

RF TEST REPORT

Number 14-023082-01-02

Be based on

FCC CFR 47 Part 15C, section 15.247 KDB 558074 D01 v03r02

For

Applicant	POINTMOBILE CO.,LTD
Manufacturer	POINTMOBILE CO.,LTD
Model or Type	PM60
, , , , , , , , , , , , , , , , , , ,	Mobile Computer
Final HW Version	Rev02
Final SW Version	62.00 C2
Test result	Pass

Issue To:	Date of Application	2014-05-20
POINTMOBILE CO.,Ltd Gasan-dong, B-9F Kabul Great Valley 32, Digital-ro9-gil, Geumcheon-gu, Seoul, Korea	Date of Report	2014-10-22
	Date of Issue	2014-10-22

This Test Report consists of 53 pages

The above test certificate is the accredited test results by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Korea Testing Laboratory

723 Haean-ro, Sangnok-Gu, Ansan-Si, Gyeounggi-Do, 426-910 KOREA • Phone :(+)82-31-500-0133 • Fax: (+)82-31-500-0149 • http://www.ktl.re.kr

Test Report revision History

Revision	Date	Comments
00	2014-10-22	Initial Version

Signature

This Test Report is issued under the authority as below

Date: 22 October, 2014

Test Engineer : Jong-gon Ban

Reviewed/Approved by: Tae-Seung Song

T. S. Song

This document may not be reproduced without written consent from Korea Testing Laboratory. Extract is not permitted. After written consent from Korea Testing Laboratory, the document must be reproduced in its entirety.

FP-236-09

Fax.: +82-31-5000-149

TABLE OF CONTENTS

1.	ADMI	NISTRATIVE INFORMATION	5
1.1.	Δnn	licant (Client)	5
1.2.	• • •	ufacturer Data (only if different from Applicant)	
1.3.		ting Laboratory Data	
2.		NFORMATION	
2.1.		eral Description of the EUT	
3.	SUMM	MARY OF TEST RESULTS	
4.	ANTE	NNA REQUIREMENTS	8
5.	MEAS	UREMENT & RESULTS	9
5.1.	Duty	y Cycle	9
	5.1.1.	Test Setup Layout	9
	5.1.2.	Test Condition	9
5.2.	6 dE	Bandwidth	10
	5.2.1.	Test Setup Layout	10
	5.2.2.	Test Condition & Limit	10
	5.2.3.	Test result	10
5.3.	Max	imum Peak Power	16
	5.3.1.	Test Setup Layout	16
	5.3.2.	Test Condition & Limit	16
	5.3.3.	Test result	17
5.4.	Pow	ver Spectral Density	25
	5.4.1.	Test Setup Layout	25
	5.4.2.	Test Condition & Limit	25
	5.4.3.	Test result	25
5.5.	100	KHz Bandwidth of Frequency Band Edges	31
	5.5.1.	Test Setup Layout	31
	552	Test Condition & Limit	31

5.5.3.	Test result	31
5.6. Con	nducted Spurious Emission	35
5.6.1.	Test Setup Layout	35
5.6.2.	Test Condition & Limit	35
5.6.3.	Test result	35
5.7. Rad	liated Spurious Emissions	41
5.7.1.	Test Procedure	41
5.7.2.	Limits	42
5.7.3.	Sample Calculation	43
5.7.4.	Measurement Configuration	43
5.7.5.	Test Procedure Used	43
5.7.6.	Restricted Band-edge Test Results (802.11b/g/n)	45
5.7.7.	Spurious Emission Test Results	46
5.8. AC	Conducted Emissions	50
5.8.1.	Test Procedure	50
5.8.2.	Limits	50
5.8.3.	Sample calculation	51
5.8.4.	Photograph for the test configuration	51
5.8.5.	Test Results	52
6. TEST	EQUIPMENTS	53

Fax.: +82-31-5000-149

1. Administrative Information

1.1. Applicant (Client)

Company Name	POINTMOBILE CO., LTD		
Address	Gasan-dong,B-9F Kabul Great Valley 32, Digital-ro9-gil, Geumcheon-gu, Seoul, Korea 153-709		
Contact Person			
Name	Jinny Cho		
E-mail	jinny.cho@pointmobil.co.kr		
Phone	010-5539-7765		

1.2. Manufacturer Data (only if different from Applicant)

Company Name	
Address	
Contact Person	
Name	
E-mail	
Phone	

1.3. Testing Laboratory Data

The following list shows all places and laboratories involved for test result generation.

Company Name	Korea Testing Laboratory
Address	723 Haean-ro, Sangnok-Gu, Ansan-Si, Gyeounggi-Do, 426-901 KOREA
Contact Person	
Name	Jong-gon Ban
E-mail	banjg@ktl.re.kr
Phone	+82-31-500-0133
Fax	+82-31-500-0149

2.EUT Information

2.1. General Description of the EUT

The following section lists all specifications of EUT (Equipment Under Test) involved in test. Additionally, KTL has received sufficient documentation from the client and/or manufacturer to perform the tests

General Information			
FCC ID	& Model Number	FCC ID: V2X-PM60-P, Model Number: PM60	
PM60GP74356E0T		Wifi/BT, 2D Scanner, Camera, QWERTY, WEH6.5 : Test sample selected	
CKU	PM60GP52356E0T	Wifi/BT, 1D Scanner, Camera, Numeric, WEH6.5	
SKUs	PM60GP54356E0T	Wifi/BT, 1D Scanner, Camera, QWERTY, WEH6.5	
	PM60GP72356E0T	Wifi/BT, 2D Scanner, Camera, Numeric, WEH6.5	
Antenna Type		Internal Antenna	
Type of Radio transmission		DSSS/CCK(802.11b), OFDM(802.11g/ 802.11n_HT20)	
Frequency Range		2 412 ~ 2 462 MHz	
Channel Numbers		11	
Antenna Gain		2.2 dBi	
Battery options		Li-ion, 3.7 V (4000 mAh)	
Date(s) tested		2014.07.07 ~ 2014.07.29	

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

3. SUMMARY OF TEST RESULTS

The following table represents the list of measurements required under the FCC CFR47 Part 15.247

FCC Rules	Test Items	Results	Remarks
15.247(a)(2)	6dB Bandwidth	Pass	-
15.247(b)(3)	Maximum Peak Power	Pass	-
15.247(e)	Power Spectral Density	Pass	-
15.247(d)	Band Edges Emissions	Pass	-
15.247(d)	Tx spurious emissions conducted	Pass	-
15.205, 15.209, 15.247(d)	Radiated Spurious Emissions	Pass	-
15.207	AC Line Conducted Emission	Pass	-

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

nttp://www.kti.re. FP-236-09

4. ANTENNA REQUIREMENTS

According to FCC 47 CFR part 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

пцр://www.кц. FP-236-09

^{*} The antennas of this E.U.T are permanently attached.

^{*}The E.U.T Complies with the requirement of §15.203

5. Measurement & Results

5.1. Duty Cycle

5.1.1. Test Setup Layout

5.1.2. Test Condition

According to KDB 558074 6.0,b), issued 06/05/2014

- The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero span measurement method, 6.0,b) in KDB 558074 (issued 06/05/2014)
- The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)
- The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

Mode	Data Rate	Duty Cycle	Duty Cycle Factor (dB)
	1 Mbps	0.896	0.48
000 11h	2 Mbps	0.815	0.89
802.11b	5.5 Mbps	0.630	2.00
	11 Mbps	0.487	3.12
	6 Mbps	0.582	2.35
	9 Mbps	0.492	3.08
	12 Mbps	0.412	3.85
902 11 a	18 Mbps	0.320	4.95
802.11g	24 Mbps	0.267	5.73
	36 Mbps	0.205	6.89
	48 Mbps	0.156	8.07
	54 Mbps	0.153	8.17
	6.5 Mbps	0.574	2.41
	13 Mbps	0.404	3.94
	19.5 Mbps	0.322	4.92
802.11n	26 Mbps	0.265	5.77
(20MHz)	39 Mbps	0.204	6.90
	52 Mbps	0.167	7.78
	58.5 Mbps	0.156	8.07
	65 Mbps	0.145	8.38

Note: Duty Cycle Factor Calculation: 10*log(1/Duty Cycle). where, Duty Cycle = T on / T total - Sample calculation 802.11b (1Mbps), Duty Cycle Factor (dB) = 10*log(1/0.896) = 0.48

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

5.2. 6 dB Bandwidth

5.2.1. Test Setup Layout

5.2.2. Test Condition & Limit

- Set Spectrum analyzer as RBW = 100 kHz, VBW ≥ 3xRBW according to KDB 558074
- The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.
- -The minimum permissible 6dB bandwidth is 500 kHz

5.2.3. Test result

* Operation Mode: 802.11b

Channels	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Verdict
Low	2 412	9.06	13.94	Pass
Middle	2 437	9.07	13.96	Pass
High	2 462	10.00	13.98	Pass

* Operation Mode: 802.11g

Channels	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Verdict
Low	2 412	15.32	16.36	Pass
Middle	2 437	15.32	16.46	Pass
High	2 462	15.48	16.52	Pass

* Operation Mode: 802.11n

Channels	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Verdict
Low	2 412	15.35	17.54	Pass
Middle	2 437	15.54	17.63	Pass
High	2 462	15.33	17.70	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

nttp://www.ktl.re.

- 802.11b 1CH -

- 802.11b 6CH -

- 802.11b 11CH -

-802.11g 1CH -

* Agilent Freq/Channel Center Frea Ch Freq 2.462 GHz Trig Free 2.46200000 GHz Occupied Bandwidth Center 2.462000000 GHz Start Freq 2.44700000 GHz Ref 117.5 mW Atten 30 dB Stop Freq #Peak 2.47700000 GHz Log 10 CF Step dB/ 3.00000000 MHz Offst Auto 0.7 dB Freq Offset 0.00000000 Hz Center 2.462 00 GHz Span 30 MHz #Res BW 100 kHz #VBW 300 kHz #Sweep 10 ms (1001 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Off x dB -6.00 dB 16.5185 MHz -4.453 kHz Transmit Freq Error x dB Bandwidth 15.475 MHz Copyright 2000-2004 Agilent Technologies

– 802.11g 11CH –

- 802.11n 1CH -

- 802.11n 6CH -

- 802.11n 11CH -

5.3. Maximum Peak Power

5.3.1. Test Setup Layout

5.3.2. Test Condition & Limit

- Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.
- Peak Power: Procedure 9.1.2 in KDB 558074, issued 06/05/2014
- -A transmitter antenna terminal of EUT is connected to the input of Power Sensor.
- Average Power: Procedure 9.2.2.4 in KDB 558074, issued 06/05/2014
- A transmitter antenna terminal of EUT is connected to the input of Spectrum Analyzer.
 - a) Measure the duty cycle
 - b) Set span to at least 1.5 times the OBW
 - c) Set RBW = 1-5% of the OBW, not to exceed 1 MHz
 - d) Set VBW ≥ 3 x RBW
 - e) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
 - f) Sweep time = auto.
 - g) Detector = RMS (i.e., power averaging)
 - h) Don't use sweep triggering. Allow the sweep to "free run".
 - i) Trace average at least 100 traces in power averaging(RMS) mode.
 - j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
 - k) Add 10 $\log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.
- The Maximum permissible conducted output power is 1Watt.

Sample calculation

Output Power = Reading Value + Cable loss + Duty Cycle Factor = 14.88 + 0.7 + 0.45 = 16.03 (Cable loss is already included in the Reading value.)

5.3.3. Test result

* Peak Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	1	16.13	16.31	16.61
802.11b	2	16.25	16.30	16.65
	5.5	16.28	16.58	16.69
	11	16.86	16.90	17.05

*Average Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	1	13.93	14.12	14.03
802.11b	2	14.01	13.95	13.93
	5.5	13.90	13.82	14.08
	11	13.95	13.96	14.08

⁻Average Power = Measured Power (dBm) + Duty Cycle Factor

⁻Sample Calculation = 13.45 + 0.48 = 13.93 dBm

* Peak Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	6	19.35	19.43	19.50
	9	18.91	19.02	19.16
	12	18.26	18.31	18.48
802.11g	18	17.75	17.86	18.01
802.119	24	17.60	17.67	17.84
	36	17.18	17.20	17.39
	48	16.55	16.63	16.79
	54	16.40	16.46	16.72

*Average Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	6	14.08	14.08	14.09
	9	13.94	14.20	13.95
	12	13.96	14.71	14.16
902.44~	18	14.12	14.97	14.25
802.11g	24	13.95	13.99	14.32
	36	14.08	14.28	14.06
	48	13.88	13.87	13.87
1	54	13.51	13.80	13.71

⁻ Average Power = Measured Power (dBm) + Duty Cycle Factor

http://www.ktl.re.kr FP-236-09

⁻Sample Calculation = 11.73 +2.35 = 14.08 dBm

Fax.: +82-31-5000-149

* Peak Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	6.5	19.06	19.17	19.22
	13	17.86	17.91	18.01
	19.5	17.49	17.50	17.69
000 445	26	17.46	17.47	17.62
802.11n	39	16.92	17.08	17.16
	52	16.11	16.22	16.30
	58.5	16.02	16.18	16.27
	65	15.06	15.15	15.28

*Average Power

Test Mode	Data Rate (Mbps)	2412MHz (dBm)	2437MHz (dBm)	2462MHz (dBm)
	6.5	13.61	13.82	13.80
	13	13.96	13.98	13.98
	19.5	13.85	13.97	13.85
802.11n	26	13.61	14.25	13.90
002.1111	39	13.94	13.87	13.99
	52	13.47	13.33	13.54
	58.5	15.53	13.35	13.36
	65	12.50	12.75	12.62

⁻ Average Power = Measured Power (dBm) + Duty Cycle Factor

⁻Sample Calculation = 11.20 +2.41 = 13.61dBm

- 802.11b 1CH (Average Power)-

- 802.11b 6CH (Average Power)-

- 802.11b 11CH (Average Power)-

- 802.11g 1CH (Average Power)-

- 802.11g 6CH (Average Power)-

- 802.11g 11CH (Average Power)-

- 802.11n 1CH (Average Power)-

- 802.11n 6CH (Average Power)-

- 802.11n 11CH (Average Power)-

Fax.: +82-31-5000-149

5.4. Power Spectral Density

5.4.1. Test Setup Layout

5.4.2. Test Condition & Limit

- -The peak power spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.
- The Maximum permissible power spectral density is 8 dBm in any 3 kHz band.
- Test was performed according to Procedure 10.2 in KDB 558074, issued 06/05/2014

The Spectrum analyzer is set to:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Span =1.5 times the DTS channel bandwidth
- c) RBW = $3kHz \le RBW \le 100kHz$
- d) VBW≥3 x RBW
- e) Sweep = auto couple
- f) Detector = peak
- g) Trace Mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.

5.4.3. Test result

	Power Spectral Density			
Test Mode	2 412MHz (dBm)	2 437MHz (dBm)	2 462MHz (dBm)	Limit
802.11b	-8.32	-7.90	-8.26	8dBm
802.11g	-11.29	-11.03	-10.09	8dBm
802.11n	-13.29	-13.06	-14.06	8dBm

- 802.11b 1CH (Power Spectral Density)-

- 802.11b 6CH (Power Spectral Density)-

- 802.11b 11CH (Power Spectral Density)-

- 802.11g 1CH (Power Spectral Density)-

- 802.11g 6CH (Power Spectral Density)-

- 802.11g 11CH (Power Spectral Density)-

- 802.11n 1CH (Power Spectral Density)-

- 802.11n 6CH (Power Spectral Density)-

802.11n 11CH (Power Spectral Density)-

5.5.100 KHz Bandwidth of Frequency Band Edges

5.5.1. Test Setup Layout

5.5.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 100 kHz
- The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
- The maximum frequency range measuring with the spectrum from 30 MHz to 25 GHz is investigated with the transmitter

5.5.3. Test result

Operation Mode: 802.11b

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	40 >	20	Pass
High	2 462	40 >	20	Pass

* Operation Mode: 802.11g

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	40 >	20	Pass
High	2 462	40 >	20	Pass

* Operation Mode: 802.11n

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	40 >	20	Pass
High	2 462	40 >	20	Pass

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

- 802.11b (Band edge lower side) -

- 802.11b (Band edge higher side) -

- 802.11g (Band edge lower side) -

- 802.11g (Band edge higher side) -

FP-236-09

- 802.11n (Band edge lower side) -

- 802.11n (Band edge higher side) -

FP-236-09

5.6. Conducted Spurious Emission

5.6.1. Test Setup Layout

5.6.2. Test Condition & Limit

- Set the spectrum analyzer as RBW, VBW = 100 kHz
- The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.5). This value is used to calculate the 20 dBc limit.
- In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.6.3. Test result

Operation Mode: 802.11b

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	50 >	20	Pass
Mid	2 437	50 >	20	Pass
High	2 462	50 >	20	Pass

* Operation Mode: 802.11g

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	50 >	20	Pass
Mid	2 437	50 >	20	Pass
High	2 462	50 >	20	Pass

* Operation Mode: 802.11n

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2 412	50 >	20	Pass
Mid	2 437	50 >	20	Pass
High	2 462	50 >	20	Pass

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

http://www.ktl.re.kr Fax.: +82-31-5000-149

-802.11b CH1-

-802.11b CH6-

Fax.: +82-31-5000-149

Tel.: +82-31-5000-133

-802.11b CH11-

-802.11g CH1-

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

-802.11g CH6-

-802.11g CH11-

Fax.: +82-31-5000-149

Tel.: +82-31-5000-133

-802.11n CH1-

-802.11n CH6-

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

Fax.: +82-31-5000-149

-802.11n CH11-

Report No.: 14-023085-01-02 Page 41 of 53 Pages

5.7. Radiated Spurious Emissions

5.7.1. Test Procedure

5.7.1.1 Preliminary Testing for Reference

Preliminary testing was performed in a KTL absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna (Biconi-Log antenna: 30 to 1000 MHz or Horn Antenna: 1 to 40 GHz) was placed at the distance of 3 meter from the EUT.

An attempt was made to maximize the emission level with the various configurations of the EUT. Emission levels from the EUT with various configurations were examined on a spectrum analyzer connected with a RF amplifier and graphed.

The emission was within the illumination area of the 3 dB beam width of the antenna so that the maximum emission from the EUT is measured.

5.7.1.2 Final Radiated Emission Test at an Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KTL Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level. Receiving antenna polarization was changed vertical and horizontal. The worst value was recorded.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

Tested in x, y, z axis and worst case results are reported

The maximum frequency range measuring with the spectrum from 30 MHz to 40 GHz is investigated with the transmitter

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

5.7.2. Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2 483.5 – 2 500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3 600 – 4 400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Field Strength Measurement Distance (MHz) (microvolts/meter) (meters)

Frequency (MHz)	Field Strength (microvolts/meter)	Distance (Meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200**	3
above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

² Above 38.6

5.7.3. Sample Calculation

The emission level measured in decibels above one microvolt (dB \not) was following sample calculation.

For example;

Measured Value at 2 375.40 MHz	$38.35~\mathrm{dB}\mu\mathrm{V}$
Antenna Factor, Cable loss & Preamplifier	26.37 dB
= Radiated Emission	64.72 dB <i>ሥ</i> /m

5.7.4. Measurement Configuration

5.7.5. Test Procedure Used

- ANSI C63.10 (2009)
- -Method 12.2.4 in KDB 558074, issued 06/05/2014 (Peak)
- -Method 12.2.5.3 in KDB 558074, issued 06/05/2014 (Average Case 2)
 - : Duty Cycle ≥ 98 % is considered for 802.11b/g/n mode Average measurements

The spectrum analyzer is set as below.

-Peak Measurement

- a) RBW = 1 MHz
- b) VBW ≥3 MHz
- c) Detector = Peak
- d) Sweep Time = Auto
- e)Trace mode = Max hold
- f) Allow sweeps to continue until the trace stabilizes.(Note that the required measurement time may be longer for low duty cycle applications).

-Average Measurement (Case 2)

If continuous transmission of the EUT (i.e., duty cycle \geq 98 percent) cannot be achieved and the duty cycle is not constant (i.e., duty cycle variations exceed \pm 2 percent), then the following procedure shall be used:

- a) RBW = 1 MHz
- b) $VBW \ge 1/T$
- c) Video bandwidth mode or display mode
 - The instrument shall be set to ensure that video filtering is applied in the power domain.
 Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS).
 - 2) As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode.
- d) Detector = Peak
- e) Sweep Time = Auto
- f) Trace mode = Max hold
- g) Allow max hold to run for at least 50 times (1/duty cycle) traces.

Note: The actual setting value of VBW

Mode	Worst Data rate (Mbps)	Ton (ms)	Ttotal (ms)	Duty cycle (%)	VBW (1/T) (Hz)	Actual VBW setting
b	1	8.42	9.40	0.895	119	120
g	6	1.38	2.37	0.582	724	750
n	6.5	1.32	2.30	0.573	757	910

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

Tel.: +82-31-5000-133

http://www.ktl.re.kr

Fax.: +82-31-5000-149

5.7.6. Restricted Band-edge Test Results (802.11b/g/n)

Test distance: 3m

Frequency (MHz)	Antenna Pol.	Reading level	Correction factor (dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
802.11b Low	ver side ba	nd-edge [2 310 l	MHz – 2 390 MH	lz], Operating	frequency: 2	412 MHz		
2 375.2	Н	37.29	26.37	63.66	74.0	10.34	Peak	Х
2 375.2	Н	15.41	26.37	41.78	54.0	12.22	Average	Х
802.11b Hig	her side b	and-edge [2 483	.5 MHz – 2 500	MHz], Operati	ng frequency	: 2462 MH	z	
2 487.5	Н	35.91	26.71	62.62	74.0	11.38	Peak	Х
2 487.5	Н	17.32	26.71	44.03	54.0	9.97	Average	Х
802.11g Low	ver side ba	nd-edge [2 310 l	MHz – 2 390 MH	z], Operating	frequency : 2	412 MHz	•	
2 389.9	Н	38.95	26.37	65.32	74.0	8.68	Peak	Х
2 389.9	Н	20.88	26.37	47.25	54.0	6.75	Average	Х
802.11g Hig	her side ba	nd-edge [2 483.	5 MHz – 2 500 N	MHz], Operatii	ng frequency	2462 MHz	Z	
2 483.8	Н	43.95	26.71	70.66	74.0	3.34	Peak	Υ
2 483.8	Н	24.69	26.71	54.40	54.0	2.60	Average	Υ
802.11n Low	ver side ba	nd-edge [2 310 l	MHz – 2 390 MH	z], Operating	frequency : 2	412 MHz	•	
2389.7	Н	42.01	26.37	68.38	74.0	5.62	Peak	Υ
2389.7	Н	24.96	26.62	51.58	54.0	2.42	Average	Y
802.11n Higher side band-edge [2 483.5 MHz – 2 500 MHz], Operating frequency : 2462 MHz								
2 483.9	Н	40.55	26.71	67.26	74.0	6.74	Peak	Х
2 483.9	Н	25.73	26.71	52.44	54.0	1.56	Average	Х

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- Note 1. Measurement was done over the Restricted Bands. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
 - 2. Pre-amplifier was used.
 - 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
 - 4. If the peak measured values are lower than average limits, average measurements are not performed.

- **Remark** 1. Noise floor of 30 ~ 1000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1000 ~ 5000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5000 ~ 25000 MHz : <50 dBuV at 3m distance

Fax.: +82-31-5000-149 http://www.ktl.re.kr FP-236-09

5.7.7. Spurious Emission Test Results

5.7.7.1 Spurious Radiated Emission (Worst case configuration, 30 MHz ~ 1 GHz)

Test mode: 802.11b/g/n

Frequency (MHz)	Antenna Pol.	Reading level [Quasi-Peak]	Correction factor (dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Plane X/Y/Z
-							
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

Note 1. Measurement was done over the frequency range from 30 MHz to 1 GHz. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.

- 2. Testing is include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 3. Any emission values 20dB lower than the limit are not recorded.

Remark 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance

- 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
- 3. Noise floor of 5 000 ~ 25 000 MHz : <45 dBuV at 3m distance

http://www.ktl.re.kr FP-236-09

5.7.7.2 Spurious Radiated Emission (1 GHz ~ 25 GHz)

Test mode: 802.11b

Frequency (MHz)	Antenna Pol.	Reading level	Correction factor (dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
Lowest chann	nel Ch. 1 (241	2 MHz)	•				•	
4 824	Н	40.21	17.02	57.23	74.0	16.77	Peak	Υ
4 824	V	28.01	17.02	45.03	54.0	8.97	Average	Υ
Middle chann	el Ch. 6 (2437	7 MHz)					_	
4 874	Н	42.32	15.74	58.06	74.0	15.94	Peak	Υ
4 874	V	33.01	15.74	48.75	54.0	5.25	Average	Υ
Highest chan	nel Ch. 11 (24	62 MHz)	•					
4 924	Н	38.18	16.54	54.72	74.0	19.28	Peak	Υ
4 924	Н	26.48	16.54	43.02	54.0	10.98	Average	Y

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- 1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
- 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
- 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 4. If the peak measured values are lower than average limits, average measurements are not performed.
- 5. Any emission values 20dB lower than the limit are not recorded.

- **Remark** 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1 000 ~ 5 000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5 000 \sim 25 000 MHz : <50 dBuV at 3m distance

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

Test mode: 802.11g

Frequency (MHz)	Antenna Pol.	Reading level	Correction factor (dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
Lowest chann	nel Ch. 1 (241	2 MHz)						
4 824	Н	38.92	17.02	55.94	74.0	18.06	Peak	Υ
4 824	V	26.59	17.02	43.61	54.0	10.39	Average	Υ
Middle chann	el Ch. 6 (2437	r MHz)						
4 874	Н	39.69	15.74	55.43	74.0	18.57	Peak	Υ
4 874	Н	26.18	15.74	42.72	54.0	11.28	Average	Y
	nel Ch. 11 (24	· · · · · · · · · · · · · · · · · · ·	1				1 1	
4 924	Н	36.96	16.54	53.50	74.0	20.50	Peak	Υ
4 924	Н	25.85	16.54	42.39	54.0	11.61	Average	Y

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

- 1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.
- 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
- 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 4. If the peak measured values are lower than average limits, average measurements are not performed.
- 5. Any emission values 20dB lower than the limit are not recorded.

- **Remark** 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1 $000 \sim 5000$ MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5 000 ~ 25 000 MHz : <50 dBuV at 3m distance

Fax.: +82-31-5000-149 http://www.ktl.re.kr FP-236-09

Test mode: 802.11n

Frequency (MHz)	Antenna Pol.	Reading level	Correction factor (dB)	Level Corrected (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Plane X/Y/Z
Lowest chann	nel Ch. 1 (2 4	12 MHz)						
4 824	Н	36.28	17.02	53.30	74.0	20.70	Peak	Y
Middle chann	el Ch. 6 (2 43	7 MHz)						
4 874	H	37.92	15.74	53.66	74.0	20.34	Peak	Υ
Highest chan	nel Ch. 11 (2	462 MHz)						
-	-	-	-	-	-	-	-	-

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

Note 1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.

- 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
- 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 4. If the peak measured values are lower than average limits, average measurements are not performed.
- 5. Any emission values 20dB lower than the limit are not recorded.

Remark 1. Noise floor of 30 ~ 1 000 MHz : <20 dBuV at 3m distance

- 2. Noise floor of 1 $000 \sim 5000$ MHz : <40 dBuV at 3m distance
- 3. Noise floor of 5 000 ~ 25 000 MHz : <50 dBuV at 3m distance

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

пир://www.ки.re. FP-236-09

5.8. AC Conducted Emissions

5.8.1. Test Procedure

Conducted emission measurements on the EUT were performed by "AC Power Line Conducted Emissions Testing" procedure as per ANSI C63.4. The EUT was set up on a wooden table 0.8 meters height, 1.0 by 1.5 meters in size, placed in the shielded enclosed with a side of wall of which constituted a vertical conducting surface of 2.2 m x 3.1 m in size to maintain 40 cm from the rear of EUT

LISN(Line Impedance Stabilization Network, ROHDE & SCHWARZ, ESH3-Z5, 50 ohm / 50 μ H) was installed and electrically boned to the conducting ground plane. The EUT was connected to the LISN using a typical power adapter.

One of two 50 ohm output terminals of the LISN was connected to the EMI Receiver (ROHDE & SCHWARZ, ESCI, 9 kHz to 3 GHz) and the other was terminated in 50 ohms. Measurements were again performed after interchanging such a connection oppositely.

The frequency range from 150 kHz to 30 MHz was examined and the remarkable frequencies were measured with Quasi-peak and Average values using the EMI receiver instrument (ROHDE & SCHWARZ, ESI, 9 kHz to 3 GHz; Detector Function; CISPR Quasi-Peak & Average). The 6 dB bandwidth of the Receiver was set to 9 kHz

The position of connecting cables of the EUT was changed to find the worst case configuration during measurements. The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

5.8.2. Limits

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Financia de California de Cali	Conduc	ted Limits (dBuV)
Frequency (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

Tel.: +82-31-5000-133 Fax.: +82-31-5000-149

5.8.3. Sample calculation

The emission level measured in decibels above one microvolt ($dB \not M$) was converted into microvolt ($dB \not M$) as shown in following sample calculation.

For example:

Measured Value at	0.150 MHz	49.3 dB ₩ @ Q-Peak mode
+ Correct factor *		9.8 dB
= Conducted Emission		59.1 dB <i>⊭</i> V

^{*} Correct factor is adding RF cable loss and Attenuation

5.8.4. Photograph for the test configuration

723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)

http://www.ktl.re.kr Fax.: +82-31-5000-149

5.8.5. Test Results

Final Result 1(Quasi-Peak)

Frequency (MHz)	QuasiPeak (dBuV)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	59.1	N	9.8	6.9	66.0
0.294000	47.9	N	9.8	12.5	60.4
0.555000	28.8	L1	9.9	27.2	56.0
1.198500	30.7	L1	9.9	25.3	56.0
1.486500	30.1	L1	9.9	25.9	56.0
2.409000	26.6	L1	10.0	29.4	56.0

Final Result 2(Average)

Frequency	Average	Line	Corr.	Margin	Limit
(MHz)	(dBuV)		(dB)	(dB)	(dBuV)
0.150000	46.7	L1	9.8	9.3	56.0
0.298500	34.4	L1	9.8	15.9	50.3
0.537000	24.2	L1	9.9	21.8	46.0
1.050000	20.8	L1	9.9	25.2	46.0
1.504500	19.2	L1	9.9	26.8	46.0
14.262000	22.4	L1	10.9	27.6	50.0

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

6. TEST EQUIPMENTS

No.	Equipment	Manufacturer	Model	S/N	Calibration Due date
1	Spectrum Analyzer	Agilent	E4407B	US41443316	03-11-2015
2	Synthesized Sweeper	HP	83620A	3250A01653	03-03-2015
3	Digital RF Signal Generator	Agilent	E4438C	US41460859	02-18-2015
4	Signal Generator	R&S	SMIQ O3	DE22348	02-14-2015
5	PSA Series Spectrum Analyzer	Agilent	E4448A	US44300484	02-19-2015
6	DC Power Supply	Agilent	E4356A	MY41000296	02-11-2015
7	DC Power Supply	Agilent	E3645A	MY40000851	02-11-2015
8	AC Power Supply	Agilent	6811B	MY41000446	02-07-2015
9	Oscilloscope	Agilent	DSO6054A	MY44001104	01-22-2015
10	Directional Coupler	Agilent	87300C	MY44300126	03-04-2015
11	Directional Coupler	Agilent	773D	MY28390213	03-04-2015
12	VHF Attenuator	HP	355D	2522A45959	03-04-2015
13	Coaxial Attenuator	Weinschel	56-20	N8527	03-04-2015
14	Coaxial Attenuator	Agilent	8491B	50109	03-04-2015
15	Power Divider	HP	11636A	09084	03-07-2015
16	Power Spliter	HP	11667A	21063	03-04-2015
17	Temp/Humidity Chamber	ESPEC	SH-641	92007482	01-14-2015
18	Function/Arbitrary Waveform Generator	Agilent	33250A	MY40015758	04-24-2015
19	EMI Receiver	R&S	ESIB26	100280	03-12-2015
20	Pre-Amplifier	HP	83017A	MY39500982	02-19-2015
21	Pre-Amplifier	SONA INSTRUMENT	310	284609	01-08-2015
22	Biconi-Log Antenna	Schwarzbeck	VULB9168	9168-181	05-14-2015
24	Double Ridge Wave Guide	ETS-Lindgren	BBHA 9120D	653	11-11-2014
25	Double Ridge Wave Guide	ETS-Lindgren	3116	2662	09-01-2015

Tel.: +82-31-5000-133
Fax.: +82-31-5000-149

http://www.ktl.re.kr FP-236-09