Appunti di Aerodinamica

Marco Callari

January 31, 2021

Contents

1	Con	Concetti base										1	
	1.1	Teorema del trasporto di Reynolds											1
1	\mathbf{C}	oncetti base											

1.1 Teorema del trasporto di Reynolds

Data:

• Una funzione f che dipende da spazio e tempo f(x,t)

Di cui voglio calcolare la derivata nel tempo dell'integrale nel volume di controllo $\Omega(t)$ (nota: variabile nel tempo), ovvero:

$$\frac{d}{dt} \int_{\Omega(t)} f \, dV$$

Utilizzando il teorema di Reynolds, è possibile riscrivere questa derivata di un integrale come:

$$\frac{d}{dt} \int_{\Omega(t)} f \, dV = \int_{\Omega(t)} \frac{\partial f}{\partial t} \, dV + \int_{\partial \Omega(t)} (v^b \cdot n) f \, dA$$

Dove:

- $\partial\Omega(t)$ è la superficie esterna del volume di controllo (superficie di controllo)
- n è il versore normale alla superficie $\delta\Omega(t)$
- $v^b(x,t)$ è la velocità dell'elemento di area (@TODO: specificare)