Laborator 5 - solutii

Exercitiul 1

Fie $(X,Y):\Omega\to\mathbb{R}^2$ cu densitate. Stim densitatea cuplului (X,Y):

$$p(x,y) = \begin{cases} c \cdot x^2 \cdot y, 0 \le x, y \le 1, x + y \le 1\\ 0, \text{ in rest} \end{cases}$$

- $\mathbb{E}[X], \mathbb{E}[Y].$
- $\mathbb{E}[XY]$.
- Sunt X si Y independente?

Solutie:

Stim densitatea cuplului (X, Y).

Stim ca $\mathbb{E}[X] = \int_{\mathbb{R}} x \cdot p_X(x) dx$, unde $p_X : \mathbb{R} \to \mathbb{R}$ este densitatea lui X (stim din ipoteza ca X are densitate). Observam ca nu putem calcula in acest mod $\mathbb{E}[X]$ intrucat nu stim densitatea lui X, p_X .

Mai stim ca pentru orice functie masurabila $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, avem ca $\mathbb{E}[f(X,Y)] =$ $\int_{\mathbb{R}\times\mathbb{R}} f(x,y) \cdot p(x,y) \, dx \, dy$. In cazul de fata, daca alegem $f: \mathbb{R}\times\mathbb{R} \to \mathbb{R}, f(x,y) = x$, atunci avem $\mathbb{E}[X] = \int_{\mathbb{R} \times \mathbb{R}} x \cdot p(x,y) \, dx \, dy = c \cdot \int_{\mathcal{D}} x \cdot x^2 \cdot y \, dx \, dy$, unde $\mathcal{D} = \{(x,y) \in \mathcal{D} : x \in$ $[0,1] \times [0,1] | x + y \le 1 \}.$

Vrem sa aflam mai intai valoarea lui c. Stim ca $\int_{\mathbb{R}\times\mathbb{R}} p(x,y) dx dy = 1$, deci $\int_{\mathcal{D}} c \cdot x^2 \cdot y dx dy = 1$

Stim (curs) ca $\int_{\mathcal{D}} f(x,y) dx dy = \int_{\mathbb{R}} (\int_{\mathcal{D}_x} f(x,y) dy) dx$, unde $\mathcal{D}_x = \{y \in [0,1] | (x,y) \in \mathcal{D}\} = \{y \in [0,1] | (x,y) \in \mathcal{D}\}$ $\{y \in [0,1] | y \le 1-x\}. \quad \text{Deci,} \quad \int_{\mathcal{D}} p(x,y) \, dx \, dy = \int_{[0,1]} (\int_0^{1-x} c \cdot x^2 \cdot y \, dy) \, dx = c \cdot \int_0^1 x^2 \cdot (\int_0^{1-x} y \, dy) \, dx = c/2 \cdot \int_0^1 x^2 \cdot (1-x)^2 \, dx = c/2 \cdot \int_0^1 (x^2 - 2x^3 + x^4) \, dx = c/2 \cdot (1/3 - 1/2 + 1/5) = c/2 \cdot 1/30. \quad \text{Deci,} \quad c = 60.$

Atunci, $\mathbb{E}[X] = 60 \cdot \int_0^1 x^3 (\int_0^{1-x} y \, dy) \, dx = 30 \cdot \int_0^1 x^3 \cdot (1-x)^2 \, dx = 30 \cdot \int_0^1 x^3 \cdot (1-2x+x^2)$

 $30 \int_0^1 x^3 - 2x^4 + x^5 dx = 30 \cdot (1/4 - 2/5 + 1/6) = 1/2.$ $\mathbb{E}[Y] = 60 \cdot \int_0^1 x^2 (\int_0^{1-x} y^2 dy) dx = 20 \cdot \int_0^1 x^2 \cdot (1-x)^3 dx = 30 \cdot \int_0^1 x^2 \cdot (1-3x+3x^2-x^3) dx = 20 \cdot (1/3 - 3/4 + 3/5 - 1/6) = 1/3.$

 $\mathbb{E}[XY] \ = \ \int_{\mathbb{R}\times\mathbb{R}} xy \cdot p(x,y) \, dx \, dy \ = \ 60 \cdot \int_0^1 (\int_{\mathcal{D}_x} x^3 \cdot y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^{1-x} y^2 \, dy) \, dx \ = \ \int_0^1 x^3 \cdot (\int_0^1 x^3 \cdot$ $20 \cdot \int_0^1 x^3 \cdot (1-x)^3 \, dx = 20 \cdot \int_0^1 x^3 \cdot (1-3x+3x^2+x^3) \, dx = 20(1/4-3/5+3/6-1/7) = 1/7.$ Observam ca $\mathbb{E}[XY] = 1/7 \neq \mathbb{E}[X] \cdot \mathbb{E}[Y] = 1/2 \cdot 1/3$. Deci, X si Y dependente.

Laborator 5 - solutii

Exercitiul 2

Fie $(X,Y):\Omega\to\mathbb{R}^2$ cu

$$p(x,y) = \begin{cases} c \cdot (x^2 + y), 0 \le x, y \le 1\\ 0, \text{ in rest} \end{cases}$$

Calculati:

- $\mathbb{E}[X], \mathbb{E}[Y].$
- Var(X), Var(Y).
- Cov(X, Y).

Solutie:

- Luam f(x,y) = x si calculam $\mathbb{E}[f(X,Y)]$: $\mathbb{E}[X] = \int_{\mathbb{R} \times \mathbb{R}} x \cdot p(x,y) \, dx \, dy = c \cdot \int_{[0,1] \times [0,1]} x \cdot (x^2 + y) \, dy \, dx = c \cdot \int_0^1 (\int_0^1 x^3 + xy \, dy) \, dx = c \cdot \int_0^1 x^3 + x \cdot (1^2/2 0^2/2) \, dx = c \cdot \int_0^1 x^3 + x/2 \, dx = c \cdot (1/4 + 1/4) = c/2.$ Calculam c. Stim ca $\int_{\mathbb{R} \times \mathbb{R}} p(x,y) \, dx \, dy = 1$, deci $c \cdot \int_0^1 (\int_0^1 x^2 + y \, dy) \, dx = c \cdot \int_0^1 x^2 + 1/2 \, dx = c \cdot (1/3 + 1/2) = 5c/6 = 1$. Deci, c = 6/5. Astfel, $\mathbb{E}[X] = 3/5$. $\mathbb{E}[Y] = c \cdot \int_{[0,1] \times [0,1]} y \cdot (x^2 + y) \, dy \, dx = c \cdot \int_0^1 (\int_0^1 x^2 y + y^2 \, dy) dx = c \cdot \int_0^1 x^2/2 + 1/3 \, dx = c \cdot (1/6 + 1/3) = 6/5 \cdot 1/2 = 3/5.$
- Calculam $\mathbb{E}[X^2] = c \int_0^1 (\int_0^1 (x^2(x^2 + y) \, dy) \, dx = c \cdot \int_0^1 x^4 + x^2/2 \, dx = c \cdot (1/5 + 1/6) = 6/5 \cdot 11/30 = 11/25$. Deci, $\operatorname{Var}(X) = 11/25 9/25 = 2/25 \Rightarrow \sigma(X) = \frac{\sqrt{2}}{5} \approx 0.34$. Calculam $\mathbb{E}[Y^2] = c \int_0^1 (\int_0^1 (y^2(x^2 + y) \, dy) \, dx = c \cdot \int_0^1 x^2/3 + 1/4 \, dx = c \cdot (1/9 + 1/4) = 6/5 \cdot 13/36 = 13/30$. Deci, $\operatorname{Var}(Y) = 13/30 9/25 = \frac{11}{6 \cdot 25} \Rightarrow \sigma(Y) = \frac{\sqrt{11}}{\sqrt{6}} \cdot \frac{1}{5} \approx 0.27$. Asadar, $X \approx \frac{3}{5} \pm 0.34$, $Y \approx \frac{3}{5} \pm 0.27$.
- $\operatorname{Cov}(X,Y) = \mathbb{E}[XY] \mathbb{E}[X] \cdot \mathbb{E}[Y]$. $\operatorname{Calculam} \mathbb{E}[XY] = c \cdot \int_0^1 (\int_0^1 xy(x^2 + y) \, dy) \, dx = c \cdot \int_0^1 x^3/2 + x/3 \, dx = 6/5 \cdot (1/8 + 1/6) = 7/20$. $\operatorname{Avem} \operatorname{Cov}(X,Y) = 7/20 - 9/25 = 0.35 - 0.36 = -0.1$. $\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X) \cdot \sigma(Y)} = -\frac{0.1}{0.34 \cdot 0.27} \approx -0.35$.

Interpretare:

• $X ext{ si } Y ext{ nu sunt independente ptr ca } ext{Cov}(X,Y) \neq 0;$

Laborator 5 - solutii

- X si Y nu sunt dependente liniar pentru ca $\operatorname{Corr}(X,Y) \sim -0.35 \neq \pm 1.$
- Faptul ca $\operatorname{Corr}(X,Y) < 0$ ne indica faptul ca X si Y au valori invers proportionale $(\mathbb{E}[XY] < \mathbb{E}[X] \cdot \mathbb{E}[Y]$ implica faptul ca daca X ia valori mari, Y ia valori mici si invers).