WYKŁAD METODY AB-INTIO (DFT)

Spis treści

1. Wielociałowa funkcja falowa	2
2. Przybliżenia	g
2.1. Przybliżenie adiabatyczne	9
2.2. Przybliżenie Borna-Oppenheimera	3
3. Przybliżenie pola średniego i metoda H	artree-Focka 4
3.1. Przybliżenie pola średniego	4
3.2. Równania Hartree-Focka	4
4. Twierdzenia Hohenberga-Kohna	
5. Metoda Kohna-Shama	5 7 7 ama 7
5.1. Założenia	7
5.2. Funkcjonał gęstości energii Kohna-Sh	ama 7
5.3. Równanie Kohna-Shama	7
5.4. Hartree-Fock vs Kohn-Sham	7
6. Funkcjonały gęstości elektronowej	8
6.1. Energia wymienna i koreelacyjna	8
6.2. LDA	8
6.3. GW	8
6.4. LDA+U/GW+U	8
7. Metoda pseudopotencjałów	Q
8. Metody obliczania struktury pasmowe	j / Rozwiązywania równań
Kohna-Shama	10
8.1. PW	10
8.2. OPW	10
8.3. APW	10
8.4. LCAO	10
8.5. Porównanie metod	10
9. Dynamika molekularna w ujęciu Ab-In	itio 11
9.1. Twierdzenie Hellmana-Feynmanna	11
9.2. Obliczanie sił działających na moleku	ły 11
9.3. Dynamika Car-Parinello	11
9.4. Obliczanie relacji dyspersyjnych dla f	ononów 11
10. Informacje praktyczne	12

1. Wielociałowa funkcja falowa

Wielociałowa funkcja falowa

Katastrofa van Vlecka

Gęstość elektronowa

Hamiltonian układu w problemach ciała stałego:

$$\hat{H} = \hat{T}_e\left(\nabla_{\boldsymbol{r}_i}\right) + \hat{T}_{jon}\left(\nabla_{\boldsymbol{R}_i}\right) + \hat{V}_{ext}\left(\boldsymbol{r}_i, \boldsymbol{R}_j\right) + \hat{V}_{jon-jon}\left(\boldsymbol{R}_i - \boldsymbol{R}_j\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_i - \boldsymbol{R}_j\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_i - \boldsymbol{r}_j\right)$$

$$\left\langle \boldsymbol{r}\right|\hat{H}\left|\boldsymbol{r}\right\rangle = -\frac{\hbar^{2}}{2m_{e}}\sum_{i=1}^{N_{e}}\nabla_{\boldsymbol{r}_{i}} - \sum_{I=1}^{N_{jon}}\frac{\hbar^{2}}{2M_{I}}\nabla_{\boldsymbol{R}_{I}} + \frac{1}{2}\sum_{I=1}^{N_{jon}}\sum_{J=1}^{N_{jon}}\left(\boldsymbol{R}_{i} - \boldsymbol{R}_{j}\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_{i} - \boldsymbol{R}_{j}\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right)$$

Rozkłada się na energię kinetyczną elektronów, jonów (najczęściej jąder/rdzeni atomowych), jednocząstkową energię potencjalną działającą na cząstki (np. grawitacja) oraz operatory dwucząstkowe przedstawiające wzajenmne oddziaływania cząstek na siebie.

3

2. Przybliżenia

- 2.1. **Przybliżenie adiabatyczne.** Time-dependent adiabatic couplings Dlaczego oraz kiedy można odseparować skałdniki wolno i szykbo zmienne?
- 2.2. **Przybliżenie Borna-Oppenheimera.** Polega na zaniedbaniu Time-dependent adiabatic couplings, czyli w uproszczeniu na zaniedbaniu wolnozmiennych składników przy rozwiązywaniu r. Schroedingera.

Jeżeli rozseparujemy funkcję falową układu jąder i elektronów w postaci iloczynu:

$$\Psi\left(\boldsymbol{r}_{i},\boldsymbol{R}_{j}\right)=\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{j}\right)\chi\left(\boldsymbol{R}_{j}\right)$$

To położenia jąder/jonów w przybliżeniu BO mogą być potraktowane jako parametry układu.

Możemy wtedy rozwiązać równanie na funkcje elektronowe Φ traktując położenia ciężkich jąder/rzdzeni atomowych jako parametry. Jest to tzw. elektronowe równanie Schroedingera:

$$\begin{split} \hat{H}_{e}^{BO}\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{j}\right) &= E_{e}\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{j}\right)\\ \hat{H}_{e}^{BO} &= \end{split}$$

Wyprowadzenie: https://en.wikipedia.org/wiki/Born-Oppenheimer_approximation.

- 3. Przybliżenie pola średniego i metoda Hartree-Focka
- 3.1. Przybliżenie pola średniego. ???
- 3.2. **Równania Hartree-Focka.** Hartree-Focka-Bogoliubowa

4. Twierdzenia Hohenberga-Kohna

Twierdzenie 1. Hohenberga-Kohna

Istnieje jednoznaczne odwzorowanie pomiędzy potencjał zewnętrznym $\hat{V}_{ext} = \sum_{i=1}^{N} v_{ext}(\mathbf{r})$ a gęstością cząstek $n_0(\mathbf{r})$ w niezdegenerowanym stanie podstawowym i tym samym całkowita energia układu jest wtedy jednoznacznym funkcjonalem gęstości $n_0(\mathbf{r})$.

Dowód. (1. twierdzenia H-K)

Załóżmy, że istnieją dwa potencjały $\hat{V}_{ext}^{(1)}$ i $\hat{V}_{ext}^{(2)}$, którym odpowiada pojedyncza gęstość cząstek w stanie podstawowym $n_0(\mathbf{r})$.

Stan $|\Psi^{(1)}\rangle$ odpowiadający $n_0(\mathbf{r})$ jest stanem podstawowym z $\hat{V}_{ext}^{(1)}$, toteż z zasady wariacyjnej wynika:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(2)} \middle| \Psi^{(1)} \right\rangle = \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(1)} \middle| \hat{H}^{(2)} - \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle$$

I analogicznie stan $|\Psi^{(2)}\rangle$ odpowiadający $n_0(\mathbf{r})$ jest stanem podstawowym z $\hat{V}_{ext}^{(2)}$, toteż z zasady wariacyjnej wynika:

$$\left\langle \Psi^{(2)} \left| \left. \hat{H}^{(2)} \right| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(2)} \right| \hat{H}^{(1)} \left| \Psi^{(2)} \right\rangle = \left\langle \Psi^{(2)} \right| \hat{H}^{(2)} \left| \Psi^{(2)} \right\rangle + \left\langle \Psi^{(2)} \right| \hat{H}^{(2)} - \hat{H}^{(1)} \left| \Psi^{(2)} \right\rangle$$

Hamiltoniany $\hat{H}^{(1)}$ i $\hat{H}^{(2)}$ różnią się tylko zewnętrznym potencjałem:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \int_{\mathbb{R}^3} \left(V_{ext}^{(2)} \left(\boldsymbol{r} \right) - V_{ext}^{(1)} \left(\boldsymbol{r} \right) \right) n_0 \left(\boldsymbol{r} \right) d^3 r$$

$$\left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle + \int_{\mathbb{R}^3} \left(V_{ext}^{(1)} \left(\boldsymbol{r} \right) - V_{ext}^{(2)} \left(\boldsymbol{r} \right) \right) n_0 \left(\boldsymbol{r} \right) d^3 r$$

Dodając stronami:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle$$

lub

$$0 < \int_{\mathbb{R}^3} \left(V_{ext}^{(2)} \left(\boldsymbol{r} \right) - V_{ext}^{(1)} \left(\boldsymbol{r} \right) + V_{ext}^{(1)} \left(\boldsymbol{r} \right) - V_{ext}^{(2)} \left(\boldsymbol{r} \right) \right) n_0 \left(\boldsymbol{r} \right) d^3 r = 0$$

Co jest wewnętrznie sprzeczne!

Stąd wniosek, że początkowe założenie jest nieprawdziwe, więc musi istnieć tylko jeden \hat{V}_{ext} odpowiadający dokładnie jednej $n_0(\mathbf{r})$.

Twierdzenie 2. Hohenberga-Kohna

The functional that delivers the ground state energy of the system, gives the lowest energy if and only if the input density is the true ground state density.

Uwaaa

Gęstość ρ 0 minimalizująca całkowitą energię jest dokładną gęstością stanu podstawowego. A więc, dla próbnej gęstości (nieujemnej i całkującej się do N) zachodzi $E\left[\tilde{\rho}\right] \leq E\left[\rho_{0}\right] = E_{0}$.

Dowód. 2. twd. Hohenberga-Kohna

W niezdegenerowanym stanie podstawowym wartość oczekiwana dowolnego operatora jest funkcjonałem gęstości cząstek minimalizującej energię stanu podstawowego. $n(\mathbf{r})$ determines $v_{\text{ext}}(\mathbf{r})$, N and $v_{\text{ext}}(\mathbf{r})$ determine \hat{H} and therefore Ψ . This

ultimately means Ψ is a functional of $n(\mathbf{r})$, and so the expectation value of \hat{F} is also a functional of $n(\mathbf{r})$, i.e. $F[n(\mathbf{r})] = \langle \psi | \hat{F} | \psi \rangle$.

A density that is the ground-state of some external potential is known as v-representable. Following from this, a v-representable energy functional $E_v[n(\mathbf{r})]$ can be defined in which the external potential $v(\mathbf{r})$ is unrelated to another density $n'(\mathbf{r})$,

$$E_v[n(\mathbf{r})] = \int n'(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n'(\mathbf{r})]$$

and the variational principle asserts,

$$\langle \psi' | \hat{F} | \psi' \rangle + \langle \psi' | \psi \rangle + \langle \psi | \hat{V}_{\text{ext}} | \psi \rangle$$

where ψ is the wavefunction associated with the correct groundstate $n(\mathbf{r})$. This leads to,

$$\int n'(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n'(\dots; \int n(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n(\mathbf{r})],$$

and so the variational principle of the second Hohenberg-Kohn theorem is obtained,

$$E_v[n'(\mathbf{r})] > E_v[n(\mathbf{r})].$$

Although the Hohenberg-Kohn theorems are extremely powerful, they do not offer a way of computing the ground-state density of a system in practice. About one year after the seminal DFT paper by Hohenberg and Kohn, Kohn and Sham [9] devised a simple method for carrying-out DFT calculations, that retains the exact nature of DFT. This method is described next.

5. Metoda Kohna-Shama

7

- 5.1. Założenia. Założenia w metodzie Kohna-Shama:
 - (1) Zastępujemy układ oddziałujacych cząstek w zewnętrznym potencjale v_{ext} (\mathbf{r}) układem pomocniczym składającym się z quasicząstek nieoddziałujących w pewnym efektywnym potencjale v_{eff} (\mathbf{r}).
 - (2) Zakładamy, że istnieje takie $v_{eff}(\mathbf{r})$, które dokładnie odwzorowuje energię stanu podstawowego układu oddziałującego.
 - (3) Układ nieoddziałujących cząstek jest opisany za pomocą orbitali Kohna-Shama (pseudofunkcji falowych) $\phi_i(\mathbf{r})$ (są to rozw. równania Kohna-Shama).

Przy powyższych założeniach gęstość stanu podstawowego ukł. oddziałującego jest zadana przez

$$n\left(\mathbf{r}\right) = \sum_{i=1}^{N} \phi_i\left(\mathbf{r}\right)$$

5.2. Funkcjonał gęstości energii Kohna-Shama. Dla hamiltonianu układu wielu ciał:

Na mocy twierdzeń Hohenberga-Kohna można utworzyć funkcjonał gestości:

$$E_{HK}[n] = T[n] + \int_{\mathbb{R}^3} v_{ext}(\mathbf{r}) d^3r + \int_{\mathbb{R}^3} v_{int}(\mathbf{r}) n(\mathbf{r}) d^3r$$

Przy założeniach metody Kohna-Shama można ten potencjał przedstawić w postaci:

$$E_{KS}\left[n\right] = T_S\left[n\right] + \int_{\mathbb{R}^3} v_{ext}\left(\mathbf{r}\right) n\left(\mathbf{r}\right) d^3r + E_H\left[n\right] + E_{Ion-Ion}\left[n\right] + E_{XC}\left[n\right]$$

 $T_S[n] = \int_{\mathbb{R}^3} \sum_{i=1}^N \frac{\hbar^2}{2m} |\nabla \phi_i| d^3r$ - funkcjonał energii kinetycznej

 $E_H[n] = \int_{\mathbb{R}^3} d^3r$ - funkcjonał energii Hartree [UZUPELNIĆ]

 $E_{II}[n] = \text{const}$ - funkcjonał energii oddziaływania jon-jon

 $E_{XC}[n] = T[n] + \langle \hat{V}_{int} \rangle - T_S[n] - E_H[n]$ - funkcjonał energii korelacyjno-wymiennej, w ogolności analityczna postać nie jest znana (gdyby była, to metoda KS byłaby metodą dokładną).

- 5.3. Równanie Kohna-Shama.
- 5.4. Hartree-Fock vs Kohn-Sham.

- 6. Funkcjonały gęstości elektronowej
- 6.1. Energia wymienna i koreelacyjna.
- 6.2. **LDA**.
- 6.3. **GW**.
- 6.4. **LDA+U/GW+U**.

7. METODA PSEUDOPOTENCJAŁÓW

8. Metody obliczania struktury pasmowej / Rozwiązywania równań Kohna-Shama

- 8.1. **PW.**
- 8.2. **OPW.**
- 8.3. **APW.**
- 8.4. **LCAO.**
- 8.5. Porównanie metod.

9. Dynamika molekularna w ujęciu Ab-Initio

9.1. Twierdzenie Hellmana-Feynmanna.

Twierdzenie 3. Twierdzenie Feynmana-Hellmanna: pochodna energii całkowitej po pewnym parametrze jest równa wartości średniej pochodnej hamiltonianu po tym samym parametrze:

$$\frac{\partial E}{\partial \lambda} = \langle \Psi | \frac{\partial}{\partial \lambda} \hat{H} | \Psi \rangle$$

 $Dow \acute{o}d.$???

9.2. Obliczanie sił działających na molekuły.

Na mocy twd. 3 możemy napisać, że i-ta składowa siły jest równa:

(9.1a)
$$F_{i} = -\frac{\partial E}{\partial X_{i}} = -\langle \Psi | \frac{\partial}{\partial X_{i}} \hat{H} | \Psi \rangle$$

(9.1b)
$$\mathbf{F} = -\nabla E = \int_{\mathbb{R}^3} \Psi^* (\mathbf{r}) \, \nabla H (\mathbf{r}) \, \Psi (\mathbf{r}) \, d^3 r$$

- 9.3. Dynamika Car-Parinello.
- 9.4. Obliczanie relacji dyspersyjnych dla fononów.

10. Informacje praktyczne

Mamy przejebane...