Tutorial 1 Performance benchmark

COMP2120B Computer organization

Kevin Lam (yklam2)

Overview

• MIPS rate =
$$\frac{I_c}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$

- (average) Cycles per instruction: $CPI = \frac{\sum_{i=1}^{n} CPI_i \times I_i}{I_c}$
- Time needed to run a program: $T = I_c \times CPI \times \tau$

- I_c : Instruction count
- f: Clock rate
- τ : Clock cycle time, $f = \frac{1}{\tau}$

Question 1 (Problem 2.1 in textbook)

A benchmark program is run on a 40 MHz processor. The
executed program consists of 100,000 instruction executions,
with the following instruction mix and clock cycle count.

Determine the effective CPI, MIPS rate, and execution time

for this program.

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8,000	2

Question 1 – execution time

- Total number of instructions: 100000
- Total number of cycles: $(45000 \times 1 + 32000 \times 2 + 15000 \times 2 + 8000 \times 2) = 155000$
- Cycle time: $\frac{1}{40 \times 10^6} = 25 \times 10^{-9} = 25 ns$
- Time of execution: $155000 \times 25 \times 10^{-9} = 3.875 ms$

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8,000	2

Clock rate: 40MHz

Instructions: 100,000

Question 1 - CPI

CPI: (average) clock cycle per instruction

•
$$CPI = \frac{\sum_{i=1}^{n} CPI_i \times I_i}{I_c} = \frac{(45000 \times 1 + 32000 \times 2 + 15000 \times 2 + 8000 \times 2)}{100000} = 1.55$$

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8,000	2

Clock rate: 40MHz

Instructions: 100,000

Question 1 – MIPS

MIPS: Millions of instructions per second.

• MIPS rate =
$$\frac{I_C}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$

•
$$\frac{f}{CPI \times 10^6} = \frac{40 \times 10^6}{1.55 \times 10^6} = \frac{800}{31} \approx 25.81$$

• MIPS rate =
$$\frac{I_c}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$
 $\frac{I_c}{T \times 10^6} = \frac{100000}{T \times 10^6} = \frac{800}{31}$
• $\frac{f}{CPI \times 10^6} = \frac{40 \times 10^6}{1.55 \times 10^6} = \frac{800}{31} \approx 25.81$ $\Rightarrow T = \frac{3.1 \times 10^6}{800 \times 10^6} = 3.875 ms$

Which is the same as our previous result.

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8,000	2

Clock rate: 40MHz

Instructions: 100,000

Question 2

(Problem 2.2 in textbook)

- Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz.
- The following measurements are recorded on the two machines running a given set of benchmark programs.
 - Determine the effective CPI, MIPS rate, and execution time for each machine.
 - Comment on the results.

Machine A

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3

Machine B

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

Question 2 – solutions

	CPI	MIPS rate	Execution time
Machine A	2.22	90	0.2s
Machine B	1.92	104.3	0.23s

Machine A

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3

Machine B

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

Question 3 (Problem 2.3 in textbook)

- Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000, respectively. Using a typical benchmark program, the following machine characteristics result.
- The final column shows that the VAX required 12 times longer than the IBM measured in CPU time.
 - What is the relative size of the instruction counts of the machine code for this benchmark program running on the two machines?
 - What are the CPI values for the two machines?

Processor	Clock Frequency (MHz)	Performance (MIPS)	CPU Time (secs)
VAX 11/780	5	1	12 <i>x</i>
IBM RS/6000	25	18	x

Question 3 – instruction count

• MIPS rate =
$$\frac{I_c}{T \times 10^6}$$

• For VAX 11/780:
$$\frac{I_C}{12x \times 10^6} = 1 \Rightarrow I_C = 12x \times 10^6$$

• For IBM RS/6000:
$$\frac{I_C}{x \times 10^6} = 18 \Rightarrow I_C = 18x \times 10^6 > 12x \times 10^6$$

 The instruction count of the machine code running on IBM RS/6000 is higher than that on VAX 11/780.

Question 3 – CPI

Processor	Clock Frequency (MHz)	Performance (MIPS)	CPU Time (secs)
 VAX 11/780	5	1	12 <i>x</i>
IBM RS/6000	25	18	x

•
$$MIPS\ rate = \frac{f}{CPI \times 10^6}$$

• For VAX 11/780:
$$\frac{5 \times 10^6}{CPI \times 10^6} = 1 \Rightarrow CPI = 5$$

• For IBM RS/6000:
$$\frac{25 \times 10^6}{x \times 10^6} = 18 \Rightarrow CPI = \frac{25}{18} \approx 1.39$$

Question 4

(Problem 2.4 in textbook)

Four benchmark programs are executed on three computers with

the following results.

 The table shows the execution time in seconds, with 100,000,000 instructions executed in each of the four programs.

	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20
Program 3	500	1000	50
Program 4	100	800	100

- Calculate the MIPS values for each computer for each program.
- Then calculate the arithmetic and harmonic means assuming equal weights for the four programs, and rank the computers based on arithmetic mean and harmonic mean.

Question 4 – MIPS

 100M instructions are executed in each of the four programs

MIPS	Computer A	Computer B	Computer C
Program 1	100M/1M = 100	100M/10M = 10	100M/20M = 5
Program 2	100M/1000M = 0.1	100M/100M = 1	100M/20M = 5
Program 3	100M/500M = 0.2	100M/1000M = 0.1	100M/50M = 2
Program 4	100M/100M = 1	100M/800M = 0.125	100M/100M = 1

Question 4 – means

• $AM: \frac{1}{N} \sum a_i$

•
$$HM: \frac{N}{\sum_{a_i}^{1}}$$

MIPS	Computer A	Computer B	Computer C
Program 1	100	10	5
Program 2	0.1	1	5
Program 3	0.2	0.1	2
Program 4	1	0.125	1
AM	101.3/4 = 25.325	11.225/4 = 2.806	13/4 = 4.25
Rank by AM	1	3	2
НМ	4/(1/100 + 1/0.1 + 1/0.2 + 1/1) = 0.250	4/(1/10 + 1/1 + 1/0.1 + 1/0.125) = 0.209	4/(1/5 + 1/5 + 1/2 + 1/1) = 2.105
Rank by HM	2	3	1