ECOLE POLYTECHNIQUE DE THIES

BP A10 Thiès Sénégal <u>www.ept.sn</u> Tel : 78 180 18 87 // 33 951 26 99

BUREAU DES ÉLÈVES 2017 - 2018

CONCOURS JUNIOR POLYTECH

(SESSION 2018)

ÉPREUVE DE MATHÉMATIQUES

(Classe de TERMINALES S1-S2-S3)

DURÉE: 04 heures

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les questions des exercices 1 et 2 sont indépendantes

Exercice 1

On considère un triangle (ABC), on note Ω le centre de son cercle circonscrit. Le cercle inscrit à (ABC) a pour centre le point V et est tangent aux côtés [AB], [AC], et[BC] de ce triangle respectivement en R, Q et P. On note L, M et N les milieux respectifs des côtés [QR], [RP] et [QP] du triangle (PQR). Il s'agit de prouver que le point U, centre du cercle circonscrit à (LMN), est aligné avec V et Ω .

On place l'origine du plan complexe au point V centre du cercle inscrit. Sans perte de généralité, on peut supposer que le rayon du cercle inscrit à (ABC) est égal à 1.

- 1) Faire une figure.
- 2) Déterminer les affixes a, b et c des points A, B et C en fonction de celles de P, Q et R (notées p, q, r).
- 3) Montrer que l'affixe ω du centre Ω du cercle circonscrit à (ABC) est

$$\omega = \frac{2pqr(p + q + r)}{(p + q)(q + r)(r + p)}$$

- 4) Déterminer l'affixe u du centre U du cercle circonscrit à (LMN).
- 5) En déduire que U, V et Ω sont alignés.

Exercice 2

Soit $n \ge 1$ et z un nombre complexe, montrer que :

$$\sum_{k=0}^{n-1} \left(z + e^{\frac{2ik\pi}{n}} \right)^n = n(z^n + 1)$$

En déduire les sommes suivantes :

$$S_n = \sum_{k=0}^{n-1} (-1)^k \cos^n(\frac{k\pi}{n})$$

$$R_n = \sum_{k=0}^{n-1} (-1)^k \cos^n(\frac{2k-1}{2n}\pi)$$

Problème Sommes de Riemann

Dans ce problème, on suppose introduite, à l'aide des fonctions en escaliers, la notion d'intégrale au sens de Riemann d'une fonction.

Partie A: Convergence des sommes de Riemann

Soit a et b deux réels tel que a<b et f une fonction continue sur [a; b].

Pour tout $n \in \mathbb{N}$ *, pour $k \in [0, n]$, on pose: $x_k = a + k \frac{b-a}{n}$ et on considère les sommes de Riemann :

$$S_n(f) = \frac{1}{n} \sum_{0}^{n-1} f(x_k)$$
 et $R_n(f) = \frac{1}{n} \sum_{1}^{n-1} f(x_k)$

Dans un premier temps, on se propose de démontrer que les suites $((S_n(f))_n$ et $((R_n(f))_n$ sont convergentes et de même limite $\frac{1}{b-a}\int_a^b f(t)dt$. Dans un deuxième temps, on cherche à obtenir une majoration de $\left|\int_a^b f(t)dt - (b-a)Sn(f)\right|$, pour tout $n \in \mathbb{N}$ *.

1) Démontrer que :

$$\forall \ \epsilon > 0 \ , \exists \ \eta > 0 \ , \ \forall \ (x,y) \in [a,b]^2, \ |x-y| \le \eta \Longrightarrow |f(x)-f(y)| \le \frac{\epsilon}{b-a}$$

- 2) Soit & un réel strictement positif.
 - a) Démontrer qu'il existe $N \in \mathbb{N}$ tel que:

$$\forall n \geq N, \forall k \in [0,n-1], \forall t \in [x_k; x_{k+1}], |f(t) - f(x_k)| \leq \frac{\varepsilon}{b-a}$$

b) En déduire que: $\forall n \ge N, \forall k \in [0, n-1], \left| \int_{x_k}^{x_{k+1}} f(t) - f(x_k) dt \right| \le \frac{\epsilon}{n}$

puis que:
$$\forall n \ge N$$
, $\left| \int_a^b f(t)dt - (b-a)Sn(f) \right| \le \varepsilon$

- 3) En déduire que $(S_n(f))_n$, puis $(R_n(f))_n$, convergent vers $\frac{1}{b-a}\int_a^b f(t)dt$.
- 4) Application:

Soit
$$(u_n)_{n\in\mathbb{N}^*}$$
 , la suite définie par : $\forall~n\in\mathbb{N}^*$, $u_{n=}\sum_{j=n+1}^{2n}\frac{1}{j}$

Démontrer que la suite définie par (u_n) converge vers ln2.

- 5) Dans cette question, on suppose que la fonction f est de classe C¹ sur [a; b].
 - a) Démontrer qu'il existe un réel M tel que: $\forall t \in [a, b]$, $f'(t) \le M$.
 - b) En déduire que:

$$\forall n \in \mathbb{N}^*, \forall k \in [0, n-1] \ \forall \ t \in [x_k; x_{k+1}], \ |f(t) - f(x_k)| \le M(t - x_k).$$

c) Démontrer que:

$$\begin{split} \forall n \in \mathbb{N}^*, \forall k \in [0, \text{n-1}], \left| \int_{x_k}^{x_{k+1}} (f(t) - f(x_k)) dt \right| \leq & \frac{M(b-a)^2}{2n^2} \ . \end{split}$$
 puis que:
$$\left| \int_a^b f(t) dt - (b-a) Sn(f) \right| \leq & \frac{M(b-a)^2}{2n}. \end{split}$$

6) Application: Calcul d'une valeur approchée de $\int_0^1 e^{-x^2} dx$ par la méthode des rectangles.

Soit f la fonction définie par : $\forall x \in \mathbb{R}$, $f(x) = e^{-x^2}$.

- a) Déterminer un réel M tel que $\forall x \in [0, 1], |f'(x)| \leq M$.
- b) En utilisant la question 6), donner une valeur approchée à 10^{-3} près de $\int_0^1 e^{-x^2} dx$.

Partie B: Application à l'étude de suites

Soit une fonction définie sur]0,1], continue et décroissante sur]0,1]. On considère la suite (r_n) définie par:

$$n \in \mathbb{N}^*$$
, $r_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$.

et la fonction I définie sur [0,1] par: $\forall x \in [0,1]$ I(x) = $\int_{x}^{1} f(t)dt$.

1) Démontrer que pour tout entier n≥2 et pour tout k ∈ [1, n-1], on a:

$$\frac{1}{n} f(\frac{k+1}{n}) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt \le \frac{1}{n} f(\frac{k}{n}).$$

2) Démontrer que pour tout entier n>2, on a:

$$I(\frac{1}{n})_{+} \frac{1}{n} f(1) \le r_{n \le} I(\frac{1}{n})_{+} \frac{1}{n} f(\frac{1}{n})$$

- 3) On suppose, de plus, que $\lim_{x\to 0} I(x) = l$ $(l \in \mathbb{R})$ et $\lim_{x\to 0} xf(x) = 0$. Démontrer que la suite $(r_n)_{n\in\mathbb{N}}^*$ converge et préciser sa limite.
- 4) Dans cette question, on pose $f(x) = \frac{x^2-1}{4} \frac{1}{2} \ln(x)$ pour tout $x \in [0, 1]$.
 - a) Démontrer que pour tout $n \in \mathbb{N}^*$, $r_n = \frac{(n+1)(2n+1)}{24n^2} \frac{1}{4} \frac{1}{2n} \ln \left(\frac{n\,!}{n^n}\right)$. On donne : $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{4}$.
 - b) En utilisant les questions précédentes, démontrer que la suite $\left(\frac{(n\,!)^\frac{1}{n}}{n}\right)_{n\,\in\,\mathbb{N}*}\text{converge et déterminer sa limite}.$

Partie C: Une suite d'intégrales

1) Démontrer que pour tout $n \in \mathbb{N}^*$ et pour tout k [0,n-1], on a:

$$\int_{\frac{\ln n}{n}}^{\frac{(k+1)\pi}{n}} |\sin(nx)| dx = \frac{2}{n}$$

- 2) Soit f une fonction continue et croissante sur $[0, \pi]$
 - a) Démontrer que pour tout $n \in \mathbb{N}^*$ et tout k [0, n-1], on a:

$$\frac{2}{n}f(\frac{k\pi}{n}) \le \int_{\frac{k\pi}{n}}^{\frac{(k+1)\pi}{n}} f(x) |\sin(nx)| dx \le \frac{2}{n}f(\frac{(k+1)\pi}{n})$$

- b) En déduire un encadrement de $\int_0^{\pi} f(x) |\sin(nx)| dx$
- c) Déterminer $\lim_{n\to+\infty} \int_0^{\pi} f(x) |\sin(nx)| dx$
- d) Obtiendrait-on le même résultat pour une fonction continue et décroissante sur $[0, \pi]$?

Partie D: Une application aux probabilités

1) Pour tout couple d'entiers naturels (k,m), on pose :

$$I_{k,m} = \int_0^1 x^k (1-x)^m dx$$

- a) Démontrer que: $\forall \ k \in \mathbb{N}^*$, $\forall \ m \in \ \mathbb{N}$, $I_{k,m} = \frac{k}{m+1} \ I_{k-1,m+1}$
- b) Pour tout coule d'entiers naturels (k,m), déterminer $I_{0,k+m}$ et en déduire une expression de $I_{k,m}$ en fonction de k et m.
- 2) Soient $n \in \mathbb{N}^*$, $p \in [0, 1]$.

Une urne contient des boules rouges et des boules blanches. La proportion de boules rouges dans cette urne est p. On réalise dans cette urne n tirages indépendants avec remise. On note X la variable aléatoire égale au nombre de boules rouges obtenues.

Déterminer la loi de probabilité de X puis l'espérance de X.

3) Soit $n \in \mathbb{N}^*$ et $N \in \mathbb{N}^*$

On dispose de N urnes $U_1,...,U_N$ contenant des boules rouges et des boules blanches et telle que pour tout $j \in [1,N]$, la proportion de boules rouges dans U_j est $\frac{j}{N}$.

On choisit une urne au hasard et on effectue dans cette urne n tirages indépendants d'une boule avec remise. On note $X_{\rm N}$ la variable aléatoire égale au nombre de boules rouges obtenues.

- a) Pour tout entier naturel k, on note $P_n(k)$ la probabilité que X_N prenne la valeur k Démontrer que $\ P_n(k) = \frac{1}{N} \sum_{j=1}^N C_n^k (\frac{j}{N})^k \left(1 \frac{j}{N}\right)^{n-k}$
- b) Calculer l'espérance de $X_{N.}$ Quelle est la limite de cette espérance quand N tend vers $+\infty$?
- c) En utilisant le résultat obtenu dans la première question, déterminer $\lim_{N\to +\infty} P_n(k)$

Que peut-on en déduire pour la suite de variables aléatoires $(X_N)_{N \in \mathbb{N}^*}$?

Qui cherche trouve. N'abandonnez point! Bonne Chance!