A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings based on Graph Modularity

Yoshinari Fujinuma¹ Jordan Boyd-Graber² Michael J. Paul¹

Motivation

- ▶ You encounter a disaster in Ethiopia
- Want a document classifier, but no labeled data in Amharic
- One solution: Exploit labeled data in English

Cross-Lingual Word Embedding slow: -0.21, 0.35, ... 中ርፋፋ (slow): -0.32, 0.45,

How do you evaluate when labeled data is not available in Amharic?

Outline

- Motivation
- ► Limitations: Clustering by language
- ► Graph modularity
- Correlations of graph modularity and downstream tasks
- Comparing to other metrics
- ► Conclusion

Limitations of Cross-Lingual Word Embeddings

- ▶ Words within a language tend to be closer than words from another language
- We call this "Clustering by language"
- Discourages the transfer of knowledge from one language to another

Limitations of Cross-Lingual Word Embeddings

- ▶ Words within a language tend to be closer than words from another language
- ▶ We call this "Clustering by language"
- Discourages the transfer of knowledge from one language to another

t-SNE projection of an EN-JA embedding

Quantifying Clustering by Language Using a Lexical Graph

- ▶ Main Idea: Use "Clustering by Language" to evaluate embeddings
- ► Convert cross-lingual word embeddings into cross-lingual lexical graphs
- ► *k*-nearest neighbor graph
 - Nodes: Words
 - Edges: Cosine similarity between words

Quantifying Clustering by Language Using a Lexical Graph

▶ Distinguish good vs. bad embeddings by looking at the structure

Outline

- Motivation
- Limitations: Clustering by language
- ► Graph modularity
- Correlations of graph modularity and downstream tasks
- Comparing to other metrics
- ▶ Conclusion

Defining Graph Modularity (Newman, 2003)

- ► Focus on edges that are connected to the **same language**
- ► Modularity = "actual intra-lingual edges" "expected intral-lingual edges"

Defining Graph Modularity

Outline

- Motivation
- Limitations: Clustering by language
- ► Graph modularity
- ► Correlations of graph modularity and downstream tasks
- Comparing to other metrics
- ► Conclusion

Experiment Setup

- Cross-Lingual Embedding Methods
 - Supervised
 - Mean Squared Error (Mikolov et al., 2013, MSE)
 - ► MSE+Orthogonal Constraint (Xing et al., 2015)
 - Canonical Correlation (Faruqui and Dyer, 2014, CCA)
 - Unsupervised
 - ▶ Vecmap (Artetxe et al., 2018)
 - ▶ MUSE (Conneau et al., 2018)

Experiment Setup

- Cross-Lingual Embedding Methods
 - Supervised
 - ▶ Mean Squared Error (Mikolov et al., 2013, MSE)
 - ► MSE+Orthogonal Constraint (Xing et al., 2015)
 - Canonical Correlation (Faruqui and Dyer, 2014, CCA)
 - Unsupervised
 - Vecmap (Artetxe et al., 2018)
 - ▶ MUSE (Conneau et al., 2018)

Experiment Setup

- Source Language
 - ► English
- ▶ Target Languages
 - Spanish
 - ▶ Italian
 - ▶ Danish
 - Japanese

 - Hungarian }Amharic }

Task 1: Cross-Lingual Document Classification

- Classification task of four topics
- ▶ Dataset: Reuters RCV1, RCV2 corpora (Lewis et al., 2004)

Task 1: Cross-Lingual Document Classification

ightharpoonup Spearman's Correlation =-0.665

Task 2: Bilingual Lexical Induction

- ► Translate words from a source language to a target language
- ▶ Dataset: MUSE test set

Task 2: Bilingual Lexical Induction

lacktriangle Spearman's correlation to graph modularity =-0.789

Outline

- Motivation
- Limitations: Clustering by language
- ► Graph modularity
- Correlations of graph modularity and downstream tasks
- ► Comparing to other metrics
- ▶ Conclusion

Metric Used in MUSE (Conneau et al., 2018)

lacktriangleright MUSE trains a cross-lingual mapping matrix W without any bilingual lexicon

▶ Default validation metric is cross-lingual similarity local scaling (CSLS) (Conneau et al., 2018)

CSLS vs. Modularity for MUSE

- Replace CSLS with modularity and compare them
- Modularity makes MUSE stable on distant language pairs
- ► MUSE(+CSLS) is unstable on distant language pairs (Søgaard et al., 2018)

Comparing to Other Metrics

- ▶ A good metric captures information not captured by other metrics
- Predict classification accuracy by linear regression using
 - Resource-free metrics
 - Modularity
 - ► CSLS (Conneau et al., 2018)
 - Resource-dependent metrics
 - ▶ QVEC-CCA (Ammar et al., 2016)
 - Average cosine similarity between translations
- Ablation study by omitting each metric

Comparing to Other Metrics

• Using all metrics: $R^2 = 0.814$

Modularity
QVEC-CCA
Cosine similarity
CSLS $R^2:\downarrow 0.260$

Comparing to Other Metrics

▶ Using all metrics: $R^2 = 0.814$

Modularity QVEC-CCA Cosine similarity $\frac{\text{CSLS}}{R^2}$: $\downarrow 0.023$ Modularity QVEC-CCA Cosine similarity CSLS $R^2:\downarrow 0.044$ Modularity $\frac{\text{QVEC-CCA}}{\text{Cosine similarity}}$ CSLS $R^2:\downarrow 0.111$

 $\begin{array}{l} {\color{red} \textbf{Modularity}} \\ {\color{red} \textbf{QVEC-CCA}} \\ {\color{red} \textbf{Cosine similarity}} \\ {\color{red} \textbf{CSLS}} \\ {\color{red} R^2: \downarrow 0.260} \end{array}$

Modularity is a good metric and captures information not captured by other metrics

Outline

- Motivation
- Limitations: Clustering by language
- ► Graph modularity
- Correlations of graph modularity and downstream tasks
- Comparing to other metrics
- ► Conclusion

Conclusion & Summary

- ► Graph modularity is a good & cheap evaluation measure for cross-lingual embeddings
 - Correlated to downstream tasks

Modularity: 0.143

- Successful as a validation metric (for MUSE)
- ▶ But combine with other metrics if possible
 - Modularity looks at only the structure, not the meanings.

Q & A

► Questions?

References

- Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., and Smith, N. A. (2016). Massively multilingual word embeddings. *Computing Research Repository*, arXiv:1602.01925. version 2.
- Artetxe, M., Labaka, G., and Agirre, E. (2018). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In *Proceedings of the Association for Computational Linguistics*.
- Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2018). Word translation without parallel data. In *Proceedings of the International Conference on Learning Representations*.
- Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using multilingual correlation. In *Proceedings of the European Chapter of the Association for Computational Linguistics*.
- Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). RCV1: A new benchmark collection for text categorization research. *Journal of Machine Learning Research*, 5.
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. *Computing Research Repository*, arXiv:1309.4168. version 1.
- Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E, 67(2).
- Søgaard, A., Ruder, S., and Vulić, I. (2018). On the limitations of unsupervised bilingual dictionary induction. In *Proceedings of the Association for Computational Linguistics*.
- Xing, C., Wang, D., Liu, C., and Lin, Y. (2015). Normalized word embedding and orthogonal transform for bilingual word translation. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.