

Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo

Forest Fire Model and its Self-Organized Criticality

ZHE SUN & BOJUN CHENG

Outline

- 1. Motivation
- 2. Introduction
- 3. Simulation results
- 4. Conclusion and Outlook

1. Motivation

Self-organized criticality can be seen in various systems:

Forest fire is one of the systems

Predict the behavior of a dynamic system (SOC)

Risk assessment and hazard protection

2. Introduction

2.1 Forest Fire Model (FFM)

D...l - - -

Forest:	Kules:
n*n grid	(1) A tree can be ignited by lightening with a probability f
Empty site-0	(2) A burnt tree will become an empty site
Tree-1	(3) A tree can grow in an empty site with a probability p
Burning tree-2	(4) A burnt tree will cause fire in its neighboring tree with same probability g

Weather conditions:

$$P_{w} = P_{0w} \exp(-\beta \theta_{f})$$

Parameters:

size-n
probLightening-f
probGrow-p
probIgnite-g
density-d
wind-β
rain-r
step-N

2. Introduction

2.2 Self-Organized Criticality (SOC)

Definition:

A dynamic system can evolve into a non-equilibrium steady state

without tuning its parameters.

Properties:

- i) Long scale temporal fluctuations
- ii) Size-frequency distribution satisfies power-law
- iii) Flicker noise

Flicker noise is low-level semiconductor device noise that increases as a function of inverse carrier frequency, or 1/f.

3.1 Evolution of forest fire

video

3.2 The regime of SOC

i) Keep p/f= 10^3 , n=500, d=0.5, g=1,change p

0.8 tree 0.6 0.4 0.2 600 800 1000 1200 1400 1600 1800 2000 0.1 0.08 0.06 0.04 0.02 200 600 800 1000 1200 1400 1600 1800 Step

p = 0.05

 $p=10^{-2}$

 $p=10^{-3}$

Reminder: size-n

rain-r step-N

probLightening-f probGrow-p probIgnite-g density-d wind-β

Reminder: size-n probLightening-f probGrow-p problgnite-g density-d wind-B rain-r step-N

3.2 The regime of SOC

ii) Keep p/f= 10^3 , n=300, d=0.5, g=1, scan p

iii) Keep p=0.001, n=300, d=0.5, g=1,scan p/f

3.3 Effect of forest size

Keep p= 10^{-3} , f= 10^{-6} ,n=500, d=0.5, g=1, change n (b)

3.4 Scan other parameters

Keep p= 10^{-3} , f= 10^{-6} , d=0.5, n=300, scan g, β, r

Reminder:

size-n probLightening-f probGrow-p probIgnite-g density-d wind-β rain-r step-N

3.5 Flicker noise

Noise spectrum ~ f⁻²

3.6 Size-frequency distribution

4. Conclusion & Outlook

In this project:

- 1) We build a FFM based on CA
- 2) We scan different parameters to characterize our FFM
- 3) We observe the long scale temporal fluctuations of SOC states
- 4) We observe the 'flicker noise' in the noise spectrum
- 5) We show size-frequency distribution of fire clusters in our FFM satisfies the power-law

More things in the future:

Study larger forest within longer time scale

Consider more factors: landscape, species of tree

Scan power spectrum with different parameters

Understand the physical background behind the 'flicker noise' and the power-law distribution

Thanks for listening!