Heating of planetesimals from 60Fe & 26Al

Hunting the source of short-lived radioisotopes and simulating desiccation in planetesimals

Dr. Joseph Eatson - University of Sheffield Supervisor: Dr. Richard Parker - University of Sheffield

Contents & questions

What are SLRs?

How do they end up in protoplanetary disks?

How do they affect planet formation?

What causes SLR enrichment?

How do disks survive this enrichment?

What are SLRs?

Short-lived radioisotopes

- Half-lives on the order of 1 Myr.
- 26Al and 60Fe primarily discussed.
- Primary heating source in the early solar system [1].
- Homogenous throughout solar system.
- Wolf-Rayet (WR) winds and supernovae are sources of SLRs.

Planetesimal desiccation

- Heating = vaporisation and outgassing [1].
- Desiccation & formation of water-poor planets.
- Heating source for stratification.

Planetesimal heating by SLRs

Motivations

How much does the SLR 60Fe influence heating and desiccation?

How much 60Fe needed to get desiccation?

Melting rocks

Eatson, Parker, Lichtenberg & Gerya 2024

- Simulations using I2ELVIS [1].
- Parameter space explored varying enrichment and Fe content.
- Measuring water retention fraction.

Drying out rocks

Eatson, Parker, Lichtenberg & Gerya 2024

- 60Fe ~200x solar for any desiccation!
- 1/10th solar needed for ²⁶Al equivalent [1].
- ²⁶Al a far more effective SLR for heating & desiccation.

SLR enrichment of disks

More motivations

How common are highly enriched ²⁶Al and ⁶⁰Fe disks?

How dependent is enrichment on star forming region density?

Are disks enriched through SNe or early-type stellar winds?

Is there another pre-formation mechanism?

Enriching disks

Eatson, Parker & Lichtenberg 2024

- AMUSE [1] library used to combined N-body and stellar evolution codes.
- Enrichment dependent on cluster density.
- ²⁶Al enrichment above solar system levels somewhat common.
- 60 Fe enrichment is less pronounced.

The hitch with winds and SNe

- 60Fe not produced by WR winds [1].
- Less available disks when supernovae occur ("islands of explodability").
- Photoevaporation and shocks [2].
- Other enrichment methods?

X-axis: time
Y-axis left/blue: Remaining disks
Y-axis right/orange: Remaining high-mass stars

Interlopers?

- AGB star observed to pass through cluster [1].
- AGBIs inject ²⁶Al and ⁶⁰Fe.
- Gentler winds, less UV flux.

AGBI sensitivity to...

Interloper evolution?

Encounter velocity?

Interlopers!

Eatson & Parker In prep. QR code for poster!

- ~30% of disks well enriched in best case.
- "Near misses" still enrich.
- Good 60Fe enrichment too!
- Faster AGBIs still enrich.

Interlopers!

Eatson & Parker In prep. QR code for poster!

- ~30% of disks well enriched in best case.
- "Near misses" still enrich.
- Good 60Fe enrichment too!
- Faster AGBIs still enrich.
- High enrichment even at 30 km/s.

Probably gone on too long

Wrap it up!

Conclusions

- Decay heat from SLRs in disks causes desiccation of planetesimals.
- Decay heating mainly through ²⁶Al, sims show ⁶⁰Fe needs high enrichment. ⁶⁰Fe a useful tracer for formation mechanism.
- *N*-body sims show that massive star ⁶⁰Fe enrichment is not sufficient for this level of enrichment.
- Enrichment through AGB interlopers provides an alternate, gentler route to disk enrichment for ²⁶Al and ⁶⁰Fe.

Questions?

