

Physik

V6: Drehbewegung

Prof. Dr.-Ing. Tatsiana Malechka

Drehbewegung

- Grundsätzliche Bewegungsarten
- Drehbewegung
- Skalaren Betrachtung der Drehbewegung
- Vektorielle Betrachtung der Drehbewegung
- Drehmoment
- Trägheitsmoment
- Steinerscher Satz
- Kinetische Energie
- **Drehimpuls**

Grundsätzliche Bewegungsarten

- Kinematik ist die Lehre von Bewegung (beschreibt nur)
- Grundsätzliche Bewegungsarten (ausgedehnte Körper)
 - Translation Änderung der Position.
 Jeder Punkt des Körpers hat die gleiche Bahnkurve

2. Rotation (Drehung) - Änderung der Orientierung. Punkte bewegen sich auf Kreisbögen

Skalare Betrachtung der Drehbewegung

Winkelgrößen

ex en ex eq ez

Drehbewegung:

Besser Beschreibung über Drehgrößen \rightarrow über Drehwinkel: φ

Winkelgeschwindigkeit: $\omega(t) = \frac{d\varphi}{dt} = \dot{\varphi}$ Bahngeschwindigkeit: $v_{\varphi} = \omega \cdot \dot{r}$

Winkelbeschleunigung: $\alpha = \frac{d\omega}{dt} = \dot{\omega} = \ddot{\varphi}$ Bahnbeschleunigung: $a_{\varphi} = \alpha \cdot r$

Die **Einheit** für Winkel ist das Bogenmaß, in Radiant (rad) 1 Umdrehung = 2π

What causes the circular trajectory? Radial force: Centripetal force

Bewegungsgleichungen

Winkelgeschwindigkeit ω ist konstant

$$d\varphi = \omega dt \rightarrow \int d\varphi = \omega \int dt \rightarrow \varphi(t) = \omega t + \varphi_0$$

• Winkelbeschleunigung α ist konstant \rightarrow gleichförmig beschleunigte Drehbewegung

$$d\omega = \alpha \ dt \rightarrow \int d\omega = \alpha \int dt \rightarrow \omega(t) = \alpha t + \omega_0$$

$$\int d\varphi = \int \omega dt \to \int (\alpha t + \omega_0) dt \to \varphi(t) = \frac{\alpha}{2} t^2 + \omega_0 t + \varphi_0$$

 $X=x_0+v_0\xi+\frac{1}{2}a\xi^2$

Bewegungsgleichungen

Drehbewegung:

•
$$\omega(t) = \alpha t + \omega_0$$

•
$$\varphi(t) = \frac{\alpha}{2}t^2 + \omega_0 t + \varphi_0$$

•
$$\omega^2 = \omega_0^2 + 2\alpha\varphi$$

•
$$\overline{\omega} = \frac{\omega + \omega_0}{2}$$

Translationsbewegung:

•
$$v(t) = at + v_0$$

•
$$x(t) = \frac{a}{2}t^2 + v_0t + x_0$$

•
$$v^2 = v_0^2 + 2ax$$

•
$$\bar{v} = \frac{v + v_0}{2}$$

Zwei Kräfte

Zentripetal- und Zentrifugalkräfte

Zentrifugalkraft (Centrifugal force) $\vec{F}_{ZF} = \frac{mv^2}{r} \vec{e}_r$

- Scheinkraft (tritt nur im rotierenden Bezugssystem auf)
- Das Gefühl, nach außen gedrückt zu werden auf dem Karussell

Zentripetalkraft (Centripetal force) $\vec{F}_{ZP} = - \frac{mv^2}{r} \ \vec{e}_r$

- Reale Kraft
- Hält das Objekt auf der Kreisbahn

7 von 24

Vektorielle Betrachtung der Drehbewegung

Ortsvektor:
$$\vec{r}(t) = \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ r \cdot \sin(\varphi(t)) \end{pmatrix}^{\times} \qquad \mathring{\chi} = \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t)) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r \cdot \cos(\varphi(t) \\ \end{pmatrix}^{\prime} = r \cdot \varphi(t) \cdot \begin{pmatrix} r$$

Geschwindigkeit:
$$\vec{v}(t) = \dot{\vec{r}}(t) = \begin{pmatrix} -r \, \phi(t) \sin(\phi(t)) \\ r \, \phi(t) \cos(\phi(t)) \end{pmatrix} = \omega \cdot r \begin{pmatrix} -\sin(\phi(t)) \\ \cos(\phi(t)) \end{pmatrix} = v_{\phi} \begin{pmatrix} -\sin(\phi(t)) \\ \cos(\phi(t)) \end{pmatrix}$$

Beschleunigung:
$$\vec{a}(t) = \vec{v}(t) = \frac{d}{dt} v_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} = \dot{v}_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} + v_{\varphi} \begin{pmatrix} -\dot{\varphi}(t)\cos(\varphi(t)) \\ -\dot{\varphi}(t)\sin(\varphi(t)) \end{pmatrix} = a_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} - v_{\varphi} \omega \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix} = \vec{a}_{\varphi}(t) + \vec{a}_{r}(t)$$

$$\vec{a} = \vec{a}_{\varphi} + \vec{a}_{r} = \vec{a}_{t} + \vec{a}_{ZP}$$

$$\vec{a} = \vec{a}_{\varphi} + \vec{a}_{r} = \vec{a}_{t} + \vec{a}_{ZP}$$

Vektorielle Betrachtung der Drehbewegung

Geschwindigkeit:
$$\vec{v}(t) = \dot{\vec{r}}(t) = \begin{pmatrix} -r \, \varphi(t) \sin(\varphi(t)) \\ r \, \varphi(t) \cos(\varphi(t)) \end{pmatrix} = \omega \cdot r \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} = v_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix}_{\gamma}^{\chi}$$

- Der Geschwindigkeitsvektor steht senkrecht auf dem Ortsvektor und damit tangential zur Kreisbahn.
- Der Betrag des Geschwindigkeitsvektors ist gleich dem Betrag der Bahngeschwindigkeit:

$$|\vec{v}| = \sqrt{v_{\varphi}^2 \sin^2 \varphi(t) + v_{\varphi}^2 \cos^2 \varphi(t)} = v_{\varphi}$$

Beschleunigung:
$$\vec{a}(t) = \dot{\vec{v}}(t) = \frac{d}{dt} v_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} = \dot{v}_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} + v_{\varphi} \begin{pmatrix} -\dot{\varphi}(t)\cos(\varphi(t)) \\ -\dot{\varphi}(t)\sin(\varphi(t)) \end{pmatrix} = a_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} - v_{\varphi} \omega \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix} = \vec{a}_{\varphi}(t) + \vec{a}_{r}(t)$$

$$\vec{a} = \vec{a}_{\varphi} + \vec{a}_{r} = \vec{a}_{t} + \vec{a}_{ZP}$$

Tangentialbeschleunigung \vec{a}_t oder \vec{a}_{φ} :

- Der Vektor der Tangentialbeschleunigung ist parallel zum Geschwindigkeitsvektor.
- Sein Betrag ist gleich dem Betrag der Bahnbeschleunigung.
- Der Vektor der Tangentialbeschleunigung beschreibt die Änderung des Betrags des Geschwindigkeitsvektors.
- Bei einer Kreisbewegung mit konstanter Bahngeschwindigkeit verschwindet der Vektor der Tangentialbeschleunigung.

EII

Vektorielle Betrachtung der Drehbewegung

Beschleunigung:
$$\vec{a}(t) = \dot{\vec{v}}(t) = \frac{d}{dt}v_{\varphi}\begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} = \dot{v}_{\varphi}\begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} + v_{\varphi}\begin{pmatrix} -\dot{\varphi}(t)\cos(\varphi(t)) \\ -\dot{\varphi}(t)\sin(\varphi(t)) \end{pmatrix} = (\cos(\varphi(t)))$$

$$a_{\varphi} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} - v_{\varphi} \,\omega \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix} = \vec{a}_{\varphi}(t) + \vec{a}_{r}(t)$$

$$\vec{a} = \vec{a}_{\varphi} + \vec{a}_{r} = \vec{a}_{t} + \vec{a}_{ZP}$$

Zentripetalbeschleunigung \vec{a}_{ZP} oder \vec{a}_r :

• Für den Betrag des Vektors der Zentripetalbeschleunigung gilt:

$$|a_{ZP}| = |\omega v_{\varphi}| = \omega^2 r = \frac{v_{\varphi}^2}{r}$$

- Der Vektor der Zentripetalbeschleunigung ist entgegengesetzt zum Ortsvektor gerichtet.
- Der Vektor der Zentripetalbeschleunigung beschreibt die Änderung der Richtung des Geschwindigkeitsvektors.

Vektorielle Betrachtung der Drehbewegung

Arbeit und Kinetische Energie

$$W = \int \vec{F} \cdot d\vec{s} = \int \vec{F_r} \, \vec{e}_r \, ds \, \vec{e}_{\varphi} + \int F_{\varphi} \vec{e}_{\varphi} \, ds \, \vec{e}_{\varphi} = 0 + \int F_{\varphi} \vec{e}_{\varphi} \, ds \, \vec{e}_{\varphi} = \int F_{\varphi} \, ds$$

Zentripetalkraft: $\vec{F}_{ZP} = -\frac{mv^2}{r} \vec{e}_r$

Arbeit der Zentripetalkraft: $W_{ZP} = \int \vec{F} \cdot d \vec{s} = 0$

No work from a centripetal force for a circular trajectory. Is there still an energy? Yes, kinetic energy from acceleration along $e\phi$

$$E_{kin} = \int \overset{\text{F.g.}}{m} \frac{ds}{\varphi} \overset{\text{J.f.}}{ds} = \int m\alpha r^2 d\varphi = m\alpha r^2 \varphi = \frac{1}{2} m\alpha^2 r^2 t^2 = \frac{1}{2} m\omega^2 r^2 = \frac{1}{2} mv^2$$

$$e\varphi = d \circ v$$

$$\int ds \overset{\text{J.f.}}{m} \frac{ds}{\varphi} \overset{\text{J.f.}}{ds} = \frac{1}{2} m\omega^2 r^2 = \frac{1}{2} mv^2$$

$$\int ds \overset{\text{J.f.}}{\varphi} \frac{ds}{\varphi} \overset{\text{J.f.}}{\varphi} = \frac{1}{2} m\omega^2 r^2 = \frac{1}{2}$$

Beispiel

- 1. Ein Fahrzeug ist nicht befestigt und kann theoretisch am höchsten Punkt des Loopings nach unten fallen.
- Ø Berechne die Geschwindigkeit, die das Fahrzeug am höchsten Stelle des Loopings haben muss, um nicht herunterzufallen.
- 5 Bestimmen die erforderliche Starthöhe, damit das Fahrzeug den Looping vollständig durchfahren kann.
- 2. Berechne die Radialbeschleunigung, die man an der höchsten und an der tiefsten Stelle des Loopings spürt.

Beispiel

- 1. Ein Fahrzeug ist nicht befestigt und kann theoretisch am höchsten Punkt des Loopings nach unten fallen.
- Berechne die Geschwindigkeit, die das Fahrzeug am höchsten Stelle des Loopings haben muss, um nicht herunterzufallen.
- Bestimmen die erforderliche Starthöhe, damit das Fahrzeug den Looping vollständig durchfahren kann.
- 2. Berechne die Radialbeschleunigung, die man an der höchsten und an der tiefsten Stelle des Loopings spürt.

Rotationsenergie

• Kinetische Energie: $E_{kin} = \frac{1}{2}m\omega^2 r^2 = \frac{1}{2}mv^2$

$$\frac{1}{2}(mr^3) \cdot w^2 = \frac{1}{2} |w^2|$$

What about a rotating object?

$$E_{rot} = \sum_{i} \frac{\Delta m_{i}}{2} \dot{\vec{r}}^{2}_{\perp,i} = \sum_{i} \frac{\Delta m_{i}}{2} v_{\perp,i}^{2} = \sum_{i} \frac{\Delta m_{i}}{2} r_{\perp,i}^{2} \omega^{2} = \frac{\omega^{2}}{2} \sum_{i} \Delta m_{i} r_{\perp,i}^{2}$$

$$\Delta m_{i} \rightarrow 0 \qquad E_{rot} = \frac{\omega^{2}}{2} \int r_{\perp}^{2} dm \qquad \text{for } dV$$

$$E_{rot} = \frac{\omega^{2}}{2} \int \rho r_{\perp}^{2} dV$$

Trägheitsmoment

FH MÜNSTER University of Applied Sciences

Massenpunkt

- Kinetische Energie von Massenpunkt: $E_{kin} = \frac{1}{2}m\omega^2 r^2 = \frac{1}{2}mv^2$
- Rotationsenergie: $E_{rot} = \frac{\omega^2}{2}I$

mit Trägheitsmoment $I = \int \rho r_{\perp}^2 dV = mr_{\perp}^2$

$$E_{rot} = \frac{\omega^2}{2} m r_{\perp}^2$$

Trägheitsmoment

FH MÜNSTER University of Applied Sciences

Stange

- Rotationsenergie: $E_{rot} = \frac{\omega^2}{2}I$ mit Trägheitsmoment $I = \int \rho r_{\perp}^2 dV$
- $I = \int \rho r_{\perp}^2 dV$ lineare Dichte (length density) $\sigma = \frac{dm}{dr_1} = \frac{m}{s}$

- Rotation um die Achse mit d=0:
- Rotation um die Achse mit d = -s/2:

Trägheitsmoment

FH MÜNSTER University of Applied Sciences

Sphäre

• Rotationsenergie: $E_{rot} = \frac{\omega^2}{2} I$ Trägheitsmoment $I = \int \rho r_{\perp}^2 \ dV$

•
$$I = \int \rho r_{\perp}^2 dV = \frac{m}{V} \int r_{\perp}^2 dV =$$

Cartesian coordinates: dV = dxdydz

Cylindrical coordinates: $dV = r_{\perp} dr_{\perp} d\varphi dz$

Trägheitsmoment Sphare

FH MÜNSTERUniversity of Applied Sciences

Dynamik von Drehbewegungen

FH MÜNSTER University of Applied Sciences

Trägheitsmoment

Steiner'sche Satz (Theorem paralleler Achsen): erlaubt einfache Berechnung von *I* bezüglich der Achse, die parallel zur Schwerpunktsachse verschoben ist

Jakob Steiner – Schweizer Mathematiker (1796 -1863)

$$I_{a'} = I_a + m_{ges} \cdot d^2 = I_s + m_{ges} \cdot d^2$$

a: Achse durch den Schwerpunkt

a': Achse parallel zu a, nicht durch den Schwerpunkt

 $I_{\rm S}$ - Trägheitsmoment um Schwerpunktsachse $m_{\rm qes}$ - Gesamtmasse

d - Abstand der Drehachsen

	Körper	Ort der Drehachse	Trägheits- moment
(a)	Dünner Reifen mit Radius R_0	Durch den Mittelpunkt	MR_0^2
(b)	Dünner Reifen mit Radius R_0 und Breite b	Durch zentralen Durchmesser	$\frac{1}{2}MR_0^2 + \frac{1}{12}Mb^2$
(c)	Massiver Zylinder mit Radius R_0	Durch den Mittelpunkt	$\frac{1}{2}MR_0^2$
(d)	Hohlzylinder mit Innenradius R_1 und Außenradius R_2	Durch den Mittelpunkt R2	$\frac{1}{2}M(R_1^2 + R_2^2)$
(e)	Homogene Kugel mit Radius r_0	Durch den Mittelpunkt	$\frac{2}{5}Mr_0^2$
(f)	Lange, homogene Stange mit <i>l</i> Länge	Durch den Mittelpunkt Drehachse	$\frac{1}{12}Ml^2$
(g)	Lange, homogene Stange mit <i>l</i> Länge	Durch ein Ende Drehachse ← l → l	$\frac{1}{3}Ml^2$
(h)	Rechteckige dünne Platte mit Länge <i>l</i> und Breite <i>b</i>	Durch den Mittelpunkt	$\frac{1}{12}M(l^2+b^2)$
		Aus Giancoli Physik	

Aus Giancoli, Physik

Dynamik von Drehbewegung

Kinetische Energie bei einer Rollbewegung

Jede Rollbewegung ist zerlegbar in Translation des Schwerpunktes der Gesamtmasse und Drehung der Masse um die Schwerpunktsachse.

$$E_{kin} = \frac{1}{2} \cdot I \ \omega^2 + \frac{1}{2} \cdot m v_s^2$$

Dynamik der Drehbewegung

Trägheitsmoment

Voll- und Hohlzylinder mit gleicher Masse *m* und gleichem Radius R rollen schiefe Ebene hinunter.

Welcher Zylinder ist schneller unten?

- A) Der Vollzylinder.
- B) Der Hohlzylinder.
- C) Beide kommen gleichzeitig unten an.

Dynamik der Drehbewegung

Trägheitsmoment

Voll- und Hohlzylinder mit gleicher Masse *m* und gleichem Radius R rollen schiefe Ebene hinunter.

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Tatsiana Malechka Labor Autonome Systeme

