Macroeconomics A, El056

Class 3

Time (in) consistency

Cédric Tille

October 3, 2023

What you will get from today class

- When can money affect real variables?
- The time inconsistency problem, and remedies.
 - Based on Walsh ch. 7 (7.1-7.2, 7.3.2).
 - Policy insights, even though the model is simple and ad-hoc.
- Empirical evidence on the impact of central bank independence (Bodea and Hicks 2015).
 - Impact of central bank independence on inflation depends on political institutions.

A question to start

Central banks should be given a clear mission, and then be left alone to execute it without having to answer questions from politicians.

Do you agree? Why or why not?

When can policy affect output?

- Monetary policy can easily affect prices, but when can it have real effects?
- The central bank needs a timing advantage.
 - Expectations are slow to catch up (adaptive expectations).
 - The central bank acts with more information than private agents.
- Example of more information: price or wages are chosen before the central bank acts.
 - If new information is revealed in between, the central bank reacts to it before private agents can.
 - Aggregate supply with inflation surprises, $\pi_t E_{t-1}\pi_t$.
- How much power does this really give when inflation expectations are forward looking?

TIME (IN) CONSISTENCY

Time inconsistency problem

- An unexpected move in policy can affect real output.
 - Policy makers can be tempted to take advantage of this.
 - They can (at least temporarily) if people take time to figure it out.
- Different when expectations are forward looking and rational.
- Agents understand the temptation, and take it into account when forming their expectations.
- In equilibrium, the temptation leads to no benefit (cannot fool all people all the time).
 - A commitment to avoid the temptation is beneficial.
- We first consider a deterministic model, then introduce shocks.

A simple deterministic model

- One period model.
 - Agents set their expectations at the beginning of the period.
 - The central bank then moves, and output is determined by the policy.
- The economy is summarized by an AS curve linking output y to unexpected inflation, $\pi-\pi^e$:

$$y = y^n + a(\pi - \pi^e)$$

• y^n is the natural level of output, i.e. the one prevailing when expectations are right (notation of the textbook, corresponds to \bar{Y} last week).

Monetary policy

- ullet The central bank sets the monetary stance m which drives inflation π .
- For simplicity we consider that the central bank has a precise control of inflation: $\pi=m$.
 - The technical appendix presents the case where there is a shock to the link between m and π .
- We consider two ways to conduct policy.
 - **Discretion**: the central bank does whatever it wants. However, this is fully understood by the public.
 - Commitment: the central bank commits to a value of π , and delivers it no matter what.

Policy objective

• The central bank wants to minimize a loss driven by inflation and the deviation of output around a target y^* (it is a loss: a high V is bad):

$$V = \frac{1}{2} \left[\lambda (y - y^*)^2 + \pi^2 \right]$$

 The target output y* is above the natural rate, so the central bank has an incentive to boost up output (for instance because of structural unemployment): .

$$y^* = y^n + k > y^n$$

- The central bank is thus tempted to engineer some surprise inflation to raise y above y^n .
 - Especially if it cares about output (λ is high) and its objective is substantially above the natural rate (k is high).
 - The temptation is an issue because the central bank moves (sets π) after the private agents (set π^e).

Policy under discretion

• The central bank takes the expectations π^e as **given**. The loss is rewritten as:

$$V = \frac{1}{2} \left[\lambda (y - y^*)^2 + \pi^2 \right]$$

$$V = \frac{1}{2} \left[\lambda (a(\pi - \pi^e) + y^n - y^*)^2 + \pi^2 \right]$$

$$V = \frac{1}{2} \left[\lambda (a(\pi - \pi^e) - k)^2 + \pi^2 \right]$$

ullet The central bank sets π to minimize it. The first-order condition gives a reaction function of actual inflation to expected inflation, with a slope smaller than 1:

$$\pi = \frac{\lambda a^2}{1 + \lambda a^2} \pi^e + \frac{\lambda a}{1 + \lambda a^2} k$$

Visual representation of the reaction

• In equilibrium, inflation is expected: $\pi = \pi^e$. It is positive

11 / 34

Equilibrium inflation

- Agents figure out the model, and thus understand the central bank's reaction function.
- The form their expectations accordingly. To solve, take expectation of the reaction function ($E\pi = E\pi^e = \pi^e$):

$$E\pi = \frac{\lambda a^2}{1 + \lambda a^2} \pi^e + \frac{\lambda a}{1 + \lambda a^2} k$$

$$E\pi = \lambda ak > 0$$

- Expected and actual inflation is positive. There is an inflation bias because of:
 - the extra output objective of the central bank k.
 - its utility weight on output λ .
 - the impact of inflation on output a.

Output under discretion

 Output follows from the AS relation. It is not affected by the systematic bias k (as inflation is expected, there is no surprise):

$$y = y^n$$

- The policy does not lead to a systematic increase in output $(y = y^n)$, but leads to higher inflation.
 - All pain, no gain.
- The value of the loss function is (disc denotes discretion):

$$V^{ extit{disc}} = rac{1}{2} \left(1 + \lambda a^2
ight) \lambda k^2$$

Policy under commitment

- ullet The central bank commits to deliver π (and actually does so: it is credible). Expectations reflect this $(\pi^e = \pi)$, so there is no surprise and output is at the natural level: $y = y^n$.
- The loss function is (strict denotes strict commitment):

$$V^{strict} = \frac{1}{2} \left[\lambda k^2 + \pi^2 \right]$$

- The central bank minimizes it. Inflation enters only the second term, and is thus set at $\pi = 0$.
- The central bank understand that it cannot systematically affect output, and thus commits to not even try.

$$V^{strict} = rac{1}{2} \lambda k^2 < V^{disc}$$

Not trying to exploit inflation avoids a costly bias.

Graphical illustration

• Draw AS in a chart with inflation π and output y. AS relation depends on expected inflation.

15 / 34

Objective: iso-losses

ullet Combinations of output and inflation that give the same loss V. Indifference curves, the closer to the center the better.

Commitment equilibrium

• Do not play the inflation game, accept some loss $(y^* > y^n$, and that's it).

Temptation

• **Given** AS, starting from commitment one could move along AS and be better off.

Ultimate cost

 But then AS adjusts, and we end up in a discretion equilibrium with higher loss.

INTRODUCING SHOCKS

Supply shock

 We add a shock e to the AS curve (the expected value of the shock is zero Ee = 0):

$$y = y^n + a(\pi - \pi^e) + e$$

- Policy should react to shocks: unexpected inflation movements can be warranted.
- We consider three ways to conduct policy.
 - **Discretion**: the central bank does whatever it wants, but this is understood by the public (as before).
 - Strict commitment: the central bank commits to a value of π and delivers it no matter what (as before).
 - Flexible commitment: the central bank commits to a rule giving π as a function of the shock e.

Policy under discretion

 The central bank moves after the shock has happened and minimizes the ex-post loss:

$$V = \frac{1}{2} \left[\lambda (y - y^*)^2 + \pi^2 \right]$$

$$V = \frac{1}{2} \left[\lambda (a(\pi - \pi^e) + e + y^n - y^*)^2 + \pi^2 \right]$$

$$V = \frac{1}{2} \left[\lambda (a(\pi - \pi^e) + e - k)^2 + \pi^2 \right]$$

The reaction function of actual inflation now includes the shock:

$$\pi = \frac{\lambda a^2}{1 + \lambda a^2} \pi^e + \frac{\lambda a}{1 + \lambda a^2} k - \frac{\lambda a}{1 + \lambda a^2} e$$

Equilibrium under discretion

• Expected inflation includes the bias: $\pi^e = \lambda ak$. Actual inflation also reflects shocks, with the central bank tightening (lower π) following a positive shock:

$$\pi = \lambda ak - \frac{\lambda a}{1 + \lambda a^2}e$$

Output also reflects the shock:

$$y = y^n + \frac{1}{1 + \lambda a^2} e$$

 Expected ex-ante value of the loss function includes the shock volatility:

$$EV^{disc} = rac{1}{2} \left[\left(1 + \lambda a^2
ight) \lambda k^2 + rac{\lambda}{1 + \lambda a^2} E\left(e^2
ight)
ight]$$

Policy under strict commitment

- ullet The central bank delivers π regardless of the shocks.
- Ex-ante (expected) loss function (strict denotes strict commitment):

$$EV^{strict} = \frac{1}{2} \left[\lambda E \left(e - k \right)^2 + E \left(\pi^2 \right) \right]$$

• Inflation enters only the second term, so the central bank sets $\pi=0$. This implies:

$$EV^{strict} = \frac{1}{2} \left[\lambda k^2 + \lambda E \left(e^2 \right) \right]$$

- The first term is smaller under commitment: not trying to exploit inflation avoids a costly bias.
- The second term is larger under commitment: the central bank foregoes a needed reaction to shocks.

◆ロト ◆問ト ◆注ト ◆注ト 注 のQの

Can't we get the best of both worlds?

• Yes. The central bank commits to a **rule** that links inflation to the shock (b_0 and b_1 are parameters to be set):

$$\pi = b_0 + b_1 e \Rightarrow \pi^e = b_0$$

• Ex-post output is $y = y^n + ab_1e + e$. The ex-ante loss function is then (*flexible* denotes flexible commitment):

$$EV^{\mathit{flexible}} = rac{1}{2}E\left[\lambda\left(\left(1+ab_1
ight)e-k
ight)^2+\left(b_0+b_1e
ight)^2
ight]$$

- b_0 only enters the last term and it is thus best to set it to zero. b_1 enters both terms and there is a trade-off. We minimize the loss $(\partial EV^{flexible}/\partial b_1=0)$.
- The optimal policy implies no inflation bias and a reaction to shocks:

$$\pi = -\frac{\lambda a}{1 + \lambda a^2} e \qquad ; \qquad \pi^e = E\pi = 0$$

Cédric Tille Class 3, Time consistency Oct 3, 2023 25/34

Comparing policies: inflation and output

• Inflation entails a bias $(\pi^e > 0)$ only under discretion. It react to shocks under both discretion and flexible commitment:

$$\pi^{ extit{disc}} = \lambda ak - rac{\lambda a}{1+\lambda a^2}e \hspace{0.5cm} ; \hspace{0.5cm} \pi^{ extit{strict}} = 0 \hspace{0.5cm} ; \hspace{0.5cm} \pi^{ extit{flex}} = -rac{\lambda a}{1+\lambda a^2}e$$

 Output is less affected by shocks under discretion and a flexible commitment:

$$y^{disc} = y^{flex} = y^n + \frac{1}{1 + \lambda a^2}e$$
 ; $y^{strict} = y^n + \epsilon$

- Both discretion and flexible commitment absorb some of the shock e through inflation, thus stabilizing output.
 - Discretion does so at the cost of positive expected inflation.

Comparing policies: loss function

• The loss function reflects the gap between natural and desired output, k, and the volatility of the shock, $E\left(e^{2}\right)$:

$$\begin{split} EV^{\textit{disc}} &= \frac{1}{2} \left[\left(1 + \lambda a^2 \right) \lambda k^2 + \frac{\lambda}{1 + \lambda a^2} E\left(e^2 \right) \right] \\ EV^{\textit{strict}} &= \frac{1}{2} \left[\lambda k^2 + \lambda E\left(e^2 \right) \right] \\ EV^{\textit{flexible}} &= \frac{1}{2} \left[\lambda k^2 + \frac{\lambda}{1 + \lambda a^2} E\left(e^2 \right) \right] \end{split}$$

- The gap leads to a larger loss under discretion, as under both commitments the central bank does not try to exploit it.
- The volatility leads to a larger loss under strict commitment, as under the other two policies the central bank absorbs the shock through output and inflation.
- Flexible commitment always dominate. Discretion is better than strict commitment if shocks are volatile.

Cédric Tille Class 3, Time consistency Oct 3, 2023 27 / 34

Delegation to a conservative central bank

 An alternative to rules is to delegate policy to a central banker who puts more weight on inflation than society does:

$$V^{bank}=rac{1}{2}\left[\lambda\left(y-y^n-k
ight)^2+\left(1+\delta
ight)\pi^2
ight] \qquad ; \qquad \delta>0$$

The conservative central banker operates under discretion:

$$\pi = \frac{a\lambda}{1+\delta}k - \frac{a\lambda}{1+\delta+a^2\lambda}e$$

- The bias is reduced compared to the initial discretion case, but so is the reactivity to shocks.
 - An infinite δ shuts down the bias, but also the reactivity (similar to a strict commitment).
 - A conservative central banker cannot deliver flexible commitment.
- An alternative is to give the central bank a conservative inflation objective, penalize it for any deviation, and let it operate under discretion.

28 / 34

DOES IT WORK EMPIRICALLY?

Testable hypotheses

- The theory implies that more central bank independence lowers inflation, as the central bank can truly be committed.
 - Earlier literature lacked robustness.
- Test about a broad sample (78 advanced and emerging countries, from 1973 to 2008).
- Measure of central bank independence (CBI) drawing from a range (16) of organizational and legal indicators.
 - Discipline: does CBI reduce money issuance?
 - **Credibility**: given money issuance, does CBI reduce inflation (i.e. do agents expect the central bank to ultimately do the right think)?
- CBI can be in the law, but what if the law is only good on paper, and not actually implemented?
 - CBI should work better in countries with rule of law and freedom to object. Use polity measures of democracy and freedom.

Effect on money growth

- Higher CBI reduces the money growth rate.
- The effect is stronger with more political constraints (prevents the government from pressuring the central bank).

Regression of money growth on CBI

CBI	-0.584** (0.279)	-0.832** (0.323)	-1.394*** (0.497)	-0.741** (0.339)
POLITY 2	0.002 (0.011)	0.036* (0.021)		
CBI \times POLITY 2		-0.090 (0.054)		
POLITICAL			1.097* (0.566)	
CONSTRAINTS				
CBI X POLITICAL			-2.615** (1.076)	
CONSTRAINTS				
FREEDOM OF				0.082 (0.180)
PRESS				
CBI × PRESS				-0.332 (0.299)
LAG LOG				
INFLATION				
LAG LOG CHANGE	0.297*** (0.056)	0.292*** (0.057)	0.292*** (0.057)	0.273*** (0.059)
IN M2				

Marginal effect on money growth

 CBI has a significantly negative effect only at high value of the polity measure of democracy.

Note: 90 percent confidence intervals.

Effect on inflation

- Higher CBI reduces inflation, controlling for the money growth rate.
- The effect is stronger with more democracy (polity index).

Regression of inflation on CBI

CBI	-0.465*** (0.143)	-0.612*** (0.150)	-0.690*** (0.251)	-0.646*** (0.149)
POLITY 2	-0.003 (0.004)	0.019* (0.011)		
CBI × POLITY 2		-0.056* (0.029)		
POLITICAL CONSTRAINTS			0.164 (0.285)	
CBI X POLITICAL CONSTRAINTS			-0.816 (0.559)	
FREEDOM OF PRESS				0.145 (0.091)
CBI X PRESS				0.260** (0.145)
LAG LOG INFLATION	0.615*** (0.041)	0.609*** (0.042)	0.621*** (0.043)	-0.369** (0.145) 0.614*** (0.043)
LAG LOG CHANGE IN M2	0.125*** (0.024)	0.124*** (0.024)	0.127*** (0.025)	0.120*** (0.023)

Marginal effect on inflation

• Here also, the benefit of CBI requires higher democracy.

Note: 90 percent confidence intervals.