➤ In Example 4a, the two methods produce results that look different but are equivalent. This is common when evaluating trigonometric integrals. For instance, evaluate $\int \sin^4 x \, dx$ using reduction formula 1, and compare your

$$\frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C,$$

the solution found in Example 1b.

Because the integrand also has an odd power of tan x, an alternative solution is to split off a factor of sec x tan x and prepare the integral for the substitution $u = \sec x$:

$$\int \tan^3 x \sec^4 x \, dx = \int \underbrace{\tan^2 x \sec^3 x \cdot \sec x \tan x}_{\sec^2 x - 1} dx$$

$$= \int (\sec^2 x - 1) \sec^3 x \cdot \sec x \tan x \, dx$$

$$= \int (u^2 - 1) u^3 \, du \qquad u = \sec x;$$

$$du = \sec x \tan x \, dx$$

$$= \frac{1}{6} \sec^6 x - \frac{1}{4} \sec^4 x + C. \qquad \text{Evaluate; } u = \sec x.$$

Table 8.3 summarizes the methods used to integrate
$$\int \tan^2 x \sec^2 x \, dx$$
.

Evaluate; $u = \sec x \tan x \, dx$

$$= \frac{1}{6} \sec^6 x - \frac{1}{4} \sec^4 x + C.$$
Evaluate; $u = \sec x$.

The apparent difference in the two solutions given here is reconciled by using the identity $1 + \tan^2 x = \sec^2 x$ to transform the second result into the first, the only difference being an additive constant, which is part of C .

b. In this case, we write the even power of $\tan x$ in terms of $\sec x$:
$$\int \tan^2 x \sec x \, dx = \int (\sec^2 x - 1) \sec x \, dx$$

$$= \int \sec^3 x \, dx - \int \sec x \, dx$$

$$= \int \sec^3 x \, dx - \int \sec x \, dx$$

$$= \int \sec x \tan x + \frac{1}{2} \int \sec x \, dx - \int \sec x \, dx$$
Use reduction formula.
$$= \frac{1}{2} \sec x \tan x + \frac{1}{2} \int \ln |\sec x + \tan x| + C.$$
Add secant integrals; use Table 8.1 in Section 8.1.

Related Exercises 33–35 <

Table 8.3 summarizes the methods used to integrate $\int \tan^m x \sec^n x \, dx$. Analogous techniques are used for $\int \cot^m x \csc^n x \, dx$.

Table 8.3

$\int \tan^m x \sec^n x dx$	Strategy
n even and positive, m real	Split off $\sec^2 x$, rewrite the remaining even power of $\sec x$ in terms of $\tan x$, and $\sec u = \tan x$.
m odd and positive, n real	Split off sec $x \tan x$, rewrite the remaining even power of $\tan x$ in terms of sec x , and use $u = \sec x$.
<i>m</i> even and positive, <i>n</i> odd and positive	Rewrite the even power of $\tan x$ in terms of $\sec x$ to produce a polynomial in $\sec x$; apply reduction formula 4 to each term.

SECTION 8.3 EXERCISES

Getting Started

- State the half-angle identities used to integrate $\sin^2 x$ and $\cos^2 x$. 1.
- 2. State the three Pythagorean identities.
- 3. Describe the method used to integrate $\sin^3 x$.
- Describe the method used to integrate $\sin^m x \cos^n x$, for m even and
- 5. What is a reduction formula?
- How would you evaluate $\int \cos^2 x \sin^3 x \, dx$? 6.
- How would you evaluate $\int \tan^{10} x \sec^2 x \, dx$? 7.
- How would you evaluate $\int \sec^{12} x \tan x \, dx$?

Practice Exercises

9–61. Trigonometric integrals *Evaluate the following integrals.*

$$9. \quad \int \cos^3 x \, dx \qquad \qquad 10. \quad \int \sin^3 x \, dx$$

11.
$$\int \sin^2 3x \, dx$$
 12. $\int \cos^4 2\theta \, d\theta$

3.
$$\int \sin^5 x \, dx$$
 14. $\int \cos^3 20x \, dx$

15.
$$\int \sin^3 x \cos^2 x \, dx$$
 16.
$$\int \sin^2 \theta \cos^5 \theta \, d\theta$$

13.
$$\int \sin^5 x \, dx$$
 14. $\int \cos^3 20x \, dx$ 15. $\int \sin^3 x \cos^2 x \, dx$ 16. $\int \sin^2 \theta \cos^5 \theta \, d\theta$ 17. $\int \cos^3 x \sqrt{\sin x} \, dx$ 18. $\int \sin^3 \theta \cos^{-2} \theta \, d\theta$ 19. $\int_0^{\pi/3} \sin^5 x \cos^{-2} x \, dx$ 20. $\int \sin^{-3/2} x \cos^3 x \, dx$

20.
$$\int_0^{\pi/3} \sin^5 x \cos^{-2} x \, dx$$
 20.
$$\int \sin^{-3/2} x \cos^3 x \, dx$$

- **21.** $\int_{0}^{\pi/2} \cos^3 x \sqrt{\sin^3 x} \, dx$ **22.** $\int_{\pi/4}^{\pi/2} \sin^2 2x \cos^3 2x \, dx$
- **23.** $\int \sin^2 x \cos^2 x \, dx$ **24.** $\int \sin^3 x \cos^5 x \, dx$
- $25. \int \sin^2 x \cos^4 x \, dx$
- **26.** $\int \sin^3 x \cos^{3/2} x \, dx$
- **27.** $\tan^2 x \, dx$
- **28.** $\int 6 \sec^4 x \, dx$
- 30. $\tan^3 \theta \ d\theta$
- $29. \int \cot^4 x \, dx$ $31. \int 20 \tan^6 x \, dx$
 - 32. $\int \cot^5 3x \, dx$
- $10 \tan^9 x \sec^2 x \, dx$
- $34. \int \tan^9 x \sec^4 x \, dx$
- 35. $\tan x \sec^3 x \, dx$
- 36. $\int \tan 4x \sec^{3/2} 4x \, dx$
- 37. $\int \frac{\sec^4(\ln \theta)}{\theta} d\theta$
- 39. $\int_{0}^{\pi/3} \sqrt{\sec^2 \theta 1} d\theta$
- **40.** $\int_{0}^{\pi/6} \tan^5 2x \sec 2x \, dx$
- **41.** $\int_{0}^{\pi/4} \sec^{7} x \sin x \, dx$
- 42. $\sqrt{\tan x} \sec^4 x \, dx$
- 43. $\int \tan^3 4x \, dx$
- 44. $\int \frac{\sec^2 x}{\tan^5 x} dx$
- **45.** $\int \sec^2 x \tan^{1/2} x \, dx$
- $\mathbf{46.} \quad \int \sec^{-2} x \tan^3 x \, dx$
- 47. $\int \frac{\csc^4 x}{\cot^2 x} dx$
- 48. $\int \csc^{10} x \cot x \, dx$
- **49.** $\int_{-\frac{1}{20}}^{\frac{\pi}{10}} \csc^2 5w \cot^4 5w \, dw$
- $\mathbf{50.} \quad \int \csc^{10} x \cot^3 x \, dx$
- $\mathbf{51.} \quad \left(\csc^2 x + \csc^4 x \right) dx$
- 52. $\int_{0}^{\pi/8} (\tan 2x + \tan^3 2x) \, dx$
- 53. $\int_{-\infty}^{\pi/4} \sec^4 \theta \ d\theta$
- **54.** $\int_{0}^{\sqrt{\pi/2}} x \sin^{3}(x^{2}) dx$
- $\mathbf{55.} \quad \int_{0}^{\pi/3} \cot^3 \theta \ d\theta$
- 56. $\int_{0}^{\pi/4} \tan^{3}\theta \sec^{2}\theta \ d\theta$
- **57.** $\int_{0}^{\pi} (1 \cos 2x)^{3/2} dx$ **58.** $\int_{-\pi/4}^{\pi/4} \sqrt{1 + \cos 4x} dx$
- **59.** $\int_{0}^{\pi/2} \sqrt{1 \cos 2x} \, dx$ **60.** $\int_{0}^{\pi/8} \sqrt{1 \cos 8x} \, dx$
- **61.** $\int_{0}^{\pi/4} (1 + \cos 4x)^{3/2} dx$
- **62.** Arc length Find the length of the curve $y = \ln(\sec x)$, for $0 \le x \le \pi/4$.

- 63. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** If *m* is a positive integer, then $\int_0^{\pi} \cos^{2m+1} x \, dx = 0$.
 - **b.** If m is a positive integer, then $\int_0^{\pi} \sin^m x \, dx = 0$.
- 64. Sine football Find the volume of the solid generated when the region bounded by $y = \sin x$ and the x-axis on the interval $[0, \pi]$ is revolved about the x-axis.
- 65. Volume Find the volume of the solid generated when the region bounded by $y = \sin^2 x \cos^{3/2} x$ and the x-axis on the interval $[0, \pi/2]$ is revolved about the x-axis.
- 66. Particle position A particle moves along a line with a velocity (in m/s) given by $v(t) = \sec^4 \frac{\pi t}{12}$, for $0 \le t \le 5$, where t is measured in seconds. Determine the position function s(t), for $0 \le t \le 5$. Assume s(0) = 0.
- 67–70. Integrals of the form $\int \sin mx \cos nx \, dx$ Use the following three identities to evaluate the given integrals.

 $\sin mx \sin nx = \frac{1}{2} \left(\cos \left((m-n)x \right) - \cos \left((m+n)x \right) \right)$

 $\sin mx \cos nx = \frac{1}{2} \left(\sin \left((m-n)x \right) + \sin \left((m+n)x \right) \right)$

 $\cos mx \cos nx = \frac{1}{2} (\cos ((m-n)x) + \cos ((m+n)x))$ 67. $\int \sin 3x \cos 7x \, dx$ 68. $\int \sin 5x \sin 7x \, dx$

- **69.** $\int \sin 3x \sin 2x \, dx$ **70.** $\int \cos x \cos 2x \, dx$

Explorations and Challenges

- 71. Prove the following orthogonality relations (which are used to generate Fourier series). Assume m and n are integers with

 - **a.** $\int_0^{\pi} \sin mx \sin nx \, dx = 0$ **b.** $\int_0^{\pi} \cos mx \cos nx \, dx = 0$
 - c. $\int_{0}^{\pi} \sin mx \cos nx \, dx = 0, \text{ for } |m + n| \text{ even}$
- 72. A sine reduction formula Use integration by parts to obtain the reduction formula for positive integers n:

 $\left| \sin^{n} x \, dx = -\sin^{n-1} x \cos x + (n-1) \right| \sin^{n-2} x \cos^{2} x \, dx.$

Then use an identity to obtain the reduction formula

 $\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$

Use this reduction formula to evaluate $\int \sin^6 x \, dx$.

73. A tangent reduction formula Prove that for positive integers

 $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx.$

Use the formula to evaluate $\int_0^{\pi/4} \tan^3 x \, dx$.

74. A secant reduction formula Prove that for positive integers $n \neq 1$,

 $\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$

(*Hint*: Integrate by parts with $u = \sec^{n-2} x$ and $dv = \sec^2 x dx$.)