Tehnici Avansate de Programare

Baze de date

Petru Rebeja, Marius Apetrii

22 Aprilie 2021

Facultatea de Matematică Universitatea Alexandru Ioan Cuza, Iași

Introducere

Recapitulare

 Test-Driven Development — un stil de dezvoltare software în care mai întâi se scriu testele pentru un anumit aspect iar mai apoi implementarea propriu-zisă.

Agenda

- Baze de date
- Istoricul schemei bazei de date relaționale
- Proiectarea bazelor de date

Baze de date

Noțiuni de bază

Bază de date

O bază de date este o colecție organizată de date care sunt stocate și accesate de pe un calculator¹.

¹https://en.wikipedia.org/wiki/Database

Notiuni de bază

Sistem de Gestiune al Bazelor de Date

Sistemul de Gestiune a Bazelor de Date este un sistem software care le permite utilizatorilor să definească, să creeze, să întrețină și să controleze accesul la baza de date².

²Connolly, Thomas M.; Begg, Carolyn E. (2014). Database Systems – A Practical Approach to Design Implementation and Management (6th ed.). Pearson. p. 64. ISBN 978-1292061184.

Noțiuni de bază

Schema bazei de date

Schema bazei de date este structura logică a bazei de date descrisă într-un limbaj formal suportat de SGBD³ sau o reprezentare vizuală a acesteia⁴

³http://en.wikipedia.org/wiki/Database_schema

 $^{^4 {\}tt https://www.techopedia.com/definition/30601/database-schema}$

Tipuri de baze de date

Există două tipuri de baze de date:

- Relaționale (SQL) și
- Non-relaționale (No-SQL)

Baze de date relaționale

- Sunt bazate pe tabele și modelează relația dintre ele,
- Au o schemă predefinită,
- Suportă interogări complexe,

Baze de date relaționale (cont.)

- Suportă creșterea pe verticală (vertical scaling) prin adăugarea de memorie RAM, spațiu pe disk etc.,
- Pun accentul pe proprietățile ACID:
 - Atomicity modificări atomice,
 - Consistency impune consistența datelor
 - Isolation modificările se fac în izolare unele față de altele
 - Durability modificările sunt salvate pe disk.

Baze de date No-SQL

- Sunt bazate pe documente, grafuri, perechi cheie-valoare etc.
- Nu au o schemă predefinită,
- Au suport limitat pentru interogări complexe,

Baze de date No-SQL (cont.)

- Suportă creșterea pe orizontală (horizontal scaling) prin adăugarea de noduri noi,
- Aplică teorema CAP⁵ în orice moment oferă două proprietăți din următoarele:
 - Consistency orice scriere primește cele mai recente date sau o eroare,
 - Availability fiecare cerere primește un răspuns dar datele pot să nu fie cele mai recente,
 - Partition tolerance systemul continuă să funcționeze în ciuda pierderii unor mesaje.

⁵https://en.wikipedia.org/wiki/CAP_theorem

Evoluția bazei de date

Evoluția aplicației

- Baza de date evoluează (de obicei) împreună cu aplicația,
- Modificările bazei de date fac parte din ciclul de dezvoltare.

Bune practici

- Schema bazei de date trebuie păstrată în sistemul de management al istoricului⁶ pentru a asigura sincronizarea între modificările aplicației și a bazei de date,
- Aplicarea modificărilor trebuie sincronizată,
- Altfel întregul sistem software devine inutilizabil.

⁶https:

^{//}www.troyhunt.com/10-commandments-of-good-source-control/

Proiectarea bazelor de date

Primary/Foreign Key

- O cheie primară (Primary Key) este o mulțime de coloane ale unui tabel a căror valori identifică în mod unic o înregistrare⁷.
- O cheie străină (Foreign Key) este o mulțime de coloane ale unui tabel care fac referință la o cheie primară⁸.

⁷http://www.differencebetween.net/technology/
difference-between-primary-key-and-unique-key/
8https://www.w3schools.com/sql/sql_foreignkey.asp

Relație

Adăugarea unei chei străine crează o relaţie între cele două tabele unde:

- Tabelul copil este cel care conține cheia străină,
- Tabelul părinte este cel care conține cheia primară referențiată de tabelul copil.

Exemplu: 1*N

Exemplu9: N*M

⁹https://smehrozalam.wordpress.com/2010/06/29/entity-framework-queries-involving-many-to-many-relationship-tables

Normalizare

Normalizarea bazei de date

Procesul de structurare a unei baze de date relaționale pentru a reduce redundanța datelor și a îmbunătăți integritatea acestora¹⁰.

 $^{^{10} {\}tt https://en.wikipedia.org/wiki/Database_normalization}$

Objectivele normalizării

- Modelarea conceptelor din lumea reală și a relațiilor dintre acestea.
- Extensibilitate sporită: adăugarea obiectelor noi se face cu intervenție minimă.

Forme normale

- Normalizarea se face prin aducerea schemei la o formă normală.
- O formă normală este o proprietate a structurii bazei de date.
- Există mai multe forme normale (FN1—FN6 etc.).
- O bază de date este normalizată dacă respectă cel puţin FN3.

FN1

O relație este în Forma Normală 1 dacă în fiecare coloană a unui tabel avem doar valori atomice.

Normalizarea la FN1 se face prin:

- 1. Eliminarea grupurilor care se repetă.
- 2. Crearea unui table pentru fiecare colecție de date cu coeziune mare.
- 3. Adăugarea unei chei primare.

FN2

O relație este în Forma Normală 2 dacă:

- 1. Este în Forma Normală 1 și
- 2. Toate atributele unui tabel depind doar de cheia primară direct sau indirect.

Tournament winners¹¹

Tournament	Year	Winner	Winner's date of birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

 $^{^{11} \}verb|https://en.wikipedia.org/wiki/Third_normal_form$

FN3

O relație este în Forma Normală 3 dacă:

- 1. Este în Forma Normală 2 și
- 2. Fiecare atribut depinde direct de cheia primară.

Forma Normală 3¹²

Tournament	Year	Winner
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Winner	Date of birth
Chip Masterson	14 March 1977
Al Fredrickson	21 July 1975
Bob Albertson	28 September 1968

¹²https://en.wikipedia.org/wiki/Third_normal_form

Încheiere

Recapitulare — baze de date

- Baza de date este o colecție organizată de date care pot fi manipulate prin intermediul unui SGBD.
- SGBD = Sistem de Gestiune al Bazelor de Date; permite manipulearea datelor și întreținerea bazelor de date.
- Schema bazei de date este reprezentarea structurii bazei de date și trebuie păstrată în sistemul de gestiune al istoricului alături de codul-sursă al aplicației.
- Folosiți Database project din Visual Studio pentru modificarea schemei bazei de date.

Recapitulare — ACID

- Atomicity modificări atomice,
- Consistency impune consistența datelor
- Isolation modificările se fac în izolare unele față de altele
- Durability modificările sunt salvate pe disk.

Recapitulare — proiectarea bazei de date

- Elemente esențiale în proiectarea bazelor de date: cheie primară, cheie străină și relaţie.
- Normalizare proiectarea/restructurarea bazei de date pentru a o aduce în (cel puțin) forma normală 3.
- O schemă este în forma normală 3 (FN3) dacă atributele fiecărui tabel sunt atomice și depind doar de cheia primară.

Vă mulțumesc

Mulțumesc pentru atenție!