Solution to computer exam in Bayesian learning

Per Siden 2020-06-04

First load all the data into memory by running the R-file given at the exam

```
rm(list=ls())
source("ExamData.R")
set.seed(1)
```

Problem 1

1b

Posteriors


```
ProbA <- pbeta(0.5,x+1,51-x)
ProbB <- sum(postB[thetaGrid<=0.5]*gridstep)
print(ProbA)</pre>
```

1c

```
## [1] 0.01204645
```

print(ProbB)

[1] 0.0163567

The probability is 0.012 under prior A and 0.016 under prior B.

Problem 2

2a

```
library(mvtnorm)

y <- as.vector(titanic[,1])
X <- as.matrix(titanic[,-1])
covNames <- names(titanic)[2:length(names(titanic))]
nPara <- dim(X)[2]

# Setting up the prior
tau <- 50
mu <- as.vector(rep(0,nPara)) # Prior mean vector

nIter = 1000
betaSample <- BayesProbReg(y, X, mu, tau, nIter)
par(mfrow=c(3,2))
for(i in 1:5){
   hist(betaSample[,i], 50, freq=FALSE,
        main = paste('Posterior of',covNames[i],'beta'), xlab = paste0('beta_',i))
}</pre>
```

Posterior of intercept beta

2; 0.4 0.6 0.8 1.0 beta_1

Posterior of adult beta

Posterior of man beta

Posterior of class1 beta

Posterior of class2 beta

2b

The posterior median is the optimal estimator under linear loss function (see Slides Lecture 4)

```
medians <- apply(betaSample,2,median)
names(medians) <- covNames
print(medians)

## intercept adult man class1 class2
## 0.7624990 -0.5723066 -1.4225862 1.0229195 0.3907436

2c

postProb = mean(betaSample[,2]+betaSample[,5]>0)
print(postProb)
```

[1] 0.144

The probability is roughly 0.13 which is the probability that an adult travelling in 2nd class is more likely to survive than another type of passenger.

Problem 3

3a

```
y \leftarrow matrix(c(5,3,17,8),4,1)
x \leftarrow matrix(log(c(20,20,50,40)),4,1)
library("mvtnorm")
LogPostPoisson <- function(beta,y,x){</pre>
  linPred <- x*beta
  logLik <- sum(dpois(y, exp(linPred), log = TRUE))</pre>
  if (abs(logLik) == Inf) logLik = -20000;
  logPrior <- dnorm(beta, 1, 0.1, log=TRUE);</pre>
  # logPrior <- dnorm(beta, 0,100, log=TRUE);</pre>
  return(logLik + logPrior)
}
initVal <- 0
OptimResults<-optim(initVal,LogPostPoisson,gr=NULL,y,x,method=c("BFGS"),</pre>
                      control=list(fnscale=-1),hessian=TRUE)
postMode <- OptimResults$par</pre>
postStd <- sqrt(-solve(OptimResults$hessian))</pre>
mean <- round(postMode,digits=2)</pre>
std <- round(postStd,digits=2)</pre>
print(paste("Mean: ",mean))
## [1] "Mean: 0.69"
print(paste("Sd: ",std))
```

[1] "Sd: 0.04"

The posterior mean and standard deviation are reported above.

3b

Simulate from the predictive posterior of y_5 by first sampling from the posterior of β and then from the likelihood given the two values of x.

```
loss <- function(y,x){</pre>
  return(4+0.02*exp(x)-sqrt(y))
expectedLoss <- function(xtest,nSamples){</pre>
  betaSim <- rnorm(nSamples,postMode,postStd)</pre>
  linPred <- xtest*betaSim</pre>
  ySim <- rpois(nSamples,exp(linPred))</pre>
  return(mean(sapply(ySim,loss,x=xtest)))
}
nSamples = 10000
xgrid = log(c(20,40))
EL = c()
for(i in 1:length(xgrid)){
  EL[i] <- expectedLoss(xgrid[i],nSamples)</pre>
print(paste('Spending',exp(xgrid[1]),'leads to expected loss:',round(EL[1],2)))
## [1] "Spending 20 leads to expected loss: 1.64"
print(paste('Spending',exp(xgrid[2]),'leads to expected loss:',round(EL[2],2)))
```

[1] "Spending 40 leads to expected loss: 1.28"

The computed expected loss is lower when spending 40 million, so this is how much the country should spend.

Problem 4

4c

```
xbar_FL = 14
xbar_FW = 300
xbar_ML = 12
xbar_MW = 280
sigma_L = 2
sigma_W = 50

prob_unnorm_F = dnorm(10,14,sigma_L*sqrt(1+1/16))*dnorm(250,300,sigma_W*sqrt(1+1/16))*.75
prob_unnorm_M = dnorm(10,12,sigma_L*sqrt(1+1/4))*dnorm(250,280,sigma_W*sqrt(1+1/4))*.25
prob_F = prob_unnorm_F/(prob_unnorm_F+prob_unnorm_M)
print(prob_F)
```

[1] 0.3663727

The predicitive probability is 0.37.