Home Assignment - 1

Santhosh Nadig

November 14, 2016

1 Introduction

2 Theory

Let \mathbf{Y}_k represent the *n* known observations of spatial data and \mathbf{Y}_u represent the *m* data points that needs to be estimated. For ordinary Kriging ($\mu = \mathbf{1}\beta$), the optimal predictions are given by

$$\hat{\mathbf{Y}}_{u} = \mathbf{1}_{u}\hat{\beta} + \Sigma_{uk}\Sigma_{kk}^{-1} \left(\mathbf{Y}_{k} - \mathbf{1}_{k}\hat{\beta}\right)$$
$$\hat{\beta} = \left(\mathbf{1}_{k}^{T}\Sigma_{kk}^{-1}\mathbf{1}_{k}\right)^{-1}\mathbf{1}_{k}^{T}\Sigma_{kk}^{-1}\mathbf{Y}_{k},$$

where

$$\begin{bmatrix} \mathbf{Y}_k \\ \mathbf{Y}_u \end{bmatrix} \in \mathbf{N} \left(\begin{bmatrix} \mathbf{1}_k \beta \\ \mathbf{1}_u \beta \end{bmatrix}, \begin{bmatrix} \Sigma_{kk} & \Sigma_{ku} \\ \Sigma_{uk} & \Sigma_{uu} \end{bmatrix} \right).$$

Firstly, we show that the predictions are linear in the observations, i.e., $\hat{\mathbf{Y}}_u = \boldsymbol{\lambda}^T \mathbf{Y}_k$ for some $\boldsymbol{\lambda}$. We may re-write $\hat{\beta}$ as

$$\begin{split} \hat{\beta} &= \boldsymbol{\gamma}^T \mathbf{Y}_k \\ \boldsymbol{\gamma} &= \left(\left(\mathbf{1}_k^T \boldsymbol{\Sigma}_{kk}^{-1} \mathbf{1}_k \right)^{-1} \mathbf{1}_k^T \boldsymbol{\Sigma}_{kk}^{-1} \right)^T. \end{split}$$

We note that the vector $\boldsymbol{\gamma}^T$ is of dimensions $1 \times n$, and therefore, $\hat{\beta}$ is a scalar. Substituting the above in the expression for $\hat{\mathbf{Y}}_u$, we obtain

$$\hat{\mathbf{Y}}_{u} = \mathbf{1}_{u} \boldsymbol{\gamma}^{T} \mathbf{Y}_{k} + \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{Y}_{k} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_{k} \boldsymbol{\gamma}^{T} \mathbf{Y}_{k}
= \left(\mathbf{1}_{u} \boldsymbol{\gamma}^{T} + \Sigma_{uk} \Sigma_{kk}^{-1} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_{k} \boldsymbol{\gamma}^{T} \right) \mathbf{Y}_{k}
= \boldsymbol{\lambda}^{T} \mathbf{Y}_{k},$$

where $\lambda = (\mathbf{1}_u \boldsymbol{\gamma}^T + \Sigma_{uk} \Sigma_{kk}^{-1} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_k \boldsymbol{\gamma}^T)^T$. Secondly, we show that the predictions are unbiased.

3 Conclusions