	0.00285292	0.005773623	0.00259495	
A_{900}	0.00296688	0.00307894	0.00336003	0.006562393	0.00293398	
A_{1000}	0.00365686	0.00330806	0.00366497	0.00742062	0.00328612	
A_{2000}	0.00796199	0.00809789	0.00788093	0.015206333	0.00738597	
A_{3000}	0.0118921	0.0111051	0.0137901	0.0233167	0.0111001	
A_{4000}	0.0157192	0.0156209	0.015806	0.0312957	0.015034	
A_{5000}	0.0202911	0.02018	0.0209129	0.039974067	0.0194969	
A_{6000}	0.0250561	0.0242341	0.0262821	0.047680333	0.023252	
A_{7000}	0.0310249	0.0278671	0.0287609	0.0567484	0.0274282	
A_{8000}	0.033514	0.0331879	0.0337598	0.0654623	0.0329268	
A_{9000}	0.0398428	0.0378101	0.0420768	0.072516733	0.0376999	
A_{10000}	0.043195	0.043612	0.0446351	0.0822087	0.0398562	

Table 1: Execution Time on Unsorted Data in Seconds

-						
	Pivot Selection Strategy					
	Left	Right	Midpoint	Random	Median	
A_{10}	0.0000319481	0.0000290871	0.0000219345	0.000056982	0.0000238419	
A_{100}	0.00134301	0.00101399	0.000248194	0.000610669	0.000259876	
A_{200}	0.00458193	0.00378489	0.000496864	0.001232703	0.000558138	
A_{300}	0.010479	0.0086062	0.000736952	0.001933417	0.000823021	
A_{400}	0.0180161	0.0144148	0.00107694	0.00263802	0.00120091	
A_{500}	0.0284009	0.0216951	0.00121689	0.00337402	0.00134492	
A_{600}	0.0395989	0.030827	0.00160217	0.004048667	0.00200105	
A_{700}	0.0540309	0.041898	0.0021708	0.004736027	0.00217199	
A_{800}	0.0691831	0.054198 0.0701399 0.0838461	0.00247002	0.00551136	0.00253892	
A_{900}	0.088644		0.00255489	0.00636665	0.00272608	
A_{1000}	0.107142		0.00263309	0.006921767	0.00290585	
A_{2000}	0.43418	0.344218	0.00581908	0.014558	0.00629306	
A_{3000}	0.946405	0.770189	0.00975084	0.022789867	0.0108922	
A_{4000}	1.68116	1.4336	0.012074	0.030641	0.013643	
A_{5000}	2.66803	2.14788	0.016299	0.038551667	0.0177531	
A_{6000}	3.95989	3.0978	0.020705	0.046313067	0.0227902	
A_{7000}	5.06046	4.21695	0.0233641	0.053966033	0.0253589	
A_{8000}	6.87604	5.72439	0.0264342	0.062006633	0.0282929	
A_{9000}	8.59822	7.01017	0.029685	0.0706559	0.0326319	
A_{10000}	10.4314	8.85166	0.035387	0.078249367	0.03701	

Table 2: Execution Time on Sorted Data in Seconds

Figure 2: Left-most Pivot Selection

Figure 4: Midpoint Pivot Selection

Figure 5: Random Pivot Selection

Figure 6: Median Pivot Selection

Figure 7: All Pivot Selections on Unsorted Data

Figure 8: All Pivot Selections on Sorted Data

Problem 2 [COMPLETE]

Greedy 0-1 Knapsack

Process

In this case, the greedy function is maximized for price, packing the knapsack with items in descending order of price, until no more items can be added without exceeding the maximum capacity of the knapsack.

Algorithm 1 Greedily pack a knapsack with items based on price

Inputs: A given capacity (weight limit) W, and S, a set of items, each having a weight and price. **Outputs:** L, a subset of S, consisting of the items to be packed. w, the packed weight. p the packed value. **Complexity:** O(n). Each item is computed against one time.

```
1: SORTDESCENDING(S, price)
                                                                                  ▷ Sort the items by price, descending
2: w \leftarrow 0
                                                                                                   ▶ Weight accumulator
3: p \leftarrow 0
                                                                                                      \triangleright Price accumulator
 4: L \leftarrow \{\}
 5: for all s in S do
        if w + s.weight \leq W then
                                                                                                             ⊳ Item can fit
            w \leftarrow w + s.weight
                                                                                                ▶ Accumulate the weight
 7:
 8:
            p \leftarrow p + s.price
                                                                                                  ▶ Accumulate the price
            L \leftarrow L \cup \{s\}
                                                                                  ▶ Merge the item into the output set
9:
        end if
10:
11: end for
```

Solution

Given weights of $\{20, 24, 14, 20, 18, 20, 10, 6\}$, prices of $\{15, 9, 27, 12, 36, 12, 9, 12\}$, and a maximum capacity of 80, the optimal 0-1 solution is:

	Ite	m	Total		
	Weight	Price	Weight	Price	
Ī	18	36	18	36	
	14	27	32	63	
	20	15	52	78	
	20	12	72	90	
	6	12	78	102	

Table 3: Greedy 0-1 Knapsack Solution

Greedy Fractional Knapsack

Process

In this case, the greedy function is maximized for value ($weight \div price$), packing the knapsack with items in descending order of value, until no more items can be added without exceeding the maximum capacity of the knapsack. At this point, the fraction of the next item is calculated and added to the knapsack, thereby reaching the maximum capacity while ensuring the maximum possible value.

Algorithm 2 Greedily pack a knapsack with items based on value, including a fractional quantity

Inputs: A given capacity (weight limit) W, and S, a set of items, each having a weight, price, and quantity (default/maximum 1.0).

Outputs: L, a subset of S, consisting of the items to be packed. w, the packed weight. p the packed value. **Complexity:** O(n). Each item is computed against one time.

```
1: SORTDESCENDING(S, price)
                                                                                     ▷ Sort the items by price, descending
 2: w \leftarrow 0
                                                                                                        ▶ Weight accumulator
3: p \leftarrow 0
                                                                                                          \triangleright Price accumulator
 4: L \leftarrow \{\}
 5: for all s in S do
                                                                                                                  \triangleright Item can fit
        if w + s.weight \leq W then
 6:
 7:
            w \leftarrow w + s.weight
                                                                                                    ▶ Accumulate the weight
            p \leftarrow p + s.price
                                                                                                       ▶ Accumulate the price
 8:
            L \leftarrow L \cup \{s\}
                                                                                      ▶ Merge the item into the output set
9:
10:
        else
            s.quantity \leftarrow \frac{W-w}{s.weight}
11:
                                                                                                        ▶ Adjust the quantity
12:
            w \leftarrow w + (s.weight * s.quantity)
                                                                                         ▶ Accumulate the modified weight
            p \leftarrow p + s.price * s.quantity)
                                                                                           ▶ Accumulate the modified price
13:
            L \leftarrow L \cup \{s\}
                                                                                      ▶ Merge the item into the output set
14:
        end if
15:
16: end for
```

Solution

Given weights of $\{20, 24, 14, 20, 18, 20, 10, 6\}$, prices of $\{15, 9, 27, 12, 36, 12, 9, 12\}$, and a maximum capacity of 80, the optimal fractional solution is:

	It	Total			
Weight	Price	Value	Quantity	Weight	Price
18	36	2.00	1.0	18	36
6	12	2.00	1.0	24	48
14	27	1.93	1.0	32	63
10	9	0.90	1.0	52	78
20	15	0.75	1.0	72	90
20	12	0.60	0.6	80	106.2

Table 4: Greedy Fractional Knapsack Solution

Problem 3 [COMPLETE]

Figure 9: Undirected Graph

Minimum Spanning Tree

To create the minimum spanning tree (MST), iterate through the edges (in order of weight – Kruskal's Algorithm), taking into consideration only edges with the weight of the current wave (e.g., 1, 2, 3, ...). The edge is a member of the MST if and only if the edge can be added to the MST without creating a cycle (a closed area within the graph).

Wave 3

6

Wave 4

Wave 5

Wave 6

Figure 10: Minimum Spanning Tree

Greedy Single Source Shortest Path

Process

The answer to this problem can be derived using Dijkstra's algorithm. In the following table, u refers to the node of context for each iteration of the loop, while all other values represent the distance from node 1.

u		\bigcirc	3	\bigcirc 4	$\bigcirc 5$	6	7	8	9
	0	∞	∞	∞	∞	∞	∞	∞	∞
1	0	2	2	∞	∞	∞	∞	∞	7
2	0	2	2	∞	5	∞	∞	∞	7
3	0	2	2	3	5	6	∞	∞	7
4	0	2	2	3	5	6	∞	∞	5
5	0	2	2	3	5	6	10	∞	5
9	0	2	2	3	5	6	10	∞	5
6	0	2	2	3	5	6	10	12	5
7	0	2	2	3	5	6	10	11	5
8	0	2	2	3	5	6	10	11	5

Table 5: Distance Trace of Dijkstra's Single Source Shortest Path Algorithm

Solution

Figure 11: Dijkstra's Single Source Shortest Path Tree

Problem 4 [COMPLETE]

Process

Algorithm 3 Greedily schedule a number of lecture halls for a set of activities

Inputs: S, a set of activities, where each element s has a start and finish property, and s.start < s.finish. **Outputs:** L, a set of non-conflicting schedule sets.

Complexity: $O(n \log n)$. Each node is computed against one time, without replacement.

```
1: Sort S descending by finish
2: L = \{\}
3: i = 0
4: while S has elements do
       j = 1
5:
6:
       for all s in S do
           if s_{start} \geq j then
 7:
               L_i = L_i \cup \{s\}
8:
               j = s_{finish}
9:
               Remove s from S
10:
           end if
11:
12:
       end for
       i = i + 1
13:
14: end while
```

Solution

Figure 12: Scheduling Problem Solution

Problem 5 [COMPLETE]

Although both Prim and Kruskal's algorithms are defined using graphs that have positive edge weights, both will correctly function given input edged that have negative weights. Both algorithms iterate through the graph, visiting and declaring edges "safe" if they do not create a cycle in the graph (an enclosed area). Thus, both algorithms will create a MST regardless of input edge weight.