學號:B04901080 系級: 電機三 姓名: 戴靖軒

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

	Public	Private	Both (RMS)
All feature	7.46237	5.53562	6.57001
PM 2.5	7.44013	5.62719	6.59624

Private 全部汙染源優於只取 PM2.5, Public 則相反, 整體而言全取較佳。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	Public	Private	Both (RMS)
All feature	7.66119	5.44024	6.64417
PM 2.5	7.57651	5.79427	6.74452

Private 全部汙染源優於只取 PM2.5, Public 則相反,整體而言全取較佳。除了全取的 Private 變小,其餘誤差 5 小時相較於 9 小時皆變大。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

All feature	Public	Private	Both (RMS)
λ=0.1	7.46198	5.53477	6.56943
λ=0.01	7.46233	5.53553	6.56995
λ=0.001	7.46236	5.53561	6.57000
λ=0.0001	7.46237	5.53562	6.57001
PM 2.5	Public	Private	Both (RMS)
λ=0.1	7.44012	5.62720	6.59624
λ=0.01	7.44013	5.62719	6.59624
λ=0.001	7.44013	5.62719	6.59624
λ=0.0001	7.44013	5.62719	6.59624

在此範圍λ影響不大(見下圖)。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\ \mathbf{x}^2\ ...\ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\ \mathbf{y}^2\ ...\ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

(c)
$$(X^{T}X)^{-1}X^{T}y$$

$$L(w) = \|y - Xw\|^2 = (y - Xw)^T (y - Xw) = y^T y - w^T X^T y - y^T Xw + w^T X^T Xw$$
 $(w^T X^T y)^T = y^T Xw$ 為 1×1 的矩陣
$$L(w) = y^T y - 2w^T X^T y + w^T X^T Xw$$

對地微分並令它為零
$$-X^T y + (X^T X)w = 0$$
 $w = (X^T X)^{-1} X^T y$

Source:

https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)#Derivation_directly_in_terms_of_matrices