Explore covariates

Rémi Mahmoud

2022-10-13

Ce document a pour but d'explorer les valeurs des différents prédicteurs calculés via les procédures de splines et d'imputations. Pour éviter de surcharger les graphiques, les imputations sont résumées par leur valeur moyenne.

Dans un premier temps, on regarde les valeurs des différences intra IC et des différences inter-IC-SC pour la hauteur et la biomasse.

Nom indicateur	Unité	Formule	Interprétation
diff_asymp_height	m	max _{height,cereal} – max _{height,legume}	Compétition pour l'accès à la lu- mière et/ou processus de complé- mentarité
diff_lambda_height	°Cd	$\lambda_{ ext{height},cereal} - \lambda_{ ext{height},legume}$	Complémentarité temporelle : plus les différences sont fortes, les es- pèces démarrent leur croissance à un moment différent
diff_slope_height	m/Cd	$\mu_{ ext{height},cereal} - \mu_{ ext{height},legume}$	Compétition ; une espèce croît beaucoup plus vite qu'une autre
diff_asymp_biomass	$t.ha^{-1}$	$\max_{ ext{biomass}, cereal}$ $\max_{ ext{biomass}, legume}$	Compétition, plus de biomasse aérienne = plus de photosynthèse, plus de surface prise etc.
diff_lambda_biomass	$^{\circ}\mathrm{Cd}$	$\lambda_{ ext{biomass},cereal} - \lambda_{ ext{biomass},legume}$	Complémentarité temporelle : plus les différences sont fortes, les es- pèces démarrent leur croissance à un moment différent
diff_slope_biomass	$t.ha^{-1}/Cd$	$\mu_{\text{biomass},cereal} - \mu_{\text{biomass},legume}$	Compétition ; une espèce croît beaucoup plus vite qu'une autre
diff_max_LAI	_	$\max_{\mathrm{LAI},cereal} - \max_{\mathrm{LAI},legume}$	Compétition ; Différence entre Leaf Area Index ; une espèce à une sur- face foliaire plus élevée que l'autre
diff_max_sla	$cm^2.g^{-1}$	$\max_{\mathrm{SLA},cereal} - \max_{\mathrm{SLA},legume}$	Compétition ; Différence entre sur- faces foliaires spécifiques ; une es- pèce à une surface foliaire plus élevée que l'autre
diff_IC_SC_asymp_height_X	m	$\max_{\mathrm{height},IC} - \max_{\mathrm{height},SC}$	Impact du contexte de culture asso- cié sur la hauteur max: adaptation au contexte de culture associé pour l'accès à la lumière ; Potentiel effet tuteur pour la légumineuse
diff_IC_SC_lambda_height_X	°Cd	$\lambda_{ ext{height},IC} - \lambda_{ ext{height},SC}$	Impact du contexte de culture asso- cié sur la dynamique de croissance : adaptation au contexte de cul- ture associé pour le démarrage de la croissance
diff_IC_SC_slope_height_X	m/Cd	$\mu_{\mathrm{height},IC} - \mu_{\mathrm{height},SC}$	
diff_IC_SC_asymp_biomass_X	$t.ha^{-1}$	$\frac{\text{max}_{\text{biomass},IC}}{\rho} - \text{max}_{\text{biomass},SC}$	Impact du contexte de culture associé sur la biomasse max: production plus ou moins élevée en contexte de culture associée; effet positif du mélange via les processus écologiques; normalisé par le ratio de densité IC/SC pour tenir compte du fait qu'il y a moins de plantes par ha
diff_IC_SC_lambda_biomass_X	°Cd	$\lambda_{ ext{biomass},IC} - \lambda_{ ext{biomass},SC}$	Impact du contexte de culture as- sociée sur la dynamique de crois- sance : adaptation au contexte de culture associé pour le démarrage de la croissance
diff_IC_SC_slope_biomass_X	$t.ha^{-1}/Cd$	$\frac{\mu_{\text{biomass},IC}}{\rho} - \mu_{\text{biomass},SC}$	
diff_IC_SC_max_LAI_X	_	$\frac{\max_{\text{SLA},IC}}{\rho} - \max_{\text{LAI},SC}$	Impact du contexte de culture as- sociée sur les surfaces foliaires spé- cifiques
diff_IC_SC_max_sla_X	_	$\max_{\text{SLA},IC} - \max_{\text{SLA},SC}$	Impact du contexte de culture as- sociée sur les surfaces foliaires spé- cifiques
cover_before_800_normalized_tt	_	$\frac{\int_0^{800} cover \ dTT}{800}$	Pouvoir couvrant en début de cycle
cover_before_800_tt_SC_X	-	$ \frac{\int_{0}^{800} cover \ dTT}{8800} = \frac{\int_{0}^{800} cover_{SC} \ dTT}{800} dTT $	Pouvoir couvrant en début de cycle du mélange en comparaison à celui de la culture pure correspondante (légumineuse ou céréale)

Table 1: Prédicteurs et interprétation possible (X représente la céréale ou la légumineuse ; ρ représente le ratio de densité entre culture associée et pure)

Height related predictors

Within intercrop differences

Nom indicateur	Formule	Interprétation
		Forte compétition de la céréale pour l'accès à la
diff_asymp	$\max_{\text{height},cereal} - \max_{\text{height},legume}$	lumière dans les mélanges blé dur /pois
		Pas de différence significative pour blé dur / féve-
		role
diff lambda	\ \	Pas de différence sur blé dur / féverle mais dif-
diii_iaiiibda	$\lambda_{ ext{height},cereal} - \lambda_{ ext{height},legume}$	férence pour blé dur / pois
diff slope		Vitesse maximale de croissance plus élevées pour
diii_siope	$\mu_{\mathrm{height},cereal} - \mu_{\mathrm{height},legume}$	la légumineuse dans les mélanges blé dur / pois

Table 2: Différences intra-IC hauteur: résultats principaux

Sole crop - intercrop differences

Nom indicateur	Formule	Interprétation
diff_IC_SC_asymp_height		Céréale: positivement impactée, en terme
	$\max_{\text{height},IC} - \max_{\text{height},SC}$	de hauteur, par le mélange
		Légumineuses: Négativement impactée
diff_IC_SC_lambda_height	$\lambda_{ ext{height},IC} - \lambda_{ ext{height},SC}$	Cérale: Moment de démarrage de la crois-
		sance peu impacté en moyenne
		Légumineuse: léger retard au démarrage
		constaté en moyenne dans les différents
		mélanges
diff_IC_SC_slope_height	$\mu_{\mathrm{height},IC} - \mu_{\mathrm{height},SC}$	Céréale : Vitesse max positivement (mais
		légèrement) impactées en moyenne
		Légumineuse: réduction de la vitesse de
		croissance

Table 3: Différences IC - SC hauteur: résultats principaux

Biomass related predictors

Within intercrop differences

Nom indicateur	Formule	Interprétation
diff carmon	may may	Biomasse maximale de la céréale supérieure à
$diff_asymp \qquad max_{biomass,cereal} - max_{biomass,legume}$		celle de la légumineuse dans lles 2 mélanges
		Moments de démarrage globalement plus tardifs
diff_lambda	$\lambda_{\text{biomass},cereal} - \lambda_{\text{biomass},legume}$	pour le blé que pour la légumineuse, contraire-
		ment à ce qui est constaté pour la hauteur
diff_slope	$\mu_{\text{biomass},cereal} - \mu_{\text{biomass},legume}$	Les vitesses de croissance max de la biomasse
		sont globalement plus élevées pour le blé

Table 4: Différences intra-IC biomasse : résultats principaux

Sole-crop - intercrop differences

Nom indicateur	Formule	Interprétation
diff_IC_SC_asymp_biomass	$\frac{\max_{\text{biomass},IC}}{\rho} - \max_{\text{biomass},SC}$	Impact "positif" du mélange pour les céréales (cf papier BFE) ; plus négatif pour les légumineuses
diff_IC_SC_lambda_biomass	$\lambda_{\mathrm{biomass},IC} - \lambda_{\mathrm{biomass},SC}$	Impact globalement nul du mélange
diff_IC_SC_slope_biomass	$\frac{\mu_{\mathrm{biomass},IC}}{ ho} - \mu_{\mathrm{biomass},SC}$	Vitesse de croissance semble augmentée pour les céréales, et reste à peu près la même pour les légumineuses

Table 5: Différences IC - SC biomasse: résultats principaux

Light related predictors

Within intercrop differences

Nom indicateur	Formule	Interprétation
		Surface foliaire spécifique bien plus élevée pour le blé
$diff_max_sla$	$\max_{\text{SLA},cereal} - \max_{\text{SLA},legume}$	dans les assos blé / pois ; moins le cas pour les assos
		blé féverole
diff_max_LAI	$\max_{\text{LAI},cereal} - \max_{\text{LAI},legume}$	LAI équivalents entre céréales et légumineuses

Table 6: Différences intra-IC SLA et LAI : résultats principaux

Sole-crop - intercrop differences

Nom indicateur	Formule	Interprétation
diff_IC_SC_max_LAI_X	$\frac{\max_{\text{SLA},IC}}{\rho} - \max_{\text{LAI},SC}$	Augmentation du LAI en association pour la céréale, et diminution pour la légumineuse
diff_IC_SC_max_sla_X	$\max_{\text{SLA},IC} - \max_{\text{SLA},SC}$	Diminution de la SLA pour la céréale, et SLA équivalente en asso pour la légumineuse

Table 7: Différences IC - SC LAI et SLA: résultats principaux

Cover

Effet expérimentation fort (Auzeville Cochard 2010) sur cette covariable à avoir en tête. Pouvoir couvrant moyen des assos équivalents.

Relationships between differences

On effectue des ACP, sur données complètes pour explorer les liens existant entre ces prédicteurs .

PCA height

Premier axe: Mélanges ou la légumineuse a une hauteur et vitesse de croissance plus élevée en IC: Plutot les asso blé / pois vs mélanges ou la céréale est plus grande en IC qu'en SC (blé / féverole)

Deuxième axe: Mélange ou la céréale est plus grande que la légumineuse dans l'asso

PCA biomass

Premier axe: Mélange ou la céréale a plus de biomasse que la lgumineuse vs mélange ou la légumineuse a plus produit en IC Deuxième axe: Mélange ou la céréale a le plus bénéficié du contexte IC par rapport à la SC. On distingue moins bien les mélanges sur cette ACP.

PCA light

L'ACP sur les données liées à la lumière

Le premier axe est lié aux UE ayant un fort taux de couverture en début de cycle, notamment grâce à la céréale (diff_IC_SC_max_LAI_cereal).

Le deuxième axe est lié aux UE ayant une surface foliaire éléevée pour les légumineuses en IC.

PCA all predictors

L'ACP sur tous les prédicteurs permet de distinguer, sur le premièr axe, les UE où la légumineuse a profité du mélange en terme de biomasse de celle ou la céréale a profité du mélange. Le second axe distingue en terme de hauteur les UE ou la légmineuse a profité du mélange de celles ou c'est plutôt la céréale

La différence de LAI max est fortement corrélée à la différence de biomasse maximales. On constate aussi que le taux de couverture avant 800°Cd est corrélée à la hauteur de la légumineuse.

