

RATIONALITY OF REAL CONIC BUNDLES WITH QUARTIC DISCRIMINANT CURVE

Mattie Ji[†] (Brown University)

University of Michigan Mathematics REU - advised by Dr. Lena Ji

What is Rationality?

Given an algebraic variety, a natural question to ask is how simple it is:

- One notion of simplicity is its closeness to projective spaces.
- One way to measure this is to ask whether or not a variety is isomorphic to a projective space outside some lower-dimensional subsets.
- Conic bundles have been a very rich source of examples of varieties with varying levels of similarity to projective space.

Definition. A variety X is rational over a field k if there exists non-empty open subsets $U \subseteq X$ and $V \subseteq \mathbb{P}_k^{dim X}$ such that U and V are isomorphic.

There are two relevant results about rationality we need here:

Lemma (Lang-Nishimura Lemma). If X is a projective k-rational variety, then X(k) is non-empty.

Fact. If X is a smooth projective \mathbb{R} -rational variety, then $X(\mathbb{R})$ is connected.

What is a Conic Bundle?

Unless specified otherwise, we will always be working over the real numbers.

Definition. A plane conic $C \subseteq \mathbb{P}^2$ is the zero locus of a homogenous polynomial of degree 2 in $\mathbb{R}[X,Y,Z]$.

Definition. A conic bundle over \mathbb{P}^2 is a proper flat morphism $\pi: X \to \mathbb{P}^2$ such that

- $\bullet X is a smooth variety$
- $\bullet \pi^{-1}(p)$ is a conic for all $p \in \mathbb{P}^2$
- The generic fiber is a smooth conic

Example. In our research, we are interested in the conic bundle $\pi_2: Y_{\tilde{\Delta}/\Delta} \to \mathbb{P}^2_{[u:v:w]}$ where:

 $\bullet Y_{\tilde{\Delta}/\Delta}$ is a variety defined by the equation

$$z^2 = Q_1(u, v, w)t_0^2 + 2Q_2(u, v, w)t_0t_1 + Q_3(u, v, w)t_1^2$$

- $Q_1, Q_2, Q_3 \in \mathbb{R}[u, v, w]$ are homogenous polynomials of degree 2
- π_2 is the standard projection that forgets z, t_0 , and t_1

To see why π_2 is a conic bundle, take the point $[1:2:3] \in \mathbb{P}^2_{[u:v:w]}$, the fiber of [1:2:3] is exactly the solutions satisfying:

$$z^2 = Q_1(1, 2, 3)t_0^2 + 2Q_2(1, 2, 3)t_0t_1 + Q_3(1, 2, 3)t_1^2$$

This forms a conic in $\mathbb{P}^2_{\mathbb{R},[t_0:t_1:z]}$.

Remark. $Y_{\tilde{\Delta}/\Delta}$ looks like a very specific choice, but it turns out that every degree 4 conic bundle $X \to \mathbb{P}^2$ is birationally equivalent to some π_2 "up to a class in $\mathbb{Z}/2\mathbb{Z}$ " (Theorem 2.6 of [1])

The Discriminant Curve

Definition. The discriminant curve Δ of $Y_{\tilde{\Delta}/\Delta}$ is the zero locus given by

$$\Delta = (Q_1 Q_3 - Q_2^2 = 0) \subset \mathbb{P}^2_{[u:v:w]}$$

Remark. The fiber of $s \in \mathbb{P}^2_{[u:v:w]}$ is smooth if and only if $s \notin \Delta$:

Fact. There exists a curve $\tilde{\Delta} \subset \mathbb{P}^4_{[u:v:w:r:s]}$ defined by

$$\tilde{\Delta} = (Q_1 - r^2 = Q_2 - rs = Q_3 - s^2 = 0)$$

such that the projection $\tilde{\Delta} \to \Delta$ is a double cover. $\tilde{\Delta}$ is called the double cover of Δ :

Quartic Curves

Note that $Q_1Q_3 - Q_2^2$ is a homogeneous polynomial of degree 4:

Definition. A quartic is the roots of a degree 4 homogenous polynomial over \mathbb{P}^2 .

Theorem (Zeuthen [3]). Let Δ be a smooth quartic over \mathbb{R} , then $\Delta(\mathbb{R})$ can be classified into 1 of the 6 following topological types: 1. No real points 2. One oval 3. Two nested ovals 4. Two non-nested ovals 5. Three ovals 6. Four ovals

Example. This homogeneous equation defines a smooth quartic whose real component has 2 nested ovals:

$$0 = -3u^4 - \frac{7}{10}u^2v^2 - \frac{169}{400}v^4 + \frac{67}{6}u^2w^2 + \frac{949}{240}v^2w^2 - \frac{121}{576}w^4$$

The real components on the chart $(w \neq 0)$:

Our Results:

The \mathbb{R} -rationality of $Y_{\tilde{\Delta}/\Delta}$ is complicated, but the work of S. Frei, L. Ji, S. Sankar, B. Viray, and I. Vogt previously gave a very useful criterion:

Theorem (Prop. 6.1 of [1]). Let $Y_{\tilde{\Delta}/\Delta}$ be defined as before. If $\tilde{\Delta}(\mathbb{R}) \neq \emptyset$, then $Y_{\tilde{\Delta}/\Delta}$ is \mathbb{R} -rational

In our REU, we instead investigate what happens when $\tilde{\Delta}(\mathbb{R}) = \emptyset$. Based on ideas and results joint with Sarah Frei, Soumya Sankar, Bianca Viray, and Isabel Vogt, we proved the following two theorems:

Theorem (1.1 of [2]). Let $\mathcal{CB}_{\emptyset/*}$ denote the set of real conic bundles $X \to \mathbb{P}^2$ of the form $Y_{\tilde{\Delta}/\Delta}$ with smooth Δ of topological type * and smooth $\tilde{\Delta}$ that has no real points, then:

- 1. $\mathcal{CB}_{\emptyset/\emptyset}$ contains both rational and irrational members
- 2. $\mathcal{CB}_{\emptyset/1\text{-}oval}$ contains both rational and irrational members
- 3. $\mathcal{CB}_{\emptyset/2 \ non-nested \ ovals}$, $\mathcal{CB}_{\emptyset/2 \ nested \ ovals}$, and $\mathcal{CB}_{\emptyset/3-ovals}$ contains both rational and irrational members
- 4. $\mathcal{CB}_{\emptyset/4\text{-}ovals}$ contains only rational members.

There's also a class of obstructions to rationality that we are interested in - known as the Intermediate Jacobina Torsor (IJT) obstruction. Together, we have our second theorem:

Theorem (1.2 of [2]). Let $Y_{\tilde{\Delta}/\Delta}$ be as before,

- 1. If $\Delta(\mathbb{R})$ is 4 ovals, then $Y_{\tilde{\Lambda}/\Lambda}$ is rational
- 2. If $\Delta(\mathbb{R})$ is 3 ovals, then $Y_{\tilde{\Delta}/\Delta}$ is rational $\iff Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ is connected
- 3. If $\Delta(\mathbb{R})$ is 2 non-nested ovals, then $Y_{\tilde{\Delta}/\Delta}$ is rational \iff $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ is connected and the IJT obstruction vanishes
- 4. If $\Delta(\mathbb{R})$ is empty, then $Y_{\tilde{\Delta}/\Delta}$ is rational \iff $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ is non-empty and the IJT obstruction vanishes

Remark. A geometric interpretation of this was given in [1]. It was shown that if $\tilde{\Delta}$ has no real points, then the IJT obstruction vanishes if there exists points $P_1, P_2, P_3, P_4 \in \tilde{\Delta}(\mathbb{C})$ and

- The set $\{P_1, P_2, P_3, P_4\}$ is closed under complex conjugation and does not span a 2-plane in \mathbb{P}^4
- The projection of $\{P_1, P_2, P_3, P_4\}$ to \mathbb{P}^2 is the set $\Delta \cap \ell$ for a line ℓ in \mathbb{P}^2 that does not meet any element of $\Delta(\mathbb{R})$ transversely.

Acknowledgements

We would like to thank

- Lena Ji for advising this project
- Sarah Frei, Brendan Hassett, Soumya Sankar, Bianca Viray, and Isabel Vogt for helpful discussions and conversations
- János Kollár for the question that motivated this project
- The National Science Foundation (Karen Smith's NSF grant DMS-2101075) for funding this project
- My letter of recommendation writers Nicole Looper and Jungang Li

References

[1] Sarah Frei et al. "Curve classes on conic bundle threefolds and applications to rationality". In: arXiv e-prints, arXiv:2207.07093 (), arXiv:2207.07093. arXiv: 2207.07093 [math.AG].
[2] Lena Ji and Mattie Ji. Rationality of real conic bundles with quartic discriminant curve. 2022. DOI: 10.48550/ARXIV.2208.08916. URL: https://arxiv.org/abs/2208.08916.
[3] Hieronymus Georg Zeuthen. "Sur les différentes formes des courbes planes du quatrième ordre". fre. In: Mathematische Annalen 7 (1874), pp. 410–432.