

Sistemas Digitais (SD)

Síntese de Circuitos Sequenciais: Definições

Aula Anterior

Na aula anterior:

- ▶ Contadores síncronos
 - Contadores de módulo 2ⁿ
 - Projecto de contadores
 - Frequência máxima de funcionamento
 - Situação de "lock-out"
 - Simbologia
 - Contador em anel
 - Contador Johnson
 - Linear feedback shift-register
- ▶ Contadores assíncronos
 - Contadores por pulsação
 - Contadores assíncronos vs. síncronos

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- ▶ Definição de circuito sequencial síncrono
- ▶ Máquinas de Mealy e de Moore
- ► Especificação de circuitos sequenciais síncronos:
 - Diagrama de estados
- ► Projecto de circuitos sequenciais síncronos:
 - Codificação dos estados
 - Tabela de transição de estados
 - Determinação das funções lógicas de saída e estado seguinte

Bibliografia:

- M. Mano, C. Kime: Secções 5.4 a 5.7
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.1 a 7.4

Dicotomia: circuito combinatório vs circuito sequencial

- ▶ Circuito Combinatório
 - O valor da saída depende apenas do valor nas entradas nesse instante

Circuito Sequencial

- O valor da saída depende do valor actual nas entradas, bem como da história anterior dos estados do circuito
 - Como? → através de elementos de memória (ex: latches e flip-flops)
- Podem ser divididos em:
 - o Síncronos: o sinal de relógio sincroniza toda a actividade do circuito
 - Assíncronos: não usam sinal de relógio as transições de estado ocorrem sempre que há uma alteração nas entradas do circuito

Circuito Sequencial Síncrono

- Duas componentes:
 - Bloco de lógica puramente combinatória
 - Implementa as funções necessárias para que o circuito tenha a transição entre estados pretendida
 - Elementos de memória, controlados por um sinal de relógio
 - Mantém o estado do circuito ao longo do tempo

Máquina de Estados

▶ Definida por:

- As possíveis combinações de entradas que controlam a máquina
- As possíveis combinações de saídas que são geradas pela máquina
- O conjunto de estados da máquina
- A função de transição entre estados
- A função de saída
- O estado inicial

Máquina de Estados

- O valor dos elementos de memória (FFs) define o <u>estado</u> da máquina em cada instante
- ▶ O circuito combinatório define:
 - a função de transição entre estados
 - a função de saída
- ▶ Inicialização:
 - Entrada de controlo (síncrona ou assíncrona) que conduz todos os FFs para o estado inicial.

Máquinas de Moore vs. Máquinas de Mealy

- ► As máquinas de estado síncronas podem ser divididas em:
 - Máquinas de Moore: a saída depende apenas das variáveis de estado actuais;
 - Máquinas de Mealy: a saída é função das variáveis de <u>estado</u> actuais e do valor das <u>entradas</u> presentes no circuito

Máquinas de Moore vs. Máquinas de Mealy

- ▶ Do ponto de vista da saída...
 - Máquinas de Moore: é necessário esperar pelo próximo flanco de relógio para alterar o valor da saída em resposta a uma alteração da entrada;
 - Máquinas de Mealy: as saídas mudam imediatamente em resposta a uma alteração das entradas.

Exemplo – Detector de Paridade (1)

- ▶ Pretende-se enviar dados por uma linha, em grupos de 3 bits. A linha está sujeita a ruído, pelo que se implementou um protocolo de detecção de erros que garante que cada grupo de 3 bits tem um número par de bits a 1.
- ➤ O circuito sequencial pretendido deverá assinalar na sua saída sempre que ocorrer um erro de transmissão, identificado por um número ímpar de bits com valor lógico '1' num grupo de 3 bits

Projecto de Circuitos Sequenciais Síncronos

- ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Projecto de Circuitos Sequenciais Síncronos

- ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Diagrama de Estados

Representa, de forma gráfica, cada estado da máquina (círculo)

- ▶ Para cada combinação de estado e valor nas entradas está associada uma transição (arco) que aponta para o estado para onde a máquina transita na presença dessa combinação.
- Cada transição apresenta:
 - a combinação de entradas que lhe corresponde
 - o valor da saída (apenas as máquinas de Mealy)

Exemplo – máquina de Mealy:

Veremos como sintetizar este circuito depois...

Diagrama de Estados – outros exemplos (Mealy)

Exemplo – máquina de Moore:

Veremos como sintetizar este circuito depois...

Exemplo – Detector de Paridade (2)

- ▶ Pretende-se enviar dados por uma linha, em grupos de 3 bits. A linha está sujeita a ruído, pelo que se implementou um protocolo de detecção de erros que garante que cada grupo de 3 bits tem um número par de bits a 1.
- ➤ O circuito sequencial pretendido deverá assinalar na sua saída sempre que ocorrer um erro de transmissão, identificado por um número ímpar de bits com valor lógico '1' num grupo de 3 bits

- Projecto de Circuitos Sequenciais Síncronos
 - **▶** Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - Fluxograma

← Vemos depois...

- Simplificação da especificação
- Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

- Projecto de Circuitos Sequenciais Síncronos
 - ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação

← Vemos depois...

- Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Projecto de Circuitos Sequenciais Síncronos

- ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Codificação dos estados

- Os estados de um circuito sequencial são guardados nos elementos de memória (Flip-Flops)
- ▶ A este conjunto de Flip-Flops também se pode chamar "Registo de Estado"
- Cada estado corresponde a uma determinada configuração dos valores das saídas dos Flip-Flops
- ► Torna-se necessário definir a codificação a atribuir a cada estado:
 - Várias codificações possíveis
 - O código de cada estado é <u>único</u>.

Codificação dos estados

- ► Método 1: codificação usando o código binário
 - Método mais eficiente, pois usa o menor número de Flip-Flops possível
 - Menor número de funções para definir o próximo estado → menos portas lógicas (em geral...)
 - Considerando a existência de n estados (E₀, E₁, E₂,..., E_{n-1}), a codificação usando código binário natural irá usar k Flip-Flops, em que k é o menor inteiro igual ou superior a log₂(n)
 - Exemplo:
 - o 6 estados (E₀, E₁, E₂, E₃, E₄, E₅)
 - o $k = \lceil \log_2(6) \rceil = \lceil 2.584 \rceil = 3 \text{ Flip-Flops}$

Existem várias codificações possíveis!!!

	Codificação					
Estado	Q_2	Q_1	Q_0			
E_0	0	0	0			
E ₁	0	0	1			
E_2	0	. 1	0			
E ₃	0	1	1			
E ₄	1	0	0			
E ₅	1	0	1			

Codificação dos estados

- ▶ Método 2: codificação usando um Flip-Flop por estado
 - Usa tantos Flip-Flops quanto o número de estados
 - → maior número de funções combinatórias a sintetizar!
 - → mas cada uma destas funções é, em geral, mais simples...
 - Apenas um Flip-Flop tem a saída a '1' em cada instante
 - Exemplo:
 - 6 estados (E₀, E₁, E₂, E₃, E₄, E₅)
 - o 6 Flip-Flops

E. (. I.	Codificação								
Estado	Q_5	Q_4	Q_3	Q_2	Q_1	Q_0			
E_0	0	0	0	0	0	1			
E ₁	0	0	0	0	1	0			
E_2	0	0	0	1	0	0			
E_3	0	0	1	0	0	0			
E_4	0	1	0	0	0	0			
E_5	1	0	0	0	0	0			

Projecto de Circuitos Sequenciais Síncronos

- ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Tabela de Transição de Estados

- Elaborada com base:
 - Análise do diagrama de estados / fluxograma / etc...
 - Codificação atribuída a cada estado
- Contém uma linha para cada possível combinação do conjunto de bits que inclui: entradas primárias + variáveis de estado
- Cada linha define:
 - valores das entradas primárias
 - variáveis de estado Q(n-1)
 - valores desejados para as variáveis de estado Q(n) no próximo ciclo de relógio
 - valores que as saídas devem tomar

Entradas da Tabela		Saídas da Tabela			
Entrada	Estado I	Presente	Estado S	Seguinte	Saída
Α	Q ₁ (n-1)	Q ₀ (n-1)	Q₁(n)	$Q_0(n)$	В
0	0	0	0	0	0
1	0	0	0	1	0
0	0	1	0	0	0
1	0	1	1	0	0
0	1	0	0	0	0
1	1	0	1	1	0
0	1	1	1	1	1
1	1	1	1	1	1

Exemplo: Contador Síncrono de Módulo 5 (PM5)

Diagrama de Estados de Contagem

A existência de 5 estados de contagem impõe, pelo menos, a utilização de 3 FFs

Tabela de Codificação de Estados

Estado	Q2	Q1	Q0
S ₀	0	0	0
S_1	0	0	1
S_2	0	1	0
S_3	0	1	1
S_4	1	0	0
S_5	1	0	1
S ₀ S ₁ S ₃ S ₄ S ₅ S ₆ S ₇	1	1	0
S_7	1	1	1)

Tabela de Transição de Estados

Catada	Drago	nto (n)	Catada	Cognin	ho (n 1 1)
Estado	Prese	nte (n)	Estado	Seguint	le (n+1)
Q2	Q1	Q0	Q2	Q1	Q0
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

Projecto de Circuitos Sequenciais Síncronos

- ▶ Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Determinação das funções lógicas

Determinação das funções lógicas que definem as entradas dos flip-flops (entradas D, J, K, ...) em função das entradas primárias e do estado presente (variáveis de estado)

Exemplo (considerando uma entrada e 2 flip-flops tipo D):

• $D_k(n) = f(A(n-1), Q_1(n-1), Q_0(n-1)) \text{ com } k \in \{0,1\}$

Entra	idas da Ta	abela	Saídas da Tabela					
Entrada	Estado F	Presente		Estado	Se	guinte)	Saída
A(n-1)	Q ₁ (n-1)	Q ₀ (n-1)		Q ₁ (n)		$Q_0(n)$		B(n-1)
0	0	0		0		0		0
1	0	0		0		1		0
0		1		0		0		0
1	0	1	,	1		0		0
0	1	0		0		0		0
1	1	0		1	5	1		0
0	1	1		1		1		1
1	11	_1/		1				1

Determinação das funções lógicas

- ▶ Determinação das funções lógicas que definem as saídas do circuito em função de:
 - Estado presente (<u>variáveis de estado</u>) e das <u>entradas primárias</u> → Máquina de Mealy
 - Estado presente (<u>variáveis de estado</u>) → <u>Máquina de Moore</u>

Exemplo (considerando uma entrada e 2 flip-flops tipo D):

- $B(n-1) = f(A(n-1), Q_1(n-1), Q_0(n-1)) \rightarrow Máquina de Mealy$
- $B(n-1) = f(Q_1(n-1), Q_0(n-1)) \rightarrow Máquina de Moore$

Máquina de Mealy

Entradas da Tabela		Saío	das da Tal	oela	
Entrada	Estado F	Presente	Estado S	Seguinte	Saída
A(n-1)	Q ₁ (n-1)	Q ₀ (n-1)	Q ₁ (n)	$Q_0(n)$	B(n-1)
0	0	0	0	0	0
1	0	0	0	1	0
0	0	1	0	0	0
1	0	1	1	0	0
0	1_	0	0	0	1
1	1	0	1	1	0
0	1	1	1		1
1	11	1	1	1	

Máquina de Moore

Entradas da Tabela		Saídas da Tabela				
Entrada	Estado I	Presente	Estado S	Seguinte	Saída	
A(n-1)	Q ₁ (n-1)	Q ₀ (n-1)	Q₁(n)	$Q_0(n)$	B(n-1)	
0	0	0	0	0	0	
1	0	0	0	1	0	
0	0	1	0	0	0	
1	0	1	1	0	0	
0	1 .	0	0	0	0	
1	1	0	1	1	0	
0	1		1	1	1	
1	1	1	1	1		

Exemplo: Contador Síncrono de Módulo 5 (PM5)

Diagrama de Estados de Contagem

A existência de 5 estados de contagem impõe, pelo menos, a utilização de 3 FFs

Tabela de Codificação de Estados

Estado	Q2	Q1	Q0
S ₀	0	0	0
S ₁	0	0	1
S_2	0	1	0
S_3	0	1	1
S_4	1	0	0
S_5	1	0	1
S ₀ S ₁ S ₃ S ₄ S ₅ S ₆ S ₇	1	1	0
S_7	1	1	<u>1)</u>

Tabela de Transição de Estados

Catada	Drago	nto (n)	Catada	Cognin	ho (n 1 1)
Estado	Prese	nte (n)	Estado	Seguint	le (n+1)
Q2	Q1	Q0	Q2	Q1	Q0
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

Exemplo: implementação com FFs tipo D

Tabela de Excitação do FF D

Q(n+1)	D(n)
0	0
1	1

Tabela de Transição de Estados

Estad	o Prese	nte (n)	Estado Seguinte (n+1)				
Q2	Q1	Q0	Q2(n+1)	Q0(n+1)			
			D2(n)	D1(n)	D0(n)		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	1	1		

Mapas de Karnaugh por Entrada de FFs

$$D_2 = \overline{Q}_2 + \overline{Q}_1 + \overline{Q}_0$$

01 11

 Q_1Q_0

$$D_1 = \overline{Q}_1 Q_0 + Q_2 Q_1$$

$$D_0 = \overline{Q}_0 + Q_2 Q_1$$

Χ

Exemplo: implementação com FFs tipo D

Funções de Excitação dos FFs

$$D_2 = \overline{Q}_2 + \overline{Q}_1 + \overline{Q}_0$$

$$D_1 = \overline{Q}_1 Q_0 + Q_2 Q_1$$

$$D_0 = \overline{Q}_0 + Q_2 Q_1$$

Exemplo: implementação com FFs tipo JK

Tabela de Excitação do FF JK

$Q_n \rightarrow Q_{n+1}$	J	K
$0 \rightarrow 0$	0	X
$0 \rightarrow 1$	1	X
$1 \rightarrow 0$	Χ	1
$1 \rightarrow 1$	Χ	0

Tabela de Transição de Estados

Estado Actual				stad eguir			Entra	adas	dos	FFs	3
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	1	1	X	1	X	0	X	0

A lógica combinatória do circuito é projectada de modo a forçar nas entradas JK dos FFs os valores que impõem as transições de estado especificadas na tabela de estados.

Exemplo: implementação com FFs tipo JK

Tabela de Transição de Estados

Estado Actual			Estado Seguinte			Entradas dos FFs						
	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J_2	K_2	J ₁	K ₁	J_0	K_0
	0	1	1	1	0	0	1	Χ	X	1	X	1
	1	0	0	1	0	1	Χ	0	0	X	1	Χ
	1	0	1	1	1	0	Χ	0	1	Χ	X	1
	1	1	0	1	1	1	Χ	0	X	0	1	Χ
	1	1	1	0	1	1	X	1	X	0	X	0

A lógica combinatória força nas entradas JK dos FF os valores que concretizam as transições especificadas, em função do **estado actual**.

TÉCNICO LISBOA Síntese de Circuitos Síncronos

Exemplo: implementação com FFs tipo JK

Funções de Excitação dos FFs:

$$J_0 = \frac{1}{Q_0}$$
 $J_1 = \frac{Q_0}{Q_0}$ $J_2 = 1$ $K_1 = \frac{Q_0}{Q_0}$ $K_2 = Q_1 Q_0$

$$J_1 = \underline{Q}_0$$

$$K_1 = \overline{Q}_2$$

$$J_2 = 1$$

$$K_2 = Q_1 Q_0$$

Próxima Aula

Tema da Próxima Aula:

- ► Especificação e projecto de circuitos sequenciais síncronos:
 - Minimização do número de estados
- ► Exemplo (Mealy)

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás