

TEST REPORT

Report Reference No.....: 4787598692-5

FCC ID.....: 2AB7X-WISEPOS

Applicant's name.....: BBPOS International Limited

Address...... Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,

Tsuen Wan, N.T., Hong Kong

Manufacturer..... BBPOS International Limited

Address...... Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,

Tsuen Wan, N.T., Hong Kong

Test item description: WisePOS

Trade Mark -

Model/Type reference...... WSC11

Listed Model(s) WSC10

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of receipt of test sample............ Sep. 18,2016

Date of testing...... Sep. 19,2016- Sep. 28, 2016

Result...... PASS

Reviewed by:

Denny Huang (Project Engineer)

Approved by:

Stephen Guo (Laboratory Manager)

REPORT NO: 4787598692-5

EUT: WisePOS

DATE: Nov. 09,2016

MODEL: WSC11

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branchis acknowledged as copyright owner and source of the material. UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

REPORT NO: 4787598692-5 EUT: WisePOS

Contents

DATE: Nov. 09,2016

MODEL: WSC11

<u>1.</u>	APPLICABLE STANDARDS ANDTEST DESCRIPTION	4
1.1.	Applicable Standards	4
1.2.	Test Description	4
•	CHMMADY	F
<u>2.</u>	SUMMARY	5
2.1.	Client Information	5
2.2.	Product Description	5
2.3.	Operation state	6
2.4.	EUT configuration	6
2.5.	Modifications	6
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Equipments Used during the Test	8
3.4.	Environmental conditions	9
3.5.	Statement of the measurement uncertainty	9
<u>4.</u>	TEST CONDITIONS AND RESULTS	10
4.1.	Antenna requirement	10
4.2.	Conducted Emission (AC Main)	11
4.3.	20dB bandwidth	14
4.4.	Radiated Emission	15
4.5.	Frequency stability	18
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	19
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	20
_		

1. APPLICABLE STANDARDS ANDTEST DESCRIPTION

1.1. Applicable Standards

The tests were performed according to following standards: FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

ReportSection	Test Item	FCC Rule	Result
4.1	Antenna requirement	15.203	Pass
4.2	Line Conducted Emission (AC Main)	15.207	Pass
4.3 20dB Bandwidth		2.1049	Pass
4.4 Radiated Emissions& Field Strength of Fundamental Emissions 15.225(a)(b)(c)(d)/18		15.225(a)(b)(c)(d)/15.209	Pass
4.5	Frequency Stability	15.225e	Pass

Remark: The measurement uncertainty is not included in the test result.

2. **SUMMARY**

2.1. Client Information

Applicant:	BBPOS International Limited	
Address:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong	
Manufacturer:	BBPOS International Limited	
Address:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong	

2.2. Product Description

Name of EUT	WisePOS		
Trade Mark:	-		
Model No.:	WSC11		
Listed Model(s):	WSC10		
IMEI 1:	352788070030212		
IMEI 2:	352788070030220		
Power supply:	DC 3.8V From internal battery		
Adapter information: _			
NFC			
Modulation:	FSK		
Operation frequency: 13.56MHz			
Channel number:	1		
Antenna type: Internal Antenna			

2.3. Operation state

♦ Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions:

The EUT was set to connect with the NFC under large package sizes transmission.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

○ - supplied by the lab

Length (m):	1
Shield:	1
Detachable :	1
Manufacturer :	1
Model No. :	1

2.5. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Equipments Used during the Test

Cond	Conducted Emission (AC Main)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal	
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2015/11/02	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2015/11/02	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2015/11/02	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A	

Radia	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal	
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2015/11/02	
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2015/11/02	
3	EMI TEST Software	Audix	E3	N/A	N/A	
4	TURNTABLE	ETS	2088	2149	N/A	
5	ANTENNA MAST	ETS	2075	2346	N/A	
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A	
7	HORNANTENNA	ShwarzBeck	9120D	1011	2015/11/02	
8	Amplifer	Sonoma	310N	E009-13	2015/11/02	
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2015/11/02	
10	High pass filter	Compliance Direction systems	BSU-6	34202	2015/11/02	
11	HORNANTENNA	ShwarzBeck	9120D	1012	2015/11/02	
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2015/11/02	
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2015/11/02	
14	TURNTABLE	MATURO	TT2.0		N/A	
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A	

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission						
Item						
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2015/11/02	

The Cal.Interval was one year

3.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4. TEST CONDITIONS AND RESULTS

4.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result:

Test Result:

4.2. Conducted Emission (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.

TEST RESULTS

Test mode:AC 120V	NFC	Polarization	L
-------------------	-----	--------------	---

	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.388500	37.50	10.2	58	20.6	QP	ь1	GND
	0.456000	36.60	10.2	57	20.2	QP	L1	GND
	1.302000	36.80	10.3	56	19.2	QP	L1	GND
	4.398000	35.70	10.4	56	20.3	QP	L1	GND
	5.275500	34.70	10.5	60	25.3	QP	L1	GND
	16.858500	30.70	10.7	60	29.3	QP	L1	GND
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.397500	27.60	10.2	48	20.3	AV	L1	GND
	0.496500	25.70	10.2	46	20.4	AV	L1	GND
	1.311000	28.20	10.3	46	17.8	AV	L1	GND
	2.341500	27.20	10.3	46	18.8	AV	L1	GND
	5.104500	24.90	10.5	50	25.1	AV	L1	GND
	23.131500	24.10	10.8	50	25.9	AV	L1	GND
SSS	a							

DATE: Nov. 09,2016 EUT: WisePOS MODEL: WSC11

Test mode: AC 120V	NFC	Po	larization		N		
Level [dBµV]							
80							
70	i i i i i i 	i 	i i	_ i _ i _ i _ i _ i _ i _ i _ i _ i _ i	_ i _i		
60							
50		- i	- 	-	i i I i	i i	
N	^	a tana militara sala	Language de la constitución	10.00			
40	L. MANAGARITATION OF THE PROPERTY OF THE PROPE	All the Assessment	The Hill X company		i i		
30	And the state of t	-	The Samuel of State o		The supplied	141	
20		<u>-</u> j	· - ·				
10						<u>-</u>	
150k 300k 400k	600k 800k 1M	2M	3M 4M	5M 6M 8M	1 10M	20M 30M	
130K 300K 400K	COOK GOOK IIVI	Frequency		SIVI OIVI OIV	TOW	20W 30W	
x x x MES GM1609285066_:	fin						
Frequency	Level Transd	Limit	Margin	Detecto	r Line	PE	
MHz	dBµV dB	dΒμV	dB				
0.379500	40.70 10.2	58	17.6	0.5		CINE	
1.302000	36.60 10.3	56	19.4	QP QP	N N	GND GND	
3.282000	34.60 10.4	56	21.4	QP	N	GND	
5.523000	32.80 10.5	60	27.2	QP	N	GND	
17.146500	31.00 10.7	60	29.0	QP	N	GND	
Frequency	Level Transd	Limit	Margin	Detecto	or Line	PE	
MHz	dBµV dB	dΒμV	dB				
0.393000	31.80 10.2	48	16.2	AV	N	GND	
0.447000	30.60 10.2	47	16.3	AV	N	GND	
1.099500 2.445000	27.10 10.3 27.30 10.3	46 46	18.9 18.7	AV AV	N N	GND GND	
5.334000	25.20 10.5	50	24.8	AV	N	GND	
23.131500	26.80 10.8	50	23.2	AV	N	GND	

Remark:Transd=Cable lose+PULSE LIMITER factor+ARTIFICIAL MAINS factor;Margin=Limit-Level

4.3. 20dB bandwidth

LIMIT

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specificband 13.553~13.567MHz.

TEST CONFIGURATION

TEST PROCEDURE

Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Set the spectrum analyzer center frequency to the EUT nominal center frequency

 $RBW = 1 \text{ kHz}, VBW \ge 3 \times RBW$

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

Measuredthe spectrum width withpower higher than 20dB below carrier.

TEST RESULTS

Frequency	20dB Bandwidth(KHz)
13.56MHz	2.79

Test plot as follows:

4.4. Radiated Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (uV/m)	Measurement Distance(meters)
0.009MHz-0.490MHz	2400/F(kHz)	300
0.490MHz-1.705MHz	24000/F(kHz)	30
1.705MHz-30MHz	30	30
30MHz-88MHz	100	3
88MHz-216MHz	150	3
216MHz- 960MHz	200	3
Above 960MHz	500	3

FCC CFR Title 47 Part 15 Subpart C Section 15.225

Field Strength of Fundamental Emissions Limit						
Frequency	Field Strength Field Strength (µV/m)@30m (dBµV/m)@30m		Field Strength (dBµV/m)@3m			
1.705MHz-13.110MHz	30	29.5	69.5			
13.110MHz-13.410MHz	106	40.5	80.5			
13.410MHz-13.553MHz	334	50.5	90.5			
13.553MHz-13.567MHz	15848	84	124.0			
13.567MHz-13.710MHz	334	50.5	90.5			
13.710MHz-14.010MHz	106	40.5	80.5			
14.010MHz-30MHz	30	29.5	69.5			

 $dB\mu V/m=20log(\mu V/m)$

3m Limit(dB μ V/m)=10m Limit(dB μ V/m)+40log(10/3)

TEST CONFIGURATION

● 9KHz ~30MHz

● 30MHz ~ 1GHz

TEST PROCEDURE

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable0.8meter above ground. The phase center of the loop receiving antenna mounted antenna towerwas placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximumemissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined byaveraging over one complete pulse train, including blanking intervals, as long as the pulse traindoes not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longerthan 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured fieldstrength shall be determined from the average absolute voltage during a 0.1 second intervalduring which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHzfor below 30MHz,and 100kHz for 30MHz-1000MHz..

Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

TEST RESULTS

All Measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions(X front, Yside, Z top) and the position with the highest emission level was recorded(X).

Radiated EmissionMeasurement data:

Nadiated Elimeterimicaed eliment data.								
Frequency MHz	Level dBµV/m	Transd dB	Limit (dBuV/m @3m)	Margin dB	Det.	Result		
0.2	28.61	20.06	101.58	-72.97	Quasi	Pass		
1.06	24.99	20.11	64.62	-39.63	Quasi	Pass		
1.41	22.89	20.11	67.1	-44.21	Quasi	Pass		
4.25	12.4	20.16	69.5	-57.10	Quasi	Pass		
18.59	0.4	20.39	69.5	-69.10	Quasi	Pass		
26.35	1.67	20.47	69.5	-67.83	Quasi	Pass		

- 1. Level =Receiver Read level+ Transd
- 2. Transd=Antenna Factor+Cable Loss

Field Strength of Fundamental Emissions Measurement data:

Frequency MHz	Mea.Frequency MHz	Test result (dBµV/m@3m)	Limit (dBuV/m @3m)	Margin dB	Det.	Result
13.110~13.410	13.349	52.86	80.5	-27.64	Quasi	Pass
13.410~13.553	13.553	60.38	90.5	-30.12	Quasi	Pass
13.553~13.567	13.561	91.48	124	-32.52	Quasi	Pass
13.567~13.710	13.567	59.46	90.5	-31.04	Quasi	Pass
13.710~14.010	13.773	49.16	85.5	-36.34	Quasi	Pass

Radiated Emission Measurement data:

30MHz ~ 1GHz

DATE: Nov. 09,2016

MODEL: WSC11

Frequency MHz	Level dB礦/m		Limit dB礦/m	Margin dB		Height cm	Azimuth deg	Polarization
51.340000	15.20	-14.4	40.0	24.8	QP	100.0	119.00	HORIZONTAL
59.100000	13.40	-14.8	40.0	26.6	QP	100.0	6.00	HORIZONTAL
103.720000	13.40	-14.6	43.5	30.1	QP	300.0	158.00	HORIZONTAL
187.140000	14.60	-15.0	43.5	28.9	QP	300.0	204.00	HORIZONTAL
507.240000	22.80	-6.9	46.0	23.2	QP	300.0	65.00	HORIZONTAL
908.820000	31.20	2.9	46.0	14.8	QP	300.0	354.00	HORIZONTAL

Frequency MHz	Level dB礦/m		Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
49.400000	13.30	-14.4	40.0	26.7	QP	100.0	119.00	VERTICAL
59.100000	12.80	-14.8	40.0	27.2	QP	100.0	85.00	VERTICAL
99.840000	14.00	-14.3	43.5	29.5	QP	100.0	257.00	VERTICAL
206.540000	14.30	-13.9	43.5	29.2	QP	100.0	257.00	VERTICAL
530.520000	23.80	-5.8	46.0	22.2	QP	100.0	211.00	VERTICAL
957.320000	32.00	3.8	46.0	14.0	QP	100.0	211.00	VERTICAL

4.5. Frequency stability

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -20° C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10 °C increased per stage until the highest temperature of +50 °C reached.

TEST RESULTS

NFC 13.56MHz								
Voltage(%)	Power(VDC)	TEMP(℃)	Meas.Freq.(MHz)	Freq.Dev(Hz)	Deviation(ppm)	Limit(ppm)		
100%		-30	13.56073	480	53.8348			
100%		-20	13.56072	470	53.0973			
100%		-10	13.5607	490	51.6224			
100%		0	13.56071	480	52.3599			
100%	3.80	10	13.56072	450	53.0973	400		
100%	-	20	13.56074	470	54.5723	-100> Deviation		
100%		30	13.56072	490	53.0973	>100		
100%		40	13.56073	450	53.8348			
100%		50	13.5607	490	51.6224			
Low Battery power	3.60	20	13.56072	440	53.0973			
High Battery power	4.35	20	13.56073	490	53.8348			

5. Test Setup Photos of the EUT

Radiated Emission

DATE: Nov. 09,2016

MODEL: WSC11

Conducted Emission (PC Charge)

6. External and Internal Photos of the EUT

Reference to Test Report TRE1611003501	
	End of Report
	End of Report