Class 13: RNASeq Analysis

Dani Baur (A16648266)

The data for today's lab comes from a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects.

Import Data

We need two things for this analysis: counts and metadata- these are called "countData" and "colData" in the DESeq2 world.

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG00000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG00000000003	1097	806	604		
ENSG00000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

The counts are organized with a gene per row and experiment per column.

```
head(metadata)
                 dex celltype
                                geo_id
1 SRR1039508 control
                       N61311 GSM1275862
2 SRR1039509 treated
                      N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
Q1: How many genes are in this dataset?
  nrow(counts)
[1] 38694
Q2: How many 'control' cell lines do we have?
  table(metadata$dex)
control treated
  sum(metadata$dex == "control")
[1] 4
Check on match of metadata and coldata
```

```
colnames(counts)

[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
[6] "SRR1039517" "SRR1039520" "SRR1039521"

metadata$id
```

```
[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
```

[6] "SRR1039517" "SRR1039520" "SRR1039521"

```
colnames(counts) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

If you want to know that all the elements of a vector are TRUE we can use the all() function.

```
all(c(T,T,T,F))
[1] FALSE
    all(colnames(counts) == metadata$id)
[1] TRUE
```

Analysis

I want to start by comparing "control" and "treated" columns. To do this, I will first find the average for each gene (row) in all "control" columns. Next I will find the average in the "treated" columns. Then I will compare them.

Let's extract all "control" columns first.

```
control.inds <- metadata$dex=="control"
control.counts <- counts[,control.inds]</pre>
```

Now find the mean count value per gene using the apply() function.

```
control.mean <- apply(control.counts,1,mean)</pre>
```

Now do the same for "treated" columns (i.e. find treated.mean).

```
treated.mean <- apply(counts[,metadata$dex=="treated"],1,mean)</pre>
```

Put these two mean vectors together for ease of bookkeeping.

meancounts <- data.frame(control.mean, treated.mean)
head(meancounts)</pre>

	control.mean	treated.mean
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Q5a: Let's have a look with a quick plot!

plot(meancounts)

Q6:

```
plot(meancounts, log="xy")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot


```
log2(10/10)

[1] 0

log2(20/10)

[1] 1

log2(5/10)

[1] -1

log2(40/10)
```

[1] 2

We most often work in log2 units because they have a more simple interpretation. Here we calculate the log2 fold-change (FC) of treated/control values and add it to our data frame of results.

meancounts\$log2fc <- log2(meancounts\$treated.mean/ meancounts\$control.mean)
head(meancounts)</pre>

log2fc	${\tt treated.mean}$	control.mean	
-0.45303916	658.00	900.75	ENSG0000000003
NaN	0.00	0.00	ENSG0000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

There are some funky answers in here like NaN (not a number) and -Inf (- infinity) that all come because I have zero count genes in my dataset.

It is a common practice to filter these zero count genes out before we go too deep.

```
to.keep.inds<- (rowSums(meancounts[,1:2] == 0) == 0)
mycounts <- meancounts[to.keep.inds,]
head(mycounts)</pre>
```

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000971	5219.00	6687.50	0.35769358
ENSG0000001036	2327.00	1785.75	-0.38194109

Q: How many genes do we have left after zero count filtering?

```
nrow(mycounts)
```

[1] 21817

A common threshold for calling a gene "up" or "down" is a $\log 2$ fold change of +2 or -2.

Q8: How many "up" regulated genes do we have?

```
sum(mycounts$log2fc >= +2)
```

[1] 314

Q9: How many "down" regulated genes do we have?

```
sum(mycounts$log2fc < -2)</pre>
```

[1] 367

DESeq Analysis

We need to do this analysis properly to keep our inner stats person happy:)

```
library(DESeq2)
```

To use DESeq, we need to get our input data in a very particular format.

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

```
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
Get the results:
  res <- results(dds)
  head(res)
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                            lfcSE
                                                               pvalue
                                                       stat
                <numeric>
                               <numeric> <numeric> <numeric> <numeric>
ENSG00000000003 747.194195
                              -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005
                 0.000000
                                     NA
                                               NA
                                                         NA
ENSG00000000419 520.134160
                               0.0245269 0.145145 0.168982 0.8658106
ENSG00000000457 322.664844
ENSG00000000460
                87.682625
                              -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                 0.319167
                              -1.7322890 3.493601 -0.495846 0.6200029
                    padj
               <numeric>
ENSG0000000000 0.163035
ENSG0000000005
ENSG00000000419
                0.176032
ENSG00000000457
                0.961694
ENSG00000000460
                0.815849
ENSG00000000938
                      NA
```

I want to make a figure showing an overview of all my results to date.

A plot of log2 fold change vs. the (adjusted) p-value:

```
plot(res$log2FoldChange,-log(res$padj))
```



```
mycols <- rep("gray", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"
plot( res$log2FoldChange, -log(res$padj),
   col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )
abline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)</pre>
```

