3. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ

Задача 1

Сигнал S(t) представляет собой импульс заданной формы. Вычислить энергию и норму такого сигнала.

i	a)	прямоугольная	$S_1(t)=U_1,$	$0 \le t \le \tau_{N};$
	б)	треугольная	$S_2(t)=U_2\cdot t/\tau_{\scriptscriptstyle M},$	$0 \le t \le \tau_{\scriptscriptstyle M};$
	в)	синусоидальная	$S_3(t)=U_3\cdot\sin(\pi t/\tau_n),$	$0 \le t \le \tau_{\text{\tiny M}}.$
	г)	приподнятый косинус	$S_4(t) = (U_4/2) \cdot [1 - \cos(2\pi t/\tau_{\text{\tiny M}})],$	$0 \le t \le \tau_{\scriptscriptstyle M};$
	д)	треугольная №2	$S_5(t)=U_5\cdot(1-t/\tau_{\scriptscriptstyle \rm M}),$	$0 \le t \le \tau_{\scriptscriptstyle M};$

е) треугольная №3
$$S_6t) = \begin{cases} 2U_6 \cdot t/\tau_{\text{и}} & 0 \le t \le \tau_{\text{u}}/2; \\ \\ 2U_6 \cdot [1 - t/\tau_{\text{u}}], & \tau_{\text{u}}/2 \le t \le \tau_{\text{u}} \end{cases}$$

№ варианта	Сигналы	$U_i(B)$	τ _и (мс)
0	$S_1(t)$, $S_2(t)$ и $S_3(t)$	10	2

Задача 2

Определить метрику сигналов из задачи 1.

№ варианта	Сигналы	$U_i(B)$	τ _ν (c)
0	$S_1(t)$ и $S_2(t)$: $S_1(t)$ и $S_3(t)$	10	2

Задача 3

Определить энергию и норму экспоненциального видеоимпульса $\mathbf{u}(t) = U \cdot \mathbf{e}^{-\alpha t} \cdot \sigma(t)$ (B).

№ варианта	<i>U</i> (B)	α (c ⁻¹)
0	50	10 ⁵

Задача 4

По результатам задачи 2 найти амплитуду U_1 прямоугольного импульса $S_1(t)$, при которой было бы минимальным расстояние между ним и импульсами другой формы.

Найти расстояние для каждого случая.

№ варианта		Сигналы	$U_i(B)$	τ _и (c)
	0	$S_1(t)$ и $S_2(t)$: $S_1(t)$ и $S_3(t)$	10	2

Задача 5

Вычислить энергию радиоимпульса с огибающей прямоугольной формы. Импульс существует на интервале времени $(0, \tau_{\rm u})$ описывается выражением $S(t) = U_0 \cos(\omega_0 t + \phi_0)$

№ варианта	<i>U</i> ₀ (B)	$\omega_0 (c^{-1})$	ϕ_0	τ _и (с)
0	50	$2\pi \cdot 10^{5}$	π/2	10 ⁻⁴

Задача 6

Имеются два смещённых во времени экспоненциальных импульса:

$$u_1(t) = U_m \exp(-\alpha t) \cdot \sigma(t)$$
 (B);

$$u_2(t) = U_m \exp[-\alpha(t-t_0)] \cdot \sigma(t-t_0) \text{ (B)};$$

Найти скалярное произведение сигналов и угол между ними.

№ варианта	$U_m\left(B\right)$	α (c ⁻¹)	$t_{0}\left(c\right)$
0	5	10 ⁵	2·10 ⁻⁶

<u>Норма</u> сигналов в линейном пространстве является аналогом длины векторов, и обозначается индексом ||s(t)|| – *норма* (norm). В математике существуют различные формы норм. При анализе сигналов обычно используются квадратичные нормы:

$$||s(t)|| = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dt dt .$$

<u>Метрика сигналов</u>. Линейное пространство сигналов L является метрическим, если каждой паре сигналов s(t) ∈ L и v(t) ∈ L однозначно сопоставляется неотрицательное число $\rho(s(t),v(t))$ – метрика (metric) или расстояние между векторами.

Для метрик сигналов в метрическом пространстве любой размерности должны выполняться аксиомы:

 ρ (s(t),v(t)) = ρ (v(t),s(t)) – рефлексивность метрики.

 ρ (s(t),s(t)) = 0 для любых s(t) ∈ L.

 ρ (s(t),v(t)) ≤ ρ (s(t),a) + ρ (a,v(t)) для любых a ∈ L.

Метрика определяется нормой разности двух сигналов:

$$\rho (s(t),v(t)) = || s(t) - v(t) ||.$$

По метрике сигналов можно судить, например, о том, насколько точно один сигнал может быть аппроксимирован другим сигналом, или насколько изменяется выходной сигнал относительно входного при прохождении через какое-либо устройство.

Скалярное произведение сигналов

Понятие скалярного произведения элементов x(t) и y(t) линейного пространства позволяет определять угол между двумя векторами (сигналами).

Определение скалярного произведения вещественных сигналов x и y в пространстве L2:

$$(x, y) = \int_{-\infty}^{\infty} x(t)y(t)dt$$

Косинус угла между сигналами х и у:

$$\cos \psi = \frac{(x, y)}{\|x\| \times \|y\|}$$

При этом справедливо фундаментальное неравенство Коши –Буняковского

$$|(x, y)| \le |x| \times |y|$$

$$sin \alpha \cdot sin \beta = 1/2 \cdot [cos (\alpha - \beta) - cos (\alpha + \beta)];$$
 $cos \alpha \cdot cos \beta = 1/2 \cdot [cos (\alpha - \beta) + cos (\alpha + \beta)];$
 $sin \alpha \cdot cos \beta = 1/2 \cdot [sin (\alpha - \beta) + sin (\alpha + \beta)].$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int sin x dx = -cos x + C$$

$$\int cos x dx = sin x + C$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C, \text{ в частности, } \int e^x dx = e^x + C$$