

INF 302: Langages & Automates

Chapitre 10 : Langages Non Réguliers et Lemmes de l'Itération

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr - www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2018 - 2019

- Motivations
- 2 Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- 4 Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- 1 Utilisation des propriétés de fermeture
- Résumé

- Motivations
- Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- 1 Utilisation des propriétés de fermeture
- Résumé

Y. Falcone (UGA - Inria)

Deux exemples

Exemple (Le langage $\{a^nb^n\mid n\in\mathbb{N}\}$ n'est pas d'état finis)

- Si nous essayons de trouver un AEFD pour ce langage, nous observons que cet automate doit se souvenir du nombre de *a* qui ont été lus en entrée.
- Comme le nombre de a n'est pas limité, il y a un nombre infini de possibilités.
- Cela ne peut être fait avec un nombre fini d'états.

Le "nombre infini de possibilités" n'empêche pas un langage d'être d'états finis.

Exemple (Langage d'états finis)

L'ensemble des mots sur $\{a, b\}$ qui contiennent autant de facteurs ab que de facteurs ba

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Motivations

Montrer la non-régularité

Comment montrer qu'un langage L n'est pas régulier / à états?

Raisonnement intuitif

On va utiliser une propriété des langages réguliers.

- Tout langage régulier L satisfait la propriété de l'itération P.
- Un langage qui ne satisfait pas P n'est pas régulier.

Utilisation : démontrer qu'un langage est non régulier - Preuve par l'absurde

- Supposer que *L* est régulier.
- Utilisation de P pour déduire des informations sur les mots du langage étudié.
- Trouver une contradiction.

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Motivations

Comprendre la régularité

Certains langages ne peuvent être reconnus / décrits par des automates

- par exemple : $\{a^n \cdot b^n \mid n \in \mathbb{N}\}.$
- Les automates ne peuvent pas compter (de manière arbitraire)

La plupart des langages sont non réguliers

- Les langages à états / automates sont dénombrables.
- Les langages sont indénombrables.

Comment caractériser précisément les langages qui peuvent être reconnu par des automates ?

- Motivations
- Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- 1 Utilisation des propriétés de fermeture
- Résumé

Ensembles dénombrables et indénombrables

Intuitivement, un ensemble est dénombrable lorsque ses éléments peuvent être listés sans omission ni répétition.

En informatique, on accède uniquement aux ensembles dénombrables.

Définition (Ensemble dénombrable)

Un ensemble est dénombrable lorsqu'il peut être mis en bijection avec une partie de $\mathbb{N}.$

Exemple (Ensemble dénombrable)

- N et ses parties (entiers non nuls, entiers pairs, entiers impairs, etc)
- l'ensemble des entiers relatifs
- l'ensemble des rationnels
- l'ensemble des nombres premiers
- \bullet $\mathbb{N} \times \mathbb{N}$

Exemple (Ensemble non dénombrable)

- R
- P(N)
- ullet $\mathbb{R} o \mathbb{B}$

Propriétés des ensembles dénombrables Cantor, 1891

Sous ensembles d'un ensemble dénombrable

Tout sous-ensemble d'un ensemble dénombrable est dénombrable.

Union dénombrable d'ensembles finis

Une union dénombrable d'ensembles finis est dénombrable.

Démonstration.

Lister chaque ensemble dénombrable en ligne :

	a ₁₁	a ₁₂	a 13	 A_1
\nearrow	a 21	a 22	a 23	 A_2
\nearrow	a 31	a 32	a 23	 <i>A</i> ₃
×				 :

Énumération des éléments en diagonale : a_{11} , a_{21} , a_{12} , a_{31} , ...

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Propriétés des ensembles indénombrables Cantor. 1891

Sur ensembles d'un ensemble indénombrable

Tout sur-ensemble d'un ensemble indénombrable est indénombrable.

Le cardinal d'un ensemble est toujours strictement inférieur à celui de ses parties

Si E est un ensemble dénombrable infini, alors $\mathcal{P}(E)$ est indénombrable.

Démonstration.

Soit E un ensemble dénombrable infini. Supposons qu'il existe une bijection f de E vers $\mathcal{P}(E)$.

Considérons l'ensemble D des éléments qui n'appartiennent pas à leur image :

$$\{x \in E \mid x \notin f(x)\}$$

Comme $D \subseteq E$ et que f est surjective, on peut trouver $x_0 \in E$ tq $f(x_0) = D$ et cet élément est unique (f est injective). Il y a deux cas :

- si $x_0 \in D$, par définition de D, $x_0 \notin f(x_0) = D$, contradiction.
- si $x_0 \notin D$, par définition, $x_0 \in f(x_0) = D$, contradiction.

Ainsi, $\mathcal{P}(E)$ n'est jamais en bijection avec E. En conséquence, si E est en bijection avec \mathbb{N} (dénombrable infini), alors $\mathcal{P}(E)$ est indénombrable.

Argument diagonal pour démontrer la non dénombrabilité de l'ensemble des réels

Exemple

Cantor, 1891

Argument diagonal pour montrer la non-dénombrabilité des réels

- Supposons que les réels soient dénombrables.
- Listons les dans un ordre (arbitraire).
- Définissons le réel X tel que le i^{eme} chiffre de X soit différent du i^{eme} chiffre du i^{eme} réel.
- X n'est pas dans la liste.

	entier	1	2	3	4	
1 ^{er}	0,	0	0	0	0	
2 ^{eme}	42,	1	0	0	0	
3 ^{eme}	12,	8	9	0	0	
4 ^{eme}	81,	4	8	3	0	
5 ^{eme}	0,	3	6	5	8	
:	:					
X	1,	2	0	4	9	

Dénombrement des langages réguliers

D'après le théorème de Kleene, pour dénombrer les langages réguliers, nous pouvons dénombrer l'ensemble des automates à finis.

Comme tout automate à états fini peut être représenté par un AEFD, nous allons dénombrer les AEFDs (dénombrer les automates à états finis se fait similairement).

Dénombrement des AEFDs à |Q| états

- |Q| états initiaux possibles
- ullet 2^{|Q|} ensemble d'états finaux possibles
- ullet $|Q|^{|\Sigma| \times |Q|}$ fonctions de transition possibles
- $\Rightarrow |Q| \times 2^{|Q|} \times |Q|^{|\Sigma| \times |Q|}$ AEFDs possibles
 - Chacun des ensembles des AEFDs à |Q| est un ensemble fini.
 - L'ensemble de tous les AEFDs est l'union de chacun des ensembles à |Q| états où |Q| prend les valeurs de $\mathbb N$ (union dénombrable d'ensembles finis).

Dénombrement de l'ensemble de tous les mots

Alphabet (Σ) : fini

Ensemble des mots Σ^*

L'ensemble de tous les mots sur Σ est dénombrabe.

Démonstration.

- Un alphabet Σ est fini et peut s'écrire $\Sigma = \{a_1, \ldots, a_n\}$, pour un certain $n \in \mathbb{N}$.
- On ordonne les éléments de Σ^* avec un ordre lexicographique induit par un ordre (arbitraire) sur Σ : $\{\epsilon, a_1, \dots, a_n, a_1 \cdot a_1, \dots, a_n \cdot a_n, \dots, a_n \cdot a_n, \dots\}$

Exemple (Ensemble de mots)

- Ensemble des phrases en français.
- Ensemble des programmes dans un langage de programmation.

Démonstration (alternative) de Σ^* dénombrable pour $\Sigma = \{0, \dots, 9\}$

Utiliser la correspondance :

$$\mathbb{N} o \mathbf{\Sigma}^*$$
 telle que $x \mapsto \mathbf{1}x$

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Dénombrement des langages sur un alphabet

ullet Σ : alphabet

• Σ^* : ensemble de tous les mots

ullet $\mathcal{P}(\Sigma^*)$: ensemble de tous les langages

Argumentation 1

- Σ* est dénombrable.
- L'ensemble des sous-ensembles d'un ensemble infini dénombrable est indénombrable.

Argumentation 2

- Supposons que $\mathcal{P}(\Sigma^*)$ soit dénombrable.
- Soient L_1, L_2, \ldots ces langages.
- Construisons L défini par :

$$w_i \in \mathbf{L} \text{ ssi } w_i \notin L_i$$

• L n'est pas dans la liste des langages.

	W ₁	W2	W3	W4	<i>W</i> ₅	
L_1	0	0	0	0	0	
L ₂	1	1	0	0	0	
L ₃	1	0	0	0	0	
L ₄	1	0	0	0	0	
L_5	0	1	0	0	1	
:				:		
L	1	0	1	1	0	

- Motivations
- Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- 4 Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- 1 Utilisation des propriétés de fermeture
- Résumé

Y. Falcone (UGA - Inria)

Lemme de l'itération

Soit *L* un langage régulier.

Lemme de l'itération, Pumping lemma

Il existe $N \in \mathbb{N}$ tel que pour tout mot $w \in L$ avec $|w| \ge N$, on peut trouver $x, y, z \in \Sigma^*$ tels que

$$w = xyz$$

et :

- $|xy| \leq N,$
- **3** pour tout $k \in \mathbb{N}$, $xy^kz \in L$.

Démonstration du Lemme de l'itération

- Soit *L* un langage régulier.
- Alors, il existe un ADEF $A = (Q, \Sigma, q_0, \delta, F)$ tel que L(A) = L.
- Soit n = |Q|.
- Soit $w = a_1 \cdots a_m \in L$ tel que $|w| = m \ge n$.
- Soit $p_i = \delta^*(q_0, a_1, \cdots a_i)$ pour $i \leq m$.
- Alors, ils existent i et j avec $0 \le i < j \le n$ tels que $p_i = p_j$.
- On pose $x = a_1 \cdots a_i$, $y = a_{i+1} \cdots a_j$ et $z = a_{j+1} \cdots a_m$.
- Alors, on a :

 - $|xy| \le n.$
- Donc, $xy^kz \in L$ pour tout $k \ge 0$.

Exemple (Application du Lemme de l'Itération sur $L = \{\mathbf{a^ib^i} \mid \mathbf{i} \geq \mathbf{0}\}$)

- Supposons que L soit régulier.
- Alors, on sait par le Lemme de l'itération, qu'il existe $n \ge 0$ tel que pour tout $w \in L$ avec $|w| \ge n$ ils existent $x, y, z \in \Sigma^*$ avec :

 - $y \neq \epsilon.$
 - $|xy| \leq n.$
- Soit $w = a^n b^n$ (où n est le n du Lemme de l'itération). On a $w \in L$.
- Soient $x, y, z \in \Sigma^*$ comme ci-dessus.
- Alors, comme $|xy| \le n$ et $y \ne \epsilon$, on a $x = a^j$ et $y = a^i$ avec $j \ge 0$ et i > 0.
- Soit $w' = xy^2z = a^j a^i a^i a^{n-j-i} b^n = a^{n+i} b^n$.
- Alors, d'une part on devrait avoir (d'après le lemme) $w' \in L$ et d'autre part $w' \notin L$ car n + i > n.
- Ce qui est une contradiction. Donc L n'est pas régulier.

Exemple (Application du Lemme de l'Itération sur $L = \{ \mathbf{w} \mid |\mathbf{w}|_{\mathbf{a}} = |\mathbf{w}|_{\mathbf{b}} \})$

- Supposons que *L* soit régulier.
- Alors, on sait par le Lemme de l'itération, qu'il existe $n \ge 0$ tel que pour tout $w \in L$ avec $|w| \ge n$ ils existent $x, y, z \in \Sigma^*$ avec :

 - $y \neq \epsilon.$
 - $|xy| \leq n$
- Soit $w = a^n b^n$. On a $w \in L$ car $|w|_a = |w|_b$.
- Soient $x, y, z \in \Sigma^*$ comme ci-dessus.
- Alors, comme $|xy| \le n$ et $y \ne \epsilon$, on a $x = a^j$ et $y = a^i$ avec $j \ge 0$ et i > 0.
- Soit $w' = xy^2z = a^j a^i a^i a^{n-j-i} b^n = a^{n+i} b^n$.
- Alors, d'un côté on a $w' \in L$ mais aussi $w' \notin L$ car n + i > n.
- Ceci est une contradiction. Donc L n'est pas régulier.

Exemple (Application du Lemme de l'Itération sur $L = \{\mathbf{ww} \mid \mathbf{w} \in \{\mathbf{a}, \mathbf{b}\}^*\}$)

- Supposons que *L* soit régulier.
- Alors, on sait par le Lemme de l'itération, qu'il existe $n \ge 0$ tel que pour tout $w \in L$ avec $|w| \ge n$ ils existent $x, y, z \in \Sigma^*$ avec :

 - $y \neq \epsilon.$
 - $|xy| \le n.$
- Soit $w = a^n b a^n b$. On a $w \in L$.
- Soient $x, y, z \in \Sigma^*$ comme ci-dessus.
- Alors, comme $|xy| \le n$ et $y \ne \epsilon$, on a $x = a^j$ et $y = a^i$ avec $j \ge 0$ et i > 0.
- Soit $w' = xy^2z = a^j a^{2i} a^{n-i-j} b a^n b = a^{n+i} b a^n b$.
- Alors, d'une part on devrait avoir (d'après le lemme) $w' \in L$ et d'autre part $w' \notin L$ car il n'existe pas de w'' t.q. w' = w''w''.
- Ceci est une contradiction. Donc L n'est pas régulier.

Exemple (Application du Lemme de l'Itération sur $L = \{a^ib^j \mid i > j\}$)

- Supposons que L soit régulier.
- Alors, on sait par le Lemme de l'itération, qu'il existe $n \ge 0$ tel que pour tout $w \in L$ avec $|w| \ge n$ ils existent $x, y, z \in \Sigma^*$ avec :
 - $\mathbf{0} \quad w = xyz.$
 - $y \neq \epsilon.$
 - $|xy| \le n.$
- Soit $w = a^{n+1}b^n$. On a $w \in L$ car n+1 > n.
- Soient $x, y, z \in \Sigma^*$ comme ci-dessus.
- Alors, comme $|xy| \le n$ et $y \ne \epsilon$, on a $x = a^j$ et $y = a^i$ avec $j \ge 0$ et i > 0.
- On a $w = a^j a^i a^{n+1-i-j} b^n$ avec $j \ge 0$. Soit $w' = xy^0 z = a^{n+1-i} b^n$.
- Alors, d'une part on devrait avoir $w' \in L$ et d'autre part $w' \notin L$ car $|w'|_a \leq |w'|_b$ $(i \geq 1)$.
- Ceci est une contradiction. Donc L n'est pas régulier.

Exercice : Application du Lemme de l'Itération sur $L = \{a^ib^j \mid i < j\}$

Montrer que L n'est pas régulier.

Exercice : Application du Lemme de l'Itération sur $L = \{\mathbf{a^nb^nc^n} \mid \mathbf{n} \in \mathbb{N}\}$

Montrer que *L* n'est pas régulier.

Exercice : Application du Lemme de l'Itération sur $L = \{\mathbf{a^nba^mba^{n+m}} \mid \mathbf{n}, \mathbf{m} \in \mathbb{N}\}$

Montrer que L n'est pas régulier.

- Motivations
- Dénombrement des langages réguliers et non régulier
- Lemme de l'itération
- 4 Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- Utilisation des propriétés de fermeture
- Résumé

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Constante d'itération

Selon le lemme de l'itération, il existe (au moins) un $n \in \mathbb{N}$ tel que chaque mot w d'un langage régulier t.q. $|w| \ge n$ pour un certain $n \in \mathbb{N}$ possède un facteur non vide (y) qui peut être itéré.

Un tel entier n est appelé une constante d'itération et le facteur est dit facteur itérant.

- Si n est une constante d'itération, alors chaque $n' \ge n$ est une constante d'itération.
- Si n n'est pas une constante d'itération, alors chaque $n' \leq n$ n'est pas une constante d'itération.

Définition (Constante d'itération minimale)

La constante d'itération minimale d'un langage est sa plus petite constante d'itération.

Exemple (La constante d'itération minimale de 01* est 2)

- Le mot w=0 est tel que $w\in 01^*$, |w|=1 et w ne contient pas de facteur qui peut être itéré.
- Un mot $w \in 01^*$ tel que $|w| \ge 2$ possède un facteur qui peut être itéré à travers la décomposition w = xyz avec x = 0, y = 1, z = reste

Constante d'itération - Exercices

Constante d'itération minimale

Trouver la constante d'itération minimale pour les langages suivants :

- 0001* 0004 \$ n←
- 0* 0 4 n=1
- · 0*1* |0, an 12) }
- 0*1+0+1*+10*1 10 n= max (5

10*1 (10 n= marz (2 3)=

- Motivations
- Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- Utilisation des propriétés de fermeture
- Résumé

Une condition suffisante à la non-régularité

Soit L un langage sur un alphabet Σ .

Une condition suffisante pour la non-régularité

S'il existe deux suites de mots $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ telles que

$$\forall i, j \in \mathbb{N} : \alpha_i \cdot \beta_j \in L$$
 si et seulement si $i = j$

alors L n'est pas régulier.

Exemple (Application de la condition suffisante)

Pour le langage $\{a^kb^k \mid k \in \mathbb{N}\}$, nous pouvons prendre $\alpha_n = a^n$ et $\beta_n = b^n$.

Exercice : application de la condition suffisante

- $\{w \in \Sigma^* \mid w \text{ est un palindrome } \}$
- $\{w \cdot w \mid w \in \Sigma^*\}$

- Motivations
- 2 Dénombrement des langages réguliers et non réguliers
- Lemme de l'itération
- Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- Utilisation des propriétés de fermeture
- Résumé

Y. Falcone (UGA - Inria)

Le lemme de l'itération est une condition nécessaire à la régularité

Le lemme de l'itération est une condition nécessaire à la régularité d'un langage. Ce n'est pas une condition suffisante.

C'est à dire :

$$\forall L \subseteq \Sigma^* : L \text{ régulier } \implies L \text{ satisfait le lemme de l'itération}$$

Ceci n'empêche pas :

$$L$$
 non régulier $\implies L$ satisfait le lemme de l'itération

pour certains langages $L \subseteq \Sigma^*$.

En effet, nous donnons des exemples de langages non réguliers qui satisfont le lemme de l'itération.

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Langage non régulier satisfaisant le lemme de l'itération Exemple 1

Exemple (Un langage non-régulier satisfaisant le lemme de l'itération)

$$\{\#a^nb^n \mid n \ge 1\} \cup \{\#^k \cdot w \mid k \ne 1, w \in \{a, b\}^*\}$$

Exemple (Un langage non-régulier satisfaisant le lemme de l'itération)

- Soit L un langage non régulier.
- Nous construisons le langage $L_{\#} = (\#)^+ \cdot L \cup \Sigma^*$, avec $\# \notin \Sigma$.
- $L_{\#}$ n'est pas régulier : considérons l'homomorphisme induit par h t.q. h(a) = a pour $a \in \Sigma$ et $h(\#) = \epsilon$.
- Nous montrons que $L_{\#}$ satisfait le lemme de l'itération. Soit $w \in L_{\#}$ t.q. $|w| \ge 1$. On a $w \in (\#)^+ \cdot L$ ou $w \in \Sigma^*$.
 - Si $w \in (\#)^+ \cdot L$, alors w peut s'écrire $w_\# \cdot w'$ avec $w_\# \in (\#)^+$ et $w' \in L$. Nous pouvons trouver la décomposition $x = \epsilon, y = \#, z = \textit{reste}$ qui satisfait les conditions du lemme.
 - Si $w \in \Sigma^*$, alors w peut se décomposer avec $x = \epsilon$, y = première lettre de w, z = reste qui satisfait les conditions du lemme.

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Langage non régulier satisfaisant le lemme de l'itération Exemple 2

Exemple (Un langage non-régulier satisfaisant le lemme de l'itération)

- Considérons $L = \{ w \cdot w^R \cdot u \mid w, u \in \{a, b\}^+ \}.$
- L n'est pas régulier (en utilisant la deuxième version du lemme).
- L satisfait les conditions du lemme de l'itération. Soit $m \in L$ t.q. $|m| \ge 4$. Le mot m s'écrit $w \cdot w^R \cdot u$ avec $w, u \in \{a, b\}^+$. Nous distinguons deux cas.
 - Si w est une lettre, alors $|u| \ge 2$. Nous prenons $x = w \cdot w^R$, y =la première lettre de u, z =reste.
 - Si $|w| \ge 2$, alors $w = w' \cdot s$ avec $s \in \{a, b\}$ et $|w'| \ge 1$. Alors $w^R = s \cdot w'^R$. Nous prenons x = w', $y = s \cdot s$, $z = w'^R \cdot u$.

Dans les deux cas, la décomposition de $m=x\cdot y\cdot z$ satisfait les conditions du lemme de l'itération.

Langage non régulier satisfaisant le lemme de l'itération Exemple 3

Soit
$$\Sigma = \{a, b, c\}$$
.

Exemple (Un langage non-régulier satisfaisant le lemme de l'itération)

- Considérons $L = \bigcup_{n>0} (a^+ \cdot b)^n \cdot (b^+ \cdot c)^n + \Sigma^* \cdot c \cdot c \cdot \Sigma^*$
- L n'est pas régulier.
- L satisfait les conditions du lemme de l'itération.

- Motivations
- 2 Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- 4 Constante d'itération
- 5 Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- 1 Utilisation des propriétés de fermeture
- Résumé

- L_? dénote un langage dont on cherche à montrer la non-régularité,
- \bullet $L_{\rm reg}$ dénote un langage que l'on sait régulier,
- ullet $L_{
 m nonreg}$ dénote un langage que l'on sait non régulier.

Utilisation de la fermeture par union et intersection

Si
$$L_? \cup L_{\rm reg} = L_{\rm nonreg}$$
 ou $L_? \cap L_{\rm reg} = L_{\rm nonreg}$, alors $L_?$ est non régulier (sinon $L_{\rm nonreg}$ serait régulier).

Utilisation de la fermeture par complémentation

- Si $\overline{L_?} = L_{\mathrm{nonreg}}$ alors $L_?$ est non régulier.
- Si $\overline{L_?} = L_{reg}$ alors $L_?$ est régulier.

Utilisation de la fermeture par homomorphisme

Soient $L_?$ et L_{nonreg} deux langages sur Σ et Σ' respectivement et f un homomorphisme de Σ vers Σ'^* tels que $L_{\mathrm{nonreg}} = f(L_?)$.

• Alors $L_?$ est non régulier. En effet, supposons (par l'absurde) que $L_?$ soit régulier. Comme les langages réguliers sont fermés par homomorphisme et $L_{\rm nonreg} = f(L_?)$, alors $L_{\rm nonreg}$ serait régulier. Contradiction.

Utilisation de la fermeture par homomorphisme inverse

Soient L_7 et $L_{\rm nonreg}$ deux langages sur Σ et Σ' respectivement et f un homomorphisme de Σ vers Σ'^* tels que $L_{\rm nonreg} = f^{-1}(L_7)$.

• Alors L_7 est non régulier. En effet, supposons (par l'absurde) que L_7 soit régulier. Comme les langages réguliers sont fermés par homomorphisme inverse et $L_{\rm nonreg} = f^{-1}(L_7)$, alors $L_{\rm nonreg}$ serait régulier. Contradiction.

Exemple (Utilisation de la fermeture par intersection)

Utilisation pour démontrer que $\{w \mid |w|_a = |w|_b\}$ est non régulier.

- Supposons que nous avons démontré que $\{a^k \cdot b^k \mid k \in \mathbb{N}\}$ soit non régulier.
- Nous savons que $a^* \cdot b^*$ est régulier.

Alors, comme $\{w \in \{a,b\}^* \mid |w|_a = |w|_b\} \cap a^* \cdot b^* = \{a^k \cdot b^k \mid k \in \mathbb{N}\}$, nous en déduisons que $\{w \mid |w|_a = |w|_b\}$ est non régulier.

Exemple (Utilisation de la fermeture par complémentation)

- Comme $\{a^p \mid p \text{ premier}\}$ est non régulier, alors $\{a^p \mid p \text{ non premier}\}$ est non régulier.
- Comme $\{w \mid |w|_a = |w|_b\}$ est non régulier, alors $\{w \mid |w|_a \neq |w|_b\}$ est non régulier.

Exemple (Utilisation de la fermeture par homomorphisme (inverse))

• $L_1 = \{0^k 1^k 2^k \mid k \in \mathbb{N}\}$ est non régulier car $L_2 = \{a^k b^k \mid k \in \mathbb{N}\}$ est non régulier. En effet, considérons, l'homomorphisme induit par

$$h = \{0 \mapsto a, 1 \mapsto b, 2 \mapsto \epsilon\},\$$

nous avons $h(L_1) = L_2$.

- Motivations
- Dénombrement des langages réguliers et non réguliers
- 3 Lemme de l'itération
- Constante d'itération
- Une condition suffisante pour la non-régularité
- 6 Le lemme de l'itération est une condition nécessaire à la régularité
- Utilisation des propriétés de fermeture
- Résumé

Résumé

Langages Non Réguliers et Lemme de l'Itération

- Lemme de l'itération (et ses variantes) : propriétés des langages réguliers
 - énoncé
 - preuve
- Utilisation : prouver que des langages sont non-réguliers.
 - preuves par contradiction
 - utilisation des propriétés de fermeture : opérations booléennes, homomorphisme (inverse)
- Exemples de démonstrations de la non-régularité de certains langages.
- Constante d'itération

- Variantes du lemme de l'itération
- 10 Théorème de Ehrenfeucht, Parikh et Rozenberg

Lemme de l'itération

Choix du facteur itérant

Soit L un langage régulier.

Lemme de l'itération, Pumping lemma

Il existe $n \in \mathbb{N}$ tel que pour tout mot $w \in L$, pour tous mots u, w', v tels que w = uw'v avec $|w'| \ge n$, on peut trouver $x, y, z \in \Sigma^*$ tels que

$$w' = xyz$$

et :

- $|xy| \leq n,$

Lemme de l'itération par bloc

Soit *L* un langage régulier.

Lemme de l'itération, Pumping lemma

Il existe $n \in \mathbb{N}$ tel que pour tout mot $w \in L$, pour tous mots u, w_1, \ldots, w_n, v tels que $w = uw_1 \cdots w_n v$ avec $\forall i \in [1, n] : w_i \neq \epsilon$, on peut trouver $k, l \in \mathbb{N}$ tels que

- $0 \le k < l \le n$,

où
$$w_1 \cdots w_k = \epsilon$$
 si $k = 0$ et $w_{l+1} \cdots w_n = \epsilon$ si $k = l$.

- variantes du lemme de l'iteration
- 10 Théorème de Ehrenfeucht, Parikh et Rozenberg

Conditions (E_n) et (E'_n)

Soit L un langage sur l'alphabet Σ

Définition (Condition (E_n))

L vérifie la condition (E_n) (pour un entier $n \in \mathbb{N}$) ssi pour tout mot $w \in \Sigma^*$, pour tous mots u, v, w_1, \ldots, w_n tels que $w = u \cdot w_1 \cdots w_n \cdot v$ et $w_i \neq \epsilon$ pour $i \in [1, n]$, ils existent $k, l \in \mathbb{N}$ tels que $0 < k \le l \le n$ et pour tout $k \in \mathbb{N}$

 $w \in L$ si et seulement si $u \cdot w_1 \cdots w_k (w_{k+1} \cdots w_l)^k w_{l+1} \cdots w_n \cdot v \in L$

Définition (Condition (E'_n))

L vérifie la condition (E_n) (pour un entier $n \in \mathbb{N}$) ssi pour tout mot $w \in \Sigma^*$, pour tous mots u, v, w_1, \ldots, w_n tels que $w = u \cdot w_1 \cdots w_n \cdot v$ et $w_i \neq \epsilon$ pour $i \in [1, n]$, ils existent $k, l \in \mathbb{N}$ tels que $0 < k \le l \le n$ et pour tout $k \in \mathbb{N}$

 $w \in L$ si et seulement si $u \cdot w_1 \cdots w_k \cdot w_{l+1} \cdots w_n \cdot v \in L$

Théorème de Ehrenfeucht, Parikh et Rozenberg

Théorème de Ehrenfeucht, Parikh et Rozenberg

Les conditions suivantes sont équivalentes.

- L est régulier.
- Il existe un entier n tel que L vérifie la condition (E_n) .
- Il existe un entier n tel que L vérifie la condition (E'_n) .