Dernier TD (10?): Polynômes

Exercice 1 Calculer les divisions euclidiennes suivantes :

- 1. $X^3 1$ par X 1 puis $X^4 + X^2 + 1$ par $X^2 + X + 1$
- 2. $X^5 1$ par X 1 puis $X^8 + X^6 + X^4 + X^2 + 1$ par $X^4 + X^2 + X + 1$

Exercice 2

- 1. Combien le polynôme $R = X^2 + X 6$ a-t-il de racines réelles? Les calculer.
- 2. Quelles sont les racines du polynôme $Q=X^4+X^2-6$ dans $\mathbb C$? Dans $\mathbb R$?
- 3. Factoriser Q dans $\mathbb{C}[X]$ comme produit de polynômes irréductibles.
- 4. Factoriser Q dans $\mathbb{R}[X]$ comme produit de polynômes irréductibles.
- 5. Montrer que −1 est racine du polynôme

$$P = X^6 + 2X^5 + 2X^4 + 2X^3 - 5X^2 - 12X - 6$$

et déterminer sa multiplicité.

6. Factoriser P dans $\mathbb{R}[X]$ comme produit de polynômes irréductibles.

Exercice 3 Déterminer les racines complexes des polynômes suivants, puis factoriser :

- 1. $z^2 3 4i$
- 2. $z^2 + 4z + 8$
- 3. $z^4 4iz^2 4$
- 4. $z^4 16$

Exercice 4 Soit $P \in \mathbb{R}[X]$ un polynôme de degré n possédant n racines réelles distinctes. Montrer que son polynôme dérivé possède n-1 racines réelles distinctes.

Exercice 5 Montrer qu'un polynôme de degré d coïncide avec son développement limité d'ordre d en tout point.