CALCOLO DI G

Giosuè Aiello

2 giugno 2024

1 Scopo dell'esperienza

Lo scopo dell'esperienza è di misurare il valore dell'accelerazione gravitazionale g sulla superficie terrestre.

2 Premesse teoriche

Il valore medio tabulato di riferimento è $g=9.8\,m/s^2$. È possibile misurare il rapporto fra la costante elastica k di una molla e g conoscendo l'allungamento della stessa rispetto alla posizione di equilibrio dovuto ad una massa appesa alla sua estremità. Infatti, per la legge di Hooke:

$$F = k \cdot \Delta l = m \cdot g$$

da cui segue

$$k = \frac{m \cdot g}{\Delta l}$$

Dove:

- m_p è la massa del piattello appeso alla molla,
- m_i è la massa appoggiata sul piattello,
- l_0 è la lunghezza della molla a riposo,
- l_i è la lunghezza della molla dilatata.

Una molla è un corpo in grado di allungarsi e accorciarsi se gli viene applicata una forza e in seguito di ritornare alla propria forma naturale. Tramite la legge di Hooke sappiamo che essa reagisce esercitando una forza che reagisce alle sollecitazione subita longitudinalmente, in trazione o in compressione, lungo un asse \hat{x}

$$\vec{F_e} = -k\Delta l\hat{x} \tag{1}$$

quindi si osserva che essa è direttamente proporzionale all'allungamento o alla compressione Δl (che dimensionalmente ha come unità di misura quella di una lunghezza [L]) della molla dovuto alla sollecitazione e la costante di questa proporzionalità k si chiama costante elastica della molla (che invece dimensionalmente ha l'unità di misura di una forza diviso una lunghezza, dunque $\frac{[L][T]^{-2}[M]}{[L]} = [M][T]^{-2}$).

La forza di gravità esercitata dalla Terra su un corpo che si trova sulla sua superficie è pari a $\vec{F} = m\vec{g}$ dove \vec{g} è l'accelerazione di gravità sulla superficie terrestre. È possibile stimare il valore di $g = |\vec{g}|$ misurando l'allungamento della molla dovuto all'azione di una massa appesa ad una estremità della molla, pertanto:

$$m|\vec{g}| = k\Delta l \implies |\vec{g}| = \frac{k}{m}\Delta l$$
 (2)

Tramite una stima della lunghezze Δl , k e conoscendo la massa m appesa possiamo stimare g. Per fare ciò, ci avvarremo della formula del periodo T delle oscillazioni compiute dalla molla con la massa appesa

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{3}$$

Da cui risulta che

$$T^2 = \frac{4\pi^2}{k}m\tag{4}$$

3 Procedimento

La prima parte dell'esperienza consisterà nel misurare le dilatazioni di lunghezza $l_i - l_0$ prodotte dalle masse m_i . Successivamente dal grafico l-m (il cui fit è una retta di coefficiente angolare k) otterremo una stima di k.

Per ricavare k (e quindi g) sfruttiamo la legge che esprime la dipendenza del periodo T dalla massa appesa alla molla secondo la quale:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

da cui

$$k = \frac{4\pi^2 m}{T^2}$$

4 Apparato Sperimentale

L'apparato sperimentale necessario per effettuare l'esperienza (Fig. 1) consiste in una molla ed un supporto cui appenderla, un piattello e delle masse. Gli strumenti utilizzati sono un metro a nastro, un cronometro e una bilancia.

FIGURA (1) - Strumentazione utilizzata per l'esperimento

5 Dati

Le misure di l al variare della massa m sono le seguenti:

m(kg)	l(cm)
0.05	8.0
0.10	10.0
0.15	12.0
0.20	14.0
0.25	16.0
0.30	18.0

Tabella (1) – Misure di l al variare di m

6 Elaborazione dei Dati

Tramite i dati raccolti, si è potuto costruire il grafico della lunghezza l al variare della massa m, come mostrato in Figura 2.

FIGURA (2) – Grafico della lunghezza l al variare della massa m

Dal coefficiente angolare della retta che meglio interpola i dati sperimentali si è ottenuta una stima di $k=0.40\,N/m.$

7 Conclusioni

Con i dati sperimentali ottenuti e utilizzando le equazioni [3] e [5], abbiamo calcolato il valore di g come $g=9.81\,m/s^2$, che risulta essere molto vicino al valore tabulato di riferimento $g=9.8\,m/s^2$.

 ${\it Figura}$ (3) — Grafico dell'andamento del periodo Tal variare della massa m