

Introduction to Cables

Computer Networks

Types of Cables

- Coaxial Cables
- Twisted Pair Cables
- Fiber Optics Cable

Coaxial Cable

Coaxial Cable

Single core coaxial cable

Multi-core coaxial cable

Specifications of coaxial cables

Туре	Oh ms	AWG	Conductor	Description	
RG-6	75	18	Solid copper	Used in cable network to provide cable Internet service and cable TV over long distances.	
RG-8	50	10	Solid copper	Used in the earliest computer networks. This cable was used as the backbone cable in the bus topology. In Ethernet standards, this cable is documented as the 10base5 Thicknet cable.	
RG-58	50	24	Several thin strands of copper	This cable is thinner, easier to handle and install than the RG-8 cable. This cable was used to connect a system with the backbone cable. In Ethernet standards, this cable is documented as the 10base2 Thinnet cable.	
RG-59	75	20 - 22	Solid copper	Used in cable networks to provide short-distance service.	

Twisted-pair cables

Similarities and differences between STP and UTP cables

- Both STP and UTP can transmit data at 10Mbps, 100Mbps, 1Gbps, and 10Gbps.
- Since the STP cable contains more materials, it is more expensive than the UTP cable.
- Both cables use the same RJ-45 (registered jack) modular connectors.
- Both cables can accommodate a maximum of 1024 nodes in each segment.
- The STP provides more noise and EMI resistance than the UTP cable.
- The maximum segment length for both cables is 100 meters or 328 feet.

Specifications of Twisted pair cables

Category/ name of the cable	Maximum supported speed	Bandwidth/support signals rate	Ethernet standard	Description
Cat 1	1Mbps	1MHz	Not used for data	This cable contains only two pairs (4 wires). This cable was used in the telephone network for voice transmission.
Cat 2	4Mbps	10MHz	Token Ring	This cable and all further cables have a minimum of 8 wires (4 pairs). This cable was used in the token-ring network.
Cat 3	10Mbps	16MHz	10BASE-T Ethernet	This is the first Ethernet cable that was used in LAN networks.
Cat 4	20Mbps	20MHz	Token Ring	This cable was used in advanced Token-ring networks.
Cat 5	100Mbps	100MHz	100BASE-T Ethernet	This cable was used in advanced (fast) LAN networks.
Cat 5e	1000Mbps	100MHz	1000BASE-T Ethernet	This cable/category is the minimum requirement for all modern LAN networks.
Cat 6	10Gbps	250MHz	10GBASE-T Ethernet	This cable uses a plastic core to prevent cross-talk between twisted-pair. It also uses a fire-resistant plastic sheath.
Cat 6a	10Gbps	500MHz	10GBASE-T Ethernet	This cable reduces attenuation and cross-talk. This cable also potentially removes the length limit. This is the recommended cable for all modern Ethernet LAN networks.
Cat 7	10Gbps	600MHz	Not drafted yet	This cable sets a base for further development. This cable uses multiple twisted-pair and shields each pair by its plastic sheath.

- Cat 1, 2, 3, 4, 5 are outdated and not used in any modern LAN network.
- Cat 7 is still a new technology and not commonly used.
- Cat 5e, 6, 6a are the commonly used twisted-pair cables.

Fiber Optic Cable

Two types of fiber optical cable; SMF and MMF.

SMF (Single mode fiber) optical cable

MMF (multi-mode fiber) optical cable

SMF (Single-mode fiber) optical cable

 This cable carries only a single beam of light. This is more reliable and supports much higher bandwidth and longer distances than the MMF cable. This cable uses a laser as the light source and transmits 1300 or 1550 nano-meter wavelengths of light.

MMF (multi-mode fiber) optical cable

 This cable carries multiple beams of light. Because of multiple beams, this cable carries much more data than the SMF cable. This cable is used for shorter distances. This cable uses an LED as the light source and transmits 850 or 1300 nano-meter wavelengths of light.

happy

LEARNING