Physics Graph

Ben Payne

Derivation

"Given $\omega = 2\pi f$ and $T = \frac{1}{f}$, then $\omega = \frac{2\pi}{T}$."

What steps show this derivation? -

Angular and linear frequency are related by $\omega=2\pi f$ Period and linear frequency are related by $T=\frac{1}{f}$

$$T = \frac{1}{f}$$

Invert both sides of equation 2

$$\frac{1}{T} = f$$

Substitute equation 3 into equation 1 $\omega = \frac{2\pi}{T}$

$$\omega = \frac{2\pi}{T}$$

Graph representation of Derivation

Statements are nodes on a graph

Angular and linear frequency are related by

$$\omega = 2\pi f$$

Period and linear frequency are related by

$$T = \frac{1}{f}$$

Invert both sides of equation 2

$$\frac{1}{T} = f$$

Substitute equation 3 into equation 1

$$\omega = \frac{2\pi}{T}$$

Problem: Graph isn't helpful since the steps aren't atomic

→ Need a second type of node describing steps between statements

Derivation of frequency relations

Benefits and Costs

- Use graph as teaching aid
- Large number of work-hours to build graph, but it only needs to be done once
- Can we describe all of physics using a graph?
 - Standardized notation is needed
- How many inference rules are there?
 - Caveat: Godel's incompleteness theorem
- Has a project of this scope been completed before?
 - Donald Knuth's Tex for type-setting

