Université d'Antananarivo Domaine Sciences et Technologies

Mention Info & Technologies AU 2022-2023 TD SÉRIE N° 3 L1 - Semestre 1 MATHÉMATIQUES GÉNÉRALES

ESPACES VECTORIELS

Exercice 1 Soit $\mathbb{R}[X] = \{P(X) = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n + \cdots \}$ l'ensemble des polynômes à une indeterminée X.

- 1)- Montrer que $\mathbb{R}[X]$ est une espace vectoriel sur \mathbb{R} . Quelle est sa dimension ? En donner une base de $\mathbb{R}[X]$.
- 2)- Soit maintenant E l'ensemble des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à 2, i.e. $E = \{P(X) \in \mathbb{R}[X] \mid \deg(P) \leq 2\}.$

Montrer que E est un sous-espace vectoriel de $\mathbb{R}[X]$. Donner une base de E. Quelle est sa dimension?

Exercice 2 Soient E un espace vectoriel sur un corps \mathbb{K} , E_1 et E_2 deux \mathbb{K} -sou-espaces vectoriels ed E.

- 1)- $E_1 \cap E_2$ et $E_1 \cup E_2$ sont-ils des sous-espaces vectoriels de E? Justifier.
- 2)- On définit l'ensemble $E_1 + E_2 = \{x_1 + x_2 \mid x_1 \in E_1, x_2 \in E_2\}.$
 - a) Montrer que $E_1 + E_2$ est un sous-espace vectoriel de E.
 - b) En déduire que E_1+E_2 est un sous-espace vectoriel engendré par $E_1\cup E_2$. Ainsi, E_1+E_2 est appelé sous-espace somme de E_1 et de E_2 .
- 3)- Soit E un espace vectoriel tel que $E=E_1+E_2$. Montrer que les assertions suivantes sont équivalentes:
 - (i) Tout $x \in E$ s'écrit de façon unique comme $x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2$.
 - (ii) $E_1 \cap E_2 = \{0\}.$

Si l'une de ces conditions est vérifiée, on dit que E_1 et E_2 sont *supplémentaires* et on écrit $E = E_1 \oplus E_2$. On dit aussi que E est somme directe de E_1 et E_2 .

- 4)- Soient E_1 et E_2 deux sous-espaces supplémentaires.
 - a) Montrer que $E_1 \times E_2$ est un espace vectoriel muni de
 - l'addition : $(x_1, x_2) + (x'_1, x'_2) = (x_1 + x'_1, x_2 + x'_2)$ et de
 - la multiplication externe : $\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2), \forall \alpha \in \mathbb{K}$.
 - b) Montrer que $E_1 \times E_2$ et $E_1 \oplus E_2$ sont isomorphes.

MATRICES

Exercice 1 Soit $G = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid ad - bc \neq 0 \neq 0 \}.$ 1)- Montrer que (G,\cdot) est un sous-espace vectoriel. Quelle est sa dimension, en

donner une base.

2)- Soit $H = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G \mid ad \neq 0 \}$. Montrer que H est sous-groupe de G.

3)- Montrer que $K=\{\left(\begin{array}{cc}1&b\\0&1\end{array}\right)\in G\mid b\in\mathbb{R}\}$ est sous-groupe distingué de H.

Exercice 2 Soit $G = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid a, b, c, d \text{ des entiers modulo } 2 \text{ et } ad - bc \neq 0 \}.$

Montrer que (G, \cdot) est un groupe d'ordre 6.

Exercice 3 Soit E l'ensemble des matrices carrées de $\mathcal{M}_n(\mathbb{R})$ de la forme

$$M(a,b) = \begin{pmatrix} a & b & \dots & \dots & b \\ b & a & \ddots & & \vdots \\ \vdots & b & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & b \\ b & \dots & \dots & b & a \end{pmatrix} \text{ où } a, b \in \mathbb{R}.$$

1)- Montrer qu'il existe deux matrices $I, J \in E$ tels que M(a, b) = aI + bJ, avec $a, b \in \mathbb{R}$.

2)- Montrer que $(E,+,\cdot)$) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Quelle est sa dimension?

Exercice 4 Soit f un endomorphisme de \mathbb{C}^3 dont la matrice relativement à la

base canonique $\mathcal{B} = \{e_1, e_2, e_3\}$ est donnée par $A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$. Déterminer la matrice A' associée à f relativement à la base $\mathcal{B}' = \{e_1', e_2', e_3'\}$ définie par $\begin{cases} e_1' = e_1 + e_2 + e_3 \\ e_2' = e_2 \\ e_3' = e_3 \end{cases}$

Exercice 5 Soit f une application linéaire définie relativement à la base

canonique
$$\mathcal{B} = \{e_1, e_2, e_3\}$$
 de \mathbb{R}^3 par :
$$\begin{cases} f(e_1) = 3e_1 - 2e_2 + 3e_3 \\ f(e_2) = 2e_1 + 3e_2 + e_3 \\ f(e_3) = 5e_1 + 2e_2 + 4e_3 \end{cases}$$

1)- Déterminer la matrice associée à f.

2)- En déduire l'expression de f en tout $(x, y, z) \in \mathbb{R}^3$.

3)- Déterminer un vecteur $u = (x, y, z) \in \mathbb{R}^3$ tel que f(u) = v où v = (1, 0, -1).