Solutions to Homework 1

```
• rm(list = ls()) # clean up memory
setwd("path/of/your/working/directory") # change the path accordingly
cpi <- data <- read.table("CPI.txt", header = T) # first line contains variable names
str(cpi) # check the structure
head(cpi) # first few lines
```

1. Summary of Data by numerical values

```
summary(data)
apply(data, 2, var)
```

- The result of 'summary()' function is the summary statistics of the data. (Minimum, 1st Quantile, Median, Mean, 3rd Quantile, Maximum)
- By using 'apply()' function, the variance of each variables can be calculated.
- The variable 'Housing' has the maximum value of variance which is 5.22667, and the variable 'Transportation' has the minimum value of variance which is 1.138667.
- 2. Histogram

```
dev.off()
par(mfrow=c(2, 3))
for (i in 1:ncol(data)){
  hist(data[, i], main=paste("histogramuof", colnames(data)[i]),
  xlab=colnames(data)[i])
}
```


• Using for loop, the histogram of each variables in the data were produced.

- Using 'hist()' function, it is possible to overview the distribution of each variables in the data.
- The distribution of 'Transportation' and 'Education' has little skewness.
- The distribution of 'Food' and 'Housing' is skewed to right.
- The distribution of 'Recreation' is skewed to left.
- 3. Boxplot

```
opar <- par(no.readonly=TRUE)
par(opar)
for (i in 1:ncol(data)){
   boxplot(data[, i], main=paste("boxplot_of", colnames(data)[i]),
   xlab=colnames(data)[i])
}</pre>
```


- Using 'boxplot()' function, it is possible to overview the distribution of each variables in the data and also detect outliers.
- The x-axis represents the variable and the y-axis represents the value of CPI.
- The variable 'Food' and 'Housing' has one outlier and the variable 'Recreation' has 2 outliers.
- Also the skewness of the data can be checked out in the boxplot.
- 4. Correlation
- 4.1. Correlation plots and plots of pairs

```
dev.off()
library(corrplot)
data.cor <- cor(data)
corrplot(data.cor)
pairs(data, col=c("red", "blue"), pch=19, main="plots_of_pairs_between_items")</pre>
```


Figure 1: correlation plots

Figure 2: plots of pairs between items

- Refer to Figure 1 and Figure 2.
- The relationship between transportation and food is positive correlation.
- The relationship between transportation and recreation is positive correlation.
- The relationship between housing and food is negative correlation.
- 4.2. Plots of correlated variables with regions

- Refer to Figure 3
- By making plots with the regions, the relationship between highly correlated variables and region can be confirmed.
- 5. Dot chart

```
par(mfrow=c(1, 2))
item <- colnames(data)</pre>
```

- Refer to Figure 4
- Item (maximum CPI region, minimum CPI region)
- Food (Busan, Seoul)
- Housing (Ulsan, Daegu)
- Transportation (Chungnam, Incheon))
- Education (Gyeongnam, Gyeongbuk)
- 5-1. Minimum and maximum value of CPI in each variable and the region

```
min.item <- matrix(colnames(data), nrow=ncol(data), ncol=3)
max.item <- matrix(colnames(data),nrow=ncol(data), ncol=3)
for (i in 1:ncol(data)){
   min.item[i, 3] <- rownames(data)[which.min(data[, i])]
   max.item[i, 3] <- rownames(data)[which.max(data[, i])]
}
min.item[, 2] <- apply(data, 2, min)
max.item[, 2] <- apply(data, 2, max)
min.item
max.item</pre>
```

		min		max	
1	Food	117.8	Seoul	123.3	Busan
2	Housing	109.3	Daegu	118.5	Ulsan
3	Transportation	117.9	Incheon	121.8	Chungnam
4	Education	120.1	Gyeongbuk	126.5	Gyeongnam
5	Recreation	113.6	Gyeonggi	119.2	Chungbuk

- 6. Regional comparison
- 6.1. Regional comparison by variation

```
data.city=data[1:7,]
data.country=data[8:16,]
apply(data.city,2,mean)
apply(data.country,2,mean)
```

- The mean of 'Housing' and 'Recreation' CPIs are larger in city than country.
- The mean of 'Food', 'Transportation' and 'Education' CPIs are larger in country than the city
- 6.1. Regional comparison by variation

```
apply(data.city,2,var)
apply(data.country,2,var)
```

- The variance of 'Housing' CPI is larger in the city than country.
- The variance of 'Recreation' CPI is larger in the country than city.

plot of cpi between transportation and food

plot of cpi between transportation and recreation

plot between housing and food

Figure 3: Plots between highly correlated variables with region

Figure 4: Dot plots with region rank