Non-invasive

Breast Tumor

Diagnosis in Machine Learning

Olivia Fan & Alicia Gong

1. Introduction

Background

Breast cancer is the most common cancer worldwide. Each year in the US, about 264,000 cases of breast cancer are diagnosed in women and about 2,400 in men.

In clinical ontology, to diagnose breast cancer, doctors usually perform morphimetric analysis of mammographic images of breast masses.

However, diagnosing cancer is a challenging task even for the most experienced ontologist...

Why important? To increase survival rate and relieve patients' suffering!

Aim and Data

We aimed to build machine learning models to predict the breast cancer diagnosis, understanding the importance of different predictors, to assist doctors to make decisions.

We decided to build: 1. LASSO Penalized Logistic model; 2. SVM model; 3. Random Forest model.

We used the dataset from Breast Cancer Wisconsin (Diagnostic) Data Set. The dataset contains diagnosis results and features of the cell nuclei computed from a digitized image of a fine needle aspirate (FNA) of a breast mass for 568 patients.

We partitioned 70% of the original data into training set, and 30% into test set.

Models

01

LASSO Penalized Logistic 02

SVM

03

Random Forest

2. Exploratory Data Analysis

- Correlation between predictors
- Separating hyperplane
- Distribution by diagnosis type

EDA (Cont.)

Correlation

- Based on the correlation matrix, we have several major observations:
- Radius_mean, perimeter_mean, and area_mean are highly correlated.
- Compactness_mean, concavity_mean and concave_points_mean are highly correlated.

Figure 2: Correlation between mean predictors in the dataset

Scatterplot

- Separating Hyperplane
 - Overall linear relationship
 - M associates with higher values in predictors, B with lower values
 - □ ✓ Clear separation
 - → radius_mean and perimeter_mean
 - Mixed
 - texture_mean and symmetry_mean
 - smoothness_mean and fractal_dimension_mean

Figure 3: Scatterplot of mean predictors by malignant (red) and benign (blue) tumors

EDA (Cont.)

Figure 5: Distribution of predictors by diagnosis

3. Methodology

LASSO-Penalized Logistic Regression

- Model selection:
 - ★ texture, smoothness, fractal dimension and symmetry (lack of separation)
 - ☐ **★** Correlated predictors
- Hyperparameter tuning
 - Cross validation
- ☐ Interaction term
 - □ compactness_mean*concave_points_mean

18 15 13 11 7 7 5 4 4 2

Figure 6: LASSO parameter tuning

 $\lambda = 0.001399$

Logistic Model

$$\log(\frac{P}{1-P}) = -10.4871 - 0.1130 \times radius_mean - 33.6480 \times compactness_mean \tag{1}$$

$$+ 14.3918 \times concavity_mean + 19.0997 \times concave_points_mean$$
 (2)

$$+0.0944 \times area_se - 30.3992 \times compactness_se - 31.2549 \times concavity_se$$

$$(3)$$

$$+34.8557 \times concave_points_se + 0.0112 \times radius_worst + 0.0049 \times area_worst$$
 (4)
 $+4.9213 \times compactness_worst + 7.6360 \times concavity_worst + 26.8649 \times concave_points_worst$

$$+4.9213 \times compactness_worst + 7.6360 \times concavity_worst + 26.8649 \times concave_points_worst$$
 (5)

$$+\ 74.5208 \times compactness_mean \times concave_points_mean$$

- radius_mean, compactness_mean, compactness_se negatively associated with response log-odds while others positive
- Most significant:
 - concave_points_se (+)
 - 🖵 compactness_mean (-)

	coefficient
(Intercept)	-10.4871
radius_mean	-0.1130
compactness_mean	-33.6480
concavity_mean	14.3918
concave_points_mean	19.0997
area_se	0.0944
$compactness_se$	-30.3992
concavity_se	-31.2549
concave_points_se	34.8557
radius_worst	0.0112
area_worst	0.0049
compactness_worst	4.9213
concavity_worst	7.6360
concave_points_worst	26.8649
compactness mean:concave points mean	74.5208

(6)

Interaction Term Visualization

- Three fixed levels of compactness_mean
 - Low: 0.01938
 - ☐ Medium: 0.26
 - ☐ High: 0.28670
- Observations:
 - ☐ Effect of concave_points_mean on P changes on different levels of compactness_mean
 - ☐ High → concave_points_mean has strongest effect on P
 - Medium → concave_points_mean has strong effect on P
 - Low → concave_points_mean has weak effect on P

Figure 7: Interaction Term Visualization

	compactness_mean
Min.	0.0193800
1st Qu.	0.0633000
Median	0.0926300
Mean	0.1027247
3rd Qu.	0.1303000
Max.	0.2867000

	concave_points_mean
Min.	0.0000000
1st Qu.	0.0202700
Median	0.0332300
Mean	0.0469293
3rd Qu.	0.0684700
Max.	0.2012000

Prediction

concave_points	_arean_se	compactness_r	saedius_worst	concavity_worst	ncave_points_	vcoustpactness_	mocarcavity_	se concavity_m	earradius_mear	n concave_points_	_searea_worst	compactness_wors	probabilities	predicted_class
0.1471	153.40	0.0490	25.38	0.7119	0.2654	0.2776	0.0537	0.3001	17.99	0.0159	2019.0	0.6656	1.0000	M
0.0702	74.08	0.0131	24.99	0.2416	0.1860	0.0786	0.0186	0.0869	20.57	0.0134	1956.0	0.1866	1.0000	M
0.0935	24.32	0.0350	15.49	0.5390	0.2060	0.1932	0.0355	0.1859	13.00	0.0123	739.3	0.5401	0.9821	M
0.0803	19.21	0.0594	15.03	0.6943	0.2208	0.2293	0.0550	0.2128	13.73	0.0163	697.7	0.7725	0.9757	M
0.0526	45.40	0.0116	19.07	0.2914	0.1609	0.0720	0.0200	0.0740	14.68	0.0111	1138.0	0.1871	0.9913	M
0.1028	54.18	0.0250	20.96	0.4784	0.2073	0.2022	0.0319	0.1722	16.13	0.0130	1315.0	0.4233	0.9998	M
0.0950	112.40	0.0189	27.32	0.5372	0.2388	0.1027	0.0339	0.1479	19.81	0.0152	2398.0	0.3150	1.0000	M
0.0311	14.67	0.0190	14.50	0.1890	0.0728	0.1270	0.0170	0.0457	13.08	0.0065	630.5	0.2776	0.0021	В
0.0773	93.54	0.0272	21.31	0.3446	0.1490	0.1066	0.0508	0.1490	18.61	0.0191	1403.0	0.2117	1.0000	M
0.0518	41.00	0.0341	16.82	0.6956	0.1546	0.1516	0.0420	0.1218	11.84	0.0104	888.7	0.5775	0.9942	M
0.0775	35.03	0.0287	20.21	0.5274	0.1864	0.1559	0.0266	0.1354	16.13	0.0091	1261.0	0.5804	0.9991	M
0.0560	24.91	0.0300	15.89	0.5186	0.1447	0.1098	0.0482	0.1319	14.25	0.0116	799.6	0.4238	0.8815	M

Prediction Accuracy = 0.9883

- Patient in row 1: 100% probability of being diagnosed as malignant cancer
- Patient in row 5 to last: 0.2089% probability of being diagnosed as malignant
- Patient in last row: 88.1% probability of being diagnosed as malignant

Model 2: SVM

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear cost: 5

Number of Support Vectors: 48

(24 24)

Number of Classes: 2

Linear Kernel

- **Radial Kernel**
- Predictors selected by LASSO-penalized logistic regression
- ☐ Hyperparameter tuning via 10-fold cross validation
- ☐ Cost from 0.001 to 100
 - ☐ Optimal cost = 5
- Misclassification% = 0.02924

- Cost from 0.001 to 1000, gamma from 0.5 to 4
 - Optimal cost = 1, gamma=0.5
- → Misclassification% = 0.02924

predict/truth	-1	1
-1	96	3
1	2	70

predict/truth	-1	1
-1	96	3
1	2	70

1: malignant -1: benign

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial cost: 1

Number of Support Vectors: 186

(106 80)

Number of Classes: 2

Levels: -1 1

SVM Decision Boundary

Linear

Radial

Train ROC

Test ROC

ROC

Diagnosis

- Radial kernel fits more closely on train data, linear performs better on test data
- ☐ Select the SVM model linear kernel
 - Lower variance
 - Better performance on future data

Model 3: Random Forest

```
## Call:
   randomForest(formula = diagnosis_binary ~ concave_points_worst +
                 Type of random forest: classification
##
                       Number of trees: 500
## No. of variables tried at each split: 2
##
          OOB estimate of error rate: 5.04%
## Confusion matrix:
       -1 1 class.error
## -1 251
          7 0.02713178
## 1 13 126 0.09352518
## Confusion Matrix and Statistics
##
            Reference
## Prediction -1 1
          -1965
          1 2 68
##
                 Accuracy : 0.9591
```

Model 3: Random Forest

5. Conclusion

Conclusion

Important factors in differentiating benign hyperplasia from malignant carcinoma:

- Concave point
- Radius, area, perimeter
- Compactness

The ductal carcinoma cells showed higher values for nuclear area, perimeter, diameter, compactness, and concave points when compared to benign hyperplasia.

Conclusion

Concavity: the severity of concave portions of the contour. A high concavity means that the boundary of the cell nucleus has indentations, and thus is rather rough than smooth.

Concave points: the number of concave portions of the contour of the cell nucleus. If the contour contains one real cell, the added concave point separates one cell into two parts.

The odds of malignant diagnosis increases as perimeter, area, radius increases.

Interaction: `compactness_mean:concave_points_mean`

Clinical Evidence

Mild variation in size and shape.

Deformed and increased indentation.

Benign

Malignant

Conclusion

- LASSO-Penalized Logistic: 98.8% accuracy.
- Linear and Radial SVM: 97% accuracy,
- Random Forest: 96% accuracy.

Be careful about the False Negative rate! -For cancer diagnosis, it is much more dangerous to have a high type 2 error than type 1.

The false negative rate in the both the linear and radial SVM is: 0.041, and in the RF is: 0.068. Therefore, we decided that SVM is a better classification model than RF in this case.

Limitation and Future Work

- Few predictors and high multicollinearity.
- Only Wisconsin.
- Potential omitted variables that might cause endogeneity.

References

Centers for Disease Control and Prevention. (2022, September 26). Breast cancer. Centers for Disease Control and Prevention. https://www.cdc.gov/cancer/breast/index.htm

Mayo Foundation for Medical Education and Research. (2022, December 14). Breast cancer. Mayo Clinic.

https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470

Narasimha A, Vasavi B, Kumar HM. Significance of nuclear morphometry in benign and malignant breast aspirates. Int J Appl Basic Med Res. 2013 Jan;3(1):22-6. doi: 10.4103/2229-516X.112237. PMID: 23776836; PMCID: PMC3678677.

Wolberg WH, Street WN, Mangasarian OL. Importance of nuclear morphology in breast cancer prognosis. Clin Cancer Res. 1999;5:3542–8.