Contents

My introduction & skills

- Working experiences (non-quantum parts)
- Coding skills (non-quantum parts)

Quantum error correction code

Stabilizer code construction based on binary formalism

Quantum communication

- Quantum teleportation
- Quantum superdense coding
- Quantum walk

DUC Manh Nguyen – Introduction

nguyenmanhduc18@gmail.com

+82-010-6617-1811

Education:

- o University of Ulsan **(UOU)**, Korea, *02/2015-02/2020*
 - o Ph.D. degree, school of electrical engineering
 - o *Thesis:* quantum error correction code & quantum communication
- o Ha-Noi university of science and technology (HUST), Vietnam, 09/2007-06/2012
 - o Bachelor degree, school of electronic and telecommunication
 - o Thesis: GSM telecommunication system

Highlights:

- o 4+ years experiences in system on chip (SoC) design & SW engineering.
- o 5 years experiences in academic research.
- o High-level language simulation for algorithm and digital signal processing.
- o Hardware description language, Test-bench simulation.
- o FPGA emulation, FPGA porting, FPGA prototype.

SW languages:

- o Verilog HDL, Shell.
- o MATLAB, C/C++, Python.

Tools:

o RTL: NC-Verilog, ModelSim, Spyglass lint.

o Synthesis: Design complier.

o FPGA: Quartus (Altera), Xilinx ISE (Vivado).

○ C/C++: Visual studio, GNU gcc.

Python: Anaconda.MATLAB: MATLAB R2021a.

Others: MAGMA for coding theory

OS:

- Window 10, Ubuntu LTS.
- o Centos, Red Hat

Work experiences:

- o **G2touch**, Korea, *03/2020-present*
- Advanced network system Vietnam (ANSV), 06/2014-02/2015
 - o Network engineer
- Samsung Vietnam for mobile R&D center (SVMC), 09/2012-05/2014
 - SW engineer
- Panasonic R&D center Vietnam (PRDCV), 01/2012-03/2012
 - o Internship student.
 - o 3D-Graphic software development.

Languages:

- Vietnamese (native)
- o English (fluent)
- o 한국어(중급)

What I have done?

Project	Project descriptions	My roles	Year	Company
GL1T0AZ	.LiDAR on chip (light detection and ranging) for i ndustrial application and self-driving car.	.My proposal for G2touch new business ideaVCSEL driver (with DSSS sequence) and SPAD detection (with matched filter) .TCSPC: Time-correlated single photon counting.	2021 ~	
GT7M0AZ	.Touchscreen controller IC with USI (universal stylus initiative) active pen support.	.CRC (Cyclic redundancy check) calculation logic .DSSS (Direct-sequence spread spectrum) logic generator .Pen signal decoder: D-PSK de-modulator .FIR, IIR digital filters design	2020 ~	G2touch
GT3T0A	.Touchscreen controller IC with MPP (Microsoft pen protocol) active pen support.	. Matched filter design for pen detector and synchronizer . Pen signal decoder: FFT, M-FSK . SPI bus interface test-bench simulation . FPGA based FTS (Finger touch sensing) module for verification . Differential sensing scheme based on Gray-code algorithm for display noise elimination. (support analog team)	2019-2021	
Papers	.Researches on quantum information theory an d quantum algorithm	.Quantum Error correction codes (quantum stabilizer codes) .Quantum communication: Quantum walk , quantum teleportation, quantum dense coding	2015 – 2020	UOU
.VMS phase 5	. Mobile charging service phase-V for MobiFone (t elecommunication system operator).	.UNIX Operating system .Intelligent network platform: SIGTRAN, SS7,Mobile charging services installation	2014-2015	ANSV
.S4-mini .S5-mini	.Galaxy smartphone S4-mini .Galaxy smartphone S5-mini	.SW binary build set-up . Android software modification for Galaxy phones	2012-2014	SVMC
.eCockpit	.Emergence of a $\mbox{\bf next}$ $\mbox{\bf generation}$ $\mbox{\bf UI}$ for automoti ve using 3D-GFX	.Implementation a 3D model using ORGE 3D engine	2 months – 2012	PRDCV

System and algorithm simulation: MATLAB

System and algorithm simulation: MATLAB

Digital system design: Verilog HDL

Digital system design: Verilog HDL

Error correction

Potential errors: X, Z, Y

Repetition code

 $\alpha|0\rangle + \beta|1\rangle$ $|0\rangle$ $|0\rangle$ $|s_e\rangle$ $|s_e\rangle$

Bit flip (**X** error)

Phase flip (**Z** error)

Shor code

Bit & Phase flip (Y error)

Framework for simulation

Stabilizer codes

Representing a state as its group of stabilizers

- 1. *I* stabilizes everything.
- 2. -I stabilizes nothing.

3.
$$X \text{ stabilizes } |+\rangle : X |+\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = |+\rangle$$

4.
$$-X$$
 stabilizes $|-\rangle$: $-X|-\rangle = -\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} = |-\rangle$

5. Y stabilizes
$$|+i\rangle$$
: $Y |+i\rangle = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{bmatrix} = |+i\rangle$

6.
$$-Y$$
 stabilizes $|-i\rangle$: $-Y|-i\rangle = -\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix} = |-i\rangle$

7.
$$Z$$
 stabilizes $|0\rangle$: $Z|0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$

8.
$$-Z$$
 stabilizes $|1\rangle$: $-Z$ $|1\rangle = -\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$

Critical result from group theory: for any N-qubit stabilized state, only N elements needed to specify group.

- 1. $|0\rangle$ is stabilized by $\{I, Z\}$, Z is generator
- 2. $|1\rangle$ is stabilized by $\{I, -Z\}$, -Z is generator
- 3. $|+\rangle$ is stabilized by $\{I, X\}$, X is generator
- 4. $|-\rangle$ is stabilized by $\{I, -X\}$, -X is generator
- 5. $|+i\rangle$ is stabilized by $\{I, Y\}$, Y is generator
- 6. $|-i\rangle$ is stabilized by $\{I, -Y\}$, -Y is generator
- 7. $|0\rangle \otimes |0\rangle$ is stabilized by $\{I \otimes I, I \otimes Z, Z \otimes I, Z \otimes Z\}, \{I \otimes Z, Z \otimes I\}$ is generator
- 8. $|+\rangle \otimes |0\rangle$ is stabilized by $\{I \otimes I, I \otimes Z, X \otimes I, X \otimes Z\}, \{I \otimes Z, X \otimes I\}$ is generator
- 9. $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ is stabilized by $\{I\otimes I, X\otimes X, -Y\otimes Y, X\otimes Z\}, \{X\otimes X, Z\otimes Z\}$ is generator

$$\mathbf{E}|\Psi\rangle = \mathbf{E}\mathbf{M}_i|\Psi\rangle = \begin{cases} \mathbf{M}_i\mathbf{E}|\Psi\rangle & \text{Error undetected} \\ -\mathbf{M}_i\mathbf{E}|\Psi\rangle & \text{Error detected} \end{cases}$$

e.g.
$$H = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1	$\mathbf{E} \Psi\rangle = \mathbf{E}\mathbf{M}_i \Psi\rangle = \begin{cases} \mathbf{M}_i\mathbf{E} \Psi\rangle & \text{Error undetected} \\ -\mathbf{M}_i\mathbf{E} \Psi\rangle & \text{Error detected} \end{cases}$		
[[n,k,d]]	e.g. $H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\sim \left(egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} I \\ X \\ Z \end{bmatrix}$ Pauli operator $\begin{bmatrix} I \\ X \\ Y \end{bmatrix}$	$GF(4)$ elements 0 1 $\omega^2 = \omega + 1$	
	Z Multiplication operator Commutative	ω Addition Trace-inner product	

Symplectic inner product

 $\mathbf{M}_{i}\mathbf{M}_{j}=\mathbf{M}_{j}\mathbf{M}_{i}$ $H(i,:)\odot H(j,:)=0$ $\mathbf{H}_{\mathbf{X}}.\mathbf{H}_{\mathbf{Z}}^{T}+\mathbf{H}_{\mathbf{Z}}.\mathbf{H}_{\mathbf{X}}^{T}=0$

My main contribution:

symplectic product $(u,v) \odot (\pi^x(u),\pi^{-x}(v))$ is zero

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \stackrel{r}{\mathbf{I}} & \stackrel{n-k-r}{\mathbf{A}_1} & \stackrel{k}{\mathbf{A}_2} & \stackrel{r}{\mathbf{B}} & \stackrel{r}{\mathbf{C}_1} & \stackrel{k}{\mathbf{C}_2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D} & \mathbf{I} & \mathbf{E} \end{bmatrix} \} \qquad r$$

$$\begin{cases}
\overline{\mathbf{X}} = \begin{bmatrix} \mathbf{0} & \mathbf{E}^T & \mathbf{I} & (\mathbf{E}^T \mathbf{C}_1 + \mathbf{C}_2^T) & \mathbf{0} & \mathbf{0} \end{bmatrix} \\
\overline{\mathbf{Z}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_2^T & \mathbf{0} & \mathbf{I} \end{bmatrix}
\end{cases}$$

$$\left| \overline{c_1 c_2 ... c_k} \right\rangle = \frac{1}{\sqrt{2^m}} \times \left(\prod_{i=1}^m (\mathbf{I} + \mathbf{g}_i) \right) \times \overline{\mathbf{X}_1}^{c_1} \times \overline{\mathbf{X}_2}^{c_2} \times ... \times \overline{\mathbf{X}_k}^{c_k} \left| 00...0 \right\rangle_n,$$

$$\begin{split} \left| \overline{\sigma_{1}\sigma_{2}...\sigma_{k}} \right\rangle &= \frac{1}{\sqrt{2^{n-k}}} \times \left(\prod_{i=1}^{n-k} \left(\mathbf{I} + \mathbf{g}_{i} \right) \right) \times \overline{\mathbf{X}_{1}}^{\sigma_{i}} \times \overline{\mathbf{X}_{2}}^{\sigma_{2}} \times ... \times \overline{\mathbf{X}_{k}}^{\sigma_{i}} \left| 00...0 \right\rangle_{n} \\ &= \left(\prod_{i=1}^{r} T_{i}^{\sigma_{i}} \mathbf{H}_{i} \right) \times \left(\prod_{j=1}^{k} \mathbf{U}_{i} \right) \left| 00...0\sigma_{1}\sigma_{2}...\sigma_{k} \right\rangle_{n}. \end{split}$$

$$\mathbf{g}_{i} | \psi \rangle = (-1)^{l_{i}} | \psi \rangle \Leftrightarrow \mathbf{g}_{i} \mathbf{E} = (-1)^{l_{i}} \mathbf{E} \mathbf{g}_{i}$$

$$\left| oldsymbol{\psi}_{in}
ight
angle = \left| \overline{\sigma_{1} \sigma_{2} ... \sigma_{k}}
ight
angle_{n} \otimes \left| 00 ... 0
ight
angle_{k} \ \left| oldsymbol{\psi}_{f}
ight
angle = oldsymbol{\mathrm{U}}_{decode} \left| \overline{\sigma_{1} \sigma_{2} ... \sigma_{k}}
ight
angle_{n} \otimes \left| 00 ... 0
ight
angle_{k} = \left| \overline{00 ... 0}
ight
angle_{n} \otimes \left| \sigma_{1} \sigma_{2} ... \sigma_{k}
ight
angle_{k}.$$

	Syndrome		Syndrome		Syndrome
XIIIIII	101011	ZIIIIII	100000	YIIIIII	001011
IXIIIII	101111	IZIIIII	010000	IYIIIII	111111
IIXIIII	011101	IIZIIII	001000	IIYIIII	010101
IIIXIII	010100	IIIZIII	110000	IIIYIII	100100
IIIIXII	100010	IIIIZII	011000	IIIIYII	111010
IIIIIXI	001001	IIIIIZI	111000	IIIIIYI	110001
IIIIIIX	110110	IIIIIIZ	101000	IIIIIY	011110

Quantum communication: Quantum walk

A discrete-time QWs over the line involves in two Hilbert spaces. The total space of the walk is given as

$$H = H_P \otimes H_C, \tag{1}$$

where H_P is the position space, which is spanned by $\{|n\rangle \text{ where } n \in \mathbb{Z}\}$, and H_C is the coin space, which is spanned by $\{|0\rangle, |1\rangle\}$.

$$\mathbf{S}^{T} = \left[\sum_{-\infty}^{+\infty} |n+1\rangle\langle n| \otimes |0\rangle\langle 0| + \sum_{-\infty}^{+\infty} |n-1\rangle\langle n| \otimes |1\rangle\langle 1| \right]^{T}$$
$$= \sum_{-\infty}^{+\infty} |n\rangle\langle n+1| \otimes |0\rangle\langle 0| + \sum_{-\infty}^{+\infty} |n\rangle\langle n-1| \otimes |1\rangle\langle 1|.$$

Fig. 2. The QW over the N-line.

$$\mathbf{S}_{1} = \sum_{t=0}^{N-2} |t+1\rangle\langle t| \otimes |0\rangle\langle 0| + |N-1\rangle\langle N-1| \otimes |0\rangle\langle 0| + \sum_{t=1}^{N-1} |t-1\rangle\langle t| \otimes |1\rangle\langle 1| + |0\rangle\langle 0| \otimes |1\rangle\langle 1|.$$

$$\mathbf{S}_1 * \mathbf{S}_1^T = \begin{bmatrix} 0 & 2 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \cdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{bmatrix} \neq \mathbf{I}.$$

Fig. 3. The QW over N-cycle.

$$\mathbf{S}_2 = \sum_{t=0}^{N-2} |t \oplus 1
angle \langle t| \otimes |0
angle \langle 0| + \sum_{t=1}^{N-1} |t \ominus 1
angle \langle t| \otimes |1
angle \langle 1|, \qquad \begin{aligned} \mathbf{S}_2 * \mathbf{S}_2^\dagger &= \mathbf{S}_2 * \mathbf{S}_2^T = \\ \mathbf{S}_2^\dagger * \mathbf{S}_2 &= \mathbf{S}_2^T * \mathbf{S}_2 = \end{aligned}$$

Plan for working in Qunova computing

Skills need to be improved

A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation.

- Artur Ekert

Overarching goal

Solve intractable problems with massive speedup in computation...
...using the superposition and entanglement, two of the cornerstones quantum mechanics

Distances for highly reduced (1.97%) MolGAN and OGAN-HG; (c) learning curves for highly reduced QGAN-HG with quantum circuit level L=2 and N=10, respectively; (d) learning curves for patched OGAN-HG; (c) learning curves for patched OGAN-HG; with two sub-circuits and four sub-circuits; (e) training epochs with lowest Frichet Distances for all GAN ideaves; (t) training times elapsed (early stopping at epochs from (e)) for all GAN ideaves. All GGAN variants in (a, by are composed of 8 quibts and a single quantum layer. Abbreviation: QGAN/MolGAN MR - QGAN/MolGAN with moderately reduced generator; QGAN/MolGAN HR - QGAN/MolGAN with highly reduced generator; QGAN/MolGAN L2 - QGAN with quantum circuit depth of 2; QGAN Q10 - QGAN with 10-qubit quantum circuit; P2/4-QGAN - Patched QGAN with 2/4 sub-circuits MGAN - MolGAN.

Parameterized Layers