定理 2.20 代数系の集合において代数系の同型関係は同値関係である。

【証明】

を代数系の集合とする。

- (1) 反射性: の任意の代数系 < A , * > に対して , A 上の恒等関数 I_A は < A , * > 自身への同型写像である。よって , < A , * > \cong < A , * > である。
- (2) 対称性: の任意の代数系 < A , * > と < B , > に対して , < A , $* > \cong < B$, > であれば , ある全単射関数 $f:A \to B$ が存在して , A の任意の要素 a_1 と a_2 に対して , 式 $f(a_1*a_2) = f(a_1)$ $f(a_2)$ が成り立つ。 f は全単射関数であるから , f の逆関数 f^{-1} が存在し , f^{-1} もまた B から A への全単射関数である。よって , B の任意の要素 b_1 と b_2 に対して , A の要素 a_1 ' と a_2 ' が存在して , $f^{-1}(b_1) = a_1$ ' かつ $f^{-1}(b_2) = a_2$ ' である。すなわち , $f(a_1$ ') $= b_1$ かつ $f(a_2$ ') $= b_2$ である。ゆえに ,

$$f^{-1}(b_1 b_2) = f^{-1}(f(a_1') f(a_2'))$$

$$= f^{-1}(f(a_1'*a_2'))$$

$$= a_1'*a_2'$$

$$= f^{-1}(b_1) * f^{-1}(b_2)$$

である。すなわち , 関数 f^{-1} は < B , > から < A , * > への同型写像である。ゆえに , < B , > \cong < A , * > である。

(3) 推移性: の任意の代数系 < A, * > と < B, > と < C, > に対して, < A, * > \cong < B, > かつ < B, > \cong < C, > であるとき, ある全単射関数 $f:A \to B$ と $g:B \to C$ に対して, 合成関数 $g \circ f$ は A から C への全単射関数である。 A の任意の要素 a_1 と a_2 に対して,

$$\begin{split} g \circ f(a_1 * a_2) &= g(f(a_1 * a_2)) \\ &= g(f(a_1) \quad f(a_2)) \\ &= g(f(a_1)) \quad g(f(a_2)) \\ &= g \circ f(a_1) \quad g \circ f(a_2) \end{split}$$

ゆえに, $\langle A, * \rangle \cong \langle C, \rangle$ >である。

よって, の代数系の同型関係は同値関係である。