Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.885 S/m; ϵ_r = 42.167; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.432 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.563 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.231 W/kg

Maximum value of SAR (measured) = 0.420 W/kg

0 dB = 0.420 W/kg = -3.77 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.885 S/m; ϵ_r = 42.167; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.200 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.411 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.118 W/kg

Maximum value of SAR (measured) = 0.200 W/kg

0 dB = 0.200 W/kg = -6.99 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.885 S/m; ϵ_r = 42.167; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.323 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.822 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.240 W/kg; SAR(10 g) = 0.164 W/kg

Maximum value of SAR (measured) = 0.310 W/kg

0 dB = 0.310 W/kg = -5.09 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.885 S/m; ϵ_r = 42.167; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.146 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.170 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.143 W/kg

0 dB = 0.143 W/kg = -8.45 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: GSM 850_Body Worn Back_Low

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8 Medium parameters used: f = 824.2 MHz; σ = 0.946 S/m; ϵ_r = 56.971; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.65 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 1.28 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.961 S/m; ϵ_r = 56.717; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.58 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.855 W/kg; SAR(10 g) = 0.463 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: GSM 850_Body Worn Back_High

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 848.8 MHz; σ = 0.972 S/m; ϵ_r = 56.529; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.84 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 1.37 W/kg

0 dB = 1.37 W/kg = 1.37 dBW/kg

SAR Plots Plot 7#

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 824.2 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 824.2 MHz; σ = 0.946 S/m; ϵ_r = 56.971; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.75 W/kg

Zoom Scan (6x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.60 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.946 W/kg; SAR(10 g) = 0.608 W/kg

Maximum value of SAR (measured) = 1.32 W/kg

0 dB = 1.32 W/kg = 1.21 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.961 S/m; ϵ_r = 56.717; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (6x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.21 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.691 W/kg

Maximum value of SAR (measured) = 1.61 W/kg

0 dB = 1.61 W/kg = 2.07 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: GSM 850_Body Back_High

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 848.8 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 848.8 MHz; σ = 0.972 S/m; ϵ_r = 56.529; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (6x9x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.72 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.922 W/kg; SAR(10 g) = 0.570 W/kg

Maximum value of SAR (measured) = 1.56 W/kg

0 dB = 1.56 W/kg = 1.93 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: GSM 850_Body Bottom_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.961 S/m; ϵ_r = 56.717; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.397 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.26 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.474 W/kg

0 dB = 0.474 W/kg = -3.24 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: GSM 1900_Head Left Cheek_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.383 S/m; ϵ_r = 40.522; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.229 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.753 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.089 W/kg

Maximum value of SAR (measured) = 0.223 W/kg

0 dB = 0.223 W/kg = -6.52 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: GSM 1900_Head Left Tilt_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.383 S/m; ϵ_r = 40.522; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0941 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.992 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.100 W/kg

SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.0877 W/kg

0 dB = 0.0877 W/kg = -10.57 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: GSM 1900_Head Right Cheek_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.383 S/m; ϵ_r = 40.522; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.195 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.681 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.199 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.166 W/kg

0 dB = 0.166 W/kg = -7.80 dBW/kg

SAR Plots Plot 14#

Test Plot 15#: GSM 1900_Head Right Tilt_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.383 S/m; ϵ_r = 40.522; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.119 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.981 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.056 W/kg

Maximum value of SAR (measured) = 0.109 W/kg

0 dB = 0.109 W/kg = -9.63 dBW/kg

SAR Plots Plot 15#

Test Plot 16#: GSM 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.496 S/m; ϵ_r = 54.384; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.01 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.756 W/kg; SAR(10 g) = 0.432 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

SAR Plots Plot 16#

Test Plot 17#: GSM 1900_Body Back_Low

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 1850.2 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.488$ S/m; $\epsilon_r = 54.577$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.53 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.74 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.933 W/kg; SAR(10 g) = 0.547 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

SAR Plots Plot 17#

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.496$ S/m; $\epsilon_r = 54.384$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.66 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.59 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.602 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

SAR Plots Plot 18#

Test Plot 19#: GSM 1900_Body Back_High

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 1909.8 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 1909.8 MHz; σ = 1.516 S/m; ϵ_r = 54.086; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.00 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.99 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.630 W/kg

Maximum value of SAR (measured) = 1.54 W/kg

0 dB = 1.54 W/kg = 1.88 dBW/kg

SAR Plots Plot 19#

Test Plot 20#: GSM 1900_Body Bottom_Middle

DUT: Mobile Phone; Type: Kolya T240; Serial: 17121100220

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.496$ S/m; $\epsilon_r = 54.384$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171211002-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.725 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.11 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.765 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.230 W/kg

Maximum value of SAR (measured) = 0.626 W/kg

0 dB = 0.626 W/kg = -2.03 dBW/kg

SAR Plots Plot 20#