face-detection.md 2024-10-15

Face Detection

BlazeFace

Figure 3. Pipeline example (best viewed in color).

Red: BlazeFace output. Green:
Task-specific model output.

- Google uses it as a face detector in MediaPipe Studio
- Paper
- Characteristics:
 - o input image size: 128x128
 - o model size: 224 KB
 - o outputs (17 values):
 - bounding box: ymin, xmin, ymax, xmax (all normalized to [0, 1])
 - facial landmarks: right_eye_x, right_eye_y, left_eye_x, left_eye_y, nose_x, nose_y,
 mouth_x, mouth_y, right_ear_x, right_ear_y, left_ear_x, left_ear_y
 - o number of anchor boxes: 896
 - Based on SSD architecture predefined anchor boxes, but less than in SSD (Due to limited variance in human computing smaller feature maps is redundant)

face-detection.md 2024-10-15

Figure 2. Anchor computation: SSD (left) vs. BlazeFace

 depthwise convolutions with kernels 5x5 - decreasing the total amount of bottlenecks required to reach a particular receptive field size, thus reducing the number of parameters and computations

• Inference details:

- 1. Image size should be 128x128 with values ranging from -1 to 1
- 2. Passing X through the network will result in confidence scores for each class and offsets for the anchor box. All that for each anchor box.
- 3. Finding boxes for predefined anchor boxes
- 4. Weighted Non-maximum suppression "achieves stabler, smoother tie resolution between overlapping predictions. (...) It incurs virtually no additional cost to the original NMS algorithm."

YOLO

Additional Resources

- R CNNs, SSDs, and YOLO
- SSD
- BlazeFace pytorch implementation
- SSD Anchor calculator
- YOLOv5-face-landmarks-cv2 implementation
- YOLOv5 grid and anchors