(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年6 月16 日 (16.06.2005)

PCT

(10) 国際公開番号 WO 2005/054339 A1

(51) 国際特許分類⁷: C08G 73/10, C25B 13/08, H01M 8/02

(21) 国際出願番号: PCT/JP2004/018289

(22) 国際出願日: 2004年12月8日(08.12.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2003-409239 2003年12月8日(08.12.2003)

- (71) 出願人(米国を除く全ての指定国について): 国立大 学法人 山梨大学 (UNIVERSITY OF YAMANASHI) [JP/JP]; 〒4008510 山梨県甲府市武田四丁目4番 37号 Yamanashi (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 渡辺 政廣 (WATANABE, Masahiro) [JP/JP]; 〒4000001 山梨県 甲府市和田町 2 4 2 1-8 Yamanashi (JP). 宮武 健治 (MIYATAKE, Kenji) [JP/JP]; 〒4000024 山梨県甲府 市北口 1-9-1 9-3 0 3 Yamanashi (JP). 内田 裕之 (UCHIDA, Hiroyuki) [JP/JP]; 〒4000015 山梨県甲府 市大手一丁目 4-4-1 1 Yamanashi (JP).

- (74) 代理人: 杉村 興作 (SUGIMURA, Kosaku); 〒1000013 東京都千代田区霞が関3丁目2番4号霞山ビルディ ング 7 F Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: POLYIMIDE RESIN, METHOD FOR PRODUCING POLYIMIDE RESIN, AND ELECTROLYTE MEMBRANE. CATALYST LAYER, MEMBRANE/ELECTRODE ASSEMBLY AND DEVICE EACH CONTAINING POLYIMIDE RESIN

(54) 発明の名称: ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、 膜/電極接合体及びデバイス

(57) Abstract: Disclosed is a polyimide resin characterized by having a basic skeleton represented by the following general formula (1). (1) (In the formula (1), Ar¹ and Ar² respectively represent an aromatic ring having 6-20 carbon atoms and form a 5- or 6-membered imide ring together with an adjacent imide group, in which aromatic ring carbon atoms may be partially substituted by S, N, O, SO₂ or CO and hydrogen atoms may be partially substituted by an aliphatic group, a halogen atom or a perfluoroaliphatic group, and Ar¹ and Ar² may be the same or different from each other; R represents at least one of a linear alkylene group and branched alkylene group having 1-20 carbon atoms; Ar³ represents an aromatic ring having 6-20 carbon atoms wherein hydrogen atoms are at least partially substituted by at least one of a sulfoalkoxy group, carboalkoxy group and phosphoalkoxy group having 1-20 carbon atoms, and carbon atoms of these groups may be partially substituted by S, N, O, SO2 or CO and hydrogen atoms of these groups may be partially substituted by an aliphatic group, a halogen atom or a perfluoroaliphatic group; and n and m respectively represent a polymerization degree which is an integer of not less than 2.)

(57) 要約:

基本骨格が一般式(1)で表されることを特徴とするポリイミド樹脂

【化1】

(式(1)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。Rは炭素数1~20の直鎖アルキレン基及び分岐アルキレン基の少なくとも一方である。Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を表し、2以上の整数である。)。

WO 2005/054339 1 PCT/JP2004/018289

明細書

ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、膜/電極接合体及びデバイス

技術分野

- [0001] 本発明は、ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む 電解質膜、触媒層、膜/電極接合体及びデバイスに関する。 背景技術
- [0002] 燃料電池は、酸素と水素の化学反応エネルギーを直接電気エネルギーに変換する発電装置であり、温室ガスや有害物質を発生しないクリーンな次世代エネルギー源として有望視されている。とりわけ固体高分子形燃料電池(PEFC)やメタノール直接型燃料電池(DMFC)は小型軽量化が可能で、電気自動車や家庭用、携帯機器用の電源としても適している。
- [0003] 燃料電池はまた、電気エネルギーを投入して上記と逆の反応を行わせることもでき、この場合、水の電気分解による純水素製造装置(電気分解セル)として用いることもできる。さらにアノード、カソードの両電極の水素濃度が異なることに起因した電位差を利用して水素センサ(電気化学センサ)としたり、アノードに被検知気体(例えばCOを含む)を、カソードに空気を供給した電解型センサ(例えばCO用)としたりして用いることもできる。
- [0004] 燃料電池や電気分解セル、および電気化学センサに用いられる電解質膜は、湿潤 状態でプロトンのみを透過するイオン交換膜であり、現在では主にパーフルオロアル キルスルホン酸高分子からなる膜が用いられている。
- [0005] しかしながら、100℃以上でのプロトン伝導度と膜強度が低下してしまうため、高温 運転に用いることはできない。また、燃料ガスの透過、高コスト化などの問題点もあり、 これらが上記デバイスの高性能化を阻んでいる大きな原因となっている。
- [0006] このような問題を解決するため、芳香族高分子に強酸性基を導入し電解質膜とする 検討がなされている。耐熱性、耐酸化性、機械強度、コスト、および置換基導入の容 易さの点から、ポリイミドが基本骨格として有望な構造の一つとして考えられる。ポリイ

ミド電解質膜については既に研究例があり、例えば、特表2000-510511号公報(米国特許6245881号公報)、特開2002-105199号公報、Macromolecules, 35,6707-6713(2002)にスルホン酸化ポリイミドが報告されている。

[0007] 特許文献1:特表2000-510511号公報(米国特許6245881号公報)

特許文献2:特開2002-105199号公報

非特許文献1:Macromolecules,35,6707-6713(2002)

[0008] しかしながら、これらポリイミド樹脂は加水分解安定性が充分でなく、80℃の水中で200時間程度の安定性が達成されているのみである。プロトン伝導度を増大させるためにはスルホン酸基の導入量を多くしなければならないが、スルホン酸基の導入量の増加に伴って安定性が低下してしまう。特に、高分子主鎖にスルホン酸基が導入されているため、主鎖の加水分解反応が起こりやすく分子量の低下が著しい。したがって、これまで電解質膜でプロトン伝導性と加水分解安定性を両立させることは極めて困難であった。

発明の開示

発明が解決しようとする課題

[0009] 上記事情に鑑みて、本発明では、燃料電池や電気分解セル、および電気化学センサの高性能化を図るために、これらデバイスの電解質に好適なポリイミド樹脂及びその製造方法を提供することを課題とする。

課題を解決するための手段

[0010] 上記課題を解決すべく、本発明は、

基本骨格が一般式(1)で表されることを特徴とするポリイミド樹脂

[化1]

(式(1)中、 Ar^1 と Ar^2 とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO

又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子 又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異 なっていてもよい。Rは炭素数1~20の直鎖アルキレン基及び分岐アルキレン基の 少なくとも一方である。Ar³は炭素数6~20からなる芳香環であり、水素原子の少なく とも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホ スホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子が S、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、 ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を 表し、2以上の整数である。)。

- [0011] 上記目的を達成すべく、本発明者らはポリイミド化合物の分子構造についての検討を行った。本発明者らは鋭意研究の結果、上述したような主鎖中の疎水基として直鎖及び/又は分岐アルキレン基を有し、側鎖の酸性基としてスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種を有するポリイミドの製造方法を見出した。このアルキルポリイミドは、前記スルホン酸基などが前記アルコキシル基に結合しており、主鎖中の芳香環とは直接結合していない。
- [0012] また、芳香族ジアミンに比べ塩基性の高い脂肪族ジアミンから主鎖イミド結合が形成されているため、加水分解(水の求核置換)反応を受けにくい。これら主鎖側鎖のアルキル基の存在により、主鎖が高い疎水性を保持しており、膜が柔軟性を有している。このため100℃以上でのプロトン伝導度と酸化・加水分解安定性が共に優れることを発見し、本発明を完成するに至った。
- [0013] すなわち、ポリイミド樹脂において、スルホン酸基などと主鎖とをアルコキシル鎖を介して結合した側鎖型とし、主鎖の一部をアルキレン鎖とすることにより、プロトン伝導性を低下させることなく、さらに耐加水分解性を向上することができる。なお、「一部の炭素原子がS、N、O、SO、又はCOで置換され」とは、炭素原子のみが置換される場合のほか、炭素原子に結合している水素原子もあわせて置換されることを含む意味である。
- [0014] 上述したポリイミド樹脂の基本骨格は、好ましくは以下に示す一般式(2)で表される

WO 2005/054339 4 PCT/JP2004/018289

[化2]

(式(2)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。xはアルキレン基の炭素数を表し、1~20の整数である。Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO2又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を表し、2以上の整数である。)。

[0015] さらに好ましくは、以下に示す一般式(3)で表される [化3]

(式(2)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5 または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO 2 又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子 又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。xはアルキレン基の炭素数を表し、1~20の整数である。Ar³は炭

素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO、又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を表し、2以上の整数である。)。

- [0016] なお、本発明の好ましい態様においては、前記一般式(3)において、1及び1で表されるスルホアルコキシ基、カルボキシアルコキシ基、及びホスホアルコキシ基から選ばれる少なくとも一種の炭素数を3又は4とする。この場合は、前記ポリイミド樹脂の、以下に示す製造方法での合成が容易となり、入手が容易となる。
- [0017] また、本発明の他の好ましい態様においては、前記一般式(1)〜(3)において、n/mが95/5より小さく30/70より大きくする。この場合、前記ポリイミド樹脂の耐加水分解性及びプロトン伝導性を向上させることができる。
- [0018] さらに、本発明のその他の好ましい態様においては、前記ポリイミド樹脂の平均分子量を5000以上とする。この場合、前記ポリイミド樹脂から電解質膜などを形成した場合において、その強度などを十分に増大させることができるようになる。

(式(4)中、Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基で置換されている。このスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO、又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい)と、第三級アミンと、有機溶媒との混合物を加熱溶解する溶解工程と、

前記混合物に対して一般式(5)又は(6)で表される芳香族四カルボン酸二無水物 化合物

[化4]

$$O Ar^{1} O$$
(5)

[化5]

$$0 \longrightarrow Ar^2 \longrightarrow 0$$

$$0 \longrightarrow Ar^2 \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

(式(5)、(6)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接する無水カルボン酸基と5または6原子の無水カルボン酸環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。)を加えて、有機酸の存在下少なくとも40℃以上に加熱してポリイミド樹脂を得る重合工程と、

を具えることを特徴とする。

- [0020] 本発明の製造方法によれば、スルホン酸基などと主鎖とをアルコキシル鎖を介して 結合し、主鎖中にアルキレン基を導入した、耐加水分解性に優れた前記ポリイミド樹 脂を製造することができる。
- [0021] なお、上述した製造方法は、必要に応じて、前記重合工程の後に、前記ポリイミド 樹脂を少なくとも150℃以上に加熱して前記ポリイミド樹脂の物理的特性を向上する 改質工程を含むことができる。
- [0022] 前記製造方法において、前記ジアミノ化合物と前記 α、ω-アルキレンジアミンとの 混合量を、モル比で95/5より小さく30/70より大きくする。これによって、最終的に 得た前記ポリイミド樹脂の耐加水分解性及びプロトン伝導性をより向上させることがで きるようになる。

発明の効果

[0023] 本発明によれば、燃料電池や電気分解セル、および電気化学センサの高性能化を

図るために、これらデバイスの電解質に好適なポリイミド樹脂及びその製造方法を提供することができる。

図面の簡単な説明

[0024] 「図1]本発明の燃料電池の一例を示す構成図である。

発明を実施するための最良の形態

[0025] (ポリイミド樹脂)

本発明のポリイミド樹脂は、上述した一般式(1)で表されることを特徴とする。一般式(1)における Ar^1 、 Ar^2 及び Ar^3 として好ましい置換基を具体的に以下に示す。なお、一般式(1)における Ar^1 、 Ar^2 及び Ar^3 で示されるそれぞれの化学構造は、すべて同じである必要はなく、複数の置換基が混在した共重合体または混合物であってもよい

[0026] [化6]

 Ar^1 , Ar^2 :

[0027] [化7]

 $(R=SO_3H, COOHZ)^2$

- [0028] これらの中でも、特に、上述した一般式(2)で表されるポリイミド樹脂が好ましく、特には一般式(3)で表されるポリイミド樹脂が好ましい。この場合、一般式(2)及び(3) 構造式中に1:1で示されるアルコキシル基の炭素数は、合成および出発物の入手の容易さから、3又は4であることが好ましい。
- [0029] 一般式(1)~(3)で示されるポリイミド樹脂の分子量は特に限定されないが、電解 質膜の強度の点から重合平均分子量が、少なくとも5000以上であることが望ましい。
- [0030] また、一般式(1)~(3)中のn、mの値は、n/mが95/5より小さく30/70より大きいことが好ましい。n/mを95/5より小さくすることでポリイミド樹脂の耐加水分解性が向上でき、30/70より大きくすることでプロトン伝導性が向上できる。より好ましくは、80/20以下40/60以上である。
- [0031] なお、ポリイミド樹脂の構造は、一般式(1)~(3)中でかっこ内の構造の共重合体であるが、この2つの構造の順番は規則的なもの(ブロック共重合体、交互共重合体)であってもランダムなものであってもどちらでも構わない。
- [0032] (ポリイミド樹脂の製造方法) 次に、前記ポリイミド樹脂を製造する方法について一例を挙げて説明する。本発明

WO 2005/054339 9 PCT/JP2004/018289

のポリイミド樹脂の製造方法は、以下に示すように溶解工程及び重合工程を含む。

[0033] 溶解工程においては、 α 、 ω - γ ルキレンジアミンと、一般式(4)で表されるジアミノ 化合物

$$H_{s}N-Ar^{3}-NH_{s}$$
 ... (4)

(式(4)中、Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基で置換されている。このスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO、又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい)と、第三級アミンと、有機溶媒との混合物を加熱溶解する。

- [0034] 前記 α, ω-アルキレンジアミンとしては、アルキレン基の炭素数が1~20の脂肪族 ジアミンであることが好ましい。前記 α, ω-アルキレンジアミンは単独の化合物から 構成することもできるし、複数の化合物から構成することもできる。
- [0035] 前記ジアミノ化合物としては、一般式(4)で表される化合物である。 具体的には、 [化8]

 $(R=SO_3H, COOH又はPO(OH)_2)$ を例示することができる。

[0036] これらの化合物中でも、特に4, 4'-ジアミノ-2, 2'-ビス(スルホアルコキシ)ビフェニル及び4, 4'-ジアミノ-3, 3'-ビス(スルホアルコキシ)ビフェニルの少なくとも一方であることが好ましい。前記ジアミノ化合物は単独の化合物から構成することもできる

し、複数の化合物から構成することもできる。

- [0037] ジアミノ化合物とα,ω-アルキレンジアミンとの混合量は、モル比で95/5より小さく30/70より大きいことが好ましい。モル比で95/5より小さくすることで製造されるポリイミド樹脂の耐加水分解性が向上でき、30/70より大きくすることでプロトン伝導性が向上できる。より好ましくは、80/20以上40/60以下とする。
- [0038] 前記第三級アミンは、スルホン酸基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種を有するジアミノモノマーを、有機溶媒に溶解させるために用いる。前記第三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、ジアザビシクロウンデセン等が例示できる。特に、トリエチルアミンが好ましい。これら第三級アミンは、単独で用いるほか、2つ以上の第三級アミンの混合物として用いてもよい。
- [0039] 前記有機溶媒としては、高沸点、高極性のものが好ましく、フェノール、m-クレゾール、m-クロロフェノール、p-クロロフェノール、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリジノン等が例示できる。特に、m-クレゾールが好ましい。これら有機溶媒は、単独で用いるほか、2つ以上の有機溶媒の混合物として用いてもよい。
- [0040] なお、上述した α, ω-アルキレンジアミン、ジアミノ化合物、第三級アミン及び有機溶媒との混合物は、例えば40~150℃程度に加熱して溶解する。
- [0041] 重合工程においては、加熱溶解した前記混合物に対して一般式(5)又は(6)で表される芳香族四カルボン酸二無水物化合物を加えて、有機酸の存在下少なくとも40 ℃以上に加熱して重合を行い、上述したようなポリイミド樹脂を得る。
 [化9]

$$0 \longrightarrow Ar^{1} \longrightarrow 0$$

$$0 \longrightarrow 0$$

$$0$$

$$0$$

$$0$$

[化10]

$$O Ar^2 O (6)$$

[0042] 前記芳香族四カルボン酸二無水物化合物としては、以下に示すものを例示することができる。

[化11]

[0043] 前記芳香族四カルボン酸二無水物化合物としては、ナフタレン-1,8:4,5-四カ

ルボン酸二無水物を用いることが好ましい。前記芳香族四カルボン酸二無水物化合物は単独の化合物から構成することもできるし、複数の化合物から構成することもできる。

- [0044] (ジアミノ化合物 + α, ω-アルキレンジアミン)と芳香族四カルボン酸二無水物は、1 :1のモル比で反応する。したがって、(ジアミノ化合物 + α, ω-アルキレンジアミン) と芳香族四カルボン酸二無水物とを加える量は、モル比が1:1程度になるように調整する。
- [0045] 本重合工程で使用する前記有機酸は重合・閉環反応触媒であり、ポリアミック酸の 生成とこれの閉環によるイミド環形成を促進する。有機酸としては高沸点かつ溶媒へ の溶解性が高い化合物が望ましく、安息香酸、メチル安息香酸、ジメチル安息香酸、 サリチル酸等が例示される。特に、安息香酸が好ましい。
- [0046] なお、前記有機酸は重合工程で存在するならば前述の溶解工程で添加してもよい。有機酸を添加する量としては特に限定しないが、安息香酸の場合には、四カルボン酸二無水物化合物に対して1~6倍モル程度加えることが望ましい。また、混合物を加熱する温度としては少なくとも40℃以上であり、好ましくは170~180℃程度とすることで効率よく重合反応が進行し、高分子量ポリイミド樹脂を得ることができる。
- [0047] また、一般式(1)において、Rで表されるアルキレン基の一部に架橋構造を含ませることができる。この場合に使用する架橋剤の添加量は特に限定されるものではないが、四カルボン酸二無水物化合物に対して0.005~0.5倍モル程度加えることが好ましい。

[0048] [化12]

$$H_2$$
 H_2
 H_2
 H_2
 H_2
 H_3
 H_4
 H_4
 H_5
 H_5
 H_5
 H_5
 H_5
 H_5
 H_5
 H_5

$$H_2N$$
 NH_2
 H_2N
 NH_2
 NH_2
 NH_2
 NH_2

- [0049] 本発明の製造方法においては、上述した溶解工程及び重合工程に加えて改質工程を施すこともできる。前記改質工程は、重合により生成したポリイミド樹脂)中の構造欠陥を是正して、ポリイミド樹脂の物理的特性を向上する工程である。ここで構造欠陥とは、ポリイミド樹脂中の未閉環部分(アミック酸)である。
- [0050] 具体的には、前記重合工程の後に、前記ポリイミド樹脂を少なくとも150℃以上、好ましくは190℃~220℃に加熱して行う。この場合、前記ポリイミド樹脂は、その重合温度以上に加熱させるので、脱水反応を通じ、重合体中の未閉環部分のイミド化が促進され、その結果構造欠陥のないポリイミド樹脂を得ることができるようになる。

[0051] (電解質膜)

前記ポリイミド樹脂を主成分とする高分子材料を製膜して、電解質膜とすることができる。製膜方法は特に限定せず、溶液を平板上にキャストするキャスト法、ダイコータ、コンマコータ等により平板上に溶液を塗布する方法、スピンコート法、溶融した高分子材料を延伸等する方法などの一般的な方法が採用できる。この高分子材料は前記ポリイミド樹脂を単独で用いるほか、その他の高分子電解質等と混合して用いてもよい。

[0052] 前述のような耐加水分解性に優れたポリイミド樹脂を電解質膜に採用することで、

前記電解質膜の耐久性が向上する。また、従来から汎用されているナフィオン(商標)等のようなフッ素系樹脂よりも低コストで製造することができる。

[0053] (触媒層)

前記ポリイミド電解質と電極触媒を混合することによって、電極触媒層とすることができる。ここで用いる触媒としては特に限定されず、市販の触媒材料を用いることが可能である。例えば、カーボン粉末状に白金や白金合金の微粒子を分散させた担持触媒を用いることができる。この触媒を本発明のポリイミド電解質を溶解した溶液、および必要ならば他の結着剤等と混合、乾燥することにより、電解質を触媒表面に被覆した触媒層を得ることができる。

[0054] (膜/電極接合体)

本発明のポリイミド電解質膜を前記触媒層で挟持することにより、膜/電極接合体(MEA)とすることができる。電解質膜と触媒層を扶持する方法は特に限定しないが、例えばホットプレスする方法などが挙げられる。

[0055] (燃料電池、電気分解セル、電気化学センサ)

前記の膜/電極接合体の両側の反応電極にそれぞれ燃料と酸化剤を供給することによって、燃料電池とすることができる。また水、水蒸気、電解質水溶液、水素混合ガスなどを供給することによって、電気分解セル、電気化学センサとして用いることができる。

実施例

[0056] (試験例1)

シール付の水銀温度計、窒素導入口、還流管を付した100mLの四口フラスコに、 0. 6107g(1. 25mmol)の4, 4'ージアミノー3, 3'ービス(スルホブトキシ)ビフェニル(以下「3, 3'ーBSBB」と称す、3, 3'ージヒドロキシベンジジンより合成)と、0. 2154g(1. 25mmol)の1, 10'ーデカメチレンジアミン(以下「DMDA」と称す、東京化成社 製)と、0. 70mL(6mmol)のトリエチルアミン(Aldrich社製)と、10mLのmークレゾ ール(関東化学社製)とを加えて、窒素気流下80℃で10分間加熱した。この混合物 を激しく攪拌して、透明均一溶液を得た(溶解工程)。

[0057] 得られた混合溶液中に、0.6705g(2.50mmol)のナフタレン-1,8:4,5-四カ

ルボン酸二無水物(以下「TCND」と称す、Aldrich社製)と、1. 250g(10. 23mmo 1)の安息香酸(関東化学社製)と、7mLのm-クレゾールとを加えた。その結果、赤褐色の反応溶液が得られた。その後、窒素気流下で室温まで冷却し、24時間攪拌した。その後、175℃で攪拌しながら15時間加熱した。反応溶液は粘稠となった(重合工程)。

- [0058] 次いで窒素気流下、195℃で5時間加熱した(改質工程)。その後、加熱を止めて6 0℃にまで冷却した。その結果、赤褐色で粘稠なポリイミド共重合体の溶液が得られ た。
- [0059] 次いで、前記ポリイミド共重合体をガラス基板上にキャスト法にて成膜し、電解質膜を形成した。キャスト法は前記ガラス基板上に前記共重合体を含む溶液をそのまま流した後、60℃で一日自然乾燥を行うという条件下で実施した。その後、80℃で12時間常圧乾燥を行った後、さらに80℃で12時間減圧乾燥を実施し、前記電解質膜を形成した。
- [0060] 前記電解質膜からは、赤外吸収スペクトルにおいて、2926、2854($\nu_{\rm CH}$)、1706、1665($\nu_{\rm C=0}$)、1579($\nu_{\rm C=c}$)、1345($\nu_{\rm CN}$)、1248、1200($\nu_{\rm S=0}$)、cm⁻¹の吸収ピークが観測された。また、前記電解質膜を溶媒(重水素化ジメチルスルホキシド)に溶解した試料の 1 H $^-$ NMRスペクトルにおいて、8.75(Ar, naphthylene, 4H)、7.58(Ar, biphenylene, 6H)、4.13(CH $_2$, 4H)、2.35(CH $_2$, 2H)、1.59(CH $_2$, 8H)、1.33(CH $_2$, 4H) ppmの吸収ピークが観測された。これらスペクトル解析より、得られたポリイミド共重合体は前記一般式(2)におけるAr 1 =Ar 2 =1,4、5、8 $^-$ ナフチレン、n/mが70/30でスルホアルコキシル基の置換位置が3、3、 1 、 1 =1 =4、x=10である化合物であることが確認された。

[0061] (試験例2)

上述した溶解工程において、3,3-BSBBの代わりに、4,4'-ジアミノ-3,3'-ビススルホプロポキシビフェニル(以下「3,3'-BSPB」と称す)を用い、これらとDMDAとの添加量の和を2.0mmo1とした以外は、試験例1と同様にしてポリイミド共重合体を製造し、電解質膜を形成した。

[0062] 前記電解質膜を試験例1と同じ解析に供し、得られたポリイミド共重合体は前記一

般式(2)における $Ar^1 = Ar^2 = 1$, 4, 5, 8—ナフチレン、n/mが70/30でスルホアルコキシル基の置換位置が3、3、1 = 1 = 3、x = 10である化合物であることが確認された。

[0063] (試験例3)

前記DMDAの代わりに、1,6~~キサメチレンジアミンを用いた以外は、試験例2と同様にしてポリイミド共重合体を製造し、電解質膜を形成した。前記電解質膜を試験例1と同じ解析に供し、得られたポリイミド共重合体は前記一般式(2)における $Ar^1=Ar^2=1$,4,5,8~ナフチレン、n/mが70/30でスルホアルコキシル基の置換位置が3、3、1=12=3、x=6である化合物であることが確認された。

[0064] (耐酸化性)

試験例1~3で得た電解質膜をフェントン試薬(2ppmの硫酸鉄を含有する3%過酸化水素水溶液)中、80℃で加熱し、前記電解質膜の外観を経時的に観察した。前記電解質膜が溶解を始めた時間と完全に溶解した時間とを記録した。比較のために、市販のフッ素系膜(nafion 112)(比較例1)及び上記一般式(2)において、n/mが70/30であり、スルホン基が2,2'-位に直接結合を有するポリイミド共重合体からなる電解質膜(比較例2)に対しても、同様の耐酸化試験を実施した。

[0065] (耐加水分解性)

試験例1~3で得た電解質膜、並びに上述した比較例1に関するフッ素系膜及び 比較例2に関する電解質膜に対して、高温高湿度(140℃、湿度100%)雰囲気に2 4時間さらし、試験後の試料の外観を観察した。

[0066] (プロトン伝導度の測定)

試験例1~3で得た電解質膜、並びに比較例1に関するフッ素系膜及び比較例2に関する電解質膜を、 5×40 mmの大きさに切り取り、4端子法により交流インピーダンスを測定した。測定は120℃で相対湿度100%、電流値として0.005mAの定電流、掃引周波数として10~20000Hzの条件で行った。得られたインピーダンスと膜端子間距離(10mm)、膜厚 $(30 \mu m)$ から、プロトン伝導度を算出した。

[0067] 「表1]

	スルホアルコ キシル基置換 位置	$I_1 = I_2$	x	溶解開始 (時:分)	溶解完了(時:分)	外観	プロトン 伝導度 (Scm ⁻¹)
試験例1	3, 3'	4	10	0:54	2:00	破れない	0.12
試験例2	3, 3'	თ	10	0:55	2:10	破れない	0.15
試験例3	3, 3'	з	10	0:45	1:45	破れない	0.18
比較例1 (フッ素系膜)	_	ı	1	_	_		0.10
比較例2 (主鎖型ポリイミド膜)	2, 2'	0	0	0:00	0:10	破れる	0.15

- [0068] 表1から明らかなように、スルホン酸基と主鎖とをアルコキシル鎖を介して結合する 試験例1~3の試料は、高いプロトン伝導度を保持したまま膜の耐加水分解性を大幅 に向上でき、機械強度を保持できることが明らかとなった。
- [0069] また、試験例1〜3に関する試料は、フェントン試薬中における溶解完了時間が比較例2に比べ10倍以上長くなり、耐酸化性も大きく向上することが分かった。さらに、試験例1〜3いずれの試料も、比較例1のフッ素系膜に比べ高いプロトン伝導度を示した。
- [0070] 以上のことから、主鎖にアルキレン基を導入し、スルホン酸基をポリイミド主鎖にアルキル基を介して連結した、本発明のポリイミド樹脂からなる電解質膜は、プロトン伝導特性を損なわずに耐加水分解性および耐酸化性が向上できることが分かる。

[0071] (触媒層・膜/電極接合体の作製)

自金を30wt%で高分散担持したカーボンブラック1gと試験例1のポリイミド樹脂1. 00gを10mLのmークレゾール/DMF(体積比1/9)中で混練した。このペースト0. 15mLを撥水化カーボンペーパーを用いて作成したガス拡散層(面積10cm²)上に均一に塗布し、80℃で2時間乾燥を行った。これを冷間プレス(10kg/cm², 10sec)した後、1N硝酸エタノール溶液400mL中に浸漬し12時間攪拌した。この酸処理工程を更に2回繰り返した後、エタノールで洗浄、80℃で2時間乾燥を行った。得られた電極触媒2枚で酸処理したポリイミド膜(厚さ50μm、表面積10cm²)を挟み込んでホットプレスし、触媒層・膜/電極複合体を得た。

[0072] [燃料電池試験]

次に燃料電池の構成を模式的に図1に示す。上述のようにして得た触媒層・膜/ 電極接合体11は、二つのガス拡散層14A及び14Bに挟持されている。接合体11の 一主面側にはアノード側触媒層12A及びアノード側撥水性集電体13Aを接触してなるアノード側ガス拡散電極14Aが設けられており、他方の主面側にはカソード側触媒層12B及びカソード側溝水性集電体13Bを接触してなるカソード側ガス拡散電極14Bが接合されている。

- [0073] さらに、アノード側のガス拡散電極14Aの、接合体11と相対する側には反応ガス供給溝15Aを有するセパレータ16Aが接し、セパレータ16Aの供給溝15A間に集電部17Aが形成されている。同様にカソード側のガス拡散電極14Bには反応ガス供給溝15Bを有するセパレータ16Bが接し、セパレータ16Bの供給溝15B間に集電部17Bが形成されている。
- [0074] 両集電部16A、16B間を負荷18を有する導線で接続し、アノード側に水素(200m L/min、90℃加湿)、カソード側に酸素(100mL/min、60℃加湿)を供給して80 ℃で測定した電流電位特性を表2に示した。

[0075] [表2]

電位(V)	電流密度 (mA/cm²)
0.9	26
0.7	1680
0.5	3260

- [0076] 表2から明らかなように、本発明による燃料電池は高い性能を有している。
- [0077] 以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。

産業上の利用可能性

[0078] 本発明は、燃料電池や電気分解セル、および電気化学センサなどのデバイスの電解質膜及び触媒層などとして好適に使用することができる。また、これら電解質膜及び触媒層などを利用した膜/電極接合体の構成を含む、燃料電池、電気分解セル、及び電気化学センサなどの種々のデバイスなどに好適に用いることができる。

WO 2005/054339 20 PCT/JP2004/018289

請求の範囲

[1] 基本骨格が一般式(1)で表されることを特徴とするポリイミド樹脂 「化1]

$$\left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{1} \left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{3} \left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{2} \left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{2} \left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{2} \left\{ \begin{array}{c} N \\ N \end{array} \right\} A r^{3} \left\{ \begin{array}{c} N \\ N \end{array} \right\}$$

(式(1)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO2又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。Rは炭素数1~20の直鎖アルキレン基及び分岐アルキレン基の少なくとも一方である。Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO2又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を表し、2以上の整数である。)。

[2] 基本骨格が一般式(2)で表されることを特徴とする、請求項1に記載のポリイミド樹脂

[化2]

(式(2)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5 または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO 2 又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子 2 又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異 なっていてもよい。xはアルキレン基の炭素数を表し、1~20の整数である。Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO2又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。n、mは重合度を表し、2以上の整数である。)。

[3] 前記基本骨格が一般式(3)で表されることを特徴とする、請求項2に記載のポリイミド樹脂

[化3]

$$\begin{array}{c|c}
R' \\
(CH_2)_{l_2} \\
\downarrow \\
N \\
Ar^{1} \\
N \\
\downarrow \\
N \\
N \\
\downarrow \\
N \\
\downarrow \\
N \\
\downarrow \\
N \\
\downarrow \\
M
\end{array}$$
(3)

(式(3)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接するイミド基と5または6原子のイミド環を形成する。この芳香環は、一部の炭素原子がS、N、O、SO2又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。また、R'は、スルホン酸基、カルボン酸基、及びホスホン酸基の少なくとも一種であって、式中1と1はスルホアルコキシル基、カルボキシアルコキシ基、及びホスホアルコキシ基から選ばれる少なくとも一種の炭素数を表し、1~20の整数である。1と12は同一であっても異なっていてもよい。式(2)中、xはアルキレン基の炭素数を表し、1~20の整数である。)。

- [4] 前記一般式(3)において、1₁及び1₂で表されるスルホアルコキシ基、カルボキシアルコキシ基、及びホスホアルコキシ基から選ばれる少なくとも一種の炭素数が3又は4であることを特徴とする、請求項3に記載のポリイミド樹脂。
- [5] 前記一般式(1)〜(3)において、n/mが95/5より小さく30/70より大きいことを

特徴とする、請求項1~4のいずれか一に記載のポリイミド樹脂。

- [6] 前記一般式(1)~(3)において、Rで示される直鎖アルキレン基及び分岐アルキレン基の少なくとも一方において、その一部が架橋構造を含むことを特徴とする、請求項1~5のいずれか一に記載のポリイミド樹脂。
- [7] 平均分子量が5000以上であることを特徴とする、請求項1〜6のいずれか一に記載のポリイミド樹脂。
- [8] α 、 ω -アルキレンジアミンと、一般式(4)で表されるジアミノ化合物 $H_{_{g}}N$ - Ar^{3} - $NH_{_{g}}$ …(4)

(式(4)中、Ar³は炭素数6~20からなる芳香環であり、水素原子の少なくとも一部が炭素数1~20であるスルホアルコキシル基、カルボアルコキシ基、及びホスホアルコキシ基の少なくとも一種で置換されており、これら基の一部の炭素原子がS、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。)と、第三級アミンと、有機溶媒との混合物を加熱溶解する溶解工程と、

前記混合物に対して一般式(5)又は(6)で表される芳香族四カルボン酸二無水物 化合物

[化4]

$$0 Ar^{1} 0$$

$$0 5$$

[化5]

$$0 \longrightarrow Ar^2 \longrightarrow 0$$
(6)

(式(5)、(6)中、Ar¹とAr²とは炭素数が6~20からなる芳香環であり、隣接する無水カルボン酸基と5または6原子の無水カルボン酸環を形成する。この芳香環は、一部

の炭素原子がS、N、O、SO₂又はCOで置換されていてもよく、又、一部の水素原子が脂肪族基、ハロゲン原子又はパーフルオロ脂肪族基で置換されていてもよい。Ar¹とAr²は同一であっても異なっていてもよい。)を加えて、有機酸の存在下少なくとも40℃以上に加熱してポリイミド樹脂を得る重合工程と、

を具えることを特徴とするポリイミド樹脂の製造方法。

- [9] 前記重合工程の後に、前記ポリイミド樹脂を少なくとも150℃以上に加熱して前記ポリイミド樹脂の物理的特性を向上する改質工程を具えることを特徴とする、請求項8に記載のポリイミド樹脂の製造方法。
- [10] 前記ジアミノ化合物と前記 α、ω-アルキレンジアミンとの混合量を、モル比で95/ 5より小さく30/70より大きくすることを特徴とする、請求項8又は9に記載のポリイミド 樹脂の製造方法。
- [11] 前記 α、ω-アルキレンジアミンは、アルキレン基の炭素数が1~20の脂肪族ジアミンであることを特徴とする、請求項8~10のいずれか一に記載のポリイミド樹脂の製造方法。
- [12] 前記一般式(4)で表される前記ジアミノ化合物が4, 4'ージアミノー2, 2'ービス(スルホアルコキシ)ビフェニル及び4, 4'ージアミノー3, 3'ービス(スルホアルコキシ)ビフェニルの少なくとも一方であることを特徴とする、請求項8~11のいずれか一に記載のポリイミド樹脂の製造方法。
- [13] 前記第三級アミンは、トリエチルアミンであることを特徴とする、請求項8~12のいずれか一に記載のポリイミド樹脂の製造方法。
- [14] 前記有機溶媒は、m-クレゾールであることを特徴とする、請求項8〜13のいずれかーに記載のポリイミド樹脂の製造方法。
- [15] 前記一般式(5)又は(6)で表される前記芳香族四カルボン酸二無水物が、ナフタレン-1,8:4,5-四カルボン酸二無水物であることを特徴とする、請求項8~14のいずれか一に記載のポリイミド樹脂の製造方法。
- [16] 請求項1~7のいずれか一に記載のポリイミド樹脂を含むことを特徴とする、電解質 膜。
- [17] 請求項1~7のいずれか一に記載のポリイミド樹脂と、所定の触媒とを含むことを特

徴とする、触媒層。

- [18] 請求項16に記載の電解質膜と請求項17に記載の触媒層とを接合することを特徴とする、膜/電極接合体。
- [19] 請求項18に記載の膜/電極接合体を含むことを特徴とする、燃料電池。
- [20] 請求項18に記載の膜/電極接合体を含むことを特徴とする、電気分解セル。
- [21] 請求項18に記載の膜/電極接合体を含むことを特徴とする、電気化学センサ。

WO 2005/054339 PCT/JP2004/018289

[図1]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018289

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08G73/10, C25B13/08, H01M8/02				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SE	ARCHED			
Minimum docum Int.Cl ⁷	centation searched (classification system followed by cla C08G73/00-73/26, C25B13/08, H	ussification symbols) 101M8/02		
Documentation s	earched other than minimum documentation to the exter	nt that such documents are included in the	e fields searched	
Jitsuvo	Shinan Koho 1922–1996 Ji	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2004	
Electronic data b	ase consulted during the international search (name of d	lata base and, where practicable, search to	erms used)	
CA (STN)	, REGISTRY(STN)			
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT	,		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Ą	JP 2002-105200 A (Kaneka Corp	p.),	1-21	
	10 April, 2002 (10.04.02), Claims 1 to 18; Par. No. [002	5]		
	(Family: none)			
A	JP 2003-234014 A (Sumitomo E.	lectric Industries,	1-21	
	Ltd.), 22 August, 2003 (22.08.03),			
	Claims 1 to 5; Par. No. [0043	3]		
	(Family: none)			
P,A	JP 2004-155998 A (Yugen Kais	ha Yamaguchi TLO,	1-21	
	Ube Industries, Ltd., Shinyei 03 June, 2004 (03.06.04),	. Kabushiki Kaisha),		
	Claims 1 to 9			
	(Family: none)			
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.		
"A" document d	gories of cited documents: lefining the general state of the art which is not considered	"T" later document published after the int date and not in conflict with the applic the principle or theory underlying the	cation but cited to understand	
	ticular relevance cation or after the international	"X" document of particular relevance; the considered novel or cannot be consi	claimed invention cannot be	
"I." document v	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the		
special reas	on (as specified) eferring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such	step when the document is	
"P" document published prior to the international filing date but later than the priority date claimed """ being obvious to a person skilled in the art document member of the same patent family			e art	
the priority date oranica				
Date of the actual completion of the international search 14 January, 2005 (14.01.05) Date of mailing of the international search report 08 February, 2005 (08.02)				
Name and mailing	ng address of the ISA/	Authorized officer		
Japane	se Patent Office			
Facsimile No. Form PCT/ISA/2	10 (second sheet) (January 2004)	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018289

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
T	Naoki ASANO et al., Hydrolytically Stable Polyimide Ionomer for Fuel Cell Applications, Chemistry of Materials, Vol.16, No.15, 27 July, 2004 (27.07.04), pages 2841 to 2843	1-21	
,			
		·	
	. ·		
,			

4 744 117 4			
	属する分野の分類(国際特許分類(IPC)) ゜ C08G73/10,C25B13/08.	110 1M9 /0 0	
Int. Or	000073/10, 023113/08,	, HUIM8/UZ	
B. 調査を	丁った分野	,	
調査を行った	表小限資料(国際特許分類(IPC))		
Int. Cl	7 C08G73/00-73/26, C25	B13/08, H01M8/02	• •
,			
	トの資料で調査を行った分野に含まれるもの 案公報 1922-1996年		•
	- 現立	•	
日本国実用新	案登録公報 1996-2004年		
日本国登録実	用新案公報 1994-2004年	<u> </u>	
国際調査で使用	#した電子データベース (データベースの名称)	、調査に使用した用語)	
CA (STN), RY (STN)		
REGISI	KI (SIN)		•
	· · · · · · · · · · · · · · · · · · ·		
<u>C.</u> 関連する 引用文献の	ると認められる文献		I risk s
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号
\mathbf{A}	JP 2002-105200 A	(鐘淵化学工業株式会社)	1-21
	2002.04.10,請求項1-	18, 【0025】 (ファミリ	
	ーなし)	•	Ŧ
		(h.) —	
Ą	JP 2003-234014 A		1-21
	2003.08.22,請求項1-なし)	5, 【0043】 (ファミリー	v
			, ,
1			,
			· ·
図 C欄の続き	とにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献の	ンカテゴリー	の日の後に公表された文献	
「A」特に関連	のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ	いた文献であって
もの 「で」 国際出版	質目前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、発	き明の原理又は理論
	は 日前の 国旗 または 付託 とめる か、 国族	の理解のために引用するもの「X」特に関連のある文献であって、当	5該文献のみで発明
	E張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	られるもの
	は他の特別な理由を確立するために引用する 胆由を付す)	「Y」特に関連のある文献であって、当	節文献と他の1以
	このをわりた こる開示、使用、展示等に言及する文献	上の文献との、当業者にとって自 よって進歩性がないと考えられる	1明である組合せに 5もの
「P」国際出願	百日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完了	した日	国際調査報告の発送日	
,	14.01.2005		2. 2005
国際調本機関の	2名称及びあて先		
	内部がCoo C元 同特許庁(ISA/JP)	特許庁審査官(権限のある職員) 加賀 直人	4 J 3 3 4 7
	『便番号100-8915	,	
東京都	3千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3455

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PA	JP 2004-155998 A (有限会社山口ティー・エル・オー, 宇部興産株式会社, 神栄株式会社) 2004.06.03, 請求項1-9 (ファミリーなし)	1-21
Т	ASANO Naoki et al., Hydrolytically Stable Polyimide Ionomer for Fuel Cell Applications, Chemistry of Materials, Vol.16, No.15, July 27, 2004, p.2841-2843.	1-21
		,
-		
4		