7.1 Two-state MDP (8 *pts*)

(a) Policy evaluation

(2 pts) From the Bellman equation:

$$V^{\pi}(0) = R(0) + \gamma \left[P(s'=0|s=0, a=\downarrow) V^{\pi}(0) + P(s'=1|s=0, a=\downarrow) V^{\pi}(1) \right]$$

$$= -1 + \frac{1}{2} \left[\frac{3}{4} V^{\pi}(0) + \frac{1}{4} V^{\pi}(1) \right]$$

$$= -1 + \frac{3}{8} V^{\pi}(0) + \frac{1}{8} V^{\pi}(1)$$

$$V^{\pi}(1) = R(1) + \gamma \left[P(s'=0|s=1, a=\downarrow) V^{\pi}(0) + P(s'=1|s=1, a=\downarrow) V^{\pi}(1) \right]$$

$$= 2 + \frac{1}{2} \left[\frac{1}{4} V^{\pi}(0) + \frac{3}{4} V^{\pi}(1) \right]$$

$$= 2 + \frac{1}{8} V^{\pi}(0) + \frac{3}{8} V^{\pi}(1)$$

(2 pts) Rearranging the above and solving:

$$\frac{5}{8}V^{\pi}(0) - \frac{1}{8}V^{\pi}(1) = -1$$
$$-\frac{1}{8}V^{\pi}(0) + \frac{5}{8}V^{\pi}(1) = 2$$

A little algebra gives $V^{\pi}(0) = -1$ and $V^{\pi}(1) = 3$.

(b) Greedy policy

(1 pt) Action-value function for action $a = \downarrow$:

$$Q^{\pi}(s=0, a=\downarrow) = V^{\pi}(0) = -1$$

 $Q^{\pi}(s=1, a=\downarrow) = V^{\pi}(1) = 3$

(2 pts) Action-value function for action $a = \uparrow$:

$$Q^{\pi}(s=0,a=\uparrow) = R(0) + \gamma \left[P(s'=0|s=0,a=\uparrow)V^{\pi}(0) + P(s'=1|s=0,a=\uparrow)V^{\pi}(1) \right]$$

$$= -1 + \frac{1}{2} \left[\frac{1}{2}(-1) + \frac{1}{2}(3) \right]$$

$$= -0.5$$

$$Q^{\pi}(s=1, a=\uparrow) = R(1) + \gamma \left[P(s'=0|s=1, a=\uparrow) V^{\pi}(0) + P(s'=1|s=1, a=\uparrow) V^{\pi}(1) \right]$$

$$= 2 + \frac{1}{2} \left[\frac{1}{2} (-1) + \frac{1}{2} (3) \right]$$

$$= 2.5$$

(1 pt) Greedy policy:

$$\pi'(0) = \underset{a}{\operatorname{argmax}} Q^{\pi}(s=0, a) = \uparrow$$

 $\pi'(1) = \underset{a}{\operatorname{argmax}} Q^{\pi}(s=1, a) = \downarrow$

7.2 Three-state MDP (12 pts)

(a) Policy evaluation

(3 pts) From the Bellman equation:

$$V^{\pi}(1) = R(1) + \gamma \left[P(s'=1|s=1, a=\uparrow) V^{\pi}(1) + P(s'=2|s=1, a=\uparrow) V^{\pi}(2) + P(s'=3|s=1, a=\uparrow) V^{\pi}(3) \right]$$

$$= -15 + \frac{2}{3} \left[\frac{3}{4} V^{\pi}(1) + \frac{1}{4} V^{\pi}(2) + (0) V^{\pi}(3) \right]$$

$$= -15 + \frac{1}{2} V^{\pi}(1) + \frac{1}{6} V^{\pi}(2)$$

$$\begin{array}{lll} V^{\pi}(2) & = & R(2) + \gamma \left[P(s' = 1 | s = 2, a = \uparrow) V^{\pi}(1) + P(s' = 2 | s = 2, a = \uparrow) V^{\pi}(2) + P(s' = 3 | s = 2, a = \uparrow) V^{\pi}(3) \right] \\ & = & 30 + \frac{2}{3} \left[\frac{1}{2} V^{\pi}(1) + \frac{1}{2} V^{\pi}(2) + (0) V^{\pi}(3) \right] \\ & = & 30 + \frac{1}{3} V^{\pi}(1) + \frac{1}{3} V^{\pi}(2) \end{array}$$

$$\begin{array}{lll} V^{\pi}(3) & = & R(3) + \gamma \left[P(s' = 1 | s = 3, a = \downarrow) V^{\pi}(1) + P(s' = 2 | s = 3, a = \downarrow) V^{\pi}(2) + P(s' = 3 | s = 3, a = \downarrow) V^{\pi}(3) \right] \\ & = & -25 + \frac{2}{3} \left[(0) V^{\pi}(1) + \frac{1}{4} V^{\pi}(2) + \frac{3}{4} V^{\pi}(3) \right] \\ & = & -25 + \frac{1}{6} V^{\pi}(2) + \frac{1}{2} V^{\pi}(3) \end{array}$$

(1 pt) Rearranging the above:

$$15 = -\frac{1}{2}V^{\pi}(1) + \frac{1}{6}V^{\pi}(2),
30 = -\frac{1}{3}V^{\pi}(1) + \frac{2}{3}V^{\pi}(2),
25 = \frac{1}{6}V^{\pi}(2) - \frac{1}{2}V^{\pi}(3).$$

(1 pt) A little algebra gives:

$$V^{\pi}(1) = -18,$$

 $V^{\pi}(2) = +36,$
 $V^{\pi}(3) = -38.$

(b) Greedy policy

(3 pts) Action-value function for action $a = \uparrow$:

$$\begin{array}{lll} Q^{\pi}(s\!=\!1,a=\!\uparrow) & = & V^{\pi}(1) = -18, \\ Q^{\pi}(s\!=\!2,a=\!\uparrow) & = & V^{\pi}(2) = 36, \\ Q^{\pi}(s\!=\!3,a=\!\uparrow) & = & R(3) + \gamma \left[P(s'\!=\!1|s\!=\!3,a=\!\uparrow) V^{\pi}(1) + P(s'\!=\!2|s\!=\!3,a=\!\uparrow) V^{\pi}(2) + P(s'\!=\!3|s\!=\!3,a=\!\uparrow) V^{\pi}(3) \right], \\ & = & -25 + \frac{2}{3} \left[(0)(-18) + \frac{3}{4}(36) + \frac{1}{4}(-38) \right], \\ & = & -\frac{40}{3}. \end{array}$$

(3 pts) Action-value function for action $a = \downarrow$:

$$\begin{array}{lll} Q^{\pi}(s\!=\!1,a=\!\downarrow) & = & R(1) + \gamma \left[P(s'\!=\!1|s\!=\!1,a=\!\downarrow) V^{\pi}(1) + P(s'\!=\!2|s\!=\!1,a=\!\downarrow) V^{\pi}(2) + P(s'\!=\!3|s\!=\!1,a=\!\downarrow) V^{\pi}(3) \right], \\ & = & -15 + \frac{2}{3} \left[\frac{1}{4} (-18) + \frac{3}{4} (36) + (0) (-38) \right], \\ & = & 0, \\ Q^{\pi}(s\!=\!2,a=\!\downarrow) & = & R(2) + \gamma \left[P(s'\!=\!1|s\!=\!2,a=\!\downarrow) V^{\pi}(1) + P(s'\!=\!2|s\!=\!2,a=\!\downarrow) V^{\pi}(2) + P(s'\!=\!3|s\!=\!2,a=\!\downarrow) V^{\pi}(3) \right], \\ & = & 30 + \frac{2}{3} \left[(0) (-18) + \frac{1}{2} (36) + \frac{1}{2} (-38) \right], \\ & = & \frac{88}{3}, \\ Q^{\pi}(s\!=\!3,a=\!\downarrow) & = & V^{\pi}(3) = -38. \end{array}$$

(1 pt) Greedy policy:

$$\begin{array}{lcl} \pi'(1) & = & \displaystyle \argmax_a Q^\pi(s\!=\!1,a) \; = \downarrow \\ \\ \pi'(2) & = & \displaystyle \displaystyle \argmax_a Q^\pi(s\!=\!2,a) \; = \uparrow, \\ \\ \pi'(3) & = & \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \displaystyle \arg\max_a Q^\pi(s\!=\!3,a) \; = \uparrow. \end{array}$$

7.3 EM algorithm for binary matrix completion (25 pts)

(a) Sanity check (2 pts)

Title	Rec (%)
Solo	0.37755102040816324
Justice League	0.3900709219858156
The Shape of Water	0.3956043956043956
Ex Machina	0.4631578947368421
Star Trek Beyond	0.46534653465346537
Batman v Superman: Dawn of Justice	0.47904191616766467
Star Wars: The Last Jedi	0.4857142857142857
Terminator Genisys	0.48717948717948717
Tron	0.5075757575757576
Suicide Squad	0.51111111111111111
Mad Max: Fury Road	0.5227272727272727
The Last Airbender	0.5246913580246914
Wonder Woman	0.536723163841808
Ant-Man and the Wasp	0.5440414507772021
It	0.5496688741721855
World War Z	0.5555555555555
Oceans 8	0.5725190839694656
Man of Steel	0.577639751552795
Jumanji: Welcome to the Jungle	0.5857988165680473
2001: A Space Odyssey	0.5871559633027523
Get Out	0.5970149253731343
Furious 7	0.5973154362416108
Star Wars: The Phantom Menace	0.6024844720496895
Moana	0.6116504854368932
Rogue One	0.6183206106870229
Logan	0.6277372262773723
Terminator 2	0.6370370370370371
The Greatest Showman	0.6462585034013606
The Lego Movie	0.6467661691542289
Fantastic Beasts and Where To Find Them	0.6628571428571428
Blade Runner 2049	0.6692913385826772
Venom	0.6974358974358974
Frozen	0.7
Thor: Ragnarok	0.7070707070707071
Deadpool 2	0.7142857142857143
Guardians of the Galaxy Vol. 2	0.7202072538860104
Jurassic World	0.7251184834123223
Mission: Impossible - Fallout	0.7483443708609272 0.7534883720930232
Captain America: Civil War	
Guardians of the Galaxy La La Land	0.7610619469026548 0.7627118644067796
The Lord of the Rings: The Fellowship of the Ring	0.7705882352941177
Coco	0.7703882332941177
The Hunger Games	0.7802690582959642
Iron Man 3	0.780373831775701
Zootopia	0.7905138339920948
Black Panther	0.7991071428571429
The Martian	0.8011049723756906
Avengers: Infinity War	0.8073770491803278
The Wolf of Wall Street	0.8082901554404145
The Imitation Game	0.810606060606060606
Harry Potter and the Deathly Hallows: Part 2	0.8108108108108109
The Avengers	0.8285714285714286
The Matrix	0.8350515463917526
Jurassic Park (1993)	0.839572192513369
Doctor Strange	0.8401826484018264
The Dark Knight	0.8412698412698413
WALL-E	0.8434782608695652
Inception	0.8723404255319149
inception	0.8858447488584474

(b) Likelihood (3 pts)

$$\begin{split} P\left(\left\{R_{j} \!=\! r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) &=& \sum_{i=1}^{k} P\left(Z \!=\! i, \left\{R_{j} \!=\! r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) \quad \boxed{\mathbf{marginalization}} \\ &=& \sum_{i=1}^{k} P(Z \!=\! i) \, P\left(\left\{R_{j} \!=\! r_{j}^{(t)}\right\}_{j \in \Omega_{t}} \middle| Z \!=\! i\right) \quad \boxed{\mathbf{product rule}} \\ &=& \sum_{i=1}^{k} P(Z \!=\! i) \, \prod_{j \in \Omega_{t}} P\left(R_{j} \!=\! r_{j}^{(t)} \middle| Z \!=\! i\right) \quad \boxed{\mathbf{conditional independence}} \end{split}$$

(c) **E-step** (2 pts)

$$\begin{split} P\left(Z=i\left|\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right) &= \frac{P(Z=i)\;P\left(\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\left|Z=i\right\right)}{P\left(\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right)} \quad \boxed{\textbf{Bayes rule}} \\ &= \frac{P(Z=i)\;\prod_{j\in\Omega_{t}}P\left(R_{j}=r_{j}^{(t)}\left|Z=i\right\right)}{\sum_{i'=1}^{k}P(Z=i')\;\prod_{j\in\Omega_{t}}P\left(R_{j}=r_{j}^{(t)}\left|Z=i'\right\right)} \quad \boxed{\textbf{substitute from part (b)}} \end{split}$$

(d) **M-step** (3 pts)

The visible data $V^{(t)}$ for the $t^{\rm th}$ student are the observed movie ratings $\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}$. Thus the EM updates are given by:

$$P(Z=i) \leftarrow \frac{1}{T} \sum_{t=1}^{T} P\left(Z=i \left| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right. \right),$$

$$P(R_{\ell}=1|Z=i) \leftarrow \frac{\sum_{t=1}^{T} P\left(Z=i, R_{\ell}=1 \left| \left\{ R_{j}=r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right) \right.}{\sum_{t=1}^{T} P\left(Z=i \left| \left\{ R_{j}=r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right.\right)}.$$

Using the suggested shorthand, we can write these as

$$P(Z=i) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \rho_{it}, \qquad \boxed{+1 \text{ pt}}$$

$$P(R_{\ell}=1|Z=i) \leftarrow \frac{\sum_{t} P\left(Z=i, R_{\ell}=1 \left| \left\{ R_{j}=r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right) \right.}{\sum_{t=1}^{T} \rho_{it}}.$$

Finally consider the terms in the numerator of the second update. If the $t^{\rm th}$ student saw the $\ell^{\rm th}$ movie, then R_ℓ is an **observed rating**. Thus if $\ell \in \Omega_t$ we have:

$$P\left(Z=i, R_{\ell}=1 \left| \left\{ R_{j}=r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right) = I\left(r_{\ell}^{(t)}, 1\right) P\left(Z=i \left| \left\{ R_{j}=r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right) \right.$$
$$= I\left(r_{\ell}^{(t)}, 1\right) \rho_{it}$$

On the other hand, if the $t^{\rm th}$ student did not see the $\ell^{\rm th}$ movie, then R_ℓ is a **hidden variable**. Thus if $\ell \not\in \Omega_t$ we have:

$$\begin{split} P\left(Z=i,R_{\ell}=1\left|\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right)\right. \\ &= \left.P\left(Z=i\left|\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right)P\left(R_{\ell}=1\left|Z=i,\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right)\right. \boxed{\textbf{product rule}} \\ &= \left.P\left(Z=i\left|\left\{R_{j}=r_{j}^{(t)}\right\}_{j\in\Omega_{t}}\right)P(R_{\ell}=1|Z=i)\right. \boxed{\textbf{conditional independence}} \\ &= \rho_{it}\,P(R_{\ell}=1|Z=i) \end{split}$$

Substituting these last two results into the numerator of the second update, we find that

$$P(R_{\ell} = 1 | Z = i) \longleftarrow \frac{\sum_{\{t | \ell \in \Omega_t\}} \rho_{it} \, I\!\left(r_{\ell}^{(t)}, 1\right) + \sum_{\{t | \ell \not\in \Omega_t\}} \rho_{it} \, P\!\left(R_{\ell} = 1 | Z = i\right)}{\sum_{t=1}^{T} \rho_{it}} \quad \boxed{\textbf{+2 pts}}$$

(e) **Implementation** (3 pts)

iteration	log-likelihood ${\cal L}$
0	-33.4145
1	-21.3919
2	-19.6171
4	-18.7595
8	-18.3982
16	-18.2229
32	-18.1025
64	-18.0486
128	-18.0472
256	-18.0471

- (f) Personal movie recommendations (2 pts)
- (g) Source code (10 pts)