Interrogation écrite n°04

NOM: Prénom: Note:

1. Soit $\lambda \in \mathbb{K}$. La matrice $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ est-elle diagonalisable ? Justifier.

On trouve $\chi_A = (X - \lambda)^2$ donc $Sp(A) = \{\lambda\}$. Si A était diagonalisable, elle serait semblable à λI_2 et donc égale à λI_2 , ce qu'elle n'est pas. Ainsi A n'est pas diagonalisable.

2. Soit $A = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$. Déterminer $P \in GL_2(\mathbb{R})$ et $D \in \mathcal{M}_2(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.

On calcule successivement:

- $\chi_A = X^2 tr(A)X + det(A) = X^2 5X + 6 = (X 2)(X 3)$;
- $E_2(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right);$
- $E_3(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$.

Ainsi en posant $P = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, on a bien $A = PDP^{-1}$ et P inversible puisque $det(P) = 1 \neq 0$.

3. Justifier que l'endomorphisme $u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ \mathrm{M} & \longmapsto & \mathrm{M}^\top \end{array} \right.$ est diagonalisable. Calculer sa trace et son déterminant.

On vérifie que $u^2 = \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$ donc u est une symétrie. Par conséquent, $\mathcal{M}_n(\mathbb{K}) = \operatorname{Ker}(u - \operatorname{Id}_{\mathcal{M}_n(\mathbb{K})}) \oplus \operatorname{Ker}(u - \operatorname{Id}_{\mathcal{M}_n(\mathbb{K})})$. Ainsi u est diagonalisable et $\operatorname{Sp}(u) = \{-1, 1\}$. De plus, $\operatorname{Ker}(u - \operatorname{Id}_{\mathcal{M}_n(\mathbb{K})}) = \mathcal{S}_n(\mathbb{K})$ et $\operatorname{Ker}(u + \operatorname{Id}_{\mathcal{M}_n(\mathbb{K})}) = \mathcal{A}_n(\mathbb{K})$ donc $\operatorname{dim} \operatorname{E}_1(u) = \frac{n(n+1)}{2}$ et $\operatorname{dim} \operatorname{E}_{-1}(u) = \frac{n(n-1)}{2}$. On en déduit que

$$tr(u) = \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n \qquad et \qquad \det(u) = 1^{\frac{n(n+1)}{2}} \cdot (-1)^{\frac{n(n-1)}{2}} = (-1)^{\frac{n(n-1)}{2}}$$

4. La matrice $A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$ est-elle diagonalisable? Justifier.

Tout d'abord,

$$\chi_{A} = \begin{vmatrix} X & 0 & -4 \\ -1 & X & 8 \\ 0 & -1 & X - 5 \end{vmatrix} = \begin{bmatrix} X - 1 & X - 1 & X - 1 \\ -1 & X & 8 \\ 0 & -1 & X - 5 \end{vmatrix}$$

$$= (X - 1) \begin{vmatrix} 1 & 1 & 1 \\ -1 & X & 8 \\ 0 & -1 & X - 5 \end{vmatrix}$$

$$= (X - 1) \begin{vmatrix} 1 & 1 & 1 \\ 0 & X + 1 & 9 \\ 0 & -1 & X - 5 \end{vmatrix}$$

$$= (X - 1) [(X + 1)(X - 5) + 9]$$

$$= (X - 1)(X - 2)^{2}$$

De plus,

$$rg(A - 2I_3) = rg\begin{pmatrix} -2 & 0 & 4\\ 1 & -2 & -8\\ 0 & 1 & 2 \end{pmatrix} \ge 2$$

car les deux premières colonnes sont linéairement indépendantes. Ainsi, d'après le théorème du rang, $\dim E_2(A) \le 1 < 2 = m_2(A)$ donc A n'est pas diagonalisable.

5. Montrer que la matrice
$$A = \begin{pmatrix} -1 & 4 \\ -1 & 3 \end{pmatrix}$$
 est semblable à la matrice $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. On précisera une matrice $P \in GL_2(\mathbb{R})$ telle que $A = PTP^{-1}$.

On cherche deux matrices colonnes telles que $AC_1 = C_1$ et $AC_2 = C_1 + C_2$. Choisissons C_2 en dehors de $Ker(A-I_2)$, par exemple $C_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Posons ensuite $C_1 = AC_2 - C_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$. On vérifie alors qu'on a bien $AC_1 = C_1$. La famille (C_1, C_2) est clairement

libre donc la matrice
$$P = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$$
 est inversible et vérifie $A = PTP^{-1}$.

6. Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. Montrer que u est nilpotent si et seulement si $\chi_u = \chi^n$.

u nilpotent

si et seulement si u est trigonalisable et 0 est son unique valeur propre si et seulement si χ_u est scindé et 0 est son unique racine

si et seulement si $\chi_u = X^n$