Information Security

Project 1 Symmetric Cipher

Prof. Junbeom Hur
Department of Computer Science and Engineering
Korea University

- Consider the following encryption algorithm
 - Key size: 32 bits
 - Block size: 64 bits
 - Structure: Feistel-Network with 10 rounds
 - S-box and Permutation structure are given

Feistel Cipher Structure

F function Structure

- Key Schedule
 - Create 10 subkeys using one 32bit input
- Algorithm
 - Divide the input into 16 bits L and R
 - The i-th L_i and R_i are shift-left operations by i-bit, respectively
 - The i-th Subkey is concatenated with L_i and R_i

Key schedule example

Input - 010101010101011 1011011101111011

L - 01010101010101

 L_1 - 1010101010101010

 R_1 - 0110111101111

R-1011011101111011

 L_2 - 0101010101010101

 R_2 - 1101110111101110

*L*₃- 1010101010101010

R₃-1011101111011101

 L_4 - 0101010101010101

 R_4 - 0111011110111011

- S-box
 - Two S-boxes with 4-bit input and 4-bit output are used repeatedly

Algorithm

$$-S_1$$

Input	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Output	Е	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

$$-S_2$$

Input	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Output	5	6	С	F	8	Α	0	4	В	3	7	D	Е	1	2	9

Permutation

- A fixed Permutation table is given
- Ex) The 0th bit goes to the 29th bit

Algorithm

Before	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
After	29	1	17	8	30	22	28	6	18	4	12	19	21	26	2	20
Before	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
After	31	10	9	25	13	0	23	15	3	27	5	11	7	14	24	16

Permutation example

- Input
 - 0xE4 0xE8 0xEF 0x2E
 - 1110 0100 1110 1000 1110 1111 0010 1110
- Output
 - 0xCD 0x6F 0x67 0x85
 - 1100 1101 0110 1111 0110 0111 1000 0101

- 1. Implement the encryption algorithm
 - You can use any language (e.g., C, Java, Python, ...)
 - E.g., Sample info to check the correctness
 - key: 0x04 0x34 0xEF 0x71
 - plaintext: 0x10 0x24 0xAA 0x9F 0x47 0x3C 0x58 0xC1
 - ciphertext: 0x4F 0xC8 0x37 0x60 0xC7 0x8F 0x6E 0xF0

2. Find the key K

- Known plaintext attack
- Sample:
 - plaintext: 0x40 0xFF 0x24 0x33 0x09 0x47 0xF6 0x10
 - ciphertext: 0xEC 0x2D 0xE1 0x30 0x5B 0x5F 0x5B 0x02
 - plaintext: 0x21 0x74 0xC5 0x01 0xAC 0x12 0xF9 0xD1
 - ciphertext: 0xDF 0x9F 0xCC 0x3F 0xFE 0x09 0x80 0x9D

Capture the result screen!!

- Due date
 - 2017. Oct. 31, 23:59
 - Upload your source programs and results screen into the Blackboard
 - Plagiarism will be "F"
- If you have any question, send an email to T.A.
 - Hyunsoo Kwon (<u>khs910504@gmail.com</u>)
 - Youngki Hong (<u>gee308@naver.com</u>)