

EG3029 Chemical Thermodynamics

Tutorial 8

Problem 1:

Develop expressions for the mole fractions of reacting species as functions of the reaction coordinate for:

a) A system initially containing 2 mol NH₃ and 5 mol O₂ and undergoing the reaction:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

b) A system initially containing 3 mol H₂S and 5 mol O₂ and undergoing the reaction:

$$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$$

c) A system initially containing 3 mol NO_2 , 4 mol NH_3 and 1 mol N_2 and undergoing the reaction:

$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$$

Problem 2:

Give the equation for the stoichiometric combustion of 1 mol of a general hydrocarbon, C_xH_y , with oxygen to carbon dioxide and water and develop expressions for the gas phase mole fractions of each species as a function of the reaction coordinate. Initially, 1 mol C_xH_y and the stoichiometric amount of oxygen for complete conversion are present.

Problem 3:

In a reactor, 2 mol carbon dioxide, 5 mol hydrogen and 1 mol carbon monoxide are mixed and start to undergo the reactions:

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

 $CO_2 + H_2 \rightarrow CO + H_2O$

Develop expressions for the mole fractions of the reacting species as functions of the reaction coordinates for the two reactions.

Academic year 2013/14 1 J. Kiefer