ENE3031 Computer Simulation — Practice Exam (Final) Fall 2014

Name:

- You will have 1 hours and 50 minutes.
- This exam is closed book and closed notes. Calculators are not allowed. No scrap paper is allowed. Make sure that there is nothing on your desk except pens and erasers.
- If you need extra space, use the back of the page and indicate that you have done so.
- The test must be **stapled** when you turn in your test.
- Show your work except problem #1. A correct answer without work will receive zero.
- We will not select among several answers. Make sure it is clear what part of your work you want graded. Otherwise, zero point will be given to the problem.

- 1. (20pts) Questions on Random Number Generation.
 - (a) Consider the pseudo-random number generator $X_i = (3X_{i-1} + X_{i-2} + 2) \mod(5)$ with seeds $X_0 = 0$ and $X_1 = 1$. Find X_{25} .
 - (b) Consider the PRN generator $X_i = 16807X_{i-1} \text{mod}(2^{31} 1)$ with seed $X_0 = 1111111$. Find the second PRN, U_2 .
 - (c) Consider the following n=30 pseudo-random numbers. (Read from left to right, and then down.)

Conduct a runs up-and-down test on these numbers and state what the conclusion of the test is. Use $\alpha = 0.10$. (Use $z_{\alpha/2} = z_{0.05} = 1.645$).

(d) Same question as (c) above, except do a χ^2 goodness-of-fit test when k=3 and $\alpha=0.10$ (Use one of the tables in the last page).

- 2. (20pts) Questions on Random Variate Generation.
 - (a) If U_1 and U_2 are i.i.d. Unif(0,1), what is the distribution of $-\ln(U_1^2(1-U_2)^2)$?
 - (b) Suppose the random variables X_1 and X_2 are i.i.d. with p.d.f. f(x) = 2x for $0 \le x \le 1$. Let $Y = \min(X_1, X_2)$. Find the inverse of Y 's c.d.f.
 - (c) Consider a Pois(200) random variable N. Using exactly one Unif(0,1) PRN U, show how to generate a realization of N.
 - (d) Suppose U=0.05. Use inverse transform to generate a Geometric (0.6) random variate.

3. (30pts) Consider the continuous Pareto distribution, whose p.d.f. is given by

$$f(x) = \theta a^{\theta} x^{-(\theta+1)}; \tag{1}$$

where $x \ge a \ge 0$ and $\theta > 0$. (The constant a is known and θ is unknown.)

(a) Suppose that $X_1, X_2, ...$ are i.i.d. Pareto with the p.d.f. given above. Find the MLE of θ .

(b) Find the c.d.f. F(x) of X_i .

- (c) Derive the inverse c.d.f. formula for generating observations from the Pareto distribution. Using a=1.5 and $\theta=2$, generate Pareto random variates X_1, X_2 for Unif(0,1) inputs $U_1=0.245$ and $U_2=0.839$.
- (d) Use a χ^2 goodness-of-fit test to test the hypothesis that the Pareto distribution with a=1.5 and $\hat{\theta}=2$ adequately fits the sampled values whose frequencies are summarized below. Use $\alpha=0.05$ and assume only $\hat{\theta}$ was estimated from the data. (Use one of the tables in the last page.)

Interval	Observed Frequency
[1.5, 1.677)	11
[1.677, 1.936)	30
[1.936, 2.372)	20
$[2.372,\infty)$	39
	100

- 4. (30pts) (Questions on Output Analysis)
 - (a) Suppose [0,1] is a 90% confidence interval for the mean μ based on 10 independent replications of size 1000. Now the boss has decided that she wants a 99% CI for 2μ based on those same 10 replications of size 1000. What is it?

- (b) Consider a stationary stochastic process $X_1, X_2, ...$, with covariance function $R_k = \text{Cov}(X_1, X_1 + k) = 3 k$ for k = 0, 1, 2, 3, and $R_k = 0$ for $k \ge 4$. Find $\text{Var}(\overline{X}_4)$.
- (c) Consider the following (approximately normal) average waiting times from 4 independent replications of a complicated queueing network. Suppose that each output is based on the average of 500 waiting times:

Use the method of independent replications to calculate a two-sided 90% confidence interval for the mean μ .

(d) Consider the following 10 snowfall totals in Buffalo, NY over consecutive years:

Use the method of batch means to calculate a two-sided 90% confidence interval for the mean μ . In particular, use two batches of size 5.

Some Formula

$$F(x) \; = \; \left\{ \begin{array}{l} \int_{-\infty}^x f(t) \, dt, & \text{if X is continuous} \\ \sum_{\{y|y \leq x\}} f(y) \; = \; \sum_{\{y|y \leq x\}} \Pr(X=y), & \text{if X is discrete} \end{array} \right.$$

$$\mu \; \equiv \; \mathsf{E}[X] \; \equiv \; \left\{ \begin{array}{l} \sum_x x p(x) & \text{if X is discrete} \\ \int_{\Re} x f(x) \, dx & \text{if X is ets} \end{array} \right.$$

$$\mathsf{E}[g(X)] \; \equiv \; \left\{ \begin{array}{ll} \sum_x g(x) p(x) & \text{if X is discrete} \\ \int_\Re g(x) f(x) \, dx & \text{if X is cts} \end{array} \right.$$

$$\mathsf{E}[g(X,Y)] \; \equiv \; \left\{ \begin{array}{ll} \sum_{y} \sum_{x} g(x,y) p(x,y) & \text{if } X \text{ is discrete} \\ \int_{\Re} \int_{\Re} g(x,y) f(x,y) \, dx dy & \text{if } X \text{ is cts} \end{array} \right.$$

- $Var[X] \equiv E[(X \mu)^2] = E[(X E[X])^2] = E[X^2] (E[X])^2$
- $p_X(x) = \sum_y p(x,y); p_Y(y) = \sum_x p(x,y); f_X(x) = \int_y f(x,y) dy; f_Y(y) = \int_x f(x,y) dx.$

$$F(x,y) = P(X \le x, Y \le y) = \begin{cases} \sum_{s \le x, t \le y} f(s,t) & \text{discrete} \\ \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt & \text{continuous} \end{cases}$$

$$\mathsf{E}[Y|X=x] \equiv \left\{ \begin{array}{ll} \sum_{y} y f(y|x) & \text{discrete} \\ \int_{\Re} y f(y|x) \, dy & \text{continuous} \end{array} \right.$$

$$\mathsf{Cov}(X,Y) \ \equiv \ \sigma_{XY} \ \equiv \ \mathsf{E}[(X-\mathsf{E}[X])(Y-\mathsf{E}[Y])] = \mathsf{E}[XY] - \mathsf{E}[X]\mathsf{E}[Y].$$

$$ho = \operatorname{Corr}(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

- Mgf: $M_X(t) = \mathsf{E}[e^{tX}]$ and $\mathsf{E}[X^k] = \frac{d^k}{dt^k} \mathsf{E}[e^{tX}]|_{t=0}$. Central Limit Theorem: Suppose X_1, \dots, X_n are i.i.d. with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}(X_i) = \mu$ σ^2 . Then as $n \to \infty$,

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{\mathcal{D}} \mathsf{Nor}(0, 1),$$

where " $\stackrel{\mathcal{D}}{\rightarrow}$ " means that the c.d.f. \rightarrow the Nor(0, 1) c.d.f.

• Normal Approximation to Binomial If $X \sim Bin(n, p)$ and n is large, then

$$\frac{Y - \mathsf{E}[Y]}{\sqrt{\mathsf{Var}(Y)}} \; \approx \; \mathsf{Nor}(0,1).$$

• Bernoulli(p) Distribution: success or failure

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } q \end{cases}$$

 $\mathsf{E}[X] = p$, $\mathsf{Var}(X) = pq$, and $M_X(t) = pe^t + q$.

• Binomial(n, p) Distribution: number of successes out of n trials Bin(n, p) is the sum of n i.i.d. Bern(p).

- $\Pr(Y=k) = \binom{n}{k} p^k q^{n-k}, n=0,1,\ldots, \ \mathsf{E}[Y] = np, \ \mathsf{Var}[Y] = npq.$ Geometric(p): number of trials until the 1st success $\Pr(Z = k) = q^{k-1}p$, for $k = 1, 2, ..., M_Z(t) = \frac{pe^t}{1 - qe^t}$, for $t < \ln(1/q)$ $\mathsf{E}[Z]=rac{1}{p}, \ \mathrm{and} \ \mathsf{Var}(Z)=rac{q}{p^2}.$ • Poisson with rate λ : number of events in a fixed interval
- $\Pr(X = k) = e^{-\lambda} \lambda^k / k!, \ k = 0, 1, 2, \dots \text{ and } \mathsf{E}[X] = \mathsf{Var}[X] = \lambda.$
- Uniform(a, b) Distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mathsf{E}[X] \; = \; \frac{a+b}{2} \qquad \qquad \mathsf{Var}(X) \; = \; \frac{(a-b)^2}{12}.$$

• Exponential with rate λ : lifetime with constant failure rate

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

$$F(x) = 1 - e^{-\lambda x} \quad \mathsf{E}[X] = 1/\lambda, \quad \mathsf{Var}(X) = 1/\lambda^2.$$

• Standard Normal Z The p.d.f. of the Nor(0,1) is

$$\phi(z) \equiv \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad z \in \Re.$$

$$\Pr\{Z \le z\} \equiv \Phi(z) \equiv \int_{-\infty}^{z} \phi(t) dt, \quad z \in \Re.$$

$$X \; \sim \; \operatorname{Nor}(\mu,\sigma^2) \; \Rightarrow \; Z \; \equiv \; \frac{X-\mu}{\sigma} \; \sim \; \operatorname{Nor}(0,1).$$

1.5 Percentage Points of The Student's t Distribution with v Degrees of Freedom

	υ -α				
ν	t _{0.005}	$t_{0.01}$	t _{0.025}	t _{0.05}	t _{0.10}
1	63.66	31.82	12.71	6.31	3.08
2	9.92	6.92	4.30	2.92	1.89
3	5.84	4.54	3.18	2.35	1.64
4	4.60	3.75	2.78	2.13	1.53
5	4.03	3.36	2.57	2.02	1.48
6	3.71	3.14	2.45	1.94	1.44
7	3.50	3.00	2.36	1.90	1.42
8	3.36	2.90	2.31	1.86	1.40
9	3.25	2.82	2.26	1.83	1.38
10	3.17	2.76	2.23	1.81	1.37
11	3.11	2.72	2.20	1.80	1.36
12	3.06	2.68	2.18	1.78	1.36
13	3.01	2.65	2.16	1.77	1.35
14	2.98	2.62	2.14	1.76	1.34
15	2.95	2.60	2.13	1.75	1.34
16	2.92	2.58	2.12	1.75	1.34
17	2.90	2.57	2.11	1.74	1.33
18	2.88	2.55	2.10	1.73	1.33
19	2.86	2.54	2.09	1.73	1.33
20	2.84	2.53	2.09	1.72	1.32
21	2.83	2.52	2.08	1.72	1.32
22	2.82	2.51	2.07	1.72	1.32
23	2.81	2.50	2.07	1.71	1.32
24	2.80	2.49	2.06	1.71	1.32
25	2.79	2.48	2.06	1.71	1.32
26	2.78	2.48	2.06	1.71	1.32
27	2.77	2.47	2.05	1.70	1.31
28	2.76	2.47	2.05	1.70	1.31
29	2.76	2.46	2.04	1.70	1.31
30	2.75	2.46	2.04	1.70	1.31
40	2.70	2.42	2.02	1.68	1.30
60	2.66	2.39	2.00	1.67	1.30
120	2.62	2.36	1.98	1.66	1.29
∞	2.58	2.33	1.96	1.645	1.28

Source: Robert E. Shannon, *Systems Simulation: The Art and Science*, © 1975, p. 372. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.

Table A.6 Percentage Points of The Chi-Square Distribution with v Degrees of Free

v	$\chi^{2}_{0.005}$	$\chi^{2}_{0.01}$	$\chi^{2}_{0.025}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.10}$
1	7.88	6.63	5.02	3.84	2.71
2	10.60	9.21	7.38	5.99	4.61
2 3	12.84	11.34	9.35	7.81	6.25
4	14.96	13.28	11.14	9.49	7.78
5	16.7	15.1	12.8	11.1	9.2
6	18.5	16.8	14.4	12.6	10.6
7	20.3	18.5	16.0	14.1	12.0
8	22.0	20.1	17.5	15.5	13.4
9	23.6	21.7	19.0	16.9	14.7
10	25.2	23.2	20.5	18.3	16.0
11	26.8	24.7	21.9	19.7	17.3
12	28.3	26.2	23.3	21.0	18.5
13	29.8	27.7	24.7	22.4	19.8
14	31.3	29.1	26.1	23.7	21.1
15	32.8	30.6	27.5	25.0	22.3
16	34.3	32.0	28.8	26.3	23.5
17	35.7	33.4	30.2	27.6	24.8
18	37.2	34.8	31.5	28.9	26.0
19	38.6	36.2	32.9	30.1	27.2
20	40.0	37.6	34.2	31.4	28.4
21	41.4	38.9	35.5	32.7	29.6
22	42.8	40.3	36.8	33.9	30.8
23	44.2	41.6	38.1	35.2	32.0
24	45.6	43.0	39.4	36.4	33.2
25	49.6	44.3	40.6	37.7	34.4
26	48.3	45.6	41.9	38.9	35.6
27	49.6	47.0	43.2	40.1	36.7
28	51.0	48.3	44.5	41.3	37.9
29	52.3	49.6	45.7	42.6	39.1
30	53.7	50.9	47.0	43.8	40.3
40	66.8	63.7	59.3	55.8	51.8
50	79.5	76.2	71.4	67.5	63.2
60	92.0	88.4	83.3	79.1	74.4
70	104.2	100.4	95.0	90.5	85.5
80	116.3	112.3	106.6	101.9	96.6
90	128.3	124.1	118.1	113.1	107.6
100	140.2	135.8	129.6	124.3	118.5

Source: Robert E. Shannon, *Systems Simulation: The Art and Science*, © 1975, p. 372. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.