Ficha 1: Função

1.1 Generalidades

Definição 1.1 Sejam A e B dois subconjuntos de \mathbb{R} . Uma função f definida em A de valores em B é uma relação tal que para cada $x \in A$ associamos um único $y = f(x) \in B$. Dizemos que o y é a imagem do elemento (objeto) x pela função f.

O conjuntos A e B chamam-se respetivamente conjunto de partida e conjunto de chegada.

Seja $E \subset A$ um subconjunto,

$$f(E) = \{B \ni y = f(x) \text{ tal que } x \in E\}.$$

chama-se imagem de E pela função f.

EXEMPLO 1.1 Seja $f(x) = x^2$ e $E = \{-4\} \cup [-1, 1] \cup [2, 3[$, então $f(E) = [0, 1] \cup [4, 9] \cup \{16\}$.

Definição 1.2 Notamos por $D_f \subset \mathbb{R}$ o maior domínio onde f está definida. O conjunto $CD_f = \{y = f(x); x \in D_f\}$ chama-se contradomínio.

NOTA 1.1 Usa também a notação D^\prime_f para o contradomínio mas esta notação pode ser confundida com D_{f^\prime} que é o domínio da derivada.

EXEMPLO 1.2 Seja a função $f(x) = x^2$, o seu domínio é \mathbb{R} enquanto o contradominio é $[0, +\infty[$. Temos ambos f(-2) = f(2) = 4 então 4 é a imagem de 2 e -2 enquanto -2 e 2 são os antecedentes de 4.

Cuidado. Uma função pode ter uma expressão analítica e portanto não existir. Por exemplo consideramos a função $f(x) = \sqrt{-|x|-1}$, podemos verificar que nenhum valore é eligível então $D_f = \emptyset$, quer dizer que a função não existe na prática (apenas simbolicamente).

Definição 1.3 Seja f uma função de valores reais e D_f o seu domínio. Notamos por

$$G_f = \{(x, f(x)) \in \mathbb{R}^2; x \in D_f\}$$

o gráfico (ou curva representativa) da função f.

NOTA 1.2 Uma curva corresponde a uma função desde que para qualquer $x \in \mathbb{R}$, a reta vertical que passa pelo ponto (x,0) não corta o gráfico (zero interseção) se $x \notin D_f$, ou corta apenas uma vez o gráfico se $x \in D_f$.

EXEMPLO 1.3 Podemos também definir uma função por ramos onde a expressão é diferente em função do intervalo. Por exemplo,

$$f(x) = \begin{cases} 2x - 1 & \text{se } x > 0, \\ 0 & \text{se } x = 0, \\ \sin(x) & \text{se } x < 0, \end{cases} \qquad g(x) = \begin{cases} \ln(x) & \text{se } x \in [1, 4], \\ \frac{1}{x} & \text{se } x^2 < 1. \end{cases}$$

Definição 1.4 (paridade) Sejam f uma função $e E \subset D_f$ um subconjunto do domínio.

- $f \notin uma \ função \ par \ em \ E \ se \ \forall x \in E, \ -x \in E \ e \ \forall x \in E, \ f(-x) = f(x).$
- $f \notin uma \ função \ impar \ em \ E \ se \ \forall x \in E, \ -x \in E \ e \ \forall x \in E, \ f(-x) = -f(x).$

Definição 1.5 (período) Sejam f uma função e $E \subset D_f$ um subconjunto do domínio. A função f e periodica de período T em E se $\forall x \in E$, $x + T \in E$ e $\forall x \in E$, f(x + T) = f(x).

Definição 1.6 (monotonia) Sejam f uma função $e E \subset D_f$ um subconjunto do domínio.

- A função é crescente se $\forall x, y \in E, x \geq y \Rightarrow f(x) \geq f(y)$.
- A função é estritamente crescente se $\forall x, y \in E, x > y \Rightarrow f(x) > f(y)$.
- A função é decrescente se $\forall x, y \in E, x \leq y \Rightarrow f(x) \geq f(y)$.
- A função é estritamente decrescente se $\forall x, y \in E, x < y \Rightarrow f(x) > f(y)$.

Uma função crescente ou decrescente num conjunto E diz-se monótona em E. Determinar os intervalos de monotonia de uma função f consiste em determinar os intervalos de D_f onde f é crescente ou decrescente.

NOTA 1.3 É muito importante precisar o conjunto E. Por exemplo, a funcção $f(x)=x^2$ é crescente em $E=[0,+\infty[$ mas decrescente em $]-\infty,0]$. Além de mais, nem é crescerente nem é decrescente em \mathbb{R} .

Definição 1.7 (limitada) Sejam f uma função $e E \subset D_f$ um subconjunto do domínio.

- $m \notin um \ minorante \ de \ f \ em \ E \ se \ \forall x \in E, \ f(x) \ge m$
- f admite um mínimo m em E se existe $x_m \in E$ tal que $\forall x \in E, f(x) \geq m = f(x_m)$.
- M é um majorante de f em E se $\forall x \in E, f(x) < M$
- f admite um máximo M em E se existe $x_M \in E$ tal que $\forall x \in E, f(x) \leq M = f(x_M)$.

Uma função majorada e minorada é limitada.

Proposição 1.1

Sejam f uma função e $E \subset D_f$ um subconjunto do domínio. O mínimo e o máximo, quando exitem são únicos.

NOTA 1.4 A função $f(x)=x^2$ tem 0 como mínimo e 1 como máximo em [-1,1]. Podemos notar que existem dois pontos (x=-1 e x=1) que conduzem ao mesmo máximo. A função $f(x)=x^2$ não admite majorante no conjunto $E=[5,+\infty[$.

EXEMPLO 1.4 Seja a função $f(x) = \sin(x)$. A função não admite nem um mínimo nem um máximo no conjunto $E =]-\frac{\pi}{2}, \frac{\pi}{2}[$ porque $-\frac{\pi}{2} \notin E$ e $\frac{\pi}{2} \notin E$.

NOTA 1.5 Mínimo, mínimo absoluto ou mínimo global têm exatamente o mesmo significado. Portanto, neste curso usamos de preferência a expressão mínimo global em oposição a mínimo local (ver capítulo sobre as derivadas) enquanto a palavra **absoluto** é reservada as situação onde se trata do sinal (valor absoluto, convergência absoluta).

 ${
m NOTA}\ 1.6$ Existe também a noção de supremo de E que é o mínimo dos majorantes e de ínfimos de E como o máximo dos minorante, sejam

- supremo: $\sup(E) = \min\{x \in \mathbb{R}, x \text{ majorante de } E\}$
- infimos: $\inf(E) = \max\{x \in \mathbb{R}, x \text{ minorante de } E\}$

Por exemplo $\sup[3,4] = \sup[3,4] = 4$, enquanto temos $\inf(\mathbb{R}^-) = -\infty$.

Definição 1.8 Seja f uma função e D_f o seu domínio. Dizemos que $x \in D_f$ \acute{e} um zero (ou uma raiz) da função se f(x) = 0. Notamos por $\mathcal{Z}_f = \{x \in D_f; f(x) = 0\}$ o conjunto dos zeros da função f.

EXEMPLO 1.5 Os zeros da função $f(x) = x^2 - 1$ são -1, 1 e temos $\mathcal{Z}_f = \{-1, 1\}$.

Definição 1.9 (soma, produto) Sejam f e g duas funções e $E \subset D_f \cap D_g$. A função soma em E é definida por (f+g)(x) = f(x) + g(x), $\forall x \in E$ enquanto a função produto é dada por (fg)(x) = f(x)g(x).

Definição 1.10 (quociente) Sejam f e g duas funções e $E \subset D_f \cap D_g$ tal que $\forall x \in E$, $g(x) \neq 0$. Definimos a função quociente por

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

EXEMPLO 1.6 A função quociente $\tan(x) = \frac{\sin(x)}{\cos(x)}$ é bem definida desde que $\cos(x) \neq 0$, seja $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Definição 1.11 (composta) Sejam f e g duas funções.

- O conjunto $E \subset D_f$ é compatível para a composta se $f(E) \subset D_a$.
- Se E é compatível, definimos a função composta $h = g \circ f$ em E por

$$\forall x \in E, \ h(x) = (g \circ f)(x) = g(f(x)).$$

EXEMPLO 1.7 A principal dificuldade na composta de funções é determinar qual é o maior domínio $E\subset D_f$ compatível para a composta. Por exemplo se $f(x)=x^2-1$ e $g(y)=\ln(y)$ como $D_g=]0,+\infty[$ temos escolher E tal que $f(E)\subset]0,+\infty[$ quer dizer procurar os $x\in\mathbb{R}$ tal que $x^2-1>0$. O maior conjunto compatível é finalmente $E=]-\infty,-1[\cup]1,+\infty[$.

1.2 Exemplos de funções

Definição 1.12 Seja $a, b \in \mathbb{R}$, a função f(x) = ax + b chama-se função afim. O caso a = 0 corresponde à função constante.

Definição 1.13 Para qualquer $i \in \mathbb{N}_0$, a função $x \to x^i$ chama-se monómio de grau i. Um polinómio de grau n é constituido por monómios de grau $i \le n$ tal que

$$f(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

onde $a_0, a_1, ..., a_n$ são os coeficientes reais do polinómio.

O quociente $h = \frac{f}{g}$ de dois polinómios, f e g chama-se função racional.

EXEMPLO 1.8 A função $f(x) = x^3$ é um monómio de grau 3 e $g(x) = 3 - 4x^4 - 12x^5$ é um polinómio de grau 5. Finalmente obtemos a fração racional $h(x) = \frac{f(x)}{g(x)} = \frac{4x^3}{3 - 4x^4 - 12x^5}$.

Proposição 1.2

Para qualquer $x \in \mathbb{R}$, existe um único $n \in \mathbb{Z}$ tal que $n \le x < n+1$. Notamos por E(x) = n a parte inteira de x. Além de mais, para qualquer $x \in \mathbb{R}$, temos E(x+1) = E(x) + 1.

EXEMPLO 1.9 E(1.21) = 1, E(-1.21) = -2. Existe outro tipo de arredondamento na literatura e também em programação, como o Matlab, tal que 'round', 'floor', 'ceil' and 'trunc'.

Exercício 1.1 Seja a função f(x) = x - E(x) então f é periódica de período 1 e $f(\mathbb{R}) = [0, 1]$.

Definição 1.14 (Módulo) Para qualquer $x \in \mathbb{R}$, definimos o módulo de x, notado por |x|, a quantidade

$$|x| = \begin{cases} x & se \ x \ge 0, \\ -x & se \ x < 0. \end{cases}$$

Definimos a função sinal $sng(x) = \frac{x}{|x|} para x \neq 0 e sng(0) = 0.$

NOTA 1.7 Uma outra definição do módulo é $|x| = \max\{-x, x\}$. Deste última definição, é facil verificar que se |x| = 0 então x = 0.

Proposição 1.3

Seja $\alpha > 0, \beta \geq 0$. temos as equivalencias seguintes

- $|x| < \alpha \Leftrightarrow -\alpha < x < \alpha \Leftrightarrow x \in]-\alpha, \alpha[$.
- $|x| > \alpha \Leftrightarrow x < -\alpha \text{ ou } x > \alpha \Leftrightarrow x \in]-\infty, -\alpha[\cup]\alpha, +\infty[.$
- $|x| < \beta \Leftrightarrow -\beta < x < \beta \Leftrightarrow x \in [-\beta, \beta].$
- $|x| \ge \beta \Leftrightarrow x \le -\beta \text{ ou } x \ge \beta \Leftrightarrow x \in]-\infty, -\beta] \cup [\beta, +\infty[$.

Exercício 1.2 Determinar os x tal que |2x-3| < 1.

A relação |2x-3| < 1 é equivalente á -1 < 2x-3 < 1, quer dizer -1+3 < 2x < 1+3, seja ainda 1 < x < 2. Conclusão $x \in]1,2[$.

Exercício 1.3 Determinar os x tal que $|-3x+5| \ge 1$.

A relação $|-3x+5| \ge 1$ é equivalente á $-3x+5 \le -1$ ou $-3x+5 \ge 1$. A primeira desigualde dá $-3x \le -1-5$, seja ainda $x \ge 2$. Do mesmo modo temos $-3x+5 \ge 1$, seja ainda $x \le \frac{4}{3}$. Conclusão $x \in]-\infty, \frac{4}{3}] \cup [2, +\infty[$.

Proposição 1.4

Sejam
$$x, y \in \mathbb{R}$$
. Então temos ① $x \le |x|$, ② $|xy| = |x||y|$, ③ $|x + y| \le |x| + |y|$, ④ $|x| - |y| \le |x - y|$, ⑤ $2|xy| \le x^2 + y^2$.

Podemos verificar a propriedade: $\min(0,x) = -\max(0,-x)$ seja g(x) = -f(-x). Verificamos também $x = \min(0,x) + \max(0,x)$ e $|x| = \max(0,x) - \min(0,x)$.

Exercício 1.4 Mostrar que para qualquer $\varepsilon > 0, X, Y \in \mathbb{R}$, temos $|XY| \leq \frac{\varepsilon}{2}X^2 + \frac{1}{2\varepsilon}Y^2$.

1.3 Exercícios

Exercício 1 Determinar majorantes, minorantes, máximo e mínimo dos conjuntos seguintes quando existir

1.
$$[0,1],$$
 $[-1,5] \cap [2,7],$ $\mathbb{R}^+ \setminus [10,100],$ $\mathcal{Z}(x^3-x).$

2.
$$\{x \in \mathbb{R}, \ x^2 + 2x - 3 < 1\}, \qquad \{x \in \mathbb{R}, \ |x - 1| < 1\} \cap \{x \in \mathbb{R}, \ |x + 1| > 2\}.$$

3.
$$\{\frac{1}{n}, n \in \mathbb{N}\},$$
 $D_f \text{ com } f(x) = \sqrt{1 - 3x^2},$ $CD_f \text{ com } f(x) = \sin(2\pi x).$

Exercício 2 Determinar a paridade e a periodicidade das funções seguintes

1.
$$f(x) = \sin(x)$$
 em $[0, 2\pi]$, $f(x) = \sin(x)$ em $]-\pi, \pi[$, $f(x) = E(x)$ em \mathbb{R} .

2.
$$f(x) = \sin(\pi x)$$
 em \mathbb{R} , $f(x) = \sin(x - 1)$ em \mathbb{R} , $f(x) = \sin(x)\cos(x)$ em \mathbb{R} .

Exercício 3 Seja a função f(x) = x - E(x). Desenhar o gráfico de f no intervalo [-2, 2]. Determinar o domínio e contradominio de f. Mostrar que f é periódica de periódo T = 1 no seu domínio.

Exercício 4 Usando $(x+y)^2$ e $(x-y)^2$, mostrar que $2|xy| \le x^2 + y^2$. Usando $|x+y| \le |x| + |y|$, mostrar que $|x| - |y| \le |x-y|$.

Exercício 5 Determinar o conjunto solução:

1.
$$|5x - 1| < 4$$
, $|-3x - 4| > 1$, $||x| - 1| > 2$.

2.
$$|2x-1| = x+1$$
, $|2x-1| \le x-6$, $|x-1| \ge 2x-3$.

3.
$$|(x+2)(x-1)| < x-1$$
, $|(x-1)^2 - x^2| > 1$, $\left|\frac{x+2}{x-1}\right| < 1$, $|x^2 - 1| \ge 3$.

Exercício 6 Determinar o domínio e contradominio das funções seguintes

1.
$$f(x) = [\sin(x^2)]^2$$
, $f(x) = \sqrt{\tan(x)}$, $f(x) = \ln(|x| - 1)$.

2.
$$f(x) = \ln(x^2 - 2x - 2),$$
 $f(x) = \tan(\frac{\pi}{2x}),$ $f(x) = \ln(x^2 + \sqrt{x - 1}).$

3.
$$f(x) = \tan\left(\frac{\pi}{2}\sqrt{x}\right), \qquad f(x) = \sqrt{\ln(x-1)}, \qquad f(x) = \arctan\left(\sqrt{x^2-1}\right).$$

Exercício 7 Determinar o domínio da função composta $h=g \circ f$ com

1.
$$f(x) = \ln(x), q(y) = \sqrt{y}$$
.

2.
$$f(x) = \sqrt{x}, g(y) = \ln(y)$$
.

3.
$$f(x) = x^2 - 1$$
, $g(y) = \ln(y - 1)$.

4.
$$f(x) = \frac{1}{1+x}$$
, $g(y) = \frac{1}{\cos(y)}$.

Solução 1

- 1. (i) Minorante≤Min= 0 e 1=Max≤Majorante, (ii) Minorante≤Min= −1 e 7 ≤Majorante e não existe Max, (iii) Minorante≤= 0 e não há Min não há Max não há Majorante, (iv) Z(x³ − x) = {−1,0,1} Minorante≤Min= −1 e 1=Max≤Majorante.
- 2. (i) Minorante $\leq -1 \sqrt{5}$ e $-1 + \sqrt{5} \leq$ Majorante, não há Max nem Min , (ii) S =]1,2[Minorante ≤ 1 e $2 \leq$ Majorante, não há Max nem Min ,
- 3. (i) Minorante ≤ 0 e $1=Max \leq Majorante$, não há Min , (ii) $D_f =]-\infty, -1/\sqrt{3}] \cup [1/\sqrt{3}, +\infty[$, não há majorante, minorante, Min, Max, (iii) $DC_f = [-1,1]$, Minorante $\leq Min = -1$ e $1=Max \leq Majorante$.

Solução 2

- 1. (i) Não há paridade nem periodicidade, (ii) impar, não periódica, (iii) Não há paridade nem periodicidade.
- 2. (i) impar, periodico T=1, (ii) Não há paridade, periodico $T=2\pi$, (iii) impar, periodico $T=\pi$.

Solução 3

$$D(f) = \mathbb{R}, \ CD(f) = [0, 1[, \ temos \ f(x+1) = f(x).$$

Solução 4

(i) substrair as duas relações. (ii) usar z = x - y.

Solução 5

1. (i)
$$S =]-3/5, 1[$$
, (ii) $S =]-\infty, -5/3[\cup]-1, +\infty[$, (iii) $S =]-\infty, -3[\cup]3, +\infty[$.

2. (i) $S = \{0, 2\},$ (ii) $S = \emptyset,$ (iii) $S =]-\infty, 2].$

3. (i) $S = \emptyset$, (ii) $S =]-\infty, 0[\cup]1/2, +\infty[$, (iii) $S =]-\infty, -1[$, (iv) $S =]-\infty, -2[\cup]-2, +\infty[$.

Solução 6

1. (i)
$$D(f) = \mathbb{R}$$
, $CD(f) = [0,1]$, (ii) $D(f) = \bigcup_{k \in \mathbb{Z}} [0 + k\pi, \pi/2 + k\pi]$, $CD(f) = [0, +\infty[$, (iii) $D(f) =] - \infty, -1[\cup]1, +\infty[$, $CD(f) = \mathbb{R}$.

2. (i)
$$D(f) =]-\infty, 0[\cup]2, +\infty[$$
, $CD(f) = \mathbb{R},$ (ii) $D(f) = \mathbb{R}^* \setminus \{1/(1+2k), k \in \mathbb{Z}^*\}, CD(f) = \mathbb{R},$ (iii) $D(f) = [1, +\infty[, CD(f) = [0, +\infty[.$

3. (i)
$$D(f) = [0, +\infty[\setminus \{1+2k, k \in \mathbb{N}_0\}, CD(f) = \mathbb{R},$$
 (ii) $D(f) = [2, +\infty], CD(f) = [0, +\infty[, (iii) D(f) =] - \infty, -1[\cup]1, +\infty[, CD(f) = [0, \pi/2[.$

Solução 7

1.
$$D(g \circ f) = [1, +\infty[$$
.

2.
$$D(g \circ f) =]0, +\infty[$$
.

3.
$$D(g \circ f) =]-\infty, -\sqrt{2}[\cup]\sqrt{2}, +\infty[.$$

4.
$$D(g \circ f) = \mathbb{R} \setminus \left\{ \frac{1}{\pi/2 + k\pi} - 1, \ k \in \mathbb{Z} \right\}.$$