Discussion #3

Elena, Diwanshu

June 24, 2020

Outline

- SQL
- Relational Algebra

What is SQL?

- stands for <u>S</u>tructured <u>Q</u>uery <u>L</u>anguage
- the most widely used database language
- used to **query** and **manipulate** the data

Create a table

```
To create a new table:
CREATE TABLE < name > (
    <attribute1>,
    <attribute2>,
```

- Name of table: Author
- Attributes: authorid, firstname, lastname
- Primary Key: authorid

Populating a table

- To insert a single tuple:

INSERT INTO < relation >

VALUES(< list of values >);

```
INSERT INTO Author
VALUES(001, 'Dan', 'Brown');
```

Selection query

To select specific tuples from a table or more:

SELECT <attributes list>
FROM <one or more tables>
WHERE <conditions on the tables>

- **Example:** What is the population of USA?

Delete from a table

- To delete tuples satisfying a condition from some relation:

```
DELETE FROM <relation>
WHERE <condition>;
```

- Example:

DELETE FROM Order

```
WHERE orderid = 123987;
```

Update a tuple in a table

To change certain attributes in certain tuples of a relation:

```
UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;
```

- Example:

UPDATE Order

SET product ='avocado'

WHERE orderid = 900899;

Query with Order By

- Use ORDER BY to order the tuples by the attribute we specify in decreasing (DESC) or increasing order (ASC)
- **Example:** Write a query that will return the order ids and the prices of all the orders with price higher than 100\$ in decreasing order.

SELECT orderid, price

FROM Order

WHERE price > 100

ORDER BY price **DESC**;

Query with Aggregations

- SUM, AVG, COUNT, MIN, MAX can be applied to a column in a SELECT clause to produce that aggregation on that column
- Examples:
 - Find the average number of the population of European countries

```
SELECT AVG(Population)

FROM Country

WHERE Continent = 'Europe';
```

- Find the number of employees with age between 30 and 40 and salary greater than 30.000\$

```
SELECT COUNT(*)
FROM Employees
WHERE age >= 30 AND age<=40 AND salary > 30.000
```

Query with Group By (1)

- We may follow a SELECT-FROM-WHERE expression by GROUP BY and a list of attributes
- The relation is then grouped according to the values of those attributes, and any aggregation is applied only within each group
- Example: Write a query that returns for each continent the number of the countries.

SELECT Continent, COUNT(*)
FROM Country
GROUP BY Continent

Query with Group By (2)

SELECT A, SUM(B*C) FROM R GROUP BY A;

Queries with Multiple Relations

- We often want to combine data from more than one relation
- We can address several relations in one query by listing them all in the FROM clause
- If two attributes from different relations have the same name, we can distinguish them by writing <relation>.<attribute>

Query with Inner Join (1)

What is the name of the countries that speak Greek?

SELECT Country.Name

FROM Country INNER JOIN CountryLanguage

ON Country.Code = CountryLanguage.CountryCode

WHERE CountryLanguage.Language = 'Greek';

SELECT C.Name

FROM Country AS C INNER JOIN CountryLanguage AS L

ON C.Code = L.CountryCode

WHERE L.Language = 'Greek';

Inner Join 1st syntax

SELECT C.Name

OR

FROM Country AS C, CountryLanguage AS L

WHERE C.Code = L.CountryCode

AND L.Language = 'Greek';

Inner Join 2nd syntax

Query with Inner Join (2)

SELECT R.D FROM R INNER JOIN S ON R.A = S.B WHERE S.C = 'e';

Left Outer Join

- A left outer join includes tuples form the left relation even there is no match on the right.
- It fills the remaining attributes with NULL

Example - Bank

T1

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

T2

account_number	user_id
ABZ-123	U1
SDF-989	U2
WER-567	U2
RTY-095	U3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 1

Write an SQL query that returns all the account_numbers with balance more

than 300.00.

Τ1

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 1- Answer

Write an SQL query that returns all the account_numbers with balance more than 300.00.

RTY-095

SELECT account_number
FROM T1
WHERE ballance > 300.00;

acco	ount_number
,	SDF-989
١	NER-567
	RTY-095

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00

750.00

T1

account_number	user_id
ABZ-123	U1
SDF-989	U2
WER-567	U2
RTY-095	U3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 2

Write an SQL query that returns the average age of all the clients.

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

_	
	-

T2 account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 2 - Answer

Write an SQL query that returns the average age of all the clients.

SELECT AVG(age) **AS** average **FROM** T3;

average

36

T1

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
ornative several processors	noncons mate
WER-567	360.00
RTY-095	750.00

T2		
account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 3

Write an SQL query that returns account numbers, first/last names & ages of all clients with age less than 50 in decreasing order based on the age.

	1

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

	TO.
	12

account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

T3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 3- Answer

Write an SQL query that returns account numbers, first/last names & ages of all clients with age less than 50 in decreasing order based on the age.

SELECT T2.account_number, T3.first_name, T3.last_name, T3.age

FROM T2 INNER JOIN T3

ON T2.user_id = T3.user_id

WHERE T3.age < 50

ORDER BY T3.age **DESC**;

account_number	first_name	last_name	age
ABZ-123	Mark	Brown	34
SDF-989	Sarah	Johnson	21
WER-567	Sarah	Johnson	21

T1		
account_number	ballance	
ABZ-123	230.00	
SDF-989	450.00	
WER-567	360.00	
RTY-095	750.00	

T2		
account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

		١٥	
user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

TQ

Query 4

Write an SQL query that for every user it returns the total balance of all the accounts that she/he has.

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

T2 account_number	user_id
ABZ-123	U1
SDF-989	U2
WER-567	U2
RTY-095	U3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 4 - Answer

Write an SQL query that for every user it return user_id & the total balance of all the accounts that she/he has.

SELECT T2.user_id AS user_id , SUM(T1.balance) AS total_balance
FROM T1 INNER JOIN T2
ON T1.account_number =T2.account_numer
GROUP BY T2.user_id

user_id	total_balance	
U1	230.00	
U2	810.00	
U3	750.00	

T1		
account_number	ballance	
ABZ-123	230.00	
SDF-989	450.00	
WER-567	360.00	
RTY-095	750.00	

T2		
account_number	user_id	
ABZ-123	U1	
SDF-989	U2	
WER-567	U2	
RTY-095	U3	

		13	
user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 5 - Extra Example

Write an SQL query that for every user it returns hers/his first/last name and the total balance of all the accounts that she/he has.

T1

account_number	ballance
ABZ-123	230.00
SDF-989	450.00
WER-567	360.00
RTY-095	750.00

T2 account_number	user_id
ABZ-123	U1
SDF-989	U2
WER-567	U2
RTY-095	U3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Query 5 - Extra Example Answer

Write an SQL query that for every user it returns hers/his first/last name and the total balance of all the accounts that she/he has.

SELECT T3.first_name **AS** firstname, T3.last_name as lastname, **SUM(**T1.ballance) **AS** total_balance

FROM T1 INNER JOIN T2

ON T1.account number =T2.account numer

INNER JOIN T3

ON T2.user id = T3.user id

GROUP BY T2.user id, T3.first name, T3.last name

firstname	lastname	total_balance
Mark	Brown	230.00
Sarah	Johnson	810.00
Sarah	Johnson	750.00

T1

1.1			
account_number	ballance		
ABZ-123	230.00		
SDF-989	450.00		
WER-567	360.00		
RTY-095	750.00		

T2 account_number	user_id
ABZ-123	U1
SDF-989	U2
WER-567	U2
RTY-095	U3

user_id	first_name	last_name	age
U1	Mark	Brown	34
U2	Sarah	Johnson	21
U3	Betty	Mcgrath	53

Relational Algebra

- 'Algebra':
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

Relational Algebra:

- An algebra whose operands are relations or variables that represent relations.
- Mainly provides theoretical foundation for relational databases and SQL.

At a glance

- Union (∪), intersection (∩), and difference (-)
 - Usual set operations, but both operands must have the same relation schema.
- Selection (σ)
 - o picking certain rows.
- Projection (Π)
 - picking certain columns.
- Products (x) and joins (⋈)
 - o compositions of relations.
- Renaming of relations and attributes (ρ) .

Theta Join

A join that involves a predicate

Notation: $R1\bowtie_{\theta}R2$, where θ is a condition.

Input schemas: R1(A1,...,An),

R2(B1,...,Bm)

Output schema: S(A1,...,An,B1,...,Bm)

Derived operator:

$$R1\bowtie_{\theta}R2 = \sigma_{\theta}(R1 \times R2)$$

θ: '=' refers to as Equi-Join.

Sells

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Coors	3.00
1		ı

Bars

name	addr
Joe's	Maple St.
Sue's	River Rd.

BarInfo = Sells

Bar

BarInfo

	_			
bar	beer	price	name	addr
Joe's	Bud	2.50	Joe's	Maple St.
doe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

•63

Natural Join

The natural join connects two relations by:

- Equating attributes of the same name, and
- Projecting out one copy of each pair of equated attributes.

Denoted R3 := R1⋈R2

Employee		
Name	SSN	
John	99999999	
Tony	77777777	

Dependents		
SSN	Dname	
99999999	Emily	
77777777	Joe	

Employee Dependents =

 $\Pi_{\text{Name, SSN, } \text{-}Dname}(\sigma_{\text{ SSN=SSN2}}(\text{Employee x } \rho_{\text{SSN2, } \text{-}Dname}(\text{Dependents}))$

Name	SSN	Dname
John	999999999	Emily
Tony	77777777	Joe

•65

Inner Join: Natural Join, Theta Join, Equi-Join

Outer Join

An extension of the join operation that avoids loss of information.

loan

loan-number	branch-number	amount
1234	001	3000
3421	002	4000
9987	012	1700

Computes the join and then adds tuples from one relation that does not match tuples in the other relation to the result of the join.

borrower

customer-id	loan-number
201	1234
304	3421
425	2342

Inner Join

loan ⋈ Borrower

loan-number	branch-id	amount	customer-name
1234	001	3000	201
3421	002	4000	304

Right Outer Join:

 $loan \bowtie borrower$

	loan-number	branch-id	amount	customer-id
e.	1234	001	3000	201
	3421	002	4000	304
	2342	null	null	425

· Left Outer Join

loan → borrower | 1234 | 3421 | 9987 |

loan-number	branch-name	amount	customer-id
1234	001	3000	201
3421	002	4000	304
9987	012	1700	null

Full Outer Join

loan ™borrower

loan-number	branch-id	amount	customer-id
1234	001	3000	201
3421	002	4000	304
9987	012	1700	null
2342	null	null	425

Precedence Rule

Precedence of relational operators:

- 1. $[\sigma, \pi, \rho]$ (highest)
- 2. [X, ⋈]
- 3. ∩
- 4. [U, -]
- → Use brackets, if you are not sure.

Boat Problem

Sailors (sid, name, rating, age) Boats (bid, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of boats.

- 1. $\Pi_{\text{name}}(\text{Boats})$
- 2. $\sigma_{\text{name}}(\text{Boats})$

Reserves (sid, bid, day)

	, , , , , , , , , , , , , , , , , , , ,		
sid	bid	day	
1	101	10/10/12	
1	102	10/10/12	
1	101	10/7/12	
2	102	11/9/12	
2	102	7/11/12	
3	101	7/11/12	
3	102	7/8/12	
4	103	19/9/12	

Boat Problem

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

		×
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of boats.

- 1. $\Pi_{\text{name}}(\text{Boats})$
- 2. $\sigma_{\text{name}}(\text{Boats})$

Reserves (sid, bid, day)

		• • •
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Boat Problem

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18

bid	name	color		
101	Interlake	blue		
102	Interlake	red		
103	Clipper	green		
104	Marine	red		

Q. List ratings and ages sailors.

25

1. $\Pi_{\text{rating, ages}}(\text{Sailors})$

Julius

2. $\Pi_{\text{rating}}(\text{Sailors}) \cup \Pi_{\text{ages}}(\text{Sailors})$

Reserves (sid, bid, day)

	,	. ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (sid, name, rating, age)

Boats (bid,	name,	col	or)
---------	------	-------	-----	-----

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

		,
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List ratings and ages sailors.

- 1. $\Pi_{\text{rating, ages}}(\text{Sailors})$
- 2. $\Pi_{\text{rating}}(\text{Sailors}) \cup \Pi_{\text{ages}}(\text{Sailors})$

		. ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age)

Boats	(<u>bid</u> ,	name,	col	lor)
-------	----------------	-------	-----	------

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	•
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of sailors who are over 26 years old.

- 1. $\sigma_{age>26}(\Pi_{name}(Sailors))$
- 2. $\Pi_{\text{name}}(\sigma_{\text{age}>26}(\text{Sailors}))$

		• /
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age)

Boats	(<u>bid</u> , name	e, color)
-------	---------------------	-----------

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of sailors who are over 26 years old.

- 1. $\sigma_{age>26}(\Pi_{name}(Sailors))$
- 2. $\Pi_{\text{name}}(\sigma_{\text{age}>26}(\text{Sailors}))$

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of red boats.

1.
$$\sigma_{color = red}(\Pi_{name}(Boats))$$

2.
$$\Pi_{\text{name}}(\sigma_{\text{color} = \text{red}}(\text{Boats}))$$

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of red boats.

1.
$$\sigma_{color = red}(\Pi_{name}(Boats))$$

2.
$$\Pi_{\text{name}}(\sigma_{\text{color} = \text{red}}(\text{Boats}))$$

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Try These!

Q. List ids of boats named Interlake.

Q. List ids of boats reserved on 7/11/12 and 10/11/12.

		• •
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	•
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of sailors who reserved boat 101.

- 1. $\Pi_{\text{name}}(\sigma_{\text{bid} = 101}(\text{Sailors} \bowtie \text{Reserves}))$
- 2. $\Pi_{\text{name}}(\text{Sailors} \bowtie (\sigma_{\text{bid} = 101}(\text{Reserves})))$

	•	
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (sid, name, rating, age)

Boats	(<u>bid</u> ,	name,	col	lor)
-------	----------------	-------	-----	------

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of sailors who reserved boat 101.

- 1. $\Pi_{\text{name}}(\sigma_{\text{bid} = 101}(\text{Sailors} \bowtie \text{Reserves}))$
- 2. $\Pi_{\text{name}}(\text{Sailors} \bowtie (\sigma_{\text{bid} = 101}(\text{Reserves})))$

Better?

		• ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	,
name	color
Interlake	blue
Interlake	red
Clipper	green
Marine	red
	Interlake Interlake Clipper

Q. List names of sailors who reserved the blue Interlake.

- 1. $\Pi_{\text{Sailors.name}}(\text{Sailors} \bowtie \sigma_{\text{name} = \text{Interlake}})$ and color = blue (Boats)⋈ Reserves)
- 2. $\Pi_{\text{Sailors.name}}(\sigma_{\text{name = Interlake and color = blue}}(\text{Sailors} \bowtie$ Reserves))

		. ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	•
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of sailors who reserved the blue Interlake.

- 1. $\Pi_{\text{Sailors.name}}(\text{Sailors} \bowtie \sigma_{\text{name}} = \text{Interlake and color} = \text{blue})$ (Boats)⋈ Reserves)
- 2. $\Pi_{\text{Sailors.name}}(\sigma_{\text{name = Interlake and color = blue}})$ (Sailors \bowtie Reserves))

	,	. ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age) Boats (<u>bid</u>, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of boats that were reserved by Julius.

- 1. $\sigma_{\text{Sailors.name}} = Julius (\Pi_{\text{Boats.name}}(\text{Sailors} \bowtie \text{Boats} \bowtie \text{Boats})$ Reserves))
- $\Pi_{\text{Boats.name}}(\sigma_{\text{Sailors.name}} = Julius) (Sailors) \bowtie Boats \bowtie$ Reserves))

		• ,
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age)

Boats (<u>pid</u> , name,	CO	lor)
---------	--------------------	----	------

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

	•	
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List names of boats that were reserved by Julius.

- 1. $\sigma_{\text{Sailors.name} = \text{Julius}} (\Pi_{\text{Boats.name}}(\text{Sailors} \bowtie \text{Boats} \bowtie \text{Reserves}))$
- 2. $\Pi_{\text{Boats.name}}(\sigma_{\text{Sailors.name = Julius}}(\text{Sailors}) \bowtie \text{Boats} \bowtie \text{Reserves}))$

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age)

Boats	(<u>bid</u> ,	name,	col	or)	
-------	----------------	-------	-----	-----	--

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

		,
bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List days on which some sailor with rating higher than 6 was at sea.

- 1. $\Pi_{day}(\sigma_{rating > 6} (Sailors) \bowtie Reserves))$
- 2. $\Pi_{day}(\sigma_{rating > 6} (Sailors) \bowtie Boats \bowtie Reserves))$

		• /
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Sailors (<u>sid</u>, name, rating, age)

Boats	(<u>bid</u> ,	name,	col	or)
--------------	----------------	-------	-----	-----

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Q. List days on which some sailor with rating higher than 6 was at sea.

- 1. $\Pi_{day}(\sigma_{rating > 6} (Sailors) \bowtie Reserves))$
- 2. $\Pi_{day}(\sigma_{rating > 6} \text{ (Sailors)} \bowtie Boats \bowtie Reserves))$

Better?

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

Music Album Problem

Q. List the titles and length of all songs written by swiss artists (nationality) in 2000.

A.
$$\Pi_{\text{title, length}}(\sigma_{\text{writtenYear}=2000} \text{ (song)})$$

Which with the sum of title in the sum of the sum of title in the sum of the sum of title in the sum o

song

title	length	writtenBy	writtenYear
De Charybde en Scylla	5:35	Louis Sclavis	2008
Un Vent Noir	3:40	Louis Sclavis	2008
Standing Ovation	4:26	Louis Sclavis	1995
moto [ein weltbewusstsein.]	6:00	Michael Wertmueller	2000

songInAlbum

song	album	trackNumber
De Charybde en Scylla	Lost on the Way	1
Un Vent Noir	Lost on the Way	9
Standing Ovation	Carnet De Routes	1
moto [ein weltbewusstsein.]	Werthmueller	4

album

aTitle	releaseYear	producedBy	playedBy
Lost on the Way	2008	ECM	Louis Sclavis
Carnet de Routes	1995	Label Blue	Louis Sclavis
Werthmueller	2005	GROB	Steamboat Switzerland

artist

name	nationality
Louis Sclavis	french
Steamboat Switzerland	swiss
Michael Wertmueller	swiss

label

name	revenue
Sony	50,000,000
ECM	3,000,000
Label Bleu	150,000
GROB	10,000

Music Album Problem

Q. List the names of labels that produced at least one album in 2005.

A.
$$\Pi_{\text{name}}(\sigma_{\text{releaseYear}=2005} \text{ (album)}$$

 $\bowtie_{\text{producedBy = name}} \text{label})$

song

title	length	writtenBy	writtenYear
De Charybde en Scylla	5:35	Louis Sclavis	2008
Un Vent Noir	3:40	Louis Sclavis	2008
Standing Ovation	4:26	Louis Sclavis	1995
moto [ein weltbewusstsein.]	6:00	Michael Wertmueller	2000

songInAlbum

song	album	trackNumber
De Charybde en Scylla	Lost on the Way	1
Un Vent Noir	Lost on the Way	9
Standing Ovation	Carnet De Routes	1
moto [ein weltbewusstsein.]	Werthmueller	4

album

aTitle	releaseYear	producedBy	playedBy
Lost on the Way	2008	ECM	Louis Sclavis
Carnet de Routes	1995	Label Blue	Louis Sclavis
Werthmueller	2005	GROB	Steamboat Switzerland

artist

name	nationality
Louis Sclavis	french
Steamboat Switzerland	swiss
Michael Wertmueller	swiss

label

name	revenue
Sony	50,000,000
ECM	3,000,000
Label Bleu	150,000
GROB	10,000

Music Album Problem

Q. List labels that have not released (producedBy) any albums by swiss artists.

ans
$$\leftarrow \pi_{\text{name}}(\text{label})$$
 - swissL

Try forming swissL.

song

title	length	writtenBy	writtenYear
De Charybde en Scylla	5:35	Louis Sclavis	2008
Un Vent Noir	3:40	Louis Sclavis	2008
Standing Ovation	4:26	Louis Sclavis	1995
moto [ein weltbewusstsein.]	6:00	Michael Wertmueller	2000

songInAlbum

song	album	trackNumber
De Charybde en Scylla	Lost on the Way	1
Un Vent Noir	Lost on the Way	9
Standing Ovation	Carnet De Routes	1
moto [ein weltbewusstsein.]	Werthmueller	4

album

aTitle	releaseYear	producedBy	playedBy
Lost on the Way	2008	ECM	Louis Sclavis
Carnet de Routes	1995	Label Blue	Louis Sclavis
Werthmueller	2005	GROB	Steamboat Switzerland

artist

name	nationality
Louis Sclavis	french
Steamboat Switzerland	swiss
Michael Wertmueller	swiss

label

name	revenue
Sony	50,000,000
ECM	3,000,000
Label Bleu	150,000
GROB	10,000

SELECT theater, time

FROM Schedule

WHERE title = 'Shrek' AND time >= '15:00:00'

Q. Convert in RA.

A.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

SELECT theater, time

FROM Schedule

WHERE title = 'Shrek' AND time >= '15:00:00'

Q. Convert in RA.

A. $\Pi_{\text{theater, time}}(\sigma_{\text{title = 'Shrek' and time}})$ (Schedule))

Meaning: List the theater name and time where I can see the movie "Shrek" after 3pm.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

SELECT Producer

FROM Produced

WHERE title IN (SELECT title

FROM MOVIES EXCEPT

SELECT title FROM Schedule)

Q. Convert in RA.

Α.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

SELECT Producer

FROM Produced

WHERE title IN (SELECT title

FROM MOVIES EXCEPT

SELECT title FROM Schedule)

Q. Convert in RA.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

Liked(Spectator, Title)

A. $\Pi_{\text{producer}}(\text{Produced} \bowtie (\Pi_{\text{title}}(\text{Movies}) - \Pi_{\text{title}}(\text{Schedule})))$

Meaning: List the producers who produced a movie that does not appear in a theater.

SELECT Spectator

FROM (SELECT Spectator, Title

FROM Liked EXCEPT

SELECT Spectator, Title

FROM See)

Q. Convert in RA.

Α.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

SELECT Spectator

FROM (SELECT Spectator, Title

FROM Liked EXCEPT

SELECT Spectator, Title

FROM See)

Q. Convert in RA.

A. $\Pi_{\text{Spectator}}(\text{Liked - See})$

Meaning: List people who liked movies that they have not seen.

Schedule(Theater, Title, Time)

Movies(Title, Director, Actor)

Produced(Producer, Title)

See(Spectator, Title)

Thanks!