Frequency Response Techniques in Feedback Control Systems

https://github.com/mertankarali/Lecture-Notes/tree/master/METU-EE302/Frequency_Response

Part I - Polar Plot

Part II - Nyquist Plot

Definition: A contour Γ_s is a closed path with a direction in a complex plane.

Definition: A contour Γ_s is a closed path with a direction in a complex plane.

Remark: A continuous function F(s) maps a contour Γ_s in s-plane to another contour $\Gamma_{F(s)}$

Let's assume G(s) has no poles and zeros on the imaginary axis

Let's assume G(s) has no poles and zeros on the imaginary axis

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s+1} \longrightarrow \begin{cases} s = Re^{j\theta} \\ R \to \infty \\ \theta : \pi/2 \to -\pi/2 \end{cases} \longrightarrow \begin{cases} G(Re^{j\theta}) = \frac{1}{Re^{j\theta} + 1} \approx \frac{1}{Re^{j\theta}} \\ |G(Re^{j\theta})| \approx 0 \end{cases}$$

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s+1}$$

$$0.5$$

$$\omega = 0$$

$$G(s) = \frac{1}{(s+1)^2}$$

$$\mathbb{Q}$$

$$G(s) = \frac{1}{(s+1)^2}$$

$$G(s) = \frac{1}{(s+1)^2} \longrightarrow \begin{cases} s = Re^{i\theta} \\ R \to \infty \\ \theta : \pi/2 \to -\pi/2 \end{cases} \longrightarrow \begin{cases} G(Re^{i\theta}) \approx \frac{e^{-j2\theta}}{R^2} \\ |G(Re^{i\theta})| \approx 0 \end{cases}$$

$$G(s) = \frac{1}{(s+1)^2}$$

$$G(s) = \frac{1}{(s+1)^2}$$

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{(s+1)^2}$$

$$G(s) = \frac{1}{(s+1)^3}$$

