1. \mathbb{R}^n como espacio vectorial

En este curso estudiaremos la geometría de \mathbb{R}^n como espacio vectorial. Para cada $n \in \mathbb{N}$, consideraremos \mathbb{R}^n como

$$\mathbb{R}^n := \{x \colon \{1, \dots, n\} \to \mathbb{R}\}.$$

Escribiremos el valor cada elemento de \mathbb{R}^n con un subíndice y todos sus valores serán escritos como una columna. Es decir, cada $x \in \mathbb{R}^n$ será escrito como

$$x = [x_j]_{j=1}^n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Con estas definiciones es inmediata la siguiente proposición.

Proposición 1. Sean $x, y \in \mathbb{R}^n$. Entonces,

$$x = y \iff \forall j \in \{1, \dots, n\}, \quad x_j = y_j.$$

Demostración. Se sigue utilizando los criterios de igualdad de funciones.

En particular, los elementos de \mathbb{R}^3 y \mathbb{R}^2 se pueden representar en el plano cartesiano. Represantaremos \mathbb{R}^2 mediante el siguiente modelo.

Para \mathbb{R}^3 utilizaremos el siguiente modelo:

Definición 2. En \mathbb{R}^n definimos las operaciones suma y producto por escalar, respectivamente, de la siguiente manera:

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \odot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n,$$
$$[x_j]_{j=1}^n + [y_j]_{j=1}^n = [x_j + y_j]_{j=1}^n, \quad \lambda \odot [x_j]_{j=1}^n = [\lambda x_j]_{j=1}^n$$

Observación 3. Debemos notar que aunque el símbolo para la suma en \mathbb{R}^n es el mismo que la suma en \mathbb{R} , estamos tratando con objetos de naturaleza distinta. Sumar columnas o listas de números y sumar números reales, son operaciones muy diferentes.

Proposición 4. \mathbb{R}^n es un espacio vectorial real con la suma y el producto por escalar. Es decir, \mathbb{R}^n con estas operaciones satisface las siguientes condiciones:

1. + es conmutativa.

$$\forall x, y \in \mathbb{R}^n, \quad x + y = y + x.$$

 $2. + es \ asociativa.$

$$\forall x, y, z \in \mathbb{R}^n, \quad x + (y + z) = (x + y) + z.$$

3. En \mathbb{R}^n existe un neutro aditivo.

$$\exists v \in \mathbb{R}^n, \ \forall x \in \mathbb{R}^n, \ x + v = v + x = x.$$

4. Existen los inversos respecto a + ...

$$\forall x \in \mathbb{R}^n, \ \exists u \in \mathbb{R}^n, \quad x + u = u + x = v.$$

5. Existe un neutro respecto al producto por escalar.

$$\exists \xi \in \mathbb{R}, \ \forall x \in \mathbb{R}^n, \ \xi x = x.$$

6. • es asociativa.

$$\forall \lambda_1, \lambda_2 \in \mathbb{R}, \ \forall x \in \mathbb{R}^m, \quad \lambda_1 \odot (\lambda_2 \odot x) = (\lambda_1 \lambda_2) \odot x.$$

7. + es distributiva respecto a \odot .

$$\forall \lambda \in \mathbb{R}, \ \forall x, y \in \mathbb{R}^n, \quad \lambda \odot (x+y) = \lambda \odot x + \lambda \odot y.$$

8. La suma en \mathbb{R} es distributiva respecto a \odot .

$$\forall \lambda_1, \lambda_2 \in \mathbb{R}, \ \forall x \in \mathbb{R}^n, \ (\lambda_1 + \lambda_2) \odot x = \lambda_1 \odot x + \lambda_2 \odot x.$$

A los elementos de un espacio vectorial les llamamos vectores. Así, los elementos de \mathbb{R}^n son vectores.

Proposición 5. Para cada $j \in \{1, ..., n\}$, $v_j = 0$, en el inciso 3 de la proposición 4.

Demostración. Sea $x \in \mathbb{R}^n$. Entonces, para cada $j \in \{1, \dots, n\}$,

$$x_i + v_i = x_i$$
.

Por lo tanto, $v_j = 0$.

En adelante, denotaremos por 0 al vector v.

Proposición 6. Para cada $j \in \{1, ..., n\}$, $u_j = -x_j$, en el inciso 4 de la proposición 4. Es decir, $u = -1 \odot x$.

Demostración. Sea $x \in \mathbb{R}^n$. Entonces, para cada $j \in \{1, \dots, n\}$,

$$u_i + x_i = 0.$$

Por lo tanto, $u_j = -x_j$. Así,

$$u = [-x_j]_{j=1}^n = -1[x_j]_{j=1}^n = -1 \odot x.$$

En adelante, evitaremos el uso de \odot . es decir, para cada $\lambda \in \mathbb{R}$ y $x \in \mathbb{R}^n$, haremos $\lambda x := \lambda \odot x$. En particular, $-1 \odot x = -1x = -x$.

Ejercicios

- 1. Demostrar que \mathbb{R}^2 es espacio vectorial real.
- 2. Dibujar los siguientes vectores:
 - i) En \mathbb{R}^2 :

$$a = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ b = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \ c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \ d = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

ii) En \mathbb{R}^3 :

$$a = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, c = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, d = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

- 3. En \mathbb{R}^2 sean $a=\begin{bmatrix}2\\-3\end{bmatrix}$, $b=\begin{bmatrix}0\\2\end{bmatrix}$, $c=\begin{bmatrix}1\\-1\end{bmatrix}$. Calcular y dibujar en el plano:
 - i) 2a + 3b.
 - ii) a+b.
 - iii) a 3b + 2c.
- 4. Encontrar el vector $x \in \mathbb{R}^3$ que resuelve cada ecuación:

i)
$$3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 2x = 2 \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} + 3x$$
.

a)
$$\frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + 6x = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} - x$$
.