Grafische Faltung

Ein System hat die folgende Übertragungsfunktion h(t):

Das System wird mit einem Rechteck-Signal x(t) angeregt:

Das Ausgangssignal des Systems wird über die Faltung der beiden Signale bestimmt:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(t - \tau) \cdot x(\tau) d\tau = \int_{-\infty}^{+\infty} x(t - \tau) \cdot h(\tau) d\tau$$

Aus den Signalen ergeben sich die Integrationsgrenzen durch Addition der jeweiligen minimalen und maximalen Grenze der Signale:

Beginn von y(t): t = 0 + T = T

Ende von y(t): t = 2T + 8T = 10T

◆CME

Faltung mit Hilfe der grafischen Darstellung:

1. Spiegeln der Funktion x(t):

2. Verschieben der Funktion $x(t-\tau)$ über das Signal $h(\tau)$ und Berechnung der Faltung

Die Berechnung der Amplitude des Ausgangssignals y(t) wird in Abschnitten von T berechnet. Dazu wird die Höhe des nicht verschobenen Signals h(t) mit der Höhe des verschobenen Signals x(t) multipliziert und anschließend über den Bereich des verschobenen Signals aufsummiert.

2.1 Verschieben bis τ = T:

$$y(\tau = T) = 0$$

2.2 Verschieben bis τ = 2T:

$$y(\tau = 2T) = 2 * 0 + 2 * 2 = 4$$

2.3 Verschieben bis τ = 3T:

$$y(\tau = 2T) = 2 * 2 + 2 * 3 = 10$$

2.4 Verschieben bis $\tau = 4T$:

$$y(\tau = 3T) = 2 * 3 + 2 * 3 = 12$$

2.5 Verschieben bis τ = 5T:

$$y(\tau = 4T) = 2 * 3 + 2 * 2,5 = 11$$

2.6 Verschieben bis $\tau = 6T$:

$$y(\tau = 6T) = 2 * 2,5 + 2 * 1 = 7$$

2.7 Verschieben bis τ = 7T:

$$y(\tau = 7T) = 2 * 1 + 2 * 1 = 4$$

2.8 Verschieben bis τ = 8T:

$$y(\tau = 8T) = 2 * 1 + 2 * 1 = 4$$

2.9 Verschieben bis $\tau = 10T$:

$$y(\tau = 10T) = 2 * 0 + 2 * 0 = 0$$

