In accordance with an added feature of the invention, the layer thickness of the semiconductor body has a specific sheet charge density $[\rho]$ ρ_F in a direction z between the pn junction and the second main surface such that:

$$\int_{0}^{W} \rho_{F}(z)dz \le 0.9Q_{c} , \rho_{F} = \int \rho dF$$

in which ρ is the volume charge density, Q_c , the critical breakdown charge, denotes a critical value of the charge quantity Q at which the electrical breakdown is reached, said charge quantity Q being linked to said electric field strength E between said first electrode and said second electrode by the equations

 $\int_{0}^{w} \rho_{F}(z)dz = Q \text{ and Poisson's equation } \nabla E = -4\pi\rho.$

The paragraph starting on page 20, line 4 and ending on page 20, line 23 now reads:

The critical value E_{c} of the field strength is linked to a charge density ρ by Poisson's equation

$$\vec{\nabla}.\vec{E} = -4\pi\rho \; , \tag{1}$$

so that a relationship with a critical breakdown surface charge Q_{c} can be derived: