수학으로부터 인류를 자유롭게 하라

Free Humankind from Mathematics

Basic Algebra

Chap.2 Sets

2.1 Definition and Notations of Sets

Data Structures in Math

- (1) Sets
- (2) Sequences
- (3) Vectors
- (4) Matrices
- (3) Trees

•

Characteristics of Data Structures

- (1) Sets: unordered objects
- (2) Sequences: ordered objects with specific patterns
- (3) Vectors: ordered numbers
- (4) Matrices: numbers arranged in rectangular grids
- (3) Trees: nodes connected by edges

2.1 Definition and Notations of Sets

Data Structures in Math

Operations on Data Structures

2.1 Definition and Notations of Sets

What's Sets?

a collection of distinct and well-defined things(or elements)

distinct: 서로 같지 않은

well-defined: doesn't change from person to person

things: 서로 같은 종류의 object들

don't have to be numbers

e.g. natural numbers, letters, rectangulars, images, persons

2.1 Definition and Notations of Sets

Notations

Enumerating Elements(Roster Form)

Set = {element₁, element₂, ..., element_n}

$$A = \{1, 2, 3, 4\}$$

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

 $C = \{red, green, blue\}$

 $D = \{free, guarantee, help, prices, winner, chance\}$

Set Builder

Set = {element | element's condition}

$$A = \{x \mid 1 \le x \in \mathbb{N} \le 4\}$$

$$B = \{x \mid x = \mathbb{R}^{2 \times 2} \ | \ \text{standard basis vector} \}$$

$$C = \{x \mid x$$
는 빛의 삼원색 \}

$$D = \{x \mid x$$
는 스팸메일에 자주 등장하는 단어 \}

2.1 Definition and Notations of Sets

Notations

Venn Diagram

2.1 Definition and Notations of Sets

Universal/Empty Sets

Empty Sets

$$\emptyset = \{\}$$

Universal Sets

U: 가능한 모든 원소들의 집합

```
ex.1) U = \{x \mid (x \text{ is a } 200 \times 200 \text{ images})\}
A = \{x \mid (x \text{ is a } 200 \times 200 \text{ images}) \land (x \text{ contains humans in it})\}
B = \{x \mid (x \text{ is a } 200 \times 200 \text{ images}) \land (x \text{ contains dogs in it})\}
C = \{x \mid (x \text{ is a } 200 \times 200 \text{ images}) \land (x \text{ contains humans and dogs in it})\}
ex.2) U = \{x \mid (x \text{ is an English word})\}
A = \{x \mid (x \text{ is a frequenctly occurred word in spams})\}
```

2.2 Usages of Sets

Algebra

Common Number Sets

Whole Number
$$\mathbb{W} = \{0, 1, 2, ...\} = \{x \mid (x = 0 \lor x = 70, 1)\}$$

Integers(정수)
$$\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \} = \{ x \mid (x 는 정수) \}$$

Irrational Numbers(무리수)
$$\mathbb{I} = \{\pi, e, \sqrt{2}, ...\} = \{x \mid (x 는 무리수)\} = \{x \mid \neg(x 는 유리수)\}$$

Real Numbers(실수)
$$\mathbb{R} = \{x \mid (x = 24)\} = \{x \mid (x = 24)\}$$

Complex Numbers(복소수)
$$\mathbb{C} = \{x \mid (x \in \mathbb{A} + \mathbb{A})\} = \{a + j \cdot b \mid (a, b \in \mathbb{A})\}$$

2.2 Usages of Sets

Algebra

Coordinate Spaces

$$\mathbb{R}^2 = \{(x, y) \mid x, y \vdash \text{실수}\}$$

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z$$
는 실수}

Higher Dimensional Spaces
$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid \forall x_i$$
는 실수}

2.2 Usages of Sets

Algebra

Functions

Domain: a set of departure of a function

Codomain: a set of destination of a function

Range(Image): The image of f is then the subset of Y consisting of only those elements

y of Y such that there is at least one x in X with f(x) = y.

Function: a binary relation between two sets that associates to each element of the first set exactly one element of the second set.

2.2 Usages of Sets

Algebra

Lines and Planes

Line: a set of points whose coordinates satisfy a given linear equation

$$y = ax + b$$

$$L = \{(x, y) \mid y = ax + b\}$$

Plane: a set of all points
$$\mathbf{r}$$
 such that, $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$

$$P = \{(x, y, z) \mid \mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0\}$$

수학으로부터 인류를 자유롭게 하라

2.2 Usages of Sets

Algebra

Intersections

Intersection of L and P = the set of all points that lie on both L and P

No intersection \implies $S = \emptyset$

Point intersection \Longrightarrow $S = \{(x_s, y_s, z_s)\}$

Lines intersection \Longrightarrow $S = \{ \mathbf{r} \mid (\mathbf{r} \text{ is on } L) \}$

수학으로부터 인류를 자유롭게 하라

2.2 Usages of Sets

Algebra

Solution Sets

Solution Set of Equations
$$f(x) = 0$$

solution set of the equation = the set of all x's that satisfy the equation

$$(x-2)(x+3) = 0 \rightarrow S = \{2, -3\}$$

 $sin(x) = 0 \rightarrow S = \{..., -2\pi, -\pi, 0, \pi, 2\pi, ...\} = \{x \mid x = k\pi, k \text{ is an integer}\}$

Solution Set of Inequalities
$$f(x) < 0$$

solution set of the inequality = the set of all x's that satisfy the inequality

$$(x-2)(x+3) < 0 \rightarrow S = \{x \mid -3 < x < 2\}$$

2.2 Usages of Sets

Linear Algebra

a set of objects called vectors **Vector Space**

W is a **subset** of V, then W is a linear subspace of V if under the operations of Linear Subspace

V, W is a vector space over K.

the set of linear combinations of elements of S. Linear Span

a set B is a basis if its elements are linearly independent and every element of V Basis

is a linear combination of elements of B.

the set of its eigenvalues. Spectrum of a Matrix

The set of all eigenvectors of T corresponding to the same eigenvalue, Eigenspace

together with the zero vector, is called an eigenspace

2.2 Usages of Sets

Probability and Statistics

the set of all possible outcomes or results of that experiment. Sample Space

A subset of the sample space is an event Event

A stochastic or random process can be defined as a collection of random variables Random Process

that is indexed by some mathematical set

A statistical model is a mathematical model that embodies a set of statistical Statistical Model

assumptions concerning the generation of sample data

Ref. Wikipedia

2.3 Cardinality of Sets

Cardinality of Sets

or cardinal number

$$|A| = (\# elements)$$

ex.1)
$$A = \{0, 1\} \longrightarrow |A| = 2$$

ex.2)
$$B = \{a, b, c\} \longrightarrow |B| = 3$$

ex.3)
$$C = \{x \mid (x \text{ is an 1-digit integer})\} \longrightarrow |C| = 10$$

ex.4)
$$D = \{x \mid (x \text{ is an alphabet})\} \longrightarrow |D| = 26$$

Cardinality of Empty Set $|\emptyset| = 0$

Singleton Set |A| = 1

Equivalent Sets |A| = |B|

2.3 Cardinality of Sets

Finite/Infinite Sets

Finite Sets

원소의 개수가 한정되어 있는 집합

$$|A| = 0$$
 or n

Encoding of Elements

주로 컴퓨터의 연산을 위해, 원소들을 index에 대응시키는 과정

$$A = \{a, b, c, \dots, x, y, z\}$$

$$\begin{vmatrix} a:1, b:2, c:3\\ \dots x:24, y:25, z:26 \end{vmatrix}$$

$$A_E = \{1, 2, 3, \dots, 24, 25, 26\}$$

2.3 Cardinality of Sets

Finite/Infinite Sets

Infinite Sets

원소의 개수가 무한한 집합

$$|A| = \infty$$

ex) \mathbb{N} , \mathbb{W} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} , \mathbb{C}

Countably Infinite Sets

원소들을 index에 대응시킬 수 있는 무한집합

ex) \mathbb{N} , \mathbb{W} , \mathbb{Z} , \mathbb{Q}

encoding이 가능함

Uncountably Infinite Sets

원소들을 index에 대응시킬 수 없는 무한집합 ex) \mathbb{R} , \mathbb{C}

2.4 Inclusion and Exclusion

Inclusion/Exclusion of Elements

원소들은 어떤 집합에 포함될 수도, 포함되지 않을 수 있다.

(원소 a가 집합 A에 포함됨) $= (a \in A)$

(원소 a가 집합 A에 포함되지 않은) $= (a \not\in A)$

ex)
$$A = \{a, b, c, d\}$$
 $a \in A, b \in A, c \in A, d \in A$ $e \notin A, f \notin A, g \notin A, h \notin A$

2.4 Inclusion and Exclusion

Equal Sets

집합 A의 모든 원소가 집합 B에 포함되고 반대도 성립할 때, A,B는 서로 같은 집합이다.

$$A = B \longleftrightarrow [(\forall a \in A) \in B] \land [(\forall b \in B) \in A]$$

2.4 Inclusion and Exclusion

Inclusion/Exclusion of Sets

Subset

집합 A의 모든 원소가 집합 B에 포함될 때, A는 B의 subset이라 한다.

$$A \subseteq B \longleftrightarrow (\forall a \in A) \in B$$

$$A \subseteq B \longrightarrow |A| \le |B|$$

Superset

집합 B의 모든 원소가 집합 A에 포함될 때, A는 B의 superset이라 한다.

$$A \supseteq B \longleftrightarrow (\forall b \in B) \in A$$

$$A \supseteq B \longrightarrow |A| \ge |B|$$

2.4 Inclusion and Exclusion

Inclusion/Exclusion of Sets

 $A \subseteq B, B \subseteq C, A \subseteq C$ $B \supseteq A, C \supseteq B, C \supseteq A$

2.4 Inclusion and Exclusion

Inclusion/Exclusion of Sets

Example

$$A = \{a, b, c, d\}$$

$$\emptyset \subseteq A$$

$$\{a\} \subseteq A, \{b\} \subseteq A, \{c\} \subseteq A, \{d\} \subseteq A$$

$$\{a,b\}\subseteq A, \{a,c\}\subseteq A, \{a,d\}\subseteq A,$$

$$\{b, c\} \subseteq A, \{b, d\} \subseteq A, \{c, d\} \subseteq A$$

$${a, b, c} \subseteq A, {a, b, d} \subseteq A,$$

$$\{a, c, d\} \subseteq A, \{b, c, d\} \subseteq A$$

$$\{a, b, c, d\} \subseteq A \longrightarrow A \subseteq A$$

A is a subset of itself.

$$\{a, b, c, d\} \supseteq A \longrightarrow A \supseteq A$$

$$\{a, b, c, d, e\} \supseteq A$$

$$\{a, b, c, d, f\} \supseteq A$$

$$\{a, b, c, d, e, f\} \supseteq A$$

2.4 Inclusion and Exclusion

Proper Subsets/Supersets

Proper Subsets

집합 A, B에 대해 A가 B의 subset이지만 완전히 같지는 않을 때, A는 B의 proper subset이라 한다.

적어도 B의 원소 중 하나는 A에 포함되지 않아야 한다.

$$A \subset B \longleftrightarrow [(\forall a \in A) \in B] \land [A \neq B]$$

$$A \subset B \longrightarrow |A| < |B|$$

Proper Supersets

집합 A,B에 대해 A가 B의 superset이지만 완전히 같지는 않을 때, A는 B의 proper superset이라 한다.

적어도 A의 원소 중 하나는 B에 포함되지 않아야 한다.

$$A \supset B \longleftrightarrow [(\forall b \in B) \in A] \land [A \neq B]$$

$$A \supset B \longrightarrow |A| > |B|$$

2.4 Inclusion and Exclusion

Proper Subsets/Supersets

Example.1

$$A = \{a, b, c, d\}$$

 $\emptyset \subset A$

$$\{a\} \subset A, \{b\} \subset A, \{c\} \subset A, \{d\} \subset A$$

$$\{a,b\}\subset A, \{a,c\}\subset A, \{a,d\}\subset A,$$

$$\{b,c\}\subset A,\,\{b,d\}\subset A,\,\{c,d\}\subset A$$

$${a, b, c} \subset A, {a, b, d} \subset A,$$

$$\{a, c, d\} \subset A, \{b, c, d\} \subset A$$

A is not a proper subset of A.

A is not a proper superset of A.

$$\{a, b, c, d, e\} \supset A$$

$$\{a, b, c, d, f\} \supset A$$

$$\{a, b, c, d, e, f\} \supset A$$

2.4 Inclusion and Exclusion

Proper Subsets/Supersets

Example.2

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

2.4 Inclusion and Exclusion

Proper Subsets/Supersets

2.4 Inclusion and Exclusion

Increasing/Decreasing Sequences of Sets

Increasing Sequences of Sets

$$A_1 \subseteq A_2 \subseteq \dots \subseteq A_n$$

$$A_k \subseteq A_{k+1}, 1 \le k \in \mathbb{N} \le n-1$$

$$A_k \subseteq A_{k+1}, 1 \le k \in \mathbb{N} \le n-1 \longrightarrow |A_k| \le |A_{k+1}|$$

Decreasing Sequences of Sets

$$A_1 \supseteq A_2 \supseteq \dots \supseteq A_n$$

$$A_k \supseteq A_{k+1}, 1 \le k \in \mathbb{N} \le n-1$$

$$A_k \supseteq A_{k+1}, 1 \le k \in \mathbb{N} \le n-1 \longrightarrow |A_k| \ge |A_{k+1}|$$

2.4 Inclusion and Exclusion

Increasing/Decreasing Sequences of Sets

Example.1

$$A_i = \{x \mid (x = 2^i) \text{ 배수}\}$$
 $A_1 = \{x \mid (x = 2^i) \text{ 배수}\} = \{2, 4, 6, 8, 10, \dots\}$
 $A_2 = \{x \mid (x = 4^i) \text{ 배수}\} = \{4, 8, 12, 16, 20, \dots\}$
 $A_3 = \{x \mid (x = 8^i) \text{ 배수}\} = \{8, 16, 24, 32, 40, \dots\}$
 $\implies A_1 \supset A_2 \supset A_3 \supset \dots$

 \implies A_1, A_2, A_3, \dots : decreasing sequnce

2.4 Inclusion and Exclusion

Increasing/Decreasing Sequences of Sets

Example.2 The key idea of residual networks

2.5 Operations on Sets

Unary/Binary Operations

Operations on Sets

일정한 규칙을 통해 **새로운 집합**을 만들어내는 과정

Unary Operations $f: A \longrightarrow B$

- power set of sets
- complement of sets

Binary Operations $f: A \times B \longrightarrow C$

- Intersection of sets
- union of sets
- set difference
- symmetric difference
- Cartesian product of sets

2.5 Operations on Sets

Unary Operations - Power Sets

Power Sets

집합 A의 모든 subset들의 집합 $\mathcal{P}(A)$ 모든 원소들은 "집합"

Power Set and Cardinality

ex.1)
$$A = \{0, 1\}$$
 Subsets => \emptyset , $\{0\}$, $\{1\}$, $\{0, 1\}$
$$\emptyset \in P(A)$$

$$\{0\} \in P(A)$$

$$\{1\} \in P(A)$$

$$\{0, 1\} \in P(A)$$

$$\emptyset \in P(A)$$

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

$$\begin{split} |\mathcal{P}(A)| &= 2^{|A|} \\ \text{ex.2)} \\ B &= \{a,b,c\} \\ \text{Subsets} \Rightarrow \varnothing, \, \{a\}, \, \{b\}, \, \{c\}, \, \{a,b\}, \, \{a,c\}, \, \{b,c\}, \, \{a,b,c\} \\ \varnothing &\in P(B) \qquad \{a,b\} \in P(B) \\ \{a\} \in P(B) \qquad \{b,c\} \in P(B) \\ \{b\} \in P(B) \qquad \{b,c\} \in P(B) \\ \{c\} \in P(B) \qquad \{a,b,c\} \in P(B) \end{split}$$

 $\mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$

2.5 Operations on Sets

Unary Operations - Power Sets

Power Sets and Binary Numbers

$$B = \{a, b, c\}$$

Decimal	Bin. Num.		Subset
0	000		Ø
1	001		$\{c\}$
2	010		{ <i>b</i> }
3	011		{ <i>b</i> , <i>c</i> }
4	100		<i>{a}</i>
5	101		{a, c}
6	110		{ <i>a</i> , <i>b</i> }
7	111		$\{a, b, c\}$

^{*}Symmetric Table

2.5 Operations on Sets

Unary Operations - Power Sets

Note!

- 1. Power set의 원소들은 "집합"
- 2. Ø라A는 $\mathcal{P}(A)$ 의 원소
- 3. $\mathcal{P}(A)$ 의 원소들은 binary number로 인코딩이 가능하다.

2.5 Operations on Sets

Unary Operations - Power Sets

$$A = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$$

$$\longrightarrow \mathcal{P}(A) = \left\{ \varnothing, \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\} \right\}$$

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\longrightarrow \mathcal{P}(B) = \left\{ \varnothing, \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}, \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \right\}$$

ex.3)

$$C = \{R, G, B\}$$

$$\longrightarrow \mathcal{P}(C) = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \{R,G,B\}\}\}$$

2.5 Operations on Sets

Unary Operations - Complements

A에 **포함되지 않은** 원소들을 모은 집합을 A의 complement이라 하고, A^c 로 표현한다.

$$A^c = \{x \mid x \notin A\}$$

Cardinality

$$|A^c| = |U| - |A|$$

2.5 Operations on Sets

Unary Operations - Complements

2.5 Operations on Sets

Binary Operations - Intersections and Unions

집합 A, B에 모두 포함되는 원소들을 모든 집합을 A와 B의 intersection(교집합)이라고 부르고, $A \cap B$ 로 나타낸다.

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}$$
 $A \cap B$ 는 가끔 AB 로 표현하기도 한다.

집합 A 또는(or) B에 포함되는 원소들을 모든 집합을 A와 B의 union(합집합)이라고 부르고, $A\cup B$ 로 나타낸다.

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

Cardinality

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 $|A \cap B| \le |A|, |A \cap B| \le |B|$
 $|A \cup B| \ge |A|, |A \cup B| \ge |B|$

Special Cases

$$A \subseteq B \longrightarrow A \cup B = B, \quad A \cap B = A$$

 $|A \cap B| = |A|, \quad |A \cup B| = |B|$
 $A \supseteq B \longrightarrow A \cup B = A, \quad A \cap B = B$
 $|A \cap B| = |B|, \quad |A \cup B| = |A|$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

General Intersections

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n \qquad \bigcap_{i=1}^{n} A_i = A_1 A_2 \ldots A_n$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

General Unions

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

$$U$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

Special Cases(2)

$$A_k \subseteq A_{k+1}, \quad 1 \le k \in \mathbb{N} \le n-1 \qquad \longrightarrow \qquad \bigcap_{i=1}^n A_i = A_1, \quad \bigcup_{i=1}^n A_i = A_n$$

$$\left| \bigcup_{i=1}^n A_i \right| = |A_n|, \quad \left| \bigcap_{i=1}^n A_i \right| = |A_1|$$

$$\left| \bigcup_{i=1}^{k-1} A_i \right| \le \left| \bigcup_{i=1}^k A_i \right|, \quad \left| \bigcap_{i=1}^{k-1} A_i \right| = \left| \bigcap_{i=1}^k A_i \right| = |A_1|$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

Special Cases(2)

$$A_{k} \supseteq A_{k+1}, \quad 1 \le k \in \mathbb{N} \le n-1 \longrightarrow \bigcap_{i=1}^{n} A_{i} = A_{n}, \quad \bigcup_{i=1}^{n} A_{i} = A_{1}$$

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = |A_{1}|, \quad \left| \bigcap_{i=1}^{n} A_{i} \right| = |A_{n}|$$

$$\left| \bigcup_{i=1}^{k-1} A_{i} \right| = \left| \bigcup_{i=1}^{k} A_{i} \right| = |A_{1}|, \quad \left| \bigcap_{i=1}^{k-1} A_{i} \right| \ge \left| \bigcap_{i=1}^{k} A_{i} \right|$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

The Algebraic Properties

Commutative Law

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associative Law

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributive Law

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cup C) = (A \cup B) \cup (A \cup C)$$

 \boldsymbol{U}

2.5 Operations on Sets

Binary Operations - Intersections and Unions

Identities

$$(1) A \cup \emptyset = A$$

$$(2) A \cap \emptyset = \emptyset$$

$$(3) A \cup U = U$$

$$(4) A \cap U = A$$

$$(5) A \cup A^c = U$$

$$\textbf{(6)}\ A\cap A^c=\varnothing$$

(7)
$$(A^c)^c = A$$

2.5 Operations on Sets

Binary Operations - Intersections and Unions

De Morgan's Law

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Examples

$$(A^c \cap B)^c = \left[(A^c)^c \cup B^c \right] = A \cup B^c$$
$$(A \cup B^c)^c = \left[A^c \cap (B^c)^c \right] = A^c \cap B$$

 \boldsymbol{U}

2.5 Operations on Sets

Binary Operations - Set Differences

집합 A,B에 대해 A에는 포함되고, B에는 포함되지 않은 원소들을 모은 집합을 A-B로 나타내고, set difference(차집합)이라고 부른다.

$$A - B = \{x \mid (x \in A) \land (x \notin B)\}$$

 $A - B 는 A \setminus B$ 로 표현하기도 한다.

2.5 Operations on Sets

Binary Operations - Set Differences

Computation Exercises

- $(1) \quad A B = A \cap B^c$
- $(2) \quad B A = B \cap A^c$
- (3) $A B = A (A \cap B)$ $= (A \cup B) B$
- (4) $B A = B (A \cap B)$ $= (A \cup B) A$

2.5 Operations on Sets

Binary Operations - Set Differences

Computation Exercises

(5)
$$(A - B) \cup (A \cap B) = (A \cap B^c) \cup (A \cap B)$$

 $= A \cap (B^c \cup B)$
 $= A \cap U$
 $= A$

(6)
$$(B - A) \cup (A \cap B) = (B \cap A^c) \cup (A \cap B)$$

 $= (B \cap A^c) \cup (B \cap A)$
 $= B \cap (A^c \cup A)$
 $= B \cap U$
 $= B$

$$(7) A - (A - B) = A - (A \cap B^{c})$$

$$= A \cap (A \cap B^{c})^{c}$$

$$= A \cap (A^{c} \cup B)$$

$$= (A \cap A^{c}) \cup (A \cap B)$$

$$= \emptyset \cup (A \cap B)$$

$$= A \cap B$$

2.5 Operations on Sets

Binary Operations - Set Differences

set difference는 relative complement라고 부르기도 한다.

2.5 Operations on Sets

Binary Operations - Set Differences

Special Case

$$A \cap B = \emptyset$$

$$A - B = A$$

$$B - A = B$$

2.5 Operations on Sets

Binary Operations - Set Differences

The Algebraic Properties

Anti-commutativity
$$A - B \neq B - A$$

Anti-associativity
$$A - (B - C) \neq (A - B) - C$$

Distributive Law

(1)
$$C - (A \cap B) = C \cap (A \cap B)^c$$

$$= C \cap (A^c \cup B^c)$$

$$= (C \cap A^c) \cup (C \cap B^c)$$

$$= (C - A) \cup (C - B)$$

(2)
$$C - (A \cup B) = C \cap (A \cup B)^c$$

$$= C \cap (A^c \cap B^c)$$

$$= (C \cap A^c) \cap (C \cap B^c)$$

$$= (C - A) \cap (C - B)$$

$$U \Longrightarrow \cap$$
, $\cap \Longrightarrow U$

2.5 Operations on Sets

Binary Operations - Symmetric Differences

집합A, B에 대해A - B와 B - A의 union

$$A \triangle B = \{x \mid (A - B) \cup (B - A)\}$$
$$= \{x \mid [(x \in A) \lor (x \in B)] \land (x \notin A \cap B)\}$$

$$A \triangle B = (A - B) \cup (B - A)$$

$$= (A \cap B^c) \cup (B \cap A^c)$$

$$A \cap B^c = X$$

$$= X \cup (B \cap A^c)$$

$$= (X \cup B) \cap (X \cup A^c)$$

$$= [(A \cap B^c) \cup B] \cap [(A \cap B^c) \cup A^c]$$

$$= [(A \cup B) \cap (B^c \cup B)] \cap [(A \cup A^c) \cap (B^c \cup A^c)]$$

$$= [(A \cup B) \cap (B \cap A)^c]$$

$$= (A \cup B) \cap (B \cap A)^c$$

$$= (A \cup B) - (A \cap B)$$

2.5 Operations on Sets

Binary Operations - Cartesian Product

집합 A, B에서 원소 a, b들을 각각 뽑아 뽑아 (a, b)를 만들 때, 모든 (a, b)들의 집합을 $A \times B$ 라 한다.

$$A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$$

$$A = \{a_1, a_2, \dots, a_m\}$$

 $B = \{b_1, b_2, \dots, b_n\}$

	b_1	b_2	• • •	b_n
a_1	(a_1, b_1)	(a_1, b_2)	• • •	(a_1,b_n)
a_2	(a_2, b_1)	(a_2, b_2)	• • •	(a_2,b_n)
:	•	•	•••	•
a_m	(a_m, b_1)	(a_m, b_2)	• • •	(a_m,b_n)

$$A \times B = \{(a_1, b_1), (a_1, b_2), \dots, (a_1, b_n) \}$$

 $(a_2, b_1), (a_2, b_2), \dots, (a_2, b_n)$
 \vdots
 $(a_m, b_1), (a_m, b_2), \dots, (a_m, b_n)\}$

2.5 Operations on Sets

Binary Operations - Cartesian Product

ex.1)

$$A = \{0, 1, 2\}, \quad B = \{a, b\} \longrightarrow A \times B$$

	a	b
0	(0,a)	(0,b)
1	(1,a)	(1,b)
2	(2,a)	(2,b)

$$A \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$$

2.5 Operations on Sets

Binary Operations - Cartesian Product

ex.2)

$$A = \{0, 1, 2\} \longrightarrow A \times A = A^2$$

	0	1	2
0	(0,0)	(0,1)	(0,2)
1	(1,0)	(1,1)	(1,2)
2	(2,0)	(2,1)	(2,2)

$$A \times B = \{(0,0), (0,1), (0,2)\}$$

(1,0), (1,1), (1,2)
(2,0), (2,1), (2,2)}

2.5 Operations on Sets

Binary Operations - Cartesian Product

$$\mathbb{R} \longrightarrow \mathbb{R}^2 = \{ (x, y) \mid x, y \in \mathbb{R} \}$$

$$\mathbb{R} \longrightarrow \mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}$$

2.6 Partitions of Sets

Disjoint Sets

집합A, B에 대해 $A \cap B = \emptyset$ 일 때A, B는 disjoint set이다. disjoint는 mutually exclusive라고도 부른다.

Cardinality

$$|A \cap B| = 0$$
$$|A \cup B| = |A| + |B|$$

2.6 Partitions of Sets

Partitions of Sets

Universal $\operatorname{set}(U)$ 안에 n개의 집합 A_1, A_2, \ldots, A_n 이 있고, U의 모든 원소들이 모두 단 하나의 A_i 에만 포함될 때, $\{A_1, A_2, \ldots, A_n\}$ 를 U의 partition이라 부른다.

2.6 Partitions of Sets

Partitions of Sets

Non-uniqueness of Partitions

Partition of Sets is NOT UNIQUE

$$A = \{x \mid 1 \le x \in \mathbb{N} \le 20\}$$

$$A_1 = \{x \mid 1 \le x \in \mathbb{N} \le 10\}$$
 $A_2 = \{x \mid 10 < x \in \mathbb{N} \le 20\}$
 $A_1 \cap A_2 = \emptyset$
 $A_1 \cup A_2 = A$

The
$$\{A_1, A_2\}$$
 is a partition of A

$$A_3 = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x = 2n)\}$$

 $A_4 = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x = 2n + 1)\}$
 $A_3 \cap A_4 = \emptyset$
 $A_3 \cup A_4 = A$

The
$$\{A_3, A_4\}$$
 is a partition of A

$$A_{5} = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x \bmod 3 = 0)\}$$

$$A_{6} = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x \bmod 3 = 1)\}$$

$$A_{7} = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x \bmod 3 = 2)\}$$

$$A_{7} = \{x \mid (1 \le x \in \mathbb{N} \le 20) \land (x \bmod 3 = 2)\}$$

$$A_{5} \cap A_{6} = \emptyset$$

$$A_{5} \cap A_{7} = \emptyset$$

$$A_{6} \cap A_{7} = \emptyset$$

$$A_{5} \cup A_{6} \cup A_{7} = A$$

The $\{A_5, A_6, A_7\}$ is a partition of A

2.6 Partitions of Sets

Partitions of Sets

Making a Complete Set with Partitions

$$B = \bigcup_{i=1}^{n} (A_i \cap B)$$

2.6 Partitions of Sets

Partitions of Sets

ex.1)

 A_i : 나이(x)가 $10 \cdot i \le x \le 10 \cdot (i+1)$ 인 사람들의 집합

G: 안경을 쓴 사람들의 집합

CLOSING

Basic Algebra

Chap.2 Sets