

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Számlálók

Miről volt szó

Sorrendi hálózatok alaphelyzetbe állítása Flip-flopok alkalmazása

- · Nyomógomb pergésmentesítés
- Órajel felezés
- Kétfázisú órajel

Regiszter, LATCH Léptető regiszter

- Soros → párhuzamos átalakítás
- Párhuzamos → soros átalakítás

Általános regiszter

Aszinkron számláló

Aszinkron alaphelyzetbe állítás (Miért nem lehet szinkron?)

Kimenet érvényessége

n bites számláló: n·Δt_{flip-flop}

 $\Delta t_{flip-flop}$ = 30 ns 16 bites számláló: 480 ns

Felhasználás: frekvencia osztás

Számlálási ciklus csökkentése 0...4-ig számlálás (5 ciklus) Aszinkron törlés – komparálás az 5-ös értékre

5 értéke binárisan:101

$$Cl = N0 \cdot N2$$

$$\overline{Cl} = \overline{N0 \cdot N2}$$

Gond: milyen széles lesz a pulzus?

Számlálási ciklus csökkentése 0...4-ig számlálás (5 ciklus) Impulzus formálás

Használjunk SR flip-flopot Set: Elértük az 5-ös értéket

Reset: Órajel = 0

N2 – kitöltési tényező 5 periódusból 1 periódusig magas 20%

Szinkron számláló, engedélyező bemenettel

E = 1: a számláló számlál

E = 0: tartja az értékét

Állapot tábla (Moore modell)

y\ E	0	1	$Z_2Z_1Z_0$
а	а	b	0 0 0
b	b	С	0 0 1
С	С	d	0 1 0
d	d	е	0 1 1
е	е	f	1 0 0
f	f	g	1 0 1
g	g	h	1 1 0
h	h	а	1 1 1

Állapot kód: Z = y Kódolt állapot tábla

y\ E	0	1		
000	000	001		
001	001	010		
010	010	011		
011	011	100		
100	100	101		
101	101	110		
110	110	111		
111	111	000		

Megvalósítás T flip-floppal Vezérlési tábla

y\E	0			1				
000	0	0	0	0	0	1		
001	0	0	0	0	1	1		
010	0	0	0	0	0	1		
011	0	0	0	1	1	1		
100	0	0	0	0	0	1		
101	0	0	0	0	1	1		
110	0	0	0	0	0	1		
111	0	0	0	1	1	1		

$$T_0 = E$$

$$T_1 = E \cdot y_0$$

$$T_2 = E \cdot y_0 \cdot y_1$$

Szinkron számláló

$$T_0 = E$$

$$T_1 = E \cdot y_0$$

$$T_2 = E \cdot y_0 \cdot y_1$$

Kimenet érvényes: Δt_{flip-flop}

Következő órajel: $\Delta t_{flip-flop}$ + Δt_{kapu}

$$T_n = E \cdot y_0 \cdot y_1 \cdot ... \cdot y_{n-1}$$

n. flip-flop bemenetén n bemenetű ÉS kapu

 $\Delta t_{\text{flip-flop}}$ = 30 ns Δt_{kapu} = 10 ns 40 ns \rightarrow 25 MHz a számláló bitszámától független

Szinkron számláló

$$T_0 = E$$
 $T_1 = E \cdot y_0$
 $T_2 = E \cdot y_0 \cdot y_1 = T_1 \cdot y_1$
 $T_3 = E \cdot y_0 \cdot y_1 \cdot y_2 = T_2 \cdot y_2$

minden flip-flop bemenetén 2 bemenetű ÉS kapu

Kimenet érvényes: Δt_{flip-flop}

Következő órajel: $\Delta t_{flip-flop}$ + (n-1)· Δt_{kapu}

 $\Delta t_{flip-flop} = 30 \text{ ns}$ $\Delta t_{kapu} = 10 \text{ ns}$ 16 bites számláló 180 ns \rightarrow 5.5 MHz

4 bites szinkron bináris számláló

EP,ET: engedélyező bemenetek

Ld: szinkron töltés

CI: aszinkron vagy szinkron törlés

RCO: telítődés jelzése

Funkcionális igények:

- számlálás engedélyezése
- · kezdeti érték adás
 - tetszőleges érték (load)
 - nullázás (clear)
 - aszinkron
 - szinkron
- kaszkádosítás támogatása

Soros kaszkádosítás

Soros/párhuzamos kaszkádosítás

Alacsonyabb helyi érték

Magasabb helyi érték

Számlálási ciklus módosítása 0 ... N Szinkron Cl

Ha N konstans, a komparátor egyetlen ÉS kapu

Például: N = 10 → binárisan: 1010

Kihasználhatjuk, hogy tudjuk 10-nél nagyobb érték nem fordulhat elő

Számlálási ciklus módosítása 0 ... N Aszinkron Cl

Aszinkron törlés nem jó a **hazárd** miatt

Számláló kimenete $7 \rightarrow 8$ binárisan: $0111 \rightarrow 1000$

A flip-flopok ugyan azt az órajelet kapják

Mindegyik flip-flopnak változtatnia kell a kimenetét

A kimenet megváltozásának időpontja az adott flip-flop késleltetésétől függ

→ Tranziensben (rövid ideig) az összes érték előfordulhat

Aszinkron számlálónál miért működik?

A változás sorrendje a struktúra miatt kötött

$$0111 \rightarrow 0110 \rightarrow 0100 \rightarrow 0000 \rightarrow 1000$$

Számlálási ciklus módosítása 0 ... N Aszinkron Cl

Blokk vázlat

Számlálási ciklus módosítása 0 ... N, M ... K (N < M < K) Szinkron Cl

Két komparátor N-re tölteni kell M-et K-ra törölni kell a számlálót

Blokk vázlat

Számlálási ciklus módosítása 0 ... N, M ... K (N < M < K) Aszinkron Cl

Törlés nem használható

- → Töltés multiplexerrel
 - ha elértük N-t: M-et tölt
 - ha elértük K-t: 0-t tölt

Blokk vázlat

ije

Számlálók

Számláló típusok

- Aszinkron
- Szinkron
- Bináris
 Modulo N számlálás: 0 ... N-1 (n bites számláló, N = 2ⁿ)
- BCD 0 ... 9
- Gray 3 bites: 000→001→011→010→110→111→101→100→000 ...
- Egyirányú
 Számlálási irány megfordítása a kimenet invertálásával
- Reverzibils
 MIN/MAX számlálási iránytól függő jelzés a következő fokozat felé
- Alaphelyzetbe állítás
 - Törlés (CI): aszinkron, szinkron
 - Töltés (Ld): szinkron

Tervezzünk binárisszámlálót amely a következő tartományokon számlál ciklikusan: 0 ... 100, 200 ... 250

8 bites szinkron törölhető/tölthető számláló és 8 bites komparátor kell

Tervezzünk binárisszámlálót amely a következő tartományokon számlál ciklikusan: 0 ... 100, 200 ... 250

Legyen egy külső SET jel, amellyel a számláló 200-ról indítható

Tervezzünk binárisszámlálót amely a következő tartományokon számlál ciklikusan: 0 ... 100, 200 ... 250

Legyen egy külső SET jel, amellyel a számláló 200-ról indítható Legyen egy külső RESET jel, amellyel a számláló 0-ról indítható

