Visualizing BGP RIB Changes into Forwarding Plane by Leveraging BGP Monitoring Protocol and IPFIX

Master Thesis Presentation, collaboration with Swisscom

Livio Sgier, 30th October, 2020

Problem Statement

- Hundreds of thousands of networking devices in ISP networks/large-scale data centers
- Huge complexities
 - Many protocols on multiple layers
 - No inherent support for transparency and monitoring

- → Impaired network visibility
- → Delay in detection & repair
- Monitoring for forwarding plane exists (e.g., IPFIX for IP traffic), not for control plane
 - → Introduction of BGP Monitoring Protocol (BMP)

Thesis Goals

- Investigate BMP capabilities for different vendors and in the context of a Lab network (BGP/MPLS IP Virtual Private Networks)
- Build end-to-end pipeline
- Correlation on VPN level and in time between control (BMP) and forwarding plane (IPFIX)
 - Enable root cause analysis, (real time) performance monitoring

Before BMP: Traditional way to monitor control plane

- Active BGP Peerings
 - Establish BGP peering & receive BGP updates
- Separate active/passive protocols
 - **Screen-scraping**: Log-in to the router via SSH/Telnet and issue commands like **show ip bgp**
 - BGP Looking Glass: Access public routing information from large companies/ISPs

Border Gateway Protocol (BGP)

Peer D

Adj-RIB-Out Post

Peer C

Adj-RIB-Out Post

• Access to Adj-RIB-In [RFC 7854]

Enabled use cases:

→ Access to **incoming** BGP updates

- Access to Adj-RIB-In [RFC 7854]
- Access to Adj-RIB-Out [RFC 8671]

Enabled use cases:

→ Access to **outgoing** BGP updates

- Access to Adj-RIB-In [RFC 7854]
- Access to Adj-RIB-Out [RFC 8671]
- Access to Loc-RIB [draft]

Enabled use cases:

→ Access to BGP updates **installed** in local RIB

- Access to Adj-RIB-In [RFC 7854]
- Access to Adj-RIB-Out [RFC 8671]
- Access to Loc-RIB [draft]
- Route Monitoring Path Marking [draft]

Enabled use cases:

→ Access to how BGP updates are installed in the local RIB

- Access to Adj-RIB-In [RFC 7854]
- Access to Adj-RIB-Out [RFC 8671]
- Access to Loc-RIB [draft]
- Route Monitoring Path Marking [draft]
- Route Policy and Attr. Tracing [draft]

Enabled use cases:

→ Information about triggered route policies

Vendors vs. BMP Support

	Adj-RIB-In	Adj-RIB-Out	Loc-RIB	Route Policy and Attr. Tracing	Path Marking
Huawei	✓	✓	✓	/	✓
Cisco XRv9000	✓	Х	×	×	X
Cisco CSR1000V	✓	Х	×	×	X
Juniper	\checkmark^1	\checkmark^1	\checkmark^1	×	X
FRRouting	✓	Х	×	×	X

¹Only non-VRF RIB entries are supported.

Lab Network Type

- MPLS/BGP IP Virtual Private Networks [RFC 4364]
- Common architecture for ISPs: Enabling multiple VPNs over same physical infrastructure
- Entities: Customer Edge (**CE**), Provider Edge (**PE**), Provider Core (**P**)
- Virtual routing and forwarding (VRF) instances per VPN to isolate routing tables
- New address family: **VPNv4/6** (Route Distinguisher + IPv4/6, e.g., 0:64499:6:203.0.113.10/32)

BGP/MPLS IP VPN Lab Network

End-to-end Pipeline Design: Export & Collection

End-to-end Pipeline Design: Processing & Storage

End-to-end Pipeline Design: Visualization

Visualization/Web Front End

- Goals
 - Support exploratory and real time queries for Route Monitoring, Peering, Route Policy
 - o Correlation on VPN level and in time between control- and forwarding-plane
 - → Make cause and effect visible across planes

Visualization: Example Query (1)

"For **VPN A**, show me the **Adj-RIB-In Pre-Policy** and its **correlation** to the **forwarding plane** before and after enabling an interface on a **VPN level**."

Removing Interface

Re-enabling Interface

Visualization: Example Query (2)

"For re-enabled prefix X on VPN A, show a live view of Adj-RIB-Out and all triggered route policies"

Outlook/Future Work

- Ongoing/Future work on BMP
 - BMP delay & loss detection and prevention
 - Additional BGP information in form of TLVs (e.g., capabilities) [draft]
 - Preventing I/O bound protocol → compression on demand [draft]
- Tested successfully in production at Swisscom

Backup Slides

Mapping IP address and ingress/egress interface to Route Distinguisher

```
!192.0.2.72
id=0:64499:22 ip=192.0.2.72 in=47
id=0:64499:22 ip=192.0.2.72 out=47
id=0:64499:52 ip=192.0.2.72 in=49
id=0:64499:52 ip=192.0.2.72 out=49
id=0:64499:82 ip=192.0.2.72 in=50
id=0:64499:82 ip=192.0.2.72 out=50
id=0:0:0 ip=192.0.2.72 in=4
id=0:0:0 ip=192.0.2.72 out=4
1192.0.2.52
id=0:0:0 ip=192.0.2.52 in=42
id=0:0:0 ip=192.0.2.52 out=42
id=0:0:0 ip=192.0.2.52 in=4
id=0:0:0 ip=192.0.2.52 out=4
. . .
```

UI Filter Example

BMP Message type: Peer up

Updated lab network

Sample list of BMP statistics

- Number of prefixes rejected by inbound policy.
- Number of (known) duplicate prefix advertisements.
- Number of (known) duplicate Withdraws.
- Number of updates invalidated due to CLUSTER_LIST loop
- Number of updates invalidated due to AS_PATH loop.
- Number of routes in per-AFI/SAFI Adj-RIB-In. The value is structured as: 2-byte Address Family Identifier (AFI), 1-byte Subsequent Address Family Identifier (SAFI), followed by a 64-bit Gauge.
- Number of routes in Adj-RIBs-In.