Diszkrét matematika 2.C szakirány

4. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. tavasz

Algoritmus (Dijkstra)

A $G=(\psi,E,V,w)$ élsúlyozott irányított gráfról tegyük fel, hogy az élsúlyok pozitívak, $s\in V$ és $T\subset V$.

- (1) Legyen $S = \emptyset$, $H = \{s\}$ és f(s) = 0; minden más v csúcsra legyen $f(v) = \infty$.
- (2) Ha $T \subset S$ vagy $\overline{H} = \emptyset$, akkor az algoritmus véget ér.
- (3) Legyen $t \in H$ egy olyan csúcs, amelyre f(t) minimális. Tegyük át t-t S-be, és minden e élre, amely t-ből $v \in V \setminus S$ -be vezet, ha f(t) + w(e) < f(v), akkor legyen f(v) = f(t) + w(e), és ha $v \notin H$, tegyük át v-t H-ba. Menjünk (2)-re.

Tétel

A Dijkstra-algoritmus a csúcshalmazon értelmez egy $f\colon V\to \overline{\mathbb{R}}$ függvényt, amely $t\in \mathcal{T}$ esetén az adott s csúcsból a t csúcsba vezető irányított séták súlyainak a minimuma $(\infty,$ ha nincs ilyen séta).

Bizonyítás

Az S elemszáma szerinti indukcióval megmutatjuk, hogy:

- minden $t \in S$ -re f(t) az s csúcsból a t csúcsba vezető irányított séták súlyainak minimuma;
- ② ha $v \in H$, akkor minden olyan s-ből v-be vezető irányított sétának, amelynek v-n kívül minden csúcsa S-ben van a súlya legalább f(v).

Inicializálás után ezek nyilvánvalóak.

Tegyük fel, hogy (3)-ban $t \in H$ -t választottuk, és tekintsünk egy tetszőleges s-ből t-be vezető irányított sétát, aminek a súlya W, továbbá legyen t' a séta első olyan csúcsa, amely nincs S-ben. A séta s-ből t'-ig vivő részének W' súlyára $W' \leq W$ (Miért zindukciós feltevés második része szerint $f(t') \leq W'$, és mivel t-t választottuk $f(t) \leq f(t')$, így $f(t) \leq W$, amivel az állítás első részét beláttuk.

Biz.folyt.

Miután (3)-ban az f(v) értékeket megváltoztattuk, tekintsünk egy s-ből v-be vezető sétát, aminek csak az utolsó csúcsa nincs S-ben, legyen t' az utolsó előtti csúcsa, e pedig az utolsó éle. Mivel $t' \in S$, az s-től t'-ig vezető részséta súlya legalább f(t'), így a teljes séta súlya legalább f(t') + w(e), és amikor t'-t bevettük S-be legfeljebb ennyire állítottuk d(v) értékét, azóta pedig csak csökkenhetett.

Diszkrét matematika 2.C szakirány

Irányított gráfok

Definíció

Egy G gráfot síkgráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az éleinek a csúcspontokon kívül lennének közös pontjai. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának is nevezzük.

Megjegyzés

Nem minden gráf ilyen, ellenben minden gráf \mathbb{R}^3 -ben lerajzolható.

Definíció

A *G* gráf egy síkbeli reprezentációja esetén tartománynak nevezzük az élek által határolt síkidomot. Ez nem feltétlenül korlátos, ilyenkor külső tartományról beszélünk, egyébként pedig belső tartományról.

Megjegyzés

Egy belső tartomány valamely másik reprezentációban lehet külső tartomány is, de a tartományok száma nem függ a reprezentációtól.

Síkgráfok

Síkgráfok

Tétel (Euler-formula)

Egy $G = (\varphi, E, V)$ összefüggő síkgráf tetszőleges síkbeli reprezentációját tekintve, melyre t jelöli a tartományok számát, teljesül a következő összefüggés.

$$|E| + 2 = |V| + t$$

Bizonyítás (vázlat)

Ha a gráfban van kör, annak egy élét törölve az általa elválasztott két tartomány egyesül, így a tartományok és élek száma is (vagyis az egyenlet mindkét oldala) 1-gyel csökken. Az eljárás ismétlésével fát kapunk,

Állítás

Ha a $G=(\varphi,E,V)$ egyprű, összefüggő síkgráfra $|V|\geq 3$, akkor

$$|E| \le 3|V| - 6.$$

Bizonyítás

|V|=3 esetén 2 ilyen gráf van: P_2 és c_3 , amelyekre teljesül az állítás.

|V| > 3 esetén legalább 3 éle van a gráfnak (Miért?). Mivel G egyszerű,

ezért minden tartományát legalább 3 él határolja, ezért a tartományok határán végigszámolva az éleket az így kapott érték legalább 3t. Mivel minden él legfeljebb két tartományt választ el, ezért $3t \le 2|E|$. Az Euler-formulát használva $3(|E|+2-|V|) \le 2|E|$, amiből kapjuk az állítást.

Megjegyzés

A becslés nem összefüggő síkgráfok esetén is teljesül, hiszen élek hozzávételével összefüggő síkgráfot kaphatunk.

Állítás

Ha $G = (\varphi, E, V)$ egyszerű síkgráf, akkor

$$= \min_{v \in V} d(v) \le 5.$$

Bizonyítás

Feltehető, hogy $|V| \ge 3$ (Miért?).

Indirekt tfh. $\delta \geq 6$. Ekkor $6|V| \leq 2|E|$ (Miért?), továbbá az előző állítást használva $2|E| \leq 6|V| - 12$, vagyis $6|V| \leq 6|V| - 12$, ami ellentmondás.

Állítás

 $K_{3,3}$ nem síkgráf.

Bizonyítás

Indirekt tfh. $K_{3,3}$ síkgráf, és jelöljük t-vel a síkbeli reprezentációiban a tartományok számát. Ekkor |E|=9 és |V|=6 miatt az Euler-formula alapján t=5. Mivel egyszerű, páros gráf, így minden tartomány határa legalább 4 élt tartalmaz (Miért se minden él legfeljebb két tartomány határán van, ezért $4t \le 2|E|$, aminől $20 \le 18$ adódik, ami ellentmondás.

Állítás

K₅ nem síkgráf.

Bizonyítás

Indirekt tfh. K_5 síkgráf. |E|=10 és |V|=5, így az élszámra vonatkozó becslés alapján $10 < 3 \cdot 5 - 6 = 9$, ami ellentmondás.

Definíció

A G és G' gráfokat topologikusan izomorfnak nevezzük, ha az alábbi lépést, illetve a fordítottját alkalmazva, véges sok lépésben az egyikből a másikkal izomorf gráfot kaphatunk: egy másodfokú csúcsot törlünk, és a szomszédjait összekötjük egy éllel.

Tétel (Kuratowski) (NB)

Egy egyszerű gráf pontosan akkor síkgráf, ha nincs olyan részgráfja, ami topologikusan izomorf K_5 -tel vagy $K_{3,3}$ -mal.

Gráfok színezése

Szeretnénk egy térképet kiszínezni úgy, hogy a szomszédos régiók különböző színűek legyenek.

A probléma megközelítése gráfokkal: a régióknak felelnek meg a csúcsok. Két csúcs szomszédos, ha a megfelelő régióknak van közös határvonala. A térképnek megfelelő gráf síkgráf lesz.

Tétel (Négyszíntétel) (NB)

Minden síkgráf 4 színnel színezhető.

Megjegyzés

1976-ban bizonyította Appel és Haken. Ez volt az első nevezetes sejtés, aminek a bizonyításához számítógépet is használtak. 1936 lehetséges ellenpéldát ellenőriztek, 1200 órán keresztül futott a program.

Gráfok színezése

Definíció

Egy gráf egy csúcsszínezését jólszínezésnek nevezzük, ha a szomszédos csúcsok színe különböző.

Definíció

Egy gráf kromatikus száma az a legkisebb n természetes szám, amelyre jólszínezhető *n* színnel.

Megjegyzés

A kromatikus szám pontosan akkor 1, ha nincs éle a gráfnak, és ha 2 a kromatikus szám, akkor a gráf páros. A síkgráfok kromatikus száma legfeljebb 4.

Gráfok mátrixai

Definíció

Ha egy $G = (\psi, E, V)$ irányított gráf élei e_1, e_2, \dots, e_n , csúcsai pedig v_1, v_2, \dots, v_m , akkor az alábbi illeszkedési mátrix (vagy élmátrix) egyértelműen megadja a gráfot:

$$a_{ij} = \begin{cases} 1 & \text{, ha } e_j\text{-nek } v_i \text{ kezdőpontja;} \\ -1 & \text{, ha } e_j \text{ nem hurokél, és } v_i \text{ a végpontja;} \\ 0 & \text{, egyébként.} \end{cases}$$

A megfelelő irányítatlan gráf élmátrixa az $|a_{ii}|$ elemekből áll.

Gráfok mátrixai

Definíció

A G irányított gráf csúcsmátrixában legyen b_{ij} a v_i kezdőpontú és v_j végpontú élek száma.

A megfelelő irányítatlan gráf csúcsmátrixának elemeire:

$$b_{ij} = \begin{cases} & \text{a } v_i\text{-re illeszkedő hurokélek száma} &, \text{ ha } i = j; \\ & \text{a } v_i\text{-re és } v_i\text{-re is illeszkedő élek száma} &, \text{ egyébként.} \end{cases}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Prüfer-kód

Definíció

Legyen adott egy $F=(\varphi,E,V,w)$ csúcscímkézett fa, az egyes csúcsok címkéi 1 és n közötti különböző egész számok, ahol n=|V|. Töröljük az elsőfokú csúcsok közül a legkisebb sorszámút, és írjuk fel ennek szomszédjának a számát. A kapott fára (Miért fa?) folytassuk az eljárást, amíg már csak egy csúcs marad, mégpedig az n címkéjű (Miért sorozat n-1-edig tagja szükségképpen n, ezért ez elhagyható. A kapott n-2 hosszú sorozat az F fa Prüfer-kódja.

Példa

A Prüfer-kód: 4546545(9).

Prüfer-kód

Algoritmus (Prüfer-kódból fa készítése)

megrajzoljuk az si és pi csúcsokra illeszkedő élt.

Legyen a Prüfer-kód $p_1, p_2, \ldots, p_{n-2}, p_{n-1} = n$. Legyen a kódban nem szereplő legkisebb sorszám s_1 . Ha s_i -t már meghatároztuk, akkor legyen s_{i+1} az a legkisebb sorszám, amely különbözik az alábbiaktól: $s_1, s_2, \ldots, s_i; p_{i+1}, p_{i+2}, \ldots, p_{n-2}, p_{n-1} = n$. Ilyennek mindig lennie kell, mert n lehetőségből legfeljebb n-1 számút nem engedünk meg. Az n

csúcsot tartalmazó üres gráfból kiindulva minden i-re $(1 \le i \le n-1)$

Prüfer-kód

45465459 1;5465459 12;465459 123;65459 1237;5459 12376;459 123768;59 1237684;9

Műveletek

Definíció

Egy X halmazon értelmezett művelet alatt egy $*: X^n \to X$ függvényt értünk.

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x, y) helyett x * y-t írunk.

- © halmazon az +, · binér művelet.
- $\mathbb C$ halmazon az \div (osztás) nem művelet, mert $\mathrm{dmn}(\div) \neq \mathbb C \times \mathbb C$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ halmazon az \div binér művelet.

Műveleti tulajdonságok

Definíció

```
A *: X \times X \to X művelet asszociatív, ha \forall a, b, c \in X : (a*b)*c = a*(b*c); kommutatív, ha \forall a, b \in X : a*b = b*a.
```

- C-n az + ill. a · műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- A függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- A kivonás az egész számok halmazán nem asszociatív: $-1=(1-1)-1 \neq 1-(1-1)=1.$

Algebrai struktúrák

Definíció

A (H; M) pár algebrai struktúra, ha H egy halmaz, M pedig H-n értelmezett műveletek halmaza.

Az egy binér műveletes struktúrát grupoidnak nevezzük.

- $(\mathbb{N};+)$ algebrai struktúra, mert természetes számok összege természetes szám (ld. Diszkrét matematika 1.), és grupoid is.
- $(\mathbb{N}; -)$ nem algebrai struktúra, mert például $0 1 = -1 \notin \mathbb{N}$.
- $(\mathbb{Z}; +, \cdot)$ algebrai struktúra, mert egész számok összege és szorzata egész szám (ld. Diszkrét matematika 1.), de nem grupoid.
- $(\mathbb{Z}_m;+,\cdot)$ algebrai struktúra (ld. Diszkrét matematika 1.), nem grupoid.

Félcsoportok

Definíció

```
A (G;*) grupoid félcsoport, ha * asszociatív G-n. Ha létezik s \in G \colon \forall g \in G \colon s * g = g * s = g, akkor az s semleges elem (egységelem), (G;*) pedig semleges elemes félcsoport (egységelemes félcsoport, monoid).
```

- \mathbb{N} az + művelettel egységelemes félcsoport n=0 egységelemmel.
- ullet Q a · művelettel egységelemes félcsoport n=1 egységelemmel.
- \bullet $\mathbb{C}^{k\times k}$ a mátrixszorzással egységelemes félcsoport az egységmátrixszal mint egységelemmel.

Csoportok

Definíció

Legyen (G;*) egy egységelemes félcsoport e egységelemmel. A $g \in G$ elem inverze a $g^{-1} \in G$ elem, melyre $g * g^{-1} = g^{-1} * g = e$. Ha minden $g \in G$ elemnek létezik inverze, akkor (G;*) csoport. Ha ezen felül * kommutatív is, akkor (G;*) Abel-csoport.

- ullet ${\mathbb Q}$ az + művelettel, a 0 egységelemmel.
- $\mathbb{Q}^{ullet}=\mathbb{Q}\setminus\{0\}$ a \cdot művelettel, az 1 egységelemmel.
- $\{M \in \mathbb{C}^{k \times k} : \det M \neq 0\}$ a mátrixszorzással, és az egységmátrixszal mint egységelemmel.
 - $X \to X$ bijektív függvények a kompozícióval, és az $id_X : x \mapsto x$ identikus leképzéssel mint egységelemmel.