

CALCOLO FEM DELL'ARMADIO HV2

CODICE: B.20.93.011.00

EDIZIONE: C

Pag. 1 di 3

CONTROLLO EDIZIONE

EDIZIONE	MOTIVO	DATA
-	Edizione	11-11-2015
А	Modifica formato di documento Solute	27-11-2015
В	Modifica di documento Solute. Reazioni d'incastro	10-02-2016
С	Aumento degli sforzi di fatica statica e cambio formato	02-06-2016

Eseguito da:

Nome: I. GONZÁLEZ

Firma:

Data: 02-06-2016

Verificato da:

Nome: A. BALDA

Firma:

Data: 02-06-2016

Approvato da:

Nome: A. BALDA

Firma:

Data: 02-06-2016

CALCOLO FEM DELL'ARMADIO HV2

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.011.00

EDIZIONE: C

Pag. 2 di 3

INDICE

-	— — .	_	
1		2	•
	ALLEGAII	3	,

CALCOLO FEM DELL'ARMADIO HV2

CODICE: B.20.93.011.00

EDIZIONE: C

Pag. 3 di 3

1. ALLEGATI

In allegato si presenta il calcolo FEM dell'armadio HV2.

Documento	Edizione	Data	Denominazione
Doc.SOLUTE T_ME_007_0002_IR_0002			RISTRUTTURAZIONE ROTABILI.
	С	31/05/2016	RELAZIONE DI CALCOLO FEM
			ARMADIO ELETTRICO B.20.83.011
			LOCOMOTIVA TRENITALIA

Identificazione T_ME_007_0002_IR_0002 Ed. C Pagina 1 di 82

Relazione di Calcolo

RISTRUTTURAZIONE ROTABILI

RELAZIONE DI CALCOLO FEM ARMADIO ELETTRICO B.20.83.011 LOCOMOTIVA TRENITALIA

Esp.	Data	Descrizione	Redatto	Verificato	Approvato
00	30/06/2015	Prima Emissione	R.Herrero / SOLUTE	P.Ruiz / SOLUTE	I.Rodriguez / SOLUTE
A	27/11/2016	Cambio di formato	R.Liñan / SOLUTE	P.Ruiz / SOLUTE	I.Rodriguez / SOLUTE
В	05/02/2016	Cambio de formato Reazioni d'incastro	P. Ruiz / SOLUTE	P.Ruiz / SOLUTE	I.Rodriguez / SOLUTE
С	08/06/2016	Aumento degli sforzi di fatica statica nel paragrafo 5.2	C. González / SOLUTE	P. Ruiz / SOLUTE	I. Rodríguez / SOLUTE

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

Indice

1.	GENERALITÀ	5
	1.1 Scopo	5
2.	RIFERIMENTI	6
	2.1 Norme	6
	2.2 Documenti	6
3.	SIMBOLI E UNITÀ DI MISURA	7
4.	CARATTERISTICHE DEI MATERIALI	8
5.	CASI DI CARICO PROGETTUALI E CRITERI DI ACCETTABILITÀ	9
	5.1 Carichi statici	9
	5.2 Carichi di fatica	. 10
	5.3 Analisi d'impatto	. 12
	5.4 Analisi d'invecchiamento simulato a livelli di vibrazioni aleatorie aumentate (Randome response – PSD)	
	5.5 Verifica delle giunzioni bullonate	. 15
	5.5.1 Casi di carico statici	. 15
	5.5.2 Casi di carico a fatica	. 17
	5.6 Verifica delle giunzioni saldate	. 17
	5.6.1 Casi di carico statici	. 17
	5.6.2 Casi di carico a fatica	. 18
6.	REALIZZAZIONE DEL MODELLO FEM	. 19
	6.1 Descrizione del modello FEM	. 22
	6.2 Aplicación de masas en el modelo FEM	. 25
	6.3 Applicazione delle condizioni di contorno al modello FEM	. 27
	6.4 Sistemi di coordinate nel modello FEM	. 28
7.	CASI DI CARICO ANALIZZATI	. 30
8.	ANALISI DEI RISULTATI	. 32
	8.1 Calcolo del materiale base (membrature), casi di carico statici	. 32

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

8.1.1 LC1_E-X5_POS (Rif. A Tabella 8)	33
8.1.2 LC1_E-X5_NEG (Rif. B Tabella 8)	35
8.1.3 LC1_E-Y1_POS (Rif. C Tabella 8)	36
8.1.4 LC1_E-Y1_NEG (Rif. D Tabella 8)	37
8.1.5 LC1_E-Z1_POS (Rif. E Tabella 8)	38
8.1.6 LC1_E-Z1_NEG (Rif. F Tabella 8)	39
8.2 Calcolo del materiale base (membrature), casi di carico a fatica (Rif. G, H, I, J, Ky L Tabell	a) 40
8.3 Casi di carico d'impatto	43
8.3.1 SHOCK_Y_POS (Rif. M Tabella 8)	44
8.3.2 SHOCK_Y_NEG (Rif. N Tabella 8)	46
8.3.4 SHOCK_Z_POS (Rif. O Tabella 8)	48
8.3.5 SHOCK_Z_NEG (Rif. P Tabella 8)	49
8.3.6 SHOCK_X_POS (Rif. Q Tabella 8)	50
8.3.7 SHOCK_X_NEG (Rif. R Tabella 6)	51
8.4 Prova d'invecchiamento, PSD (Rif. T Tabella 8)	52
8.5 Calcolo delle Giunzioni saldate, casi di carico statici (Rif. A, B, C, D, E, F Tabella 8)	54
8.6 Calcolo delle Giunzioni saldate, casi di carico a fatica (Rif. G, H, I, J, K, L Tabella 8)	55
8.7 Calcolo delle giunzioni bullonate, casi di carico statici (Rif. A, B, C, D, E, F Tabella 8)	58
8.8 Calcolo delle giunzioni bullonate, casi di carico a fatica (Rif. G, H, I, J, K, L Tabella 8)	63
8.9 Reazioni nell'incastro dovute ai carichi statici.	64
9. RIASSUNTO DEI RISULTATI	66
10. CONCLUSIONI	68
ANNESSO A. Verifiche qualitative.	69
A.1 Verifica delle reazioni	69
A.2 Equilibrio d'energia	69
A.3 Verifica dei modi propri di vibrazione	69
ANNESSO B. Mappa delle giunzioni saldate analizzate	70
ANNESSO C. Mappa delle giunzioni bullonate analizzate	74

1. GENERALITÀ

1.1 Scopo

Il presente documento descrive i calcoli ad elementi finiti (calcoli **FEM**) che sono stati eseguiti in conformità con i criteri esposti nei paragrafi 9.1, 9.2, 8.3 e 8.2.25 della ST di **TRENITALIA** (**TI**) n.°383601, alla **UNI EN 12663-1,** alla **UNI-EN 61373,** e alla **ERRI B12 RP60**, per dimostrare il corretto dimensionamento strutturale relativo all'applicazione di nuove Apparecchiature/Arredi su Rotabili TI già in esercizio. In particolare in questa relazione di calcolo si è esaminata la nuova applicazione del armadio elettrico **B.20.83.011** rappresentato nella Figura 1.

Figura 1 – Vista generale del modello.

2. RIFERIMENTI

I Riferimenti si suddividono in Norme e Documenti, come di seguito elencato:

2.1 Norme

In tabella 1 sono indicate le Norme a cui si e fatto riferimento per l'esecuzione delle analisi strutturali e resistenti.

Rif.	Data	Denominazione	Autore
[1]	Ottobre 2010	UNI EN 12663-1 Applicazioni Ferroviarie - Requisiti Strutturali delle Casse dei Rotabili Ferroviari-Parte 1: Locomotive e materiale rotabile per passeggeri.	UNI
[2]	Agosto 2005	UNI EN 1993-1-8 Progettazione delle Strutture di Acciaio - Progettazione dei Collegamenti	UNI
[3]	Agosto 2005	UNI EN 1993-1-9 Progettazione delle Strutture di Acciaio - Progettazione a Fatica	UNI
[4]	12/07/2002	ST n.°373753 Specifica Tecnica per Coppie di Serraggio	TI
[5]	Ottobre 2010	CEI EN 61373 Materiale rotabile – Prove d'Urto e Vibrazione.	CEI
[6]	Giugno 2001	ERRI B12 RP60 Tests to demonstrate the strength of railways vehicles.	ERRI

Tabella 1 - Norme

2.2 Documenti

In Tabella 2 sono definiti i Documenti che vengono forniti a TI, insieme ai disegni di tutti gli insiemi e particolari e specifiche necessari per l'implementazione sul Rotabile delle modifiche di cui al precedente paragrafo 1.1:

Rif.	Data	Denominazione	Autore
[1]	/	Plano n.°. B.20.83.001.00. _ Armadio HV2	CAF
[2]	/	Plano n.° B.20.83.011.00 _ Assieme di carpenteria HV2	CAF

Tabella 2 - Documenti

La suddetta documentazione deve essere conforme al par. 2.2 della ST n.º383601.

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

3. SIMBOLI E UNITÀ DI MISURA

A) Di seguito si elenca la descrizione del significato dei simboli utilizzati in questo documento:

OVonMises Tensione Von Mises calcolata con analisi ad elementi finiti;

Tensione di Von Mises calcolata tramite un'analisi ad elementi finiti, e corretta secondo il

criterio di Neuber.

Tensione minima di snervamento;

Tensione minima a rottura;

 σ_{adm} Tensione ammissibile per materiale base o saldato per carichi statici; $\Delta \sigma_{princ}$ Delta tensione principale calcolata con analisi ad elementi finiti;

Tensione principale massima ammissibile a fatica per un particolare giunto o per materiale

base;

σprinc_max Tensione principale massima di trazione del ciclo di fatica di ampiezza Δσprinc

calcolata con analisi ad elementi finiti;

σprinc_min Tensione principale minima di trazione del ciclo di fatica con ampiezza DSprinc, calcolata

tramite un'analisi ad elementi finiti

ΔσN Delta Tensione ammissibile a fatica, per un particolare giunto o per materiale base

per numero di cicli:

- N_{Acc} =2x10⁶ (Acciaio);

 $\Delta \sigma_{\text{axial}}$ Delta di tensione assiale nel corpo del bullone. $\Delta \tau$ Delta di tensione tangenziale nel corpo del bullone.

g Accelerazione di gravità;
E Modulo di elasticità normale;
G Modulo di elasticità tangenziale;

V Modulo di Poisson.

B) Come unità di misura e sistemi di riferimento, quando non specificato diversamente, s'intendono i seguenti:

Lunghezza : m
Tempo : s
Forza : N
Tensioni : N/m²
Massa : kg

4. CARATTERISTICHE DEI MATERIALI

Le diverse parti modificate della struttura del armadio elettrico, sono state realizzate in **Acciaio S35**, con lo scopo di usare, come richiesto, (Vedi il capitolo 4 della IT n.º 383601) lo stesso materiale della struttura originale. Le unioni, sia quelle bullonate che quelle chiodate, sono state realizzate in **Acciaio Inossidabile A2-70 ISO 3506**. Le principali caratteristiche dei materiali dell'armadio elettrico, sono indicate nella Tabella 3:

	MODIAL DI	TIDO DI		SPESSSORE	METALI	LO BASE	
Rif.	NORMA DI RIFERIMENTO	TIPO DI MATERIALE	Utilizzo	e [mm]	$\sigma_{0.2}$ (N/mm ²)	OR	CARATTERISTICHE
1	EN10025-	S355J2WP	Chapas	e<3 3≤e≤16	355 355	510 470	E = 210000 N/mm^2 G = 80000 N/mm^2 ν = 0,3 p=7,85x10 ⁻⁶ kg/mm ³
2	EN10210	S355J2H	Perfiles	e<3 3≤e≤16	355 355	510 470	E = 210000 N/mm^2 G = 80000 N/mm^2 ν = 0,3 p=7,85x10 ⁻⁶ kg/mm ³
3	EN ISO 3506 1	stainless steel A2- 70 ISO 3506	Tornilleria	Class 70 ≤M24	450	700	E = 210000 N/mm^2 G = 80000 N/mm^2 ν = 0,3 p=7,85x10 ⁻⁶ kg/mm ³

Tabella 3 - Caratteristiche dei materiali impiegati per la struttura dell'Armadio Elettrico.

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

5. CASI DI CARICO PROGETTUALI E CRITERI DI ACCETTABILITÀ

Considerando le varie tipologie di condizioni di carico che le norme vigenti richiedono di verificare, si elencano di seguito i criteri d'accettabilità utilizzati nei calcoli.

5.1 Carichi statici

Si considereranno i casi di carico statici indicati nella EN12663 nel paragrafo 6.5.2 per un veicolo tipo "L", anche se nel caso orizzontale l'accellerazione è aumentata fino a 5g (è il caso più sfavorevole), ovvero:

- 1) E-X5 (Tabella 13 norma UNE-EN_12663-1), ± 5g orizzontale combinato con + 1g verticale.
- 2) E-Y1 (Tabella 14 norma UNE-EN_12663-1), ± 1g trasversale combinato con + 1g verticale
- 3) E-Z1 (Tabella 15 norma UNE-EN_12663-1), $(1 \pm c)g$ verticale con c= 1.25

Si realizza una analisi statica lineare, utilizzando Abaqus Standard 6.13.4. Si analizzeranno gli stati tensionali di Von Mises della struttura dell'armadio.

I valori delle tensioni σ_c calcolate per tutti i casi di carico, devono soddisfare la condizione:

$$\sigma_{c} \leq \sigma_{adm}$$
;

Utilizzando la tensione ammissibile del materiale con la seguente formula:

$$\sigma_{adm} = (\sigma_{0,2}) / 1,15$$

Il materiale utilizzato per la modellizzazione FEM segue un comportamento lineare. Per valori superiori al limite elastico, è possibile usare la correzione di Neuber come metodo di verifica. Questa correzione si basa sulla legge di Neuber e nell'uso dei diagrammi di Ramberg-Osgood. Il criterio di utilizzazione consiste nel fatto che la zona tensionale influenzata sia minima, vicina al 10% della sezione resistente delle strutture considerate, ed inoltre i valori delle tensioni dovranno essere vicini alla tensione di snervamento.

Si permette la presenza di zone con concentrazioni di tensioni locali che superano la tensione di snervamento del materiale, queste zone con deformazioni plastiche locali dovranno essere sufficientemente piccole per non causare deformazioni permanenti rilevanti e permettere la redistribuzione delle tensioni nelle suddette zone.

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

5.2 Carichi di fatica

Si applicano alla struttura i casi di carico indicati nella EN 12663 nei paragrafi 6.6.4 e 6.6.6 per un veicolo tipo "L", ovvero:

- 1) F-Y015 (Tabella 16 norma UNE-EN_12663-1), ± 0.2g trasversale.
- **2)** F-Z015 (Tabella 17 norma UNE-EN_12663-1)), 1 ± 0.25 g verticale.
- 3) F-X015 (Tabella 18 norma UNE-EN_12663-1), \pm 0.15g orizzontale.

Gli stati tensionali della struttura dell'armadio correspondenti ai 6 casi di carico descritti si risollvono mediante un calcolo statico lineare avolto con Abaqus Standard 6.13.4.

Per la verifica a fatica dell'integrità strutturale i due criteri che devono essere soddisfatti saranno qui sotto elencati.

$$\Delta \sigma_{\text{princ}} \leq \Delta \sigma_{\text{N}};$$
 $\sigma_{\text{princ}_max} \leq \sigma_{\text{Nmax}};$

I valori delle tensioni comprese tra $\Delta \sigma_{princ}$ e $\sigma_{princ_{max}}$ devono essere calcolate con il metodo descritto nel Rif. [6], che qui di seguito viene riassunto.

- 1) Per ogni caso di carico si determina il tensore delle tensioni e la tensione principale in ogni nodo.
- 2) Con questi dati, è possibile ricavare la massima tensione principale in ogni nodo (Inviluppo dei casi di carico a fatica) e la sua direzione principale.
- 3) In ogni nodo si ottiene la proiezione dei tensori delle tensioni (per ogni caso di carica) sulle direzioni principali ottenute per ogni singolo nodo.
- 4) Da questo nuovo tensore delle tensioni proiettato, si sceglie la minore delle tensioni principali minime, che con la tensione principale massima del punto 1), determina l'intervallo delle tensioni.

In questo modo si avrà in ogni nodo un intervallo e un valore di tensione che, d'accordo con [6], non deve superare i valori limite specificati.

In ogni nodo si dovranno soddisfare le seguenti condizioni:

$$\Delta \sigma_{\text{princ}} = \sigma_{\text{max}} - \sigma_{\text{min}};$$
 $\sigma_{\text{princ}_{\text{max}}} \leq \sigma_{\text{max}};$

Nel caso dei materiali in acciaio racchiusi nella norma **UNI EN 10025-2**, i valori: $\Delta \sigma_N = 2\sigma_{Alim}$ e $\sigma_{Nmax} = \sigma_{maxlim}$, sono quelli indicati per un valore di K=0,2 nella sottostante tabella (Rif [6])

2σAlim		σmlim (N/mm)				σmaxlim (N/mm)				
	(N/1	mm)	K=	0.2	K=	0.3	K=	0.2	K=	0.3
Acciaio	370	520	370	520	370	520	370	520	370	520
Categoria Dettaglio										
160	120	160	200	300	185	267	240	360	240	347
112	112	112	182	273	168	187	218	327	218	243
100	100	100	182	250	167	167	218	300	217	217
90	90	90	182	225	150	150	218	270	195	195
80	80	80	182	200	133	133	218	240	173	173
71	71	71	178	178	118	118	214	214	153	153
50	50	50	125	125	83	83	150	150	108	108
36	36	36	90	90	60	60	108	108	78	78

Tabella 4 – Valori per $2\sigma_{Alim}$, σ_{maxlim} secondo la categoria del dettaglio presente nel rif. [6].

Il valore che si utilizza per la verifica è il limite a fatica per **2 milioni di cicli** con possibilità di sopravvivenza ≥9**7,5** %.

Si dovranno verificare separatamente il materiale base e quello saldato. Nel caso del materiale base, la categoria del dettaglio selezionabile sarà il 160 (DC160 secondo **UNI EN 1993-1-8**). Il materiale d'apporto della saldatura, seguirà le specificazioni del paragrafo 5.6.2.

5.3 Analisi d'impatto

La struttura sarà sottomessa a una sequenza d'impulsi semi-sinusoidali, ognuno di una durata D ed una ampiezza nominale di cresta A. Questi valori vengono raccolti nella norma EN61373:2010, tabella 3 per apparecchiature montate sulla locomotiva di classe A (Vedi rif. [5]).

Figura 2 – Forma d'impulso semi-sinusoidale di durata nominale D e d'ampiezza nominale A.

Category	Orientation	Peak acceleration	Nominal duration	
·		A (m/s²)	D (ms)	
1				
Class A and class B	Vertical	30	30	
Body mounted	Transverse	30	30	
	Longitudinal	50	30	
2				
Bogie mounted	All	300	18	
3				
Axle mounted	All	1 000	6	

NOTE – Some category 1 equipment intended for specific applications may require additional shock testing with peak accelerations A of 30 m/s² and duration D of 100 ms. In such cases these test levels should be requested and agreed prior to testing.

Figura 3 – Limiti di tolleranza per impulsi semi-sinusoidali.

I casi di carico si studiano tramite un calcolo dinamico lineare svolto con Abaqus Explicit 6.13.4.

L'analisi dei risultati di questi casi di carico si svolgerà seguendo gli stessi criteri impiegati nei casi di carico statici.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 12 di 82
---	--------	-----------------

5.4 Analisi d'invecchiamento simulato a livelli di vibrazioni aleatorie aumentate (Randome response – PSD).

L'obbiettivo è riprodurre tramite FEM, la prova d'invecchiamento simulato presente nella norma EN61373:2010 (Vedi rif. [4]). L'apparecchiatura si sommette a una prova di 5h per ogni asse con i livelli ASD specificati nella norma antecedente. Si raccolgono i livelli ASD e la gamma di frequenze per il funzionamento dell'apparecchiatura in servizio.

L'equivalenza con la prova delle 5h accelerata equivale a una vita utile di una carrozza di 25 anni (300giorni/anno e 10h/giorno).

La grafica sottostante mostra la distribuzione delle curve ASD.

Figura 4 - Curva - Spettro ASD in funzione della frequenza

Quando la massa é: $\leq 500kg$ $f_1 = 5Hz$ $f_2 = 150Hz$

Quando la massa é: $> 500kg \le 1250kg \qquad f_1 = \frac{1250}{masa}x2Hz \qquad f_2 = \frac{1250}{masa}x60Hz$

Quando la massa é: > 1250kg $f_1 = 2Hz$ $f_2 = 60Hz$

Il livello di ASD per ognuna delle accelerazioni della prova d'invecchiamento secondo il Rif.[5] si mostrano nella figura di seguito.

	Vertical	Transverse	Longitudinal
Funtional Test ASD Level (m/s²)²/Hz	0.0166	0.0041	0.0073
RMS value m/s ² 2 Hz to 150 Hz	0.750	0.370	0.500
Long Life Test ASD Level (m/s²)²/Hz	0.532	0.131	0.234
RMS value m/s ² 2 Hz to 150 Hz	4.25	2.09	2.83

NOTE 1 – For items with test frequencies less than 2 Hz the r.m.s. levels will be higher than those quoted above.

NOTE 2 – For items with test frequencies less than 150 Hz the r.m.s. levels will be lower than those quoted above.

NOTE 3-If frequencies above f_2 are known to exist they may be included, the amplitude being established by extending the 6 dB/octave decay line until it intersects the maximum frequency required. In such cases the r.m.s. levels will be increased.

Figura 5 - Categoria 1 - Classe A - Apparecchiature montate nella casa della carrozza - Spettro ASD.

La procedura di calcolo con gli Elementi Finiti è la successiva: si calcola con ABAQUS l'analisi modale, ed il Steady State Dynamics per determinare le funzioni trasformate nel dominio delle frequenze. L'elaborazione dei risultati si realizza con il programma FE-SAFE, applicando contemporaneamente le tre componenti. Il software calcola i ranghi delle tensioni e li compara con quelli ammissibili (curva S-N del materiale) per il dettaglio costruttivo più severo (materiale saldato).

I risultati ottenuti si rappresentano in forma di danno, verificando che kil valore ottenuto sia inferiore all'unità.

5.5 Verifica delle giunzioni bullonate.

Le unioni devono realizzarsi tramite bulloneria (bullone e dado) d'acciaio, che compiono con le esigenze della specificazione tecnica n.º 373753 (Rif. [5]).

5.5.1 Casi di carico statici

La verifica di queste giunzioni sotto l'effetto dei carichi statici si esegue leggendo le forze dal modello FEM in ogni bullone e per ogni caso di carico statico, ottenendo così uno sforzo normale e un taglio. Queste forze sono successivamente trattate secondo la norma **UNI EN 1993-1-8** (rif. [2]) per la verifica delle stesse bullonature. Le verifiche richieste sono elencate nella tabella seguente.

Modo di rottura	Formula
Resistenza a taglio	$F_{v,Rd} = \frac{0.6 \cdot f_{ub} \cdot A_s}{\gamma_M}$
Resistenza allo schiacciamento	$F_{b,Rd} = \frac{k_1 \cdot \alpha_d \cdot f_u \cdot d \cdot t}{\gamma_M}$
Resistenza assiale	$F_{t,Rd} = \frac{k_2 \cdot f_{ub} \cdot A_s}{\gamma_M}$
Resistenza allo scorrimento	$F_{s,Rd} = \frac{k_s \cdot n \cdot \mu \cdot (F_{p,c} - 0.8F_{t,Ed})}{\gamma_{M3}}$
Resistenza a taglio per "Punching"	$B_{p,Rd} = 0.6 \cdot \pi \cdot d_m t_p f_u / \gamma_M$
Combinato, assiale e taglio	$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4F_{t,Rd}} \le 1.0$

Tabella 5 – Modi di rottura secondo l'Eurocodice

Dove,

 f_{ub} = Tensione ultima del bullone

 f_u = Tensione ultima delle membrature collegate

$$k_1 = \min\left\{2.8 \frac{e}{d_0} - 1.7 \mid 2.5\right\}$$

$$\alpha_d = \min \left\langle \frac{e}{3d_0} \left| \frac{f_{ub}}{f_u} \right| 1 \right\rangle$$

 $k_2 = 0.9$

 $A_s = Area stress$

d = Diametro nominale

d₀ = Diametro del foro

d_m = Diametro di pressione

t = Spessore della membratura

e = Distanza dal bordo

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 15 di 82
---	--------	-----------------

 $\gamma_m = 1.25$ fattore di sicurezza del materiale

La giunzione deve resistere per attrito allo stato limite ultimo, di conseguenza è di categoria **C** secondo la Tabella **3.2** della **UNI EN 1993-1-8** (Rif. [2]).

Le forze assiali e di taglio presenti nei bulloni saranno comparate con i valori limite dati dai diversi modi di rottura presentati nella Tabella 4, ottenendo così il fattore di riserva inverso (IRF inverse reserve factor) che si espressa così:

$$IRF = \frac{F_{aplicada}}{F_{limite}} < 1$$

Quattro IRF sono definiti per ogni bullone raggruppando i modi di rottura in queste quattro categorie.

IRF _{taglio}	$IRF_{taglio} = max \left\langle \frac{F_{taglio}}{F_{v,Rd}} \middle \frac{F_{taglio}}{F_{b,Rd}} \right\rangle$
IRF _{assiale}	$IRF_{assiale} = max \left \frac{F_{assiale}}{F_{t,Rd}} \right \frac{F_{assiale}}{B_{p,Rd}} \right $
IRF _{scorrimento}	$IRF_{scorrimento} = \frac{F_{scorrimento}}{F_{s,Rd}}$
IRF _{combinata}	$IRF_{combinata} = \frac{F_{taglio}}{F_{v,Rd}} + \frac{F_{assiale}}{1.4F_{t,Rd}}$

Tabella 6 – Definizioni IRF.

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

5.5.2 Casi di carico a fatica

Oltre ai casi di carico statici, le giunzioni devono essere analizzate a fatica. Per valutare la tensione a fatica si dovrà verificare la condizione:

$$\Delta \sigma_{\text{princ}} \leq \Delta \sigma_{\text{N}}$$

Dove i valori di $\Delta \sigma_N$ si ottengono dalla Tabella 4 per (K=0,2, DC100 per il taglio e DC50 per lo sforzo assiale secondo Rif [2], tabella 8.1). Si ottengono di conseguenza i seguenti indici:

$$I_{bullone\; assiale} = rac{\Delta \sigma_{assiale}}{f_{50}} \qquad I_{bullone\; taglio} = rac{\Delta \sigma_{taglio}}{f_{100}}$$

5.6 Verifica delle giunzioni saldate

5.6.1 Casi di carico statici

Per realizzare la verifica delle giunzioni saldate soggette a casi di carico statici, in base all'Eurocodice si devono compiere due requisiti:

$$\left[\sigma_{\perp}^{2}+3\left(\tau_{\perp}^{2}+\tau_{\parallel}^{2}\right)\right]^{0.5} \leq f_{\mathrm{u}}/\left(\beta_{\mathrm{w}}\,\gamma_{\mathrm{M2}}\right) \quad e^{\sigma_{\perp}} \leq f_{\mathrm{u}}/\gamma_{\mathrm{M2}}$$

Dove:

 f_u è la tensione ultima nominale della membratura più debole della giunzione.

σ⊥ è la tensione normale perpendicolare alla sezione di gola

τι è la tensione tangenizale (al piano della sezione di gola) perpendicolare all'asse del cordone di saldatura

τ∥ è la tensione tangenizale (al piano della sezione di gola) parallela all'asse del cordone di saldatura

β_w è il fattore appropriato di correzione preso dalla tabella 4.1 rif [5].

I valori delle tensioni si ottengono con il seguente procedimento:

- 1) Si analizzano i valori dei carichi (forze e momenti) che passano per la saldatura, che viene rappresentata nel modello FEM da nodi comuni alle due membrature della giunzione. I carichi si determinano nel centro geometrico della giunzione saldata.
- 2) Si distribuiscono elasticamente gli sforzi del centro geometrico tra tutte le sezioni dei cordoni di saldatura proiettati sul piano che contiene la giunzione.
- 3) Si determinano le tensioni nei punti estremi, e si riportano al piano originale, concordando con le indicazioni del Rif. [3]
- 4) Si verificano le relazioni indicate precedentemente.

Questo procedimento è stato svolto per ottenere le tensioni delle nove unioni saldate più sollecitate (vedi annesso B) negli stati tensionali corrispondenti. Per questo nove gruppi di unioni saldate si sono svolte le verifiche precedentemente descritte. Una volta che queste nove unioni abbiano superato i requisiti di verifica, si può giustificare che le restanti unioni saldate meno sollecitate, siano verificate con gli stessi requisiti di resistenza.

Codice Identificazione: T ME 007 0002 IR 0001	Fen C	Pagina 17 di 82

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

5.6.2 Casi di carico a fatica

Per la verifica della saldatura a fatica, si deve implementare lo stesso procedimento descritto nel paragrafo 5.2. Per le giunzioni saldate la categoria del dettaglio che si deve utilizzare sarà la: 36 (DC36 secondo Rif. [2]).

I risultati delle giunzioni saldate per il caso d'invecchiamento simulato (Random response – PSD) si analizzeranno con il criterio del Danno accumulato (regola di Palgrem-Miner) partendo dai risultati ottenuti nelle tre prove simulate, e considerando la stessa curva tensioni-cicli: DC36.

6. REALIZZAZIONE DEL MODELLO FEM

Il modello ad elementi finiti si è sviluppato partendo dalla geometria 3D del armadio elettrico **B.20.83.011**. Il codice usato per la realizzazione del modello numerico è calcolo FEM è **Hypermesh 13** e quello impiegato per i calcoli FEM è stato **ABAQUS 6.13-4**.

Il modello risultante presenta i seguenti tipi e quantità d'elementi finiti e nodi:

Elemento/Nodo	Numero	
Quadr.	417546	
Triang.	1049	
Tetra.	25643	
Nodi	482717	

Nella Figura 7 e nella Figura 8 si rappresentano due viste significative (una della parte esterna ed un'altra della parte interna) del modello FEM, nelle quali si può apprezzare visualmente la forma, le dimensioni e la distribuzione degli elementi della mesh. I requisiti di qualità della mesh si indicano nelle immagini estratte dal calcolo FEM e rappresentate nella **Figura** 6, d'accordo con i criteri d'accettazione indicato nel paragrafo **6.2** della ET n.° **383601**).

Figura 6 – In rosso, si segnalano gli elementi del modello FEM che sono fuori dai criteri di qualità della mesh.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 19 di 82
---	--------	-----------------

Figura 7 – Vista globale del modello FEM.

Figura 8 - Vista dettagliata dell'interno del modello FEM.

6.1 Descrizione del modello FEM

Il modello FEM rappresenta la struttura completa dell'armadio elettrico **B.20.83.011**. La mesh si compone per la maggior parte di elementi SHELL S4, utilizzando in alcune zone gli elementi SHELL S3 per realizzare le transizioni della mesh. Per la mesh del supporto che sustenta la massa B-20-83-001-01 si sono utilizzati elementi solidi tetraedrici di secondo ordine C3D10. La dimensione media dell'elemento è di 7 mm. Nelle figure successive si può vedere la mesh del modello **FEM**.

Figura 9 - Vista della mesh del modello FEM completo.

LOCOMOTORA TRENITALIA

Figura 10 - Vista della mesh del modello FEM completo.

Le giunzioni saldate tra i profili e quelle tra membrature e profili sono state rappresentate tramite una serie di nodi in comune e unificando le diverse proprietà.

Rispetto alle giunzione chiodate e bullonate, si rappresentano nella modellizzazione **FEM**, tramite un **elemento lineare (beam)** che simula il corpo dell'elemento d'unione, nel caso dei rivetti o nel caso dell'unione bullonata i suoi nodi estremi si fissano alle due parti della mesh tramite una **zona rigida** (**kinematic**). La figura di seguito mostra un esempio di quest'ultima modellizzazione.

Figura 11 – Vista in dettaglio dell'esempio di modellizzazione di una giunzione bullonata.

6.2 Aplicación de masas en el modelo FEM

La massa totale dell'armadio elettrico **B.20.83.011** è:

Armadio	Massa (kg)
B.20.83.011	751.4

Nella ¡Error! No se encuentra el origen de la referencia. si indicano i valori caratteristici delle principali masse dell'armadio elettrico.

Elemento	Nome	Massa (kg)
5000	MASS_B-20-76-102-01	0.9
5001	MASS_B-20-76-102-01	0.9
5002	MASS_B-20-76-121-01	80
5003	MASS_B-20-76-161-C1	0.4
5004	MASS_B-20-76-161-C1	0.4
5005	MASS_B-20-76-221-01	15
5006	MASS_B-20-76-241-01	13
5007	MASS_B-20-83-001-01	28
5008	MASS_B-20-85-104-01	11
5009	MASS_B-20-85-104-01	11
5010	MASS_B-20-88-208-01	1.8
5011	MASS_B-20-88-208-01	1.8
5012	MASS_B-20-88-210-01	0.85
5013	MASS_B-20-88-210-01	0.85
5014	MASS_B-20-83-001-90	4

Tabella 7 – Caratteristiche delle masse dell'armadio elettrico.

Figura 12 – Disposizione delle masse nell'armadio elettrico.

Figura 13 – Nomenclatura delle masse dell'armadio elettrico.

6.3 Applicazione delle condizioni di contorno al modello FEM

Le condizioni di contorno o di vincolo del modello FEM, si applicano nella parte inferiore delle 6 aste filettate che vanno dalla parte superiore (sostenute con un dado autobloccante) fino alla parte inferiore (bullonate al supporto inferiore).

Nella figura di seguito se può vedere in dettaglio l'applicazione di questa restrizione.

Figura 14 – Dettaglio dei vincoli applicati alla parte inferiore delle travi verticali.

6.4 Sistemi di coordinate nel modello FEM

Il sistema di coordinate locali del modello FEM, continua ad essere definito dal file CAD dal quale è stato generato e si trova definito in uno degli angoli inferiori dell'armadio, proprio come si mostra nella figura di seguito.

Figura 15 – Sistema di riferimento applicato.

Dato che gli assi globali della locomotiva (assi con i quali si sono definiti i casi di carico) differiscono dagli assi locali (assi con i quali si è definito il modello FEM), la equivalenza tra i due sistema di riferimento deve essere considerata. A continuazione si mostra lo schema della definizione degli assi locali e globali.

Figura 16 – Disposizione degli globali del modello FEM

Gli assi di conseguenza risultano definiti come segue:

- X corrisponde all'asse longitudinale (verso positivo nel senso di marcia della locomotiva).
- Z corrisponde all'asse verticale (verso positivo verso l'alto).
- Y corrisponde all'asse trasversale.

7. CASI DI CARICO ANALIZZATI

D'accordo con la descrizione del capitolo 5 di questo documento, le condizioni di carico che devono essere verificate sono riassunte nella Tabella 8.

Tipo di carico	Rif.	Condizioni di carico	Norma/ST di riferimento
	A	LC1_E-X5_POS accelerazione applicata in direzione longitudinale di valore 5g + accelerazione della gravità.	UNI-EN-12663-1, Tabella 13
	В	LC1_E-X5_NEG accelerazione applicata in direzione longitudinale di valore -5g + accelerazione della gravità.	UNI-EN-12663-1, Tabella 13
	С	LC2_E-Y1_POS accelerazione applicata in direzione trasversale di valore 1g + accelerazione della gravità.	UNI-EN-12663-1, Tabella 14
Statici	D	LC2_E-Y1_ accelerazione applicata in direzione trasversale di valore -1g + accelerazione della gravità.	UNI-EN-12663-1, Tabella 14
	E	LC3_E-Z1_POS accelerazione applicata in direzione verticale di valore -2.25g	UNI-EN-12663-1, Tabella 15
	F	LC3_E-Z1_NEG accelerazione applicata in direzione verticale di valore 0.25g	UNI-EN-12663-1, Tabella 15
	G	LC4_F-Y015_POS accelerazione applicata in direzione trasversale di valore 0.2g	UNI-EN-12663-1, Tabella 16
Fatica	Н	LC4_F-Y015_NEG accelerazione applicata in direzione trasversale di valore -0.2g	UNI-EN-12663-1, Tabella 16
	I	LC5_F-Z015_POS accelerazione applicata in direzione longitudinale di valore 1.25g	UNI-EN-12663-1, Tabella 17
Fauca	J	LC5_F-Z015_NEG accelerazione applicata in direzione longitudinale di valore 0.75g	UNI-EN-12663-1, Tabella 17
	K	LC6_F-X015_POS accelerazione applicata in direzione longitudinale di valore 0.15g	UNI-EN-12663-1, Tabella 18
	L	LC6_F-X015_NEG accelerazione applicata in direzione longitudinale di valore -0.15g	UNI-EN-12663-1, Tabella 18
	М	SHOCK_X_POS impulso semisinusoidale di 30 millisecondi di valore 50g	UNI-EN-61373:2101, Figura 7
	N	SHOCK_X_NEG impulso semisinusoidale di 30 millisecondi di valore -50g	UNI-EN-61373:2101, Figura 7
	О	SHOCK_Y_POS impulso semisinusoidale di 30 millisecondi di valore 30g	UNI-EN-61373:2101, Figura 7
Impatto	Р	SHOCK_Y_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	UNI-EN-61373:2101, Figura 7
	Q	SHOCK_Z_POS impulso semisinusoidale di 30 millisecondi di valore 30g	UNI-EN-61373:2101, Figura 7
	R	SHOCK_Z_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	UNI-EN-61373:2101, Figura 7
Prova d'invecchiamento	S	PSD . Durata della prova 5h. Tre curve con i livelli di ASD . Vedi 9 e Figura 17	UNI-EN-61373:2101, Figura 2

Tabella 8 – Condizioni di carico

Seguendo le indicazionib del paragrafo 5.4 di questo documento, per una massa m = 751.4 kg e seguendo i criteri esplicitati nelle figure 4 e 5, si ottengono le tre curve PSD che simostrano di seguito.

	ASD (m/s²)²/Hz		
Frequenza (Hz)	Verticale	Trasversale	Longitudinale
3.33	0.1574	0.03876	0.06923
5	0.532	0.131	0.234
20	0.532	0.131	0.234
99.81	0.0216	0.00532	0.0095

Tabella 9 – Livelli ASD per frequenza.

Figura 17 - Curve PSD.

8. ANALISI DEI RISULTATI

In questo capitolo, si mostrano i risultati ottenuti in ognuna delle analisi dei casi di carico esposti nella Tabella 8.

8.1 Calcolo del materiale base (membrature), casi di carico statici.

Le seguenti figure mostrano l'analisi tensionale di Von Mises del modello **FEM** pero ogni caso di carico indicato nella Tabella 8. In concreto, per rappresentare le tensioni, si utilizzano varie immagini tanto generali (viste del modello completo senza mesh) come dettagliate (viste di ampliazioni locali del modello con rispettiva mesh) delle zone più affettate.

In forma di riassunto, alla fine di ogni caso di carico si mostra una tabella riassuntiva con i punti maggiormente critici calcolati come segue: $\eta_1 = \sigma_{adm}/\sigma_{vm}$.

Infine, si ricorda che le deformazioni verranno espresse in m, mentre le tensioni in Pa.

Rif.	Tipo de carico	Condizioni di Carico	Coefficiente di sicurezza
	Carico		η1
A		LC1_E-X5_POS accelerazione applicata in direzione longitudinale di valore 5g + accelerazione della gravità.	1.71
В		LC1_E-X5_NEG accelerazione applicata in direzione longitudinale di valore -5g + accelerazione della gravità.	1.51
С	Estática	LC2_E-Y1_POS accelerazione applicata in direzione trasversale di valore 1g + accelerazione della gravità.	>2
D	Estauca	LC2_E-Y1_ accelerazione applicata in direzione trasversale di valore -1g + accelerazione della gravità.	>2
E		LC3_E-Z1_POS accelerazione applicata in direzione verticale di valore -2.25g	>2
F		LC3_E-Z1_NEG accelerazione applicata in direzione verticale di valore 0.25g	>2

Tabella 10 - Coefficienti di sicurezza per i casi di carico statici.

8.1.1 LC1_E-X5_POS (Rif. A Tabella 8)

Figura 18 – Caso di carico LC1_E-X5_POS_Tensione di Von Mises. Vista generale.

Figura 19 – Caso di carico LC1_E-X5_POS_Tensioni di Von Mises. Vista in dettaglio.

8.1.2 LC1_E-X5_NEG (Rif. B Tabella 8)

Figura 20 – Caso di carico LC1_E-X5_NEG_Tensione di Von Mises. Vista generale.

Figura 21 – Caso di carico LC1_E-X5_NEG_Tensione di Von Mises. Vista in dettaglio.

8.1.3 LC1_E-Y1_POS (Rif. C Tabella 8)

Figura 22 – Caso di carico LC1_E-Y1_POS_Tensione di Von Mises. Vista generale.

8.1.4 LC1_E-Y1_NEG (Rif. D Tabella 8)

Figura 23 – Caso di carico LC1_E-Y1_NEG_Tensione di Von Mises. Vista generale.

8.1.5 LC1_E-Z1_POS (Rif. E Tabella 8)

Figura 24 – Caso di carico LC1_E-Z1_POS_Tensione di Von Mises. Vista generale.

8.1.6 LC1_E-Z1_NEG (Rif. F Tabella 8)

Figura 25 – Caso di carico LC1_E-Z1_NEG_Tensione di Von Mises. Vista generale.

8.2 Calcolo del materiale base (membrature), casi di carico a fatica (Rif. G,H,I,J,Ky LTabella)

Seguendo le indicazioni del paragrafo 5.2, le due condizioni di verifica per le membrature (materiale base) a fatica sono le seguenti:

$$\Delta \sigma_{princ} \le \Delta \sigma_{N}$$
 $\sigma_{princ_max} \le \sigma_{N max}$

La categoria scelta per il materiale base è DC160.

Le figure di seguito mostrano le immagini delle tensioni principali massime ed il loro rango corrispondente, visualizzando sempre in ogni nodo l'inviluppo dei 6 casi di carico a fatica (Rif. G, H, I, J, K e L Tabella 8), considerando il valore più sfavorevole di ogni caso di carico.

Infine, si mostrano in una tabella riassuntiva i coefficienti di sicurezza più critici calcolati come segue:

$$\eta_{2mb} = \frac{\Delta \sigma_N}{\Delta \sigma_{princ}} e \eta_{3mb} = \frac{\sigma_{N \max}}{\sigma_{princ_\max}}$$

Le tensioni vengono espresse in Pa.

Figura 26 – Inviluppo dei casi di carico a fatica, materiale base, massima tensione principale $\sigma_{princ max}$.

Codice Identificazione: T ME 007 0002 IR 0001	Esp. C	Pagina 40 di 82

Figura 27 – Inviluppo dei casi di carico a fatica, materiale base, minima tensione principale σ_{princ_min} .

Figura 28 – Inviluppo dei casi di carico a fatica, massimo incremento tensionale $\Delta\sigma_{princ}$. Vista in dettaglio.

Tipo di	Coefficier di sicurez		
carico	co Rif.		η _{3mb}
Fatica	G, H, I, J, K, L	1.11	1.35

Tabella 11 – Coefficienti di sicurezza per i casi di carico a fatica.

8.3 Casi di carico d'impatto

A continuazione si mostrano i risultati per i casi di carico d'impatto descritti nella Tabella 8. Le immagini sottostanti mostrano lo stato tensionale di Von Mises per ogni caso di carico, visualizzando in ogni nodo l'inviluppo delle tensioni considerando ogni istante di tempo durante il quale si sviluppa lo shock (60ms). Le tensioni vengono espresse in N/m^2 .

Per riassumere, a continuazione si mostrano in una tabella i margini di sicurezza critici per ogni caso di carico calcolati come segue: $\eta_1 = \sigma_{adm}/\sigma_{vm}$

Rif.	Tipo di carico	Condizione di carico	Coefficienti di sicurezza η ₁
M		SHOCK_X_POS impulso semisinusoidale di 30 millisecondi di valore 50g	>2
N		SHOCK_X_NEG impulso semisinusoidale di 30 millisecondi di valore -50g	>2
О	T	SHOCK_Y_POS impulso semisinusoidale di 30 millisecondi di valore 30g	>2
P	Impatto	SHOCK_Y_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	>2
Q		SHOCK_Z_POS impulso semisinusoidale di 30 millisecondi di valore 30g	>2
R		SHOCK_Z_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	>2

Tabella 12 – Coefficienti di sicurezza per i casi di carico d'impatto.

8.3.1 SHOCK_Y_POS (Rif. M Tabella 8)

Figura 29 – Caso di carico SHOCK_Y_POS, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

Figura 30 – Caso di carico SHOCK_Y_POS, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista in dettaglio.

8.3.2 SHOCK_Y_NEG (Rif. N Tabella 8)

Figura 31 - Caso di carico SHOCK_Y_NEG, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

Figura 32 – Caso di carico SHOCK_Y_NEG, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista in dettaglio.

Relazione di Calcolo ARMADIO ELECTRICO B.20.83.011,

LOCOMOTORA TRENITALIA

8.3.4 SHOCK_Z_POS (Rif. O Tabella 8)

Figura 33 – Caso di carico SHOCK_Z_POS, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

8.3.5 SHOCK_Z_NEG (Rif. P Tabella 8)

Figura 34 – Caso di carico SHOCK_Z_NEG, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

8.3.6 SHOCK_X_POS (Rif. Q Tabella 8)

Figura 35 – Caso di carico SHOCK_X_POS, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

8.3.7 SHOCK_X_NEG (Rif. R Tabella 6)

Figura 36 – Caso di carico SHOCK_X_NEG, Tensione di Von Mises. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

8.4 Prova d'invecchiamento, PSD (Rif. T Tabella 8)

Si sono effettuate tramite il programma FE-SAFE le analisi a posteriori dell'analisi d'invecchiamento simulato (seguendo la norma EN61373:2010 e la descrizione del paragrafo 5.4) dell'armadio elettrico. Per effettuare la simulazione di questa prova, c'è bisogno delle curve PSD per ognuna delle 3 direzioni, come viene specificato nella Tabella 9 e nella Figura 17. I risultati ottenuti dalla prova d'invecchiamento si esprimono sotto forma di danno. A continuazione si mostrano una serie di immagini con l'inviluppo del LogNf (LogNf=1/D). I danni ottenuti a partire dalla prova si mostrano in una tabella riassuntiva con i valori massimi ottenuti.

Figura 37 – Prova d'invecchiamento simulato, grafico del LogNf. Vista generale.

Figura 38 – Prova d'invecchiamento simulato, grafico del LogNf. Vista in dettaglio.

Ref.	Tipo di carico	Condizione di carico		Danno
				D
6	Prova	PSD. Durata della prova 5h. Tre curve con i livelli di ASD. Vedi	1.02	0.1
S	d'invecchiamento	figura e tabella.	1.02	0.1

Tabella 13 – LogNf e danno per la prova d'invecchiamento.

8.5 Calcolo delle Giunzioni saldate, casi di carico statici (Rif. A, B, C, D, E, F Tabella 8)

Come descritto nel paragrafo 5.6.1, si analizzano le dieci saldature più sollecitate, con il criterio della massima tensione di Von Mises ottenuta nel materiale base circostante.

A continuazione si mostra una tabella con i valori minimi del margine di sicurezza per ognuna delle giunzioni saldate. Le localizzazioni delle saldature si dettagliano nell'Annesso B.

Saldatura	Caso di carico	Localizzazione	Risultati del calcolo nella condizione estrema		
			MoS _{WELD,1}	MoS _{WELD,2}	
W1_1-2	Extrema_LCE-5X_POS	D	>10	>10	
W2_1-2	Extrema_LCE-5X_NEG	F/A	>10	>10	
W3_1-2	Extrema_LCE-5X_NEG	E/D	9.79	>10	
W4_1-2	Extrema_LCE-5X_POS	D	4.26	7.53	
W5_1-2	Extrema_LCE-1Y_NEG	D	7.49	>10	
W6_1-2-3	Extrema_LCE-1Y_NEG	В	>10	>10	
W7_1-2-3	Extrema_LCE-5X_POS	В	>10	>10	
W8_1-2-3	Extrema_LCE-5X_NEG	В	7.77	>10	
W9_1-2-3	Extrema_LCE-5X_POS	С	>10	>10	
W10_1-2	Extrema_LCE-5X_NEG	C/A	6.76	>10	
W11_1-2	Extrema_LCE-5X_NEG	D	>10	>10	
W12_1-2	Extrema_LCE-5X_POS	C/A	>10	>10	
W13_1-2	Extrema_LCE-5X_POS	F	2.86	5.42	

Tabella 14 – Margine di sicurezza per i casi di carico statici delle unioni saldate analizzate.

8.6 Calcolo delle Giunzioni saldate, casi di carico a fatica (Rif. G, H, I, J, K, L Tabella 8)

Seguendo le indicazioni del paragrafo 5.2, le due condizioni di verifica per le membrature (materiale base) a fatica sono le seguenti:

$$\begin{split} \Delta \sigma_{\text{princ}} & \leq \Delta \sigma_{\text{N}}; \\ \sigma_{\text{princ_max}} & \leq \sigma_{\text{Nmax}}; \end{split}$$

In questo caso, per la verifica delle saldature, la categoria del dettaglio secondo l'Eurocodice è la DC36. Le figure di seguito mostrano le immagini delle tensioni principali massime ed il loro rango corrispondente, visualizzando sempre in ogni nodo l'inviluppo dei 6 casi di carico a fatica.

Infine, si mostrano in una tabella riassuntiva i coefficienti di sicurezza più critici calcolati come segue:

$$\eta_{2sold} = \frac{\Delta \sigma_{N}}{\Delta \sigma_{princ}} \int_{e} \eta_{3sold} = \frac{\sigma_{N \max}}{\sigma_{princ_\max}}$$

Le tensioni vengono espresse in Pa.

Figura 39 – Inviluppo dei casi di carico a fatica, σ_{princ_max} nelle unioni saldate. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 55 di 82
---	--------	-----------------

Relazione di Calcolo

 $\begin{array}{c} \textbf{ARMADIO ELECTRICO} \ B.20.83.011, \\ \textbf{LOCOMOTORA TRENITALIA} \end{array}$

Figura 40 – Inviluppo dei casi di carico a fatica, σ_{princ_min} nelle unioni saldate. Inviluppo di tutti gli istanti di tempo della risposta. Vista generale.

ARMADIO ELECTRICO B.20.83.01 LOCOMOTORA TRENITALIA

Figura 41 – Inviluppo dei casi di carico a fatica, $\Delta \sigma$ nelle unioni saldate. Inviluppo di tutti gli istanti di tempo della risposta. Dettaglio 1

Figura 42 – Inviluppo dei casi di carico a fatica, $\Delta \sigma$ nelle unioni saldate. Inviluppo di tutti gli istanti di tempo della risposta. Dettaglio 2.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 57 di 82
---	--------	-----------------

Figura 43 – Inviluppo dei casi di carico a fatica, $\Delta \sigma$ nelle unioni saldate. Inviluppo di tutti gli istanti di tempo della risposta. Dettaglio 3.

Tipo di carico	Rif.	Coefficienti di sicurezza		
Carico	Kii.		η _{3sold}	
Fatica	G, H, I, J, K, L	1.08	1.16	

Tabella 15 – Coefficienti di sicurezza per i casi di carico a fatica.

8.7 Calcolo delle giunzioni bullonate, casi di carico statici (Rif. A, B, C, D, E, F Tabella 8)

A continuazione si presentano le tabelle con i valori dei fattori di riserva inversi (IRF inverse reserve factor) per i diversi gruppi di bulloni (vedi annesso C) e per i 6 casi di carico statici presenti nella tabella 6.. Come precedentemente descritto nel paragrafo 5.5, quattro sono i fattori inversi calcolati che inglobano le verifiche a schiacciamento, trazione, scorrimento, "punching" e per l'azione combinata di taglio e trazione.

Codice Identificazione: T ME 007 0002 IR 0001	Esp. C	Pagina 58 di 82

Unione bullonata	Caso di carica	IRF_{slip}	IRF _{axial}	IRF _{shear}	IRF axial
	E_X5_POS	0.08	0.97	0.06	0.75
1	E_X5_NEG	0.07	0.97	0.05	0.75
	E_Y1_POS	0.03	0.97	0.02	0.72
	E_Y1_NEG	0.04	0.97	0.03	0.72
	E_Z1_POS	0.08	0.97	0.06	0.75
	E_Z1_NEG	0.01	0.97	0.01	0.70
	MAX	0.08	0.97	0.06	0.75
	E_X5_POS	0.03	0.97	0.02	0.71
	E_X5_NEG	0.04	0.97	0.02	0.72
	E_Y1_POS	0.01	0.97	0.01	0.70
2	E_Y1_NEG	0.01	0.97	0.01	0.70
	E_Z1_POS	0.02	0.97	0.01	0.71
	E_Z1_NEG	0.00	0.97	0.00	0.70
	MAX	0.04	0.97	0.02	0.72
	E_X5_POS	0.06	0.97	0.04	0.74
	E_X5_NEG	0.05	0.97	0.04	0.73
	E_Y1_POS	0.02	0.97	0.02	0.71
3	E_Y1_NEG	0.01	0.97	0.01	0.70
	E_Z1_POS	0.01	0.97	0.01	0.70
	E_Z1_NEG	0.00	0.97	0.00	0.70
	MAX	0.06	0.97	0.04	0.74
	E_X5_POS	0.20	0.97	0.14	0.83
	E_X5_NEG	0.18	0.97	0.12	0.82
	E_Y1_POS	0.09	0.97	0.06	0.76
4	E_Y1_NEG	0.08	0.97	0.06	0.75
	E_Z1_POS	0.03	0.97	0.02	0.71
	E_Z1_NEG	0.00	0.97	0.00	0.70
	MAX	0.20	0.97	0.14	0.83
	E_X5_POS	0.14	0.98	0.10	0.80
	E_X5_NEG	0.12	0.98	0.08	0.78
	E_Y1_POS	0.04	0.98	0.03	0.72
5	E_Y1_NEG	0.03	0.97	0.02	0.72
	E_Z1_POS	0.05	0.98	0.04	0.73
	E_Z1_NEG	0.01	0.97	0.00	0.70
	MAX	0.14	0.98	0.10	0.80
bella 16 – Fatto	ori inversi di rise	wa nelle giur	zioni bullon		1

Tabella 16 – Fattori inversi di riserva nelle giunzioni bullonate, per i casi di carico statici.

Pagina 59 di 82

Unione bullonata	Caso di carica	IRF_{slip}	IRF _{axial}	IRF _{shear}	IRF axial
	E_X5_POS	0.05	0.98	0.04	0.73
	E_X5_NEG	0.05	0.98	0.04	0.73
6	E_Y1_POS	0.06	0.98	0.04	0.74
	E_Y1_NEG	0.06	0.98	0.04	0.74
	E_Z1_POS	0.02	0.97	0.01	0.71
	E_Z1_NEG	0.00	0.97	0.00	0.70
	MAX	0.06	0.98	0.04	0.74
	E_X5_POS	0.35	0.97	0.25	0.94
	E_X5_NEG	0.30	0.97	0.21	0.90
	E_Y1_POS	0.12	0.97	0.09	0.78
7	E_Y1_NEG	0.07	0.97	0.05	0.74
	E_Z1_POS	0.06	0.97	0.04	0.74
	E_Z1_NEG	0.01	0.97	0.00	0.70
	MAX	0.35	0.97	0.25	0.94
	E_X5_POS	0.32	0.98	0.22	0.92
	E_X5_NEG	0.25	0.98	0.18	0.87
	E_Y1_POS	0.24	0.97	0.17	0.86
8	E_Y1_NEG	0.21	0.97	0.15	0.84
	E_Z1_POS	0.07	0.97	0.05	0.75
	E_Z1_NEG	0.01	0.97	0.01	0.70
	MAX	0.32	0.98	0.22	0.92
	E_X5_POS	0.13	0.98	0.09	0.79
	E_X5_NEG	0.13	0.98	0.09	0.79
	E_Y1_POS	0.08	0.98	0.05	0.75
9	E_Y1_NEG	0.09	0.98	0.06	0.76
	E_Z1_POS	0.10	0.98	0.07	0.76
	E_Z1_NEG	0.01	0.97	0.01	0.70
	MAX	0.13	0.98	0.09	0.79
10	E_X5_POS	0.07	0.98	0.05	0.75
	E_X5_NEG	0.07	0.97	0.05	0.74
	E_Y1_POS	0.03	0.97	0.02	0.71
	E_Y1_NEG	0.01	0.97	0.01	0.70
	E_Z1_POS	0.04	0.97	0.03	0.72
	E_Z1_NEG	0.00	0.97	0.00	0.70
	MAX	0.07	0.98	0.05	0.75

Tabella 17 – Fattori inversi di riserva nelle giunzioni bullonate, per i casi di carico statici.

E_X5_POS	Unione bullonata	Caso di carica	IRF_{slip}	IRF _{axial}	IRF _{shear}	IRF axial
E_Y1_POS		E_X5_POS	0.08	0.97	0.05	
11		E_X5_NEG	0.08	0.97	0.06	0.75
E_Z1_POS		E_Y1_POS	0.02	0.97	0.02	0.71
E_Z1_NEG	11	E_Y1_NEG	0.02	0.97	0.01	0.71
MAX		E_Z1_POS	0.01	0.97	0.01	0.70
E_X5_POS		E_Z1_NEG	0.00	0.97	0.00	0.70
E_X5_NEG		MAX	0.08	0.97	0.06	0.75
E_Y1_POS		E_X5_POS	0.08	0.97	0.05	0.75
E_Y1_NEG		E_X5_NEG	0.08	0.97	0.06	0.75
E_Z1_POS		E_Y1_POS	0.02	0.97	0.02	0.71
E_Z1_NEG	12	E_Y1_NEG	0.02	0.97	0.01	0.71
MAX 0.08 0.97 0.06 0.75 E_X5_POS 0.09 0.97 0.06 0.76 E_X5_NEG 0.06 0.97 0.04 0.73 E_Y1_POS 0.05 0.97 0.04 0.73 E_Y1_NEG 0.05 0.97 0.04 0.73 E_Z1_POS 0.05 0.97 0.04 0.73 E_Z1_NEG 0.01 0.97 0.00 0.70 MAX 0.09 0.97 0.06 0.76 MAX 0.09 0.97 0.00 0.70 E_X5_POS 0.01 0.97 0.01 0.70 E_X1_POS 0.01 0.97 0.01 0.70 E_X5_POS 0.10 0.98 0.07 0.76 E_X5_POS 0.10		E_Z1_POS	0.01	0.97	0.01	0.70
E_X5_POS		E_Z1_NEG	0.00	0.97	0.00	0.70
E_X5_NEG		MAX	0.08	0.97	0.06	0.75
E_Y1_POS		E_X5_POS	0.09	0.97	0.06	0.76
E_Y1_NEG		E_X5_NEG	0.06	0.97	0.04	0.73
E_Z1_POS 0.05 0.97 0.04 0.73 E_Z1_NEG 0.01 0.97 0.00 0.70 MAX 0.09 0.97 0.06 0.76 E_X5_POS 0.01 0.97 0.01 0.70 E_X5_NEG 0.00 0.97 0.00 0.70 E_Y1_POS 0.01 0.97 0.01 0.70 E_Y1_NEG 0.00 0.97 0.00 0.70 E_Z1_POS 0.01 0.97 0.01 0.70 E_Z1_NEG 0.00 0.97 0.00 0.70 MAX 0.01 0.97 0.01 0.70 E_X5_POS 0.10 0.98 0.07 0.76 E_X5_NEG 0.16 0.98 0.11 0.81 E_Y1_POS 0.03 0.98 0.02 0.72 E_X1_POS 0.04 0.97 0.05 0.74 E_Z1_NEG 0.04 0.97 0.05 0.74 E_Z1_NEG 0.01		E_Y1_POS	0.05	0.97	0.04	0.73
E_Z1_NEG	13	E_Y1_NEG	0.05	0.97	0.04	0.73
MAX 0.09 0.97 0.06 0.76 E_X5_POS 0.01 0.97 0.01 0.70 E_X5_NEG 0.00 0.97 0.00 0.70 E_Y1_POS 0.01 0.97 0.01 0.70 E_Y1_NEG 0.00 0.97 0.01 0.70 E_Z1_POS 0.01 0.97 0.00 0.70 E_X1_NEG 0.00 0.97 0.01 0.70 MAX 0.01 0.97 0.01 0.70 E_X5_POS 0.10 0.98 0.07 0.76 E_X5_NEG 0.16 0.98 0.11 0.81 E_Y1_POS 0.03 0.98 0.02 0.72 E_X1_POS 0.04 0.97 0.05 0.74 E_Z1_POS 0.07 0.97 0.05 0.74 E_Z1_NEG 0.01 0.97 0.01 0.70		E_Z1_POS	0.05	0.97	0.04	0.73
E_X5_POS		E_Z1_NEG	0.01	0.97	0.00	0.70
E_X5_NEG		MAX	0.09	0.97	0.06	0.76
E_Y1_POS		E_X5_POS	0.01	0.97	0.01	0.70
14 E_Y1_NEG		E_X5_NEG	0.00	0.97	0.00	0.70
E_Z1_POS		E_Y1_POS	0.01	0.97	0.01	0.70
E_Z1_NEG 0.00 0.97 0.00 0.70 MAX 0.01 0.97 0.01 0.70 E_X5_POS 0.10 0.98 0.07 0.76 E_X5_NEG 0.16 0.98 0.11 0.81 E_Y1_POS 0.03 0.98 0.02 0.72 E_Y1_NEG 0.04 0.97 0.02 0.72 E_Z1_POS 0.07 0.97 0.05 0.74 E_Z1_NEG 0.01 0.97 0.01 0.70	14	E_Y1_NEG	0.00	0.97	0.00	0.70
MAX 0.01 0.97 0.01 0.70 E_X5_POS 0.10 0.98 0.07 0.76 E_X5_NEG 0.16 0.98 0.11 0.81 E_Y1_POS 0.03 0.98 0.02 0.72 E_Y1_NEG 0.04 0.97 0.02 0.72 E_Z1_POS 0.07 0.97 0.05 0.74 E_Z1_NEG 0.01 0.97 0.01 0.70		E_Z1_POS	0.01	0.97	0.01	0.70
E_X5_POS		E_Z1_NEG	0.00	0.97	0.00	0.70
E_X5_NEG		MAX	0.01	0.97	0.01	0.70
E_Y1_POS		E_X5_POS	0.10	0.98	0.07	0.76
15 E_Y1_NEG 0.04 0.97 0.02 0.72 E_Z1_POS 0.07 0.97 0.05 0.74 E_Z1_NEG 0.01 0.97 0.01 0.70		E_X5_NEG	0.16	0.98	0.11	0.81
E_Z1_POS 0.07 0.97 0.05 0.74 E_Z1_NEG 0.01 0.97 0.01 0.70		E_Y1_POS	0.03	0.98	0.02	0.72
E_Z1_NEG 0.01 0.97 0.01 0.70	15	E_Y1_NEG	0.04	0.97	0.02	0.72
		E_Z1_POS	0.07	0.97	0.05	0.74
MAX 0.16 0.98 0.11 0.81		E_Z1_NEG	0.01	0.97	0.01	0.70
		MAX	0.16	0.98	0.11	0.81

Tabella 18 – Fattori inversi di riserva nelle giunzioni bullonate, per i casi di carico statici.

Unione bullonata	Caso di carica	IRF_{slip}	IRF _{axial}	IRF _{shear}	IRF axial
	E_X5_POS	0.01	0.97	0.01	0.70
	E_X5_NEG	0.01	0.97	0.01	0.70
	E_Y1_POS	0.01	0.97	0.00	0.70
16	E_Y1_NEG	0.01	0.97	0.01	0.70
	E_Z1_POS	0.00	0.97	0.00	0.70
	E_Z1_NEG	0.00	0.97	0.00	0.69
	MAX	0.01	0.97	0.01	0.70
	E_X5_POS	0.08	0.98	0.06	0.76
	E_X5_NEG	0.08	0.98	0.06	0.76
	E_Y1_POS	0.08	0.98	0.06	0.76
17	E_Y1_NEG	0.08	0.98	0.06	0.76
	E_Z1_POS	0.08	0.98	0.06	0.76
	E_Z1_NEG	0.08	0.98	0.06	0.76
	MAX	0.08	0.98	0.06	0.76

Tabella 19 – Fattori inversi di riserva nelle giunzioni bullonate, per i casi di carico statici.

8.8 Calcolo delle giunzioni bullonate, casi di carico a fatica (Rif. G, H, I, J, K, L Tabella 8)

A continuazione si presentano le tabelle con i risultati per i casi di carico a fatica dove si mostreranno l'incremento di tensione massimo, la massima tensione principale (ottenute dall'inviluppo dei 6 casi di carico Rif. G, H, I, J, K, L Tabella 6), ed i valori dei fattori di riserva inversi (IRF inverse reserve factor) per i diversi gruppi di bulloni (vedi annesso C). Come precedentemente descritto nel paragrafo 5.5, due sono i fattori inversi calcolati per questo caso, uno per il taglio ed uno per la trazione.

Unione bullonata	Δ _{σaxial} [MPa]	Δτ [MPa]	I _{BOLT}	I _{BOLT} SHEAR
1	0.21	9.95	0.00	0.10
2	0.10	1.65	0.00	0.02
3	0.26	2.03	0.01	0.02
4	0.10	4.17	0.00	0.04
5	0.74	6.16	0.01	0.06
6	0.52	3.42	0.01	0.03
7	1.43	11.14	0.03	0.11
8	0.25	11.81	0.01	0.12
9	1.01	11.34	0.02	0.11
10	0.38	4.41	0.01	0.04
11	0.03	0.80	0.00	0.01
12	0.22	1.67	0.00	0.02
13	0.28	5.97	0.01	0.06
14	0.03	0.90	0.00	0.01
15	0.34	8.51	0.01	0.09
16	0.01	0.44	0.00	0.00

Tabella 20 – Fattori inversi di riserva nelle giunzioni bullonate analizzate per i casi di carici a fatica.

8.9 Reazioni nell'incastro dovute ai carichi statici.

Le reazioni presenti negli incastri si elencano nella seguente tabella, dove le localizzazioni correspondenti vengono indicate nella figura.

Figura 44 – Dettaglio delle condizioni di contorno applicate nella parte inferiore dei profili verticali.

Relazione di Calcolo

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

			Force (N	()		Moment (Nm)
		Force X	Force Y	Force Z	Moment X	Moment Y	Moment Z
	1	4124	579.5	-8815	25.97	47.27	24.33
А	2	5843	-110.5	-2124	-10.29	53.62	-37.66
	3	7166	455.6	-4024	-18.83	60.34	-29.11
A	4	7594	-128.1	728.7	-4.786	52.58	33.94
	5	6801	192.4	1.06E+04	34.92	45.99	-35.12
	6	5316	-988.9	1.10E+04	-35.95	45.01	29.26
	1	-4234	-668.6	11103	-33.71	-45.87	-24.83
	2	-5997	128.9	4818	18.86	-52.03	39.12
В	3	-6912	-423.5	7503	32.47	-65.93	27.09
В	4	-7671	154.5	1200	-3.355	-55.96	-33.6
	5	-6737	-144.2	-7.84E+03	-26.58	-48.41	34.99
	6	-5295	953	-9.42E+03	30.28	-46.27	-29.4
	1	-267	1716	-3847	-3.696	-2.55	-4.558
	2	645.1	1817	7128	7.497	6.089	-8.508
С	3	-236	472	4057	-1.232	-5.086	-0.9559
	4	-59.8	188.9	-2928	-5.689	4.197	-1.115
	5	-473.2	1608	6.33E+03	5.566	-4.507	5.895
	6	391	1567	-3.37E+03	-4.151	2.653	5.605
	1	157.3	-1805	6135	-4.05	3.948	4.063
	2	-799	-1798	-4434	1.079	-4.497	9.96
D	3	490.3	-439.9	-578.5	14.87	-0.505	-1.072
	4	-16.62	-162.5	4857	-2.452	-7.571	1.46
	5	537.7	-1559	-3.57E+03	2.778	2.089	-6.025
	6	-369.6	-1603	4.96E+03	-1.516	-3.908	-5.742
	1	-123.4	-100.3	2574	-8.714	1.573	-0.5569
	2	-173.2	20.71	3031	9.648	1.791	1.634
E	3	286	36.11	3913	15.35	-6.29	-2.282
-	4	-85.97	29.7	2170	-9.158	-3.796	0.3882
	5	72.5	54.14	3.10E+03	9.386	-2.72	-0.146
	6	24.04	-40.41	1.80E+03	-6.376	-1.413	-0.1532
	1	13.72	11.14	-286	0.9682	-0.1748	0.061878
	2	19.24	-2.301	-336.8	-1.072	-0.199	-0.1816
F	3	-31.78	-4.012	-434.8	-1.705	0.6989	0.2535
'	4	9.552	-3.3	-241.1	1.018	0.4218	-0.043133
	5	-8.055	-6.016	-3.44E+02	-1.043	0.3023	0.016218
	6	-2.671	4.491	-1.99E+02	0.7085	0.157	0.017021

Tabella 21 – Reazioni nell'incastro dovute ai carichi statici.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 65 di 82
---	--------	-----------------

Relazione di Calcolo

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

9. RIASSUNTO DEI RISULTATI

Nella Tabella 22 e nella Tabella 25 si mostrano per i casi carico statici ed a fatica rispettivamente, i valori dei coefficienti minimi di sicurezza relativi alle tensioni che affettano il materiale base e le giunzioni saldate, così come i fattori di riserva inversa per le giunzioni bullonate. Nella Tabella 23, si mostrano per i casi di carico d'impatto i valori dei coefficienti di sicurezza minimi relativi alle tensioni che influenzano il materiale base. Infine, nella Tabella 24, si mostrano i valori del danno per il caso della prova d'invecchiamento.

I calcoli dei coefficienti di sicurezza **η, danno** ed **IRF** (fattori di riserva inverso) si sono appoggiati alle seguenti relazioni:

- $-\eta_1 = \sigma_{adm}/\sigma_{vm}$ (questa relazione si applica per le condizioni di carico statiche della tabella 6, i quali riferimenti sono A, B, C, D, E e F e per i casi di carico d'impatto: M, N, O, P, Q, R).
- $-\eta_{2mb} = \Delta \sigma_N / \Delta \sigma_{princ}$ e $\eta_{3mb} = \sigma_{Nmax} / \sigma_{princ_max}$ (questa relazione si applica tanto al materiale base quanto alle saldature per le condizioni di carico a fatica della tabella 6, i quali riferimenti sono: **G**, **H**, **I**, **J**, **K**, **L**).
- $-\eta_{2sold} = \Delta\sigma_N / \Delta\sigma_{princ}$ e $\eta_{3sold} = \sigma_{Nmax} / \sigma_{princ_max}$ (queste relazioni si applicano tanto al materiale base quanto alle saldature per le condizioni di carico a fatica della tabella 6, i quali riferimenti sono: **G**, **H**, **I**, **J**, **K**, **L**).
- D (Per il caso della prova d'invecchiamento accelerato, il risultato si espressa come danno, tabella 7, Rif.
 T).
- $-IRF_{taglio} = max \left(\frac{F_{taglio}}{F_{v,Rd}} \right) \frac{F_{taglio}}{F_{b,Rd}}$ (questa relazione si applica nel caso delle giunzioni bullonate per le condizioni di carico statiche della tabella 7, i quali riferimenti sono: **A**, **B**, **C**, **D**, **E** e **F**).
- $-IRF_{assiale} = max \left(\frac{F_{assiale}}{F_{t,Rd}}\right) \left(\frac{F_{assiale}}{B_{p,Rd}}\right) \left(\frac{F_{assiale}}{B_{p,$
- $-IRF_{scorrimento} = \frac{F_{scorrimento}}{F_{s,Rd}}$ (questa relazione si applica nel caso delle giunzioni bullonate per le condizioni di carico statiche presenti nella tabella 7, i quali riferimenti sono: A, B, C, D, E e F).
- $-IRF_{combinato} = \frac{F_{taglio}}{F_{v,Rd}} + \frac{F_{assiale}}{1.4F_{t,Rd}}$ (questa relazione si applica nel caso delle giunzioni bullonate per le condizioni di carico statiche della tabella 7, i quali riferimenti sono: A, B, C, D, E e F).
- -MS₁: (questa relazione si applica nel caso delle giunzioni saldate per le condizioni di carico statiche della tabella 7, i quali riferimenti sono: **A, B, C, D, E** e **F**).
- -MS₂: (questa relazione si applica nel caso delle giunzioni saldate per le condizioni di carico statiche della tabella 7, i quali riferimenti sono: **A, B, C, D, E** e **F**).
- $-I_{bullone\ assiale} = \frac{\Delta \sigma_{assiale}}{f_{50}}$ (questa relazione si applica alle giunzioni bullonate per le condizioni di carico a fatica della tabella 6, i quali riferimenti sono: G, H, I, J, K, L).
- $-I_{bullone\ taglio} = \frac{\Delta \sigma_{taglio}}{f_{100}}$ (questa relazione si applica alle giunzioni bullonate per le condizioni di carico a fatica della tabella 6, i quali riferimenti sono: G, H, I, J, K, L).

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 66 di 82
---	--------	-----------------

D.C	Tipo di	0 11 1 11 1		(Coefficiente	di sicure	zza di riferim	ento	
Rif.	carico	Condizioni di carico	η_1	IRF _{Shear}	IRF _{tension}	IRF _{Slip}	IRF _{Combined}	MS1	MS2
A		LC1_E-X5_POS accelerazione applicata in direzione longitudinale di valore 5g + accelerazione della gravità.	1.71	0.35	0.98	0.25	0.94	2.86	5.42
В		LC1_E-X5_NEG accelerazione applicata in direzione longitudinale di valore -5g + accelerazione della gravità.	1.51	0.30	0.98	0.98 0.25 0.94 0.98 0.21 0.90 0.98 0.17 0.86 0.98 0.15 0.84 0.98 0.07 0.76	4.09	7.44	
С	Statico	LC2_E-Y1_POS accelerazione applicata in direzione trasversale di valore 1g + accelerazione della gravità.	>2	0.24	0.98	0.17	0.86	8.09	>10
D		LC2_E-Y1_ accelerazione applicata in direzione trasversale di valore -1g + accelerazione della gravità.	>2	0.21	0.98	0.15	0.84	7.49	>10
Е		LC3_E-Z1_POS accelerazione applicata in direzione verticale di valore - -2.25g	>2	0.10	0.98	0.07	0.76	>10	>10
F		LC3_E-Z1_NEG accelerazione applicata in direzione verticale di valore - 0.25g	>2	0.08	0.98	0.06	0.76	>10	>10

Tabella 22 – Coefficienti di sicurezza per i casi di carico statici.

Rif.	Tipo di carico	Condizioni di carico	Coefficiente di sicurezza η ₁
M		SHOCK_X_POS impulso semisinusoidale di 30 millisecondi di valore 50g	>2
N		SHOCK_X_NEG impulso semisinusoidale di 30 millisecondi di valore -50g	>2
О	T	SHOCK_Y_POS impulso semisinusoidale di 30 millisecondi di valore 30g	>2
P	Impatto	SHOCK_Y_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	>2
Q		SHOCK_Z_POS impulso semisinusoidale di 30 millisecondi di valore 30g	>2
R		SHOCK_Z_NEG impulso semisinusoidale di 30 millisecondi di valore -30g	>2

Tabella 23 - Coefficienti di sicurezza per i casi di carico d'impatto.

Rif	Tipo di carico	o di carico Condizioni di carico		Danno
1311.	Tipo di carico			D
c	Prova	PSD. Durata della prova 5h. Tre curve con i livelli di ASD. Vedi	1.00	0.1
	d'invecchiamento	tabella e figura	1.02	0.1

Tabella 24 – Coefficienti di sicurezza per la prova d'invecchiamento.

Tipo di carico	D.C	Coefficiente di sicurezza						
Tipo di canco	Rif.	$\eta_{2\mathrm{mb}}$	$\eta_{2\mathrm{sold}}$	$\eta_{ m 3mb}$	$\eta_{3\mathrm{sold}}$	IRF _{Shear}	IRF _{tension}	
Fatica	G, H, I, J, K, L	1.11	1.08	1.35	1.16	0.12	0.03	

Tabella 25 - Coefficienti di sicurezza per i casi di carico a fatica.

10. CONCLUSIONI

Analizzando i risultati, le modificazioni progettuali realizzate sulla struttura dell'armadio **B.20.83.011** sono adeguate secondo i criteri delle normative presenti nel paragrafo 2.1 e utilizzate nella presente analisi.

Codice Identificazione: T_ME_007_0002_IR_0001	Esp. C	Pagina 68 di 82
---	--------	-----------------

ANNESSO A. Verifiche qualitative.

A.1 Verifica delle reazioni.

Si vuole verificare che introducendo un carico esterno (1g) in ognuno dei tre assi, le forze di reazione che si ottengono nel modello siano le stesse.

Direzione del carico	Massa totale [Kg]	Reazione teorica [N]	Somma delle reazioni in X [N]	Somma delle reazioni in Y [N]	Somma delle reazioni in Z[N]	
Asse X			-7373	2.82E-08	1.43E-08	OK
Asse Y	751.6	-7365.2	1.75E-08	-7373	-1.0E-08	OK
Asse Z			-3.95E-09	3.79E-08	-7373	OK

Tabella 26 – Verifica delle reazioni.

A.2 Equilibrio d'energia.

Nella tabella successiva si mostra la verifica dell'equilibrio dell'energia.

Direzione del carico	Lavoro esterno (EW) [J]	E totale (ET)	Equilibrio energia (EB) [J]	E equilibrio permesso (EBa) (0.01Etotal/100) [J]	ε (EB/EW) (-)	ε permesso (-)	
Asse X	0.548125	0.548125	-1.44E-11	5.48125E-05	-2.62E-11	< 1E-06	OK
Asse Y	3.3632	3.3632	-8.90E-09	0.00033632	-2.65E-09	< 1E-06	OK
Asse Z	0.308603	0.308603	-3.40E-11	3.08603E-05	-1.10E-10	< 1E-06	OK

Tabella 27 - Equilibrio d'energia.

A.3 Verifica dei modi propri di vibrazione.

Si vuole verificare tramite il calcolo "Free-Free" (senza nessun tipo di vincolo) dei modi propri che i primi 6 modi propri sono quelli di un solido rigido e con una frequenza propria vicina allo zero.

Nº modo	Autovalore	Frequenza (RAD/tempo)	Frequenza (Cicli/Tempo)	Massa generalizzata
1	7.90E-07	8.89E-04	1.41E-04	621.3
2	1.83E-06	1.35E-03	2.15E-04	313
3	2.08E-06	1.44E-03	2.30E-04	393.38
4	2.73E-06	1.65E-03	2.63E-04	232.29
5	3.28E-06	1.81E-03	2.88E-04	349.05
6	4.33E-06	2.08E-03	3.31E-04	196.06

Tabella 28 – Modi propri e autovalori.

ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

ANNESSO B. Mappa delle giunzioni saldate analizzate

A continuazione si mostrano una serie di figure che identificano le giunzioni saldate analizzate nei paragrafi 8.5 e 8.6.

Figura 45 – Saldature W1_1-2-3; W2_1-2-3.

Figura 46 – Saldature W3_1-2-3, W4_1-2-3, W5_1-2-3.

Figura 47 – Saldature W6_1-2; W7_1-2; W8_1; W9_1.

Figura 48 – Saldature W10_1-2-3; W11_1-2-3; W12_1-2-3; W13_1-2-3.

ANNESSO C. Mappa delle giunzioni bullonate analizzate.

A continuazione si mostrano una serie di figure che identificano le giunzioni bullonate analizzate nei paragrafi 8.7 e 8.8.

Figura 49 – Giunzioni bullonate 1 e 2.

Figura 50 – Giunzione bullonata 3.

Figura 51 – Giunzione bullonata 3

Figura 52 – Giunzione bullonata 5.

Figura 53 – Giunzione bullonata6.

Figura 54 – Giunzione bullonata7.

Figura 55 – Giunzione bullonata8.

Figura 56 – Giunzioni bullonate9 e 10.

Figura 57 – Giunzioni bullonate11,12 y 13.

Figura 58 – Giunzione bullonata14.

Figura 59 – Giunzione bullonata15.

Figura 60 – Giunzione bullonata16.

Relazione di Calcolo ARMADIO ELECTRICO B.20.83.011, LOCOMOTORA TRENITALIA

Figura 61 – Giunzione bullonata17.