Concours National Commun - Session 2010

Corrigé de l'épreuve de mathématiques II Filière MP

Pour toute matrice complexe A, il existe une matrice unitaire U telle que les éléments diagonaux de la matrice UAU^{-1} soient tous égaux.

Corrigé par M.TARQI¹

I. Un peu de gémoètrie

1.1 Question de cours : L'équation d'une ellipse dans une repère orthonormé du plan euclidien est de la forme $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ avec a > b > 0 de foyer $F(c = \sqrt{a^2 - b^2}, 0)$, de directrice d'équation $x = \frac{a^2}{c}$ et d'excentricité $e = \frac{c}{a} < 1$. Pour des raisons de symétrie, il existe un autre couple de foyer et directrice. Ce sont F'(-c,0) et la droite D' d'équation $x=\frac{-a^2}{c}$.

1.2

- 1.2.1 On a $\lambda e^{i\theta} + \mu e^{-i\theta} = (\lambda + \mu)\cos\theta + i(\lambda \mu)\sin\theta$, donc $(x,y) \in E_{\lambda,\mu}$ si et seulement si $x = (\lambda + \mu)\cos\theta$ et $y = (\lambda \mu)\cos\theta$, donc $\frac{x^2}{(\lambda + \mu)^2} + \frac{y^2}{(\lambda \mu)^2} = 1$, ainsi (x,y) décrit l'ellipse d'équation réduite $\frac{x^2}{(\lambda + \mu)^2} + \frac{y^2}{(\lambda - \mu)^2} = 1$.
- 1.2.2 $r_{\omega,\varphi}$ est une rotation affine; de centre w et d'angle φ .
- 1.2.3 Prenons w=0 et $\varphi=\frac{\varepsilon+\tau}{2}$. Alors

$$r_{0,\omega}(\lambda e^{i\theta} + \mu e^{-i\theta}) = \lambda e^{i\varepsilon} e^{i(\theta + \frac{\tau - \varepsilon}{2})} + \mu e^{i\tau} e^{-i(\theta + \frac{\tau - \varepsilon}{2})} = b e^{i(\theta + \frac{\tau - \varepsilon}{2})} + c e^{-i(\theta + \frac{\tau - \varepsilon}{2})},$$

donc $r_{0,\varphi}(\lambda e^{i\theta} + \mu e^{-i\theta}) \in E_{b,c}$. D'autre part, si $bz + cz' = be^{i\theta} + ce^{-\theta} \in E_{b,c}$, alors

$$be^{i\theta} + ce^{-i\theta} = r_{0,\varphi} \left(\lambda e^{i(\theta - \frac{\tau - \varepsilon}{2})} + \mu e^{-i(\theta - \frac{\tau - \varepsilon}{2})} \right).$$

Donc $E_{b,c}=r_{0,\varphi}(E_{\lambda,\mu})$, et comme $r_{0,\varphi}$ est une rotation, donc une isométrie, et que se fait autour de 0, alors $E_{b,c}$ est une ellipse centrée à l'origine.

1.3

1.3.1 $\mathbb C$ est considéré comme espace vectoriel sur $\mathbb R$. Soient $(z,z')\in\mathbb C^2$ et $\alpha\in\mathbb R$, alors

$$f(z+\alpha z')=b(z+\alpha z')+c(\overline{z+\alpha z'})=bz+c\overline{z}+\alpha(bz+c\overline{z})=f(z)+\alpha f(z')$$

Donc f est bien linéaire de $\mathbb C$ dans $\mathbb C$.

Soit z = x + iy tel que f(z) = 0, posons $b = \alpha + i\beta$ et $c = \alpha' + i\beta'$, alors

$$\begin{cases} (\alpha + \alpha')x + (\beta' - \beta)y = 0\\ (\beta + \beta')x + (\alpha - \alpha')y = 0 \end{cases},$$

système qui est inversible puisque son déterminant $(\alpha^2+\beta^2)-(\alpha'^2+\beta'^2)=|b|^2-|c|^2$ est no nul, donc x + iy = z = 0, ainsi f est injective.

¹M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc. E-mail: medtarqi@yahoo.fr

- 1.3.2 Soit $C = \{z \in \mathbb{C}/|z| = 1\}$ le cercle unité, alors $f(C) = \{bz + c\overline{z}/|z| = 1\} = E_{b,c}$ est une ellipse de centre O (d'après la question [1.2.3]).
- 1.3.3 Comme f et non injective et non nulle, alors Im f est une droite vectorielle (droite affine passant par O).

D'autre part, C est un compact de $\mathbb C$ (fermé et borné), et f est continue (linéaire) donc f(C) est une partie compacte de la droite affine $\mathrm{Im} f$, donc c'est un segment. Si $z \in C$, alors $-z \in C$, donc f(C) est symétrique par rapport à O.

On a pour tout $z \in \mathbb{C}$, $|bz + c\overline{z}| \le |b| + |c| = 2|b|$, donc $|e^{i\varepsilon}e^{i\theta} + e^{i\tau}e^{-i\theta}| \le 2$, et $|e^{i\varepsilon}e^{i\frac{\tau-\varepsilon}{2}} + e^{i\tau}e^{-i\frac{\tau-\varepsilon}{2}}| = |2e^{\frac{\varepsilon+\tau}{2}}| = 2$, donc les deux extrémités du segment f(C) sont les points d'affixes $z_1 = 2|b|e^{i(\frac{\varepsilon+\tau}{2})}$ et $z_2 = 2|b|e^{i(\frac{\varepsilon+\tau}{2}+\pi)} = -2|b|e^{i(\frac{\varepsilon+\tau}{2})}$.

- 1.3.4 Si f est injective alors $f(C)=E_{b,c}$. Soit $a\in C^*$, alors il existe un réel ξ tel que $\xi a\in E_{b,c}$ et par conséquent, il existe $z_0\in\mathbb{C}$ tel que $f(z_0)=\xi a$, donc $\frac{bz_0+c\overline{z_0}}{a}=\xi\in\mathbb{R}$.

 Si f est non injective, alors il existe $z_1\in\mathbb{C}^*$ tel $f(z_1)=0$, donc si on considère
 - Si f est non injective, alors il existe $z_1 \in \mathbb{C}^*$ tel $f(z_1) = 0$, donc si on considère $z_0 = \frac{z_1}{|z_1|}$ alors $|z_0| = 1$ et pour tout nombre complexe non nul a, on a $\frac{bz_0 + c\overline{z_0}}{a} = 0$ est un réel.

II. MATRICES UNITAIRES

- 2.1 La matrice $A=\left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array}\right)\in\mathcal{M}_n(\mathbb{C})$ vérifie $A^*A=AA^*=I_2$, donc elle est unitaire.
- 2.2 Par définition si $A=(a_{ij})_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathbb{C})$, alors $\det A=\sum_{\sigma\in S_n}a_{1\sigma(1)}a_{2\sigma(2)}...a_{n\sigma(n)}$ (S_n désigne l'ensemble des permutations de l'ensemble $\{1,2,...,n\}$). Ainsi $\det A^*=\overline{\det A}$ et si de plus A est unitaire, alors $A^*A=I_2$, et par conséquent

$$\det(A^*A) = \det A \overline{\det A} = 1,$$

 $\operatorname{donc} |\det A| = 1.$

2.5

2.3 Il est clair que si u et v sont des complexes tels que $|u|^2 + |v|^2 = 1$, alors $A = \begin{pmatrix} u & v \\ -\lambda \overline{v} & \lambda \overline{u} \end{pmatrix}$ est unitaire.

Inversement, Soit $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ un matrice unitaire, alors $|a|^2+|b|^2=|c|^2+|d|^2=1$ et $c\overline{a}+d\overline{b}=0$ et |ad-bc|=1.

Supposons $ad - bc = e^{i\alpha}$ avec $\alpha \in \mathbb{R}$.

- Si $a \neq 0$, on déduit $c = -\frac{\overline{b}d}{\overline{a}}$, puis $e^{i\alpha} = ad bc = ad + \frac{b\overline{b}d}{\overline{a}} = (|a|^2 + |b|^2)\frac{d}{\overline{a}}$ donc $d = e^{i\alpha}\overline{a}$, et $c = -e^{i\alpha}\frac{\overline{b}\overline{a}}{\overline{a}} = -e^{i\alpha}\overline{b}$.
- Si a=0, on obtient |b|=1, $\overline{b}d=0$, d=0, puis |c|=1, $bc=-e^{i\alpha}$, donc $c=-\frac{e^{i\alpha}}{b}=-e^{i\alpha}\overline{b}$.
- 2.4 $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$ est unitaire si et seulement si $D^*D = \operatorname{diag}(|\lambda_1|^2, |\lambda_2|^2, ..., |\lambda_n|^2) = I_n$, donc si et seulement si $|\lambda_1| = |\lambda_2| = ... = |\lambda_n| = 1$.

2.5.1 Si A est une matrice à coefficients réels, alors $A^*=^t A$, donc A est unitaire si et seulement si $^tAA=A^tA=I_n$, c'est-à-dire A est orthogonale.

2.5.2 Soit σ une permutation de $\{1,2,...,n\}$. Notons A_{σ} la matrice de permutation associée à σ . Alors

$$A_{\sigma} = (\sigma_{i,\sigma(i)})_{1 \le i,j \le n}$$

Posons $({}^tA_{\sigma}) = (b_{ij})_{1 \le i,j \le n}$, on obtient :

Pour tout (i, j) de $\{1, 2, ..., n\}$, on a :

$$b_{ij} = a_{ji}$$

$$= \delta_{j\sigma(i)}$$

$$= \delta_{\sigma^{-1}\sigma ji),\sigma(i)}$$

$$= \delta_{\sigma^{-1}(j')i'}$$

Donc ${}^tA_{\sigma} = A_{\sigma^{-1}}$

Soient maintenant σ et $\sigma^{'} \in S_n$, on pose $A_{\sigma}A_{\sigma^{'}} = (c_{ij})_{1 \leq i,j \leq n}$, on obtient donc

$$c_{ij} = \sum_{k=1}^{n} \delta_{i\sigma(k)} \delta_{k\sigma'(j)}$$

$$= \delta_{i\sigma\sigma'(j)} \delta_{\sigma'(i)\sigma'(j)}$$

$$= \delta_{i\sigma\sigma'(j)}$$

Alors $A_{\sigma}A_{\sigma'}=A_{\sigma\sigma'}$ et en particulier on a :

$$A_{\sigma}A_{\sigma^{-1}} = A_{\sigma\sigma^{-1}} = A_{id} = I_n$$

Donc A_{σ} est inversible et $(A_{\sigma})^{-1} = A_{\sigma^{-1}} = {}^t A_{\sigma}$ c'est-à-dire A_{σ} est orthogonale, donc elle est unitaire.

2.6 Soit $A=(a_{ij})_{1\leq i,j\leq n}$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on note b_{ij} les coefficients de AA^* , alors

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \overline{a_{kj}}$$

Donc A est unitaire si et seulement si $\sum\limits_{k=1}^n a_{ik}\overline{a_{kj}} = \delta_{ij}$ (δ_{ij} étant le symbole de Kroneker), c'est-à-dire si et seulement si les colones de A forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{C})$ pour le produit scalaire < .|. >.

2.7 Il est clair que toute matrice unitaire A est inversible et $A^{-1} = A^*$, donc $\mathbb{U}_n \subset \mathbf{GL}_n(\mathbb{C})$. D'autre part $I_n \in \mathbb{U}(n)$ et si A et B sont $\mathbb{U}(n)$, alors

$$(AB^{-1})^*(AB) = (B^{-1})^*A^*AB^{-1} = (B^{-1})^*B^{-1} = (BB^*)^{-1} = I_n,$$

donc $AB^{-1} \in \mathbb{U}(n)$.

- 2.8 Compacité de $\mathbb{U}(n)$
 - 2.8.1 Notons $l:A\longmapsto ({}^t\overline{A},A)$, $b:(A,B)\longmapsto AB$ et $\varphi:A\longmapsto A^*A$. l et b sont des applications continues (l est linéaire et b est bilinéaire) et comme $\varphi=b\circ l$, alors φ est continue de $\mathcal{M}_n(\mathbb{C})$ sur lui même.
 - 2.8.2 Par identification de $\mathcal{M}_n(\mathbb{C})$ et \mathbb{C}^{2n} , l'application $\|.\|_2$ n'est autre que la norme associée au produit scalaire canonique de \mathbb{C}^{2n} .

Si $A=(a_{ij})_{1\leq i,j\leq n}$ est unitaire alors $A^*A=I_n$ et donc pour tout j=1,2,...,n, $\sum_{i=1}^n |a_{ij}|^2=1.$

$$||A||_2 = \left(\sum_{j=1}^n \sum_{i=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{j=1}^n 1\right)^{\frac{1}{2}} = \sqrt{n}.$$

- 2.8.3 On a $\mathbb{U}_n = \varphi^{-1}\{I\}$ et comme φ est continue et $\{I_n\}$ est fermé de $\mathcal{M}_n(\mathbb{C})$, alors \mathbb{U}_n est un compact de $\mathcal{M}_n(\mathbb{C})$, d'autre part, \mathbb{U}_n est borné, car pour tout $A \in \mathbb{U}(n)$, $\|A\|_2 = \sqrt{n}$, et comme on est en dimension finie \mathbb{U}_n est un compact de $\mathcal{M}_n(\mathbb{C})$.
 - III. DÉMONSTRATION D'UN RÉSULTAT ANNONCÉ

3.1 Étude en dimension 2

3.1.1 Il est clair que

$$U^*U=\left(\begin{array}{cc} u & v \\ -\overline{v} & \overline{u} \end{array}\right)\left(\begin{array}{cc} \overline{u} & -v \\ \overline{v} & u \end{array}\right)=I_2$$
, puisque $|u|^2+|v^2|=\cos^2\alpha+\sin^2\alpha=1$, donc U est unitaire.

3.1.2 Nous avons

$$UAU^* = \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} \begin{pmatrix} a_1 & b \\ c & a_2 \end{pmatrix} \begin{pmatrix} \overline{u} & -v \\ \overline{v} & u \end{pmatrix}$$
$$= \begin{pmatrix} (ua_1 + vc)\overline{u} + (ub + va_2)\overline{v} & -v(ua_1 + vc) + u(ub + va_2) \\ (-\overline{v}a_1 + \overline{u}c)\overline{u} + (-\overline{v}b + \overline{u}a_2)\overline{v} & (-\overline{v}a_1 + \overline{u}c)\overline{u} + (-\overline{v}b + \overline{u}a_2)u \end{pmatrix}$$

Donc

$$A_1 = (ua_1 + vc)\overline{u} + (ub + va_2)\overline{v}$$

= $a_1 \cos^2 \alpha + a_2 \sin^2 \alpha + (ce^{i(\beta - \gamma)} + be^{-i(\beta - \gamma)}) \sin \alpha \cos \alpha$

et

$$A_2 = (-\overline{v}a_1 + \overline{u}c)\overline{u} + (-\overline{v}b + \overline{u}a_2)u$$

= $a_1 \sin^2 \alpha + a_2 \cos^2 \alpha + (be^{i(\beta-\gamma)} + ce^{-i(\beta-\gamma)})\sin \alpha \cos \alpha$

- 3.1.3
 - 3.1.3.1 D'après la question [1.3.4] de la première partie, il existe z_0 de module 1 tel que $\frac{bz_0+c\overline{z_0}}{a_1-a_2}$ soit un réel, et comme $|z_0|=1$, alors on peut choisir β et γ tel que $z_0=e^{i(\beta-\gamma)}$. Donc il existe un couple $(\beta,\gamma)\in\mathbb{R}^2$ tel que p soit un réel.
 - 3.1.3.2 Soit p un réel, l'application définie sur $\left[0, \frac{\pi}{2}\right]$ par

$$\varphi: \alpha \longmapsto \cos^2 \alpha + p \sin \alpha \cos \alpha - \frac{1}{2}$$

est continue et comme $\varphi(0)=\frac{1}{2}$ et $\varphi\left(\frac{\pi}{2}\right)=\frac{-1}{2}$, alors d'après le théorème des valeurs intermédiaires il existe $\alpha\in\left]0,\frac{\pi}{2}\right[$ tel que $\varphi(\alpha)=0$, c'est-à-dire $\frac{1}{2}=\cos^2\alpha+p\cos\alpha\sin\alpha$.

3.1.3.3 Dans ces conditions, on a :

$$A_1 = a_1 \cos^2 \alpha + a_2 \sin^2 \alpha + (ce^{i(\beta-\gamma)} + be^{-i(\beta-\gamma)}) \sin \alpha \cos \alpha$$

= $a_1(\cos^2 \alpha + p\cos \alpha \sin \alpha) + a_2(1-\cos^2)\cos^2 \alpha + p\cos \alpha \sin \alpha$
= $ta_1 + (1-t)a_2$

De même

$$A_2 = a_1 \sin^2 \alpha + a_2 \cos^2 \alpha + (be^{i(\beta-\gamma)} + ce^{-i(\beta-\gamma)}) \sin \alpha \cos \alpha$$
$$= ta_2 + (1-t)a_1$$

Ainsi pour $t=\frac{1}{2}$, on a $A_1=A_2$, c'est-à-dire les éléments diagonaux UAU^* sont égaux.

3.2 Étude du cas général

- 3.2.1 Comme f est linéaire de $\mathcal{M}_n(\mathbb{C})$ dans lui même , alors f est continue.
- 3.2.2
 - 3.2.2.1 L'application g_A est continue comme composée des applications continues :
 - l'application continue $H \longmapsto HAH^*$; puisque on a l'inégalité :

$$||HAH^* - H_0AH_0^*||_{\infty} = ||HA(H^* - H_0^*) + (H - H_0)AH_0^*||_{\infty}$$

$$\leq ||H||_{\infty}||A||_{\infty}||H^* - H_0^*||_{\infty} + ||A||_{\infty}||H_0^*||_{\infty}||H - H_0||_{\infty}$$

- l'application linéaire f;
- l'application norme $\|.\|_{\infty}$ qui est continue, car elle est lipshitizienne.
- 3.2.2.2 g_A étant continue sur le compact $\mathbb{U}(n)$, donc elle est bornée et atteint ses bornes, en particulier il existe $H_0 \in \mathbb{U}(n)$ tel que $g_A(H_0) = \inf\{g_A(H)/H \in \mathbb{U}(n)\}$.

3.2.3

3.2.3.1 Puisque $g_A(H_0)>0$, alors $i_0\neq j_0$. Soit σ la permutation de $\{1,2,...,n\}$ définie par $\sigma(i_0)=1$, $\sigma(j_0)=2$ et pour tout $k\neq i_0$ et $k\neq j_0$, $\sigma(k)=k$. Notons $P=A_\sigma$, alors $PA\in \mathbb{U}(n)$ (car $\mathbb{U}(n)$ est un groupe) et

$$||f((PH)A(PH)^*)||_{\infty} = ||f(HAH^*)||_{\infty},$$

donc la supposition est possible.

Remarque: Si $\sigma_{i,j} \in S_n$ une transposition $(\sigma_{i,j}(i) = j, \sigma_{i,j}(j) = i \text{ et } \sigma_{i,j}(k) = k$, pour $k \neq i$ et $k \neq j$, alors $P_{\sigma_{i,j}} A P_{\sigma_{i,j}}^*$ s'obtient en permuttant les lignes L_i et L_j et ensuite les colonnes C_i et C_j de la matrice A, dans ce cas le coefficient $a_{i,i}$ de A occupe la position (j,j) dans la matrice $P_{\sigma_{i,j}} A P_{\sigma_{i,j}}^*$ et même chose pour le coefficient $a_{j,j}$.

- 3.2.3.2 C'est une conséquence de la question [3.1] de cette partie.
- 3.2.3.3 Comme U_0 est unitaire, alors on a :

$$UU^* = \begin{pmatrix} U_0 & 0 \\ 0 & I_{n-2} \end{pmatrix} \begin{pmatrix} U_0^* & 0 \\ 0 & I_{n-2} \end{pmatrix} = \begin{pmatrix} U_0 U_0^* & 0 \\ 0 & I_{n-2} \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ 0 & I_{n-2} \end{pmatrix} = I_n.$$

D'autre part, si on pose $A' = \begin{pmatrix} B & B_1 \\ B_2 & B_3 \end{pmatrix}$ on a :

$$UA'U^* = \begin{pmatrix} U_0 & 0 \\ 0 & I_{n-2} \end{pmatrix} \begin{pmatrix} B & B_1 \\ B_2 & B_3 \end{pmatrix} \begin{pmatrix} U_0^* & 0 \\ 0 & I_{n-2} \end{pmatrix} = \begin{pmatrix} U_0BU_0^* & * \\ * & B_3 \end{pmatrix} = I_n.$$

Donc $(UA'U^*)_{1,1}=(UA'U^*)_{2,2}=\frac{a'_{1,1}+a'_{2,2}}{2}$ et pour tout i=3,4,...,n, $(UA'U^*)_{i,i}=a'_{i,i}$. ($M_{i,j}$ désigne le coefficient de la i-ème ligne et j-ème colonne de la matrice M).

3.2.3.4 Nous avons

$$||f(UA'U^*)||_{\infty} = \sup_{1 \le i,j \le n} |(UA'A)_{i,i} - (UA'U^*)_{j,j}| = \sup \{|x_0 - a'_{i,i}|, |a'_{i,i} - a'_{j,j}|/ij, \ge 3\}.$$

et puisque pour tout (i,j), on a $|a'_{i,i}-a'_{j,j}| \leq \|f(A')\|_{\infty}$, alors en particulier $|a'_{1,1}-a'_{i,i}| \leq |a'_{1,1}-a'_{2,2}|$ et $|a'_{2,2}-a'_{i,i}| \leq |a'_{1,1}-a'_{2,2}|$, donc

$$|x_0 - a'_{i,i}| = \frac{1}{2} (|a'_{1,1} - a'_{i,i}| + |a'_{2,2} - a'_{i,i}|)$$

 $\leq |a'_{1,1} - a'_{2,2}|,$

et par conséquent :

$$||f(UA'U^*)||_{\infty} \le ||f(A')||_{\infty}.$$

On a, pour tout i=3,4,...,n, $|a'_{i,i}-a'_{1,1}| \leq |a'_{11}-a'_{22}|$ et $|a'_{i,i}-a'_{2,2}| \leq |a'_{1,1}-a'_{2,2}|$, donc les $a'_{i,i}$ appartiennent à l'intersection des deux disques centrés en $a'_{1,1}$ et $a'_{2,2}$ et de même rayon $|a'_{1,1}-a'_{2,2}|$.

D'après la figure, on voit bien que pour tout $i \in \{3, 4, ..., n\}$:

$$|x_0 - a'_{i,i}| \le |x_0 - x| < |a'_{1,1} - a'_{2,2}|$$

- 3.2.3.5 Si n=3, l'inégalité $||f(UA'U^*)||_{\infty} \le ||f(A')||_{\infty}$ devient stricte ce qui est en contradiction avec la définition de H_0 .
 - Si n > 3, alors comme $UH_0 \in \mathbb{U}(n)$, alors $||f(UA'U^*)||_{\infty} = ||f(A')||_{\infty}$, et donc il existe un couple (i,j) (i < j) tel que $||f(A')||_{\infty} = |a'_{i,i} a'_{j,j}| = |a'_{1,1} a'_{2,2}|$. Notons donc

$$E = \{(i, j) \in [3, n]^2 \text{ tel que } i < j \text{ et } |a'_{i,i} - a'_{i,j}| = |a'_{11} - a'_{22}| \}.$$

On suit le même raisonnement qu'on a fait dans la question [3.2.3.4], mais cette fois pour chaque couple (i,j) de E, et quitte à permuter les lignes et les colonnes on peut supposer i=3 et j=4, ainsi il existe une matrice unitaire V telle que les éléments diagonaux de $VUA'U^*V^*=(VU)A'(VU)^*$ sont

$$x_0, x_0, \frac{a_{3,3}' + a_{4,4}'}{2}, \frac{a_{3,3}' + a_{4,4}'}{2}, a_{5,5}', ..., a_{n,n}',$$

avec

$$||f((VU)A'(VU)^*)||_{\infty} < ||f(A')||_{\infty}.$$

et

$$\left|\frac{a_{3,3}'+a_{4,4}'}{2}-a_{i,i}'\right|<|a_{3,3}'-a_{4,4}'|=|a_{1,1}'-a_{2,2}'|.$$

On peut poursuivre ce raisonnement pour tout les couples (i, j) de E, en dernière étape on obtient une matrice H, produit de matrices unitaires, telle que

$$||f(HA'H^*)||_{\infty} < ||f(A')||_{\infty}.$$

L'inégalité précédente est en contradiction avec la définition de A', donc l'hypothèse $g_A(H_0) > 0$ est fausse.

3.2.4 D'après ce qui précède on a nécessairement $g_A(H_0) = \|f(H_0AH_0^*)\| = 0$, donc $f(H_0AH_0^*) = 0$ et par conséquent, pour tout couple (i,j), $(H_0AH_0^*)_{i,i} = (H_0AH_0^*)_{j,j}$, c'est-à-dire les éléments diagonaux de $H_0AH_0^*$ sont tous égaux.

• • • • • • • • • • • •