Student Number:	
D C CLCL CLLC I C CLLLIS CI C	

THE UNIVERSITY OF MELBOURNE

Semester 2 November 2012

Melbourne School of Engineering ENGR10003 Engineering Systems Design 2

> Time allowed: 180 minutes Reading time: 15 minutes

This paper has 35 pages

Authorised materials:

Electronic calculators approved by the Melbourne School of Engineering.

Instructions to invigilators:

All examination material is to be collected at the end of the exam including the multiple choice answer sheet.

Instruction to students:

Put your student number at the top of this and every other page.

Attempt **ALL** questions.

The questions carry weight in proportion to the marks in brackets after the question numbers.

- PART A contains 40 multiple choice questions and totals 40 marks.
 - These MUST be answered on the provided answer sheet.
- PART B contains 3 extended answer questions and totals 60 marks.

These MUST be answered in the spaces provided on this paper.

Use unprinted page sides for all rough work.

This paper is NOT to be reproduced and lodged with the Baillieu library. To be reproduced single sided.

For examiners' use only.

PART A	PART B			EXAM	
TOTAL (/40)	Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	TOTAL (/60)	m TOTAL~(/100)

PART B - extended answer (60 marks) Answer all Part B questions in the spaces provided on this paper.		
Qu	estion 1 (20 marks)	
1.	. [2 marks] Describe the principle of duality with respect to Boolean algebra.	
2.	. [2 marks] Use perfect induction to prove $X + \overline{X}Y = X + Y$.	

8 marks The (7.4) Hamming code takes four information hits (h, h, h, h,) and adds three
[8 marks] The $(7,4)$ Hamming code takes four information bits $(b_4 b_3 b_2 b_1)$ and adds three parity check bits $(p_3 p_2 p_1)$ to give a codeword
$(c_7 c_6 c_5 c_4 c_3 c_2 c_1) = (b_4 b_3 b_2 p_3 b_1 p_2 p_1).$
The check bits $(p_3 p_2 p_1)$ are chosen as follows:
 p₃ is chosen so as to give an even number of 1s in the group (c₇ c₆ c₅ c₄) = (b₄ b₃ b₂ p₃); p₂ is chosen so as to give an even number of 1s in the group (c₇ c₆ c₃ c₂) = (b₄ b₃ b₁ p₂); and p₁ is chosen so as to give an even number of 1s in the group (c₇ c₅ c₃ c₁) = (b₄ b₂ b₁ p₁).
(a) [2 marks] Construct the truth table for the parity bit p_2 in terms of the input bits b_4 , b_3 , b_2 , and b_1 .
(b) [2 marks] Use your truth table from (a) to give a sum of products expression for p_2 .

		A	olock:		
		B C			
Draw the circuit f	or a complet	e Hamming	encoder using	these logic blo	ocks.

(a)	[2 marks] Construct a truth-table for the half-adder circuit. The inputs are X and Y and the outputs are Z_1 and Z_0 .
(b)	[3 marks] Using the truth-table, write down logic expressions for Z_1 and Z_0 and then sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF gates as you see fit.
(b)	sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF
(b)	sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF
(b)	sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF
(b)	sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF
(b)	sketch a circuit diagram for a half-adder. You are free to use AND, OR, NOT and XOF

Now show how abel the full-a			

Question 2 (20 marks)

1. [10 marks] An engineer wants to work out how much fuel a 4-cylinder internal combustion engine uses per hour, as a function of the speed of the engine in revolutions per minute and the dimensions of the cylinders in centimetres.

An engine cylinder of radius r can be modelled as a perfect cylinder of height, h, thus each cylinder has a maximum volume (when the piston is at the bottom of its stroke) of

$$v = \pi r^2 h$$

The volume of fuel f (in litres) used per revolution in practice is based on the fuel-air ratio and can be simply modelled using a constant factor, C, multiplied by the maximum cylinder volume, v, (in litres) as follows

$$f = Cv$$

In answering this question, assume a fuel-air ratio constant of C = 0.0001.

(a)	[2 marks] Write a MATLAB function cylinder_vol(r,h) that calculates and return
	the volume (in litres) of the engine cylinders of height h and radius r (in centimetres
	Keep in mind that $1 \ litre = 1000 cm^3$.

(b)	[2 marks] Write a MATLAB function fuel_per_rev(v) that takes the volume v of	i a
	cylinder (in litres) and returns the fuel used for one revolution (in litres).	

c)	[6 marks] Write a MATLAB function litres_per_hour(rpm,r,h) that takes the revolutions per minute rpm (in rpm), the height of the cylinders h (in centimetres) and the radius of the cylinders r (in centimetres) and prints the total fuel used per hour by a 4-cylinder engine (in litres) on the screen. For example, running litres_per_hour(2000,3,10) MUST output the following format
	The fuel used at 2000 rpm is 13.5717 litres per hour.
	You MUST call your cylinder_vol(r,h) and fuel_per_rev(v) functions from parts (a) & (b).

2.	[10 marks] In this question you must write a MATLAB function that removes duplicate values
	from a vector resulting in a new vector containing only unique values.

For example, the unique element vector E of the vector $\mathbf{x}=[2\ 3\ 2\ 4\ 5\ 6\ 5\ 2\ 1\ 1]$ is

$$E = [2 \ 3 \ 4 \ 5 \ 6 \ 1]$$

Note that the unique vector does not need to be sorted in any particular order, however it must contain only one of every distinct value of the input vector.

Write a MATLAB function remove_duplicates(x) that computes and returns the unique elements vector of the vector x. You must make sure that the vector x contains only numbers and if not return an appropriate error message.

NOTE: You may NOT use the MATLAB function unique in your answer.

Hints:

- The MATLAB function isnumeric(A) returns 1 if A is a numeric array and 0 otherwise.
- The MATLAB function ismember(A,B) where A is a number and B is a vector, returns 1 if A is contained in B and 0 otherwise.

More space is provided for your answer on the following page.

Question 3 (20 marks)

1. [10 marks] In many Derrick crane designs, the crane is anchored to the ground at one point and held upright by a flexible cable at another point. The figure below illustrates a simplified Derrick crane design with a 500 N weight at point A and another 1000 N point load applying at point B. To simplify the analysis, the flexible cable is modelled by a linear spring with spring constant, k = 17,500 N/m.

(a) [1 marks] Sketch the free body diagram of the system described above.

forces as ve	ectors.					

2. [10 marks] A pilot releases a spherical object 70 m above the ground. The object has an initial velocity 50 m/s at an angle of 3° to the horizontal as illustrated in the figure below.

The pilot is aiming the spherical object at point A in the figure. The aerodynamic drag of the spherical object is

$$F = \frac{C_D}{2} \rho V^2 A \tag{1}$$

where V is the velocity of the aeroplane, C_D is the coefficient of aerodynamic drag, ρ is the density of air and A is the spherical object's frontal surface area. The mass of the object is m.

(a) [4 marks] Derive the governing equations that define the 2-dimensional motion of the spherical object under the effects of aerodynamic drag and gravity.

More space is provided for your answer on the following page.

,			

ENGR10003 Engineering Systems Design 2, November 2012 SID:

More space is provided for your answer on the following page.

final velo	ks] Using your re			
final velo				

END OF EXAMINATION