Austin Brummett Project 7 CS375 Due: November 20, 2018

Algorithm:

My algorithm focuses on a few things:

- Setting a maximum number of threads if N is greater than 10
 - 10 is max. number of threads
 - performance dropped off after 10
 - \circ Otherwise number of threads == N
- A counter variable called step is set globally
 - in my thread function
 - thread counter c = step++
 - c tracks which thread is doing the process
 - the statement i=c*N/numThreads
 - o tells which portions of the array each thread should take care of
 - sums everything into the sum variable and then puts it in the correct position in the array

Results:

Single Threaded

10	100	1000
.004	.013	5.518
.004	.013	5.871
.004	.013	5.533
.004	.013	5.558
.004	.013	5.823
.004	.013	5.6606
	.004 .004 .004 .004	.004 .013 .004 .013 .004 .013 .004 .013

Multi-Threaded

Trial \ N value	10	100	1000
1	.005	.007	1.196
2	.005	.007	1.212
3	.005	.006	1.223
4	.005	.007	1.208
5	.005	.008	1.221
Avg Time(s)	.005	.007	1.212

Results Discussion:

Based on my results and testing, single threaded processes were more efficient when N is less than 50, but as N increased above that the multi-threaded started to outperform the single threaded multiplication.

For N = 10:

Single threading was 1.25x faster

For N = 100:

Multi-Threaded is 1.86x faster For N = 1000:

Multi-Threaded is 4.67x faster