伺服关节-CAN 总线协议

基于 CAN2.0A 总线协议

2022-06-06

CAN 的物理层说明

CAN 协议概述

- 控制器局域网 CAN(Controller Area Network), 是一种 ISO 国际标准化的串行通信协议。
- CAN2.0 A: CAN 标准报文格式。本公司产品设计服从于 CAN2.0A 协议标准。 以下介绍我公司私有 CAN 2.0A 通信协议格式。

CAN 的硬件连接说明

CAN 通信协议格式

协议通讯格式定义

CANID	DLC	DAT0	DAT1	DAT2	DAT3	DAT4	DAT5	DAT6	DAT7
CAN_ID	DLC	CMD	ADDR	data0	data1	data2	data3	NC	NC

- **CAN_ID:** CAN 数据帧 ID、伺服节点设备地址,如伺服 1 节点地址为 0x01,其通信相关的 CANID=0x01。0x01~0xFF 可用。0x00 为广播地址。
- **DLC:** CAN 数据帧长度。
- CMD: 命令类型,详细见下表:

CMD	功能	说明
0x00	网络管理	用于心跳、网络、同步。*
0x01	写入命令	主机对伺服节点相关寄存器写入数据,需要返回命令(0x02)。
0x02	写入命令返回	伺服节点对主机写入命令(0x01)的返回确认。
0x03	读取命令	主机读取伺服节点指令地址的数据内容,需要返回命令(0x04)。
0x04	读取命令返回	伺服节点返回主机的读取命令(0x03)。
0x05	快写命令	主机快速写入伺服节点相关寄存器内容,且立即生效,无需等
		待同步命令,无需返回命令。

- *心跳指令 发送指令 0x00, 从节点回复 00 01
- ADDR: 位于 CAN 数据帧 DAT1,指令地址可以理解为寄存器地址,每个地址对应一个 32bit 的数据区域,分别对应不同的功能。详见指令地址列表。
- data0~data3:数据内容,采用大端模式,默认数据长度 32 位数据 (特殊指令除外)。 比如数据 0x01020304:

data0	data1	data2	data3
0x01	0x02	0x03	0x04

协议指令地址列表

指令地址	定义	访问属性	数据说明
0x02	设备序列号	R	SN 序列号
0x03	设备硬件版本号	R	HW 硬件版本
0x04	设备固件版本号	R	FW 固件版本
0x05	当前电流值	R	32 位有符号数,单位 1=1ma
0x06	当前速度值	R	32 位有符号数,每秒变化的脉冲数。
			1rpm=65536/60
0x07	当前位置值	R	32 位有符号数,65536 脉冲对应 1 圈
0x08	设置目标电流值	R/W	32 位有符号数
0x09	设置目标速度值	R/W	32 位有符号数
0x0A	设置目标位置值	R/W	32 位有符号数
0x0B	设置目标加速度值	R/W	32 位有符号数
0x0C	设置目标减速度值	R/W	32 位有符号数
0x0F	当前工作模式	R/W	详见工作模式列表
0x10	使能/失能状态	R/W	01=使能,00=失能
0x11	结束当前运行状态	R/W	01 结束当前运行,电机不失能
0x15	告警指示	R/W	详见告警指示列表。写00清除当前告警
0x1A	电子齿轮比	R	减速箱减速比
0x1B	当前母线电压值	R	单位 1=0.1V
0x1C	母线保护工作电压	R/W	超过电压设置值则立即失能电机。1=0.1V
0x1D	当前温度值	R	电机温度值,1=1°
0x1E	工作保护温度	R/W	超过温度保护值时失能电机,并上报。
0x1F	工作恢复温度	R/W	当前温度低于恢复温度后,恢复对电机控制
0x23	电流环的 P 值	R/W	32 位无符号数
0x24	电流环的 I 值	R/W	32 位无符号数
0x25	速度环的 P 值	R/W	32 位无符号数
0x26	速度环的 值	R/W	32 位无符号数
0x27	位置环的 P 值	R/W	32 位无符号数
0x28	位置环的1值	R/W	32 位无符号数
0x30	最大工作电流限制	R/W	32 位有符号数, FOC 环路总限制
0x31	最大工作速度限制	R/W	32 位有符号数, FOC 环路总限制
0x32	速度梯形曲线的最	R/W	32 位有符号数,速度模式有效
	大速度值		
0x33	速度梯形曲线的加	R/W	32 位有符号数,速度模式有效
	速度最大值		
0x34	速度梯形曲线的减	R/W	32 位有符号数,速度模式有效
	速度最大值		
0x35	位置梯形曲线的最	R/W	32 位有符号数,位置模式有效
	大速度值		
0x36	位置梯形曲线的加	R/W	32 位有符号数,位置模式有效
	速度最大值		

0x37	位置梯形曲线的减	R/W	32 位有符号数,位置模式有效
	速度最大值		
0x38	位置限位状态	R/W	32 位有符号数,位置模式限位使能
0x39	位置的上限值	R/W	32 位有符号数,位置模式限位上限
0x3A	位置的下限值	R/W	32 位有符号数,位置模式限位下限
0x3B	位置的偏置参数值	R/W	32 位有符号数,位置模式位置偏移值
0x3C	上电时刻单圈位置	R/W	默认 0x00000000~0x00010000 (0~360)
	范围值		0x7FFF 0xFFFF8000 ~ 0x00008000(-180 ~180)
0X4B	修改 CAN 波特率	R/W	data3 = 0x0A(波特率 1M),默认 05(500K)
0x4C	修改设备的 CANID	W	data0~data2 = SN 后三字节,data3=修改 ID
0x4D	数据保存	W	data0~data2 = SN 后三字节,data3=01 存储
			数据到 eeprom 中

命令写返回,数据说明

伺服节点对主机写入命令(0x01)的返回确认,节点返回 CAN 负载数据为 <u>0x02</u> <u>ADDR</u> <u>STATE</u>。ADDR 为写入的指令地址;STATE 为写入指令状态反馈,见下列表

CMD	FLAG
0X00	写入失败
0x01	写入成功
0x03	写入的数据出错
0x04	数据超出范围,写入失败
0x05	数据超出范围,矫正后写入成功

详细指令数据说明

位置参数: 减速器端输出轴 1 圈对应 65536 脉冲数。即 360° = 655336 脉冲。如设置位置 180° = 180/360*65536, 位置参数为 0x00008000

速度参数: 每秒输出端位置变化脉冲数。如设置速度 10RPM, 10RPM = 10*65536/60, 速度参数为 0x00002AAA

加速度、减速度参数:每秒速度变化的脉冲数。32 位有符号数。如设置加速度、减速度 2000rpm/s,加速度、减速度参数为 0x00215555

工作模式列表

地址	名称	访问属性	数据类型	默认设定	
0x0F	Ox0F 工作模式		R/W U32		
		数据详细内容			
	数据	名称			
1		轮廓位置模式-速度			
2		轮廓位置模式-时间			
3		轮廓速度模式			
4		电流模式			
5		周期同步位置模式			

告警指示列表

地址	名称	访问属性	数据类型	默认设定			
0x15	告警指示	R/W	U32	0			
	数据详细内容						
	参数值	名称	内容				
	0x0001	过压保护	大于电压门限,小于恢复电压后系统启动				
	0x0002	欠压保护	母线电压功率不足				
	0x0004	过温保护	温度大于设定保护温度				
	0x0010	过流保护	电流值过大,防止发生短路				
	0x0020	过载保护	位置不动且长时间负载电流过大				
	0x0040	电机锁保护	位置模式,目标角度没有变化实际角度变化				
			超过 10°				
	0x0080	缺相保护	电机线接触不良				
	0x0200	磁编码器磁场出错	磁编码器异常				
	0x0400 磁编码器欠压		磁编码器异常				
	0x0800	磁编角度出错	磁编码器异常				
	0x0100 参数读写异常 内存出错						

使用指令模式的一般步骤

- 1. 伺服关节工作模式设置: 比如设置位置模式 01 0F 00 00 00 01。上电默认位置模式;
- 2. 设置相关参数,速度参数、位置参数:比如设置 10rpm 01 09 00 00 2A AA,运行至 180° 01 0A 00 00 80 00;
- 3. 伺服关节失能: 01 10 00 00 00 00

更新说明

20220903 新增开机点 1 圈量程修改参数,默认开机 1R 的位置范围值(0x00000000 ~ 0x00000ffff)。 修改完后 开机 1 圈的范围值为(0xffff8000 ~ 0x00008000)(-180 ~ 180)