

Centro de Formação Científica ALBERT EINSTEIN

(CACUACO VIILA)

Matemática de Matemática

WOL 05

Ano lectivo '2011-2012'

Nome do Aluno.

Explicador.

Turno.

Nº de Telefone.

Somatório

1°) Calcule:

$$a) \sum_{i=0}^{4} x_i$$

$$d) \sum_{x=-2}^{1} 3x$$

$$b) \sum_{i=1}^{6} 2^{j-1}$$

$$e) \sum_{n=2}^{5} (n+1)$$

c)
$$\sum_{m=0}^{5} x^{m-1}$$

$$f)\sum_{n=0}^{\infty}2n$$

2°) Coloca a expressão $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$ em forma de somatório.

The Moise, The Quieto e The John

3°) Achar os valóres numéricos dos seguintes somatórios:

$$a) \sum_{k=1}^{4} k$$

$$e) \sum_{k=1}^{30} (2+5k)$$

$$b) \sum_{n=0}^{3} 2^{2n+2}$$

$$f) \sum_{k=3}^{10} 5k^2 + \sum_{k=-10}^{-3} (2k - 5k^2)$$

$$c) \sum_{i=0}^{3} (2i+1)$$

$$g) \sum_{k=2}^{15} k - \sum_{k=5}^{18} k$$

$$d) \sum_{k=1}^{5} \frac{1}{k(k+1)}$$

$$e) \sum_{n=1}^{4} n^n$$

4°) Calcular o valor de x nas seguintes expressões:

a)
$$\sum_{a=1}^{3} (ax - 4) = \sum_{b=0}^{4} (5 + 6b)$$

b)
$$\sum_{a=3}^{5} (ax-4) = \sum_{b=1}^{3} bx$$

5°) Conhecendo a fórmula $(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$ desenvolve os seguintes binómios:

$$a) \left(2 + \frac{x}{2}\right)^3$$

$$e)\left(\frac{\sqrt{a}}{3} - \frac{a}{\sqrt{3}}\right)^4$$

$$h) \left(x^3 + \frac{2}{x}\right)^8$$

$$b) \left(\frac{1}{x} - x\right)^4$$

$$f)\left(\sqrt{x}+\frac{1}{x}\right)^6$$

$$i) \left(4 - \frac{1}{x}\right)^6$$

c)
$$(\sqrt{x}-1)^4$$

$$g) \left(x + \frac{y}{2}\right)^4$$

$$j) \left(3x - \frac{11}{2x}\right)^4$$

$$d) \left(\frac{\sqrt{x}}{2} - \sqrt{y} \right)'$$

$$-\left(x-\frac{y}{2}\right)^{2}$$

$$k)\left(\sqrt{3} + \frac{2}{\sqrt{5}}\right)^3$$

The Moise, The Quieto e The John

Cálculos Combinatórios

1°) Determine o valor de E:

$$E = C_2^5 - C_{5;3} + C_{5;5}$$

- 2°) Sendo $A_{7:p} = 4! C_{7:p}$, determine p?
- 3°) Determine o conjunto solução das equações $4C_{x;2} = 60$ e $C_{x;4}/C_{x;3} = 1$.
- 4°) Resolve as equações:

$$a) \binom{x}{5} = \binom{x}{2}$$

$$b) \binom{8}{p} = \binom{8}{3}$$

$$c) \begin{pmatrix} 9 \\ x-2 \end{pmatrix} = \begin{pmatrix} 9 \\ 2x-1 \end{pmatrix}$$

$$a$$
) $\binom{3}{0}$

$$b) \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ 7 \end{pmatrix}$$

c)
$$\binom{7}{3} - \binom{7}{4} + \binom{5}{2} - \binom{5}{3}$$

$$e)$$
 $\binom{8}{5} + \binom{8}{6}$

$$d) \binom{10}{p-2} = \binom{10}{p+4}$$

$$e) \begin{pmatrix} x \\ 5 \end{pmatrix} = \begin{pmatrix} x \\ 2 \end{pmatrix}$$

$$f) \binom{9}{3p+6} = 1$$

$$f$$
) $\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5}$

$$g) {8 \choose 5} + {8 \choose 6} + {10 \choose 7} + {11 \choose 11} + {n \choose 1}$$

h)
$$\binom{0}{0} + \binom{1}{1} + \binom{2}{2} + \binom{7}{7}$$

6°) Desenvolver utilizando as fórmulas do binómio de Newton.

a)
$$(x-1)^3$$

b)
$$\left(1+\frac{3a}{2}\right)^{\epsilon}$$

c)
$$(a - b)^6$$

$$d) (a^3 - x^2y)^7$$

$$e)(2a+3b)^4$$

$$f)(k^2-1)^4$$

a)
$$\frac{(n+1)!}{(n-1)!} : \frac{n!}{(n-2)!}$$

$$b) \frac{(n+4)! + (n+2)!}{(n+1)!}$$

c)
$$\frac{16! - 13!}{14! + 12!}$$
 $\stackrel{\wedge}{}$ $\frac{17! + 14!}{16! + 12!}$

$$d) A_2^5 + A_3^5 + A_3^5$$

e)
$$C_5^9 \times C_3^8$$

$$f) \; \frac{18! - 15!}{17! - 15!}$$

g)
$$\frac{3(n-1)!-(n+2)!}{(n-1)!}$$

h)
$$\frac{5!-7!+3!}{2!-4!}$$

$$i) \frac{(n+3)!}{(n+2)!}$$

$$(j) \frac{1}{n!} + \frac{n!}{(n-1)!}$$

$$k) \frac{1}{(n+1)!} : \frac{1}{n!}$$

$$l) \frac{(n+1)(n-3)!}{(n-2)!} \cdot \frac{n!}{(n+1)!}$$

$$m) \frac{x \cdot {\binom{x-1}{2}}}{{\binom{x}{1}}{\binom{x-1}{1}}}$$

The Moise, The Quieto e The John

8°) Resolve as equações:

a)
$$\frac{(x+4)! + (x+2)!}{3(x+3)!} = \frac{7}{6}$$

b)
$$(x-4)! + (x+3)! = 15(x+2)!$$

c)
$$\frac{2x! - 3(x-1)!}{2x! + (x-1)!} = \frac{5}{9}$$

$$d) \ 2(x-1)! + 2x! = (x+1)!$$

$$e) \frac{(x-3)!}{(x-2)! + (x-1)!} = \frac{1}{3}$$

$$f)(n-4)! = 120$$

$$g)(n-3)!=1$$

h)
$$\frac{7!}{(7-n)!} = 4! \frac{7!}{n!(7-n)!}$$

$$i) \ 4 \cdot C_{x;2} = 60$$

$$j) \frac{(x+4)! + (x+3)!}{(x+2)!} = 3$$

$$k) \frac{(x+2)! + x!}{(x+1)!} = \frac{2!}{4}$$

$$l) \frac{(x-1)! + 2(x+1)!}{x! - (x-1)!} = 13$$

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$m) \frac{x! + 3(x - 2)!}{x! - 3(x - 2)!} = \frac{3!}{29}$$

$$n) \frac{n!}{n + 1} = (n + 1)!$$

$$o) \ 2(n-2)! = n(n-3)!$$

$$p) \ \frac{(n-1)!}{(n+1)!} = \frac{1}{4n}$$

$$q)(n+5)! = 6(n+3)!$$

- 9°) No desenvolvimento de $\left(x + \frac{1}{x^2}\right)^6$, determinar:
 - a) 0 termo médio;
 - b) O termo indepedente de x;
 - c) 0 termo de grau 3.
- 10°) A soma dos coeficientes binominais no desenvolvimento de:
 - a) $(x + a)^6$ vale?
 - b) $(x^3 + 5x^2)^3$ vale?
 - c) $(a^2 7)^5$ vale?
- 11°) Calcule o termo de maior coeficiente no desenvolvimento de $\left(x^3 \frac{1}{\sqrt{x}}\right)^8$.
- 12°) Calcula o 3º termo no desenvolvimento de $\left(2x^2 \frac{\sqrt{3}}{2}\right)^n$ possui 5 termos logo; quanto vale o:
 - a) 0 quarto termo;
 - b) Termo médio;
 - c) Terno independente.

The Moise, The Quieto e The John

- 13°) Calcula o paramentro **a** no desenvolvimento de $(-x^3 + 2a)^5$; para que $T_4 = -640x^6$.
- 14°) Determinar 4° termo no desenvolvimento de $(x + 2)^7$.
- 15°) Calcula o termo médio do desenvolvimento $\left(\frac{m}{10} + \frac{5b}{m}\right)^8$.
- 16°) Representar o termo geral do desenvolvimento de $(3n^2 + 5)^7$.
- 17°) Representar o desenvolvimento de $(1x + 3)^9$ usando somatório.
- 18°) No desenvolvimento de $(2x-1)^6$, calcular o quarto termo.
- 19°) Considere o binómio $\left(x^2 + \frac{1}{\sqrt{x}}\right)^{12}$:
 - a) Escreva o termo geral na forma síples;
 - b) Determina o termo independente;
 - c) Escreva o trmo em x^4 .
- 20°) Sendo $T_3=66x^{19}$, calcule o 4° termo apartir do 3° termo.

- 21°) No binómio $\left(\frac{x}{2} \frac{3}{x^2}\right)^{11}$, calcula o 5° termo .
- 22°) $(x + a)^n$, é um binómio cujo o quarto termo é $T_4 = 448x^5$.
 - a) Calcular n e a;
 - b) Calcule o termo geral;
 - c) Calcule o termo independente de x.
- 23°) Determina o termo geral no binómio $(3m^2 + 7)^{11}$.
- 24°) Representa o desenvolvimento de $(2x + 5)^9$ usando somatório.
- 25°) Determina o valor de $E = 3 \cdot A_{8;2} 5 \cdot A_{6;3}$.
- 26°) Sendo $A_{n;2} = 42$, determinar o valor de \mathbf{n} .
- 27°) Conhecendo a regra $P_n^{n_1,n_2,\cdots n_p} = \frac{n!}{n_1!n_2!\cdots n_p!}$ $e\ P_n = n!\ calcule$:
- a) $P_{13}^{5,6,7}$
- b) $P_3 P_2 = A_{x;1} + A_{x;2}$
- $c)\; \frac{{P_3}^2(A_6^3+C_6^3)}{P_6}$
- $d) A_{x;2} + C_{x;1} = P_3 + 3$

Indução Matemática

1°)
$$2 + 4 + 6 + 8 + \dots + 2n = n^2 + n$$

$$2^{\underline{0}}) \sum_{p=1}^{n} \frac{1}{p(p+1)} = \frac{n}{n+1} \quad \forall \ n \in \mathbb{N}$$

$$3^{\circ}$$
) 1 + 2² + 3² + ··· + n^2 = $\frac{n(n+1)(2n+1)}{6}$

$$4^{\circ}$$
) $\sum_{i=1}^{n} \left(\frac{1}{2}i\right) = \frac{n^2 + n}{4}$

$$5^{\underline{0}}) \sum_{j=1}^{n} \frac{1}{4j^2 - 1} = \frac{n}{2n+1}$$

$$6^{\underline{0}}) \sum_{k=1}^{n} (a+4k) = 2n^2 + n(a+2)$$

$$7^{0}) \sum_{k=1}^{n} \left(\frac{k}{3^{k}} - \frac{k-1}{3^{k-1}} \right) = n3^{-n}$$

$$8^{\underline{o}} \sum_{k=1}^{n} (5^{k-1} - 5^k) = 1 - 5^k$$

$$9^{\circ} 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$$

$$10^{\circ} \sum_{k=1}^{n} (k+2)^2 = \frac{n(n+1)(2n+13)}{6} + 4n$$

$$11^{\circ}$$
) 1 + 3 + 5 + ··· + (2n - 1) = n^2

$$12^{0} \sum_{k=1}^{2n} (1+k^{2}) + \sum_{k=2}^{2n} (k-k^{2}) = 2n^{2} + 3n$$

13º)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n$$

$$14^{0}) \ 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

15º) 1³ + 2³ + 3³ + ··· + n³ =
$$\left[\frac{n}{2}(n+1)\right]^2$$

16º)
$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

$$17^{0}) \ 1 \cdot 4 + 2 \cdot 7 + 3 \cdot 10 + \dots + n(3n+1) = n(n+1)^{2}$$

18º)
$$\frac{0}{1!} + \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n-1}{n!} = 1 - \frac{1}{n!}$$

19º)
$$\frac{1^2}{1\cdot 3} + \frac{2^2}{3\cdot 5} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}$$

$$20^{\underline{0}})\ 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(3n+1)}{4}$$

$$21^{\circ}) \ 2 \cdot 1^{2} + 3 \cdot 2^{2} + \dots + (n+1)n^{2} = \frac{n(n+1)(n+2)(3n+1)}{12}$$

$$22^{\circ}) \frac{1}{1+x} + \frac{2}{1+x^2} + \frac{4}{1+x^4} + \dots + \frac{2^n}{1+x^{2^n}} = \frac{1}{x-1} + \frac{2^{n+1}}{1-x^{2^{n+1}}}$$

23°)
$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$
; onde $x \neq 1$

$$24^{\circ})\frac{1}{1\cdot 2\cdot 3\cdot 4} + \frac{1}{2\cdot 3\cdot 4\cdot 5} + \dots + \frac{1}{n(n+1)(n+2)(n+3)} = \frac{1}{3}\left[\frac{1}{6} - \frac{1}{(n+1)(n+2)(n+3)}\right]$$

Probabilidade

- 1°) Quantos números de dois algarismos (elementos) distintos podem ser formados usando se os algarísmos 2,3,4 e 5.
- 2°) Quatro carro G,P,M e E disputam uma corrida. Supondo que todos terminem a prova , quantas são as possibilidades de chegada para os três lugares?
- 3°) Quantos $n^{\circ}s$ de três algarísmos distintos formamos com os algarísmos 1,2,3,4,5, e 7.
- 4°) Um anagrama é um código formado pela transposição (troca) de todas as letras de uma palavra podendo ou não ter significado na língua de origem. Considere a palavra **livro**.
 - a) Quantos anagramas são formadas com as letras dessa palavra?
 - b) Quantas delas começam por **l** e terminam por **o**?
 - c) Quantas contém as letras **ro** juntos e nessa ordem?
- 5°) Quantos n^{o} s pares de 4 algarísmos obtemos com os algarísmos 0,1,2,3,4,5 e 6, sem repetí los?
- 6°) Quantos n^{o} s de 5 algarísmos distintos podem ser formados usando se osalgarísmos 1,3,5,7 e 8?
- 7°) Quantos anagramas tem a palavra "Mito"?

The Moise, The Quieto e The John

- 8°) Quantas anagramas tem a palavra Natálha?
- 9°) Quantos números de 3 algarismos, sem repetição, podemos formar com os os algarism 1; 2; 3; 4; 5; 6; 7; 8 e9 incluindo sempre o algarismos 4?
- 10°) Quantos números de 4 algarismos distintos podem ser formados usando se os algarismos 3; 4; 5; 7; 8 e 9?
- 11°) Quantas anagramas tem a palavra Aritmética?
- 12°) Com os algarismos 1,2,3 e 4 sem repeti- los, escerve- se x números maiores que 2400. Qual é o valor de x?
- 13°) Cinco homens e uma mulher estão em uma sala de espera, onde há apenas um banco de cinco lugares. De quantas maneiras diferentes os homens podem se sentar, nunca deixando em pé a mulher?
- 14°) Quantos números de 5 algarismos distintos formados com os algarismos 1; 2; 3; 4; 5; 6; 7; 8 e 9?
- 15°) Uma urna contém 8 bolas, 5 azuis e 3 cínzas. De quantas maneiras é possível

retirar uma a uma as 8 bolas dessa urna?

- 16°) Quantas comissões de 3 participantes podem ser formadas com 5 pessoas?
- 17°) Uma classe tem 10 alunos e 5 alunas . Formam se comissões de 4 alunos e 2 alunas. Determina o n^{o} de comissões em que participa o aluno x e não participa a aluna y.
- 18°) Uma urna contém 10 bolas numeradas de 1 à 10, retira se uma bola ao acaso e observa se o n° indicado. Determina:
 - a) 0 espaço amostral (u);
 - b) O evento A: nº de bolas é ímpar;
 - c) 0 evento $B: n^{o}$ de bola é maior que 6.
- 19°) Um sexto tem 6 bolas de voley, sendo 3 brancas e 3 vermelhas. Desse sexto são retiradas sucessivamente 3 bolas. Determina o n^{o} de elementos dos seguintes eventos:
 - a) As três bolas tem a mesma cor;
 - b) As três bolas são vermelhas;
 - c) Duas das bolas são branças;
 - d) $0 n^{o}$ de bolas brancas é igual ao n^{o} de bolas vermelhas.

- 20°) No lançamento de um dado, qual é a probabilidade de cair 3?
- 21°) No lançamento de uma moeda, qual é a probabilidade de sair cara?
- 22°) Ao retirar uma carta de um barahlo de 52 cartas, qual é a probabilidade de ser um rei de copas?
- 23°) No lançamento de dois dados, um branco e um vermehlo, qual é a probabilidade de a soma dos dois dados ser maior que 7?
- 24°) No lançamento de um dado, determinar a probabilidade de se obter:
 - a) 0 número 2;
 - b) $Um n^{o} par$;
 - c) Um múltiplo de 3.
- 25°) De um barahlo de 52 cartas tiram se sucessivamente se reposição, duas cartas. Determinar a probabilidade dos eventos:
 - a) Duas cartas são damas;
 - b) Duas são de Ouro.
- 26°) Considere um conjunto de 10 frutas, em que 3 estão estragadas. Escohlendo aliatoriamente duas frutas desse conjunto, determine a probabilidade de:
 - a) Ambas não estarem estragadas;

- b) Pelo menos uma estar estragada.
- 27°) Numa pesquisa sobre a preferência em relação a dois jornais foram 28°) consultadas 470 pessoas e o resultado foi o seguinte; 250 delas lêem o jornal A, 180 lêem o jornal B e 60 lêem os jornais A e B. Escolhendo um dos intrevistados ao acaso, qual é a probabilidade de que ele esteja:
 - a) Leitor dos jornais A e B;
 - b) Leitor do jornais A ou do jornal B.
- 29°) Retirando se uma carta de um barahlo de 52 cartas, qual é a probabilidade de ocorrer um Rei ou um valete?
- 30°) O **The Quieto**, tem 5 camisas (branca, amarela, verde, azul e vermelha) e 3 calças (preta, cinza, e castanha). De quantas maneiras diferentes ele podera se vestir, usando uma calça e uma camisa?
- 31°) Oito cavalos disputam uma corrida. Quantos são as possibilidades de chegada para os 3 primeiros cavalos?

Funções

1º) Construir os gráficos das funções lineares fraccionárias (hipérboles):

$$a) y = \frac{1}{x}$$

$$b) y = \frac{1}{1-x}$$

$$c) y = \frac{2x - 3}{3x + 2}$$

$$d)y = \frac{x-2}{x+2}$$

e)
$$y = y_0 + \frac{m}{x - x_0}$$
; se $x_0 = 1, y_0 = -1$ e $m = 6$

The Moise, The Quieto e The John

2º) Construir os gráficos das funções racionais fraccionárias:

$$a) y = x + \frac{1}{x}$$

$$b) y = \frac{1}{x^2}$$

$$c) y = \frac{x^2}{x+1}$$

$$d) y = x + \frac{1}{x^2}$$

e)
$$y = x^2 + \frac{1}{x}$$
 (Tridente de Newton)

f)
$$y = \frac{2x}{x^2 + 1}$$
 (Serpente de Newton)

g)
$$y = \frac{10}{x^2 + 1}$$
 (Curva de Agnesi)

3º) Construir os gráficos das funções irracionais:

a)
$$y = \sqrt{x}$$
; b) $y = \sqrt[3]{x}$; c) $y = \frac{1}{\sqrt{1 - x^2}}$

d)
$$y = \pm x\sqrt{25 - x^2}$$
 ; e) $y = \pm \frac{3}{5}\sqrt{25 - x^2}$ (Elípse)

$$f) y = \sqrt[3]{x^2}$$
 (Parábola de Neil);

$$g) y = \pm x\sqrt{x} \ (Parábola \ Semicúbica)$$

h)
$$y = \pm \sqrt{x^2 - 1}$$
 (Hipérbole);

i)
$$y = \pm x \sqrt{\frac{x}{4-x}}$$
 (Cissóide de Diocles).

4º) Construir os gráficos defunções trigonométricas:

$$a) y = \sin x$$

$$b) y = \cos x$$

c)
$$y = \tan x$$

$$d) y = \cot g x$$

$$e) y = \sec x$$

$$f) y = \operatorname{cossec} x$$

$$g) y = \cos \frac{\pi}{x}$$

$$h) y = \pm \sqrt{\sin x}$$

$$i) y = tag^2 x$$

$$i y = A \sin x$$
; se $A =$

$$1,10,\frac{1}{2},-2$$

k)
$$y = \sin nx$$
; se $n = 1,2,3,\frac{1}{2}$

$$l) y = \sin x - \frac{1}{3}\sin 3x$$

$$m) y = \cos x + \frac{1}{2}\cos 2x$$

$$n) y = 1 - 2 \cos x$$

$$o) y = x + \sin x$$

$$p) y = x \sin x$$

$$q) y = \cos^2 x$$

$$r) y = \sin x + \cos x$$

s)
$$y = a \sin x + b \cos x$$
; se a
= $6 e b = -8$

$$t) y = 5\sin(2x - 3)$$

$$u) y = \sin(x - \theta)$$
; se

$$\theta = 0, \frac{\pi}{2}, \frac{3\pi}{2}, \pi, \dots - \frac{\pi}{4}$$

The Moise, The Quieto e The John

 5°) Construir os gráficos das funções exponenciais e logarítmos:

a)
$$y = a^x$$
; se $a = 2, \frac{1}{2}$, e onde: $e = 2,718$...

b)
$$y = \log_a x$$
; se $a = 10,2,\frac{1}{2}$, e

c)
$$y = \sinh x$$
; onde $\sinh x = \frac{1}{2}(e^x - e^{-x})$

$$d) y = 10^{\frac{1}{x}}$$

e)
$$y = \tanh x$$
; onde $\tanh x = \frac{\sinh x}{\cosh x}$

f)
$$y = \cosh x$$
; onde $\cosh x = \frac{1}{2}(e^x + e^{-x})$

$$g) y = e^{-x^2}$$
 (Curva das probabilidades)

h)
$$y = 2^{-\frac{1}{x^2}}$$

$$i) y = \log^2 x$$

$$j) y = \frac{1}{\log x}$$

$$k) y = \log(-x)$$

$$l) y = \log(\cos x)$$

$$m) y = 2^{-x} \sin x$$

$$n) y = \log_2(1+x)$$

The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$o) y = \log\left(\frac{1}{x}\right)$$

$$p) y = \log(\log x)$$

$$q) y = \log x^2$$

6º) Construir os gráficos das funções trigonométricas inversas:

a)
$$y = arc \sin x$$

$$b) y = arc \cos x$$

$$c) y = arc tag x$$

$$d) y = arc \cot g x$$

$$e) y = arc \sin \frac{1}{x}$$

 7°) Construir os gráficos das funções (n é natural):

$$a) y = \lim_{n \to \infty} (\cos^{2n} x)$$

$$b) y = \lim_{\alpha \to \infty} \sqrt{x^2 + \alpha^2}$$

c)
$$y = \lim_{n \to \infty} \sqrt[n]{1 + x^n}$$
 ; $(x \ge 0)$

$$f) y = x + arc \sin \frac{1}{x}$$

$$g) y = arc \cos \frac{1}{x}$$

$$d) y = \lim_{n \to \infty} \frac{x}{1 + x^n} ; (x \ge 0)$$

$$e) y = \lim_{n \to \infty} [arc \tan(nx)]$$

The Moise, The Quieto e The John

Continuidade das funções

Verificar se as funções seguimtes são contínu

$$8^{\underline{o}}) \qquad y = \frac{x^2}{x-2}$$

$$10^{\underline{0}})y = \sin\frac{\pi}{x}$$

$$11^{\underline{o}})y = x \sin \frac{\pi}{x}$$

$$12^{\underline{0}})y = \frac{x}{\sin x}$$

$$13^{\underline{0}})y = \ln\left|\tan\frac{x}{2}\right|$$

$$14^{0})y = (1+x)arc \tan \frac{1}{1-x^{2}}$$

$$15^{\underline{0}})y = e^{-\frac{1}{x^2}}$$

$$16^{\circ}$$
) $y = \frac{1+x^3}{1+x}$

$$17^{\underline{0}})y = \frac{x}{|x|}$$

$$18^{\underline{o}})y = \ln(\cos x)$$

$$19^{\circ}$$
) $y = arc \tan \frac{1}{x}$

$$20^{\underline{0}})y = e^{\frac{1}{x+1}}$$

$$21^{0})y = \frac{1}{1 + e^{\frac{1}{x - 1}}}$$

Determinar o capo de existencia das funções:

$$22^{\circ}) y = \sqrt{x+1}$$

$$23^{\circ}) y = \sqrt[3]{x+1}$$

$$24^{\circ}) y = \sqrt{x^2-2}$$

$$25^{\circ}) y = x\sqrt{x^2-2}$$

$$26^{\circ}) y = \sqrt{-x} + \frac{1}{\sqrt{2+x}}$$

$$27^{\circ}) y = \log \frac{2+x}{2-x}$$

$$28^{\circ}) y = arc \cos \frac{2x}{1+x}$$

$$29^{\circ}y = \sqrt{\sin 2x}$$

$$30^{\circ}y = \frac{1}{4-x^{2}}$$

$$31^{\circ}y = \sqrt{2+x-x^{2}}$$

$$32^{\circ}y = \sqrt{x-x^{3}}$$

$$33^{\circ}y = \log \frac{x^{3}-3x+2}{x+1}$$

$$34^{\circ}y = arc \sin \left(\log \frac{x}{10}\right)$$

Estudo completo das funções

$$35^{\circ} y = x^{3} - 3x$$

$$36^{\circ} y = (x - 1)^{2}(x + 2)$$

$$37^{\circ} y = \frac{(x^{2} - 5)^{3}}{125}$$

$$38^{\circ} y = \frac{x^{4} - 3}{x}$$

$$39^{\circ} y = x^{2} + \frac{2}{x}$$

$$40^{\circ} y = \frac{8}{x^{2} + 4}$$

The Moise, The Quieto e The John

$$41^{\circ})y = \frac{4x-12}{(x-2)^2}$$

$$42^{\circ})y = \frac{16}{x^2(x-4)}$$

$$43^{\circ})y = \sqrt{x} + \sqrt{4-x}$$

$$44^{\circ})y = x\sqrt{x+3}$$

$$45^{\circ})y = \sqrt[2]{1-x^2}$$

$$46^{\circ})y = 2x + 2 - 3\sqrt[3]{(x+1)^2}$$

$$47^{\circ})y = \frac{4}{\sqrt{4-x^2}}$$

$$48^{\circ})y = \sqrt[3]{(x+4)^2} - \sqrt[3]{(x-4)^2}$$

$$49^{\circ})y = \sqrt[3]{(x-2)^2} + \sqrt[3]{(x-4)^2}$$

$$50^{\circ})y = \frac{6x^2-x^4}{x^2}$$

$$51^{\circ}$$
) $y = \frac{(x-2)^2(x+4)}{4}$

$$52^{0})y = \frac{x}{\sqrt[3]{x^2 - 1}}$$

$$53^{\circ})y = \frac{x^2 - 2x + 2}{x - 1}$$

$$54^{0})y = \frac{1}{x^2 + 3}$$

$$55^{\underline{0}})y = \frac{4x}{4+x^2}$$

$$56^{\circ}$$
) $y = xe^{-x}$

$$57^{0})y = e^{8x - x^2 - 14}$$

$$58^{\circ}$$
) $y = 2|x| - x^2$

$$59^{\circ})y = \frac{x^2}{2} \ln \frac{x}{a}$$

$$60^{\circ}$$
) $y = (x+1) \ln^2(x+1)$

$$61^{\underline{0}})y = \ln \frac{\sqrt{x^2 + 1} - 1}{x}$$

$$62^{\underline{0}})y = \ln\left(e + \frac{1}{x}\right)$$

$$63^{\underline{0}})y = \ln(x^2 - 1) + \frac{1}{(x^2 - 1)}$$

$$64^{\underline{0}})y = \frac{\ln x}{\sqrt{x}}$$

$$65^{0})y = (2 + x^{2})e^{-x^{2}}$$

$$66^{\underline{0}})y = \sin x + \frac{\sin 2x}{2}$$

The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$67^{\circ}) y = \sin^{3} x + \cos^{3} x
68^{\circ}) y = \left(a + \frac{x^{2}}{a}\right) e^{\frac{x}{a}}
69^{\circ}) y = \frac{8}{x\sqrt{x^{2}-4}}
70^{\circ}) y = \frac{3}{\sqrt{x}+1} - \sqrt[3]{x-1}
71^{\circ}) y = \frac{\sin x}{\sin(x+\frac{\pi}{4})}
72^{\circ}) y = x + \sin x
73^{\circ}) y = \sqrt{x^{2}-3x}
74^{\circ}) y = \frac{arc \sin x}{\sqrt{1-x^{2}}}
76^{\circ}) y = \frac{arc \sin x}{\sqrt{1-x^{2}}}
76^{\circ}) y = \frac{x^{2}}{x^{2}-4}
78^{\circ}) y = x + 2arc \cot x
79^{\circ}) y = \ln \tan \left(\frac{\pi}{4} - \frac{x}{2}\right)
80^{\circ}) y = \frac{x}{2} + arc \cot x
81^{\circ}) y = \frac{x}{2} + arc \cot x
82^{\circ}) y = arc \sin(1 - \sqrt[3]{x^{2}})
84^{\circ}) y = \cos x - \cos^{2} x
85^{\circ}) y = arc \sin \ln(x^{2}+1)
86^{\circ}) y = x^{\frac{1}{x}}
87^{\circ}) y = x^{x}
88^{\circ}) \ln(1 - e^{-x})
89^{\circ}) \sin x + \cos x
90^{\circ}) 2x - \tan x
91^{\circ}) \sin x \cdot \sin 2x
92^{\circ}) y = e^{arc \sin \sqrt{x}}
93^{\circ}) y = arc \cosh\left(x + \frac{1}{x}\right)
94^{\circ}) y = \cos x \cdot \cos 2x$$

Achar a inversa para a função y, se:

$$95^{\circ}$$
) $y = 2x + 3$

$$96^{0})y = 2 + x - x^{2}$$

$$97^{\circ}$$
) $y = 1 - x + x^2$

$$98^{\underline{0}})y = x^3 - 3x$$

$$99^{\underline{0}})y = \log \frac{2x}{1+x}$$

Limites

$$1^{\underline{0}}) \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right)$$

$$2^{\underline{0}}$$
) $\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)}{n^3}$

$$3^{\underline{0}}) \lim_{n \to \infty} \left[\frac{1+3+5+7+\cdots+(2n-1)}{n+1} - \frac{2n+1}{2} \right]$$

$$4^{\underline{0}}) \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$

$$5^{\circ}$$
) $\lim_{n\to\infty} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}\right)$

$$6^{\underline{0}}$$
) $\lim_{n\to\infty} \left(1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^{n-1}}{3^{n-1}}\right)$

$$7^{\underline{0}}) \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$$

$$8^{\underline{o}}$$
) $\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$

The Moise, The Quieto e The John

$$9^{\circ}$$
) $\lim_{n\to\infty}\frac{n\sin n!}{n^2+1}$

$$10^{\circ} \lim_{x \to \infty} \frac{(2x-3)(3x+5)(4x-6)}{3x^2+x-1}$$

11º)
$$\lim_{x \to \infty} \frac{x}{\sqrt[3]{x^3 + 10}}$$

12º)
$$\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1}$$

13º)
$$\lim_{n\to\infty} \frac{n+(-1)^n}{n-(-1)^n}$$

14º)
$$\lim_{x \to \infty} \frac{x^2 - 5x + 1}{3x + 7}$$

15º)
$$\lim_{x \to \infty} \frac{(2x+3)^3(3x-2)^2}{x^5+5}$$

$$16^{\circ} \lim_{x \to \infty} \frac{2x+3}{x+\sqrt{x}}$$

17º)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + 1}}{x + 1}$$

18º)
$$\lim_{x \to \infty} \frac{1000x}{x^2 - 1}$$

19º)
$$\lim_{x\to\infty} \frac{2x^2-x+3}{x^3-8x+5}$$

The Moise, The Quieto e The John

$$20^{0}) \lim_{x \to \infty} \frac{2x^{2} - 3x - 4}{\sqrt{x^{4} + 1}}$$

$$21^{\underline{0}}) \lim_{x \to \infty} \frac{x^2}{10 + x\sqrt{x}}$$

22º) a)
$$\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x} + \sqrt{x}}}$$
; b) $\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x\sqrt{x}\sqrt{x}}}$

$$(23^{\circ}) \lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

24º)
$$\lim_{x \to a} \frac{x^2 - (a+1)x + a}{-a^3 + x^3}$$

25º)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

26°)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}+1}$$

$$27^{0}) \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

28°)
$$\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt[4]{x}-1}$$

29º)
$$\lim_{x\to 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$$

$$30^{\circ}$$
) $\lim_{x\to 0} \frac{x^2-4}{x^2-3x+2}$

31º)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x - 1)^2}$$

$$32^{\underline{0}}) \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}$$

33º)
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 + 1}$$

The Moise, The Quieto e The John

$$34^{\circ} \lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

35°)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

36º)
$$\lim_{x\to 0} \frac{(x+h)^3 - x^3}{h}$$

$$37^{\circ} \lim_{x \to 5} \frac{x^2 - 5x + 10}{x^2 - 25}$$

38°)
$$\lim_{h\to 0} \frac{\sqrt[3]{x+h} - \sqrt[3]{x}}{h}$$
; $(x \neq 0)$

39º)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

$$40^{\circ}) \lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$$

41º)
$$\lim_{x\to 7} \frac{2-\sqrt{x-3}}{x^2-49}$$

42º)
$$\lim_{x \to 3} \frac{\sqrt{x^2 - 2x + 6} - \sqrt{x^2 + 2x - 6}}{x^2 - 4x + 3}$$

$$43^{\circ} \lim_{x\to 0} x \sin\frac{1}{x}$$

$$44^{\circ} \lim_{x \to \pi} x \sin \frac{1}{x}$$

$$45^{\circ}$$
) $\lim_{x\to+\infty} \left(\sqrt{x+a} - \sqrt{x}\right)$

$$46^{\circ} \lim_{x \to +\infty} \left(\sqrt{x^2 - 5x + 6} - x \right)$$

$$47^{\underline{a}}) \lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - x \right)$$

The Moise, The Quieto e The John

48°)
$$\lim_{x \to \infty} \left(x + \sqrt[3]{1 - x^3} \right)$$

$$49^{\underline{o}}) \lim_{x \to \infty} \left[\sqrt{x(x+a)} - x \right]$$

$$50^{\circ} \lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 + x}}$$

51º)
$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
; $(x > 0)$

$$52^{\circ}$$
) $\lim_{x\to 8} \frac{x-8}{\sqrt[3]{x}-2}$

$$53^{\circ}) \lim_{x \to \pi} \frac{1 - \sin \frac{1}{x}}{\pi - x}$$

$$54^{\circ} \lim_{x\to 0} \frac{\cos mx - \cos nx}{x^2}$$

$$55^{\circ}) \lim_{x\to 0} \frac{arc\sin x}{x}$$

$$56^{\circ}$$
) $\lim_{x\to 1} \frac{1-x^2}{\sin \pi x}$

$$57^{\underline{0}}) \lim_{x \to 1} \frac{\cos \frac{\pi x}{2}}{1 - \sqrt{x}}$$

58°)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{x}$$

$$59^{0}) \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x^{2}}$$

$$60^{\circ} \lim_{x \to 0} \frac{x - \sin 2x}{x + \sin 3x}$$

61º)
$$\lim_{x\to 0} \frac{arc \tan 2x}{\sin 3x}$$

62º)
$$\lim_{x \to \frac{\pi}{3}} \frac{1 - 2\cos x}{\pi - 3x}$$

63°)
$$\lim_{x\to 0} \cot 2x \cot \left(\frac{\pi}{2} - x\right)$$

64°)
$$\lim_{x\to 1} (1-x) \tan \frac{\pi x}{2}$$

65°)
$$\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$66^{\underline{0}}) \lim_{x \to a} \frac{\cos x - \cos a}{x - a}$$

$$67^{0}) \lim_{x \to 0} \frac{1 - \cos x}{x^{2}}$$

$$68^{\underline{0}}) \lim_{x\to 1} \frac{\sin \pi x}{3\pi x}$$

$$69^{\underline{0}}) \lim_{x \to \infty} \frac{\sin x}{x}$$

$$70^{\circ} \lim_{x \to \infty} \frac{\sin x}{x}$$

71º)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{1 - \tan x}$$

72º)
$$\lim_{x \to -2} \frac{\tan \pi x}{x + 2}$$

$$73^{\underline{0}}) \lim_{x \to a} \frac{\sin x - \sin a}{x - a}$$

$$74^{\circ} \lim_{x \to 0} \left(\frac{x^2 - 2x + 3}{x^2 - 3x + 2} \right)^{\frac{\sin x}{x}}$$

$$75^{0}) \lim_{x \to 0} (\cos x)^{\frac{1}{x^{2}}}$$

$$76^{\underline{o}}) \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n$$

$$77^{\underline{0}}) \lim_{n\to\infty} n \sin\frac{\pi}{n}$$

78°)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}$$

$$79^{\circ}$$
) $\lim_{x\to\infty} \frac{x+1}{2x+1}$

$$80^{\circ}) \lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$$

$$81^{\underline{0}}) \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$$

$$82^{\underline{0}}) \lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} \cdot \frac{\sin x}{x}$$

$$83^{\underline{0}}) \lim_{x\to 0} \left(\frac{\sin 2x}{x}\right)^{1+x}$$

$$84^{\circ} \lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x$$

$$85^{\circ}$$
) $\lim_{x\to 0} \left(\frac{2+x}{3-x}\right)^x$

$$86^{\underline{0}}) \lim_{x \to \infty} \left(\frac{1}{x^2}\right)^{\frac{2x}{x+1}}$$

87º)
$$\lim_{x \to \infty} \left(\frac{x^2 + 2}{2x^2 + 1} \right)^{x^2}$$

The Moise, The Quieto e The John

88°)
$$\lim_{x \to +\infty} [\ln(2x+1) - \ln(x+2)]$$

$$89^{0}) \lim_{x \to 0} \frac{\log(1 + 10x)}{x}$$

90°)
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$
; $\lim_{x\to 0} \frac{a^x - b^x}{x}$

$$91^{\underline{0}}) \lim_{x \to +\infty} x [\ln(x+1) - \ln x]$$

92º)
$$\lim_{n\to\infty} n(\sqrt[n]{a}-1)$$
; $(a>0)$

93º)
$$\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{x}$$
; $\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$

$$94^{\underline{0}}) \lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x$$

95°)
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$$

96°)
$$\lim_{x\to\infty} \left(\frac{x-1}{x+3}\right)^{x+2}$$

97º)
$$\lim_{x\to 1} \left(\frac{x-1}{x^2-1}\right)^{x+1}$$

98°)
$$\lim_{x\to 0} \left(\frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}} \right)$$

99°)
$$\lim_{x \to \infty} \left(2 - \frac{1}{x} + \frac{4}{x^2} \right)$$

100°)
$$\lim_{x\to 0} \frac{\sqrt{x^2 + p^2} - p}{\sqrt{x^2 + q^2} - q}$$

The Moise, The Quieto e The John

$$101^{\circ}(a) \lim_{x \to a} \frac{\sqrt[m]{x} - \sqrt[m]{a}}{x - a}; \ b) \lim_{x \to 1} \frac{x^n - 1}{x - 1} \ onde \ n \in Z_+$$

c)
$$\lim_{x \to 1} \frac{\sqrt[n]{x} - 1}{\sqrt[m]{x} - 1}$$
; d) $\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$; $\lim_{x \to 1} \frac{x - 1}{x^m - 1}$

$$102^{0}) \lim_{n \to \infty} n^{n^2} (1 + n^2)^{-\frac{n^2}{2}}$$

$$103^{\circ}) \lim_{v \to \frac{\pi}{3}} \frac{1 - 2\cos v}{\sin\left(v - \frac{\pi}{3}\right)}$$

$$104^{\circ} \lim_{n \to \infty} n^3 \sin \frac{1}{n} [\log(n^2 + 1) - \log(n^2 + 3)]$$

$$105^{\underline{0}}) \lim_{n\to\infty} \{n[\log(n+1) - \log n]\}$$

$$106^{\circ}$$
) $\lim_{n\to\infty} \sqrt{n} \log\left(1+\frac{1}{n}\right)$

$$107^{\underline{0}}) \lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{3 \sec x}$$

$$108^{\underline{0}}) \lim_{x\to 0} \frac{\log(1+ax)}{x}$$

109°)
$$\lim_{n \to \infty} \frac{\log n^{n+1} - \log(n+1)^n}{\log(n+1)}$$

$$110^{0}) \lim_{x \to 0} \frac{\sqrt{1 + x + x^{2}} - 1}{x}$$

$$111^{0}) \lim_{n \to \infty} (n^3 + 2)^{\frac{n^3}{3}} \cdot n^{-n^3}$$

The Moise, The Quieto e The John

112°)
$$\lim_{n\to\infty} \frac{1}{2n+1} \sqrt[3]{1-27n^3}$$

$$113^{\underline{0}}) \lim_{n \to \infty} \sqrt[2n]{(n+1)e^{\log n}}$$

114°)
$$\lim_{n\to\infty}\frac{2}{n}\sqrt[n]{\binom{n}{n-1}\frac{n!}{3}}$$

$$115^{\circ}) \lim_{n\to\infty} \left(\sqrt{2+n+4n^2}-2n\right)$$

116º)
$$\lim_{n\to\infty}\frac{1}{2n}\sqrt[n]{\binom{n}{1}n!}$$

$$117^{\underline{0}}) \lim_{n \to \infty} (n+1)^{\frac{1}{\log n}}$$

$$118^{\underline{0}}) \lim_{n \to \infty} \sqrt[n]{x^n + \frac{1}{x^n}}$$

119º)
$$\lim_{n \to \infty} \sqrt[n]{3^n + 2^n}$$

120°)
$$\lim_{n\to\infty} \sqrt[n]{\log n!}$$

$$121^{\underline{0}}) \lim_{n \to \infty} \sqrt[n]{\frac{\log n}{ne^{-\log n}}}$$

122°)
$$\lim_{n\to\infty} \frac{\sqrt{an+b} - \sqrt{an+d}}{\sqrt{n+1} - \sqrt{n+2}}$$

123^o)
$$\lim_{n \to \infty} \left(\frac{1+3^n}{1+2^n} \right)^{\frac{2-\sqrt{n}}{1+\sin^2 n}}$$

124°
$$\lim_{n\to\infty} [(n+1)^{-n} \cdot n^{(n+1)}]$$

The Moise, The Quieto e The John

$$125^{\underline{0}}) \lim_{n\to\infty} \frac{1}{n} \sqrt[n]{n(n+1)(n+2)\cdots 2n}$$

126°)
$$\lim_{n\to\infty} \left(\sqrt[5]{1-\frac{3}{n+1}} - 1 \right) \left[\log\left(1+\frac{2}{n+1}\right) \right]$$

127°)
$$\lim_{n \to \infty} \sqrt[n]{\frac{n+2}{n+1}} \cdot \sin\left(\frac{1}{n}\right) \cdot \log\frac{n+1}{n}$$

$$128^{\underline{0}}) \lim_{n \to \infty} \frac{n}{n - 2\log n}$$

$$129^{\underline{0}}) \lim_{n \to \infty} \frac{\sqrt[4]{\frac{n+3}{n+1}} - 1}{\log \frac{n+2}{n}}$$

130°)
$$\lim_{n\to\infty} \frac{1+2^2+3^2+\cdots+n^2}{2\cdot 3+3\cdot 4+\cdots+(n+1)(n+2)}$$

131º)
$$\lim_{n\to\infty} n^2 \left(\sqrt[4]{1 + \frac{4a^2}{n^2 + 1}} - 1 \right)$$

132º)
$$\lim_{n\to\infty} ne^{-3n}$$

133°)
$$\lim_{n\to\infty} (n^3 + 3n + 1) \left[\left(\sqrt{1 + \frac{1}{n^3 + 1}} \right) - 1 \right]$$

134°)
$$\lim_{n \to \infty} \frac{3n - 2\sqrt{n+1}}{4n - \log^2 n}$$

135°)
$$\lim_{n \to \infty} \frac{2}{\sqrt[4]{\frac{n+2}{n+1}} - 1}$$

136°
$$\lim_{n\to\infty} (n^3+1) \left(3^{\frac{1}{n}}-1\right)$$

The Moise, The Quieto e The John

137º)
$$\lim_{n \to \infty} \frac{\sqrt[n]{2} - 1}{\left(1 + \frac{3n}{n^2 + 1}\right)^5 - 1}$$

$$138^{\underline{o}}) \lim_{n \to \infty} \left(\frac{3^{\frac{1}{n}} + 5^{\frac{1}{n}}}{2} \right)^n$$

$$139^{\underline{o}}) \lim_{n \to \infty} \frac{\tan \frac{1}{n}}{\sqrt[n]{e} - 1}$$

140°)
$$\lim_{n \to \infty} \frac{\sqrt[n]{e} - 1 - \frac{1}{n}}{\sqrt{\frac{n+2}{n+1}} - 1}$$

$$141^{\underline{0}}) \lim_{n\to\infty} n \left[\log \left(1 + \frac{2}{3n+1} \right) - \frac{3}{n} \right]$$

142°)
$$\lim_{x\to 1} \frac{x^3 - 2x^2 - x + 2}{x^3 - 7x + 6}$$

143°)
$$\lim_{x\to 0} \frac{x \cos x - \sin x}{x^3}$$

$$144^{\circ}$$
) $\lim_{x\to 0} \frac{\cosh x - 1}{1 - \cos x}$

145°)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x - 2 \tan x}{1 + \cos 4x}$$

$$146^{\circ}) \lim_{x \to +\infty} \frac{e^x}{x^5}$$

The Moise, The Quieto e The John

$$147^{\circ} \lim_{x \to 0} \frac{\frac{\pi}{x}}{\cot \frac{\pi x}{2}}$$

$$148^{\circ}$$
) $\lim(1-\cos x)\cot x$

149°)
$$\lim_{x \to 1} (1+x) \tan \frac{\pi x}{2}$$

$$150^{\circ}) \lim_{x \to \frac{\pi}{2}} \left(\frac{x}{\cot x} - \frac{\pi}{2 \cos x} \right)$$

151°)
$$\lim_{x \to +\infty} x^n \sin \frac{a}{x} ; n > 0 e a \neq 0$$

152°)
$$\lim_{x \to +\infty} (x^n e^{-x})$$
; $n > 0$

153°)
$$\lim_{x\to +0} x^x$$

$$154^{\underline{0}}) \lim_{x \to +\infty} x^{\frac{1}{x}}$$

$$155^{\underline{0}}) \lim_{x \to 1} \ln x \ln(x-1)$$

156°)
$$\lim_{x \to -1} \frac{1-x}{1-\sin\frac{\pi x}{2}}$$

157º)
$$\lim_{x\to 0} x^{\frac{3}{4+\ln x}}$$

158
$$\frac{0}{2}$$
) $\lim_{x\to 0} x^{\sin x}$

$$159^{\underline{0}}) \lim_{x \to 0} \frac{\tan x - \sin x}{x - \sin x}$$

160°) a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 5x}$$
; b) $\lim_{x \to \frac{\pi}{2}} \frac{4 \cos x}{\pi - 2x}$

$$161^{\underline{o}}) \lim_{x \to +\infty} \frac{\ln x}{\sqrt[3]{x}}$$

$$162^{0}) \lim_{x \to 1} (1-x)^{\cos \frac{\pi x}{2}}$$

The Moise, The Quieto e The John

163°)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

$$164^{\circ} \lim_{x \to +0} (\cot x)^{\sin x}$$

$$165^{\circ}$$
) $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\tan x}$

$$166^{\underline{o}}) \lim_{x \to +0} \frac{\ln(\sin mx)}{\ln \sin x} ; (m > 0)$$

$$167^{\underline{0}}) \lim_{x \to 0} arc \sin x \cdot \cot x$$

$$168^{\circ} \lim_{x \to \infty} x \sin \frac{a}{x} ; (a \neq 0)$$

$$169^{\underline{o}}) \lim_{x \to 1} \left(\tan \frac{\pi x}{4} \right)^{\tan \frac{\pi x}{2}}$$

170°)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

$$171^{0}) \lim_{x \to 0} (1+x^{2})^{\frac{1}{x}}$$

172º)
$$\lim_{x\to 0} (\cos 2x)^{\frac{3}{x^2}}$$

The Moise, The Quieto e The John

173°)
$$\lim_{x\to 3} \left(\frac{1}{x-3} - \frac{5}{x^2-x-6} \right)$$

174°)
$$\lim_{x\to 1} \left[\frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})} \right]$$

175 $^{\circ}$) Demonstrar os limites:

a)
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0$$
 ; b) $\lim_{x \to \infty} \frac{x - \sin x}{x + \sin x} = 1$

ORS: Não nodem ser encotradas nela regra de l'hôsnital – Bernoulli, Encotre – os direitamente

* Achar os seguintes limiteis laterais:

176°
$$a$$
) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$; b) $\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}}$

177°) a)
$$\lim_{x \to -\infty} \tanh x$$
; a) $\lim_{x \to +\infty} \tanh x$ onde $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

178°) a)
$$\lim_{x \to -0} \frac{1}{1 + e^{\frac{1}{x}}}$$
; b) $\lim_{x \to +0} \frac{1}{1 + e^{\frac{1}{x}}}$

179°) a)
$$\lim_{x \to -\infty} \frac{\ln(1 + e^x)}{x}$$
; b) $\lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x}$

180°) a)
$$\lim_{x \to -0} \frac{|\sin x|}{x}$$
; b) $\lim_{x \to +0} \frac{|\sin x|}{x}$

181°) a)
$$\lim_{x\to 1-0} \frac{x+1}{|x-1|}$$
 ; b) $\lim_{x\to 1+0} \frac{x+1}{|x-1|}$

182°) a)
$$\lim_{x\to 2-0} \frac{x}{x-2}$$
 ; b) $\lim_{x\to 2+0} \frac{x}{x-2}$

183º) Analisar se as funçõeso seguintes são contínuas:

$$a)f(x) = \frac{x}{|x|}$$
; $b)\begin{cases} \frac{x^2 - 5x + 6}{x - 2} & \text{se } x \neq 2\\ -1 & \text{se } x = 2 \end{cases}$

184º) Determinar o valor de A, para que a função dada seja contínua.

$$f(x) = \begin{cases} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} & \text{se } x \neq 1\\ A & \text{se } x = 1 \end{cases}$$

The Moise, The Quieto e The John

 185°) Determine o parâmento P para que as função sejam contínuas.

a)
$$f(x) = \begin{cases} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}} & \text{se } x \neq 0 \\ P & \text{se } x = 0 \end{cases}$$
; b) $\begin{cases} \frac{\log(1+10x)}{x} & \text{se } x \neq 0 \\ P & \text{se } x = 0 \end{cases}$

186º) Estude a continuidade das funções reais, de variável no ponto x=0, definidas por:

a)
$$f(x) = \begin{cases} \frac{\sin x}{|x|} & se \ x \neq 0 \\ 1 & se \ x = 0 \end{cases}$$
; b)
$$\begin{cases} \frac{\sqrt[3]{x^2 - 2\sqrt[3]{x} + 1}}{(x - 1)^2} & se \ x \neq 1 \\ \frac{1}{9} & se \ x = 1 \end{cases}$$

187 $^{\circ}$) Calcule os limiteis:

a)
$$\lim_{x \to 3} \frac{3^x - x^3}{x - 3}$$
; b) $\lim_{x \to 0} \left(\frac{a^{x+1} + b^{x+1}}{a + b} \right)^{\frac{1}{x}}$

c)
$$\lim_{n\to\infty} \frac{3\sqrt[n]{16} - 4\sqrt[n]{8} + 1}{(\sqrt[n]{2} - 1)^2}$$

188º) Usando a fórmula de Taylor resolver:

a)
$$\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - \frac{x^2}{2}}$$
; b) $\lim_{x \to 0} \frac{\log^2(1 + x) - \sin^2 x}{1 - e^x}$

c)
$$\lim_{x \to 0} \frac{2(\tan x - \sin x) - x^3}{x^5}$$
 ; d) $\lim_{x \to 0} \left[x - x^2 \log \left(1 + \frac{1}{x} \right) \right]$

e)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{\cot x}{x}\right)$$
; f) $\lim \left(\frac{1}{x^2} - \cot x\right)$

The Moise, The Quieto e The John

 189°) Verificar se as funções seguintes são contínuas.

$$a) y = \frac{x^2}{x - 2}$$

$$b) \ y = \frac{1 + x^3}{1 + x}$$

$$c) y = \frac{\sqrt{7+x} - 3}{x^2 - 4}$$

$$d) y = \sin \frac{\pi}{x}$$

$$e) y = x \sin \frac{\pi}{x}$$

$$f) y = \frac{x}{\sin x}$$

$$g) y = \ln \cos x$$

$$h) y = \ln \left| \tan \frac{x}{2} \right|$$

$$j) y = e^{\frac{1}{x+1}}$$

$$k) y = e^{-\frac{1}{x^2}}$$

l)
$$y = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{se } x \neq 2 \\ -2 & \text{se } x = 2 \end{cases}$$

m)
$$y = \begin{cases} \frac{x^3 + 1}{x + 1} & \text{se } x \neq -1 \\ 3 & \text{se } x = -1 \end{cases}$$

$$o) y = \begin{cases} 1 & se \ x > 0 \\ 0 & se \ x = 0 \\ -1 & se \ x < 0 \end{cases}$$

The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

 190°) Dada as funções indeterminadas, quacdo x=0 determinar f(0) de forma que f(x) seja contínua.

$$a) f(x) = \frac{1 - \cos x}{x}$$

$$d) f(x) = x^2 \sin \frac{1}{x}$$

b)
$$f(x) = \frac{\ln(1+x) - \ln(1-x)}{x}$$

$$e) f(x) = x \cot x$$

$$c) f(x) = \frac{e^x - e^x}{x}$$

Derivadas

Funções algébrica

1°)
$$y = x^5 - 4x^3 + 2x^2 - 3$$

2°)
$$y = ax^2 + bx + c$$

10°)
$$y = -\frac{5x^3}{a}$$

$$3^{\circ}) \ y = at^m + bt^{m+n}$$

11°)
$$y = \frac{ax^6 + b}{\sqrt{a^2 + b^2}}$$

4°)
$$y = \frac{\pi}{x} + \ln 2$$

12°)
$$y = 3x^{\frac{2}{3}} - 2x^{\frac{3}{2}} + x^{-\frac{3}{2}}$$

5°)
$$y = x^2 \sqrt[3]{x^2}$$

13°)
$$y = \frac{a}{\sqrt[3]{x^2}} - \frac{b}{x\sqrt[3]{x}}$$

6°)
$$\frac{a+bx}{c+dx}$$

13)
$$y = \frac{1}{\sqrt[3]{x^2}} = \frac{1}{x^3\sqrt{x^2}}$$

$$7^{\circ}$$
) $\frac{2}{2x+1} - \frac{1}{x}$

14°)
$$y = \frac{2x+3}{x^2-5x+5}$$

8°)
$$y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0.5x^4$$

15°)
$$y = \frac{1+\sqrt{x}}{1-\sqrt{x}}$$

The Moise, The Quieto e The John

Funções trigonométricas

$$16^{\circ}) \quad y = 5\sin x + 3\cos x$$

20°)
$$y = \tan x - \cot x$$

17°)
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$

21°)
$$y = 2t \sin t - (t^2 - 2) \cos t$$

18°)
$$y = arc tag x + arc cotg x$$

22°)
$$y = x \cdot \cot x$$

19°)
$$y = x \cdot arc \sin x$$

23°)
$$y = \frac{(1+x^2)arc \log x - x}{2}$$

Funções exponenciais e logarímicas

24°)
$$y = x^7 e^x$$

29°)
$$y = \frac{x^5}{e^x}$$

25°)
$$y = \frac{e^{-x}}{x^2}$$

30°)
$$y = (x^2 - 2x + 2)e^x$$

26°)
$$y = e^x arc \sin x$$

31°)
$$y = \frac{x^2}{\ln x}$$

27°)
$$y = e^x \cos x$$

28°) $y = (x + 1)e^x$

32°)
$$y = \frac{1}{x} + \ln x - \frac{\ln x}{x}$$

Funções hiperbólicas

33°)
$$y = x \cdot \sinh x$$

34°)
$$y = \tanh x - x$$

35°)
$$y = arc tag x - Ar tanh x$$

$$36^{\circ}) \quad y = \frac{Ar \tanh x}{x}$$

$$37^{\circ}) \quad y = \frac{x^2}{\cosh x}$$

$$38^{\circ}) \quad y = \frac{3 \cosh x}{\ln x}$$

39°)
$$y = arc \sin x \cdot Ar \sinh x$$

$$40^{\circ}) \quad y = \frac{Ar \cosh x}{1 - x^2}$$

Funções compostas

41°)
$$y = (1 + 3x + 5x^2)^{30}$$

42°)
$$y = \sqrt{xe^x + x}$$

43°)
$$y = \left(\frac{ax+b}{c}\right)^3$$

44°)
$$v = \sqrt{1 + arc \sin x}$$

45°)
$$y = (3 + 2x^2)^4$$

46°)
$$y = \frac{1}{3\cos^3 x} - \frac{1}{\cos x}$$

47°)
$$f(y) = (2a + 3by)^z$$

48°)
$$y = \sqrt[3]{\sin^2 x} + \frac{1}{\cos x}$$

49°)
$$y = \frac{3}{56(2x-1)^7} - \frac{1}{24(2x-1)^6} - \frac{1}{40(2x-1)^5}$$

50°)
$$y = \csc^2 t + \sec^2 t$$

51°)
$$y = \sqrt{1 - x^2}$$

The Moise, The Quieto e The John

52°)
$$y = \sqrt{arc \tan x} - (arc \sin x)^3$$

53°)
$$y = \sqrt[3]{a + bx^3}$$

54°)
$$y = \frac{1}{arc \tan x}$$

$$55^{\circ}) \quad y = (3 - 2\sin x)^5$$

56°)
$$y = \sqrt[3]{2e^x - 2^x + 1} + \ln^5 x$$

57°)
$$y = \left(a^{\frac{2}{3}} - x^{\frac{2}{3}}\right)^{\frac{3}{2}}$$

$$58^{\circ}) \quad y = \sin 3x + \cos \frac{x}{5} + \tan \sqrt{x}$$

$$59^{\circ}) \quad y = \sqrt{\cot g \, x} - \sqrt{\cot g \, \alpha}$$

60°)
$$y = \sin(x^2 - 5x + 1) + \tan\frac{a}{x}$$

61°)
$$y = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x$$

62°)
$$y = \frac{1 + \cos 2x}{1 - \cos 2x}$$

63°)
$$y = 2x + 5\cos^3 x$$

$$64^{\circ}) \quad y = \sqrt{\frac{3\sin x - 2\cos x}{5}}$$

65°)
$$f(x) = \cos(\alpha x + \beta)$$

66°)
$$f(x) = -\frac{1}{6(1-3\cos x)^2}$$

67°)
$$f(t) = \sin t \sin(t + \theta)$$

68°)
$$f(x) = a \cot \frac{x}{a}$$

69°)
$$y = -\frac{1}{20}\cos(5x^2) - \frac{1}{4}\cos x^2$$

70°)
$$y = arc \tan(\ln x) + \ln(arc \tan x)$$

71°)
$$y = arc \sin 2x$$

72°)
$$y = \sqrt{\ln x + 1} + \ln(\sqrt{x} + 1)$$

73°)
$$y = arc \sin \frac{1}{r^2}$$

74°)
$$y = \ln(1 - x^2)$$

75°)
$$y = arc \tan \frac{1}{x}$$

76°)
$$y = \ln(2x + 7)$$

77°)
$$y = 5e^{-x^2}$$

78°)
$$y = x^2 10^{2x}$$

$$79^{\circ}) \quad f(t) = t \sin 2^t$$

80°)
$$y = \frac{1}{5x^2}$$

81°)
$$y = arc \cos e^x$$

82°)
$$y = arc \cot\left(\frac{1+x}{1-x}\right)$$

83°)
$$y = \log \sin x$$

84°)
$$y = \ln^2 x - \ln(\ln x)$$

85°)
$$y = \ln(e^x + 5\sin x - 4arc\sin x)$$

86°)
$$y = arc \cos \sqrt{x}$$

* Funções diversas

87°)
$$y = \sin^3(5x)\cos^2\frac{x}{3}$$

88°)
$$y = \frac{4}{3} \cdot \sqrt[4]{\frac{x+1}{x-1}}$$

89°)
$$y = -\frac{15}{4(x-3)^4} - \frac{10}{3(x-3)^3} - \frac{1}{2(x-3)^2}$$

90°)
$$y = x^4(a - 2x^3)^2$$

91°)
$$y = -\frac{11}{2(x-2)^2} - \frac{4}{x-2}$$

92°)
$$y = \left(\frac{a + bx^n}{a - bx^n}\right)^m$$

93°)
$$y = \frac{x}{8(1-x^2)^4}$$

94°)
$$y = (a + x)\sqrt{a - x}$$

95°)
$$y = \frac{\sqrt{2x^2 - 2x + 1}}{x}$$

96°)
$$y = \sqrt{(x+a)(x+b)(x+c)}$$

97°)
$$y = \ln(\sqrt{1 + e^x} - 1) - \ln(\sqrt{1 + e^x} + 1)$$

98°)
$$y = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$

The Moise, The Quieto e The John

99°)
$$z = \sqrt[3]{y + \sqrt{y}}$$

$$100^{\circ}) \ y = \frac{x^3}{3(\sqrt{1+x^2})^3}$$

101°)
$$y = \frac{1}{\sqrt{2ax-y^2}}$$

102°)
$$y = \frac{3}{2}\sqrt[3]{x^2} + \frac{18}{7}x\sqrt[6]{x} + \frac{9}{5}x\sqrt[3]{x} + \frac{6}{13}x^2\sqrt[6]{x}$$

103°)
$$y = \frac{1}{8} \sqrt[3]{(1+x^3)^8} - \frac{1}{5} \sqrt[3]{(1+x^3)^5}$$

104°)
$$y = tag^2(5x)$$

105°)
$$y = \frac{9}{5(x+2)^5} - \frac{3}{(x+2)^4} + \frac{2}{(x+2)^3} - \frac{1}{2(x+2)^2}$$

106°)
$$f(t) = (2t+1)(3t+2)\sqrt[3]{3t+2}$$

107°)
$$y = \frac{1}{\sqrt{b}} arc \sin\left(x\sqrt{\frac{b}{a}}\right)$$

108°)
$$y = \frac{1}{15}\cos^3 x \cdot (3\cos^2 x - 5)$$

109°)
$$y = \frac{1}{2}\sin x^2$$

110°)
$$y = x\sqrt{a^2 - x^2} + a^2 arc \sin \frac{x}{a}$$

111°)
$$y = 3 \sin x \cos^2 x + \sin^3 x$$

112°)
$$y = \left(x - \frac{1}{2}\right) arc \sin \sqrt{x} + \frac{1}{2} \sqrt{x - x^2}$$

113°)
$$y = -\frac{\cos x}{3\sin^3 x} + \frac{4}{3}\cot x$$

114°)
$$y = 3b^2 arc \log x \sqrt{\frac{x}{b-x}} - (3b + 2x)\sqrt{bx - x^2}$$

115°)
$$y = \sqrt{e^{ax}}$$

116°)
$$y = arc \sin x^2 + arc \cos x^2$$

117°)
$$y = \frac{arc \cos x}{\sqrt{1-x^2}}$$

118°)
$$y = \sqrt{\cos x} a^{\sqrt{\cos x}}$$

119°)
$$y = \sqrt{a^2 - x^2} + a \cdot arc \sin \frac{x}{a}$$

120°)
$$y = \ln(ax^2 + bx + c)$$

121°)
$$y = \ln \frac{(x-1)^3(x-2)}{x-3}$$

122°)
$$y = \frac{2}{3} arc \tan \frac{5 \tan \frac{x}{2} + 4}{3}$$

The Moise, The Quieto e The John

123°)
$$y = 5 \ln^3(ax + b)$$

124°)
$$y = \frac{1}{10}e^{-x}(3\sin 3x - \cos 3x)$$

125°)
$$y = \frac{1}{2} \ln \tan \frac{x}{2} - \frac{1}{2} \cdot \frac{\cos x}{\sin^2 x}$$

126°)
$$y = \frac{1}{\sqrt{3}} \ln \frac{\tan x + 2 - \sqrt{3}}{\tan \frac{x}{2} + 2 + \sqrt{3}}$$

127°)
$$y = \frac{(\alpha \sin \beta x - \beta \cos \beta x)e^{\alpha x}}{\alpha^2 + \beta^2}$$
128°)
$$y = (2ma^{mx} + b)^p$$

128°)
$$y = (2ma^{mx} + b)^p$$

129°)
$$y = \frac{\sqrt{2}}{3} arc \tan \frac{x}{\sqrt{2}} + \frac{1}{6} \ln \frac{x-1}{x+1}$$

$$130^{\circ}) \ y = -\sqrt{2}arc \cot \frac{\tan x}{\sqrt{2}} - x$$

131°)
$$y = 3\frac{\sin ax}{\cos bx} + \frac{1}{3}\frac{\sin^3 ax}{\cos^3 bx}$$

132°)
$$y = arc tag(ln x)$$

133°)
$$y = \frac{1}{3} \tan^3 x - \tan x + x$$

134°)
$$y = \sqrt{\alpha \sin^2 x + \beta \cos^2 x}$$

135°)
$$y = arc tag \left(ln \frac{1}{r} \right)$$

136°)
$$y = \frac{1}{2} (arc \sin x)^2 arc \cos x$$

137°)
$$y = arc \sin \frac{x}{\sqrt{1+x^2}}$$

138°)
$$y = \ln \frac{1 + \sqrt{\sin x}}{1 - \sqrt{\sin x}} + 2arc \cot \sqrt{\sin x}$$

139°)
$$y = \frac{3}{4} \ln \frac{x^2 + 1}{x^2 - 1} + \frac{1}{4} \ln \frac{x - 1}{x + 1} + \frac{1}{2} arc \tan x$$

140°)
$$y = \ln(arc \sin x) + \frac{1}{2} \ln^2 x - arc \sin(\ln x)$$

141°)
$$y = \frac{1}{3} \ln \frac{x^2 - 2x + 1}{x^2 + x + 1}$$

142°)
$$y = \sqrt{x^2 + 1} - \ln \frac{1 + \sqrt{x^2 + 1}}{x}$$

143°)
$$y = \ln \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2} - x}$$

$$144^{\circ}) \ y = \ln \ln(3 - 2x^3)$$

145°)
$$y = \ln \frac{(x-2)^5}{(x+1)^3}$$

The Moise, The Quieto e The John

146°)
$$y = \ln(a + x + \sqrt{2ax + x^2})$$

147°)
$$y = x + 2\sqrt{x} + 2\ln(1 + \sqrt{x})$$

148°)
$$y = \ln(x + \sqrt{a^2 + x^2})$$

148)
$$y = \ln(x + \sqrt{u^2})$$

149°) $y = 3^{\cot \frac{1}{x}}$

150°)
$$y = x^n a^{-x^2}$$

151°)
$$y = \frac{1}{3}\ln(1+x) - \frac{1}{6}\ln(x^2 - x + 1) + \frac{1}{\sqrt{3}}arc \tan\frac{2x-1}{\sqrt{3}}$$

152°)
$$y = \frac{x a r c \sin x}{\sqrt{1 - x^2}} + \ln \sqrt{1 - x^2}$$

153°)
$$y = \sinh^3(2x)$$

154°)
$$y = Ar \operatorname{tagh}(\operatorname{tag} x)$$

155°)
$$y = \left(\frac{1}{2}x^2 + \frac{1}{4}\right)Ar \sinh x - \frac{1}{4}x\sqrt{1+x^2}$$

156°)
$$f(x) = x \sin \frac{1}{x}$$
; $x \neq 0$; $f(0) = 0$

157°) Achar $f_{+}'(0)$ e $f_{-}'(0)$ para as funções:

$$a) f(x) = \sqrt{\sin x^2}$$

$$b) f(x) = arc \sin \frac{a^2 - x^2}{a^2 + x^2}$$

$$c) f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$$

$$b) f(x) = x^{2} \sin \frac{1}{x} ; x \neq 0; f(0) = 0$$

158°)
$$f(x) = \ln(1+x) + arc \sin \frac{x}{2} \cdot Achar f'(1)$$

159°)
$$f(x) = \tan^3 \frac{\pi x}{6} \cdot Achar \left(\frac{dy}{dx}\right)_{x=2}$$

160°)
$$y = (1 + 3x - 5x^2)^{30}$$

Calcular as derivadas das funções seguintes:

$$161^{\circ}) \ y = x^4 + 3x^2 - 6$$

$$162^{\circ}) \ y = \sin(\log x)$$

163°)
$$y = \frac{x^5}{a+b} - \frac{x^2}{a-b}$$

164°)
$$f(\theta) = \frac{1}{3} \tan^3 \theta - \tan \theta + \theta$$

165°)
$$y = 6x^{\frac{7}{2}} + 4x^{\frac{5}{2}} + 2x$$

166°)
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right)$$

167°)
$$y = \sqrt{3x} + \sqrt[3]{x} + \frac{1}{x}$$

168°)
$$y = \left(\frac{x}{n}\right)^{nx}$$

The Moise, The Quieto e The John

169°)
$$y = e^{x^x}$$
; $y = x^{x^x} e y = x^{x^{x^{x^{x^x}}}}$

170°)
$$y = \frac{x}{m} + \frac{m}{x} + \frac{x^2}{n^2} + \frac{n^2}{x^2}$$

$$171^{\circ}) \ y = x^{\log x}$$

172°)
$$y = \frac{ax^2}{\sqrt[3]{x}} + \frac{b}{x\sqrt{x}} - \frac{\sqrt[3]{x}}{\sqrt{x}}$$

173°)
$$y = \frac{x^p}{x^m - a^m}$$

$$174^{\circ}) \ y = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

175°)
$$y = \log x + \sqrt{x^2 + a^2} - \frac{\sqrt{a^2 + x^2}}{x}$$

176°)
$$y = \sqrt{a^2 + x^2} - a \log \frac{a + \sqrt{a^2 + x^2}}{x}$$

177°)
$$y = 7^{x^2 + 2x}$$

$$178^{\circ}) \ y = \log(ax + b)$$

179°)
$$y = (1 + \sqrt[3]{x})^3$$

Calcular a derivada das funções depois de as logaritmizado.

180°)
$$y = \sqrt[3]{\frac{x(x^2+1)}{(x-1)^2}}$$

181°) $y = \frac{(x+1)^3 \sqrt[4]{(x-2)^3}}{\sqrt[5]{(x-3)^2}}$
182°) $y = \frac{\sqrt[5]{(x-1)^2}}{\sqrt[4]{(x-2)^3} \cdot \sqrt[3]{(x-3)^7}}$
183°) $y = x^5 (a + 3x)^3 (a - 2x)^2$
184°) $y = \log\left(\frac{1+x\sqrt{2}+x^2}{1-x\sqrt{2}+x^2}\right) + 2arc \tan\left(\frac{x\sqrt{2}}{1-x^2}\right)$
185°) $y = arc \cos\left(\frac{x^{2n}-1}{x^{2n}+1}\right)$
186°) $y = \log\left(\frac{1+x}{1-x}\right)^{\frac{1}{4}} - \frac{1}{2}arc \tan x$
187°) $y = arc \tan\frac{4\sin x}{3+5\cos x}$
188°) $y = x^{arc\sin x}$
189°) $y = \frac{1}{\sqrt{3}}arc \tan\left(\frac{x\sqrt{3}}{1-x^2}\right)$
190°) $u = arc \tan\left(\frac{u+a}{1-av}\right)$

The Moise, The Quieto e The John

Derivadas da funçõe implícitas:

191°)
$$y^2 = 4px$$

196°) $y^2 - 2xy + b^2 = 0$
192°) $b^2x^2 + a^2y^2 = a^2b^2$
193°) $y^3 - 3y + 2ax = 0$
194°) $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$
195°) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

Achar $\frac{dy}{dx}$ para as funções dadas sob a forma paramétricas.

200°)
$$x = a \cos t$$
; $y = b \sin t$
The Moise, The Quieto e The John

201°)
$$x = a(t - \sin t)$$
; $y = b \sin^3 t$

202°)
$$x = \frac{3at}{1+t^2}$$
; $y = \frac{3at^2}{1+t^2}$

203°)
$$u = 2 \log(\cot s)$$
; $v = \tan s + \cot s$. Mostra que $\frac{du}{dv} = \tan(2s)$

Achar as tangentes dos ângulos da inclinação das tangentes às curvas.

204°)
$$x = \cos t$$
; $y = \sin t$ no ponto $x = -\frac{1}{2}$ e $y = \frac{\sqrt{3}}{2}$. Fazer o desenho.

205°)
$$x = 2 \cos t$$
; $y = \sin t \ no \ ponto \ x = 1 \ e \ y = -\frac{\sqrt{3}}{2}$. Fazer o desenho.

* Derivadas para cálculos físicos

206°) Achar o crescimento da função $y=x^2$, correspondente á transposição do argumento:

a)
$$de x = 1 à x_1 = 2$$

b)
$$de x = 1 à x_1 = 1,1$$

c)
$$de x = 1 à x_1 = 1 + h$$

207°) Achar Δy para a função $y = \sqrt[3]{x}$, se:

a)
$$x = 0$$
; $\Delta x = 0.001$

b)
$$x = 8$$
; $\Delta x = -9$

c)
$$x = a$$
; $\Delta x = h$

The Moise, The Ouieto e The John

208°) Porque, para a função y = 2x + 3 pode — se determinar o acréscimo Δy , sabendo — se, apenas, que o acréscimo correspondente é $\Delta x = 5$, enquanto que para a função $y = x^2$ não se pode fazé — lo?

209°) Achar o acréscimo Δy e a razão $\frac{\Delta y}{\Delta x}$ para as funções:

a)
$$y = \frac{1}{(x^2-2)^2}$$
, quando $x = 1 e \Delta x = 0.4$

b)
$$y = \sqrt{x}$$
, quando $x = 0$ e $\Delta x = 0.0001$

c)
$$y = \log x$$
, quando $x = 100.000 e \Delta x = -90.000$

210°) Achar $\Delta y e^{\Delta y} \Delta x$ correspondentes a variação do argumento de x até $x + \Delta x$ para as funções:

$$a) y = ax + b$$

$$d) y = \sqrt{x}$$

b)
$$y = x^3$$

e)
$$y = 2^{x}$$

$$c) y = \frac{1}{x^2}$$

$$f) y = \ln x$$

211°) Achar o coeficiente angular da secante á parábola $y=2x-x^2$, se as abcissas dos pontos de interseção são iguais a:

a)
$$x_1 = 1$$
; $x_2 = 2$

b)
$$x_1 = 1$$
; $x_2 = 0.9$

c)
$$x_1 = 1$$
; $x_2 = 1 + h$

212°) A que limite tende o coeficiente angular da secante no ultimo caso, se $h \rightarrow 0$?

213°) Achar a derivada da função y = tag x.

214°) Calcular f'(8), se $f(x) = \sqrt[3]{x}$.

215°) Achar
$$f'(0)$$
, $f'(1)$, $f'(2)$, se $f(x) = x(x-1)^2(x-2)^3$.

216°) Achar
$$y' = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right)$$
 para as funções:

a)
$$y = x^3$$

$$d) y = \cot x$$

$$b) y = \frac{1}{x^2}$$

c)
$$y = \sqrt{x}$$

- 217°) Achar a razão $\frac{\Delta y}{\Delta x}$ para a função $y = \frac{1}{x}$ no ponto x = 2, se : a) $\Delta x = 1$;
- b) $\Delta x = 0.1$; c) $\Delta x = 0.01$. Qual será a derivada y'quando x = 2?
- 218°) Seja m = f(x)a massa de barra heterogênea no segmento [0, x]. O que entendes por:
 - a) Densidade linear média da barra no segmento $[x, x + \Delta x]$;
 - b) Densidade linear da barra no ponto x?
- 219°) A lei do movimento do ponto é $S=2t^2+33t+5$, onde a distância S é dada em centímentros e o tempo t, em segundos. Qual será a velocidade média do ponto durante o intervalo de tempo de t=1 a t=5?
- 220°) Qual é a velocidade média de variaçãoda função $y=x^3$ no segmento $1 \le x \le 4$?

- 221°) Em que ponto a primeira derivada da função $f(x) = x^3$ coincide, numericamente, com o valor da própria função,?
- 222°) Achar o coeficiente angular da tangente á curva $y = 0.1x^3$, traçada no ponto com abscissa x = 2.
- 223°) Achar o coeficiente angular da tangente á curva $y = \sin x$ no ponto $(\pi; o)$.
- 224°) Achar o valor da derivada da função $f(x) = \frac{1}{x}$ no ponto $x = x_0$ ($x_0 \neq o$).
- 225°) Achar a equação da tangente e da normal á curva $y = \sqrt[3]{x-1}$ no ponto (1; 0).
- 226°) Escrever a equação da tangente e da normal á curva $y = x^3 + 2x^2 4x 3$ no ponto (-2; 5).
- 227°) Escrever a equação da tangente e da normal á parábola $y=\sqrt{x}$ no ponto com abscissa x=4.
- 228°) Em que ponto da curva $y^2 = 2x^2$ a tangente é perpendicular á recta 4x 3y + 2 = 0?

- 229°) Achar os pontos em que as tangentes á curva $y = 3x^4 + 4x^3 12x^2 + 20$ são paralelas ao eixo das abscissas.
- 230°) Sob que ângulo, a curva $y = e^{0.5x}$ corta a recta x = 2?
- 231°) Escrever as equações das tangentes e das normais á curva y = (x-1)(x-2)(x-3) nos pontos de sua intersecção com o eixo das abscissas.
- 232°) Escrever a equação da tangente e da normal á curva $y^4 = 4x^4 + 6xy$ no ponto (1; 2).
- 233°) Que ângulo formam entre si as parábolas $y = x^2$ e $y = x^3$ ao cortarem se?
- 234°) A lei do movimento do ponto no eixo OX é $x=3t-t^3$. Achar a velocidade o movimento deste ponto nos instantes $t_0=0$, $t_1=1$ e $t_2=2$ (x é dado em cm e t em seg).

Integrais Indefinidas

✓ Achar as seguintes integrais, aplicando — se as regras principal

$$1^{\circ} \int 5a^{2}x^{6}dx$$

$$2^{\circ} \int \sqrt{2px} \, dx$$

$$3^{\circ} \int x(x+a)(x+b)dx$$

$$4^{\circ} \int (nx)^{\frac{1-n}{n}} dx$$

$$5^{\circ} \int (\sqrt{x}+1)(x-\sqrt{x}+1) \, dx$$

$$6^{\circ} \int \frac{(x^{2}+1)(x^{2}-2)}{\sqrt[3]{x^{2}}} \, dx$$

$$7^{\circ} \int \frac{(\sqrt{a}-\sqrt{x})^{4}}{\sqrt{ax}} \, dx$$

$$8^{\circ} \int \frac{dx}{x^{2} - 10}$$

$$9^{\circ} \int \frac{dx}{\sqrt{8 - x^{2}}}$$

$$10^{\circ} \int \frac{\sqrt{2 + x^{2}} - \sqrt{2 - x^{2}}}{\sqrt{4 - x^{4}}} dx$$

$$11^{\circ} \int \frac{dx}{\sqrt{4 + x^{2}}}$$

$$12^{\circ} \int \frac{dx}{x^{2} + 7}$$

$$13^{\circ} \int \frac{(x^{m} - x^{n})^{2}}{\sqrt{x}} dx$$

$$14^{\circ} \int \left(a^{\frac{2}{3}} - x^{\frac{2}{3}}\right)^{3} dx$$

$$15^{\circ} \int \frac{dx}{\sqrt[n]{x}}$$

$$16^{\circ} \int (a + bx^{3})^{2} dx$$

$$17^{\circ} \int (6x^{2} + 8x + 3) dx$$

$$18^{\circ} a) \int \tan^{2} x dx \quad ; \quad b) \int \tanh^{2} x dx$$

$$19^{\circ} a) \int \cot^{2} x dx \quad ; \quad b) \int \coth^{2} x dx$$

$$20^{\circ} \int 3^{x} e^{x} dx$$

$$21^{\circ} \int \frac{dx}{\sqrt{5x - 2}}$$

The Moise, The Quieto e The John

$$22^{\circ} \int \frac{xdx}{\sqrt{1+x^4}}$$

$$23^{\circ} \int \frac{adx}{a-x}$$

$$24^{\circ} \int \frac{1-3x}{3+2x} dx$$

$$25^{\circ} \int \frac{ax+b}{ax+\beta} dx$$

$$26^{\circ} \int \frac{2x+3}{2x+1} dx$$

$$27^{\circ} \int \frac{dx}{\sqrt{7+8x}}$$

$$28^{\circ} \int \frac{2x-5}{3x^2-2} dx$$

$$29^{\circ} \int \frac{3x+1}{\sqrt{5x^2+1}}$$

$$30^{\circ} \int \frac{xdx}{x^2-5}$$

$$31^{\circ} \int \frac{ax+b}{a^2x^2+b^2} dx ; (a>0)$$

$$32^{\circ} \int \frac{xdx}{a+bx}$$

$$33^{\circ} \int \frac{x^2 + 1}{x - 1} dx$$

$$34^{\circ} \int \frac{x^2}{x^2 + 2} dx$$

$$35^{\circ} \int \frac{dx}{7x^2 - 8}$$

$$36^{\circ} \int \frac{\sqrt{x} + \ln x}{x} dx$$

$$37^{\circ} \int \sqrt{a - bx} dx$$

$$38^{\circ} \int \frac{x}{(x + 1)^2} dx$$

$$39^{\circ} \int \frac{x^2 + 5x + 7}{x + 3} dx$$

The Moise, The Quieto e The John

$$40^{\circ} \int \frac{x^2}{1+x^6} dx$$

$$41^{\circ} \int \left(a + \frac{b}{x-a}\right)^2 dx$$

$$42^{\circ} \int \sqrt{\frac{arc\sin x}{1-x}} dx$$

$$43^{\circ} \int \frac{x^2 + 5x + 6}{x^2 + 4} dx$$

$$44^{\circ} \int \frac{bdy}{\sqrt{1-y}}$$

$$45^{\circ} \int \frac{x - \sqrt{arc \tan 2x}}{1+4x^2} dx$$

$$46^{\circ} \int \frac{dx}{\sqrt{7-5x^2}}$$

$$47^{\circ} \int \frac{x}{\sqrt{x^2+1}} dx$$

$$48^{\circ} \int \frac{dx}{3x^2+5}$$

$$49^{\circ} \int (e^t - e^{-t}) dt$$

$$50^{\circ} \int \frac{dx}{(a+b) - (a-b)x^{2}} ; (0 < b < a)$$

$$51^{\circ} \int \frac{x^{3}}{a^{2} - x^{2}} dx$$

$$52^{\circ} \int \frac{(a^{x} - b^{x})^{2}}{a^{x}b^{x}} dx$$

$$53^{\circ} \int \frac{x+3}{\sqrt{x^{2} - 4}} dx$$

$$54^{\circ} \int \frac{xdx}{2x^{2} + 3}$$

$$55^{\circ} \int e^{-(x^{2} + 1)} x dx$$

$$56^{\circ} \int ae^{-mx} dx$$

$$57^{\circ} \int \frac{x^{4} + x^{2} + 1}{x - 1} dx$$

$$58^{\circ} \int \frac{xdx}{\sqrt{a^{4} - x^{4}}} ; (a > 0)$$

The Moise, The Quieto e The John

$$59^{\circ} \int \frac{(x^{2} - x^{3})^{2}}{x} dx$$

$$60^{\circ} \int \frac{(a^{3} - x^{2})^{3}}{\sqrt{a}} dx$$

$$61^{\circ} \int \frac{x^{2} dx}{x^{6} - 1}$$

$$62^{\circ} \int \frac{arc \tan \frac{x}{2}}{4 + x^{2}} dx$$

$$63^{\circ} \int \frac{dx}{\sqrt{(1 + x^{2}) \ln(x + \sqrt{1 + x^{2}})}}$$

$$64^{\circ} \int 4^{2 - 3x} dx$$

$$65^{\circ} \int \sin^{2} x dx$$

$$66^{\circ} \int \tan^{3} \left(\frac{x}{3}\right) \sec^{2} \left(\frac{x}{3}\right) dx$$

$$67^{\circ} \int \sec^{2}(ax+b) dx$$

$$68^{\circ} \int \frac{\cos ax}{\sin^{5} ax} dx$$

$$69^{\circ} \int \frac{dx}{\sin(ax+b)}$$

$$70^{\circ} \int \cos\left(\frac{x}{a}\right) \sin\left(\frac{x}{a}\right) dx$$

$$71^{\circ} \int x \sin(1-x^{2}) dx$$

$$72^{\circ} \int x \cot(x^{2}+1) dx$$

$$73^{\circ} \int \frac{dx}{\sin\left(\frac{x}{a}\right)}$$

$$74^{\circ} \int \left[\frac{1}{\sin(x\sqrt{2})} - 1\right]^{2} dx$$

$$75^{\circ} \int \frac{xdx}{\cos^{2} x^{2}}$$

$$76^{\circ} \int \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)^{2} dx$$

$$77^{0} \int \frac{a^{2x} - 1}{\sqrt{a^x}} dx$$

The Moise, The Quieto e The John

$$78^{\underline{o}} \int \tan x \, dx$$

$$79^{\circ} \int \frac{dx}{3\cos\left(5x - \frac{\pi}{4}\right)}$$

$$80^{\underline{o}} \int x \cdot 7^{x^2} dx$$

$$81^{\underline{0}} \int \cot g \, x \, dx$$

$$82^{\circ} \int \cot g^2 \, ax \, dx$$

$$83^{\circ} \int \frac{e^{\frac{1}{x}}}{x^{2}} dx$$

$$84^{\circ} \int \cot \left(\frac{x}{a-b}\right) dx$$

$$85^{\circ} \int \cos^{2} x \, dx$$

$$86^{\circ} \int \frac{e^{x}}{e^{x}-1} dx$$

$$87^{\circ} \int \frac{dx}{\tan \frac{x}{5}}$$

$$88^{\circ} \int \sin(\log x) \frac{dx}{x}$$

$$89^{\circ} \int \left(e^{\frac{x}{a}}+1\right)^{\frac{1}{3}} e^{\frac{x}{a}} dx$$

$$90^{\circ} \int \tan \sqrt{x} \frac{dx}{x}$$

The Moise, The Quieto e The John

$$91^{\circ} \int (\cos ax + \sin ax)^{2} dx$$

$$92^{\circ} \int \frac{a^{x} dx}{1 + a^{2x}}$$

$$93^{\circ} \int \frac{dx}{\sin x \cos x}$$

$$94^{\circ} \int \sin(a + bx) dx$$

$$95^{\circ} \int \cos\left(\frac{x}{\sqrt{2}}\right) dx$$

$$96^{\circ} \int \cos\sqrt{x} \frac{dx}{\sqrt{x}}$$

$$97^{\circ} \int \sin^{3}(6x) \cos(6x) dx$$

$$98^{\circ} \int 5^{\sqrt{x}} \frac{dx}{\sqrt{x}}$$

$$99^{\circ} \int \frac{\sin(3x)}{3 + \cos(3x)} dx$$
The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$100^{\circ} \int e^{x} \sqrt{a - be^{x}} \, dx$$

$$101^{\circ} \int \sqrt{1 + 3\cos^{2} x} \sin(2x) \, dx$$

$$102^{\circ} \int \frac{e^{-bx}}{1 - e^{-2bx}} \, dx$$

$$103^{\circ} \int \frac{\sqrt[3]{x^{2}} + 2\sqrt[3]{x} + 1}{\sqrt[3]{x^{2}} - 1} \, dx$$

$$104^{\circ} \int \frac{\sqrt{\tan x}}{\cos^{2} x} \, dx$$

$$105^{\circ} \int \frac{\cot^{\frac{2}{3}} x}{\sin^{2} x} \, dx$$

$$106^{\circ} \int \frac{1 + \sin(3x)}{\cos^{2}(3x)} \, dx$$

The Moise, The Quieto e The John

$$107^{\circ} \int \frac{\cos \sec^{2} 3x}{b - x \cot 3x} dx$$

$$108^{\circ} \int (2 \sinh 5x - 2 \cosh 5x) dx$$

$$109^{\circ} \int \sinh^{2} x dx$$

$$110^{\circ} \int \frac{dx}{\cosh x}$$

$$111^{\circ} \int \tanh x dx$$

$$112^{\circ} \int \coth x dx$$

$$113^{\circ} \int \frac{dx}{\cosh x \sinh x}$$

$$114^{\circ} \int \frac{dx}{\sinh x}$$

$$115^{\circ} \int x \sqrt[5]{5 - x^{2}} dx$$

$$116^{\circ} \int \frac{\sec^{2} x}{\sqrt{\tan^{2} x - 2}} dx$$

$$117^{\circ} \int \frac{x^{3}}{x^{3} + 5} dx$$

$$118^{\circ} \int \frac{3 - \sqrt{2 + 3x^{2}}}{2 + 3x^{2}} dx$$

$$119^{\circ} \int a^{\sin x} \cos x \, dx$$

$$120^{\circ} \int \frac{dx}{\cos\left(\frac{x}{a}\right)}$$

$$121^{\circ} \int \frac{x dx}{\sqrt{1 - x^{4}}}$$

$$122^{\circ} \int \sin^{2}\left(\frac{x}{2}\right) dx$$

$$123^{\circ} \int \frac{dx}{\sqrt{e^{x}}}$$

$$124^{\circ} \int \tan \sqrt{x - 1} \frac{dx}{\sqrt{x - 1}}$$

$$125^{\circ} \int \frac{\tan 3x - \cot 3x}{\sin 3x} dx$$

The Moise, The Quieto e The John

$$126^{\circ} \int \frac{e^{arc \tan x} + x \ln(1 + x^{2}) + 1}{1 + x^{2}} dx$$

$$127^{\circ} \int \frac{x^{3} - 1}{x^{4} - 4x + 1} dx$$

$$128^{\circ} \int \frac{(1 + x)^{2}}{x(1 + x^{2})} dx$$

$$129^{\circ} \int xe^{-x^{2}} dx$$

$$130^{\circ} \int \frac{5 - 3x}{\sqrt{4 - 3x^{2}}} dx$$

$$131^{\circ} \int \frac{1 - \sin x}{x + \cos x} dx$$

$$132^{\circ} \int e^{\sin^{2} x} \sin 2x dx$$

$$133^{\circ} \int \frac{dx}{x \ln^{2} x}$$

$$134^{9} \int \left(2 + \frac{x}{2x^{2} + 1}\right) \frac{dx}{2x^{2} + 1}$$

$$135^{9} \int \frac{dx}{(a+b) + (a+b)x^{2}} ; (0 < b < a)$$

$$136^{9} \int \frac{x^{2}}{\sqrt[3]{x^{3} + 1}} dx$$

$$137^{9} \int \left[\sin\left(\frac{2\pi}{T} + \varphi_{0}\right)\right] dx$$

$$138^{9} \int \tan^{2} ax \, dx$$

$$139^{9} \int \frac{arc\cos\left(\frac{x}{2}\right)}{\sqrt{4 - x^{2}}} dx$$

$$140^{9} \int \frac{\sec^{2} x \, dx}{\sqrt{4 - \tan^{2} x}}$$

$$141^{9} \int \frac{\sin x \cos x}{\sqrt{2 - \sin^{4} x}} dx$$

$$142^{9} \int \frac{x \, dx}{\sin(x^{2})}$$

The Moise, The Quieto e The John

$$143^{\circ} \int \frac{arc \sin x + x}{\sqrt{1 - x^2}} dx$$

$$144^{\circ} \int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

$$145^{\circ} \int \frac{\cos 2x}{4 + \cos^2 2x} dx$$

$$146^{\circ} \int \frac{\left[1 - \sin\left(\frac{x}{\sqrt{2}}\right)\right]^2}{\sin\left(\frac{x}{\sqrt{2}}\right)} dx$$

$$147^{\circ} \int \frac{3^{\tanh x}}{\cosh^2 x} dx$$

$$148^{\circ} \int \frac{x^2}{x^2 - 2} dx$$

$$149^{\circ} \int x^2 \cosh(x^2 + 3) dx$$

$$150^{\underline{0}} \int \frac{dx}{e^x - 1}$$

$$151^{\circ} \int \frac{dx}{1 + \cos^2 x}$$

$$152^{0} \int \sqrt{\frac{\ln(x + \sqrt{x^{2} + 1})}{1 + x^{2}}} dx$$

$$153^{\circ} \int \frac{\sec x \tan x}{\sqrt{\sec^2 x + 1}} dx$$

$$154^{\circ} \int \frac{(\cos ax + \sin ax)^2}{\sin ax} dx$$

$$155^{\underline{o}} \int e^{-\tan x} \sec^2 x \, dx$$

$$156^{\circ}) \int \frac{dx}{\sin(ax)\cos(ax)}$$

The Moise, The Quieto e The John

157º Achar as seguintes integrais, utilizando as substituição indicadas:

a)
$$\int \frac{dx}{x\sqrt{x^2 - 2}} \; ; \; x = \frac{1}{t}$$

$$\int \frac{dx}{x\sqrt{x^2 - 2}} ; x = \frac{1}{t}$$

$$d) \int \frac{xdx}{\sqrt{x + 1}} ; \sqrt{x + 1} = t$$

$$b) \int \frac{dx}{e^x + 1} \; ; \; x = -\ln t$$

$$e) \int \frac{\cos x dx}{\sqrt{1 + \sin^2 x}} \; ; \; t = \sin x$$

c)
$$\int x(5x^2-3)^7 dx$$
; $5x^2-3=t$

Achar as seguintes integrais, utilizando as substituição mais adequadas:

$$158^{0} \int x(2x+5)^{10} dx$$

$$160^{\circ} \int \frac{dx}{x\sqrt{2x+1}}$$

$$159^{\circ} \int \frac{1+x}{1+\sqrt{x}} dx$$

$$161^{\circ} \int \frac{dx}{\sqrt{e^x - 1}}$$

$$162^{\circ} \int \frac{(arc\sin x)^{2}}{\sqrt{1-x^{2}}} dx$$

$$165^{\circ} \int \frac{e^{2x}}{\sqrt{e^{x}+1}} dx$$

$$163^{\circ} \int \frac{\sin^{3} x}{\sqrt{\cos x}} dx$$

$$166^{\circ} \int \frac{dx}{x\sqrt{1+x^{2}}}$$

$$164^{\circ} \int \frac{\ln(2x) dx}{\ln 4xx}$$

The Moise, The Quieto e The John

Achar as seguintes integrais, utilizando as substituições trigonométricas:

$$167^{\circ} \int \frac{x^{2} dx}{\sqrt{1 - x^{2}}}$$

$$168^{\circ} \int \frac{\sqrt{x^{2} - a^{2}}}{x} dx$$

$$172^{\circ} \int \frac{dx}{x\sqrt{x^{2} - 1}}$$

$$169^{\circ} \int \frac{\sqrt{x^{2} + 1}}{x} dx$$

$$173^{\circ} \int \frac{dx}{x^{2}\sqrt{4 - x^{2}}}$$

$$170^{\circ} \int \sqrt{1 - x^{2}} dx$$

174º Calcular a integral $\int \frac{dx}{\sqrt{x(1-x)}}$, fazendo a substituição $x=\sin^2 t$.

175º Achar $\int \sqrt{a^2+x^2}\,dx$, utilizando as substituição hiperbólica

 $x = \alpha \sinh t$.

$$176^{\underline{0}} A char \int \frac{x^2 dx}{\sqrt{x^2 - a^2}} fazendo x = a \cosh t.$$

Achar as seguintes integrais, utilizando a fórmula de integração por parte:

$$177^{\circ} \int \ln x \, dx \qquad 178^{\circ} \int arc \tan x \, dx$$

The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$189^{\circ} \int arc \sin x dx$$

$$187^{\circ} \int \frac{x}{e^{x}} dx$$

$$188^{\circ} \int x \cdot 2^{-x} dx$$

$$188^{\circ} \int x^{2} e^{3x} dx$$

$$189^{\circ} \int \ln^{2} x dx$$

$$182^{\circ} \int \frac{\ln x}{x^{3}} dx$$

$$190^{\circ} \int (x^{2} + 5x + 6) \cos(2x) dx$$

$$184^{\circ} \int \ln(x + \sqrt{1 + x^{2}}) dx$$

$$191^{\circ} \int \frac{\ln x}{\sqrt{x}} dx$$

$$192^{\circ} \int \frac{x dx}{\sin^{2} x}$$

$$185^{\circ} \int 3^{x} \cos x dx$$

$$193^{\circ} \int e^{ax} \sin bx dx$$

$$186^{\circ} \int \sin(\ln x) dx$$

The Moise, The Quieto e The John

Achar as seguintes integrais, utilizando os diferentes métodos:

$$194^{\circ} \int x^{3}e^{-x^{2}}dx$$

$$199^{\circ} \int \frac{\ln(\ln x)}{x}dx$$

$$200^{\circ} \int (arc\sin x)^{2}dx$$

$$196^{\circ} \int (x^{2} - 2x + 3)\ln x \, dx$$

$$201^{\circ} \int \frac{arc\sin\sqrt{x}}{\sqrt{1 - x}} dx$$

$$197^{\circ} \int x \ln\left(\frac{1 - x}{1 + x}\right) dx$$

$$202^{\circ} \int x \tan^{2}(2x) \, dx$$

$$198^{\circ} \int \frac{\ln^{2} x}{x^{2}} dx$$

$$203^{\circ} \int \frac{arc\sin x}{x^{2}} dx$$

The Moise, The Quieto e The John

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$204^{\circ} \int \sqrt{A + x^{2}} \, dx$$

$$205^{\circ} \int \frac{dx}{(x^{2} + a^{2})^{2}}$$

$$206^{\circ} \int \cos^{2}(\ln x) \, dx$$

$$210^{\circ} \int \frac{dx}{x^{2} + 2x + 5}$$

$$211^{\circ} \int \frac{dx}{3x^{2} - x + 1}$$

$$212^{\circ} \int \frac{3x - 2}{x^{2} - 4x + 5} \, dx$$

$$213^{\circ} \int \frac{3x - 6}{x^{2} - 4x + 5} \, dx$$

$$214^{\circ} \int \frac{x}{\sqrt{5x^{2} - 2x + 1}} \, dx$$

$$214^{\circ} \int \frac{x}{\sqrt{5x^{2} - 2x + 1}} \, dx$$

$$214^{\circ} \int \frac{x}{\sqrt{5x^{2} - 2x + 1}} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 4x + 5} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 4x + 5} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 4x + 5} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 4x^{2} + 3} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 4x^{2} + 3} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{x^{2} - 2x + 1} \, dx$$

$$221^{\circ} \int \frac{x^{2} \, dx}{\sqrt{1 + e^{x} + e^{2x}}} \, dx$$

$$221^{\circ} \int \frac{dx}{\sqrt{1 - x^{2}}} \, dx$$

$$222^{\circ} \int \sqrt{x - x^{2}} \, dx$$

$$223^{\circ} \int \sqrt{2 - x - x^{2}} \, dx$$

The Moise, The Quieto e The John

✓ Emprego das funções de redução

Deduzir as fórmulas de redução das integrais:

$$224^{\circ} I_n = \int \frac{dx}{(x^2 + a^2)^n}$$
; $achar I_n e I_n$

$$225^{\circ} I_n = \int \sin^n x \, dx$$
; achar $I_4 e I_5$

$$226^{\circ} I_n = \int \frac{dx}{\cos^n x}$$
; achar $I_3 e I_4$

$$227^{\circ} I_n = \int x^n e^{-x} dx$$
; achar I_{10}

The Moise, The Quieto e The John

 $235^{\circ} \int \frac{dx}{(\tan x + 1)\sin^2 x}$

✓ Integral de diferentes funções

$$228^{\circ} \int \frac{dx}{2x^{2} - 4x + 9}$$

$$229^{\circ} \int \frac{dx}{(\sin x + \cos x)^{2}}$$

$$230^{\circ} \int (x^{2} - 3x) \sin 5x \, dx$$

$$231^{\circ} \int \frac{x^{3}}{x^{2} + x + \frac{1}{2}} dx$$

$$232^{\circ} \int \sin^{2} \frac{x}{2} \cos \frac{3x}{2} \, dx$$

$$229^{\circ} \int \frac{dx}{(\sin x + \cos x)^{2}}$$

$$236^{\circ} \int \frac{dx}{(x + 2)^{2}(x + 3)^{2}}$$

$$230^{\circ} \int (x^{2} - 3x) \sin 5x \, dx$$

$$237^{\circ} \int \frac{dx}{(x^{2} + 2)^{2}}$$

$$231^{\circ} \int \frac{x^{3}}{x^{2} + x + \frac{1}{2}} dx$$

$$238^{\circ} \int \frac{\sinh x \cosh x}{\sinh^{2} x + \cosh^{2} x} dx$$

$$232^{\circ} \int \sin^{2} \frac{x}{2} \cos \frac{3x}{2} dx$$

$$239^{\circ} \int \frac{arc \tan x}{x^{2}} dx$$

$$239^{\circ} \int \frac{xdx}{(x^{2} - x + 1)^{3}}$$

$$240^{\circ} \int \frac{xdx}{(x^{2} - x + 1)^{3}}$$

$$241^{\circ} \int \frac{\sinh \sqrt{1 - x}}{\sqrt{1 - x}} dx$$

$$242^{\circ} \int (x^{2} - 1)10^{-2x} dx$$

The Moise, The Quieto e The John

'Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o Albert Einstein.

$$243^{\circ} \int \frac{x-5}{x^2-2x+2} dx$$

$$244^{\circ} \int \frac{x}{\sinh^2 x} dx$$

$$245^{\circ} \int \frac{e^{2x}}{(e^x + 1)^{\frac{1}{4}}} dx$$

$$246^{\circ} \int \frac{dx}{e^{2x} - 2e^x}$$

The Moise, The Quieto e The John

$$247^{\circ} \int \frac{dx}{(x+1)^2(x^2+1)}$$

$$248^{0} \int \frac{e^{x}}{e^{2x} - 6e^{x} + 13} dx$$

$$249^{\circ} \int \frac{dx}{x(x^2+5)}$$

$$250^{\circ} \int \frac{2^x}{1-4^x} dx$$

$$260^{\circ} \int \frac{\left(\sqrt{x}+1\right)^2}{x^3} dx$$

$$261^{\circ} \int \frac{1 - \sqrt[3]{2x}}{\sqrt{2x}} dx$$

$$262^{\underline{0}} \int \sqrt{e^x + 1} dx$$

$$263^{\circ} \int \frac{dx}{x^4 + 2x^2 + 1}$$

$$264^{\circ} \int \frac{3 - 4x}{\left(1 - 2\sqrt{x}\right)^2} dx$$

The Moise, The Quieto e The John

$$265^{\circ} \int x^3 arc \sin \frac{1}{x} dx$$

$$267^{\underline{0}} \int \frac{2x+1}{\sqrt{(4x^2-2x+1)^3}}$$

$$268^{\circ} \int \frac{dx}{\sqrt{x^2 + x + 1}}$$

$$269^{\circ} \int \frac{x^2}{\sqrt{(x^2-1)^3}} dx$$

$$270^{\circ} \int \sin\left(\frac{\pi}{4} - x\right) \sin\left(\frac{\pi}{4} + x\right) dx$$

$$271^{\circ} \int \frac{x dx}{\sqrt{1 - 2x^2 - x^4}}$$

$$272^{\circ} \int \frac{dx}{\cos^2 x + 2\sin x \cos x + 2\sin^2 x}$$

$$273^{\circ} \int \frac{dx}{(x^2 + 4x)\sqrt{4 - x^2}}$$

$$274^{\circ} \int \frac{dx}{(2+\cos x)(3+\cos x)}$$

$$275^{\circ} \int \sqrt{x - 4x^2} \, dx$$

$$276^{\circ} \int \frac{\cos ax}{\sqrt{a^2 + \sin^2(ax)}}$$

$$277^{0} \int x \sqrt{x^{2} + 2x + 2} \, dx$$

$$278^{\underline{o}} \int \frac{dx}{x\sqrt{1-x^3}}$$

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$279^{\circ} \int \frac{xarc \tan x}{\sqrt{1+x^{2}}} dx$$

$$280^{\circ} \int \frac{dx}{\cos x \sin^{5} x}$$

$$281^{\circ} \int \frac{1+\sqrt{\cot x}}{\sin^{2} x} dx$$

$$282^{\circ} \int \frac{xdx}{\sin^{2} x} dx$$

$$283^{\circ} \int \frac{\sin^{3} x}{(\sqrt[3]{x^{2}}+\sqrt[3]{x})^{2}}$$

$$283^{\circ} \int \tan^{3} \left(\frac{x}{2}+\frac{\pi}{2}\right) dx$$

$$284^{\circ} \int \frac{dx}{(1+x^{2})\sqrt{1-x^{2}}}$$

$$292^{\circ} \int \cos^{4} x dx$$

The Moise, The Quieto e The John

✓ Integrais das funções hiperbólicas.

$$293^{\circ} \int \sinh^{3}x \, dx$$

$$298^{\circ} \int \frac{dx}{\sinh^{2}x \cosh^{2}x}$$

$$294^{\circ} \int \sinh^{3}x \cosh x \, dx$$

$$299^{\circ} \int \frac{dx}{\tanh x - 1}$$

$$295^{\circ} \int \frac{dx}{\sinh x \cosh^{2}x}$$

$$300^{\circ} \int \cosh^{4}x \, dx$$

$$296^{\circ} \int \tanh^{3}x \, dx$$

$$301^{\circ} \int \sinh^{3}x \, dx$$

$$302^{\circ} \int \coth^{3}x \, dx$$

$$302^{\circ} \int \coth^{4}x \, dx$$
The Moise, The Quieto e The John

"Face as coisas o mais simples que very simple squery to the point of th

"Faça as coisas o mais simples que você puder, porém, não as mais símples" disse o *Albert Einstein*.

$$303^{\circ} \int \frac{dx}{2\sinh x + 3\cosh x}$$

$$304^{\circ} \int \frac{\sinh x \, dx}{\sqrt{\cosh(2x)}}$$

✓ Empergo das substituição trigonométricas e hiperbólicas para resolver as seguintes integrais:

$$305^{\circ} \int \sqrt{3 - 2x - x^{2}} \, dx$$

$$311^{\circ} \int \sqrt{2 + x^{2}} \, dx$$

$$312^{\circ} \int \sqrt{x^{2} - 2x + 2} \, dx$$

$$313^{\circ} \int \sqrt{x^{2} - 2x + 2} \, dx$$

$$313^{\circ} \int \sqrt{x^{2} + x} \, dx$$

$$313^{\circ} \int \sqrt{x^{2} + x} \, dx$$

$$314^{\circ} \int (x^{2} + x + 1)^{\frac{3}{2}}$$

$$319^{\circ} \int \frac{dx}{(x - 1)\sqrt{x^{2} - 3x + 2}}$$

$$310^{\circ} \int \frac{dx}{(1 + x^{2})\sqrt{1 - x^{2}}}$$

✓ Achar as integris das diferentes funções transcendentes:

$$316^{\circ} \int (x^{2} + 1)^{2} e^{2x} dx$$

$$329^{\circ} \int \sin^{5} x \sqrt[3]{\cos x} dx$$

$$317^{\circ} \int x^{2} \cos^{2}(3x) dx$$

$$330^{\circ} \int \frac{dx}{(2 - \sin x)(3 - \sin x)}$$

$$318^{\circ} \int x \sin x \cos(2x) dx$$

$$331^{\circ} \int \frac{dx}{\sqrt{\sin x \cos^{3} x}}$$

$$319^{\circ} \int e^{2x} \sin^{2} x dx$$

$$332^{\circ} \int \sec^{8} x dx$$

$$320^{\circ} \int x e^{x} \cos x dx$$

$$333^{\circ} \int \frac{dx}{\sqrt{\tan x}}$$

$$321^{\circ} \int e^{x} \sin x \sin(3x) dx$$

$$334^{\circ} \int \frac{\sin^{3} x dx}{\sqrt[3]{\cos^{4} x}}$$

$$322^{\circ} \int \frac{dx}{\sqrt{e^{2x} + e^{x} + 1}}$$

$$335^{\circ} \int \sin(3x) \cos(5x) dx$$

$$336^{\circ} \int \cos(4x) \cos(7x) dx$$

$$323^{\circ} \int \frac{dx}{e^{2x} + e^{x} - 2}$$

$$324^{\circ} \int \ln^{2}(x + \sqrt{1 + x^{2}}) dx$$

$$336^{\circ} \int \cos(2x) \sin(4x) dx$$

$$325^{\circ} \int x^{2} \ln\left(\frac{1 + x}{1 - x}\right) dx$$

$$339^{\circ} \int \cos(2x) \sin(4x) dx$$

$$339^{\circ} \int \cos(2x) \sin(4x) dx$$

$$339^{\circ} \int \cos(2x) \sin(4x) dx$$

$$339^{\circ} \int \sin(x) \sin(x) dx$$

$$340^{\circ} \int \sin(x) \cos(x) dx$$

$$340^{\circ} \int \sin(x) \cos(x) dx$$

$$340^{\circ} \int \sin(x) \cos(x) dx$$

$$342^{\circ} \int \frac{dx}{8 - 4\sin x + 7\cos x}$$

$$348^{\circ} \int \frac{dx}{\sin x + \cos x}$$

$$349^{\circ} \int \frac{\sin x \sin(2x)\sin(3x) dx}{349^{\circ} \int \frac{dx}{\sin^{2} x + \tan^{2} x}}$$

$$344^{\circ} \int \frac{\sin x dx}{1 + \sin x}$$

$$350^{\circ} \int \frac{3\sin x + 2\cos x}{2\sin x + 3\cos x} dx$$

$$345^{\circ} \int \frac{\cos x}{1 + \cos x} dx$$

$$351^{\circ} \int \frac{\sin^{2} x}{1 + \cos^{2} x} dx$$

$$346^{\circ} \int \frac{\sin(2x)}{\cos^{4} x + \sin^{4} x} dx$$

$$352^{\circ} \int \frac{1 + \tan x}{1 - \tan x} dx$$

$$347^{\circ} \int \frac{dx}{\cos x + 2\sin x + 3}$$

$$353^{\circ} \int \frac{\cos x}{\sin^{2} x - 6\sin x + 5} dx$$

$$347^{\circ} \int \frac{dx}{(1 + \cos x)^{2}}$$

$$354^{\circ} \int \tan^{4} x \sec^{4} x dx$$

Integrais Definidas

 1° Calcular as seguintes integrais definidas, considerando — as como limite das respectivas somas integrais:

$$a)\int_{a}^{6}dx$$

$$b)\int\limits_{-2}^{1}x^{2}dx$$

$$c)\int\limits_0^T (v_0+gt)dt$$
; v_0 e g são constantes

$$d)\int\limits_{0}^{10}2^{x}dx$$

$$e)\int x^3dx$$

$$2^{\underline{o}} A char f(x) = \int_{0}^{x} \sin t \, dt$$

$$3^{\underline{o}}$$
 Seja $I = \int_{0}^{b} \frac{dx}{\ln x}$; $(b > a > 1)$, achar:

$$a)\frac{dI}{da}$$

b)
$$\frac{dI}{db}$$

✓ Achar as derivadas das seguintes funções:

$$4^{0} f(x) = \int_{1}^{x} \ln t \, dt \; ; (x > 0)$$

$$5^{\underline{0}}) f(x) = \int_{x}^{x^{2}} e^{-t^{2}} dt$$

$$6^{\underline{o}} f(x) = \int_{x}^{0} \sqrt{1 + t^4} dt$$

$$7^{0} I = \int_{\frac{1}{2}}^{\sqrt{x}} \cos(t^{2}) dt ; (x > 0)$$

The Moise, The Quieto e The John

 $\int_{-\infty}^{\infty} \frac{\sin t}{t} dt \quad no \ campo \ x > 0.$ 8° Achar os pontos extremos da função y=

 ✓ Utilizando a fórmula de Newtom – Leibniz, achar as seguintes integrais:

$$9^{\circ} \int_{0}^{1} \frac{dx}{1+x}$$

$$\int_{0}^{1} \frac{dx}{1+x}$$

$$11^{\circ} \int_{-x}^{x} e^{-t} dx$$

$$10^{\circ} \int_{-2}^{-1} \frac{dx}{x^3}$$

$$12^{\circ} \int_{0}^{x} \cos t \, dt$$

✓ Valendo – se das integrais defidas, achar os limites das somas:

$$13^{\circ} \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right)$$

$$14^{\circ} \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

$$15^{\circ} \lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$

The Moise, The Quieto e The John

✓ Calcular as integrais:

$$16^{\circ} \int_{1}^{2} (x^{2} - 2x + 3) dx$$

$$17^{\circ} \int_{0}^{8} \left(\sqrt{2x} + \sqrt[3]{x}\right) dx$$

$$18^{0} \int_{1}^{4} \frac{1 + \sqrt{y}}{y^{2}} dy$$

$$19^{\circ} \int_{2}^{6} \sqrt{x-2} \, dx$$

$$20^{\circ} \int_{0}^{-3} \frac{dx}{\sqrt{25+3x}}$$

$$21^{\circ} \int_{-2}^{-3} \frac{dx}{x^2 - 1}$$

$$22^{\circ} \int_{0}^{1} \frac{x dx}{x^{2} + 3x + 2}$$

$$23^{\circ} \int_{-1}^{1} \frac{y^5 dy}{y+2}$$

$$24^{\circ} \int_{0}^{1} \frac{dx}{x^{2} + 4x + 3}$$

$$25^{\circ} \int_{3}^{4} \frac{dx}{x^2 - 3x + 2}$$

$$26^{\circ} \int_{0}^{1} \frac{z^{3}}{z^{3}+1} dz$$

$$27^{0} \int_{0}^{\frac{\sqrt{2}}{2}} \frac{dx}{\sqrt{1-x^{2}}}$$

$$28^{\underline{o}} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec^2 \alpha \, d\alpha$$

$$29^{\circ} \int_{2}^{3,5} \frac{dz}{\sqrt{5+4z-z^{2}}}$$

$$30^{\circ} \int_{1/V^{6} + 4}^{1} dy$$

$$31^{\frac{0}{4}} \int_{0}^{\frac{\pi}{4}} \cos^{2} \alpha \, d\alpha$$

$$32^{\frac{0}{2}} \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta \, d\theta$$

$$33^{\circ} \int_{c}^{c^{2}} \frac{dx}{x \ln x}$$

$$34^{\circ} \int_{1}^{e} \frac{\sin(\ln x)}{x} dx$$

$$35^{\circ} \int_{0}^{\pi} \sinh^{2} x \, dx$$

$$36^{\circ} \int_{0}^{1} \cosh dx$$

$$37^{\underline{0}} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cot g^4 \theta \, d\theta$$

$$38^{\underline{0}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan x \, dx$$

$$39^{\circ} \int_{0}^{1} \frac{e^{x}}{1 + e^{x}} dx$$

$$40^{\circ} \int_{\ln 2}^{\ln 3} \frac{dx}{\cosh^2 x}$$

✓ Integrais impróprias

 $Calcular\ as\ seguintes\ untegrais\ impr\'oprias\ (\ ou\ determinar\ sua\ diverg\^encia):$

$$41^{\circ}\int_{0}^{1}\frac{dx}{\sqrt{x}}$$

$$42^{\circ} \int_{0}^{3} \frac{dx}{(x-1)^{2}}$$

$$43^{\circ} \int_{-1}^{2} \frac{dx}{x}$$

$$44^{\circ} \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$$

$$45^{\circ} \int_{0}^{1} \frac{dx}{x^{p}}$$

The Moise, The Quieto e The John

$$46^{\circ} \int_{1}^{\infty} \frac{dx}{x}$$

$$47^{\circ} \int_{1}^{\infty} \frac{dx}{x^2}$$

$$48^{\circ} \int_{1}^{\infty} \frac{dx}{x^p}$$

$$49^{\circ} \int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

$$50^{\circ} \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 3}$$

$$51^{\circ} \int_{0}^{\infty} \sin x \, dx$$

$$52^{\circ} \int_{0}^{\frac{1}{2}} \frac{dx}{x \ln x}$$

$$53^{\circ} \int_{a}^{\infty} \frac{ax}{x \ln x} dx ; (a > 1)$$

$$54^{\circ} \int_{0}^{\frac{1}{2}} \frac{dx}{x \ln^2 x}$$

$$55^{\circ} \int_{a}^{\infty} \frac{dx}{x \ln^2 x} ; (a > 1)$$

$$56^{\frac{0}{2}} \int_{0}^{\frac{\pi}{2}} \cot g \, x \, dx$$

$$57^{\circ} \int_{0}^{\infty} e^{-kx} dx \quad ; (k > 0)$$

$$58^{\circ} \int_{0}^{\infty} \frac{arc \tan x}{x^2 + 1} dx$$

$$59^{9} \int_{2}^{\infty} \frac{dx}{(x^{2}-1)^{2}}$$

$$66^{9} \int_{0}^{\infty} \frac{dx}{x^{5}}$$

$$60^{9} \int_{0}^{1} \frac{dx}{x^{3}-5x^{2}}$$

$$67^{9} \int_{0}^{1} \log x \, dx$$

$$68^{9} \int_{-\infty}^{+\infty} \frac{dx}{x^{2}+2x+2}$$

$$62^{9} \int_{0}^{1} \frac{x dx}{\sqrt{x-x^{2}}}$$

$$63^{9} \int_{0}^{\infty} e^{-x} dx$$

$$63^{9} \int_{0}^{\infty} e^{-x} dx$$

$$70^{9} \int_{0}^{\infty} \frac{dx}{x\sqrt{x^{2}-1}}$$

$$64^{9} \int_{0}^{\infty} \frac{dx}{a^{2}+x^{2}}$$

$$71^{9} \int_{0}^{\infty} e^{-ax} \sin(bx) \, dx \; ; (a > 0)$$

$$65^{9} \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$$

$$72^{9} \int_{0}^{\infty} e^{-ax} \cos(bx) \, dx \; ; (a > 0)$$

The Moise, The Quieto e The John

✓ Verificar se as seguintes integrais são convergentes:

$$73^{\circ} \int_{0}^{\infty} x \sin x \, dx$$

$$75^{\circ} \int_{-1}^{1} \frac{dx}{x^{4}}$$

$$74^{\circ} \int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

$$76^{\circ} \int_{0}^{2} \frac{dx}{x^{3}}$$

$$77^{\circ} \int_{0}^{100} \frac{dx}{\sqrt[3]{x} + 2\sqrt[4]{x} + x^{3}}$$

$$81^{\circ} \int_{0}^{1} \frac{dx}{\sqrt[3]{1 - x^{4}}}$$

$$78^{\circ} \int_{1}^{+\infty} \frac{dx}{2x + \sqrt[3]{x^{2} + 1} + 5}$$

$$82^{\circ} \int_{1}^{\infty} \frac{dx}{\ln x}$$

$$79^{\circ} \int_{-1}^{\infty} \frac{dx}{x^{2} + \sqrt[3]{x^{4} + 1}}$$

$$83^{\circ} \int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x^{2}} dx$$

$$80^{\circ} \int_{0}^{\infty} \frac{xdx}{\sqrt{x^{5} + 1}}$$

$$84^{\circ} \int_{0}^{1} (x^{2} + 5x + 6) dx$$

The Moise, The Quieto e The John

 85° Transformar as seguintes integrais, usando — se as substituição indicadas:

a)
$$\int_{1}^{3} \sqrt{x+1} dx$$
; $x = 2t-1$
b) $\int_{\frac{1}{2}}^{1} \frac{dx}{\sqrt{1-x^4}}$; $x = \sin t$
c) $\int_{\frac{3}{4}}^{\frac{4}{3}} \frac{dx}{\sqrt{x^2+1}}$; $x = \sinh t$
d) $\int_{0}^{1} \frac{dx}{f(x)dx}$; $x = arc \tan t$

✓ Utilizando as substituições indicadas, calcular as seguintes integrais:

$$86^{\circ} \int_{0}^{4} \frac{dx}{1 + \sqrt{x}} ; x = t^{2}$$

$$87^{\frac{0}{2}} \int_{3}^{29} \frac{(x-2)^{\frac{2}{3}}}{(x-2)^{\frac{2}{3}} + 3} dx \; ; x-2 = z^{3}$$

$$88^{0} \int_{0}^{\ln 2} \sqrt{e^{x} - 1} \, dx \; ; \; e^{x} - 1 = z^{2}$$

$$89^{\circ} \int_{0}^{\pi} \frac{dt}{3 + 2\cos t} ; \operatorname{tag}\left(\frac{t}{2}\right) = z$$

$$90^{\circ} \int_{0}^{2} \sqrt[3]{1-x^{2}} \, dx \; ; \; x = \cos t$$

$$91^{\frac{0}{2}} \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + a^2 \sin^2 x} ; \tan x = t$$

The Moise, The Quieto e The John

Valendo — se de substituições adequadas, calcular as integrais:

$$92^{0} \int_{\frac{\sqrt{2}}{2}}^{1} \frac{\sqrt{1-x^{2}}}{x^{2}} dx$$

$$94^{0} \int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx$$

$$93^{\circ} \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} dx$$

$$95^{\circ} \int_{0}^{5} \frac{dx}{2x + \sqrt{3x + 1}}$$

✓ Calcular as integrais:

$$96^{\circ} \int_{1}^{3} \frac{dx}{x\sqrt{x^2 + 5x + 1}}$$

$$98^{\circ} \int_{0}^{a} \sqrt{ax - x^{2}} dx$$

$$97^{\circ} \int_{-1}^{1} \frac{dx}{(1+x^2)^2}$$

$$99^{\circ} \int_{0}^{2\pi} \frac{dx}{5 - 3\cos x}$$

100º Demonstrar que se f(x)é uma função par, $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$.

Se, ao contrário, f(x) for uma função ímpar, então $\int_{-a}^{a} f(x)dx = 0$.

101º Demonstrar que
$$\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx = \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx.$$

$$102^{\underline{o}} \ Demonstrar \ que \int_{0}^{1} \frac{dx}{arc \cos x} = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} dx.$$

$$103^{\underline{o}} \ Demonstrar \ que \int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx.$$

$$104^{\underline{o}} \, Mostre \, que \, \int\limits_0^1 x^m (1-x)^n dx = \int\limits_0^1 x^n (1-x)^m dx \ \, (m>0 \, ; n>0).$$

$$105^{\underline{o}} Mostre que \int_{a}^{b} f(x)dx = \frac{1}{2} \int_{a}^{b} f[(a+b) - x]dx.$$

$$106^{\underline{o}} \ Demonstrar \ que \int\limits_{0}^{a} f(x^{2}) dx = \frac{1}{2} \int\limits_{-a}^{a} f(x^{2}) dx.$$

✓ Integração por parte.

Calcular as seguintes integrais, empregando — se a fórmula de integração por parte:

$$107^{\circ} \int_{0}^{\frac{\pi}{2}} x \cos x \, dx$$

$$108^{\frac{0}{2}}\int_{1}^{0}\ln x\,dx$$

$$109^{\underline{0}} \int\limits_{0}^{1} x^3 e^{2x} dx$$

$$110^{\circ} \int_{0}^{\pi} e^{x} \sin x \, dx$$

$$111^{\circ} \int_{0}^{\infty} xe^{-x} dx$$

$$112^{0} \int_{0}^{\infty} e^{-ax} \cos(bx) \, dx \, ; (a > 0)$$

$$113^{\circ} \int_{0}^{\infty} e^{-ax} \sin(bx) dx; (a > 0)$$

$$114^{\circ} \int_{0}^{1} \sqrt{4 + x^{2}} dx$$

$$115^{\circ} \int_{-1}^{+1} \frac{dx}{8+x^3}$$

$$116^{\circ} \int_{0}^{2\pi} \frac{dx}{10 + 3\cos x}$$

$$117^{\circ} \int_{0}^{\frac{\pi}{4}} x \sqrt{\tan x} \, dx$$

$$118^{\circ} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$$

119º Integrando por partes, demonstrar que
$$0 < \int_{100\pi}^{200\pi} \frac{\cos x}{x} dx < \frac{1}{100\pi}$$
.

* Áreas das figuras planas.

 120° Calcular a área da figura limitada pela parábola $y=4x-x^2$ e pelo eixo das abcissas.

121º Calcular a área da figura limitada pela curva $y=\ln x$, pelo eixo OX e pela recta x=e.

The Moise, The Quieto e The John

122º Achar a área da figura limitada pela curva y = x(x-1)(x-2) e pelo eixo OX.

 123° Achar a área da figura limitada pela curva $y^2 = x$, pela recta y = 1 e pela vertical x = 8.

 124° Calcular a área da figura compreendida entre semionda da sinusóide $y = \sin x$ e o eixo OX.

125º Calcular a área da figura compreendida entre a curva $y= \log x$, o eixo OX ea recta $x=\frac{\pi}{3}$.

 126° Calcular a área da figura compreendida entre a hipérbole $xy=m^2$, as verticais x=a e x=3a (a>0) e o eixo OX.

127º Achar a área da figura compreendida entre a curva de Agnesi

$$y = \frac{a^3}{x^2 + a^2} e o eixo das abcissas.$$

 127° Calcular a área da figura limitada pela curva $y=x^3$, a recta y=8 e o eixo OY.

 128° Achar a área da figura limitada pela parábola $y = 2x - x^2$ e

 $pela\ recta\ y = -x.$

 129° Achar a área da figura limitada pelas parábolas $y^2 = 2px$ e $x^2 = 2py$.

 130° Calcular a área do segmento da parábola $y=x^2$, que corta a recta y=3-2x.

131º Calcular a área da figura compreendida entre as parábolas $y = \frac{x^2}{3}$ e

$$y = 4 - \frac{2}{3}x^2.$$

132º Calcular a área da figura compreendida entre a curva de Agnisi

$$y = \frac{1}{1 + x^2} e \ a \ parábola \ y = \frac{x^2}{2}.$$

The Moise, The Quieto e The John

 133° Calcular a área da figura limitada pelas curvas $y = e^x$, $y = e^{-x}$ e a recta x = 1.

134º Calcular a área da figura limitada pela hipérbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ e a recta x=2a.

135º Achar a área da figura compreendida entre a catenária $y=a\cosh\frac{x}{a}$, o eixo OY e a recta $y=\frac{a}{2e}(e^2+1)$.

136º Achar a área da figura limitada pela astroide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

137º Calcular a área da superfície compreendida entre a circuferência $x^2 + y^2 = 16$ e a parábola $x^2 = 12(y - 1)$.

 138° Achar a área contida no interior do astroide $x = a \cos^2 t$; $y = b \sin^3 t$.

139º Achar a área da figura limitada por um ramo da trocoide

$$\begin{cases} x = at - b \sin t \\ y = a - b \cos t \end{cases} (0 < b \le a) \ e \ a \ tangente \ da \ mesma \ em \ seus \ pontos \ inferiors.$$

140º Achar a área da figura limitada pelo laçoda fohla de Descarte

$$x = \frac{3at}{1+t^2}$$
, $y = \frac{3at^2}{1+t^3}$.

141º Achar a área da figura limitada pela cardiode $\begin{cases} x = a(2\cos t - \cos 2t) \\ y = a(2\sin t - \sin 2t) \end{cases}$

 142° Achar a área limitada pela curva $x^4 + y^4 = x^2 + y^2$.

 143° Achar a área da figura limitada pela curva $r=2a\cos(3\theta)$ que está fora do círculo r=a.

144º Achar a área da figura limitada pela elípse $r = \frac{p}{1 + \varepsilon \cos \theta}$ $(0 \le \varepsilon < 1)$.

The Moise, The Quieto e The John

✓ Comprimento do arco da curva.

145º Achar o comprimento do arco da catenária $y = a \cosh\left(\frac{x}{a}\right)$ desde o vértice A(0;a) até o B(b;h).

 146° Calcular o comprimento do arco da parábola semi — cúbicas $y^2=x^2$ desde a origem das coordenadas até o ponto, cujas coordenadas são x=4, y=8.

 147° Achar o comprimento do arco da evoluta da elípse $x=\frac{c^2}{b}\sin^3 t$ $(c^2=a^2-b^2, 0< b< a).$

148º Achar o comprimento do arco da cuva $x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$ desde y = 1 até y = e.

 149° Achar o comprimento do arco da cuva x = a até x = b (a < b).

150º Achar o comprimento do arco da evolvente do círculo

$$\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t - t \cos t) \end{cases} desde \ t = 0 \ at\'ever \ t = T.$$

151º Achar o comprimento do arco do ramo direito do tractriz

$$x = \sqrt{a^2 - y^2} + a \ln \left| \frac{a + \sqrt{a^2 - y^2}}{y} \right| desde \ y = a \ até \ y = b \ (0 < b < a).$$

 152° Achar o comprimento da parte fechada da curva $9ay^2 = x(x - 3a)^2$.

153º Achar o comprimento do arco da cuva $y = \ln x \ desde \ x = \sqrt{3} \ até \ x = \sqrt{8}$.

 154° Achar o comprimento do arco $y = arc \sin(e^{-x})$ desde x = 0 até x = 1.

155° Achar o comprimento do arco da cuva $y = e^x$, compreendido entre os pontos (0; 1). e(1; e).

156º Achar o comprimento da cuva $\begin{cases} x = a(2\cos t - \cos 2t) \\ y = a(2\sin t - \sin 2t) \end{cases}$

157º Achar o comprimento total da cardiode $r = a(1 + \cos \theta)$.

158º Achar o comprimento do arco da parábola $r=a\sec^2\left(\frac{\theta}{2}\right)$, cortada da masma nos uma resta vertical que nassa nele nele

da mesma por uma recta vertical que passa pelo polo.

 159° Achar o comprimento dda primeira espira, da espiral de Arquimedes $r=a\theta$.

✓ Volumes dos corpos sólidos.

 160° Achar o volume do corpo formado pela rotação em torno do eixo OX, da superfície limitada pelo eixo OX e a parábola $y = ax - x^2$ (a > 0).

161º Achar o volume do elipsoide, formado pela rotação da elípse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, em torno do eixo OX.$$

 162° Achar o volume do corpo, formado ao girar em torno do eixo OX, da superfície limitada pela cetenária $y = a\cos h\left(\frac{x}{a}\right)$, o eixo OX e as rectas $x = \pm a$.

 163° Achar o volume do corpo formado pela rotação da superfície limitado pelas linhas $y=e^x$, x=0 e y=0, em torno:

a) Do eixo OX

b) Do eixo OY.

The Moise, The Quieto e The John

 164° Achar o volume do corpo formado pela rotação do astróide $x = a \cos^3 t$, $y = a \sin^3 t$ em torno do eixo OX.

 165° Achar o volume do corpo formado pela rotação da figura limitada por um arco ciclóide $x=a(t-\sin t).y=a(1-\cos t)~(0\leq t\leq 2\pi)e$ pelo eixo OX em torno :

a) Do eixo OX; b) Do eixo OY e c) Do eixo da simetria da figura. 166° Achar o volume da parábola de revoloção, se o raio de sua base é R e sua altura é H.

167º Achar o volume do corpo que se forma ao girar a cissóide

$$y^2 = \frac{x^3}{2a - x}$$
 em torno de sua assintota $x = 2a$.

168º Achar o volume do corpo formado pela rotação em torno do eixo OX, do laço da curva $(x - 4a)y^2 = ax(x - 3a)$ (a > 0).

169º Achar o volume do corpo formado pela rotação em torno do eixo OX, da superfície compreendeda entre as parábolas $y=x^2$ 2 $y=\sqrt{x}$.

 170° Achar o volume do corpo formado pela rotação cardiode $r = a(1 + \cos \theta)$ em torno do eixo polar.

 171° Achar o volume do corpo formado pela rotação da curva $r=a\cos^2\theta$ em torno do eixo.

172º Achar o volume do abelisco, cujas bases paralelas são rectângulos de lados A, B e a, b, sendo a altura igual a h.

The Moise, The Quieto e The John

173º Achar o volume do cone elíptico recto, cuja a base é uma elípse de semi — eixos a e b cuja altura é igual a h.

174º Achar o volume do corpo limitado pelos cilindros $x^2 + z^2 = a^2$ e $y^2 + z^2 = a^2$.

175º Achar o volume do segmento do parabolóide elíptico $\frac{y^2}{2p} + \frac{z^2}{2q} \le x$ interceptado pelo plano x = a.

176º Achar o volume do corpo limitado pelos hiperbólóide de uma folha

$$\frac{x^2}{a^2} + \frac{y^2}{h^2} - \frac{z^2}{c^2} = 1$$
 e os planos $z = 0$ e $z = h$.

177º Achar o volume do elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

✓ Áreas da superfície de revolução

 178° Achar a área da superfície do fuso que forma ao girar uma simionda da sinusóide $y = \sin x$ em torno do eixo OX.

 $179^{\circ}Achar$ a área da superfície formada pela rotação da pate da tangentoide $y= tag \, x$, compreendida entre $x=o \, 2 \, \frac{\pi}{4}$, em torno do eixo OX.

 180° Achar a área da superfície formada pela rotação em torno do eixo OX, do arco da curva $y=e^{-x}$ compreendido entre x=0 e $x=+\infty$.

181º Achar a área da superfície da revolução do astróide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ em torno do eixo OY.

The Moise, The Ouieto e The John

182º Achar a área da superfície da revolução da curva $x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$ em torno do eixo OX, compreendido entre y = 1 ey = e.

183º Achar a área da superfície ao girar a elípse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ em torno:

a) Do eixo OX;

b) Do eixo OY.

 184° Achar a área da superfície formada pela rotação da cardióde $r = 2a(1 + \cos \theta)$ em torno do eixo polar.

185º Achar a área da superfície formada pela rotação em torno do eixo OX,

$$da\ cardi\'oide\ \begin{cases} x = a(2\cos t - \cos 2t) \\ y = a(2\sin t - \sin 2t) \end{cases}.$$

186º Achar a área da superfície formada ao girar a lerminscata $r^2=a^2\cos(2\theta)\ em\ torno\ do\ eixo\ polar.$

✓ Momentos. Centro de gravidade. Teoremas de Guldin.

 187° Achar os momentos estáticos em relação aos eixos das coordenadas, do segmento da linha recta, $\frac{x}{a} + \frac{y}{b} = 1$ compreendido entre eixos de coordenadas.

188º Achar os momentos estáticos do rectângulo de lados a e b, em relação a estes mesmos lados.

 189° Achar os momentos estáticos em relação aos eixos OX e OY e as coordenadas do cento da gravidade do triângulo limitado pelas rectas: x + y = a, x = 0 e y = 0.

 190° Achar os momentos estáticos em relação aos eixos OX e OY e as coordenadas do cento da gravidade do arco do astróide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, situado no primeiro quadrante.

191º Achar os momentos estáticos da circunferência $r=2a\sin\theta\ em$ relação ao eixo polar.

The Moise, The Quieto e The John

192º Achar as coordenadas do centro de gravidade de arco da catenária $y=a\cosh\left(\frac{x}{a}\right), compreendido\ entre\ x=-a\ e\ x=a.$

193º Achar as coordenadas do centro de gravidade do primeiro arco da ciclóide $x = a(t - \sin t)$; $y = a(1 - \cos t)$, $(0 \le t \le 2\pi)$.

194º Achar as coordenadas do centro de gravidade da figura limitada pela

elípse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 e pelos eixos das coordenadas OX e OY $(x \ge 0; y \ge 0)$.

195º Achar as coordenadas do centro de gravidade da figura limitada pelas curvas $y=x^2$; $y=\sqrt{x}$.

196º Achar as coordenadas do centro de gravidade da figura limitada pelo primeiro erco da ciclóide, $x = a(t - \sin t)$; $y = a(1 - \cos t)$ e o eixo OX.

 197° Achar o momento de inércia de um cone circular recto, homogêneo, em relação a seu eixo, se o raio da base é R e a altura é H.

 198° Achar o momento de inércia de um globo homogênio de raio **a** e massa **M**, em relação ao seu diâmetro.

 199° Achar o momento de polar de inércia de um anel circular, de raios R_1 e R_2 (R_1 < R_2), istó é, o momento de inércia em relação ao eixo que passa pelo centro do anel e é perpendicular ao plano do mesmo.

 200° Achar o momento de inércia da superfície da elípse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ em relação a seus eixos principais.

The Moise, The Quieto e The John

 201° Achar o momento de inércia de uma circuferência ae raio ${\it a}$ em relação ao seu próprio diâmetro.

202º Achar o momento de inércia de um segmento parabólico recto em relação ao seu eixo de simetria, se a base é 2b e a altura é h.

203º Achar a área do volume de um toro obtido pela rotação que um círculo de raio \mathbf{a} em torno de um eixo situado no mesmo plano que o círculo e que se encotra a uma distância \mathbf{b} ($\mathbf{b} \geq \mathbf{a}$) do centro deste.

204º a) Determinar a posição docentro de gravidade do arco do astroide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, situado no primeiro quadrante.

b) Achar o centro de gravidade da figura limitada pelas curvas

$$y^2 = 2px e x^2 = 2py$$

 205° a) Achar o centro de gravidade do semi — circulo, aplicando o teorema de Guldim.

- b) Demonstrar, aplicando o teorema de Guldin, que o centro de gravidade do triângulo desta sua base em um terço da altura.
 - ✓ Aplicação das integrais definidas na resolução de problemas da física.

 206° A velocidade de um corpo lançado verticalmente para cima com uma velocidade inicial v_0 considerando — se a resistencia da ar, é expressa pela fórmula $v=c. tag(-\frac{g}{c}t+arctag\frac{v_0}{c})$, onde t é o tempo transcorrido; g a aceleração da gravidade e c é uma constante. Achar a que altura se eleva o corpo. 207° Um ponto de eixo OX vibra harmonicamente em torno da origem das coordenadas com uma velocideda que é dada pela fórmula $v=v_0 \cos(\omega t)$, onde t é o tempo , v_0 e ω são constantes.

Achar a lei de vibração do ponto, se para t=0 a abcissa era x=0. A que será igual o valor médio da grandeza absoluta da velocidade do ponto, durante o periodo de oscilação?

The Moise, The Quieto e The John

 208° A velocidade do movimento de um ponto é $v=te^{-0.01t}$ m/s. Achar o trajecto percorrido pelo ponto desde que começou a mover — se até que pare por completo.

209º Calcular o trabalho necessário para retirar a água que se encotra em uma cuba cônica, com o vértice para baixo, sendo o raio da base R e uma

altura H.

 210° Calcular o trabalho necessário para retirar a água de uma caldeira semi — esférica que tem um raio R=10m.

 211° Que trabalho é necessário realizar para levantar um corpo de massa m da superfície da terra, cujo raio é R, na altura h? A que será igual este traballho se é necesário levar este corpo ao infinito?

212º Duas cargas elétricas $e_0=100$ CGSE e $e_1=200$ CGSE se encotram no eixo OX, respectivamente nos pontos $x_0=0$ e $x_1=1$ cm. Que trabalho se realizará se a segunda carga for transladada ao ponto $x_2=10$ cm? 213º Achar a quantidade de calor que desprende uma corrente alternada sinusoidal $I=I_0\sin\left(\frac{2\pi}{T}t-\theta\right)$ durante o periodo T em um condutor de resistência R. Aqui I_0 é a amplitude da corrente; t, o tempo ; θ , a fase.

The Moise, The Quieto e The John

 214° Calcular a energia cinética de um como circular recto, de massa M, que gira em torno de seu eixo com uma velocidade angular ω . O raio da base do cone é R, a altuda H.

215º Que trabalho é necessário realizar para determinar uma bola de ferro de raio R=2m que gira, em torno de seu diâmetro, com uma velocedade angular $\omega=1000$ rpm; (o peso específico do ferro é J=7,8 gf/cm³). 216º Segundo os dados empíricos a capacidade calorífica específica da água á temperatura t°C ($0 \le t \le 100$ °) é igual a c=0,9983-5;

 $184 \cdot 10^{-5}t - 6,912 \cdot 10^{-7}t^2$. Que quantidade de calor se necessita para aquecer 1g de água desde 0° até 100° C?

