ON THE MINIMAL VOLUME OF SIMPLICES ENCLOSING A CONVEX BODY

ATSUSHI KANAZAWA

ABSTRACT. Let $C \subset \mathbb{R}^n$ be a compact convex body. We prove that there exists an n-simplex $S \subset \mathbb{R}^n$ enclosing C such that $\operatorname{Vol}(S) \leq n^{n-1}\operatorname{Vol}(C)$.

1. Theorem

Throughout this article, an n-simplex is the convex hull of (n+1) points of \mathbb{R}^n in general position, and a convex body in \mathbb{R}^n is a compact convex set with non-empty interior. For a bounded subset $B \subset \mathbb{R}^n$, we denote by Vol(B) the volume of B. The objective of this article is to prove the following theorem:

Theorem 1. Let $C \subset \mathbb{R}^n$ be a convex body and S an n-simplex with minimum volume among all n-simplices enclosing C. Then

$$Vol(S) \le n^{n-1}Vol(C).$$

It is easy to see that the constant n^{n-1} is optimal for $n \leq 2$ but we do not know whether or not it gives a sharp bound for $n \geq 3$ at this point. In fact, the case for n = 2 is a classical result due to Gross [2], which was later generalized by Kuperberg [3]. However, our approach is different from theirs and we deal with the higher dimensional case as well.

Theorem 1 can be seen as dual to the classical result of Blaschke [1]¹ and its higher dimensional analogue due to Macbeath [5], which approximate a given convex body by inscribed simplices.

It has been an open problem to find a higher dimensional analogue of Gross's result [2] and we believe that Theorem 1 presents the first result in this direction. We hope that our simple formula is useful in both pure and applied mathematics.

2. Proof

We first prepare two lemmas. In what follows, $\operatorname{Conv}(D)$ denotes the convex hull of a set $D \subset \mathbb{R}^n$. We also set $\operatorname{Conv}(D,p) := \operatorname{Conv}(D \cup \{p\})$ for

¹Let $C \subset \mathbb{R}^2$ be a convex body and T a triangle with maximum area among all triangles inscribed in C. Then $\operatorname{Vol}(T) \geq \frac{3^{3/2}}{4\pi} \operatorname{Vol}(C)$ with equality if and only if C is an ellipse.

 $D \subset \mathbb{R}^n$ and $p \in \mathbb{R}^n$.

Let $C \subset \mathbb{R}^n$ be a convex body and R an n-simplex inscribed in C. We denote the vertices of R by $r_0, \ldots, r_n \in \partial C$. Let H_i be the hyperplane which is parallel to $\operatorname{Conv}(\{r_0, \ldots, r_n\} \setminus \{r_i\})$ and touches C at the opposite side to r_i . Let u_i be a point in $H_i \cap C$. The region $T_{C,R}$ bounded by the hyperplanes H_0, \ldots, H_n is an n-simplex similar to R. The vertices of $T_{C,R}$ are given by $t_i := \cap_{j \neq i} H_j$ for $0 \leq i \leq n$. Let r be the homothetic ratio of $T_{C,R}$ and R, that is, $\operatorname{Vol}(T_{C,R}) = r^n \operatorname{Vol}(R)$.

Lemma 1. $Vol(C) \ge rVol(R)$.

Proof. Set $R_i := \operatorname{Conv}(\{r_0, \dots, r_n\} \setminus \{r_i\})$ and $T_i := \operatorname{Conv}(\{t_0, \dots, t_n\} \setminus \{t_i\})$, which are the faces of R and $T_{C,R}$ respectively. Let $I := \{i \mid R_i \not\subset T_i\}$. For $i \in I$, there exists a unique $v_i \in \mathbb{R}^n$ such that $\operatorname{Conv}(R_i, v_i)$ and $\operatorname{Conv}(T_i, v_i)$ are similar and $\operatorname{Conv}(R_i, v_i) \subset \operatorname{Conv}(T_i, v_i)$.

We first consider $B_i := \operatorname{Conv}(R_i \cup T_i) \setminus \operatorname{Conv}(R_i, u_i)$ for $i \in I$. Using the relation

$$Vol(Conv(R_i, u_i)) = (r - 1)Vol(Conv(R_i, v_i)),$$

we get

$$Vol(B_i) = Vol(Conv(R_i \cup T_i)) - Vol(Conv(R_i, u_i))$$

$$= Vol(Conv(T_i, v_i)) - Vol(Conv(R_i, v_i)) - (r - 1)Vol(Conv(R_i, v_i))$$

$$= r^n Vol(Conv(R_i, v_i)) - r Vol(Conv(R_i, v_i))$$

$$= (r^n - r)Vol(Conv(R_i, v_i))$$

$$= (\sum_{i=1}^{n-1} r^j)Vol(Conv(R_i, u_i)).$$

Since

$$Vol(R) + \sum_{i \in I} \left[Vol(Conv(R_i, u_i)) + Vol(B_i) \right] = Vol(T_{C,R}) = r^n Vol(R),$$

we have

$$Vol(R) + \sum_{i \in I} (\sum_{j=0}^{n-1} r^j) Vol(Conv(R_i, u_i)) = r^n Vol(R).$$

It thus follows that

$$\sum_{i \in I} \operatorname{Vol}(\operatorname{Conv}(R_i, u_i)) = (r - 1)\operatorname{Vol}(R).$$

Finally we obtain, by the convexity of C,

$$\operatorname{Vol}(C) \ge \operatorname{Vol}(R) + \sum_{i \in I} \operatorname{Vol}(\operatorname{Conv}(R_i, u_i)) = r \operatorname{Vol}(R).$$

Note that the argument above is valid even if $H_i \cap C$ is not a point. \square

Let $R \subset \mathbb{R}^n$ be a simplex with vertices r_0, \ldots, r_n . Define $I_i \subset \mathbb{R}^n$ to be the hyperplane which passes though r_i and parallel to $\operatorname{Conv}(\{r_0, \ldots, r_n\} \setminus \{r_i\})$. The region U_R bounded by the hyperplanes I_0, \ldots, I_n is an n-simplex similar to R.

Lemma 2.
$$Vol(U_R) = n^n Vol(R)$$
.

Proof. Moving r_i on the hyperplane I_i does not change $Vol(U_R)$ nor Vol(R). Hence, after rescaling, we may assume that $r_1 - r_0, \ldots, r_n - r_0$ form an orthonormal basis of \mathbb{R}^n . The assertion then follows from a direct computation.

We now start the proof of Theorem 1.

Proof of Theorem 1. Let R be an n-simplex with maximum volume $m := \operatorname{Vol}(R)$ among all n-simplices inscribed in C. We apply Lemma 1 to the pair C and R to obtain

$$Vol(C) \ge rm$$
.

If n > Vol(C)/m holds,

$$\operatorname{Vol}(T_{C,R}) = r^n m \le (\operatorname{Vol}(C)/m)^n m < n^{n-1} \operatorname{Vol}(C).$$

Thus the assertion holds in this case.

So suppose that $n \leq \operatorname{Vol}(C)/m$ holds. Let r_0, \ldots, r_n be the vertices of R. By the maximality of the volume of R, the hyperplane I_i is tangent to C at r_i , and therefore we see that $C \subset U_R$. By Lemma 2 we obtain

$$Vol(U_R) = n^n m \le n^{n-1} Vol(C).$$

This proves the assertion.

Acknowledgement. The author is grateful to J. Lefebvre for useful discussion. His thanks also go to W. Kuperberg and M. Lassak for helpful correspondence.

References

- [1] W. Blaschke, Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse, Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math. Nat. Klasse 69 (1917) 3-12.
- [2] W. Gross, Über affine Geometrie XIII, Eine Minimumeigenschaft der Ellipse und des Ellipsoids, Leipziger Berichte 70 (1918), 38-54.
- [3] W. Kuperberg, On minimum area quadrilaterals and triangles circumscribed about convex plane regions, Elem. Math. 38 (1983), no. 3, 57-61.
- [4] M. Lassak, Approximation of convex bodies by inscribed simplices of maximum volume, Beitr. Algebra Geom. 52 (2011), no. 2, 389-394.
- [5] A. M. Macbeath, An extremal property of the hypersphere, Proc. Cambr. Phil. Soc. 47 (1951), 245-247

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA 1984 MATHEMATICS RD, VANCOUVER, BC, V6T 1Z2, CANADA. kanazawa@math.ubc.ca