FUNDAMENTALS OF VLSI DESIGN

(19EC6DCFOV)

Module-2

Circuit Design Processes: MOS layers, Stick diagrams, Design rules and layout – lambda-based design and other rules. Examples. (Text book-1)

CMOS Sub System Design: Introduction, Addition/Subtraction, Single bit addition, Full adder design, Comparators, LFSR,XOR/XNOR circuits (Text book-3)

Text books:

- 1. Douglas A. Pucknell, Kamran E., "Basic VLSI Design", 3rd Edition, PHI Publication, India.
- 3. Neil H.E. Weste, Harris, Banerjee, "CMOS VLSI design", Pearson, Third Edition, 2007.

MOS LAYERS

- MOS design aim turning a specification into masks for processing silicon to meet the specification.
- Four basic layers
 - n- diffusion
 - p- diffusion
 - Polysilicon
 - Metal
- Isolated from one another by thick or thin (thinox) silicon dioxide insulating layers.
- Polysilicon and thinox regions interact so that a transistor is formed where they cross one another.
- The thin oxide (thinox) mask region includes n-diffusion, p-diffusion, and transistor channels.
- Contacts are used to join the layers

STICK DIAGRAMS

- Stick diagrams are used to convey layer information through the use of a colour code.
- Example, for CMOS design,
 - green for n-diffusion
 - Yellow/Brown for p-diffusion
 - red for polysilicon
 - blue for metal
 - black for contact areas
- Color coding has been complemented by monochrome encoding of the lines.

NMOS technology

Encodings for a simple metal nMOS process

Encodings for CMOS process

FEATURE	FEATURE (STICK) (MONOCHROME)	FEATURE (SYMBOL) (MONOCHROME)	FEATURE (MASK) (MONOCHROME)
n-type enhancement mode transistor (as in Figure 3-1(a)) Transistor length to	DEMARCATION LINE L: W width ratio L:W may be sho	GREEN RED	D S
mode transistor	S D G DEMARCATION LINE s are placed above and n-type tra	S D RED	S D D

9

Steps for CMOS Process

- Draw the metal (Blue) Vdd and Vss rails in parallel and create a demarcation line between them. Allowing enough space between them for other circuit elements.
- N-Devices are placed below the demarcation line and P-device are placed above the demarcation line.
- N & P devices are then connected using metal, Polysilicon and contacts.
- Finally the remaining interconnections are made & control signals and data inputs are added.

<u>Introduction</u>

- Stick diagrams convey layer information in a chip.
- Interface between the circuit and the layout.
- Size of transistors, width of layers, wire length etc... are not mentioned in a stick diagram.
- For a chip designer, all CMOS designs consist of the following layers:
 - Substrate or wells of p-type for nMOS transistors and n-type for pMOS transistors
 - Diffusion layers, generally called as Active areas
 - Polysilicon layers, forms the Gate terminals
 - Metal and interconnect layers
 - Contact and via layers

Colour Codes & Patterns

Layers	Colour	Patterns	
N diffusion	Green		
P diffusion	Yellow/Brown		
Polysilicon	Red	<u> </u>	
Metal 1	Blue	77.7.7.7.7.	
Metal 2	Magenta	777777	
Contact & Taps	Black		

V_{DD} and V_{SS} - metal layers - Blue

Transistors using Colour Code

Example - CMOS Inverter

Important Note

- Diffusion paths must not cross the demarcation line.
- N & P diffusion wires must not join.
- The metal should be used to connect n & p features.
- We must place crosses (X) on Vdd and Vss rails to represent substrate and P-well connections respectively.
- Only metal & polysilicon can cross the demarcation line.
- Represent the Vss and Vdd contact croses
 - One on Vdd line for every 4 P-transistors.
 - One on Vss line for every 4 N-transistors.
- Metal lines on different layers (M1 and M2) can cross one another. Contacting 2 metal lines requires a Via.

Steps for NMOS Process

- Draw the metal Vdd and Vss rails in parallel and create a demarcation line between them. Allowing enough space between them for other circuit elements.
- Draw the diffusion paths between the rails.
- Pull up device (depletion type) is to be connected from the output point (Source) to Vdd (Drain)
- Pull down device (enchancement type) is to be connected from the output point (Drain) to Ground (Source)

DESIGN RULES AND LAYOUT

- The object of a set of design rules is to allow a ready translation of circuit design concepts, usually in stick diagram or symbolic form, into actual geometry in silicon.
- The design rules are the effective interface between the circuit/system designer and the fabrication engineer.
- 2-ways
 - µ metal based design rules (orbit)
 - Lambda-based Design Rules
 - straightforward
 - relatively simple to apply

- Design rules are the communication link between the designer specific requirements and the fabricator (metalizing the design)
- Design rules are workable mask layers from which the various layer in silicon.

<u>Layout Design Rules</u>

- Width the minimum width of a rectangle
- Spacing the minimum spacing between two rectangles on the same or different layers
- Overlap specifies how much a rectangle must surround another on another layer

METAL

DIFFUSION

POLYSILICON

<u>Design Rules</u>

<u>Design Rules</u>

Different layers for Layout

Lambda-based Design Rules

26

Figure 3-6 Design rules for wires (nMOS and CMOS)

Minimum size transistors

minimum

2. Via (contact from metal 2 to metal 1 and thence to other layers)

CMOS Sub System Design

Introduction

Partitioning the system into subsystems of the types listed below:

- Datapath operators
- Memory elements
- Control structures
- Special-purpose cells
 - I/O
 - Power distribution
 - Clock generation and distribution
 - Analog and RF

Addition/Subtraction

- Basis for many processing operations- counting, multiplication, filtering etc..
- add two binary numbers
- adder architectures serve different speed/power/area requirements

Single bit addition

1) Half adder

Α	В	C out	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$
$$C_{\text{out}} = A \cdot B$$

$$-s$$

2) Full adder

Α	В	С	G	Р	K	C out	S
0	0	0	0	0	1	0	0
		1				0	1
0	1	0	0	1	0	0	1
		1				1	0
1	0	0	0	1	0	0	1
		1				1	0
1	1	0	1	0	0	1	0
		1				1	1

Generate (G): The adder generates a carry when Cout is true independent of Cin

$$G = A \cdot B$$
.

Propagate (P):The adder propagates a carry; i.e., it produces a carry-out if and only if it receives a carry-in $P = A \oplus B$.

Kill (K): The adder kills a carry when Cout is false independent of Cin

$$K = \overline{A} \cdot \overline{B} = \overline{A + B}$$

A	В	$C_{\boldsymbol{i}}$	S	C_{o}	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

For S:

Full adder design

$$C_{out} = \overline{AB + BC_{in} + C_{in}A}$$

Cout =
$$\overline{AB} \cdot \overline{BCin} \cdot \overline{Cin A}$$

= $(\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{Cin}) \cdot (\overline{Cin} + \overline{A})$

25-04-2022 FOVLSI- Dr.P.Vimala 35

Common procedure used for all type of circuits:

NMOS

OR operation (+) parallel AND operation (.) series

PMOS

OR operation (+) series
AND operation (.) parallel

32 transistors (6 for the inverters, 10 for the majority gate, and 16 for the 3-input XOR).

~^							
Α	В	С	G	P	K	9 out	S
0	0	0	0	0	1	0	0
		1				0	1
0	1	0	0	1	0	0	1
		1				1	0
1	0	0	0	1	0	0	1
1	O	1	Ü	1	O	1	0
1	1	0	1	0	0	V	0
		1				1	1

pMOS network is identical to the nMOS network rather than being the conduction complement, so the topology is called a **mirror adder**.

Comparators

1) Magnitude Comparator

- A magnitude comparator determines the larger of two binary numbers.
- To compare two unsigned numbers A and B, compute B A = B + A + 1.
 - If there is a carry-out, $A \le B$;
 - otherwise, A > B.
 - A zero detector indicates that the numbers are equal.

Unsigned magnitude comparator

Table 8.	4 Magnitude com Unsigned Comparison	Signed Comparison
Relation	Unsigned Comp	Z
A = B	Z	Z
$A \neq B$	Z	$\overline{(N \oplus V)} + Z$
A < B	C+Z	$(N \oplus V)$
A > B	C	$(\overline{N \oplus V})$
$A \leq B$	C	$(N \oplus V) + Z$

- Comparing signed two's complement numbers is complicated possibility of overflow when subtracting two numbers with different signs.
- Must determine if the result is negative (N, indicated by the most significant bit of the result) and if it overflows the range of possible signed numbers. **overflow signal V.**
- If the inputs had different signs and the output sign is different from the sign of B. Then, **V** is true
- The actual sign of the difference B A is $S = N \oplus V$ because overflow flips the sign.
- If this corrected sign is negative (S = 1), we know A > B.

2) Equality Comparator

- An equality comparator determines if (A = B).
- This can be done more simply and rapidly with XNOR gates and a ones detector

3) K = A + B Comparator

- Used in sum addressed memory
- This comparison can be done faster than computing A + B because **no carry propagation is necessary.**
- The **key** is that if you know A and B, you also know what the carry into each bit must be if K = A + B.
- you only need to check adjacent pairs of bits
 - verify that the previous bit produces the carry required by the current bit
 - use a ones detector to check that the condition is true for all N pairs.

- Required carry, $C_{i-1} = \bigcap_{i \in I} \bigoplus_{j \in I} \bigcap_{i \in I} \bigoplus_{j \in I} \bigcap_{i \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{i \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{i \in I} \bigcap_{j \in$
- Produced carry, $C_i = \overline{ABK} + \overline{AB$

 XNOR gate is used to make sure that the required carry matches the produced carry at each bit position

48

A + B = K comparator

LFSR

- Linear Feedback Shift Registers
- consists of N registers configured as a shift register.
- input to the shift register comes from the XOR of particular bits of the register
- On reset, the registers must be initialized to a nonzero value (e.g., all 1s)

TABLE 11.7 LFSR sequence

Cycle	Q 0	Q ₁	Q ₂ / Y	
0	1	1	1	
1	0	1	1	
2	0	0	1	
3	1	0	0	
4	0	1	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	
Repeats forever				

- LFSR is an example of a *maximal-length shift register* because its output sequences through all $2^n 1$ combinations.
- The inputs fed to the XOR are called the tap sequence and are often specified with a characteristic polynomial.
 - For example, this 3-bit LFSR has the characteristic polynomial $1 + x^2 + x^3$ because the taps come after the second and third registers.
 - characteristic polynomial defined by XOR positions

- LFSRs are used for **high-speed counters** and **pseudo-random number generators**.
 - pseudo-random sequences are handy for built-in self-test and bit-error-rate testing in communications links
 - many spread spectrum communications systems such as GPS and CDMA

For certain lengths, N, more than two taps

TABLE 11.8 Characteristic polynomials

N	Polynomial
3	$1 + x^2 + x^3$
4	$1 + x^3 + x^4$
5	$1 + x^3 + x^5$
6	$1 + x^5 + x^6$
7	$1 + x^6 + x^7$
8	$1 + x^1 + x^6 + x^7 + x^8$
9	$1 + x^5 + x^9$
15	$1 + x^{14} + x^{15}$
16	$1 + x^4 + x^{13} + x^{15} + x^{16}$
23	$1 + x^{18} + x^{23}$
24	$1 + x^{17} + x^{22} + x^{23} + x^{24}$
31	$1 + x^{28} + x^{31}$
32	$1 + x^{10} + x^{30} + x^{31} + x^{32}$

XOR/XNOR circuit forms

• One of the chronic difficulties in CMOS circuit design is to construct a fast, compact, low-power XOR or XNOR gate

FIGURE 11.59 Static 2-input XOR designs

When A is 0, the transmission gate turns on and B is passed to the output.

- When A is 1, the A input powers a pair of transistors that invert B.
- It is compact, but nonrestoring.

(g)

- switch-level simulators cannot handle this unconventional design.
- Figure (g) [Wang94] is a compact and fast 4transistor pass-gate design, but does not swing rail to rail.

XOR gates with 3 or 4 inputs can be **more compact**, although **not necessarily faster** than a cascade of 2-input gates.

