Review of some probability concepts: random vectors, large-sample results

(A quick tour)

N. Torelli, G. Di Credico, V. Gioia Fall 2023

University of Trieste

Random vectors¹

The multivariate normal distribution²

Statistics³

Complements & large-sample results⁴

¹Agresti, Kateri: sec 2.6

²Agresti, Kateri: sec 2.7

³Agresti, Kateri: sec 3.1-3.2

⁴Agresti, Kateri: sec 3.3-3.4

Random vectors

Random vectors

In statistics multiple variables are usually observed, and vectors of random variables (random vectors) are required. The two-dimensional case is useful to illustrate the main concepts, and will be used here.

For continuous r.v., the **joint (probability) density function** extends the one-dimensional case: it is the f(x,y) function such that, for any $A \subseteq \mathbb{R}^2$

$$\Pr\{(X,Y)\in A\}=\int\int_A f(x,y)dx\,dy\,.$$

Note that $f(x,y) \ge 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$.

The probability density function defines the **joint distribution** of the random vector (X, Y).

Marginal distribution

The joint distribution embodies information about each components, so that the distribution of X, ignoring Y, can be obtained from f(x, y).

The marginal density function of X is given by

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy,$$

and similarly for the other variable.

(Note: here and elsewhere we always use the symbol f for any p.d.f., identifying the specific case by the argument of the function).

1

Conditional distribution

The *conditional density function* of Y given $X = x_0$ updates the distribution of Y by incorporating the information that $X = x_0$.

It is given by the important formula

$$f(y|X = x_0) = \frac{f(x_0, y)}{f(x_0)},$$
 provide $f(x_0) > 0$.

The simplified notation $f(y|x_0)$ is often employed.

The conditional p.d.f. is properly defined, since $f(y|X=x_0) \ge 0$ and $\int_{-\infty}^{\infty} f(y|x_0)dy = 1$.

A symmetric definition applies to X given $Y = y_0$.

5

Conditional distribution: useful properties

In the two dimensional case, it is readily possible to write

$$f(x,y) = f(x) f(y|x).$$

Extensions to higher dimensions require some care:

$$f(x,y,z) = f(x,y|z) f(z)$$

$$f(x,y|z) = f(x|z) f(y|x,z)$$

$$f(x,y,z) = f(x|y,z) f(y,z)$$

$$f(x,y,z) = f(x|y,z) f(y|z) f(z)$$

$$f(x_1,x_2,...,x_n) = f(x_1) f(x_2|x_1) f(x_3|x_2,x_1) ... f(x_n|x_{n-1},...,x_2,x_1)$$

R lab: simulation from joint distributions (a mixture)

```
x \leftarrow rbinom(10^5, size = 1, prob = 0.7)

y \leftarrow rnorm(10^5, m = x * 5, s = 1) ### Y/ X = x ~ N(x * 5, 1)

hist.scott(y, main = "", xlim = c(-4, 10))
```


1

R lab: simulation from joint distributions (cont'd.)

```
xx <- seq(-4, 10, 1 = 1000)
ff <- 0.3 * dnorm(xx, 0) + 0.7 * dnorm(xx, 5)
### This is a mixture of normal distributions
hist.scott(y, main = "", xlim = c(-4, 10))
lines(xx, ff, col = "red", lwd = 2)</pre>
```


Bayes theorem

From the factorization of the joint distribution it readily follows that

$$f(x,y) = f(x) f(y|x) = f(y) f(x|y)$$

from which we obtain the Bayes theorem

$$f(x|y) = \frac{f(x) f(y|x)}{f(y)}.$$

This is a cornerstone of statistics, leading to an entire school of statistical modelling.

Independence and conditional independence

When f(y|x) does not depend on the value of x, the r.v. X and Y are independent, and

$$f(x,y) = f(y) f(x)$$

More in general, n r.v. are independent if and only if

$$f(x_1, x_2, ..., x_n) = f(x_1) f(x_2) ... f(x_n)$$
.

Conditional independence arises when two r.v. are independent given a third one:

$$f(y,x|z) = f(x|z) f(y|z)$$

An important part of statistical modelling exploits some sort of conditional independence.

Example of conditional independence: the Markov property

The general factorization defined above

$$f(x_1, x_2, ..., x_n) = f(x_1) f(x_2|x_1) f(x_3|x_2, x_1) ... f(x_n|x_{n-1}, ..., x_2, x_1)$$

will simplify considerably when the first order Markov property holds:

$$f(x_i|x_1,...,x_{i-1}) = f(x_i|x_{i-1})$$

which means that X_i is independent of X_1, \ldots, X_{i-2} given X_{i-1} . We get

$$f(x_1, x_2, ..., x_n) = f(x_1) \prod_{i=2}^n f(x_i|x_{i-1}).$$

When the variables are observed over time, this means that the process has *short memory*, a property quite useful in the statistical modelling of **time series**.

Mean and variance of linear transformations

For two r.v. X and Y and two constants a, b we get

$$E(aX + bY) = aE(X) + bE(Y).$$

The result follows from the more general one

$$E\{g(X,Y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy.$$

For variances we need first to introduce the **covariance** between X and Y

$$cov(X, Y) = E\{(X - \mu_x)(Y - \mu_y)\} = E(X Y) - \mu_x \mu_y,$$

where $\mu_x = E(X)$ and $\mu_y = E(Y)$. Then

$$var(aX + bY) = a^2 var(X) + b^2 var(Y) + 2 a b cov(X, Y).$$

Note: for X, Y independent it follows that cov(X, Y) = 0. The reverse is not true, unless the joint distribution of X and Y is multivariate normal.

Mean vector

For a random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^{\top}$, the **mean vector** is just

$$E(\mathbf{X}) = \begin{pmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{pmatrix}.$$

The mean vector has the same properties of the scalar case, so that for example $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$, and for **A** and **b** a $n \times n$ matrix and a $n \times 1$ vector, respectively, it follows that

$$E(AX + b) = AE(X) + b$$
.

Variance-covariance matrix

The variance-covariance matrix of the random vector \mathbf{X} collects all the variances (on the main) diagonal and all the pairwise covariances (off the main diagonal), being the $n \times n$ symmetric semi-definite matrix

$$\mathbf{\Sigma} = E\{(\mathbf{X} - \boldsymbol{\mu}_{x})(\mathbf{X} - \boldsymbol{\mu}_{x})^{\top}\} = \begin{pmatrix} \operatorname{var}(X_{1}) & \operatorname{cov}(X_{1}, X_{2}) & \cdots & \operatorname{cov}(X_{1}, X_{n}) \\ \operatorname{cov}(X_{1}, X_{2}) & \operatorname{var}(X_{2}) & \cdots & \operatorname{cov}(X_{2}, X_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{cov}(X_{1}, X_{n}) & \operatorname{cov}(X_{2}, X_{n}) & \cdots & \operatorname{var}(X_{n}) \end{pmatrix}$$

Useful properties:

$$\begin{array}{rcl} \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{A}}\,\boldsymbol{\mathsf{X}}+\boldsymbol{\mathsf{b}}} & = & \boldsymbol{\mathsf{A}}\,\boldsymbol{\Sigma}\,\boldsymbol{\mathsf{A}}^\top \\ \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{X}}^\top\boldsymbol{\mathsf{A}}\,\boldsymbol{\mathsf{X}}} & = & \boldsymbol{\mu}_{\scriptscriptstyle X}^\top\boldsymbol{\mathsf{A}}\,\boldsymbol{\mu}_{\scriptscriptstyle X} + \mathrm{tr}(\boldsymbol{\mathsf{A}}\,\boldsymbol{\Sigma}) \end{array}$$

Transformation of random variables and random vectors

Given a continuous r.v. X and a transformation Y = g(X), with g an invertible function, it readily follows that

$$f_y(y) = f_x\{g^{-1}(y)\} \left| \frac{dx}{dy} \right|.$$

The result is extended to two continuous random vectors with the same dimension

$$f_{\mathbf{Y}}(\mathbf{Y}) = f_{\mathbf{X}}\{g^{-1}(\mathbf{Y})\} |\mathbf{J}|,$$

with $J_{ij} = \partial x_i / \partial y_j$.

For discrete r.v., the results are simpler, with no need of including the Jacobian of the transformation.

The multivariate normal

distribution

The multivariate normal distribution

Start from a set of n i.i.d. $Z_i \sim \mathcal{N}(0,1)$, so that $E(\mathbf{z}) = \mathbf{0}$ and covariance matrix \mathbf{I}_n . If \mathbf{B} is $m \times n$ matrix of coefficients and μ a m-vector of coefficients, then the m-dimensional random vector \mathbf{X}

$$\mathbf{X} = \mathbf{B}\,\mathbf{z} + \boldsymbol{\mu}$$

has a multivariate normal distribution with covariance matrix $\mathbf{\Sigma} = \mathbf{B} \, \mathbf{B}^{\top}$.

The notation is

$$\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$
 .

Joint p.d.f.

Using basic results on transformation of random vectors, starting from the joint p.d.f of Z_1, Z_2, \ldots, Z_n we obtain

$$f_{\mathbf{X}}(\mathbf{X}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{X} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})\right\}, \qquad \text{for } \mathbf{X} \in \mathbb{R}^m,$$

provide that Σ has full rank m. The result can be extended to singular Σ by recourse to the pseudo-inverse of Σ : this is used, for example, in the analysis of compositional data.

A useful property which holds only for this distribution: *two r.v. with multivariate normal distribution and* **zero covariance** *are* **independent**.

Example: bivariate case

We take
$$\mu_1=\mu_2=$$
 0, $\sigma_1^2=$ 10, $\sigma_2^2=$ 10, $\sigma_{12}=$ 15

Linear transformations

It is simple to verify that if $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ and \mathbf{A} is a $k \times m$ matrix of constants then

$$\mathsf{A}\,\mathsf{X} \sim \mathcal{N}(\mathsf{A}\,\mu,\mathsf{A}\,\mathsf{\Sigma}\,\mathsf{A}^{ op})$$
 .

A special case is obtained when k = 1, in that for a m-dimensional vector \mathbf{a}

$$\mathbf{a}^{\top} \, \mathbf{X} \sim \mathcal{N}(\mathbf{a}^{\top} \, \boldsymbol{\mu}, \mathbf{a}^{\top} \, \boldsymbol{\Sigma} \, \mathbf{a}) \, .$$

Note that for suitable choices of a (when all the elements 0s or 1s) it follows that the marginal distribution of any subvector of X is multivariate normal.

Normality of the marginal distributions, instead, does not imply multivariate normality.

Conditional distributions

Consider two random vectors \mathbf{X} and \mathbf{Y} with multivariate normal joint distribution, and partition their joint covariance matrix as

$$oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_{xx} & oldsymbol{\Sigma}_{xy} \ oldsymbol{\Sigma}_{yx} & oldsymbol{\Sigma}_{yy} \end{array}
ight) \, ,$$

and similarly for the mean vector $\boldsymbol{\mu} = (\boldsymbol{\mu}_{\scriptscriptstyle X}, \boldsymbol{\mu}_{\scriptscriptstyle Y})^{\top}.$

Using results on *partitioned matrices*, it follows that the **conditional distributions are multivariate normal**.

For instance

$$\mathbf{Y}|\mathbf{X} \sim \mathcal{N}(\mathbf{\mu}_y + \mathbf{\Sigma}_{y\mathsf{x}}\,\mathbf{\Sigma}_{\mathsf{xx}}^{-1}\,(\mathbf{X} - \mathbf{\mu}_{\mathsf{x}}), \mathbf{\Sigma}_{y\mathsf{y}} - \mathbf{\Sigma}_{y\mathsf{x}}\,\mathbf{\Sigma}_{\mathsf{xx}}^{-1}\,\mathbf{\Sigma}_{\mathsf{xy}})\,.$$

Statistics

Random sample

The collection of r.v. X_1, X_2, \dots, X_n is said to be a **random sample** of size n if they are *independent and identically distributed*, that is

- X_1, X_2, \dots, X_n are independent r.v.
- They have the same distribution, namely the same c.d.f.

The concept is central in statistics, and it is the suitable mathematical model for the outcome of sampling units from a very large population. The definition is, however, more general.

(For more details: https: $//www.probabilitycourse.com/chapter8/8_1_1_random_sampling.php)$

Statistics

A **statistic** is a r.v. defined as a function of a set of r.v.

Obvious examples are the sample mean and variance of data y_1, y_2, \dots, y_n

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \qquad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2.$$

Consider a random vector \mathbf{Y} with p.d.f. $f_{\theta}(\mathbf{Y})$ depending on a vector θ (which is the *parameter*, as we will see).

If a statistic $t(\mathbf{Y})$ is such that $f_{\theta}(\mathbf{Y})$ can be written as

$$f_{\theta}(\mathbf{Y}) = h(\mathbf{Y}) g_{\theta}\{t(\mathbf{Y})\},$$

where h does not depend on θ , and g depends on \mathbf{Y} only through $t(\mathbf{Y})$, then t is a **sufficient statistic** for θ : all the *information* available on θ contained in \mathbf{Y} is supplied by $t(\mathbf{Y})$.

The concepts of information and sufficiency are central in statistical inference.

Example: sufficient statistic for the normal distribution

Given a vector of independent normal r.v. $Y_i \sim \mathcal{N}(\mu, \sigma^2)$, it follows that $\theta = (\mu, \sigma^2)$ and

$$f_{\theta}(\mathbf{Y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \, \sigma} \, \exp\left\{-\frac{1}{2 \, \sigma^2} (y_i - \mu)^2\right\} \\ = \frac{1}{\left(\sqrt{2\pi}\right)^n \, \sigma^n} \, \exp\left\{-\frac{1}{2 \, \sigma^2} \sum_{i} (y_i - \mu)^2\right\} \, .$$

By some simple algebra, it is possible to show that the two-dimensional statistic $t(\mathbf{Y}) = (\overline{y}, s^2)$ is sufficient for (μ, σ^2) .

results

Complements & large-sample

Moment generating function

The **moment generating function** (m.g.f.) characterises the distribution of a r.v. X, and it is defined as

$$M_X(t) = E(e^{tX}),$$
 for t real.

The name derives from the fact the k^{th} derivative of the m.g.f. at t=0 gives the k^{th} uncentered moment:

$$\frac{d^k M_X(t)}{d t^k}|_{t=0} = E(X^k).$$

Two useful properties:

- If $M_X(t) = M_Y(t)$ for some small interval around t = 0, then X and Y have the same distribution.
- If X and Y are independent, $M_{X+Y}(t) = M_X(t) M_Y(t)$.

The central limit theorem

For i.i.d. r.v. X_1, X_2, \ldots, X_n with mean μ and finite variance σ^2 , the **central limit theorem** states that for large n the distribution of the r.v. $\overline{X}_n = \sum_{i=1}^n X_i/n$ is approximately

$$\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$$
.

More formally, the theorem says that for any $x \in \mathbb{R}$ the c.d.f. of $Z_n = (\overline{X}_n - \mu)/\sqrt{\sigma^2/n}$ satisfies

$$\lim_{n\to\infty} F_{Z_n}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz.$$

The proof is simple, and it uses the m.g.f.

The theorem generalizes to multivariate and non-identical settings.

It has a central importance in statistics, since it supports the normal approximation to the distribution of a r.v. that can be viewed as the sum of other r.v.

The law of large numbers

Consider i.i.d. (independent and identically distributed) r.v. X_1, \ldots, X_n , with mean μ and $(E|X_i|) < \infty$.

The strong law of large numbers states that, for any positive ϵ

$$\Pr\left(\lim_{n\to\infty}|\overline{X}_n-\mu|<\epsilon\right)=1\,,$$

namely \overline{X}_n converges almost surely to μ .

With the further assumption $var(X_i) = \sigma^2$, the **weak law of large numbers** follows

$$\lim_{n\to\infty} \Pr\left(|\overline{X}_n - \mu| \ge \epsilon\right) = 0.$$

Proof of the weak law of large numbers

First we recall the *Chebyshev's inequality*: given a r.v. X such that $E(X^2) < \infty$ and a constant a > 0, then

$$\Pr(|X| \ge a) \le \frac{E(X^2)}{a^2}.$$

We apply the inequality to the case of interest, so that

$$\Pr\left(|\overline{X}_n - \mu| \geq \epsilon\right) \leq \frac{E\{(\overline{X}_n - \mu)^2\}}{\epsilon^2} = \frac{\mathrm{var}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\,\epsilon^2}\,,$$

which tends to zero when $n \to \infty$.

The result may hold also for non-i.i.d. cases, provided $\mathrm{var}(\overline{X}_n) \to 0$ for large n.

Jensen's inequality

This is another useful result, that states that for a r.v. \boldsymbol{X} and a concave function \boldsymbol{g}

$$g\{E(X)\} \geq E\{g(X)\}.$$

(Note: a concave function is such that

$$g\{\alpha x_1 + (1-\alpha)x_2\} \ge \alpha g(x_1) + (1-\alpha)g(x_2),$$

for any x_1, x_2 , and $0 \le \alpha \le 1$).

An example is $g(x) = -x^2$, so that

$$-E(X)^2 \ge -E(X^2)$$
 \Rightarrow $E(X)^2 \le E(X^2)$,

which is obviously true since $E(X^2) = var(X) + E(X)^2$.