Review questions for basic graph algorithms

Summary

- Vertex representation: using integers
- Three common representation of graph:
 - o set of edges
 - o adjacency matrix
 - o adjacency list: most commonly used because 1) graphs in practice are often sparse; 2) graph algorithms often need to iterate over vertices adjacent to a vertex.
 - Each edge (u,w) is added to adjacency list twice: once to the adjacency list of u and the other to the adjacency list of w. Thus, a self-loop on u or a parallel edge from/to u will appear twice in the adjacency list of u.
- API of undirected graph
- design pattern for graph processing: decouple graph data type from graph processing
 - o create a graph object
 - o pass the graph to a graph-processing routine
 - o query the graph-processing routine for info
- depth-first search: mimic maze exploration
- breadth-first search
- connected component
- complexity of common graph algorithms:
 - o is a graph bipartite?
 - o Euler cycle: trace each edge once
 - Halmilton cycle: trace each vertex once (NP complete)
 - planarity: linear time DFS algorithm discovered by Tarjan in 70s but probably too complex for most practioners
 - o graph iso-morphism (open problem)

8/23/2011 Page 1/16

Typical graph-processing code

```
public static int degree(Graph G, int v)
                           int degree = 0;
 compute the degree of v
                           for (int w : G.adj(v)) degree++;
                           return degree;
                        }
                        public static int maxDegree(Graph G)
                           int max = 0;
                           for (int v = 0; v < G.V(); v++)
compute maximum degree
                              if (degree(G, v) > max)
                                 max = degree(G, v);
                           return max;
                        }
                        public static double averageDegree(Graph G)
 compute average degree
                        { return 2.0 * G.E() / G.V(); }
                        public static int numberOfSelfLoops(Graph G)
                           int count = 0;
                           for (int v = 0; v < G.V(); v++)
    count self-loops
                              for (int w : G.adj(v))
                                 if (v == w) count++;
                           return count/2; // each edge counted twice
                        }
```

8/23/2011 Page 2/16

Graph API

```
public class Graph
                     Graph(int V)
                                                   create an empty graph with V vertices
                     Graph(In in)
                                                     create a graph from input stream
               void addEdge(int v, int w)
                                                           add an edge v-w
Iterable<Integer> adj(int v)
                                                          vertices adjacent to v
                int V()
                                                           number of vertices
                int E()
                                                            number of edges
            String toString()
                                                          string representation
       In in = new In(args[0]);
                                                           read graph from
       Graph G = new Graph(in);
                                                             input stream
       for (int v = 0; v < G.V(); v++)
                                                            print out each
           for (int w : G.adj(v))
                                                             edge (twice)
              StdOut.println(v + "-" + w);
```

Graph input format.

8/23/2011 Page 3/16

```
public static int numberOfSelfLoops(Graph G)
{
    int count = 0;
    for (int v = 0; v < G.V(); v++)
        for (int w : G.adj(v))
            if (v == w) count++;
    return count/2; // each edge counted twice
}</pre>
```

adj[v].add(w);

adj[w].add(v);

{ return adj[v]; }

public Iterable<Integer> adj(int v)

Adjacency-list graph representation: Java implementation public class Graph private final int V; adjacency lists private Bag<Integer>[] adj; (using Bag data type) public Graph(int V) { this.V = V;create empty graph adj = (Bag<Integer>[]) new Bag[V]; with V vertices for (int v = 0; v < V; v++) adj[v] = new Bag<Integer>(); } public void addEdge(int v, int w) add edge v-w

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V 2	1 *	1	V
adjacency lists	E + V	1	degree(v)	degree(v)

* disallows parallel edges

(parallel edges and self-loops allowed)

iterator for vertices adjacent to v

8/23/2011 Page 4/16

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

- · Create a Graph object.
- · Pass the Graph to a graph-processing routine.
- · Query the graph-processing routine for information.

8/23/2011 Page 5/16

Depth-first search

```
public class DepthFirstPaths
                                                           marked[v] = true
   private boolean[] marked;
                                                           if v connected to s
   private int[] edgeTo;
                                                           edgeTo[v] = previous
   private int s;
                                                           vertex on path from s to v
   public DepthFirstSearch(Graph G, int s)
                                                           initialize data structures
      dfs(G, s);
                                                           find vertices connected to s
   }
   private void dfs(Graph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w])
              dfs(G, w);
              edgeTo[w] = v;
```

8/23/2011 Page 6/16

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

```
public boolean hasPathTo(int v)
{    return marked[v]; }

public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```


8/23/2011 Page 7/16

Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a graph in time proportional to E + V.

Pf. [correctness] Queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of distance k+1.

Pf. [running time] Each vertex connected to s is visited once.

8/23/2011 Page 8/16

Breadth-first search

```
public class BreadthFirstPaths
   private boolean[] marked;
  private int[] edgeTo;
   private void bfs(Graph G, int s)
     Queue<Integer> q = new Queue<Integer>();
      q.enqueue(s);
     marked[s] = true;
     while (!q.isEmpty())
         int v = q.dequeue();
         for (int w : G.adj(v))
            if (!marked[w])
            {
               q.enqueue(w);
               marked[w] = true;
               edgeTo[w] = v;
        }
  }
```

8/23/2011 Page 9/16

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w? in constant time.

```
public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v) component identifier for v
```

Union-Find? Not quite.

Depth-first search. Yes. [next few slides]

8/23/2011 Page 10/16

Connected components demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to ν .

8/23/2011 Page 11/16

Finding connected components with DFS public class CC private boolean[] marked; id[v] = id of component containing v private int[] id; number of components private int count; public CC(Graph G) marked = new boolean[G.V()]; id = new int[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) run DFS from one vertex in dfs(G, v); each component count++; public int count() see next slide public int id(int v) private void dfs(Graph G, int v)

public int count() { return count; } public int id(int v) { return id[v]; } private void dfs(Graph G, int v) { marked[v] = true; id[v] = count; for (int w : G.adj(v)) if (!marked[w]) dfs(G, w); } all vertices discovered in same call of dfs have same id

8/23/2011 Page 12/16

Review problems

1.

For an interactive tutorial introducing basic concepts in graph theory, see http://www.utm.edu/departments/math/graph/ (it's highly recommended that you go through all the quiz questions in this link)

2.

Apply DFS, BFS, and dikstra algorithm manually on the following graph:

3.

Apply 'connected component' algorithm manually on the following graph:

4.

For more advanced exercises in graph algorithm, see

8/23/2011 Page 13/16

Review questions for digraph algorithms

Summary

Its useful to compare similarity between graph algorithms and digraph algorithms

Common	Vertex representation: using integers	
themes	Three common representation of graph:	
	• API	
	design pattern for graph processing: decouple graph data type from graph processing	
	depth-first search: mimic maze exploration	
	breadth-first search	
	connected component	
Difference	DAG and topologoical sort	
	Algorithm to find strong components for digraph is more complex than its graph	
	counterparts	

Review problems

Similar to those for undirected graphs

Review questions for MST algorithms

Summary

- Definition of spanning tree and MST
- Cut property
- Greedy algorithm
- Kruskal algorithm
- Prim algorithm
 - o Lazy approch
 - o Eager approach

Review problems

1.

Apply Kruskal and Prim algorithms manually on the following graph:

8/23/2011 Page 14/16

Review questions for shortest path algorithms

Summary

- Any segment of a shortest path is also a shortest path
- Single source shortest paths can be stored using an edgeTo array
- Shortest distance for the single source shortest paths can be stored using a distTo array
- Dijkstra algorithm (no negative weight)
- Shortest paths in edge weighted DAGs
- Belman-Ford algorithm (no negative cycles)

Review problems

1.

Apply Dijkstra algorithm manually on the following graph:

8/23/2011 Page 15/16

8/23/2011 Page 16/16