Babel

Version 3.55.2319 2021/03/22

Johannes L. Braams
Original author

Javier Bezos
Current maintainer

Localization and internationalization

Unicode
TEX
pdfTEX
LuaTEX
XeTEX

Contents

I	User	guide	4				
1	The 1	The user interface					
	1.1	Monolingual documents	4				
	1.2	Multilingual documents	6				
	1.3	Mostly monolingual documents	8				
	1.4	Modifiers	8				
	1.5	Troubleshooting	Ç				
	1.6	Plain	Ç				
	1.7	Basic language selectors	ç				
	1.8	Auxiliary language selectors	10				
	1.9	More on selection	11				
	1.10	Shorthands	12				
	1.11	Package options	16				
	1.12	The base option	18				
	1.13	ini files	18				
	1.14	Selecting fonts	26				
	1.15	Modifying a language	28				
	1.16	Creating a language	30				
	1.17	Digits and counters	33				
	1.18	Dates	35				
	1.19	Accessing language info	35				
	1.20	Hyphenation and line breaking	36				
	1.21	Transforms	38				
	1.22	Selection based on BCP 47 tags	39				
	1.23	Selecting scripts	41				
	1.24	Selecting directions	41				
	1.25	Language attributes	45				
	1.26	Hooks	46				
	1.27	Languages supported by babel with ldf files	47				
	1.28	Unicode character properties in luatex	48				
	1.29	Tweaking some features	49				
	1.30	Tips, workarounds, known issues and notes	49				
	1.31	Current and future work	50				
	1.31	Tentative and experimental code	5(
	1.32	remative and experimental code	50				
2	Load	ling languages with language.dat	51				
	2.1	Format	51				
3	The i	interface between the core of babel and the language definition files	52				
	3.1	Guidelines for contributed languages	53				
	3.2	Basic macros	54				
	3.3	Skeleton	55				
	3.4	Support for active characters	56				
	3.5	Support for saving macro definitions	56				
	3.6	Support for extending macros	57				
	3.7	Macros common to a number of languages	57				
	3.8	Encoding-dependent strings	57				
4	Chan	ges	61				
_		Changes in babel version 3.9	61				

II	Source code	61		
5	Identification and loading of required files			
6	locale directory			
7	Tools 7.1 Multiple languages 7.2 The Package File (MTpX, babel.sty) 7.3 base 7.4 Conditional loading of shorthands 7.5 Cross referencing macros 7.6 Marks 7.7 Preventing clashes with other packages 7.7.1 ifthen 7.7.2 varioref 7.7.3 hhline 7.7.4 hyperref 7.7.5 fancyhdr 7.8 Encoding and fonts 7.9 Basic bidi support 7.10 Local Language Configuration	62 67 67 69 71 73 75 76 76 77 77 78 78 80 85		
8	The kernel of Babel (babel.def, common) 8.1 Tools	89		
9	Multiple languages 9.1 Selecting the language 9.2 Errors 9.3 Hooks 9.4 Setting up language files 9.5 Shorthands 9.6 Language attributes 9.7 Support for saving macro definitions 9.8 Short tags 9.9 Hyphens 9.10 Multiencoding strings 9.11 Macros common to a number of languages 9.12 Making glyphs available 9.12.1 Quotation marks 9.12.2 Letters 9.12.3 Shorthands for quotation marks 9.12.4 Umlauts and tremas 9.13 Layout 9.14 Load engine specific macros 9.15 Creating and modifying languages	90 93 101 104 106 108 117 119 120 122 128 128 131 132 133 134		
10	Adjusting the Babel bahavior	154		
11	Loading hyphenation patterns	156		
12	Font handling with fontspec	161		

13	Hooks for XeTeX and LuaTeX	165	
	13.1 XeTeX	165	
	13.2 Layout	167	
	13.3 LuaTeX	168	
	13.4 Southeast Asian scripts	174	
	13.5 CJK line breaking	178	
	13.6 Automatic fonts and ids switching	178	
	13.7 Layout	190	
	13.8 Auto bidi with basic and basic-r	194	
14	Data for CJK	205	
15	The 'nil' language	205	
16	Support for Plain T _E X (plain.def)		
	16.1 Not renaming hyphen.tex	206	
	16.2 Emulating some LATEX features	206	
	16.3 General tools	207	
	16.4 Encoding related macros	210	
17	Acknowledgements	213	
_			
Τ'n	roubleshoooting		
	Paragraph ended before \UTFviii@three@octets was complete	5	
	No hyphenation patterns were preloaded for (babel) the language 'LANG' into the		
	format	6	
	You are loading directly a language style	9	
	Unknown language 'LANG'	9	
	Argument of \language@active@arg" has an extra \	13	
	Package fontspec Warning: 'Language 'LANG' not available for font 'FONT' with		
	script 'SCRIPT' 'Default' language used instead'	28	
	Package babel Info: The following fonts are not babel standard families	28	

Part I

User guide

What is this document about? This user guide focuses on internationalization and localization with LATEX and pdftex, xetex and luatex with the babel package. There are also some notes on its use with Plain TeX. Part II describes the code, and usually it can be ignored.

What if I'm interested only in the latest changes? Changes and new features with relation to version 3.8 are highlighted with New X.XX, and there are some notes for the latest versions in the babel repository. The most recent features can be still unstable.

Can I help? Sure! If you are interested in the T_EX multilingual support, please join the kadingira mail list. You can follow the development of babel in GitHub and make suggestions; feel free to fork it and make pull requests. If you are the author of a package, send to me a few test files which I'll add to mine, so that possible issues can be caught in the development phase.

It doesn't work for me! You can ask for help in some forums like tex.stackexchange, but if you have found a bug, I strongly beg you to report it in GitHub, which is much better than just complaining on an e-mail list or a web forum. Remember *warnings are not errors* by themselves, they just warn about possible problems or incompatibilities.

How can I contribute a new language? See section 3.1 for contributing a language.

I only need learn the most basic features. The first subsections (1.1-1.3) describe the traditional way of loading a language (with ldf files), which is usually all you need. The alternative way based on ini files, which complements the previous one (it does *not* replace it, although it is still necessary in some languages), is described below; go to 1.13.

I don't like manuals. I prefer sample files. This manual contains lots of examples and tips, but in GitHub there are many sample files.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in \mathbb{M}_E^*X is to load the package using its standard mechanism for this purpose, namely, passing that language as an optional argument. In addition, you may want to set the font and input encodings. Another approach is making the language a global option in order to let other packages detect and use it. This is the standard way in \mathbb{M}_E^*X for an option – in this case a language – to be recognized by several packages.

Many languages are compatible with xetex and luatex. With them you can use babel to localize the documents. When these engines are used, the Latin script is covered by default in current Late (provided the document encoding is UTF-8), because the font loader is preloaded and the font is switched to lmroman. Other scripts require loading fontspec. You may want to set the font attributes with fontspec, too.

EXAMPLE Here is a simple full example for "traditional" T_EX engines (see below for xetex and luatex). The packages fontenc and inputenc do not belong to babel, but they are included in the example because typically you will need them. It assumes UTF-8, the default encoding:

PDFTEX

```
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[french]{babel}
\begin{document}

Plus ça change, plus c'est la même chose!
\end{document}
```

Now consider something like:

```
\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}
```

With this setting, the package varioref will also see the option french and will be able to use it.

EXAMPLE And now a simple monolingual document in Russian (text from the Wikipedia) with xetex or luatex. Note neither fontenc nor inputenc are necessary, but the document should be encoded in UTF-8 and a so-called Unicode font must be loaded (in this example \babelfont is used, described below).

LUATEX/XETEX

```
\documentclass[russian]{article}
\usepackage{babel}
\babelfont{rm}{DejaVu Serif}
\begin{document}

Poccuя, находящаяся на пересечении множества культур, а также с учётом многонационального характера её населения, — отличается высокой степенью этнокультурного многообразия и способностью к межкультурному диалогу.
\end{document}
```

TROUBLESHOOTING A common source of trouble is a wrong setting of the input encoding. Depending on the LaTeX version you can get the following somewhat cryptic error:

```
! Paragraph ended before \UTFviii@three@octets was complete.
```

Or the more explanatory:

```
! Package inputenc Error: Invalid UTF-8 byte ...
```

Make sure you set the encoding actually used by your editor.

NOTE Because of the way babel has evolved, "language" can refer to (1) a set of hyphenation patterns as preloaded into the format, (2) a package option, (3) an 1df file, and (4) a name used in the document to select a language or dialect. So, a package option refers to a language in a generic way – sometimes it is the actual language name used to select it, sometimes it is a file name loading a language with a different name, sometimes it is a file name loading several languages. Please, read the documentation for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not under the direct control of babel:

```
Package babel Warning: No hyphenation patterns were preloaded for (babel) the language `LANG' into the format.

(babel) Please, configure your TeX system to add them and (babel) rebuild the format. Now I will use the patterns (babel) preloaded for \language=0 instead on input line 57.
```

The document will be typeset, but very likely the text will not be correctly hyphenated. Some languages may be raising this warning wrongly (because they are not hyphenated); it is a bug to be fixed – just ignore it. See the manual of your distribution (MacT_FX, MikT_FX, T_FXLive, etc.) for further info about how to configure it.

NOTE With hyperref you may want to set the document language with something like:

```
\usepackage[pdflang=es-MX]{hyperref}
```

This is not currently done by babel and you must set it by hand.

NOTE Although it has been customary to recommend placing \title, \author and other elements printed by \maketitle after \begin{document}, mainly because of shorthands, it is advisable to keep them in the preamble. Currently there is no real need to use shorthands in those macros.

1.2 Multilingual documents

In multilingual documents, just use a list of the required languages as package or class options. The last language is considered the main one, activated by default. Sometimes, the main language changes the document layout (eg, spanish and french).

EXAMPLE In Lagrangian Transfer in Lagrangian Example of the document:

```
\documentclass{article}
\usepackage[dutch,english]{babel}
```

would tell LaTeX that the document would be written in two languages, Dutch and English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly, but it is discouraged except if there a real reason to do so:

```
\documentclass{article}
\usepackage[main=english,dutch]{babel}
```

Examples of cases where main is useful are the following.

NOTE Some classes load babel with a hardcoded language option. Sometimes, the main language can be overridden with something like that before \documentclass:

```
\PassOptionsToPackage{main=english}{babel}
```

WARNING Languages may be set as global and as package option at the same time, but in such a case you should set explicitly the main language with the package option main:

```
\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}
```

WARNING In the preamble the main language has not been selected, except hyphenation patterns and the name assigned to \languagename (in particular, shorthands, captions and date are not activated). If you need to define boxes and the like in the preamble, you might want to use some of the language selectors described below.

To switch the language there are two basic macros, described below in detail: \selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text inside paragraphs.

EXAMPLE A full bilingual document with pdftex follows. The main language is french, which is activated when the document begins. It assumes UTF-8:

PDFTEX

```
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[english,french]{babel}
\begin{document}
Plus ça change, plus c'est la même chose!
\selectlanguage{english}
And an English paragraph, with a short text in
\foreignlanguage{french}{français}.
\end{document}
```

EXAMPLE With xetex and luatex, the following bilingual, single script document in UTF-8 encoding just prints a couple of 'captions' and \today in Danish and Vietnamese. No additional packages are required.

LUATEX/XETEX

```
\documentclass{article}
\usepackage[vietnamese,danish]{babel}
\begin{document}
\prefacename{} -- \alsoname{} -- \today
\selectlanguage{vietnamese}
```

```
\prefacename{} -- \alsoname{} -- \today
\end{document}
```

NOTE Once loaded a language, you can select it with the corresponding BCP47 tag. See section 1.22 for further details.

1.3 Mostly monolingual documents

New 3.39 Very often, multilingual documents consist of a main language with small pieces of text in another languages (words, idioms, short sentences). Typically, all you need is to set the line breaking rules and, perhaps, the font. In such a case, babel now does not require declaring these secondary languages explicitly, because the basic settings are loaded on the fly when the language is selected (and also when provided in the optional argument of \babelfont, if used.)

This is particularly useful, too, when there are short texts of this kind coming from an external source whose contents are not known on beforehand (for example, titles in a bibliography). At this regard, it is worth remembering that \babelfont does *not* load any font until required, so that it can be used just in case.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif in Russian is:

LUATEX/XETEX

```
\documentclass[english]{article}
\usepackage{babel}

\babelfont[russian]{rm}{FreeSerif}

\begin{document}

English. \foreignlanguage{russian}{Pyccкий}.
\foreignlanguage{spanish}{Español}.

\end{document}
```

NOTE Instead of its name, you may prefer to select the language with the corresponding BCP47 tag. This alternative, however, must be activated explicitly, because a two- or tree-letter word is a valid name for a language (eg, yi). See section 1.22 for further details.

1.4 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by means of *modifiers*. They are set after the language name, and are prefixed with a dot (only when the language is set as package option – neither global options nor the main key accepts them). An example is (spaces are not significant and they can be added or removed):¹

```
\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}
```

Attributes (described below) are considered modifiers, ie, you can set an attribute by including it in the list of modifiers. However, modifiers are a more general mechanism.

¹No predefined "axis" for modifiers are provided because languages and their scripts have quite different needs.

1.5 Troubleshooting

Loading directly sty files in LaTeX (ie, \usepackage{\language\}) is deprecated and you will get the error:²

Another typical error when using babel is the following:³

```
! Package babel Error: Unknown language `#1'. Either you have
(babel) misspelled its name, it has not been installed,
(babel) or you requested it in a previous run. Fix its name,
(babel) install it or just rerun the file, respectively. In
(babel) some cases, you may need to remove the aux file
```

The most frequent reason is, by far, the latest (for example, you included spanish, but you realized this language is not used after all, and therefore you removed it from the option list). In most cases, the error vanishes when the document is typeset again, but in more severe ones you will need to remove the aux file.

1.6 Plain

In Plain, load languages styles with \input and then use \begindocument (the latter is defined by babel):

```
\input estonian.sty
\begindocument
```

WARNING Not all languages provide a sty file and some of them are not compatible with Plain.⁴

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in multilingual documents. In most cases, only the two basic macros \selectlanguage and \foreignlanguage are necessary. The environments otherlanguage, otherlanguage* and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

\selectlanguage

```
\{\langle language \rangle\}
```

When a user wants to switch from one language to another he can do so using the macro \selectlanguage. This macro takes the language, defined previously by a language definition file, as its argument. It calls several macros that should be defined in the language definition files to activate the special definitions for the language chosen:

²In old versions the error read "You have used an old interface to call babel", not very helpful.

³In old versions the error read "You haven't loaded the language LANG yet".

⁴Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues have been fixed.

```
\selectlanguage{german}
```

This command can be used as environment, too.

NOTE For "historical reasons", a macro name is converted to a language name without the leading \; in other words, \selectlanguage{\german} is equivalent to \selectlanguage{german}. Using a macro instead of a "real" name is deprecated.

New 3.43 However, if the macro name does not match any language, it will get expanded as expected.

WARNING If used inside braces there might be some non-local changes, as this would be roughly equivalent to:

```
{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}
```

If you want a change which is really local, you must enclose this code with an additional grouping level.

\foreignlanguage

```
[\langle option-list \rangle] \{\langle language \rangle\} \{\langle text \rangle\}
```

The command \foreignlanguage takes two arguments; the second argument is a phrase to be typeset according to the rules of the language named in its first one.

This command (1) only switches the extra definitions and the hyphenation rules for the language, *not* the names and dates, (2) does not send information about the language to auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the language has not been set as package option (but in such a case it only sets the hyphenation patterns and a warning is shown). With the bidi option, it also enters in horizontal mode (this is not done always for backwards compatibility).

New 3.44 As already said, captions and dates are not switched. However, with the optional argument you can switch them, too. So, you can write:

```
\foreignlanguage[date]{polish}{\today}
```

In addition, captions can be switched with captions (or both, of course, with date, captions). Until 3.43 you had to write something like $\{\$... $\}$, which was not always the most convenient way.

1.8 Auxiliary language selectors

\begin{otherlanguage}

```
\{\langle language \rangle\} ... \end{otherlanguage}
```

The environment other language does basically the same as \selectlanguage, except that language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent to:

```
\begingroup
\selectlanguage{<inner-language>}
...
\endgroup
\selectlanguage{<outer-language>}
```

If you want a change which is really local, you must enclose this environment with an additional grouping, like braces {}.

Spaces after the environment are ignored.

\begin{otherlanguage*}

```
[\langle option\text{-}list \rangle] \{\langle language \rangle\} ... \end{otherlanguage*}
```

Same as \foreignlanguage but as environment. Spaces after the environment are *not* ignored.

This environment was originally intended for intermixing left-to-right typesetting with right-to-left typesetting in engines not supporting a change in the writing direction inside a line. However, by default it never complied with the documented behavior and it is just a version as environment of \foreignlanguage, except when the option bidi is set – in this case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.

1.9 More on selection

\babeltags

```
\{\langle tag1 \rangle = \langle language1 \rangle, \langle tag2 \rangle = \langle language2 \rangle, ...\}
```

New 3.9i In multilingual documents with many language-switches the commands above can be cumbersome. With this tool shorter names can be defined. It adds nothing really new – it is just syntactical sugar.

It defines $\t \langle tag1 \rangle \{\langle text \rangle\}\$ to be $\f \langle tag1 \rangle \{\langle text \rangle\}\$, and $\f \langle tag1 \rangle\}\$ to be $\f \langle tag1 \rangle\}\$, and so on. Note $\d \langle tag1 \rangle$ is also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the 'prefix' \text... is heavily overloaded in Lage and conflicts with existing macros may arise (\textlatin, \textbar, \textit, \textcolor and many others). The same applies to environments, because arabic conflicts with \arabic. Except if there is a reason for this 'syntactical sugar', the best option is to stick to the default selectors or to define your own alternatives.

EXAMPLE With

```
\babeltags{de = german}
```

you can write

```
text \textde{German text} text
```

and

```
text
\begin{de}
  German text
\end{de}
text
```

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines \textfinnish and \finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the 'short' syntax text(tag), namely, it is not affected by MakeUppercase (while foreignlanguage is).

\babelensure

```
[include=\langle commands \rangle, exclude=\langle commands \rangle, fontenc=\langle encoding \rangle] \{\langle language \rangle\}
```

New 3.9i Except in a few languages, like russian, captions and dates are just strings, and do not switch the language. That means you should set it explicitly if you want to use them, or hyphenation (and in some cases the text itself) will be wrong. For example:

```
\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}
```

Of course, T_EX can do it for you. To avoid switching the language all the while, \babelensure redefines the captions for a given language to wrap them with a selector:

```
\babelensure{polish}
```

By default only the basic captions and \today are redefined, but you can add further macros with the key include in the optional argument (without commas). Macros not to be modified are listed in exclude. You can also enforce a font encoding with the option fontenc.⁵ A couple of examples:

```
\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}
```

They are activated when the language is selected (at the afterextras event), and it makes some assumptions which could not be fulfilled in some languages. Note also you should include only macros defined by the language, not global macros (eg, \TeX of \dag). With ini files (see below), captions are ensured by default.

1.10 Shorthands

A *shorthand* is a sequence of one or two characters that expands to arbitrary TEX code. Shorthands can be used for different kinds of things; for example: (1) in some languages shorthands such as "a are defined to be able to hyphenate the word if the encoding is 0T1; (2) in some languages shorthands such as! are used to insert the right amount of white space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc. The package inputenc as well as xetex and luatex have alleviated entering non-ASCII characters, but minority languages and some kinds of text can still require characters not directly available on the keyboards (and sometimes not even as separated or precomposed Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can manipulate the glyph list. Tools for point 3 can be still very useful in general. There are four levels of shorthands: *user*, *language*, *system*, and *language user* (by order of precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

- 1. Activated chars used for two-char shorthands cannot be followed by a closing brace } and the spaces following are gobbled. With one-char shorthands (eg, :), they are preserved.
- 2. If on a certain level (system, language, user, language user) there is a one-char shorthand, two-char ones starting with that char and on the same level are ignored.
- 3. Since they are active, a shorthand cannot contain the same character in its definition (except if deactivated with, eg, \string).

⁵With it, encoded strings may not work as expected.

TROUBLESHOOTING A typical error when using shorthands is the following:

```
! Argument of \language@active@arg" has an extra }.
```

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}). Just add {} after (eg, "{}}).

\shorthandon \shorthandoff

```
{\langle shorthands-list\rangle}
*{\langle shorthands-list\rangle}
```

It is sometimes necessary to switch a shorthand character off temporarily, because it must be used in an entirely different way. For this purpose, the user commands \shorthandoff and \shorthandon are provided. They each take a list of characters as their arguments. The command \shorthandoff sets the \catcode for each of the characters in its argument to other (12); the command \shorthandon sets the \catcode to active (13). Both commands only work on 'known' shorthand characters.

New 3.9a However, \shorthandoff does not behave as you would expect with characters like ~ or ^, because they usually are not "other". For them \shorthandoff* is provided, so that with

```
\shorthandoff*{~^}
```

 \sim is still active, very likely with the meaning of a non-breaking space, and $^{\wedge}$ is the superscript character. The catcodes used are those when the shorthands are defined, usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may want to switch them off with the package option shorthands=off, as described below.

\useshorthands

```
* \{\langle char \rangle\}
```

The command \useshor thands initiates the definition of user-defined shorthand sequences. It has one argument, the character that starts these personal shorthands. New 3.9a User shorthands are not always alive, as they may be deactivated by languages (for example, if you use " for your user shorthands and switch from german to french, they stop working). Therefore, a starred version \useshor thands $\{\langle char \rangle\}$ is provided, which makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be activated with \useshorthands. This restriction will be lifted in a future release.

\defineshorthand

```
[\langle language \rangle, \langle language \rangle, ...] \{\langle shorthand \rangle\} \{\langle code \rangle\}
```

The command \defineshorthand takes two arguments: the first is a one- or two-character shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands (some languages do not activate shorthands, so you may want to add

\languageshorthands $\{\langle lang \rangle\}$ to the corresponding \extras $\langle lang \rangle$, as explained below). By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands. Language-dependent user shorthands (new in 3.9) take precedence over "normal" user shorthands.

EXAMPLE Let's assume you want a unified set of shorthand for discretionaries (languages do not define shorthands consistently, and "-, \-, "= have different meanings). You can start with, say:

```
\useshorthands*{"}
\defineshorthand{"*}{\babelhyphen{soft}}
\defineshorthand{"-}{\babelhyphen{hard}}
```

However, the behavior of hyphens is language-dependent. For example, in languages like Polish and Portuguese, a hard hyphen inside compound words are repeated at the beginning of the next line. You can then set:

```
\defineshorthand[*polish,*portuguese]{"-}{\babelhyphen{repeat}}
```

Here, options with * set a language-dependent user shorthand, which means the generic one above only applies for the rest of languages; without * they would (re)define the language shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning ('compound word hyphen') whose visual behavior is that expected in each context.

\languageshorthands

```
\{\langle language \rangle\}
```

The command \languageshorthands can be used to switch the shorthands on the language level. It takes one argument, the name of a language or none (the latter does what its name suggests). Note that for this to work the language should have been specified as an option when loading the babel package. For example, you can use in english the shorthands defined by ngerman with

```
\addto\extrasenglish{\languageshorthands{ngerman}}
```

(You may also need to activate them as user shorthands in the preamble with, for example, \useshorthands or \useshorthands*.)

EXAMPLE Very often, this is a more convenient way to deactivate shorthands than \shorthandoff, for example if you want to define a macro to easy typing phonetic characters with tipa:

\babelshorthand

```
\{\langle shorthand \rangle\}
```

With this command you can use a shorthand even if (1) not activated in shorthands (in this case only shorthands for the current language are taken into account, ie, not user shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal \bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can conveniently define your own macros, or even your own user shorthands provided they do not overlap.)

EXAMPLE Since by default shorthands are not activated until \begin{document}, you may use this macro when defining the \title in the preamble:

⁶Actually, any name not corresponding to a language group does the same as none. However, follow this convention because it might be enforced in future releases of babel to catch possible errors.

For your records, here is a list of shorthands, but you must double check them, as they may change:⁷

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew, Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh
 Languages with only " as defined shorthand character Albanian, Bulgarian, Danish, Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian, Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script), Slovene, Swedish, Ukrainian, Upper Sorbian

```
Basque " ' ~
Breton : ; ? !
Catalan " ' `
Czech " -
Esperanto ^
Estonian " ~
French (all varieties) : ; ? !
Galician " . ' ~ < >
Greek ~
Hungarian `
Kurmanji ^
Latin " ^ =
Slovak " ^ ' -
Spanish " . < > ' ~
Turkish : ! =
```

In addition, the babel core declares ~ as a one-char shorthand which is let, like the standard ~, to a non breaking space.⁸

\ifbabelshorthand

```
\{\langle character \rangle\}\{\langle true \rangle\}\{\langle false \rangle\}
```

New 3.23 Tests if a character has been made a shorthand.

\aliasshorthand

```
\{\langle original \rangle\}\{\langle alias \rangle\}
```

The command \aliasshorthand can be used to let another character perform the same functions as the default shorthand character. If one prefers for example to use the character / over " in typing Polish texts, this can be achieved by entering \aliasshorthand{"}{/}. For the reasons in the warning below, usage of this macro is not recommended.

NOTE The substitute character must *not* have been declared before as shorthand (in such a case, \aliashorthands is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

```
\aliasshorthand{~}{^}
\AtBeginDocument{\shorthandoff*{~}}
```

⁷Thanks to Enrico Gregorio

⁸This declaration serves to nothing, but it is preserved for backward compatibility.

WARNING Shorthands remember somehow the original character, and the fallback value is that of the latter. So, in this example, if no shorthand if found, ^ expands to a non-breaking space, because this is the value of ~ (internally, ^ still calls \active@char~ or \normal@char~). Furthermore, if you change the system value of ^ with \defineshorthand nothing happens.

1.11 Package options

New 3.9a These package options are processed before language options, so that they are taken into account irrespective of its order. The first three options have been available in previous versions.

KeepShorthandsActive

Tells babel not to deactivate shorthands after loading a language file, so that they are also available in the preamble.

activeacute

For some languages babel supports this options to set ' as a shorthand in case it is not done by default.

activegrave

Same for `.

shorthands=

 $\langle char \rangle \langle char \rangle ... \mid off$

The only language shorthands activated are those given, like, eg:

\usepackage[esperanto,french,shorthands=:;!?]{babel}

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters (like ~) should be preceded by \string (otherwise they will be expanded by \mathbb{M}EX before they are passed to the package and therefore they will not be recognized); however, t is provided for the common case of ~ (as well as c for not so common case of the comma). With shorthands=off no language shorthands are defined, As some languages use this mechanism for tools not available otherwise, a macro \babelshorthand is defined, which allows using them; see above.

safe= none | ref | bib

Some \LaTeX macros are redefined so that using shorthands is safe. With safe=bib only \nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and \pageref are redefined (as well as a few macros from varioref and ifthen). With safe=none no macro is redefined. This option is strongly recommended, because a good deal of incompatibilities and errors are related to these redefinitions. As of New 3.34 , in ϵ TeX based engines (ie, almost every engine except the oldest ones) shorthands can be used in these macros (formerly you could not).

math= active | normal

Shorthands are mainly intended for text, not for math. By setting this option with the value normal they are deactivated in math mode (default is active) and things like \${a'}\$ (a closing brace after a shorthand) are not a source of trouble anymore.

config= \langle file \rangle

Load $\langle file \rangle$.cfg instead of the default config file bblopts.cfg (the file is loaded even with noconfigs).

main= \language\range

Sets the main language, as explained above, ie, this language is always loaded last. If it is not given as package or global option, it is added to the list of requested languages.

headfoot= \language\range

By default, headlines and footlines are not touched (only marks), and if they contain language-dependent macros (which is not usual) there may be unexpected results. With this option you may set the language in heads and foots.

noconfigs Global and language default config files are not loaded, so you can make sure your document is not spoilt by an unexpected .cfg file. However, if the key config is set, this file is loaded.

showlanguages Prints to the log the list of languages loaded when the format was created: number (remember dialects can share it), name, hyphenation file and exceptions file.

nocase New 3.91 Language settings for uppercase and lowercase mapping (as set by \SetCase) are ignored. Use only if there are incompatibilities with other packages.

silent New 3.91 No warnings and no *infos* are written to the log file.9

strings= generic | unicode | encoded | \langle label \rangle | \langle font encoding \rangle

Selects the encoding of strings in languages supporting this feature. Predefined labels are generic (for traditional T_EX, LICR and ASCII strings), unicode (for engines like xetex and luatex) and encoded (for special cases requiring mixed encodings). Other allowed values are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be aware with encoded captions are protected, but they work in \MakeUppercase and the like (this feature misuses some internal LATEX tools, so use it only as a last resort).

hyphenmap= off | first | select | other | other*

New 3.9g Sets the behavior of case mapping for hyphenation, provided the language defines it.¹⁰ It can take the following values:

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,
 when the aux file is first read and at \begin{document}, but also the first
 \selectlanguage in the preamble), and it's the default if a single language option has
 been stated;¹¹

select sets it only at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot is used) and in auxiliary files (ie, at \select@language), and it's the default if several language options have been stated. The option first can be regarded as an optimized version of other* for monolingual documents. 12

bidi= default | basic | basic-r | bidi-l | bidi-r

⁹You can use alternatively the package silence.

¹⁰Turned off in plain.

¹¹Duplicated options count as several ones.

¹²Providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if either xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL]

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.24.

layout=

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.24.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def), defines \AfterBabelLanguage and exits. It also selects the hyphenation patterns for the last language passed as option (by its name in language.dat). There are two main uses: classes and packages, and as a last resort in case there are, for some reason, incompatible languages. It can be used if you just want to select the hyphenation patterns of a single language, too.

\AfterBabelLanguage

```
\{\langle option-name \rangle\}\{\langle code \rangle\}
```

This command is currently the only provided by base. Executes $\langle code \rangle$ when the file loaded by the corresponding package option is finished (at \ldf@finish). The setting is global. So

```
\AfterBabelLanguage{french}{...}
```

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code is executed only if $\langle option\text{-}name \rangle$ is the same as \CurrentOption (which could not be the same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with \newcommand. An error is raised if you attempt to load both. Here is a way to overcome this problem:

```
\usepackage[base]{babel}
\AfterBabelLanguage{foo}{%
  \let\macroFoo\macro
  \let\macro\relax}
\usepackage[foo,bar]{babel}
```

WARNING Currently this option is not compatible with languages loaded on the fly.

1.13 ini files

An alternative approach to define a language (or, more precisely, a *locale*) is by means of an ini file. Currently babel provides about 200 of these files containing the basic data required for a locale.

ini files are not meant only for babel, and they has been devised as a resource for other packages. To easy interoperability between TEX and other systems, they are identified with the BCP 47 codes as preferred by the Unicode Common Language Data Repository, which was used as source for most of the data provided by these files, too (the main exception being the \...name strings).

Most of them set the date, and many also the captions (Unicode and LICR). They will be evolving with the time to add more features (something to keep in mind if backward compatibility is important). The following section shows how to make use of them by means of \babelprovide. In other words, \babelprovide is mainly meant for auxiliary tasks, and as alternative when the ldf, for some reason, does work as expected.

think it isn't really useful, but who knows.

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language with an ini file in Unicode engines.

LUATEX/XETEX

```
\documentclass{book}
\usepackage{babel}
\babelprovide[import, main]{georgian}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
\begin{document}
\tableofcontents
\chapter{სამზარეუდო და სუფრის ტრადიციები}
ქართუდი ტრადიციუდი სამზარეუღო ერთ-ერთი უმდიდრესია მთედ მსოფდიოში.
\end{document}
```

New 3.49 Alternatively, you can tell babel to load all or some languages passed as options with \babelprovide and not from the ldf file in a few few typical cases. Thus, provide=* means 'load the main language with the \babelprovide mechanism instead of the ldf file' applying the basic features, which in this case means import, main. There are (currently) three options:

- provide=* is the option just explained, for the main language;
- provide+=* is the same for additional languages (the main language is still the ldf file);
- provide*=* is the same for all languages, ie, main and additional.

EXAMPLE The preamble in the previous example can be more compactly written as:

```
\documentclass{book}
\usepackage[georgian, provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
```

Or also:

```
\documentclass[georgian]{book}
\usepackage[provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
```

NOTE The ini files just define and set some parameters, but the corresponding behavior is not always implemented. Also, there are some limitations in the engines. A few remarks follow (which could no longer be valid when you read this manual, if the packages involved han been updated). The Harfbuzz renderer has still some issues, so as a rule of thumb prefer the default renderer, and resort to Harfbuzz only if the former does not work for you. Fortunately, fonts can be loaded twice with different renderers; for example:

```
\babelfont[spanish]{rm}{FreeSerif}
\babelfont[hindi]{rm}[Renderer=Harfbuzz]{FreeSerif}
```

Arabic Monolingual documents mostly work in luatex, but it must be fine tuned, particularly graphical elements like picture. In xetex babel resorts to the bidi package, which seems to work.

Hebrew Niqqud marks seem to work in both engines, but depending on the font cantillation marks might be misplaced (xetex or luatex with Harfbuzz seems better, but still problematic).

Devanagari In luatex and the the default renderer many fonts work, but some others do not, the main issue being the 'ra'. You may need to set explicitly the script to either deva or dev2, eg:

```
\newfontscript{Devanagari}{deva}
```

Other Indic scripts are still under development in the default luatex renderer, but should work with Renderer=Harfbuzz. They also work with xetex, although unlike with luatex fine tuning the font behavior is not always possible.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules can be modified in luatex; they are hard-coded in xetex). Lao seems to work, too, but there are no patterns for the latter in luatex. Khemer clusters are rendered wrongly with the default renderer. The comment about Indic scripts and lualatex also applies here. Some guick patterns can help, with something similar to:

```
\babelprovide[import,hyphenrules=+]{lao}
\babelpatterns[lao]{ใด 1ม 1อ 1ŋ 1ก 1ๆ} % Random
```

East Asia scripts Settings for either Simplified of Traditional should work out of the box, with basic line breaking with any renderer. Although for a few words and shorts texts the ini files should be fine, CJK texts are best set with a dedicated framework (CJK, luatexja, kotex, CTeX, etc.). This is what the class ltjbook does with luatex, which can be used in conjunction with the ldf for japanese, because the following piece of code loads luatexja:

```
\documentclass[japanese]{ltjbook}
\usepackage{babel}
```

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be wrong; on then other hand, with the Harfbuzz renderer diacritics are stacked correctly, but many hyphenations points are discarded (this bug seems related to kerning, so it depends on the font). With xetex both combining characters and hyphenation work as expected (not quite, but in most cases it works; the problem here are font clusters).

NOTE Wikipedia defines a *locale* as follows: "In computing, a locale is a set of parameters that defines the user's language, region and any special variant preferences that the user wants to see in their user interface. Usually a locale identifier consists of at least a language code and a country/region code." Babel is moving gradually from the old and fuzzy concept of *language* to the more modern of *locale*. Note each locale is by itself a separate "language", which explains why there are so many files. This is on purpose, so that possible variants can be created and/or redefined easily.

Here is the list (u means Unicode captions, and l means LICR captions):

Afrikaansul af en-NZ English^{ul} Aghem **English**^{ul} agq en-US **English**^{ul} ak Akan en $Amharic^{ul} \\$ Esperanto^{ul} am eo Arabicul es-MX Spanish^{ul} ar Arabicul ar-DZ Spanish^{ul} es Arabic^{ul} Estonian^{ul} ar-MA et Arabic^{ul} Basque^{ul} ar-SY eu Ewondo Assamese as ewo Persian^{ul} asa Asu fa **Asturian**^{ul} ff Fulah ast $Finnish^{ul} \\$ Azerbaijani fi az-Cyrl az-Latn Azerbaijani fil Filipino Azerbaijani^{ul} fo Faroese az Frenchul bas Basaa fr be Belarusian^{ul} fr-BE Frenchul bem Bemba fr-CA Frenchul Frenchul bez Bena fr-CH Bulgarian^{ul} Frenchul bg fr-LU Friulian^{ul} Bambara bm fur bn Banglaul fy Western Frisian Irishul Tibetanu bo ga Scottish Gaelic^{ul} Bodo brx gd Galicianul bs-Cyrl Bosnian gl $Bosnian^{ul} \\$ Ancient Greek^{ul} bs-Latn grc $Bosnian^{ul} \\$ Swiss German bs gsw Catalanul Gujarati ca gu Chechen Gusii ce guz Chiga Manx cgg gv Cherokee ha-GH chr Hausa Central Kurdish ha-NE Hausal ckb Coptic ha Hausa cop $Czech^{\mathrm{ul}}$ cs haw Hawaiian Hebrewul Church Slavic he cu cu-Cyrs Church Slavic hi Hindi^u Croatian^{ul} Church Slavic hr cu-Glag Welshul Upper Sorbian^{ul} hsb сy Danishul Hungarianul hu da Armenian^u Taita dav hy Interlingua^{ul} de-AT German^{ul} ia de-CH German^{ul} id Indonesian^{ul} $\operatorname{German}^{\operatorname{ul}}$ de Igbo ig Sichuan Yi Zarma ii die Lower Sorbian^{ul} dsb is Icelandic^{ul} dua Duala it Italian^{ul} dyo Jola-Fonyi ja Japanese dz Dzongkha Ngomba jgo ebu **Embu** jmc Machame ee Ewe ka Georgian^{ul} $Greek^{ul} \\$ kab Kabyle el el-polyton Polytonic Greek^{ul} Kamba kam **English**^{ul} Makonde en-AU kde English^{ul} en-CA Kabuverdianu kea **English**^{ul} en-GB khq Koyra Chiini

ki Kikuyu om Oromo Odia kk Kazakh or kkj Kako Ossetic os Kalaallisut kl pa-Arab Punjabi kln Kalenjin pa-Guru Punjabi km Khmer Puniabi pa Kannada^{ul} Polish^{ul} kn pl Piedmontese^{ul} Korean ko pms Pashto kok Konkani ps Portuguese^{ul} ks Kashmiri pt-BR Shambala Portuguese^{ul} ksb pt-PT Portuguese^{ul} ksf Bafia pt ksh Colognian Quechua qu Romanshul kw Cornish rm ky Kyrgyz rn Rundi Romanian^{ul} lag Langi ro lb Luxembourgish Rombo rof $Russian^{ul} \\$ lg Ganda ru lkt Kinyarwanda Lakota rw ln Lingala rwk Rwa lo Laoul sa-Beng Sanskrit Northern Luri lrc sa-Deva Sanskrit lt Lithuanianul sa-Gujr Sanskrit lu Luba-Katanga sa-Knda Sanskrit luo Luo sa-Mlym Sanskrit luy Luyia sa-Telu Sanskrit Latvianul lv Sanskrit sa Masai sah Sakha mas Meru Samburu mer saq mfe Morisyen sbp Sangu Northern Sami^{ul} Malagasy se mg Makhuwa-Meetto seh Sena mgh Koyraboro Senni mgo Meta' ses Macedonianul mk sg Sango ml Malayalamul shi-Latn Tachelhit Mongolian Tachelhit shi-Tfng mn Marathi^{ul} shi Tachelhit mr Malayl Sinhala ms-BN si Malayl Slovakul ms-SG sk $Malay^{ul} \\$ Slovenian^{ul} ms sl Maltese Inari Sami mt smn Mundang Shona mua sn Burmese Somali my SO Albanian^{ul} mzn Mazanderani sq Nama sr-Cyrl-BA Serbian^{ul} naq Norwegian Bokmål^{ul} Serbian^{ul} nb sr-Cyrl-ME North Ndebele Serbian^{ul} nd sr-Cyrl-XK Serbian^{ul} Nepali sr-Cyrl ne $Dutch^{ul} \\$ Serbian^{ul} nl sr-Latn-BA Kwasio Serbian^{ul} nmg sr-Latn-ME Norwegian Nynorsk^{ul} Serbian^{ul} sr-Latn-XK nn Ngiemboon Serbian^{ul} sr-Latn nnh Serbian^{ul} Nuer nus sr Swedishul Nyankole sv nyn

sw	Swahili	vai	Vai
ta	Tamil ^u	vi	Vietnamese ^{ul}
te	Telugu ^{ul}	vun	Vunjo
teo	Teso	wae	Walser
th	Thai ^{ul}	xog	Soga
ti	Tigrinya	yav	Yangben
tk	Turkmen ^{ul}	yi	Yiddish
to	Tongan	yo	Yoruba
tr	Turkish ^{ul}	yue	Cantonese
twq	Tasawaq	zgh	Standard Moroccan
tzm	Central Atlas Tamazight		Tamazight
ug	Uyghur	zh-Hans-HK	Chinese
uk	Ukrainian ^{ul}	zh-Hans-MO	Chinese
ur	Urdu ^{ul}	zh-Hans-SG	Chinese
uz-Arab	Uzbek	zh-Hans	Chinese
uz-Cyrl	Uzbek	zh-Hant-HK	Chinese
uz-Latn	Uzbek	zh-Hant-MO	Chinese
uz	Uzbek	zh-Hant	Chinese
vai-Latn	Vai	zh	Chinese
vai-Vaii	Vai	zu	Zulu

In some contexts (currently \babelfont) an ini file may be loaded by its name. Here is the list of the names currently supported. With these languages, \babelfont loads (if not done before) the language and script names (even if the language is defined as a package option with an ldf file). These are also the names recognized by \babelprovide with a valueless import.

aghem bambara akan basaa albanian basque american belarusian amharic bemba ancientgreek bena arabic bengali arabic-algeria bodo

arabic-DZ bosnian-cyrillic arabic-morocco bosnian-cyrl arabic-MA bosnian-latin arabic-syria bosnian-latn arabic-SY bosnian armenian brazilian assamese breton british asturian bulgarian asu australian burmese austrian canadian azerbaijani-cyrillic cantonese azerbaijani-cyrl catalan

azerbaijani-latin centralatlastamazight azerbaijani-latn centralkurdish

azerbaijani chechen bafia cherokee chiga french-ch chinese-hans-hk french-lu

chinese-hans-mo french-luxembourg chinese-hans-sg french-switzerland

chinese-hans french chinese-hant-hk friulian chinese-hant-mo fulah chinese-hant galician chinese-simplified-hongkongsarchina ganda chinese-simplified-macausarchina georgian chinese-simplified-singapore german-at chinese-simplified german-austria chinese-traditional-hongkongsarchina german-ch

chinese-traditional-macausarchina german-switzerland

chinese-traditional german chinese greek churchslavic gujarati churchslavic-cyrs gusii churchslavic-oldcyrillic¹³ hausa-gh churchsslavic-glag hausa-ghana churchsslavic-glagolitic hausa-ne colognian hausa-niger cornish hausa croatian hawaiian czech hebrew danish hindi duala hungarian icelandic dutch dzongkha igbo embu inarisami english-au indonesian english-australia interlingua english-ca irish english-canada italian

english-nz kabuverdianu english-unitedkingdom kabyle english-unitedstates kako english-us kalaallisut english kalenjin esperanto kamba estonian kannada kashmiri ewe ewondo kazakh faroese khmer filipino kikuyu finnish kinyarwanda french-be konkani french-belgium korean

english-gb

english-newzealand

french-ca koyraborosenni french-canada koyrachiini

japanese

jolafonyi

¹³The name in the CLDR is Old Church Slavonic Cyrillic, but it has been shortened for practical reasons.

kwasio ossetic
kyrgyz pashto
lakota persian
langi piedmontese
lao polish

latvian polytonicgreek lingala portuguese-br lithuanian portuguese-brazil portuguese-portugal lowersorbian lsorbian portuguese-pt lubakatanga portuguese punjabi-arab luo luxembourgish punjabi-arabic punjabi-gurmukhi luyia macedonian punjabi-guru machame punjabi

makhuwameetto quechua makonde romanian malagasy romansh malay-bn rombo malay-brunei rundi malay-sg russian malay-singapore rwa malay sakha malayalam samburu maltese samin manx sango

marathi

masai

mazanderani sanskrit-bengali sanskrit-deva meru sanskrit-devanagari meta mexican sanskrit-gujarati mongolian sanskrit-gujr morisyen sanskrit-kannada mundang sanskrit-knda sanskrit-malayalam nama nepali sanskrit-mlym newzealand sanskrit-telu ngiemboon sanskrit-telugu ngomba sanskrit norsk scottishgaelic

northernluri sena

northernsami serbian-cyrillic-bosniaherzegovina

sangu sanskrit-beng

northndebele serbian-cyrillic-kosovo norwegianbokmal serbian-cyrillic-montenegro

norwegiannynorsk serbian-cyrillic nswissgerman serbian-cyrl-ba nuer serbian-cyrl-me nyankole serbian-cyrl-xk nynorsk serbian-cyrl

occitan serbian-latin-bosniaherzegovina

oriya serbian-latin-kosovo oromo serbian-latin-montenegro

serbian-latin tigrinya serbian-latn-ba tongan serbian-latn-me turkish serbian-latn-xk turkmen serbian-latn ukenglish serbian ukrainian shambala uppersorbian shona urdu sichuanyi usenglish sinhala usorbian

slovak uyghur slovene uzbek-arab slovenian uzbek-arabic uzbek-cyrillic soga uzbek-cyrl somali uzbek-latin spanish-mexico spanish-mx uzbek-latn spanish uzbek standardmoroccantamazight vai-latin swahili vai-latn swedish vai-vai swissgerman vai-vaii

tachelhit-latin vai
tachelhit-latin vietnam
tachelhit-tfing vietnamese
tachelhit-tifinagh vunjo
tachelhit walser
taita welsh

tamil westernfrisian tasawaq yangben telugu yiddish teso yoruba thai zarma

tibetan zulu afrikaans

Modifying and adding values to ini files

New 3.39 There is a way to modify the values of ini files when they get loaded with \babelprovide and import. To set, say, digits.native in the numbers section, use something like numbers/digits.native=abcdefghij. Keys may be added, too. Without import you may modify the identification keys.

This can be used to create private variants easily. All you need is to import the same ini file with a different locale name and different parameters.

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There is no need to load fontspec explicitly – babel does it for you with the first \babel font. 14

\babelfont $[\langle language-list \rangle] \{\langle font-family \rangle\} [\langle font-options \rangle] \{\langle font-name \rangle\}$

NOTE See the note in the previous section about some issues in specific languages.

¹⁴See also the package combofont for a complementary approach.

The main purpose of \babelfont is to define at once in a multilingual document the fonts required by the different languages, with their corresponding language systems (script and language). So, if you load, say, 4 languages, \babelfont{rm}{frm}{FreeSerif} defines 4 fonts (with their variants, of course), which are switched with the language by babel. It is a tool to make things easier and transparent to the user.

Here *font-family* is rm, sf or tt (or newly defined ones, as explained below), and *font-name* is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when a language is selected.

On the other hand, if there is one or more languages in the optional argument, the font will be assigned to them, overriding the default one. Alternatively, you may set a font for a script – just precede its name (lowercase) with a star (eg, *devanagari). With this optional argument, the font is *not* yet defined, but just predeclared. This means you may define as many fonts as you want 'just in case', because if the language is never selected, the corresponding \babelfont declaration is just ignored.

Babel takes care of the font language and the font script when languages are selected (as well as the writing direction); see the recognized languages above. In most cases, you will not need *font-options*, which is the same as in fontspec, but you may add further key/value pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document in Swedish, with some words in Hebrew, with a font suited for both languages.

LUATEX/XETEX

```
\documentclass{article}
\usepackage[swedish, bidi=default]{babel}
\babelprovide[import]{hebrew}
\babelfont{rm}{FreeSerif}
\begin{document}

Svenska \foreignlanguage{hebrew}{עָבְרִית} svenska.
\end{document}
```

If on the other hand you have to resort to different fonts, you can replace the red line above with, say:

LUATEX/XETEX

```
\babelfont{rm}{Iwona}
\babelfont[hebrew]{rm}{FreeSerif}
```

\babelfont can be used to implicitly define a new font family. Just write its name instead of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic families.

EXAMPLE Here is how to do it:

LUATEX/XETEX

```
\babelfont{kai}{FandolKai}
```

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

LUATEX/XETEX

\usepackage{fontspec}
\newfontscript{Devanagari}{deva}
\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case it is not detected correctly. You may also pass some options to fontspec: with silent, the warnings about unavailable scripts or languages are not shown (they are only really useful when the document format is being set up).

NOTE Directionality is a property affecting margins, indentation, column order, etc., not just text. Therefore, it is under the direct control of the language, which applies both the script and the direction to the text. As a consequence, there is no need to set Script when declaring a font with \babelfont (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the like). If a language is switched when an *ad hoc* font is active, or you select the font with this command, neither the script nor the language is passed. You must add them by hand. This is by design, for several reasons —for example, each font has its own set of features and a generic setting for several of them can be problematic, and also preserving a "lower-level" font selection is useful.

NOTE The keys Language and Script just pass these values to the *font*, and do *not* set the script for the *language* (and therefore the writing direction). In other words, the ini file or \babelprovide provides default values for \babelfont if omitted, but the opposite is not true. See the note above for the reasons of this behavior.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very often works as expected. However, be aware with \setxxxxfont the language system will not be set by babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Warning: 'Language 'LANG' not available for font 'FONT' with script 'SCRIPT' 'Default' language used instead'.

This is *not* **and error.** This warning is shown by fontspec, not by babel. It can be irrelevant for English, but not for many other languages, including Urdu and Turkish. This is a useful and harmless warning, and if everything is fine with your document the best thing you can do is just to ignore it altogether.

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard families.

This is *not* and error. babel assumes that if you are using \babelfont for a family, very likely you want to define the rest of them. If you don't, you can find some inconsistencies between families. This checking is done at the beginning of the document, at a point where we cannot know which families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set the language system in \setmainfont (or not, depending on what you want).

As the message explains, *there is nothing intrinsically wrong* with not defining all the families. In fact, there is nothing intrinsically wrong with not using \babelfont at all. But you must be aware that this may lead to some problems.

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter "caption"), is sometimes necessary, but not always trivial. In the case of caption names a specific macro is provided, because this is perhaps the most frequent change:

\setlocalecaption

```
{\langle language-name \rangle} {\langle caption-name \rangle} {\langle string \rangle}
```

New 3.51 Here *caption-name* is the name as string without the trailing name. An example, which also shows caption names are often a stylistic choice, is:

```
\setlocalecaption{english}{contents}{Table of Contents}
```

This works not only with existing caption names, because it also serves to define new ones by setting the *caption-name* to the name of your choice (name will be postpended). Captions so defined or redefined behave with the 'new way' described in the following note.

NOTE There are a few alternative methods:

• With data import'ed from ini files, you can modify the values of specific keys, like:

```
\babelprovide[import, captions/listtable = Lista de tablas]{spanish}
```

(In this particular case, instead of the captions group you may need to modify the captions.licr one.)

• The 'old way', still valid for many languages, to redefine a caption is the following:

```
\addto\captionsenglish{%
  \renewcommand\contentsname{Foo}%
}
```

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is advisable to do so. This redefinition is not activated until the language is selected.

• The 'new way', which is found in bulgarian, azerbaijani, spanish, french, turkish, icelandic, vietnamese and a few more, as well as in languages created with \babelprovide and its key import, is:

```
\renewcommand\spanishchaptername{Foo}
```

This redefinition is immediate.

NOTE Do *not* redefine a caption in the following way:

```
\AtBeginDocument{\renewcommand\contentsname{Foo}}
```

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be add to \extras $\langle lang \rangle$:

```
\addto\extrasrussian{\mymacro}
```

There is a counterpart for code to be run when a language is unselected: $\langle lang \rangle$.

NOTE These macros (\captions $\langle lang \rangle$, \extras $\langle lang \rangle$) may be redefined, but *must not* be used as such – they just pass information to babel, which executes them in the proper context.

Another way to modify a language loaded as a package or class option is by means of \babelprovide, described below in depth. So, something like:

```
\usepackage[danish]{babel}
\babelprovide[captions=da, hyphenrules=nohyphenation]{danish}
```

first loads danish.ldf, and then redefines the captions for danish (as provided by the ini file) and prevents hyphenation. The rest of the language definitions are not touched. Without the optional argument it just loads some aditional tools if provided by the ini file, like extra counters.

1.16 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You may then define quickly a language with the help of the following macro in the preamble (which may be used to modify an existing language, too, as explained in the previous subsection).

\babelprovide

```
[\langle options \rangle] \{\langle language-name \rangle\}
```

If the language $\langle language\text{-}name \rangle$ has not been loaded as class or package option and there are no $\langle options \rangle$, it creates an "empty" one with some defaults in its internal structure: the hyphen rules, if not available, are set to the current ones, left and right hyphen mins are set to 2 and 3. In either case, caption, date and language system are not defined. If no ini file is imported with import, $\langle language\text{-}name \rangle$ is still relevant because in such a case the hyphenation and like breaking rules (including those for South East Asian and CJK) are based on it as provided in the ini file corresponding to that name; the same applies to OpenType language and script.

Conveniently, some options allow to fill the language, and babel warns you about what to do if there is a missing string. Very likely you will find alerts like that in the log file:

```
Package babel Warning: \chaptername not set for 'mylang'. Please,
(babel) define it after the language has been loaded
(babel) (typically in the preamble) with:
(babel) \setlocalecaption\{\text{mylang}\{\chapter}\{\cdot\}.\}
(babel) Reported on input line 26.
```

In most cases, you will only need to define a few macros. Note languages loaded on the fly are not yet available in the preamble.

EXAMPLE If you need a language named arhinish:

```
\usepackage[danish]{babel}
\babelprovide{arhinish}
\setlocalecaption{arhinish}{chapter}{Chapitula}
\setlocalecaption{arhinish}{refname}{Refirenke}
\renewcommand\arhinishhyphenmins{22}
```

EXAMPLE Locales with names based on BCP 47 codes can be created with something like:

```
\babelprovide[import=en-US]{enUS}
```

Note, however, mixing ways to identify locales can lead to problems. For example, is yi the name of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add \selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage, then \babelprovide redefines the requested data.

import= \language-tag\rangle

New 3.13 Imports data from an ini file, including captions and date (also line breaking rules in newly defined languages). For example:

```
\babelprovide[import=hu]{hungarian}
```

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros like \' or \ss) ones.

New 3.23 It may be used without a value. In such a case, the ini file set in the corresponding babel-<language>. tex (where <language> is the last argument in \babelprovide) is imported. See the list of recognized languages above. So, the previous example can be written:

```
\babelprovide[import]{hungarian}
```

There are about 250 ini files, with data taken from the 1df files and the CLDR provided by Unicode. Not all languages in the latter are complete, and therefore neither are the ini files. A few languages may show a warning about the current lack of suitability of some features.

Besides \today, this option defines an additional command for dates: \<language>date, which takes three arguments, namely, year, month and day numbers. In fact, \today calls \<language>today, which in turn calls

captions=

⟨language-tag⟩

Loads only the strings. For example:

```
\babelprovide[captions=hu]{hungarian}
```

hyphenrules=

⟨language-list⟩

With this option, with a space-separated list of hyphenation rules, babel assigns to the language the first valid hyphenation rules in the list. For example:

```
\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}
```

If none of the listed hyphenrules exist, the default behavior applies. Note in this example we set chavacano as first option – without it, it would select spanish even if chavacano exists.

A special value is +, which allocates a new language (in the TeX sense). It only makes sense as the last value (or the only one; the subsequent ones are silently ignored). It is mostly useful with luatex, because you can add some patterns with \babelpatterns, as for example:

```
\babelprovide[hyphenrules=+]{neo}
\babelpatterns[neo]{a1 e1 i1 o1 u1}
```

In other engines it just suppresses hyphenation (because the pattern list is empty).

main This valueless option makes the language the main one (thus overriding that set when babel is loaded). Only in newly defined languages.

EXAMPLE Let's assume your document is mainly in Polytonic Greek, but with some sections in Italian. Then, the first attempt should be:

```
\usepackage[italian, greek.polutonic]{babel}
```

But if, say, accents in Greek are not shown correctly, you can try:

```
\usepackage[italian]{babel}
\babelprovide[import, main]{polytonicgreek}
```

Remerber there is an alternative syntax for the latter:

```
\usepackage[italian, polytonicgreek, provide=*]{babel}
```

script= \langle script-name \rangle

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the value in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini file. This value is particularly important because it sets the writing direction, so you must use it if for some reason the default value is wrong.

language= \language-name\rangle

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini file. Not so important, but sometimes still relevant.

alph= ⟨counter-name⟩

Assigns to \alph that counter. See the next section.

Alph= \(\langle counter-name \rangle \)

Same for \Alph.

A few options (only luatex) set some properties of the writing system used by the language. These properties are *always* applied to the script, no matter which language is active. Although somewhat inconsistent, this makes setting a language up easier in most typical cases.

onchar= ids | fonts

New 3.38 This option is much like an 'event' called when a character belonging to the script of this locale is found (as its name implies, it acts on characters, not on spaces). There are currently two 'actions', which can be used at the same time (separated by a space): with ids the \language and the \localeid are set to the values of this locale; with fonts, the fonts are changed to those of this locale (as set with \babelfont). This option is not compatible with mapfont. Characters can be added or modified with \babelcharproperty.

NOTE An alternative approach with luatex and Harfbuzz is the font option RawFeature={multiscript=auto}. It does not switch the babel language and therefore the line breaking rules, but in many cases it can be enough.

intraspace=

```
⟨base⟩ ⟨shrink⟩ ⟨stretch⟩
```

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0 is 0em plus .1em). Like \spaceskip, the em unit applied is that of the current text (more precisely, the previous glyph). Currently used only in Southeast Asian scrips, like Thai, and CJK.

intrapenalty=

 $\langle penalty \rangle$

Sets the interword penalty for the writing system of this language. Currently used only in Southeast Asian scrips, like Thai. Ignored if 0 (which is the default value).

mapfont=

direction

Assigns the font for the writing direction of this language (only with bidi=basic). Whenever possible, instead of this option use onchar, based on the script, which usually makes more sense. More precisely, what mapfont=direction means is, 'when a character has the same direction as the script for the "provided" language, then change its font to that set for this language'. There are 3 directions, following the bidi Unicode algorithm, namely, Arabic-like, Hebrew-like and left to right. So, there should be at most 3 directives of this kind.

NOTE (1) If you need shorthands, you can define them with \useshorthands and \defineshorthand as described above. (2) Captions and \today are "ensured" with \babelensure (this is the default in ini-based languages).

1.17 Digits and counters

New 3.20 About thirty ini files define a field named digits.native. When it is present, two macros are created: \<language>digits and \<language>counter (only xetex and luatex). With the first, a string of 'Latin' digits are converted to the native digits of that language; the second takes a counter name as argument. With the option maparabic in \babelprovide, \arabic is redefined to produce the native digits (this is done *globally*, to avoid inconsistencies in, for example, page numbering, and note as well dates do not rely on \arabic.)

For example:

```
\babelprovide[import]{telugu} % Telugu better with XeTeX
% Or also, if you want:
% \babelprovide[import, maparabic]{telugu}
\babelfont{rm}{Gautami}
\begin{document}
```

```
\telugudigits{1234}
\telugucounter{section}
\end{document}
```

Languages providing native digits in all or some variants are:

Arabic	Persian	Lao	Odia	Urdu
Assamese	Gujarati	Northern Luri	Punjabi	Uzbek
Bangla	Hindi	Malayalam	Pashto	Vai
Tibetar	Khmer	Marathi	Tamil	Cantonese
Bodo	Kannada	Burmese	Telugu	Chinese
Central Kurdish	Konkani	Mazanderani	Thai	
Dzongkha	Kashmiri	Nepali	Uyghur	

New 3.30 With luatex there is an alternative approach for mapping digits, namely, mapdigits. Conversion is based on the language and it is applied to the typeset text (not math, PDF bookmarks, etc.) before bidi and fonts are processed (ie, to the node list as generated by the TEX code). This means the local digits have the correct bidirectional behavior (unlike Numbers=Arabic in fontspec, which is not recommended).

NOTE With xetex you can use the option Mapping when defining a font.

New 4.41 Many 'ini' locale files has been extended with information about non-positional numerical systems, based on those predefined in CSS. They only work with xetex and luatex and are fully expendable (even inside an unprotected \edef). Currently, they are limited to numbers below 10000.

There are several ways to use them (for the availabe styles in each language, see the list below):

- $\lceil \langle style \rangle \} \{ \langle number \rangle \}$, like $\lceil \langle style \rangle \} \{ \langle number \rangle \}$, like $\lceil \langle style \rangle \} \{ \langle number \rangle \}$
- \localecounter{\langle style \rangle} \{\langle counter \rangle \}, \like \localecounter \{\localecounter \} \{\section \rangle}
- In \babelprovide, as an argument to the keys alph and Alph, which redefine what \alph and \Alph print. For example:

\babelprovide[alph=alphabetic]{thai}

The styles are:

Ancient Greek lower.ancient, upper.ancient

Amharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena, kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre, wolaita, yemsa

Arabic abjad, maghrebi.abjad

Belarusan, Bulgarian, Macedonian, Serbian lower, upper

Bengali alphabetic

Coptic epact, lower. letters

Hebrew letters (neither geresh nor gershayim yet)

Hindi alphabetic

Armenian lower.letter, upper.letter

Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana,
informal, formal, cjk-earthly-branch, cjk-heavenly-stem,
fullwidth.lower.alpha, fullwidth.upper.alpha

Georgian letters

Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia)

Khmer consonant

Korean consonant, syllabe, hanja.informal, hanja.formal, hangul.formal,

cjk-earthly-branch, cjk-heavenly-stem, fullwidth.lower.alpha,

fullwidth.upper.alpha

Marathi alphabetic

Persian abjad, alphabetic

Russian lower, lower.full, upper, upper.full

Syriac letters

Tamil ancient

Thai alphabetic

Ukrainian lower, lower.full, upper, upper.full

Chinese cjk-earthly-branch, cjk-heavenly-stem, fullwidth.lower.alpha,
 fullwidth.upper.alpha

New 3.45 In addition, native digits (in languages defining them) may be printed with the numeral style digits.

1.18 Dates

New 3.45 When the data is taken from an ini file, you may print the date corresponding to the Gregorian calendar and other lunisolar systems with the following command.

\localedate

```
[\langle calendar=..., variant=... \rangle] \{\langle vear \rangle\} \langle month \rangle \langle day \rangle
```

By default the calendar is the Gregorian, but a ini files may define strings for other calendars (currently ar, ar-*, he, fa, hi.) In the latter case, the three arguments are the year, the month, and the day in those in the corresponding calendar. They are *not* the Gregorian data to be converted (which means, say, 13 is a valid month number with calendar=hebrew).

Even with a certain calendar there may be variants. In Kurmanji the default variant prints something like 30. Çileya Pêşîn 2019, but with variant=izafa it prints 31'ê Çileya Pêşînê 2019.

1.19 Accessing language info

\languagename

The control sequence \languagename contains the name of the current language.

WARNING Due to some internal inconsistencies in catcodes, it should *not* be used to test its value. Use iflang, by Heiko Oberdiek.

\iflanguage

```
{\langle language \rangle} {\langle true \rangle} {\langle false \rangle}
```

If more than one language is used, it might be necessary to know which language is active at a specific time. This can be checked by a call to \iflanguage, but note here "language" is used in the TEXsense, as a set of hyphenation patterns, and *not* as its babel name. This macro takes three arguments. The first argument is the name of a language; the second and third arguments are the actions to take if the result of the test is true or false respectively.

\localeinfo

 $\{\langle field \rangle\}$

New 3.38 If an ini file has been loaded for the current language, you may access the information stored in it. This macro is fully expandable, and the available fields are:

name.english as provided by the Unicode CLDR.

tag.ini is the tag of the ini file (the way this file is identified in its name).

tag.bcp47 is the full BCP 47 tag (see the warning below).

language.tag.bcp47 is the BCP 47 language tag.

tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).

script.name, as provided by the Unicode CLDR.

script.tag.bcp47 is the BCP 47 tag of the script used by this locale.

script.tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).

WARNING New 3.46 As of version 3.46 tag.bcp47 returns the full BCP 47 tag. Formerly it returned just the language subtag, which was clearly counterintuitive.

\getlocaleproperty

```
*\{\langle macro \rangle\}\{\langle locale \rangle\}\{\langle property \rangle\}
```

New 3.42 The value of any locale property as set by the ini files (or added/modified with \babelprovide) can be retrieved and stored in a macro with this command. For example, after:

\getlocaleproperty\hechap{hebrew}{captions/chapter}

the macro \hechap will contain the string פרק.

If the key does not exist, the macro is set to \relax and an error is raised. New 3.47 With the starred version no error is raised, so that you can take your own actions with undefined properties.

Babel remembers which ini files have been loaded. There is a loop named \LocaleForEach to traverse the list, where #1 is the name of the current item, so that \LocaleForEach{\message{ **#1** }} just shows the loaded ini's.

NOTE ini files are loaded with \babelprovide and also when languages are selected if there is a \babelfont. To ensure the ini files are loaded (and therefore the corresponding data) even if these two conditions are not met, write \BabelEnsureInfo in the preamble.

\localeid

Each language in the babel sense has its own unique numeric identifier, which can be retrieved with \localeid.

NOTE The \localeid is not the same as the \language identifier, which refers to a set of hyphenation patters (which, in turn, is just a component of the line breaking algorithm described in the next section). The data about preloaded patterns are store in an internal macro named \bbl@languages (see the code for further details), but note several locales may share a single \language, so they are separated concepts. In luatex, the \localeid is saved in each node (where it makes sense) as an attribute, too.

1.20 Hyphenation and line breaking

Babel deals with three kinds of line breaking rules: Western, typically the LGC group, South East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals with the former, xetex also with the second one (although in a limited way), while luatex provides basic rules for the latter, too.

\babelhyphen

* $\{\langle type \rangle\}$

\babelhyphen * $\{\langle text \rangle\}$

New 3.9a It is customary to classify hyphens in two types: (1) *explicit* or *hard hyphens*, which in T_EX are entered as -, and (2) *optional* or *soft hyphens*, which are entered as \-. Strictly, a *soft hyphen* is not a hyphen, but just a breaking opportunity or, in T_EX terms, a "discretionary"; a *hard hyphen* is a hyphen with a breaking opportunity after it. A further type is a *non-breaking hyphen*, a hyphen without a breaking opportunity. In T_EX, - and \- forbid further breaking opportunities in the word. This is the desired

behavior very often, but not always, and therefore many languages provide shorthands for these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch, Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian, Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \-, so that you cannot insert a soft hyphen without breaking opportunities in the rest of the word. Therefore, some macros are provided with a set of basic "hyphens" which can be used by themselves, to define a user shorthand, or even in language files.

- \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.
- \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the next line, as done in languages like Polish, Portuguese and Spanish.
- \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space follows).
- \babelhyphen{empty} inserts a break opportunity without a hyphen at all.
- \babelhyphen{ $\langle text \rangle$ } is a hard "hyphen" using $\langle text \rangle$ instead. A typical case is \babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don't want to enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, *anti-*) and nobreak for isolated suffixes (eg, *-ism*), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with LaTeX: (1) the character used is that set for the current font, while in LaTeX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts with a negative \hyphenchar is -, like in LaTeX, but it can be changed to another value by redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a glue >0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a parenthesis).

\babelhyphenation

 $[\langle language \rangle, \langle language \rangle, ...] \{\langle exceptions \rangle\}$

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional argument, for all languages (eg, proper nouns or common loan words, and of course monolingual documents). Language exceptions take precedence over global ones. It can be used only in the preamble, and exceptions are set when the language is first selected, thus taking into account changes of \lccodes's done in \extras $\langle lang \rangle$ as well as the language-specific encoding (not set in the preamble by default). Multiple \babelhyphenation's are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also works without the LICR if the input and the font encodings are the same, like in Unicode based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with \babelpatterns (below) you may fine-tune line breaking (only luatex). Even if there are no patterns for the language, you can add at least some typical cases.

NOTE To set hyphenation exceptions in the preamble before any language is explicitly set with a selector, use \babelhyphenation instead of \hyphenation. In the preamble the hyphenation rules are not always fully set up and an error can be raised.

\begin{hyphenrules}

 $\{\langle language \rangle\}$... \end{hyphenrules}

The environment hyphenrules can be used to select *only* the hyphenation rules to be used (it can be used as command, too). This can for instance be used to select 'nohyphenation', provided that in language.dat the 'language' nohyphenation is defined by loading zerohyph.tex. It deactivates language shorthands, too (but not user shorthands). Except for these simple uses, hyphenrules is deprecated and other language* (the starred version) is preferred, because the former does not take into account possible changes in encodings of characters like, say, ' done by some languages (eg, italian, french, ukraineb).

\babelpatterns

 $[\langle language \rangle, \langle language \rangle, ...] \{\langle patterns \rangle\}$

New 3.9m In luatex only, 15 adds or replaces patterns for the languages given or, without the optional argument, for *all* languages. If a pattern for a certain combination already exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first selected, thus taking into account changes of $\loop \$ done in $\$ as well as the language-specific encoding (not set in the preamble by default). Multiple $\$ babelpatterns's are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also works without the LICR if the input and the font encodings are the same, like in Unicode based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple generic line breaking algorithm (push-out-first) is applied, based on a selection of the Unicode rules (New 3.32 it is disabled in verbatim mode, or more precisely when the hyphenrules are set to nohyphenation). It can be activated alternatively by setting explicitly the intraspace.

New 3.27 Interword spacing for Thai, Lao and Khemer is activated automatically if a language with one of those scripts are loaded with \babelprovide. See the sample on the babel repository. With both Unicode engines, spacing is based on the "current" em unit (the size of the previous char in luatex, and the font size set by the last \selectfont in xetex).

1.21 Transforms

There are a couple of macros to define *transforms*. ¹⁶

\babelposthyphenation

 $\{\langle hyphenrules-name \rangle\}\{\langle lua-pattern \rangle\}\{\langle replacement \rangle\}$

New 3.37-3.39 With luatex it is now possible to define non-standard hyphenation rules, like $f-f \to ff-f$, repeated hyphens, ranked ruled (or more precisely, 'penalized' hyphenation points), and so on. No rules are currently provided by default, but they can be defined as shown in the following example, where $\{1\}$ is the first captured char (between () in the pattern):

 $^{^{15}}$ With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a separate package and babel only provides the most basic tools.

¹⁶Similar in concept, but not the same, as those in Unicode.

In the replacements, a captured char may be mapped to another, too. For example, if the first capture reads ($[\mathring{\iota}\mathring{\upsilon}]$), the replacement could be $\{1|\mathring{\iota}\mathring{\upsilon}|\mathring{\iota}\mathring{\upsilon}\}$, which maps $\mathring{\iota}$ to $\mathring{\iota}$, and $\mathring{\upsilon}$ to $\mathring{\upsilon}$, so that the diaeresis is removed.

This feature is activated with the first \babelposthyphenation or \babelprehyphenation. See the babel site for a more detailed description and some examples. It also describes a few additional replacement types (string, penalty).

Although the main purpose of this command is non-standard hyphenation, it may actually be used for other transformations (after hyphenation is applied, so you must take discretionaries into account).

You are limited to substitutions as done by lua, although a future implementation may alternatively accept lpeg.

\babelprehyphenation

```
\{\langle locale-name \rangle\}\{\langle lua-pattern \rangle\}\{\langle replacement \rangle\}
```

New 3.44-3-52 It is similar to the latter, but (as its name implies) applied before hyphenation. There are other differences: (1) the first argument is the locale instead the name of hyphenation patterns; (2) in the search patterns = has no special meaning, while | stands for an ordinary space; (3) in the replacement, discretionaries are not accepted. It handles glyphs and spaces.

This feature is activated with the first \babelposthyphenation or \babelprehyphenation.

EXAMPLE You can replace a character (or series of them) by another character (or series of them). Thus, to enter \check{z} as zh and \check{s} as sh in a newly created locale for transliterated Russian:

```
\babelprovide[hyphenrules=+]{russian-latin} % Create locale
\babelprehyphenation{russian-latin}{([sz])h} % Create rule
{
   string = {1|sz|šž},
   remove
}
```

EXAMPLE The following rule prevent the word "a" from being at the end of a line:

1.22 Selection based on BCP 47 tags

New 3.43 The recommended way to select languages is that described at the beginning of this document. However, BCP 47 tags are becoming customary, particularly in documents (or parts of documents) generated by external sources, and therefore babel will provide a set of tools to select the locales in different situations, adapted to the particular needs of

each case. Currently, babel provides autoloading of locales as described in this section. In these contexts autoloading is particularly important because we may not know on beforehand which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping from BCP 47 codes to locale names are not hardcoded in babel. Instead the data is taken from the ini files, which means currently about 250 tags are already recognized. Babel performs a simple lookup in the following way: $fr-Latn-FR \rightarrow fr-Latn \rightarrow fr-FR \rightarrow fr$. Languages with the same resolved name are considered the same. Case is normalized before, so that $fr-latn-fr \rightarrow fr-Latn-FR$. If a tag and a name overlap, the tag takes precedence.

Here is a minimal example:

```
\documentclass{article}

\usepackage[danish]{babel}

\babeladjust{
   autoload.bcp47 = on,
   autoload.bcp47.options = import
}

\begin{document}

Chapter in Danish: \chaptername.

\selectlanguage{de-AT}

\localedate{2020}{1}{30}

\end{document}
```

Currently the locales loaded are based on the ini files and decoupled from the main ldf files. This is by design, to ensure code generated externally produces the same result regardless of the languages requested in the document, but an option to use the ldf instead will be added in a future release, because both options make sense depending on the particular needs of each document (there will be some restrictions, however). The behaviour is adjusted with \babeladjust with the following parameters:

autoload.bcp47 with values on and off.

autoload.bcp47.options, which are passed to \babelprovide; empty by default, but you may add import (features defined in the corresponding babel-...tex file might not be available).

autoload.bcp47.prefix. Although the public name used in selectors is the tag, the internal name will be different and generated by prepending a prefix, which by default is bcp47-. You may change it with this key.

New 3.46 If an 1df file has been loaded, you can enable the corresponding language tags as selector names with:

```
\babeladjust{ bcp47.toname = on }
```

(You can deactivate it with off.) So, if dutch is one of the package (or class) options, you can write \selectlanguage{nl}. Note the language name does not change (in this example is still dutch), but you can get it with \localeinfo or \getlanguageproperty. It must be turned on explicitly for similar reasons to those explained above.

1.23 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best selected with either \fontencoding (low-level) or a language name (high-level). Even the Latin script may require different encodings (ie, sets of glyphs) depending on the language, and therefore such a switch would be in a sense incomplete.¹⁷

Some languages sharing the same script define macros to switch it (eg, \textcyrillic), but be aware they may also set the language to a certain default. Even the babel core defined \textlatin, but is was somewhat buggy because in some cases it messed up encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has been deprecated. ¹⁸

\ensureascii

 $\{\langle text \rangle\}$

New 3.9i This macro makes sure $\langle text \rangle$ is typeset with a LICR-savvy encoding in the ASCII range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, 0T2, 0T3, 0T6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and \LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For example, if you load LY1, LGR, then it is set to LY1, but if you load LY1, T2A it is set to T2A. The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used for "ordinary" text (they are stored in \BabelNonText, used in some special cases when no Latin encoding is explicitly set).

The foregoing rules (which are applied "at begin document") cover most of the cases. No assumption is made on characters above 127, which may not follow the LICR conventions – the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.24 Selecting directions

No macros to select the writing direction are provided, either – writing direction is intrinsic to each script and therefore it is best set by the language (which can be a dummy one). Furthermore, there are in fact two right-to-left modes, depending on the language, which differ in the way 'weak' numeric characters are ordered (eg, Arabic %123 vs Hebrew 123%)

WARNING The current code for **text** in luatex should be considered essentially stable, but, of course, it is not bug-free and there can be improvements in the future, because setting bidi text has many subtleties (see for example

<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait. This applies to text; there is a basic support for **graphical** elements, including the picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under study, as well as math (there is progress in the latter, too, but for example cases may fail).

An effort is being made to avoid incompatibilities in the future (this one of the reason currently bidi must be explicitly requested as a package option, with a certain bidi model, and also the layout options described below).

WARNING If characters to be mirrored are shown without changes with luatex, try with the following line:

¹⁷The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not necessarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does not mean it includes them for Classic Greek.

¹⁸But still defined for backwards compatibility.

```
\babeladjust{bidi.mirroring=off}
```

There are some package options controlling bidi writing.

```
bidi= default | basic | basic-r | bidi-l | bidi-r
```

New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just activated (by default it is not), but every change must be marked up. In xetex and pdftex this is the only option.

In luatex, basic-r provides a simple and fast method for R text, which handles numbers and unmarked L text within an R context many in typical cases. New 3.19 Finally, basic supports both L and R text, and it is the preferred method (support for basic-r is currently limited). (They are named basic mainly because they only consider the intrinsic direction of scripts and weak directionality.)

New 3.29 In xetex, bidi-r and bidi-l resort to the package bidi (by Vafa Khalighi). Integration is still somewhat tentative, but it mostly works. For RL documents use the former, and for LR ones use the latter.

There are samples on GitHub, under /required/babel/samples. See particularly lua-bidibasic.tex and lua-secenum.tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia). Copy-pasting some text from the Wikipedia is a good way to test this feature. Remember basic is available in luatex only.

```
\documentclass{article}
\usepackage[bidi=basic]{babel}
\babelprovide[import, main]{arabic}
\babelfont{rm}{FreeSerif}
\begin{document}

وقد عرفت شبه جزيرة العرب طيلة العصر الهيليني (الاغريقي) بــ Arabia
ابادئات بــ"Arabia" على ثلاث مناطق من شبه الجزيرة العربية، إلا أنها
حقيقة ً كانت أكبر مما تعرف عليه اليوم.
\end{document}
```

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the latter will be only necessary in some special cases where the Unicode algorithm fails). It is used much like bidi=basic-r, but with R text inside L text you may want to map the font so that the correct features are in force. This is accomplished with an option in \babelprovide, as illustrated:

```
\documentclass{book}
\usepackage[english, bidi=basic]{babel}
\babelprovide[onchar=ids fonts]{arabic}
```

```
\babelfont[rm}{Crimson}
\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers of one language, although the two registers can be referred to in Arabic as فصحی العصر \textit{fuṣḥā l-'aṣr} (MSA) and فاحی التراث \textit{fuṣḥā t-turāth} (CA).
```

In this example, and thanks to onchar=ids fonts, any Arabic letter (because the language is arabic) changes its font to that set for this language (here defined via *arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are "black boxes". Numbers inside an \hbox (for example in a \ref) do not know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in the visual order A-B, but in the wrong one B-A (because the hyphen does not "see" the digits inside the \hbox'es). If you need \ref ranges, the best option is to define a dedicated macro like this (to avoid explicit direction changes in the body; here \texthe must be defined to select the main language):

In the future a more complete method, reading recursively boxed text, may be added.

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents, including some text elements (except with options loading the bidi package, which provides its own mechanism to control these elements). You may use several options with a dot-separated list (eg, layout=counters.contents.sectioning). This list will be expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with
 the title text in the current language (see below \BabelPatchSection for further
 details).

counters required in all engines (except luatex with bidi=basic) to reorder section numbers and the like (eg, \(subsection \) \(\section \) \); required in xetex and pdftex for counters in general, as well as in luatex with bidi=default; required in luatex for numeric footnote marks >9 with bidi=basic-r (but not with bidi=basic); note, however, it can depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see below), but also an "isolated" block which does not interact with the surrounding chars. So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may always adjust the order by changing the language, if necessary. 19

lists required in xetex and pdftex, but only in bidirectional (with both R and L paragraphs) documents in luatex.

¹⁹Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.

- **WARNING** As of April 2019 there is a bug with \parshape in luatex (a T_EX primitive) which makes lists to be horizontally misplaced if they are inside a \vbox (like minipage) and the current direction is different from the main one. A workaround is to restore the main language before the box and then set the local one inside.
- contents required in xetex and pdftex; in luatex toc entries are R by default if the main language is R.
- columns required in xetex and pdftex to reverse the column order (currently only the standard two-column mode); in luatex they are R by default if the main language is R (including multicol).
- footnotes not required in monolingual documents, but it may be useful in bidirectional documents (with both R and L paragraphs) in all engines; you may use alternatively \BabelFootnote described below (what this option does exactly is also explained there).
- captions is similar to sectioning, but for \caption; not required in monolingual documents with luatex, but may be required in xetex and pdftex in some styles (support for the latter two engines is still experimental) New 3.18.
- tabular required in luatex for R tabular, so that the first column is the right one (it has been tested only with simple tables, so expect some readjustments in the future); ignored in pdftex or xetex (which will not support a similar option in the short term). It patches an internal command, so it might be ignored by some packages and classes (or even raise an error). New 3.18
- graphics modifies the picture environment so that the whole figure is L but the text is R. It *does not* work with the standard picture, and *pict2e* is required. It attempts to do the same for pqf/tikz. Somewhat experimental. New 3.32 .
- extras is used for miscellaneous readjustments which do not fit into the previous groups. Currently redefines in luatex \underline and \LaTeX2e New 3.19 .

EXAMPLE Typically, in an Arabic document you would need:

\babelsublr $\{\langle lr\text{-}text\rangle\}$

Digits in pdftex must be marked up explicitly (unlike luatex with bidi=basic or bidi=basic-r and, usually, xetex). This command is provided to set $\{\langle lr\text{-}text\rangle\}$ in L mode if necessary. It's intended for what Unicode calls weak characters, because words are best set with the corresponding language. For this reason, there is no rl counterpart. Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L, it first returns to R and then switches to explicit L. To clarify this point, consider, in an R context:

```
RTL A ltr text \thechapter{} and still ltr RTL B
```

There are *three* R blocks and *two* L blocks, and the order is *RTL* B and still ltr 1 ltr text RTL A. This is by design to provide the proper behavior in the most usual cases — but if you need to use \ref in an L text inside R, the L text must be marked up explicitly; for example:

```
RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B
```

\BabelPatchSection {\langle section-name \rangle}

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the corresponding option layout=sectioning takes a more logical approach (at least in many cases) because it applies the global language to the section format (including the \chaptername in \chapter), while the section text is still the current language. The latter is passed to tocs and marks, too, and with sectioning in layout they both reset the "global" language to the main one, while the text uses the "local" language. With layout=sectioning all the standard sectioning commands are redefined (it also "isolates" the page number in heads, for a proper bidi behavior), but with this command you can set them individually if necessary (but note then tocs and marks are not touched).

\BabelFootnote

```
\{\langle cmd \rangle\}\{\langle local\-language \rangle\}\{\langle before \rangle\}\{\langle after \rangle\}
```

New 3.17 Something like:

```
\BabelFootnote{\parsfootnote}{\languagename}{()}{)}
```

defines \parsfootnote so that \parsfootnote{note} is equivalent to:

```
\footnote{(\foreignlanguage{\languagename}{note})}
```

but the footnote itself is typeset in the main language (to unify its direction). In addition, \parsfootnotetext is defined. The option footnotes just does the following:

```
\BabelFootnote{\footnote}{\languagename}{}{}%
\BabelFootnote{\localfootnote}{\languagename}{}{}%
\BabelFootnote{\mainfootnote}{}{}{}
```

(which also redefine \footnotetext and define \localfootnotetext and \mainfootnotetext). If the language argument is empty, then no language is selected inside the argument of the footnote. Note this command is available always in bidi documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes entirely in English, you can define:

```
\BabelFootnote{\enfootnote}{english}{}{.}
```

It adds a period outside the English part, so that it is placed at the left in the last line. This means the dot the end of the footnote text should be omitted.

1.25 Language attributes

\languageattribute

This is a user-level command, to be used in the preamble of a document (after \usepackage[...]{babel}), that declares which attributes are to be used for a given language. It takes two arguments: the first is the name of the language; the second, a (list of) attribute(s) to be used. Attributes must be set in the preamble and only once – they cannot be turned on and off. The command checks whether the language is known in this document and whether the attribute(s) are known for this language. Very often, using a *modifier* in a package option is better.

Several language definition files use their own methods to set options. For example, french uses \frenchsetup, magyar (1.5) uses \magyarOptions; modifiers provided by spanish have no attribute counterparts. Macros setting options are also used (eg, \ProsodicMarksOn in latin).

1.26 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are predefined when luatex and xetex are used.

\AddBabelHook

```
[\langle lang \rangle] \{\langle name \rangle\} \{\langle event \rangle\} \{\langle code \rangle\}
```

The same name can be applied to several events. Hooks may be enabled and disabled for all defined events with $\ensuremath{\mbox{EnableBabelHook}} {\ensuremath{\mbox{Name}}}$, $\ensuremath{\mbox{DisableBabelHook}} {\ensuremath{\mbox{Name}}}$. Names containing the string babel are reserved (they are used, for example, by $\ensuremath{\mbox{Uuseshortands*}}$ to add a hook for the event afterextras). New 3.33 They may be also applied to a specific language with the optional argument; language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three T_EX parameters (#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if not preloaded.

patterns (language name, language with encoding) Executed just after the \language has been set. The second argument has the patterns name actually selected (in the form of either lang: ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both
xetex and luatex make sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file. beforeextras Just before executing \extras\(language\). This event and the next one should not contain language-dependent code (for that, add it to \extras\(language\)).

afterextras Just after executing $\ensuremath{\mbox{\sc harguage}}\xspace$. For example, the following deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString
 containing the string to be defined with \SetString. For example, to use an expanded
 version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%
\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.9i Executed just after a shorthand has been 'initiated'. The three parameters are the same character with different catcodes: active, other (\string'ed) and the original one.

afterreset New 3.9i Executed when selecting a language just after \originalTeX is run and reset to its base value, before executing \captions $\langle language \rangle$ and $\langle language \rangle$.

Four events are used in hyphen.cfg, which are handled in a quite different way for efficiency reasons – unlike the precedent ones, they only have a single hook and replace a default definition.

everylanguage (language) Executed before every language patterns are loaded.
loadkernel (file) By default just defines a few basic commands. It can be used to define different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.
loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

\BabelContentsFiles

New 3.9a This macro contains a list of "toc" types requiring a command to switch the language. Its default value is toc, lof, lot, but you may redefine it with \renewcommand (it's up to you to make sure no toc type is duplicated).

1.27 Languages supported by babel with ldf files

In the following table most of the languages supported by babel with and .1df file are listed, together with the names of the option which you can load babel with for each language. Note this list is open and the current options may be different. It does not include ini files.

Afrikaans afrikaans

Azerbaijani azerbaijani

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british, canadian, australian, newzealand

Esperanto esperanto

Estonian estonian

Finnish finnish

French french, francais, canadien, acadian

Galician galician

German austrian, german, germanb, ngerman, naustrian

Greek greek, polutonikogreek

Hebrew hebrew

Icelandic icelandic

Indonesian indonesian (bahasa, indon, bahasai)

Interlingua interlingua

Irish Gaelic irish

Italian italian

Latin latin

Lower Sorbian lowersorbian

Malay malay, melayu (bahasam)

North Sami samin

Norwegian norsk, nynorsk

Polish polish

Portuguese portuguese, brazilian (portuges, brazil)²⁰

²⁰The two last name comes from the times when they had to be shortened to 8 characters

Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian, turkmen, magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin, arabic, farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.

Most of them work out of the box, but some may require extra fonts, encoding files, a preprocessor or even a complete framework (like CJK or luatexja). For example, if you have got the velthuis/devnag package, you can create a file with extension .dn:

```
\documentclass{article}
\usepackage[hindi]{babel}
\begin{document}
{\dn devaanaa.m priya.h}
\end{document}
```

Then you preprocess it with devnag $\langle file \rangle$, which creates $\langle file \rangle$. tex; you can then typeset the latter with \LaTeX .

1.28 Unicode character properties in luatex

New 3.32 Part of the babel job is to apply Unicode rules to some script-specific features based on some properties. Currently, they are 3, namely, direction (ie, bidi class), mirroring glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which you can modify with the following macro (for example, to set them for glyphs in the PUA).

\babelcharproperty

```
\{\langle char\text{-}code \rangle\} [\langle to\text{-}char\text{-}code \rangle] \{\langle property \rangle\} \{\langle value \rangle\}
```

New 3.32 Here, $\{\langle char\text{-}code\rangle\}$ is a number (with T_EX syntax). With the optional argument, you can set a range of values. There are three properties (with a short name, taken from Unicode): direction (bc), mirror (bmg), linebreak (lb). The settings are global, and this command is allowed only in vertical mode (the preamble or between paragraphs). For example:

```
\babelcharproperty{`¿}{mirror}{`?}
\babelcharproperty{`-}{direction}{l} % or al, r, en, an, on, et, cs
\babelcharproperty{`)}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy
```

New 3.39 Another property is locale, which adds characters to the list used by onchar in \babelprovide, or, if the last argument is empty, removes them. The last argument is the locale name:

1.29 Tweaking some features

\babeladjust

 $\{\langle key\text{-}value\text{-}list \rangle\}$

New 3.36 Sometimes you might need to disable some babel features. Currently this macro understands the following keys (and only for luatex), with values on or off: bidi.text, bidi.mirroring, bidi.mapdigits, layout.lists, layout.tabular, linebreak.sea, linebreak.cjk. For example, you can set \babeladjust{bidi.text=off} if you are using an alternative algorithm or with large sections not requiring it. With luahbtex you may need bidi.mirroring=off. Use with care, because these options do not deactivate other related options (like paragraph direction with bidi.text).

1.30 Tips, workarounds, known issues and notes

- If you use the document class book and you use \ref inside the argument of \chapter (or just use \ref inside \MakeUppercase), \mathbb{E}T_EX will keep complaining about an undefined label. To prevent such problems, you can revert to using uppercase labels, you can use \lowercase{\ref{foo}} inside the argument of \chapter, or, if you will not use shorthands in labels, set the safe option to none or bib.
- Both Itxdoc and babel use \AtBeginDocument to change some catcodes, and babel reloads hhline to make sure: has the right one, so if you want to change the catcode of | it has to be done using the same method at the proper place, with

```
\AtBeginDocument{\DeleteShortVerb{\|}}
```

before loading babel. This way, when the document begins the sequence is (1) make | active (ltxdoc); (2) make it unactive (your settings); (3) make babel shorthands active (babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

• Documents with several input encodings are not frequent, but sometimes are useful. You can set different encodings for different languages as the following example shows:

```
\addto\extrasfrench{\inputencoding{latin1}}
\addto\extrasrussian{\inputencoding{koi8-r}}
```

- For the hyphenation to work correctly, lccodes cannot change, because TeX only takes into account the values when the paragraph is hyphenated, i.e., when it has been finished. So, if you write a chunk of French text with \foreinglanguage, the apostrophes might not be taken into account. This is a limitation of TeX, not of babel. Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or redefine \textquoteright (the latter is called by the non-ASCII right quote).
- \bibitem is out of sync with \selectlanguage in the .aux file. The reason is \bibitem uses \immediate (and others, in fact), while \selectlanguage doesn't. There is no known workaround.

²¹This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for multiple mappings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in the format and cannot be changed.

- Babel does not take into account \normalsfcodes and (non-)French spacing is not always properly (un)set by languages. However, problems are unlikely to happen and therefore this part remains untouched in version 3.9 (but it is in the 'to do' list).
- Using a character mathematically active (ie, with math code "8000) as a shorthand can make T_EX enter in an infinite loop in some rare cases. (Another issue in the 'to do' list, although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.

iflang Tests correctly the current language.

hyphsubst Selects a different set of patterns for a language.

translator An open platform for packages that need to be localized.

siunitx Typesetting of numbers and physical quantities.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

babelbib Multilingual bibliographies.

microtype Adjusts the typesetting according to some languages (kerning and spacing).

Ligatures can be disabled.

substitutefont Combines fonts in several encodings.

mkpattern Generates hyphenation patterns.

tracklang Tracks which languages have been requested.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another. **zhspacing** Spacing for CJK documents in xetex.

1.31 Current and future work

The current work is focused on the so-called complex scripts in luatex. In 8-bit engines, babel provided a basic support for bidi text as part of the style for Hebrew, but it is somewhat unsatisfactory and internally replaces some hardwired commands by other hardwired commands (generic changes would be much better).

Useful additions would be, for example, time, currency, addresses and personal names.²². But that is the easy part, because they don't require modifying the LaTeX internals. Calendars (Arabic, Persian, Indic, etc.) are under study.

Also interesting are differences in the sentence structure or related to it. For example, in Basque the number precedes the name (including chapters), in Hungarian "from (1)" is "(1)-ből", but "from (3)" is "(3)-ból", in Spanish an item labelled "3.°" may be referred to as either "ítem 3.°" or "3.e" ítem", and so on.

An option to manage bidirectional document layout in luatex (lists, footnotes, etc.) is almost finished, but xetex required more work. Unfortunately, proper support for xetex requires patching somehow lots of macros and packages (and some issues related to \specials remain, like color and hyperlinks), so babel resorts to the bidi package (by Vafa Khalighi). See the babel repository for a small example (xe-bidi).

1.32 Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage). For old an deprecated functions, see the wiki.

Options for locales loaded on the fly

New 3.51 \babeladjust{ autoload.options = ... } sets the options when a language is loaded on the fly (by default, no options). A typical value would be import, which

 $[\]overline{^{22}}$ See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those systems, however, have limited application to $T_{\rm P}X$ because their aim is just to display information and not fine typesetting.

defines captions, date, numerals, etc., but ignores the code in the tex file (for example, extended numerals in Greek).

Labels

New 3.48 There is some work in progress for babel to deal with labels, both with the relation to captions (chapters, part), and how counters are used to define them. It is still somewhat tentative because it is far from trivial – see the wiki for further details.

2 Loading languages with language.dat

TeX and most engines based on it (pdfTeX, xetex, ϵ -TeX, the main exception being luatex) require hyphenation patterns to be preloaded when a format is created (eg, Latex, xelatex, pdfLatex), babel provides a tool which has become standard in many distributions and based on a "configuration file" named language.dat. The exact way this file is used depends on the distribution, so please, read the documentation for the latter (note also some distributions generate the file with some tool).

New 3.9q With luatex, however, patterns are loaded on the fly when requested by the language (except the "0th" language, typically english, which is preloaded always).²³ Until 3.9n, this task was delegated to the package luatex-hyphen, by Khaled Hosny, Élie Roux, and Manuel Pégourié-Gonnard, and required an extra file named language.dat.lua, but now a new mechanism has been devised based solely on language.dat. You must rebuild the formats if upgrading from a previous version. You may want to have a local language.dat for a particular project (for example, a book on Chemistry).²⁴

2.1 Format

In that file the person who maintains a T_EX environment has to record for which languages he has hyphenation patterns *and* in which files these are stored²⁵. When hyphenation exceptions are stored in a separate file this can be indicated by naming that file *after* the file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an equals (=) sign. Such a line will instruct LaTeX that the hyphenation patterns just processed have to be known under an alternative name. Here is an example:

```
% File : language.dat
% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations
=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger
```

You may also set the font encoding the patterns are intended for by following the language name by a colon and the encoding code.²⁶ For example:

```
german:T1 hyphenT1.ger
german hyphen.ger
```

²³This feature was added to 3.90, but it was buggy. Both 3.90 and 3.9p are deprecated.

²⁴The loader for lua(e)tex is slightly different as it's not based on babel but on etex.src. Until 3.9p it just didn't work, but thanks to the new code it works by reloading the data in the babel way, i.e., with language.dat.

²⁵This is because different operating systems sometimes use *very* different file-naming conventions.

²⁶This is not a new feature, but in former versions it didn't work correctly.

With the previous settings, if the encoding when the language is selected is T1 then the patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the encoding can be set in \extras\(lang \)).

A typical error when using babel is the following:

```
No hyphenation patterns were preloaded for the language `<lang>' into the format.

Please, configure your TeX system to add them and rebuild the format. Now I will use the patterns preloaded for english instead}}
```

It simply means you must reconfigure language.dat, either by hand or with the tools provided by your distribution.

3 The interface between the core of babel and the language definition files

The *language definition files* (ldf) must conform to a number of conventions, because these files have to fill in the gaps left by the common code in babel.def, i.e., the definitions of the macros that produce texts. Also the language-switching possibility which has been built into the babel system has its implications.

The following assumptions are made:

- Some of the language-specific definitions might be used by plain T_EX users, so the files have to be coded so that they can be read by both Language T_EX. The current format can be checked by looking at the value of the macro \fmtname.
- The common part of the babel system redefines a number of macros and environments (defined previously in the document style) to put in the names of macros that replace the previously hard-wired texts. These macros have to be defined in the language definition files.
- The language definition files must define five macros, used to activate and deactivate the language-specific definitions. These macros are \d lang \d hyphenmins, \d captions \d lang \d , \d date \d lang \d , \d extras \d lang \d and \d noextras \d lang \d (the last two may be left empty); where \d lang \d is either the name of the language definition file or th
- When a language definition file is loaded, it can define $10\langle lang \rangle$ to be a dialect of $10\langle lang \rangle$ is undefined.
- Language names must be all lowercase. If an unknown language is selected, babel will attempt setting it after lowercasing its name.
- The semantics of modifiers is not defined (on purpose). In most cases, they will just be simple separated options (eg, spanish), but a language might require, say, a set of options organized as a tree with suboptions (in such a case, the recommended separator is /).

Some recommendations:

- The preferred shorthand is ", which is not used in LATEX (quotes are entered as `` and ''). Other good choices are characters which are not used in a certain context (eg, = in an ancient language). Note however =, <, >, : and the like can be dangerous, because they may be used as part of the syntax of some elements (numeric expressions, key/value pairs, etc.).
- Captions should not contain shorthands or encoding-dependent commands (the latter is not always possible, but should be clearly documented). They should be defined using the LICR. You may also use the new tools for encoded strings, described below.
- Avoid adding things to \noextras\(\lang\)\ except for umlauthigh and friends, \bbl@deactivate, \bbl@(non) frenchspacing, and language-specific macros. Use always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have access to the previous value). Do not reset a macro or a setting to a hardcoded value. Never. Instead save its value in \extras\(\lang\)\.
- Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the font encoding (low-level) or the language (high-level, which in turn may switch the font encoding). Usage of things like \latintext is deprecated.²⁷
- Please, for "private" internal macros do not use the \bbl@ prefix. It is used by babel and it can lead to incompatibilities.

There are no special requirements for documenting your language files. Now they are not included in the base babel manual, so provide a standalone document suited for your needs, as well as other files you think can be useful. A PDF and a "readme" are strongly recommended.

3.1 Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one the the 500 or so ini templates available on GitHub as a basis. Just make a pull request o dowonload it and then, after filling the fields, sent it to me. Fell free to ask for help or to make feature requests.

As to ldf files, now language files are "outsourced" and are located in a separate directory (/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN (please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do

- Do not hesitate stating on the file heads you are the author and the maintainer, if you actually are. There is no need to state the babel maintainer(s) as authors if they have not contributed significantly to your language files.
- Fonts are not strictly part of a language, so they are best placed in the corresponding TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.
- Font and input encodings are usually best placed in the corresponding tree, too, but sometimes they belong more naturally to the babel style. Note you may also need to define a LICR.
- Babel ldf files may just interface a framework, as it happens often with Oriental languages/scripts. This framework is best placed in its own directory.

it, here are a few guidelines.

²⁷But not removed, for backward compatibility.

The following page provides a starting point for 1df files:

http://www.texnia.com/incubator.html. See also

https://github.com/latex3/babel/blob/master/news-guides/guides/list-oflocale-templates.md.

If you need further assistance and technical advice in the development of language styles, I am willing to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition files. Their purpose is to make a new language known. The first two are related to hyphenation patterns.

\addlanguage

The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in plain.tex version 3.x. Here "language" is used in the T_FX sense of set of hyphenation patterns.

\adddialect

The macro \adddialect can be used when two languages can (or must) use the same hyphenation patterns. This can also be useful for languages for which no patterns are preloaded in the format. In such cases the default behavior of the babel system is to define this language as a 'dialect' of the language for which the patterns were loaded as \language0. Here "language" is used in the TFX sense of set of hyphenation patterns. The macro $\langle lang \rangle$ hyphenmins is used to store the values of the $\langle lefthyphenmin$ and \righthyphenmin. Redefine this macro to set your own values, with two numbers corresponding to these two parameters. For example:

\<lang>hyphenmins

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has no effect.)

\providehyphenmins

The macro \providehyphenmins should be used in the language definition files to set \lefthyphenmin and \righthyphenmin. This macro will check whether these parameters were provided by the hyphenation file before it takes any action. If these values have been already set, this command is ignored (currently, default pattern files do *not* set them). The macro \captions $\langle lang \rangle$ defines the macros that hold the texts to replace the original

\captions \lang \

hard-wired texts.

\date \lang \

The macro $\langle lang \rangle$ defines $\langle lang \rangle$.

\extras \(lang \)

The macro \extras \(\lang\) contains all the extra definitions needed for a specific language. This macro, like the following, is a hook – you can add things to it, but it must not be used

\noextras \(lang \)

Because we want to let the user switch between languages, but we do not know what state T_FX might be in after the execution of \extras $\langle lang \rangle$, a macro that brings T_FX into a predefined state is needed. It will be no surprise that the name of this macro is \noextras $\langle lang \rangle$.

\bbl@declare@ttribute

This is a command to be used in the language definition files for declaring a language attribute. It takes three arguments: the name of the language, the attribute to be defined, and the code to be executed when the attribute is to be used.

\main@language

To postpone the activation of the definitions needed for a language until the beginning of a document, all language definition files should use \main@language instead of \selectlanguage. This will just store the name of the language, and the proper language will be activated at the start of the document.

\ProvidesLanguage

The macro \ProvidesLanguage should be used to identify the language definition files. Its syntax is similar to the syntax of the LATEX command \ProvidesPackage.

\LdfInit

The macro \LdfInit performs a couple of standard checks that must be made at the beginning of a language definition file, such as checking the category code of the @-sign, preventing the .ldf file from being processed twice, etc.

\ldf@auit

The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes resetting the category code of the @-sign, preparing the language to be activated at \begin{document} time, and ending the input stream.

\ldf@finish

The macro \ldf@finish does work needed at the end of each .ldf file. This includes resetting the category code of the @-sign, loading a local configuration file, and preparing the language to be activated at \begin{document} time.

\loadlocalcfg

After processing a language definition file, LeTeX can be instructed to load a local configuration file. This file can, for instance, be used to add strings to \captions $\langle lang \rangle$ to support local document classes. The user will be informed that this configuration file has been loaded. This macro is called by \ldf@finish.

\substitutefontfamily

(Deprecated.) This command takes three arguments, a font encoding and two font family names. It creates a font description file for the first font in the given encoding. This . fd file will instruct LateX to use a font from the second family when a font from the first family in the given encoding seems to be needed.

3.3 Skeleton

Here is the basic structure of an 1df file, with a language, a dialect and an attribute. Strings are best defined using the method explained in sec. 3.8 (babel 3.9 and later).

```
\ProvidesLanguage{<language>}
     [2016/04/23 v0.0 <Language> support from the babel system]
\LdfInit{<language>}{captions<language>}
\ifx\undefined\l@<language>
  \@nopatterns{<Language>}
  \adddialect\l@<language>0
\fi
\adddialect\l@<dialect>\l@<language>
\bbl@declare@ttribute{<language>}{<attrib>}{%
  \expandafter\addto\expandafter\extras<language>
  \expandafter{\extras<attrib><language>}%
  \let\captions<language>\captions<attrib><language>}
\providehyphenmins{<language>}{\tw@\thr@@}
\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}
% More strings
\StartBabelCommands*{<language>}{date}
\SetString\monthiname{<name of first month>}
% More strings
\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}
% More strings
\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}
% More strings
\EndBabelCommands
```

```
\addto\extras<language>{}
\addto\noextras<language>{}
\let\extras<dialect>\extras<language>
\let\noextras<dialect>\noextras<language>
\ldf@finish{<language>}
```

NOTE If for some reason you want to load a package in your style, you should be aware it cannot be done directly in the ldf file, but it can be delayed with \AtEndOfPackage.

Macros from external packages can be used *inside* definitions in the ldf itself (for example, \extras<language>), but if executed directly, the code must be placed inside \AtEndOfPackage. A trivial example illustrating these points is:

```
\AtEndOfPackage{%
  \RequirePackage{dingbat}% Delay package
  \savebox{\myeye}{\eye}}% And direct usage
\newsavebox{\myeye}
\newcommand\myanchor{\anchor}% But OK inside command
```

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To facilitate this, some support macros are provided.

\initiate@active@char

The internal macro \initiate@active@char is used in language definition files to instruct Language definition files to instruct Language a character the category code 'active'. When a character has been made active it will remain that way until the end of the document. Its definition may vary.

\bbl@activate
\bbl@deactivate

The command \bbl@activate is used to change the way an active character expands. \bbl@activate 'switches on' the active behavior of the character. \bbl@deactivate lets the active character expand to its former (mostly) non-active self.

\declare@shorthand

The macro \declare@shorthand is used to define the various shorthands. It takes three arguments: the name for the collection of shorthands this definition belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed when the shorthand is encountered. (It does *not* raise an error if the shorthand character has not been "initiated".)

\bbl@add@special
\bbl@remove@special

The TeXbook states: "Plain TeX includes a macro called \dospecials that is essentially a set macro, representing the set of all characters that have a special category code." [4, p. 380] It is used to set text 'verbatim'. To make this work if more characters get a special category code, you have to add this character to the macro \dospecial. LaTeX adds another macro called \@sanitize representing the same character set, but without the curly braces. The macros \bbl@add@special \langle char \rangle and \bbl@remove@special \langle char \rangle add and remove the character \langle char \rangle to these two sets.

3.5 Support for saving macro definitions

Language definition files may want to *re*define macros that already exist. Therefore a mechanism for saving (and restoring) the original definition of those macros is provided. We provide two macros for this²⁸.

\babel@save

To save the current meaning of any control sequence, the macro \babel@save is provided. It takes one argument, $\langle csname \rangle$, the control sequence for which the meaning has to be saved

\babel@savevariable

A second macro is provided to save the current value of a variable. In this context,

²⁸This mechanism was introduced by Bernd Raichle.

anything that is allowed after the \the primitive is considered to be a variable. The macro takes one argument, the $\langle variable \rangle$.

The effect of the preceding macros is to append a piece of code to the current definition of \originalTeX. When \originalTeX is expanded, this code restores the previous definition of the control sequence or the previous value of the variable.

3.6 Support for extending macros

\addto

The macro $\addto{\langle control\ sequence\rangle}{\langle T_EX\ code\rangle}$ can be used to extend the definition of a macro. The macro need not be defined (ie, it can be undefined or $\ensuremath{\mbox{relax}}$). This macro can, for instance, be used in adding instructions to a macro like $\ensuremath{\mbox{extrasenglish}}$. Be careful when using this macro, because depending on the case the assignment can be either global (usually) or local (sometimes). That does not seem very consistent, but this behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp Lehman, consider using the tools provided by this package instead of \addto .

3.7 Macros common to a number of languages

\bbl@allowhyphens

In several languages compound words are used. This means that when T_EX has to hyphenate such a compound word, it only does so at the '-' that is used in such words. To allow hyphenation in the rest of such a compound word, the macro \bbl@allowhyphens can be used.

\allowhyphens

Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended mainly for characters provided as real glyphs by this encoding but constructed with \accent in OT1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens and discretionaries) than this one (composite chars). Note also prior to version 3.7, \allowhyphens had the behavior of \bbl@allowhyphens.

\set@low@box

For some languages, quotes need to be lowered to the baseline. For this purpose the macro \set@low@box is available. It takes one argument and puts that argument in an \hbox, at the baseline. The result is available in \box0 for further processing.

\save@sf@q

Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro \save@sf@q is available. It takes one argument, saves the current spacefactor, executes the argument, and restores the spacefactor.

\bbl@frenchspacing
\bbl@nonfrenchspacing

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to properly switch French spacing on and off.

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended mainly for luatex and xetex. This is the only new feature requiring changes in language files if you want to make use of it.

Furthermore, it must be activated explicitly, with the package option strings. If there is no strings, these blocks are ignored, except \SetCases (and except if forced as described below). In other words, the old way of defining/switching strings still works and it's used by default.

It consist is a series of blocks started with \StartBabelCommands. The last block is closed with \EndBabelCommands. Each block is a single group (ie, local declarations apply until the next \StartBabelCommands or \EndBabelCommands). An ldf may contain several series of this kind.

Thanks to this new feature, string values and string language switching are not mixed any more. No need of \addto. If the language is french, just redefine \frenchchaptername.

\StartBabelCommands

```
{\langle language-list \rangle} {\langle category \rangle} [\langle selector \rangle]
```

The \(\language\) specifies which languages the block is intended for. A block is taken into account only if the \CurrentOption is listed here. Alternatively, you can define \BabelLanguages to a comma-separated list of languages to be defined (if undefined, \StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the language, but this is discouraged – a explicit name (or names) is much better and clearer. A "selector" is a name to be used as value in package option strings, optionally followed by extra info about the encodings to be used. The name unicode must be used for xetex and luatex (the key strings has also other two special values: generic and encoded). If a string is set several times (because several blocks are read), the first one takes precedence (ie, it works much like \providecommand).

Encoding info is charset= followed by a charset, which if given sets how the strings should be translated to the internal representation used by the engine, typically utf8, which is the only value supported currently (default is no translations). Note charset is applied by luatex and xetex when reading the file, not when the macro or string is used in the document.

A list of font encodings which the strings are expected to work with can be given after fontenc= (separated with spaces, if two or more) – recommended, but not mandatory, although blocks without this key are not taken into account if you have requested strings=encoded.

Blocks without a selector are read always if the key strings has been used. They provide fallback values, and therefore must be the last blocks; they should be provided always if possible and all strings should be defined somehow inside it; they can be the only blocks (mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly with strings=generic (no block is taken into account except those). With strings=encoded, strings in those blocks are set as default (internally, ?). With strings=encoded strings are protected, but they are correctly expanded in \MakeUppercase and the like. If there is no key strings, string definitions are ignored, but \SetCases are still honored (in a encoded way).

The $\langle category \rangle$ is either captions, date or extras. You must stick to these three categories, even if no error is raised when using other name.²⁹ It may be empty, too, but in such a case using \SetString is an error (but not \SetCase).

```
\StartBabelCommands{language}{captions}
  [unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}
\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands
```

A real example is:

```
\StartBabelCommands{austrian}{date}
  [unicode, fontenc=TU EU1 EU2, charset=utf8]
  \SetString\monthiname{J\deltanner}

\StartBabelCommands{german,austrian}{date}
  [unicode, fontenc=TU EU1 EU2, charset=utf8]
  \SetString\monthiiname{M\deltarz}
```

²⁹In future releases further categories may be added.

```
\StartBabelCommands{austrian}{date}
  \SetString\monthiname{J\"{a}nner}
\StartBabelCommands{german}{date}
 \SetString\monthiname{Januar}
\StartBabelCommands{german,austrian}{date}
  \SetString\monthiiname{Februar}
 \SetString\monthiiiname{M\"{a}rz}
 \SetString\monthivname{April}
  \SetString\monthvname{Mai}
  \SetString\monthviname{Juni}
  \SetString\monthviiname{Juli}
  \SetString\monthviiiname{August}
  \SetString\monthixname{September}
  \SetString\monthxname{0ktober}
  \SetString\monthxiname{November}
 \SetString\monthxiiname{Dezenber}
  \SetString\today{\number\day.~%
    \csname month\romannumeral\month name\endcsname\space
    \number\year}
\StartBabelCommands{german,austrian}{captions}
  \SetString\prefacename{Vorwort}
  [etc.]
\EndBabelCommands
```

When used in 1df files, previous values of $\langle category \rangle \langle language \rangle$ are overridden, which means the old way to define strings still works and used by default (to be precise, is first set to undefined and then strings are added). However, when used in the preamble or in a package, new settings are added to the previous ones, if the language exists (in the babel sense, ie, if $\langle language \rangle$ exists).

\StartBabelCommands

```
* \{\langle language-list \rangle\} \{\langle category \rangle\} [\langle selector \rangle]
```

The starred version just forces strings to take a value – if not set as package option, then the default for the engine is used. This is not done by default to prevent backward incompatibilities, but if you are creating a new language this version is better. It's up to the maintainers of the current languages to decide if using it is appropriate.³⁰

\EndBabelCommands

Marks the end of the series of blocks.

\AfterBabelCommands

 $\{\langle code \rangle\}$

The code is delayed and executed at the global scope just after \EndBabelCommands.

\SetString

```
\{\langle macro-name \rangle\}\{\langle string \rangle\}
```

Adds $\langle macro-name \rangle$ to the current category, and defines globally $\langle lang-macro-name \rangle$ to $\langle code \rangle$ (after applying the transformation corresponding to the current charset or defined with the hook stringprocess).

Use this command to define strings, without including any "logic" if possible, which should be a separated macro. See the example above for the date.

 $^{^{30}}$ This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

\SetStringLoop {

```
\{\langle macro-name \rangle\}\{\langle string-list \rangle\}
```

A convenient way to define several ordered names at once. For example, to define \abmoniname, \abmoniname, etc. (and similarly with abday):

```
\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}
```

#1 is replaced by the roman numeral.

\SetCase

```
[\langle map\text{-}list \rangle] \{\langle toupper\text{-}code \rangle\} \{\langle tolower\text{-}code \rangle\}
```

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code would typically be things like \let\BB\bb and \uccode or \lccode (although for the reasons explained above, changes in lc/uc codes may not work). A $\langle map\text{-list} \rangle$ is a series of macros using the internal format of \@uclclist (eg, \bb\BB\cc\CC). The mandatory arguments take precedence over the optional one. This command, unlike \SetString, is executed always (even without strings), and it is intended for minor readjustments only. For example, as T1 is the default case mapping in ET_{PX} , we can set for Turkish:

```
\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]
\SetCase
  {\uccode"10=`I\relax}
  {\lccode`I="10\relax}
\StartBabelCommands{turkish}{}[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetCase
  {\uccode`i=`İ\relax
   \uccode`i=`I\relax}
  {\lccode`İ=`i\relax
   \lccode`I=`1\relax}
\StartBabelCommands{turkish}{}
\SetCase
  {\uccode`i="9D\relax
   \uccode"19=`I\relax}
  {\lccode"9D=`i\relax
   \lccode\I="19\relax}
\EndBabelCommands
```

(Note the mapping for OT1 is not complete.)

\SetHyphenMap

```
\{\langle to\text{-}lower\text{-}macros \rangle\}
```

New 3.9g Case mapping serves in T_EX for two unrelated purposes: case transforms (upper/lower) and hyphenation. \SetCase handles the former, while hyphenation is handled by \SetHyphenMap and controlled with the package option hyphenmap. So, even if internally they are based on the same T_EX primitive (\lccode), babel sets them separately. There are three helper macros to be used inside \SetHyphenMap:

- \BabelLower{ $\langle uccode \rangle$ }{ $\langle lccode \rangle$ } is similar to \lccode but it's ignored if the char has been set and saves the original lccode to restore it when switching the language (except with hyphenmap=first).
- \BabelLowerMM{ $\langle uccode-from \rangle$ }{ $\langle uccode-to \rangle$ }{ $\langle step \rangle$ }{ $\langle lccode-from \rangle$ } loops though the given uppercase codes, using the step, and assigns them the lccode, which is also increased (MM stands for *many-to-many*).

• \BabelLowerMO{ $\langle uccode-from \rangle$ }{ $\langle uccode-to \rangle$ }{ $\langle step \rangle$ }{ $\langle lccode \rangle$ } loops though the given uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands for *many-to-one*).

An example is (which is redundant, because these assignments are done by both luatex and xetex):

```
\label{lowerMM} $$ \mathbf{SetHyphenMap}(BabelLowerMM{"100}{"11F}{2}{"101}) $$
```

This macro is not intended to fix wrong mappings done by Unicode (which are the default in both xetex and luatex) – if an assignment is wrong, fix it directly.

4 Changes

4.1 Changes in babel version 3.9

Most of the changes in version 3.9 were related to bugs, either to fix them (there were lots), or to provide some alternatives. Even new features like \babelhyphen are intended to solve a certain problem (in this case, the lacking of a uniform syntax and behavior for shorthands across languages). These changes are described in this manual in the corresponding place. A selective list follows:

- \select@language did not set \languagename. This meant the language in force when auxiliary files were loaded was the one used in, for example, shorthands if the language was german, a \select@language{spanish} had no effect.
- \foreignlanguage and otherlanguage* messed up \extras<language>. Scripts, encodings and many other things were not switched correctly.
- The : ENC mechanism for hyphenation patterns used the encoding of the *previous* language, not that of the language being selected.
- ' (with activeacute) had the original value when writing to an auxiliary file, and things like an infinite loop can happen. It worked incorrectly with ^ (if activated) and also if deactivated.
- Active chars where not reset at the end of language options, and that lead to incompatibilities between languages.
- \textormath raised and error with a conditional.
- \aliasshorthand didn't work (or only in a few and very specific cases).
- \l@english was defined incorrectly (using \let instead of \chardef).
- 1df files not bundled with babel were not recognized when called as global options.

Part II

Source code

babel is being developed incrementally, which means parts of the code are under development and therefore incomplete. Only documented features are considered complete. In other words, use babel only as documented (except, of course, if you want to explore and test them – you can post suggestions about multilingual issues to kadingira@tug.org on http://tug.org/mailman/listinfo/kadingira).

5 Identification and loading of required files

Code documentation is still under revision.

The following description is no longer valid, because switch and plain have been merged into babel.def.

The babel package after unpacking consists of the following files:

switch.def defines macros to set and switch languages.

babel.def defines the rest of macros. It has tow parts: a generic one and a second one only for LaTeX.

babel.sty is the LATEX package, which set options and load language styles.

plain.def defines some LTEX macros required by babel.def and provides a few tools for Plain. **hyphen.cfg** is the file to be used when generating the formats to load hyphenation patterns.

The babel installer extends docstrip with a few "pseudo-guards" to set "variables" used at installation time. They are used with <@name@> at the appropriated places in the source code and shown below with $\langle \langle name \rangle \rangle$. That brings a little bit of literate programming.

6 locale directory

A required component of babel is a set of ini files with basic definitions for about 200 languages. They are distributed as a separate zip file, not packed as dtx. With them, babel will fully support Unicode engines.

Most of them are essentially finished (except bugs and mistakes, of course). Some of them are still incomplete (but they will be usable), and there are some omissions (eg, Latin and polytonic Greek, and there are no geographic areas in Spanish). Hindi, French, Occitan and Breton will show a warning related to dates. Not all include LICR variants.

This is a preliminary documentation.

ini files contain the actual data; tex files are currently just proxies to the corresponding ini files. Most keys are self-explanatory.

charset the encoding used in the ini file.

version of the ini file

level "version" of the ini specification . which keys are available (they may grow in a compatible way) and how they should be read.

encodings a descriptive list of font encondings.

[captions] section of captions in the file charset

[captions.licr] same, but in pure ASCII using the LICR

date.long fields are as in the CLDR, but the syntax is different. Anything inside brackets is a date field (eg, MMMM for the month name) and anything outside is text. In addition, [] is a non breakable space and [.] is an abbreviation dot.

Keys may be further qualified in a particular language with a suffix starting with a uppercase letter. It can be just a letter (eg, babel.name.A, babel.name.B) or a name (eg, date.long.Nominative, date.long.Formal, but no language is currently using the latter). *Multi-letter* qualifiers are forward compatible in the sense they won't conflict with new "global" keys (which start always with a lowercase case). There is an exception, however: the section counters has been devised to have arbitrary keys, so you can add lowercased keys if you want.

7 Tools

```
_1 \langle\langle version=3.55.2319\rangle\rangle _2 \langle\langle date=2021/03/22\rangle\rangle
```

Do not use the following macros in ldf files. They may change in the future. This applies mainly to those recently added for replacing, trimming and looping. The older ones, like \bbl@afterfi, will not change.

We define some basic macros which just make the code cleaner. \bbl@add is now used internally instead of \addto because of the unpredictable behavior of the latter. Used in babel.def and in babel.sty, which means in LTFX is executed twice, but we need them when defining options and

babel.def cannot be load until options have been defined. This does not hurt, but should be fixed somehow.

```
3 \langle \langle *Basic macros \rangle \rangle \equiv
     4\bbl@trace{Basic macros}
     5 \def\bbl@stripslash{\expandafter\@gobble\string}
     6 \def\bbl@add#1#2{%
                           \bbl@ifunset{\bbl@stripslash#1}%
                                          {\def#1{#2}}%
                                          {\expandafter\def\expandafter#1\expandafter{#1#2}}}
 10 \def\bbl@xin@{\@expandtwoargs\in@}
 11 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%
 12 \def\bbl@cs#1{\csname bbl@#1\endcsname}
 13 \def\bbl@cl#1{\csname bbl@#1@\languagename\endcsname}
 14 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}
15 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}
16 \def\bbl@@loop#1#2#3,{%
                          \ifx\@nnil#3\relax\else
18
                                          \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%
19
20 \def\bbl@for#1#2#3{\bbl@loopx#1{#2}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{42}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}\right)}}\right)}}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}{\left(\frac{44}\right)}}\right)}{\left(\frac{44}}{\left(\frac{44}{\left(\frac{44}\right)}}\right)}}{\left(\frac{44}\left(\frac{44}\right)}{\left(\frac{44}}\right)}}{\left(\frac{44}\right)}}{\left(\frac{44}}{\left(\frac{44}\right)}}{\left(\frac{44}}{\left(\frac{44}\right)}}}\right)}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}\right)}{\left(\frac{44}}{\left(\frac{44}\right)}}{\left(\frac{44}}\right)}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}\right)}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{44}}{\left(\frac{4
```

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first argument. When the list is not defined yet (or empty), it will be initiated. It presumes expandable character strings.

```
21 \def\bbl@add@list#1#2{%
   \edef#1{%
      \bbl@ifunset{\bbl@stripslash#1}%
23
24
        {\ifx#1\@empty\else#1,\fi}%
25
      #2}}
```

\bbl@afterelse \bbl@afterfi

Because the code that is used in the handling of active characters may need to look ahead, we take extra care to 'throw' it over the \else and \fi parts of an \if-statement³¹. These macros will break if another \if...\fi statement appears in one of the arguments and it is not enclosed in braces.

```
27 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}
28 \long\def\bbl@afterfi#1\fi{\fi#1}
```

Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple and readable. Here \\ stands for \noexpand and \<..> for \noexpand applied to a built macro name (the latter does not define the macro if undefined to \relax, because it is created locally). The result may be followed by extra arguments, if necessary.

```
29 \def\bbl@exp#1{%
   \begingroup
      \let\\\noexpand
31
      \def\<##1>{\expandafter\noexpand\csname##1\endcsname}%
32
      \edef\bbl@exp@aux{\endgroup#1}%
    \bbl@exp@aux}
```

\bbl@trim

The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing spaces from the second argument and then applies the first argument (a macro, \toks@ and the like). The second one, as its name suggests, defines the first argument as the stripped second argument.

```
35 \def\bbl@tempa#1{%
                                       \long\def\bbl@trim##1##2{%
                                                            \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ \t \ 
37
                                        \def\bbl@trim@c{%
38
                                                          \ifx\bbl@trim@a\@sptoken
```

³¹This code is based on code presented in TUGboat vol. 12, no2, June 1991 in "An expansion Power Lemma" by Sonja Maus.

```
40  \expandafter\bbl@trim@b
41  \else
42  \expandafter\bbl@trim@b\expandafter#1%
43  \fi}%
44  \long\def\bbl@trim@b#1##1 \@nil{\bbl@trim@i##1}}
45 \bbl@tempa{ }
46 \long\def\bbl@trim@i#1\@nil#2\relax#3{#3{#1}}
47 \long\def\bbl@trim@def#1{\bbl@trim{\def#1}}
```

\bbl@ifunset

To check if a macro is defined, we create a new macro, which does the same as $\ensuremath{\texttt{Qifundefined}}$. However, in an ϵ -tex engine, it is based on $\ensuremath{\texttt{Vifcsname}}$, which is more efficient, and do not waste memory.

```
48 \begingroup
   \gdef\bbl@ifunset#1{%
      \expandafter\ifx\csname#1\endcsname\relax
51
        \expandafter\@firstoftwo
52
        \expandafter\@secondoftwo
53
      \fi}
54
    \bbl@ifunset{ifcsname}%
55
      {}%
56
      {\gdef\bbl@ifunset#1{%
57
         \ifcsname#1\endcsname
58
           \expandafter\ifx\csname#1\endcsname\relax
59
             \bbl@afterelse\expandafter\@firstoftwo
60
61
             \bbl@afterfi\expandafter\@secondoftwo
62
           \fi
63
64
         \else
           \expandafter\@firstoftwo
65
         \fi}}
66
67 \endgroup
```

\bbl@ifblank

A tool from url, by Donald Arseneau, which tests if a string is empty or space. The companion macros tests if a macro is defined with some 'real' value, ie, not \relax and not empty,

```
68 \def\bbl@ifblank#1{%
69 \bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}
70 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}
71 \def\bbl@ifset#1#2#3{%
72 \bbl@ifunset{#1}{#3}{\bbl@exp{\\bbl@ifblank{#1}}{#3}{#2}}}
```

For each element in the comma separated <key>=<value> list, execute <code> with #1 and #2 as the key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the <key> alone, it passes \@empty (ie, the macro thus named, not an empty argument, which is what you get with <key>= and no value).

```
73 \def\bbl@forkv#1#2{%
74  \def\bbl@kvcmd##1##2#3{#2}%
75  \bbl@kvnext#1,\@nil,}
76 \def\bbl@kvnext#1,{%
77  \ifx\@nil#1\relax\else
78  \bbl@ifblank{#1}{}{\bbl@forkv@eq#1=\@empty=\@nil{#1}}%
79  \expandafter\bbl@kvnext
80  \fi}
81 \def\bbl@forkv@eq#1=#2=#3\@nil#4{%
82  \bbl@trim@def\bbl@forkv@a{#1}%
83  \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}
```

A for loop. Each item (trimmed), is #1. It cannot be nested (it's doable, but we don't need it).

```
84 \def\bbl@vforeach#1#2{%
85  \def\bbl@forcmd##1{#2}%
86  \bbl@fornext#1,\@nil,}
87 \def\bbl@fornext#1,{%
88  \ifx\@nil#1\relax\else
89  \bbl@ifblank{#1}{{\bbl@trim\bbl@forcmd{#1}}%
90  \expandafter\bbl@fornext
91  \fi}
92 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}
```

\bbl@replace

```
93 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3
    \toks@{}%
    \def\bbl@replace@aux##1#2##2#2{%
      \ifx\bbl@nil##2%
96
         \text{toks@expandafter{\the\toks@##1}%}
97
      \else
98
         \toks@\expandafter{\the\toks@##1#3}%
99
         \bbl@afterfi
100
         \bbl@replace@aux##2#2%
101
102
103
    \expandafter\bbl@replace@aux#1#2\bbl@nil#2%
    \edef#1{\the\toks@}}
```

An extensison to the previous macro. It takes into account the parameters, and it is string based (ie, if you replace elax by ho, then \relax becomes \rho). No checking is done at all, because it is not a general purpose macro, and it is used by babel only when it works (an example where it does *not* work is in \bbl@TG@@date, and also fails if there are macros with spaces, because they are retokenized). It may change! (or even merged with \bbl@replace; I'm not sure ckecking the replacement is really necessary or just paranoia).

```
105 \ifx\detokenize\@undefined\else % Unused macros if old Plain TeX
    \bbl@exp{\def\\bbl@parsedef##1\detokenize{macro:}}#2->#3\relax{%
       \def\bbl@tempa{#1}%
107
      \def\bbl@tempb{#2}%
108
      \def\bbl@tempe{#3}}
    \def\bbl@sreplace#1#2#3{%
110
       \begingroup
111
         \expandafter\bbl@parsedef\meaning#1\relax
112
         \def\bbl@tempc{#2}%
113
         \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
114
         \def\bbl@tempd{#3}%
115
         \edef\bbl@tempd{\expandafter\strip@prefix\meaning\bbl@tempd}%
116
         \bbl@xin@{\bbl@tempc}{\bbl@tempe}% If not in macro, do nothing
117
         \ifin@
118
           \bbl@exp{\\bbl@replace\\bbl@tempe{\bbl@tempc}{\bbl@tempd}}%
119
                                Expanded an executed below as 'uplevel'
           \def\bbl@tempc{%
120
              \\\makeatletter % "internal" macros with @ are assumed
121
              \\\scantokens{%
                \bbl@tempa\\@namedef{\bbl@stripslash#1}\bbl@tempb{\bbl@tempe}}%
123
              \catcode64=\the\catcode64\relax}% Restore @
124
         \else
125
           \let\bbl@tempc\@empty % Not \relax
126
127
         ۱fi
                         For the 'uplevel' assignments
         \bbl@exp{%
128
129
       \endgroup
         \bbl@tempc}} % empty or expand to set #1 with changes
130
131\fi
```

Two further tools. \bbl@samestring first expand its arguments and then compare their expansion

(sanitized, so that the catcodes do not matter). \bbl@engine takes the following values: 0 is pdfTEX, 1 is luatex, and 2 is xetex. You may use the latter it in your language style if you want.

```
132 \def\bbl@ifsamestring#1#2{%
133
    \begingroup
       \protected@edef\bbl@tempb{#1}%
134
       \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
135
       \protected@edef\bbl@tempc{#2}%
136
       \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
137
       \ifx\bbl@tempb\bbl@tempc
138
139
          \aftergroup\@firstoftwo
140
141
          \aftergroup\@secondoftwo
       \fi
142
     \endgroup}
143
144 \chardef\bbl@engine=%
    \ifx\directlua\@undefined
       \ifx\XeTeXinputencoding\@undefined
146
147
       \else
148
          \tw@
149
       \fi
150
     \else
151
152
       \@ne
     \fi
A somewhat hackish tool (hence its name) to avoid spurious spaces in some contexts.
154 \def\bbl@bsphack{%
    \ifhmode
155
       \hskip\z@skip
156
       \def\bbl@esphack{\loop\ifdim\lastskip>\z@\unskip\repeat\unskip}%
157
     \else
158
159
       \let\bbl@esphack\@empty
     \fi}
Another hackish tool, to apply case changes inside a protected macros. It's based on the internal
\let's made by \MakeUppercase and \MakeLowercase between things like \oe and \OE.
161 \def\bbl@cased{%
     \ifx\oe\0E
162
       \expandafter\in@\expandafter
163
          {\expandafter\OE\expandafter}\expandafter{\oe}%
164
165
       \ifin@
166
          \bbl@afterelse\expandafter\MakeUppercase
167
          \bbl@afterfi\expandafter\MakeLowercase
168
169
     \else
170
       \expandafter\@firstofone
171
    \fi}
172
173 ((/Basic macros))
Some files identify themselves with a LATEX macro. The following code is placed before them to define
(and then undefine) if not in LATEX.
174 \langle *Make sure ProvidesFile is defined \rangle \equiv
175 \ifx\ProvidesFile\@undefined
     \def\ProvidesFile#1[#2 #3 #4]{%
176
       \wlog{File: #1 #4 #3 <#2>}%
177
178
       \let\ProvidesFile\@undefined}
179 \ f i
180 \langle \langle /Make sure ProvidesFile is defined \rangle \rangle
```

7.1 Multiple languages

\language

Plain T_EX version 3.0 provides the primitive \language that is used to store the current language. When used with a pre-3.0 version this function has to be implemented by allocating a counter. The following block is used in switch.def and hyphen.cfg; the latter may seem redundant, but remember babel doesn't requires loading switch.def in the format.

```
181 ⟨⟨*Define core switching macros⟩⟩ ≡
182 \ifx\language\@undefined
183 \csname newcount\endcsname\language
184 \fi
185 ⟨⟨/Define core switching macros⟩⟩
```

\last@language

Another counter is used to store the last language defined. For pre-3.0 formats an extra counter has to be allocated.

\addlanguage

This macro was introduced for $T_FX < 2$. Preserved for compatibility.

Now we make sure all required files are loaded. When the command \AtBeginDocument doesn't exist we assume that we are dealing with a plain-based format or Lage 2.09. In that case the file plain.def is needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the second part, so \orig@dump is not defined (plain.def undefines it). Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If not, load it now. We cannot load babel.def here because we first need to declare and process the package options.

7.2 The Package File (L*T_EX, babel.sty)

This file also takes care of a number of compatibility issues with other packages an defines a few aditional package options. Apart from all the language options below we also have a few options that influence the behavior of language definition files.

Many of the following options don't do anything themselves, they are just defined in order to make it possible for babel and language definition files to check if one of them was specified by the user. The first two options are for debugging.

```
191 (*package)
192 \NeedsTeXFormat{LaTeX2e}[2005/12/01]
193 \ProvidesPackage{babel}[\langle\langle date\rangle\rangle \langle\langle version\rangle\rangle The Babel package]
194 \@ifpackagewith{babel}{debug}
     {\providecommand\bbl@trace[1]{\message{^^J[ #1 ]}}%
      \let\bbl@debug\@firstofone
196
      \ifx\directlua\@undefined\else
         \directlua{ Babel = Babel or {}
198
           Babel.debug = true }%
199
      \fi}
200
201
     {\providecommand\bbl@trace[1]{}%
202
      \let\bbl@debug\@gobble
      \ifx\directlua\@undefined\else
         \directlua{ Babel = Babel or {}
204
205
           Babel.debug = false }%
      \fi}
206
207 (⟨Basic macros⟩⟩
     % Temporarily repeat here the code for errors. TODO.
208
     \def\bbl@error#1#2{%
209
       \begingroup
210
```

```
\def\\{\MessageBreak}%
211
212
         \PackageError{babel}{#1}{#2}%
       \endgroup}
214
    \def\bbl@warning#1{%
215
      \begingroup
216
         \def\\{\MessageBreak}%
217
         \PackageWarning{babel}{#1}%
218
       \endgroup}
219
     \def\bbl@infowarn#1{%
220
      \begingroup
         \def\\{\MessageBreak}%
221
222
         \GenericWarning
223
           {(babel) \@spaces\@spaces\@spaces}%
           {Package babel Info: #1}%
224
225
       \endgroup}
    \def\bbl@info#1{%
227
       \begingroup
228
         \def\\{\MessageBreak}%
229
         \PackageInfo{babel}{#1}%
230
       \endgroup}
231 \def\bbl@nocaption{\protect\bbl@nocaption@i}
232% TODO - Wrong for \today !!! Must be a separate macro.
233 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname
    \global\@namedef{#2}{\textbf{?#1?}}%
     \@nameuse{#2}%
     \edef\bbl@tempa{#1}%
236
     \bbl@sreplace\bbl@tempa{name}{}%
     \bbl@warning{%
238
      \@backslashchar#1 not set for '\languagename'. Please,\\%
239
      define it after the language has been loaded\\%
240
241
       (typically in the preamble) with\\%
       \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\\%
242
243
       Reported}}
244 \def\bbl@tentative{\protect\bbl@tentative@i}
245 \def\bbl@tentative@i#1{%
    \bbl@warning{%
      Some functions for '#1' are tentative.\\%
      They might not work as expected and their behavior\\%
248
      may change in the future.\\%
249
      Reported}}
250
251 \def\@nolanerr#1{%
    \bbl@error
       {You haven't defined the language #1\space yet.\\%
253
        Perhaps you misspelled it or your installation\\%
254
255
        is not complete}%
       {Your command will be ignored, type <return> to proceed}}
257 \def\@nopatterns#1{%
    \bbl@warning
       {No hyphenation patterns were preloaded for\\%
        the language `#1' into the format.\\%
        Please, configure your TeX system to add them and \\%
261
        rebuild the format. Now I will use the patterns\\%
262
        preloaded for \bbl@nulllanguage\space instead}}
263
      % End of errors
265 \@ifpackagewith{babel}{silent}
    {\let\bbl@info\@gobble
267
     \let\bbl@infowarn\@gobble
268
     \let\bbl@warning\@gobble}
269
    {}
```

```
270 %
271 \def\AfterBabelLanguage#1{%
272 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%
```

If the format created a list of loaded languages (in \bbl@languages), get the name of the 0-th to show the actual language used. Also available with base, because it just shows info.

```
273 \ifx\bbl@languages\@undefined\else
     \begingroup
       \catcode`\^^I=12
275
       \@ifpackagewith{babel}{showlanguages}{%
276
277
         \begingroup
           \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%
278
           \wlog{<*languages>}%
280
           \bbl@languages
           \wlog{</languages>}%
281
         \endgroup}{}
282
283
     \endgroup
     \def\bbl@elt#1#2#3#4{%
284
       \ifnum#2=\z@
285
         \gdef\bbl@nulllanguage{#1}%
286
         \def\bbl@elt##1##2##3##4{}%
287
       \fi}%
288
    \bbl@languages
289
290 \fi%
```

7.3 base

The first 'real' option to be processed is base, which set the hyphenation patterns then resets ver@babel.sty so that LATEX forgets about the first loading. After a subset of babel.def has been loaded (the old switch.def) and \AfterBabelLanguage defined, it exits.

Now the base option. With it we can define (and load, with luatex) hyphenation patterns, even if we are not interesed in the rest of babel.

```
291 \bbl@trace{Defining option 'base'}
292 \@ifpackagewith{babel}{base}{%
293 \let\bbl@onlyswitch\@empty
    \let\bbl@provide@locale\relax
    \input babel.def
    \let\bbl@onlyswitch\@undefined
    \ifx\directlua\@undefined
297
      \DeclareOption*{\bbl@patterns{\CurrentOption}}%
298
299
      \input luababel.def
300
      \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%
301
302
    \DeclareOption{base}{}%
303
    \DeclareOption{showlanguages}{}%
304
    \ProcessOptions
305
    \global\expandafter\let\csname opt@babel.sty\endcsname\relax
    \global\expandafter\let\csname ver@babel.sty\endcsname\relax
    \global\let\@ifl@ter@@\@ifl@ter
    \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%
310
    \endinput}{}%
311 % \end{macrocode}
312 %
313% \subsection{\texttt{key=value} options and other general option}
314 %
315 %
        The following macros extract language modifiers, and only real
        package options are kept in the option list. Modifiers are saved
316 %
```

```
317 %
        and assigned to |\BabelModifiers| at |\bbl@load@language|; when
318 %
        no modifiers have been given, the former is |\relax|. How
319 %
        modifiers are handled are left to language styles; they can use
320 %
        |\in@|, loop them with |\@for| or load |keyval|, for example.
321 %
322 %
        \begin{macrocode}
323 \bbl@trace{key=value and another general options}
324 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname
325 \def\bbl@tempb#1.#2{% Remove trailing dot
     #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%
327 \def\bbl@tempd#1.#2\@nnil{% TODO. Refactor lists?
    \ifx\@emptv#2%
       \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
329
330
    \else
331
      \in@{,provide,}{,#1,}%
332
       \ifin@
         \edef\bbl@tempc{%
333
334
           \ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.\bbl@tempb#2}%
335
      \else
         \in@{=}{#1}%
336
         \ifin@
337
           \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%
338
           \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
340
           \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%
341
342
      \fi
343
   \fi}
344
345 \let\bbl@tempc\@empty
346 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}
347 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc
```

The next option tells babel to leave shorthand characters active at the end of processing the package. This is *not* the default as it can cause problems with other packages, but for those who want to use the shorthand characters in the preamble of their documents this can help.

```
348 \DeclareOption{KeepShorthandsActive}{}
349 \DeclareOption{activeacute}{}
350 \DeclareOption{activegrave}{}
351 \DeclareOption{debug}{}
352 \DeclareOption{noconfigs}{}
353 \DeclareOption{showlanguages}{}
354 \DeclareOption{silent}{}
355 \DeclareOption{mono}{}
356 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}
357 \chardef\bbl@iniflag\z@
358 \DeclareOption{provide=*}{\chardef\bbl@iniflag\@ne}
                                                            % main -> +1
359 \DeclareOption{provide+=*}{\chardef\bbl@iniflag\tw@}
360 \DeclareOption{provide*=*}{\chardef\bbl@iniflag\thr@@} % add + main
361% A separate option
362 \let\bbl@autoload@options\@empty
363 \DeclareOption{provide@=*}{\def\bbl@autoload@options{import}}
364% Don't use. Experimental. TODO.
365 \newif\ifbbl@single
366 \DeclareOption{selectors=off}{\bbl@singletrue}
367 ⟨⟨More package options⟩⟩
```

Handling of package options is done in three passes. (I [JBL] am not very happy with the idea, anyway.) The first one processes options which has been declared above or follow the syntax <key>=<value>, the second one loads the requested languages, except the main one if set with the

key main, and the third one loads the latter. First, we "flag" valid keys with a nil value.

```
368 \let\bbl@opt@shorthands\@nnil
369 \let\bbl@opt@config\@nnil
370 \let\bbl@opt@main\@nnil
371 \let\bbl@opt@headfoot\@nnil
372 \let\bbl@opt@layout\@nnil
```

The following tool is defined temporarily to store the values of options.

```
373 \def\bbl@tempa#1=#2\bbl@tempa{%
    \bbl@csarg\ifx{opt@#1}\@nnil
      \bbl@csarg\edef{opt@#1}{#2}%
375
376
    \else
      \bbl@error
377
        {Bad option `#1=#2'. Either you have misspelled the\\%
378
         key or there is a previous setting of `#1'. Valid\\%
379
         keys are, among others, `shorthands', `main', `bidi',\\%
380
         `strings', `config', `headfoot', `safe', `math'.}%
381
        {See the manual for further details.}
382
    \fi}
383
```

Now the option list is processed, taking into account only currently declared options (including those declared with a =), and <key>=<value> options (the former take precedence). Unrecognized options are saved in \bbl@language@opts, because they are language options.

```
384 \let\bbl@language@opts\@empty
385 \DeclareOption*{%
386  \bbl@xin@{\string=}{\CurrentOption}%
387  \ifin@
388  \expandafter\bbl@tempa\CurrentOption\bbl@tempa
389  \else
390  \bbl@add@list\bbl@language@opts{\CurrentOption}%
391  \fi}
```

Now we finish the first pass (and start over).

392 \ProcessOptions*

7.4 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babel macros are left untouched, but if there is, these macros are wrapped (in babel .def) to define only those given.

A bit of optimization: if there is no shorthands=, then \bbl@ifshorthand is always true, and it is always false if shorthands is empty. Also, some code makes sense only with shorthands=....

```
393 \bbl@trace{Conditional loading of shorthands}
394 \def\bbl@sh@string#1{%
    \ifx#1\@empty\else
395
       \ifx#1t\string~%
396
       \else\ifx#1c\string,%
397
398
       \else\string#1%
399
      \fi\fi
       \expandafter\bbl@sh@string
400
401
   \fi}
402 \ifx\bbl@opt@shorthands\@nnil
403 \def\bbl@ifshorthand#1#2#3{#2}%
404 \else\ifx\bbl@opt@shorthands\@empty
405 \def\bbl@ifshorthand#1#2#3{#3}%
406 \else
```

The following macro tests if a shorthand is one of the allowed ones.

```
407 \def\bbl@ifshorthand#1{%
```

```
408    \bbl@xin@{\string#1}{\bbl@opt@shorthands}%
409    \ifin@
410    \expandafter\@firstoftwo
411    \else
412    \expandafter\@secondoftwo
413    \fi}
```

We make sure all chars in the string are 'other', with the help of an auxiliary macro defined above (which also zaps spaces).

```
414 \edef\bbl@opt@shorthands{%
415 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%
```

The following is ignored with shorthands=off, since it is intended to take some aditional actions for certain chars.

```
416 \bbl@ifshorthand{'}%
417 {\PassOptionsToPackage{activeacute}{babel}}{}
418 \bbl@ifshorthand{`}%
419 {\PassOptionsToPackage{activegrave}{babel}}{}
420 \fi\fi
```

With headfoot=lang we can set the language used in heads/foots. For example, in babel/3796 just adds headfoot=english. It misuses \@resetactivechars but seems to work.

```
421 \ifx\bbl@opt@headfoot\@nnil\else
422 \g@addto@macro\@resetactivechars{%
423 \set@typeset@protect
424 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%
425 \let\protect\noexpand}
426 \fi
```

For the option safe we use a different approach – \bbl@opt@safe says which macros are redefined (B for bibs and R for refs). By default, both are set.

```
427\ifx\bbl@opt@safe\@undefined
428 \def\bbl@opt@safe{BR}
429\fi
430\ifx\bbl@opt@main\@nnil\else
431 \edef\bbl@language@opts{%
432 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi
433 \bbl@opt@main}
434\fi
```

For layout an auxiliary macro is provided, available for packages and language styles. Optimization: if there is no layout, just do nothing.

```
435 \bbl@trace{Defining IfBabelLayout}
436 \ifx\bbl@opt@lavout\@nnil
437 \newcommand\IfBabelLayout[3]{#3}%
438 \else
    \newcommand\IfBabelLayout[1]{%
439
       \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%
440
       \ifin@
441
         \expandafter\@firstoftwo
442
443
         \expandafter\@secondoftwo
444
445
```

Common definitions. In progress. Still based on babel.def, but the code should be moved here.

```
447 \input babel.def
```

7.5 Cross referencing macros

The LATEX book states:

The *key* argument is any sequence of letters, digits, and punctuation symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language that has active characters, special care has to be taken of the category codes of these characters when they appear in an argument of the cross referencing macros.

When a cross referencing command processes its argument, all tokens in this argument should be character tokens with category 'letter' or 'other'.

The following package options control which macros are to be redefined.

```
 448 \ \langle *More package options \rangle \rangle \equiv \\ 449 \ DeclareOption\{safe=none\}\{\let\bbl@opt@safe\@empty\} \\ 450 \ DeclareOption\{safe=bib\}\{\def\bbl@opt@safe\{B\}\} \\ 451 \ DeclareOption\{safe=ref\}\{\def\bbl@opt@safe\{R\}\} \\ 452 \ \langle \downward More package options \rangle \rangle
```

\@newl@bel

First we open a new group to keep the changed setting of \protect local and then we set the @safe@actives switch to true to make sure that any shorthand that appears in any of the arguments immediately expands to its non-active self.

```
453 \bbl@trace{Cross referencing macros}
454 \ifx\bbl@opt@safe\@empty\else
   \def\@newl@bel#1#2#3{%
     {\@safe@activestrue
456
      \bbl@ifunset{#1@#2}%
457
          \relax
458
          {\gdef\@multiplelabels{%
459
             \@latex@warning@no@line{There were multiply-defined labels}}%
460
           \@latex@warning@no@line{Label `#2' multiply defined}}%
461
462
       \global\@namedef{#1@#2}{#3}}}
```

\@testdef

An internal \LaTeX macro used to test if the labels that have been written on the .aux file have changed. It is called by the $\$ macro.

```
463 \CheckCommand*\@testdef[3]{%
464 \def\reserved@a{#3}%
465 \expandafter\ifx\csname#1@#2\endcsname\reserved@a
466 \else
467 \@tempswatrue
468 \fi}
```

Now that we made sure that \@testdef still has the same definition we can rewrite it. First we make the shorthands 'safe'. Then we use \bbl@tempa as an 'alias' for the macro that contains the label which is being checked. Then we define \bbl@tempb just as \@newl@bel does it. When the label is defined we replace the definition of \bbl@tempa by its meaning. If the label didn't change, \bbl@tempa and \bbl@tempb should be identical macros.

```
\def\@testdef#1#2#3{% TODO. With @samestring?
469
470
       \@safe@activestrue
       \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname
471
472
       \def\bbl@tempb{#3}%
473
      \@safe@activesfalse
474
       \ifx\bbl@tempa\relax
      \else
475
         \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%
476
477
       \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
478
479
       \ifx\bbl@tempa\bbl@tempb
480
       \else
         \@tempswatrue
481
```

```
482 \fi}
483 \fi
```

\ref The same holds for the macro \ref that references a label and \pageref to reference a page. We \pageref make them robust as well (if they weren't already) to prevent problems if they should become expanded at the wrong moment.

```
484 \bbl@xin@{R}\bbl@opt@safe
485 \ifin@
    \bbl@redefinerobust\ref#1{%
486
       \@safe@activestrue\org@ref{#1}\@safe@activesfalse}
487
    \bbl@redefinerobust\pageref#1{%
488
       \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}
489
490 \else
   \let\org@ref\ref
491
492
    \let\org@pageref\pageref
493∖fi
```

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is this internal macro that picks up the argument(s), so we redefine this internal macro and leave \cite alone. The first argument is used for typesetting, so the shorthands need only be deactivated in the second argument.

```
494 \bbl@xin@{B}\bbl@opt@safe
495 \ifin@
496 \bbl@redefine\@citex[#1]#2{%
497 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse
498 \org@@citex[#1]{\@tempa}}
```

Unfortunately, the packages natbib and cite need a different definition of \@citex... To begin with, natbib has a definition for \@citex with *three* arguments... We only know that a package is loaded when \begin{document} is executed, so we need to postpone the different redefinition.

```
499 \AtBeginDocument{%
500 \@ifpackageloaded{natbib}{%
```

Notice that we use \def here instead of \bbl@redefine because \org@@citex is already defined and we don't want to overwrite that definition (it would result in parameter stack overflow because of a circular definition).

(Recent versions of natbib change dynamically \@citex, so PR4087 doesn't seem fixable in a simple way. Just load natbib before.)

```
501 \def\@citex[#1][#2]#3{%
502 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse
503 \org@@citex[#1][#2]{\@tempa}}%
504 }{}}
```

The package cite has a definition of \@citex where the shorthands need to be turned off in both arguments.

```
505 \AtBeginDocument{%
506 \@ifpackageloaded{cite}{%
507 \def\@citex[#1]#2{%
508 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%
509 \}{}}
```

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references from the database.

```
510 \bbl@redefine\nocite#1{%
511 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}
```

\bibcite The macro that is used in the .aux file to define citation labels. When packages such as natbib or cite are not loaded its second argument is used to typeset the citation label. In that case, this second argument can contain active characters but is used in an environment where \@safe@activestrue is in effect. This switch needs to be reset inside the \hbox which contains the citation label. In order

to determine during .aux file processing which definition of \bibcite is needed we define \bibcite in such a way that it redefines itself with the proper definition. We call \bbl@cite@choice to select the proper definition for \bibcite. This new definition is then activated.

```
\bbl@redefine\bibcite{%
       \bbl@cite@choice
514
       \bibcite}
```

\bbl@bibcite

The macro \bbl@bibcite holds the definition of \bibcite needed when neither natbib nor cite is loaded.

```
\def\bbl@bibcite#1#2{%
515
       \org@bibcite{#1}{\@safe@activesfalse#2}}
516
```

\bbl@cite@choice

The macro \bbl@cite@choice determines which definition of \bibcite is needed. First we give \bibcite its default definition.

```
\def\bbl@cite@choice{%
       \global\let\bibcite\bbl@bibcite
519
       \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%
520
       \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%
       \global\let\bbl@cite@choice\relax}
521
```

When a document is run for the first time, no .aux file is available, and \bibcite will not yet be properly defined. In this case, this has to happen before the document starts.

```
522 \AtBeginDocument{\bbl@cite@choice}
```

\@bibitem One of the two internal LTPX macros called by \bibitem that write the citation label on the .aux file.

```
\bbl@redefine\@bibitem#1{%
       \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}
524
525 \else
526 \let\org@nocite\nocite
    \let\org@@citex\@citex
    \let\org@bibcite\bibcite
529 \let\org@@bibitem\@bibitem
530\fi
```

7.6 Marks

\markright

Because the output routine is asynchronous, we must pass the current language attribute to the head lines. To achieve this we need to adapt the definition of \markright and \markboth somewhat. However, headlines and footlines can contain text outside marks; for that we must take some actions in the output routine if the 'headfoot' options is used.

We need to make some redefinitions to the output routine to avoid an endless loop and to correctly handle the page number in bidi documents.

```
531 \bbl@trace{Marks}
532 \IfBabelLayout{sectioning}
    {\ifx\bbl@opt@headfoot\@nnil
        \g@addto@macro\@resetactivechars{%
534
535
          \set@typeset@protect
          \expandafter\select@language@x\expandafter{\bbl@main@language}%
536
          \let\protect\noexpand
537
538
          \ifcase\bbl@bidimode\else % Only with bidi. See also above
            \edef\thepage{%
539
              \noexpand\babelsublr{\unexpanded\expandafter{\thepage}}}%
540
          \fi}%
541
     \fi}
542
    {\ifbbl@single\else
543
544
        \bbl@ifunset{markright }\bbl@redefine\bbl@redefinerobust
545
        \markright#1{%
```

\markboth
\@mkboth

The definition of \markboth is equivalent to that of \markright, except that we need two token registers. The documentclasses report and book define and set the headings for the page. While doing so they also store a copy of \markboth in \@mkboth. Therefore we need to check whether \@mkboth has already been set. If so we need to do that again with the new definition of \markboth. (As of Oct 2019, \mathbb{IT}EX stores the definition in an intermediate macro, so it's not necessary anymore, but it's preserved for older versions.)

```
\ifx\@mkboth\markboth
552
553
          \def\bbl@tempc{\let\@mkboth\markboth}
554
        \else
          \def\bbl@tempc{}
555
        \fi
556
        \bbl@ifunset{markboth }\bbl@redefine\bbl@redefinerobust
557
        \markboth#1#2{%
558
          \protected@edef\bbl@tempb##1{%
559
            \protect\foreignlanguage
560
            {\languagename}{\protect\bbl@restore@actives##1}}%
561
          \bbl@ifblank{#1}%
562
            {\toks@{}}%
563
            {\toks@\expandafter{\bbl@tempb{#1}}}%
564
          \bbl@ifblank{#2}%
565
            {\@temptokena{}}%
566
            {\@temptokena\expandafter{\bbl@tempb{#2}}}%
          \bbl@exp{\\\org@markboth{\the\toks@}{\the\@temptokena}}}
568
          \bbl@tempc
569
        \fi} % end ifbbl@single, end \IfBabelLayout
570
```

7.7 Preventing clashes with other packages

7.7.1 ifthen

\ifthenelse

Sometimes a document writer wants to create a special effect depending on the page a certain fragment of text appears on. This can be achieved by the following piece of code:

```
\ifthenelse{\isodd{\pageref{some:label}}}
     {code for odd pages}
     {code for even pages}
```

In order for this to work the argument of \isodd needs to be fully expandable. With the above redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to the definition of \ifthenelse to make things work.

We want to revert the definition of \pageref and \ref to their original definition for the first argument of \ifthenelse, so we first need to store their current meanings.

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to be able to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch and the definition of \pageref happens inside those arguments.

```
571\bbl@trace{Preventing clashes with other packages}
572\bbl@xin@{R}\bbl@opt@safe
573\ifin@
574 \AtBeginDocument{%
575 \@ifpackageloaded{ifthen}{%
576 \bbl@redefine@long\ifthenelse#1#2#3{%
```

```
\let\bbl@temp@pref\pageref
577
578
           \let\pageref\org@pageref
           \let\bbl@temp@ref\ref
579
580
           \let\ref\org@ref
581
           \@safe@activestrue
582
           \org@ifthenelse{#1}%
583
              {\let\pageref\bbl@temp@pref
584
              \let\ref\bbl@temp@ref
585
              \@safe@activesfalse
586
              #2}%
              {\let\pageref\bbl@temp@pref
587
              \let\ref\bbl@temp@ref
588
              \@safe@activesfalse
589
              #3}%
590
591
           }%
592
         }{}%
593
```

7.7.2 varioref

\@@vpageref
\vrefpagenum
\Ref

When the package varioref is in use we need to modify its internal command <code>\@evpageref</code> in order to prevent problems when an active character ends up in the argument of <code>\vref</code>. The same needs to happen for <code>\vrefpagenum</code>.

```
\AtBeginDocument{%
594
       \@ifpackageloaded{varioref}{%
595
         \bbl@redefine\@@vpageref#1[#2]#3{%
596
           \@safe@activestrue
597
           \org@@vpageref{#1}[#2]{#3}%
598
           \@safe@activesfalse}%
599
         \bbl@redefine\vrefpagenum#1#2{%
600
           \@safe@activestrue
601
602
           \org@vrefpagenum{#1}{#2}%
603
           \@safe@activesfalse}%
```

The package varioref defines \Ref to be a robust command wich uppercases the first character of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref__ to call \org@ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

7.7.3 hhline

\hhline

Delaying the activation of the shorthand characters has introduced a problem with the hhline package. The reason is that it uses the ':' character which is made active by the french support in babel. Therefore we need to *reload* the package when the ':' is an active character. Note that this happens *after* the category code of the @-sign has been changed to other, so we need to temporarily change it to letter again.

```
609 \AtEndOfPackage{%
610 \AtBeginDocument{%
611 \@ifpackageloaded{hhline}%
612 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
613 \else
614 \makeatletter
```

```
615 \def\@currname{hhline}\input{hhline.sty}\makeatother
616 \fi}%
617 {}}
```

7.7.4 hyperref

\pdfstringdefDisableCommands

A number of interworking problems between babel and hyperref are tackled by hyperref itself. The following code was introduced to prevent some annoying warnings but it broke bookmarks. This was quickly fixed in hyperref, which essentially made it no-op. However, it will not removed for the moment because hyperref is expecting it. TODO. Still true? Commented out in 2020/07/27.

```
618% \AtBeginDocument{%
619% \ifx\pdfstringdefDisableCommands\@undefined\else
620% \pdfstringdefDisableCommands{\languageshorthands{system}}%
621% \fi}
```

7.7.5 fancyhdr

\FOREIGNLANGUAGE

The package fancyhor treats the running head and fout lines somewhat differently as the standard classes. A symptom of this is that the command \foreignlanguage which babel adds to the marks can end up inside the argument of \MakeUppercase. To prevent unexpected results we need to define \FOREIGNLANGUAGE here.

```
622 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%
623 \lowercase{\foreignlanguage{#1}}}
```

\substitutefontfamily

The command \substitutefontfamily creates an .fd file on the fly. The first argument is an encoding mnemonic, the second and third arguments are font family names. This command is deprecated. Use the tools provides by LaTeX.

```
624 \def\substitutefontfamily#1#2#3{%
    \lowercase{\immediate\openout15=#1#2.fd\relax}%
    \immediate\write15{%
627
      \string\ProvidesFile{#1#2.fd}%
      [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
628
       \space generated font description file]^^J
629
      \string\DeclareFontFamily{#1}{#2}{}^^J
630
631
      \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J
      \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J
632
633
      \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J
      \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J
634
      \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J
635
      \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J
636
      637
      \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J
638
639
      }%
    \closeout15
640
642 \@onlypreamble\substitutefontfamily
```

7.8 Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of T_EX and ET_EX always come out in the right encoding. There is a list of non-ASCII encodings. Unfortunately, fontenc deletes its package options, so we must guess which encodings has been loaded by traversing <code>\@filelist</code> to search for $\langle enc \rangle$ enc.def. If a non-ASCII has been loaded, we define versions of <code>\TeX</code> and <code>\LaTeX</code> for them using <code>\ensureascii</code>. The default ASCII encoding is set, too (in reverse order): the "main" encoding (when the document begins), the last loaded, or OT1.

```
\ensureascii
```

643 \bbl@trace{Encoding and fonts}

```
644\newcommand\BabelNonASCII{LGR,X2,OT2,OT3,OT6,LHE,LWN,LMA,LMC,LMS,LMU,PU,PD1}
645 \newcommand\BabelNonText{TS1,T3,TS3}
646 \let\org@TeX\TeX
647 \let\org@LaTeX\LaTeX
648 \let\ensureascii\@firstofone
649 \AtBeginDocument{%
    \in@false
    \bbl@foreach\BabelNonASCII{% is there a text non-ascii enc?
651
652
      \ifin@\else
653
         \lowercase{\bbl@xin@{,#1enc.def,}{,\@filelist,}}%
654
655
    \ifin@ % if a text non-ascii has been loaded
       \def\ensureascii#1{{\fontencoding{OT1}\selectfont#1}}%
656
       \DeclareTextCommandDefault{\TeX}{\org@TeX}%
657
658
       \DeclareTextCommandDefault{\LaTeX}{\org@LaTeX}%
659
       \def\bbl@tempb#1\@@{\uppercase{\bbl@tempc#1}ENC.DEF\@empty\@@}%
       \def\bbl@tempc#1ENC.DEF#2\@@{%
660
661
         \ifx\@empty#2\else
662
           \bbl@ifunset{T@#1}%
663
             {}%
664
             {\bbl@xin@{,#1,}{,\BabelNonASCII,\BabelNonText,}%
665
              \ifin@
                \DeclareTextCommand{\TeX}{#1}{\ensureascii{\org@TeX}}%
666
                \DeclareTextCommand{\LaTeX}{#1}{\ensureascii{\org@LaTeX}}%
667
668
                \def\ensureascii##1{{\fontencoding{#1}\selectfont##1}}%
669
              \fi}%
670
         \fi}%
671
       \bbl@foreach\@filelist{\bbl@tempb#1\@@}% TODO - \@@ de mas??
672
       \bbl@xin@{,\cf@encoding,}{,\BabelNonASCII,\BabelNonText,}%
673
674
       \ifin@\else
675
         \edef\ensureascii#1{{%
           \noexpand\fontencoding{\cf@encoding}\noexpand\selectfont#1}}%
676
      \fi
677
    \fi}
678
```

Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The first thing we need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding

When text is being typeset in an encoding other than 'latin' (0T1 or T1), it would be nice to still have Roman numerals come out in the Latin encoding. So we first assume that the current encoding at the end of processing the package is the Latin encoding.

```
679 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}
```

But this might be overruled with a later loading of the package fontenc. Therefore we check at the execution of \begin{document} whether it was loaded with the T1 option. The normal way to do this (using \@ifpackageloaded) is disabled for this package. Now we have to revert to parsing the internal macro \@filelist which contains all the filenames loaded.

```
680 \AtBeginDocument{%
    \@ifpackageloaded{fontspec}%
       {\xdef\latinencoding{%
682
          \ifx\UTFencname\@undefined
683
            EU\ifcase\bbl@engine\or2\or1\fi
684
          \else
685
            \UTFencname
686
          \fi}}%
687
688
       {\gdef\latinencoding{OT1}%
        \ifx\cf@encoding\bbl@t@one
689
          \xdef\latinencoding{\bbl@t@one}%
690
```

```
\else
691
692
          \ifx\@fontenc@load@list\@undefined
            \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%
693
694
695
            \def\@elt#1{,#1,}%
696
            \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%
697
            \let\@elt\relax
698
            \bbl@xin@{,T1,}\bbl@tempa
            \ifin@
699
              \xdef\latinencoding{\bbl@t@one}%
            \fi
701
702
          \fi
        \fi}}
703
```

\latintext Then we can define the command \latintext which is a declarative switch to a latin font-encoding. Usage of this macro is deprecated.

```
704 \DeclareRobustCommand{\latintext}{%
    \fontencoding{\latinencoding}\selectfont
    \def\encodingdefault{\latinencoding}}
```

\textlatin

This command takes an argument which is then typeset using the requested font encoding. In order to avoid many encoding switches it operates in a local scope.

```
707 \ifx\@undefined\DeclareTextFontCommand
    \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}
709 \else
    \DeclareTextFontCommand{\textlatin}{\latintext}
711 \fi
```

7.9 Basic bidi support

Work in progress. This code is currently placed here for practical reasons. It will be moved to the correct place soon, I hope.

It is loosely based on rlbabel.def, but most of it has been developed from scratch. This babel module (by Johannes Braams and Boris Lavva) has served the purpose of typesetting R documents for two decades, and despite its flaws I think it is still a good starting point (some parts have been copied here almost verbatim), partly thanks to its simplicity. I've also looked at ARABI (by Youssef Jabri), which is compatible with babel.

There are two ways of modifying macros to make them "bidi", namely, by patching the internal low-level macros (which is what I have done with lists, columns, counters, tocs, much like rlbabel did), and by introducing a "middle layer" just below the user interface (sectioning, footnotes).

- pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical typesetting is not possible.
- xetex is somewhat better, thanks to its font engine (even if not always reliable) and a few additional tools. However, very little is done at the paragraph level. Another challenging problem is text direction does not honour TFX grouping.
- luatex can provide the most complete solution, as we can manipulate almost freely the node list, the generated lines, and so on, but bidi text does not work out of the box and some development is necessary. It also provides tools to properly set left-to-right and right-to-left page layouts. As LuaT_EX-ja shows, vertical typesetting is possible, too.

As a frist step, add a handler for bidi and digits (and potentially other processes) just before luaoftload is applied, which is loaded by default by LATEX. Just in case, consider the possibility it has not been loaded.

```
712 \ifodd\bbl@engine
    \def\bbl@activate@preotf{%
       \let\bbl@activate@preotf\relax % only once
714
      \directlua{
715
```

```
Babel = Babel or {}
716
717
         function Babel.pre_otfload_v(head)
718
719
           if Babel.numbers and Babel.digits_mapped then
720
             head = Babel.numbers(head)
721
           if Babel.bidi_enabled then
722
723
             head = Babel.bidi(head, false, dir)
724
           return head
         end
726
727
         function Babel.pre_otfload_h(head, gc, sz, pt, dir)
728
           if Babel.numbers and Babel.digits_mapped then
729
             head = Babel.numbers(head)
730
731
           end
           if Babel.bidi enabled then
732
733
             head = Babel.bidi(head, false, dir)
734
           end
           return head
735
736
         end
737
         luatexbase.add_to_callback('pre_linebreak_filter',
738
           Babel.pre otfload v,
739
           'Babel.pre otfload v',
740
           luatexbase.priority_in_callback('pre_linebreak_filter',
741
             'luaotfload.node_processor') or nil)
742
743
         luatexbase.add_to_callback('hpack_filter',
744
           Babel.pre otfload h,
745
746
           'Babel.pre otfload h',
747
           luatexbase.priority_in_callback('hpack_filter',
             'luaotfload.node_processor') or nil)
748
749
750\fi
The basic setup. In luatex, the output is modified at a very low level to set the \bodydir to the
751 \bbl@trace{Loading basic (internal) bidi support}
752 \ifodd\bbl@engine
    \ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200
       \let\bbl@beforeforeign\leavevmode
754
       \AtEndOfPackage{\EnableBabelHook{babel-bidi}}
755
       \RequirePackage{luatexbase}
756
757
       \bbl@activate@preotf
       \directlua{
758
         require('babel-data-bidi.lua')
759
         \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or
760
           require('babel-bidi-basic.lua')
761
         \or
762
763
           require('babel-bidi-basic-r.lua')
764
765
      % TODO - to locale_props, not as separate attribute
       \newattribute\bbl@attr@dir
766
      % TODO. I don't like it, hackish:
767
       \bbl@exp{\output{\bodydir\pagedir\the\output}}
768
       \AtEndOfPackage{\EnableBabelHook{babel-bidi}}
769
    \fi\fi
770
771 \else
```

```
\ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200
773
      \bbl@error
774
         {The bidi method `basic' is available only in\\%
775
          luatex. I'll continue with `bidi=default', so\\%
776
          expect wrong results}%
777
         {See the manual for further details.}%
778
       \let\bbl@beforeforeign\leavevmode
779
       \AtEndOfPackage{%
780
         \EnableBabelHook{babel-bidi}%
781
         \bbl@xebidipar}
782
    \def\bbl@loadxebidi#1{%
783
      \ifx\RTLfootnotetext\@undefined
784
         \AtEndOfPackage{%
785
786
           \EnableBabelHook{babel-bidi}%
787
           \ifx\fontspec\@undefined
             \bbl@loadfontspec % bidi needs fontspec
788
789
790
           \usepackage#1{bidi}}%
      \fi}
791
792
    \ifnum\bbl@bidimode>200
       \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or
793
         \bbl@tentative{bidi=bidi}
794
         \bbl@loadxebidi{}
795
796
         \bbl@loadxebidi{[rldocument]}
797
798
         \bbl@loadxebidi{}
799
800
       \fi
801 \fi
802\fi
803 \ifnum\bbl@bidimode=\@ne
    \let\bbl@beforeforeign\leavevmode
    \ifodd\bbl@engine
       \newattribute\bbl@attr@dir
806
       \bbl@exp{\output{\bodydir\pagedir\the\output}}%
807
    \fi
808
809
    \AtEndOfPackage{%
       \EnableBabelHook{babel-bidi}%
810
       \ifodd\bbl@engine\else
811
812
         \bbl@xebidipar
813
       \fi}
814\fi
Now come the macros used to set the direction when a language is switched. First the (mostly)
common macros.
815 \bbl@trace{Macros to switch the text direction}
816 \def\bbl@alscripts{,Arabic,Syriac,Thaana,}
817 \def\bbl@rscripts{% TODO. Base on codes ??
    ,Imperial Aramaic,Avestan,Cypriot,Hatran,Hebrew,%
    Old Hungarian,Old Hungarian,Lydian,Mandaean,Manichaean,%
    Manichaean, Meroitic Cursive, Meroitic, Old North Arabian, %
    Nabataean, N'Ko, Orkhon, Palmyrene, Inscriptional Pahlavi, %
822
    Psalter Pahlavi, Phoenician, Inscriptional Parthian, Samaritan, %
823 Old South Arabian,}%
824 \def\bbl@provide@dirs#1{%
    \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts\bbl@rscripts}%
826
       \global\bbl@csarg\chardef{wdir@#1}\@ne
827
```

```
\bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts}%
828
829
         \global\bbl@csarg\chardef{wdir@#1}\tw@ % useless in xetex
830
831
      \fi
832
    \else
833
      \global\bbl@csarg\chardef{wdir@#1}\z@
834
    \fi
835
    \ifodd\bbl@engine
      \bbl@csarg\ifcase{wdir@#1}%
836
837
         \directlua{ Babel.locale_props[\the\localeid].textdir = 'l' }%
838
839
         \directlua{ Babel.locale props[\the\localeid].textdir = 'r' }%
840
         \directlua{ Babel.locale_props[\the\localeid].textdir = 'al' }%
841
842
      \fi
843
    \fi}
844 \def\bbl@switchdir{%
    \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
    \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
    \bbl@exp{\\bbl@setdirs\bbl@cl{wdir}}}
848 \def\bbl@setdirs#1{% TODO - math
    \ifcase\bbl@select@type % TODO - strictly, not the right test
       \bbl@bodydir{#1}%
       \bbl@pardir{#1}%
851
852
   \fi
853 \bbl@textdir{#1}}
854% TODO. Only if \bbl@bidimode > 0?:
855 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}
856 \DisableBabelHook{babel-bidi}
Now the engine-dependent macros. TODO. Must be moved to the engine files?
857 \ifodd\bbl@engine % luatex=1
    \chardef\bbl@thetextdir\z@
    \chardef\bbl@thepardir\z@
    \def\bbl@getluadir#1{%
860
      \directlua{
861
         if tex.#1dir == 'TLT' then
862
           tex.sprint('0')
863
         elseif tex.#1dir == 'TRT' then
865
           tex.sprint('1')
866
         end}}
    \def\bbl@setluadir#1#2#3{% 1=text/par.. 2=\textdir.. 3=0 lr/1 rl
867
868
      \ifcase#3\relax
         \ifcase\bbl@getluadir{#1}\relax\else
869
870
          #2 TLT\relax
         \fi
871
       \else
872
         \ifcase\bbl@getluadir{#1}\relax
873
          #2 TRT\relax
874
         ۱fi
875
      \fi}
876
    \def\bbl@textdir#1{%
878
      \bbl@setluadir{text}\textdir{#1}%
      \chardef\bbl@thetextdir#1\relax
879
      \setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*3+#1}}
880
    \def\bbl@pardir#1{%
881
      \bbl@setluadir{par}\pardir{#1}%
882
883
      \chardef\bbl@thepardir#1\relax}
    \def\bbl@bodydir{\bbl@setluadir{body}\bodydir}
```

```
\def\bbl@pagedir{\bbl@setluadir{page}\pagedir}
885
886
    % Sadly, we have to deal with boxes in math with basic.
887
888
    % Activated every math with the package option bidi=:
889
    \def\bbl@mathboxdir{%
890
       \ifcase\bbl@thetextdir\relax
891
        \everyhbox{\textdir TLT\relax}%
892
       \else
893
         \everyhbox{\textdir TRT\relax}%
894
    \frozen@everymath\expandafter{%
895
       \expandafter\bbl@mathboxdir\the\frozen@everymath}
896
    \frozen@everydisplay\expandafter{%
897
       \expandafter\bbl@mathboxdir\the\frozen@everydisplay}
898
899 \else % pdftex=0, xetex=2
    \newcount\bbl@dirlevel
    \chardef\bbl@thetextdir\z@
    \chardef\bbl@thepardir\z@
903
    \def\bbl@textdir#1{%
      \ifcase#1\relax
904
905
          \chardef\bbl@thetextdir\z@
         \bbl@textdir@i\beginL\endL
906
        \else
907
          \chardef\bbl@thetextdir\@ne
908
          \bbl@textdir@i\beginR\endR
909
      \fi}
910
    \def\bbl@textdir@i#1#2{%
911
      \ifhmode
912
        \ifnum\currentgrouplevel>\z@
913
          \ifnum\currentgrouplevel=\bbl@dirlevel
914
915
             \bbl@error{Multiple bidi settings inside a group}%
916
               {I'll insert a new group, but expect wrong results.}%
             \bgroup\aftergroup#2\aftergroup\egroup
917
918
           \else
             \ifcase\currentgrouptype\or % 0 bottom
919
               \aftergroup#2% 1 simple {}
920
             \or
921
               \bgroup\aftergroup#2\aftergroup\egroup % 2 hbox
922
923
             \or
               \bgroup\aftergroup#2\aftergroup\egroup % 3 adj hbox
924
             \or\or\or % vbox vtop align
925
926
               \bgroup\aftergroup#2\aftergroup\egroup % 7 noalign
927
928
             \or\or\or\or\or\or % output math disc insert vcent mathchoice
929
               \aftergroup#2% 14 \begingroup
930
             \else
931
               \bgroup\aftergroup#2\aftergroup\egroup % 15 adj
932
933
             \fi
          ۱fi
           \bbl@dirlevel\currentgrouplevel
935
        \fi
936
        #1%
937
938
    \def\bbl@pardir#1{\chardef\bbl@thepardir#1\relax}
939
    \let\bbl@bodydir\@gobble
941
    \let\bbl@pagedir\@gobble
    \def\bbl@dirparastext{\chardef\bbl@thepardir\bbl@thetextdir}
```

The following command is executed only if there is a right-to-left script (once). It activates the \everypar hack for xetex, to properly handle the par direction. Note text and par dirs are decoupled to some extent (although not completely).

```
\def\bbl@xebidipar{%
       \let\bbl@xebidipar\relax
944
       \TeXXeTstate\@ne
945
       \def\bbl@xeeverypar{%
946
         \ifcase\bbl@thepardir
947
           \ifcase\bbl@thetextdir\else\beginR\fi
948
949
         \else
950
           {\setbox\z@\lastbox\beginR\box\z@}%
951
         \fi}%
       \let\bbl@severypar\everypar
952
       \newtoks\everypar
953
       \everypar=\bbl@severypar
954
       \bbl@severypar{\bbl@xeeverypar\the\everypar}}
955
     \ifnum\bbl@bidimode>200
       \let\bbl@textdir@i\@gobbletwo
957
       \let\bbl@xebidipar\@empty
958
       \AddBabelHook{bidi}{foreign}{%
959
         \def\bbl@tempa{\def\BabelText###1}%
960
         \ifcase\bbl@thetextdir
961
962
           \expandafter\bbl@tempa\expandafter{\BabelText{\LR{##1}}}%
963
           \expandafter\bbl@tempa\expandafter{\BabelText{\RL{##1}}}%
964
965
       \def\bbl@pardir#1{\ifcase#1\relax\setLR\else\setRL\fi}
966
    \fi
967
968\fi
A tool for weak L (mainly digits). We also disable warnings with hyperref.
969 \DeclareRobustCommand\babelsublr[1]{\leavevmode{\bbl@textdir\z@#1}}
970 \AtBeginDocument{%
    \ifx\pdfstringdefDisableCommands\@undefined\else
972
       \ifx\pdfstringdefDisableCommands\relax\else
         \pdfstringdefDisableCommands{\let\babelsublr\@firstofone}%
973
       \fi
974
    \fi}
975
```

7.10 Local Language Configuration

\loadlocalcfg

At some sites it may be necessary to add site-specific actions to a language definition file. This can be done by creating a file with the same name as the language definition file, but with the extension .cfg. For instance the file norsk.cfg will be loaded when the language definition file norsk.ldf is loaded.

For plain-based formats we don't want to override the definition of \loadlocalcfg from plain.def.

```
976 \bbl@trace{Local Language Configuration}
977 \ifx\loadlocalcfg\@undefined
    \@ifpackagewith{babel}{noconfigs}%
       {\let\loadlocalcfg\@gobble}%
979
       {\def\loadlocalcfg#1{%
980
         \InputIfFileExists{#1.cfg}%
981
           {\typeout{**********************************
982
                          * Local config file #1.cfg used^^J%
983
984
                          *}}%
985
           \@empty}}
986\fi
```

Just to be compatible with LATEX 2.09 we add a few more lines of code. TODO. Necessary? Correct place? Used by some ldf file?

```
987 \ifx\@unexpandable@protect\@undefined
     \def\@unexpandable@protect{\noexpand\protect\noexpand}
     \long\def\protected@write#1#2#3{%
       \begingroup
990
991
         \let\thepage\relax
992
993
         \let\protect\@unexpandable@protect
         \edef\reserved@a{\write#1{#3}}%
994
 995
         \reserved@a
        \endgroup
 996
        \if@nobreak\ifvmode\nobreak\fi\fi}
998\fi
999 %
1000% \subsection{Language options}
1001 %
1002% Languages are loaded when processing the corresponding option
1003% \textit{except} if a |main| language has been set. In such a
1004% case, it is not loaded until all options has been processed.
1005% The following macro inputs the ldf file and does some additional
1006% checks (|\input| works, too, but possible errors are not catched).
1007 %
1008 %
        \begin{macrocode}
1009 \bbl@trace{Language options}
1010 \let\bbl@afterlang\relax
1011 \let\BabelModifiers\relax
1012 \let\bbl@loaded\@empty
1013 \def\bbl@load@language#1{%
     \InputIfFileExists{#1.ldf}%
1014
       {\edef\bbl@loaded{\CurrentOption
1015
          \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%
1016
1017
        \expandafter\let\expandafter\bbl@afterlang
1018
           \csname\CurrentOption.ldf-h@@k\endcsname
        \expandafter\let\expandafter\BabelModifiers
1019
           \csname bbl@mod@\CurrentOption\endcsname}%
1020
       {\bbl@error{%
1021
          Unknown option `\CurrentOption'. Either you misspelled it\\%
1022
          or the language definition file \CurrentOption.ldf was not found}{%
1023
          Valid options are, among others: shorthands=, KeepShorthandsActive,\\%
1024
1025
          activeacute, activegrave, noconfigs, safe=, main=, math=\\%
          headfoot=, strings=, config=, hyphenmap=, or a language name.}}}
1026
 Now, we set a few language options whose names are different from 1df files. These declarations are
 preserved for backwards compatibility, but they must be eventually removed. Use proxy files
 instead.
1027 \def\bbl@try@load@lang#1#2#3{%
1028
     \IfFileExists{\CurrentOption.ldf}%
1029
       {\bbl@load@language{\CurrentOption}}%
1030
        {#1\bbl@load@language{#2}#3}}
1031 \DeclareOption{hebrew}{%
     \input{rlbabel.def}%
     \bbl@load@language{hebrew}}
1034 \DeclareOption{hungarian}{\bbl@try@load@lang{}{magvar}{}}
1036 \DeclareOption{nynorsk}{\bbl@try@load@lang{}{norsk}{}}
1037 \DeclareOption{polutonikogreek}{%
     \bbl@try@load@lang{}{greek}{\languageattribute{greek}{polutoniko}}}
1039 \DeclareOption{russian}{\bbl@try@load@lang{}{russianb}{}}
```

```
1040 \DeclareOption{ukrainian}{\bbl@try@load@lang{}{ukraineb}{}}
1041 \DeclareOption{uppersorbian}{\bbl@try@load@lang{}{usorbian}{}}
```

Another way to extend the list of 'known' options for babel was to create the file bblopts.cfg in which one can add option declarations. However, this mechanism is deprecated – if you want an alternative name for a language, just create a new .ldf file loading the actual one. You can also set the name of the file with the package option config=<name>, which will load <name>.cfg instead.

```
1042 \ifx\bbl@opt@config\@nnil
     \@ifpackagewith{babel}{noconfigs}{}%
1043
       {\InputIfFileExists{bblopts.cfg}%
1044
        {\typeout{*********************************
1045
                 * Local config file bblopts.cfg used^^J%
1046
1047
1048
        {}}%
1049 \else
     \InputIfFileExists{\bbl@opt@config.cfg}%
1050
       1051
               * Local config file \bbl@opt@config.cfg used^^J%
1052
               *}}%
1053
       {\bbl@error{%
1054
         Local config file `\bbl@opt@config.cfg' not found}{%
1055
         Perhaps you misspelled it.}}%
1056
1057\fi
```

Recognizing global options in packages not having a closed set of them is not trivial, as for them to be processed they must be defined explicitly. So, package options not yet taken into account and stored in bbl@language@opts are assumed to be languages (note this list also contains the language given with main). If not declared above, the names of the option and the file are the same.

```
1058 \let\bbl@tempc\relax
1059 \bbl@foreach\bbl@language@opts{%
      \ifcase\bbl@iniflag % Default
1060
        \bbl@ifunset{ds@#1}%
1061
          {\DeclareOption{#1}{\bbl@load@language{#1}}}%
1062
1063
          {}%
      \or
             % provide=*
1064
        \@gobble % case 2 same as 1
1065
      \or
             % provide+=*
1066
        \bbl@ifunset{ds@#1}%
1067
1068
          {\IfFileExists{#1.ldf}{}%
1069
            {\IfFileExists{babel-#1.tex}{}{\@namedef{ds@#1}{}}}}%
1070
        \bbl@ifunset{ds@#1}%
1071
          {\def\bbl@tempc{#1}%
1072
           \DeclareOption{#1}{%
1073
             \ifnum\bbl@iniflag>\@ne
1074
               \bbl@ldfinit
1075
1076
               \babelprovide[import]{#1}%
               \bbl@afterldf{}%
1077
1078
             \else
1079
               \bbl@load@language{#1}%
             \fi}}%
1080
          {}%
1081
1082
      \or
             % provide*=*
        \def\bbl@tempc{#1}%
1083
        \bbl@ifunset{ds@#1}%
1084
          {\DeclareOption{#1}{%
1085
             \bbl@ldfinit
1086
             \babelprovide[import]{#1}%
1087
             \bbl@afterldf{}}}%
1088
```

```
1089 {}%
1090 \fi}
```

Now, we make sure an option is explicitly declared for any language set as global option, by checking if an 1df exists. The previous step was, in fact, somewhat redundant, but that way we minimize accessing the file system just to see if the option could be a language.

```
1091 \let\bbl@tempb\@nnil
1092 \bbl@foreach\@classoptionslist{%
     \bbl@ifunset{ds@#1}%
1093
        {\IfFileExists{#1.ldf}{}%
1094
1095
          {\IfFileExists{babel-#1.tex}{}{\@namedef{ds@#1}{}}}}%
        {}%
1096
      \bbl@ifunset{ds@#1}%
1097
        {\def\bbl@tempb{#1}%
1098
         \DeclareOption{#1}{%
1099
           \ifnum\bbl@iniflag>\@ne
1100
1101
             \bbl@ldfinit
             \babelprovide[import]{#1}%
1102
             \bbl@afterldf{}%
1103
1104
           \else
             \bbl@load@language{#1}%
1105
           \fi}}%
1106
        {}}
1107
```

If a main language has been set, store it for the third pass.

```
1108 \ifnum\bbl@iniflag=\z@\else
     \ifx\bbl@opt@main\@nnil
       \ifx\bbl@tempc\relax
1110
          \let\bbl@opt@main\bbl@tempb
1111
1112
          \let\bbl@opt@main\bbl@tempc
1113
       \fi
1114
    \fi
1115
1116\fi
1117 \ifx\bbl@opt@main\@nnil\else
     \expandafter
     \let\expandafter\bbl@loadmain\csname ds@\bbl@opt@main\endcsname
     \expandafter\let\csname ds@\bbl@opt@main\endcsname\@empty
1120
1121 \fi
```

And we are done, because all options for this pass has been declared. Those already processed in the first pass are just ignored.

The options have to be processed in the order in which the user specified them (except, of course, global options, which LATEX processes before):

```
1122 \def\AfterBabelLanguage#1{%
1123 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}
1124 \DeclareOption*{}
1125 \ProcessOptions*
```

This finished the second pass. Now the third one begins, which loads the main language set with the key main. A warning is raised if the main language is not the same as the last named one, or if the value of the key main is not a language. Then execute directly the option (because it could be used only in main). After loading all languages, we deactivate \AfterBabelLanguage.

```
1126 \bbl@trace{Option 'main'}
1127 \ifx\bbl@opt@main\@nnil
1128 \edef\bbl@tempa{\@classoptionslist,\bbl@language@opts}
1129 \let\bbl@tempc\@empty
1130 \bbl@for\bbl@tempb\bbl@tempa{%
1131 \bbl@xin@{,\bbl@tempb,}{,\bbl@loaded,}%
```

```
\ifin@\edef\bbl@tempc{\bbl@tempb}\fi}
1132
1133
     \def\bbl@tempa#1,#2\@nnil{\def\bbl@tempb{#1}}
     \expandafter\bbl@tempa\bbl@loaded,\@nnil
1134
     \ifx\bbl@tempb\bbl@tempc\else
1135
1136
       \bbl@warning{%
1137
          Last declared language option is `\bbl@tempc',\\%
1138
          but the last processed one was `\bbl@tempb'.\\%
1139
          The main language cannot be set as both a global\\%
          and a package option. Use `main=\bbl@tempc' as\\%
1140
          option. Reported}%
     \fi
1142
1143 \else
     \ifodd\bbl@iniflag % case 1,3
1144
       \bbl@ldfinit
1145
1146
       \let\CurrentOption\bbl@opt@main
1147
       \bbl@exp{\\babelprovide[import,main]{\bbl@opt@main}}
       \bbl@afterldf{}%
1148
1149
     \else % case 0,2
1150
       \chardef\bbl@iniflag\z@ % Force ldf
       \expandafter\let\csname ds@\bbl@opt@main\endcsname\bbl@loadmain
1151
1152
        \ExecuteOptions{\bbl@opt@main}
1153
        \DeclareOption*{}%
       \ProcessOptions*
1155
1156 \fi
1157 \def\AfterBabelLanguage{%
     \bbl@error
        {Too late for \string\AfterBabelLanguage}%
1159
        {Languages have been loaded, so I can do nothing}}
1160
```

In order to catch the case where the user forgot to specify a language we check whether \bbl@main@language, has become defined. If not, no language has been loaded and an error message is displayed.

```
1161 \ifx\bbl@main@language\@undefined
1162 \bbl@info{%
1163    You haven't specified a language. I'll use 'nil'\\%
1164    as the main language. Reported}
1165    \bbl@load@language{nil}
1166 \fi
1167 \/package\
1168 \*core\
```

8 The kernel of Babel (babel.def, common)

The kernel of the babel system is currently stored in babel.def. The file babel.def contains most of the code. The file hyphen.cfg is a file that can be loaded into the format, which is necessary when you want to be able to switch hyphenation patterns.

Because plain TEX users might want to use some of the features of the babel system too, care has to be taken that plain TEX can process the files. For this reason the current format will have to be checked in a number of places. Some of the code below is common to plain TEX and LATEX, some of it is for the LATEX case only.

Plain formats based on etex (etex, xetex, luatex) don't load hyphen.cfg but etex.src, which follows a different naming convention, so we need to define the babel names. It presumes language.def exists and it is the same file used when formats were created.

8.1 Tools

1169 \ifx\ldf@quit\@undefined\else

```
1170 \endinput\fi % Same line!

1171 \langle \langle Make\ sure\ ProvidesFile\ is\ defined \rangle \rangle

1172 \ProvidesFile{babel.def}[\langle \langle date \rangle \rangle \langle \langle version \rangle \rangle Babel common definitions]
```

The file babel . def expects some definitions made in the \LaTeX $2_{\mathcal{E}}$ style file. So, In చ $_{\mathcal{E}}$ X2.09 and Plain we must provide at least some predefined values as well some tools to set them (even if not all options are available). There are no package options, and therefore and alternative mechanism is provided. For the moment, only \babeloptionstrings and \babeloptionmath are provided, which can be defined before loading babel. \BabelModifiers can be set too (but not sure it works).

```
1173 \ifx\AtBeginDocument\@undefined % TODO. change test.
     \langle \langle Emulate LaTeX \rangle \rangle
     \def\languagename{english}%
     \let\bbl@opt@shorthands\@nnil
     \def\bbl@ifshorthand#1#2#3{#2}%
     \let\bbl@language@opts\@empty
     \ifx\babeloptionstrings\@undefined
      \let\bbl@opt@strings\@nnil
1181
       \let\bbl@opt@strings\babeloptionstrings
1183 \fi
    \def\BabelStringsDefault{generic}
1184
    \def\bbl@tempa{normal}
     \ifx\babeloptionmath\bbl@tempa
1186
1187
     \def\bbl@mathnormal{\noexpand\textormath}
     \def\AfterBabelLanguage#1#2{}
     \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi
    \let\bbl@afterlang\relax
    \def\bbl@opt@safe{BR}
    \ifx\@uclclist\@undefined\let\@uclclist\@empty\fi
    \ifx\bbl@trace\@undefined\def\bbl@trace#1{}\fi
     \expandafter\newif\csname ifbbl@single\endcsname
```

Exit immediately with 2.09. An error is raised by the sty file, but also try to minimize the number of errors.

```
1198 \ifx\bbl@trace\@undefined
1199 \let\LdfInit\endinput
1200 \def\ProvidesLanguage#1{\endinput}
1201 \endinput\fi % Same line!
```

\chardef\bbl@bidimode\z@

And continue.

1197\fi

9 Multiple languages

This is not a separate file (switch.def) anymore.

Plain T_EX version 3.0 provides the primitive \language that is used to store the current language. When used with a pre-3.0 version this function has to be implemented by allocating a counter.

```
1202 \langle\langle Define\ core\ switching\ macros
angle\rangle
```

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for which an already defined hyphenation table can be used.

```
\label{eq:condition} $$1203 \ef\bbl@version{$\langle \langle version \rangle \rangle$} $$1204 \ef\bbl@date{$\langle \langle date \rangle \rangle$} $$1205 \ef\addialect#1#2{%} $$1206 \global\chardef#1#2\relax$$$1207 \bbl@usehooks{adddialect}{{#1}{#2}}% $$1208 \begingroup$$$1209 \count@#1\relax$
```

```
\def\bbl@elt##1##2##3##4{%
1210
1211
          \ifnum\count@=##2\relax
            \bbl@info{\string#1 = using hyphenrules for ##1\\%
1212
1213
                      (\string\language\the\count@)}%
1214
            \def\bbl@elt####1###2####3####4{}%
1215
          \fi}%
        \bbl@cs{languages}%
1216
1217
     \endgroup}
```

\bbl@iflanguage executes code only if the language l@ exists. Otherwise raises and error. The argument of \bbl@fixname has to be a macro name, as it may get "fixed" if casing (lc/uc) is wrong. It's intented to fix a long-standing bug when \foreignlanguage and the like appear in a \MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility (perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be trapped). Note l@ is encapsulated, so that its case does not change.

```
1218 \def\bbl@fixname#1{%
1219
                       \begingroup
1220
                                  \def\bbl@tempe{l@}%
                                  \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%
1221
1222
                                          {\lowercase\expandafter{\bbl@tempd}%
1223
                                                        {\uppercase\expandafter{\bbl@tempd}%
1224
1225
1226
                                                                 {\edef\bbl@tempd{\def\noexpand#1{#1}}%
                                                                     \uppercase\expandafter{\bbl@tempd}}}%
1227
                                                        {\edef\bbl@tempd{\def\noexpand#1{#1}}%
1228
                                                             \lowercase\expandafter{\bbl@tempd}}}%
1229
1230
1231
                                  \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%
                         \bbl@tempd
                         \bbl@exp{\\bbl@usehooks{languagename}{{\languagename}{#1}}}
1234 \def\bbl@iflanguage#1{%
                       \end{eq:left} $$ \operatorname{ll}_{\end}(0,0) = \operatorname{ll}_{\end{eq:left}} $$ \operatorname{ll}_{\end{eq:left}} $$ \end{eq:left} $$ \e
```

After a name has been 'fixed', the selectors will try to load the language. If even the fixed name is not defined, will load it on the fly, either based on its name, or if activated, its BCP47 code.

We first need a couple of macros for a simple BCP 47 look up. It also makes sure, with \bbl@bcpcase, casing is the correct one, so that sr-latn-ba becomes fr-Latn-BA. Note #4 may contain some \@empty's, but they are eventually removed. \bbl@bcplookup either returns the found ini or it is \relax.

```
1236 \def\bbl@bcpcase#1#2#3#4\@@#5{%
1237
     \ifx\@empty#3%
        \uppercase{\def#5{#1#2}}%
1238
1239
     \else
1240
        \uppercase{\def#5{#1}}%
        \lowercase{\edef#5{#5#2#3#4}}%
1241
1243 \def\bbl@bcplookup#1-#2-#3-#4\@@{%
     \let\bbl@bcp\relax
     \lowercase{\def\bbl@tempa{#1}}%
1245
1246
     \ifx\@empty#2%
1247
       \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
     \else\ifx\@empty#3%
        \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb
1249
1250
        \IfFileExists{babel-\bbl@tempa-\bbl@tempb.ini}%
          {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb}}%
1251
1252
          {}%
1253
        \ifx\bbl@bcp\relax
1254
          \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
        \fi
1255
```

```
\else
1256
1257
        \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb
        \bbl@bcpcase#3\@empty\@empty\@@\bbl@tempc
1258
1259
        \IfFileExists{babel-\bbl@tempa-\bbl@tempb-\bbl@tempc.ini}%
1260
          {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb-\bbl@tempc}}%
1261
          {}%
        \ifx\bbl@bcp\relax
1262
1263
          \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
1264
            {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%
1265
            {}%
        \fi
1266
1267
       \ifx\bbl@bcp\relax
          \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
1268
            {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%
1269
1270
            {}%
1271
       \fi
       \ifx\bbl@bcp\relax
1272
1273
          \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
1274
       ۱fi
     \fi\fi}
1275
1276 \let\bbl@initoload\relax
1277 \def\bbl@provide@locale{%
     \ifx\babelprovide\@undefined
        \bbl@error{For a language to be defined on the fly 'base'\\%
1279
                   is not enough, and the whole package must be\\%
1280
                   loaded. Either delete the 'base' option or\\%
1281
1282
                   request the languages explicitly}%
                  {See the manual for further details.}%
1283
1284
     \fi
1285% TODO. Option to search if loaded, with \LocaleForEach
     \let\bbl@auxname\languagename % Still necessary. TODO
     \bbl@ifunset{bbl@bcp@map@\languagename}{}% Move uplevel??
1287
1288
        {\edef\languagename{\@nameuse{bbl@bcp@map@\languagename}}}%
1289
     \ifbbl@bcpallowed
1290
       \expandafter\ifx\csname date\languagename\endcsname\relax
          \expandafter
1291
          \bbl@bcplookup\languagename-\@empty-\@empty-\@empty\@@
          \ifx\bbl@bcp\relax\else % Returned by \bbl@bcplookup
1293
            \edef\languagename{\bbl@bcp@prefix\bbl@bcp}%
1294
            \edef\localename{\bbl@bcp@prefix\bbl@bcp}%
1295
            \expandafter\ifx\csname date\languagename\endcsname\relax
1296
1297
              \let\bbl@initoload\bbl@bcp
              \bbl@exp{\\babelprovide[\bbl@autoload@bcpoptions]{\languagename}}%
1298
1299
              \let\bbl@initoload\relax
1300
            \bbl@csarg\xdef{bcp@map@\bbl@bcp}{\localename}%
1301
          \fi
1302
       \fi
1303
1304
     \expandafter\ifx\csname date\languagename\endcsname\relax
1305
        \IfFileExists{babel-\languagename.tex}%
1306
          {\bbl@exp{\\babelprovide[\bbl@autoload@options]{\languagename}}}%
1307
1308
          {}%
     \fi}
1309
```

\iflanguage Users might want to test (in a private package for instance) which language is currently active. For this we provide a test macro, \iflanguage, that has three arguments. It checks whether the first argument is a known language. If so, it compares the first argument with the value of \language.

Then, depending on the result of the comparison, it executes either the second or the third argument.

```
1310 \def\iflanguage#1{%
1311 \bbl@iflanguage{#1}{%
1312 \ifnum\csname l@#1\endcsname=\language
1313 \expandafter\@firstoftwo
1314 \else
1315 \expandafter\@secondoftwo
1316 \fi}
```

9.1 Selecting the language

\selectlanguage

The macro \selectlanguage checks whether the language is already defined before it performs its actual task, which is to update \language and activate language-specific definitions.

```
1317 \let\bbl@select@type\z@
1318 \edef\selectlanguage{%
1319 \noexpand\protect
1320 \expandafter\noexpand\csname selectlanguage \endcsname}
```

Because the command \selectlanguage could be used in a moving argument it expands to \protect\selectlanguage $_{\sqcup}$. Therefore, we have to make sure that a macro \protect exists. If it doesn't it is \let to \relax.

1321 \ifx\@undefined\protect\let\protect\relax\fi

The following definition is preserved for backwards compatibility. It is related to a trick for 2.09.

1322 \let\xstring\string

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc. in the correct language environment.

\bbl@pop@language

But when the language change happens inside a group the end of the group doesn't write anything to the auxiliary files. Therefore we need T_EX 's aftergroup mechanism to help us. The command \aftergroup stores the token immediately following it to be executed when the current group is closed. So we define a temporary control sequence \bbl@pop@language to be executed at the end of the group. It calls \bbl@set@language with the name of the current language as its argument.

\bbl@language@stack

The previous solution works for one level of nesting groups, but as soon as more levels are used it is no longer adequate. For that case we need to keep track of the nested languages using a stack mechanism. This stack is called \bbl@language@stack and initially empty.

```
1323 \def\bbl@language@stack{}
```

When using a stack we need a mechanism to push an element on the stack and to retrieve the information afterwards.

\bbl@push@language
\bbl@pop@language

The stack is simply a list of languagenames, separated with a '+' sign; the push function can be simple:

1324 \def\bbl@push@language{%

```
1325 \ifx\languagename\@undefined\else
```

1326 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%

1327 \fi}

Retrieving information from the stack is a little bit less simple, as we need to remove the element from the stack while storing it in the macro \languagename. For this we first define a helper function.

\bbl@pop@lang

This macro stores its first element (which is delimited by the '+'-sign) in \languagename and stores the rest of the string in \bbl@language@stack.

```
1328 \def\bbl@pop@lang#1+#2\@@{%
1329 \edef\languagename{#1}%
1330 \xdef\bbl@language@stack{#2}}
```

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it is called in the following way. This means that before \bbl@pop@lang is executed TEX first expands the stack, stored in \bbl@language@stack. The result of that is that the argument string of \bbl@pop@lang contains one or more language names, each followed by a '+'-sign (zero language names won't occur as this macro will only be called after something has been pushed on the stack).

```
1331 \let\bbl@ifrestoring\@secondoftwo
1332 \def\bbl@pop@language{%
1333  \expandafter\bbl@pop@lang\bbl@language@stack\@@
1334  \let\bbl@ifrestoring\@firstoftwo
1335  \expandafter\bbl@set@language\expandafter{\languagename}%
1336  \let\bbl@ifrestoring\@secondoftwo}
```

Once the name of the previous language is retrieved from the stack, it is fed to \bbl@set@language to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is introduced in 3.30. This is one of the first steps for a new interface based on the concept of locale, which explains the name of \localeid. This means \l@... will be reserved for hyphenation patterns (so that two locales can share the same rules).

```
1337 \chardef\localeid\z@
1338 \def\bbl@id@last{0}
                            % No real need for a new counter
1339 \def\bbl@id@assign{%
     \bbl@ifunset{bbl@id@@\languagename}%
1340
1341
        {\count@\bbl@id@last\relax
         \advance\count@\@ne
1342
1343
         \bbl@csarg\chardef{id@@\languagename}\count@
         \edef\bbl@id@last{\the\count@}%
1344
1345
         \ifcase\bbl@engine\or
1346
           \directlua{
             Babel = Babel or {}
1347
             Babel.locale_props = Babel.locale_props or {}
1348
             Babel.locale_props[\bbl@id@last] = {}
1349
1350
             Babel.locale_props[\bbl@id@last].name = '\languagename'
1351
            }%
1352
          \fi}%
1353
        \chardef\localeid\bbl@cl{id@}}
1354
 The unprotected part of \selectlanguage.
1355 \expandafter\def\csname selectlanguage \endcsname#1{%
     \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi
1357
     \bbl@push@language
1358
     \aftergroup\bbl@pop@language
1359
     \bbl@set@language{#1}}
```

\bbl@set@language

The macro \bbl@set@language takes care of switching the language environment and of writing entries on the auxiliary files. For historial reasons, language names can be either language of \language. To catch either form a trick is used, but unfortunately as a side effect the catcodes of letters in \languagename are messed up. This is a bug, but preserved for backwards compatibility. The list of auxiliary files can be extended by redefining \BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc, lof, and lot do) or the last language of the document will remain active afterwards.

We also write a command to change the current language in the auxiliary files.

```
1360 \def\BabelContentsFiles{toc,lof,lot}
1361 \def\bbl@set@language#1{% from selectlanguage, pop@
1362  % The old buggy way. Preserved for compatibility.
1363  \edef\languagename{%
1364  \ifnum\escapechar=\expandafter`\string#1\@empty
1365  \else\string#1\@empty\fi}%
```

```
\ifcat\relax\noexpand#1%
1366
1367
       \expandafter\ifx\csname date\languagename\endcsname\relax
         \edef\languagename{#1}%
1368
1369
         \let\localename\languagename
1370
1371
         \bbl@info{Using '\string\language' instead of 'language' is\\%
1372
                    deprecated. If what you want is to use a\\%
1373
                    macro containing the actual locale, make\\%
1374
                    sure it does not not match any language.\\%
1375
                    Reported}%
                      I'11\\%
1376 %
1377 %
                      try to fix '\string\localename', but I cannot promise\\%
                      anything. Reported}%
1378 %
         \ifx\scantokens\@undefined
1379
1380
             \def\localename{??}%
1381
         \else
            \scantokens\expandafter{\expandafter
1382
1383
              \def\expandafter\localename\expandafter{\languagename}}%
1384
         \fi
       \fi
1385
1386
     \else
1387
       \def\localename{#1}% This one has the correct catcodes
1388
     \select@language{\languagename}%
1389
     % write to auxs
1390
     \expandafter\ifx\csname date\languagename\endcsname\relax\else
1391
1392
       \if@filesw
         \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant
1393
1394
           % \bbl@savelastskip
            \protected@write\@auxout{}{\string\babel@aux{\bbl@auxname}{}}%
1395
1396
           % \bbl@restorelastskip
1397
         \bbl@usehooks{write}{}%
1398
1399
       \fi
1400
     \fi}
1401% The following is used above to deal with skips before the write
1402% whatsit. Adapted from hyperref, but it might fail, so for the moment
1403% it's not activated. TODO.
1404 \def\bbl@savelastskip{%
     \let\bbl@restorelastskip\relax
     \ifvmode
1406
1407
       \ifdim\lastskip=\z@
         \let\bbl@restorelastskip\nobreak
1409
       \else
1410
         \bbl@exp{%
            \def\\\bbl@restorelastskip{%
1411
              \skip@=\the\lastskip
1412
              \\nobreak \vskip-\skip@ \vskip\skip@}}%
1413
       \fi
1414
     \fi}
1416 \newif\ifbbl@bcpallowed
1417 \bbl@bcpallowedfalse
1418 \def\select@language#1{% from set@, babel@aux
1419 % set hymap
1420 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
1421 % set name
1422 \edef\languagename{#1}%
1423 \bbl@fixname\languagename
1424 % TODO. name@map must be here?
```

```
\bbl@provide@locale
1425
1426
     \bbl@iflanguage\languagename{%
        \expandafter\ifx\csname date\languagename\endcsname\relax
1427
1428
         \bbl@error
            {Unknown language `\languagename'. Either you have\\%
1429
1430
            misspelled its name, it has not been installed,\\%
1431
            or you requested it in a previous run. Fix its name,\\%
1432
            install it or just rerun the file, respectively. In\\%
1433
            some cases, you may need to remove the aux file}%
1434
            {You may proceed, but expect wrong results}%
        \else
1435
1436
         % set type
         \let\bbl@select@type\z@
1437
         \expandafter\bbl@switch\expandafter{\languagename}%
1438
1439
        \fi}}
1440 \def\babel@aux#1#2{% TODO. See how to avoid undefined nil's
     \select@language{#1}%
1442
     \bbl@foreach\BabelContentsFiles{%
1443
        \@writefile{##1}{\babel@toc{#1}{#2}}}% %% TODO - ok in plain?
1444 \def\babel@toc#1#2{%
    \select@language{#1}}
```

First, check if the user asks for a known language. If so, update the value of \language and call \originalTeX to bring TeX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.

Then we have to re define \originalTeX to compensate for the things that have been activated. To save memory space for the macro definition of \originalTeX, we construct the control sequence name for the \noextras $\langle lang \rangle$ command at definition time by expanding the \csname primitive. Now activate the language-specific definitions. This is done by constructing the names of three macros by concatenating three words with the argument of \selectlanguage, and calling these macros.

The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat different. First we save their current values, then we check if $\langle lang \rangle$ hyphenmins is defined. If it is not, we set default values (2 and 3), otherwise the values in $\langle lang \rangle$ hyphenmins will be used.

```
1446 \newif\ifbbl@usedategroup
1447 \def\bbl@switch#1{% from select@, foreign@
    % make sure there is info for the language if so requested
1449
    \bbl@ensureinfo{#1}%
    % restore
1450
1451
     \originalTeX
1452
     \expandafter\def\expandafter\originalTeX\expandafter{%
       \csname noextras#1\endcsname
1453
       \let\originalTeX\@empty
1454
1455
       \babel@beginsave}%
     \bbl@usehooks{afterreset}{}%
1456
     \languageshorthands{none}%
1458
     % set the locale id
1459
     \bbl@id@assign
1460 % switch captions, date
1461 % No text is supposed to be added here, so we remove any
    % spurious spaces.
     \bbl@bsphack
       \ifcase\bbl@select@type
1464
1465
         \csname captions#1\endcsname\relax
         \csname date#1\endcsname\relax
1466
       \else
1467
1468
         \bbl@xin@{,captions,}{,\bbl@select@opts,}%
1469
         \ifin@
            \csname captions#1\endcsname\relax
```

```
1471
         \fi
1472
         \bbl@xin@{,date,}{,\bbl@select@opts,}%
         \ifin@ % if \foreign... within \<lang>date
1473
1474
            \csname date#1\endcsname\relax
1475
         \fi
1476
       \fi
1477
     \bbl@esphack
1478
     % switch extras
     \bbl@usehooks{beforeextras}{}%
1479
     \csname extras#1\endcsname\relax
     \bbl@usehooks{afterextras}{}%
1482
     % > babel-ensure
1483 % > babel-sh-<short>
1484 % > babel-bidi
1485
    % > babel-fontspec
     % hyphenation - case mapping
     \ifcase\bbl@opt@hyphenmap\or
1487
1488
        \def\BabelLower##1##2{\lccode##1=##2\relax}%
1489
       \ifnum\bbl@hvmapsel>4\else
         \csname\languagename @bbl@hyphenmap\endcsname
1490
1491
       \fi
       \chardef\bbl@opt@hyphenmap\z@
1492
1493
       \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else
1494
         \csname\languagename @bbl@hyphenmap\endcsname
1495
1496
     \fi
1497
     \let\bbl@hymapsel\@cclv
1498
     % hyphenation - select patterns
1499
     \bbl@patterns{#1}%
     % hyphenation - allow stretching with babelnohyphens
1501
1502
     \ifnum\language=\l@babelnohyphens
        \babel@savevariable\emergencystretch
1503
        \emergencystretch\maxdimen
1504
        \babel@savevariable\hbadness
1505
       \hbadness\@M
1506
     \fi
1507
1508
     % hyphenation - mins
     \babel@savevariable\lefthyphenmin
1509
     \babel@savevariable\righthyphenmin
1510
     \expandafter\ifx\csname #1hyphenmins\endcsname\relax
1511
1512
       \set@hyphenmins\tw@\thr@@\relax
     \else
1513
        \expandafter\expandafter\expandafter\set@hyphenmins
1514
1515
         \csname #1hyphenmins\endcsname\relax
1516
     \fi}
```

otherlanguage

The otherlanguage environment can be used as an alternative to using the \selectlanguage declarative command. When you are typesetting a document which mixes left-to-right and right-to-left typesetting you have to use this environment in order to let things work as you expect them to.

The \ignorespaces command is necessary to hide the environment when it is entered in horizontal mode.

```
1517 \long\def\otherlanguage#1{%
1518 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi
1519 \csname selectlanguage \endcsname{#1}%
1520 \ignorespaces}
```

The \endotherlanguage part of the environment tries to hide itself when it is called in horizontal

mode.

```
1521 \long\def\endotherlanguage{%
1522 \global\@ignoretrue\ignorespaces}
```

otherlanguage*

The otherlanguage environment is meant to be used when a large part of text from a different language needs to be typeset, but without changing the translation of words such as 'figure'. This environment makes use of \foreign@language.

```
1523 \expandafter\def\csname otherlanguage*\endcsname{%
1524 \@ifnextchar[\bbl@otherlanguage@s{\bbl@otherlanguage@s[]}}
1525 \def\bbl@otherlanguage@s[#1]#2{%
1526 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
1527 \def\bbl@select@opts{#1}%
1528 \foreign@language{#2}}
```

At the end of the environment we need to switch off the extra definitions. The grouping mechanism of the environment will take care of resetting the correct hyphenation rules and "extras".

1529 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage

The \foreignlanguage command is another substitute for the \selectlanguage command. This command takes two arguments, the first argument is the name of the language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn't switch *everything*, it only switches the hyphenation rules and the extra definitions for the language specified. It does this within a group and assumes the \extras $\langle lang \rangle$ command doesn't make any \global changes. The coding is very similar to part of \selectlanguage.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a 'text' command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent is placed on the opposite margin. For backward compatibility, however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different script direction, while preserving the paragraph format (thank the braces around \par, things like \hangindent are not reset). Do not use it in production, because its semantics and its syntax may change (and very likely will, or even it could be removed altogether). Currently it enters in vmode and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine \BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the surrounding lang, and with \foreignlanguage* with the new lang.

```
1530 \providecommand\bbl@beforeforeign{}
1531 \edef\foreignlanguage{%
     \noexpand\protect
     \expandafter\noexpand\csname foreignlanguage \endcsname}
1534\expandafter\def\csname foreignlanguage \endcsname{%
     \@ifstar\bbl@foreign@s\bbl@foreign@x}
1536 \providecommand\bbl@foreign@x[3][]{%
     \begingroup
1537
       \def\bbl@select@opts{#1}%
1538
       \let\BabelText\@firstofone
1539
       \bbl@beforeforeign
1540
        \foreign@language{#2}%
1541
1542
        \bbl@usehooks{foreign}{}%
        \BabelText{#3}% Now in horizontal mode!
1543
1544
     \endgroup}
1545 \def\bbl@foreign@s#1#2{% TODO - \shapemode, \@setpar, ?\@@par
     \begingroup
1546
1547
       {\par}%
       \let\bbl@select@opts\@empty
1548
```

```
1549 \let\BabelText\@firstofone
1550 \foreign@language{#1}%
1551 \lbbl@usehooks{foreign*}{}%
1552 \lbbl@dirparastext
1553 \BabelText{#2}% Still in vertical mode!
1554 {\par}%
1555 \endgroup}
```

\foreign@language

This macro does the work for \foreignlanguage and the otherlanguage* environment. First we need to store the name of the language and check that it is a known language. Then it just calls bbl@switch.

```
1556 \def\foreign@language#1{%
     % set name
1557
     \edef\languagename{#1}%
1558
     \ifbbl@usedategroup
1559
1560
        \bbl@add\bbl@select@opts{,date,}%
       \bbl@usedategroupfalse
1561
1562
     \bbl@fixname\languagename
1563
     % TODO. name@map here?
1564
     \bbl@provide@locale
     \bbl@iflanguage\languagename{%
        \expandafter\ifx\csname date\languagename\endcsname\relax
1567
         \bbl@warning % TODO - why a warning, not an error?
1568
            {Unknown language `#1'. Either you have\\%
1569
            misspelled its name, it has not been installed,\\%
1570
            or you requested it in a previous run. Fix its name,\\%
1571
            install it or just rerun the file, respectively. In\\%
1572
1573
             some cases, you may need to remove the aux file.\\%
            I'll proceed, but expect wrong results.\\%
1574
             Reported}%
1575
       \fi
1576
       % set type
1577
1578
       \let\bbl@select@type\@ne
        \expandafter\bbl@switch\expandafter{\languagename}}}
1579
```

\bbl@patterns

This macro selects the hyphenation patterns by changing the \language register. If special hyphenation patterns are available specifically for the current font encoding, use them instead of the default.

It also sets hyphenation exceptions, but only once, because they are global (here language \lccode's has been set, too). \bbl@hyphenation@ is set to relax until the very first \babelhyphenation, so do nothing with this value. If the exceptions for a language (by its number, not its name, so that :ENC is taken into account) has been set, then use \hyphenation with both global and language exceptions and empty the latter to mark they must not be set again.

```
1580 \let\bbl@hyphlist\@empty
1581 \let\bbl@hyphenation@\relax
1582 \let\bbl@pttnlist\@empty
1583 \let\bbl@patterns@\relax
1584 \let\bbl@hymapsel=\@cclv
1585 \def\bbl@patterns#1{%
     \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax
1586
          \csname l@#1\endcsname
1587
1588
          \edef\bbl@tempa{#1}%
1589
        \else
          \csname l@#1:\f@encoding\endcsname
1590
          \edef\bbl@tempa{#1:\f@encoding}%
1591
1592
     \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%
1593
```

```
% > luatex
1594
1595
     \@ifundefined{bbl@hyphenation@}{}{% Can be \relax!
1596
1597
          \bbl@xin@{,\number\language,}{,\bbl@hyphlist}%
1598
          \ifin@\else
1599
            \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
1600
            \hyphenation{%
1601
              \bbl@hyphenation@
1602
              \@ifundefined{bbl@hyphenation@#1}%
1603
                {\space\csname bbl@hyphenation@#1\endcsname}}%
1604
1605
            \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%
          \fi
1606
        \endgroup}}
1607
```

hyphenrules

The environment hyphenrules can be used to select *just* the hyphenation rules. This environment does *not* change \languagename and when the hyphenation rules specified were not loaded it has no effect. Note however, \lccode's and font encodings are not set at all, so in most cases you should use otherlanguage*.

```
1608 \def\hyphenrules#1{%
     \edef\bbl@tempf{#1}%
1609
     \bbl@fixname\bbl@tempf
      \bbl@iflanguage\bbl@tempf{%
1611
1612
        \expandafter\bbl@patterns\expandafter{\bbl@tempf}%
        \ifx\languageshorthands\@undefined\else
1613
          \languageshorthands{none}%
1614
        ۱fi
1615
        \expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax
1616
1617
          \set@hyphenmins\tw@\thr@@\relax
1618
          \expandafter\expandafter\expandafter\set@hyphenmins
1619
          \csname\bbl@tempf hyphenmins\endcsname\relax
1620
        \fi}}
1621
1622 \let\endhyphenrules\@empty
```

\providehyphenmins

The macro \providehyphenmins should be used in the language definition files to provide a *default* setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin. If the macro \\lang\hyphenmins is already defined this command has no effect.

```
1623 \def\providehyphenmins#1#2{%
1624 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
1625 \@namedef{#1hyphenmins}{#2}%
1626 \fi}
```

\set@hyphenmins

This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two values as its argument.

```
1627 \def\set@hyphenmins#1#2{%
1628 \lefthyphenmin#1\relax
1629 \righthyphenmin#2\relax}
```

\ProvidesLanguage

The identification code for each file is something that was introduced in \LaTeX $X \in \mathbb{R}$. When the command \P voides File does not exist, a dummy definition is provided temporarily. For use in the language definition file the command \P voides Language is defined by babel.

Depending on the format, ie, on if the former is defined, we use a similar definition or not.

```
1630 \ifx\ProvidesFile\@undefined
1631 \def\ProvidesLanguage#1[#2 #3 #4]{%
1632 \wlog{Language: #1 #4 #3 <#2>}%
1633 }
1634 \else
```

```
\def\ProvidesLanguage#1{%
1635
1636
        \begingroup
          \catcode`\ 10 %
1637
1638
          \@makeother\/%
1639
          \@ifnextchar[%]
1640
            {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
1641
     \def\@provideslanguage#1[#2]{%
1642
        \wlog{Language: #1 #2}%
1643
        \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%
1644
        \endgroup}
1645 \fi
```

\originalTeX The macro\originalTeX should be known to TeX at this moment. As it has to be expandable we \let it to \@empty instead of \relax.

1646 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro which initializes the save mechanism, \babel@beginsave, is not considered to be undefined.

1647 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of 'locale':

```
1648 \providecommand\setlocale{%
1649 \bbl@error
1650 {Not yet available}%
1651 {Find an armchair, sit down and wait}}
1652 \let\uselocale\setlocale
1653 \let\locale\setlocale
1654 \let\selectlocale\setlocale
1655 \let\localename\setlocale
1656 \let\textlocale\setlocale
1657 \let\textlanguage\setlocale
1658 \let\languagetext\setlocale
```

9.2 Errors

\@nolanerr \@nopatterns The babel package will signal an error when a documents tries to select a language that hasn't been defined earlier. When a user selects a language for which no hyphenation patterns were loaded into the format he will be given a warning about that fact. We revert to the patterns for \language=0 in that case. In most formats that will be (US)english, but it might also be empty.

\@noopterr

When the package was loaded without options not everything will work as expected. An error message is issued in that case.

When the format knows about \PackageError it must be $\text{ETEX }2_{\mathcal{E}}$, so we can safely use its error handling interface. Otherwise we'll have to 'keep it simple'.

Infos are not written to the console, but on the other hand many people think warnings are errors, so a further message type is defined: an important info which is sent to the console.

```
1659 \edef\bbl@nulllanguage{\string\language=0}
1660 \ifx\PackageError\@undefined % TODO. Move to Plain
     \def\bbl@error#1#2{%
1661
        \begingroup
1662
          \newlinechar=`\^^J
1663
          \def\\{^^J(babel) }%
1664
          \errhelp{#2}\errmessage{\\#1}%
1665
        \endgroup}
1666
     \def\bbl@warning#1{%
1667
        \begingroup
1668
          \newlinechar=`\^^J
1669
          \def\\{^^J(babel) }%
1670
```

```
\message{\\#1}%
1671
1672
       \endgroup}
     \let\bbl@infowarn\bbl@warning
1673
1674
     \def\bbl@info#1{%
1675
       \begingroup
1676
          \newlinechar=`\^^J
1677
          \def\\{^^J}%
1678
          \wlog{#1}%
1679
        \endgroup}
1680 \fi
1681 \def\bbl@nocaption{\protect\bbl@nocaption@i}
1682 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname
     \global\@namedef{#2}{\textbf{?#1?}}%
     \@nameuse{#2}%
1684
1685
     \edef\bbl@tempa{#1}%
     \bbl@sreplace\bbl@tempa{name}{}%
     \bbl@warning{% TODO.
1687
1688
       \@backslashchar#1 not set for '\languagename'. Please,\\%
1689
       define it after the language has been loaded\\%
1690
        (typically in the preamble) with:\\%
1691
        \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\\%
1692
       Reported}}
1693 \def\bbl@tentative{\protect\bbl@tentative@i}
1694 \def\bbl@tentative@i#1{%
     \bbl@warning{%
1695
       Some functions for '#1' are tentative.\\%
1696
       They might not work as expected and their behavior\\%
1697
       could change in the future.\\%
1698
1699
       Reported}}
1700 \def\@nolanerr#1{%
     \bbl@error
        {You haven't defined the language #1\space yet.\\%
1702
        Perhaps you misspelled it or your installation\\%
1703
        is not complete}%
1704
        {Your command will be ignored, type <return> to proceed}}
1705
1706 \def\@nopatterns#1{%
     \bbl@warning
        {No hyphenation patterns were preloaded for\\%
1708
        the language `#1' into the format.\\%
1709
        Please, configure your TeX system to add them and \\%
1710
        rebuild the format. Now I will use the patterns\\%
1711
        preloaded for \bbl@nulllanguage\space instead}}
1713 \let\bbl@usehooks\@gobbletwo
1714 \ifx\bbl@onlyswitch\@empty\endinput\fi
1715 % Here ended switch.def
 Here ended switch.def.
1716 \ifx\directlua\@undefined\else
     \ifx\bbl@luapatterns\@undefined
1717
        \input luababel.def
1718
     \fi
1719
1720\fi
1721 (⟨Basic macros⟩⟩
1722 \bbl@trace{Compatibility with language.def}
1723 \ifx\bbl@languages\@undefined
     \ifx\directlua\@undefined
1724
       \openin1 = language.def % TODO. Remove hardcoded number
1725
1726
       \ifeof1
          \closein1
1727
```

```
\message{I couldn't find the file language.def}
1728
1729
        \else
          \closein1
1730
1731
          \begingroup
1732
            \def\addlanguage#1#2#3#4#5{%
1733
              \expandafter\ifx\csname lang@#1\endcsname\relax\else
1734
                 \global\expandafter\let\csname l@#1\expandafter\endcsname
1735
                   \csname lang@#1\endcsname
1736
              \fi}%
1737
            \def\uselanguage#1{}%
            \input language.def
1739
          \endgroup
1740
        ١fi
     \fi
1741
1742
     \chardef\l@english\z@
1743 \fi
```

\addto It takes two arguments, a \(\)control sequence \(\) and TEX-code to be added to the \(\)control sequence \(\). If the \(\)control sequence \(\) has not been defined before it is defined now. The control sequence could also expand to \relax, in which case a circular definition results. The net result is a stack overflow. Note there is an inconsistency, because the assignment in the last branch is global.

```
1744 \def\addto#1#2{%
     \ifx#1\@undefined
1745
1746
        \def#1{#2}%
     \else
1747
        \ifx#1\relax
1748
          \def#1{#2}%
1749
1750
        \else
1751
          {\toks@\expandafter{#1#2}%
1752
           \xdef#1{\the\toks@}}%
        \fi
1753
     \fi}
1754
```

The macro \initiate@active@char below takes all the necessary actions to make its argument a shorthand character. The real work is performed once for each character. But first we define a little tool. TODO. Always used with additional expansions. Move them here? Move the macro to basic?

```
1755 \def\bbl@withactive#1#2{%
1756 \begingroup
1757 \lccode`~=`#2\relax
1758 \lowercase{\endgroup#1~}}
```

\bbl@redefine

To redefine a command, we save the old meaning of the macro. Then we redefine it to call the original macro with the 'sanitized' argument. The reason why we do it this way is that we don't want to redefine the FTEX macros completely in case their definitions change (they have changed in the past). A macro named \macro will be saved new control sequences named \org@macro.

```
1759 \def\bbl@redefine#1{%
1760 \edef\bbl@tempa{\bbl@stripslash#1}%
1761 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
1762 \expandafter\def\csname\bbl@tempa\endcsname}
1763 \@onlypreamble\bbl@redefine
```

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as \ifthenelse.

```
1764 \def\bbl@redefine@long#1{%
1765 \edef\bbl@tempa{\bbl@stripslash#1}%
1766 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
1767 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}
1768 \@onlypreamble\bbl@redefine@long
```

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly more intelligent macro. A robust command foo is defined to expand to \protect\foo_\to. So it is necessary to check whether \foo⊔ exists. The result is that the command that is being redefined is always robust afterwards. Therefore all we need to do now is define \foo_|.

```
1769 \def\bbl@redefinerobust#1{%
     \edef\bbl@tempa{\bbl@stripslash#1}%
     \bbl@ifunset{\bbl@tempa\space}%
1771
       {\expandafter\let\csname org@\bbl@tempa\endcsname#1%
1772
         \bbl@exp{\def\\#1{\\\protect\<\bbl@tempa\space>}}}%
1773
1774
        {\bbl@exp{\let\<org@\bbl@tempa>\<\bbl@tempa\space>}}%
        \@namedef{\bbl@tempa\space}}
1776 \@onlypreamble\bbl@redefinerobust
```

9.3 Hooks

Admittedly, the current implementation is a somewhat simplistic and does very little to catch errors, but it is meant for developers, after all. \bbl@usehooks is the commands used by babel to execute hooks defined for an event.

```
1777 \bbl@trace{Hooks}
1778 \newcommand\AddBabelHook[3][]{%
     \bbl@ifunset{bbl@hk@#2}{\EnableBabelHook{#2}}{}%
     \def\bbl@tempa##1,#3=##2,##3\@empty{\def\bbl@tempb{##2}}%
1780
1781
     \expandafter\bbl@tempa\bbl@evargs,#3=,\@empty
     \bbl@ifunset{bbl@ev@#2@#3@#1}%
        {\bbl@csarg\bbl@add{ev@#3@#1}{\bbl@elth{#2}}}%
1783
1784
        {\bbl@csarg\let{ev@#2@#3@#1}\relax}%
     \bbl@csarg\newcommand{ev@#2@#3@#1}[\bbl@tempb]}
1785
1786 \newcommand\EnableBabelHook[1]{\bbl@csarg\let{hk@#1}\@firstofone}
\label{local} 1787 \end{DisableBabelHook[1]_{\bbl@csarg\elet{hk@#1}\egobble}} \\
1788 \def\bbl@usehooks#1#2{%
     \def\bbl@elth##1{%
        \bbl@cs{hk@##1}{\bbl@cs{ev@##1@#1@}#2}}%
1790
     \bbl@cs{ev@#1@}%
1791
     \ifx\languagename\@undefined\else % Test required for Plain (?)
1792
        \def\bbl@elth##1{%
1793
          \bbl@cs{hk@##1}{\bbl@cl{ev@##1@#1}#2}}%
1794
        \bbl@cl{ev@#1}%
1795
     \fi}
1796
```

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further argument is added in the future, there is no need to change the existing code. Note events intended for hyphen.cfg are also loaded (just in case you need them for some reason).

```
1797 \def\bbl@evargs{,% <- don't delete this comma
     everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%
     adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%
1799
     beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%
1800
1801
     hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0,%
     beforestart=0,languagename=2}
```

\babelensure The user command just parses the optional argument and creates a new macro named \bbl@e@(language). We register a hook at the afterextras event which just executes this macro in a "complete" selection (which, if undefined, is \relax and does nothing). This part is somewhat involved because we have to make sure things are expanded the correct number of times. The macro $\blue{\contains \blue{\contains \blue{\contains \contains \conta$ turn loops over the macros names in \bbl@captionslist, excluding (with the help of \in@) those in the exclude list. If the fontenc is given (and not \relax), the \fontencoding is also added. Then we loop over the include list, but if the macro already contains \foreignlanguage, nothing is done. Note this macro (1) is not restricted to the preamble, and (2) changes are local.

```
1803 \bbl@trace{Defining babelensure}
1804 \newcommand\babelensure[2][]{% TODO - revise test files
           \AddBabelHook{babel-ensure}{afterextras}{%
1806
                \ifcase\bbl@select@type
1807
                    \bbl@cl{e}%
1808
               \fi}%
1809
           \begingroup
1810
               \let\bbl@ens@include\@empty
1811
                \let\bbl@ens@exclude\@empty
1812
                \def\bbl@ens@fontenc{\relax}%
                \def\bbl@tempb##1{%
1813
1814
                    \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%
1815
                \edef\bbl@tempa{\bbl@tempb#1\@empty}%
                1816
1817
                \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%
1818
                \def\bbl@tempc{\bbl@ensure}%
                \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
1819
1820
                    \expandafter{\bbl@ens@include}}%
1821
                \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
1822
                    \expandafter{\bbl@ens@exclude}}%
1823
                \toks@\expandafter{\bbl@tempc}%
1824
               \bbl@exp{%
           \endgroup
1825
           \def\<bbl@e@#2>{\the\toks@{\bbl@ens@fontenc}}}}
1827 \def\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc
           \def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list
1828
                \ifx##1\@undefined % 3.32 - Don't assume the macro exists
1829
                    \edef##1{\noexpand\bbl@nocaption
1830
1831
                        {\bbl@stripslash##1}{\languagename\bbl@stripslash##1}}%
               \fi
1832
1833
               \ifx##1\@empty\else
1834
                    \in@{##1}{#2}%
                    \ifin@\else
1835
1836
                        \bbl@ifunset{bbl@ensure@\languagename}%
1837
                            {\bbl@exp{%
                                \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%
                                     \\\foreignlanguage{\languagename}%
1839
                                     {\ifx\relax#3\else
1840
                                         \\\fontencoding{#3}\\\selectfont
1841
                                       \fi
1842
                                       #######1}}}%
1843
                            {}%
1844
                        \toks@\expandafter{##1}%
1845
                        \edef##1{%
1846
1847
                              \bbl@csarg\noexpand{ensure@\languagename}%
                              {\the\toks@}}%
1848
                    \fi
1849
                    \expandafter\bbl@tempb
1850
1851
           \expandafter\bbl@tempb\bbl@captionslist\today\@empty
           \def\bbl@tempa##1{% elt for include list
1853
               \fint $$ \int x\#1\ensuremath{\mathemath{0}} \exp \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \ensuremath{\mathemath{0}} \en
1854
                    \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%
1855
                    \ifin@\else
1856
                        \bbl@tempb##1\@empty
1857
1858
1859
                    \expandafter\bbl@tempa
1860
               \fi}%
           \bbl@tempa#1\@empty}
1861
```

```
1862 \def\bbl@captionslist{%
1863 \prefacename\refname\abstractname\bibname\chaptername\appendixname
1864 \contentsname\listfigurename\listtablename\indexname\figurename
1865 \tablename\partname\enclname\ccname\headtoname\pagename\seename
1866 \alsoname\proofname\glossaryname}
```

9.4 Setting up language files

\LdfInit

\LdfInit macro takes two arguments. The first argument is the name of the language that will be defined in the language definition file; the second argument is either a control sequence or a string from which a control sequence should be constructed. The existence of the control sequence indicates that the file has been processed before.

At the start of processing a language definition file we always check the category code of the at-sign. We make sure that it is a 'letter' during the processing of the file. We also save its name as the last called option, even if not loaded.

Another character that needs to have the correct category code during processing of language definition files is the equals sign, '=', because it is sometimes used in constructions with the \let primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we first need to check whether the second argument that is passed to \LdfInit is a control sequence. We do that by looking at the first token after passing #2 through string. When it is equal to \@backslashchar we are dealing with a control sequence which we can compare with \@undefined.

If so, we call \ldf@quit to set the main language, restore the category code of the @-sign and call \endinput

When #2 was *not* a control sequence we construct one and compare it with \relax. Finally we check \originalTeX.

```
1867 \bbl@trace{Macros for setting language files up}
1868 \def\bbl@ldfinit{%
     \let\bbl@screset\@empty
     \let\BabelStrings\bbl@opt@string
1870
     \let\BabelOptions\@empty
1871
1872
     \let\BabelLanguages\relax
     \ifx\originalTeX\@undefined
1873
1874
        \let\originalTeX\@empty
1875
     \else
1876
       \originalTeX
1877
     \fi}
1878 \def\LdfInit#1#2{%
     \chardef\atcatcode=\catcode`\@
1879
1880
     \catcode`\@=11\relax
     \chardef\eqcatcode=\catcode`\=
     \catcode`\==12\relax
1882
     \expandafter\if\expandafter\@backslashchar
1883
                      \expandafter\@car\string#2\@nil
1884
        \ifx#2\@undefined\else
1885
          \ldf@quit{#1}%
1886
        ۱fi
1887
     \else
1888
        \expandafter\ifx\csname#2\endcsname\relax\else
1889
          \ldf@quit{#1}%
1890
        \fi
1891
     \fi
1892
1893
     \bbl@ldfinit}
```

\ldf@quit This macro interrupts the processing of a language definition file.

```
1894 \def\ldf@quit#1{%
1895 \expandafter\main@language\expandafter{#1}%
1896 \catcode`\@=\atcatcode \let\atcatcode\relax
```

```
\catcode`\==\eqcatcode \let\eqcatcode\relax
1898
     \endinput}
```

\ldf@finish

This macro takes one argument. It is the name of the language that was defined in the language definition file.

We load the local configuration file if one is present, we set the main language (taking into account that the argument might be a control sequence that needs to be expanded) and reset the category code of the @-sign.

```
1899 \def\bbl@afterldf#1{% TODO. Merge into the next macro? Unused elsewhere
     \bbl@afterlang
     \let\bbl@afterlang\relax
     \let\BabelModifiers\relax
1902
     \let\bbl@screset\relax}%
1904 \def\ldf@finish#1{%
    \ifx\loadlocalcfg\@undefined\else % For LaTeX 209
1906
       \loadlocalcfg{#1}%
1907
     \bbl@afterldf{#1}%
1908
     \expandafter\main@language\expandafter{#1}%
1909
     \catcode`\@=\atcatcode \let\atcatcode\relax
1910
     \catcode`\==\eqcatcode \let\eqcatcode\relax}
```

After the preamble of the document the commands \LdfInit, \ldf@guit and \ldf@finish are no longer needed. Therefore they are turned into warning messages in LATEX.

```
1912 \@onlypreamble\LdfInit
1913 \@onlypreamble\ldf@quit
1914 \@onlypreamble \ldf@finish
```

\bbl@main@language

\main@language This command should be used in the various language definition files. It stores its argument in \bbl@main@language; to be used to switch to the correct language at the beginning of the document.

```
1915 \def\main@language#1{%
     \def\bbl@main@language{#1}%
1916
     \let\languagename\bbl@main@language % TODO. Set localename
1917
     \bbl@id@assign
1918
1919
     \bbl@patterns{\languagename}}
```

We also have to make sure that some code gets executed at the beginning of the document, either when the aux file is read or, if it does not exist, when the \AtBeginDocument is executed. Languages do not set \pagedir, so we set here for the whole document to the main \bodydir.

```
1920 \def\bbl@beforestart{%
     \bbl@usehooks{beforestart}{}%
     \global\let\bbl@beforestart\relax}
1923 \AtBeginDocument{%
     \@nameuse{bbl@beforestart}%
1925
     \if@filesw
       \providecommand\babel@aux[2]{}%
1926
       \immediate\write\@mainaux{%
1927
         \string\providecommand\string\babel@aux[2]{}}%
1928
       \immediate\write\@mainaux{\string\@nameuse{bbl@beforestart}}%
1929
1930
     \expandafter\selectlanguage\expandafter{\bbl@main@language}%
1931
     \ifbbl@single % must go after the line above.
1932
       \renewcommand\selectlanguage[1]{}%
1933
       \renewcommand\foreignlanguage[2]{#2}%
1934
       \global\let\babel@aux\@gobbletwo % Also as flag
1935
1936
     \ifcase\bbl@engine\or\pagedir\bodydir\fi} % TODO - a better place
```

A bit of optimization. Select in heads/foots the language only if necessary.

```
1938 \def\select@language@x#1{%
     \ifcase\bbl@select@type
1940
        \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%
1941
        \select@language{#1}%
1942
     \fi}
1943
```

9.5 Shorthands

\bbl@add@special

The macro \bbl@add@special is used to add a new character (or single character control sequence) to the macro \dospecials (and \@sanitize if L*T_FX is used). It is used only at one place, namely when \initiate@active@char is called (which is ignored if the char has been made active before). Because \@sanitize can be undefined, we put the definition inside a conditional.

Items are added to the lists without checking its existence or the original catcode. It does not hurt, but should be fixed. It's already done with \nfs@catcodes, added in 3.10.

```
1944 \bbl@trace{Shorhands}
1945 \def\bbl@add@special#1{% 1:a macro like \", \?, etc.
     \bbl@add\dospecials{\do#1}% test @sanitize = \relax, for back. compat.
1947
     \bbl@ifunset{@sanitize}{}{\bbl@add\@sanitize{\@makeother#1}}%
     \ifx\nfss@catcodes\@undefined\else % TODO - same for above
1948
        \begingroup
1949
          \catcode`#1\active
1950
          \nfss@catcodes
1951
          \ifnum\catcode`#1=\active
1952
1953
            \endgroup
1954
            \bbl@add\nfss@catcodes{\@makeother#1}%
          \else
1955
1956
            \endgroup
1957
          \fi
     \fi}
1958
```

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It removes a character from the set macros \dospecials and \@sanitize, but it is not used at all in the babel core.

```
1959 \def\bbl@remove@special#1{%
     \begingroup
1960
        \def\x##1##2{\ifnum`#1=`##2\noexpand\@empty
1961
                      \else\noexpand##1\noexpand##2\fi}%
1962
        \def\do{\x\do}\%
1963
        \def\@makeother{\x\@makeother}%
1964
1965
      \edef\x{\endgroup
1966
        \def\noexpand\dospecials{\dospecials}%
        \expandafter\ifx\csname @sanitize\endcsname\relax\else
1967
          \def\noexpand\@sanitize{\@sanitize}%
1968
        \fi}%
1969
1970
     \x}
```

\initiate@active@char

A language definition file can call this macro to make a character active. This macro takes one argument, the character that is to be made active. When the character was already active this macro does nothing. Otherwise, this macro defines the control sequence $\operatorname{normal@char}\langle \operatorname{char}\rangle$ to expand to the character in its 'normal state' and it defines the active character to expand to \normal@char $\langle char \rangle$ by default ($\langle char \rangle$ being the character to be made active). Later its definition can be changed to expand to $\arctan \langle char \rangle$ by calling $\blue{char} \langle char \rangle$. For example, to make the double quote character active one could have \initiate@active@char{"} in a language definition file. This defines "as \active@prefix "\active@char" (where the first "is the character with its original catcode, when the shorthand is created, and \active@char" is a single token). In protected contexts, it expands to \protect " or \noexpand " (ie, with the original "); otherwise \active@char" is executed. This macro in turn expands to \normal@char" in "safe"

contexts (eg, \label), but \user@active" in normal "unsafe" ones. The latter search a definition in the user, language and system levels, in this order, but if none is found, \normal@char" is used. However, a deactivated shorthand (with \bbl@deactivate is defined as \active@prefix "\normal@char".

The following macro is used to define shorthands in the three levels. It takes 4 arguments: the (string'ed) character, \<level>@group, <level>@active and <next-level>@active (except in system).

```
1971 \def\bbl@active@def#1#2#3#4{%
1972  \@namedef{#3#1}{%
1973  \expandafter\ifx\csname#2@sh@#1@\endcsname\relax
1974  \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%
1975  \else
1976  \bbl@afterfi\csname#2@sh@#1@\endcsname
1977  \fi}%
```

When there is also no current-level shorthand with an argument we will check whether there is a next-level defined shorthand for this active character.

```
1978 \long\@namedef{#3@arg#1}##1{%
1979 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax
1980 \bbl@afterelse\csname#4#1\endcsname##1%
1981 \else
1982 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname
1983 \fi}}
```

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of them are the same character with different catcodes: active, other (\string'ed) and the original one. This trick simplifies the code a lot.

```
1984 \def\initiate@active@char#1{%
1985 \bbl@ifunset{active@char\string#1}%
1986 {\bbl@withactive
1987 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1}%
1988 {}}
```

The very first thing to do is saving the original catcode and the original definition, even if not active, which is possible (undefined characters require a special treatement to avoid making them \relax).

```
1989 \def\@initiate@active@char#1#2#3{%
     \bbl@csarg\edef{oricat@#2}{\catcode`#2=\the\catcode`#2\relax}%
1991
     \ifx#1\@undefined
        \bbl@csarg\edef{oridef@#2}{\let\noexpand#1\noexpand\@undefined}%
1992
1993
     \else
        \bbl@csarg\let{oridef@@#2}#1%
1994
        \bbl@csarg\edef{oridef@#2}{%
1995
1996
         \let\noexpand#1%
          \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%
1997
     \fi
```

If the character is already active we provide the default expansion under this shorthand mechanism. Otherwise we write a message in the transcript file, and define \congrups to expand to the character in its default state. If the character is mathematically active when babel is loaded (for example ') the normal expansion is somewhat different to avoid an infinite loop (but it does not prevent the loop if the mathcode is set to "8000 *a posteriori*).

```
1999 \ifx#1#3\relax
2000 \expandafter\let\csname normal@char#2\endcsname#3%
2001 \else
2002 \bbl@info{Making #2 an active character}%
2003 \ifnum\mathcode`#2=\ifodd\bbl@engine"1000000 \else"8000 \fi
2004 \@namedef{normal@char#2}{%
2005 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%
2006 \else
```

To prevent problems with the loading of other packages after babel we reset the catcode of the character to the original one at the end of the package and of each language file (except with KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to make sure that the shorthands are active during the processing of the .aux file. Otherwise some citations may give unexpected results in the printout when a shorthand was used in the optional argument of \bibitem for example. Then we make it active (not strictly necessary, but done for backward compatibility).

```
\bbl@restoreactive{#2}%
2009
        \AtBeginDocument{%
2010
          \catcode`#2\active
2011
          \if@filesw
2012
2013
            \immediate\write\@mainaux{\catcode`\string#2\active}%
2014
        \expandafter\bbl@add@special\csname#2\endcsname
2015
        \catcode`#2\active
2016
     \fi
2017
```

```
\let\bbl@tempa\@firstoftwo
2018
     \if\string^#2%
2019
2020
        \def\bbl@tempa{\noexpand\textormath}%
2021
        \ifx\bbl@mathnormal\@undefined\else
2022
          \let\bbl@tempa\bbl@mathnormal
2023
       \fi
2024
     ۱fi
2025
     \expandafter\edef\csname active@char#2\endcsname{%
2026
2027
        \bbl@tempa
          {\noexpand\if@safe@actives
2028
2029
             \noexpand\expandafter
2030
             \expandafter\noexpand\csname normal@char#2\endcsname
2031
           \noexpand\else
2032
             \noexpand\expandafter
2033
             \expandafter\noexpand\csname bbl@doactive#2\endcsname
           \noexpand\fi}%
2034
         {\expandafter\noexpand\csname normal@char#2\endcsname}}%
2035
2036
      \bbl@csarg\edef{doactive#2}{%
        \expandafter\noexpand\csname user@active#2\endcsname}%
2037
```

We now define the default values which the shorthand is set to when activated or deactivated. It is set to the deactivated form (globally), so that the character expands to

(where $\active@char\langle char\rangle$ is one control sequence!).

```
2038 \bbl@csarg\edef{active@#2}{%
2039  \noexpand\active@prefix\noexpand#1%
2040  \expandafter\noexpand\csname active@char#2\endcsname}%
2041 \bbl@csarg\edef{normal@#2}{%
2042  \noexpand\active@prefix\noexpand#1%
2043  \expandafter\noexpand\csname normal@char#2\endcsname}%
2044  \expandafter\let\expandafter#1\csname bbl@normal@#2\endcsname
```

The next level of the code checks whether a user has defined a shorthand for himself with this character. First we check for a single character shorthand. If that doesn't exist we check for a shorthand with an argument.

```
\bbl@active@def#2\user@group{user@active}{language@active}%
2045
     \bbl@active@def#2\language@group{language@active}{system@active}%
2046
     \bbl@active@def#2\system@group{system@active}{normal@char}%
2047
```

In order to do the right thing when a shorthand with an argument is used by itself at the end of the line we provide a definition for the case of an empty argument. For that case we let the shorthand character expand to its non-active self. Also, When a shorthand combination such as '' ends up in a heading T_FX would see \protect'\protect'. To prevent this from happening a couple of shorthand needs to be defined at user level.

```
\expandafter\edef\csname\user@group @sh@#2@@\endcsname
2048
       {\expandafter\noexpand\csname normal@char#2\endcsname}%
2049
2050
     \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname
2051
       {\expandafter\noexpand\csname user@active#2\endcsname}%
```

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (') active we need to change \pr@m@s as well. Also, make sure that a single ' in math mode 'does the right thing'. (2) If we are using the caret (^) as a shorthand character special care should be taken to make sure math still works. Therefore an extra level of expansion is introduced with a check for math mode on the upper level.

```
\if\string'#2%
2052
2053
       \let\prim@s\bbl@prim@s
2054
        \let\active@math@prime#1%
2055
2056
     \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}
```

The following package options control the behavior of shorthands in math mode.

```
2057 \langle \langle *More package options \rangle \rangle \equiv
2058 \DeclareOption{math=active}{}
2059 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}
2060 ((/More package options))
```

Initiating a shorthand makes active the char. That is not strictly necessary but it is still done for backward compatibility. So we need to restore the original catcode at the end of package and and the end of the 1df.

```
2061 \@ifpackagewith{babel}{KeepShorthandsActive}%
     {\let\bbl@restoreactive\@gobble}%
2063
      {\def\bbl@restoreactive#1{%
2064
         \bbl@exp{%
           \\\AfterBabelLanguage\\\CurrentOption
2065
             {\catcode`#1=\the\catcode`#1\relax}%
2066
           \\\AtEndOfPackage
2067
             {\catcode`#1=\the\catcode`#1\relax}}}%
2068
       \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}
2069
```

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed. Note that this macro needs to be expandable as do all the shorthand macros in order for them to work in expansion-only environments such as the argument of \hyphenation.

> This macro expects the name of a group of shorthands in its first argument and a shorthand character in its second argument. It will expand to either \bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

```
2070 \def\bbl@sh@select#1#2{%
     \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax
2071
       \bbl@afterelse\bbl@scndcs
2072
2073
     \else
       \bbl@afterfi\csname#1@sh@#2@sel\endcsname
2074
2075
     \fi}
```

\active@prefix The command \active@prefix which is used in the expansion of active characters has a function similar to \OT1-cmd in that it \protects the active character whenever \protect is not \@typeset@protect. The \@gobble is needed to remove a token such as \activechar: (when the double colon was the active character to be dealt with). There are two definitions, depending of \ifincsname is available. If there is, the expansion will be more robust.

```
2076 \begingroup
2077 \bbl@ifunset{ifincsname}% TODO. Ugly. Correct?
     {\gdef\active@prefix#1{%
         \ifx\protect\@typeset@protect
2079
2080
         \else
2081
           \ifx\protect\@unexpandable@protect
              \noexpand#1%
2082
2083
           \else
              \protect#1%
2084
           \fi
2085
           \expandafter\@gobble
2086
2087
         \fi}}
      {\gdef\active@prefix#1{%
2088
         \ifincsname
2089
           \string#1%
2090
           \expandafter\@gobble
2091
2092
2093
           \ifx\protect\@typeset@protect
2094
              \ifx\protect\@unexpandable@protect
2095
2096
                \noexpand#1%
2097
              \else
                \protect#1%
2098
              \fi
2099
              \expandafter\expandafter\expandafter\@gobble
2100
2101
           \fi
         \fi}}
2102
2103 \endgroup
```

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an active character on the fly. For this purpose the switch @safe@actives is available. The setting of this switch should be checked in the first level expansion of $\active@char\langle char\rangle$.

```
2104 \newif\if@safe@actives
2105 \@safe@activesfalse
```

\bbl@restore@actives

When the output routine kicks in while the active characters were made "safe" this must be undone in the headers to prevent unexpected typeset results. For this situation we define a command to make them "unsafe" again.

2106 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbl@deactivate

\bbl@activate Both macros take one argument, like \initiate@active@char. The macro is used to change the definition of an active character to expand to $\arctan \cosh \arctan \cosh \theta$ in the case of $\bdel{helical}$ \normal@char $\langle char \rangle$ in the case of \bbl@deactivate.

```
2107 \def\bbl@activate#1{%
    \bbl@withactive{\expandafter\let\expandafter}#1%
       \csname bbl@active@\string#1\endcsname}
2110 \def\bbl@deactivate#1{%
     \bbl@withactive{\expandafter\let\expandafter}#1%
       \csname bbl@normal@\string#1\endcsname}
```

\bbl@scndcs

\bbl@firstcs These macros are used only as a trick when declaring shorthands.

```
2113 \def\bbl@firstcs#1#2{\csname#1\endcsname}
2114 \def\bbl@scndcs#1#2{\csname#2\endcsname}
```

\declare@shorthand

The command \declare@shorthand is used to declare a shorthand on a certain level. It takes three arguments:

- 1. a name for the collection of shorthands, i.e. 'system', or 'dutch';
- 2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;
- 3. the code to be executed when the shorthand is encountered.

The auxiliary macro \babel@texpdf improves the interoperativity with hyperref and takes 4 arguments: (1) The T_FX code in text mode, (2) the string for hyperref, (3) the T_FX code in math mode, and (4), which is currently ignored, but it's meant for a string in math mode, like a minus sign instead of an hyphen (currently hyperref doesn't discriminate the mode). This macro may be used in ldf

```
2115 \def\babel@texpdf#1#2#3#4{%
     \ifx\texorpdfstring\@undefined
        \textormath{#1}{#2}%
2117
     \else
2118
       \texorpdfstring{\textormath{#1}{#3}}{#2}%
2119
2120
       % \texorpdfstring{\textormath{#1}{#3}}{\textormath{#2}{#4}}%
2121
2122 %
2123 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}
2124 \def\@decl@short#1#2#3\@nil#4{%
     \def\bbl@tempa{#3}%
     \ifx\bbl@tempa\@empty
2126
2127
        \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs
        \bbl@ifunset{#1@sh@\string#2@}{}%
2128
2129
          {\def\bbl@tempa{#4}%
           \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa
2130
           \else
2131
             \bbl@info
2132
2133
               {Redefining #1 shorthand \string#2\\%
2134
                in language \CurrentOption}%
2135
2136
       \@namedef{#1@sh@\string#2@}{#4}%
2137
        \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs
2138
       \bbl@ifunset{#1@sh@\string#2@\string#3@}{}%
2139
2140
          {\def\bbl@tempa{#4}%
           \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa
2141
2142
2143
             \bbl@info
               {Redefining #1 shorthand \string#2\string#3\\%
2144
                in language \CurrentOption}%
2145
2146
2147
        \@namedef{#1@sh@\string#2@\string#3@}{#4}%
```

\textormath Some of the shorthands that will be declared by the language definition files have to be usable in both text and mathmode. To achieve this the helper macro \textormath is provided.

```
2149 \def\textormath{%
     \ifmmode
2150
        \expandafter\@secondoftwo
2151
2152
      \else
2153
        \expandafter\@firstoftwo
```

\user@group \language@group \system@group

The current concept of 'shorthands' supports three levels or groups of shorthands. For each level the name of the level or group is stored in a macro. The default is to have a user group; use language group 'english' and have a system group called 'system'.

```
2155 \def\user@group{user}
2156 \def\language@group{english} % TODO. I don't like defaults
2157 \def\system@group{system}
```

\useshorthands This is the user level macro. It initializes and activates the character for use as a shorthand character (ie, it's active in the preamble). Languages can deactivate shorthands, so a starred version is also provided which activates them always after the language has been switched.

```
2158 \def\useshorthands{%
2159 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}
2160 \def\bbl@usesh@s#1{%
     \bbl@usesh@x
       {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%
2162
       {#1}}
2163
2164 \def\bbl@usesh@x#1#2{%
    \bbl@ifshorthand{#2}%
       {\def\user@group{user}%
        \initiate@active@char{#2}%
2167
2168
        \bbl@activate{#2}}%
2169
       {\bbl@error
2170
          {Cannot declare a shorthand turned off (\string#2)}
2171
           {Sorry, but you cannot use shorthands which have been\\%
2172
           turned off in the package options}}}
```

\defineshorthand Currently we only support two groups of user level shorthands, named internally user and user@<lang> (language-dependent user shorthands). By default, only the first one is taken into account, but if the former is also used (in the optional argument of \defineshorthand) a new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make also sure {} and \protect are taken into account in this new top level.

```
2174 \def\user@language@group{user@\language@group}
2175 \def\bbl@set@user@generic#1#2{%
     \bbl@ifunset{user@generic@active#1}%
       {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%
2177
2178
        \bbl@active@def#1\user@group{user@generic@active}{language@active}%
        \expandafter\edef\csname#2@sh@#1@@\endcsname{%
2179
2180
           \expandafter\noexpand\csname normal@char#1\endcsname}%
2181
        \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%
           \expandafter\noexpand\csname user@active#1\endcsname}}%
2182
     \@empty}
2183
2184 \newcommand\defineshorthand[3][user]{%
     \edef\bbl@tempa{\zap@space#1 \@empty}%
     \bbl@for\bbl@tempb\bbl@tempa{%
       \if*\expandafter\@car\bbl@tempb\@nil
2187
         \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%
2188
         \@expandtwoargs
2189
            \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb
2190
2191
       \declare@shorthand{\bbl@tempb}{#2}{#3}}}
2192
```

\languageshorthands A user level command to change the language from which shorthands are used. Unfortunately, babel currently does not keep track of defined groups, and therefore there is no way to catch a possible change in casing to fix it in the same way languages names are fixed. [TODO].

```
2193 \def\languageshorthands#1{\def\language@group{#1}}
```

\aliasshorthand

First the new shorthand needs to be initialized. Then, we define the new shorthand in terms of the original one, but note with \aliasshorthands{"}{/} is \active@prefix /\active@char/, so we still need to let the lattest to \active@char".

```
2194 \def\aliasshorthand#1#2{%
```

```
\bbl@ifshorthand{#2}%
               2195
               2196
                       {\expandafter\ifx\csname active@char\string#2\endcsname\relax
                           \ifx\document\@notprerr
               2197
               2198
                             \@notshorthand{#2}%
               2199
               2200
                             \initiate@active@char{#2}%
               2201
                             \expandafter\let\csname active@char\string#2\expandafter\endcsname
               2202
                               \csname active@char\string#1\endcsname
               2203
                             \expandafter\let\csname normal@char\string#2\expandafter\endcsname
               2204
                               \csname normal@char\string#1\endcsname
               2205
                             \bbl@activate{#2}%
               2206
                           \fi
               2207
                        \fi}%
                        {\bbl@error
               2208
               2209
                           {Cannot declare a shorthand turned off (\string#2)}
               2210
                           {Sorry, but you cannot use shorthands which have been\\%
                            turned off in the package options}}}
               2211
\@notshorthand
               2212 \def\@notshorthand#1{%
               2213 \bbl@error{%
                       The character `\string #1' should be made a shorthand character;\\%
               2215
                       add the command \string\useshorthands\string{#1\string} to
                       the preamble.\\%
               2216
                       I will ignore your instruction}%
               2217
               2218
                      {You may proceed, but expect unexpected results}}
  \shorthandon The first level definition of these macros just passes the argument on to \bbl@switch@sh, adding
 \shorthandoff
                \@nil at the end to denote the end of the list of characters.
               2219 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}
               2220 \DeclareRobustCommand*\shorthandoff{%
                     \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}
               2222 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}
```

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and subsequently switches the category code of the shorthand character according to the first argument of \bbl@switch@sh. But before any of this switching takes place we make sure that the character we are dealing with is known as a shorthand character. If it is, a macro such as \active@char" should exist. Switching off and on is easy – we just set the category code to 'other' (12) and \active. With the starred version, the original catcode and the original definition, saved in @initiate@active@char, are restored.

```
2223 \def\bbl@switch@sh#1#2{%
2224
     \ifx#2\@nnil\else
2225
        \bbl@ifunset{bbl@active@\string#2}%
2226
          {\bbl@error
2227
             {I cannot switch `\string#2' on or off--not a shorthand}%
2228
             {This character is not a shorthand. Maybe you made\\%
              a typing mistake? I will ignore your instruction}}%
2229
          {\ifcase#1%
2230
2231
             \catcode`#212\relax
2232
           \or
2233
             \catcode`#2\active
2234
             \csname bbl@oricat@\string#2\endcsname
2235
             \csname bbl@oridef@\string#2\endcsname
2236
2237
       \bbl@afterfi\bbl@switch@sh#1%
2238
2239
     \fi}
```

Note the value is that at the expansion time; eg, in the preample shorhands are usually deactivated.

```
2240 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}
2241 \def\bbl@putsh#1{%
     \bbl@ifunset{bbl@active@\string#1}%
         {\bbl@putsh@i#1\@empty\@nnil}%
2243
         {\csname bbl@active@\string#1\endcsname}}
2244
2245 \def\bbl@putsh@i#1#2\@nnil{%
     \csname\language@group @sh@\string#1@%
       \ifx\@empty#2\else\string#2@\fi\endcsname}
2247
2248 \ifx\bbl@opt@shorthands\@nnil\else
2249
    \let\bbl@s@initiate@active@char\initiate@active@char
     \def\initiate@active@char#1{%
       \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}
2252
     \let\bbl@s@switch@sh\bbl@switch@sh
     \def\bbl@switch@sh#1#2{%
2253
       \ifx#2\@nnil\else
2254
2255
         \bbl@afterfi
         \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%
2256
       \fi}
2257
2258
     \let\bbl@s@activate\bbl@activate
     \def\bbl@activate#1{%
2259
       \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}
2260
     \let\bbl@s@deactivate\bbl@deactivate
2262
     \def\bbl@deactivate#1{%
       \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}
2263
2264\fi
```

You may want to test if a character is a shorthand. Note it does not test whether the shorthand is on or off.

 $2265 \newcommand \ifbabelshorthand \[3] \bbl@ifunset \bbl@active@\string \#1\} \{\#2} \$

\bbl@prim@s \bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right quote in mathmode is \primes. This checks if the next character is a right quote. When the right quote is active, the definition of this macro needs to be adapted to look also for an active right quote; the hat could be active, too.

```
2266 \def\bbl@prim@s{%
2267 \prime\futurelet\@let@token\bbl@pr@m@s}
2268 \def\bbl@if@primes#1#2{%
    \ifx#1\@let@token
       \expandafter\@firstoftwo
2270
    \else\ifx#2\@let@token
2271
       \bbl@afterelse\expandafter\@firstoftwo
2272
    \else
2273
       \bbl@afterfi\expandafter\@secondoftwo
2274
2275 \fi\fi}
2276 \begingroup
     \catcode`\^=7 \catcode`\*=\active \lccode`\*=`\^
     \catcode`\'=12 \catcode`\"=\\'
2278
     \lowercase{%
2279
       \gdef\bbl@pr@m@s{%
2280
2281
         \bbl@if@primes"'%
           \pr@@@s
2282
           {\bbl@if@primes*^\pr@@@t\egroup}}}
2284 \endgroup
```

Usually the \sim is active and expands to \penalty\@M\ $_{\sqcup}$. When it is written to the .aux file it is written expanded. To prevent that and to be able to use the character \sim as a start character for a shorthand, it is redefined here as a one character shorthand on system level. The system declaration is in most cases redundant (when \sim is still a non-break space), and in some cases is inconvenient (if \sim has been

redefined); however, for backward compatibility it is maintained (some existing documents may rely on the babel value).

```
2285 \initiate@active@char{~}
2286 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
2287 \bbl@activate{~}
```

\T1dqpos

\OT1dqpos The position of the double quote character is different for the OT1 and T1 encodings. It will later be selected using the \f@encoding macro. Therefore we define two macros here to store the position of the character in these encodings.

```
2288 \expandafter\def\csname OT1dqpos\endcsname{127}
2289 \expandafter\def\csname T1dqpos\endcsname{4}
```

When the macro \f@encoding is undefined (as it is in plain TFX) we define it here to expand to OT1

```
2290 \ifx\f@encoding\@undefined
2291 \def\f@encoding{0T1}
2292\fi
```

9.6 Language attributes

Language attributes provide a means to give the user control over which features of the language definition files he wants to enable.

\languageattribute

The macro \languageattribute checks whether its arguments are valid and then activates the selected language attribute. First check whether the language is known, and then process each attribute in the list.

```
2293 \bbl@trace{Language attributes}
2294 \newcommand\languageattribute[2]{%
     \def\bbl@tempc{#1}%
     \bbl@fixname\bbl@tempc
2296
2297
     \bbl@iflanguage\bbl@tempc{%
        \bbl@vforeach{#2}{%
2298
```

We want to make sure that each attribute is selected only once; therefore we store the already selected attributes in \bbl@known@attribs. When that control sequence is not yet defined this attribute is certainly not selected before.

```
\ifx\bbl@known@attribs\@undefined
2299
            \in@false
2300
          \else
2301
            \bbl@xin@{,\bbl@tempc-##1,}{,\bbl@known@attribs,}%
2302
          \fi
2303
          \ifin@
2304
            \bbl@warning{%
2305
              You have more than once selected the attribute '##1'\\%
2306
2307
              for language #1. Reported}%
```

When we end up here the attribute is not selected before. So, we add it to the list of selected attributes and execute the associated T_FX-code.

```
2309
            \bbl@exp{%
2310
              \\\bbl@add@list\\\bbl@known@attribs{\bbl@tempc-##1}}%
2311
            \edef\bbl@tempa{\bbl@tempc-##1}%
2312
            \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%
2313
            {\csname\bbl@tempc @attr@##1\endcsname}%
2314
            {\@attrerr{\bbl@tempc}{##1}}%
2315
        \fi}}}
2316 \@onlypreamble\languageattribute
```

The error text to be issued when an unknown attribute is selected.

```
2317 \newcommand*{\@attrerr}[2]{%
     \bbl@error
2318
        {The attribute #2 is unknown for language #1.}%
2319
2320
        {Your command will be ignored, type <return> to proceed}}
```

\bbl@declare@ttribute

This command adds the new language/attribute combination to the list of known attributes. Then it defines a control sequence to be executed when the attribute is used in a document. The result of this should be that the macro \extras... for the current language is extended, otherwise the attribute will not work as its code is removed from memory at \begin{document}.

```
2321 \def\bbl@declare@ttribute#1#2#3{%
     \bbl@xin@{,#2,}{,\BabelModifiers,}%
2323
     \ifin@
2324
       \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%
2325
     \bbl@add@list\bbl@attributes{#1-#2}%
2326
     \expandafter\def\csname#1@attr@#2\endcsname{#3}}
2327
```

\bbl@ifattributeset

This internal macro has 4 arguments. It can be used to interpret TFX code based on whether a certain attribute was set. This command should appear inside the argument to \AtBeginDocument because the attributes are set in the document preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being checked, and the third and fourth arguments are the true and false clauses.

```
2328 \def\bbl@ifattributeset#1#2#3#4{%
     \ifx\bbl@known@attribs\@undefined
       \in@false
2330
2331
     \else
2332
       \bbl@xin@{,#1-#2,}{,\bbl@known@attribs,}%
2333
2334
     \ifin@
       \bbl@afterelse#3%
2335
     \else
2336
       \bbl@afterfi#4%
2337
2338
     \fi}
```

\bbl@ifknown@ttrib

An internal macro to check whether a given language/attribute is known. The macro takes 4 arguments, the language/attribute, the attribute list, the T_FX-code to be executed when the attribute is known and the T_FX-code to be executed otherwise.

We first assume the attribute is unknown. Then we loop over the list of known attributes, trying to find a match.

```
2339 \def\bbl@ifknown@ttrib#1#2{%
     \let\bbl@tempa\@secondoftwo
2341
     \bbl@loopx\bbl@tempb{#2}{%
        \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%
2342
2343
          \let\bbl@tempa\@firstoftwo
2344
        \else
2345
        \fi}%
2346
2347
     \bbl@tempa}
```

\bbl@clear@ttribs This macro removes all the attribute code from LTFX's memory at \begin{document} time (if any is

```
2348 \def\bbl@clear@ttribs{%
     \ifx\bbl@attributes\@undefined\else
        \bbl@loopx\bbl@tempa{\bbl@attributes}{%
2350
2351
          \expandafter\bbl@clear@ttrib\bbl@tempa.
2352
        \let\bbl@attributes\@undefined
2353
```

```
2354 \fi}
2355 \def\bbl@clear@ttrib#1-#2.{%
2356 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}
2357 \AtBeginDocument{\bbl@clear@ttribs}
```

Support for saving macro definitions 9.7

To save the meaning of control sequences using \babel@save, we use temporary control sequences. To save hash table entries for these control sequences, we don't use the name of the control sequence to be saved to construct the temporary name. Instead we simply use the value of a counter, which is reset to zero each time we begin to save new values. This works well because we release the saved meanings before we begin to save a new set of control sequence meanings (see \selectlanguage and \originalTeX). Note undefined macros are not undefined any more when saved – they are \relax'ed.

\babel@beginsave

\babel@savecnt The initialization of a new save cycle: reset the counter to zero.

2358 \bbl@trace{Macros for saving definitions} 2359 \def\babel@beginsave{\babel@savecnt\z@}

Before it's forgotten, allocate the counter and initialize all.

2360 \newcount\babel@savecnt 2361 \babel@beginsave

\babel@savevariable

\babel@save The macro \babel@save $\langle csname \rangle$ saves the current meaning of the control sequence $\langle csname \rangle$ to \originalTeX³². To do this, we let the current meaning to a temporary control sequence, the restore commands are appended to \ormall and the counter is incremented. The macro $\beta = \beta = \beta$ saves the value of the variable. $\langle variable \rangle$ can be anything allowed after the \the primitive.

```
2362 \def\babel@save#1{%
     \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax
     \toks@\expandafter{\originalTeX\let#1=}%
2365
     \bbl@exp{%
       \def\\\originalTeX{\the\toks@\<babel@\number\babel@savecnt>\relax}}%
2366
     \advance\babel@savecnt\@ne}
2368 \def\babel@savevariable#1{%
     \toks@\expandafter{\originalTeX #1=}%
     \bbl@exp{\def\\\originalTeX{\the\toks@\the#1\relax}}}
```

\bbl@frenchspacing \bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don't want that. The command \bbl@frenchspacing switches it on when it isn't already in effect and \bbl@nonfrenchspacing switches it off if necessary. A more refined way to switch the catcodes is done with ini files. Here an auxiliary macro is defined, but the main part is in \babelprovide. This new method should be ideally the default one.

```
2371 \def\bbl@frenchspacing{%
     \ifnum\the\sfcode`\.=\@m
2372
2373
       \let\bbl@nonfrenchspacing\relax
     \else
2374
2375
       \frenchspacing
       \let\bbl@nonfrenchspacing\nonfrenchspacing
2376
2377
2378 \let\bbl@nonfrenchspacing\nonfrenchspacing
2379 \let\bbl@elt\relax
2380 \edef\bbl@fs@chars{%
     \bbl@elt{\string.}\@m{3000}\bbl@elt{\string?}\@m{3000}%
     \label{temp} $$ \mathbb{2}000}\bbl@elt{string:}\@m{2000}\% $$
2382
     \bbl@elt{\string;}\@m{1500}\bbl@elt{\string,}\@m{1250}}
```

³²\originalTeX has to be expandable, i. e. you shouldn't let it to \relax.

9.8 Short tags

\babeltags

This macro is straightforward. After zapping spaces, we loop over the list and define the macros $\text\langle tag \rangle$ and $\text\langle tag \rangle$. Definitions are first expanded so that they don't contain contain but the actual macro.

```
2384 \bbl@trace{Short tags}
2385 \def\babeltags#1{%
     \edef\bbl@tempa{\zap@space#1 \@empty}%
     \def\bbl@tempb##1=##2\@@{%
2388
        \edef\bbl@tempc{%
          \noexpand\newcommand
2389
          \expandafter\noexpand\csname ##1\endcsname{%
2390
            \noexpand\protect
2391
            \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}
2392
2393
          \noexpand\newcommand
2394
          \expandafter\noexpand\csname text##1\endcsname{%
            \noexpand\foreignlanguage{##2}}}
2395
2396
        \bbl@tempc}%
2397
     \bbl@for\bbl@tempa\bbl@tempa{%
2398
        \expandafter\bbl@tempb\bbl@tempa\@@}}
```

9.9 Hyphens

\babelhyphenation

This macro saves hyphenation exceptions. Two macros are used to store them: \bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language ones. See \bbl@patterns above for further details. We make sure there is a space between words when multiple commands are used.

```
2399 \bbl@trace{Hyphens}
2400 \@onlypreamble\babelhyphenation
2401 \AtEndOfPackage{%
     \newcommand\babelhyphenation[2][\@empty]{%
2402
        \ifx\bbl@hyphenation@\relax
2403
2404
          \let\bbl@hyphenation@\@empty
2405
2406
        \ifx\bbl@hyphlist\@empty\else
2407
          \bbl@warning{%
2408
            You must not intermingle \string\selectlanguage\space and\\%
2409
            \string\babelhyphenation\space or some exceptions will not\\%
2410
            be taken into account. Reported}%
       \fi
2411
2412
       \ifx\@empty#1%
2413
          \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%
2414
        \else
2415
          \bbl@vforeach{#1}{%
            \def\bbl@tempa{##1}%
2416
            \bbl@fixname\bbl@tempa
2417
            \bbl@iflanguage\bbl@tempa{%
              \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%
2419
                \bbl@ifunset{bbl@hyphenation@\bbl@tempa}%
2420
2421
                  {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%
2422
2423
                #2}}}%
       \fi}}
2424
```

\bbl@allowhyphens

This macro makes hyphenation possible. Basically its definition is nothing more than $\normalfont{\mathsf{Nobreak}}$ hskip $\normalfont{\mathsf{Opt}}$ plus $\normalfont{\mathsf{Opt}}^{33}$.

 $^{^{33}}$ TeX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this glue node.

\babelhyphen

Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead of protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same procedure as shorthands, with \active@prefix.

The following two commands are used to wrap the "hyphen" and set the behavior of the rest of the word – the version with a single @ is used when further hyphenation is allowed, while that with @@ if no more hyphens are allowed. In both cases, if the hyphen is preceded by a positive space, breaking after the hyphen is disallowed.

There should not be a discretionary after a hyphen at the beginning of a word, so it is prevented if preceded by a skip. Unfortunately, this does handle cases like "(-suffix)". \nobreak is always preceded by \leavevmode, in case the shorthand starts a paragraph.

```
2436 \def\bbl@usehyphen#1{%
2437 \leavevmode
2438 \ifdim\lastskip>\z@\mbox{#1}\else\nobreak#1\fi
2439 \nobreak\hskip\z@skip}
2440 \def\bbl@usehyphen#1{%
2441 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}
The following macro inserts the hyphen char.
2442 \def\bbl@hyphenchar{%
2443 \ifnum\hyphenchar\font=\m@ne
```

2443 \ifnum\hyphenchar\font=\m@no
2444 \babelnullhyphen
2445 \else
2446 \char\hyphenchar\font
2447 \fi}

Finally, we define the hyphen "types". Their names will not change, so you may use them in ldf's. After a space, the $\mbox{mbox in \bl@hy@nobreak}$ is redundant.

```
2448 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}}}
2449 \def\bbl@hy@@soft{\bbl@usehyphen\\discretionary{\bbl@hyphenchar}{}}}
2450 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}
2451 \def\bbl@hy@@hard{\bbl@usehyphen\bbl@hyphenchar}
2452 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}}}
2453 \def\bbl@hy@enobreak{\mbox{\bbl@hyphenchar}}}
2454 \def\bbl@hy@repeat{%
2455 \bbl@usehyphen{%
2456 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}}}
2457 \def\bbl@hy@erepeat{%
2458 \bbl@usehyphen{%
2458 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}
2460 \def\bbl@hy@empty{\hskip\z@skip}
2461 \def\bbl@hy@empty{\discretionary{}}}}
```

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discretionaries for letters that behave 'abnormally' at a breakpoint.

 $2462 \end{allow} $$2462 \end{a$

9.10 Multiencoding strings

The aim following commands is to provide a commom interface for strings in several encodings. They also contains several hooks which can be used by luatex and xetex. The code is organized here with pseudo-guards, so we start with the basic commands.

Tools But first, a couple of tools. The first one makes global a local variable. This is not the best solution, but it works.

```
2463 \bbl@trace{Multiencoding strings}
2464 \def\bbl@toglobal#1{\global\let#1#1}
2465 \def\bbl@recatcode#1{% TODO. Used only once?
     \@tempcnta="7F
     \def\bbl@tempa{%
2467
       \ifnum\@tempcnta>"FF\else
2468
          \catcode\@tempcnta=#1\relax
2470
          \advance\@tempcnta\@ne
2471
          \expandafter\bbl@tempa
2472
        \fi}%
     \bbl@tempa}
2473
```

The second one. We need to patch \@uclclist, but it is done once and only if \SetCase is used or if strings are encoded. The code is far from satisfactory for several reasons, including the fact \@uclclist is not a list any more. Therefore a package option is added to ignore it. Instead of gobbling the macro getting the next two elements (usually \reserved@a), we pass it as argument to \bbl@uclc. The parser is restarted inside \ $\langle lang \rangle$ @bbl@uclc because we do not know how many expansions are necessary (depends on whether strings are encoded). The last part is tricky – when uppercasing, we have:

\let\bbl@tolower\@empty\bbl@toupper\@empty

and starts over (and similarly when lowercasing).

```
2474 \@ifpackagewith{babel}{nocase}%
     {\let\bbl@patchuclc\relax}%
2476
      {\def\bbl@patchuclc{%
2477
        \global\let\bbl@patchuclc\relax
        \g@addto@macro\@uclclist{\reserved@b{\reserved@b\bbl@uclc}}%
2478
2479
        \gdef\bbl@uclc##1{%
          \let\bbl@encoded\bbl@encoded@uclc
2480
          \bbl@ifunset{\languagename @bbl@uclc}% and resumes it
2481
             {##1}%
2482
            {\let\bbl@tempa##1\relax % Used by LANG@bbl@uclc
2483
              \csname\languagename @bbl@uclc\endcsname}%
2484
          {\bbl@tolower\@empty}{\bbl@toupper\@empty}}%
2485
2486
        \gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}%
        \gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}}
2488 \langle *More package options \rangle \equiv
2489 \DeclareOption{nocase}{}
2490 \langle \langle More package options \rangle \rangle
 The following package options control the behavior of \SetString.
2491 \langle *More package options \rangle \equiv
2492 \let\bbl@opt@strings\@nnil % accept strings=value
2493 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}
2494 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}
2495 \def\BabelStringsDefault{generic}
2496 ((/More package options))
```

Main command This is the main command. With the first use it is redefined to omit the basic setup in subsequent blocks. We make sure strings contain actual letters in the range 128-255, not active characters.

```
2497 \@onlypreamble\StartBabelCommands
2498 \def\StartBabelCommands{%
     \begingroup
     \bbl@recatcode{11}%
2501
     \langle \langle Macros \ local \ to \ BabelCommands \rangle \rangle
     \def\bbl@provstring##1##2{%
2502
       \providecommand##1{##2}%
2503
       \bbl@toglobal##1}%
2504
2505
     \global\let\bbl@scafter\@empty
     \let\StartBabelCommands\bbl@startcmds
     \ifx\BabelLanguages\relax
2508
         \let\BabelLanguages\CurrentOption
2509
     \begingroup
2510
     \let\bbl@screset\@nnil % local flag - disable 1st stopcommands
2511
2512 \StartBabelCommands}
2513 \def\bbl@startcmds{%
2514 \ifx\bbl@screset\@nnil\else
       \bbl@usehooks{stopcommands}{}%
2515
     \fi
2516
     \endgroup
2517
     \begingroup
     \@ifstar
        {\ifx\bbl@opt@strings\@nnil
2520
2521
           \let\bbl@opt@strings\BabelStringsDefault
         \fi
2522
         \bbl@startcmds@i}%
2523
        \bbl@startcmds@i}
2524
2525 \def\bbl@startcmds@i#1#2{%
     \edef\bbl@L{\zap@space#1 \@empty}%
     \edef\bbl@G{\zap@space#2 \@empty}%
     \bbl@startcmds@ii}
2528
2529 \let\bbl@startcommands\StartBabelCommands
```

Parse the encoding info to get the label, input, and font parts.

Select the behavior of \SetString. Thre are two main cases, depending of if there is an optional argument: without it and strings=encoded, strings are defined always; otherwise, they are set only if they are still undefined (ie, fallback values). With labelled blocks and strings=encoded, define the strings, but with another value, define strings only if the current label or font encoding is the value of strings; otherwise (ie, no strings or a block whose label is not in strings=) do nothing. We presume the current block is not loaded, and therefore set (above) a couple of default values to gobble the arguments. Then, these macros are redefined if necessary according to several parameters.

```
2530 \newcommand\bbl@startcmds@ii[1][\@empty]{%
     \let\SetString\@gobbletwo
2532
     \let\bbl@stringdef\@gobbletwo
2533
     \let\AfterBabelCommands\@gobble
2534
     \ifx\@empty#1%
2535
       \def\bbl@sc@label{generic}%
       \def\bbl@encstring##1##2{%
2536
          \ProvideTextCommandDefault##1{##2}%
2537
          \bbl@toglobal##1%
2538
          \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%
2539
2540
       \let\bbl@sctest\in@true
2541
     \else
       \let\bbl@sc@charset\space % <- zapped below</pre>
```

```
\let\bbl@sc@fontenc\space % <-</pre>
2543
2544
       \def\bbl@tempa##1=##2\@nil{%
         \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%
2545
2546
       \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}%
2547
       \def\bbl@tempa##1 ##2{% space -> comma
2548
         ##1%
25/19
         \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%
2550
       \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%
2551
       \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%
2552
       \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%
       \def\bbl@encstring##1##2{%
2553
2554
         \bbl@foreach\bbl@sc@fontenc{%
           \bbl@ifunset{T@####1}%
2555
2556
             {}%
2557
             {\ProvideTextCommand##1{####1}{##2}%
2558
              \bbl@toglobal##1%
              \expandafter
2559
2560
              \bbl@toglobal\csname###1\string##1\endcsname}}}%
2561
       \def\bbl@sctest{%
         2562
2563
     ۱fi
                                         % ie, no strings key -> defaults
2564
     \ifx\bbl@opt@strings\@nnil
     \else\ifx\bbl@opt@strings\relax
                                         % ie, strings=encoded
       \let\AfterBabelCommands\bbl@aftercmds
       \let\SetString\bbl@setstring
2567
2568
       \let\bbl@stringdef\bbl@encstring
                 % ie, strings=value
     \else
2569
     \bbl@sctest
2570
2571
     \ifin@
       \let\AfterBabelCommands\bbl@aftercmds
2572
2573
       \let\SetString\bbl@setstring
2574
       \let\bbl@stringdef\bbl@provstring
     \fi\fi\fi
2575
     \bbl@scswitch
2576
     \ifx\bbl@G\@empty
2577
       \def\SetString##1##2{%
         \bbl@error{Missing group for string \string##1}%
2580
           {You must assign strings to some category, typically\\%
2581
            captions or extras, but you set none}}%
     \fi
2582
     \ifx\@empty#1%
2583
       \bbl@usehooks{defaultcommands}{}%
2584
     \else
2585
2586
       \@expandtwoargs
2587
       \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%
2588
     \fi}
```

There are two versions of \bbl@scswitch. The first version is used when ldfs are read, and it makes sure $\gray \arraycolong \arraycol$

```
2589 \def\bbl@forlang#1#2{%
2590 \bbl@for#1\bbl@L{%
2591 \bbl@xin@{,#1,}{,\BabelLanguages,}%
2592 \ifin@#2\relax\fi}}
```

```
2593 \def\bbl@scswitch{%
2594
     \bbl@forlang\bbl@tempa{%
       \ifx\bbl@G\@empty\else
2596
         \ifx\SetString\@gobbletwo\else
2597
          \edef\bbl@GL{\bbl@G\bbl@tempa}%
2598
          \bbl@xin@{,\bbl@GL,}{,\bbl@screset,}%
2599
          \ifin@\else
2600
            \global\expandafter\let\csname\bbl@GL\endcsname\@undefined
2601
            \xdef\bbl@screset{\bbl@screset,\bbl@GL}%
2602
          \fi
         \fi
2603
2604
       \fi}}
2605 \AtEndOfPackage{%
     \let\bbl@scswitch\relax}
2608 \@onlypreamble\EndBabelCommands
2609 \def\EndBabelCommands {%
    \bbl@usehooks{stopcommands}{}%
     \endgroup
     \endgroup
2612
     \bbl@scafter}
2614 \let\bbl@endcommands \EndBabelCommands
```

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is "active" First save the "switcher". Create it if undefined. Strings are defined only if undefined (ie, like \providescommand). With the event stringprocess you can preprocess the string by manipulating the value of \BabelString. If there are several hooks assigned to this event, preprocessing is done in the same order as defined. Finally, the string is set.

```
2615 \def\bbl@setstring#1#2{% eg, \prefacename{<string>}
     \bbl@forlang\bbl@tempa{%
        \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%
2617
2618
        \bbl@ifunset{\bbl@LC}% eg, \germanchaptername
         {\bbl@exp{%
2619
             \global\\\bbl@add\<\bbl@G\bbl@tempa>{\\\bbl@scset\\#1\<\bbl@LC>}}}%
2620
2621
         {}%
2622
        \def\BabelString{#2}%
        \bbl@usehooks{stringprocess}{}%
2624
        \expandafter\bbl@stringdef
2625
         \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}
```

Now, some additional stuff to be used when encoded strings are used. Captions then include \bbl@encoded for string to be expanded in case transformations. It is \relax by default, but in \MakeUppercase and \MakeLowercase its value is a modified expandable \@changed@cmd.

```
2626 \ifx\bbl@opt@strings\relax
     \def\bbl@scset#1#2{\def#1{\bbl@encoded#2}}
     \bbl@patchuclc
     \let\bbl@encoded\relax
     \def\bbl@encoded@uclc#1{%
2630
       \@inmathwarn#1%
2631
        \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
2632
2633
          \expandafter\ifx\csname ?\string#1\endcsname\relax
            \TextSymbolUnavailable#1%
2634
2635
            \csname ?\string#1\endcsname
2636
          \fi
2637
        \else
2638
          \csname\cf@encoding\string#1\endcsname
2639
```

```
2640 \fi}
2641 \else
2642 \def\bbl@scset#1#2{\def#1{#2}}
2643 \fi
```

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current definition is somewhat complicated because we need a count, but \count@ is not under our control (remember \SetString may call hooks). Instead of defining a dedicated count, we just "pre-expand" its value.

```
2644 \langle *Macros local to BabelCommands \rangle \equiv
2645 \def\SetStringLoop##1##2{%
        \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%
2646
2647
        \count@\z@
        \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok
2648
2649
          \advance\count@\@ne
2650
          \toks@\expandafter{\bbl@tempa}%
          \bbl@exp{%
2651
2652
            \\\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%
2653
            \count@=\the\count@\relax}}%
2654 ((/Macros local to BabelCommands))
```

Delaying code Now the definition of \AfterBabelCommands when it is activated.

```
2655 \def\bbl@aftercmds#1{%
2656 \toks@\expandafter{\bbl@scafter#1}%
2657 \xdef\bbl@scafter{\the\toks@}}
```

Case mapping The command \SetCase provides a way to change the behavior of \MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched \@uclclist to the parsing command.

```
_{2658}\langle\langle*Macros\ local\ to\ BabelCommands}\rangle\rangle\equiv
      \newcommand\SetCase[3][]{%
2660
        \bbl@patchuclc
2661
        \bbl@forlang\bbl@tempa{%
          \expandafter\bbl@encstring
2662
             \csname\bbl@tempa @bbl@uclc\endcsname{\bbl@tempa##1}%
2663
          \expandafter\bbl@encstring
2664
             \csname\bbl@tempa @bbl@uc\endcsname{##2}%
2665
          \expandafter\bbl@encstring
2666
             \csname\bbl@tempa @bbl@lc\endcsname{##3}}}%
2667
2668 ((/Macros local to BabelCommands))
```

Macros to deal with case mapping for hyphenation. To decide if the document is monolingual or multilingual, we make a rough guess – just see if there is a comma in the languages list, built in the first pass of the package options.

```
2669 ⟨⟨*Macros local to BabelCommands⟩⟩ ≡
2670 \newcommand\SetHyphenMap[1]{%
2671 \bbl@forlang\bbl@tempa{%
2672 \expandafter\bbl@stringdef
2673 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}%
2674 ⟨⟨/Macros local to BabelCommands⟩⟩
```

There are 3 helper macros which do most of the work for you.

```
2675 \newcommand\BabelLower[2]{% one to one.
2676 \ifnum\lccode#1=#2\else
2677 \babel@savevariable{\lccode#1}%
2678 \lccode#1=#2\relax
2679 \fi}
2680 \newcommand\BabelLowerMM[4]{% many-to-many
2681 \@tempcnta=#1\relax
```

```
\@tempcntb=#4\relax
2682
2683
     \def\bbl@tempa{%
        \ifnum\@tempcnta>#2\else
2684
2685
          \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%
2686
          \advance\@tempcnta#3\relax
2687
          \advance\@tempcntb#3\relax
2688
          \expandafter\bbl@tempa
2689
        \fi}%
2690
     \bbl@tempa}
2691 \newcommand\BabelLowerMO[4]{% many-to-one
     \@tempcnta=#1\relax
2693
     \def\bbl@tempa{%
        \ifnum\@tempcnta>#2\else
2694
          \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%
2695
2696
          \advance\@tempcnta#3
2697
          \expandafter\bbl@tempa
        \fi}%
2698
2699
     \bbl@tempa}
 The following package options control the behavior of hyphenation mapping.
2700 \langle \langle *More package options \rangle \rangle \equiv
2701 \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap\z@}
2702 \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap\@ne}
2703 \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap\tw@}
2704 \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap\thr@@}
2705 \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap4\relax}
2706 ((/More package options))
 Initial setup to provide a default behavior if hypenmap is not set.
2707 \AtEndOfPackage{%
     \ifx\bbl@opt@hyphenmap\@undefined
        \bbl@xin@{,}{\bbl@language@opts}%
2709
        \chardef\bbl@opt@hyphenmap\ifin@4\else\@ne\fi
2710
2711
     \fi}
 This sections ends with a general tool for resetting the caption names with a unique interface. With
 the old way, which mixes the switcher and the string, we convert it to the new one, which separates
 these two steps.
2712 \newcommand\setlocalecaption{% TODO. Catch typos. What about ensure?
2713 \@ifstar\bbl@setcaption@s\bbl@setcaption@x}
2714 \def\bbl@setcaption@x#1#2#3{% language caption-name string
2715 \bbl@trim@def\bbl@tempa{#2}%
2716
     \bbl@xin@{.template}{\bbl@tempa}%
     \ifin@
2717
        \bbl@ini@captions@template{#3}{#1}%
2719
     \else
2720
       \edef\bbl@tempd{%
2721
          \expandafter\expandafter
          \strip@prefix\expandafter\meaning\csname captions#1\endcsname}%
2722
2723
        \bbl@xin@
          {\expandafter\string\csname #2name\endcsname}%
2724
2725
          {\bbl@tempd}%
        \ifin@ % Renew caption
2726
          \bbl@xin@{\string\bbl@scset}{\bbl@tempd}%
2727
          \ifin@
2728
2729
            \bbl@exp{%
              \\bbl@ifsamestring{\bbl@tempa}{\languagename}%
2730
2731
                {\\bbl@scset\<#2name>\<#1#2name>}%
2732
                {}}%
```

```
\else % Old way converts to new way
2733
2734
            \bbl@ifunset{#1#2name}%
              {\bbl@exp{%
2735
2736
                \\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%
2737
                \\bbl@ifsamestring{\bbl@tempa}{\languagename}%
2738
                  {\def\<#2name>{\<#1#2name>}}%
2739
                  {}}}%
2740
              {}%
2741
          \fi
2742
        \else
          \bbl@xin@{\string\bbl@scset}{\bbl@tempd}% New
2744
          \ifin@ % New way
2745
            \bbl@exp{%
              \\\bbl@add\<captions#1>{\\\bbl@scset\<#2name>\<#1#2name>}%
2746
2747
              \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%
2748
                {\\\bbl@scset\<#2name>\<#1#2name>}%
2749
                {}}%
2750
          \else % Old way, but defined in the new way
2751
            \bbl@exp{%
              \\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%
2752
2753
              \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%
                {\def\<#2name>{\<#1#2name>}}%
2754
2755
                {}}%
          \fi%
2756
2757
        \@namedef{#1#2name}{#3}%
2758
        \toks@\expandafter{\bbl@captionslist}%
2759
        \bbl@exp{\\in@{\<#2name>}{\the\toks@}}%
2760
2761
       \ifin@\else
          \bbl@exp{\\bbl@add\\bbl@captionslist{\<#2name>}}%
2762
2763
          \bbl@toglobal\bbl@captionslist
2764
       ۱fi
2765
     \fi}
2766% \def\bbl@setcaption@s#1#2#3{} % TODO. Not yet implemented
```

9.11 Macros common to a number of languages

\set@low@box The following macro is used to lower quotes to the same level as the comma. It prepares its argument in box register 0.

```
2767 \bbl@trace{Macros related to glyphs}
2768 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%
2769 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%
2770 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\tw@ \dp\z@\dp\tw@}
```

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

```
2771 \def\save@sf@q#1{\leavevmode
2772 \begingroup
2773 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF
2774 \endgroup}
```

9.12 Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1 encoding and have to be 'faked', or that are not accessible through T1enc.def.

9.12.1 Quotation marks

\quotedblbase

In the T1 encoding the opening double quote at the baseline is available as a separate character, accessible via \quotedblbase. In the OT1 encoding it is not available, therefore we make it available

```
by lowering the normal open quote character to the baseline.
                 2775 \ProvideTextCommand{\quotedblbase}{OT1}{%
                     \save@sf@q{\set@low@box{\textquotedblright\/}%
                         \box\z@\kern-.04em\bbl@allowhyphens}}
                  Make sure that when an encoding other than 0T1 or T1 is used this glyph can still be typeset.
                 2778 \ProvideTextCommandDefault{\quotedblbase}{%
                 2779 \UseTextSymbol{OT1}{\quotedblbase}}
\quotesinglbase We also need the single quote character at the baseline.
                 2780 \ProvideTextCommand{\quotesinglbase}{OT1}{%
                      \save@sf@q{\set@low@box{\textquoteright\/}%
                         \box\z@\kern-.04em\bbl@allowhyphens}}
                  Make sure that when an encoding other than 0T1 or T1 is used this glyph can still be typeset.
                 2783 \ProvideTextCommandDefault{\quotesinglbase}{%
                 2784 \UseTextSymbol{OT1}{\quotesinglbase}}
 \guillemetleft The guillemet characters are not available in OT1 encoding. They are faked. (Wrong names with o
\guillemetright preserved for compatibility.)
                 2785 \ProvideTextCommand{\guillemetleft}{OT1}{%
                 2786
                      \ifmmode
                 2787
                        \11
                      \else
                 2788
                 2789
                         \save@sf@q{\nobreak
                 2790
                           \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%
                     \fi}
                 2791
                 2792 \ProvideTextCommand{\guillemetright}{OT1}{%
                      \ifmmode
                 2794
                        \gg
                      \else
                 2795
                        \save@sf@q{\nobreak
                 2796
                           \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%
                 2797
                 2799 \ProvideTextCommand{\guillemotleft}{OT1}{%
                     \ifmmode
                 2800
                        \11
                 2801
                      \else
                 2802
                 2803
                        \save@sf@q{\nobreak
                 2804
                           \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%
                 2806 \ProvideTextCommand{\guillemotright}{OT1}{%
                      \ifmmode
                 2807
                 2808
                         \gg
                      \else
                 2809
                 2810
                         \save@sf@q{\nobreak
                 2811
                           \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%
                 2812
                      \fi}
                 Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.
                 2813 \ProvideTextCommandDefault{\guillemetleft}{%
                 2814 \UseTextSymbol{OT1}{\guillemetleft}}
                 2815 \ProvideTextCommandDefault{\guillemetright}{%
                 2816 \UseTextSymbol{OT1}{\guillemetright}}
                 2817 \ProvideTextCommandDefault{\guillemotleft}{%
                 2818 \UseTextSymbol{OT1}{\guillemotleft}}
```

2819 \ProvideTextCommandDefault{\guillemotright}{%
2820 \UseTextSymbol{OT1}{\guillemotright}}

```
\guilsinglleft The single guillemets are not available in 0T1 encoding. They are faked.
\guilsinglright
                 2821 \ProvideTextCommand{\guilsinglleft}{0T1}{%
                     \ifmmode
                 2822
                 2823
                         <%
                       \else
                 2824
                         \save@sf@q{\nobreak
                 2825
                           \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%</pre>
                 2826
                     \fi}
                 2827
                 2828 \ProvideTextCommand{\guilsinglright}{OT1}{%
                     \ifmmode
                        >%
                      \else
                 2831
                 2832
                         \save@sf@q{\nobreak
                           \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%
                 2833
                      \fi}
                 2834
                  Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.
                 2835 \ProvideTextCommandDefault{\guilsinglleft}{%
                 2836 \UseTextSymbol{OT1}{\guilsinglleft}}
                 2837 \ProvideTextCommandDefault{\guilsinglright}{%
                 2838 \UseTextSymbol{OT1}{\guilsinglright}}
                  9.12.2 Letters
            \ij The dutch language uses the letter 'ij'. It is available in T1 encoded fonts, but not in the 0T1 encoded
            \IJ fonts. Therefore we fake it for the 0T1 encoding.
                 2839 \DeclareTextCommand{\ij}{OT1}{%
                 2840 i\kern-0.02em\bbl@allowhyphens j}
                 2841 \DeclareTextCommand{\IJ}{OT1}{%
                 2842    I\kern-0.02em\bbl@allowhyphens J}
                 2843 \DeclareTextCommand{\ij}{T1}{\char188}
                 2844 \DeclareTextCommand{\IJ}{T1}{\char156}
                  Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.
                 2845 \ProvideTextCommandDefault{\ij}{%
                 2846 \UseTextSymbol{OT1}{\ij}}
                 2847 \ProvideTextCommandDefault{\IJ}{%
                 2848 \UseTextSymbol{OT1}{\IJ}}
            \dj The croatian language needs the letters \dj and \DJ; they are available in the T1 encoding, but not in
            \DJ the 0T1 encoding by default.
                  Some code to construct these glyphs for the 0T1 encoding was made available to me by Stipčević
                  Mario, (stipcevic@olimp.irb.hr).
                 2849 \def\crrtic@{\hrule height0.1ex width0.3em}
                 2850 \def\crttic@{\hrule height0.1ex width0.33em}
                 2851 \def\ddj@{%
                 2852 \setbox0\hbox{d}\dimen@=\ht0
                 2853 \advance\dimen@1ex
                 2854 \dimen@.45\dimen@
                       \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@
                       \advance\dimen@ii.5ex
                      \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
                 2858 \def\DDJ@{%
                 2859 \setbox0\hbox{D}\dimen@=.55\ht0
```

correction for the dash position

correction for cmtt font

\dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

\dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

\advance\dimen@ii.15ex %

\advance\dimen@ii-.15\fontdimen7\font %

```
2864 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
2865 %
2866 \DeclareTextCommand{\dj}{0T1}{\ddj@ d}
2867 \DeclareTextCommand{\DJ}{0T1}{\DDJ@ D}
```

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.

```
2868 \ProvideTextCommandDefault{\dj}{%
2869 \UseTextSymbol{OT1}{\dj}}
2870 \ProvideTextCommandDefault{\DJ}{%
2871 \UseTextSymbol{OT1}{\DJ}}
```

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other encodings it is not available. Therefore we make it available here.

```
2872 \DeclareTextCommand{\SS}{OT1}{SS}
2873 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}
```

9.12.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them usable both outside and inside mathmode. They are defined with \ProvideTextCommandDefault, but this is very likely not required because their definitions are based on encoding-dependent macros.

```
\glq The 'german' single quotes.
 \label{eq:commandDefault} $$ \grq $_{2874} \ProvideTextCommandDefault{\glq}{\%}$
       2875 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
        The definition of \grq depends on the fontencoding. With T1 encoding no extra kerning is needed.
      2876 \ProvideTextCommand{\grq}{T1}{%
       2877 \textormath{\kern\z@\textquoteleft}{\mbox{\textquoteleft}}}
      2878 \ProvideTextCommand{\grq}{TU}{%
      2879 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
      2880 \ProvideTextCommand{\grq}{OT1}{%
            \save@sf@q{\kern-.0125em
               \textormath{\textquoteleft}{\mbox{\textquoteleft}}%
      2882
               \kern.07em\relax}}
      2883
       2884 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}
\glqq The 'german' double quotes.
\label{eq:commandDefault} $$ \operatorname{ProvideTextCommandDefault}_{\glqq}_{\%} $$
      2886 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
        The definition of \grqq depends on the fontencoding. With T1 encoding no extra kerning is needed.
      2887 \ProvideTextCommand{\grqq}{T1}{%
      2888 \textormath{\textguotedblleft}{\mbox{\textguotedblleft}}}
      2889 \ProvideTextCommand{\grqq}{TU}{%
      2890 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
      2891 \ProvideTextCommand{\grqq}{OT1}{%
      1000 \times 1000 \save@sf@q{\kern-.07em
               \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%
               \kern.07em\relax}}
       2895 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}
 \flq The 'french' single guillemets.
\label{eq:commandDefault} $$ \P_{2896} \Pr \sigma = \operatorname{CommandDefault} {\flq}_{\%} $$
      2897 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
      2898 \ProvideTextCommandDefault{\frq}{%
```

2899 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

```
\flqq The 'french' double guillemets.
      2900 \ProvideTextCommandDefault{\flqq}{%
      2901 \textormath{\guillemetleft}{\mbox{\guillemetleft}}}
      2902 \ProvideTextCommandDefault{\frqq}{%
          \textormath{\guillemetright}{\mbox{\guillemetright}}}
```

9.12.4 Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for instance, the 'umlaut' should be positioned lower than the default position for placing it over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can retain its normal position. For Dutch the same glyph is always placed in the lower position.

\umlauthigh \umlautlow To be able to provide both positions of \" we provide two commands to switch the positioning, the default will be \umlauthigh (the normal positioning).

```
2904 \def\umlauthigh{%
     \def\bbl@umlauta##1{\leavevmode\bgroup%
2906
         \expandafter\accent\csname\f@encoding dgpos\endcsname
         ##1\bbl@allowhyphens\egroup}%
2907
     \let\bbl@umlaute\bbl@umlauta}
2909 \def\umlautlow{%
     \def\bbl@umlauta{\protect\lower@umlaut}}
2911 \def\umlautelow{%
2912 \def\bbl@umlaute{\protect\lower@umlaut}}
2913 \umlauthigh
```

\lower@umlaut The command \lower@umlaut is used to position the \" closer to the letter.

We want the umlaut character lowered, nearer to the letter. To do this we need an extra $\langle dimen \rangle$ register.

```
2914 \expandafter\ifx\csname U@D\endcsname\relax
2915 \csname newdimen\endcsname\U@D
2916\fi
```

The following code fools TpX's make accent procedure about the current x-height of the font to force another placement of the umlaut character. First we have to save the current x-height of the font, because we'll change this font dimension and this is always done globally.

Then we compute the new x-height in such a way that the umlaut character is lowered to the base character. The value of .45ex depends on the METAFONT parameters with which the fonts were built. (Just try out, which value will look best.) If the new x-height is too low, it is not changed. Finally we call the \accent primitive, reset the old x-height and insert the base character in the argument.

```
2917 \def\lower@umlaut#1{%
     \leavevmode\bgroup
2918
       \U@D 1ex%
2919
        {\setbox\z@\hbox{%
2920
          \expandafter\char\csname\f@encoding dqpos\endcsname}%
2921
          \dimen@ -.45ex\advance\dimen@\ht\z@
2922
          \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%
2923
2924
        \expandafter\accent\csname\f@encoding dgpos\endcsname
2925
       \fontdimen5\font\U@D #1%
     \egroup}
2926
```

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to be sure that these definitions override the ones that are provided when the package fontenc with option OT1 is used. Therefore these declarations are postponed until the beginning of the document. Note these definitions only apply to some languages, but babel sets them for all languages - you may want to redefine \bbl@umlauta and/or \bbl@umlaute for a language in the corresponding ldf (using the babel switching mechanism, of course).

```
2927 \AtBeginDocument{%
```

```
\DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%
2928
2929
    \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%
    \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%
    \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%
    2932
    \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%
2934
    \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%
2935
    \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%
    \DeclareTextCompositeCommand{\"}{OT1}{0}{\bbl@umlauta{0}}%
    \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}}
```

Finally, make sure the default hyphenrules are defined (even if empty). For internal use, another empty \language is defined. Currently used in Amharic.

```
2939 \ifx\l@english\@undefined
2940 \chardef\l@english\z@
2941\fi
2942% The following is used to cancel rules in ini files (see Amharic).
2943 \ifx\l@babelnohyhens\@undefined
2944 \newlanguage\l@babelnohyphens
2945\fi
```

9.13 Layout

Layout is mainly intended to set bidi documents, but there is at least a tool useful in general.

```
2946 \bbl@trace{Bidi layout}
2947 \providecommand\IfBabelLayout[3]{#3}%
2948 \newcommand\BabelPatchSection[1]{%
     \@ifundefined{#1}{}{%
        \bbl@exp{\let\<bbl@ss@#1>\<#1>}%
2951
        \@namedef{#1}{%
2952
         \@ifstar{\bbl@presec@s{#1}}%
                  {\@dblarg{\bbl@presec@x{#1}}}}}
2953
2954 \def\bbl@presec@x#1[#2]#3{%
2955
     \bbl@exp{%
       \\\select@language@x{\bbl@main@language}%
2956
        \\\bbl@cs{sspre@#1}%
2958
       \\\bbl@cs{ss@#1}%
         [\\\foreignlanguage{\languagename}{\unexpanded{#2}}]%
         {\\\foreignlanguage{\languagename}{\unexpanded{#3}}}%
2960
        \\\select@language@x{\languagename}}}
2962 \def\bbl@presec@s#1#2{%
     \bbl@exp{%
        \\\select@language@x{\bbl@main@language}%
2964
        \\\bbl@cs{sspre@#1}%
2965
       \\\bbl@cs{ss@#1}*%
2966
         {\\\foreignlanguage{\languagename}{\unexpanded{#2}}}%
2967
        \\\select@language@x{\languagename}}}
2969 \IfBabelLayout{sectioning}%
     {\BabelPatchSection{part}%
      \BabelPatchSection{chapter}%
2972
      \BabelPatchSection{section}%
      \BabelPatchSection{subsection}%
2973
      \BabelPatchSection{subsubsection}%
2974
2975
      \BabelPatchSection{paragraph}%
2976
      \BabelPatchSection{subparagraph}%
      \def\babel@toc#1{%
2977
2978
        \select@language@x{\bbl@main@language}}}{}
```

```
2979 \IfBabelLayout{captions}%
2980 {\BabelPatchSection{caption}}{}
```

9.14 Load engine specific macros

```
2981 \bbl@trace{Input engine specific macros}
2982 \ifcase\bbl@engine
2983 \input txtbabel.def
2984 \or
2985 \input luababel.def
2986 \or
2987 \input xebabel.def
2988 \fi
```

9.15 Creating and modifying languages

\babelprovide is a general purpose tool for creating and modifying languages. It creates the language infrastructure, and loads, if requested, an ini file. It may be used in conjunction to previouly loaded ldf files.

```
2989 \bbl@trace{Creating languages and reading ini files}
2990 \newcommand\babelprovide[2][]{%
     \let\bbl@savelangname\languagename
     \edef\bbl@savelocaleid{\the\localeid}%
     % Set name and locale id
2993
     \edef\languagename{#2}%
2994
     % \global\@namedef{bbl@lcname@#2}{#2}%
     \bbl@id@assign
     \let\bbl@KVP@captions\@nil
     \let\bbl@KVP@date\@nil
2998
     \let\bbl@KVP@import\@nil
    \let\bbl@KVP@main\@nil
3000
    \let\bbl@KVP@script\@nil
    \let\bbl@KVP@language\@nil
    \let\bbl@KVP@hyphenrules\@nil
    \let\bbl@KVP@mapfont\@nil
    \let\bbl@KVP@maparabic\@nil
    \let\bbl@KVP@mapdigits\@nil
     \let\bbl@KVP@intraspace\@nil
     \let\bbl@KVP@intrapenalty\@nil
     \let\bbl@KVP@onchar\@nil
     \let\bbl@KVP@transforms\@nil
     \let\bbl@KVP@alph\@nil
    \let\bbl@KVP@Alph\@nil
3012
     \let\bbl@KVP@labels\@nil
3013
     \bbl@csarg\let{KVP@labels*}\@nil
3014
     \global\let\bbl@inidata\@empty
     \bbl@forkv{#1}{% TODO - error handling
3017
       \in@{/}{##1}%
       \ifin@
3018
         \bbl@renewinikey##1\@@{##2}%
3019
       \else
3020
3021
         \bbl@csarg\def{KVP@##1}{##2}%
3022
       \fi}%
     % == init ==
     \ifx\bbl@screset\@undefined
3024
       \bbl@ldfinit
3025
     ۱fi
3026
3027
     % ==
    \let\bbl@lbkflag\relax % \@empty = do setup linebreak
```

```
\bbl@ifunset{date#2}%
3029
3030
       {\let\bbl@lbkflag\@empty}% new
        {\ifx\bbl@KVP@hyphenrules\@nil\else
3031
3032
           \let\bbl@lbkflag\@empty
3033
3034
        \ifx\bbl@KVP@import\@nil\else
           \let\bbl@lbkflag\@empty
3035
3036
        \fi}%
3037
     % == import, captions ==
     \ifx\bbl@KVP@import\@nil\else
        \bbl@exp{\\bbl@ifblank{\bbl@KVP@import}}%
3039
3040
          {\ifx\bbl@initoload\relax
             \begingroup
3041
               \def\BabelBeforeIni##1##2{\gdef\bbl@KVP@import{##1}\endinput}%
3042
3043
               \bbl@input@texini{#2}%
3044
             \endgroup
3045
             \xdef\bbl@KVP@import{\bbl@initoload}%
3046
3047
           \fi}%
3048
          {}%
3049
     ۱fi
3050
     \ifx\bbl@KVP@captions\@nil
       \let\bbl@KVP@captions\bbl@KVP@import
3051
3052
3053
     \ifx\bbl@KVP@transforms\@nil\else
3054
       \bbl@replace\bbl@KVP@transforms{ }{,}%
3055
3056
3057
     % Load ini
     \bbl@ifunset{date#2}%
       {\bbl@provide@new{#2}}%
3059
       {\bbl@ifblank{#1}%
3060
          {}% With \bbl@load@basic below
3061
3062
          {\bbl@provide@renew{#2}}}%
     % Post tasks
3063
     % -----
     % == ensure captions ==
     \ifx\bbl@KVP@captions\@nil\else
3066
       \bbl@ifunset{bbl@extracaps@#2}%
3067
          {\bbl@exp{\\babelensure[exclude=\\today]{#2}}}%
3068
          {\toks@\expandafter\expandafter\expandafter
3069
3070
            {\csname bbl@extracaps@#2\endcsname}%
           \bbl@exp{\\babelensure[exclude=\\\today,include=\the\toks@}]{#2}}%
3071
        \bbl@ifunset{bbl@ensure@\languagename}%
3072
3073
          {\bbl@exp{%
            \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%
3074
              \\\foreignlanguage{\languagename}%
3075
3076
              {####1}}}%
3077
          {}%
        \bbl@exp{%
3078
           \\bbl@toglobal\<bbl@ensure@\languagename>%
3079
           \\\bbl@toglobal\<bbl@ensure@\languagename\space>}%
3080
     \fi
3081
     % ==
3082
     % At this point all parameters are defined if 'import'. Now we
3083
     % execute some code depending on them. But what about if nothing was
     % imported? We just set the basic parameters, but still loading the
3086
     % whole ini file.
     \bbl@load@basic{#2}%
3087
```

```
% == script, language ==
3088
3089
     % Override the values from ini or defines them
     \ifx\bbl@KVP@script\@nil\else
3091
        \bbl@csarg\edef{sname@#2}{\bbl@KVP@script}%
3092
3093
     \ifx\bbl@KVP@language\@nil\else
3094
       \bbl@csarg\edef{lname@#2}{\bbl@KVP@language}%
3095
     \fi
3096
      % == onchar ==
     \ifx\bbl@KVP@onchar\@nil\else
        \bbl@luahyphenate
3098
       \directlua{
3099
          if Babel.locale_mapped == nil then
3100
3101
           Babel.locale_mapped = true
3102
           Babel.linebreaking.add_before(Babel.locale_map)
3103
           Babel.loc_to_scr = {}
           Babel.chr to loc = Babel.chr to loc or {}
3104
3105
          end}%
3106
        \bbl@xin@{ ids }{ \bbl@KVP@onchar\space}%
3107
        \ifin@
3108
          \ifx\bbl@starthyphens\@undefined % Needed if no explicit selection
3109
            \AddBabelHook{babel-onchar}{beforestart}{{\bbl@starthyphens}}%
3110
          \bbl@exp{\\bbl@add\\bbl@starthyphens
3111
            {\\bbl@patterns@lua{\languagename}}}%
3112
          % TODO - error/warning if no script
3113
3114
          \directlua{
           if Babel.script_blocks['\bbl@cl{sbcp}'] then
3115
              Babel.loc_to_scr[\the\localeid] =
3116
                Babel.script blocks['\bbl@cl{sbcp}']
3117
              Babel.locale_props[\the\localeid].lc = \the\localeid\space
3118
3119
              Babel.locale_props[\the\localeid].lg = \the\@nameuse{l@\languagename}\space
3120
           end
3121
         }%
       \fi
3122
        \bbl@xin@{ fonts }{ \bbl@KVP@onchar\space}%
3123
        \ifin@
          \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
3125
          \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
3126
          \directlua{
3127
           if Babel.script_blocks['\bbl@cl{sbcp}'] then
3128
3129
              Babel.loc_to_scr[\the\localeid] =
                Babel.script blocks['\bbl@cl{sbcp}']
3130
           end}%
3131
          \ifx\bbl@mapselect\@undefined
3132
            \AtBeginDocument{%
3133
              \expandafter\bbl@add\csname selectfont \endcsname{{\bbl@mapselect}}%
3134
3135
              {\selectfont}}%
            \def\bbl@mapselect{%
3136
              \let\bbl@mapselect\relax
3137
3138
              \edef\bbl@prefontid{\fontid\font}}%
            \def\bbl@mapdir##1{%
3139
              {\def\languagename{##1}%
3140
               \let\bbl@ifrestoring\@firstoftwo % To avoid font warning
3141
3142
               \bbl@switchfont
               \directlua{
3143
                 Babel.locale props[\the\csname bbl@id@@##1\endcsname]%
3144
                         ['/\bbl@prefontid'] = \fontid\font\space}}}%
3145
          \fi
3146
```

```
\bbl@exp{\\bbl@add\\bbl@mapselect{\\bbl@mapdir{\languagename}}}%
3147
3148
       \fi
       % TODO - catch non-valid values
3149
3150
     \fi
3151
     % == mapfont ==
     % For bidi texts, to switch the font based on direction
     \ifx\bbl@KVP@mapfont\@nil\else
3154
        \bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%
3155
         {\bbl@error{Option `\bbl@KVP@mapfont' unknown for\\%
3156
                      mapfont. Use `direction'.%
                     {See the manual for details.}}}%
3157
3158
        \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
        \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
3159
        \ifx\bbl@mapselect\@undefined
3160
3161
         \AtBeginDocument{%
3162
            \expandafter\bbl@add\csname selectfont \endcsname{{\bbl@mapselect}}%
3163
            {\selectfont}}%
3164
         \def\bbl@mapselect{%
3165
            \let\bbl@mapselect\relax
3166
            \edef\bbl@prefontid{\fontid\font}}%
3167
         \def\bbl@mapdir##1{%
3168
            {\def\languagename{##1}%
             \let\bbl@ifrestoring\@firstoftwo % avoid font warning
             \bbl@switchfont
3170
3171
             \directlua{Babel.fontmap
               [\the\csname bbl@wdir@##1\endcsname]%
3172
               [\bbl@prefontid]=\fontid\font}}}%
3173
       \fi
3174
       \bbl@exp{\\bbl@add\\bbl@mapselect{\\bbl@mapdir{\languagename}}}%
3175
3176
     % == Line breaking: intraspace, intrapenalty ==
     % For CJK, East Asian, Southeast Asian, if interspace in ini
     \ifx\bbl@KVP@intraspace\@nil\else % We can override the ini or set
3180
        \bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspace}%
     ۱fi
3181
     \bbl@provide@intraspace
3182
     % == Line breaking: hyphenate.other.locale/.script==
3184
     \ifx\bbl@lbkflag\@empty
       \bbl@ifunset{bbl@hyotl@\languagename}{}%
3185
         {\bbl@csarg\bbl@replace{hyotl@\languagename}{ }{,}%
3186
           \bbl@startcommands*{\languagename}{}%
3187
3188
             \bbl@csarg\bbl@foreach{hyotl@\languagename}{%
               \ifcase\bbl@engine
3189
3190
                 \ifnum##1<257
3191
                   \SetHyphenMap{\BabelLower{##1}{##1}}%
                 \fi
3192
               \else
3193
3194
                 \SetHyphenMap{\BabelLower{##1}{##1}}%
               \fi}%
3195
           \bbl@endcommands}%
        \bbl@ifunset{bbl@hyots@\languagename}{}%
3197
         {\bbl@csarg\bbl@replace{hyots@\languagename}{ }{,}%
3198
           \bbl@csarg\bbl@foreach{hyots@\languagename}{%
3199
             \ifcase\bbl@engine
3200
               \ifnum##1<257
3201
                 \global\lccode##1=##1\relax
3202
3203
               \fi
3204
             \else
               \global\lccode##1=##1\relax
3205
```

```
\fi}}%
3206
3207
     \fi
     % == Counters: maparabic ==
3209
     % Native digits, if provided in ini (TeX level, xe and lua)
     \ifcase\bbl@engine\else
3210
3211
        \bbl@ifunset{bbl@dgnat@\languagename}{}%
3212
          {\expandafter\ifx\csname bbl@dgnat@\languagename\endcsname\@empty\else
3213
            \expandafter\expandafter\expandafter
3214
            \bbl@setdigits\csname bbl@dgnat@\languagename\endcsname
3215
            \ifx\bbl@KVP@maparabic\@nil\else
              \ifx\bbl@latinarabic\@undefined
3216
3217
                \expandafter\let\expandafter\@arabic
                  \csname bbl@counter@\languagename\endcsname
3218
                        % ie, if layout=counters, which redefines \@arabic
3219
              \else
3220
                \expandafter\let\expandafter\bbl@latinarabic
3221
                  \csname bbl@counter@\languagename\endcsname
              \fi
3222
3223
            \fi
3224
          \fi}%
     ۱fi
3225
3226
     % == Counters: mapdigits ==
3227
     % Native digits (lua level).
     \ifodd\bbl@engine
        \ifx\bbl@KVP@mapdigits\@nil\else
3229
          \bbl@ifunset{bbl@dgnat@\languagename}{}%
3230
            {\RequirePackage{luatexbase}%
3231
3232
             \bbl@activate@preotf
             \directlua{
3233
               Babel = Babel or {} *** -> presets in luababel
3234
               Babel.digits mapped = true
3235
3236
               Babel.digits = Babel.digits or {}
3237
               Babel.digits[\the\localeid] =
                 table.pack(string.utfvalue('\bbl@cl{dgnat}'))
3238
3239
               if not Babel.numbers then
3240
                 function Babel.numbers(head)
                   local LOCALE = luatexbase.registernumber'bbl@attr@locale'
                   local GLYPH = node.id'glyph'
3242
                   local inmath = false
3243
                   for item in node.traverse(head) do
3244
                     if not inmath and item.id == GLYPH then
3245
                        local temp = node.get_attribute(item, LOCALE)
3246
3247
                        if Babel.digits[temp] then
                          local chr = item.char
3248
3249
                          if chr > 47 and chr < 58 then
3250
                            item.char = Babel.digits[temp][chr-47]
                         end
3251
                       end
3252
                     elseif item.id == node.id'math' then
3253
                        inmath = (item.subtype == 0)
3254
                     end
3255
3256
                   end
                   return head
3257
                 end
3258
3259
               end
            }}%
3260
3261
       \fi
3262
     % == Counters: alph, Alph ==
3263
     % What if extras<lang> contains a \babel@save\@alph? It won't be
3264
```

```
% restored correctly when exiting the language, so we ignore
     % this change with the \bbl@alph@saved trick.
     \ifx\bbl@KVP@alph\@nil\else
3268
       \toks@\expandafter\expandafter\expandafter{%
3269
          \csname extras\languagename\endcsname}%
3270
        \bbl@exp{%
3271
          \def\<extras\languagename>{%
3272
            \let\\\bbl@alph@saved\\\@alph
3273
            \the\toks@
3274
            \let\\\@alph\\\bbl@alph@saved
            \\\babel@save\\\@alph
3275
3276
            \let\\\@alph\<bbl@cntr@\bbl@KVP@alph @\languagename>}}%
     ۱fi
3277
     \ifx\bbl@KVP@Alph\@nil\else
3278
3279
       \toks@\expandafter\expandafter\expandafter{%
3280
          \csname extras\languagename\endcsname}%
3281
        \bbl@exp{%
3282
          \def\<extras\languagename>{%
3283
            \let\\\bbl@Alph@saved\\\@Alph
3284
            \the\toks@
3285
            \let\\\@Alph\\\bbl@Alph@saved
3286
            \\\babel@save\\\@Alph
            \let\\\@Alph\<bbl@cntr@\bbl@KVP@Alph @\languagename>}}%
3287
     \fi
3288
     % == require.babel in ini ==
3289
     % To load or reaload the babel-*.tex, if require.babel in ini
3290
     \ifx\bbl@beforestart\relax\else % But not in doc aux or body
3291
       \bbl@ifunset{bbl@rqtex@\languagename}{}%
3292
3293
          {\expandafter\ifx\csname bbl@rqtex@\languagename\endcsname\@empty\else
             \let\BabelBeforeIni\@gobbletwo
3294
3295
             \chardef\atcatcode=\catcode`\@
3296
             \catcode`\@=11\relax
             \bbl@input@texini{\bbl@cs{rqtex@\languagename}}%
3297
3298
             \catcode`\@=\atcatcode
             \let\atcatcode\relax
3299
           \fi}%
3300
     \fi
3301
3302
     % == main ==
     \ifx\bbl@KVP@main\@nil % Restore only if not 'main'
       \let\languagename\bbl@savelangname
3304
        \chardef\localeid\bbl@savelocaleid\relax
3305
3306
     \fi}
 Depending on whether or not the language exists, we define two macros.
3307 \def\bbl@provide@new#1{%
     \@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands
     \@namedef{extras#1}{}%
3310
     \@namedef{noextras#1}{}%
     \bbl@startcommands*{#1}{captions}%
3311
                                           and also if import, implicit
       \ifx\bbl@KVP@captions\@nil %
3312
          \def\bbl@tempb##1{%
                                           elt for \bbl@captionslist
3313
            \fint 1\ensuremath{$\mathbb{N}$}
3315
              \bbl@exp{%
3316
                \\\SetString\\##1{%
                  \\\bbl@nocaption{\bbl@stripslash##1}{#1\bbl@stripslash##1}}%
3317
3318
              \expandafter\bbl@tempb
3319
3320
          \expandafter\bbl@tempb\bbl@captionslist\@empty
3321
        \else
```

```
3322
          \ifx\bbl@initoload\relax
3323
            \bbl@read@ini{\bbl@KVP@captions}2% % Here letters cat = 11
3324
3325
            \bbl@read@ini{\bbl@initoload}2%
                                                  % Same
3326
          \fi
3327
        \fi
     \StartBabelCommands*{#1}{date}%
3328
       \ifx\bbl@KVP@import\@nil
3329
3330
          \bbl@exp{%
3331
            \\\SetString\\\today{\\\bbl@nocaption{today}{#1today}}}%
3332
3333
          \bbl@savetoday
          \bbl@savedate
3334
        ۱fi
3335
3336
     \bbl@endcommands
     \bbl@load@basic{#1}%
     % == hyphenmins == (only if new)
3339
     \bbl@exp{%
3340
        \gdef\<#1hyphenmins>{%
          {\bf \{\bbl@ifunset\{bbl@lfthm@#1\}\{2\}\{\bbl@cs\{lfthm@#1\}\}\}\%}
3341
          {\bf \{\bbl@ifunset\{bbl@rgthm@#1\}\{3\}\{\bbl@cs\{rgthm@#1\}\}\}\}}\%
3342
     % == hyphenrules ==
3343
     \bbl@provide@hyphens{#1}%
     % == frenchspacing == (only if new)
     \bbl@ifunset{bbl@frspc@#1}{}%
3346
        {\edef\bbl@tempa{\bbl@cl{frspc}}%
3347
         \edef\bbl@tempa{\expandafter\@car\bbl@tempa\@nil}%
3348
         \if u\bbl@tempa
                                   % do nothing
3349
3350
         \else\if n\bbl@tempa
                                   % non french
           \expandafter\bbl@add\csname extras#1\endcsname{%
3351
3352
             \let\bbl@elt\bbl@fs@elt@i
3353
             \bbl@fs@chars}%
         \else\if y\bbl@tempa
                                   % french
3354
           \expandafter\bbl@add\csname extras#1\endcsname{%
3355
             \let\bbl@elt\bbl@fs@elt@ii
3356
             \bbl@fs@chars}%
3357
         \fi\fi\fi}%
3358
3359
     \ifx\bbl@KVP@main\@nil\else
3360
         \expandafter\main@language\expandafter{#1}%
3361
     \fi}
3362
3363 % A couple of macros used above, to avoid hashes #######...
3364 \def\bbl@fs@elt@i#1#2#3{%
     \ifnum\sfcode`#1=#2\relax
        \babel@savevariable{\sfcode`#1}%
3366
        \sfcode`#1=#3\relax
3367
    \fi}%
3368
3369 \def\bbl@fs@elt@ii#1#2#3{%
    \ifnum\sfcode`#1=#3\relax
        \babel@savevariable{\sfcode`#1}%
3371
        \sfcode`#1=#2\relax
3372
3373
     \fi}%
3374 %
3375 \def\bbl@provide@renew#1{%
     \ifx\bbl@KVP@captions\@nil\else
3377
       \StartBabelCommands*{#1}{captions}%
          \bbl@read@ini{\bbl@KVP@captions}2% % Here all letters cat = 11
        \EndBabelCommands
3379
3380 \fi
```

```
3381 \ifx\bbl@KVP@import\@nil\else
3382
      \StartBabelCommands*{#1}{date}%
         \bbl@savetoday
3383
3384
         \bbl@savedate
3385
      \EndBabelCommands
3386
     \fi
3387
     % == hyphenrules ==
3388
     \ifx\bbl@lbkflag\@empty
3389
       \bbl@provide@hyphens{#1}%
3390
     \fi}
```

Load the basic parameters (ids, typography, counters, and a few more), while captions and dates are left out. But it may happen some data has been loaded before automatically, so we first discard the

```
saved values.
3391 \def\bbl@load@basic#1{%
     \bbl@ifunset{bbl@inidata@\languagename}{}%
        {\getlocaleproperty\bbl@tempa{\languagename}{identification/load.level}%
3393
3394
         \ifcase\bbl@tempa
           \bbl@csarg\let{lname@\languagename}\relax
3395
         \fi}%
3396
     \bbl@ifunset{bbl@lname@#1}%
3397
       {\def\BabelBeforeIni##1##2{%
3398
           \begingroup
3399
             \let\bbl@ini@captions@aux\@gobbletwo
3400
3401
             \def\bbl@inidate ####1.####2.####3.####4\relax ####5####6{}%
             \bbl@read@ini{##1}1%
3402
3403
             \ifx\bbl@initoload\relax\endinput\fi
3404
           \endgroup}%
                            % boxed, to avoid extra spaces:
3405
         \begingroup
3406
           \ifx\bbl@initoload\relax
             \bbl@input@texini{#1}%
3407
3408
             \setbox\z@\hbox{\BabelBeforeIni{\bbl@initoload}{}}%
3409
3410
           \fi
         \endgroup}%
3411
3412
 The hyphenrules option is handled with an auxiliary macro.
3413 \def\bbl@provide@hyphens#1{%
     \let\bbl@tempa\relax
     \ifx\bbl@KVP@hyphenrules\@nil\else
        \bbl@replace\bbl@KVP@hyphenrules{ }{,}%
        \bbl@foreach\bbl@KVP@hyphenrules{%
```

```
3415
3416
3417
         \ifx\bbl@tempa\relax
                                  % if not yet found
3418
            \bbl@ifsamestring{##1}{+}%
3419
              {{\bbl@exp{\\addlanguage\<l@##1>}}}%
3420
3421
              {}%
3422
            \bbl@ifunset{l@##1}%
3423
              {}%
              {\bbl@exp{\let\bbl@tempa\<l@##1>}}%
3424
         \fi}%
3425
     ۱fi
3426
     \ifx\bbl@tempa\relax %
3427
                                     if no opt or no language in opt found
       \ifx\bbl@KVP@import\@nil
3428
         \ifx\bbl@initoload\relax\else
3429
                                     and hyphenrules is not empty
3430
           \bbl@exp{%
              \\bbl@ifblank{\bbl@cs{hyphr@#1}}%
3431
3432
                {\left( \cdot \right)}
3433
```

```
١fi
3434
3435
        \else % if importing
          \bbl@exp{%
                                          and hyphenrules is not empty
3436
3437
            \\\bbl@ifblank{\bbl@cs{hyphr@#1}}%
3438
3439
              {\let\\\bbl@tempa\<l@\bbl@cl{hyphr}>}}%
3440
       ١fi
     ۱fi
3441
3442
     \bbl@ifunset{bbl@tempa}%
                                      ie, relax or undefined
        {\bbl@ifunset{l@#1}%
                                      no hyphenrules found - fallback
           {\bbl@exp{\\\addialect\<l@#1>\language}}%
3444
3445
           {}}%
                                       so, l@<lang> is ok - nothing to do
        {\bbl@exp{\\\adddialect\<l@#1>\bbl@tempa}}}% found in opt list or ini
3446
 The reader of babel-...tex files. We reset temporarily some catcodes.
3447 \def\bbl@input@texini#1{%
3448
     \bbl@bsphack
        \bbl@exp{%
3449
          \catcode`\\\%=14 \catcode`\\\\=0
3450
          \catcode`\\\{=1 \catcode`\\\}=2
3451
          \lowercase{\\\InputIfFileExists{babel-#1.tex}{}}}%
3452
          \catcode`\\\%=\the\catcode`\%\relax
3453
```

\catcode`\\\\=\the\catcode`\\\relax

\catcode`\\\{=\the\catcode`\{\relax

\catcode`\\\}=\the\catcode`\}\relax}%

3454

3455

3456

3457

\bbl@esphack}

The following macros read and store ini files (but don't process them). For each line, there are 3 possible actions: ignore if starts with ;, switch section if starts with [, and store otherwise. There are used in the first step of \bbl@read@ini.

```
3458 \def\bbl@iniline#1\bbl@iniline{%
3459 \@ifnextchar[\bbl@inisect{\@ifnextchar;\bbl@iniskip\bbl@inistore}#1\@@}% ]
3460 \ensuremath{ def \bbl@inisect[\#1]\#2\ensuremath{ @(\def\bbl@section\{\#1\})\%}
3461 \def\bbl@iniskip#1\@@{}%
                                   if starts with;
3462 \def\bbl@inistore#1=#2\@@{%
                                       full (default)
     \bbl@trim@def\bbl@tempa{#1}%
3464
     \bbl@trim\toks@{#2}%
     \bbl@ifunset{bbl@KVP@\bbl@section/\bbl@tempa}%
3465
3466
       {\bbl@exp{%
3467
          \\\g@addto@macro\\\bbl@inidata{%
            \\\bbl@elt{\bbl@section}{\bbl@tempa}{\the\toks@}}}}%
3468
3470 \def\bbl@inistore@min#1=#2\@@{% minimal (maybe set in \bbl@read@ini)
     \bbl@trim@def\bbl@tempa{#1}%
     \bbl@trim\toks@{#2}%
3472
     \bbl@xin@{.identification.}{.\bbl@section.}%
3473
3474
     \ifin@
        \bbl@exp{\\\g@addto@macro\\\bbl@inidata{%
3475
3476
          \\bbl@elt{identification}{\bbl@tempa}{\the\toks@}}}%
3477
     \fi}%
```

Now, the 'main loop', which **must be executed inside a group**. At this point, \bbl@inidata may contain data declared in \babelprovide, with 'slashed' keys. There are 3 steps: first read the ini file and store it; then traverse the stored values, and process some groups if required (date, captions, labels, counters); finally, 'export' some values by defining global macros (identification, typography, characters, numbers). The second argument is 0 when called to read the minimal data for fonts; with \babelprovide it's either 1 or 2.

```
3478 \ifx\bbl@readstream\@undefined
3479 \csname newread\endcsname\bbl@readstream
```

```
3480\fi
3481 \def\bbl@read@ini#1#2{%
     \openin\bbl@readstream=babel-#1.ini
     \ifeof\bbl@readstream
3484
       \bbl@error
3485
         {There is no ini file for the requested language\\%
3486
          (#1). Perhaps you misspelled it or your installation\\%
3487
          is not complete.}%
3488
         {Fix the name or reinstall babel.}%
3489
     \else
       % Store ini data in \bbl@inidata
3491
       \catcode`\[=12 \catcode`\]=12 \catcode`\&=12
       \color=12 \color=12 \color=14 \color=12
3492
3493
       \bbl@info{Importing
3494
                    \ifcase#2font and identification \or basic \fi
3495
                     data for \languagename\\%
                  from babel-#1.ini. Reported}%
3496
3497
       \lim 2=\z@
3498
         \global\let\bbl@inidata\@empty
         \let\bbl@inistore\bbl@inistore@min
3499
                                                 % Remember it's local
3500
       \def\bbl@section{identification}%
3501
       \bbl@exp{\\bbl@inistore tag.ini=#1\\\@@}%
3502
       \bbl@inistore load.level=#2\@@
3504
       \loop
       \if T\ifeof\bbl@readstream F\fi T\relax % Trick, because inside \loop
3505
         \endlinechar\m@ne
3506
         \read\bbl@readstream to \bbl@line
3507
         \endlinechar`\^^M
3508
         \ifx\bbl@line\@empty\else
3509
3510
            \expandafter\bbl@iniline\bbl@line\bbl@iniline
3511
         \fi
3512
       \repeat
       % Process stored data
3513
       \bbl@csarg\xdef{lini@\languagename}{#1}%
3514
       \let\bbl@savestrings\@empty
3515
       \let\bbl@savetoday\@empty
3517
       \let\bbl@savedate\@empty
       \def\bbl@elt##1##2##3{%
3518
         \def\bbl@section{##1}%
3519
         \in@{=date.}{=##1}% Find a better place
3520
         \ifin@
3521
            \bbl@ini@calendar{##1}%
3522
3523
         \global\bbl@csarg\let{bbl@KVP@##1/##2}\relax
3524
         \bbl@ifunset{bbl@inikv@##1}{}%
3525
            {\csname bbl@inikv@##1\endcsname{##2}{##3}}}%
3526
       \bbl@inidata
3527
       % 'Export' data
3528
       \bbl@ini@exports{#2}%
       \global\bbl@csarg\let{inidata@\languagename}\bbl@inidata
3530
        \global\let\bbl@inidata\@empty
3531
       \bbl@exp{\\bbl@add@list\\bbl@ini@loaded{\languagename}}%
3532
       \bbl@toglobal\bbl@ini@loaded
3533
 A somewhat hackish tool to handle calendar sections. To be improved.
3535 \def\bbl@ini@calendar#1{%
3536 \lowercase{\def\bbl@tempa{=#1=}}%
```

```
3537 \bbl@replace\bbl@tempa{=date.gregorian}{}%
3538 \bbl@replace\bbl@tempa{=date.}{}%
3539 \in@{.licr=}{#1=}%
3540 \ifin@
3541
      \ifcase\bbl@engine
3542
         \bbl@replace\bbl@tempa{.licr=}{}%
3543
      \else
3544
         \let\bbl@tempa\relax
3545
      ۱fi
3546 \fi
    \ifx\bbl@tempa\relax\else
3547
3548
      \bbl@replace\bbl@tempa{=}{}%
3549
      \bbl@exp{%
         \def\<bbl@inikv@#1>####1###2{%
3550
3551
           \\bbl@inidate###1...\relax{####2}{\bbl@tempa}}}%
3552 \fi}
```

A key with a slash in \babelprovide replaces the value in the ini file (which is ignored altogether). The mechanism is simple (but suboptimal): add the data to the ini one (at this point the ini file has not yet been read), and define a dummy macro. When the ini file is read, just skip the corresponding key and reset the macro (in \bbl@inistore above).

```
3553 \def\bbl@renewinikey#1/#2\@@#3{%
    \edef\bbl@tempa{\zap@space #1 \@empty}%
                                          section
    \edef\bbl@tempb{\zap@space #2 \@empty}%
3555
                                          key
    \bbl@trim\toks@{#3}%
                                          value
3556
    \bbl@exp{%
3558
      \global\let\<bbl@KVP@\bbl@tempa/\bbl@tempb>\\\@empty % just a flag
3559
      \\\g@addto@macro\\\bbl@inidata{%
         3560
```

The previous assignments are local, so we need to export them. If the value is empty, we can provide a default value.

```
3561 \def\bbl@exportkey#1#2#3{%
3562 \bbl@ifunset{bbl@ekv@#2}%
3563     {\bbl@csarg\gdef{#1@\languagename}{#3}}%
3564     {\expandafter\ifx\csname bbl@ekv@#2\endcsname\@empty
3565     \bbl@csarg\gdef{#1@\languagename}{#3}%
3566     \else
3567     \bbl@exp{\global\let\<bbl@#1@\languagename>\<bbl@ekv@#2>}%
3568     \fi}}
```

Key-value pairs are treated differently depending on the section in the ini file. The following macros are the readers for identification and typography. Note \bbl@ini@exports is called always (via \bbl@inisec), while \bbl@after@ini must be called explicitly after \bbl@read@ini if necessary.

```
3569 \def\bbl@iniwarning#1{%
3570
     \bbl@ifunset{bbl@@kv@identification.warning#1}{}%
3571
        {\bbl@warning{%
           From babel-\bbl@cs{lini@\languagename}.ini:\\%
3572
3573
           \bbl@cs{@kv@identification.warning#1}\\%
3574
           Reported }}}
3575 %
3576 \let\bbl@release@transforms\@empty
3578 \def\bbl@ini@exports#1{%
     % Identification always exported
     \bbl@iniwarning{}%
     \ifcase\bbl@engine
3582
        \bbl@iniwarning{.pdflatex}%
3583
     \or
```

```
\bbl@iniwarning{.lualatex}%
3584
3585
     \or
       \bbl@iniwarning{.xelatex}%
3586
3587
3588
      \bbl@exportkey{elname}{identification.name.english}{}%
3589
     \bbl@exp{\\bbl@exportkey{lname}{identification.name.opentype}%
3590
        {\csname bbl@elname@\languagename\endcsname}}%
3591
     \bbl@exportkey{tbcp}{identification.tag.bcp47}{}%
3592
     \bbl@exportkey{lbcp}{identification.language.tag.bcp47}{}%
     \bbl@exportkey{lotf}{identification.tag.opentype}{dflt}%
      \bbl@exportkey{esname}{identification.script.name}{}%
3594
3595
      \bbl@exp{\\bbl@exportkey{sname}{identification.script.name.opentype}%
3596
        {\csname bbl@esname@\languagename\endcsname}}%
      \bbl@exportkey{sbcp}{identification.script.tag.bcp47}{}%
3597
3598
     \bbl@exportkey{sotf}{identification.script.tag.opentype}{DFLT}%
     % Also maps bcp47 -> languagename
     \ifbbl@bcptoname
3600
3601
        \bbl@csarg\xdef{bcp@map@\bbl@cl{tbcp}}{\languagename}%
3602
     % Finish here transforms, too
3603
3604
     \bbl@release@transforms\relax % \relax closes the last item.
     % Conditional
     \ifnum#1>\z@
                           % 0 = only info, 1, 2 = basic, (re)new
        \bbl@exportkey{lnbrk}{typography.linebreaking}{h}%
        \bbl@exportkey{hyphr}{typography.hyphenrules}{}%
3608
        \bbl@exportkey{lfthm}{typography.lefthyphenmin}{2}%
3609
        \bbl@exportkey{rgthm}{typography.righthyphenmin}{3}%
3610
        \bbl@exportkey{prehc}{typography.prehyphenchar}{}%
3611
3612
        \bbl@exportkey{hyotl}{typography.hyphenate.other.locale}{}%
        \bbl@exportkey{hyots}{typography.hyphenate.other.script}{}%
3613
3614
        \bbl@exportkev{intsp}{typography.intraspace}{}%
3615
        \bbl@exportkey{chrng}{characters.ranges}{}%
3616
        \bbl@exportkey{dgnat}{numbers.digits.native}{}%
3617
        \bbl@exportkey{frspc}{typography.frenchspacing}{u}%
        \ifnum#1=\tw@
3618
                                 % only (re)new
          \bbl@exportkey{rqtex}{identification.require.babel}{}%
3619
          \bbl@toglobal\bbl@savetoday
3620
          \bbl@toglobal\bbl@savedate
3621
          \bbl@savestrings
3622
        \fi
3623
     \fi}
3624
 A shared handler for key=val lines to be stored in \bbl@@kv@<section>.<key>.
3625 \def\bbl@inikv#1#2{%
                              key=value
     \toks@{#2}%
                              This hides #'s from ini values
     \bbl@csarg\edef{@kv@\bbl@section.#1}{\the\toks@}}
 By default, the following sections are just read. Actions are taken later.
3628 \let\bbl@inikv@identification\bbl@inikv
3629 \let\bbl@inikv@typography\bbl@inikv
3630 \let\bbl@inikv@characters\bbl@inikv
3631 \let\bbl@inikv@numbers\bbl@inikv
 Additive numerals require an additional definition. When .1 is found, two macros are defined - the
 basic one, without .1 called by \localenumeral, and another one preserving the trailing .1 for the
 'units'.
3632 \def\bbl@inikv@counters#1#2{%
     \bbl@ifsamestring{#1}{digits}%
3634
        {\bbl@error{The counter name 'digits' is reserved for mapping\\%
```

```
decimal digits}%
3635
3636
                   {Use another name.}}%
       {}%
3637
3638
     \def\bbl@tempc{#1}%
3639
     \bbl@trim@def{\bbl@tempb*}{#2}%
3640
     \in@{.1$}{#1$}%
3641
     \ifin@
3642
        \bbl@replace\bbl@tempc{.1}{}%
3643
        \bbl@csarg\protected@xdef{cntr@\bbl@tempc @\languagename}{%
3644
          \noexpand\bbl@alphnumeral{\bbl@tempc}}%
     \fi
3645
3646
     \in@{.F.}{#1}%
3647
     \int(S.){\#1}\fi
3648
3649
       \bbl@csarg\protected@xdef{cntr@#1@\languagename}{\bbl@tempb*}%
3650
     \else
        \toks@{}% Required by \bbl@buildifcase, which returns \bbl@tempa
3651
3652
        \expandafter\bbl@buildifcase\bbl@tempb* \\ % Space after \\
3653
        \bbl@csarg{\global\expandafter\let}{cntr@#1@\languagename}\bbl@tempa
     \fi}
3654
 Now captions and captions.licr, depending on the engine. And below also for dates. They rely on
 a few auxiliary macros. It is expected the ini file provides the complete set in Unicode and LICR, in
 that order.
3655 \ifcase\bbl@engine
     \bbl@csarg\def{inikv@captions.licr}#1#2{%
3657
       \bbl@ini@captions@aux{#1}{#2}}
3658 \else
     \def\bbl@inikv@captions#1#2{%
3659
3660
        \bbl@ini@captions@aux{#1}{#2}}
3661\fi
 The auxiliary macro for captions define \<caption>name.
3662 \def\bbl@ini@captions@template#1#2{% string language tempa=capt-name
     \bbl@replace\bbl@tempa{.template}{}%
     \def\bbl@toreplace{#1{}}%
3665
     \bbl@replace\bbl@toreplace{[ ]}{\nobreakspace{}}%
     \bbl@replace\bbl@toreplace{[[}{\csname}%
3666
3667
     \bbl@replace\bbl@toreplace{[}{\csname the}%
     \bbl@replace\bbl@toreplace{]]}{name\endcsname{}}%
     \bbl@replace\bbl@toreplace{]}{\endcsname{}}%
     \bbl@xin@{,\bbl@tempa,}{,chapter,appendix,part,}%
3671
     \ifin@
3672
       \@nameuse{bbl@patch\bbl@tempa}%
        \global\bbl@csarg\let{\bbl@tempa fmt@#2}\bbl@toreplace
3673
     \fi
3674
     \bbl@xin@{,\bbl@tempa,}{,figure,table,}%
3675
3677
        \toks@\expandafter{\bbl@toreplace}%
3678
        \bbl@exp{\gdef\<fnum@\bbl@tempa>{\the\toks@}}%
3679
3680 \def\bbl@ini@captions@aux#1#2{%
     \bbl@trim@def\bbl@tempa{#1}%
     \bbl@xin@{.template}{\bbl@tempa}%
3683
       \bbl@ini@captions@template{#2}\languagename
3684
     \else
3685
       \bbl@ifblank{#2}%
3686
```

{\bbl@exp{%

3687

```
\toks@{\\bbl@nocaption{\bbl@tempa}{\languagename\bbl@tempa name}}}}%
3688
3689
          {\bbl@trim\toks@{#2}}%
        \bbl@exp{%
3690
3691
          \\\bbl@add\\\bbl@savestrings{%
3692
            \\\SetString\<\bbl@tempa name>{\the\toks@}}}%
3693
        \toks@\expandafter{\bbl@captionslist}%
3694
        \bbl@exp{\\\in@{\<\bbl@tempa name>}{\the\toks@}}%
3695
        \ifin@\else
3696
          \bbl@exp{%
3697
            \\\bbl@add\<bbl@extracaps@\languagename>{\<\bbl@tempa name>}%
            \\\bbl@toglobal\<bbl@extracaps@\languagename>}%
3698
3699
        \fi
     \fi}
3700
 Labels. Captions must contain just strings, no format at all, so there is new group in ini files.
3701 \def\bbl@list@the{%
     part, chapter, section, subsection, subsubsection, paragraph, %
     subparagraph, enumi, enumii, enumii, enumiv, equation, figure, %
     table, page, footnote, mpfootnote, mpfn}
3705 \def\bbl@map@cnt#1{% #1:roman,etc, // #2:enumi,etc
     \bbl@ifunset{bbl@map@#1@\languagename}%
3706
3707
        {\@nameuse{#1}}%
        {\@nameuse{bbl@map@#1@\languagename}}}
3708
3709 \def\bbl@inikv@labels#1#2{%
     \in@{.map}{#1}%
3710
     \ifin@
3711
3712
        \ifx\bbl@KVP@labels\@nil\else
3713
          \bbl@xin@{ map }{ \bbl@KVP@labels\space}%
          \ifin@
3714
            \def\bbl@tempc{#1}%
3715
            \bbl@replace\bbl@tempc{.map}{}%
3716
3717
            \in@{,#2,}{,arabic,roman,Roman,alph,Alph,fnsymbol,}%
3718
              \gdef\<bbl@map@\bbl@tempc @\languagename>%
3719
                {\ifin@\<#2>\else\\\localecounter{#2}\fi}}%
3720
            \bbl@foreach\bbl@list@the{%
3721
              \bbl@ifunset{the##1}{}%
3722
                {\bbl@exp{\let\\\bbl@tempd\<the##1>}%
3723
                 \bbl@exp{%
3724
3725
                    \\\bbl@sreplace\<the##1>%
                      {\<\bbl@tempc>{##1}}{\\\bbl@map@cnt{\bbl@tempc}{##1}}%
3726
                    \\\bbl@sreplace\<the##1>%
3727
                      {\<\@empty @\bbl@tempc>\<c@##1>}{\\\bbl@map@cnt{\bbl@tempc}{##1}}}%
3728
3729
                 \expandafter\ifx\csname the##1\endcsname\bbl@tempd\else
                    \toks@\expandafter\expandafter\expandafter{%
3730
                      \csname the##1\endcsname}%
3731
                    \expandafter\xdef\csname the##1\endcsname{{\the\toks@}}%
3732
                 \fi}}%
3733
          \fi
3734
       \fi
3735
3736
     %
3737
     \else
3738
3739
       % The following code is still under study. You can test it and make
       % suggestions. Eg, enumerate.2 = ([enumi]).([enumii]). It's
3740
3741
       % language dependent.
        \in@{enumerate.}{#1}%
3742
3743
       \ifin@
          \def\bbl@tempa{#1}%
3744
```

```
\bbl@replace\bbl@tempa{enumerate.}{}%
3745
3746
          \def\bbl@toreplace{#2}%
3747
          \bbl@replace\bbl@toreplace{[ ]}{\nobreakspace{}}%
3748
          \bbl@replace\bbl@toreplace{[}{\csname the}%
3749
          \bbl@replace\bbl@toreplace{]}{\endcsname{}}%
3750
          \toks@\expandafter{\bbl@toreplace}%
3751
          \bbl@exp{%
3752
            \\\bbl@add\<extras\languagename>{%
3753
              \\\babel@save\<labelenum\romannumeral\bbl@tempa>%
3754
              \def\<labelenum\romannumeral\bbl@tempa>{\the\toks@}}%
            \\bbl@toglobal\<extras\languagename>}%
3755
       \fi
3756
     \fi}
3757
```

To show correctly some captions in a few languages, we need to patch some internal macros, because the order is hardcoded. For example, in Japanese the chapter number is surrounded by two string, while in Hungarian is placed after. These replacement works in many classes, but not all. Actually, the following lines are somewhat tentative.

```
3758 \def\bbl@chaptype{chapter}
3759 \ifx\@makechapterhead\@undefined
3760 \let\bbl@patchchapter\relax
3761 \else\ifx\thechapter\@undefined
3762 \let\bbl@patchchapter\relax
3763 \else\ifx\ps@headings\@undefined
3764 \let\bbl@patchchapter\relax
3765 \else
3766
     \def\bbl@patchchapter{%
3767
        \global\let\bbl@patchchapter\relax
3768
        \bbl@add\appendix{\def\bbl@chaptype{appendix}}% Not harmful, I hope
        \bbl@toglobal\appendix
3769
       \bbl@sreplace\ps@headings
3770
3771
          {\@chapapp\ \thechapter}%
          {\bbl@chapterformat}%
3772
3773
        \bbl@toglobal\ps@headings
        \bbl@sreplace\chaptermark
3774
          {\@chapapp\ \thechapter}%
3775
          {\bbl@chapterformat}%
3776
3777
        \bbl@toglobal\chaptermark
        \bbl@sreplace\@makechapterhead
3779
          {\@chapapp\space\thechapter}%
3780
          {\bbl@chapterformat}%
3781
        \bbl@toglobal\@makechapterhead
3782
        \gdef\bbl@chapterformat{%
          \bbl@ifunset{bbl@\bbl@chaptype fmt@\languagename}%
3783
3784
            {\@chapapp\space\thechapter}
            {\@nameuse{bbl@\bbl@chaptype fmt@\languagename}}}}
     \let\bbl@patchappendix\bbl@patchchapter
3787 \fi\fi\fi
3788 \ifx\@part\@undefined
    \let\bbl@patchpart\relax
3789
3790 \else
     \def\bbl@patchpart{%
3791
3792
        \global\let\bbl@patchpart\relax
3793
        \bbl@sreplace\@part
          {\partname\nobreakspace\thepart}%
3794
3795
          {\bbl@partformat}%
        \bbl@toglobal\@part
3796
3797
        \gdef\bbl@partformat{%
          \bbl@ifunset{bbl@partfmt@\languagename}%
3798
```

```
{\partname\nobreakspace\thepart}
3799
3800
            {\@nameuse{bbl@partfmt@\languagename}}}}
3801\fi
 Date. TODO. Document
3802% Arguments are _not_ protected.
3803 \let\bbl@calendar\@empty
3804 \DeclareRobustCommand\localedate[1][]{\bbl@localedate{#1}}
3805 \def\bbl@localedate#1#2#3#4{%
3806
     \begingroup
       \ifx\@empty#1\@empty\else
3807
3808
          \let\bbl@ld@calendar\@empty
          \let\bbl@ld@variant\@empty
3809
3810
          \edef\bbl@tempa{\zap@space#1 \@empty}%
          \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ld@##1}{##2}}%
3811
          \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%
3812
3813
          \edef\bbl@calendar{%
3814
            \bbl@ld@calendar
            \ifx\bbl@ld@variant\@empty\else
3815
3816
              .\bbl@ld@variant
3817
            \fi}%
          \bbl@replace\bbl@calendar{gregorian}{}%
3818
        \fi
3819
        \bbl@cased
3820
          {\@nameuse{bbl@date@\languagename @\bbl@calendar}{#2}{#3}{#4}}%
3821
3823 % eg: 1=months, 2=wide, 3=1, 4=dummy, 5=value, 6=calendar
3824 \def\bbl@inidate#1.#2.#3.#4\relax#5#6{% TODO - ignore with 'captions'
     \bbl@trim@def\bbl@tempa{#1.#2}%
3826
     \bbl@ifsamestring{\bbl@tempa}{months.wide}%
                                                         to savedate
        {\bbl@trim@def\bbl@tempa{#3}%
3827
         \bbl@trim\toks@{#5}%
3828
         \@temptokena\expandafter{\bbl@savedate}%
3829
3830
         \bbl@exp{%
                      Reverse order - in ini last wins
           \def\\\bbl@savedate{%
3831
             \\\SetString\<month\romannumeral\bbl@tempa#6name>{\the\toks@}%
3832
             \the\@temptokena}}}%
3833
3834
        {\bbl@ifsamestring{\bbl@tempa}{date.long}%
                                                         defined now
          {\lowercase{\def\bbl@tempb{#6}}%
3835
3836
           \bbl@trim@def\bbl@toreplace{#5}%
3837
           \bbl@TG@@date
           \bbl@ifunset{bbl@date@\languagename @}%
3838
             {\global\bbl@csarg\let{date@\languagename @}\bbl@toreplace
3839
             % TODO. Move to a better place.
3840
              \bbl@exp{%
3841
                \gdef\<\languagename date>{\\\protect\<\languagename date >}%
3842
                \gdef\<\languagename date >####1###2####3{%
3843
                  \\\bbl@usedategrouptrue
3844
                  \<bbl@ensure@\languagename>{%
3845
                    \\\localedate{####1}{####2}{####3}}}%
3846
                \\\bbl@add\\\bbl@savetoday{%
3847
                  \\\SetString\\\today{%
3849
                    \<\languagename date>%
3850
                       {\\\the\year}{\\\the\month}{\\\the\day}}}}%
             {}%
3851
3852
           \ifx\bbl@tempb\@empty\else
             \global\bbl@csarg\let{date@\languagename @\bbl@tempb}\bbl@toreplace
3853
           \fi}%
3854
3855
          {}}}
```

Dates will require some macros for the basic formatting. They may be redefined by language, so "semi-public" names (camel case) are used. Oddly enough, the CLDR places particles like "de" inconsistently in either in the date or in the month name.

3856 \let\bbl@calendar\@empty

```
3857 \newcommand\BabelDateSpace{\nobreakspace}
3858 \newcommand\BabelDateDot{.\@} % TODO. \let instead of repeating
3859 \newcommand\BabelDated[1]{{\number#1}}
3860 \newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}
3861 \newcommand\BabelDateM[1]{{\number#1}}
3862 \newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}
3863 \newcommand\BabelDateMMMM[1]{{%
3864 \csname month\romannumeral#1\bbl@calendar name\endcsname}}%
3865 \newcommand\BabelDatey[1]{{\number#1}}%
3866 \newcommand\BabelDatevv[1]{{%
     \ifnum#1<10 0\number#1 %
     \else\ifnum#1<100 \number#1 %</pre>
     \else\ifnum#1<1000 \expandafter\@gobble\number#1 %</pre>
     \else\ifnum#1<10000 \expandafter\@gobbletwo\number#1 %
3870
     \else
3871
3872
       \bbl@error
3873
         {Currently two-digit years are restricted to the\\
3874
          range 0-9999.}%
         {There is little you can do. Sorry.}%
3875
     \fi\fi\fi\fi\fi}}
3877 \newcommand\BabelDateyyyy[1]{{\number#1}} % FIXME - add leading 0
3878 \def\bbl@replace@finish@iii#1{%
     \bbl@exp{\def\\#1###1###2###3{\the\toks@}}}
3880 \def\bbl@TG@@date{%
     \bbl@replace\bbl@toreplace{[ ]}{\BabelDateSpace{}}%
     \bbl@replace\bbl@toreplace{[.]}{\BabelDateDot{}}%
3882
3883
     \bbl@replace\bbl@toreplace{[d]}{\BabelDated{####3}}%
     \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd{####3}}%
3884
     \bbl@replace\bbl@toreplace{[M]}{\BabelDateM{####2}}%
     \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM{####2}}%
3886
     \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM{####2}}%
3887
     \bbl@replace\bbl@toreplace{[y]}{\BabelDatey{####1}}%
3888
     \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy{####1}}%
3889
     \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy{####1}}%
3890
     \bbl@replace\bbl@toreplace{[y|}{\bbl@datecntr[####1|}%
     \bbl@replace\bbl@toreplace{[m|}{\bbl@datecntr[####2|}%
     \bbl@replace\bbl@toreplace{[d|}{\bbl@datecntr[###3|}%
3894% Note after \bbl@replace \toks@ contains the resulting string.
3895% TODO - Using this implicit behavior doesn't seem a good idea.
    \bbl@replace@finish@iii\bbl@toreplace}
3897 \def\bbl@datecntr{\expandafter\bbl@xdatecntr\expandafter}
3898 \def\bbl@xdatecntr[#1|#2]{\localenumeral{#2}{#1}}
 Transforms.
3899 \let\bbl@release@transforms\@empty
3900 \@namedef{bbl@inikv@transforms.prehyphenation}{%
     \bbl@transforms\babelprehyphenation}
3902 \@namedef{bbl@inikv@transforms.posthyphenation}{%
    \bbl@transforms\babelposthyphenation}
3904 \def\bbl@transforms@aux#1#2#3,#4\relax{#1{#2}{#3}{#4}}
3905 \begingroup % TODO - to a lua file
     \catcode`\%=12
3906
3907
     \catcode`\&=14
     \gdef\bbl@transforms#1#2#3{&%
       \ifx\bbl@KVP@transforms\@nil\else
```

```
\directlua{
3910
3911
             str = [==[#2]==]
             str = str:gsub('%.%d+%.%d+$', '')
3912
3913
             tex.print([[\def\string\babeltempa{]] .. str .. [[}]])
3914
3915
          \bbl@xin@{,\babeltempa,}{,\bbl@KVP@transforms,}&%
3916
          \ifin@
3917
            \in@{.0$}{#2$}&%
3918
            \ifin@
                \bbl@add\bbl@release@transforms{&%
                   \relax\bbl@transforms@aux#1{french}{#3}}&%
3920
3921
              \else
3922
                 \bbl@add\bbl@release@transforms{, {#3}}&%
            ۱fi
3923
          ۱fi
3924
3925
        \fi}
3926 \endgroup
```

Language and Script values to be used when defining a font or setting the direction are set with the following macros.

```
3927 \def\bbl@provide@lsys#1{%
     \bbl@ifunset{bbl@lname@#1}%
        {\bbl@load@info{#1}}%
3929
3930
        {}%
3931
     \bbl@csarg\let{lsys@#1}\@empty
     \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}%
     \bbl@ifunset{bbl@sotf@#1}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}%
3933
     \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}%
3934
     \bbl@ifunset{bbl@lname@#1}{}%
3935
3936
        {\bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}}%
     \ifcase\bbl@engine\or\or
3937
       \bbl@ifunset{bbl@prehc@#1}{}%
3938
          {\bbl@exp{\\bbl@ifblank{\bbl@cs{prehc@#1}}}%
3939
            {}%
3940
            {\ifx\bbl@xenohyph\@undefined
3941
               \let\bbl@xenohyph\bbl@xenohyph@d
3942
3943
               \ifx\AtBeginDocument\@notprerr
                 \expandafter\@secondoftwo % to execute right now
3944
               \fi
3945
3946
               \AtBeginDocument{%
3947
                 \expandafter\bbl@add
                 \csname selectfont \endcsname{\bbl@xenohyph}%
3948
3949
                 \expandafter\selectlanguage\expandafter{\languagename}%
                 \expandafter\bbl@toglobal\csname selectfont \endcsname}%
3950
           \fi}}%
3951
     \fi
3952
     \bbl@csarg\bbl@toglobal{lsys@#1}}
3953
    .def\bbl@xenohyph@d{%
     \bbl@ifset{bbl@prehc@\languagename}%
3955
        {\ifnum\hyphenchar\font=\defaulthyphenchar
3956
3957
           \iffontchar\font\bbl@cl{prehc}\relax
             \hyphenchar\font\bbl@cl{prehc}\relax
3958
3959
           \else\iffontchar\font"200B
             \hyphenchar\font"200B
3960
3961
           \else
3962
             \bbl@warning
               {Neither O nor ZERO WIDTH SPACE are available\\%
3963
                in the current font, and therefore the hyphen\\%
3964
                will be printed. Try changing the fontspec's\\%
3965
```

```
'HyphenChar' to another value, but be aware\\%
this setting is not safe (see the manual)}%

hyphenchar\font\defaulthyphenchar

fi\fi
fi
fi}%

fi\f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\}

f
\{\hyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphenchar\font\defaulthyphe
```

The following ini reader ignores everything but the identification section. It is called when a font is defined (ie, when the language is first selected) to know which script/language must be enabled. This means we must make sure a few characters are not active. The ini is not read directly, but with a proxy tex file named as the language (which means any code in it must be skipped, too).

```
3973 \def\bbl@load@info#1{%
3974 \def\BabelBeforeIni##1##2{%
3975 \begingroup
3976 \bbl@read@ini{##1}0%
3977 \endinput % babel- .tex may contain onlypreamble's
3978 \endgroup}% boxed, to avoid extra spaces:
3979 {\bbl@input@texini{#1}}}
```

A tool to define the macros for native digits from the list provided in the ini file. Somewhat convoluted because there are 10 digits, but only 9 arguments in T_EX. Non-digits characters are kept. The first macro is the generic "localized" command.

```
3980 \def\bbl@setdigits#1#2#3#4#5{%
3981
     \bbl@exp{%
       \def\<\languagename digits>####1{%
3982
                                                ie, \langdigits
3983
         \<bbl@digits@\languagename>####1\\\@nil}%
       \let\<bbl@cntr@digits@\languagename>\<\languagename digits>%
3984
       \def\<\languagename counter>###1{%
3985
                                                ie, \langcounter
3986
         \\\expandafter\<bbl@counter@\languagename>%
         \\\csname c@####1\endcsname}%
3987
       \def\<bbl@counter@\languagename>####1{% ie, \bbl@counter@lang
3988
         \\\expandafter\<bbl@digits@\languagename>%
3989
         \\number####1\\\@nil}}%
3990
     \def\bbl@tempa##1##2##3##4##5{%
3991
       \bbl@exp{%
                     Wow, quite a lot of hashes! :-(
3992
         \def\<bbl@digits@\languagename>######1{%
3993
          \\\ifx#######1\\\@nil
                                              % ie, \bbl@digits@lang
3994
          \\\else
3995
            \\ifx0######1#1%
3996
            \\\else\\\ifx1#######1#2%
3997
            \\\else\\\ifx2#######1#3%
3998
            \\\else\\\ifx3#######1#4%
3999
            \\\else\\\ifx4#######1#5%
4000
            \\\else\\\ifx5#######1##1%
4001
            \\\else\\\ifx6#######1##2%
4002
            \\\else\\\ifx7#######1##3%
4003
            \\\else\\\ifx8#######1##4%
4004
4005
            \\\else\\\ifx9#######1##5%
4006
            \\\else######1%
            4007
4008
            \\\expandafter\<bbl@digits@\languagename>%
4009
          \\\fi}}}%
     \bbl@tempa}
```

Alphabetic counters must be converted from a space separated list to an \ifcase structure.

```
4011 \def\bbl@buildifcase#1 {% Returns \bbl@tempa, requires \toks@={}
4012 \ifx\\#1% % \\ before, in case #1 is multiletter
4013 \bbl@exp{%
```

```
4014 \def\\bbl@tempa###1{%
4015 \<ifcase>####1\space\the\toks@\<else>\\\@ctrerr\<fi>}}%
4016 \else
4017 \toks@\expandafter{\the\toks@\or #1}%
4018 \expandafter\bbl@buildifcase
4019 \fi}
```

The code for additive counters is somewhat tricky and it's based on the fact the arguments just before \@@ collects digits which have been left 'unused' in previous arguments, the first of them being the number of digits in the number to be converted. This explains the reverse set 76543210. Digits above 10000 are not handled yet. When the key contains the subkey .F., the number after is treated as an special case, for a fixed form (see babel-he.ini, for example).

```
4020 \newcommand\localenumeral[2]{\bbl@cs{cntr@#1@\languagename}{#2}}
4021 \def\bbl@localecntr#1#2{\localenumeral{#2}{#1}}
4022 \newcommand\localecounter[2]{%
     \expandafter\bbl@localecntr
     \expandafter{\number\csname c@#2\endcsname}{#1}}
4025 \def\bbl@alphnumeral#1#2{%
     \expandafter\bbl@alphnumeral@i\number#2 76543210\@@{#1}}
4027 \def\bbl@alphnumeral@i#1#2#3#4#5#6#7#8\@@#9{%
     \ifcase\@car#8\@nil\or
                              % Currenty <10000, but prepared for bigger
4028
        \bbl@alphnumeral@ii{#9}000000#1\or
4029
        \bbl@alphnumeral@ii{#9}00000#1#2\or
4030
4031
        \bbl@alphnumeral@ii{#9}0000#1#2#3\or
        \bbl@alphnumeral@ii{#9}000#1#2#3#4\else
4032
        \bbl@alphnum@invalid{>9999}%
4034
4035 \def\bbl@alphnumeral@ii#1#2#3#4#5#6#7#8{%
     \bbl@ifunset{bbl@cntr@#1.F.\number#5#6#7#8@\languagename}%
4037
        {\bbl@cs{cntr@#1.4@\languagename}#5%
4038
         \bbl@cs{cntr@#1.3@\languagename}#6%
         \bbl@cs{cntr@#1.2@\languagename}#7%
4039
         \bbl@cs{cntr@#1.1@\languagename}#8%
4040
         \ifnum#6#7#8>\z@ % TODO. An ad hoc rule for Greek. Ugly.
4041
           \bbl@ifunset{bbl@cntr@#1.S.321@\languagename}{}%
4042
             {\bbl@cs{cntr@#1.S.321@\languagename}}%
4043
4044
        \fi}%
        {\bbl@cs{cntr@#1.F.\number#5#6#7#8@\languagename}}}
4046 \def\bbl@alphnum@invalid#1{%
4047
     \bbl@error{Alphabetic numeral too large (#1)}%
4048
        {Currently this is the limit.}}
```

The information in the identification section can be useful, so the following macro just exposes it with a user command.

```
4049 \newcommand\localeinfo[1]{%
     \bbl@ifunset{bbl@\csname bbl@info@#1\endcsname @\languagename}%
4050
        {\bbl@error{I've found no info for the current locale.\\%
4051
                    The corresponding ini file has not been loaded\\%
4052
4053
                    Perhaps it doesn't exist}%
4054
                   {See the manual for details.}}%
        {\bbl@cs{\csname bbl@info@#1\endcsname @\languagename}}}
4055
4056% \@namedef{bbl@info@name.locale}{lcname}
4057 \@namedef{bbl@info@tag.ini}{lini}
4058 \@namedef{bbl@info@name.english}{elname}
4059 \@namedef{bbl@info@name.opentype}{lname}
4060 \@namedef{bbl@info@tag.bcp47}{tbcp}
4061 \@namedef{bbl@info@language.tag.bcp47}{lbcp}
4062 \@namedef{bbl@info@tag.opentype}{lotf}
4063 \@namedef{bbl@info@script.name}{esname}
```

```
4064 \@namedef{bbl@info@script.name.opentype}{sname}
4065 \@namedef{bbl@info@script.tag.bcp47}{sbcp}
4066 \@namedef{bbl@info@script.tag.opentype}{sotf}
4067 \let\bbl@ensureinfo\@gobble
4068 \newcommand\BabelEnsureInfo{%
     \ifx\InputIfFileExists\@undefined\else
4070
        \def\bbl@ensureinfo##1{%
4071
          \bbl@ifunset{bbl@lname@##1}{\bbl@load@info{##1}}{}}%
     \fi
4072
     \bbl@foreach\bbl@loaded{{%
        \def\languagename{##1}%
4075
        \bbl@ensureinfo{##1}}}
 More general, but non-expandable, is \getlocaleproperty. To inspect every possible loaded ini, we
 define \LocaleForEach, where \bbl@ini@loaded is a comma-separated list of locales, built by
 \bbl@read@ini.
4076 \newcommand\getlocaleproperty{%
     \@ifstar\bbl@getproperty@s\bbl@getproperty@x}
4078 \def\bbl@getproperty@s#1#2#3{%
     \let#1\relax
     \def\bbl@elt##1##2##3{%
        \bbl@ifsamestring{##1/##2}{#3}%
4081
          {\providecommand#1{##3}%
4082
           \def\bbl@elt###1###2####3{}}%
4083
4084
          {}}%
     \bbl@cs{inidata@#2}}%
4086 \def\bbl@getproperty@x#1#2#3{%
     \bbl@getproperty@s{#1}{#2}{#3}%
     \ifx#1\relax
4088
       \bbl@error
4089
          {Unknown key for locale '#2':\\%
4090
           #3\\%
4091
4092
           \string#1 will be set to \relax}%
          {Perhaps you misspelled it.}%
4093
4094
     \fi}
4095 \let\bbl@ini@loaded\@empty
4096 \newcommand\LocaleForEach{\bbl@foreach\bbl@ini@loaded}
```

10 Adjusting the Babel bahavior

A generic high level inteface is provided to adjust some global and general settings.

```
4097 \newcommand\babeladjust[1]{% TODO. Error handling.
4098
     \bbl@forkv{#1}{%
4099
       \bbl@ifunset{bbl@ADJ@##1@##2}%
4100
         {\bbl@cs{ADJ@##1}{##2}}%
4101
         {\bbl@cs{ADJ@##1@##2}}}
4102 %
4103 \def\bbl@adjust@lua#1#2{%
    \ifvmode
4105
       \ifnum\currentgrouplevel=\z@
         \directlua{ Babel.#2 }%
         \expandafter\expandafter\expandafter\@gobble
4107
4108
       \fi
4109
     {\bbl@error % The error is gobbled if everything went ok.
4110
4111
         {Currently, #1 related features can be adjusted only\\%
4112
         in the main vertical list.}%
         {Maybe things change in the future, but this is what it is.}}}
```

```
4114 \@namedef{bbl@ADJ@bidi.mirroring@on}{%
4115 \bbl@adjust@lua{bidi}{mirroring_enabled=true}}
4116 \@namedef{bbl@ADJ@bidi.mirroring@off}{%
     \bbl@adjust@lua{bidi}{mirroring enabled=false}}
4118 \@namedef{bbl@ADJ@bidi.text@on}{%
     \bbl@adjust@lua{bidi}{bidi enabled=true}}
4120 \@namedef{bbl@ADJ@bidi.text@off}{%
     \bbl@adjust@lua{bidi}{bidi_enabled=false}}
4122 \@namedef{bbl@ADJ@bidi.mapdigits@on}{%
     \bbl@adjust@lua{bidi}{digits_mapped=true}}
4124 \@namedef{bbl@ADJ@bidi.mapdigits@off}{%
4125
     \bbl@adjust@lua{bidi}{digits_mapped=false}}
4126%
4127 \@namedef{bbl@ADJ@linebreak.sea@on}{%
     \bbl@adjust@lua{linebreak}{sea_enabled=true}}
4129 \@namedef{bbl@ADJ@linebreak.sea@off}{%
    \bbl@adjust@lua{linebreak}{sea enabled=false}}
4131 \@namedef{bbl@ADJ@linebreak.cjk@on}{%
4132 \bbl@adjust@lua{linebreak}{cjk enabled=true}}
4133 \@namedef{bbl@ADJ@linebreak.cjk@off}{%
4134
     \bbl@adjust@lua{linebreak}{cjk_enabled=false}}
4135 %
4136 \def\bbl@adjust@layout#1{%
     \ifvmode
4138
       \expandafter\@gobble
4139
4140
     {\bbl@error % The error is gobbled if everything went ok.
4141
        {Currently, layout related features can be adjusted only\\%
4142
         in vertical mode.}%
        {Maybe things change in the future, but this is what it is.}}}
4145 \@namedef{bbl@ADJ@layout.tabular@on}{%
     \bbl@adjust@layout{\let\@tabular\bbl@NL@@tabular}}
4147 \@namedef{bbl@ADJ@layout.tabular@off}{%
     \bbl@adjust@layout{\let\@tabular\bbl@OL@@tabular}}
4149 \@namedef{bbl@ADJ@layout.lists@on}{%
     \bbl@adjust@layout{\let\list\bbl@NL@list}}
4151 \@namedef{bbl@ADJ@layout.lists@off}{%
     \bbl@adjust@layout{\let\list\bbl@OL@list}}
4153 \@namedef{bbl@ADJ@hyphenation.extra@on}{%
     \bbl@activateposthyphen}
4155 %
4156 \@namedef{bbl@ADJ@autoload.bcp47@on}{%
    \bbl@bcpallowedtrue}
4158 \@namedef{bbl@ADJ@autoload.bcp47@off}{%
4159 \bbl@bcpallowedfalse}
4160 \@namedef{bbl@ADJ@autoload.bcp47.prefix}#1{%
4161 \def\bbl@bcp@prefix{#1}}
4162 \def\bbl@bcp@prefix{bcp47-}
4163 \@namedef{bbl@ADJ@autoload.options}#1{%
4164 \def\bbl@autoload@options{#1}}
4165 \let\bbl@autoload@bcpoptions\@empty
4166 \@namedef{bbl@ADJ@autoload.bcp47.options}#1{%
4167 \def\bbl@autoload@bcpoptions{#1}}
4168 \newif\ifbbl@bcptoname
4169 \@namedef{bbl@ADJ@bcp47.toname@on}{%
     \bbl@bcptonametrue
4171 \BabelEnsureInfo}
4172 \@namedef{bbl@ADJ@bcp47.toname@off}{%
```

```
4173 \bbl@bcptonamefalse}
4174% TODO: use babel name, override
4176% As the final task, load the code for lua.
4178 \ifx\directlua\@undefined\else
     \ifx\bbl@luapatterns\@undefined
4180
        \input luababel.def
4181 \fi
4182 \fi
4183 (/core)
 A proxy file for switch.def
4184 (*kernel)
4185 \let\bbl@onlyswitch\@empty
4186 \input babel.def
4187 \let\bbl@onlyswitch\@undefined
4188 (/kernel)
4189 (*patterns)
```

Loading hyphenation patterns 11

The following code is meant to be read by iniT_FX because it should instruct T_FX to read hyphenation patterns. To this end the docstrip option patterns can be used to include this code in the file hyphen.cfg. Code is written with lower level macros.

To make sure that LATEX 2.09 executes the \@begindocumenthook we would want to alter \begin{document}, but as this done too often already, we add the new code at the front of \@preamblecmds. But we can only do that after it has been defined, so we add this piece of code to

This new definition starts by adding an instruction to write a message on the terminal and in the transcript file to inform the user of the preloaded hyphenation patterns.

Then everything is restored to the old situation and the format is dumped.

```
4190 \langle \langle Make \ sure \ Provides File \ is \ defined \rangle \rangle
4191 \ProvidesFile{hyphen.cfg}[\langle\langle date\rangle\rangle \langle\langle version\rangle\rangle Babel hyphens]
4192 \xdef\bbl@format{\jobname}
4193 \def\bbl@version\{\langle \langle version \rangle \rangle\}
4194 \def\bbl@date\{\langle\langle date\rangle\rangle\}
4195 \ifx\AtBeginDocument\@undefined
       \def\@empty{}
4196
4197
       \let\orig@dump\dump
4198
       \def\dump{%
          \ifx\@ztryfc\@undefined
4199
4200
             \toks0=\expandafter{\@preamblecmds}%
4201
             \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}%
4202
             \def\@begindocumenthook{}%
4203
4204
4205
           \let\dump\orig@dump\let\orig@dump\@undefined\dump}
4207 \langle \langle Define \ core \ switching \ macros \rangle \rangle
```

\process@line Each line in the file language.dat is processed by \process@line after it is read. The first thing this macro does is to check whether the line starts with =. When the first token of a line is an =, the macro \process@synonym is called; otherwise the macro \process@language will continue.

```
4208 \def\process@line#1#2 #3 #4 {%
4209
     \ifx=#1%
        \process@synonym{#2}%
4210
```

```
4211 \else
4212 \process@language{#1#2}{#3}{#4}%
4213 \fi
4214 \ignorespaces}
```

\process@synonym

This macro takes care of the lines which start with an =. It needs an empty token register to begin with. \bbl@languages is also set to empty.

```
4215 \toks@{}
4216 \def\bbl@languages{}
```

When no languages have been loaded yet, the name following the = will be a synonym for hyphenation register 0. So, it is stored in a token register and executed when the first pattern file has been processed. (The \relax just helps to the \if below catching synonyms without a language.) Otherwise the name will be a synonym for the language loaded last.

We also need to copy the hyphenmin parameters for the synonym.

```
4217 \def\process@synonym#1{%
     \ifnum\last@language=\m@ne
4219
        \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%
4220
        \expandafter\chardef\csname l@#1\endcsname\last@language
4221
        \wlog{\string\l@#1=\string\language\the\last@language}%
4222
       \expandafter\let\csname #1hyphenmins\expandafter\endcsname
4223
         \csname\languagename hyphenmins\endcsname
4224
        \let\bbl@elt\relax
4225
       \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}}%
4226
4227
```

\process@language

The macro \process@language is used to process a non-empty line from the 'configuration file'. It has three arguments, each delimited by white space. The first argument is the 'name' of a language; the second is the name of the file that contains the patterns. The optional third argument is the name of a file containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and to make that register 'active'. Then the pattern file is read.

For some hyphenation patterns it is needed to load them with a specific font encoding selected. This can be specified in the file language. dat by adding for instance ':T1' to the name of the language. The macro \bbl@get@enc extracts the font encoding from the language name and stores it in \bbl@hyph@enc. The latter can be used in hyphenation files if you need to set a behavior depending on the given encoding (it is set to empty if no encoding is given).

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. T_EX does not keep track of these assignments. Therefore we try to detect such assignments and store them in the $\langle lang \rangle$ hyphenmins macro. When no assignments were made we provide a default setting. Some pattern files contain changes to the \lccode en \uccode arrays. Such changes should remain local to the language; therefore we process the pattern file in a group; the \patterns command acts globally so its effect will be remembered.

Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the group. When the hyphenation patterns have been processed we need to see if a file with hyphenation exceptions needs to be read. This is the case when the third argument is not empty and when it does not contain a space token. (Note however there is no need to save hyphenation exceptions into the format.)

\bbl@languages saves a snapshot of the loaded languages in the form

Finally, if the counter \language is equal to zero we execute the synonyms stored.

```
4228 \def\process@language#1#2#3{%

4229 \expandafter\addlanguage\csname l@#1\endcsname

4230 \expandafter\language\csname l@#1\endcsname

4231 \def\languagename{#1}%

4232 \bbl@hook@everylanguage{#1}%
```

```
4233 % > luatex
4234
     \bbl@get@enc#1::\@@@
     \begingroup
4235
4236
       \lefthyphenmin\m@ne
       \bbl@hook@loadpatterns{#2}%
4237
4238
       % > luatex
4239
       \ifnum\lefthyphenmin=\m@ne
4240
       \else
4241
          \expandafter\xdef\csname #1hyphenmins\endcsname{%
4242
            \the\lefthyphenmin\the\righthyphenmin}%
       \fi
4243
4244
     \endgroup
     \def\bbl@tempa{#3}%
4245
     \ifx\bbl@tempa\@empty\else
4246
4247
       \bbl@hook@loadexceptions{#3}%
4248
       % > luatex
     \fi
4249
4250
     \let\bbl@elt\relax
4251
     \edef\bbl@languages{%
       \label{language} $$ \bl@elt{#1}{\theta} anguage}{\#2}{\bl@empa}}% $$
4252
4253
     \ifnum\the\language=\z@
       \expandafter\ifx\csname #1hyphenmins\endcsname\relax
4254
          \set@hyphenmins\tw@\thr@@\relax
4255
        \else
4256
          \expandafter\expandafter\set@hyphenmins
4257
            \csname #1hyphenmins\endcsname
4258
       ۱fi
4259
       \the\toks@
4260
4261
       \toks@{}%
```

\bbl@hyph@enc

\bbl@get@enc The macro \bbl@get@enc extracts the font encoding from the language name and stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

```
4263 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}
```

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way. Besides luatex, format-specific configuration files are taken into account. loadkernel currently loads nothing, but define some basic macros instead.

```
4264 \def\bbl@hook@everylanguage#1{}
4265 \def\bbl@hook@loadpatterns#1{\input #1\relax}
4266 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns
4267 \def\bbl@hook@loadkernel#1{%
     \def\addlanguage{\csname newlanguage\endcsname}%
     \def\adddialect##1##2{%
4269
        \global\chardef##1##2\relax
4270
        \wlog{\string##1 = a dialect from \string\language##2}}%
4271
4272
     \def\iflanguage##1{%
       \expandafter\ifx\csname l@##1\endcsname\relax
4273
4274
          \@nolanerr{##1}%
        \else
4275
          \ifnum\csname l@##1\endcsname=\language
4276
            \expandafter\expandafter\expandafter\@firstoftwo
4277
4278
4279
            \expandafter\expandafter\expandafter\@secondoftwo
          \fi
4280
        \fi}%
4281
     \def\providehyphenmins##1##2{%
4282
        \expandafter\ifx\csname ##1hyphenmins\endcsname\relax
4283
```

```
4285
                        \fi}%
                      \def\set@hyphenmins##1##2{%
                4286
                4287
                        \lefthyphenmin##1\relax
                4288
                        \righthyphenmin##2\relax}%
                4289
                      \def\selectlanguage{%
                4290
                        \errhelp{Selecting a language requires a package supporting it}%
                4291
                        \errmessage{Not loaded}}%
                4292
                      \let\foreignlanguage\selectlanguage
                      \let\otherlanguage\selectlanguage
                      \expandafter\let\csname otherlanguage*\endcsname\selectlanguage
                      \def\bbl@usehooks##1##2{}% TODO. Temporary!!
                4296
                      \def\setlocale{%
                        \errhelp{Find an armchair, sit down and wait}%
                4297
                4298
                        \errmessage{Not yet available}}%
                     \let\uselocale\setlocale
                     \let\locale\setlocale
                     \let\selectlocale\setlocale
                4302 \let\localename\setlocale
                4303 \let\textlocale\setlocale
                      \let\textlanguage\setlocale
                      \let\languagetext\setlocale}
                4306 \begingroup
                      \def\AddBabelHook#1#2{%
                        \expandafter\ifx\csname bbl@hook@#2\endcsname\relax
                4308
                          \def\next{\toks1}%
                4309
                4310
                          \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%
                4311
                        \fi
                4312
                      \ifx\directlua\@undefined
                4314
                4315
                        \ifx\XeTeXinputencoding\@undefined\else
                          \input xebabel.def
                4316
                        ۱fi
                4317
                4318
                      \else
                        \input luababel.def
                4319
                4320
                      \openin1 = babel-\bbl@format.cfg
                4321
                      \ifeof1
                4322
                4323
                      \else
                        \input babel-\bbl@format.cfg\relax
                4324
                      \fi
                4325
                      \closein1
                4327 \endgroup
                4328 \bbl@hook@loadkernel{switch.def}
\readconfigfile The configuration file can now be opened for reading.
                4329 \openin1 = language.dat
                 See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be informed
                 about this.
                4330 \def\languagename{english}%
                4331 \ifeof1
                4332
                     \message{I couldn't find the file language.dat,\space
                                I will try the file hyphen.tex}
                      \input hyphen.tex\relax
                4334
                4335
                      \chardef\l@english\z@
                4336 \else
```

\@namedef{##1hyphenmins}{##2}%

4284

Pattern registers are allocated using count register $\label{last@language}$. Its initial value is 0. The definition of the macro \newlanguage is such that it first increments the count register and then defines the language. In order to have the first patterns loaded in pattern register number 0 we initialize $\label{language}$ with the value -1.

```
4337 \last@language\m@ne
```

We now read lines from the file until the end is found. While reading from the input, it is useful to switch off recognition of the end-of-line character. This saves us stripping off spaces from the contents of the control sequence.

```
4338 \loop
4339 \endlinechar\m@ne
4340 \read1 to \bbl@line
4341 \endlinechar`\^M
```

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add 3 space characters to the end of \bbl@line. This is needed to be able to recognize the arguments of \process@line later on. The default language should be the very first one.

```
4342 \if T\ifeof1F\fi T\relax
4343 \ifx\bbl@line\@empty\else
4344 \edef\bbl@line\\bbl@line\space\space\\%
4345 \expandafter\process@line\bbl@line\relax
4346 \fi
4347 \repeat
```

Check for the end of the file. We must reverse the test for \ifeof without \else. Then reactivate the default patterns, and close the configuration file.

```
4348 \begingroup
4349 \def\bbl@elt#1#2#3#4{%
4350 \global\language=#2\relax
4351 \gdef\languagename{#1}%
4352 \def\bbl@elt##1##2##3##4{}}%
4353 \bbl@languages
4354 \endgroup
4355 \fi
4356 \closein1
```

We add a message about the fact that babel is loaded in the format and with which language patterns to the \everyjob register.

```
4357 \if/\the\toks@/\else
4358 \errhelp{language.dat loads no language, only synonyms}
4359 \errmessage{Orphan language synonym}
4360 \fi
```

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally load switch.def, but the latter is not required and the line inputting it may be commented out.

```
4361 \let\bbl@line\@undefined
4362 \let\process@line\@undefined
4363 \let\process@synonym\@undefined
4364 \let\process@language\@undefined
4365 \let\bbl@get@enc\@undefined
4366 \let\bbl@hyph@enc\@undefined
4367 \let\bbl@tempa\@undefined
4368 \let\bbl@hook@loadkernel\@undefined
4369 \let\bbl@hook@everylanguage\@undefined
4370 \let\bbl@hook@loadpatterns\@undefined
4371 \let\bbl@hook@loadexceptions\@undefined
4372 \/patterns\
```

Here the code for iniTEX ends.

12 Font handling with fontspec

Add the bidi handler just before luaoftload, which is loaded by default by LaTeX. Just in case, consider the possibility it has not been loaded. First, a couple of definitions related to bidi [misplaced].

```
\label{eq:continuous} 4373 $$ \langle *More package options \rangle $$ = 4374 \chardef\bl@bidimode\2@ 4375 \DeclareOption{bidi=default}{\chardef\bl@bidimode=101 } 4377 \DeclareOption{bidi=basic-r}{\chardef\bl@bidimode=102 } 4378 \DeclareOption{bidi=bidi}{\chardef\bl@bidimode=201 } 4379 \DeclareOption{bidi=bidi-r}{\chardef\bl@bidimode=202 } 4380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } 4381 $$ \langle /More package options \rangle $$ $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } 4381 $$ \langle /More package options \rangle $$ $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } 4381 $$ \langle /More package options \rangle $$ $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\chardef\bl@bidimode=203 } $$ = 2380 \DeclareOption{bidi=bidi-l}{\charde
```

With explicit languages, we could define the font at once, but we don't. Just wait and see if the language is actually activated. bbl@font replaces hardcoded font names inside \..family by the corresponding macro \..default.

At the time of this writing, fontspec shows a warning about there are languages not available, which some people think refers to babel, even if there is nothing wrong. Here is hack to patch fontspec to avoid the misleading message, which is replaced ba a more explanatory one.

```
4382 \langle *Font selection \rangle \equiv
4383 \bbl@trace{Font handling with fontspec}
4384 \ifx\ExplSyntaxOn\@undefined\else
     \ExplSyntax0n
     \catcode`\ =10
     \def\bbl@loadfontspec{%
       \usepackage{fontspec}%
4388
       \expandafter
4389
        \def\csname msg~text~>~fontspec/language-not-exist\endcsname##1##2##3##4{%
4390
          Font '\l_fontspec_fontname_tl' is using the\\%
4391
          default features for language '##1'.\\%
4392
          That's usually fine, because many languages\\%
4393
          require no specific features, but if the output is\\%
4394
          not as expected, consider selecting another font.}
4395
        \expandafter
4396
        \def\csname msg~text~>~fontspec/no-script\endcsname##1##2##3##4{%
4397
4398
          Font '\l_fontspec_fontname_tl' is using the\\%
4399
          default features for script '##2'.\\%
          That's not always wrong, but if the output is\\%
4400
4401
         not as expected, consider selecting another font.}}
4402
     \ExplSyntaxOff
4403 \fi
4404 \@onlypreamble\babelfont
4405 \newcommand\babelfont[2][]{% 1=langs/scripts 2=fam
     \bbl@foreach{#1}{%
4407
        \expandafter\ifx\csname date##1\endcsname\relax
4408
          \IfFileExists{babel-##1.tex}%
4409
            {\babelprovide{##1}}%
            {}%
4410
4411
       \fi}%
4412
     \edef\bbl@tempa{#1}%
     \def\bbl@tempb{#2}% Used by \bbl@bblfont
     \ifx\fontspec\@undefined
4415
       \bbl@loadfontspec
4416
     \EnableBabelHook{babel-fontspec}% Just calls \bbl@switchfont
4417
     \bbl@bblfont}
4419 \newcommand\bbl@bblfont[2][]{% 1=features 2=fontname, @font=rm|sf|tt
     \bbl@ifunset{\bbl@tempb family}%
```

```
{\bbl@providefam{\bbl@tempb}}%
4421
4422
       {\bbl@exp{%
         \\\bbl@sreplace\<\bbl@tempb family >%
4423
4424
            {\@nameuse{\bbl@tempb default}}{\<\bbl@tempb default>}}}%
4425
     % For the default font, just in case:
4426
     \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
4427
     \expandafter\bbl@ifblank\expandafter{\bbl@tempa}%
4428
       {\bbl@csarg\edef{\bbl@tempb dflt@}{<>{#1}{#2}}% save bbl@rmdflt@
        \bbl@exp{%
4429
           \let\<bbl@\bbl@tempb dflt@\languagename>\<bbl@\bbl@tempb dflt@>%
          \\\bbl@font@set\<bbl@\bbl@tempb dflt@\languagename>%
4431
4432
                          \<\bbl@tempb default>\<\bbl@tempb family>}}%
       {\bbl@foreach\bbl@tempa{% ie bbl@rmdflt@lang / *scrt
4433
          4434
 If the family in the previous command does not exist, it must be defined. Here is how:
4435 \def\bbl@providefam#1{%
     \bbl@exp{%
       \\newcommand\<#1default>{}% Just define it
4437
4438
       \\\bbl@add@list\\\bbl@font@fams{#1}%
       \\DeclareRobustCommand\<#1family>{%
4439
         \\\not@math@alphabet\<#1family>\relax
4440
         \\\fontfamily\<#1default>\\\selectfont}%
4441
4442
       \\\DeclareTextFontCommand{\<text#1>}{\<#1family>}}}
 The following macro is activated when the hook babel-fontspec is enabled. But before we define a
 macro for a warning, which sets a flag to avoid duplicate them.
4443 \def\bbl@nostdfont#1{%
     \bbl@ifunset{bbl@WFF@\f@family}%
4444
4445
       {\ble csarg\gdef\{WFF@\f@family\}{}}\ Flag, to avoid dupl warns
        \bbl@infowarn{The current font is not a babel standard family:\\%
4446
4447
          \fontname\font\\%
4448
          There is nothing intrinsically wrong with this warning, and\\%
4449
          you can ignore it altogether if you do not need these\\%
4450
          families. But if they are used in the document, you should be\\%
4451
          aware 'babel' will no set Script and Language for them, so\\%
4452
          you may consider defining a new family with \string\babelfont.\\%
4453
4454
          See the manual for further details about \string\babelfont.\\%
4455
          Reported}}
4457 \gdef\bbl@switchfont{%
     \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}}
     \bbl@exp{% eg Arabic -> arabic
4459
       \lowercase{\edef\\\bbl@tempa{\bbl@cl{sname}}}}%
4460
4461
     \bbl@foreach\bbl@font@fams{%
       \bbl@ifunset{bbl@##1dflt@\languagename}%
                                                     (1) language?
4462
         {\bbl@ifunset{bbl@##1dflt@*\bbl@tempa}%
                                                     (2) from script?
4463
             {\bbl@ifunset{bbl@##1dflt@}%
                                                     2=F - (3) from generic?
4464
               {}%
                                                     123=F - nothing!
4465
                                                     3=T - from generic
               {\bbl@exp{%
4466
4467
                  \global\let\<bbl@##1dflt@\languagename>%
4468
                             \<bbl@##1dflt@>}}}%
             {\bbl@exp{%
                                                     2=T - from script
                \global\let\<bbl@##1dflt@\languagename>%
4470
4471
                           \<bbl@##1dflt@*\bbl@tempa>}}}%
                                              1=T - language, already defined
4472
         {}}%
     \def\bbl@tempa{\bbl@nostdfont{}}%
4473
```

don't gather with prev for

\bbl@foreach\bbl@font@fams{%

4474

```
\bbl@ifunset{bbl@##1dflt@\languagename}%
4475
4476
          {\bbl@cs{famrst@##1}%
           \global\bbl@csarg\let{famrst@##1}\relax}%
4477
4478
          {\bbl@exp{% order is relevant. TODO: but sometimes wrong!
4479
             \\\bbl@add\\\originalTeX{%
4480
               \\bbl@font@rst{\bbl@cl{##1dflt}}%
4481
                               \<##1default>\<##1family>{##1}}%
4482
             \\\bbl@font@set\<bbl@##1dflt@\languagename>% the main part!
4483
                             \<##1default>\<##1family>}}}%
4484
     \bbl@ifrestoring{}{\bbl@tempa}}%
```

The following is executed at the beginning of the aux file or the document to warn about fonts not defined with \babelfont.

```
4485 \ifx\f@family\@undefined\else
                                     % if latex
     \ifcase\bbl@engine
                                     % if pdftex
        \let\bbl@ckeckstdfonts\relax
4487
4488
     \else
       \def\bbl@ckeckstdfonts{%
4489
4490
          \begingroup
            \global\let\bbl@ckeckstdfonts\relax
4491
            \let\bbl@tempa\@empty
4492
            \bbl@foreach\bbl@font@fams{%
4493
              \bbl@ifunset{bbl@##1dflt@}%
4494
4495
                {\@nameuse{##1family}%
                 \bbl@csarg\gdef{WFF@\f@family}{}% Flag
                 \bbl@exp{\\bbl@add\\bbl@tempa{* \<##1family>= \f@family\\\%
                    \space\space\fontname\font\\\\}}%
4498
                 \bbl@csarg\xdef{##1dflt@}{\f@family}%
4499
                 \expandafter\xdef\csname ##1default\endcsname{\f@family}}%
4500
4501
                {}}%
            \ifx\bbl@tempa\@empty\else
4502
              \bbl@infowarn{The following font families will use the default\\%
4503
                settings for all or some languages:\\%
4504
4505
                There is nothing intrinsically wrong with it, but\\%
4506
                'babel' will no set Script and Language, which could\\%
4507
                 be relevant in some languages. If your document uses\\%
4508
                 these families, consider redefining them with \string\babelfont.\\%
4509
                Reported}%
4510
4511
            \fi
4512
          \endgroup}
     \fi
4513
4514\fi
```

Now the macros defining the font with fontspec.

When there are repeated keys in fontspec, the last value wins. So, we just place the ini settings at the beginning, and user settings will take precedence. We must deactivate temporarily \bbl@mapselect because \selectfont is called internally when a font is defined.

```
4515 \def\bbl@font@set#1#2#3{% eg \bbl@rmdflt@lang \rmdefault \rmfamily
4516
     \bbl@xin@{<>}{#1}%
     \ifin@
4517
        \bbl@exp{\\bbl@fontspec@set\\#1\expandafter\@gobbletwo#1\\#3}%
4518
4519
     ۱fi
     \bbl@exp{%
                               'Unprotected' macros return prev values
4520
        \def\\#2{#1}%
                               eg, \rmdefault{\bbl@rmdflt@lang}
4521
       \\bbl@ifsamestring{#2}{\f@family}%
4522
4523
           \\\bbl@ifsamestring{\f@series}{\bfdefault}{\\\bfseries}{}%
4524
           \let\\\bbl@tempa\relax}%
4525
```

```
4526
         {}}}
4527 %
         TODO - next should be global?, but even local does its job. I'm
         still not sure -- must investigate:
4528 %
4529 \def\bbl@fontspec@set#1#2#3#4{% eg \bbl@rmdflt@lang fnt-opt fnt-nme \xxfamily
     \let\bbl@tempe\bbl@mapselect
4531
     \let\bbl@mapselect\relax
4532
     \let\bbl@temp@fam#4%
                                 eg, '\rmfamily', to be restored below
4533
     \let#4\@empty
                                 Make sure \renewfontfamily is valid
     \bbl@exp{%
4534
       \let\\bbl@temp@pfam\<\bbl@stripslash#4\space>% eg, '\rmfamily '
       \<keys if exist:nnF>{fontspec-opentype}{Script/\bbl@cl{sname}}%
4536
4537
         {\\newfontscript{\bbl@cl{sname}}{\bbl@cl{sotf}}}%
       \<keys_if_exist:nnF>{fontspec-opentype}{Language/\bbl@cl{lname}}%
4538
4539
         {\\newfontlanguage{\bbl@cl{lname}}{\bbl@cl{lotf}}}%
4540
       \\\renewfontfamily\\#4%
4541
         [\bbl@cs{lsys@\languagename},#2]}{#3}% ie \bbl@exp{..}{#3}
4542
     \begingroup
4543
        #4%
4544
        \xdef#1{\f@family}%
                                 eg, \bbl@rmdflt@lang{FreeSerif(0)}
4545
     \endgroup
4546
     \let#4\bbl@temp@fam
     \bbl@exp{\let\<\bbl@stripslash#4\space>}\bbl@temp@pfam
4547
     \let\bbl@mapselect\bbl@tempe}%
```

font@rst and famrst are only used when there is no global settings, to save and restore de previous families. Not really necessary, but done for optimization.

```
4549 \def\bbl@font@rst#1#2#3#4{% 
4550 \bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}
```

The default font families. They are eurocentric, but the list can be expanded easily with \babelfont.

```
4551 \def\bbl@font@fams{rm,sf,tt}
```

The old tentative way. Short and preverved for compatibility, but deprecated. Note there is no direct alternative for \babelFSfeatures. The reason in explained in the user guide, but essentially – that was not the way to go :-).

```
4552 \newcommand\babelFSstore[2][]{%
     \bbl@ifblank{#1}%
       {\bbl@csarg\def{sname@#2}{Latin}}%
4554
        {\bbl@csarg\def{sname@#2}{#1}}%
4555
     \bbl@provide@dirs{#2}%
4556
     \bbl@csarg\ifnum{wdir@#2}>\z@
4557
       \let\bbl@beforeforeign\leavevmode
4558
4559
       \EnableBabelHook{babel-bidi}%
4560
4561
     \bbl@foreach{#2}{%
4562
       \bbl@FSstore{##1}{rm}\rmdefault\bbl@save@rmdefault
        \bbl@FSstore{##1}{sf}\sfdefault\bbl@save@sfdefault
4563
4564
        \bbl@FSstore{##1}{tt}\ttdefault\bbl@save@ttdefault}}
4565 \def\bbl@FSstore#1#2#3#4{%
     \bbl@csarg\edef{#2default#1}{#3}%
     \expandafter\addto\csname extras#1\endcsname{%
4567
        \let#4#3%
4568
       \ifx#3\f@family
4569
          \edef#3{\csname bbl@#2default#1\endcsname}%
4570
          \fontfamily{#3}\selectfont
4571
       \else
4572
          \edef#3{\csname bbl@#2default#1\endcsname}%
4573
4574
4575
     \expandafter\addto\csname noextras#1\endcsname{%
```

```
\ifx#3\f@family
4576
4577
          \fontfamily{#4}\selectfont
4578
       \fi
4579
        \let#3#4}}
4580 \let\bbl@langfeatures\@empty
4581 \def\babelFSfeatures{% make sure \fontspec is redefined once
     \let\bbl@ori@fontspec\fontspec
4583
     \renewcommand\fontspec[1][]{%
       \bbl@ori@fontspec[\bbl@langfeatures##1]}
4584
4585
     \let\babelFSfeatures\bbl@FSfeatures
     \babelFSfeatures}
4587 \def\bbl@FSfeatures#1#2{%
     \expandafter\addto\csname extras#1\endcsname{%
        \babel@save\bbl@langfeatures
4589
4590
        \edef\bbl@langfeatures{#2,}}}
4591 ((/Font selection))
```

13 Hooks for XeTeX and LuaTeX

13.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to utf8, which seems a sensible default.

```
_{4592}\left<\left<*Footnote changes\right>\right>\equiv
4593 \bbl@trace{Bidi footnotes}
4594 \ifnum\bbl@bidimode>\z@
     \def\bbl@footnote#1#2#3{%
        \@ifnextchar[%
4596
          {\bbl@footnote@o{#1}{#2}{#3}}%
4597
4598
          {\bbl@footnote@x{#1}{#2}{#3}}}
4599
      \long\def\bbl@footnote@x#1#2#3#4{%
        \bgroup
4600
          \select@language@x{\bbl@main@language}%
4601
4602
          \bbl@fn@footnote{#2#1{\ignorespaces#4}#3}%
        \egroup}
4603
4604
      \long\def\bbl@footnote@o#1#2#3[#4]#5{%
4605
        \bgroup
          \select@language@x{\bbl@main@language}%
4606
4607
          \bbl@fn@footnote[#4]{#2#1{\ignorespaces#5}#3}%
4608
        \egroup}
      \def\bbl@footnotetext#1#2#3{%
4609
        \@ifnextchar[%
4610
4611
          {\bbl@footnotetext@o{#1}{#2}{#3}}%
4612
          {\bbl@footnotetext@x{#1}{#2}{#3}}}
4613
      \long\def\bbl@footnotetext@x#1#2#3#4{%
4614
        \bgroup
4615
          \select@language@x{\bbl@main@language}%
          \bbl@fn@footnotetext{#2#1{\ignorespaces#4}#3}%
4616
4617
        \egroup}
4618
      \long\def\bbl@footnotetext@o#1#2#3[#4]#5{%
4619
        \bgroup
          \select@language@x{\bbl@main@language}%
4620
4621
          \bbl@fn@footnotetext[#4]{#2#1{\ignorespaces#5}#3}%
        \egroup}
4622
      \def\BabelFootnote#1#2#3#4{%
4623
4624
        \ifx\bbl@fn@footnote\@undefined
          \let\bbl@fn@footnote\footnote
4625
        \fi
4626
```

```
\ifx\bbl@fn@footnotetext\@undefined
4627
4628
         \let\bbl@fn@footnotetext\footnotetext
       \fi
4629
4630
       \bbl@ifblank{#2}%
4631
         {\def#1{\bbl@footnote{\@firstofone}{#3}{#4}}
4632
          \@namedef{\bbl@stripslash#1text}%
4633
            {\bbl@footnotetext{\@firstofone}{#3}{#4}}}%
         4634
4635
          \@namedef{\bbl@stripslash#1text}%
4636
            {\bbl@exp{\\bbl@footnotetext{\\\foreignlanguage{#2}}}{#3}{#4}}}
4637\fi
4638 ((/Footnote changes))
 Now, the code.
4639 (*xetex)
4640 \def\BabelStringsDefault{unicode}
4641 \let\xebbl@stop\relax
4642 \AddBabelHook{xetex}{encodedcommands}{%
     \def\bbl@tempa{#1}%
4644
     \ifx\bbl@tempa\@empty
       \XeTeXinputencoding"bytes"%
4645
     \else
4646
       \XeTeXinputencoding"#1"%
4647
4648
     \fi
     \def\xebbl@stop{\XeTeXinputencoding"utf8"}}
4650 \AddBabelHook{xetex}{stopcommands}{%
     \xebbl@stop
     \let\xebbl@stop\relax}
4653 \def\bbl@intraspace#1 #2 #3\@@{%
     \bbl@csarg\gdef{xeisp@\languagename}%
       {\XeTeXlinebreakskip #1em plus #2em minus #3em\relax}}
4656 \def\bbl@intrapenalty#1\@@{%
     \bbl@csarg\gdef{xeipn@\languagename}%
       {\XeTeXlinebreakpenalty #1\relax}}
4659 \def\bbl@provide@intraspace{%
     \bbl@xin@{\bbl@cl{lnbrk}}{s}%
     \ifin@\else\bbl@xin@{\bbl@cl{lnbrk}}{c}\fi
4661
     \ifin@
4662
       \bbl@ifunset{bbl@intsp@\languagename}{}%
4664
         {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else
4665
           \ifx\bbl@KVP@intraspace\@nil
              \bbl@exp{%
4666
4667
                \\\bbl@intraspace\bbl@cl{intsp}\\\@@}%
           \fi
4668
           \ifx\bbl@KVP@intrapenalty\@nil
4669
             \bbl@intrapenalty0\@@
4670
           \fi
4671
4672
         \ifx\bbl@KVP@intraspace\@nil\else % We may override the ini
4673
           \expandafter\bbl@intraspace\bbl@KVP@intraspace\@@
4674
4675
         \ifx\bbl@KVP@intrapenalty\@nil\else
4677
           \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@
4678
         ۱fi
         \bbl@exp{%
4679
           \\\bbl@add\<extras\languagename>{%
4680
             \XeTeXlinebreaklocale "\bbl@cl{tbcp}"%
4681
             \<bbl@xeisp@\languagename>%
4682
             \<bbl@xeipn@\languagename>}%
4683
```

```
\\bbl@toglobal\<extras\languagename>%
4684
4685
            \\\bbl@add\<noextras\languagename>{%
               \XeTeXlinebreaklocale "en"}%
4686
4687
            \\\bbl@toglobal\<noextras\languagename>}%
4688
          \ifx\bbl@ispacesize\@undefined
4689
            \gdef\bbl@ispacesize{\bbl@cl{xeisp}}%
4690
            \ifx\AtBeginDocument\@notprerr
4691
               \expandafter\@secondoftwo % to execute right now
4692
            \AtBeginDocument{%
               \expandafter\bbl@add
4694
4695
               \csname selectfont \endcsname{\bbl@ispacesize}%
               \expandafter\bbl@toglobal\csname selectfont \endcsname}%
4696
          \fi}%
4697
     \fi}
4698
4699 \ifx\DisableBabelHook\@undefined\endinput\fi
4700 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}
4701 \AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}
4702 \DisableBabelHook{babel-fontspec}
4703 \langle \langle Font \ selection \rangle \rangle
4704 \input txtbabel.def
4705 (/xetex)
```

13.2 Layout

In progress.

Note elements like headlines and margins can be modified easily with packages like fancyhdr, typearea or titleps, and geometry.

\bbl@startskip and \bbl@endskip are available to package authors. Thanks to the TEX expansion mechanism the following constructs are valid: \adim\bbl@startskip,

\advance\bbl@startskip\adim, \bbl@startskip\adim.

Consider txtbabel as a shorthand for tex-xet babel, which is the bidi model in both pdftex and xetex.

```
4706 (*texxet)
4707 \providecommand\bbl@provide@intraspace{}
4708 \bbl@trace{Redefinitions for bidi layout}
4709 \def\bbl@sspre@caption{%
4710 \bbl@exp{\everyhbox{\\\bbl@textdir\bbl@cs{wdir@\bbl@main@language}}}}
4711 \ifx\bbl@opt@layout\@nnil\endinput\fi % No layout
4712 \def\bbl@startskip{\ifcase\bbl@thepardir\leftskip\else\rightskip\fi}
4713 \end{fight} $$4713 \end{fight} else \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$13 \end{fight} $$
4714 \ifx\bbl@beforeforeign\leavevmode % A poor test for bidi=
                 \def\@hangfrom#1{%
4715
                        \setbox\@tempboxa\hbox{{#1}}%
4716
                        \hangindent\ifcase\bbl@thepardir\wd\@tempboxa\else-\wd\@tempboxa\fi
4717
                        \noindent\box\@tempboxa}
4718
4719
                 \def\raggedright{%
                       \let\\\@centercr
4720
                        \bbl@startskip\z@skip
4722
                        \@rightskip\@flushglue
                        \bbl@endskip\@rightskip
4723
                        \parindent\z@
4724
                        \parfillskip\bbl@startskip}
4725
4726
                 \def\raggedleft{%
4727
                       \let\\\@centercr
                        \bbl@startskip\@flushglue
4728
                        \bbl@endskip\z@skip
4729
                        \parindent\z@
4730
                        \parfillskip\bbl@endskip}
4731
```

```
4732 \ fi
4733 \IfBabelLayout{lists}
     {\bbl@sreplace\list
4735
        {\@totalleftmargin\leftmargin}{\@totalleftmargin\bbl@listleftmargin}%
4736
      \def\bbl@listleftmargin{%
4737
        \ifcase\bbl@thepardir\leftmargin\else\rightmargin\fi}%
4738
      \ifcase\bbl@engine
4739
        \def\labelenumii{)\theenumii(}% pdftex doesn't reverse ()
4740
        \def\p@enumiii{\p@enumii)\theenumii(}%
4741
      \bbl@sreplace\@verbatim
4742
4743
        {\leftskip\@totalleftmargin}%
        {\bbl@startskip\textwidth
4744
         \advance\bbl@startskip-\linewidth}%
4745
4746
      \bbl@sreplace\@verbatim
4747
        {\rightskip\z@skip}%
        {\bbl@endskip\z@skip}}%
4748
4749
     {}
4750 \IfBabelLayout{contents}
     {\bbl@sreplace\@dottedtocline{\leftskip}{\bbl@startskip}%
      4752
4753
4754 \IfBabelLayout{columns}
     {\bbl@sreplace\@outputdblcol{\hb@xt@\textwidth}{\bbl@outputhbox}%
      \def\bbl@outputhbox#1{%
4756
        \hb@xt@\textwidth{%
4757
          \hskip\columnwidth
4758
          \hfil
4759
          {\normalcolor\vrule \@width\columnseprule}%
4760
4761
4762
          \hb@xt@\columnwidth{\box\@leftcolumn \hss}%
4763
          \hskip-\textwidth
          \hb@xt@\columnwidth{\box\@outputbox \hss}%
4764
4765
          \hskip\columnsep
4766
          \hskip\columnwidth}}%
4767
     {}
4768 ((Footnote changes))
4769 \IfBabelLayout{footnotes}%
     {\BabelFootnote\footnote\languagename{}{}%
      \verb|\BabelFootnote| languagename{}{} % \\
4771
      \BabelFootnote\mainfootnote{}{}{}}
4772
4773
 Implicitly reverses sectioning labels in bidi=basic, because the full stop is not in contact with L
 numbers any more. I think there must be a better way.
4774 \IfBabelLayout{counters}%
     {\let\bbl@latinarabic=\@arabic
      \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%
4776
      \let\bbl@asciiroman=\@roman
4777
      \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%
4778
4779
      \let\bbl@asciiRoman=\@Roman
      \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}}{}
4781 (/texxet)
```

13.3 LuaTeX

The loader for luatex is based solely on language.dat, which is read on the fly. The code shouldn't be executed when the format is build, so we check if \AddBabelHook is defined. Then comes a modified

version of the loader in hyphen.cfg (without the hyphenmins stuff, which is under the direct control of babel).

The names \l@<language> are defined and take some value from the beginning because all ldf files assume this for the corresponding language to be considered valid, but patterns are not loaded (except the first one). This is done later, when the language is first selected (which usually means when the ldf finishes). If a language has been loaded, \bbl@hyphendata@<num> exists (with the names of the files read).

The default setup preloads the first language into the format. This is intended mainly for 'english', so that it's available without further intervention from the user. To avoid duplicating it, the following rule applies: if the "0th" language and the first language in language.dat have the same name then just ignore the latter. If there are new synonymous, the are added, but note if the language patterns have not been preloaded they won't at run time.

Other preloaded languages could be read twice, if they have been preloaded into the format. This is not optimal, but it shouldn't happen very often – with luatex patterns are best loaded when the document is typeset, and the "0th" language is preloaded just for backwards compatibility. As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn't work in this format, but with the new loader it does. Unfortunately, the format is not based on babel, and data could be duplicated, because languages are reassigned above those in the format (nothing serious, anyway). Note even with this format language.dat is used (under the principle of a single source), instead of language.def.

Of course, there is room for improvements, like tools to read and reassign languages, which would require modifying the language list, and better error handling.

We need catcode tables, but no format (targeted by babel) provide a command to allocate them (although there are packages like ctablestack). FIX - This isn't true anymore. For the moment, a dangerous approach is used - just allocate a high random number and cross the fingers. To complicate things, etex.sty changes the way languages are allocated.

This files is read at three places: (1) when plain.def, babel.sty starts, to read the list of available languages from language.dat (for the base option); (2) at hyphen.cfg, to modify some macros; (3) in the middle of plain.def and babel.sty, by babel.def, with the commands and other definitions for luatex (eg, \babelpatterns).

```
4782 (*luatex)
4783 \ifx\AddBabelHook\@undefined % When plain.def, babel.sty starts
4784 \bbl@trace{Read language.dat}
4785 \ifx\bbl@readstream\@undefined
4786 \csname newread\endcsname\bbl@readstream
4787 \fi
4788 \begingroup
4789
     \toks@{}
     \count@\z@ % 0=start, 1=0th, 2=normal
4790
     \def\bbl@process@line#1#2 #3 #4 {%
4791
        \ifx=#1%
4792
4793
          \bbl@process@synonym{#2}%
4794
          \bbl@process@language{#1#2}{#3}{#4}%
4795
4796
        \ignorespaces}
4797
      \def\bbl@manylang{%
4798
        \ifnum\bbl@last>\@ne
4799
4800
          \bbl@info{Non-standard hyphenation setup}%
4801
        \let\bbl@manylang\relax}
4802
      \def\bbl@process@language#1#2#3{%
4803
        \ifcase\count@
4804
          \@ifundefined{zth@#1}{\count@\tw@}{\count@\@ne}%
4805
4806
        \or
          \count@\tw@
4807
        ۱fi
4808
        \ifnum\count@=\tw@
4809
```

```
\expandafter\addlanguage\csname l@#1\endcsname
4810
4811
          \language\allocationnumber
          \chardef\bbl@last\allocationnumber
4812
4813
          \bbl@manylang
4814
          \let\bbl@elt\relax
4815
          \xdef\bbl@languages{%
4816
            \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%
4817
        \fi
4818
        \the\toks@
4819
        \toks@{}}
      \def\bbl@process@synonym@aux#1#2{%
4820
4821
        \global\expandafter\chardef\csname l@#1\endcsname#2\relax
        \let\bbl@elt\relax
4822
        \xdef\bbl@languages{%
4823
4824
          \bbl@languages\bbl@elt{#1}{#2}{}}}%
4825
     \def\bbl@process@synonym#1{%
       \ifcase\count@
4826
4827
          \toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}%
4828
       \or
          \@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}%
4829
4830
        \else
          \bbl@process@synonym@aux{#1}{\the\bbl@last}%
4831
4832
      \ifx\bbl@languages\@undefined % Just a (sensible?) guess
4833
       \chardef\l@english\z@
4834
        \chardef\l@USenglish\z@
4835
        \chardef\bbl@last\z@
4836
        \global\@namedef{bbl@hyphendata@0}{{hyphen.tex}{}}
4837
4838
        \gdef\bbl@languages{%
          \bbl@elt{english}{0}{hyphen.tex}{}%
4839
4840
          \bbl@elt{USenglish}{0}{}}
4841
        \global\let\bbl@languages@format\bbl@languages
4842
4843
        \def\bbl@elt#1#2#3#4{% Remove all except language 0
4844
          \ifnum#2>\z@\else
            \noexpand\bbl@elt{#1}{#2}{#3}{#4}%
4845
4846
       \xdef\bbl@languages{\bbl@languages}%
4847
     ۱fi
4848
     \def\bl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags
4849
     \bbl@languages
4850
     \openin\bbl@readstream=language.dat
4851
     \ifeof\bbl@readstream
4852
4853
        \bbl@warning{I couldn't find language.dat. No additional\\%
4854
                     patterns loaded. Reported}%
     \else
4855
       \loon
4856
          \endlinechar\m@ne
4857
          \read\bbl@readstream to \bbl@line
4858
          \endlinechar`\^^M
          \if T\ifeof\bbl@readstream F\fi T\relax
4860
            \ifx\bbl@line\@empty\else
4861
              \edef\bbl@line{\bbl@line\space\space\space}%
4862
              \expandafter\bbl@process@line\bbl@line\relax
4863
            \fi
4864
4865
       \repeat
4866
     \fi
4867 \endgroup
4868 \bbl@trace{Macros for reading patterns files}
```

```
4869 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}
4870 \ifx\babelcatcodetablenum\@undefined
     \ifx\newcatcodetable\@undefined
       \def\babelcatcodetablenum{5211}
4873
       \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}
4874
     \else
4875
       \newcatcodetable\babelcatcodetablenum
4876
       \newcatcodetable\bbl@pattcodes
4877
     \fi
4878 \else
     \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}
4880\fi
4881 \def\bbl@luapatterns#1#2{%
     \bbl@get@enc#1::\@@@
4883
     \setbox\z@\hbox\bgroup
4884
       \begingroup
         \savecatcodetable\babelcatcodetablenum\relax
4885
4886
         \initcatcodetable\bbl@pattcodes\relax
4887
         \catcodetable\bbl@pattcodes\relax
           \catcode`\#=6 \catcode`\$=3 \catcode`\&=4 \catcode`\^=7
4888
           \catcode'\_=8 \catcode'\{=1 \catcode'\}=2 \catcode'\~=13
4889
           \color=11 \color=10 \color=12
4890
           \catcode`\<=12 \catcode`\*=12 \catcode`\.=12
           \catcode`\-=12 \catcode`\/=12 \catcode`\]=12
           \catcode`\`=12 \catcode`\"=12
4893
           \input #1\relax
4894
         \catcodetable\babelcatcodetablenum\relax
4895
       \endgroup
4896
4897
       \def\bbl@tempa{#2}%
       \ifx\bbl@tempa\@empty\else
4899
         \input #2\relax
4900
       \fi
4901
     \egroup}%
4902 \def\bbl@patterns@lua#1{%
     \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax
       \csname l@#1\endcsname
       \edef\bbl@tempa{#1}%
4905
4906
     \else
       \csname l@#1:\f@encoding\endcsname
4907
       \edef\bbl@tempa{#1:\f@encoding}%
4908
     \fi\relax
4909
     \@namedef{lu@texhyphen@loaded@\the\language}{}% Temp
4910
     \@ifundefined{bbl@hyphendata@\the\language}%
4911
4912
       {\def\bbl@elt##1##2##3##4{%
4913
          \ifnum##2=\csname l@\bbl@tempa\endcsname % #2=spanish, dutch:OT1...
4914
            \def\bbl@tempb{##3}%
            \ifx\bbl@tempb\@empty\else % if not a synonymous
4915
4916
              \def\bbl@tempc{{##3}{##4}}%
            \fi
4917
            \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%
4919
          \fi}%
        \bbl@languages
4920
        \@ifundefined{bbl@hyphendata@\the\language}%
4921
          {\bbl@info{No hyphenation patterns were set for\\%
4922
4923
                     language '\bbl@tempa'. Reported}}%
          {\expandafter\expandafter\bbl@luapatterns
4924
4925
             \csname bbl@hyphendata@\the\language\endcsname}}{}}
4926 \endinput\fi
     % Here ends \ifx\AddBabelHook\@undefined
```

```
% A few lines are only read by hyphen.cfg
4929 \ifx\DisableBabelHook\@undefined
     \AddBabelHook{luatex}{everylanguage}{%
4931
        \def\process@language##1##2##3{%
4932
         \def\process@line###1###2 ####3 ####4 {}}}
4933
     \AddBabelHook{luatex}{loadpatterns}{%
4934
        \input #1\relax
4935
         \expandafter\gdef\csname bbl@hyphendata@\the\language\endcsname
4936
           {{#1}{}}
4937
     \AddBabelHook{luatex}{loadexceptions}{%
         \input #1\relax
4938
4939
         \def\bbl@tempb##1##2{{##1}{#1}}%
        \expandafter\xdef\csname bbl@hyphendata@\the\language\endcsname
4940
4941
           {\expandafter\expandafter\bbl@tempb
4942
            \csname bbl@hyphendata@\the\language\endcsname}}
4943 \endinput\fi
    % Here stops reading code for hyphen.cfg
4945 % The following is read the 2nd time it's loaded
4946 \begingroup % TODO - to a lua file
4947 \catcode`\%=12
4948 \catcode`\'=12
4949 \catcode`\"=12
4950 \catcode`\:=12
4951 \directlua{
4952 Babel = Babel or {}
     function Babel.bytes(line)
4953
4954
       return line:gsub("(.)",
         function (chr) return unicode.utf8.char(string.byte(chr)) end)
4955
4956
     function Babel.begin process input()
       if luatexbase and luatexbase.add to callback then
4958
         luatexbase.add_to_callback('process_input_buffer',
4959
                                      Babel.bytes,'Babel.bytes')
4960
4961
         Babel.callback = callback.find('process input buffer')
4962
         callback.register('process_input_buffer',Babel.bytes)
4963
4964
       end
4965
     function Babel.end_process_input ()
4966
       if luatexbase and luatexbase.remove_from_callback then
4967
         luatexbase.remove_from_callback('process_input_buffer','Babel.bytes')
4968
4969
         callback.register('process input buffer',Babel.callback)
4970
4971
       end
4972
     end
     function Babel.addpatterns(pp, lg)
4973
       local lg = lang.new(lg)
4974
       local pats = lang.patterns(lg) or ''
4975
       lang.clear_patterns(lg)
4976
       for p in pp:gmatch('[^%s]+') do
         ss = ''
4978
         for i in string.utfcharacters(p:gsub('%d', '')) do
4979
            ss = ss .. '%d?' .. i
4980
         end
4981
         ss = ss:gsub('^\%d\%?\%.', '\%\.') .. '\%d?'
4982
         ss = ss:gsub('%.%%d%?$', '%%.')
         pats, n = pats:gsub('%s' .. ss .. '%s', ' ' .. p .. ' ')
4984
         if n == 0 then
4985
4986
           tex.sprint(
```

```
[[\string\csname\space bbl@info\endcsname{New pattern: ]]
4987
4988
              .. p .. [[}]])
           pats = pats .. ' ' .. p
4989
4990
          else
4991
            tex.sprint(
4992
              [[\string\csname\space bbl@info\endcsname{Renew pattern: ]]
4993
              .. p .. [[}]])
4994
          end
4995
       end
       lang.patterns(lg, pats)
4997
4998 }
4999 \endgroup
5000 \ifx\newattribute\@undefined\else
     \newattribute\bbl@attr@locale
     \directlua{ Babel.attr_locale = luatexbase.registernumber'bbl@attr@locale'}
     \AddBabelHook{luatex}{beforeextras}{%
        \setattribute\bbl@attr@locale\localeid}
5004
5005 \fi
5006 \def\BabelStringsDefault{unicode}
5007 \let\luabbl@stop\relax
5008 \AddBabelHook{luatex}{encodedcommands}{%
     \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%
     \ifx\bbl@tempa\bbl@tempb\else
       \directlua{Babel.begin_process_input()}%
5011
5012
       \def\luabbl@stop{%
          \directlua{Babel.end_process_input()}}%
5013
     \fi}%
5014
5015 \AddBabelHook{luatex}{stopcommands}{%
     \luabbl@stop
     \let\luabbl@stop\relax}
5018 \AddBabelHook{luatex}{patterns}{%
     \@ifundefined{bbl@hyphendata@\the\language}%
5020
        {\def\bbl@elt##1##2##3##4{%
           \ifnum##2=\csname l@#2\endcsname % #2=spanish, dutch:OT1...
5021
             \def\bbl@tempb{##3}%
5022
             \ifx\bbl@tempb\@empty\else % if not a synonymous
5024
               \def\bbl@tempc{{##3}{##4}}%
             \fi
5025
             \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%
5026
           \fi}%
5027
5028
         \bbl@languages
         \@ifundefined{bbl@hyphendata@\the\language}%
5029
5030
           {\bbl@info{No hyphenation patterns were set for\\%
5031
                      language '#2'. Reported}}%
           {\expandafter\expandafter\expandafter\bbl@luapatterns
5032
              \csname bbl@hyphendata@\the\language\endcsname}}{}%
5033
     \@ifundefined{bbl@patterns@}{}{%
5034
       \begingroup
5035
          \bbl@xin@{,\number\language,}{,\bbl@pttnlist}%
5036
5037
          \ifin@\else
            \ifx\bbl@patterns@\@empty\else
5038
               \directlua{ Babel.addpatterns(
5039
                 [[\bbl@patterns@]], \number\language) }%
5040
            \fi
5041
            \@ifundefined{bbl@patterns@#1}%
5042
5043
5044
              {\directlua{ Babel.addpatterns(
                   [[\space\csname bbl@patterns@#1\endcsname]],
5045
```

```
\number\language) }}%
5046
5047
            \xdef\bbl@pttnlist{\bbl@pttnlist\number\language,}%
          \fi
5048
5049
        \endgroup}%
5050
      \bbl@exp{%
5051
        \bbl@ifunset{bbl@prehc@\languagename}{}%
          {\\bbl@ifblank{\bbl@cs{prehc@\languagename}}{}%
5052
            {\prehyphenchar=\bbl@cl{prehc}\relax}}}
5053
```

\babelpatterns

This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for the global ones and \bbl@patterns@<lang> for language ones. We make sure there is a space between words when multiple commands are used.

```
5054 \@onlypreamble\babelpatterns
5055 \AtEndOfPackage{%
     \newcommand\babelpatterns[2][\@empty]{%
       \ifx\bbl@patterns@\relax
          \let\bbl@patterns@\@empty
5058
5059
       \ifx\bbl@pttnlist\@empty\else
5060
          \bbl@warning{%
5061
            You must not intermingle \string\selectlanguage\space and\\%
5062
            \string\babelpatterns\space or some patterns will not\\%
5063
            be taken into account. Reported}%
5064
5065
       \ifx\@empty#1%
5066
          \protected@edef\bbl@patterns@{\bbl@patterns@\space#2}%
5067
        \else
5068
5069
          \edef\bbl@tempb{\zap@space#1 \@empty}%
5070
          \bbl@for\bbl@tempa\bbl@tempb{%
            \bbl@fixname\bbl@tempa
5071
            \bbl@iflanguage\bbl@tempa{%
5072
              \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%
5073
                \@ifundefined{bbl@patterns@\bbl@tempa}%
5074
5075
                  {\csname bbl@patterns@\bbl@tempa\endcsname\space}%
5076
5077
                #2}}}%
        \fi}}
5078
```

13.4 Southeast Asian scripts

First, some general code for line breaking, used by \babelposthyphenation. Replace regular (ie, implicit) discretionaries by spaceskips, based on the previous glyph (which I think makes sense, because the hyphen and the previous char go always together). Other discretionaries are not touched. See Unicode UAX 14.

```
5079% TODO - to a lua file
5080 \directlua{
     Babel = Babel or {}
     Babel.linebreaking = Babel.linebreaking or {}
5083
     Babel.linebreaking.before = {}
     Babel.linebreaking.after = {}
5084
     Babel.locale = {} % Free to use, indexed with \localeid
5086
     function Babel.linebreaking.add_before(func)
       tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])
5087
       table.insert(Babel.linebreaking.before , func)
5088
5089
     function Babel.linebreaking.add_after(func)
5090
       tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])
5091
       table.insert(Babel.linebreaking.after, func)
5092
```

```
5093
     end
5094 }
5095 \def\bbl@intraspace#1 #2 #3\@@{%
     \directlua{
5097
       Babel = Babel or {}
5098
       Babel.intraspaces = Babel.intraspaces or {}
5099
       Babel.intraspaces['\csname bbl@sbcp@\languagename\endcsname'] = %
5100
           \{b = #1, p = #2, m = #3\}
5101
       Babel.locale_props[\the\localeid].intraspace = %
5102
           \{b = #1, p = #2, m = #3\}
5103 }}
5104 \def\bbl@intrapenalty#1\@@{%
     \directlua{
5105
       Babel = Babel or {}
5106
5107
       Babel.intrapenalties = Babel.intrapenalties or {}
       Babel.intrapenalties['\csname bbl@sbcp@\languagename\endcsname'] = #1
       Babel.locale_props[\the\localeid].intrapenalty = #1
5109
5110 }}
5111 \begingroup
5112 \catcode`\%=12
5113 \catcode`\^=14
5114 \catcode`\'=12
5115 \catcode`\~=12
5116 \gdef\bbl@seaintraspace{^
     \let\bbl@seaintraspace\relax
5117
     \directlua{
5118
5119
       Babel = Babel or {}
5120
       Babel.sea_enabled = true
5121
       Babel.sea_ranges = Babel.sea_ranges or {}
       function Babel.set chranges (script, chrng)
5122
5123
          local c = 0
5124
          for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do
5125
            Babel.sea_ranges[script..c]={tonumber(s,16), tonumber(e,16)}
5126
            c = c + 1
5127
          end
5128
       end
       function Babel.sea disc to space (head)
5129
          local sea_ranges = Babel.sea_ranges
5130
          local last_char = nil
5131
                                    ^% 10 pt = 655360 = 10 * 65536
          local quad = 655360
5132
          for item in node.traverse(head) do
5133
            local i = item.id
5134
            if i == node.id'glyph' then
5135
              last char = item
5136
            elseif i == 7 and item.subtype == 3 and last_char
5137
                and last_char.char > 0x0C99 then
5138
5139
              quad = font.getfont(last_char.font).size
5140
              for lg, rg in pairs(sea_ranges) do
                if last_char.char > rg[1] and last_char.char < rg[2] then
5141
                  lg = lg:sub(1, 4) ^% Remove trailing number of, eg, Cyrl1
5142
                  local intraspace = Babel.intraspaces[lg]
5143
                  local intrapenalty = Babel.intrapenalties[lg]
5144
                  local n
5145
                  if intrapenalty ~= 0 then
5146
5147
                    n = node.new(14, 0)
                                             ^% penalty
                    n.penalty = intrapenalty
5148
                    node.insert_before(head, item, n)
5149
                  end
5150
                  n = node.new(12, 13)
                                             ^% (glue, spaceskip)
5151
```

```
node.setglue(n, intraspace.b * quad,
5152
5153
                                   intraspace.p * quad,
                                    intraspace.m * quad)
5154
5155
                  node.insert_before(head, item, n)
5156
                  node.remove(head, item)
5157
                end
5158
              end
5159
            end
5160
          end
5161
       end
     ۸۸{
5162
5163
     \bbl@luahyphenate}
5164 \catcode`\%=14
5165 \gdef\bbl@cjkintraspace{%
     \let\bbl@cjkintraspace\relax
5167
     \directlua{
       Babel = Babel or {}
5168
5169
        require('babel-data-cjk.lua')
5170
       Babel.cjk_enabled = true
5171
        function Babel.cjk_linebreak(head)
5172
          local GLYPH = node.id'glyph'
5173
          local last_char = nil
5174
          local quad = 655360
                                    % 10 pt = 655360 = 10 * 65536
          local last class = nil
5175
5176
          local last_lang = nil
5177
          for item in node.traverse(head) do
5178
            if item.id == GLYPH then
5179
5180
              local lang = item.lang
5181
5182
5183
              local LOCALE = node.get attribute(item,
                    luatexbase.registernumber'bbl@attr@locale')
5184
5185
              local props = Babel.locale_props[LOCALE]
5186
              local class = Babel.cjk_class[item.char].c
5187
5188
              if class == 'cp' then class = 'cl' end % )] as CL
5189
              if class == 'id' then class = 'I' end
5190
5191
              local br = 0
5192
              if class and last class and Babel.cjk breaks[last class][class] then
5193
                br = Babel.cjk breaks[last class][class]
5194
5195
              end
5196
              if br == 1 and props.linebreak == 'c' and
5197
                  lang ~= \the\l@nohyphenation\space and
5198
                  last_lang \sim= \the\l@nohyphenation then
5199
                local intrapenalty = props.intrapenalty
5200
                if intrapenalty ~= 0 then
5201
                  local n = node.new(14, 0)
5202
                                                  % penalty
                  n.penalty = intrapenalty
5203
                  node.insert_before(head, item, n)
5204
5205
                end
                local intraspace = props.intraspace
5206
                local n = node.new(12, 13)
                                                  % (glue, spaceskip)
5207
5208
                node.setglue(n, intraspace.b * quad,
5209
                                 intraspace.p * quad,
                                 intraspace.m * quad)
5210
```

```
node.insert_before(head, item, n)
5211
5212
              end
5213
5214
              if font.getfont(item.font) then
                quad = font.getfont(item.font).size
5215
5216
              end
5217
              last_class = class
5218
              last_lang = lang
5219
            else % if penalty, glue or anything else
5220
              last_class = nil
            end
5221
5222
          end
          lang.hyphenate(head)
5223
5224
       end
5225
     }%
     \bbl@luahyphenate}
5227 \gdef\bbl@luahyphenate{%
     \let\bbl@luahyphenate\relax
5229
     \directlua{
5230
       luatexbase.add_to_callback('hyphenate',
5231
        function (head, tail)
          if Babel.linebreaking.before then
5232
5233
            for k, func in ipairs(Babel.linebreaking.before) do
              func(head)
5234
5235
            end
          end
5236
          if Babel.cjk_enabled then
5237
            Babel.cjk_linebreak(head)
5238
5239
          end
          lang.hyphenate(head)
5240
          if Babel.linebreaking.after then
5241
5242
            for k, func in ipairs(Babel.linebreaking.after) do
              func(head)
5243
5244
            end
5245
          end
5246
          if Babel.sea_enabled then
            Babel.sea disc to space(head)
5247
5248
          end
       end,
5249
        'Babel.hyphenate')
5250
5251
     }
5252 }
5253 \endgroup
5254 \def\bbl@provide@intraspace{%
     \bbl@ifunset{bbl@intsp@\languagename}{}%
        {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else
5256
           \bbl@xin@{\bbl@cl{lnbrk}}{c}%
5257
           \ifin@
5258
                             % cjk
5259
             \bbl@cjkintraspace
             \directlua{
5260
                 Babel = Babel or {}
5261
                 Babel.locale_props = Babel.locale_props or {}
5262
                 Babel.locale_props[\the\localeid].linebreak = 'c'
5263
             }%
5264
             \bbl@exp{\\bbl@intraspace\bbl@cl{intsp}\\\@@}%
5265
5266
             \ifx\bbl@KVP@intrapenalty\@nil
5267
               \bbl@intrapenalty0\@@
             \fi
5268
           \else
5269
                             % sea
```

```
\bbl@seaintraspace
5270
5271
             \bbl@exp{\\bbl@intraspace\bbl@cl{intsp}\\\@@}%
             \directlua{
5272
5273
                Babel = Babel or {}
5274
                Babel.sea ranges = Babel.sea ranges or {}
5275
                Babel.set chranges('\bbl@cl{sbcp}',
5276
                                     '\bbl@cl{chrng}')
5277
             }%
             \ifx\bbl@KVP@intrapenalty\@nil
5278
               \bbl@intrapenalty0\@@
5280
5281
           \fi
5282
         \fi
         \ifx\bbl@KVP@intrapenalty\@nil\else
5283
5284
           \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@
5285
         \fi}}
```

13.5 CJK line breaking

Minimal line breaking for CJK scripts, mainly intended for simple documents and short texts as a secundary language. Only line breaking, with a little stretching for justification, without any attempt to adjust the spacing. It is based on (but does not strictly follow) the Unicode algorithm.

We first need a little table with the corresponding line breaking properties. A few characters have an

We first need a little table with the corresponding line breaking properties. A few characters have at additional key for the width (fullwidth *vs.* halfwidth), not yet used. There is a separate file, defined below.

```
Work in progress.
```

Common stuff.

```
\label{look} $$ 5286 \AddBabelHook\{babel-fontspec\}_{afterextras}_{bbl@switchfont} $$ 5287 \AddBabelHook\{babel-fontspec\}_{beforestart}_{bbl@ckeckstdfonts} $$ 5288 \DisableBabelHook\{babel-fontspec\}_{5289}_{Fontselection}_{ontspec} $$ $$ 1289 \AddBabelHook\{babel-fontspec\}_{ontspec}_{ontspec}_{ontspec} $$ 289 \AddBabelHook\{babel-fontspec\}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspec}_{ontspe
```

13.6 Automatic fonts and ids switching

After defining the blocks for a number of scripts (must be extended and very likely fine tuned), we define a short function which just traverse the node list to carry out the replacements. The table loc_to_scr gets the locale form a script range (note the locale is the key, and that there is an intermediate table built on the fly for optimization). This locale is then used to get the \language and the \localeid as stored in locale_props, as well as the font (as requested). In the latter table a key starting with / maps the font from the global one (the key) to the local one (the value). Maths are skipped and discretionaries are handled in a special way.

```
5290% TODO - to a lua file
5291 \directlua{
5292 Babel.script blocks = {
                                   ['dflt'] = {},
                                     ['Arab'] = \{\{0x0600, 0x06FF\}, \{0x08A0, 0x08FF\}, \{0x0750, 0x077F\}, \}
5294
5295
                                                                                                                      {0xFE70, 0xFEFF}, {0xFB50, 0xFDFF}, {0x1EE00, 0x1EEFF}},
5296
                                    ['Armn'] = \{\{0x0530, 0x058F\}\},\
5297
                                    ['Beng'] = \{\{0x0980, 0x09FF\}\},
5298
                                    ['Cher'] = \{\{0x13A0, 0x13FF\}, \{0xAB70, 0xABBF\}\},
                                    ['Copt'] = \{\{0x03E2, 0x03EF\}, \{0x2C80, 0x2CFF\}, \{0x102E0, 0x102FF\}\},
                                    ['Cyrl'] = \{\{0x0400, 0x04FF\}, \{0x0500, 0x052F\}, \{0x1C80, 0x1C8F\}, \{0x1C80, 0x1C80, 0x1C8F\}, \{0x1C80, 0x1C80, 0x1
                                                                                                                     {0x2DE0, 0x2DFF}, {0xA640, 0xA69F}},
5301
                                    ['Deva'] = \{\{0x0900, 0x097F\}, \{0xA8E0, 0xA8FF\}\},
5302
                                    ['Ethi'] = \{\{0x1200, 0x137F\}, \{0x1380, 0x139F\}, \{0x2D80, 0x2DDF\}, \{0x1380, 0x139F\}, \{0x1580, 0x139F\}, \{0x1580, 0x159F\}, 303
                                                                                                                       {0xAB00, 0xAB2F}},
5304
                                    ['Geor'] = \{\{0x10A0, 0x10FF\}, \{0x2D00, 0x2D2F\}\},\
5305
                                   % Don't follow strictly Unicode, which places some Coptic letters in
```

```
% the 'Greek and Coptic' block
                    ['Grek'] = \{\{0x0370, 0x03E1\}, \{0x03F0, 0x03FF\}, \{0x1F00, 0x1FFF\}\},
                     ['Hans'] = \{\{0x2E80, 0x2EFF\}, \{0x3000, 0x303F\}, \{0x31C0, 0x31EF\}, \}
5310
                                                                    {0x3300, 0x33FF}, {0x3400, 0x4DBF}, {0x4E00, 0x9FFF},
5311
                                                                    {0xF900, 0xFAFF}, {0xFE30, 0xFE4F}, {0xFF00, 0xFFEF},
5312
                                                                    {0x20000, 0x2A6DF}, {0x2A700, 0x2B73F},
5313
                                                                    {0x2B740, 0x2B81F}, {0x2B820, 0x2CEAF},
5314
                                                                   {0x2CEB0, 0x2EBEF}, {0x2F800, 0x2FA1F}},
                     ['Hebr'] = \{\{0x0590, 0x05FF\}\},\
5315
5316
                     ['Jpan'] = \{\{0x3000, 0x303F\}, \{0x3040, 0x309F\}, \{0x30A0, 0x30FF\}, \{0x30A0, 0x30A0, 0x30FF\}, \{0x30A0, 0x30A0, 0x30A
5317
                                                                    {0x4E00, 0x9FAF}, {0xFF00, 0xFFEF}},
5318
                     ['Khmr'] = \{\{0x1780, 0x17FF\}, \{0x19E0, 0x19FF\}\},\
5319
                     ['Knda'] = \{\{0x0C80, 0x0CFF\}\},\
                     ['Kore'] = \{\{0x1100, 0x11FF\}, \{0x3000, 0x303F\}, \{0x3130, 0x318F\}, \{0x3100,  0x318F\}, \{0x31000, 0x318F\}, \{0x31000, 0x318F\}, \{0x31000, 0x318F\}, \{0x31000, 0x318F\}, \{0x31000, 0x318F\}, \{0x310000, 0x318F\}, \{0x310000, 0x31000, 0x31000, 0x318F\}, \{0x310000, 0x31000, 0x31
5320
5321
                                                                    {0x4E00, 0x9FAF}, {0xA960, 0xA97F}, {0xAC00, 0xD7AF},
5322
                                                                    {0xD7B0, 0xD7FF}, {0xFF00, 0xFFEF}},
                    ['Laoo'] = \{\{0x0E80, 0x0EFF\}\},\
5323
5324
                    ['Latn'] = \{\{0x0000, 0x007F\}, \{0x0080, 0x00FF\}, \{0x0100, 0x017F\}, \{0x01000, 0x017F\}, \{0x01000, 0x017F\}, \{0x01000, 0x017F\}, \{0x010000, 0x017F\}, \{0x0100000,  0x017F\}, \{0x01000000, 0x017F\}, \{0x01000000, 0x017F\}, \{0x01000000000, 0x017F\}, \{0x0100000000, 0x017F\}, \{0x0100000000000000000000, 0x017F\}, \{0x0100000000000000
5325
                                                                    {0x0180, 0x024F}, {0x1E00, 0x1EFF}, {0x2C60, 0x2C7F},
                                                                    {0xA720, 0xA7FF}, {0xAB30, 0xAB6F}},
5326
5327
                    ['Mahj'] = \{\{0x11150, 0x1117F\}\},\
5328
                    ['Mlym'] = \{\{0x0D00, 0x0D7F\}\},\
                     ['Mymr'] = \{\{0x1000, 0x109F\}, \{0xAA60, 0xAA7F\}, \{0xA9E0, 0xA9FF\}\},
                    ['Orya'] = \{\{0x0B00, 0x0B7F\}\},\
                  ['Sinh'] = \{\{0x0D80, 0x0DFF\}, \{0x111E0, 0x111FF\}\},
                ['Syrc'] = \{\{0x0700, 0x074F\}, \{0x0860, 0x086F\}\},
5332
                ['Taml'] = \{\{0x0B80, 0x0BFF\}\},
               ['Telu'] = \{\{0x0C00, 0x0C7F\}\},\
               ['Tfng'] = \{\{0x2D30, 0x2D7F\}\},\
               ['Thai'] = \{\{0x0E00, 0x0E7F\}\},\
5337 ['Tibt'] = \{\{0x0F00, 0x0FFF\}\},
               ['Vaii'] = \{\{0xA500, 0xA63F\}\},\
                ['Yiii'] = \{\{0xA000, 0xA48F\}, \{0xA490, 0xA4CF\}\}
5339
5340 }
5341
5342 Babel.script_blocks.Cyrs = Babel.script_blocks.Cyrl
5343 Babel.script blocks.Hant = Babel.script blocks.Hans
5344 Babel.script_blocks.Kana = Babel.script_blocks.Jpan
5345
5346 function Babel.locale map(head)
                    if not Babel.locale_mapped then return head end
5348
                    local LOCALE = luatexbase.registernumber'bbl@attr@locale'
5349
5350
                   local GLYPH = node.id('glvph')
                   local inmath = false
5351
                   local toloc save
5352
                    for item in node.traverse(head) do
5353
5354
                            local toloc
                            if not inmath and item.id == GLYPH then
5355
                                    % Optimization: build a table with the chars found
                                    if Babel.chr_to_loc[item.char] then
5357
                                            toloc = Babel.chr_to_loc[item.char]
5358
5359
                                            for lc, maps in pairs(Babel.loc_to_scr) do
5360
                                                    for _, rg in pairs(maps) do
5361
                                                            if item.char >= rg[1] and item.char <= rg[2] then
                                                                   Babel.chr_to_loc[item.char] = lc
5363
                                                                   toloc = lc
5364
                                                                   break
5365
```

```
5366
                end
5367
              end
            end
5368
5369
5370
          % Now, take action, but treat composite chars in a different
5371
          % fashion, because they 'inherit' the previous locale. Not yet
          % optimized.
5372
5373
          if not toloc and
5374
              (item.char \geq 0x0300 and item.char \leq 0x036F) or
              (item.char \geq 0x1ABO and item.char \leq 0x1AFF) or
              (item.char \geq 0x1DC0 and item.char \leq 0x1DFF) then
5376
5377
            toloc = toloc_save
5378
          if toloc and toloc > -1 then
5379
5380
            if Babel.locale_props[toloc].lg then
5381
              item.lang = Babel.locale_props[toloc].lg
              node.set_attribute(item, LOCALE, toloc)
5382
5383
            end
5384
            if Babel.locale props[toloc]['/'..item.font] then
              item.font = Babel.locale_props[toloc]['/'..item.font]
5385
5386
            end
5387
            toloc_save = toloc
       elseif not inmath and item.id == 7 then
5389
          item.replace = item.replace and Babel.locale map(item.replace)
5390
                       = item.pre and Babel.locale_map(item.pre)
5391
                       = item.post and Babel.locale_map(item.post)
5392
          item.post
       elseif item.id == node.id'math' then
5393
5394
          inmath = (item.subtype == 0)
5395
5396
     end
5397
     return head
5398 end
5399 }
 The code for \babelcharproperty is straightforward. Just note the modified lua table can be
 different.
5400 \newcommand\babelcharproperty[1]{%
     \count@=#1\relax
5402
     \ifvmode
5403
        \expandafter\bbl@chprop
5404
        \bbl@error{\string\babelcharproperty\space can be used only in\\%
5405
                   vertical mode (preamble or between paragraphs)}%
5406
5407
                  {See the manual for futher info}%
5408
5409 \newcommand\bbl@chprop[3][\the\count@]{%
     \@tempcnta=#1\relax
5410
     \bbl@ifunset{bbl@chprop@#2}%
5411
        {\bbl@error{No property named '#2'. Allowed values are\\%
5412
                    direction (bc), mirror (bmg), and linebreak (lb)}%
5413
                    {See the manual for futher info}}%
5415
       {}%
5416
5417
       \bbl@cs{chprop@#2}{#3}%
5418
     \ifnum\count@<\@tempcnta
5419
       \advance\count@\@ne
```

\repeat}

5421 \def\bbl@chprop@direction#1{%

```
\directlua{
5422
5423
       Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}
       Babel.characters[\the\count@]['d'] = '#1'
5424
5425 }}
5426 \let\bbl@chprop@bc\bbl@chprop@direction
5427 \def\bbl@chprop@mirror#1{%
     \directlua{
5429
       Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}
5430
       Babel.characters[\the\count@]['m'] = '\number#1'
     }}
5432 \let\bbl@chprop@bmg\bbl@chprop@mirror
5433 \def\bbl@chprop@linebreak#1{%
     \directlua{
       Babel.cjk_characters[\the\count@] = Babel.cjk_characters[\the\count@] or {}
5435
5436
       Babel.cjk_characters[\the\count@]['c'] = '#1'
5437
    }}
5438 \let\bbl@chprop@lb\bbl@chprop@linebreak
5439 \def\bbl@chprop@locale#1{%
5440
     \directlua{
       Babel.chr_to_loc = Babel.chr_to_loc or {}
5441
5442
       Babel.chr_to_loc[\the\count@] =
5443
         \bbl@ifblank{#1}{-1000}{\the\bbl@cs{id@@#1}}\space
5444
```

Post-handling hyphenation patterns for non-standard rules, like ff to ff-f. There are still some issues with speed (not very slow, but still slow).

After declaring the table containing the patterns with their replacements, we define some auxiliary functions: str_to_nodes converts the string returned by a function to a node list, taking the node at base as a model (font, language, etc.); fetch_word fetches a series of glyphs and discretionaries, which pattern is matched against (if there is a match, it is called again before trying other patterns, and this is very likely the main bottleneck).

post_hyphenate_replace is the callback applied after lang.hyphenate. This means the automatic hyphenation points are known. As empty captures return a byte position (as explained in the luatex manual), we must convert it to a utf8 position. With first, the last byte can be the leading byte in a utf8 sequence, so we just remove it and add 1 to the resulting length. With last we must take into account the capture position points to the next character. Here word_head points to the starting node of the text to be matched.

```
5445 \begingroup % TODO - to a lua file
5446 \catcode`\~=12
5447 \catcode`\#=12
5448 \catcode`\%=12
5449 \catcode`\&=14
5450 \directlua{
     Babel.linebreaking.replacements = {}
     Babel.linebreaking.replacements[0] = {} &% pre
     Babel.linebreaking.replacements[1] = {} &% post
5453
5454
     &% Discretionaries contain strings as nodes
5455
     function Babel.str_to_nodes(fn, matches, base)
5456
       local n, head, last
5457
       if fn == nil then return nil end
5458
       for s in string.utfvalues(fn(matches)) do
5460
         if base.id == 7 then
5461
            base = base.replace
5462
         end
5463
         n = node.copy(base)
5464
         n.char
                    = s
          if not head then
5465
5466
            head = n
```

```
else
5467
5468
            last.next = n
5469
5470
          last = n
5471
       end
5472
       return head
5473
     end
5474
5475
     Babel.fetch_subtext = {}
5476
     &% Merging both functions doesn't seen feasible, because there are too
5477
5478
     &% many differences.
     Babel.fetch_subtext[0] = function(head)
5479
       local word_string = ''
5480
5481
       local word_nodes = {}
5482
       local lang
       local item = head
5483
5484
       local inmath = false
5485
       while item do
5486
5487
          if item.id == 11 then
5488
5489
            inmath = (item.subtype == 0)
5490
5491
          if inmath then
5492
            &% pass
5493
5494
          elseif item.id == 29 then
5495
            local locale = node.get_attribute(item, Babel.attr_locale)
5496
5497
            if lang == locale or lang == nil then
5498
              if (item.char \sim= 124) then &% ie, not | = space
5499
5500
                lang = lang or locale
                word_string = word_string .. unicode.utf8.char(item.char)
5501
5502
                word_nodes[#word_nodes+1] = item
              end
5503
            else
5504
              break
5505
            end
5506
5507
          elseif item.id == 12 and item.subtype == 13 then
5508
            word string = word string .. '|'
5509
5510
            word_nodes[#word_nodes+1] = item
5511
          &% Ignore leading unrecognized nodes, too.
5512
          elseif word_string ~= '' then
5513
            word_string = word_string .. Babel.us_char
5514
5515
            word_nodes[#word_nodes+1] = item &% Will be ignored
          end
5516
5517
          item = item.next
5518
5519
5520
       &% Here and above we remove some trailing chars but not the
5521
5522
       &% corresponding nodes. But they aren't accessed.
5523
       if word_string:sub(-1) == '|' then
          word string = word string:sub(1,-2)
5524
5525
       end
```

```
word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')
5526
5527
       return word_string, word_nodes, item, lang
5528
5529
5530
     Babel.fetch_subtext[1] = function(head)
       local word_string = ''
5531
5532
       local word_nodes = {}
5533
       local lang
5534
       local item = head
5535
       local inmath = false
       while item do
5537
5538
          if item.id == 11 then
5539
5540
            inmath = (item.subtype == 0)
5541
          end
5542
5543
          if inmath then
5544
            &% pass
5545
          elseif item.id == 29 then
5546
            if item.lang == lang or lang == nil then
5547
              if (item.char \sim= 124) and (item.char \sim= 61) then &% not =, not |
5548
                lang = lang or item.lang
5549
5550
                word_string = word_string .. unicode.utf8.char(item.char)
                word_nodes[#word_nodes+1] = item
5551
              end
5552
            else
5553
5554
              break
            end
5555
5556
          elseif item.id == 7 and item.subtype == 2 then
5557
            word_string = word_string .. '='
5558
5559
            word_nodes[#word_nodes+1] = item
5560
          elseif item.id == 7 and item.subtype == 3 then
5561
            word string = word string .. '|
5562
            word_nodes[#word_nodes+1] = item
5563
5564
          &% (1) Go to next word if nothing was found, and (2) implictly
5565
          &% remove leading USs.
5566
          elseif word_string == '' then
5567
            &% pass
5568
5569
          &% This is the responsible for splitting by words.
5570
          elseif (item.id == 12 and item.subtype == 13) then
5571
            break
5572
5573
5574
          else
            word string = word string .. Babel.us char
5575
            word_nodes[#word_nodes+1] = item &% Will be ignored
5576
          end
5577
5578
          item = item.next
5579
5580
5581
5582
       word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')
5583
       return word string, word nodes, item, lang
5584
     end
```

```
5585
5586
     function Babel.pre_hyphenate_replace(head)
       Babel.hyphenate_replace(head, 0)
5587
5588
5589
5590
     function Babel.post_hyphenate_replace(head)
5591
       Babel.hyphenate_replace(head, 1)
5592
     end
5593
5594
     function Babel.debug_hyph(w, wn, sc, first, last, last_match)
       local ss = ''
5595
5596
       for pp = 1, 40 do
5597
          if wn[pp] then
            if wn[pp].id == 29 then
5598
5599
              ss = ss .. unicode.utf8.char(wn[pp].char)
5600
              ss = ss .. '{' .. wn[pp].id .. '}'
5601
5602
            end
5603
          end
       end
5604
5605
       print('nod', ss)
5606
       print('lst_m',
5607
          string.rep(' ', unicode.utf8.len(
             string.sub(w, 1, last_match))-1) .. '>')
5608
       print('str', w)
5609
       print('sc', string.rep(' ', sc-1) .. '^')
5610
       if first == last then
5611
          print('f=l', string.rep(' ', first-1) .. '!')
5612
5613
          print('f/l', string.rep(' ', first-1) .. '[' ..
5614
5615
            string.rep(' ', last-first-1) .. ']')
5616
       end
5617
     end
5618
     Babel.us_char = string.char(31)
5619
     function Babel.hyphenate replace(head, mode)
5621
       local u = unicode.utf8
5622
       local lbkr = Babel.linebreaking.replacements[mode]
5623
5624
       local word_head = head
5625
5626
       while true do &% for each subtext block
5627
5628
5629
          local w, w_nodes, nw, lang = Babel.fetch_subtext[mode](word_head)
5630
          if Babel.debug then
5631
5632
            print()
5633
            print((mode == 0) and '@@@@<' or '@@@@>', w)
          end
5634
5635
          if nw == nil and w == '' then break end
5636
5637
          if not lang then goto next end
5638
5639
          if not lbkr[lang] then goto next end
5640
5641
          &% For each saved (pre|post)hyphenation. TODO. Reconsider how
5642
          &% loops are nested.
          for k=1, #lbkr[lang] do
5643
```

```
local p = lbkr[lang][k].pattern
5644
5645
           local r = lbkr[lang][k].replace
5646
5647
            if Babel.debug then
5648
              print('*****', p, mode)
5649
           end
5650
5651
           &% This variable is set in some cases below to the first *byte*
5652
           &% after the match, either as found by u.match (faster) or the
5653
           &% computed position based on sc if w has changed.
           local last match = 0
5654
5655
5656
           &% For every match.
           while true do
5657
5658
              if Babel.debug then
5659
                print('=====')
5660
5661
              local new &% used when inserting and removing nodes
5662
              local refetch = false
5663
5664
              local matches = { u.match(w, p, last_match) }
              if #matches < 2 then break end
5665
5666
              &% Get and remove empty captures (with ()'s, which return a
5667
              &% number with the position), and keep actual captures
5668
              % (from (...)), if any, in matches.
5669
              local first = table.remove(matches, 1)
5670
              local last = table.remove(matches, #matches)
5671
5672
              &% Non re-fetched substrings may contain \31, which separates
5673
              &% subsubstrings.
5674
              if string.find(w:sub(first, last-1), Babel.us_char) then break end
5675
              local save_last = last &% with A()BC()D, points to D
5676
5677
              &% Fix offsets, from bytes to unicode. Explained above.
5678
              first = u.len(w:sub(1, first-1)) + 1
5679
              last = u.len(w:sub(1, last-1)) &% now last points to C
5680
5681
              &% This loop stores in n small table the nodes
5682
              &% corresponding to the pattern. Used by 'data' to provide a
5683
              &% predictable behavior with 'insert' (now w_nodes is modified on
5684
5685
              &% the fly), and also access to 'remove'd nodes.
              local sc = first-1
                                            &% Used below, too
5686
5687
              local data_nodes = {}
5688
              for q = 1, last-first+1 do
5689
                data_nodes[q] = w_nodes[sc+q]
5690
5691
              end
5692
              &% This loop traverses the matched substring and takes the
              &% corresponding action stored in the replacement list.
5694
              &% sc = the position in substr nodes / string
5695
              &% rc = the replacement table index
5696
              local rc = 0
5697
5698
              while rc < last-first+1 do &% for each replacement
5699
5700
                if Babel.debug then
5701
                  print('....', rc + 1)
5702
                end
```

```
sc = sc + 1
5703
5704
                rc = rc + 1
5705
5706
                if Babel.debug then
5707
                  Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)
5708
                end
5709
                local crep = r[rc]
5710
5711
                local item = w_nodes[sc]
5712
                local item_base = item
                local placeholder = Babel.us char
5713
5714
                local d
5715
                if crep and crep.data then
5716
5717
                  item_base = data_nodes[crep.data]
5718
                end
5719
5720
                if crep and next(crep) == nil then &% = {}
5721
                  last_match = save_last
                                              &% Optimization
5722
                  goto next
5723
                elseif crep == nil then &% = remove
5724
                  node.remove(head, item)
5725
                  table.remove(w nodes, sc)
5726
                  w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)
5727
                  sc = sc - 1 &% Nothing has been inserted.
5728
5729
                  last_match = utf8.offset(w, sc+1)
5730
                  goto next
5731
                elseif crep and crep.string then
5732
5733
                  local str = crep.string(matches)
                  if str == '' then &% Gather with nil
5734
                    node.remove(head, item)
5735
5736
                    table.remove(w_nodes, sc)
5737
                    w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)
                    sc = sc - 1 &% Nothing has been inserted.
5738
                  else
5739
5740
                    local loop_first = true
5741
                    for s in string.utfvalues(str) do
                      d = node.copy(item_base)
5742
                      d.char = s
5743
5744
                      if loop_first then
                        loop first = false
5745
                         head, new = node.insert_before(head, item, d)
5746
                         if sc == 1 then
5747
                           word_head = head
5748
                        end
5749
5750
                        w nodes[sc] = d
5751
                        w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc+1)
                      else
5752
5753
                         sc = sc + 1
                        head, new = node.insert_before(head, item, d)
5754
                        table.insert(w_nodes, sc, new)
5755
                        w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc)
5756
5757
                      end
5758
                      if Babel.debug then
5759
                        print('....', 'str')
5760
                        Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)
5761
                      end
```

```
end &% for
5762
5763
                    node.remove(head, item)
                  end &% if ''
5764
5765
                  last_match = utf8.offset(w, sc+1)
5766
                  goto next
5767
5768
                elseif mode == 1 and crep and (crep.pre or crep.no or crep.post) then
5769
                  d = node.new(7, 0) &% (disc, discretionary)
5770
                            = Babel.str_to_nodes(crep.pre, matches, item_base)
5771
                            = Babel.str_to_nodes(crep.post, matches, item_base)
                  d.replace = Babel.str_to_nodes(crep.no, matches, item_base)
5772
                  d.attr = item base.attr
5773
5774
                  if crep.pre == nil then &% TeXbook p96
5775
                    d.penalty = crep.penalty or tex.hyphenpenalty
5776
                  else
5777
                    d.penalty = crep.penalty or tex.exhyphenpenalty
5778
                  end
5779
                  placeholder = '|'
5780
                  head, new = node.insert_before(head, item, d)
5781
5782
                elseif mode == 0 and crep and (crep.pre or crep.no or crep.post) then
                  &% ERROR
5783
5784
                elseif crep and crep.penalty then
5785
                  d = node.new(14, 0)
                                        &% (penalty, userpenalty)
5786
                  d.attr = item_base.attr
5787
5788
                  d.penalty = crep.penalty
                  head, new = node.insert_before(head, item, d)
5789
5790
                elseif crep and crep.space then
5791
5792
                  &% 655360 = 10 pt = 10 * 65536 sp
                  d = node.new(12, 13)
                                             &% (glue, spaceskip)
5793
                  local quad = font.getfont(item_base.font).size or 655360
5794
5795
                  node.setglue(d, crep.space[1] * quad,
                                   crep.space[2] * quad,
5796
                                   crep.space[3] * quad)
5797
                  if mode == 0 then
5798
                    placeholder = '|'
5799
                  end
5800
                  head, new = node.insert before(head, item, d)
5801
5802
                elseif crep and crep.spacefactor then
5803
                  d = node.new(12, 13)
                                             &% (glue, spaceskip)
5804
5805
                  local base_font = font.getfont(item_base.font)
5806
                  node.setglue(d,
                    crep.spacefactor[1] * base_font.parameters['space'],
5807
                    crep.spacefactor[2] * base_font.parameters['space_stretch'],
5808
                    crep.spacefactor[3] * base_font.parameters['space_shrink'])
5809
                  if mode == 0 then
5810
                    placeholder = '|'
5811
5812
                  end
                  head, new = node.insert_before(head, item, d)
5813
5814
                elseif mode == 0 and crep and crep.space then
5815
                  &% ERROR
5816
5817
5818
                end &% ie replacement cases
5819
                &% Shared by disc, space and penalty.
5820
```

```
if sc == 1 then
5821
5822
                  word_head = head
5823
5824
                if crep.insert then
5825
                  w = u.sub(w, 1, sc-1) ... placeholder ... u.sub(w, sc)
5826
                  table.insert(w nodes, sc, new)
5827
                  last = last + 1
5828
                else
5829
                  w_nodes[sc] = d
5830
                  node.remove(head, item)
                  w = u.sub(w, 1, sc-1) \dots placeholder \dots u.sub(w, sc+1)
5831
5832
                end
5833
                last_match = utf8.offset(w, sc+1)
5834
5835
5836
                ::next::
5837
5838
              end &% for each replacement
5839
              if Babel.debug then
5840
                  print('....', '/')
5841
5842
                  Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)
              end
5843
5844
            end &% for match
5845
5846
          end &% for patterns
5847
5848
5849
          ::next::
          word head = nw
5850
       end &% for substring
5851
5852
       return head
5853
     end
5854
     &% This table stores capture maps, numbered consecutively
5855
     Babel.capture_maps = {}
5856
5857
     &% The following functions belong to the next macro
5858
     function Babel.capture_func(key, cap)
5859
       local ret = "[[" .. cap:gsub('{([0-9])}', "]]..m[%1]..[[") .. "]]"
5860
       ret = ret:gsub('\{([0-9])|([^{]+})|(.-)\}', Babel.capture_func_map)
5861
       ret = ret:gsub("%[%[%]%]%.%.", '')
5862
       ret = ret:gsub("%.%.%[%[%]%]", '')
5863
5864
       return key .. [[=function(m) return ]] .. ret .. [[ end]]
5865
5866
     function Babel.capt_map(from, mapno)
5867
5868
       return Babel.capture_maps[mapno][from] or from
5869
     &% Handle the {n|abc|ABC} syntax in captures
5871
     function Babel.capture_func_map(capno, from, to)
5872
       local froms = {}
5873
       for s in string.utfcharacters(from) do
5874
5875
          table.insert(froms, s)
5876
       end
5877
       local cnt = 1
5878
       table.insert(Babel.capture maps, {})
       local mlen = table.getn(Babel.capture_maps)
5879
```

Now the T_EX high level interface, which requires the function defined above for converting strings to functions returning a string. These functions handle the $\{n\}$ syntax. For example, $pre=\{1\}\{1\}$ -becomes function(m) return m[1]...m[1]...'-' end, where m are the matches returned after applying the pattern. With a mapped capture the functions are similar to function(m) return Babel.capt_map(m[1],1) end, where the last argument identifies the mapping to be applied to m[1]. The way it is carried out is somewhat tricky, but the effect in not dissimilar to lua load – save the code as string in a TeX macro, and expand this macro at the appropriate place. As \directlua does not take into account the current catcode of @, we just avoid this character in macro names (which explains the internal group, too).

```
5888 \catcode`\#=6
5889 \gdef\babelposthyphenation#1#2#3{&%
     \bbl@activateposthyphen
5890
     \begingroup
5891
        \def\babeltempa{\bbl@add@list\babeltempb}&%
5892
5893
        \let\babeltempb\@empty
        \def\bbl@tempa{#3}&% TODO. Ugly trick to preserve {}:
5894
        \bbl@replace\bbl@tempa{,}{ ,}&%
5896
        \expandafter\bbl@foreach\expandafter{\bbl@tempa}{&%
          \bbl@ifsamestring{##1}{remove}&%
5897
            {\bbl@add@list\babeltempb{nil}}&%
5898
5899
            {\directlua{
5900
               local rep = [[##1]]
               rep = rep:gsub('^%s*(insert)%s*,', 'insert = true, ')
5901
                                   '(no)%s*=%s*([^%s,]*)', Babel.capture_func)
5902
               rep = rep:gsub(
               rep = rep:gsub(
                                  '(pre)%s*=%s*([^%s,]*)', Babel.capture_func)
5903
               rep = rep:gsub( '(post)%s*=%s*([^%s,]*)', Babel.capture_func)
5904
               rep = rep:gsub('(string)%s*=%s*([^%s,]*)', Babel.capture_func)
5905
5906
               tex.print([[\string\babeltempa{{]] .. rep .. [[}}]])
             }}}&%
5907
        \directlua{
5908
5909
          local lbkr = Babel.linebreaking.replacements[1]
5910
          local u = unicode.utf8
          &% Convert pattern:
5911
5912
          local patt = string.gsub([==[#2]==], '%s', '')
5913
          if not u.find(patt, '()', nil, true) then
           patt = '()' .. patt .. '()'
5914
5915
          patt = string.gsub(patt, '%(%)%^', '^()')
5916
         patt = string.gsub(patt, '%$%(%)', '()$')
5917
          patt = u.gsub(patt, '{(.)}',
5918
5919
                    function (n)
                      return '%' .. (tonumber(n) and (tonumber(n)+1) or n)
5920
5921
5922
          lbkr[\the\csname l@#1\endcsname] = lbkr[\the\csname l@#1\endcsname] or {}
5923
          table.insert(lbkr[\the\csname l@#1\endcsname],
5924
                       { pattern = patt, replace = { \babeltempb } })
5925
       }&%
5926
     \endgroup}
5927% TODO. Copypaste pattern.
5928 \gdef\babelprehyphenation#1#2#3{&%
```

```
\bbl@activateprehyphen
5929
5930
     \begingroup
       \def\babeltempa{\bbl@add@list\babeltempb}&%
5931
5932
        \let\babeltempb\@empty
5933
        \def\bbl@tempa{#3}&% TODO. Ugly trick to preserve {}:
        \bbl@replace\bbl@tempa{,}{ ,}&%
5934
5935
        \expandafter\bbl@foreach\expandafter{\bbl@tempa}{&%
5936
          \bbl@ifsamestring{##1}{remove}&%
            {\bbl@add@list\babeltempb{nil}}&%
5937
            {\directlua{
5939
               local rep = [[##1]]
               rep = rep:gsub('^%s*(insert)%s*,', 'insert = true, ')
5940
               rep = rep:gsub('(string)%s*=%s*([^%s,]*)', Babel.capture_func)
5941
5942
               rep = rep:gsub( '(space)%s*=%s*([%d%.]+)%s+([%d%.]+)%s+([%d%.]+)',
5943
                  'space = {' .. '%2, %3, %4' .. '}')
5944
               rep = rep:gsub( '(spacefactor)%s*=%s*([%d%.]+)%s+([%d%.]+)%s+([%d%.]+)',
                  'spacefactor = {' .. '%2, %3, %4' .. '}')
5945
               tex.print([[\string\babeltempa{{]] .. rep .. [[}}]])
5946
5947
             }}}&%
        \directlua{
5948
5949
          local lbkr = Babel.linebreaking.replacements[0]
5950
          local u = unicode.utf8
          &% Convert pattern:
5951
          local patt = string.gsub([==[#2]==], '%s', '')
5952
          if not u.find(patt, '()', nil, true) then
5953
            patt = '()' .. patt .. '()'
5954
5955
          end
          &% patt = string.gsub(patt, '%(%)%^', '^()')
5956
          &% patt = string.gsub(patt, '([^\%\])\%\$\(\%\)', '\%\1()\$')
5957
          patt = u.gsub(patt, '{(.)}',
5958
                    function (n)
5959
5960
                      return '%' .. (tonumber(n) and (tonumber(n)+1) or n)
5961
                    end)
5962
          lbkr[\the\csname bbl@id@@#1\endcsname] = lbkr[\the\csname bbl@id@@#1\endcsname] or {}
5963
          table.insert(lbkr[\the\csname bbl@id@@#1\endcsname],
                        { pattern = patt, replace = { \babeltempb } })
5964
       }&%
5966
     \endgroup}
5967 \endgroup
5968 \def\bbl@activateposthyphen{%
     \let\bbl@activateposthyphen\relax
5970
     \directlua{
       Babel.linebreaking.add after(Babel.post hyphenate replace)
5971
5972
    }}
5973 \def\bbl@activateprehyphen{%
     \let\bbl@activateprehyphen\relax
     \directlua{
5975
       Babel.linebreaking.add before(Babel.pre hyphenate replace)
5976
5977
```

13.7 Layout

Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in monolingual documents (the engine itself reverses boxes – including column order or headings –, margins, etc.) with bidi=basic, without having to patch almost any macro where text direction is relevant.

\@hangfrom is useful in many contexts and it is redefined always with the layout option. There are, however, a number of issues when the text direction is not the same as the box direction (as set by \bodydir), and when \parbox and \hangindent are involved. Fortunately, latest releases

of luatex simplify a lot the solution with \shapemode.

With the issue #15 I realized commands are best patched, instead of redefined. With a few lines, a modification could be applied to several classes and packages. Now, tabular seems to work (at least in simple cases) with array, tabularx, hhline, colortbl, longtable, booktabs, etc. However, dcolumn still fails.

```
5978 \bbl@trace{Redefinitions for bidi layout}
5979 \ifx\@egnnum\@undefined\else
     \ifx\bbl@attr@dir\@undefined\else
        \edef\@eqnnum{{%
5981
5982
          \unexpanded{\ifcase\bbl@attr@dir\else\bbl@textdir\@ne\fi}%
5983
          \unexpanded\expandafter{\@egnnum}}}
     \fi
5984
5985 \fi
5986 \ifx\bbl@opt@layout\@nnil\endinput\fi % if no layout
5987 \ifnum\bbl@bidimode>\z@
     \def\bbl@nextfake#1{% non-local changes, use always inside a group!
        \bbl@exp{%
          \mathdir\the\bodydir
5990
          #1%
                            Once entered in math, set boxes to restore values
5991
          \<ifmmode>%
5992
            \everyvbox{%
5993
              \the\everyvbox
5994
5995
              \bodydir\the\bodydir
5996
              \mathdir\the\mathdir
              \everyhbox{\the\everyhbox}%
5997
              \everyvbox{\the\everyvbox}}%
5998
            \everyhbox{%
5999
              \the\everyhbox
6000
              \bodydir\the\bodydir
6001
              \mathdir\the\mathdir
6002
              \everyhbox{\the\everyhbox}%
6003
              \everyvbox{\the\everyvbox}}%
6004
          \<fi>}}%
6005
     \def\@hangfrom#1{%
6006
       \setbox\@tempboxa\hbox{{#1}}%
6007
6008
        \hangindent\wd\@tempboxa
6009
        \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else
          \shapemode\@ne
6010
6011
        \noindent\box\@tempboxa}
6012
6013\fi
6014 \IfBabelLayout{tabular}
     {\let\bbl@OL@@tabular\@tabular
       \bbl@replace\@tabular{$}{\bbl@nextfake$}%
      \let\bbl@NL@@tabular\@tabular
6017
       \AtBeginDocument{%
6018
         \ifx\bbl@NL@@tabular\@tabular\else
6019
           \bbl@replace\@tabular{$}{\bbl@nextfake$}%
6020
6021
           \let\bbl@NL@@tabular\@tabular
6022
         \fi}}
       {}
6024 \IfBabelLayout{lists}
     {\let\bbl@OL@list\list
6025
      \bbl@sreplace\list{\parshape}{\bbl@listparshape}%
6026
      \let\bbl@NL@list\list
6027
6028
      \def\bbl@listparshape#1#2#3{%
         \parshape #1 #2 #3 %
6029
         \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else
6030
```

```
\shapemode\tw@
6031
6032
         \fi}}
6033
    {}
6034 \IfBabelLayout{graphics}
     {\let\bbl@pictresetdir\relax
6036
       \def\bbl@pictsetdir#1{%
         \ifcase\bbl@thetextdir
6037
6038
           \let\bbl@pictresetdir\relax
6039
         \else
6040
           \ifcase#1\bodydir TLT % Remember this sets the inner boxes
             \or\textdir TLT
6041
6042
             \else\bodydir TLT \textdir TLT
6043
           \fi
           % \(text|par)dir required in pgf:
6044
6045
           \def\bbl@pictresetdir{\bodydir TRT\pardir TRT\textdir TRT\relax}%
6046
         \fi}%
       \ifx\AddToHook\@undefined\else
6047
6048
         \AddToHook{env/picture/begin}{\bbl@pictsetdir\tw@}%
6049
         \directlua{
           Babel.get_picture_dir = true
6050
6051
           Babel.picture_has_bidi = 0
           function Babel.picture_dir (head)
6052
             if not Babel.get_picture_dir then return head end
6053
             for item in node.traverse(head) do
6054
6055
               if item.id == node.id'glyph' then
                 local itemchar = item.char
6056
                 % TODO. Copypaste pattern from Babel.bidi (-r)
6057
                 local chardata = Babel.characters[itemchar]
6058
                 local dir = chardata and chardata.d or nil
6059
                 if not dir then
6060
6061
                    for nn, et in ipairs(Babel.ranges) do
                      if itemchar < et[1] then</pre>
6062
                        break
6063
                      elseif itemchar <= et[2] then</pre>
6064
                        dir = et[3]
6065
6066
                        break
                      end
6067
                    end
6068
                 end
6069
                 if dir and (dir == 'al' or dir == 'r') then
6070
                    Babel.picture_has_bidi = 1
6071
6072
                 end
               end
6073
6074
             end
             return head
6075
6076
           luatexbase.add_to_callback("hpack_filter", Babel.picture_dir,
6077
             "Babel.picture dir")
6078
6079
         }%
       \AtBeginDocument{%
6080
         \long\def\put(#1,#2)#3{%
6081
           \@killglue
6082
           % Try:
6083
           \ifx\bbl@pictresetdir\relax
6084
             \def\bbl@tempc{0}%
6085
6086
           \else
6087
             \directlua{
               Babel.get picture dir = true
6088
               Babel.picture_has_bidi = 0
6089
```

```
}%
6090
6091
            \setbox\z@\hb@xt@\z@{\%}
              \@defaultunitsset\@tempdimc{#1}\unitlength
6092
6093
              \kern\@tempdimc
6094
              #3\hss}%
6095
            \edef\bbl@tempc{\directlua{tex.print(Babel.picture_has_bidi)}}%
6096
          ۱fi
          % Do:
6097
6098
          \@defaultunitsset\@tempdimc{#2}\unitlength
6099
          \raise\@tempdimc\hb@xt@\z@{%
            \@defaultunitsset\@tempdimc{#1}\unitlength
6100
6101
            \kern\@tempdimc
            6102
          \ignorespaces}%
6103
6104
          \MakeRobust\put}%
6105
      \fi
      \AtBeginDocument
6106
6107
        {\ifx\tikz@atbegin@node\@undefined\else
6108
           \ifx\AddToHook\@undefined\else % TODO. Still tentative.
6109
             \AddToHook{env/pgfpicture/begin}{\bbl@pictsetdir\@ne}%
6110
             \bbl@add\pgfinterruptpicture{\bbl@pictresetdir}%
           \fi
6111
           \let\bbl@OL@pgfpicture\pgfpicture
6112
           \bbl@sreplace\pgfpicture{\pgfpicturetrue}%
6113
6114
             {\bbl@pictsetdir\z@\pgfpicturetrue}%
           \bbl@add\pgfsys@beginpicture{\bbl@pictsetdir\z@}%
6115
           \bbl@add\tikz@atbegin@node{\bbl@pictresetdir}%
6116
           \bbl@sreplace\tikz{\begingroup}%
6117
6118
             {\begingroup\bbl@pictsetdir\tw@}%
         \fi
6119
6120
         \ifx\AddToHook\@undefined\else
6121
           \AddToHook{env/tcolorbox/begin}{\bbl@pictsetdir\@ne}%
         \fi
6122
6123
         }}
6124
     {}
```

Implicitly reverses sectioning labels in bidi=basic-r, because the full stop is not in contact with L numbers any more. I think there must be a better way. Assumes bidi=basic, but there are some additional readjustments for bidi=default.

```
6125 \IfBabelLayout{counters}%
     {\let\bbl@OL@@textsuperscript\@textsuperscript
6127
      \bbl@sreplace\@textsuperscript{\m@th\{\m@th\mathdir\pagedir}%
      \let\bbl@latinarabic=\@arabic
6128
      \let\bbl@OL@@arabic\@arabic
6129
      \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%
6130
      \@ifpackagewith{babel}{bidi=default}%
6131
6132
         {\let\bbl@asciiroman=\@roman
         \let\bbl@OL@@roman\@roman
6133
         \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%
6134
         \let\bbl@asciiRoman=\@Roman
6135
         \let\bbl@OL@@roman\@Roman
6136
         \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}%
6137
6138
         \let\bbl@OL@labelenumii\labelenumii
6139
         \def\labelenumii{)\theenumii(}%
         \let\bbl@OL@p@enumiii\p@enumiii
6140
6141
         \def\p@enumiii{\p@enumii)\theenumii(}}{}}}}
6142 (Footnote changes)
6143 \IfBabelLayout{footnotes}%
    {\let\bbl@OL@footnote\footnote
```

```
6145 \BabelFootnote\footnote\languagename{}{}%
6146 \BabelFootnote\localfootnote\languagename{}{}%
6147 \BabelFootnote\mainfootnote{}{}{}}
6148 {}
```

Some LTEX macros use internally the math mode for text formatting. They have very little in common and are grouped here, as a single option.

```
6149 \IfBabelLayout{extras}%
     {\let\bbl@OL@underline\underline
      \bbl@sreplace\underline{$\@@underline}{\bbl@nextfake$\@@underline}%
6151
      \let\bbl@OL@LaTeX2e\LaTeX2e
6152
      \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th
6153
6154
         \if b\expandafter\@car\f@series\@nil\boldmath\fi
6155
         \babelsublr{%
           \LaTeX\kern.15em2\bbl@nextfake$ {\textstyle\varepsilon}$}}}
6156
     {}
6157
6158 (/luatex)
```

13.8 Auto bidi with basic and basic-r

The file babel-data-bidi.lua currently only contains data. It is a large and boring file and it is not shown here (see the generated file), but here is a sample:

```
[0x25]={d='et'},

[0x26]={d='on'},

[0x27]={d='on'},

[0x28]={d='on', m=0x29},

[0x29]={d='on', m=0x28},

[0x2A]={d='on'},

[0x2B]={d='es'},

[0x2C]={d='cs'},
```

For the meaning of these codes, see the Unicode standard.

Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi algorithm, with a single loop. I managed to do it for R texts, with a second smaller loop for a special case. The code is still somewhat chaotic, but its behavior is essentially correct. I cannot resist copying the following text from Emacs bidi.c (which also attempts to implement the bidi algorithm with a single loop):

Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of batch-style processing [...]. May the fleas of a thousand camels infest the armpits of those who design supposedly general-purpose algorithms by looking at their own implementations, and fail to consider other possible implementations!

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other word, what they do and why, and not only how), but I think (or I hope) I've managed to understand them. In some sense, there are two bidi modes, one for numbers, and the other for text. Furthermore, setting just the direction in R text is not enough, because there are actually two R modes (set explicitly in Unicode with RLM and ALM). In babel the dir is set by a higher protocol based on the language/script, which in turn sets the correct dir (<1>, <r> or <al>).

From UAX#9: "Where available, markup should be used instead of the explicit formatting characters". So, this simple version just ignores formatting characters. Actually, most of that annex is devoted to how to handle them.

BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal with some special problematic cases in "streamed" plain text. I don't think this is the way to go – particular issues should be fixed by a high level interface taking into account the needs of the document. And here is where luatex excels, because everything related to bidi writing is under our control.

```
6159 (*basic-r)
6160 Babel = Babel or {}
6161
```

```
6162 Babel.bidi_enabled = true
6164 require('babel-data-bidi.lua')
6166 local characters = Babel.characters
6167 local ranges = Babel.ranges
6169 local DIR = node.id("dir")
6171 local function dir_mark(head, from, to, outer)
6172 dir = (outer == 'r') and 'TLT' or 'TRT' -- ie, reverse
6173 local d = node.new(DIR)
6174 d.dir = '+' .. dir
6175 node.insert_before(head, from, d)
6176 d = node.new(DIR)
6177 d.dir = '-' .. dir
6178 node.insert after(head, to, d)
6179 end
6180
6181 function Babel.bidi(head, ispar)
6182 local first_n, last_n
                                         -- first and last char with nums
                                         -- an auxiliary 'last' used with nums
     local last es
     local first_d, last_d
                                         -- first and last char in L/R block
    local dir, dir_real
 Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous, could be
 (re)set but it should be changed only in vmode. There are two strong's - strong = l/al/r and
 strong_lr = l/r (there must be a better way):
     local strong = ('TRT' == tex.pardir) and 'r' or 'l'
     local strong_lr = (strong == 'l') and 'l' or 'r'
     local outer = strong
6188
     local new_dir = false
     local first dir = false
    local inmath = false
6192
6193
     local last_lr
6194
     local type_n = ''
6196
6197
     for item in node.traverse(head) do
6198
6199
6200
       -- three cases: glyph, dir, otherwise
       if item.id == node.id'glyph'
6201
         or (item.id == 7 and item.subtype == 2) then
6202
6203
          local itemchar
6204
          if item.id == 7 and item.subtype == 2 then
6205
            itemchar = item.replace.char
6206
         else
6207
6208
            itemchar = item.char
6209
6210
          local chardata = characters[itemchar]
          dir = chardata and chardata.d or nil
6211
         if not dir then
6212
            for nn, et in ipairs(ranges) do
6213
              if itemchar < et[1] then</pre>
6214
6215
                break
              elseif itemchar <= et[2] then</pre>
6216
```

```
6217 dir = et[3]
6218 break
6219 end
6220 end
6221 end
6222 dir = dir or 'l'
6223 if inmath then dir = ('TRT' == tex.mathdir) and 'r' or 'l' end
```

Next is based on the assumption babel sets the language AND switches the script with its dir. We treat a language block as a separate Unicode sequence. The following piece of code is executed at the first glyph after a 'dir' node. We don't know the current language until then. This is not exactly true, as the math mode may insert explicit dirs in the node list, so, for the moment there is a hack by brute force (just above).

```
6224
          if new dir then
6225
            attr dir = 0
            for at in node.traverse(item.attr) do
6226
6227
              if at.number == luatexbase.registernumber'bbl@attr@dir' then
                attr dir = at.value % 3
6228
              end
6229
6230
            end
            if attr_dir == 1 then
6231
              strong = 'r'
6232
            elseif attr_dir == 2 then
6233
              strong = 'al'
6234
            else
6235
              strong = 'l'
6237
            strong_lr = (strong == 'l') and 'l' or 'r'
6238
            outer = strong_lr
6239
            new_dir = false
6240
6241
          end
6242
          if dir == 'nsm' then dir = strong end
                                                                 -- W1
6243
```

Numbers. The dual <al>/<r> system for R is somewhat cumbersome.

```
6244 dir_real = dir -- We need dir_real to set strong below
6245 if dir == 'al' then dir = 'r' end -- W3
```

By W2, there are no <en> <et> <es> if strong == <al>, only <an>. Therefore, there are not <et en> nor <en et>, W5 can be ignored, and W6 applied:

```
6246 if strong == 'al' then

6247 if dir == 'en' then dir = 'an' end -- W2

6248 if dir == 'et' or dir == 'es' then dir = 'on' end -- W6

6249 strong_lr = 'r' -- W3

6250 end
```

Once finished the basic setup for glyphs, consider the two other cases: dir node and the rest.

```
elseif item.id == node.id'dir' and not inmath then
6251
          new dir = true
6252
          dir = nil
6253
6254
       elseif item.id == node.id'math' then
6255
          inmath = (item.subtype == 0)
6256
        else
          dir = nil
                               -- Not a char
6257
        end
6258
```

Numbers in R mode. A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some rules) in L mode. We store the starting and ending points, and only when anything different is found (including nil, ie, a non-char), the textdir is set. This means you cannot insert, say, a whatsit, but this is what I

would expect (with luacolor you may colorize some digits). Anyway, this behavior could be changed with a switch in the future. Note in the first branch only <an> is relevant if <al>.

```
if dir == 'en' or dir == 'an' or dir == 'et' then
6259
          if dir ~= 'et' then
6260
6261
            type n = dir
          end
6262
          first n = first n or item
6263
          last_n = last_es or item
6264
          last_es = nil
6265
6266
       elseif dir == 'es' and last n then -- W3+W6
6267
          last_es = item
       elseif dir == 'cs' then
                                             -- it's right - do nothing
6268
       elseif first_n then -- & if dir = any but en, et, an, es, cs, inc nil
6269
          if strong_lr == 'r' and type_n ~= '' then
6270
            dir_mark(head, first_n, last_n, 'r')
6271
          elseif strong_lr == 'l' and first_d and type_n == 'an' then
6272
            dir_mark(head, first_n, last_n, 'r')
6273
            dir mark(head, first d, last d, outer)
6274
6275
            first d, last d = nil, nil
          elseif strong lr == 'l' and type n ~= '' then
6276
            last_d = last_n
6277
          end
6278
          type_n = ''
6279
6280
          first_n, last_n = nil, nil
6281
```

R text in L, or L text in R. Order of dir_ mark's are relevant: d goes outside n, and therefore it's emitted after. See dir_mark to understand why (but is the nesting actually necessary or is a flat dir structure enough?). Only L, R (and AL) chars are taken into account – everything else, including spaces, whatsits, etc., are ignored:

```
if dir == 'l' or dir == 'r' then
6282
          if dir ~= outer then
6283
            first_d = first_d or item
6284
            last_d = item
6285
          elseif first_d and dir ~= strong_lr then
6286
            dir_mark(head, first_d, last_d, outer)
6287
            first_d, last_d = nil, nil
6288
         end
6289
        end
6290
```

Mirroring. Each chunk of text in a certain language is considered a "closed" sequence. If <r on r> and <l on l>, it's clearly <r> and <math><l>, resptly, but with other combinations depends on outer. From all these, we select only those resolving <on $> \rightarrow <$ r>. At the beginning (when last_lr is nil) of an R text, they are mirrored directly.

TODO - numbers in R mode are processed. It doesn't hurt, but should not be done.

```
6291
        if dir and not last_lr and dir ~= 'l' and outer == 'r' then
6292
          item.char = characters[item.char] and
6293
                      characters[item.char].m or item.char
       elseif (dir or new_dir) and last_lr ~= item then
6294
6295
          local mir = outer .. strong_lr .. (dir or outer)
6296
          if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then
6297
            for ch in node.traverse(node.next(last_lr)) do
6298
              if ch == item then break end
6299
              if ch.id == node.id'glyph' and characters[ch.char] then
                ch.char = characters[ch.char].m or ch.char
6300
6301
              end
6302
            end
6303
          end
       end
6304
```

Save some values for the next iteration. If the current node is 'dir', open a new sequence. Since dir could be changed, strong is set with its real value (dir_real).

```
if dir == 'l' or dir == 'r' then
6305
6306
          last_lr = item
          strong = dir_real
                                         -- Don't search back - best save now
6307
          strong_lr = (strong == 'l') and 'l' or 'r'
6308
       elseif new_dir then
6309
          last lr = nil
6310
6311
       end
6312
     end
 Mirror the last chars if they are no directed. And make sure any open block is closed, too.
     if last_lr and outer == 'r' then
       for ch in node.traverse id(node.id'glyph', node.next(last lr)) do
6315
          if characters[ch.char] then
            ch.char = characters[ch.char].m or ch.char
6316
          end
6317
6318
       end
6319
     end
6320
     if first n then
       dir_mark(head, first_n, last_n, outer)
6321
6322
     if first_d then
6323
       dir_mark(head, first_d, last_d, outer)
6324
6325
     end
 In boxes, the dir node could be added before the original head, so the actual head is the previous
6326 return node.prev(head) or head
6327 end
6328 (/basic-r)
 And here the Lua code for bidi=basic:
6329 (*basic)
6330 Babel = Babel or {}
6332 -- eg, Babel.fontmap[1][<prefontid>]=<dirfontid>
6334 Babel.fontmap = Babel.fontmap or {}
6335 Babel.fontmap[0] = {}
                                -- 1
6336 Babel.fontmap[1] = {}
                                -- r
6337 Babel.fontmap[2] = {}
                                -- al/an
6339 Babel.bidi_enabled = true
6340 Babel.mirroring_enabled = true
6342 require('babel-data-bidi.lua')
6344 local characters = Babel.characters
6345 local ranges = Babel.ranges
6347 local DIR = node.id('dir')
6348 local GLYPH = node.id('glyph')
6350 local function insert_implicit(head, state, outer)
6351 local new_state = state
6352
     if state.sim and state.eim and state.sim ~= state.eim then
       dir = ((outer == 'r') and 'TLT' or 'TRT') -- ie, reverse
6353
```

6354

local d = node.new(DIR)

```
d.dir = '+' .. dir
6355
6356
       node.insert_before(head, state.sim, d)
       local d = node.new(DIR)
6358
       d.dir = '-' .. dir
6359
      node.insert_after(head, state.eim, d)
6360 end
6361
     new_state.sim, new_state.eim = nil, nil
6362
     return head, new_state
6363 end
6364
6365 local function insert numeric(head, state)
    local new
     local new_state = state
    if state.san and state.ean and state.san ~= state.ean then
     local d = node.new(DIR)
     d.dir = '+TLT'
       _, new = node.insert_before(head, state.san, d)
       if state.san == state.sim then state.sim = new end
6373
      local d = node.new(DIR)
      d.dir = '-TLT'
6374
6375
       _, new = node.insert_after(head, state.ean, d)
6376
       if state.ean == state.eim then state.eim = new end
6377
     new state.san, new state.ean = nil, nil
6378
     return head, new state
6379
6380 end
6381
6382 -- TODO - \hbox with an explicit dir can lead to wrong results
6383 -- <R \hbox dir TLT{<R>}> and <L \hbox dir TRT{<L>}>. A small attempt
6384 -- was s made to improve the situation, but the problem is the 3-dir
6385 -- model in babel/Unicode and the 2-dir model in LuaTeX don't fit
6386 -- well.
6387
6388 function Babel.bidi(head, ispar, hdir)
     local d -- d is used mainly for computations in a loop
     local prev_d = ''
     local new d = false
6391
     local nodes = {}
6393
     local outer_first = nil
6394
     local inmath = false
6395
6396
     local glue d = nil
6397
6398
     local glue_i = nil
6399
     local has en = false
6400
     local first et = nil
6401
6402
     local ATDIR = luatexbase.registernumber'bbl@attr@dir'
6403
6404
6405
     local save_outer
     local temp = node.get_attribute(head, ATDIR)
6406
     if temp then
6407
      temp = temp % 3
6408
       save outer = (temp == 0 and 'l') or
6409
                     (temp == 1 and 'r') or
6410
                     (temp == 2 and 'al')
6411
6412
    elseif ispar then
                                   -- Or error? Shouldn't happen
       save_outer = ('TRT' == tex.pardir) and 'r' or 'l'
6413
```

```
6414 else
                                    -- Or error? Shouldn't happen
       save_outer = ('TRT' == hdir) and 'r' or 'l'
6415
6416 end
6417
       -- when the callback is called, we are just _after_ the box,
6418
     -- and the textdir is that of the surrounding text
6419
    -- if not ispar and hdir ~= tex.textdir then
6420 -- save_outer = ('TRT' == hdir) and 'r' or 'l'
     -- end
6421
6422
     local outer = save_outer
     local last = outer
     -- 'al' is only taken into account in the first, current loop
6425
     if save_outer == 'al' then save_outer = 'r' end
6426
     local fontmap = Babel.fontmap
6427
6428
6429
     for item in node.traverse(head) do
6430
       -- In what follows, #node is the last (previous) node, because the
6431
6432
       -- current one is not added until we start processing the neutrals.
6433
       -- three cases: glyph, dir, otherwise
6434
6435
       if item.id == GLYPH
          or (item.id == 7 and item.subtype == 2) then
6436
6437
6438
         local d_font = nil
         local item_r
6439
         if item.id == 7 and item.subtype == 2 then
6440
           item_r = item.replace -- automatic discs have just 1 glyph
6441
6442
         else
           item r = item
6443
         end
6444
6445
         local chardata = characters[item r.char]
         d = chardata and chardata.d or nil
6446
         if not d or d == 'nsm' then
6447
6448
           for nn, et in ipairs(ranges) do
              if item_r.char < et[1] then
6449
                break
6450
              elseif item r.char <= et[2] then
6451
                if not d then d = et[3]
6452
                elseif d == 'nsm' then d_font = et[3]
6453
6454
                end
6455
                break
              end
6456
           end
6457
         end
6458
          d = d \text{ or 'l'}
6459
6460
          -- A short 'pause' in bidi for mapfont
6461
          d_font = d_font or d
6462
          d font = (d font == 'l' and 0) or
6463
                   (d_font == 'nsm' and 0) or
6464
                   (d_font == 'r' and 1) or
6465
                   (d_{font} == 'al' and 2) or
6466
                   (d_font == 'an' and 2) or nil
6467
          if d_font and fontmap and fontmap[d_font][item_r.font] then
6468
           item_r.font = fontmap[d_font][item_r.font]
6469
6470
          end
6471
          if new_d then
6472
```

```
table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})
6473
6474
            if inmath then
6475
              attr_d = 0
6476
6477
              attr_d = node.get_attribute(item, ATDIR)
6478
              attr_d = attr_d % 3
6479
            end
6480
            if attr_d == 1 then
6481
              outer_first = 'r'
6482
              last = 'r'
            elseif attr_d == 2 then
6483
6484
              outer_first = 'r'
              last = 'al'
6485
6486
            else
6487
              outer_first = 'l'
6488
              last = 'l'
            end
6489
6490
            outer = last
6491
            has en = false
6492
            first_et = nil
6493
            new_d = false
6494
          end
6495
          if glue d then
6496
            if (d == 'l' and 'l' or 'r') ~= glue_d then
6497
               table.insert(nodes, {glue_i, 'on', nil})
6498
            end
6499
            glue_d = nil
6500
6501
            glue_i = nil
6502
6503
       elseif item.id == DIR then
6504
         d = nil
6505
6506
         new_d = true
6507
       elseif item.id == node.id'glue' and item.subtype == 13 then
6508
          glue d = d
6509
          glue_i = item
6510
          d = nil
6511
6512
       elseif item.id == node.id'math' then
6513
6514
          inmath = (item.subtype == 0)
6515
6516
       else
         d = nil
6517
       end
6518
6519
        -- AL <= EN/ET/ES
                               -- W2 + W3 + W6
6520
       if last == 'al' and d == 'en' then
6521
         d = 'an'
       elseif last == 'al' and (d == 'et' or d == 'es') then
6523
         d = 'on'
                              -- W6
6524
       end
6525
6526
        -- EN + CS/ES + EN
                                -- W4
6527
       if d == 'en' and #nodes >= 2 then
6529
          if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')
              and nodes[#nodes-1][2] == 'en' then
6530
            nodes[#nodes][2] = 'en'
6531
```

```
end
6532
6533
       end
6534
6535
        -- AN + CS + AN
                              -- W4 too, because uax9 mixes both cases
6536
       if d == 'an' and #nodes >= 2 then
          if (nodes[#nodes][2] == 'cs')
6537
              and nodes[#nodes-1][2] == 'an' then
6538
6539
            nodes[#nodes][2] = 'an'
6540
          end
6541
       end
6542
6543
       -- ET/EN
                                -- W5 + W7->1 / W6->on
       if d == 'et' then
6544
         first_et = first_et or (#nodes + 1)
6545
6546
       elseif d == 'en' then
6547
         has_en = true
          first et = first et or (#nodes + 1)
6548
6549
       elseif first_et then
                                   -- d may be nil here !
6550
          if has en then
            if last == 'l' then
6551
              temp = 'l'
6552
                             -- W7
6553
            else
6554
              temp = 'en'
                             -- W5
            end
6555
          else
6556
            temp = 'on'
                             -- W6
6557
6558
          end
          for e = first_et, #nodes do
6559
6560
            if nodes[e][1].id == GLYPH then nodes[e][2] = temp end
6561
6562
          first et = nil
6563
         has en = false
6564
       end
6565
        -- Force mathdir in math if ON (currently works as expected only
6566
6567
        -- with 'l')
       if inmath and d == 'on' then
6568
         d = ('TRT' == tex.mathdir) and 'r' or 'l'
6569
6570
6571
       \quad \text{if d then} \quad
6572
         if d == 'al' then
6573
            d = 'r'
6574
6575
            last = 'al'
          elseif d == 'l' or d == 'r' then
6576
            last = d
6577
          end
6578
          prev d = d
6579
6580
          table.insert(nodes, {item, d, outer_first})
6581
6582
       outer_first = nil
6583
6584
6585
     end
6586
     -- TODO -- repeated here in case EN/ET is the last node. Find a
     -- better way of doing things:
6588
                              -- dir may be nil here !
     if first et then
6589
       if has_en then
6590
```

```
if last == 'l' then
6591
            temp = '1'
6592
                          -- W7
6593
6594
            temp = 'en'
                           -- W5
6595
          end
6596
       else
6597
          temp = 'on'
                           -- W6
6598
       end
6599
       for e = first_et, #nodes do
6600
          if nodes[e][1].id == GLYPH then nodes[e][2] = temp end
6601
6602
     end
6603
     -- dummy node, to close things
6604
     table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})
6605
6606
     ----- NEUTRAL -----
6607
6608
6609
     outer = save outer
6610
     last = outer
6611
6612
     local first_on = nil
6613
     for q = 1, #nodes do
6614
       local item
6615
6616
       local outer_first = nodes[q][3]
6617
       outer = outer_first or outer
6618
       last = outer_first or last
6619
6620
6621
       local d = nodes[q][2]
       if d == 'an' or d == 'en' then d = 'r' end
6622
       if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6
6623
6624
       if d == 'on' then
6625
6626
          first_on = first_on or q
       elseif first on then
6627
          if last == d then
6628
            temp = d
6629
          else
6630
            temp = outer
6631
6632
          end
          for r = first on, q - 1 do
6633
            nodes[r][2] = temp
6634
                                   -- MIRRORING
6635
            item = nodes[r][1]
            if Babel.mirroring_enabled and item.id == GLYPH
6636
                 and temp == 'r' and characters[item.char] then
6637
6638
              local font_mode = font.fonts[item.font].properties.mode
6639
              if font_mode ~= 'harf' and font_mode ~= 'plug' then
                item.char = characters[item.char].m or item.char
6640
6641
              end
            end
6642
         end
6643
          first_on = nil
6644
6645
6646
6647
       if d == 'r' or d == 'l' then last = d end
6648
     end
6649
```

```
----- IMPLICIT, REORDER -----
6650
6651
    outer = save_outer
6652
6653
    last = outer
6654
6655
     local state = {}
6656
     state.has_r = false
6657
6658
     for q = 1, #nodes do
6659
       local item = nodes[q][1]
6660
6661
6662
       outer = nodes[q][3] or outer
6663
6664
       local d = nodes[q][2]
6665
       if d == 'nsm' then d = last end
                                                     -- W1
6666
6667
       if d == 'en' then d = 'an' end
6668
       local isdir = (d == 'r' or d == 'l')
6669
       if outer == 'l' and d == 'an' then
6670
6671
         state.san = state.san or item
         state.ean = item
       elseif state.san then
6673
6674
         head, state = insert_numeric(head, state)
6675
6676
       if outer == 'l' then
6677
        if d == 'an' or d == 'r' then
                                           -- im -> implicit
6678
           if d == 'r' then state.has_r = true end
6679
6680
           state.sim = state.sim or item
6681
           state.eim = item
         elseif d == 'l' and state.sim and state.has_r then
6682
6683
           head, state = insert_implicit(head, state, outer)
         elseif d == 'l' then
6684
6685
           state.sim, state.eim, state.has_r = nil, nil, false
         end
6686
6687
       else
         if d == 'an' or d == 'l' then
6688
           if nodes[q][3] then -- nil except after an explicit dir
6689
              state.sim = item -- so we move sim 'inside' the group
6690
6691
           else
             state.sim = state.sim or item
6692
6693
           end
6694
           state.eim = item
         elseif d == 'r' and state.sim then
6695
           head, state = insert_implicit(head, state, outer)
6696
         elseif d == 'r' then
6697
6698
           state.sim, state.eim = nil, nil
         end
6699
6700
       end
6701
       if isdir then
6702
                             -- Don't search back - best save now
         last = d
6703
       elseif d == 'on' and state.san then
6704
6705
         state.san = state.san or item
6706
         state.ean = item
6707
       end
6708
```

```
6709 end
6710
6711 return node.prev(head) or head
6712 end
6713 ⟨/basic⟩
```

14 Data for CJK

It is a boring file and it is not shown here (see the generated file), but here is a sample:

```
[0x0021]={c='ex'},

[0x0024]={c='pr'},

[0x0025]={c='po'},

[0x0028]={c='op'},

[0x0029]={c='cp'},
```

For the meaning of these codes, see the Unicode standard.

15 The 'nil' language

This 'language' does nothing, except setting the hyphenation patterns to nohyphenation.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than once, checking the category code of the @ sign, etc.

```
6714 \langle *nil \rangle
6715 \ProvidesLanguage{nil}[\langle \langle date \rangle \rangle \ \langle \langle version \rangle \rangle Nil language]
6716 \LdfInit{nil}{datenil}
```

When this file is read as an option, i.e. by the \usepackage command, nil could be an 'unknown' language in which case we have to make it known.

```
6717\ifx\l@nil\@undefined
6718 \newlanguage\l@nil
6719 \@namedef{bbl@hyphendata@\the\l@nil}{{}}% Remove warning
6720 \let\bbl@elt\relax
6721 \edef\bbl@languages{% Add it to the list of languages
6722 \bbl@languages\bbl@elt{nil}{\the\l@nil}{}}
6723 \fi
```

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and \righthyphenmin.

6724 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the 'nil' language.

```
\captionnil
  \datenil 6725 \let\captionsnil\@empty
6726 \let\datenil\@empty
```

The macro \ldf@finish takes care of looking for a configuration file, setting the main language to be switched on at \begin{document} and resetting the category code of @ to its original value.

```
6727 \ldf@finish{nil} 6728 \langle/nil\rangle
```

16 Support for Plain T_FX (plain.def)

16.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to designate *his* version of the american English hyphenation patterns, a new solution has to be found in order to be able to load hyphenation patterns for other languages in a plain-based TeX-format. When asked he responded:

That file name is "sacred", and if anybody changes it they will cause severe upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they mustn't diddle with hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around plain.tex and lplain.tex to achieve the desired effect, based on the babel package. If you load each of them with iniT_EX, you will get a file called either bplain.fmt or blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.

As these files are going to be read as the first thing iniT_EX sees, we need to set some category codes just to be able to change the definition of \input.

```
6729 (*bplain | blplain)
6730 \catcode`\{=1 % left brace is begin-group character
6731 \catcode`\}=2 % right brace is end-group character
6732 \catcode`\#=6 % hash mark is macro parameter character
```

If a file called hyphen.cfg can be found, we make sure that it will be read instead of the file hyphen.tex. We do this by first saving the original meaning of \input (and I use a one letter control sequence for that so as not to waste multi-letter control sequence on this in the format).

```
6733 \openin 0 hyphen.cfg
6734 \ifeof0
6735 \else
6736 \let\a\input
```

Then \input is defined to forget about its argument and load hyphen.cfg instead. Once that's done the original meaning of \input can be restored and the definition of \a can be forgotten.

```
6737 \def\input #1 {%
6738 \let\input\a
6739 \a hyphen.cfg
6740 \let\a\undefined
6741 }
6742 \fi
6743 \/ bplain | blplain \
```

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time to load plain.tex.

```
6744 ⟨bplain⟩\a plain.tex 6745 ⟨blplain⟩\a lplain.tex
```

Finally we change the contents of \fmtname to indicate that this is *not* the plain format, but a format based on plain with the babel package preloaded.

```
 6746 \ \langle bplain \rangle \ def\ fmtname \{babel-plain\}   6747 \ \langle bplain \rangle \ def\ fmtname \{babel-plain\}
```

When you are using a different format, based on plain.tex you can make a copy of blplain.tex, rename it and replace plain.tex with the name of your format file.

16.2 Emulating some LaTeX features

The following code duplicates or emulates parts of $t ET_{ extbf{E}} X \, 2_{arepsilon}$ that are needed for babel.

```
6748 \left< \left< *Emulate LaTeX \right> \right> \equiv
```

```
6749 % == Code for plain ==
6750 \def\@empty{}
6751 \def\loadlocalcfg#1{%
    \openin0#1.cfg
6753
     \ifeof0
6754
       \closein0
6755
     \else
6756
       \closein0
       {\immediate\write16{*****************************
6757
        \immediate\write16{* Local config file #1.cfg used}%
        \immediate\write16{*}%
6759
6760
        }
       \input #1.cfg\relax
6761
     \fi
6762
6763
     \@endofldf}
```

16.3 General tools

A number of LaTEX macro's that are needed later on.

```
6764 \long\def\@firstofone#1{#1}
6765 \long\def\@firstoftwo#1#2{#1}
6766 \long\def\@secondoftwo#1#2{#2}
6767 \def\@nnil{\@nil}
6768 \def\@gobbletwo#1#2{}
6769 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}
6770 \def\@star@or@long#1{%
6771 \@ifstar
6772 {\let\l@ngrel@x\relax#1}%
6773 {\let\l@ngrel@x\long#1}}
6774 \let\l@ngrel@x\relax
6775 \def\@car#1#2\@nil{#1}
6776 \def\@cdr#1#2\@nil{#2}
6777 \let\@typeset@protect\relax
6778 \let\protected@edef\edef
6779 \long\def\@gobble#1{}
6780 \edef\@backslashchar{\expandafter\@gobble\string\\}
6781 \def\strip@prefix#1>{}
6782 \def\g@addto@macro#1#2{{%
6783
       \toks@\expandafter{#1#2}%
6784
        \xdef#1{\the\toks@}}}
6785 \def\@namedef#1{\expandafter\def\csname #1\endcsname}
6786 \def\@nameuse#1{\csname #1\endcsname}
6787 \def\@ifundefined#1{%
     \expandafter\ifx\csname#1\endcsname\relax
       \expandafter\@firstoftwo
6789
6790
     \else
6791
       \expandafter\@secondoftwo
     \fi}
6793 \def\@expandtwoargs#1#2#3{%
     \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}
6795 \def\zap@space#1 #2{%
6796
    #1%
6797
     \ifx#2\@empty\else\expandafter\zap@space\fi
6798
6799 \let\bbl@trace\@gobble
```

 $\text{ET}_E X \, 2_{\epsilon}$ has the command \@onlypreamble which adds commands to a list of commands that are no longer needed after \begin{document}.

```
6800 \ifx\@preamblecmds\@undefined
6801 \def\@preamblecmds{}
6802\fi
6803 \def\@onlypreamble#1{%
     \expandafter\gdef\expandafter\@preamblecmds\expandafter{%
6805
        \@preamblecmds\do#1}}
6806 \@onlypreamble \@onlypreamble
 Mimick LTPX's \AtBeginDocument; for this to work the user needs to add \begindocument to his file.
6807 \def\begindocument{%
     \@begindocumenthook
     \global\let\@begindocumenthook\@undefined
     \def\do##1{\global\let##1\@undefined}%
     \@preamblecmds
     \global\let\do\noexpand}
6813 \ifx\@begindocumenthook\@undefined
6814 \def\@begindocumenthook{}
6815 \fi
6816 \@onlypreamble \@begindocumenthook
6817 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}
 We also have to mimick LATEX'S \AtEndOfPackage. Our replacement macro is much simpler; it stores
 its argument in \@endofldf.
6818 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
6819 \@onlypreamble\AtEndOfPackage
6820 \def\@endofldf{}
6821 \@onlypreamble \@endofldf
6822 \let\bbl@afterlang\@empty
6823 \chardef\bbl@opt@hyphenmap\z@
 LATEX needs to be able to switch off writing to its auxiliary files; plain doesn't have them by default.
 There is a trick to hide some conditional commands from the outer \ifx. The same trick is applied
 below.
6824 \catcode`\&=\z@
6825 \ifx&if@filesw\@undefined
6826
     \expandafter\let\csname if@filesw\expandafter\endcsname
6827
        \csname iffalse\endcsname
6828\fi
6829 \catcode`\&=4
 Mimick LaTeX's commands to define control sequences.
6830 \def\newcommand{\@star@or@long\new@command}
6831 \def\new@command#1{%
6832 \@testopt{\@newcommand#1}0}
6833 \def\@newcommand#1[#2]{%
6834
     \@ifnextchar [{\@xargdef#1[#2]}%
                     {\@argdef#1[#2]}}
6836 \long\def\@argdef#1[#2]#3{%
     \@yargdef#1\@ne{#2}{#3}}
6838 \long\def\@xargdef#1[#2][#3]#4{%
     \expandafter\def\expandafter#1\expandafter{%
        \expandafter\@protected@testopt\expandafter #1%
6840
6841
        \csname\string#1\expandafter\endcsname{#3}}%
     \expandafter\@yargdef \csname\string#1\endcsname
     \tw@{#2}{#4}}
6844 \long\def\@yargdef#1#2#3{%
6845 \@tempcnta#3\relax
     \advance \@tempcnta \@ne
6846
6847
     \let\@hash@\relax
```

```
\edgn(x) = \frac{\pi^2 \cdot x}{2 \cdot x} 
6848
6849
            \@tempcntb #2%
           \@whilenum\@tempcntb <\@tempcnta</pre>
6850
6851
                6852
6853
                \advance\@tempcntb \@ne}%
6854
           \let\@hash@##%
            \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}
6856 \def\providecommand{\@star@or@long\provide@command}
6857 \def\provide@command#1{%
           \begingroup
6859
                \escapechar\m@ne\xdef\@gtempa{{\string#1}}%
6860
            \endgroup
            \expandafter\@ifundefined\@gtempa
6861
6862
                {\def\reserved@a{\new@command#1}}%
6863
                {\let\reserved@a\relax
                   \def\reserved@a{\new@command\reserved@a}}%
6865
              \reserved@a}%
6866 \ \texttt{\def\DeclareRobustCommand} \\ \texttt{\def\Declare@robustcommand} \\ \texttt{\def\Declare@robustcommand} \\ \texttt{\def\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare\Declare
6867 \def\declare@robustcommand#1{%
              \edef\reserved@a{\string#1}%
              \def\reserved@b{#1}%
6869
              \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%
6870
              \edef#1{%
6871
                     \ifx\reserved@a\reserved@b
6872
                            \noexpand\x@protect
6873
                            \noexpand#1%
6874
                     ۱fi
6876
                     \noexpand\protect
6877
                     \expandafter\noexpand\csname
                            \expandafter\@gobble\string#1 \endcsname
6878
6879
              \expandafter\new@command\csname
6880
6881
                     \expandafter\@gobble\string#1 \endcsname
6882 }
6883 \def\x@protect#1{%
              \ifx\protect\@typeset@protect\else
6884
                     \@x@protect#1%
6885
6886
              ۱fi
6887 }
6888 \catcode`\&=\z@ % Trick to hide conditionals
            \def\@x@protect#1&fi#2#3{&fi\protect#1}
  The following little macro \in@ is taken from latex.ltx; it checks whether its first argument is part
  of its second argument. It uses the boolean \in@; allocating a new boolean inside conditionally
  executed code is not possible, hence the construct with the temporary definition of \bbl@tempa.
            \def\bbl@tempa{\csname newif\endcsname&ifin@}
6891 \catcode`\&=4
6892 \ifx\in@\@undefined
           \def\in@#1#2{%
6893
                \def\in@@##1#1##2##3\in@@{%
6894
                     \ifx\in@##2\in@false\else\in@true\fi}%
6895
                \in@@#2#1\in@\in@@}
6897 \else
6898 \let\bbl@tempa\@empty
6899\fi
6900 \bbl@tempa
```

LTEX has a macro to check whether a certain package was loaded with specific options. The command has two extra arguments which are code to be executed in either the true or false case.

This is used to detect whether the document needs one of the accents to be activated (activegrave and activeacute). For plain $T_E X$ we assume that the user wants them to be active by default. Therefore the only thing we do is execute the third argument (the code for the true case).

```
6901 \def\@ifpackagewith#1#2#3#4{#3}
```

The LaTeX macro \@ifl@aded checks whether a file was loaded. This functionality is not needed for plain TeX but we need the macro to be defined as a no-op.

```
6902 \def\@ifl@aded#1#2#3#4{}
```

For the following code we need to make sure that the commands \newcommand and \providecommand exist with some sensible definition. They are not fully equivalent to their \LaTeX 2 ε versions; just enough to make things work in plain T-Xenvironments.

```
6903 \ifx\@tempcnta\@undefined
6904 \csname newcount\endcsname\@tempcnta\relax
6905 \fi
6906 \ifx\@tempcntb\@undefined
6907 \csname newcount\endcsname\@tempcntb\relax
6908 \fi
```

To prevent wasting two counters in Lagarana 2.09 (because counters with the same name are allocated later by it) we reset the counter that holds the next free counter (\count10).

```
6909 \ifx\bye\@undefined
6910 \advance\count10 by -2\relax
6911\fi
6912 \ifx\@ifnextchar\@undefined
     \def\@ifnextchar#1#2#3{%
6914
       \let\reserved@d=#1%
6915
       \def\reserved@a{#2}\def\reserved@b{#3}%
       \futurelet\@let@token\@ifnch}
     \def\@ifnch{%
       \ifx\@let@token\@sptoken
6918
         \let\reserved@c\@xifnch
6919
       \else
6920
         \ifx\@let@token\reserved@d
6921
           \let\reserved@c\reserved@a
6922
         \else
6923
            \let\reserved@c\reserved@b
6925
         \fi
       ۱fi
6926
       \reserved@c}
6927
     \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token
     \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
6929
6930 \fi
6931 \def\@testopt#1#2{%
6932 \@ifnextchar[{#1}{#1[#2]}}
6933 \def\@protected@testopt#1{%
     \ifx\protect\@typeset@protect
6935
       \expandafter\@testopt
     \else
6936
       \@x@protect#1%
6938
6939 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
        #2\relax}\fi}
6941 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum
            \else\expandafter\@gobble\fi{#1}}
```

16.4 Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain T_FX environment.

```
6943 \def\DeclareTextCommand{%
6944
      \@dec@text@cmd\providecommand
6945 }
6946 \def\ProvideTextCommand{%
      \@dec@text@cmd\providecommand
6948 }
6949 \def\DeclareTextSymbol#1#2#3{%
6950
      \@dec@text@cmd\chardef#1{#2}#3\relax
6951 }
6952 \def\@dec@text@cmd#1#2#3{%
      \expandafter\def\expandafter#2%
6954
          \expandafter{%
6955
             \csname#3-cmd\expandafter\endcsname
6956
             \expandafter#2%
6957
             \csname#3\string#2\endcsname
6958
       \let\@ifdefinable\@rc@ifdefinable
6959 %
6960
      \expandafter#1\csname#3\string#2\endcsname
6961 }
6962 \def\@current@cmd#1{%
6963
     \ifx\protect\@typeset@protect\else
6964
          \noexpand#1\expandafter\@gobble
6965
6966 }
6967 \def\@changed@cmd#1#2{%
      \ifx\protect\@typeset@protect
6968
          \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
6969
             \expandafter\ifx\csname ?\string#1\endcsname\relax
6970
6971
                \expandafter\def\csname ?\string#1\endcsname{%
                   \@changed@x@err{#1}%
6972
6973
                }%
6974
             \fi
             \global\expandafter\let
6975
6976
               \csname\cf@encoding \string#1\expandafter\endcsname
6977
               \csname ?\string#1\endcsname
6978
          \csname\cf@encoding\string#1%
            \expandafter\endcsname
6980
      \else
6981
          \noexpand#1%
6982
      \fi
6983
6984 }
6985 \def\@changed@x@err#1{%
6986
        \errhelp{Your command will be ignored, type <return> to proceed}%
        \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}
6987
6988 \def\DeclareTextCommandDefault#1{%
      \DeclareTextCommand#1?%
6989
6990 }
6991 \def\ProvideTextCommandDefault#1{%
6992
      \ProvideTextCommand#1?%
6994 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd
6995 \expandafter\let\csname?-cmd\endcsname\@changed@cmd
6996 \def\DeclareTextAccent#1#2#3{%
     \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}
6998 }
6999 \def\DeclareTextCompositeCommand#1#2#3#4{%
7000
      \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
      \edef\reserved@b{\string##1}%
7001
```

```
\edef\reserved@c{%
7002
7003
         \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%
7004
      \ifx\reserved@b\reserved@c
7005
          \expandafter\expandafter\ifx
7006
             \expandafter\@car\reserved@a\relax\relax\@nil
7007
             \@text@composite
          \else
7008
7009
             \edef\reserved@b##1{%
7010
                \def\expandafter\noexpand
7011
                   \csname#2\string#1\endcsname###1{%
                   \noexpand\@text@composite
7012
7013
                       \expandafter\noexpand\csname#2\string#1\endcsname
                      ####1\noexpand\@empty\noexpand\@text@composite
7014
                       {##1}%
7015
7016
                }%
7017
             }%
             \expandafter\reserved@b\expandafter{\reserved@a{##1}}%
7018
7019
7020
          \expandafter\def\csname\expandafter\string\csname
             #2\endcsname\string#1-\string#3\endcsname{#4}
7021
7022
      \else
         \errhelp{Your command will be ignored, type <return> to proceed}%
7023
         \errmessage{\string\DeclareTextCompositeCommand\space used on
7024
             inappropriate command \protect#1}
7025
7026
      \fi
7027 }
7028 \def\@text@composite#1#2#3\@text@composite{%
      \expandafter\@text@composite@x
7030
          \csname\string#1-\string#2\endcsname
7031 }
7032 \def\@text@composite@x#1#2{%
      \ifx#1\relax
7033
          #2%
7034
7035
      \else
7036
          #1%
7037
      \fi
7038 }
7040 \def\@strip@args#1:#2-#3\@strip@args{#2}
7041 \def\DeclareTextComposite#1#2#3#4{%
      \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%
7042
7043
      \bgroup
          \lccode`\@=#4%
7044
7045
          \lowercase{%
7046
      \egroup
7047
          \reserved@a @%
7048
7049 }
7050 %
7051 \def\UseTextSymbol#1#2{#2}
7052 \def\UseTextAccent#1#2#3{}
7053 \def\@use@text@encoding#1{}
7054 \def\DeclareTextSymbolDefault#1#2{%
      \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%
7055
7056 }
7057 \def\DeclareTextAccentDefault#1#2{%
7058
      \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%
7059 }
7060 \def\cf@encoding{OT1}
```

Currently we only use the $\mathbb{M}_{E}X$ 2_{ε} method for accents for those that are known to be made active in *some* language definition file.

For a couple of languages we need the LTEX-control sequence \scriptsize to be available. Because plain TEX doesn't have such a sofisticated font mechanism as LTEX has, we just \let it to \sevenrm.

```
7072 \ifx\scriptsize\@undefined
7073 \let\scriptsize\sevenrm
7074 \fi
7075 % End of code for plain
7076 \langle \langle Emulate LaTeX \rangle \rangle
A proxy file:
7077 \*plain \rangle
7078 \input babel.def
7079 \/plain \rangle
```

17 Acknowledgements

I would like to thank all who volunteered as β -testers for their time. Michel Goossens supplied contributions for most of the other languages. Nico Poppelier helped polish the text of the documentation and supplied parts of the macros for the Dutch language. Paul Wackers and Werenfried Spit helped find and repair bugs.

During the further development of the babel system I received much help from Bernd Raichle, for which I am grateful.

References

- [1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.
- [2] Johannes Braams, Victor Eijkhout and Nico Poppelier, *The development of national ET_EX styles*, *TUGboat* 10 (1989) #3, p. 401–406.
- [3] Yannis Haralambous, Fonts & Encodings, O'Reilly, 2007.
- [4] Donald E. Knuth, The TeXbook, Addison-Wesley, 1986.
- [5] Jukka K. Korpela, Unicode Explained, O'Reilly, 2006.
- [6] Leslie Lamport, ETeX, A document preparation System, Addison-Wesley, 1986.
- [7] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.
- [8] Ken Lunde, CJKV Information Processing, O'Reilly, 2nd ed., 2009.
- [9] Hubert Partl, German T_EX , TUGboat 9 (1988) #1, p. 70–72.
- [10] Joachim Schrod, International LTFX is ready to use, TUGboat 11 (1990) #1, p. 87-90.
- [11] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, *Digital typography using LTEX*, Springer, 2002, p. 301–373.
- [12] K.F. Treebus. *Tekstwijzer, een gids voor het grafisch verwerken van tekst*, SDU Uitgeverij ('s-Gravenhage, 1988).