Metody numeryczne zadanie nr 3

Mateusz Miotk Sylwia Kaczmarczyk Michał Kulesz

January 6, 2013

1 Treść zadania

Zadanie 3.1 Zagadnienie różniczkowe: $y' = 2y^2 - 2x(x^3 - 1), y(1) = 1$ rozwiązać na przedziale [1,3] metodą Eulera oraz zmodyfikowaną metodą Eulera zwaną metodą punktu środkowego. Wyniki porównać z rozwiązaniem dokładnym $y(x) = x^2$.

2 Podstawy teoretyczne

2.1 Metoda Eulera

Niech będzie dane równanie różniczkowe zwyczajne y'=f(x,y(x)) z warunkiem początkowym $y(x_0)=y_0$ Metoda Eulera polega na zastąpieniu krzywej całkowej y=y(x) przechodzącej przez punkt $M_0(x_0,y_0)$, odpowiadający warunkom początkowym, łamaną $M_0,M_1,M_2,...$, o wierzchołkach $M_i(x_i,y_i), i=0,1,2,...$, składającą się z odcinków prostych.

Wykorzystywane jest tutaj dane rownanie rekurencyjne:

$$\begin{cases} y_0 = y(x_0) \\ y_1 = y_0 + hf(x_0, y_0) \\ y_{i+1} = y_i + hf(x_i, y_i) \end{cases}$$

gdzie h jest krokiem na osi x.

2.2 Zmodyfikowana metoda Eulera

Idea jest podobna ale wykorzystywany jest inny wzór rekurencyjny:

$$\begin{cases} y_0 = y(x_0) \\ y_1 = y_0 + hf(x_0 + \frac{h}{2}, y_0 + f(x_0, y_0) \cdot \frac{h}{2}) \\ y_{i+1} = y_i + hf(x_i + \frac{h}{2}, y_i + f(x_i, y_i) \cdot \frac{h}{2}) \end{cases}$$

3 Algorytm realizujący zadanie

3.1 Algorytm

- 1. Program bedzie wymagał od użytkownika "dopóki mu sie nie znudzi" parametru h
 gdzie $h \in [0,1]$
- 2. Następnie dla danego parametru h w przedziale [1,3] będzie liczone rozwiązanie metodą Eulera oraz Zmodyfikowaną metodą Eulera według wzorów podanych powyżej.
- 3. Zostanie wypisana tabela ilustrująca poszczególne kroki metody a na końcu zostaną wypisane minimalne i maksymalne błędy osiągane przez obydwie metody.

3.2 Przykładowe rozwiązanie

Dla h = 0.5 rozwiązanie wynosi:

x_0	Y_{euler}	Y_{mid}	Dokładne	B łą d_{euler}	B łą $d_{midpoint}$
1.500000	2.000000	2.058594	2.250000	0.250000	0.191406
2.000000	2.437500	0.171691	4.000000	1.562500	3.828309
2.500000	-5.621094	23.217517	6.250000	11.871094	16.967517
3.000000	-10.586899	75298.618184	9.000000	19.586899	75289.618184

Dla h = 0.25 rozwiązanie wynosi:

x_0	Y_{euler}	Y_{mid}	Dokładne	B łą d_{euler}	B łą $d_{midpoint}$
1.250000	1.500000	1.542847	1.562500	0.062500	0.019653
1.500000	2.029297	2.136079	2.250000	0.220703	0.113921
1.750000	2.307070	2.309015	3.062500	0.755430	0.753485
2.000000	1.153902	-1.428743	4.000000	2.846098	5.428743
2.250000	-5.180353	-0.800476	5.062500	10.242853	5.862976
2.500000	-3.451778	5.506390	6.250000	9.701778	0.743610
2.750000	-15.775641	-9.136616	7.562500	23.338141	16.699116
3.000000	81.439086	-40.096835	9.000000	72.439086	49.096835

4 Opis programu

4.1 Opis struktur danych oraz funkcji w programie

Program składa się w głównej mierze z liczb zmiennoprzecinkowych: $max_{blad}Euler$ maksymalny błąd osiągany metodą Eulera $min_{blad}Euler$ minimalny błąd osiągany metodą Eulera $max_{blad}Mid$ maksymalny błąd osiągany metodą Zmodyfikowaną metodą Eulera $min_{blad}Mid$ minimalny błąd osiągany metodą Zmodyfikowaną metodą Eulera Najwazniejsze funkcje uzyte w programie to:

- 1. Wczytywanie zmiennej h
- 2. Sprawdzanie, czy $h \in [0, 1]$
- 3. Liczenie rozwiązanie metodą Eulera oraz Zmodyfikowaną metodą Eulera
- 4. Wypisanie tabeli poszczególnych kroków
- 5. Wypisanie największy oraz najmniejszy błąd osiągane przez poszczególne metody

4.2 Opis wejścia-wyjścia

Program na początku chce otrzymać zmienną h, która spełnia warunki opisane w punkcie 3.

Program sprawdzi, czy podana wartość spełnia warunek. Jeżeli nie, to wyświetli odpowiedni komunikat.

Następnie program wykona obliczenia metodami Eulera oraz Zmodyfikowaną metodą Eulera i będzie wyświetlał na ekranie poszczególne kroki.

Potem program wyświetli największy oraz najmniejszy błąd dla poszczególnych metod.

Po tym wszystkim użytkownik może podać kolejną wartość h, dopóki mu się nie znudzi.

4.3 Treść programu

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double abs_double(double x){
        if(x < 0)
        return -1.0*x;
        return x;
double f dokladne(double x){
        return x*x;
double f(double x, double y){
        return 2*y*y - 2*x*x*x*x+2*x;
void Euler(double h){
double x_0, y_0;
double x_temp, y_temp, blad;
double y_0_mid, y_temp_mid, blad_mid;
double max_blad_Euler, max_blad_Mid;
double min_blad_Euler, min_blad_Mid;
max blad Euler = max blad Mid = 0.0;
min_blad_Euler = min_blad_Mid = INFINITY;
x_0 = 1;
```

```
y_0 = 1;
y_0_mid=1;
 printf("X_0
                                                             \t \t \t \
                                                                                                                 \t | Y_mid \t | Dokladne\t | Blad_Euler\t | Blad_MidPoint\n");
printf("-
while (1) {
                                x_t = x_0 + h;
                                if(x_{temp} \le 3)
                                y_{temp} = y_0 + h * f(x_0, y_0);
                                y_{mid} = y_{0mid} + h * f(x_{0} + (h/2), y_{0mid} + (f(x_{0}, y_{0mid}) * h/2));
                                x_0 = x_{temp};
                                y_0 = y_{temp};
                                y_0_{mid=y_temp_mid};
                                blad=abs\_double(f\_dokladne(x\_0) - y\_0);
                                blad_mid=abs_double(f_dokladne(x_0)-y_0_mid);
                                 if (max blad Euler < blad) {
                                \max_{\text{blad}} Euler = blad;
                                 if (max_blad_Mid < blad_mid){</pre>
                                max blad Mid = blad mid;
                                 if (min_blad_Euler > blad){
                                min_blad_Euler=blad;
                                 if (min_blad_Mid > blad_mid) {
                                                                min_blad_Mid = blad_mid;
printf("\%1f \setminus t | \%1f \setminus 
else {
 printf("Maksymalny blad w metodzie Eulera wynosi: %lf\n", max blad Euler);
 printf("Maksymalny blad w metodzie Mid Point wynosi: %lf\n", max blad Mid);
 printf("Minimalny blad w metodzie Eulera wynosi: %lf\n", min_blad_Euler);
 printf("Minimalny blad w metodzie Mid_point wynosi: %lf\n",min_blad_Mid);
break;
}
int poprawnosc_h(double h){
                                 if(h \le 0 \mid | h \ge 1)
                                 return -1;
                                 else
                                 return 1;
}
void pobranie_danych(){
                                double h;
                                 while (1)
                                                                  printf("Podaj h: Ctrl+c konczy dzialanie programu\n");
                                                                 scanf("%lf",&h);
                                                                 if(poprawnosc_h(h)==1){
                                                                 Euler(h);
                                                                 }
                                                                 else
                                                                  printf("Wartosc h nie jest w przedziale (0,1)");
                                }
}
int main(){
                                pobranie_danych();
                                 return EXIT_SUCCESS;
}
```

4.4 Zrzuty wybranego programu

🚱 sigma.ug.edu.pl -	PuTTY				
mmiotk@sigma:~	/Metody\$./a.out				
_	-c konczy dzialan	ie programu			
0.5 X_0	ĮΥ	Y_mid	Dokladne	Blad_Euler	Blad_MidPoir
1.500000	2.000000	2.058594	2.250000	0.250000	0.191406
2.000000	2.437500	0.171691	4.000000	11.562500	3.828309
2.500000	-5.621094	23.217517	6.250000	11.871094	16.967517
3.000000	-10.586899	75298.618184	19.000000	19.586899	75289.618184
Maksymalny bla	d w metodzie Eul	lera wynosi: 19.58	36899		
Maksymalny bla	d w metodzie Mid	i_Point wynosi: 75	5289.618184		
Minimalny blad	w metodzie Eule	era wynosi: 0.2500	000		
Minimalny blad	w metodzie Mid	point wynosi: 0.1	191406		

X_0	ĮΥ	Y_mid	Dokladne	Blad_Euler	Blad_MidPoi
1.250000	1.500000	1.542847	1.562500	0.062500	0.019653
1.500000	2.029297	2.136079	2.250000	0.220703	0.113921
1.750000	12.307070	2.309015	3.062500	0.755430	10.753485
2.000000	11.153902	-1.428743	4.000000	2.846098	15.428743
2.250000	J-5.180353	-0.800476	5.062500	10.242853	5.862976
2.500000	-3.451778	5.506390	6.250000	9.701778	0.743610
2.750000	-15.775641	-9.136616	7.562500	23.338141	16.699116
3.000000	81.439086	-40.096835	9.000000	72.439086	49.096835
	olad w metodzie Eu				
	olad w metodzie Mi				
	ad w metodzie Eul				
	ad w metodzie Mic				
X_0	ΙΥ	Y_mid	Dokladne	Blad_Euler	Blad_MidPoi
1.100000	1.200000	1.208899	1.210000	0.010000	0.001101
1.200000	1.415180	1.436856	1.440000	0.024820	0.003144
1.300000	1.641007	1.682771	1.690000	0.048993	0.007229
1.400000	1.868368	1.943931	1.960000	0.091632	0.016069
1.500000	2.078207	2.213163	2.250000	0.171793	0.036837
1.600000	2.229496	2.470183	[2.560000	0.330504	0.089817
1.700000	2.232907	2.654230	[2.890000	0.657093	0.235770
1.800000	1.899661	2.579451	3.240000	1.340339	0.660549
1.900000	0.881883	1.734919	3.610000	2.728117	1.875081
2.000000	-1.188993	-0.596606	4.000000	5.188993	4.596606
2.100000	-3.706252	-2.949693	4.410000	8.116252	7.359693
2.200000	-4.428611	-3.883213	4.840000	9.268611	8.723213
2.300000	-4.751212	-4.512884	5.290000	10.041212	9.802884
2.400000	-5.373229	-5.052722	5.760000	11.133229	10.812722
2.500000	-5.754431	-5.547062	6.250000	12.004431	11.797062
2.600000	-6.444236	-5.987198	6.760000	13.204236	12.747198
2.700000	-6.758121	-6.309295	[7.290000	14.048121	13.599295
2.800000	-7.712502	-6.325395	7.840000	15.552502	14.165395
2.900000	-7.549085	-5.532252	8.410000	15.959085	13.942252
Maksymalny b	lad w metodzie Eu	lera wynosi: 15.	959085		
Maksymalny b	lad w metodzie Mi	d_Point wynosi:	14.165395		
Minimalny bl	ad w metodzie Ful	era umogi. 0 01	0000		