

Most Important PYQs Questions	Vector Algebra JEE Main Crash Course
1. If the four points, whose position vectors are $3\hat{i} - 4\hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} - \hat{k}$, $-(1)$ $\frac{73}{17}$	$(2) - \frac{107}{17}$
2. Let $\vec{a} = 3\hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = 2\hat{i} - 3\hat{j} + 3\hat{k}$. If \vec{b} is a vector such that \vec{c}	$(4) \frac{107}{17} $ $\overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{c} \text{ and } \overrightarrow{b} ^2 = 50, \text{ then } 72 - \overrightarrow{b} + \overrightarrow{c} ^2 \text{ is equal to } \underline{} $
3. Let $ \overrightarrow{a} = 2$, $ \overrightarrow{b} = 3$ and the angle between the vectors \overrightarrow{a} and \overrightarrow{b} be $\frac{\pi}{4}$.	Then $\left \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \times \left(2\overrightarrow{a} - 3\overrightarrow{b} \right) \right ^2$ is equal to athongo with mathongo with mathons with the second sequence of the sequen
(1) 441	(2) 482
(3) 841 mathongo /// mathongo /// mathongo	
4. If $(2,3,9),(5,2,1),(1,\lambda,8)$ and $(\lambda,2,3)$ are coplanar, then the product of	all possible values of λ is
(1) $\frac{21}{2}$	$(2) \frac{68}{8}$ $(4) \frac{95}{8}$ thongo /// mathongo // m
5. Let $\overrightarrow{a} = \alpha \hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$, $\alpha > 0$. If the projection of \overrightarrow{a}	
15	
$\binom{3}{3} \frac{\frac{13}{13}}{2}$ mathongo /// mathongo /// mathongo	(2) 8 mathongo (1/1)
6. If \overrightarrow{a} and \overrightarrow{b} are unit vectors and $(\overrightarrow{a} + 3\overrightarrow{b})$ is perpendicular to $(7\overrightarrow{a} - 3\overrightarrow{b})$ and (\overrightarrow{b}) in degrees) is mathons	and $(\overrightarrow{a} - 4\overrightarrow{b})$ is perpendicular to $(7\overrightarrow{a} - 2\overrightarrow{b})$, then the angle between \overrightarrow{a} mathongo ma
Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $ \overrightarrow{a} = \sqrt{3}$, $ \overrightarrow{b} = 5$, $ \overrightarrow{b} = 5$, $ \overrightarrow{b} = 6$, $ \overrightarrow{b} = 6$, $ \overrightarrow{a} = 6$. The transfer of the property	10 and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$. If \overrightarrow{a} is perpendicular to the vector $\overrightarrow{b} \times \overrightarrow{c}$, mathongo mathon
8. If the points P and Q are respectively the circumcenter and the orthocentr	we of a $\triangle ABC$, then $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$ is equal to
(1) $\overrightarrow{2QP}$	(2) $\overrightarrow{_{2PQ}}$
(3) \overrightarrow{PQ}	$(4) \overrightarrow{QP}$
	is a vector perpendicular to both \overrightarrow{b} and \overrightarrow{c} , and $\overrightarrow{a} \cdot \overrightarrow{d} = 18$, then $ \overrightarrow{a} \times \overrightarrow{d} ^2$ is equal
	/(2) n ₆₈₀ nongo /// mathongo /// mathongo /// mathongo /// n
(3) 720 $10. \text{ Let } \overrightarrow{\Rightarrow} = 2\hat{i} - 7\hat{i} + 5\hat{i} - \frac{1}{N} = \hat{i} + \hat{k} \text{ and } \overrightarrow{\Rightarrow} = \hat{i} + 2\hat{i} - 2\hat{k} \text{ be three size}$	(4) 760 en vectors. If \overrightarrow{r} is a vector such that $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{c} \times \overrightarrow{a}$ and $\overrightarrow{r} \cdot \overrightarrow{b} = 0$, then $ \overrightarrow{r} $ is
Let $a = 21 - iJ + 5k$, $b = 1 + k$ and $c = 1 + 2J - 3k$ be three given equal to:	en vectors. If r is a vector such that $r \times a = c \times a$ and $r \cdot b = 0$, then r is
	(2) $\frac{11}{7}$
/// (3) $\frac{11}{5}\sqrt{2}$ /// mathongo /// mathongo /// mathongo	(2) $\frac{11}{7}$ (4) $\frac{\sqrt{914}}{7}$ ongo /// mathongo /// mathongo /// mathongo /// n
11. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors such that $ \overrightarrow{a} = \sqrt{31}$, $4 \overrightarrow{b} = \overrightarrow{c} = 2$ and 2	$(\overrightarrow{a} \times \overrightarrow{b}) = 3(\overrightarrow{c} \times \overrightarrow{a})$. If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{2\pi}{3}$, then $(\frac{\overrightarrow{a} \times \overrightarrow{c}}{\overrightarrow{c} \xrightarrow{\overrightarrow{b}}})^2$ is
equal to ngo /// mathongo /// mathongo /// mathongo	(
	and PQ respectively such that $\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}$. Then $\frac{\text{Area}(\Delta PQR)}{\text{Area}(\Delta ABC)}$ is equal to
	(2) 1 athongo $///$ mathongo $///$ mathongo $///$ mathongo $///$ m
13. Let $\overrightarrow{a} = \alpha \hat{i} + 3\hat{j} - \hat{k}$, $\overrightarrow{b} = 3\hat{i} - \beta\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} - 2\hat{k}$ where	$\alpha, \beta \in R$ be three vectors. If the projection of \overrightarrow{a} on \overrightarrow{c} is $\frac{10}{3}$ and mathons mathons mathons mathons
$\overrightarrow{b} imes \overrightarrow{c} = -6 \hat{i} + 10 \hat{j} + 7 \hat{k}$, then the value of $lpha + eta$ equal to	
(1) 3	(2) 4
(3) 5 mathongo // mathongo // mathongo	(4) $\stackrel{\text{d}}{\text{mathongo}}$ /// mathongo /// mathongo /// mathongo /// n
	area $2\sqrt{2}$. Let the angle between \overrightarrow{a} and \overrightarrow{b} be acute. $ \overrightarrow{a} = 1$ and $ \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b} $
. If $\overrightarrow{c} = 2\sqrt{2} \left(\overrightarrow{a} \times \overrightarrow{b}' \right) - 2 \overrightarrow{b}'$, then an angle between \overrightarrow{b} and \overrightarrow{c} is	
$(1) \frac{-\pi}{4}$	(2) $\frac{5\pi}{6}$
$\frac{(3) \frac{\pi}{3}}{3}$ mathongo /// mathongo /// mathongo	(4) $\frac{\frac{3\pi}{4}}{4}$ ee vectors such that, $ \overrightarrow{b} \times \overrightarrow{c} = 5\sqrt{3}$ and $ \overrightarrow{a} $ is perpendicular to $ \overrightarrow{b} $. Then the greatest
15. Let $\vec{a} = \hat{i} + 5\hat{j} + \alpha \hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} + \beta \hat{k}$ and $\vec{c} = -\hat{i} + 2\hat{j} - 3\hat{k}$ be thr	ee vectors such that, $\left \stackrel{.}{b} \times \stackrel{.}{c} \right = 5\sqrt{3}$ and \overrightarrow{a} is perpendicular to $\stackrel{.}{b}$. Then the greatest

16. Let $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 7\hat{i}$	$+\hat{j}-6\hat{k} ext{ If } \overrightarrow{r} imes \overrightarrow{a} = \overrightarrow{r} imes \overrightarrow{b}, \overrightarrow{r}$	$\cdot \left(\hat{i} + 2\hat{j} + \hat{k} ight)$	$=-3$, then $\overrightarrow{r}\cdot ($	$\left(2\hat{i}-3\hat{j}+\hat{k} ight)$ is equal to:	

(1) 12

- (4) 10 thongo

17. Let $\overrightarrow{a} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ and $\overrightarrow{b} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$. If $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{r}$, $\overrightarrow{r} \cdot \left(\alpha\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}\right) = 3$ and $\overrightarrow{r} \cdot \left(2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \alpha\hat{\mathbf{k}}\right) = -1$, $\alpha \in R$, then the value of $\alpha + \left| \overrightarrow{r} \right|^2$ is equal to :

(1) 9

(2) 15

(3) 13

- (4) 11
- 18. Let the position vectors of points 'A' and 'B' be $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + 3\hat{k}$, respectively. A point 'P' divides the line segment AB internally in the ratio $\lambda: 1(\lambda > 0)$. If O is the origin and $\overrightarrow{OB} \cdot \overrightarrow{OP} - 3 |\overrightarrow{OA} \times \overrightarrow{OP}|^2 = 6$ then λ is equal to
- **19.** Let the vectors $(2+a+b)\hat{i} + (a+2b+c)\hat{j} (b+c)\hat{k}$, $(1+b)\hat{i} + 2b\hat{j} b\hat{k}$ and $(2+b)\hat{i} + 2b\hat{j} + (1-b)\hat{k}$, $\forall a,b,c \in R$ be co-planar. Then which of the following is true?
 - (1) 2b = a + c

(3) a = b + 2c

- **20.** Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-zero non-coplanar vectors. Let the position vectors of four points \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} and \overrightarrow{D} be $\overrightarrow{a} \overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{A} \overrightarrow{a} 3 \overrightarrow{b} + 4 \overrightarrow{c}$, $-\overrightarrow{a}+2\overrightarrow{b}-3\overrightarrow{c}$ and $2\overrightarrow{a}-4\overrightarrow{b}+6\overrightarrow{c}$ respectively. If \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar, then λ is :
- 21. Let A, B, C be three points whose position vectors respectively are: $\vec{a} = \hat{i} + 4\hat{j} + 3\hat{k}\vec{b} = 2\hat{i} + \alpha\hat{j} + 4\hat{k}$, $\alpha \in R\vec{c} = 3\hat{i} 2\hat{j} + 5\hat{k}$ lf α is the smallest positive integer for which \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-collinear, then the length of the median, \triangle ABC, through A is:
 - (1) $\frac{\sqrt{82}}{}$

(3) $\sqrt{69}$

- 22. Let $\lambda \in \mathbb{Z}$, $\overrightarrow{a} = \lambda \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{b} = 3\hat{i} \hat{j} + 2\hat{k}$. Let \overrightarrow{c} be a vector such that $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{c} = \overrightarrow{0}$, $\overrightarrow{a} \cdot \overrightarrow{c} = -17$ and $\overrightarrow{b} \cdot \overrightarrow{c} = -20$. Then
 - $\left|\overrightarrow{c} imes\left(\lambda\hat{i}+\hat{j}+\hat{k}
 ight)
 ight|^{2}$ is equal to
 - (1) 46

(3) 62

- (4) 49
- 23. Let the plane x + 3y 2z + 6 = 0 meet the co-ordinate axes at the points A, B, C. If the orthocenter of the triangle ABC is $\left(\alpha, \beta, \frac{6}{7}\right)$, then $98(\alpha + \beta)^2$ is
- **24.** Let O be the origin and the position vector of the point P be $-\hat{i}-2\hat{j}+3k$. If the position vectors of the points A, B and C are $-2\hat{i}+\hat{j}-3k$, $2\hat{i}+4\hat{j}-2k$ and $-4\hat{i} \hat{\ } + 2\hat{j} - k$ respectively, then the projection of the vector \overrightarrow{OP} on a vector perpendicular to the vectors \overrightarrow{AB} and \overrightarrow{AC} is
 - (1) 3

 $(3) \frac{7}{3}$

- (2) $\frac{8}{3}$ (4) $\frac{10}{3}$
- **25.** Let $\overrightarrow{a} = 6\hat{i} + 9\hat{j} + 12\hat{k}$, $\overrightarrow{b} = \alpha\hat{i} + 11\hat{j} 2\hat{k}$ and \overrightarrow{c} be vectors such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$ If $\overrightarrow{a} \cdot \overrightarrow{c} = -12$, and $\overrightarrow{c} \cdot (\hat{i} 2\hat{j} + \hat{k}) = 5$ then
- **26.** If $\overrightarrow{a} = \hat{i} + 2\hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = 7\hat{i} 3\hat{j} + 4\hat{k}$, $\overrightarrow{r} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}$ and $\overrightarrow{r} \cdot \overrightarrow{a} = 0$ then $\overrightarrow{r} \cdot \overrightarrow{c}$ is equal to:

- 27. Let $\overrightarrow{u} = \hat{i} \hat{j} 2\hat{k}$, $\overrightarrow{v} = 2\hat{i} + \hat{j} \hat{k}$, $\overrightarrow{v} \cdot \overrightarrow{w} = 2$ and $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{u} + \lambda \overrightarrow{v}$, then $\overrightarrow{u} \cdot \overrightarrow{w}$ is equal to

- 28. Let $\overrightarrow{a} = \hat{i} \hat{j} + 2\hat{k}$ and let \overrightarrow{b} be a vector such that $\overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} \hat{k}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$. Then the projection of \overrightarrow{b} on the vector $\overrightarrow{a} \overrightarrow{b}$ is:
- (1) $\frac{2}{\sqrt{21}}$

- (2) $2\sqrt{\frac{3}{7}}$
- (3) $\frac{2}{3}\sqrt{\frac{7}{3}}$
- **29.** Let $\overrightarrow{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and \overrightarrow{c} be a vector such that $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{0}$, then the value of $3(\overrightarrow{c}, \overrightarrow{a})$ is equal to
- **30.** Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-coplanar vectors such that $\overrightarrow{a} \times \overrightarrow{b} = 4\overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = 9\overrightarrow{a}$ and $\overrightarrow{c} \times \overrightarrow{a} = \alpha \overrightarrow{b}$, $\alpha > 0$ If $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = 36$, then α is equal to ____