1 Llista Exercicis Entrega Tema 1, Aritmètica, curs 2023-24

Recordem que U denota la unitat, D la desena i C la centena del vostre NIU. A cada alumne assignaré alguns exercicis per a entregar.

- 1. Troba totes les solucions de $X^2+Y^2=Z^2$ amb $(x,y,z)\in \mathbb{F}_q[T]^3$ on $\mathbb{F}_q[T]$ denota l'anell de polinomis en la variable T a coefficients en el cos finit \mathbb{F}_q on $q=p^n$ amb p primer senar.
- 2. Troba totes les solucions de $X^2 + Y^2 = Z^2$ amb $(x, y, z) \in \mathbb{F}_{2^n}[T]^3$ on $\mathbb{F}_{2^n}[T]$ denota l'anell de polinomis en la variable T a coefficients en el cos finit \mathbb{F}_{2^n} , $n \geq 1$.
- 3. Considerem l'equació $X^2-Y^2=1$. Justifiqueu una parametrització via el sinh i cosh. Demostreu que si pensem l'equació $X^2-Y^2=1$ amb $x,y\in K$ on K és un cos amb $car(K)\neq 0$ llavors té infinites solucions i calculeu-les totes.
- 4. Demostreu que existeix un paràmetre t complint que $\mathbb{R}(\sinh(x), \cosh(x)) = \mathbb{R}(t)$. Useu aquest t per a calcular $\int (\sinh(x) + \cosh(x)) dx$.
- 5. Considerem l'equació $C: X^2-3*(U+1)XY+3Y^2+(D+1)*X-2Y-1=0$ (escrivim C: f(X,Y)=0 amb $f\in \mathbb{R}[X,Y]$). Intenta fer un canvi de variables on s'escrigui l'equació com $a(X')^2+b(Y')^2=1$ per certes constants a i b i variables X',Y'. Intenteu donar una paremetrització de la corba. Estudieu si $L:=\mathbb{R}(X)[Y]/f(X,Y)$ és un cos, i en cas de ser-ho, decidiu si existeix t on $L=\mathbb{R}(t)$. Podem fer el mateix enunciat i preguntes amb \mathbb{Q} enlloc de \mathbb{R} ?
- 6. En l'antiga cultura babilònica, ha arribat una taula escrita amb els costats de triangles rectangles amb longitud dels costats i diagonals nombres naturals. A la taula que ens ha arribat a dalt de tot de la llista hi havia el que el ratio x/y de $x^2 + y^2 = z^2$ fos més proper a 1 i es troba en aquest document a dalt de tot

$$119^2 + 120^2 = 169^2$$

amb 119/120 el més proper a 1 de tota la llista donada.

Trobeu un triangle rectangle amb la longitud dels costats i diagonal nombres enters: a, c, d on $a^2 + b^2 = d^2$ de manera que |(a/c) - 1| < (1/(120 + (10C + D + 5U))). (Podeu usar Magma o SageMath per a calcular-la introduïnt el codi usat en la vostra resposta).

7. Considera l'equació $Y^2 - \mathfrak{d}X^2 = 4$ amb $\mathfrak{d} > 0$ natural que no és un quadrat. Demostreu que la solució general $(x,y) \in \mathbb{Z}^2$ de l'equació és de la forma:

$$\frac{y+x\sqrt{\mathfrak{d}}}{2}=\pm(\frac{t+u\sqrt{\mathfrak{d}}}{2})^n$$

per n enter on $(u,v) \in \mathbb{N}^2$ és solució de $Y^2 - \mathfrak{d}X^2 = 4$ amb u > 0, v > 0 i en la component de la variable X minimal respecte valor arquimedià dels racionals.

- 8. Considera l'equació $Y^2 pX^2 = -1$ amb p un primer congruent amb 1 modul 4. Demostreu que l'equació té infinites solucions a \mathbb{Z} . Indicació: considera (u,v) solució entera amb u més petita de $Y^2 pX^2 = 1$, on $u \equiv 0, v \equiv 1 mod 2$. Escriviu $\frac{v+1}{2} \cdot \frac{v-1}{2} = p(\frac{u}{2})^2$.
- 9. Considera l'equació $X^4 X^2Y^2 + Y^4 = Z^2$. Les solucions enteres de l'equació amb mcd(x, y) = 1 pertanyen al conjunt següent:

$$\{(1,0),(-1,0),(0,1),(0,-1),(1,1),(1,-1),(-1,1),(-1,-1)\}.$$

Indicació: escriviu equació via $(X^2 - Y^2)^2 + X^2Y^2 = Z^2$ i useu la solució donada per a $X^2 + Y^2 = Z^2$.

- 10. Trobeu 3 quadrats en progressió aritmètica en els enters. Demostreu que no hi ha 4 quadrats en progressió aritmètica en els enters. Indicació: sigui x^2, y^2, z^2, w^2 aquests 4 quadrats, com $x^2 + z^2 = 2y^2$ i $2z^2 = y^2 + w^2$ obtenim $x^2w^2 = x^2(2z^2 y^2) = w^2(2y^2 z^2)$, i useu el problema anterior.
- 11. Estudieu les solucions enteres de $X^2 + 3Y^2 = p$ on n lliure de quadrats i p un primer fix.
- 12. Estudieu les solucions enteres de $X^2 3Y^2 = 2p$ on n lliure de quadrats i p un primer fix.
- 13. Estudieu les solucions enteres de $X^2 5Y^2 = p$ on n lliure de quadrats i p un primer fix.
- 14. Estudieu les solucions enteres de $X^2 + 5Y^2 = 2p$ on n lliure de quadrats i p un primer fix.
- 15. Estudieu les solucions enteres de $X^2 + 2Y^2 = p$ on n lliure de quadrats i p un primer fix.
- 16. Estudieu les solucions enteres de $X^2-2Y^2=p$ on n lliure de quadrats i p un primer fix.
- 17. Considerem en el cos finit \mathbb{F}_{p^n} l'equació $X^{p^n} + Y^{p^n} = Z^2$. Proveu que té solució a \mathbb{F}_q i proveu que si $(x, y, z) \in \mathbb{F}_{p^n}^3$ és solució de l'equació llavors z varia dins un subconjunt de $\mathbb{F}_{p^n}^*$ amb $(p^n + 1)/2$ elements si p és senar. Què succeeix si p és 2?
- 18. Doneu criteris per solucionar a \mathbb{F}_p l'equació $X^n + Y^n = Z^n$.
- 19. Teorema de Sophie Germain. Sigui p un primer senar i considerem un altre primer senar q que compleixi simultàneament les dues condicions següents:

- l'equació $X^p + Y^p + Z^p = 0 \mod q$ implica que x o y o z tenen residu zero en dividir-los per q,
- l'equcació $n^p = n \pmod{q}$ no té solució.

Demostreu llavors que qualsevol solució entera de $X^p + Y^p = Z^p$ té la propietat que un dels x, y, z és divisible per p.

- 20. Un primer p senar s'anomena de (Sophie) Germain si 2p+1 és també un primer. Demostreu que si p és un primer de Germain llavors en cas d'existir solucions $(x,y,z) \in \mathbb{Z}^3$ amb mcd(x,y,z) = 1 de l'equació de Fermat $X^p + Y^p = Z^p$ s'ha de complir que p divideix xyz.
- 21. Sigui K un cos amb car(K)=p>0 amb $p\neq 2$. Proveu que l'equació $aX^2+bY^2=Z^2$ amb $a,b\in \mathbb{F}_p$ té una solució diferent a la (0,0,0).
- 22. Sigui a un enter, i n un enter positiu senar, escrivim $n = p_1^{n_1} \cdot \ldots \cdot p_r^{n_r}$ amb p_i primers diferents. Definim el simbol de Jacobi $\left(\frac{a}{n}\right)$ mitjançant:

$$\left(\frac{a}{n}\right) := \prod_{i=1}^{r} \left(\frac{a}{p_i}\right)^{n_i}.$$

Proveu que $\left(\frac{m}{n}\right) = (-1)^{(m-1)(n-1)/4} \left(\frac{n}{m}\right)$ amb m, n enters senars positius. Observeu que el simbol de Jacobi no distingueix residues quadràtics, per exemple si $n = p_1 p_2$ producte de dos primers diferents senars i x coprimer amb N sempre $\left(\frac{x}{N}\right) = 1$.

- 23. Test de primalitat de Solovay-Strassen. Considereu els morfismes de grups $\chi_i: (\mathbb{Z}/N)^* \to (\mathbb{Z}/N)^*$ per i=1,2 via $\chi_1(x)=x^{\frac{N-1}{2}} \mod N$ and $\chi_2(x)=(\frac{x}{N})$, i escrivim $\chi_0:=\chi_2/\chi_1$. Proveu que χ_0 és trivial si N és un nombre primer. Demostreu que si N és senar i no primer llavors existeix $x\in (\mathbb{Z}/N)^*$ amb $\chi_0(x)\neq 1$.
- 24. Doneu un criteri per existir l'arrel quadrada de -(U+3) en un cos finit \mathbb{F}_p .
- 25. Doneu un criteri per a $\left(\frac{5}{p}\right), \left(\frac{7}{p}\right), \left(\frac{-3}{p}\right)$.
- 26. Escriu el nombre -(D+U) com nombre enter p-adic $\sum_{i=0}^{\infty} a_i p^i$ amb $a_i \in \{0, 1, \dots, p-1\}$ explicitant els a_i 's.
- 27. Sigui p un primer $p \ge 11$ Descriu els nombres de \mathbb{Q}_p que es troben dins la bola unitat tancada del nombre $\beta := \sum_{i=-2}^{\infty} (U+1)p^i$. Descriu els nombres de \mathbb{Q}_p de la bola oberta unitat al voltant de β .
- 28. Trobeu una successió de nombres racionals que convergeixin a (U+1)(C+1) a \mathbb{Q}_p però no convergeixi als nombres reals.
- 29. Trobeu una successió de nombres racionals que convegeixi a 1 als reals i a 0 a \mathbb{Q}_p .

- 30. Trobeu una successió de nombres racionals que convergeixi a 1 en \mathbb{Q}_{p_1} i a 0 a \mathbb{Q}_{p_2} on p_1, p_2 dos primers diferents.
- 31. Calculeu $|4^n 1|_3$ Indicació: useu exponencial i logaritme en el cos 3-àdic.
- 32. Proveu un isomorfisme d'anells:

$$\mathbb{Z}_p \cong Hom(\mathbb{Z}[1/p]/\mathbb{Z}, (\mathbb{Z}[1/p]/\mathbb{Z}).$$

- 33. Proveu que $(\mathbb{Q}_p/\mathbb{Z}_p, +)$ és un grup abelià, on l'ordre de qualsevol element és una potència de p. És un grup finit generat?
- 34. Proveu que $(\mathbb{Z}_p, +)$ és un grup abelià, sense torsió. És finit generat?
- 35. Proveu que si p és senar tenim un isomorfisme de grups $\mathbb{Q}_p^* \cong \mathbb{Z} \oplus \mathbb{Z}/(p-1) \oplus \mathbb{Z}_p$, provant
 - tot element de \mathbb{Q}_p^* s'escriu per $p^n u$ amb $u \in \mathbb{Z}_p^*$ de manera única.
 - proveu que \mathbb{Z}_p^* és la suma directa de $1+p\mathbb{Z}_p$ amb $G=\{x\in\mathbb{Z}_p^*|x^{p-1}=1\}$
 - Si $p \neq 2$ el grup multiplicatiu $1 + p\mathbb{Z}_p$ és isomorf a $(\mathbb{Z}_p, +)$ (penseu logaritme/exponencial).
- 36. Demostreu que $\mathbb{Q}_2^* \cong \mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}_2$. Indicació: seguiu els mateixos passos que exercici anterior però aquí $1 + 4\mathbb{Z}_2 \cong \mathbb{Z}_2$.
- 37. Escrivint $a \in \mathbb{Q}_p^*$ amb $a = p^n u$ amb n enter i $u \in \mathbb{Z}_p^*$, tenim $a \in (\mathbb{Q}_p^*)^2$ si i només si si satisfà les dues condicions següents:
 - n és parell,
 - si $p \neq 2 \ umod \ p\mathbb{Z}_p$ és un quadrat en \mathbb{F}_p^* , si p = 2, $u \equiv 1 \ mod 8\mathbb{Z}_2$.
- 38. Trieu el primer més petit p complint p > (C + D + U * 10) i calculeu els enters a que son un quadrat en \mathbb{Q}_p .
- 39. Trobeu TOTES les extensions quadràtiques de \mathbb{Q}_p amb el primer p que useu en l'exercici anterior.
- 40. Trobeu Totes les extensions quadràtiques de \mathbb{Q}_2 (són un nombre finit).
- 41. Sigui G un grup abelià topològic, i.e. suma i pas a l'oposat siguin funcions continues. Observeu que si U és un entorn del zero llavors a+U és un entorn de a per a $a \in G$. Si H denota la intersecció de tots els entorns del zero de G llavors:
 - H és un subgrup de G
 - H és l'adherència de $\{0\}$
 - G/H és Hausdorff

- G és Hausdorff si i només si H = 0.
- 42. Donat un grup topològic abelià G, on $0 \in G$ té un sistema fonamental d'entorns. Una successió de Cauchy en G es (x_v) d'elements de G on per cada entorn U de 0 existeix un enter s(U) amb la propietat que

$$x_v - x_w \in U \ per \ a \ tot \ v, w \ge s(U)$$

i dues successions de Cauchy son equivalents si $x_v-y_v\to 0$ en G. El conjunt de totes les classes d'equivalentia de successions de Cauchy en G forma un grup que es diu el completat de G i s'anota per \hat{G} , i tenim un morfime de grups $\phi:G\to \hat{G}$ on proveu que ϕ és injectiva si i només si G és Hausdorff.

Suposem que $0 \in G$ té un sistema fonamental d'entorns format per subgrups, és a dir

$$G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n \supseteq \ldots$$

i $U \subseteq G$ és un entorn del zero si i només si conté algun G_n .

Observem que tenim morfismes projecció $\phi_{n,n-1}: G/G_n \to G/G_{n-1}$ i tenim un morfisme natural de G al limit projectiu de $(G/G_n, \phi_{n,n-1}) =: \lim_{\leftarrow} G/G_n$. Proveu que $\tilde{G} \cong \lim_{\leftarrow} G/G_n$

43. Suposem tenim tres sistemes inversos $(A_n, \phi_{A,n,n-1})$, $(B_n, \phi_{B,n,n-1})$ i $(C_n, \phi_{C,n,n-1})$, (pensem cadascún almenys grups abelians) de manera que per cada $n \in \mathbb{N}$ tenim una successió exacta curta:

$$0 \to A_n \to^{\alpha_n} B_n \to^{\beta_n} C_n \to 0$$

complint per a tot n que $\phi_{B,n,n-1} \circ \alpha_n = \alpha_{n-1} \circ \phi_{A,n,n-1}$ i $\phi_{C,n,n-1} \circ \beta_n = \beta_{n-1} \circ \phi_{B,n,n-1}$.

Llavors hi ha una successió entre els limits inversos:

$$0 \to \lim_{\leftarrow} A_n \to^{\alpha} \lim_{\leftarrow} B_n \to^{\beta} \lim_{\leftarrow} C_n$$

on α és injectiva, i $Im(\alpha) = Ker(\beta)$. A més si $\phi_{A,n,n-1}$ són exhaustives per tot n llavors β és exhaustiva i tenim una successió exacta curta:

$$0 \to \lim_{\leftarrow} A_n \to^{\alpha} \lim_{\leftarrow} B_n \to^{\beta} \lim_{\leftarrow} C_n \to 0$$

44. Sigui $0 \to H \to G \to^{proj} G' \to 0$ una successió exacta de grups abelians. Si G té la topologia definida per una successió de subgrups G_n i donem a H i a G' les topologies induides, per base entorn del zero donada per $\{G' \cap G_n\}$ i $\{proj(G_n)\}$ llavors tenim una successió exacta:

$$0 \to \hat{H}' \to \hat{G} \to \hat{G}' \to 0$$

Proveu $(\hat{\hat{G}}) \cong \hat{G}$. És diu que un grup topològic és complet si $\hat{G} \cong G$ via ϕ

45. Donat $a,b \in \mathbb{Q}_2$, escrivim $a=2^iu$ i $b=2^jv$ amb $u,v \in \mathbb{Z}_2^*$, i observeu que $u,v \equiv 1 (mod\ 2)$, i considereu $r=(-1)^{ij}u^jv^{-i} \in \mathbb{Z}_2^*$, i observeu $r^2 \equiv 1 (mod\ 8)$. Considerem $\alpha,\beta \in \mathbb{Z}$ on $\alpha \equiv (\frac{r^2-1}{8})mod\ 2$ i $\beta = (\frac{u-1}{2})(\frac{v-1}{2})mod\ 2$. Definim el simbol de Hilbert a \mathbb{Q}_2 mitjançant:

$$(a,b)_2 := (-1)^{\alpha} (-1)^{\beta}.$$

Demostreu les següents propietats amb $a, b \in \mathbb{Z}_2^*$:

- $(a,b)_2 = \begin{cases} 1 & if \ a \equiv 1 \mod 4, \ or \ b \equiv 1 \mod 4 \\ -1 & if \ a \equiv b \equiv -1 \mod 4 \end{cases}$
- $(a, 2b)_2 = \begin{cases} 1 & if \ a \equiv 1 \mod 8, \ or \ a \equiv 1 2b \mod 8 \\ -1 & otherwise \end{cases}$
- 46. Donat $a,b\in\mathbb{Q}^*$, llavors per quasi tot p primer (i.e. per tot nombre primer llevat d'un número finit de primers) el simbol de Hilbert $(a,b)_p$ és 1. I sempre tenim

$$\prod_{v \in Spec(\mathbb{Z}) \cup \{\infty\}} (a,b)_v = 1$$

on Spec(A) és el conjunt ideals primers de l'anell commutatiu A.

- 47. Donada l'equació $aX^2 + bY^2 = 1$ amb $a, b \in \mathbb{Q}_2$. Es té que té infinites solucions a \mathbb{Q}_2 si i només si $(a, b)_2 = 1$.
- 48. Estudieu per a quins \mathbb{Q}_v amb $v \in Spec(\mathbb{Z}) \cup \{\infty\}$ té solució $15(U+1)X^2 36 = Y^2$.
- 49. Proveu que $X^2 + Y^2 + Z^2 = -2$ té solució a \mathbb{Q}_p per a tot p primer.
- 50. Proveu que existeixen $x,y\in\mathbb{Q}$ satisfent $p=x^2+y^2$ amb p primer, s i només si $p\equiv 1\ mod\ 4$ o p=2.
- 51. Sigui p primer. Existeixen $x,y\in\mathbb{Q}$ satisfent $x^2+5y^2=p$ si i només si $p\equiv 1\ o\ 9\ mod\ 20\ o\ p=5.$
- 52. Sigui p un primer. Demostreu: existeixen $x,y\in\mathbb{Q}$ satisfent que $p=x^2+26y^2$ si i nomes si $p\equiv 1$ o 3 mod 8 i $p\equiv 1,3,4,9,10$ o 12 mod 13.