PNEUMONIA DETECTION USING X-RAYS USING WATSON STUDIO

RESULT:

Dataset

The dataset composes of two classes which are normal lung and pneumonia lung as can be seen in the figure below.

The output of model.summary()

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	298, 298, 16)	448
max_pooling2d_1 (MaxPooling2	(None,	149, 149, 16)	0
conv2d_2 (Conv2D)	(None,	147, 147, 32)	4640
max_pooling2d_2 (MaxPooling2	(None,	73, 73, 32)	0
conv2d_3 (Conv2D)	(None,	71, 71, 64)	18496
max_pooling2d_3 (MaxPooling2	(None,	35, 35, 64)	0
flatten_1 (Flatten)	(None,	78400)	0
dense_1 (Dense)	(None,	512)	40141312
dense_2 (Dense)	(None,	1)	513
Total params: 40,165,409 Trainable params: 40,165,409 Non-trainable params: 0			======

OUTPUT:

CONCLUSION:

Throughout the process of developing the CNN model for Pneumonia prediction, we have built a model from scratch which consists of 5 layers and follows with a fully connected neural network. Then the trained model is evaluated using separate unseen data to avoid bias prediction. As the result, the accuracy of the test dataset reached 81.25% which indicates a decent model. This mini-project allows a beginner to obtain an overview of how to build a model to solve a real-world problem.

It is no doubt that the predictive model can be improved even better by performing data augmentation or implementing a transfer learning concept which facilitates the model a room for improvement. Therefore, this will be added as further enhancement in the upcoming stories.