Предел числовой последовательности

Определение. Число $A \in \mathbb{R}$ называется пределом числовой последовательности $\{x_n\}$, если для любой окресности V(A) точки A существует такой номер N (выбираемый в зависимости от V(A)), что все члены последовательности, номера которых больше N, содержатся в указанной окрестности точки A.

$$\left(\lim_{n\to\infty} x_n = A\right) := \forall V(A)\exists N \in \mathbb{N} \forall n > N(x_n \in V(A))$$

и соответственно

$$(\lim_{n \to \infty} x_n = A) := \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ (|x_n - A| < \varepsilon).$$

Предел функции

Определение. Итак, число A называется пределом функции $f:E\to\mathbb{R}$ при x, стемящемся по множеству E к точке a (предельной для E), если для любой окрестности точки A найдется проколотая окрестность точки a в множестве E, образ которой при отображении $f:E->\mathbb{R}$ содержится в заданной окрестности точки A.

$$(\lim_{E\ni x\to a} f(x) = A) := \forall V_{\mathbb{R}}(A) \ \exists \dot{U}_E(a) \ (f(\dot{U}_E(a)) \subset V_{\mathbb{R}}(A))$$

Замечательные пределы

Первый замечательный предел:

$$\lim_{n \to 0} \frac{\sin x}{x} = 1$$

Второй замечательный предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Разложение фукнции в ряд Тейлора

$$P_n(x_0; x) = P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
 (1)

Определение. Алгебраический полином, заданный соотношением (1), называется полиномом Тейлора¹ порядка n функции f(x) в точке x_0 .

Нас будет интересовать величина

$$f(x) - P_n(x_0; x) = r_n(x_0; x)$$

уклонение полинома $P_n(x)$ от функции f(x), называется часто остатком, точнее, n-м остатком или n-м остаточным членом формулы Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x_0; x)$$
 (2)

Также давайте разложим наиболее часто используемые функции по формуле (2):

$$\begin{split} e^x &= 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \ldots + \frac{1}{n!}x^n + O(x^n + 1) \\ \cos x &= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \ldots + \frac{(-1)^k}{2k!}x^{2k} + O(x^{2k+2}) \\ \sin x &= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \ldots + \frac{(-1)^k}{(2k+1)!}x^{2k+1} + O(x^{2k+3}) \\ \ln(1+x) &= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \ldots + \frac{(-1)^{n-1}}{n}x^n + O(x^{n+1}) \end{split}$$

 $^{^{1}}$ Б. Тейлор (1685 - 1731) — английский математик

Интеграл Римана

Определение. Функция f называется интегрируемой по Риману на отрезке [a,b], если для нее существует указанный в пункте (3) предел интегральных сумм при $\lambda(P) \to 0$ (т.е. если для нее определен интеграл Римана).

Множество всех функций, интегрируемых по Риману на отрезке [a,b], будет обозначаться через $\Re[a,b]$.

$$\int_{a}^{b} f(x)dx := \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$
(3)

Формула Тейлора

Теорема. Если функция $f:U(x)\to\mathbb{R}$ определена и принадлежит классу $C^{(n)}$ $(U(x);\mathbb{R})$ в окрестности $U(x)\subset\mathbb{R}^m$, а отрезок [x,x+h] полностью содержится в U(x), то имеет место равенство

$$f(x^{1} + h^{1}, ..., x^{m} + h^{m}) - f(x^{1}, ..., x^{m}) =$$

$$= \sum_{k=1}^{n-1} k = 1 \frac{1}{k!} (h^{1} \delta_{1} + ... + h^{m} \delta_{m})^{k} f(x) + r_{n-1}(x; h),$$

где

$$r_{n-1}(x;h) = \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} (h^1 \delta_1 + \dots + h^m \delta_m)^n f(x+th) dt$$

Интеграл по гладкой поверхности

Определение. (интеграла от k-формы ω по заданной картой $\varphi:I\to S$ гладкой k-мерной поверхности).

$$\int_{S} \omega := \lim_{\lambda(P) \to 0} \sum_{i} \omega(x_{i})(\varepsilon_{1}, ..., \varepsilon_{k}) = \lim_{\lambda \to 01} \sum_{i} (\varphi * \omega)(\tau_{i})(\tau_{1}, ..., \tau_{k}). \tag{4}$$

Если применить это определение к k-форме $f(t)dt^1 \wedge ... \wedge dt^k$ на I (когда φ – тождественное отображение), то очевидно, получим, что:

$$\int_{I} f(t)dt^{1} \wedge \dots \wedge dt^{k} = \int_{I} f(t)dt^{1} \dots dt^{k}.$$
 (5)

Таким образом, из (4) следует, что

$$\int_{S=\varphi(I)} \omega = \int_{I} \varphi * \omega,$$

а последний интеграл, как видно из равенства (5), сводится к обычному кратному интегралу от соответствующей форме $\varphi * \omega$ функции f на промежутке I.

Формула Стокса в \mathbb{R}^3

Утверждение. Пусть S — ориентированная кусочно гладкая компатная двумерная поверхность с краем δS , лежаща в области $G \subset \mathbb{R}^{\mathbb{Z}}$, в которой задана гладкая 1-форма $\omega = P \ dx + Q \ dy + R \ dz$. Тогда имеет место соотношение

$$\int_{\delta S} P \, dx + Q \, dy + R \, dz = \iint_{S} \left(\frac{\delta R}{\delta y} - \frac{\delta Q}{\delta z} \right) \, dy \wedge dz + \left(\frac{\delta P}{\delta z} - \frac{\delta R}{\delta x} \right) dz \wedge dx + \left(\frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y} \right) dx \wedge dy,$$

где ориентация края δS берется согласованной с ориента
ией поверхности S.

Алгебра форм

Пусть X - линейное пространство, а $F^k: X^k \to \mathbb{R}$ – вещественнозначная k-форма на X. Если $e_1,...,e_n$ – базис в X, а $x_1=x^{i_1}e_{i_1},...,x_k=x^{i_k}e_{i_k}$ – разложение векторов $x_1,...,x_k\in X$ по этому базису, то в силу линейности F_k по каждому аргументу

$$F^{k}(x_{1},...,x_{k}) = F^{k}(x_{1}^{i}e_{i_{1}},...,x_{k}^{i}e_{i_{k}}) = F^{k}(e_{i_{1}},...,e_{i_{k}})x^{i_{1}}\cdot...\cdot x^{i_{k}} = a_{i_{1}...i_{k}}x^{i_{1}}\cdot x^{i_{k}}.$$

График функции $f(x) = \sin \frac{1}{x}$

Аксиоматика и некоторые общие свойства множества действительных чисел

Определение. Множество \mathbb{R} называется множеством действительных (вещественных) чисел, а его элементы – действительными (вещественными) числами, если выполнен следующий комплекс условий, называемый аксиоматикой вещественных чисел:

(I) Аксиомы сложения. Определено отображение (операции сложения)

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

сопоставляющее каждой упорядоченной паре (x,y) элементов x,y из \mathbb{R} некоторый элемент $x+y\in\mathbb{R},$ называемый суммой x и y. При этом выполнены следующие условия:

1₊. Существует нейтральный элемент 0 (называемый в случае сложения нулем):

$$\exists 0 \ \forall x : x + 0 = x.$$

 2_{+} . Для любого элемента $x \in \mathbb{R}$ имеется элемент $-x \in \mathbb{R}$, называемый противоположным к x, такой, что

$$x + (-x) = (-x) + x = 0.$$

 3_{+} . Операция + ассоциативна, т.е. для любых элементов $x,y,z\in\mathbb{R}$ выполнено

$$x + (y+z) = (x+y) + z.$$

 4_{+} . Операция + коммутативна, т.е. для любых элементов $x, y \in \mathbb{R}$ выполнено

$$x + y = y + z$$

(II) Аксиомы умножения. Определено отражение (операция умножения)

$$\bullet: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
,

сопоставляющее каждой упорядоченной паре (x,y) элементов $x,y\in\mathbb{R}$ некоторый элемент $x\cdot y\in\mathbb{R}$, называемый произведением x и y, причем так, что выполнены следующие условия:

 1_{ullet} . Существует нейтральный элемент $1 \in \mathbb{R} \backslash 0$ (называемый в случае умножения единицей) такой, что

$$\exists 1 \ \forall x : x \cdot 1 = x.$$

2. Для любого элемента $x \in \mathbb{R} \backslash 0$ имеется элемент $x^-1 \in \mathbb{R}$, называемый обратным, такой, что

$$x \cdot x^{-1} = x^{-1} \cdot *x = 1.$$

3. Операция • ассоциативна, т.е. для любых $x,y,z\in\mathbb{R}$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

4. Операция • коммутативна, т.е. для любых $x, y \in \mathbb{R}$

$$x \cdot y = y \cdot x$$
.

Заметим, что по отношению к операции умножения множество $\mathbb{R}\setminus 0$, как можно проверить, является (мультипликативной) группой.

Умножение матриц

Теорема 1. Произведение $\varphi A \varphi B$ двух линейных отображений с матрицами A и B является линейным отображением с матрицей C = AB. Другими словами

$$\varphi A \varphi B = \varphi A B. \tag{6}$$

Мы можем забыть о линейных отображениях и находить произведение AB двух произвольных матриц A,B, имея в виду, однако, что символ AB имеет смысл только в том случае, когда число столбцов в матрице A совпадает с числом строк в матрице B. Именно при этом условии выполняется правило умножения i-й строки $A_{(i)}$ на j-й столбец $B^{(j)}$, согласно которому

$$A_{(i)}B^{(j)} = (a_{i1}, ..., a_{is})[b_{1j}, ..., b_{sj}]$$

$$(7)$$

Следствие. Умножение матриц ассоциативно:

$$A(BC) = (AB)C$$

Действительно, произведение матриц соответствует произведению линейных отображений (теорема 1 и соотношение 6). К тому же результату можно прийти вычислительным путём, используя непосредственно соотношение (7). \square

Обратим ещё внимание на так называемые законы дистрибутивности:

$$(A+B)C = AC + BC, D(A+B) = DA + DB (8)$$

где A, B, C, D – произвольные матрицы размеров соответственно $m \times s, m \times s, s \times n, n \times m$. Действительно, пологая $A = (a_{ij}), B = (b_{ij}), C = (c_{ij})$, мы получим для любых i, j равенство (используя дистрибутивность в \mathbb{R})

$$\sum_{k=1}^{n} (a_{ik} + b_{ik})c_{kj} = \sum_{k=1}^{n} a_{ik}c_{kj} + \sum_{k=1}^{n} b_{ik}c_{kj},$$

левая часть которого дает элемент g_{ij} матрицы (A+B)C, а правая – элементы h_{ij} и h'_{ij} матриц AC и соответственно BC. Второй закон дистрибутивности (8) проверяется совершенно аналогично.

Транспонирование матриц

Будем говорить, что матрицы

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix}, \qquad A^T = \begin{vmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{vmatrix}$$

размеров $m \times n$ и $n \times m$ соответственно получаются друг из друга транспонированием – заменой строк на столбцы, а столбцов на строки.

Инварианты линейных групп

Линейной группой степени n мы, как обычно, называем любую подгруппу в GL(n,P), где P — некоторое поле. В дальнейшем можно считать $P=\mathbb{R}$ или $P=\mathbb{C}$. Если G — абстрактная группа и $\Phi:G\to GL(n,\mathbb{C})$ — её линейное представление, то пару (G,Φ) мы тоже будем называть линейной группой. Линейные преобразования Φ_g действуют на столбцы переменных $x_1,...,x_n$:

$$\begin{vmatrix} \Phi_g(x_1) \\ \vdots \\ \Phi_g(x_n) \end{vmatrix} = \Phi_g \begin{vmatrix} x_1 \\ \vdots \\ x_n. \end{vmatrix}$$

Они переводят любую форму (однородный многочлен) f степени m снова в форму степени m:

$$(\widetilde{\Phi_g}f)(x_1,...,x_n) = f(\Phi_{g^{-1}}(x_1),...,\Phi_{g^{-1}}(x_n)).$$

Определение. Форма $f \in P_m$, остающаяся неподвижной при действии $\widetilde{\Phi_g}$ (т.е. $\widetilde{\Phi_g}f = f \ \forall g \in G$), называется (целым) инвариантом степени m линейной группы (G, Φ) .

Начала тензорного исчисления

1. Понятие то тензорах. Разумной общности можно достичь, ограничившись лишь полилинейными отображениями некоторого специального вида.

Определение. Пусть \Re — поле, V — векторное пространство над \Re , V^* — сопряженное к V пространство, p и q — целые числа ≥ 0 ,

$$V^p \times (V^*)^q = \underbrace{V \times \ldots \times V}_p \times \underbrace{V^* \times V^*}_q$$

— декартово произведение p экземпляров пространства V и q экземпляров пространства V^* . Всякое (p+q) — линейное отображение

$$f: V^p \times (V^*)^q \to \Re$$

называется тензором на V типа (p,q) и валентности (или ранга) p+q.

2. Произведение тензоров. Вначале пусть

$$f: V_1 \times ... \times V_r \to \Re$$
 $g: W_1 \times ... \times W_s \to \Re$

– произвольные полилинейные формы. Это значит, что V_i, W_j – никак не связанные друг с другом векторные пространства.

Определение. Под тензорным произведением f и q понимают отображение

$$f \otimes g : V_1 \times ... V_r \times W_1 \times ... \times W_s \to \Re$$

определенное формулой

$$(f \otimes g)(v_1, ..., v_r; w_1, ..., w_s) = f(v_1, ..., v_r)g(w_1, ..., w_s).$$

Существенно подчеркнуть, что переменные V_i независимы от переменных W_j . Резюмируем сказанное:

- 1_{\otimes} операция умножения \otimes определена для тензоров произвольных типов;
- 2_{\otimes} валентность произведения равна сумме валентностей сомножителей;
- 3_{\otimes} тензорное произведение ассоциативно и дистрибутивно, но не коммутативно.

Дифференциальное исчисление. Основные теоремы.

Теорема. Пусть $f: U(x_0) \to \mathbb{R}$ – функция класса $C^{(2)}(U(x_0); \mathbb{R})$, определенная в окрестности $U(x_0) \subset \mathbb{R}^m$ точки $x_0 = (x_0^1, ..., x_0^m) \in \mathbb{R}$, и пусть x_0 – критическая точка этой функции f.

Если в тейлоровском разложении

$$f(x_0^1 + h^1, ..., x_0^m + h^m) = f(x_0^1, ..., x_0^m) + \frac{1}{2!} \sum_{i,j=1}^m \frac{\delta^2 f}{\delta x^i \delta x^j}(x_0) h^i h^j + o(||h||^2)$$
(9)

функции в точке x_0 квадратичная форма

$$\sum_{i,j=1}^{m} \frac{\delta^2 f}{\delta x^i \delta x^j}(x_0) h^i h^j \equiv \delta_{ij} f(x_0) h^i h^j$$
(10)

- а) знакоопределена, то в точке x_0 функция имеет локальный экстремум, который является строгим локальным минимумом, если квадратичная форма (10) положительно определена, и строгим локальным максимумом, если она отрицательно определена;
- b) может принимать значения разных знаков, то в точке x_0 функция экстремума не имеет.
 - **◄** Пусть $h \neq 0$ и $x_0 + h \in U(x_0)$. Представим соотношение (9) в виде

$$f(x_0 + h) - f(x_0) = \frac{1}{2!} ||h||^2 \left[\sum_{i,j=1}^m \frac{\delta^2 f}{\delta x^i \delta x^j} (x_0) \frac{h^i}{||h||} \frac{h^j}{||h||} + o(1) \right]$$
(11)

где o(1) есть величина, бесконечно малая при $h \to 0$

Из (11) видно, что знак разности $f(x_0 + h) - f(x_0)$ полностью определяется знаком величины, стоящей в квадратных скобках. Этой величиной мы теперь и займемся.

Теорема о определителях квадратной матрицы

Теорема. Определители любой квадратной матрицы A и транспонированной к ней матрицы A^T совпадают:

$$\det A^T = \det A$$

Доказательство. Положив $A=(a_{ij}), A^T=(a'_{ij}),$ где $a'_{ij}=a_{ji},$ и заметив, что $k=\pi(\pi^-1k)$ для любой перестановки $\pi\in S_n$ и для любого номера $k\in\{1,2,...,n\},$ мы видим, что упорядочение множителей произведения $a'_{1,\pi 1}...a'_{n,\pi n}$ в соответствии с перестоновкой π^-1 дает

$$a'_{1,\pi 1}...a'_{n,\pi n} = a'_{\pi^{-1}1,\pi(\pi^{-1}1)}...a'_{\pi^{-1}n,\pi(\pi^{-1}n)} = a'_{\pi^{-1}1,1}...a'_{\pi^{-1}n,n} = a_{1,\pi^{-1}1}...a_{n,\pi^{-1}n}.$$

Если учесть ещё, что $\varepsilon_{\pi} = \varepsilon_{\pi^{-1}}(\varepsilon_{\pi}\varepsilon_{\pi^{-1}} = \varepsilon_{n\pi^{-1}} = \varepsilon_{e} = 1)$, а $\{\pi^{-1} \mid \pi \in S_n\} = \{\pi \mid \pi \in S_n\}$ (поскольку $\pi \mapsto \pi^{-1}$) – биективное отображение из S_n в S_n), то по формуле нахождения определителя матрицы имеем

$$\det A^T = \sum_{\pi \in S_n} \varepsilon_{\pi} a'_{1,\pi^{-1}1} \dots a'_{n,\pi^{-1}n} = \sum_{\sigma \in S_n} \varepsilon_{\sigma} a_{1,\sigma 1} \dots a_{n,\sigma n} = \det A$$

Организация стандартной библиотеки С++

Средства стандартной библиотеки определены в пространстве имен std и расположены в некотором наборе заголовочных файлов, реализующих большую часть этих средств. Перечисление этих заголовочных файлов дает представление о стандартной библиотеке и поясняет направление ее рассмотрение.

Ниже в данном разделе мы приводим список заголовочных файлов стандартной библиотеки, сгруппированный по функциональности, и сопровождаемый краткими пояснениями.

Стандартный заголовочный файл, начинающийся на букву c, эквивалентен соответствующему заголовочному файлу стандартной библиотеки языка C. Для каждого файла $<\!X.h\!>$, определяющего часть стандартной библиотеки языка C в глобальном пространстве имен и в пространстве имен std, имеется заголовочный файл $<\!cX\!>$, определяющий те же имена исключительно в пространстве имен std.

Контейнеры		
<array></array>	одномерный массив элементов T , в количестве N	
$<\!\!vector\!\!>$	одномерный динамический массив элементов T	
$<$ $list>$	двусвязный список элементов T	
< deque >	двусторонняя очередь элементов T	
$<\!\!stack\!\!>$	стек элементов T	
<map></map>	упорядоченный ассоциативный контейнер элементов $oldsymbol{T}$	
$\langle set angle$	множество элементов T	
$<$ $bitset>$	множество булевских переменных	

Ассоциативные контейнеры multimap и multiset находятся в файлах < map > и < set >, соответственно. Контейнер $priority\ map$ объявляется в < queue >.

Компле́ксные числа

Подобно тому, как в области $\mathbb Q$ рациональных чисел алгебраическое уравнение $x^2=2$ не имело решений, уравнение $x^2=-1$ не имеет решений в области действительных чисел R, и подобно тому, как вводя внешний по отношению $\mathbb Q$ символ в $\sqrt{2}$ в качестве решения уравнения $x^2=2$, мы увязываем его с операциями в $\mathbb Q$ и получаем новые числа вида $r_1+\sqrt{2}r^2$, где $r_1,r_2\in\mathbb Q$, можно ввести символ i в качестве решения уравнения $x^2=-1$ и связать это внешнее по отношению к $\mathbb R$ число i с действительными числами и арифметическими операциями в $\mathbb R$.

Реализуем теперь намеченную программу.

а. Алгебраическое расширение поля \mathbb{R} . Итак, вводим (следуя обозначению Эйлера) новое число i – мнимую единицу, такое что $i^2 = -1$.

Взаимодействие i с действительными числами должно состоять в том, что можно умножать i на числа $y \in \mathbb{R}$, т.е необходимо появляются числа вида iy, и складывать такие числа с вещественными, т.е появляются числа вида x + iy, где $x, y \in \mathbb{R}$.

Если мы хотим, чтобы на множестве объектов вида x+iy, которые мы вслед за Гауссом назовем компле́ксными числами, были определены привычные операции коммутативного сложения и коммутативного умножения, дистрибутивного относительно сложения, то необходимо положить по определению, что

$$(x_1 + iy_1) + (x_2 + iy_2) := (x_1 + x_2) + i(y_1 + y_2)$$
(12)

И

$$(x_1 + iy_1) \cdot (x_2 + iy_2) := (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1). \tag{13}$$

Два комплексных числа $x_1 + iy_1, x_2 + iy_2$ считаются равными в том и только в том случае, когда $x_1 = x_2$ и $y_1 = y_2$.

Отождествим числа $x \in \mathbb{R}$ с числами вида $x + i \cdot 0$, а i - c числом 0 + i * 1. Роль нуля в множестве комплексных чисел, как видно из (12), играет число $0 + i \cdot 0 = 0 \in \mathbb{R}$, роль единицы, как видно из (13), – числа $1 + i \cdot 0 = 1 \in \mathbb{R}$.

Из свойства вещественных чисел и определений (12), (13) следует, что множество комплексных чисел является полем, содержащим \mathbb{R} в качестве подполя.

b. Геометрическая интерпретация поля \mathbb{C} . Комплексное число z=x+iy мы можем отождествить с упорядоченной парой (x,y) действительных чисел, называемых соответственно действительной частью и мнимой частью компле́ксного числа z (обозначения: $x=\operatorname{Re} z,y=\operatorname{Im} z^2$)

Но тогда, считая пару (x,y) декартовыми координатами точки плоскости $\mathbb{R}^2 = R \times R$, можно отождествить комплексные числа с точками этой плоскости или с двумерными векторами с координатами (x,y).

В такой векторной интерпретации покоординатное сложение (12) комплексных чисел соответствует правилу сложения векторов. Кроме того, такая интерпретация естественно приводит также к понятию модуля |z| комплексного числа z как модуля или длины соответствующего ему вектора (x,y), т.е

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

²От лат. realis (вещественный) и imaginarius (мнимый).

Таблица производных основных функций

Функция $f(x)$	Производная $f'(x)$	Ограничения на область изменения аргумента $x \in \mathbb{R}$
1. C (const)	0	
$2. x^a$	ax^{a-1}	$x>0$ при $a\in\mathbb{R}$ $x\in\mathbb{R}$ при $a\in\mathbb{N}$
$3. a^x$	$a^x \ln a$	$x \in \mathbb{R}(a > 0, a \neq 1)$
$4.\log_a x $	$\frac{1}{x \ln a}$	$x \in \mathbb{R} \setminus 0 \ (a > 0, a \neq 1)$
$5. \sin x$	$\cos x$	
$6.\cos x$	$-\sin x$	
7. $\tan x$	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$ $x \neq \pi k, k \in \mathbb{Z}$
8. $\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$	$x \neq \pi k, k \in \mathbb{Z}$
	211 6	