1.4.3 Umwandlung Dualzahl ↔ Hexadezimalzahl:

Aufgaben zum Thema Zahlensystemumwandlung:

Aufgabe: Vervollständigen Sie die folgende Tabelle:

Dualzahlen	Hexadezimalzahlen
1010'1011 ₂	AB ₁₆
1'1111'1110 ₂	1FE ₁₆
1001'1001 ₂	99 ₁₆
1000'0000'0000'00012	8001 ₁₆
1101000101102	D16 ₁₆
10010001101002	1234 ₁₆
1010'1011 ₂	AB ₁₆
1000000000100012	10011 16

Direkte Umwandlung von Dualzahlen ↔ **Hexadezi**malzahlen durch Bildung von Viererblöcken bei den Dualzahlen!

Beispiellösung der drei Schritte, die im Kopf durchgeführt werden können:

 $10101011_2 = 1010 \cdot 1011_2$ Dualzahlviererblöcke 10 11 Direkte Umwandlung der Blöcke in Dezimalzahl Direkte Umwandlung in Hexadezimalzahl B₁₆

1.4.5 Aufgaben zum Thema Zahlensystemumwandlung:

Die folgenden Aufgaben sind ohne Umwandlungsfunktionen des Taschenrechners auf einem Reinblatt zu lösen.

1. Wandeln Sie die folgenden Zahlen ins Dezimalsystem um:

Variante 1: 2 · 1 + 0 = 2 $2 \cdot 2 + 0$ = 4 $2 \cdot 4 + 1$ = 9 $2 \cdot 9 + 1$ = 19 $2 \cdot 19 + 0$ = 39 $2 \cdot 39 + 0$ = 78 \Rightarrow 1001110₂ = 78

Für mich ist diese Methode zu kompliziert, weil sie für mich keine brauchbare Lösungssystematik enthält!

Variante 2: nach der Formel $Z_{10} = \sum_{k=0}^{k=0} (a_k \cdot 2^k)$ gilt: 1001110₂ =

Dieses System gefällt mir!

b)
$$1030_4 = 0 \cdot 4^0 + 3 \cdot 4^1 + 0 \cdot 4^2 + 1 \cdot 4^3 = 0 \cdot 1 + 3 \cdot 4 + 0 \cdot 16 + 1 \cdot 64 = 76$$

c)
$$13401,21_5 = 1 \cdot 5^{-2} + 2 \cdot 5^{-1} + 1 \cdot 5^{0} + 0 \cdot 5^{1} + 4 \cdot 5^{2} + 3 \cdot 5^{3} + 1 \cdot 5^{4} = 1101,44$$

M114, 23. August 2022 - Kef

Zu Unterrichtsblock 1!

d)
$$1057_9 = 7 \cdot 9^0 + 5 \cdot 9^1 + 0 \cdot 9^2 + 1 \cdot 9^3 = 7 \cdot 1 + 5 \cdot 9 + 0 \cdot 81 + 1 \cdot 729 = 781$$

e)
$$1053_6 = 3 \cdot 6^0 + 5 \cdot 6^1 + 0 \cdot 6^2 + 1 \cdot 6^3 = 3 \cdot 1 + 5 \cdot 6 + 0 \cdot 36 + 1 \cdot 216 = 249$$

f) AF3,B₁₆ =
$$11 \cdot 16^{-1} + 3 \cdot 16^{0} + 15 \cdot 16^{1} + 10 \cdot 16^{2}$$

= $11 \cdot 0.0625 + 3 \cdot 1 + 15 \cdot 16 + 10 \cdot 256 = 2803,6875$

g)
$$11235.3256 = 5 \cdot 6^{-3} + 2 \cdot 6^{-2} + 3 \cdot 6^{-1} + 5 \cdot 6^{0} + 3 \cdot 6^{1} + 2 \cdot 6^{2} + 1 \cdot 6^{3} + 1 \cdot 6^{4}$$

= $5 \cdot 0.00463 + 2 \cdot 0.0278 + 3 \cdot 0.167 + 5 \cdot 1 + 3 \cdot 6 + 2 \cdot 36 + 1 \cdot 216 + 1 \cdot 1296$
= $1607,578703$

h)
$$101.101_2$$
 = $5.5_8 = 5 \cdot 8^{-1} + 5 \cdot 8^0 = 5 \cdot 0.125 + 5 \cdot 1 = 5.625$

Ein guter Informatiker zeichnet sich aus durch saubere und vollständige Lösungen!

Zu Unterrichtsblock 1!

2. Wandeln Sie die drei Dezimalzahlen 70, 65 und 103.18:

a) ins Binärsystem:

Diese Methode gibt mir zu viel zu tun!

 $70 = 0100'0110_2$

Deshalb wandle ich zuerst die Dezimalzahlen ins Hexadezimalsystem um, dann ins Dualsystem und dann ins Okaltsystem!

Also, letzt do it:

3. Geben Sie für folgende Zahlen die vorhergehende und die nachfolgende Zahl im selben Zahlensystem an:

> Vorgänger ergibt sich aus der Subtraktion mit dem Minuenden 1 und

der Nachfolger mit dem Summanden 1. Also gibt das:

a) 1010000 ₂	Vorgänger ist 1001111 ₂	Nachfolger ist 1010001 ₂
b) 6565000 ₇	Vorgänger ist 65646667	Nachfolger ist 6565001 ₇
c) 1022 ₃	Vorgänger ist 1021₃	Nachfolger ist 1100 ₃

Zu Unterrichtsblock 1!

4. Wandeln Sie die Zahl SIEBEN₂₈ ins Dezimal- und ins Hexadezimalsystem um. Die Ziffern und die Wertigkeiten des Siebenundzwanziger-Systems sind aus folgender Tabelle ersichtlich:

Ziffer	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G	Н	I	K	L	М	N	0	Р	Q	R	S
Nennwert	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

SIEBEN₂₈=?₁₀

Variante 1: 28 * 27 + 18 = 774 28 * 774 + 14 = 21686

28 * 21686 + 11 = 607219

28 * 607219 + 14 = 17002146

28 * 17002146 + 22 = 476060110

SIEBEN₂₈ => 476060110 = 1C6019CE₁₆

Variante 2: $Z_{10} = \sum_{k=0}^{k=5} (a_k \cdot 28^k)$

=22*28⁰ +14*28¹ +11*28² +14*28³ +18*28⁴ +27*28⁵

SIEBEN₂₈ => 476060110 = 1C6019CE₁₆