Sequencing technologies

Genome resequencing

Sequencer as counting devices

Shendure, Jay, et al. DNA sequencing at 40: past, present and future. *Nature* 550.7676 (2017):

Escherichia coli strain ER1709 chromosome, complete genome Sequence ID: CP030240.1 Length: 4582842 Number of Matches: 1

Score 551 bit	s(298)	Expect 5e-153	Identities 300/301(99%)	Gaps 0/301(0%)	Strand Plus/Minus	
Query	1	CACCAGCGTTAAC		GATAATCAGCAGGTGAT		60
Sbjct	168128	CACCAGCGTTAAC	AGCAATAACAGCAGGAC	GATAATCAGCAGGTGAT	TACGTGCCAGTCC	168069
Query	61	GGCGGTAATGGTC	ATAAATTCGCTAAGAAA	AATGTTGAAGGGCGGCA	TCCCTGCCAGCGC	120
Sbjct	168068	GGCGGTAATGGTC	ATAAATTCGCTAAGAAA	AATGTTGAAGGGCGGCA	TCCCTGCCAGCGC	168009
uery	121	CAGCGCACCGCCG	CCAAACAGCACGGCGGT	AAATGGCATGATTTTGA	GCATCCCACAGAC	180
njet,	168003	CAGCGCAC GCCG	CCAP C GCGCT	AFA G CATGATT G	SCATECCACAGAC	167949
uery	181	GACG' GAGATCG	CGCGTGCCGTACTT AG	CAGTACATTGCCGGAAC	CGCAGAA LAGCAG	240
Pi#C	197948	CACCETTOAGAZEG	OGCODO GENERACITO AG	2 GTALA TOLÉGGAAC	CGCAGAACAGCAG	167889
uery	241	CGCTTTTGCCAGA	CTGTGGTTTAAGATGTG	CAGCAGCGCGGCAAAAA	TTCCCAGCGGCCC	300
tur	nan	COLETE CON	me=(30) %	CAG / GCC CGC CALLAA	94500	15860
uery	301	G 301	me (30X	, ,	•	

Sequencing technologies

Long

Short

Escherichia coli strain ER1709 chromosome, complete genome Sequence ID: CP030240.1 Length: 4582842 Number of Matches: 1

Range 1	l: 129130	to 131560 Gent	Bank Graphics	▼ Next	Match 🛕 Previ	ious Match
Score 1661 b	its(899)	Expect 0.0	Identities 2016/2506(80%)	Gaps 274/2506(10%)	Strand Plus/Plus	
Query	94	CGCCACGGCT-	ACACGTCGGTAATGC	ACGGTTCGCC-ACCAGACATA	TGGCCAGAGC	148
Sbjct	129130	CGCCACGGCTG	CACACGTCGGTAATGC	ACGGTTCGCCCACCGGACA	TGGCCAGAGC	129187
Query	149	GATGGC-A-	GCAGTCAAGGCT-AC-	ACGCGTC-GGCCAACGGTCAT	-CCTGCCTGA	198
Sbjct	129188	GTCATGGCGAT	ACCTTTAACGGTCAGGCT	ACGCGTCAGCCCGGCGGTCAT	CCCTGCCTGA	129247
Query	199	TGCAAAAAGCT	GTCTGCC-TCACGAACAG	ATGTCTTTCAGCCCACGCGTT	TGCACT-ACT	256
Sbjct	129248	TGCAAAAAGCT	GTCTGCCATCACGAACAG	ATGTTTCAGCCCACGCGTT	TGCGCTTGCT	129305
Query	257	GT-C-CTACT-	-TCTCTGAAG-CGGA	CATAAGCGTCTACCGGTGGAA	CGCTAAATGT	308
Sbjct	129306	GTCCGCAACTG	CTCACCGAGCCGGACCG	CA-AAGCGTC-ACCGGTGGAA	CGCTAAATGT	129363
2 erv	309	TTTTACCCCTT	GCAGATTCAGGGGTATCG	A COCCCTGAAG AA GCCCCG	TC-ACAATT	367
sbjct	129364	TTTTP CCGTT	GCAGATTCAGGG-TATCG	ACG-CCTGAA-AGA-GCGCG	TCTGCAATT	129419
Дегу	ďťac			TCT-CAOTACGCAGCG-TCG		422
Sbjct	129420	CATTTTGCATA	TAGCCCCTCCGCTTTCTC	TCGCCCACTAC-TGGCGATCG		129477
zu er y	maar	TOMPONICA	AC AT FEEC GT VAN	CACORG - COGOC-EG-T	9500	} ~\$300
Sbjct	129478	TIPECIT		GCACCTGTAACGCCGGGAATT		129534
)u er v	mar	ACACTECA:	этет(30)	AAGC LGC CT CACCT	ALCEGI. AV	}{ \$100(
					M L L L L	

Genome assembly

40 years of genome assembly

Genome assembly is complex

How do we make "the" genome path?

Hybrid assembly: How can we combine short and long reads?

The resulting assembly is both contiguous and accurate

Wengan: a new assembly paradigm

- Full hybrid assembler.
- Avoids entirely all-vs-all read comparisons (fast).
- A new assembly graph (GoogleMaps).
- 1.5 years of development.
 - ~20k lines of code (C++, PERL)
- https://github.com/adigenova/ wengan
- **Di Genova, A**. (2018). Fast-SG: an alignment-free algorithm for hybrid assembly. *GigaScience*, 7(5).
- **Di Genova, A**. (2021). Wengan: Efficient and high-quality hybrid de novo assembly of human genomes. *Nature Biotechnology*.

Wengan

ARTICLES

https://doi.org/10.1038/s41587-020-00747-w

nature biotechnology

OPEN

Efficient hybrid de novo assembly of human genomes with WENGAN

Alex Di Genova^{1,2}, Elena Buena-Atienza^{3,4}, Stephan Ossowski^{3,4} and Marie-France Sagot^{1,2}

Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only long, error-prone reads, and most human genomes assembled from long reads add accurate short reads to polish the consensus sequence. Here we report an algorithm for hybrid assembly, WENGAN, that provides very high quality at low computational cost. We demonstrate de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethION, PacBio Sequel, Illumina and MGI technology. WENGAN implements efficient algorithms to improve assembly contiguity as well as consensus quality. The resulting genome assemblies have high contiguity (contig NG50: 17.24–80.64 Mb), few assembly errors (contig NGA50: 11.8–59.59 Mb), good consensus quality (QV: 27.84–42.88) and high gene completeness (BUSCO complete: 94.6–95.2%), while consuming low computational resources (CPU hours: 187–1,200). In particular, the WENGAN assembly of the haploid CHM13 sample achieved a contig NG50 of 80.64 Mb (NGA50: 59.59 Mb), which surpasses the contiguity of the current human reference genome (GRCh38 contig NG50: 57.88 Mb).

WENGAN is a Mapudungun word.

WENGAN means "Making the path".