Name	Tags	Question Description
		The algebraic sum of the powers in a circuit is equal to zero
19BT20241	Easy	Ans:Kirchoff's Voltage Law and Conservation Of Energy
	•	Identify which of the following element is a non-linear device
		Ans: If you find any of the below one's it could be the answer
		Diode, transistors, vacuum tubes, iron core inductors, transformers, other
19BT20241	Easy	semiconductor devices.
		If the capacitances 20F, 20F are in series, find the equivalent capacitance
19BT20241	Easy	Ans: 10F
		In a linear network consisting of resistors and ideal voltage source, if the value
		of resistors are doubled, then voltage across each resistor
19BT20241	Easy	Ans: No Change
		Which of the following is true about an ideal Current source?
		Ans: These are the properties of an ideal current source
		1. Provides constant current with 100% efficiency
		2. Has infinite internal resistance
		3. Is independent of the voltage across it and if two ends are not
		connected to an external circuit the potential difference across it
19BT20241	Easy	would be infinite.
		A voltage source having a voltage of 100 V and internal resistance of 10Ω is
		equivalent to a current source of
400730344	_	Ans: Is equivalent to a current source of 10A with a resistance of 10Ω
19BT20241	Easy	connected in parallel to it.
		Constant current source is a
		Ans: A constant current source is a power source which provides a constant current to a load, even despite changes and variance in
		load resistance. In other words, the current which a constant current
19BT20241	Easy	source provides is steady, even if the resistance of the load varies.
		If a resistor R _x is connected between nodes X and Y, R _y between X and Z,
		R _z between Y and Z to form a delta connection, then after transformation to
		star, the resistor at node Y is?
		Ans: According to the question this is the result $((R_x \times R_z)/(R_x + R_y + R_z))$. But
19BT20241	Easy	there might be a typo in the question, So verify before answering.
19BT20241	Easy	Identify the law which is going to place a vital role in loop analysis
		Identify the units for conductance
19BT20241	Easy	Ans: Seimens,mho,ohm ⁻¹
		What is the phase angle between the voltage and current in case of capacitor
		and mention which one is lagging
19BT20241	Easy	Ans: Phase angle b/w voltage and current is 90° and voltage is lagging
		What is the value of (4+3i)-(2+2i)
19BT20241	Easy	Ans: 2+i
		Kirchhoff's law is not applicable to circuits with
19BT20241	Easy	Ans: Distributed parameters
<u> </u>	,	An electric heater draws 10 A from a 120-V line. The resistance of the heater is:
19BT20241	Easy	Ans: 12 Ω
190120241	Lasy	
40DT20244		The number of branches b, number of nodes n, and the number of independent
19BT20241	Easy	loops I in a network are related as:

		Ans: I = b - n + 1
		A series RLC circuit has R=30 Ω , X _C =50 Ω , and X _L =90 Ω . The impedance of the circuit is:
19BT20241	Easy	Ans: 563.1Ω
19BT20241	Easy	The Voltage across a capacitor leads the current through it by 90°.
19BT20241	Easy	The imaginary part of impedance is called: Ans: Reactance
19BT20241	Easy	A function that repeats itself after fixed intervals is said to be: Ans: Periodic Function
19BT20241	Easy	The impedance of a capacitor increases with increase in frequency. Ans:False
19BT20241	Moderate	If v_1 =30 sin (ωt +10°) and v_2 =20 sin (ωt +50°). Which of the following statement is true?
19BT20241	Easy	Indicate the units for reactive power Ans: Volt Amphere Reactive
19BT20241	Easy	The product of rms values of current and voltage is called as Ans: Apparent Power
		The root mean square value of the voltage is
19BT20241	Easy	Ans: $(V_{\rm o}/\sqrt{2})$, or, equivalently, 0.707 $V_{\rm o}$
19BT20241	Easy	The ratio of peak value to the rms value is called as Ans: Also known as the "equivalent" or "DC equivalent" value of an ACvoltage or current. For a sine wave, the RMS value is approximately 0.707 of its peak value. The crest factor of an AC waveform is the ratio of its peak(crest) to its RMS value.
19BT20241	Easy	What is the phase angle between voltage and current in case of resistor Ans: 0 degrees
19BT20241	Easy	The power factor lies in between Ans: 0 to 1.0
19BT20241	Easy	The power factor of capacitor is Ans: The power factor of a pure capacitor is 1
19BT20241	Easy	The power factor is the ratio of power to the power. Ans: Real Power and Apparent Power
19BT20241	Easy	If there are 8 nodes in network, we can get number of equations in the nodal analysis. Ans: Having 'n' nodes there will be 'n-1' equations. So the answer is 7.
19BT20241	Easy	The energy stored in the inductor is? Ans: $E = 1/2 LI^2$ and it will be stored in a magnetic field
130120241	Lusy	Impedance is a complex quantity having the real part as and the imaginary part as
19BT20241	Easy	Ans: Resistance and Reactance A 25 Ω resistor has a voltage of 150 sin377 t. Find the corresponding power.
19BT20241	Moderate	Ans: 900 sin ² 377 t Use these equations to verify I = V/R and P = VI
130120241	iviouerate	ose these equations to verify I - V/N and P = VI

		A practical current source can also be represented as
		Ans: A practical current source could be represented with a resistor
		in parallel with an ideal current source. (look for such circuit in the
19BT20241	Easy	options)
		Which of the following is true about an ideal voltage source?
		Ans: Below are the properties of an ideal voltage source, either of them could
		be the answer
		1. It's voltage is constant at any instant of time and is independent of the
		current drawn from it.
		2. Has zero internal resistance
19BT20241	Easy	# Pracitcally an ideal voltage source cannot be obtained
		In case of purely capacitive circuit, average power = and θ=
19BT20241	Easy	Ans: average power = 0 and ϑ =90
		A voltage v (t) = 100sinωt is applied to a circuit. The current flowing through the
		circuit is $i(t) = 15\sin(\omega t - 30^{\circ})$. Find the effective value of voltage.
19BT20241	Moderate	Ans: $V_{eff} = (100/\sqrt{2})$
		Determine the average power delivered to the circuit consisting of an impedance
		Z = 5+j8 when the current flowing through the circuit is I = $5 \angle 30^{\circ}$.
		Ans: 62.5W
		Explanation:
		$Pavg = ((I_m)^2/2)R$
		Current Im = 5A
19BT20241	Difficult	And calculate the rest
		Two ideal voltage sources of unequal output voltages cannot be placed
		in
19BT20241	Easy	Ans: Parallel
		Time constant of an inductive circuit
19BT20241	Easy	Ans:Increses with increase of inductance and decrease of resistance
	,	In a purely inductive circuit if the supply frequency is reduced to 1/2, the current
		will
19BT20241	Moderate	Ans: Be doubled
		Time constant of a capacitive circuit increases with
19BT20241	Easy	Ans: Increase of capacitance and increase of resistance
		, , , , , , , , , , , , , , , , , , , ,