A Capacitive-Loaded Weak PUF Insensitive to Thermal Noise and Voltage/Temperature Changes

EE241B (Instructor- Bora Nikolic)

Griffin Prechter & Antroy Roy Chowdhury

Outline

- Introduction & Background
- PUF in Key Generation
- Proposed PUF Architecture
- Experimental Setup
- Simulation Results

PUFs: Low-Cost Crypto Hardware Primitives

Growing need for fast, low-power cryptographic primitives:

- High demand for reliable and robust security features in devices.
- Proliferation of IoT devices striving for low power and handling sensitive data.

Physically Unclonable Functions are low-cost, efficient hardware implementations of cryptographic operations.

What is a Physically Unclonable Function?

PUFs leverage IC manufacturing variations to produce a device "fingerprint".

- Unpredictable yet consistent
- Very difficult to observe
- Cost effective

Can be applied to **key generation/storage**, device anti-counterfeiting, user authentication, IP protection, and hardware/software binding.

PUF Types

Strong PUF

- More CRPs
- Less stable
- Used for user authentication systems

Weak PUF

- Very few CRPs
- Can achieve higher stability
- Used for key generation

Stability Enhancement

PUF output inherently noisy:

- Small device mismatch
- Thermal noise
- Changing operating conditions

Weak PUF designs employ auxiliary techniques to boost stability:

 Majority voting, soft dark-bit masking, BCH error correction codes, etc.

PUF in Key Generation

Hybrid PUF (Mathew, ISSCC'14)

- Hybrid: metastability + Delay
- Stability improvement: TMV + Burn-in + Dark-bits
- 100% Stable: ECC (BCH)

<u>Delay-hardened PUF (Satpathi, JSSC'17)</u>

- Hybrid PUF cell
- Delay Hardening + selective-bit destabilization
- ECC + entropy extraction (AES-CBC-MAC)

Threshold PUF (ISSCC'16)

- Amplifies Voltage Threshold Mismatch
- Glitch Detection Valid Mask + TMV + SMV
- Power Gating to mitigate aging

Proposed PUF Architecture

- Hybrid PUF cell
- Two stage operation:
 - Bias detection: TMV
 - Bias reinforcement: capacitive loading
- 100% stable response in a power-on cycle
- Load capacitor value > 100aF

Experimental Setup

- Implemented PUF cell schematics in GPDK 45nm process.
- Added TMV and dark-bit masking periphery using software model to reduce simulation time.
- Simulated 128bit PUF cell arrays for each of the aforementioned designs.

Evaluation Metrics

Stability:

• Bit Error Rate, Intra-PUF Hamming Distance

Randomness:

NIST 800-22 Test Results, Inter-PUF Hamming Distance

Efficiency:

Power/bit, Area/bit

Raw PUF Simulation Results

Moderately unstable

Stability Results

Randomness Results

NIST 800-22 Randomness Test Results

Test	Hybrid		DH		\mathbf{V}_{TH}		C Loaded	
	P	Pass	P	Pass	P	Pass	P	Pass
Freq.	0.48	√	0.11	√	0.48	√	0.15	\checkmark
Runs	0.14	\checkmark	0.89	\checkmark	0.35	\checkmark	0.2	√
Longest	0.5	\checkmark	0.53	\checkmark	0.22	\checkmark	0.5	√
Cum-Sum	0.65	\checkmark	0.17	\checkmark	0.77	\checkmark	0.25	✓
Serial	0.49	\checkmark	0.49	\checkmark	0.49	\checkmark	0.49	✓
Block F.	0.48	\checkmark	0.11	\checkmark	0.48	\checkmark	0.15	√
Entropy	0.36	\checkmark	0.49	\checkmark	0.26	✓	0.43	✓

^{*} Important to note limited input stream length.

Efficiency Results

Evaluation Results Summary

Metric	Hybrid [3]	DH [4]	V_{TH} [14]	This Work
Tech.y	45nm	45nm	45nm	45nm
BER	0.65%	0.99%	0.12%	-
NIST	PASS	PASS	PASS	PASS
Power/Bit	$4.26\mu W/b$	$8.53 \mu W/b$	$2.66 \mu W/b$	$7.53\mu W/b$
Area/Bit	$0.146 \mu m^2/b$	$0.21 \mu m^2/b$	$0.13 \mu m^2/b$	$0.43 \mu m^2/b$

^{*}PUF cells simulated with 1V supply voltage.

Thank you!

Questions?