

При преобразовании параметра, меняющего ориентацию кривой, касательный вектор меняет направление на противоположное, так как в этом случае $t_{ au}'<0$

Пример. Найдем касательные к циклоиде (см. пример 2 в п. 16.2)

$$x = r(t-\sin t), y = r(1-\cos t), 0 \leqslant t \leqslant 2\pi$$

Вычислим производные: $x'=r(1-\cos t), y'=r\sin t$. Обозначив через $\alpha,-\frac{\pi}{2}\leqslant \alpha\leqslant \frac{\pi}{2}$, угол образованный касательный в точке M циклоиды с осью абцисс, получим

$$\operatorname{tg} \alpha = y'_x = \frac{y'_t}{x'_t} = \frac{\sin t}{1 - \cos t} = \operatorname{ctg} \frac{t}{2} = \operatorname{tg} (\frac{\pi}{2} - \frac{t}{2})$$

и, следовательно, $\alpha=\pi/2-t/2$. Отсюда следует простой способ построения касательных к циклоиде.

Обозначим через B верхнюю точку катящейся окружности, повернувшейся на угол t (рис.79), тогда $\angle MBA = \frac{1}{2}$ $\widehat{MA} = \frac{t}{2}$. Поэтому, если C-точка пересечения прямой BM с осью абцисс, то $\angle ACB = \pi/2 - t/2 = \alpha$. Это означает, что прямая CB является касательной к циклоиде.

Итак, касательной к циклоиде в точке M является прямая, соединяющая точку M с верхней точкой B катящейся окружности.

Определение 14. Пусть Γ - дифференцируемая кривая и ${m r'}(t)$, $a\leqslant t\leqslant b$ ее векторное представление. Точка r(t) кривой Γ , в которой ${m r'}(t)\neq 0$, называется неособой, а точка, в которой ${m r'}(t)=0$ особой.

Выше было показано, что в данной точке кривой при всех представлениях ${m r'}(t)$ этой кривой либо одновременно ${m r'} \neq 0$, либо ${m r'} = 0$, поэтому неособая точка при одном прдеставлении дифференцируемой кривой будет неособой и при другом ее представлении. Таким образом, понятие неособой и особой точки не зависит от выбора представления кривой.

Если $\mathbf{r}(x(t), y(t), z(t))$, то из равенства $|\mathbf{r'}| = \sqrt{x'^2 + y'^2 + z'^2}$ (см. п. 15.2) имеем: точка (x(t), y(t), z(t)) кривой Γ неособая