docs

ATOM / Fieldbus / EtherNet/IP / Overview

Author: Control Concepts, Inc.

Date: 2025-10-30

Contents

ATO	M / Fieldbus / EtherNet/IP / Overview	1
0	EDS	1
0	Control Panel Communication Settings	1
0	Control Panel and PLC software	3
0	Daisy chaining	4
0		
		 Parameters

ATOM / Fieldbus / EtherNet/IP / Overview

ATOM is ODVA EtherNet/IP CT19 Conformant.

- Statement of Conformance
- Declaration of Conformance
- Passing Test Report
- ODVA listing

EDS

Download the EDS file for ATOM here.

Control Panel Communication Settings

Some communication settings can be configured in the **Communication** tab in **Control** Panel.

- Section 1: TCP/IP settings
 - **o** IP Address Configuration
 - Static: Use the IP address, subnet mask, and gateway specified below.
 - DHCP: Use DHCP to obtain an IP address.
 - **IP Address Setting**: The IP address of the ATOM controller.
 - o IP Address Monitor: The current IP address of the ATOM controller.
 - **Subnet Mask**: The subnet mask of the ATOM controller.
 - o **Gateway**: The gateway address for the ATOM controller.
- Section 2: Network Timeout
 - The EtherNet/IP heartbeat timeout (Encapsulation Inactivity Timeout) in seconds.
 - You can configure a network timeout action to perform when the device loses communication with the PLC:
 - None: Do nothing

- STOP, fault shutdown: STOP the controller, disabling output
- Use network timeout setpoint: Configure an alternative setpoint to use when the controller loses communication with the PLC.
- Section 3: Ethernet status
 - Indicates the status of both RJ45 ports, IP address configuration, conflict detection, and any other errors with the EtherNet/IP connection.

Control Panel and PLC software

These settings are synchronized with your PLC environment. You do not have to use Control Panel to change these settings - you can stay in your PLC software. Control Panel merely provides them as an altherative way to configure ATOM's EtherNet/IP settings.

You can use Control Panel simultaneously with your PLC software without issues.

IP Address Conflict Detection

ATOM uses **IP Address Conflict Detection** to detect IP address conflicts on the network. If ATOM detects another device using the same IP address, it will disable all network communication until the conflict is resolved.

Please ensure all devices on the network are assigned unique a IP address.

Hardware considerations

A WARNING

Daisy chaining

As ATOM has two RJ45 ports, it can be easily daisy-chained. When daisy-chaining ATOM, take care to avoid a loop in the network. In some loop configurations, ATOM is susceptible to network broadcast storms, which can cause the controller to become unresponsive. If you are daisy-chaining ATOM, ensure that the network is loop-free.

ATOM works with both unmanaged and managed switches. We recommend a managed switch for larger networks to give you more control over the network topology.

Parameters

Overview

ATOM makes 30 parameters accessible to EtherNet/IP. These parameters are made available through the CIP Assembly Object (code @x@4) and a custom ParameterLink object (code @x64). The assembly object is most commonly used to read and write parameters from a PLC. The ParameterLink object is a custom object defined by Control Concepts that can be used to individually control parameters and is less commonly used.

Output Assembly (Class 0x04, Instance 0x01)

#	Name	Туре	Description	Read/Write
1	Digital setpoint	DINT	A value between 0 and 10,000 indicating the desired output current. The value is scaled to the output range of ATOM. For example,	Read/Write

#	Name	Туре	Description	Read/Write
			if the output range is 0-100A, a value of 5000 would set the output to 50A.	
2	Digital run enable	BOOL	Enables or disables the output current. When disabled, the output current is set to OA.	Read/Write

Input Assembly (Class 0x04, Instance 0x02)

#	Name	Туре	Description	Read/Write
3	Inhibit Alarm Status	ВҮТЕ	A bitfield indicating alarms that are preventing controller operation. See Inhibit Alarm Status.	Read
4	Warning Alarm Status	ВҮТЕ	A bitfield indicating warning alarms. See Warning Alarm Status.	Read
5	Feedback Read Status	BOOL	A bitfield indicating if controller has acquired feedback. See Feedback Read Status.	Read
6	AC Line Frequency	REAL	The AC line frequency in Hz.	Read
7	AC Line Voltage	REAL	The AC line voltage in volts.	Read

#	Name	Туре	Description	Read/Write
8	Load Voltage	REAL	The load voltage in volts.	Read
9	Load Current	REAL	The load current in amps.	Read
10	Load Resistance	REAL	The load resistance in ohms.	Read
11	Heatsink Temperature	REAL	Heatsink temperature, in degrees celsius.	Read
12	Output Duty Cycle %	REAL	Indicates the amount, in percent, that the output of the controller is ON	Read
13	Setpoint reference	REAL	Reference input to control compensation loop in units determined by "feedback type"	Read
14	Feedback	REAL	The control output supplied to the load in units determined by "feedback type"	Read
15	Partial Load Fault Target Resistance	REAL	Expected nominal resistance, in Ohms, of the load. Used for partial load fault detection.	Read
16	Partial Load Fault Resistance	REAL	The actual load resistance in Ohms. Compared with #15 to determine if a partial load fault has occurred.	Read

#	Name	Туре	Description	Read/Write
17	Partial Load Fault Resistance Deviation	REAL	The tolerable percentage that parameter #15 and #16 may differ by until a partial load fault will be triggered.	Read
18	Firmware ID	DINT	Indicates the version of firmware that is loaded, dictating which features are available.	Read
19	Firmware major revision	DINT	Indicates which revision of the firmware is loaded. Major revisions fix critical bugs or add significant new features.	Read
20	Firmware minor revision	DINT	Indicates which minor revision of the firmware is loaded. Minor revisions fix minor issues and/or add minor improvements.	Read
21	Full Scale Voltage	DINT	The expected output voltage when the controller output is fully on.	Read
22	Full Scale Current	REAL	The expected current when the controller output is fully on.	Read
23	AC Line Status	BYTE	A bitfield indicating the status of the connected AC Line. See AC Line Status.	Read

#	Name	Туре	Description	Read/Write
24	Load Status	ВҮТЕ	A bitfield indicating the load status. See Load status.	Read
25	Controller Status	ВҮТЕ	A value indicating the operational status of the controller. See Controller status.	Read
26	Controller State	ВҮТЕ	A value indicating the controller state. See Controller state.	Read
27	EEPROM Status	WORD	A bitfield indicating the EEPROM status. Seee EEPROM Status.	Read
28	EEPROM Status 2	WORD	Identical to parameter #27	Read
29	Error Latch	ВҮТЕ	A bitfield used for diagnostic troubleshooting. See Error Latch.	Read
30	Miscellaneous Status	ВҮТЕ	A bitfield indicating miscellaneous status information. See Miscellaneous Status.	Read

Additional parameter descriptions

Inhibit Alarm Status

Inhibit alarm status is a 8-bit bitfield:

7	6	5	4	3	2	1
Reserved	Reserved	Reserved	Reserved	Feedback Loss	Over Temperature	Over Current Trip

If any bit is set to 1, the controller will not be allowed to run.

Warning Alarm Status

Warning alarm status is a 8-bit bitfield:

7	6	5	4	3	2	1	0
Reserved	Reserved	High temperature	Shorted SCR	Open Load	Partial Load Fault	Current Limit	Voltage Limit

Warning alarms are not considered critical and will not prevent the controller from running.

Feedback Read Status

Feedback status is a 8-bit bitfield:

7	6	5	4	3	2	1	
Reserved	Ti						

Indicates whether the controller has acquired feedback on the line. If any bit is set to 1, then the controller has lost feedback.

AC Line Status

AC Line status is a 8-bit bitfield:

7	6	5	4	3	2	1	0
Reserved	Reserved	Sync- Locked (to AC Line)	Pre- Lock 2	Pre- Lock 1	Reserved	AC Line B OK	AC Line A OK

Bits 5 must be set to 1 before the controller can provide power to the load.

Load Status

Load status is a 8-bit bitfield:

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Open Load	Reserved	Reserved	Reserved	Short SCR

Controller Status

Controller status is one of:

Value	Description
0	Disabled
1	Initialization
2	Normal, operating

Value	Description
3	Calibration
4	Diagnostic

Controller State

Controller state is one of:

Value	State	Description		
0	STOP	The state the controller is in when AC Line voltage is not present.		
1	RUN	The state the controller is in when AC Line voltage is present and the controller is synchronized to the AC line.		
2	FAULT	A latching state of output shutdown caused by over current or over temperature alarms. A power cycle or processor reset is required to clear this state.		
3	FAULT RESET	Used as a temporary state to transition from FAULT to RUN once again.		

EEPROM Status

EEPROM status is an 16-bit bitfield. EEPROM is used to store controller configuration and calibration data. Any errors in EEPROM may indicate that the firmware is corrupted.

Bit	Description		
0	EEPROM Initialization		
1	SP Table Error		
2	MFG CP Table Error		
3	Calibration Table Error		
4	Reserved		
5	Reserved		
6	Backup Calibration Table Error		
7	Bottom Board Calibration Table Error		
8	SP Definition Table needs updating		
9	Bottom Board Calibration Backup Error		
10	Reserved		
11	Reserved		
12	EEPROM is write protected		
13	Reserved		
14	Reserved		

Bit	Description
15	Feedback Calibration Table has changed, store to EEPROM

Error Latch

Error latch is a 8-bit bitfield:

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Feedback loss	SCR timing loss	Line Frequency failure	Phase loss or missing cycle	Line Lock Loss

Error latch is provided as a diagnostic troubleshooting aid.

Miscellaneous Status

Miscellaneous status is an 8-bit bitfield:

7	6	5	4	3	2	1
Reserved	Initialization in progress	Reserved	Reserved	Waiting for ENTER key during initialization	Reserved	USB Powerec

Data types

The data types listed above in the parameter table are defined in the CIP standard as:

Туре	Size	Description
BOOL	1 byte	Boolean value
ВҮТЕ	1 byte	8-bit bitmap
WORD	2 bytes	16-bit bitmap
DWORD	4 bytes	32-bit bitmap
LWORD	8 bytes	64-bit bitmap
USINT	1 byte	Unsigned 8-bit integer
UINT	2 bytes	Unsigned 16-bit integer
UDINT	4 bytes	Unsigned 32-bit integer
ULINT	8 bytes	Unsigned 64-bit integer
SINT	1 byte	Signed 8-bit integer
INT	2 bytes	Signed 16-bit integer
DINT	4 bytes	Signed 32-bit integer
LINT	8 bytes	Signed 64-bit integer
REAL	4 bytes	32-bit floating point number
LREAL	8 bytes	64-bit floating point number

Rockwell's RSLogix Studio 5000 does not support unsigned integers. Any EDS file that contains unsigned integers will cause issues when it is imported into Studio 5000. To avoid this issue, ATOM uses signed integers for all integer types, regardless of whether the value may be negative or not. For example, parameter #1, *Digital setpoint* is represented as a signed 32-bit integer, but it may never be negative.

Other resources

Detailed information about ATOM's EtherNet/IP profile is also available as a **downloadable word document**.

Advanced

ATOM has many more parameters beyond the 30 made available through EtherNet/IP. The default profile listed above should be sufficient for the majority of use cases.

If this is not the case, you can use Control Panel to adjust or monitor all parameters.

In the rare case that you need more parameters available through ATOM's EtherNet/IP profile, Control Concepts does have the ability to make additional parameters available or to change the data type of included parameters. Please contact us if you would like a custom EtherNet/IP profile. There may be a service fee for custom EtherNt/IP profiles as they require new EDS files, device-reconfiguration and testing.