ខាតិភា

ទេទទួ	ବ <mark>ର୍ଷି ଚାଳିନ</mark> ୀ	î
ទេទទួ	ខនី ១ ខ្រឹស្តីស៊ីខេនិចនៃឧស្ម័ន	Ģ
g	ទឹស្តីស៊ីនេទិចនៃខ្វស្តីន	g
U	សម្ពាធក្នុងទ្រឹស្តីស៊ីនេទិចនៃខ្វស្ម័ន	Ģ
៣	ថាមពលស៊ីនេទិច និងសីតុណ្ហាតាព	ſ
	ក សមិការតាពនៃខ្វស្ម័នប់វិសុទ្ធ:	ſ
	ខ សមិការបម្រែបម្រូលតាពនៃខ្មស្ម័នបរិសុទ្ធ:	J
	ត ថាមពលស៊ីនេទិច និងស័តុណ្ហាតាព:	ß
	យ ល្បឿនប្ញសការនៃការល្បឿនមធ្យម:	α
۵	របំហាត់	
556	ខ នី ២ 	၅
U	កម្មន្តបំពេញក្នុងពេលបម្រែបម្រូលមាខ្វ:	99
	ក ករណីស៍ម្តាធថេរ(លំនាំអ៊ីស្តូប្វារ):	99
	ខ ករណីសម្ពាធប្រែប្រួលស្មើ	9િ
	ត ករណីសិត្តណ្ហូតាពថេរ(លំនាំអ៊ីសូខែម):	១ព
	យ ករណីមាឌ្ឌថេរ(លំនាំអ៊ីសូករ)	98
៣	ថាមពលក្នុងនៃច្បាប់ទី១ ខែម៉ូឌីណាមិច	95
	ក កម្តៅ និងកម្មន្ត:	95
	ខ ថាមពលក្នុងនៃខ្វស្មីន	95
	ត ច្បាប់ទី១ទៃម៉ូឌ្វីណាមិច:	95
	ឃ បម្លែងបិទ~គោលការណ៍សមម្មល:	91
ړ	ាំហោត់ 	9 (

इत्याद्य व्याद्य विद्याद्य के अपने का किल्क्षिक के अपने किल्क्ष्म के अपने किल्क्ष के अपन

១ ទ្រឹស្ដីស៊ីលេនិខលៃឧស្ម័ន

នឹយមន័យ

<mark>ទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័នៈ</mark> ជាការសិក្សាអំពីចលនារបស់ម៉ូលេគុលឧស្ម័ន N ម៉ូលេគុលដែលស្ថិតក្នុងធុងរាងគូប មួយ។

2 3 29 ~6

- ម៉ុលេគុលឧស្ម័នទាំងអស់ធ្វើចលនាឥតឈប់ឈរ និងគ្មានសណ្ដាប់ធ្នាប់។
- គ្រប់ការទង្គិចរបស់ម៉ូលេគុលជាទង្គិចខ្ទាត។
- គេសន្មតថាម៉ូលេគុលនីមួយៗមានល្បឿនថេរជានិច្ច និងអាចអនុវត្តច្បាប់ញ៉ូតុនបានគ្រប់ពេល។
- គេចាត់ទុកម៉ូលេគុលឧស្ម័នជាចំណុចរូបធាតុ ព្រោះវិមាត្ររបស់ម៉ូលេគុលនីមួយៗតូចធៀបនឹងលំហអន្តរម៉ូលេគុល។
- ថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលសមាមាត្រនឹងសីតុណ្ហភាព។

២ សន្ទានដូចន្រឹស្តីស៊ីនេនិចនៃឧស្ទ័ន

យើងសិក្សាចលនាម៉ូលេគុលក្នុងធុងមួយ។ យើងបានសម្ពាធដែលសង្គត់លើផ្ទៃធុងគឺជាកម្លាំងទង្គិចរបស់ចលនា ម៉ូលេគុល

យើងបាន :
$$P = \frac{F}{A}$$
 ដោយ: $F = m \frac{\Delta v_x}{\Delta t} = \frac{m \times 2v_x}{\frac{2L}{v}} = \frac{mv_x^2}{L}$

យើងបាន :
$$P = \frac{mv_x^2}{AL} = \frac{mv_x^2}{V}$$

តែ :
$$(v^2)_{av} = (v_x^2)_{av} + (v_y^2)_{av} + (v_z^2)_{av} = 3(v_x^2)_{av}$$

ដែល :
$$(v = v_x = v_y = v_z = \mathfrak{tGI})$$

នាំឲ្យ :
$$(v_x^2)_{av} = \frac{1}{3} (v^2)_{av}$$

យើងបានសម្ពាធលើផ្ទៃខាងនីមួយៗ កំណត់ដោយៈ $P = \frac{1}{3} \times \frac{m}{V} (v^2)_{av}$ ឬ $P = \frac{1}{3} \rho (v^2)_{av}$

ដែល :
$$\rho = \frac{m}{V}$$
 (ម៉ាសមាឌ)

ម្យ៉ាងទៀត :
$$m=m_0N$$

យើងបាន :
$$P = \frac{1}{3} \times \frac{Nm_0}{V} (v^2)_{av} = \frac{2N}{3V} \times \frac{1}{2} m_0 (v^2)_{av}$$

ដូចនេះ :
$$P = \frac{2}{3} \times \frac{N}{V} K_{av}$$

៣ ខានលេស្ទីខេន្ទិន និទស្ដង់ប្លានាព

ក សនីភារភាពនៃឧស្ម័នមរិសុន្ទ:

តាមពិសោធន៍បង្ហាញថា:

ullet សម្ពាធសមាមាត្រនឹងសីតុណ្ហភាព : $P\sim T$

ullet សម្ពាធសមាមាត្រនឹងចំនួនម៉ូលេគុល : $P \sim N$

ullet សម្ពាធច្រាសសមាមាត្រនឹងមាឌ : $P\simrac{1}{V}$

យើងបាន : $P \sim \frac{NT}{V}$ ឬ $P = k_B \frac{NT}{V}$ នោះ $PV = Nk_BT$

ដែល : $k_B = 1.38 \times 10^{-23} J/K \left(ថេរបុលស្មាន់ \right)$

តែ : $N = nN_A$ នោះ $PV = nk_BN_AT$

តាង : $R=k_BN_A$ ដែល $N_A=6.02 imes 10^{23}$ ម៉ូលេគុល $/mol\left($ ចំនួនអាវ៉ូកាជ្រូight)

ដូចិនេះ : $PV = k_B NT = nRT$

ខ សន្ទីភារមម្រែមម្រួលភាពនៃឧស្ម័នមរិសុន្ទ:

បើឧស្ម័នប្រែប្រួលភាព ពីភាពដើម 1 ទៅភាពស្រេច 2 យើងបានៈ

• នៅភាពដើម $1: P_1V_1 = nRT_1$ ឬ $\frac{P_1V_1}{T_1} = nR$ • នៅភាពស្រេច $2: P_2V_2 = nRT_2$ ឬ $\frac{P_2V_2}{T_2} = nR$

យើងបាន : $\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}=nR=$ បេរ

ច្បាប់ប៊យ-ម៉ារ្យ៉ូត : $P_1V_1=P_2V_2$ (សីតុណ្ហភាពថេរ $T_1=T_2$)

ច្បាប់សាល : $\frac{P_1}{T_1}=\frac{P_2}{T_2}$ (មាឌបេរ $V_1=V_2$)

ច្បាប់កេលុយសាក់ : $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

🛱 👏 ថាមពលស៊ីនេនិច និចសីដុណ្ណភាព:

១. តន្លៃថាមពលស៊ីលេនិចមធ្យមលៃទុំលេងលឧស្ម័ន:

តាមសម្រាយបញ្ជាក់ខាងលើ : $P = \frac{2}{3} \times \frac{N}{V} K_{av}$

យើងបាន: $PV = \frac{2}{3}NK_{av}$

នាំឲ្យ :
$$K_{av} = \frac{3}{2} \times \frac{PV}{N} = \frac{3}{2} k_B T$$

$$im: \quad : \quad \frac{PV}{N} = k_B T$$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័នគឺ: : $K_{av} = \frac{3}{2}k_BT = \frac{3}{2}\left(\frac{PV}{N}\right)$

២. អង្គែទាមពលស៊ីខេនិចសម្រនៃម៉ូលេងុលឧស្ម័ន:

យើងមាន :
$$K_{av} = \frac{3}{2}k_BT$$

នាំឲ្យ :
$$K = N \times K_{av} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័នគឺ: : $K=rac{3}{2}Nk_BT=rac{3}{2}nRT=rac{3}{2}PV$

យ ល្បឿនថ្មសភាអេនភាអេល្បឿនមធ្យម:

យើងមាន :
$$K_{av} = \frac{3}{2}k_BT = \frac{1}{2}m_0\left(v^2\right)_{av}$$

នាំឲ្យ :
$$\sqrt{(v^2)_{av}} = \sqrt{\frac{3k_BT}{m_0}}$$

តាង :
$$v_{rms} = \sqrt{(v^2)_{av}} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}}$$

ដូចនេះ ល្បឿនឬសការេនៃការេល្បឿនមធ្យមគឺ: :
$$v_{rms} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}}$$

សម្ចាល់

- **១**. ល្បឿនមធ្យម: $v_{av} = \frac{v_1 + v_2 + v_3 + \dots + v_N}{N}$ ដែល v_{av} គិតជា m/s $(v_{av})^2 = (\overline{v})^2 = \left(\frac{v_1 + v_2 + v_3 + \dots + v_N}{N}\right)^2$ ល្បឿនមធ្យមលើកជាការ $(v^2)_{av} = v_{rms}^2 = \frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_N^2}{N}$ តម្លៃមធ្យមនៃការេល្បឿន
- **២**. ល្បឿនឬសការេនៃការេល្បឿនមធ្យមៈ $v_{rms} = \sqrt{(v^2)_{av}} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_N^2}{N}}$ ដែល v_{rms} គិតជា m/s និង $v_{rms}^2 = (v^2)_{av}$
- **៣**. ម៉ាសមាឌ ឬដង់ស៊ីតេមាឌនៃឧស្ម័នៈ $\rho = \frac{m}{V} = \frac{m_0 N}{V}$ ដែល ρ គិតជា (kg/m^3) m ជាម៉ាសឧស្ម័ន គិតជា (kg) m_0 ម៉ាសមូលេគុល គិតជា (kg) V មាឌឧស្ម័ន គិតជា (m^3)
- ៤. ចំនួនម៉ូលៈ $n=\frac{m}{M}=\frac{N}{N_A}=\frac{V}{V_{mol}}$ ដែល M ម៉ាសម៉ូលគិតជា (kg/mol) N ចំនួនម៉ូលេគុលសរុប V_{mol} ជាមាឧខស្ម័នក្នុងមួយម៉ូល (m^3/mol) V មាឧខស្ម័ន (m^3)

- $rac{m{\mathcal{E}}}{6}$. ចំនួនម៉ូលេគុលសរុបនៃឧស្ម័នៈ $N=rac{m}{m_0}=nN_A=rac{m}{M} imes N_A$ ដែល n ចំនួនម៉ូល គិតជា (mol)
- **៦**. មាឌម៉ូលនៃឧស្ម័នក្នុងលក្ខខ័ណ្ឌគំរូដែលមានសម្ពាធ $P_0=1atm$ និងសីតុណ្ហភាព T=273K គឺ: $V_{mol}=22.4\times 10^{-3}m^3/mol$
- **៧**. ល្បឿននៃចលនាត្រង់ស្មើៈ (បម្លាស់ទី=ល្បឿន \times រយៈពេល) $x=v\times \Delta t$

៤ លំទោត់

- ១. ចូរពោលទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័ន។
- 😊. ចូរសរសេរសមីការភាពនៃឧស្ម័នបរិសុទ្ធ។
- **៣**. ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័ននីមួយៗ។
- ៤. ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័ន។
- 🐔 ចូរសរសេររូបមន្តល្បឿនឫសការេនៃការេល្បឿនមធ្យមម៉ូលេគុលឧស្ម័ន។
- **៦**. ក្នុងធុងបិទជិតមួយមានផ្ទុកឧស្ម័នអុកស៊ីសែន (O_2) 2mol ។ គណនាចំនួនម៉ូលេគុលរបស់ឧស្ម័នអុកស៊ីសែននេះ បើចំនួនអាវ៉ូកាដ្រូ $N_A=6.022 imes 10^{23}$ ម៉ូលេគុល/mol ។
- **៧**. ក្នុងធុងបិទជិតមួយមានឧស្ម័នអ៊ីដ្រូសែន ($\rm H_2$) 0.2mol និងមានម៉ាសម៉ូល 2.0g/mol ។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រូ $N_A=6.022\times 10^{23}$ ម៉ូលេគុល/mol ។
 - ങ. គណនាចំនួនម៉ូលេគុលអ៊ីដ្រូសែនក្នុងធុងនេះ។
 - <mark>ខ</mark>. គណនាម៉ាសសរុបរបស់ឧស្ម័នអ៊ីដ្រូសែន។
- **៤**. ក្នុងធុងបិទជិតមួយមានឧស្ម័ន 0.25mol និងមានម៉ាសសរុប 7.0g ។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រូ $N_A=6.022\times 10^{23}$ ម៉ូលេគុល/mol ។
 - ങ. គណនាចំនួនម៉ូលេគុលសរុបរបស់ឧស្ម័នក្នុងធុងនេះ។
 - តើឧស្ម័ននេះជាឧស្ម័នអ្វី?
- $m{6}$. ក្នុងធុងបិទជិតមួយមានឧស្ម័នពេញ មានម៉ាសសរុប 64.0g និងមានចំនួនម៉ូលេគុលសរុបគឺ 12.044×10^{23} ម៉ូលេគុល។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រូ $N_A = 6.022 \times 10^{23}$ ម៉ូលេគុល/mol។
 - 🤧 គណនាចំនួនម៉ូលរបស់ឧស្ម័នក្នុងធុងនេះ។
 - តើឧស្ម័ននេះជាឧស្ម័នអ្វី?
- **១០**. ក្នុងធុងបិទជិតមួយមានផ្ទុក ឧស្ម័ន ${\rm H_2}$ ពេញមានម៉ាសសរុប 1.0_S ។ ដោយឧស្ម័ននេះមានម៉ាសម៉ូល $2.0_S/mol$ និងចំនួនអាវ៉ូកាដ្រូ $N_A=6.022\times 10^{23}$ ម៉ូលេគុល/mol ។
 - 🤧 គណនាចំនួនម៉ូលេគុលសរុបរបស់ឧស្ម័នក្នុងធុងនេះ។
 - គណនាចំនួនម៉ូលរបស់ឧស្ម័ន H₂។
- **១១**. ផង់នីមួយៗមានម៉ាស m_0 និងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $1mm^2$ និងក្នុង 1s មានផង់ចំនួន 10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ ចូររកសម្ពាធរបស់ផង់លើផ្ទៃប៉ះ។ គេឲ្យ $m_0=9.1\times 10^{-31}kg$ និង $v=8\times 10^7m/s$ ។ គេសន្មត ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។

- ១២. គេបាញ់ផង់ឲ្យផ្លាស់ទីតាមបណ្ដោយអ័ក្ស \overline{ox} ដែលកែងនឹងផ្ទៃរបស់អេក្រង់មួយ។ គេដឹងថា ផង់នីមួយៗមាន ម៉ាស m_0 និងល្បឿន v_0 ។ គេដឹងថាក្នុង 1.25mm² ផ្ទៃរបស់អេក្រង់មានផង់ចំនួន 4 × 10¹⁴ ទៅទង្គិចរៀងរាល់ វិនាទី។ គេសន្មតថា ទង្គិចនោះជាទង្គិចស្ទក់។ គណនាល្បឿនរបស់ផង់ដែលផ្លាស់ទីតាមអ័ក្ស \overline{ox} ។
 - គេសន្មតថា ទង្គចនោះជាទង្គចស្ទុក។ គណនាល្បឿនរបស់ផងដែលផ្លាស់ទតាមអក្ស \overline{ox} ។ បើគេដឹងថា សម្ពាធដែលកើតឡើងដោយសារការទង្គិចរបស់ផង់លើផ្ទៃអេក្រង់គឺ $P=3.64\times 10^{-3}N/m^2$ $m_0=9.1\times 10^{-31}kg$ ។
- **១៣**. ផង់នីមួយមានម៉ាស m_0 នឹងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overline{ox} ។ គេដឹងថាក្នុងផ្ទៃ $2mm^2$ និងក្នុង មួយវិនាទីមានផង់ចំនួន 2×10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ គេឲ្យ: $m_0=9.1\times 10^{-31}kg$ និង $v=5\times 10^7m/s$ ។ គេសន្មតថា ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - 🤧 គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ។ 🛛 🥺 គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ។
- **១៤**. ប្រូតុងមួយមានម៉ាស $m_p=1.67\times 10^{-27}k_{\mathcal{S}}$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស ox ក្នុងមាឌមួយមាន រាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 3mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 2ns។ គេសន្មត់ថា ទង្គិចរវាង ប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចស្ងក់។
 - 🥰 រកល្បឿនដើមប្រុតុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - រកសម្ពាធរបស់ប្រូតុងលើផ្ទៃខាងនៃគូប។
 - 🕿. គេដឹងថាក្នុងរយៈពេល 2ns មានចំនួនប្រូតុង 2 × 10⁶ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់ ប្រូតុងលើផ្ទៃខាងនៃគូប។
- **១៥**. អេឡិចត្រុងមួយមានម៉ាស $m_e = 9.1 \times 10^{-31} k_S$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស ox ក្នុងមាឌមួយ មានរាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 5mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 25ns ។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចស្ងក់។
 - 🤧 រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - <mark>ខ</mark>. រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
 - 🛎. គេដឹងថាក្នុងរយៈពេល 25ns មានចំនួនអេឡិចត្រុង 2 × 10¹⁰ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- **១៦**. អេឡិចត្រុងមួយមានម៉ាស $m_e=9.1\times 10^{-31}k_{\mathcal{S}}$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overline{ox} ក្នុងមាឌមួយ មានរាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ 2mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 25ns ។ គេសន្មត់ថា ទង្គិច រវាងប្រុតុង និងផ្ទៃខាងនៃគូបជាទង្គិចខ្ទាត។
 - **ទា**. រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្តើមចេញពីផ្ទៃខាងនៃគូប។
 - <mark>ខ</mark>. រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
 - 🛎. គេដឹងថាក្នុងរយៈពេល 25ns មានចំនួនអេឡិចត្រុង 25 × 10⁶ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- **១៧**. អាតូមអ៊ីដ្រូសែនមួយមានម៉ាស m ផ្លាស់ទីដោយល្បឿន v=1500km/s តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងមាឌមួយ មានរាងគូបដែលទ្រនុងនីមួយមានរង្វាស់ 3mm។ អ៊ីដ្រូសែន ផ្លាស់ទីពីផ្ទៃម្ខាងទៅម្ខាងទៀត។ គេសន្មតថាសន្មត់ ថា ទង្គិចរវាងអ៊ីដ្រូសែន និងផ្ទៃខាងនៃគូបជាទង្គិចខ្នាត។

- 🦐 រករយៈពេលដែលអាតូមអ៊ីដ្រូសែនទៅប៉ះនឹងផ្ទៃម្ខាងទៀតនៃគូប។
- $oldsymbol{2}$. គេដឹងថាក្នុងរយៈពេល 2ns មានចំនួនអាតូមអ៊ីដ្រូសែន $2 imes 10^6$ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូបហើយផ្ទៃខាង រងនៅសម្ពាធសរុប $27.83 imes 10^{-2} N/m^2$ ។ រកម៉ាសអាតូមអ៊ីដ្រូសែនមួយ។
- **១៤**. ឧស្ម័នបរិសុទ្ធមួយមានមាឌ $V=100cm^3$ ស្ថិតក្រោមសម្ពាធ $2.00\times 10^5 Pa$ នៅសីតុណ្ហភាព $20^\circ C$ ។ តើឧស្ម័ននោះមានប៉ុន្មានម៉ូល ? $(R=8.31 J/mol\cdot K)$
- **១៩**. ឧស្ម័នបរិសុទ្ធមួយមាន $n=0.08\times 10^{-1}mol$ មានសម្ពាធ $P=5.00\times 10^5 Pa$ នៅសីតុណ្ហភាព $60^{\circ}C$ ។ តើឧស្ម័ននោះមានមាឌប៉ុន្មាន ?
- **២០**. នៅសីតុណ្ហភាព 293K និងសម្ពាធ 5atm មេតាន 1kmol មានម៉ាស 16.0kg។ គណនាម៉ាសមាឌនៃមេតានក្នុងលក្ខខណ្ឌខាងលើ។
- **២១**. នៅក្នុងបំពង់បិទជិតដែលមានមាឌ 20mL នៅសីតុណ្ហភាពកំណត់មួយយ៉ាងទាបមានតំណក់នីត្រូសែនរាវមាន ម៉ាស 50mg ។ គណនាសម្ពាធនីត្រូសែននៅក្នុងបំពង់នោះ កាលណាបំពង់នោះមានសីតុណ្ហភាព 300K ដោយសន្មត ថានីត្រូសែននេះជាឧស្ម័នបវិសុទ្ធ ។ គេឲ្យៈ $R = 8.31 J/mol \cdot K$ ។
- ២២. ធុងមួយមានផ្ទុកអេល្យូម 2.00mol នៅសីតុណ្ហភាព $27^{\circ}C$ ។ គេសន្មតថាអេល្យូមជាឧស្ម័នបរិសុទ្ធ។
 - 🤧 គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ
 - **១**. គណនាថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលទាំងអស់។ គេឲ្យ: $k_B = 1.38 \times 10^{-23} J/K$, $R = 8.31 J/mol \cdot K$ ។
- **២៣**. នៅក្នុងធុងមួយដែលមានមាឌ 2.00mL មានឧស្ម័នដែលមានម៉ាស 50mg និងសម្ពាធ 100kPa។ ម៉ាសរបស់មូលេគុលនៃឧស្ម័ននីមួយៗគឺ $8.0 \times 10^{-26}kg$ ។
 - 🤧 រកចំនួនម៉ូលេគុលនៃឧស្ម័ននោះ។
 - $oldsymbol{2}$. រកតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ។ គេឲ្យ: $k=1.38 imes 10^{-23} J/K$
- ២៤. ចូរគណនាឬសការេនៃការេល្បឿនមធ្យមរបស់អាតូមអេល្យូមនៅសីតុណ្ហភាព $20.0^{\circ}C$ ។ ម៉ាសម៉ូលអេល្យូមគឺ $4.00\times 10^{-3}k_g/mol$ ។ គេឲ្យ: $R=8.31J/mol\cdot K$ ។
- **២៥**. រកប្ញសការេនៃការេល្បឿនមធ្យមរបស់ម៉ូលេគុលអុកស៊ីសែននៅសីតុណ្ហភាព $200^{\circ}C$ ។ ម៉ាសម៉ូលអុកស៊ីសែន $32\times 10^{-3}kg/mol$ និង $R=8.31J/mol\cdot K$ ។
- **២៦**. **ទ**. គណនាម៉ាសម៉ូលេគុលនៃអ៊ីដ្រូសែន ។ គេឲ្យម៉ាសម៉ូលគឺ $M=2.00\times 10^{-3} kg/mol$ និងចំនួនអាវ៉ូកាដ្រូ $N_A=6.02\times 10^{23}/mol$ ។
 - ខ. គណនាតម្លៃប្លសការេនៃការេល្បឿនមធ្យមរបស់ឧស្ម័នអ៊ីដ្រូសែននៅសីតុណ្ហភាព 100°C។
 - គ. គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនៃឧស្ម័នអ៊ីដ្រូសែននីមួយៗនៅសីតុណ្ហភាព $100^{\circ}C$ ។ គេឲ្យ: $k=1.38\times 10^{-23}$ ។
- **២៧**. ដោយប្រើតម្លៃលេខ 1,3,7 និង 8 ចូរបង្ហាញថា ឬសការេនៃការេល្បឿនមធ្យម v_{rms} ខុសគ្នាពីតម្លៃមធ្យម v_{av} របស់វា ។
- **២៤**. ចូរកំណត់រកល្បឿន v_{rms} របស់ម៉ូលេគុលឧស្ម័នអុកស៊ីសែន (O_2) និងអាសុត (N_2) ក្នុងបន្ទប់មួយដែលមាន សីតុណ្ហភាព $20^{\circ}C$ ។
- ២៩. ទា. បង្ហាញថាល្បឿន v_{rms} នៃឧស្ម័នបរិសុទ្ធ អាចសរសេរជាទម្រង់មួយទៀតគឺ $v_{rms}=\sqrt{\frac{3P}{\rho}}$ ដែល ρ ជាដង់

ស៊ីតេ បុហៅថាម៉ាសមាឌ ហើយ P ជាសម្ពាធ។

- **៣០**. កែវបាឡុងមួយចំណុះ 1L មានអុកស៊ីសែនជាឧស្ម័នបរិសុទ្ធដែលមានសីតុណ្ហភាព $27^{\circ}C$ ក្រោមសម្ពាធ 2atm ។ គណនាម៉ាសអុកស៊ីសែន។ គេឲ្យៈ O=16
- **ព១**. គេមានខ្យល់មានមាឌ $1m^3$ នៅសីតុណ្ហភាព $18^\circ C$ ក្នុងសម្ពាធបរិយាកាស $P_1=1atm$ ទៅបណ្ណែននៅសីតុណ្ហភាព ដដែល តែក្នុងសម្ពាធបរិយាកាស $P_2=3.5atm$ ។ គណនាមាឌស្រេចនៃខ្យល់។
- ពេះ ដបមួយផ្ទុកឧស្ម័នមានសម្ពាធ $P_0=1.0atm$ នៅសីតុណ្ហភាព $17^{\circ}C$ ។ តើគេត្រូវកម្ដៅឱ្យឧស្ម័ននេះដល់សីតុណ្ហភាពប៉ុន្មាន ដើម្បីសម្ពាធកើនឡើងដល់ 1.5atm?
- **ពេ**. គេយកបំពង់អុកស៊ីសែនមានចំណុះ 20L ក្រោមសម្ពាធ $P_1=200atm$ នៅសីតុណ្ហភាព $20^{\circ}C$ ទៅដាក់ក្នុង បាឡុង កៅស៊ូស្តើងមួយ។ គណនាមាឌបាឡុង បើឧស្ម័នក្នុងបាឡុងមានសម្ពាធ $P_2=1atm$ និងសីតុណ្ហភាព $9^{\circ}C$ ។
- ៣៤. \mathbf{s} . ចូរគណនាល្បឿនប្រសិទ្ធ (v_{rms}) នៃម៉ួលេគុលឧស្ម័ននីត្រូសែននៅសីតុណ្ហភាព $20^{\circ}C$ ។
 - $oldsymbol{2}$. គណនាសីតុណ្ហភាព ប្រសិនបើល្បឿនប្រសិទ្ធ (v_{rms}) ថយចុះពាក់កណ្ដាល។
 - $m{lpha}$. គណនាសីតុណ្ហភាព ប្រសិនបើល្បឿនប្រសិទ្ធ (v_{rms}) កើនឡើងពីរដងវិញ។
- **៣៥**. មួយ ម៉ូលេគុលឧស្ម័ននីដ្រូសែនផ្សំឡើងពីអាតូមនីដ្រូសែនពីរ ។គណនាម៉ាសម៉ូលេគុលនីត្រូសែន ។ ម៉ាសម៉ូលនីដ្រូសែនគឺ M=28kg/kmol គេឲ្យ $N_A=6.02\times 10^{23}$ ម៉ូលេគុល/mol
- **ព៦**. គណនាមាឌឧស្ម័នអុកស៊ីសែន 3.2g ដែលផ្ទុកក្នុងធុងនៅសម្ពាធ 76cmHg និងសីតុណ្ហភាព $27^{\circ}C$ ។
- ពេល រកល្បឿនប្រសិទ្ធ v_{rms} នៃម៉ូលេគុលអាសុតដោយម៉ាសម៉ូល M=28g/mol នៅ 300K ។ គេឲ្យៈ $R=8.31J/mol\cdot K$
- **ព៤**. គណនាសីតុណ្ហភាពដែលធ្វើឲ្យល្បឿនប្រសិទ្ធនៃម៉ូលេគុលអ៊ីដ្រូសែនស្មើ 331m/s ។ គេឲ្យ: $M_{H_2}=2.0g/mol$ ។
- **ពេទី**. គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចនៃម៉ូលេគុលឧស្ម័ននៅសីតុណ្ហភាព $727^{\circ}C$ ។ គេឲ្យ: $R=8.31 J/mol\cdot K$ និង $N_A=6.02\times 10^{23}$ ម៉ូលេគុល/mol។
- **៤០**. រកតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលឧស្ម័នអុកស៊ីសែននីមួយៗក្នុងខ្យល់នៅក្នុងបន្ទប់មានសីតុណ្ហភាព 300K គិតជាអេឡិចត្រុង-វ៉ុល។ គេឲ្យ $1eV=1.6\times 10^{-19}J$ និង $k_B=1.38\times 10^{-23}J/K$
- **៤១**. មួយម៉ូលេគុលនីដ្រូសែននៅពេលស្ថិតនៅលើផ្ទៃដីវាកើតមានល្បឿនប្រសិទ្ធ នៅសីតុណ្ហភាព $0^{\circ}C$ ។ ប្រសិនបើវា ផ្លាស់ទីឡើងត្រង់ទៅលើដោយគ្មានទង្គិចនឹងម៉ូលេគុលផ្សេងទៀត។ ចូរគណនាកម្ពស់ដែលវាឡើងដល់។ គេឲ្យម៉ាសមួយម៉ូលេគុលរបស់នីដ្រូសែន $m=4.65\times 10^{-26}k_{S}$ និង $_{S}=10m/s^{2}$ ។
- **៤២**. ស៊ីទែនមួយស្ថិតក្រោមលក្ខខណ្ឌស្តង់ដា (STP) ផ្ទុកឧស្ម័ននីជ្រូសែន 28.5kg។
 - 🤧 ចូរគណនាមាឌរបស់ស៊ីទែន។
 - ២. ប្រសិនបើគេបន្ថែមនីដ្រូសែន 32.2kg ទៀតចូលក្នុងស៊ីទែនដោយរក្សាសីតុណ្ហភាពនៅដដែល។ចូរគណនាសម្ពាធឧស្ម័ននីដ្រូសែនក្នុងស៊ីទែន។

ដោយសន្មតថាទង្គិចនេះ ជាទង្គិចខ្ចាត ចូរគណនាសម្ពាធដែលមានលើជញ្ជាំង។

- ៤៤. គេបាញ់ផង់ឲ្យផ្លាស់ទីតាមបណ្ដោយអ័ក្ស \overline{ox} ដែលកែងនឹងផ្ទៃរបស់អេក្រង់មួយ។ គេដឹងថាផង់នីមួយៗមាន ម៉ាស m_0 និងមានល្បឿន v។ គេដឹងថាក្នុង $1.25mm^2$ ផ្ទៃរបស់អេក្រង់មានផង់ 4×10^{14} ទៅទង្គិចរៀងរាល់ វិនាទី។
 - គេសន្មត់ថា ទង្គិចនោះជាទង្គិចស្ងក់។ គណនាល្បឿនរបស់ផង់ដែលផ្លាស់ទីតាមតាមអ័ក្ស \overrightarrow{ox} ។ បើគេដឹងថា សម្ពាធដែលកើតឡើងដោយសារការទង្គិចរបស់ផង់លើផ្ទៃរបស់អេក្រង់គឺ $3.64 \times 10^{-3} N \cdot m^{-2}$ និង $m_0 = 9.1 \times 10^{-31} kg$ ។
- ៤៥. ផង់នីមួយៗមានម៉ាស m_0 និងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $2mm^2$ និងក្នុង មួយវិនាទីមានផង់ចំនួន 2×10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ គេឲ្យ: $m_0=9.1\times 10^{-31}kg$ និង $v=5.0\times 10^{15}m/s$ ។ គេសន្មតថា ទង្គិចរវាងផង់និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - 🤧 គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ។
 - 2. គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ។
- **៤៦**. ប្រូតុងមួយមានម៉ាស $m_P=1.67\times 10^{-27}kg$ និងផ្លាស់ទីដោយល្បឿនដើម \overrightarrow{v}_0 តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងធុង មួយមានរាងជាគូប។ គេដឹងថាក្នុងផ្ទៃ $4mm^2$ និងក្នុងមួយវិនាទីមានប្រូតុងចំនួន 5×10^{13} ទៅទង្គិចនឹងផ្ទៃនោះ ហើយសម្ពាធរបស់ប្រូតុងលើផ្ទៃប៉ះគឺ $8.35\times 10^{-2}Pa$ ។ គេសន្មតថាទង្គិចរវាងផង់នឹងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - 🤧 គណនាកម្លាំងដែលប្រុតុងនីមួយៗមានអំពើលើផ្ទៃប៉ះ។
 - 🧈 គណនាល្បឿនប្រូតុងនៅខណៈវាទៅប៉ះនឹងផ្ទៃម្ខាងទៀតនៃគូប។
- ៤៧. អេឡិចត្រុងមួយមានម៉ាស $m_e=9.1\times 10^{31}k_S$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overline{ox} ។ ក្នុងធុងមួយ មានរាងជាគូបដែលទ្រនុងនីមួយៗមានរង្វាស់ l=5mm។ អេឡិចត្រុងផ្លាស់ទីពីផ្ទៃម្ខាងទៅផ្ទៃម្ខាងទេក្នុង 25ns។ គេសន្មតថាទង្គិចរវាងអេឡិចត្រុង នឹងផ្ទៃខាងនៃគូបជាទង្គិចស្ងក់។
 - 🤧 គណនាល្បឿនស្រេចអេឡិចត្រុង នៅខណៈវាទៅប៉ះនឹងផ្ទៃម្ខាងទៀតនៃគូប។
 - ខ. គណនាសម្ពាធរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
 - គ. គេដឹងថាក្នុងរយៈពេល 25ns មានចំនួនអេឡិចត្រុង 2 × 10¹⁰ ទៅទង្គិចនិងផ្ទៃខាងនៃគូប។
 គណនាសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- ៤៤. សម្ពាធនៃឧស្ម័ននៅក្នុងធុងមួយមានមាឌ 250mL ស្ថិតនៅក្រោមសម្ពាធ 125kPa និងថាមពលស៊ីនេទិចមធ្យម នៃភាគល្អិតនីមួយៗគឺ $1.875 \times 10^{-21} J$ ។
 - 🛪. គណនាចំនួនភាគល្អិតនៃឧស្ម័ននៅក្នុងធុង។
 - $oldsymbol{2}$. គណនាចំនួនម៉ូលនៃ ឧស្ម័ននៅក្នុងធុង។ គេឲ្យ: $N_A=6.022 imes 10^{23}$ ម៉ូលេគុល/mol
- ៤៩. ក្នុងធុងមួយមានមាឌ 200mL មានម៉ូលេគុលសរុប 5×10^{21} ហើយស្ថិតនៅក្រោមសម្ពាធ 250kPa ។ បេរបុលស្មាន់ $k_B=1.38\times 10^{-23}J/K$ និង ចំនួនអាវ៉ូកាជ្រូ $N_A=6.022\times 10^{23}$ ម៉ូលេគុល/mol
 - 🥰 គណនាថាមពលស៊ីនេទិចមធ្យមនៃភាគល្អិតនីមួយៗ។
 - <mark>ខ</mark>. គណនាចំនួនម៉ូលនៃ ឧស្ម័ននៅក្នុងធុង។
 - ≍. គណនាសីតុណ្ហភាពនៃឧស្ម័ននៅក្នុងធុង។
- ${f \&0}$. ឧស្ម័នបរិសុទ្ធមួយមានមាឌ $V=500cm^3$ ស្ថិតក្រោមសម្ពាធ 600kPa នៅសីតុណ្ហភាព $27^{\circ}C$ ។

- គណនាចំនួនម៉ូលនៃ ឧស្ម័ននោះ។ គេឲ្យថេរសាកលនៃឧស្ម័ន $R=8.31 J/mol\cdot K$
- **៥១**. ឧស្ម័នបរិសុទ្ធមួយមាន n=0.25mol មានសម្ពាធ P=250kPa នៅសីតុណ្ហភាព $57^{\circ}C$ ។ តើឧស្ម័ននោះមានមាឌប៉ុន្មាន? គេឲ្យថេរសាកលនៃឧស្ម័ន $R=8.31J/mol\cdot K$
- **៥២**. ធុងមួយមានផ្ទុកឧស្ម័នអេល្យុម 0.5mol នៅសីតុណ្ហភាព $27^{\circ}C$ ។ គេសន្មតថាអេល្យុមជាឧស្ម័នបរិសុទ្ធ ។ គេឲ្យ: $k_B=1.38\times 10^{-23}J/K$ និង $R=8.31J/mol\cdot K$ ។
 - 🤧 គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេតិចរបស់ម៉ូលេគុលឧស្ម័ននីមួយៗ។
 - 2. គណនាថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលទាំងអស់។
 - គេ. គណនាសម្ពាធឧស្ម័នអេល្យូមក្នុងធុង បើធុងមានមាឌ $4.53 \times 10^{-3} m^3$ ។
- **៥៣**. **ទា**. គណនាល្បឿនប្រសិទ្ធនៃម៉ូលេគុលអុកស៊ីសែននៅស៊ីតុណ្ហភាព $127^{\circ}C$ ។ ម៉ាសម៉ូលអុកស៊ីសែនគឺ 32g/mol និង $R=8.31J/mol\cdot K$ ។
 - **១**. គណនាតម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័នអុកស៊ីសែននីមួយៗ នៅសីតុណ្ហភាព $127^{\circ}C$ ។ គេឲ្យ: $k_B=1.38\times 10^{-23}J/K$
- **៥៤. ទ**. គណនាសីតុណ្ហភាពនៃម៉ូលេគុលអ៊ីដ្រូសែនគិតជា $^{\circ}C$ ។ បើដឹងថា ល្អៀនប្រសិទ្ធនៃម៉ូលេគុលអ៊ីដ្រូសែន $v_{rms}=1933.78m\cdot s^{-1}$ ម៉ាសម៉ូលអ៊ីដ្រូសែនស្មើនឹង 2.0g/mol និងគេឲ្យ: $R=8.31J/mol\cdot K$; $k_B=1.38\times 10^{-23}J/K$ ។
 - 🧈 គណនាតម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលអ៊ីដ្រូសែននីមួយៗ នៅសីតុណ្ហភាពនោះ។
- **៥៥**. ធុងមួយមានមាឌ V=2.5mL មានផ្ទុកឧស្ម័នដែលមានម៉ាស $50m_{\mathcal{S}}$ ស្ថិតក្រោមសម្ពាធ 1035kPa ។ ម៉ាសរបស់ម៉ូលេគុលនៃឧស្ម័ននីមួយៗគឺ $8\times 10^{-26}k_{\mathcal{S}}$ ។
 - គា. គណនាចំនួនម៉ូលេគុលសរុបនៃឧស្ម័ននោះ។ គេឲ្យ: $k_B=1.38 \times 10^{-23} J/K$ ។
 - 2. គណនាតម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័ននីមួយៗ
 - 🕿. គណនាតម្លៃថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលក្នុងធុង។
 - 🥴 គណនាសីតុណ្ហភាពនៃឧស្ម័នក្នុងធុង។
- **៥៦**. ឧស្ម័នបរិសុទ្ធមួយមានមាឌ $V=125cm^3$ ស្ថិតក្រោមសម្ពាធ $2\times 10^5 Pa$ ។ គណនាសីតុណ្ហភាពនៃឧស្ម័នបរិសុទ្ធនោះ ។ បើគេដឹងថាឧស្ម័ននោះមាន $n=9.4\times 10^{-3}mol;\ R=8.31 J/mol\cdot$ K ។
- **៥៧**. ធុងមួយមានមាឌ $0.025m^3$ ផ្ទុកម៉ាស 0.084kg នៃឧស្ម័ននីដ្រូសែន N_2 ស្ថិតនៅក្រោមសម្ពាធ 3.17atm ។ គណនាសីតុណ្ហភាពនៃឧស្ម័នគិតជាអង្សារសេ(°C)។ គេឲ្យ: $1atm=1.013\times 10^5 Pa$ ម៉ាសម៉ូល M=28g/mol និង $R=8.31J/mol\cdot K$ ។
- **៥៤**. ផង់នីមួយៗមានម៉ាស m_0 និងផ្លាស់ទីដោយល្បឿន \overrightarrow{v} តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $5mm^2$ និងក្នុង មួយវិនាទីមានផង់ចំនួន 1×10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ ។ គណនាសម្ពាធសរុបរបស់ផង់មានលើផ្ទៃប៉ះ ។ គេសន្មត ថា ទង្គិចរវាងផង់នឹងផ្ទៃប៉ះជាទង្គិចស្ងក់ ហើយម៉ាសផង់នីមួយៗគឺ $m_0=9.1\times 10^{-31}k_{\mathcal{S}}$ និង $v=8\cdot 10^7m/s$ ។
- **៥៩**. គណនាចំនួនម៉ូលេគុលសរុបដែលមាននៅក្នុង 500g នៃខ្យល់។ បើគេដឹងថាក្នុងខ្យល់មានអុកស៊ីសែន 22% និងមានអាសូត 78% ជាម៉ាស។
- **៦០**. ក្នុងធុងបិទជិតមួយមានមាឧសរុប 16.62 dm^3 មានផ្ទុកឧស្ម័នបរិសុទ្ធពេញស្ថិតក្រោមសម្ពាធ $3 \times 10^5 Pa$ និងមាន សីតុណ្ហភាព $47^{\circ}C$ ។ គេឲ្យថេរឧស្ម័នបរិសុទ្ធ $R = 8.31 J/mol \cdot K$ ។ គណនាចំនួនម៉ូលនៃឧស្ម័នបរិសុទ្ធក្នុងធុង នោះ។

- **៦១**. ឧស្ម័នបរិសុទ្ធមួយមានម៉ាសម៉ូលេគុលនីមួយៗគឺ $8\times 10^{-26}k_{\mathcal{S}}$ នៅសីតុណ្ហភាព $57^{\circ}C$ ។ គេឲ្យ: $k_B=1.38\times 10^{-23}J/K$ ។
 - **ទា**. គណនាឬសការេនៃការេល្បឿនមធ្យម v_{rms} ។
 - 🤹 គណនាតម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័នបរិសុទ្ធនីមួយៗ។
- **៦២**. **ទ**. គណនាម៉ាសម៉ូលេគុលនីមួយៗរបស់ឧស្ម័នអុកស៊ីសែន។ បើគេដឹងថាម៉ាសម៉ូលរបស់វាគឺ 32g/mol និង $N_A = 6.022 \times 10^{23}$ ម៉ូលេគុល/mol
 - $oldsymbol{2}$. គណនាល្បឿនប្រសិទ្ធនៃឧស្ម័នអុកស៊ីសែនស្ថិតនៅសីតុណ្ហភាព $0^{\circ}C$ ។
 - គ. គណនាតម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលនីមួយៗ របស់ឧស្ម័នអុកស៊ីសែននៅសីតុណ្ហភាព $0^{\circ}C$ ។ គេឲ្យ: $k_B=1.38\times 10^{-23}J/K$
- **៦៣**. បាឡុងពីរត្រូវបានតភ្ជាប់គ្នាដោយបំពង់មួយមានរ៉ូពីនេបិទជិត។ ដោយបាឡុងទី១ មានផ្ទុកឧស្ម័នដែលមានសម្ពាធ 5atm និងមានមាឌ 6L ចំណែកបាឡុងទី២នៅទទេមានមាឌ 4L។ គេចាប់ផ្តើមបើករ៉ូពីនេ(បើគេដឹងថាបាឡុងនីមួយៗមានសីតុណ្ហភាពថេរ)។ គណនាសម្ពាធរបស់បាឡុងនីមួយៗ ក្រោយពេលគេបើករ៉ូពីនេ។
- **៦៤**. បាឡុងពីរត្រូវបានតភ្ជាប់គ្នាដោយបំពង់មួយមានរ៉ូពីនេបិទជិត។ ដោយបាឡុងទី១ មានផ្ទុកឧស្ម័នដែលមានសម្ពាធ 6atm និងមានមាឌ 5L ចំណែកបាឡុងទី២ មានផ្ទុកឧស្ម័នដូចគ្នាដែលមានសម្ពាធ 4atm និងមានមាឌ 3L។ គេចាប់ផ្តើមបើករ៉ូពីនេ(បើគេដឹងថាបាឡុងនីមួយៗមានសីតុណ្ហភាពថេរ)។ គណនាសម្ពាធរបស់បាឡុងនីមួយៗ ក្រោយពេលគេបើករ៉ូពីនេ។
- **៦៥**. កំណត់សីតុណ្ហភាពដើម្បីឲ្យល្បឿនប្រសិទ្ធនៃម៉ូលេគុលឧស្ម័នអាសុតដែលមានម៉ាសម៉ូល $M_{
 m (N_2)}=28g/mol$ ស្មើនឹងល្បឿនប្រសិទ្ធនៃម៉ូលេគុលឧស្ម័នអុកស៊ីសែន ដែលមានម៉ាសម៉ូល $M_{
 m (O_2)}=32g/mol$ នៅសីតុណ្ហភាព $47^{\circ}C$ ។

នេះទ្រីមច្ច កា ឧបិតុច្ច៦ខេតុំត្នឃានួន

១ ម្រល់ខ្លំខែផ្គុំខ្លួយរគូន:

ន<u>ឹយមន័យ</u>

- 9. ប្រព័ន្ធៈ គឺជាវត្ថុ ឬសំណុំវត្ថុដែលយើងលើកមកសិក្សា ដោយធៀបទៅនឹងវត្ថុដ៏ទៃផ្សេងទៀត។ (វត្ថុដ៏ទៃផ្សេងទៀតនោះ យើងហៅថាៈ មជ្ឈដ្ឋានក្រៅ)។
- **២**. ភាពនៃប្រព័ន្ធៈ គឺជាសំណុំលេខដែលវាស់ទំហំរូបវិទ្យា ដើម្បីសម្គាល់ប្រព័ន្ធនៅខណៈណាមួយ មានមាឌ សម្ពាធ និងសីតុណ្ហភាពជាអថេរសម្គាល់ភាពនៃប្រព័ន្ធ ។
- **៣**. បម្លែងទៃម៉ូឌីណាមិចៈ ប្រព័ន្ធមួយទទួលបម្លែងទៃម៉ូឌីណាមិច កាលណាវាផ្លាស់ប្តូរភាព ដោយប្តូរតែ កម្មន្ត និងកម្តៅ ជាមួយមជ្ឈដ្ឋានក្រៅប៉ុណ្ណោះ។ គេចែកបម្លែងទៃម៉ូឌីណាមិចជាពីរគឺ បម្លែងចំហ និងបម្លែងបិទ។
 - * បម្លែងចំហ-បម្លែងបិទៈ ពេលប្រព័ន្ធមួយទទួលបម្លែងទៃម៉ូឌីណាមិចៈ
 - 💿 បើភាពដើម និងភាពស្រេចនៃប្រព័ន្ធមួយ ខុសគ្នា នោះគេថាប្រព័ន្ធទទួលរងនូវបម្លែចំហ។
 - បើភាពដើម និងភាពស្រេចនៃប្រព័ន្ធមួយ ដូចគ្នា នោះគេថាប្រព័ន្ធទទួលរងនូវបម្លែងបិទ។
- **៤**. ប្រព័ន្ធទែម៉ូឌីណាមិចៈ គឺជាប្រព័ន្ធដែលទទួល បម្លែងទៃម៉ូឌីណាមិចដោយមានការផ្លាស់ប្តូរភាពដើម និង ភាពស្រេចតាមដំណើរប្រព្រឹត្តទៅខុសៗគ្នា។
 - សមីការប្រែប្រួលភាពនៃឧស្ម័នបរិសុទ្ធៈ $\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}=nR=$ ថេរ ដែលភាពដើម P_1,V_1 សម្ពាធ និងមាឧឧស្ម័ននៅសីតុណ្ហភាព T_1 និង ភាពស្រេច P_2,V_2 សម្ពាធ និង មាឧឧស្ម័ននៅសីតុណ្ហភាព T_2 មាឧគិតជា m^3 សីតុណ្ហភាពគិតជា K និងសម្ពាធគិតជា Pa (V_1,V_2 អាចគិតជា L ក៏បាន)។

ន ងតិ់ខ័ត្ថបេយិដ៏ចបេលត្រែតគិលិខានៈ

ត គរសិសម្ពាធទេ៖(សំនាំអ៊ីសុទា៖):

ឧបមាថាឧស្ម័នមានមាឌដើម V_i ស្ថិតក្នុងស៊ីឡាំងដែលមានមុខកាត់ A បិទជិតដោយពីស្តុងមួយ។ ពេលឧស្ម័នរុញពីស្តងពីទីតាំង x_i ទៅទីតាំង x_f ដែល $V_i = Ax_i$ និង $V_f = Ax_f$ ក្រោមសម្ពាធថេរ P_o :

រួមនាព ១. លំនាំអ៊ីសូចារ

និយមន័យ

លំនាំអ៊ីសូបារ (Isobaric Process) គឺជាលំនាំមួយដែលសម្ពាធនៃប្រព័ន្ធក្នុងបម្លែងទែម៉ូឌីណាមិចមានតម្លៃថេរ ។

9. អមុខ្ពម់ពេញដោយឧស្ម័ន:

កម្មន្តបំពេញដោយឧស្ម័ន : $W = F \times \Delta x = F(x_f - x_i)$

ដែល : $P_o = \frac{F}{A}$ នោះ $F = P_o A$

យើងហ៊ុន : $W = P_o A (x_f - x_i) = P_o (Ax_f - Ax_i)$

នាំឲ្យ : $W = P_o (V_f - V_i) = P_o \Delta V$

ដូចនេះ : $W = P_o \Delta V$

២. សទីភា៖ម្រែម្រូលភាព: $rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$

ullet ករណីសម្ពាធថេរ: $P_1 = P_2 = P_o = ថេរ$

យើងបាន : $\frac{V_1}{T_1} = \frac{V_2}{T_2} =$ បេរ

នាំឲ្យ : $V_2 = \left(\frac{V_1}{T_1}\right) T_2$ មានរាង y = ax ជាបន្ទាត់

• កម្មន្តក្នុងលំនាំអ៊ីសូបារៈ តាមដ្យាក្រាម (P – V) ក្នុងរូបបង្ហាញពីសម្ពាធថេរ និងកំណើនមាឌនៃឧស្ម័នៈ $W = P\Delta V = P(V_f - V_i) = A$ ដូចនេះក្នុងដ្យាក្រាម (P-V) កម្មន្តដែលបំពេញ ដោយឧស្ម័នគឺជាក្រឡាផ្ទៃចតុកោណកែងដែលមានវិមាត្រជា P និង ΔV ។

${f n}$. ដ្យាអ្រាម (P-V) , (P-T) និទ (V-T)

រួមតាព ២. ខ្សារុគ្មាន

(**ខ**). ដ្យាក្រាម (P – T)

(≋). ដ្យាក្រាម (V − T)

ខ អរស៊ាសម្ភានព្រែៗមូលស៊ើ

បើប្រព័ន្ធប្រែប្រួលសម្ពាធពី P_1 ទៅ P_2 យើងបានសម្ពាធមធ្យមកំណត់ដោយ: $P_{av} = rac{P_1 + P_2}{2}$

១. អន្តន្តទំពេញនោយឧស្ម័ន

យើងបាន : $W = P_{av}\Delta V = \frac{P_1 + P_2}{2}\Delta V$

ម្យ៉ាងទៀត : $W = \frac{2P_1 - P1 + P2}{2} \Delta V$

$$\mathfrak{M}: \quad : \quad W = P_1 \Delta V + \frac{P_2 - P_1}{2} \Delta V$$

ដូចនេះ :
$$W = P_1 \Delta V + \frac{1}{2} (P_2 - P_1) \Delta V$$

$oldsymbol{f ext{ iny 2}}$. දාලන (P-V) සෑකිනනු සේපුපුහෑණු

រូមភាព ៣. ខ្សារុភាម (P-V) ករស៊ីសម្ពានម្រែប្រូលស្មើ

៣. អន្ទន្តអូចអរណីសម្ពាធសមាមគ្រន៏ចមាឌ

តាមដ្យាក្រាម (P-V) ខាងលើ យើបានក្រឡាផ្ទៃឆ្ងួតនៃ (P-V) គឺ $A=A_{ABC}+A_{BCV_2V_1}$

ដែល :
$$A_{ABC} = \frac{1}{2} (P_2 - P_1) (V_2 - V_1)$$
 និង $A_{BCV_2V_1} = P_1 \Delta V$

សមមូល :
$$A = P_1 \Delta V + \frac{1}{2} (P_2 - P_1) (V_2 - V_1)$$

ដូចនេះ :
$$A = W = P_1 \Delta V + \frac{1}{2} (P_2 - P_1) \Delta V$$

ដូចនេះកម្មន្តដែលបំពេញដោយឧស្ម័ន គឺជាក្រឡាផ្ទៃផ្នែកឆូតដែលបានខ័ណ្ឌដោយខ្សែកោង (P-V)។

ក្នុងករណីប្រព័ន្ធដំណើរការដោយរក្សាសីតុណ្ហភាពថេរ តាមពិសោធន៍គេបានដ្យាក្រាម (P-V) ដូចរូបៈ

រួមភាព ៤. លំលាំអ៊ីសូនែម

(ទា). ស៊ីឡាំងដែលមានសីតុណ្ហភាពថេរ

(**②**). ដ្យាក្រាម (P – V) ករណីសីតុណ្ហភាពថេរ

នឹយមន័យ

លំនាំអ៊ីសូទែម(Isothermal Process): គឺជាលំនាំមួយដែលសីតុណ្ហភាពនៃប្រព័ន្ធក្នុងបម្លែងទៃម៉ូឌីណាមិច មានតម្លៃថេរ។

១. អមុខ្ពម់ពេញដោយឧស្ម័ន:

តាមសម្រាយបញ្ហាក់ខាងលើ: :
$$W = A$$
 ដែល $W = A = \int_{V_i}^{V_f} p dV = Nk_B T \int_{V_i}^{V_f} \frac{dV}{V}$ នោះ : $W = Nk_B T \ln{[V]_{V_i}^{V_f}}$ នាំឲ្យ: : $W = Nk_B T \ln{\left(\frac{V_f}{V_i}\right)} = nRT\left(\frac{V_f}{V_i}\right)$ ដូចនេះ : $W = nRT\left(\frac{V_f}{V_i}\right)$

២. សទីភាពម្រែទ្រូលនាព: $rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$

ullet ករណីសីតុណ្ហភាពថេរៈ $T_1 = T_2 =$ ថេរ

• កម្មន្តក្នុងករណីសីតុណ្ហភាពថេរៈ

មើងមាន :
$$W = nRT \ln \left(\frac{V_f}{V_i} \right)$$
 ឬ $W = Nk_BT \ln \left(\frac{V_f}{V_i} \right)$ ដែល : $\frac{V_f}{V_i} = \frac{P_i}{P_f}$ នោះ : $W = nRT \ln \left(\frac{P_i}{P_f} \right)$ ឬ $W = P_iV_i \ln \left(\frac{P_i}{P_f} \right)$

 ${f n}$. ឡាអ្រាម (P-V) , (T-V) និទ (P-T)

(**ទ**). ដ្យាក្រាម (P - V)

(ខ). ដ្យាក្រាម (T – V) (🛎). ដ្យាក្រាម (P – T)

អរណីមាឌថេ៖(លំខាំអ៊ីសូអ៖)

រួមនាព ៦. លំលំអ៊ីសួន៖

(🕱). ស៊ីឡាំងមានមាឌថេរ

(**②**). ដ្យាក្រាម (*P - V*)

នឹយមន័យ

<mark>លំនាំអ៊ីសូករ (Isochoric Process</mark>): គឺជាលំនាំមួយដែលមាឌនៃប្រព័ន្ធក្នុងបម្លែងទៃម៉ូឌីណាមិចមានតម្លៃថេរ ។

9. អម្មន្តមំពេញដោយឧស្ម័ន:

ដោយ : $V_i = V_f =$ ថេរ

ដូចនេះ : W = 0

២. សទីគារម្រែទ្រួលភាព $rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$

ullet ករណីមាឌថេរៈ $V_1=V_2=$ ថេរ

យើងបាន : $\frac{P_1}{T_1} = \frac{P_2}{T_2} =$ ថេរ

នាំឲ្យ : $P_2 = \frac{P_1}{T_1} T_2$ មានរាង y = ax ជាបន្ទាត់

 ${f \Omega}$. េះត្រូវអាម (P-V) , (T-V) និទ (P-T)

រូបនាព ៧. ស្យាគ្រាម

 (\mathfrak{S}) . ដ្យាក្រាម (P-V) (\mathfrak{S}). ដ្យាក្រាម (T-V)

(**≋**). ដ្យាក្រាម (*P* − *T*)

ព ថាមពលភ្លួចនៃច្បាច់នី១ នៃម៉ូឌីណាមិច

ភ កម្តៅ សិចកម្មស្គ:

កម្ដៅមានទំនាក់ទំនងជាមួយសីតុណ្ហភាព។ ថាមពលកម្ដៅអាចផ្ទេរពីអង្គធាតុមួយទៅអង្គធាតុមួយទៀតកាលណា វាមានសីតុណ្ហភាពខុសគ្នា។ ដូចនេះសីតុណ្ហភាពខុសគ្នាជាលក្ខណៈចាំបាច់សម្រាប់ផ្ទេរកម្ដៅ។

១ ថាមពលភ្លួចនៃឧស្ម័ន

ភ. ទាមពលភូទនៃឧស្ម័ន:

និយមន័យ

<mark>ថាមពលក្នុងនៃឧស្ម័នៈ</mark> គឺជាថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័ន។

គេកំណត់សរសេរដោយៈ :
$$U = \frac{3}{2}Nk_BT = \frac{3}{2}nRT = \frac{3}{2}PV$$

១. ចម្រែចមរួលថាមពលត្ត១ នៃឧស្ម័នៈ បើពេលមានបម្រែបម្រួលសីតុណ្ហភាព នោះឧស្ម័នមានបម្រែបម្រួលថាម ពលក្នុង:

យើងបាន : $\Delta U = U_2 - U_1$

ដែល : $U_1 = \frac{3}{2}Nk_BT_1 = \frac{3}{2}nRT_1$ និង $U_2 = \frac{3}{2}Nk_BT_2 = \frac{3}{2}nRT_2$

សមម្លេ : $\Delta U = \frac{3}{2}Nk_BT_2 - \frac{3}{2}Nk_BT_1$ ឬ $\Delta U = \frac{3}{2}nRT_2 - \frac{3}{2}nRT_1$

ដូចនេះ : $\Delta U = \frac{3}{2}Nk_B\Delta T = \frac{3}{2}nR\Delta T$ ឬ $\Delta U = \frac{3}{2}(P_2V_2 - P_1V_1)$

សម្គាល់

បើឧស្ម័នមានសីតុណ្ហភាពថេរ នោះមិនមានបម្រែបម្រួលថាមពលក្នុងទេ ព្រោះថាមពលក្នុងអាស្រ័យនឹង សីតុណ្ហភាព។

េសេីងបាន : $\Delta T = T_2 - T_1 = 0$

ដូចនេះ : $\Delta U = 0$

ឌ ខ្សាច់នូ១នៃគុំន្នីឈានិច:

និយមន័យ

ច្បាប់ទីមួយទែម៉ូឌីណាមិចៈ ក្នុងបម្លែងទែម៉ូឌីណាមិចកម្ដៅស្រុបដោយប្រព័ន្ធស្មើនឹងផលបូកកម្មន្តបង្កើតឡើង ដោយប្រព័ន្ធ និងបម្រែបម្រួលថាមពលក្នុងនៃប្រព័ន្ធ។

គេសរសេរ : $Q = \Delta U + W$

សម្ចាល់

- * សិត្សាសញ្ញា:
 - 9. បើប្រព័ន្ធបញ្ចេញកម្មន្ត(បំពេញកម្មន្ត) ឬ ធ្វើកម្មន្ត នោះ W > 0 តែបើប្រព័ន្ធរងកម្មន្ត ឬទទួលកម្មន្ត នោះ W < 0
 - $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}}}$
 - $oldsymbol{\mathfrak{m}}$. បើថាមពលក្នុងនៃប្រព័ន្ធកើន $\Delta U>0$ តែបើថាមពលក្នុងនៃប្រព័ន្ធថយចុះ នោះ $\Delta U<0$

ឃ ៩ម្លែ១មិន~គោលភារណ៍សមម្ល:

- **១**. **៩ខ្លែខទិន:** បើប្រព័ន្ធមួយប្រែប្រួលពីភាព 1 ទៅភាព 2 រួចត្រឡប់ពីភាព 2 ទៅភាព 1 វិញនោះយើបានៈ
 - ullet ក្នុងលំនាំនៃភាព 1 ទៅភាព 2 $Q_1=W_1+\Delta U_1$ ឬ $Q_1=W_1+U_2-U_1$
 - ullet ក្នុងលំនាំនៃភាព 2 ទៅភាព 1 $Q_2=W_2+\Delta U_2$ ឬ $Q_2=W_2+U_1-U_2$

យើងបានបម្លែងសរុបគឺ: : $Q_1 + Q_2 = W_1 + U_2 - U_1 + W_2 + U_1 - U_2$

តាង : $W = W_1 + W_2$ នឹង $Q = Q_1 + Q_2$

សមមូល : $Q = W + 0 (\Delta U = 0)$

ដូចនេះ : $\Delta U = Q - W = 0$

- **២. គោលភារសាំសមទុល:** កាលណាប្រព័ន្ធធ្វើបម្លែងបិទ ក្នុងមួយស៊ិច(វដ្ត) ដោយប្រព័ន្ធប្តូរតែកម្មន្ត និងកម្តៅជាមួយមជ្ឍដ្ឋានក្រៅ មានន័យថា:
 - បើប្រព័ន្ធបំពេញកម្មន្ត ឬធ្វើកម្មន្ត (W>0) នោះវាបញ្ចេញកម្ដៅ Q<0
 - បើប្រព័ន្ធទទួលកម្មន្ត បុរងកម្មន្ត (W < 0) នោះវាស្រូបកម្ដៅ Q > 0

គេអាចកំណត់សរសេរ : |Q| = |W| ឬ $\Delta U = 0$

 $-T_1$ សីតុណ្ហភាពនៅភាពស្រេច គិតជាកែលវិន (K)

៤ លំទាន់

- ១. ដូចម្ដេចដែលហៅថាប្រព័ន្ធទៃម៉ូឌីណាមិច?
- 😊. ដូចម្ដេចដែលហៅថាបម្លែងទែម៉ូឌីណាមិច ?បម្លែងទែម៉ូឌីណាមិចមានប៉ុន្មានយ៉ាង ?ចូរពន្យល់ពីបម្លែងនីមួយៗ។
- **៣**. ចូរពោលច្បាប់ទីមួយទែម៉ូឌីណាមិច រួចចូរបញ្ជាក់រូបមន្តនៃច្បាប់ទីមួយទែម៉ូឌីណាមិចផង។

៤. នៅសម្ពាធថេរ 200kPa ឧស្ម័នមួយប្រែប្រួលមាឌពី 0.75m³ រហូតដល់ 1.90m³ ។ គណនាកម្មន្តដែលបំពេញដោយឧស្ម័នក្នុងរយៈពេលបម្រែបម្រួលមាឌខាងលើ។

 $-V_2$ មាឌនៅភាពស្រេច គិតជាម៉ែតគូប (m^3)

- **៥**. គេសន្មត់ថាឧស្ម័នមួយនៅក្នុងស៊ីឡាំងដែលត្រូវបានបិទជិតដោយពីស្តុងមួយ អាចរីកមាឧក្រោមសម្ពាធថេរ 500kPa ពី 10L ទៅ 25L។ គណនាកម្មន្តដែលបំពេញដោយឧស្ម័ននោះ។
- **៦**. ក្នុងលំនាំអ៊ីសូបារនៃឧស្ម័នមួយមានសម្ពាធ 150kPa ហើយមានមាឌ 75 × 10⁴cm³ ។ តើឧស្ម័ននោះមានមាឌ កើនឡើងដល់កម្រិតណា បើគេដឹងថាកម្មន្តដែលបំពេញដោយឧស្ម័នក្នុងរយៈពេលនោះមានតម្លៃ 22.5kJ ។
- **៧**. ឧស្ម័នក្នុងធុងមួយស្ថិតក្រោមសម្ពាធ 240kPa។ គេធ្វើឲ្យឧស្ម័នរីកមាឌកើនឡើង 2ដងនៃមាឌដើម ដោយរក្សា សម្ពាធឲ្យនៅដដែល ហើយកម្មន្តដែលបំពេញដោយឧស្ម័ននោះមានតម្លៃ 2.88kJ។ គណនាមាឌដើម និងមាឌស្រេចនៃឧស្ម័ននោះ។
- **៤**. គេសន្មត់ថាឧស្ម័នមួយនៅក្នុងស៊ីឡាំងដែលបិទជិតដោយពីស្តុង អាចរីកមាឌពី $2dm^3$ ទៅ $5dm^3$ ក្រោមសម្ពាធ ថេរ 200kPa ។ គណនាកម្មន្តធ្វើដោយឧស្ម័ននោះ ។
- $oldsymbol{90}$. តើផ្ទៃដែលបានគូសក្រោមក្រាប P-V ស្មើប៉ុន្មាន $oldsymbol{?}$ តើកម្មន្តដែលបានធ្វើពីភាព A o B ស្មើនឹងប៉ុន្មាន $oldsymbol{?}$

សង្ខេប្បូបមន្ត

អតិ៍ទីដំចងរឃ្នេញនាន្ទេត្រៃត្រិលឡើ(ទាន់នេ ខ្លួចខាន្ទេគ្រិនិល)

យើងមាន : $W=P_{av}\Delta V$ ដែល $P_{av}=\frac{P_1+P_2}{2}$ និង $\Delta V=V_2-V_1$

 $\label{eq:weights} \mbox{$\mbox{\m

- $-P_{av}$ តម្លៃនៃសម្ពាធមធ្យម គិតជាប៉ាស្កាល់ (Pa) $-P_2$ សម្ពាធនៅភាពស្រេច គិតជា ប៉ាស្កាល់ (Pa)
- P₁ សម្ពាធនៅភាពដើម គិតជា ប៉ាស្កាល់ (Pa)
- ១១. ឧស្ម័នមួយរីកមាឌពី $0.50m^3$ រហូតដល់ $0.70m^3$ កាលណាសម្ពាធកើនឡើងពី $1.0 \times 10^5 Pa$ ដល់ $2.5 \times 10^5 Pa$ ។ គណនាកម្មន្តបំពេញដោយប្រព័ន្ធឧស្ម័ននេះ ។
- ១២. នៅក្នុងបំពង់មួយមានដាក់ឧស្ម័នដែលគេសន្មត់ថាជាឧស្ម័នបរិសុទ្ធ។ គេធ្វើឲ្យឧស្ម័ននោះរីកមាឌពី $40dm^3$ ទៅ $100dm^3$ ហើយសម្ពាធរបស់វាកើនឡើង ស្មើពី 2atm ទៅ 5atm។ គណនាកម្មន្តដែលបំពេញដោយឧស្ម័ននោះ ពេលមានបម្រែបម្រួលមាឌ។
- $\mathbf{9m}$. តាមក្រាប P-V ខាងក្រោម ចូរគណនាកម្មន្តដែលផ្លាស់ប្តូរក្នុងប្រព័ន្ធទែម៉ូឌីណាមិច។

សង្ខេបរូបមន្ត

កម្មន្ត :
$$W = Nk_BT\ln\left(\frac{V_2}{V_1}\right) = nRT\ln\left(\frac{V_2}{V_1}\right)$$
 ការណី $T_1 = T_2 = T = បើរ$

ដែល :
$$k_B=rac{R}{N_A}$$
 និង $N_A=6.022 imes 10^{23}$ ម៉ូលេគុល/mol

– T សីតុណ្ហភាព គិតជាកែលវិន (K)

 $-k_B$ ថេរបុលស្មាន់ $\left(1.38 imes 10^{-23} J/K
ight)$

- **១៤**. គេមានឧស្ម័នបរិសុទ្ធ 0.5mol ស្ថិតក្រោមសីតុណ្ហភាព $0^{\circ}C$ ។ គេធ្វើឲ្យឧស្ម័ននោះរីកមាឌពី 20L ទៅ 40L តាម លំនាំអ៊ីសូទែម។
 - 🤧 គណនាកម្មន្តដែលបានបំពេញដោយឧស្ម័នក្នុងពេលមានបម្រែបម្រួលមាឌ។
 - $oldsymbol{2}$. ចូរធ្វើគំនូសតាងដ្យាក្រាម P-Vដោយឆូតលើក្រឡាផ្ទៃតាងឲ្យកម្មន្តដែលបានបំពេញដោយឧស្ម័ន។ គេឲ្យ: $R=8.31 J/mol\cdot K$
- **១៥**. ក្នុងស៊ីឡាំងមួយមានឧស្ម័នបរិសុទ្ធម៉ូណូអាតូម 2mol នៅសីតុណ្ហភាព $0^{\circ}C$ ។ ដោយរក្សាសីតុណ្ហភាពឲ្យថេរ ហើយវារីកមាឌពី 5L ទៅ 10L។ គេឲ្យ: $R=8.31 J/mol\cdot K$, $\ln 2=0.7$, $\ln 5=1.6$, $\ln 10=2.3$
 - 🤧 តើឧស្ម័ននេះមានបម្រែបម្រួលមាឧតាមលំនាំអ្វី ?
 - 횧 គណនាកម្មន្តដែលឧស្ម័នដែលបានបំពេញក្នុងរយៈពេលបម្រែបម្រួលមាឌនេះ។
 - 🕿. តើបម្រែបម្រួលថាមពលក្នុងនៃប្រព័ន្ធឧស្ម័នមានតម្លៃប៉ុន្មាន?
- **១៦**. ឧស្ម័នបរិសុទ្ធ ស្ថិតក្រោមសីតុណ្ហភាព $27^{\circ}C$ ។ គេធ្វើឲ្យឧស្ម័ននោះរីកមាឌពី $30dm^3$ រហូតដល $60dm^3$ ដោយ រក្សាសីតុណ្ហភាពឲ្យនៅដដែល។
 - **ទា**. គណនាចំនួនម៉ូលនៃឧស្ម័ន។ បើគេដឹងថាកម្មន្តដែលកើតមានក្នុងពេលមានបម្រែបម្រួលមាឌឧស្ម័ន គឺ 432*J* ។ គេឲ្យ: $R=8.31 J/mol\cdot K$
 - $oldsymbol{2}$. គណនាចំនួនម៉ូលេគុលសរុបនៃឧស្ម័ន។ គេឲ្យ: $N_A=6.022 imes 10^{23}$ ម៉ូលេគុល/mol
 - ≍. ចូរធ្វើគំនូសតាងដ្យាក្រាម P Vដោយឆូតលើក្រឡាផ្ទៃតាងឲ្យកម្មន្តដែលបានបំពេញដោយឧស្ម័ន។
- **១៧**. នៅសីតុណ្ហភាពថេរ 273K ឧស្ម័នបរិសុទ្ធមួយប្រែប្រួលមាឌពី $0.31m^3$ ដល់ $0.45m^3$ ។ គេដឹងថាឧស្ម័ននេះមាន 0.50mol។ គណនាកម្មន្តដែលបានបំពេញក្នុងពេលមានបម្រែប្រួលមាឌ។
- **១៤**. ឧស្ម័នបរិសុទ្ធមួយប្រភេទមានមាឌដើម $1.00m^3$ ត្រូវបានរីកមាឌពីរដងនៃមាឌដើមតាមសមីការ $P=\alpha V^2$ ក្នុងលំនាំកាស៊ីស្តាទិចដែល $\alpha=5.00atm/m^6$ ដូចរូប។ គណនាកម្មន្តដែលត្រូវការដើម្បីពង្រីកមាឌឧស្ម័ន។

