

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu Academic Year: 2021-22 (Even)

SET- C

Test: CLAT-1

Date: 08-04-2022

Course Code & Title: 18ECE322T Optoelectronics

Duration: 8:00 -9:00AM

Year & SEM: II year/ 4th SEM Max. Marks: 25

Course Articulation Matrix:

18	ECE322T – Optoelectronics	Course Articulation Matrix															
			Lea	rniı	ng		Program Learning Outcome										
		E -				Grad	uate	Att	ribu	ites	(GA)			(PSO)		
												1	1	1			
	Course learning Outcome		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
	Define the basic concepts of	1															
	optics and semiconductor																
CLO1	optics		3														1
	Demonstrate the working	3															
	principle of various photonic																
CLO2	sources and display devices		3	3		2											3
	Analyse the principle and	4															
	operation of various detectors																
CLO3	and noise associated with it			3	2												3
	Interpret the various	3															
	optoelectronic modulators,																
CLO4	switches and interconnects		3	2	3	3											2
	Apply the concepts of	3															
	integrated optoelectronic																
	components and its																
CLO5	applications in various fields		3		3	3											3

	Part – A (5 x 1 = 5 Marks) Instructions: Answer all							
Q.	Question	Marks	BL	CO	PO	PI		
No						Code		
1	The phase velocity of an electromagnetic wave is	1	1	1	1	1.4.1		
	proportional toOptical diffraction							
	A. Propagation constant (k)							
	B. Frequency							
	C. Permittivity							
	D. Refractive index of the medium (n)							
2	A surface over which the phase of a wave is constant is 1 2 1 1 1.4.1							
	referred as .							

	A. Wave front					
	B. Grating					
	C. Polarization					
	D. Numerical Aperture					
3	Bragg diffraction condition is	1	1	1	1	1.4.1
	A. $m*\lambda=2d*\sin\theta$					
	B. $m*\lambda=d*\cos\theta$					
	C. $m*\lambda=(d/2)*\sin\theta$					
	D. $m*\lambda=d*\sin\theta$					
4	GaAs has a band gap of 1.43 eV, which corresponds to a	1	2	1	1	1.4.1
	value for λg of					
	A. 867 nm					
	B. 950 nm					
	C. 1105 nm					
	D. 1550 nm					
5	A junction between two different semiconductor crystals	1	2	1	1	1.4.1
	with different band gaps is called					
	A. Homo junction					
	B. Hetero junction					
	C. Alloy junction					
	D. Quantum well junction					
	$Part - B (2 \times 10 = 20 \text{ Marks})$	/				
	Instructions: Answer any two Quest		_			
6	Derive the mean lifetime of electron under different	10	3	1	1	1.4.1
	illumination condition using the principle of recombination					
	and generation.					
7	Illustrate the principle of diffraction using single slit	10	3	1	1	1.4.1
	experiment.					
8	(a) Discuss the terms refractive index and propagation	10	3	1	1	1.4.1
	constant. State the relation between these two					
	parameters.					
	(b) Using the Cauchy coefficients for diamond, calculate					
	the refractive index at 610 nm. The Cauchy coefficients					
	for diamond are $n_{-2} = -1.07X10^{\circ}-5$, $n_0 = 2.378$, $n_2 = 0.01X100^{\circ}$					
	8.01X10^-3, n ₄ = 1.04X10^-4. (5+5)					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Course Coordinator

Evaluation Sheet

Name of the Student:

Register No.:

	Part- A $(5x 1= 5 Marks)$						
Q. No	CO/P	Marks Obtained	Total				
	O						
1	1						
2	1						
3	1						
4	1						
5	1						
	P	art- B(2 x 10= 20 Ma	rks)				
6	1						
7	1						
8	1						

Consolidated Marks:

CO	Marks Scored
1	
Total	

Signature of the Course Teacher

SRM Institute of Science and Technology College of Engineering and Technology

 $\begin{array}{c} \textbf{DEPARTMENT OF ECE} \\ \textbf{SRM Nagar, Kattankulathur} - 603203, \textbf{Chengalpattu District, Tamil Nadu} \end{array}$ Academic Year: 2021-22 (Even)

SET- D

Test: CLAT-1 Date: 08-04-2022

Course Code & Title: 18ECE322T Optoelectronics Duration: 8:00 -9:00 AM

Year & SEM: II year/ 4th SEM Max. Marks: 25

Course Articulation Matrix:

18	ECE322T – Optoelectronics	Course Articulation Matrix															
			Lea	arniı	ng		Program Learning Outcome										
		Е				Grad	uate	Att	ribu	ites	(GA)			(PSO)		
	Occurs have to a October	_		_	•		_	_	_			1	1	1		2	
	Course learning Outcome		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
	Define the basic concepts of	1															
	optics and semiconductor																
CLO1	optics		3														1
	Demonstrate the working	3															
	principle of various photonic																
CLO2	sources and display devices		3	3		2											3
	Analyse the principle and	4															
	operation of various detectors																
CLO3	and noise associated with it			3	2												3
	Interpret the various	3															
	optoelectronic modulators,																
CLO4	switches and interconnects		3	2	3	3											2
	Apply the concepts of	3															
	integrated optoelectronic																
	components and its																
CLO5	applications in various fields		3		3	3											3

	$Part - A (5 \times 1 = 5 \text{ Marks})$						
	Instructions: Answer all						
Q.	Question	Mark	В	CO	PO	PI	
No		S	L			Code	
1	Brewster's angle is also known as	1	1	1	1	1.4.1	
	A. Refracted angle						
	B. Snell's angle						
	C. Diffracted angle						
	D. Polarisation angle						

	T						
2	According to Malus law, the intensity of polarised light	1	2	1	1	1.4.1	
	emerging through the analyzer varies						
	A. $I = I_o Cos^{(2)}\theta$						
	B. $I = I_o Sin^{(2)}\theta$						
	C. $I = I_o Cos\theta$						
	D. $I = I_0/2Cos^2(2)\theta$						
3	Interference pattern of light and dark bands on screen is	1	1	1	1	1.4.1	
	called						
	A. Fringes						
	B. Diffraction						
	C. Reflection						
	D. Dark light						
4	If 'Rr' denotes radiative recombination rate per unit volume	1	2	1	1	1.4.1	
	and ' Δ n' denotes excess electron concentration, then radiative						
	lifetime is expressed as						
	A. Δn/Rr						
	B. $\Delta n+1/Rr$						
	C. Δn/Rr+Rnr						
	D. Δn+Rnr/Rr						
5	The measurement of refractive index of a material by	1	2	1	1	1.4.1	
	Sellmeier equation isthan Cauchy's						
	Equation.						
	A. Less accurate in visible region						
	B. Less accurate in Infrared region						
	C. More accurate in Infrared region						
	D. More accurate in UV region						
	Part - B (2 x 10 = 20 Marks		•	•		•	
	Instructions: Answer any two Quest	ions					
6	(a) Describe in details about the principle of polarization by	10	3	1	1	1.4.1	
	reflection						
	(b) An optical fibre made up the glass with refractive index						
	$n_1 = 1.5$ which is surrounded by another glass of refractive						
	index n ₂ . Find the refractive index n ₂ of the cladding such						
	that the critical angle between the two cladding is 80°.						
	(c) Find the refractive index of the medium whose critical						
	angle is 40°. (4+3+3)						
7	Illustrate the principle of interference using double slit	10	3	1	1	1.4.1	
	experiment.						
8	(a). classify the materials in terms of energy gap	10	3	1	1	1.4.1	
	(b). In details discuss about the various types of						
	semiconductor material and their band diagram (5+5)						

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Course Coordinator

Evaluation Sheet

Name of the Student:

Register No.:

	Part- A $(5x 1= 5 Marks)$						
Q. No	CO/P	Marks Obtained	Total				
	0						
1	1						
2	1						
3	1						
4	1						
5	1						
	P	art- B(2 x 10= 20 Ma	rks)				
6	1						
7	1						
8	1						

Consolidated Marks:

CO	Marks Scored
1	
Total	

Signature of the Course Teacher