Generating the Ring of Twisted Differential Operators of Complex Reflection Group $I_2(5)$

Raj Gandhi

Supervised by: Kirill Zaynullin

University of Ottawa

January 24, 2017

Outline:

- Reflection Groups, Root Systems, Coxeter Groups
- 2 Reflection Group $I_2(5)$, Twisted Differential Operators
- \odot Ring of Twisted Differential Operators of $I_2(5)$, Generating this Ring

Outline:

- Reflection Groups, Root Systems, Coxeter Groups
- ② Reflection Group $I_2(5)$, Twisted Differential Operators
- \odot Ring of Twisted Differential Operators of $I_2(5)$, Generating this Ring

Outline:

- Reflection Groups, Root Systems, Coxeter Groups
- ② Reflection Group $I_2(5)$, Twisted Differential Operators
- ullet Ring of Twisted Differential Operators of $I_2(5)$, Generating this Ring

Definition

Let V be a vector space. Let t, α be vectors in V. Let s_{α} denote a linear operator. We call s_{α} a **Reflection**, and s_{α} acts on t in the following way:

$$s_{\alpha}t = t - 2\frac{(t,\alpha)}{(\alpha,\alpha)}\alpha$$

Definition

A group that is generated by reflections is called a **Reflection Group**.

Example

Every **Dihedral Group** is a Reflection Group

Every Dihedral Group is generated by reflections and rotations of a regular polygon that preserve its symmetry.

Rotations can be obtained from reflections

Definition

Let V be a vector space. Let t, α be vectors in V. Let s_{α} denote a linear operator. We call s_{α} a **Reflection**, and s_{α} acts on t in the following way:

$$s_{\alpha}t = t - 2\frac{(t,\alpha)}{(\alpha,\alpha)}\alpha$$

Definition

A group that is generated by reflections is called a **Reflection Group**.

Example

Every **Dihedral Group** is a Reflection Group.

Every Dihedral Group is generated by reflections and rotations of a regular polygon that preserve its symmetry.

Rotations can be obtained from reflections

Definition

Let V be a vector space. Let t, α be vectors in V. Let s_{α} denote a linear operator. We call s_{α} a **Reflection**, and s_{α} acts on t in the following way:

$$s_{\alpha}t = t - 2\frac{(t,\alpha)}{(\alpha,\alpha)}\alpha$$

Definition

A group that is generated by reflections is called a **Reflection Group**.

Example

Every **Dihedral Group** is a Reflection Group.

Every Dihedral Group is generated by reflections and rotations of a regular polygon that preserve its symmetry.

Rotations can be obtained from reflections.

Root System - Definition and Example

Definition

Let V be a vector space. A **Root System** Φ of V is a set of vectors of V that satisfy two axioms. For all $a \in \Phi$:

- $\bullet \cap \mathbf{c} a = \{a, -a\}, \mathbf{c} \in \mathbf{R}$

Every root system Φ has an associated reflection group W.

Example

Consider the vector space $V = R^2$. One root system of V is the set of vectors

$$\Phi = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$$

The reflection group associated with Φ is the Dihedral Group of order m-4

Root System - Definition and Example

Definition

Let V be a vector space. A **Root System** Φ of V is a set of vectors of V that satisfy two axioms. For all $a \in \Phi$:

- $\bullet \cap \mathbf{c} a = \{a, -a\}, \mathbf{c} \in \mathbf{R}$

Every root system Φ has an associated reflection group W.

Example

Consider the vector space $V = R^2$. One root system of V is the set of vectors

$$\Phi = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$$

The reflection group associated with Φ is the Dihedral Group of order m=4.

(4 ロ ト 4 回 ト 4 重 ト 4 重) りゅう

Definition

Let V be an vector space. Let $\beta = \{v_1, ..., v_n\}$ be an ordered basis of V. Let Φ be a Root System of V.

A **Positive System** Π of Φ with respect to β is the set of roots $\Pi := \{r \in \Phi | r = a_1v_1 + ... + a_nv_n\}$ where $a_1, ..., a_n > 0$

A **Negative System** $-\Pi$ of Φ with respect to β is the set of roots $-\Pi := \{r' \in \Phi | r' = a'_1 v_1 + ... + a'_n v_n\}$ where $a'_1, ..., a'_n < 0$

A **Simple System** Δ of Φ is a vector space basis of Φ that satisfies the following conditions. Let $\Delta = \{w_1, ..., w_n\}$:

- **1** If $r ∈ \Pi$, then $r = b_1w_1 + ... + b_nw_n$ where $b_1, ..., b_n > 0$
- ② If $r' \in -\Pi$, then $r' = b'_1 w_1 + ... + b'_n w_n$ where $b'_1, ..., b'_n < 0$

4 D > 4 D > 4 E > 4 E > E = 90 C

Definition

Let V be an vector space. Let $\beta = \{v_1, ..., v_n\}$ be an ordered basis of V. Let Φ be a Root System of V.

A **Positive System** Π of Φ with respect to β is the set of roots

$$\Pi := \{r \in \Phi | r = a_1v_1 + ... + a_nv_n\}$$
 where $a_1, ..., a_n > 0$

A Negative System $-\Pi$ of Φ with respect to β is the set of roots $-\Pi := \{r' \in \Phi | r' = a'_1 v_1 + ... + a'_n v_n \}$ where $a'_1, ..., a'_n < 0$

A **Simple System** Δ of Φ is a vector space basis of Φ that satisfies the following conditions. Let $\Delta = \{w_1, ..., w_n\}$:

- ① If $r \in \Pi$, then $r = b_1 w_1 + ... + b_n w_n$ where $b_1, ..., b_n > 0$
- ② If $r' \in -\Pi$, then $r' = b'_1 w_1 + ... + b'_n w_n$ where $b'_1, ..., b'_n < 0$

Definition

Let V be an vector space. Let $\beta = \{v_1, ..., v_n\}$ be an ordered basis of V. Let Φ be a Root System of V.

A **Positive System** Π of Φ with respect to β is the set of roots

$$\Pi:=\{r\in\Phi|r=a_1v_1+...+a_nv_n\}$$
 where $a_1,...,a_n>0$

A **Negative System** $-\Pi$ of Φ with respect to β is the set of roots $-\Pi := \{r' \in \Phi | r' = a'_1 v_1 + ... + a'_n v_n\}$ where $a'_1, ..., a'_n < 0$

A **Simple System** Δ of Φ is a vector space basis of Φ that satisfies the following conditions. Let $\Delta = \{w_1, ..., w_n\}$:

- ① If $r \in \Pi$, then $r = b_1 w_1 + ... + b_n w_n$ where $b_1, ..., b_n > 0$
- ② If $r' \in -\Pi$, then $r' = b'_1 w_1 + ... + b'_n w_n$ where $b'_1, ..., b'_n < 0$

4 D > 4 D > 4 E > 4 E > E = 99 P

Definition

Let V be an vector space. Let $\beta = \{v_1, ..., v_n\}$ be an ordered basis of V. Let Φ be a Root System of V.

A **Positive System** Π of Φ with respect to β is the set of roots

$$\Pi := \{r \in \Phi | r = a_1v_1 + ... + a_nv_n\}$$
 where $a_1, ..., a_n > 0$

A **Negative System** $-\Pi$ of Φ with respect to β is the set of roots $-\Pi := \{r' \in \Phi | r' = a'_1 v_1 + ... + a'_n v_n\}$ where $a'_1, ..., a'_n < 0$

A **Simple System** Δ of Φ is a vector space basis of Φ that satisfies the following conditions. Let $\Delta = \{w_1, ..., w_n\}$:

- **1** If $r \in \Pi$, then $r = b_1 w_1 + ... + b_n w_n$ where $b_1, ..., b_n > 0$
- ② If $r' \in -\Pi$, then $r' = b'_1 w_1 + ... + b'_n w_n$ where $b'_1, ..., b'_n < 0$

Example

Suppose
$$\Phi = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$$
. Then $\Delta = \{(-1,1), (1,0)\}$ is a simple system of Φ .

Definition

Let Φ be a root system with associated reflection group W. Let $\Delta = \{v_1, ..., v_n\}$ be a simple system of Φ . A **Simple Reflection Group** Δ_i of Δ is the set

$$\Delta_i := \{s_{v_1}, ..., s_{v_n}\}$$

We call each s_i a **Simple Reflection**.

Fact: Every reflection group is generated by a simple reflection group.

Example

A simple reflection group of the root system from above is $\Delta_i = \{s_{(-1,1)}, s_{(1,0)}\}$ where $s_{(-1,1)}$ and $s_{(1,0)}$ are called simple reflections.

Example

Suppose
$$\Phi = \{\pm(1,0),\pm(1,1),\pm(0,1),\pm(-1,1)\}$$
. Then $\Delta = \{(-1,1),(1,0)\}$ is a simple system of Φ .

Definition

Let Φ be a root system with associated reflection group W. Let

 $\Delta = \{v_1, ..., v_n\}$ be a simple system of Φ . A **Simple Reflection Group** Δ_i of Δ is the set

$$\Delta_i := \{s_{v_1}, ..., s_{v_n}\}$$

We call each s_i a **Simple Reflection**.

Fact: Every reflection group is generated by a simple reflection group.

Example

A simple reflection group of the root system from above is $\Delta_i = \{s_{(-1,1)}, s_{(1,0)}\}$ where $s_{(-1,1)}$ and $s_{(1,0)}$ are called simple reflections.

Example

Suppose
$$\Phi = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$$
. Then $\Delta = \{(-1,1), (1,0)\}$ is a simple system of Φ .

Definition

Let Φ be a root system with associated reflection group W. Let

 $\Delta = \{v_1, ..., v_n\}$ be a simple system of Φ . A **Simple Reflection Group** Δ_i of Δ is the set

$$\Delta_i := \{s_{v_1}, ..., s_{v_n}\}$$

We call each s_i a **Simple Reflection**.

Fact: Every reflection group is generated by a simple reflection group.

Example

A simple reflection group of the root system from above is $\Delta_i = \{s_{(-1,1)}, s_{(1,0)}\}$ where $s_{(-1,1)}$ and $s_{(1,0)}$ are called simple reflections.

Example

Suppose $\Phi = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then $\Delta = \{(-1,1), (1,0)\}$ is a simple system of Φ .

Definition

Let Φ be a root system with associated reflection group W. Let

 $\Delta = \{v_1, ..., v_n\}$ be a simple system of Φ . A **Simple Reflection Group** Δ_i of Δ is the set

$$\Delta_i := \{s_{v_1}, ..., s_{v_n}\}$$

We call each s_i a **Simple Reflection**.

Fact: Every reflection group is generated by a simple reflection group.

Example

A simple reflection group of the root system from above is

 $\Delta_i = \{s_{(-1,1)}, s_{(1,0)}\}$ where $s_{(-1,1)}$ and $s_{(1,0)}$ are called simple reflections.

A **Coxeter Group** S is a group that has the following presentation:

$$S := \{s_{i_k} | (s_{i_1} s_{i_2})^{m(i_1, i_2)} = 1\}$$

Theorem

Let Φ be a root system with associated reflection group W and simple system Δ . Then W is generated by the following Coxeter Group S:

$$S := \{ s_{i_k} | \alpha_{i_k} \in \Delta, (s_{i_1} s_{i_2})^{m(\alpha_{i_1}, \alpha_{i_2})} = 1 \}$$

Proof

Let D_n be a dihedral group of order n. Then smallest angle of that preserves the symmetry of a regular n-sided polygon is $\frac{2\pi}{n}$.

The angle between the hyperplanes of simple roots, α_1 and α_2 , is $\frac{\pi}{n}$.

Therefore, a rotation through $\frac{2\pi}{n}$ is achieved by reflection $s_{\alpha_1}s_{\alpha_2}$, where n such reflections produces a rotation of 2π .

Therefore $(s_{\alpha_1}s_{\alpha_2})^n=1$

A **Coxeter Group** S is a group that has the following presentation:

$$S := \{s_{i_k} | (s_{i_1} s_{i_2})^{m(i_1, i_2)} = 1\}$$

Theorem

Let Φ be a root system with associated reflection group W and simple system Δ . Then W is generated by the following Coxeter Group S:

$$S := \{ s_{i_k} | \alpha_{i_k} \in \Delta, (s_{i_1} s_{i_2})^{m(\alpha_{i_1}, \alpha_{i_2})} = 1 \}$$

Proof.

Let D_n be a dihedral group of order n. Then smallest angle of that preserves the symmetry of a regular n-sided polygon is $\frac{2\pi}{n}$.

The angle between the hyperplanes of simple roots, α_1 and α_2 , is $\frac{\pi}{n}$.

Therefore, a rotation through $\frac{2\pi}{n}$ is achieved by reflection $s_{\alpha_1}s_{\alpha_2}$, where n such reflections produces a rotation of 2π .

Therefore $(s_{\alpha_1}s_{\alpha_2})^n=1$

A **Coxeter Group** S is a group that has the following presentation:

$$S := \{s_{i_k} | (s_{i_1} s_{i_2})^{m(i_1, i_2)} = 1\}$$

Theorem

Let Φ be a root system with associated reflection group W and simple system Δ . Then W is generated by the following Coxeter Group S:

$$S := \{ s_{i_k} | \alpha_{i_k} \in \Delta, (s_{i_1} s_{i_2})^{m(\alpha_{i_1}, \alpha_{i_2})} = 1 \}$$

Proof.

Let D_n be a dihedral group of order n. Then smallest angle of that preserves the symmetry of a regular n-sided polygon is $\frac{2\pi}{n}$.

The angle between the hyperplanes of simple roots, α_1 and α_2 , is $\frac{\pi}{n}$.

Therefore, a rotation through $\frac{2\pi}{n}$ is achieved by reflection $s_{\alpha_1}s_{\alpha_2}$, where n such reflections produces a rotation of 2π .

Therefore
$$(s_{\alpha_1}s_{\alpha_2})^n=1$$

Coxeter Groups - Example

Example

Suppose $\Phi = \{\pm(1,0),\pm(1,1),\pm(0,1),\pm(-1,1)\}$. Then a simple system of Φ is $\Delta = \{s_{(1,0)},s_{(-1,1)}\}$. Let $1=(1,0),\,2=(-1,1)$. Then from our Coxeter Relations: $W=\{1,s_1,s_2,s_{12},s_{121},s_{121},s_{121},s_{1212}\}$

Theorem

Suppose Φ is a root system with associated reflection group W. Then for all $\beta \in \Phi$ and $s_i \in W$, \exists a unique root α_j such that $\beta = s_i(\alpha_i)$

Coxeter Groups - Example

Example

Suppose $\Phi = \{\pm(1,0),\pm(1,1),\pm(0,1),\pm(-1,1)\}$. Then a simple system of Φ is $\Delta = \{s_{(1,0)},s_{(-1,1)}\}$. Let $1=(1,0),\,2=(-1,1)$. Then from our Coxeter Relations: $W=\{1,s_1,s_2,s_{12},s_{12},s_{121},s_{121},s_{121}\}$

Theorem

Suppose Φ is a root system with associated reflection group W. Then for all $\beta \in \Phi$ and $s_i \in W$, \exists a unique root α_j such that

$$\beta = s_i(\alpha_j)$$

Introdution to Reflection Group $I_2(5)$

Definition

Consider the regular pentagon that lies on complex vector space V. The vertices of this pentagon are related to the golden ratio ϕ , which satisfies $\phi^2 = \phi + 1$ and $\sqrt{5} = 2\phi - 1$:

$$r = \left(\frac{\phi - 1}{2}, \frac{\sqrt{\phi + 2}}{2}\right) = \phi(1 + \tau^2)$$

$$r^2 = \left(-\frac{\phi}{2}, \frac{\sqrt{3 - \phi}}{2}\right)$$

$$r^3 = \left(-\frac{\phi}{2}, -\frac{\sqrt{3 - \phi}}{2}\right) = -\phi - \tau^2$$

$$r^4 = \left(\frac{\phi - 1}{2}, -\frac{\sqrt{\phi + 2}}{2}\right) = -1 - \phi\tau^2$$

$$r^5 = 1 = (1, 0)$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Introdution to Reflection Group $I_2(5)$

Definition

Consider the regular pentagon that lies on complex vector space V. The vertices of this pentagon are related to the golden ratio ϕ , which satisfies $\phi^2 = \phi + 1$ and $\sqrt{5} = 2\phi - 1$:

$$\tau = \left(\frac{\phi - 1}{2}, \frac{\sqrt{\phi + 2}}{2}\right) = \phi(1 + \tau^2)$$

$$\tau^2 = \left(-\frac{\phi}{2}, \frac{\sqrt{3 - \phi}}{2}\right)$$

$$\tau^3 = \left(-\frac{\phi}{2}, -\frac{\sqrt{3 - \phi}}{2}\right) = -\phi - \tau^2$$

$$\tau^4 = \left(\frac{\phi - 1}{2}, -\frac{\sqrt{\phi + 2}}{2}\right) = -1 - \phi\tau^2$$

$$\tau^5 = 1 = (1, 0)$$

The set $\Phi = \{\pm \tau, \pm \tau^2, \pm \tau^3, \pm \tau^4, \pm \tau^5\}$ is a root system with associated reflection group $\mathbf{W} = \mathbf{I_2}(\mathbf{5})$. From now on, let

Introdution to Reflection Group $I_2(5)$

Definition

Consider the regular pentagon that lies on complex vector space V. The vertices of this pentagon are related to the golden ratio ϕ , which satisfies $\phi^2 = \phi + 1$ and $\sqrt{5} = 2\phi - 1$:

$$\tau = \left(\frac{\phi - 1}{2}, \frac{\sqrt{\phi + 2}}{2}\right) = \phi(1 + \tau^2)$$

$$\tau^2 = \left(-\frac{\phi}{2}, \frac{\sqrt{3 - \phi}}{2}\right)$$

$$\tau^3 = \left(-\frac{\phi}{2}, -\frac{\sqrt{3 - \phi}}{2}\right) = -\phi - \tau^2$$

$$\tau^4 = \left(\frac{\phi - 1}{2}, -\frac{\sqrt{\phi + 2}}{2}\right) = -1 - \phi\tau^2$$

$$\tau^5 = 1 = (1, 0)$$

The set $\Phi = \{\pm \tau, \pm \tau^2, \pm \tau^3, \pm \tau^4, \pm \tau^5\}$ is a root system with associated reflection group $W = I_2(5)$. From now on, let $(\alpha_1 = \tau^5), (\alpha_2 = \tau^2), (\alpha_3 = \tau), (\alpha_4 = \tau^3), (\alpha_5 = \tau^5)$

Generators and Relations in $I_2(5)$

From Coxeter Relations, we obtain the following table:

	The contest of the contains the following stable.										
1	1	-1	2	-2	3	-3	4	-4	5	-5	
s_1	-1	1	-4	4	-5	5	-2	2	-3	3	
s ₂	-5	5	-2	2	-4	4	-3	3	-1	1	
<i>s</i> ₁₂	3	-3	4	-4	2	-2	5	-5	1	-1	
<i>s</i> ₂₁	5	-5	3	-3	1	-1	2	-2	4	-4	
s ₁₂₁	-3	3	-5	5	-1	1	-4	4	-2	2	
<i>s</i> ₂₁₂	-4	4	-3	3	-2	2	-1	1	-5	5	
<i>s</i> ₁₂₁₂	2	-2	5	-5	4	-4	1	-1	3	-3	
<i>s</i> ₂₁₂₁	4	-4	1	-1	5	-5	3	-3	2	-2	
<i>s</i> ₁₂₁₂₁	-2	2	-1	1	-3	3	-5	5	-4	4	

Definition

Each root in Φ can be written as a linear combination of α_1 and α_2 with coefficients from the commutative ring: $R := \{a + b\Phi | a, b \in Z\}$

The ring of polynomial functions in variables $\alpha_1, ..., \alpha_5$ with integer coefficients is denoted by S.

The ring of laurent polynomals in variables $\alpha_1,...,\alpha_5$ with integer coefficients is denoted by Q.

$$s_i\left(\frac{\alpha_1^2\alpha_2 + 3\alpha_2\alpha_5}{\alpha_1\alpha_3^3}\right) = \frac{(s_i(\alpha_1))^2s_i(\alpha_2) + 3s_i(\alpha_2)s_i(\alpha_5)}{s_i(\alpha_1)(s_i(\alpha_3))^3}$$

Definition

Each root in Φ can be written as a linear combination of α_1 and α_2 with coefficients from the commutative ring: $R := \{a + b\Phi | a, b \in Z\}$

The ring of polynomial functions in variables $\alpha_1,...,\alpha_5$ with integer coefficients is denoted by S.

The ring of laurent polynomals in variables $\alpha_1,...,\alpha_5$ with integer coefficients is denoted by Q.

$$s_i\left(\frac{\alpha_1^2\alpha_2 + 3\alpha_2\alpha_5}{\alpha_1\alpha_3^3}\right) = \frac{(s_i(\alpha_1))^2s_i(\alpha_2) + 3s_i(\alpha_2)s_i(\alpha_5)}{s_i(\alpha_1)(s_i(\alpha_3))^3}$$

Definition

Each root in Φ can be written as a linear combination of α_1 and α_2 with coefficients from the commutative ring: $R := \{a + b\Phi | a, b \in Z\}$

The ring of polynomial functions in variables $\alpha_1,...,\alpha_5$ with integer coefficients is denoted by S.

The ring of laurent polynomals in variables $\alpha_1, ..., \alpha_5$ with integer coefficients is denoted by Q.

$$s_i\left(\frac{\alpha_1^2\alpha_2 + 3\alpha_2\alpha_5}{\alpha_1\alpha_3^3}\right) = \frac{(s_i(\alpha_1))^2s_i(\alpha_2) + 3s_i(\alpha_2)s_i(\alpha_5)}{s_i(\alpha_1)(s_i(\alpha_3))^3}$$

Definition

Each root in Φ can be written as a linear combination of α_1 and α_2 with coefficients from the commutative ring: $R := \{a + b\Phi | a, b \in Z\}$

The ring of polynomial functions in variables $\alpha_1,...,\alpha_5$ with integer coefficients is denoted by S.

The ring of laurent polynomals in variables $\alpha_1, ..., \alpha_5$ with integer coefficients is denoted by Q.

$$s_i\left(\frac{\alpha_1^2\alpha_2+3\alpha_2\alpha_5}{\alpha_1\alpha_3^3}\right)=\frac{(s_i(\alpha_1))^2s_i(\alpha_2)+3s_i(\alpha_2)s_i(\alpha_5)}{s_i(\alpha_1)(s_i(\alpha_3))^3}$$

A **Twisted Differential Operator** is an operator that acts on elements of Q. There are five twisted differential operators of $I_2(5)$. They are denoted by X_i , i=1,...5. Let $q \in Q$. Then

$$X_i(q) = \frac{q-s_iq}{\alpha_i} = \frac{1}{\alpha_i}(\mathbf{1}-s_i)(q)$$

Definition: $X_i := \frac{1}{\alpha_i} (\mathbf{1} - s_i)$

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_1\alpha_2) = \frac{\alpha_1\alpha_2 - s_1(\alpha_1\alpha_2)}{\alpha_1} = \frac{\alpha_1\alpha_2 - (-\alpha_1)(-\alpha_4)}{\alpha_1} = \alpha_2 - \alpha_1$$

This is an element of S.

A **Twisted Differential Operator** is an operator that acts on elements of Q. There are five twisted differential operators of $I_2(5)$. They are denoted by X_i , i=1,...5. Let $q\in Q$. Then

$$X_i(q) = \frac{q-s_iq}{\alpha_i} = \frac{1}{\alpha_i}(\mathbf{1}-s_i)(q)$$

Definition: $X_i := \frac{1}{\alpha_i} (1 - s_i)$

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_1\alpha_2) = \frac{\alpha_1\alpha_2 - s_1(\alpha_1\alpha_2)}{\alpha_1} = \frac{\alpha_1\alpha_2 - (-\alpha_1)(-\alpha_4)}{\alpha_1} = \alpha_2 - \alpha_4$$

This is an element of S.

A Useful Group Ring and Some Notation

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_4) = \frac{\alpha_4 - s_1 \alpha_4}{\alpha_1} = \frac{\alpha_4 + \alpha_2}{\alpha_1}$$

This is an element of Q.

Definition

Let $q_1,...,q_5$ be rational functions. Then the group ring generated by the elements $q_1\delta_{s_1},...,q_5\delta_{s_5}$ is denoted by $\tilde{\mathbf{Q}}[\mathbf{I}_2(\mathbf{5})]$.

In this ring, δ_{s_i} is not the same as s_i . δ_{s_i} is notation for an element of $\tilde{Q}[I_2(5)]$, whereas s_i is the action of the linear operator on a root.

From now on, we will denote δ_{s_i} by δ_i to simplify expressions.

From now on, we will denote $\delta_i \delta_j \dots$ as $\delta_{ij\dots}$ to simplify expressions.

A Useful Group Ring and Some Notation

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_4) = \frac{\alpha_4 - s_1 \alpha_4}{\alpha_1} = \frac{\alpha_4 + \alpha_2}{\alpha_1}$$

This is an element of Q.

Definition

Let $q_1,...,q_5$ be rational functions. Then the group ring generated by the elements $q_1\delta_{s_1},...,q_5\delta_{s_5}$ is denoted by $\tilde{\mathbf{Q}}[\mathbf{I}_2(\mathbf{5})]$.

In this ring, δ_{s_i} is not the same as s_i . δ_{s_i} is notation for an element of $\tilde{Q}[I_2(5)]$, whereas s_i is the action of the linear operator on a root.

From now on, we will denote δ_{s_i} by δ_i to simplify expressions.

From now on, we will denote $\delta_i \delta_j$... as δ_{ij} ... to simplify expressions.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなび

A Useful Group Ring and Some Notation

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_4) = \frac{\alpha_4 - s_1 \alpha_4}{\alpha_1} = \frac{\alpha_4 + \alpha_2}{\alpha_1}$$

This is an element of Q.

Definition

Let $q_1, ..., q_5$ be rational functions. Then the group ring generated by the elements $q_1\delta_{s_1},...,q_5\delta_{s_5}$ is denoted by $\tilde{\mathbf{Q}}[\mathbf{I}_2(\mathbf{5})]$.

In this ring, δ_{s_i} is not the same as s_i . δ_{s_i} is notation for an element of $\tilde{Q}[I_2(5)]$, whereas s_i is the action of the linear operator on a root.

From now on, we will denote δ_{s_i} by δ_i to simplify expressions.

A Useful Group Ring and Some Notation

Example

Action of X_1 on a polynomial function:

$$X_1(\alpha_4) = \frac{\alpha_4 - s_1 \alpha_4}{\alpha_1} = \frac{\alpha_4 + \alpha_2}{\alpha_1}$$

This is an element of Q.

Definition

Let $q_1,...,q_5$ be rational functions. Then the group ring generated by the elements $q_1\delta_{s_1},...,q_5\delta_{s_5}$ is denoted by $\tilde{\mathbf{Q}}[\mathbf{I_2(5)}]$.

In this ring, δ_{s_i} is not the same as s_i . δ_{s_i} is notation for an element of $\tilde{Q}[I_2(5)]$, whereas s_i is the action of the linear operator on a root.

From now on, we will denote δ_{s_i} by δ_i to simplify expressions.

From now on, we will denote $\delta_i \delta_i$... as δ_{ii} ... to simplify expressions.

4 D > 4 A > 4 E > 4 E > E 9 Q P

Multiplication between elements of $\tilde{Q}[I_2(5)]$ is done using the following commuting rule:

$$s_i(\alpha_j)\delta_i = \delta_i\alpha_j$$

Definition

There are five unique twisted differential operators with respect to $I_2(5)$ in this group ring.

They can be viewed as elements

$$X_i = \frac{1}{\alpha_i}(1 - \delta_i), i = 1, ..., 5$$

Multiplication between operators follows the multiplication of elements of $\tilde{Q}[I_2(5)]$ defined above.

Example

$$X_1X_2 = (\frac{1}{\alpha_1}(\mathbf{1}-\delta_1))(\frac{1}{\alpha_2}(\mathbf{1}-\delta_2)) = \frac{1}{\alpha_1\alpha_2}(\mathbf{1}-\delta_2) - \frac{1}{\alpha_1}s_1(\frac{1}{\alpha_2})(\delta_1 - \delta_{12})$$

4 L 2 4 F 2 4 F 2 F 3 F 2 Y 3 Y 3

Multiplication between elements of $\tilde{Q}[I_2(5)]$ is done using the following commuting rule:

$$s_i(\alpha_j)\delta_i=\delta_i\alpha_j$$

Definition

There are five unique twisted differential operators with respect to $I_2(5)$ in this group ring.

They can be viewed as elements

$$X_i = \frac{1}{\alpha_i}(1 - \delta_i), i = 1, ..., 5$$

Multiplication between operators follows the multiplication of elements of $\tilde{Q}[I_2(5)]$ defined above.

Example

$$X_1X_2 = (\frac{1}{\alpha_1}(1-\delta_1))(\frac{1}{\alpha_2}(1-\delta_2)) = \frac{1}{\alpha_1\alpha_2}(1-\delta_2) - \frac{1}{\alpha_1}s_1(\frac{1}{\alpha_2})(\delta_1 - \delta_{12})$$

Multiplication between elements of $\tilde{Q}[I_2(5)]$ is done using the following commuting rule:

$$s_i(\alpha_j)\delta_i=\delta_i\alpha_j$$

Definition

There are five unique twisted differential operators with respect to $I_2(5)$ in this group ring.

They can be viewed as elements

$$X_i = \frac{1}{\alpha_i}(1 - \delta_i), i = 1, ..., 5$$

Multiplication between operators follows the multiplication of elements of $\tilde{Q}[I_2(5)]$ defined above.

Example

$$X_1X_2 = (\frac{1}{\alpha_1}(\mathbf{1} - \delta_1))(\frac{1}{\alpha_2}(\mathbf{1} - \delta_2)) = \frac{1}{\alpha_1\alpha_2}(\mathbf{1} - \delta_2) - \frac{1}{\alpha_1}s_1(\frac{1}{\alpha_2})(\delta_1 - \delta_{12})$$

Ring of Twisted Differential Operators of $I_2(5)$

Definition

The subring of $\tilde{Q}[I_2(5)]$ generated by the elements $\{X_1, X_2, X_3, X_4, X_5\}$ is called the **Ring of Twisted Differential Operators of I₂(5)**.

We will denote this ring $D_{l_2(5)}$.

Theorem

$$X_i^2 = 0, i = 1, ..., 5.$$

Proof

$$X_{i}^{2} = \left(\frac{1-\delta_{i}}{\alpha_{i}}\right)\left(\frac{1-\delta_{i}}{\alpha_{i}}\right) = \frac{1}{\alpha_{i}^{2}}(\mathbf{1}) - \frac{1}{\alpha_{i}}s_{i}\left(\frac{1}{\alpha_{i}}\right)(\delta_{i}) - \frac{1}{\alpha_{i}^{2}}(\delta_{i}) + \frac{1}{\alpha_{i}}s_{i}\left(\frac{1}{\alpha_{i}}\right)(\mathbf{1})$$

$$= \frac{1}{\alpha_{i}^{2}}(\mathbf{1}) + \frac{1}{\alpha_{i}^{2}}(\delta_{i}) - \frac{1}{\alpha_{i}^{2}}(\delta_{i}) - \frac{1}{\alpha_{i}^{2}}(\mathbf{1})$$

$$= 0$$

Ring of Twisted Differential Operators of $I_2(5)$

Definition

The subring of $\tilde{Q}[I_2(5)]$ generated by the elements $\{X_1, X_2, X_3, X_4, X_5\}$ is called the **Ring of Twisted Differential Operators of I₂(5)**.

We will denote this ring $D_{l_2(5)}$.

Theorem

$$X_i^2 = 0, i = 1, ..., 5.$$

Proof

$$X_i^2 = \left(\frac{1-\delta_i}{\alpha_i}\right)\left(\frac{1-\delta_i}{\alpha_i}\right) = \frac{1}{\alpha_i^2}(\mathbf{1}) - \frac{1}{\alpha_i}s_i\left(\frac{1}{\alpha_i}\right)(\delta_i) - \frac{1}{\alpha_i^2}(\delta_i) + \frac{1}{\alpha_i}s_i\left(\frac{1}{\alpha_i}\right)(\mathbf{1})$$

$$= \frac{1}{\alpha_i^2}(\mathbf{1}) + \frac{1}{\alpha_i^2}(\delta_i) - \frac{1}{\alpha_i^2}(\delta_i) - \frac{1}{\alpha_i^2}(\mathbf{1})$$

$$= 0$$

Ring of Twisted Differential Operators of $I_2(5)$

Definition

The subring of $\tilde{Q}[I_2(5)]$ generated by the elements $\{X_1, X_2, X_3, X_4, X_5\}$ is called the **Ring of Twisted Differential Operators of I₂(5)**.

We will denote this ring $D_{l_2(5)}$.

Theorem

$$X_i^2 = 0, i = 1, ..., 5.$$

Proof.

$$X_i^2 = \left(\frac{1-\delta_i}{\alpha_i}\right)\left(\frac{1-\delta_i}{\alpha_i}\right) = \frac{1}{\alpha_i^2}(\mathbf{1}) - \frac{1}{\alpha_i}s_i\left(\frac{1}{\alpha_i}\right)(\delta_i) - \frac{1}{\alpha_i^2}(\delta_i) + \frac{1}{\alpha_i}s_i\left(\frac{1}{\alpha_i}\right)(\mathbf{1})$$

$$= \frac{1}{\alpha_i^2}(\mathbf{1}) + \frac{1}{\alpha_i^2}(\delta_i) - \frac{1}{\alpha_i^2}(\delta_i) - \frac{1}{\alpha_i^2}(\mathbf{1})$$

$$= 0$$

Question: Is there a way to generate $D_{l_2(5)}$ using only the elements X_1 and X_2 ?

Plan:

- ① Express X_3 , X_4 , and X_5 in terms of X_1 and X_2 only.
- ② Find simple relations within the ring $\langle X_1, X_2 \rangle$

- $\alpha_i = i, i = 1, ..., 5$
- ② For all $x \in R$, x = [x]
- $X_i X_j = X_{ij}, i = 1, ..., 5 \text{ and } j = 1, ..., 5$

Question: Is there a way to generate $D_{l_2(5)}$ using only the elements X_1 and X_2 ?

Plan:

- ① Express X_3 , X_4 , and X_5 in terms of X_1 and X_2 only.
- ② Find simple relations within the ring $\langle X_1, X_2 \rangle$

- $\alpha_i = i, i = 1, ..., 5$
- ② For all $x \in R$, x = [x]
- $X_i X_j = X_{ij}, i = 1, ..., 5 \text{ and } j = 1, ..., 5$

Question: Is there a way to generate $D_{l_2(5)}$ using only the elements X_1 and X_2 ?

Plan:

- **1** Express X_3 , X_4 , and X_5 in terms of X_1 and X_2 only.
- ② Find simple relations within the ring $\langle X_1, X_2 \rangle$

- $\alpha_i = i, i = 1, ..., 5$
- ② For all $x \in R$, x = [x]
- $X_i X_j = X_{ij}, i = 1, ..., 5 \text{ and } j = 1, ..., 5$

Question: Is there a way to generate $D_{I_2(5)}$ using only the elements X_1 and X_2 ?

Plan:

- **1** Express X_3 , X_4 , and X_5 in terms of X_1 and X_2 only.
- ② Find simple relations within the ring $\langle X_1, X_2 \rangle$

- $\alpha_i = i, i = 1, ..., 5$
- **3** $X_i X_j = X_{ij}$, i = 1, ..., 5 and j = 1, ..., 5

The ring $D_{l_2(5)}$ is generated by X_i , i = 1..5, over the coefficient ring T' modulo the following relations:

$$X_3 = \frac{[1]}{\phi([1]+2)}([3]1(X_1) + [2]2(X_2) - [3]12(X_{21} + X_{12}) + [4]1^22(X_{121}) + 12^2(X_{212}) - 1^22^2(X_{2121} - X_{1212}) + 1^32^2X_{12121})$$

$$X_i^2 = 0$$

Define the following commutative ring T:

$$T := \{a + b\Phi + c\alpha_2 + d\Phi\alpha_2 + e\alpha_1 + f\Phi\alpha_1 | a, d, c, d, e, f \in Z\}$$

Define T' as the ring of laurent polynomials in variables of T with integer coefficients.

Proof.

Fact:
$$\delta_1 = \mathbf{1} - (1)X_1$$
 and $\delta_2 = \mathbf{1} - (2)X_2$

Fact:
$$\alpha_3 = \phi(1 + \tau^2)$$
, $\alpha_4 = -\phi - \tau^2$, and $\alpha_5 = -1 - \phi \tau^2$

Fact:
$$X_3 = \frac{1}{\alpha_3} (\mathbf{1} - \delta_{12121}), \ X_4 = \frac{1}{\alpha_4} (\mathbf{1} - \delta_{121}), \ \text{and} \ X_5 = \frac{1}{\alpha_5} (\mathbf{1} - \delta_{212})$$

Define the following commutative ring T:

$$T := \{a + b\Phi + c\alpha_2 + d\Phi\alpha_2 + e\alpha_1 + f\Phi\alpha_1 | a, d, c, d, e, f \in Z\}$$

Define T' as the ring of laurent polynomials in variables of T with integer coefficients.

Proof.

Fact: $\delta_1 = \mathbf{1} - (1)X_1$ and $\delta_2 = \mathbf{1} - (2)X_2$

Fact:
$$\alpha_3 = \phi(1+\tau^2)$$
, $\alpha_4 = -\phi - \tau^2$, and $\alpha_5 = -1 - \phi \tau^2$

Fact:
$$X_3 = \frac{1}{\alpha_3} (\mathbf{1} - \delta_{12121})$$
, $X_4 = \frac{1}{\alpha_4} (\mathbf{1} - \delta_{121})$, and $X_5 = \frac{1}{\alpha_5} (\mathbf{1} - \delta_{212})$

Define the following commutative ring T:

$$T := \{a + b\Phi + c\alpha_2 + d\Phi\alpha_2 + e\alpha_1 + f\Phi\alpha_1 | a, d, c, d, e, f \in Z\}$$

Define T' as the ring of laurent polynomials in variables of T with integer coefficients.

Proof.

Fact:
$$\delta_1 = \mathbf{1} - (1)X_1$$
 and $\delta_2 = \mathbf{1} - (2)X_2$

Fact:
$$\alpha_3 = \phi(1 + \tau^2)$$
, $\alpha_4 = -\phi - \tau^2$, and $\alpha_5 = -1 - \phi \tau^2$

Fact:
$$X_3 = \frac{1}{\alpha_3} (\mathbf{1} - \delta_{12121}), X_4 = \frac{1}{\alpha_4} (\mathbf{1} - \delta_{121}), \text{ and } X_5 = \frac{1}{\alpha_5} (\mathbf{1} - \delta_{212})$$

Define the following commutative ring T:

$$T := \{a + b\Phi + c\alpha_2 + d\Phi\alpha_2 + e\alpha_1 + f\Phi\alpha_1 | a, d, c, d, e, f \in Z\}$$

Define T' as the ring of laurent polynomials in variables of T with integer coefficients.

Proof.

Fact: $\delta_1 = \mathbf{1} - (1)X_1$ and $\delta_2 = \mathbf{1} - (2)X_2$

Fact:
$$\alpha_3 = \phi(1 + \tau^2)$$
, $\alpha_4 = -\phi - \tau^2$, and $\alpha_5 = -1 - \phi \tau^2$

Fact:
$$X_3 = \frac{1}{\alpha_3} (\mathbf{1} - \delta_{12121})$$
, $X_4 = \frac{1}{\alpha_4} (\mathbf{1} - \delta_{121})$, and $X_5 = \frac{1}{\alpha_5} (\mathbf{1} - \delta_{212})$

Define the following commutative ring T:

$$T := \{a + b\Phi + c\alpha_2 + d\Phi\alpha_2 + e\alpha_1 + f\Phi\alpha_1 | a, d, c, d, e, f \in Z\}$$

Define T' as the ring of laurent polynomials in variables of T with integer coefficients.

Proof.

Fact:
$$\delta_1 = \mathbf{1} - (1)X_1$$
 and $\delta_2 = \mathbf{1} - (2)X_2$

Fact:
$$\alpha_3 = \phi(1 + \tau^2)$$
, $\alpha_4 = -\phi - \tau^2$, and $\alpha_5 = -1 - \phi \tau^2$

Fact:
$$X_3 = \frac{1}{\alpha_3} (\mathbf{1} - \delta_{12121})$$
, $X_4 = \frac{1}{\alpha_4} (\mathbf{1} - \delta_{121})$, and $X_5 = \frac{1}{\alpha_5} (\mathbf{1} - \delta_{212})$

1 A.
$$X_1 = \frac{[1]}{1} - \frac{[1]}{1}\delta_1$$

2 B.
$$X_2 = \frac{[1]}{2} - \frac{[1]}{2} \delta_2$$

3 C.
$$X_{12} = \frac{[1]}{12}(\mathbf{1} - \delta_2) + \frac{[1]}{14}(\delta_1 - \delta_{12})$$

• D.
$$X_{21} = \frac{[1]}{21}(1-\delta_1) + \frac{[1]}{25}(\delta_2 - \delta_{21})$$

5 E.
$$X_{212} = \frac{1+5}{12^25}(\mathbf{1}-\delta_2) + \frac{[1]}{124}(\delta_1 - \delta_{12}) - \frac{[1]}{235}(\delta_{21} - \delta_{212})$$

o F.
$$X_{121} = \frac{2+4}{1^224}(\mathbf{1}-\delta_1) + \frac{[1]}{125}(\delta_2 - \delta_{21}) - \frac{[1]}{134}(\delta_{12} - \delta_{121})$$

• G.
$$X_{1212} = \frac{14+25+45}{1^22^245}(\mathbf{1}-\delta_2) + \frac{12+23+34}{1^2234^2}(\delta_1-\delta_{12}) + \frac{[1]}{1235}(\delta_{212}-\delta_{21}) + \frac{[1]}{1345}(\delta_{1212}-\delta_{121})$$

3 *H.*
$$X_{2121} = \frac{14+25+45}{1^22^245}(\mathbf{1}-\delta_1) + \frac{12+13+35}{12^235^2}(\delta_2 - \delta_{21}) + \frac{[1]}{1234}(\delta_{121} - \delta_{12}) + \frac{[1]}{2345}(\delta_{2121} - \delta_{212})$$

(ロ) (部) (注) (注) 注 り(0)

$$J.X_{12121} = \frac{345(2+4)+134^2+235(2+4)+12^25}{1^32^234^25} (\mathbf{1}-\delta_1) + \frac{124+134+345+235}{1^22^2345^2} (\delta_2 - \delta_{21}) + \frac{345+124+125+235}{1^223^24^25} (\delta_{121} - \delta_{12}) + \frac{[1]}{12345} (\delta_{2121} - \delta_{212} + \delta_{1212} - \delta_{12121})$$

Direction: Determine whether $X_{12121} - X_{21212}$ is a linear combination of the other twisted differential operators of $D_{l_2(5)}$

Direction: Determine whether $X_{12121} - X_{21212}$ is a linear combination of the other twisted differential operators of $D_{l_2(5)}$

$$\begin{array}{l} X_{12121}-X_{21212}=\\ & \underbrace{ \begin{bmatrix} 2 \end{bmatrix} 2^2 345^2 + 234^2 5^2 + 1234^2 5 + 2^3 35^2 + 12^3 5^2 - 1^2 34^2 5 - 134^2 5^2 - 12345^2 - 1^2 34^2 5 - 1^3 34^2 - 1^3 24^2 }_{1^3 2^2 34^2 5^2} (\mathbf{1}) + \\ & \underbrace{ -2345 - 34^2 5 - 134^2 - 2345 - 2^2 35 - 12^2 5 - 1^2 25 - 1235 - 1345 - 1^2 34}_{1^3 2^2 34^2 5^2} (\delta_1) + \\ & \underbrace{ \frac{12^2 4 + 1234 + 2345 + 2^2 35 + 1345 + 345^2 + 1345 + 1^2 34 + 1^2 24}_{1^2 2^3 345^2} (\delta_2) + \\ & \underbrace{ -1234 - 13^2 4 - 3^2 45 - 23^2 5 + 1345 + 1^2 25 + 1^2 24 + 1^2 34}_{1^2 2^2 3^2 45^2} (\delta_{21}) + \\ & \underbrace{ -2345 - 12^2 4 - 12^2 5 - 2^2 35 + 1235 + 23^2 5 + 3^2 45 + 13^2 4}_{1^2 2^2 3^2 4^2 5} (\delta_{12}) + \\ & \underbrace{ 235 + 345 + 125 + 124 + 134}_{1^2 23^2 4^2 5} (\delta_{121}) + \underbrace{ -235 - 345 - 125 - 124 - 134}_{12^2 3^2 45^2} (\delta_{212}) \end{array}$$

Lemma

$$\frac{2^{5}+245-1^{2}4-145}{1^{2}2^{2}45}(\mathbf{1})+\frac{-1-2-4}{1^{2}24}(\delta_{1})+\frac{1+2+5}{12^{2}5}(\delta_{2})+\frac{-2+3}{1234}(\delta_{12})+\frac{-1-3}{1235}(\delta_{21})+\frac{[1]}{134}(\delta_{121})+\frac{-[1]}{235}(\delta_{212})$$

$$\begin{array}{l} X_{12121} - X_{21212} = \\ \frac{[2]2^2345^2 + 234^25^2 + 1234^25 + 2^335^2 + 12^35^2 - 1^234^25 - 134^25^2 - 12345^2 - 1^234^25 - 1^334^2 - 1^324^2}{1^32^234^25^2} (\mathbf{1}) \\ \frac{-2345 - 34^25 - 134^2 - 2345 - 2^235 - 12^25 - 1225 - 1235 - 1345 - 1^234}{1^32^234^25^2} (\delta_1) + \\ \frac{12^24 + 1234 + 2345 + 2^235 + 1345 + 345^2 + 1345 + 1^234 + 1^224}{1^22^3345^2} (\delta_2) + \\ \frac{-1234 - 13^24 - 3^245 - 23^25 + 1345 + 1^225 + 1^224 + 1^234}{1^22^23^245^2} (\delta_{21}) + \\ \frac{-2345 - 12^24 - 12^25 - 2^235 + 1235 + 23^25 + 3^245 + 13^24}{1^22^32^425} (\delta_{12}) + \\ \frac{235 + 345 + 125 + 124 + 134}{1^223^24^25} (\delta_{121}) + \frac{-235 - 345 - 125 - 124 - 134}{12^23^245^2} (\delta_{212}) \end{array}$$

Lemma

$$X_{121} - X_{212} =$$
 $2^5 + 245 - 1^24 - 145 (4) = -1 - 2 - 4 (5) = 1 + 2 + 5 = 1$

$$\frac{2^{5}+245-1^{2}4-145}{1^{2}2^{2}45}(\mathbf{1})+\frac{-1-2-4}{1^{2}24}(\delta_{1})+\frac{1+2+5}{12^{2}5}(\delta_{2})+\frac{-2+3}{1234}(\delta_{12})+\frac{-1-3}{1235}(\delta_{21})+\frac{[1]}{134}(\delta_{121})+\frac{-[1]}{235}(\delta_{212})$$

$$\frac{235+345+125+124+134}{12345}(X_{121}-X_{212})=(X_{12121}-X_{21212})$$

Theorem

$$X_{12121} = X_{21212}$$

Proof.

$$235 = \tau^{2}(\phi(1+\tau^{2}))(-1-\phi\tau^{2}) = -\phi\tau^{2} - \phi^{2}(\tau^{2})^{2} - \phi(\tau^{2})^{2} - \phi^{2}(\tau^{2})^{3}$$

$$345 = (\phi + \phi\tau^{2})(-\phi - \tau^{2})(-1-\phi\tau^{2}) = \phi^{2} + \phi\tau^{2} + \phi^{2}\tau^{2} + \phi(\tau^{2})^{2} + \phi^{3}\tau^{2} + \phi^{2}(\tau^{2})^{2} + \phi^{3}(\tau^{2})^{2} + \phi^{2}(\tau^{2})^{3}$$

$$125 = 1\tau^{2}(-1-\phi\tau^{2}) = -\tau^{2} - \phi(\tau^{2})^{2}$$

$$124 = 1\tau^{2}(-1-\phi\tau^{2}) = -\phi\tau^{2} - (\tau^{2})^{2}$$

$$134 = 1\phi(1+\tau^{2})(-\phi-\tau^{2}) = -\phi^{2} - \phi\tau^{2} - \phi^{2}\tau^{2} - \phi(\tau^{2})^{2}$$

4□ > 4□ > 4 = > 4 = > = 90

$$\frac{235+345+125+124+134}{12345}(X_{121}-X_{212})=(X_{12121}-X_{21212})$$

Theorem

$$X_{12121} = X_{21212}$$

Proof.

$$235 = \tau^{2}(\phi(1+\tau^{2}))(-1-\phi\tau^{2}) = -\phi\tau^{2} - \phi^{2}(\tau^{2})^{2} - \phi(\tau^{2})^{2} - \phi^{2}(\tau^{2})^{3}$$

$$345 = (\phi + \phi\tau^{2})(-\phi - \tau^{2})(-1-\phi\tau^{2}) = \phi^{2} + \phi\tau^{2} + \phi^{2}\tau^{2} + \phi(\tau^{2})^{2} + \phi^{3}\tau^{2} + \phi^{2}(\tau^{2})^{2} + \phi^{3}(\tau^{2})^{2} + \phi^{2}(\tau^{2})^{3}$$

$$125 = 1\tau^{2}(-1-\phi\tau^{2}) = -\tau^{2} - \phi(\tau^{2})^{2}$$

$$124 = 1\tau^{2}(-1-\phi\tau^{2}) = -\phi\tau^{2} - (\tau^{2})^{2}$$

$$134 = 1\phi(1+\tau^{2})(-\phi - \tau^{2}) = -\phi^{2} - \phi\tau^{2} - \phi^{2}\tau^{2} - \phi(\tau^{2})^{2}$$

4□ > 4□ > 4 = > 4 = > = 90

$$\frac{235+345+125+124+134}{12345}(X_{121}-X_{212})=(X_{12121}-X_{21212})$$

Theorem

$$X_{12121} = X_{21212}$$

Proof.

$$235 = \tau^2(\phi(1+\tau^2))(-1-\phi\tau^2) = -\phi\tau^2 - \phi^2(\tau^2)^2 - \phi(\tau^2)^2 - \phi^2(\tau^2)^3$$

$$345 = (\phi + \phi\tau^2)(-\phi - \tau^2)(-1 - \phi\tau^2) = \phi^2 + \phi\tau^2 + \phi^2\tau^2 + \phi(\tau^2)^2 + \phi^3\tau^2 + \phi^2(\tau^2)^2 + \phi^3(\tau^2)^2 + \phi^2(\tau^2)^3$$

$$125 = 1\tau^2(-1 - \phi\tau^2) = -\tau^2 - \phi(\tau^2)^2$$

$$124 = 1\tau^2(-1 - \phi\tau^2) = -\phi\tau^2 - (\tau^2)^2$$

$$134 = 1\phi(1+\tau^2)(-\phi-\tau^2) = -\phi^2 - \phi\tau^2 - \phi^2\tau^2 - \phi(\tau^2)^2$$

Proof.

$$235 + 345 + 125 + 124 + 134$$

$$= -[2]\phi\tau^2 - [2]\phi(\tau^2)^2 + \phi^3\tau^2 + \phi^3(\tau^2)^2 - \tau^2 - (\tau^2)^2$$

$$= -\tau^{2}([2]\phi + 1) - (\tau^{2})^{2}([2]\phi + 1) + (\phi^{3})(\tau^{2} + (\tau^{2})^{2})$$

$$= -([2]\phi + 1)(\tau^2 + (\tau^2)^2) + ([2]\phi + 1)(\tau^2 + (\tau^2)^2)$$

= 0

Example

$$X_{2121212} = X_{21}(X_{21212}) = X_{21}(X_{12121}) = X_2(X_1X_1)X_{2121} = 0$$

Proof.

$$235 + 345 + 125 + 124 + 134$$

$$= -[2]\phi\tau^2 - [2]\phi(\tau^2)^2 + \phi^3\tau^2 + \phi^3(\tau^2)^2 - \tau^2 - (\tau^2)^2$$

$$= -\tau^{2}([2]\phi + 1) - (\tau^{2})^{2}([2]\phi + 1) + (\phi^{3})(\tau^{2} + (\tau^{2})^{2})$$

$$= -([2]\phi + 1)(\tau^2 + (\tau^2)^2) + ([2]\phi + 1)(\tau^2 + (\tau^2)^2)$$

$$= 0$$

Example

$$X_{2121212} = X_{21}(X_{21212}) = X_{21}(X_{12121}) = X_2(X_1X_1)X_{2121} = 0$$

