Gym Tracker

Presentation

- Problems & possible solutions
- Our solution
- App development
- Conclusions
- Demo

Problems

- **Monitoring is subjective**: Many individuals lack access to professional trainers, and even when they do, feedback can still be subjective.
- **Cost of personal trainers**: Hiring a personal trainer is expensive, making it difficult for many to access personalized workout guidance.
- Home workouts lack feedback: Users often struggle to ensure they're performing exercises correctly, leading to poor results or injuries.
- **Wearable devices**: Wearable technology has shown promise in fitness tracking but often lacks detailed exercise recognition.

Exercise Tracking Challenges

- **Precision vs. tolerance**: Movement recognition needs to be precise for accuracy but tolerant enough to handle natural variations in form.
- Feedback: To offer guidance, processing must be instantaneous, most of the time and therefore computally demanding.
- **Comfort vs. sensor accuracy**: Wearables must balance being comfortable to wear while maintaining high sensor data fidelity.

Possible Solutions

Computer vision systems:

- Strengths: Accurate pose estimation and form analysis.
- Weaknesses: Privacy concerns, fixed location dependency, and high computational requirements.

Smartphone accelerometers:

- Strengths: Accessible due to wide smartphone ownership.
- Weaknesses: Limited placement options, lower-quality sensors.

Possible Solutions

Commercial fitness trackers:

- Strengths: Easy to wear, tracks basic metrics.
- Weaknesses: Closed ecosystems, limited exercise variety, and lack of advanced feedback mechanisms.

Custom wearable sensors:

- Strengths: Tailored for specific exercises, open development, and flexibility in placement.
- Weaknesses: Additional hardware costs and setup complexity.

Our Solution

1. ESP32-based dual sensor system:

- ESP32 microcontroller for its processing power and built-in Bluetooth connectivity.
- Supports real-time wireless data transmission.

2. MPU6050 IMU sensors:

- 3-axis accelerometer and gyroscope for motion data.
- An **oled** screen for direct feedback

4. 3D Printed Shell.

Tecnologies

Hardware

• **Sensor fusion algorithm**: Combines two IMU sensors (accelerometer and gyroscope) in order to produce, as faithfully as possible, accurate motion metrics.

Devices communicate through the I2C protocol.

Software: Detection System

- **Dataset**: Collected data for three exercises:
 - REST: Represents periods of inactivity or minimal movement to establish baseline metrics.
 - CURL: Cyclical bicep movement with moderate acceleration and rotation.
 - ARNOLD_PRESS: A complex exercise involving both high acceleration and rotational activity.

Software: Detection System

Machine Learning Model:

 Model: A lightweight Random Forest classifier was selected for its balance between accuracy and computational efficiency.

Moreover, the model was trained with circa 50.000 samples.

Software: Detection System

Software: App – React Native

- Real time Al assistant in exercise recognition during execution.
- Feedback on form and movement quality.
- Workout Schedule.

Expanded Exercise Library:

- Extend support to over 20 exercises.
- Allow users to define custom exercises.

Enhanced Feedback:

 Provide further insight and analysis on the exercises execution.

Hardware Optimizations:

- Introducing battery module
- Multi-point sensor setups for complex movements

Future Works

Thank You!

Live Demo