ī					_		 	_	 	
ı										
1	Reg. No			11 1						
I	iteg. 110									
٥			_			 	 		 	

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Seventh Semester

18ECE306J - ARM BASED DIGITAL SIGNAL PROCESSING

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

	art - B and Part - C should be answered in e: 3 Hours	and the country	N. er		.
lim	Max.	Max. Marks: 100			
	Mar	ks BL	CO		
1.	The time domain of time scaling is expres (A) $tf(t)$	ssed as $(B) \frac{f(t)}{t}$	1	1	1
	(C) $f(at)$	(D) $sf(s) - f(0)$			
2.	What is the unit of angular frequency <i>f</i> (A) rad/sec (C) rad/sample	(B) samples/sec (D) sec/sample	1	1	1
3.	Sampling frequency should be that (A) $2~\pi f_{\scriptscriptstyle S} > ~2\Omega_m$ (C) $2~\pi f_{\scriptscriptstyle S} \leq ~2\Omega_m$	an twice of angular frequency (B) $2\ \pi f_s < 2\Omega_m$ (D) $2\ \pi f_s \cong 2\Omega_m$	1	2	1
4.	Discrete-time signals are (A) Continuous in amplitude and continuous in time (C) Discrete in amplitude and discrete in time	(B) Continuous in amplitude and discrete in time (D) Discrete in amplitude and continuous in time	1	1	1
5.	If we multiply $x[n]$ by an exponential si Z-transform of $x_2[n]$ (A) $X(a^{-1}z)$ (C) $X(z)$	gnal, a^n , to obtain $x_2[n] = a^n x[n]$. The (B) $X(az)$ (D) $X(az^{-l})$. 1	3	2
6.	Utilizing the linear transformation evaluate (A) $X(K) = \{0, 1, 4, 0\}$ (C) $X(K) = \{0, 0, 4, 0\}$	te 4-point DFT for $x(n) = \cos \pi n$ (B) $X(K) = \{1, 0, 4, 0\}$ (D) $X(K) = \{0, 0, 4, 1\}$	1	3	2
7.	The Z-transform of the exponential signal (A) $\frac{z}{z-1}$ (C) $\frac{1}{1-az}$	(B) $\frac{1}{1-az^{-1}}$ (D) $\frac{1}{1+az^{-1}}$	***	2	2
8.	For direct evaluation of DFT, the number to (A) N^2 (C) $4N$	of complex multiplication required is equal (B) $2N$ (D) N^4	1	1	2
9.	Finite Impulse Response of a filters(A) Are considered not recursive and cannot adopt feedback (C) Utilize feedback only	(B) Are considered as recursive and can adopt feedback (D) Recursive	1	1	3

10.	Raised-cosine window is also called as (A) Raised cosine window (B) Blackman window (C) Hamming window (D) Hanning window				
11.	Consider a system equation $y(n+2) =$ system is and respectively (A) Non-causal, IIR (C) Non-causal, FIR	•	1	3	3
12.	Identify the type of response of FIR filter by $h(n)$		1	2	3
	(A) Symmetric Odd (C) Asymmetric Odd	(B) Symmetric Even (D) Asymmetric Even			
13.	For an analog LTI system to be stable, when H(s) lie? (A) Right half of s-plane (C) On the imaginary axis		2	4	
14.	What is the condition on the system function	(D) At origin on of a linear phase filter? (B) $H(Z) = Z^N H(Z^{-1})$ (D) $+H(Z) = Z^{-N} H(Z^{-1})$	1	3	4
15.	The Chebyshev filters have 1) Flat pass band 2) Flat stop band 3) Equi- (A) 1 and 2 are correct (C) 2 and 3 are correct	ripple pass band 4) Tapering stop band (B) 2 and 4 are correct (D) All the four are correct	1	2	4
16.	What is the Butterworth polynomial of orde (A) $s-1$ (C) s		1	1	4
	FIR filter implements transfer function? (A) Zero (B) Uni (C) Bi (D) Multi				5
18.	is a type of gradient descent which proceed (A) Batch Gradient Descent (C) Mini Batch gradient descent	rocesses 1 training example per iteration. (B) Stochastic Gradient Descent (D) Least Mean Square	1	tend	5
19.	Which of the following is the formula of sy (A) $h(n) = h(N-1-n)$ (C) $h(n) = h(N-1+n)$	rmmetric impulse response of FIR filter? (B) $h(n) = -h(N-1-n)$ (D) $h(n) = h\left(N - \frac{1}{(n)}\right)$	1	2	5
20.	In cascade form of realization, how many filter coefficients in order to avoid the quan (A) 5 to 10 (C) 20 to 24	bits should be used to represent the FIR	1	2	5

	Marks BL		CO	
21.	Answer any 5 Questions Define signal and describe exponential and sinusoidal discrete time signal with the condition and denote the graph.	4	1	1
22.		4	ı	2
23.		4	2	3
	List out the advantages and disadvantages of digital filters	4	2	4
25.	List out the applications of adaptive filter	4	1	5
	Determine the DFT for the sequence $x(n) = \{1, 1, 0, 0\}$	4	1	2
	List out any two types of window used to design FIR filters with their window sequence and frequency response equation.	4	2	3
	PART - C ($5 \times 12 = 60 \text{ Marks}$) Answer all Questions	Mark	s BL	CO
28.	(a) Discuss the properties of Discrete Time signals (OR)	12	2	1
	(b) Describe in detail about Sampling theorem in time and frequency domain			
29.	(a) (i) Find Inverse Z-Transform using Long Division Method	12	3	2
	$H(z) = \frac{z - 0.2}{z^2 - 0.5z + 0.5}$			
	(ii) Find the circular convolution of two sequences $x(n) = 1, 2, 3, 4$ $y(n) = \{1, -1, 2, 1\}$ (OR)			
	(b) Solve 8-point DFT for the sequence $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$ using DIT-FFT algorithm.			
30.	(a) Explain the design of optimum-Equiripple Linear-phase FIR Filter. (OR)	12	3	3
	(b) Design an ideal high-pass filter with frequency response using Hamming window			
	$H_d(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le \omega \le \pi$			
	$0 \text{ for } \omega \leq \frac{\pi}{4}$			
31.	(a) Design a Chebyshev's filter with maximum half pass band attenuation of 2.5dB and 20rad/sec and stop band attenuation of 30dB at a frequency of 50rad/sec.	12	3	4
	(OR) (b) Elaborate IIR filter design by impulse invariance			
32.	(a) Explain in detail about Prediction and System Identification (OR)	12	2	5
	(b) Describe in detail about steepest descent method and Least Mean Square			

* * * * * *

2 . . .