Topics for A-exam

Daniel Miller

August 7, 2016

Contents

1		ebraic number theory	2	
	1.1	Extensions of dedekind schemes	2	
	1.2	Discrete valuation fields	2	
	1.3	Henselian Fields	2	
	1.4	Local fields	2	
	1.5	Global fields	2	
	1.6	Classical geometry of numbers	2	
	1.7	Adelic geometry of numbers	3	
2	Clas	ss field theory	3	
	2.1	Local class field theory	3	
	2.2	Global class field theory	4	
3	Alg	ebraic geometry	4	
	_	Cartier divisors	4	
	3.2	Algebraic groups and their Lie algebras	5	
4	Geo	ometry of curves	5	
	4.1	Divisors and invertible sheaves on curves	5	
	4.2	The Riemann-Roch theorem	5	
5	Elliptic curves 5			
	5.1	The group law on an elliptic curve	5	
	5.2	Formal groups of elliptic curves	5	
	5.3	Elliptic curves over C	6	
6	Rep	presentation theory	6	
	6.1	Representations of reductive Lie groups	6	
	6.2	Decompositions of groups	6	
	6.3	Induced representations	7	
	6.4	Representations of $SL_2(\mathbf{R})$	7	
	6.5	Representations of $GL_2(\mathbf{R})$	9	
	6.6	Representations of $SL_2(C)$	9	
	6.7	Representations of $GL_2(\mathbf{C})$	10	

1 Algebraic number theory

1.1 Extensions of dedekind schemes

Recall that a *dedekind scheme* is an integral noetherian normal scheme of dimension 1. If X is a Dedekind scheme, then all the stalks $\mathcal{O}_{X,x}$ are one-dimensional regular local rings, i.e. discrete valuation rings. In particular, each closed point $x \in X$ induces a discrete valuation v_x on the field of fractions k of X.

If K/k is a finite separable extension, let Y be the normalization of X in K, i.e. the relative spectrum of the sheaf

$$U \mapsto$$
 integral closure of $\mathcal{O}_X(U)$ in K .

Then $p: Y \to X$ is a finite surjective morphism. Each fiber $p^{-1}(x)$ is a finite set, possibly with nilpotents.

1.2 Discrete valuation fields

Let k be a field with a discrete valuation $v: k^{\times} \to \mathbb{Z}$. Let $\mathfrak{o} = \{x \in k : v(x) \ge 0\}$ be the valuation ring of k, and let $\mathfrak{p} \subset \mathfrak{o}$ be the unique maximal ideal. Put $U = 1 + \mathfrak{p}$, and give \mathfrak{p} and U filtrations by

$$\mathfrak{p}^r$$
 = the *r*-th power of \mathfrak{p}
 $U^r = 1 + \mathfrak{p}^r$.

There is a canonical isomorphism $\operatorname{gr}(\mathfrak{p}^{\bullet}) \xrightarrow{\sim} \operatorname{gr}(U^{\bullet})$, given by $x \mapsto 1 + x$.

1.3 Henselian Fields

Let k be a field with a discrete valuation. One calls k Henselian if Hensel's lemma holds for o_k . Alternatively, one requires that valuations extend uniquely to algebraic extensions of k. Complete fields are Henselian.

One can give a reasonable description of the absolute Galois group G_k of a Henselian field k. Let κ be the residue field of k, and let $p \ge 0$ be the characteristic of κ . If K/k is a *finite* extension, then define for $r \ge 0$,

$$Gal(K/k)_r = ker \left(Gal(K/k) \to Aut_{\mathfrak{o}_k}(\mathfrak{o}_L/\mathfrak{p}^{r+1}) \right).$$

There is a canonical embedding $\operatorname{gr}(\operatorname{Gal}(K/k)_{\bullet}) \hookrightarrow \operatorname{gr}(U_K^{\bullet})$, given by $\sigma \mapsto \sigma \pi/\pi$, for $\pi \in \mathfrak{o}_K$ an arbitrary uniformizer. In particular, $\operatorname{Gal}(K/k)$ is solvable.

upper ramification numbering

1.4 Local fields

A *local field* is a locally compact topological field. Local fields are known to be finite extensions of either $\mathbf{F}_p(t)$ or \mathbf{Q}_p .

1.5 Global fields

1.6 Classical geometry of numbers

Our main reference is Chapter I, §5-7 of [Neu99]. Let k be a number field, and write $k_{\infty} = k_{\mathbf{R}} = k \otimes_{\mathbf{Q}} \mathbf{R}$. This is a finite étale \mathbf{R} -algebra isomorphic to $\mathbf{R}^r \times \mathbf{C}^s$, where r is the number of real places and s is the number of complex places of k. One gives k_{∞} a standard measure (twice Lebesgue on copies of \mathbf{C} and Lebesgue on copies of \mathbf{R}) under which the lattice \mathfrak{o} has volume $\operatorname{vol}(\mathfrak{o}) = \operatorname{vol}(k_{\infty}/\mathfrak{o}) = |d_k|^{1/2}$. As a corollary, if $S \subset k_{\infty}$ is open, convex, and centrally symmetric, then $\operatorname{vol}(S) \geqslant \operatorname{vol}(\mathfrak{o})$ implies $S \cap \mathfrak{o} \neq 0$. The same type of theorem

holds for any $\mathfrak{a} \subset \mathfrak{o}$, where $\operatorname{vol}(\mathfrak{a}) = [\mathfrak{o} : \mathfrak{a}] |d_k|^{1/2}$. Considering $S = \{a : |N(a)| \leq ?\}$ gives that for every nonzero ideal $\mathfrak{a} \subset \mathfrak{o}$, there is $a \in \mathfrak{a} \setminus 0$ such that (there exist a for both of these)

$$|N_{k/\mathbf{Q}}(a)| \leqslant \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |d_k|^{1/2} [\mathfrak{o} : \mathfrak{a}]$$
$$|N_{k/\mathbf{Q}}(a)| \leqslant \left(\frac{2}{\pi}\right)^s |d_k|^{1/2} [\mathfrak{o} : \mathfrak{a}].$$

There is a natural map $\log |\cdot| : k_{\infty}^{\times}$.

1.7 Adelic geometry of numbers

A key fact is that I_k^1/k^{\times} and A_k/k are compact.

Our main reference here is [PR94]. Let k be a number field, and G an algebraic group over k. Let S be a finite set of places of k, containing all the infinite places, and let $k_S = \prod_{v \in S} k_v$. It is a theorem of Borel (essentially Theorem 5.1 of [PR94]) that the double quotient $G(k) \setminus G(A_k) / G(k_S) K$ is finite, whenever $K \subset G(\mathbf{A})$ is open compact.

Let $X(G) = \text{hom}_k(G, G_m)$; this is a finite free **Z**-module. There is a canonical homomorphism

$$c: G(\mathbf{A}) \to X(G)^{\vee}_{\mathbf{R}} \qquad (g_v) \mapsto \chi \mapsto \prod_v |\chi(g_v)|_v.$$

Let $G(\mathbf{A})^1 = \ker(c)$. Then Theorem 5.6 of [PR94] tells us that $G(\mathbf{A})^1/G(k)$ is compact if and only if the semisimple part of G is anisotropic over k.

2 Class field theory

The main references are Chapter V of [Neu99] and Chapter VI of [CF86].

2.1 Local class field theory

These theorems are from chapter V of [Neu99]. Recall that if κ is a finite field, we regard **Z** as a subgroup of G_{κ} by letting $1 \in \mathbf{Z}$ correspond to the (arithmetic) Frobenius of κ . We normalize all valuations so that uniformizers have valuation 1.

Theorem 2.1.1. Let k be a local field with residue field κ . Then there is a unique continuous homomorphism $r: k^{\times} \to G_k^{ab}$ such that

1. the following diagram commutes:

$$k^{\times} \xrightarrow{r} G_{k}^{ab}$$

$$\downarrow v \qquad \qquad \downarrow \psi$$

$$\mathbf{Z} \longrightarrow G_{K}$$

2. for all finite abelian K/k, the map r induces an isomorphism $k^{\times}/N(K^{\times}) \xrightarrow{\sim} Gal(K/k)$

This homomorphism (called the reciprocity map) induces an isomorphism $\widehat{k^{\times}} \stackrel{\sim}{\longrightarrow} G_k^{ab}$. Finally, a subgroup $G \subset k^{\times}$ is of the form $N(K^{\times})$ for some finite K/k if and only if G is open and has finite index.

Proof. This proof is inspired by that of Theorem 1.13 in [Mil13]. We only prove the uniqueness of r. Since k^{\times} is topologically generated by uniformizers, it suffices to show that conditions determine $r(\pi)$ for any $\pi \in k^{\times}$ with $v(\pi) = 1$. For any such π , we get a decomposition $k^{ab} = k^{ur} \cdot k_{\pi}$, where k_{π} is the fixed field of $r(\pi)$. Since $r(\pi)$ has to act on k^{ur} as Frobenius, and (by definition), $r(\pi)$ acts trivially on k_{π} , the action of $r(\pi)$ on k^{ab} is determined.

This theorem is true even if k is archimedean. Just ignore part 1, and note that $G_{\mathbf{R}} = \mathbf{Z}/2$, which has no nontrivial automorphisms. In other words, there is a unique homomorphism $\mathbf{R}^{\times} \to G_{\mathbf{R}}$ inducing an isomorphism $\widehat{\mathbf{R}^{\times}} \xrightarrow{\sim} G_{\mathbf{R}}$.

2.2 Global class field theory

A good references is chapter VI of [Neu99]. For a global field k, write \mathbf{A}_k for its ring of adeles, and define $C_k = \operatorname{GL}(1, \mathbf{A}_k) / \operatorname{GL}(1, k)$. For a place v of k, write r_v for the reciprocity map of k_v . Since the decomposition groups $D_v = G_{k_v}$ are well-defined up to conjugacy in G_k , the abelianized decomposition groups D_v^{ab} are well-defined as subgroups of G_k^{ab} .

Theorem 2.2.1. There is a unique continuous homomorphism $r: C_k \to G_k^{ab}$ such that

1. the following diagram commutes for all v:

$$k_v^{\times} \xrightarrow{} C_k$$

$$\downarrow^{r_v} \qquad \downarrow^r$$

$$D_v^{ab} \xrightarrow{} G_k^{ab}$$

2. *if* K/k *is finite abelian, r induces an isomorphism* $C_k/N(C_K) \xrightarrow{\sim} \operatorname{Gal}(K/k)$.

This homomorphism (also called the reciprocity map) induces an isomorphism $\widehat{C_k} \xrightarrow{\sim} G_k^{ab}$. Finally, a subgroup $G \subset C_k$ is of the form $N(K^{\times})$ for some finite K/k if and only if G is open and has finite index.

3 Algebraic geometry

[Har77], [Sil09], and [EH00]

Zariski's main theorem

tangent space on affine / projective variety as special case of tangent sheaf for arbitrary morphism of schemes

3.1 Cartier divisors

For a ringed space X, let \mathscr{M} be the sheaf of meromorphic functions, and put $\mathscr{D} = \mathscr{M}^{\times}/\mathscr{O}^{\times}$. This is a sheaf of abelian groups on X, called the *sheaf of Cartier divisors*. A global section of \mathscr{D} is called a *Cartier divisor* on X. The (tautological) short exact sequence

$$1\to \mathscr{O}^\times \to \mathscr{M}^\times \to \mathscr{D} \to 0$$

yields a long exact sequence in sheaf cohomology:

$$1 \to \Gamma(\mathscr{O}^{\times}) \to \Gamma(\mathscr{M}^{\times}) \to \mathrm{Div}(X) \to \mathrm{Pic}(X) \to \mathrm{H}^1(\mathscr{M}^{\times}) \to \cdots$$

If X is integral, \mathscr{M} is flasque, so $H^1(\mathscr{M}^\times) = 0$, whence $\operatorname{Pic}(X) = \operatorname{Div}(X)/\operatorname{div}\Gamma(\mathscr{M}^\times)$. If X is a one-dimensional scheme over S, then points $x \in X(S)$ yield Cartier divisors, denoted $\mathscr{I}(x)$, on X. If we think of $\mathscr{I}(x)$ as a sheaf, then it makes sense to talk about $\mathscr{I}^{-1}(x)$.

3.2 Algebraic groups and their Lie algebras

We would like to interpret the notion of a representation of an algebraic group over a field in terms of arbitrary ringed topoi. The main source here is [?]. We start with the following list of analogies.

classical	topos-theoretic
field k	base scheme S
finite-dimensional k -space V	coherent \mathscr{O}_X -module \mathscr{M}
$R \mapsto V_R = V \otimes_k R$	$(X \xrightarrow{f} S) \mapsto \Gamma(f^* \mathscr{M})$
$\operatorname{Spec}(k[V^{\vee}])$	$\mathbf{V}(\mathscr{M}) = \operatorname{Spec}(\mathscr{O}_S[\mathscr{M}^{\vee}])$
$GL(V): R \mapsto Aut_R(V_R)$	$\operatorname{GL}(\mathscr{M}): X \mapsto \operatorname{Aut}_{\Gamma(X)}(\Gamma(f^*\mathscr{M}))$
$ ho:G o\operatorname{GL}(V)$	$ ho:G o \mathrm{GL}(\mathscr{M})$
$G(R) \to \operatorname{Aut}_R(V_R)$	$G(X) \to \operatorname{Aut}_{\Gamma(X)}(\Gamma(f^*\mathscr{M}))$

An algebraic group G over a field k is *anisotropic* if it contains no k-split tori. If k is a non-algebraically closed local field, then G is anisotropic if and only if G(k) is compact.

4 Geometry of curves

The main references for this section are Chapter IV of [Har77] and Chapter 7 of [Liu02]:

4.1 Divisors and invertible sheaves on curves

4.2 The Riemann-Roch theorem

5 Elliptic curves

The main reference on elliptic curves is [Sil09], especially chapters II-IV and VI-VIII. Chapter II mostly covers the geometry of curves.

elliptic curves over local fields elliptic curves over global fields

5.1 The group law on an elliptic curve

If *X* is a curve over *S*, define

$$\operatorname{Pic}_{X/S}^1(T) = \operatorname{Pic}^1(X_T) / \operatorname{Pic}(T).$$

Theorem 5.1.1. Let E be an elliptic curve over S. Then there is a natural isomorphism of functors $E \xrightarrow{\sim} \operatorname{Pic}_{E/S}^1$ given by $x \mapsto \mathscr{I}^{-1}(x)$. This induces the structure of an S-group on E, where x + y + z = 0 if and only if

$$(\mathscr{I}(x)-\mathscr{I}(0))+(\mathscr{I}(y)-\mathscr{I}(0))+(\mathscr{I}(z)-\mathscr{I}(0))=0 \qquad \text{in } \operatorname{Pic}_{X/S}(T).$$

Proof. This is Theorem 2.1.2 of [KM85]

5.2 Formal groups of elliptic curves

Let F be a formal group. By Proposition IV.4.2 of [Sil09], the invariant differential of F is $\omega = \frac{\partial F}{\partial X}(0,T)^{-1}dT$. Put $\log_F = \int \omega$. Then $\log_F : F \to \hat{\mathbf{G}}_a$ is an isomorphism over \mathbf{Q} . If F is defined over a mixed-characteristic complete discrete valuation ring and v(p) > 0, then for r > v(p)/(p-1), \log_F induces an isomorphism $F(\mathfrak{m}^r) \stackrel{\sim}{\longrightarrow} \hat{\mathbf{G}}_a(\mathfrak{m}^r)$.

If E is an elliptic curve, let \hat{E} denote the corresponding formal group. A nice theorem (IV.7.4 in [Sil09]) is that if $f: E_1 \to E_2$ is an isogeny of characteristic p elliptic curves, then $\deg_i(f) = p^{\operatorname{ht} \hat{f}}$, where \deg_i denotes inseparable degree.

5.3 Elliptic curves over C

Let *E* be an elliptic curve over **C**, which we will take to mean that *E* is a compact connected one-dimensional complex Lie group of genus one. Let $\mathfrak{e} = \text{Lie } E$. The exponential map $\exp : \mathfrak{e} \to E$ is a surjective homomorphism of Lie groups, so we get a short exact sequence

$$0 \to \Lambda \to \mathfrak{e} \xrightarrow{\exp} E \to 0.$$

It is possible to go the other direction. Start with a lattice $\Lambda \subset \mathbf{C}$, and define

$$\wp_{\Lambda}(z) = \sum_{\lambda \in \Lambda \setminus 0} \left((z - \lambda)^{-2} - \lambda^{-2} \right)$$
$$G_k(\Lambda) = \sum_{\lambda \in \Lambda \setminus 0} \lambda^{-k}.$$

Theorem 5.3.1. Let $\Lambda \subset \mathbf{C}$ be a lattice. Let $g_2 = 60G_2(\Lambda)$ and $g_3 = 140G_6(\Lambda)$. Let E_{Λ} be the elliptic curve $y^2 = 4x^3 + g_2x + g_3$. Then the map $(\wp_{\Lambda} : \wp'_{\Lambda} : 1) : \mathbf{C}/\Lambda \to E_{\Lambda}$ is an analytic isomorphism.

Proof. This is Proposition VI.3.6 of [Sil09].

In fact, $\Lambda \mapsto E_{\Lambda}$ induces an equivalence of categories between lattices over **C** and elliptic curves over **C**.

6 Representation theory

The main references are [Kna79] and [Don97].

6.1 Representations of reductive Lie groups

Following [Wal88], we say that a real Lie group G is *real reductive group* if it is a finite cover of the real points of a Zariski-closed subgroup of $GL_n(\mathbf{C})$, defined over \mathbf{R} , which is closed under conjugate-transpose.

First, note that if G is an arbitrary locally compact group, $f \in C_c(G)$, and π is a continuous Banach representation of G, then we can put

$$\pi(f) = \int_G f(g)\pi(f) \, dg.$$

This is a representation of the algebra $C_c(G)$. We apply this construction to the special case where G be a real reductive group with maximal compact K. Let \widehat{K} be the unitary dual of K. If $\tau \in \widehat{K}$, put $\alpha_{\tau}(k) = \dim(\tau) \operatorname{tr} \tau(k^{-1})$. For any representation π of K, set $\Pi_{\tau} = \pi(\alpha_{\tau})$ for any $\tau \in \widehat{K}$. It turns out that Π_{τ} is a projection operator, and that

$$\pi = \widehat{igoplus_{ au \in \widehat{K}}} \operatorname{im}(\Pi_{ au}).$$

One says that π is *admissible* if each im(Π_{τ}) is finite-dimensional (equivalently, if each τ has finite multiplicity in π). Call a representation π of *G* admissible if the restriction res_K π is admissible.

6.2 Decompositions of groups

Let G be a real reductive group with lie algebra g and Cartan involution θ . Put

$$\mathfrak{k} = \{ X \in \mathfrak{g} : \theta X = X \}$$

$$\mathfrak{p} = \{ X \in \mathfrak{g} : \theta X = -X \}.$$

Then $\mathfrak k$ is the Lie algebra of a "canonical" maximal compact K of G. The *Cartan decomposition* of G is the fact that the map $\mathfrak p \times K \to G$, $(X,k) \mapsto \exp(X)k$, is a diffeomorphism. **Warning**: $\mathfrak p$ is *not* a subalgebra of $\mathfrak g$. The next decomposition is trickier. Let $\mathfrak a \subset \mathfrak p$ be a maximal abelian subalgebra. For $\alpha \in \mathfrak a^\vee$, put

$$\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} : \operatorname{ad} Y(X) = \lambda(Y)X \text{ for all } Y \in \mathfrak{a} \}.$$

Let $R = \{ \alpha \in \mathfrak{a}^{\vee} \setminus 0 : \mathfrak{g}_{\alpha} \neq 0 \}$. It is known that $\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{\alpha \in R} \mathfrak{g}_{\alpha}$. Let $\Delta^+ \subset R$ be some choice of positive roots, and put

 $\mathfrak{n}=\sum_{lpha\in \Lambda^+}\mathfrak{g}_lpha.$

Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, inducing an isomorphism G = KAN (at least, if everything is appropriately connected). One interprets A and N as depending on \mathfrak{p} , so write $A_{\mathfrak{p}}$, $N_{\mathfrak{p}}$. Define

$$M = M_{\mathfrak{p}} = Z_K(A_{\mathfrak{p}}) = \{k \in K : ka = ak \text{ for all } a \in A_{\mathfrak{p}}\}.$$

Then S = MAN is the "standard minimal parabolic." In the main example $G = SL_2(\mathbf{R})$, we have

$$\mathfrak{p} = \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} : a, b \in \mathbf{R} \right\} = \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle$$

$$\mathfrak{k} = \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\rangle = \operatorname{Lie} K = \operatorname{Lie} \left\{ k_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : 0 \leqslant \theta < 2\pi \right\}$$

$$\mathfrak{a} = \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\rangle = \operatorname{Lie} A = \operatorname{Lie} \left\{ \begin{pmatrix} a \\ a^{-1} \end{pmatrix} : a > 0 \right\}$$

$$\mathfrak{n} = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle = \operatorname{Lie} N = \operatorname{Lie} \begin{pmatrix} 1 & * \\ 1 \end{pmatrix}$$

$$\mathfrak{m} = 0 = \operatorname{Lie} M = \operatorname{Lie} (\pm 1)$$

One puts $\mathfrak{n}_+ = \mathfrak{n}$, $\mathfrak{n}_- = \sum_{\alpha \in -\Delta^+} \mathfrak{g}_{\alpha}$.

6.3 Induced representations

Let *G* be a real reductive group, and consider the canonical decomposition G = KS = KMAN. Suppose ρ is a unitary representation of *S* with space V_{ϱ} . The induced space $\inf_{S} \rho$ is the completion of

$$\{f: G \to V_{\rho}: f(ks) = \rho(s^{-1})f(k)\}$$

with respect to the norm

$$||f||^2 = \int_{\mathcal{K}} |f(k)|^2 dk.$$

The action is $(\gamma \cdot f)(g) = f(\gamma^{-1}g)$. A function $f \in \operatorname{ind}_S^G \rho$ is determined by both its restrictions $f|_K$ and $f|_{N_-}$, so $\operatorname{ind}_S^G \rho$ can be realized as function spaces on both those subgroups of G.

6.4 Representations of $SL_2(\mathbf{R})$

Let's start out with the standard families of unitary representations of $SL_2(\mathbf{R})$. Each of these is defined as the completion of some space of smooth (or analytic) functions with respect to a specified norm.

Definition 6.4.1 (finite-dimensional: \mathcal{F}_n for $n \geq 0$). Let $\rho_0 : \operatorname{SL}_2(\mathbf{R}) \hookrightarrow \operatorname{GL}_2(\mathbf{C})$ be the inclusion morphism. Put $\rho_n = \operatorname{Sym}^n \rho_0$. The representation ρ_n can be realized in the space \mathcal{F}_n of homogeneous polynomials $f \in \mathbf{C}[x,y]$ of degree n. A matrix $\gamma \in \operatorname{SL}_2(\mathbf{R})$ acts by $(\gamma f)(v) = f(\gamma^{-1}v)$. If we reinterpret $f \in \mathbf{C}[x,y]_n$ as an element of $\mathbf{C}[z]_{\leq n}$, then $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$ acts by $(\gamma f)(z) = (bz + d)^n f\left(\begin{smallmatrix} az + c \\ bz + d \end{smallmatrix} \right)$.

Theorem 6.4.2. Every finite-dimensional irreducible representation of $SL_2(\mathbf{R})$ is one of $\{\mathcal{F}_n : n \ge 0\}$.

The finite-dimensional representations of $SL_2(\mathbf{R})$ are *not* unitary, except for the trivial representation.

Definition 6.4.3 (discrete series: \mathcal{D}_n^{\pm} for $n \geq 2$). Let G act on the upper half-plane \mathfrak{h} in the usual way: $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) : z \mapsto \frac{az+b}{cz+d}$. The group G has a right action on functions on \mathfrak{h} :

$$(f \cdot \gamma)(z) = \frac{1}{(cz+d)^n} f\left(\frac{az+b}{cz+d}\right) = j(z,\gamma)^{-n} f(\gamma z).$$

Composing with the inverse gives us a left action: $(\gamma f)(z) = j(z, \gamma^{-1})^{-n} f(\gamma^{-1}z)$. The norm on \mathcal{D}_n^+ is

$$||f||^2 = \int_{\mathfrak{h}} |f(z)|^2 y^n \, \frac{dxdy}{y^2}.$$

To be precise: $\mathcal{D}_n^+ = \{f : \mathfrak{h} \to \mathbf{C} \text{ analytic} : ||f|| < \infty\}.$

Theorem 6.4.4. The representations \mathcal{D}_n^{\pm} are irreducible for $n \geqslant 1$.

Proof. We only consider \mathcal{D}_n^+ . Let $K=\mathrm{SU}(2)\subset\mathrm{SL}_2(\mathbf{R})$ be the standard maximal compact subgroup. Its unitary representations are of the form $\chi_n:\left(\begin{smallmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{smallmatrix}\right)\mapsto e^{in\theta}$ for $n\in\mathbf{Z}$. Let $\Pi_n=\Pi_{\chi_n}$. This is the projection operator on \mathcal{D}_n^+ defined by

$$(\Pi_n f)(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} (-z\sin\theta + \cos\theta)^{-n} f\left(\frac{z\cos\theta + \sin\theta}{-z\sin\theta + \cos\theta}\right) d\theta$$

The function $f_n(z) = (z+i)^{-n}$ is an eigenvector for Π_n , and an element of \mathcal{D}_n^+ . Moreover, a computation in complex analysis shows that if $f \in \mathcal{D}_n^+$ has $f(i) \neq 0$, then $\Pi_n f \in \mathbf{C} \cdot f_n$. Using the transitivity of the action of $\mathrm{SL}_2(\mathbf{R})$ on \mathfrak{h} , the result easily follows.

Definition 6.4.5 (principal series: $\mathcal{P}^{\pm,iv}$ for $v \in \mathbf{R}$). The space underlying $\mathcal{P}^{\pm,iv}$ is $L^2(\mathbf{R})$. The action is

$$(\gamma \cdot f)(x) = \begin{cases} \frac{1}{|-bx+d|^{1+iv}} f\left(\frac{ax-c}{-bx+d}\right) & \text{if } + \\ \frac{\operatorname{sgn}(-bx+d)}{|-bx+d|^{1+iv}} f\left(\frac{ax-c}{-bx+d}\right) & \text{if } - \end{cases}$$

These are induced from unitary representations of $S = \begin{pmatrix} * & * \\ * \end{pmatrix}$. They can be realized as functions on K or N_- .

The only reducible principal series is $\mathcal{P}^{-,0} \simeq \mathcal{D}_1^+ \oplus \mathcal{D}_1^-$. There is a "nonunitary principal series" $\mathcal{P}^{k,z}$ for $k \in \mathbf{Z}, z \in \mathbf{C}$, where the space is $C_c^{\infty}(\mathbf{R})$, and the action is

$$(\gamma f)(x) = \frac{\pm (-bx+d)}{|-bx+d|^{1+z}} f\left(\frac{ax-c}{-bx+d}\right).$$

Definition 6.4.6 (complementary series C^s for 0 < s < 1). Let 0 < s < 1. The space underlying C^s is the set of $f \in L^1_{loc}(\mathbf{R})$ such that

$$||f||^2 = \int_{\mathbf{R}^2} \frac{f(x)\overline{f(y)}}{|x-y|^{1-u}} dxdy < \infty.$$

The action is what we would have with $\mathcal{P}^{+,u}$, i.e.

$$(\gamma f)(x) = \frac{1}{|-bx+d|^{1-u}} f\left(\frac{ax-c}{-bx+d}\right).$$

Definition 6.4.7 (limits of discrete series: \mathcal{D}_1^{\pm}). The action here is the same as in the \mathcal{D}_n^{\pm} , but the norm is

$$||f||^2 = \sup_{y>0} \int_{\mathbf{R}} |f(x+iy)|^2 dx.$$

Theorem 6.4.8. Every irreducible unitary representation of $SL_2(\mathbf{R})$ is one of the following:

- \mathcal{D}_n^{\pm} for $n \geqslant 2$
- \mathcal{D}_1^{\pm}
- $\mathcal{P}^{\pm,iv}$ for $v \in \mathbf{R}$, and $v \neq 0$ if -.
- C^s for 0 < s < 1.

The only isomorphisms between items in this list are:

$$\mathcal{P}^{+,iv} \simeq \mathcal{P}^{+,-iv}$$

 $\mathcal{P}^{-,iv} \simeq \mathcal{P}^{-,-iv}$

6.5 Representations of $GL_2(\mathbf{R})$

This is discussed in section 2 of [Kna79]. Let $SL_2^{\pm}(\mathbf{R})=\{g\in GL_2(\mathbf{R}): \det g=\pm 1\}$, and consider $ind_{SL_2(\mathbf{R})}^{SL_2^{\pm}(\mathbf{R})}\pi$ for irreducible unitary representations π of $SL_2(\mathbf{R})$. We have

$$\operatorname{ind}_{\operatorname{SL}_2}^{\operatorname{SL}_2^{\pm}}(\mathcal{P}^{\pm,iv}) \simeq P^{\pm,iv} \oplus P^{\pm,iv}$$

for a canonical irreducible unitary representation $P^{\pm,iv}$ of $SL_2^{\pm}(\mathbf{R})$. For $n \geq 2$, the representation $\operatorname{ind}_{SL}^{SL^{\pm}}(\mathcal{D}_n^{\pm})$ is irreducible unitary. These (also with the complementary series) exhaust the irreducible unitary representations of $SL_2^{\pm}(\mathbf{R})$. The irreducible unitary representations of $GL_2(\mathbf{R})$ are of the form

$$\begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \chi(x) \pi \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

for χ a unitary character of \mathbf{R}^+ and π a representation of $\mathrm{SL}_2^\pm(\mathbf{R})$.

6.6 Representations of $SL_2(\mathbf{C})$

A good reference is II.4 of [Kna86].

Definition 6.6.1 (principal series $\mathcal{P}^{n,iv}$ for $n \in \mathbf{Z}$ and $v \in \mathbf{R}$). The underlying space is $L^2(\mathbf{C})$. The action is, for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$(\gamma f)(z) = |-bz+d|^{-2-iv} \left(\frac{-bz+d}{|-bz+d|}\right)^{-n} f\left(\frac{az-c}{-bz+d}\right).$$

Definition 6.6.2 (complementary series C^s for 0 < s < 2). As for $SL_2(\mathbf{R})$, the space lives inside $L^1_{loc}(\mathbf{C})$, has action just like $\mathcal{P}^{0,s}$:

$$(\gamma f)(z) = |-bz + d|^{-2-s} f\left(\frac{az - c}{-bz + d}\right).$$

The norm is

$$||f||^2 = \int_{\mathbb{C}^2} \frac{f(x)\overline{f(y)}}{|x-y|^{2-s}} dxdy.$$

Theorem 6.6.3. Every irreducible unitary representation of $SL_2(\mathbb{C})$ is one of the following:

- $\mathcal{P}^{n,iv}$ for $n \in \mathbf{Z}$, $v \in \mathbf{R}$
- C^s for 0 < s < 2

The only isomorphisms between items in this list are:

$$\mathcal{P}^{n,iv} \simeq \mathcal{P}^{-n,-iv}$$
.

Proof. This is Theorem 16.2 of [Kna86].

6.7 Representations of $GL_2(\mathbf{C})$

It is claimed in the last paragraph of [Kna79] that every irreducible unitary representation of $GL_2(\mathbf{C})$ is of the form

$$\begin{pmatrix} z \\ z \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \chi(z) \pi \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

for $z \in \mathbb{C}^{\times}$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C})$, and χ a unitary character of \mathbb{C}^{\times} that agrees with π on $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

References

- [CF86] J. W. S. Cassels and A. Fröhlich, editors. *Algebraic number theory*, London, 1986. Academic Press, Inc. Reprint of the 1967 original.
- [Don97] Robert W. Donley, Jr. Irreducible representations of SL(2, **R**). In *Representation theory and automorphic forms (Edinburgh, 1996)*, volume 61 of *Proc. Sympos. Pure Math.*, pages 51–59. 1997.
- [EH00] David Eisenbud and Joe Harris. *The geometry of schemes*, volume 197 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2000.
- [Har77] Robin Hartshorne. *Algebraic geometry*, volume 52 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1977.
- [KM85] Nicholas M. Katz and Barry Mazur. *Arithmetic moduli of elliiptic curves*, volume 108 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1985.
- [Kna79] Anthony W. Knapp. Representations of $GL_2(\mathbf{R})$ and $GL_2(\mathbf{C})$. In *Automorphic forms, representations* and L-functions (Oregon State Univ., Corvallis, Ore.), Part 1, volume 33 of Proc. Sympos. Pure Math., pages 87–91. 1979.
- [Kna86] Anthony W. Knapp. *Representation theory of semisimple groups*, volume 36 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1986. An overview based on examples.
- [Liu02] Qing Liu. *Algebraic geometry and arithmetic curves*, volume 6 of *Oxford Graduate Texts in Mathematics*. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné.
- [Mil13] J. S. Milne. Class field theory (v4.02), 2013. Available at www.jmilne.org/math.
- [Neu99] Jürgen Neukirch. *Algebraic number theory*, volume 322 of *Grundlehren der Mathematischen Wissensschaften*. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappencher.
- [PR94] Vladimir Platonov and Andrei Rapinchuk. *Algebraic groups and number theory*, volume 139 of *Pure and Applied Mathematics*. Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.
- [Sil09] Joseph H. Silverman. *The arithmetic of elliptic curves*, volume 106 of *Graduate Texts in Mathematics*. Springer, Dordrecht, second edition, 2009.
- [Wal88] Nolan R. Wallach. *Real reductive groups. I,* volume 132 of *Pure and Applied Mathematics*. Academic Press, Inc., Boston, MA, 1988.