COSSAN Software

COSSAN TRAINING COURSE on UNCERTAINTY QUANTIFICATION

Bayesian Model Updating: Part I

Adolphus Lye

info@cossan.co.uk
www.cossan.co.uk

Introduction

- PhD Student, 2nd Year of Study
- Affiliated with Singapore Nuclear Research and Safety Initiatives (SNRSI)
- Research Interests:
 - Bayesian Model Updating;
 - Mathematical Modelling;
 - Nuclear Energy;
 - Predictive Maintenance:
 - Probabilistic Safety Assessment

Pre-requisites

There are no pre-requisites for this part of the course.

Overview

- Introduction to Model Updating
- Motivation behind Model Updating
- Deterministic vs Probabilistic Model Updating
- Introduction to Bayesian Model Updating
- Strief Introduction to Advanced Sampling Techniques

Conceptual Introduction and Motivation

Definition of the Forward problem:

Conceptual Introduction and Motivation

Definition of the Inverse problem:

The Answer: Model Updating

COSSAN Software

Conceptual Introduction and Motivation

- Mathematical models are used to describe virtual behaviours of engineering structures under operational and extreme conditions;
- For the model to produce output representative of the structure's response, there is a need to update the model's input parameter(s):
- This seeks to minimise the difference between the model output and the measured response of the system.

Conceptual Introduction and Motivation

Deterministic Model Update

Conceptual Introduction

- Involves the calibration of model based on one data-set;
- Provides point estimates of θ ;
- Assumes one definite model to describe the data-set:
- E.g. Maximum Likelihood Estimates, Least-squares method.

Deterministic Model Update

Conceptual Introduction

There are 4 main problems in performing Deterministic Model Update:

- Mathematical model is assumed to fully describe the Physics of the problem;
- Does not account the factor of "noise" that exists in measurements;
- Does not account for variation of the measured response of nominal identical structures even under the same loading/condition due to manufacturing and material variability;
- ullet Point estimates may not represent the entire set of all possible solutions to heta.

Deterministic Model Update

Conceptual Introduction

Conceptual Introduction and Motivation

COSSAN Software

Conceptual Introduction and Work-flow

A Probabilistic Model Updating technique based on Bayes' Inference:

$$P(\theta|\mathbf{D}) = \frac{P(\theta) \cdot P(\mathbf{D}|\theta)}{P(\mathbf{D})}$$
 (1)

where $P(\theta)$ is the Prior; $P(\mathbf{D}|\theta)$ is the Likelihood function; $P(\theta|\mathbf{D})$ is the Posterior; $P(\mathbf{D})$ is the Evidence. θ denotes vector of epistemic parameters; \mathbf{D} denotes vector of observations.

COSSAN Software

Conceptual Introduction and Work-flow

 $P(\mathbf{D})$ is a normalisation factor which is independent of θ and, thus, a numerical constant.

Equation (1) can therefore be re-expressed as shown below:

$$P(\theta|\mathbf{D}) \propto P(\theta) \cdot P(\mathbf{D}|\theta)$$

Techniques and Tools

- To generate samples from a distribution, a standard tool would be Monte-Carlo sampling;
- HOWEVER...recall that:

$$P(\theta|\mathbf{D}) \propto P(\theta) \cdot P(\mathbf{D}|\theta)$$

- Standard Monte-Carlo technique is <u>unable</u> to sample from un-normalised distribution function;
- We need advanced sampling techniques to do so

COSSAN Software

17 / 19

Techniques and Tools

Conclusion

Summary

- Overview of Model Updating concept and the need for it;
- Deterministic vs Probabilistic Model Updating;
- Understanding of Bayesian Model Updating concept;
- Familiarisation with Advanced Sampling Techniques and the need for them.

Conclusion

Follow-up

What's next

- Read Lecture Notes: Bayesian Model Updating [Part II]
- Watch Lecture Video: Bayesian Model Updating [Part II]