## Allele Frequency Estimation

#### Example: ABO blood types

 $\circ$  ABO genetic locus exhibits three alleles: A, B, and O

 $\circ$  Four phenotypes: A, B, AB, and O

| Genotype  | A/A | A/O | A/B | B/B | B/O | O/O |
|-----------|-----|-----|-----|-----|-----|-----|
| Phenotype | A   | A   | AB  | B   | B   | 0   |

 $\circ$  Data: Observed counts of four phenotypes A, B, AB, and O

| $n_A$ | $n_B$ | $n_{AB}$ | $n_O$ | n   |
|-------|-------|----------|-------|-----|
| 186   | 38    | 13       | 284   | 521 |

o Aim: Estimate frequencies  $p_A$ ,  $p_B$ , and  $p_O$  of alleles A, B, and O

#### Modelling:

- $\circ$  Observed data:  $N_A,\,N_B,\,N_{AB},\,N_O$
- $\circ\,$  Complete data:  $N_{AA},\,N_{AO},\,N_{BB},\,N_{BO},\,N_{AB},\,N_{O}$
- o According to the Hardy-Weinberg law, the genotype frequencies are

| Genotype  | A/A     | A/O       | A/B       | B/B     | B/O       | O/O     |
|-----------|---------|-----------|-----------|---------|-----------|---------|
| Frequency | $p_A^2$ | $2p_Ap_O$ | $2p_Ap_B$ | $p_B^2$ | $2p_Bp_O$ | $p_O^2$ |

 $\circ$  Genotype counts  $N=(N_{AA},N_{AO},N_{AB},N_{BB},N_{BO},N_O)$  are jointly multinomially distributed.

EM Algorithm II, Apr 8, 2004 - 1 -

## Allele Frequency Estimation

o *M-step:* Maximize  $Q(p|p^{(k)})$  under the restriction  $p_A+p_B+p_O=1$ . Introduce Lagrange multiplier (Rice, p. 259) and maximize

$$Q_L(p, \lambda | p^{(k)}) = Q(p|p^{(k)}) + \lambda(p_A + p_B + p_O - 1)$$

with respect to p and  $\lambda$ .

$$\begin{split} \frac{\partial Q_L(p,\lambda|p^{(k)})}{\partial p_A} &= \frac{2N_{AA}^{(k)}}{p_A} + \frac{N_{AO}^{(k)}}{p_A} + \frac{N_{AB}}{p_A} + \lambda \\ \frac{\partial Q_L(p,\lambda|p^{(k)})}{\partial p_B} &= \frac{2N_{BB}^{(k)}}{p_B} + \frac{N_{BO}^{(k)}}{p_B} + \frac{N_{AB}}{p_B} + \lambda \\ \frac{\partial Q_L(p,\lambda|p^{(k)})}{\partial p_O} &= \frac{N_{AO}^{(k)}}{p_O} + \frac{N_{BO}^{(k)}}{p_O} + \frac{2N_O}{p_O} + \lambda \\ \frac{\partial Q_L(p,\lambda|p^{(k)})}{\partial \lambda} &= p_A + p_B + p_O - 1 \end{split}$$

Taking the sum of the three equations, we get (using  $p_A+p_B+p_O=1)$ 

$$\lambda = -2r$$

which yields for the first three equations the solutions

$$\begin{split} p_A^{(k+1)} &= \frac{2N_{AA}^{(k)} + N_{AO}^{(k)} + N_{AB}}{2n} \\ p_B^{(k+1)} &= \frac{2N_{BB}^{(k)} + N_{BO}^{(k)} + N_{AB}}{2n} \\ p_O^{(k+1)} &= \frac{N_{AO}^{(k)} + N_{BO}^{(k)} + 2N_O}{2n} \end{split}$$

#### Allele Frequency Estimation

Complete-data log-likelihood function

$$\begin{split} l_n(p|N) &= N_{AA} \log(p_A^2) + N_{BB} \log(p_B^2) + N_O \log(p_O^2) \\ &+ N_{AB} \log(2p_A p_B) + N_{AO} \log(2p_A p_O) + N_{BO} \log(2p_B p_O) \\ &+ \log\left(\frac{n!}{N_{AA}! \; N_{AO}! \; N_{AB}! \; N_{BB}! \; N_{BO}! \; N_O!}\right) \end{split}$$

## Application of EM algorithm

- $\circ$  Let  $N_{\text{obs}} = (N_A, N_B, N_{AB}, N_O)$ .
- **E-step:** Since  $N_{AA} + N_{AO} = N_A$  we have

$$N_{AA}|N_A \sim \mathrm{Bin}\bigg(N_A, \frac{p_A^2}{p_A^2 + 2p_A p_O}\bigg)$$

which yields the expectations

$$\begin{split} N_{AA}^{(k)} &= \mathbb{E}(N_{AA}|N_{\text{obs}}, p^{(k)}) = N_A \cdot \frac{{p_A^{(k)}}^2}{{p_A^{(k)}}^2 + 2{p_A^{(k)}}{p_O^{(k)}}} \\ N_{AO}^{(k)} &= \mathbb{E}(N_{AO}|N_{\text{obs}}, p^{(k)}) = N_A \cdot \frac{2{p_A^{(k)}}{p_A^{(k)}}^2}{{p_A^{(k)}}^2 + 2{p_A^{(k)}}{p_O^{(k)}}} \end{split}$$

and similarly

$$\begin{split} N_{BB}^{(k)} &= \mathbb{E}(N_{BB}|N_{\text{obs}}, p^{(k)}) = N_B \cdot \frac{{p_B^{(k)}}^2}{{p_B^{(k)}}^2 + 2{p_B^{(k)}}{p_O^{(k)}}} \\ N_{BO}^{(k)} &= \mathbb{E}(N_{BO}|N_{\text{obs}}, p^{(k)}) = N_B \cdot \frac{2{p_B^{(k)}}^2{p_O^{(k)}}}{{p_B^{(k)}}^2 + 2{p_B^{(k)}}{p_O^{(k)}}} \end{split}$$

while obviously

$$\mathbb{E}(N_{AB}|N_{\text{obs}}, p^{(k)}) = N_{AB}$$
 and  $\mathbb{E}(N_O|N_{\text{obs}}, p^{(k)}) = N_O$ 

EM Algorithm II, Apr 8, 2004 - 2 -

## Allele Frequency Estimation

Starting values:

$$p_A = p_B = p_O = \frac{1}{3}$$

Iterations:

| $\boldsymbol{k}$ | $p_A$  | $p_B$  | $p_O$  |  |
|------------------|--------|--------|--------|--|
| 1                | 0.2505 | 0.0611 | 0.6884 |  |
| 2                | 0.2185 | 0.0505 | 0.7311 |  |
| 3                | 0.2142 | 0.0502 | 0.7357 |  |
| 4                | 0.2137 | 0.0501 | 0.7362 |  |
| 5                | 0.2136 | 0.0501 | 0.7363 |  |
| 6                | 0.2136 | 0.0501 | 0.7363 |  |

Starting values:

$$p_A = p_O = 0.01, p_B = 0.98$$

Iterations:

| $\boldsymbol{k}$ | $p_A$  | $p_B$  | $p_O$  |
|------------------|--------|--------|--------|
| 1                | 0.2505 | 0.0847 | 0.6648 |
| 2                | 0.2193 | 0.0511 | 0.7296 |
| 3                | 0.2143 | 0.0502 | 0.7355 |
| 4                | 0.2137 | 0.0501 | 0.7362 |
| 5                | 0.2136 | 0.0501 | 0.7363 |
| 6                | 0.2136 | 0.0501 | 0.7363 |

*Note:* Results do not change for different starting values.

Implementation in R

```
#EM iteration
# Arguments:
# N=(Na,Nb,Nab,No)
# p=(pa,pb,po)
emstep<-function(N,p) {
  #E-step
  Naa<-N[1]*p[1]^2/(p[1]^2+2*p[1]*p[3])
  Nbb<-N[2]*p[2]^2/(p[2]^2+2*p[2]*p[3])
  \label{eq:Nbo} \verb|Nbo<-N[2]*2*p[2]*p[3]/(p[2]^2+2*p[2]*p[3])|
 #M-step
n<-sum(N)
  p[1]=(2*Naa+Nao+N[3])/(2*n)
  p[2]=(2*Nbb+Nbo+N[3])/(2*n)
  p[3]=(2*Nao+Nbo+N[4])/(2*n)
#Data
N<-c(186,38,13,284)
#Starting value
p<-c(1,1,1)/3
#First iteration
p<-emstep(N,p)
#Second iteration
p<-emstep(N,p)
#Repeat until convergence
```

#### Mixtures

#### Example: Old Faithful

Data: 272 waiting times between eruptions for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA



Model: Mixture of two Gaussian populations (short/long waiting times):

$$f_Y(y|\theta) = p \frac{1}{\sigma_1} \varphi\left(\frac{x - \mu_1}{\sigma_1}\right) + (1 - p) \frac{1}{\sigma_2} \varphi\left(\frac{x - \mu_2}{\sigma_2}\right)$$

Parameters:  $\theta = (p, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)^\mathsf{T}$ 

Idea: If we knew the group which each observation belongs to, we could simply fit a normal distribution to each group.

 $Missing\ data:$  Group indicator

$$Z_i = \left\{ \begin{array}{ll} 1 & Y_i \text{ belongs to group of long waiting times} \\ 0 & Y_i \text{ belongs to group of short waiting times} \end{array} \right.$$

 $Z_i$  is Bernoulli distributed with parameter  $p \colon Z_i \stackrel{\mathrm{iid}}{\sim} \mathrm{Bin}(1,p)$ 

 $Complete ext{-}data\ likelihood:$ 

$$L_n(\theta|Y,Z) = \prod_{i=1}^n p^{Z_i} (1-p)^{1-Z_i} \cdot \frac{1}{\sigma_1^{Z_i}} \varphi\Big(\frac{Y_i - \mu_1}{\sigma_1}\Big)^{Z_i} \frac{1}{\sigma_2^{1-Z_i}} \varphi\Big(\frac{Y_i - \mu_2}{\sigma_2}\Big)^{1-Z_i}$$

 $EM\ Algorithm\ II,\ {\rm Apr}\ 8,\ 2004 \\ \hspace*{1.5cm} -\ 5\ -$ 

#### Mixtures

o $\textit{\textit{M-step:}}$  Substituting  $p_i^{(k)}$  for  $Z_i$  we obtain

$$\begin{split} Q(\theta|\theta^{(k)}) &= \sum_{i=1}^n p_i^{(k)} \cdot \log(p) + \sum_{i=1}^n q_i^{(k)} \cdot \log(1-p) \\ &- \frac{1}{2} \sum_{i=1}^n p_i^{(k)} \cdot \log(2\pi\sigma_1^2) - \frac{1}{2\sigma_1^2} \sum_{i=1}^n p_i^{(k)} (Y_i - \mu_1)^2 \\ &- \frac{1}{2} \sum_{i=1}^n q_i^{(k)} \cdot \log(2\pi\sigma_2^2) - \frac{1}{2\sigma_2^2} \sum_{i=1}^n q_i^{(k)} (Y_i - \mu_2)^2 \end{split}$$

where  $q_i^{(k)} = 1 - p_i^{(k)}$ .

Setting the first derivatives of  $Q(\theta|\theta^{(k)})$  equal to zero we obtain

$$\begin{split} p^{(k+1)} &= \frac{1}{n} \sum_{i=1}^{n} p_{i}^{(k)} \\ \mu_{1}^{(k+1)} &= \frac{\sum_{i=1}^{n} p_{i}^{(k)} Y_{i}}{\sum_{i=1}^{n} p_{i}^{(k)}} \\ \mu_{2}^{(k+1)} &= \frac{\sum_{i=1}^{n} q_{i}^{(k)} Y_{i}}{\sum_{i=1}^{n} q_{i}^{(k)}} \\ (\sigma_{1}^{(k+1)})^{2} &= \frac{\sum_{i=1}^{n} p_{i}^{(k)} (Y_{i} - \mu_{1}^{(k+1)})^{2}}{\sum_{i=1}^{n} p_{i}^{(k)}} \\ (\sigma_{2}^{(k+1)})^{2} &= \frac{\sum_{i=1}^{n} q_{i}^{(k)} (Y_{i} - \mu_{2}^{(k+1)})^{2}}{\sum_{i=1}^{n} q_{i}^{(k)}} \end{split}$$

#### Mixtures

Log-likelihood function

$$\begin{split} l_n(\theta|Y,Z) &= \sum_{i=1}^n Z_i \cdot \log(p) + \sum_{i=1}^n (1-Z_i) \cdot \log(1-p) \\ &- \frac{1}{2} \sum_{i=1}^n Z_i \cdot \log(2\pi\sigma_1^2) - \frac{1}{2\sigma_1^2} \sum_{i=1}^n Z_i (Y_i - \mu_1)^2 \\ &- \frac{1}{2} \sum_{i=1}^n (1-Z_i) \cdot \log(2\pi\sigma_2^2) - \frac{1}{2\sigma_2^2} \sum_{i=1}^n (1-Z_i) (Y_i - \mu_2)^2 \end{split}$$

#### Application of EM algorithm

#### ∘ E-step:

 $l_n(\theta|Y,Z)$  is linear in  $Z_i$ . It therefore suffices to find the conditional mean  $\mathbb{E}(Z_i|Y_i,\theta^{(k)})$ .

The conditional distribution of  $Z_i$  given Y is

$$Z_i|Y_i, \theta^{(k)} \sim \text{Bin}(1, p_i^{(k)})$$

with

$$p_i^{(k)} = \frac{p^{(k)} \frac{1}{\sigma_i^{(k)}} \varphi\left(\frac{x - \mu_i^{(k)}}{\sigma_i^{(k)}}\right)}{p^{(k)} \frac{1}{\sigma_i^{(k)}} \varphi\left(\frac{y_i - \mu_i^{(k)}}{\sigma_i^{(k)}}\right) + (1 - p^{(k)}) \frac{1}{\sigma_i^{(k)}} \varphi\left(\frac{y_i - \mu_i^{(k)}}{\sigma_i^{(k)}}\right)}.$$

Thus the conditional mean is

$$\mathbb{E}(Z_i|Y_i,\theta^{(k)}) = p_i^{(k)}.$$

EM Algorithm II, Apr 8, 2004 - 6 -

# Mixtures

Starting values:

$$\begin{split} p^{(0)} = 0.4 \quad \mu_1^{(0)} = 40 \quad \sigma_1^{(0)} = 4 \\ \mu_2^{(0)} = 90 \quad \sigma_2^{(0)} = 4 \end{split}$$

Iterations:

| k  | $p^{(k)}$ | $\mu_1^{(k)}$ | $\mu_2^{(k)}$ | $\sigma_1^{(k)}$ | $\sigma_2^{(k)}$ |
|----|-----------|---------------|---------------|------------------|------------------|
| 1  | 0.3508    | 54.22         | 79.91         | 5.465            | 5.999            |
| 2  | 0.3539    | 54.38         | 79.94         | 5.671            | 6.013            |
| 3  | 0.3562    | 54.46         | 79.99         | 5.744            | 5.969            |
| 4  | 0.3578    | 54.51         | 80.02         | 5.787            | 5.935            |
| 5  | 0.3588    | 54.55         | 80.05         | 5.815            | 5.912            |
| 6  | 0.3595    | 54.57         | 80.06         | 5.834            | 5.897            |
| 7  | 0.3600    | 54.59         | 80.07         | 5.846            | 5.887            |
| 8  | 0.3603    | 54.60         | 80.08         | 5.855            | 5.880            |
| 9  | 0.3605    | 54.60         | 80.08         | 5.860            | 5.876            |
| 10 | 0.3606    | 54.61         | 80.09         | 5.864            | 5.873            |
| 11 | 0.3607    | 54.61         | 80.09         | 5.866            | 5.871            |
| 12 | 0.3608    | 54.61         | 80.09         | 5.868            | 5.870            |
| 13 | 0.3608    | 54.61         | 80.09         | 5.869            | 5.869            |
| 14 | 0.3608    | 54.61         | 80.09         | 5.870            | 5.869            |
| 15 | 0.3609    | 54.61         | 80.09         | 5.870            | 5.868            |
| 20 | 0.3609    | 54.61         | 80.09         | 5.871            | 5.868            |
| 25 | 0.3609    | 54.61         | 80.09         | 5.871            | 5.868            |
|    |           |               |               |                  |                  |

Implementation in R

```
p<-c(0.5,40,90,20,20)
emstep<-function(Y,p) {
    EZ<-p[1]*dnorm(Y,p[2],sqrt(p[4]))/
        (p[1]*dnorm(Y,p[2],sqrt(p[4]))
        +(1-p[1])*dnorm(Y,p[3],sqrt(p[5])))
    p[1]<-mean(EZ)
    p[3]<-sum((1-EZ)*Y)/sum(1-EZ)
    p[3]<-sum((1-EZ)*Y)/sum(1-EZ)
    p[4]<-sum(EZ*(Y-p[2])*2)/sum(EZ)
    p
}
emiteration<-function(Y,p,n=10) {
    for (i in (1:n)) {
        p<-emstep(Y,p)
    }
    p</pre>
}
c(0.5,40,90,20,20)
p<-emiteration(Y,p,20)
p</pre>
p<-emstep(Y,p)
p</pre>
```



#### Mixtures

# Example: Bivariate distribution

Data:

- $\circ\,$  Waiting times between eruptions (in min) for the Old Faithful geyser
- $\circ\,$  Eruption times (in min) for the Old Faithful geyser



Example: EM algorithm for bivariate Gaussian mixtures (JAVA applet) http://dowww.epfl.ch/mantra/tutorial/english/gaussian/html Convergence of the EM algorithm

**Example:** Bivariate t-distribution

Suppose that  $Y_i = (Y_{i1}, Y_{i2})^\mathsf{T}$ ,  $i = 1, \dots, 5+m$  are independently sampled from a bivariate t distribution with likelihood function

$$L_n(\mu|Y) = \prod_{i=1}^n \left(1 - (Y_{i1} - \mu_1)^2 + (Y_{i2} - \mu_2)^2\right)^{-\frac{3}{2}}.$$

Furthermore, suppose that only the first 5 values are observed.

- $\circ\,$  Convergence of the EM algorithm depends on the amount of missing data.
- The more data are missing and have to be estimated, the slower the EM algorithm converges.
- $\circ$  Here

$$\mu^{(k+1)} = \frac{\sum_{i=1}^{5} x_i^{(k)} y_i + m \cdot \mu^{(k)}}{\sum_{i=1}^{5} x_i^{(k)} + m}$$

is a weighted mean with strong weight on the previous  $\mu^{(k)}$  if the proportion of missing data is large.



Log-likelihood function  $l_n(\mu|y)$ 



Convergence of the EM algorithm for m = 0, 1, 2.