Main guidelines to successfully apply the R based algorithm for pattern reconstruction procedure of chlorinated paraffins.

Background: In majority of cases there are 2 types of reference standards available for quantification of chlorinated paraffins. Namely, single-chain standards (e.g. Chloroparaffin C11 65.25% CI) or standards which contain either C10-C13 (SCCPs), C14-C17 (MCCPs) or C18-C21 (LCCPs) altogether in one mix (e.g. Chloroparaffin C10-C13 55,5% CI). This algorithm can be used for both types. However, different calibration sheets must be used. In case of single-chain standards please use sheets, which end with "Single chain". In case of group standards, please use sheets, which end with "All chains".

This quantification approach can be applied for both – GC-MS and LC-MS analysis to process results for SCCPs, MCCPs or LCCPs. It is also possible to substitute all area values with ratios (Target/ISTD) in case internal standard approach has been used. General workflow for pattern reconstruction and quantification of CPs is as follows:

- 1.) Measurement of calibration solutions.
- 2.) Fill acquired calibration data in corresponding Excel sheets.
- 3.) Sample measurement.
- 4.) Fill acquired sample data in corresponding Excel sheet.
- 5.) Pattern reconstruction and quantification in R.

Contact ingus.perkons[at]bior.lv if you experience any serious problems with the R. code or provided .xlsx documents. This is a part of supplementry material for article (link). Please refer to the article for further information.

Note: Authors do not take any responsibility for the accuracy of the quantification/pattern reconstruction data obtained with this approach.

Additionally, this algorithm should be used for research/educational purposes only.

If using multiple chain standards – measure a calibration curve for each standard mixture. In order to accurately enter calibration results – please use Excel document - "CP calibration - multiple chains.xlsx".

If using single chain standards – I suggest to create several specific mixtures of standard solutions, where one measurement covers four different C_{n-n+3} standards. Although, single-chain CP standards can be measured separately, there is no need to analyze them one by one, as standards with different carbon chain lengths do not overlap, thus 4 different single-chain standards can be measured in one single run. Nevertheless, it possible to measure mixtures which contain e.g. only two chain length standards. In such case – leave the unnecessary homologue rows blank. In order to accurately enter calibration results – please use Excel document - "CP calibration - single chains.xlsx".

Each Excel document which is used to store calibration data, contains 3 sheets - "SCCPs", "MCCPs", and "LCCPs". Unfortunately, this R algorithm can only simultaneously process data for either SCCPs, MCCPs or LCCPs, but not all three (or two) groups together.

Each sheet contains several important columns:

Column A - "Standard mixture" – Contains arbitrary name for each calibration mixture. Must be different for each C_{n-n+3} CP group. I personally prefer to name them "Type-A/B/C/D/E" (e.g. SCCP-A, MCCP-C, etc.).

Column B - "Standard used" - Contains name of reference standard used for the particular standard mixture in calibration curve.

Column C - "Chain length" - Chain length of each CP homologue

Column D - "Type" - Chlorinated paraffin type: SCCP, MCCP or LCCP

Column E - "Homologue" – Molecular formula of CP homologues.

Columns F,G,H,I,J,K,L,M - "Calibration levels" – Calibration levels used to construct calibration curve. By default, there are a maximum of 8 calibration levels, however, you don't need to fill all of them. Concentration levels (conc. values) can be changed as you want and number of levels is up to you. However, it's important that the last calibration level is in column "M". You can delete unnecessary/unused calibration levels starting from column "F".

Columns N,O,P,Q,R,S,T,U - "Areas" – From column "N" to "U" you can store acquired peak areas (or ratios in case of internal standard applications) for each homologue. If no homologue is detected, just leave those cells blank (it will be greyed out).

Columns V and W - contains R^2 (square of the Pearson product moment correlation coefficient) and response factor (RF) for each homologue (slope of the linear regression line through data points, b = 0). Both columns are calculated automatically from the given calibration data.

Columns Z,AA,AB,AC,AD,AE - contain all the necessary data, which must be copied (using Paste->Values) to "input_ref.xls" document, which will be later used for pattern reconstruction procedure in R.

Running ".R" scripts

To run the code you'll need to install R-Stats from one of the CRAN mirrors (https://cran.r-project.org/mirrors.html) and, preferably, RStudio - an integrated development environment (IDE), which can be downloaded from https://www.rstudio.com/products/rstudio/#Desktop. For this code three R packages are necessary ("readxl", "ggplot2", and "dplyr"). When running the code for the first time they will be installed automatically. An in-depth guide for running the algorithm is provided below. Additional information regarding R and RStudio can be found online in developer homepages - https://cran.r-project.org and https://www.rstudio.com, respectively.

Note: There are two ".R" files uploaded in repository. In case of single chain CP standards use "ParaffinCrawler-Chain.R", while for multiple chain standards use "ParaffinCrawler-Group.R"

A guide on how to perform the procedure is illustrated below (example of single chain SCCP standards)

1.) Measure reference mixtures at different calibration levels An example composition

Standard	SCCP-A	SCCP-B	SCCP-C	SCCP-D	SCCP-E
C10 50%	Х				
C11 45%	Х				
C12 52%	Х				
C13 59%	Х				
C10 55%		Х			
C11 50%		Х			
C12 55%		Х			
C13 65%		Х			
C10 60%			Х		
C11 55%			Х		
C12 60%			Х		
C13 69%			Х		
C10 65%				Х	
C11 60%				Х	
C12 65%				Х	
C13 75%				Х	
C11 69%					Х
C12 69%					Х

2.) Fill standard mixture "SCCP-A" information data in "CP calibration - single chains.xlsx" document columns A-B.

		-			_							-						
4	Α	В	С	D	E	F G H I J K L M Calibration LEVELS	N	0		Q F	R S LEVELS	T	U	V	W Response factor of	X Data which	Y	
2	Standard mixture	Standard used	Chain	Туре	Homologue		8 1	1 2	3	4		6	7 8	R ²	each homologue	Data Which	must be	e cop
3	Standard Illixture	Standard deed	length	Type	Homologue	C, ng/μL	<u> </u>				a Area		<u>. </u>	K	per 1 ng/μL			
4	A-SCCP	C10 50%	C10	SCCP	C10H17CI5	o, ng-pc	7	711001		- THE	7.1.04	71100	7.1.00	#N/A	#N/A			A
			C10	SCCP	C10H16Cl6									#N/A	#N/A			A
			C10	SCCP	C10H15CI7									#N/A	#N/A			Α
7	A-SCCP	C10 50%	C10	SCCP	C10H14Cl8									#N/A	#N/A			Α
8	A-SCCP	C10 50%	C10	SCCP	C10H13CI9									#N/A	#N/A			Α
9	A-SCCP	C10 50%	C10	SCCP	C10H12CI10									#N/A	#N/A			Α
10	A-SCCP	C10 50%	C10	SCCP	C10H11Cl11									#N/A	#N/A			Α
		C11 45%	C11	SCCP	C11H19CI5		T							#N/A	#N/A			Α
12	A-SCCP	C11 45%	C11	SCCP	C11H18Cl6									#N/A	#N/A			A
			C11	SCCP	C11H17CI7									#N/A	#N/A			A
			C11	SCCP	C11H16Cl8									#N/A	#N/A			A
			C11	SCCP	C11H15Cl9									#N/A	#N/A			A
			C11	SCCP	C11H14Cl10									#N/A	#N/A			Α
			C11	SCCP	C11H13Cl11									#N/A	#N/A			A
		C12 52%	C12	SCCP	C12H21CI5									#N/A	#N/A			Α
			C12	SCCP	C12H20Cl6									#N/A	#N/A			Α
			C12	SCCP	C12H19CI7									#N/A	#N/A			Α
			C12	SCCP	C12H18Cl8									#N/A	#N/A			Α
			C12	SCCP	C12H17Cl9									#N/A	#N/A			A
			C12	SCCP	C12H16CI10									#N/A	#N/A			A
		C12 52%	C12	SCCP	C12H15CI11									#N/A	#N/A			A
		C13 59%	C13	SCCP	C13H23CI5									#N/A	#N/A			A
			C13	SCCP	C13H22Cl6									#N/A	#N/A			A
			C13	SCCP	C13H21CI7									#N/A	#N/A			A
			C13	SCCP	C13H20Cl8									#N/A	#N/A			A A A A A A A A A A A A A A A A A A A
			C13	SCCP	C13H19Cl9									#N/A	#N/A			A
			C13	SCCP	C13H18CI10									#N/A	#N/A			A
	A-SCCP	C13 59%	C13	SCCP	C13H17Cl11		-							#N/A	#N/A			A
32 33 34 35 36														#N/A	#N/A			
33														#N/A	#N/A			
34														#N/A	#N/A			
35														#N/A	#N/A			
36														#N/A	#N/A			

3.) Fill standard mixture "SCCP-A" calibration levels in "CP calibration - single chains.xlsx" document columns F-M.

_/ A	В	С	D	Е	F	3 F	1 1	J	K	L	.	М	N	0	Р	Q _	R	S	Т	U	V	W	Х	Y
1		Chain				Ca	alibrati	ion L	EVEL	.S		- 1			Cali	bratio	n LEV	ELS			l	Response factor of	Data whic	h must be co
2 Standard r	mixture Standard used	length	Type	Homologue	1	2	3	4	5	6	7	8		1 2	3	4	5	6	7	8	R ²	each homologue		
3		leligui					C,	ng/μl	L				Area	Area	Area Ai	ea /	Area A	Area	Area	Area		per 1 ng/μL		_
4 A-SCCP	C10 50%	C10	SCCP	C10H17CI5		0).5	1	2	4	8	16									#N/A	#N/A		1
5 A-SCCP	C10 50%	C10	SCCP	C10H16Cl6		0).5	1	2	4	8	16									#N/A	#N/A		4
6 A-SCCP	C10 50%	C10	SCCP	C10H15CI7		0).5	1	2	4	8	16									#N/A	#N/A		1
7 A-SCCP	C10 50%	C10	SCCP	C10H14Cl8		0).5	1	2	4	8	16									#N/A	#N/A		Į.
8 A-SCCP	C10 50%	C10	SCCP	C10H13CI9).5	1	2	4	8	16									#N/A	#N/A		F
9 A-SCCP	C10 50%	C10	SCCP	C10H12CI10		0).5	1	2	4	8	16									#N/A	#N/A		F
10 A-SCCP	C10 50%	C10	SCCP	C10H11Cl11).5	1	2	4	8	16									#N/A	#N/A		F.
11 A-SCCP	C11 45%	C11	SCCP	C11H19Cl5	0.1 (.25 0).5	1	2	4	8	16									#N/A	#N/A		l l
12 A-SCCP	C11 45%	C11	SCCP	C11H18Cl6	0.1 (.25 0).5	1	2	4	8	16									#N/A	#N/A		J.
13 A-SCCP	C11 45%	C11	SCCP	C11H17CI7	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		l l
14 A-SCCP	C11 45%	C11	SCCP	C11H16Cl8	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		Į.
15 A-SCCP	C11 45%	C11	SCCP	C11H15CI9	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		4
16 A-SCCP	C11 45%	C11	SCCP	C11H14CI10	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		1
17 A-SCCP	C11 45%	C11	SCCP	C11H13CI11	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		4
18 A-SCCP	C12 52%	C12	SCCP	C12H21CI5	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		<i>A</i>
19 A-SCCP	C12 52%	C12	SCCP	C12H20Cl6	0.1	.25 0).5	1	2	4	8	16									#N/A	#N/A		ļ.
20 A-SCCP	C12 52%	C12	SCCP	C12H19CI7	0.1	.25 0).5	1	2	4	8	16				_					#N/A	#N/A		Į.
21 A-SCCP	C12 52%	C12	SCCP	C12H18CI8	0.1 (.25 0).5	1	2	4	8	16					1				#N/A	#N/A		
22 A-SCCP	C12 52%	C12	SCCP	C12H17CI9		.25 0).5	1	2	4	8	16									#N/A	#N/A		Į.
23 A-SCCP	C12 52%	C12	SCCP	C12H16CI10	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		4
24 A-SCCP	C12 52%	C12	SCCP	C12H15CI11	0.1 (.25 ().5	1	2	4	8	16									#N/A	#N/A		l l
25 A-SCCP	C13 59%	C13	SCCP	C13H23CI5		().5	1	2	4	8	16									#N/A	#N/A		1
26 A-SCCP	C13 59%	C13	SCCP	C13H22CI6		0).5	1	2	4	8	16									#N/A	#N/A		-
27 A-SCCP	C13 59%	C13	SCCP	C13H21CI7		0).5	1	2	4	8	16									#N/A	#N/A		1
28 A-SCCP	C13 59%	C13	SCCP	C13H20Cl8		().5	1	2	4	8	16									#N/A	#N/A		4
29 A-SCCP	C13 59%	C13	SCCP	C13H19CI9		0).5	1	2	4	8	16									#N/A	#N/A		1
30 A-SCCP	C13 59%	C13	SCCP	C13H18CI10		0).5	1	2	4	8	16									#N/A	#N/A		1
31 A-SCCP	C13 59%	C13	SCCP	C13H17Cl11		().5	1	2	4	8	16									#N/A	#N/A		A
32	·																							

4.) Fill acquired areas for standard mixture "SCCP-A" calibration levels in "CP calibration - single chains.xlsx" document columns N-U.

d	Α	В	С	D	Е	F	G	н	1	J	(L		М	N	0	Р	Q	R	S	Т	U	V	W		Х	Y
1			Chain					Calibr	ation	LEVE	LS					C	alibra	tion LE	VELS				Response fac		Data which	must be c
2	Standard mixture	Standard used	length	Type	Homologue	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	R ²	each homol	ogue		
3			leligui					(C, ng/	μL				Area	Area	Area	Area	Area	Area	Area	Area		per 1 ng/ _i	ıL		
	A-SCCP	C10 50%	C10	SCCP	C10H17CI5	0.13	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
		C10 50%	C10	SCCP	C10H16Cl6	0.1	0.25	0.5	1	2	4	8	16				25000		94000			0.998447235		25157		
		C10 50%	C10	SCCP	C10H15CI7	0.1	0.25	0.5	1	2	4	8	16			12500	24000	50000	110000	200000	400000	0.999205151		24953		
		C10 50%	C10	SCCP	C10H14Cl8	0.1		0.5	1	2	4	8	16	1000	2500	5000		20000	40000		160000	0.999997653		10005		
		C10 50%	C10	SCCP	C10H13CI9	0.1		0.5	1	2	4	8	16	500	1250	2500	5000	10000	20000	40000	80000			5002		
		C10 50%	C10	SCCP	C10H12CI10	0.1		0.5	1	2	4	8	16									#N/A	#N/A			
		C10 50%	C10	SCCP	C10H11Cl11	0.1	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
		C11 45%	C11	SCCP	C11H19CI5	0.1	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
		C11 45%	C11	SCCP	C11H18Cl6	0.1	0.25	0.5	1	2	4	8	16	3000	7500	15000	30000	60000	120000			0.999997653		30014		
		C11 45%	C11	SCCP	C11H17CI7	0.1	0.25	0.5	1	2	4	8	16	4000	10000	20000	40000	80000			640000	0.999997653		40018		
		C11 45%	C11	SCCP	C11H16Cl8	0.1	0.25	0.5	1	2	4	8	16	2100	5250	10500	21000	42000			336000	0.996516383		20635		
		C11 45%	C11	SCCP	C11H15Cl9	0.1	0.25	0.5	1	2	4	8	16	700	1750	3500	7000	14000	28000		112000			7003		
		C11 45%	C11	SCCP	C11H14Cl10	0.1	0.25	0.5	1	2	4	8	16	300	750	1500	3000	6000	12000	24000	48000			3001		
		C11 45%	C11	SCCP	C11H13Cl11	0.1	0.25		1	2	4	8	16									#N/A	#N/A			
		C12 52%	C12	SCCP	C12H21Cl5	0.1	0.25	0.5	1	2	4	8	16	500	1250	2500	0000		20000			0.999997653		5002		
		C12 52%	C12	SCCP	C12H20Cl6	0.1	0.25	0.5	1	2	4	8	16	4500	11250	22500	45000	90000			720000	0.999997653		45020		
		C12 52%	C12	SCCP	C12H19CI7	0.1	0.25	0.5	1	2	4	8	16	3700	9250	18500	37000	74000			592000			37017		
		C12 52%	C12	SCCP	C12H18CI8	0.1	0.25	0.5	1	2	4	8	16	2000	5000	10000		40000			320000	0.999997653		20009		
		C12 52%	C12	SCCP	C12H17Cl9	0.1	0.25	0.5	1	2	4	8	16			2500		10000	20000			1		5000		
		C12 52%	C12	SCCP	C12H16CI10	0.1	0.25	0.5	1	2	4	8	16				5000	10000	20000	40000	80000	1		5000		
		C12 52%	C12	SCCP	C12H15Cl11	0.1	0.25	0.5	_1_	2	4	8	16									#N/A	#N/A			
		C13 59%	C13	SCCP	C13H23CI5			0.5	1	2	4	8	16					14000			112000	[1		7000		
		C13 59%	C13	SCCP	C13H22Cl6			0.5	1	2	4	8	16					60000			480000	[1		30000		
		C13 59%	C13	SCCP	C13H21CI7			0.5	1	2	4	8	16	4500	11250	22500					720000	[1		45000		
		C13 59%	C13	SCCP	C13H20Cl8			0.5	1	2	4	8	16	2700	6750	13500		54000			432000	[1		27000		
		C13 59%	C13	SCCP	C13H19Cl9			0.5	1	2	4	8	16	1200	3000			24000	48000		192000	[1		12000		
		C13 59%	C13	SCCP	C13H18CI10			0.5	1	2	4	8	16	200	500	1000	2000	4000	8000	16000	32000	[1		2000		
31	A-SCCP	C13 59%	C13	SCCP	C13H17Cl11			0.5	1	2	4	8	16									#N/A	#N/A			
32																						#N/A	#N/A			
33																						#N/A	#N/A			

5.) Repeat steps 2.-4. for all remaining standard mixtures.

al	Α	В	С	D	E	F	G	н	1 1	ı к	L	M		N O	P	Q	R	S	т	U	V	W		X	Υ	Z	AA	AB	AC
	A-SCCP	C12 52%	C12	SCCP	C12H17CI9	0.1	0.25	0.5	1	2	4	8 1	16		250		0 10000		40000			1	5000			A-SCCP	C12 52%		SCCP
	A-SCCP	C12 52%	C12	SCCP	C12H16CI10	0.1		0.5	1	2	4	8 1	16			500	0 10000	20000	40000	80000		1	5000			A-SCCP	C12 52%		SCCP
	A-SCCP	C12 52%	C12	SCCP	C12H15Cl11	0.1	0.25		1	2	4	8 '	16								#N/A	#N/A				A-SCCP	C12 52%		SCCP
25	A-SCCP	C13 59%	C13	SCCP	C13H23Cl5			0.5	1	2	4	8 1	16			700	0 14000	28000	56000	112000		1	7000			A-SCCP	C13 59%		SCCP
26	A-SCCP	C13 59%	C13	SCCP	C13H22Cl6			0.5	1	2	4	8 1	16		1500	0 3000	0 60000	120000	240000	480000		1	30000			A-SCCP	C13 59%		SCCP
27	A-SCCP	C13 59%	C13	SCCP	C13H21CI7			0.5	1	2	4	8	16	4500 1125	0 2250	0 4500	0 90000	180000	360000	720000		1	45000			A-SCCP	C13 59%		SCCP
28	A-SCCP	C13 59%	C13	SCCP	C13H20Cl8			0.5	1	2	4	8 1	16	2700 675	0 1350	0 2700	0 54000	108000	216000	432000		1	27000			A-SCCP	C13 59%		SCCP
29	A-SCCP	C13 59%	C13	SCCP	C13H19CI9			0.5	1	2	4	8	16	1200 300	0 600	0 1200	0 24000	48000	96000	192000		1	12000			A-SCCP	C13 59%		SCCP
30	A-SCCP	C13 59%	C13	SCCP	C13H18CH0			0.5	1	2	4	8 1	16	200 50	0 100	0 200	0 4000	8000	16000	32000		1	2000			A-SCCP	C13 59%		SCCP
	A-SCCP	C13 59%	C13	SCCP	C13H17Cl11			0.5	1	2	4	8	16								#N/A	#N/A				A-SCCP	C13 59%	C13	SCCP
32	B-SCCP	C10 55%	C10	SCCP	C10H17CI5		0.25	0.5	1	2	4	8	16								#N/A	#N/A				B-SCCP	C10 55%	C10	SCCP
33	B-SCCP	C10 55%	C10	SCCP	C10H16Cl6		0.25	0.5	1	2	4	8 1	16			400	0 8000	16000	32000	r		1	4000			B-SCCP	C10 55%	C10	SCCP
34	B-SCCP	C10 55%	C10	SCCP	C10H15CI7	0.1	0.25	0.5	1	2	4	8 1	16	2000 400	0 800	0 1600	0 32000	64000	128000	256000		1	16000			B-SCCP	C10 55%	C10	SCCP
35	B-SCCP	C10 55%	C10	SCCP	C10H14Cl8	0.1	0.25	0.5	1	2	4	8 1	16	4000 800	0 1600	0 3200	0 64000	128000	256000	512000		1	32000			B-SCCP	C10 55%	C10	SCCP
36	B-SCCP	C10 55%	C10	SCCP	C10H13CI9	0.1	0.25	0.5	1	2	4	8 1	16	100	0 200	0 400	0 8000	16000	32000	64000		1	4000			B-SCCP	C10 55%	C10	SCCP
37	B-SCCP	C10 55%	C10	SCCP	C10H12CH0	0.1	0.25	0.5	1	2	4	8	16			160	0 3200	6400	12800	25600		1	1600			B-SCCP	C10 55%	C10	SCCP
38	B-SCCP	C10 55%	C10	SCCP	C10H11CH1		0.25	0.5	1	2	4	8	16								#N/A	#N/A				B-SCCP	C10 55%		SCCP
39	B-SCCP	C11 50%	C11	SCCP	C11H19CI5	0.1	0.25	0.5	1	2	4	8	16							$\overline{}$	#N/A	#N/A				B-SCCP	C11 50%		SCCP
40	B-SCCP	C11 50%	C11	SCCP	C11H18CI6	0.1	0.25	0.5	1	2	4	8	16			800	0 16000	32000	64000	128000		1	8000			B-SCCP	C11 50%	C11	SCCP
41	B-SCCP	C11 50%	C11	SCCP	C11H17CI7	0.1	0.25	0.5	1	2	4	8	16		1800	0 3600	0 72000	144000	288000	576000		ir	36000			B-SCCP	C11 50%		SCCP
	B-SCCP	C11 50%	C11	SCCP	C11H16CI8	0.1	0.25	0.5	1	2	4	8 .	16	700				112000				ir	28000			B-SCCP	C11 50%		SCCP
43	B-SCCP	C11 50%	C11	SCCP	C11H15CI9	0.1	0.25	0.5	1	2	4	8	16	2100 420	0 840	0 1680	0 33600	67200	134400	268800		ir	16800			B-SCCP	C11 50%		SCCP
	B-SCCP	C11 50%	C11	SCCP	C11H14CH0	0.1	0.25	0.5	1	2	4	8	16	96						61440		il.	3840			B-SCCP	C11 50%		SCCP
	B-SCCP	C11 50%	C11	SCCP	C11H13CH1		0.20	0.0	1	2	4	8	16								#N/A	#N/A				B-SCCP	C11 50%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H21CI5	0.1	0.25	0.5	1	2	4	8 .	16			400	0 8000	16000	32000	64000		1	4000			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H20Cl6	0.1	0.25	0.5	1	2	4	8	16	900	0 1800			144000				ile	36000			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H19Cl7	0.1	0.25	0.5	1	2	4	8	16					118400				ir	29600			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H18CI8	0.1	0.25	0.5	1	2	4	8		2000 400			0 32000		128000			ik	16000			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H17CI9	0.1	0.25	0.5	1	2	4	8 .	16	1500 300			0 24000			192000		it	12000			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H16CI10	0.1		0.5	1	2	4	8	16				0 8000					ile	4000			B-SCCP	C12 55%		SCCP
	B-SCCP	C12 55%	C12	SCCP	C12H15CH1	0.1		0.5	1	2	4	8 .	16			100		10000	02000		#N/A	**************************************	1000			B-SCCP	C12 55%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H23CI5	0.1	0.25	0.5	1	2	4	8	16							\rightarrow	#N/A	#N/A				B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H22Cl6	0.1	0.25	0.5	1	2	4	8 .	16		480	0 960	0 19200	38400	76800	153600		1	9600			B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H21CI7	0.1	0.25	0.5	1	2	4	8	16	6000 1200								ir	48000			B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H20CI8	0.1	0.25	0.5	1	2	4	8						112000				ir	28000			B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H19CI9	0.1	0.25	0.5	1	2	4	8		2000 400				64000				ir	16000			B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H18CH0	0.1	0.25	0.5	1	2	4	8	16		280			22400				1	5600			B-SCCP	C13 65%		SCCP
	B-SCCP	C13 65%	C13	SCCP	C13H17CH1			0.5	1	2	4	8	16		200	5 500		22,400		00000	#N/A	**************************************	2000			B-SCCP	C13 65%		SCCP
	C-SCCP	C10 60%	C10	SCCP	C10H17CI5	0.13	0.25	0.5	1	2	4	2	6							_	#N/Δ	#N/A				C-SCCP	C10 60%		SCCP
	C-SCCP	C10 60%	C10	SCCP	C10H17CIS	0.13	0.25	0.5	1	2	4	8	6			160	0 3200	6400	12800	25600	#WA	4N/A	1600			C-SCCP	C10 60%		SCCP
	C-SCCP	C10 60%	C10	SCCP	C10H16CI6	0.1	0.25	0.5	4	2	7	0	6	4000 800	0 1600		0 64000					il.	32000			C-SCCP	C10 60%		SCCP
	C-SCCP C-SCCP	C10 60%	C10	SCCP	C10H15CI7	0.1	0.25	0.5	4	2	7	0						224000				. ▶	56000			C-SCCP	C10 60%		SCCP
	C-SCCP C-SCCP	C10 60%	C10	SCCP	C10H14CI8 C10H13CI9	0.1	0.25	0.5	1	2	7	0										. ▶	28000			C-SCCP	C10 60%		SCCP
			C10					0.5		2	4	B .	0	200				112000 32000				₽					C10 60%		
	C-SCCP	C10 60%		SCCP	C10H12CH10	0.1			1	2	4	0	0	200	0 400	0 800	0 16000	3∠000	64000	126000	40170	T	8000			C-SCCP	C10 60%		SCCP
	C-SCCP	C10 60%	C10	SCCP	C10H11CH1	0.1		0.5	1	2	4	ŏ .	10							\rightarrow	#N/A	#N/A	- 1			C-SCCP	C10 60%		SCCP
	C-SCCP	C11 55%	C11	SCCP	C11H19CI5	0.1		0.5		_		8	16			400	0 0000	0400	42000	25000	#N/A	#N/A	4000			C-SCCP	C11 55%		SCCP
68	C-SCCP	C11 55%	C11	SCCP	C11H18Cl6	0.1	0.25	0.5	1	2	4	8	16			160	0 3200	6400	12800	25600		'L	1600			C-SCCP	C11 55%	CTT	SCCP

6.) Check if there are no unexpected errors in your sheet and copy the calculated information from column Z-AE to an Excel document "input_ref.xlsx" starting from 2nd row (use Paste->Paste special->Values). Do not clear the first row of "input_ref.xlsx" sheet!

4	Α	В	С	D	Е	F	G	н	1	J	(1	.	М	N	0	Р	Q	R	S	Т	U	V	W		Х	Υ
1			Chain				(Calibr	ation	LEVE	_S					C	alibrat	ion LE	/ELS				Response fac	ctor of	Data which	n must h
2 Stand	dard mixture	Standard used	length	Type	Homologue	1	2	3	4	5	6	7	8	1	2	3	4	- 5	6	7	8	R ²	each homol	ogue		
3			lengui					(C, ng/	μL				Area	Area	Area	Area	Area	Area	Area	Area		per 1 ng/	μL		
4 A-SC		C10 50%	C10	SCCP	C10H17CI5	0.13	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
5 A-SC		C10 50%	C10	SCCP	C10H16Cl6	0.1		0.5	1	2	4	8	16				25000	49000		201000		0.998447235		25157		
6 A-SC		C10 50%	C10	SCCP	C10H15CI7	0.1		0.5	1	2	4	8	16			12500	24000	50000	110000	200000		0.999205151		24953		
7 A-SC		C10 50%	C10	SCCP	C10H14Cl8	0.1		0.5	1	2	4	8	16	1000	2500	5000	10000	20000	40000		160000	0.999997653		10005		
8 A-SC		C10 50%	C10	SCCP	C10H13Cl9	0.1	0.25	0.5	1	2	4	8	16	500	1250	2500	5000	10000	20000	40000	80000	0.999997653		5002		
9 A-SC		C10 50%	C10	SCCP	C10H12CI10	0.1	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
10 A-SC		C10 50%	C10	SCCP	C10H11Cl11	0.1		0.5	1	2	4	8	16									#N/A	#N/A			
11 A-SC		C11 45%	C11	SCCP	C11H19CI5	0.1	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
12 A-SC		C11 45%	C11	SCCP	C11H18Cl6	0.1	0.25	0.5	1	2	4	8	16	3000	7500	15000	30000	60000	120000	240000	480000	0.999997653		30014		
I3 A-SC		C11 45%	C11	SCCP	C11H17CI7	0.1		0.5	1	2	4	8	16	4000	10000	20000	40000	80000		320000		0.999997653		40018		
4 A-SC		C11 45%	C11	SCCP	C11H16Cl8	0.1		0.5	1	2	4	8	16	2100	5250	10500	21000	42000	84000	148000		0.996516383		20635		
5 A-SC		C11 45%	C11	SCCP	C11H15Cl9	0.1		0.5	1	2	4	8	16	700	1750	3500	7000	14000	28000		112000	0.999997653	L	7003		
6 A-SC		C11 45%	C11	SCCP	C11H14Cl10	0.1	0.25	0.5	1	2	4	8	16	300	750	1500	3000	6000	12000	24000	48000	0.999997653		3001		
7 A-SC		C11 45%	C11	SCCP	C11H13Cl11	0.1		0.5	1	2	4	8	16									#N/A	#N/A			
8 A-SC		C12 52%	C12	SCCP	C12H21Cl5	0.1	0.25	0.5	1	2	4	8	16	500	1250	2500	5000	10000	20000	40000	80000	0.999997653		5002		
9 A-SC		C12 52%	C12	SCCP	C12H20Cl6	0.1	0.25	0.5	1	2	4	8	16	4500	11250	22500	45000	90000		360000		0.999997653		45020		
0 A-SC		C12 52%	C12	SCCP	C12H19CI7	0.1		0.5	1	2	4	8	16	3700			37000	74000		296000		0.999997653		37017		
1 A-SC		C12 52%	C12	SCCP	C12H18CI8	0.1		0.5	1	2	4	8	16	2000	5000			40000		160000		0.999997653		20009		
2 A-SC		C12 52%	C12	SCCP	C12H17CI9	0.1		0.5	1	2	4	8	16			2500		10000	20000			1		5000		
3 A-SC		C12 52%	C12	SCCP	C12H16CI10	0.1		0.5	1	2	4	8	16				5000	10000	20000	40000	80000	1		5000		
4 A-SC		C12 52%	C12	SCCP	C12H15Cl11	0.1	0.25	0.5	1	2	4	8	16									#N/A	#N/A			
5 A-SC		C13 59%	C13	SCCP	C13H23CI5			0.5	1	2	4	8	16					14000	28000		112000	1		7000		
6 A-SC		C13 59%	C13	SCCP	C13H22Cl6			0.5	1	2	4	8	16					60000		240000		1	Ľ	30000		
7 A-SC		C13 59%	C13	SCCP	C13H21CI7			0.5	1	2	4	8	16			22500		90000		360000		1	Ĭ.	45000		
8 A-SC		C13 59%	C13	SCCP	C13H20Cl8			0.5	1	2	4	8	16	2700	6750	13500	27000	54000	108000	216000		1	ľ	27000		
29 A-SC		C13 59%	C13	SCCP	C13H19Cl9			0.5	1	2	4	8	16	1200	3000	6000		24000	48000		192000	1	ľ	12000		
30 A-SC		C13 59%	C13	SCCP	C13H18CI10			0.5	1	2	4	8	16	200	500	1000	2000	4000	8000	16000	32000	1	Ĭ.	2000		
31 A-SC	CP	C13 59%	C13	SCCP	C13H17Cl11			0.5	1	2	4	8	16									#N/A	#N/A			

-4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U
1	STD code	Reference	Chain le	ng Type	Homologu∈R	esponse fact	tor														
2	A-SCCP	C10 50%	C10	SCCP	C10H17CI																
3	A-SCCP	C10 50%	C10	SCCP	C10H16CI6	25157															
	A-SCCP	C10 50%		SCCP	C10H15Cl7	24953															
	A-SCCP	C10 50%		SCCP	C10H14CI8	10005															
	A-SCCP	C10 50%		SCCP	C10H13CI	5002															
	A-SCCP	C10 50%		SCCP	C10H12CI																
	A-SCCP	C10 50%		SCCP	C10H11CI																
	A-SCCP	C11 45%		SCCP	C11H19Cl!																
	A-SCCP	C11 45%		SCCP	C11H18CI	30014															
	A-SCCP	C11 45%		SCCP	C11H17CI	40018															
	A-SCCP	C11 45%		SCCP	C11H16CI	20635															
	A-SCCP	C11 45%		SCCP	C11H15CI	7003															
	A-SCCP	C11 45%		SCCP	C11H14CI	3001															
	A-SCCP	C11 45%		SCCP	C11H13CI																
	A-SCCP	C12 52%		SCCP	C12H21CI	5002															
	A-SCCP	C12 52%		SCCP	C12H20CI6	45020															
	A-SCCP	C12 52%		SCCP	C12H19Cl7	37017															
	A-SCCP	C12 52%		SCCP	C12H18CI	20009															
	A-SCCP	C12 52%		SCCP	C12H17CI	5000															
	A-SCCP	C12 52%		SCCP	C12H16CI	5000															
	A-SCCP	C12 52%		SCCP	C12H15CI																
	A-SCCP	C13 59%		SCCP	C13H23CI	7000															
	A-SCCP	C13 59%		SCCP	C13H22CI	30000															
	A-SCCP	C13 59%		SCCP	C13H21Cl7	45020															
26	A-SCCP	C13 59%	C13	SCCP	C13H20CI	27012															

7.) Save "input_ref.xlsx" file in desired directory. Open "sample.xlsx" file to enter results for sample measurement.

- **8.)** If using MCCPs or LCCPs instead of SCCPs, replace columns A, B, and C with corresponding information (Chain_length, Type and Homologue) from calibration sheets.
- **9.)** Save "sample.xlsx" file in desired directory.

10.) Go to RStudio software and open "ParaffinCrawler-Chain.R". Open "ParaffinCrawler-Group.R" if using multiple chain length standard mixtures.

11.) Select first three lines and execute code with "Ctrl+Enter" to load required libraries.

```
ParaffinCrawler-Chain.R* ×

| Source on Save | Source on Save | Run | Source | Run | Source | Run | Source | Run | Source | Run | Ru
```

12.) In line 9, edit the working.directory to the location of "input ref.xlsx" and "sample.xlsx". Folders must be separated with "/", not "\"!

```
6 * #####CHAIN LENGTH STANDARD MIXTURES USED#####

7 
8 * #####Set working directory#####

9 working.directory <- "C:/Folder1/Folder2/Folder3/"

10 
11 * #####PREPARE DATASET FOR PATTERN RECONSTRUCTION#####
```

13.) Click in line 12 on the left side before curly bracket "{". Press "Ctrl+Enter" to run the first part of the code.

```
11 * ####PREPARE DATASET FOR PATTERN RECONSTRUCTION#####

12 * [
13 #Open input file
input <- read_xls(paste(working.directory, "input_ref.xls", sep = ""))

15 input$STD_code <- as.factor(input$STD_code)

16
17
18 #Create all possible binary combinations between given calibration sets
Combinations <- combn(x = levels(input$STD_code), m = 2,FUN = NULL, simplify = TRUE)

20
21 #Store sum RFs for each chain length standard
input <- input %>% group_by(Reference_standard) %>% mutate(Sum_response_factor = sum(Response_factor, na.rm = TRUE))

23 input[c(1:5)] <- lapply(input[c(1:5)], as.factor)
input$Response_factor[is.na(input$Response_factor)] <- 0
```

- **14.)** You do not have to repeat steps 10. 13. for each sample. Once they have been run, there is no need to do that for each sample unless new Rstudio session (or restart) has occurred.
- 15.) Enter sample name in line 34.

```
31 v ####Open sample data####

32 sample <- read_xls(paste(working.directory, "sample.xls", sep = ""))

33 v ####Set sample name###

34 sample.name <- "seneric example"

35 v ####RUN PATTERN RECONSTRACTION F as.factor() TED (LOADED) SAMPLE####
```

16.) Click in line 32 on the left side before curly bracket "{". Press "Ctrl+Enter" to run the second part of the code.

```
31 - ####Open sample data####
32 - [
33 sample <- read_xls(paste(working.directory, "sample.xls", sep = ""))
34 - ####Set sample name####
35 sample.name <- "Generic example"
36 - ###RUN PATTERN RECONSTRACTION FOR SELECTED (LOADED) SAMPLE###
37 - {
38 sampleSchain_length <- as.factor(sampleSchain_length)
39 sampleSArea <- as.numeric(sampleSchain_length)
```

- 17.) Step 16 executed pattern reconstruction procedure and quantification. Now you can see and save the results.
- **18.)** To see results summary and full data table open data frames on the right side panel. Click "play" button on "results_output" to see the summary, click "results" to see the full data.frame.

19.) To visualize the calculated patterns click in line 123 and execute it by pressing "Ctrl+Enter". The plots will be visualized in right panel ("Plots").

20.) To save all files go to line 127, edit save.directory and execute lines 130, 132, and 134 by clicking to each line and pressing "Ctrl+Enter" to save summary of results (.txt separated by TAB), full results (.txt separated by TAB) and relative distribution plot (.tiff), respectively. All these files will be named by sample.name, which was defined in step 15 and can be located in save.directory.

21.) Repeat the procedure from step 15 to 20 for each sample. Remember to replace data in "sample.xlsx" file when running a different sample.

Acknowledgments

The backbone for this approach was largely inspired/adapted from two publications:

Schinkel, L., Lehner, S., Knobloch, M., Lienemann, P., Bogdal, C., McNeill, K., & Heeb, N. V. (2018). Transformation of chlorinated paraffins to olefins during metal work and thermal exposure – Deconvolution of mass spectra and kinetics. Chemosphere, 194, 803–811. https://doi.org/10.1016/j.chemosphere.2017.11.168

Bogdal, C., Alsberg, T., Diefenbacher, P. S., Macleod, M., & Berger, U. (2015). Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution. Analytical Chemistry. 87(5), 2852–2860. https://doi.org/10.1021/ac504444d

Additionally, the author would like to express very great appreciation to Dr. biol Didzis Elferts (University of Latvia) for teaching the basic principles of R programming language.