Переобучение.

Переобучение (overfitting). Ошибка на новых данных > ошибка на обучающей выборке.

Обобщающая способность (generalization). Качество модели на новых данных не сильно хуже, чем на обучении.

Оценка обобщающей способности.

1. Отложенная выборка (hold-out set).

 $|X_2|$

Обучающая выборка	Валид.	Лучшая модель →	Тестовая
	выборка	,	выборка

2. Кросс-валидация (*CV*).

K-число блоков (folds).

 X_2

 X_1

1	2	3		
Обучение і	на <i>X</i> ₁ ∪ <i>X</i> ₂ ,	тест на X_3	, получаем Q_{1} .	
↓ Обучение і ।	на $X_1 \cup X_3$,	тест на X_2	, получаем Q_2 .	$Q = \frac{1}{3}(Q_1 + Q_2 + Q_3)$
• Обучение і	на X ₂ ∪ X ₃ ,	тест на X_1	, получаем Q_{3} .	

При $k = \ell \Rightarrow LOO(leave-one-out)$

Что делать дальше?

- * Обучить модель на всей выборке.
- $\star x \to \frac{1}{3} (a_1(x) + a_2(x) + a_3(x))$

Замечания:

- \star Если $\ell\gg 0$, то CV вряд ли оправдано. \star *CV* требует обучения k моделей.

Обучение линейных моделей.

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \rightarrow \min_{w \in \mathbb{R}^d} \square, \qquad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ x_{21} & \dots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{\ell 1} & \dots & x_{\ell d} \end{pmatrix}, \qquad w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix}, \qquad y = \begin{pmatrix} y_1 \\ \vdots \\ y_{\ell} \end{pmatrix}, \qquad X \cdot w = \begin{pmatrix} \langle w, x_1 \rangle \\ \vdots \\ \langle w, x_{\ell} \rangle \end{pmatrix}$$

Тогда векторный вид: $Q(w) = \frac{1}{\ell} ||Xw - y||_2^2 \to \min_w \square$

$$\nabla Q(w) = 0 \quad \Rightarrow \quad \overline{W_{\star} = (X^T X)^{-1} X^T y}$$

Проблемы:

- * Матрица может быть вырожденной.
- \star Обращение матрицы за $\underline{O}(d^3)$
- * Если функция потерь L(y,z) более хитрая, то решить $\nabla Q(w) = 0$ не выйдет.

Градиентные методы обучения.

$$Q(w_1, ..., w_d) \to \min_{w} \square$$
, $Q -$ дифференцируемый.

Важные свойства градиента:

- $\star \nabla Q(w)$ показывает направление наискорейшего роста в этой точке w, $(-\nabla Q(w)$ наискорейшее убывание)
- \star ∇Q(w) ортогонален линии уровня

Градиентный спуск.

Шаг спуска: $w^{(k)} = w^{(k-1)} - \eta \nabla Q(w^{(k-1)})$, η — длина шага (learning rate)

Останавливаемся, если:

$\star \left| \left| w^{(k)} - w^{(k-1)} \right| \right| < \varepsilon$

- $\star \left| Q(w^{(k)}) Q(w^{(k-1)}) \right| < \varepsilon$
- $\star \left| \left| \nabla Q(w^{(k)}) \right| \right| < \varepsilon$
- * ошибка на отложенной выборке перестала убывать.
- Некоторые наблюдения:

* Локальные минимумы:

градиентный спуск сходится к минимуму.

* Много условий сходимости:

$\begin{cases} \nabla Q(w) - \text{липшицева} \big(\big| |\nabla Q(w_1) - \nabla Q(w_2)| \big| \leq L \cdot \big| |w_1 - w_2| \big| \big) \\ \eta \text{ не очень большая } \left(\eta \leq \frac{1}{L} \right) \end{cases} \Rightarrow$

$$(L)$$
 \star С линейными моделями и адекватными функциями потерь $Q(w)$ всегда (почти всегда)выпуклые.
$$\star Q(w^{(k)}) - Q(w_{\star}) = \underline{O}\left(\frac{1}{k}\right)$$

Стохастический градиентный спуск (SGD).
$$\nabla Q \approx \nabla q_i(w) \quad \Rightarrow \quad \text{шаг: } i_k - \text{индекс случайного объекта.}$$

 $Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i, w)), \qquad Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} q_i(w), \qquad \nabla Q(w) = \frac{1}{\ell} \sum_{i=0}^{\ell} \nabla q_i(w), \qquad \ell = 10^6 \Rightarrow 10^6$ градиентов 💞 😙

$$w^{(k)} = w^{(k-1)} - \eta \nabla q_{i_k} (w^{(k-1)})$$
 Проблема: $\left. \begin{array}{l} \text{если} \ \left| \left| w^{(k)} - w_\star \right| \right| \gg 0, \quad \text{то} \ \nabla q_{i_k}(w) \approx \nabla Q(w) \\ \text{если} \ \left| \left| w^{(k)} - w_\star \right| \right| \approx 0, \quad \text{то} \ \nabla q_{i_k}(w) \neq \nabla Q(w) \end{array} \right.$

Скорость сходимости:
$$\mathbb{E}[Q(w^{(k)}) - Q(w_{\star})] = \underline{O}(\frac{1}{\sqrt{k}})$$

* mini-batch GD: $\nabla Q(w) \approx \frac{1}{t} \sum_{i=1}^{t} \nabla q_{ij}(w)$

$$\star$$
 SGD хорош для онлайн-обучения (можно обучаться на огромных выборках).

Stochastic average gradient (SAG)
$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} q_i(w), \qquad z_i^{(0)} = \nabla q(w^{(0)})$$

Итерация
$$SAG$$
: $i_k \sim \{1, \dots, \ell\}$, $z_i^{(k)} = \begin{cases} \nabla q_i (w^{(k-1)}), & i = i_k \\ z_i^{(k-1)}, & i \neq i_k \end{cases}$

$$\nabla Q(w^{(k-1)}) \approx \frac{1}{\ell} \sum_{i=1}^{\ell} z_i^{(k)}, \qquad w^{(k)} = w^{(k-1)} - \eta_k \cdot \frac{1}{\ell} \sum_{i=1}^{\ell} z_i^{(k)}$$

 $\mathbb{E}[Q(w^{(k)}) - Q(w_{\star})] = \underline{O}\left(\frac{1}{k}\right)$

Замечания: