

Experimento 5

Laboratório de Circuitos Elétricos

AutoriaMatrículaPedro Henrique Dornelas Almeida18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

27 de março de 2021

1 Plataforma Utilizada

Tina-TI: versão 9.2.30.221 SF-TI

2 Procedimento Experimental

Valores utilizados:

$$R1 = 560\Omega$$
 , $C = 250nF$
 $L = 1mH$, $V_{pp} = 1V$
 $V_{off} = 0V$, $f_0 = 4kHz$
 $f_1 = 8kHz$, $f_2 = 12kHz$

Atividade 0

O primeiro passo é somente configurar a fonte de ruído assim como no experimento passado, ela foi configurada da seguinte maneira:

Fonte de Ruído

Atividade 1

Agora, devemos configurar o circuito para conseguirmos realizar o experimento, e o circuito ficou da seguinte maneira:

Também foi necessário configurar a fonte de tensão da maneira pedida, uma onda senoidal com amplitude de V_{pp} e V_{off} , e esta ficou:

Fonte de Tensão

Com o ambiente configurado, podemos passar a próxima atividade.

T_{1a})

$$V_{R} = \frac{R}{R + j2\pi fL - \frac{j}{2\pi fC}} \cdot \frac{V_{pp}}{2}$$

$$V_{R} = \frac{\frac{RV_{pp}}{2}}{R + j(\frac{4\pi^{2}f^{2}LC - 1}{2\pi fC})}$$

$$V_{R} = \frac{RV_{pp}}{2\sqrt{R^{2} + (\frac{4\pi^{2}f^{2}LC - 1}{2\pi fC})^{2}}} \angle - tan^{-1} \left(\frac{4\pi^{2}f^{2}LC - 1}{2\pi fCR}\right)$$

T1b)

$$V_{L} = \frac{j2\pi fL}{R + j2\pi fL - \frac{j}{2\pi fC}} \cdot \frac{V_{pp}}{2}$$

$$V_{L} = \frac{\pi fLV_{pp}}{\sqrt{R^{2} + (\frac{4\pi^{2}f^{2}LC - 1}{2\pi fC})^{2}}} \angle \frac{\pi}{2} - tan^{-1} \left(\frac{4\pi^{2}f^{2}LC - 1}{2\pi fCR}\right)$$

T1c)

$$V_{C} = \frac{-\frac{j}{2\pi fC}}{R + 2\pi fL - \frac{j}{2\pi fC}} \cdot \frac{V_{pp}}{2}$$

$$V_{C} = \frac{V_{pp}}{4\pi fC\sqrt{R^{2} + (\frac{4\pi^{2}f^{2}LC - 1}{2\pi fC})^{2}}} \angle - \frac{\pi}{2} - tan^{-1} \left(\frac{4\pi^{2}f^{2}LC - 1}{2\pi fCR}\right)$$

T1d)

$$I_s = \frac{V_R}{R} = \frac{V_L}{-\frac{j}{2\pi fC}} = \frac{V_{pp}}{1\sqrt{R^2 + (\frac{4\pi^2 f^2 LC - 1}{2\pi fC})^2}} \angle - tan^{-1} \left(\frac{4\pi^2 f^2 LC - 1}{2\pi fCR}\right)$$

T_{1e})

$$v_R(t) = \frac{RV_{pp}}{2\sqrt{R^2 + (\frac{4\pi^2 f^2 LC - 1}{2\pi fC})^2}} cos\left(2\pi ft - tan^{-1}\left(\frac{4\pi^2 f^2 LC - 1}{2\pi fC}\right)\right)$$

$$v_L(t) = \frac{\pi f L V_{pp}}{\sqrt{R^2 + (\frac{4\pi^2 f^2 L C - 1}{2\pi f C})^2}} cos \left(2\pi f t + \frac{\pi}{2} - tan^{-1} \left(\frac{4\pi^2 f^2 L C - 1}{2\pi f C} \right) \right)$$

$$v_C(t) = \frac{V_{pp}}{4\pi f C \sqrt{R^2 + (\frac{4\pi^2 f^2 L C - 1}{2\pi f C})^2}} cos \left(2\pi f t - \frac{\pi}{2} - tan^{-1} \left(\frac{4\pi^2 f^2 L C - 1}{2\pi f C} \right) \right)$$

$$i_S(t) = \frac{V_{pp}}{2\sqrt{R^2 + (\frac{4\pi^2 f^2 LC - 1}{2\pi fC})^2}} cos\left(2\pi ft - tan^{-1}\left(\frac{4\pi^2 f^2 LC - 1}{2\pi fC}\right)\right)$$

Atividade 2

Aqui devemos configurar um Osciloscópio para a visualização das curvas de tensão para os elementos presentes no circuito. Para observar e conseguir fazer as alterações na frequência e observar os efeitos, configuramos o seguinte ambiente:

Figura 1

Após configurar, o próximo passo é observar as curvas no osciloscópio:

Figura 2: Tensão no Resistor

Figura 3: Tensão no Indutor

Figura 4: Tensão no Capacitor

A2a)

Pode se observar que a atenuação de alguns sinais foi maior com o aumento da frequência, como a tensão no capacitor, e em outras ficou um pouco constante, como foi o caso do indutor e do resistor. Também foi possível notar que quando maior a frequência menor era a defasagem dos elementos, a diferença de fase entre eles.

Atividade 3

Neste momento iremos preencher as tabelas P.1, P.2 e P.3 com os valores medidos. Anotando o valor de pico para cada um dos sinais como sendo a amplitude. Já para calcular a fase é necessário medir o atraso em segundos

e depois converter em graus usando o período:

$$T = \frac{1}{f}$$

E por meio da regra de

$$360^{\circ} - T$$

$$fase^{\circ} - \Delta t$$

$$fase = \frac{360 \cdot \Delta t}{T} = 360 \cdot \Delta t \cdot f$$

E assim foi possível obter a fase das ondas.

A3a)

A principal causa de erros nos valores foi por conta do ruído implementado, simulando o efeito ocorrente de um circuito real. Porém, também há alguns fatores de arredondamento que podem incidir em erros nestes valores medidos.

Atividade 4

Aqui o objetivo é observar que tipo de resposta em frequência cada um dos elementos apresenta. Para isso retiramos a fonte de tensão e deixamos apenas o ruído branco pois este tem a maioria das componentes de frequência, e assim é possível observar a resposta em frequência de cada um dos elementos a diferentes componentes de frequência.

Para a análise as seguintes figuras foram obtidas:

Figura 5: Espectros de frequência

A4a)

O ruído gaussiano branco como já comentamos, contém em seu espectro todas as frequências, com uma densidade espectral de potência bem constante para todas quase todas as frequências.

A4b)

É possível ver que no capacitor as componentes de frequências baixas passam com mais facilidade, fazendo com que este tenha um comportamento mais parecido com um filtro passa-baixas. Já no indutor é possível ver que este tem uma resposta mais forte as componentes de frequência maiores, ou seja, tem um comportamento semelhante a um filtro passa-altas. Já o resistor aparenta ser um filtro passa-baixas ou talvez passa-faixas, não foi possível tirar uma conclusão muito certa pelo gráfico.

Atividade 5

3 Conclusão

4 Tabelas

Identificação

Turma	Bancada	Matrícula	Nome		
6A	2	18/0108140	Pedro Henrique Dornelas Almeida		

Tabelas do Procedimento Experimental

Tabela P.1 - Valores Calculados e Medidos da Tensão no Capacitor.

Tensão no Capacitor	Valor Calculado		Valor Medido		Erro(%)	
Frequência	Amplitude(mV)	Fase(°)	Amplitude(mV)	Fase(°)	Amplitude	Fase
f_0	396,54	-90	394,83	-90,97	0,43	1,06
f_1	234,34	-115	233,55	-115,54	0,33	0,47
f_2	166,63	-130	165,49	-129,25	0,69	0,58

Tabela P.2 - Valores Calculados e Medidos da Tensão no Indutor.

Tensão no Indutor	Valor Calculado		Valor Medido		Erro(%)	
Frequência	Amplitude(mV)	Fase(°)	Amplitude(mV)	Fase(°)	Amplitude	Fase
f_0	55,50	110,51	55,24	110,85	0,47	0,31
f_1	94,79	96,97	94,43	97,54	0,38	0,59
f_2	138,35	86,25	138,29	86,18	0,043	0,081

Tabela P.3 - Valores Calculados e Medidos da Tensão no Resistor.

Tensão no Resistor	Valor Calculado		Valor Medido		Erro(%)	
Frequência	Amplitude(mV)	Fase(°)	Amplitude(mV)	Fase(°)	Amplitude	Fase
f_0	790	20,80	788,63	20,85	0,17	0,23
f_1	886	8,30	885,39	8,29	0,06	0,12
f_2	909	1,75	909,51	1,72	0,05	1,74