HOMEWORK IV

Due day: 23:59 1. 1 (Wednesday), 2025

Introduction

In this assignment, your responsibility includes completing the CPU design, incorporating instruction and data cache elements, addressing AXI clock domain crossing challenges with various memory or IP components, and executing automatic place and route (APR).

Finally you need to write a simple program to booting your CPU using DMA. The CPU and the memories (ROM, SRAM and DRAM), WDT.

General rules for deliverables

- This homework needs to be completed by INDIVIDUAL student or a TEAM. Only one submission is needed for a team. You MUST write down you and your teammate's name on the submission cover of the report. Otherwise duplication of other people's work may be considered cheating.
- Compress all files described in the problem statements into one tar file.
- Submit the compressed file to the course website before the due day.
 Warning! AVOID submitting in the last minute. Late submission is not accepted.

Grading Notes

- Important! DO remember to include your SystemVerilog code. NO code, NO grades. Also, if your code can not be recompiled by TAsuccessfully using tools in SoC Lab and commands in Appendix B, you will receive NO credit.
- Write your report seriously and professionally. Incomplete description and information will reduce your chances to get more credits.
- If extra works (like synthesis, post-simulation or additional instructions) are done, please describe them in your final report clearly for bonus points.
- Please follow course policy.
- Verilog and System Verilog generators aren't allowed in this course.

Deliverables

1. All SystemVerilog codes including components, testbenches and machine codes for

HOMEWORK IV

- each lab exercise. NOTE: Please **DO NOT** include source codes in the report!
- 2. Write a homework report in MS word and follow the convention for the file name of your report: N260xxxxx.docx. Please save as docx file format and replace N260xxxxx with your student ID number. (Let the letter be uppercase.) If you are a team, you should name your report, top folder and compressed file with the student ID number of the person uploading the file. The other should be written on the submission cover of your report, or you will receive NO credit.
- 3. Organize your files as the hierarchy in Appendix A.

Report Writing Format

- a. Use the submission cover from the course website.
- b. A summary in the beginning to state what has been done.
- c. Report requirements from each problem.
- d. Describe the major problems you encountered and your resolutions.
- e. APR flow explanation
- f. Lessons learned from this homework.

HOMEWORK IV

Problems

1.1 Problem Description (AXI clock domain crossing)

In complex systems, various components may operate at different clock frequencies to optimize their performance and power consumption. AXI clock domain crossing enables seamless communication between these components, allowing them to exchange data without timing mismatches or data corruption. In this assignment, a significant focus will be on managing AXI clock domain crossing challenges. The task involves addressing intricacies associated with signals transitioning between different clock domains within the AXI interface to ensure proper synchronization and reliable communication between components.

1.2 Problem Description (cache)

In this assignment, you are tasked with enhancing the performance of a basic CPU architecture by integrating a cache memory subsystem. The goal is to implement a cache hierarchy that includes both instruction and data caches beneath the CPU. The specific details of the CPU and cache configurations are provided, and your objective is to seamlessly integrate the cache into the existing CPU architecture.

1.3 Block Overview

Fig. 1-1: System block diagram

HOMEWORK IV

1.4 Module Specification

Table 1-1: Module naming rule

Catagory	Name									
Category	File	Module	Instance	SDF						
RTL	CHIP.v		chip							
Gate-Level	CHIP_syn.v	СНІР	chip	chip_syn.sdf						
Physical	CHIP_pr.v		chip	chip_pr.sdf						
RTL	top.sv	top	u_TOP							
RTL	L1C_inst.sv	L1C_inst	L1CI							
RTL	L1C_data.sv	L1C_data	L1CD							
RTL	AXI.sv	AXI	AXI							
RTL	SRAM_wrapper.sv	SRAM_wrappe r	IM1							
RTL	SRAM_wrapper.sv	SRAM_wrappe r	DM1							
RTL	SRAM_rtl.sv	SRAM	i_SRAM							
RTL	tag_array_wrapper.sv	tag_array_ wrapper	TA							
RTL	tag_array_rtl.sv	tag_array	i_tag_array							
RTL	data_array_wrapper.sv	data_array_ wrapper	DA							
RTL	data_array_rtl.sv	data_array	i_data_array							
Behavior	ROM.v	ROM	i_ROM							
Behavior	DRAM.v	DRAM	i_DRAM							

Table 1-2: Module signals

Module	Specifications									
	Name	Signal	Bits	Function explanation						
	System signals									
	cpu_clk inp		1	Clock for cpu						
top, CHIP	axi_clk	input	1	AXI clock						
(with	rom_clk	input	1	ROM clock ,WDT						
iopad)	dram_clk	input	1	DRAM clock						

HOMEWORK IV

		HOMEWO	KKIV								
	cpu_rst	input	1	Reset active high							
	axi_rst	input	1	Reset active high							
	rom_rst	input	1	Reset active high							
	dram_rst	input	1	Reset active high							
	Connect with ROM										
	ROM_out	input	32	Data from ROM							
	ROM_read	output	1	ROM output enable							
	ROM_enable	output	1	Enable ROM							
	ROM_address	output	12	Address to ROM							
		Connec	t with DI	RAM							
	DRAM_Q	input	32	Data from DRAM							
	DRAM_valid	input	1	DRAM output data valid							
	DRAM_CSn	output	1	DRAM Chip Select							
				(active low)							
	DRAM_WEn	output	4	DRAM Write Enable (active low)							
			4	DRAM Row Access Strobe							
	DRAM_RASn	output	1	(active low)							
				DRAM Column Access							
	DRAM_CASn	output	1	Strobe							
	DRAM_A	Output	11	(active low) Address to DRAM							
	DRAM_A DRAM_D	output output	32	Data to DRAM							
	DIMINI_D		em signa								
	СК	input	em signa 1	System clock							
ROM			nory port	-							
	DO	output	32	ROM data output							
	OE	input	1	Output enable (active high)							

HOMEWORK IV

	CS	input	1	Chip select (active high)						
	A	input	12	ROM address input						
	Memory Space									
	Memory_byte0	reg	8	Size: [0:4095]						
	Memory_byte1	reg	8	Size: [0:4095]						
	Memory_byte2	reg	8	Size: [0:4095]						
	Memory_byte3	reg	8	Size: [0:4095]						
		Syst	em signa	ls						
	CK	input	1	System clock						
	RST	input	1	System reset (active high)						
	Memory ports									
	CSn	input	1	DRAM Chip Select						
	CSII	mnuut								
		F ***	1	(active low)						
DRAM	WEn			(active low) DRAM Write Enable						
DRAM	WEn	input	4	, ,						
DRAM		input	4	DRAM Write Enable						
DRAM	WEn RASn			DRAM Write Enable (active low)						
DRAM	RASn	input	4	DRAM Write Enable (active low) DRAM Row Access Strobe						
DRAM		input	4	DRAM Write Enable (active low) DRAM Row Access Strobe (active low)						

	System signals								
DMA	clk	input	1	System clock					
	rst	input	1	System reset (active high)					
	DMAEN	input	1	Enable the DMA					
	DMASRC	input	32	Source address of DMA					
	DMADST	input	32	Destination address of DMA					
	DMALEN	input	32	Total length of the data					
	DMA_interrupt	output	1	DMA interrupt					

HOMEWORK IV Table 1-3: Slave configuration

		•	
Name	Number	Start address	End address
ROM	Slave 0	0x0000_0000	0x0000_1FFF
IM	Slave 1	0x0001_0000	0x0001_FFFF
DM	Slave 2	0x0002_0000	0x0002_FFFF
DMA	Slave 3	0x1002_0000	0x1002_04FF
WDT	Slave 4	0x1001_0000	0x1001_03FF
DRAM	Slave 5	0x2000_0000	0x201F_FFFF

Table 1-4: Clock domain

Name	Cycle period (ns)	clock domain
dram_clk	5.1	Dram
rom_clk	50.1	Rom,WDT
axi_clk	2.5	AXI
cpu_clk	User define	CPU, IM cache, DM cache,
	(less than 5ns)	

You SHOULD use the timing constraint file, *DC.sdc*, provided in the course website to synthesize your top.sv. Don't modify any constraint except clock period. Your physical design should has following features:

- a. Use *Default.globals* as your global variable file. It will use *MMMC.view* as your analysis configuration and use *APR.sdc* as your timing constraint file.
- b. Don't modify the timing constraint in *APR.sdc* except clock period. Maximum clock period is 5 ns.
- c. Do Macro layout only. Don't add IO pad and bonding pad.
- d. The width of power ring is fixed to $3\mu m$. Add three wire group.
- e. The width of power stripe is fixed to $2\mu m$. At least add one group for each direction.

HOMEWORK IV

- f. The width of block ring is fixed to $3\mu m$.
- g. Don't add dummy metal.
- h. Must add core filler.
- i. Pass DRC and LVS check without any violation.

Your RTL code needs to comply with Superlint within 95% of your code, i.e., the number of errors & warnings in total shall not exceed 5% of the number of lines in your code. HINT: You can use the command in Appendix B to get the number of lines in your code. Remember to exclude *top_tb.sv*.

1.5 Verification

You should complete following programs and use the commands in Appendix B to verify your design.

- a. For *prog0*, *prog1*, *prog2*, *prog3*, you should write a boot program defined as boot.c to copy data between _dram_i_start and _dram_i_end to _imem_start, from__data_paddr_start to _data_start and _data_end, also from sdata_paddr_start to_sdata_start and_sdata_end. The booting program should be stored at ROM. Explain the boot.c.
- b. For *prog0*, use main.S to perform verification for the functionality of instructions. Show the terminal result and waveform in the report. The waveform should include new added instructions, and please explain the operation.
- c. Use prog1 to perform floating point computation.
- d. Write a program defined as *prog2* to perform the matrix multiplication. The row size & column size of matrix is stored at the address named *array_size_i*, *array_size_j* and *array_size_k* in ".rodata" section defined in *data.S*. The first element is stored at the address named *array_addr* in ".rodata" section defined in *data.S*, others are stored at adjacent addresses. All elements in matrix are **signed 2-byte half-word** and you should store result byte by byte from "_test_start" to "test_start" + array_size_i*array_size_j-1.

HOMEWORK IV

- e. For *prog3*, when WDT is enabled, WDT counter starts to count. First time CPU executes to self-loop instruction until WDT times out. Then WDT will interrupt CPU to restart by ISR procedure. Second time CPU regularly restarts the watchdog timer to prevent it from timing out. You shouldn't modify the interrupt service routine and the main program.
- f. For CDC check, Use Spygless CDC to verify the correctness of your design. You should show the results of Spygless CDC. If there are waring reports, please explain clearly in your report. Make sure that no error or fatal message in your design.

1.6 Report Requirements

Your report should have the following features:

- a. USE the provided .DOCX document from the TA. (otherwise get 0 credit of this homework)
- b. Do not change top_tb.sv, top_tb_WDT.sv and Makefile
- c. Proper explanation of your design is required for full credits.
- d. Block diagrams shall be drawn to depict your designs.
- e. Show your screenshots of the waveforms and the simulation results on the terminal(RTL,SYN,APR) for the different test cases in your report and illustrate the correctness of your results.
- f. Show your screenshots of the Spyglass CDC reports and explain why your CDC circuit can work correctly.
- g. Show your IM/ DM cache hit rate, and explain
- h. Show your snapshots of Floorplan View, Amoeba View and Physical View in Innovus. Also, show the results of Geometry Verification, Connectivity Verification, and Antenna Verification have no violation.
 - If there are some violations, please explain the meaning of the violation
- i. Report the number of lines of your RTL code, the final results of running Superlint and 3~5 most frequent warning/errors in your code. Describe how you modify your code to comply with Superlint.
- j. Report and show screenshots of your prog0 to prog3 simulation time after synthesis and total cell area of your design. 20% homework credit will be given based on your design performance & area.
- k. APR flow explanation in your report.
- Lesson learned

HOMEWORK IV

Appendix

A. File Hierarchy Requirements

All homework SHOULD be uploaded and follow the file hierarchy and the naming rules, especially the uppercase and the lowercase, specified below. You should create a main folder named your student ID number. It contains your homework report and every subfolder of the problems. The names of the files and the folders are labeled in red color, and the specifications are labeled in black color.

ATTENTION !!!!!!!

The file marked with a yellow highlighter is a non-editable file.

HOMEWORK IV

~ · 1	HOMEWORK IV
	ude (Your RTL definition with svh format)
	AXI_def.svh
	def.svh
	Definition files (*.svh)
•	(Your synthesized code and timing file)
	top_syn.v
	top_syn.sdf
•	Your post-layout netlist and timing file)
	top_pr.v
	top_pr.sdf
	top_pr.gds
-	pt (Any scripts of verification, synthesis or place and route)
	script files (*.sdc, *.tcl or *.setup)
	(Testbenches and memory libraries)
	top_tb.sv (Main testbench. You shouldn't modify it)
	top_tb_WDT.sv(WDT testbench. You shouldn't modify it)
	CYCLE_MAX (Specify your clock cycle time and max clock cycle
	number in this file)
	SRAM (SRAM libraries and behavior models)
	Library files (*. lib , *. db , *. lef or *. gds)
	\blacksquare SRAM.ds (SRAM datasheet)
	\blacksquare SRAM_rtl.sv (SRAM RTL model)
	\blacksquare SRAM.v (SRAM behavior model)
	ROM (ROM behavior models)
	\blacksquare ROM.v (ROM behavior model)
	DRAM (DRAM behavior models)
	\square DRAM.v (DRAM behavior model)
	data_array (data_array libraries and behavior models)
	Library files (*.lib, *.db, *.lef or *.gds)
	■ data_array.ds (data_array datasheet)
	■ data_array_rtl.sv (data_array RTL model)
	■ data_array.v (data_array behavior model)
	tag_array (tag_array libraries and behavior models)
	Library files (*.lib, *.db, *.lef or *.gds)
	tag_array.ds (tag_array datasheet)
	tag_array_rtl.sv (tag_array RTL model)
	tag_array.v (tag_array behavior model)

HOMEWORK IV

- *prog0* (Subfolder for Program 0) *Makefile* (Compile and generate memory content) *main.S* (Assembly code for verification) setup.S (Assembly code for testing environment setup) *link.ld* (Linker script for testing environment) golden.hex (Golden hexadecimal data) prog1 (Subfolder for Program 1) *Makefile* (Compile and generate memory content) *main.c* (C code for verification) boot.c (C code for booting) *isr.S* (Interrupt service routine) *setup.S* (Assembly code for testing environment setup) *link.ld* (Linker script for testing environment) golden.hex (Golden hexadecimal data) prog2 (Subfolder for Program 2) *Makefile* (Compile and generate memory content) boot.c* (C code for verification) *main.S* * (Assembly code for verification) *main.c* * (C code for verification) data.S (Assembly code for testing data) *setup.S* (Assembly code for testing environment setup) *link.ld* (Linker script for testing environment) golden.hex (Golden hexadecimal data) prog3 (Subfolder for Program 3) *Makefile* (Compile and generate memory content) boot.c* (C code for verification) *main.S* * (Assembly code for verification) *main.c* * (C code for verification) isr.S (Interrupt service routine)
- golden.hex (Golden hexadecimal data)Any other files for your design, e.g. submodules and headers
- × No waveform files allowed, e.g. files of *fsdb* and *vcd* format
- × No temporary files allowed, e.g. INCA_libs, neverilog.log, novas*

link.ld (Linker script for testing environment)

setup.S (Assembly code for testing environment setup)

B. Simulation Setting Requirements

HOMEWORK IV

You **SHOULD** make sure that your code can be simulated with specified commands in Table B-1. **TA will use the same command to check your design under SoC Lab environment. If your code can't be recompiled by TA successfully, you receive NO credit.** You can use macros in Table B-2 to help your verification.

HOMEWORK IV

Table B-1: Simulation commands

Simulation Level Command					
Problem1					
RTL	make rtl_all				
Pre-layout Gate-level	make syn_all				
Post-layout Gate-level	make pr_all				

X stands for 0,1,2,3..., depend on which verification program is selected.

Table B-2: Makefile macros

Situation	Command
RTL simulation for progX	make rtlX
Post-synthesis simulation for progX	make synX
Post-layout simulation for progX	make prX
Dump waveform (no array)	make {rtlX,synX, prX} FSDB=1
Dump waveform (with array)	make {rtlX,synX, prX} FSDB=2
Open nWave without file pollution	make nWave
Open Superlint without file pollution	make superlint
Open DesignVision without file pollution	make dv
Synthesize your RTL code (You need write	make complexing
synthesis.tcl in script folder by yourself)	make synthesize
Open Innovus without file pollution	make innovus
Delete built files for simulation, synthesis	make clean
or verification	make clean
Check correctness of your file structure	make check
Compress your homework to tar format	make tar
Run JasperGold VIP on AXI bridge	maka vin h
without file pollution (RTL only)	make vip_b
Open Spyglass without file pollution	make spyglass

You can use the following command to get the number of lines:

wc -l src/* src/AXI/* include/*

C. RISC-V Instruction Format

Table C-1: Instruction type

R-type

V 1											
31	25	24	20	19	15	14	12	11	7	6	0

HOMEWORK IV												
funct7		r	rs2	rs1		funct	t3		rd		ope	code
F I-type												
31			20	19 1:	5	14	12	11		7	6	0
	imm[31:20]			rs1		funct	t3		rd		opo	code
S-type	;											
31	25	24	20	19 1:	5 1	14	12	11		7	6	0
in	nm[11:5]	r	·s2	rs1		funct	t3	im	m[4	:0]	opo	code
☞ B-type	2											
31	30 25	24	20	19 1:	5	14	12	11	8	7	6	0
imm[12]	imm[10:5]	1	rs2	rs1		func	t3	imm[4:1]	imm[11]	ope	code
TU-type	e											
31							12	11		7	6	0
	ir	nm[31:	12]						rd			code
J-type												
31	30	21	20	19			12	11		7	6	0
imm[20]	imm[10:1]	in	nm[11]	imn	n[19	:12]			rd		ope	code
			Table (C-2: Im	me	diate	ty	pe				
F I-imm	ediate											
31						1	1	10 5	4	1		0
	_	inst[31]] —					inst[30:25] inst[24:21]			inst	t[20]
S-imn	nediate											
31						1	1	10 5	4	1		0
	_	inst[31]] —					inst[30:25]	i	nst[11:8]	ins	st[7]
B-imn	nediate								•			
31				12		11		10 5	4	1		0
	— inst[3	1] —			ir	nst[7]		inst[30:25]	i	nst[11:8]		0
Tu-imn	nediate				•		1					
31	30	20	19	12	11	1				0		
Inst[31]	inst[30:20]		inst[]	19:12]				_	- 0 –			

inst[19:12]

20

19

J-immediate

— inst[31] —

31

10

inst[30:25]

inst[24:21]

0

11 inst[20]

[&]quot;—X—" indicates that all the bits in this range is filled with X.