DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CSE 3330/5330 - Database Systems and File Structures

Exam #2 Friday November 20, 2020 Due Date: Monday November 23, 2020 @ 11.59 pm

	Total Points	Earned
Multiple Choice	13	
Query Questions	47	
Total	60	

Multiple Questions, T/F, Fill In the blanks:

1.	(1 point) A functional dependency is a relationship between or among:
	o tables
	o rows
	o relations
	o attributes
2.	(1 point) If attributes A and B determine attribute C, then it is also true that:
	$\circ A \to C.$
	\circ B \rightarrow C.
	○ (A,B) is a composite determinant.
	o C is a determinant
3.	(1 point) If attribute A determines both attributes B and C, then it is also true that:
	$\circ A \to B.$
	$\circ B \to A.$
	\circ C \rightarrow A.
	$\circ (B,C) \to A.$
4.	(1 point) TRUE/FALSE : 3NF is designed to cope with Multi valued dependency
5.	(1 point) TRUE/FALSE: The cost of a file scan is essentially the same for a heap file
	and a sorted file.
6.	(3 point) Which of the following symbols do not represent relational operators from the
	original relational algebra?
	ο γ
	\circ θ
	\circ δ
	0 +
	o x
7.	(1 point) A BCNF is:
	o loss less join and dependency preserving
	 loss less join but not dependency preserving
	o not loss less join but dependency preserving
	o none of these
8.	(3 points) In the normal form, a composite attribute is converted to
	individual attributes.
9.	(1 point) The storage media that is operated directly from computer's central processing
	unit is considered as
	o primary storage
	o secondary storage
	o tertiary storage
	o all of above

Query Questions:

1. (4 points) Is the following table in First normal form (1NF). Explain why or why not. If why not convert to 1NF:

Instructor's name	Course code
Prof. George	(CS101, CS154)
Prof. Atkins	(CS152)

2. (8 points) Reference the table below for the next set of questions:

Course code	Course venue	Instructor's name	Department
MA214	Lecture Hall 18	Prof. George	CS Department
ME112	Auditorium building	Prof. John	Electronics Department

- a. List all functional dependencies for this table?
- b. Is this in Second Normal Form (2NF)? Explain why or why not. If why not convert to 2NF.
- 3. (5 points) Is the following functional dependency in BCNF (hint: check the lossless join)

$$R=ABCDE$$
, $F = \{A \rightarrow BC, C \rightarrow DE\}$

4. (5 points) Convert the following SQL query to a relational algebra query:

```
select C.name
from LineItem L, Orders O, Customer C, Nation N
where L.oid=O.oid and O.cid=C.cid and C.nid=N.nid
  and N.name = 'Canada' and O.orderdate > '2010-12-31';
```

5. (10 points) For the following question, consider the following schema:

```
Jedi-Teams (master, apprentice)
Jedi(name, side, home-planet)
Government(leader planet, postition)
Inhabitants(specie, planet)
```

a. Given a query to find all planetary leaders who are apprentices and use the dark side of the force, Express this query in terms of relational algebra:

```
select leader
from Jedi-Teams, Jedi, Government
where apprentice = name and
name = leader and
side = 'dark'
```

b. Express this query in terms of relational algebra:

```
select count(*), home-planet
from Jedi, Inhabitants
where specie = 'wookies' and
planet = home-planet and
side = 'light'
group by home-planet
```

6. (5 points) Consider the following database schema:

```
Likes (enthusiast, sports)
Frequents (enthusiast, sports channel)
Serves (sports channel, sport)
```

Write the relational algebra query that answers the following question: which enthusiast watches only sports channel that play only sport they like?

7. (10 points) Solve the following relational expressions for relations below:

User

ld	Name	Age	Gender	OccupationId	CityId
1	John	25	Male	1	3
2	Sara	20	Female	3	4
3	Victor	31	Male	2	5
4	Jane	27	Female	1	3

Occupation

OccupationId	OccupationName
1	Software Engineer
2	Accountant
3	Pharmacist
4	Library Assistant

City

Cityld	CityName
1	Halifax
2	Calgary
3	Boston
4	New York
5	Toronto

- a. PName(RAge>25(User))
- b. RId>2vAge!=31(User)
- $c. \ \ RUser. Occupation Id=Occupation. Occupation Id (User X \ Occupation)$
- d. User ⋈ Occupation ⋈ City
- e. PName,Gender(RCityName="Boston"(User ⋈ City))