Discretization of the Poisson Problem in \mathbb{R}^1 : Theory and Implementation

April 7 & 9, 2003

Goals

A priori...

A priori error estimates:

N1

bound various "measures"

of \mathbf{u} [exact] $-\mathbf{u}_h$ [approximate];

in terms of $C(\Omega, \rho)$ problem parameters),

h [mesh diameter], and u.

Goals

...A priori...

$$-u_{xx}=f,\ u(0)=u(1)=0$$

$$a(u,v)=\ell(v), \qquad orall \ v\in X$$

$$a(w,v) = \int_0^1 w_x \, v_x \, dx, \qquad \ell(v) = \int_0^1 f \, v \, dx$$

$$X = \{v \in H^1(\Omega) \, | \, v(0) = v(1) = 0 \}$$

Goals

...A priori

 u_h :

$$egin{align} a(u_h,v)&=\ell(v), &orall\,v\in X_h \ \ a(w,v)&=\int_0^1 w_x\,v_x\,dx, &\ell(v)&=\int_0^1 f\,v\,dx \ \ X_h&=\{v\in X\,|\,v|_{T_h}\in {
m I\!P}_1(T_h), &orall\,T_h\in \mathcal{T}_h\} \ \end{matrix}$$

Goals

A posteriori

A posteriori error estimates:

N₂

bound various "measures"

of \mathbf{u} [exact] $-\mathbf{u}_h$ [approximate];

in terms of $C(\Omega)$, problem parameters),

h [mesh diameter], and u_h .

Projection

Definition

Given Hilbert spaces Y and $Z \subset Y$,

$$(\underbrace{\Pi y}_{\in Z}, v)_Y = (\underbrace{y}_{\in Y}, v)_Y, \qquad orall \ v \in Z$$

defines the *projection* of y onto Z, Πy ;

$$\Pi \colon Y o Z$$
 .

Projection

Property

The projection Πy minimizes $||y - z||_Y^2$, $\forall z \in Z$.

Why?

$$\|y-(\underbrace{\Pi y+v}_{\mathsf{any}})\|_Y^2=((y-\Pi y)-v,(y-\Pi y)-v)_Y$$

$$= \|y - \Pi y\|_Y^2 - 2\underbrace{(y - \Pi y, v)_Y}_{0: \ v \in Z} + \|v\|_Y^2, \quad orall \ v \in Z \ .$$

Projection

Geometry

Geometry of projection:

Orthogonality: $(y - \Pi y, v)_Y = 0$,

 $\forall \ oldsymbol{v} \in oldsymbol{Z}$.

E1

The Interpolant

Definition...

Recall

$$oldsymbol{X_h} = \{oldsymbol{v} \in oldsymbol{X} \mid oldsymbol{v}|_{T_h} \in \mathbb{P}_1(T_h), \quad orall \, T_h \in \mathcal{T}_h \}$$

The Interpolant

...Definition

Given $w \in X$, the interpolant $\mathcal{I}_h w$ satisfies:

$$\mathcal{I}_h w \in X_h$$
; and $\mathcal{I}_h w(x_i) = w(x_i), \quad i = 0, \ldots, n+1$.

The Interpolant

Approximation Theory...

If
$$\boldsymbol{w} \in \boldsymbol{X}$$
, and $\boldsymbol{w}|_{T_h} \in C^2(T_h), \ \forall \ T_h \in \mathcal{T}_h$, then

$$\|oldsymbol{w} - \mathcal{I}_h oldsymbol{w}\|_{H^1(\Omega)} \leq h \, \max_{T_h \in \mathcal{T}_h} \left(\max_{oldsymbol{x} \in T_h} \|oldsymbol{w}''\|
ight)$$

$$\|w-\mathcal{I}_h w\|_{L^2(\Omega)} \leq h^2 \, \max_{T_h \in \mathcal{T}_h} \left(\max_{x \in T_h} \, |w''|
ight) \; .$$

The Interpolant

...Approximation Theory...

Sketch of proof:

The Interpolant

...Approximation Theory...

$$\left|(w-\mathcal{I}_hw)'|_{T_h^k}(x)
ight|=\left|\int_{z^k}^x(w-\mathcal{I}_hw)''|_{T_h^k}\,dx
ight|=\left|\int_{z^k}^xw''\,dx
ight|$$

$$\leq h \max_{oldsymbol{x} \in T_h^k} |oldsymbol{w}''|$$

$$\sum_{k=1}^K \int_{T_h^k} (w - \mathcal{I}_h w)'|_{T_h^k}^2 dx \leq rac{1}{h} h \left(h \max_{k=1,...,K} \max_{x \in T_h^k} |w''|
ight)^2$$

E2

The Interpolant

... Approximation Theory

If
$$m{w} \in m{X}$$
, and $m{w} \in m{H^2(\Omega, \mathcal{T}_h)},$ $|m{w} - \mathcal{I}_h m{w}|_{H^1(\Omega)} \leq rac{h}{\pi} \, ||m{w}||_{H^2(\Omega, \mathcal{T}_h)}$ $||m{w} - \mathcal{I}_h m{w}||_{L^2(\Omega)} \leq rac{h^2}{\pi^2} \, ||m{w}||_{H^2(\Omega, \mathcal{T}_h)},$

where

$$\|w\|_{H^2(\Omega,\mathcal{T}_h)}^2 \equiv \sum_{k=1}^K \|w\|_{H^2(T_h^k)}^2 = \sum_{k=1}^K \int_{T_h^k} w_{xx}^2 + w_x^2 + w^2 dx$$
 .

Error: Energy Norm

Definition...

Define the energy, or " \boldsymbol{a} ", norm $|||\boldsymbol{v}|||$ as

$$|||v|||^2=a(v,v)$$

(generally)

$$=\int_0^1 v_x^2 \, dx \, = \, |v|_{H^1(\Omega)}^2$$

(here) .

Note: | | · | | is problem-dependent.

Error: Energy Norm

...Definition

Of interest: for

u(x) (exact solution)

 $u_h(x)$ (finite element approximation)

 $\Rightarrow e(x) = (u - u_h)(x)$ (discretization error)

find bound for ||e|| in terms of h, u.

Error: Energy Norm

Orthogonality

Since
$$a(u,v) = \ell(v), \ \forall \ v \in X$$

then

$$a(u,v)=\ell(v),\,\,orall\,v\in X_h\,ig|\,\,(X_h\,\subset\, X)\,,$$

but

$$-\left[a(u_h,v)=\ell(v)
ight],\,orall\,v\in X_h$$

SO

$$a(u-u_h,v)=0,\ orall\,v\in X_h$$

(bilinearity).

Error: Energy Norm

General Bound...

For any
$$w_h = u_h + v_h \in X_h$$
 ,

$$v_h \in X_h$$

$$\underbrace{a(u-w_h,u-w_h)}_{||u-w_h|||^2}=a\left((u-u_h)-v_h,(u-u_h)-v_h
ight)$$

$$=\underbrace{a(u-u_h,u-u_h)}_{|||e|||^2} - \underbrace{2a(u-u_h,v_h)}_{0: ext{ orthogonality}} + \underbrace{a(v_h,v_h)}_{>0 ext{ if } v_h
eq 0}$$

$$\Rightarrow$$

$$|||e||| = \inf_{w_h \in X_h} |||u - w_h|||$$
 .

Error: Energy Norm

...General Bound...

In words: even if you knew u,

you could not find a w_h in X_h

more accurate than u_h

in the energy norm.

Error: Energy Norm

...General Bound...

Geometry

 $\Rightarrow u_h = \Pi_h^a u$: the projection of (closest point to) u on X_h in the a norm.

Error: Energy Norm

...General Bound

Miracle ?:
$$a(\underbrace{\Pi_h^a u}_{u_h}, v) = a(u, v), \ \forall \ v \in X_h \ ;$$

but we do not know **u** . . .

NO:

$$a(u,v) = \underbrace{\ell(v)}_{ ext{can evaluate}} \Rightarrow a(\underbrace{\Pi^a_h u}_h,v) = \ell(v), \ orall \ v \in X_h$$
 .

Only in the energy inner product can we

compute $\Pi_h u$ without knowing u. N3

Error: Energy Norm

Particular Bound

We know
$$\|oldsymbol{u}-\mathcal{I}_holdsymbol{u}\|_{H^1(\Omega)}\leq rac{h}{\pi}\,\|oldsymbol{u}\|_{H^2(\Omega,\mathcal{T}_h)}$$
 .

Thus

$$|||e|||=\inf_{w_h\in X_h}|||u-w_h|||\leq |||u-\mathcal{I}_hu|||$$
 $=|u-\mathcal{I}_hu|_{H^1(\Omega)}\leq rac{h}{\pi}\,||u||_{H^2(\Omega,\mathcal{T}_h)}$ E3 N4

(assuming $||u||_{H^2(\Omega,\mathcal{T}_h)}$ finite).

Error: H^1 Norm

Reminders...

The H^1 norm:

$$egin{align} \|v\|_{H^1(\Omega)}^2 &= |v|_{H^1(\Omega)}^2 + \|v\|_{L^2(\Omega)}^2 \ &= \int_0^1 v_x^2 \, dx + \int_0^1 v^2 \, dx \ ; \end{aligned}$$

 $\|e\|_{H^1(\Omega)}$ measures e and e_x .

Error: H^1 Norm

...Reminders

Coercivity of $a(\cdot, \cdot)$:

$$\exists \alpha > 0$$
 such that

$$a(v,v) \geq lpha \, \|v\|_{H^1(\Omega)}^2, \quad orall \, v \in X$$

$$\left(\int_0^1 \, v_x^2 \, dx \geq lpha \left(\int_0^1 \, v_x^2 \, dx + \int_0^1 \, v^2 \, dx
ight)
ight) \, .$$

Continuity of $a(\cdot, \cdot)$:

$$\exists eta \ (=1) > 0$$
 such that $a(w,v) \leq eta \|w\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}$.

Error: H^1 Norm

General Result

The error $e = u - u_h$ satisfies

$$\|e\|_{H^1(\Omega)} \leq \underbrace{(1+rac{eta}{lpha})}_{ ext{degradation}} \underbrace{\inf_{w \in X_h} \|u-w_h\|_{H^1(\Omega)}}_{ ext{error in } H^1 ext{ projection of } u ext{ on } X_h$$
 ;

in general u_h is *not* the H^1 projection of u on X_h .

E4 N5

Error: H^1 Norm

Particular Result

We know
$$\| m{u} - \mathcal{I}_h m{u} \|_{H^1(\Omega)} \leq \sqrt{2} \, \frac{h}{\pi} \, \| m{u} \|_{H^2(\Omega,\mathcal{T}_h)}.$$
 Thus

$$egin{aligned} \|e\|_{H^1(\Omega)} &= \left(1+rac{eta}{lpha}
ight) \inf_{w_h \in X_h} \|u-w_h\|_{H^1(\Omega)} \ &\leq \left(1+rac{eta}{lpha}
ight) \|u-\mathcal{I}_h u\|_{H^1(\Omega)} \ &\leq \sqrt{2} \left(1+rac{eta}{lpha}
ight) rac{h}{\pi} \, \|u\|_{H^2(\Omega,\mathcal{T}_h)} \; . \end{aligned}$$

Error: L^2 Norm

Reminder

The L^2 norm:

$$\|v\|_{L^2(\Omega)} = \left(\int_0^1 v^2 \, dx
ight)^{1/2} \; ;$$

 $\|oldsymbol{e}\|_{L^2(\Omega)}$ measures $oldsymbol{e}$.

Error: L^2 Norm

Particular Result

The L^2 error satisfies

$$egin{aligned} \|e\|_{L^2(\Omega)} & \leq C \ h \ \|e\|_{H^1(\Omega)} \ & \leq C \ h^2 \ \|u\|_{H^2(\Omega,\mathcal{T}_h)} \ , \end{aligned}$$

for C independent of h and u.

N6

Linear Functionals

Theory

Motivation...

A linear-functional "output" s is defined by

$$s = \ell^O(u) + c^O$$
;

where

$$\ell^O\colon \ H^1_0(\Omega) o {
m I\!R}$$

is a bounded linear functional

$$|\ell^O(v)| \leq C \ ||v||_{H^1(\Omega)} \ , \qquad orall \ v \in H^1_0(\Omega) \ .$$

Linear Functionals

Theory

...Motivation...

Very relevant: engineering quantities of interest.

For example:

s: average over $\mathcal{D} \subset \Omega$, with

$$\ell^O(v) = \int_{\mathcal{D}} v \, dx$$
;

s: flux at boundary, $u_x(0)$, with

$$\ell^O(v) = -\int_0^1 (1-x)_x \, v_x, \; c^O = \int_0^1 \, f(1-x) \, dx \; .$$

N7

Linear Functionals

...Motivation

Of interest:
$$s = \ell^{O}(u) + c^{O}$$
,

$$s_h = \underbrace{\ell^O\left(u_h
ight) + c^O};$$

finite element prediction of output

error in output is thus

$$egin{aligned} |s-s_h| &= |\ell^O(u) - \ell^O(u_h)| = |\ell^O(u-u_h)| \ &= |\ell^O(e)| \ . \end{aligned}$$

Linear Functionals

General Result...

If
$$\ell^O \in H^{-1}(\Omega)$$
, then

$$|\ell^O(e)| \leq C ||e||_{H^1(\Omega)}$$
 (boundedness).

If
$$\ell^O \in L^2(\Omega)$$
, then

$$|\ell^O(e)| \leq C ||e||_{L^2(\Omega)}$$
 (boundedness).

Linear Functionals

Theory

...General Result

In fact: for any
$$\ell^O \in H^{-1}(\Omega)$$
,

$$|\ell^O(e)| \leq C \, \|e\|_{H^1(\Omega)} \, \|\psi-\psi_h\|_{H^1(\Omega)}$$

$$a(v,\psi) = -\ell^O(v),$$

$$orall oldsymbol{v} \in oldsymbol{X}$$

N8

$$a(v,\psi_h) = -\ell^O(v), \qquad orall \, v \in X_h \; ,$$

$$\forall \, v \in X_h \; ,$$

and ψ is an adjoint, or dual, variable.

Linear Functionals

Particular Result

From our earlier bounds for $\|e\|_{H^1(\Omega)}$ and $\|e\|_{L^2(\Omega)}$ for linear finite elements:

for
$$\ell^O \in H^{-1}(\Omega)$$
: $|\ell^O(e)| \leq C \, h \, \|u\|_{H^2(\Omega,\mathcal{T}_h)}$

for
$$\ell^O \in L^2(\Omega)$$
: $|\ell^O(e)| \leq C \ h^2 \ \|u\|_{H^2(\Omega,\mathcal{T}_h)}$.

Better yet: for
$$\ell^O \in H^{-1}(\Omega)$$

$$|\ell^O(e)| \leq C \left [h^2 \left | |u|
ight |_{H^2(\Omega,\mathcal{T}_h)} \|\psi\|_{H^2(\Omega,\mathcal{T}_h)}
ight .$$

Overview

Implementation

Four steps:

A Proto-Problem,

Elemental Quantities;

Assembly;

Boundary Conditions;

and Quadrature.

Implementation

A Proto-Problem

Space and Basis

Let
$$\widetilde{X}_h = \{v \in H^1(\Omega) \ | \ v|_{T_h} \in {
m I\!P}_1(T_h), \ orall \ T_h \in \mathcal{T}_h \}$$
 $= {
m span} \ \{arphi_0, \ldots, arphi_{n+1} \}$.

A Proto-Problem

Definition

"Find" $\widetilde{\boldsymbol{u}}_h \in \widetilde{\boldsymbol{X}}_h$ such that

$$a(ilde{u}_h,v)=\ell(v), \qquad orall \ v\in \widetilde{X}_h \ .$$

We never actually solve this problem:

it serves only as a convenient pre-processing step.

A Proto-Problem

Discrete Equations...

$$\underline{\widetilde{A}}_h\, \underline{\widetilde{u}}_h = \underline{\widetilde{F}}_h$$

$$ilde{u}_h(x) = \sum_{i=0}^{n+1} \, ilde{u}_{h\,i} \, arphi_i(x)$$

$$egin{aligned} \widetilde{A}_{h\,i\,j} = a(arphi_i,arphi_j) = \int_0^1 rac{darphi_i}{dx} rac{darphi_j}{dx} \, dx, \,\,\, 0 \leq i,j \leq n+1 \end{aligned}$$

$$\widetilde{F}_{h\,i} = \ell(arphi_i) \left(= \int_0^1 \, f \, arphi_i \, dx
ight), \qquad 0 \leq i \leq n+1$$

A Proto-Problem

...Discrete Equations

Matrix form:

$$\widetilde{A}_h = rac{1}{h} egin{pmatrix} 1 & -1 & & & & & 0 \ -1 & 2 & -1 & & & & 0 \ & -1 & 2 & -1 & & & & \ 0 & & & -1 & 2 & -1 \ & & & & & -1 & 1 \end{pmatrix}$$

Elemental Quantities

Implementation

Local Definitions

Element T_h^k :

 $\mapsto x$

 x_1^k : local node 1 of element T_h^k ;

 x_2^k : local node 2 of element T_h^k ;

 h^k : length of element T_h^k .

Elemental Quantities

Reference Element...

Definition: $\widehat{T} = (-1, 1)$

$$egin{pmatrix} -1 & \zeta & +1 \ \zeta_1 & \zeta_2 \end{matrix}$$

 ζ_1 : reference element node 1;

 ζ_2 : reference element node 2.

Elemental Quantities

...Reference Element

Relation of \widehat{T} to each T_h^k : Affine Mappings

$$\widehat{T}
otag egin{array}{c|c} igcept \zeta & igcept \zeta_1 & igcept \zeta_2 \ oldsymbol{\mathcal{F}}_k & oldsymbol{\mathcal{F}}_k^{-1} & oldsymbol{\mathcal{F}}_k & oldsymbol{\mathcal{F}}_k^{-1} & oldsymbol{\mathcal{F}}_k^{-1} & oldsymbol{\mathcal{F}}_k^{-1} & oldsymbol{\mathcal{F}}_k^{-1} & oldsymbol{\mathcal{F}}_k^{-1} (x) = 2 & rac{x - x_1^k}{h^k} & -1 & oldsymbol{\mathcal{F}}_k^{-1} &$$

Elemental Quantities

Reference Element Space, Basis

Define space $\widehat{X} = \mathbb{P}_1(\widehat{T})$: all linear polynomials over \widehat{T} ; $\dim(\widehat{X}) = 2$.

Introduce basis for \widehat{X} , $\mathcal{H}_1(\zeta)$, $\mathcal{H}_2(\zeta)$:

Elemental Quantities

Implementation

Elemental Matrices...

$$\widetilde{A}_{h\,i\,j} = a(arphi_i,arphi_j) = \int_0^1 rac{darphi_i}{dx} rac{darphi_j}{dx} \, dx$$

Element T_h^3 (say) contributes

$$\left. \int_{T_h^3} \left. rac{darphi_{2 ext{ or }3}}{dx}
ight|_{T_h^3} \left. rac{darphi_{2 ext{ or }3}}{dx}
ight|_{T_h^3} dx$$

Elemental Quantities

...Elemental Matrices...

Change variables $T_h^3 o \widehat{T}$:

N9

Elemental Quantities

Implementation

...Elemental Matrices

Define
$$\underline{A}^k \in \mathbb{R}^{2 \times 2}$$
 (e.g., $k = 3$):

$$rac{2}{h^k}\int_{-1}^1rac{d\mathcal{H}_{lpha(1 ext{ or }2)}}{d\zeta}rac{d\mathcal{H}_{eta(1 ext{ or }2)}}{d\zeta}d\zeta=$$

$$rac{2}{h^k} \int_{-1}^1 rac{d}{d\zeta} rac{\mathcal{H}}{d\zeta} rac{d}{d\zeta} rac{\mathcal{H}}{d\zeta} =$$

$$\underline{\mathcal{H}} = \begin{pmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \end{pmatrix}$$

$$\left| egin{array}{c|c} 1 & 1 & -1 \ h^k & -1 & 1 \end{array}
ight| \equiv \left| oldsymbol{A}^k
ight|$$

Elemental Stiffness Matrix

Elemental Quantities

Elemental "Loads"...

$$\widetilde{F}_{h\,i} = \ell(arphi_i) = \int_0^1 f\,arphi_i\,dx$$

Element T_h^3 (say) contributes

$$\int_{T_h^3} \, f \, arphi_{2 \,\, ext{or} \,\, 3} \, dx$$

Elemental Quantities

...Elemental "Loads"...

Change variables $T_h^3 \to \widehat{T}$:

$$\int_{T_h^3} f \ arphi_{2 \, ext{or} \, 3} \ dx$$

$$rac{m{h^k}}{m{2}}\int_{-1}^1 m{f} \; m{\mathcal{H}}_{1 ext{ or } 2} \; m{d} m{\zeta}$$

Elemental Quantities

Implementation

...Elemental "Loads"

Define $\underline{F}^k \in \mathbb{R}^2$ (e.g., k = 3):

$$egin{aligned} F_{lpha}^k &= rac{h^k}{2} \int_{-1}^1 f \, \mathcal{H}_{lpha(1 ext{ or } 2)} \, d\zeta & ext{ Elemental Load Vector} \ &= rac{h^k}{2} \int_{-1}^1 f \, \mathcal{H} \, d\zeta & ext{ } \mathcal{H} = egin{pmatrix} \mathcal{H}_1 \ \mathcal{H}_2 \end{pmatrix} \, . \end{aligned}$$

Evaluation (usually) by numerical quadrature.

Assembly

The Idea...

Recall triangulation and basis functions:

Assembly

Implementation

...The Idea...

$$T_h^3$$
 contribution to $\widetilde{A}_{h\,i\,j}=a(arphi_i,arphi_j)=\int_0^1rac{darphi_i}{dx}rac{darphi_j}{dx}\,dx$

$$\int_{T_h^3} \frac{d\varphi_{2 \text{ or 3}}}{dx} \frac{d\varphi_{2 \text{ or 3}}}{dx} dx = \underbrace{3 \left(\begin{array}{cc} \frac{1}{h^3} & -\frac{1}{h^3} \\ -\frac{1}{h^3} & \frac{1}{h^3} \end{array} \right)}_{A^3}$$

Column 1 of \underline{A}^3 Column 2 of \underline{A}^3

Row 1 of \underline{A}^3 Adds to \widetilde{A}_{22} Adds to \widetilde{A}_{23} Row 2 of \underline{A}^3 Adds to \widetilde{A}_{32} Adds to \widetilde{A}_{33}

Assembly

...The Idea...

C0 C1 C2 C3 C4

R0
R1
R2
R3
R4
$$\frac{1}{h^3}$$
 $-\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ $\frac{1}{h^3}$ accounted for ...

Assembly

Implementation

...The Idea...

$$T_h^4$$
 contribution to $\widetilde{A}_{h\,i\,j}=a(arphi_i,arphi_j)=\int_0^1rac{darphi_i}{dx}rac{darphi_j}{dx}\,dx$

$$\int_{T_h^4} \frac{d\varphi_{3 \text{ or 4}}}{dx} \frac{d\varphi_{3 \text{ or 4}}}{dx} dx = \underbrace{\begin{array}{c} 3 \left(\begin{array}{cc} \frac{1}{h^4} & -\frac{1}{h^4} \\ -\frac{1}{h^4} & \frac{1}{h^4} \end{array} \right)}_{A^4}$$

Column 1 of \underline{A}^4 Column 2 of \underline{A}^4

Row 1 of \underline{A}^4 Adds to \widetilde{A}_{33} Adds to \widetilde{A}_{34} Row 2 of \underline{A}^4 Adds to \widetilde{A}_{43} Adds to \widetilde{A}_{44}

Assembly

...The Idea...

C0 C1 C2 C3 C4 ...

R0

R1

R2

R3

R4

$$\frac{1}{h^3}$$
 $-\frac{1}{h^3}$
 $-\frac{1}{h^3}$
 $-\frac{1}{h^4}$
 $-\frac{1}{h^4}$
 $\frac{1}{h^4}$
 $\frac{1}{h^4}$
 $\frac{1}{h^4}$
 $\frac{1}{h^4}$
 $\frac{1}{h^4}$
 $\frac{\tilde{A}_h}{h^4}$ with T_h^3, T_h^4 accounted for ...

Assembly

...The Idea...

$$T_h^3$$
 contribution to $\widetilde{F}_{h\,i}=\ell(arphi_i)=\int_0^1\,f\,arphi_i\,dx$

$$\int_{T_h^3} f \, arphi_{2 \, ext{or} \, 3} \, dx = rac{2}{3} \left(rac{h^3}{2} \int_{-1}^1 f \, \mathcal{H}_1 \, d\zeta
ight) rac{h^3}{2} \int_{-1}^1 f \, \mathcal{H}_2 \, d\zeta
ight)$$

Row 1 of
$$\underline{F}^3$$
 Adds to $\widetilde{F}_{h\,2}$ Row 2 of \underline{F}^3 Adds to $\widetilde{F}_{h\,3}$

Assembly

...The Idea...

R0 R1
$$F_1^3$$
 R3 F_2^3 R4

$$\underline{F}^3 = \left(egin{array}{c} F_1^3 \ F_2^3 \end{array}
ight)$$

 $rac{\widetilde{m{F}}_{m{h}}}{m{K}}$ with $m{T_{m{h}}^{m{3}}}$ accounted for

Assembly

...The Idea...

$$T_h^4$$
 contribution to $\widetilde{F}_{h\,i}=\ell(arphi_i)=\int_0^1\,f\,arphi_i\,dx$

$$\int_{T_h^4} f \, arphi_{3 \, ext{or} \, 4} \, dx = egin{array}{c} 3 \ rac{h^4}{2} \int_{-1}^1 f \, \mathcal{H}_1 \, d\zeta \ rac{h^4}{2} \int_{-1}^1 f \, \mathcal{H}_2 \, d\zeta \ \end{pmatrix} \ rac{\underline{h^4}}{\underline{F}^4}$$

Row 1 of \underline{F}^4 Adds to $\widetilde{F}_{h\,3}$ Row 2 of \underline{F}^4 Adds to $\widetilde{F}_{h\,4}$

Assembly

...The Idea

R0 R1
$$F_1^3$$
 $F_2^3 + F_1^4$ R4 F_2^4 F_2^4

$$\underline{F}^4 = \left(egin{array}{c} F_1^4 \ F_2^4 \end{array}
ight)$$

 $\underline{\widetilde{F}}_h$ with T_h^3, T_h^4 accounted for

Assembly

The Algorithm...

Introduce local-to-global mapping:

$$heta(k,lpha)\colon \{1,\ldots,K\} imes \{1,2\} o \{0,\ldots,n+1\}$$
 element local node global node number

such that

 x_{α}^{k} (local node α in element k) =

 $x_{\theta(k,\alpha)}$ (global node $\theta(k,\alpha)$).

Assembly

...The Algorithm...

Example: K = 4

Assembly

...The Algorithm...

```
Procedure for A_h:
                zero \widetilde{A}_h;
                 \{\text{for } k=1,\ldots,K\}
                            \{\text{for } \alpha=1,2\}
                                     i=\theta(k,\alpha);
                            \{\text{for } \beta=1,2\}
                                     j = \theta(k, \beta);
                              \widetilde{A}_{h\,i\,j} = \widetilde{A}_{h\,i\,j} + A_{\alpha\beta}^{k}; \} \}
```

Assembly

...The Algorithm

Procedure for $\underline{\widetilde{F}}_h$:

```
zero rac{\widetilde{F}}{F_h}; \{	ext{for } k=1,\ldots,K \{	ext{for } lpha=1,2\ i=	heta(k,lpha); \widetilde{F}_{h\,i}=\widetilde{F}_{h\,i}+F_lpha^k;\}\}
```

Boundary Conditions

Point of Departure

Boundary Conditions

Homogeneous Dirichlet...

$$u_h\in X_h$$
 such that $a(u_h,v)=\ell(v), \quad orall\,v\in X_h$: $X_h=\{v\in X\,|\,v|_{T_h}\in {
m I\!P}_1(T_h),\,orall\,T_h\in \mathcal{T}_h\}$; $X=\{v\in H^1(\Omega)\,|\,v(0)=v(1)=0\}$.

Boundary Conditions

...Homogeneous Dirichlet...

Explicit Elimination

$$X_h \Rightarrow \varphi_0, \varphi_{n+1}$$
 not admissible variations, so REMOVE $R0$ and $Rn+1$ from $\widetilde{\underline{A}}_h$;

$$ilde{oldsymbol{u}}_{h\,0}= ilde{oldsymbol{u}}_{h\,n+1}=0$$
, so

REMOVE C0 and Cn + 1 from $\underline{\widetilde{A}}_h$.

Recover
$$\underline{A}_h \underline{u}_h = \underline{F}_h$$

Boundary Conditions

...Homogeneous Dirichlet

Big-Number Approach

penalty

Place $1/\varepsilon$ ($\varepsilon \ll 1$) on entries $\widetilde{A}_{h\,0\,0}$ and $\widetilde{A}_{h\,n+1\,n+1}$.

Place 0 on entries $\widetilde{F}_{h 0}$ and $\widetilde{F}_{h n+1}$.

This replaces $m{R0}$ and $m{Rn+1}$ with $m{ ilde{u}_{h\,0}\cong 0}, m{ ilde{u}_{h\,n+1}\cong 0}$

in an "easy," symmetric way.

Boundary Conditions

Inhomogeneous Dirichlet...

$$egin{aligned} u_h \in X_h^D ext{ such that } a(u_h,v) = \ell(v), & orall v \in X_h : \ X_h ext{ requires } v(0) = v(1) = 0 \ ; \ X_h^D ext{ requires } w(0) = u^D, \ w(1) = 0 \ . \end{aligned}$$

Boundary Conditions

...Inhomogeneous Dirichlet...

Explicit Elimination . . .

$$X_h \Rightarrow \varphi_0, \varphi_{n+1}$$
 not admissible variations, so

REMOVE
$$R0$$
 and $Rn + 1$ from A_h ;

$$X_h^D \Rightarrow \; ilde{u}_{h\,0} = u^D, \; ilde{u}_{h\,n+1} = 0$$
, so

MOVE
$$-u^D C 0 - 0 C n + 1$$
 to $\underline{\widetilde{F}}_h$.

Boundary Conditions

...Inhomogeneous Dirichlet...

... Explicit Elimination

$$\frac{1}{h} \begin{pmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & & \ddots & & & \\ 0 & & & -1 & 2 & -1 \\ & & & & & -1 & 2 \end{pmatrix} \begin{pmatrix} \tilde{u}_{h\,1} \\ \vdots \\ \vdots \\ \tilde{u}_{h\,n} \end{pmatrix} = \begin{pmatrix} \tilde{F}_{h\,1} - u^D \times (-\frac{1}{h}) \\ \vdots \\ \vdots \\ \tilde{F}_{h\,n} \end{pmatrix}$$

Boundary Conditions

...Inhomogeneous Dirichlet

Big-Number Approach

E7

Place $1/\varepsilon$ ($\varepsilon \ll 1$) on entries $\widetilde{A}_{h\,0\,0}$ and $\widetilde{A}_{h\,n+1\,n+1}$.

Place $(1/\varepsilon)$ u^D on entry $\widetilde{F}_{h\,0}$.

Place 0 on entry $\widetilde{F}_{h n+1}$.

This replaces R0 and Rn+1 with

$$ilde{m{u}}_{h\,0}\cong m{u}^D$$
, $ilde{m{u}}_{h\,n+1}\cong m{0}$.

Quadrature

Question...

How do we evaluate

$$F_{lpha}^k = rac{h^k}{2} \int_{-1}^1 f\left(x_1^k + rac{(1+\zeta)}{2}h^k
ight) \mathcal{H}_{lpha}(\zeta) \, d\zeta$$

for general f?

N11

70

Quadrature

...Question

Approaches

- "Analytical" Integration
- Symbolic Integration
- Gauss Quadrature
- Integration by Interpolation

N12

Quadrature

Gauss Quadrature...

Approximate

$$egin{align} F_lpha^k &= rac{h^k}{2} \int_{-1}^1 f^k(\zeta) \, \mathcal{H}_lpha(\zeta) \, d\zeta \ &pprox rac{h^k}{2} \sum_{q=1}^{N_q} \,
ho_q \, f^k(oldsymbol{z}_q) \, \mathcal{H}_lpha(oldsymbol{z}_q) dots \ \end{pmatrix}$$

 ρ_q : Gauss-Legendre quadrature weights

 z_q : Gauss-Legendre quadrature points.

Quadrature

Gauss Quadrature...

The $ho_q, z_q, q = 1, \ldots, N_q$ are chosen so as

to integrate exactly all $g \in \mathbb{P}_{2N_q-1}((-1,1))$.

To conserve "ideal" convergence rates,

require $N_q \geq 1$ ($\geq p$ for \mathbb{P}_p elements).