

DIPARTIMENTO DI SCIENZE E TECNOLOGIE Università degli Studi di Napoli "Parthenope" Centro Direzionale di Napoli - Isola C4 80143 Napoli (I)

prof. Mariarosaria Rizzardi stanza n. 423 - IV piano, lato NORD

tel.: 081 547 6545

emai: mariarosaria.rizzardi@uniparthenope.it

PROGRAMMA D'ESAME di Programmazione II e Laboratorio di Programmaz. II dall'A.A. 2019-2020

I due moduli integrati di *Programmazione II e Laboratorio di Programmazione II* (esame unico) rappresentano la naturale prosecuzione del percorso didattico iniziato con gli omologhi di primo livello e pertanto i prerequisiti necessari consistono prevalentemente nella conoscenza degli argomenti trattati nel corso di *Programmazione I e Laboratorio di Prog. I.*

L'obiettivo principale del corso consiste nell'approfondire alcuni aspetti fondamentali legati alle metodologie di sviluppo ed analisi degli algoritmi, all'organizzazione logica dei dati e alla relativa implementazione nel linguaggio C.

Sono trattati alcuni approfondimenti del linguaggio C e viene altresì introdotto il linguaggio C++ soprattutto per quanto riguarda i suoi aspetti innovativi rispetto al C. Sono introdotte le strutture dati dinamiche (lineari, gerarchiche e reticolari) e descritte le relative implementazioni in C e mediante la libreria STL del C++. Infine sono richiamati i concetti principali relativi alla programmazione ricorsiva e sono trattati alcuni algoritmi di ordinamento della classe "Divide et Impera".

Materiale didattico

Servizio di web Learning: http://e-scienzeetecnologie.uniparthenope.it/.

Documentazione online per C/C++: http://www.cpluplus.com/.

Testi consigliati

Kim.N. King – *Programmazione in C* – Apogeo

J. Soulié – C++ Language Tutorial – cplusplus.com (2007) [http://www.cplusplus.com/files/tutorial.pdf]

H. Schildt – *C*++: *The Complete Reference* – McGraw-Hill, 4th Ed. (2003)

[http://160592857366.free.fr/joe/ebooks/ShareData/C++ - The Complete Reference 4e.pdf]

Testi di consultazione

R. Sedgewick – Algoritmi in C++ – Addison-Wesley

B. Stroustrup – The C++ Programming Language – Addison-Wesley, 4th Ed., (2013)

[http://home.agh.edu.pl/~sul5/php/Straustrup4th.pdfa]

T.H. Cormen, C.E. Leiserson, R.L. Rivest – Introduzione agli algoritmi – Jackson Libri

E. Horowitz, S. Sahni, S. Anderson-Freed – Strutture dati in C. McGraw-Hill Libri Italia.

ARGOMENTI TRATTATI

Compilare da riga di comando

Installare la libreria MinGW dei compilatori GNU gcc e g++ per Windows. Principali comandi DOS e Linux. Compilatori gcc e g++. Confronto versione compilatore e libreria di MinGW e Code::Blocks. Compilare da riga di comando. Utility make e Makefile; uso delle dipendenze. Redirezione dell'input standard (<) e dell'output standard (>, >>). Parametri alla funzione main(). Il primo programma in C e il primo programma in C++. Passaggio dei parametri per reference in C++ e variabili reference.

C/C++

Rappresentazione in memoria dei tipi di dato scalari. Tipo logico in C: variabili booleane e operatori booleani. Operatori bitwise. Operazioni sugli interi mediante operatori bitwise. Campi di bit di una struct. Precedenza fra operatori. C++: il tipo bool e la classe template bitset<N>. Esempi d'uso.

Unioni ed enumerazioni.

Richiami sulla rappresentazione posizionale dei numeri. Algoritmi di cambiamento di base. Tipi numerici: signed ed unsigned char, short, int, long e long long per gli interi, float, double e long double per i reali. Header file: limits.h e float.h. Rappresentazione in memoria dei numeri interi: rappresentazione per segno e modulo, per complemento a 2, rappresentazione biased. Il Sistema aritmetico degli Interi e suo range; overflow d'intero. Il Sistema Aritmetico Binario Floating-point Standard IEEE 754 e sua parametrizzazione. Rappresentazione della mantissa per bit implicito. Numeri normalizzati, denormalizzati, Nan, underflow, overflow. Visualizzazione dei bit di una variabile numerica. Range dei numeri floating-point. Schemi di arrotondamento. Massima accuratezza statica e massima accuratezza dinamica. Errori di roundoff ed esempi relativi.

Variabili di tipo carattere e di tipo stringa: array di caratteri e array frastagliati di stringhe (mediante puntatori). Funzioni in <string.h>. Input di stringhe: gets(), deprecata, e fgets(). C++: classe string, principali metodi e operazioni su stringhe. Input di stringhe (getline). Array frastagliati di stringhe in C e in C++.

Allocazione dinamica in C: malloc(), calloc(), realloc(), free().Il compilatore GNU gcc (dal C99) e i Variable Length Array (VLA). Allocazione dinamica in C++: operatori new e delete, array dinamici: il contenitore sequenziale vector. Iteratori. Funzioni per copiare o spostare blocchi di memoria (memset, memcpy, memmove). Allocazione dinamica di matrici: gestione tramite puntatori delle matrici allocate per righe o per colonne. Differenza tra allocazione (per righe o per colonne) di una matrice ed accesso (per righe o per colonne) ai suoi elementi. Gestione delle matrici (statiche e dinamiche) nel passaggio dei parametri.

Gestione di file testo e file binari. Input/Output su file in C. Gestione di file testo e binario in C++: stream e file. I/O formattato, manipolatori. Classi ifstream, ofstream, fstream.

Puntatori a void. Funzioni ricorsive in C/C++.

<u>C++</u>: Classi e oggetti. Metodi e attributi. Specificatori di accesso (private, protected, public). Diagramma delle classi. Costruttori e distruttori di classe: costruttore default, costruttore con parametri, costruttore di copia. Ereditarietà tra classe base e classe derivata. Tipo di ereditarietà. *Upcasting*. Diagramma di classi derivate. Polimorfismo e funzioni virtuali. Function overloading e function overriding. Funzioni virtuali pure e classi astratte. Diagramma di classi astratte. Cenni ai template: funzione generica e classe generica. Cenni ai namespace e alla clausola using. Cenni all'overload di operatori. La lista di inizializzazione dei dati membro nel costruttore. Quando va usata la lista di inizializzazione. Esempi.

Tipi di dati strutturati

Richiami sui tipi di dati strutturati. Strutture statiche (array, record) e *strutture dinamiche lineari* (lista, coda, pila). Rappresentazione in *C* di liste, code e pile. Operazioni sulle strutture lineari: visita, inserimento, eliminazione di nodi. Particolari liste: circolari, bidirezionali, multiple. Esempi. Rappresentazione in memoria di matrici sparse mediante liste multiple. C++: classi template stack, queue, forward list, list. Esempi.

Strutture gerarchiche (alberi). Visita *per livelli* e visita *in ordine anticipato* di un albero qualsiasi. Alberi binari. Alberi binari completi. Algoritmi di visita su alberi binari: visita anticipata, simmetrica e differita. Rappresentazione di un albero binario mediante array oppure mediante lista multipla. Alberi Binari di Ricerca

(BST – Binary Search Trees): algoritmo di costruzione e di ricerca binaria. Struttura dati *heap* e sua rappresentazione mediante array. Code con priorità rappresentate come heap (max o min). C++: esempio di classe che implementa un Albero Binario di Ricerca; la classe template priority_queue (per un max-heap). Esempi. Strutture reticolari (grafi). Grafi orientati e non orientati, pesati e non pesati. Rappresentazione in memoria di grafi mediante matrice di adiacenze e mediante lista di adiacenze. Algoritmi di *visita in profondità* (DFS) e di *visita in ampiezza* (BFS) di un grafo non orientato. Esempi.

Ricorsione

Funzioni ricorsive ed algoritmi ricorsivi. Struttura della ricorsione: ricorsione lineare, binaria, non lineare, mutua ricorsione. Analisi della profondità di ricorsione. Esempi di algoritmi ricorsivi in C: fattoriale, MCD, ricerca binaria, costruzione di una lista da un array, visita di alberi binari.

Algoritmi di ordinamento

Algoritmi di ordinamento ed analisi di complessità. Richiami sugli algoritmi a complessità quadratica: SelectionSort, ExchangeSort (BubbleSort), InsertionSort. Algoritmi della classe "Divide et Impera": MergeSort, QuickSort, HeapSort. Complessità di tempo e di spazio.