第六章 微带线

微波平面电路传输线

- 实际应用对微波系统的要求体积小、重量轻、性能可靠、易于系统集成
- 波导传输线在实际应用中存在的问题 体积大、重量重、难以系统集成
- 常见的平面电路传输线带状线,微带线,共面波导等

典型的平面电路

微带线来源与结构形式

微带线电路制备

- 微带线制备: 半导体工艺
 - (1) 基片处理
 - (2) 镀膜
 - (3) 光刻电路
 - (4) 其它处理
- 基片选择介质损耗、介电常数、导热系数以及价格。
- 最常用的基片
 氧化铝陶瓷(99陶瓷)、聚四氟乙烯、兰宝石等

微带线的工作模式和准静态分析

- 空气微带线(单一介质填充微带线)
 - 双导体系统,基本模式是TEM波
 - 可以用传输线理论模拟(L,C)

单一介质填充微带线

- 单一介质填充的微带线:
 - TEM波,用分布参数电路(传输线)模拟
 - 传输线的特征参数: 特性阻抗,传播常数(相速度)
 - 对无耗线或低耗线

$$Z_0 = \sqrt{L_0/C_0}, \qquad v_p = \frac{1}{\sqrt{L_0C_0}}$$

- 空气线 $v_p = c$; 全部介质填充 $v_p \rightarrow v_p/\sqrt{e_r}$
- 空气线电容 C_0 ; 全部介质填充 $C=e_rC_0$

用相速和电容表示的特性阻抗

$$Z_0 = 1/(v_p C_0)$$

(1) 单一空气:

$$v_p = c \qquad Z_0^a = \frac{1}{cC_0^a}$$

(2) 单一介质:

$$v_p = c/\sqrt{e_r}$$
 $Z_0^d = \frac{1}{\frac{c}{\sqrt{e_r}}(e_r C_0^a)} = \frac{Z_0^a}{\sqrt{e_r}}$

• 部分介质填充:

- 存在空气和介质界面,混合波型 如是TEM波,则空气和介质中的相速度不同,不能 实现相位匹配,不可能是TEM波
- 准TEMt皮

当导带宽度 w 和基片高度 h 均远小于 $1/\sqrt{e_r}$ 时,纵向分量远小于横向分量,可近似当做TEM波 处理

- 部分介质填充时的参数
 - 电容: $C_0^a < C_0 < e_r C_0^a$
 - 将部分填充化为等价的单一填充: 有效介电常数

$$C_0 = \varepsilon_e C_0^a \qquad (1 < \varepsilon_e < \varepsilon_r)$$

- 电路特征参数

$$v_p = \frac{c}{\sqrt{e_e}}, \qquad Z_0 = \frac{Z_0^a}{\sqrt{e_e}}, \qquad I_g = \frac{I_0}{\sqrt{e_e}}$$

微带线的主要问题是求:

- 1. 空气微带线的特性阻抗
- 2. 有效介电常数

微带线的特性阻抗和有效介电常数

空气微带线的特性阻抗
 零厚度的空气微带线的特性阻抗可以用保角变换方法
 求得严格解。应用施瓦兹变换,将微带结构变为平行板结构求解。

$$Z_0 = 60p \, \frac{K(k')}{K(k)}$$

k', k与微带线尺寸w/h有关

工程应用中的近似解:

零厚度空气微带线的特性阻抗的近似解

$$Z_0 = 120p \left[\frac{W}{h} + 2.42 - 0.44 \frac{h}{W} + \left(1 - \frac{h}{W} \right)^6 \right]^{-1} \qquad (W/h \ge 1)$$

$$Z_0 = 60 \ln \left(\frac{8h}{W} + \frac{W}{4h} \right) \qquad (W/h \le 1)$$

有介质均匀填充时

$$Z_0^d = \frac{Z_0}{\sqrt{e_r}}$$

• 介质填充微带线的有效介电常数

$$\begin{split} \varepsilon_e &= q \textcolor{red}{e_1} + (1 - q) \textcolor{red}{e_2} \quad \left(\textcolor{red}{e_1} \rightarrow \textcolor{red}{e_r}, \textcolor{red}{e_2} \rightarrow 1 \right) \\ &= 1 + q \left(\varepsilon_r - 1 \right) \end{split}$$

q 称为填充因子, 近似公式

$$q = \frac{1}{2} \left[1 + \frac{1}{\sqrt{1 + 10 \, h/w}} \right]$$

微带线的有效介电常数

$$e_e = \frac{e_r + 1}{2} + \frac{e_r - 1}{2} \frac{1}{\sqrt{1 + 10h/w}}$$

• 微带线的特性阻抗

宽导带微带线

$$Z_0 = \frac{120\pi}{\sqrt{\varepsilon_e}} \left[\frac{W}{h} + 2.42 - 0.44 \frac{h}{W} + \left(1 - \frac{h}{W} \right)^6 \right]^{-1} \qquad (w/h \ge 1)$$

窄导带微带线

$$Z_0 = \frac{60}{\sqrt{\varepsilon_e}} \ln \left(\frac{8h}{W} + \frac{W}{4h} \right) \qquad (w/h < 1)$$

• 修正的微带线近似公式

$$\varepsilon_{e} = \frac{\varepsilon_{r} + 1}{2} + \frac{\varepsilon_{r} - 1}{2} \left(1 + 12 \frac{h}{W} \right)^{-\frac{1}{2}}$$

$$Z_{0} = \frac{120\pi}{\sqrt{\varepsilon_{e}}} \left[\frac{W}{h} + 1.393 + 0.667 \ln \left(\frac{W}{h} + 1.444 \right) \right]^{-1} \qquad (w/h \ge 1)$$

$$\varepsilon_{e} = \frac{\varepsilon_{r} + 1}{2} + \frac{\varepsilon_{r} - 1}{2} \left[\left(1 + 12 \frac{h}{W} \right)^{-\frac{1}{2}} + 0.04 \left(1 - \frac{W}{h} \right)^{2} \right]$$

$$Z_{0} = \frac{60}{\sqrt{\varepsilon_{e}}} \ln \left(\frac{8h}{W} + \frac{W}{4h} \right)$$

$$M \qquad (w/h < 1)$$

- 导带厚度影响
 - 导带宽度修正

导带侧壁和接地面之间存在电容效应,这种效应可 用增加导带宽度来等效

$$W_e = W + \Delta W$$

$$\frac{\Delta W}{h} = \begin{cases} \frac{1.25}{p} \frac{t}{h} \left(1 + \ln \frac{2h}{t} \right) & \frac{W}{h} \ge \frac{1}{2p} \\ \frac{1.25}{p} \frac{t}{h} \left(1 + \ln \frac{4pW}{t} \right) & \frac{W}{h} \le \frac{1}{2p} \end{cases}$$

微带线的设计

已知微带线的特性阻抗 Z_0 和基片的 ε_r ,求微带线特征尺寸 (W/h)

• 确定微带线是宽带线还是窄带线。判别参数

$$A = \frac{Z_0}{60} \sqrt{\frac{\varepsilon_r + 1}{2}} + \frac{\varepsilon_r - 1}{\varepsilon_r + 1} \left(0.23 + \frac{0.11}{\varepsilon_r} \right)$$

当 A>1.52, 微带线为窄带线。

- 窄带线情形(A > 1.52):

$$\frac{W}{h} = \frac{8}{e^A - 2e^{-A}}$$

- 宽带线情形 (A ≤ 1.52):

$$\frac{W}{h} = \frac{e_r + 1}{pe_r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{e_r} \right] + \frac{2}{p} \left[B - 1 - \ln(2B - 1) \right]$$

其中
$$B = \frac{60p^2}{\sqrt{e_r}Z_0} = \frac{377p}{2Z_0\sqrt{e_r}}$$

微带线的损耗

- 微带线的损耗有三部分: 导体损耗,介质损耗和辐射损耗
- 导体损耗 α_c

$$a_c = \frac{R_0}{2Z_0}$$

求解R₀的难点在,电流在 导体中的分布是不均匀的 并且难以得到其表达式

导电媒质中的色散关系

$$k^{2} = w^{2} me = k_{0}^{2} m_{r} \left(1 - \frac{jS}{we_{0}} \right) \approx k_{0}^{2} \left(-\frac{jS}{we_{0}} \right)$$

$$k = \pm \left(-1 + j \right) \sqrt{\frac{wm_{0}S}{2}}, \qquad d = \sqrt{\frac{2}{wm_{0}S}}$$

磁场和电场的关系

$$\frac{\mathbf{r}}{H} = \left(\sqrt{\frac{\mathbf{S}}{\mathbf{wm}}}\hat{k} \times E\right) e^{-j\frac{p}{4}}$$

$$\frac{\hat{k} \times E}{H} = \sqrt{\frac{\mathbf{wm}}{\mathbf{S}}} e^{j\frac{p}{4}} = \sqrt{\frac{\mathbf{wm}}{2\mathbf{S}}} (1+j) = \frac{1}{od} (1+j)$$

• 增量电感法

1. 理想金属导带

$$Z_{s0} = R_{s0} + jX_{s0} = 0 + jX_{s0}$$

电抗用等价的电感表示 $L_{s0} = X_{s0}/w$

2. 非理想导体导带

$$Z_s = R_s + jX_s = \frac{1}{sd}(1+j) \implies R_s = X_s = \frac{1}{sd}$$

$$\Delta L_s = 1/(wsd) = m_c(d/2)$$

其中
$$d = \sqrt{2/wm_c s}$$

ΔL等价于在非理想导体表面下δ/2处放置理想导体后所引起的电感增量

导体的金属损耗常数

$$a_c = \frac{R_0}{2Z_0} = \frac{R_s}{2m_0Z_0} \left(\frac{\partial L_0}{\partial n}\right)$$

 $(\partial L_0/\partial n)$ 包括了接地面和导带表面的后退引起的电感增量

$$\left(\frac{\partial L_0}{\partial n}\right) = 2\frac{\partial L_0}{\partial W} + 2\frac{\partial L_0}{\partial t} + 2\frac{\partial L_0}{\partial h}$$

其中 $L_0 = Z_0 \sqrt{e_e}/c$, 故 $L_0 = (Wh)$ 的函数。最后可以得到,

$$a_{c} = \frac{R_{s}}{m_{0}Z_{0}h} \frac{\partial L_{0}}{\partial (W/h)} \left(1 + \frac{W}{2h} + \frac{\partial W}{\partial t}\right)$$

L0是(W/h)的函数

$$\frac{\partial L_0}{\partial h} = \frac{W}{h^2} \frac{\partial L_0}{\partial (W/h)}, \quad \frac{\partial L_0}{\partial W} = \frac{1}{h} \frac{\partial L_0}{\partial (W/h)}.$$

$$\frac{\partial L_0}{\partial t} = \frac{1}{h} \frac{\partial L_0}{\partial (W/h)} \frac{\partial W}{\partial t}$$

其中
$$L_0 = \frac{Z_0}{v_p} = \frac{Z_0\sqrt{e_r}}{c}$$

将 L_0 用 Z_0 表示 $L_0 = Z_0 \sqrt{e_e}/c$, 最后可以得

$$W/h \leq \frac{1}{2p}$$
:

$$a_{c}'\left(\frac{Z_{0}h}{R_{s}}\right) = \frac{8.68}{2p} \left[1 - \left(\frac{W'}{4h}\right)^{2}\right] \left\{1 + \frac{h}{W'} + \frac{h}{pW'}\left[\ln\left(\frac{4pW}{t} + \frac{t}{W}\right)\right]\right\} \qquad (dB)$$

$$\frac{1}{2p} \, \mathfrak{L} \, W/h \, \mathfrak{L} \, 2$$

$$\alpha_{c}' \left(\frac{Z_{0}h}{R_{s}} \right) = \frac{8.68}{2\pi} \left[1 - \left(\frac{W'}{4h} \right)^{2} \right] \left\{ 1 + \frac{h}{W'} + \frac{h}{\pi W'} \left[\ln \frac{2h}{t} - \frac{t}{h} \right] \right\}$$
 (dB)

 $W/h \ge 2$

$$a_{c}'\left(\frac{Z_{0}h}{R_{s}}\right) = \frac{8.68\left[\frac{W'}{h} + \frac{W'/ph}{W'/2h + 0.94}\right]\left\{1 + \frac{h}{W'} + \frac{h}{pW'}\left[\ln\frac{2h}{t} - \frac{t}{h}\right]\right\}}{\left\{\frac{W'}{h} + \frac{2}{p}\ln\left[2pe\left(\frac{W'}{2h} + 0.94\right)\right]\right\}^{2}}$$
(dB)

其中w'为考虑到厚度t后的有效宽度

$$W' = W + \Delta W$$

$$W/h \stackrel{3}{\sim} 2 \qquad DW = \frac{t}{p} \left(\ln \frac{2h}{t} + 1 \right)$$

$$W/h^{3} \frac{1}{2p} \qquad DW = \frac{t}{p} \left(\ln \frac{4pW}{t} + 1 \right)$$

介质损耗 α_d

$$a_d = \frac{1}{2P_0} \frac{\Delta P_d}{\Delta l}$$
 $g = \frac{1}{2} EH^* = \frac{E^2}{2Z_c} = \frac{E^2}{2\sqrt{m_0/e_1}}$

- 传输功率

$$P_0 = \iint \frac{E^2}{2} \sqrt{\frac{e_1}{m_0}} \, ds = \frac{1}{2} \sqrt{\frac{e_1}{m_0}} \iint E^2 ds$$

- 损耗功率

$$\frac{\Delta P_d}{\Delta l} = \frac{\iiint_{\Delta t} \mathbf{S}_1 E^2 dt}{2\Delta l} = \frac{\mathbf{S}_1}{2} \iint E^2 ds$$

- 介质损耗常数

$$a_d = \frac{1}{2P_0} \frac{DP_d}{Dl} = \frac{S_1}{2} \sqrt{\frac{m_0}{e_1}}$$

用损耗角表示

$$e_1 - j s_1 / w \qquad \tan d = \frac{s_1}{w e_1}$$

$$a_d = \frac{S_1}{2e_1} \sqrt{m_0 e_1} = \frac{S_1}{2e_1 w} w \sqrt{m_0 e_1} = \frac{\tan d}{2} k$$

$$a_d = \frac{p \tan d}{lg} (N/cm)$$
 $a'_d = 27.3 \frac{\tan d}{lg} (dB/cm)$

• 在部分填充介质的微带线中,介质损耗低于全部填充

$$a_d = \frac{e_e - 1}{e_r - 1} \frac{e_r}{e_e} \left(\frac{p \tan d}{l g} \right) (N/\text{cm})$$

- 实际微带线的损耗要大于上述计算结果,其原因有
 - (1) 过渡段的损耗和辐射损耗
 - (2) 表面光洁度不够
 - (3) 导体组织结构不够致密

微带线色散特性

- 随着频率的升高,微带线明显偏离TEM波
 - 在微带线的相速、特性阻抗等和频率有关
 - 有效介电常数和频率有关
- 高次波型主要有两种:

波导波型: 存在于金属带条和接地板之间

表面波型。接地板上的介质基片中

• 平行板波导波形

最容易产生的波导波型是其最低型TE₁型和TM₁型波它们的临界波长分别为

$$I_c|_{TE_1} = \sqrt{e_r} \left(2W + 0.8h\right)$$

$$= 2\sqrt{e_r} h \left(\frac{W}{h} + 0.4\right)$$

$$I_c|_{TM_1} = 2\sqrt{e_r} h$$

• 表面波波形

表面波的TM模式

方程的解:

$$E_{z}(x,y) = A\sin(k_{c}x) + B\cos(k_{c}x) \qquad 0 \le x \le d$$

$$E_{z}(x,y) = Ce^{hx} + De^{-hx} \qquad d \le x \le \infty$$

$$k_{c}^{2} = e_{r}k_{0}^{2} - b^{2}, \quad h^{2} = k_{0}^{2} - b^{2}$$

边界连续性条件:

$$E_z(x,y) = 0$$
 @ $x = 0$
 $E_z(x,y) < \infty$ @ $x \to \infty$
 $E_z(x,y)$ 在 $x = d$ 处连续
 $H_y(x,y)$

由边界连续性条件得到:

$$A\sin(k_c d) = De^{-hd}, \quad \frac{e_r A}{k_c}\cos(k_c d) = \frac{D}{h}e^{-hd}$$

色散关系:

$$k_c \tan(k_c d) = \mathbf{e}_r h$$

截至频率:

$$f_c = \frac{nc}{2d\sqrt{e_r - 1}}, \quad (n = 0, 1, 2...)$$

表面波TE模式

$$\left(\frac{\partial^2}{\partial x^2} + e_r k_0^2 - b^2\right) H_z(x, y) = 0 \qquad 0 \le x \le d$$

$$\left(\frac{\partial^2}{\partial x^2} + k_0^2 - b^2\right) H_z(x, y) = 0 \qquad d \le x \le \infty$$

色散关系: $k_c d \cot(k_c d) = hd$

截至频率: $f_c = \frac{(2n-1)c}{4d\sqrt{e_r-1}}$, (n=1,2,...)

• 表面波型

最低的TM型表面波的临界波长

$$I_c|_{\mathrm{TM}} \to \infty$$

$$I_c\big|_{\rm TE} = 4d\sqrt{e_r - 1}$$

对瓷材料基片 $\varepsilon_{\rm r}=9$, 取 w=d=1 mm

波导波型:

$$I_c|_{\mathrm{TE}_{10}} \approx 8.4 \; \mathrm{mm}$$

$$I_c|_{\mathrm{TM}_{01}} \approx 6 \,\mathrm{mm}$$

表面波型:

$$I_c|_{\text{TF}} \approx 11.3 \text{ mm}$$

$$I_{c}|_{\mathrm{TM}} \rightarrow \infty$$

表面波的激发条件:

当TE型和TM型表面波与微带线准TEM型波的相速相等时两种模式的电磁波产生强耦合,从而激发起表面波。 其频率分别为:

TE波型
$$f_{\text{TE}} = \frac{3\sqrt{2} c}{8h\sqrt{e_r - 1}}$$
 TM皮型
$$f_{\text{TM}} = \frac{2\sqrt{2} c}{8h\sqrt{e_r - 1}}$$

• 微带线的工作模式:

TEM 模式 + 高次模式 = 准TEM 模式

出现高次模式表现为:

- 1. 在微带线的相速、特性阻抗等和频率有关
- 2. 有效介电常数和频率有关

假定 $2<\epsilon_r<10$, 0.5<h<3 (mm)

0.9<Wh<13

$$e'_{e} = e_{e} + 3 \times 10^{-6} (e_{r} + 1)(e_{r} - 1) \sqrt{\frac{Z_{0}W'}{h}} (f - f_{0})$$

Wh>4

$$e'_e = e_e + 3 \times 10^{-6} (e_r + 1)(e_r - 1)h\sqrt{\frac{Z_0}{3}} \frac{W'}{h} (f - f_0)$$

其中
$$f_0 = \frac{0.95}{\sqrt[4]{e_r - 1}} \sqrt{\frac{Z_0}{h}}$$
 (GHz)

• 其它形式的微带线和其它形式的微波平面电路

Transmission line	Q factor	Radiaton	Dispersion	Impedance range	Chip mounting
Microstrip (dielectric) (GaAs, Si)	250 100 to 150	Low High	Low	20 to 120	Difficult for shunt, easy for series
Stripline	400	Low	None	35 to 250	Poor
Suspended stripline	500	Low	None	40 to 150	Fair
Slotline	100	Medium	High	60 to 200	Easy for shunt, diffi- cult for series
Coplanar waveguide	150	Medium	Low	20 to 250	Easy for series and shunt
Finline	500	None	Low	10 to 400.	Fair