

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Eléctrica

TRABAJO FIN DE GRADO

TÍTULO DEL TRABAJO

Francisco Delgado López

Tutor: Óscar Perpiñán Lamigueiro

Departamento: Departamento de Ingeniería Eléctrica, Electrónica, Automática y

Física Aplicada

Copyright © 2024. Francisco Delgado López

Esta obra está licenciada bajo la licencia Creative Commons Atribución-No Comercial-Sin Derivadas 3.0 Unported (CC BY-NC-ND 3.0). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, EE.UU. Todas las opiniones aquí expresadas son del autor, y no reflejan necesariamente las opiniones de la Universidad Politécnica de Madrid.

TÌtulo: título del trabajo **Autor:** Francisco Delgado López **Tutor:** Óscar Perpiñán Lamigueiro

EL TRIBUNAL

Presidente:	
Vocal:	
Secretario:	
Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día	ría y

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

Agradezco a . . .

Resumen

Este proyecto	se	resume	en														
---------------	----	--------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Palabras clave: geometría solar, radiación solar, energía solar, fotovoltaica, métodos de visualización, series temporales, datos espacio-temporales, S4

Abstract

т	.1 .	. ,				
In	this	project.				

 $\textbf{Keywords:} \quad \text{solar geometry, solar radiation, solar energy, photovoltaic, visualitation methods, temporal series, space-time data, S4$

Índice general

A	gradecimientos	VII
R	esumen	IX
A	bstract	XI
Ín	ndice general	XII
Ín	ndice de figuras	XII
Ín	ndice de tablas	XIV
1	Introducción 1.1. Motivación del proyecto	. 1 . 1
2	Parte teórica y desarrollo del código	3
3	Estado del arte 3.1. Situación actual de la generación fotovoltaica	. 5
4	Ejemplo práctico de aplicación 4.1. solaR2	. 7 . 7
5	Detelles de la programación	9
6	Conclusiones 6.1. Conclusión	
A	Anexo	13
B	ibliografía	15

Índice de figuras

Índice de tablas

CAPÍTULO **1**

Introducción

. . .

1.1. Motivación del proyecto

. .

1.2. Objetivos

. .

1.3. Materiales utilizados

. . .

1.4. Estructura del documento

A continuación y para facilitar la lectura del documento, se detalla el contenido de cada capítulo.

- En el capítulo 1 se realiza una introducción
- \blacksquare En el capítulo 2 se hace un repaso. . .

APÍTULO 2

Parte teórica y desarrollo del código

Estado del arte

3.1. Situación actual de la generación fotovoltaica

Según el informe anual de 2023 de la UNEF¹[UNE23] en 2022 la fotovoltaica se posicionó como la tecnología con más crecimiento a nivel internacional, tanto entre las renovables como entre las no renovables. Se instalaron 240 GWp de nueva capacidad fotovoltaica a nivel mundial, suponiendo esto un incremento del 137% con respecto a 2021.

A pesar de las diversas crisis internacionales, a energía solar fotovoltaica alcanzó a superar los 1185 GWp instalados. Como otros años, las cifras indican que China continuó siendo el primer actor mundial, superando los 106 GWp de potencia instalada en el año. La Unión Europea se situó en el segundo puesto, duplicando la potencia instalada en 2021, y alcanzando un nuevo record con 41 GWp instalados en 2022.

La producción energía fotovoltaica a nivel mundial representó el $31\,\%$ de la capacidad de generación renovable, convirtiendose así en la segunda fuente de generación, solo por detrás de la energía hidráulica. En 2022 se añadió 3 veces más de energía solar que de nergía eólica en todo el mundo.

Por otro lado, la Unión Europea superó a EE.UU. como el segundo mayor actor mundial en desarrollo fotovoltaico, instalando un $47\,\%$ más que en 2021 y alcanzando una potencia acumulada de más de 208 GWp. España lideró el mercado europeo con 8,6 GWp instalados en 2022, superando a Alemania.

El año 2022 fue significativo en términos legislativos con el lanzamiento del Plan RE-PowerEU²[Eur22]. Dentro de este plan, se lanzó la Estrategía de Energía Solar con el objetivo de alcanzar 400 GWp (320 GW) para 2030, incluyendo medidas para desarrollar tejados solares, impulsar la industria fotovoltaica y apoyar la formación de profesionales en el sector.

En 2022, España vivió un auge en el desarrollo fotovoltaico, instalando $5.641~\mathrm{MWp}$ en plantas en suelo, un $30\,\%$ más que en 2021, y aumentando el autoconsumo en un $108\,\%$, alcanzando $3.008~\mathrm{MWp}$. El sector industrial de autoconsumo creció notablemente, representando el $47\,\%$ del autoconsumo total.

España implementó varias iniciativas legislativas para enfrentar la volatilidad de precios de la energía y la dependencia del gas, destacando el RD-ley 6/2022[BOE22b] y el RD 10/2022[BOE22a], que ham modificado mecanismos de precios y establecido límites al precio del gas.

¹UNEF: Unión Española Fotovoltaica

²Plan REPowerEÚ: Proyecto por el cual la Unión Europea quiere poner fin a su dependencia de los combustibles fósiles rusos ahorrando energía, diversificando los suministros y acelerando la transción hacia una energía limpia.

El Plan SE+³[dem22] incluye medidas fiscales y administrativas para apoyar las renovables y le autoconsumo. En 2022, se realizaron subastas de energía renovable, asignando 140 MW a solar fotovoltaica en la tercera subasta y 1.800MW en la cuarta, aunque esta última quedó desierta por precios de reserva bajos.

Se adjudicaron 1.200 MW del nudo de transición justa de Andorra a Enel Green Power España, con planes para instalar plantas de hidrógeno verde y agrovoltaica. la actividad en hidrógeno verde y almacenamiento también creció, con fondos adicionales y exenciones de cargos.

El autoconsumo, apoyado por diversas regulaciones y altos precios de la electricidad, registró un crecimiento significativo, alcanzado 2.504 MW de nueva potencia en 2022. Las comunidades energéticas también avanzaron gracias a ayudas específicas, a pesar de la falta de un marco regulatorio definido.

2022 estuvo marcado por los programos financiados por la Unión Europea, especialmente el Mecanismo de Recuperación y Resiliencia[Hac22] que canaliza los fondos Next-GenerationEU[Uni20].

 $^{^3}$ Plan + Seguridad Energética: Se trata de un plan con medidas de rápido impacto dirigidas al invierno 2022/2023, junto con medidas que contribuyen a un refuerzo estructural de esa seguridad energética.

Ejemplo práctico de aplicación

Como demostración se va a realizar un caso práctico...

- 4.1. solaR2
 - . . .
- 4.2. solaR
 - . . .
- 4.3. PVsyst
 - . . .
- 4.4. Comparación entre los tres

CAPÍTULO 5

Detelles de la programación

CAPÍTULO 6

Conclusiones

6.1. Conclusión

. . .

6.2. Desarrollos futuros

APÉNDICE A

Anexo ...

Bibliografía

- [Uni20] European Union. NextGenerationEU. 2020. URL: https://next-generation-eu.europa.eu/index_es.
- [BOE22a] BOE. Real Decreto-ley 10/2022, de 13 de mayo, por el que se establece con carácter temporal un mecanismo de ajuste de costes de producción para la reducción del precio de la electricidad en el mercado mayorista. 2022. URL: https://www.boe.es/buscar/act.php?id=BOE-A-2022-7843.
- [BOE22b] BOE. Real Decreto-ley 6/2022, de 29 de marzo, por el que se adoptan medidas urgentes en el marco del Plan Nacional de respuesta a las consecuencias económicas y sociales de la guerra en Ucrania. 2022. URL: https://www.boe.es/buscar/doc.php?id=BOE-A-2022-4972.
- [dem22] Ministerio para transción ecológica y el reto demográfico. Plan + Seguridad Energética. 2022. URL: https://www.miteco.gob.es/es/ministerio/planes-estrategias/seguridad-energetica.html#planSE.
- [Eur22] Consejo Europeo. REPowerEU. 2022. URL: https://www.consilium.europa.eu/es/policies/eu-recovery-plan/repowereu/.
- [Hac22] Ministerio de Hacienda. *Mecanismo de Recuperación y Resiliencia*. 2022. URL: https://www.hacienda.gob.es/es-ES/CDI/Paginas/FondosEuropeos/Fondos-relacionados-COVID/MRR.aspx.
- [UNE23] UNEF. "Fomentando la biodiversidad y el crecimiento sostenible". En: Informe anual UNEF (2023). URL: https://www.unef.es/es/recursos-informes?idMultimediaCategoria= 18.