2019/2020

Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

Departamento de Matemática

- Exercício 10.1 Seja $f:[-1,2]\to\mathbb{R}$ definida por $f(x)=1+x^2$. Determine o valor médio da função e, se possível, o valor $c\in[-1,2]$ tal que f(c) é o valor médio da função.
- Exercício 10.2 Seja f uma função real contínua tal que $\int_1^3 f(x) \, dx = 8$. Mostre que a função f toma o valor 4 em pelo menos um ponto do intervalo [1,3].
- Exercício 10.3 Determine a área da região limitada por $y=\sqrt{x}$, pela tangente a esta curva em x=4 e pelo eixo das ordenadas.
- Exercício 10.4 Represente graficamente o conjunto A dado e calcule a sua área.
 - a) A é o conjunto do plano limitado pelas retas x=1, x=4, y=0 e pela curva de $f(x)=\sqrt{x}$.
 - b) $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ e } \sqrt{x} \le y \le -x + 2\}.$
 - c) A é o conjunto do plano limitado superiormente pela parábola de equação $y=-x^2+\frac{7}{2}$ e inferiormente pela parábola de equação $y=x^2-1$.
 - d) A é o conjunto de todos os pontos (x,y) em \mathbb{R}^2 tais que $x^2-1\leq y\leq x+1$.
- Exercício 10.5 Em cada alínea calcule a área da região limitada pelas curvas de equações:
 - a) x = 0, x = 1, y = 3x, $y = -x^2 + 4$; d) $y = -x^3$, $y = -(4x^2 4x)$;
 - b) x = 0, $x = \pi/2$, $y = \sin x$, $y = \cos x$; e) x = 0, $x = 2 y y^2$;
 - c) x = -1, y = |x|, y = 2x, x = 1; f) $y = 2 x^2$, $y^3 = x^2$.
- Exercício 10.6 Defina a reta horizontal (y = k) que divide a área da região entre $y = x^2$ e y = 9 em duas partes iguais.
- Exercício 10.7 Seja A a área limitada por $y=\frac{1}{\sqrt{x}},\ y=0,\ x=1$ e x=b,b>1. Calcule A e $\lim_{b\to +\infty}A$.
- Exercício 10.8 Determine o comprimento da curva definida pelas equações apresentadas, entre os pontos A e B indicados:
 - a) $y = \frac{2}{3}x^{2/3}$, $A = (1, \frac{2}{3})$, $B = (8, \frac{8}{3})$;
 - b) $y = 5 \sqrt{x^3}$, A = (1, 4), B = (4, -3);
 - c) $y = 6\sqrt[3]{x^2} + 1$, A = (-1,7), B = (-8,25);
 - d) $y = \frac{1}{4x} + \frac{x^3}{3}$, $A = (2, \frac{67}{24})$, $B = (3, \frac{109}{12})$.

Exercício 10.9 Considere a curva definida por $y = x^{2/3}$.

- a) Esboce o arco desta curva, entre x = -1 e x = 8.
- b) Calcule o comprimento da curva da alínea a.

Exercício 10.10 Estude a natureza dos seguintes integrais impróprios:

a)
$$\int_{2}^{+\infty} \frac{1}{x-1} dx$$
; c) $\int_{2}^{+\infty} \frac{1}{x^2-1} dx$; e) $\int_{1}^{+\infty} \frac{1}{x^2} dx$; g) $\int_{e}^{+\infty} \frac{1}{x \ln x} dx$;

b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$
; d) $\int_{1}^{+\infty} x^2 dx$; f) $\int_{1}^{+\infty} \cos(\pi x) dx$; h) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$.

Mostre que o integral impróprio $\int_{1}^{+\infty} \frac{1}{x^{r}} dx$ é convergente se r > 1 e é divergente se $r \leq 1$.

Mostre que o integral $\int_0^{+\infty} e^{-rx} dx$ é convergente se r > 0 e divergente se Exercício 10.12 $r \leq 0$. (Sug.: comece por estudar o caso r = 0.)

Seja $\mathcal D$ a região definida por $y=e^{-x}$ com $x\geq 0$ e o eixo das abcissas. Exercício 10.13

- a) Esboce \mathcal{D} e calcule, se possível, a área de \mathcal{D} .
- b) Determine, se possível, o comprimento da curva que limita \mathcal{D} superiormente.

Exercício 10.14 Indique, justificando, se cada um dos seguintes integrais é convergente ou divergente.

a)
$$\int_0^{+\infty} e^{-x} \cos \sqrt{x} \ dx;$$

b)
$$\int_{-\infty}^{+\infty} e^{-|x|} dx.$$

Exercício 10.15 Seja f uma função tal que $\lim_{c\to+\infty}\int_{-c}^{c}f(x)\,dx=0$. O que se pode, nestas condições, dizer sobre $\int_{-\infty}^{\infty} f(x) dx$?

Exercício 10.16 Estude a natureza dos seguintes integrais:

a)
$$\int_0^1 \frac{1}{x} \, dx;$$

c)
$$\int_0^1 \ln x \, dx;$$

c)
$$\int_0^1 \ln x \, dx$$
; e) $\int_1^2 \frac{1}{\sqrt{x-1}} \, dx$;

b)
$$\int_0^1 \frac{1}{1-x} \, dx$$

d)
$$\int_0^1 x \ln x \, dx$$
;

b)
$$\int_0^1 \frac{1}{1-x} dx$$
; d) $\int_0^1 x \ln x dx$; f) $\int_{-3}^1 \frac{1}{x^2-4} dx$.

Exercício 10.17 Considere a função f definida por $f(x)=\frac{e^{-x}}{\sqrt{x}}$. Indique o domínio de f e estude a natureza do integral $\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$.

Exercício 10.18 Seja f uma função contínua em $\mathbb R$ tal que $\int_0^{+\infty} f(x) \, dx$ converge. Sendo a>0, indique, justificando, quais dos seguintes integrais \check{e} convergente:

a)
$$\int_0^{+\infty} a f(x) dx;$$

c)
$$\int_0^{+\infty} f(a+x) dx$$
;

b)
$$\int_0^{+\infty} f(ax) dx;$$

d)
$$\int_0^{+\infty} [a+f(x)] dx.$$