TEMA 1: ESPACIOS TOPOLÓGICOS

Manuel Bolaños Quesada

${\bf \acute{I}ndice}$

1.	Espacios topológicos	3
2.	Entornos. Interior y clausura de un conjunto	10
3.	Axiomas de separación y numerabilidad	12
4.	Ejercicios y problemas	1 4

1. Espacios topológicos

Sea X un conjunto no vacío.

Definición 1.1. Una topología en X es una familia T de subconjuntos de X ($T \subset \mathcal{P}(X)$) que verifica:

- i) $\emptyset, X \in T$.
- ii) $\{U_i\}_{i\in I}\subset T\implies \bigcup_{i\in I}U_i\in T.$
- iii) $U_1, \ldots, U_k \in T \implies U_1 \cap \cdots \cap U_k \in T \ (k \in \mathbb{N})$

A los elementos de T los llamaremos conjuntos abiertos de la topología T.

Definición 1.2. Un espacio topológico (X,T) es un conjunto X no vacío con una topología T en X.

Definición 1.3. Un espacio topológico (X,T) es metrizable si existe una distancia d en X tal que $T_{\rm d}=T$.

Ejemplos.

1. Sea (X, d) un espacio métrico. Entonces

$$T_{\rm d} = \{ U \subset X : \forall x \in U, \exists r > 0 : B(x, r) \subset U \} \cup \{\emptyset\}$$

Tenemos que $T_{\rm d}$ es una topología en X, y la llamaremos la topología asociada a la distancia d.

- 2. Sea $X \neq \emptyset, T_t = \{\emptyset, X\}$ topología trivial (es la topología con la menor cantidad posible de conjuntos. Si T es otra topología en X, entonces $T_t \subset T$).
- 3. $X \neq \emptyset, T_D = \mathcal{P}(X) = \{U : U \subset X\}$. Entonces T_D es una topología en X y la llamaremos topología discreta. Si T es cualquier topología en X, entonces $T \subset \mathcal{P}(X) = T_D$. Por tanto, la topología discreta es la mayor topología en X.
- 4. $X \neq \emptyset$.

$$T_{CF} = \{U \subset X : U^c \text{ es finito}\} \cup \{\emptyset\}$$

 T_{CF} es una topología en X. La llamaremos topología de los complementos finitos. Veamos que, en efecto, es una topología:

- a) $\emptyset \in T_{CF}, X^c = \emptyset \implies X \in T_{CF}.$
- b) $\{U_i\}_{i\in I}\subset T_{CF}$. Si $U_i=\emptyset$ $\forall i\in I \implies \bigcup_{i\in I}U_i=\emptyset\in T_{CF}$. Supongamos entonces que $\exists i_0\in I$ tal que $U_{i_0}\neq\emptyset\implies U_{i_0}^c$ es finito

$$U_{i_0} \subset \bigcup_{i \in I} U_i \implies \left(\bigcup_{i \in I} U_i\right)^c \subset U_{i_0}^c$$
, que es finito

Entonces $\bigcup_{i \in I} U_i \in T_{CF}$.

c) $U_1, \ldots, U_k \in T_{CF} \implies U_1 \cap \cdots \cap U_k \in T_{CF}$. Tenemos que $(U_1 \cap \cdots \cap U_k)^c = U_1^c \cup \cdots \cup U_k^c$. Entonces, si algún $U_i = \emptyset \implies U_1 \cap \cdots \cap U_k = \emptyset \in T_{CF}$. Si $U_i \neq \emptyset$ para todo i, entonces $(U_1 \cap \cdots \cap U_k)^c$ es finito por ser unión de conjuntos finitos.

Propiedad. Sea $X \neq \emptyset$, d = distancia discreta, y T_D la topología discreta en X. Entonces $T_{\rm d} = T_D$. Por tanto, (X, T_D) es metrizable.

<u>Demostración.</u> Queremos ver que $T_{\rm d}=T_D$. La inclusión $T_{\rm d}\subset T_D$ se sigue del penúltimo ejemplo. Falta ver que $T_D\subset T_{\rm d}$. Sea $U\in T_D$. Si $U=\emptyset \implies U\in T_{\rm d}$. Si $U\neq\emptyset$

$$U = \bigcup_{x \in U} \{x\} = \bigcup_{x \in U} B(x, \frac{1}{2}) \in T_{\mathbf{d}}$$

y se sigue que $T_D \subset T_d$, tal como queríamos demostrar.

Observación. Si T es una topología en X, entonces $T_t \subset T \subset T_D$.

Propiedad.

- 1. Sea X un conjunto infinito. Sean $U, V \in T_{CF}$, con $U, V \neq \emptyset$. Entonces, $U \cap V \neq \emptyset$.
- 2. Si X es infinito, (X, T_{CF}) no es metrizable y no existe una distancia d en X tal que $T_{\rm d} = T_{CF}$.

Definición 1.4. Un espacio topológico (X,T) es *Hausdorff* (o es T_2) cuando, para todo par de puntos $x, y \in X$ con $x \neq y$, existen dos abiertos $M_x, M_y \in T$ tales que:

- i) $x \in M_x, y \in M_y$
- ii) $M_x \cap M_y = \emptyset$.

Ejemplos.

- 1. Si (X, d) es un espacio métrico, entonces (X, T_d) es Hausdorff.
- 2. Si X es infinito, (X, T_{CF}) no es Hausdorff.
- 3. Si (X, T_D) es un espacio discreto, entonces es Hausdorff.
- 4. Sea $X \neq \emptyset$. Supongamos que X es, al menos numerable. La topología de los complementos numerables es $T_{CN} = \{U \subset X : U^c \text{ es numerable}\} \cup \{\emptyset\}$.

Observación. Si X es numerable, entonces $T_{CN} = T_D$ (si $U \subset X$ es cualquier conjunto, $U^c \subset X$. Como X es numerable y $U^c \subset X$, entonces U^c también es numerable, y por tanto $U \in T_{CN} \implies T_{CN} = T_D$).

Veamos ahora que, T_{CN} es, en efecto, una topología. Para ello comprobamos las tres propiedades:

- 1. $\emptyset \in T_{CF}$, por definición. Como \emptyset es finito, $X^c = \emptyset$ es finito, y en particular, numerable, así que $X \in T_{CF}$.
- 2. Sean $\{U_i\}_{i\in I}\subset T_{CF}$. Entonces, $\left(\bigcup_{i\in I}U_i\right)^c=\bigcap_{i\in I}U_i^c$. Como los U_i^c son numerables, la intersección de todos ellos también, y por tanto $\bigcup_{i\in I}U_i\in T_{CF}$.
- 3. Sean $U_1, \ldots, U_k \in T_{CF}$. Tenemos que

$$(U_1 \cap \dots \cap U_k)^c = U_1^c \cup \dots \cup U_k^c$$

Si todos los conjuntos U_i son distintos de $\emptyset \implies U_i^c$ es numerable $\forall i \in \{1, \dots, k\}$. Una familia finita de conjuntos numerables es numerable, por tanto, $U_1 \cap \dots \cap U_k \in T_{CN}$. Si algún $U_i = \emptyset$, entonces $U_1 \cap \dots \cap U_k = \emptyset \in T_{CN}$.

Definición 1.5. Sean T_1, T_2 topologías en X. Diremos que T_1 es más fina que T_2 , si $T_2 \subset T_1$. Diremos también que T_2 es más gruesa que T_1 .

Observación.

- 1. Si una topología es más fina, entonces tiene más conjuntos abiertos.
- 2. La topología más gruesa de todas es la trivial.
- 3. La topología más fina es la discreta.

Definición 1.6. Sea (X,T) un espacio topológico. Diremos que $F \subset X$ es cerrado si $X \setminus F = F^c$ es abierto. A la familia de todos los cerrados de (X,T) la llamaremos C_T .

Propiedades. Sea (X,T) un espacio topológico. Entonces:

- 1. $\emptyset, X \in C_T$
- 2. Si $\{F_i\}_{i\in I}\subset C_T\implies\bigcap_{i\in I}F_i\in C_T$ 3. Si $F_1,\ldots,F_k\in C_T\implies F_1\cup\cdots\cup F_k\in C_T$

Demostración. Mismo razonamiento que en los espacios métricos.

Observación. Si tenemos un conjunto X y una familia $C \subset \mathcal{P}(X)$ que cumple:

- i) $\emptyset, X \in C$
- ii) Si $\{F_i\}_{i\in I}\subset C\implies\bigcap_{i\in I}F_i\in C$
- iii) Si $F_1, \ldots, F_k \in C \implies F_1 \cup \cdots \cup F_k \in C$

entonces existe una única topología T en X tal que $C_T = C$.

Demostración. Definimos $T = \{F^c : F \in C\}$. Como $C \subset \mathcal{P}(X)$ verifica i, ii v iii, pasando a complementario, T verifica las propiedades de la familia de los abiertos.

Sea $F \in C_T = \{\text{conjuntos cerrados de } (X,T)\}$. Entonces $F^c \in T \implies \exists G \in C \text{ tal que }$ $F^c = G^c \iff F = G \implies F \in C$. Por tanto $C_T \subset C$.

Sea $F \in C$. Queremos ver que $F \in C_T$. $F \in C_T \iff F^c \in T$, que, por definición, es verdad. Así que $C \subset C_T$, y entonces, $C_T = C$, tal y como queríamos.

Ejemplos.

- 1. (X, T_{CF}) , y $C_{T_{CF}} = \{F \subset X : F \text{ es finito}\} \cup \{X\}$
- 2. (X, T_D) , y $C_{T_D} = \mathcal{P}(X)$. Coinciden los conjuntos cerrados y abiertos.
- 3. (X, T_t) , y $C_{T_t} = \{\emptyset, X\} = T_t$
- 4. (X, d) espacio métrico. ¿Son los puntos cerrados? Sí.

Sea
$$x_0 \in X$$
. Entonces $\bigcap_{r>0} \overline{B}(x_0,r) = \{x_0\}$. Sea ahora $y \neq x_0 \implies d(x_0,y) = s > 0 \implies y \notin \overline{B}(x_0,s/2)$. Por tanto, $\{x_0\} = \bigcap_{r>0} \overline{B}(x_0,r) \implies \{x_0\} \in C_T$.

Así que, en un espacio métrico, los puntos son conjuntos cerrados.

Propiedad. En un espacio topológico Hausdorff todo punto es cerrado.

<u>Demostración.</u> Sea $x_0 \in X$. $\{x_0\} \in C_T \iff X \setminus \{x_0\}$ es abierto.

 $\overline{\text{Sea } y \in X \setminus \{x_0\}} \implies y \neq x_0 \implies \exists U_y, U_{x_0}^y \in T \text{ tales que } y \in U_y, x_0 \in U_{x_0}^y \text{ y } U_y \cap U_{x_0}^y = U_{x_0}^y \text{ and } U_y \cap U_{x_0}^y = U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y = U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y = U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y \cap U_{x_0}^y = U_{x_0}^y \cap U_{x_0}^y \cap$ $\emptyset \implies x_0 \notin U_y \implies U_y \subset X \backslash \{x_0\}.$

De aquí deducimos que
$$X \setminus \{x_0\} = \bigcup_{y \neq x_0} U_y \implies \{x_0\} \in C_T$$
.

Ejemplos.

1. X infinito. $(X, T_{CF}) \implies$ no es Hausdorff $(U_x \cap U_y \neq \emptyset)$, pero los puntos son conjuntos cerrados

Definición 1.7. Si (X,T) es un espacio topológico, una base de la topología T es una familia $B \subset T$ (los elementos de B son conjuntos abiertos), con la propiedad de que todo conjunto abierto puede expresarse como unión de elementos de B. Es decir:

i)
$$\forall U \in T, \exists \{B_i\}_{i \in I} \subset B : U = \bigcup_{i \in I} B_i$$

ii) $B \subset T$

Ejemplos.

- 1. $B = \{B(x,r) : x \in X, r > 0\}$ es una base de T_d .
- 2. $\overline{B}=\{\overline{B}(x,r):x\in X,r\geq 0\}$ no es, en general, una base de $T_{\rm d}.$
- 3. (X, T_D) . $B = \{\{x\} : x \in X\} \subset T_D$. Entonces $\emptyset \neq U \in T_D \implies U = \bigcup_{x \in U} \{x\}$. Tenemos entonces que cualquier base de (X, T_D) debe contener a B.
- 4. Sea (X, d) un espacio métrico. Sea $r_0 > 0$. Definimos $\mathcal{B}_{r_0} = \{B(x, r) : x \in X, 0 < r < r_0\}$. Entonces \mathcal{B}_{r_0} es base de $T_d \ \forall r_0 > 0$. En particular, si d = distancia discreta en X, entonces

$$\mathcal{B}_{1/2} = \{B(x,r) : x \in X, 0 < r < 1/2\} = \{\{x\} : x \in X\}$$

Propiedades. Sea (X,T) un espacio topológico, si \mathcal{B} es base de T, entonces:

- 1. $\forall x \in X, \exists B \in \mathcal{B} \text{ tal que } x \in B$
- 2. $\forall B_1, B_2 \in \mathcal{B}, \ \forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B} \ \text{tal que } x \in B_3 \subset B_1 \cap B_2$ Demostración
- 1. $X \in T \implies \exists \{B_i\}_{i \in I} : X = \bigcup_{i \in I} B_i$. Sea $x \in X = \bigcup_{i \in I} B_i \implies \exists i_0 \in I : x \in B_{i_0}$. Entonces basta con tomar $B = B_{i_0}$.
- 2. Sea $x \in B_1 \cap B_2$. Sabemos que existe $\{B_j\}_{j \in J}$ tal que $B_1 \cap B_2 = \bigcup_{j \in J} B_j$. Todo esto implica que $\exists j_0 \in J$ tal que $x \in B_{j_0} \subset B_1 \cap B_2$. Basta con tomar $B_3 = B_{j_0}$.

Teorema 1.8. Sea X un conjunto, $\mathcal{B} \subset \mathcal{P}(X)$ una familia de subconjuntos de X tal que:

- 1. $\forall x \in X, \exists B \in \mathcal{B} \ tal \ que \ x \in B$
- 2. $\forall B_1, B_2 \in \mathcal{B}, \ \forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B} : x \in B_3 \subset B_1 \cap B_2.$

Entonces existe en X una única topología T tal que \mathcal{B} es una base de T.

<u>Demostración</u>. La demostración consta de tres partes; primero demostramos que existe una topología, T, después se demuestra que \mathcal{B} es una base de esa topología T, y finalmente demostramos la unicidad de T.

Definimos $T=\{U\subset X: \forall x\in U, \exists B\in\mathcal{B} \text{ con } x\in B\subset U\}\cup\{\emptyset\}$. Veamos que es una topología:

- $\emptyset \in T$ por definición, y $X \in T$ por la propiedad 1.
- Sea $\{U_i\}_{i\in I} \subset T$. Si $U_i = \emptyset \ \forall i \in I$, entonces $\bigcup_{i\in I} U_i = \emptyset \in T$. Supongamos que $\bigcup_{i\in I} U_i \neq \emptyset$. Sea $x \in \bigcup_{i\in I} U_i \implies \exists i_0 \in I \text{ tal que } x \in U_{i_0}$. Como $U_{i_0} \in T, \exists B \in \mathcal{B} \text{ tal que } x \in B \subset U_{i_0} \subset \bigcup_{i\in I} U_i \implies \bigcup_{i\in I} U_i \in T$.

■ Sean $U_1, U_2 \in T$. Veamos que la intersección también pertenece a T. Si $U_1 \cap U_2 = \emptyset \implies U_1 \cap U_2 \in T$. Supongamos que $U_1 \cap U_2 \neq \emptyset$ Sea $x \in U_1 \cap U_2$. Entonces $x \in U_1$ y $x \in U_2 \implies \exists B_1, B_2 \in \mathcal{B}$ tales que $x \in B_1 \subset U_1$ y $x \in B_2 \subset U_2$, de donde $x \in B_1 \cap B_2 \subset U_1 \cap U_2 \implies U_1 \cap U_2 \in T$. Terminar la prueba por inducción para probar que $U_1 \cap \cdots \cap U_k \in T$.

Demostremos ahora que \mathcal{B} es base de T. Para ello, hay que comprobar que $\mathcal{B} \subset T$ y que todo $U \in T \setminus \{\emptyset\}$ es unión de elementos de \mathcal{B} .

- Sea $B \in \mathcal{B}$, $\forall x \in B$ se cumple que $x \in B \subset B$ (tomando U = B, trivialmente), de donde $\mathcal{B} \subset T$.
- Sea $U \in T, U \neq \emptyset$. Sea $x \in U \implies \exists B_x \in \mathcal{B}$ (por definición de T) tal que $x \in B_x \subset U \implies U = \bigcup_{x \in U} B_x \implies U$ es unión de elementos de B.

Por último, probaremos la unicidad de T. Sea T' otra topología en X, con $\mathcal B$ base de T'. Veamos que T=T'. Sea $U\in T\implies\exists\{B_i\}_{i\in I}\in\mathcal B$ tal que $U=\bigcup_{i\in I}B_i\implies U\in T'$. Por tan-

to, $T \subset T'$. Análogamente se prueba que $T' \subset T$, donde hemos usado que \mathcal{B} es base de T y de T'.

Ejemplos.

- 1. (Topología de Sorgenfrey o del límite inferior). \mathbb{R} . Sea $\mathcal{B} = \{[a,b) : a,b \in \mathbb{R}, a < b\}$. Tenemos que \mathcal{B} es base de una topología en \mathbb{R} , T_S , a la que llamaremos topología Sorgenfrey. Verificamos las dos propiedades del teorema anterior.
 - a) $\forall x \in \mathbb{R}, x \in [x, x+1) \in \mathcal{B}$
 - b) $B_1 = [a_1, b_1), B_2 = [a_2, b_2) \in \mathcal{B}$. Sea $x \in [a_1, b_1) \cap [a_2, b_2) \implies B_3 := [a_1, b_1) \cap [a_2, b_2) = [\max\{a_1, a_2\}, \min\{b_1, b_2\}) \implies \forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B} : x \in B_3 = B_1 \cap B_2.$
- 2. (Topología de Kuratowski). Se
a $k=\{\frac{1}{n}:n\in\mathbb{N}\}.$ Definimos:

$$\mathcal{B}_k = \underbrace{\{(a,b): a,b \in \mathbb{R}, a < b\}}_{\mathcal{B}_1} \cup \underbrace{\{(a,b) \setminus k: a,b \in \mathbb{R}, a < b\}}_{\mathcal{B}_2}$$

Entonces \mathcal{B}_k es una topología en \mathbb{R} . Comprobémoslo:

- a) $\forall x \in \mathbb{R}, (x-1,x+1) \in \mathcal{B}_1 \subset \mathcal{B}_k \text{ y } x \in (x-1,x+1).$
- b) Sean $B_1, B_2 \in \mathcal{B}_k$. Sin pérdida de generalidad, hay tres posibilidades:
 - 1) $B_1 = (a_1, b_1), B_2 = (a_2, b_2)$ En este caso, $x \in B_1 \cap B_2 = (\max\{a_1, a_2\}, \min\{b_1, b_2\}) \in \mathcal{B}_1 \subset \mathcal{B}_k$. Tomamos entonces $B_3 = B_1 \cap B_2$.
 - 2) $B_1 = (a_1, b_1), B_2 = (a_2, b_2) \setminus k$ En este caso,

$$x \in B_1 \cap B_2 = (a_1, b_1) \cap ((a_2, b_2) \cap k^c)$$

= $((a_1, b_1) \cap (a_2, b_2)) \cap k^c$
= $(\max\{a_1, a_1\}, \min\{b_1, b_2\}) \setminus k \in \mathcal{B}_2 \subset \mathcal{B}_k$

3) $B_1 = (a_1, b_1) \setminus k, B_2 = (a_2, b_2) \setminus k$ En este caso,

$$x \in B_1 \cap B_2 = ((a_1, b_1) \cap k^c) \cap ((a_2, b_2) \cap k^c)$$

= $(a_1, b_1) \cap (a_2, b_2) \cap k^c \in \mathcal{B}_2 \subset \mathcal{B}_k$

Por tanto, existe una única topología T_k en \mathbb{R} tal que \mathcal{B}_k es base de T_k .

Observación. Recordamos que las bolas abiertas en \mathbb{R} son base de la topología usual (T_u) . Llamaremos $\mathcal{B}_u = \{(a,b) : a,b \in \mathbb{R}, a < b\}$.

Proposición 1.1. Sea $X \neq \emptyset$. Sean T, T' topologías en $X, y \mathcal{B}, \mathcal{B}'$ bases de T, T', respectivamente. Son equivalentes:

- 1. $T \subset T'$
- 2. $\forall B \in \mathcal{B}, \ \forall x \in B, \exists B' \in \mathcal{B}' : x \in B' \subset B$

<u>Demostración.</u> $1 \implies 2$. Sean $B \in \mathcal{B}, x \in B \in \mathcal{B} \subset T \subset T'$.

Como $B \in T'$ y \mathcal{B}' es base de T', existe $B' \in \mathcal{B}'$ tal que $x \in B' \subset B$

 $2 \implies 1$. Sea $U \in T$. Queremos ver que $U \in T'$. Como \mathcal{B} es base de T, existe $\{B_i\}_{i \in I} \subset \mathcal{B}$ tal que $U = \bigcup_{i \in I} B_i$. Fijamos $i \in I$. Entonces, si $x \in B_i \in \mathcal{B}$, tenemos que existe $B'_x \in \mathcal{B}'$ tal que

$$x \in B_x' \subset B_i$$
 (por la condición), de donde $B_i = \bigcup_{x \in B_i} B_x' \in T' \implies U = \bigcup_{i \in I} B_i \in T'$.

Observación. Si $\mathcal{B} \subset \mathcal{B}'$, la condición 2 se cumple trivialmente. Si $B \in \mathcal{B}, x \in B \implies B \in \mathcal{B} \subset \mathcal{B}'$. Podemos tomar B' = B y $x \in B = B' \subset \mathcal{B} \implies T \subset T'$.

Propiedades.

- 1. $T_u \subset T_k$
- 2. $T_u \subset T_S$

Demostración.

- 1. Se sigue de $\mathcal{B}_u \subset \mathcal{B}_u \cup \mathcal{B}_2 = \mathcal{B}_1 \cup \mathcal{B}_2 = \mathcal{B}_k$
- 2. Sea B = (a, b), con a < b, un elemento de \mathcal{B}_u , y $x \in (a, b)$. Queremos encontrar $B' \in \mathcal{B}_S$ tal que $x \in B' \subset (a, b)$. Bastaría con tomar B' = [x, b) $(x \in [x, b) \subset (a, b))$.

Corolario 1.9. Sean $\mathcal{B}, \mathcal{B}'$ bases de T, T'. Son equivalentes:

- 1. T = T'
- 2. $\forall B \in \mathcal{B}, \ \forall x \in B, \exists B' \in \mathcal{B}' : x \in B' \subset B \ (T \subset T')$
- 3. $\forall B' \in \mathcal{B}', \ \forall x \in B', \exists B \in \mathcal{B} : x \in B \subset B' \ (T' \subset T)$

Lema 1.10. Si X es un conjunto, y $\{T_i\}_{i\in I}$ es una familia de topologías en X, entonces

$$T = \bigcap_{i \in I} T_i = \{ U \in X : U \in T_i \ \forall i \in I \}$$

es una topología en X.

Demostración. Comprobemos las propiedades que tiene una topología:

- 1. $\emptyset, X \in T_i \ \forall i \in I \implies \emptyset, X \in T$.
- $2. \ \{U_j\}_{j \in J} \subset T \implies U_j \in T \ \forall j \in J \implies U_j \in T_i \ \forall i \in I, \ \forall j \in J \implies \bigcup_{j \in J} U_j \in T_i \ \forall i \in J \implies U_j \in T_i \ \forall i \in J$

$$I \implies \bigcup_{j \in J} U_j \in T.$$

3. $U_1, \ldots, U_k \in T \implies U_1, \ldots, U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \implies U_1 \cap \cdots \cap U_k \in T_i \ \forall i \in I \ \Rightarrow U_1 \cap \cdots \cap U_k \cap$

Proposición 1.2. Sea $S \subset \mathcal{P}(X)$. Definimos T(S) como $T(S) = \bigcap \{T : T \text{ es una topología }, S \subset T\}$. Entonces

- \blacksquare T(S) es una topología que contiene a S
- Si T' es otra topología que contiene a S, entonces $T(S) \subset T'$

Se le llama topología generada por S.

Llamando
$$T(S)=T$$
, tenemos $S\subset T(S)$. Si T' es otra topología que contiene a S , entonces $T'\in I\implies T(S)=\bigcap_{\tilde{T}\subset I}\tilde{T}\subset T'$.

Definición 1.11. $S \subset \mathcal{P}(X)$ es una subbase de la topología T si las intersecciones finitas de elementos de S forman una base, que llamaremos $\mathcal{B}(S)$, de la topología T.

Si S es subbase de T, entonces $U \in T \implies U = \bigcup_{i \in I} B_i, B_i \in \mathcal{B}(S)$ y $B_i = S_1^i \cap \cdots \cap S_{k(i)}^i$, con $k(i) \in \mathbb{N}$ depende de B_i .

Ejemplos.

- 1. Sea $S = {\emptyset, A, X}$. Entonces $\mathcal{B}(S) = {\emptyset, A, X}$
- 2. Sea $S = \{\emptyset, A, B, X\}$. Entonces $\mathcal{B}(S) = \{\emptyset, A \cap B, A, B, X\}$.

Proposición 1.3. Sea $S \subset \mathcal{P}(X)$ tal que, para todo $x \in X$, existe $V \in S$ tal que $x \in V$, $(X = \bigcup_{V \in S} V)$. Entonces S es una subbase de T(S).

<u>Demostración.</u> Definimos $\mathcal{B} = \{\bigcap_{i \in I} V_i : V_i \in S_1, I \text{ finito}\}.$ Veamos que:

- 1. \mathcal{B} es base de una topología T en X.
- 2. T = T(S):
- 1. a) Tenemos que $\forall x \in X, \exists V \in S : x \in V$. Como $S \subset \mathcal{B}, V \in \mathcal{B}$. Podemos poner esto como: $\forall x \in X \exists V \in \mathcal{B} : x \in V$.
 - b) Sean $B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2$. Tenemos que $B_1 = V_1^1 \cap \cdots \cap V_{k(1)}^1$ y $B_2 = V_2^2 \cap \cdots \cap V_{k(2)}^2$, con $V_j^1, V_j^2 \in S$. De aquí obtenemos que $B_1 \cap B_2 = \left(V_1^1 \cap \cdots \cap V_{k(1)}^1\right) \cap \left(V_1^2 \cap \cdots \cap V_{k(2)}^2\right) \in \mathcal{B}$ (por ser intersección finita de elementos de S.

Tomando $B_3 = B_1 \cap B_2$, tomamos $x \in B_3 \in \mathcal{B}$. Llamamos T a la topología que tiene a \mathcal{B} como base.

2. T contiene a \mathcal{B} y S está contenido en \mathcal{B} . Entonces $S \subset \mathcal{B} \subset T$, de donde $T(S) \subset T$.

Por último, veamos que $T \subset T(S)$. Sea $U \in T \implies \exists \{B_i\}_{i \in I} \subset B : U = \bigcup_{i \in I} B_i$. Cada $B_i = V_1^i \cap \cdots V_{k(i)}^i$, entonces $U = \bigcup_{i \in I} \left(V_1^i \cap \cdots \cap V_{k(i)}^i\right)$. Como $S \subset T(S)$, $\forall i \in I$,

 $V_1^i, \ldots, V_{k(i)}^i \in S \subset T(S)$, de donde $B_i = V_1^i \cap \cdots \cap V_{k(i)}^i \in T(S) \implies U \in T(S)$. Así obtenemos que $T \subset T(S)$, y, finalmente, T = T(S).

2. Entornos. Interior y clausura de un conjunto

Definición 2.1 (Entorno). Sea (X,T) un espacio topológico y $x \in X$. Diremos que U es entorno de x si existe un conjunto abierto $A \in \mathcal{T}$ tal que $x \in A \subset U$.

Definición 2.2. Dados $(X,T), x \in X$, llamaremos N_x a la familia de entornos de x.

Propiedades.

- 1. $N_x \neq \emptyset$, ya que $X \in N_x$.
- 2. Si $U \in \mathcal{T}$ y $x \in U \implies U \in N_x$ (los conjuntos abiertos que contienen a x son entorno de x).

Definición 2.3. Sean (X,T) un espacio topológico y $x \in X$. Diremos que $\mathcal{B}_x \subset \mathcal{P}(X)$ es base de entornos de x si:

- i) $\mathcal{B}_x \subset N_x$
- ii) $\forall U \in N_x, \exists B \in \mathcal{B}_x : B \subset U.$

Ejemplos.

- 1. $(X, T_D), x \in X \implies N_x = \{U \subset U : x \in U\}$, además, $\mathcal{B}_x = \{\{x\}\}$ es base de entornos de x, ya que $\mathcal{B}_x \subset N_x$ claramente, y si $V \in N_x \implies x \in V \implies B := \{x\} \subset V$
- 2. Sea (X, d) un espacio métrico, y T_d la topología asociada. Sea $x \in X$. Entonces $\mathcal{B}_x = \{B(x, r) : r > 0\}$ es base de entornos de x.

Sea
$$V \in N_x \implies \exists U \in T_d : x \in U \subset V \implies \exists r > 0 : B := B(x,r) \subset U \subset V.$$

3. Las bolas cerradas $\overline{B}(x,r), r>0$ son entorno de x. Definimos

$$\overline{\mathcal{B}}_x = \{ \overline{B}(x,r) : r > 0 \}$$

¿Es $\overline{\mathcal{B}}_x$ base de entornos de x?

Sea
$$V \in N_x \implies \exists U \in T_d : x \in U \subset V \implies \exists r > 0 : B := \overline{B}(x, \frac{r}{2}) \subset B(x, r) \subset U \subset V$$
. Por tanto sí es base de entornos.

4. Sea $\{r_i\}_{i \in \mathbb{N}}$ una sucesión de radios que converge a $0 \ (\forall \varepsilon > 0 \exists i_0 \in \mathbb{N} : 0 < r_i < \varepsilon \ \forall i \geq i_0)$. Entonces

$$\mathcal{B}(\{r_i\}_{i\in\mathbb{N}}) = \{B(x, r_i) : i \in \mathbb{N}\}\$$

es base de entornos de x. En particular, $\{B(x, \frac{1}{i}) : i \in \mathbb{N}\}$ es base de entornos de x.

Sea
$$V \in N_x \implies \exists U \in T_d : x \in U \subset V \implies \exists r > 0 : B(x,r) \subset U \subset V \implies \exists i_0 \in \mathbb{N} : r_{i_0} < r \implies B := B(x,r_{i_0}) \subset B(x,r) \subset U \subset V.$$

Lema 2.4. Sea (X,T) un espacio topológico, $x \in X$. Entonces:

- 1. $x \in V \ \forall V \in N_x$
- 2. Si $V_1, V_2 \in N_x$, entonces $V_1 \cap V_2 \in N_x$
- 3. Si $V \in N_x$ y $V \subset U$, entonces $U \in N_x$
- 4. Si $V \in N_x, \exists U \in N_x$ tal que $U \subset V$ y $U \in N_y \ \forall y \in U$

Demostración.

- 1. Es obvio
- 2. Si $V_1, V_2 \in N_x \implies \exists U_1, U_2 \in \mathcal{T} : x \in U_1 \subset V_1, x \in U_2 \subset V_2$. Entonces $\mathcal{T} \ni x \in U_1 \cap U_2 \subset V_1 \cap V_2$, de donde $V_1 \cap V_2 \in N_x$.
- 3. Si $V \in N_x \implies \exists W \in \mathcal{T} : x \in W \subset V \subset U$, y por tanto, $U \in N_x$.

4. Si $V \in N_x$, existe $W \in \mathcal{T} : x \in W \subset V$. Tomamos entonces U = W (ya sabemos que $U \in N_y \ \forall y \in U$). U es entorno de cada uno de sus puntos.

Definición 2.5 (Punto interior). Sea (X,T) un espacio topológico, $A \subset X, A \neq \emptyset$. Diremos que $x \in X$ es un punto interior de A si existe $U \in N_x$ tal que $U \subset A$.

Definición 2.6 (Punto adherente). Sea (X,T) un espacio topológico, $A \subset X, A \neq \emptyset$. Diremos que $x \in X$ es un punto adherente de A si para todo $U \in N_x$, se tiene que $U \cap A \neq \emptyset$.

Definición 2.7 (Punto frontera). Sea (X,T) un espacio topológico, $A \subset X, A \neq \emptyset$. Diremos que $x \in X$ es un punto frontera si, para todo $U \in N_x$, se tiene que $U \cap A \neq \emptyset$ y $U \cap A^c \neq \emptyset$.

Observación. Todo punto frontera es adherente, y los puntos interiores no son puntos frontera.

Definición 2.8 (Punto de acumulación). Sea (X,T) un espacio topológico, $A \subset X, A \neq \emptyset$. Diremos que $x \in X$ es un punto de acumulación de A si $\forall U \in N_x$, se cumple que $(U \setminus \{x\}) \cap A \neq \emptyset$.

Definición 2.9 (Punto aislado). Sea (X,T) un espacio topológico, $A \subset X$, $A \neq \emptyset$. Diremos que $x \in X$ es un punto aislado de A si $\exists U \in N_x$ tal que $U \cap A = \{x\}$.

Definición 2.10 (Punto exterior). Sea (X,T) un espacio topológico, $A \subset X$, $A \neq \emptyset$. Diremos que $x \in X$ es un punto exterior de A si x es un punto interior de A^c ($\exists U \in N_x : U \subset A^c$).

Sea $A \subset X$. Denotaremos por:

- $\operatorname{int}(A) \equiv \mathring{A} \equiv \{ \text{puntos interiores de } A \} \equiv \operatorname{interior de } A,$
- $cl(A) \equiv \bar{A} \equiv \{\text{puntos adherentes de } A\} \equiv \text{clausura o adherencia de } A,$
- $\operatorname{fr}(A) \equiv \delta A \equiv \{ \text{puntos frontera de } A \} \equiv \text{frontera de } A,$
- $A' \equiv \{\text{puntos acumulación de } A\} \equiv \text{conjuntos de puntos de acumulación de } A,$
- \bullet ais $(A) \equiv \{\text{puntos aislados de } A\} \equiv \text{conjunto de puntos aislados de } A,$
- $\operatorname{ext}(A) \equiv \{\text{puntos exteriores de } A\} \equiv \text{conjunto de puntos exteriores de } A.$

Propiedades.

- 1. Sea (X,T) un espacio topológico, y $A\subset X, A\neq\emptyset$. Se cumple entonces $\mathring{A}\subset A\subset \bar{A}.$ Veámoslo:
 - $\mathring{A} \subset A$. Sea $x \in \mathring{A} \implies \exists U \in N_x : x \in U \subset A \implies x \in A$.
 - $A \subset \bar{A}$. Sea $x \in A \implies \forall U \in N_x, U \cap A \supset \{x\} \neq \emptyset \implies U \cap A \neq \emptyset$.
- 2. $\mathring{A} \in \mathcal{T}$. Además, si $U \in \mathcal{T}$ y $U \subset A$, entonces $U \subset \mathring{A}$ (es decir, \mathring{A} es el mayor conjunto abierto contenido en A).

Demostración. $\mathring{A} \in \mathcal{T}$. Si $\mathring{A} = \emptyset$, entonces $\mathring{A} \in \mathcal{T}$. Si $\mathring{A} \neq \emptyset$, tomamos $x \in \mathring{A}$. Entonces $\exists U \in N_x : U \subset A \implies \exists V \in N_x$, con $V \subset U$ tal que $U \in N_y \ \forall y \in V$. De aquí, y de $U \subset A$, obtenemos que $y \in \mathring{A} \ \forall y \in V$, y, por tanto, $N_x \ni V \subset \mathring{A} \implies \exists W_x \in \mathcal{T} : x \in N_x \subset V \subset \mathring{A}$. Finalmente, $\mathring{A} = \bigcup_{x \in \mathring{A}} W_x \in \mathcal{T}$. Para probar la segunda parte: sea $U \in \mathcal{T} : U \subset A$. Si $x \in U$,

como $U \in N_x$, $\Longrightarrow x \in \mathring{A}$, ya que $x \in U \subset A$. Entonces, $U \subset \mathring{A}$.

3. $\bar{A} \in C_T = \{\text{conjuntos cerrados en } (X,T)\}$. Además, si $F \in C_T$ y $A \subset F$, entonces $\bar{A} \subset F$ (es decir, la clausura de A es el menor conjunto cerrado que contiene a A).

<u>Demostración.</u> $\bar{A} \in C_T$. Para probarlo, veamos que $\bar{A}^c = X \setminus \bar{A} \in \mathcal{T}$. Sea $x \in X \setminus \bar{A} \iff x \notin \bar{A} \iff \exists U \in N_x : U \cap A = \emptyset \iff U \subset X \setminus A \iff x \in \operatorname{int}(X \setminus A)$. Por tanto, $X \setminus \bar{A} = \operatorname{int}(X \setminus A)$. Como $\operatorname{int}(X \setminus A)$ es abierto, $X \setminus \bar{A}$ también, y entonces, $\bar{A} \in C_T$.

3. Axiomas de separación y numerabilidad

Definición 3.1 (Propiedad T_1). Diremos que un espacio topológico (X,T) es T_1 si $\forall x,y \in X, x \neq y, \exists V_x \in N_x, V_y \in N_y$ tales que $x \notin V_y$ y $y \notin V_x$.

Propiedad. (X,T) es $T_1 \iff$ todo punto de X es cerrado.

Demostración.

 \Longrightarrow). Supongamos que (X,T) es T_1 . Fijamos $x\in X$. Veamos que $\{x\}$ es cerrado comprobando que $X\setminus\{x\}$ es abierto. Para ello, vemos que $\operatorname{int}(X\setminus\{x\})=X\setminus\{x\}$. Sea $y\in X\setminus\{x\}$ \Longrightarrow $y\neq x$. Como (X,T) es T_1 , $\exists V_x\in N_x, V_y\in N_y$ tales que $x\notin V_y$ y $y\in V_x$. Como $x\notin V_y$, $\{x\}\cap V_y=\emptyset$ \Longrightarrow $V_y\subset X\setminus\{x\}$ \Longrightarrow $y\in\operatorname{int}(X\setminus\{x\})$.

Hemos probado así que $X \setminus \{x\} \subset \operatorname{int}(X \setminus \{x\}) \implies X \setminus \{x\} = \operatorname{int}(X \setminus \{x\}) \implies X \setminus \{x\} \in \mathcal{T} \implies \{x\} \in C_T$.

 \iff). Supongamos que todo punto de X es cerrado. Veamos que (X,T) es T_1 . Para ello, tomamos $x,y\in X, x\neq y$. Por hipótesis, $\{x\}$ es cerrado $\implies X\backslash\{x\}\in \mathcal{T}$. Como $y\neq x,y\in X\backslash\{x\}$. Como $X\backslash\{x\}$ es abierto, coincide con un interior $\implies \exists V_y\in N_y$ tal que $V_y\subset X\backslash\{x\}\implies x\notin V_y$.

Definición 3.2. (X,T) es T_2 (o Hausdorff) si $\forall x,y \in X, x \neq y, \exists V_x \in N_x, V_y \in N_y$ tales que $V_x \cap V_y = \emptyset$.

Observación.

- 1. Todo espacio T_2 es T_1 .
- 2. En un espacio T_2 , todo punto es cerrado.

Ejemplos.

1. (\mathbb{N}, T_{CF}) es T_1 pero no es T_2 (es T_1 porque todo punto es cerrado, pero ya vimos que no es T_2).

Definición 3.3. Diremos que (X,T) verifica el primer axioma de numerabilidad, o que es AN-I, si cada punto de X admite una base de entornos numerable.

Definición 3.4. Diremos que (X,T) verifica el segundo axioma de numerabilidad, o que es AN-II, si T admite una base numerable.

Ejemplos.

1. Sea (X, T_D) un espacio topológico discreto. Consideremos la base de entornos $\mathcal{B}_x = \{\{x\}\},\$ entonces (X, T_D) es AN-I. Si X es no numerable, entonces (X, T_D) no es AN-II. Veámoslo.

Sea $\mathcal B$ una base de T. Si $x \in X \implies \{x\} \in T_D \implies \{x\} = \bigcup_{i \in I} B_i$, con $B_i \in \mathcal B \implies$

 $\exists B_{i_0} : x \in B_{i_0} \subset \bigcup_{i \in I} B_i = \{x\}$. Además se tiene que $\{x\} \subset B_{i_0}$. De aquí, deducimos que $B_{i_0} = \{x\} \implies \{x\} \in \mathcal{B}$.

En conclusión, $\{\{x\}: x \in X\} \subset \mathcal{B}$, y como el primer conjunto no es numerable, deducimos que \mathcal{B} tampoco lo es.

Lema 3.5. Si \mathcal{B} es base de T, entonces

$$\mathcal{B}(x) = \{ B \in \mathcal{B} : x \in B \}$$

es base de entornos abiertos de x para todo $x \in X$.

Demostración.

- 1. $\mathcal{B}(x) \subset N_x$ (los elementos de $\mathcal{B}(x)$ son conjuntos abiertos que contienen a x.
- 2. Sea $U \in N_x \implies \exists A \in T : x \in A \subset U$. Como $A \in T$, existe una familia $\{B_i\}_{i \in I} \subset \mathcal{B}$ tal que $A = \bigcup_{i \in I} B_i \implies \exists i_0 \in I : x \in B_{i_0} \subset A \subset U$, y entonces $B_{i_0} \in \mathcal{B}(x)$, $B_{i_0} \subset U$.

Corolario 3.6. Si(X,T) es AN-II, entonces es AN-I.

<u>Demostración.</u> Sea \mathcal{B} base numerable de $T, x \in X \implies \mathcal{B}(x) \subset \mathcal{B}$. Por tanto, $\mathcal{B}(x)$ es numerable.

Ejemplos.

1. Sea (X, d) un espacio métrico. Sea

$$\mathcal{B}_x = \{ B(x, \frac{1}{n}) : n \in \mathbb{N} \}$$

que es base de entornos numerable de x. Entonces, todo espacio métrico es AN-I.

2. (\mathbb{R}, T_u) es AN-II. El conjunto

$$\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}\$$

es numerable. Veamos que es base de T_u . Sea $A \in T_u$. Sea $x \in A \implies \exists m_1, m_2 \in \mathbb{R}$ tales que $x \in (m_1, m_2) \subset A$. Sabemos que existen $a_x, b_x \in \mathbb{R}$ tales que $m_1 < a_x < x < b_x < m_2$. Entonces $x \in (a_x, b_x) \subset (m_1, m_2) \subset A$. De aquí, $A = \bigcup_{x \in A} (a_x, b_x) \implies A$ es unión de elementos de \mathcal{B} . Es decir, \mathcal{B} es base numerable de T_u

4. Ejercicios y problemas

- 1. Dado un espacio topológico (X,T), ¿existe una distancia en d tal que $T_{\rm d}=T$? En general, no.
- 2. ¿Cuándo coinciden T_t y T_D ? Solo si $X = \{p\}$.
- 3. ¿Cuántas topologías hay en un conjunto con un elemento? $T = \{\emptyset, X\}$
- 4. ¿Cuántas topologías hay en un conjunto con dos elementos?
- 5. ¿Cuántas topologías hay en un conjunto con tres elementos?
- 6. Si X es finito, ¿coincide T_{CF} con otra topología conocida? Sí, $T_{CF} = \mathcal{P}(X) = T_D$.
- 7. Si X es infinito, ¿es (X, T_{CN}) metrizable?
 - Si X es numerable $\implies T_{CN} = T_D$ es metrizable usando la distancia discreta.
 - Si X no es numerable \implies (X, T_{CN}) no es Hausdorff.
- 8. Sea $X \neq \emptyset$, sean $A \subset X$. Definimos $T(A) = \{U \subset X : A \subset U\} \cup \{\emptyset\}$. Probar que T(A) es una topología en X. ¿Es (X, T(A)) es Hausdorff?

Solución

- $\emptyset \in T(A)$ por definición. $A \subset X \implies X \in T(A)$.
- $\{U_i\}_{i\in I} \subset T(A)$, entonces, dado $i\in I$, o bien $A\subset U_i$, o $U_i=\emptyset$. Supongamos que $U_i=\emptyset \ \forall i\in I$, entonces $\bigcup_{i\in I} U_i=\emptyset\in T(A)$.

Supongamos ahora que $\exists i_0 \in I$ tal que $U_{i_0} \neq \emptyset$. Entonces $A \subset U_{i_0} \subset \bigcup_{i \in I} U_i$, y entonces

$$\bigcup_{i\in I} U_i \in T(A).$$

- Sean $U_1, \ldots, U_k \in T(A)$. Entonces, si algún $U_i = \emptyset, U_1 \cap \cdots \cap U_k = \emptyset \in T(A)$. Si ningún $U_i = \emptyset \implies A \subset U_i \ \forall i \in \{1, \ldots, k\} \implies A \subset U_1 \cap \cdots \cap U_k \implies U_1 \cap \cdots \cup U_k \in T(A)$.
- 9. Sea (X, d) un espacio métrico. Sea $r_0 > 0$. Definimos $B_{r_0} = \{B(x, r) : x \in X, 0 < r < r_0\}$. Probar que B_{r_0} es base de $T_d \ \forall r_0 > 0$.
- 10. Probar que:
 - a) $T_u \neq T_k$
 - b) $T_u \neq T_S$
 - c) $T_k \not\subset T_S$
 - d) $T_S \not\subset T_k$
- 11. Sea $S \subset \mathcal{P}(X)$. ¿Existe T, topología en X tal que $S \subset T$?

Solución

Sí, la topología discreta satisface esa propiedad.

- 12. \mathbb{R}^2 , $\alpha \in \mathbb{R}$. Consideremos el conjunto $U_{\alpha} = \{(x,y) \in \mathbb{R}^2 : y > \alpha\}$. Entonces, si $\beta > \alpha \implies U_{\beta} \subset U_{\alpha}$. Probar:
 - a) el conjunto $T = \{U_{\alpha} : \alpha \in \mathbb{R}\} \cup \{\emptyset, R^2\}$ es una topología en \mathbb{R}^2 .
 - b) $T \subset T_u \circ T_u \subset T$.
 - c) ¿Es (\mathbb{R}^2, T) Hausdorff?
 - d) Describir C_T .

Solución

- a) Comprobemos las propiedades que cumple una topología:
 - La primera es cierta.

• $\{V_i\}_{i\in I} \in \mathcal{T}$. Si algún $V_i = \emptyset$, los eliminamos de la familia (la unión no cambia). Si algún $V_i = \mathbb{R}^2 \implies \bigcup_{i\in I} V_i = \mathbb{R}^2 \in \mathcal{T}$. Podemos suponer entonces que $V_i = U_{\alpha(i)} \ \forall i \in I$. Entonces

$$\bigcup_{i \in I} V_i = \bigcup_{i \in I} U_{\alpha(i)} = \mathcal{R} \times (M, +\infty) = \begin{cases} \mathbb{R}^2 & \text{si } M = -\infty \\ U_M & \text{si } M \in \mathbb{R} \end{cases}$$

Sea $M = \inf\{\alpha(i) : i \in I\} = \begin{cases} -\infty \\ a \in \mathbb{R} \end{cases}$. En cualquiera de los casos, $\bigcup_{i \in I} V_i \in \mathcal{T}$.

• $V_1, \ldots, V_k \in \mathcal{T}$. Si algún $V_i = \emptyset$, entonces $V_1 \cap \cdots \cap V_k = \emptyset \in \mathcal{T}$. Si $V_i \neq \emptyset \ \forall i = 1, \ldots, k$ y algún $V_i = \mathbb{R}^2$, lo eliminamos de la familia (no cambia la intersección). Supongamos entonces que $V_i = U_{\alpha(i)}, i = 1, \ldots, k$. Sea $N = \max\{\alpha(1), \ldots, \alpha(k)\}$. Entonces

$$V_1 \cap \cdots \cap V_k = U_{\alpha(1)} \cap \cdots \cap U_{\alpha(k)} = \mathbb{R} \times (N, +\infty) = U_N$$

b) Sea $(x,y) \in U_{\alpha} \implies y > \alpha$. Sea $r = y - \alpha > 0$. Entonces, $B_2((x,y),r) \subset U_{\alpha}$ (B_2 es bola euclídea). Sea $(x',y') \in B_2((x,y),r)$, o sea, $\sqrt{(x-x')^2 + (y-y')^2} < r$, por lo que

$$(y - y')^2 \le (x - x')^2 + (y - y')^2 < r^2 \implies y - y' \le |y - y'| < r \implies y' > y - r = \alpha$$

Por tanto $(x', y') \in U_{\alpha}$ y $T \subset T_u$.

Veamos ahora que $T_u \not\subset T$. Consideramos la bola $B_2((0,0),1) \in T_u$. Sin embargo, $B_2((0,0),1) \neq \emptyset, \mathbb{R}^2, U_\alpha \ \forall \alpha \in \mathbb{R}$, por tanto $T_u \not\subset T$.

- c) No, porque dos conjuntos abiertos siempre se cortan. Es decir, sean $\alpha < \beta$. Entonces $U_{\beta} \subset U_{\alpha} \implies U_{\beta} \cap U_{\alpha} \neq \emptyset$.
- d) $C_T = \{ \mathbb{R} \times (-\infty, \alpha] : \alpha \in \mathbb{R} \} \cup \{\emptyset, \mathbb{R}^2 \}$
- 13. $X \neq \emptyset, x_0 \in X$. Sea $C = \{F \subset X : x \in F\} \cup \{F \subset X : F \text{ finito}\}$. Probar que existe una única topología T en X tal que $C_T = C$.

Solución

Si C verifica

- C1. $\emptyset, T \in C$
- C2. $\{F_i\}_{i\in I}\subset C\implies \bigcup_{i\in I}F_i\in C$
- C3. $F_1, \ldots, F_k \in C \implies F_1 \cup \cdots \cup F_k \in C$

entonces $T = \{X \mid F : F \in C\}$ es la única topología en X tal que $C_T = C$.

- C1. $x_0 \in X \implies X \in C$. \emptyset finito $\implies \emptyset \in C$.
- C2. $\{F_i\}_{i\in I}: F_i\in C\ \forall i\in I.$ Si algún F_i es finito, la intersección es finita, por lo que $\bigcap_{i\in I}F_i\in C.$

Si ningún F_i es finito, entonces $x_0 \in F_i \ \forall i \in I \implies x_0 \in \bigcap_{i \in I} F_i \implies \bigcap_{i \in I} F_i \in C$.

C3. Sean $F_1, \ldots, F_k \in C$. Si F_i es finito $\forall i \in I$, entonces $F_1 \cup \cdots \cup F_k$ es finito y entonces $F_1 \cup \cdots \cup F_k \in C$. Si algún F_{i_0} no es finito, sea $x_0 \in F_{i_0}$. Entonces $x_0 \in F_1 \cup \cdots \cup F_k \implies F_1 \cup \cdots \cup F_k \in C$.

Por tanto, $T = \{U \subset X : U^c \in C\} = \{U \subset X : x_0 \notin U\} \cup \{U \subset X : U^c \text{ finito}\} \supset T_{CF}$.