Problem 1. Prove that, given any set C and a point $x \in C$, the normal cone $N_c(X) = \{g : G^T x \ge g^T y, \forall y \in C\}$ is a convex set (C not necessarily convex)

Solution. Write here the solution of the first homework problem. \blacksquare

Problem 2. Prove that for any set C (convex or not), its support function $I_C^*(x) = \max_{y \in C} x^T y$ is a convex function.

Solution. Write here the solution of the second homework problem.

Problem 3. Consider a closed set defined by $C = \{(x,y)|y \geq \frac{1}{1+x^2}\}$ where $(x,y) \in \mathbb{R}^2$

- 1. Is the set C convex? (Hint: you can draw the set C on the plane to explain your answer.)
- 2. Is the convex hull of set C also a closed set? You can also explain your answer by the plot.

Solution.

1.

2.

Problem 4. Adapt the proof of log-determinant function to show that $f(x) = tr(X^{-1})$ is convex on $dom f = S_{++}^n$

Solution.

Problem 5. 1. $f(x_1, x_2) = \frac{1}{x_1 x_2}$ on \mathbb{R}^2_{++} is convex.

2. $f(x_1, x_2) = \frac{x_1}{x_2}$ on $\mathbb{R} \times \mathbb{R}^2_{++}$ is convex.

Solution.

Problem 6. Prove that $\log(\frac{e^x}{1+e^x})$ on \mathbb{R} is concave.

Solution.

Problem 7. Prove that, by applying Jensen's inequality, an arithmetic mean is greater than or equal to its geometric mean, i.e., $(\prod_{i=1}^n x_i)^{1/n} \leq \frac{1}{n} \sum_{i=1}^n x_i$ where $\mathbf{x} \in \mathbb{R}_{++}^{\times}$

Solution.

Problem 8. Prove that $\frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1$

Solution.

Problem 9. Show that the following function f(x) is convex:

$$f(x) = x^T (A(x))^{-1} x$$
, $dom f = \{x | A(X) > 0\}$

Solution.

Problem 10. Prove that the maximum eigenvalue of a symmetric matrix is convex.

Solution.

Problem 11. Let $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbb{R}^n , where $|x|_{[i]}$ is the i-th largest component of teh absolute value of |x|, and $r \leq n$ is a positive number.

- 1. Prove that f(x) is convex.
- 2. Show that $f(x) = \min_{t} rt + \sum_{i=1}^{n} \max(0, |x_i t|)$

Solution.

Problem 12. Let $f(\lambda) = \mathbf{x}^T D(\lambda)(D(\lambda) + \mathbf{I})^{-1}\mathbf{x} - \mathbf{I}^T \lambda$ on \mathbb{R}^n_+ , where $D(\lambda)$ is a diagonal matrix and $\mathbf{I}^T = [1, 1, ..., 1]$.

- 1. Prove that $f(\lambda)$ is concave.
- 2. Find the optimal value of $f(\lambda)$.

Solution.

Problem 13. Is the function $f(x) = ln(1 + \frac{x^2}{2\tau_0^2})$, where $\tau_0 > 0$, convex?

Solution.

Problem 14. 1. Determine whether or not $\sqrt{x_1x_2}$ is convex on \mathbb{R}^2_{++} .

2. Determine whether or not $g(\mathbf{y}) = \max_{x \in \mathbb{R}_{++2}} x_1 y_1 + x_2 y_2 - \sqrt{x_1 x_2}$ is convex on \mathbb{R}^2

Solution.