```
In [1]:
```

```
import pandas as pd
import numpy as np
```

Read Data

```
In [2]:
```

```
#Load the data with pandas
df = pd.read_csv('../gapminder.csv', low_memory=False)
df.head()
```

Out[2]:

	country	incomeperperson	alcconsumption	armedforcesrate	breastcancerper100th	co2emissions	femaleemployra
0	Afghanistan		.03	.5696534	26.8	75944000	25.60000038146
1	Albania	1914.99655094922	7.29	1.0247361	57.4	223747333.333333	42.09999847412
2	Algeria	2231.99333515006	.69	2.306817	23.5	2932108666.66667	31.70000076293
3	Andorra	21943.3398976022	10.17				
4	Angola	1381.00426770244	5.57	1.4613288	23.1	248358000	69.40000152587
4							Þ

In [3]:

```
#Number of rows and columns
print('Number of observations (rows)', len(df))
print('Number of variables (cols)', len(df.columns))
```

Number of observations (rows) 213 Number of variables (cols) 16

In [4]:

```
# bug fix for display formats to avoid run time errors
pd.set_option('display.float_format', lambda x:'%f'%x)
```

In [5]:

```
# Convert columns from strings to numeric
columns = ['incomeperperson', 'alcconsumption', 'armedforcesrate', 'breastcancerper100th
', 'co2emissions', 'femaleemployrate', 'hivrate', 'internetuserate', 'lifeexpectancy', '
oilperperson', 'polityscore', 'relectricperperson', 'suicideper100th', 'employrate', 'urb
anrate']
data = df[columns].apply(pd.to_numeric, errors='coerce')
data['country'] = df['country']
data
```

Out[5]:

	incomeperperson	alcconsumption	armedforcesrate	breastcancerper100th	co2emissions	femaleemployrate	hivra
0	nan	0.030000	0.569653	26.800000	75944000.000000	25.600000	r
1	1914.996551	7.290000	1.024736	57.400000	223747333.333333	42.099998	r
2	2231.993335	0.690000	2.306817	23.500000	2932108666.666670	31.700001	0.1000
3	21943.339898	10.170000	nan	nan	nan	nan	r
4	1381.004268	5.570000	1.461329	23.100000	248358000.000000	69.400002	2.0000
208	722.807559	3.910000	1.085367	16.200000	1425435000.000000	67.599998	0.4000

209 inc	comeperperson a	lcconsumption a	armedfoggesgate	breastcancerper100th	142 4133 3.55 39 35	femaleemployrate	hivr		
210	610.357367	0.200000	2.316235	35.100000	234864666.666667	20.299999	,		
211	432.226337	3.560000	0.341335	13.000000	132025666.666667	53.500000	13.500		
212	320.771890	4.960000	1.032785	19.000000	590219666.666666	58.099998	14.300		
213 row	s × 16 columns	S							
In [6]	:								
<pre>print("internetuserate", np.sum(listinternet.isnull())) listIncomes = data['incomeperperson'] print("incomeperperson", np.sum(listIncomes.isnull())) listLife = data['lifeexpectancy'] print("lifeexpectancy", np.sum(listLife.isnull())) listCancer = data['breastcancerper100th'] print("breastcancerper100th", np.sum(listCancer.isnull()))</pre>									
income lifeex	etuserate 21 perperson 23 pectancy 22 cancerper100								
# Stat	istics summa incomeperper	_		person					
Out[7]	:								
count mean std min 25% 50% 75% max Name:	190.000 8740.966 14262.809 103.775 748.245 2553.496 9379.891 105147.437 incomeperper	076 083 857 151 056 165 697	float64						

Limit Data

```
In [8]:
```

```
#Countries with lowest incomes
lowestData = data[data['incomeperperson'] < 749]</pre>
```

```
In [9]:
```

```
#Countries with the hieghest incomes
highestData = data[data['incomeperperson'] > 9379]
```

Life Expectancy

Lowest Incomes

```
In [10]:
```

```
#Create dataframe to store values
lifeL = pd.DataFrame()
lifeL['value'] = ['(47.7, 50.5] ', '(50.5, 53.2]', '(53.2, 56]', '(56, 58.7]', '(58.7,
```

```
61.4]',
'(61.4, 64.2]', '(64.2, 66.9]', '(66.9, 69.7]', '(69.7, 72.4]', '(72.4, 75.1]']
```

In [11]:

```
# frequency and percentage distritions for lifeexpectancy with lower incomes
cLifeL = lowestData['lifeexpectancy'].value_counts(sort=False,bins=10)
pLifeL = lowestData['lifeexpectancy'].value_counts(sort=False,bins=10,normalize=True)*10

# add values to dataframe
lifeL['freq'] = cLifeL.tolist()
lifeL['percent'] = pLifeL.tolist()

#cumulative frequency and cumulative percentage for lifeexpectancy with lower incomes
lifeL['cum freq'] = lifeL['freq'].cumsum()
lifeL['cum percent'] = lifeL['percent'].cumsum()
```

In [12]:

lifeL

Out[12]:

	value	freq	percent	cum freq	cum percent
0	(47.7, 50.5]	9	18.750000	9	18.750000
1	(50.5, 53.2]	4	8.333333	13	27.083333
2	(53.2, 56]	7	14.583333	20	41.666667
3	(56, 58.7]	7	14.583333	27	56.250000
4	(58.7, 61.4]	4	8.333333	31	64.583333
5	(61.4, 64.2]	5	10.416667	36	75.000000
6	(64.2, 66.9]	4	8.333333	40	83.333333
7	(66.9, 69.7]	7	14.583333	47	97.916667
8	(69.7, 72.4]	0	0.000000	47	97.916667
9	(72.4, 75.1]	1	2.083333	48	100.000000

Highest Incomes

```
In [13]:
```

```
#Create dataframe to store values
lifeH = pd.DataFrame()
lifeH['value'] = [ '(70.1, 71.4]', '(71.4, 72.7]', '(72.7, 74.1]', '(74.1, 75.4]', '(75.4, 76.7]', '(76.7, 78]', '(78, 79.4]', '(79.4, 80.7]', '(80.7, 82]', '(82, 83.3]']
```

In [14]:

```
# frequency and percentage distritions for lifeexpectancy with higher incomes
cLifeH = highestData['lifeexpectancy'].value_counts(sort=False,bins=10)
pLifeH = highestData['lifeexpectancy'].value_counts(sort=False,bins=10,normalize=True)*1
00

# add values to dataframe
lifeH['freq'] = cLifeH.tolist()
lifeH['percent'] = pLifeH.tolist()

#cumulative frequency and cumulative percentage for lifeexpectancy with lower incomes
lifeH['cum freq'] = lifeH['freq'].cumsum()
lifeH['cum percent'] = lifeH['percent'].cumsum()
```

In [15]:

lifeH

Out[15]:

	value	freq	percent	cum freq	cum percent
0	(70.1, 71.4]	1	2.083333	1	2.083333
1	(71.4, 72.7]	0	0.000000	1	2.083333
2	(72.7, 74.1]	2	4.166667	3	6.250000
3	(74.1, 75.4]	1	2.083333	4	8.333333
4	(75.4, 76.7]	3	6.250000	7	14.583333
5	(76.7, 78]	1	2.083333	8	16.666667
6	(78, 79.4]	5	10.416667	13	27.083333
7	(79.4, 80.7]	13	27.083333	26	54.166667
8	(80.7, 82]	12	25.000000	38	79.166667
9	(82, 83.3]	3	6.250000	41	85.416667

Internet Use Rate

Lowest Incomes

In [16]:

```
#Create dataframe to store values
internetL = pd.DataFrame()
internetL['value'] = [ '(0.1, 4.2]', '(4.2, 8.1]', '(8.1, 12.1]', '(12.1, 16.1]', '(16.1, 20.1]', '(20.1, 24.1]', '(24.1, 28.1]', '(28.1, 32.1]', '(32.1, 36.1]', '(36.1, 40.1]'
]
```

In [17]:

```
# frequency and percentage distritions for a number of internetuserate with lower incomes
cInternetL = lowestData['internetuserate'].value_counts(sort=False,bins=10)
pInternetL = lowestData['internetuserate'].value_counts(sort=False,bins=10,normalize=Tru
e)*100

# add values to dataframe
internetL['freq'] = cInternetL.tolist()
internetL['percent'] = pInternetL.tolist()

#cumulative frequency and cumulative percentage for internetuserate with lower incomes
internetL['cum freq'] = internetL['freq'].cumsum()
internetL['cum percent'] = internetL['percent'].cumsum()
```

In [18]:

internetL

Out[18]:

	value	freq	percent	cum freq	cum percent
0	(0.1, 4.2]	23	47.916667	23	47.916667
1	(4.2, 8.1]	6	12.500000	29	60.416667
2	(8.1, 12.1]	7	14.583333	36	75.000000
3	(12.1, 16.1]	4	8.333333	40	83.333333
4	(16.1, 20.1]	2	4.166667	42	87.500000
5	(20.1, 24.1]	0	0.000000	42	87.500000
6	(24.1, 28.1]	2	4.166667	44	91.666667
7	/ 22 1 22 1 1	1	ว บชรรรร	15	03 750000

```
        value
        freq 8 (32.1, 36.1]
        percent 0.000000
        cum freq 45
        cum percent 93.750000

        9 (36.1, 40.1]
        1
        2.083333
        46
        95.833333
```

Highest Incomes

```
In [19]:
```

```
#Create dataframe to store values
internetH = pd.DataFrame()
internetH['value'] = [ '(35.9, 41.9]', '(41.9, 47.9]', '(47.9, 53.8]', '(53.8, 59.8]', '
(59.8, 65.8]', '(65.8, 71.7]', '(71.7, 77.7]', '(77.7, 83.7]', '(83.7, 89.6]', '(89.6, 9
5.6]']
```

In [20]:

```
# frequency and percentage distritions for internetuserate with higher incomes
cInternetH = highestData['internetuserate'].value_counts(sort=False,bins=10)
pInternetH = highestData['internetuserate'].value_counts(sort=False,bins=10,normalize=Tr
ue)*100

# add values to dataframe
internetH['freq'] = cInternetH.tolist()
internetH['percent'] = pInternetH.tolist()

#cumulative frequency and cumulative percentage for internetuserate with lower incomes
internetH['cum freq'] = internetH['freq'].cumsum()
internetH['cum percent'] = internetH['percent'].cumsum()
```

In [21]:

internetH

Out[21]:

	value	freq	percent	cum freq	cum percent
0	(35.9, 41.9]	2	4.166667	2	4.166667
1	(41.9, 47.9]	3	6.250000	5	10.416667
2	(47.9, 53.8]	5	10.416667	10	20.833333
3	(53.8, 59.8]	2	4.166667	12	25.000000
4	(59.8, 65.8]	5	10.416667	17	35.416667
5	(65.8, 71.7]	3	6.250000	20	41.666667
6	(71.7, 77.7]	7	14.583333	27	56.250000
7	(77.7, 83.7]	10	20.833333	37	77.083333
8	(83.7, 89.6]	4	8.333333	41	85.416667
9	(89.6, 95.6]	5	10.416667	46	95.833333

Breast Cancer

Lowest Incomes

```
In [22]:
```

```
#Create dataframe to store values
cancerL = pd.DataFrame()
cancerL['value'] = [ '(3.8, 8.5]', '(8.5, 13.1]', '(13.1, 17.7]', '(17.7, 22.3]', '(22.3, 27]', '(27, 31.6]', '(31.6, 36.2]', '(36.2, 40.8]', '(40.8, 45.4]', '(45.4, 50.1]']
```

```
In [23]:
```

```
# frequency and percentage distritions for a number of breastcancerper100th with lower in
comes
cCancerL = lowestData['breastcancerper100th'].value_counts(sort=False,bins=10)
pCancerL = lowestData['breastcancerper100th'].value_counts(sort=False,bins=10,normalize=
True)*100

# add values to dataframe
cancerL['freq'] = cCancerL.tolist()
cancerL['percent'] = pCancerL.tolist()

#cumulative frequency and cumulative percentage for breastcancerper100th with lower incom
es
cancerL['cum freq'] = cancerL['freq'].cumsum()
cancerL['cum percent'] = cancerL['percent'].cumsum()
```

In [24]:

cancerL

Out[24]:

	value	freq	percent	cum freq	cum percent
0	(3.8, 8.5]	3	6.250000	3	6.250000
1	(8.5, 13.1]	6	12.500000	9	18.750000
2	(13.1, 17.7]	7	14.583333	16	33.333333
3	(17.7, 22.3]	12	25.000000	28	58.333333
4	(22.3, 27]	6	12.500000	34	70.833333
5	(27, 31.6]	9	18.750000	43	89.583333
6	(31.6, 36.2]	2	4.166667	45	93.750000
7	(36.2, 40.8]	0	0.000000	45	93.750000
8	(40.8, 45.4]	0	0.000000	45	93.750000
9	(45.4, 50.1]	2	4.166667	47	97.916667

Highest Incomes

```
In [25]:
```

```
#Create dataframe to store values
cancerH = pd.DataFrame()
cancerH['value'] = [ '(13.1, 21.9]', '(21.9, 30.7]', '(30.7, 39.5]', '(39.5, 48.3]', '(4
8.3, 57.1]', '(57.1, 65.9]', '(65.9, 74.7]', '(74.7, 83.5]', '(83.5, 92.3]', '(92.3, 101
.1]' ]
```

In [26]:

```
# frequency and percentage distritions for a number of breastcancerper100th with higher i
ncomes
cCancerH = highestData['breastcancerper100th'].value_counts(sort=False,bins=10)
pCancerH = highestData['breastcancerper100th'].value_counts(sort=False,bins=10,normalize
=True)*100

# add values to dataframe
cancerH['freq'] = cCancerH.tolist()
cancerH['percent'] = pCancerH.tolist()

#cumulative frequency and cumulative percentage for breastcancerper100th with lower incom
es
cancerH['cum freq'] = cancerH['freq'].cumsum()
cancerH['cum percent'] = cancerH['percent'].cumsum()
```

In [27]:

Out[27]:

	value	freq	percent	cum freq	cum percent
0	(13.1, 21.9]	3	6.250000	3	6.250000
1	(21.9, 30.7]	2	4.166667	5	10.416667
2	(30.7, 39.5]	2	4.166667	7	14.583333
3	(39.5, 48.3]	1	2.083333	8	16.666667
4	(48.3, 57.1]	7	14.583333	15	31.250000
5	(57.1, 65.9]	1	2.083333	16	33.333333
6	(65.9, 74.7]	4	8.333333	20	41.666667
7	(74.7, 83.5]	7	14.583333	27	56.250000
8	(83.5, 92.3]	11	22.916667	38	79.166667
9	(92.3, 101.1]	1	2.083333	39	81.250000