Методы оптимизации. Семинар 5. Векторное дифференцирование.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

3 октября 2016 г.

Напоминание

- Сопряжённые множества
- Свойства сопряжённых множеств
- Лемма Фаркаша

Основные определения

Более подробно смотрите здесь. Пусть $f:D \to E$, производная $\frac{\partial f}{\partial x} \in G$:

D	Ε	G	Название
\mathbb{R}	\mathbb{R}	\mathbb{R}	Производная, $f'(x)$
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	Градиент, $rac{\partial f}{\partial x_i}$
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{n \times m}$	Якобиан, $rac{\partial f_i}{\partial x_i}$
$\mathbb{R}^{m \times n}$	\mathbb{R}	$\mathbb{R}^{m \times n}$	$\frac{\partial f}{\partial x_{ij}}$

Также квадратная $n\times n$ матрица вторых производных $\mathbf{H}=[h_{ij}]$ в случае $f:\mathbb{R}^n\to\mathbb{R}$ называется гессиан и равна $h_{ij}=\frac{\partial^2 f}{\partial x_i\partial x_j}.$

Основная техника

Примеры

- **1** Линейная функция: $f(\mathbf{x}) = \mathbf{c}^\mathsf{T} \mathbf{x}$
- $oldsymbol{\circ}$ Квадратичная форма: $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T}\mathbf{x}$
- $oldsymbol{0}$ Квадрат ℓ_2 нормы разности: $f(\mathsf{x}) = \|\mathsf{A}\mathsf{x} \mathsf{b}\|_2^2$
- ullet Детерминант: $f(X) = \det X$
- След: $f(X) = \operatorname{Tr}(AXB)$

- **3** $f(s) = (x As)^T W(x As)$

Сложная функция

Пусть $f(\mathbf{x}) = g(u(\mathbf{x}))$, тогда $\nabla f(\mathbf{x}) = \frac{\partial g}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$ Важно смотреть на размерности и понимать как записывать $\frac{\partial g}{\partial u}$.

- Примеры:
 - $\mathbf{0}$ ℓ_2 норма вектора: $f(\mathbf{x}) = \|\mathbf{x}\|_2$
 - $oldsymbol{0}$ Билинейная форма: $f(\mathbf{x}) = u^{\mathsf{T}}(\mathbf{x})\mathsf{R}\nu(\mathbf{x}), \ \mathsf{R} \in \mathbb{R}^{m \times n}$
 - **3** Экспонента: $f(\mathbf{x}) = -e^{-\mathbf{x}^T\mathbf{x}}$

Резюме

- Производная по скаляру
- Производная по вектору
- Производная по матрице
- Производная сложной функции