Statistika Non Parametrik

1. Pendahuluan

Kelebihan Uji Non Parametrik:

- Perhitungan sederhana dan cepat
- Data dapat berupa data kualitatif (Nominal atau Ordinal)
- Distribusi data tidak harus Normal

Kelemahan Uji Non Parametrik:

- Tidak memanfaatkan semua informasi dari sampel (Tidak efisien)

Kelemahan diperbaiki dengan menambah ukuran sampel

Beberapa Uji Non Parametrik yang akan dipelajari:

- Uji tanda berpasangan
- Uji Peringkat 2 Sampel Mann-Whitney
- Uji Peringkat 2 Sampel Wilcoxon
- Uji Korelasi Peringkat Spearman
- Uji Konkordansi Kendall
- Uji Run(s)

2. Uji Tanda Berpasangan

Uji dilakukan pada 2 sampel terpisah (independen)

- tanda (+) \rightarrow data pada sampel 1 > pasangannya sampel 2
- tanda (-) \rightarrow data pada sampel 1 < pasangannya sampel 2
- tanda Nol $(0) \rightarrow$ data pada sampel 1 = pasangannya sampel 2

Tanda Nol tidak digunakan dalam perhitungan

Notasi yang digunakan:

n = banyak tanda (+) dan tanda (-) dalam sampel

 \overline{p} = proporsi SUKSES dalam sampel

$$\overline{q} = 1 - \overline{p}$$

 p_0 = proporsi SUKSES dalam H_0

$$q_0 = 1 - p_0$$

Standar Error = Galat Baku = $\sigma_{\overline{p}} = \sqrt{\frac{p_0 \times q_0}{n}}$

Rata-Rata Sampel = $\mu_{\overline{p}} = p_0$

Statistik Uji
$$z_{hitung} = \frac{\overline{p} - \mu_{\overline{p}}}{\sigma_{\overline{p}}}$$
 $z_{hitung} = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0 \times q_0}{n}}}$

SUKSES tergantung dari apa yang ditanyakan (ingin diuji) dalam soal.

Jika yang ingin diuji sampel 1 > sampel 2 maka SUKSES adalah banyak tanda (+) Jika yang ingin diuji sampel 1 < sampel 2 maka SUKSES adalah banyak tanda (-)

Nilai p_0 disesuaikan dengan nilai pengujian p yang diinginkan dalam soal atau jika ingin diuji proporsi sampel 1 = proporsi sampel 2 maka $p_0 = q_0 = 0.50$

Penetapan Penetapan H_0 dan H_1 : Terdapat 3 alternatif H_0 dan H_1 :

- (a) H_0 : $p = p_0$ dan H_1 : $p < p_0$ Uji 1 arah dengan daerah penolakan H_0 : $z < -z_\alpha$
- (b) H_0 : p = p₀ dan H_1 : p > p₀ Uji 1 arah dengan daerah penolakan H_0 : z > z_α
- (c) H_0 : p = p₀ dan H_1 : p \neq p₀ Uji 2 arah dengan daerah penolakan H_0 : z < - $z_{\alpha/2}$ dan z > $z_{\alpha/2}$

Contoh 1a:

Berikut adalah nilai preferensi konsumen terhadap 2 Merk Sabun Mandi. Dengan taraf nyata 1%, ujilah apakah proporsi preferensi konsumen pada kedua merk bernilai *sama*?

No.	LUXE	GIVE	Tanda
Responden			
1.	4	2	+
2.	2	3	_
3.	3	3	0
4.	2	3	_
5.	3	2	+
6.	1	2	_
7.	2	3	_
8.	3	4	_
9.	3	2	+
10.	2	1	+
11.	4	1	+
12.	1	1	0
13.	4	2	+
14.	3	2	+
15.	4	3	+

Banyak tanda (+) = 8

Banyak tanda (-) = 5

n = 8 + 5 = 13

Jika kita asumsikan LUXE lebih disukai dibanding GIVE maka SUKSES dalam sampel adalah \overline{p} = proporsi banyak tanda (+) dalam sampel

$$\overline{p} = \frac{\text{banyak positif}}{\text{n}} = \frac{8}{13} = 0.62$$

$$\overline{q} = 1 - \overline{p} = 1 - 0.62 = 0.38$$

Karena ingin diuji proporsi yang suka LUXE = GIVE maka $p_0 = q_0 = 0.50$ Langkah Pengujian:

- 1. H_0 : p = 0.50 H_1 : p \neq 0.50
- 2. Statistik Uji : z
- 3. Uji: 2 Arah
- 4. Taraf Nyata Pengujian = $\alpha = 1\% \rightarrow \alpha/2 = 0.5\% = 0.005$
- 5. Daerah Penolakan H_0

6. Nilai statistik Uji :

$$z_{hitung} = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0 \times q_0}{n}}} = \frac{0.62 - 0.50}{\sqrt{\frac{0.50 \times 0.50}{13}}} = \frac{0.12}{\sqrt{\frac{0.25}{13}}} = \frac{0.12}{\sqrt{0.0192...}} = \frac{0.12}{0.13867...} = 0.8653...$$

$$\approx 0.87$$

7. Kesimpulan:

z hitung = 0.87 ada di daerah penerimaan H_0 H_0 diterima Proporsi konsumen yang menyukai LUXE masih sama dengan yang menyukai GIVE.

Contoh 1b:

Dengan menggunakan data pada Tabel 1 dan taraf nyata 1% ujilah apakah proporsi preferensi konsumen pada sabun LUXE dibanding sabun GIVE sudah <u>lebih dari</u> 0.30?

$$p_0 = 0.30$$

$$q_0 = 1 - 0.30 = 0.70$$

- 1. H_0 : p = 0.30 H_1 : p > 0.30
- 2. Statistik Uji : z
- 3. Uji 1 Arah
- 4. Taraf Nyata Pengujian = $\alpha = 1\% = 0.01$
- 5. Daerah Penolakan H_0

$$z > z_{0.01} \rightarrow z > 2.33$$

6. Nilai statistik Uji:

$$z_{hitung} = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0 \times q_0}{n}}} = \frac{0.62 - 0.30}{\sqrt{\frac{0.30 \times 0.70}{13}}} = \frac{0.32}{\sqrt{\frac{0.21}{13}}} = \frac{0.32}{\sqrt{0.0161...}} = \frac{0.32}{0.1270....} = 2.5177...$$

7. Kesimpulan:

z hitung = 2.52 ada di daerah penolakan H_0 ,

 H_0 ditolak H_1 diterima

Proporsi konsumen yang menyukai LUXE sudah lebih dari 0.30

3. Uji Peringkat 2 Sampel Mann-Whitney

Uji ini merupakan alternatif uji beda 2 rata-rata Parametrik dengan menggunakan t (Sampel-sampel berukuran kecil).

Langkah pertama pengujian ini adalah pengurutan nilai mulai dari yang terkecil hingga terbesar. Pengurutan dilakukan tanpa pemisahan kedua sampel.

Selanjutnya lakukan penetapan Rank (Peringkat) dengan aturan berikut: Peringkat ke -1 diberikan pada nilai terkecil di urutan pertama Peringkat tertinggi diberikan pada nilai terbesar

Jika tidak ada nilai yang sama maka urutan = peringkat Jika ada nilai yang sama, maka ranking dihitung dengan rumus

Peringkat (R) =
$$\frac{\sum \text{urutan data yg bernilai sama}}{\text{banyak data yg bernilai sama}}$$

Contoh 2a: Berikan peringkat (ranking) data dalam tabel berikut ini!

Tabel 2. Nilai UAS Statistika 2

Mahasiswa Fak. Ekonomi				
Nilai	Urutan	Rangking		
30	2	2		
55	4	4		
65	5	5		
70	8	7		
75	10	9.5		
88	16	15.5		
90	17	17		
95	18	18		
98	19	19		
100	20	20		
	$R_1 =$	117		

Mahasiswa Fak. Ilmu					
Komputer					
Nilai	Urutan Ranking				
25	1	1			
50	3	3			
70	6	7			
70	7	7			
75	9	9.5			
78	11	11			
80	12	12			
85	13	13.5			
85	14	13.5			
88	15	15.5			
	$R_2 =$	93			

Ranking untuk Nilai
$$70 = \frac{6+7+8}{3} = \frac{21}{3} = 7$$

Ranking untuk Nilai $75 = \frac{9+10}{2} = \frac{19}{2} = 9.5$

Notasi yang digunakan

 $R_1 = \text{Jumlah peringkat dalam sampel ke } 1$

 R_2 = Jumlah peringkat dalam sampel ke 2

 $n_1 = \text{ukuran sampel ke } 1$

 n_2 = ukuran sampel ke 2

Ukuran kedua sampel tidak harus sama

Rata-rata
$$R_1 = \mu_{R_1} = \frac{n_1(n_1 + n_2 + 1)}{2}$$

Rata-rata
$$R_2 = \mu_{R2} = \frac{n_2(n_1 + n_2 + 1)}{2}$$

Standar Error (Galat Baku) =
$$\sigma_R = \sqrt{\frac{n_1 \times n_2 \times (n_1 + n_2 + 1)}{12}}$$

Statistik Uji
$$z = \frac{R_1 - \mu_{R_1}}{\sigma_{R_1}}$$

Dalam perhitungan hanya R_1 yang digunakan, karena ia menjadi subyek dalam H_0 dan H_1 :

Penetapan H_0 dan H_1 :

Terdapat 3 alternatif H_0 dan H_1 :

- (a) H_0 : $\mu_1 = \mu_2$ dan H_1 : $\mu_1 < \mu_2$ Uji 1 arah dengan daerah penolakan H_0 : $z < -z_\alpha$
- (b) H_0 : $\mu_1 = \mu_2$ dan H_1 : $\mu_1 > \mu_2$ Uji 1 arah dengan daerah penolakan H_0 : $z > z_\alpha$
- (c) H_0 : $\mu_1 = \mu_2$ dan $H_1: \mu_1 \neq \mu_2$ Uji 2 arah dengan daerah penolakan $H_0: z < -z_{\alpha/2}$ dan $z > z_{\alpha/2}$

Contoh 2b:

Berdasarkan Tabel 2 (lihat Contoh 2a), ujilah dengan taraf nyata 5%, apakah (peringkat) nilai mahasiswa Fak, Ekonomi lebih besar dibanding mahasiswa Ilmu Komputer?

1.
$$H_0$$
: $\mu_1 = \mu_2$ H_1 $\mu_1 > \mu_2$

- 2. Statistik Uji : z
- 3. Uji 1 Arah

- 4. Taraf Nyata Pengujian = $\alpha = 5\% = 0.05$
- 5. Daerah Penolakan H_0

6. Nilai statistik Uji:

$$R_1 = 117$$
 $R_2 = 93$
 $n_1 = 10$ $n_2 = 10$

$$\mu_{R_1} = \frac{n_1(n_1 + n_2 + 1)}{2} = \frac{10 \times (10 + 10 + 1)}{2} = \frac{10 \times 21}{2} = \frac{210}{2} = 105$$

$$\sigma_R = \sqrt{\frac{n_1 \times n_2 \times (n_1 + n_2 + 1)}{12}} = \sqrt{\frac{10 \times 10 \times 21}{12}} = \sqrt{\frac{2100}{12}} = \sqrt{175} = 13.2287...$$

$$z = \frac{R_1 - \mu_{R_1}}{\sigma_{R_2}} = \frac{117 - 105}{\sqrt{175}} = \frac{12}{13.228...} = 0.90711... \approx 0.91$$

7. Kesimpulan:

z hitung = $0.91\,$ ada di daerah penerimaan $H_0,\ H_0$ diterima (Peringkat) nilai UAS Statistika 2 di Fakultas Ekonomi = Fakultas Ilmu Komputer.

4. Uji Peringkat 2 Sampel Wilcoxon

Prinsip pengerjaannnya sama dengan Uji Peringkat 2 Sampel Mann-Whitney, hanya fokus kini dialihkan sampel dengan ukuran terkecil.

Notasi yang digunakan:

 $n_1 = \text{ukuran sampel ke } 1$

 $n_2 = \text{ukuran sampel ke } 2$

 $n_1 < n_2$ ukuran sampel ke 1 selalu lebih kecil dari sampel ke 2

W = jumlah peringkat pada sampel berukuran terkecil

Nilai Ekspektasi (W) = E(W) =
$$\frac{n_1(n_1 + n_2 + 1)}{2}$$

Standar Error = SE =
$$\sqrt{\frac{n_1 \times n_2 \times (n_1 + n_2 + 1)}{12}}$$

Statistik Uji
$$z = \frac{W - E(W)}{SE}$$

Penetapan urutan, peringkat dan H_0 dan H_1 sama dengan Uji Mann-Whitney

Contoh 3: Berikut adalah data pendapatan di 2 kelompok pekerja

Tabel 3. Pendapatan Karyawan

Departemen Q				
Income (ribu USD/tahun)	Urutan	Rangking		
6	1	1		
10	2	2		
15	7	6		
32	10	10		
	W =	19		

Departemen Z				
Income	Urutan	Ranking		
(ribu				
USD/tahun)				
12	3	3		
13	4	4		
15	5	6		
15	6	6		
20	8	8		
31	9	9		
38	11	11		
40	12	12		

Dengan taraf nyata 5% ujilah apakah (peringkat) pendapatan di departemen Q *lebih kecil* dibandingkan departemen Z?

- 1. H_0 : $\mu_1 = \mu_2$ H_1 $\mu_1 < \mu_2$
- 2. Statistik Uji : z
- 3. Uji 1 Arah
- 4. Taraf Nyata Pengujian = $\alpha = 5\% = 0.05$
- 5. Daerah Penolakan H_0

$$z < -z_{0.05} \rightarrow z < -1.645$$

6. Nilai statistık Ujı:

$$n_1 = 4$$
 $n_2 = 8$

$$W = 19$$

E(W) =
$$\frac{n_1(n_1 + n_2 + 1)}{2}$$
 = $\frac{4(4+8+1)}{2}$ = $\frac{4 \times 13}{2}$ = 26

$$SE = \sqrt{\frac{n_1 \times n_2 \times (n_1 + n_2 + 1)}{12}} = \sqrt{\frac{4 \times 8 \times 13}{12}} = \sqrt{\frac{416}{12}}$$
$$= \sqrt{34.666...} = 5.8878... \approx 5.89$$

$$z = \frac{W - E(W)}{SE} = \frac{19 - 26}{5.89} = -1.19$$

7. Kesimpulan:

z hitung = -1.19 ada di daerah penerimaan H_0 , H_0 diterima Peringkat Pendapatan di kedua departemen sama

5. Uji Korelasi Peringkat Spearman

Dua uji terakhir (Mann-Whitney dan Wilcoxon) ditujukan untuk 2 sampel yang saling bebas (independen), sedangkan Uji Peringkat Spearman ditujukan untuk penetapan peringkat data berpasangan.

Konsep dan interpretasi nilai Korelasi Spearman (R_s) sama dengan konsep Koefisien Korelasi pada Regresi (Linier Sederhana).

Notasi yang digunakan:

n = banyak pasangan data

 d_i = selisih peringkat pasangan data ke i

 $R_s = \text{Korelasi Spearman}$

$$R_s = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Statistik Uji
$$z = R_S \times (\sqrt{n-1})$$

Penetapan H_0 dan H_1 :

Terdapat 3 alternatif H_0 dan H_1 :

(a) H_0 : R = 0 (korelasi bernilai 0, tidak ada hubungan /tidak ada kecocokan)

 H_1 : R < 0 (korelasi negatif)

Uji 1 arah dengan daerah penolakan H_0 : $z < -z_{\alpha}$

(b) H_0 : R = 0 (korelasi bernilai 0, tidak ada hubungan /tidak ada kecocokan)

 H_1 : R > 0 (korelasi positif)

Uji 1 arah dengan daerah penolakan H_0 : $z > z_{\alpha}$

(c) H_0 : R = 0 (korelasi bernilai 0, tidak ada hubungan /tidak ada kecocokan)

 H_1 : R \neq 0 (ada korelasi/ada kecocokan, korelasi tidak sama dengan 0)

Uji 2 arah dengan daerah penolakan H_0 : $z < -z_{\alpha/2}$ dan $z > z_{\alpha/2}$

Peringkat diberikan tergantung kategori penilaian.

Jika ada item yang dinilai ber-peringkat sama, maka penetapan peringkat seperti dalam Mann-Whitney dapat dilakukan (ambil rata-rata peringkatnya!)

Contoh 5:

Dua orang pakar (ahli) diminta memberikan peringkat kinerja pada 10 Bank di Indonesia. Peringkat diberikan mulai dari bank terbaik = peringkat 1 sedang yang terburuk diberi peringkat 10. Hasilnya disajikan dalam Tabel 4.

Bank	Ranking Pakar I	Rangking d_i Pakar II		d_i^2
A	4	3	1	1
В	5	1	4	16
С	3	4.5	-1.5	2.25
D	7	6	1	1
Е	10	8	2	4
F	1	2	-1	1
G	6	4.5	1.5	2.25
Н	2	7	-5	25
I	8.5	10	-1.5	2.25
J	8.5	9	-0.5	0.25
			$\sum d_i^2 =$	55

Tabel 4. Hasil peringkat 10 Bank oleh 2 Pakar

Dengan taraf nyata 5% ujilah apakah apa korelasi antara peringkat yang diberikan kedua pakar?

- 1. H_0 : R = 0 H_1 : $R \neq 0$
- 2. Statistik Uji : z
- 3. Uji 2 Arah
- 4. Taraf Nyata Pengujian = $\alpha = 5\% \rightarrow \alpha/2 = 2.5\% = 0.025$
- 5. Daerah Penolakan H_0

$$z<-z_{0.025}
ightarrow z<-1.96$$
 dan $z>z_{0.025}
ightarrow z>1.96$ Daerah Penolakan H_0 Daerah Penolakan H_0

1.96

6. Nilai statistik Uji:

$$R_s = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = 1 - \frac{6 \times 55}{10 \times (10^2 - 1)} = 1 - \frac{330}{990} = 1 - 0.33... = 0.67$$

$$z = R_S \times (\sqrt{n-1}) = 0.67 \times (\sqrt{10-1}) = 0.67 \times \sqrt{9} = 0.67 \times 3 = 2.01$$

7. Kesimpulan:

z hitung = 2.01 ada di daerah penolakan H_0

 H_0 ditolak H_1 diterima

Ada korelasi/ada kecocokan pemberian peringkat oleh kedua pakar,

6. Uji Konkordansi Kendall

Pengujian sampel berpasangan ganda (multiple-paired samples).

Orang yang memberi peringkat lebih dari 2.

Statistik Uji yang digunakan : χ^2 (chi kuadrat) dengan derajat bebas (db) = n-1

Notasi yang digunakan

 $n = banyak pasangan data, n \ge 8$

R = jumlah peringkat

k = banyak orang yang memberi peringkat (k > 2)

Statistik Uji
$$\chi^2 = \frac{12\sum R^2 - (3n(k(n+1)^2))}{kn(n+1)} **)$$

**) sumber di Diktat Statistika-2, Gunadarma agak rancu...?

Sumber lain belum saya temukan. Yang paling mendekati ada di

http://www.analystsoft.com/en/products/statplus/content/help/src/analysis_nonparametric_s tatistics_comparing_multiple_dependent_samples_friedman_anova_kendall_concordance.html

Contoh 6:

Tiga konsultan Teknologi Informasi (TI) diminta memberi peringkat pada 8 merk laptop. Dengan taraf nyata 5% ujilah apakah terdapat kecocokan peringkat? (lihat Tabel di bawah)

Merk Laptop	Pakar 1	Pakar 2	Pakar 3	R	R^2
A	3	2	4	9	81
В	2	5	3	10	100
С	1	1	2	4	16
D	5	3	1	9	81
Е	8	4	7	19	361
F	6	7	5	18	324
G	7	6	8	21	441
Н	4	8	6	18	324
					$\Sigma R^2 = 1728$

Jawab:

1. H_0 : $R_{Kendall} = 0$ (tidak ada korelasi/tidak ada kecocokan) H_1 : $R_{Kendall} \neq 0$ (ada korelasi/ada kecocokan)

2. Statistik Uji : χ^2

3. Taraf Nyata Pengujian = $\alpha = 5\% = 0.05$

4. $db = n - 1 = 8 - 1 = 7 \ dan \chi^2_{tabel (db; \alpha)} = 14.06713$

5. Daerah Penolakan H_0 jika $\chi^2 > \chi^2$ tabel $_{(db; \alpha)}$ $\chi^2 > 14.06713$

6. Nilai statistik Uji:

$$\chi^{2} = \frac{12\sum R^{2} - (3n(k(n+1)^{2}))}{kn(n+1)} = \frac{(12 \times 1728) - ((3 \times 8) \times (3 \times (8+1)^{2}))}{(3 \times 3) \times (8+1)} = 15$$

7. Kesimpulan:

 $\chi^2_{\text{hitung}} = 15$ ada di daerah penolakan H_0 maka H_0 ditolak dan H_1 diterima Ada kecocokan peringkat.

7. Uji Run(s)

Uji Run(s) digunakan untuk menguji keacakan dalam suatu sampel.

Run adalah satu atau lebih lambang-lambang yang identik yang didahului atau diikuti oleh suatu lambang yang berbeda atau tidak ada lambang sama sekali.

Misal: LLL PPP L PL PPPP L PLLLLLL terdapat 9 runs

Run ke 1 2 3 4 5 6 7 8 9

Statistik Uji yang digunakan = z

Notasi yang digunakan

 $n_1 = \text{banyak lambang 1 dalam sampel } n_1 > 10$

 n_2 = banyak lambang 2 dalam sampel $n_2 > 10$

 $\mathbf{n} = n_1 + n_2$

 $n_r = \text{banyak run(s)}$

Rata-rata Run(s) = $\mu_r = \frac{2n_1n_2}{n} + 1$

Standar Deviasi Run(s) = $\sigma_r = \sqrt{\frac{2n_1n_2(2n_1n_2 - n)}{n^2(n-1)}}$

Statistik Uji z = $z = \frac{n_r - \mu_r}{\sigma_r}$

Penetapan H_0

H₀: Susunan Acak (Random)

H₁: Susunan Tidak Acak (Tidak Random)

Uji 2 arah dengan daerah penolakan H_0 : $z < -z_{\alpha/2}$ dan $z > z_{\alpha/2}$

Contoh 7:

Berikut adalah urutan duduk mahsiswa dan mahasiswi dalam suatu kelas:

LL PLPPLPLPLPLLPLLLLLLPPLPLLPLLLLLL

L = Laki-laki, P = Perempuan

Dengan taraf nyata 5%, ujilah apakah urutan ini sudah random?

$$n_1$$
 = banyak L = 24 n_2 = banyak P = 12

1. H_0 : susunan acak H_1 : susunan tidak acak

 $n_r = \text{banyak runs} = 19$

- 2. Statistik Uji : z
- 3. Uji 2 Arah
- 4. Taraf Nyata Pengujian = $\alpha = 5\% \rightarrow \alpha/2 = 2.5\% = 0.025$
- 5. Daerah Penolakan H_0

$$z < -z_{0.025} \rightarrow z < -1.96$$

dan
$$z > z_{0.025} \rightarrow z > 1.96$$

6. Nilai statistik Uji:

$$\begin{split} \mu_r &= \frac{2n_1n_2}{n} + 1 \ \frac{2\times24\times12}{36} + 1 = 17 \\ \sigma_r &= \sqrt{\frac{2n_1n_2(2n_1n_2 - n)}{n^2(n-1)}} = \sqrt{\frac{2\times24\times12\times(2\times24\times12 - 36)}{36^2\times(36-1)}} = \sqrt{\frac{576\times540}{1296\times35}} = 0 \end{split}$$

$$\sqrt{6.857143} = 2.618615 \approx 2.62$$

$$n_r = 19$$

$$z = \frac{n_r - \mu_r}{\sigma_r} = \frac{19 - 17}{2.62} = 0.76$$

7. Kesimpulan:

z hitung = 0.76 ada di daerah penerimaan H_0 H_0 diterima. Susunan acak.

Catatan akhir:

Terdapat banyak ragam perhitungan Statistika Non-parametrik lainnya, mahasiswa sangat dianjurkan mempelajari sendiri berbagai teknik perhitungan Statistika Non Parametrik tersebut.

& Selesai 💋