

Discrete POWER & Signal **Technologies**

2N4401

MMBT4401

NPN General Purpose Amplifier

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA. Sourced from Process 19. See PN2222A for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	1.0	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	М	ах	Units
		2N4401	*MMBT4401	
P_D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
			•		
	RACTERISTICS			1	7
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 0.1 \text{ mA}, I_E = 0$	60		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 0.1 \text{ mA}, I_C = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
I _{CEX}	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
ON CHAF	RACTERISTICS*				
h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20		
•••	20 Carrott Carr	$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40		
		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_C = 150 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100	300	
.,	Oallantas Fasilias Oatasatias Waltana	$I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$	40	0.4	
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		0.4 0.75	V
				0.75	V
V==	Base-Emitter Saturation Voltage	$I_0 = 150 \text{ mA}$ $I_0 = 15 \text{ mA}$	0.75	0.95	V
. ,	Base-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	0.75	0.95 1.2	V V V
$V_{BE(Sat)}$ SMALL S f_T	Base-Emitter Saturation Voltage SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V},$	250		V V
SMALL S	IGNAL CHARACTERISTICS	I_C = 500 mA, I_B = 50 mA I_C = 20 mA, V_{CE} = 10 V, f = 100 MHz V_{CB} = 5.0 V, I_E = 0,			V
SMALL S	SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 100 \text{ MHz}$		1.2	V
SMALL S	GIGNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \end{split}$		6.5	V MHz pF
SMALL S f_T C_{cb}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \end{split}$	250	6.5	V MHz pF pF kΩ
SMALL S f_T C_{cb} C_{eb} h_{ie}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \end{split}$	250	6.5 30 15	V MHz pF pF kΩ
SMALL S f_T C_{cb} C_{eb} h_{ie}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 $	250 1.0 0.1	6.5 30 15 8.0	MHz pF
SMALL S f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1$	250 1.0 0.1 40	6.5 30 15 8.0 500	V MHz pF pF kΩ x 10 ⁻⁴
SMALL S f _T C _{cb} C _{eb} h _{ie} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1.0 \text{ MA}, \ V_{CE} = 10 \text{ V}, \\ I_C &= 1$	250 1.0 0.1 40	6.5 30 15 8.0 500	V MHz pF pF kΩ x 10 ⁻⁴
SMALL S f _T C _{cb} C _{eb} h _{ie} h _{fe} h _{oe} SWITCHI	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \end{split}$	250 1.0 0.1 40	6.5 30 15 8.0 500 30	V MHz pF pF kΩ x 10 ⁻⁴
SMALL S f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance ING CHARACTERISTICS Delay Time	$\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ kHz} \\ \end{split}$	250 1.0 0.1 40	1.2 6.5 30 15 8.0 500 30	V MHz pF pF kΩ x 10 ⁻⁴ μmhos

^{*}Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%