See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230503458

Raman and infrared spectra, conformational stability, normal coordinate analysis and ab initio calculations of 3-chloro-1-butene

ARTICLE in JOURNAL OF RAMAN SPECTROSCOPY · MARCH 2000

CITATIONS

6

READS

12

6 AUTHORS, INCLUDING:

Min-Joo Lee

Changwon National University

23 PUBLICATIONS 166 CITATIONS

SEE PROFILE

Todor K Gounev

University of Missouri - Kansas City

77 PUBLICATIONS 576 CITATIONS

SEE PROFILE

Jian Liu

Abbott Laboratories

11 PUBLICATIONS 195 CITATIONS

SEE PROFILE

Raman and infrared spectra, conformational stability, normal coordinate analysis and *ab initio* calculations of 3-chloro-1-butene

Min Joo Lee,¹ Feng Fusheng,² Seung Won Hur,³† Jian Liu,³‡ Todor K. Gounev³ and James R. Durig³*

- ¹ Department of Chemistry, Changwon National University, Changwon, Kyungnam 641-773, Republic of Korea
- ² Measuring and Testing Center, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- ³ Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA

The Raman and infrared spectra (3300-30 cm⁻¹) of gaseous and solid 3-chloro-1-butene, H₂C=CHCCl (CH₃)H, were recorded. Additionally, the Raman spectrum (3300-30 cm⁻¹) of the liquid was recorded. All three conformers were observed in the flui phases and the conformer with the hydrogen atom eclipsing the double bond (HE form) was identifie as the most predominant. From variable-temperature measurements in liquifie xenon, the enthalpy differences between the HE form and the two less stable conformers, i.e. the methyl group eclipsing the double bond (ME form) and the chlorine atom eclipsing the double bond (CIE form), were determined to be 75 ± 8 cm⁻¹ (214 ± 23 cal mol⁻¹) and 197 ± 37 cm⁻¹ (563 ± 106 cal mol⁻¹), respectively. Nearly complete vibrational assignments are proposed for all three conformers, which are consistent with the predicted wavenumbers utilizing the force constants from ab initio MP2/6-31G(d) calculations. Both the infrared intensities and the Raman activities and depolarization values were obtained from the ab initio calculations. Complete equilibrium geometries were determined by ab initio calculations employing the 6-31G(d) and 6-311++G(d,p) basis sets with full electron correlation by the Möller-Plesset (MP2) perturbation method to second order. The structural parameters obtained with the larger basis set are comparable to those obtained from a previously reported electron diffraction study. The results are discussed and the theoretical values are compared with the experimental values when appropriate. Copyright © 2000 John Wiley & Sons, Ltd.

INTRODUCTION

The 3-chloro-1-butene molecule has received considerable attention with regard to its conformation. $^{1-4}$ In previous vibrational spectroscopic investigations, 1,2 it was concluded that at least two conformers coexist at ambient temperature; however, these two studies disagreed on the stability of the conformers. From a gas-phase electron diffraction study of this molecule it was determined that the conformer with the hydrogen atom eclipsing the double bond (HE; Fig. 1) has 76 ± 10 and $62\pm10\%$ population at 20 and $180\,^{\circ}\mathrm{C}$, respectively, with some contribution from the conformer with the chlorine atom eclipsing the double bond (CIE). Although these investigators $^{1-3}$ did not exclude the possibility of a third conformer, there was no conclusive evidence for it.

* Correspondence to: J. R. Durig, Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA; e-mail: durigj@umkc.edu

Contract/grant sponsor: University of Missouri-Kansas City Faculty Research Grant Program.

In theoretical studies,^{3,4} the conformer with the methyl group eclipsing the double bond (ME) and the ClE conformation were calculated to have only 1.0-1.3 kcal mol⁻¹ (350 to 455 cm⁻¹) higher energy than the HE form. With such an energy difference, the two high-energy conformers (ME and ClE) should be present in detectable amounts at ambient temperature. Therefore, in order to investigate the presence of the third conformer and to determine the conformational stabilities and the enthalpy differences, we carried out Raman and infrared spectral studies of the gas, liquid and annealed solid. Additionally, we carried out variable-temperature infrared spectral studies in xenon solutions to obtain the enthalpy differences among the conformers. Ab initio calculations using the 6-31G(d) and 6-311++G(d,p) basis sets at the level of restricted Hartree-Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) were also carried out to predict the conformational stability, energy differences, structural parameters, Raman and infrared intensities and vibrational wavenumbers.

EXPERIMENTAL

The sample of 3-chloro-1-butene was obtained from Aldrich Chemical (Milwaukee, WI, USA). Purificatio was carried out by using a low-temperature, low-pressure

[†] Taken in part from the dissertation of S. W. Hur, which will be submitted to the Department of Chemistry in partial fulfillmen of the PhD degree.

[‡] Present address: Watson Pharmaceuticals, Inc., 132A Business Center Dr., Corona, CA 97120, USA.

Figure 1. Internal coordinates for the HE conformer of 3-chloro-1-butene.

Figure 2. Raman spectra of 3-chloro-1-butene in the (A) gas, (B) liquid and (C) annealed solid.

fractionation column and the sample was stored under vacuum in a slush of ethanol and dry ice.

The Raman spectra (Fig. 2) were recorded on a Cary Model 82 spectrophotometer equipped with a Spectra-Physics Model 171 argon ion laser with excitation of 514.5 nm radiation. The Raman spectrum of the gas was recorded by using a standard Cary multipass accessory. Reported wavenumbers are expected to be accurate to at least ± 2 cm⁻¹. The spectrum of the liquid was obtained from the sample sealed in a Pyrex capillary. The spectrum of the annealed solid was recorded by using a Model DTC-500 cryogenic temperature controller (Lake Shore Cryogenics).

The mid-infrared spectra of the gaseous and annealed solid (Fig. 3) were recorded on a Digilab Model FTS-14C Fourier transform interferometer equipped with a Ge/KBr beamsplitter and a TGS detector. For the gaseous sample,

Figure 3. Mid-infrared spectra of 3-chloro-1-butene in the (A) gas and (B) annealed solid.

a 10 cm cell fitte with CsI windows was employed. The spectrum of the annealed solid was obtained by depositing the sample on a CsI plate cooled by boiling liquid nitrogen and housed in a cell fitte with CsI windows.

The far-infrared spectra (Fig. 4) were recorded on a Perkin-Elmer Model 2000 Fourier transform interferometer equipped with a ceramic source, a grid beamsplitter and a DTGS detector. For the gaseous sample, a 10 cm cell fitte with polyethylene windows was employed. The sample was dried with calcium hydride. A cryostat cell with polyethylene windows and an Si substrate was used for the solid sample, and the sample was maintained at $-196\,^{\circ}\text{C}$ by boiling liquid nitrogen.

The mid-infrared spectra of the sample dissolved in liquifie xenon as a function of temperature [Fig. 5(A)] were recorded on a Bruker Model IFS-66 Fourier transform interferometer equipped with a globar source, a Ge/KBr beamsplitter and a DTGS detector. The temperature studies ranged from -55 to -100 °C and were performed in a specially designed cryostat cell consisting of a 4 cm pathlength copper cell with wedged silicon windows sealed to the cell with indium gaskets. The complete system is attached to a pressure manifold to allow for the fillin and evacuation of the cell. The cell is cooled by boiling liquid nitrogen and the temperature is monitored by two Pt thermoresistors. Once the cell is cooled to the desired temperature, a small amount of sample is condensed into the cell. The system is then pressurized with xenon gas, which immediately starts to condense, allowing the compound to dissolve. For each temperature investigated, 100 interferograms were recorded at 1.0 cm⁻¹ resolution, averaged and transformed with a boxcar truncation function. All of the observed infrared and Raman bands are listed in Table 1.

AB INITIO CALCULATIONS

LCAO-MO-SCF restricted Hartree-Fock calculations were performed with the Gaussian-94 program⁵ using

Figure 4. Far-infrared spectra of 3-chloro-1-butene in the (A) gas, (B) unannealed solid and (C) annealed solid.

Figure 5. Mid-infrared spectra of 3-chloro-1-butene: (A) xenon solution at $-85\,^{\circ}$ C; (B) calculated spectrum of the mixture of all three conformers; (C) calculated spectrum of the CIE conformer; (D) calculated spectrum of the ME conformer; (E) calculated spectrum of the HE conformer.

Gaussian-type basis functions. The energy minima with respect to the nuclear coordinates were obtained by the simultaneous relaxation of all of the geometric parameters using the gradient method of Pulay.⁶ The 6–31G* and 6–311++G** basis sets were employed at the level of restricted Hartree–Fock (RHF) and/or Möller–Plesset (MP2) to second order⁷ with full electron correlation. The predicted structural parameters are listed in Table 2.

The energies of the potential minima and maxima during internal rotation along the =C—C bond were obtained by the simultaneous relaxation of all of the structural parameters using the MP2/6-31G* basis set. The resulting values of the energies were fi to an asymmetric potential function of the type

$$V(\phi) = \sum_{i=1}^{6} (V_i/2)(1 - \cos i\phi) + \sum_{i=1}^{5} (V_i'/2)\sin i\phi$$

where ϕ is the torsional dihedral angle. The resulting potential function is shown in Fig. 6 with the values of the potential coefficient and the barriers to internal rotation listed in Table 3.

In order to obtain a more complete description of the molecular motions involved in the normal modes of 3-chloro-1-butene we carried out a normal coordinate analysis. This analysis was performed utilizing ab initio calculations and the Wilson matrix method.8 The force fiel in Cartesian coordinates was calculated by the Gaussian-94 program with the MP2/6-31G* basis set. The Cartesian coordinates obtained for the optimized structure were input into the G-matrix program⁹ together with a complete set of 34 internal coordinates (Fig. 1). This complete set of internal coordinates was used to form the symmetry coordinates (Table 4). The output of the G-matrix program gives the B-matrix which was used to convert the ab initio force fiel in Cartesian coordinates to a fiel in the desired internal coordinates. The force constants for all three conformers can be obtained from the authors. The force field in internal coordinates were then assigned scaling factors. Initially, all scaling factors were

Table 1. Obser	rved ^a i	nfrarec	d and l	Raman	waveni	ımber	s v for	3-chlor	o-1-bute	ne			
		Infrared							aman				
ĩ/cm ^{−1} gas	Rel. int.	ṽ/cm ^{−1} soln.	Rel. int.	ῦ/cm ^{−1} solid	Rel. int.	ĩ/cm ^{−1} gas	Rel. int.	ĩ/cm ^{−1} liquid	Rel. int. & depol.	ĩ/cm ^{−1} solid	Rel. int.	v_i^{b}	Assignment Approximate description
3110 <i>Q</i> 3102 <i>R</i>	m	3100	m, sh									$\nu_1^{\prime\prime}$	
3097 <i>Q, C</i>	s	3088	m	3084	S	3098	m	3089	m	3086	s	v_1	=CH ₂ antisymmetric stretch
3091 <i>P</i> 3085	w, sh	3075	W									$v_1{'}$	
0000	**, 0	3025				3036	sh	3026	s			v_4'	
3027 max.	w	3017 3011	w	3011	W	3026	vs	3014		3014	s, sh	v_2 v_2'	=CH stretch
3002 <i>Q, C</i>	s			2993	s					2995	vs	v_3	CH ₃ antisymmetric stretch
2998 <i>Q, C</i>	vs												0010
	vs	2990	s	2986	S	3000	VS	2989	VS	2987	vs	v_4	=CH ₂ symmetric stretch
2990 P													- ,
2990 R													
2983 <i>Q, C</i>	VS	2974	S	2974	VS					2977	S	ν_5	CH ₃ antisymmetric stretch
2977 <i>P</i>													
						2967	m	2960	m	2964	VS	ν_6	CH stretch
	s	0007		0007		00.44		0000		0000		$\nu_7{}'$	011
	S	2927		2927	S	2941	VS	2930	VS	2928	VS	v_7	CH₃ symmetric stretch
2893 R		2884		2000		2000		2077		2000			
	m	2878		2880		2890	m	2877	W	2880	W	$v_8 + v_{15}$	
2883 <i>P</i> 2828 max.	vw	2865 2823	vw	2866	W					2830	vw	$\nu_8 + \nu_{16}$	
2742 may		2816		2740	147	2740	147	2720		2720		2	
1862 <i>R</i>	vw	2729		2740		2740	w	2730	vv	2728	W	2ν ₁₃	
1855 <i>Q</i> , <i>A</i> 1848 <i>P</i>	m	1851	m	1880 1875	w w, sh							2 <i>v</i> ₂₁	
										1648			
	m	1645	m	1637	m	1651	S	1643	S	1639	VS	ν ₈	C=C stretch
	m	1.450		1 455				1.451		1.400		v_{10}'	CIItit-i-
1459 <i>Q</i>	m	1452	m	1455				1451	W	1460		ν_9	CH₃ antisymmetric deformation
1450.0.0	_	1 4 4 7	_	1448		1450		1 4 4 5		1449			CIIti
1452 <i>Q, C</i>	S	1447	S	1446	S	1456	W	1445	W	1447	m	v_{10}	CH ₃ antisymmetric
1/27 D													deformation
1437 <i>R</i>													
1432 <i>Q</i> 1430 <i>Q</i>	m	1424	m	1427	c	1429	14/	1424	14/	1424	m	11	=CH ₂ deformation
1424 <i>P</i>	***	1424	111	1427	3	1423	VV	1424	VV	1424	***	ν ₁₁	—Ci i ₂ deloimation
1418 <i>Q</i>													
	m	1410	m	1408	s	1417	w	1412	W	1408	m		Fermi resonance (2 ν_{23})
1411 <i>P</i>	•••		•••	1 100	Ü		••		••	1 100	•••		1 011111 100011d1100 (21/23)
1386 <i>R</i>													
	m	1375	S	1372	vs	1380	vw	1376	vw	1375	w	ν_{12}	CH ₂ symmetric deformation
1377 <i>P</i>													
	vw	1335	vw					1328	vw			$\nu_{13}{}'$	
1309 <i>R</i>													
	vw	1302	w									$\nu_{13}^{\prime\prime}$	
	vw		w, sh	1307	W	1306	W	1306	W	1308	S	v_{13}	CH bend
	W	1293										$\nu_{14}^{\prime\prime}$	
	w	1288										v_{14}'	
	vw	1283	vw, sh	1282	vw	1292	W	1290	W	1286	S	v_{14}	=CH bend
1261 <i>R</i>													
	m	1253	m					1253	vw			$\nu_{15}^{\prime\prime}$	
1244 R				1240						1234			
1232 <i>P</i>	VS	1233		1231	VS	1238			vvw	1228	VW	V ₁₅	CH bend
1225 <i>Q</i> 1183 <i>R</i>	s, sh	1222	m			1228	W	1223	W			ν ₁₅ '	

Table 1. (conti	inued)												
ĩ/cm ^{−1}	Rel.	Infrared ṽ/cm ^{−1}	Rel.	ĩ/cm ^{−1}	Rel.	ῦ/cm ^{−1}	Rel.	Ra ĩ/cm⁻¹	man Rel. int.	ĩ/cm⁻¹	Rel.		Assignment
gas 1178 <i>Q, A</i>	int. M	soln. 1174	int. m	solid 1175	int. S	gas 1177	int. W	liquid 1175	& depol.	solid 1175	int. m	v_i^b v_{16}	Approximate description CCC antisymmetric
1176 <i>Q, A</i>	m												stretch
1169 <i>P</i> 1157 <i>Q, C</i>	w	1153	w					1157	vvw, sh			$v_{16}^{'}$	
1150 <i>P</i> 1113 <i>Q, A</i>	vw	1108	w					1105	vvw, sh			ν ₁₈ "	
1095 <i>R</i> 1092 <i>Q</i>	w	1090	w	1096	m	1091	w	1091	w	1096	m	ν ₁₇	CH₃ rock
1086 <i>R</i> 1082 <i>Q, A</i>	m											ν ₁₆ "	
1078 <i>Q</i> , <i>A</i>	m m	1075	m					1074	w, sh			ν ₁₈ '	
1073 <i>P</i>	•••	1075						1074	W, 311			V18	
1037 <i>R</i>													
1032 <i>Q</i>	s												
1029 <i>Q, A</i>	S	1025	VS	1018	VS	1024	W	1025	W	1018	m	$v_{18}, v_{17}', v_{20}''$	CH₃ rock
1023 <i>P</i>		000										,	
996 <i>Q</i> 993 <i>R</i>	S	992	m									v_{19}'	
988 min., <i>B</i>	s	986	s	994	s	981	vw	986	vw, sh	994	w	ν ₁₉	=CH ₂ twist
985 <i>Q</i>	s	000	Ü	001	Ü	001	•••	000	***, 011	00 1	••	ν ₁₉ "	Ong twict
983 <i>P</i>													
979 <i>Q</i>	S											$\nu_{20}{''}$	
977 <i>Q</i>	s	976							vw, sh		$\nu_{17}^{\prime\prime}$		
970 <i>Q</i>	m	966		964				968		967	W	ν_{20}	=CH ₂ rock
932 <i>Q</i> 930 <i>R</i>	VS	924	VS	932	S			932	VW	936	m	v_{21}	=CH ₂ wag
927 <i>Q, A</i>	vs											ν_{21}', ν_{21}''	
921 <i>P</i>	••											V21 / V21	
872 R													
866 <i>Q</i> , <i>A</i>	m	864	m	862	s	863	w, bd	863	w	862	m	$\nu_{22}, \; \nu_{22}{''}$	CCC symmetric stretch
861 <i>P</i>		050				050		0.40				,	
856 <i>Q</i>	w, sh	853	W			853	vw, sh	843	vw, sh			v_{22}'	
721 <i>Q</i>	vs	716	s				511					v_{24}'	
720 R		,	Ü									* 24	
715 <i>Q</i>	vs	708	vs	710	s	713	m	707	m	710	vs	v_{23}	CCI stretch
711 <i>Q</i>													
708 <i>P</i>		200										"	
703 <i>Q</i> 638 <i>R</i>	VS	699	m, sh									$\nu_{23}^{"}$	
631 <i>Q</i>	m	625	m	623	s	629	m	624	m	624	s	v_{24}	CH bend
628 <i>Q</i>	m	020	•••	020	Ü	608		021	•••	02 1	Ü	ν ₂₄ "	On Bona
624 P												24	
600 <i>Q</i>	w, sh	595				599		592				v_{23}	
511 <i>Q</i>	vw	507	W			508	m	508	m			$\nu_{25}{}'$, $\nu_{25}{}''$	
464 R		450		455		450		450		457	_		0.00 hazad
458 <i>Q, A</i> 451 <i>P</i>	W	456	m	455 453		459 366		459 372		457	S	ν ₂₅ ν ₂₆ "	C=CC bend
351 <i>R</i>				400	VV	300	V VV	372	V VV			ν26	
344 <i>Q</i>	w							348	m			$v_{27}{}'$	
341 <i>Q</i>	w												
335 <i>P</i>													
319 max.	W			327	S	324 317		322	vw, sh	325	W	ν ₂₆ , ν ₂₉ ' ν ₂₈ "	CCC bend
311 R				-				-					0011
305 <i>Q, A</i>	m			310		305	w	310	W	306	m	ν ₂₇	CCI bend
302 <i>Q</i> 291 <i>R</i>	m			307	S							ν_{28}'	
281 <i>R</i> 284 <i>Q</i> , <i>A</i>				297	s								
283 <i>Q</i> , <i>A</i>	vs			293		283	w	289	w	295	m	ν_{28}	CCI bend
277 P				_55		_55		_55		_55		- 20	
247 Q	vw			272	m	246	vw	252	vw	277	W	ν_{29}	CH₃ torsion

(continued overleaf)

Table 1.	(continued)

		Infrared						Ra	ıman				
ν̄/cm ^{−1}	Rel. int.	\tilde{v}/cm^{-1}	Rel.		Assignment								
gas	int.	soln.	int.	solid	int.	gas	int.	liquid	& depol.	solid	int.	v_i^b	Approximate description
245 <i>Q</i>	vw											$\nu_{26}{}'$	
96 <i>Q</i>										146	w		
92 <i>Q</i>	vw			126	vw	99	m	100	bd, w	137	m	ν_{30} , ν_{30}' ,	Asymmetric torsion
												$\nu_{30}^{\prime\prime}$	
90 <i>Q</i>						86	m			127	S		
				94	m								
				81	m					78	m)	
										69	w	1	
										60	w	}	Lattice modes
										33	m	İ	
										28	W	J	

^a Abbreviations: s strong; m, moderate; w, weak; v, very; bd, broad; sh, shoulder; p, polarized; dp, depolarized; A, B and C refer to infrared band envelopes; P, Q and R refer to the rotational-vibrational branches, the prime indicates gauche-2 modes and double primes indicate cis modes. ^b v_i , v_i' and v_i'' refer to the HE, ME and CIE conformers, respectively.

Figure 6. Potential function of the asymmetric torsion of 3-chloro-1-butene predicted from the MP2/6-31G* calculations.

kept fixe at 1.0 to reproduce the pure ab initio calculated vibrational wavenumbers. Subsequently, scaling factors of 0.9 for stretching and bending coordinates, 1.0 for torsional coordinates and the geometric average of scaling factors for the interaction constants were used to obtain the 'fixe scaled' force fiel and resultant wavenumbers along with the potential energy distributions (P.E.D.) which are given in Tables 5-7.

CONFORMATIONAL STABILITY

There are several conformer bands in the infrared spectra of the flui phases which disappear in the spectrum of the solid. Some of them are the A-type bands at 1157 and 1082 cm⁻¹ in the spectrum of the gas, which are assigned to the CCC antisymmetric stretches of the ME and CIE conformers, respectively, as well as the bands at 1075 and 1108 cm⁻¹ in the spectrum of the xenon solution assigned to the CH₃ rocks of these two forms. The corresponding fundamentals of the HE rotamer, ν_{16} and ν_{18} , are clearly seen in the infrared spectrum of the solid at 1175 and 1025 cm⁻¹, respectively.

The Raman spectra also show clear evidence for the existence of more than one conformer in the flui phases. For example, the bands located at 599 and 366 cm⁻¹ in the Raman spectrum of the gas, which are assigned to modes of the ME and ClE conformers, respectively, are evident in the spectrum of the liquid but disappear in the spectrum of the crystalline solid. Similarly, the Raman bands at 508 and 348 cm⁻¹ in the spectra of the liquid are not present in the spectrum of the solid. The wavenumbers in both the infrared and Raman spectra of the annealed solid are consistent with the fundamentals of the HE conformer and, therefore, it is the only form stable in this phase.

The enthalpy differences, ΔH , among the HE, ME and CIE conformers of 3-chloro-1-butene in the vapor phase can be estimated from a variable-temperature study in liquifie xenon solutions. The sample was dissolved in liquifie xenon and the spectra (Fig. 7) were recorded at different temperatures varying from -55 to -100 °C. The intensities of the well separated infrared bands at 1174, 1153 and 1108 cm⁻¹ assigned (Table 1) to fundamentals of the HE, ME and ClE conformers, respectively, were measured as a function of the temperature and their ratios were determined (Table 8). By application of the van't Hoff equation, $-\ln K = (\Delta H/RT) - (\Delta S/R)$, where ΔS is the entropy change, we determined ΔH by making a plot of $-\ln K$ versus 1/T, where $\Delta H/R$ is the slope of the line and K is the appropriate intensity ratio. It is assumed that ΔH is not a function of temperature. Using a least-squares fi and the slope of the van't Hoff plots, ΔH values of 75 \pm 8 cm⁻¹ (214 \pm 23 cal mol⁻¹) between the HE and ME conformers and $197 \pm 37 \text{ cm}^{-1}$ $(563\pm106 \text{ cal mol}^{-1})$ between the HE and ClE conformers were obtained with the HE form being the most stable conformer.

VIBRATIONAL ASSIGNMENT

To aid in the vibrational assignment theoretical infrared (Fig. 5) and Raman (Fig. 8) spectra were calculated using fixe scaled wavenumbers and infrared intensities determined from the MP2/6-31G* calculation and Raman

Table 2. Structural parameters, dipole moment, total energies and rotational constants^a for 3-chloro-1-butene

		RHF/6-31G*			MP2/6-31G*			MP2/6-311++0	3*	EDb
	HE	ME	CIE	HE	ME	CIE	HE	ME	CIE	HE
r(C=C)	1.317	1.318	1.316	1.337	1.337	1.335	1.340	1.340	1.338	1.337 (6)
$r(C_2-C_3)$	1.499	1.504	1.506	1.492	1.497	1.500	1.492	1.498	1.501	1.503 (4)
$r(C_3-C_5)$	1.522	1.519	1.526	1.519	1.515	1.523	1.520	1.516	1.524	1.522 (5)
r(C-CI)	1.819	1.822	1.806	1.807	1.811	1.794	1.803	1.806	1.789	1.813 (4)
$r(C-H_6)$	1.079	1.081	1.081	1.093	1.094	1.095	1.092	1.093	1.094	1.089 (18)
$r(C-H_7)$	1.077	1.074	1.073	1.086	1.084	1.083	1.086	1.084	1.084	1.089 (18)
r(C—H ₈)	1.075	1.075	1.075	1.084	1.085	1.084	1.084	1.085	1.084	1.089 (18)
$r(C-H_9)$	1.077	1.077	1.080	1.089	1.088	1.090	1.089	1.088	1.090	1.089 (18)
$r(C-H_{10})$	1.083	1.082	1.083	1.092	1.091	1.092	1.092	1.091	1.092	1.089 (18)
$r(C-H_{11})$	1.086	1.085	1.086	1.094	1.094	1.094	1.094	1.094	1.095	1.089 (18)
$r(C-H_{12})$	1.084	1.083	1.083	1.093	1.092	1.092	1.093	1.092	1.093	1.089 (18)
<(C=CC)	123.8	126.1	128.7	123.3	125.4	127.7	123.3	125.3	127.5	122.9 (2.1)
<(CCC)	112.9	116.3	111.8	112.5	115.6	111.3	112.5	115.7	111.3	112.6 (2.2)
$<$ ($C_2C_3H_6$)	110.2	109.0	108.8	109.9	109.1	109.0	109.8	109.0	108.7	110.0 (1.3)
$<\!(C_5C_3H_6)$	110.5	109.8	109.5	110.5	109.9	109.5	110.6	110.1	109.5	110.0 (1.3)
$<$ (H_6C_3CI)	104.7	103.5	104.3	105.5	104.1	104.9	105.8	104.4	105.3	104.7
$<$ (C_2C_3CI)	109.2	108.3	112.9	109.2	108.2	112.8	108.8	107.8	112.9	109.9 (0.2)
$<\!(C_5C_3CI)$	108.9	109.2	109.2	109.1	109.3	109.2	109.1	109.2	109.0	109.3
<(C=CH ₇)	122.0	123.1	122.6	121.6	122.8	122.0	121.1	122.3	121.7	121.9
<(C=CH ₈)	121.4	120.6	120.4	121.6	120.7	120.6	121.3	120.4	120.2	121.9
<(C=CH ₉)	120.5	119.5	119.1	120.7	119.6	119.4	120.7	119.6	119.3	121.9
$<\!(C_3C_2H_9)$	115.7	114.5	112.2	116.0	115.0	113.0	116.0	115.0	113.2	115.2
$<\!(H_7C_1H_8)$	116.6	116.3	117.0	116.8	116.6	117.4	117.6	117.2	118.1	116.2
$<$ (CCH $_{10}$)	110.9	110.2	110.9	111.0	110.2	110.9	110.9	110.1	110.8	110.0 (1.3)
<(CCH ₁₁)	109.1	109.6	109.5	109.2	109.8	109.6	109.2	109.9	109.7	110.0 (1.3)
<(CCH ₁₂)	110.9	111.2	110.6	110.5	110.7	110.0	110.3	110.7	109.9	110.0 (1.3)
$<$ ($H_{10}CH_{11}$)	108.8	108.4	108.4	108.9	108.5	108.6	109.0	108.6	108.8	108.9
$<$ ($H_{10}CH_{12}$)	108.5	108.5	108.9	108.5	108.5	109.0	108.6	108.4	108.9	108.9
$<(H_{11}CH_{12})$	108.5	108.9	108.5	108.7	109.0	108.7	108.8	109.1	108.8	108.9
$\tau(CCCH_{10})$	178.9	179.7	183.3	179.1	179.4	182.7	178.9	179.0	182.7	180.0
$\tau(CC=CH_7)$	2.0	-1.3	-0.7	2.2	-0.9	-1.3	2.0	-0.8	-1.3	0.0
$\tau(CC=CH_8)$	180.9	178.4	182.6	181.3	178.5	181.4	180.9	178.2	181.4	180.0
$\tau(CC=CH_9)$	-178.7	181.0	180.4	178.5	180.7	181.0	178.7	180.7	181.1	180.0
$\tau(C=CCCI)$	-119.1	125.2	3.6	-119.1	124.8	3.9	-117.1	124.5	4.3	-119.4
$ \mu_{a} $	2.032	2.162	1.377	1.969	2.100	1.304	1.810	1.972	1.184	
$ \mu_{b} $	1.466	0.978	1.792	1.431	0.944	1.753	1.456	1.004	1.794	
$ \mu_{ extsf{c}} $	0.341	0.771	0.427	0.330	0.764	0.411	0.361	0.740	0.426	
$ \mu_{t} $	2.529	2.499	2.300	2.456	2.426	2.223	2.351	2.333	2.191	
Α	5725	6458	4823	5746	6518	4821	5692	6498	4835	5737
В	2751	2685	3477	2759	2694	3523	2787	2707	3522	2724
С	2024	2078	2200	2035	2094	2225	2044	2102	2230	2015
-(E+615)	0.009791	0.007846	0.007222	0.68411	0.682398	0.682046	0.930539	0.928735	0.928196	
$\Delta E/\mathrm{cm}^{-1}$	0	427	564	0	376	453	0	396	514	

^a Bond lengths in Å, bond angles in degrees, rotational constants in MHz, energies in Hartree and dipole moments in Debye.

scattering activities and depolarization values determined from the RHF/6-31G* basis set. Infrared intensities were calculated based on the dipole moment derivatives with respect to the Cartesian coordinates. The derivatives were taken from the *ab initio* calculations and transformed to normal coordinates by

$$\left(\frac{\partial \mu_u}{\partial Q_i}\right) = \sum_j \left(\frac{\partial \mu_u}{\partial X_j}\right) L_{ij}$$

where Q_i is the *i*th normal coordinate, X_j is the *j*th Cartesian displacement coordinate and L_{ij} is the transformation matrix between the Cartesian displacement coordinates and normal coordinates. The infrared intensities were then calculated by

$$I_{i} = \frac{N\pi}{3c^{2}} \left[\left(\frac{\partial \mu_{x}}{\partial Q_{i}} \right)^{2} + \left(\frac{\partial \mu_{y}}{\partial Q_{i}} \right)^{2} + \left(\frac{\partial \mu_{z}}{\partial Q_{i}} \right)^{2} \right]$$

Copyright © 2000 John Wiley & Sons, Ltd.

Table 3. Potential function coefficient for asymmetric torsion of 3-chloro-1-butene and barriers to interconversion from *ab initio* MP2/6-31*G** calculations

Parameter	Value	Parameter	Value
V_1/cm^{-1}	-207	V_1'/cm^{-1}	241
V_2/cm^{-1}	-94	V_2'/cm^{-1}	-225
$V_3/{\rm cm}^{-1}$	782	$V_{3'}/cm^{-1}$	-118
V_4/cm^{-1}	-56	$V_4'/{\rm cm}^{-1}$	13
$V_{5}/{\rm cm}^{-1}$	5	V_5 /cm ⁻¹	31
$V_6/{\rm cm}^{-1}$	-13		
$\Delta H/\text{cm}^{-1}$: ME/HE	376	$\Delta H/\text{cm}^{-1}$. CIE/HE	453
CIE/ME barrier/cm ⁻¹	627	Dihedral angle: HE/°	-119.1
ME/HE barrier/cm ⁻¹	668	Dihedral angle: ME/°	124.8
HE/CIE barrier/cm ⁻¹	1115	Dihedral angle: CIE/°	3.9

The predicted infrared spectra of the CIE, ME and HE conformers are shown in Fig. 5(C), (D) and (E), respectively, with the mixture of the two conformers shown in

^b Ref. 3.

Table 4. Symmetry coordinates for 3-chloro-1-butene

Description	Symmetry coordinate ^a
=CH ₂ antisymmetric stretch	$S_1 = r_2 - r_1$
=CH stretch	$S_2 = P$
CH ₃ antisymmetric stretch	$S_3 = 2r_3 - r_4 - r_5$
=CH ₂ symmetric stretch	$S_4 = r_2 + r_1$
CH ₃ antisymmetric stretch	$S_5 = r_4 - r_5$
CH stretch	$S_6 = T$
CH₃ symmetric stretch	$S_7 = r_3 + r_4 + r_5$
C=C stretch	$S_8 = Q$
CH₃ antisymmetric	
deformation	$S_9 = \theta_2 - \theta_3$
CH₃ antisymmetric	
deformation	$S_{10} = 2\theta_1 - \theta_2 - \theta_3$
=CH ₂ deformation	$S_{11}=2\alpha-\beta_1-\beta_2$
CH₃ symmetric	
deformation	$S_{12} = \theta_1 + \theta_2 + \theta_3 - \zeta_1 - \zeta_2 - \zeta_3$
CH bend	$S_{13}=\eta_1-\eta_2$
=C—H bend	$\mathcal{S}_{14} = \phi - \mu$
CH bend	$S_{15}=2\eta_3-\eta_1-\eta_2$
CCC antisymmetric stretch	$S_{16} = R - S$
CH₃ rock	$S_{17} = \zeta_2 - \zeta_3$
CH₃ rock	$S_{18} = 2\zeta_1 - \zeta_2 - \zeta_3$
=CH ₂ twist	$\mathcal{S}_{19} = au_1$
=CH ₂ rock	$S_{20} = \beta_2 - \beta_1$
=CH₂ wag	$S_{21} = \gamma$
CCC symmetric stretch	$S_{22}=R+S$
CCI stretch	$S_{23}=Y$
=CH bend	$S_{24} = \sigma$
C=C—C bend	$S_{25} = 2\pi - \phi - \mu$
CCC bend	$S_{26} = v_3$
CCI bend	$S_{27} = v_1 + v_2$
CCI bend	$S_{28} = \nu_1 - \nu_2$
CH ₃ torsion	$S_{29}= au_2$
Asymmetric torsion	$S_{30}= au_3$

Fig. 5(B) using the experimentally determined ΔH values from the liquifie xenon. The calculated spectrum is in reasonably good agreement with the mid-infrared spectrum of the sample dissolved in liquid xenon [Fig. 5(A)]. Only minor discrepancies are encountered between the observed and calculated spectra. These are primarily due to wavenumber inconsistencies such as the prediction of nearly coincident CH bending modes for the HE and ME conformers as opposed to the observed two separate bands for these fundamentals at 1233 and 1222 cm⁻¹.

a Not normalized.

The evaluation of the Raman activity by using the analytical gradient methods has been developed. ^{10,11} The activity S_i can be expressed as

$$S_j = g_j(45\alpha_j^2 + 7\beta_j^2)$$

where g_j is the degeneracy of the vibrational mode j, α_j is the derivative of the isotropic polarizability and β_j is that of the anisotropic polarizability. The Raman scattering cross-sections, $\partial \sigma_j/\partial \Omega$, which are proportional to the Raman intensities, can be calculated from the scattering activities and the predicted wavenumbers for each normal mode using the relationship^{12,13}

$$\frac{\partial \sigma_j}{\partial \Omega} = \left(\frac{2^4 \pi^4}{45}\right) \left(\frac{(\nu_0 - \nu_j)^4}{1 - \exp\left[\frac{-hc\nu_j}{kT}\right]}\right) \left(\frac{h}{8\pi^2 c\nu_j}\right) S_j$$

where v_0 is the exciting wavenumber, v_j is the vibrational wavenumber of the jth normal mode and S_j is the corresponding Raman scattering activity. To obtain the polarized Raman scattering cross-sections, the polarizabilities are incorporated into S_j by $S_j[(1-\rho_j)/(1+\rho_j)]$, where ρ_j is the depolarization ratio of the jth normal mode. The Raman scattering cross-sections and calculated f xed scaled wavenumbers are used together with a Lorentzian function to obtain the calculated spectra.

The resulting spectra are shown in Fig. 8(C), (D) and (E) for the pure ClE, ME and HE conformers, respectively, with the spectrum of the mixture shown in Fig. 8(B). For comparison, the Raman spectrum of the liquid is also shown in Fig. 8(A). The resemblance between the observed and calculated Raman spectra, however, is not as good as that of the corresponding infrared spectra. Various differences are readily seen with some of them due to poor wavenumber predictions as mentioned earlier. Others are due to poor Raman intensity predictions such as the very high intensity of the CCl bending fundamental at 283 cm⁻¹. It is not clear whether the intensities of the fundamentals at 592 and 508 cm⁻¹, which belong to the less stable ME and CIE conformers, are predicted too strong because of underestimated ΔH values or because of too high Raman activities predicted by the RHF/6-31G* basis set. Nevertheless, these spectra were useful for making the vibrational assignments for the individual conformers.

The vibrational assignment of the mid-infrared and Raman spectra of 3-chloro-1-butene has been proposed by Schei and Klaeboe.² Based on our normal coordinate calculations, we suggested the assignment of the fundamentals observed in the mid-infrared spectrum of the sample dissolved in liquid xenon as well (Table 1). We shall discuss here only the assignments that are at variance with the previous vibrational assignment.²

First, the band at 2880 cm⁻¹, which was previously² assigned to the CH₃ symmetric stretch, ν_7 , is now attributed to a combination band. Thus, four of the seven carbon-hydrogen stretching fundamentals, v_4-v_7 , are shifted to higher wavenumbers as v_7 is assigned to the very strong band at 2930 cm⁻¹ in the Raman spectrum of the liquid. Another discrepancy between the two studies arises from the assignment of the band at 1416 cm⁻¹ in the infrared spectrum of the gas. This band is probably part of a Fermi resonance doublet of the overtone of the CCl stretch with the =CH2 deformation. Alternatively, the previous authors² assigned the band to the =CH₂ deformation, ν_{11} , having the two CH₃ antisymmetric deformations assigned at 1452 and 1430 cm⁻¹ and the band at 1459 cm⁻¹ assigned to the high-energy conformers. The latter band, however, is still present in the Raman spectrum of the solid and, therefore, we assigned it to one of the CH₃ antisymmetric deformations of the stable conformer.

Some additional fundamentals of the high-energy conformers were observed in the spectra of the sample dissolved in liquid xenon. For example, the band at 1302 cm⁻¹ is assigned to the CH bend of the CIE conformer, whereas the bands at 1293 and 1288 cm⁻¹ are attributed to the =CH bends of the CIE and ME rotamers. In addition, the =CH₂ twists of the ME and CIE conformers are observed at 992 and 983 cm⁻¹, respectively, whereas the band at 669 cm⁻¹ is due to the CCl stretch of

Table 5. Comparison of observed and calculated wavenumbers ($\tilde{\nu}$) for HE 3-chloro-1-butene

	Vib.		Ab initioª	Fixed scaled ^b	IR	Raman	DP	Obs.e	
Species	No.	Fundamental	$\tilde{\nu}/cm^{-1}$	$\tilde{\nu}/cm^{-1}$	int.c	act.d	ratio	$\tilde{\nu}/cm^{-1}$	P.E.D.
Α	v_1	—CH ₂ antisymmetric stretch	3310	3141	9.1	75.4	0.61	3088	98 <i>S</i> ₁
	ν_2	=CH stretch	3224	3058	3.5	88.3	0.29	3017	67 <i>S</i> ₂ , 28 <i>S</i> ₄
	ν_3	CH₃ antisymmetric stretch	3216	3051	12.4	70.6	0.12	3011	$77S_3$, $17S_5$
	ν_4	=CH₂ symmetric stretch	3212	3048	5.7	30.5	0.13	2990	64 <i>S</i> ₄ , 31 <i>S</i> ₂
	v_5	CH ₃ antisymmetric stretch	3205	3040	11.6	85.3	0.74	2974	80 <i>S</i> ₅ , 18 <i>S</i> ₃
	ν_6	CH stretch	3156	2994	5.9	83.4	0.68	2967*	97 <i>S</i> ₆
	ν_7	CH ₃ symmetric stretch	3111	2952	10.4	107.8	0.02	2927	99 <i>S</i> ₇
	ν_8	C=C stretch	1731	1642	0.7	50.5	0.19	1645	67 <i>S</i> ₈ , 16 <i>S</i> ₁₁
	ν_9	CH₃ antisymmetric deformation	1557	1477	3.5	16.6	0.75	1452	74 <i>S</i> ₉ , 18 <i>S</i> ₁₀
	v_{10}	CH₃ antisymmetric deformation	1549	1469	7.1	16.2	0.73	1447	$72S_{10}$, $18S_{9}$
	v_{11}	=CH ₂ deformation	1503	1426	8.3	14.0	0.31	1424	73 <i>S</i> ₁₁
	v_{12}	CH ₃ symmetric deformation	1467	1392	7.3	1.9	0.72	1375	$96S_{12}$
	v_{13}	CH bend	1372	1302	2.0	17.8	0.56	1297	62 <i>S</i> ₁₃
	v_{14}	=C—H bend	1348	1279	4.7	15.1	0.41	1283	51 <i>S</i> ₁₄ , 17 <i>S</i> ₁₅ , 13 <i>S</i> ₈
	v_{15}	CH bend	1323	1255	23.9	6.3	0.73	1233	67 <i>S</i> ₁₅ , 11 <i>S</i> ₁₄
	ν ₁₆	CCC antisymmetric stretch	1239	1175	8.3	6.8	0.71	1174	20 S_{16} , 17 S_{18} , 13 S_{20} , 13 S_{22}
	ν_{17}	CH₃ rock	1154	1095	1.7	5.8	0.40	1090	$29S_{17}$, $36S_{16}$, $12S_{22}$
	ν_{18}	CH₃ rock	1085	1030	32.7	7.5	0.74	1025	37 <i>S</i> ₁₈ , 14 <i>S</i> ₁₇ , 13 <i>S</i> ₁₆
	ν_{19}	=CH ₂ twist	1033	981	19.3	0.5	0.74	988*	59 <i>S</i> ₁₉ , 35 <i>S</i> ₂₄
	v_{20}	=CH₂ rock	1011	960	3.6	1.1	0.75	966	$30S_{20}$, $26S_{17}$, $13S_{13}$
	v_{21}	=CH ₂ wag	948	899	36.0	2.4	0.71	931*	98 <i>S</i> ₂₁
	v_{22}	CCC symmetric stretch	911	864	8.4	7.6	0.72	864	47 <i>S</i> ₂₂ , 19 <i>S</i> ₁₈ , 19 <i>S</i> ₂₀
	v_{23}	CCI stretch	751	713	35.0	18.3	0.42	708	29 S_{23} , 18 S_{24} , 15 S_{27} , 13 S_{19}
	v_{24}	=CH bend	667	634	5.7	10.5	0.37	625	$24S_{24}$, $30S_{23}$, $19S_{19}$
	ν ₂₅	C=C—C bend	473	449	3.6	10.1	0.13	456	$22S_{25}$, $28S_{23}$, $15S_{26}$, $14S_{22}$, $12S_{27}$
	v ₂₆ ,	CCC bend	333	319	1.0	8.0	0.64	319*	46 S_{26} , 19 S_{29} , 15 S_{25} , 12 S_{28}
	v_{27}	CCI bend	313	298	1.0	2.5	0.69	305*	$43S_{27}$, $26S_{25}$, $22S_{28}$
	ν_{28}	CCI bend	294	281	2.4	7.1	0.71	283*	$40S_{28}$, $14S_{27}$, $13S_{26}$, $10S_{29}$
	v_{29}	CH₃ torsion	271	267	0.8	0.2	0.72	245*	$68S_{29}$, $12S_{28}$, $10S_{25}$
	ν_{30}	Asymmetric torsion	100	99	0.2	8.7	0.75	92*	$85S_{30}$

^a Calculated using the MP2/6-31G* basis set.

the CIE form. The above-cited bands have no analogues in the spectra of the crystalline solid.

The methyl torsional mode produces very weak bands at 246, 252 and 277 cm⁻¹ in the Raman spectra of the gas, liquid and solid, respectively, and also the pair of Q-branches at 247/245 cm⁻¹ in the far-infrared spectrum of the gas. Finally, the medium-intensity band observed at 99 cm⁻¹ in the Raman spectrum of the gas must result from the asymmetric torsional mode. This choice is consistent with the study of 3-methyl-1-butene. 14 The asymmetric torsion is also observed in the far-infrared

spectrum of the gas with a fundamental at 92 cm⁻¹ and possible fundamentals for the high-energy conformers at 96 and 90 cm⁻¹.

DISCUSSION

The present study of 3-chloro-1-butene is consistent with the previous vibrational² and electron diffraction³ studies in the conclusion that the most stable conformer of the

^b Scaled *ab initio* calculations with factors of 0.9 for stretches and bends and 1.0 for torisions. ^c Calculated intensities in km mol⁻¹ using the MP2/6–31G* basis set. ^d Calculated Raman activities in Å⁴ u⁻¹ using the RHF/3–21G* basis set.

e Wavenumbers are taken from the infrared spectrum of the sample dissolved in liquid xenon, except those labeled with an asterisk, which are taken from the infrared spectrum of the gas or the Raman spectrum of the gas and liquid.

Table 6. Comparison of observed and calculated wavenumbers (\tilde{v}) for ME 3-chloro-1-butene

			Ab	Fixed		_			
Species	Vib. No.	Fundamental	<i>initio</i> a ν̄/cm ⁻¹	scaled ^b ν̄/cm ⁻¹	IR int.°	Raman act. ^d	DP ratio	Obs.e ν̃/cm ⁻¹	P.E.D.
•				,					
Α	ν_1	=CH ₂ antisymmetric	3319	3148	8.2	61.3	0.68	3088	99 <i>S</i> ₁
		stretch =CH stretch	3221	3056	5.1	136.1	0.18		EEC 10C
	ν_2	CH ₃ antisymmetric	3221	3059	9.9	40.5	0.10		$55S_2$, $40S_4$ $70S_3$, $24S_5$
	ν_3	stretch							
	ν_4	=CH ₂ symmetric stretch	3234	3068	4.1	45.2	0.50	3075	59 <i>S</i> ₄ , 40 <i>S</i> ₂
	ν_5	CH ₃ antisymmetric stretch	3210	3045	10.7	52.3	0.73		73 <i>S</i> ₅, 26 <i>S</i> ₃
	ν_6	CH stretch	3143	2982	8.8	122.3	0.43		99 <i>S</i> ₆
	ν_7	CH₃ symmetric stretch	3118	2958	8.3	94.7	0.04	2927	99 <i>S</i> ₇
	ν_8	C=C stretch	1731	1642	1.2	41.8	0.20	1645	67 <i>S</i> ₈ , 16 <i>S</i> ₁₁
	ν_9	CH₃ antisymmetric deformation	1555	1475	7.1	7.9	0.65	1452	58 <i>S</i> ₉ , 33 <i>S</i> ₁₀
	v_{10}	CH₃ antisymmetric deformation	1561	1481	3.7	14.9	0.70		55 <i>S</i> ₁₀ , 36 <i>S</i> ₉
	ν_{11}	=CH ₂ deformation	1496	1420	9.7	20.0	0.51		68 <i>S</i> ₁₁
	v_{12}	CH₃ symmetric deformation	1467	1392	8.8	5.8	0.55	1375	82 <i>S</i> ₁₂
	ν ₁₃	CH bend	1413	1340	1.8	3.6	0.60	1335	$60S_{13}$, $12S_{16}$
	ν ₁₄	=C—H bend	1360	1290	0.8	15.3	0.34	1288	$60S_{14}$, $15S_8$, $11S_{20}$
	v_{15}	CH bend	1324	1257	34.1	22.8	0.60	1222	87 <i>S</i> ₁₅
	v_{16}	CCC antisymmetric stretch	1216	1154	3.8	1.9	0.66	1153	35 <i>S</i> ₁₆ , 14 <i>S</i> ₂₀ , 13 <i>S</i> ₁₇
	v_{17}	CH₃ rock	1074	1019	7.8	3.6	0.75	1025	$39S_{17}$, $13S_{13}$, $11S_{20}$
	ν_{18}	CH₃ rock	1133	1075	13.8	3.3	0.58	1075	50 <i>S</i> ₁₈
	v_{19}	=CH ₂ twist	1047	994	13.6	1.3	0.47	992	$60S_{19}$, $33S_{24}$
	ν_{20}	=CH ₂ rock	1029	976	12.0	1.7	0.75	976	$33S_{20}$, $21S_{16}$, $15S_{22}$, $10S_{17}$
	v_{21}	=CH ₂ wag	945	896	34.9	5.2	0.73	924	99 <i>S</i> ₂₁
	v_{22}	CCC symmetric stretch	899	853	7.9	7.3	0.70	853	57 S_{22} , 16 S_{18} , 10 S_{20}
	ν_{23}	CCI stretch	629	597	8.8	19.8	0.51	595	$39S_{23}$, $12S_{24}$, $11S_{25}$, $10S_{19}$, $10S_{22}$
	v_{24}	=CH bend	760	721	28.9	14.2	0.23	716	$24S_{24}$, $25S_{25}$, $18S_{27}$, $18S_{19}$, $10S_{17}$
	v_{25}	C=C—C bend	526	499	0.8	7.7	0.36	507	$31S_{25}$, $22S_{26}$, $12S_{23}$
	ν_{26}	CCC bend	283	269	2.2	4.5	0.35	245*	$27S_{26}$, $33S_{28}$, $22S_{25}$
	ν_{27}	CCI bend	354	337	2.7	3.5	0.61	344*	$55S_{27}$, $12S_{23}$, $12S_{28}$
	ν_{28}	CCI bend	306	300	0.4	1.0	0.75	301*	$29S_{28}$, $46S_{29}$, $13S_{26}$
	v_{29}	CH₃ torsion	333	322	0.6	2.3	0.75	319*	$46S_{29}$, $16S_{26}$, $14S_{28}$, $13S_{25}$
	v_{30}	Asymmetric torsion	104	104	0.3	7.3	0.75	96*	88 <i>S</i> ₃₀

^a Calculated using the MP2/6-31G* basis set.

molecule is the HE form. However, it differs from these earlier studies in the stability of the other two conformers. It is clearly shown by both the *ab initio* calculations and the measurements in liquid xenon that the ME conformer is the second most stable form, which is at variance with the electron diffraction result,³ where it was concluded that the CIE form is the second most stable rotamer. In addition, definit evidence was found in the vibrational spectrum for the existence of the third conformer (CIE), which was not the conclusion in the previous vibrational investigation.²

The enthalpy differences, ΔH , obtained from the variable-temperature study in liquid xenon are consistent with the stability order of the conformers obtained from the *ab initio* calculations. However, in all cases (Table 2) the energy differences are much too high compared with the experimental values of 75 ± 8 and 197 ± 37 cm⁻¹ and do not seem to improve upon increasing the size of the basis set. However, it is expected that these enthalpy values from the xenon solution should not differ significant from those of the gas since the dipole moments and molecular sizes of the three conformers are very similar. ¹⁵⁻¹⁹

^b Scaled *ab initio* calculations with factors of 0.9 for stretches and bends and 1.0 for torsions.

^c Calculated intensities in km mol⁻¹ using the MP2/6–31G* basis set.

d Calculated Raman activities in Å⁴ u⁻¹ using the RHF/3–21G* basis set.

^e Wavenumbers are taken from the infrared spectrum of the sample dissolved in liquid xenon, except those labeled with an asterisk, which are taken from the infrared spectrum of the gas or the Raman spectrum of the gas and liquid.

Table 7. Comparison of observed and calculated wavenumbers (v) for CIE 3-chloro-1-butene

			Ab	Fixed					
	Vib.		<i>initio</i> ^a	scaled ^b	IR	Raman	DP	Obs.e	
Species	No.	Fundamental	$\tilde{\nu}/cm^{-1}$	$\tilde{\nu}/cm^{-1}$	int.c	act.d	ratio	$\tilde{\nu}/cm^{-1}$	P.E.D.
Α	ν_1	=CH ₂ antisymmetric	3327	3157	4.8	47.8	0.73	3092	99 <i>S</i> ₁
		stretch							
	ν_2	=CH stretch	3198	3034	3.3	132.4	0.14		85 <i>S</i> ₂
	ν_3	CH₃ antisymmetric stretch	3223	3057	11.8	73.0	0.43		$69S_3$, $30S_5$
	v_4	=CH ₂ symmetric stretch	3233	3068	3.9	59.3	0.64	3075	94 <i>S</i> ₄
	v_5	CH ₃ antisymmetric stretch	3204	3040	17.9	49.6	0.75		61 <i>S</i> ₅ , 28 <i>S</i> ₃ , 10 <i>S</i> ₂
	ν_6	CH stretch	3136	2975	9.2	132.9	0.41		99 <i>S</i> ₆
	v_7	CH ₃ symmetric	3112	2953	12.7	103.2	0.03	2927	98 <i>S</i> ₇
		stretch	1727	1640	2.0	22.2	0.20	1645	606 146
	ν ₈	C=C stretch	1737 1558	1648 1478	3.9 4.6	32.2 13.9	0.20 0.74	1645 1452	69 <i>S</i> ₈ , 14 <i>S</i> ₁₁
	ν_9	CH ₃ antisymmetric deformation							$78S_9$, $15S_{10}$
	v_{10}	CH ₃ antisymmetric deformation	1550	1470	4.8	19.1	0.74	1447	$76S_{10}$, $15S_{9}$
	v_{11}	=CH ₂ deformation	1490	1413	6.1	11.2	0.44		79 <i>S</i> ₁₁
	v_{12}	CH₃ symmetric deformation	1467	1391	7.2	2.5	0.66	1375	96 <i>S</i> ₁₂
	ν ₁₃	CH bend	1375	1305	3.1	3.8	0.73	1302	71 <i>S</i> ₁₃
	ν ₁₄	=C—H bend	1363	1293	17.1	16.7	0.36	1297	40 <i>S</i> ₁₄ , 39 <i>S</i> ₁₅
	ν ₁₅	CH bend	1340	1272	9.4	11.8	0.71	1253	$41S_{15}$, $28S_{14}$,
	13								10 <i>S</i> ₂₀
	v_{16}	CCC antisymmetric stretch	1145	1086	4.0	1.9	0.75	1082*	25 <i>S</i> ₁₆ , 22 <i>S</i> ₁₇ , 19 <i>S</i> ₂₂
	v_{17}	CH ₃ rock	1025	972	12.8	6.8	0.43	976	23 <i>S</i> ₁₇ , 24 <i>S</i> ₁₆ , 23 <i>S</i> ₁₉
	v_{18}	CH₃ rock	1167	1107	10.1	2.6	0.62	1108	22 <i>S</i> ₁₈ , 13 <i>S</i> ₁₅ , 12 <i>S</i> ₁₆ , 10 <i>S</i> ₁₇
	v_{19}	=CH ₂ twist	1032	980	16.2	1.8	0.75	985*	$42S_{19}, 23S_{24},$ $13S_{17}$
	ν_{20}	=CH ₂ rock	1087	1032	5.2	1.1	0.75	1025	$42S_{20}$, $24S_{18}$
	ν ₂₁	=CH ₂ wag	944	896	34.0	4.7	0.75	924	$98S_{21}$
	ν ₂₁	CCC symmetric	908	862	8.8	8.6	0.65	864	$39S_{22}$, $19S_{18}$,
	* 22	stretch		002	0.0	0.0	0.00		$17S_{20}$, $11S_{23}$
	ν_{23}	CCI stretch	736	698	11.6	9.7	0.53	699	$28S_{23}$, $16S_{24}$, $16S_{27}$, $10S_{19}$,
	v_{24}	=CH bend	657	623	13.3	15.0	0.23	625	$10S_{17}$ $26S_{24}, 23S_{23},$
	.,	C=C—C bend	526	499	2.0	6.3	0.60	507	$19S_{22}$, $16S_{19}$ $44S_{25}$, $27S_{23}$
	ν_{25}				2.9				$44S_{25}, 27S_{23}$ $35S_{26}, 20S_{27},$
	v_{26}	CCC bend	378	359	8.0	2.8	0.48	366*	$35S_{26}, 20S_{27},$ $13S_{28}$
	ν_{27}	CCI bend	258	246	0.6	1.9	0.74		$23S_{27}, 37S_{28},$
		COLL	000	001	0.0	0.4	0.70		$32S_{25}$
	v_{28}	CCI bend	339	324	0.8	0.4	0.72		$32S_{28}, 27S_{26}, 15S_{27}, 13S_{29}$
	ν_{29}	CH₃ torsion	278	276	0.2	2.5	0.63		$83S_{29}$
	ν_{30}	Asymmetric	96	96	0.3	7.3	0.75	90*	$90S_{30}$
		torsion							

 ^a Calculated using the MP2/6-31 G* basis set.
 ^b Scaled *ab initio* calculations with factors of 0.9 for stretches and bends and 1.0 for torsions.
 ^c Calculated intensities in km mol⁻¹ using the MP2/6-31 G* basis set.
 ^d Calculated Raman activities in Å⁴ u⁻¹ using the RHF/3-21 G* basis set.
 ^e Wavenumbers are taken from the infrared spectrum of the sample dissolved in liquid xenon, except those labeled with an asterisk, which are taken from the infrared spectrum of the gas or the Raman spectrum of the gas and liquid.

Figure 7. Temperature-dependent infrared spectrum (1190– $1100~{\rm cm^{-1}}$) of 3-chloro-1-butene.

Table 8. Temperature and intensity ratios for the conformational study of 3-chloro-1-butene in liquid xenon

T/°C	T/K	1000/ T/K ⁻¹	I _{1153(ME)} / I _{1174(HE)}	−Ln <i>K</i>	I _{1108(CIE)} / I _{1174(HE)}	-Ln <i>K</i>
-55	218	4.587	0.147	1.914	0.209	1.565
-60	213	4.695	0.147	1.918		_
-65	208	4.808			0.166	1.795
-70	203	4.926	0.145	1.934	0.181	1.707
-75	198	5.051	0.140	1.964	0.161	1.827
-80	193	5.181	0.138	1.982	_	_
-85	188	5.319	0.135	2.004	0.162	1.820
-90	183	5.464	0.134	2.010	0.146	1.924
-95	178	5.618	0.130	2.039	0.146	1.923
-100	173	5.780	0.132	2.023	0.141	1.959
$\Delta H/\mathrm{cm}^{-1}$				75 ± 8		197 ± 37

From the calculated potential function of the asymmetric rotor (Fig. 6), it is clear that although the energies of the conformers are different, the heights of the barriers to rotation are almost the same at about 1100 cm⁻¹. It was not possible to derive a potential function based on the experimental data since the three far-infrared transitions observed in the spectrum of the gas do not provide enough information to obtain a reasonable fi for the potential coefficients. In addition, two of the three far-infrared bands may simply be due to 'hot' transitions of one of the conformers rather than fundamentals.

In the far-infrared spectra of gaseous 3-chloro-1-butene two transitions were observed in the region expected for the methyl torsion. The *ab initio* calculations predict the methyl torsions for the HE and ME forms to be at 267 and 322 cm⁻¹, respectively, with similar predicted intensities. Therefore, the bands observed at 245 and 319 cm⁻¹ were assigned to the methyl torsional fundamental of

Figure 8. Raman spectra of 3-chloro-1-butene: (A) spectrum of the liquid; (B) calculated spectrum of the mixture of all three conformers; (C) calculated spectrum of the CIE conformer; (D) calculated spectrum of the ME conformer; (E) calculated spectrum of the HE conformer.

the HE and ME conformers, respectively. Utilizing the r_0 adjusted parameters, the values for the kinetic energy constants $F = h^2/8\pi^2 I_r$ (I_r is the reduced moment of inertia) were obtained for the HE ($F = 5.3982 \text{ cm}^{-1}$) and ME ($F = 5.4030 \text{ cm}^{-1}$) conformers. With these torsional wavenumbers and F values, the barriers to internal rotation of the methyl group were calculated and found to be 1389 and 2262 cm⁻¹ for the HE and ME rotamers, respectively. These values are about 7–74% higher than corresponding barriers for 1-chloroethane.²⁰ It is obvious that the allyl group, which is a bulky electron-rich group, increases the value of the methyl barrier for the HE conformer. However, for the ME conformer, for which a much higher methyl barrier was calculated, it is probable that this result is due to the extensive mixing of the methyl torsion with other modes.

The structural parameters obtained from the MP2/6-31G* calculation are not significantl different from those obtained from the MP2/6-311++G** calculation. At the MP2/6-31G* level, the C=CC bond angles of the ME and CIE conformers are 2.1 and 4.4° larger, respectively, than that of the HE conformer. This could be explained with the increasingly stronger steric interaction between the =CH₂ fragment and the H, CH₃ and Cl substituents. The bond, which eclipses the double bond

in any particular conformation, is shorter than the same bond in the other two conformations. This is coupled with the opening of the C_2C_3H (by $\sim 1^\circ$), CCC (by $\sim 4^\circ$) and CCCl (by ~4°) angles for the HE, ME and CIE conformers, respectively. A comparison of the structural parameters of 3-chloro-1-butene and those of 3-methyl-1-butene¹⁴ obtained with the MP2/6-31G* basis set shown a great deal of similarity between the HE conformers of the two molecules with the exception of the parameters associated with the substitutuent. The bond distances are within 0.01 Å and the angles within 2°. The electron diffraction (ED) geometric parameters listed in Table 2 were determined³ only for the predominant HE conformer, and they are in excellent agreement with our results from the MP2 level of calculations. This suggests that for the other two less stable conformers the geometry should also be predicted reasonably well at the MP2 level of the ab initio

The force constants for the HE conformer of 3-chloro-1-butene as compared with those for the ME and CIE conformers are fairly similar, except for three. The force constant for the CCC bend of the ME conformer is 0.909 mdyn Å^{-1} and is 32% larger than that of the HE

conformer (0.687 mdyn Å $^{-1}$). The force constants for the CCl stretch and C=CC bend of the CIE conformer are 3.116 and 1.104 mdyn Å $^{-1}$ and are 57% (2.947 mdyn Å $^{-1}$) and 43% (0.770 mdyn Å $^{-1}$) larger than those of the HE conformer. These differences provide an explanation why several of the normal modes for the different conformers have significantled different wavenumbers.

It would be of interest to have the electron diffraction data reinterpreted using the ME conformer as the second most abundant form in the vapor state and the predicted difference of the heavy atom parameters for the three rotamers. The current conformational data indicate that there is approximately 48% HE form, 33% ME form and 19% CIE form in the gas phase at ambient temperature. Using these approximate percentages along with holding the structural parameter differences to the values obtained from the *ab initio* calculations for the three rotamers should enhance significantly the electron diffraction analysis.

Acknowledgment

J.R.D. acknowledges partial support of these studies by the University of Missouri-Kansas City Faculty Research Grant program.

REFERENCES

- 1. Som JN, Kastha GS. Indian J. Phys. B 1977; 51: 77.
- 2. Schei SH, Klaeboe P. Acta Chem. Scand., Sev. A 1983; 37: 315
- 3. Schei SH. J. Mol. Struct. 1984; 118: 319.
- 4. Stavnebrekk PJ, Stølevik R. J. Mol. Struct. 1987; 159: 153.
- Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA. Gaussian 94 (Revision B. 3). Gaussian: Pittsburgh, PA, 1995
- 6. Pulay P. Mol. Phys. 1969; 17: 197.
- 7. Möller C, Plesset MS. Phys. Rev. 1934; 46: 618.
- Wilson EB, Decius JC, Cross PC. Molecular Vibrations. McGraw-Hill: New York, NY, 1955; republished by Dover, New York, 1980.

- Schachtschneider JH. Vibrational Analysis of Polyatomic Molecules, Parts V and VI. Technical Report Nos 231 and 57, Shell Development, Houston, TX, 1964 and 1965.
- 10. Amos RD. Chem. Phys. Lett. 1986; 124: 376.
- 11. Polavarapu PL. J. Phys. Chem. 1990; 94: 8106.
- Chantry GW. In *The Raman Effect*, vol. 1. Anderson A (ed). Marcel Dekker: New York, 1971; Chapt. 2.
- 13. Zaripov NM. Zh. Strukt. Khim. 1982; 23: 142.
- Durig JR, Tang Q, Little TS. J. Raman Spectrosc. 1993; 24: 555.
- Herrebout WA, van der Veken BJ. J. Phys. Chem. 1996; 100: 9671.
- 16. Herrebout WA, van der Veken BJ, Wang A, Durig JR. *J. Phys. Chem.* 1995; **99**: 578.
- 17. Bulanin MO. *J. Mol. Struct.* 1995; **347**: 73.
- van der Veken BJ, DeMunck FR. J. Chem. Phys. 1992; 97: 3060.
- 19. Bulanin MO. *J. Mol. Struct.* 1973; **19**: 59.
- Durig JR, Bucy WE, Carreira LA, Wurrey CJ. J. Chem. Phys. 1974; 60: 1754.