Q1:

Part 1:

Step1: initialization of count.

$$T_1(n) = c_1 = T_1(n)$$
 is $O(1)$

Step2: the first for loop consists of initiating i, comparing i and (n-1), and increment.

$$T_2(n) = c_2 n => T_2(n)$$
 is $O(n)$

Step3: initialization of sum.

$$T_3(n) = c_3 n => T_3(n)$$
 is $O(n)$

Step4: the second for loop consists of initiating j, comparing j and (n-1), and increment.

$$T_4(n) = c_4 n \cdot n = c_4 n^2 \Rightarrow T_4(n) \text{ is } O(n^2)$$

Step5: the additive operation and the assignment to sum.

$$T_5(n)$$
 is $O(n^2)$

Step6: the third for loop consists of initiating k, comparing k and j, and increment.

$$T_6(n) = c_6 n(1+2+3+\cdots+n-1) = c_6 n \cdot \frac{n(n-1)}{2} = T_6(n) \text{ is } O(n^3)$$

Step7: the additive operation and the assignment to sum.

$$T_7(n)$$
 is $O(n^3)$

Step8: the if statement and executive statement contained. Their time complexity won't surpass the time complexity of the first loop. So T_8 is O(n)

Step9: return statement.

$$T_9(n) = c_9 = T_9(n)$$
 is $O(1)$

Therefore, T(n) is $O(n^3)$.

Part 2:

- 1) n = 4; count = 1; i = 0; i < 4; sum = 0.
 - A) j = 0; j < 4; A[0] = 1; sum = 1.
 - a) k = 1; k > j; end of the third loop; j = 1.
 - B) i < 4; A[0] = 1; sum = 2.
 - a) k = 1; $k \le j$; A[1] = 2; sum = 4; j = 2.
 - b) k > j; end of the third loop; j = 2.
 - C) j < 4; A[0] = 1; sum = 5.
 - a) k = 1; $k \le 2$; A[1] = 2; sum = 7; k = 2.
 - b) $k \le 2$; A[2] = 5; sum = 12; k = 3.
 - c) k > 2; end of the third loop; j = 3
 - D) i < 4; A[0] = 1; sum = 13.
 - a) k = 1; $k \le 3$; A[1] = 2; sum = 15; k = 2.

- b) $k \le 3$; A[2] = 5; sum = 20; k = 3.
- c) $k \le 3$; A[3] = 9; sum = 29; k = 4.
- d) k > 3; end of the third loop. j = 4.
- E) j > 3; end of the second loop;
- 2) $B[0] = 2 \neq sum = 29$.
- 3) i = 0 + 1 = 1.
- 4) i < 4; sum = 0.
 - A) repeats the steps form 1)A) to 1)E).
- 5) B[1] = 29 = sum. count = 0 + 1 = 1.
- 6) i = 1+1 = 2.
- 7) i < 4; sum = 0.
 - A) repeats the steps from 1)A) to 1)E).
- 8) $B[2] = 40 \neq sum$.
- 9) i = 2+1 = 3.
- 10) i < 4; sum = 0.
 - A) repeats the steps from 1)A) to 1)E).
- 11) B[3] = $57 \neq \text{sum}$.
- 12) i = 3 + 1 = 4.
- 13) i = 4. end of the first loop.
- 14) return count = 1.

In conclusion, the final input: count = 1.

$\mathbf{Q2}$

a)

Step1: the first for loop

$$T_1(n) = c_1 \frac{n}{c} => T_1(n) \text{ is } O(n).$$

Step2: the second for loop

$$T_2(n) = c_2(\log_2 1024)(\frac{n}{c}) => T_2(n) \text{ is } O(n).$$

Hence, T(n) is O(n).

b)

Step1: the first for loop

$$2^k = n => k = \log(n)$$

$$T_1(n) = c_1 \log(n) => T_1(n) \text{ is } O(\log(n)).$$

Step2: the second for loop

$$T_2(n) = c_2(1+2+4+\cdots+2^k)/2 = c_2\left(\frac{2^{k-1}}{2-1}\right)/2 = c_2\frac{2^{k-1}}{2}$$
. Since $2^k = i \le n$, $T_2(n) = c_2\frac{n-1}{2}$. This is, $T_2(n)$ is $O(n)$.

Therefore, T(n) is O(n).

c)

Step1: the first for loop

$$2^k = n => k = \log(n)$$

$$T_1(n) = c_1 \log(n) => T_1(n) \text{ is } O(\log(n)).$$

Step2: the second for loop

$$T_2(n) = c_2(\log(2) + \log(4) + \log(8) + \dots + \log(2^k)). \text{ Since } 2^k = i \le n, T_2(n) = c_2(1 + 2 + 3 + \dots + \log(n)) = c_2\frac{(1 + \log(n))\log(n)}{2} \implies T_2(n) \text{ is } O((\log n)^2).$$

Therefor, T(n) is $O((\log n)^2)$.

Q3

By observing the two lines, we can choose $n_0=6$ such that B is greater than A for $n\geq 6$.

Q4

a)

Proof:

d(n) is $O(f(n)) => d(n) \le af(n)$ for $n \ge n'_0$, a is a constant;

$$e(n)$$
 is $O(g(n)) => e(n) \le bg(n)$ for $n \ge n''_0$, b is a constant;

then, $d(n) + e(n) \le af(n) + e(n) \le af(n) + bg(n)$. Let c = max(a,b), $n_0 = max(n'_0, n''_0)$; then af(n) + bg(n) = c(f(n) + g(n)) for $n \ge n_0$, where c is constant. Therefor, d(n) + e(n) is O(f(n) + g(n)).

As desired.

b)

Proof:

To prove $2^{n+1} + n^3$ is $O(2^n)$, we should prove 2^{n+1} is $O(2^n)$ and n^3 is $O(2^n)$ respectively.

Firstly, choosing c = 2, $n_0 = 1$, we can get 2^{n+1} is $O(2^n)$ since $2^{n+1} \le 2 \cdot 2^n$.

Next, Since $\lim_{n\to+\infty} \frac{n^3}{2^n} = \lim_{n\to+\infty} \frac{3n^2}{2^{n} \cdot \ln 2} = \lim_{n\to+\infty} \frac{6n}{2^n (\ln 2)^2} = 0$, it is obvious that the growing rate of n^3 is less than the growing rate of 2^n . This is, there exist a constant c and n_0 that make $n^3 \le c \cdot 2^n$. One possible solution is choosing c = 16, $n_0 = 1$.

According to the Question (a) we have proved, we can get $2^{n+1} + 3^n \le 16 \cdot (2^n + 2^n) = 32 \cdot 2^n$ for $n \ge 1$. This is, $2^{n+1} + 3^n$ is $O(2^n)$. As desired.

c)

Proof:

 $2^n = 2 \times 2 \times 2 \times ... \times 2$; $2 \cdot n! = 2 \times 1 \times 2 \times 3 \times 4 \times ... \times n = 2 \times 2 \times 3 \times 4 \times ... \times n$. It is clear that every single factor of n! is greater or equal to that of 2^*2^n . So we can conclude that $2^n \le 2 \cdot n!$ for $n \ge 1$; this is, 2^n is O(n!). As desired.

d)

Proof:

$$\log(n!) = \log(1 \times 2 \times 3 \times \dots (n-1) \times n) = \log 1 + \log 2 + \log 3 + \dots + \log n$$

$$\leq \log n + \log n + \dots + \log n = \log(n^n) = n \log n \text{ for } n \geq 1.$$

Therefore, log(n!) is O(nlogn), as desired.