ASIC (Application Specific Integrated Circuits) - Aplikacijski specifični integrirani sklopovi

VLSI - izvedba složenih i snažnih (procesna moć, funkcija) digitalnih sklopova niske cijene - čipovi s milijun i više tranzistora (Alpa, i860)

Taksonomija ASIC-a:

ASIC - Aplikacijsko specifični IC

- ICs se proizvode na kružnom komadiću silicija debljine nekoliko stotina mikrona (wafer)
- svaki wafer sadrži stotine IC organiziranih u dies ili dice [dais]
- tranzistori i ožičenje ostvareno uporabom 10 do 15 različitih slojeva (mask layer)
- svaki sukcesivni sloj ima uzorak koji je određen maskom: oko 5 slojeva se rabi za definiranje tranzistora, a posljednjih 6 određuju metalne veze između tranzistora (engl. interconnect)

Kod IC oblikovanih u skladu s potpunom specifikacijom kupca/naručitelja (full-custom IC) - sve (ili gotovo sve <u>ćelije</u> su oblikovane u skladu sa specifikacijom kupca, a isto vrijedi i za <u>maske</u>

SUN Microsystems SPARC station 1 (April 1989.)

- prva radna stanica koja je rabila naglašeno ASIC
 - bolji omjer performansa/cijena
 - kompaktnost izvedbe, redukcija potroška, povećana pouzdanost
 - o smanjen broj dijelova, lakše sastavljanje, veća pouzdanost
- ima oko 50 IC na matičnoj ploči (isključujući DRAM)
- 9 ASIC-a !!!

ASIC	IME	k-vrata	
1	SPARC Integer Unit (IU)	20	
2	SPARC Floating point unit (FPU)	50	
3	Cache controller	9	
4	Memory-management Unit (MMU)	5	
5	Data Buffer	3	
6	DMA controller	9	
7	Video controller / datebuff.	4	
8	RAM controller	1	
9	Clock generator	1	

Primjeri ICs koji nisu ASIC:

- standardne komponente
 - o memorijski čipovi (ROM, DRAM, SRAM)
 - mikroprocesori

Primjeri ICs koji su ASIC:

- čip za dječje igračke (npr. medvjed koji govori)
- čipovi za svemirske letjelice
- čip kao sučelje između memorije i mikroprocesora u radnoj stanici
- čip koji sadrži mikroprocesor (kao ćeliju) i ostalu logiku (SoS)

1. Sklopovi oblikovani po potpunoj specifikaciji kupca (full custom)

- a. izrada svih maski, logičkih ćelija, sklopova
 - I. razlozi:
 - 1. ne postoji biblioteka logičkih ćelija
 - 2. ćelije nisu dovoljno male
 - 3. ćelije imaju preveliki potrošak
 - 4. ćelije, tj. sklopovlje nije dovoljno brzo
- b. oblikovanje i definiranje proizvodnog postupka
- c. cijena ~ 200 000\$ (za početak proizvodnje)
- d. vrijeme proizvodnje > 88 tjedana

2. **Sklopovi oblikovani upotrebom standardnih ćelija** (STD cell) / cell-based ASIC, cell-based IC-> CBIC

- a. upotrebljava unaprijed konfigurirane, unaprijed definirane logičke blokove (AND i OR gates), unaprijed ispitane ćelije (multiplexers, flip-flops) za konstrukciju naručničkog čipa
- b. čip se oblikuje ručno upotrebom grafičkih terminala
- c. logički dizajn -> tjedni ili mjeseci
- d. proizvodnja -> više tjedana ili mjeseci
- za 1. i 2. određena je MINIMALNA KOLIČINA ČIPOVA koja treba pokriti troškove proizvodnje
- faza otkrivanja i otklanjanja pogrešaka?!
- za 1. i 2. VRIJEME I CIJENA SU RIZIK

3. Polje vrata (gate array) - GA

- a. unaprijed proizvedena silicijska matrica koja "čeka" samo naručnički povezni uzorak da bi postala funkcionalna
- b. povezivanje tranzistora ili jednostavnih logičkih vrata u složenije funkcije tijekom posljednje faze proizvodnog procesa (samo nekoliko posljednjih slojeva koji definiraju veze između tranzistora i oni su oblikovani kao custom maska -> MASKED GATE ARRAY (MGA))
- c. gustoća 100 000 vrata (i više) s faktorom iskorištenja <u>80-90%</u> za manje razine složenosti sklopovlja, 40-60% za veće
- d. prilagodljivost manja negoli STD ćelija
- e. imaju 68 i više priključaka i nude veću logičku funkcionalnost negoli tipični PLD
- f. proizvodnja se temelji na samo jednoj ili dvije naručničke maske -> vrijeme oblikovanje do konačnog čipa 4 8 tjedana
- g. dug ciklus (i skup) promjene u logici
- h. dijeli se na
 - I. polje vrata s kanalom (channelled GA)

II. Polje vrata bez kanala (chanelless GA) - sea of gates (SOG)

III. Strukturirana polja vrata (Structured Gate Array) - kombinacija CBIC (cell-based IC) i MGA (masked gate array)

4. Polje ćelija

- a. NAND logička vrata
- b. bistabili
- c. različite vrste međuspremnika

5. PLD (Programmable Logic Devices) - programirljivi logički uređaji / sklopovi

- a. pristupi <u>3. i 4., polje vrata, polje ćelija</u> idealni za <u>velike aplikacije</u> (ispitane i koje ne zahtijevaju izmjene)
- b. prosječni korisnik -> stotinu ili maksimalno tisuću sklopova određenog logičkog uzorka (funkcije) GODIŠNJE
- c. NRE (non recurring expense) nepovratni troškovi => RJEŠENJE -> PLD!
- d. PLDs
 - I. standardni IC raspoloživi u standardnim konfiguracijama iz kataloga
 - II. prodaju se u velikim količinama od strane većeg broja isporučitelja

- e. PLD može se konfigurirati ili programirati tako da se dobije komponenta za specifičnu aplikaciju
- f. PLD el. ASIC
- g. <u>Uobičajene značajke PLD-a</u>
 - I. ne rabe se posebno (customized) oblikovane maske ili ćelije
 - II. kratko vrijeme oblikovanja
 - III. veliki blok programirljivih međuveza
 - IV. matrica logičkih makroćelija koje se sastoje od <u>programirljivog logičkog polja</u> (PAL) i, zatim, bistabila ili zapornih sklopova
- h. serija 7400 nekoliko logičkih vrata čvrste strukture -> unaprijed definirana funkcija
- i. 70-ih godina čipovi s vrlo velikim brojem vrata promjenjive strukture

6. PAL - Programmable Array Logic

- a. AND ravnina programirljiva
- b. OR ravnina čvrsta

7. PLA - Programmable Array Logic

- a. AND ravnina programirljiva
- b. OR ravnina programirljiva

CPLD - complex PLD

- PLA ili PAL do 32 ulaza i izlaza

- CPLD obično podržava ISP (in-system programming) -> programiranje čipa dok je priključen na tiskanoj ploči
- programira se prijenosom "programa" generiranog CAD sustavom pomoću kabela računalo->
 CPLD (JTAG port joint test action group)

ALTERA MAX 7000

- porodica CPLD 7032 (32 makroćelije) -> 7912 (512 makroćelija)
- sufiks S označava ISP čip, npr MAX 7128S je ISP, a MAX 7128 se može programirati <u>samo</u> u programatoru!

LAB (Logic Array Block)

- sadrži 16 makroćelija
- povezan je sa I/O upravljačkim blokom koji ima 3-state buffers
- svaki LAB je povezan s programirljivim prospojnim poljem PIA (Programmable Interconnect Arrav)
- CPLD MAX 7000 ima 4 namjenska ulaza 2 kao signali vremenskog vođenja, 1 global reset za bistabile

PLD

- niska cijena jediničnog proizvoda -> raspoložive snažne razvojne alatke
- prilagodljivost
- visoka performansa
- visoka pouzdanost sklopovlja
- povećava pouzdanost cijelog digitalnog sustava
- sustavi ostvareni komponentama LSI ili VLSI <-> ekvivalentni sustavi; oblikovani komponentama koje imaju nižu gustoću

Zamisao programirljive komponente

- funkcija komponente se mijenja jednim ili većim brojem UPRAVLJAČKIH SIGNALA
- temeline komponente:
 - XOR upravljivi invertor

C - UPRAVLJANJE	D-in - ULAZ	D-out - IZLAZ
0	0	0
0	1	1
1	0	1
1	1	0

 kad je upravljački signal 1 izlaz postaje logički invertirana veličina ulaza; a kada je 0, ulaz = izlaz

• <u>DVOULAZNI AND</u> - upravljiva sklopka

С	D-in	D-out		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

• MULTIPLEKSOR

• <u>SKLOP S TRI (LOGIČKA) STANJA</u> - upravljiva sklopka

C_potez	DATA	OUT
0	1	1
0	0	0
1	Х	Z

A i B su upravljački signali

Linija	Α	В	С	W	Χ	Υ	Z
0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0
2	0	1	0	0	0	1	1
3	0	1	1	1	1	0	0
4	1	0	0	0	1	1	0
5	1	0	1	1	0	1	1
6	1	1	0	1	0	0	1
7	1	1	1	0	1	1	1

KRATAK PRIKAZ RAZVOJA PROGRAMIRLJIVIH SKLOPOVA

- prvi tip programirljivih uređaja: PROM (Programmable Read-Only Memory)
 - jednokratno programirljiv uređaj koji se sastoji od read-only ćelija
 - dvije osnovne vrste PROM-a
 - PROM koji se može programirati tijekom proizvodnje (mask programmable)
 - programiranje može trajati tjednima ili mjesecima
 - PROM koji može programirati krajnji korisnik (<u>field programmable</u>) programirljiva sklopka (osigurač)
 - jeftiniji za manje serije
 - neposredno programiranje (u nekoliko minuta)
 - EPROM (Erasable PROM), EEPROM (Electrically Erasable PROM)
- PAL (Programmable Array Logic)
 - najjednostavniji oblik PLD-a programirljiva AND-ravnina i čvrsta OR-ravnina
- PLA (Programmable Logic Array)
 - programirljive i AND i OR ravnine
 - može biti i mask-programmable i field-programmable
- najopćenitiji programiljivi uređaji sastoje se od "nesvrstanih" elemenata koji se mogu povezivati u skladu s korisničkom specifikacijom
- Mask-Programmable Gate Arrays (MPGA)
- FPGA (Field-Programmable Gate Array)
 - kombinira programirljivost PLD-a i programirljivost povezane strukture MPGA

- primjer PLD: GAL (Generic Array Logic); tvrtka SCS Thomson
 - GAL proizveden upotrebom sklopova vrlo velike brzine (u CMOS-u)
 - električki je izbrisiv
 - brzina jednaka brzini sklopova (programirljivih) izvedenih u bipolarnim tehnologijama (osim ECL)
 - mali potrošak (CMOS!!!)

GAL 16V8 E²CMOS PLD

- čip s dvadeset priključaka
- emulira 20-priljučni PAL
- 21 različitih bipolarnih PAL-ova
- ima sigurnosnu ćeliju za zaštitu autorstva sprječava kopiranje
- podaci i struktura ostaju dulje od 20 godina
- dopušta ponavljanje 100x ciklusa programiranja i brisanja
- rekonfigurabilna logika
- reprogramiranje ćelija
- mali potrošak
- velika brzina: 15-25ns pristupa
- GAL 16V8WPCT (W = brzina; P = snaga; C = pakiranje; T = 1->0-70 stupnjeva celzijusa; 2-> 55 +125 stupnjeva celzijusa)

OLMC

- dopušta korisniku konfiguriranje izlaza u skladu sa specifičnim potrebama
 - o kombinacijski izlazi
 - o onemogućeni izlazi
 - o registarski (sinkroni) izlazi
 - o definiranje razine aktivnosti

GAL razvojne alatke

- Programska razvojna oprema (Software tools)
 - 70-ih godina
 - o zbirni jezik (assembler) za PLD PALASM (tvrtka Monolithic Memories)
 - ulaz: Boolove jednadžbe (format u obliku sume produkata!!)
 - ranih 80-ih godina
 - CUPL (Assisted Technology)
 - ABEL (Data I/O Corp.)
 - minimizacija
 - definiranje makroa
 - tablica istinitosti
 - dijagram stanja
 - samodokumentiranje
 - kasnih 80-ih godina
 - o grafički ulazi!
 - o CAE-1 (Personal-CAD Systems)
 - o DASH (Data I/O)

SKLOPOVSKE ALATKE

- 1. univerzalni programatori
 - a. za programiranje EPROM memorija
 - b. za programiranje EPROM polja u mikroprocesorima
- 2. "GAL only" programatori
- postupak programiranja
 - ulaz JEDEC datoteka ("fuse" map)
 - "Downloading" proces punjenja programatora JEDAC (Joint Electron Device Council) datotekom