Differential Equations

• Find a function y that satisfies the differential equation:

$$\frac{dy}{dx} = \frac{x^2 + 1}{2y}$$

Separation of variables

$$2y \, dy = (x^2 + 1) \, dx$$

$$\int 2y \, dy = \int (x^2 + 1) \, dx$$

$$y^2 + C_1 = \frac{1}{3}x^3 + x + C_2$$

$$y^2 = \frac{1}{3}x^3 + x + C$$

Boundary Conditions

• What is y(x) if we know that y = 3 at x = 0?

$$y^{2} = \frac{1}{3}x^{3} + x + C$$
$$3^{2} = \frac{1}{3}0^{3} + 0 + C$$

$$C = 9$$

$$y(x) = \sqrt{\frac{1}{3}x^3 + x + 9}$$

note that y(x) is always positive

This is generally known as an initial value problem

• Find a function that satisfies the following differential equation for the initial value $y(0) = \frac{\pi}{2}$

$$x dx + \sec x \sin y dy = 0$$

Remember integration by parts:

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$

$$x dx + \sec x \sin y dy = 0$$

$$\sec x \sin y dy = -x dx$$

$$\sin y dy = -x \cos x dx$$

$$\int \sin y dy = -\int x \cos x dx$$

$$\cos y = -\left[x \sin x - \int \sin x dx\right]$$

 $\cos y = x \sin x + \cos x + C$

• calculate C given $y(0) = \frac{\pi}{2}$:

$$\cos\frac{\pi}{2} = (0)\sin 0 + \cos 0 + C$$

$$C = -1$$

 $\cos y = x \sin x + \cos x - 1$

- You own x_0 pounds of tribbles
- Assume that your $x = x_0$ pounds of pet tribbles multiply at a rate of α per day:

$$\frac{dx}{dt} = \alpha x$$

• Find an equation x(t) that satisfies $\frac{dx}{dt} = \alpha x$ $\frac{dx}{dt} = \alpha x$ $\frac{1}{x} dx = \alpha dt$ $\int \frac{1}{x} dx = \int \alpha dt$

$$\ln x + C_1 = \alpha t + C_2$$
$$\ln x = \alpha t + C$$

• Solve for C given the initial condition $x(0) = x_0$

$$\ln x_0 = \alpha(0) + C$$
$$C = \ln x_0$$

• Plug in the value of C to get x(t)

$$\ln x = \alpha t + \ln x_0$$

$$\ln x - \ln x_0 = \ln \frac{x}{x_0} = \alpha t$$

$$\frac{x}{x_0} = e^{\alpha t}$$

$$x(t) = x_0 e^{\alpha t}$$

• Assuming we purchase $x_0=1$ pound of baby tribbles and they double every day: lpha=1

How long before a crew of 60 people can each have a pound of tribble?

$$x(t) = e^t = 60$$
$$t = \ln 60 \approx 4.09 \text{ days}$$

- Most differential equations cannot be solved analytically
- Solving differential equations that model physical systems are a primary application of numerical methods
- **Slope fields** if we have a first-order differential equation, we can calculate the slope at each point (x, y) to understand the behavior of the function
- Explicit methods if we know an initial value, we can approximate further values
- Look at numerical approaches for $x(t) = x_0 e^{\alpha t}$ as an example

Slope fields

Calculate $\frac{dy}{dx} = y$ for various initial values (x, y)

Explicit methods

• Given $\frac{dx}{dy}$, Start from the initial value (x, y) and increment by some discrete Δx :

$$y_{n+1} = y_n + \Delta x \cdot \frac{dx}{dy}$$
$$x_{n+1} = x_n + \Delta x$$

Euler method

Calculate a function that satisfies $\frac{dy}{dx} = y$ for the initial value (0, 1)

$$y_{n+1} = y_n + \Delta x \cdot \frac{dy}{dx}$$
$$x_{n+1} = x_n + \Delta x$$

A	
$\wedge \gamma$	
$\Delta \lambda$	_

x $\Delta x = 2$	у	$\left \frac{dx}{dy} \right $
0	1	1
2	3	3
4	9	9
6	27	27

Euler method

Calculate a function that satisfies $\frac{dy}{dx} = y$ for the initial value (0, 1)

$$y_{n+1} = y_n + \Delta x \cdot \frac{dy}{dx}$$
$$x_{n+1} = x_n + \Delta x$$

$$\Delta x = 1$$

x $\Delta x = 1$	у	dx/dy
0	1	1
1	2	2
2	4	4
3	8	

Euler method

Calculate a function that satisfies $\frac{dy}{dx} = y$ for the initial value (0, 1)

$$y_{n+1} = y_n + \Delta x \cdot \frac{dy}{dx}$$
$$x_{n+1} = x_n + \Delta x$$

$$\Delta x = 0.5$$

x $\Delta x = 0.5$	у	dx/dy
0	1	1
0.5	1.5	1.5
1	2.25	2.25
1.5	3.36	3.36
2	5.04	

Explicit methods

- Euler method
 - given $\frac{dy}{dx}$, Start from the initial value (x, y) and increment by some discrete Δx :

$$y_{n+1} = y_n + \Delta x \cdot \frac{dy}{dx}$$
$$x_{n+1} = x_n + \Delta x$$

- What is the order of the error term using the Euler method?
 - Take the Taylor series expansion of y about x

$$y(x + \Delta x) = y(x) + \Delta x \cdot y'(x) + O(\Delta x^2)$$

Physical systems – fields

- Assuming a positive mass-less point charge at position p
- The particle p is placed into an electric field produced by positive and negative charges at positions ${m e}_+$ and ${m e}_-$
 - The velocity of the particle due to the positive charge is

$$v_+ = \frac{e_+ - p}{|e_+ - p|^2}$$

• The velocity of the particle due to the negative charge is

$$v_- = -\frac{e_- - p}{|e_- - p|^2}$$

And the net velocity is

$$v = v_+ + v_-$$

Assuming a 2D system:

$$rac{dx}{dt} = v_x$$
 and $rac{dy}{dt} = v_y$

The update function is given by:

$$p_{n+1} = p_n + \Delta t(v)$$

Physical systems – fields

• Using Euler's Method with $\Delta t = 0.5$ and $oldsymbol{p_0} = (1, -0.5)$

x	у	dx/dt	dy/dt
1	-0.5	-0.47	-1.88
0.76	-1.44	-0.45	-0.4
0.54	-1.54	-0.46	-0.24
0.31	-1.76	-0.47	-0.13
0.08	-1.82	-0.46	-0.03
•••	•••	•••	•••
-1.16	-1.23		

Physical systems – Matlab code

```
clc;
                                                                %for each time step
clear:
                                                                for t = 2:T+1
                                                                   %calculate the velocity due to positive charge v_p = (p(t-1, :) - e_p) / norm(p(t-1,:) - e_p)^2;
%set the time step
dt = 0.05:
                                                                   %calculate the velocity due to negative charge v_n = -(p(t-1,:) - e_n) / norm(p(t-1,:) - e_n)^2;
%set the number of time steps
T = 60:
                                                                   v = (v p + v n);
%position of the negative charge
                                                                   %calculate the new position of the particle p(t,:) = p(t-1,:) + dt * (v);
e^{n} = [-1, 0];
%position of the positive charge
e'p = [1, 0];
                                                                end
                                                                %plot the negative and positive charges scatter(e_n(1), e_n(2), 'O');
%start position of the point charge
p s = [1, -0.5];
                                                                hold on:
                                                                scatter(e p(1), e p(2), 'O');
%allocate space for the list of points
p = zeros(T+1, 2);
                                                                %plot the particle path using a color map
                                                                scatter(p(:, 1), p(:, 2), [], 1:T+1, 'filled')
%initialize the first point to the start position
p(1, :) = p s;
                                                                ylim([-2 2]);
xlim([-3 3]);
                                                                hold off
```

Euler method applications

• Use Matlab to calculate solutions to the following differential equations using the Euler method for varying time steps Δx

$$\frac{dy}{dx} = \sin(y + x^2)$$

$$\frac{dy}{dx} = y^2 - x$$

- Determine the motion of two objects in a physical system
 - $oldsymbol{p}_0$ and $oldsymbol{p}_1$ are the positions of both objects
 - m_0 and m_1 are their corresponding masses
 - $oldsymbol{v}_0$ and $oldsymbol{v}_1$ are their corresponding velocities
 - F_{10} is the force applied to object 1 by object 0
- This system is governed by a set of differential equations
 - Velocity describes an object's change in position over time:

$$v = \frac{dp}{dt}$$

 Acceleration describes an object's change in velocity over time:

$$a = \frac{dv}{dt}$$

- This system is governed by a set of differential equations
 - Velocity describes an object's change in position over time:

$$v = \frac{dp}{dt}$$

Acceleration describes an object's change in velocity over time:

$$a = \frac{dv}{dt}$$

 Newton's second law of motion – the sum of all forces on an object equals the product of the object's acceleration and mass

$$\sum F = ma$$

- Find an object's position as a function of time p(t)
- Using explicit integration:

$$p(t_n) = p(t_{n-1}) + \Delta t \cdot \frac{dp}{dt}$$
$$= p(t_{n-1}) + \Delta t \cdot v(t_n)$$

$$v(t_n) = v(t_{n-1}) + \Delta t \cdot \frac{dv}{dt}$$
$$= v(t_{n-1}) + \Delta t \cdot a(t_n)$$

• The acceleration is given by F = ma

$$a(t_n) = \frac{1}{m} \sum F$$

Newton's Law of Universal Gravitation

$$F_{ij} = -G \frac{m_i m_j}{|p_j - p_i|^3} (p_j - p_i)$$

Since there are only two bodies (and therefore two forces)

Satellite in orbit

- The satellite has a position $p_{\scriptscriptstyle S}$, mass $m_{\scriptscriptstyle S}$, and velocity $v_{\scriptscriptstyle S}$
- The planet's gravity applies a force given by Newton:

$$F = -G \frac{m_s m_e}{|p_s - p_e|^3} (p_s - p_e)$$

where p_e and m_e are the position and mass of the planet

• This results in an acceleration dependent only on p_s :

$$a(t_n) = \frac{1}{m} \sum F$$

$$= -G \frac{m_e}{|p_s - p_e|^3} (p_s - p_e)$$

Using the Euler update equations:

$$v(t_n) = v(t_{n-1}) + \Delta t \cdot a(t_n)$$
$$p(t_n) = p(t_{n-1}) + \Delta t \cdot v(t_n)$$

Momentum – Matlab code

```
%for each time step
%set the time step
                                                      for t = 2:T+1
dt = 0.01;
                                                        %calculate the force on the satellite
%set the number of time steps
T = 500:
                                                        %direction of the force
%starting position and velocity of the satellite
                                                        r = p g - p(t-1, :);
p_s = [0, 0];
v = [-3, 0];
                                                        %distance between satellite and planet
                                                        r mag = norm(r);
%gravitational constant
                                                        %calculate the magnitude of the force
G = 1:
                                                        f mag = G * m/(r mag^2);
%position and mass of the planet
                                                        %calculate the force vector
p_g = [-5, -5];
                                                        f = r/norm(r) * f mag;
m = 100:
%allocate space for the list of positions
                                                        %apply the force as a change in velocity
p = zeros(T+1, 2);
                                                        v = v + dt * f;
                                                        %apply the velocity as a change in position p(t, :) = p(t-1, :) + dt * v;
%initialize the first point to the start position
p(1, :) = p s;
                                                      end
                                                      %display the image
```

Higher order approximations

Given the differential equation:

$$x' = 1 + x^2 + t^3$$

find a 4th order approximation for x

Generate a Taylor series expansion

$$x(t+h) \approx x(t) + hx'(t) + \frac{1}{2}h^2x''(t) + \frac{1}{6}h^3x'''(t) + \frac{1}{24}h^4x^{(4)}(t)$$

Compute additional derivatives:

$$x' = 1 + x^{2} + t^{3}$$

$$x'' = 2xx' + 3t^{2}$$

$$x''' = 2(xx'' + x'x') + 6t$$

$$x^{(4)} = 2xx''' + 6x'x'' + 6$$

Higher order approximations

Generate a Taylor series expansion

$$x(t+h) \approx x(t) + hx'(t) + \frac{1}{2}h^2x''(t) + \frac{1}{6}h^3x'''(t) + \frac{1}{24}h^4x^{(4)}(t)$$

- Starting at some value $x(t_0) = x_0$, iterate using derivatives
 - This concept is an extension of the Euler method, which just relies on the given x^\prime
 - What is the error for this approximation? $O(h^5) \quad 4^{\rm th} \ {\rm order-error \ bound \ is} \ O(h^{n+1}) \ {\rm where} \ n=4$
- Differentiation is often easier than integration
- Requires an analytical expression

Predictor-Corrector Algorithms

- Error in the Euler method is cumulative
- Also this error is consistent
 - If the function is "concave up" then f(x) will be **under** estimated
 - If the function is "concave down" then f(x) will be **over** estimated

Heun's Method

- Take one Euler step $f(x_{n+1}) \approx f(x_n) + \Delta x \cdot f'(x_n)$
- This provides a "prediction" for the next value $f(x_{n+1})$
- If the curve is concave up (positive curvature)
 - $f(x_{n+1})$ will be an under-estimate
 - $\bullet \ f'(x_{n+1}) > f'(x_n)$
- A more accurate result can be obtained using the average

$$\widehat{f}'(x_{n+1}) = \frac{f'(x_n) + f'(x_{n+1})}{2}$$

Heun's Method

- Also known as the "Improved Euler Method"
- Update steps given $\frac{dy}{dx} = f(x, y)$:

$$x_{n+1} = x_n + \Delta x$$

$$\hat{y}_{n+1} = y_n + \Delta x \cdot f(x_n, y_n)$$

$$y_{n+1} = y_n + \frac{\Delta x}{2} [f(x_n, y_n) + f(x_{n+1}, \hat{y}_{n+1})]$$

- This can be thought of as a two-step algorithm:
 - Make a prediction based on $f(x_n, y_n)$
 - Make a correction based on f at the predicted position

Runge-Kutta method

- Taylor series method
 - Requires analytical differentiation difficult to incorporate into software
- Runge-Kutta methods
 - Named after Carl Runge and Wilhelm Kutta
 - Approximates the higher-order Taylor series method
 - Eliminates the need for analytical differentiation
- Euler's method is the first-order Runge-Kutta method
- Heun's method is the second-order Runge-Kutta method
- The most commonly used method for integration in initial value problems is the fourth-order Runge-Kutta method
 - Generally just known as the Runge-Kutta method

Runge-Kutta method

Update step:

te step:
$$x_{n+1} = x_n + \Delta x$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 where k_1 to k_4 are given by:
$$k_1 = \Delta x \cdot f(x_n, y_n)$$

$$k_2 = \Delta x \cdot f\left(x_n + \frac{\Delta x}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = \Delta x \cdot f\left(x_n + \frac{\Delta x}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = \Delta x \cdot f\left(x_n + \Delta x, y_n + k_3\right)$$

Runge-Kutta method

- Computes a weighted average of k_1 to k_4
- k_1 is simply Euler's method:

$$k_1 = \Delta x \cdot f(x_n, y_n)$$

- k_1 and k_4 estimate the slope at the end points
 - These two values effectively implement the steps in Heun's method
- k_2 and k_3 provide estimates of the slope at the mid points in the step Δx

Programming Assignment

Physics

- You have control over:
 - Initial velocity
 - maximum velocity v_{max}
 - no "active" changes in velocity are allowed for the duration of the simulation – you're "floating" until the end
 - Initial trajectory
 - Starting position
 - You will be allowed to start at any point on a given line

Start state

- 3D Monte-Carlo simulation

• position
$$p_0 \in [x_1, x_2]$$

• trajectory
$$\bar{v}_0 \in [\theta_1, \theta_2] \to (x, y)$$

- velocity magnitude $|v_0| \in [0, v_{max}]$
- p_0 and $|v_0|$ are selected from a uniform distribution
- the direction \bar{v}_0 is selected from a normal distribution
- The initial velocity is given by:

$$v = |v_0| \cdot \bar{v}_0$$

Physical simulation

- Integration for estimating the ship position p(t)
 - Euler integration
 - any *net* force above F_{max} will destroy your ship
 - the time step Δt should be selected such that a highly-accurate calculation of the path won't destroy your ship

Code

- Put all of your functions in one Matlab (----.m) file
- Implement a function that performs Euler integration
 - a start state (position, velocity, trajectory)
 - a list of gravity wells (positions and masses)
- Create separate functions that generate random values for the start state
- You may use any 'built-in' Matlab functions
 - No downloading code from Matlab Central
- Vectorize your code wherever possible to take advantage of Matlab's speed
 - We'll talk about this in detail