Trabalho Final de Introdução ao Aprendizado de Máquina

Aplicando Modelos Supervisionados para Classificação de Quitação de Emprestimos

João Pedro Sousa, Milton Salgado e Pedro Saito

Universidade Federal do Rio de Janeiro

1. Introdução

Algoritmos de classificação supervisionada aprendem padrões em dados rotulados para classificar novas amostras. Possuem amplas aplicações em dados financeiros, especialmente para gerenciamento de risco em empréstimos bancários.

O Banco Mundial mantém dados históricos de empréstimos concedidos a países em desenvolvimento, incluindo quantias, datas, taxas de juros e tipos de empréstimos. Este trabalho utiliza registros de abril de 2011 a maio de 2025, agregando-os em duas categorias ("quitado" e "não-quitado") para propor um problema de classificação binária, avaliando diferentes algoritmos de aprendizado supervisionado através de métricas como acurácia e F1-score.

2. Pré-processamento

2.1 Base de Dados Inicial

2. Pré-processamento

Base de Dados: *IBRD Statement of Loans and Guarantees - Historical Data do Grupo do Banco Mundial*, (05/25).

O dataset reúne registros mensais desde abril de 2011, contendo empréstimos e garantias concedidos pelo *IBRD* para projetos internacionais.

2.1 Base de Dados Inicial

2. Pré-processamento

Os dados incluem tipo de operação, valor contratado, *status* e características contratuais. Para cada dívida, identificou-se o primeiro registro cronológico e seu estado conclusivo, criando a variável alvo last_loan_status.

Os registros foram particionados em duas categorias: dívidas totalmente quitadas (Fully Repaid = 1) e dívidas em andamento ou concluídas sem quitação integral (= 0). Foi aplicada amostragem de *Bernoulli* para selecionar aproximadamente 60% do grupo quitado e 40% do restante.

Status da Dívida	Descrição
Approved	Aprovado pelo Banco Mundial, ainda não assinado.
Signed	Contrato assinado, mas pendente de efetivação.
Effective	Contrado em vigor, habilitado para desembolso.
Disbursing	Valores liberados conforme o andamento do projeto.
Disbursing & Repaying	Parte dos recursos e do desembolso foi liberada.
Fully Disbursed	Todo o valor contratado foi desembolsado.
Repaying	Somente pagamentos em andamento, mas sem desembolsos.
Fully Repaid	Toda a dívida quitada.
Fully Cancelled	Contrato totalmente cancelado.
Fully Transferred	Dívida realocada para outra unidade ou instrumento.
Terminated	Encerrado por recisão ou fim do prazo contratual.

Figura 1: Descrição do status de pagamento da dívida.

Critérios de Remoção:

- Baixa Variância (60% de valores idênticos):
- Due 3rd Party, Undisbursed Amount, Exchange Adjustment
- Borrower's Obligation, Sold 3rd Party, Repaid 3rd Party
- Due to IBRD, Loans Held, Currency of Commitment

Variáveis de Identificação:

- Loan Number, Project ID
- Features Relacionadas:
- Guarantor Country removida devido à redundância com Country Code

2.3 Análise de Correlação

2. Pré-processamento

Foram utilizados dois métodos para calcular correlação com a variável alvo dicotômica:

Variáveis Contínuas: Coeficiente de Ponto Bisserial para calcular associação entre variável contínua e dicotômica.

Variáveis Categóricas: Coeficiente V de Cramér com teste χ^2 .

Critério de Seleção: Variáveis com magnitude de correlação superior a 0,2.

2.3 Análise de Correlação

Variável	Correlação	p-valor	Tipo
loan_status	0.83	0.00	Chi Quadrado (Cramer V)
repaid_percentage	0.77	0.00	Point Bisserial
disbursed_percentage	0.76	0.00	Point Bisserial
loan_type_FSL	0.71	0.00	Chi Quadrado (Cramer V)
agreement_signing_date_timestamp	0.61	0.00	Point Bisserial
effective_date_timestamp	0.57	0.00	Point Bisserial
interest_rate	0.52	0.00	Point Bisserial
country_code	0.42	0.00	Chi Quadrado (Cramer V)

Tabela 1: Análise de correlação.

Avaliação de Redundância: Correlação de Spearman para pares numéricos, V de Cramér para categóricas e ponto bisserial para contínua-dicotômica.

Após uma análise de redundâncias entre features, selecionamos os seguintes atributos para compor as variáveis de entrada.

- loan_status
- repaid_percentage
- agreement_signing_date_timestamp
- interest_rate Taxa de juros aplicada ao empréstimo.
- loan_type (SNGL CRNCY, SCP USD, POOL LOAN, FSL, NON POOL)
- first_repayment_date_timestamp
- original_principal_amount

Codificação de Variáveis:

- One-hot encoding para variáveis categóricas
- Codificação ordinal para loan_status respeitando progressão temporal
- StandardScaler para padronização de variáveis numéricas

Validação Cruzada:

- Repeated Stratified K-Fold: 5 folds × 6 repetições = 30 splits
- Manutenção da proporção de classes em cada fold
- Random state fixo para reprodutibilidade

2.5 Transformação dos Dados

2. Pré-processamento

Dataset Final:

- 6.945 registros, 11 features
- Distribuição: 39,58% classe 0, 60,42% classe 1

Principais métricas utilizadas:

- Acurácia.
- F1-Score.

3. Experimentos

3.1 Ambiente Computacional

3. Experimentos

Especificações do Sistema:

CPU: Intel(R) Core(TM) i7-10700 t@ 2.90GHz

• Sistema: Debian GNU/Linux 12 (bookworm)

Memória: 94GB

• Cores: 16

• Disco: 907GB

Garantia de Homogeneidade:

- Todos os experimentos executados no mesmo ambiente
- Controle de variáveis externas
- Reprodutibilidade dos resultados

3.2 Hiperparâmetros Otimizados

3. Experimentos

SVM:

- Kernel: Radial Basis Function (rbf)
- Parâmetro de regularização: C=100
- Máximo de iterações: 10.000
- Alcance de influência: $\gamma = 1, 0$

Redes Neurais:

- Função de ativação: tangente hiperbólica
- Camadas ocultas: 2 (100, 50 neurônios)
- Máximo de iterações: 500

3.2 Hiperparâmetros Otimizados

3. Experimentos

Árvore de Decisão:

- Critério: Entropia
- Profundidade máxima: 10
- Amostras mínimas para divisão: 10

Os demais parâmetros seguem o padrão das implementações do scikit-learn

3.3 Resultados do Grid Search

Performance dos Modelos Otimizados:

Modelo	Acurácia	Precisão	Recall	F1-score	Tempo
SVM	0.9534	0.9540	0.9534	0.9535	0min 7.73s
Rede Neural	0.9565	0.9567	0.9563	0.9565	3min 51s
Árvore de Decisão	0.9626	0.9626	0.9626	0.9626	0min 0.37s

Figura 2: Tabela de performance dos modelos com otimização.

4. Discussão dos Resultados

4. Discussão dos Resultados

Figura 3: Análise de duas e três primeiras componentes principais (PCA).

4.1 **SVM**

Análise de Separabilidade:

- Baixo grau de separabilidade entre quitadas (1) e não quitadas (0).
- Classe 1 concentra-se em valores positivos de PC1 e PC2

Largura da Margem:

- $\gamma = \frac{2}{\|w\|} = 0,0002$
- Confirma quantitativamente a estreita região de separação
- Justifica uso da função RBF (não-linear)

Limitações:

- Máximo de 10.000 iterações para evitar treinamento prolongado
- Necessidade de kernel não-linear devido à baixa separabilidade linear

Configuração e Convergência:

- Média de 485 iterações até convergência
- Função de perda final: aproximadamente 0,0856
- Tangente hiperbólica capturou não-linearidades adequadamente

Análise de Performance:

- Arquitetura (100, 50 neurônios) foi adequada para modelar complexidade
- Proximidade das iterações com o máximo (500)
- Sugere necessidade de mais iterações ou ajuste na taxa de aprendizado

4.2 Redes Neurais (MLP)

4. Discussão dos Resultados

Desafios:

- Múltiplos hiperparâmetros podem causar flutuações no comportamento
- Alto custo computacional comparado aos demais modelos

4.2 Redes Neurais (MLP)

4. Discussão dos Resultados

4.3 Árvore de Decisão

Performance Robusta:

- Configuração ótima apareceu em 7 dos 30 folds
- Critério de entropia permitiu divisões mais balanceadas
- Profundidade 10: captura complexidade sem overfitting excessivo

Estabilidade:

- Desvio padrão: apenas 0,0060
- Mínimo 5 amostras: evita regras muito específicas
- Tempo médio: 0,01s por fold (total: 0,33s)

Eficiência:

- Robustez em Métricas
- Tempo de excução de 0.37s em 30 folds

4.4 Comparação Estatística

4. Discussão dos Resultados

Teste de Friedman ($\alpha = 5\%$):

Métrica	χ^2	P-valor
Acurácia	16.9402	0,0002
F1-score	16.0678	0,0002

Figura 4: Resultados Teste de Friedman

Matriz de p-valores do teste pareado de Neminyi ($\alpha=5\%$):

	Acurácia		F1-Score			
	Árvore	SVM	MPL	Árvore	SVM	MPL
Árvore	1.0000	0.0002	0.0125	1.0000	0.0003	0.0184
SVM	0.0002	1.0000	0.5157	0.0003	1.0000	0.4761
MPL	0.0125	0.5157	1.0000	0.0184	0.4761	1.0000

Figura 5: Resultados dos testes de hipótese usando a acurácia e F1-Score.

5. Trabalhos Relacionado

- 1. **Dados**: 326,000 empréstimos *IBRD* (1980–2018), sendo 18,000 cancelados.
- 2. **Pré-processamento**: remoção de colunas com muitos faltantes, imputação de juros por país e criação de métricas temporais
- 3. **Variáveis**: 7 no total (4 numéricas, 3 categóricas), todas com diferenças estatisticamente significativas entre "repaid" e "cancelled"
- 4. **Modelos**: *Decision Tree* teve robustez maior que SVC e Gradient Boosting, alcançando acurácia e F1-Score de aproximadamente 0,99.

5.2 Resultado

5. Trabalhos Relacionado

Decision Tree	Predicted Repaid	Predicted Cancelled
True Repaid	1757	3
True Cancelled	0	1760

Figura 6: Features ordenadas por relevância.

6. Conclusões

6.1 Conclusões da Comparação

Ranking Final:

- 1. **Árvore de Decisão**: 96,26% (performance robusta + eficiência)
- 2. **Redes Neurais**: 95,65% (boa performance, alto custo computacional)
- 3. **SVM**: 95,34% (performance adequada, baixo custo computacional)

Recomendação: Árvore de Decisão combina alta acurácia, estabilidade entre folds e eficiência computacional.

Considerações Finais:

- Todas as diferenças são estatisticamente significativas
- Interpretabilidade da Árvore de Decisão é vantagem adicional
- Tempo de processamento varia drasticamente entre os métodos

7. Obrigado!

Referências

- (1) Kornbrot, D. Point Biserial Correlation; 2005; pp 12–13. https://doi.org/10.1002/0470013192.bsa 485.
- (2) Singhal, R.; Rana, R. Chi-square test and its application in hypothesis testing. *Journal of the Practice of Cardiovascular Sciences* **2015**. https://doi.org/10.4103/2395-5414.157577.
- (3) Soleymani, F.; Masnavi, H.; Shateyi, S. Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique. *Mathematics* **2021**, *9* (1).
- (4) Hamad, R. A.; Kimura, M.; Lundström, J. Efficacy of Imbalanced Data Handling Methods on Deep Learning for Smart Homes Environments. *SN Computer Science* **2020**, *1*, 204. https://doi.org/10.1007/s42979-020-00211-1.
- (5) James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. *Introduction to Statistical Learning*; Springer, 2023.
- (6) Géron, A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras e Tensorflow; O'Rilley, 2021.