Таблица оригиналов и изображений

Составим краткую таблицу, устанавливающую соответствие между некоторыми оригиналами (часто встречающимися на практике) и их изображениями. Достаточно полная таблица оригиналов и изображений, позволяющая по заданному оригиналу находить изображение и наоборот, есть, в частности, в книге «Справочник по операционному исчислению» (авторы В.А. Диткин и П.И. Кузнецов).

Таблица оригиналов и изображений

No	Оригинал $f(t)$	Изображение $F(p) = \int_{0}^{\infty} f(t) \cdot e^{-pt} dt$
1	1	$\frac{1}{p}$
2	e^{at}	$\frac{1}{p-a}$
3	t^n	$\frac{n!}{p^{n+1}}$
4	$t^n e^{at}$.	$\frac{n!}{(p-a)^{n+1}}$
5	$\sin \beta t$	$\frac{\beta}{p^2 + \beta^2}$
6	$\cos \beta t$	$\frac{p}{p^2 + \beta^2}$
7	$\operatorname{sh} \beta t$	$\frac{\beta}{p^2-\beta^2}$
8	$\cosh \beta t$	$\frac{p}{p^2-\beta^2}$
9	$e^{at}\sin\beta t$	$\frac{\beta}{(p-a)^2+\beta^2}$
10	$e^{at}\cos\beta t$	$\frac{p-a}{(p-a)^2+\beta^2}$
11	$t \cdot \sin \beta t$	$\frac{2p\beta}{\left(p^2+\beta^2\right)^2}$
12	$t \cdot \cos \beta t$	$\frac{p^2 - \beta^2}{\left(p^2 + \beta^2\right)^2}$
13	$\frac{1}{2\alpha^3}(\sin\alpha t - \alpha t\cos\alpha t)$	$\frac{1}{\left(p^2+\alpha^2\right)^2}$

В таблице формулы свойств изображений. Здесь (как и всюду в дальнейшем)

$$F(p) \xrightarrow{\cdot} f(t), \ \Phi(p) \xrightarrow{\cdot} \varphi(t)$$

1	cF(p)	$\stackrel{\cdot}{ ightarrow}$	c f(t) (c = const)
2	$\alpha F(p) + \beta \Phi(p)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$\alpha f(t) + \beta \varphi(t) \begin{pmatrix} \alpha = \text{const} \\ \beta = \text{const} \end{pmatrix}$
3	$\frac{1}{a}F\left(\frac{p}{a}\right)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	f(at) (a>0)
4	$F(p+\alpha)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$e^{-\alpha t}f(t)$
5	pF(p)-f(0)	$\overset{\cdot}{\rightarrow}$	f'(t)
6	$p^{n}F(p)-p^{n-1}f(0)f^{(n-1)}(0)$	$\overset{\boldsymbol{\cdot}}{\rightarrow}$	$f^{(n)}(t)$
7	$\frac{1}{p}F(p)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$\int\limits_0^t f(\tau)d\tau$
8	$(-1)^n \frac{d^n F(p)}{dp^n}$	$\overset{\boldsymbol{\cdot}}{\rightarrow}$	$t^n f(t)$
9	$\int\limits_{p}^{\infty}F(z)dz$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$\frac{f(t)}{t}$
10	$e^{-p\tau}F(p)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$f(t-\tau)$ $(\tau>0)$
11	$F_1(p)F_2(p)$	$\stackrel{\boldsymbol{\cdot}}{ o}$	$\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau$
12	$pF_1(p)F_2(p)$	· →	$f_1(t)f_2(0) + \int_0^t f_1(\tau)f_2'(t-\tau)d\tau$