$$-\sum_{i=1}^{n} \frac{1}{n} \left(\log_{2} \left(\frac{1}{n} \right) - - \sum_{i=1}^{n} \frac{1}{n} \left(\log_{2} (1) - \log_{2} (n) \right) \right)$$

3.

Position	0	1	2	3	4
Häufigkeit	0	8	0	0	0
P_z	0/8	8/8	0/8	0/8	0/8

5. bbbbbbbb 2.

Nein tut sie nicht, denn die maximale Entropie wird genau dann erreicht, wenn die Wahrscheinlichkeiten p_z gleichverteilt sind für alle z aus Z. Somit ist die maximale Entropie bei allen Systemelementen X gleich und unabhängig von der Anzahl der Systemelemente.
Sie ist aber abhängig von der Anzahl der Zeichen z in Z.

4.

Die Entropie dieses Systemelements beträgt null, da es keinen neuen Informationen enthält, denn es tritt immer das gleiche z aus Z auf und somit ist die Unsicherheit des Systemelements gleich null, was der Entropie entspricht, da diese auch als ein Maß für Unsicherheit interpretiert werden kann.

6.

bbbdbdbb

Aufgabe 2

2.1) Am Anfang

1.) Die maximale Entropie wird erreicht, wenn alle Kombinationen gleich wahrscheinlich sind: $H_{max_x}=-(5\cdot\frac{4}{20}\log_2\frac{4}{20})=2,32$

$$H_{max_y} = -(3 \cdot \frac{1}{3} \log_2 \frac{1}{3}) = 1,58$$

$$H_{max_s} = -(2 \cdot \frac{10}{20} \log_2 \frac{10}{20}) = 1,00$$

$$H_{max} = H_{max_s} + H_{max_y} + H_{max_x} = 4,9$$

$$H_{max_a} = -\left(20 \cdot \frac{\frac{30}{20}}{30} \log_2 \frac{\frac{30}{20}}{30}\right) = 6,48$$

2.)

4.)										
Position/Staubig	0,0,s	1,0,s	2,0,s	3,0,s	4,0,s	0,1,s	1,1,s	2,1,s	3,1,s	4,1,s
Häufigkeit	0	0	0	1	0	1	0	1	0	2
p	0	0	0	$\frac{1}{30}$	0	$\frac{1}{30}$	0	$\frac{1}{30}$	0	$\frac{2}{30}$
Position/Staubig	0,2,s	1,2,s	2,2,s	3,2,s	$4,\!2,\!s$	0,0,n	1,0,n	2,0,n	3,0,n	4,0,n
Häufigkeit	2	0	0	1	0	0	2	0	1	0
p	$\frac{2}{30}$	0	0	$\frac{1}{30}$	0	0	$\frac{2}{30}$	0	$\frac{1}{30}$	0
Position/Staubig	0,1,n	1,1,n	2,1,n	3,1,n	4,1,n	0,2,r	1,2,	$1 \mid 2,2,$	n 3,2	n 4,2,n
Häufigkeit	1	1	1	0	1	0	1	2	0	2
p	$\frac{1}{30}$	$\frac{1}{30}$	$\frac{1}{30}$	0	$\frac{1}{30}$	0	$\frac{1}{30}$	$\frac{2}{30}$	0	$\frac{2}{30}$

$$H = -\left(10 \cdot \frac{1}{30} \log_2 \frac{1}{30} + 5 \cdot \frac{2}{30} \log_2 \frac{2}{30}\right) = 2,93$$

$$R = H_{max_a} - H = 6,48 - 2,93 = 3,55$$

Position (x)	0	1	2	3	4
Häufigkeit	4	4	4	3	5
p_x	$\frac{4}{20}$	$\frac{4}{20}$	$\frac{4}{20}$	$\frac{3}{20}$	$\frac{5}{20}$

$$H_x = -\left(\frac{4}{20}\log_2\frac{4}{20} + \frac{4}{20}\log_2\frac{4}{20} + \frac{4}{20}\log_2\frac{4}{20} + \frac{4}{20}\log_2\frac{4}{20} + \frac{3}{20}\log_2\frac{3}{20} + \frac{5}{20}\log_2\frac{5}{20}\right) = 2,30$$

$$R_x = H_{max_x} - H_x = 2,32 - 2,30 = 0,02$$

Position (y)	0	1	2
Häufigkeit	4	8	8
p_y	$\frac{4}{20}$	$\frac{8}{20}$	$\frac{8}{20}$

$$H_y = -(\frac{4}{20}\log_2\frac{4}{20} + \frac{8}{20}\log_2\frac{8}{20} + \frac{8}{20}\log_2\frac{8}{20}) = 1,52$$

$$R_y = 1,58 - 1,52 = 0,06$$

Staubig	ja	nein
Häufigkeit	8	12
p_s	$\frac{8}{20}$	$\frac{12}{20}$

$$H_s = -\left(\frac{8}{20}\log_2\frac{8}{20} + \frac{12}{20}\log_2\frac{12}{20}\right) = 0,97$$

$$R_s = 1,00 - 0,97 = 0,03$$

$$R = H_{max} - H_x - H_y - H_s = 0,11$$

2.2) Nach dem Aufräumen

1.)										
Position/Staubig	0,0,s	1,0,s	2,0,s	3,0,s	4,0,s	0,1,s	1,1,s	2,1,s	3,1,s	4,1,s
Häufigkeit	0	0	0	2	2	0	0	0	1	3
p	0	0	0	$\frac{2}{30}$	$\frac{2}{30}$	0	0	0	$\frac{1}{30}$	$\frac{3}{30}$
Position/Staubig	0,2,s	1,2,s	2,2,s	$3,\!2,\!s$	$4,\!2,\!s$	0,0,n	1,0,n	2,0,n	3,0,n	4,0,n
Häufigkeit	0	0	0	0	0	0	0	0	0	0
p	0	0	0	0	0	0	0	0	0	0
Position/Staubig	0,1,n	1,1,n	2,1,n	3,1,n	4,1,n	0,2,r	1,2,	1 2,2,1	n 3,2,1	n 4,2,n
Häufigkeit	0	0	0	0	0	4	4	4	0	0
p	0	0	0	0	0	$\frac{4}{30}$	$\frac{4}{30}$	$\frac{4}{30}$	0	0

$$H_a = -\left(3 \cdot \frac{4}{30} \log_2 \frac{4}{30} + \frac{3}{30} \log_2 \frac{3}{30} + 2 \cdot \frac{2}{30} \log_2 \frac{2}{30} + \frac{1}{30} \log_2 \frac{1}{30}\right) = 2,18$$

Position (x)	0	1	2	3	4
Häufigkeit	4	4	4	3	5
p_x	$\frac{4}{20}$	$\frac{4}{20}$	$\frac{4}{20}$	$\frac{3}{20}$	$\frac{5}{20}$

$$H_x = -\left(\frac{4}{20}\log_2\frac{4}{20} + \frac{4}{20}\log_2\frac{4}{20} + \frac{4}{20}\log_2\frac{4}{20} + \frac{3}{20}\log_2\frac{3}{20} + \frac{5}{20}\log_2\frac{5}{20}\right) = 2,30$$

Position (y)	0	1	2
Häufigkeit	4	4	12
p_y	$\frac{4}{20}$	$\frac{4}{20}$	$\frac{12}{20}$

$$H_y = -\left(2 \cdot \frac{4}{20} \log_2 \frac{4}{20} + \frac{12}{20} \log_2 \frac{12}{20}\right) = 1,37$$

Staubig	ja	nein
Häufigkeit	8	12
p_s	$\frac{8}{20}$	$\frac{12}{20}$

$$H_s = -(\frac{8}{20}\log_2\frac{8}{20} + \frac{12}{20}\log_2\frac{12}{20}) = 0,97$$

$$H = H_x + H_y + H_s = 2, 3 + 1, 37 + 0, 97 = 4,64$$

2.)

$$M_x = \Delta H_x = 2, 3 - 2, 3 = 0$$

$$M_y = \Delta H_y = 1,52 - 1,37 = 0,15$$

$$M_s = \Delta H_s = 0,97 - 0,97 = 0$$

3.)

$$R = H_{max} - H = 4,9 - 4,64 = 0,26$$

2.3) Nach der Party

1.)

Position (x)	0	1	2	3	4
Häufigkeit	5	3	5	2	5
p_x	$\frac{5}{20}$	$\frac{3}{20}$	$\frac{5}{20}$	$\frac{2}{20}$	$\frac{5}{20}$

$$H_x = -\left(3 \cdot \frac{5}{20} \log_2 \frac{5}{20} + \frac{3}{20} \log_2 \frac{3}{20} + \frac{2}{20} \log_2 \frac{2}{20}\right) = 2,24$$

Position (y)	0	1	2
Häufigkeit	8	6	6
p_y	$\frac{8}{20}$	$\frac{6}{20}$	$\frac{6}{20}$

$$H_y = -\left(\frac{8}{20}\log_2\frac{8}{20} + 2 \cdot \frac{6}{20}\log_2\frac{6}{20}\right) = 1,57$$

Staubig	ja	nein
Häufigkeit	11	9
p_s	$\frac{11}{20}$	$\frac{9}{20}$

$$H_s = -\left(\frac{11}{20}\log_2\frac{11}{20} + \frac{9}{20}\log_2\frac{9}{20}\right) = 0,99$$

$$H = H_x + H_y + H_s = 2,24 + 1,57 + 0,99 = 4,8$$

2.)

$$M_x = \Delta H_x = 2, 3 - 2, 24 = 0,06$$

$$M_y = \Delta H_y = 1,37 - 1,57 = -0,2$$

$$M_s = \Delta H_s = 0.97 - 0.99 = -0.02$$

3.)

Aufgabe 3.4

Entropie

- Die Entropie der Ameisen (x,y) bleibt immer konstant
 - o Liegt daran das sie sich nicht ordnen und immer zufällig verteilt sind
- Die Entropie der anderen Systemattribute steigt zuerst, bleibt dann relativ konstant
 - Liegt daran das die Partikel zuerst zufällig verteilt sind und sich dann zu Clustern zusammenfinden

Emergenz

- Die Emergenz von allen Systemattributen schwankt durchgehend
 - Das liegt wahrscheinlich daran, dass wir das vereinfachte Clustering nehmen, welches schlechter Clustert, daher gibt es noch mehr Schwankungen
 - Zudem sind die Systemattribute so gewählt, dass die Emergenz immer schwankt, da z.B. die Ameisen sich immer bewegen
- Die Emergenz ist jedoch am Anfang größer und verringert sich dann
 - Liegt daran das die Partikel mehr geordnet werden