Norton's Theorem and Max Power Transfer

- □ Norton's Theorem
 - Introduction and general approach
 - Source conversion approach
 - Example
 - Only independent sources
 - Use your calculator
 - Example 2
 - □ Includes a <u>dependent source controlled in-network</u>
 - □ Requires a different method to determine **Z**N (test source)
- ☐ Maximum Power Transfer Theorem
 - Statement and discussion
 - In class problem

М

Norton's Theorem

- Norton's theorem allows us to replace any two-terminal linear bilateral ac network with an <u>equivalent circuit</u> <u>consisting of a current source and an impedance</u>.
- The Norton equivalent circuit, like the Thévenin equivalent circuit, is applicable at only one frequency since the reactances are frequency dependent.

FIG. 19.60 The Norton equivalent circuit for ac networks.

Norton's Theorem - Approach

- Remove that portion of the network across which the Norton equivalent circuit is to be found.
- 2. Mark (A and B or a-a' the terminals of the remaining two-terminal network.
- 3. Calculate Z_N by first setting all voltage and current sources to zero (short circuit and open circuit, respectively) and then finding the resulting impedance between the two marked terminals.
- 4. Calculate I_N by first replacing the voltage and current sources and then finding the short-circuit current between the marked terminals.
- Draw the Norton equivalent circuit with the portion of the circuit previously removed replaced between the terminals of the Norton equivalent circuit.

For dependent sources – Must use an <u>alternate method to find ZN if the controlling variable is IN the network under investigation.</u>

Norton's Theorem - Source Conversion

FIG. 19.61 Conversion between the Thévenin and Norton equivalent circuits.

Norton's Theorem – Example (use your calculator)

Find: the Norton equivalent circuit external to capacitor, C₂

Steps 1&2: Redraw, removing C₂ (external to the network terminals), keep track of A-B

Step 3: Find ZN
(Remove independent sources,
ZN = ZTH = Zab o/c)

$$\bar{z}_{n} = (\bar{z}_{1} + \bar{z}_{2}) / \bar{z}_{3}$$

$$= (3 - j 9)_{n} / (j 5_{n})$$

Norton's Theorem – Example (use your calculator)

Step 4: Find In (IAB s/c)

$$\vec{z}_{N} = \vec{z}_{Z_{1}} = \vec{z} \left(\frac{\vec{z}_{1}}{\vec{z}_{1} + \vec{z}_{2}} \right)$$

Step 5: Draw the Norton Equivalent Circuit

Norton's Theorem – Example 2 (dependent source controlled within network)

Step 4: Find In

$$kVL\left(outen\right): \vec{E} + \vec{I}Z_1 - \vec{I}_{N}Z_2 = 0$$

$$kCL \quad O = \vec{I} + h\vec{I} + \vec{I}_{N}$$
(2)

Note: The network contains a dependent source that is controlled by a current in the network

- Find In as usual.
- Find **Z**N using an alternate method (test source)

Steps 1&2: Redraw using impedance boxes (keep track of terminals A-B)

Solving (1) for I:

Into (2) yields:

$$\vec{I}_{N} = -\vec{I}(1+h)$$

$$\vec{I}_{N} = -\left(\vec{I}_{N} \cdot \vec{Z}_{2} - \vec{E}\right)(1+h)$$

$$\vec{Z}_{1}$$

Norton's Theorem – Example 2 (dependent source controlled within network)

$$\overline{I}_{\lambda} = -\left(\overline{I}_{\lambda} \cdot \overline{Z}_{2} - \overline{E}\right) (1+h)$$

Expanding to solve for **In** in terms of the network values:

$$\overrightarrow{I_N} = \overrightarrow{E} \frac{(1+h)}{\overrightarrow{z}_1 + \overrightarrow{z}_2 + h \overrightarrow{z}_2}$$

$$\vec{I}_{N} = \vec{E} \frac{(1+h)}{\vec{z}_{1} + \vec{z}_{2}(1+h)}$$

Step 3: Find ZN by

- Relaxing the independent sources (**E**)
- Applying a test-source across A-B

$$\vec{Z}_N = \frac{\vec{V}_T}{\vec{J}_T}$$

Norton's Theorem – Example 2 (dependent source controlled within network)

KVL:

$$\vec{V}_T = \vec{I}_T \vec{z}_2 + \vec{I} \vec{z}$$
 (3)

KCL:

$$\vec{I}_{T} = \vec{I} + \vec{h} \vec{T}$$
 (4)

Solving (4) for **I** and substituting into (3):

$$\vec{V}_{\tau} = \vec{I}_{\tau} \vec{z}_{1} + \vec{I}_{\tau} \left(\frac{1}{1+4} \right) \vec{z}_{1}$$

Solving for VT/IT (ZN):

$$\frac{\vec{V}_T}{\vec{I}_T} = \frac{\vec{z}_N}{\vec{z}_N} = \frac{\vec{z}_2 + \vec{z}_1(\vec{1} + h)}{\vec{z}_N}$$

$$\frac{\vec{z}_N}{\vec{z}_N} = \frac{\vec{z}_2(1 + h) + \vec{z}_1}{1 + h}$$

Step 5: Draw the Norton Equivalent Circuit

$$\overrightarrow{I}_{N} = \overrightarrow{E} \frac{(1+h)}{\overrightarrow{z}_{1} + \overrightarrow{z}_{2}(1+h)}$$

Maximum Power Transfer Theorem

When applied to ac circuits, the maximum power transfer theorem states that <u>maximum power will be delivered to</u> <u>a load when the load impedance is the conjugate of the</u> <u>Thévenin impedance</u> across its terminals.

FIG. 19.81 Defining the conditions for maximum power transfer to a load.

NOTE:

When **ZL** = **ZTH***, the reactive components cancel and we have a series circuit with two equal value resistors... look familiar?

FIG. 19.82 Conditions for maximum power transfer to \mathbf{Z}_{l} .

In Class Problem

Find:

- The Thevenin equivalent circuit for the network external to **Z**L
- The value of **Z**L for maximum power transfer
- The average power dissipated by this load

Approach:

- Standard Thevenin approach
- Set **Z**L = **Z**тн*
- $PzL = VRMS IRMS Cos(\Theta)$