Back to QGis: Georeferencing

Summer School on Digital Humanities
Course material available at
https://github.com/AugustoCiuffoletti/DHSS_2025

Augusto Ciuffoletti

8 giugno 2025

Back to QGis: Georeferencing

- Georeferencing involves transforming an image into a map
 - assigning geographic coordinates to each pixel in the image
- To achieve this, match points on the image with corresponding locations on an accurate reference raster (e.g., OSM)
- A georeferencing tool then calculates the coordinates for all pixels
 - Accuracy improves with the number of reference points
 - The image may need morphing (non-linear transformation)
 - Optimal reference points are distant and non-aligned
- QGIS provides tools for this task

Georeferencing: Preparation

- Create a new project and load the reference raster (OSM)
- Adjust the scale to match the area covered in the map
- Observe the code in the bottom right corner: EPSG:3857 (WGS84/Pseudo-Mercator)
 - This is the usual projection for Web mapping
- Open the Georeferencer tool:
 - Select Layer -> Georeferencer... to open a new window
- In the Georeferencer window:
 - Select File -> Open Raster
 - Locate and open the image file you want to georeference

Unreferenced image loaded

Setup the transformation type

- Configure transformation settings:
 - Select Settings -> Transformation Settings
 - Choose a transformation type (TPS is generally suitable)
 - Ensure the SRS is set to EPSG:3857 -WGS84/Pseudo-Mercator
 - Specify a target file for the result
 - Enable "Load in QGIS when done"
 - Click OK to apply the settings and return to the Georeferencer window

Matching Points

- Repeat the following steps for at least three (distant, non-aligned) points on your map image:
 - Identify a recognizable detail on the map image that also appears on the reference raster
 - e.g., in an ancient map of France, Lutetia corresponds to modern Paris
 - Use arrow keys to move and the mouse wheel to zoom, but clicking is disabled
 - Click when the crosshair is positioned over the reference detail (e.g., Lutetia)
 - A window appears to input the coordinates
 - Click the From Map Canvas button
 - The map and dialog disappear, and you return to the OSM raster with a crosshair pointer
 - Locate the corresponding point (e.g., Paris) on the raster and click
 - QGIS extracts the geographic coordinates from the raster
 - The map reappears with the coordinates filled in
 - Click OK and repeat for at least three points

The map before georeferencing

Running the Georeferencer

- Once all reference points are set, apply the georeferencing algorithm
- Click the green triangle in the Georeferencer toolbar to start the process
- A pop-up will confirm completion
- Keep the Georeferencer window open and switch to the main QGIS window to inspect the result

Inspecting the Result

- The image appears as a new raster layer in the main QGIS window
- To assess the georeferencing accuracy, adjust transparency:
 - Right-click the new layer in the Layers panel and select Properties -> Transparency
 - Set Global Opacity to approximately 50
- The next slide illustrates an OSM raster of France with a georeferenced historical map of ancient tribes
- The three reference points used: Paris, Marseille, and Bordeaux
- Observe how the northern coastline differs between the maps
- If the result is unsatisfactory:
 - Remove the layer
 - Return to the Georeferencer window to add more points
 - Repeat the georeferencing process

Referenced image generated

Use Your New Raster in QGIS

- During the georeferencing process, you specified a location to save the new raster
- To load it in QGIS, open a new project and access the Data Source Manager
 - Select Raster as the data source type
 - Click File to choose the raster format
 - Browse your filesystem and set the Source field to the path of your new raster

 Find in-depth QGIS tutorials at https://www.ggistutorials.com/en/

- Access geographic data (such as OpenStreetMap) from regional and global sources:
 - https://earthexplorer.usgs.gov/ (Explore available datasets)
 - http://wms.pcn.minambiente.it/mattm/servizi-di-scaricamento/ for downloading WFS resources to import into QGIS
- Try an engaging tutorial: https: //www.ggistutorials.com/en/docs/3/working_with_terrain.html
 - Learn to add contour lines to QGIS maps