SUBIECTUL I (30p)

- **5p 1.** Să se determine numărul natural x din egalitatea 1+5+9+...+x=231.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $2x^2 5x + 3 \le 0$.
- **5p** 3. Să se determine inversa funcției bijective $f:(0,\infty)\to(1,\infty),\ f(x)=x^2+1$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, ..., 10\}$. Să se determine numărul submulțimilor cu trei elemente ale mulțimii A, care conțin elementul 1.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$, astfel încât distanța dintre punctele A(2,m) și B(m,-2) să fie 4.
- **5p 6.** Să se calculeze $\cos \frac{23\pi}{12} \cdot \sin \frac{\pi}{12}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, cu $a, b \in \mathbb{R}$ și $b \neq 0$.
- **5p** a) Să se arate că dacă matricea $X \in \mathcal{M}_2(\mathbb{R})$ verifică relația AX = XA, atunci există $u, v \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} u & v \\ v & u \end{pmatrix}$.
- **5p b)** Să se arate că $\forall n \in \mathbb{N}^*$, $A^n = \begin{pmatrix} x_n & y_n \\ y_n & x_n \end{pmatrix}$, unde $x_n = \frac{(a+b)^n + (a-b)^n}{2}$, $y_n = \frac{(a+b)^n (a-b)^n}{2}$.
- **5p c**) Să se rezolve în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $X^3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - **2.** Se consideră $a \in \mathbb{Z}_7$ și polinomul $f = X^6 + aX + \hat{5} \in \mathbb{Z}_7[X]$.
- **5p** a) Să se verifice că, pentru orice $b \in \mathbb{Z}_7$, $b \neq \hat{0}$, are loc relația $b^6 = \hat{1}$.
- **5p b)** Să se arate că $x^6 + \hat{5} = (x^3 \hat{4})(x^3 + \hat{4}), \forall x \in \mathbb{Z}_7$.
- **5p** c) Să se demonstreze că pentru orice $a \in \mathbb{Z}_7$, polinomul f este reductibil în $\mathbb{Z}_7[X]$.

SUBIECTUL III (30p)

- **1.** Se consideră numărul real a > 0 și funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x ax$.
- a) Să se determine asimptota oblică la graficul funcției f către $-\infty$.
- **5p b)** Să se determine punctele de extrem local ale funcției f.
- **5p** c) Să se determine $a \in (0, \infty)$, știind că $f(x) \ge 1$, $\forall x \in \mathbb{R}$.
 - 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{\ln x}{\sqrt{x}}$.
- **5p** a) Să se arate că funcția $F:(0,\infty)\to\mathbb{R},\ F(x)=2\sqrt{x}(\ln x-2)$, este o primitivă a funcției f.
- **5p b)** Să se arate că orice primitivă G a funcției f este crescătoare pe $[1,\infty)$.
- **5p c**) Să se calculeze aria suprafeței plane cuprinse între graficul funcției f, axa Ox și dreptele de ecuații $x = \frac{1}{e}$ și x = e.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că numărul $(1-i)^{24}$ este real.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\frac{3x-1}{x+1} + \frac{x+1}{2x-1} = 3$.
- **5p** 3. Să se determine inversa funcției bijective $f : \mathbb{R} \to (1, \infty)$, $f(x) = e^x + 1$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr \overline{ab} din mulțimea numerelor naturale de două cifre, să avem $a \neq b$.
- **5p** | **5.** Să se calculeze lungimea medianei din A a triunghiului ABC, unde A(-2,-1), B(2,0), C(0,6).
- **5p 6.** Fie vectorii $\vec{u} = m\vec{i} + 3\vec{j}$ şi $\vec{v} = (m-2)\vec{i} \vec{j}$. Să se determine m > 0 astfel încât vectorii \vec{u} şi \vec{v} să fie perpendiculari.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A \in \mathcal{M}_2(\mathbb{R})$, $A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$.
- **5p** a) Să se arate că există $a \in \mathbb{R}$ astfel încât $A^2 = aA$.
- **5p b)** Să se calculeze $(A A^{t})^{2009}$.
- **5p** c) Să se rezolve ecuația $X^5 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Pentru a,b din mulțimea $M = [0, \infty)$ se definește operația $a*b = \ln(e^a + e^b 1)$.
- **5p a)** Să se arate că dacă $a, b \in M$, atunci $a * b \in M$.
- **5p b**) Să se arate că legea de compoziție "*" este asociativă.
- **5p** c) Pentru $n \in \mathbb{N}$, $n \ge 2$, să se determine $a \in M$ astfel încât $\underbrace{a * a * ... * a}_{\text{de } n \text{ ori } a} = 2a$.

- **1.** Se consideră șirul $(a_n)_{n\in\mathbb{N}^*}$ dat de $a_1\in(0,1)$ și $a_{n+1}=a_n\left(1-\sqrt{a_n}\right),\ \forall n\in\mathbb{N}^*$.
- **5p** a) Să se arate că $a_n \in (0,1), \forall n \in \mathbb{N}^*$.
- **5p b)** Să se demonstreze că șirul $(a_n)_{n\in\mathbb{N}^*}$ este strict descrescător.
- **5p** c) Să se arate că șirul $(b_n)_{n \in \mathbb{N}^*}$, dat de $b_n = a_1^2 + a_2^2 + ... + a_n^2$, $\forall n \in \mathbb{N}^*$, este mărginit superior de a_1 .
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2 + x + 1}$.
- **5p** a) Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{2\sqrt{3}}{3} \operatorname{arctg} \left(\frac{2x+1}{\sqrt{3}} \right)$, $x \in \mathbb{R}$, este o primitivă a funcției f.
- **5p b)** Să se calculeze aria suprafeței delimitate de dreptele x = 0, x = 1, Ox și graficul funcției $g : \mathbb{R} \to \mathbb{R}$, g(x) = (2x+1)f(x).
- **5p** c) Să se calculeze $\lim_{n\to\infty}\int_{-n}^n f(x)dx$, unde $n\in\mathbb{N}^*$.

SUBIECTUL I (30p)

- **5p** 1. Să se ordoneze crescător numerele $\sqrt{2}$, $\sqrt[3]{4}$, $\sqrt[4]{5}$.
- **5p** 2. Să se determine valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^2 8x + 1$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\lg(x-1) + \lg(6x-5) = 2$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie pătrat perfect.
- **5p 5.** Să se determine ecuația dreptei care trece prin punctul A(6,4) și este perpendiculară pe dreapta d: 2x-3y+1=0.
- **5p 6.** Ştiind că $\sin \alpha = \frac{1}{3}$, să se calculeze $\cos 2\alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se verifice egalitatea $A^2 A = 2I_3$.
- **5p b**) Să se calculeze A^{-1} .
- **5p** c) Să se arate că $A^{2009} + A^{2008} = 2^{2008} (A + I_3)$.
 - **2.** Se consideră cunoscut că $(\mathbb{Z}, *, \circ)$ este un inel comutativ, unde x * y = x + y 3 și $x \circ y = x \cdot y 3x 3y + 12$, $\forall x, y \in \mathbb{Z}$.
- **5p** a) Să se arate că elementul neutru al legii de compoziție "°" este 4.
- **5p b)** Să se determine $a, b \in \mathbb{Z}$ astfel încât între inelele $(\mathbb{Z}, *, \circ)$ și $(\mathbb{Z}, +, \cdot)$ să existe un izomorfism de forma $f : \mathbb{Z} \to \mathbb{Z}$, $f(x) = a \cdot x + b$.
- **5p** c) Să se rezolve în mulțimea \mathbb{Z} ecuația $\underbrace{x \circ x \circ ... \circ x}_{\text{de } 2009 \text{ ori } x} = 2^{2009} + 3$.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=18x^2-\ln x$.
- a) Să se determine intervalele de monotonie ale funcției f.
- **5p b)** Să se determine $a \in \mathbb{R}$ pentru care $f(x) \ge a$, $\forall x \in (0, \infty)$.
- **5p** c) Să se determine numărul de rădăcini reale ale ecuației f(x) = m, unde m este un parametru real.
 - **2.** Se consideră funcțiile $f_a: \mathbb{R} \to \mathbb{R}$, $f_a(x) = \frac{1}{|x-a|+3}$, unde $a \in \mathbb{R}$.
- **5p** a) Să se arate că, pentru orice $a \in \mathbb{R}$, funcția f_a are primitive strict crescătoare pe \mathbb{R} .
- **5p b)** Să se calculeze $\int_0^3 f_2(x) dx$.
- **5p** c) Să se calculeze $\lim_{a \to \infty} \int_0^3 f_a(x) dx$.

SUBIECTUL I (30p)

- **5p** 1. Să se arate că numărul $\left(\frac{1}{1-i} \frac{1}{1+i}\right)^2$ este real.
- **5p** 2. Să se arate că vârful parabolei $y = x^2 + 5x + 1$ este situat în cadranul III.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $9^x 10 \cdot 3^{x-1} + 1 = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă exact două cifre egale.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = a\vec{i} + (a+1)\vec{j}$ și $\vec{v} = -(5a-1)\vec{i} + 2\vec{j}$ sunt perpendiculari.
- **5p 6.** Să se calculeze lungimea laturii BC a triunghiului ascuțitunghic ABC știind că AB = 6, AC = 10 și că aria triunghiului ABC este egală cu $15\sqrt{3}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.
- **5p a**) Să se calculeze rangul matricei *A*.
- **5p b)** Să se demonstreze că $det(A^t \cdot A) = 0$.
- **5p** c) Să se determine o matrice nenulă $B \in \mathcal{M}_{3,2}(\mathbb{Q})$ astfel încât $AB = O_2$.
 - **2.** Se știe că (G, \circ) este grup, unde $G = (3, \infty)$ și $x \circ y = (x-3)(y-3) + 3$. Se consideră funcția $f:(0,\infty) \to G$, f(x) = x + 3.
- **5p** a) Să se calculeze $4 \circ 5 \circ 6$.
- **5p b)** Să se demonstreze că funcția f este un izomorfism de grupuri, de la $(0, \infty)$, \cdot la (G, \circ) .
- **5p** c) Să se demonstreze că dacă H este un subgrup al lui G care conține toate numerele naturale $k \ge 4$, atunci H conține toate numerele raționale q > 3.

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{-1,0\} \to \mathbb{R}, f(x) = \frac{2x+1}{x^2(x+1)^2}$.
- **5p** a) Să se determine asimptotele graficului funcției f.
- **5p b**) Să se demonstreze că funcția f nu are puncte de extrem local.
- **5p** c) Să se calculeze $\lim_{n\to\infty} (f(1)+f(2)+f(3)+...+f(n))^{n^2}$, unde $n\in\mathbb{N}^*$.
 - **2.** Se consideră șirul $(I_n)_{n\in\mathbb{N}^*}$, $I_n = \int_1^2 \frac{x^n}{x^n+1} dx$, $n\in\mathbb{N}^*$.
- **5p a**) Să se calculeze I_1 .
- **5p b**) Să se arate că $I_n \le 1$, $\forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

- 1. Să se calculeze $\frac{1}{1+2i} + \frac{1}{1-2i}$. 5p
- **2.** Să se rezolve în \mathbb{Z} inecuația $x^2 10x + 12 \le 0$. 5p
- **3.** Să se determine inversa funcției bijective $f:(1,\infty)\to(0,\infty)$, $f(x)=3\log_2 x$. 5p
- **4.** Să se determine numărul funcțiilor $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ cu proprietatea că f(1)=f(4). **5**p
- **5.** Să se determine coordonatele vârfului D al paralelogramului ABCD stiind că A(-2,9), B(7,-4), C(8,-3). **5p**
- **6.** Triunghiul ABC are $B = \frac{\pi}{2}$ și lungimea razei cercului circumscris egală cu 1. Să se calculeze lungimea laturii AC.

SUBIECTUL II (30p)

- **1.** Se consideră punctele A(0, 6), B(1, 4), C(-1, 8) și matricea M = 0
- a) Să se arate că punctele A, B, C sunt coliniare. 5p
- **b)** Să se determine rangul matricei M în cazul a = 3, b = 0. **5p**
- c) Să se arate că dacă unul dintre minorii de ordin trei ai lui M, care conțin ultima coloană, este nul, **5p** atunci rang(M) = 2.
 - **2.** Pe mulțimea \mathbb{Z} definim legea de compoziție x * y = 5xy + 6x + 6y + 6.
- a) Să se arate că legea "*" este asociativă. **5**p
- b) Să se determine elementele simetrizabile ale mulțimii ℤ în raport cu legea "*". 5p
- 5р c) Să se rezolve ecuația x * x * x * ... * x = -1. de 2009 ori x

- **1.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}, f(x) = \ln x \frac{2(x-1)}{x+1}$.
- a) Să se calculeze derivata funcției f. **5p**
- 5p b) Să se determine punctele graficului funcției f în care tangenta la grafic este paralelă cu dreapta de ecuație 9y = 2x.
- c) Să se arate că, dacă x > 1, atunci $\ln x \ge \frac{2(x-1)}{x+1}$. **5p**
 - **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x^2}$ și șirul $(a_n)_{n\geq 1}$, $a_n=f(1)+f(2)+...+f(n)$.
- a) Să se arate că $f(k+1) \le \int_{k}^{k+1} f(x) dx \le f(k), \forall k \in (0, \infty)$. 5p
- **b)** Să se calculeze $\lim_{n \to \infty} \int_{1}^{n} f(x) dx, n \in \mathbb{N}$. 5p
- **5p** c) Să se arate că șirul $(a_n)_{n\geq 1}$ este convergent.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze suma tuturor numerelor naturale de două cifre care se divid cu 11.
- **5p** 2. Să se determine funcția f de gradul al doilea știind că f(-1)=1, f(0)=1, f(1)=3.
- **5p 3.** Să se rezolve în mulțimea $(0,\pi)$ ecuația $\sin 3x = \sin x$.
- **5p 4.** Câte numere naturale de trei cifre distincte se pot forma cu elemente ale mulțimii {2,4,6,8}?
- **5p 5.** Se consideră triunghiul *ABC* cu vârfurile în A(1,2), B(2,-2) și C(4,6). Să se calculeze $\cos B$.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris triunghiului ABC știind că $C = \frac{\pi}{6}$ și AB = 6.

SUBIECTUL II (30p)

- **1.** Se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \in S_5$.
- **5p** a) Să se calculeze σ^{2009}
- **5p b)** Să se dea exemplu de o permutare $\tau \in S_5$ astfel încât $\tau \sigma \neq e$ și $(\tau \sigma)^2 = e$.
- **5p** c) Să se demonstreze că, pentru orice $\tau \in S_5$, există $p \in \mathbb{N}^*$ astfel încât $\tau^p = e$.
 - **2.** Se consideră $a \in \mathbb{C}$, x_1 , x_2 , $x_3 \in \mathbb{C}$ rădăcinile ecuației $x^3 2x^2 + 2x a = 0$ și determinantul

$$\Delta = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_3 & x_1 & x_2 \\ x_2 & x_3 & x_1 \end{vmatrix}.$$

- **5p** a) Pentru a=1, să se determine x_1 , x_2 şi x_3 .
- **5p b**) Să se arate că, pentru orice $a \in \mathbb{R}$, ecuația are o singură rădăcină reală.
- **5p** c) Să se arate că valoarea determinantului Δ nu depinde de a.

- **1.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}$, $f(x) = e^{x \cdot \ln x}$.
- **5p** a) Să se arate că $f'(x) = f(x)(1+\ln x), \forall x > 0$.
- **5p b**) Să se determine valoarea minimă a funcției f.
- **5p** c) Să se arate că funcția f este convexă pe $(0, \infty)$.
 - **2.** Se consideră, pentru fiecare $n \in \mathbb{N}^*$, funcțiile $f_n: (-1, \infty) \to \mathbb{R}$, $f_n(x) = \frac{x^{2n}}{1+x}$ și $g_n: (-1, \infty) \to \mathbb{R}$, $g_n(x) = 1 x + x^2 x^3 + \dots x^{2n-1} + f_n(x)$.
- **5p** a) Să se calculeze $\int_0^1 g_2(x) dx$.
- **5p b)** Să se arate că $0 \le \int_0^1 f_n(x) dx \le \frac{1}{2n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \left(1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{1}{2n-1} \frac{1}{2n} \right), n \in \mathbb{N}.$

Varianta 7

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze modulul numărului complex $z = \frac{8+i}{7-4i}$.
- **5p** 2. Să se determine valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 6x 9$.
- **5p** 3. Să se rezolve în mulțimea $[0, 2\pi)$ ecuația $\sin x = -\frac{1}{2}$.
- **5p** 4. Să se determine $n \in \mathbb{N}^*$ pentru care mulțimea $\{1, 2, ..., n\}$ are exact 120 de submulțimi cu două elemente.
- 5p 5. Se știe că, în triunghiul ABC, vectorii $\overrightarrow{AB} + \overrightarrow{AC}$ și $\overrightarrow{AB} \overrightarrow{AC}$ au același modul. Să se demonstreze că triunghiul ABC este dreptunghic.
- **5p 6.** Să se calculeze lungimea razei cercului înscris în triunghiul *ABC* care are lungimile laturilor egale cu 3, 4 și 5.

SUBIECTUL II (30p)

- 1. Se consideră matricele $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$ și sistemul $\begin{cases} x + 2y + 3z + 4t = 3 \\ y + 2z + 3t = 2 \\ z + 2t = 1 \end{cases}$
- **5p** a) Să se determine rangul matricei A.
- **5p b**) Să se determine mulțimea soluțiilor sistemului.
- **5p** c) Să se demonstreze că ecuația XA = B nu are soluții $X \in \mathcal{M}_{1,3}(\mathbb{C})$.
 - **2.** Se consideră mulțimea $G = \left\{ A(k) = \begin{pmatrix} 2^k & 2^k \\ 2^k & 2^k \end{pmatrix} | k \in \mathbb{Z} \right\}$, și pentru fiecare $t \in \mathbb{Z}$ notăm cu

 $H_t = \{ A(kt-1) \mid k \in \mathbb{Z} \}$. Se admite faptul că (G, \cdot) este un grup, unde "·" este înmulțirea matricelor.

- **5p** a) Să se arate că $\forall n, p \in \mathbb{Z}$, $A(n) \cdot A(p) = A(n+p+1)$.
- **5p b**) Să se demonstreze că, pentru orice $t \in \mathbb{Z}$, H_t este un subgrup al grupului (G, \cdot) .
- **5p** c) Să se demonstreze că grupurile (G,\cdot) și $(\mathbb{Z},+)$ sunt izomorfe.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\ln x$ și șirul $(x_n)_{n\in\mathbb{N}^*}, x_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}-\ln n, \forall n\in\mathbb{N}^*$.
- **5p** a) Să se determine asimptotele graficului funcției f.
- **5p b)** Să se arate că, pentru orice k > 0, $\frac{1}{k+1} < f(k+1) f(k) < \frac{1}{k}$.
- **5p** c) Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este descrescător și are termenii pozitivi.
 - 2. Se consideră funcțiile $f:(-1,\infty)\to\mathbb{R}$, $f(x)=\frac{2x}{(x+1)(x^2+1)}$ și $F:(-1,\infty)\to\mathbb{R}$,

 $F(x) = a \ln(x+1) + b \ln(x^2+1) + c \arctan x$, unde a, b, c sunt parametri reali.

- **5p** a) Să se determine a, b, c astfel încât F să fie o primitivă a funcției f.
- **5p b)** Să se calculeze $\int_0^1 f(x) dx$.
- **5p** c) Să se studieze monotonia funcției F, în cazul în care F este primitivă a funcției f.

SUBIECTUL I (30p)

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $z^2 = -4$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^2 + x + c$. Știind că punctele A(1,2) și B(0,3) aparțin graficului funcției f, să se determine numerele reale a și c.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{7x+1} x = 1$.
- **5p 4.** Câte numere naturale de patru cifre distincte se pot forma cu cifre din mulțimea {1,3,5,7,9}?
- **5p 5.** Se consideră paralelogramul ABCD și punctele E și F astfel încât $\overrightarrow{AE} = \overrightarrow{EB}$, $\overrightarrow{DF} = 2\overrightarrow{FE}$. Să se demonstreze că punctele A, F și C sunt coliniare.
- **5p 6.** Fie triunghiul *ABC*. Să se calculeze lungimea înălțimii corespunzătoare laturii *BC* știind că AB = 13, AC = 14 și BC = 15.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$.
- **5p** a) Să se calculeze $\det(A)$.
- **5p b)** Să se arate că $A^{2n} = \frac{2^{2n} 1}{3}A + \frac{2^{2n} + 2}{3}I_3$, pentru orice $n \in \mathbb{N}^*$.
- **5p c**) Să se determine A^{-1} .
 - **2.** Se consideră $a \in \mathbb{R}$ și ecuația $x^3 x + a = 0$, cu rădăcinile complexe x_1, x_2, x_3 .
- **5p** a) Să se calculeze $(x_1 + 1)(x_2 + 1)(x_3 + 1)$.
- **5p b**) Să se determine x_2 și x_3 știind că $x_1 = 2$.
- **5p** c) Să se determine $a \in \mathbb{R}$ pentru care x_1, x_2, x_3 sunt numere întregi.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \cos x$ și șirul $(x_n)_{n \in \mathbb{N}}$, $x_0 = 0$, $x_{n+1} = f(x_n)$, $\forall n \in \mathbb{N}$.
- **5p** a) Să se arate că funcția f este crescătoare pe \mathbb{R} .
- **5p b)** Să se arate că $0 \le x_n \le \frac{\pi}{2}$, $\forall n \in \mathbb{N}$.
- **5p** c) Să se arate că șirul $(x_n)_{n\geq 1}$ este convergent la $\frac{\pi}{2}$.
 - **2.** Se consideră șirul de numere reale $(I_n)_{n\in\mathbb{N}}$, definit de $I_0 = \frac{\pi}{2}$ și $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$, $n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că șirul $(I_n)_{n\in\mathbb{N}}$ este descrescător.
- **5p** c) Să se arate că $nI_nI_{n-1} = \frac{\pi}{2}$, $\forall n \in \mathbb{N}^*$.

SUBIECTUL I (30p)

- **5p** 1. Să se determine numărul natural x pentru care 1+3+5+...+x=225.
- **5p 2.** Să se determine valorile parametrului real m știind că graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx 2m$ intersectează axa Ox în două puncte situate la distanța 3.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2(2^{-x+1}+1) = x$.
- **5p 4.** Să se arate că $C_{17}^3 > C_{17}^{15}$
- **5p** | **5.** Fie hexagonul regulat \overrightarrow{ABCDEF} de latură 4. Să se calculeze modulul vectorului $\overrightarrow{AC} + \overrightarrow{BD}$.
- **5p 6.** Să se arate că $\sin^2 1^\circ + \sin^2 2^\circ + ... + \sin^2 90^\circ = \frac{91}{2}$

SUBIECTUL II (30p)

- **1.** Fie $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$ trei puncte din plan şi matricea $M = \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$.
- **5p** a) Să se arate că, dacă A, B, C se află pe dreapta de ecuație y = 2x, atunci $\det(M) = 0$.
- **5p b**) Să se arate că, dacă triunghiul *ABC* este dreptunghic și are catetele de lungime 1, atunci $\det(M) = \pm 1$.
- **5p** c) Să se arate că, dacă matricea M este inversabilă, atunci suma elementelor matricei M^{-1} este 1.
 - **2.** Se consideră mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} | a, b \in \mathbb{Z} \right\}$.
- **5p** a) Să se arate că, dacă $X \in A$ şi $Y \in A$, atunci $X + Y \in A$.
- **5p b)** Să se arate că, dacă $X \in A$, $Y \in A$ și $XY = O_2$, atunci $X = O_2$ sau $Y = O_2$.
- **5p c)** Admitem cunoscut faptul că *A* este inel în raport cu adunarea și înmulțirea matricelor. Să se determine elementele inversabile ale acestui inel.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin x$.
- **5p** a) Să se arate că funcția f este crescătoare.
- **b)** Admitem că pentru fiecare $n \in \mathbb{N}$ ecuația f(x) = n are o soluție unică x_n . Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este nemărginit.
- **5p** c) Să se calculeze $\lim_{n\to\infty}\frac{x_n}{n}$, unde șirul $(x_n)_{n\geq 1}$ a fost definit la **b**).
 - **2.** Fie funcțiile $f, g_n : [0,1) \to \mathbb{R}, f(x) = \frac{1}{1-x}, g_n(x) = \frac{x^n}{1-x}$, unde $n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze $\int_0^{\frac{1}{2}} (f(x) g_2(x)) dx.$
- **5p b)** Să se arate că $0 \le \int_0^{\frac{1}{2}} g_n(x) dx \le \frac{1}{2^n}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se arate că $\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \dots + \frac{1}{n \cdot 2^n} \right) = \ln 2$.

SUBIECTUL I (30p)

- **5p** 1. Știind că $z \in \mathbb{C}$ și că $z^2 + z + 1 = 0$, să se calculeze $z^4 + \frac{1}{z^4}$.
- **5p** 2. Să se determine funcția f de gradul întâi, pentru care f(f(x)) = 2f(x) + 1, oricare ar fi $x \in \mathbb{R}$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\lg(x+1) \lg 9 = 1 \lg x$.
- **5p 4.** Să se determine numărul termenilor raționali din dezvoltarea $(3+\sqrt[3]{3})^{10}$.
- **5p** | **5.** Să se determine coordonatele centrului de greutate al triunghiului ABC, știind că A(-1,0), B(0,2), C(2,-1).
- **5p 6.** Să se arate că unghiul vectorilor $\vec{u} = 5\vec{i} 4\vec{j}$ și $\vec{v} = 2\vec{i} + 3\vec{j}$ este obtuz.

SUBIECTUL II (30p)

- **1.** Se consideră permutările $e, \alpha \in S_3$, $e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
- **5p** a) Să se calculeze α^3 .
- **5p b)** Să se rezolve ecuația $\alpha^{2009} \cdot x = e$, $x \in S_3$.
- **5p** c) Să se demonstreze că, oricare ar fi ordinea factorilor, produsul tuturor permutărilor din S_3 este permutare impară.
 - **2.** Fie inelul $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}.$
- **5p** a) Să se dea exemplu de un număr complex z astfel încât $z \notin \mathbb{Z}[i]$ și $z^2 \in \mathbb{Z}[i]$.
- **5p b**) Să se determine elementele inversabile ale inelului $\mathbb{Z}[i]$.
- **5p** c) Să se arate că mulțimea $H = \{(m+n) + (m-n)i | m, n \in \mathbb{Z}\}$ este parte stabilă a lui $\mathbb{Z}[i]$ în raport cu înmulțirea.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \arctan x \ln(1 + x^2)$.
- **5p** a) Să se arate că funcția f este convexă pe \mathbb{R} .
- **5p b**) Să se arate că funcția f' este mărginită.
- **5p** c) Să se demonstreze că $f(x) \ge 0, \forall x \in \mathbb{R}$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^n}{1+x^{2n}} dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $I_n \le \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

5p 1. Să se determine $a, b \in \mathbb{R}$ știind că numerele 2, a, b sunt în progresie geometrică și 2, 17, a sunt în progresie aritmetică.

5p 2. Să se rezolve ecuația f(f(x)) = 0, știind că $f: \mathbb{R} \to \mathbb{R}$, f(x) = -3x + 2.

5p | **3.** Să se rezolve în mulțimea $[0,2\pi)$ ecuația tg(-x) = 1 - 2tg x.

5p | **4.** Să se determine numărul funcțiilor $f:\{0,1,2\} \rightarrow \{0,1,2\}$ care verifică relația f(2)=2.

5p 5. Se consideră triunghiul ABC și punctele D, E astfel încât $\overrightarrow{AD} = 2\overrightarrow{DB}, \overrightarrow{AE} = 2\overrightarrow{EC}$. Să se arate că dreptele DE și BC sunt paralele.

5p 6. Să se calculeze lungimea razei cercului circumscris triunghiului ABC, dacă $A = \frac{\pi}{4}$, $B = \frac{\pi}{6}$ și AB = 6.

SUBIECTUL II (30p)

1. Pentru $a, b, c, d \in \mathbb{R}$, se consideră matricea $A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$ și matricea transpusă A^t .

5p a) Pentru a = c = 1 și b = d = 0, să se calculeze det(A)

5p b) Să se arate că $A \cdot A^{t} = \alpha \cdot I_{4}$, unde $\alpha = a^{2} + b^{2} + c^{2} + d^{2}$.

5p c) Să se demonstreze că dacă $A \neq O_4$, atunci A este inversabilă.

2. Se consideră $a, b, c \in \mathbb{R}$ și polinomul $f = X^3 + aX^2 + bX + c$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$, astfel încât $|x_1| \le 1, |x_2| \le 1, |x_3| \le 1$.

5p a) Să se demonstreze că $|a| \le 3$.

5p b) Să se arate că, dacă c < 0, polinomul are cel puțin o rădăcină reală în intervalul $(0, \infty)$.

5p | **c**) Să se arate că, dacă a = 1, c = -1, atunci b = -1.

SUBIECTUL III (30p)

5p

5p

5p

1. Se consideră funcția $f: \mathbb{R} - \{-2\} \to \mathbb{R}, f(x) = \frac{1}{x+2}e^{|x|}$.

a) Să se studieze derivabilitatea funcției f în punctul $x_0 = 0$.

b) Să se determine punctele de extrem local ale funcției f.

c) Să se determine numărul de rădăcini reale ale ecuației f(x) = m, unde m este un parametru real.

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x - x + \frac{x^3}{6}$ și $g: (0,1] \to \mathbb{R}$, $g(x) = \int_{\mathbb{R}}^{1} \frac{\sin t}{t} dt$.

Se admite cunoscut faptul că $f(x) \ge 0, \forall x \ge 0$.

5p a) Să se calculeze $\int_0^1 f(x)dx$.

5p b) Să se arate că funcția *g* este strict descrescătoare.

5p c) Să se arate că $\lim_{\substack{x \to 0 \\ x>0}} g(x) > 0.9$.

SUBIECTUL I (30p)

5p 1. Să se calculeze
$$\frac{1}{1+i} + \frac{1}{1-i}$$
.

5p 2. Să se rezolve în mulțimea numerelor reale ecuația
$$\frac{x+1}{x+2} + \frac{x+2}{x+3} = \frac{7}{6}$$
.

5p 3. Să se rezolve în mulțimea
$$[0,2\pi)$$
 ecuația $\cos 2x = \frac{1}{2}$.

5p 4. Să se determine
$$a > 0$$
 știind că termenul din mijloc al dezvoltării $\left(\sqrt[3]{a} + \frac{1}{\sqrt[4]{a}}\right)^{12}$ este egal cu 1848.

5p | **5.** Să se determine ecuația simetricei dreptei
$$d: 2x-3y+1=0$$
 față de punctul $A(-3,4)$.

5p | **6.** Ştiind că
$$\operatorname{ctg} x = 3$$
, să se calculeze $\operatorname{ctg} 2x$.

SUBIECTUL II (30p)

1. Se consideră polinoamele $f, g \in \mathbb{R}[X], f = X^2 + X + 1$, cu rădăcinile complexe x_1, x_2 și

$$g = aX^2 + bX + c$$
, cu $a \ne 0$. Fie matricele $A, V \in \mathcal{M}_3(\mathbb{C}), A = \begin{pmatrix} c & b & a \\ a & c & b \\ b & a & c \end{pmatrix}$ și $V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & x_1 & x_2 \\ 1 & x_1^2 & x_2^2 \end{pmatrix}$.

5p a) Să se arate că
$$\det(V) = 3(x_2 - x_1)$$
.

5p b) Să se arate că
$$A \cdot V = \begin{pmatrix} g(1) & g(x_1) & g(x_2) \\ g(1) & x_1 g(x_1) & x_2 g(x_2) \\ g(1) & x_1^2 g(x_1) & x_2^2 g(x_2) \end{pmatrix}$$
.

5p c) Să se arate că
$$det(A) = 0$$
 dacă și numai dacă $a+b+c=0$ sau $a=b=c$.

2. Se consideră funcția
$$f: \mathbb{Z}_5 \to \mathbb{Z}_5$$
, $f(x) = x^4 + \hat{4}x$.

5p a) Să se calculeze
$$f(\hat{0})$$
 și $f(\hat{1})$.

5p b) Să se arate că funcția
$$f$$
 nu este surjectivă.

5p c) Să se descompună polinomul
$$X^4 + \hat{4}X \in \mathbb{Z}_5[X]$$
 în factori ireductibili peste \mathbb{Z}_5 .

1. Se consideră funcția
$$f:(0,\infty)\to\mathbb{R}$$
, $f(x)=\frac{\ln(x+1)}{x}$.

5p a) Să se arate că șirul
$$(x_n)_{n\geq 1}$$
 unde $x_n = f(1) + \frac{1}{2}f(\frac{1}{2}) + \frac{1}{3}f(\frac{1}{3}) + \dots + \frac{1}{n}f(\frac{1}{n})$ este divergent.

5p b) Să se calculeze
$$\lim_{x\to\infty} f(x)$$
.

5p c) Să se arate că funcția
$$f$$
 este descrescătoare.

2. Se consideră funcția
$$f:(1,\infty)\to\mathbb{R}, f(x)=\int_0^1 e^{-t}t^{x-1}dt$$
.

5p a) Să se calculeze
$$f(2)$$
.

5p b) Să se demonstreze relația
$$f(x) \le \frac{1}{x}$$
, $\forall x > 1$.

5p c) Să se demonstreze relația
$$f(x+1) = xf(x) - \frac{1}{e}, \forall x > 1$$
.

Varianta 13

SUBIECTUL I (30p)

- **5p** 1. Să se arate că numărul $(1+i\sqrt{3})^2 + (1-i\sqrt{3})^2$ este număr întreg.
- **5p 2.** Să se rezolve în $\mathbb{R} \times \mathbb{R}$ sistemul de ecuații $\begin{cases} x + y = 4 \\ xy = 3 \end{cases}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $x = 6(\sqrt{x-2} 1)$.
- **5p 4.** Să se determine termenul care nu conține pe x din dezvoltarea $\left(x^2 + \frac{1}{x}\right)^9$.
- **5p 5.** Să se calculeze distanța de la punctul A(3,0) la dreapta d:3x-4y+1=0.
- **5p 6.** Triunghiul ABC are AB = 4, BC = 5 și CA = 6. Să se arate că m(AB) = 2m(C).

SUBIECTUL II (30p)

1. Se consideră sistemul de ecuații $\begin{cases} x - y + z = 1 \\ x + y + z = 3 \end{cases}$, unde $m \in \mathbb{R}$. Pentru fiecare $m \in \mathbb{R}$, notăm cu S_m mx + y + z = 3m

multimea solutiilor reale ale sistemului.

- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care sistemul are soluție unică.
- **5p b)** Să se arate că pentru orice $m \in \mathbb{R}$ sistemul este compatibil.
- **5p** c) Să se determine $\min \{ x^2 + y^2 + z^2 | (x, y, z) \in S_1 \}$.
 - **2.** Se consideră matricele $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $C = A \cdot B$ și mulțimea $G = \left\{ X \in \mathcal{M}_2(\mathbb{C}) \middle| \det(X) = 1 \right\}$.
- **5p** a) Să se verifice că $A^4 = B^6 = I_2$.
- **5p b)** Să se arate că (G, \cdot) este un subgrup al grupului multiplicativ al matricelor inversabile de ordin doi, cu elemente numere complexe.
- **5p** c) Să se demonstreze că $C^n \neq I_2$, pentru orice $n \in \mathbb{N}^*$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 + 3x^2 4}$, $\forall x \in \mathbb{R}$.
- **5p** a) Să se determine asimptota oblică a graficului funcției f spre ∞ .
- **5p b)** Să se arate că $f^2(x) f'(x) = x^2 + 2x$, $\forall x \in \mathbb{R} \{-2, 1\}$.
- **5p** c) Să se determine derivatele laterale ale funcției f în punctul $x_0 = -2$.
 - **2.** Pentru $n \in \mathbb{N}^*$ se consideră funcția $F_n: (0, \infty) \to \mathbb{R}, F_n(x) = \int_0^x t^n e^{-t} dt, \ x > 0$.
- **5p** a) Să se calculeze $F_1(x), x > 0$.
- **5p b**) Să se determine punctele de inflexiune ale graficului funcției F_n .
- **5p** c) Să se calculeze $\lim_{x \to \infty} F_2(x)$.

SUBIECTUL I (30p)

5p 1. Să se calculeze
$$\lg \frac{1}{2} + \lg \frac{2}{3} + \lg \frac{3}{4} + ... + \lg \frac{99}{100}$$
.

- **5p** 2. Să se determine $a \in \mathbb{R}^*$ pentru care $(a-3)x^2 ax a < 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuația $\sqrt[3]{8-x} = \sqrt[3]{9-4x}$.
- **5p 4.** Să se determine numărul elementelor unei mulțimi știind că aceasta are exact 45 de submulțimi cu două elemente.
- **5p** | **5.** Să se determine ecuația dreptei AB știind că A(2,3) și B(-5,4).
- **5p 6.** Triunghiul *ABC* ascuțitunghic are $AC = 2\sqrt{3}$ și lungimea razei cercului circumscris egală cu 2. Să se determine măsura unghiului *B*.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} a & b & c \\ 2a & 2b & 2c \\ 3a & 3b & 3c \end{pmatrix}$, unde $a, b, c \in \mathbb{R}^*$.
- **5p** a) Să se calculeze rangul matricei *A*.
- **5p b)** Să se arate că există $d \in \mathbb{R}$ astfel încât $A^2 = dA$.
- **5p** c) Să se arate că există matricele $K \in M_{3,1}(\mathbb{R})$ și $L \in M_{1,3}(\mathbb{R})$ astfel încât $A = K \cdot L$.
 - **2.** Se consideră numărul $a = \sqrt{3} i \in \mathbb{C}$ și polinomul $f \in \mathbb{Q}[X]$, $f = X^4 4X^2 + 16$.
- **5p a**) Să se arate că f(a) = 0.
- **5p b**) Să se determine rădăcinile polinomului f.
- **5p c**) Să se arate că polinomul f este ireductibil în $\mathbb{Q}[X]$.

- **1.** Pentru $n \in \mathbb{N}^*, n \ge 3$ se consideră funcția $f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = \sin^n x$ și se notează cu x_n abscisa punctului de inflexiune din intervalul $\left(0, \frac{\pi}{2}\right)$, al graficului funcției f_n .
- **5p** a) Să se arate că $f_n''(x) = n(n-1)\sin^{n-2} x n^2 \sin^n x$, $\forall n \in \mathbb{N}^*, n \ge 3$ și $x \in \mathbb{R}$.
- **5p b)** Să se arate că $\sin x_n = \sqrt{\frac{n-1}{n}}, n \ge 3$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} f_n(x_n)$.
 - **2.** Se consideră $a \in \mathbb{R}$ și funcțiile $f, F : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3 3x + a}{(x^2 + 1)\sqrt{x^2 + 1}}$, $F(x) = \frac{x^2 + ax + 5}{\sqrt{x^2 + 1}}$.
- **5p** a) Să se arate că funcția F este o primitivă a funcției f.
- **5p b)** Pentru a = 2, să se determine aria suprafeței plane cuprinsă între graficul functiei f, axa Ox și dreptele x = 1 și x = 2.
- **5p** c) Să se determine a astfel încât $\int_0^2 F(x)dx \int_{-2}^0 F(x)dx = 2$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $\log_3(5-\sqrt{7}) + \log_3(5+\sqrt{7}) \log_3 2$.
- **5p 2.** Să se determine funcția de gradul al doilea al cărei grafic este tangent la axa Ox în punctul (1,0) și trece prin punctul (0,2).
- **5p** 3. Să se rezolve în mulțimea $[0,2\pi)$ ecuația $\sin x + \cos x = 0$.
- **5p 4.** Câte numere naturale de patru cifre se pot forma cu elemente ale mulțimii {1,3,5,7,9}?
- **5p 5.** Să se determine ecuația dreptei care conține punctul A(-2,2) și este paralelă cu dreapta determinată de punctele C(2,1), D(-1,-3).
- **5p 6.** Fie $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ astfel încât $\cos \alpha = -\frac{5}{13}$. Să se calculeze $\sin \alpha$.

SUBIECTUL II (30p)

1. Fie
$$a, b, c \in \mathbb{Z}$$
 și matricea $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

- **5p** a) Să se calculeze det(A).
- **5p b)** Să se arate că dacă $a+b+c\neq 0$ și A nu este inversabilă în $\mathcal{M}_3(\mathbb{Q})$, atunci a=b=c.

5p c) Să se arate că sistemul de ecuații liniare
$$\begin{cases} ax + by + cz = \frac{1}{2}x \\ cx + ay + bz = \frac{1}{2}y \text{ admite numai soluția } x = y = z = 0. \\ bx + cy + az = \frac{1}{2}z \end{cases}$$

- **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = X^4 5X^2 + 5$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
- 5p a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$.

- **1.** Pentru fiecare $n \in \mathbb{N}$, $n \ge 3$, se consideră funcția $f_n : [0, \infty) \to \mathbb{R}$, $f_n(x) = x^n nx + 1$.
- **5p** a) Să se arate că f_n este strict descrescătoare pe [0;1] și strict crescătoare pe $[1;\infty)$.
- **5p b)** Să se arate că ecuația $f_n(x) = 0$, x > 0 are exact două rădăcini $a_n \in (0,1)$ și $b_n \in (1,\infty)$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} a_n$, unde a_n s-a definit la punctul **b**).
 - **2.** Se consideră șirul $(I_n)_{n\in\mathbb{N}}$, unde $I_0 = \int_0^1 \frac{1}{x^2+1} dx$ și $I_n = \int_0^1 \frac{x^n}{x^2+1} dx$, $n\in\mathbb{N}^*$.
- **5p** a) Să se arate că $I_0 = \frac{\pi}{4}$.
- **5p b)** Să se arate că $I_{2n} = \frac{1}{2n-1} I_{2n-2}, \forall n \in \mathbb{N}, n \ge 2$.
- **5p** c) Să se arate că $\lim_{n \to \infty} \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots + \left(-1 \right)^{n-1} \frac{1}{2n-1} \right) = I_0$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze modulul numărului complex $z = \frac{2-i}{2+i}$
- **5p** 2. Să se determine $a \in \mathbb{R}$ pentru care $x^2 + ax + 2 \ge 0$, oricare ar fi numărul real x.
- **5p** 3. Să se rezolve în intervalul [-1,1] ecuația $\arcsin \frac{1}{2} + \arcsin x = \frac{\pi}{3}$.
- **5p 4.** Să se rezolve ecuația $C_n^8 = C_n^{10}$, $n \in \mathbb{N}$, $n \ge 10$.
- **5p** | **5.** Să se afle măsura celui mai mare unghi al triunghiului ABC știind că A(2,-2), B(2,3), C(-2,3).
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\sin \alpha = \frac{3}{5}$. Să se calculeze $\sin 2\alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră mulțimea $G = \left\{ X = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a, b \in \mathbb{R}, a > 0 \right\}.$
- **5p** a) Să se arate că dacă $A, B \in G$, atunci $AB \in G$.
- **5p b)** Să se găsească două matrice $C, D \in G$ pentru care $CD \neq DC$.
- **5p** c) Să se arate că dacă $A \in G$, atunci $I_2 A + A^2 \in G$.
 - **2.** Se consideră $a,b,c \in \mathbb{Q}$ și polinomul $f = X^3 + aX^2 + bX + c$.
- **5p** a) Să se determine a, b, c astfel încât polinomul f să aibă rădăcinile $x_1 = x_2 = 1$ şi $x_3 = -2$.
- **5p b)** Să se arate că dacă f are rădăcina $\sqrt{2}$, atunci f are o rădăcină rațională.
- **5p** c) Să se arate că dacă $a, b, c \in \mathbb{Z}$, iar numerele f(0) și f(1) sunt impare, atunci polinomul f nu are rădăcini întregi.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0 \end{cases}$.
- **5p** a) Să se arate că funcția f este derivabilă pe \mathbb{R} .
- **5p b)** Să se calculeze $\lim_{x \to \infty} f'(x)$.
- **5p c**) Să se demonstreze că funcția f este mărginită pe \mathbb{R} .
 - **2.** Pentru fiecare $n \in \mathbb{N}^*$ se consideră funcția $f_n : [0,1] \to \mathbb{R}, f_n(x) = (1-x)^n$.
- **5p** a) Să se calculeze $\int_0^1 f_2(x) dx$.
- **5p b)** Să se arate că $\int_0^1 x f_n(x) dx = \frac{1}{(n+1)(n+2)}$, oricare ar fi $n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \int_0^1 f_n \left(\frac{x}{n} \right) dx$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că numărul $(1+i\sqrt{3})^3$ este întreg.
- **5p** 2. Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x + 2$.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuația $\sqrt{-2x+1} = 5$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr \overline{ab} din mulțimea numerelor naturale de două cifre, să avem a+b=4.
- **5p** | **5.** Să se determine ecuația dreptei care trece prin punctul A(-1,1) și este perpendiculară pe dreapta d:5x-4y+1=0.
- **5p 6.** Să se calculeze perimetrul triunghiului ABC știind că AB = 6, $B = \frac{\pi}{4}$ și $C = \frac{\pi}{6}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$ și $B = \begin{pmatrix} -3 & -8 \\ 1 & 3 \end{pmatrix}$.
- **5p** a) Să se calculeze $A^2 B^2$.
- **5p b**) Să se calculeze $\det(I_2 + A + A^2 + A^3 + A^4)$.
- **5p** c) Să se arate că ecuația $X^2 = I_2$ are o infinitate de soluții în $M_2(\mathbb{Z})$.
 - **2.** Se consideră polinoamele $f, g \in \mathbb{Q}[X]$, $f = X^4 + X^3 + X^2 + X + 1$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$ si $g = X^2 1$.
- **5p** \mid **a**) Să se determine restul împărțirii polinomului f la polinomul g.
- **5p b**) Să se calculeze $(1-x_1) \cdot (1-x_2) \cdot (1-x_3) \cdot (1-x_4)$.
- **5p** c) Să se calculeze $g(x_1) \cdot g(x_2) \cdot g(x_3) \cdot g(x_4)$.

- **1.** Se consideră șirul $(x_n)_{n \in \mathbb{N}^*}$, unde $x_1 \in (0,1)$ și $x_{n+1} = \frac{x_n^5 + 3x_n}{4}$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se arate că $x_n \in (0,1), \forall n \in \mathbb{N}^*$.
- **5p b)** Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este convergent.
- **5p** c) Să se arate că $\lim_{n\to\infty} \frac{x_{n+2}}{x_n} = \frac{9}{16}$.
 - **2.** Se consideră o funcție $f: \mathbb{R} \to \mathbb{R}$, cu proprietatea că $xf(x) = \sin x, \forall x \in \mathbb{R}$.
- **5p** a) Să se calculeze $\int_0^{\pi} x^2 f(x) dx$.
- **5p b)** Să se arate că funcția f este integrabilă pe intervalul $\left[0, \frac{\pi}{2}\right]$.
- **5p** c) Să se arate că $\int_{1}^{\frac{\pi}{2}} f(x) dx \le \cos 1$.

SUBIECTUL I (30p)

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $x^2 2x + 4 = 0$.
- **5p** 2. Să se afle valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$.
- **5p** 3. Să se rezolve în intervalul [-1,1] ecuația $\arcsin x + \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{2}$.
- **5p 4.** Care este probabilitatea ca, alegând un număr k din mulțimea $\{0,1,2,...,7\}$, numărul C_7^k să fie prim.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = a\vec{i} + 3\vec{j}$ şi $\vec{v} = 4\vec{i} + (a+4)\vec{j}$ sunt coliniari.
- **5p 6.** Să se calculeze $\overrightarrow{AB} \cdot (\overrightarrow{AC} + \overrightarrow{BC})$, știind că A(-3,4), B(4,-3) și C(1,2).

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$.
- **5p** a) Să se calculeze A^3 .
- **5p b**) Să se afle rangul matricei $I_3 + A + A^t$.
- **5p** c) Să se determine inversa matricei $I_3 + A$.
 - **2.** Se consideră $a,b \in \mathbb{R}$ și polinomul $f = X^3 + 4aX^2 + 20X + b$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
- **5p** a) Să se determine x_1, x_2, x_3 în cazul a = 2, b = 0.
- **5p b)** Să se demonstreze că $(x_1 x_2)^2 + (x_1 x_3)^2 + (x_2 x_3)^2 = 8(4a^2 15)$.
- **5p** c) Să se determine a,b astfel încât polinomul f să aibă o rădăcină dublă egală cu -a.

SUBIECTUL III (30p)

5p

- **1.** Se consideră funcția $f:[0,\infty)\to[0,\infty), f(x)=\frac{2x+1}{x+2}$ și șirul $(x_n)_{n\in\mathbb{N}}$ dat de $x_0=2, x_{n+1}=f(x_n), \forall n\in\mathbb{N}$.
- a) Să se determine asimptotele graficului funcției f.
- **5p b)** Să se arate că șirul $(x_n)_{n\in\mathbb{N}}$, are limita 1.
 - c) Să se arate că șirul $(y_n)_{n \in \mathbb{N}}$ dat de $y_n = x_0 + x_1 + x_2 + ... + x_n n$, este convergent.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 + \cos x$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x \int_0^x f(t) dt$.
- **5p** a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) dx$.
- **5p b**) Să se arate că F este funcție pară.
- **5p c**) Să se determine intervalele de monotonie ale funcției F.

SUBIECTUL I (30p)

- **5p** | 1. Să se ordoneze crescător numerele $\sqrt{3}, \sqrt[3]{5}, \sqrt[4]{8}$.
- **5p** 2. Să se determine funcția $f : \mathbb{R} \to \mathbb{R}$ știind că graficul său și graficul funcției $g : \mathbb{R} \to \mathbb{R}$, g(x) = -3x + 3 sunt simetrice față de dreapta x = 1.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $3^{2x+1} 10 \cdot 3^{x+1} + 27 = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă toate cifrele pare.
- **5p** | **5.** Să se determine ecuația medianei duse din vârful A al triunghiului ABC, unde A(1,2), B(2,3) și C(2,-5).
- **5p 6.** Să se arate că ctg $2 = \frac{\text{ctg } 1 \text{tg } 1}{2}$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul $\begin{cases} x+y+z+t=1\\ x-y+z+t=0\\ x+y-z+t=0 \end{cases}$ și A matricea sistemului. $\begin{cases} x+y+z+t=1\\ x+y+z+t=0\\ x+y+z-t=0 \end{cases}$
- **5p** a) Să se calculeze $\det(A)$.
- **5p b**) Să se rezolve sistemul.
- **5p c**) Să se determine A^{-1}
 - **2.** Fie polinomul $f = X^4 + 2X^3 + aX^2 2X + 1 \in \mathbb{R}[X]$ și $x_1, x_2, x_3, x_4 \in \mathbb{C}$ rădăcinile sale.
- **5p** a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$.
- **5p b)** Să se arate că $f(x) = x^2 \left[\left(x \frac{1}{x} \right)^2 + 2 \left(x \frac{1}{x} \right) + a + 2 \right], \ \forall x \in \mathbb{R}^*.$
- **5p** | **c**) Să se determine $a \in \mathbb{R}$ pentru care toate rădăcinile polinomului f sunt numere reale.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f:(-2,2) \to \mathbb{R}, f(x) = \ln \frac{2+x}{2-x}$.
- a) Să se determine asimptotele graficului funcției f.
- **5p b**) Să se determine punctele de inflexiune ale graficului funcției *f*.
- **5p** c) Să se calculeze $\lim_{x\to\infty} x^a f\left(\frac{1}{x}\right)$, unde a este un număr real.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{-x^3 + 2x^2 5x + 8}{x^2 + 4}, \forall x \in \mathbb{R}.$
- **5p** a) Să se calculeze $\int_0^1 f(x) dx$.
- **5p b)** Să se calculeze $\int_1^4 (x+f(x)-2)^2 dx$.
- **5p** c) Știind că funcția f este bijectivă, să se calculeze $\int_{\frac{4}{5}}^{2} f^{-1}(x) dx$.

SUBIECTUL I (30p)

- **5p** 1. Să se arate că $2 \in (\log_3 4, \sqrt{5})$.
- **5p 2.** Să se rezolve în mulțimea numerelor complexe ecuația $x^2 2x + 2 = 0$.
- **5p** 3. Să se rezolve în $[0,2\pi)$ ecuația $\sin x + \cos x = -1$.
- **5p 4.** Să se calculeze $C_4^4 + C_5^4 + C_6^4$.
- **5p 5.** Pe laturile AB și AC ale triunghiului ABC se consideră punctele M, respectiv N astfel încât $\overrightarrow{AM} = 4\overrightarrow{MB}$ și $MN \mid \mid BC$. Să se determine $m \in \mathbb{R}$ astfel încât $\overrightarrow{CN} = \overrightarrow{mAC}$.
- **5p 6.** Să se calculeze perimetrul triunghiului OAB, știind că O(0,0), A(-1,2) și B(-2,3).

SUBIECTUL II (30p)

- **1.** Se consideră triunghiul *ABC*, cu laturile AB = c, BC = a, CA = b și sistemul $\begin{cases} ay + bx = c \\ cx + az = b \end{cases}$ bz + cy = a
- **5p** a) Să se rezolve sistemul în cazul a = 3, b = 4, c = 5.
- **5p b**) Să se demonstreze că, pentru orice triunghi, sistemul are soluție unică.
- **5p** c) Știind că soluția sistemului este (x_0, y_0, z_0) , să se demonstreze că $x_0, y_0, z_0 \in (-1, 1)$.
 - **2.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_3 \right\}$.
- **5p** a) Să se determine numărul elementelor mulțimii G.
- **5p b**) Să se arate că $AB \in G$, pentru orice $A, B \in G$.
- **5p** $| \mathbf{c} |$ Să se determine numărul matricelor din mulțimea G care au determinantul nul.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2e^x + 3x^2 2x + 5$.
- a) Să se demonstreze că funcția f este strict crescătoare pe $[0, \infty)$.
- **5p b**) Să se arate că funcția f nu este surjectivă.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f'(x)}{f(x)}$.
 - **2.** Se consideră funcția $f:[0,\infty) \to \mathbb{R}, f(t) = \frac{1}{(1+t^2)(1+t^3)}$.
- **5p** a) Să se calculeze $\int_0^1 (t^3 + 1) f(t) dt$.
- **5p b)** Să se arate că $\int_{\frac{1}{x}}^{1} f(t)dt = \int_{1}^{x} t^{3} f(t)dt$, $\forall x > 0$.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \int_{\frac{1}{x}}^{x} f(t) dt$.

SUBIECTUL I (30p)

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $x^2 8x + 25 = 0$.
- **5p 2.** Să se determine $a \in \mathbb{R}$, pentru care graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (a+1)x^2 + 3(a-1)x + a 1$, intersectează axa Ox în două puncte distincte.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+8-6\sqrt{x-1}}=1$.
- **5p 4.** Să se calculeze $C_8^4 C_7^4 C_7^3$.
- **5p** | **5.** Să se determine ecuația perpendicularei duse din punctul A(1,2) pe dreapta d: x+y-1=0.
- **5p 6.** Știind că $\sin x = \frac{1}{3}$, să se calculeze $\cos 2x$.

SUBIECTUL II (30p)

- **1.** Pentru $a, b, c \in \mathbb{R}^*$, se consideră sistemul $\begin{cases} ax + by + cz = b \\ cx + ay + bz = a \\ bx + cy + az = c \end{cases}$
- **5p** a) Să se arate că determinantul sistemului este $\Delta = (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$.
- **5p b**) Să se rezolve sistemul în cazul în care este compatibil determinat.
- **5p** c) Știind că $a^2 + b^2 + c^2 ab ac bc = 0$, să se arate că sistemul are o infinitate de soluții (x, y, z), astfel încât $x^2 + y^2 = z 1$.
 - **2.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a,b,c \in \mathbb{Z}_4 \right\}$.
- **5p** a) Să se determine numărul elementelor mulțimii G.
- **5p b)** Să se dea un exemplu de matrice $A \in G$ cu proprietatea că det $A \neq \hat{0}$ și det $A^2 = \hat{0}$.
- **5p c**) Să se determine numărul soluțiilor ecuației $X^2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, X \in G$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x-3)(x-5)(x-7).
- **5p** a) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x^4}$.
- **5p b)** Să se calculeze $\lim_{x \to \infty} f(x)^{\frac{1}{x}}$
- **5p** c) Să se arate că ecuația f'(x) = 0 are exact trei rădăcini reale.
 - **2.** Se consideră funcțiile $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \frac{1}{n^2 + x^2}$, $n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze aria suprafeței cuprinse între graficul funcției f_1 , axele de coordonate și dreapta x = 1.
- **5p b**) Să se calculeze $\int_0^1 x (f_1(x))^2 dx$.
- **5p** c) Să se arate că $\lim_{n \to \infty} n(f_n(1) + f_n(2) + f_n(3) + ... + f_n(n)) = \frac{\pi}{4}$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $1+i+i^2+...+i^{10}$.
- **5p** 2. Se consideră funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$, g(x) = 2x 1. Să se rezolve ecuația $(f \circ g)(x) = 0$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\lg(x+9) + \lg(7x+3) = 1 + \lg(x^2+9)$.
- **5p 4.** Să se rezolve inecuația $C_n^2 < 10$, $n \ge 2$, n natural.
- **5p 5.** Se consideră dreptele paralele de ecuații d_1 : x-2y=0 și d_2 : 2x-4y-1=0. Să se calculeze distanța dintre cele două drepte.
- **5p 6.** Să se calculeze $\sin 75^{\circ} + \sin 15^{\circ}$.

SUBIECTUL II (30p)

- 1. Fie sistemul $\begin{cases} x+y+z=0\\ ax+by+cz=0\\ a^3x+b^3y+c^3z=1 \end{cases}$, cu $a,b,c\in\mathbb{R}$, distincte două câte două și A matricea sistemului.
- **5p** a) Să se arate că $\det(A) = (a+b+c)(c-b)(c-a)(b-a)$.
- **5p b**) Să se rezolve sistemul în cazul $a+b+c\neq 0$.
- **5p** c) Să se demonstreze că dacă a+b+c=0, atunci sistemul este incompatibil.
 - **2.** Se consideră șirul de numere reale $(a_n)_{n\in\mathbb{N}}$, cu $a_0=0$ și $a_{n+1}=a_n^2+1$, $\forall n\in\mathbb{N}$ și polinomul $f\in\mathbb{R}[X]$, cu f(0)=0 și cu proprietatea că $f(x^2+1)=(f(x))^2+1$, $\forall x\in\mathbb{R}$.
- **5p a)** Să se calculeze f(5).
- **5p b)** Să se arate că $\forall n \in \mathbb{N}$, $f(a_n) = a_n$.
- **5p c**) Să se arate că f = X.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^4 + 3}$.
- **5p** a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **5p b**) Să se determine mulțimea valorilor funcției f.
 - c) Să se arate că $|f(x)-f(y)| \le |x-y|, \forall x, y \in \mathbb{R}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 2$.
- **5p** a) Să se calculeze $\int_2^3 \frac{f(x)}{x-1} dx$.
- **5p b)** Să se calculeze $\int_{-1}^{0} \frac{x^2 13}{f(x)} dx$.
- **5p** c) Să se determine punctele de extrem ale funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \int_0^{x^2} f(t)e^t dt$.

Varianta 23

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze suma primilor 20 de termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_4 a_2 = 4$ și $a_1 + a_3 + a_5 + a_6 = 30$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\frac{2x+3}{x+2} = \frac{x-1}{x-2}$.
- **5p** 3. Să se calculeze $\operatorname{tg}\left(\frac{\pi}{2} \operatorname{arctg}\frac{1}{2}\right)$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element din mulțimea $\{1, 2, 3, ..., 40\}$, numărul $2^{n+2} \cdot 6^n$ să fie pătrat perfect.
- **5p** | **5.** Să se calculeze coordonatele centrului de greutate al triunghiului ABC, dacă A(5,-3), B(2,-1), C(0,9).
- **5p 6.** Ştiind că $tg\alpha = 2$, să se calculeze $sin 4\alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}$ și mulțimea $C(A) = \left\{ X = \begin{pmatrix} a & 5b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{C} \right\}$.
- **5p** a) Să se arate că $\forall X \in C(A)$, XA = AX.
- **5p b)** Să se arate că dacă $Y \in C(A)$ şi $Y^2 = O_2$, atunci $Y = O_2$.
- **5p** c) Să se arate că dacă $Z \in C(A), Z \neq O_2$ și Z are toate elementele raționale, atunci det $Z \neq 0$.
 - **2.** Se consideră $a \in \mathbb{Z}_3$ și polinomul $f = X^3 + \hat{2}X^2 + a \in \mathbb{Z}_3[X]$.
- **5p** a) Să se calculeze $f(\hat{0}) + f(\hat{1}) + f(\hat{2})$.
- **5p** | **b**) Pentru $a = \hat{2}$, să se determine rădăcinile din \mathbb{Z}_3 ale polinomului f.
- **5p** c) Să se determine $a \in \mathbb{Z}_3$ pentru care polinomul f este ireductibil în $\mathbb{Z}_3[X]$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x + 1$.
- **5p** a) Să se arate că, pentru orice $n \in \mathbb{N}$, ecuația $f(x) = 3 + \frac{1}{n+1}$ are o unică soluție $x_n \in \mathbb{R}$.
- **5p b)** Să se arate că $\lim_{n \to \infty} x_n = 1$, unde x_n este soluția reală a ecuației $f(x) = 3 + \frac{1}{n+1}$, $n \in \mathbb{N}$.
- **5p** c) Să se determine $\lim_{n\to\infty} n(x_n-1)$, unde x_n este soluția reală a ecuației $f(x)=3+\frac{1}{n+1}$, $n\in\mathbb{N}$.
 - **2.** Se consideră funcția $f:[0,\infty) \to \mathbb{R}$, $f(x) = \int_0^x \frac{\sin t}{1+t} dt$.
- **5p** a) Să se arate că $\int_0^a \frac{1}{1+t} dt = \ln(1+a), \forall a > -1$.
- **5p b)** Să se arate că $f(x) < \ln(1+x), \forall x > 0$.
- **5p** c) Să se arate că $f(\pi) > f(2\pi)$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $z + \frac{1}{z}$ pentru $z = \frac{-1 + i\sqrt{3}}{2}$
- **5p** 2. Să se determine funcția de gradul al doilea $f: \mathbb{R} \to \mathbb{R}$ pentru care f(-1) = f(1) = 0, f(2) = 6.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2 x + \log_4 x + \log_8 x = \frac{11}{6}$.
- **5p 4.** Să se demonstreze că dacă $x \in \mathbb{R}$ și $|x| \ge 1$, atunci $(1+x)^2 + (1-x)^2 \ge 4$.
- **5p** | **5.** Să se determine ecuația înălțimii duse din B în triunghiul ABC, știind că A(0, 9), B(2, -1) și C(5, -3).
- **5p 6.** Să se calculeze $(2\vec{i} + 5\vec{j}) \cdot (3\vec{i} 4\vec{j})$.

SUBIECTUL II (30p)

- **1.** Se consideră o matrice $A \in \mathcal{M}_3(\mathbb{C})$. Se notează cu A^t transpusa matricei A.
- **5p** a) Să se demonstreze că $\forall z \in \mathbb{C}$, $\forall X \in \mathcal{M}_3(\mathbb{C})$, $\det(zX) = z^3 \det(X)$.
- **5p b)** Să se demonstreze că $det(A A^{t}) = 0$.
- **5p** c) Ştiind că $A \neq A^t$, să se demonstreze că rang $(A A^t) = 2$.
 - **2.** Se consideră polinomul $f \in \mathbb{Q}[X]$, cu $f = X^4 5X^2 + 4$.
- **5p** a) Să se determine rădăcinile polinomului f.
- **5p b)** Să se determine polinomul $h \in \mathbb{Q}[X]$, pentru care h(0) = 1 și care are ca rădăcini inversele rădăcinilor polinomului f.
- **5p c**) Știind că g este un polinom cu coeficienți întregi, astfel încât g(-2) = g(-1) = g(1) = g(2) = 2, să se arate că ecuația g(x) = 0 nu are soluții întregi.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin x$.
- **a)** Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se arate că graficul funcției nu are asimptote.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sqrt[3]{f(x)}$ este derivabilă pe \mathbb{R} .
 - 2. Se consideră funcția $f:[0,\infty) \to \mathbb{R}, f(x) = \begin{cases} \frac{e^{-x} e^{-2x}}{x}, & x > 0\\ 1, & x = 0 \end{cases}$
- **5p** a) Să se arate că funcția f are primitive pe $[0,\infty)$.
- **5p b)** Să se calculeze $\int_0^1 x f(x) dx$.
- **5p** c) Folosind eventual inegalitatea $e^x \ge x+1$, $\forall x \in \mathbb{R}$, să se arate că $0 \le \int_0^x f(t) dt < 1$, $\forall x > 0$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze (1-i)(1+2i)-3(2-i).
- **5p** 2. Să se arate că pentru oricare $a \in \mathbb{R}^*$, dreapta y = x + 4 intersectează parabola $y = ax^2 + (a 2)x + 1$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $2^{2x} 3 \cdot 2^{x+1} + 8 = 0$.
- **4.** Să se determine probabilitatea ca, alegând un număr din mulțimea {10,11,12,...,40}, suma cifrelor lui să fie divizibilă cu 3.
- **5.** În triunghiul *ABC* punctele M, N, P sunt mijloacele laturilor. Fie H ortocentrul triunghiului MNP. Să se demonstreze că AH = BH = CH.
- **5p 6.** Să se calculeze $\sin\left(\frac{\pi}{6} + \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{6} \frac{\pi}{4}\right)$.

SUBIECTUL II (30p)

- 1. În mulțimea S_3 a permutărilor de 3 elemente se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
- **5p** a) Să se verifice că permutarea σ este pară.
- **5p b)** Să se determine toate permutările $x \in S_3$, astfel încât $x\sigma = \sigma x$.
- **5p** c) Să se rezolve ecuația $x^2 = \sigma$, cu $x \in S_3$.
 - **2.** Se consideră matricea $A = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$ și mulțimea $G = \{X(a) = I_2 + aA \mid a \in \mathbb{R} \setminus \{-1\}\}$.
- **5p** a) Să se arate că $\forall a, b \in \mathbb{R} \setminus \{-1\}, X(a)X(b) = X(ab+a+b).$
- **5p b**) Să se arate că (G, \cdot) este un grup abelian, unde "·" reprezintă înmulțirea matricelor.
- **5p** c) Să se determine $t \in \mathbb{R}$ astfel încât X(1)X(2)...X(2009) = X(t-1).

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{1}{2}\ln^2 x$.
- **5p** a) Să se arate că funcția este convexă pe intervalul (0,e].
- **5p b**) Să se determine asimptotele graficului funcției.
- **5p** c) Să se arate că șirul $(a_n)_{n\geq 3}$, dat de $a_n = \frac{\ln 3}{3} + \frac{\ln 4}{4} + \frac{\ln 5}{5} + \dots + \frac{\ln n}{n} f(n)$, este descrescător.
 - **2.** Se consideră funcția $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \cos x$.
- $\mathbf{5p}$ a) Să se calculeze aria suprafeței cuprinse între graficul funcției f și axele de coordonate.
- $\mathbf{5p}$ **b)** Să se calculeze volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \left(1 f\left(\frac{1}{\sqrt{n}}\right) \right) \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + \dots + f\left(\frac{n}{n}\right) \right).$

SUBIECTUL I (30p)

- **5p** | **1.** Fie z_1 și z_2 soluțiile complexe ale ecuației $2z^2 + z + 50 = 0$. Să se calculeze $|z_1| + |z_2|$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1 2x. Să se arate că funcția $f \circ f \circ f$ este strict descrescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = 2$.
- **5p 4.** Fie mulțimea $A = \{-2, -1, 0, 1, 2\}$ și o funcție bijectivă $f : A \to A$. Să se calculeze f(-2) + f(-1) + f(0) + f(1) + f(2).
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(-1, 3) și B(1, -1). Să se determine ecuația mediatoarei segmentului AB.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ cu $\sin \alpha = \frac{1}{3}$. Să se calculeze $\operatorname{tg} \alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$, cu $t \in \mathbb{R}$.
- **5p** a) Să se arate că dacă matricea $X \in \mathcal{M}_2(\mathbb{R})$ verifică relația AX = XA, atunci există $a, b \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.
- **5p b)** Să se demonstreze că $\forall n \in \mathbb{N}^*$, $B^n = \begin{pmatrix} \cos nt & -\sin nt \\ \sin nt & \cos nt \end{pmatrix}$.
- **5p** c) Să se rezolve în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $X^2 = A$.
 - **2.** Se consideră $a \in \mathbb{R}$ și polinomul $f = 3X^4 2X^3 + X^2 + aX 1 \in \mathbb{R}[X]$.
- **5p** a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$, unde $x_1, x_2, x_3, x_4 \in \mathbb{C}$ sunt rădăcinile polinomului f.
- **5p b)** Să se determine restul împărțirii polinomului f la $(X-1)^2$.
- **5p** c) Să se demonstreze că f nu are toate rădăcinile reale.

- **1.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x \operatorname{arcctg} x$.
- **5p** a) Să se determine asimptota la graficul funcției f spre $+\infty$.
- **5p b**) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
- **5p** c) Să se arate că șirul $(x_n)_{n>1}$, dat de $x_{n+1} = f(x_n)$, $\forall n \in \mathbb{N}^*$ și $x_1 = 0$, este convergent.
 - **2.** Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \arcsin x$.
- **5p** a) Să se arate că funcția $g:[-1,1] \to \mathbb{R}$, g(x) = xf(x) are primitive, iar acestea sunt crescătoare.
- **5p b**) Să se calculeze $\int_0^{\frac{1}{2}} f(x) dx$.
- **5p** c) Să se arate că $\int_0^1 x f(x) dx \le \frac{\pi}{4}$.

SUBIECTUL I (30p)

- **5p** | **1.** Să se calculeze modulul numărului complex $z = 1 + i + i^2 + i^3 + ... + i^6$.
- **5p** 2. Să se determine valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -2x^2 + x$.
- **5p** 3. Să se rezolve în intervalul $(0, \infty)$ ecuația $\lg^2 x + 5\lg x 6 = 0$.
- **5p** | **4.** Să se determine numărul funcțiilor $f:\{0,1,2,3\} \rightarrow \{0,1,2,3\}$ care au proprietatea f(0)=f(1)=2.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele O(0, 0), A(1, 2) și B(3, 1). Să se determine măsura unghiului AOB.
- **5p 6.** Ştiind că $\alpha \in \mathbb{R}$ şi că $\sin \alpha + \cos \alpha = \frac{1}{3}$, să se calculeze $\sin 2\alpha$.

SUBIECTUL II (30p)

- **1.** În mulțimea $\mathcal{M}_2(\mathbb{C})$, se consideră matricele $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Să se determine rangul matricei $A + I_2$.
- **5p b)** Să se demonstreze că dacă $X \in \mathcal{M}_2(\mathbb{C})$ astfel încât AX = XA, atunci există $x, y \in \mathbb{C}$ astfel încât $X = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$.
- **5p** c) Să se demonstreze că ecuația $Y^2 = A$ nu are nicio soluție în mulțimea $\mathcal{M}_2(\mathbb{C})$.
 - **2.** Pe mulțimea \mathbb{R} se definește legea de compoziție x * y = x + y + xy.
- **5p** a) Să se arate că legea "*" este asociativă.
- **5p b**) Fie funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1. Să se verifice relația $f(x * y) = f(x) \cdot f(y)$, $\forall x, y \in \mathbb{R}$.
- **5p** c) Să se calculeze $1*\frac{1}{2}*\frac{1}{3}*...*\frac{1}{2008}*\frac{1}{2009}$.

SUBIECTUL III (30p)

- **1.** Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = (x-1)\arcsin x$.
- **a)** Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^2 x}$
- **5p b**) Să se determine punctele în care funcția f nu este derivabilă.
- 5p c) Să se arate că funcția f este convexă.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 + x + x^2 + x^3 + x^4$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_0^x f(t) dt$.
- **5p** a) Să se arate că funcția F este strict crescătoare pe \mathbb{R} .
- **5p b**) Să se arate că funcția F este bijectivă.
- **5p** c) Să se calculeze $\int_0^a F^{-1}(x) dx$, unde F^{-1} este inversa funcției F și $a = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $(1+i)^{10} + (1-i)^{10}$.
- **5p** 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 6x 3x^2$. Să se ordoneze crescător numerele $f(\sqrt{2})$, $f(\sqrt{3})$ și f(2).
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2x-1} = 3$.
- **5p 4.** Să se determine numărul funcțiilor $f:\{0,1,2,3\} \rightarrow \{0,1,2,3\}$ care au proprietatea că f(0) este număr impar.
- **5p 5.** Fie triunghiul ABC și $M \in (BC)$ astfel încât $\frac{BM}{BC} = \frac{1}{3}$. Să se demonstreze că $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.
- **5p 6.** Știind că $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ și că $\sin \alpha = \frac{3}{5}$, să se calculeze $\operatorname{tg} \alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}$.
- **5p** a) Să se rezolve ecuația $det(A xI_2) = 0$.
- **5p b)** Să se arate că dacă matricea $X \in \mathcal{M}_2(\mathbb{C})$ verifică relația AX = XA, atunci există $a,b \in \mathbb{C}$ astfel încât $X = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$
- **5p** c) Să se determine numărul de soluții ale ecuației $X^3 = A$, $X \in \mathcal{M}_2(\mathbb{C})$.
 - **2.** Se consideră mulțimea de funcții $G = \{ f_{a,b} : \mathbb{R} \to \mathbb{R} \mid f_{a,b}(x) = ax + b, \ a \in \mathbb{R}^*, \ b \in \mathbb{R} \}.$
- **5p** a) Să se calculeze $f_{-1,2} \circ f_{-1,2}$, unde " \circ " este compunerea funcțiilor.
- **5p b**) Să se demonstreze că (G, \circ) este un grup.
- **5p c**) Să se arate că grupul G conține o infinitate de elemente de ordin 2.

- **1.** Fie funcția $f:[0,3] \to \mathbb{R}$, $f(x) = \{x\}(1-\{x\})$, unde $\{x\}$ este partea fracționară a numărului x.
- **5p** a) Să se calculeze $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$.
- **5p b**) Să se determine domeniul de continuitate al funcției f.
- **5p** c) Să se determine punctele în care funcția f nu este derivabilă.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{2 \sin x}$ și $F: [0, +\infty) \to \mathbb{R}$, $F(x) = \int_0^x f(t) dt$.
- **5p** a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) \cos x \, dx.$
- **5p b**) Să se demonstreze că funcția F este strict crescătoare.
- **5p c**) Să se determine $\lim_{x \to \infty} F(x)$.

SUBIECTUL I (30p)

- **5p 1.** Să se demonstreze că numărul $a = \sqrt{7 + 4\sqrt{3}} + \sqrt{7 2\sqrt{3}}$ este număr natural.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 5x + 2$. Să se rezolve inecuația $f(2x) \le 0$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $x = \sqrt{2-x}$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o mulțime din mulțimea submulțimilor nevide ale mulțimii $A = \{1, 2, 3, 4, 5, 6\}$, aceasta să aibă toate elementele impare.
- **5p 5.** Fie punctele A(2,0), B(1,1) și C(3,-2). Să se calculeze $\sin C$.
- **5p 6.** Știind că $\alpha \in \left(0, \frac{\pi}{2}\right)$ și că $\operatorname{tg} \alpha + \operatorname{ctg} \alpha = 2$, să se calculeze $\sin 2\alpha$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul $\begin{cases} x+y+z=0\\ mx+y+z=m-1, \ m\in\mathbb{R} \ \text{și matricea} \ A=\begin{pmatrix} 1 & 1 & 1\\ m & 1 & 1\\ 1 & m & 2 \end{pmatrix}.$
- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care $\det(A) = 0$.
- **5p b**) Să se arate că pentru orice $m \in \mathbb{R}$ sistemul este compatibil.
- **5p** c) Să se determine $m \in \mathbb{R}$ știind că sistemul are o soluție (x_0, y_0, z_0) cu $z_0 = 2$.
 - **2.** Se consideră mulțimea $\mathcal{M}_2(\mathbb{Z}_3)$, submulțimea $G = \left\{ X \in \mathcal{M}_2(\mathbb{Z}_3) \middle| X = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \right\}$ și matricele

$$O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} \text{ și } I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}.$$

- **5p** a) Să se verifice că dacă $x, y \in \mathbb{Z}_3$, atunci $x^2 + y^2 = \hat{0}$ dacă și numai dacă $x = y = \hat{0}$.
- **5p b)** Să se arate că mulțimea $H = G \setminus \{O_2\}$ este un subgrup al grupului multiplicativ al matricelor inversabile din $\mathcal{M}_2(\mathbb{Z}_3)$.

- **1.** Se consideră $n \in \mathbb{N}^*$ și funcțiile $f_n, g_n : \mathbb{R} \to \mathbb{R}, f_n(x) = 1 x + x^2 x^3 + \dots x^{2n-1} + x^{2n}, g_n(x) = x^{2n+1} + 1$.
- **5p** a) Să se verifice că $f'_n(x) = \frac{g'_n(x)}{x+1} \frac{g_n(x)}{(x+1)^2}, \forall x \in \mathbb{R} \setminus \{-1\}.$
- **5p b**) Să se calculeze $\lim_{n\to\infty} f_n'\left(\frac{1}{2}\right)$.
- **5p** c) Să se demonstreze că f_n are exact un punct de extrem local.
 - **2.** Se consideră șirul $(I_n)_{n \in \mathbb{N}^*}$ definit prin $I_n = \int_0^1 \frac{x^n}{1+x^3} dx$, $\forall n \in \mathbb{N}^*$.
- **5p a**) Să se calculeze I_2 .
- **5p b**) Să se demonstreze că șirul $(I_n)_{n \in \mathbb{N}^*}$ este strict descrescător.
- **5p c**) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

- **5p 1.** Să se demonstreze că numărul $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}$ este natural.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 2$. Să se determine mulțimea valorilor parametrului real m pentru care graficul funcției f intersectează axa Ox în două puncte distincte.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\log_3(x+1) + \log_3(x+3) = 1$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o mulțime din mulțimea submulțimilor nevide ale mulțimii $A = \{1, 2, 3, 4, 5\}$, aceasta să aibă produsul elementelor 120.
- **5p 5.** Se consideră punctele A(0,2), B(1,-1) și C(3,4). Să se calculeze coordonatele centrului de greutate al triunghiului ABC.
- **5p 6.** Să se demonstreze că $\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$.

SUBIECTUL II (30p)

1. Se consideră numerele reale a, b, c, funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x + 3$ și determinanții

$$A = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$$
 şi $B = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ f(a) & f(b) & f(c) \end{vmatrix}$.

- **5p** a) Să se arate că A = (a-b)(b-c)(c-a)(a+b+c).
- **5p b**) Să se arate că A = B.
- **5p c)** Să se arate că, pentru orice trei puncte distincte, cu coordonate naturale, situate pe graficul funcției f, aria triunghiului cu vârfurile în aceste puncte este un număr natural divizibil cu 3.
 - **2.** Se consideră matricea $A = \begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix}$ și mulțimea $G = \{X(a) = I_2 + aA \mid a \in \mathbb{R}\}$.
- **5p** a) Să se arate că $\forall a,b \in \mathbb{R}$, X(a)X(0) = X(a) și X(a)X(b) = X(a+b-10ab).
- **5p b)** Să se arate că mulțimea $H = \left\{ X(a) \mid a \in \mathbb{R} \setminus \left\{ \frac{1}{10} \right\} \right\}$ este parte stabilă a lui $\mathcal{M}_2(\mathbb{R})$ în raport cu înmulțirea matricelor.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \frac{x^3}{6} \sin x$.
- **5p** a) Să se determine $\lim_{x \to -\infty} f(x)$.
- **5p b**) Să se calculeze derivata a doua a doua funcției f.
- **5p** c) Să se demonstreze că $f(x) \le 0, \forall x \ge 0$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1+x}{1+x^2}$.
- **5p** a) Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \arctan x + \frac{1}{2} \ln (x^2 + 1)$ este o primitivă a funcției f.
- **5p b**) Să se calculeze $\int_0^1 f(x) dx$.
- **5p** c) Să se arate că șirul $(a_n)_{n \in \mathbb{N}^*}$, definit de $a_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$, $\forall n \in \mathbb{N}^*$, este convergent.

SUBIECTUL I (30p)

- **5p 1.** Știind că $\log_3 2 = a$, să se arate că $\log_{16} 24 = \frac{1+3a}{4a}$.
- **5p 2.** Să se determine două numere reale care au suma 1 și produsul −1.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2^{2x+1} + 2^{x+2} = 160$.
- **4.** Într-o clasă sunt 22 de elevi, dintre care 12 sunt fete. Să se determine în câte moduri se poate alege un comitet reprezentativ al clasei format din 3 fete și 2 băieți.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1) și C(1,3). Să se determine ecuația dreptei care trece prin punctul C și este paralelă cu dreapta AB.
- **5p 6.** Să se arate că $\sin 6 < 0$.

SUBIECTUL II (30p)

- **1.** Pentru $x \in \mathbb{C}$ se consideră matricea $A(x) = \begin{pmatrix} x+1 & x^2-1 \\ 1 & x-1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$.
- **5p** a) Să se verifice că $(A(x))^2 = 2xA(x)$.
- **5p b)** Să se determine toate numerele complexe x pentru care $(A(x))^4 + (A(x))^2 = O_2$.
- **5p** c) Să se arate că ecuația $X^2 = A(0), X \in M_2(\mathbb{C})$ nu are soluții.
 - **2.** Se consideră polinomul $f \in \mathbb{C}[X]$, $f = (X+i)^{100} + (X-i)^{100}$, care are forma algebrică $f = a_{100}X^{100} + a_{99}X^{99} + ... + a_1X + a_0$.
- **5p a)** Să se calculeze $a_{100} + a_{99}$.
- **5p b**) Să se determine restul împărțirii polinomului f la $X^2 1$.
- **5p** c) Să se demonstreze că polinomul f are toate rădăcinile reale.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{|x^2 x|}$.
- a) Să se arate că graficul funcției f admite asimptotă spre $-\infty$.
- **b**) Să se determine domeniul de derivabilitate al funcției f.
- **5p c**) Să se determine punctele de extrem local ale funcției *f*.
 - **2.** Se consideră șirul $(I_n)_{n \in \mathbb{N}^*}$ dat de $I_n = \int_0^1 \frac{x^n}{x^2 + 1} dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .

5р 5р

- **5p b**) Să se verifice că $I_{n+2} + I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p c**) Să se calculeze $\lim_{n\to\infty} nI_n$.

SUBIECTUL I (30p)

5p 1. Se consideră numărul real $s = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{2009}}$. Să se demonstreze că $s \in (1; 2)$.

5p 2. Se consideră funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, f(x) = 2x - 1 și g(x) = -4x + 1. Să se determine coordonatele punctului de intersecție a graficelor celor două funcții.

5p 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin x = 1 + \cos^2 x$.

5p 4. Fie mulțimea $A = \{-2, -1, 0, 1, 2\}$. Să se determine numărul funcțiilor pare $f: A \to A$.

5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1) şi C(1,3). Să se determine coordonatele punctului D ştiind că patrulaterul ABCD este paralelogram.

5p 6. Știind că $x \in \left(\frac{\pi}{2}; \pi\right)$ și că $\sin x = \frac{3}{5}$, să se calculeze $\sin \frac{x}{2}$.

SUBIECTUL II (30p)

1. Se consideră în
$$\mathbb{R}^3$$
 sistemul
$$\begin{cases} ax + y + z = 1 \\ x + ay + z = 1 \end{cases}, a \in \mathbb{R}.$$
$$x + y + az = a$$

5p a) Să se arate că determinantul matricei sistemului are valoarea $(a+2)(a-1)^2$.

5p b) Să se rezolve sistemul în cazul în care este compatibil determinat.

5p c) Să se rezolve sistemul în cazul a = -2.

2. Se consideră mulțimea $G \subset \mathcal{M}_2(\mathbb{Q})$, $G = \left\{ \begin{pmatrix} a & 10b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Q}, a^2 - 10b^2 = 1 \right\}$.

5p a) Să se verifice că $A = \begin{pmatrix} 19 & 60 \\ 6 & 19 \end{pmatrix} \in G$.

5p b) Să se arate că $X \cdot Y \in G$, pentru oricare $X, Y \in G$.

5p c) Să se demonstreze că mulțimea G este infinită.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg}(x+2) \operatorname{arctg} x$.
- **5p** a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **5p b**) Să se demonstreze că $0 < f(x) \le \frac{\pi}{2}, \forall x \in \mathbb{R}$.
- **5p** c) Să se demonstreze că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) + \arctan \frac{(x+1)^2}{2}$ este constantă.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3}{3} x + \arctan x$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \arctan x$.
- **5p** a) Să se calculeze $\int_1^2 \frac{f'(x)}{x} dx$.
- **5p b**) Să se determine $\lim_{x \to \infty} \frac{1}{x^3} \int_0^x f(t) dt$.
- **5p c**) Să se calculeze aria suprafeței cuprinse între graficele celor două funcții și dreptele x = 0 și x = 1.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că numărul $\log_4 16 + \log_3 9 + \sqrt[3]{27}$ este natural.
- **5p** 2. Să se determine valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x^2 + 4x + 2$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $16^x + 3 \cdot 4^x = 4$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un element din mulțimea $\{\sqrt{n} \mid n \in \mathbb{N}, n < 100\}$, acesta să fie număr rațional.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1), C(1,3) și D(a,4), unde $a \in \mathbb{R}$. Să se determine $a \in \mathbb{R}$ astfel încât dreptele AB și CD să fie paralele.
- **5p 6.** Ştiind că $x \in \mathbb{R}$ şi că tg $x = \frac{1}{2}$, să se calculeze tg $\left(x + \frac{\pi}{3}\right)$.

SUBIECTUL II (30p)

1. Se consideră matricele
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 și $A = aI_3 + bB + cB^2$, $a, b, c \in \mathbb{R}$.

- **5p** a) Să se calculeze B^3 .
- **5p b)** Să se calculeze B^{-1} .
- **5p** c) Să se demonstreze că $\forall a, b, c \in \mathbb{R}$, $(a+b+c)\det(A) \ge 0$.
 - **2.** Se consideră corpul $(\mathbb{Z}_7, +, \cdot)$ și $H = \{x^2 \mid x \in \mathbb{Z}_7\}$.
- **5p** a) Să se arate că $H = \{\hat{0}, \hat{1}, \hat{2}, \hat{4}\}$.
- **5p b)** Să se arate că, pentru orice $a \in \mathbb{Z}_7$ există $x, y \in \mathbb{Z}_7$ astfel încât $a = x^2 + y^2$.
- **5p** c) Să se arate că $\{x^{2000} | x \in \mathbb{Z}_7\} = H$.

SUBIECTUL III (30p)

5p

5p

- **1.** Fie funcția $f:(0,+\infty) \to \mathbb{R}, f(x) = \frac{1}{\sqrt{x}}$ și șirul $(a_n)_{n\geq 1}, a_n = \frac{1}{\sqrt{1}} + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + ... + \frac{1}{n\sqrt{n}}, \forall n \in \mathbb{N}^*.$
- a) Să se arate că funcția f' este strict crescătoare pe intervalul $(0, +\infty)$.
- **b**) Să se demonstreze că $\frac{1}{2(k+1)\sqrt{k+1}} < \frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}} < \frac{1}{2k\sqrt{k}}, \forall k \in \mathbb{N}^*.$
- **5p c**) Să se demonstreze că șirul $(a_n)_{n\geq 1}$ este convergent
 - **2.** Se consideră funcțiile $f_n:[0,+\infty)\to\mathbb{R}, f_n(x)=\int_0^x t^n \operatorname{arctg} t \, dt, \, \forall n\in\mathbb{N}^*.$
- **5p** a) Să se arate că $f_1(x) = \frac{x^2 + 1}{2} \operatorname{arctg} x \frac{x}{2}, \ \forall x \ge 0$.
 - **b**) Să arate că $f_n(1) \le \frac{\pi}{4} \cdot \frac{1}{n+1}, \forall n \ge 1$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} nf_n(1)$

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze modulul numărului complex $z = (3+4i)^4$.
- **5p 2.** Să se arate că vârful parabolei asociate funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 2x + 1$ se găsește pe dreapta de ecuație x + y = 0.
- **5p** 3. Să se determine numărul soluțiilor ecuației $\sin x = \sin 2x$ din intervalul $[0, 2\pi)$.
- **5p 4.** Fie mulțimea $A = \{1, 2, 3, 4, 5\}$. Să se determine numărul funcțiilor bijective $f: A \to A$, cu proprietatea că f(1) = 2.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1), C(1,3) și D(a,4), $a \in \mathbb{R}$. Să se determine $a \in \mathbb{R}$ pentru care dreptele AB și CD sunt perpendiculare.
- **5p 6.** Se consideră triunghiul ascuțitunghic ABC în care are loc relația $\sin B + \cos B = \sin C + \cos C$. Să se demonstreze că triunghiul ABC este isoscel.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $K = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in M_{1,3}(\mathbb{R}), L = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \in M_{3,1}(\mathbb{R})$ și A = LK.
- **5p** a) Să se calculeze suma elementelor matricei A.
- **5p b**) Să se arate că $A^2 = 32A$.
- **5p** c) Să se arate că rangul matricei A^n este 1, oricare ar fi $n \in \mathbb{N}^*$.
 - **2.** Pe mulțimea \mathbb{R} se consideră legea de compoziție x * y = axy x y + 6, $\forall x, y \in \mathbb{R}$, unde a este o constantă reală.
- **5p** a) Pentru $a = \frac{1}{3}$, să se demonstreze că legea "*" este asociativă.
- **5p b)** Să se arate că legea "*" admite element neutru dacă și numai dacă $a = \frac{1}{3}$.
- **5p** c) Să se arate că, dacă intervalul [0, 6] este parte stabilă a lui \mathbb{R} în raport cu legea "*", atunci $a \in \left[\frac{1}{6}, \frac{1}{3}\right]$.

1. Se consideră funcția
$$f:(0,+\infty) \to \mathbb{R}$$
, $f(x) = \frac{1}{x+1} - \ln\left(x + \frac{3}{2}\right) + \ln\left(x + \frac{1}{2}\right)$ și șirul $(a_n)_{n \in \mathbb{N}^*}$,

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln\left(n + \frac{1}{2}\right), \ \forall n \in \mathbb{N}^*.$$

- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe intervalul $(0, +\infty)$.
- **5p b**) Să se arate că f(x) < 0, $\forall x \in (0, +\infty)$.
- **5p** c) Să se demonstreze că șirul $(a_n)_{n\in\mathbb{N}^*}$ este strict descrescător.
 - **2.** Se consideră funcțiile $f_n:[0,1] \to \mathbb{R}$, $f_n(x) = \int_0^x t^n \arcsin t \, dt$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze derivata funcției f_3 .
- **5p b**) Să se calculeze $f_1\left(\frac{1}{2}\right)$.
- **5p** c) Să se determine $\lim_{\substack{x \to 1 \\ x \neq 1}} f_2(x)$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze modulul numărului $(2+i)^3 + (2-i)^3$.
- **5p 2.** Graficul unei funcții de gradul al doilea este o parabolă care trece prin punctele A(1,-3), B(-1,3), C(0,1). Să se calculeze valoarea funcției în punctul x=2.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3 \cdot 4^x 6^x = 2 \cdot 9^x$.
- **5p 4.** Se consideră mulțimea $A = \{0,1,2,...,2009\}$. Să se determine probabilitatea ca, alegând un element din multimea A, acesta să fie divizibil cu 5.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(0,-3) și B(4, 0). Să se calculeze distanța de la punctul O la dreapta AB.
- **5p** | **6.** Să se calculeze aria unui paralelogram *ABCD* cu *AB* = 6, *AD* = 8 şi $m(\angle ADC)$ = 135°.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 0 \\ 1 & 4 & -3 \end{pmatrix}$ și $B = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$.
- **5p** a) Să se arate că ecuația AX = B are o infinitate de soluții $X \in \mathcal{M}_{3,1}(\mathbb{C})$.
- **5p b)** Să se verifice că $A^3 = 10A$.
- **5p** c) Să se determine rangul matricei A^* , adjuncta matricei A.
 - **2.** Se consideră mulțimea $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$, funcția $f : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$, $f(a+b\sqrt{2}) = a^2 2b^2$, $\forall a,b \in \mathbb{Z}$ și mulțimea $A = \{x \in \mathbb{Z}[\sqrt{2}] \mid f(x) = -1\}$.
- **5p** a) Să se arate că $7 + 5\sqrt{2} \in A$.
- **5p b)** Să se arate că, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{2} \rceil$, f(xy) = f(x) f(y).
- **5p c)** Să se arate că mulțimea A este infinită.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \ln(e^x + 1)$.
- **5p** a) Să se arate că funcția f' este strict descrescătoare pe \mathbb{R} .
- **5p b**) Să se arate că $\lim_{x \to \infty} x^a f(x) = 0, \forall a \in \mathbb{R}.$
- $\mathbf{5p}$ **c**) Să se determine asimptotele graficului funcției f.
 - **2.** Fie şirul $(I_n)_{n \in \mathbb{N}^*}$ dat de $I_n = \int_0^2 (2x x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_1 .
- **5p b**) Să se demonstreze că $(2n+1)I_n = 2nI_{n-1}$, $\forall n \in \mathbb{N}^*$, $n \ge 2$.
- **5p** c) Să se arate că șirul $(I_n)_{n\in\mathbb{N}^*}$ tinde descrescător către 0.

SUBIECTUL I (30p)

- **5p 1.** Se consideră numărul rațional $\frac{1}{7}$ scris sub formă de fracție zecimală infinită $\frac{1}{7} = 0, a_1 a_2 a_3 \dots$. Să se determine a_{60} .
- **5p** 2. Fie funcțiile $f,g:\mathbb{R}\to\mathbb{R},\ f(x)=2-x,\ g(x)=3x+2$. Să se calculeze $(f\circ g)(x)-(g\circ f)(x)$.
- **5p** 3. Să se demonstreze că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^3 + 1$ este injectivă.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să fie divizibil cu 50.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care punctele A(1,-2), B(4,1) și C(-1,a) sunt coliniare.
- **5p** | **6.** Fie ABC un triunghi care are AB = 3, AC = 5 şi BC = 7. Să se calculeze $\cos A$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, cu proprietatea că $A^2 = O_2$.
- **5p** a) Să se arate că a+d=0.
- **5p b**) Să se arate că matricea $I_2 + A$ este inversabilă.
- **5p** c) Să se arate că ecuația $AX = O_2$ are o infinitate de soluții în mulțimea $\mathcal{M}_2(\mathbb{R})$.
 - **2.** Se consideră polinomul $f = X^4 2X^2 + 9$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$, numărul $a = \sqrt{2} + i$ și mulțimile $A = \{g(a) \mid g \in \mathbb{Q}[X]\}$ și $B = \{h(a) \mid h \in \mathbb{Q}[X], \operatorname{grad}(h) \leq 3\}$.
- **5p** a) Să se calculeze f(a).
- **5p b)** Să se calculeze $|x_1| + |x_2| + |x_3| + |x_4|$.
- **5p c**) Să se arate că A = B.

SUBIECTUL III (30p)

5p

5p

- **1.** Fie funcția $f: \mathbb{R} \setminus \{\sqrt{3}\} \to \mathbb{R}$, $f(x) = \frac{x\sqrt{3}+1}{\sqrt{3}-x}$ și șirul $(a_n)_{n\geq 1}$ definit prin $a_1 = 2$, $a_{n+1} = f(a_n)$, $\forall n \in \mathbb{N}^*$.
- a) Să se demonstreze că funcția f este strict crescătoare pe $(-\infty, \sqrt{3})$ și pe $(\sqrt{3}, \infty)$.
- **b**) Să se determine asimptotele graficului funcției f.
- c) Să se demonstreze că șirul $(a_n)_{n\in\mathbb{N}^*}$ nu este convergent.
- **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_1^x f(t) dt$.
- **5p** a) Să se determine punctele de inflexiune ale graficului funcției F.
- **5p b**) Să se calculeze $\int_0^1 xf(x) dx$.
- **5p** c) Să se calculeze $\int_0^1 F(x) dx$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze suma 1+4+7+...+100
- **5p** 2. Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 + x + 1$.
- **5p** 3. Să se arate că numărul $\sin\left(\arcsin\frac{1}{2}\right) + \sin\left(\arccos\frac{\sqrt{3}}{2}\right)$ este natural.
- **5p 4.** Să se determine numărul termenilor raționali din dezvoltarea binomului $(\sqrt{2} + 1)^5$.
- **5p** | **5.** Fie *ABCD* un pătrat de latură 1. Să se calculeze lungimea vectorului $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.
- **5p 6.** Să se arate că $\sin 105^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

SUBIECTUL II (30p)

- 1. Se consideră matricea $A = \begin{pmatrix} a & a+1 & a+2 \\ b & b+1 & b+2 \\ 1 & 1 & a \end{pmatrix}$, cu $a,b \in \mathbb{R}$.
- **5p** a) Să se arate că $\det(A) = (a-b)(a-1)$
- **5p b**) Să se calculeze $\det(A A^t)$.
- **5p** c) Să se arate că rang $A \ge 2$, $\forall a, b \in \mathbb{R}$.
 - **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = X^3 + pX^2 + qX + r$, cu $p, q, r \in (0, \infty)$ și cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
- **5p** a) Să se demonstreze că f nu are rădăcini în intervalul $[0, \infty)$.
- **5p b)** Să se calculeze $x_1^3 + x_2^3 + x_3^3$ în funcție de p, q și r.
- **5p c)** Să se demonstreze că dacă a, b, c sunt trei numere reale astfel încât a+b+c<0, ab+bc+ca>0 și abc<0, atunci $a, b, c \in (-\infty, 0)$.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 3 \operatorname{arctg} x$.
- a) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
- **b**) Să se arate că funcția f este bijectivă.
- **5p** c) Să se determine $a \in \mathbb{R}$ pentru care $\lim_{x \to \infty} \frac{f(x)}{x^a}$ există, este finită și nenulă.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$ dat de $I_n = \int_0^1 x^n e^x dx, \forall n \in \mathbb{N}^*$.
- **5p a**) Să se calculeze I_1 .

5p

5p

- **5p b**) Să se demonstreze că șirul $(I_n)_{n\geq 1}$ este convergent.
- **5p** c) Să se calculeze $\lim_{n\to\infty} nI_n$.

SUBIECTUL I (30p)

- **5p** | **1.** Să se arate că $\log_2 3 \in (1,2)$.
- **5p** 2. Să se determine valorile reale ale lui m pentru care $x^2 + 3x + m > 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\sin x + \cos(-x) = 1$.
- **5p 4.** Să se arate că, pentru orice număr natural $n, n \ge 3$, are loc relația $C_n^2 + C_n^3 = C_{n+1}^3$.
- **5p 5.** Se consideră dreptele de ecuații $d_1: 2x + 3y + 1 = 0$, $d_2: 3x + y 2 = 0$ și $d_3: x + y + a = 0$. Să se determine $a \in \mathbb{R}$ pentru care cele trei drepte sunt concurente.
- **5p** | **6.** Să se calculeze perimetrul triunghiului *ABC*, știind că AB = 4, AC = 3 și $m(\angle BAC) = 60^{\circ}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ și mulțimea de matrice $M = \left\{ \begin{pmatrix} a & 0 & 0 \\ b & a & 0 \\ c & b & a \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$.
- **5p** a) Să se calculeze A^3 .
- **5p b**) Să se arate că dacă $X \in \mathcal{M}_3(\mathbb{C})$ și AX = XA, atunci $X \in M$.
- **5p** c) Să se arate că ecuația $X^2 = A$ nu are soluții în $M_3(\mathbb{C})$.
 - **2.** Se consideră polinomul $f = aX^4 + bX + c$, cu $a, b, c \in \mathbb{Z}$.
- **5p** a) Să se arate că numărul f(3) f(1) este număr par.
- **5p b)** Să se arate că, pentru orice $x, y \in \mathbb{Z}$, numărul f(x) f(y) este divizibil cu x y.
- **5p** c) Să se determine coeficienții polinomului f știind că f(1) = 4 și f(b) = 3.

SUBIECTUL III (30p)

5p

5p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + \ln(x^2 + x + 1)$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare.
 - **b**) Să se demonstreze că funcția f este bijectivă.
 - c) Să se arate că graficul funcției f nu are asimptotă oblică spre $+\infty$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \{x\} (1 \{x\})$, unde $\{x\}$ este partea fracționară a numărului real x.
- **5p** a) Să se calculeze $\int_0^1 f(x) dx$.
- **5p b**) Să se demonstreze că funcția f admite primitive pe \mathbb{R} .
- **5p** c) Să se arate că valoarea integralei $\int_{a}^{a+1} f(x)dx$ nu depinde de numărul real a.

SUBIECTUL I (30p)

5p 1. Se consideră numărul complex $z = \frac{-1 + i\sqrt{3}}{2}$. Să se demonstreze că $z^2 = \overline{z}$.

5p 2. Să se rezolve în mulțimea numerelor reale inecuația $-x^2 + 4x - 3 \ge 0$.

5p 3. Să se arate că funcția $f:(1,\infty)\to\mathbb{R}, \ f(x)=x+\frac{1}{x}$ este injectivă.

5p 4. Să se determine numărul funcțiilor $f:\{1,2,3\} \rightarrow \{0,1,2,3\}$ pentru care f(1) este număr par.

5p | **5.** Fie *ABC* un triunghi care are AB = 2, AC = 3 şi $BC = 2\sqrt{2}$. Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

5p 6. Să se arate că $\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$.

SUBIECTUL II (30p)

- **1.** Se consideră sistemul $\begin{cases} x+y+z=0\\ ax+by+cz=0\\ bcx+acy+abz=0 \end{cases}$, cu $a,b,c\in\mathbb{R}^*$ și A matricea sistemului.
- **5p** a) Să se calculeze $\det(A)$.
- **5p b)** Să se rezolve sistemul, în cazul în care a,b,c sunt distincte două câte două.
- **5p** c) Să se determine mulțimea soluțiilor sistemului, în cazul în care $a = b \neq c$.
 - **2.** Se consideră mulțimea $M = \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Z}, a^2 5b^2 = 1 \right\}$.
- **5p** a) Să se arate că $x = 9 + 4\sqrt{5} \in M$.
- **5p b)** Să se demonstreze că M este grup în raport cu înmulțirea numerelor reale.
- **5p** c) Să se demonstreze că mulțimea M are o infinitate de elemente.

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b**) Să se determine asimptotele graficului funcției f.
- **5p** c) Să se demonstreze că orice şir $(x_n)_{n \in \mathbb{N}}$ cu proprietatea $x_0 \in (0,1), x_{n+1} = e^{f(x_n)}$ este convergent.
 - **2.** Se consideră șirul $(I_n)_{n \in \mathbb{N}^*}$ definit prin $I_n = \int_0^1 \frac{x^n}{4x+5} dx$, $\forall n \in \mathbb{N}^*$.
- **5p a**) Să se calculeze I_2 .
- **5p b**) Să se arate că șirul $(I_n)_{n \in \mathbb{N}^*}$ verifică relația $4I_{n+1} + 5I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se determine $\lim_{n\to\infty} nI_n$.

SUBIECTUL I (30p)

- **5p** 1. Se consideră $a \in \mathbb{R}$ și numărul complex $z = \frac{a+2i}{2+ai}$. Să se determine a pentru care $z \in \mathbb{R}$.
- **5p 2.** Să se demonstreze că dreapta de ecuație y = 2x + 3 intersectează parabola de ecuație $y = x^2 4x + 12$ într-un singur punct.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2x-1} = x$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5, 6\}$. Să se determine probabilitatea ca, alegând o pereche (a, b) din produsul cartezian $A \times A$ să avem egalitatea a + b = 6.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele M(2,-1), A(1, 2) și B(4, 1). Să se determine lungimea vectorului $\overrightarrow{MA} + \overrightarrow{MB}$.
- **5p 6.** Să se arate că $\sin(a+b) \cdot \sin(a-b) = \sin^2 a \sin^2 b$, pentru oricare $a, b \in \mathbb{R}$.

SUBIECTUL II (30p)

1. Se consideră matricele
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$,

$$B = I_3 + A$$
, $C = I_3 + aA$, cu $a \in \mathbb{R}$.

- **5p** a) Să se calculeze S = A XY.
- **5p** | **b**) Să se determine $a \in \mathbb{R}$ astfel încât $BC = I_3$.
- **5p** c) Să se arate că $A^{n+1} = 14A^n$, $\forall n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $f = X^3 1 \in \mathbb{R}[X]$ și numărul $\varepsilon \in \mathbb{C} \setminus \mathbb{R}$, astfel încât $f(\varepsilon) = 0$.
- **5p** a) Să se demonstreze că $\varepsilon^2 + \varepsilon + 1 = 0$.
- **5p b)** Să se rezolve în mulțimea numerelor complexe sistemul $\begin{cases} x + y + z = 0 \\ x + y\varepsilon + z\varepsilon^2 = 0 \\ x + y\varepsilon^2 + z\varepsilon = 0 \end{cases}$
- **5p c**) Să se arate că, dacă f divide $f_1(X^3) + Xf_2(X^3) + X^2f_3(X^3)$, unde f_1, f_2, f_3 sunt polinoame cu coeficienți complecși, atunci fiecare dintre polinoamele f_1, f_2, f_3 este divizibil cu X 1.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 2} \sqrt{x^2 + 1}$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe intervalul $(-\infty,0]$.
- **5p b**) Să se arate că graficul funcției f are exact două puncte de inflexiune.
- **5p** c) Să se determine ecuația asimptotei la graficul funcției f spre $-\infty$.
 - **2.** Se consideră funcțiile $F_n: \mathbb{R} \to \mathbb{R}$, $F_n(x) = \int_0^x t \sin^n t \, dt$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze $F_1(\pi)$.
- **5p b**) Să se demonstreze că $F_{n+1}(1) < F_n(1)$, $\forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} F_n(1)$.

SUBIECTUL I (30p)

- **1.** Să se arate că numărul $100^{\lg 2} + \sqrt[3]{-27}$ este natural. 5p
- **2.** Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x}{x^2 + 1}$. 5p
- 3. Să se rezolve în mulțimea numerelor reale ecuația $3^{x+1} = -3^x + 8$. 5p
- **4.** Să se determine numărul funcțiilor $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ care au proprietatea că f(1)+f(3)=7. **5**p
- 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1) și B(-1,1). Să se determine **5p** ecuatia dreptei care trece prin originea axelor si este paralelă cu dreapta AB.
- **6.** Fie $a \neq b$ numere reale astfel încât $\sin a + \sin b = 1 \neq \cos a + \cos b = \frac{1}{2}$. Să se calculeze $\cos(a b)$. **5p**

SUBIECTUL II (30p)

1. Pentru
$$p, q, r \in \mathbb{C}$$
, se consideră sistemul
$$\begin{cases} x + py + p^2z = p^3 \\ x + qy + q^2z = q^3 \\ x + ry + r^2z = r^3 \end{cases}$$
2) Să se arate că determinantul sistemului este $\Delta = (n-q)(q-r)(r-q)$

- a) Să se arate că determinantul sistemului este $\Delta = (p-q)(q-r)(r-p)$. **5p**
- **b)** Dacă p, q, r sunt distincte, să se rezolve sistemul. 5p
- c) Să se arate că, dacă sistemul are soluția (-1,1,1), atunci cel puțin două dintre numerele p,q,r**5p**
 - **2.** Se consideră inelul $(A,+,\cdot)$ unde $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a,b \in \mathbb{Z}_5 \right\}$.
- a) Să se determine numărul elementelor mulțimii A. **5**p
- **5**p **b)** Să se rezolve în mulțimea A ecuația $X^2 = I_2$.
- c) Să se arate că $(A,+,\cdot)$ nu este corp. 5p

- 1. Se consideră funcția $f:(0,+\infty) \to (-\infty,0)$, $f(x) = \ln(1+x) x$.
- a) Să se demonstreze că funcția f este strict descrescătoare pe intervalul $(0, +\infty)$. 5p
- **b**) Să se arate că funcția f este surjectivă. 5p
- c) Să se arate că graficul funcției f nu admite asimptote. 5p
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- a) Să se calculeze $\int_0^1 f(x) dx$. 5p
- **b**) Să se arate că $\lim_{x \to \infty} \frac{1}{x} \int_{-\infty}^{x} f(\ln t) dt = \frac{\pi}{2}$. 5p
- c) Să se calculeze $\lim_{n\to\infty} \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + \dots + f\left(\frac{n}{n}\right) \right)$. 5p

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze partea întreagă a numărului $1 \frac{1}{3} + \frac{1}{3^2} \frac{1}{3^3}$.
- **5p 2.** Să se rezolve în $\mathbb{R} \times \mathbb{R}$ sistemul $\begin{cases} y = x^2 3x + 1 \\ y = 2x^2 + x + 4 \end{cases}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan x + \operatorname{arcctg} \frac{1}{3} = \frac{\pi}{2}$.
- **5p 4.** Să se determine numărul termenilor raționali ai dezvoltării $(\sqrt[4]{5} + 1)^{100}$.
- **5p 5.** Să se arate că punctele A(-1, 5), B(1,1) și C(3,-3) sunt coliniare.
- **5p 6.** Să se calculeze lungimea razei cercului înscris în triunghiul care are lungimile laturilor 4, 5 și 7.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A, B \in \mathcal{M}_2(\mathbb{C})$, cu AB BA = A și matricele $A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
- **5p** a) Să se determine rangul matricei A_0 .
- **5p b**) Să se arate că $A_0B_0 B_0A_0 = A_0$.
- **5p** c) Să se demonstreze că $A^nB BA^n = nA^n$, pentru orice $n \in \mathbb{N}$, $n \ge 2$.
 - **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = 4X^3 12X^2 + aX + b$.
- **5p** a) Să se determine $a, b \in \mathbb{R}$, astfel încât polinomul f să se dividă cu polinomul $X^2 1$.
- **5p b)** Să se determine $a, b \in \mathbb{R}$, astfel încât ecuația f(x) = 0 să aibă soluția $x = i \in \mathbb{C}$.
- **5p c)** Să se determine $a, b \in \mathbb{R}$, astfel încât polinomul să aibă rădăcinile x_1, x_2, x_3 în progresie aritmetică și, în plus, $x_1^2 + x_2^2 + x_3^2 = 11$.

SUBIECTUL III (30p)

- **1.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \operatorname{arctg} x$ și șirul $(x_n)_{n \in \mathbb{N}^*}$ definit de $x_1 = 1$, $x_{n+1} = f(x_n)$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se demonstreze că funcția f' este strict crescătoare pe \mathbb{R} .
 - b) Să se determine ecuația asimptotei la graficul funcției f spre $-\infty$.
- **5p** c) Să se arate că șirul $(x_n)_{n\in\mathbb{N}^*}$ este convergent.
 - **2.** Fie şirul $(I_n)_{n\in\mathbb{N}^*}$, definit prin $I_n = \int_0^1 (x-x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .

5p

- **5p b**) Să se demonstreze că $I_n = \frac{n}{4n+2} I_{n-1}$, $\forall n \in \mathbb{N}, n \ge 2$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

- **1.** Să se determine valoarea de adevăr a propoziției: "Suma oricăror două numere iraționale este număr irațional."
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2. Să se rezolve ecuația $f(f(x)) = f^2(x)$.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuatia $4^x 2^x = 12$.
- **5p 4.** Fie mulțimea $A = \{1, 2, 3, 4, 5, 6\}$. Să se calculeze probabilitatea ca, alegând o pereche (a, b) din mulțimea $A \times A$, produsul numerelor a și b să fie impar.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(1, 3) și C(-1, 1). Să se calculeze aria pătratului de diagonală AC.
- **5p 6.** Să se arate că $\sin 105^{\circ} + \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{2}$.

SUBIECTUL II (30p)

- **1.** Se consideră mulțimea $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a,b,c,d \in \mathbb{N} \right\}$ și matricea $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \in M$.
- **5p** a) Câte matrice din mulțimea M au suma elementelor egală cu 1?
- **5p b**) Să se arate că $A^{-1} \notin M$.
- **5p** c) Să se determine toate matricele inversabile $B \in M$ care au proprietatea $B^{-1} \in M$.
 - **2.** Se consideră ecuația $x^4 8x^3 + ax^2 + 8x + b = 0$, cu $a, b \in \mathbb{R}$ și cu soluțiile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
- **5p** a) Să se arate că $(x_1 + x_4)(x_2 + x_3) + x_1x_4 + x_2x_3 + (x_1 + x_4)x_2x_3 + (x_2 + x_3)x_1x_4 = a 8$.
- **5p b)** Să se determine $a \in \mathbb{R}$ astfel încât $x_1 + x_4 = x_2 + x_3$.
- **5p** c) Să se determine $a, b \in \mathbb{R}$, astfel încât x_1, x_2, x_3, x_4 să fie în progresie aritmetică.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^{-x}$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe intervalul $[0, +\infty)$.
- **5p b)** Să se arate că funcția f admite exact un punct de extrem local.
- **5p** c) Să se determine numărul de soluții reale ale ecuației f(x) = m, unde m este un număr real oarecare.
 - **2.** Fie funcțiile $f:\left(0,\frac{\pi}{2}\right) \to \mathbb{R}$, $f\left(x\right) = \int_{1}^{\lg x} \frac{t}{1+t^2} dt$ și $g:\left(0,\frac{\pi}{2}\right) \to \mathbb{R}$, $g\left(x\right) = \int_{1}^{\operatorname{ctg} x} \frac{1}{t(1+t^2)} dt$.
- **5p** a) Să se calculeze $f\left(\frac{\pi}{3}\right)$.
- **5p b**) Să se calculeze f'(x), $x \in \left(0, \frac{\pi}{2}\right)$.
- **5p** c) Să se arate că $f(x) + g(x) = 0, \forall x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL I (30p)

5p 1. Să se determine partea reală a numărului complex $z = \frac{1-i}{1+i}$.

5p 2. Să se determine valorile reale ale lui m pentru care $x^2 + mx + 1 \ge 0$, oricare ar fi $x \in \mathbb{R}$.

5p 3. Să se rezolve în mulțimea numerelor reale ecuația $\arcsin 2x = -\frac{1}{2}$.

5p 4. Se consideră mulțimea $A = \{0,1,2,3,...,9\}$. Să se determine numărul submulțimilor mulțimii A care au 5 elemente, din care exact două sunt numere pare.

5p 5. În sistemul cartezian de coordonate xOy se consideră punctele B(-1, 2) și C(2, -2). Să se determine distanța de la punctul O la dreapta BC.

5p 6. Știind că $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ și $\sin \alpha = \frac{3}{5}$, să se calculeze $\cot \alpha$.

SUBIECTUL II (30p)

1. Se consideră matricele $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

5p a) Să se calculeze AB + BA

5p b) Să se arate că rang $(A + B) = \operatorname{rang} A + \operatorname{rang} B$.

5p c) Să se demonstreze că $(A+B)^n = A^n + B^n$, $\forall n \in \mathbb{N}^*$.

2. Se consideră polinomul $f = X^4 + aX^3 + 4X^2 + 1 \in \mathbb{C}[X]$ cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

a) Să se determine $a \in \mathbb{C}$ astfel încât polinomul f să se dividă cu X + 1.

5p b) Să se arate că polinomul $g = X^4 + 4X^2 + aX + 1$ are rădăcinile $\frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_3}, \frac{1}{x_4}$.

5p | **c**) Să se arate că, pentru orice $a \in \mathbb{C}$, polinomul f nu are toate rădăcinile reale.

SUBIECTUL III (30p)

5p

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{ax+b}{\sqrt{x^2+x+1}}, \ a,b \in \mathbb{R}.$

5p a) Să se calculeze $f'(x), \forall x \in \mathbb{R}$.

b) Să se arate că funcția f este strict crescătoare pe \mathbb{R} dacă și numai dacă a=2b>0.

5p c) Pentru a = 2 și b = 1, să se determine mulțimea valorilor funcției f.

2. Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \int_0^x e^{\arcsin t} dt$.

5p a) Să se arate că funcția f este strict monotonă.

5p b) Să se arate că $f(x) = \int_0^{\arcsin x} e^t \cos t \, dt, \forall x \in [-1,1]$.

5p c) Să se determine f(1).

SUBIECTUL I (30p)

- **5p** 1. Să se determine partea întreagă a numărului $\frac{7}{5\sqrt{2}-1}$.
- **5p** 2. Fie x_1 și x_2 soluțiile reale ale ecuației $x^2 + x 1 = 0$. Să se arate că $\frac{x_1}{x_2} + \frac{x_2}{x_1} \in \mathbb{Z}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2 \cdot 3^x + 3^{1-x} = 7$.
- **5p 4.** Se consideră mulțimile $A = \{1, 2, 3, 4\}$ și $B = \{1, 2, 3, 4, 5, 6\}$. Să se determine numărul funcțiilor strict crescătoare $f: A \rightarrow B$.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(1, 3), B(-2, 1) și C(-3, -1). Să se calculeze lungimea înălțimii duse din vârful A în triunghiul ABC.
- **5p 6.** Să arate că $2 \cdot (\sin 75^{\circ} \sin 15^{\circ}) = \sqrt{2}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ și mulțimea $C(A) = \{X \in \mathcal{M}_2(\mathbb{R}) \mid XA = AX \}$.
- **5p** a) Să se arate că $B \in C(A)$.
- **5p b)** Să se arate că dacă $X \in C(A)$, atunci există $x, y \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$.
- **5p** c) Să se rezolve ecuația $X + X^2 = A$.
 - 2. Se consideră mulțimea G = (-1,1), funcția $f: G \to \mathbb{R}$, $f(x) = \frac{1-x}{1+x}$ și corespondența

$$(x, y) \rightarrow x * y$$
, unde $x * y = \frac{x + y}{1 + xy}$, $\forall x, y \in G$.

- **5p** a) Să se arate că această corespondență definește o lege de compoziție pe G.
- **5p b**) Să se arate că $\forall x, y \in G$, f(x * y) = f(x)f(y).
- **5p** c) Știind că operația "*" este asociativă, să se calculeze $\frac{1}{2} * \frac{1}{3} * ... * \frac{1}{9}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + ax + 5}{\sqrt{x^2 + 1}}$, $a \in \mathbb{R}$.
- **5p** a) Să se calculeze f'(x), $\forall x \in \mathbb{R}$.
- **5p b**) Știind că a = 0, să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- **5p** c) Să se determine toate numerele reale a astfel încât funcția f să aibă trei puncte de extrem local.
 - **2.** Fie funcția $f:[-1,1] \to \mathbb{R}, \ f(x) = \sqrt{1-x^2}$
- **5p** a) Să se calculeze $\int_{-1}^{1} x \sqrt{1-x^2} dx$.
- **5p b)** Să se determine volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \int_0^1 x^n f(x) dx$.

SUBIECTUL I (30p)

- **5p** | **1.** Fie $(a_n)_{n\geq 1}$ o progresie aritmetică. Știind că $a_3 + a_{19} = 10$, să se calculeze $a_6 + a_{16}$.
- **5p 2.** Să se determine valorile parametrului real m pentru care ecuația $x^2 mx + 1 m = 0$ are două rădăcini reale distincte.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\lg^2 x + \lg x = 6$.
- **5p 4.** Se consideră mulțimile $A = \{1, 2, 3\}$ și $B = \{1, 2, 3, 4, 5\}$. Să se determine numărul funcțiilor strict descrescătoare $f: A \rightarrow B$, cu proprietatea că f(3) = 1.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele M(2,-1), N(-1,1) și P(0,3). Să se determine coordonatele punctului Q astfel încât MNPQ să fie paralelogram.
- **5n** | **6.** Să se calculeze lungimea medianei duse din A în triunghiul ABC, stiind că AB = 2. AC = 3 si BC = 4.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- **5p** a) Să se demonstreze că $\forall x \in \mathbb{R}$, $\det(A xI_2) = x^2 (a + d)x + ad bc$.
- **5p b)** Dacă $A^2 = O_2$, să se demonstreze că a + d = 0.
- **5p** c) Știind că $A^2 = O_2$, să se calculeze $\det(A + 2I_2)$.
 - **2.** Se consideră mulțimea $G = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a^2 3b^2 = 1\}$ și operația (a,b)*(c,d) = (ac+3bd,ad+bc).
- **5p** a) Să se determine $a \in \mathbb{Z}$ pentru care $(a,15) \in G$.
- **5p b**) Să se arate că, pentru orice $(a,b),(c,d) \in G$, $(a,b)*(c,d) \in G$.
- **5p** c) Să se arate că (G, *) este grup.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{|x-1|}{e^x}$.
- **5p** a) Să se arate că f nu este derivabilă în punctul $x_0 = 1$.
- **5p b**) Să se determine numărul soluțiilor reale ale ecuației f(x) = m, unde m este un parametru real.
- **5p** c) Să se calculeze $\lim_{n\to\infty} (f(1)+f(2)+f(3)+...+f(n))$.
 - **2.** Se consideră funcția $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \ f(x) = x^2 \sin x$.
- **5p** a) Să se arate că există numerele reale a, b, c astfel încât funcția $F: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$, $F(x) = \left(ax^2 + b\right)\cos x + cx\sin x$ să fie o primitivă a funcției f.
- **5p b**) Să se calculeze $\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} f\left(\frac{1}{2x}\right) dx.$
- **5p** c) Să se calculeze aria suprafeței plane cuprinse între graficul funcției f și graficul funcției $g:\left[0,\frac{\pi}{2}\right] \to \mathbb{R}$ $g(x) = \pi x x^2$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că numărul $(2+i)^4 + (2-i)^4$ este întreg.
- **5p 2.** Să se determine coordonatele punctelor de intersecție dintre dreapta de ecuație y = 2x + 1 și parabola de ecuație $y = x^2 + x + 1$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2x + \sqrt{16 + x^2} = 11$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de patru cifre, acesta să fie divizibil cu 9.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(-1, 1), B(1, 3) și C(3, 2). Fie G centrul de greutate al triunghiului ABC. Să se determine ecuația dreptei OG.
- **5p 6.** Să se arate că $2 \cdot (\cos 75^{\circ} + \cos 15^{\circ}) = \sqrt{6}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ și funcția $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, f(X) = AX XA.
- **5p** a) Să se determine rangul matricei A.
- **5p b**) Să se calculeze f(B).
- **5p** c) Să se arate că ecuația f(X) = B nu are soluții.
 - **2.** Se consideră polinoamele $f, g \in \mathbb{R}[X], f = X^3 + a^2X a, g = aX^3 a^2X^2 1, cu <math>a \in \mathbb{R}^*$ și $x_1, x_2, x_3 \in \mathbb{C}$ rădăcinile polinomului f.
- **5p a)** Să se calculeze $x_1^2 + x_2^2 + x_3^2$.
- **5p b)** Să se arate că rădăcinile polinomului g sunt inversele rădăcinilor polinomului f.
- **5p** c) Să se arate că polinoamele f și g nu au rădăcini reale comune.

- **1.** Se consideră funcția $f : \mathbb{R} \setminus \{1, -1\} \to \mathbb{R}$, $f(x) = \arctan \frac{1}{x^2 1}$.
- **5p** a) Să se calculeze $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$.
- **5p b**) Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
- 5p c) Să se demonstreze că funcția f admite un singur punct de extrem local.
 - **2.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x 1 + \frac{1}{2}x^2$.
- **5p** a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) dx$.
- **5p b)** Să se determine $\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) dt$.
- **5p** c) Să se demonstreze că $\int_0^1 \cos(x^2) dx \ge \frac{9}{10}$.

SUBIECTUL I (30p)

5p 1. Să se determine partea reală a numărului complex $(\sqrt{3} + i)^6$.

5p 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{1}{\sqrt[3]{x}}$. Să se calculeze $(f\circ f)(512)$.

5p 3. Să se rezolve în mulțimea numerelor reale ecuația $\cos 2x + \sin x = 0$.

5p 4. Se consideră mulțimea $M = \{0,1,2,3,4,5\}$. Să se determine numărul tripletelor (a,b,c) cu proprietatea că $a,b,c \in M$ și a < b < c.

5p 5. Să se calculeze distanța dintre dreptele paralele de ecuații x + 2y = 6 și 2x + 4y = 11.

5p 6. Paralelogramul *ABCD* are *AB* = 1, *BC* = 2 şi $m(\angle BAD) = 60^{\circ}$. Să se calculeze produsul scalar $\overrightarrow{AC} \cdot \overrightarrow{AD}$.

SUBIECTUL II (30p)

1. Se consideră sistemul $\begin{cases} x + 2y + z = 1 \\ 2x - y + z = 1 \\ 7x - y + az = b \end{cases}$, unde a și b sunt parametri reali.

5p a) Să se determine $a \in \mathbb{R}$ pentru care determinantul sistemului este egal cu zero.

5p b) Să se determine valorile parametrilor $a, b \in \mathbb{R}$ pentru care sistemul este incompatibil.

5p c) Să se arate există o infinitate de valori ale numerelor a și b pentru care sistemul admite o soluție (x, y, z), cu x, y, z în progresie aritmetică.

2. Se consideră mulțimea $G = \left\{ X(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \middle| t \in \mathbb{R} \right\}.$

5p a) Să se arate că $X(t) \cdot X(u) = X(t+u), \forall t, u \in \mathbb{R}$.

5p b) Să se determine $t \in \mathbb{R}$ știind că $X(t) \in \mathcal{M}_2(\mathbb{Z})$.

 $\mathbf{5p} \mid \mathbf{c}$) Să se arate că mulțimea G formează grup abelian în raport cu înmulțirea matricelor.

SUBIECTUL III (30p)

1. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$.

5p a) Să se calculeze $\lim_{x \to +\infty} f(x)$.

5p

5p

b) Să se determine domeniul de derivabilitate al funcției f.

c) Să se demonstreze că funcția f are două puncte de extrem.

2. Fie funcția $f:[0,1] \to \mathbb{R}$, $f(x) = \sqrt{1-x^2}$ și șirul $(a_n)_{n \in \mathbb{N}^*}$, $a_n = \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2 - k^2}$, $\forall n \in \mathbb{N}^*$.

5p a) Să se calculeze $\int_0^1 x f(x) dx$.

5p b) Să se determine volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.

5p c) Să se demonstreze că șirul $(a_n)_{n\in\mathbb{N}^*}$ este convergent.

SUBIECTUL I (30p)

- **5p** | **1.** Să se arate că numărul $\log_9 \sqrt{3} + \log_4 \sqrt[3]{2}$ este rațional.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 2mx + m 1$, $m \in \mathbb{R}^*$. Să se determine $m \in \mathbb{R}^*$ astfel încât $f(x) \le 0$, pentru orice $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2^x + 2^{x+1} + 2^{x-1} = 56$.
- **5p 4.** Fie mulțimea $A = \{1, 2, ..., 1000\}$. Să se calculeze probabilitatea ca, alegând un element din mulțimea $\{\sqrt[3]{n} \mid n \in A\}$, acesta să fie număr rațional.
- **5p 5.** Fie triunghiul ABC și $M \in (BC)$ astfel încât $\overrightarrow{MC} = -\frac{3}{4}\overrightarrow{CB}$. Să se demonstreze că $\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AB} \frac{1}{4}\overrightarrow{CA}$.
- **5p 6.** Ştiind că $x \in \left(0, \frac{\pi}{2}\right)$ şi tg x = 3, să se calculeze $\sin 2x$.

SUBIECTUL II (30p)

- **1.** Se consideră $a \in \mathbb{R}$, sistemul $\begin{cases} x + ay = 1 \\ y + az = a \text{ şi } A \text{ matricea sa.} \\ z + x = 1 \end{cases}$
- **5p** a) Să se arate că det $A \neq 0$.
- **5p b**) Să se arate că soluția sistemului este formată din trei numere în progresie geometrică.
- **5p c**) Să se determine inversa matricei A.
 - **2.** Se consideră pe \mathbb{R} legea de compoziție dată de relația x * y = xy 5x 5y + 30, $\forall x, y \in \mathbb{R}$ și mulțimea $G = (5, \infty)$.
- **5p** a) Să se arate că legea "*" are element neutru.
- **5p b**) Să se demonstreze că G este grup abelian în raport cu legea "*".
- **5p c)** Să se rezolve în grupul (G, *) sistemul $\begin{cases} x * y = z \\ y * z = x \\ z * x = y \end{cases}$

Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

- **1.** Se consideră funcția $f:[1,+\infty) \to \mathbb{R}$, $f(x) = \frac{4-3x^2}{x^3}$.
- **5p** a) Să se demonstreze că graficul funcției f admite asimptotă spre $+\infty$.
- **5p b**) Să se determine mulțimea valorilor funcției f.
- **5p** c) Să se determine domeniul de derivabilitate al funcției $g:[2,\infty) \to \mathbb{R}, g(x) = \arccos f(x)$.
 - **2.** Se consideră funcțiile $f:[1,2] \to \mathbb{R}$, $f(x) = \frac{1}{x\sqrt{x^2+1}}$ și $F:[1,2] \to \mathbb{R}$, $F(x) = \ln \frac{\sqrt{x^2+1}-1}{x}$.
- **5p** a) Să se arate că funcția F este o primitivă a funcției f.
- **5p b**) Să se calculeze volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.
- **5p c**) Să se calculeze aria mulțimii cuprinse între dreptele de ecuații x = 1 și x = 2, graficul funcției F și axa Ox.

SUBIECTUL I (30p)

- **5p 1.** Să se determine $a \in \mathbb{R}$ astfel încât numerele 2^{a-1} , $2^{-a+2} + 1$, $2^{a+1} + 1$ să fie în progresie aritmetică.
- **5p 2.** Să se arate că vârful parabolei $y = x^2 + (2a 1)x + a^2$, $a \in \mathbb{R}$, este situat pe dreapta de ecuație 4x + 4y = 1.
- **5p** 3. Să se arate că, dacă z este soluție a ecuației $z^2 + 2z + 4 = 0$, atunci $z^2 \frac{8}{z} = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea {11,12,...,50}, aceasta să fie divizibil cu 2 și cu 5.
- 5p | 5. Trapezul isoscel ABCD are bazele [AB] și [CD] și lungimea înălțimii egală cu 4. Să se calculeze $|\overrightarrow{AC} + \overrightarrow{BD}|$.
- **5p 6.** Să se calculeze tg 2α , știind că $\alpha \in \left(0, \frac{\pi}{2}\right)$ și $\sin \alpha = \frac{12}{13}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$, transpusa $A^t \in \mathcal{M}_{3,2}(\mathbb{R})$, $B = AA^t$, și punctele $P_k(a_k, b_k)$, unde $k \in \{1, 2, 3\}$.
- **5p** a) Să se calculeze B știind că $P_1(1,2)$, $P_2(2,4)$, $P_3(-3,-6)$.
- **5p b)** Să se arate că $\det(B) \ge 0$, oricare ar fi punctele P_1, P_2, P_3 .
- **5p** c) Să se arate că det(B) = 0 dacă și numai dacă punctele P_1, P_2, P_3 sunt coliniare pe o dreaptă care trece prin originea axelor.
 - **2.** Se consideră mulțimea $M = \left\{ \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \middle| a, b \in \mathbb{Z}_5 \right\}.$
- 5p a) Să se determine numărul elementelor mulțimii M.
- **5p b)** Să se arate că $AB \in M$, pentru orice $A, B \in M$.
- **5p** c) Să se arate că (M,\cdot) este un grup, unde "·" este înmulțirea matricelor.

- **1.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x \cdot \sin \frac{1}{x}$.
- **5p** a) Să se calculeze $\lim_{x\to 0} f(x)$.
- **5p b**) Să se calculeze f'(x), $x \in \mathbb{R}^*$.
- **5p** c) Să se determine ecuația asimptotei la graficul funcției f către $+\infty$.
 - **2.** Fie şirul $(I_n)_{n \in \mathbb{N}^*}$, $I_n = \int_{-1}^1 (1 x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .
- **5p b**) Să se demonstreze că $I_{n+1} = \frac{2n+2}{2n+3}I_n$, $\forall n \in \mathbb{N}^*$.
- **5p** c) Să se demonstreze că șirul $(a_n)_{n \in \mathbb{N}^*}$, definit prin $a_n = \sum_{k=0}^n \frac{(-1)^k C_n^k}{2k+1}$, $\forall n \in \mathbb{N}^*$, are limita 0.

SUBIECTUL I (30p)

- **5p** | **1.** Să se determine numărul elementelor mulțimii $(A \setminus B) \cap \mathbb{Z}$ știind că A = (-3, 4] și B = (1, 5].
- **5p** 2. Să se determine coordonatele punctelor de intersecție a dreaptei y = 2x + 1 cu parabola $y = x^2 x + 3$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x-1} + \sqrt{2-x} = 1$.
- **5p 4.** Să se rezolve în mulțimea numerelor naturale inecuația $2^{x!} \le 2048$.
- **5p** | **5.** Să se calculeze distanța de la punctul A(1;1) la dreapta d:5x+12y-4=0.
- **5p** | **6.** Să se calculeze tg(a+b) știind că ctg a = 2 și ctg b = 5.

SUBIECTUL II (30p)

- **1.** Fie şirul $(F_n)_{n\geq 0}$, dat de $F_{n+1} = F_n + F_{n-1}$, $\forall n \in \mathbb{N}^*$, $F_0 = 0$, $F_1 = 1$ şi matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- **5p** a) Să se verifice relația $A^2 = A + I_2$.
- **5p b**) Să se arate că, dacă $X \in M_2(\mathbb{Q})$, $X \neq O_2$ și AX = XA, atunci X este inversabilă.
- **5p** c) Să se arate că $A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}, \forall n \ge 1.$
 - **2.** Fie $\sigma, \pi \in S_5$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$, $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$.
- 5p | a) Să se demonstreze că σπ ≠ πσ.
- **5p b**) Să se determine numărul elementelor mulțimii $H = \left\{ \pi^n \mid n \in \mathbb{N}^* \right\}$.
- **5p** c) Să se arate că $H = \{\pi^n \mid n \in \mathbb{N}^*\}$ este un subgrup al grupului (S_5, \cdot) .

- **1.** Se consideră funcția $f:[1,\infty) \to [1,\infty)$, $f(x) = \frac{x^2 x + 1}{x}$.
- **5p** a) Să se calculeze $\lim_{x \to \infty} (x f(x))^x$.
- **5p b)** Să se arate că funcția f este strict crescătoare.
- **5p** c) Să se arate că funcția f este bijectivă.
 - **2.** Fie $a,b \in \mathbb{R}$ și funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \begin{cases} ax+b, & x < 1 \\ \ln^2 x + 1, & x \ge 1 \end{cases}$
- **5p** a) Să se determine numerele reale a și b astfel încât funcția F să fie primitiva unei funcții f.
- **5p b)** Să se calculeze $\int_1^e \frac{1}{x F(x)} dx$.
- **5p** c) Să se arate că, pentru funcția $h:[1,\pi] \to \mathbb{R}$, $h(x) = (F(x)-1)\sin x$, are loc relația $\int_1^{\pi} h(x)h''(x) dx \le 0$.

SUBIECTUL I (30p)

- **5p** | **1.** Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = |4x-8|-2|4-2x| este constantă.
- **5p** 2. Să se determine $a \in \mathbb{R}$ pentru care parabola $y = x^2 2x + a 1$ și dreapta y = 2x + 3 au două puncte distincte comune.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{x-1} + 1 = x$.
- **5p 4.** Să se determine numărul termenilor iraționali ai dezvoltării $(\sqrt{3} + 1)^9$.
- **5p** 5. Să se determine $m \in \mathbb{R}$ astfel încât vectorii $\vec{u} = (m+1)\vec{i} + 8\vec{j}$ și $\vec{v} = (m-1)\vec{i} 4\vec{j}$ să fie coliniari.
- **5p 6.** Triunghiul ABC are lungimile laturilor AB = 5, BC = 7 și AC = 8. Să se calculeze $m(\ll A)$.

SUBIECTUL II (30p)

- 1. Se consideră permutarea $\sigma \in S_6$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 3 & 6 & 1 \end{pmatrix}$.
- **5p** a) Să se determine σ^{-1} .
- **5p b**) Să se arate că permutările σ și σ^{-1} au același număr de inversiuni.
- **5p** c) Să se arate că ecuația $x^4 = \sigma$ nu are soluții în grupul (S_6, \cdot) .
 - **2.** Fie legea de compoziție " \circ ", definită pe \mathbb{R} prin $x \circ y = xy x y + 2$, $\forall x, y \in \mathbb{R}$, și funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 1.
- **5p** | a) Să se arate că (1,∞) este parte stabilă în raport cu "∘".
- **5p b**) Să se demonstreze că $f(xy) = f(x) \circ f(y)$ pentru orice $x, y \in \mathbb{R}$.
- 5p c) Știind că legea " \circ " este asociativă, să se rezolve în \mathbb{R} ecuația $\underbrace{x \circ x \circ ... \circ x}_{\text{de 10 ori } x} = 1025$.

- **1.** Se consideră funcția $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x \sin \frac{\pi}{x}, & x \in (0,1] \\ 0, & x = 0 \end{cases}$.
- **5p** a) Să se arate că funcția f este continuă pe [0,1].
- **5p b**) Să se determine domeniul de derivabilitate al funcției f.
- **5p** c) Să se arate că, dacă $n \in \mathbb{N}^*$, atunci ecuația $f(x) = \cos \frac{\pi}{x}$ are cel puțin o soluție în intervalul $\left(\frac{1}{n+1}, \frac{1}{n}\right)$.
 - **2.** Fie funcțiile $f:[0,1] \to \mathbb{R}$, $f(x) = \ln(1+x^2)$ și $g:[0,1] \to \mathbb{R}$, $g(x) = x \operatorname{arctg} x$.
- **5p** a) Să se calculeze $\int_0^1 f(\sqrt{x})dx$.
- **5p b)** Să se calculeze $\int_0^1 g(x)dx$.
- **5p c)** Să se calculeze aria suprafeței plane mărginită de graficele funcțiilor f și g și de dreptele de ecuații x = 0 și x = 1.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $\left[\sqrt{2009}\right] + 3 \cdot \left\{-\frac{1}{3}\right\}$, unde [x] reprezintă partea întreagă a lui x și $\{x\}$ reprezintă partea fracționară a lui x.
- **5p** 2. Să se determine imaginea intervalului [2,3] prin funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 3$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+8} \sqrt{x} = 2$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii divizorilor naturali ai numărului 56, acesta să fie divizibil cu 4.
- **5p 5.** Fie vectorii $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = \vec{i} \vec{j}$ şi $\vec{u} = 6\vec{i} + 2\vec{j}$. Să se determine $p, r \in \mathbb{R}$ astfel încât $\vec{u} = p\vec{a} + r\vec{b}$.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris unui triunghi care are lungimile laturilor 5, 7 și 8.

SUBIECTUL II (30p)

1. Pentru orice matrice $A \in \mathcal{M}_2(\mathbb{C})$, se notează $C(A) = \{X \in \mathcal{M}_2(\mathbb{C}) \mid AX = XA\}$. Se consideră matricele

$$E_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- **5p** a) Să se arate că dacă $X, Y \in C(A)$, atunci $X + Y \in C(A)$.
- **5p b**) Să se arate că dacă $E_1, E_2 \in C(A)$, atunci există $\alpha \in \mathbb{C}$ astfel încât $A = \alpha I_2$.
- **5p** c) Să se arate că dacă C(A) conține trei dintre matricele E_1, E_2, E_3, E_4 , atunci o conține și pe a patra.
 - **2.** Fie $a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$ două permutări din grupul (S_5, \cdot) .
- **5p** | **a**) Să se rezolve în S_5 ecuația ax = b.
- **5p b**) Să se determine ordinul elementului ab în grupul (S_5, \cdot) .
- **5p** c) Fie $k \in \mathbb{Z}$ cu $b^k = e$. Să se arate că 6 divide k.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x$ și un număr real m din intervalul $(-2, \infty)$.
- **5p** a) Să se determine punctele de extrem ale funcției f.
- **5p b**) Să se demonstreze că ecuația $x^3 3x = m$ are soluție unică în mulțimea $(1, \infty)$.
- **5p** c) Să se determine numărul punctelor de inflexiune ale graficului funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f^2(x)$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} xe^x, & x \le 0 \\ \sin x, & x > 0 \end{cases}$.
- **5p** a) Să se arate că funcția f admite primitive pe \mathbb{R} .
- **5p b)** Să se determine primitiva F a funcției f care are proprietatea F(0) = -1.
- **5p** c) Să se calculeze $\lim_{\substack{x \to 0 \\ x > 0}} \frac{\int_0^x f(t)dt}{x^2}$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze partea întreagă a numărului $(\sqrt{3} + \sqrt{7})^2$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $\frac{2x-1}{1-x} \ge \frac{3x+2}{1-2x}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{2-x} + x = 2$.
- **5p 4.** Se consideră dezvoltarea $(\sqrt[3]{x^2} + \sqrt{y})^{49}$. Să se determine termenul care îi conține pe x și y la aceeași putere.
- **5.** Fie $\overrightarrow{r_A} = 2\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{r_B} = \overrightarrow{i} + 3\overrightarrow{j}$ și $\overrightarrow{r_C} = 3\overrightarrow{i} + 2\overrightarrow{j}$ vectorii de poziție ai vârfurilor triunghiului ABC. Să se determine vectorul de poziție al centrului de greutate a triunghiului ABC.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris triunghiului ABC, știind că BC = 3 și $\cos A = \frac{1}{2}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$.
- **5p a)** Să se verifice că $AB \neq BA$.
- **5p b**) Să se arate că $A^4 + B^6 = 2I_2$.
- **5p** c) Să se arate că, pentru orice $n \in \mathbb{N}^*$, $(AB)^n \neq I_2$.
 - **2.** Se consideră șirul $(F_n)_{n\in\mathbb{N}}$, $F_0=0$, $F_1=1$, $F_{n+1}=F_n+F_{n-1}$, $\forall n\geq 1$ și polinoamele

$$P, Q_n \in \mathbb{Z}[X], P = X^2 - X - 1, Q_n = X^n - F_n X - F_{n-1}, \forall n \ge 2.$$

- **5p** a) Să se arate că polinomul $X^3 2X 1$ este divizibil cu P.
- **5p b**) Să se determine rădăcinile reale ale polinomului Q_3 .
- **5p** c) Să se arate că, pentru orice $n \ge 2$, polinomul Q_n este divizibil cu P.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x x$.
- **5p** a) Să se determine punctul în care tangenta la graficul funcției f este paralelă cu prima bisectoare.
- **5p b**) Să se arate că valoarea minimă a funcției f este 1.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sqrt{f(x) 1}$ nu este derivabilă în $x_0 = 0$.
 - **2.** Se consideră funcțiile $f:(1,\infty) \to \mathbb{R}$, $f(x) = \int_2^x \frac{t^2}{t^2 1} dt$ și $g:(1,\infty) \to \mathbb{R}$, $g(x) = \int_0^{\ln \frac{x^2 1}{3}} \sqrt{3e^t + 1} dt$.
- **5p** a) Să se calculeze f(3).
- **5p b)** Să se arate că $g'(x) = \frac{2x^2}{x^2 1}$, $\forall x \in (1, ∞)$.
- **5p** c) Să se arate că g(x) = 2f(x), $\forall x \in (1, \infty)$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $[-\sqrt{8}] \{-2, 8\}$, unde [x] reprezintă partea întreagă a lui x și $\{x\}$ reprezintă partea fracționară a lui x.
- **5p** 2. Să se rezolve în mulțimea $\mathbb{R} \times \mathbb{R}$ sistemul $\begin{cases} x^2 + y^2 = 13 \\ x + y = 5 \end{cases}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $4^x 5 \cdot 2^{x+1} + 16 = 0$.
- **5p 4.** Să se determine $x \in \mathbb{N}$, $x \ge 2$ astfel încât $C_x^2 + A_x^2 = 30$.
- **5p** | **5.** Fie punctele O(0;0), A(2;1) şi B(-2;1). Să se determine cosinusul unghiului format de vectorii \overrightarrow{OA} şi \overrightarrow{OB} .
- **5p** | **6.** Să se calculeze $\operatorname{tg} 2x$, știind că $\operatorname{ctg} x = 3$.

SUBIECTUL II (30p)

- **1.** Matricea $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ și șirurile $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ verifică $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$, $\forall n \in \mathbb{N}$.
- **5p** a) Să se arate că $x_{n+1}^2 + y_{n+1}^2 = (a^2 + b^2)(x_n^2 + y_n^2), \forall n \in \mathbb{N}$.
- **5p b)** Să se arate că, dacă $a^2 + b^2 \le 1$, atunci șirurile $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ sunt mărginite.
- **5p** c) Să se arate că, dacă a=1 și $b=\sqrt{3}$, atunci $x_{n+6}=64x_n$, $\forall n \ge 0$.
 - **2.** Se consideră corpul $(\mathbb{Z}_{11},+,\cdot)$.
- **5p** a) Să se arate că ecuația $x^2 = \hat{8}$ nu are soluții în \mathbb{Z}_{11} .
- **5p b**) Să se determine numărul polinoamelor de grad doi din $\mathbb{Z}_{11}[X]$.
- **5p** c) Să se arate că polinomul $X^2 + X + \hat{1}$ este ireductibil în $\mathbb{Z}_{11}[X]$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 3x + 2}$.
- **5p** a) Să se calculeze $\lim_{x \to 1} \frac{f(x)}{x-1}$.
- **5p b**) Să se determine punctele de extrem ale funcției f.
- 5p c) Să se determine panetere de chirchi die tancției f.
 - **2.** Fie funcția $f:(1,\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x(x+1)(x+2)}$.
- **5p a)** Să se determine o primitivă a funcției f.
- **5p b)** Să se demonstreze că $\int_{1}^{x} f(t)dt \le \frac{x-1}{6}, \forall x \in [1, \infty)$.
- **5p** c) Să se calculeze $\int_0^1 \frac{x^2}{1+x^6} dx$.

SUBIECTUL I (30p)

- **5p** 1. Să se rezolve în mulțimea numerelor complexe ecuația 2z + z = 3 + 4i.
- **5p 2.** Știind că x_1 și x_2 sunt rădăcinile ecuației $x^2 + 3x + 1 = 0$, să se calculeze $x_1^3 + x_2^3$.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuația $1+5^x-2\cdot25^x=0$.
- **5p** 4. Se consideră dezvoltarea $\left(a^2 + \frac{1}{\sqrt[3]{a}}\right)^9$, $a \neq 0$. Să se determine rangul termenului care-l conține pe a^4 .
- **5p 5.** Să se calculeze $\vec{u}^2 \vec{v}^2$ știind că $\vec{u} \vec{v} = 3\vec{i} + 2\vec{j}$ și $\vec{u} + \vec{v} = 2\vec{i} + 3\vec{j}$.
- **6.** Să se calculeze lungimea razei cercului circumscris unui triunghi dreptunghic care are catetele de lungimi 5 și 12.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ și funcția $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, f(X) = AX.
- **5p** a) Să se arate că $f(A) = I_2$.
- **5p b**) Să se arate că $f(X + f(X)) = X + f(X), \forall X \in \mathcal{M}_2(\mathbb{R})$.
- **5p** $| \mathbf{c} |$ Să se arate că funcția f este bijectivă.
 - **2.** Se consideră matricea $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ și mulțimea $M = \{X \in \mathcal{M}_2(\mathbb{R}) \mid AX = XA\}$.
- **5p** a) Să se arate că dacă $X, Y \in M$, atunci $XY \in M$.
- **5p b**) Să se arate că $G = \{X \in M \mid \det X \neq 0\}$ este grup în raport cu înmulțirea matricelor.
- **5p** $| \mathbf{c} |$ Să se determine elementele de ordin doi din grupul G, definit la punctul $\mathbf{b} |$.

- **1.** Se consideră funcția $f : \mathbb{R} \setminus \left\{ -\frac{4}{3} \right\} \to \mathbb{R}$, $f(x) = \frac{2x+5}{3x+4}$.
- **5p** a) Să se determine asimptota la graficul funcției f spre $+\infty$.
- **5p b**) Să determine limita șirului $(a_n)_{n>1}$, $a_n = f(1)f(2)...f(n)$.
- **5p** c) Să se determine punctele de inflexiune ale graficului funcției $g: \mathbb{R} \to \mathbb{R}, g(x) = f(e^x)$.
 - **2.** Fie funcția $f:[1,e] \to \mathbb{R}$, $f(x) = \sqrt{\ln x}$
- **5p** a) Să se calculeze $\int_0^1 f(e^x) dx$.
- **5p b)** Să se calculeze volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.
- **5p** c) Să se arate că $\int_{0}^{1} e^{x^{2}} dx + \int_{1}^{e} f(x) dx = e$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că numărul $\sqrt{7+4\sqrt{3}}-\sqrt{3}$ este natural.
- **5p** 2. Să se arate că $(x^2 + 4x + 5)(x^2 + 2x + 2) \ge 1$, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2^2 x + \log_2(4x) = 4$.
- **5p** 4. Să se determine termenul care nu-l conține pe x, din dezvoltarea $\left(\sqrt[3]{x} + \frac{2}{\sqrt{x}}\right)^{200}$, x > 0.
- **5p 5.** Se consideră dreapta d: 4x-8y+1=0 și punctul A(2;1). Să se determine ecuația dreptei care trece prin punctul A și este paralelă cu dreapta d.
- **5p 6.** Triunghiul ABC are AB = 2, AC = 4 şi $m(< A) = 60^{\circ}$. Să se calculeze lungimea medianei duse din A.

SUBIECTUL II (30p)

- **1.** Fie matricele $A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ şi $\begin{pmatrix} x_n \\ y_n \end{pmatrix} \in M_{2,1}(\mathbb{R})$, cu $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$, $\forall n \in \mathbb{N}$ şi $x_0 = 1$, $y_0 = 0$.
- **5p** a) Să se determine x_1, x_2, y_1 și y_2 .
- **5p b**) Să se arate că $x_n + y_n \sqrt{2} = (3 + 2\sqrt{2})^n$, $\forall n \in \mathbb{N}$.
- **5p** c) Să se arate că $x_{n+2} 6x_{n+1} + x_n = 0$, $\forall n \ge 0$.
 - **2.** Se consideră mulțimile de clase de resturi $\mathbb{Z}_7 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}\}\$ și $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}\$.
- **5p** a) Să se rezolve în corpul $(\mathbb{Z}_7, +, \cdot)$ ecuația $3x^2 + 4 = 0$.
- **5p b**) Să se determine ordinul elementului $\hat{3}$ în grupul (\mathbb{Z}_7^*, \cdot) .
- **5p** c) Să se arate că nu există niciun morfism de grupuri $f: (\mathbb{Z}_6, +) \to (\mathbb{Z}_7, \cdot)$ cu $f(\overline{2}) = \hat{3}$.

- **1.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$.
- **5p** a) Să se arate că șirul $(x_n)_{n\geq 1}$ definit prin $x_1 = \frac{1}{2}$ și $x_{n+1} = f(x_n), \forall n \geq 1$ are limită.
- **5p b)** Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \begin{cases} xf(x), x \le 0 \\ arctg(x, x) > 0 \end{cases}$ este derivabilă pe \mathbb{R} .
- **5p** c) Să se determine cel mai mare număr real a care are proprietatea $f(x) \ge a + 2\ln x, \forall x \in (0, \infty)$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$ și F o primitivă a sa.
- **5p** a) Să se calculeze $\int_0^1 x f(x) dx$.
- **5p b)** Să se calculeze $\lim_{x\to 0} \frac{F(\cos x) F(1)}{x^2}$.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = F(x) + f(x)$ are exact un punct de extrem local.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze partea reală a numărului complex $\frac{1+4i}{4+7i}$.
- **5p** 2. Să se determine axa de simetrie a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 6x + 1$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $3^{x+1} + 3^{1-x} = 10$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii $A = \{1, 3, 5, ..., 2009\}$, acesta să fie multiplu de 3.
- **5p 5.** Se consideră dreapta d: 2x + y 1 = 0 și punctul A(3, 2). Să se determine ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d.
- **5p 6.** Fie triunghiul ABC care are AB = AC = 5 și BC = 6. Să se calculeze distanța de la centrul de greutate al triunghiului ABC la dreapta BC.

SUBIECTUL II (30p)

1. Fie
$$a,b,c,d > 0$$
, matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ și funcția $f: (0,\infty) \to (0,\infty)$, $f(x) = \frac{ax+b}{cx+d}$.

Se notează $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$, unde $n \in \mathbb{N}^*$.

- **5p** a) Să se arate că dacă det A = 0, atunci f este funcție constantă.
- **5p b**) Să se arate că, dacă det $A \neq 0$, atunci funcția f este injectivă.

5p c) Să se arate că
$$\underbrace{(f \circ f \circ f \circ ... \circ f)}_{\text{de } n \text{ ori } f}(x) = \frac{a_n x + b_n}{c_n x + d_n}, \forall n \in \mathbb{N}^*.$$

- **2.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și mulțimea $G = \{I_2 + aA + bB \mid a, b \in \mathbb{R}, a \neq -1\}$.
- **5p** a) Să se arate că orice matrice din G este inversabilă.
- **5p** | **b**) Să se arate că G este un subgrup al grupului multiplicativ al matricelor inversabile din $\mathcal{M}_2(\mathbb{R})$.
- **5p** | **c**) Să se arate că ecuația $X^2 = I_2$ are o infinitate de soluții în G.

- **1.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{1+x^2}$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arctg} x$.
- **5p** a) Să se calculeze $\lim_{x \to \infty} (f(x)g(x))$.
- **5p b)** Să se determine punctele de extrem local ale funcției f.
- **5p** c) Să se arate că f(x) < g(x), pentru orice $x \in (0, \infty)$
 - 2. Fie $m \in \mathbb{R}$ și funcția $f:[0,2] \to \mathbb{R}$, $f(x) = \begin{cases} x-m, x \in [0,1] \\ x \ln x, x \in (1,2] \end{cases}$.
- **5p** a) Să se arate că, pentru orice $m \in \mathbb{R}$, funcția f este integrabilă.
- **5p b)** Să se calculeze $\lim_{\substack{x \to 1 \\ x > 1}} \frac{\int_1^x t \ln t \, dt}{x 1}$.
- **5p** c) Pentru m = 1, să se demonstreze că, pentru orice $t \in (0,2)$ există $a,b \in [0,2]$, $a \ne b$, astfel încât $\int_{0}^{b} f(x) dx = (b-a) f(t)$

SUBIECTUL I (30p)

5p 1. Să se arate că numărul $\lg\left(1-\frac{1}{2}\right) + \lg\left(1-\frac{1}{3}\right) + \lg\left(1-\frac{1}{4}\right) + \dots + \lg\left(1-\frac{1}{100}\right)$ este întreg.

5p 2. Să se rezolve în mulțimea numerelor reale ecuația |x-3|+|4-x|=1.

5p 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_3 x + \frac{1}{\log_3 x} = \frac{5}{2}$.

5p 4. Să se determine probabilitatea ca, alegând un element al mulțimii $A = \{2, 4, 6, ..., 2010\}$, acesta să fie divizibil cu 4, dar să nu fie divizibil cu 8.

5p | **5.** Se consideră punctele A(2,m) și B(m,-2). Să se determine $m \in \mathbb{R}$ astfel încât AB = 4.

5p 6. Să se calculeze $\sin^2 x$ știind că ctg x = 6.

SUBIECTUL II (30p)

1. Se consideră sistemul $\begin{cases} mx + y + z = 0 \\ x + 3y + 2z = 0 \text{, cu } m \in \mathbb{R} \\ -x - y + 4z = 0 \end{cases}$

5p | a) Să se determine $m \in \mathbb{R}$ pentru care matricea sistemului are determinantul nenul.

5p b) Să se determine $m \in \mathbb{R}$ astfel încât sistemul să admită cel puțin două soluții.

5p c) Să se determine $m \in \mathbb{R}$ pentru care dreptele $d_1: mx + y + 1 = 0$, $d_2: x + 3y + 2 = 0$, $d_3: -x - y + 4 = 0$ sunt concurente.

2. Se consideră mulțimea $H = \left\{ \begin{pmatrix} m & n \\ \hat{0} & \hat{1} \end{pmatrix} | m, n \in \mathbb{Z}_5, m = \pm \hat{1} \right\}.$

5p a) Să se verifice că dacă $A = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}$ și $B = \begin{pmatrix} \hat{4} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$, atunci $B \cdot A = A^{-1} \cdot B$.

5p b) Să se arate că *H* este un grup cu 10 elemente în raport cu înmulțirea matricelor.

5p (c) Să se determine numărul elementelor de ordinul 2 din grupul H.

SUBIECTUL III (30p)

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x$.

5p a) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{f(x+1)}$.

5p b) Să se demonstreze că funcția f este inversabilă.

5p c) Să se calculeze $\lim_{x \to \infty} \frac{f^{-1}(x)}{\sqrt[3]{x}}$.

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \sin x$ și F o primitivă a lui f.

5p a) Să se calculeze $\int_{-\pi}^{\pi} f(x) dx$.

5p b) Să se determine $c \in (1,3)$ astfel încât $\int_1^3 \frac{f(x)}{\sin x} dx = 2c^2$.

5p c) Să se arate că funcția F nu are limită la $+\infty$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că $2(1+3+3^2+...+3^8) < 3^9$.
- **5p 2.** Fie x_1, x_2 soluțiile ecuației $x^2 + 5x 7 = 0$. Să se arate că numărul $x_1^3 + x_2^3$ este întreg.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_5 x + \log_x 5 = \frac{5}{2}$.
- **5p 4.** Să se determine $x \in \mathbb{N}$, $x \ge 3$ astfel încât $C_{2x-3}^2 = 3$.
- **5p** | **5.** Se consideră punctele A(2,3) și B(-3,-2). Să se scrie ecuația mediatoarei segmentului AB.
- **5p 6.** Fie vectorii \vec{u} și \vec{v} . Știind că $\vec{u} \cdot \vec{v} = 5$, $|\vec{u}| = 2$ și $|\vec{v}| = 3$ să se calculeze $\cos(\langle (\vec{u}, \vec{v}) \rangle)$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ și funcția $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, f(X) = AX.
- **5p** a) Să se calculeze f(A).
- **5p b**) Să se arate că $(f \circ f)(X) = O_2, \forall X \in \mathcal{M}_2(\mathbb{R}).$
- **5p** c) Să se arate că $f(X) + f(Y) \neq I_2, \forall X, Y \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Se consideră mulțimea $P = \{A \in \mathcal{M}_2(\mathbb{R}) \mid AA^t = I_2\}$, unde A^t este transpusa matricei A.
- **5p** a) Să se verifice dacă matricea $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ aparține mulțimii P.
- **5p b**) Să se arate că înmulțirea matricelor determină pe mulțimea *P* o structură de grup necomutativ.
- **5p** c) Să se arate că, dacă $A, B \in P, X \in \mathcal{M}_2(\mathbb{R})$ și AX = B, atunci $X \in P$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \sqrt{1 + x^2}$.
- **5p** a) Să se arate că mulțimea valorilor funcției f este $(0, \infty)$.
- **5p b)** Să se arate că, dacă $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \ln f(x)$, atunci $(f(x) x) \cdot g'(x) = 1$, $\forall x \in \mathbb{R}$.
- **5p** c) Să se demonstreze că g(x) < x, pentru orice x > 0, unde g este funcția definită la punctul **b**).
 - **2.** Fie mulțimea $M = \left\{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ este derivabilă și } \int_0^1 f(x) \, dx = f(0) = f(1) \right\}.$
- **5p** a) Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 3x^2 + x$ aparține mulțimii M.
- **5p b)** Să se arate că, dacă f este o funcție polinomială de grad trei care aparține lui M, atunci $f\left(\frac{1}{2}\right) = f(0)$.
- **5p** c) Să se arate că, pentru orice $f \in M$, ecuația f'(x) = 0 are cel puțin două soluții în intervalul (0,1).

SUBIECTUL I (30p)

- **5p 1.** Să se determine numărul real x știind că numerele x+1, 1-x și 4 sunt în progresie aritmetică.
- **5p** 2. Să se determine punctele de intersecție a parabolei $y = x^2 + 5x 6$ cu axele de coordonate.
- **5p** | **3.** Să se rezolve în mulțimea $[0, 2\pi]$ ecuația $2\sin x + 1 = 0$.
- **5p 4.** Fie mulțimea $M = \{1, 2, 3, 4, 5, 6\}$. Să se determine probabilitatea ca, alegând una dintre submulțimile mulțimii M, aceasta să aibă 2 elemente.
- 5. Punctele A, B și G au vectorii de poziție $\overrightarrow{r_A} = 4\overrightarrow{i} + 7\overrightarrow{j}$, $\overrightarrow{r_B} = 2\overrightarrow{i} \overrightarrow{j}$, $\overrightarrow{r_G} = 4\overrightarrow{i} + 4\overrightarrow{j}$. Să se determine vectorul de poziție a punctului C astfel încât punctul G să fie centrul de greutate al triunghiului ABC.
- **5p 6.** Fie vectorii \vec{u} și \vec{v} . Dacă $|\vec{u}|=1$, $|\vec{v}|=2$ și măsura unghiului vectorilor \vec{u} și \vec{v} este $\frac{\pi}{3}$, să se calculeze $(2\vec{u}+\vec{v})\cdot(2\vec{v}-\vec{u})$.

SUBIECTUL II (30p)

- **1.** Se consideră mulțimea $G = \left\{ M_{a,b} \mid M_{a,b} = \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, a,b \in \mathbb{R} \right\} \subset \mathcal{M}_3(\mathbb{R}).$
- **5p** | **a**) Să se arate că $M_{a,b} \cdot M_{c,d} = M_{a+c,b+d}$, $\forall a,b,c,d \in \mathbb{R}$.
- **5p** \mid **b**) Să se arate că orice matrice din G este inversabilă.
- **5p** c) Să se calculeze, în funcție de a și b, rangul matricei $M_{a,b} M_{a,b}^t$ ($M_{a,b}^t$ este transpusa lui $M_{a,b}$).
 - **2.** Se consideră un grup (K,\cdot) , unde $K = \{e,a,b,c\}$, e este elementul neutru și $a^2 = b^2 = c^2 = e$.
- **5p** a) Să se rezolve în grupul K ecuatia $x^3 = e$.
- **5p b**) Să se arate că ab = c.
- **5p** c) Să se arate că grupul (K,\cdot) nu este izomorf cu grupul $(\mathbb{Z}_4,+)$.

1. Fie funcția
$$f:(0,\infty) \to \mathbb{R}$$
, $f(x) = \begin{cases} \frac{\ln x}{x-1}, & x \neq 1\\ 1, & x = 1 \end{cases}$.

- **5p** $\stackrel{\bullet}{a}$) Să se demonstreze că funcția f este continuă.
- **5p b)** Să se calculeze $\lim_{x \to 1} \frac{f(x) 1}{x 1}$.
- **5p** c) Să se arate că funcția f este strict descrescătoare.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \ln(1 + \sin^2 x)$.
- **5p** a) Să se arate că orice primitivă a funcției f este crescătoare pe \mathbb{R} .
- **5p b)** Să se calculeze $\int_0^{\pi} f(x) \cos x \, dx$.
- **5p** c) Să se calculeze derivata funcției $g:(-1,1) \to \mathbb{R}$, $g(x) = \int_{\frac{\pi}{4}}^{\arcsin x} f(t) dt$.

SUBIECTUL I (30p)

- **5p** 1. Să se determine x > 0 știind că numerele x, 6 și x 5 sunt în progresie geometrică.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x 2$. Să se calculeze $f(2 \cdot (f(-1)))$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\cos\left(2x + \frac{\pi}{2}\right) = \cos\left(x \frac{\pi}{2}\right)$.
- **5p 4.** Să se arate că $(n!)^2$ divide (2n)!, pentru oricare *n* natural.
- **5p 5.** Se consideră punctele A(3,2) și B(6,5). Să se determine coordonatele punctelor M și N știind că acestea împart segmentul AB în trei segmente congruente, iar ordinea punctelor este A, M, N, B.
- **5p 6.** Să se determine numerele naturale a pentru care numerele a, a+1 și a+2 sunt lungimile laturilor unui triunghi obtuzunghic.

SUBIECTUL II (30p)

- **1.** Fie matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ cu proprietatea că $A^2 = 2A$.
- **5p** a) Să se arate că matricea $B = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix}$ verifică relația $B^2 = 2B$.
- **5p** | **b**) Să se arate că, dacă $a + d \neq 2$, atunci $A = O_2$ sau $A = 2I_2$.
- **5p** c) Să se arate că, dacă a+d=2, atunci det(A)=0.
 - **2.** Se consideră polinoamele $f, g \in \mathbb{Q}[X], f = X^4 1, g = X^6 1$.
- **5p** a) Să se arate că un cel mai mare divizor comun al polinoamelor f și g este $X^2 1$.
- **5p b**) Să se determine numărul soluțiilor complexe distincte ale ecuației f(x)g(x) = 0.
- **5p c**) Să se descompună polinomul f în factori ireductibili în $\mathbb{Q}[X]$

- **1.** Pentru fiecare număr natural nenul n se consideră funcția $f_n:(0,\infty)\to\mathbb{R}$, $f_n(x)=x^n+\ln x$.
- **5p** a) Să se arate că funcția f_2 este strict crescătoare pe intervalul $(0, \infty)$.
- **b**) Să se arate că, pentru orice $n \in \mathbb{N}^*$, ecuația $f_n(x) = 0$ are exact o rădăcină reală, situată în intervalul $\left(\frac{1}{e},1\right)$.
- **5p** c) Să se calculeze $\lim_{x \to 1} \left(\frac{3}{f_2(x) 1} \frac{1}{x 1} \right)$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^3, & x \in (-\infty, 0] \\ 1 + \sin x, & x \in (0, \infty) \end{cases}$.
- **5p** a) Să se arate că funcția f este integrabilă pe intervalul $[-2\pi, 2\pi]$.
- **5p b)** Să se calculeze $\int_{-1}^{\pi} f(x) dx$.
- **5p** c) Să se arate că, pentru orice $n \in \mathbb{N}^*$, $\int_0^{2\pi} f^n(x) dx \le 2^n \pi$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că șirul $(a_n)_{n \in \mathbb{N}}$, de termen general $a_n = \frac{4n}{n+3}$, este crescător.
- **5p** 2. Să se determine coordonatele punctelor de intersecție a parabolelor $y = x^2 + x + 1$ și $y = -x^2 2x + 6$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(x \frac{\pi}{4}\right) = \sin\left(3x + \frac{\pi}{4}\right)$.
- **5p 4.** Suma coeficienților binomiali ai dezvoltării $(2x^2 5y)^n$ este egală cu 32. Să se determine termenul de rang patru.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ astfel încât dreptele d_1 : mx + 3y + 2 = 0 și d_2 : 2x + y 8 = 0 să fie concurente.
- **5p 6.** Fie ABCD un patrulater. Să se arate că dacă $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$, atunci $AB^2 + CD^2 = AD^2 + BC^2$.

SUBIECTUL II (30p)

- **1.** Se consideră mulțimile $P = \{ S \in \mathcal{M}_2(\mathbb{R}) \mid S^t = S \}$ și $Q = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid A^t = -A \}$.
- **5p** a) Să se arate că $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \in P$ și $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \in Q$.
- **5p b)** Să se arate că, dacă $A, B \in Q$, atunci $AB \in P$.
- **5p** c) Să se arate că $\det(X) \ge 0$, oricare ar fi $X \in Q$.
 - **2.** Se consideră polinoamele $f = X^3 + 2X^2 + 3X + 45 \in \mathbb{Z}[X]$ și $\hat{f} = X^3 + X + \hat{1} \in \mathbb{Z}_2[X]$.
- **5p** | a) Să se arate că rădăcinile din \mathbb{C} ale polinomului f nu sunt toate reale.
- **5p b**) Să se arate că polinomul \hat{f} nu are rădăcini în \mathbb{Z}_2 .
- **5p c**) Să se demonstreze că polinomul *f* nu poate fi scris ca produs de două polinoame neconstante, cu coeficienți întregi.

SUBIECTUL III (30p)

5p

5p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ x^3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$
- **5p** a) Să arate că $|f(x)| \le |x|, \forall x \in [-1,1]$
 - **b)** Să arate că funcția f este continuă în origine.
 - c) Să se arate că funcția f nu este derivabilă în origine.
 - **2.** Se consideră $a,b \in \mathbb{R}$ și funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} axe^x x & , x \le 0 \\ x\cos x + b, x > 0 \end{cases}$
- **5p** a) Să se determine a și b știind că funcția f este primitivă pe \mathbb{R} a unei funcții.
- **5p b)** Ştiind că a = 0 şi b = 0, să se calculeze $\int_{-1}^{\pi} f(x) dx$.
- **5p** c) Să se arate că, dacă b = 0, atunci $\lim_{n \to \infty} \int_0^{\pi} x^n f(x) dx = -\infty$.

SUBIECTUL I (30p)

- **5p** 1. Să se arate că șirul $(a_n)_{n\geq 1}$, de termen general $a_n=n^2-n$, este strict monoton.
- **5p** 2. Se consideră funcțiile $f : \mathbb{R} \to \mathbb{R}$ și $g : \mathbb{R} \to \mathbb{R}$ definite prin $f(x) = x^2 + 2x + 1$ și g(x) = x 2009. Să se demonstreze că, pentru orice $x \in \mathbb{R}$, $(f \circ g)(x) \ge 0$.
- **5p** 3. Să se rezolve în $(0, \pi)$ ecuația $\operatorname{tg}\left(x + \frac{\pi}{3}\right) = \operatorname{tg}\left(\frac{\pi}{2} x\right)$.
- **5p 4.** Să se determine $x \in \mathbb{N}$, $x \ge 3$ știind că $C_x^{x-1} + C_{x-1}^{x-3} \le 9$.
- **5p 5.** Să se determine $m \in \mathbb{R}$ știind că dreptele d_1 : mx + (m+2)y 1 = 0 și d_2 : (m+2)x + 4my 8 = 0 sunt paralele.
- **5p** | **6.** Fie *ABC* un triunghi cu tg A = 2, tg B = 3. Să se determine măsura unghiului C.

SUBIECTUL II (30p)

- **1.** Fie mulțimea $M = \left\{ \begin{pmatrix} x & 3y \\ y & x \end{pmatrix} | x, y \in \mathbb{Z} \right\}$ și matricea $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$.
- **5p** a) Să se arate că dacă $Y \in \mathcal{M}_2(\mathbb{Z})$ și AY = YA, atunci $Y \in M$.
- **5p** | **b**) Să se arate că dacă $X \in M$ și $\det(X) = 0$, atunci $X = O_2$.
- **5p** c) Să se arate că $A^n \in M, \forall n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $f = X^5 X^4 + 3X^3 X^2 2 \in \mathbb{C}[X]$.
- **5p** a) Să se determine o rădăcină întreagă a polinomului *f*.
- **5p b**) Să se calculeze $x_1^2 + x_2^2 + ... + x_5^2$, unde $x_1, x_2, ..., x_5$ sunt rădăcinile polinomului f.
- **5p** $| \mathbf{c} |$ Să se arate că f are o singură rădăcină reală.

- **1.** Se consideră funcția $f:(-\infty,-2)\cup(0,\infty)\to\mathbb{R}, f(x)=\ln\left(1+\frac{2}{x}\right)$.
- **5p** a) Să se arate că funcția f este concavă pe intervalul $(-\infty, -2)$.
- **5p b)** Să calculeze limita șirului $(a_n)_{n\geq 1}$, $a_n = f(1) + f(2) + ... + f(n) \ln \frac{n(n+1)}{2}$.
- **5p** c) Să se arate că există un punct $c \in (1,2)$ astfel încât (c-1)f'(c) + f(c) = f(2).
 - **2.** Fie funcția $f:[0,1] \to \mathbb{R}, f(x) = \frac{1}{1+x^4}$.
- **5p** a) Să se calculeze $\int_0^1 xf(x)dx$.
- **5p b)** Să se arate că $\frac{\pi}{4} \le \int_0^1 f(x) dx \le 1$.
- **5p** c) Să se calculeze $\int_0^1 \frac{f(x)f''(x) (f'(x))^2}{(f(x))^2} dx.$

SUBIECTUL I (30p)

- **5p 1.** Să se determine primul termen al progresiei aritmetice $a_1, a_2, 13, 17, \dots$
- **5p** 2. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2\sin x$ este impară.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3\sin x + \sqrt{3}\cos x = 0$.
- **4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă suma cifelor egală cu 2.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ știind că dreptele d_1 : mx + 3y 2 = 0 și d_2 : 12x + 2y + 1 = 0 sunt perpendiculare.
- **5p 6.** Știind că $\operatorname{tg} \frac{\alpha}{2} = \frac{1}{\sqrt{3}}$, să se calculeze $\sin \alpha$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul $\begin{cases} ax + y + z = 4 \\ x + 2y + 3z = 6, \text{ cu } a, b \in \mathbb{R} \\ 3x y 2z = b \end{cases}$
- **5p** a) Să se determine a,b pentru care sistemul are soluția (1, 1, 1).
- **5p b**) Să se determine a,b astfel încât sistemul să fie incompatibil.
- **5p** c) Să se arate că pentru orice $a \in \mathbb{Z}$ există $b \in \mathbb{Z}$ astfel încât sistemul să admită soluții cu toate componentele numere întregi.
 - **2.** Se consideră mulțimea de matrice $A = \left\{ \begin{pmatrix} a & \hat{0} & \hat{0} \\ \hat{0} & a & \hat{0} \\ b & c & a \end{pmatrix} | a, b, c \in \mathbb{Z}_2 \right\}.$
- **5p** \mid **a**) Să se determine numărul elementelor mulțimii A.
- **5p b**) Să se arate că, pentru orice $X \in A$, $X^2 = I_3$ sau $X^2 = O_3$.
- **5p** c) Să se determine numărul matricelor X din mulțimea A care au proprietatea $X^2 = O_3$.

SUBIECTUL III (30p)

5p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x$.
- a) Să se arate că funcția f este bijectivă.
- **5p b**) Să se arate că $f(x) \ge 2x + 1, \forall x \in \mathbb{R}$.
- **5p** c) Să se demonstreze că, dacă $f(x) \ge mx + 1, \forall x \in \mathbb{R}$, atunci m = 2.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin^3 x \cos x$ și F o primitivă a funcției f pe \mathbb{R} .
- **5p** a) Să arate că există $c \in \mathbb{R}$ astfel încât $4F(x) = \sin^4 x + c$.
- **5p b)** Să se calculeze aria subgraficului restricției funcției f la intervalul $\left[0, \frac{\pi}{2}\right]$.
- **5p** c) Să se arate că $\int_0^{\pi} f^{2n+1}(x) dx = 0$, pentru orice $n \in \mathbb{N}$.

SUBIECTUL I (30p)

- **5p** | **1.** Să se calculeze (2+i)(3-2i)-(1-2i)(2-i).
- **5p** 2. Să se arate că $\frac{1}{3}$ este o perioadă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \{3x\}$, unde $\{a\}$ este partea fracționară a numărului a.
- **5p** 3. Să se rezolve în $[0,2\pi]$ ecuația $\sqrt{3} \sin x \cos x = 1$.
- **5p 4.** Să se calculeze $\frac{C_{20}^{10}}{C_{20}^9}$
- **5p 5.** Se consideră punctele A(2,3), B(4,n), C(2,2) și D(m,5). Să se determine $m,n \in \mathbb{R}$ astfel încât patrulaterul ABCD să fie paralelogram.
- **5p 6.** Să se calculeze $\cos^2 x$, știind că $\operatorname{tg} x = 4$.

SUBIECTUL II (30p)

- **1.** Fie dreptele $d_1: x + 2y = 3$, $d_2: 3x 4y = -1$, $d_3: 4x + 3y = m$, unde $m \in \mathbb{R}$.
- **5p** \mid **a**) Să se determine *m* astfel încât dreptele să fie concurente.
- **5p b)** Să se demonstreze că există o infinitate de valori ale lui *m* pentru care vârfurile triunghiului determinat de cele trei drepte au toate coordonatele întregi.
- **5p** c) Să se calculeze valorile lui *m* pentru care triunghiul determinat de cele trei drepte are aria 1.
 - **2.** Fie polinomul $f = 2X^3 aX^2 aX + 2$, cu $a \in \mathbb{R}$ şi cu rădăcinile complexe x_1, x_2, x_3 .
- **5p a**) Să se calculeze f(-1).
- **5p b**) Să se determine a pentru care polinomul are trei rădăcini reale.
- **5p** | **c**) Să se determine *a* astfel încât $|x_1| + |x_2| + |x_3| = 3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 \sqrt{1 x^2}$
- **5p** a) Să se calculeze derivata funcției f pe intervalul (-1,1).
- **5p b)** Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- **5p** c) Să se arate că funcția $g:(0,\infty) \to \mathbb{R}, g(x) = x^{-2}f(x)$ este mărginită.
 - **2.** Fie funcția $f:[0,1] \rightarrow [1,3]$, $f(x) = x^4 + x^2 + 1$. Se admite că funcția f are inversa g.
- **5p** a) Să se calculeze $\int_{0}^{\frac{3}{4}} \frac{2t+1}{f(\sqrt{t})} dt$.
- **5p b)** Să se arate că $\int_{0}^{1} f(x) dx + \int_{1}^{3} g(x) dx = 3$.
- **5p** c) Să se demonstreze că, dacă $\alpha \in [1,3]$, atunci are loc inegalitatea $\int_{0}^{1} f(x) dx + \int_{1}^{\alpha} g(x) dx \ge \alpha$.

SUBIECTUL I (30p)

- **5p** 1. Să se determine primul termen al progresiei geometrice cu termeni pozitivi b_1 , 6, b_3 , 24, ...
- **5p** 2. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (3 m^2)x + 3$, să fie strict crescătoare.
- **5p** 3. Să se calculeze $\sin \frac{\pi}{3} + \sin \frac{2\pi}{3} + \sin \frac{3\pi}{3} + \sin \frac{4\pi}{3}$
- **5p 4.** Se consideră mulțimea M a tuturor funcțiilor definite pe $A = \{1, 2, 3\}$ cu valori în $B = \{5, 6, 7\}$. Să se calculeze probabilitatea ca, alegând o funcție din mulțimea M, aceasta să fie injectivă.
- **5p 5.** Se consideră punctul G, centrul de greutate al triunghiului ABC. Prin punctul G se duce paralela la AB care intersectează dreapta BC în punctul P. Să se determine $m \in \mathbb{R}$ astfel încât $\overrightarrow{GP} = m\overrightarrow{AB}$.
- **5p 6.** Să se calculeze $\cos 2\alpha$, știind că $\cos \alpha = \frac{1}{3}$.

SUBIECTUL II (30p)

1. Fie sistemul
$$\begin{cases} x+y+z=1\\ x+my+z=1\\ x+my+mz=-2 \end{cases}$$
, cu $m \in \mathbb{R}$ şi matricea $A = \begin{pmatrix} 1 & 1 & 1\\ 1 & m & 1\\ 1 & m & m \end{pmatrix}$.

- **5p** a) Să se calculeze $\det(A)$.
- **5p** | **b**) Să se arate că rang $(A) \neq 2$, oricare ar fi $m \in \mathbb{R}$.
- **5p** c) Să se determine valorile întregi ale lui $m \ne 1$, pentru care sistemul are soluție cu componente întregi.
 - **2.** Fie permutările $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}, \gamma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$, elemente ale grupului (S_4, \cdot) .
- **5p** a) Să se verifice că γ este soluție a ecuației $\alpha x = x\beta$.
- **5p b**) Să se arate că $\alpha^4 = \beta^4$.
- **5p** c) Să se determine o soluție a ecuației $x\beta^3 = \alpha^3 x$ în S_4 .

SUBIECTUL III (30p)

1. Se consideră mulțimea de funcții

$$M = \{ f : [-1,1] \to \mathbb{R} | f \text{ este de două ori derivabilă şi } f(0) = 0, f'(0) = 1 \}.$$

- **5p** a) Să se arate că funcția $u:[-1,1] \to \mathbb{R}$, $u(x) = e^x \sin x$ aparține mulțimii M.
- **5p b)** Să se arate că, dacă $f \in M$ și $f(x) \neq 0$, $\forall x \in [-1,1] \setminus \{0\}$, atunci $\lim_{x \to 0} (1 + f(x))^{\overline{x}} = e$.
- **5p** c) Să demonstreze că, dacă $f \in M$ și $n \in \mathbb{N}^*$, atunci $\lim_{x \to 0} \frac{f^n(x) x^n}{x^{n+1}} = \frac{nf''(0)}{2}$.
 - **2.** Fie funcțiile $f:[0,1] \to \mathbb{R}$, $f(x) = \frac{1}{1+x}$ și $g:[0,\infty) \to \mathbb{R}$, $g(x) = \int_0^x f(t)dt$.
- **5p** a) Să se arate că $g(x) = \ln(1+x)$.
- **5p b)** Să se calculeze $\int_0^1 f^2(x)g(x)dx$.
- **5p** c) Să se demonstreze că $f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + ... + f\left(\frac{n}{n}\right) \le n \ln 2, \forall n \in \mathbb{N}^*.$

Varianta 68

SUBIECTUL I (30p)

- **5p** 1. Să se arate că numărul $\frac{25}{4+3i} + \frac{25}{4-3i}$ este întreg.
- **5p** 2. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (m^2 2)x 3$ să fie strict descrescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan \frac{x}{3} + \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{3}$.
- **5p 4.** Să se determine probabilitatea ca alegând un număr din mulțimea numerelor naturale pare de două cifre, acesta să fie divizibil cu 4.
- 5. Pe laturile AB și AC ale triunghiului ABC se consideră punctele M și respectiv N astfel încât $\overrightarrow{AM} = 3\overrightarrow{MB}$ și $\overrightarrow{AN} = \frac{3}{4}\overrightarrow{AC}$. Să se demonstreze că vectorii \overrightarrow{MN} și \overrightarrow{BC} sunt coliniari.
- **5p 6.** Să se calculeze $\sin \frac{11\pi}{12}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A \in \mathcal{M}_3(\mathbb{R})$ și $B = A + A^t$, unde A^t este transpusa matricei A.
- **5p a**) Să se arate că $B^t = B$.
- **5p** | **b**) Să se demonstreze că, dacă $B = 2I_2$, atunci $\det(A) \ge 1$.
- **5p** c) Să se demonstreze că, dacă $x, y \in \mathbb{C}$ și matricea $xA + yA^t$ este inversabilă, atunci $x + y \neq 0$.
 - **2.** Se consideră ecuația $x^3 + px + q = 0$, $p, q \in \mathbb{R}$, și x_1, x_2, x_3 soluțiile complexe ale acesteia.
- **5p a**) Știind că p=1 și q=0, să se determine x_1, x_2, x_3 .
- **5p b**) Să se determine p și q știind că $x_1 = 1 + i$.
- **5p** c) Să se arate că $12(x_1^7 + x_2^7 + x_3^7) = 7(x_1^3 + x_2^3 + x_3^3)(x_1^2 + x_2^2 + x_3^2)^2$.

- **1.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x+1} + \ln \frac{2x+1}{2x+3}$.
- **5p** a) Să se calculeze $f'(x), x \in (0, \infty)$.
- **5p b**) Să arate că $f(x) < 0, \forall x \in (0, \infty)$.
- **5p** c) Să demonstreze că șirul $(x_n)_{n\geq 1}$, $x_n = 1 + \frac{1}{2} + ... + \frac{1}{n} \ln\left(n + \frac{1}{2}\right)$ este strict descrescător.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \int_0^x e^{t^2} dt$.
- **5p** a) Să se arate că funcția f este impară.
- **5p b)** Să se arate că $\lim_{x \to \infty} f(x) = \infty$.
- **5p** c) Să se arate că $\int_0^1 f(x) dx \le e 2$.

SUBIECTUL I (30p)

5p 1. Să se determine
$$z \in \mathbb{C}$$
 știind că $\frac{z+7i}{z}=6$.

- **5p** 2. Fie funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Să se calculeze f(1) + f(2) + f(3) + ... + f(50).
- **5p** 3. Se consideră funcția $f: \mathbb{N} \to \mathbb{N}$, f(x) = 3x + 1. Să se demonstreze că funcția f este neinversabilă.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o cifră din mulțimea $\{0,1,2,...,9\}$, aceasta să verifice inegalitatea $(x+1)! x! \le 100$.
- **5p** | **5.** Să se arate că dreptele de ecuații $d_1: 2x y + 1 = 0$ și $d_2: 2x + y 1 = 0$ sunt simetrice față de axa Oy.
- **5p 6.** Să se calculeze $\cos \frac{7\pi}{12}$.

SUBIECTUL II (30p)

- **1.** Fie matricea $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se verifice relația $A^3 A = A^2 I_3$.
- **5p b)** Să se arate că $A^n A^{n-2} = A^2 I_3, \forall n \in \mathbb{N}, n \ge 3.$
- **5p** c) Să se arate că, pentru orice $n \in \mathbb{N}^*$, suma elementelor matricei A^n este n+3.
 - **2.** Pentru fiecare $n \in \mathbb{N}^*$ se definește polinomul $P_n = X^n 1 \in \mathbb{C}[X]$.
- **5p** a) Să se determine rădăcinile complexe ale polinomului P_4 .
- **5p b**) Să se descompună polinomul P_3 în factori ireductibili în $\mathbb{C}[X]$.
- **5p** c) Să se descompună polinomul P_6 în factori ireductibili în $\mathbb{R}[X]$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3}{2} \sqrt[3]{x^2}$.
- **5p** \mid a) Să se studieze derivabilitatea funcției f în origine.
- **5p b**) Să arate că, pentru orice $k \in (0, \infty)$, există $c \in (k, k+1)$ astfel încât $f(k+1) f(k) = \frac{1}{\sqrt[3]{c}}$.
- **5p** c) Să se demonstreze că șirul $(a_n)_{n\geq 1}$, $a_n = \frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[3]{n}} f(n)$, este strict descrescător.
 - **2.** Fie funcția $f:(-1,\infty) \to \mathbb{R}$, $f(x) = x \frac{x^2}{2} + \frac{x^3}{3} \ln(1+x)$.
- **5p** a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b)** Să se calculeze $\lim_{x\to 0} \frac{F(x)}{x^5}$, unde funcția $F:[0,\infty)\to\mathbb{R}$, $F(x)=\int_0^x f(t)dt$, $x\in[0,+\infty)$.
- **5p** c) Să se arate, folosind eventual funcția f, că $\int_0^1 \ln(1+x) dx \le \frac{5}{12}$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $(1+i)^{20}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \frac{1}{x}$. Să se calculeze suma S = f(f(-10)) + f(f(-9)) + ... + f(f(-1)) + f(f(1)) + ... + f(f(9)) + f(f(10)).
- **5p** 3. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \log_2(3^x + 1)$ este injectivă.
- **5p 4.** Să se calculeze $A_5^3 6C_5^3$.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ știind că distanța de la punctul A(m, m+1) la dreapta d: 3x-4y-1=0 este 1.
- **5p 6.** Să se calculeze $\cos 75^{\circ} \cos 15^{\circ}$.

SUBIECTUL II (30p)

- **1.** Pentru orice două matrice $A, B \in \mathcal{M}_2(\mathbb{R})$ se definește matricea [A, B] = AB BA.
- **5p** a) Pentru $A \in \mathcal{M}_2(\mathbb{R})$, să se calculeze $[A, A^2]$.
- **5p b**) Să se arate că, pentru orice $A \in \mathcal{M}_2(\mathbb{R})$, $[A, A^*] = O_2$, unde A^* este adjuncta matricei A.
- **5p** c) Să se arate că, pentru orice $A, B, C \in \mathcal{M}_2(\mathbb{R})$, $[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = O_2$.
 - **2.** Se consideră intervalul H = (0,1).
- **5p** a) Să se arate că relația $a \circ b = \frac{ab}{ab + (1-a)(1-b)}$ definește o lege de compoziție pe H.
- **5p b)** Să se arate că funcția $f:(0,+\infty) \to (0,1)$, $f(x) = \frac{x}{x+1}$ are proprietatea $f(xy) = f(x) \circ f(y)$, $\forall x, y > 0$, unde legea " \circ " este definită la punctul **a**).
- **5p c)** Ştiind că legea "o" definită la punctul **a)** este asociativă, să se rezolve în mulțimea (H, \circ) ecuația $x \circ x \circ x = \frac{1}{2}$.

- **1.** Se definește funcția $f_0: \mathbb{R} \to \mathbb{R}$, $f_0(x) = e^{2x}$ și, pentru fiecare $n \in \mathbb{N}^*$, se definește funcția $f_n: \mathbb{R} \to \mathbb{R}$ prin $f_n(x) = f'_{n-1}(x)$.
- **5p** a) Să se arate că $f_3(x) = 8e^{2x}$, $\forall x \in \mathbb{R}$.
- **5p b)** Să determine asimptotele graficului funcției f_n .
- **5p** c) Să se calculeze $\lim_{n\to\infty} \frac{f_1(a)+f_2(a)+...+f_{n-1}(a)}{f_n(a)}$, unde a este un număr real.
 - 2. Fie funcția $f:[0,\infty) \to \mathbb{R}$, $f(x) = \begin{cases} x \ln^2 x, & x \neq 0 \\ 0, & x = 0 \end{cases}$.
- **5p** a) Să se arate că funcția f este integrabilă pe intervalul [0,1].
- **5p b)** Să se calculeze $\int_0^1 f(x)dx$.
- **5p** c) Să se calculeze $\int_1^e f\left(\frac{1}{x}\right) dx$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $\log_7 2009 \log_7 287 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x^2 \frac{1}{x^2}$. Să se arate că funcția f este pară.
- **5p** 3. Să se arate că valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3 x^4$ este f(0).
- **5p 4.** Să se determine $n \in \mathbb{N}$, $n \ge 2$, astfel încât $3C_n^1 + 2C_n^2 = 8$.
- **5p 5.** Se consideră triunghiul ABC și punctele A', B', C' astfel încât $\overrightarrow{A'C} = 2\overrightarrow{BA'}, \overrightarrow{B'C} = \frac{2}{5}\overrightarrow{AC}$,

 $\overrightarrow{C'A} = 3\overrightarrow{BC'}$. Să se arate că dreptele AA', BB' și CC' sunt concurente.

6. Să se determine ecuația medianei corespunzătoare laturii BC a triunghiului ABC, știind că A(2,2) și ecuațiile medianelor duse din B și C sunt 2x + y - 2 = 0, respectiv x - y + 2 = 0.

SUBIECTUL II (30p)

- 1. Se consideră determinantul de ordin $n \ge 2$, $D_n = \begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \dots & \dots & 1 & 0 \\ 0 & 0 & \dots & \dots & \dots & 1 & 2 \end{bmatrix}$
- **5p a)** Să se calculeze $D_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix}$.
- **5p b**) Să se verifice că $D_n = 2D_{n-1} D_{n-2}$, $\forall n \ge 4$.
- **5p** c) Să se arate că $D_n = n+1$, $\forall n \ge 2$.
 - **2.** Un grup (G, \cdot) , cu elementul neutru e, are proprietatea (p) dacă $x^2 = e$, $\forall x \in G$.
- **5p** a) Să se verifice că mulțimea $\mathbb{Z}_2 \times \mathbb{Z}_2$, împreună cu legea de compoziție dată de $(a,b)\cdot (c,d) = (a+c,b+d), \forall a,b,c,d \in \mathbb{Z}_2$ este un grup care are proprietatea (p).
- **5p** | **b**) Să se arate că dacă un grup *G* are proprietatea (p), atunci $(xy)^2 = x^2y^2$, $\forall x, y \in G$.

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x-\ln(1+x)$.
- **5p** a) Să se calculeze $f'(x), x \in (0, \infty)$.
- **5p b**) Să arate că $f(x) > 0, \forall x \in (0, \infty)$.
- **5p** c) Să se calculeze $\lim_{x \to \infty} f(x)$.
 - 2. Se consideră funcția $F: \mathbb{R} \to \mathbb{R}, \ F(x) = \int_{1}^{2} t^{x} dt$.
- **5p** a) Să se verifice că $1+(x+1)F(x)=2^{x+1}, \forall x \in \mathbb{R}$.
- **5p b)** Să se calculeze $\lim_{x \to -1} F(x)$.
- **5p** c) Să se arate că există o funcție continuă $f:(-1,\infty)\to\mathbb{R}$, astfel încât $F(x)=1+\int_0^x f(y)dy, \forall x\in(-1,\infty)$.

SUBIECTUL I (30p)

- **5p** 1. Să se arate că numărul $\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{100}$ este real.
- **5p** 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x^3 \frac{1}{x}$. Să se arate că funcția f este impară.
- **5p** 3. Să se determine imaginea funcției $f:[1, 4] \to \mathbb{R}$, $f(x) = x^2 x$.
- **5p 4.** Să se calculeze $C_{2009}^0 \cdot 5^{2009} C_{2009}^1 \cdot 5^{2008} \cdot 4 + C_{2009}^2 \cdot 5^{2007} \cdot 4^2 \dots C_{2009}^{2009} \cdot 4^{2009}$.
- **5p 5.** Se consideră punctul A(1, 2) și dreapta de ecuație d: 4x-2y+5=0. Să se determine ecuația perpendicularei duse din punctul A pe dreapta d.
- **5p 6.** Să se calculeze $\sin 75^{\circ} \cdot \cos 15^{\circ}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se rezolve ecuația $\det(I_3 + xA^2) = 0, x \in \mathbb{R}$.
- **5p b**) Să se determine o matrice $B \in \mathcal{M}_3(\mathbb{R})$ cu proprietatea $B^2 = A$.
- **5p** c) Să se arate că $\forall C \in M_3(\mathbb{R}), \forall x \in \mathbb{R}, \det(C + xA)\det(C xA) \leq (\det C)^2$.
 - **2.** Se consideră polinomul $p = X^3 X + m$ cu $m \in \mathbb{R}$ și cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
- **5p** a) Ştiind că m = -6, să se determine x_1, x_2, x_3 .
- **5p b**) Să se calculeze $x_1^4 + x_2^4 + x_3^4$.
- **5p** c) Să se determine $m \in \mathbb{R}$ pentru care polinomul p are toate rădăcinile întregi.

- 1. Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + 1}{x + 1}$
- **5p** a) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- **5p b**) Să se calculeze $f'(x), x \in \mathbb{R} \setminus \{-1\}$.
- **5p** c) Să se demonstreze că funcția f este concavă pe intervalul $(-\infty, -1)$.
 - **2.** Pentru orice $n \in \mathbb{N}^*$ se consideră funcția $f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = |\sin nx|$ și numărul $I_n = \int_{\pi}^{2\pi} \frac{f_n(x)}{x} dx$.
- **5p** a) Să se calculeze $\int_0^{\pi} f_2(x) dx$.
- **5p b)** Să se arate că $I_n \le \ln 2$.
- **5p** c) Să se arate că $I_n \ge \frac{2}{\pi} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} \right)$.

- **5p 1.** Să se calculeze |5-12i|-|12+5i|.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x^4$. Să se calculeze $(f \circ f \circ f \circ f)(1)$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2^x + 4^x = 20$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii $A = \{0,5,10,...,2010\}$, acesta să fie divizibil cu 25.
- **5p 5.** Se consideră un triunghi ABC, cu lungimile laturilor AB = c, AC = b și un punct D astfel încât $\overrightarrow{AD} = \overrightarrow{bAB} + \overrightarrow{cAC}$. Să se arate că semidreapta [AD este bisectoarea unghiului BAC.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\cos 2\alpha = \frac{1}{2}$. Să se calculeze $\cos \alpha$.

SUBIECTUL II (30p)

- **1.** Fie matricea $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Se asociază fiecărui punct A(x, y) punctul $A_M(x', y')$, unde $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
- **5p** a) Știind că a=1,b=2,c=3,d=4 și că A(-1,1), să se determine coordonatele punctului A_M .
- **5p b)** Ştiind că a = 1, b = 2, c = 2, d = 4, să se arate că toate punctele A_M se află pe dreapta y = 2x.
- **5p** c) Fie A, B, C trei puncte în plan. Dacă se notează cu S și S_M ariile triunghiurilor ABC, respectiv $A_M B_M C_M$, atunci $S_M = S \cdot |\det M|$.
 - **2.** Se consideră mulțimea $A = \left\{ \begin{pmatrix} a & b & c \\ \hat{0} & a & d \\ \hat{0} & \hat{0} & a \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}_2 \right\}.$
- **5p** a) Să se determine numărul elementelor mulțimii *A*.
- **5p b**) Să se arate că mulțimea A este parte stabilă în raport cu înmulțirea matricelor din $\mathcal{M}_3(\mathbb{Z}_2)$.
- **5p** c) Să se rezolve ecuația $X^2 = X$, cu $X \in A$.

- **1.** Fie $a \in \mathbb{R}$ și funcția $f: \{-1,1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + a}{x^2 1}$.
- **5p** a) Să se calculeze $\lim_{x \to \infty} f(x)^x$.
- **5p b)** Să se determine valoarea numărului a știind că 3 este punct de extrem local al funcției f.
- **5p** c) Să se determine valoarea numărului *a* știind că graficul funcției *f* are exact o asimptotă verticală.
 - **2.** Se consideră funcția $f_0: \mathbb{R} \to \mathbb{R}$, $f_0(x) = 1$ și, pentru orice $n \in \mathbb{N}^*$, se definește funcția $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = \int_0^x f_{n-1}(t) dt$.
- **5p** a) Să se arate că $f_1^2(x) = 2f_2(x), \forall x \in \mathbb{R}$.
- **5p b)** Să se calculeze $\lim_{x \to \infty} \frac{xf_n(x) + 1}{f_{n+1}(x) + 2}$.
- **5p c**) Să se calculeze volumul corpului obținut prin rotirea graficului funcției $g:[0,\pi] \to [0,\pi]$, $g(x) = f_1(x)\sin x$ în jurul axei Ox.

SUBIECTUL I (30p)

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $z^2 + 3z + 4 = 0$.
- **5p** 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, f(x)=x-2m+2. Să se determine $m\in\mathbb{R}$ astfel încât graficul funcției f să nu intersecteze axa Ox.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2-x} + \sqrt[3]{x-2} = 0$.
- **5p 4.** Să se arate că $C_{a+b}^a = C_{a+b}^b$, pentru oricare $a,b \in \mathbb{N}^*$.
- $5\mathbf{\bar{p}} \mid \mathbf{5}$. Să se determine $m \in \mathbb{R}$ astfel încât punctele A(3,3), B(2,4) și C(2m,1-m) să fie coliniare.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\cos 2\alpha = -\frac{1}{2}$. Să se calculeze $\sin \alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}$.
- **5p** | **a**) Să se calculeze det A.
- **5p b**) Să se verifice relația $A(A^2 + 6I_3) = O_3$.
- **5p** c) Să se arate că $\det(I_3 + xA^2) \ge 0$, $\forall x \in \mathbb{R}$.
 - **2.** Se consideră $a,b \in \mathbb{Z}$ și polinomul $p = X^3 + aX^2 + X + b$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
- **5p** | **a**) Știind că a = b = 1, să se afle rădăcinile polinomului p.
- **5p** \mid **b**) Să se determine a și b, știind că polinomul p are rădăcina dublă 1.
- **5p** c) În cazul b=1, să se determine valorile lui a pentru care polinomul p are o rădăcină rațională.

- **1.** Se consideră funcția $f:(-2,2) \to \mathbb{R}$, $f(x) = \ln \frac{2+x}{2-x}$.
- **5p** a) Să se determine ecuațiile asimptotelor la graficul funcției f.
- **5p b**) Să se studieze monotonia funcției f.
- **5p** c) Să se calculeze $\lim_{x \to \infty} xf\left(\frac{1}{x}\right)$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \int_1^2 \left(\frac{t}{x} e^x\right)^2 dx$ și numerele $A = \int_1^2 \frac{1}{x^2} dx$, $B = \int_1^2 \frac{e^x}{x} dx$.
- **5p** a) Să se arate că $f(t) = At^2 2Bt + \frac{e^4 e^2}{2}$, $\forall t \in \mathbb{R}$.
- **5p b**) Să se arate că $f(2B-t) = f(2B+t), \forall t \in \mathbb{R}$.
- **5p** c) Să se demonstreze că $\left(\int_{1}^{2} \frac{e^{x}}{x} dx\right)^{2} \le \left(\int_{1}^{2} e^{2x} dx\right) \left(\int_{1}^{2} \frac{1}{x^{2}} dx\right)$.

- **5p 1.** Să se ordoneze crescător numerele $a = -\sqrt[3]{27}$, $b = \log_2 \frac{1}{16}$ și c = -2.
- **5p 2.** Să se determine valorile parametrului real m știind că parabola asociată funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx 2m$ se află situată deasupra axei Ox.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2(\sqrt{x^2+x-2})=1$.
- **5p 4.** Se consideră dreptele paralele d_1 , d_2 și punctele distincte $A, B, C \in d_1$, $M, N, P, Q \in d_2$. Să se determine numărul triunghiurilor care au toate vârfurile în mulțimea celor șapte puncte date.
- **5p 5.** Să se determine coordonatele simetricului punctului A(-3;2) față de mijlocul segmentului [BC], unde B(1;-4) și C(-5,-1).
- **5p 6.** Să se calculeze aria triunghiului ABC în care AM = BC = 4, unde M este mijlocul lui (BC), iar

SUBIECTUL II (30p)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ și $M_x = \frac{x}{3}A + \frac{1}{3x^2}B$, cu $x \in \mathbb{R}^*$.
- **5p** \mid **a**) Să se calculeze produsul AB.
- **5p b**) Să se arate că $M_x M_y = M_{xy}$, $\forall x, y \in \mathbb{R}^*$.
- **5p** c) Să se arate că, pentru orice x real nenul, $det(M_x) \neq 0$.
 - **2.** Se consideră polinomul $p = X^4 aX^3 aX + 1$, cu $a \in \mathbb{R}$ și cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
- **5p** a) Să se verifice că $x_1 + x_2 + x_3 + x_4 = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$.
- **5p b)** Să se arate că polinomul p nu este divizibil cu $X^2 1$ pentru nicio valoare a lui a.
- **5p** c) Să se arate că dacă $a = \frac{1}{2}$, atunci toate rădăcinile polinomului p au modulul 1.

- **1.** Se consideră $\alpha \in \mathbb{R}, \alpha > 1$ și funcția $f: (-1, \infty) \to \mathbb{R}$, $f(x) = (1+x)^{\alpha} \alpha x$.
- **5p a)** Să se studieze monotonia funcției f.
- **5p b)** Să se demonstreze că $(1+x)^{\alpha} > 1 + \alpha x, \forall x \in (-1,\infty) \setminus \{0\}, \forall \alpha \in (1,\infty)$.
- **5p** c) Să se demonstreze că $2f(x+y) \le f(2x) + f(2y), \forall x, y \in [0,\infty)$.
 - **2.** Fie funcția $f:(-1,\infty) \to \mathbb{R}$, $f(x) = \frac{x}{1+x}$.
- **5p** a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b)** Să se calculeze $\int_1^3 f^2(x)[x]dx$, unde [x] reprezintă partea întreagă a numărului real x.
- **5p** c) Să se arate că șirul $(a_n)_{n\geq 1}$, dat de $a_n=f(1)+f(2)+f(3)+...+f(n)-\int_0^n f(x)dx$, este convergent.

- **1.** Să se verifice dacă numărul $\sqrt{3} 2\sqrt{2}$ aparține mulțimii $\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. 5p
- **2.** Se consideră ecuația $x^2-3x+1=0$, cu rădăcinile x_1 și x_2 . Să se arate că $x_1^2+x_2^2\in\mathbb{N}$. **5**p
- 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan \sqrt{3} + \arctan x = \frac{\pi}{2}$. **5**p
- **5**p **4.** Să se arate că oricare ar fi *n* natural, $n \ge 1$, are loc egalitatea $C_{2n}^n = 2 \cdot C_{2n-1}^n$.
- **5.** Se consideră vectorii $\vec{u} = \vec{i} \vec{j}$ și $\vec{v} = 2\vec{i} + 4\vec{j}$. Să se calculeze modulul vectorului $\vec{u} + \vec{v}$.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$, astfel încât $\sin \alpha = \frac{3}{5}$. Să se calculeze $tg \frac{\alpha}{2}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1+a^2 & ab & ac \\ ba & 1+b^2 & bc \\ ca & cb & 1+c^2 \end{pmatrix}$, cu $a,b,c \in \mathbb{R}$ și A^* adjuncta sa.
- a) Să se calculeze determinantul matricei A **5**p
- **b)** Să se verifice că $\det(A^*) = (\det A)^2$. **5**p
- c) Să se arate că matricea $A I_3$ are rangul cel mult 1. **5p**
 - **2.** Fie (G,\cdot) un grup. Pentru fiecare element $a \in G$ se definește funcția $f_a: G \to G$, $f_a(x) = ax$, $\forall x \in G$.
- a) Să se arate că f_a este bijectivă, pentru orice $a \in G$. **5**p
- **b**) Să se arate că $f_a \circ f_b = f_{ab}, \ \forall a,b \in G$.
- c) Fie $\mathcal{F}(G) = \{f_a : G \to G \mid a \in G\}$. Să se arate că $\mathcal{F}(G)$ împreună cu operația de compunere a funcțiilor formează un grup.

SUBIECTUL III (30p)

5p

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x+\ln x$.
- a) Să se arate că graficul funcției f nu admite asimptotă spre $+\infty$.
- **b**) Să se arate că ecuația f(x) = 0 are o soluție unică $x_0 \in \left(\frac{1}{a}, 1\right)$. 5p
- c) Să se demonstreze că $\lim_{x \to x_0} \frac{xe^x 1}{x x_0} = f'(x_0)$, unde x_0 este numărul definit la punctul **b**). 5p
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, definit prin $I_n = \int_0^1 \frac{\ln(x^n+1)}{x+1} dx$, oricare ar fi $n \in \mathbb{N}^*$.
- 5p a) Să se determine I_1 .
- **b**) Să se arate că șirul I_n este strict descrescător. **5**p
- c) Să se arate că $\lim_{n\to\infty} I_n = 0$ (se consideră cunoscut faptul că $\ln(1+t) \le t$, $\forall t \in (-1,\infty)$. 5p

SUBIECTUL I (30p)

- **5p 1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ de rație 2 și cu $a_3+a_4=8$. Să se determine a_1 .
- **5p** 2. Fie $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1 + x. Să se calculeze f(-1) + f(-2) + f(-3) + ... + f(-10).
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $4^x 2^x = 56$.
- **5p 4.** Să se calculeze $A_4^3 A_3^2 C_4^2$.
- **5p** | **5.** Fie *ABC* un triunghi şi *G* centrul său de greutate. Se consideră punctul *M* definit prin $\overline{MB} = -2\overline{MC}$. Să se arate că dreptele *GM* şi *AC* sunt paralele.
- **5p 6.** Fie $\alpha \in \left(0, \frac{\pi}{2}\right)$, astfel încât $\sin \alpha = \frac{3}{4}$. Să se calculeze $\operatorname{tg} \alpha$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul $\begin{cases} x y mz = 1 \\ mx + y + mz = 1 m, \ m \in \mathbb{R}. \\ mx + 3y + 3z = -1 \end{cases}$
- **5p** a) Să se calculeze determinatul matricei sistemului.
- **5p** | **b**) Să se arate că, pentru orice $m \in \mathbb{R}$, matricea sistemului are rangul cel puțin egal cu 2.
- **5p** | c) Să se determine $m \in \mathbb{R}$ pentru care sistemul este incompatibil.
 - **2.** Se consideră $\alpha > 0$ un număr real și mulțimea $G_{\alpha} = (\alpha, \infty)$. Pe \mathbb{R} se definește legea de compoziție $x * y = 3xy 6(x + y) + 7\alpha$.
- **5p** a) Să se arate că pentru $\alpha = 2$, cuplul $(G_2, *)$ este grup abelian.
- **5p b)** Să se arate că grupurile $(G_2,*)$ și (\mathbb{R}_+^*,\cdot) sunt izomorfe, prin funcția $f:G_2\to\mathbb{R}_+^*$, f(x)=3x-6.
- **5p** c) Să se arate că, pentru orice $\alpha \ge 2$, mulțimea G_{α} este parte stabilă a lui \mathbb{R} în raport cu operația "*".

- **1.** Se consideră o funcție $f: \mathbb{R} \to \mathbb{R}$, astfel încât $xf(x) = e^x 1$, $\forall x \in \mathbb{R}$.
- **5p** a) Să se determine ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p b**) Să se arate că funcția f este continuă în x = 0 dacă și numai dacă f(0) = 1.
- **5p** c) Să se arate că dacă funcția f este continuă în x = 0, atunci ea este derivabilă pe \mathbb{R} .
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_1^2 ((x-1)(2-x))^n dx$.
- **5p a**) Să se calculeze I_1 .
- **5p b)** Să se arate că $2(2n+1)I_n = nI_{n-1}$, oricare ar fi $n \in \mathbb{N}$, $n \ge 2$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $10^{\lg 7} \sqrt[3]{343}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $2x^2 3x + 1 \le 0$.
- **5p** 3. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \log_3 2^x x$ este injectivă.
- **5p 4.** Să se calculeze numărul diagonalelor unui poligon convex cu 8 laturi.
- **5p 5.** Fie *ABCD* un paralelogram și *P* un punct astfel ca $\overrightarrow{BP} = 2\overrightarrow{PD}$. Să se arate că $\overrightarrow{BP} = \frac{2}{3}(\overrightarrow{BA} + \overrightarrow{BC})$.
- **5p 6.** Fie $a,b \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, astfel încât $a+b=\frac{\pi}{4}$. Să se arate că tgatgb+tga+tgb=1.

SUBIECTUL II (30p)

- **1.** Se consideră sistemul $\begin{cases} 2x 3y + 4z 5t = -1 \\ x + 9y + mz + t = 3 \\ 5x 6y + 10z + nt = p \end{cases}, m, n, p \in \mathbb{R}.$
- **5p** a) Să se determine p astfel încât sistemul să admită o soluție (x_0, y_0, z_0, t_0) cu $z_0 = t_0 = 0$.
- **5p** | **b**) Să se arate că, pentru orice $m, n \in \mathbb{R}$, rangul matricei sistemului este mai mare sau egal cu 2.
- **5p** c) Să se determine $m, n, p \in \mathbb{R}$ pentru care sistemul este compatibil, iar matricea sistemului are rangul 2.
 - $\textbf{2.} \ \text{Fie multimea} \ \ Q_0 = \left\{ \frac{m}{n} \mid m,n \in \mathbb{Z}, \ m \ \text{si} \ n \ \text{suntimpare} \right\} \ \text{si} \ \ G = Q_0 \times \mathbb{Z} \ . \ \text{Pe} \ G \ \text{se} \ \text{define} \\ \text{compoziție} \ \left(q_1,k_1\right)*\left(q_2,k_2\right) = \left(q_1q_2,k_1+k_2\right), \ \forall \ q_1,q_2 \in Q_0 \ , \forall \ k_1,k_2 \in \mathbb{Z}.$
- **5p** a) Să se arate că (G,*) este grup abelian.
- **5p b**) Să se calculeze (1,1)*(1,2)*...*(1,10).
- **5p** $\mid \mathbf{c}$) Să se arate că funcția $f: G \to \mathbb{Q}^*$, $f((q,k)) = q \cdot 2^k$ este un izomorfism între grupurile (G,*) și (\mathbb{Q}^*,\cdot) .

SUBIECTUL III (30p)

5p

5p

5p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 3x + 2}$.
- a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$
- **b**) Să se determine punctele de extrem local ale funcției f.
 - c) Să se calculeze $\lim_{x \to 0} x(2 \operatorname{arctg} f(x) \pi)$.
- 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{3 + \cos x}$.
- **5p** a) Să se calculeze $\int_0^{\frac{\pi}{3}} f(x) dx$.
- **5p b)** Să se demonstreze că orice primitivă a funcției f este strict crescătoare.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) dt$.

SUBIECTUL I (30p)

5p 1. Să se arate că $\left(-\infty, \frac{3}{2}\right) \cap \left(\log_2 3, \infty\right) = \emptyset$.

5p 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 4x + 3$. Să se determine abscisele punctelor de intersecție a graficului funcției f cu axa Ox.

5p 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x} + \sqrt{1-x} = 1$.

5p 4. Să se determine $n \in \mathbb{N}$, $n \ge 3$, astfel încât C_n^3 să dividă C_{n+1}^3 .

5p 5. Fie punctele A(1,2), B(-1,3) și C(0,4). Să se calculeze lungimea înălțimii duse din vârful A al triunghiului ABC.

5p 6. Fie $x \in \mathbb{R}$, astfel încât $tg^2x = 6$. Să se calculeze $\cos^2 x$.

SUBIECTUL II (30p)

1. Se consideră sistemul $\begin{cases} x + my + 2z = 1 \\ x + (2m-1)y + 3z = 1 \\ x + my + (m-3)z = 2m-1 \end{cases}, m \in \mathbb{R}.$

5p | a) Să se determine $m \in \mathbb{R}$ pentru care sistemul are soluție unică.

5p | **b**) Să se determine $m \in \mathbb{R}$ pentru care sistemul este compatibil nedeterminat.

5p c) Pentru m = 1 să se determine soluțiile reale (x_0, y_0, z_0) ale sistemului pentru care $2x_0^2 - y_0^2 + 3z_0^2 = 14$.

2. Pe mulțimea G = [0,1) se definește legea de compoziție $x * y = \{x + y\}$, unde $\{a\}$ este partea fracționară a numărului real a.

5p a) Să se calculeze $\frac{2}{3} * \frac{3}{4}$.

5p b) Să se arate că (G,*) este grup abelian.

5p c) Să se rezolve ecuația $x * x * x = \frac{1}{2}$, $x \in G$.

SUBIECTUL III (30p)

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{3x} + 2x + 1$.

5p a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.

5p b) Să se arate că funcția f este inversabilă.

c) Să se calculeze $\lim_{n\to\infty} (f(-1) + f(-2) + f(-3) + ... + f(-n) + n^2)$.

2. Se consideră șirul $(a_n)_{n\geq 0}$ definit prin $a_0=1$ și $a_{n+1}=\int_0^{a_n}\sin\pi x\,dx$.

5p a) Să se calculeze a_1 .

5p

5p b) Să se arate că șirul $(a_n)_{n\geq 0}$ este convergent.

5p c) Să se calculeze $\lim_{n\to\infty} a_n$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze $(1-i)(1-i^2)(1-i^3)...(1-i^{2009})$
- **5p 2.** Se consideră funcțiile $f : \mathbb{R} \to \mathbb{R}$, f(x) = 1 x și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 2x 1. Să se arate că funcția $f \circ g$ este descrescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale inecuația $\sqrt[3]{2-x^2} \ge 1$.
- **5p 4.** Să se calculeze numărul funcțiilor injective $f:\{1,2,3\} \rightarrow \{1,2,3,4,5\}$ cu proprietatea că $f(1) \neq 1$.
- **5p** | **5.** Să se determine ecuația dreptei care trece prin punctul P(4,-1) și este paralelă cu dreapta x-2y+1=0.
- **5p 6.** Fie $x \in \mathbb{R}$ astfel încât $\sin x = \frac{1}{2} + \cos x$. Să se calculeze $\sin 2x$.

SUBIECTUL II (30p)

- **1.** Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \in S_5$ și mulțimea $A = \left\{ \sigma^n \middle| n \in \mathbb{N}^* \right\}$.
- **5p** | a) Să se determine numărul inversiunilor lui σ .
- **5p b**) Să se determine numărul elementelor mulțimii *A*.
- **5p** c) Fie $\tau \in S_5$ astfel încât $\tau \sigma^2 = \sigma^2 \tau$. Să se arate că $\tau \sigma = \sigma \tau$.
 - **2.** Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție și mulțimea $H = \{ T \in \mathbb{R} \mid f(x+T) = f(x), \forall x \in \mathbb{R} \}$.
- **5p** a) Să se arate că, dacă $T \in H$, atunci $-T \in H$.
- **5p** | **b**) Să se demonstreze că H este subgrup al grupului (\mathbb{R} ,+).
- **5p** c) Să se determine mulțimea *H* pentru funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \{x\}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b)** Să se arate că $(x^2 + 1) f''(x) + xf'(x) = \sqrt{x^2 + 1}$, pentru orice $x \in \mathbb{R}$.
- **5p** c) Să se arate că graficul funcției f admite asimptotă spre $-\infty$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{nx^n}{x^n+1} dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $I_n = \ln 2 \int_0^1 \ln(1+x^n) dx$, $\forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

Varianta 81

SUBIECTUL I (30p)

- **5p** | **1.** Să se calculeze partea întreagă a numărului $\log_2 500$.
- **5p** 2. Se consideră ecuația $x^2 2x + m = 0$, $m \in \mathbb{R}$, care are rădăcinile reale x_1 și x_2 . Știind că $|x_1 x_2| = 1$, să se determine m.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{1-x} = 1+x$.
- **5p** 4. Să se calculeze $C_{16}^0 + C_{16}^2 + C_{16}^4 + ... + C_{16}^{16}$.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ știind că dreptele x + y = 1 și 3x ay = 2 sunt paralele.
- **5p 6.** Fie $a,b \in \mathbb{R}$, astfel încât $a+b=\frac{\pi}{2}$. Să se arate că $\sin 2a + \sin 2b = 2\cos(a-b)$.

SUBIECTUL II (30p)

1. Fie $m \in \mathbb{R}$ şi punctele A(m,1), B(1-m,2), C(2m+1,2m+1). Se consideră matricea

$$M = \begin{pmatrix} m & 1 & 1 \\ 1 - m & 2 & 1 \\ 2m + 1 & 2m + 1 & 1 \end{pmatrix}.$$

- **5p** a) Să se calculeze $\det(M)$.
- **5p b**) Să se arate că punctele A, B, C sunt coliniare, oricare ar fi $m \in \mathbb{R}$.
- **5p** c) Să se arate că aria triunghiului *ABC* este mai mare sau egală cu $\frac{15}{32}$.
 - **2.** Fie mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{Z}_5 \right\}$.
- **5p** | a) Să se dea un exemplu de matrice nenulă din mulțimea A care are determinantul $\hat{0}$.
- **5p b)** Să se arate că există o matrice nenulă $M \in A$ astfel încât $\begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix} \cdot M = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}$.
- **5p c**) Să se rezolve ecuația $X^2 = \begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix}$.

- **1.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = (x-1)e^{-\frac{1}{x}}$
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p b**) Să se arate că funcția admite două puncte de extrem.
- **5p** c) Să se determine ecuația asimptotei la graficul funcției f spre $+\infty$.
 - **2.** Se consideră funcția $f:[0;\infty) \to \mathbb{R}$, $f(x) = \int_0^x t^3 \sqrt{t^2 + 1} dt$.
- **5p** a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se calculeze f(1).
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x^5}$.

SUBIECTUL I (30p)

- **5p 1.** Să se verifice că numărul 1+i este rădăcină a ecuației $z^4+4=0$.
- **5p 2.** Să se arate că vârful parabolei asociate funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 9$ se află pe dreapta de ecuație x + y = 7.
- **5p** 3. Fie $f:\{1,2,3\} \to \{4,5,6\}$ o funcție injectivă. Să se arate că f(1) + f(2) + f(3) = 15.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă ambele cifre impare.
- **5p** | **5.** Se consideră punctele A(1,0), B(2,3) și C(-1,4). Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **5p 6.** Fie $a \in \mathbb{R}$, astfel încât $\sin a = \frac{1}{4}$. Să se calculeze $\sin 3a$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul de ecuații liniare cu coeficienți reali $\begin{cases} x + ay + (b+c)z = 0 \\ x + by + (c+a)z = 0 \end{cases}$ x + cy + (a+b)z = 0
- **5p a**) Să se calculeze determinantul matricei sistemului.
- **5p b**) Să se arate că, pentru orice $a,b,c \in \mathbb{R}$., sistemul admite soluții nenule.
- **5p** c) Să se rezolve sistemul, știind că $a \neq b$ și că (1,1,1) este soluție a sistemului.
 - **2.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} x & iy \\ iy & x \end{pmatrix} \middle| x, y \in \mathbb{R}, x^2 + y^2 \neq 0 \right\}.$
- **5p** a) Să se demonstreze că G este parte stabilă în raport cu înmulțirea matricelor din $\mathcal{M}_2(\mathbb{C})$.
- **5p b**) Să se arate că (G,\cdot) este grup abelian.
- **5p** c) Să se arate că funcția $f: (\mathbb{C}^*, \cdot) \to (G, \cdot)$ cu $f(x+iy) = \begin{pmatrix} x & iy \\ iy & x \end{pmatrix}$, $\forall x, y \in \mathbb{R}$ este izomorfism de grupuri.

- **1.** Se consideră șirul $(a_n)_{n\geq 0}$, definit prin $a_0 = \sqrt{3}$, $a_{n+1} = \sqrt{2+a_n}$, $\forall n \in \mathbb{N}$.
- **5p** a) Să se arate că $(a_n)_{n\geq 0}$ este strict crescător.
- **5p b)** Să se arate că șirul $(a_n)_{n\geq 0}$ este convergent.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \frac{a_{n+2} a_{n+1}}{a_{n+1} a_n}.$
 - 2. Fie funcția $f: \left(0, \frac{\pi}{2}\right) \to \left(0, \infty\right), f(x) = \int_0^x \frac{(\sin t + \cos t)\sin t}{\cos^2 t} dt$.
- **5p** a) Să se calculeze $f\left(\frac{\pi}{4}\right)$.
- **5p b)** Să se arate că funcția f este strict crescătoare.
- **5p** c) Să se calculze $\lim_{\substack{x \to 0 \\ x > 0}} \frac{f(x)}{x^2}$.

SUBIECTUL I (30p)

- **1.** Să se arate că numărul $\sqrt[3]{3}$ aparține intervalului $(\sqrt{2}, \log_2 5)$. 5р
- **2.** Să se determine valorile reale ale lui m știind că $x^2 + 3x + m \ge 0$, oricare ar fi $x \in \mathbb{R}$. 5p
- 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(x + \frac{\pi}{6}\right) + \cos\left(\frac{\pi}{3} x\right) = 1$. **5p**
- 4. Într-o urnă sunt 49 de bile, inscripționate cu numerele de la 1 la 49. Să se calculeze probabilitatea ca, **5**p extrăgând o bilă din urnă, aceasta să aibă scris pe ea un pătrat perfect.
- **5.** Să se determine $m \in \mathbb{R}$ știind că vectorii $\vec{u} = 2\vec{i} 3\vec{j}$ și $\vec{v} = m\vec{i} + 4\vec{j}$ sunt perpendiculari. 5p
- **6.** Să se arate că $tg1^{\circ} \cdot tg2^{\circ} \cdot tg3^{\circ} \cdot ... \cdot tg89^{\circ} = 1$.

SUBIECTUL II (30p)

- 1. Fie sistemul de ecuații liniare $\begin{cases} x y + z = 1 \\ x + (m^2 m 1)y + (m + 1)z = 2 \\ 2x + (m^2 m 2)y + 2(m + 1)z = 3 \end{cases}$, unde $m \in \mathbb{R}$.
- **5**p a) Să se demonstreze că sistemul are soluție unică dacă și numai dacă $m \in \mathbb{R} \setminus \{0,1\}$.
- **b)** Să se arate că pentru $m \in \{0,1\}$ sistemul este incompatibil. 5p
- c) Să se arate că dacă $(x_0, y_0, z_0) \in \mathbb{R}^3$ este soluție a sistemului, atunci $x_0 y_0 + 2009 \cdot z_0 = 1$. 5p
 - **2.** Se consideră mulțimile $H = \{a^2 \mid a \in \mathbb{Z}_7\}$ și $G = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_7, a \neq \hat{0} \text{ sau } b \neq \hat{0} \right\}.$
- **5**p a) Să se determine elementele mulțimii H.
- **b)** Fie $x, y \in H$ astfel încât $x + y = \hat{0}$. Să se arate că $x = y = \hat{0}$. **5p**
- c) Să se arate că G este grup abelian în raport cu operația de înmulțire a matricelor. 5р

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = x \sqrt{\left|\frac{x+1}{x-1}\right|}$.
- **5p** a) Să se arate că dreapta de ecuație x=1 este asimptotă verticală la graficul funcției f.
- 5p **b)** Să se arate că graficul funcției f admite asimptotă spre $+\infty$. **5**p
 - c) Să se studieze derivabilitatea funcției f.
 - **2.** Se consideră funcțiile $f_n: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, f_n(x) = \frac{1}{\cos^n x + \sin^n x}, n \in \mathbb{N}^*.$
- a) Să se calculeze $\int_0^{\frac{\pi}{2}} \frac{1}{f_1(x)} dx$. 5p
- **5**p **b**) Să se arate că, dacă F este o primitivă a funcției f_4 , atunci $F''(x) = (f_4(x))^2 \sin 4x$, $\forall x \in \left[0, \frac{\pi}{2}\right]$.
- c) Să se arate că $\int_{0}^{\frac{\pi}{2}} \sin^3 x f_1(x) dx = \int_{0}^{\frac{\pi}{2}} \cos^3 x f_1(x) dx = \frac{\pi 1}{4}$. 5p

SUBIECTUL I (30p)

- **5p 1.** Fie $z \in \mathbb{C}$. Să se arate că dacă $2z + 3\overline{z} \in \mathbb{R}$, atunci $z \in \mathbb{R}$.
- **5p** 2. Să se determine funcția de gradul al doilea al cărei grafic conține punctele (0,4), (1,-2) și (-1,1).
- **5p** 3. Se se arate că funcția $f:(0,\infty) \to (1,3)$, $f(x) = \frac{x+3}{x+1}$ este bijectivă.
- **5p 4.** Să se determine numerele naturale n, $n \ge 5$, astfel încât $C_n^3 = C_n^5$.
- **5p** | **5.** Se consideră punctele A, B, C, D astfel încât $\overrightarrow{AB} = \overrightarrow{CD}$. Să se arate că $\overrightarrow{AC} + \overrightarrow{DB} = \overrightarrow{0}$.
- **5p** | **6.** Fie $a,b \in \mathbb{R}$, astfel încât $a-b=\pi$. Să se arate că are loc relația $\cos a \cdot \cos b \le 0$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul de ecuații liniare $\begin{cases} x + 2y 3z = 3 \\ 2x y + z = m, \text{ unde } m, n \in \mathbb{R}. \\ nx + y 2z = 4 \end{cases}$
- **5p** a) Să se determine m și n pentru care sistemul admite soluția $x_0 = 2$, $y_0 = 2$, $z_0 = 1$.
- **5p b**) Să se determine $n \in \mathbb{R}$ pentru care sistemul are soluție unică.
- **5p** c) Să se determine m și n pentru care sistemul este compatibil nedeterminat.
 - 2. Se consideră mulțimea $G = \left\{ \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \middle| a, b \in \mathbb{Z}_3 \right\}.$
- **5p** a) Să se determine numărul de elemente ale mulțimii G.
- **5p b**) Să se arate că G este grup în raport cu operația de înmulțire a matricelor din $\mathcal{M}_3(\mathbb{Z}_3)$.
- **5p** c) Să se arate că $X^3 = I_3$, oricare ar fi $X \in G$.

- **1.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{e^x}{x}$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b)** Să se determine asimptotele graficului funcției f.
- **5p** c) Să se calculeze $\lim_{n\to\infty} n^2 (f(n) f(n+1))$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_0^x e^{-t} (t^2 3t + 2) dt$.
- **5p** a) Să se arate că f(1) > 0.
- **5p b)** Să se arate că funcția *f* admite două puncte de extrem.
- **5p** c) Să se calculeze $\lim_{x\to 0} \frac{f(x) + f(-x)}{x^2}$.

SUBIECTUL I (30p)

- **5p 1.** Fie $z \in \mathbb{C}$. Să se arate că numărul $i(z-\overline{z})$ este real.
- **5p 2.** Să se determine $m \in \mathbb{R}$ pentru care parabola asociată funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + (m+1)x + m$ este tangentă la axa Ox.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+1} = 5 x$.
- **5p 4.** Câți termeni ai dezvoltării $(1+2)^7$ sunt divizibili cu 14?
- **5p 5.** Fie *ABC* un triunghi echilateral de arie $\sqrt{3}$. Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **5p 6.** Fie $a,b \in \mathbb{R}$, astfel încât $a+b=\frac{3\pi}{2}$. Să se arate că $\sin 2a \sin 2b = 0$.

SUBIECTUL II (30p)

- **1.** Fie *A* matricea coeficienților sistemului $\begin{cases} 2x + y + z = 0 \\ 3x y + mz = 0 \text{, unde } m \in \mathbb{R}. \\ -x + 2y + z = 0 \end{cases}$
- **5p** a) Să se calculeze $\det(A)$.
- **5p b**) Să se determine $m \in \mathbb{R}$ astfel încât sistemul să admită soluții nenule.
- **5p** c) Să se arate că, dacă m = 0, atunci expresia $\frac{z_0^2 + y_0^2 + x_0^2}{z_0^2 y_0^2 x_0^2}$ este constantă, pentru orice soluție nenulă (x_0, y_0, z_0) a sistemului.
 - **2.** Se consideră $a,b \in \mathbb{R}$ și polinomul $f = X^4 4X^3 + 6X^2 + aX + b$, care are rădăcinile complexe x_1, x_2, x_3, x_4 .
- **5p** a) Să se determine a și b știind că f are rădăcina i.
- **5p b**) Să se calculeze $(x_1 1)^2 + (x_2 1)^2 + (x_3 1)^2 + (x_4 1)^2$.
- **5p** c) Să se determine valorile reale ale numerelor a și b știind că toate rădăcinile polinomului f sunt reale.

- **1.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = e^{\frac{1}{x}}$.
- **5p** a) Să se determine asimptotele la graficul funcției f.
- **5p b**) Să se determine punctele de inflexiune ale graficului funcției f.
- **5p** c) Să se calculeze $\lim_{x \to \infty} x^2 (f(x+1) f(x))$.
 - **2.** Fie şirul $(I_n)_{n\geq 1}$ definit prin $I_n = \int_0^{\frac{\pi}{4}} \operatorname{tg}^{2n} t \, dt, \, n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_1 .
- **b)** Să se arate că $I_{n+1} + I_n = \frac{1}{2n+1}$, pentru orice $n \in \mathbb{N}^*$.
- **5p** c) Să se arate că șirul $(I_n)_{n\geq 1}$ este convergent la 0.

Varianta 86

SUBIECTUL I (30p)

- **5p** 1. Să se arate că numărul $\frac{1+3i}{1-3i} + \frac{1-3i}{1+3i}$ este real.
- **5p** 2. Numere reale $a ext{ şi } b$ au suma 5 şi produsul 2. Să se calculeze valoarea sumei $\frac{a}{b} + \frac{b}{a}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(x + \frac{\pi}{3}\right) = \cos\left(x \frac{\pi}{6}\right)$.
- **5p 4.** Câte elemente ale mulțimii $A = \{x \mid x = C_7^k, k \in \mathbb{N}, k \le 7\}$ sunt divizibile cu 7?
- **5p 5.** Fie *ABCD* un dreptunghi cu AB = 3 şi AD = 6. Să se calculeze modulul vectorului $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.
- **5p 6.** Să se calculeze suma $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 179^{\circ}$.

SUBIECTUL II (30p)

- 1. Se consideră sistemul $\begin{cases} x + ay + (a+b)z = a+b \\ x + a^2y + (a^2 + b^2)z = a^2 + b^2, \text{ unde } a, b \in \mathbb{R}. \\ x + a^3y + (a^3 + b^3)z = a^3 + b^3 \end{cases}$
- **5p** a) Să se calculeze determinantul matricei sistemului.
- **5p b**) Să se determine $a,b \in \mathbb{R}$ astfel încât sistemul să fie compatibil determinat.
- **5p** c) Să se arate că, pentru orice valori rele ale parametrilor a și b sistemul are soluție.
 - **2.** Se consideră polinomul $f = \hat{2}X + \hat{1} \in \mathbb{Z}_4[X]$.
- **5p** a) Să se determine gradul polinomului f^2 .
- **5p b**) Să se arate că polinomul f este element inversabil al inelului $(\mathbb{Z}_4[X],+,\cdot)$.
- **5p** c) Să se determine toate polinoamele $g \in \mathbb{Z}_4[X]$ de gradul 1 cu proprietatea că $g^2 = \hat{1}$.

- **1.** Se consideră funcția $f: \mathbb{R} \{-1\} \to \mathbb{R}, f(x) = \frac{x^3 1}{x^3 + 1}$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p b**) Să se determine asimptotele graficului funcției f.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \left(\frac{3}{2}f(2)f(3)...f(n)\right)^{n^2}$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$.
- **5p** a) Să se calculeze I_2 .
- **5p b)** Să se arate că $nI_n = (n-1)I_{n-2}, \forall n \ge 3$.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \int_0^{\frac{\pi}{3}} \sin^n x dx$.

- **5p 1.** Fie $z \in \mathbb{C}$ o rădăcină de ordin 3 a unității, diferită de 1. Să se calculeze $1 + z + z^2$.
- **5p** 2. Să se determine soluțiile întregi ale inecuației $x^2 + x 6 \le 0$.
- **5p** 3. Fie funcția $f:(1,\infty) \to (2,\infty)$, $f(x) = x^2 + 1$. Să se arate că funcția f este bijectivă.
- **5p 4.** Câte numere naturale de la 1 la 100 sunt divizibile cu 6 și cu 8?
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\overrightarrow{v_1} = a\overrightarrow{i} + (a+1)\overrightarrow{j}$ și $\overrightarrow{v_2} = 3\overrightarrow{i} + 5\overrightarrow{j}$ sunt coliniari.
- **5p 6.** Triunghiul ABC are laturile AB = 3, BC = 5 şi AC = 7. Să se calculeze lungimea razei cercului înscris în triunghiul ABC.

SUBIECTUL II (30p)

- **1.** Fie matricea $A \in \mathcal{M}_3(\mathbb{R})$, care are toate elementele egale cu 1.
- **5p a**) Să se demonstreze că $A^2 = 3A$.
- **5p b)** Să se calculeze $\det(I_3 + A^3)$.
- **5p** c) Să se demonstreze că dacă $B \in \mathcal{M}_3(\mathbb{R})$ este o matrice cu proprietatea AB = BA, atunci suma elementelor de pe fiecare linie și de pe fiecare coloană ale lui B este aceeași.

2. Fie
$$\varepsilon = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 și $\mathbb{Q}(\varepsilon) = \{a + b\varepsilon | a, b \in \mathbb{Q}\}.$

- **5p a**) Să se arate că $\varepsilon^2 \in \mathbb{Q}(\varepsilon)$.
- **5p b**) Să se demonstreze că inversul oricărui element nenul din $\mathbb{Q}(\varepsilon)$ aparține mulțimii $\mathbb{Q}(\varepsilon)$.
- **5p** c) Să se arate că mulțimea $M = \{a^2 ab + b^2 \mid a, b \in \mathbb{Z}\}$ este parte stabilă a lui \mathbb{Z} în raport cu înmulțirea.

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$.
- **5p** a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se studieze convergența șirului $(x_n)_{n\geq 1}$ definit prin $x_1=1$ și $x_{n+1}=f(x_n), \forall n\in\mathbb{N}^*$.
- **5p** c) Să se demonstreze că $f(x+1) f(x) \le 1$, $\forall x \in \mathbb{R}$.
 - **2.** Se consideră funcțiile $f,g:(0,3) \to \mathbb{R}$, $f(x) = \frac{\ln x}{3-x}$ și $g(x) = \frac{\ln (3-x)}{x}$, $\forall x \in (0,3)$.
- **5p** a) Să se calculeze $\int_{1}^{e} (3-x) f(x) dx$.
- **5p b)** Să se arate că $\int_1^2 f(x)dx = \int_1^2 g(x)dx$.
- **5p** c) Să se arate că $\lim_{t \to 0} \int_t^1 f(x) dx = +\infty$.

Varianta 88

SUBIECTUL I (30p)

- **5p 1.** Să se ordoneze crescător numerele $a = \lg 2 \lg 20$, $b = C_3^2 C_4^2$ și $c = -\sqrt[3]{4\sqrt{4}}$.
- **5p** 2. Să se determine $a \in \mathbb{R}$ știind că distanța de la vârful parabolei de ecuație $y = x^2 + 2x + a$ la axa Ox este egală cu 1.
- **5p** 3. Numerele reale x și y verifică egalitatea $\arctan x + \arctan y = \frac{\pi}{2}$. Să se arate că $x \cdot y = 1$.
- **5p 4.** Să se arate că numărul A_n^3 , $n \in \mathbb{N}$, $n \ge 3$ este divizibil cu 3.
- **5p 5.** Punctele E, F, G, H sunt mijloacele laturilor [BC], [DA], [AB], respectiv [CD] ale patrulaterului ABCD. Să se demonstreze că $\overrightarrow{EF} + \overrightarrow{HG} = \overrightarrow{CA}$.
- **5p 6.** Să se calculeze tg x, știind că $x \in \left(\frac{3\pi}{4}, \pi\right)$ și $\sin 2x = -\frac{3}{5}$.

SUBIECTUL II (30p)

1. Fie
$$m \in \mathbb{R}$$
 şi $A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & m & -1 \\ 3m+4 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- **5p** a) Să se calculeze $\det(A)$.
- **5p** b) Să se determine $m \in \mathbb{R}$ astfel încât matrice A să fie inversabilă.
- **5p** c) Să se determine $m \in \mathbb{R}$ astfel încât $A^{-1} = A^*$.
 - **2.** Se consideră corpul $(\mathbb{Z}_3,+,\cdot)$ și polinoamele $f,g\in\mathbb{Z}_3,\ f=X^3-X,\ g=X^3+\hat{2}X+\hat{2}$.
- **5p** a) Să se determine rădăcinile din \mathbb{Z}_3 ale polinomului f.
- **5p b**) Să se arate că polinomul g este ireductibil în $\mathbb{Z}_3[X]$.
- **5p** c) Să se determine toate polinoamele $h \in \mathbb{Z}_3[X]$ de gradul trei, astfel încât h(x) = g(x), oricare ar fi $x \in \mathbb{Z}_3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p b)** Să se calculeze $\lim_{x\to 0} \frac{x-f(x)}{x^3}$.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, g(x) = (x-1)f(x) admite exact un punct de extrem.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 x^n \sin x \, dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că șirul $(I_n)_{n>1}$ este convergent.
- **5p** c) Să se demonstreze că $I_{2n} + 2n(2n-1)I_{2n-2} = 2n\sin 1 \cos 1$, $\forall n \ge 2$.

SUBIECTUL I (30p)

- **5p 1.** Să se determine numerele complexe z care verifică relația $z + 3i = 6 \cdot \overline{z}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația |1-2x|=|x+4|.
- **5p** 3. Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{1+4x^2}$.
- **5p 4.** Să se determine numărul funcțiilor strict monotone $f:\{1,2,3\} \rightarrow \{5,6,7,8\}$.
- 5. Să se demonstreze că pentru orice punct M din planul paralelogramului ABCD are loc egalitatea $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$.
- **5p 6.** Fie $a ext{ si } b$ numere reale, astfel încât $a + b = \frac{\pi}{3}$. Să se arate că $\sin 2a \sin 2b \sin (a b) = 0$.

SUBIECTUL II (30p)

- **1.** Se consideră sistemul de ecuații liniare $\begin{cases} x_1 x_2 = a \\ x_3 x_4 = b \end{cases}$, unde $a, b \in \mathbb{R}$. $x_1 + x_2 + x_3 + x_4 = 1$
- **5p** a) Să se arate că, pentru orice valori ale lui a și b, sistemul este compatibil.
- **5p b)** Să se determine $a,b \in \mathbb{R}$ astfel încât sistemul să admită o soluție (x_1, x_2, x_3, x_4) cu proprietatea că x_1, x_2, x_3, x_4 și $x_1 + x_2$ sunt termeni consecutivi ai unei progresii aritmetice.
- **5p** | c) Să se demonstreze că, dacă sistemul are o soluție cu toate componentele strict pozitive, atunci a+b<1.
 - **2.** Fie polinomul $f = X^3 3X^2 + 5X + 1 \in \mathbb{R}[X]$ și $x_1, x_2, x_3 \in \mathbb{C}$ rădăcinile sale.
- **5p** a) Să se calculeze $(1-x_1)(1-x_2)(1-x_3)$.
- **5p** \mid **b**) Să se arate că polinomul f nu are nicio rădăcină întreagă.
- **5p** c) Să se calculeze $x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$.

- **1.** Pentru fiecare a > 0 se consideră funcția $f_a : (0, \infty) \to \mathbb{R}$, $f_a(x) = (x+a) \ln \left(1 + \frac{1}{x}\right)$.
- **5p** a) Să se calculeze $f'_a(x)$, x > 0.
- **5p b)** Să se determine a astfel încât funcția f_a să fie convexă.
- **5p** c) Să se arate că graficul funcției f_a admite asimptotă spre $+\infty$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \ dx$.
- **5p** a) Să se calculeze I_2 .
- **5p b)** Să se arate că $nI_n = (n-1)I_{n-2}, \forall n \ge 3$.
- **5p** c) Să se demonstreze că șirul $(I_n)_{n\geq 1}$ este convergent.

- **5p 1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ cu rația 3. Știind că suma primilor 10 termeni ai progresiei este 150, să se determine a_1 .
- **5p** 2. Să se determine toate perechile (a,b) de numere reale pentru care $a^2 + b^2 = a + b = 2$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\lg x + \lg(9 2x) = 1$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea {1, 2, 3, ..., 100}, acesta să **nu** fie divizibil cu 7.
- **5p 5.** Se consideră punctele A(0,2), B(1,-1) și C(5,1). Să se determine ecuația dreptei duse din vârful A, perpendiculară pe dreapta BC.
- **5p 6.** Să se arate că $1 + \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{8\pi}{5} = 0$.

SUBIECTUL II (30p)

- **1.** Fie *M* mulțimea matricelor de ordin 3 cu elemente reale având proprietatea că suma elementelor fiecărei linii este 0.
- **5p** a) Să se arate că, dacă $A, B \in M$, atunci $A + B \in M$.
- **5p b**) Să se arate că orice matrice din *M* este neinversabilă.
- **5p** c) Să se demonstreze că, dacă $A \in M$, atunci $A^2 \in M$.
 - **2.** Se consideră inelele $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\}$ și $\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\right\}$.
- **5p a**) Să se arate că, dacă $x \in \mathbb{R}$ şi $x^2 = 3 + 2\sqrt{2}$, atunci $x \in \mathbb{Z}\left[\sqrt{2}\right]$.
- **5p b**) Să se arate că $\mathbb{Z}\left[\sqrt{2}\right] \cap \mathbb{Z}\left[\sqrt{3}\right] = \mathbb{Z}$.
- **5p** c) Să se demonstreze că nu există morfisme de inele de la $\mathbb{Z} \lceil \sqrt{2} \rceil$ la $\mathbb{Z} \lceil \sqrt{3} \rceil$.

- **1.** Se consideră funcțiile $f_n:(0,\infty)\to\mathbb{R}, f_n(x)=x^n+\ln x, n\in\mathbb{N}^*$.
- **5p** a) Să se determine asimptotele graficului funcției f_1 .
- **5p b)** Să se demonstreze că funcțiile $g_n:(0,\infty)\to\mathbb{R},\ g_n(x)=f_n(x)+f_n\left(\frac{1}{x}\right)$ sunt convexe.
- **5p** c) Admitem că ecuația $f_n(x) = 2^n$ are soluția unică x_n . Să se arate că șirul $(x_n)_{n \ge 1}$ converge la 2.
 - **2.** Fie $a \in [0,1]$ și $I_n = \int_0^a \frac{t^n}{t+1} dt$, $n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .
- **5p b)** Să se demonstreze că $I_n + I_{n-1} = \frac{a^n}{n}$, $\forall n \ge 2$.
- **5p** c) Să se arate că $\lim_{n\to\infty} I_n = 0$.

- **5p 1.** Să se calculeze modulul numărului complex $z = (\sqrt{2} 1 + i(\sqrt{2} + 1))^2$.
- **5p** 2. Să se determine numerele reale x şi y ştiind că x + 2y = 1 şi $x^2 6y^2 = 1$.
- **5p** 3. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$ nu este injectivă.
- **5p 4.** Să se calculeze $C_{10}^3 C_9^3$.
- 5p 5. Fie ABCD un paralelogram. Știind că vectorii $\overrightarrow{AB} + \overrightarrow{AD}$ și $\overrightarrow{AB} \overrightarrow{AD}$ au același modul, să se arate că ABCD este dreptunghi.
- **5p 6.** Să se arate că $\sin 40^{\circ} \cdot \sin 140^{\circ} = \cos^2 130^{\circ}$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 2 \\ x & 4 \end{pmatrix}$, unde $x \in \mathbb{R}$.
- **5p** a) Să se determine $x \in \mathbb{R}$ știind că $A^2 = 5A$.
- **5p b)** Pentru x = 2 să se calculeze A^{2009} .
- **5p** c) Să se determine $x \in \mathbb{R}$ pentru care rang $(A + A^t) = 1$.
 - **2.** Fie $a,b,c \in \mathbb{R}$ şi polinomul $f = 2X^4 + 2(a-1)X^3 + (a^2+3)X^2 + bX + c$.
- **5p** a) Să se determine a,b,c, știind că a=b=c, iar restul împărțirii lui f la X+1 este 10.
- **5p b)** Știind că $x_1, x_2, x_3, x_4 \in \mathbb{C}$ sunt rădăcinile lui f, să se calculeze $x_1^2 + x_2^2 + x_3^2 + x_4^2$.
- **5p** c) Să se determine $a,b,c \in \mathbb{R}$ și rădăcinile polinomului f în cazul în care f are toate rădăcinile reale.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x^3}{x^2 + 1}$.
- **5p** a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
- **5p b**) Să se arate că funcția f este inversabilă.
- 5p c) Să se calculeze $\lim_{x\to\infty} (f(e^x))^{\frac{1}{x}}$.
 - **2.** Fie funcțiile $F, f: \mathbb{R} \to \mathbb{R}, f(x) = e^{\sin^2 x}, F(x) = \int_0^x f(t) dt$.
- **5p** a) Să se demonstreze că funcția F este strict crescătoare.
- **5p b)** Să se calculeze $\int_0^{\frac{\pi}{2}} \cos 2x F(x) dx$.
- **5p** c) Să se calculeze $\lim_{x\to 0} \frac{F(x)}{x}$.

- **5p 1.** Numerele reale pozitive a,b,c,d sunt în progresie geometrică. Știind că d-a=7 și c-b=2, să se determine rația progresiei.
- **5p** 2. Să se determine valorile reale nenule ale lui m știind că $mx^2 + x 2 \le 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în intervalul (0,5) ecuația $\sin\left(2x + \frac{\pi}{6}\right) = -\frac{1}{2}$.
- **5p 4.** Să se determine numărul $n = C_{10}^0 C_{10}^2 + C_{10}^4 C_{10}^6 + C_{10}^8$.
- **5p 5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = (a-1)\vec{i} (2a+2)\vec{j}$ și $\vec{v} = (a+1)\vec{i} \vec{j}$ sunt perpendiculari.
- **5p 6.** Fie $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ astfel încât $\cos \alpha = -\frac{1}{3}$. Să se calculeze $\sin 2\alpha$.

SUBIECTUL II (30p)

- **1.** Fie matricea $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ și mulțimea $G = \{X \in \mathcal{M}_2(\mathbb{R}) \mid AXA = O_2\}$, unde A^t este transpusa matricei A.
- **5p** a) Să se arate că dacă $X, Y \in G$, atunci $X + Y \in G$.
- **5p b**) Să se arate că, dacă $X \in G$, atunci suma elementelor lui X este egală cu 0.
- **5p** c) Să se arate că dacă $X \in G$ și det X = 0, atunci $X^n \in G$ pentru orice $n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $f = X^4 6X^3 + 18X^2 30X + 25 \in \mathbb{C}[X]$.
- **5p** | a) Să se arate că polinomul f se divide cu $X^2 2X + 5$.
- **5p b**) Să se arate că polinomul f nu are nicio rădăcină reală.
- **5p** \mid **c**) Să se arate că rădăcinile polinomului f au același modul.

- **1.** Se consideră funcția $f:(1,\infty)\to\mathbb{R}, f(x)=\ln(\ln x)$.
- **5p** a) Să se determine ecuația tangentei la graficul funcției f în punctul de abscisă x = e, situat pe graficul funcției f.
- **5p b**) Să se demonstreze că funcția f este concavă.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f(x+1) f(x)}{f'(x)}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{\cos x}{1 + \sin^2 x}$.
- **5p** a) Să se calculeze $\int_{0}^{\frac{\pi}{2}} f(x) dx$.
- **5p b)** Să se arate că orice primitivă a funcției f este strict crescătoare pe intervalul $\left[0; \frac{\pi}{2}\right]$.
- **5p** c) Să se calculeze $\int_{0}^{2\pi} xf(x)dx$.

- **5p 1.** Să se calculeze modulele rădăcinilor complexe ale ecuației $z^2 + 2z + 4 = 0$.
- **5p** 2. Să se determine funcțiile de gradul întâi $f : \mathbb{R} \to \mathbb{R}$, care sunt strict crescătoare și îndeplinesc condiția f(f(x)) = 4x + 3, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2^x + 4^{\frac{x+1}{2}} = 12$.
- **5p 4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de la 1 la 1000, acesta să fie cub perfect?
- **5p** | **5.** Se consideră punctele A(1,2) și B(3,4). Să se calculeze distanța de la originea axelor la dreapta AB.
- **5p** | **6.** Să se determine $\alpha \in (0, 2\pi)$ astfel ca tg $\alpha = \sin \alpha$.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- **5p a**) Să se calculeze A^3 .
- **5p b**) Să se determine $(A \cdot A^t)^{-1}$.
- **5p** c) Să se rezolve ecuația $X^2 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Fie $a,b \in \mathbb{R}$ şi polinomul $f = X^{30} 3X^{20} + aX^{10} + 3X^5 + aX + b \in \mathbb{R}[X]$.
- **5p** a) Să se arate că restul împărțirii polinomului f la X+1 nu depinde de a.
- **5p b**) Să se determine a și b astfel încât restul împărțirii polinomului f la $X^2 X$ să fie X.
- **5p** c) Să se determine a și b astfel încât polinomul f să fie divizibil cu $(X-1)^2$.

- **1.** Pentru fiecare $t \in \mathbb{R}$, se consideră funcția $f_t : \mathbb{R} \to \mathbb{R}$, $f_t(x) = x^3 + t^2 x$.
- **5p** a) Să se calculeze $f'_t(x)$, $x \in \mathbb{R}$.
- **5p b)** Să se arate că fiecare funcție f_t este inversabilă.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(t) = f_t^{-1}(1)$ este continuă în punctul 0.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \int_0^x (t^2 + 1)\sqrt{|t|} dt$.
- **5p** a) Să se calculeze f(1).
- **5p b)** Să se arate că f este funcție impară.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f(x+1) f(x)}{x^2 \sqrt{x}}$.

5p 1. Să se calculeze
$$\left(\frac{(1-2i)(3i-1)}{5}\right)^4$$
.

5p 2. Să se arate că funcția
$$f:(-1,1) \to \mathbb{R}$$
, $f(x) = \ln \frac{1-x}{1+x}$ este impară.

- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $5^x + 5^{-x} = 2$.
- **4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, prima sa cifră să fie număr prim?
- 5p 5. Fie ABC un triunghi și O centrul cercului circumscris lui. Știind că $\overrightarrow{BO} = \overrightarrow{OC}$, să se arate că triunghiul ABC este dreptunghic.
- **5p** | **6.** Fie $\alpha \in \mathbb{R}$, astfel încât $\sin \alpha + \cos \alpha = 1$. Să se calculeze tg 2α .

SUBIECTUL II (30p)

1. Fie
$$a,b,c \in \mathbb{R}^*$$
 și matricea $A = \begin{pmatrix} a & a-b & a-b \\ 0 & b & b-c \\ 0 & 0 & c \end{pmatrix}$.

- **5p** a) Să se arate că A este matrice inversabilă.
- **5p b)** Să se demonstreze că $A^n = \begin{pmatrix} a^n & a^n b^n & a^n b^n \\ 0 & b^n & b^n c^n \\ 0 & 0 & c^n \end{pmatrix}$, oricare ar fi $n \in \mathbb{N}^*$.
- **5p c**) Să se calculeze A^{-1} .
 - **2.** Fie $f \in \mathbb{R}[X]$ un polinom astfel încât $f(X^2 + 3X + 1) = f^2(X) + 3f(X) + 1$ și f(0) = 0.
- **5p** \mid **a**) Să se determine f(-1).
- **5p b**) Să se determine restul împărțirii polinomului f la X-5.
- **5p** c) Să se demonstreze că f = X.

- **1.** Se consideră funcțiile $f_n:[0,\infty)\to\mathbb{R}, f_n(x)=x^{n+1}-(n+2)x+n, n\in\mathbb{N}^*$.
- **5p** a) Să se arate că graficele funcțiilor f_n nu admit asimptotă spre $+\infty$.
- **5p b)** Să se arate că, pentru oricare $n \in \mathbb{N}^*$, f_n are exact un punct de extrem x_n .
- **5p** c) Să se calculeze $\lim_{n \to \infty} x_n^{n^2}$, unde x_n este definit la punctul **b**).
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$.
- **5p a**) Să se calculeze I_1 .
- **5p b**) Să se arate că $I_{n+1} + I_n = \frac{1}{2n+1}, \forall n \ge 1$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

SUBIECTUL I (30p)

- **5p 1.** Să se calculeze partea întreagă a numărului $\frac{10}{\sqrt{2}-1}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $x + \frac{1}{|1+x|} = 1$.
- **5p** 3. Să se studieze monotonia funcției $f:(0,\infty)\to\mathbb{R}, f(x)=2009^x+\log_{2009}x$.
- **5p 4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, produsul cifrelor sale să fie impar?
- **5p 5.** Să se demonstreze că vectorii $\vec{u} = 3\vec{i} + a\vec{j}$ și $\vec{v} = (a+1)\vec{i} + a\vec{j}$ nu pot fi perpendiculari pentru nicio valoare reală a numărului a.
- **5p** | **6.** Să se arate că $\sin x + \sin 3x + \sin 5x = (1 + 2\cos 2x) \cdot \sin 3x$, oricare ar fi $x \in \mathbb{R}$.

SUBIECTUL II (30p)

- **1.** Se consideră $n \in \mathbb{N}^*$ și matricea $A_n \in \mathcal{M}_n(\mathbb{R})$, care are elementele de pe diagonala principală egale cu 2 și restul elementelor egale cu 1.
- **5p a**) Să se calculeze $\det(2A_2)$.
- **5p** | **b**) Să se determine $x \in \mathbb{R}$ pentru care $\det(A_3 + xI_3) = 0$.
- **5p** c) Să se arate că A_4 are inversă, aceasta având elementele de pe diagonala principală egale cu $\frac{4}{5}$ și restul elementelor egale cu $-\frac{1}{5}$.
 - **2.** Fie $a,b,c \in \mathbb{R}$ şi polinomul $f = X^3 aX^2 + bX c \in \mathbb{R}[X]$ cu rădăcinile $x_1,x_2,x_3 \in \mathbb{C}$.
- **5p** a) Să se determine a,b,c pentru care $x_1 = 2$ şi $x_2 = 1 + i$.
- **5p b)** Să se arate că resturile împărțirii polinomul f la $(X-1)^2$ și la $(X-2)^2$ nu pot fi egale, pentru nicio valoare a parametrilor a,b,c.
- **5p** c) Să se arate că, dacă toate rădăcinile polinomului f sunt reale și a,b,c sunt strict pozitive, atunci x_1,x_2,x_3 sunt strict pozitive.

1. Fie funcțiile
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \operatorname{arctg} x$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x+1) - f(x) - f\left(\frac{1}{1+x+x^2}\right)$.

- **5p** a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
- **5p b**) Să se arate că $g(x) = 0, \forall x \in \mathbb{R}$.
- **5p** c) Să se calculeze $\lim_{n \to \infty} \left(\arctan \frac{1}{1+1+1^2} + \arctan \frac{1}{1+2+2^2} + \arctan \frac{1}{1+3+3^2} + ... + \arctan \frac{1}{1+n+n^2} \right)$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 e^{-x} x^n dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $I_n = nI_{n-1} \frac{1}{\rho}$, pentru orice $n \ge 2$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_{n}$.

- **5p 1.** Fie a,b,c numere naturale nenule în progresie geometrică. Știind că a+b+c este un număr par, să se arate că numerele a,b,c sunt pare.
- **5p** 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 3x + 2$. Să se arate că $f(a) + f(a+1) \ge 0$, oricare ar fi $a \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale inecuația $\log_2 x + \log_4 x > 3$.
- **5p 4.** Să se determine numerele naturale $n, n \ge 2$, pentru care $C_n^1 + C_n^2 = 120$.
- **5p 5.** Să se arate că unghiul vectorilor $\vec{u} = 2\vec{i} a\vec{j}$ și $\vec{v} = \vec{i} + \vec{j}$ este obtuz dacă și numai dacă a > 2.
- **5p 6.** Fie *ABC* un triunghi cu sin $A = \frac{1}{2}$, sin B = 1 și BC = 4. Să se calculeze aria triunghiului *ABC*.

SUBIECTUL II (30p)

- **1.** Pentru orice matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ se notează tr(A) = a + d.
- **5p** a) Să se verifice că $A^2 tr(A) \cdot A + (\det A) \cdot I_2 = 0_2$.
- **5p b**) Să se demonstreze că, dacă tr(A) = 0, atunci $A^2B = BA^2$, pentru orice matrice $B \in \mathcal{M}_2(\mathbb{R})$.
- **5p** c) Să se arate că dacă $tr(A) \neq 0$, $B \in \mathcal{M}_2(\mathbb{R})$ și $A^2B = BA^2$, atunci AB = BA.
 - **2.** Fie $a,b \in \mathbb{R}$ şi polinomul $f = X^4 6X^3 + 13X^2 + aX + b \in \mathbb{R}[X]$.
- **5p** \mid **a**) Să se calculeze suma pătratelor celor 4 rădăcini complexe ale polinomului f.
- **5p b**) Să se determine a,b astfel încât polinomul f să fie divizibil cu (X-1)(X-3).
- **5p** c) Să se determine a,b astfel încât polinomul f să aibă două rădăcini duble.

- **1.** Fie mulțimea $A = \mathbb{R} \setminus \{1, 2, 3, ..., 2009\}$ și funcția $f: A \to \mathbb{R}, f(x) = \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} + ... + \frac{1}{x-2009}$.
- **5p** a) Să se determine asimptotele graficului funcției f.
- **b**) Știind că $a \in \mathbb{R}^*$, să se determine numărul soluțiilor reale ale ecuației f(x) = a.
- **5p** c) Să se determine numărul punctelor de inflexiune ale graficului funcției f.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_0^x e^{-t^2} dt$.
- **5p** | a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se arate că funcția f este concavă pe intervalul $[0, \infty)$.
- **5p** c) Să se arate că șirul $(f(n))_{n\geq 1}$ este convergent.

SUBIECTUL I (30p)

- **5p 1.** Să se ordoneze crescător numerele 3!, $\sqrt[3]{100}$, $\log_2 32$.
- **5p** 2. Să se arate că $x^2 + 3xy + 4y^2 \ge 0$, oricare ar fi $x, y \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin 2x = \cos x$.
- **5p 4.** Să se calculeze $A_5^3 4C_6^2$.
- **5p 5.** În sistemul de coordonate xOy se consideră punctele A,B,C astfel încât A(1,3),B(2,5) și $\overrightarrow{AC} = 2\overrightarrow{AB}$. Să se determine coordonatele punctului C.
- **5p 6.** Fie *ABC* un triunghi care are BC = 8 și $\cos A = \frac{3}{5}$. Să se calculeze lungimea razei cercului circumscris triunghiului *ABC*.

SUBIECTUL II (30p)

1. Fie
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
.

- **5p** a) Să se arate că $\det(A \cdot A^t) \ge 0$.
- **5p b**) Să se arate că, dacă $A \cdot A^t = A^t \cdot A$, atunci (a-d)(b-c) = 0.
- **5p** c) Să se demonstreze că, dacă $(A A^t)^{2009} = A A^t$, atunci $|b c| \in \{0,1\}$.
 - **2.** Se consideră corpul $(\mathbb{Z}_7,+,\cdot)$.
- **5p a)** Să se rezolve în \mathbb{Z}_7 ecuația $\hat{2}x = \hat{3}$.
- **5p b**) Să se arate că polinomul $p = \hat{2}X^2 + \hat{4} \in \mathbb{Z}_7[X]$ nu are rădăcini în \mathbb{Z}_7 .
- **5p** \mid **c**) Să se demonstreze că funcția $f: \mathbb{Z}_7 \to \mathbb{Z}_7$, $f(x) = \hat{2}x$ este un automorfism al grupului $(\mathbb{Z}_7, +)$.

SUBIECTUL III (30p)

5p

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- a) Să se arate că funcția f este concavă pe intervalul $[0, \infty)$.
- **5p b)** Să se calculeze $\lim_{x \to \infty} x^2 (f(x+1) f(x))$.
- **5p** c) Să se rezolve inecuația $f(x) < x \frac{x^3}{3}, x \in \mathbb{R}$.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{(1+x^2)^2}$.
- **5p** a) Să se calculeze $\int_0^1 x(1+x^2) f(x) dx$.
- **5p b)** Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_0^x t^4 f(t) dt$ este strict crescătoare.
- **5p** c) Să se arate că, pentru orice $a \in \mathbb{R}$, are loc relația $\int_1^a f(x)dx < \frac{1}{4}$.

SUBIECTUL I (30p)

- **5p** | **1.** Fie $z \in \mathbb{C}$ astfel încât $z + 2\overline{z} = 3 + i$. Să se calculeze modulul numărului z.
- **5p** 2. Să se dea un exemplu de ecuație de gradul al doilea cu coeficienți întregi care are o soluție egală cu $\sqrt{3}$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\log_x 2 + \log_{\sqrt{x}} 2 = 9$.
- **4.** Să se determine numărul submulțimilor cu trei elemente ale mulțimii {1,2,3,4,5} care conțin cel puțin un număr par.
- **5.** Fie G centrul de greutate al triunghiului ABC. Să se determine $a,b \in \mathbb{R}$ astfel încât să aibă loc egalitatea $a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{GC}$.
- **5p 6.** Știind că $a \in \left(\frac{\pi}{2}, \pi\right)$ și $\sin a = \frac{3}{5}$, să se calculeze tg a.

SUBIECTUL II (30p)

- **1.** Fie sistemul de ecuații liniare $\begin{cases} mx + y z = 1 \\ x + y z = 2, \text{ unde } m \in \mathbb{R}. \\ -x + y + z = 0 \end{cases}$
- **5p** a) Să se determine $m \in \mathbb{R}$ astfel încât matricea sistemului să aibă rangul 2.
- **5p b)** Să se determine $m \in \mathbb{R}$ astfel încât sistemul să aibă soluții $(x_0, y_0, z_0) \in \mathbb{R}^3$ care verifică relația $x_0 + y_0 + z_0 = 4$.
- **5p** c) Să se determine $m \in \mathbb{Z}$ astfel încât sistemul să aibă o soluție unică $(x_0, y_0, z_0) \in \mathbb{Z}^3$.
 - **2.** Fie $p \in \mathbb{R}$ şi polinomul $f = X^4 4X + p \in \mathbb{R}[X]$.
- **5p** a) Să se determine p astfel încât polinomul f să fie divizibil cu X + 1.
- $\mathbf{5p}$ **b**) Să se determine p astfel încât polinomul f să aibă o rădăcină reală dublă.
- **5p** c) Să se arate că, pentru orice $p \in \mathbb{R}$, polinomul f nu are toate rădăcinile reale.

- **1.** Pentru fiecare $n \in \mathbb{N}$, $n \ge 2$ se definește funcția $f_n : [0, \infty) \to \mathbb{R}$, $f_n(x) = x^n nx 1$.
- **5p** a) Să se arate că, pentru orice $n \in \mathbb{N}, n \ge 2$, funcția f_n este convexă.
- **5p b)** Să se arate că, pentru orice $n \in \mathbb{N}, n \ge 2$, ecuația $f_n(x) = 0$ are soluție unică.
- **5p** c) Să se calculeze $\lim_{n \to \infty} x_n$, unde x_n este unica soluție a ecuației $f_n(x) = 0$.
 - **2.** Fie funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^x}{1 + e^x}$, $g(x) = \int_{-x}^x f(t) \cos t dt$.
- **5p** a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b**) Să se studieze monotonia funcției g pe intervalul $[0,\pi]$.
- **5p** c) Să se calculeze $g\left(\frac{\pi}{2}\right)$.

- **5p** 1. Să se calculeze partea întreagă a numărului $\frac{1}{\sqrt{3}-\sqrt{2}}$.
- **5p** 2. Fie f o funcție de gradul întâi. Să se arate că funcția $f \circ f$ este strict crescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = \frac{4}{9}$.
- **5p 4.** Câte funcții $f:\{1,2,3,...,10\} \rightarrow \{0,1\}$ au proprietatea că f(1)+f(2)+f(3)+...+f(10)=2?
- **5p 5.** Se consideră punctele M(1,2), N(2,5) și $P(3,m), m \in \mathbb{R}$. Să se determine valorile reale ale lui m astfel încât $\overrightarrow{MN} \cdot \overrightarrow{MP} = 5$.
- **5p 6.** Să se determine cel mai mare element al mulțimii {cos 1, cos 2, cos 3}.

SUBIECTUL II (30p)

- **1.** Fie matricele $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \ B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ şi funcţia $f : \mathbb{R} \to \mathbb{R}, \ f(x) = \det(AA^t + xB)$.
- **5p** a) Să se calculeze AA^t .
- **5p b**) Să se arate că $f(0) \ge 0$.
- **5p** c) Să se arate că există $m, n \in \mathbb{R}$ astfel încât f(x) = mx + n, pentru oricare $x \in \mathbb{R}$.
 - **2.** Se consideră mulțimea de numere complexe $G = \{\cos q\pi + i\sin q\pi | q \in \mathbb{Q}\}.$
- **5p** a) Să se arate că $\frac{1}{2} + i \frac{\sqrt{3}}{2} \in G$.
- **5p** \mid **b**) Să se arate că G este parte stabilă a lui $\mathbb C$ în raport cu înmulțirea numerelor complexe.
- **5p** c) Să se arate că polinomul $f = X^6 1 \in \mathbb{C}[X]$ are toate rădăcinile în G.

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 + 3x^2 + 2x + 1} \sqrt[3]{x^3 x + 1}$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p b**) Să se arate că graficul funcției admite asimptotă spre $+\infty$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \left(\frac{f(1)+f(2)+...+f(n)}{n}\right)^n$.
 - **2.** Se consideră funcțiile $f_n:(0,\infty)\to\mathbb{R}, f_n(x)=\int_{\frac{1}{e}}^x t^n\ln t\,dt,\ n\in\mathbb{N}^*$.
- **5p** a) Să se calculeze $f_1(e)$.
- **5p b**) Să se arate că funcțiile f_n sunt descrescătoare pe intervalul (0,1).
- **5p** c) Să se calculeze $\lim_{n\to\infty} f_n(1)$.

SUBIECTUL I (30p)

- **5p 1.** Să se arate că $\sqrt{6+4\sqrt{2}} \in \left\{ a+b\sqrt{2} \mid a,b \in \mathbb{Z} \right\}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația |1+x|=1-x.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[6]{x^2 2x + 1} = \sqrt[3]{3 x}$.
- **5p 4.** Să se arate că 11 divide numărul $C_{11}^1 + C_{11}^2 + ... + C_{11}^{10}$.
- **5p 5.** Fie ABC un triunghi şi G centrul său de greutate. Ştiind că A(1,1), B(5,2) şi G(3,4), să se calculeze coordonatele punctului C.
- **5p 6.** Fie $a \in \mathbb{R}$ cu tg $a = \frac{2}{5}$. Să se calculeze $|\sin a|$.

SUBIECTUL II (30p)

- **1.** Fie matricea $A = \begin{pmatrix} 3 & -2 \\ 6 & -4 \end{pmatrix}$.
- **5p** a) Să se demonstreze că $(I_2 + A)^2 = I_2 + A$.
- **5p b**) Să se demonstreze că mulțimea $\{A^n \mid n \in \mathbb{N}^*\}$ este finită.
- **5p** c) Să se rezolve ecuația $X^3 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Fie $n \in \mathbb{N}$, $n \ge 3$, $a_0, a_1, ..., a_n \in \mathbb{Z}$ și polinomul $f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0$.
- **5p** a) Să se arate că f(1) + f(-1) este număr par.
- **5p b**) Să se arate că, dacă f(2) și f(3) sunt numere impare, atunci polinomul f nu are nicio rădăcină întreagă.
- **5p** c) Să se arate că polinomul $g = X^3 X + 3a + 1$, $a \in \mathbb{Z}$, nu poate fi descompus în produs de două polinoame neconstante, cu coeficienți întregi.

SUBIECTUL III (30p)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + x^3 x^2 + x$.
 - a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se arate că funcția f este inversabilă.
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f^{-1}(x)}{\ln x}$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^n}{x^2 + 3x + 2} dx$.
- **5p** a) Să se calculeze I_1 .

5p

- **5p b)** Să se arate că $I_{n+2} + 3I_{n+1} + 2I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} nI_n$.