MA1102R

AY20/21 sem 2 by jovyntls

00. FUNCTIONS & SETS

sets

$$A = \{x \mid properties \ of x\}$$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B
- $A = B \iff A \subseteq B \land B \subseteq A$
- · operations on sets
 - union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
 - difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- · common notations on sets:
 - $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ where $\mathbb{N} = \mathbb{Z}^+$
 - ∅: empty set

closed interval (inclusive): $[a,b] = \{x \mid a \le x \le b\}$

open interval (exclusive): $|(a,b) = \{x \mid a < x < b\}$ $|(a, \infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- uniqueness: $\forall a \in A$ has only one image in B.
- for $f:A\to B$
 - domain: A, codomain: B
 - range: $\{f(x) \mid x \in A\}$
- · for this mod:
 - $A, B \subseteq \mathbb{R}$
- if A is not stated, the domain of f is the largest possible set for which f is defined
- if B is not stated. $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set $G(f) := \{(x, f(x)) \mid x \in A\}$

- if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$
- each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/g)(x) := f(x)/g(x)	$\{x \in A \cap B g(x) \neq 0\}$

types of functions

- rational function: $R(x) = \frac{P(x)}{Q(x)}$, where P, Q are polynomials and $Q(x) \neq 0$
 - every polynomial is a rational function (Q(x) = 1)
- · algebraic function: constructed from polynomials using algebraic operations
- a function f is **increasing** on a set I if
- $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$.
- a function f is **decreasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) > f(x_2)$ for any $x_1, x_2 \in I$.

- even/odd:
 - even function: $\forall x, f(-x) = f(x)$
 - symmetric about the y-axis
 - odd function: $\forall x, f(-x) = -f(x)$
 - symmetric about the origin O
 - any function defined on \mathbb{R} can be decomposed *uniquely* into the sum of an even function and an odd function
- power function: xⁿ
 - an odd function, if n is odd an even function, if n is even

01. LIMITS

precise definition of limits

Let f be a function defined on an open interval containing a, except possibly at a.

The limit of f(x) (as x approaches a) equals L if,

for every
$$\epsilon>0$$
 there is $\delta>0$ such that $0<|x-a|<\delta\Rightarrow|f(x)-L|<\epsilon$

informally,

- $0 < |x a| < \delta \Rightarrow x$ is close to but not equal to a.
- $0 < |f(x) L| < \epsilon \Rightarrow f(x)$ is arbitrarily close to L.

limit laws

you cannot apply any laws on limits UNLESS you have shown that the limit exists!!

- Let $c \in \mathbb{R}$. $\lim c = c$
- $\lim x = a$

Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Let c be a constant

- $\lim (cf(x)) = cL = c \lim f(x)$
- $\bullet \lim_{x \to a} (f(x) + g(x)) = L + M = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\begin{array}{l}
 \stackrel{x \to a}{\lim} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \\
 \bullet \lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)
 \end{array}$
- $\bullet \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided that } \lim_{x \to a} g(x) \neq 0$
- $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

if
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 exists and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} f(x) = 0$

inequalities on limits

Suppose $\lim f(x) = L$ and $\lim g(x) = M$.

lemma

if f(x) < g(x) for all x near a (except possibly at a), then $L \leq M$.

lemma

If f(x) > 0 for all x, then L > 0.

direct substitution property

Let f be a polynomial or rational function.

If
$$a$$
 is in the domain of f , then
$$\lim_{x \to a} f(x) = f(a)$$

If f(x) = g(x) for all x near a except possibly at a, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$

If a is not in the domain (e.g. 0 denominator), don't apply directly - convert to an equivalent function and then sub in

one-sided limits

· limit laws also hold for one-sided limits

If as x is close to a from the right, f(x) is close to L, the right-hand limit of f as x approaches a equals L. $(x \to a^+ \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^+} f(x) = L$

If as x is close to a from the left, f(x) is close to L, the left-hand limit of f as x approaches a equals L. $(x \to a^- \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^-} f(x) = L$

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$

$$f(x) \to L \Leftarrow x \to a \Leftrightarrow \begin{cases} x \to a^+ \Rightarrow f(x) \to L \\ x \to a^- \Rightarrow f(x) \to L \end{cases}$$

definition of one-sided limits

$$\begin{array}{c} \text{LH Limit: } \lim_{x\to a^-} f(x) = L \\ \text{if for every } \epsilon > 0 \text{ there exists } \delta > 0 \text{ such that} \\ 0 < a - x < \delta \Rightarrow |f(x) - L| < \epsilon \end{array}$$

RH Limit:
$$\lim_{x \to a^+} f(x) = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that $0 < x - a < \delta \Rightarrow |f(x) - L| < \epsilon$

definition of infinite limits

$$\lim_{x \to a} f(x) = \infty$$

if for every M>0 there exists $\delta>0$ such that $0 < |x - a| < \delta \Rightarrow f(x) > M$

negative infinite limit:

$$0 < |x - a| < \delta \Rightarrow f(x) < M$$

 • ∞ is NOT a number ⇒ an infinite limit does NOT exist

limits to infinity

Suppose f is defined on $[M, \infty)$ for some $M \in \mathbb{R}$:

$$\lim_{x \to \infty} f(x) = L$$

 $\lim_{x\to\infty}f(x)=L\label{eq:formula}.$ For every $\epsilon>0$, there exists N such that $x > N \Rightarrow |f(x) - L| < \epsilon$

$$\lim f(x) = \infty$$
:

For every M>0, there exists N such that $x > N \Rightarrow f(x) > M$

squeeze theorem

Suppose f(x) is bounded by g(x) and h(x) where

- q(x) < f(x) < h(x) for all x near a (except at a), and
- $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$.

02. CONTINUOUS FUNCTIONS definition of continuity

a function f is **continuous at** $a \iff$ f is continuous from the left and from the right at a.

$$\lim_{x \to a} f(x) = f(a)$$

• f is continuous from the right at a if $\lim_{x \to a^{+}} f(x) = a$

• f is continuous from the left at a if $\lim_{x \to a^-} f(x) = a$

a function f is **continuous at an interval** if it is continuous at every number in the interval.

 $f \text{ is continuous on open interval } (a,b) \\ \Leftrightarrow f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous on closed interval } [a,b] \\ \begin{cases} f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous from the right at } a \\ f \text{ is continuous from the left at } b \end{cases}$

precise definition of continuity

a function f is **continuous** at a number a if for all $\epsilon>0$, there exists $\delta>0$ such that $|x-a|<\delta\Rightarrow|f(x)-f(a)|<\epsilon$

• aka $\lim_{x \to a} f(x) = f(a)$

continuity test

f is continuous at $a \Leftrightarrow$

1. f is defined at a (a is in the domain of f)

2. $\lim_{x \to a} f(x)$ exists

 $3. \lim_{x \to a} f(x) = f(a)$

examples of discontinuity

properties of continuous functions

let f and g be functions continuous at a. let c be a constant.

1. cf is continuous at a

2. f + q is continuous at a

3. f - g is continuous at a

4. fq is continuous at a

5. f/g is continuous at a, provided $g(a) \neq 0$

other properties

· a polynomial is continuous everywhere

· a rational function is continuous on its domain

• if P(x) and Q(x) are polynomials, $\frac{P(x)}{Q(x)}$ is continuous whenever $Q(x) \neq 0$.

• f(x) = c is continuous on \mathbb{R} for all $c \in \mathbb{R}$.

• f(x) = x is continuous on \mathbb{R} .

trigonometric functions

• $f(x) = \sin x$ and $g(x) = \cos x$ are continuous everywhere

• $\tan x$, $\sec x$ are continuous whenever $\cos x \neq 0$

• domain: $\mathbb{R}\setminus\{\pm\frac{pi}{2},\pm\frac{3\pi}{2},\pm\frac{5\pi}{2},\dots\}$

• $\cot x, \csc x$ are continuous whenever $\sin x \neq 0$

• domain: $\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$

composite of continuous functions

if f is continuous at b and $\lim_{x\to a}g(x)=b$, then $\lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))=f(b)$

if g is continuous at a and f is continuous at g(a), then $f\circ g$ is continuous at a. $\lim_{x\to a}(f\circ g)(x)=(f\circ g)(a)$

substitution theorem

Suppose y = f(x) such that $\lim_{x \to a} f(x) = b$. If

1. q is continuous at b, OR

2. $\forall x \text{ near } a, \text{ except at } a, f(x) \neq b \text{ and } \lim_{y \to b} g(y) \text{ exists}$

• aka, $\lim_{y \to b} g(y)$ exists and f is one-to-one.

Then $\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$

intermediate value theorem

Let f be a function continuous on [a,b] with $f(a) \neq f(b)$. Let N be a number between f(a) and f(b). Then there exists $c \in (a,b)$ such that f(c)=N.

03. DERIVATIVES

tangent line

the **tangent line** to y=f(x) at (a,f(a)) is the line passing through (a,f(a)) with slope f'(a): y=f'(a)(x-a)+f(a)

definition of derivatives

• f is differentiable at a if f'(a) exists

• f'(a) is the slope of y = f(x) at x = a

• $f'(a) = \frac{dy}{dx}|_{x=a}$

• $\frac{dy}{dx} := \lim_{x \to 0} \frac{\Delta y}{\Delta x}$ (derivative of y with respect to x)

• $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$

the **derivative** of a function f $f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ the **derivative** of a function f at a number a is $f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

differentiable functions

• f is differentiable at a if

• $f'(a) := \lim_{x \to 0} \frac{f(a+h) - f(a)}{h}$ exists.

• f is differentiable on (a,b) if

• f is differentiable at every $c \in (a,b)$

differentiability & continuity

- differentiability ⇒ continuity
 - if f is differentiable at a, then f is continuous at a.
- continuity ⇒ differentiability

differentiation

- every polynomial and rational function is differentiable on its domain
- the domain of f' may be smaller than the domain of f.
- trigonometric functions are differentiable on the domain

differentiation of trigonometric functions

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad \qquad \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$$

chain rule

If g is differentiable at a and f is differentiable at b=g(a), then $F=f\circ g$ is differentiable at a and $F'(a)=(f\circ q)'(a)=f'(b)q'(a)=f'(g(a))q'(a)$

If
$$z=f(y)$$
 and $y=g(x)$, then
$$\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}$$

$$\frac{dz}{dx}|_{x=a}=\frac{dz}{dy}|_{y=b}\frac{dy}{dx}|_{x=a}$$

generalised chain rule

h is differentiable at a; g is differentiable at B=h(a); f is differentiable at c=g(b).

$$(f \circ (g \circ h))' = f' \circ (g \circ h) \cdot (g \circ h)'$$
$$= f'(c)g'(b)h'(a)$$

Leibniz notation:

If
$$y = h(x), z = g(y), w = f(z),$$

$$\frac{dw}{dx} = \frac{dw}{dz} \frac{dz}{dy} \frac{dy}{dx}$$

implicit differentiation

• assumes that $\frac{dy}{dx}$ exists

second derivative

$$f''(x) = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

$$f' = D(f) \Rightarrow f'' := D^2(f)$$

higher derivatives

$$f^{(0)}:=f$$
 For any positive integer $n, f^{(n)}:=(f^{(n-1)})'$ if $y=f(x)$, then $f^{(n)}(x)=y^{(n)}=\frac{d^ny}{dx^n}=D^nf(x)$

• for $f(x) = \frac{1}{x}$, $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$

$$\bullet \text{ for } f(x) = x^m, f^{(n)}(x) = \begin{cases} \frac{m!x^{m-n}}{(m-n)!} & \text{ if } m \ge n, \\ 0 & \text{ if } m < n. \end{cases}$$

04. APPLICATIONS OF DIFFERENTIATION

extreme values of functions

Let f be a function with domain D.

global (absolute) max/min

- · aka absolute max/min
- extreme values = absolute maximum and absolute minimum

```
f has a global maximum at c \in D \Leftrightarrow f(c) \ge f(x) for all x \in D f has a global minimum at c \in D \Leftrightarrow f(c) \le f(x) for all x \in D
```

local max/min

- · aka relative max/min aka "turning points"
- "all x near c" = for all x in an open interval containing c

```
\begin{array}{l} f \text{ has a local } \mathbf{maximum} \text{ at } c \in D \\ \Leftrightarrow f(c) \geq f(x) \text{ for all } x \text{ near } c \\ f \text{ has a local } \mathbf{minimum} \text{ at } c \in D \\ \Leftrightarrow f(c) \leq f(x) \text{ for all } x \text{ near } c \end{array}
```

- global max/min ⇒ local max/min

extreme value theorem

existence

if f is continuous on a finite closed interval [a, b], then f attains extreme values on [a, b].

value

the extreme value occurs at either critical numbers or the endpoints (x = a, x = b).

critical numbers

 $c \in D$ is a *critical number* of f if f'(c) = 0, or f'(c) does not exist.

fermat's theorem

If f has a local maximum or minimum at c, then c is a critical number. If f'(c) exists, then f'(c)=0.

Rolle's Theorem

Let f be a function such that f is *continuous* on [a,b], f is differentiable on (a,b), and f(a)=f(b). Then there is a number $c\in(a,b)$ such that f'(c)=0.

mean value theorem

Let f be a function such that f is continuous on [a,b] and f is differentiable on (a,b). Then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-c}$

• generalisation of Rolle's theorem when f(a) = f(b).

ordinary differential equations

Let f and g be continuous on [a, b]. If f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + C on [a, b] for a constant C.

increasing/decreasing test

Let f be continuous on [a, b] and differentiable on (a, b).

- f'(x) > 0 for any $x \in (a, b) \Rightarrow f$ is increasing.
- f is increasing $\Rightarrow f(x) > 0$
- f'(x) < 0 for any $x \in (a,b) \Rightarrow f$ is decreasing.
- f is decreasing $\Rightarrow f(x) < 0$
- $f'(x) = 0 \Rightarrow f$ could be increasing OR decreasing.

first derivative test

Let f be continuous and c be a critical number of f. Suppose f is differentiable near c (except possibly at c). At c, if f'changes from:

- (+) to (-) $\rightarrow f$ has a local **maximum** at c
- (-) to (+) $\rightarrow f$ has a local **minimum** at c
- no change in sign $\rightarrow f$ has neither local max/min at c.

concavity

f is **concave up** on an open interval Iif f(x) > f'(y)(x - y) + f(y) for any $x \neq y \in I$ for $a < b \in I$, f'(a) < f'(b)concave up $\Leftrightarrow f'$ is increasing

f is **concave down** on an open interval Iif f(x) < f'(y)(x - y) + f(y) for any $x \neq y \in I$ for $a < b \in I$, f'(a) > f'(b)concave down $\Leftrightarrow f'$ is decreasing

concavity test

- f'' > 0 on $I \Rightarrow f$ is concave up on I
- f'' < 0 on $I \Rightarrow f$ is concave down on I

second derivative test

If f'(c) = 0 and f''(c) exists,

- $f''(c) < 0 \Rightarrow f$ has a **local maximum** at c.
- $f''(c) > 0 \Rightarrow f$ has a **local minimum** at c.
- $f''(c) = 0 \Rightarrow$ inconclusive

inflection point

- A point P on the curve y = f(x) is an inflection point if • f is continuous at P, and

 - the concavity of the curve changes at *P*.
- if c is an inflection point and f is twice differentiable at c, then f''(c) = 0.

Taylor's Theorem

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n,$$
 where $R_n = \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{(n+1)}$ for c between x and a

Taylor Series

As
$$R-n \to 0$$
 as $n \to \infty$, then
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

L'Hopital's Rule $(\frac{0}{0})$

Let f and g be functions such that

- $$\begin{split} & \cdot \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \\ & \cdot f \text{ and } g \text{ are differentiable near } a \text{ (except at } a). \end{split}$$

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
, provided that the RHS limit exists or is $\pm \infty$

L'Hopital's Rule (∞)

Suppose that

- $\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty$,
- f and g are differentiable near a (except at a),
- $q'(x) \neq 0$ near a (except at a)

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 provided that the RHS limit exists or is $\pm \infty$

Cauchy's Mean Value Theorem

Let f, g be continuous on [a, b], differentiable on (a, b), and $g'(x) \neq 0$ for any $x \in (a, b)$. Then there exists $c \in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

05. INTEGRAIS

definite integral

Let f be a continuous function on [a, b] divided into n intervals

Riemann sum

$$[f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)] \Delta x = \sum_{i=1}^n f(x_i^*) \Delta x$$

- · the lengths of subintervals are not necessarily equal
- $\max\{|x_i x_{i-1} : i = 1, \dots, n|\} \to 0$

definite integral of f from a to b:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

where $\Delta x = \frac{b-a}{a}$

- f is integrable from a to b if $\lim_{n\to\infty}\sum f(x_i^*)\Delta x$ exists.
- · continuous functions are integrable
- $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- $\int_a^a f(x)dx = 0$

properties

let f and a be continuous functions.

- $\int_a^b c \, dx = (b-a)c$
- $\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
- $\int_a^c f(x) dx = \int_b^c f(x) dx \pm \int_a^b f(x) dx$
- suppose f(x) > 0 on [a, b]. Then $\int_a^b f(x) dx > 0$.
- suppose $f(x) \ge g(x)$ on [a, b].
- Then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- suppose $m \leq f(x) \leq M$ on [a, b].
 - Then $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$.

fundamental theorem of calculus

for
$$g(x) = \int_a^x f(t) dt$$
 $(a \le x \le b)$,

- g is continuous on [a, b]
- a is differentiable on (a, b)
- g'(x) = f(x) on (a,b) or $\frac{d}{dx} \int_a^x f(t) dt = f(x)$

if F is continuous on [a, b], and F' = f on (a, b),

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}$$

$$\int_{a}^{x} \frac{d}{dx} F(t) dt = F(x) - F(a)$$

$$f(t) \xrightarrow{\int_{a}^{x}} F(x) \xrightarrow{\frac{d}{dx}} f(x)$$

$$F(t) \xrightarrow{\frac{d}{dt}} f(t) \xrightarrow{\int_{a}^{x}} F(x) - F(a)$$

indefinite integral

- indefinite integral of f, $\int f(x) dx = F(x) + c$
- antiderivative (of a continuous function f): a continuous function F such that F' = f.
- antiderivatives of f are functions of form F+c
- indefinite integral is a family of antiderivatives
- properties of indefinite integral

•
$$\int (af(x) \pm bg(x)) dx = a \int f(x) dx \pm b \int g(x) dx$$

substitution rule

let u = q(x) be a differentiable function.

indefinite integral

if
$$f$$
 and g' are continuous,
$$\int f(g(x))g'(x)\,dx = \int f(u)\,du$$

definite integral

if
$$g'$$
 are continuous on $[a,b]$, and f is continuous on the range of $u=g(x)$,
$$\int_a^b f(g(x))g'(x)\,dx = \int_{g(a)}^{g(b)} f(u)\,du$$

misc

triangle inequality

$$|a+b| \leq |a| + |b|$$
 for all $a,b \in \mathbb{R}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

= $a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{n-1} a b^{n-1} + b^n$

where the binomial coefficient is given by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

factorisation

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

misc

• $\forall x \in (0, \frac{\pi}{2}), \sin x < x < \tan x$