Отчет о вычислительном эксперименте.

Введение

Алгоритм нахождения изоморфных деревьев применяется для упрощения суперпозиции элементарных функций. Суперпозиция строится, как приближение функциональной зависимости данных по биржевым опционам.

Унифицирование графа

Имеющееся дерево суперпозиции может содержать изоморфные ветки. Мы приравниваем параметры в соответствующих вершинах веток между собой, чтобы получить упрощенную модель. Таким образом, алгоритм унифицирования заключается в уменьшении размерности вектора параметров регрессионной модели.

В эксперименте использовался следующий функционал ошибки:

$$E = \sum_{i=1}^{N} (f(x_i) - y_i) + C \cdot dim(\Omega);$$

где Ω - вектор параметров, а f - нелинейная суперпозиция.

Было положено, что C=0.01. На генерируемых в эксперименте моделях $dim(\Omega)$ почти всегда не превышает 15. Ожидалось уменьшение функционала ошибки преобразованной модели.

В следующей таблице приведены результаты для упрощаемых моделей.

Начальное число параметров	Ошибка	Итоговое число параметров	Ошибка
9	6.821454e + 22	6	$1.404598\mathrm{e}{+21}$
8	1.810071e+09	6	2.600142e-01
13	3.627707e-01	11	3.427702 e-01
15	2.919851e-01	12	2.765169e-01
4	2.400142e-01	2	2.200142e-01
9	2.369950e-01	6	2.369241e-01
4	2.166848e-01	2	1.900595e-01
4	2.593220e-01	2	2.499030e-01
6	8.985552e-01	4	8.785552e-01
8	1.829372e-01	6	1.629372e-01

Результат оправдал ожидания - функционал ошибки уменьшается с упрощением модели.

Пример упрощенной алгоритмом модели:

 $plus2([], plus2([], plus2([], normal(w_{1,3}, x_1, normal(w_{4,6}, x_2), normal(w_{7,9}, x_1)), x_1)$

Упрощается к виду:

 $plus2([], plus2([], plus2([], normal(w_{1,3}, x_1, normal(w_{4,6}, x_2), normal(w_{1,3}, x_1)), x_1)$

Упрощение по шаблону

Развивается предложенная в [1] идея упрощения графа по заданным шаблонам. В [1] рассматривается случай упрощения только для поддеревьев, для которых ребра из корня ведут только в листья. С помощью алгоритма нахождения изоморфных поддеревьев

возможно применять правила замены для произвольной верщины. Было выбрано два правила и показано, как алгоритм работает для каждого из них

$$\cos(f) * \sin(f) = 0.5 \cdot \sin(2 \cdot f)$$

$$plus(f, f) = 2 \cdot f$$

где f - произвольная функция.

Упрощаемые строки генерируются вручную. В этой части алгоритма для простоты не использовалась структура model, а потому вместо использования реализованных ранее ExtractSubModel, ReplaceSubModel использовался упрощенный вариант реализации алгоритма замены подстрок.

Результат работы алгоритма приведен ниже:

$$plus2(expl(times2(sin(expl(x1)),cos(expl(x1)))),plus(x1)) \longrightarrow plus2(expl(0.5*sin(2*expl(x1))),plus(x1))) \longrightarrow plus2(expl(times2(sin(expl(x1)),cos(expl(x1)))),plus(x1))) \longrightarrow plus2(expl(0.5*sin(2*expl(x1))),plus(x1))) \longrightarrow plus2(expl(0.5*sin(2*expl(x1))),plus(x1))) \longrightarrow plus2(expl(0.5*sin(2*expl(x1))),plus(x1)))$$

$$plus2(expl(sin(expl(x1))), expl(sin(expl(x1)))) \longrightarrow 2*expl(sin(expl(x1)))$$

$$plus2(expl(times2(sin(expl(x2)),cos(expl(x1)))),plus(x1)) \longrightarrow plus2(expl(times2(sin(expl(x2)),cos(expl(x1))))))$$

Таким образом, для сложных f данные правила дают возможность вычислять на одну ветку меньше, что существенно упрощает модель - в том числе и в рамках уменьшения размерности вектора параметров.

Литература

[1] Г. И. Рудой and В. В. Стрижов. Упрощение суперпозиций элементарных функций при помощи преобразований графов по правилам. In *Интеллектуализация обработки информации*. Доклады 9-й международной конференции, pages 140–143, 2012.