

Introduction to Bioinformatics using Python

Lecture 6: File I/O

"I/O" means "Input/Output" ©

Dr. Alexey Larionov

29 October 2024

www.cranfield.ac.uk

Learning outcomes

At the end of this lecture, you should be able to:

Read from a file

Write to a file

- Perform file system operations using standard Python libraries
- Understand how to parse XML and CSV files using Python tools

Learning outcomes

At the end of this lecture, you should be able to:

Read from a file

Write to a file

- Perform file system operations using standard Python libraries
- Understand how to parse XML and CSV files using Python tools

For reading or writing the file should be opened

```
file handle = open("file name.txt", "r")
```

I/O Mode	Syntax	Behavior
Read	ʻr'	Opens the contents of a file for reading into the file interface, allowing for lines to be read-in successively.
Write	w'	Creates a file with the specified name and allows for text to be written to the file; note that specifying a pre-existing filename will overwrite the existing file.
Append	'a'	Opens an existing file and allows for text to be written to it, starting at the conclusion of the original file contents.
Read and Write	'r+'	Opens a file such that its contents can be both read-in and written-to, thus offering great versatility.

Problems with path ...

Linux and Mac OS use forward slash for path in the file systems

Windows uses backward slashes!

It happened that backward slashes have special meaning in Python strings: escape symbol!

This causes a problem when dealing with Windows file path (and also in Regex)

Problems with path ...

Linux and Mac OS use forward slash for path in the file systems

For file location in Windows

raw

either use raw string, starting with r

OR, use double backward slash

OS independent solution:

```
file_name = os.path.join (your, file, location, file)
```


Three steps of *reading* from files

- 1. Open a file
- 2. Read the data
- 3. Close the file

Reading the whole file at once

To the one long string

```
fr = open(file_name,'r')
data = fr.read()
# do something with the string
fr.close()
```

To the lines list

```
fr = open(file_name,'r')
lines = fr.readlines()
for line in lines:
    # do something with the list
fr.close()
```

Reading line by line

Iterate through the file lines using for loop

```
fr = open(file_name,'r')
for line in fr:
    # do something with the line
fr.close()
```

Read only one line at a time (automatically increments the position)

```
fr = open(file_name,'r')
line1 = fr.readline()
line2 = fr.readline()
...
fr.close()
```


Example: reading a TSV file

Calculate mean value

```
chromosome position value chr1 3417953 0.74634 value chr7 152662801 0.50036 chr4 55281536 0.82376 chr1 9168943 0.73375 0.42181 chromoData.tsv
```


Example: reading a TSV file

```
# Calculate mean value
fr = open(r"Your file location\chromoData.tsv','r')
values = []
header = fr.readline() # Don't need the first line
lines = fr.readlines()
for line in lines:
       data = line.split()
       chromosome, pos, val = data
       value = float(val)
       values.append(value)
mean = sum(values)/len(values)
print('Mean value', mean)
10
```

```
chromosome position
chri 3417953 0.74634
chri 152662801 0.50036
chri 55281536 0.50036
chri 9168943 0.73375
chri 13170641 0.42181

chromoData.tsv
```


Example: reading a TSV file

```
You may use double back-slash in Windows:

"C:\\some_folder\\some_file.txt"

Use forward slash in other OS:

"/some_folder/some_file.txt"
```

```
# Calculate mean value
fr = open(r"Your file location\chromoData.tsv','r')
values = []
header = fr.readline() # Don't need the first line
lines = fr.readlines()
for line in lines:
      data = line.split()
      chromosome, pos, val = data
      value = float(val)
      values.append(value)
mean = sum(values)/len(values)
print('Mean value', mean)
```

```
chromosome position value chr1 3417953 0.74634 value chr7 152662801 0.50036 chr4 55281536 0.82376 chr1 9168943 0.73375 0.42181 chromoData.tsv
```


Example: reading a TSV file

```
"/some folder/some file.txt"
# Calculate mean value
                                                                     chromosome position Value
                                                                           3417953 0.74634
fr = open(r"Your file location\chromoData.tsv','r')
                                                                           152662801
                                                                     chr7
                                                                           55281536
                                                                     chr4
                                                                                    0.50036
                                                                          9168943 0.73375
                                                                    chr1
                                                                          13170641
values = []
                                                                       chromoData.tsv
                                                                                   0.42181
header = fr.readline() # Don't need the first line
lines = fr.readlines()
                                      Lines from the current position to the end
```

You may use double back-slash in Windows:

Use forward slash in other OS:

"C:\\some folder\\some file.txt"

```
for line in lines:
       data = line.split()
       chromosome, pos, val = data
       value = float(val)
       values.append(value)
mean = sum(values)/len(values)
print('Mean value', mean)
12
```


13

Reading data from files

Example: reading a TSV file

```
# Calculate mean value
                                                                    chromosome position value
fr = open(r"Your file location\chromoData.tsv','r')
                                                                           55281536
                                                                          9168943 0.73375
                                                                    chr1
                                                                          13170641
values = []
                                                                       chromoData.tsv
header = fr.readline() # Don't need the first line
lines = fr.readlines()
                                      Lines from the current position to the end
for line in lines:
                                                    Saves to Tuple
       data = line.split() 
                                           splitting by "white space" (space, tab)
       chromosome, pos, val = data
       value = float(val)
                                             "Tuple unpacking"
       values.append(value)
mean = sum(values)/len(values)
print('Mean value', mean)
```

You may use double back-slash in Windows:

"/some folder/some file.txt"

Use forward slash in other OS:

"C:\\some folder\\some file.txt"

0.50036

0.42181

Example: reading a TSV file

```
"/some folder/some file.txt"
# Calculate mean value
                                                                    chromosome position value
fr = open(r"Your file location\chromoData.tsv','r')
                                                                           55281536
                                                                                    0.50036
                                                                          9168943 0.73375
                                                                    chr1
                                                                          13170641
values = []
                                                                       chromoData.tsv
                                                                                   0.42181
header = fr.readline() # Don't need the first line
lines = fr.readlines()
                                      Lines from the current position to the end
for line in lines:
                                                    Saves to Tuple
       data = line.split() 
                                           splitting by "white space" (space, tab)
       chromosome, pos, val = data
       value = float(val)
                                             "Tuple unpacking"
       values.append(value)
mean = sum(values)/len(values)
```

You may use double back-slash in Windows:

Try this code

Use forward slash in other OS:

"C:\\some folder\\some file.txt"

print('Mean value', mean)

The preferred method when applicable

"Context management" using "with"

```
with open("file_name") as fr:
    data = fr.read()
    # do something with data
```



```
with open(r"Your file location\chromoData.tsv",'r') as fr:
    values = []
    header = fr.readline()
    lines = fr.readlines()
    for line in lines:
        data = line.split()
        chromosome, pos, val= data
        value = float(val)
        values.append(value)
mean = sum(values)/len(values)
print('Mean value', mean)
```


Learning outcomes

At the end of this lecture, you should be able to:

Read from a file

• Write to a file

- Perform file system operations using standard Python libraries
- Understand how to parse XML and CSV files using Python tools

Writing to files

Writing to a file also follow three basic steps:

- 1. Open a file for writing
- 2. Write the data to the file
- 3. Close the file.

"w" is for writing **text**, not for binary files (e.g. images)

Opening with "w" will delete the file content if file exists

```
file to write = "File location\\alpha writable file"
fw = open(file to write, 'w')
file to read = "File location\backslash \backslasha readable file"
fr = open(file to read, 'r')
lines = fr.readlines()
for line in lines:
        # do something clever ...
        # or simply write the line to another file:
        fw.write(line)
fr.close()
fw.close()
```

```
with open('output.txt','w') as fw:
    fw.write('write something')
```


Writing to files

Example

- Protein Data Bank (PDB) files are text files containing information about protein structure: atoms coordinates, bonds between atoms, metadata etc (examples provided with the lecture in supplementary materials)
- We will extract lines for "non-standard" chemical coordinates denoted by "HETATM" and write them into a new text file

https://proteopedia.org/wiki/index.php/HETATM

1FAT.pdb

HEADER											12-JU	N-96	1FAT		
TITLE															
	MOL_ID: 1;														
	2 MOLECULE: PHYTOHEMAGGLUTININ-L;														
COMPND	3 CHAIN: A, B, C, D;														
	4 SYNONYM: LEUCOAGGLUTINATING PHYTOHEMAGGLUTININ, PHA-L														
	MOL_ID: 1;														
	2 ORGANISM_SCIENTIFIC: PHASEOLUS VULGARIS;														
SOURCE	3 ORGANISM_TAXID: 3885;														
	4 ORGAN: SEED;														
SOURCE	5 OTHER_DETAILS: PURIFIED PHA-L WAS PURCHASED FROM SIGMA														
	S GLYCOPROTEIN, PLANT DEFENSE PROTEIN, LECTIN														
EXPDTA	TA X-RAY DIFFRACTION														
AUTHOR	OR T.HAMELRYCK,R.LORIS OAT 3 13-JUL-11 1FAT 1 VERSN														
								VER	SN						
REVDAT								VER	SN						
REVDAT	1	23-	DEC-	96	1FAT	()								
JRNL												YNS,			
JRNL		AUTH	2 R	.L	ORIS										
JRNL		TITL	T	ΗE	CRYS'	TALL(OGRAPHI	C ST	RUCTU	JRE	OF PH	YTOHE	MAGGLU	TININ-L.	
JRNL		REF	J	.B	IOL.C	HEM.				V	. 271	2047	9 1996		
								•••							
ATOM	7165	CD2	TEII	п	222		12 993	1.4	502	16	504	1 00	12 21		С
ATOM	7166	M	PEO	ם	232		12.893 15.832	1/1	006	20	526	1.00	12.21		N
		CA					45 404	4 5	440	0.1	070	4 00	E 4 E 4		C
		CA					16.169	1.4	520	22	000	1.00	50 64		c
							16 275	12	204	22	646	1.00	64 50		0
ATOM	7170	CP	CED	ם	233		16.275 13.874	15	2/5	22	017	1.00	50 65		C
ATOM	7171	00	OPD	ם	233		10.074	15	0/1	22	256	1.00	67 77		0
	7172				233		13.304	13	.041	23	.250	1.00	67.77		0
							12 201	_12	064	22	150	0 50	0 44		С
HETATM HETATM	7174	CI	MAG	A.	253		43.304	-12	120	22	106	0.50	15 04		c
															c
HETATM HETATM	7176	C4	MAG	A.	253		46.043	-14	0/5	22	025	0.50	12 06		c
HETATM															C
RETAIM	1111	CS	NAG	A	253		45.084	-12	.459	33	.240	0.50	13.18		C
								•••							
CONECT															
CONECT															
CONECT															
CONECT															
CONECT															
CONECT															
CONECT															
MASTER		597	0		12	12	52	0	32	6	7248	4	124	80	
END															

Writing to files

Example

- Protein Data Bank (PDB) files are text files containing information about protein structure: atoms coordinates, bonds between atoms, metadata etc (examples provided with the lecture in supplementary materials)
- We will extract lines for "non-standard" chemical coordinates denoted by "HETATM" and write them into a new text file

https://proteopedia.org/wiki/index.php/HETATM

```
# Open file for writing
fw = open(r"Your file location\hetatm.txt", 'w')
# Open file for reading
pdb file = r"Your file location \ 1FAT.pdb"
fr = open(pdb file, 'r')
# Loop over file lines
for line in fr:
        If HETATM
      if line.startswith("HETATM"):
              # Write into the output file
```

fw.write(line)

Close files

fw.close()
fr.close()

Flushing and importance of closing

Data "flushed" to disk on closure

While file is "open", it may be "locked" for other processes (more a problem in Windows than in Unix)

Special case of writing: Appending to a file

- Opens a file for appending
- Sets file pointer at the end of the file if the file exists
- If the file does not exist, it creates a new file for writing
- Close the file after appending

```
# Open file for appending
file to append = "File location\\an appendable file"
fa = open(file_to_append, 'a')
# Open other file for reading (if needed)
file to read = "File location\\a readable file"
fr = open(file to read, 'r')
# Do something that needs appending to fa
lines = fr.readlines()
for line in lines:
       # do something clever ...
       # or simply add the line to another file:
       fa.write(line)
# Close files
fr.close()
fa.close()
```


r+ Opens a file for both reading and writing

 W^+ Opens a file for both writing and reading (the same as above :)

a+ Opens a file for both appending and reading

May require manual management of the cursor position ...

Reading and Writing to a Binary File

- By default, the open() function opens files in the text format
- To open a file in a binary format, add 'b' to the mode parameter
 - rb Opens a file for reading in binary format
 - wb Opens a file for writing in binary format
 - ab Opens a file for appending in binary format

Learning outcomes

At the end of this lecture, you should be able to:

Read from a file

Write to a file

- Perform file system operations using standard Python libraries
- Understand how to parse XML and CSV files using Python tools

File system operations with standard libraries

Python provides a module called 'Os' and a sub-module called 'Os.path' with many useful functions for file system operations:

os:

File system operations with standard libraries

os.path:

```
exists(path)  # returns whether path exists
isfile(path)  # returns whether path is a "regular" file (as opposed to a folder)
isdir(path)  # returns whether path is a directory
islink(path)  # returns whether path is a symbolic link
join(*paths)  # joins the paths together into one long path
dirname(path)  # returns directory containing the path
basename(path)  # returns the path minus the dirname(path) in front
split(path)  # returns (dirname(path), basename(path))
```

Other useful libraries:

- from **pathlib** import **Path**
- import **shutil**

File system operations: examples

- Get list of files in a folder
- Find all fasta files in a folder
- Print full file names (with the path)


```
import os
directory = r"Your folder location\fasta directory"
files = []
# Get lit of files in directory
dir files = os.listdir(directory)
for file in dir files:
       # Check that file has fasta extension
       if file.endswith(".fasta"):
                                    Takes care about the slashes
              # Make full file name
              full file = os.path.join(directory, file)
              # Add to the output list
              files.append(full file)
print(files)
```


File system operations: examples

- Create sub-folders
- Make files in the sub-folders


```
import os
# Get the current directory
                                                    What is this?
cur dir = os.getcwd()
# Make sub-folders in the current directory
os.makedirs (os.path.join (cur dir, "sub1", "sub2"), exist ok=True)
# Make file in sub-folder1
with open(os.path.join(cur dir, "sub1", "file1.txt"), 'w') as fw:
    fw.write('This is a file in sub-folder 1')
# Make file in sub-folder2
with open(os.path.join(cur dir, "sub1", "sub2", "file2.txt"), 'w')
as fw:
    fw.write('This is a file in sub-folder 2')
```


Learning outcomes

At the end of this lecture, you should be able to:

- **/**
- Read from a file
- - Write to a file
- **//**
- Perform file system operations using standard Python libraries
- Understand how to parse XML and CSV files using Python tools

- Comma separated files (CSV) are common in bioinformatics (could use Tab as separators)
- CSV file can be treated as a normal text file and processed using standard string operations (i.e. reading lines as strings and then splitting by the commas or other separators)
- However, there is the inbuilt csv module in Python!

Handling CSV files

- In real life it

 PANDAS!
- The csv file contains information about amplified motifs in the genome
- The second column contains information about the length of the motifs
- The code below calculates the average length for all motifs

Extensible Markup Language (XML) is a way of storing information in files in a hierarchical way

xml.etree.ElementTree

modern, light and Pythonic XML parser

ElementTree

```
xmlFile = 'Your path\\languages.xml'

from xml.etree import ElementTree as ET

tree = ET.parse(xmlFile)

root = tree.getroot()

nodes = root.findall('./programming/language')
for node in nodes:
    print(node.text)
```

Python Java R CPP

cElementTree

used to be a faster equivalent of ElementTree, now deprecated

Other Python XML parsers

implement older non-Pythonic approaches (W3C DOM and Java-API)

minidom, pulldom, SAX, StAX could be quite particular in coding ...

```
from xml.dom import minidom
document = minidom.parse(r'path\items.xml')
itemlist = document.getElementsByTagName('item')
for i in itemlist:
    print(i.attributes['name'].value)
    print(i.firstChild.nodeValue, end="\n\n")
```

```
-<data summary="A collection of items">
     <items>
         <item name="item1">Table</item>
         <item name="item2">Chair</item>
         <item name="item3">Cat</item>
     </items>
L</data>
                 items.xml
         Item1
```

```
Table
Item2
Chair
Item3
```

Cat

Learning outcomes

At the end of this lecture, you should be able to:

- **/**
- Read from a file
- **/**
- Write to a file
- **//**
- Perform file system operations using standard Python libraries
- **/**
- Understand how to parse XML and CSV files using Python tools

