Devoir surveillé n°3

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

- 1) Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 .
- 2) En déduire que A est inversible et déterminer son inverse.

II. Une équation différentielle non linéaire.

Partie 1

On pose $f(x) = \sqrt{\frac{1-x}{x}}$ pour tout $x \in]0,1[$.

- 1) Étudier les variations de la fonction f.
- 2) Montrer que f est une bijection de]0,1[vers $]0,+\infty[$. On note g sa bijection réciproque. Donner, pour tout x>0, une expression simple de g(x).

Partie 2

On considère l'équation différentielle

$$(H): 2x(1-x)y' + y = 0.$$

- 3) Résoudre (H) sur l'intervalle]0,1[.
- 4) Résoudre sur [0, 1] l'équation différentielle :

(E):
$$2x(1-x)y' + y = (1-x)\sqrt{\frac{x}{1+x}}$$
.

- 5) Déterminer les solutions y de (E) définies sur]0,1[et vérifiant $y\left(\frac{1}{2}\right)=\frac{\pi}{6}$.
- **6)** Quelles sont les solutions de (E) définies sur]0,1[et qui sont à valeurs dans $]0,+\infty[?$

Partie 3

On considère l'équation différentielle non linéaire

$$(K): xy' + 2y(1-y) = 0.$$

Par définition, les solutions de (K) sur un intervalle I sont les fonctions u dérivables sur I telles que

$$\forall x \in I, \quad xu'(x) + 2u(x)(1 - u(x)) = 0.$$

- 7) Quelles sont les fonctions constantes sur \mathbb{R} solutions de (K)?
- 8) Dans cette question, on suppose que u est solution de (K) sur $]0, +\infty[$, à valeurs dans]0,1[.
 - a) Montrer que u est strictement décroissante sur $]0, +\infty[$.
 - b) Nous démontrerons plus tard dans l'année que dans ce cas, u admet des limites aux bornes de son intervalle de définition.

Justifier que ces deux limites sont finies; on posera $\alpha = \lim_{x \to +\infty} (u(x))$ et $\beta = \lim_{x \to 0^+} (u(x))$.

Justifier que u réalise une bijection de $]0, +\infty[$ vers $]\alpha, \beta[$.

- c) On note v la bijection réciproque de u. Montrer que v est solution de (H) sur $]\alpha, \beta[$.
- d) En déduire qu'il existe un réel c > 0 tel que :

$$\forall x > 0, u(x) = \frac{1}{1 + \left(\frac{x}{c}\right)^2}.$$

- 9) On note S l'ensemble des solutions de (K) sur $]0, +\infty[$ et qui sont à valeurs dans]0, 1[.
 - a) Déterminer S.
 - b) Soit x_0 un réel strictement positif (fixé). Soit $y_0 \in]0,1[$ (fixé lui aussi). Montrer qu'il existe une, et une seule, solution u_0 de \mathcal{S} qui vérifie u_0 (x_0) = y_0 .

III. Une fonction de $\mathscr{P}(\mathbb{R})$.

Soit A et B deux parties de \mathbb{R} . On définit la fonction $f: \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R})$ de la manière suivante : si $X \subset \mathbb{R}$, alors $f(X) = (X \cap A) \cup B$.

- 1) Soit X, Y deux parties de \mathbb{R} .
 - a) Montrer que $X \subset Y \Leftrightarrow X \cap Y = X$.
 - **b)** Montrer que $X \subset Y \Leftrightarrow X \cup Y = Y$.
- 2) a) Dans cette question, on suppose que $A = \emptyset$. Calculer f(X) pour tout $X \subset \mathbb{R}$.
 - **b)** Dans cette question, on suppose que $B = \mathbb{R}$. Calculer f(X) pour tout $X \subset \mathbb{R}$.

- c) Que remarque-t-on dans les deux cas précédents?
- 3) Calculer, dans le cas général, $f(\emptyset)$, f(A), f(B) et $f(\mathbb{R})$.
- **4)** Montrer que la fonction f est croissante, au sens de l'inclusion, *i.e.* que pour toutes parties X, Y de \mathbb{R} si $X \subset Y$ alors $f(X) \subset f(Y)$.
- 5) Soit Y une partie de \mathbb{R} . Montrer que les trois propositions suivantes sont équivalentes.
 - (i) Y admet un antécédent dans $\mathscr{P}(\mathbb{R})$ par f.
 - (ii) $B \subset Y \subset A \cup B$.
 - (iii) f(Y) = Y.
- **6)** a) Résoudre l'équation f(X) = A, d'inconnue $X \in \mathcal{P}(\mathbb{R})$.
 - b) Résoudre l'équation f(X) = B, d'inconnue $X \in \mathcal{P}(\mathbb{R})$.
- 7) a) Déterminer une condition nécessaire et suffisante sur A et B pour que f soit constante.
 - b) Déterminer une condition nécessaire et suffisante sur A et B pour que f soit surjective.
 - c) Montrer que cette dernière condition est aussi nécessaire et suffisante pour que f soit injective.
- 8) a) Que peut-on dire de $f \circ f$?
 - b) Soit E un ensemble quelconque, soit $g: E \to E$ idempotente, i.e. vérifiant $g \circ g = g$. Montrer que les propositions suivantes sont équivalentes.
 - (i) La fonction g est injective.
 - (ii) La fonction g est surjective.
 - (iii) On a $g = \mathrm{Id}_E$.

— FIN —