

Appendix A

Nomenclature:

A	empirical constant [-]
A	cross-sectional area of tube [m ²]
A_a	actual heat transfer area per unit length [m ² /m]
A_{cfl}	circumferential flow area [m ²]
A_{fa}	actual free flow cross-sectional area [m ² /m]
A_{eff}	effective surface area of finned tube per unit length [m²/m]
A_{fin}	surface area of fins per unit length [m ² /m]
A_{fo}	external heat transfer area of low finned tube per unit length [m ² /m]
A_G	cross sectional area occupied by vapor [m ²]
A_{Gd}	dimensionless cross sectional area occupied by vapor [-]
A_{hex}	hexagonal area [m ²]
A_{L}	cross-sectional area occupied by liquid-phase [m ²]
A_{Ld}	dimensionless cross sectional area occupied
A_{o}	external heat transfer area of tube bundle [m ²]
A_p	cross-sectional area of fin [m ²]
Ar_L	Archimedes number [-]
A_{root}	root area between fins on tube per unit length [m ² /m]
A_{total}	total surface area of finned tube per unit length [m ² /m]
a	empirical constant [-]
a	one-half of long side of rectangular channel [m]
a ₀ -a ₄	empirical constants [-]
a ₁ -a ₄	empirical constants [-]
$a_{\rm L}$	thermal diffusivity of the liquid [m ² /s]
В	empirical constant [-]
В	empirical factor [-]
B_{B}	Chisholm parameter for bubbly flow transition [-]
B_c	baffle cut [%]
B_{F}	Chisholm parameter for spray flow transition [-]
$\mathrm{B_{f}}$	empirical constant of Rose [-]
Bo	boiling number [-]
BR	boiling range (or temperature glide) [K]
Br	Brinkman number [-]
B_{S}	Chisholm parameter for stratified flow transition [-]
B_s	empirical constant of Rose [-]
\mathbf{B}_{t}	empirical constant of Rose [-]
\mathbf{B}_1	empirical constant of Rose [-]
b	empirical constant [-]
b	empirical exponent [-]
b	interfin spacing at the fin tips [m]
b	one-half of short side of rectangular channel [m]
b_0 - b_4	empirical constants [-]
b_1 - b_4	empirical constants [-]
C	constant in DNB equation [-]
C	constant in Katto and Ohno correlation

empirical constant [-]

 C_{o} Shah factor [-] C_{o} distribution parameter [-] C_1 constant in Rohsenow correlation [-] constant in tube number expression [-] C_1 constant in bundle bypass expression [-] C_{bh} constant in bundle bypass expression [-] C_{bp} drag coefficient [-] C_{drag} empirical friction factor constant for finned tube [-] $C_{\rm ft}$ empirical heat transfer constant for finned tube [-] C_{fth} empirical surface factor in Rohsenow correlation [-] $C_{\rm sf}$ Ca capillary number [m] capillary number [-] Cap empirical exponent [-] c fraction of tube perimeter retaining condensate [-] c_{b} similarity factor [m^{-3/4}] $c_{\rm L}$ constant [-] c_{o} specific heat [J/kg K]; specific heat at constant pressure [J/kg K] c_p vapor specific heat [J/kg K] c_{pG} vapor specific heat [J/kg K] $(c_p)_G$ liquid specific heat [J/kg K] c_{pL} liquid specific heat [J/kg K] $(c_p)_L$ empirical parameters [-] c_1, c_2 empirical constants [-] $c_1 - c_5$ droplet diameter [m] D D exponent [-] external tube diameter [m] D D tube diameter [m] D fin tip diameter [m] D tube or cylinder diameter [m] D_{b} diameter of baffle [m] centerline tube limit diameter of tube bundle [m] D_{ctl} D_{δ} diameter of liquid ring on tube [m] diameter over fins [m] D_{fo} root diameter of low finned tube [m] D_{fr} D_{otl} outer tube limit diameter of tube bundle [m] equivalent projected tube diameter of low finned tube [m] D_{req} root diameter of finned tube [m] D_{root} internal diameter of heat exchanger shell [m] D_s outside tube diameter [m] D_t empirical constant [-] d bubble departure diameter [m] d_{bub} internal tube diameter at base of microfins [m] $d_{\rm f}$ hydraulic diameter [m] d_h internal tube diameter [m] d_i melt down internal tube diameter [m] d_{im} reference internal tube diameter (= 0.01 m) [m] $d_{i,o}$ internal tube diameter at mean height of microfins [m] d_{mean} droplet detachment diameter [m] dT_{bub} rise in bubble point temperature [K] convection enhancement factor [-] Ε

E

dimensionless factor [-]

 E_2 stratified flow correction factor [-] Ec Eckert number [-] E_{mf} microfin factor [-] new convection enhancement factor [-] E_{new} E_{RB} microfin convection factor [-] empirical constant [-] e fin or rib or obstruction height [m] e surface roughess [m] e corrugation depth [m] e fraction of liquid entrained as droplets [-] e effective fin height of Rose method [m] $e_{\rm eff}$ fin height [m] $e_{\rm f}$ F two-phase multiplier [-] F dimensionless factor [-] F apparent wet fraction of tube [-] aspect ratio correction factor [-] Faspect interfacial correction factor [-] residual correction factor [-] F(M) $F_1(q)$ dimensionless exponent as function of q [-] dimensionless exponent as function of q [-] $F_2(q)$ area fraction occupied by tubes between baffle tips [-] F_{C} bundle boiling void fraction correction factor [-] F_{ε} mixture correction factor [-] F_c F_{drag} drag force [N] correction factor for flattened tubes [-] F_{flat} non-equilibrium mixture factor [-] $F_{\rm m}$ nucleate boiling correction factor [-] F_{nb} pressure correction factor [-] F_{P} pressure correction factor of Gorenflo [-] F_{PF} Froude number of vapor phase [-] Fr_G Froude number for homogeneous flow [-] Fr_H Fr_L liquid Froude number [-] Soliman liquid Froude number [-] Fr_{so} pressure correction factor [-] F_{pf} F_{round} correction factor to Grönnerud correlation [-] Shah factor [-] F_{S} F. fraction of fin flank area covered by condensate wedge [-] ratio of bypass area to cross flow area [-] $F_{\rm sbp}$ fraction of interfin root area covered by condensate wedge [-] F_t area fraction occupied by baffle window [-] $F_{\mathbf{w}}$ radiative view factor from wall to liquid droplets [-] F_{wL} radiative view factor from wall to vapor [-] F_{wG} F_{tp} two-phase convective multiplier [-] empirical constant [-] fins per meter [m⁻¹] fpm Fanning friction factor [-] friction factor [-] apparent friction factor [-] f_{app} Blasius friction factor [-] $f_{\rm Blasius}$

cumulative deposition factor [-]

 $f_{\rm cd}$

 f_{ft} finned tube friction factor [-] vapor-phase friction factor [-] $f_{\rm G}$ interfacial friction factor [-] $f_{\rm i}$ f_{I} tube bank friction factor [-] plain tube bank friction factor [-] $f_{I,\text{plain}}$ friction factor of phase k (where k is either G or L) [-] $f_{\rm k}$ Fanning friction factor of liquid [-] $f_{\rm L}$ friction factor for laminar flow [-] $f_{\rm lam}$ mixture factor on pressure drop [-] $f_{\rm oil}$ swirl friction factor [-] $f_{\rm S}$ friction factor for transition flow [-] $f_{\rm trans}$ friction factor for turbulent flow [-] $f_{\rm turb}$ total mass velocity [kg/m²s] G Rose low finned tube parameter for fin flanks [-] $G_{\rm f}$ Rose low finned tube parameter for interfin root area [-] G_s G_t Rose low finned tube parameter for fin tips [-] Galileo number of liquid [-] Ga_L Grashof number of vapor [-] Gr_G Gz Graetz number [-] acceleration due to gravity [9.81 m/s²] g empirical exponent [-] g Н dimensionless factor [-] height of channel [m] Н Н height of nozzle above top tube row [m] liquid height inside channel [m] h height of flattened tube [m] h h enthalpy [J/kg] actual vapor enthalpy [J/kg] $h_{G,a} \\$ equilibrium vapor enthalpy [J/kg] $h_{G.e}$ enthalpy of saturated vapor [J/kg] $h_{G.sat}$ enthalpy of saturated liquid [J/kg] $h_{L,sat}$ enthalpy of saturated liquid [J/kg] $h_{\rm L}$ dimensionless liquid height inside channel [m] h_{Ld} h_{LG} latent heat of vaporization [J/kg] h'_{LG} latent heat of vaporization corrected from subcooling [J/kg] latent heat absorbed by fluid [J/kg] h_{latent} latent heat of vaporization [J/kg] h_{LV} sensible heat absorbed by fluid [J/kg] h_{sensible} total heat absorbed by fluid [J/kg] h_{total} change in enthalpy [J/kg] dh Δh_{L inlet} inlet subcooling enthalpy change [J/kg] Ja_{L} Jakob number of liquid [-] J_{B} bundle bypass correction factor [-] baffle cut correction factor [-] J_{C} laminar flow correction factor for low finned tubes [-] J_f superficial velocity (m/s) J_g Colburn j-factor [-]

ideal heat transfer factor [-]

baffle leakage correction factor [-]

ĴΙ

laminar flow correction factor [-] J_R $(J_R)_{20}$ laminar flow correction factor at Re = 20 [-] J_{S} unequal baffle spacing correction factor [-] wall viscosity correction factor [-] J_{μ} Ŕ Taitel and Dukler parameter [-] K factor in hydrodynamic developing flow [-] $K_{\rm ff}$ falling film heat transfer multiplier relative to pool boiling [-] thermal conductivity of fluid [W/m K] K_{fluid} inlet subcooling factor at conditions i = 1 to 3 [-] K_i $K_{\mathfrak{v}}$ boiling factor of Danilova [-] Ka Kapitza number [-] kinetic energy of vapor phase [J] KE_G KE_k kinetic energy of phase k [J] kinetic energy of liquid phase [J] KE_{L} k thermal conductivity [W/m K] thermal conductivity of vapor [W/m K] k_{G} k_{L} liquid thermal conductivity [W/m K] thermal conductivity of wall material [W/m K] k_{wall} length [m] L L length of tube [m] $L_{bb} \\$ diametral clearance between D_s and D_{otl} [m] inlet baffle spacing [m] L_{bi} central baffle spacing [m] L_{bc} height of baffle cut [m] L_{bch} L_{bo} outlet baffle spacing [m] developing length [m] L_{dev} equivalent vertical height of fin [m] L_{fin} L_{fh} fin height [m] average fin thickness assuming rectangular profile [m] L_{fs} chordal length through vapor phase [m] L_{G} chordal length through liquid phase [m] L_{L} L_{p} width of pass partition lane [m] width of bypass lane between tubes [m] L_{pl} tube pitch normal to direction of flow [m] L_{pn} tube pitch parallel to direction of flow [m] L_{pp} swirl flow streamline length [m] L_{S} diametral clearance between D_s and D_b [m] L_{sb} effective tube length [m] L_{ta} tube-to-baffle hole diametral clearance [m] L_{tb} tube pitch from tube center to tube center [m] L_{tp} $L_{\text{tp,eff}} \\$ effective tube pitch from tube center to tube center [m] length of outside of a rectangular channel [m] L_{x} length of outside of a rectangular channel [m] L_{v} mass flow rate [kg/s] M M molecular weight [kg/kmol] additional term from integration [(kg/ms)^{4/3}] M_N Blasius exponent [-] m exponent [-] m exponent on velocity profile [-] m fin efficiency parameter [m⁻¹]

m

m

mass of droplet [kg]

A-5 Appendix

Nu_{Γ sub} subcooled liquid film Nusselt number [-]

mass velocity of fluid [kg/m² s] m mass velocity of fluid at maximum cross-section of bundle [kg/m² s] m total mass velocity of liquid and vapor [kg/m² s] m bubbly flow transition mass velocity [kg/m²s] \dot{m}_{bubbly} equivalent mass velocity [kg/m²s] 'n۵ mass velocity at onset of dryout [kg/m² s] \dot{m}_{dryout} mass velocity of vapor [kg/m²s] \dot{m}_G mass velocity at transition from annular to stratified-wavy flow [kg/m² s] \dot{m}_{high} mass velocity of liquid [kg/m²s] $\dot{\mathrm{m}}_{\mathrm{L}}$ mass velocity at transition from stratified-wavy to stratified flow [kg/m² s] \dot{m}_{low} minimum value of mist flow transition mass velocity [kg/m²s] \dot{m}_{min} mass velocity at transition from mist flow [kg/m²s] \dot{m}_{mist} reference mass velocity [= 500 kg/m² s] $\dot{\mathrm{m}}_{\mathrm{ref}}$ mass velocity at transition from stratified-wavy to stratified flow [kg/m² s] \dot{m}_{strat} \dot{m}_{total} total mass velocity of liquid plus vapor [kg/m²s] $\dot{m}_{\rm w}$ window mass velocity of fluid [kg/m² s] mass velocity at transition from annular to stratified-wavy flow [kg/m² s] \dot{m}_{wavv} $\dot{m}_{\text{wav(new)}}$ new wavy flow transition mass velocity [kg/m²s] number of tubes passed in crossflow [-] N N Shah parameter [-] N tube row number from top [-] number of baffles [-] N_b total number of tube rows crossed by flow in entire heat exchanger [-] N_c $N_{\rm f}$ number of fins per unit length of tube [fins/m] number of sealing strip pairs [-] N_{ss} number of tube rows crossed between baffle tips in one baffle compartment [-] N_{tcc} number of tube rows crossed in one baffle window [-] N_{tcw} number of tubes [-] N_{tt} N_{tw} number of tubes in the window [-] Nusselt number [-] Nu Nusselt number for forced convection condensation [-] Nu_c Nu_D Nusselt number based on droplet diameter [-] mean Nusselt number based on tube diameter [-] Nu_D Dittus-Boelter Nusselt number [-] Nu_{D-R} internally finned tube Nusselt number [-] $Nu_{\rm ft}$ Nusselt number of vapor [-] Nu_G Nusselt number for gravity controlled condensation [-] Nugray mean or fully developed Nusselt number at uniform heat flux condition [-] Nuн Nu_{H.visc} fully developed Nusselt number at uniform heat flux condition [-] Nusselt number for 2nd type of uniform heat flux condition [-] Nu_{HA} local Nusselt number at uniform heat flux condition [-] Nu_{Hz} Nu_L liquid Nusselt number [-] microfin Nusselt number [-] Nu_{mf} nucleate boiling Nusselt number [-] Nu_{nb} Nu_{Γ} liquid film Nusselt number [-] Nu_{Γ lam} laminar liquid film Nusselt number [-]

Nu_{Γ turb} turbulent liquid film Nusselt number [-] local Nusselt number for stratified flow [-] mean or fully developed Nusselt number at uniform wall temperature condition [-] $Nu_{\rm T}$ Nusselt number for twisted tape insert at uniform wall temperature condition [-] Nu_{T ff} Nu_{Tz} local Nusselt number at uniform wall temperature condition [-] twisted tape Nusselt number [-] Nu_{tt} twisted tape Nusselt number without twist [-] $Nu_{v=\infty}$ Nu(x)local Nusselt number [-] local film Nusselt number [-] Nu(z)empirical exponent [-] n exponent [-] n exponent on void fraction profile [-] n factor equal to 3 [-] n power law exponent [-] n exponent [-] n_1 exponent [-] n_2 exponent [-] n_3 void fraction factor [-] n_B number of sharp corners facing flow of rib or fin [-] $n_{corners}$ exponent on heat flux [-] nf nucleate boiling exponent [-] nf number of starts or fins [-] n_s P perimeter of channel [m] dry perimeter in contact with vapor [m] P_{G} dimensionless dry perimeter in contact with vapor [m] P_{Gd} P_i perimeter of liquid-vapor interface [m] dimensionless perimeter of liquid-vapor interface [m] P_{id} P_{k} phase [-] wetted perimeter [m] $P_{\rm L}$ $P_{Ld} \\$ dimensionless wetted perimeter [m] Po Poiseuille number [-] Pr Prandtl number [-] Prandtl number of vapor [-] Pr_G liquid Prandtl number [-] Pr_{L} axial pitch [m] p exponent p pressure [N/m²] p pitch of corrugation [m] p critical pressure [N/m²] p_{crit} axial fin pitch [m] $p_{\rm f}$ vapor pressure [N/m²] p_G reduced pressure $(p_r = p_{sat}/p_{crit})$ [-] p_r reference reduced pressure of Gorenflo [-] p_{ro} saturation pressure [N/m²] p_{sat} saturation pressure at wall temperature [N/m²] p_{wall} pressure drop [Pa] Δp ideal bundle pressure drop for one baffle compartment [N/m²] Δp_{bI} central baffle compartment pressure drop [N/m²] Δp_c end zone pressure drop [N/m²] Δp_e

Appendix A-7

bundle pressure drop [N/m²]

 Δp_{total}

window zone pressure drop [N/m²] $\Delta p_{\rm w}$ (dp/dz)_G frictional pressure gradient of the vapor [Pa/m] (dp/dz)_L frictional pressure gradient of the liquid [Pa/m] (dp/dz)_{frict} frictional pressure gradient [Pa/m] Q heat transfer rate [W] Q volumetric flow rate [m³/s] \dot{Q}_{G} vapor volumetric flow rate [m³/s] \dot{Q}_k volumetric flow rate of phase k [m³/s] $\dot{\mathbf{Q}}_{\mathrm{L}}$ liquid volumetric flow rate [m³/s] heat flux [W/m²] q reference heat flux [W/m²] q_o critical heat flux [W/m²] q_{crit} reference critical heat flux at conditions i = 1 to 5 [W/m²] q_{crit,i} heat flux at departure from nucleate boiling (critical heat flux) [W/m²] q_{DNB} q_{DNB,tube} heat flux at DNB of tube [W/m²] heat flux on dry fraction of tube [W/m²] q_{dry} heat flux resulting from wall-to-droplet evaporation [W/m²] q_G heat flux resulting from droplet evaporation [W/m²] $q_{\rm L}$ heat flux at onset of nucleate boiling [W/m²] q_{ONB} radiation heat flux [W/m²] q_r heat flux on wet fraction of tube [W/m²] q_{wet} density ratio in Katto and Ohno correlation [-] R fouling factor on fin [m K/W] R R Chisholm parameter [-] radius of tube [m] R R^+ turbulent dimensionless radius of tube [-] R_{c} mixture resistance [m²K/W] R_b bypass pressure drop correction factor [-] leakage pressure drop correction factor [-] $R_{\rm L}$ root mean surface roughness [µm] R_{p} reference root mean surface roughness of Gorenflo [µm] R_{po} standard surface roughness (= $1.0 \mu m$) [μm] $R_{p,o}$ R_{S} baffle end zones pressure drop correction factor [-] viscosity pressure drop correction factor [-] $R_{\mathfrak{u}}$ Ra Rayleigh number [-] Raı Rayleigh number [-] Reynolds number [-] Re critical film Reynolds number [-] Recrit droplet Reynolds number [-] Re_{D} Reynolds number of liquid film on tube bundle [-] Re_{δ} equivalent liquid Reynolds number [-] $Re_{\rm e}$ equivalent liquid Reynolds number [-] Re_{ea} local vapor Reynolds number [-] Re_G Re_{GH} homogeneous Reynolds number [-] local vapor only Reynolds number [-] Re_{Go} superficial vapor Reynolds number, also Re_{SG} [-] Re_{Gs} Reynolds number with total flow as vapor [-] Re_{Gt} liquid Reynolds number for all flow as liquid [-] Re_L

liquid film Reynolds number for liquid fraction of flow [-]

 Re_L

superficial liquid Reynolds number, also Re_{SL} [-] Re_{Ls} Reynolds number with total flow as liquid [-] Re_{Lt} (Re_L)_{film} Reynolds number with total flow as liquid [-] Reynolds number [-] Re_{RB} film Reynolds number of the condensate flowing in the root area [-] Reroot film Reynolds number [-] Re_{Γ} liquid Reynolds number of film [-] Re_{Γ} modified liquid Reynolds number of film [-] $Re_{*\Gamma}$ $Re_{\Gamma trans}$ transition liquid film Reynolds number [-] Re_{nb} nucleate boiling Reynolds number [-] falling film Reynolds number at top of tube at onset of dryout [-] Reonset falling film Reynolds number at top of tube at peak performance [-] Repeak swirl Reynolds number [-] Res vapor superficial Reynolds number [-] Re_{SG} liquid superficial Reynolds number [-] Re_{SL} Re_{top} falling film Reynolds number at top of tube [-] two-phase Reynolds number [-] Re_{tp} Richardson number [-] Ri wall thermal resistance [K/W] R_{wall} constant [-] r external radius of tube [m] r radius from centreline [m] r internal tube radius [m] r_i leakage area parameter [-] r_{lm} critical nucleation radius [m] r_0 leakage area parameter [-] r_s sealing strip parameter [-] r_{ss} S nucleation suppression factor S velocity ratio [-] S vertical pitch between centerline of tubes [m] S_2 stratified flow correction factor [-] bypass area [m] S_b cross-sectional flow area at centerline [m] S_{m} shell-to-baffle leakage area [m] S_{sb} tube-to-baffle leakage area [m] S_{tb} net flow area in window [m] $S_{\rm w}$ gross flow area in window without tubes [m] S_{wg} area in window occupied by tubes [m] S_{wt} Stanton number for laminar flow [-] St_{lam} Stanton number for turbulent flow [-] St_{turb} Sw swirl number [-] fin pitch [m] S specific gravity [-] T temperature [K or °C] T time [s] T^{+} turbulent dimensionless temperature [-] T_{bub} bubble point temperature [K]

bubble point temperature of mixture [K]

mean bulk temperature of fluid [K]

critical temperature of mixture [K]

 T_{bub} T_{bulk}

 T_{crit}


```
T_{\text{dew}}
         dew point temperature of condensable mixture [K]
T_{D}
         droplet temperature [K]
T_{DNB}
         wall temperature at point DNB [K]
         Rose low finned tube parameter for fin flanks [-]
T_{\rm f}
         vapor temperature [K]
T_{G}
         actual bulk vapor temperature [K]
T_{G,a}
         bulk temperature of gas-vapor mixture [K]
T_{G\infty}
         interfacial temperature of gas-vapor mixture [K]
T_{Gi}
         wall temperature at point IB [K]
T_{\rm IB}
T_{\rm L}
         local subcooled temperature of liquid [K]
T_{\text{MFB}}
         wall temperature at point MFB [K]
         manufacturers reference temperature [°C]
T_{\text{man}}
T_{\rm s}
         Rose low finned tube parameter for interfin root area [-]
         saturation temperature [K]
T_{sat}
T_{\text{sat}} \\
         saturation temperature of pure refrigerant [K]
T_t
         Rose low finned tube parameter for fin tips [-]
T_{\rm w}
         wall temperature [K]
T_{wall}
         wall temperature [°C]
         wall temperature [K]
T_{wall}
\Delta T
         wall-to-fluid temperature difference [K]
\Delta T
         wall superheat [K]
\Delta T_{bp}
         boiling range or temperature glide of mixture [K]
         bulk temperature difference from inlet to outlet [K]
\Delta T_{\text{bulk}}
         temperature difference across film (= T_{sat}-T_{w}) [K]
\Delta T_{\rm f}
\Delta T_{glide}
         temperature glide of a zeotropic mixture [K]
         ideal wall superheat for boiling of a mixture [K]
\Delta T_{\rm I}
\Delta T_a
         bulk temperature change due to wall heat flux from inlet to outlet [K]
         reference temperature rise [K]
\Delta T_{ref}
         wall superheat (= T_{wall}-T_{sat}) [K]
\Delta T_{sat}
         bulk temperature rise due to viscous heat dissipation from inlet to outlet [K]
\Delta T_{visc}
         time [s]
         fin thickness [m]
t
         mean thickness of fin [m]
t
         twisted tape thickness [m]
t
         thickness at root of fin [m]
t_{root}
         thickness at tip of fin [m]
t_{tip}
         wall thickness of channel [m]
t_{\text{wall}}
         flow velocity [m/s]
U
         overall heat transfer coefficient [W/m<sup>2</sup> K]
U
<U>
         cross-sectional averaged drift velocity [m/s]
         superficial velocity of vapor [m/s]
U_{G}
<U<sub>G</sub>>
         cross-sectional averaged vapor drift velocity [m/s]
         drift flux [m/s]
U_{GL}
<U<sub>GL</sub>> cross-sectional average vapor drift flux velocity relative to U<sub>L</sub> [m/s]
U_{GU}
         vapor phase drift velocity [m/s]
         weighted mean drift velocity [m/s]
\bar{\mathrm{U}}_{\mathrm{GU}}
         superficial velocity of liquid [m/s]
U_{\rm L}
U_{\rm LII}
         liquid phase drift velocity [m/s]
         swirl fluid velocity [m/s]
U_{S}
         velocity in x-direction [m/s]
u
u*
         friction velocity [m/s]
```


Y

y

twist ratio [-]

exponent in Rohsenow correlation [-]

droplet velocity [m/s] $u_{\rm D}$ droplet deposition velocity [m/s] u_d vapor velocity [m/s] u_G weighted mean velocity of vapor [m/s] $\bar{\mathrm{u}}_{\mathrm{G}}$ $< u_G >$ cross-sectional average of vapor velocity [m/s] modified Baker parameter based on superficial vapor velocity [m/s] u_{Gs} $u_{\rm H}$ homogeneous velocity [m/s] suction velocity at interface [m/s] u_i velocity of phase k [m/s] u_k liquid velocity [m/s] $u_{\rm L}$ superficial velocity of vapor with respect to liquid [m/s] u_{LG} modified Baker parameter based on superficial liquid velocity [m/s] $u_{Ls} \\$ velocity in y-direction [m/s] u_{v} free stream velocity in z-direction [m/s] u_{∞} volume of vapor phase [m³] V_{G} volume of liquid phase [m³] $V_{\rm L}$ velocity in y-direction [m/s] \mathbf{v} v specific volume [m³/kg] specific volume of vapor [m³/kg] v_G homogeneous specific volume [m³/kg] v_{H} velocity of interface in z-direction [m/s] V_i specific volume of liquid [m³/kg] v_{L} dimensionless factor [-] W W ratio in Katto and Ohno correlation [-] We Weber number [-] We_D droplet Weber number [-] We_G vapor Weber number [-] We_L Weber number of liquid [-] local oil mass fraction [kg/kg] W inlet oil mass fraction [kg/kg] Winlet mass fraction of mixture in liquid phase [kg/kg] X X_{tt} Martinelli parameter with both phases turbulent [-] exponent in Rohsenow correlation [-] Х vapor quality [-] Х actual local vapor quality [-] $\mathbf{X}_{\mathbf{a}}$ vapor quality at transition to bubbly flow [-] X_B vapor quality at location of critical heat flux [-] Xcrit vapor quality at onset of dryout [-] X_{di} vapor quality at end of dryout zone [-] X_{de} local equilibrium vapor quality [-] x_e exit vapor quality at the critical heat flux [-] Xexit vapor quality at transition to spray flow [-] \mathbf{x}_{F} vapor quality at transition from intermittent to annular flow [-] x_{IA} vapor quality at the intersection of annular flow and mist flow transition curves [-] \mathbf{X}_{max} vapor quality at minimum of mist flow transition equation [-] \mathbf{X}_{min} vapor quality at transition to stratified flow [-] $\mathbf{x}_{\mathbf{S}}$ Greoneveld multiplying factor [-] Y Y ratio of vapor to liquid frictional pressure gradient [-] Y mass fraction of mixture in vapor phase [kg/kg]

- y length [m]
- y length scale [m]
- y twist ratio for 180° turn [-]
- y parameter [-]
- y⁺ dimensionless length scale [-]
- Z dimensionless factor [-]
- Z heated length of tube to diameter ratio [-]
- Z_G ratio of sensible cooling duty for vapor to total condensing duty [-]
- z distance along y-axis [m]
- z distance from entrance [m]
- z length from top [m]
- z length around perimeter of tube from top [m]
- z* dimensionless length from top [m]
- z* Graetz length parameter [-]
- z_a length from inlet where liquid is actually completely evaporated [m]
- z_{di} length from inlet where dryout occurs [m]
- z_e length from inlet where liquid is completely evaporated under equilibrium conditions [m]
- z_{eh} hydrodynamic entrance length of developing flow [m]
- z_{et} thermal entrance length of developing flow [m]

Greek symbols:

- α heat transfer coefficient [W/m²K]
- α mean film heat transfer coefficient on tube array [W/m² K]
- α local perimeter averaged heat transfer coefficient inside a tube [W/m² K]
- $\alpha(N)$ heat transfer coefficient on Nth tube [W/m² K]
- α (N=1) heat transfer coefficient on top tube [W/m² K]
- $\alpha(x)$ local perimeter averaged heat transfer coefficient inside a tube at vapor quality x [W/m² K]
- α_{array} falling film heat transfer coefficient on single-row tube array [W/m² K]
- α_b heat transfer coefficient on bottom of finned tube retaining condensate [W/m² K]
- α_{bundle} local bundle boiling heat transfer coefficient [W/m²K]
- α_{bundle} local bundle boiling heat transfer coefficient for falling film evaporation [W/m²K]
- α_c convective condensation heat transfer coefficient [W/m²K]
- α_{cb} convective boiling heat transfer coefficient [W/m² K]
- α_{ct} corrugated tube turbulent heat transfer coefficient [W/m² K]
- α_D convective heat transfer coefficient from vapor-to-droplet [W/m²K]
- α_{drv} falling film heat transfer coefficient on dry fraction of tube [W/m² K]
- α_{dryout} heat transfer coefficient in dryout zone [W/m²K]
- α_{eff} effective condensing coefficient for condensable mixture [W/m² K]
- α_f mean film heat transfer coefficient [W/m² K]
- $\alpha_{\rm f}$ local film condensing coefficient around non-stratified top perimeter of tube [W/m² K]
- α_f helix angle of microfins [degrees]
- $\alpha_f(z)$ local film heat transfer coefficient [W/m² K]
- $\alpha_f^+(z)$ dimensionless local film heat transfer coefficient [W/m² K]
- $\alpha_f(\beta)$ local film heat transfer coefficient at angle β from top of tube [W/m² K]
- $\alpha_f(x)$ local condensing coefficient at vapor quality x [W/m² K]
- α_{fin} heat transfer coefficient on fin [W/m² K]
- $\alpha_{\rm ft}$ finned tube turbulent heat transfer coefficient [W/m² K]

Forester-Zuber nucleate boiling heat transfer coefficient [W/m² K] α_{FZ} turbulent heat transfer coefficient of vapor [W/m² K] α_{G} forced convection heat transfer coefficient with total flow as vapor [W/m² K] α_{Gt} gravity-dominated film heat transfer coefficient [W/m² K] α_{grav} ideal heat transfer coefficient [W/m² K] $\alpha_{\rm I}$ ideal boiling heat transfer coefficient [W/m2 K] $\alpha_{\rm I}$ ideal tube bank heat transfer coefficient [W/m² K] α_{I} ideal heat transfer coefficient [W/m² K] α_{id} heat transfer coefficient in inverted annular flow regime [W/m²K] α_{invert} liquid only heat transfer coefficient [W/m² K] $\alpha_{L} \\$ forced convection heat transfer coefficient with total flow as liquid [W/m² K] α_{Lt} mean heat transfer coefficient [W/m² K] α_{mean} microfin convective boiling heat transfer coefficient [W/m² K] α_{mf} mist flow heat transfer coefficient [W/m²K] α_{mist} nucleate boiling heat transfer coefficient [W/m² K] $\alpha_{nb} \\$ nominal heat transfer coefficient [W/m² K] α_{nom} nucleate boiling heat transfer coefficient [W/m² K] α_{nb} ideal nucleate pool boiling heat transfer coefficient of mixture [W/m²K] $\alpha_{nb,I} \\$ standard nucleate boiling heat transfer coefficient [W/m² K] $\alpha_{nb,o}$ reference nucleate pool boiling heat transfer coefficient [W/m²K] α_{o} plain tube turbulent heat transfer coefficient [W/m² K] α_{pt} falling film heat transfer coefficient [W/m² K] α_Γ developing region falling film heat transfer coefficient [W/m² K] $\alpha_{\Gamma,dev}$ laminar falling film heat transfer coefficient [W/m² K] $\alpha_{\Gamma,lam}$ turbulent falling film heat transfer coefficient [W/m² K] $\alpha_{\Gamma,lturb}$ flow boiling heat transfer coefficient of refrigerant-oil mixture [W/m² K] $\alpha_{\text{ref-oil}}$ shear-dominated film heat transfer coefficient α_{sh} shell-side single-phase heat transfer coefficient [W/m² K] α_{ss} mean film heat transfer coefficient around bottom of tube in stratified flow [W/m² K] α_{strat} two-phase flow boiling heat transfer coefficient [W/m² K] α_{tp} twisted tape turbulent heat transfer coefficient [W/m² K] α_{tt} twisted tape two-phase flow boiling heat transfer coefficient [W/m² K] α_{tt} vapor phase heat transfer coefficient [W/m² K] α_{vapor} wetted wall heat transfer coefficient [W/m² K] α_{wet} falling film heat transfer coefficient on wetted fraction of tube [W/m² K] α_{wet} angle of surface with respect to the horizontal [rad] ß angle around perimeter of tube with respect to top [rad] β coefficient of thermal expansion [K⁻¹] β β condensate retention angle from bottom of tube [rad] β contact angle [deg] β helix angle of corrugation or fin [°] β value used for calculation of Ω [-] volumetric quality [-] β <β> cross-sectional averaged volumetric quality [-] liquid mass transfer coefficient [= 0.0003 m/s] $\beta_{\rm L}$ β_{ct} constant for corrugated tube [-] constant for finned tubes [-] $\beta_{\rm ft}$

Appendix A-13

mass transfer coefficient in liquid [0.0003 m/s]

 β_{mL}

 β_{rib} profile contact angle [°] $\Delta\delta$ interfacial roughness [m] liquid film thickness [m] δ δ thickness of twisted tape [m] δ^* non-dimensional liquid film thickness [m] δ^+ turbulent dimensionless film thickness [-] 3 void fraction of vapor [-] cross-sectional averaged void fraction of vapor [-] <3> void fraction of vapor at centreline of channel [-] $\epsilon_{\rm c}$ cross-sectional void fraction of vapor [-] ϵ_{c-s} chordal void fraction of vapor across channel [-] $\epsilon_{chordal}$ homogeneous void fraction [-] ϵ_{H} void fraction evaluated at x_{IA} [-] ϵ_{IA} local void fraction of vapor at a point or small volume [-] ϵ_{local} void fraction of Rouhani drift flux model [-] $\epsilon_{\rm r}$ Rose low finned tube enhancement ratio at same q [-] ϵ_{q} Rose low finned tube enhancement ratio at same ΔT [-] $\epsilon_{\Delta T}$ volumetric void fraction of vapor [-] ϵ_{vol} void fraction of vapor at wall [-] $\epsilon_{\rm w}$ angle from top of tube [rad] φ angle at end of developing region [rad] $\phi_{\rm d}$ angle at end of stagnation flow region [rad] $\phi_{\rm f}$ angle at end of impingement region [rad] φi liquid two-phase friction multiplier [-] $\phi_{\rm L}$ Friedel two-phase multiplier (and others with respective subscripts) [-] Φ_{fr} two-phase multiplier factor for the vapor phase [-] Φ_G $\Phi_{\rm L}$ two-phase multiplier factor for the liquid phase [-] Γ condensate flow rate per unit width of wall [kg/ms] $\Gamma_{\rm evap}$ liquid flow that has been evaporated when reaching the bottom of the array [kg/m s] liquid flow rate of liquid applied to the top of the array [kg/m s] Γ_{feed} liquid flow rate per unit length on plate or one side of tube [kg/m s] $\Gamma_{\rm L}$ $\Gamma(\beta)$ condensate flow rate per unit width at angle β from top [kg/ms] condensate flow rate (on one side) per unit length off bottom of tube N [kg/ms] $\Gamma(N)$ $\Gamma_{\text{bottom}}(N)$ condensate flow rate (from one side) per unit length off bottom of tube N [kg/ms] $\Gamma_{ton}(N)$ condensate flow rate (from one side) per unit length onto top of tube N [kg/ms] condensate flow rate per unit width at distance z from top [kg/ms] $\Gamma(z)$ constant for finned tubes [-] γ similarity variable [-] η fin efficiency [-] η_{fin} surface efficiency [-] $\eta_{surface}$ bulk-to-wall property correction ratio [-] φ one-half of apex angle of a trapezoidal fin [rad] Φ ratio of droplet heat flux to total heat flux [-] κ ratio of the temperature rises due to viscous heating and wall heat flux [-] κ limit of ratio of temperature rise [-] κ_{lim} correction factor [-] Λ Baker gas-phase parameter [-] λ wavelength between bubble departures from interface [m] λ

λ friction factor multiplier [-] critical wavelength [m] λ_{crit} dangerous wavelength [m] λ_{d} λ_{T} Taylor wavelength [m] dynamic viscosity [Ns/m²] μ dynamic viscosity at bulk temperature [Ns/m²] μ_{bulk} vapor dynamic viscosity [Ns/m²] μ_G liquid dynamic viscosity [Ns/m²] μ_{L} dynamic viscosity of pure oil [Ns/m²] μ_{oil} dynamic viscosity of pure refrigerant [Ns/m²] μ_{ref} dynamic viscosity of local refrigerant-oil mixture [Ns/m²] $\mu_{ref-oil}$ dynamic viscosity at wall [Ns/m²] μ_{wall} dynamic viscosity of water [Ns/m²] μ_{water} kinematic viscosity [m²/s] ν liquid kinematic viscosity [m²/s] $\nu_{
m L}$ function in Rose low finned tube method [-] $\xi(\pi-\beta)$ θ similarity variable [-] critical angle of deflection for tube array [radians] θ_{crit} centerline angle around top perimeter of tube [degrees] θ_{ctl} maximum angle of deflection of condensate flowing from tube to tube [radians] θ_{def} θ_{dry} dry angle around top perimeter of tube [radians] θ^{r}_{drv} dimensionless dry angle [-] θ_{ds} baffle cut angle on shell diameter [degrees] dry angle at x_{max} [radians] θ_{max} θ_{strat} stratified angle around upper perimeter of the tube to stratified liquid level [radians] dimensionless stratified angle [-] θ^*_{strat} $\Delta\theta$ bubble point temperature rise at interface relative to bulk [K] boiling range or temperature glide of a mixture [K] $\Delta\theta_{\rm bp}$ density [kg/m³] ρ liquid density of refrigerant-oil mixture [kg/m³] ρ density of air [kg/m³] ρ_{air} vapor density [kg/m³] ρ_G fictitious vapor density [kg/m³] ρ_G density of gas core [kg/m³] ρ_{gc} homogeneous density of fluid [kg/m³] $\rho_{\rm H}$ density of phase k [kg/m³] ρ_k liquid density [kg/m³] $\rho_{\rm L}$ liquid density of oil according to manufacturer [kg/m³] ρ_{man} liquid density of oil [kg/m³] ρ_{oil} liquid density of refrigerant [kg/m³] ρ_{ref} vapor density [kg/m³] $\rho_{\rm V}$ density of water [kg/m³] ρ_{water} Stephan-Bolzmann constant [W/m²K⁴] σ_{SB} surface tension [N/m] σ parameter for aspect ratios of rectangular channels [-] σ surface tension of water [N/m²] σ_{water} interfacial shear stress [N/m²] τ_{i}

Appendix A-15

dimensionless interfacial shear stress [N/m²]

 τ_{i}

- τ_i^+ dimensionless interfacial shear stress $\lceil N/m^2 \rceil$
- Ω geometrical function [-]
- Ω intertube spacing factor [-]
- ξ_{Ph} friction factor [-]
- χ dimensionless factor in hydrodynamic developing flow [-]
- ψ correlating parameter of Groeneveld and Delorme [-]
- ψ similarity variable [-]
- ψ surface tension parameter [-]

Subscripts:

- 1,2... subscripts of empirical constants
- D droplet
- G vapor
- H homogeneous
- k phase
- L liquid
- a actual
- b bottom of tube
- c centerline
- e equilibrium
- f evaluated at film temperature
- fin fin
- top top of tube
- w wall