Домашнее задание 5.

Построить бифуркационную диаграмму динамической системы, описываемой *неавтономным* обыкновенным дифференциальным уравнением. Для нескольких значений параметра из заданного промежутка посчитать спектр показателей Ляпунова аттрактора, соотнести с полученными на диаграмме результатах. Для тех же нескольких аттракторов рассчитать спектр частот и размерность. Размерность посчитать двумя способами: (1) покрытие кубами сечения Пуанкаре (см. box-counting dimension) (2) по формуле Каплана-Йорка.

- 1. $\ddot{x} + \alpha \dot{x} + \beta e^{-x} (1 e^{-x}) = f \cos \omega t$, $\alpha = 0.8$, f = 3.07, $\beta = 8$, $\omega \in [0.8, 1.2]$.
- 2. $\ddot{x} + \frac{1}{q}\dot{x} + \sin x = f\cos\omega t$, q = 2, $\omega = 2/3$, $f \in [1, 1.5]$.
- 3. $\ddot{x} + d(x^2 1)\dot{x} + x = a\cos\omega t$, d = 5, a = 40, $\omega \in [2, 2.4]$.
- 4. $\dot{x} = x \frac{x^3}{3} y + f \cos \omega t$, $\dot{y} = c(x + a by)$, a = 0.7, b = 0.8, c = 0.1, $\omega = 1$, $f \in [0.7, 0.8]$.
- 5. $\ddot{x} + d(x^2 1)\dot{x} + x = a\cos\omega t$, d = 5, a = 2.5, $\omega \in [5, 5.6]$.
- 6. $(1 + \lambda x^2)\ddot{x} + \lambda x\dot{x}^2 + \omega_0^2 x + \alpha \dot{x} = f\cos\omega t$, $\lambda = 0.5$, $\omega_0^2 = 0.25$, $\alpha = 0.2$, $\omega = 1$, $f \in [2,3]$
- 7. $\ddot{x} + \alpha \dot{x} + \beta e^{-x} (1 e^{-x}) = f \cos \omega t$, $\alpha = 0.8$, f = 2.5, $\beta = 8$, $\omega \in [1.5, 2]$.
- 8. $\ddot{x} \mu(1 x^2)\dot{x} \alpha x + \beta x^3 = f\cos\omega t$, $\alpha = 0.5$, $\beta = 0.5$, $\mu = 0.1$, f = 0.14, $\omega \in [0.45, 0.6]$.
- 9. $\ddot{x} + \frac{1}{a}\dot{x} + \sin x = f\cos\omega t$, q = 4, $\omega = 2/3$, $f \in [0.95, 1.5]$.
- 10. $\ddot{x} \mu(1 x^2)\dot{x} \alpha x + \beta x^3 = f\cos\omega t$, $\alpha = 0.5$, $\beta = 0.5$, $\mu = 0.1$, f = 0.19, $\omega \in [0.45, 0.6]$.
- 11. $\ddot{x} + d(x^2 1)\dot{x} + x = a\cos\omega t$, d = 5, a = 5, $\omega \in [2.4, 2.5]$.
- 12. $(1 + \lambda x^2)\ddot{x} + \lambda x\dot{x}^2 + \omega_0^2 x + \alpha \dot{x} = f\cos\omega t$, $\lambda = 0.5$, $\omega_0^2 = 0.25$, $\alpha = 0.2$, $\omega = 1$, $f \in [2.75, 3.15]$
- 13. $\ddot{x} + \alpha \dot{x} + \beta e^{-x} (1 e^{-x}) = f \cos \omega t$, $\alpha = 0.8$, $\beta = 0.8$, $\beta = 0.8$, $\alpha = 0.8$, $\beta = 0.8$, $\alpha = 0.8$, $\beta = 0.8$, $\alpha = 0.8$,
- 14. $\dot{x} = x \frac{x^3}{3} y + f \cos \omega t$, $\dot{y} = c(x + a by)$, a = 0.7, b = 0.8, c = 0.1, $\omega = 1$, $f \in [1, 1.3]$.
- 15. $\ddot{x} + \frac{1}{q}\dot{x} + \sin x = f\cos\omega t$, q = 2, f = 1.5, $\omega \in [0.1, 0.6]$.