Machine Learning

Mohamad Ghassany 2018-01-26

Contents

W	elcor	me rse Overview	5
In	Wha Supe	uction at is Machine Learning?	7 7 7 13
Ι	Su	pervised Learning 1	7
1	Line	ear Regression	19
	1.1 1.2 1.3 1.4 1.5 1.6	Notation Model Representation Why Estimate f ? Prediction Inference Simple Linear Regression Model Estimating the Coefficients Assessing the Accuracy of the Coefficient Estimates Hypothesis testing ANOVA and model fit 1.7.1 ANOVA	19 20 22 23 23 24 25 26 26 28
P	W 1		31
	1.8	1.8.1 Basic Commands 1.8.2 Vectors 1.8.3 Matrices, data frames and lists 1.8.4 Graphics 1.8.5 Distributions 1.8.6 Working directory 1.8.7 Loading Data Regression 1.9.1 The lm function	31 32 32 35 36 38 39 39
2	Mu	ltiple Linear Regression	17
	2.1 2.2 2.3	Estimating the Regression Coefficients	47 48 49

	2.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 52 52 53 55
P	W 2		57
	Rep	porting	57
		Markdown	57
		R Markdown	57
		The report to be submitted	58
	Mul	tiple Linear Regression	58
		The exercises	58
II	\mathbf{C}	lassification	61
3	Log	ristic Regression	63
	3.1	Introduction	63
	3.2	Logistic Regression	63
		3.2.1 The Logistic Model	63
	9.2	3.2.1 The Logistic Model	65
		3.2.1 The Logistic Model	65 65
	3.3	3.2.1 The Logistic Model	65 65 66
	3.3 3.4	3.2.1 The Logistic Model	65 65 66 67
		3.2.1 The Logistic Model	65 65 66
$\mathbf{A}_{\mathbf{j}}$		3.2.1 The Logistic Model	65 65 66 67
	3.4	3.2.1 The Logistic Model	65 65 66 67
\mathbf{A}	3.4 ppen Inti	3.2.1 The Logistic Model 3.2.2 Estimating the Regression Coefficients 3.2.3 Prediction Multiple Logistic Regression Example 3.4.1 Case study: The Challenger disaster	65 65 66 67 67

Welcome

Welcome to this course. It is only a little introduction to Machine Learning.

The aim of Machine Learning is to build computer systems that can adapt to their environments and learn form experience. Learning techniques and methods from this field are successfully applied to a variety of learning tasks in a broad range of areas, including, for example, spam recognition, text classification, gene discovery, financial forecasting. The course will give an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as linear regression and classification and ending up with topics such as kmeans and Expectation Maximization. The course will give the student the basic ideas and intuition behind these methods, as well as a more formal statistical and computational understanding. Students will have an opportunity to experiment with machine learning techniques in R and apply them to a selected problem.

Course Overview

Introduction

What is Machine Learning?

What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Machine Learning is also called Statistical Learning.

Example: playing checkers.

E = the experience of playing many games of checkers

T =the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:

Supervised learning and Unsupervised learning.

Supervised Learning

Supervised Learning is probably the most common type of machine learning problem. Let's start with an example of what is it. Let's say we want to predict housing prices. We plot a data set and it looks like this.

Here on the horizontal axis, the size of different houses in square feet, and on the vertical axis, the price of different houses in thousands of dollars.

So. Given this data, let's say we own a house that is, say 750 square feet and hoping to sell the house and we want to know how much we can get for the house.

So how can the learning algorithm help?

One thing a learning algorithm might be able to do is put a straight line through the data or to "fit" a straight line to the data and, based on that, it looks like maybe the house can be sold for maybe about \$150,000.

But maybe this isn't the only learning algorithm we can use. There might be a better one. For example, instead of sending a straight line to the data, we might decide that it's better to fit a *quadratic function* or a *second-order polynomial* to this data.

If we do that, and make a prediction here, then it looks like, well, maybe we can sell the house for closer to \$200,000.

This is an example of a supervised learning algorithm.

The term supervised learning refers to the fact that we gave the algorithm a data set in which the "right answers" were given.

The example above is also called a regression problem. A regression problem is when we try to predict a **continuous** value output. Namely the price in the example.

Here's another supervised learning example. Let's say we want to look at medical records and try to predict

of a breast cancer as malignant or benign. If someone discovers a breast tumor, a lump in their breast, a malignant tumor is a tumor that is harmful and dangerous and a benign tumor is a tumor that is harmless. Let's see a collected data set and suppose in the data set we have the size of the tumor on the horizontal axis and on the vertical axis we plot one or zero, yes or no, whether or not these are examples of tumors we've seen before are malignant (which is one) or zero if not malignant or benign.

Breast cancer (malignant, benign)

In this data set we have five examples of benign tumors, and five examples of malignant tumors.

Let's say a person who tragically has a breast tumor, and let's say her breast tumor size is known (rose arrow in the following figure).

Breast cancer (malignant, benign)

The machine learning question is, can you estimate what is the probability that a tumor is malignant versus benign? To introduce a bit more terminology this is an example of a *classification* problem.

The term classification refers to the fact that here we're trying to predict a **discrete** value output: zero or one, malignant or benign. And it turns out that in classification problems sometimes you can have more than two values for the two possible values for the output.

In classification problems there is another way to plot this data. Let's use a slightly different set of symbols to plot this data. So if tumor size is going to be the attribute that we are going to use to predict malignancy

or benignness, we can also draw the data like this.

All we did was we took the data set on top and just mapped it down using different symbols. So instead of drawing crosses, we are now going to draw 0's for the benign tumors.

Breast cancer (malignant, benign)

Now, in this example we use only one **feature** or one attribute, mainly, the *tumor size* in order to predict whether the tumor is malignant or benign.

In other machine learning problems we may have more than one feature.

Here's an example. Let's say that instead of just knowing the tumor size, we know both the age of the patients and the tumor size. In that case maybe the data set will look like this.

So, let's say a person who tragically has a tumor. And maybe, their tumor size and age falls around there (rose point):

So given a data set like this, what the learning algorithm might do is throw a straight line through the data to try to separate out the malignant tumors from the benign ones. And with this, hopefully we can decide that the person's tumor falls on this benign side and is therefore more likely to be benign than malignant.

In this example we had **two features**, namely, the age of the patient and the size of the tumor. In other machine learning problems we will often have more features.

Most interesting learning algorithms is a learning algorithm that can deal with, not just two or three or five features, but an **infinite number of features**. So how do you deal with an infinite number of features. How do you even store an infinite number of things on the computer when your computer is gonna run out of memory.

Unsupervised Learning

The second major type of machine learning problem is called Unsupervised Learning.

The difference between Unsupervised Learning and Supervised Learning is that in Supervised Learning we are told explicitly what is the so-called right answers (data are labeled).

In Unsupervised Learning, we're given data that doesn't have any labels or that all has the same label or really no labels. Like in this example:

So we're given the data set and we're not told what to do with it and we're not told what each data point is. Instead we're just told, here is a data set. Can you find some structure in the data?

Given this data set, an Unsupervised Learning algorithm might decide that the data lives in two different clusters.

Unsupervised Learning

This is called a **clustering** algorithm.

Here are two examples where Unsupervised Learning or clustering is used.

Social network analysis:

So given knowledge about which friends you email the most or given your Facebook friends or your Google+circles, can we automatically identify which are cohesive groups of friends, also which are groups of people that all know each other?

Market segmentation:

Market segmentation

Many companies have huge databases of customer information. So, can you look at this customer data set and automatically discover market segments and automatically group your customers into different market segments so that you can automatically and more efficiently sell or market your different market segments together?

This is Unsupervised Learning because we have all this customer data, but we don't know in advance what are the market segments and for the customers in our data set, we don't know in advance who is in market segment one, who is in market segment two, and so on. But we have to let the algorithm discover all this just from the data.

Part I Supervised Learning

Chapter 1

Linear Regression

1.1 Notation

In general, we will let x_{ij} represent the value of the jth variable for the ith observation, where i = 1, 2, ..., n and j = 1, 2, ..., p. We will use i to index the samples or observations (from 1 tp n) and j will be used to index the variables (or features) (from 1 to p). We let \mathbf{X} denote a $n \times p$ matrix whose (i, j)th element is x_{ij} . That is,

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \dots & x_{np} \end{pmatrix}$$

Note that it is useful to visualize **X** as a spreadsheet of numbers with n rows and p columns. We will write the rows of **X** as x_1, x_2, \ldots, x_n . Here x_i is a vector of length p, containing the p variable measurements for the ith observation. That is,

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

(Vectors are by default represented as columns.)

We will write the columns of **X** as $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$. Each is a vector of length n. That is,

$$\mathbf{x}_j = egin{pmatrix} \mathbf{x}_{1j} \ \mathbf{x}_{2j} \ dots \ \mathbf{x}_{nj} \end{pmatrix}$$

Using this notation, the matrix \mathbf{X} can be written as

$$\mathbf{X} = (\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_p)$$

or

$$\mathbf{X} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{pmatrix}$$

The T notation denotes the transpose of a matrix or vector.

We use y_i to denote the *i*th observation of the variable on which we wish to make predictions. We write the set of all n observations in vector form as

$$\mathbf{y} = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix}$$

Then the observed data consists of $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, where each x_i is a vector of length p. (If p = 1, then x_i is simply a scalar).

1.2 Model Representation

Let's consider the example about predicting housing prices. We're going to use this data set as an example,

Figure 1.1:

Suppose that there is a person trying to sell a house of size 1250 square feet and he wants to know how much he might be able to sell the house for. One thing we could do is fit a model. Maybe fit a straight line to this data. Looks something like this,

Figure 1.2:

and based on that, maybe he can sell the house for around \$220,000. Recall that this is an example of a supervised learning algorithm. And it's supervised learning because we're given the "right answer" for each of our examples. More precisely, this is an example of a regression problem where the term regression refers to the fact that we are predicting a real-valued output namely the price.

More formally, in supervised learning, we have a data set and this data set is called a **training set**. So for housing prices example, we have a training set of different housing prices and our job is to learn from this data how to predict prices of the houses.

Let's define some notation from this data set:

- The size of the house is the input variable.
- The house price is the output variable.
- The input variables are typically denoted using the variable symbol X,
- The inputs go by different names, such as predictors, independent variables, features, or sometimes just variables.
- The output variable is often called the *response*, *dependent variable* or *target*, and is typically denoted using the symbol Y.
- (x_i, y_i) is the *i*th training example.
- The set of $\{(x_i, y_i)\}$ is the training set.
- n is the number of training examples.

So here's how this supervised learning algorithm works. Suppose that we observe a quantitative response Y and p different predictors, X_1, X_2, \ldots, X_p . We assume that there is some relationship between Y and $X = (X_1, X_2, \ldots, X_p)$, which can be written in the very general form

Here f is some fixed but unknown function of X_1, X_2, \ldots, X_p , and ϵ is a random error term, which is independent of X and has mean zero. The f function is also called *hypothesis* in Machine Learning. In general, the function f may involve more than one input variable. In essence, Supervised Learning refers to a set of approaches for estimating f.

1.3 Why Estimate f?

There are two main reasons that we may wish to estimate f: prediction and inference.

Prediction

In many situations, a set of inputs X are readily available, but the output Y cannot be easily obtained. In this setting, since the error term averages to zero, we can predict Y using

$$\hat{Y} = \hat{f}(X)$$

where \hat{f} represents our estimate for f, and \hat{Y} represents the resulting prediction for Y. Like in the example above about predicting housing prices.

We can measure the accuracy of \hat{Y} by using a **cost function**. In the regression models, the most commonly-used measure is the mean squared error (MSE), given by

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Inference

We are often interested in understanding the way that Y is affected as X_1, X_2, \ldots, X_p change. In this situation we wish to estimate f, but our goal is not necessarily to make predictions for Y. We instead want to understand the relationship between X and Y, or more specifically, to understand how Y changes as a function of X_1, X_2, \ldots, X_p . In this case, one may be interested in answering the following questions:

- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

1.4 Simple Linear Regression Model

Simple linear regression is a very straightforward approach for predicting a quantitative response Y on the basis of a single predictor variable X. It assumes that there is approximately a linear relationship between X and Y. Mathematically, we can write this linear relationship as

$$Y = \beta_0 + \beta_1 X + \epsilon$$
$$Y \approx \beta_0 + \beta_1 X$$

where β_0 and β_1 are two unknown constants that represent the *intercept* and *slope*, also known as *coefficients* or *parameters*, and ϵ is the error term.

Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future inputs x using

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

where \hat{y} indicates a prediction of Y on the basis of X = x. The hat symbol, \hat{y} , denotes an estimated value.

1.5 Estimating the Coefficients

Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X. Then $e_i = y_i - \hat{y}_i$ represents the ith **residual**.

We define the **Residual Sum of Squares** $(RSS)^1$ as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
$$= \sum_{i=1}^n e_i^2$$

or equivantly as

$$RSS = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

 $^{^1 \}mathrm{Also}$ known as $\mathbf{SSE} :$ Sum of Squared Errors.

The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{s_{xy}}{s_x^2} = (s_x^2)^{-1} s_{xy}$$
and
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where:

- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the sample mean. $s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$ is the sample variance. The sample standard deviation is $s_x = \sqrt{s_x^2}$. $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$ is the sample covariance. It measures the degree of linear association between x_1, \ldots, x_n and y_1, \ldots, y_n . Once scaled by $s_x s_y$, it gives the sample correlation coefficient,

- 1- To find the optimal estimates for β_0 and β_1 we need a choice-criterion. In the case of the least squares approach (more precisely, the ordinary least squares OLS) this criterion is the residual sum of squares RSS: we calculate β_0 and β_1 that minimise the RSS.
- 2- Minimizing the RSS function requires to calculate the first order derivatives with respect to β_0 and β_1 and set them to zero.
- 3- Click Click I here and watch the video to understand more about the residuals and least squares.
- 4- Click here to see the influence of the distance employed in the sum of squares. Try to minimize the sum of squares for the different datasets. The choices of intercept and slope that minimize the sum of squared distances for a kind of distance are not the optimal for a different kind of distance.

Assessing the Accuracy of the Coefficient Estimates 1.6

The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

where $\sigma^2 = Var(\epsilon)$

In general, σ^2 is unknown, but can be estimated from the data. The estimate of σ is known as the residual standard error, and is given by

$$RSE = \sqrt{\frac{RSS}{(n-2)}}$$

²They are unique and always exist. They can be obtained by solving $\frac{\partial}{\partial \beta_0} RSS(\beta_0, \beta_1) = 0$ and $\frac{\partial}{\partial \beta_1} RSS(\beta_0, \beta_1) = 0$.

These standard errors can be used to compute *confidence intervals*. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 . Similarly, a confidence interval for β_0 approximately takes the form

$$\hat{\beta}_0 \pm 2 \cdot \text{SE}(\hat{\beta}_0)$$

Hypothesis testing

Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y

versus the alternative hypothesis

 H_1 : There is some relationship between X and Y

Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_1: \beta_1 \neq 0$$

since if $\beta_1 = 0$ then the simple linear regression model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

To test the null hypothesis H_0 , we compute a **t-statistic**, given by

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$$

This will have a t-distribution (Student) with n-2 degrees of freedom, assuming $\beta_1=0$.

Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the **p-value**.

If p-value is small enough (typically under 0.01 (1% error) or 0.05 (5% error)) we reject the null hypothesis, that is we declare a relationship to exist between X and Y.

1.7 ANOVA and model fit

1.7.1 ANOVA

In this section we will see how the variance of Y is decomposed into two parts, each one corresponding to the regression and to the error, respectively. This decomposition is called the ANalysis Of VAriance (ANOVA).

Before explaining ANOVA, it is important to recall an interesting result: the mean of the fitted values $\hat{Y}_1, \ldots, \hat{Y}_n$ is the mean of Y_1, \ldots, Y_n . This is easily seen if we plug-in the expression of $\hat{\beta}_0$:

$$\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\beta}_{0} + \hat{\beta}_{1} X_{i} \right) = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{X} = \left(\bar{Y} - \hat{\beta}_{1} \bar{X} \right) + \hat{\beta}_{1} \bar{X} = \bar{Y}.$$

The ANOVA decomposition considers the following measures of variation related with the response:

- SST = TSS = $\sum_{i=1}^{n} (Y_i \bar{Y})^2$, the **Total Sum of Squares**. This is the *total variation* of Y_1, \ldots, Y_n , since SST = ns_y^2 , where s_y^2 is the sample variance of Y_1, \ldots, Y_n .
- SSR = ESS = $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$, the **Regression Sum of Squares** or **Explained Sum of Squares**³. This is the variation explained by the regression line, that is, the variation from \bar{Y} that is explained by the estimated conditional mean $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$. SSR = $ns_{\hat{y}}^2$, where $s_{\hat{y}}^2$ is the sample variance of $\hat{Y}_1, \ldots, \hat{Y}_n$.
- SSE = RSS = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$, the **Sum of Squared Errors** or **Residual Sum of Squares**⁴. Is the variation around the conditional mean. Recall that SSE = $\sum_{i=1}^{n} \hat{\varepsilon}_i^2 = (n-2)\hat{\sigma}^2$, where $\hat{\sigma}^2$ is the sample variance of $\hat{\varepsilon}_1, \ldots, \hat{\varepsilon}_n$.

The ANOVA decomposition is

$$\underbrace{\text{SST}}_{\text{Variation of } Y_i's} = \underbrace{\text{SSR}}_{\text{Variation of } \hat{Y}_i's} + \underbrace{\text{SSE}}_{\text{Variation of } \hat{\varepsilon}_i's}$$

The graphical interpretation of this equation is shown in the following figures.

 $^{^3}$ Recall that SSR is different from RSS (Residual Sum of Squares)

⁴Recall that SSE and RSS (for $(\hat{\beta}_0, \hat{\beta}_1)$) are just different names for referring to the same quantity: SSE = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 = \text{RSS}(\hat{\beta}_0, \hat{\beta}_1)$.

Figure 1.3: Visualization of the ANOVA decomposition. SST measures the variation of Y_1, \ldots, Y_n with respect to \bar{Y} . SST measures the variation with respect to the conditional means, $\hat{\beta}_0 + \hat{\beta}_1 X_i$. SSE collects the variation of the residuals.

Below the ANOVA decomposition and its dependence on σ^2 and $\hat{\sigma}^2$. Application is also available here

Note that the **animation** will not be displayed the first time it is browsed (The reason is because it is hosted at https websites with auto-signed SSL certificates). **To see it**, click on the link above. You will get a warning from your browser saying that "Your connection is not private". Click in "Advanced" and **allow an exception** in your browser. The next time the animation will show up correctly.

The ANOVA table summarizes the decomposition of the variance. Here is given in the layout employed by R.

Degrees of freedom	Sum Squares	Mean Squares	F-value	<i>p</i> -value
Predictor	SSR =	$MSR = \frac{SSR}{1}$	$\frac{\mathrm{SSR}/1}{\mathrm{SSE}/(n-2)}$	p
Residuals 2		$MSE = \frac{SSE}{n-2}$		
Total $n-1$	$\sum_{i=1}^{n} \left(Y_i - \sum_{i=1}^{n} \left(Y_i - \sum_{i=1}$,		

The anova function in R takes a model as an input and returns the ANOVA table.

The "F-value" of the ANOVA table represents the value of the F-statistic $\frac{\text{SSR}/1}{\text{SSE}/(n-2)}$. This statistic is employed to test

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$,

that is, the hypothesis of no linear dependence of Y on X. The result of this test is completely equivalent to the t-test for β_1 that we saw previously in the Hypothesis testing (this is something specific for simple linear regression – the F-test will not be equivalent to the t-test for β_1 in the Mulitple Linear Regression).

It happens that

$$F = \frac{\text{SSR/1}}{\text{SSE}/(n-2)} \stackrel{H_0}{\sim} F_{1,n-2},$$

where $F_{1,n-2}$ is the *Snedecor's F distribution*⁵ with 1 and n-2 degrees of freedom.

If H_0 is true, then F is expected to be *small* since SSR will be close to zero. The p-value of this test is the same as the p-value of the t-test for $H_0: \beta_1 = 0$.

1.7.2 The R^2 Statistic

To calculate R^2 , we use the formula

⁵The $F_{n,m}$ distribution arises as the quotient of two independent random variables χ_n^2 and χ_m^2 , $\frac{\chi_n^2/n}{\chi_m^2/m}$.

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where $TSS = \sum (y_i - \bar{y})^2$ is the total sum of squares.

 R^2 measures the proportion of variability in Y that can be explained using X. An R^2 statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression. A number near 0 indicates that the regression did not explain much of the variability in the response; this might occur because the linear model is wrong, or the inherent error σ^2 is high, or both.

It can be shown that in this simple linear linear regression setting that $R^2 = r^2$, where r is the correlation between X and Y:

$$r = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

 \mathbb{R}^2 does not measure the correctness of a linear model but its **usefulness** (for prediction, for explaining the variance of Y), assuming the model is correct.

Trusting blindly the R^2 can lead to catastrophic conclusions, since the model may not be correct.

So remember:

A large R^2 means nothing if the assumptions of the model do not hold. R^2 is the proportion of variance of Y explained by X, but, of course, only when the linear model is correct.

${ m PW}~1$

1.8 Some R basics

1.8.1 Basic Commands

R uses functions to perform operations. To run a function called funcname, we type funcname(input1, input2), where the inputs (or arguments) input1 and input2 tell R how to run the function. A function can have any number of inputs. For example, to create a vector of numbers, we use the function c() (for concatenate).

```
x <- c(1,3,2,5)
x
#ans> [1] 1 3 2 5
```

Note that the > is not part of the command; rather, it is printed by R to indicate that it is ready for another command to be entered. We can also save things using = rather than <-. Note that the answer in the code above is followed by #ans> while in the R console it is not.

```
x = c(1,6,2)
x
#ans> [1] 1 6 2
y = c(1,4,3)
length(x)
#ans> [1] 3
length(y)
#ans> [1] 3
x+y
#ans> [1] 2 10 5
```

Hitting the *up arrow* multiple times will display the previous commands, which can then be edited. This is useful since one often wishes to repeat a similar command.

The ls() function allows us to look at a list of all of the objects, such ls() as data and functions, that we have saved so far. The rm() function can be used to delete any object that we don't want.

```
ls()
#ans> [1] "x" "y"
rm(x)
ls()
#ans> [1] "y"
```

1.8.2 Vectors

```
# A handy way of creating sequences is the operator :
# Sequence from 1 to 5
1:5
#ans> [1] 1 2 3 4 5
# Storing some vectors
vec \leftarrow c(-4.12, 0, 1.1, 1, 3, 4)
vec
#ans> [1] -4.12 0.00 1.10 1.00 3.00 4.00
# Entry-wise operations
vec + 1
#ans> [1] -3.12 1.00 2.10 2.00 4.00 5.00
#ans> [1] 16.97 0.00 1.21 1.00 9.00 16.00
# If you want to access a position of a vector, use [position]
vec[6]
#ans> [1] 4
# You also can change elements
vec[2] <- -1
#ans> [1] -4.12 -1.00 1.10 1.00 3.00 4.00
# If you want to access all the elements except a position, use [-position]
vec[-2]
#ans> [1] -4.12 1.10 1.00 3.00 4.00
# Also with vectors as indexes
vec[1:2]
#ans> [1] -4.12 -1.00
# And also
vec[-c(1, 2)]
#ans> [1] 1.1 1.0 3.0 4.0
```

```
Do the following:

- Create the vector x = (1, 7, 3, 4).

- Create the vector y = (100, 99, 98, ..., 2, 1).

- Compute x_3 + y_4 and \cos(x_3) + \sin(x_2)e^{-y_2}. (Answers: 100, -0.9899925)

- Set x_3 = 0 and y_2 = -1. Recompute the previous expressions. (Answers: 97, 2.785875)

- Index y by x + 1 and store it as z. What is the output? (Answer: z is c(-1, 93, 100, 96))
```

1.8.3 Matrices, data frames and lists

```
# A matrix is an array of vectors
A <- matrix(1:4, nrow = 2, ncol = 2)</pre>
```

1.8. SOME R BASICS 33

```
#ans> [,1] [,2]
#ans> [1,] 1 3
#ans> [2,] 2 4
# Another matrix
B <- matrix(1:4, nrow = 2, ncol = 2, byrow = TRUE)
#ans> [,1] [,2]
#ans> [1,] 1 2
#ans> [2,] 3 4
# Binding by rows or columns
rbind(1:3, 4:6)
#ans> [,1] [,2] [,3]
#ans> [1,] 1 2 3
#ans> [2,] 4 5 6
cbind(1:3, 4:6)
#ans> [,1] [,2]
#ans> [1,] 1 4
#ans> [2,] 2 5
#ans> [3,] 3 6
# Entry-wise operations
A + 1
#ans> [,1] [,2]
#ans> [1,] 2 4
#ans> [2,] 3 5
A * B
#ans> [,1] [,2]
#ans> [1,] 1 6
#ans> [2,] 6 16
# Accessing elements
A[2, 1] # Element (2, 1)
#ans> [1] 2
A[1, ] # First row
#ans> [1] 1 3
A[, 2] # Second column
#ans> [1] 3 4
# A data frame is a matrix with column names
# Useful when you have multiple variables
myDf <- data.frame(var1 = 1:2, var2 = 3:4)
myDf
#ans> var1 var2
#ans> 1 1 3
#ans> 2 2 4
# You can change names
names(myDf) <- c("newname1", "newname2")</pre>
myDf
#ans> newname1 newname2
```

```
#ans> 2
                      4
# The nice thing is that you can access variables by its name with the $ operator
myDf$newname1
#ans> [1] 1 2
# And create new variables also (it has to be of the same
# length as the rest of variables)
myDf$myNewVariable <- c(0, 1)</pre>
myDf
#ans> newname1 newname2 myNewVariable
#ans> 1 1
                    3
                                 0
#ans> 2
             2
                      4
                                   1
# A list is a collection of arbitrary variables
myList <- list(vec = vec, A = A, myDf = myDf)</pre>
# Access elements by names
myList$vec
#ans> [1] -4.12 -1.00 1.10 1.00 3.00 4.00
myList$A
#ans>
      [,1] [,2]
#ans> [1,] 1 3
#ans> [2,] 2 4
myList$myDf
#ans> newname1 newname2 myNewVariable
#ans> 1 1 3 0
#ans> 2
            2
                      4
# Reveal the structure of an object
str(myList)
#ans> List of 3
#ans> $ vec : num [1:6] -4.12 -1 1.1 1 3 4
#ans> $ A : int [1:2, 1:2] 1 2 3 4
#ans> $ myDf:'data.frame': 2 obs. of 3 variables:
#ans> ..$ newname1 : int [1:2] 1 2 #ans> ..$ newname2 : int [1:2] 3 4
#ans> ..$ myNewVariable: num [1:2] 0 1
str(myDf)
#ans> 'data.frame': 2 obs. of 3 variables:
\#ans> $ newname1 : int 12
#ans> $ myNewVariable: num 0 1
# A less lengthy output
names(myList)
#ans> [1] "vec" "A" "myDf"
```

1.8. SOME R BASICS 35

1.8.4 Graphics

The plot() function is the primary way to plot data in R. For instance, plot(x,y) produces a scatterplot of the numbers in x versus the numbers in y. There are many additional options that can be passed in to the plot() function. For example, passing in the argument xlab will result in a label on the x-axis. To find out more information about the plot() function, type ?plot.

```
x=rnorm(100)
# The rnorm() function generates a vector of random normal variables,
# rnorm() with first argument n the sample size. Each time we call this
# function, we will get a different answer.
y=rnorm(100)
plot(x,y)
```



```
# with titles
plot(x,y,xlab="this is the x-axis",ylab="this is the y-axis",
main="Plot of X vs Y")
```

Plot of X vs Y

1.8.5 Distributions

```
# R allows to sample [r], compute density/probability mass [d],
# compute distribution function [p] and compute quantiles [q] for several
# continuous and discrete distributions. The format employed is [rdpq]name,
# where name stands for:
# - norm -> Normal
# - unif -> Uniform
# - exp -> Exponential
# - t -> Student's t
# - f -> Snedecor's F (Fisher)
# - chisq -> Chi squared
# - pois -> Poisson
# - binom -> Binomial
# More distributions: ?Distributions
# Sampling from a Normal - 100 random points from a N(0, 1)
rnorm(n = 10, mean = 0, sd = 1)
#ans> [1] 1.053 1.188 0.957 -2.024 0.709 0.454 -0.600 1.087 -0.242 1.382
# If you want to have always the same result, set the seed of the random number
# generator
set.seed(45678)
rnorm(n = 10, mean = 0, sd = 1)
#ans> [1] 1.440 -0.720 0.671 -0.422 0.378 -1.667 -0.508 0.443 -1.799 -0.618
# Plotting the density of a N(O, 1) - the Gauss bell
x \leftarrow seq(-4, 4, 1 = 100)
y \leftarrow dnorm(x = x, mean = 0, sd = 1)
plot(x, y, type = "l")
```



```
# Plotting the distribution function of a N(0, 1)
x <- seq(-4, 4, 1 = 100)
y <- pnorm(q = x, mean = 0, sd = 1)
plot(x, y, type = "l", lwd = 3, main="The distribution function of a N(0, 1)")</pre>
```

1.8. SOME R BASICS 37

The distribution function of a N(0, 1)


```
# Computing the 95% quantile for a N(0, 1)
qnorm(p = 0.95, mean = 0, sd = 1)
#ans> [1] 1.64

# All distributions have the same syntax: rname(n,...), dname(x,...), dname(p,...)
# and qname(p,...), but the parameters in ... change. Look them in ?Distributions
# For example, here is que same for the uniform distribution

# Sampling from a U(0, 1)
set.seed(45678)
runif(n = 10, min = 0, max = 1)
#ans> [1] 0.9251 0.3340 0.2359 0.3366 0.7489 0.9327 0.3365 0.2246 0.6474 0.0808

# Plotting the density of a U(0, 1)
x <- seq(-2, 2, 1 = 100)
y <- dunif(x = x, min = 0, max = 1)
plot(x, y, type = "1")</pre>
```



```
# Computing the 95% quantile for a U(0, 1)
qunif(p = 0.95, min = 0, max = 1)
#ans> [1] 0.95
```


Do the following:

- Compute the 90%, 95% and 99% quantiles of a F distribution with df1 = 1 and df2 = 5. (Answer: c(4.060420, 6.607891, 16.258177))
- Sample 100 points from a Poisson with lambda = 5.
- Plot the density of a t distribution with df = 1 (use a sequence spanning from -4 to 4). Add lines of different colors with the densities for df = 5, df = 10, df = 50 and df = 100.

1.8.6 Working directory

Your working directory is the folder on your computer in which you are currently working. When you ask R to open a certain file, it will look in the working directory for this file, and when you tell R to save a data file or figure, it will save it in the working directory.

To set your working directory within RStudio you can go to Tools / Set working directory, or use the command setwd(), we put the complete path of the directory between the brackets, do not forget to put the path into quotation marks "".

To know the actual working directory we use getwd().

1.8.7 Loading Data

The read.table() function is one of the primary ways to import a data set into R. The help file ?read.table() contains details about how to use this function. We can use the function write.table() to export data.

Next we will show how to load the data set Auto.data (Download it from H here).

```
Auto=read.table("Auto.data",header=T,na.strings ="?")

# For this file we needed to tell R that the first row is the

# names of the variables.

# na.strings tells R that any time it sees a particular character

# or set of characters (such as a question mark), it should be

# treated as a missing element of the data matrix.
```


- If the file is of csv format, we use read.csv.
- Always try to look to the file before importing it to R (Open it in a text editor. See for example if the first row containes the variables names, if the columns are separated by , or ; or ..
- For text editors, I suggest Sublime Text or Atom.

```
dim(Auto) # To see the dimensions of the data set
#ans> [1] 397   9
nrow(Auto) # To see the number of rows
#ans> [1] 397
ncol(Auto) # To see the number of columns
#ans> [1] 9
```

1.9. REGRESSION 39

```
Auto[1:4,] # The first 4 rows of the data set
     mpq cylinders displacement horsepower weight acceleration year origin
                                    130 3504 12.0 70
#ans> 1 18 8
                     307
                                                                  1
#ans> 2 15
                8
                          350
                                    165 3693
                                                    11.5 70
                                                                  1
                                   150 3436
#ans> 3 18
                8
                          318
                                                    11.0
                                                           70
                                                                  1
#ans> 4 16
                                    150 3433
               8
                          304
                                                    12.0
                                                           70
                                                                  1
#ans>
                         name
#ans> 1 chevrolet chevelle malibu
#ans> 2 buick skylark 320
#ans> 3
           plymouth satellite
                amc rebel sst
#ans> 4
# Once the data are loaded correctly, we can use names()
# to check the variable names.
names (Auto)
#ans> [1] "mpg"
                     "cylinders" "displacement" "horsepower"
                    "acceleration" "year"
#ans> [5] "weight"
#ans> [9] "name"
```


Take a look at this (very) short introduction to R. It can be useful.

1.9 Regression

1.9.1 The lm function

We are going to employ the EU dataset. The EU dataset contains 28 rows with the member states of the European Union (Country), the number of seats assigned under different years (Seats2011, Seats2014), the Cambridge Compromise apportionment (CamCom2011), and the countries population (Population2010, Population2013). Click here to download the EU dataset.

```
# Load the dataset, when we load an .RData using load()
# function we do not attribute it to a name like we did
# when we used read.table() or when we use read.csv()

load("EU.RData")
```


There is two ways to tell R where is the file you want to load/use/import or where to save a file when you write/export/save :

- 1. write the complete path of the files.
- 2. set a working directory and put the files in it.

```
# lm (for linear model) has the syntax:
# lm(formula = response ~ predictor, data = data)
# The response is the y in the model. The predictor is x.
# For example (after loading the EU dataset)
mod <- lm(formula = Seats2011 ~ Population2010, data = EU)
# We have saved the linear model into mod, which now contains all the output of lm
# You can see it by typing</pre>
```

```
mod
#ans>
#ans> Call:
#ans> lm(formula = Seats2011 ~ Population2010, data = EU)
#ans> Coefficients:
#ans>
      (Intercept) Population2010
         7.91e+00
                       1.08e-06
#ans>
# mod is indeed a list of objects whose names are
names (mod)
#ans> [1] "coefficients" "residuals"
                                      "effects"
                                                    "rank"
#ans> [5] "fitted.values" "assign"
                                      "qr"
                                                    "df.residual"
#ans> [9] "na.action" "xlevels"
                                                    "terms"
                                      "call"
#ans> [13] "model"
# We can access these elements by $
# For example
mod$coefficients
      (Intercept) Population2010
#ans>
          7.91e+00
#ans>
                     1.08e-06
# The residuals
mod$residuals
#ans>
                        France United Kingdom
                                                                 Spain
         Germany
                                                    Italy
#ans>
          2.8675
                        -3.7031 -1.7847
                                                  0.0139
                                                                -3.5084
#ans>
          Poland
                        Romania Netherlands
                                                   Greece
                                                               Belgium
                        1.9434
#ans>
           1.9272
                                     0.2142
                                                   1.8977
                                                                2.3994
       Portugal Czech Republic
                                     Hungary
#ans>
                                                   Sweden
                                                                Austria
#ans>
          2.6175
                        2.7587
                                     3.2898
                                                   2.0163
                                                                2.0575
         Bulgaria
#ans>
                       Denmark
                                   Slovakia
                                                  Finland
                                                               Ireland
           1.9328
                        -0.8790
                                     -0.7606
#ans>
                                                   -0.6813
                                                                -0.7284
#ans>
        Lithuania
                        Latvia
                                    Slovenia
                                                   Estonia
                                                                 Cyprus
                                     -2.1175
#ans>
           0.4998
                        -1.3347
                                                   -3.3552
                                                                -2.7761
#ans>
       Luxembourq
                         Malta
                        -2.3553
#ans>
           -2.4514
# The fitted values
mod$fitted.values
#ans>
       Germany
                        France United Kingdom
                                                    Italy
                                                                  Spain
#ans>
                         77.70 74.78
                                                                  57.51
            96.13
                                                    72.99
#ans>
          Poland
                        Romania Netherlands
                                                  Greece
                                                               Belgium
           49.07
#ans>
                         31.06
                                      25.79
                                                    20.10
                                                                 19.60
         Portugal Czech Republic
#ans>
                                     Hungary
                                                   Sweden
                                                                Austria
#ans>
           19.38
                                     18.71
                                                    17.98
                                                                 16.94
                       19.24
                                  Slovakia
#ans>
         Bulgaria
                       Denmark
                                                  Finland
                                                                Ireland
#ans>
            16.07
                         13.88
                                      13.76
                                                    13.68
                                                                 12.73
#ans>
        Lithuania
                        Latvia
                                    Slovenia
                                                  Estonia
                                                                 Cyprus
#ans>
            11.50
                         10.33
                                      10.12
                                                     9.36
                                                                   8.78
        Luxembourg
#ans>
                         Malta
                          8.36
#ans>
              8.45
# Summary of the model
```

1.9. REGRESSION 41

```
sumMod <- summary(mod)</pre>
sumMod
#ans>
#ans> Call:
#ans> lm(formula = Seats2011 ~ Population2010, data = EU)
#ans> Residuals:
#ans> Min
               1Q Median
                             3Q
                                    Max
#ans> -3.703 -1.951 0.014 1.980 3.290
#ans>
#ans> Coefficients:
#ans>
                   Estimate Std. Error t value Pr(>|t|)
#ans> (Intercept) 7.91e+00 5.66e-01 14.0 2.6e-13 ***
#ans> Population2010 1.08e-06 1.92e-08
                                         56.3 < 2e-16 ***
#ans> ---
#ans> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#ans>
#ans> Residual standard error: 2.29 on 25 degrees of freedom
#ans> (1 observation deleted due to missingness)
#ans> Multiple R-squared: 0.992, Adjusted R-squared: 0.992
\#ans > F-statistic: 3.17e+03 \ on \ 1 \ and \ 25 \ DF, \quad p-value: <2e-16
```

The following table contains a handy cheat sheet of equivalences between R code and some of the statistical concepts associated to linear regression.

R	Statistical concept
x	Predictor X_1, \ldots, X_n
У	Response Y_1, \ldots, Y_n
$data \leftarrow data.frame(x = x, y = y)$	Sample $(X_1, Y_1),, (X_n, Y_n)$
model <- lm(y ~ x, data = data)	Fitted linear model
model\$coefficients	Fitted coefficients $\hat{\beta}_0, \hat{\beta}_1$
model\$residuals	Fitted residuals $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$
model\$fitted.values	Fitted values $\hat{Y}_1, \ldots, \hat{Y}_n$
model\$df.residual	Degrees of freedom $n-2$
<pre>summaryModel <- summary(model)</pre>	Summary of the fitted linear model
summaryModel\$sigma	Fitted residual standard deviation $\hat{\sigma}$
summaryModel\$r.squared	Coefficient of determination \mathbb{R}^2
summaryModel\$fstatistic	F-test
anova(model)	ANOVA table

Do the following:

- Compute the regression of CamCom2011 into Population2010. Save that model as the variable myModel.
- Access the objects residuals and coefficients of myModel.
- Compute the summary of myModel and store it as the variable summaryMyModel.
- Access the object sigma of myModel.

1.9.2 Predicting House Value: Boston dataset

We are going to use a dataset called Boston which is part of the MASS package. It records the median value of houses for 506 neighborhoods around Boston. Our task is to predict the median house value (medv) using only one predictor (lstat: percent of households with low socioeconomic status).

```
# First, install the MASS package using the command: install.packages("MASS")

# load MASS package
library(MASS)

# Check the dimensions of the Boston dataset
dim(Boston)
#ans> [1] 506 14
```

STEP 1: Split the dataset

```
# Split the data by using the first 400 observations as the training
# data and the remaining as the testing data
train = 1:400
test = -train

# Speficy that we are going to use only two variables (lstat and medv)
variables = which(names(Boston) ==c("lstat", "medv"))
training_data = Boston[train, variables]
testing_data = Boston[test, variables]

# Check the dimensions of the new dataset
dim(training_data)
#ans> [1] 400 2
```

STEP 2: Check for Linearity

In order to perfom linear regression in R, we will use the function lm() to fit a simple linear regression with medv as the response (dependent variable) and lstat as the predictor or independent variable, and then save it in model.

But before we run our model, let's visually check if the relationship between x and y is linear.

```
# Scatterplot of lstat vs. medv
plot(training_data$lstat, training_data$medv)
```

1.9. REGRESSION 43

On the figure above, modify the following:

- Figure title.
- Axis titles.
- Shape of observations and their colors.
- Sizes of the chosen shape.

According to the plot, we see that the relationship is not linear. Let's try a transformation of our explanatory variable lstat.

```
# Scatterplot of log(lstat) vs. medv
plot(log(training_data$lstat), training_data$medv)
```


Look at the plot, it is more linear, so we can proceed and perform lm():

STEP 3: Run the linear regression model

```
model = lm(medv ~ log(lstat), data = training_data)
model
#ans>
```

```
#ans> Call:
#ans> lm(formula = medv ~ log(lstat), data = training_data)
#ans>
#ans> Coefficients:
#ans> (Intercept) log(lstat)
#ans> 51.8 -12.2
```

Notice that basic information when we print model. This only give us the slope (-12.2) and the intercept (51.8) of the linear model. Note that here we are looking at log(lstat) and not lstat anymore. So for every one unit increase in lstat, the median value of the house will decrease by $e^{12.2}$. For more detailed information, we can use the summary() function:

```
summary(model)
#ans>
#ans> Call:
#ans> lm(formula = medv ~ log(lstat), data = training_data)
#ans>
#ans> Residuals:
#ans>
         Min
                  1Q Median
                                  3Q
                                         Max
#ans> -11.385 -3.908 -0.779
                               2.245 25.728
#ans>
#ans> Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
#ans> (Intercept) 51.783
                               1.097
                                        47.2
                                               <2e-16 ***
#ans> log(lstat)
                  -12.203
                               0.472
                                       -25.9
#ans> ---
#ans> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#ans>
#ans> Residual standard error: 5.6 on 398 degrees of freedom
#ans> Multiple R-squared: 0.627,
                                   Adjusted R-squared: 0.626
#ans> F-statistic: 669 on 1 and 398 DF, p-value: <2e-16
```

Now, we have access to p-values and standard errors for the coefficients, as well as the R^2 .

- The output states that the slope is statistically significant and different from 0 and with a t-value=-25.9 (p-value < 0.05), which means that there is a significant relationship between the percentage of households with low socioeconomic income and the median house value.
- This relationship is negative. That is as the percantage of household with low socioeconomic income increases, the median house value decreases.
- Looking at R^2 , we can deduce that 62.7% of the model variation is being explained by the predictor log(lstat). This is probably low, but indeed it would increase if we had more independent (explanatory) variables. We can use the names() function to see what other pieces of information are stored in our linear model (model).

```
names(model)
#ans>
       [1] "coefficients" "residuals"
                                             "effects"
                                                             "rank"
       [5] "fitted.values" "assign"
#ans>
                                            "qr"
                                                             "df.residual"
      [9] "xlevels"
                                                             "model"
                                            "terms"
model $ coefficients
#ans> (Intercept)
                   log(lstat)
             51.8
                      -12.2
```

To obtain the confidence intervel for the linear model (model), we can use the confint() function:

1.9. REGRESSION 45

```
#ans> (Intercept) 49.6 53.9
#ans> log(lstat) -13.1 -11.3
```

So, a 95% confidence interval for the slope of log(lstat) is (-13.13, -11.28). Notice that this confidence interval gives us the same result as the hypothesis test performed earlier, by stating that we are 95% confident that the slope of lstat is not zero (in fact it is less than zero, which means that the relationship is negative.)

STEP 4: Plot the regression model

Now, let's plot our regression line on top of our data.

```
# Scatterplot of lstat vs. medv
plot(log(training_data$lstat), training_data$medv)

# Add the regression line to the existing scatterplot
abline(model)
```


Let's play with the look of the plot, and makes it perttier!

```
# Scatterplot of lstat vs. medv
plot(log(training_data$lstat), training_data$medv,
xlab = "Log Transform of % of Houshold with Low Socioeconomic Income",
ylab = "Median House Value",
col = "red",
pch = 20)

# Make the line color blue, and the line's width =3 (play with the width!)
abline(model, col = "blue", lwd =3)
```


Log Transform of % of Houshold with Low Socioeconomic Income

STEP 5: Assess the model

Final thing we will do is to predict using our fitted model. We can use the **predict()** function for this purpose:

```
# Predict what is the median value of the house with lstat= 5%
predict(model, data.frame(lstat = c(5)))
#ans> 1
#ans> 32.1

# Predict what is the median values of houses with lstat= 5%, 10%, and 15%
predict(model, data.frame(lstat = c(5,10,15), interval = "prediction"))
#ans> 1 2 3
#ans> 32.1 23.7 18.7
```

Now let's assess our model, by computing the mean squared error (MSE). To assess the model we created, then we will be using the test data!

```
# Save the testing median values for houses (testing y) in y
y = testing_data$medv

# Compute the predicted value for this y (y hat)
y_hat = predict(model, data.frame(lstat = testing_data$lstat))

# Now we have both y and y_hat for our testing data.
# let's find the mean square error
error = y-y_hat
error_squared = error^2
MSE = mean(error_squared)
MSE
#ans> [1] 17.7
```

Chapter 2

Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable. However, in practice we often have more than one predictor. In the previous chapter, we took for example the prediction of housing prices considering we had the size of each house. We had a single feature X, the size of the house. But now imagine if we had not only the size of the house as a feature but we also knew the number of bedrooms, the number of flours and the age of the house in years. It seems like this would give us a lot more information with which to predict the price.

2.1 The Model

In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

where X_j represents the jth predictor and β_j quantifies the association between that variable and the response. We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.

In matrix terms, supposing we have n observations and p variables, we need to define the following matrices:

$$\mathbf{Y}_{n\times 1} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \qquad \mathbf{X}_{n\times (p+1)} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}$$
(2.1)

$$\beta_{(p+1)\times 1} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \epsilon_{n\times 1} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
 (2.2)

In matrix terms, the general linear regression model is

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\beta_{(p+1)\times 1} + \epsilon_{n\times 1}$$

where,

- Y is a vector of responses.
- β is a vector of parameters.
- X is a matrix of constants.
- ϵ is a vector of independent *normal* (Gaussian) random variables.

2.2 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coefficients $\beta_0, \beta_1, \dots, \beta_p$ are unknown, and must be estimated. Given estimates $\hat{\beta_0}, \hat{\beta_1}, \dots, \hat{\beta_p}$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots, \hat{\beta}_p x_p$$

We choose $\beta_0, \beta_1, \dots, \beta_p$ to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_1 - \hat{\beta}_0 - \hat{\beta}_1 \hat{x}_{i1} - \hat{\beta}_2 \hat{x}_{i2} - \dots - \hat{\beta}_p \hat{x}_{ip})^2$$

The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize the RSS are the multiple least squares regression coefficient estimates, they are calculated using this formula (in matrix terms):

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

To obtain $\hat{\beta}$, we can write the residual sum of squares as

$$RSS = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta)$$

This is a quadratic function in the p+1 parameters. Differentiating with respect to β we obtain

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\beta)$$
$$\frac{\partial^2 RSS}{\partial \beta \partial \beta^T} = 2\mathbf{X}^T\mathbf{X}.$$

Assuming (for the moment) that \mathbf{X} has full column rank, and hence $\mathbf{X}^T\mathbf{X}$ is positive definite¹, we set the first derivative to zero

$$\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

to obtain the unique solution

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Note 1:

¹Important to be sure that $\hat{\beta}$ is minimising RSS.

It is a remarkable property of matrix algebra that the results for the general linear regression model in matrix notation appear exactly as those for the simple linear regression model. Only the degrees of freedom and other constants related to the number of X variables and the dimensions of some matrices are different. Which means there are some similarities between $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ and $\hat{\beta}_1 = (s_x^2)^{-1} s_{xy}$ from the simple linear model: both are related to the covariance between \mathbf{X} and \mathbf{Y} weighted by the variance of \mathbf{X} .

Note 2:

If $\mathbf{X}^T \mathbf{X}$ is noninvertible, the common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $p \ge n$). In this case, we delete some features or we use "regularization" (to be, maybe, explained in a later lesson).

2.3 Some important questions

When we perform multiple linear regression, we usually are interested in answering a few important questions.

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Relationship Between the Response and Predictors?

F-Statistic

Recall that in the simple linear regression setting, in order to determine whether there is a relationship between the response and the predictor we can simply check whether $\beta_1 = 0$. In the multiple regression setting with p predictors, we need to ask whether all of the regression coefficients are zero, i.e. whether $\beta_1 = \beta_2 = \ldots = \beta_p = 0$. As in the simple linear regression setting, we use a hypothesis test to answer this question. We test the null hypothesis,

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$

versus the alternative hypothesis

 H_1 : at least one β_i is non-zero

This hypothesis test is performed by computing the F-statistic (Fisher):

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n-p-1)} \sim F_{p,n-p-1}$$

where, as with simple linear regression, $TSS = \sum (y_i - \bar{y})^2$ and $RSS = \sum (y_i - \hat{y}_i)^2$.

Note that $F_{p,n-p-1}$ represents the Fisher-Snedecor's F distribution with p and n-p-1 degrees of freedom. If H_0 is true, then F is expected to be small since ESS² will be close to zero (little variation is explained by the regression model since $\hat{\beta} \approx \mathbf{0}$).

So the question we ask here: Is the whole regression explaining anything at all? The answer comes from the F-test in the ANOVA (ANalysis Of VAriance) table. This is what we get in an ANOVA table:

Source	df	SS	MS	F	p-value
Factor (Explained) Error (Unexplained) Total	-		$\begin{array}{l} \text{MSR=ESS}/(p) \\ \text{MSE=RSS}/(n-p-1) \end{array}$	F=MSR/MSE	p-value

The ANOVA table has many pieces of information. What we care about is the F Ratio and the corresponding p-value. We compare the F Ratio with $F_{(p,n-p-1)}$ and a corresponding α value (error).

The "ANOVA table" is a broad concept in statistics, with different variants. Here we are only covering the basic ANOVA table from the relation SST = SSR + SSE. However, further sophistications are possible when SSR is decomposed into the variations contributed by each predictor. In particular, for multiple linear regression R's anova implements a sequential ($type\ I$) $ANOVA\ table$, which is **not** the previous table!

The anova function in R takes a model as an input and returns the following sequential ANOVA table³:

	Degrees of freedom	Sum Squares	Mean Squares	F-value	p-value
Predictor 1	1	ESS_1	$\frac{\mathrm{ESS_1}}{1}$	$\frac{\mathrm{ESS}_1/1}{\mathrm{RSS}/(n-p-1)}$	p_1
Predictor 2	1	ESS_2	$\frac{\mathrm{ESS}_2}{1}$	$\frac{\mathrm{ESS}_2/1}{\mathrm{RSS}/(n-p-1)}$	p_2
:	:	•	:	:	:
Predictor p	1	ESS_p	$\frac{\mathrm{ESS}_p}{1}$	$\frac{\mathrm{ESS}_p/1}{\mathrm{RSS}/(n-p-1)}$	p_p
Residuals	n-p-1	RSS	$\frac{\text{RSS}}{n-p-1}$		

Here the ESS_j represents the explained sum of squares (same as regression sum of squares) associated to the inclusion of X_j in the model with predictors X_1, \ldots, X_{j-1} , this is:

$$ESS_j = ESS(X_1, \dots, X_j) - ESS(X_1, \dots, X_{j-1}).$$

The p-values p_1, \ldots, p_p correspond to the testing of the hypotheses

$$H_0: \beta_i = 0$$
 vs. $H_1: \beta_i \neq 0$,

carried out inside the linear model $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_j X_j + \varepsilon$. This is like the t-test for β_j for the model with predictors X_1, \ldots, X_j . Recall that there is no F-test in this version of the ANOVA table.

p-values

The p-values provide information about whether each individual predictor is related to the response, after adjusting for the other predictors. Let's look at the following table we obtain in general using a statistical software for example

 $^{^2}$ Recal that ESS is the explained sum of squares, ESS = TSS - RSS.

 $^{^3\}mathrm{More}$ complex – included here just for clarification of the \mathtt{anova} 's output.

	Coefficient	Std. error	$t ext{-statistic}$	p-value
Constant	2.939	0.3119	9.42	< 0.0001
X_1	0.046	0.0014	32.81	< 0.0001
X_2	0.189	0.0086	21.89	< 0.0001
X_3	-0.001	0.0059	-0.18	0.8599

In this table we have the following model

$$Y = 2.939 + 0.046X_1 + 0.189X_2 - 0.001X_3$$

Note that for each individual predictor a t-statistic and a p-value were reported. These p-values indicate that X_1 and X_2 are related to Y, but that there is no evidence that X_3 is associated with Y, in the presence of these two.

Deciding on Important Variables

The most direct approach is called *all subsets* or *best subsets* regression: we compute the least squares fit for all possible subsets and then choose between them based on some criterion that balances training error with model size.

However we often can't examine all possible models, since they are 2^p of them; for example when p = 40 there are over a billion models! Instead we need an automated approach that searches through a subset of them. Here are two commonly use approaches:

Forward selection:

- Begin with the null model a model that contains an intercept (constant) but no predictors.
- Fit p simple linear regressions and add to the null model the variable that results in the lowest RSS.
- Add to that model the variable that results in the lowest RSS amongst all two-variable models.
- Continue until some stopping rule is satisfied, for example when all remaining variables have a p-value above some threshold.

Backward selection:

- Start with all variables in the model.
- Remove the variable with the largest p-value that is, the variable that is the least statistically significant.
- The new (p1)-variable model is fit, and the variable with the largest p-value is removed.
- Continue until a stopping rule is reached. For instance, we may stop when all remaining variables have a significant p-value defined by some significance threshold.

There are more systematic criteria for choosing an "optimal" member in the path of models produced by forward or backward stepwise selection. These include Mallow's C_p , $Akaike\ information\ criterion\ (AIC)$, $Bayesian\ information\ criterion\ (BIC)$, $adjusted\ R^2$ and $Cross-validation\ (CV)$.

Model Fit

Two of the most common numerical measures of model fit are the RSE and R^2 , the fraction of variance explained. These quantities are computed and interpreted in the same fashion as for simple linear regression. Recall that in simple regression, R^2 is the square of the correlation of the response and the variable. In multiple linear regression, it turns out that it equals $Cor(Y,\hat{Y})^2$, the square of the correlation between the response and the fitted linear model; in fact one property of the fitted linear model is that it maximizes this correlation among all possible linear models. An R^2 value close to 1 indicates that the model explains a large portion of the variance in the response variable.

In general RSE is defined as

$$RSE = \sqrt{\frac{1}{n - p - 1}RSS}$$

2.3.1 Other Considerations in Regression Model

Qualitative Predictors

- If we have a categorial (qualitative) variable (feature), how do we fit into a regression equation?
- For example, if X_1 is the gender (male or female).
- We can code, for example, male = 0 and female = 1.
- Suppose X_2 is a quantitative variable, the regression equation becomes:

$$Y_i \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} \beta_0 + \beta_2 X_2 & \text{if male} \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 & \text{if female} \end{cases}$$

• Another possible coding scheme is to let male = -1 and female = 1, the regression equation is then:

$$Y_i \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} \beta_0 - \beta_1 X_1 + \beta_2 X_2 & \text{if male} \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 & \text{if female} \end{cases}$$

Interaction Terms

- When the effect on Y of increasing X_1 depends on another X_2 .
- We may in this case try the model

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

• X_1X_2 is the Interaction term.

2.4 How to select the best performing model

After trying different linear models, you need to make a choice which model you want to use. More specifically, the questions that one can ask: "How to determine which model suits best to my data? Do I just look at the R square, SSE, etc.?" and "As the interpretation of that model (quadratic, root, etc.) will be very different, won't it be an issue?"

The second question can be answered easily. First, find a model that best suits to your data and then interpret its results. It is good if you have ideas how your data might be explained. However, interpret the best model, only. Now we will address the first question. Note that there are multiple ways to select a best model. In addition, this approach only applies to univariate models (simple models) whith just one input variable.

Use the following interactive application and play around with different datasets and models. Notice how parameters change and become more confident with assessing simple linear models.

Use the Adjusted R_{adj}^2 for univariate models

If you only use one input variable, the adjusted R_{adj}^2 value gives you a good indication of how well your model performs. It illustrates how much variation is explained by your model.

In contrast to the simple R^{24} , the adjusted adjusted R^2_{adj} takes the number of input factors into account. It penalizes too many input factors and favors parsimonious models.

The adjusted R_{adj}^2 is sensitive to the amount of noise in the data. As such, only compare this indicator of models for the same dataset than comparing it across different datasets.

Figure 2.1: Comparison of R^2 and R_{adj}^2 for n=200 and p ranging from 1 to 198. M=100 datasets were simulated with **only the first two** predictors being significant. The thicker curves are the mean of each color's curves.

Figure 2.1 contains the results of an experiment where 100 datasets were simulated with **only the first two** predictors being significant. As you can see R^2 increases linearly with the number of predictors considered, although only the first two ones were important! On the contrary, $R_{\rm adj}^2$ only increases in the first two variables and then is flat on average, but it has a huge variability when p approaches n-2. The experiment evidences that $R_{\rm adj}^2$ is more adequate than the R^2 for evaluating the fit of a multiple linear regression.

Have a look at the residuals or error terms

What is often ignored are error terms or so-called residuals. They often tell you more than what you might think. The residuals are the difference between your predicted values and the actual values. Their benefit is that they can show both the magnitude as well as the direction of the errors.

Let's have a look at an example:

 $^{^4 \}text{Recall that } R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$ $^5 \text{It is defined as } R^2_{adj} = 1 - \frac{\text{RSS}/(n-p-1)}{\text{TSS}/(n-1)} = 1 - \frac{\text{RSS}}{\text{TSS}} \times \frac{n-1}{n-p-1}$

Here, we try to predict a polynomial dataset with a linear function. Analyzing the residuals shows that there are areas where the model has an upward or downward bias.

For 50 < x < 100, the residuals are above zero. So in this area, the actual values have been higher than the predicted values—our model has a downward bias.

For 100 < x < 150, however, the residuals are below zero. Thus, the actual values have been lower than the predicted values—the model has an upward bias.

It is always good to know, whether your model suggests too high or too low values. But you usually do not

want to have patterns like this.

The residuals should be zero on average (as indicated by the mean) and they should be equally distributed. Predicting the same dataset with a polynomial function of 3 degrees suggests a much better fit:

In addition, you can observe whether the variance of your errors increases. In statistics, this is called Heteroscedasticity. You can fix this easily with robust standard errors. Otherwise, your hypothesis tests are likely to be wrong.

Histogram of residuals

Finally, the histogram summarizes the magnitude of your error terms. It provides information about the bandwidth of errors and indicates how often which errors occurred.

The above screenshots show two models for the same dataset. In the first histogram, errors occur within a range of -338 and 520. In the second histogram, errors occur within -293 and 401. So the outliers are much lower. Furthermore, most errors in the model of the second histogram are closer to zero. So we would favor the second model.

PW 2

Reporting

Markdown

Markdown is a lightweight markup language with plain text formatting syntax designed so that it can be converted to HTML and many other formats (pdf, docx, etc..).

Click here to see an example of a markdown (.md) syntaxes and the result in HTML. The markdown syntaxes are on right and their HTML result is on left. You can modify the source text to see the result.

Extra: There is some markdown online editors you can use, like dillinger.io/. See the Markdown source file and the HTML preview. Play with the source text to see the result in the preview.

R Markdown

R Markdown is a variant of Markdown that has embedded R code chunks, to be used with the knitr package to make it easy to create reproducible web-based reports.

First, in Rstudio create a new R Markdown file. A default template will be opened. There is some R code in R chunks. Clink on knit, save your file and see the produced output. The output is a html report containing the results of the R codes. If your file is named report.Rmd, your report is named report.html.

- Make sure to have the latest version of Rstudio.
- If you have problems creating a R Markdown file (problem in installing packages, etc..) close your Rstudio and reopen it with administrative tools and retry.
- If it doesn't work and in order to not lose more time, write your script in an .R file with your comments and submit it.

- Be ready to submit your report (your .html file) at the end of each class.
- You report must be named:

YouLastName_YourFirstName_WeekNumber.html

You can find all the informations about R Markdown on this site: rmarkdown.rstudio.com.

You may also find the following resources helpful:

- The R Markdown Reference Guide
- The R Markdown Cheatsheet

The report to be submitted

In Rstudio, start by creating a R Markdown file. When you create it a default template will be opened with the following first lines:

title: "Untitled"
output: html document

These lines are the YAML header in which you choose the settings of your report (title, author, date, appearance, etc..)

For your submitted report, use the following YAML header:

```
title: "Week 2"
subtitle: "Multiple Linear Regression"
author: LastName FirstName
date: "`#r format(Sys.time())`" # remove the # to show the date
output:
   html_document:
    toc: true
    toc_depth: 2
    theme: flatly
```

In the core of your report:

- Put every exercise in a section, name the section Exercise i (i is the exercise's number).
- Paste the exercise content.
- Write the code of the exercise in R chunks.
- Run the chunk to make sure it works.
- If there is a need, explain the results.
- · Click on knit

Multiple Linear Regression

Submit a report following the instructions above. In the first exercise you must continue the analysis of the Boston data set.

The exercises

Continue what we started last week with the Boston dataset which is part of the MASS package. Recall that this dataset records the median value of houses for 506 neighborhoods around Boston.

- 1. Load the Boston dataset from MASS package.
- 2. Split the dataset into training set and testing set. (keep all the variables of the Boston data set)
- 3. Check if there is a linear relationship between the variables med and age. (use cor() function).
- 4. Fit a model of housing prices in function of age and plot the observations and the regression line.
- 5. Train a regression model using both lstat and age as predictors of median house value. (Remember that we transformed lstat, use the same transformation here). What is the obtained model?

- **6**. Print the summary of the obtained regression model.
- **7**. Are the predictors significant?
- 8. Is the model as a whole significant? Answer on this question must be detailed.
- 9. Train a new model using all the variables of the dataset. (We can use . as a short cut instead of writing down all the variables names)
- 10. When using all the variables as predictors, we didn't transform lstat. Re train the model using log(lstat) instead of lstat.
- 11. Did R^2 improve?
- 12. To see if there is correlated variables print the correlation matrix using the cor() function (round the correlations with 2 digits).
- 13. Visualize the correlations using the corrplot package. To do so, install the corrplot package, load it, then use the function corrplot.mixed(). See this link for examples and to understand how to use it.
- 14. What is the correlation between tax and rad?
- 15. Run the model again without tax. What happens to the R^2 ? and for the F-statistic?

Of course R^2 should go a little lower because we deleted one of the variables. But check for the model significance (F-statistic) gets higher, which means the p-values gets lower and thus the model is more significant without rad.

16. Calculate the mean squared error (MSE) for the last model.

Anova

Next we will apply an analysis of variances (ANOVA) in order to test if there is a significant difference of means between two groups i and j (Consider group i is the suburbs bounding the river and j the suburbs which not). The hypotheses are

$$H_0: \mu_i = \mu_i$$

$$H_1: \mu_i \neq \mu_i$$

Where μ_i is the mean of medv in group i.

- 17. In the Boston data set there is a categorical variable chas which corresponds to Charles River (= 1 if a suburb bounds the river; 0 otherwise). Use command str() to see how this variable is present in the dataset. How many of the suburbs in this data set bound the Charles river?
- 18. Create Boxplots of the median value of houses with respect to the variable chas. Do we observe some difference between the median value of houses with respect to the neighborhood to Charles River?
- 19. Calculate μ_i and μ_j (in one line using the function aggregate()).
- 20. Apply an ANOVA test of medv whith respect to chas (use the function aov()). Print the result and the summary of it. what do you conclude?

Qualitative predictors

▲ Before starting the next question, please read section 2.3.1 and Appendix C about using qualitative predictors in regression.

We are going to use the categorical variable chas which corresponds to Charles River (= 1 if a suburb bounds the river; 0 otherwise). Using the str() command you can notice that this variable is not codified as a factor, but it has values 0 or 1, so it is already dummyfied.

- 21. Fit a new model where the predictors are the Charles River and the Crime Rate. Interpret the coefficients of this model and conclude if the presence of the river adds a valuable information for explaining the house price.
- **22**. Is **chas** is significant as well in the presence of more predictors?

Interaction terms

As you saw in section 2.3.1 we may sometimes try models with intercation terms. Let's say we have two predictors X_1 and X_2 , the way of adding these interactions in 1m is through: and *. The operator: only adds the term X_1X_2 and * adds X_1 , X_2 , and X_1X_2 .

- 23. Fit a model whith first order interaction term where predictors are lstat and age. Print its summary.
- 24. Fit a model with all the first order interaction terms.

Part II Classification

Chapter 3

Logistic Regression

3.1 Introduction

In the previous chapters we discussed the linear regression model, which assumes that the response variable Y is quantitative. But in many situations, the response variable is instead qualitative (categorical). For example, eye color is qualitative, taking on values blue, brown, or green.

The process for predicting qualitative responses is known as *classification*.

Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$. We are often more interested in estimating the probabilities that X belongs to each category in C.

If c is a category $(c \in \mathcal{C})$, by the probability that X belongs to c we mean $p(X \in c) = \mathbb{P}(Y = c|X)$.

In the binomial or binary logistic regression, the outcome can have only two possible types of values (e.g. "Yes" or "No", "Success" or "Failure"). Multinomial logistic refers to cases where the outcome can have three or more possible types of values (e.g., "good" vs. "very good" vs. "best"). Generally outcome is coded as "0" and "1" in binary logistic regression.

3.2 Logistic Regression

Consider a data set where the response falls into one of two categories, Yes or No. Rather than modeling the response Y directly, logistic regression models the *probability* that Y belongs to a particular category.

3.2.1 The Logistic Model

Let us suppose the response has two categories and we use the generic 0/1 coding for the response. How should we model the relationship between $p(X) = \mathbb{P}(Y = 1|X)$ and X?

The simplest situation is when Y is binary: it can only take two values, codified for convenience as 0 (success) and 1 (failure).

More formally, a binary variable is known as a *Bernoulli variable*, which is the simplest non-trivial random variable. We say that $Y \sim \text{Ber}(p)$, $0 \le p \le 1$, if

$$Y = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases}$$

or, equivalently, if $\mathbb{P}[Y=1]=p$ and $\mathbb{P}[Y=0]=1-p$, which can be written compactly as

$$\mathbb{P}[Y = y] = p^y (1 - p)^{1 - y}, \quad y = 0, 1.$$

Recall that a binomial variable with size n and probability p, Bi(n, p), was obtained by adding n independent Ber(p) (so Ber(p) is the same as Bi(1, p)).

A Bernoulli variable Y is completely determined by p. So its mean and variance:

$$- \mathbb{E}[Y] = p \times 1 + (1 - p) \times 0 = p$$
$$- \mathbb{V}\operatorname{ar}[Y] = p(1 - p).$$

In particular, recall that $\mathbb{P}[Y=1] = \mathbb{E}[Y] = p$.

Assume then that Y is a binary/Bernoulli variable and that X are predictors associated to them (no particular assumptions on them). The purpose in *logistic regression* is to estimate

$$p(x) = \mathbb{P}[Y = 1|X = x] = \mathbb{E}[Y|X = x],$$

this is, how the probability of Y = 1 is changing according to particular values, denoted by x, of the random variables X.

Why not linear regression? A tempting possibility is to consider the model

$$p(x) = \beta_0 + \beta_1 x.$$

However, such a model will run into problems inevitably: negative probabilities and probabilities larger than one (p(x) < 0 for some values of X and p(X) > 1 for others). To avoid this problem, the solution is to consider a function to encapsulate the value of $z = \beta_0 + \beta_1 x$, in \mathbb{R} , and map it to [0,1]. There are several alternatives to do so, based on distribution functions $F : \mathbb{R} \longrightarrow [0,1]$ that deliver $y = F(z) \in [0,1]$. Many functions meet this description. In logistic regression, we use the *logistic function*,

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- No matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.
- The logistic function will always produce an S-shaped curve.
- The logistic distribution function is:

$$F(z) = \text{logistic}(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}.$$

After a bit of manipulation of the previous equation, we find that

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

The quantity p(X)/[1p(X)] is called the *odds*, and can take on any value between 0 and ∞ .

By taking the logarithm of both sides of the equation, we arrive at

$$\log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X$$

The left-hand side is called the *log-odds* or *logit*. We see that the logistic regression model has a logit that is linear in X.

3.2.2 Estimating the Regression Coefficients

We estimate β_0 and β_1 using the Maximum Likelihood Estimation method (MLE). The basic intuition behind using maximum likelihood to fit a logistic regression model is as follows: we seek estimates for β_0 and β_1 such that the predicted probability $\hat{p}(x_i)$ of the response for each individual, corresponds as closely as possible to the individual's observed response status (recall that the response Y is categorical). The likelihood function is

$$l(\beta_0, \beta_1) = \prod_{i=1}^n p(x_i)^{Y_i} (1 - p(x_i))^{1 - Y_i}.$$

This likelihood is **the probability of the data based on the model**. It gives the probability of the observed zeros and ones in the data. The estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are chosen to *maximize* this likelihood function. The interpretation of the likelihood function is the following:

- $\prod_{i=1}^n$ appears because the sample elements are assumed to be independent and we are computing the probability of observing the whole sample $(x_1, y_1), \ldots, (x_n, y_n)$. This probability is equal to the product of the *probabilities of observing each* (x_i, y_i) .
- $p(x_i)^{Y_i}(1-p(x_i))^{1-Y_i}$ is the probability of observing (x_i,Y_i) .

In the linear regression setting, the least squares approach is a special case of maximum likelihood.

We will not give mathematical details about the maximum likelihood and how to estimate the parameters. We will use R to fit the logistic regression models (using glm function).

Use the following application (also available here) to see how the log-likelihood changes with respect to the values for (β_0, β_1) in three data patterns. The logistic regression fit and its dependence on β_0 (horizontal displacement) and β_1 (steepness of the curve). Recall the effect of the sign of β_1 in the curve: if positive, the logistic curve has an s form; if negative, the form is a reflected s.

Note that the **animation** will not be displayed the first time it is browsed (The reason is because it is hosted at https websites with auto-signed SSL certificates). **To see it**, click on the link above. You will get a warning from your browser saying that "Your connection is not private". Click in "Advanced" and **allow an exception** in your browser. The next time the animation will show up correctly.

3.2.3 Prediction

Example

	Coefficient	Std. error	Z-statistic	p-value
$\frac{\text{Constant}}{X}$	-10.6513	0.3612	-29.5	<0.0001
	0.0055	0.0002	24.9	<0.0001

In this example, $\hat{\beta}_0 = -10.6513$ and $\hat{\beta}_1 = 0.0055$. It produces the blue curve that separates that data in the following figure,

Figure 3.1:

As for prediction, we use the model built with the estimated parameters to predict probabilities. For example, If X = 1000,

$$\hat{p}(X) = \frac{e^{\hat{\beta_0} + \hat{\beta_1}X}}{1 + e^{\hat{\beta_0} + \hat{\beta_1}X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

If X = 2000,

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

3.3 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By analogy with the extension from simple to multiple linear regression in the previous chapters, we can generalize the simple logistic regression equation as follows:

3.4. EXAMPLE 67

$$\log(\frac{p(X)}{1-p(X)}) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

where $X = (X_1, \dots, X_p)$ are p predictors. The equation above can be rewritten as

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Just as in the simple logistic regression we use the maximum likelihood method to estimate $\beta_0, \beta_1, \dots, \beta_p$.

3.4 Example

3.4.1 Case study: The Challenger disaster

The Challenger disaster occurred on the 28th January of 1986, when the NASA Space Shuttle orbiter Challenger broke apart and disintegrated at 73 seconds into its flight, leading to the deaths of its seven crew members. The accident deeply shocked the US society, in part due to the attention the mission had received because of the presence of Christa McAuliffe, who would have been the first astronaut-teacher. Because of this, NASA TV broadcasted live the launch to US public schools, which resulted in millions of school children witnessing the accident. The accident had serious consequences for the NASA credibility and resulted in an interruption of 32 months in the shuttle program. The Presidential Rogers Commission (formed by astronaut Neil A. Armstrong and Nobel laureate Richard P. Feynman, among others) was created to investigate the disaster.

#ans> PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, pl

Challenger launch and posterior explosion, as broadcasted live by NBC in 28/01/1986.

The Rogers Commission elaborated a report (Presidential Commission on the Space Shuttle Challenger Accident, 1986) with all the findings. The commission determined that the disintegration began with the failure of an O-ring seal in the solid rocket motor due to the unusual cold temperatures (-0.6 Celsius degrees) during the launch. This failure produced a breach of burning gas through the solid rocket motor that compromised the whole shuttle structure, resulting in its disintegration due to the extreme aerodynamic forces. The problematic with O-rings was something known: the night before the launch, there was a three-hour teleconference between motor engineers and NASA management, discussing the effect of low temperature forecasted for the launch on the O-ring performance. The conclusion, influenced by Figure 3.2a, was:

"Temperature data [are] not conclusive on predicting primary O-ring blowby."

Figure 3.2: Number of incidents in the O-rings (filed joints) versus temperatures. Panel a includes only flights with incidents. Panel b contains all flights (with and without incidents).

The Rogers Commission noted a major flaw in Figure 3.2a: the flights with zero incidents were excluded from the plot because it was felt that these flights did not contribute any information about the temperature effect (Figure 3.2b). The Rogers Commission concluded:

"A careful analysis of the flight history of O-ring performance would have revealed the correlation of O-ring damage in low temperature".

The purpose of this case study, inspired by Dalal et al. (1989), is to quantify what was the influence of the temperature in the probability of having at least one incident related with the O-rings. Specifically, we want to address the following questions:

- Q1. Is the temperature associated with O-ring incidents?
- Q2. In which way was the temperature affecting the probability of O-ring incidents?
- Q3. What was the predicted probability of an incidient in an O-ring for the temperature of the launch day?

To try to answer these questions we have the challenger (dataset). The dataset contains (as shown in the table below) information regarding the state of the solid rocket boosters after launch for 23 flights. Each row has, among others, the following variables:

¹After the shuttle exits the atmosphere, the solid rocket boosters separate and descend to land using a parachute where they are carefully analyzed.

3.4. EXAMPLE 69

• fail.field, fail.nozzle: binary variables indicating whether there was an incident with the O-rings in the field joints or in the nozzles of the solid rocket boosters. 1 codifies an incident and 0 its absence. On the analysis, we focus on the O-rings of the field joint as being the most determinants for the accident.

- temp: temperature in the day of launch. Measured in Celsius degrees.
- pres.field, pres.nozzle: leak-check pressure tests of the O-rings. These tests assured that the rings would seal the joint.

Table 3.2: The	challenger	dataset.
----------------	------------	----------

flight	date	fail.field	fail.nozzle	temp
1	12/04/81	0	0	18.9
2	12/11/81	1	0	21.1
3	22/03/82	0	0	20.6
5	11/11/82	0	0	20.0
6	04/04/83	0	1	19.4
7	18/06/83	0	0	22.2
8	30/08/83	0	0	22.8
9	28/11/83	0	0	21.1
41-B	03/02/84	1	1	13.9
41-C	06/04/84	1	1	17.2
41-D	30/08/84	1	1	21.1
41-G	05/10/84	0	0	25.6
51-A	08/11/84	0	0	19.4
51-C	24/01/85	1	1	11.7
51-D	12/04/85	0	1	19.4
51-B	29/04/85	0	1	23.9
51-G	17/06/85	0	1	21.1
51-F	29/07/85	0	0	27.2
51-I	27/08/85	0	0	24.4
51-J	03/10/85	0	0	26.1
61-A	30/10/85	1	0	23.9
61-B	26/11/85	0	1	24.4
61-C	12/01/86	1	1	14.4

Let's begin the analysis by replicating Figures 3.2a and 3.2b and checking that linear regression is not the right tool for answering Q1-Q3. For that, we make two scatterplots of nfails.field (number of total incidents in the field joints) in function of temp, the first one excluding the launches without incidents (subset = nfails.field > 0) and the second one for all the data.


```
scatterplot(nfails.field ~ temp, reg.line = lm, smooth = FALSE, spread = FALSE,
boxplots = FALSE, data = challenger)
```


There is a fundamental problem in using linear regression for this data: **the response is not continuous**. As a consequence, there is no linearity and the errors around the mean are not normal (indeed, they are strongly non normal). We can check this with the corresponding diagnostic plots:

```
mod <- lm(nfails.field ~ temp, data = challenger)
par(mfrow = 1:2)
plot(mod, 1)
plot(mod, 2)</pre>
```

3.4. EXAMPLE 71

Although linear regression is not the adequate tool for this data, it is able to detect the obvious difference between the two plots:

- 1. The trend for launches with incidents is flat, hence suggesting there is no dependence on the temperature (Figure 3.2a). This was one of the arguments behind NASA's decision of launching the rocket at a temperature of -0.6 degrees.
- 2. However, the trend for *all* launches indicates a clear negative dependence between temperature and number of incidents! (Figure 3.2b). Think about it in this way: the minimum temperature for a launch without incidents ever recorded was above 18 degrees, and the Challenger was launched at -0.6 without clearly knowing the effects of such low temperatures.

Instead of trying to predict the number of incidents, we will concentrate on modeling the *probability of* expecting at least one incident given the temperature, a simpler but also revealing approach. In other words, we look to estimate the following curve:

$$p(x) = \mathbb{P}(\text{incident} = 1 | \text{temperature} = x)$$

from fail.field and temp. This probability can not be properly modeled as a linear function like $\beta_0 + \beta_1 x$, since inevitably will fall outside [0,1] for some value of x (some will have negative probabilities or probabilities larger than one). The technique that solves this problem is the **logistic regression**. The logistic model in this case is

$$\mathbb{P}(\text{incident} = 1 | \text{temperature} = x) = \text{logistic} (\beta_0 + \beta_1 x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}},$$

with β_0 and β_1 unknown.

Let's fit the model to the data by estimating β_0 and β_1 .

```
nasa <- glm(fail.field ~ temp, family = "binomial", data = challenger)</pre>
summary(nasa)
#ans>
#ans> Call:
#ans> qlm(formula = fail.field ~ temp, family = "binomial", data = challenger)
#ans>
#ans> Deviance Residuals:
                  1Q Median
#ans>
         Min
                                          Max
#ans> -1.057 -0.757 -0.382
                                        2.220
#ans>
#ans> Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
```

```
1.94
                                                0.053 .
#ans> (Intercept) 7.584
                               3.915
                   -0.417
                               0.194
                                       -2.15
                                                0.032 *
#ans> temp
#ans> ---
#ans> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#ans>
#ans> (Dispersion parameter for binomial family taken to be 1)
#ans>
         Null deviance: 28.267 on 22 degrees of freedom
#ans>
#ans> Residual deviance: 20.335 on 21 degrees of freedom
#ans> AIC: 24.33
#ans>
#ans> Number of Fisher Scoring iterations: 5
exp(coef(nasa)) # Exponentiated coefficients ("odds ratios")
#ans> (Intercept)
                        temp
#ans>
        1965.974
                       0.659
```


The glm() function fits generalized linear models, a class of models that includes logistic regression. The syntax of the glm() function is similar to that of lm(), except that we must pass in the argument family=binomial in order to tell R to run a logistic regression rather than some other type of generalized linear model.

The summary of the logistic model is notably different from the linear regression, as the methodology behind is quite different. Nevertheless, we have tests for the significance of each coefficient. Here we obtain that temp is significantly different from zero, at least at a level $\alpha = 0.05$. Therefore we can conclude that the temperature is indeed affecting the probability of an incident with the O-rings (answers Q1).

The coefficient of temp, $\hat{\beta}_1$, can be regarded the "correlation between the temperature and the probability of having at least one incident". This correlation, as evidenced by the sign of $\hat{\beta}_1$, is negative. Let's plot the fitted logistic curve to see that indeed the probability of incident and temperature are negatively correlated:

3.4. EXAMPLE 73

At the sight of this curve and the summary of the model we can conclude that **the temperature was increasing the probability of an O-ring incident** (Q2). Indeed, the confidence intervals for the coefficients show a significative negative correlation at level $\alpha = 0.05$:

Finally, the probability of having at least one incident with the O-rings in the launch day was 0.9996 according to the fitted logistic model (Q3). This is easily obtained:

```
predict(nasa, newdata = data.frame(temp = -0.6), type = "response")
#ans> 1
#ans> 1
```

Be aware that type = "response" has a different meaning in logistic regression. In linear models it returns a CI for the prediction. But, type = "response" means that the *probability* should be returned, instead of the value of the link function, which is returned with type = "link" (the default).

Recall that there is a serious problem of **extrapolation** in the prediction, which makes it less precise (or more variable). But this extrapolation, together with the evidences raised by a simple analysis like we did, should have been strong arguments for postponing the launch.

Appendix A

Introduction to RStudio

RStudio is the most employed Integrated Development Environment (IDE) for R nowadays. When you start RStudio you will see a window similar to Figure A.1. There are a lot of items in the GUI, most of them described in the RStudio IDE Cheat Sheet. The most important things to keep in mind are:

- 1. The code is written in scripts in the *source panel* (upper-right panel in Figure A.1);
- 2. for running a line or code selection from the script in the *console* (first tab in the lower-right panel in Figure A.1), you do it with the keyboard shortcut 'Ctrl+Enter' (Windows and Linux) or 'Cmd+Enter' (Mac OS X).

Figure A.1: Main window of 'RStudio'. The red shows the code panel and the yellow shows the console output. Extracted from [here](https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf).

Appendix B

Review on hypothesis testing

The process of hypothesis testing has an interesting analogy with a trial that helps on understanding the elements present in a formal hypothesis test in an intuitive way.

Hypothesis testing	Trial
Null hypothesis H_0	Accused of comitting a crime. It has the "presumption of innocence", which means that it is <i>not guilty</i> until there
Sample X_1, \ldots, X_n	is enough evidence to supporting its guilt Collection of small evidences supporting innocence and guilt . These evidences contain a certain degree of uncontrollable randomness because of how they were collected and the context regarding the case
Statistic T_n	Summary of the evicences presented by the prosecutor and defense lawyer
Distribution of T_n under H_0	The judge conducting the trial. Evaluates the evidence presented by both sides and presents a verdict for H_0
Significance level α	$1-\alpha$ is the strength of evidences required by the judge for condemning H_0 . The judge allows evidences that on average condemn $100\alpha\%$ of the innocents, due to the randomness inherent to the evidence collection process. $\alpha = 0.05$ is considered a reasonable level
<i>p</i> -value	Decision of the judge that measures the degree of compatibility, in a scale 0 – 1 , of the presumption of innocence with the summary of the evidences presented. If p -value< α , H_0 is declared guilty. Otherwise, is declared not guilty
H_0 is rejected	H_0 is declared guilty: there are strong evidences supporting its guilt
H_0 is not rejected	H_0 is declared not guilty: either is innocent or there are no enough evidences supporting its guilt

More formally, the p-value of an hypothesis test about H0 is defined as:

The p-value is the probability of obtaining a statistic more unfavourable to H_0 than the observed, assuming that H_0 is true.

Therefore, if the p-value is small (smaller than the chosen level α), it is unlikely that the evidence against H_0 is due to randomness. As a consequence, H_0 is rejected. If the p-value is large (larger

than α), then it is more possible that the evidences against H_0 are merely due to the randomness of the data. In this case, we do not reject H_0 .

If H_0 holds, then the *p*-value (which is a random variable) is distributed uniformly in (0,1). If H_0 does not hold, then the distribution of the *p*-value is not uniform but concentrated at 0 (where the rejections of H_0 take place).

Appendix C

Use of qualitative predictors

An important situation is how to deal with *qualitative*, and not *quantitative*, predictors when we fit a regression model. Qualitative predictors, also known as *categorical* variables or, in R's terminology, *factors*, are very common, for example in social sciences. Dealing with them requires some care and proper understanding of how these variables are represented.

The simplest case is the situation with **two levels**. A binary variable C with two levels (for example, a and b) can be represented as

$$D = \begin{cases} 1, & \text{if } C = b, \\ 0, & \text{if } C = a. \end{cases}$$

D now is a dummy variable: it codifies with zeros and ones the two possible levels of the categorical variable. An example of C could be gender, which has levels male and female. The dummy variable associated is D=0 if the gender is male and D=1 if the gender is female.

The advantage of this dummification is its interpretability in regression models. Since level a corresponds to 0, it can be seen as the reference level to which level b is compared. This is the key point in dummification: set one level as the reference and codify the rest as departures from it with ones.

R does the dummification automatically (translates a categorical variable C into its dummy version D) if it detects that a factor variable is present in the regression model.

Let's see now the case with **more than two levels**, for example, a categorical variable C with levels a, b, and c. If we take a as the reference level, this variable can be represented by two dummy variables:

$$D_1 = \begin{cases} 1, & \text{if } C = b, \\ 0, & \text{if } C \neq b \end{cases}$$

and

$$D_2 = \begin{cases} 1, & \text{if } C = c, \\ 0, & \text{if } C \neq c. \end{cases}$$

Then C = a is represented by $D_1 = D_2 = 0$, C = b is represented by $D_1 = 1$, $D_2 = 0$ and C = c is represented by $D_1 = 0$, $D_2 = 1$.

In general, if we have a categorical variable with J levels, then the number of dummy variables required is J-1. Again, R does the dummification automatically for you if it detects that a factor variable is present in the regression model.

It may happen that one dummy variable, say D_1 is not significant, while other dummy variables, say D_2 , are significant.

Do not codify a categorical variable as a discrete variable. This constitutes a major methodological fail that will flaw the subsequent statistical analysis.

For example if you have a categorical variable party with levels partyA, partyB, and partyC, do not encode it as a discrete variable taking the values 1, 2, and 3, respectively. If you do so:

- You assume implicitly an order in the levels of party, since partyA is closer to partyB than to partyC.
- You assume implicitly that partyC is three times larger than partyA.
- The codification is completely arbitrary why not considering 1, 1.5, and 1.75 instead of?

The right way of dealing with categorical variables in regression is to set the variable as a factor and let R do internally the dummification.

Bibliography

Dalal, S. R., Fowlkes, E. B., and Hoadley, B. (1989). Risk analysis of the space shuttle: Pre-challenger prediction of failure. *Journal of the American Statistical Association*, 84(408):945–957.

Presidential Commission on the Space Shuttle Challenger Accident (1986). Report of the Presidential Commission on the Space Shuttle Challenger Accident (Vols. 1 & 2). Washington, DC.