

Harmonic and Anharmonic Vibrational Frequency Calculations with the Double-Hybrid B2PLYP Method: Analytic Second Derivatives and Benchmark Studies

Malgorzata Biczysko,**,†,‡ Pawel Panek,^{‡,§} Giovanni Scalmani,^{||} Julien Bloino,^{†,‡} and Vincenzo Barone*,†,⊥

Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa, Italy, Dipartimento di Chimica "Paolo Corradini" and CR-INSTM Village Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy, Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, 50-383 Wroclaw, Poland, Gaussian, Inc., 340 Quinnipiac St., Bldg 40, Wallingford, Connecticut 06492, and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Pisa, Italy

Received April 20, 2010

Abstract: This work aims to provide reliable benchmark data on the accuracy of harmonic and anharmonic vibrational frequencies computed with the B2PLYP double-hybrid density functional method. The exchange-correlation contributions required for the B2PLYP analytical second derivatives are presented here, which allow for the effective calculation of harmonic frequency as well as cubic and semidiagonal guartic force fields. The latter, in turn, are necessary to compute the anharmonic vibrational frequencies with the perturbative approach (VPT2). The quality of harmonic vibrational frequencies computed in conjunction with basis sets of double- to quadruple-ζ quality has been checked against reference data from the F38 benchmark set. Then, for an additional set of small closed- and open-shell systems, both harmonic frequencies and anharmonic contributions computed at the B2PLYP/N07D and the B2PLYP/aug-cc-pVTZ levels have been compared to their CCSD(T) counterparts. Moreover, for selected medium-size molecules (furan, pyrrole, thiophene, uracil, anisole, phenol, and pyridine), anharmonic frequencies have been compared to well established experimental results. Such benchmark studies have shown that the B2PLYP/N07D model provides good quality harmonic frequencies and describes correctly anharmonic contributions, the latter being of similar accuracy to their B3LYP/N07D counterparts, but obtained at significantly larger computational cost. Additionally, increased accuracy can be obtained by adopting hybrid models where the B2PLYP/N07D anharmonic contributions are combined with harmonic frequencies computed with more accurate quantum mechanical (QM) approaches or by B2PLYP with larger basis sets. This work confirmed also that most of the recently developed density functionals are significantly less suited for vibrational computations, while the B2PLYP method can be recommended for spectroscopic studies where a good accuracy of vibrational properties is required.

1. Introduction

Computational chemistry experiments have already been proven to deliver highly accurate results for small molecules, ^{1–5} clearly demonstrating their usefulness as tools for the prediction and understanding of many kinds of spectroscopic properties of molecular systems. At present, it is widely recognized that, for semirigid molecules, the computation of vibrational frequencies by a second-order perturbative approach (VPT2)^{6,7} can be applied even for quite large systems to support reliable interpretation of spectroscopic measurements. In particular, VPT2 computations coupled with semidiagonal quartic force fields evaluated at the CCSD(T) (coupled clusters with single, double, and

^{*}To whom correspondence should be addressed. E-mail: malgorzata.biczysko@sns.it, vincenzo.barone@sns.it.

[†] Scuola Normale Superiore.

[‡] Complesso Univ. Monte S. Angelo.

[§] University of Wroclaw.

[&]quot;Gaussian, Inc.

 $^{^{\}perp}$ INFN.

perturbative inclusion of triple excitations⁸) level in conjunction with basis sets of at least triple- ζ quality usually provide results with an accuracy on the order of 10-15 cm⁻¹ for the fundamental transitions. 9-21 However, computations at the CCSD(T) level are still limited to small systems, so that the extension of accurate computational studies to larger systems requires cheaper yet reliable electronic structure methods. In this respect, the density functional theory (DFT) stands as a valuable route, and several VPT2 computations based on the DFT anharmonic force fields have been reported for small and medium-sized semirigid molecules. 22-27 Among the functionals tested, hybrid ones provide satisfactory results when coupled to basis sets of at least double- ζ plus polarization quality supplemented by diffuse sp functions. However, as we recently pointed out, ^{28,29} computation of the vibrational frequencies turned out to be a particularly challenging task, even for newly developed density functionals. As a matter of fact, some of the most successful lastgeneration functionals (M06-2X and ω B97X) provided quite disappointing results, showing that vibrational properties should not be overlooked while optimizing parameters in this kind of functional.

Recently, some of us have presented a DFT/N07D model^{30–32} which, for density functionals like B3LYP,³³ CAM-B3LYP,³⁴ and PBE0,³⁵ provides results of remarkable quality for a broad range of spectroscopic parameters (ESR, IR, UV, ECD). 36-38 In the search for a computational approach able to reproduce different spectroscopic properties with consistent accuracy, the double-hybrid B2PLYP³⁹ method appears as a promising alternative, as it has already been shown to provide accurate results even for excited electronic states, 40 including challenging topics like electronic circular dichroism.⁴¹ In this work, we test the performance of B2PLYP in the evaluation of vibrational properties, which represents an issue for several functionals, preventing their systematic use in computational spectroscopy. For this purpose, both harmonic and anharmonic vibrational frequencies will be computed using the B2PLYP approach. At this point, is should be remembered that anharmonic VPT2 computations require cubic and semidiagonal quartic force fields, which in turn can be effectively determined via numerical differentiation of analytically evaluated force constants. 7,13,42,43 In this respect, anharmonic computations with the B2PLYP method have become feasible thanks to the development and implementation of the B2PLYP analytical 2nd derivatives (see section 2). Concerning the validation of the B2PLYP vibrational properties, and further extension of the DFT/N07D model, VPT2 computations with the B2PLYP method have been performed in conjunction with the N07D basis set for all systems. It should be noted that, in the case of B3LYP computations, the basis set extension beyond N07D has a negligible effect on the accuracy of vibrational properties.²⁹ However, in the case of B2PLYP, it can be expected that significantly larger basis sets are required due to the MP2 contribution. For this purpose, the quality of the B2PLYP/N07D harmonic frequencies has been assessed by comparison with the results obtained at the CCSD(T) level and from experimental data, while the basis set convergence has been checked by extending the basis set to aug-cc-pVTZ (AVTZ) and/or aug-cc-pVQZ (AVQZ). Next, the performance of the B2PLYP/N07D model in evaluating the anharmonic contributions has been tested for a set of small closed- and open-shell systems by comparison to quartic force fields at the B2PLYP/AVTZ and CCSD(T) levels of theory. Moreover, for larger systems, the quality of the anharmonic frequencies computed with the B2PLYP/N07D and hybrid models has been assessed relative to state-of-the art experimental results. Finally, the accuracy of the vibrational properties computed with several other density functionals has been evaluated, in order to validate further the conclusions drawn on the basis of a smaller set of data. ^{28,29}

The paper is organized as follows. Section 2 describes the exchange-correlation contributions required by the formalism of the analytical second derivatives of the B2PLYP energies. The details on the computational models applied to the determination of structures and harmonic and anharmonic vibrations are gathered in Section 3. Section 4 reports the benchmark results on vibrational properties computed at the B2PLYP/N07D level. Harmonic frequencies for the molecules from the F38 benchmark set are reported in section 4.1. VPT2 computations for small closed- and open-shell systems validated by comparison with accurate results at the CCSD(T) level are collected in section 4.2. Additionally, B2PLYP/N07D and hybrid B2PLYP//AVTZ/N07D VPT2 anharmonic frequency results are compared to experimental data in section 4.3. Finally, our conclusions on the accuracy of B2PLYP and other DFT approaches in computing vibrational properties are presented in section 4.4.

2. Exchange-Correlation Contributions to the B2PLYP Analytic Second Derivative

B2PLYP belongs to the family of so-called "double-hybrid" methods, which are essentially a second-order perturbation (PT2) treatment of the correlation energy. When the results of a Hartree-Fock (HF) self-consistent field (SCF) calculation are used as a zeroth-order reference, the PT2 approach corresponds to the well-known MP2 method. However, the results of a DFT Kohn-Sham (KS) SCF can be used as a reference as well, and by a suitable (semiempirical) scaling of the PT2 contribution to the energy, a significant improvement in the accuracy of the method can be achieved. Therefore, the formalism of the derivatives of the KS-PT2 method (and of B2PLYP in particular) is best understood as a combination of the KS-SCF and MP2 first and second derivatives.

In the following, we will describe only and all of the exchange-correlation (XC) terms required to evaluate the second derivatives of the KS-PT2 energy. The interested reader is invited to review refs 45–47, which describe the details of the evaluation of the first and second derivatives of the KS-SCF energy, and refs 48–50,where the MP2 first derivatives are illustrated. Moreover, a presentation of the overall formalism of the MP2 energy second derivatives can be found in refs 51–53,while the first derivatives of the KS-PT2 method have been recently reported in ref 54. Finally, the exchange-correlation terms involved in any "post-KS" gradient (and thus also in the B2PLYP gradient) have been

described in detail in connection with the implementation of the time-dependent DFT (TD-DFT) gradient in ref 55. The complete formalism of the KS-PT2 2nd derivatives, including frozen-core approximation and solvent effects by means of the polarizable continuum model (PCM), ^{56,57} will be presented in a more organic form in a forthcoming paper.

In order to concisely write the various exchange-correlation (XC) contributions to the KS-PT2 energy and its derivatives, it is necessary to introduce some notation. First, we write the XC contribution to the KS-SCF energy as

$$E_{xc} = w\mathcal{F}[\mathbf{v}_{\mathbf{I}}] \tag{1}$$

where we assume an integration grid point index on both the integration weights w and the functional values \mathcal{F} , and we assume the required sum over the grid points. The functional itself depends on a set of variables $\{v_I\}^{55}$ which typically include the density ρ , the density gradient $\nabla \rho$, the kinetic energy density τ , and the Laplacian of the density $\nabla^2 \rho$, i.e.,

$$\{\mathbf{v}_{\mathrm{I}}\} = \{\rho, \nabla \rho, \tau, \nabla^2 \rho\} \tag{2}$$

Note that all of the elements of the set $\{v_I\}$ are linear in a one-particle density matrix **P** according to

$$\mathbf{v}_{\mathbf{I}}[\mathbf{P}] = \sum_{\mu\nu} P_{\mu\nu} \mathbf{v}_{\mathbf{I},\mu\nu} \tag{3}$$

where $\mathbf{v}_{\mathrm{I},\mu\nu} = \chi_{\mu}\chi_{\nu}$ for the density, $\mathbf{v}_{\mathrm{I},\mu\nu} = \nabla(\chi_{\mu}\chi_{\nu})$ for the density gradients, $\mathbf{v}_{\mathrm{I},\mu\nu} = (\nabla\chi_{\mu})\cdot(\nabla\chi_{\nu})$ for the kinetic energy density, and $\mathbf{v}_{\mathrm{I},\mu\nu} = \nabla^2(\chi_{\mu}\chi_{\nu})$ for the Laplacian of the density. The set $\{\chi_{\mu}\}$ represents the atomic orbital (AO) basis set. The functional \mathcal{F} is usually written as depending on the squared norms of the density gradient, i.e., $\gamma_{\sigma\sigma'} = (\nabla\rho_{\sigma})\cdot(\nabla\rho_{\sigma'})$, where σ and σ' are spin labels. However, for the sake of a more concise notation, we will assume that the chain rule has been applied to the functional derivatives to obtain derivatives with respect to the elements of the set $\{\mathbf{v}_{\mathrm{I}}\}$.

The first derivative of the XC energy is well-known⁴⁵ to be

$$E_{xc}^{x} = \mathbf{w}^{x} \mathcal{F} + \mathbf{w} \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(x)} \tag{4}$$

where w^x represents the first derivatives of the integration weights, \mathcal{F}^I is the first derivative of the functional with respect to the Ith variable, and a sum over I is implied. Also, with the parentheses, we indicate the *explicit* dependence of the variables through the basis function, i.e.,

$$\mathbf{v}_{\mathbf{I}}^{(x)} = \sum_{\mu\nu} P_{\mu\nu} \mathbf{v}_{\mathbf{I},\mu\nu}^{x} \tag{5}$$

The corresponding XC energy second derivatives^{45,46} can be written as

$$E_{xc}^{xy} = w^{xy} \mathcal{F} + w^{x} \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(y)} + w^{y} \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(x)} + w \mathcal{F}^{\mathbf{I}J} \mathbf{v}_{\mathbf{I}}^{(x)} \mathbf{v}_{\mathbf{J}}^{(y)} + w \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(x,y)} + w^{x} \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(y)} + w \mathcal{F}^{\mathbf{I}J} \mathbf{v}_{\mathbf{I}}^{(x)} \mathbf{v}_{\mathbf{J}}^{(y)} + w \mathcal{F}^{\mathbf{I}} \mathbf{v}_{\mathbf{I}}^{(x)[y]}$$

$$(6)$$

where the first five terms on the right-hand side involve *explicit* dependence of the weights and the variables on the perturbations, while the last three terms account for the

implicit dependence of the variables on the density derivative, which we indicate using the square brackets

$$\mathbf{v}_{\mathrm{I}}^{[x]} = \mathbf{v}_{\mathrm{I}}[\mathbf{P}^{x}] = \sum_{\mu\nu} P_{\mu\nu}^{x} \mathbf{v}_{\mathrm{I},\mu\nu}$$
 (7)

Note that the last three terms in eq 6 can be also written as follows

$$\sum_{\mu\nu} P_{\mu\nu}^{y} (w^{x} \mathcal{F}^{I} \mathbf{v}_{I,\mu\nu} + w \mathcal{F}^{I,J} \mathbf{v}_{J}^{(x)} \mathbf{v}_{I,\mu\nu} + w \mathcal{F}^{I} \mathbf{v}_{I,\mu\nu}^{x}) = \langle \mathbf{P}^{y} \mathbf{G}_{xc}^{(x)} \rangle$$
(8)

i.e., like the trace of the density derivative \mathbf{P}^y with the XC portion of the skeleton Fock matrix derivative. The occupied-virtual block of the density derivative \mathbf{P}^x_{ov} is the solution of the couple-perturbed KS (CP-KS) equations, whose right-hand side involves the skeleton Fock matrix derivative and the additional XC term

$$\mathbf{G}_{xc}[\mathbf{P}_{oo}^{x}] = -w \mathcal{F}^{I,J} \mathbf{v}_{I}[\mathbf{S}_{oo}^{x}] \mathbf{v}_{I\mu\nu}$$
 (9)

where 58 $\mathbf{S}_{oo}^{x} = -\mathbf{P}_{oo}^{x}$, while the left-hand side includes the corresponding XC term, which depends on the unknown quantity \mathbf{P}_{ov}^{x} , i.e.

$$\mathbf{G}_{\mathrm{xc}}[\mathbf{P}_{\mathrm{ov}}^{\mathrm{x}}] = w \mathcal{F}^{\mathrm{I},\mathrm{J}} \mathbf{v}_{\mathrm{I}}[\mathbf{P}_{\mathrm{ov}}^{\mathrm{x}}] \mathbf{v}_{\mathrm{I},\mu\nu}$$
 (10)

In addition to the terms in eq 6, there is also an XC contribution to the total energy second derivatives, namely, through the $\langle \mathbf{W}^y \mathbf{S}^x \rangle$ trace, where the derivatives of the energy-weighted matrix express the dependence of the SCF orbital energies on the perturbations, which is assembled from the complete \mathbf{P}^x and \mathbf{F}^x matrices.

On the other hand, the XC contributions to the KS-PT2 gradient,⁵⁴ or more generally speaking to any "post-KS" gradient,⁵⁵ assume the following form:

$$E_{xc}^{KS-PT2(x)} = w^{x} \mathcal{F} + w \mathcal{F}^{I} \mathbf{v}_{I}^{(x)} + \langle \gamma \mathbf{G}_{xc}^{(x)} \rangle - \langle \mathbf{S}^{x} \mathbf{G}_{xc} [\gamma] \rangle$$

$$= w^{x} (\mathcal{F} + \mathcal{F}^{I} \mathbf{v}_{I} [\gamma]) + w (\mathcal{F}^{I} + \mathcal{F}^{I,J} \mathbf{v}_{J} [\gamma]) \mathbf{v}_{I}^{(x)}$$

$$+ w \mathcal{F}^{I} \mathbf{v}_{I}^{(x)} [\gamma] - w \mathcal{F}^{I,J} \mathbf{v}_{J} [\gamma] \mathbf{v}_{I} [\mathbf{S}^{x}]$$

$$(11)$$

where γ is the correlation contribution to the one-particle density matrix, back-transformed to the AO basis. The occupied-virtual block of γ is found by solving the so-called Z-vector equations. These are CP-KS equations whose right-hand side involves the KS-PT2 Lagrangian, ⁵⁴ which is indeed identical to the MP2 Lagrangian since the KS-PT2 energy $E^{\text{KS-PT2}}$ does not involve any explicit XC energy term beyond the KS-SCF level. The last term on the right-hand side of eq 11 represents the trace of the overlap matrix derivative S^x with the correlation contribution to the appropriate energy-weighted density matrix $W^{\text{KS-PT2}}$.

Finally, the XC contributions to the KS-PT2 energy second derivatives are

$$\begin{split} E_{xc}^{\text{KS-PT2}(x,y)} &= w^{xy} (\mathscr{F} + \mathscr{F}^{\text{I}} \mathbf{v}_{\text{I}}[\gamma]) + w^{x} [(\mathscr{F}^{\text{I}} + \mathscr{F}^{\text{I,J}} \mathbf{v}_{\text{J}}[\gamma]) \mathbf{v}_{\text{I}}^{(y)} + \\ \mathscr{F}^{\text{I}} \mathbf{v}_{\text{I}}^{(y)}[\gamma]] + w^{y} [(\mathscr{F}^{\text{I}} + \mathscr{F}^{\text{I,J}} \mathbf{v}_{\text{J}}[\gamma]) \mathbf{v}_{\text{I}}^{(x)} + \mathscr{F}^{\text{I,J}} \mathbf{v}_{\text{I}}^{(x)}[\gamma]] + \\ w [(\mathscr{F}^{\text{I,J}} + \mathscr{F}^{\text{I,J,K}} \mathbf{v}_{\text{K}}[\gamma]) \mathbf{v}_{\text{I}}^{(x)} \mathbf{v}_{\text{J}}^{(y)} + \mathscr{F}^{\text{I,J}} (\mathbf{v}_{\text{I}}^{(x)} \mathbf{v}_{\text{J}}^{(y)}[\gamma] + \\ \mathbf{v}_{\text{I}}^{(y)} \mathbf{v}_{\text{J}}^{(x)}[\gamma]) + (\mathscr{F}^{\text{I}} + \mathscr{F}^{\text{I,J}} \mathbf{v}_{\text{J}}[\gamma]) \mathbf{v}_{\text{I}}^{(x,y)} + \mathscr{F}^{\text{I}} \mathbf{v}_{\text{I}}^{(x,y)}[\gamma]] + \\ \langle \mathbf{P}^{y} \mathbf{G}_{xc}^{(x)}[\gamma] \rangle + \langle \gamma^{y} \mathbf{G}_{xc}^{(x)} \rangle - \langle \mathbf{S}^{xy} \mathbf{G}_{xc}[\gamma] \rangle - \langle \mathbf{S}^{x} \mathbf{G}_{xc}^{(y)}[\gamma] \rangle - \langle \mathbf{S}^{x} \mathbf{G}_{xc}[\gamma^{y}] \rangle (12) \end{split}$$

where

$$\mathbf{G}_{xc}^{(x)}[\gamma] = w^{x}(\mathcal{F}^{I} + \mathcal{F}^{I,J}\mathbf{v}_{J}[\gamma])\mathbf{v}_{I,\mu\nu} + w[(\mathcal{F}^{I,J} + \mathcal{F}^{I,J,K}\mathbf{v}_{K}[\gamma])\mathbf{v}_{J}^{(x)} + \mathcal{F}^{I,J}\mathbf{v}_{J}^{(x)}[\gamma]]\mathbf{v}_{I,\mu\nu} + w(\mathcal{F}^{I} + \mathcal{F}^{I,J}\mathbf{v}_{J}[\gamma])\mathbf{v}_{I,\mu\nu}^{x}$$
(13)

and

$$\mathbf{G}_{xc}^{[x]}[\gamma] = w \mathcal{F}^{\mathrm{I},\mathrm{J},\mathrm{K}} \mathbf{v}_{\mathrm{K}}[\gamma] \mathbf{v}_{\mathrm{J}}[\mathbf{P}^{x}] \mathbf{v}_{\mathrm{I},uv}$$
 (14)

In order to completely evaluate eq 12, the full derivative γ^{x} of the correlation contribution to the one-particle density matrix must be computed. The occupied-occupied and virtual-virtual blocks of γ^x depend on products of PT2 amplitudes and amplitudes derivatives. The latter can be assembled from undifferentiated amplitudes and orbital energies, two-electron integral derivatives, and the derivatives of the Fock operators (see, e.g., eq 39 in ref 53). These are the derivatives of the Fock matrix in the canonical molecular orbital basis, which are no longer diagonal matrices and include automatically the proper XC contributions, once the nuclear coordinate CP-KS equations have been solved and the full \mathbf{P}^{x} and \mathbf{F}^{x} matrices are available. Thus, the only remaining piece is the occupied-virtual block of γ^x , which is the solution of the derivative Z-vector equations, whose right-hand side involves the derivatives of the MP2 Lagrangian 51-53 and all the terms from the derivatives of the left-hand side which do not involve the unknowns γ_{ov}^x , i.e., the quantities in eqs 13 and 14 together with the additional term

$$w\mathcal{F}^{\mathrm{I},\mathrm{J}}\mathbf{v}_{\mathrm{J}}[\boldsymbol{\gamma}_{\mathrm{oo}}^{x}+\boldsymbol{\gamma}_{\mathrm{vv}}^{x}]\mathbf{v}_{\mathrm{I},\mu\nu} \tag{15}$$

3. Computational Details

Density functional theory computations have been carried out using the double-hybrid B2PLYP³⁹ method in conjunction with the recently developed polarized double- ζ N07D^{30–32,59} and aug-cc-pVXZ (X = T, Q)^{60,61} basis sets. The N07D basis set has been constructed by adding a reduced number of polarization and diffuse functions to the 6-31G set (see refs 30 and 31 for details), leading to an optimum compromise between reliability and computational cost.

All structures have been optimized using tight convergence criteria, followed by the computation of the anharmonic frequencies by means of the VPT2 approach,^{6,7} as implemented in the Gaussian package.⁶² Semidiagonal quartic force fields have been evaluated by numerical differentiation (with a standard 0.025 Å step) of analytical second derivatives.⁴² Since VPT2 computations are sensitive to the proper treatment of the Fermi resonances, it is crucial to automatically neglect nearly singular contributions (deperturbed

computations). This is performed by effectively removing interactions in the second-order treatment, which are more properly treated in the first-order. For this purpose, our VPT2 implementation makes use of the criteria proposed by Martin and Boese, 25 through an automated scheme that has already been shown to provide accurate results, at least for fundamental bands.⁶³ Additionally, in some cases, the hybrid CCSD(T)/DFT or DFT AVTZ/N07D approaches have also been applied to evaluate the anharmonic frequencies, and two possible routes have been implemented. In the simpler one (DPT2), the harmonic frequencies computed at the higher level of theory (CCSD(T), B2PLYP/AVTZ) are a posteriori corrected by the anharmonic contributions ($\Delta \nu$) derived from VPT2 computations performed at the lower level: $\nu_{\text{Higher/Lower}}$ = ω_{Higher} + $\Delta \nu_{\text{Lower}}$. Such an approximation, in particular within the CCSD(T)/DFT scheme, has been already validated for several closed- and open-shell systems (see for instance refs 29, 64-67). The second route introduces the harmonic frequencies evaluated at the higher level directly into the VPT2 computations along with the 3rd and 4th order force constants obtained at the lower level of theory. Such an approach is available in the Gaussian package through the InDerAU and InFreq options, with harmonic frequencies computed at the higher level of theory listed in the input stream (a feature available in the standard package⁶⁸) or with the corresponding Hessian matrix read from the checkpoint file. For the latter case, an automatic procedure which compares normal modes computed by the two levels of theory and replaces harmonic data accordingly is introduced in this work. Such an implementation facilitates the application of a hybrid InFreq route for large systems for which the ordering of several closely lying vibrations might be exchanged. It should be noted that the InFreq procedure might significantly improve the quality of the results in difficult cases, i.e., when large discrepancies between harmonic frequencies computed at two levels of theory or Fermi resonances are present.

In addition to the computations with the B2PLYP method, we decided to benchmark the performances of other density functionals, in order to confirm the findings obtained in several case studies^{28,29} where an unsatisfactory description of vibrational frequencies had been found out. In this context, a broad range of recently introduced density functionals, namely, M06/M06-2X,^{69,70} the ωB97 family,^{71,72} HSE06,⁷³ and LC-ωPBE,⁷⁴ has been considered. For the sake of completeness, standard functionals like B3LYP,³³ CAM-B3LYP,³⁴ and B97-1⁷⁵ and the parameter-free PBE0³⁵ have also been included in our tests. All calculations have been performed with a locally modified version of the Gaussian suite of quantum chemistry programs.⁶²

4. Validation of the B2PLYP Method for the Calculation of Vibrational Frequencies

4.1. Harmonic Vibrational Frequencies for Small Molecules from the F38 Database. The present work is devoted to the validation of the B2PLYP/N07D model for the computation of vibrational frequencies. Thus, it is appropriate to start the analysis discussing the accuracy of

Table 1. Harmonic (ω) Vibrational Frequencies (in cm⁻¹) Computed with the B2PLYP and B3LYP Functionals and the N07D or aug-cc-pVTZ(AVTZ) (for B2PLYP also aug-cc-pVQZ(AVQZ)) Basis Sets for Molecules from the F38 Benchmark Set, and Compared to the F38 Reference

			B2PLYP				B3LYP	
		exp.a	N07D	AVTZ	AVQZ	N07D	AVTZ	
H_2	ω_1	4401	4501	4464	4461	4451	4418	
CH_4	ω_1	1367	1361	1353	1352	1342	1339	
	ω_2	1583	1576	1576	1575	1557	1557	
	ω_3	3026	3068	3050	3050	3037	3028	
	ω_4	3157	3191	3162	3163	3150	3130	
NH_3	ω_1	3478	3517	3489	3492	3485	3469	
	ω_2	1084	1028	1037	1034	999	1025	
	ω_3	3597	3660	3617	3621	3621	3588	
	ω_4	1684	1682	1673	1674	1666	1664	
H_2O	ω_1	1649	1652	1635	1637	1641	1627	
	ω_2	3832	3832	3813	3823	3814	3796	
	ω_3	3943	3951	3924	3934	3922	3899	
HF	ω_1	4139	4096	4099	4107	4071	4070	
CO	ω_1	2170	2155	2154	2161	2205	2207	
N_2	ω_1	2359	2351	2341	2346	2453	2448	
F_2	ω_1	917	970	1016	1012	1023	1050	
C_2H_2	ω_1	624	588	643	649	622	666	
	ω_2	747	765	766	762	772	770	
	ω_3	2008	2025	2024	2025	2063	2068	
	ω_4	3415	3457	3429	3432	3429	3412	
	ω_5	3495	3550	3530	3524	3531	3517	
HCN	ω_1	727	753	745	745	768	759	
	ω_2	2127	2129	2125	2129	2198	2200	
	ω_3	3443	3495	3460	3456	3473	3444	
H ₂ CO	ω_1	2937	2951	2930	2928	2901	2885	
	ω_2	1778	1790	1782	1786	1819	1813	
	ω_3	1544	1543	1538	1540	1529	1530	
	ω_4	1188	1192	1201	1204	1188	1198	
	ω_5	3012	3023	2992	2991	2967	2940	
	ω_6	1269	1269	1268	1272	1260	1263	
CO_2	ω_1	673	660	666	668	666	674	
	ω_2	1353	1343	1341	1345	1370	1369	
	ω_3	2392	2400	2384	2392	2416	2400	
N_2O	ω_1	596	572	599	608	592	617	
	ω_2	1298	1310	1298	1301	1337	1324	
	ω_3	2282	2271	2259	2279	2352	2340	
Cl ₂	ω_1	560	540	551	555	532	537	
ОН	ω_1	3738	3758	3737	3748	3712	3695	
	MIN		-56	-47	-50	-85	-72	
	MAX		100	99	95	106	133	
	MUE		23	18	17	33	33	

^a Benchmark harmonic frequency values as compiled in refs 70 and 76 on the basis of data from refs 78-80.

harmonic frequencies with reference to the recently introduced benchmark set F38,70 designed to cover a broad range of frequencies for small molecules. It has been applied here to assess the accuracy of harmonic vibrational frequencies for several density functional 70,76,77 methods. The F38 reference set of data is based on the best experimental harmonic frequencies, ^{78,79} with the single exception for the umbrella mode of the NH₃, which is taken from a CCSD(T)/ cc-pVQZ calculation. 80 It should be noted that, for consistency with the available benchmark studies, Table 1 compares harmonic frequencies computed at the B2PLYP level to the original F38 reference data, 70 while in section 4.2 we report the best theoretical harmonic frequencies up to date for some molecules from the F38 database. However, the best experimental and theoretical values for these molecules (H₂O, 81 NH₃, 83 and H₂CO 83) are very similar, with an average deviation of 6 cm⁻¹ only. The results presented in Table 1 clearly show the good overall accuracy of the harmonic frequencies computed by the B2PLYP/N07D model, which are off by only 1.5% on average from the reference, with a maximum error of about 5%. In absolute values, this corresponds to a mean unsigned error (MUE) of about 23 cm⁻¹, and maximum negative (MIN) and positive (MAX) discrepancies of -56 cm⁻¹ and 100 cm⁻¹, respectively, with the single absolute deviation above 60 cm⁻¹ observed for the H-H stretching frequency in H₂. Additionally, it can be noted that slightly higher absolute deviations are observed for frequencies above 2500 cm⁻¹. The separate analysis performed for frequencies above and below this threshold led to MUEs of 37 cm⁻¹ and 15 cm⁻¹, respectively. The results presented in Table 1 show also that the extension of the basis set up to aug-cc-pVTZ, or even aug-cc-pVQZ (with the exception of the F₂ molecule), leads in most cases to a slightly superior agreement with the reference data with a MUE of 18 cm⁻¹ and 17 cm⁻¹, respectively. Such an effect is most pronounced for the frequencies above 2500 cm⁻¹, and in the extreme case of the H₂ molecule, the extension of the basis set improves the agreement by about 50%. It is worth adding that the frequencies computed with the augcc-pVTZ and aug-cc-pVQZ basis sets agree on average to 5 cm⁻¹, with a maximum discrepancy of 20 cm⁻¹, confirming that frequency calculations approach the basis set convergence at the AVTZ level. Indeed, the MP2 contribution to B2PLYP causes the computed harmonic frequencies to be not fully converged with respect to the basis set at the N07D level. However, comparison of the results obtained with the double-ζ N07D (58 basis functions for Cl₂) and aug-cc-pVQZ (168 basis functions for Cl₂) basis sets shows that the error compensation allows the B2PLYP/N07D model to deliver good quality harmonic frequencies. The above arguments are confirmed by the data gathered in Table 1, which point out that, for the standard B3LYP functional, no overall improvement is obtained going from N07D to the more computationally demanding AVTZ basis set, as already shown by the comparison of the harmonic frequencies computed with B3LYP using basis sets of both double- and triple- ζ quality. 65 Additionally, it can be observed that the B2PLYP method outperforms the B3LYP functional, in line with preliminary studies by Grimme.³⁹ In fact, for the F38 database, B2PLYP/N07D shows a MUE about 30% smaller than B3LYP/N07D (34 cm⁻¹). Thus, despite the fact that particularly difficult cases and/or a need of extreme accuracy might require CCSD(T) computations with extended basis sets, the overall impression is that the B2PLYP stands as the most accurate DFT model to compute harmonic frequencies.

4.2. Anharmonic Vibrational Frequencies for Small Closed- and Open-Shell Systems: B2PLYP vs CCSD(T). In a next step, we compare results provided by the B2PLYP method with those obtained at the CCSD(T) level, with extended basis sets, in order to dissect the overall accuracy of the vibrational frequencies into harmonic and anharmonic contributions. In this respect, we have chosen a set of closedand open-shell molecules, for which the accuracy of CCSD(T) results has been confirmed by a comparison with experimental data. 5,29,81-83,87-89 As we did in the previous

Table 2. Harmonic (ω) and Anharmonic (ν) Vibrational Frequencies (in cm $^{-1}$) Computed at the B2PLYP/N07D, B2PLYP/AVTZ, and Hybrid CC+DFT Levels for Selected Closed- and Open-Shell Systems, Compared to the Best Available Theoretical Results Computed at Coupled Cluster Levels

v1 2724 2483 2476 2708 2458 2466 2717 v2 1892 1886 1800 1886 1182 1905 400 V3 1120 1087 1088 1112 1077 1084 1120 V3 1120 1087 1090 1026 1054 400 V4 1019 978 1012 1037 1009 1026 1054 V5 619 608 623 628 617 623 634 H2CO NOTD NOTD 776 2930 2775 2778 2933 V2 1793 1760 1747 1792 1747 1847 1572 V3 153 1243 1505 1498 1532 1497 1572 V4 1543 1500 1498 1533 1532 1447 1572 V4 1543 1530 1498 1532 1532			B2PLYP				(CCSD(T)
No.		ν	ν CC+DFT a	ω	ν	ν CC+DFT a	ω	ν
No. 3832 3659 3663 3812 3645 3669 3836 No. 1652 1598 1596 1635 1592 1598 1650 No. 3951 3766 3761 3924 3744 3766 3946 No. 2724 2483 2476 2708 2458 2465 2717 No. 1882 1886 1881 1886 1882 1884 1900 No. 1886 1884 1888 1884 1884 1800 No. 1886 1884 1888 1884 1884 1890 No. 1019 978 1012 1037 1009 1026 1054 No. 1019 1760 1747 1782 1752 1747 1777 No. 1028 1241 1247 1268 1242 2853 3004 No. 1268 1248 1247 1268 1248 3190 3104 No. 1268 1248 1390 1395 1431 1386 1391 1436 No. 1324 1370 1395 1431 1386 1391 1436 No. 1324 1272 1278 1321 1262 1270 1329 No. 1324 1272 1278 1321 1262 1270 1329 No. 1360 3490 3449 3617 3450 3452 3619 No.							CB	S(67)/PES ^b
No.					3645			3659
HCO				1635				1596
v₂ 1892 2483 2476 2708 2458 2466 2717 v₂ 1892 1886 1880 11866 1881 1905 v₂ 1120 1087 1088 1112 1077 1084 1120 v₂ 1012 1087 1088 1112 1077 1084 1120 v₂ 1019 978 1012 1037 1009 1026 1054 v₂ 1019 978 1012 1037 1009 1026 1054 v₂ 1054 v₂ 1050 1054 v₂ 1054 v₂ 1090 026 1054 v₂ 1054 v₂ 1054 v₂ 1009 1026 1054 v₂ 1054 v₂ 1054 v₂ 1054 v₂ 1054 v₃ 1054 v₃ 1052 v₃ 4072 v₃ 1054 v₃ 1054 v₃ 1054 v₃ 1070 v₃ 1054 v₃ 1070 v₃ 1054 v₃			3761	3924	3744	3766	3946	3758
V2								$CBS+QZ^c$
V ₂ 1120 1087 1088 1112 1077 1084 1120 1120 V ₁ 1896 1834 1838 1888 1849 1861 1900 V ₂ 1019 978 1012 1037 1009 1026 1054 V ₃ 619 608 623 628 617 623 634 HcCO				2708				2460
V ₂	8	1868	1880	1886	1862	1881	1905	1878
FCO NOTD NOTD AVTZ augVCZ ^d 1896 1834 1838 1888 1849 1861 1900 1926 1054 1608 623 628 617 623 634 1600 1054 1600			1088	1112	1077	1084	1120	1093
N₁ 1896 1834 1888 1848 1849 1861 1900 ½ 1019 978 1012 1037 1009 1026 1054 4 ½ 619 608 623 628 617 623 634 ¼ 1295 2796 2796 2775 2778 2933 AVTZ ¼ 1192 1760 1747 1782 1752 1747 1777 ¼ 1192 1175 1170 1201 1184 1170 1187 ¼ 1192 1175 1170 1201 1184 1170 1187 ¼ 1192 1431 1248 1247 1268 1246 1264 1267 ½ 3023 2842 2823 2992 2842 2853 3004 ½ 1381 330 330 366 3777 3593 3613 3796 ½ 3483 357 <td>107</td> <td>N07D</td> <td></td> <td></td> <td>AVTZ</td> <td></td> <td>augVQZ^d</td> <td>augVTZ^d</td>	107	N07D			AVTZ		augVQZ ^d	augVTZ ^d
ν ₂ 1019 978 1012 1037 1009 1026 1054 ν ₂ 619 608 623 628 617 623 634 AVTZ(F12 ν ₂ 1790 1760 1747 1782 1752 1747 1777 ν ₃ 1543 1509 1498 1538 1505 1499 1532 ν ₄ 1192 1175 1170 1201 1184 1170 1183 ν ₆ 1268 1248 1247 1268 1246 1246 1267 ν ₇ 3788 3598 3606 3777 3590 3609 3796 ν ₂ 1431 1390 901 883 913 4036 93 93 ν ₈ 3788 3601 3609 3777 3594 3613 3796 ν ₈ 3788 3601 3609 3777 3594 3613 3796 ν ₁ 2424			1838	1888	1849	1861	1900	1864
V ₃ 619 608 623 628 617 623 634 V ₄ 2951 2794 2775 2930 2775 2778 2933 V ₂ 1790 1760 1747 1782 1752 1747 1777 V ₃ 1543 1509 1498 1538 1505 1499 1532 V ₄ 1492 1175 1170 1201 1184 1170 1187 V ₆ 3023 2842 2823 2992 2842 2853 3004 V ₆ 1268 1248 1247 1268 1246 1246 1267 V ₇ 3788 3598 3606 3777 3590 3609 3796 V ₈ 1431 1390 1395 1431 1386 1391 1436 V ₈ 1324 1272 1278 1376 310 317 384 V ₈ 3788 3601 3609 3777 3594 3613 3796 V ₈ 1324 1272 1278 1321 1282 1270 1329 NH ₃ NO7D AVTZ V ₈ 3660 3490 3449 3617 3450 3452 3619 V ₈ 3660 3490 3449 3617 3450 3452 3619 V ₈ 3660 3490 3449 3617 3450 3452 3619 V ₈ 3660 3490 3449 3617 3450 3452 3619 V ₈ 1031 1009 996 1018 998 997 1017 V ₈ 2427 2328 2329 2427 2328 2329 2429 V ₉ 1031 1009 996 1018 998 997 1017 V ₉ 2439 2329 2327 2437 2327 2437 V ₉ 1489 4787 1790 4796 475 475 475 V ₉ 1489 4787 1790 4796 475 475 475 475 V ₉ 369 946 960 967 953 960 974 V ₉ 349 3489 497 500 496 497 501 V ₁ 3395 3252 3231 3372 3234 3237 3375 V ₉ 3789 3252 3231 3372 3234 3237 3375 V ₉ 3796 3796 3796 3796 V ₉ 3796 3796 3797 3797 3797 3797 V ₁ 3896 3896 3896 3977 3977 3977 3977 V ₁ 3896 3896 3896 3896 3977 3977 3977 V ₁ 3896 3896 3896 3896 3896 3977 3977 3977 V ₁ 3896 3896 3896 3896 3896 3896 3977 3977 3977 3977 V ₁ 3896 3896 38	8	978	1012	1037	1009		1054	1025
10 NO7D								624
N			0_0	0_0		020	Δ\/	T7(F12a) ^e
v ₂ 1790 1760 1747 1782 1752 1747 1777 v ₈ 1543 1509 1498 1538 1505 1499 1532 v ₈ 3023 2842 2823 2992 2842 2853 3004 v ₈ 1268 1248 1247 1268 1246 1246 1267 V ₂ O ₂ N07D AVTZ AVTZ AVTZ V ₉ 3788 3598 3606 3777 3590 3609 3796 v ₉ 1431 1390 1995 1431 1386 1991 1436 v ₉ 3788 3601 3609 3777 3594 3613 3793 v ₈ 388 3601 3609 3777 3594 3613 3796 v ₉ 1324 1272 1278 1321 1262 1270 1329 NH3 NO7D NO7D AVTZ 1321 1262 1270			2775	2030		2778	2033	2784
vs 1543 1509 1498 1538 1505 1499 1532 vs 3023 2842 2823 2992 2842 2853 3004 vs 3023 2842 2823 2992 2842 2853 3004 vs 307D NOTD AVTZ AVTZ vs 3788 3598 3606 3777 3590 3609 3796 vs 1431 1390 1395 1431 1386 1391 1436 vs 389 357 881 930 901 883 913 vs 389 357 881 930 901 883 913 vs 3812 1272 1278 1321 1262 1270 1329 NH3 NO7D AVTZ AVTZ Cc-pwCVC NH3 NO7D AVTZ Cc-pwCVC NH3 NO7D AVTZ AVTZ vs			17/17					1747
ν ₆ 1192 1175 1170 1201 1184 1170 1187 ν ₆ 1268 1248 1247 1268 1246 1246 1267 AVTZ AVTZ AVTZ AVTZ AVTZ AVTZ AVTZ AVTZ AVTZ(F12 AVTZ(F12 AVTZ AVTZ AVTZ AVTZ(F12 AVTZ(F12) AVTZ(F12 AVTZ(F12 AVTZ(F12) AVTZ(F12) AVTZ(F12 AVTZ(F12) A	o o	1500	1/4/	1520		1/4/		1498
ив 3023 2842 2823 2992 2842 2853 3004 № 1268 1248 1247 1268 1246 1246 1267 AVTZ AVTZ(F12	9	1309	1490	1000	1303	1499	1107	1167
No				1201				
H ₂ O ₂ NO7D AVTZ AVTZ(F12 ν ₁ 3788 3588 3606 3777 3590 3609 3796 ν ₂ 1431 1390 1395 1431 1386 1391 1436 ν ₃ 909 877 881 930 901 883 931 313 ν ₄ 389 357 881 3601 3609 3777 3594 3613 3796 ν ₆ 1324 1272 1278 1321 1262 1270 1329 NH ₃ NO7D ν ₁ 3517 3372 3344 3488 3348 3348 3489 ν ₂ 1028 938 966 1037 954 993 1076 ν ₄ 1682 1635 1633 1673 1626 1633 1680 PH ₃ NO7D ν ₄ 1682 1635 1633 1673 1626 1633 1680 PH ₃ NO7D ν ₁ 2427 2328 2329 2427 2328 2329 2429 ν ₂ 1031 1009 996 1018 998 997 1017 ν ₃ 2439 2329 2327 2437 2327 2437 ν ₄ 1152 1127 1122 1150 1123 1121 1147 τ ₂ 1150 1123 1121 1147 ν ₄ 1152 1127 1122 1150 1123 1121 1147 ν ₅ 544 538 547 547 542 547 552 ν ₆ 493 489 489 497 500 497 551 799 1811 ν ₈ 544 538 547 547 542 547 552 ν ₈ 673 667 674 687 681 673 679 679 679 679 679 679 679 679 679 679								2849
v ₂ 1431 1390 1395 1431 1390 1395 1431 1386 1391 1436 v ₉ 909 877 881 930 901 883 913 v ₉ 909 883 913 v ₉ 384 383 913 v ₉ 388 3613 376 310 317 384 v ₉ 384 384 3796 v ₉ 1324 1272 1278 1321 1262 1270 1329 NH3 NO7D NO7D AVTZ Cc-pwCVC 1329 1076 1329 1076 1329 1076 1432 1076 1432 1076 1432 1076 1432			1247	1268		1246		1246
v ₂ 1431 1390 1395 1431 1386 1391 1436 v ₃ 909 877 881 930 901 883 913 v ₄ 389 357 351 376 310 317 384 v ₆ 1324 1272 1278 1321 1262 1270 1329 V ₆ 1324 1272 1278 1321 1262 1270 1329 V ₁ 3517 3372 3344 3488 3348 3489 3489 v ₂ 1028 938 986 1037 954 993 1076 v ₈ 3660 3490 3449 3617 3450 3452 3619 v ₄ 1682 1635 1633 1673 1626 1633 1680 V ₉ 1021 109 996 1018 998 2329 2429 v ₂ 1031 1009 996 1018 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
v ₄ 909 877 881 930 901 883 913 v ₆ 3788 3601 3609 3777 3594 3613 3796 NH ₃ N07D N07D AVTZ 1329 1329 NH ₃ 3172 3344 3488 3348 3348 3489 v ₂ 1028 938 986 1037 954 993 1076 v ₃ 3660 3490 3449 3617 3450 3452 3619 v ₄ 1682 1635 1633 1673 1626 1633 1680 PH ₃ NOTD AVTZ 2 1027 2427 2328 2329 2429 v ₂ 1031 1009 996 1018 998 997 1017 v ₅ 2439 2329 2327 2437 2327 2327 2437 v ₆ 152 1031 109 996 1018	8	3598	3606					3606
v ₆ 388 357 351 376 310 317 384 v ₆ 1324 1272 1278 1321 1262 1270 1329 NH ₃ NO7D AVTZ AVTZ Cc-pwCVC v ₁ 3517 3372 3344 3488 3348 3489 3489 v ₂ 1028 938 986 1037 954 993 1076 v ₄ 1682 1635 1633 1673 1626 1633 1680 PH ₃ N07D AVTZ Cc-pwCVC v ₁ 2427 2328 2329 2427 2328 2329 2429 v ₂ 1031 1009 996 1018 998 997 1017 v ₃ 2439 2329 2327 2327 2327 2437 v ₄ 1152 1122 1150 1123 1121 1147 v ₂ 2439 2323 2323	0	1390	1395	1431	1386	1391	1436	1393
v6 3788 3601 3609 3777 3594 3613 3796 NH3 NO7D AVTZ 1321 1262 1270 1329 NH3 NO7D AVTZ Cc-pwCVC v1 3517 3372 3344 3488 3348 3489 3489 v2 1028 938 986 1037 954 993 1076 v3 3660 3490 3449 3617 3450 3452 3619 v4 1682 1635 1633 1673 1626 1633 1680 PH3 NOTD AVTZ Cc-pwCVC Cc-pwCVC Cc-pwCVC Cc-pwCVC v4 1262 1271 1122 1150 1123 1121 1147 v2 1031 1009 996 1018 998 997 1017 v3 2439 2329 2327 2437 2327 2327 2437 v4			881	930	901	883		880
v6 3788 3601 3609 3777 3594 3613 3796 NH3 NO7D AVTZ 1321 1262 1270 1329 NH3 NO7D AVTZ Cc-pwCVC v1 3517 3372 3344 3488 3348 3489 3489 v2 1028 938 986 1037 954 993 1076 v3 3660 3490 3449 3617 3450 3452 3619 v4 1682 1635 1633 1673 1626 1633 1680 PH3 NOTD AVTZ Cc-pwCVC Cc-pwCVC Cc-pwCVC Cc-pwCVC v4 1262 1271 1122 1150 1123 1121 1147 v2 1031 1009 996 1018 998 997 1017 v3 2439 2329 2327 2437 2327 2327 2437 v4	7	357	351	376	310	317	384	378
ν6 1324 1272 1278 1321 1262 1270 1329 CC-pwCVC NH3 NO7D AVTZ CC-pwCVC CC-pwCVC CV AVTZ CC-pwCVC CV C	1	3601	3609	3777	3594	3613	3796	3608
NH ₃			1278	1321	1262			1280
v2 3517 3372 3344 3488 3348 3488 3489 v2 1028 938 986 1037 954 993 1076 v3 3660 3490 3449 3617 3450 3452 3619 V4 1682 1635 1633 1673 1626 1633 1680 V1 2427 2328 2329 2427 2328 2329 2429 v2 1031 1009 996 1018 998 997 1017 v3 2439 2329 2327 2437 2327 2327 2437 v4 1152 1127 1122 1150 1123 1121 1147 v2 960 946 960 967 953 960 974 v4 673 667 674 687 681 673 679 v5 1252 1219 1262 1261 1228<					AVTZ			
v₂ 1028 938 986 1037 954 993 1076 v₃ 3660 3490 3449 3617 3450 3452 3619 V₄ 1682 1635 1633 1673 1626 1633 1680 PH₃ NOTD AVTZ Cc-pwCVC v₁ 2427 2328 2329 2427 2328 2329 2427 v₂ 1031 1009 996 1018 998 997 1017 v₃ 2439 2329 2327 2437 2327 2327 2437 v₄ 1152 1127 1122 1150 1123 1121 1147 v₄ 1152 1127 1122 1150 1123 1121 1147 v₄ 11809 1787 1790 1796 1775 1790 1811 v₂ 960 946 960 967 953 960 974			3344	3488		3348		3342
v ₄ 3660 3490 3449 3617 3450 3452 3619 PH ₃ N07D N07D AVTZ Cc-pwCVC v ₁ 2427 2328 2329 2427 2328 2329 2429 v ₂ 1031 1009 996 1018 998 997 1017 v ₃ 2439 2329 2327 2437 2327 2327 2437 v ₄ 1152 1127 11120 1123 1121 1147 v ₂ 1809 1787 1790 1796 1775 1790 1811 v ₂ 960 946 960 967 953 960 974 v ₃ 544 538 547 547 542 547 552 v ₄ 673 667 674 687 681 673 679 v ₅ 1252 1219 1262 1261 1228 1262 1295	2	938		1037	954	993	1076	1001
V4 1682 1635 1633 1673 AVTZ Cc-pwCVC V1 2427 2328 2329 2427 2328 2329 2429 V2 1031 1009 996 1018 998 997 1017 V3 2439 2329 2327 2437 2327 2327 2437 V4 1152 1127 1112 1150 1123 1121 1147 F2CN N07D AVTZ augVQZ9 aVC V1 1809 1787 1790 1796 1775 1790 1811 V2 960 946 960 967 953 960 974 552 V4 673 667 674 687 681 673 679 679 681 673 679 679 681 673 679 679 681 673 679 679 681 673 679 679 681 673 679 679 681 673 679 679 681 673 <	n	3400		3617				3444
PH ₃ NOTD AVTZ cc-pwCVC V1 2427 2328 2329 2427 2328 2329 2427 V2 1031 1009 996 1018 998 997 1017 V3 2439 2329 2327 2437 2327 2327 2437 V4 1152 1127 1122 1150 1123 1121 1147 F2CN NO7D NO7D AVTZ augVQZg aVC V1 1809 1787 1790 1796 1775 1790 1811 V2 960 946 960 967 953 960 974 493 V3 544 538 547 547 542 547 552 67 674 687 681 673 679 679 679 687 681 673 679 679 679 679 679 679 679 679 687 68								1635
v₁ 2427 2328 2329 2427 2328 2329 2429 v₂ 1031 1009 996 1018 998 997 1017 v₃ 2439 2329 2327 2437 2327 2327 2437 v₄ 1152 1127 1122 1150 1123 1121 1147 v₂ 960 946 960 967 953 960 974 v₃ 544 538 547 547 542 547 552 v₄ 673 667 674 687 681 673 679 v₄ 1252 1219 1262 1261 1228 1262 1295 v₄ 673 687 500 496 497 501 NH⅓ N07D AVTZ VQZ²¹ v₄ 3395 3252 3231 3372 3234 3237 3375 v₂ 873			1033	1073		1000		
v2 1031 1009 996 1018 998 997 1017 v3 2439 2329 2327 2437 2327 2327 2437 v4 1152 1127 1122 1150 1123 1121 1147 ECN N07D AVTZ augVQZ ^g aVC v1 1809 1787 1790 1796 1775 1790 1811 1790 1796 1775 1790 1811 1147 1147 1147 1147 1147 1147 242 347 352 260 974 480 960 967 953 960 974 480 974 552 477 542 547 552 477 552 477 542 547 552 477 552 477 552 477 552 477 552 477 552 477 552 477 552 477 552 477 552 477			0000	0407	AV 12	0000		
v3 2439 2329 2327 2437 2327 2437 2447 2522 960 946 960 960 960 974 453 452 547 552 667 674 687 681 673 667 674 687 681 673 679 748 7501 8497 9501 8497 9501 8497 9501 8497 9501 8497 9501 8497					2328	2329		2331
V ₄ 1152 1127 1122 1150 1123 1121 1147 augVQZ ^g aVC V ₁ 1809 1787 1790 1796 1775 1790 1811 V ₂ 960 946 960 967 953 960 974 V ₃ 544 538 547 547 542 547 552 V ₄ 673 667 674 687 681 673 679 V ₅ 1252 1219 1262 1261 1228 1262 1295 V ₆ 493 489 497 500 496 497 501 NH3 NO7D NO7D AVTZ VQZ ^h VQZ ^h V ₂ 873 928 921 864 922 923 865 V ₃ 3590 3419 3388 3552 3393 3400 3559 V ₄ 1557 1523 1517 1548	9	1009	996	1018	998	997		997
2CN NO7D AVTZ augVQZ ^g aVC v ₁ 1809 1787 1790 1796 1775 1790 1811 v ₂ 960 946 960 967 953 960 974 v ₃ 544 538 547 547 542 547 552 v ₄ 673 667 674 687 681 673 679 v ₅ 1252 1219 1262 1261 1228 1262 1295 v ₆ 493 489 497 500 496 497 501 NH ₃ NO7D AVTZ VQZ ^h v ₁ 3395 3252 3231 3372 3234 3237 3375 v ₂ 873 928 921 864 922 923 865 v ₃ 3590 3419 3388 3552 3393 3400 3559 v ₄ 1557 1523 1517 1548 1507 1510 1551 PH ₃ NO7D V1 2501 2406 2402 2505 2419 2410 2497 v ₂ 745 667 673 748 674 678 751 v ₃ 2577 2482 2474 2584 2492 2476 2568 v ₄ 1059 1035 1030 1056 1037 1035 1054 v ₆ 1059 1035 1030 1056 1037 1035 1054 v ₆ 1059 1035 1030 1056 1037 1035 1054 v ₆ 1059 1035 3016 3178 3024 3021 3174 v ₃ 3109 2946 2907 3077 2917 2910 3070 v ₆ 1069 1019 1014 1061 1010 1013 1064 v ₇ 728 695 683 716 681 683 717 v ₈ 932 920 895 935 921 893 907	9	2329	2327		2327	2327		2336
v₁ 1809 1787 1790 1796 1775 1790 1811 v₂ 960 946 960 967 953 960 974 v₃ 544 538 547 547 542 547 552 v₄ 673 667 674 687 681 673 679 v₅ 1252 1219 1262 1261 1228 1262 1295 v₆ 493 489 497 500 496 497 501 NH⅓ N07D AVTZ AVTZ VQZ²¹¹ v₁ 3395 3252 3231 3372 3234 3237 3375 v₂ 873 928 921 864 922 923 865 v₃ 3590 3419 3388 3552 3393 3400 3559 v₄ 1557 1523 1517 1548 1507 1510 1551 <			1122	1150	1123	1121	1147	1122
v2 960 946 960 967 953 960 974 v3 544 538 547 547 542 547 552 v4 673 667 674 687 681 673 679 v5 1252 1219 1262 1261 1228 1262 1295 v6 493 489 497 500 496 497 501 NH3 N07D N07D AVTZ VQZ²¹ v1 3395 3252 3231 3372 3234 3237 3375 v2 873 928 921 864 922 923 865 v3 3590 3419 3388 3552 3393 3400 3559 v4 1557 1523 1517 1548 1507 1510 1551 PH3 N07D AVTZ VQZ²¹ VQZ²¹ v1 2501 2406 <							augVQZ ⁹	aVQZ+ augVTZ ^g
V3 544 538 547 547 542 547 552 V4 673 667 674 687 681 673 679 V5 1252 1219 1262 1261 1228 1262 1295 V6 493 489 497 500 496 497 501 NH⅓ N07D AVTZ VQZ²¹ V1 3395 3252 3231 3372 3234 3237 3375 V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 PH⅓ N07D AVTZ VQZ²¹ V1 2501 2406 2402 2505 2419 2410 2497 V2 745 667 673 748			1790	1796	1775			1781
V3 544 538 547 547 542 547 552 V4 673 667 674 687 681 673 679 V5 1252 1219 1262 1261 1228 1262 1295 V6 493 489 497 500 496 497 501 NH3 N07D AVTZ VQZ ^h V1 3395 3252 3231 3372 3234 3237 3375 V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 YQZ ^h V4 2501 2406 2402 2505 2419 2410 2497 702 745 667 673 748 674 678 751 775 775	6	946			953	960		957
V4 673 667 674 687 681 673 679 V5 1252 1219 1262 1261 1228 1262 1295 V6 493 489 497 500 496 497 501 NH3 N07D AVTZ VQZh V1 3395 3252 3231 3372 3234 3237 3375 V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 PH3 N07D AVTZ VQZh VQZh V1 2501 2406 2402 2505 2419 2410 2497 V2 745 667 673 748 674 678 751 V3 2577 2482 2474	8	538	547	547	542	547	552	546
V5 1252 1219 1262 1261 1228 1262 1295 V6 493 489 497 500 496 497 501 NH3 N07D AVTZ VQZh V1 3395 3252 3231 3372 3234 3237 3375 V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 PH3 N07D AVTZ VQZh	7	667	674	687	681	673	679	673
V6 493 489 497 500 496 497 501 VQZ ^h V1 3395 3252 3231 3372 3234 3237 3375 V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 PH⅓ N07D AVTZ VQZ ^h V1 2501 2406 2402 2505 2419 2410 2497 V2 745 667 673 748 674 678 751 751 V3 2577 2482 2474 2584 2492 2476 2568 V4 2577 2471 2463 2584 2494 2478 2568 V5 1058 1036 1032 1056 1037 1035 1					1228			1262
NH\$\frac{1}{3}\$ N07D								496
V₁ 3395 3252 3231 3372 3234 3237 3375 V₂ 873 928 921 864 922 923 865 V₃ 3590 3419 3388 3552 3393 3400 3559 V₄ 1557 1523 1517 1548 1507 1510 1551 PH₃¹ N07D AVTZ VQZ²¹ V₁ 2501 2406 2402 2505 2419 2410 2497 V₂ 745 667 673 748 674 678 751 V₃ 2577 2482 2474 2584 2492 2476 2568 V₄ 2577 2471 2463 2584 2494 2478 2568 V₆ 1058 1036 1032 1056 1037 1035 1054 V₆ 1059 1035 1030 1056 1037 1035 1054 <t< td=""><td></td><td></td><td>107</td><td>000</td><td></td><td>101</td><td>001</td><td>VOZ^h</td></t<>			107	000		101	001	VOZ ^h
V2 873 928 921 864 922 923 865 V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 AVTZ VQZ ^h PH₃			3231	3372		3237	3375	3231
V3 3590 3419 3388 3552 3393 3400 3559 V4 1557 1523 1517 1548 1507 1510 1551 PH3	Ω	0202	021	864	0207			910
V4 PH3 1557 1523 N07D 1517 1548 1507 AVTZ 1510 VQZh V1 2501 2406 2402 2505 2419 2410 2497 V2 745 667 673 748 674 678 751 V3 2577 2482 2474 2584 2492 2476 2568 V4 2577 2471 2463 2584 2494 2478 2568 V5 1058 1036 1032 1056 1037 1035 1054 V6 1059 1035 1030 1056 1037 1035 1054 V2H3 N07D AVTZ AVTZ AVTZ(PES V1 3290 3267 3242 3267 3129 3105 3242 V2 3211 3053 3016 3178 3024 3021 3174 V3 3109 2946 2907 3077 2917 2910 3070 V4 1679 1659 1590 1667 1647 1590	o o	2/10	2200	2552	3203	3400	3550	3388
PH3 N07D AVTZ VQZh V1 2501 2406 2402 2505 2419 2410 2497 V2 745 667 673 748 674 678 751 V3 2577 2482 2474 2584 2492 2476 2568 V4 2577 2471 2463 2584 2494 2478 2568 V5 1058 1036 1032 1056 1037 1035 1054 V6 1059 1035 1030 1056 1037 1035 1054 V6 1059 3267 3242 3267 3129 3105 3242 V2 3211 3053 3016 3178 3024 3021 3174 V3 3109 2946 2907 3077 2917 2910 3070 V4 1679 1659 1590 1667 1647 1590 1610 V5 1412 1378 1356 1405 1370 1355 1390 V6 1069 1019 1014 1061 1010 1013 1064 V7 728 695 683 716 681 683 717 V8 932 920 895 935 921 893 907			1517				1551	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1517	1546		1510	1001	1507
V2 745 667 673 748 674 678 751 V3 2577 2482 2474 2584 2492 2476 2568 V4 2577 2471 2463 2584 2494 2478 2568 V5 1058 1036 1032 1056 1037 1035 1054 V6 1059 1035 1030 1056 1037 1035 1054 C2H3 N07D AVTZ AVTZ AVTZ(PES V1 3290 3267 3242 3267 3129 3105 3242 V2 3211 3053 3016 3178 3024 3021 3174 V3 3109 2946 2907 3077 2917 2910 3070 V4 1679 1659 1590 1667 1647 1590 1610 V5 1412 1378 1356 1405 1370 1355 1390 <td></td> <td></td> <td>0.400</td> <td>0505</td> <td></td> <td>0.440</td> <td>0.407</td> <td>VQZ''</td>			0.400	0505		0.440	0.407	VQZ''
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								2400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	667	673					670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2492	2476		2469
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2471	2463	2584	2494	2478	2568	2469
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1036	1032	1056	1037	1035	1054	1029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1029
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	N07D			AVT7			
V2 3211 3053 3016 3178 3024 3021 3174 V3 3109 2946 2907 3077 2917 2910 3070 V4 1679 1659 1590 1667 1647 1590 1610 V5 1412 1378 1356 1405 1370 1355 1390 V6 1069 1019 1014 1061 1010 1013 1064 V7 728 695 683 716 681 683 717 V8 932 920 895 935 921 893 907			3242	3267		3105		3108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, Q	3053		3178				3016
v_4 1679 1659 1590 1667 1647 1590 1610 v_5 1412 1378 1356 1405 1370 1355 1390 v_6 1069 1019 1014 1061 1010 1013 1064 v_7 728 695 683 716 681 683 717 v_8 932 920 895 935 921 893 907	6	2016		3077	2917	2010		2901
v5 1412 1378 1356 1405 1370 1355 1390 v6 1069 1019 1014 1061 1010 1013 1064 v7 728 695 683 716 681 683 717 v8 932 920 895 935 921 893 907						1500	1610	1576
V6 1069 1019 1014 1061 1010 1013 1064 V7 728 695 683 716 681 683 717 V8 932 920 895 935 921 893 907					1047	1050	1010	
v_7 728 695 683 716 681 683 717 v_8 932 920 895 935 921 893 907	ğ	13/8	1356	1405	13/0	1355		1355
v ₈ 932 920 895 935 921 893 907			1014		1010	1013		1015
v ₈ 932 920 895 935 921 893 907 v ₈ 934 802 310 304 304 306	5	695	683		681	683		688
., 004 000 707 000 040 704 700			895	935	921	893		892
		809	787	828	812	784	799	793
MIN -48 -63 -27 -39 -68 -61				-39	-68			
MAX 69 83 17 57 71 14					71			
MUE 16 18 4 10 11 4	8	18		10	11			

^a Anharmonic corrections at the B2PLYP/N07D level. ^b Ref 81. ^c Ref 87. ^d Ref 29. ^e Ref 83. ^f Ref 82. ^g Ref 5. ^h Ref 88. ⁱ Analytic harmonic frequencies and anharmonic results from VCI calculations using five-mode potential coupling based on a full-dimensional PES computed at the RCCSD(T)/aug-cc-pVTZ level. For details on PES/S, see ref 89.

section, we start the analysis of vibrational data by discussing harmonic frequencies, It should be noted that discrepancies in the former term can be reduced by applying hybrid CC/DFT schemes, which are also presented in Table 2. First,

considering the accuracy of harmonic frequencies, it is immediately apparent that the conclusions drawn in section 4.1 are, in general terms, confirmed. Namely, the values computed at the B2PLYP/N07D level agree well with the most accurate calculations, with a MUE of 16 cm⁻¹, and further improvement (MUE of 10 cm⁻¹) can be achieved by using the aug-cc-pVTZ basis set. Similarly, anharmonic frequencies computed at the B2PLYP/N07D level show a MUE of 18 cm⁻¹, while the extension of the basis set to aug-cc-pVTZ leads to a MUE of 11 cm⁻¹. Additionally, a significant improvement is achieved through hybrid approaches with harmonic frequencies computed at the CCS-D(T) level, which lead to a MUE of 4 cm⁻¹ with respect to the anharmonic data computed entirely at the CCSD(T) level. Such a finding confirms the remarkable accuracy of the anharmonic force fields computed with the B2PLYP method, showing also that an improved accuracy can be achieved by using harmonic frequencies of coupled cluster quality. It should be underlined that both hybrid models, which differ by the computational cost associated with the size of the basis set, provide equally accurate results. This demonstrates clearly that the better agreement for the vibrational frequencies computed with the AVTZ basis set should be attributed uniquely to the higher accuracy of the harmonic component. In summary, a direct comparison with accurate computations at the CCSD(T) level clearly shows that the B2PLYP/N07D model provides harmonic frequencies of good accuracy and leads to a description of the anharmonic contributions in agreement with more accurate QM methods. However, it should be noted that results of equivalent accuracy can be delivered by hybrid approaches with anharmonic force fields obtained using the less computationally demanding B3LYP/ N07D method.²⁹

4.3. Anharmonic Vibrational Frequencies of Larger Molecules Computed with B2PLYP/N07D and Hybrid Schemes. In this section, the performances of the B2PLYP method will be checked against well established experimental data for medium-size molecules. In this respect, we have chosen a set of organic aromatic systems, namely, pyridyne, furan, pyrrole, thiophene, uracil, phenol, and anisole, for which previous calculations of anharmonic frequencies using the B3LYP or the B97-1 density functionals resulted in a very good agreement with the experimental results.^{23–25,63,84–86} In this work, both the B2PLYP/N07D model and a hybrid scheme with harmonic frequencies refined through B2PLYP/AVTZ calculations have been tested. For the latter, corrections have been applied to all normal modes or only to normal modes above 2500 cm⁻¹, in line with the findings reported in section 4.1 which displayed a larger basis set dependence for higher harmonic frequencies. Table 3 reports the mean unsigned errors with respect to the experimental data, along with maximum (negative and positive) deviations for all molecules considered. Figure 1 shows differences between computed and experimental frequencies for all normal modes of pyridyne, furan, pyrrole, thiophene, uracil, phenol, and anisole, which are listed in order of increasing wavenumber. First, it can be observed that the overall agreement of the B2PLYP/N07D anharmonic frequencies with the reference data is very good, i.e., in the range of 9-15 cm⁻¹ for all the

Table 3. Mean Absolute Errors (MUE), Maximum Negative (MIN) and Positive (MAX) Deviations of Anharmonic Vibrational Frequencies (in cm⁻¹) Computed with the B2PLYP/N07D and Hybrid B2PLYP/(AVTZ/N07D) Models As Compared to the Experimental Data^a

	N07D			AVTZ/N07D			AVTZ>2500 ^b / N07D		
	MUE	MIN	MAX	MUE	MIN	MAX	MUE	MIN	MAX
pyridine	9	-22	40	17	-35	53	10	-35	40
furan	9	-11	29	9	-14	55	5	-11	7
pyrrole	10	-7	32	11	-20	43	6	-11	28
thiophene	12	-10	34	6	-8	29	7	-10	21
uracil	11	-41	31	8	-12	27	9	-41	31
phenol	12	-18	70	13	-26	65	11	-27	70
anisole	15	-10	48	15	-51	72	12	-51	48
average all	11	-17	41	11	-24	49	9	-27	35

^a Experimental data are taken from (and references therein): pyridine, ref 90; furan and pyrrole, ref 91; thiophene, ref 92; uracil, ref 93; phenol, ref 94; anisole, ref 86. b Hybrid scheme applied to normal modes with frequencies above 2500 cm⁻¹, see text for

Figure 1. Performance of the B2PLYP/N07D (panel a) and hybrid B2PLYP/(AVTZ/N07D) (panel b) models for the prediction of anharmonic frequencies. The relative absolute discrepancies with respect to experimental results are shown for all normal modes of pyridyne, furan, pyrrole, thiophene, uracil, phenol, and anisole, which are listed according to the increasing wavenumbers (in cm⁻¹).

molecules studied, corresponding to an average of 11 cm⁻¹. Moreover, as shown in Figure 1, despite maximum positive and negative discrepancies of 70 cm⁻¹ and -41 cm⁻¹, respectively, the computed anharmonic frequencies are within 25 cm⁻¹ of the experimental references, for almost all of the normal modes. Somewhat larger discrepancies are

Table 4. Mean Absolute Errors (MUE), Maximum Negative (MIN), and Positive (MAX) Deviations of Harmonic Vibrational Frequencies (in cm⁻¹) Computed with Several DFT/N07D Models for Molecules from the F38 Benchmark Set, and Compared to the F38 Reference Data

	MUE	MIN	MAX
CAM-B3LYP	52	-110	129
PBE0	50	-86	140
LC-ωPBE	74	-135	192
M06	57	-124	134
M06-2X	66	-77	163
HSE06	50	-86	138
ω B97	62	-93	159
ω B97X	60	-97	152
B97-1	33	-81	61

observed in the high frequency region of the spectrum. However, the relative deviation from experiment remains within 2% even for these frequencies, with only four frequencies above 1000 cm⁻¹ exceeding this limit. It can be noted that a significant improvement of the absolute values in the high frequency region is achieved through a hybrid scheme, where the harmonic component is corrected using B2PLYP/aug-cc-pVTZ results. However, the hybrid scheme does not provide a systematic improvement for every normal mode; thus, the overall accuracy of the B2PLYP/(AVTZ/ N07D) (referred to as AVTZ/N07D later on) model does not change with respect to the straightforward B2PLYP/ N07D approach. On the other hand, it is possible to apply harmonic frequency refinements only to the high frequency normal modes (>2500 cm⁻¹); such a scheme effectively improves the agreement with respect to the experiment and should be considered when a good accuracy in the high frequency region of the spectrum is of particular importance. Thus, it can be concluded that the B2PLYP/N07D model provides very reliable anharmonic frequencies and can be safely applied to spectroscopic studies. However, it should also be noted that the good overall accuracy of the B2PLYP/N07D and the hybrid AVTZ/N07D models is comparable to that obtained by less expensive anharmonic B3LYP/N07D calculations.

4.4. Accuracy of Harmonic and Anharmonic Vibrational Frequencies Computed with Other DFT/N07D **Models.** For the sake of completeness, we have investigated the performances of other density functional approaches using the N07D basis set. The same scheme as applied in the previous sections is used here. First, we assessed the accuracy of the harmonic frequencies with respect to the results from the F38 database. Table 4 collects the results obtained by means of some last generation DFT functionals not considered in the work of Zhao and Truhlar, 70,777 along with a few standard functionals, which are among the most popular ones. First, it should be noted that the B3LYP, PBE0, M06, and M06-2X functionals together with the N07D basis set yield harmonic frequencies of accuracy essentially equivalent to the one reported in refs 70 and 77. Additionally, among all the density functionals tested either here or in the work by Zhao and Truhlar, 70,77 only B3LYP, B97-1, and B2PLYP yield harmonic frequencies with the accuracy required for spectroscopic studies, and the B2PLYP method shows clearly the best results. As a next step, it seemed interesting to check also the quality of the cubic and semidiagonal quartic force fields computed with the recently developed density functionals. In this respect, the accuracy of anharmonic contributions has been assessed by comparison with their CCSD(T) counterparts for a few selected molecules, namely, H₂O, NH₃, PH₃, and F₂CN. This set of molecules has been chosen in view of the superior accuracy of anharmonic frequencies obtained with the hybrid CCSD(T)/ B2PLYP scheme. The quality of the anharmonic force fields has been checked by inspection of the relative discrepancies between $\Delta \nu_{PT2}$'s computed at the DFT and CCSD(T) levels, respectively. Figure 2 shows a plot of the differences in Δv_{PT2}

Figure 2. Performance of different density functionals for the prediction of the anharmonic contribution. The relative discrepancies with respect to the values computed at the CCSD(T) level are shown for each normal mode of H_2O , NH_3 , PH_3 , and P_2CN and are listed according to their wavenumbers (in cm⁻¹).

Table 5. Mean Absolute Errors (MUE), Maximum Negative (MIN) and Positive (MAX) Deviations of Anharmonic Vibrational Frequencies (in cm⁻¹) Computed with Several DFT/N07D Models and Compared to the Experimental Data^a

	pyridine	furan	pyrrole	thiophene	all		
MUE							
B2PLYP	9	9	10	12	10		
B3LYP	9	5	6	7	7		
CAM-B3LYP	19	22	21	20	20		
PBE0	14	15	18	14	15		
LC-ωPBE	28	44	47	35	39		
M06	18	13	24	22	19		
M06-2X	29	37	50	17	33		
HSE06	12	16	20	11	15		
ωB97	25	20	20	36	25		
ωB97X	25	20	20	26	23		
B97-1	13	5	5	9	8		
		MIN					
B2PLYP	-22	-11	-7	-10	-13		
B3LYP	-33	-15	-16	-19	-21		
CAM-B3LYP	_9	6	7	3	2		
PBE0	-19	- 7	-4	_9	-10		
LC-ωPBE	0	14	8	9	8		
M06	-39	-17	-118	-63	-59		
M06-2X	-18	-7	-15	-17	-14		
HSE06	-20	-4	-4	-10	-9		
ωB97	-53	-10	-21	4	-20		
ωB97X	-50	1	-10	3	-14		
B97-1	-47	-14	-13	-20	-24		
		MAX					
B2PLYP	40	29	32	34	34		
B3LYP	24	5	24	14	17		
CAM-B3LYP	46	49	57	51	51		
PBE0	75	31	43	40	47		
LC-ωPBE	86	92	85	95	90		
M06	74	50	55	29	52		
M06-2X	136	137	298	56	157		
HSE06	71	39	44	38	48		
ωB97	74	75	72	82	76		
ωB97X	59	70	68	65	66		
B97-1	22	4	18	8	13		
			=	-	_		

^a Experimental data from refs (and references therein): pyridine, ref 90; furan and pyrrole, ref 91; thiophene, ref 92.

between DFT and CCSD(T) for each normal mode of selected molecules, which are listed according to their wavenumbers (in cm⁻¹). First, it is clear that anharmonic corrections at the B2PLYP level agree very well with the reference data, as discussed in section 4.2. Similar results can be observed for B3LYP, further supporting the wellknown good quality of the B3LYP/N07D force fields. The other density functionals show different trends, considering that only HSE06 performs in a qualitatively correct way, while functionals belonging to the M06 and the ω B97 families provide unreliable anharmonic corrections. Finally, we assessed the overall accuracy of the anharmonic vibrational frequencies computed by all of the DFT/N07D models considered in this work. For this purpose, Table 5 reports the mean unsigned errors and maximum deviations with respect to experimental data for pyridine, furan, pyrrole, and thiophene. These results show clearly that, among last generation DFT models, only the B2PLYP method (as discussed above) provides anharmonic frequencies in good agreement with experimental results, consistent with the accuracy of harmonic contributions and anharmonic corrections discussed above. Moreover, the good performances of the B3LYP and the B97-1 functionals, when used in conjunction with the N07D basis set, are confirmed. In fact, for both functionals, the MUE is lower than 8 cm⁻¹. Qualitatively correct frequencies are also predicted by the PBE0 and HSE06 functionals, both showing MUEs of about 15 cm⁻¹. All of the other DFT models considered yield MUEs in the range of 20-40 cm⁻¹ and also show larger absolute discrepancies. Overall, the results presented in this section show that most of the recently developed density functionals are significantly less accurate in the calculation of vibrational frequencies, confirming the conclusions drawn in refs 28 and 29, on the basis of a smaller benchmark set. On the other hand, the B2PLYP method should be preferred for spectroscopic studies where a good accuracy of the vibrational properties is required.

5. Conclusions

In this work, we presented a concise exposition of the formalism of the analytic second derivatives for the double-hybrid B2PLYP method, along with an assessment of their accuracy in the calculation of vibrational properties. To that end, the computed harmonic vibrational frequencies have been compared with the best experimental estimates from the established F38 benchmark set. Additionally, for several small closed- and openshell systems, both harmonic frequencies and anharmonic corrections have been compared to their CCSD(T) counterparts, while, for larger systems, the quality of the calculated frequencies has been evaluated by comparison with experimental data. It has been shown that B2PLYP yields harmonic frequencies substantially more accurate than other approaches rooted in the density functional theory, and in this respect, it outperforms the B3LYP functional. However, such an improved accuracy is achieved at a significantly increased computational cost, caused by the second-order perturbation treatment of the electron correlation and the slower convergence with respect to the basis set. Nevertheless, when high quality harmonic contributions are required, the availability of the B2PLYP analytic second derivatives shall improve the current state-of-the-art accuracy for significantly larger systems. In addition to accurate harmonic frequencies, the numerical differentiation of the B2PLYP analytic second derivatives provides also cubic and semidiagonal quartic force fields of good quality. However, in this case, despite the significantly larger computational cost, no clear improvement over calculations employing anharmonic force constants obtained at the B3LYP level has been observed. Additionally, in this work, it has been further confirmed that some of the otherwise successful last generation functionals (the M06 and ω B97X families) do not provide sufficiently accurate vibrational properties, concerning both harmonic frequencies and anharmonic contributions. For such reasons, it seems that the most cost-effective approach is currently to add anharmonic corrections calculated at the B3LYP level to harmonic force fields obtained using more sophisticated computational models, like, e.g., CCSD(T) or B2PLYP with large basis sets. In this respect, the B2PLYP/AVTZ//B3LYP/N07D approach combines the feasibility of accurate harmonic frequency computations with the possibility of taking into account the vibrational effects

beyond the harmonic approximation even for quite large systems of biological and/or technological interest.

Acknowledgment. This work was supported by MIUR (PRIN 2006), CNR (PROMO 2006), and Gaussian, Inc. The large scale computer facilities of the VILLAGE network (http://village.unina.it) and the Wroclaw Centre for Networking and Supercomputing are acknowledged for providing computer resources.

References

- (1) Jensen, P.; Bunker, P. R. *Computational Molecular Spectroscopy*; John Wiley & Sons: United Kingdom, 2000.
- Carter, S.; Handy, N. C.; Puzzarini, C.; Tarroni, R.; Palmieri,
 P. Mol. Phys. 2000, 98, 1697–1712.
- (3) Biczysko, M.; Tarroni, R.; Carter, S. J. Chem. Phys. 2003, 119, 4197–4203.
- (4) Puzzarini, C.; Barone, V. Chem. Phys. Lett. 2008, 462, 49– 52.
- Puzzarini, C.; Barone, V. Chem. Phys. Lett. 2009, 467, 276– 280.
- (6) Mills, I. M. Molecular Spectroscopy: Modern Research; Academic: New York, 1972.
- (7) Barone, V. J. Chem. Phys. 2005, 122, 014108/1–10.
- (8) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479–483.
- (9) East, A. L. L.; Allen, W. D.; Klippenstein, S. J. J. Chem. Phys. 1995, 102, 8506–8532.
- (10) Martin, J. M. L.; Lee, T. J.; Taylor, P. R.; Francois, J.-P. J. Chem. Phys. 1995, 103, 2589–2602.
- (11) Dateo, C. E.; Lee, T. J. Spectrochim. Acta, Part A 1997, 53, 1065–1077.
- (12) Breidung, J.; Thiel, W. Theor. Chem. Acc. 1998, 100, 183– 190.
- (13) Stanton, J. F.; Lopreore, C. L.; Gauss, J. J. Chem. Phys. 1998, 108, 7190–7196.
- (14) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1998, 108, 9218-9220.
- (15) Breidung, J.; Thiel, W.; Gaus, J.; Stanton, J. F. J. Chem. Phys. 1999, 110, 3687–3696.
- (16) Ruden, T.; Taylor, P. R.; Helgaker, T. J. Chem. Phys. 2003, 119, 1951–1960.
- (17) Puzzarini, C. J. Chem. Phys. 2005, 123, 024313/1-14.
- (18) Bizzocchi, L.; Degli Esposti, C.; Puzzarini, C. *Mol. Phys.* **2006**, *104*, 2627–2640.
- (19) Puzzarini, C. J. Mol. Spectrosc. 2007, 242, 70-75.
- (20) Baldacci, A.; Stoppa, P.; Pietropolli Charmet, A.; Giorgianni, S.; Cazzoli, G.; Puzzarini, C. W. L. C. J. Phys. Chem. A 2007, 111, 7090–7097.
- (21) Tew, D. P.; Klopper, W.; Heckert, M.; Gauss, J. J. Phys. Chem. A 2007, 111, 11242–11248.
- (22) Barone, V. J. Phys. Chem. A 2004, 108, 4146-4150.
- (23) Barone, V. Chem. Phys. Lett. 2004, 383, 528-532.
- (24) Burcl, R.; Handy, N. C.; Carter, S. Spectrochim. Acta, Part A 2003, 59, 1881–1893.
- (25) Boese, A. D.; Martin, J. J. Phys. Chem. A 2004, 108, 3085– 3096.

- (26) Cane, E.; Miani, A.; Trombetti, A. J. Phys. Chem. A 2007, 111, 8218–8222.
- (27) Cane, E.; Trombetti, A. Phys. Chem. Chem. Phys. 2009, 11, 2428–2432.
- (28) Biczysko, M.; Panek, P.; Barone, V. Chem. Phys. Lett. 2009, 475, 105–110.
- (29) Puzzarini, C.; Biczysko, M.; Barone, V. J. Chem. Theory Comput. 2010, 6, 828–838.
- (30) Barone, V.; Cimino, P.; Stendardo, E. *J. Chem. Theory Comput.* **2008**, *4*, 751–764.
- (31) Barone, V.; Cimino, P. Chem. Phys. Lett. 2008, 454, 139– 143.
- (32) Barone, V.; Cimino, P. J. Chem. Theory Comput. 2009, 5, 192–199.
- (33) Becke, D. J. Chem. Phys. 1993, 98, 5648-5652.
- (34) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57.
- (35) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.
- (36) Barone, V.; Bloino, J.; Biczysko, M. Phys. Chem. Chem. Phys. 2010, 12, 1092–1101.
- (37) Barone, V.; Biczysko, M.; Cimino, P. Interplay of stereo electronic vibrational and environmental effects in tuning physico-chemical properties of carbon centered radicals. In *Carbon-Centered Free Radicals and Radical Cations*; Forbes, M. D. E., Ed.; John Wiley & Sons, Inc.: New York, 2010; pp 105–139.
- (38) Bloino, J.; Biczysko, M.; Santoro, F.; Barone, V. *J. Chem. Theory Comput.* **2010**, *6*, 1256–1274.
- (39) Grimme, S. J. Chem. Phys. 2006, 124, 034108/1-16.
- (40) Grimme, S.; Neese, F. J. Chem. Phys. **2007**, 127, 154116/1–18.
- (41) Grimme, S.; Goerigk, L. J. Phys. Chem. A 2009, 113, 767–776.
- (42) Schneider, W.; Thiel, W. Chem. Phys. Lett. 1989, 157, 367–373.
- (43) Stanton, J. F.; Gauss, J. Int. Rev. Phys. Chem. 2000, 19, 61–95.
- (44) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397–3406.
- (45) Johnson, B.; Frisch, M. J. Chem. Phys. 1994, 100, 7429–7442.
- (46) Johnson, B.; Frisch, M. Chem. Phys. Lett. 1993, 216, 133– 140.
- (47) Stratmann, R.; Burant, J.; Scuseria, G.; Frisch, M. J. Chem. Phys. 1997, 106, 10175–10183.
- (48) Pople, J.; Krishnan, R.; Schlegel, H.; Binkley, J. *Int. J. Quantum Chem.* **1979**, *16-S13*, 225–241.
- (49) Frish, M. J.; Head-Gordon, M.; Pople, J. Chem. Phys. Lett. 1990, 166, 275–280.
- (50) Frish, M. J.; Head-Gordon, M.; Pople, J. Chem. Phys. Lett. 1990, 166, 281–289.
- (51) Gauss, J.; Stanton, J.; Bartlett, R. Chem. Phys. Lett. 1992, 195, 194–199.
- (52) Gauss, J.; Stanton, J.; Bartlett, R. J. Chem. Phys. 1992, 97, 7825–7828.

- (53) Cammi, R.; Mennucci, B.; Pomelli, C.; Cappelli, C.; Corni, S.; Frediani, L.; Trucks, G.; Frisch, M. *Theor. Chim. Acta* 2004, 111, 66–77.
- (54) Neese, F.; Schwabe, T.; Grimme, S. J. Chem. Phys. 2007, 126, 124115/1–15.
- (55) Scalmani, G.; Frisch, M. J.; Menucci, B.; Tomasi, J.; Cammi, R.; Barone, V. J. Chem. Phys. 2006, 124, 094107/1–15.
- (56) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093.
- (57) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110/ 1–15.
- (58) Frish, M. J.; Head-Gordon, M.; Pople, J. Chem. Phys. 1990, 141, 189–196.
- (59) Double- and triple-ζ basis sets of the N07 family are available for download; visit http://idea.sns.it (accessed April 17, 2010).
- (60) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.
- (61) Kendall, A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796–6806.
- (62) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Burant, J.; Iyengar, S. S.; Tomasi, J.;; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.; Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fo, D. J. Gaussian Development Version, revision H.08; Gaussian, Inc.: Wallingford, CT, 2009.
- (63) Barone, V.; Festa, G.; Grandi, A.; Rega, N.; Sanna, N. Chem. Phys. Lett. 2004, 388, 279–283.
- (64) Begue, D.; Carbonniere, P.; Pouchan, C. J. Phys. Chem. A 2005, 109, 4611–4616.
- (65) Carbonniere, P.; Lucca, T.; Pouchan, C.; Rega, N.; Barone, V. J. Comput. Chem. 2005, 26, 384–388.
- (66) Puzzarini, C.; Barone, V. J. Chem. Phys. **2008**, 129, 084306/
- (67) Puzzarini, C.; Barone, V. Phys. Chem. Chem. Phys. 2008, 10, 6991–6997.
- (68) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;

- Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.; Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fo, D. J. *Gaussian 09*, revision A.02; Gaussian Inc.: Wallingford, CT, 2009.
- (69) Zhao, Y.; Schults, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364–382.
- (70) Zhao, Y.; Truhlar, D. G. Theor. Chim. Acta 2008, 120, 215– 241.
- (71) Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106/1–15.
- (72) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- (73) Henderson, T.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E. J. Chem. Phys. 2009, 131, 044108/1–9.
- (74) Jacquemin, D.; Perpète, E.; Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C. J. Chem. Phys. 2007, 126, 144105/ 1–12.
- (75) Hamprecht, F. A.; Cohen, A.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264–6271.
- (76) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101/ 1–14.
- (77) Zhao, Y.; Truhlar, D. J. Chem. Theory Comput. 2008, 4, 1849–1868.
- (78) Martin, J. M. L.; El-Yazal, J.; Francois, J.-P. *Mol. Phys.* **1995**, 86, 1437.
- (79) NIST Chemistry Webbook. http://webbook.nist.gov.chemistry (accessed Dec 9, 2006).
- (80) Martin, J. M. L. J. Chem. Phys. 1994, 100, 8186–8193.
- (81) Feller, D.; Peterson, K. J. Chem. Phys. **2009**, 131, 154306/1–10.
- (82) Puzzarini, C. Theor. Chim. Acta 2008, 121, 1-10.
- (83) Rauhut, G.; Knizia, G.; Werner, H.-J. *J. Chem. Phys.* **2009**, *130*, 054105/1–10.
- (84) Barone, V. J. Phys. Chem. A 2004, 108, 4146-4150.
- (85) O'Maley, P. THEOCHEM 2005, 755, 147-150.
- (86) Bloino, J.; Biczysko, M.; Crescenzi, O.; Barone, V. J. Chem. Phys. 2008, 128, 244105/1–15.
- (87) Marenich, A. V.; Boggs, J. E. J. Phys. Chem. A 2003, 107, 2343–2350.
- (88) Puzzarini, C. Theor. Chem. Acc. 2008, 120, 325-336.
- (89) Sharma, A. R.; Braams, B. J.; Carter, S.; Shepler, B. C.; Bowman, J. M. *J. Chem. Phys.* **2009**, *130*, 174301/1–9.
- (90) Klots, T. D. Spectrochim. Acta, Part A 1998, 54, 1481-1498.
- (91) Mellouki, A.; Lievin, J.; Herman, M. Chem. Phys. 2001, 271, 239–266.
- (92) Klots, T. D.; Chirico, R. D.; Steele, W. V. Spectrochim. Acta, Part A 1994, 50, 765–795.
- (93) Graindourze, M.; Smets, J.; Zeegers-Huyskens, T.; Maes, G. J. Mol. Struct. 1990, 222, 345–364.
- (94) Roth, W.; Imhof, P.; Gerhards, M.; Schumm, S.; Kleinermanns, K. *Chem. Phys.* **2000**, 252, 247–256.
 CT100212P