评分: _____

SHANGHAI UNIVERSITY

COURSE PAPER

Homework _ Fifth Week

Information	student1	student2
Academy	Management	Management
Specialty	Management Science	Information Science
Student ID	18121216	19121255
Name	Lulu Shi	Jingwen Zhang
Course	Machine Learning in Business	
Teacher	Si Zhang Liyang Xiao	

Select a method aimed to draw a figure whose x axis is the Degree_of_Polynomial and the y axis is the Misclassification_Rate.

Answers:

First and foremost, it's known that there are ways that differs from each other to calculate the error rate in *Two-classification problems* such as *The Validation Set Approach*, *Leave-One-Out Cross-Validation*, *k-Fold Cross-Validation*, *KNN*. Meanwhile, to screen out the better method, we'd like to make comparisons in our paper among those methods.

1.1 The Validation Set Approach

We may usually regard **The Validation Set Approach** as a less effective classifier according the cases in book, the method is significant when we consider it as the benchmark to figure out if other methods are better than it.

```
#1. The Validation Set Approach
dim(data)# 1319 13
## [1] 1319
             13
set.seed(1)
train=sample(1319,660) #devide data set into train and test
MR 1=rep(0,6)
for(i in (1:6)){
  lm.fit=lm(card~poly(reports,log(income),dependents,active,degree=
i),data=data,subset=train)
  lm.probs=predict(lm.fit,data,type = 'response')
 lm.pred=ifelse(lm.probs>0.5,1,0)
 table(lm.pred,card)
 MR_1[i]=1-mean(lm.pred==data$card) #get MR_1, namely the error rate.
}
#draw the figure
MRdf_1=data.frame(MR_1)
ggplot(MRdf_1,aes(x=(1:6),y=MRdf_1[,1]))+geom_point(alpha=0.3,color=
'red', size=4, shape=18)+geom_line(size=1, col='pink')+labs(x='Degree_o
f Polynomial',y='Misclassification Rate(method=ValidationSet)')
MR 1
## [1] 0.1728582 0.1501137 0.1455648 <mark>0.1379833</mark> 0.1508719 0.1463230
```


FIGURE 1.1

1.2 Leave-One-Out Cross-Validation(LOOCV)

```
# Leave-One-Out Cross-Validation(LOOCV)
# divide data set into 10 folds
folds = createFolds(y=data$card,k=nrow(data))
min = 1
num = 0
results_error = c()
MR_2=rep(0,6)
# Loop
for(i in 1:1319){
 for(j in 1:6){fold_test = data[folds[[i]],]#选一个作为测试集
 fold_train = data[-folds[[i]],]#剩下的为训练集
 fold_fit = glm(card~poly(dependents, reports, log(income), active, degr
ee=j),data = data,family = "binomial")
 fold_predict = predict(fold_fit,type = 'response',newdata=fold_test)
 fold_predict = ifelse(fold_predict >= 0.5, 1, 0)
 fold_test$predict = fold_predict
 fold_error = sum(fold_test[,1] != fold_test[,ncol(fold_test)]) / n
row(fold_test)
  results_error[i] = fold_error
 MR_2[j]=mean(results_error)
```

```
}

MR_2

MRdf_2=data.frame(MR_2)

ggplot(MRdf_2,aes(x=(1:6),y=MRdf_2[,1]))+geom_point(alpha=0.3,color=
'blue',size=4,shape=18)+geom_line(size=1,col='blue')+labs(x='Degree_
of_Polynomial',y='Misclassification_Rate(method=LOOCV)')
```

Due to the limited efficiency of our computer, the result of *LOOCV* can not be shown here. In principle, *LOOCV* is the special case of *K-Fold CV*, which means they have similar tendency of results. Therefore, we move to *Step1.3* to see which degree of polynomial has *the Minimal Misclassification*.

1.3 K-Fold CV

```
#3. K-fold-CV
# divide data set into 10 folds
folds = createFolds(y=data$card,k=10)
min = 1
num = 0
results_error = c()s
MR_3 = rep(0,6)
# Loop
for(i in 1:10){
  for(j in 1:6){fold_test = data[folds[[i]],]#选一个作为测试集
 fold_train = data[-folds[[i]],]#剩下的为训练集
 fold_fit = glm(card~poly(dependents, reports, log(income), active, degr
ee=j),data = data,family = "binomial")
  fold_predict = predict(fold_fit,type = 'response',newdata=fold_test)
 fold_predict = ifelse(fold_predict >= 0.5, 1, 0)
 fold_test$predict = fold_predict
  fold_error = sum(fold_test[,1] != fold_test[,ncol(fold_test)]) / n
row(fold_test)
  results_error[i] = fold_error
 MR_3[j]=mean(results_error)
     }
  }
}
MR 3
```

```
## [1] 0.1797536 0.1782385 0.1774809 0.1880870 0.1805112 0.1873294

MRdf_3=data.frame(MR_3)
ggplot(MRdf_3,aes(x=(1:6),y=MRdf_3[,1]))+geom_point(alpha=0.3,color='blue',size=4,shape=18)+geom_line(size=1,col='blue')+labs(x='Degree_
of_Polynomial',y='Misclassification_Rate(method=K-fold CV)')
```


FIGURE 1.3

In **The Validation Set Approach**, only a subset of the observations—those that are included in **the training set** rather than in **the validation set**—are used to fit the model. Although when **the degree of polynomial** equals to four shows **the minimal misclassification rate** in the validation approach, the result can be **highly variable**. Therefore, we tend to choose the method of **K-fold CV**, which shows **the minimal misclassification rate** when **the degree of polynomial** equals to three.