```
In [5]:
         import pandas as pd
         import numpy as np
         from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_sd
         from sklearn.impute import SimpleImputer, KNNImputer
         from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
         from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
         from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC
         from sklearn.neighbors import KNeighborsClassifier
         from xgboost import XGBClassifier
         from sklearn.metrics import classification report, accuracy score, roc auc score
         from sklearn.pipeline import Pipeline
         import seaborn as sns
         import matplotlib.pyplot as plt
         # 1. Load the dataset
         data = pd.read csv('heart dataset with missing.csv')
         # Initial inspection
         print(data.info())
         print(data.describe())
         # Checking for missing values
         missing_summary = data.isnull().sum()
         print("Missing Values Summary:\n", missing summary)
         # 2. Missing Mechanism Detection
         sns.heatmap(data.isnull(), cbar=False, cmap="viridis")
         plt.title("Missing Value Heatmap")
         plt.show()
         # Visualizing missing patterns with pairwise plots
         sns.pairplot(data.dropna())
         plt.show()
         # 3. Missing Value Imputation
         # Numeric features imputation with mean
         data_numeric = data.select_dtypes(include=['float64', 'int64'])
         numeric imputer = SimpleImputer(strategy='mean')
         data numeric imputed = pd.DataFrame(numeric imputer.fit transform(data numeric),
         # Handling categorical data
         data_categorical = data.select_dtypes(include=['object'])
         if data categorical.shape[1] == 0:
             print("No categorical variables detected.")
         else:
             # Remove entirely null columns
             data categorical = data categorical.dropna(how='all', axis=1)
             categorical imputer = SimpleImputer(strategy='most frequent')
             data_categorical_imputed = pd.DataFrame(
                 categorical imputer.fit transform(data categorical),
                 columns=data_categorical.columns
         # Combine numeric and categorical
         if data categorical.shape[1] > 0:
             data_cleaned = pd.concat([data_numeric_imputed, data_categorical_imputed], d
```

```
data_cleaned = data_numeric_imputed
# Verify missing values
print(data_cleaned.isnull().sum())
# 4. Exploratory Data Analysis
# Plot distributions for numeric variables
for col in data numeric imputed.columns:
    plt.figure()
    sns.histplot(data_cleaned[col], kde=True)
    plt.title(f"Distribution of {col}")
    plt.show()
# Correlation heatmap
correlation = data cleaned.corr()
sns.heatmap(correlation, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
# Target distribution
sns.countplot(x='target', data=data_cleaned)
plt.title("Target Distribution")
plt.show()
# Additional pairplot for numeric variables
sns.pairplot(data cleaned, hue='target')
plt.show()
# 5. Feature Engineering
# Scaling numeric features
scaler = StandardScaler()
data scaled = scaler.fit transform(data cleaned.drop(columns=['target']))
X = pd.DataFrame(data_scaled, columns=data_cleaned.columns[:-1])
y = data cleaned['target']
# Adding polynomial features
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)
X poly = poly.fit transform(X)
# Feature selection using RandomForest feature importance
forest = RandomForestClassifier()
forest.fit(X, y)
importances = forest.feature importances
important features = pd.DataFrame({'Feature': data cleaned.columns[:-1], 'Import
important_features = important_features.sort_values(by='Importance', ascending=F
print(important features)
# 6. Model Training and Evaluation
# Splitting data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
# Define models
models = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
    "Random Forest": RandomForestClassifier(),
    "SVM": SVC(probability=True),
    "XGBoost": XGBClassifier(use label encoder=False, eval metric='logloss'),
    "KNN": KNeighborsClassifier(),
    "Gradient Boosting": GradientBoostingClassifier()
```

```
}
# Train and evaluate each model
for name, model in models.items():
    print(f"Training {name}...")
    model.fit(X train, y train)
    y pred = model.predict(X test)
    y_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba
    print(f"{name} Classification Report:\n", classification_report(y_test, y_pr
    print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
    if y proba is not None:
        print(f"ROC-AUC: {roc_auc_score(y_test, y_proba)}")
# 7. Hyperparameter Tuning for the Best Model (Random Forest as example)
param grid = {
     'n estimators': [100, 200, 300],
     'max_depth': [None, 10, 20],
     'min_samples_split': [2, 5, 10]
grid search = GridSearchCV(RandomForestClassifier(), param grid, cv=5, scoring='
grid search.fit(X train, y train)
print("Best Parameters for Random Forest:", grid_search.best_params_)
best_model = grid_search.best_estimator_
# Evaluate the best model
final_pred = best_model.predict(X_test)
final proba = best model.predict proba(X test)[:, 1]
print("Final Model Classification Report:\n", classification_report(y_test, fina
print("Final ROC-AUC:", roc_auc_score(y_test, final_proba))
# Plot confusion matrix for the best model
conf_matrix = confusion_matrix(y_test, final_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues")
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# Cross-validation scores for best model
cv_scores = cross_val_score(best_model, X, y, cv=10, scoring='roc_auc')
print("Cross-Validation ROC-AUC Scores:", cv_scores)
print("Mean ROC-AUC Score:", np.mean(cv_scores))
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1190 entries, 0 to 1189
Data columns (total 12 columns):
#
    Column
                          Non-Null Count Dtype
 0
    age
                          1131 non-null
                                          float64
 1
                          1131 non-null
                                          float64
    sex
 2
                                          float64
                          1131 non-null
    chest pain type
 3
                                          float64
    resting bp s
                          1131 non-null
4
    cholesterol
                          1131 non-null
                                          float64
 5
                                          float64
    fasting blood sugar
                          1131 non-null
 6
                          1131 non-null
                                          float64
    resting ecg
 7
                          1131 non-null
                                          float64
    max heart rate
8
    exercise angina
                          1131 non-null
                                          float64
9
    oldpeak
                          1131 non-null
                                          float64
                                          float64
 10 ST slope
                          1131 non-null
                          1190 non-null
 11 target
                                          int64
```

dtypes: float64(11), int64(1)
memory usage: 111.7 KB

None

	age	sex	chest pa	in type	resting bp	s choles	terol	\
count	1131.000000	1131.000000	1131	.000000	1131.0000	00 1131.0	00000	
mean	53.757737	0.762157	3	.229001	132.1971	71 210.0	36251	
std	9.308937	0.425951	0	.938691	18.3749	31 101.6	82029	
min	28.000000	0.000000	1	.000000	0.0000	0.0	00000	
25%	47.000000	1.000000	3	.000000	120.0000	00 188.0	00000	
50%	54.000000	1.000000	4	.000000	130.0000	00 229.0	00000	
75%	60.000000	1.000000	4	.000000	140.0000	00 269.0	00000	
max	77.000000	1.000000	4	.000000	200.0000	00 603.0	00000	
	fasting bloo	d sugar res [.]	ting ecg	max heart	rate exe	rcise angi	na \	
count	1131	.000000 1133	1.000000	1131.0	00000	1131.0000	00	
mean	0	.216622	700265	139.6	90539	0.3846	15	

	fasting blood sugar	resting ecg	max heart rate	exercise angina
count	1131.000000	1131.000000	1131.000000	1131.000000
mean	0.216622	0.700265	139.690539	0.384615
std	0.412125	0.871064	25.365221	0.486719
min	0.00000	0.000000	60.000000	0.000000
25%	0.000000	0.000000	121.000000	0.000000
50%	0.000000	0.000000	140.000000	0.000000
75%	0.000000	2.000000	160.000000	1.000000
max	1.000000	2.000000	202.000000	1.000000

	oldpeak	ST slope	target
count	1131.000000	1131.000000	1190.000000
mean	0.927763	1.624226	0.528571
std	1.093144	0.612044	0.499393
min	-2.600000	0.000000	0.000000
25%	0.000000	1.000000	0.000000
50%	0.600000	2.000000	1.000000
75%	1.600000	2.000000	1.000000
max	6.200000	3.000000	1.000000

Missing Values Summary:

	•
age	59
sex	59
chest pain type	59
resting bp s	59
cholesterol	59
fasting blood sugar	59
resting ecg	59
max heart rate	59
exercise angina	59
oldpeak	59
ST slope	59
target	0
dtype: int64	

No categorical variables detected.

age 0 sex chest pain type 0 resting bp s 0 cholesterol 0 fasting blood sugar 0 resting ecg 0 max heart rate 0 exercise angina 0 oldpeak 0 ST slope 0 target 0 dtype: int64

Distribution of chest pain type

Distribution of cholesterol

Distribution of resting ecg

Distribution of max heart rate

Distribution of oldpeak

Distribution of ST slope

Distribution of target

> Accuracy: 0.8515406162464986 ROC-AUC: 0.90909090909090909 Training Random Forest...

Random Forest Classification Report:

	precision	recall	f1-score	support
0.0	0.90	0.90	0.90	154
1.0	0.93	0.93	0.93	203
accuracy			0.92	357
macro avg	0.91	0.91	0.91	357
weighted avg	0.92	0.92	0.92	357

Accuracy: 0.9159663865546218 ROC-AUC: 0.9476680954513467

Training SVM...

SVM Classification Report:

	precision	recall	f1-score	support
0.0	0.86	0.82	0.84	154
1.0	0.87	0.90	0.89	203
accuracy			0.87	357
macro avg weighted avg	0.87 0.87	0.86 0.87	0.87 0.87	357 357

Accuracy: 0.8683473389355743 ROC-AUC: 0.9319621265434074

Training XGBoost...

D:\anaconda3\Lib\site-packages\xgboost\core.py:158: UserWarning: [19:41:22] WARN ING: C:\buildkite-agent\builds\buildkite-windows-cpu-autoscaling-group-i-0c55ff5 f71b100e98-1\xgboost\xgboost-ci-windows\src\learner.cc:740:

Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning) XGBoost Classification Report:

	precision	recall	f1-score	support
0.0	0.89	0.91	0.90	154
1.0	0.93	0.92	0.92	203
accuracy			0.91	357
macro avg weighted avg	0.91 0.91	0.91 0.91	0.91 0.91	357 357

Accuracy: 0.9131652661064426 ROC-AUC: 0.9508028916895912

Training KNN...

KNN Classification Report:

NIN CLASS	ilittat	precision	recall	f1-score	support
	0.0	0.86	0.82	0.84	154
	1.0	0.87	0.90	0.88	203
accur	асу			0.87	357
macro weighted		0.86 0.87	0.86 0.87	0.86 0.87	357 357

Accuracy: 0.865546218487395

ROC-AUC: 0.9156323971594907 Training Gradient Boosting...

Gradient Boosting Classification Report:

	precision	recall	f1-score	support
0.0	0.89	0.86	0.88	154
1.0	0.90	0.92	0.91	203
accuracy			0.90	357
macro avg	0.90	0.89	0.89	357
weighted avg	0.90	0.90	0.90	357

Accuracy: 0.896358543417367 ROC-AUC: 0.9299788881069669

Best Parameters for Random Forest: {'max_depth': 20, 'min_samples_split': 2, 'n_

estimators': 200}

Final Model Classification Report:

	precision	recall	f1-score	support
0.0 1.0	0.87 0.92	0.90 0.90	0.88 0.91	154 203
accuracy macro avg weighted avg	0.89 0.90	0.90 0.90	0.90 0.89 0.90	357 357 357

Final ROC-AUC: 0.9499232294798798

Cross-Validation ROC-AUC Scores: [0.92642898 0.99064626 0.94019274 0.92063492 0.93480726 0.98582766

0.96697846 0.97278912 0.99631519 0.95464853]

Mean ROC-AUC Score: 0.958926911171939

```
In [4]:
```

```
print(data_categorical.info())
print(data_categorical.head())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1190 entries, 0 to 1189
Empty DataFrame
None
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]
```