RL: Introduction

What drives us?

Marius Lindauer

Winter Term 2021

AutoML: Hyperparameters of an SVM

Degree of the polynomial kernel function ('poly'), Ignored by all other kernels,

Definition

Let

 \blacktriangleright λ be the hyperparameters of an ML algorithm $\mathcal A$ with domain Λ ,

Definition

- $ightharpoonup \lambda$ be the hyperparameters of an ML algorithm ${\mathcal A}$ with domain Λ ,
- lackbox \mathcal{D}_{opt} be a dataset which is split into $\mathcal{D}_{\mathrm{train}}$ and $\mathcal{D}_{\mathrm{val}}$

Definition

- $ightharpoonup \lambda$ be the hyperparameters of an ML algorithm ${\mathcal A}$ with domain Λ ,
- lackbox \mathcal{D}_{opt} be a dataset which is split into $\mathcal{D}_{ ext{train}}$ and $\mathcal{D}_{ ext{val}}$
- $lackbox{c}(\mathcal{A}_{\pmb{\lambda}},\mathcal{D}_{train},\mathcal{D}_{valid})$ denote the cost of $\mathcal{A}_{\pmb{\lambda}}$ trained on $\mathcal{D}_{\text{train}}$ and evaluated on \mathcal{D}_{val} .

Definition

Let

- $ightharpoonup \lambda$ be the hyperparameters of an ML algorithm ${\mathcal A}$ with domain Λ ,
- $\blacktriangleright~\mathcal{D}_{opt}$ be a dataset which is split into $\mathcal{D}_{\text{train}}$ and \mathcal{D}_{val}
- $\blacktriangleright \ c(\mathcal{A}_{\pmb{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid}) \ \text{denote the cost of} \ \mathcal{A}_{\pmb{\lambda}} \ \text{trained on} \ \mathcal{D}_{\text{train}} \ \text{and evaluated on} \ \mathcal{D}_{\text{val}}.$

The *hyper-parameter optimization (HPO)* problem is to find a hyper-parameter configuration that minimizes this cost:

$$\pmb{\lambda}^* \in \mathop{\arg\min}_{\pmb{\lambda} \in \pmb{\Lambda}} c(\mathcal{A}_{\pmb{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid})$$

Reason I: AutoML for RL

- ▶ RL algorithms also have many hyperparameters
- ▶ Deep RL depends on the network architecture used
- → Performance of RL depends on both [Henderson et al. 2019], [Engstrom et al. 2020]

Reason I: AutoML for RL

- ▶ RL algorithms also have many hyperparameters
- ▶ Deep RL depends on the network architecture used
- → Performance of RL depends on both [Henderson et al. 2019], [Engstrom et al. 2020]
- Hard to apply AutoML to RL because
 - ▶ RL agents need a long time to really start learning
 - lacktriangle Learning of RL agents is very noisy \leadsto very noisy signal for AutoML

▶ Often we assume that an algorithm runs with some single settings

- ▶ Often we assume that an algorithm runs with some single settings
- ▶ But some settings, e.g., learning rate, have to be dynamically adapted

- ▶ Often we assume that an algorithm runs with some single settings
- ▶ But some settings, e.g., learning rate, have to be dynamically adapted

Definition

Let

lacktriangle $oldsymbol{\lambda}$ be a hyperparameter configuration of an algorithm \mathcal{A} ,

- ▶ Often we assume that an algorithm runs with some single settings
- ▶ But some settings, e.g., learning rate, have to be dynamically adapted

Definition

- $ightharpoonup \lambda$ be a hyperparameter configuration of an algorithm \mathcal{A} ,
- $\blacktriangleright \ p(\mathcal{D})$ be a probability distribution over datasets $\mathcal{D} \in \mathbf{D}$,

- ▶ Often we assume that an algorithm runs with some single settings
- But some settings, e.g., learning rate, have to be dynamically adapted

Definition

- $ightharpoonup \lambda$ be a hyperparameter configuration of an algorithm \mathcal{A} ,
- $lackbox{} p(\mathcal{D})$ be a probability distribution over datasets $\mathcal{D} \in \mathbf{D}$,
- $\blacktriangleright \ s_t$ be a state description of $\mathcal A$ solving $\mathcal D$ at time point t,

- ▶ Often we assume that an algorithm runs with some single settings
- But some settings, e.g., learning rate, have to be dynamically adapted

Definition

- $ightharpoonup \lambda$ be a hyperparameter configuration of an algorithm \mathcal{A} ,
- $lackbox{} p(\mathcal{D})$ be a probability distribution over datasets $\mathcal{D} \in \mathbf{D}$,
- $ightharpoonup s_t$ be a state description of $\mathcal A$ solving $\mathcal D$ at time point t,
- $ightharpoonup c: \ imes \mathbf{D} o \mathbb{R}$ be a cost metric assessing the cost of a conf. policy $\pi \in \Pi$ on $\mathcal{D} \in \mathbf{D}$

- Often we assume that an algorithm runs with some single settings
- But some settings, e.g., learning rate, have to be dynamically adapted

Definition

Let

- $ightharpoonup \lambda$ be a hyperparameter configuration of an algorithm \mathcal{A} ,
- $lackbox{}{} p(\mathcal{D})$ be a probability distribution over datasets $\mathcal{D} \in \mathbf{D}$,
- $\blacktriangleright \ s_t$ be a state description of $\mathcal A$ solving $\mathcal D$ at time point t,
- $c: \times \mathbf{D} \to \mathbb{R}$ be a cost metric assessing the cost of a conf. policy $\pi \in \Pi$ on $\mathcal{D} \in \mathbf{D}$

the dynamic algorithm configuration problem (DAC) is to obtain a configuration policy $\pi^*: s_t \times \mathcal{D} \mapsto \pmb{\lambda}$ by optimizing its cost across a distribution of datasets:

$$\pi^* \in \operatorname*{arg\,min}_{\pi \in} \int_{\mathbf{D}} p(\mathcal{D}) c(\pi, \mathcal{D}) \, \mathrm{d}\mathcal{D}$$

RL for Dynamic Algorithm Configuration

- \sim We learn π via RL!
- ▶ We showed that:
 - ▶ Dynamic Algorithm Configuration can be formulated as a RL problem [Biedenkapp et al. 2020]
 - Heuristics of planning solvers can be automatically and dynamically selected [Speck et al. 2020]
 - We can use a teacher (i.e., existing heuristics) to efficiently learn step size settings of CMA-ES [Shala et al. 2020]
 - ▶ We can speed up learning by repeating actions [Biedenkapp et al. 2020]
 - ▶ We can speed up learning by learning an efficient schedule of task instances [Eimer et al. 2020]