# data visualization

(a)Import library

```
In [1]: import numpy as np
import pandas as pd
```

b) Import dataset

```
In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\4_drug200.csv")
```

In [3]: data

Out[3]:

|     | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|-----|-----|-----|--------|-------------|---------|-------|
| 0   | 23  | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1   | 47  | М   | LOW    | HIGH        | 13.093  | drugC |
| 2   | 47  | М   | LOW    | HIGH        | 10.114  | drugC |
| 3   | 28  | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4   | 61  | F   | LOW    | HIGH        | 18.043  | drugY |
|     |     |     |        |             |         |       |
| 195 | 56  | F   | LOW    | HIGH        | 11.567  | drugC |
| 196 | 16  | М   | LOW    | HIGH        | 12.006  | drugC |
| 197 | 52  | М   | NORMAL | HIGH        | 9.894   | drugX |
| 198 | 23  | М   | NORMAL | NORMAL      | 14.020  | drugX |
| 199 | 40  | F   | LOW    | NORMAL      | 11.349  | drugX |

200 rows × 6 columns

c)head

In [4]: data.head(10)

#### Out[4]:

|   | Age  | Sex | BP     | Cholesterol | Na_to_K | Drug  |
|---|------|-----|--------|-------------|---------|-------|
| 0 | 23   | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1 | l 47 | М   | LOW    | HIGH        | 13.093  | drugC |
| 2 | 2 47 | М   | LOW    | HIGH        | 10.114  | drugC |
| 3 | 28   | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4 | 61   | F   | LOW    | HIGH        | 18.043  | drugY |
| 5 | 5 22 | F   | NORMAL | HIGH        | 8.607   | drugX |
| 6 | 49   | F   | NORMAL | HIGH        | 16.275  | drugY |
| 7 | 41   | М   | LOW    | HIGH        | 11.037  | drugC |
| 8 | 60   | М   | NORMAL | HIGH        | 15.171  | drugY |
| ç | 43   | М   | LOW    | NORMAL      | 19.368  | drugY |

d) tail

## In [5]: data.tail(10)

### Out[5]:

|     | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|-----|-----|-----|--------|-------------|---------|-------|
| 190 | 58  | М   | HIGH   | HIGH        | 18.991  | drugY |
| 191 | 23  | М   | HIGH   | HIGH        | 8.011   | drugA |
| 192 | 72  | М   | LOW    | HIGH        | 16.310  | drugY |
| 193 | 72  | М   | LOW    | HIGH        | 6.769   | drugC |
| 194 | 46  | F   | HIGH   | HIGH        | 34.686  | drugY |
| 195 | 56  | F   | LOW    | HIGH        | 11.567  | drugC |
| 196 | 16  | М   | LOW    | HIGH        | 12.006  | drugC |
| 197 | 52  | М   | NORMAL | HIGH        | 9.894   | drugX |
| 198 | 23  | М   | NORMAL | NORMAL      | 14.020  | drugX |
| 199 | 40  | F   | LOW    | NORMAL      | 11.349  | drugX |

e) describe

In [6]: data.describe()

Out[6]:

|       | Age        | Na_to_K    |
|-------|------------|------------|
| count | 200.000000 | 200.000000 |
| mean  | 44.315000  | 16.084485  |
| std   | 16.544315  | 7.223956   |
| min   | 15.000000  | 6.269000   |
| 25%   | 31.000000  | 10.445500  |
| 50%   | 45.000000  | 13.936500  |
| 75%   | 58.000000  | 19.380000  |
| max   | 74.000000  | 38.247000  |

f) shape

```
In [7]: data.shape
```

Out[7]: (200, 6)

g) size

```
In [8]: data.size
```

Out[8]: 1200

h) find missing values

In [9]: data.isna()

#### Out[9]:

|     | Age   | Sex   | ВР    | Cholesterol | Na_to_K | Drug  |
|-----|-------|-------|-------|-------------|---------|-------|
| 0   | False | False | False | False       | False   | False |
| 1   | False | False | False | False       | False   | False |
| 2   | False | False | False | False       | False   | False |
| 3   | False | False | False | False       | False   | False |
| 4   | False | False | False | False       | False   | False |
|     |       |       |       |             |         |       |
| 195 | False | False | False | False       | False   | False |
| 196 | False | False | False | False       | False   | False |
| 197 | False | False | False | False       | False   | False |
| 198 | False | False | False | False       | False   | False |
| 199 | False | False | False | False       | False   | False |

200 rows × 6 columns

In [23]: data.isnull().sum()

#### Out[23]: Age

Age 0
Sex 0
BP 0
Cholesterol 0
Na\_to\_K 0
Drug 0
dtype: int64

In [11]: data.dropna(axis=1,how='any')

#### Out[11]:

|     | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|-----|-----|-----|--------|-------------|---------|-------|
| 0   | 23  | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1   | 47  | М   | LOW    | HIGH        | 13.093  | drugC |
| 2   | 47  | М   | LOW    | HIGH        | 10.114  | drugC |
| 3   | 28  | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4   | 61  | F   | LOW    | HIGH        | 18.043  | drugY |
|     |     |     |        |             |         |       |
| 195 | 56  | F   | LOW    | HIGH        | 11.567  | drugC |
| 196 | 16  | М   | LOW    | HIGH        | 12.006  | drugC |
| 197 | 52  | М   | NORMAL | HIGH        | 9.894   | drugX |
| 198 | 23  | М   | NORMAL | NORMAL      | 14.020  | drugX |
| 199 | 40  | F   | LOW    | NORMAL      | 11.349  | drugX |

200 rows × 6 columns

#### Out[13]:

|     | Age | Na_to_K |
|-----|-----|---------|
| 0   | 23  | 25.355  |
| 1   | 47  | 13.093  |
| 2   | 47  | 10.114  |
| 3   | 28  | 7.798   |
| 4   | 61  | 18.043  |
|     |     |         |
| 195 | 56  | 11.567  |
| 196 | 16  | 12.006  |
| 197 | 52  | 9.894   |
| 198 | 23  | 14.020  |
| 199 | 40  | 11.349  |

200 rows × 2 columns

In [14]: data1.plot.line()

Out[14]: <AxesSubplot:>



In [15]: data1.plot.bar()

#### Out[15]: <AxesSubplot:>



```
In [16]: data1.plot.hist()
```

Out[16]: <AxesSubplot:ylabel='Frequency'>



In [17]: data1.plot.area()

#### Out[17]: <AxesSubplot:>



```
In [18]: data2 = data1['Age']
    data2
```

```
Out[18]:
          0
                   23
                   47
          1
          2
                   47
          3
                   28
          4
                   61
          195
                   56
          196
                   16
          197
                   52
          198
                   23
          199
                   40
```

Name: Age, Length: 200, dtype: int64

```
In [19]: data2.plot.pie()
```

Out[19]: <AxesSubplot:ylabel='Age'>



