Beam-RICH Meeting

鈴木翔太

2023/2/1 (Wed.) $9:15 \sim 10:00$

目次

- ▶現在の進捗について
 - ➤ GeoGebra を用いた光学系の設計に向けて
 - ▶検出位置(リング半径) → Cherenkov 角度 への変換方法について
 - ➤ Geant4 でのシミュレーション
- ▶これからやること

現在の進捗

GeoGebra を用いた光学系の設計に向けて

>2D

https://www.geogebra.org/classic/ee4m3eru

> 3D

https://www.geogebra.org/classic/vw7bbam6

テまだ作成途中

GeoGebra と手計算の比較

Focal Plane (R/2=50.0cm)

GeoGebra と手計算の比較

- ▶右画像と同じパラメータで手計算
 - \triangleright Beam₁ = (-100,1)
 - $\triangleright \theta_{\text{beam}} = 0.015 \text{ rad}$
 - $> O_{\text{mirror}} = (13,21)$
 - R = 100 cm
 - ▶光の放射位置
 - 上流 x = 50cm
 - \triangleright 下流 x = 60 cm
 - \triangleright Cherenkov Angle = 0.63 rad
 - > $n_{Aero} = 1.021$, $n_{Air} = 1.000273$
- ➤ Cherenkov 光の収束点(G')
 - \Rightarrow x = 64.62936781511964
 - > y = 53.11482575021643
- → GeoGebra と一致

詳しい手計算の過程、Pythonのコードは後で公開予定 (GitHub?)

3次元への拡張と検出位置→角度の変換

- ▶3次元での光の軌跡を手計算で求めたい
 - ▶おそらく求められると思っています
- ▶2次元の時のように平行に放出された光は必ずしも交わらない
 - ▶球面中心のずれている方向, 光の放出方向が異なると交わらない
- ▶光の軌跡の計算ができたら検出位置→角度の変換を考える
 - ▶球面鏡上の反射点を変数
 - ▶放出位置, 検出位置, 球面鏡の配置(球面中心, 半径) を与える
 - ▶反射点は一意に決まるはずなので手で解けるはず(と思っています 無理かもしれない...)
 - \triangleright 反射点が求まれば、beam方向と放出位置-反射点がなす (θ, ϕ) を求めることができる
- → 鏡に角度がついてリングが楕円になっても解析可
 - ▶分解能の評価に必須
 - ▶光学系の設計より前に解析方法を完成させる必要あり

Geant4

- ▶ロジャーさんの授業のため Emphatic の簡単なシミュレーションを作成中
- ▶これが終わったら
 - ▶量子効率を入れる
 - ▶物体の色付け

これからやること

- ▶ GeoGebra でいろいろ考えてみる
- ▶解析方法
 - ▶手計算でできないか考えてみる
 - ▶LHCb の分解能の評価方法を詳しく書いているものがないか探してみる
- ➤ Geant4
 - ▶量子効率の導入
 - ▶物体の色付け