

Figure 5.4: The adjacency matrix and adjacency list of a given graph

Comparison	Winner
Faster to test if (x, y) is in graph?	adjacency matrices
Faster to find the degree of a vertex?	adjacency lists
Less memory on small graphs?	adjacency lists $(m+n)$ vs. (n^2)
Less memory on big graphs?	adjacency matrices (a small win)
Edge insertion or deletion?	adjacency matrices $O(1)$ vs. $O(d)$
Faster to traverse the graph?	adjacency lists $\Theta(m+n)$ vs. $\Theta(n^2)$
Better for most problems?	adjacency lists

Figure 5.5: Relative advantages of adjacency lists and matrices.

* adjacency matrix

	1	2	3	4	
1 2 3	0	5	0	21	0
2	0	0	5	0	20
3	0	0	0	13	-8
4 5	0	9	0	0	0
5	0	0	0	0	0 20 -8 0

adjacency list


```
#define MAXV
                     1000
                               /* maximum number of vertices */
typedef struct {
       int y;
                              /* adjacency info */
       int weight;
                   /* edge weight, if any */
       struct edgenode *next; /* next edge in list */
} edgenode;
typedef struct {
       edgenode *edges[MAXV+1]; /* adjacency info */
       int degree [MAXV+1]; /* outdegree of each vertex */
       int nvertices; /* number of vertices in graph */
                           /* number of edges in graph */
       int nedges;
                              /* is the graph directed? */
       bool directed;
} graph;
```

```
read_graph(graph *g, bool directed)
                                       /* counter */
        int i;
                                        /* number of edges */
        int m;
                                        /* vertices in edge (x,y) */
        int x, y;
        initialize_graph(g, directed);
        scanf("%d %d",&(g->nvertices),&m);
        for (i=1; i<=m; i++) {
                scanf("%d %d",&x,&y);
                insert_edge(g,x,y,directed);
```

```
insert_edge(graph *g, int x, int y, bool directed)
{
                                   /* temporary pointer */
     edgenode *p;
     p = malloc(sizeof(edgenode)); /* allocate edgenode storage */
     p->weight = NULL;
     p->y = y;
     p->next = g->edges[x];
     g \rightarrow edges[x] = p;
                                  /* insert at head of list */
     g->degree[x] ++;
      if (directed == FALSE)
             insert_edge(g,y,x,TRUE);
     else
             g->nedges ++;
```

```
print_graph(graph *g)
                                        /* counter */
        int i;
        edgenode *p;
                                        /* temporary pointer */
        for (i=1; i<=g->nvertices; i++) {
                printf("%d: ",i);
                p = g->edges[i];
                while (p != NULL) {
                        printf(" %d",p->y);
                        p = p->next;
                printf("\n");
```


Graph Traversal: Breath First Search

- BFS will visit vertices that are direct neighbors of the source vertex (first layer), neighbors of direct neighbors (second layer), and so on, layer by layer.
- BFS algorithm also runs in O(V + E) and $O(V^2)$

Graph Traversal: Breath First Search

```
// inside int main()---no recursion
 vi d(V, INF); d[s] = 0;
                        // distance from source s to s is 0
 queue<int> q; q.push(s);
                                                  // start from source
 while (!q.empty()) {
   int u = q.front(); q.pop();
                                            // queue: layer by layer!
   for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
     ii v = AdjList[u][j];
                                              // for each neighbor of u
     if (d[v.first] == INF) {      // if v.first is unvisited + reachable
       d[v.first] = d[u] + 1; // make d[v.first] != INF to flag it
      q.push(v.first); // enqueue v.first for the next iteration
```

Graph Traversal: Depth First Search

• In a graph with V vertices and E edges, DFS runs in O(V + E) and O(V 2) if the graph is stored as Adjacency List and Adjacency Matrix, respectively

- dfs(0)—calling DFS from a starting vertex u = 0—will trigger this sequence of visitation: $0 \to 1 \to 2 \to 3 \to 4$. the sequence $0 \to 1 \to 3 \to 2$ (backtrack to 3) $\to 4$ is also a possible visitation sequence.
- Also notice that one call of dfs(u) will only visit all vertices that are connected to vertex u. That is why vertices 5, 6, 7, and 8 remain unvisited after calling dfs(0).

Graph Traversal: Depth First Search

```
typedef pair<int, int> ii; // In this chapter, we will frequently use these
typedef vector<ii> vii; // three data type shortcuts. They may look cryptic
typedef vector<int> vi; // but they are useful in competitive programming
vi dfs_num; // global variable, initially all values are set to UNVISITED
void dfs(int u) { // DFS for normal usage: as graph traversal algorithm
 dfs_num[u] = VISITED; // important: we mark this vertex as visited
 for (int j = 0; j < (int)AdjList[u].size(); j++) { // default DS: AdjList
   if (dfs_num[v.first] == UNVISITED) // important check to avoid cycle
     dfs(v.first); // recursively visits unvisited neighbors of vertex u
} // for simple graph traversal, we ignore the weight stored at v.second
```

Graph Traversal: BFS or DFS

- Shortest path
- Finding cycle in graph
- Connected components
- Two-coloring graphs, Bipartite graphs
- UVa 00429 Word Transformation
- UVa 11902 Dominator
- 15-puzzle

Shortest path

Connected component

• Bipartite graphs

- UVa 00429 Word Transformation
 - each word is a vertex, connect 2 words with an edge if differ by 1 letter

- UVa 11902 Dominator
 - Reachability test
 - $O(V \times V^2 = V^3)$ algorithm.
 - Run dfs(0) on the input graph to record vertices that are reachable from vertex 0.
 - Then to check which vertices are dominated by vertex *X*, we (temporarily) turn off all the outgoing edges of vertex *X* and rerun dfs(0).
 - Now, a vertex Y is not dominated by vertex X if dfs(0) initially cannot reach vertex Y or dfs(0) can reach vertex Y even after all outgoing edges of vertex X are (temporarily) turned off. Vertex Y is dominated by vertex X otherwise.
 - We repeat this process $\forall X \in [0...V-1]$.
 - Tips: We do not have to physically delete vertex X from the input graph. We can simply add a statement inside our DFS routine to stop the traversal if it hits vertex X.

• 15-puzzle


```
#include <functional>
#include <queue>
#include <vector>
#include <iostream>
template<typename T> void print queue(T& q) {
    while(!q.empty()) {
        std::cout << q.top() << " ";
        q.pop();
    std::cout << '\n';
int main() {
    std::priority queue<int> q;
    for(int n : {1,8,5,6,3,4,0,9,7,2})
        q.push(n);
    print queue(q);
    std::priority queue<int, std::vector<int>, std::greater<int> > q2;
    for(int n : {1,8,5,6,3,4,0,9,7,2})
        q2.push(n);
    print queue(q2);
    // Using lambda to compare elements.
    auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1);};</pre>
    std::priority queue<int, std::vector<int>, decltype(cmp)> q3(cmp);
    for(int n : {1,8,5,6,3,4,0,9,7,2})
        q3.push(n);
    print queue(q3);
```

Priority Queue in C++

Output:

```
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
8 9 6 7 4 5 2 3 0 1
```

Single source shortest path Dijkstra's algorithm

```
O((V + E) \log V) Max Size: V, E < 300,000
```

```
priority_queue< ii, vector<ii>, greater<ii> > pq; pq.push(ii(0, s));
while (!pq.empty()) {
                                                // main loop
 ii front = pq.top(); pq.pop(); // greedy: get shortest unvisited vertex
 int d = front.first, u = front.second;
 if (d > dist[u]) continue;  // this is a very important check
 for (int j = 0; j < (int)AdjList[u].size(); <math>j++) {
                                  // all outgoing edges from u
   ii v = AdjList[u][j];
   if (dist[u] + v.second < dist[v.first]) {</pre>
    pq.push(ii(dist[v.first], v.first));
} } // this variant can cause duplicate items in the priority queue
```

Single source shortest path Dijkstra's algorithm

All pair shortest path: Floyd Warshall

กราฟ G (V, E) เส้นเชื่อมมีน้ำหนัก มีทิศทาง

เส้นเชื่อมยาวเป็นลบได้ แต่ต้องไม่มีวงที่ความยาวรวมเป็นลบ

> shortest path tree ของวิถีสั้น สุดจากปม 2 ถึงปมอื่น ๆ

W	1	2	3	4
1	0	- 0	7	2
2	-2	0	-	1
3	-	-4	0	2
4	-	-	4	0

D	1	2	3	4
1	0	2 0 -4	6	2
2	-2	0	4	0
3	-6	-4	0	-4
4	-2	0	4	0

All pair shortest path Floyd Warshall

 $O(V^3)$ Max Size: V < 400

All pair shortest path: Floyd Warshall

The current content of Adjacency Matrix D at **k = -1**

k = -1	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

The current content of Adjacency Matrix D at $\mathbf{k} = \mathbf{0}$

k = 0	0	1	2	3	4
0	0	2	1	∞	3
1	×	0	∞	4	∞
2	∞	1	0	∞	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

All pair shortest path: Floyd Warshall

The current content of Adjacency Matrix D at $\mathbf{k} = \mathbf{1}$

k = 1	0	1	2	3	4
0	0	2	1	6	3
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

The current content of Adjacency Matrix D at **k = 2**

k = 2	0	1	2	3	4
0	0	2	1	6	2
1	∞	0	∞	4	∞
2	\$	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Problems

- UVa 01112 Mice and Maze
- UVa 11463 Commandos
- UVa 00104 Arbitrage
- UVa 11367 Full Tank

- บางที่โจทย์จะไม่ได้ให้เรา run Algo... บนกราฟธรรมดาๆที่ให้มาตรงๆ
 - 1. นำปัญหาที่ตอนแรกอาจดูไม่เหมือนเกี่ยวกับกราฟ มาแปลงเป็นรูปแบบกราฟ, อะไรคือ vertex? อะไรคือ edge?
 - โจทย์ให้กราฟมา แต่ที่จริงยังทำ Algo... เลยไม่ได้ ต้องแปลงกราฟที่ให้มาเป็นกราฟอีกรูปแบบนึงก่อนแล้วค่อยทำ Algo... บนกราฟนั้น

UVa 00104 – Arbitrage

- Detecting negative cycle in Floyd Warshall
 - Negative Cycle can be identified by looking at the diagonals of the dist[][] matrix generated by Floyd-Warshall algorithm.
 - diagonal dist[2][2] value is smaller than 0 means, a path starting from 2 and ending at 2 results in a negative cycle
 - you are looking for a cycle whose product of edge weights is >1, i.e. w1 * w2 * w3 * ... > 1.
 - $\log (w_1 * w_2 * w_3 ...) > \log(1)$
 - $\log(w_1) + \log(w_2) + \log(w_3) \dots > 0$
 - $-\log(w_1) \log(w_2) \log(w_3) \dots < 0$

Path reconstruction

- Create another table/matrix p
- p[i][j] store the predecessor node k that was chosen in the inner loop of Floyd algorithm

- UVa 11367 Full Tank
 - Dijkstra on modify graph,
 - State-Space graph
 - (location, fuel), new#V = #V x fuel capacity
 - 2 type of edge
 - (x,fuel) cost -> (x, fuel + 1)
 - (x,fuel) 0 -> (y, fuel length(x,y))
 - Start state (s,0)
 - End stage (e, any)