EE324: Control Systems Lab

Experiment 4: Noise Cancellation in Headphones

Group 11 - Monday Batch Sanjay Meenaa (22B3978), Devtanu Barman (22B3904)

November 5, 2024

DEMO VIDEO LINK:

https://drive.google.com/drive/folders/16PG2q71JDVtlyDyfErBQwEVc9p0XzFTx?usp=sharing

1 Objective

The goal of the experiment was to design and implement an analog circuit for noise cancellation in headphones. The specific objectives were:

- Achieve an attenuation of 20 dB when a noise of 100 Hz frequency is applied.
- Design an analog compensator to stabilize the system, focusing on loop shaping of the loop transfer function.

2 Control Algorithm

For the given headphone-microphone setup, we characterized the transfer function of the headphone system, denoted as G(s). The closed-loop model was represented as a unity feedback model with a controller C(s) in the feedforward path. The transfer function of the closed-loop system is given by:

$$\frac{Y(s)}{X(s)} = \frac{1}{1 + C(s)G(s)}$$

3 Methodology

We first examined the headphone setup to understand its open-loop output transfer characteristics. Using MATLAB, we modeled the compensated system using a second-order approximation. Our aim was to find suitable values for the resistors and capacitors in the compensator C(s) to achieve approximately 20 dB attenuation at 100 Hz while ensuring stability.

3.1 Procedure

Frequency response analysis was performed on the headphone setup with sinusoidal input from a function generator. Both the input and output were observed on a digital storage oscilloscope (DSO), and magnitude and phase bode plots were generated to represent the open-loop characteristics of the headphones.

3.2 Compensator Design

The compensator is designed as a second-order system, with parameters chosen to meet the required attenuation at 100 Hz. The circuit diagram for the compensator is shown below.

Figure 1: Second Order Compensator Circuit Diagram

The transfer function of the compensator is given by:

$$C(s) = \frac{as^2 + bs + c}{ds^2 + es + f}$$

In terms of circuit components, it is expressed as:

$$C(s) = \left(\frac{C_1}{C}\right)^2 s^2 + \frac{1}{C} \left(\frac{1}{R_1} - \frac{r}{R \cdot R_3}\right) s + \frac{1}{C_2 \cdot R \cdot R_2} s^2 + \frac{1}{Q \cdot C \cdot R} s + \frac{1}{C_2 \cdot R_2} s^2 + \frac{1}{Q \cdot C \cdot R} s + \frac{1}{C_2 \cdot R_2} s^2 + \frac{1}{Q \cdot C \cdot R} s + \frac{1$$

The chosen values of the circuit components are shown in Table 1.

4 Challenges Faced

Noisy Readings: Initial readings were affected by ambient disturbances.
 Solution: Repeated the experiment in a quieter environment for stable readings.

Parameter	Value
C_1	410 pF
C	680 pF
R_1	$50 \mathrm{k}\Omega$
R	1500Ω
R_3	1Ω
R_2	$1 \mathrm{M}\Omega$
Q	0.5
r	$3M\Omega$

Table 1: Circuit Component Values

Figure 2: Bode Plot of the Compensator

- MATLAB Bode Plot: Input parameters for the bode() function in radians caused incorrect results.

 Solution: Converted frequency from Hertz to radians before plotting.
- Optimum Component Values: Exact resistances and capacitances were unavailable.

Solution: Closest available values were used to achieve a functional circuit.

5 Results

The designed compensator achieved the targeted noise attenuation and improved stability. Key results observed:

- Compensator Transfer Function: $C(s) = \frac{(s+6500)^2}{(s+650)^2}$
- Gain Margin (Before Compensation): -50.8 dB.

- Phase Margin (Before Compensation): 90.17degrees .
- Gain Margin (After Compensation): 5.68 dB.
- Phase Margin (After Compensation): 49.2 degrees.

Figure 3: Bode Plot of the Open-Loop Compensated System

Figure 4: Bode Plot of the Closed-Loop Compensated System

6 Observations and Inference

- The compensator achieved the desired attenuation at 100 Hz, effectively reducing noise interference.
- The reduction in gain from 7.43 dB to approximately -7 dB after closed-loop compensation indicates successful noise reduction.

- The compensator shaped the loop transfer function, as shown in the smoother gain and phase transitions in the Bode plots.
- $\bullet\,$ This design could be applied in various analog noise reduction applications.