(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 December 2003 (31.12.2003)

PCT

(10) International Publication Number WO 2004/001000 A2

(51) International Patent Classification7:

C12N

(21) International Application Number:

PCT/US2003/019437

(22) International Filing Date:

20 June 2003 (20.06.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/390,186

21 June 2002 (21.06.2002) US

- (71) Applicant: MONSANTO TECHNOLOGY LLC [US/US]; 800 N. Lindbergh Boulevard, St. Louis, MO 63167 (US).
- (72) Inventor: FILLATTI, Joanne, J.; 36757 Russell Blvd., Davis, CA 95616 (US).
- (74) Agents: MARSH, David, R. et al.; Arnold & Porter, Attn: IP Docketing Dept., Room 1126B, 555 Twelfth Street, N.W., Washington, DC 20004-1206 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: INTRON DOUBLE STRANDED RNA CONSTRUCTS AND USES THEREOF

(57) Abstract: The present invention is in the field of plant genetics and provides agents capable of gene-specific silencing. The present invention specifically provides double-stranded RNA (dsRNA) agents, methods for utilizing such agents and plants containing such agents.

FIELD OF THE INVENTION

The present invention is in the field of plant genetics and provides agents capable of gene-specific silencing. The present invention specifically provides double stranded RNA (dsRNA) agents, methods for utilizing such agents and plants containing such agents.

BACKGROUND OF THE INVENTION

Silencing of genes in plants occurs at both the transcriptional level and post-transcriptional level. Certain of these mechanisms are associated with nucleic acid homology at the DNA or RNA level (Matzke et al., Current Opinion in Genetics and Development, 11:221-227 (2001)). Double-stranded RNA molecules can induce sequence-specific silencing, referred to as RNA interference or RNAi. Fire et al., Nature, 391:806-811 (1988).

SUMMARY OF THE INVENTION

The present invention includes and provides a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, such that one strand of the double-stranded molecule is coded by a portion of the DNA which is at least 90% identical to at least one transcribed intron of a gene.

The present invention also includes and provides a transformed cell or organism having in its genome an introduced nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, such that one strand of the double-stranded molecule is coded by a portion of the DNA which is at least 90% identical to at least one transcribed intron of a gene.

The present invention further includes and provides a transformed plant having in its genome an introduced nucleic acid construct comprising DNA which is transcribed into RNA

5

10

15

20

WO 2004/001000

PCT/US2003/019437
that forms at least one double-stranded RNA molecule, such that one strand of the doublestranded molecule is coded by a portion of the DNA which is at least 90% identical to at least
one transcribed intron of a gene.

The present invention includes and provides a method of reducing expression of a protein encoded by a target gene in a mammal comprising introducing into a cell or organism a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, such that one strand of the double-stranded molecule is coded by a portion of the DNA which is at least 90% identical to at least one transcribed intron of a gene.

The present invention includes and provides a method of reducing expression of a protein encoded by a target gene in a plant comprising introducing into a plant genome a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, such that one strand of the double-stranded molecule is coded by a portion of the DNA which is at least 90% identical to at least one transcribed intron of a gene.

The present invention includes and provides a method of altering the expression of a target gene by inserting into a cell or organism a DNA construct for producing a double stranded RNA molecule coding for an intron within the target gene. More particularly, the nucleic acid construct comprises DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, one strand of which is coded by a portion of DNA which is at least 90% identical to at least one transcribed intron of a gene. In a preferred aspect of the invention, one strand of the double-stranded RNA molecule is at least 98%, even more preferably 100% identical, to an intron of a gene.

In one aspect of the invention, a construct for producing double-stranded RNA comprises one strand of an intron, a spliceable intron, and the complement of the intron, such

5

10

15

20

that the spliceable intron provides a hairpin loop when the intron and the complement of the intron hybridize to each other.

In yet another aspect of this invention the constructs are based on introns within a FAD2 gene or a FAD3 gene.

In yet another aspect of this invention the construct comprises DNA which is transcribed into double-stranded RNA for at least two transcribed introns, e.g. introns for two or three or more genes.

Another aspect of this invention provides a transformed cell or organism having in its genome a nucleic acid construct which produces a double-stranded RNA of a gene to be suppressed, e.g., in a plant or an animal, preferably a plant, a mammal, an insect or a nematode. The present invention provides a transformed plant having in its genome a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule such that one strand of the double-stranded molecule is coded by a portion of the DNA which is at least 90% identical to at least one transcribed intron of a native plant gene or a plant pest gene.

This invention also provides a method of reducing expression of a protein encoded by a target gene in a mammal comprising introducing into a mammalian cell or organism a nucleic acid construct comprising DNA which produces double-stranded RNA based on an intron within a gene to be suppressed. Another aspect of this invention provides a method of reducing expression of a protein encoded by a target gene in a plant comprising introducing into a plant cell or organism a nucleic acid construct comprising DNA which produces double-stranded RNA based on an intron within a gene to be suppressed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic of construct pCGN3892.

Figure 2 is a schematic of construct pMON70674.

Figure 3 is a schematic of construct pMON70678.

5

10

15

20

Figure 4 is a schematic of construct pMON68546.

DETAILED DESCRIPTION OF THE INVENTION

Description of the Nucleic Acid Sequences

5	SEQ ID NO: 1 sets forth a nucleic acid sequence of a FAD2-1A intron 1.
---	--

SEQ ID NO: 2 sets forth a nucleic acid sequence of a FAD2-1B intron 1.

SEQ ID NO: 3 sets forth a nucleic acid sequence of a partial FAD2-2 genomic clone.

SEQ ID NO: 4 sets forth a nucleic acid sequence of a FAD2-2B intron 1.

SEQ ID NO: 5 sets forth a nucleic acid sequence of a FAD3-1A intron 1.

SEQ ID NO: 6 sets forth a nucleic acid sequence of a FAD3-1A intron 2.

SEQ ID NO: 7 sets forth a nucleic acid sequence of a FAD3-1A intron 3A.

SEQ ID NO: 8 sets forth a nucleic acid sequence of a FAD3-1A intron 4.

SEQ ID NO: 9 sets forth a nucleic acid sequence of a FAD3-1A intron 5.

SEQ ID NO: 10 sets forth a nucleic acid sequence of a FAD3-1A intron 3B.

SEQ ID NO: 11 sets forth a nucleic acid sequence of a FAD3-1A intron 3C.

SEQ ID NO: 12 sets forth a nucleic acid sequence of a FAD3-1B intron 3C.

SEQ ID NO: 13 sets forth a nucleic acid sequence of a FAD3-1B intron 4.

SEQ ID NO: 14 sets forth a nucleic acid sequence of a FAD3-1C intron 4.

SEQ ID NO: 15 sets forth a nucleic acid sequence of a FAD2-1A gene sequence.

SEQ ID NOs: 16 and 17 set forth nucleic acid sequences of FAD2-1A PCR primers.

SEQ ID NO: 18 sets forth a nucleic acid sequence of a partial FAD2-1A genomic clone.

SEQ ID NO: 19 sets forth a nucleic acid sequence of a partial FAD2-1B genomic clone.

SEQ ID NOs: 20 and 21 set forth nucleic acid sequences of FAD3-1A PCR primers.

SEQ ID NO: 22 sets forth a nucleic acid sequence of a FAD2-1B promoter.

SEQ ID NO: 23 sets forth a nucleic acid sequence of a partial FAD3-1A genomic clone.

SEQ ID NOs: 24 through 39 set forth nucleic acid sequences of PCR primers.

15

SEQ ID NO: 40 sets forth a nucleic acid sequence of a soybean FATB genomic clone.

SEQ ID NO: 41 sets forth a nucleic acid sequence of a soybean FATB intron I.

SEQ ID NO: 42 sets forth a nucleic acid sequence of a soybean FATB intron II.

SEQ ID NO: 43 sets forth a nucleic acid sequence of a soybean FATB intron III.

SEQ ID NO: 44 sets forth an amino acid sequence of a soybean FATB enzyme.

SEQ ID NO: 45 sets forth a nucleic acid sequence of a soybean FATB partial genomic clone.

SEQ ID NOs: 46-53 set forth nucleic acid sequences of oligonucleotide primers.

SEQ ID NO: 54 sets forth a nucleic acid sequence of a PCR product containing

10 soybean FATB intron II.

SEQ ID NO: 55 sets forth a nucleic acid sequence of a soybean FATB cDNA.

Definitions

5

15

20

25

As used herein, the term "gene" is used to refer to a nucleic acid sequence that encompasses a 5' promoter region associated with the expression of the gene product, any intron and exon regions and 3' untranslated regions associated with the expression of the gene product.

As used herein, a target gene can be any gene of interest present in an organism which contains a transcribed intron. A target gene may be endogenous or introduced.

As used herein, when referring to proteins and nucleic acids herein, the use of plain capitals, e.g., "FATB", indicates a reference to an enzyme, protein, polypeptide, or peptide, and the use of italicized capitals, e.g., "FATB", is used to refer to nucleic acids, including without limitation genes, cDNAs, and mRNAs.

As used herein, a cell or organism can have a family of more than one gene encoding a particular enzyme. As used herein, a gene family is two or more genes in an organism which encode proteins that exhibit similar functional attributes. An example of two members of a gene family are FAD2-1 and FAD2-2. As used herein, a "FAD2 gene family member" is any

FAD2 gene found within the genetic material of the plant. As used herein, a "FAD3 gene family member" is any FAD3 gene found within the genetic material of the plant. As used herein, a "FATB gene family member" is any FATB found within the genetic material of the plant. A gene family can be additionally classified by the similarity of the nucleic acid sequences. In a preferred aspect of this embodiment, a gene family member exhibits at least 60%, more preferably at least 70%, more preferably at least 80% nucleic acid sequence identity in the coding sequence portion of the gene.

As used herein, RNAi and dsRNA both refer to gene-specific silencing that is induced by the introduction of a double-stranded RNA molecule, see e.g., U.S. Patents 6,506,559 and 6,573,099, and U.S. patent applications 09/056,767 and 09/127,735.

As used herein, a "dsRNA molecule" and an "RNAi molecule" both refer to a double-stranded RNA molecule capable, when introduced into a cell or organism, of at least partially reducing the level of an mRNA species present in a cell or a cell of an organism.

As used herein, an "intron dsRNA molecule" and an "intron RNAi molecule" both refer to a double-stranded RNA molecule capable, when introduced into a cell or organism, of at least partially reducing the level of an mRNA species present in a cell or a cell of an organism where the double-stranded RNA molecule exhibits sufficient identity to an intron of a gene present in the cell or organism to reduce the level of an mRNA containing that intron sequence.

As used herein, a "FAD2", " $\Delta 12$ desaturase" or "omega-6 desaturase" gene is a gene that encodes an enzyme capable of catalyzing the insertion of a double bond into a fatty acyl moiety at the twelfth position counted from the carboxyl terminus.

As used herein, the terminology "FAD2-1" is used to refer to a FAD2 gene that is naturally expressed in a specific manner in seed tissue.

As used herein, the terminology "FAD2-2" is used to refer a FAD2 gene that is (a) a

different gene from a FAD2-1 gene and (b) is naturally expressed in multiple tissues, including the seed.

5

10

15

As used herein, a "FAD3", "\Delta 15 desaturase" or "omega-3 desaturase" gene is a gene that encodes an enzyme capable of catalyzing the insertion of a double bond into a fatty acyl moiety at the fifteenth position counted from the carboxyl terminus.

As used herein, the terminology "FAD3-1" is used to refer a FAD3 gene that is
naturally expressed in multiple tissues, including the seed.

As used herein, the capital letter that follows the gene terminology (A, B, C) is used to designate the family member, i.e., FAD2-1A is a different gene family member from FAD2-1B.

The term "non-coding" refers to sequences of nucleic acid molecules that do not encode part or all of an expressed protein. Non-coding sequences include but are not limited to introns, promoter regions, 3' untranslated regions, and 5' untranslated regions.

The term "intron" as used herein refers to the normal sense of the term as meaning a segment of nucleic acid molecules, usually DNA, that does not encode part of or all of an expressed protein, and which, in endogenous conditions, is transcribed into RNA molecules, but which is spliced out of the endogenous RNA before the RNA is translated into a protein. The splicing, i.e., intron removal, occurs at a defined splice site, e.g., typically at least about 4 nucleotides, between cDNA and intron sequence. For example, without limitation, the sense and antisense intron segments illustrated herein, which form a double-stranded RNA contained no splice sites.

The term "spliceable intron" as used herein refers to an intron that contains functional splice sites at each end. For example, without limitation, in the constructs illustrated herein, spliceable introns have been used to form the hairpin loop connecting two antiparallel RNA strands of intron sequence which had splice sites removed.

The term "exon" as used herein refers to the normal sense of the term as meaning a segment of nucleic acid molecules, usually DNA, that encodes part of or all of an expressed protein.

10

15

20

As used herein, a promoter that is "operably linked" to one or more nucleic acid sequences is capable of driving expression of one or more nucleic acid sequences, including multiple coding or non-coding nucleic acid sequences arranged in a polycistronic configuration.

As used herein, a "series" is a sequential collection of elements arranged consecutively.

Nucleic Acid Molecules

Agents of the invention include nucleic acid molecules. In an aspect of the present invention, a nucleic acid molecule comprises a nucleic acid sequence, which when introduced into a cell or organism, is capable of selectively reducing the level of a target protein and/or transcript that encodes a target protein.

In a preferred aspect, a nucleic acid molecule of the present invention exhibits sufficient homology to one or more introns which when introduced into a cell or organism as a dsRNA construct, is capable of effectively eliminating, substantially reducing, or at least partially reducing the level of an mRNA transcript or protein encoded by the gene from which the intron was derived. In another preferred aspect, a nucleic acid molecule of the present invention exhibits sufficient homology to one or more introns such that, when introduced into a cell or organism as a dsRNA construct, the nucleic acid molecule is capable of effectively eliminating, substantially reducing, or at least partially reducing the level of an mRNA transcript or protein encoded by a gene family member from which the intron was derived. In a preferred aspect, a dsRNA construct does not contain exon sequences corresponding to a sufficient part of an exon to be capable of effectively eliminating, substantially reducing, or at least partially reducing the level of an mRNA transcript or protein encoded by a gene from which the exon was derived.

An intron can be any intron from a gene, whether endogenous or introduced. Nucleic acid sequences of such introns can be derived from a multitude of sources, including, without limitation, databases such as EMBL and Genbank found at www-ebi.ac.uk/swisprot/; www-

5

10

15

20

expasy.ch/; www-embl-heidelberg.de/; and www-ncbi.nlm.nih.gov. Nucleic acid sequences of such introns can also be derived, without limitation, from sources such as the GENSCAN program found at //genes.mit.edu/GENSCAN.html. In a further embodiment, additional introns may be obtained by any method by which additional introns may be identified. In a preferred embodiment, additional introns may be obtained by screening a genomic library with a probe of either known exon or intron sequences. In another preferred embodiment, additional introns may be obtained by a comparison between genomic sequence and corresponding cDNA sequence that allows identification of additional introns. In a more preferred embodiment, additional introns may be obtained by screening a genomic library with a probe of either known exon or intron sequences. The gene may then be cloned and confirmed and any additional introns may be identified by a comparison between genomic sequence and cDNA sequence. Additional introns may, for example without limitation, be amplified by PCR and used in an embodiment of the present invention.

In another preferred embodiment, an intron, such as for example, a soybean intron, may be cloned by alignment to an intron from another organism, such as, for example, *Arabidopsis*. In this embodiment, the location of an intron in an *Arabidopsis* amino acid sequence, for example, is identified. An amino acid sequence, from *Arabidopsis* for example, may then be aligned, with, for example a soybean amino acid sequence, providing a prediction for the location of additional soybean introns.

In a preferred aspect, the target protein is selected from the group consisting of FAD2, FAD3, and FATB. In another preferred aspect, the target protein is selected from the group of genes consisting of FAD2-1A, FAD2-1B, FAD2-2B, FAD3-1A, FAD3-1B, FAD3-1C, and FATB, or in another aspect two or more of said genes. In a preferred aspect, where homology is present between or among gene family members, at least two target proteins from the same gene family are affected. In a particularly preferred aspect, the target protein is both FAD2-1A

5

10

15

20

WO 2004/001000 PCT/US2003/019437 and FAD2-1B. In another particularly preferred aspect, the target protein is both FAD3-1A and FAD3-1C.

Representative sequences for *FAD2-1A*, *FAD2-1B*, *FAD2-2B*, *FAD3-1A*, *FAD3-1B*, *FAD3-1C* introns include, without limitation, those set forth in U.S. Application Serial Number 10/176,149, filed on June 21, 2002; and U.S. Patent Application Serial Number 09/638,508, filed August 11, 2000; and U.S. Provisional Application Serial Number 60/151,224, filed August 26, 1999; and U.S. Provisional Application Serial Number 60/172,128, filed December 17, 1999.

Representative sequences for *FATB* introns include, without limitation, those set forth in the present application at SEQ ID NOs: 41, 42, and 43, as well as those set forth in U.S. Patent Nos. 5,723,761, 5,955,329, 5,955,650, 6,150,512, 6,331,664, and 6,380,462; and International Patent Publication Nos. WO 01/35726, WO 01/36598, and WO 02/15675.

Representative sequences for *FATB* introns also include, without limitation, those set forth in U.S. Provisional Application Serial Number 60/390,185, filed June 21, 2002.

In a preferred aspect, the target protein is encoded by one member of a gene family. In another preferred aspect, the target gene is a member of a gene family. A particularly preferred use of the present invention is where two or more genes within the gene family exhibit similar nucleic acid sequences within a coding region for the target protein but exhibit dissimilar nucleic acid sequences within a transcribed intron region. In this aspect, a first nucleic acid sequence is similar to a second nucleic acid sequence if a dsRNA molecule to the first nucleic acid sequence reduces the level of a protein and/or a transcript which is encoded by the second nucleic acid sequence. Likewise, in this aspect, a first nucleic acid sequence is dissimilar to a second nucleic acid sequence if a dsRNA molecule directed to the first nucleic acid sequence does not reduce the level of a second protein and/or a transcript which is encoded by the second nucleic acid sequence.

5

10

15

20

In a preferred aspect, the target gene or target protein is a non-viral gene or protein. In another preferred aspect, the target gene or target protein is an endogenous gene or protein. In a further preferred aspect, the intron is an intron located between exons. In another preferred aspect, the intron is an intron that is within a 5' or 3' UTR. In another preferred aspect, the target gene or protein is a non-endogenous gene or protein; for example, the target gene or protein may be found in a plant pest, such as, for example, in a plant nematode.

Further preferred embodiments of the invention are nucleic acid molecules that are at least 85% identical, preferably at least 90% identical, more preferably 95, 97, 98, 99% identical, or most preferably 100% identical over their entire length to an intron.

"Identity," as is well understood in the art, is a relationship between two or more polypeptide sequences or two or more nucleic acid molecule sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or nucleic acid molecule sequences, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods including, but not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M. and Griffin, H.G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., Stockton Press, New York (1991); and Carillo, H., and Lipman, D., SIAM J. Applied Math, 48:1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available programs.

Computer programs which can be used to determine identity between two sequences include, but are not limited to, GCG (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); suite of five BLAST programs, three designed for nucleotide sequences queries

5

10

15

20

WO 2004/001000 PCT/US2003/019437 (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology, 12:76-80 (1994); Birren et al., Genome Analysis, 1:543-559 (1997)). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH, Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol., 215:403-410 (1990)). The well-known Smith Waterman algorithm can also be used to determine identity.

Parameters for polypeptide sequence comparison typically include the following:

Algorithm: Needleman and Wunsch, J. Mol. Biol., 48:443-453 (1970)

Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, Proc. Natl. Acad.

10 Sci. USA, 89:10915-10919 (1992)

5

15

Gap Penalty: 12

Gap Length Penalty: 4

A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison, Wisconsin. The above parameters along with no penalty for end gap are the default parameters for peptide comparisons.

Parameters for nucleic acid molecule sequence comparison include the following:

Algorithm: Needleman and Wunsch, J. Mol. Bio., 48:443-453 (1970)

Comparison matrix: matches - +10; mismatches = 0

Gap Penalty: 50

20 Gap Length Penalty: 3

As used herein, "% identity" is determined using the above parameters as the default parameters for nucleic acid molecule sequence comparisons and the "gap" program from GCG, version 10.2.

The invention further relates to nucleic acid molecules that hybridize to a plant intron.

In particular, the invention relates to nucleic acid molecules that hybridize under stringent conditions to the above-described nucleic acid molecules. As used herein, the terms "stringent

conditions" and "stringent hybridization conditions" mean that hybridization will generally occur if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/milliliter denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at approximately 65°C. Other hybridization and wash conditions are well known and are exemplified in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, NY (1989), particularly Chapter 11. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.

One subset of the nucleic acid molecules of the invention includes fragment nucleic acid molecules. For example, fragment nucleic acid molecules may consist of significant portion(s) of, or indeed most of, a plant intron. Alternatively, fragments may comprise smaller oligonucleotides having from about 15 to about 400 contiguous nucleotide residues and more preferably, about 15 to about 45 contiguous nucleotide residues, about 20 to about 45 contiguous nucleotide residues, about 21 to about 30 contiguous nucleotide residues, about 21 to about 30 contiguous nucleotide residues, about 21 to about 25 contiguous nucleotide residues, about 19 to about 25 contiguous nucleotide residues, about 100% identity to the plant intron. In another preferred embodiment, a fragment comprises a portion of a larger nucleic acid sequence.

In another aspect, a fragment nucleic acid molecule has a nucleic acid sequence that is at least 15, 25, 50, or 100 contiguous nucleotides of a nucleic acid molecule of the present invention. In a preferred embodiment, a nucleic acid molecule has a nucleic acid sequence that is at least 15, 25, 50, or 100 contiguous nucleotides of a plant intron.

5

10

15

20

WO 2004/001000

5

10

15

20

25

PCT/US2003/019437

In one aspect of the present invention the nucleic acids of the present invention are said to be introduced nucleic acid molecules. A nucleic acid molecule is said to be "introduced" if it is inserted into a cell or organism as a result of human manipulation, no matter how indirect. Examples of introduced nucleic acid molecules include, but are not limited to, nucleic acids that have been introduced into cells via transformation, transfection, injection, and projection, and those that have been introduced into an organism via methods including, but not limited to, conjugation, endocytosis, and phagocytosis. The cell or organism can be, or can be derived from, a plant, plant cell, algae, algae cell, fungus, fungal cell, or bacterial cell. A nucleic acid molecule of the present invention may be stably integrated into a nuclear, chloroplast or mitochondrial genome, preferably into the nuclear genome.

An agent, preferably a dsRNA molecule, is preferably capable of providing at least a partial reduction, more preferably a substantial reduction, or most preferably effective elimination of another agent such as a protein or mRNA.

As used herein, "a reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to a cell or organism lacking a dsRNA molecule capable of reducing the agent.

As used herein, "at least a partial reduction" of the level of an agent such as a protein or mRNA means that the level is reduced at least 25% relative to a cell or organism lacking a dsRNA molecule capable of reducing the agent.

As used herein, "a substantial reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to a cell or organism lacking a dsRNA molecule capable of reducing the agent, where the reduction of the level of the agent is at least 75%.

As used herein, "an effective elimination" of an agent such as a protein or mRNA is relative to a cell or organism lacking a dsRNA molecule capable of reducing the agent, where the reduction of the level of the agent is greater than 95%.

An agent, preferably a dsRNA molecule, is preferably capable of providing at least a partial reduction, more preferably a substantial reduction, or most preferably effective elimination of another agent such as a protein or mRNA, wherein the agent leaves the level of a second agent essentially unaffected, substantially unaffected, or partially unaffected.

As used herein, "essentially unaffected" refers to a level of an agent such as a protein or mRNA transcript that is either not altered by a particular event or altered only to an extent that does not affect the physiological function of that agent. In a preferred aspect, the level of the agent that is essentially unaffected is within 20%, more preferably within 10%, and even more preferably within 5% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent.

As used herein, "substantially unaffected" refers to a level of an agent such as a protein or mRNA transcript in which the level of the agent that is substantially unaffected is within 49%, more preferably within 35%, and even more preferably within 24% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent.

As used herein, "partially unaffected" refers to a level of an agent such as a protein or mRNA transcript in which the level of the agent that is partially unaffected is within 80%, more preferably within 65%, and even more preferably within 50% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent.

When levels of an agent are compared, such a comparison is preferably carried out between organisms with a similar genetic background. In another even more preferable aspect, a similar genetic background is a background where the organisms being compared are plants, and the plants are isogenic except for any genetic material originally introduced using plant transformation techniques.

5

10

15

20

In a preferred aspect, the capability of a nucleic acid molecule to reduce or selectively reduce the level of a gene relative to another gene is carried out by a comparison of levels of mRNA transcripts. As used herein, mRNA transcripts include processed and non-processed mRNA transcripts. In another preferred aspect, the capability of a nucleic acid molecule to reduce or selectively reduce the level of a gene relative to another gene is carried out by a comparison of phenotype. In a preferred aspect, the comparison of phenotype is a comparison of oil composition.

In a further embodiment, a nucleic acid molecule, when introduced into a cell or organism, selectively reducing the level of a protein and/or transcript encoded by a first gene while leaving the level of a protein and/or transcript encoded by a second gene partially unaffected, substantially unaffected, or essentially unaffected, also alters the oil composition of the cell or organism.

Organisms

5

10

15

20

25

The constructs of this invention can be used to suppress any gene containing unique intron sequence of a target gene for suppression in a eukaryotic organism, such as for example without limitation, plants or animals, such as mammals, insects, nematodes, fish, and birds. The target gene for suppression can be an endogenous gene or a transgene in an organism to be transformed with a construct of the present invention. Alternatively, the target gene for suppression can be in a non-transgenic organism which acquires the dsRNA or DNA producing dsRNA by ingestion or infection by a transgenic organism. See e.g., U.S. Patent 6,506,559.

Thus, an aspect of this invention provides a method where the target gene for suppression encodes a protein in an insect or nematode which is a pest to a plant. In an aspect, a method comprises introducing into the genome of a pest-targeted plant a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule which is effective for reducing expression of a target gene within the

WO 2004/001000 PCT/US2003/019437 pest when the pest, e.g., insect or nematode ingests cells from said plant. In a preferred

embodiment, the gene suppression is fatal to the pest.

Plant Constructs and Plant Transformants

5

10

15

20

25

Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile or sterile plant or plant part. Exogenous genetic material is any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism. Such exogenous genetic material includes, without limitation, nucleic acid molecules that encode a dsRNA molecule of the present invention.

In a preferred aspect, a plant cell or plant of the present invention includes a nucleic acid molecule that exhibits sufficient homology to one or more plant introns such that when it is expressed as a dsRNA construct, it is capable of effectively eliminating, substantially reducing, or at least partially reducing the level of an mRNA transcript or protein encoded by the gene from which the intron was derived or any gene which has an intron with homology to the target intron.

In one embodiment of the invention, the expression level of a protein or transcript in one family member of that gene is selectively reduced while leaving the level of a protein or transcript of a second family member partially unaffected. In a preferred embodiment of the invention, the expression level of a protein or transcript in one family member of that gene is selectively reduced while leaving the level of a protein or transcript of a second family member substantially unaffected. In a highly preferred embodiment of the invention, the expression level of a protein or transcript in one family member of that gene is selectively reduced while leaving the level of a protein or transcript of a second family member essentially unaffected.

In a particularly preferred embodiment, a transgenic plant includes a nucleic acid molecule that comprises a nucleic acid sequence, which is capable of selectively reducing the expression level of a protein and/or transcript encoded by certain FAD2 and/or FAD3 genes

WO 2004/001000 PCT/US2003/019437 while leaving the level of a protein and/or transcript of at least one other FAD2 or FAD3 gene in the plant partially unaffected or more preferably substantially or essentially unaffected.

The levels of target products such as transcripts or proteins may be decreased throughout an organism such as a plant or mammal, or such decrease in target products may be localized in one or more specific organs or tissues of the organism. For example, the levels of products may be decreased in one or more of the tissues and organs of a plant including without limitation: roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds and flowers. A preferred organ is a seed.

The present invention provides nucleic acid constructs that encode a dsRNA molecule of the present invention. In a preferred aspect, such constructs comprise at least one sequence that when transcribed is a sense sequence that exhibits sufficient identity to an intron which when expressed in the presence of its complement (antisense) forms a double-stranded RNA molecule capable of at least partially reducing the level of an mRNA containing the intron sequence. In another preferred aspect, such constructs comprise at least one sequence that when transcribed is a sense sequence that exhibits sufficient identity to more than one intron, preferably more than two introns, more preferably more than three introns, which when expressed in the presence of their complements (antisense) forms a double-stranded RNA molecule capable of at least partially reducing the level of all mRNAs containing the intron sequence.

20 In one aspect, e.g. for suppressing plant genes, the nucleic acid construct comprises a plant promoter and a DNA sequence capable of expressing a first RNA that exhibits identity to a transcribed intron of a plant gene and expressing a second RNA capable of forming a doublestranded RNA molecule with said first RNA. In a preferred aspect, the first RNA exhibits identity to at least two, more preferably at least three or at least four, five or six plant introns. In another preferred aspect, the first RNA and the second RNA are encoded by physically

linked nucleic acid sequences.

25

5

10

When physically linked, the nucleic acid sequences which encode the first RNA and the second RNA (the complement of the first RNA) can in a preferred aspect be separated by a sequence (spacer sequence), preferably one that promotes the formation of a dsRNA molecule. Examples of such sequences include those set forth in Wesley et al., supra, and Hamilton et al., Plant J., 15:737-746 (1988) which are capable of forming a hairpin loop between hybridized RNA. In a preferred aspect, the separating sequence is a spliceable intron. Spliceable introns include, but are not limited to, an intron selected from the group consisting of Pdk intron, FAD3 intron #5, FAD3 intron #1, FAD3 intron #3A, FAD3 intron #3B, FAD3 intron #3C, FAD3 intron #4, FAD3 intron #5, FAD2 intron #1, FAD2-2 intron. Preferred spliceable introns include, but are not limited to, an intron selected from the group consisting of FAD3 intron #1, FAD3 intron #3A, FAD3 intron #3B, FAD3 intron #3C, and FAD3 intron #5. Other preferred spliceable introns include, but are not limited to, a spliceable intron that is about 0.75 kb to about 1.1 kb in length and is capable of facilitating an RNA hairpin structure. One non-limiting example of a particularly preferred spliceable intron is FAD3 intron #5.

In a particularly preferred aspect, the construct comprises a nucleic acid where a first RNA exhibits identity to two or more, preferably three or more introns where the introns are selected from the group consisting of FAD2-1A, FAD2-1B, FAD2-2B, FAD3-1A, FAD3-1B, FAD3-1C, and FATB introns.

Constructs may be designed, without limitation, in a 7S expression cassette such as the pCGN3892 vector (Figure 1). Particularly preferred constructs include the following pCGN3892 derived constructs: (1) 7S promoter -FAD2-1A sense intron -FAD3-1C sense intron -FAD3-1A sense intron -FAD3-1B sense intron -FAD3-1B sense intron -FAD3-1B antisense intron -FAD3-1A antisense intron -FAD3-1C antisense intron -FAD3-1A sense intron -FAD3-1A sense intron -FAD3-1B sense intron -FAD3-1B sense intron -FAD3-1B antisense intron -FAD3-1B antisense intron -FAD3-1A antisense intron -FAD3-1A antisense intron -FAD3-1A sense intron -FAD3-1A antisense intron -FAD3-1A sense intron -FAD3-1A antisense intron -FAD3-1A sense intron -FAD3-1A antisense intron -FAD3-1A sense

5

10

15

20

intron – FAD3-1A sense intron – spliceable FAD3 intron #5 – FAD3-1A antisense intron –

FAD2-1A antisense intron – pea rbcS; (4) 7S promoter – FAD2-1A sense intron – spliceable

FAD3 intron #5 – FAD2-1A antisense intron – pea rbcS; (5) 7S promoter – FAD3-1A sense

intron – spliceable FAD3 intron #5 – FAD3-1A antisense intron – pea rbcS; (6) 7S promoter –

FAD2-1A sense intron – FAD3-1A sense 3'UTR – spliceable FAD3 intron #5 – FAD3-1A

antisense 3'UTR – FAD2-1A antisense intron – pea rbcS; and (7) 7S promoter – FAD2-1A

sense intron – FAD3-1A sense 3'UTR – FAD3-1B sense 3'UTR – spliceable FAD3 intron #5 –

FAD3-1B antisense 3'UTR – FAD3-1A antisense 3'UTR – FAD2-1A antisense intron – pea

rbcS.

Other preferred constructs may be prepared using one or more FATB introns in a 7S expression cassette such as the pCGN3892 vector (Figure 1). For example, other particularly preferred constructs include without limitation the following pCGN3892 derived constructs:

(1) 7S promoter – FATB sense intron I – FATB sense intron II – spliceable FAD3 intron #5 – FATB antisense intron II – FATB antisense intron I – pea rbcS; (2) 7S promoter – FATB sense intron II – FATB sense intron II – FATB sense intron II – spliceable FAD3 intron #5 – FATB antisense intron II – pea rbcS; (3) 7S promoter – FATB sense intron – spliceable FAD3 intron #5 – FATB antisense intron — pea rbcS; (3) 7S promoter – FATB sense intron – spliceable FAD3 intron #5 – FATB antisense intron – pea rbcS.

In another embodiment of the present invention, a construct lacking a promoter and a 3' flanking region may be injected directly into either the cytoplasm, or preferably into the nucleus, of a cell via microinjection.

Transgenic DNA constructs used for transforming plant cells for intron-based RNAi will comprise the heterologous DNA which encodes the double-stranded RNA and a promoter to express the heterologous DNA in the host plant cells. As is well known in the art, such constructs typically also comprise a promoter and other regulatory elements, 3' untranslated regions (such as polyadenylation sites), transit or signal peptides and marker genes elements as desired. For instance, see U.S. Patent Nos. 5,858,642 and 5,322,938 which disclose versions

į

5

10

15

20

PCT/US2003/019437 WO 2004/001000 of the constitutive promoter derived from cauliflower mosaic virus (CaMV35S), U.S. Patent 6,437,217 which discloses a maize RS81 promoter, U.S. Patent 5,641,876 which discloses a rice actin promoter, U.S. Patent 6,426,446 which discloses a maize RS324 promoter, U.S. Patent 6,429,362 which discloses a maize PR-1 promoter, U.S. Patent 6,232,526 which discloses a maize A3 promoter, U.S. Patent 6,177,611 which discloses constitutive maize promoters, U.S. Patent 6,433,252 which discloses a maize L3 oleosin promoter, U.S. Patent 6,429,357 which discloses a rice actin 2 promoter and intron, U.S. Patent 5,837,848 which discloses a root specific promoter, U.S. Patent 6,084,089 which discloses cold-inducible promoters, U.S. Patent 6,294,714 which discloses light-inducible promoters, U.S. Patent 6,140,078 which discloses salt-inducible promoters, U.S. Patent 6,252,138 which discloses pathogen-inducible promoters, U.S. Patent 6,175,060 which discloses phosphorus deficiencyinducible promoters, U.S. Patent Application Publication 2002/0192813A1 which discloses 5', 3' and intron elements useful in the design of effective plant expression vectors, U.S. Patent Application No. 09/078,972 which discloses a coixin promoter, U.S. PatentApplication No. 09/757,089 which discloses a maize chloroplast aldolase promoter.

Constructs or vectors may also include, with the region of interest, a nucleic acid sequence that acts, in whole or in part, to terminate transcription of that region. A number of such sequences have been isolated, including the Tr7 3' sequence and the NOS 3' sequence (Ingelbrecht et al., The Plant Cell 1:671-680 (1989); Bevan et al., Nucleic Acids Res. 11:369-385 (1983)). Regulatory transcript termination regions can be provided in plant expression constructs of this invention as well. Transcript termination regions can be provided by the DNA sequence encoding the gene of interest or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region that is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region that is capable of terminating transcription in a plant cell can be employed in the constructs of the present invention.

5

10

15

20

WO 2004/001000

5

10

15

20

25

PCT/US2003/019437

A vector or construct may also include regulatory elements. Examples of such include the Adh intron 1 (Callis et al., Genes and Develop. 1:1183-1200 (1987)), the sucrose synthase intron (Vasil et al., Plant Physiol. 91:1575-1579 (1989)) and the TMV omega element (Gallie et al., The Plant Cell 1:301-311 (1989)). These and other regulatory elements may be included when appropriate.

In practice DNA is introduced into only a small percentage of target cells in any one experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of exogenous DNA. Useful selective marker genes include those conferring resistance to antibiotics such as kanamycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (EPSPS). Examples of such selectable markers are illustrated in U.S. Patents 5,550,318; 5,633,435; 5,780,708 and 6,118,047. Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.

Transformation Methods and Transgenic Plants

Methods and compositions for transforming plants by introducing a transgenic DNA construct or a nucleic acid molecule of the present invention into a plant genome in the practice of this invention can include any of the well-known and demonstrated methods. Preferred methods of plant transformation are microprojectile bombardment as illustrated in U.S. Patents

WO 2004/001000
PCT/US2003/019437
5,015,580; 5,550,318; 5,538,880; 6,160,208; 6,399,861 and 6,403,865 and Agrobacteriummediated transformation as illustrated in U.S. Patents 5,635,055; 5,824,877; 5,591,616;
5,981,840 and 6,384,301. See also U.S. Patent Application No. 09/823,676 for a description of vectors, transformation methods, and production of transformed Arabidopsis thaliana plants where transcription factors such as G1073 are constitutively expressed by a CaMV35S promoter.

Transformation methods of this invention to provide plants with enhanced environmental stress tolerance are preferably practiced in tissue culture on media and in a controlled environment. "Media" refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, Type I, Type II, and Type III callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Those cells, which are capable of proliferating as calli, also are recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, e.g. various media and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Patent 6,194,636 and U.S. Patent Application No. 09/757,089.

Examples of species that have been transformed by microprojectile bombardment include monocot species such as maize (PCT Publication WO 95/06128), barley, wheat (U.S. Patent No. 5,563,055), rice, oat, rye, sugarcane, and sorghum; as well as a number of dicots including tobacco, soybean (U.S. Patent No. 5,322,783), sunflower, peanut, cotton, tomato, and legumes in general (U.S. Patent No. 5,563,055).

The regeneration, development, and cultivation of plants from various transformed explants is well documented in the art. This regeneration and growth process typically

5

10

15

20

wo 2004/001000 PCT/US2003/019437 includes the steps of selecting transformed cells and culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage.

Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil. Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. Developing plantlets are transferred to soil less plant growth mix, and hardened off, prior to transfer to a greenhouse or growth chamber for maturation.

The present invention can be used with any transformable cell or tissue. Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant. Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.

Any suitable plant culture medium can be used. Examples of suitable media would include but are not limited to MS-based media (Murashige and Skoog, Physiol. Plant, 15:473-497, (1962) or N6-based media (Chu et al., Scientia Sinica 18:659, (1975) supplemented with additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins. Those of skill in the art are familiar with the variety of tissue culture media, which when supplemented appropriately, support plant tissue growth and development and are suitable for plant transformation and regeneration. These tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified. Those of skill in the art are aware that media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures can be optimized for the particular variety of interest.

ī

5

10

15

20

Any of the nucleic acid molecules of the invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements, for example, including but not limited to, vectors, promoters, and enhancers. Further, any of the nucleic acid molecules of the invention may be introduced into a plant cell in a manner that allows for expression or overexpression of the protein or fragment thereof encoded by the nucleic acid molecule.

It is understood that two or more nucleic molecules of the present invention may be introduced into a plant using a single construct and that construct can contain more than one promoter. In embodiments where the construct is designed to express two nucleic acid molecules, it is preferred that the two promoters are (i) two constitutive promoters, (ii) two seed-specific promoters, or (iii) one constitutive promoter and one seed-specific promoter. Preferred seed-specific and constitutive promoters are a napin and a 7S promoter, respectively. It is understood that two or more of the nucleic molecules may be physically linked and expressed utilizing a single promoter, preferably a seed-specific or constitutive promoter.

It is further understood that two or more nucleic acids of the present invention may be introduced into a plant using two or more different constructs. Alternatively, two or more nucleic acids of the present invention may be introduced into two different plants and the plants may be crossed to generate a single plant expressing two or more nucleic acids. In an RNAi embodiment, it is understood that the sense and antisense strands may be introduced into the same plant on one construct or two constructs. Alternatively, the sense and antisense strands may be introduced into two different plants and the plants may be crossed to generate a single plant expressing both sense and antisense strands.

The present invention also provides for parts of the plants, particularly reproductive or storage parts. Plant parts, without limitation, include seed, endosperm, ovule, pollen, roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds and flowers. In a particularly preferred embodiment of the present invention, the plant part is a seed.

5

10

15

20

WO 2004/001000

5

10

15

20

25

PCT/US2003/019437

The present invention also provides a container of over 10,000, more preferably 20,000, and even more preferably 40,000 seeds where over 10%, more preferably 25%, more preferably 50% and even more preferably 75% or 90% of the seeds are seeds derived from a plant of the present invention.

The present invention also provides a container of over 10 kg, more preferably 25 kg, and even more preferably 50 kg seeds where over 10%, more preferably 25%, more preferably 50% and even more preferably 75% or 90% of the seeds are seeds derived from a plant of the present invention.

Plants of the present invention can be part of or generated from a breeding program. The choice of breeding method depends on the mode of plant reproduction, the heritability of the trait or traits being improved, and the type of cultivar used commercially (e.g., F1 hybrid cultivar, pureline cultivar, etc). Selected, non-limiting approaches, for breeding the plants of the present invention are set forth below. A breeding program can be enhanced using markerassisted selection of the progeny of any cross. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors such as, for example, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability will generally dictate the choice.

For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection. In a preferred embodiment, a backcross or recurrent breeding program is undertaken.

The complexity of inheritance influences choice of the breeding method. Backcross breeding can be used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.

Breeding lines can be tested and compared to appropriate standards in environments representative of the commercial target area(s) for two or more generations. The best lines are candidates for new commercial cultivars; those still deficient in traits may be used as parents to produce new populations for further selection.

One method of identifying a superior plant is to observe its performance relative to other experimental plants and to a widely grown standard cultivar. If a single observation is inconclusive, replicated observations can provide a better estimate of genetic worth. A breeder can select and cross two or more parental lines, followed by repeated selfing and selection, producing many new genetic combinations.

The development of new cultivars requires the development and selection of varieties, the crossing of these varieties and the selection of superior hybrid crosses. The hybrid seed can be produced by manual crosses between selected male-fertile parents or by using male sterility systems. Hybrids are selected for certain single gene traits such as pod color, flower color, seed yield, pubescence color, or herbicide resistance, which indicate that the seed is truly a hybrid. Additional data on parental lines, as well as the phenotype of the hybrid, influence a breeder's decision whether to continue with the specific hybrid cross.

Agents of the present invention can be utilized in a variety of methods. For example, the present invention provides a method of altering the expression of a target gene comprising (a) introducing into a cell a first DNA sequence capable of expressing a first RNA which exhibits identity to a transcribed intron of the target gene and a second DNA sequence and a method of modifying a level of a target protein comprising: (a) growing a plant having

5

10

15

20

WO 2004/001000
PCT/US2003/019437
integrated into a genome a nucleic acid molecule comprising a first DNA sequence which
encodes a first RNA that exhibits identity to a transcribed intron of an mRNA that encodes the
target protein and a second DNA sequence capable of expressing a second RNA capable of
forming a double-stranded RNA molecule with the first RNA and (b) expressing the first and
second RNA. In a preferred aspect, the expression of a target gene is altered or modified if the

method of the present invention provides for at least a partial reduction, or more preferably a substantial reduction or effective elimination of an encoded agent such as a protein or mRNA.

level of an mRNA or protein encoded by that gene is altered, in a more preferred aspect, a

The following examples are illustrative and not intended to be limiting in any way.

10

15

20

25

5

EXAMPLES

Example 1- This example illustrates the identification of introns which are useful for demonstrating the suppression of genes using intron double-stranded RNA molecules.

1A. Soybean Δ12 Desaturase (FAD2-1)

A soybean FAD2-1A sequence is identified by screening a soybean genomic library using a soybean FAD2-1 cDNA probe. Three putative soy FAD2-1 clones are identified and plaque purified. Two of the three soy FAD2-1 clones are ligated into pBluescript II KS+ (Stratagene) and sequenced. Both clones (14-1 and 11-12) are the same and match the soy FAD2-1 cDNA exactly. A sequence of the entire FAD2-1A clone is provided in SEQ ID NO:15.

Prior to obtaining a full length clone, a portion of the *FAD2-1A* genomic clone is PCR amplified using PCR primers designed from the 5' untranslated sequence (Primer 12506, 5'-ATACAA GCCACTAGGCAT-3', SEQ ID NO:16) and within the cDNA (Primer 11698: 5'-GATTGGCCATGCAATGAGGGAAAAGG-3', SEQ ID NO:17). The resulting PCR product is cloned into the vector pCR 2.1 (Invitrogen) and sequenced. A soy *FAD2-1A* partial genomic clone (SEQ ID NO:18) with an intron region (SEQ ID NO:1) is identified by comparison to the

WO 2004/001000 PCT/US2003/019437 soybean cDNA sequence using the Pustell comparison program in Macvector. The FAD2-1A

intron #1 sequence (SEQ ID NO:1) begins after the ATG start codon, and is 420 bases long.

A second *FAD2-1* gene family member is also identified and cloned, and is referred to herein as *FAD2-1B*. The soy *FAD2-1B* partial genomic clone (SEQ ID NO:19) has a coding region (base pairs 1783-1785 and 2191-2463) and an intron region (base pairs 1786-2190) which are identified by comparison to the soybean cDNA sequence using the Pustell comparison program in Macvector. The *FAD2-1B* intron #1 sequence (SEQ ID NO:2) begins after the ATG start codon and is 405 bases long. Other regions in the *FAD2-1B* partial genomic clone (SEQ ID NO: 19) include a promoter (base pairs 1-1704) (SEQ ID NO: 22) and 5'UTR (base pairs 1705-1782).

1B. Soybean △15 Desaturase (FAD3)

5

10

A partial soybean *FAD3-1A* genomic sequence is PCR amplified from soybean DNA using primers 10632, 5'-CUACUACUACUACTCGAGACAAAGCCTTTAGCCTATG-3' (SEQ ID NO: 20), and 10633: 5'-

CAUCAUCAUCAUGGATCCCATGTCTCTCTATGCAAG-3' (SEQ ID NO: 21). The
 Expand Long Template PCR system (Roche Applied Sciences, Indianapolis) is used according
 to the manufacturer's directions. The resulting PCR products are cloned into the vector pCR
 2.1 (Invitrogen) and sequenced. A soy FAD3-1A partial genomic clone sequence (SEQ ID
 NO: 23) and intron regions are confirmed by comparisons to the soybean FAD3-1A cDNA
 sequence using the Pustell program in Macvector.

From the identified partial genomic soybean *FAD3-1A* sequence (SEQ ID NO:23), seven introns are identified: *FAD3-1A* intron #1(SEQ ID NO:5), *FAD3-1A* intron #2 (SEQ ID NO:6), *FAD3-1A* intron #3A (SEQ ID NO:7), *FAD3-1A* intron #4 (SEQ ID NO:8), *FAD3-1A* intron #5 (SEQ ID NO:9), *FAD3-1A* intron #3B (SEQ ID NO:10), and *FAD3-1A* intron #3C (SEQ ID NO:11). *FAD3-1A* intron #1 is 191 base pairs long and is located between positions 294 and 484, *FAD3-1A* intron #2 is 346 base pairs long and is located between positions 577

wo 2004/001000 PCT/US2003/019437 and 922, FAD3-1A intron #3A is 142 base pairs long and is located between positions 991 and 1132, FAD3-1A intron #3B is 98 base pairs long and is located between positions 1224 and 1321, FAD3-1A intron #3C is 115 base pairs long and is located between positions 1509 and 1623, FAD3-1A intron #4 is 1228 base pairs long and is located between positions 1707 and 2934, and FAD3-1A intron #5 is 625 base pairs long and is located between positions 3075 and 3699.

Introns #3C and #4 are also PCR amplified from a second *FAD3* gene family member (*FAD3-1B*). Soybean *FAD3-1B* introns #3C and #4 are PCR amplified from soybean DNA using the following primers, 5' CATGCTTTCTGTGCTTCTC 3' (SEQ ID NO: 26) and 5' GTTGATCCAACCATAGTCG 3' (SEQ ID NO: 27). The PCR products are cloned into the vector pCR 2.1 (Invitrogen) and sequenced. Sequences for the *FAD3-1B* introns #3C and #4 are provided in SEQ ID NOs:12 and 13, respectively.

1C. FATB Thioesterase

5

10

15

20

25

A soybean *FATB* sequence is identified by screening a soybean genomic library using a soybean *FATB* cDNA probe (SEQ ID NO: 55). Leaf tissue is obtained from Asgrow soy variety A3244, ground up in liquid nitrogen and stored at –80°C until use. 6 ml of SDS Extraction buffer (650 ml sterile ddH₂0, 100 ml 1M Tris-Cl pH 8, 100 ml 0.25M EDTA, 50 ml 20% SDS, 100 ml 5M NaCl, 4 µl beta-mercaptoethanol) is added to samples of 2 ml frozen/ground leaf tissue, and the mixture is incubated at 65°C for 45 min. The samples are shaken every 15 min. 2 ml ice-cold 5M potassium acetate is added to each sample, the samples are shaken, and then incubated on ice for 20 min. 3 ml CHCl₃ is added to each sample, and then the samples are shaken for 10 min.

The samples are then centrifuged at 10,000 rpm for 20 min, and the protocol is continued with the supernatant. 2 ml isopropanol is added to each sample and mixed. The samples are then centrifuged at 10,000 rpm for 20 min, and the supernatant is drained. The

WO 2004/001000 PCT/US2003/019437 pellet is resuspended in 200 μl RNase, and incubated at 65°C for 20 minutes. 300 μl

ammonium acetate/isopropanol (1:7) is added, and mixed. The samples are then centrifuged at 10,000 rpm for 15 minutes, and the supernatant is discarded. The pellet is rinsed with 500 µl 80% ethanol, and allowed to air dry. The pellet is then resuspended in 200 µl T10E1 (10mM Tris:1mM EDTA). Approximately 840 µg of clean gDNA is obtained.

Based on the *FATB* cDNA sequence and restriction enzyme patterns, six oligonucleotides are synthesized: F1 (SEQ ID NO: 46), F2 (SEQ ID NO: 47), F3 (SEQ ID NO: 48), R1 (SEQ ID NO: 49), R2 (SEQ ID NO: 50), and R3 (SEQ ID NO: 51). The oligonucleotide are used in pairs for PCR amplification of the isolated soy genomic DNA: pair 1 (F1 + R1), pair 2 (F1 + R2), pair 3 (F1 + R3), pair 4 (F2 + R1), pair 5 (F2 + R2), pair 6 (F2 + R3), pair 7 (F3 + R1), and pair 8 (F3 + R2). The PCR amplification is carried out as follows: 1 cycle, 95°C for 10 min; 40 cycles, 95°C for 1 min, 58°C for 30 sec, 72°C for 55 sec; 1 cycle, 72°C for 7 min. Three positive fragments are obtained, specifically from primer pairs 3, 6, and 7. Each fragment is cloned into vector pCR2.1 (Invitrogen). Cloning is successful for fragment #3, which is confirmed and sequenced (SEQ ID NO: 45).

Three introns are identified in the soybean *FATB* gene by comparison of the genomic sequence to the cDNA sequence: intron I (SEQ ID NO: 41) spans base 106 to base 214 of the genomic sequence (SEQ ID NO: 45) and is 109 bp in length; intron II (SEQ ID NO: 42) spans base 289 to base 1125 of the genomic sequence (SEQ ID NO: 45) and is 837 bp in length; and intron III (SEQ ID NO: 43) spans base 1635 to base 1803 of the genomic sequence (SEQ ID NO: 45) and is 169 bp in length.

Example 2 – This example illustrates constructs for expressing double-stranded RNA using separate promoters for the sense and antisense introns.

The FAD2-1A intron #1 sequence (SEQ ID NO: 1) is amplified via PCR using the FAD2-1A partial genomic clone (SEQ ID NO: 18) as a template and primers 12701 (5'-

5

10

15

20

WO 2004/001000 PCT/US2003/019437 ACGAATTCCTCGAGGTAAA TTAAATTGTGCCTGC-3' (SEQ ID NO: 24)) and 12702 (5'-GCGAGATCTATCG ATCTGTGTCAAAGTATAAAC-3' (SEQ ID NO: 25)). The resulting amplification products are cloned into the vector pCR 2.1 (Invitrogen) and sequenced. The FAD2-1A intron is then cloned into the expression cassette, pCGN3892 (Figure 1), in sense and antisense orientations. The vector pCGN3892 contains the soybean 7S alpha' 5 promoter and a pea rbcS 3'. Both gene fusions are then separately ligated in two sequential steps into pCGN9372, a vector that contains the CP4 gene regulated by the FMV promoter. The resulting vector, which contains the FAD2-1A intron in the sense and antisense orientation driven by two separate 7S alpha' promoters and the FMV-CP4 gene selectable marker, is transformed into soybean via Agrobacterium tumefaciens strain ABI using methods generally 10 described by Martinell in U.S. Patent No. 6,384,310 to provide transgenic soybean plants with the FAD2 gene suppressed.

Four of the seven introns identified from the soybean FAD3-1A genomic clone are PCR amplified using the FAD3-1A partial genomic clone as template and primers as follows: FAD3-15 1A intron #1, primers 12568: 5'-GATCGATGCCCGGGGTAATAATTTTTGTGT-3' (SEQ ID NO: 30) and 12569: 5'-CACGCCTCGAGTGTTCAATTCAATCAATG-3' (SEQ ID NO: 31); FAD3-1A intron #2, primers 12514: 5'-CACTCGAGTTAGTTCATACTGGCT-3' (SEQ ID NO: 32) and 12515: 5'-CGCATCGATTGCAAAATCCATCAAA-3' (SEQ ID NO: 33); FAD3-1A intron #4, primers 10926: 5'-

CUACUACUACUACTCGAGCGTAAATAGTGGGTGAACAC-3' (SEQ ID NO: 34) and 10927: 5'-CAUCAUCAUCAUCTCGAGGAATTCGTCCATTTTAGTACACC-3' (SEQ ID NO: 35); FAD3-1A intron #5, primers 10928: 5'-CUACUACUACUACTCGAGGCGCGT ACATTTTATTGCTTA-3' (SEQ ID NO: 36) and 10929: 5'-CAUCAUCAUCAUCT CGAGGAATTCTGCAGTGAATCCAAATG-3' (SEQ ID NO: 37). The resulting PCR
 products for each intron are cloned into the vector pCR 2.1 (Invitrogen) and sequenced.

FAD3-1A introns #1, #2, #4 and #5 are all ligated separately into the pCGN3892, in sense and antisense orientations. pCGN3892 (Figure 1) contains the soybean 7S alpha' promoter and a pea rbcS 3'. These fusions are ligated in two sequential steps into pCGN9372, a vector that contains the CP4 gene regulated by the FMV promoter for transformation into soybean. The resulting vectors contain a sense and antisense copy of each intron driven by two separate 7S alpha' promoters. For example, one such vector contains the FAD3-1A intron #1 in the sense and antisense orientation driven by two separate 7S alpha' promoters and the FMV-CP4 gene selectable marker. A second example contains the FAD3-1A intron #4 in the sense and antisense orientation driven by two separate 7S alpha' promoters and the FMV-CP4 gene selectable marker. Vectors containing such sense and antisense constructs are transformed into soybean via Agrobacterium tumefaciens strain ABI using methods generally described by Martinell in U.S. Patent No. 6,384,310.

Example 3 – This example illustrates constructs for expressing double-stranded RNA using separate promoters for the sense and antisense introns.

The soybean *FATB* intron II sequence (SEQ ID NO: 42) is amplified via PCR using the *FATB* fragment #3 partial genomic clone (SEQ ID NO: 45) as a template and primers 18133 (SEQ ID NO: 52) and 18134 (SEQ ID NO: 53). PCR amplification is carried out as follows: 1 cycle, 95°C for 10 min; 25 cycles, 95°C for 30 sec, 62°C for 30 sec, 72°C for 30 sec; 1 cycle, 72°C for 7 min.

PCR amplification results in a product (SEQ ID NO: 54) that is 854 bp long, including reengineered restriction sites at both ends. The *FATB* intron #2 PCR product is cloned separately in two sequential steps directly into the expression cassette pCGN3892 (Figure 1) in a sense or antisense orientation. Vector pCGN3892 contains the soybean 7S alpha' promoter and a pea RBCS 3'. The resulting vector contains a sense and antisense copy of the *FATB* intron #2, each of which is driven by a separate 7S alpha' promoter. The resulting gene

5

10

15

20

WO 2004/001000 PCT/US2003/019437 expression construct, is used for transformation of soybean using *Agrobacterium* methods as described herein.

Example 4 – The following sixteen steps illustrate the construction of a vector pMON68546 designed for plant transformation to suppress *FAD2*, *FAD3*, and *FATB* genes in soybean. In particular, the construct comprises a 7S alpha promoter operably linked to a series of soybean sense-oriented introns, i.e., a *FAD2-1A* intron #1, a *FAD3-1A* intron #4, a *FATB* intron #2, a *FAD3-1B* intron #4, a hairpin loop-forming spliceable intron, and a complementary series of soybean anti-sense-oriented introns, i.e., a *FAD3-1B* intron #4, a *FATB* intron #2, a *FAD3-1A* intron #4 and a *FAD2-1A* intron #1.

10 <u>Step1</u> - The soybean FAD3-1A intron #5, which serves as the spliceable intron portion of the RNAi construct, is PCR amplified using Soy genomic DNA as template, with the following primers:

5' primer = 19037 =

3' primer = 19045 =

5

ACTAGTATATTGAGCTCATATTCCTGCAGGATATTCTCGAGATATTCACGGTAGTA ATCTCCAAGAACTGGTTTTGCTGCTGTGTCTGCAGTGAATC. These primers add cloning sites to the 5' and 3' ends. To 5' end: SpeI, SacI, BstXI, PmeI, NheI, MluI, HindIII, XmaI, SmaI, SalI. To 3' end: SpeI, SacI, Sse8387I, XhoI. The Soy *FAD3-1A* intron #5 PCR product is cloned into PCR2.1, resulting in KAWHIT03.0065.

Step 2 – The soybean FAD3-1A intron #5 PCR product is then cloned into an empty AMP vector by digesting KAWHIT03.0065 (Soybean FAD3-1A intron #5 in pCR2.1) with SpeI and then the ends are filled in using the Klenow fragment of T4 Polymerase.

pMON68526 (empty AMP vector) is digested with HindIII and then the ends are filled in using

20

WO 2004/001000
PCT/US2003/019437
the Klenow fragment of T4 Polymerase. The soybean FAD3-1A PCR product with the
restriction sites described above is blunt-end ligated into pMON68526, resulting in
pMON68541 (FAD3-1A PCR product in empty AMP vector).

Step 3 - The soybean FAD 2-1A intron #1 is PCR amplified using soybean genomic

5 DNA as template, with the following primers:

5' primer = 18663 = GGGCCCGGTAAATTAAATTGTGC (Adding Bsp120I site to 5' end);

3' primer = 18664 = CTGTGTCAAAGTATAAACAAGTTCAG.

The resulting PCR product is cloned into PCR 2.1 creating KAWHIT03.0038.

Step 4 - Soybean FAD 2-1A intron #1 PCR product in KAWHIT03.0038 is cloned into KAWHIT03.0032 (empty CM resistant vector with a multiple cloning site) using the restriction sites Bsp120I and EcoRI. The resulting plasmid is KAWHIT03.0039 (Soybean FAD 2-1A intron #1 in empty CM resistant vector).

Step 5 - KAWHIT03.0039 is digested with AscI and HindIII and pMON68541 (FAD3-1A PCR product in empty AMP vector) is digested with MluI and HindIII. The Soybean FAD 2-1A intron #1 is then directionally cloned into pMON68541 to generate KAWHIT03.0071 (soybean FAD2-1A intron #1 with soybean FAD3-1A Intron #5).

Step 6 - 5' and 3' end portions of soybean FAD3-1A intron #4 are PCR amplified to create a 376bp fragment using genomic DNA as template and the following primers:

5' Primer of 5' end = 19034 = GGGCCCAAATAGTGGGTGAAC (This primer added a Bsp120I site to 5' end)

3' Primer of 5' end = 18993 = GAACTAAGGGACACAAC

5' Primer of 3' end = 18990 = CTTAGTTCGCTCTTACCTGTGATC

3' Primer of 3' end = 18996 = GTCCATTTTAGTACACCAC

The resulting PCR product is cloned into PCR 2.1 to form KAWHIT03.0067 containing the 5' and 3' ends of intron #4 from the soybean FAD3-1A.

- Step 7 KAWHIT03.0067 is cloned into KAWHIT03.0032 (empty CM resistant vector with a multiple cloning site) using the restriction sites Bsp120I and EcoRI, resulting in plasmid KAWHIT03.0068.
- Step 8 KAWHIT03.0068 (5' and 3' ends of intron #4 from the soybean FAD3-1A in CM resistant Vector) is digested with AscI and HindIII and KAWHIT03.0071 (Soybean FAD2-1A intron #1 with soybean FAD3-1A intron #5) is digested with MluI and HindIII. The 5' and 3' ends of intron #4 from the soybean FAD3-1A are directionally ligated into KAWHIT03.0071 creating KAWHIT03.0075 (soybean FAD2-1A intron#1, soybean FAD3-1A intron #4 ends and soybean FAD3-1A intron #5).
 - Step 9 5' and 3' end portions of soybean *FATB* intron #2 are PCR amplified to create a 374bp fragment using genomic DNA as template and the following primers:
- 5' Primer of 5' end = 19205 = GGGCCCTTCTCGATTCTTTCTC (Adding Bsp120I site to 5' end)
 - 3' Primer of 5' end = 19147 = CAGACAAGGCAAAGAAACAAGGGAG
 - 5' Primer of 3' end = 19088 = GCCTTGTCTGGTCCGATTGATTTCTCG
 - 3' Primer of 3' end = 19089 = CATGCATGCAAAATATACGCAAGTTAG
 The resulting PCR product is cloned into PCR 2.1 to form KAWHIT03.0069.
- Step 10 KAWHIT03.0069 (containing the 5' and 3' ends of Intron #2 from the soybean FATB) is cloned into KAWHIT03.0032 (empty CM resistant vector with a multiple cloning site) using the restriction sites Bsp120I and EcoRI to create KAWHIT03.0070. (5' and 3' ends of intron #2 from the soybean FATB in CM resistant vector).
- Step 11 KAWHIT03.0070 (5' and 3' ends of intron #2 from the soybean FATB in CM resistant vector) is digested with AscI and HindIII and KAWHIT03.0075 (Soybean FAD2-1A

5

wo 2004/001000 PCT/US2003/019437 intron #1, soybean FAD3-1A intron #4 ends and soybean FAD3-1A intron #5) is digested with MluI and HindIII. The 5' and 3' ends of intron #2 from the soybean FATB are directionally ligated into KAWHIT03.0075 to generate KAWHIT03.0077 (Soybean FAD2-1A intron #1, soybean FAD3-1A intron #4 ends, soybean FATB intron #2 ends and soybean FAD3-1A intron #5).

Step 12 - Soybean FAD3-1B intron #4 is PCR amplified using genomic DNA as template and the following primers:

5' Primer = 19516 = CCCAAGCTTGGGGTATCCCATTTAACAC (Adding HindIII site to 5' end)

3' Primer = 19515 = GACCCGGGTCCTGTGAAATTACATATAGAC (Adding XmaCI site to 3' end)

The resulting PCR product is cloned into PCR 2.1 to form KAWHIT03.0090.

Step 13 - To add the soybean FAD3-1B intron #4 into KAWHIT03.0077, plasmids KAWHIT03.0090 and KAWHIT03.0077 are digested with HindIII and XmaCI and directionally ligated to make KAWHIT03.0091 (Soybean FAD2-1A intron#1, soybean FAD3-1A intron #4 ends, soybean FATB intron #2 ends, soybean FAD3-1A intron #4 and soybean FAD3-1A intron #5).

Step 14 - KAWHIT03.0091 is digested with BstXI and SalI and the fragment containing the four introns (Soybean FAD2-1A intron #1, soybean FAD3-1A intron #4 ends, soybean FATB intron #2 ends, soybean FAD3-1A intron #4) is gel purified. In a different tube KAWHIT03.0091, is also digested with XhoI and Sse8387I. The four intron fragment is then cloned back into KAWHIT03.0091 in the opposite orientation on the other site of Soy FAD3-1A intron #5 to create KAWHIT03.0092 (soybean FAD2-1A intron #1 sense, soybean FAD3-1A intron #4 ends sense, soybean FATB intron #2 ends sense, soybean FAD3-1A intron #4 sense, soybean FAD3-1A intron #5, soy FAD3-1B intron #4 anti-sense, soybean FATB

5

10

15

20

WO 2004/001000 PCT/US2003/019437 intron #2 ends anti-sense, soybean *FAD3-1A* intron #4 ends anti-sense, soybean *FAD2-1A* intron #1 anti-sense).

Step 15 - To link the RNAi construct to the 7S alpha' promoter and the TML 3', KAWHIT03.0092 and pMON68527 (7Sa'/TML3' cassette) are digested with SacI and ligated together to make KAWHIT03.0093 0092 (7S alpha' promoter - FAD2-1A intron #1 sense, soybean FAD3-1A intron #4 ends sense, soybean FATB intron #2 ends sense, soybean FAD3-1A intron #4 sense, spliceable soybean FAD3-1A Intron #5, soy FAD3-1B intron #4 anti-sense, soybean FATB intron #2 ends anti-sense, soybean FATB intron #2 ends anti-sense, soybean FAD3-1A intron #4 ends anti-sense, soybean FAD2-1A intron #1 anti-sense — TML3').

Step 16 - To introduce the assembled RNAi construct into pMON80612, which contains the selectable maker CP4 fused to the FMV promoter and the RBCS 3', KAWHIT03.0093 and pMON80612 are digested with NotI and ligated together to form pMON68456 (illustrated in Figure 4) comprising a 7S alpha' promoter operably linked to the intron series, double-stranded-RNA-forming construct of FAD2-1A intron #1 sense, soybean FAD3-1A intron #4 ends sense, soybean FATB intron #2 ends sense, soybean FAD3-1A intron #4 sense, spliceable soybean FAD3-1A intron #5, soy FAD3-1B intron #4 anti-sense, soybean FATB intron #2 ends anti-sense, soybean FAD3-1A intron #1 anti-sense and TML3' terminator).

Representative sequences for *FAD2-1A*, *FAD2-1B*, *FAD2-2B*, *FAD3-1A*, *FAD3-1B*, and *FAD3-1C* introns include, without limitation, those set forth in U.S. Application Serial Number 10/176,149, filed June 21, 2002, and U.S. Patent Application Serial Number 09/638,508, filed August 11, 2000, and U.S. Provisional Application Serial Number 60/151,224, filed August 26, 1999, and U.S. Provisional Application Serial Number 60/172,128, filed December 17, 1999.

25 Representative sequences for *FATB* introns include, without limitation, those set forth in U.S. Provisional Application Serial Number 60/390,185, filed June 21, 2002.

Example 5 – This example illustrates the preparation of a variety of intron dsRNA-forming constructs which can suppress one or a plurality of genes in soybean.

Using the step-wise method illustrated in Example 4, intron dsRNA-forming vectors are constructed to have the following elements:

- (1) 7S promoter FAD2-1A sense intron FAD3-1C sense intron FAD3-1A sense intron FAD3-1B sense intron spliceable FAD3 intron #5 FAD3-1B anti-sense intron FAD3-1A anti-sense intron FAD3-1C anti-sense intron FAD2-1A anti-sense intron pea rbcS;
- (2) 7S promoter FAD2-1A sense intron FAD3-1A sense intron FAD3-1B sense

 intron– spliceable FAD3 intron #5 FAD3-1B anti-sense intron FAD3-1A anti-sense intron –

 FAD2-1A anti-sense intron pea rbcS;
 - (3) 7S promoter -FAD2-1A sense intron -FAD3-1A sense intron spliceable FAD3 intron #5-FAD3-1A anti-sense intron -FAD2-1A anti-sense intron pea rbcS;
 - (4) 7S promoter FAD2-1A sense intron spliceable FAD3 intron #5 FAD2-1A antisense intron pea rbcS;
 - (5) 7S promoter -FAD3-1A sense intron -spliceable FAD3 intron #5-FAD3-1A antisense intron pea rbcS;
 - (6) 7S promoter FAD2-1A sense intron FAD3-1A sense 3'UTR spliceable FAD3 intron #5 FAD3-1A anti-sense 3'UTR FAD2-1A anti-sense intron pea rbcS; and
 - (7) 7S promoter FAD2-1A sense intron FAD3-1A sense 3'UTR FAD3-1B sense
 3'UTR spliceable FAD3 intron #5 FAD3-1B anti-sense 3'UTR FAD3-1A anti-sense
 3'UTR FAD2-1A anti-sense intron pea rbcS;
 - (8) 7S promoter FATB sense intron I FATB sense intron II spliceable FAD3 intron #5 FATB anti-sense intron II FATB anti-sense intron I pea rbcS;

15

Ę

3,

- (9) 7S promoter FATB sense intron II FATB sense intron II spliceable FAD3 intron #5 FATB anti-sense intron II pea rbcS;
- (10) 7S promoter FATB sense intron spliceable FAD3 intron #5 FATB anti-sense intron –pea rbcS;
- 5 (11) 7S promoter FAD2-1A sense intron FAD3-1C sense intron FAD3-1A sense intron FAD3-1B sense intron FATB sense intron spliceable FAD3 intron #5 FATB antisense intron FAD3-1B anti-sense intron FAD3-1A anti-sense intron FAD3-1C anti-sense intron FAD2-1A anti-sense intron pea rbcS;
- (12) 7S promoter FAD2-1A sense intron FAD3-1A sense intron FAD3-1B sense intron FATB sense intron FATB sense intron FAD3-1B anti-sense intron FAD3-1A anti-se
 - (13) 7S promoter FAD2-IA sense intron sense intron FAD3-IA sense intron FATB sense intron spliceable FAD3 intron #5 FATB anti-sense intron FAD3-IA anti-sense intron FAD2-IA anti-sense intron pea rbcS.
- Example 6 This example illustrates plant transformation with the constructs of this invention to produce soybean plants with suppressed genes.

A transformation vector pMON68456 as prepared in Example 4 is used to introduce an intron double-stranded RNA-forming construct into soybean for suppressing the Δ12 desaturase, Δ15 desaturase, and *FATB* genes. The vector is stably introduced into soybean (Asgrow variety A4922) via *Agrobacterium tumefaciens* strain ABI (Martinell, U.S. Patent No. 6,384,301). The CP4 selectable marker allows transformed soybean plants to be identified by selection on media containing glyphosate herbicide.

Fatty acid compositions are analyzed from seed of soybean lines transformed with the intron expression constructs using gas chromatography. R_1 pooled seed and R_1 single seed oil compositions demonstrate that the mono- and polyunsaturated fatty acid compositions were

20

altered in the oil of seeds from transgenic soybean lines as compared to that of the seed from non-transformed soybean. For instance, *FAD2* suppression provides plants with increased amount of oleic acid ester compounds; *FAD3* suppression provides plants with decreased linolenic acid ester compounds; and *FATB* suppression provides plants with reduced saturated fatty ester compounds, e.g. palmitates and stearates. Selections can be made from such lines depending on the desired relative fatty acid composition. Fatty acid compositions are analyzed from seed of soybean lines transformed with constructs using gas chromatography.

Example 7 – This example illustrates transient expression of constructs for intron doublestranded RNA gene suppression.

DNA containing the expression constructs for sense, antisense, and dsRNA expression of the $\Delta 12$ desaturase, $\Delta 15$ desaturase, and FATB introns is transferred into the nucleus or the cytoplasm of tobacco mesophyll protoplasts. The DNA constructs illustrated in Examples 3, 4, 5 and are introduced by microinjection as described (Crossway et al., (1986) Mol. Gen. Genet. 202: 179-185). Transient gene suppression is observed, e.g., by measuring RNA or fatty acid compound compositions.

5

10

What is claimed is:

5

10

25

BNSDOCID: <WO____2004001000A2 1 >

1. A nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least one transcribed intron of a gene.

- 2. The construct of claim 1, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 98% identical to at least one transcribed intron of a gene.
- 3. The construct of claim 1, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is 100% identical to at least one transcribed intron of a gene.
- 15 4. The construct of claim 1, comprising in series one strand of an intron, a spliceable intron, and the complement of said intron, wherein said spliceable intron provides a hairpin structure, and wherein said intron and said complement of said intron can hybridize to each other.
- 5. The construct of claim 1, wherein said transcribed introns are in FAD2 genes or FAD3 genes.
 - 6. The construct of claim 1, comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least two transcribed introns.

7. The construct of claim 6, comprising DNA which is transcribed into RNA that forms two or more double-stranded RNA molecules.

- 8. A transformed cell or organism having in its genome an introduced nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least one transcribed intron of a gene.
- 9. A transformed plant having in its genome an introduced nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least one transcribed intron of a gene.
- 15 10. The transformed plant of claim 9, having in its genome an introduced nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 98% identical to at least one transcribed intron of a native plant gene.

- 11. The transformed plant of claim 9, wherein said intron is from a FAD2 gene or a FAD3 gene.
- 12. The transformed plant of claim 11, wherein expression of a protein encoded by said

 FAD2 gene or said FAD3 gene is reduced.

13. The transformed plant of claim 11, wherein expression of a protein encoded by said *FAD2* gene or said *FAD3* gene is substantially reduced.

- 14. The transformed plant of claim 11, wherein expression of the protein encoded by said
 5 FAD2 gene or said FAD3 gene is effectively eliminated.
 - 15. A method of reducing expression of a protein encoded by a target gene in a mammal comprising introducing into a cell or organism a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least one transcribed intron of a gene.
- 16. The method of claim 15, wherein the target gene encodes a protein in an insect or nematode which is a pest to a plant, and wherein said method comprises introducing into the genome of said plant a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule which is effective for reducing expression of said target gene when said insect or nematode ingests cells from said plant.
- 17. A method of reducing expression of a protein encoded by a target gene in a plant
 20 comprising introducing into a plant genome a nucleic acid construct comprising DNA which is transcribed into RNA that forms at least one double-stranded RNA molecule, wherein one strand of said double-stranded molecule is coded by a portion of said DNA which is at least 90% identical to at least one transcribed intron of a gene.

Figure 1

WO 2004/001000

Figure 2

PCT/US2003/019437

Figure 3

ï

Figure 4

SEQUENCE LISTING

<110> Monsanto Technology LLC	
<120> Intron Double Stranded RNA Constructs and Uses Thereof	
<130> 16517.270	
<160> 55	
<170> PatentIn version 3.1	
<210> 1 <211> 420 <212> DNA <213> Glycine max	
<400> 1 gtaaattaaa ttgtgcctgc acctcgggat atttcatgtg gggttcatca tatttgttga	60
ggaaaagaaa ctcccgaaat tgaattatgc atttatatat cctttttcat ttctagattt	120
cctgaagget taggtgtagg cacctageta gtagetacaa tateageaet tetetetatt	180
gataaacaat tggctgtaat gccgcagtag aggacgatca caacatttcg tgctggttac	240
ttttgtttt atggtcatga tttcactctc tctaatctct ccattcattt tgtagttgtc	300
attatcttta gatttttcac tacctggttt aaaattgagg gattgtagtt ctgttggtac	360
atattacaca ttcagcaaaa caactgaaac tcaactgaac ttgtttatac tttgacacag	420
<210> 2 <211> 405 <212> DNA <213> Glycine max	
<400> 2 gtatgatgct aaattaaatt gtgcctgcac cccaggatat ttcatgtggg attcatcatt	60
tattgaggaa aactctccaa attgaatcgt gcatttatat tttttttcca tttctagatt	120
tottgaaggo ttatggtata ggcacctaca attatcagca cttctctcta ttgataaaca	180
attggctgta ataccacagt agagaacgat cacaacattt tgtgctggtt accttttgtt	240
ttatggtcat gatttcactc tetetaatet gteactteec tecatteatt ttgtacttet	300
catatttttc acttcctggt tgaaaattgt agttctcttg gtacatacta gtattagaca	360
ttcagcaaca acaactgaac tgaacttett tatactttga cacag	405
<210> 3 <211> 6220 <212> DNA <213> Glycine max <400> 3	
<400> 3 agcttggtac cgagetegga tecaetagta aeggeegeea gtgtgetgga atteggette	60

WO 2004/001000				PCT/US2	2003/019437
tctctcaccc tcctcttcac					120
ttcaggtact tttctctcct	tatctcttta	tctttattct	ttcctacttt	attgcttaaa	180
ccaatgctat ctatgcttcg	atctcgcctt	cttattttcc	acttcccttt	tctcgcttga	240
tctaaccgtt ttcgccctcc	gcgcttcgat	tgactgagta	catctacgat	tctctgttct	300
ttcatttcat agatttcgtc	tgattttggc	taacttggtt	tctgttgcgg	ccgattctta	360
catatactga ttgtttagca	taaatgaact	tgcttgttta	gcactatctg	catattttcg	420
tcacgcatct ctttcggatc	taaggatgaa	tctcctattt	cctccgtatt	atttctcgta	480
tctcttgttc tgtgctaatg	ctccagaaaa	tggcagcatt	gtcttcttct	ttgctgtata	540
agtgtttgtg ttgtgaatct	ggaagcgatt	ttgcgtgagg	taacttgcga	cttcaactat	600
tatetttcag atetegttaa	tttattagct	gctattaatt	tgtgtgtgca	gtgtcaaact	660
gaagcacacg actgcttaga	agttagaatt	tgactgactg	ttcctctttg	atttttttct	720
ttctttctt tgctwactcg	gcctatttaa	tgatctttat	aaatagatta	gtggaccact.	780
tggttagttg gtgagttatg	aatattcgaa	ttttctacca	caagttgggt	taaaaaaatc	840
tctgcaacta cacgaggatt	ttttatttta	tttagaggaa	actattctgt	catccttttt'	900
ccgattacac ttttctatca	gttgttttga	aatatacacc	ttaggaatat	aatattaccc	960
ctttcggtct taatataaat	atattttaat	tatttatatt	ttatttaatg	aaattatttt	1020
taaaatactt tcatttaata	gaatttttaa	taaagttaaa	gacttttatt	gtgtagagtt	1080
taacgaagtt aattagtttt	cttagtaaat	gtaaaatatg	ccttttttgt	tgtttataat	1140
ggagattgga aaaaatatac	tttaattttt	ttcaagtgat	gaataattat	ggatgttttg	1200
tcaatatttt tgtcttgcta	tacaactttc	agtcttgcca	ttaaataatt	ttgaatgtgt	1260
tattgatatc tctgaacaat	atttagagac	gaacataaat	tttatatatt	ttatataatt	1320
tcttttatt acccttttat	tatcaatttt	gaaatttggt	taatatctgt	gtttcatttt	1380
gaggtctcaa atttgatata	aggaggttca	aaatgcgttg	ctagccattt	taaagattag	1440
caggagagga aatgtttctg	gacttaaatt	taaaatatgc	ttatttgttt	ttcaagagag	1500
agagatcaat atttatataa	tacacttgaa	ttaatataca	ccattgttgc	aaaaaaaaa	1560
aaatattagt tgattgtgtg	acaatatttt	atattaaata	taattagtta	atttagttca	1620
agttgagtta catttttaca	taccattctt	agccgccact	tttttatatt	tatttgtagg	1680
aataactttt catctgtatc	aattttcccc	gtctaataaa	aagggtttga	ctttttctta	1740
taatagagtt ttttttttt	tgctttaagt	tattgtaaaa	taattatttt	atttttttg	1800
cctttgtaaa ttatgtatat	ttaatgtttt	aataggaaaa	aaatgttatc	aaaagcacta	1860
aaagactaaa attaaacaac	cataatttgc	aaagatgaaa	ataaaaaaat	aattttgtaa	1920

į

WO 200-						0 03/019437 1980
_	tgaaataaaa					
	tttctgtaaa					2040
	ttcgatttgg					2100
tattgtcgat	gtttctgatt	tgaatataat	tattttccat	tcaacttgtg	attttataag	2160
aaaaaaaag	gtacagaaaa	aatcaagcgc	ttttttatt	tcaattagtg	gaggtttcac	2220
tgaaatgggt	aaagaatcta	ttttgcaatc	acaattatta	ccggtattca	actgcaacaa	2280
ggaacaaaat	tcctttcgta	aatatacgga	gaggaatcta	ttttgacttg	ttgaatttat	2340
ggtaaagtag	aatttagaat	ttaattatga	gttgaagtaa	ttttgaataa	tttatatgtt	2400
aaatataaaa	ttttgtacta	agttttattc	ataactttga	ttctataata	caaacataca	2460
taagttcaaa	aataatttta	attaaaatta	attttatcaa	tttttattca	aacacgagtc	2520
taatttgctt	gatgaattaa	gaaaataagg	aagaaaatat	taaaaactag	gagagaagtt	2580
aaagagaatt	tcatctttat	tattctcagt	tgtttcaaaa	ataatgaaag	gatagctata	2640
taatactgta	actgagccaa	gaacatattt	gccgtccgag	taaccttttc	ttttcttgtt	2700
ccgttttctc	cgccgatgaa	gagagggaag	ggaatgtatc	tttgtattta	tgttttcaaa	2760
gagttcgtgc	ataaaattgg	tttaatcaaa	tttttcataa	gattattatt	ttatgatttt	2820
ttaaaataaa	ttagtaacta	tattccgtaa	gtcgtacaca	gttatatgta	gtaagtaaat	2880
tatattttaa	taattattat	cttaaaattt	tcttaagaac	ttggttaaaa	tatttttgtt	2940
tgaaaaagtt	tatgataact	tttttttgtt	gaaaaaaagt	ttacgattat	ctaactcgta	3000
cttagattat	ttctaattgg	gatttattga	agggttttt	aagtaaagaa	attgtttctt	3060
atggtttctt	tttattgga	caaatttacg	tagcaaagag	tgtttcttaa	aaacaagaca	3120
tgtatccttt	gaaaaaaaac	tatttctttg	aaataaaaa	taatatttat	ctggcacata	3180
ataatgttaa	aattaaatca	taattaggta	aaaataaaat	aaatataaaa	gtatgagttt	3240
gttaagtttt	ttataatttt	ttattattaa	agtaaaatta	tgtatgattt	ttttataatg	3300
atatgatatt	ttagggatca	caaaaaataa	tgtggtgaat	acaaaagtaa	ctcaaaaaat	3360
tcatttagta	a aattttcatt	ggagatgcta	ttattatgct	ttctgattgc	tttgtccaaa	3420
aaataaagaa	a tgtttttta	tttgaaaatt	gaaaatttct	gggtcatgtt	aagatcttgt	3480
agacggtaad	c gtcggcctaa	agttgtgtg	ggggtgttgc	: atgcaccgat	cattaattac	3540
tcgatatgga	a aaacgactga	aataatttaa	tttgatgttg	ctaatattgg	ccatccctct	3600
catcattat	t gttttttat	ttgtaacato	, acatattctt	gtgggtccgc	tacggattgg	3660
gtgtttgtt	g ccaaaaaata	caaaatatct	gtggaacaag	gataaacagt	cttgtttgtt	3720
taattgatt	g attgatgagt	: ttgcaagcta	a tattttaat	ttattttaat	taaacttttg	3780

WO 200	4/001000				DCT/HS2	003/019437
tgttttagtt	ctacaatttt	attcatcttg	atttttttt	tacttggcaa	aatcatgatt	3840
ttttaatttt	tacttatgtt	gaaaacaaat	ttattgctaa	aaaaacattt	attcttttt	3900
tagagaaaaa	acaaatttgt	gatatgtagt	gaatcaaatg	aaaattttaa	acataatata	3960
gaatactcta	caaatcaatt	ttgagtttct	ttatcatttt	atttatttat	tgacatactt	4020
ctactttctg	caaagaccct	gactcgtgga	agatataggg	aaggttatgg	aagttagtgt	4080
attgtcatat	ctagctatct	ttgctaattg	aaaaagcctt	ccctttgttt	acagatctgg	4140
ataaggttgc	atgtttattc	ttttcaactg	tgaatggttc	tttgcatctt	ttttagtata	4200
tgagattaat	gttttaatta	ggaagaagct	tttagaacat	cacccgaatc	caattcgttt	4260
tggtttctgt	gatcttgatg	taaatctata	ctaatttggt	ttgggcagaa	gaaaatgttc	4320
tttgctcaag	tcctctagga	cgaaaatata	aatataacag	ggtatatcag	atctctattc	4380
ttctgtgggt	aatgatagca	tgtttctgtt	gttttcttat	tcttcattgg	tcatgataac	4440
ctgctaattc	tatttgccac	gattgagatg	aaaaggtaat	gaactagtaa	acaataatga	4500
gaagaatatg	tcgctactat	tgttgaaacg	gttacgccag	gcacttgagt	atgatgcact	4560
attttaatta	atgcattttt	tttgctttga	tgagaacgca	cattgttcat	tctgattcgg	4620
tgagtttaga	aactattgct	gataatcctt	gatttaagat	tttagtcttg	ttcatgttca	4680
ttaaaagtgt	tgtaaaaaaa	tgcactgata	tgtcatgtgc	agattgtgtg	aagatggggg	4740
cgggtggccg	aactgatgtt	cctcctgcca	acaggaagtc	agaggttgac	cctttgaagc	4800
gggtgccatt	tgaaaaacct	ccatttagtc	tcagccaaat	caagaaggtc	attccacctc	4860
actgtttcca	gcgttctgtt	ttccgctcat	tctcctatgt	tgtttacgac	ctcaccatag	4920
ccttctgcct	ctattatgtt	gccacccatt	acttccacct	ccttcccagc	cctctctctt	4980
tcttggcatg	gccaatctac	tgggctgtcc	aaggttgcat	ccttactgga	gtttgggtca	5040
ttgcccatga	gtgtggccac	catgcattca	gtgactacca	gttgcttgat	gatattgttg	5100
gccttgtcct	ccactccggt	ctcctagtcc	catacttttc	atggaaatac	agccatcgcc	5160
gtcaccactc	caacactggt	tctcttgagc	gggatgaagt	atttgtgcca	aagcagaagt	5220
cctgtatcaa	gtggtactct	aaatacctta	acaatcctcc	aggcagagtc	ctcactcttg	5280
ctgtcaccct	cacacttggt	tggcccttgt	acttggcttt	aaatgtttct	ggaaggcctt	5340
atgatagatt	tgcttgccac	tatgacccat	atggtcccat	ttactctgat	cgtgaacgac	5400
ttcaaatata	tatatcagat	gcaggagtac	ttgcagtatg	ctatggcctt	ttccgtcttg	5460
ccatggcaaa	aggacttgcc	tgggtggtgt	gtgtttatgg	agttccattg	ctagtggtca	5520
atggattttt	ggtgttgatt	acattcttgc	agcatactca	ccctgcattg	ccacattaca	5580
cttcctctga	gtgggactgg	ttgagaggag	ctttagcaac	agtggataga	gattatggaa	5640

WO 2004/001000 PCT/US200	3/019437 5700
teetgaacaa ggeetteeat aatattacag asaastaage agaattacat tegatisas	5760
caacgecaca ceaecacgea acggaggeta caaaggaane announce coggagage	5820
actatogget typicyagact courtry tou aggounty of gagagagac agagagae	
codddydyd goodyddau byddolyd ganangy, yr gy	5880
tgtgatgatt aatgtagccg aggettettt gaacttteee ttgtgaetgt ttagtateat	5940
ggttgcttat tgggaataat tttgttgaac cctgatgttg gtagtaagta tctagacagt	6000
tgcatagcgg ttttgtttac agaataagat atagcctctc tgaacagttt gattattgca	6060
ccatggtttg caatcggtgc atgtcgacca agtttctcaa gactgtggag aagcttattc	6120
ttgttccagt tcttgaatcc aagttgttac cgtattctgt aagccgaatt ctgcagatat	6180
ccatcacact ggcggccgct cgagcatgca tctagagggc	6220
<210> 4 <211> 4597 <212> DNA	
<213> Glycine max	
<400> 4 gtacttttct ctccttatct ctttatcttt attctttcct actttattgc ttaaaccaat	60
getatetatg ettegatete geettettat tttecaette eettteteg ettgatetaa	120
ccgttttcgc cctccgcgct tcgattgact gagtacatct acgattctct gttctttcat	180
ttcatagatt tcgtctgatt ttggctaact tggtttctgt tgcggccgat tcttacatat	240
actgattgtt tagcataaat gaacttgctt gtttagcact atctgcatat tttcgtcacg	300
catctctttc ggatctaagg atgaatctcc tatttcctcc gtattatttc tcgtatctct	360
tgttctgtgc taatgctcca gaaaatggca gcattgtctt cttctttgct gtataagtgt	420
ttgtgttgtg aatctggaag cgattttgcg tgaggtaact tgcgacttca actattatct	480
ttcagatctc gttaatttat tagctgctat taatttgtgt gtgcagtgtc aaactgaagc	540
acacgactgc ttagaagtta gaatttgact gactgttcct ctttgatttt tttctttctt	600
ttctttgctw actcggccta tttaatgatc tttataaata gattagtgga ccacttggtt	660
agttggtgag ttatgaatat tcgaattttc taccacaagt tgggttaaaa aaatctctgc	720
aactacacga ggatttttta ttttatttag aggaaactat tctgtcatcc tttttccgat	780
tacacttttc tatcagttgt tttgaaatat acaccttagg aatataatat	840
ggtcttaata taaatatatt ttaattattt atattttatt taatgaaatt atttttaaaa	900
tactttcatt taatagaatt tttaataaag ttaaagactt ttattgtgta gagtttaacg	960
aagttaatta gttttcttag taaatgtaaa atatgccttt tttgttgttt ataatggaga	1020
ttggaaaaaa tatactttaa tttttttcaa gtgatgaata attatggatg ttttgtcaat	1080

atttttgtct tgctatacaa ctttcagtct tgccattaaa taattttgaa tgtgttattg 1140 atatctctga acaatattta gagacgaaca taaattttat atattttata taatttcttt 1200 ttattaccct tttattatca attttgaaat ttggttaata tctgtgtttc attttgaggt 1260 ctcaaatttg atataaggag gttcaaaatg cgttgctagc cattttaaag attagcagga 1320 gaggaaatgt ttctggactt aaatttaaaa tatgcttatt tgtttttcaa gagagagag 1380 tcaatattta tataatacac ttgaattaat atacaccatt gttgcaaaaa aaaaaaaata 1440 ttagttgatt gtgtgacaat attttatatt aaatataatt agttaattta gttcaagttg 1500 agttacattt ttacatacca ttcttagccg ccactttttt atatttattt gtaggaataa 1560 cttttcatct gtatcaattt tccccgtcta ataaaaaggg tttgactttt tcttataata 1620 gagttttttt ttttttgctt taagttattg taaaataatt attttattt ttttgccttt 1680 gtaaattatg tatatttaat gttttaatag gaaaaaaatg ttatcaaaag cactaaaaga 1740 ctaaaattaa acaaccataa tttgcaaaga tgaaaataaa aaaataattt tgtaaagata 1800 aaaaatgaaa taaaatagtt aaattatagg aatttaaaag ctatttaaat caacaaaagt 1860 taaagtttct gtaaaaaaag ttcaattttt ttttttatta ttgaaaaagt taaagctaat 1920 gagcgttcga tttgggttag tatgtagtat ttattattt caagattttg gattttattg 1980 tcgatgtttc tgatttgaat ataattattt tccattcaac ttgtgatttt ataagaaaaa 2040 aaaaggtaca gaaaaaatca agcgcttttt ttatttcaat tagtggaggt ttcactgaaa 2100 tgggtaaaga atctattttg caatcacaat tattaccggt attcaactgc aacaaggaac 2160 aaaattcctt tcgtaaatat acggagagga atctattttg acttgttgaa tttatggtaa 2220 agtagaattt agaatttaat tatgagttga agtaattttg aataatttat atgttaaata 2280 taaaattttg tactaagttt tattcataac tttgattcta taatacaaac atacataagt 2340 tcaaaaataa ttttaattaa aattaatttt atcaattttt attcaaacac gagtctaatt 2400 tgcttgatga attaagaaaa taaggaagaa aatattaaaa actaggagag aagttaaaga 2460 gaatttcatc tttattattc tcagttgttt caaaaataat gaaaggatag ctatataata 2520 ctgtaactga gccaagaaca tatttgccgt ccgagtaacc ttttctttc ttgttccgtt 2580 ttctccgccg atgaagagag ggaagggaat gtatctttgt atttatgttt tcaaagagtt 2640 cgtgcataaa attggtttaa tcaaattttt cataagatta ttattttatg atttttaaa 2700 ataaattagt aactatatto ogtaagtogt acacagttat atgtagtaag taaattatat 2760 tttaataatt attatcttaa aattttctta agaacttggt taaaatattt ttgtttgaaa 2820 aagtttatga taacttttt ttgttgaaaa aaagtttacg attatctaac tcgtacttag 2880 attatttcta attgggattt attgaagggt tttttaagta aagaaattgt ttcttatggt 2940

PCT/US2003/019437 WO 2004/001000

ttctttttta	ttggacaaat	ttacgtagca	aagagtgttt	cttaaaaaca	agacatgtat	3000
cctttgaaaa	aaaactattt	ctttgaaata	aaaaataata	tttatctggc	acataataat	3060
gttaaaatta	aatcataatt	aggtaaaaat	aaaataaata	taaaagtatg	agtttgttaa	3120
gttttttata	atttttatt	attaaagtaa	aattatgtat	gatttttta	taatgatatg	3180
atattttagg	gatcacaaaa	aataatgtgg	tgaatacaaa	agtaactcaa	aaaattcatt	3240
tagtaaattt	tcattggaga	tgctattatt	atgctttctg	attgctttgt	ccaaaaaata	3300
aagaatgttt	ttttatttga	aaattgaaaa	tttctgggtc	atgttaagat	cttgtagacg	3360
gtaacgtcgg	cctaaagttg	tgtgaggggt	gttgcatgca	ccgatcatta	attactcgat	3420
atggaaaacg	actgaaataa	tttaatttga	tgttgctaat	attggccatc	cctctcatca	3480
ttattgtttt	tttatttgta	acatgacata	ttcttgtggg	tccgctacgg	attgggtgtt	3540
tgttgccaaa	aaatacaaaa	tatctgtgga	acaaggataa	acagtcttgt	ttgtttaatt	3600
gattgattga	tgagtttgca	agctatattt	ttaatttatt	ttaattaaac	ttttgtgttt	3660
tagttctaca	attttattca	tcttgatttt	ttttttactt	ggcaaaatca	tgatttttta	3720
atttttactt	atgttgaaaa	caaatttatt	gctaaaaaaa	catttattct	ttttttagag	3780
aaaaaacaaa	tttgtgatat	gtagtgaatc	aaatgaaaat	tttaaacata	atatagaata	3840
ctctacaaat	caattttgag	tttctttatc	attttattta	tttattgaca	tacttctact	3900
ttctgcaaag	accctgactc	gtggaagata	tagggaaggt	tatggaagtt	agtgtattgt	3960
catatctagc	tatctttgct	aattgaaaaa	gccttccctt	tgtttacaga	tctggataag	4020
gttgcatgtt	tattcttttc	aactgtgaat	ggttctttgc	atcttttta	gtatatgaga	4080
ttaatgtttt	aattaggaag	aagcttttag	aacatcaccc	gaatccaatt	cgttttggtt	4140
tctgtgatct	tgatgtaaat	ctatactaat	ttggtttggg	cagaagaaaa	tgttctttgc	4200
tcaagtcctc	taggacgaaa	atataaatat	aacagggtat	atcagatctc	tattcttctg	4260
tgggtaatga	tagcatgttt	ctgttgtttt	cttattcttc	attggtcatg	ataacctgct	4320
aattctattt	gccacgattg	agatgaaaag	gtaatgaact	agtaaacaat	aatgagaaga	4380
atatgtcgct	actattgttg	aaacggttac	gccaggcact	tgagtatgat	gcactatttt	4440
aattaatgca	tttttttgc	tttgatgaga	acgcacattg	ttcattctga	ttcggtgagt	4500
ttagaaacta	ttgctgataa	tccttgattt	aagattttag	tcttgttcat	gttcattaaa	4560
agtgttgtaa	aaaaatgcac	tgatatgtca	tgtgcag			4597

<210> 5 <211> 191 <212> DNA <213> Glycine max

<400> 5						
gtaataattt	ttgtgtttct	tactctttt	tttttttt	tgtttatgat	atgaatctca	60
cacattgttc	: tgttatgtca	tttcttcttc	atttggcttt	agacaactta	aatttgagat	120
ctttattatg	tttttgctta	tatggtaaag	tgattcttca	ttatttcatt	cttcattgat	180
tgaattgaac	: a					191
<210> 6 <211> 346 <212> DNA <213> Gly						
<400> 6	ctaactttt	tatttatta.	+++			
		tgtttgttca			_	60
		tttggaagcc				120
		tagcttcatc				180
		cccattcgag				240
gttataactg	ttagcttctg	agtaaacgtg	gaaaaaccac	attttggatt	tggaaccaaa	300
ttttatttga	taaatgacaa	ccaaattgat	tttgatggat	tttgca		346
<210> 7 <211> 142 <212> DNA <213> Gly <400> 7	cine max					
	aattgcttct	cctatagttg	ttcttgattc	aattacattt	tatttatttg	60
gtaggtccaa	gaaaaaaggg	aatctttatg	cttcctgagg	ctgttcttga	acatggctct	120
	tcattatctt					142
<210> 8 <211> 1220 <212> DNA <213> Glyo	B cine max					
	aaatagaaaa	tagtgggtga	acacttaaat	gcgagatagt	aatacctaaa	60
aaaagaaaaa	aatataggta	taataaataa	tataactttc	aaaataaaaa	gaaatcatag	120
agtctagcgt	agtgtttgga	gtgaaatgat	gttcacctac	cattactcaa	agattttgtt	180
gtgtccctta	gttcattctt	attattttac	atatcttact	tgaaaagact	ttttaattat	240
tcattgagat	cttaaagtga	ctgttaaatt	aaaataaaaa	acaagtttgt	taaaacttca	300
aataaataag	agtgaaggga	gtgtcatttg	tcttcttct	tttattgcgt	tattaatcac	360
gtttctcttc	tcttttttt	ttttcttctc	tgctttccac	ccattatcaa	gttcatgtga	420

agcagtggcg	gatctatgta	aatgagtggg	gggcaattgc	acccacaaga	ttttattttt	480
tatttgtaca	ggaataataa	aataaaactt	tgccccata	aaaaataaat	attttttctt	540
aaaataatgc	aaaataaata	taagaaataa	aaagagaata	aattattatt	aattttatta	600
ttttgtactt	tttatttagt	ttttttagcg	gttagatttt	tttttcatga	cattatgtaa	660
tcttttaaaa	gcatgtaata	tttttattt	gtgaaaataa	atataaatga	tcatattagt	720
ctcagaatgt	ataaactaat	aataatttta	tcactaaaag	aaattctaat	ttagtccata	780
aataagtaaa	acaagtgaca	attatattt	atatttactt	aatgtgaaat	aatacttgaa	840
cattataata	aaacttaatg	acaggagata	ttacatagtg	ccataaagat	attttaaaaa	900
ataaaatcat	taatacactg	tactactata	taatattcga	tatatattt	taacatgatt	960
ctcaatagaa	aaattgtatt	gattatattt	tattagacat	gaatttacaa	gccccgtttt	1020
tcatttatag	ctcttacctg	tgatctattg	ttttgcttcg	ctgtttttgt	tggtcaaggg	1080
acttagatgt	cacaatatta	atactagaag	taaatattta	tgaaaacatg	taccttacct	1140
caacaaagaa	agtgtggtaa	gtggcaacac	acgtgttgca	tttttggccc	agcaataaca	1200
cgtgtttttg	tggtgtacta	aaatggac			•	1228

<210> 9 <211> 625 <212> DNA <213> Glycine max

<400> 9 gtacatttta ttgcttattc acctaaaaac aatacaatta gtacatttgt tttatctctt 60 qqaaqttagt cattttcagt tgcatgattc taatgctctc tccattctta aatcatgttt 120 tcacacccac ttcatttaaa ataagaacgt gggtgttatt ttaatttcta ttcactaaca 180 tgagaaatta acttatttca agtaataatt ttaaaaatatt tttatgctat tattttatta 240 caaataatta tgtatattaa gtttattgat tttataataa ttatattaaa attatatcga 300 360 tattaatttt tqattcactg atagtgtttt atattgttag tactgtgcat ttattttaaa 420 aggggttccc aaccetectt tetaggtgta catgetttga tacttetggt accttettat 480 atcaatataa attatattt gctgataaaa aaacatggtt aaccattaaa ttctttttt 540 600 aaaaaaaaa ctgtatctaa actttgtatt attaaaaaga agtctgagat taacaataaa ctaacactca tttggattca ctgca 625

<210> 10 <211> 98 <212> DNA

WO 200	4/001000				PCT/US	2003/019437
<213> Gly	cine max				101/05	2000/01240/
<400> 10 ggtgagtgat	tttttgactt	ggaagacaac	aacacattat	tattataata	tggttcaaaa	60
caatgacttt	ttctttatga	tgtgaactcc	attttta			98
<210> 11 <211> 115 <212> DNA <213> Gly						
<400> 11 ggtaactaaa	ttactcctac	attgttactt	tttcctcctt	ttttttatta	tttcaattct	60
ccaattggaa	atttgaaata	gttaccataa	ttatgtaatt	gtttgatcat	gtgca	115
<210> 12 <211> 148 <212> DNA <213> Gly						
<220> <223> FAD	3-1B intron	3c				
<400> 12 gtaatctcac	tctcacactt	tctttataca	tegeaegeea	gtgtgggtta	tttgcaacct	60
acaccgaagt	aatgccctat	aattaatgag	gttaacacat	gtccaagtcc	aatattttgt	120
tcacttattt	gaacttgaac	atgtgtag				148
<210> 13 <211> 361 <212> DNA <213> Gly						
<220> <223> FAD	3-1B intron	4				
<400> 13 gtatcccatt	taacacaatt	tgtttcatta	acattttaag	agaattttt	tttcaaaata	60
gttttcgaaa	ttaagcaaat	accaagcaaa	ttgttagatc	tacgcttgta	cttgttttaa	120
agtcaaattc	atgaccaaat	tgtcctcaca	agtccaaacc	gtccactatt	ttattttcac	180
ctactttata	gcccaatttg	ccatttggtt	acttcagaaa	agagaacccc	atttgtagta	240
aatatattat	ttatgaatta	tggtagtttc	aacataaaac	atacttatgt	gcagttttgc	300
catccttcaa	aagaaggtag	aaacttactc	catgttactc	tgtctatatg	taatttcaca	360
g						361
<210> 14 <211> 103 <212> DNA						

WO 2004/001000 <213> Glycine max

9	:400> ;taaca:	14 aaaa	taaatagaaa	atagtgagtg	aacacttaaa	tgttagatac	taccttcttc	60
t	tcttt	tttt	tttttttt	gaggttaatg	ctagataata	gctagaaaga	gaaagaaaga	120
c	aaata	tagg	taaaaataaa	taatataacc	tgggaagaag	aaaacataaa	aaaagaaata	180
ā	tagag	tcta	cgtaatgttt	ggatttttga	gtgaaatggt	gttcacctac	cattactcaa	240
ā	agattc	tgtt	gtctacgtag	tgtttggact	ttggagtgaa	atggtgttca	cctaccatta	300
c	ctcaga	ttct	gttgtgtccc	ttagttactg	tcttatattc	ttagggtata	ttctttattt	360
t	acatc	cttt	tcacatctta	cttgaaaaga	ttttaattat	tcattgaaat	attaacgtga	420
c	cagtta	aatt	aaaataataa	aaaattcgtt	aaaacttcaa	ataaataaga	gtgaaaggat	480
ď	catcat	tttt	cttctttctt	ttattgcgtt	attaatcatg	cttctcttct	tttttttctt	540
(cgcttt	ccac	ccatatcaaa	ttcatgtgaa	gtatgagaaa	atcacgattc	aatggaaagc	600
f	tacagg	aacy	ttttttgttt	tgtttttata	atcggaatta	atttatactc	cattttttca	660
•	caataa	atgt	tacttagtgc	cttaaagata	atatttgaaa	aattaaaaaa	attattaata	720
	cactgt	acta	ctatataata	tttgacatat	atttaacatg	attttctatt	gaaaatttgt	780
	atttat	tatt	ttttaatcaa	aacccataag	gcattaattt	acaagaccca	tttttcattt	840
	atagct	ttac	ctgtgatcat	ttatagcttt	aagggactta	gatgttacaa	tcttaattac	900
	aagtaa	atat	ttatgaaaaa	catgtgtctt	accccttaac	cttacctcaa	caaagaaagt	960
	gtgata	agtg	gcaacacacg	tgttgctttt	ttggcccagc	aataacacgt	gtttttgtgg	1020
	tgtaca	aaaa	tggacag					1037

<210> 15 <211> 4497

<212> DNA

<213> Glycine max

<400> 15 cttgcttggt aacaacgtcg tcaagttatt attttgttct ttttttttt atcatatttc 60 ttattttgtt ccaagtatgt catattttga tccatcttga caagtagatt gtcatgtagg 120 aataggaata tcactttaaa ttttaaagca ttgattagtc tgtaggcaat attgtcttct 180 tcttcctcct tattaatatt ttttattctg ccttcaatca ccagttatgg gagatggatg 240 taatactaaa taccatagtt gttctgcttg aagtttagtt gtatagttgt tctgcttgaa 300 gtttagttgt gtgtaatgtt tcagcgttgg cttcccctgt aactgctaca atggtactga 360 atatatatt tttgcattgt tcatttttt cttttactta atcttcattg ctttgaaatt 420 aataaaacaa aaagaaggac cgaatagttt gaagtttgaa ctattgccta ttcatgtaac 4.80

WO 2004/001000				PCT/HS	2003/019437
ttattcaccc aatcttatat	agtttttctg	gtagagatca	ttttaaattg	aaggatataa	540
attaagagga aatacttgta	tgtgatgtgt	ggcaatttgg	aagatcatgc	gtagagagtt	600
taatggcagg ttttgcaaat	tgacctgtag	tcataattac	actgggccct	ctcggagttt	660
tgtgcctttt tgttgtcgct	gtgtttggtt	ctgcatgtta	gcctcacaca	gatatttagt	720
agttgttgtt ctgcatataa	gcctcacacg	tatactaaac	gagtgaacct	caaaatcatg	780
gccttacacc tattgagtga	aattaatgaa	cagtgcatgt	gagtatgtga	ctgtgacaca	840
acccccggtt ttcatattgc	aatgtgctac	tgtggtgatt	aaccttgcta	cactgtcgtc	900
cttgtttgtt tccttatgta	tattgatacc	ataaattatt	actagtatat	cattttatat	960
tgtccatacc attacgtgtt	tatagtctct	ttatgacatg	taattgaatt	ttttaattat	1020
aaaaaataat aaaacttaat	tacgtactat	aaagagatgc	tcttgactag	aattgtgatc	1080
tcctagtttc ctaaccatat	actaatattt	gcttgtattg	atageceete	cgttcccaag	1140
agtataaaac tgcatcgaat	aatacaagcc	actaggcatg	gtaaattaaa	ttgtgcctgc	1200
acctcgggat atttcatgtg	gggttcatca	tatttgttga	ggaaaagaaa	ctcccgaaat	1260
tgaattatgc atttatatat	cctttttcat	ttctagattt	cctgaaggct	taggtgtagg	1320
cacctageta gtagetacaa	tatcagcact	tctctctatt	gataaacaat	tggctgtaat	1380
gccgcagtag aggacgatca	caacatttcg	tgctggttac	tttttgtttt	atggtcatga	1440
tttcactctc tctaatctct	ccattcattt	tgtagttgtc	attatcttta	gatttttcac	1500
tacctggttt aaaattgagg	gattgtagtt	ctgttggtac	atattacaca	ttcagcaaaa	1560
caactgaaac tcaactgaac	ttgtttatac	tttgacacag	ggtctagcaa	aggaaacaac	1620
aatgggaggt agaggtcgtg	tggcaaagtg	gaagttcaag	ggaagaagcc	tctctcaagg	1680
gttccaaaca caaagccacc	attcactgtt	ggccaactca	agaaagcaat	tccaccacac	1740
tgctttcagc gctccctcct	cacttcattc	tcctatgttg	tttatgacct	ttcatttgcc	1800
ttcattttct acattgccac	cacctacttc	cacctccttc	ctcaaccctt	ttccctcatt	1860
gcatggccaa tctattgggt	tctccaaggt	tgccttctca	ctggtgtgtg	ggtgattgct	1920
cacgagtgtg gtcaccatgc	cttcagcaag	taccaatggg	ttgatgatgt	tgtgggtttg	1980
accetteact caacactttt	agtcccttat	ttctcatgga	aaataagcca	tcgccgccat	2040
cactccaaca caggttccct	tgaccgtgat	gaagtgtttg	tcccaaaacc	aaaatccaaa	2100
gttgcatggt tttccaagta	cttaaacaac	cctctaggaa	gggctgtttc	tcttctcgtc	2160
acactcacaa tagggtggcc	tatgtattta	gccttcaatg	tctctggtag	accctatgat	2220
agttttgcaa gccactacca	cccttatgct	cccatatatt	ctaaccgtga	gaggcttctg	2280
atctatgtct ctgatgttgc	tttgttttct	gtgacttact	ctctctaccg	tgttgcaacc	2340

WO 2004/001000	0			PCT/US20	03/019437
ctgaaagggt tggtt	tggct gctatgt	gtt tatgggg	gc ctttgctcat	tgtgaacggt	2400
tttcttgtga ctatc	acata tttgcag	cac acacact	tg ccttgcctc	a ttacgattca	2460
tcagaatggg actgg	ctgaa gggagct	ttg gcaacta	tgg acagagatt	a tgggattctg	2520
aacaaggtgt ttcat	cacat aactgat	act catgtgg	etc accatetet	t ctctacaatg	2580
ccacattacc atgca	atgga ggcaaco	aat gcaatca	agc caatattgg	g tgagtactac	2640
caatttgatg acaca	ccatt ttacaag	gca ctgtgga	gag aagcgagag	a gtgcctctat	2700
gtggagccag atgaa	nggaac atccgaq	gaag ggcgtgt	att ggtacagga	a caagtattga	2760
tggagcaacc aatgg	gccat agtggga	agtt atggaag	ttt tgtcatgta	t tagtacataa	2820
ttagtagaat gttat	aaata agtggat	ttg ccgcgta	atg actttgtgt	g tattgtgaaa	2880
cagettgttg cgate	catggt tataat	gtaa aaataat	tct ggtattaat	t acatgtggaa	2940
agtgttctgc ttata	agcttt ctgccta	aaaa tgcacgc	tgc acgggacaa	t atcattggta	3000
atttttttaa aatct	tgaatt gaggct:	actc ataatac	tat_ccataggac	a tcaaagacat	3060
gttgcattga cttta	aagcag aggttc	atct agaggat	tac tgcataggo	t tgaactacaa	3120
gtaatttaag ggacg	gagagc aacttt	agct ctaccac	gtc gttttacaa	g gttattaaaa	3180
tcaaattgat cttat	ttaaaa ctgaaa	attt gtaataa	aat gctattgaa	a aattaaaata	3240
tagcaaacac ctaaa	attgga ctgatt	ttta gattcaa	att taataatta	a tctaaattaa	3300
acttaaattt tataa	atatat gtcttg	taat atatcaa	igtt tttttttt	a ttattgagtt	3360
tggaaacata taata	aaggaa cattag	ttaa tattgat	aat ccactaaga	t cgacttagta	3420
ttacagtatt tgga	tgattt gtatga	gata ttcaaad	cttc actcttato	a taatagagac	3480
aaaagttaat actg	atggtg gagaaa	aaaa aatgtta	attg ggagcatat	g gtaagataag	3540
acggataaaa atat	gctgca gcctgg	agag ctaatg	att ttttggtga	a gttttcaagt	3600
gacaactatt catg	atgaga acacaa	taat attttc	act tacctated	cc acataaaata	3660
ctgattttaa taat	gatgat aaataa	tgat taaaat	attt gattcttt	gt taagagaaat	3720
aaggaaaaca taaa	tattct catgga	aaaa tcagct	tgta ggagtaga:	aa ctttctgatt	3780
ataattttaa tcaa	igtttaa ttcatt	cttt taattt	tatt attagtac	aa aatcattctc	3840
ttgaatttag agat	gtatgt tgtago	ttaa tagtaa	tttt ttatttt	at aataaaattc	3900
aagcagtcaa attt	catcca aataat	cgtg ttcgtg:	ggtg taagtcag	tt attccttctt	3960
atcttaatat acac	cgcaaag gaaaaa	aataa aaataa	aatt cgaggaag	cg cagcagcagc	4020
tgataccacg ttgg	gttgacg aaact	gataa aaagcg	ctgt cattgtgt	ct ttgtttgatc	4080
atcttcacaa tcac	catctcc agaaca	acaaa gaagag	tgac ccttcttc	tt gttattccac	4140
ttgcgttagg tttc	ctacttt cttcto	ctctc tctctc	tctc tcttcatt	cc tcatttttcc	4200

WO 2004/001000	PCT/US2003/	019437
ctcaaacaat caatcaattt tcattcagat tcgtaaattt ctcgattaga t	cacggggtt 42	60
aggtctccca ctttatcttt tcccaagcct ttctctttcc ccctttccct g		20
taaaattcag gatcggaaac gaactgggtt cttgaatttc actctagatt t	tgacaaatt 43	80
cgaagtgtgc atgcactgat gcgacccact cccccttttt tgcattaaac a	attatgaat 44	40
tgaggttttt cttgcgatca tcattgcttg aattgaatca tattaggttt a	gattct 44	97
<210> 16 <211> 18 <212> DNA <213> Artificial sequence <220>		
<223> PCR primer		
<400> 16 atacaagcca ctaggcat		
		18
<210> 17 <211> 26 <212> DNA <213> Artificial sequence		
<220> <223> PCR primer		
<400> 17 gattggccat gcaatgaggg aaaagg	:	26
<210> 18 <211> 778 <212> DNA <213> Artificial sequence		
<pre><220> <221> misc_feature <222> (1)(778) <223> unsure at all n locations</pre>		
<220> <223> PCR primer		
<400> 18 atacaagcca ctaggcatgg taaattaaat tgtgcctgca cctcgggata tt	ttcatgtgg (50 .
ggttcatcat atttgttgag gaaaagaaac tcccgaaatt gaattatgca tt	ttatatatc 12	20
ctttttcatt tctagatttc ctgaaggett aggtgtagge acctagetag ta	agctacaat 18	30
atcagcactt ctctctattg ataaacaatt ggctgtaatg ccgcagtaga gg	gacgatcac 24	10
aacatttegt getggttact ttttgtttta tggtcatgat tteactetet et	caatctctc 30	00
cattcatttt gtagttgtca ttatctttag atttttcact acctggttta aa	aattgaggg 36	50
attgtagttc tgttggtaca tattacacat tcagcaaaac aactgaaact ca	actgaact 42	20

.

PCT/US2003/019437 WO 2004/001000

ttctgcagat	atccatcaca	tggcggcggn	tggngnaggn	ntntanaggg	cccaattc	778
cacctacttc	cacctccttc	ctcaaccctt	ttccctcatt	gcatggccaa	tcaagccgaa	720
cacttcattc	tcctatgttg	tttatgacct	ttcatttgcc	ttcattttct	acattgccac	660
attcactgtt	ggccaactca	agaaagcaat	tccaccacac	tgctttcagc	gctccctcct	600
ggccaaagtg	gaagttcaag	ggaagaagcc	tctctcaagg	gttccaaaca	caaagccacc	540
tgtttatact	ttgacacagg	gtctagcaaa	ggaaacaaca	atgggaggta	gaggtcgtgt	480

<210>

2463 <211>

DNA

<213> Glycine max <400> 19 actatagggc acgcgtggtc gacggcccgg gctggtcctc ggtgtgactc agccccaagt 60 gacgccaacc aaacgcgtcc taactaaggt gtagaagaaa cagatagtat ataagtatac 120 catataagag gagagtgagt ggagaagcac ttctcctttt tttttctctg ttgaaattga 180 aagtgttttc cgggaaataa ataaaataaa ttaaaatctt acacactcta ggtaggtact 240 tctaatttaa tccacacttt gactctatat atgttttaaa aataattata atgcgtactt 300 acttcctcat tatactaaat ttaacatcga tgattttatt ttctgtttct cttctttcca 360 cctacataca tcccaaaatt tagggtgcaa ttttaagttt attaacacat gtttttagct 420 gcatgctgcc tttgtgtgtg ctcaccaaat tgcattcttc tctttatatg ttgtatttga 480 attttcacac catatgtaaa caagattacg tacgtgtcca tgatcaaata caaatgctgt 540 cttatactgg caatttgata aacagccgtc cattttttct ttttctcttt aactatatat 600 getetagaat etetgaagat teetetgeea tegaatttet ttettggtaa caaegtegte 660 gttatgttat tattttattc tattttatt ttatcatata tatttcttat tttgttcgaa 720 gtatgtcata ttttgatcgt gacaattaga ttgtcatgta ggagtaggaa tatcacttta 780 aaacattgat tagtctgtag gcaatattgt cttctttttc ctcctttatt aatatatttt 840 900 gtcgaagttt taccacaagg ttgattcgct ttttttgtcc ctttctcttg ttcttttac ctcaggtatt ttagtctttc atggattata agatcactga gaagtgtatg catgtaatac 960 1020 taagcaccat agetgttetg ettgaattta tttgtgtgta aattgtaatg tttcagegtt ggctttccct gtagctgcta caatggtact gtatatctat tttttgcatt gttttcattt 1080 tttcttttac ttaatcttca ttgctttgaa attaataaaa caatataata tagtttgaac 1140 1200 tttgaactat tgcctattca tgtaattaac ttattcactg actcttattg tttttctggt agaattcatt ttaaattgaa ggataaatta agaggcaata cttgtaaatt gacctgtcat 1260

WO 2004/001000	100000101010
aattacacag gaccetgttt tgtgcctttt tgtctctgtc tttggttttg catgttagcc	JS2003/019437 : 1320
tcacacagat atttagtagt tgttctgcat acaagcctca cacgtatact aaaccagtg	g 1380
acctcaaagt catggcctta cacctattgc atgcgagtct gtgacacaac ccctggtttc	1440
catattgcaa tgtgctacgc cgtcgtcctt gtttgtttcc atatgtatat tgataccatc	1500
aaattattat atcatttata tggtctggac cattacgtgt actctttatg acatgtaatt	1560
gagtttttta attaaaaaaa tcaatgaaat ttaactacgt agcatcatat agagataatt	1620
gactagaaat ttgatgactt attctttcct aatcatattt tcttgtattg atageceego	1680
tgtccctttt aaactcccga gagagtataa aactgcatcg aatattacaa gatgcactct	1740
tgtcaaatga agggggggaa atgatactac aagccactag gcatggtatg atgctaaatt	1800
aaattgtgcc tgcaccccag gatatttcat gtgggattca tcatttattg aggaaaact	1860 、
tccaaattga atcgtgcatt tatattttt ttccatttct agatttcttg aaggcttatg	g 1920
gtataggcac ctacaattat cagcacttct ctctattgat aaacaattgg ctgtaatac	1980
acagtagaga acgatcacaa cattttgtgc tggttacctt ttgttttatg gtcatgattt	2040
cactetetet aatetgteae tteeeteeat teattttgta etteteatat tttteaette	2100
ctggttgaaa attgtagttc tcttggtaca tactagtatt agacattcag caacaacaac	2160
tgaactgaac ttctttatac tttgacacag ggtctagcaa aggaaacaat aatgggaggt	2220
ggaggccgtg tggccaaagt tgaaattcag cagaagaagc ctctctcaag ggttccaaac	2280
acaaagccac cattcactgt tggccaactc aagaaagcca ttccaccgca ctgctttcag	g 2340
cgttccctcc tcacttcatt gtcctatgtt gtttatgacc tttcattggc tttcatttt	2400
tacattgcca ccacctactt ccacctecte ecteaceet ttteeeteat tgcatggcca	a 2460
atc	2463
<210> 20 <211> 44 <212> DNA <213> Artificial sequence <220> <223> PCR primer	
<400> 20	
cuacuacuac uactogagac aaagoottta gootttagoo tatg	44
<210> 21 <211> 36 <212> DNA <213> Artificial sequence	

<220>

<223> PCR primer

ĩ,

PCT/US2003/019437 WO 2004/001000

<400>	21			•	
caucauc	cauc	auggatccca	tgtctctcta	tgcaag	

36

22 1704 DNA Glycine max

<210>

<400> 22 actatagggc acgcgtggtc gacggcccgg gctggtcctc ggtgtgactc agccccaagt 60 120 gacgccaacc aaacgcgtcc taactaaggt gtagaagaaa cagatagtat ataagtatac catataagag gagagtgagt ggagaagcac ttctcctttt tttttctctg ttgaaattga 180 aagtgttttc cgggaaataa ataaaataaa ttaaaatctt acacactcta ggtaggtact 240 tctaatttaa tccacacttt gactctatat atgttttaaa aataattata atgcgtactt 300 acttcctcat tatactaaat ttaacatcga tgattttatt ttctgtttct cttctttcca 360 cctacataca tcccaaaatt tagggtgcaa ttttaagttt attaacacat gtttttagct 420 gcatgctgcc tttgtgtgtg ctcaccaaat tgcattcttc tctttatatg ttgtatttga 480 attttcacac catatgtaaa caagattacg tacgtgtcca tgatcaaata caaatgctgt 540 cttatactgg caatttgata aacagccgtc cattttttct ttttctcttt aactatatat 600 660 qctctagaat ctctgaagat tcctctgcca tcgaatttct ttcttggtaa caacgtcgtc gttatgttat tattttattc tatttttatt ttatcatata tatttcttat tttgttcgaa 720 gtatgtcata ttttgatcgt gacaattaga ttgtcatgta ggagtaggaa tatcacttta 780 aaacattgat tagtctgtag gcaatattgt cttctttttc ctcctttatt aatatatttt 840 gtcgaagttt taccacaagg ttgattcgct ttttttgtcc ctttctcttg ttcttttac 900 ctcaggtatt ttagtctttc atggattata agatcactga gaagtgtatg catgtaatac 960 taagcaccat agctgttctg cttgaattta tttgtgtgta aattgtaatg tttcagcgtt 1020 ggctttccct gtagctgcta caatggtact gtatatctat tttttgcatt gttttcattt 1080 tttcttttac ttaatcttca ttgctttgaa attaataaaa caatataata tagtttgaac 1140 tttgaactat tgcctattca tgtaattaac ttattcactg actcttattg tttttctggt 1200 agaattcatt ttaaattgaa ggataaatta agaggcaata cttgtaaatt gacctgtcat 1260 aattacacag gaccctgttt tgtgcctttt tgtctctgtc tttggttttg catgttagcc 1320 tcacacagat atttagtagt tgttctgcat acaagcctca cacgtatact aaaccagtgg 1380 acctcaaagt catggcctta cacctattgc atgcgagtct gtgacacaac ccctggtttc 1440 catattgcaa tgtgctacgc cgtcgtcctt gtttgtttcc atatgtatat tgataccatc 1500 aaattattat atcatttata tggtctggac cattacgtgt actctttatg acatgtaatt 1560

gagtttttta attaaaaaaa tcaatgaaat ttaactacgt agcatcatat agagataatt	1620
gactagaaat ttgatgactt attettteet aateatattt tettgtattg atageeege	1680
tgtccctttt aaactcccga gaga	1704
407.0	
<210> 23 <211> 4010	
<212> DNA <213> Glycine max	
<400> 23	
acaaageett tageetatge tgeeaataat ggataceaae aaaagggtte ttettttgat	60
tttgatceta gegeteetee acegtttaag attgeagaaa teagagette aataceaaaa	120
cattgctggg tcaagaatcc atggagatcc ctcagttatg ttctcaggga tgtgcttgta	180
attgetgeat tggtggetge ageaatteae ttegacaaet ggettetetg getaatetat	240
tgccccattc aaggcacaat gttctgggct ctctttgttc ttggacatga ttggtaataa	300
tttttgtgtt tcttactctt tttttttt ttttgtttat gatatgaatc tcacacattg	360
ttctgttatg tcatttcttc ttcatttggc tttagacaac ttaaatttga gatctttatt	420
atgtttttgc ttatatggta aagtgattct tcattatttc attcttcatt gattgaattg	480
aacagtggcc atggaagctt ttcagatagc cctttgctga atagcctggt gggacacatc	540
ttgcattcct caattcttgt gccataccat ggatggttag ttcatactgg cttttttgtt	600
tgttcatttg tcattgaaaa aaaatctttt gttgattcaa ttattttat agtgtgtttg	660
gaagcccgtt tgagaaaata agaaatcgca tctggaatgt gaaagttata actatttagc	720
ttcatctgtc gttgcaagtt cttttattgg ttaaattttt atagcgtgct aggaaaccca	780
ttcgagaaaa taagaaatca catctggaat gtgaaagtta taactgttag cttctgagta	840
aacgtggaaa aaccacattt tggatttgga accaaatttt atttgataaa tgacaaccaa	900
attgattttg atggattttg caggagaatt agccacagaa ctcaccatga aaaccatgga	960
cacattgaga aggatgagtc atgggttcca gtatgtgatt aattgcttct cctatagttg	1020
ttcttgattc aattacattt tatttatttg gtaggtccaa gaaaaaaggg aatctttatg	1080
cttcctgagg ctgttcttga acatggctct tttttatgtg tcattatctt agttaacaga	1140
gaagatttac aagaatctag acagcatgac aagactcatt agattcactg tgccatttcc	1200
atgtttgtgt atccaattta tttggtgagt gattttttga cttggaagac aacaacacat	1260
tattattata atatggttca aaacaatgac tttttcttta tgatgtgaac tccattttt	1320
agttttcaag aagccccgga aaggaaggct ctcacttcaa tccctacagc aatctgtttc	1380
cacccagtga gagaaaagga atagcaatat caacactgtg ttgggctacc atgttttctc	1440

WO 2004	1/001000 tctctcattc	attaactagt	ccacttctag	tgctcaagct	PCT/US20	03/019437 1500
ccatattggg	taactaaatt	actcctacat	tgttactttt	tcctcctttt	ttttattatt	1560
tcaattctcc	aattggaaat	ttgaaatagt	taccataatt	atgtaattgt	ttgatcatgt	1620
gcagatgttt	gttatgtggc	tggactttgt	cacatacttg	catcaccatg	gtcaccacca	1680
gaaactgcct	tggtaccgcg	gcaaggtaac	aaaaataaat	agaaaatagt	gggtgaacac	1740
ttaaatgcga	gatagtaata	cctaaaaaaa	gaaaaaaata	taggtataat	aaataatata	1800
actttcaaaa	taaaaagaaa	tcatagagtc	tagcgtagtg	tttggagtga	aatgatgttc	1860
acctaccatt	actcaaagat	tttgttgtgt	cccttagttc	attcttatta	ttttacatat	1920
cttacttgaa	aagacttttt	aattattcat	tgagatctta	aagtgactgt	taaattaaaa	1980
taaaaaacaa	gtttgttaaa	acttcaaata	aataagagtg	aagggagtgt	catttgtctt	2040
ctttctttta	ttgcgttatt	aatcacgttt	ctcttctctt	tttttttt	cttctctgct	2100
ttccacccat	tatcaagttc	atgtgaagca	gtggcggatc	tatgtaaatg	agtggggggc	2160
aattgcaccc	acaagatttt	attttttatt	tgtacaggaa	taataaaata	aaactttgcc	2220
cccataaaaa	ataaatattt	tttçttaaaa	taatgcaaaa	taaatataag	aaataaaaag	2280
agaataaatt	attattaatt	ttattattt	gtacttttta	tttagttttt	ttagcggtta	2340
gattttttt	tcatgacatt	atgtaatctt	ttaaaagcat	gtaatattt	tattttgtga	2400
aaataaatat	aaatgatcat	attagtctca	gaatgtataa	actaataata	attttatcac	2460
taaaagaaat	tctaatttag	tccataaata	agtaaaacaa	gtgacaatta	tattttatat	2520
ttacttaatg	tgaaataata	cttgaacatt	ataataaaac	ttaatgacag	gagatattac	2580
atagtgccat	aaagatattt	taaaaaataa	aatcattaat	acactgtact	actatataat	2640
attcgatata	tatttttaac	atgattctca	atagaaaaat	tgtattgatt	atattttatt	2700
agacatgaat	ttacaagccc	cgtttttcat	ttatagctct	tacctgtgat	ctattgtttt	2760
gcttcgctgt	ttttgttggt	caagggactt	agatgtcaca	atattaatac	tagaagtaaa	2820
tatttatgaa	aacatgtacc	ttacctcaac	aaagaaagtg	tggtaagtgg	caacacacgt	2880
gttgcatttt	tggcccagca	ataacacgtg	tttttgtggt	gtactaaaat	ggacaggaat	2940
ggagttattt	aagaggtggc	ctcaccactg	tggatcgtga	ctatggttgg	atcaataaca	3000
	cattggcacc					3060
	ageggtaeat			•		3120
	: tcttggaagt			,		3180
	gttttcacac					3240
tctattcact	aacatgagaa	attaacttat	ttcaagtaat	aattttaaaa	tatttttatg	3300

WO 2004/001000				PCT/US20	03/019437
ctattatttt attacaaata a	attatgtata	ttaagtttat	tgattttata	ataattatat	3360
taaaattata tcgatattaa t	ttttgattc	actgatagtg	ttttatattg	ttagtactgt	3420
gcatttattt taaaattggc a	ataaataata	tatgtaacca	gctcactata	ctatactggg	3480
agettggtgg tgaaaggggt t	cccaaccct	cctttctagg	tgtacatgct	ttgatacttc	3540
tggtaccttc ttatatcaat a	ataaattata	ttttgctgat	aaaaaaacat	ggttaaccat	3600
taaattottt ttttaaaaaa a	aaactgtat	ctaaactttg	tattattaaa	aagaagtctg	3660
agattaacaa taaactaaca o	ctcatttgga	ttcactgcag	acacaagcag	caaaaccagt	3720
tcttggagat tactaccgtg a	agccagaaag	atctgcgcca	ttaccatttc	atctaataaa	3780
gtatttaatt cagagtatga g	gacaagacca	cttcgtaagt	gacactggag	atgttgttta	3840
ttatcagact gattctctgc t	tectecaete	gcaacgagac	tgagtttcaa	actttttggg	3900
ttattattta ttgattctag o	ctactcaaat	tactttttt	ttaatgttat	gttttttgga	3960
gtttaacgtt ttctgaacaa o	cttgcaaatt	acttgcatag	agagacatgg		4010
<210> 24 <211> 34 <212> DNA <213> Artificial seque <220> <223> PCR primer <400> 24 acgaattcct cgaggtaaat t <210> 25 <211> 33 <212> DNA <213> Artificial seque <220>	taaattgtgc	ctgc			34
<223> PCR primer					
<400> 25 gcgagatcta tcgatctgtg t	tcaaagtata	aac			33
<210> 26 <211> 19 <212> DNA <213> Artificial seque	ence				
<220> <223> PCR primer					
<400> 26 catgetttet gtgettete					19
.010> 27					

<210> 27

WO 2004/001000		PCT/US2003/019437	
	19		
	DNA		
<213>	Artificial sequence		
<220>			
	PCR primer		
	•		
	27	19	
gttgatc	caa ccatagtcg	13	
<210>	28		
<211>	36		
<212>			
<213>	Artificial sequence		
<220>			
<223>	PCR primer		
	•		
<400>	28	26	
gcgatco	gatg tatgatgeta aattaaattg tgeetg .	36	
<210>	29		
<211>	30		
<212>	DNA	•	
<213>	Artificial sequence		
<220>			
<223>	PCR primer		
	•		
<400>	29	30	
gcggaai	ttcc tgtgtcaaag tataaagaag	30	
<210>	30 ,		
<211>	30		
<212>			
<213>	Artificial sequence		
<220>			
<223>	PCR primer		
<400>	30 tgcc cggggtaata atttttgtgt	30	
gallega	tgee eggggtaata attitigigt		
<210>	31		
<211>	29		
<212> <213>			
(213)	Arcificial Sequence		
<220>	•		
<223>	PCR primer		
. 4 6 0 5			
<400>	31 tcga gtgttcaatt caatcaatg	29	
Catget	coga gagaaaaa caacaaaa		
		•	
<210>	32		
<211> <212>	24 DNA		
\LLL /	DETER 1		

W	O 2004/001000	PCT/US2003/019437
<213>	Artificial sequence	1 C 1/032003/01943/
<220>		
	PCR primer	
<400>	32 agtt agttcatact ggct	0.4
	aget agreeatact gget	24 ·
.0		
<210> <211>		
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer	
<400>		
cgcatc	gatt gcaaaatcca tcaaa	25
<210>		
<211> <212>		
	Artificial sequence	
	errread bequence	
<220>		
<223>	PCR primer	
<400>	34	
cuacua	cuac uactcgagcg taaatagtgg gtgaacac	38
<210>	35	
<211>		
<212>		
72137	Artificial sequence	
<220>		
<223>	PCR primer	
<400>	35	
	cauc auctogagga attogtocat tttagtacac c	41
<210>	36	
<211>	39	
<212>		·
<213>	Artificial sequence	
<220>		
<223>	PCR primer	
<400×		
<400> cuacua	36 cuac uactcgaggc gcgtacattt tattgctta	22
	and and against tallyctia	39
20105	27	
<210> <211>	37 41	
<212>	DNA	
<213>	Artificial sequence	

	2004/001000	PCT/US2003/019437
<220> <223>	PCR primer	
<400> caucauc	37 cauc auctcgagga attctgcagt gaatccaaat g	41
<210><211><211><212><213>	38 22 DNA Artificial sequence	·
<220> <223>	PCR primer	
<400> caccat	38 ggtc atcatcagaa ac	22
<210> <211> <212> <213>		
<220> <223>	PCR primer	
<400> tcacga	39 atcca cagttgtgag ac	22
<210> <211> <212> <213>	4086	
<220> <223>	soybean FATB genomic clone	
<400>	gaaac aacaaggacg caaaatgaca caatageeet tetteeetgt ttee	cagettt 60
	ttete tetetecate ttettettet tetteaetea gteaggtacg caaa	
tgcta	ttcat tcattcattc ctctttctct ctgatcgcaa actgcacctc tacq	gctccac 180
tette	tcatt ttotottoot ttotogotto toagatocaa otootoagat aaca	acaagac 240
caaac	ccgct ttttctgcat ttctagacta gacgttctac cggagaaggt tct	egattet 300
tttct	ctttt aactttattt ttaaaataat aataatgaga gctggatgcg tct	gttcgtt 360
gtgaa	tttcg aggcaatggg gttctcattt tcgttacagt tacagattgc att	gtctgct 420
ttcct	cttct cccttgtttc tttgccttgt ctgatttttc gtttttattt ctt	actttta 480
atttt	tgggg atggatattt tttctgcatt ttttcggttt gcgatgtttt cag	gattccg 540
attcc	gagtc agatctgcgc cggcttatac gacgaatttg ttcttattcg caa	ctttcg 600
cttga	stage tigittace teiggaatet cacaegigat caaataagee ige	tatttta 660

WO 2004/001000				PCT/US	2003/019437
gttgaagtag aatttgttct	ttatcggaaa	gaattctatg	gatctgttct	gaaattggag	720
ctactgtttc gagttgctat	tttttttagt	agtattaaga	acaagtttgc	cttttatttt	780
acatttttt cctttgcttt	tgccaaaagt	ttttatgatc	actctcttct	gtttgtgata	840
taactgatgt gctgtgctgt	tattatttgt	tatttggggt	gaagtataat	tttttgggtg	900
aacttggagc atttttagtc	cgattgattt	ctcgatatca	tttaaggcta	aggttgacct	960
ctaccacgcg tttgcgtttg	atgtttttc	cattttttt	ttatctcata	tcttttacag	1020
tgtttgccta tttgcatttc	tcttctttat	cccctttctg	tggaaaggtg	ggagggaaaa	1080
tgtattttt ttttctcttc	taacttgcgt	atattttgca	tgcagcgacc	ttagaaattc	1140
attatggtgg caacagctgc	tacttcatca	tttttccctg	ttacttcacc	ctcgccggac	1200
tctggtggag caggcagcaa	acttggtggt	gggcctgcaa	accttggagg	actaaaatcc	1260
aaatctgcgt cttctggtgg	cttgaaggca	aaggcgcaag	ccccttcgaa	aattaatgga	1320
accacagttg ttacatctaa	agaaggcttc	aagcatgatg	atgatctacc	ttcgcctccc	1380
cccagaactt ttatcaacca	gttgcctgat	tggagcatgc	ttcttgctgc	tatcacaaca	1440
attttcttgg ccgctgaaaa	gcagtggatg	atgcttgatt	ggaagccacg	gcgacctgac	1500
atgcttattg acccctttgg	gataggaaaa	attgttcagg	atggtcttgt	gttccgtgaa	1560
aacttttcta ttagatcata	tgagattggt	gctgatcgta	ccgcatctat	agaaacagta	1620
atgaaccatt tgcaagtaag	tccgtcctca	tacaagtgaa	tctttatgat	cttcagagat	1680
gagtatgctt tgactaagat	agggctgttt	atttagacaç	tgtaattcaa	tttcatatat	1740
agataatatc attctgttgt	tacttttcat	actatattta	tatcaactat	ttgcttaaca	1800
acaggaaact gcacttaatc	atgttaaaag	tgctgggctt	cttggtgatg	gctttggttc	1860
cacgccagaa atgtgcaaaa	agaacttgat	atgggtggtt	actcggatgc	aggttgtggt	1920
ggaacgctat cctacatggt	tagtcatcta	gattcaacca	ttacatgtga	tttgcaatgt	1980
atccatgtta agctgctatt	tctctgtcta	ttttagtaat	ctttatgagg	aatgatcact	2040
cctaaatata ttcatggtaa	ttattgagac	ttaattatga	gaaccaaaat	gctttggaaa	2100
tttgtctggg atgaaaattg	attagataca	caagctttat	acatgatgaa	ctatgggaaa	2160
ccttgtgcaa cagagctatt	gatctgtaca	agagatgtag	tatagcatta	attacatgtt	2220
attagataag gtgacttatc	cttgtttaat	tattgtaaaa	atagaagctg	atactatgta	2280
ttctttgcat ttgttttctt	accagttata	tataccctct	gttctgtttg	agtactacta	2340
gatgtataaa gaatgcaatt	attctgactt	cttggtgttg	ggttgaagtt	agataagcta	2400
ttagtattat tatggttatt	ctaaatctaa	ttatctgaaa	ttgtgtgtct	atatttgctt	2460
caggggtgac atagttcaag	tggacacttg	ggtttctgga	tcagggaaga	atggtatgcg	2520

WO 2004	J/001000				PCT/US20	03/019437
tcgtgattgg	cttttacgtg	actgcaaaac	tggtgaaatc	ttgacaagag	cttccaggta	2580
gaaatcattc	tctgtaattt	tccttcccct	ttccttctgc	ttcaagcaaa	ttttaagatg	2640
tgtatcttaa	tgtgcacgat	gctgattgga	cacaatttta	aatctttcaa	acatttacaa	2700
aagttatgga	accettett	ttctctcttg	aagatgcaaa	tttgtcacga	ctgaagtttg	2760
aggaaatcat	ttgaattttg	caatgttaaa	aaagataatg	aactacatat	tttgcaggca	2820
aaaacctcta	attgaacaaa	ctgaacattg	tatcttagtt	tatttatcag	actttatcat	2880
gtgtactgat	gcatcacctt	ggagcttgta	atgaattaca	tattagcatt	ttctgaactg	2940
tatgttatgg	ttttggtgat	ctacagtgtt	tgggtcatga	tgaataagct	gacacggagg	3000
ctgtctaaaa	ttccagaaga	agtcagacag	gagataggat	cttattttgt	ggattctgat	3060
ccaattctag	aagaggataa	cagaaaactg	actaaacttg	acgacaacac	agcggattat	3120
attcgtaccg	gtttaagtgt	atgtcaacta	gtttttttgt	aattgttgtc	attaatttct	3180
tttcttaaat	tatttcagat	gttgctttct	aattagttta	cattatgtat	cttcattctt	3240
ccagtctagg	tggagtgatc	tagatatcaa	tcagcatgtc	aacaatgtga	agtacattga	3300
ctggattctg	gaggtatttt	tctgttcttg	tattctaatc	cactgcagtc	cttgttttgt	3360
tgttaaccaa	aggactgtcc	tttgattgtt	tgcagagtgc	tccacagcca	atcttggaga	3420
gtcatgagct	ttcttccgtg	actttagagt	ataggaggga	gtgtggtagg	gacagtgtgc	3480
tggattccct	gactgctgta	tctggggccg	acatgggcaa	tctagctcac	agtggacatg ·	3540
ttgagtgcaa	gcatttgctt	cgactcgaaa	atggtgctga	gattgtgagg	ggcaggactg	3600
agtggaggcc	caaacctatg	aacaacattg	gtgttgtgaa	ccaggttcca	gcagaaagca	3660
cctaagattt	tgaaatggtt	aacggttgga	gttgcatcag	tctccttgct	atgtttagac	3720
ttattctggc	ctctggggag	agttttgctt	gtgtctgtcc	aatcaatcta	catatcttta	3780
tatccttcta	atttgtgtta	ctttggtggg	taagggggaa	aagctgcagt	aaacctcatt	3840
ctctcttct	gctgctccat	atttcatttc	atctctgatt	gcgctactgc	taggctgtct	3900
tcaatattta	attgcttgat	caaaatagct	aggcatgtat	attattattc	ttttctcttg	3960
gctcaattaa	agatgcaatt	ttcattgtga	acacagcata	actattattc	ttattatttt	4020
tgtatagcct	gtatgcacga	atgacttgtc	catccaatac	aaccgtgatt	gtatgctcca	4080
gctcag						4086

<210> 41

<211> 109 <212> DNA

<213> Glycine max

<220>

<223> FATB intron I

<400> 41 gtacgcaaac aaatctgcta ttcattcatt cattcctctt tctctctgat cgcaaactgc 60 acctetaege tecaetette teattttete tteettete getteteag 109 <210> 42 <211> 836 <212> DNA <213> Glycine max <220> <223> FATB intron II <400> 42 gttctcgatt cttttctctt ttaactttat ttttaaaata ataataatga gagctggatg 60 cgtctgttcg ttgtgaattt cgaggcaatg gggttctcat tttcgttaca gttacagatt 120 gcattgtctg ctttcctctt ctcccttgtt tctttgcctt gtctgatttt tcgttttat 180 ttcttacttt taatttttgg ggatggatat tttttctgca ttttttcggt ttgcgatgtt 240 ttcaggattc cgattccgag tcagatctgc gccggcttat acgacgaatt tgttcttatt 300 cgcaactttt cgcttgattg gcttgtttta cctctggaat ctcacacgtg atcaaataag 360 cctgctattt tagttgaagt agaatttgtt ctttatcgga aagaattcta tggatctgtt 420 ctgaaattgg agctactgtt tcgagttgct attttttta gtagtattaa gaacaagttt 480 gccttttatt ttacattttt ttcctttgct tttgccaaaa gtttttatga tcactctctt 540 ctgtttgtga tataactgat gtgctgtgct gttattattt gttatttggg gtgaagtata 600 attttttggg tgaacttgga gcatttttag tccgattgat ttctcgatat catttaaggc 660 taaggttgac ctctaccacg cgtttgcgtt tgatgttttt tccattttt ttttatctca 720 tatcttttac agtgtttgcc tatttgcatt tctcttcttt atcccctttc tgtggaaggt 780 gggagggaaa atgtatttt tttttctctt ctaacttgcg tatattttgc atgcag 836 <210> 43 <211> 169 <212> DNA <213> Glycine max <220> <223> FATB intron III <400> 43 gtaagtccgt cctcatacaa gtgaatcttt atgatcttca gagatgagta tgctttgact 60 aagatagggc tgtttattta gacactgtaa ttcaatttca tatatagata atatcattct 120

PCT/US2003/019437

169

gttgttactt ttcatactat atttatatca actatttgct taacaacag

'n

WO 2004/001000

<210> 44

<211> 328

<212> PRT

<213> Glycine max

<220>

<223> soybean FATB enzyme

<400> 44

Met Glu Glu Gln Leu Leu Ala Ala Ile Thr Thr Ile Phe Leu Ala Ala 1 5 10 15

Glu Lys Gln Trp Met Met Leu Asp Trp Lys Pro Arg Arg Pro Asp Met 20 25 30

Leu Ile Asp Pro Phe Gly Ile Gly Lys Ile Val Gln Asp Gly Leu Val
35 40 45

Phe Arg Glu Asn Phe Ser Ile Arg Ser Tyr Glu Ile Gly Ala Asp Arg 50 60.

Thr Ala Ser Ile Glu Thr Val Met Asn His Leu Gln Glu Thr Ala Leu 65 70 75 80

Asn His Val Lys Ser Ala Gly Leu Leu Gly Asp Gly Phe Gly Ser Thr 85 90 95

Pro Glu Met Cys Lys Lys Asn Leu Ile Trp Val Val Thr Arg Met Gln 100 105 110

Val Val Glu Arg Tyr Pro Thr Trp Gly Asp Ile Val Gln Val Asp 115 120 125

Thr Trp Val Ser Gly Ser Gly Lys Asn Gly Met Arg Arg Asp Trp Leu 130 135 140

Leu Arg Asp Ser Lys Thr Gly Glu Ile Leu Thr Arg Ala Ser Ser Val 145 150 155 160

Trp Val Met Met Asn Lys Leu Thr Arg Arg Leu Ser Lys Ile Pro Glu 165 170 175

Glu Val Arg Gln Glu Ile Gly Ser Tyr Phe Val Asp Ser Asp Pro Ile 180 185 190

Leu Glu Glu Asp Asn Arg Lys Leu Thr Lys Leu Asp Asp Asn Thr Ala 195 200 205

Asp Tyr Ile Arg Thr Gly Leu Ser Pro Arg Trp Ser Asp Leu Asp Ile 210 215 220

Asn Gln His Val Asn Asn Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser 225 230 235 240

Ala Pro Gln Pro Ile Leu Glu Ser His Glu Leu Ser Ser Met Thr Leu 245 250 255

Glu Tyr Arg Arg Glu Cys Gly Arg Asp Ser Val Leu Asp Ser Leu Thr 260 265 270

Ala Val Ser Gly Ala Asp Met Gly Asn Leu Ala His Ser Gly His Val

Glu Cys Lys His Leu Leu Arg Leu Glu Asn Gly Ala Glu Ile Val Arg 290 295 300

Gly Arg Thr Glu Trp Arg Pro Lys Pro Val Asn Asn Phe Gly Val Val 305 310 315 320

Asn Gln Val Pro Ala Glu Ser Thr

<210> 45

<211> 1856

<212> DNA

<213> Glycine max

<220>

ί,

٦,

<223> soybean FATB partial genomic clone

<400> 45

ttagggaaac aacaaggacg caaaatgaca caatagccct tcttccctgt ttccagcttt 60 tctccttctc tctctccatc ttcttcttct tcttcactca gtcaggtacg caaacaaatc 120 tgctattcat tcattcattc ctctttctct ctgatcgcaa actgcacctc tacgctccac 180 tetteteatt ttetetteet ttetegette teagatecaa eteeteagat aacacaagae 240 caaacccgct ttttctgcat ttctagacta gacgttctac cggagaaggt tctcgattct 300 tttctctttt aactttattt ttaaaataat aataatgaga gctggatgcg tctgttcgtt 360 gtgaatttcg aggcaatggg gttctcattt tcgttacagt tacagattgc attgtctgct 420 ttcctcttct cccttgtttc tttgccttgt ctgatttttc gtttttattt cttactttta 480 atttttgggg atggatattt tttctgcatt ttttcggttt gcgatgtttt caggattccg 540 attccgagtc agatctgcgc cggcttatac gacgaatttg ttcttattcg caacttttcg 600 cttgattggc ttgttttacc tctggaatct cacacgtgat caaataagcc tgctatttta 660 gttgaagtag aatttgttct ttatcggaaa gaattctatg gatctgttct gaaattggag 720 ctactgtttc gagttgctat tttttttagt agtattaaga acaagtttgc cttttatttt 780 acatttttt cctttgcttt tgccaaaagt ttttatgatc actctcttct gtttgtgata 840 taactgatgt gctgtgctgt tattatttgt tatttggggt gaagtataat tttttgggtg 900 aacttggagc atttttagtc cgattgattt ctcgatatca tttaaggcta aggttgacct 960 ctaccacgcg tttgcgtttg atgtttttc cattttttt ttatctcata tcttttacag 1020 tgtttgccta tttgcatttc tcttctttat cccctttctg tggaaggtgg gagggaaaat 1080 gtattttttt tttctcttct aacttgcgta tattttgcat gcagcgacct tagaaattca 1140 ttatggtggc aacagctgct acttcatcat ttttccctgt tacttcaccc tcgccggact 1200 ctggtggagc aggcagcaaa cttggtggtg ggcctgcaaa ccttggagga ctaaaatcca 1260

WO 2004/001000 PCT/US2003/019437

aatctgcg	tc	ttctggtggc	ttgaaggcaa	aggcgcaagc	cccttcgaaa	attaatggaa	1320
ccacagtt	gt	tacatctaaa	gaaggcttca	agcatgatga	tgatctacct	tegeeteece	1380
ccagaact	tt	tatcaaccag	ttgcctgatt	ggagcatgct	tettgetget	atcacaacaa	1440
ttttcttg	gç	cgctgaaaag	cagtggatga	tgcttgattg	gaagccacgg	cgacctgaca	1500
tgcttatt	ga	cccctttggg	ataggaaaaa	ttgttcagga	tggtcttgtg	ttccgtgaaa	1560
acttttct	at	tagatcatat	gagattggtg	ctgatcgtac	cgcatctata	gaaacagtaa	1620
tgaaccat	tt	gcaagtaagt	ccgtcctcat	acaagtgaat	ctttatgatc	ttcagagatg	1680
agtatgct	tt	gactaagata	gggctgttta	tttagacact	gtaattcaat	ttcatatata	1740
gataatat	ca	ttctgttgtt	acttttcata	ctatatttat	atcaactatt	tgċttaacaa	1800
caggaaac	tg	cacttaatca	tgttaaaagt	gctgggcttc	ttggtgatgg	ctggta	1856
<210> 4	16			•			

- <211> 34 <212> DNA <213> Artificial <220> <223> Oligonucleotide primer F1 <400> 46 34 gcggccgccc cgggttaggg aaacaacaag gacg <210> 47 <211> 34 <212> DNA <213> Artificial <220> <223> Oligonucleotide primer F2 <400> 47 34 geggeegeee egggeagtea gatecaacte etca <210> 48 <211> 34
- <210> 48
 <211> 34
 <212> DNA
 <213> Artificial
 <220>
 <223> Oligonucleotide primer F3

<400> 48
geggeegee egggattggt getgategta eege 34

<210> 49 <211> 38 <212> DNA

W	O 2004/001000	PCT/US2003/01943
	Artificial	1 C1/032003/01943
<220>		
<223>	Oligonucleotide primer Rl	
<100>	40	
<400>		
geggee	gegg tacccccct tacccaccaa agtatcac	38
<210>	50	
<211>		
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer R2	
<400>	50	
	gegg taccaaacte teeccaggga acca	2.4
geggee	gegg caccadacte tececaggga acca	34
<210>	51	
<211>	34	
<212>		
<213>	Artificial	
<220>		•
<223>	Oligonucleotide primer R3	•
<400>	51	
	gcgg taccagccat caccaagaag ccca	34
3 33	jegg carrage and addaugady cood	24
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer 18133	
	The second of th	
<400>	52	
gaattc	ctcg agctcgattc ttttctcttt taacttt	37
∠210 >	63	
<210> <211>	53 37	
<211>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer 18134	
	50	
<400>	53	
gaatto	ctcg agcatgcaaa atatacgcaa gttagaa	37
	·	
<210>	54	
<211>	854	
<212>	DNA	
	Artificial	

WO 2004/001000 PCT/US2003/019437

<220>

<223> PCR product containing soybean FATB intron II

<400> 54 gaattcctcg agctcgattc ttttctcttt taactttatt tttaaaaataa taataatgag	60
agetggatge gtetgttegt tgtgaattte gaggeaatgg ggtteteatt ttegttacag	120
ttacagattg cattgtctgc tttcctcttc tcccttgttt ctttgccttg tctgattttt	180
cgtttttatt tcttactttt aatttttggg gatggatatt ttttctgcat tttttcggtt	240
tgcgatgttt tcaggattcc gattccgagt cagatctgcg ccggcttata cgacgaattt	300
gttcttattc gcaacttttc gcttgattgg cttgttttac ctctggaatc tcacacgtga	360
tcaaataagc ctgctatttt agttgaagta gaatttgttc tttatcggaa agaattctat	420
ggatctgttc tgaaattgga gctactgttt cgagttgcta ttttttttag tagtattaag	480
aacaagtttg ccttttattt tacatttttt tcctttgctt ttgccaaaag tttttatgat	540
cactctcttc tgtttgtgat ataactgatg tgctgtgctg	600
tgaagtataa ttttttgggt gaacttggag catttttagt ccgattgatt tctcgatatc	660
atttaagget aaggttgaee tetaceaege gtttgegttt gatgtttttt ceatttttt	720
tttatctcat atcttttaca gtgtttgcct atttgcattt ctcttcttta tcccctttct	780
gtggaaggtg ggagggaaaa tgtattttt ttttctcttc taacttgcgt atattttgca	840
tgctcgagga attc	854

<210> 55

<211> 1688

<212> DNA

<213> Glycine max

<220>

<223> soybean FATB cDNA

60 acaattacac tqtctctctc ttttccaaaa ttagggaaac aacaaggacg caaaatgaca caatageeet tetteeetgt tteeagettt teteettete tetetetea tettettett 120 180 cttcttcact cagtcagatc caactcctca gataacacaa gaccaaaccc gctttttctg 240 cattlctaga ctagacgttc taccggagaa gcgaccttag aaattcatta tggtggcaac agctgctact tcatcatttt tccctgttac ttcaccctcg ccggactctg gtggagcagg 300 cagcaaactt ggtggtgggc ctgcaaacct tggaggacta aaatccaaat ctgcgtcttc 360 tggtggcttg aaggcaaagg cgcaagcccc ttcgaaaatt aatggaacca cagttgttac 420 atctaaagaa agcttcaagc atgatgatga tctaccttcg cctccccca gaacttttat 480 540 caaccagttg cetgattgga geatgettet tgetgetate acaacaattt tettggeege

WO 2004/001000 PCT/US2003/019437

tgaaaagcag	tggatgatgc	ttgattggaa	gccacggcga	cctgacatgc	ttattgaccc	,600
ctttgggata	ggaaaaattg	ttcaggatgg	tcttgtgttc	cgtgaaaact	tttctattag	660
atcatatgag	attggtgctg	atcgtaccgc	atctatagaa	acagtaatga	accatttgca	720
agaaactgca	cttaatcatg	ttaaaagtgc	tgggcttctt	ggtgatggct	ttggttccac	780
gccagaaatg	tgcaaaaaga	acttgatatg	ggtggttact	cggatgcagg	ttgtggtgga	840
acgctatcct	acatggggtg	acatagttca	agtggacact	tgggtttctg	gatcagggaa	900
gaatggtatg	cgtcgtgatt	ggcttttacg	tgactccaaa	actggtgaaa	tcttgacaag	960
agcttccagt	gtttgggtca	tgatgaataa	gctaacacgg	aggctgtcta	aaattccaga	1020
agaagtcaga	caggagatag	gatcttattt	tgtggattct	gatccaattc	tggaagagga	1080
taacagaaaa	ctgactaaac	ttgacgacaa	cacagcggat	tatattcgta	ccggtttaag	1140
tcctaggtgg	agtgatctag	atatcaatca	gcatgtcaac	aatgtgaagt	acattggctg	1200
gattctggag	agtgctccac	agccaatctt	ggagagtcat	gagctttctt	ccatgacttt	1260
agagtatagg	agagagtgtg	gtagggacag	tgtgctggat	tccctgactg	ctgtatctgg	1320
ggccgacatg	ggcaatctag	ctcacagcgg	gcatgttgag	tgcaagcatt	tgcttcgact	1380
ggaaaatggt	gctgagattg	tgaggggcag	gactgagtgg	aggcccaaac	ctgtgaacaa	1440
ctttggtgtt	gtgaaccagg	ttccagcaga	aagcacctaa	gatttgaaat	ggttaacgat	1500
tggagttgca	tcagtctcct	tgctatgttt	agacttattc	tggttccctg	gggagagttt	1560
tgcttgtgtc	tatccaatca	atctacatgt	ctttaaatat	atacaccttc	taatttgtga	1620
tactttggtg	ggtaaggggg	aaaagcagca	gtaaatctca	ttctcattgt	aattaaaaaa	1680
aaaaaaa						1688

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date 31 December 2003 (31.12.2003)

PCT

(10) International Publication Number WO 2004/001000 A3

(51) International Patent Classification⁷: 15/63, 15/82, 15/90, A01H 5/00

C12N 15/09,

(21) International Application Number:

PCT/US2003/019437

(22) International Filing Date:

20 June 2003 (20.06.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/390,186

21 June 2002 (21.06.2002) US

- (71) Applicant: MONSANTO TECHNOLOGY LLC [US/US]; 800 N. Lindbergh Boulevard, St. Louis, MO 63167 (US).
- (72) Inventor: FILLATTI, Joanne, J.; 36757 Russell Blvd., Davis, CA 95616 (US).
- (74) Agents: MARSH, David, R. et al.; Arnold & Porter, Attn: IP Docketing Dept., Room 1126B, 555 Twelfth Street, N.W., Washington, DC 20004-1206 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 12 August 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: INTRON DOUBLE STRANDED RNA CONSTRUCTS AND USES THEREOF

(57) Abstract: The present invention is in the field of plant genetics and provides agents capable of gene-specific silencing. The present invention specifically provides double-stranded RNA (dsRNA) agents, methods for utilizing such agents and plants containing such agents.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/19437

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) C12N 15/09, 15/63, 15/82, 15/90; A01H 5/00					
US CL	: 435/320.1, 468; 800/278, 281, 285, 286 International Patent Classification (IPC) or to both nation	onal classification and IPC			
	OS SEARCHED				
	umentation searched (classification system followed by	classification symbols)			
U.S. : 43	5/320.1, 468; 800/278, 281, 285, 286				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic dat WEST, Agric	a base consulted during the international search (name cola, CAplus, Biosis	of data base and, where practicable, sea	rch terms used)		
C. DOCU	UMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where ap		Relevant to claim No.		
Y .	LEVIN et al. Methods of Double-Stranded RNA-Mediated Gene Inactivation in Arabidopsis and Their Use to Define an Essential Gene in Methionine Biosynthesis. Plant Mol. Biol. 2000, Vol. 44, pages 759-775, see pages 764-768.				
Y	STOUTJESDUK et al. hpRNA-Meditated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing. Plant Physiology. August 2002, Vol. 129, pages 1723-1731, see pages 1724-1726.				
P, Y	P, Y US 6, 73,099 B2 (GRAHAM) 03 June 2003 (03.06.2003), column 14, line 60 to column 1-4, 6, 7, 9, 10, 17				
P, T, Y	23, line 18, column 25, line 60 to column 28, line 65. P, T, Y US 6,506,559 B1 (FIRE et al.) 14 January 2003 (14.01.2003), column 2, line 45 to column 4, line 16, column 26, line 29 to column 28, line 20.				
Y CHUANG et al. Specific and Heritable Genetic Interference by Double-Stranded RNA in Arabidopsis Thaliana. PNAS. 25 April 2000, Vol. 97, No. 9, pages 4985-4990, see whole document.					
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.			
· .	Special categories of cited documents:	"T" later document published after the in			
	date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an invention step when the document is taken alone				
-L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) -O" document referring to an oral disclosure, use, exhibition or other means -O" document referring to an oral disclosure, use, exhibition or other means					
-O" document referring to an oral disclosure, use, exhibition or other means -p" document published prior to the international filing date but later than the priority date claimed document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report 2.1 111N 2004					
09 February 2004 (09.02.2004)					
Name and maning address of the 1575 05					
	Mail Stop PCT, Attn: ISA/US Commissioner for Patents Ashwin Mehta				
P.	P.O. Box 1450 Alexandria, Virginia 22313-1450 Telephone No. 703-308-0196				
	lo. (703)305-3230				
Form PCT/ISA/210 (second sheet) (July 1998)					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/19437

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7, 9-14, 17
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
Form PCT/ISA/210 (continuation of 5

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

	PCT/US03/19437
INTERNATIONAL SEARCH REPORT	1
·	
BOX 11. OBSERVATIONS WHERE UNITY OF INVENTION IS LA This application contains the following inventions or groups of inventions which a concept under PCT Rule 13.1. In order for all inventions to be examined, the applications of the property of the proper	propriate additional examination fees must be paid.
Group I, claim(s) 1-7, 9-14, 17, drawn to a first product, a nucleic acid construct forms at least one double-stranded RNA molecule, wherein one strand is coded by transcribed intron of a gene, a transformed plant having in its genome said nuclei expression of a protein encoded by a target gene in a plant.	v a nortion of DIVA having identity to a at least one
Group II, claim(s) 8, 15, 16, drawn to a second product, a transformed non-plant nucleic acid construct comprising DNA which is transcribed into RNA that forms second method, for reducing expression of a protein encoded by a target gene in	s at least one double-straided KIAA molecule, and a
The inventions listed as Groups I-II do not relate to a single general inventive cor 13.2, they lack the same or corresponding special technical features for the followinvolving plant transformation of Group I are not shared with the non-plant organ mammalian cells of Group II.	wing reasons: the transformed plant and incured
·	
·	
·	

Form PCT/ISA/210 (second sheet) (July 1998)