

Course > Unit 3: ... > Proble... > 4. Provi...

4. Proving binomial identities via counting

Problem Set due Feb 19, 2020 05:29 IST Completed

Problem 4. Proving binomial identities via counting

4/4 points (graded)

Binomial identities (i.e., identities involving binomial coefficients) can often be proved via a counting interpretation. For each of the binomial identities given below, select the counting problem that can be used to prove it.

Hint: You may find it useful to review the lecture exercise on counting committees before attempting the problem.

(You need to answer all 4 questions before you can submit.)

$$^{1.}$$
 $ninom{2n}{n}=2ninom{2n-1}{n-1}.$

\bigcirc) In a group of $2n$ people, consisting of n boys and n girls, we want to	select a
	committee of n people. In how many ways can this be done?	

How many	/ subsets	does a	set with	2n	elements	have?
 I IOW IIIaliy	y subsets	uues a	2Gr Mirii	210	Elellielitz	nave:

Out of n people, we want to form a committee consisting of a chair and other
members. We allow the committee size to be any integer in the range
$1,2,\ldots,n$. How many choices do we have in selecting a committee-chair
combination?

 $^{2.} \binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^{2} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}.$

 \bigcirc In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many ways can this be done?

 \bigcirc How many subsets does a set with 2n elements have?

Out of n people, we want to form a committee consisting of a chair and other members. We allow the committee size to be any integer in the range $1,2,\ldots,n$. How many choices do we have in selecting a committee-chair combination?

Out of 2n people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?

 $^{3.}\,2^{2n}=\sum_{i=0}^{2n}inom{2n}{i}.$

 \bigcirc In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many ways can this be done?

 $igoreal{igoreal}$ How many subsets does a set with 2n elements have?

Out of n people, we want to form a committee consisting of a chair and other members. We allow the committee size to be any integer in the range $1,2,\ldots,n$. How many choices do we have in selecting a committee-chair combination?

Out of 2n people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?

$$n2^{n-1} = \sum_{i=0}^n \binom{n}{i} i.$$

- \bigcirc In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many ways can this be done?
- \bigcirc How many subsets does a set with 2n elements have?
- Out of n people, we want to form a committee consisting of a chair and other members. We allow the committee size to be any integer in the range $1,2,\ldots,n$. How many choices do we have in selecting a committee-chair combination?
- Out of 2n people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?

Solution:

1. "Out of 2n people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?" The reasoning is as follows.

Among 2n people, we can select n people in $\binom{2n}{n}$ different ways. Having selected n such people, a chair can be selected in n different ways, leading to an overall count of $n\binom{2n}{n}$. Arguing alternatively, we can first select a chair in 2n different ways, and then, among the remaining 2n-1 people, n-1 people can be selected in $\binom{2n-1}{n-1}$ different ways. Thus, the overall count is $2n\binom{2n-1}{n-1}$, proving that,

$$ninom{2n}{n}=2ninom{2n-1}{n-1}.$$

2. "In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many ways can this be done?" The reasoning is as follows.

Among 2n people, n people can be selected in $\binom{2n}{n}$ different ways. Alternatively, the committee can consist of i boys, and n-i girls, for $i=0,1,2,\ldots,n$. For each i, the number of committees with i boys and n-i girls is $\binom{n}{i}\binom{n}{n-i}$. Hence,

$$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}.$$

3. "How many subsets does a set with 2n elements have?" The reasoning is as follows.

The total number of all subsets of a set of 2n-elements is 2^{2n} . Arguing differently, we can consider the number of subsets with i elements, which is $\binom{2n}{i}$, and then sum over all i, proving that

$$2^{2n}=\sum_{i=0}^{2n}inom{2n}{i}.$$

4. "Out of n people, we want to form a committee consisting of a chair and other members. We allow the committee size to be any integer in the range $1,2,\ldots,n$. How many choices do we have in selecting a committee-chair combination?". The reasoning is as follows.

Among n people, we first select a chair in n different ways. Having fixed the chair, each one of the remaining n-1 people can either belong to the committee or not, yielding 2^{n-1} choices. Multiplying these two numbers, we obtain, $n2^{n-1}$ for the overall count.

Arguing differently, we can first count the number of committees with i people (one of which is the chair). There are $\binom{n}{i}$ choices for the members. Once the members are chosen, there are i choices for the chair, leading to an overall count (for fixed i) of $\binom{n}{i}i$. Then, summing over i gives us the desired number of committees. Hence,

$$n2^{n-1} = \sum_{i=0}^n \binom{n}{i} i.$$

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 3: Counting:Problem Set 3 / 4. Proving binomial identities via counting

Sho	ow all posts	ivity 🗸
2	A little late but here is a hint The options for all 4 are the same. By the process of elimination, you should be able to narrow down yo	2
2	Which lecture video Can someone please link to the lecture video described in the hint? I don't know which one they are refe	8
Q	A new probability question out of the four choices given Suppose that you have 4 questions with each having four choices (like the one given). You have to choos	1
?	Having some trouble understanding Q2 I have got all the answers correct however, for Q2 I could only understand why the Left Hand Side term	6
Ą	Nice problem! Thinking over grinding	1
2	<u>Useful Approach</u> <u>Work with the left side of equality and interpret what it means before checking the options.</u>	1
?	Q3 Lam really struggling with Q3. Is that a mathematical expression that I could know? Any hints would be v	3
∀	"You need to answer all 4 questions before you can submit." does that mean in all/most of the previous exercises or problems, i can submit the answer partly or 1 by	2
?	Q4 typo? It was a little misleading that i started at 0. Is this a typo or does it still accurately encapsulate the answer?	2

