# Analoger Schaltungsentwurf Sommersemester 2012

Dipl.-Ing. Dr. techn. Bernhard Wess

FACHHOCHSCHULE
TECHNIKUM WIEN



# Teil VI

### Verstärker

### Differenzverstärker



Stromquelle:  $I = i_{E1} + i_{E2}$ 

$$T_1: \quad i_{E1} = \frac{I_S}{\alpha} e^{(u_{B1} - u_E)/V_T}$$

$$T_2: \quad i_{E2} = \frac{I_S}{\alpha} e^{(u_{B2} - u_E)/V_T}$$

Für die Emitterströme gilt

$$i_{E1} = \frac{I}{1 + e^{(u_{B2} - u_{B1})/V_T}}$$

bzw.

$$i_{E2} = \frac{I}{1 + e^{(u_{B1} - u_{B2})/V_T}}$$

•  $T_1$  und  $T_2$  haben identische Eigenschaften



# Großsignalverhalten



### Kleinsignalverhalten





$$u_{o1} = V_{+} - \alpha R_{C} \left( \frac{1}{2} + \Delta I \right)$$
$$u_{o2} = V_{+} - \alpha R_{C} \left( \frac{1}{2} - \Delta I \right)$$

# Übertragungskennlinien



• Für  $u_d = u_{B1} - u_{B2} \ll V_T$  gilt näherungsweise

$$\frac{i_{C1}}{\alpha I} = \frac{1}{2} + \frac{u_d}{4V_T}$$

$$\frac{i_{C2}}{\alpha I} = \frac{1}{2} - \frac{u_d}{4V_T}$$

und

7 / 29

### Differenzverstärkung



•  $g_m = \frac{\alpha I}{2V_T}$  ... Übertragungsleitwert für  $T_1$  bzw.  $T_2$ 

# Stromspiegel



• Identische Transistoren  $T_1$  und  $T_2$ 

# Stromspiegel



$$\frac{\textit{I}_{\textit{o}}}{\textit{I}_{\textit{REF}}} = \frac{\beta}{\beta + 2} = \frac{1}{1 + \frac{2}{\beta}}$$

• Identische Transistoren  $T_1$  und  $T_2$ 

# Verbesserter Stromspiegel



$$rac{I_o}{I_{REF}} = rac{1}{1+rac{2}{eta^2+eta}} pprox rac{1}{1+rac{2}{eta^2}}$$

• Identische Transistoren  $T_1$  und  $T_2$ 



### Aufgabe 6.1: Analyse einer Stromspiegelschaltung





### Aufgabe 6.1: Analyse einer Stromspiegelschaltung





### Aufgabe 6.2: Einfache Operationsverstärkerschaltung





# Aufgabe 6.2: Einfache Operationsverstärkerschaltung



### Aufgabe 6.3: Differenzverstärker



### Aufgabenstellung

#### **Bestimme**

- $\bullet$  Differenzeingangswiderstand  $r_{id}$ .
- ullet Spannungsverstärkung  $v_d=rac{u_o}{u_q}.$
- Gleichtaktverstärkung  $v_{cm}$  für  $R_C \pm 1\%$  (worst case).
- CMRR in dB.



# Aufgabe 6.3: Differenzverstärker

### Lösung

Differenzeingangswiderstand:

 $r_{id}$ 

Spannungsverstärkung:

$$v_d = \frac{u_o}{u_q}$$

ullet Gleichtaktverstärkung  $v_{cm}$  für  $R_C \pm 1\%$  (Worst-Case-Analyse):

$$v_{cm} = \frac{\Delta R_C}{2R}$$

CMRR in dB:

$$\mathsf{CMRR} = 20 \log \frac{v_d}{v_{cm}}$$

### Nichtinvertierender Verstärker

### Schaltbild



### Verstärkung

$$u_{E} = u_{A} \frac{R_{2}}{R_{1} + R_{2}}$$

$$v = \frac{u_{A}}{u_{E}} = 1 + \frac{R_{1}}{R_{2}}$$



### Aufgabe 6.4: Nichtinvertierender Verstärker

### Aufgabenstellung

Innerhalb welcher Grenzen lässt sich die Ausgangspannung  $u_A$  mit dem Potentiometer  $R_1$  verändern?



$$V_{+} = 15 V$$
 $V_{-} = -15 V$ 
 $U_{Z} = 5 V$ 
 $R_{1} = 10 k\Omega$ 
 $R_{2} = 33 k\Omega$ 
 $R_{3} = 2.2 k\Omega$ 
 $R_{4} = 3.3 k\Omega$ 

### Invertierender Verstärker



### Schaltbild



### Verstärkung

$$\frac{\frac{a_E}{R_1} = -\frac{a_A}{R_2}}{v = \frac{u_A}{u_E} = -\frac{R_2}{R_1}}$$



### Aufgabe 6.5: Invertierender Verstärker

### Aufgabenstellung

Wie groß ist die Ausgangsspannung  $u_A$  bei einer Eingangsspannung  $u_E = 1 V$ ?



$$V_{+} = 15 V$$
 $V_{-} = -15 V$ 
 $U_{Z} = 12 V$ 
 $R_{1} = 10 k\Omega$ 
 $R_{2} = 22 k\Omega$ 
 $R_{3} = 1 k\Omega$ 

### Differenzverstärker

### Schaltbild



### Verstärkung

$$\frac{u_{E1} - \frac{R_2}{R_1 + R_2} u_{E2}}{R_1} = -\frac{u_A - \frac{R_2}{R_1 + R_2} u_{E2}}{R_2}$$
$$u_{E1} - u_{E2} = -\frac{R_1}{R_2} u_A$$

$$v = \frac{u_A}{u_{E1} - u_{E2}} = -\frac{R_2}{R_1}$$



# Aufgabe 6.6: Differenzverstärker

### Aufgabenstellung

Stelle die Ausgangsspannung  $u_A$  als Funktion des Widerstandes  $R_x$  grafisch dar.





$$V_{+} = 15 \text{ V}, \ U_{Z} = 5 \text{ V}, \ R_{1} = 10 \text{ k}\Omega, \ R_{2} = 10 \text{ k}\Omega, \ R_{3} = 1 \text{ k}\Omega$$



# Komparator ohne Hysterese

### Invertierender Komparator



### Feste Schaltschwelle





20 / 29

### Komparator ohne Hysterese

### Nichtinvertierender Komparator



#### Einstellbare Schaltschwelle





21 / 29

# Aufgabe 6.7: Komparator ohne Hysterese

### Aufgabenstellung

Innerhalb von welchem Bereich kann die Schaltschwelle verändert werden?

### Schaltbild



$$V_{+} = 15 V$$
 $V_{-} = -15 V$ 
 $R_{1} = 10 k\Omega$ 
 $R_{2} = 10 k\Omega$ 
 $R_{3} = 10 k\Omega$ 

# Nichtinvertierender Komparator mit Hysterese

### Schaltbild



### Schaltschwellen



$$U_{S+} = \frac{R_1}{R_2} U_{Amax}$$

$$U_{S-} = -\frac{R_1}{R_2} U_{Amax}$$

# Invertierender Komparator mit Hysterese

#### Schaltbild



### Schaltschwellen



$$U_{S+} = -\frac{R_2}{R_1 + R_2} U_{Amax}$$
 $U_{S-} = \frac{R_2}{R_1 + R_2} U_{Amax}$ 

# Invertierender Integrator



#### Schaltbild



### Übertragungsverhalten

$$u_A(t) = -\frac{1}{RC} \int u_E dt + u_C(0)$$

# Aufgabe 6.8: Dreieckgenerator



- **1** Bestimme die Schaltschwellen des Schmitt-Triggers (OPV2,  $R_2$ ,  $R_3$ ).
- 2 Zeige, dass die Frequenz f des Dreieckgenerators durch

$$f = \frac{R_3}{4R_1R_2C}$$

festgelegt wird.

3 Skizziere Zeitdiagramme für die Spannungen  $u_R(t)$  und  $u_T(t)$ .

# Aufgabe 6.8: Dreieckgenerator



# Der Emitterfolger als Leistungsverstärker



Maximale Ausgangsleistung:

$$P_{Lmax} = \frac{V_+^2}{8R_E}$$

Gesamtleistung:

$$P_{\text{ges}} = P_{L} + P_{T} + P_{E} = 2\frac{V_{+}^{2}}{R_{E}}$$

Maximaler Wirkungsgrad:

$$\eta_{\text{max}} = \frac{P_{\text{Lmax}}}{P_{\text{ges}}} = \frac{1}{16} = 6.25\%$$

- Der Strom durch den Transistor wird nie null.
- Die von der Schaltung aufgenommene Gesamtleistung ist unabhängig von der Aussteuerung konstant.

### Komplementäre Transistorendstufe in B-Betrieb





Ausgangsleistung:

$$P_L = \frac{\hat{u}_a^2}{2R_L}$$

Gesamtleistung:

$$P_{ges} = 2P_{T1} + P_L = \frac{2V_+}{\pi R_L} \hat{u}_a$$

Maximaler Wirkungsgrad:

$$\eta_{\text{max}} = \frac{\pi}{4}$$

• Die aufgenommene Leistung ist proportional zur Amplitude des Ausgangssignals.



# Leistungsverstärker



• Der Operationsverstärker eliminiert die Übernahmeverzerrungen.

### Komplementäre Transistorendstufe in AB-Betrieb





### Komplementäre Transistorendstufe in AB-Betrieb



- Maßnahmen zur Stabilisierung des Ruhestromes
  - Stromgegenkopplung durch R<sub>E3</sub> bzw. R<sub>E4</sub>
  - Negativer Temperaturkoeffizient von D<sub>1</sub> bzw. D<sub>2</sub>
- ullet Mit  $T_1$  bzw.  $T_2$  werden Stromquellen realisiert o Erhöhung des Eingangswiderstandes bzw. Verringerung der Steuerleistung.