Introduction to Zero-Knowledge Proofs

Distributed Lab

August 22, 2024

Plan

- Introduction
 - Classical Proofs
 - Goal of the course
- Relations. Languages. NP Statements.
 - Language of true statements. Examples.
 - P and NP Statements
- Interactive Proofs
 - Quadratic Residue Interactive Proof
 - Completeness and Soundness
 - Zero-Knowledge and Honest-Verifier Zero-Knowledge
 - Proof of Knowledge
- 4 Fiat-Shamir Heuristic
 - Cryptographic Oracles
 - Fiat-Shamir Transformation

Introduction

 First proofs you have probably encountered were geometry proofs.

Figure: Geometry proof.

- First proofs you have probably encountered were geometry proofs.
- You were given axioms and you can prove certain statements x using them.

midpoint of AD and BC Prove: AB | CD Statements Reasons 1. Given 1. Given: M is the midpoint of AD and BC 2. Definition of 2. AM ≅ MD Midpoint BM ≃ MC 3. Vertical Angles ∠AMB ≅ ∠ DMC Theorem 4 △ABM≃△DMC 4. SAS Thm 5. ∠ A ≅ ∠ D 5. CPCTC

Given: M is the

6. AB || CD

4 / 40

Figure: Geometry proof.

6. Converse of Alt. Interior Anales Thm

- First proofs you have probably encountered were geometry proofs.
- You were given axioms and you can prove certain **statements** x using them.
- The proof π is a sequence of logical steps that lead from axioms to the statement. Essentially, you have a witness w that proves the statement.

Given: M is the midpoint of AD and BC Prove: AB | CD Statements Reasons 1. Given 1. Given: M is the midpoint of AD and BC 2. Definition of 2. AM ≅ MD Midpoint

3. Vertical Angles

Converse of Alt. Interior Angles Thm

4 / 40

Theorem

4. SAS Thm

5. CPCTC

BM ≃ MC

5. ∠ A ≅ ∠ D

6. AB || CD

∠AMB ≅ ∠ DMC

4 △ABM≃△DMC

Figure: Geometry proof.

- First proofs you have probably encountered were geometry proofs.
- You were given axioms and you can prove certain statements x using them.
- The proof π is a sequence of logical steps that lead from axioms to the statement. Essentially, you have a witness w that proves the statement.
- Your teacher is the verifier V who checks your proof, while you are the prover P.

Given: M is the midpoint of AD and BC

Prove: AB || CD

Statements
1. Given: M is the midpoint of AD

- and BC 2. AM ≅ MD
- Z. AM ≅ MD BM ≅ MC
- ∠AMB ≅ ∠ DMC
- △ABM≅△DMC
- 5. ∠ A ≅∠D
- 6. AB || CD

Reasons

- 1. Given
- 2. Definition of Midpoint
- 3. Vertical Angles
- 4. SAS Thm
- 4. 3A3 IIIII
- 5. CPCTC
- 6. Converse of Alt. Interior Angles Thm

4 / 40

Figure: Geometry proof.

- First proofs you have probably encountered were **geometry proofs**.
- You were given axioms and you can prove certain **statements** x using them.
- The proof π is a sequence of logical steps that lead from axioms to the statement. Essentially, you have a witness w that proves the statement.
- Your teacher is the **verifier** \mathcal{V} who checks your proof, while you are the prover \mathcal{P} .
- This is a classical proof and in a sense, it is a **non-interactive proof**.

S	tatements
	Given: M is the midpoint of AD and BC
_	

- AM ≅ MD BM ≃ MC
- ∠AMB ≅ ∠ DMC
- 4 △ABM≃△DMC
- 5. ∠ A ≅ ∠ D
- 6. AB || CD

4 / 40

Reasons
1. Given

- 2. Definition of
- Midpoint
- 3. Vertical Angles Theorem
- 4. SAS Thm
- 5. CPCTC
- 6 Converse of Alt Interior Angles Thm

Figure: Geometry proof.

Motivation

Note

However, we cannot use such proofs in the digital world.

• Proofs must be verified by computers. Therefore, we need to develop **mathematic framework** to be able to program them.

Figure: Hmm...

Motivation

Note

However, we cannot use such proofs in the digital world.

- Proofs must be verified by computers. Therefore, we need to develop mathematic framework to be able to program them.
- This leads to the question: what is statement? What is proof? What is witness? How to formally define them?

Figure: Hmm...

Motivation

Note

However, we cannot use such proofs in the digital world.

- Proofs must be verified by computers. Therefore, we need to develop mathematic framework to be able to program them.
- This leads to the question: what is statement? What is proof?What is witness? How to formally define them?
- We need to formalize these concepts.

Figure: Hmm...

ullet We have a **prover** ${\mathcal P}$ and a **verifier** ${\mathcal V}$.

Figure: Typical setup for cryptographic proofs.

- We have a **prover** \mathcal{P} and a **verifier** \mathcal{V} .
- Prover \mathcal{P} wants to prove some statement x to the verifier.

Figure: Typical setup for cryptographic proofs.

- We have a **prover** \mathcal{P} and a **verifier** \mathcal{V} .
- Prover \mathcal{P} wants to prove some statement x to the verifier.
- Prover \mathcal{P} has a **witness** w that contains all necessary information to prove the statement x. He sends π as a proof.

Figure: Typical setup for cryptographic proofs.

- We have a **prover** \mathcal{P} and a **verifier** \mathcal{V} .
- Prover \mathcal{P} wants to prove some statement x to the verifier.
- Prover \mathcal{P} has a **witness** w that contains all necessary information to prove the statement x. He sends π as a proof.
- Verifier \mathcal{V} wants to be convinced that the statement x is true.

Figure: Typical setup for cryptographic proofs.

We will try to solve the following problems:

• **Completeness:** If x is true, π proofs the statement.

We will try to solve the following problems:

- Completeness: If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.
- **Argument of knowledge:** Sometimes, the prover \mathcal{P} should convince the verifier \mathcal{V} that besides x is true, he **knows** the witness w.

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.
- Argument of knowledge: Sometimes, the prover \mathcal{P} should convince the verifier \mathcal{V} that besides x is true, he **knows** the witness w.
- Succinctness: The proof should be short, ideally polylogarithmic in the size of the statement $(|\pi| = \text{polylog}(|x|)) + \text{fast verification}.$

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.
- Argument of knowledge: Sometimes, the prover \mathcal{P} should convince the verifier \mathcal{V} that besides x is true, he knows the witness w.
- Succinctness: The proof should be short, ideally polylogarithmic in the size of the statement $(|\pi| = \text{polylog}(|x|)) + \text{fast verification}$.
- **Arithmetization:** We need to convert the statement *x* into some algebraic form + make it relatively universal.

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.
- Argument of knowledge: Sometimes, the prover \mathcal{P} should convince the verifier \mathcal{V} that besides x is true, he knows the witness w.
- Succinctness: The proof should be short, ideally polylogarithmic in the size of the statement $(|\pi| = \text{polylog}(|x|)) + \text{fast verification}$.
- **Arithmetization:** We need to convert the statement *x* into some algebraic form + make it relatively universal.

Note

SNARK, STARK, etc. will solve these problems!

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x)=y.

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x)=y.

• **Zero-knowledge:** The prover \mathcal{P} does not want to reveal *anything* about the pre-image x to the verifier \mathcal{V} .

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x)=y.

- **Zero-knowledge:** The prover \mathcal{P} does not want to reveal *anything* about the pre-image x to the verifier \mathcal{V} .
- Argument of knowledge: Proving y has a pre-image is useless. \mathcal{P} must show he knows $x \in \{0,1\}^*$ s.t. H(x) = y.

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x) = y.

- **Zero-knowledge:** The prover \mathcal{P} does not want to reveal *anything* about the pre-image x to the verifier \mathcal{V} .
- Argument of knowledge: Proving y has a pre-image is useless. \mathcal{P} must show he knows $x \in \{0,1\}^*$ s.t. H(x) = y.
- Succinctness: If the hash function takes n operations to compute, the proof should be **much** shorter than n operations. **State-of-art**: size is $polylog(n) = O((log n)^c)$. Verification time is also typically polylogarithmic (or even O(1) in some cases).

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x) = y.

- **Zero-knowledge:** The prover \mathcal{P} does not want to reveal *anything* about the pre-image x to the verifier \mathcal{V} .
- Argument of knowledge: Proving y has a pre-image is useless. \mathcal{P} must show he knows $x \in \{0,1\}^*$ s.t. H(x) = y.
- Succinctness: If the hash function takes n operations to compute, the proof should be **much** shorter than n operations. **State-of-art**: size is $polylog(n) = O((log n)^c)$. Verification time is also typically polylogarithmic (or even O(1) in some cases).

Note

But first, let us start with the basics.

Relations. Languages. NP Statements.

Language

Definition (Relation)

Given two sets \mathcal{X} and \mathcal{Y} , the **relation** is $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$.

Language

Definition (Relation)

Given two sets \mathcal{X} and \mathcal{Y} , the **relation** is $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$.

- ullet \mathcal{X} is typically a set of **statements**.
- \mathcal{Y} is a set of witnesses.

Language

Definition (Relation)

Given two sets \mathcal{X} and \mathcal{Y} , the **relation** is $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$.

- ullet \mathcal{X} is typically a set of **statements**.
- \mathcal{Y} is a set of witnesses.

Definition (Language of true statements)

Let $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$ be a relation. We say that a statement $x \in \mathcal{X}$ is a **true** statement if $(x,y) \in \mathcal{R}$ for some $y \in \mathcal{Y}$, otherwise the statement is called **false**. We define by $\mathcal{L}_{\mathcal{R}}$ (the language over relation \mathcal{R}) the set of all true statements, that is:

$$\mathcal{L}_{\mathcal{R}} = \{x \in \mathcal{X} : \exists y \in \mathcal{Y} \text{ such that } (x, y) \in \mathcal{R}\}.$$

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{ n \in \mathbb{N} : \exists w = (p, q) \text{ are primes such that } n = p \cdot q \}$$

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{n \in \mathbb{N} : \exists w = (p,q) \text{ are primes such that } n = p \cdot q\}$$

• Valid witness #1: $n = 15 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (3, 5).

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{ n \in \mathbb{N} : \exists w = (p, q) \text{ are primes such that } n = p \cdot q \}$$

- Valid witness #1: $n = 15 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (3, 5).
- Invalid witness: $n = 16 \notin \mathcal{L}_{\mathcal{R}}$. There is no valid witness.

Language Example #1: Semiprimes

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{ n \in \mathbb{N} : \exists w = (p, q) \text{ are primes such that } n = p \cdot q \}$$

- Valid witness #1: $n = 15 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (3, 5).
- Invalid witness: $n = 16 \notin \mathcal{L}_{\mathcal{R}}$. There is no valid witness.
- Valid witness #2: $n = 50252009 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (5749, 8741).

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からで

Language Example #1: Semiprimes

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{ n \in \mathbb{N} : \exists w = (p, q) \text{ are primes such that } n = p \cdot q \}$$

- Valid witness #1: $n = 15 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (3, 5).
- **Invalid witness:** $n = 16 \notin \mathcal{L}_{\mathcal{R}}$. There is no valid witness.
- Valid witness #2: $n = 50252009 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (5749, 8741).

Question: Is n = 27 a true statement? What about n = 26?

August 22, 2024

Reminder

 $\mathbb{Z}_{\textit{N}}^{\times}=\{x\in\mathbb{Z}_{\textit{N}}:\gcd\{x,\textit{N}\}=1\}. \text{ Example: } \mathbb{Z}_{10}^{\times}=\{1,3,7,9\}.$

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\} \ (w \text{ is modular square root of } x).$

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\}\ (w \text{ is modular square root of } x).$

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}.$

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\}$ (w is modular square root of x).

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}.$

Language: $\mathcal{L}_{\mathcal{R}} = \{x \in \mathbb{Z}_N^{\times} : \exists w \in \mathbb{Z}_N^{\times} \text{ such that } x \equiv w^2 \pmod{N} \}.$

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\} \ (w \text{ is modular square root of } x).$

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}.$

Language: $\mathcal{L}_{\mathcal{R}} = \{x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \pmod{N} \}.$

Examples for N = 7:

• $4 \in \mathcal{L}_{\mathcal{R}}$ since $5^2 \equiv 4 \pmod{7}$.

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\} \ (w \text{ is modular square root of } x).$

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}.$

Language: $\mathcal{L}_{\mathcal{R}} = \{x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \pmod{N} \}.$

Examples for N = 7:

- $4 \in \mathcal{L}_{\mathcal{R}}$ since $5^2 \equiv 4 \pmod{7}$.
- $3 \notin \mathcal{L}_{\mathcal{R}}$ since there is no valid witness for 3.

Reminder

$$\mathbb{Z}_{N}^{\times} = \{x \in \mathbb{Z}_{N} : \gcd\{x, N\} = 1\}.$$
 Example: $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}.$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\} \ (w \text{ is modular square root of } x).$

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}.$

Language: $\mathcal{L}_{\mathcal{R}} = \{x \in \mathbb{Z}_N^{\times} : \exists w \in \mathbb{Z}_N^{\times} \text{ such that } x \equiv w^2 \pmod{N}\}.$

Examples for N = 7:

- $4 \in \mathcal{L}_{\mathcal{R}}$ since $5^2 \equiv 4 \pmod{7}$.
- $3 \notin \mathcal{L}_{\mathcal{R}}$ since there is no valid witness for 3.

Question: Is x = 1 a true statement for N = 5? What about x = 4?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

12 / 40

NP Statements: Demonstration

Well...We are simply going to send witness w to the verifier \mathcal{V} and he will check if the statement is true (meaning, whether $x \in \mathcal{L}_{\mathcal{R}}$).

Figure: Typical setup for cryptographic proofs.

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (NP Language)

A language $\mathcal{L}_{\mathcal{R}}$ belongs to the **NP** class if there exists a polynomial-time verifier \mathcal{V} such that the following two properties hold:

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (NP Language)

A language $\mathcal{L}_{\mathcal{R}}$ belongs to the **NP** class if there exists a polynomial-time verifier \mathcal{V} such that the following two properties hold:

• Completeness: If $x \in \mathcal{L}_{\mathcal{R}}$, then there is a witness w such that $\mathcal{V}(x,w)=1$ with $|w|=\operatorname{poly}(|x|)$. Essentially, it states that true claims have *short* proofs.

14 / 40

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (NP Language)

A language $\mathcal{L}_{\mathcal{R}}$ belongs to the **NP** class if there exists a polynomial-time verifier \mathcal{V} such that the following two properties hold:

- Completeness: If $x \in \mathcal{L}_{\mathcal{R}}$, then there is a witness w such that $\mathcal{V}(x,w)=1$ with $|w|=\operatorname{poly}(|x|)$. Essentially, it states that true claims have *short* proofs.
- **Soundness:** If $x \notin \mathcal{L}_{\mathcal{R}}$, then for any w it holds that $\mathcal{V}(x, w) = 0$. Essentially, it states that false claims have no proofs.

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (NP Language)

A language $\mathcal{L}_{\mathcal{R}}$ belongs to the **NP** class if there exists a polynomial-time verifier \mathcal{V} such that the following two properties hold:

- Completeness: If $x \in \mathcal{L}_{\mathcal{R}}$, then there is a witness w such that $\mathcal{V}(x,w)=1$ with $|w|=\operatorname{poly}(|x|)$. Essentially, it states that true claims have *short* proofs.
- **Soundness:** If $x \notin \mathcal{L}_{\mathcal{R}}$, then for any w it holds that $\mathcal{V}(x, w) = 0$. Essentially, it states that false claims have no proofs.

Theorem

Any NP problem has a zero-knowledge proof (GMW86).

Question (aka Motivation)

But can we do better?

Question (aka Motivation)

But can we do better? Sending witness is...Weird...

Figure: Hmm...#2

Interactive Proofs

16 / 40

We add two more ingredients:

 Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: V can send random coins (challenges) to the prover, which P can use to generate responses.

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: $\mathcal V$ can send random coins (challenges) to the prover, which $\mathcal P$ can use to generate responses.

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: \mathcal{V} can send random coins (challenges) to the prover, which \mathcal{P} can use to generate responses.

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: \mathcal{V} can send random coins (challenges) to the prover, which \mathcal{P} can use to generate responses.

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: V can send random coins (challenges) to the prover, which P can use to generate responses.

Prover \mathcal{P} Comp. Unbounded

Probabilistic
Poly-Time (PPT)

Problem Statement

• **Statement:** $x \in \mathcal{L}_{\mathcal{R}}$ where our **language** is defined as:

$$\mathcal{L}_{\mathcal{R}} = \{ x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \pmod{N} \}$$

• Witness: w = modular square root of x.

Problem Statement

• **Statement:** $x \in \mathcal{L}_{\mathcal{R}}$ where our **language** is defined as:

$$\mathcal{L}_{\mathcal{R}} = \{ x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \text{ (mod } N) \}$$

• Witness: w = modular square root of x.

How does $\mathcal P$ and $\mathcal V$ interact? Consider the figure below.

- 1. Sample r from \mathbf{Z}_{N} uniformly
- 2. Send $a = r^2 \pmod{N}$

Is **x** indeed a quadr. residue?

I know w s.t. $w^2 = x \pmod{N}$

18 / 40

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from Z_N uniformly
- 2. Send $a = r^2 \ (mod \ N)$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from Z_N uniformly
- 2. Send $a = r^2 \pmod{N}$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

quadr. residue?

Ok, I choose random bit **b**

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from \mathbf{Z}_N uniformly
- 2. Send $a = r^2 \pmod{N}$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

Is **x** indeed a quadr. residue?

Ok, I choose random bit b

- If b=0, send z = r
- If b=1, send z = rw (mod N)

Check if $z^2 = ax^b$

Interactive Protocol

 $\bullet \ \mathcal{P} \text{ samples } r \xleftarrow{R} \mathbb{Z}_N^{\times} \text{ and sends } a = r^2 \text{ to } \mathcal{V}.$

Interactive Protocol

- $\bullet \ \mathcal{P} \text{ samples } r \xleftarrow{R} \mathbb{Z}_N^{\times} \text{ and sends } a = r^2 \text{ to } \mathcal{V}.$
- ② V sends a random bit $b \in \{0,1\}$ to P.

Interactive Protocol

- \mathcal{P} samples $r \xleftarrow{R} \mathbb{Z}_N^{\times}$ and sends $a = r^2$ to \mathcal{V} .
- ② V sends a random bit $b \in \{0,1\}$ to P.
- **3** \mathcal{P} sends $z = r \cdot w^b$ to \mathcal{V} .

22 / 40

Interactive Protocol

- ② V sends a random bit $b \in \{0,1\}$ to P.
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.

Interactive Protocol

- ② V sends a random bit $b \in \{0,1\}$ to P.
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.
- **1** Repeat $\lambda \in \mathbb{N}$ times.

Interactive Protocol

- \mathcal{P} samples $r \xleftarrow{R} \mathbb{Z}_N^{\times}$ and sends $a = r^2$ to \mathcal{V} .
- ② V sends a random bit $b \in \{0,1\}$ to P.
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.
- **1** Repeat $\lambda \in \mathbb{N}$ times.

Lemma

The aforementioned protocol is **complete** and **sound**.

22 / 40

Interactive Protocol

- \mathcal{P} samples $r \xleftarrow{R} \mathbb{Z}_N^{\times}$ and sends $a = r^2$ to \mathcal{V} .
- ② V sends a random bit $b \in \{0,1\}$ to P.
- **3** \mathcal{P} sends $z = r \cdot w^b$ to \mathcal{V} .
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.
- **1** Repeat $\lambda \in \mathbb{N}$ times.

Lemma

The aforementioned protocol is **complete** and **sound**.

Completeness. If b = 0, then z = r and thus $z^2 = r^2 = a$, check passes.

Quadratic Residue Interactive Proof: Analysis

Interactive Protocol

- ② V sends a random bit $b \in \{0,1\}$ to P.
- **3** \mathcal{P} sends $z = r \cdot w^b$ to \mathcal{V} .
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.
- **1** Repeat $\lambda \in \mathbb{N}$ times.

Lemma

The aforementioned protocol is **complete** and **sound**.

Completeness. If b = 0, then z = r and thus $z^2 = r^2 = a$, check passes. If b = 1, then z = rw and thus $z^2 = r^2w^2 = ax$, check passes.

22 / 40

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Quadratic Residue Interactive Proof: Analysis

Soundness. The main reason why the protocol is sound is insribed in the theorem below.

Theorem

For any prover \mathcal{P}^* with $x \notin \mathcal{L}_{\mathcal{R}}$, the probability of \mathcal{V} accepting the proof is at most 1/2.

Quadratic Residue Interactive Proof: Analysis

Soundness. The main reason why the protocol is sound is insribed in the theorem below.

Theorem

For any prover \mathcal{P}^* with $x \notin \mathcal{L}_{\mathcal{R}}$, the probability of \mathcal{V} accepting the proof is at most 1/2.

Corollary. After repeating the protocol λ times, we have

$$\Pr[\mathcal{V} \text{ accepts after } \lambda \text{ rounds}] \leq \frac{1}{2^{\lambda}} = \operatorname{negl}(\lambda).$$

Thus, we showed both completeness and soundness of the protocol.

 $\langle \mathcal{P}, \mathcal{V} \rangle(x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

 $\langle \mathcal{P}, \mathcal{V} \rangle (x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

Definition

A pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called an **interactive proof** for a language $\mathcal{L}_{\mathcal{R}}$ if \mathcal{V} is a polynomial-time verifier and the following two properties hold:

 $\langle \mathcal{P}, \mathcal{V} \rangle (x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

Definition

A pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called an **interactive proof** for a language $\mathcal{L}_{\mathcal{R}}$ if \mathcal{V} is a polynomial-time verifier and the following two properties hold:

• Completeness: For any $x \in \mathcal{L}_{\mathcal{R}}$, $\Pr[\langle \mathcal{P}, \mathcal{V} \rangle(x) = \text{accept}] = 1$.

 $\langle \mathcal{P}, \mathcal{V} \rangle (x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

Definition

A pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called an **interactive proof** for a language $\mathcal{L}_{\mathcal{R}}$ if \mathcal{V} is a polynomial-time verifier and the following two properties hold:

- Completeness: For any $x \in \mathcal{L}_{\mathcal{R}}$, $\Pr[\langle \mathcal{P}, \mathcal{V} \rangle(x) = \text{accept}] = 1$.
- **Soundness:** For any $x \notin \mathcal{L}_{\mathcal{R}}$ and for any prover \mathcal{P}^* , we have

$$\Pr[\langle \mathcal{P}^*, \mathcal{V} \rangle(x) = \mathsf{accept}] \le \mathsf{negl}(\lambda)$$

 $\langle \mathcal{P}, \mathcal{V} \rangle (x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

Definition

A pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called an **interactive proof** for a language $\mathcal{L}_{\mathcal{R}}$ if \mathcal{V} is a polynomial-time verifier and the following two properties hold:

- Completeness: For any $x \in \mathcal{L}_{\mathcal{R}}$, $\Pr[\langle \mathcal{P}, \mathcal{V} \rangle(x) = \mathsf{accept}] = 1$.
- **Soundness:** For any $x \notin \mathcal{L}_{\mathcal{R}}$ and for any prover \mathcal{P}^* , we have

$$\Pr[\langle \mathcal{P}^*, \mathcal{V} \rangle(x) = \mathsf{accept}] \leq \mathsf{negl}(\lambda)$$

Definition

The class of interactive proofs (IP) is defined as:

 $\textbf{IP} = \{\mathcal{L} : \text{there is an interactive proof } (\mathcal{P}, \mathcal{V}) \text{ for } \mathcal{L}\}.$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q♡

Zero-Knowledge Informal Definition

Definition

An interactive proof system $(\mathcal{P}, \mathcal{V})$ is called **zero-knowledge** if for any polynomial-time verifier \mathcal{V}^* and any $x \in \mathcal{L}_{\mathcal{R}}$, the interaction $\langle \mathcal{P}, \mathcal{V}^* \rangle(x)$ gives nothing new about the witness w.

Zero-Knowledge Informal Definition

Definition

An interactive proof system $(\mathcal{P}, \mathcal{V})$ is called **zero-knowledge** if for any polynomial-time verifier \mathcal{V}^* and any $x \in \mathcal{L}_{\mathcal{R}}$, the interaction $\langle \mathcal{P}, \mathcal{V}^* \rangle(x)$ gives nothing new about the witness w.

Definition

The pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called a **zero-knowledge interactive protocol** if it is *complete*, *sound*, and *zero-knowledge*.

Question #1

What has the verifier learned during the interaction?

Question #1

What has the verifier learned during the interaction?

• First things first, he learned that the statement *x* is true.

Question #1

What has the verifier learned during the interaction?

- First things first, he learned that the statement *x* is true.
- He also knows queries (q_1, \ldots, q_ℓ) and random coins (r_1, \ldots, r_ℓ) he tossed (since he is the one who has sent them).

Question #1

What has the verifier learned during the interaction?

- First things first, he learned that the statement *x* is true.
- He also knows queries (q_1, \ldots, q_ℓ) and random coins (r_1, \ldots, r_ℓ) he tossed (since he is the one who has sent them).
- Moreover, he knows the prover's messages $(m_1, m_2, \ldots, m_\ell)$.

Question #1

What has the verifier learned during the interaction?

- First things first, he learned that the statement x is true.
- He also knows queries (q_1, \ldots, q_ℓ) and random coins (r_1, \ldots, r_ℓ) he tossed (since he is the one who has sent them).
- Moreover, he knows the prover's messages $(m_1, m_2, \ldots, m_\ell)$.

Definition

All the conversation that verifier has witnessed is called **verifier's view** and is denoted as

$$\mathsf{view}_{\mathcal{V}}(\mathcal{P},\mathcal{V}) = (m_1, r_1, q_1, m_2, r_2, q_2, \dots, m_\ell, r_\ell, q_\ell).$$

Question #1

What has the verifier learned during the interaction?

- First things first, he learned that the statement x is true.
- He also knows queries (q_1, \ldots, q_ℓ) and random coins (r_1, \ldots, r_ℓ) he tossed (since he is the one who has sent them).
- Moreover, he knows the prover's messages $(m_1, m_2, \ldots, m_{\ell})$.

Definition

All the conversation that verifier has witnessed is called **verifier's view** and is denoted as

$$\mathsf{view}_{\mathcal{V}}(\mathcal{P},\mathcal{V}) = (m_1, r_1, q_1, m_2, r_2, q_2, \dots, m_\ell, r_\ell, q_\ell).$$

Fact: view $_{\mathcal{V}}(\mathcal{P},\mathcal{V})$ is a **random variable**.

Introduction to ZK 26 / 40

Example

For QN test, set $N := 3 \times 2^{30} + 1$ (prime number), and \mathcal{P} wants to convince that $1286091780 \in \mathcal{L}_R$. Conversation is the following:

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

- ① During the first round, $\mathcal P$ sends 672192003 to $\mathcal V$.
- ② V sends b = 0 to P.

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

- ① During the first round, $\mathcal P$ sends 672192003 to $\mathcal V$.
- ② V sends b = 0 to P.
- \odot \mathcal{P} sends 2606437826 to \mathcal{V} .

Example

For QN test, set $N := 3 \times 2^{30} + 1$ (prime number), and \mathcal{P} wants to convince that $1286091780 \in \mathcal{L}_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- $\ \ \ \mathcal{P}$ sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- \odot \mathcal{P} sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).
- **5** During the second round, \mathcal{P} sends 2619047580 to \mathcal{V} .

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- $\ \ \ \mathcal{P}$ sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).
- **5** During the second round, \mathcal{P} sends 2619047580 to \mathcal{V} .
- \bullet \mathcal{V} chooses b=1 and sends to \mathcal{P} .

Example

For QN test, set $N := 3 \times 2^{30} + 1$ (prime number), and \mathcal{P} wants to convince that $1286091780 \in \mathcal{L}_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- \odot \mathcal{P} sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).
- **5** During the second round, \mathcal{P} sends 2619047580 to \mathcal{V} .
- **1** \mathcal{V} chooses b=1 and sends to \mathcal{P} .
- \mathcal{P} sends 1768388249 to \mathcal{V} .

Example

For QN test, set $N:=3\times 2^{30}+1$ (prime number), and $\mathcal P$ wants to convince that $1286091780\in\mathcal L_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- \odot \mathcal{P} sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).
- **5** During the second round, \mathcal{P} sends 2619047580 to \mathcal{V} .
- **1** \mathcal{V} chooses b=1 and sends to \mathcal{P} .
- ${\cal O}$ ${\cal P}$ sends 1768388249 to ${\cal V}$.
- **3** V verifies that $1768388249^2 \equiv 2619047580 \times 1286091780 \pmod{N}$.

Example

For QN test, set $N := 3 \times 2^{30} + 1$ (prime number), and \mathcal{P} wants to convince that $1286091780 \in \mathcal{L}_R$. Conversation is the following:

- ① During the first round, \mathcal{P} sends 672192003 to \mathcal{V} .
- ② V sends b = 0 to P.
- \odot \mathcal{P} sends 2606437826 to \mathcal{V} .
- \mathcal{V} verifies that indeed 2606437826² \equiv 672192003 (mod N).
- **5** During the second round, $\mathcal P$ sends 2619047580 to $\mathcal V$.
- **1** \mathcal{V} chooses b=1 and sends to \mathcal{P} .
- ${\color{red} {\it 0}} \ {\color{blue} {\cal P}} \ {\rm sends} \ 1768388249 \ {\rm to} \ {\color{blue} {\cal V}}.$
- **3** V verifies that $1768388249^2 \equiv 2619047580 \times 1286091780 \pmod{N}$.
- Onversation ends.

Example

The **view of the verifier** $\mathcal V$ is the following:

$$\mathsf{view}_{\mathcal{V}}(\mathcal{V},\mathcal{P})[1286091780]$$

 $= \big(672192003, 0, 2606437826, 2619047580, 1, 1768388249\big)$

Example

The **view of the verifier** $\mathcal V$ is the following:

$$\begin{aligned} \text{view}_{\mathcal{V}}(\mathcal{V},\mathcal{P}) [1286091780] \\ = (672192003, 0, 2606437826, 2619047580, 1, 1768388249) \end{aligned}$$

• Essentially, this view is the same as you have witnessed.

Example

The **view of the verifier** $\mathcal V$ is the following:

$$\begin{aligned} & \mathsf{view}_{\mathcal{V}}(\mathcal{V}, \mathcal{P})[1286091780] \\ = & (672192003, 0, 2606437826, 2619047580, 1, 1768388249) \end{aligned}$$

- Essentially, this view is the same as you have witnessed.
- ullet You have not learned anything about w that prover ${\mathcal P}$ knows.

Example

The **view of the verifier** $\mathcal V$ is the following:

$$\begin{aligned} \text{view}_{\mathcal{V}}(\mathcal{V},\mathcal{P}) [1286091780] \\ = (672192003, 0, 2606437826, 2619047580, 1, 1768388249) \end{aligned}$$

- Essentially, this view is the same as you have witnessed.
- ullet You have not learned anything about w that prover ${\mathcal P}$ knows.
- The witness was w = 3042517305 and two randomnesses were $r_1 = 2606437826$ and $r_2 = 3023142760$.

Example

The **view of the verifier** $\mathcal V$ is the following:

$$\begin{aligned} \text{view}_{\mathcal{V}}(\mathcal{V},\mathcal{P}) [1286091780] \\ = (672192003, 0, 2606437826, 2619047580, 1, 1768388249) \end{aligned}$$

- Essentially, this view is the same as you have witnessed.
- ullet You have not learned anything about w that prover ${\mathcal P}$ knows.
- The witness was w = 3042517305 and two randomnesses were $r_1 = 2606437826$ and $r_2 = 3023142760$.
- This is a random variable: conversation could be different.

Question #2

What does it mean that the protocol is zero-knowledge?

Question #2

What does it mean that the protocol is zero-knowledge?

• Protocol is zero-knowledge if, given the verifier's view $_{\mathcal{V}}(\mathcal{P},\mathcal{V})$, verifier cannot infer any information about the witness w.

Question #2

What does it mean that the protocol is zero-knowledge?

- Protocol is zero-knowledge if, given the verifier's view $_{\mathcal{V}}(\mathcal{P},\mathcal{V})$, verifier cannot infer any information about the witness w.
- What does it mean that verifier $\mathcal V$ learns nothing new? It means that this view could have been simulated by $\mathcal V$ without even running an interaction.

Question #2

What does it mean that the protocol is zero-knowledge?

- Protocol is zero-knowledge if, given the verifier's view $_{\mathcal{V}}(\mathcal{P},\mathcal{V})$, verifier cannot infer any information about the witness w.
- What does it mean that verifier $\mathcal V$ learns nothing new? It means that this view could have been simulated by $\mathcal V$ without even running an interaction.
- Call the view after the real interaction as **real view**, while the view after the simulation as **simulated view**.

Question #2

What does it mean that the protocol is zero-knowledge?

- Protocol is zero-knowledge if, given the verifier's view $_{\mathcal{V}}(\mathcal{P},\mathcal{V})$, verifier cannot infer any information about the witness w.
- What does it mean that verifier $\mathcal V$ learns nothing new? It means that this view could have been simulated by $\mathcal V$ without even running an interaction.
- Call the view after the real interaction as **real view**, while the view after the simulation as **simulated view**.

Note

Such idea of defining the zero-knowledge is called **simulation paradigm** and currently the most widely used way to prove zero-knowledge.

マロトマ母トマミトマミト ミーのの

Computational Indistinguishability

Computational Indistinguishability

Definition (Informal Computational Indistinguisability)

 D_1 and D_2 are **computationally indistinguishable** (denoted by $D_1 \approx D_2$) if for any PPT distinguisher \mathcal{D} , even after polynomial number k of samples from D_b (where $b \xleftarrow{R} \{0,1\}$), for prediction \hat{b} : $\Pr[\hat{b}=b] < \frac{1}{2} + \operatorname{negl}(k)$.

Zero-Knowledge Formally (Kind of)

Finally, we are ready to define the **zero-knowledge**.

Definition (Honest-Verifier Zero-Knowledge (HVZK))

An interactive protocol $(\mathcal{P},\mathcal{V})$ is **honest-verifier zero-knowledge (HVZK)** for a language $\mathcal{L}_{\mathcal{R}}$ there exists a poly-time simulator Sim such that for any valid statement $x \in \mathcal{L}_{\mathcal{R}}$:

$$\mathsf{view}_{\mathcal{V}}(\mathcal{P},\mathcal{V})[x] \approx \mathsf{Sim}(x,1^{\lambda})$$

Zero-Knowledge Formally (Kind of)

Finally, we are ready to define the zero-knowledge.

Definition (Honest-Verifier Zero-Knowledge (HVZK))

An interactive protocol $(\mathcal{P}, \mathcal{V})$ is **honest-verifier zero-knowledge (HVZK)** for a language $\mathcal{L}_{\mathcal{R}}$ there exists a poly-time simulator Sim such that for any valid statement $x \in \mathcal{L}_{\mathcal{R}}$:

$$\mathsf{view}_{\mathcal{V}}(\mathcal{P},\mathcal{V})[x] pprox \mathsf{Sim}(x,1^{\lambda})$$

Definition (Zero-Knowledge (ZK))

An interactive protocol $(\mathcal{P}, \mathcal{V})$ is **zero-knowledge (ZK)** for a language $\mathcal{L}_{\mathcal{R}}$ if for every poly-time verifier \mathcal{V}^* there exists a poly-time simulator Sim such that for any valid statement $x \in \mathcal{L}_{\mathcal{R}}$:

$$\mathsf{view}_{\mathcal{V}^*}(\mathcal{P}, \mathcal{V}^*)[x] \approx \mathsf{Sim}(x, 1^{\lambda})$$

Now, the main issue with the above definition is that we have proven the statement correctness, but we have not proven that the prover **knows** the witness. These are completely two distinct things!

Now, the main issue with the above definition is that we have proven the statement correctness, but we have not proven that the prover knows the witness. These are completely two distinct things!

Example

Consider the discrete logarithm relation and language for a cyclic group $E(\mathbb{F}_p)$ of order r:

$$\mathcal{R} = \{ (P, \alpha) \in E(\mathbb{F}_p) \times \mathbb{Z}_r : P = [\alpha]G \},$$

$$\mathcal{L}_{\mathcal{R}} = \{ P \in E(\mathbb{F}_p) : \exists \alpha \in \mathbb{Z}_r \text{ such that } P = [\alpha]G \}$$

Now, the main issue with the above definition is that we have proven the statement correctness, but we have not proven that the prover knows the witness. These are completely two distinct things!

Example

Consider the discrete logarithm relation and language for a cyclic group $E(\mathbb{F}_p)$ of order r:

$$\mathcal{R} = \{ (P, \alpha) \in E(\mathbb{F}_p) \times \mathbb{Z}_r : P = [\alpha]G \},$$

$$\mathcal{L}_{\mathcal{R}} = \{ P \in E(\mathbb{F}_p) : \exists \alpha \in \mathbb{Z}_r \text{ such that } P = [\alpha]G \}$$

Question

What does it mean that $X \in \mathcal{L}_{\mathcal{R}}$?

Now, the main issue with the above definition is that we have proven the statement correctness, but we have not proven that the prover knows the witness. These are completely two distinct things!

Example

Consider the discrete logarithm relation and language for a cyclic group $E(\mathbb{F}_p)$ of order r:

$$\mathcal{R} = \{ (P, \alpha) \in E(\mathbb{F}_p) \times \mathbb{Z}_r : P = [\alpha]G \},$$

$$\mathcal{L}_{\mathcal{R}} = \{ P \in E(\mathbb{F}_p) : \exists \alpha \in \mathbb{Z}_r \text{ such that } P = [\alpha]G \}$$

Question

What does it mean that $X \in \mathcal{L}_{\mathcal{R}}$?

Turns out $\mathcal{L}_{\mathcal{R}} = E(\mathbb{F}_p)$, so the proof $X \in \mathcal{L}_{\mathcal{R}}$ itself is useless.

• The knowledge of witness means that we can **extract** the witness while interacting with the prover.

- The knowledge of witness means that we can **extract** the witness while interacting with the prover.
- ② Thus, there should be an algorithm called **extractor** \mathcal{E} which can extract the witness w.

- The knowledge of witness means that we can **extract** the witness while interacting with the prover.
- ② Thus, there should be an algorithm called **extractor** \mathcal{E} which can extract the witness w.
- § $\mathcal E$ is given more power than $\mathcal V$ (otherwise, if the protocol is zero-knowledge, we cannot extract w). $\mathcal E$ can **rewind** and **call** prover $\mathcal P$ multiple times.

- The knowledge of witness means that we can **extract** the witness while interacting with the prover.
- ② Thus, there should be an algorithm called **extractor** \mathcal{E} which can extract the witness w.
- **3** \mathcal{E} is given more power than \mathcal{V} (otherwise, if the protocol is zero-knowledge, we cannot extract w). \mathcal{E} can **rewind** and **call** prover \mathcal{P} multiple times.
- lacktriangle Sometimes, this is referred to as "extractor ${\mathcal E}$ uses ${\mathcal P}$ as an oracle".

- The knowledge of witness means that we can **extract** the witness while interacting with the prover.
- ② Thus, there should be an algorithm called **extractor** \mathcal{E} which can extract the witness w.
- § \mathcal{E} is given more power than \mathcal{V} (otherwise, if the protocol is zero-knowledge, we cannot extract w). \mathcal{E} can **rewind** and **call** prover \mathcal{P} multiple times.
- $\textbf{ § Sometimes, this is referred to as "extractor \mathcal{E} uses \mathcal{P} as an oracle". }$

Definition (Proof of Knowledge)

The interactive protocol $(\mathcal{P}, \mathcal{V})$ is a **proof of knowledge** for $\mathcal{L}_{\mathcal{R}}$ if exists a poly-time extractor algorithm \mathcal{E} such that for any valid statement $x \in \mathcal{L}_{\mathcal{R}}$, in expected poly-time $\mathcal{E}^{\mathcal{P}}(x)$ outputs w such that $(x, w) \in \mathcal{R}$.

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor \mathcal{E} for the statement x as follows:

• Run the prover to receive $a \equiv r^2 \pmod{N}$ (r is chosen randomly from \mathbb{Z}_N^*).

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor \mathcal{E} for the statement x as follows:

- Run the prover to receive $a \equiv r^2 \pmod{N}$ (r is chosen randomly from \mathbb{Z}_N^*).
- ② Set verifier's message to b = 0 to get $z_1 \leftarrow r$.

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor \mathcal{E} for the statement x as follows:

- Run the prover to receive $a \equiv r^2 \pmod{N}$ (r is chosen randomly from \mathbb{Z}_N^*).
- ② Set verifier's message to b = 0 to get $z_1 \leftarrow r$.
- **3 Rewind** and set verifier's message to b = 1 to get $z_2 \leftarrow rw \pmod{N}$.

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor \mathcal{E} for the statement x as follows:

- **Q** Run the prover to receive $a \equiv r^2 \pmod{N}$ (r is chosen randomly from \mathbb{Z}_N^*).
- ② Set verifier's message to b = 0 to get $z_1 \leftarrow r$.
- **Q** Rewind and set verifier's message to b = 1 to get $z_2 \leftarrow rw \pmod{N}$.

34 / 40

• Output z_2/z_1 (mod N).

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor \mathcal{E} for the statement x as follows:

- **Q** Run the prover to receive $a \equiv r^2 \pmod{N}$ (r is chosen randomly from \mathbb{Z}_N^*).
- ② Set verifier's message to b = 0 to get $z_1 \leftarrow r$.
- **Q** Rewind and set verifier's message to b = 1 to get $z_2 \leftarrow rw \pmod{N}$.
- Output $z_2/z_1 \pmod{N}$.

The extractor \mathcal{E} will always output w if $x \in \mathcal{L}_{\mathcal{R}}$.

Definition (Cryptographic Oracle)

Informally, $cryptographic\ oracle$ is simply a function $\mathcal O$ that gives in O(1) an answer to some typically very hard problem.

Definition (Cryptographic Oracle)

Informally, cryptographic oracle is simply a function \mathcal{O} that gives in O(1) an answer to some typically very hard problem.

Example (CDH Problem)

Consider the **Computational Diffie-Hellman (CDH)** problem on the cyclic elliptic curve $E(\mathbb{F}_p)$ of prime order r with a generator G.

Definition (Cryptographic Oracle)

Informally, cryptographic oracle is simply a function \mathcal{O} that gives in O(1) an answer to some typically very hard problem.

Example (CDH Problem)

Consider the **Computational Diffie-Hellman (CDH)** problem on the cyclic elliptic curve $E(\mathbb{F}_p)$ of prime order r with a generator G. **Hard Problem:** $[\alpha\beta]G$ given $[\alpha]G$ and $[\beta]G$ where $\alpha, \beta \in \mathbb{Z}_r$.

Definition (Cryptographic Oracle)

Informally, cryptographic oracle is simply a function \mathcal{O} that gives in O(1) an answer to some typically very hard problem.

Example (CDH Problem)

Consider the **Computational Diffie-Hellman (CDH)** problem on the cyclic elliptic curve $E(\mathbb{F}_p)$ of prime order r with a generator G.

Hard Problem: $[\alpha\beta]G$ given $[\alpha]G$ and $[\beta]G$ where $\alpha, \beta \in \mathbb{Z}_r$.

Oracle: However, we *could* assume that such problem can be solved in

O(1) by a cryptographic oracle $\mathcal{O}_{\mathsf{CDH}}: ([\alpha] \mathcal{G}, [\beta] \mathcal{G}) \mapsto [\alpha \beta] \mathcal{G}$.

Definition (Cryptographic Oracle)

Informally, cryptographic oracle is simply a function \mathcal{O} that gives in O(1) an answer to some typically very hard problem.

Example (CDH Problem)

Consider the **Computational Diffie-Hellman (CDH)** problem on the cyclic elliptic curve $E(\mathbb{F}_p)$ of prime order r with a generator G.

Hard Problem: $[\alpha\beta]G$ given $[\alpha]G$ and $[\beta]G$ where $\alpha, \beta \in \mathbb{Z}_r$.

Oracle: However, we *could* assume that such problem can be solved in

O(1) by a cryptographic oracle $\mathcal{O}_{\mathsf{CDH}}: ([\alpha]G, [\beta]G) \mapsto [\alpha\beta]G$.

This way, we can rigorously prove the security of some cryptographic protocols *even* if the Diffie-Hellman problem is suddenly solved.

One of the most popular cryptographic oracles is the random oracle $\mathcal{O}_R.$

Definition (Informal definition of RO)

Suppose someone is inputting x to the random oracle $\mathcal{O}_R: \mathcal{X} \to \mathcal{Y}^a$. The oracle \mathcal{O}_R does the following:

One of the most popular cryptographic oracles is the random oracle \mathcal{O}_R .

Definition (Informal definition of RO)

Suppose someone is inputting x to the random oracle $\mathcal{O}_R : \mathcal{X} \to \mathcal{Y}^a$. The oracle \mathcal{O}_R does the following:

If x has been queried before, the oracle returns the same value as it returned before.

One of the most popular cryptographic oracles is the random oracle \mathcal{O}_R .

Definition (Informal definition of RO)

Suppose someone is inputting x to the random oracle $\mathcal{O}_R: \mathcal{X} \to \mathcal{Y}^a$. The oracle \mathcal{O}_R does the following:

- If x has been queried before, the oracle returns the same value as it returned before.
- ② If x has not been queried before, the oracle returns a randomly uniformly sampled value from the output space \mathcal{Y} .

One of the most popular cryptographic oracles is the random oracle $\mathcal{O}_R.$

Definition (Informal definition of RO)

Suppose someone is inputting x to the random oracle $\mathcal{O}_R: \mathcal{X} \to \mathcal{Y}^a$. The oracle \mathcal{O}_R does the following:

- If x has been queried before, the oracle returns the same value as it returned before.
- ② If x has not been queried before, the oracle returns a randomly uniformly sampled value from the output space \mathcal{Y} .

Question

Which very well-known cryptographic object can "serve" as a random oracle?

^aTypically, RO works with a family of functions $f: \mathcal{X} \to \mathcal{Y}$, but we are not going too deep into the details.

Statement

Any interactive public-coin protocol can be converted into a non-interactive public-coin protocol with preserving completeness, soundness, and zero-knowledge using the random oracle.

One of such transformations is called **Fiat-Shamir heuristic**. Idea:

Statement

Any interactive public-coin protocol can be converted into a non-interactive public-coin protocol with preserving completeness, soundness, and zero-knowledge using the random oracle.

One of such transformations is called **Fiat-Shamir heuristic**. Idea:

lacktriangledown If all what $\mathcal V$ does is sending uniformly random values, this is an overkill.

Statement

Any interactive public-coin protocol can be converted into a non-interactive public-coin protocol with preserving completeness, soundness, and zero-knowledge using the random oracle.

One of such transformations is called Fiat-Shamir heuristic. Idea:

- lacktriangledown If all what $\mathcal V$ does is sending uniformly random values, this is an overkill.
- ② Instead of $\mathcal V$ sending random values, prover should be able to generate it himself, but he should not know the randomness in advance.

Statement

Any interactive public-coin protocol can be converted into a non-interactive public-coin protocol with preserving completeness, soundness, and zero-knowledge using the random oracle.

One of such transformations is called Fiat-Shamir heuristic. Idea:

- lacktriangledown If all what $\mathcal V$ does is sending uniformly random values, this is an overkill.
- ② Instead of $\mathcal V$ sending random values, prover should be able to generate it himself, but he should not know the randomness in advance.
- Thus, we can replace the verifier's messages with the hash (random oracle) of all the previous conversation.

Thank you for your attention!