

[Chap.2-3] Representing and Manipulating Information

Young Ik Eom (<u>yieom@skku.edu</u>, 031-290-7120)

Distributing Computing Laboratory

Sungkyunkwan University

http://dclab.skku.ac.kr

Contents

- **■** Introduction
- **■** Information storage
- **■** Integer representations
- **■** Integer arithmetic
- **■** Floating point
- **■** Summary

■ The problem

- How to represent fractional values with finite # of bits?
 - 0.1
 - 2.718281828...
 - 3.14159265358979323846264338327950288...
- How to represent very small (close to 0) numbers ($|V| \ll 1$) and very large numbers ($|V| \gg 0$)

 - 0.123×10^{-60}
 - 1.234×10^{90}

■ The problem

- 3 fields for representation of FP numbers
 - Sign
 - Exponent
 - Fraction (significand, mantissa)

s exp frac

■ Warming up

- Example-1)
 - $0.1_{(10)} = 0.0001100110011[0011]_{(2)}$
 - $0.110011001100... \times 2^{-3} \quad (\Leftrightarrow 0.00011001100... \times 2^{0})$
 - (s, exp, frac) with 16-bits FPN = 0 11101 1100110011

Excess-16 exp: 11101 + 10000 = 01101

Example-2)

- $5.1_{(10)} = 101.0001100110011[0011]_{(2)}$
- $0.1010001100110011... \times 2^3$
- (s, exp, frac) with 16-bits FPN = 0.00011 1010001100

Excess-16 exp: 00011 + 10000 = 10011

■ Warming up

- Example-3) 16-bit integer 1
 - $1_{(10)} = 000000000000000001_{(2)}$
- Example-4) 16-bit float 1.0
 - $1.0_{(10)} = 1.000000000000000_{(2)}$
 - $0.10000000000000000... \times 2^{1}$

Excess-16 exp: 00001 + 10000 = 10001

■ Fractional decimal numbers

- Representation
 - $d_m d_{m-1} \cdots d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-(n-1)} d_{-n}$
- Value

•
$$d = \sum_{i=-n}^{m} 10^i \times d_i$$

- Example) 12.34
 - $1 \times 10^{1} + 2 \times 10^{0} + 3 \times 10^{-1} + 4 \times 10^{-2} = 12 \frac{34}{100}$

■ Fractional binary numbers

- Representation
 - $b_m b_{m-1} \cdots b_1 b_0 \cdot b_{-1} b_{-2} \cdots b_{-(n-1)} b_{-n}$
- Value

•
$$b = \sum_{i=-n}^{m} 2^i \times b_i$$

- Example)
 - $101.11_2 = 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 5\frac{3}{4}$

■ Fractional binary numbers

Value	Representation
$5\frac{3}{4}$	101.11 ₂
$2\frac{7}{8}$	10.111 ₂
$\frac{63}{64}$	0.1111112

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form **0.111111...** just below **1.0**
 - $1/2 + 1/4 + 1/8 + \cdots + 1/2^i + \cdots \rightarrow 1.0$
 - Use notation 1.0ϵ

■ Representable numbers

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

Value	Representation
1/3	0.01010101[01]··· ₂
1/5	0.001100110011[0011]···· ₂
1/10	0.0001100110011[0011]···· ₂

■ IEEE FP representation

- Encodes rational numbers of the form V = x * 2y
- Useful for very large numbers (|V| » 0) or numbers very close to 0 (|V| « 1)
- IEEE Standard 754 (1985-)
 - Standard for representing floating-point numbers
 - Sponsored by Intel and IEEE
 - William Kahan (1933-)
 - ✓ The father of floating point
 - ✓ Emeritus professor of EECS at the Univ. of California, Berkeley
 - ✓ Turing award, 1989

■ IEEE FP representation

- Represents numbers in a form (-1)^s × M × 2^E
 - The sign s determines whether the number is negative (s = 1) or positive (s = 0)
 - ✓ The interpretation of the sign bit for numeric value 0
 is handled as a special case
 - The significand M is a fractional binary number that ranges [1, 2)
 - The exponent E weights the value by a power of 2
- Encoding

s exp frac

- MSB is sign bit
- The exp encodes E
- The **frac** encodes M

■ IEEE FP representation

Encoding

s exp frac

- MSB is sign bit
- The **exp** encodes E
- The **frac** encodes M

Sizes

- Single precision float, 32-bit FP

 ✓ 8 exp bits, 23 frac bits (32bits total)
- Double precision double, 64-bit FP

 ✓ 11 exp bits, 52 frac bits (64bits total)

■ IEEE FP representation

- Encoding: 3 cases
 - Normalized values
 - Denormalized values
 - Special values

■ IEEE FP representation

- Encoding: Normalized values
 - Condition

```
\checkmark exp ≠ 000...0 and exp ≠ 111...1
```

Exponent coded as biased value

```
E = Exp – Bias

Exp: unsigned value denoted by exp

Bias: bias value (2^{k-1} - 1)
```

- · Single precision: 127 (**Exp**: 1~254, **E**: -126~127)
- Double precision: 1023 (Exp: 1~2046, E: -1022~1023)
- Significand coded with implied leading 1

```
\checkmark M = 1 + f = 1.xxx...x<sub>2</sub> (0 ≤ f < 1)
```

- · Minimum when 000...0 (**M** = 1.0)
- · Maximum when 111...1 ($\mathbf{M} = 2.0 \varepsilon$)
- ✓ Get extra leading bit for "free"

■ IEEE FP representation

- Encoding: Normalized values (Example) float f = 2003.0;
 - Value $2003_{10} = 11111010011_2 = 1.1111010011_2 \times 2^{10}$
 - Significand
 - $M = 1.111010011_{2}$
 - Exponent
 - E = 10
 - $Exp = E + Bias = 10 + 127 = 137 = 10001001_2$

■ IEEE FP representation

- Encoding: Denormalized values
 - Condition

$$\checkmark$$
 exp = 000...0

- Exponent and significand
 - ✓ Exponent value E = 1 Bias
 - ✓ Significand value $M = 0.xxx...x_2$ (no implied leading 1)
- Cases
 - \checkmark exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that we have distinct values +0 and -0
 - \checkmark exp = 000...0, frac \neq 000...0
 - · Numbers very close to 0.0
 - **Gradual underflow** property (possible numeric values are spaced evenly near 0.0)

■ IEEE FP representation

- Encoding: Special values
 - Condition

$$✓$$
 exp = 111...1

Cases

$$\checkmark$$
 exp = 111...1, frac = 000...0

- · Represents value $\pm \infty$ (infinity)
- Represents results that overflow

• Eg)
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -\infty$

$$\checkmark$$
 exp = 111...1, frac ≠ 000...0

- · Not-a-Number (NaN)
- Used when the result of an operation cannot be represented as a real number or infinity
- Eg) sqrt(-1), $\infty \infty$, $\infty * 0$, ...

- 8-bit FP representation
 - The sign bit is in the most significant bit
 - The next four bits are the **exp**, with a bias of 7 $(2^3 1)$
 - The last three bits are the frac
- Same general form as IEEE format
 - Normalized, denormalized
 - Representation of 0, NaN, infinity

Description	Ехр	ехр	E = Exp - Bias	2 ^E
Denormalized	0	0000	-6	1/64
	1	0001	-6	1/64
	2	0010	-5	1/32
	3	0011	-4	1/16
	4	0100	-3	1/8
	5	0101	-2	1/4
	6	0110	-1	1/2
Normalized	7	0111	0	1
Normanzeu	8	1000	1	2
	9	1001	2	4
	10	1010	3	8
	11	1011	4	16
	12	1100	5	32
	13	1101	6	64
	14	1110	7	128
inf, NaN	15	1111	-	-

■ Tiny FP example: Dynamic range

Description	Bit representation	е	Е	f	M	V
Zero	0 0000 000	0	-6	0	0	0
Smallest positive	0 0000 001	0	-6	1/8	1/8	1/512
	0 0000 010	0	-6	2/8	2/8	2/512
	0 0000 011	0	-6	3/8	3/8	3/512
	0 0000 110	0	-6	6/8	6/8	6/512
Largest denorm.	0 0000 111	0	-6	7/8	7/8	7/512
Smallest norm.	0 0001 000	1	-6	0	8/8	8/512
	0 0001 001	1	-6	1/8	9/8	9/512
	0 0110 110	6	-1	6/8	14/8	14/16
	0 0110 111	6	-1	7/8	15/8	15/16
One	0 0111 000	7	0	0	8/8	1
	0 0111 001	7	0	1/8	9/8	9/8
	0 0111 010	7	0	2/8	10/8	10/8
	0 1110 110	14	7	6/8	14/8	224
Largest norm.	0 1110 111	14	7	7/8	15/8	240
Infinity	0 1111 000	-	-	-	-	+∞

■ Tiny FP example

			Exponent		Fraction		Value		
Description	Bit representation	e	E	2^{E}	f	M	$2^E \times M$	V	Decimal
Zero	0 0000 000	0	-6	1 64	0	0	0 512	0	0.0
Smallest pos.	0 0000 001	0	-6	1 64	1 8	18	1 512	1 512	0.001953
	0 0000 010	0	-6	1 64	2 8	1 8 2 8	2 512	1 256	0.003906
	0 0000 011	0	-6	1 64	3 8	3	3 512	3 512	0.005859
Largest denorm.	0 0000 111	0	-6	1 64	78	7 8	7 512	7 512	0.013672
Smallest norm.	0 0001 000	1	-6	1 64	0 8	8	8 512	1 64	0.015625
	0 0001 001	1	-6	1 64	0 8 1 8	8 9 8	9 512	9 512	0.017578
	: 0 0110 110	6	-1	1 2	6 8	14	14 16	7 8	0.875
	0 0110 111	6	-1	1 2	78	15 8	15 16	15	0.9375
One	0 0111 000	7	0	1	<u>0</u> 8	8	8	1	1.0
	0 0111 001	7	0	1	1 8	9	9 8	9 8	1.125
	0 0111 010	7	0	1	28	10	10 8	5	1.25
	: 0 1110 110	14	7	128	6 8	14 8	1792 8	224	224.0
Largest norm.	0 1110 111	14	7	128	7 8	15 8	1920 8	240	240.0
Infinity	0 1111 000			_			_	00	_

■ Tiny FP example: Encoded values (nonnegative)

(Without denormalization)

 $0\ 0000\ XXX = (8/8 \sim 15/8)*2^{-7}$

■ 3 exponent bits and 2 fraction bits (bias = 3)

oint

■ Interesting numbers

Description	ехр	frac	Numeric value
Zero	000 00	000 00	0.0
Smallest Positive Denormalized	000 00	000 01	Single: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$ Double: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$
Largest Denormalized	000 00	111 11	Single: $(1.0 - ε) \times 2^{-126} ≈ 1.18 \times 10^{-38}$ Double: $(1.0 - ε) \times 2^{-1022} ≈ 2.2 \times 10^{-308}$
Smallest Positive Normalized	000 01	000 00	Single: 1.0 X 2 ⁻¹²⁶ , Double: 1.0 X 2 ⁻¹⁰²² (Just larger than largest denormalized)
One	011 11	000 00	1.0
Largest Normalized	111 10	111 11	Single: $(2.0 - \epsilon) \times 2^{127} \approx 3.4 \times 10^{38}$ Double: $(2.0 - \epsilon) \times 2^{1023} \approx 1.8 \times 10^{308}$

Special properties

- FP zero same as integer zero
 - All bits = 0
- To compare two FP numbers
 - Can (almost) use unsigned integer comparison with some considerations
 - ✓ Must first compare sign bits
 - ✓ Must consider -0 = +0
 - ✓ NaNs problematic
 - · Will be greater than any other values
 - ✓ Otherwise OK
 - Denormalized vs normalized
 - · Normalized vs infinity

Rounding

- A systematic method of finding the "closest" matching value x' that can be represented in the desired FP format, for a given value x
- IEEE FP format defines 4 different rounding modes
 - Round-to-even (round-to-nearest)
 - Round-toward-zero
 - Round-down
 - Round-up

Rounding

- Round-to-even mode (default)
 - Attempts to find a closest match
 - For halfway values
 - ✓ Rounds upward or downward such that the LSB of the result is even
 - ✓ Avoids the statistical bias (for example, in averaging)
- Round-toward-zero
 - Rounds positive numbers downward and negative numbers upward
 - Takes the value x^{*} such that |x^{*}| ≤ |x|
- Round-down
 - Always rounds downward (takes the value \mathbf{x}^{-} such that $\mathbf{x}^{-} \leq \mathbf{x}$)
- Round-up
 - Always rounds upward (takes the value \mathbf{x}^+ such that $\mathbf{x}^+ \geq \mathbf{x}$)

■ Rounding

Example)

Mode	\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50
Round-to-even	\$1	\$2	\$2	\$2	\$-2
Round-toward-zero	\$ 1	\$1	\$1	\$2	\$ -1
Round-down	\$ 1	\$1	\$1	\$2	\$-2
Round-up	\$2	\$2	\$2	\$3	\$ -1

- Rounding: Round-to-even on binary fractional numbers
 - Consider
 - LSB 0: even
 - LSB 1: odd
 - Example) Rounding to the nearest quarter

•
$$10.00011_{(2)} \rightarrow 10.00_{(2)} \quad 2\frac{3}{32} \rightarrow 2$$

•
$$10.00110_{(2)} \rightarrow 10.01_{(2)} \quad 2\frac{3}{16} \rightarrow 2\frac{1}{4}$$

•
$$10.11100_{(2)} \rightarrow 11.00_{(2)} \quad 2\frac{7}{8} \rightarrow 3$$

•
$$10.10100_{(2)} \rightarrow 10.10_{(2)}$$
 $2\frac{5}{8} \rightarrow 2\frac{1}{2}$

- Operands $(-1)^{s1}$ M1 2^{E1} × $(-1)^{s2}$ M2 2^{E2}
- Exact Result (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 * M2
 - Exponent **E**: **E1** + **E2**
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If **E** out of range, overflow
 - Round M to fit frac precision

■ FP operations: Addition

- Operands $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} (Assume E1 > E2)
- Exact Result (-1)^s M 2^E
 - Sign s, significand M: result of signed align & add
 - Exponent E: E1
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If **M** < 1, shift **M** left k positions, decrement **E** by k
 - Overflow if **E** out of range
 - Round M to fit frac precision

■ FP operations: Some properties

- FP addition is not associative
 - $(3.14 + 1e10) 1e10 \rightarrow 0.0$ (3.14 is lost due to rounding)
 - $3.14 + (1e10 1e10) \rightarrow 3.14$
- FP addition satisfies monotonicity
 - If $a \ge b$, then $x + a \ge x + b$, for any a, b, x other than NaN
- FP multiplication is not associative
 - $(1e20*1e20)*1e-20 \rightarrow \infty$ (in single precision arithmetic)
 - $1e20*(1e20*1e-20) \rightarrow 1e20$
- FP multiplication does not distribute over addition
 - $1e20*(1e20 1e20) \rightarrow 0.0$
 - 1e20*1e20 1e20*1e20 → NaN

■ FP in C

- C standard provides two FP types
 - float and double
- C standard does not require the machine to use IEEE FP
 - Also, no standard methods to change the rounding mode or to get special values such as -0, $+\infty$, $-\infty$, or NaN
- Most systems provide the header files and libraries to provide access to these features
 - But, the details vary from one system to another

■ FP in C

- 3rd FP types in ISO C99: **long double**
 - Equivalent to **double** type in many machines
 - 80-bit extended precision format in Intel-compatible machines
 - ✓ 15 exp bits and 63 frac bits (1 bit wasted)

■ FP in C

- Type conversions
 - Casting between int, float, and double changes numeric values
 - From int to float
 - ✓ May be rounded
 - From int or float to double
 - ✓ Exact conversion
 - From double to float
 - ✓ May overflow or may be rounded
 - From float or double to int
 - ✓ Rounded toward 0
 - ✓ May overflow
 - No specifications in C standard

■ FP puzzles

int x, float f, double d; //neither d nor f is NaN

x == (int)(float) x;• x == (int) (double) x;f == (float)(double) f;• d == (float) d; 2/3 == 2/3.0; • $d < 0.0 \Rightarrow ((d*2) < 0.0);$ • $d > f \Rightarrow -f > -d;$ • d * d >= 0.0;

$$bias = 2^{5} - 1 = (25)$$

$$0.111111 \cdot i_{3} \times 2^{-126}$$

$$\frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^{23}\right) \times 2^{-126} = 2^{-126} - 2^{-150}$$

$$-38$$

- Exploded 37 seconds after liftoff
- Satellites worth \$500 million

■ Why?

- Computed horizontal velocity as FP number
- Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved
 16-bit is enough
- Reused a module from 10-year-old SW
 - Overflowed for Ariane 5
 - No precise specification for the SW

Summary

■ IEEE FP has clear mathematical properties

- Represents numbers of form M X 2^E
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Lacks associativity/distributivity
 - Makes life difficult for compilers and serious numerical applications programmers