Math 54: Week 2 Discussion

Abhijay Bhatnagar

August 28, 2018

Contents

Inconsistent Matrix	1
Homework Review	2
New Material	3

Inconsistent Matrix

True or false? A system with fewer equations than unknowns is always consistent? Answer: False

Ex:

$$x + y + z = 2 \tag{1}$$

$$x + y + z = 3 \tag{2}$$

Theorem: A system of linear equations has no solutions, exactly 1 solution, or infinity solutions.

Proof. If any matrix reduces to:

Then the last row is the equation, 0 = c, which is nonzero. Contradiction, no solution.

If any matrix reduces to:

Then the rows reduce to $\{x_1, x_2, x_3\} = \{a, b, c\}$ which is nonzero. There is no contradiction.

If any matrix reduces to:

Then the rows reduce to $\{x_1, x_2, x_3, x_4\} = \{a, free, b, c\}$. There is no contradiction, but infinitely many solutions for x_2 .

Definition: The non-pivot columns are the free variables, the pivot columns are the basic variables

Definition: A matrix is $n \times m$ if it has n rows and m columns (so height by width). E.g.

Is 3x2.

Homework Review

Problem 20. Determine all h s.t. augmented matrix is consistent:

Solution:

We know it is consistent if and only if there is no pivot in last column.

$$\begin{array}{cccc}
1 & h & -3 \\
0 & 4+2h & 0
\end{array}$$

There is never a pivot in last column.

Problem 28. Suppose a,b,c,d sonstants where $a \neq 0$, and below system is consistent for all f, g. What em say about a,b,c,d?

$$ax_1 + bx_2 = f (3)$$

$$cx_1 + dx_2 = g (4)$$

Solution:

$$\begin{array}{ccc} a & b & f \\ c & d & g \end{array}$$

Substract c/a, Row 1 from Row 2, yielding:

$$\begin{array}{ccc} a & b & f \\ 0 & d - bc/a & g - fc/a \end{array}$$

We want this to be consistent for all f,g, but as f,g can be anything, so can g-fc/a. So for some $f,g,g-fc/a\neq 0$ (let f=0,g=1). So to be consistent for all f,g, we need:

$$\begin{bmatrix} a \end{bmatrix} \qquad b \qquad \qquad f \\ 0 \qquad [d-bc/a] \quad g-f/ca$$

pivots.

:.d-bc/a
$$\neq 0 \implies d \neq cb/a$$

New Material

Definition: A vector in \mathbb{R}^n is a $n \times 1$ matrix. For instance:

2 5 7

 $\in \mathbb{R}^3$

Definition: Vector Definition

Definition: Scaling. Given scalar $c \in \mathbb{R}$, and vector $\{x_1, ..., x_n\} \in \mathbb{R}^n$

c
$$x_1 \\ \dots \\ x_n \\ = \\ cx_1 \\ \dots \\ cx_n$$

Theorem: Vectors $u, v, w \in \mathbb{R}^n$ and scalars $c, d \in \mathbb{R}$ satisfy the following properties (which we will later call axioms defining a vector space:

- 1. Associative: u + (v + w) = (u + v) + w
- 2. Communitative: u + v = v + u
- 3. Distributive: c(u+v) = cu + cv(c+d)u = cu + du
- 4. Scalar Associative: c(du) = (cd)u
- 5. Zero vector, there is a zero vector $0^hat, s.t.o^hat + v = v \forall$ v.
- 6. Multiplication identity: 1*v = v