LG Chem Meeting

Saehong Park

July 26, 2018

Agenda

Full-order model validation

- Time-step effect
- Exchange current density approximation

RL

- Understanding the best charge profile.
- Reward function design

TimeStep Effect

- nodes (Anode/Sep/Cathode) along the x-axis
 - 10/5/10
 - Ts=60s failed at 161 out of 206
- Voltage / SOC
 - Able to solve up to 85% SOC

TimeStep Effect

nodes (Anode/Sep/Cathode) along the x-axis

- 10/5/10
- Ts=0.1s failed at 95896 out of 122668
- Ts=0.01s failed at 96556 out of 122668
- Ts=0.001s failed at 96722 out of 122668

Voltage / SOC

With smaller time step we can compute 2% more SOC. (82->84% SoC)

Function Fit

- Function fit for c_ss_n term
- (left) within bound, (Right) without bound

Input: current (0.3C CCCV), temperature

- Nodes for Anode/ Seperator / Cathode = 10/5/10
- 32.2mV RMSE
- 0 degC RMSE
- 57.1E-05 SoC RMSE.

Input: current (1C CCCV), temperature

- Nodes for Anode/ Seperator / Cathode = 10/5/10
- 33.4mV RMSE
- 92.9E-04 SoC RMSE.

Input: current (1C CCCV), temperature

- Nodes for Anode/ Seperator / Cathode = 20/10/20
- 33.4mV RMSE
- 96.9E-04 SoC RMSE.

Input: current (0.3C CCCV)

- Nodes for Anode/ Separator / Cathode = 10/5/10
- TimeStep = 0.1sec
- 31.1mV RMSE
- 1.19degC RMSE
- 76.6E-04 SoC RMSE.

Input: current (1C CCCV)

- Nodes for Anode/ Separator / Cathode = 10/5/10
- 33.3mV RMSE
- 0.734degC RMSE
- 92.6E-04 SoC RMSE.

Input: current (1C CCCV)

- Nodes for Anode/ Separator / Cathode = 70/35/70
- 32.6mV RMSE
- 0.717degC RMSE
- 13.6E-04 SoC RMSE.

Summary

■ RMSE \leq 40mV | RMSE \leq 0.1% SoC | RMSE \leq 1.5degC

TimeStep effect

- Small-time step helps to solve numerical problems, but still issues remain.
- Approximating current density function is recommended.

Discretization effect

- Small number of discretization helps fast simulation.
- Notably, RMSE of SOC increases as number of discretization reduces.

RL framework

- Reinforcement learning requires a very <u>high volume</u> of "trial and error" episodes or interactions with an environment.
- In order to learn a good policy, simulators are required to achieve results in a cost-effective and timely way.

Suggestions for environment design

- Use approximated current density function
- Sample time = 1sec
- Use 10/5/10 nodes for simulation environment

Need to validate higher C-rates with 1sec timestep

Optimal Charging problem

- Minimum charging
 - Fast charge
 - Suppress aging

$$\underset{I(t)}{\operatorname{argmin}} \int_{0}^{t_{f}} 1 dt$$

subject to:

Battery eqns
input constraints (magnitude, capacity)
state constraints (Temperature, Overpotential)

- Max charge throughput
 - Finite amount of time, charge battery up to certain point
- Least square of target SoC and current SoC.
 - Charge battery up to target SoC

Reinforcement learning framework

RL Background

- Markov Decision Process (MDP)
- Dynamic Programming
 - Value Iteration
 - Policy Iteration
- Policy Optimization
 - Policy gradients

RL algorithms

- DQN (Deep Q Network)
- DPG (Deterministic Policy gradient)
- A3C (Asynchronous Advantage Actor-Critic)

Model

- Control Sys | Machine Learning
 - Model-based RL: Train network to predict 'state transition' and reward models
 - Model-free RL: Not try to learn explicit models of the env.
 - We focus on 'Model-free RL' for 'model-based' control

- Value function
 - State-value function
 - State-action function
- Policy

RL problem formulation

Minimum time charging.

- Maximize negative rewards
- Violate constraints -> episode is over
 - Surface concentrations
 - Electrolyte concentrations
 - Temperature

Basic sketch

• From fixed initial point, we reach certain stage of charging without violating constraints