9-MAVZU. KEPLER QONUNLARI VA PLANETALARNING KONFIGURATSIYALARI HAMDA DAVRLARINI HISOBLASHGA DOIR MASALALAR YECHISH

Tayanch so'zlar va iboralar: sayyora, orbita, elliptik orbita, konfiguratsiya, geliosentrik uzunlamasi, sharqiy elongatsiya, g'arbiy elongatsiya, perigeliy, quyi birlashish, yuqori birlashish, yulduz davri, sinodik davr, harakat tenglama, Kepler qonunlari.

Sayyoralar Quyosh (\odot) atrofida elliptik orbita bo'yicha harakatlanadilar. Quyosh ularning umumiy bo'lgan fokuslardan birida joylashgan. Katta sayyoralarning (Plutondan tashqari) orbitalarini taqriban bir tekislikda joylashgan deb hisoblash mumkin. Merkuriy ($\overset{\smile}{+}$), Venera ($\overset{\smile}{+}$) orbitalari Yer ($\overset{\smile}{+}$) orbitasi ichida yotadi, shuning uchun ular *quyi* sayyoralar deyiladi. Qolgan sayyoralar: Mars ($\overset{\smile}{-}$), Yupiter ($\overset{\smile}{+}$), Saturn ($\overset{\smile}{-}$), Uran ($\overset{\smile}{-}$), Neptun ($\overset{\smile}{-}$) – Yerga nisbatan Quyoshdan uzoqda joylashganliklari uchun *yuqori* sayyoralar deyiladi.

Sayyoralarning Quyosh va Yerga nisbatan o'zaro egallagan turli xil vaziyatlari ularning *konfiguratsiyalari* deyiladi.

Sayyoraning geliosentrik uzunlamasi I — Quyosh-bahorgi tengkunlik nuqta va Quyosh-sayyora yoʻnalishlari orasidagi burchakka aytiladi. Yerning geliosentrik uzunlamasi L harfi bilan belgilanadi.

4 va 2 nuqtalar – sharqiy va g'arbiy elongatsiya;

1 va 3 nuqtalar – quyi va yuqori birlashish;

IV va II – sharqiy va g'arbiy kvadratura (\square);

I nugta – garama-garshi turish ();

III nugta – birlashish ([⊙]).

 $I-L=0^{0}$; 1 nugtada:

 $I-L=0^{0}$; I nugtada:

 $I-L=180^{\circ}$; 3 nuqtada:

III nuqtada: $I-L=180^{\circ}$.

2 nuqtada: $I-L=90^{0}-\theta;$

 θ - Quyoshdan sayyoraning eng katta ko'rinma

burchak uzoqligi.

 $I-L=270^{0}+\theta$; 4 nuqtada:

- 2) perigeliyning tugunlar chizig'idan burchak masofasi; $\pi=\omega+\Omega$ - perigeliyning uzunlamasi;
- 3) a katta yarim o'q;
- 4) T aylanish davri;
- 5) t₀ perigeliydan o'tish momenti;
- 6) *e* ekssentrisitet;
- 7) i og'ish

 $q=|S\Pi|=a(1-e)$ – perigely masofasi; Q=|AS|=a(1+e) – afely masofasi.

υ - haqiqiy anomaliya;

 \rightarrow r - radius-vektor.

$$\begin{cases} r = a(1 - e\cos E) \\ tg\frac{\upsilon}{2} = \sqrt{\frac{1 + e}{1 - e}} tg\frac{E}{2} \end{cases}$$

E – ekstsentrisitik anomaliya, u Kepler tenglamasidan topiladi:

bu yerda $M=n(t-t_0)$ — o'rtacha anomaliya; $n=2\pi/T$ — orbita bo'ylab o'rtacha sutkalik harakat.

Parabolik orbitalar uchun e=1, $\alpha=\infty$;

$$\begin{cases} r = q \sec^2 \frac{\upsilon}{2} \\ tg \frac{\upsilon}{2} + \frac{1}{3} tg \frac{3\upsilon}{2} = \frac{k}{\sqrt{2} q^{3/1}} (t - t_0) \end{cases}$$

q – parabola uchidan Quyosh joylashgan fokusgacha masofa; k – Gauss doimiysi (k=0,0172); υ M=q^{-3/2}(t-t₀) funksiya kattaligida (yoki *IgM* funksiyada) maxsus jadvallar orqali topiladi.

Ushbu bobning ko'p masalalarini yechish quyidagilardan foydalanishga asoslanadi, Sayyoraning sinodik aylanish davrining o'rtacha davomiyligi S, uning siderik aylanish davri T bilan sinodik harakat tenglamasi orqali bog'langandir:

- 1) sayyoralarning yulduziy T va sinodik S aylanish davrlari hamda Yerning yillarda yoki sutkalarda berilgan aylanish davri orasidagi munosabatni ifodalovchi sinodik harakat tenglamalari,
 - a) tashqi sayyoralar uchun

$$\frac{1}{S} = \frac{1}{T_{Yer}} - \frac{1}{T}$$

b) Sayyoraning sinodik aylanish davrining o'rtacha davomiyligi S, uning siderik aylanish davri T bilan sinodik harakat tenglamasi orqali bog'langandir, ichki sayyoralar uchun:

$$\frac{1}{S} = \frac{1}{T} - \frac{1}{T_{Var}}$$

Ikkita sayyoraning yulduzli yoki siderik aylanish davrlari T_1 va T_2 ularning quyoshgacha o'rtacha masofalari a_1 va a_2 orqali ya'ni sayyoraning yulduziy T aylanish davri va orbitasi katta yarim o'qi a ni bog'lovchi Keplerning uchinchi qonuni:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

Agar T yillarda α —astronomik birliklarda o'lchansa, u holda agar Yer sayyorasi uchun $T_o=1yil,\;\;a_o=1$ a.b. deb qabul qilinsa, ixtiyoriy sayyora uchun

$$T^2 = a^3$$

ni hosil qilamiz.

Bu yerda T_o - Yer sayyorasi aylanishining siderik davri boʻlib, u bir yulduz yiliga teng .

Aylanishning o'rtacha sinodik davri planetaning muayyan konfiguratsiyasi boshlanishining taxminiy sanasi t_2 ni shunga o'xshash konfiguratsiyasining ma'lum sanasi t_1 bo'yicha hisoblashga imkon beradi, chunki

$$t_2 \approx t_1 + S$$

Sayyoralar ixtiyoriy konfiguratsiyasi va ularning boshlanish sanasini sayyoralarning geliosentrik uzunlamasi l ga ko'ra hisoblash mumkin bo'lib , u ekliptika tekisligida bahorgi tengkunlik γ nuqtadan boshlab to'g'ri yo'nalishda,(ya'ni soat mili harakat yo'nalishiga qarama- qarshi yo'nalishda), hisoblanadi.

Aytaylik, yilning biror kuni t_1 da yuqori (tashqi) planetaning geliosentrik uzunlamasi l_1 , Yerning geliosentrik uzunlamasi l_{01} boʻlsin . Sayyora oʻrtacha sutka davomida orbitasi boʻylab $\omega=360^\circ/T$ yoyni oʻtadi (planetaning oʻrtacha sutkalik harakati), Yer sayyorasi esa $\omega_o=360^\circ/T_o$ yoyni oʻtadi (Yerning oʻrtacha sutkalik harakati), bu yerda T va T_o oʻrtacha sutkalarda ifodalangan, shuni nazarda tutish kerakki

$$T > T_o$$
 va $\omega < \omega_o$.

 t_2 kunda izlanayotgan sayyora konfiguratsiyasining geliosentrik uzunlamasi

$$l_2 = l_1 + \omega(t_2 - t_1) = l_1 + \omega \Delta t_1$$

Yerniki

$$l_{02} = l_{01} + \omega(t_2 - t_1) = l_{01} + \omega \Delta t_1$$

bo'ladi.

Bundan,

 $\omega_o-\omega=\Delta\omega \quad \mbox{va}\quad (l_{02}-l_{01})-(l_2-l_1)=L \mbox{ ni}\quad \mbox{begilab}\quad \mbox{quyidagilarni}$ topamiz:

$$\Delta t = \frac{L}{\Delta \omega}$$

va

$$t_2 = t_1 + \Delta t$$

Quyi planetalarning konfiguratsiyasini hisoblayotganda $\Delta \omega = \omega - \omega_0$ boʻladi.

Cho'ziqroq orbita bilan harakat qilayotgan sayyoralarning Yerga eng katta yaqinlashishi o'rtacha sinodik S va siderik aylanish davrlari T larning butun m va n sonlar marta takrorlanishida ro'y beradi, chunki

$$mS = nT$$

Bu formula orqali sayyoralarning buyuk ro'paraturish davrini aniqlash mumkin.

Orbitaning katta yarim o'qi α o'lchamlarini aniqlaydi, ekesentrisitet e – orbitaning cho'zilganlik darajasini aniqlaydi. Sayyoraning radius – vektori r ellipsning tenglamasidan aniqlanadi.

$$r = \frac{\alpha(1 - e^2)}{1 + \cos v}$$

Tenglamasidan aniqlanadi va u haqiqiy anomaliya $v = 0^0$ boʻlganda perigeliy masofasi

$$q = C\Pi = \alpha(1-e)$$

dan v = 180° bo'lganda afeliy masofasi

$$Q = CA = \alpha(1+e)$$

gacha o'zgaradi.

Sayyoraning Quyoshdan o'rtacha masofasi uning orbitasining kata yarim o'qi a ga teng bo'ladi

$$a = (q+Q)/2$$

Sayyoralar orasidan masofa va ularning quyoshdan masofalari, odatda, astronomic birliklarida (a.b.) ifodalanadi, lekin ba'zan kilometrlardan o'lchanib, bunda

Sayyoraning o'rtacha orbital yoki aylana bo'ylab tezligi

$$v_a = \frac{2\pi\alpha}{T}$$

Hamma vaqt km/s- larda ifodalanadi. Odatda, α astronomik birliklarda $(1a.b.=149,6 \ 210^5 km) \quad \text{va} \quad \text{T} \quad \text{yillarda} \quad \text{ifodalanganligi} \quad \text{sababli}$ $(1yil=31,56 \ 210^6 s), \quad \text{u} \quad \text{vaqtda}$

$$v_a = \frac{2\pi a \cdot 149,6 \cdot 10^6}{T \cdot 31,56 \cdot 10^6} = 29,78 \frac{a}{T}$$

bo'ladi. Formuladan T-ni topib qo'ysak, quyidagi

$$v_a = \frac{29,78}{\sqrt{a}} \approx \frac{29,8}{\sqrt{a}} \ (\frac{km}{s})$$

hosil bo'ladi.