

Theoretische Grundlagen der Informatik

Tutorium 4

Institut für Kryntographie und Sicherheit

Pumping Lemma Formalia

Behauptung: L ist nicht regulär.

Beweis:

Sei $n \in \mathbb{N}$ wie im Pumping-Lemma

Wähle $w = ____, w \in L, |w| > n$

Beh: $\forall u, v, x : w = uvx, |uv| \le n, v \ne \lambda \text{ gilt: } \exists i \in \mathbb{N}_0 : uv^ix \notin L$

Bew: (∀v gilt:)_____

Widerspruch zum Pumping Lemma \Rightarrow L ist nicht regulär.

Chomsky-Normalform

- 1. Produktionen auf Terminale und Nicht-Terminale sortieren
- 2. Produktionen auf mehr als zwei Nicht-Terminale ersetzen
- 3. Produktionen auf λ ersetzen
- 4. Produktionen auf ein Nicht-Terminal ersetzen
- 5. Neues Startsymbol einführen falls $S \to \lambda$ existiert
- 6. ???
- 7. PROFIT

000

Alte Aufgabe 2

Gegeben sei die folgende Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, \mathcal{S}, \mathcal{P})$ mit

$$\mathcal{T} := \{a, b, c, d\}, \, \mathcal{V} := \{S, A, D, M\},$$

$$\mathcal{P} := \{ S \rightarrow \mathsf{AMD} \mid \mathsf{M}, \mathsf{A} \rightarrow \mathsf{AA} \mid \mathsf{a}, \mathsf{D} \rightarrow \mathsf{DD} \mid \mathsf{d}, \mathsf{M} \rightarrow \mathsf{bMc} \mid \lambda \}$$

- 1. Geben Sie die erzeugte Sprache an!
- 2. Wandeln Sie die gegebene kontextfreie Grammatik \mathcal{G} in eine äquivalente kontextfreie Grammatik \mathcal{G}' in Chomsky-Normalform um, indem sie jeden Schritt durch eine neue Grammatik beschreiben!
- Zeigen oder widerlegen Sie mit Hilfe des CYK-Algorithmus, ob die folgenden Wörter in der Sprache £ liegen, die durch die Grammatik G erzeugt wird!
 - 3.1 aabbccdd
 - 3.2 abbcc
 - 3.3 abcdd

000

Definition Kellerautomaten

Ein (nichtdeterministischer) **Kellerautomat** (NPDA bzw PDA, Pushdown Automaton) besteht aus $(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$, wobei

- Q endliche Zustandsmenge
- lacksquare Σ endliches Eingabealphabet
- Γ endliches Stack-Alphabet
- $lack q_0 \in Q$ Anfangszustand
- $Z_0 \in \Gamma$ Initialisierung des Stacks
- $\delta: \mathbf{Q} \times (\Sigma \cup \{\lambda\}) \times \Gamma \to \mathbf{2}^{\mathbf{Q} \times \Gamma^*}$
 - $\delta(q, a, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$

■ $F \subseteq Q$ Menge der akzeptierenden Endzustände, $F = \emptyset$ ist möglich.

Zu Kellerautomaten

- Akzeptieren nach Eingabeende, wenn
 - der Stack leer ist oder
 - der Automat in einen akzeptierenden Zustand kommt.
- Sind im Allgemeinen nichtdeterministisch
- Man kann Endzustände auch aus der Definition weglassen und alternativ verlangen, dass der Automat genau bei leerem Keller akzeptiert.
- Man kann sogar alle Zustände bis auf einen weglassen und alles in die Kellerbelegung kodieren

0000

Beispiel

$$M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{\#, X\}$
- $Z_0 = \#$
- $F = \{q_2\}$

Welche Sprache akzeptiert dieser Automat?

Alte Aufgabe 3

Gegeben sei folgende Sprache für das Alphabet $\Sigma = \{a, b, c\}$:

$$\mathcal{L} = \{ w_1 w_2 \in \Sigma^* \mid w_1 \in \{a, b\}^*, w_2 \in \{b, c\}^*, \\ \#_a w_1 + \#_b w_1 = \#_b w_2 + \#_c w_2 \}$$

Hier gibt $\#_X w$ die Häufigkeit des Vorkommens eines Zeichens $x \in \Sigma$ in einem Wort $w \in \Sigma^*$ an.

- 1. Zeigen Sie, dass \mathcal{L} nicht regulär ist!
- 2. Geben Sie eine Chomsky-2-Grammatik an, die genau die Sprache $\mathcal L$ erzeugt!
- 3. Geben Sie einen Kellerautomaten \mathcal{M} an, der genau die Sprache \mathcal{L} erkennt! Zeichnen Sie den Zustandsübergangsgraphen für \mathcal{M} !

Pumping-Lemma für kontextfreie Sprachen

Lemma

Für jede kontextfreie Sprache L gibt es eine Konstante $n \in \mathbb{N}$, so dass sich jedes Wort $z \in L$ mit $|z| \ge n$ so als

$$z = uvwxy$$

schreiben lässt, dass

- $|vx| \geq 1$,
- $|vwx| \le n$ und
- für alle $i \ge 0$ das Wort $uv^i wx^i y \in L$ ist.

Beweisidee

- Jeder Knoten im Ableitungsbaum (wie wir ihn in CYK sehen) steht für ein Nichtterminalsymbol
- Ab einer gewissen Höhe des Baumes (bzw. Länge des Wortes) muss ein Nichtterminal im Baum mehrmals in einer Beihe vorkommen
- Man kann also aus einem Nichtterminalsymbol dasselbe Symbol wieder ableiten
- Da das Wort durch jede Ableitung (außer zu Terminalsymbolen) länger wird, gibt es eine "Schleife" beim Ableiten
- Diese Schleife kann man also "pumpen", also beliebig oft (oder auch gar nicht) durchlaufen

Beweisidee

Gegeben: Wort $z \in L$ mit $|x| \ge n$

Ableitungsbaum T für z mit Höhe h ≥ N

V_i V_k V_k

Erzeugen von uv⁰wx⁰y

Erzeugen von uv²wx²y

Pumping Lemma Formalia (kontextfrei)

Behauptung: L ist nicht kontextfrei.

Beweis:

Nehme an L sei kontextfrei.

Sei n beliebig aber fest.

Wähle z= $_$ $\in L$ mit $|z| \ge n$

Beh.: $\forall u, v, w, x, y : uvwxy = z \text{ mit } |vx| \ge 1 \text{ und } |vwx| \le n, \exists i \in N,$ so dass $uv^iwx^iy \notin L$.

Bew.:

Widerspruch zum Pumping Lemma \Rightarrow L ist nicht kontextfrei.

Beispiel

Zeige, dass die Sprache

$$L = \{\omega\omega | \omega \in \{0, 1\}^*\}$$

nicht kontextfrei ist.

Aufgabe 1

- 1. Geben Sie für die Sprache $\mathcal{L}=\{a^nb^nc^n\mid n\in\mathbb{N}\}$ eine Grammatik des höchstmöglichen Chomsky-Typs an!
- 2. Zeigen Sie, dass die Sprache $\mathcal{L}' = \{a^{2^n} \mid n \in \mathbb{N}\}$ nicht kontextfrei ist!

Bis zum nächsten Mal!

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT FASY FOR COMPUTERS TO GUESS.

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie blite zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 941015, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.