Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3217	К работе допущен	
Студент	Бессонов Борис	Работа выполнена 29.1	1.23
Преподават	ель Тимофеева Эльвира Олеговна	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.01(A)

Изучение электростатического поля методом моделирования

1. Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде

2. Задачи, решаемые при выполнении работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде

3. Объект исследования.

Модель электростатического поля

4. Метод экспериментального исследования.

Экспериментальный метод моделирования электростатического поля, заменяя электростатическое поле на электрическое, в котором на электроды подают такие же потенциалы, как и в моделируемом. В силу того, что плотность зарядов на электродах постоянна, мы моделируем электростатическое поле, и поверхности электродов являются эквипотенциальными поверхностями.

- 5. Рабочие формулы и исходные данные.
 - 1. Напряженность электрического поля:

$$\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q},$$

2. Потенциал электрического поля:

$$\varphi(\vec{r}) = \frac{W_{\Pi}(\vec{r})}{q},$$

3. Работа электрического поля по перемещению заряда:

$$A_{12} = q \left(\varphi_1 - \varphi_2 \right).$$

4. Связь напряженности с потенциалом:

$$\vec{E} = -\operatorname{grad} \varphi \equiv -\vec{\nabla}\varphi,$$

$$\varphi_2 - \varphi_1 = -\int_1^2 \vec{E} d\vec{\ell}.$$

5. Вектор градиента потенциала:

$$\vec{\nabla}\varphi = \hat{e}_x \frac{\partial \varphi}{\partial x} + \hat{e}_y \frac{\partial \varphi}{\partial y} + \hat{e}_z \frac{\partial \varphi}{\partial z}.$$

6. Средняя напряженность между двумя потенциалами:

$$\langle E_{12} \rangle \approx \frac{\varphi_1 - \varphi_2}{\ell_{12}},$$

7. Закон Ома в дифференциальной форме:

$$\vec{j} = \sigma \vec{E}$$
,

8. Уравнение неразрывности:

$$\vec{\nabla} \cdot \vec{j} \equiv \operatorname{div} \vec{j} = \frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y} + \frac{\partial j_z}{\partial z} = -\frac{\partial \rho}{\partial t},$$

9. Для стационарного тока:

$$\vec{\nabla} \cdot \vec{j} = 0.$$

10. Следует из 9 – 10

$$\vec{\nabla} \cdot \vec{E} = 0.$$

11. Связь величины напряженности вблизи поверхности электрода с поверхностной плотностью зарядов:

$$\sigma' = \varepsilon_0 E_n$$

$$\sigma' \approxeq -\varepsilon_0 \frac{\Delta \varphi}{\Delta \ell_n},$$

12. В условиях плоского конденсатора потенциал зависит следующим образом:

$$\varphi(x) = \varphi_0 + Ex,$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Предел измерений	Погрешность прибора
1	Генератор напряжения	Электронный	450 Гц	50 Гц
2	Вольтметр	Электронный	20 B	0.02 B
3	Линейка	Стационарный	0.3 м	0.005 м

7. Схема установки (перечень схем, которые составляют Приложение 1).

На боковых стенках электролитической ванны расположены плоские металлические электроды, подключенные к многофункциональному генератору напряжения ГН1. Между электродами находится измерительный зонд в виде тонкого изолированного проводника, подсоединенного к вольтметру. Вольтметр в составе комбинированного прибора AB1 показывает действующую разность потенциалов между зондом и электродом, подключенным ко второму гнезду вольтметра. Собственное сопротивление вольтметра существенно превышает сопротивление воды в ванне, для того чтобы измерительный ток вольтметра не шунтировал токи в модели и не искажал распределение электрического поля. В ванну может быть помещено проводящее тело в форме кольца.

- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).
- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$E_{\text{центра}} = 7.6 - 5.6 / 0.045 = 44.44 \text{ B}$$

 $E_{\text{окрестности}} = 3.6 \text{-} 1.6 / 0.065 = 30.77 B$

$$\sigma' \cong -\varepsilon 0 * \Delta \varphi / \Delta ln = 8.85 * 10^{-12} * 2 / 0.045 = 389.4 * 10^{-12} \text{ K}_{π/m}^2$$

Густота силовых линий пропорциональна величине вектора напряженности, поэтому:

$$E_{max} = 0.8 / 0.045 = 17.78 \text{ B}$$

 $E_{min} = 0.8 / 1.2 = 0.67 B$

10. Расчет погрешностей измерений (для прямых и косвенных измерений)

$$\begin{split} \Delta_z = \sqrt{\left(\frac{\partial f}{\partial a}\Delta_a\right)^2 + \left(\frac{\partial f}{\partial b}\Delta_b\right)^2 + \left(\frac{\partial f}{\partial c}\Delta_c\right)^2 + ...,} \\ \langle E_{12}\rangle & \approxeq \frac{\varphi_1 - \varphi_2}{\ell_{12}}, \end{split}$$

Берем производную считая $\Delta \varphi$ и ΔI независимыми переменными и подставляем в формулу выше =>

- 1. $\Delta E_{\mu} = 0.661 \text{ B/m}$;
- 2. $\Delta E_{n9} = 5.988 \text{ B/m}$;
- 3. $\Delta E_{max} = 6.110 \text{ B/m};$
- 4. $\Delta E_{min} = 1.052 \text{ B/m};$
- 5. Расписывая напряженность по формуле выше, мы приводим формулу плотности электрического заряда к формуле от прямых измерений, а поэтому можем пользоваться основной формулой для вычисления погрешности косвенных измерений =>

$$\Delta \sigma' = 0.530 * 10^{-10}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Величина напряженности в центре ванны: $E_{IJ} = 44.44 \ B$

Величина напряженности возле одного из электродов: $E_{\Pi 9} = 30.77~$ В

Поверхностная плотность электрического заряда на электродах: σ' = 389,4 * 10^{-12}

K_{Π}/M^2

Величина напряженности возле одного из электродов: E_{max} = 17,78 В Величина напряженности возле одного из электродов: E_{min} = 0,67 В

13. Выводы и анализ результатов работы.

Используя экспериментальный метод моделирования, мы с моделировали электростатическое поле.

Затем мы изучили распределение потенциала в слабо проводящей среде и построили систему силовых линий с указанием их направления. Для модели плоского конденсатора посчитали величину напряженности в центре ванны, а также в окрестности одного из электродов.

Затем, в конфигурации поля с проводящим кольцом мы нашли области с минимальным напряженностью — примерно центр ванны, между электродами; а также с максимальной напряженностью — рядом с кольцом. Также легко заметить, что в модели с проводящим кольцом значительная часть силовых линий начинается и заканчивается на проводящем теле.

После этого мы построили график зависимости потенциала от расстояния и увидели, что кольцо создает область с постоянным потенциалом. На графике присутствуют погрешности, однако в силу их незначительности, мы можем пренебречь ими. На основе всего вышесказанного можно сделать вывод, что мы выполнили поставленные задачи.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколеотчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.