Updated: July 2 2021

Note bene (7/2):

(1.a)
$$t_1 \cos \phi_1 - t_2 \cos \phi_2 = 0$$

(1.b) $t_1 \sin \phi_1 + t_2 \sin \phi_2 - t_{cc} = 0$

There is an inconsistency here and this system is not solvable for any given choice of t_1 and t_2 . For example if $t_1=1,t_2=1.2$ then the two equations do intersect but not also with the zero plane.

 $\underline{\text{I think}}$ what is missing is the ability for the apical point at the cell-cell interface to move:

(1.a)
$$t_1 \cos \phi_1 - t_2 \cos \phi_2 - \zeta_4 v_4 = 0$$

(1.b) $t_1 \sin \phi_1 + t_2 \sin \phi_2 - t_{cc} = 0$