LAB 5: Graph

- 1. The "graph1.txt" file contains information of an Adjacency matrix (Table 1). Read the file and output the information of the corresponding Adjacency list.
- 2. The "graph2.txt" file contains information of an Adjacency list (Table 1). Read the file and output the information of the corresponding Adjacency matrix.

Adjacency matrix	Adjacency list
9	9
0 0 1 0 0 1 0 0 0	2 5
$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{bmatrix} $	6
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$	6
00001000	4
0 0 0 1 0 0 0 1 0	5
0 0 0 0 0 0 0 0 0	3 7
00100001	2 8
0 0 0 0 0 0 0 0 0	

Table 1: Adjacency matrix and corresponding Adjacency list

- 3. Implement functions to provide the following information about a given graph:
 - Directed or Undirected Graph.
 - The number of edges and number of vertices.
 - Degree of each vertex for undirected graph. In-degree and Out-degree for directed graph.
 - List of isolated vertices/leaf vertices.
 - Is the given graph special: Complete graph, Circular graph, Bigraph, Complete bigraph.
 - The number of **Connected components**. How many of them are trees?
 - The number of Cut vertices and Bridge edges.
- 4. Generate a **Base undirected graph** from a given directed graph.
- 5. Generate a **Complement graph** from a given undirected graph, outputting the corresponding adjacency matrix.
- 6. Generate a **Converse graph** from a given directed graph, outputting the corresponding adjacency matrix.
- 7. Determined Euler cycle from a given graph using Hiehozer's algorithm.

- 8. Find the spanning tree of a given graph using:
 - DFS traversal

- BFS traversal
- 9. Find the minimum spanning tree of a given graph using:
 - Prim algorithm.

- Kruskal algorithm.
- 10. Verify the connection between 2 vertices of a given graph.
- 11. Find the shortest path between 2 vertices of a given graph using:
 - Dijkstra algorithm

• Floyd-Warshall algorithm

• Bellman-Ford algorithm