

kSEMAWc software

Spectrophotometric (SP),

Ellipsometric (ELI) and

photothermal deflection spectroscopy (PDS)

Measurements

Analysis Workbench

k stands for the use of Qt libraries c stands for full C++ language

Marco Montecchi ENEA-Casaccia marco.montecchi@enea.it

kSEMAWc - Marco Montecchi

Summary

Part I - what is kSEMAWc intended for?

Part II - some software details:

- Language and libraries
- Where to find it?
- Installation

Part III – How to use it?

Part I: what is it for?

kSEMAWc deals with optical devices

- composed by layers (from 1 to 9) of
- homogeneous or not (EMA, graded index, ect.) materials
- thin ($d \leq \frac{\lambda^2}{\Delta \lambda}$) or thick,
- with plane and parallel interfaces,
- eventually, with moderate roughness ($\sigma \ll \lambda$)

Part I: what can it do?

kSEMAWc can:

1) Simulate spectrophotometric, ellipsometric, PDS spectra

Part I: what can do?

kSEMAWc can:

- 1) Simulate spectrophotometric, ellipsometric, PDS spectra
- **2) Calculate** complex refractive index (n i k) and thickness of a given thin layer, when the surrounding layers are known

Part I: what can do?

kSEMAWc can:

- 1) Simulate spectrophotometric, ellipsometric, PDS spectra
- **2) Calculate** complex refractive index (n i k) and thickness of a given thin layer, when the surrounding layers are known
- **3) Evaluate** mean value of Transmittance / Reflectance weighted on a given international or customized spectrum (D65, ASTM-G173, etc.)

Part I: what can do?

kSEMAWc can:

- 1) Simulate spectrophotometric, ellipsometric, PDS spectra
- **2) Calculate** complex refractive index (n i k) and thickness of a given thin layer, when the surrounding layers are known
- **3) Evaluate** mean value of Transmittance / Reflectance weighted on a given international or customized spectrum (D65, ASTM-G173, etc.)
- 4) Predict Transmittance / Reflectance once a realistic or an equivalent model of the optical device has been set

Part II: some details

Language: full C++ (since v1.0.0)

Graphical User Interface: based on Qt library

Plots: based on Qwt library

Non linear least square: C/C++ MINPACK library, for Levenberg-Marquardt algorithm

Distribution: free open source under GNU v3 license

Downloadable from

https://github.com/mmonty1960/ksemaw

Part II: the Workspace

Please note: users are asked to download the whole

Workspace

folder, containing:

- source files
- configuration files
- exemplary data files
- MS Windows executable

and

- MS launcher
- user-manual
- ORE paper with some use cases

Part II: installation

Option #1: compilation of source files

- OS: Linux, MS Windows, Mac (not tested)
- For MS Windows, preliminary installation of MinGW
- Libreries: Qt, Qwt, C/C++MINPACK
- Qt Creator (IDE): <u>load</u> ksemawc.pro and <u>compile</u>

Part II: installation

Option #1: compilation of source files

- OS: Linux, MS Windows, Mac (not tested)
- For MS Windows, preliminary installation of MinGW
- Libraries: Qt, Qwt, C/C++MINPACK
- Qt Creator (IDE): load ksemawc.pro and compile

Option #2: only in MS Windows

Click on

ksemawc_WinExecLauncher.bat

Part III: please note

Important points:

- kSEMAWc works embedded in the Workspace folder
- All data files concerning a given optical device should be named with a <u>unique code</u>, adding suitable extensions (see the manual)
- Since version 1.0.0, kSEMAWc offers 3 different approaches for evaluating the unknown complex refractive index:
- 1) Exhaustive Numerical search in λ -n space
- 2) Standard Fit method
- 3) **IbridOne** method (best-fit of R / Ψ with n modeled by oscillators, and k computed to reproduce T spectrum)

Part III: GUI and terminal

Part III: initial GUI - Valin tab

GUI organized in 6 tabs

ordered according to the workflow:

- **1) Valin**: load known *nk*-files and experimental spectra, re-sampled on 201 points (default)
- 2) Model: set the model of the optical device
- 3) Simulation: set and draw simulations
- 4) Numerical Search: search in n-k space @ λ or exhaustive solution search in λ -n space
- 5) Data Fit: standard best fit or IbridOne
- 6) Graph range: plot and GUI grahic managment

Part III: Model tab

Layered model (max 9 layers)

Type of layer:

- 1) bulk = thick = incoherent interfaces
- 2) homo. film = thin film
- 3) inhomo. film = graded-index thin film

Materials (up to 8): are set in Material#J (#1 is the unknown!)

Then, "material" has to be assigned for each layer

Part III: Simulation tab

To compare simulated with experimental

nk-unknown has to be set among:

- Constant nk
- Fit #M 1≤M≤7
- *Nk*-file #M 1≤M≤8
- Nk-DataFit from the last computation

Two different materials can be combined according to the

Effective Medium Approximation

Available actions:

- 1) Plot experimental spectra
- 2) Plot simulated spectra
- 3) Set the weights for computing mean values
- 4) Plot **mean values** versus **incidence** angle
- 5) Plot Absorptance at each layer

Part III: Simulation tab

Part III: Numerical Search

Numerical search of solution *n-k*

Available methods:

1) Search in **n-k space @** λ

Part III: Numerical Search

X ×

Simulation

Theta (°)

00.00

60.00

00.00

60.00

Numerical Search

Enable

DEL-1

Experimental measurements

Data Fit

Theta (°)

00.00

60.00

Enable

✓ Rn

R1

PSI-1

Numerical search in n-k space

Exhaustive Numerical Search in wl-n space

include relative minima

Numerical search of solution *n-k*

Available methods:

- 1) Search in **n-k space @** λ
- 2) Exhaustive numerical search in λ-n space

ksemawc

! Search in n-k space @

Exhaustive numerical search

Part III : Data Fit tab

Available actions:

- 1) Fit of *n* data
- 2) Fit of *n* and *k* data
- 3) Fit of ε_1 and ε_2 data
- 4) Fit of experimental spectra
- 5) IbridOne:

Step-1: fit $R(\lambda)$ with $n = n(\lambda, p_1, p_2, ..., p_M)$

Step-2: compute $k(\lambda)$ from $T(\lambda)$ given $n(\lambda)$

Called by Levenberg-Marquardt

Part III : Data Fit tab

Part III: Graph Range tab

Option management of

- Plots (X-Y range, Energy/Wavelength abscissa, log scale for k)
- GUI (font type and size)

How can you help?

BETA-TESTER:

- 1) Testing kSEMAWc and reporting bugs
- 2) Proposing improvements to make GUI and usage clearer
- 3) Asking for new features (of general relevance)
- 4) ...

How can you help?

BETA-TESTER:

- 1) Testing kSEMAWc and reporting bugs
- 2) Proposing improvements to make GUI and usage clearer
- 3) Asking for new features (of general relevance)
- 4) ...

Computer experts:

- Testing installation from source
- Improving the code structure
- •

Contributors

Alberto Mittiga, for his factual collaboration in improving optical constant models about electronic transitions in materials with continuous state density, in the Windows porting as well as in the drafting of the manual

Enrico Nichelatti, for the wise search for analytical solutions of the integrals on the density of the states, as well as for the transfer in LaTex of this manual

Claudia Malerba and Francesca Menchini, for their constant goad to test and improve kSEMAWc to characterize semiconductor materials

Francesco Biccari, for his useful suggestions for simplifying the software distribution

Luca Serenelli, for his support in outlining the Linux installation procedure

What's next?

Alberto Mittiga, will present an overview of the oscillators used for modeling the dielectric constant

You can ask for further webinars on specific topis, for instance

- Substrate characterization
- Dielectric thin film characterization
- Semiconductor thin film characterization
- •