Zadatak 2: Hijerarhijsko aglomerativno grupiranje

Zadan je skup primjera

$$\mathcal{D} = \left\{ a = (0,1), b = (7,1), c = (2,1), d = (3,3), e = (2,4), f = (5,6), g = (9,10) \right\}.$$

(a) Skicirajte primjere. Nacrtajte dendrogram koji se dobiva hijerarhijskim aglomerativnim grupiranjem ovih primjera temeljem jednostruke povezanosti. Na dendrogramu naznačite udaljenost na kojoj je provedeno stapanje grupa.

 $4\sqrt{2}$ $-2\sqrt{5}$ $-\sqrt{13}$ $-\sqrt{5}$ $-\sqrt{2}$ E D A C F B G

Slika 1. Primjeri

Slika 2. Dendrogram, jednostruke povezanosti

(b) Nacrtajte dendogram koji se dobiva grupiranjem temeljem potpune povezanosti.

Slika 3. Dendrogram, potpune povezanosti

(c) Kako biste odredili optimalan broj grupa K temeljem dendrograma dobivenog u prethodnom zadatku? Obrazložite odgovor. Kojem pragu udaljenosti odgovara odabrani broj grupa? Presijecite dendogram na odabranom pragu udaljenosti i napišite particiju koja se time dobiva.

Pogledao bih gdje je dendrogram izdužen, i tu ga presjekao. Pošto su kod mene jednako nacrtane sve razine, gledao bih gdje je velika razlika u vrijednostima udaljenosti stapanja. U prethodnom primjeru, odokativno bih odabrao K = 3, na temelju toga što je velika razlika između $\sqrt{29}$ i $5\sqrt{2}$, to bi bio prag $\sqrt{29}$.

Particije: $C_1=[a,c,d,e]$, $C_2=[b,f]$, $C_3=[g]$

(d) Napišite matricu sličnosti za primjere iz D. Pretpostavite da raspolažete samo tom matricom. Koje algoritme grupiranja (od onih koje smo upoznali na predavanjima) možemo primijeniti na takvu matricu?

	а	b	С	d	е	f	g
а	1	0.125	0.333	0.217	0.217	0.124	0.073
b	0.125	1	0.167	0.183	0.146	0.157	0.098
С	0.333	0.167	1	0.309	0.250	0.146	0.081
d	0.217	0.183	0.309	1	0.414	0.217	0.098
е	0.217	0.146	0.250	0.414	1	0.217	0.098
f	0.124	0.157	0.146	0.217	0.217	1	0.150
g	0.073	0.098	0.081	0.098	0.098	0.150	1

Tablica 1. Matrica sličnosti

Ako imamo samo matricu sličnosti, koristili bi algoritam k-medoida.

Na predavanju su spomenute sljedeće implementacije:

- PAM (partitioning around medoids)
- CLARA (clustering in large applications)
- CLARANS (CLARA based upon randomized search)