WENKANG WEI

Current Address: Central, South Carolina, 29630 || Phone: 864-324-4885 || Email (Preferred): wenkanw@g.clemson.edu

Tech Blog: wenkangwei.github.io LinkedIn: www.linkedin.com/in/wenkang-wei-588811167/ || Academic Profile: meritpages.com/wenkang

SUMMARY

I'm a second-year master student with 3 years of experience in Machine Learning and 5 years of experience in programming, actively looking for a full-time job of **Data Scientist or Applied Scientist**, starting from Summer 2021.

TECHNICAL SKILLS

Programming: Python / Jupyter Notebook, PostgreSQL, C/C++, Matlab, HTML, Markdown, Latex

Tools: PyTorch, Tensorflow, PySpark, MPI, Hadoop MapReduce, Data Analysis toolkits (sklearn, pandas, seaborn, etc), Raspberry Pi, Linux, Google Colab, Git

Theory and Analysis Techniques:

- Data Analysis and Transformation: Feature Engineering, Data Visualization and Preprocessing Techniques, PCA, Word Embedding, TF-IDF, etc
- Machine Learning Modeling: Optimization, Collaborate Filtering, Matrix Factorization, SVM, Decision Tree, Clustering, Convolution Neural Network etc
- Model Evaluation and Improvement: Cross-Validation, Ensemble Learning, ROC, AUC, Feature Importance, etc.
- Statistic: Hypothesis Testing, A/B testing, Bayesian Theorem

WORK EXPERIENCE

Machine Learning Research Assistant

Clemson University Summer 2020-Current

- Proof of convergence and convergence rate of Multiple Update Algorithm (MUA) in Non-Negative Matrix Factorization Problem
 - 1. Formulated Matrix Factorization Problem into Constraint Optimization Problem
 - Applied Linear Algebra, Lagrange multiplier to simplify problem and utilized Lipschitz gradient, convex optimization to prove the convergence and convergence rate of MUA algorithm
 - 3. Implemented MUA and ALS (alternative least square) algorithm in Google Colab and Matlab to verify convergence result
 - 4. Collaborated and communicated with CS professor to present mathematic proof process orally
 - 5. Wrote a paper in AAAI format using Latex (unpublished due to copyright)

EDUCATION

Master of Computer Engineering,	Clemson University, Clemson, SC	May 2021	GPA 3.71/4.0
Minor: Computer Science	Clemson University, Clemson, SC	May 2021	
Bachelor of Electrical Engineering,	Clemson University, Clemson, SC	May 2019	GPA 3.8/4.0
Coursework: Applied Data Science, Data Mining, Distributed Computing, Reinforcement Learning, Nonlinear control system, etc.			

SELECTED PROJECT EXPERIENCE

Car Classification using Transfer Learning

Fall 2020

- Constructed data pipeline by **PyTorch** to extracted and transformed Stanford car images dataset (1.96GB dataset with 196 classes)
- Modified and tuned pre-trained models Google-Net, VGG-16, Res-Net 50 to fit car dataset using early stopping, weight decay techniques
- Improved test accuracy of the best model to 85% using cross-validation model selection techniques

Recommendation System based on MovieLens 25M dataset

Fall 2020

- Utilized PySpark to load movielens 25M dataset (25 million ratings) and used SQL to query and analyze data in databrick cluster platform
- Implemented and applied Mapper, Reducer functions in **Hadoop** File system to analyze contribution of different movie genres to ratings
- · Applied Collaborative Filtering and Matrix Factorization methods to construct a recommendation system with PySpark
- Achieved 0.67 mean square error score and deployed recommendation system using IPython widget

Youtube Comments Analysis and Pet Owners Classification

Fall 2020

- Utilized PySpark and SQL to load, query and explore Youtube comment text data (about 1GB after decompression)
- Built data pipeline and applied Term-Frequency-Inverse Document-Frequency(TF-IDF) to transform text data into numerical data
- Applied Logistic Regression, Random Forest, Gradient Boosting machine in PySpark to classify cat or dog owners from comments.
- Achieved 92% prediction accuracy on test set using Grid Search and Cross Validation method

Improvement on Bank Customer Churn Prediction

Summer 2020

- Visualized and analyzed data related to customer churn by using visualization toolkits: seaborn, matplotlib
- Preprocessed and transforms categorical data for Machine Learning model training using pandas toolkit and normalization techniques
- Established Data Pipeline and ML Models: Random Forest, Logistic Regression, SVM, etc. and Evaluated Models using ROC,AUC
- Improved Models Accuracy from 80% to 86% by using Model Selection, Cross Validation and Feature Selection, L1 Regularization techniques

IMDB Movie Rating Classification

Summer 2020

- Collected text data using BeautifulSoup tool and cleaned data by Stemming, removing stop words to analyze 1.4GB movie rating dataset
- Applied Word Embedding, Bag of Word model, TF-IDF Techniques to transform text data into different representations for model training
- Designed Convolution Neural Network with Tensorflow and applied other models: Support Vector Classifier, Random forest, etc.
- Evaluated model performance on validation, test dataset and achieved model testing accuracy 88% by model tuning

Quora Sincere Question Classification Kaggle competition

Spring 2020

- Communicated and collaborated with teammates to allocate work and balanced workload
- Analyzed and visualized frequent keywords in 6GB Quora dataset using world cloud to identify keywords related to insincere/sincere question
- Cleaned text data by missing values filling, stemming, stop words removing and visualized word clusters after applying Principle Component Analysis (PCA) to reduce data dimension
- Transformed text data into word-2-vector, TF-IDF and constructed models: BiLSTM, Random Forest, SVM, etc to classify sincere questions

Smart Reminder in CU-HackIt competition

Spring 2018

- Proposed "Smart Reminder" idea to improve worker productivity real world problem and collaborated with teammates to balanced workload
- Assisted to constructed Flask IoT Server in Raspberry Pi and designed Servo Motor, Buzzer control algorithm to interact with users
- Applied OpenCV for image processing and Tensorflow pre-trained model on COCO dataset for human detection
- Achieved the **Best overall Hack Price** with confident teamwork

HONOR

Eta Kappa Nu (HKN) (Spring 2018 - present); Golden Key Honor Society (Fall 2017- present); President's List (Summer 2019);

Dean's List (Fall 2016 – May 2019); Best overall hack award of CUhackit Competition (Spring 2018);