Decentralized and Traceable IoT Network Based on Ethereum

Presenter: Guo ZiNan

Advisor: Prof. Cheng-Fu Chou

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Ubiquitos IoT Devices

Call for Responsible Sensory Data

- Effective
- Traceable
- Verifiable

良好	普通	對敏感族群 不健康	對所有族群 不健康	非常 不健康	危害
0~50	51~100	101~150		201~300	301~500
0		_	•	•	*

Centralized Sensory Data

Decentralized Sensory Data with Blockchain

Contradiction between IoT and Blockchain

Traditional IoT Device	Blockchain Enabled
Wake Up on Demand	Continuous Network Connection
No Storage	ChainData Storage
Low Power Device	Performance for Verification

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Gateway Based Solution

Novo, O. (2018). Blockchain Meets IoT: an Architecture for Scalable Access Management in IoT. IEEE Internet of Things Journal.

More Examples

Samaila, M. G., Neto, M., Fernandes, D. A., Freire, M. M., & Inácio, P. R. (2018). Challenges of securing Internet of Things devices: A survey. Security and Privacy, 1(2), e20.

Lucena, P., Binotto, A. P., Momo, F. D. S., & Kim, H. (2018). A Case Study for Grain Quality Assurance Tracking based on a Blockchain Business Network. arXiv preprint arXiv:1803.07877.

Standalone Solution

Upgrade to More Powerful Devices

Halunen, K., Kreku, J., Vallivaara, V., & Suomalainen, J. (2017). Evaluating the Efficiency of Blockchains in IoT with Simulations. Jotbds.

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Shortcomings of Standalone Solution

- High Performance Requirement
- High Power Consumption
- High Price

Shortcomings of Gateway Based Solution

For IoT Device Operator

- Self-owned Network
 - Sensor
 - Gateway
 - Protocol
- Maintenance Cost
 - Bandwidth
 - Performance

For Sensory Data Subscriber

- Black Box
 - Data Generation
 - Transmission
- Centralized Server

For Blockchain Node

- No Optimization For IoT
 - No Lightweight Protocol
 - No Mobile Node
- No Connection with IoT Devices

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Centralization Degree v.s.

Power Consumption

Our Target

IoT Device Operator

- Public Network
 - No Gateway
 - StandarlizedProtocol

Sensory Data Subscriber

- Open Box
 - DataGeneration
 - Transmission

Blockchain Node

- Optimization For IoT
 - LightweightProtocol
 - Mobile Node

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Flow Chart

About Smart Contract

Account Generation

Transplanted

Original

Same Curve	Public / Private Key Pair	ECC with secp256k1	
Same Hash Function	Address	keccak256(Pubkey)	

Transaction Issuance

Transplanted Original

loT Device	From	Transaction Sender	
- (Sent to Relay Node)	То	Transaction Receiver	
Data Timestamp	Nonce	Transaction Order	
Sensory Data	Input Data	None or Function Call	
Transaction Signature	Signature	Transaction Signature	

Smart Contract

Transplanted Original

Standard Contract	Contract Verification	- (Decided by Sender)
IoT Device White List	Device Verification	Modifier
nonceecrecover(hash, sig) returns (address)	Data Verification	Done by Miner
Decided by Operator	Gas Price	Decided by Sender
Decided by Operator	Gas Limit	Auto Calculated

Mobile Node: Lightweight Protocol

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Urban IoT Scenario

- Deployed in Crowded Areas
- Short-range Communication with Pedestrian
 - NFC

Santos, P. M., Rodrigues, J. G., Cruz, S. B., Lourenço, T., d'Orey, P. M., Luis, Y., ... & Sargento, S. (2018). PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet of Things Journal, 5(2), 523-532.

Factory IoT Scenario

- Deployed in Broad Areas
- Long-range Communication with Pedestrian
 - LoRa

Jörke, P., Böcker, S., Liedmann, F., & Wietfeld, C. (2017, October). Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017 IEEE 28th Annual International Symposium on (pp. 1-6). IEEE.

Ethereum Private Chain

IoT Device

```
iot_device

101

102 //Ethereum Account

103 #include <keccak256.h>

104 SHA3_CTX ctx;
```

Arduino Pro Mini DS1302 NFC (MFRC522) LoRa (SX1278) DHT11 DHT11 DS1302 DHT11 RECCAR_INIT(Netx); LoRa (SX1278) DHT11 RECCAR_INIT(Netx); LoRa (SX1278) DHT11	MCU	Timestamp	Data	Sample Sensor
dest); Comparison of the co	Arduino Pro Mini	1)\$1307	NFC (MFRC522) LoRa (SX1278)	DHT11
118 for ; i < size; ++i) dest[i] = random(0, 119 return 1;		NCC PER PORT OF PART O	dest); ncli nt8. t RI ((((())))) (ad (0) (i) size; ++i) dest[i]	= random(0, 0xFF);

Data in NFC Card

	Block 0	Block 1	Block 2	Block 3 (Trailer) KeyA's View
Sector 0	UID Contract Address (20 Bytes, Right Pa		dding)	
Sector 1	Magic Header Device Address (20 Bytes, Right Paddir		dding)	
Sector 2	Signature_R		Nonce (4 Bytes, Right Padding)	Read Only
Sector 3	Signature_S		Length	
Sector 4 Control Sector 15	Data (Up to 576 Bytes)			
Sector 16	Private Key		Reserved	Access Denied

Data in LoRa Packet

Packet Header	Contract Address	Device Address	Signature	Nonce	Data	Packet Trailer
"bonboru93"	20 Bytes	20 Bytes	64 Bytes	4 Bytes	Up to Maximum LoRa Payload Size	"39urobnob"

Relay Node

Demo

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Target Review

Entity	Target	Status	
IoT Device Operator	No Gateway	Yes, Gateway Elimited	
	Standarlized Protocol	Yes, by Standard Contract	
Sensory Data Subscriber	Data Generation	Yes, by Direct Connection	
	Transmission	Yes, by Relay Node	
Blockchain Node	Lightweight Protocol	Yes, by Ethereum LES Protocol	
	Mobile Node	Yes, by Android App	

Responsible Sensory Data

Requirement	Status
Effective	Yes, Exactly from IoT Device
Traceable	Yes, by Blockchain and Smart Contract
Verifiable	Yes, by Data Consistency Check among Device, Environment and Contract

Power Consumption of IoT Device

Average Current

Average Current =
$$\frac{t_a * c_a + t_s * c_s}{T}$$

$$= \frac{5s * 40mA + 3595s * 0.06 mA}{3600s}$$

$$= 0.11 \, \text{mA}$$

- Driven by 10000mAh Power Bank
- Battery Life

$$Battery \, Life = \frac{10000 mAh}{0.11 \, mA} = 10.38 \, Year$$

Active Mode: < 40 mA

Sleep Mode: < 60 uA

< 5s

Reward of Relay Node

Gas Price	1 gWei
Gas Limit	70000
Real Gas Cost	~60000

Data Usage of Relay Node

Outline

- Introduction
- Related Work
- Shortcomings of Existing Solutions
- Our Target
- Methodology
- Implementation
- Evaluation
- Conclusion and Future Work

Our Contribution

Integrate IoT Devices into Blockchain

with Low Centralization Degree and Low Power Consumption

for Responsible Sensory Data

https://github.com/bonboru93/master_final

Future Work

- Extend to Other Communication Method, like QR Code, NB-IoT
- Extend to Other Blockchain Network, like HyperLedger
- Cooperate with Smart City and Product Traceability Programs

Q&A

Why NFC and LoRa

Property	NFC	LoRa	
Distance	Short (< 4 cm)	Long (> 10 km)	
Broadcast Mode	Passive	Active	
Supplement	Active Method	Own Relay	
Feature	Sleep Mode Non-IP Based		
Backup	E Ink Screen with QR Code	NB-IoT	

Why No Ack

How about 2-Way Ack

Gas Price Detail

Std Cost for Transfer

\$0.014

Gas Price Std (Gwei)

SafeLow Cost for Transfer

\$0.011

1.1

Median Wait (s)

45

Median Wait (blocks)

3

https://ethgasstation.info/

Gas Cost of Hash and Signature Verification

Keccak256	30 + 6 * (size of input in words)
ecrecover	~ 3000 in Our Implementation
Transfer	21000

Power Consumption of Raspberry Pi

Table 2: Use cases and their estimated execution time for mining 400 blocks.

	N	odes		Averag	ge power	
Platform	Total (n)	Mining (k)	Execution time	k nodes	(n-k) nodes	Energy
	1	1	3082 s	1724 mW	0 mW	5.3 kJ
	2	1	3082 s	1724 mW	1144 mW	8.8 kJ
	2	2	1710 s	1704 mW	0 mW	5.8 kJ
	4	1	3082 s	1724 mW	1143 mW	15.9 kJ
	4	2	1710 s	1704 mW	1144 mW	9.7 kJ
	4	4	954 s	1667 mW	0 mW	7.5 kJ
	8	1	3082 s	1724 mW	1143 mW	30.0 kJ
Raspberry Pi 2	8	2	1710 s	1704 mW	1144 mW	17.6 kJ
	8	4	954 s	1667 mW	1145 mW	10.7 kJ
	8	8	575 s	1612 mW	0 mW	7.4 kJ
	16	1	3082 s	1724 mW	1143 mW	58.1 kJ
	16	2	1710 s	1704 mW	1144 mW	33.2 kJ
	16	4	954 s	1667 mW	1145 mW	19.5 kJ
	16	8	575 s	1612 mW	1146 mW	12.7 kJ
	16	16	386 s	1544 mW	0 mW	10.0 kJ
	1	1	702 s	6517 mW	0 mW	4.6 kJ
	2	1	702 s	6517 mW	1990 mW	6.0 kJ
	2	2	393 s	6308 mW	0 mW	5.0 kJ
	4	1	702 s	6517 mW	1973 mW	8.7 kJ
	4	2	393 s	6308 mW	2006 mW	6.5 kJ
	4	4	223 s	5948 mW	0 mW	5.3 kJ
	8	1	702 s	6517 mW	1968 mW	14.2 kJ
Nvidia Jetson TK1	8	2	589 s	6308 mW	1990 mW	9.7 kJ
	8	4	223 s	5948 mW	2032 mW	7.1 kJ
	8	8	138 s	5435 mW	2184 mW	6.3 kJ
	16	1	702 s	6517 mW	1966 mW	25.3 kJ
CIENCE	16	2	393 s	6308 mW	1985 mW	15.9 kJ
	16	4	223 s	5948 mW	2018 mW	10.7 kJ
	16	8	138 s	5435 mW	2071 mW	8.3 kJ
	16	16	96 s	4838 mW	0 mW	7.6 kJ

Halunen, K., Kreku, J., Vallivaara, V., & Suomalainen, J. (2017). Evaluating the Efficiency of Blockchains in IoT with Simulations. lotbds.

Reward of Relay Node

 $(80000 - 70000) * 10^9 * 10 / 10^18 \approx 0.0001$ Ether

Gas Price	1 gWei
Gas Limit	80000
Real Gas Cost	~70000

