

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM $\stackrel{\circ}{DE} THI \; CU \stackrel{\circ}{O}I \; K \stackrel{\circ}{I} \; (I)$

Học kì 1 - Năm học 2023 -2024

Tên học phần: TH ĐẠI SỐ TUYẾN TÍNH - LỚP TTH Mã HP: MTH00088

Thời gian làm bài: 75 phút Ngày thi: 27/12/2023

Ghi chú: Sinh viên không được phép sử dụng tài liệu khi làm bài

Câu 1. (1 + 1 + 1 diểm)

Trong không gian \mathbb{R}^4 cho các vec-to $u_1 = (1, -2, 2, 1), u_2 = (1, 3, 1, 0), u_3 = (-2, 3, -4, 1), v_1 = (1, 2, 1, 3), v_2 = (-1, 1, -2, 2), v_3 = (1, 3, 1, 0).$ Đặt $B = \{u_1, u_2, u_3\}$ và $W = \langle B \rangle$

- a) Kiểm tra B có là một cơ sở của W không?
- **b)** Cho $u = (a, b, c, d) \in \mathbb{R}^4$. Tìm điều kiện để $u \in W$ và với điều kiện đó hãy tìm $[u]_B$.
- c) Kiểm tra $B' = \{v_1, v_2, v_3\}$ có là một cơ sở của W không? Tìm ma trận chuyển cơ sở $B \to B'$.

Câu 2. (1 + 1 + 1 diểm)

Cho ánh xa $f \in L(\mathbb{R}^3)$ xác định bởi

$$f(x, y, z) = (2y - z, -x - y - z, x + 2y + 2z)$$

- a) Tìm ma trận biểu diễn f trong cơ sở chính tắc $B_0 = \{e_1, e_2, e_3\}$.
- **b)** Tìm ma trận biểu diễn f trong cơ sở $B = \{u_1 = (-1, 2, 1), u_2 = (0, 1, 1), u_3 = (2, 1, 1)\}$
- c) Chứng minh f khả nghịch và tìm f^{-1} .

Câu 3. (1 + 1 + 1 diểm)

Cho ma trận

$$A = \left(\begin{array}{rrr} 5 & 4 & 6 \\ 4 & 5 & 6 \\ -4 & -4 & -5 \end{array}\right)$$

- a) Tìm các trị riêng và xác định các cơ sở cho các không gian riêng tương ứng của A.
- **b)** Chứng minh A chéo hóa được. Tìm ma trận P là chéo A và xác định dạng chéo của A.
- c) Cho $f(x) = x^5 6x^4 + 3x^3 2$. Tính f(A).

...HÉT...

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM $\stackrel{\circ}{ m DE}$ THI CUỐI KÌ (II)

Học kì 1 - Năm học 2023 -2024

Tên học phần: TH ĐẠI SỐ TUYẾN TÍNH - LỚP TTH Mã HP: MTH00088

Thời gian làm bài: 75 phút Ngày thi: 27/12/2023

Ghi chú: Sinh viên không được phép sử dung tài liêu khi làm bài

Câu 1. (1 + 1 + 1 diểm)

Trong không gian \mathbb{R}^4 cho các vec-tơ $u_1 = (1, 1, 2, 1), u_2 = (1, 2, 1, 0), u_3 = (1, -1, 3, 4), v_1 = (1, 1, 0, 3), v_2 = (1, -1, 2, 5), v_3 = (0, -1, -1, 3).$ Đặt $B = \{u_1, u_2, u_3\}$ và $W = \langle B \rangle$

- a) Kiểm tra B có là một cơ sở của W không?
- **b)** Cho $u = (a, b, c, d) \in \mathbb{R}^4$. Tìm điều kiện để $u \in W$ và với điều kiện đó hãy tìm $[u]_B$.
- c) Kiểm tra $B' = \{v_1, v_2, v_3\}$ có là một cơ sở của W không? Tìm ma trận chuyển cơ sở $B \to B'$.

Câu 2. (1.5 + 1.5 diểm)

Cho ánh xa $f \in L(\mathbb{R}^3)$ xác định bởi

$$f(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_1 - 2x_2 + 3x_3, -2x_1 + 2x_2 + 5x_3)$$

- a) Tìm một cơ sở của Imf và một cơ sở của Kerf.
- **b)** Tìm ma trận biểu diễn f theo cơ sở $B = \{u_1 = (1,0,1), u_2 = (1,-2,0), u_3 = (2,1,3)\}$

Câu 3. (1 + 1 + 1 diểm)

Cho ma trận

$$A = \left(\begin{array}{rrr} 5 & -3 & 1 \\ -3 & 5 & 1 \\ 0 & 0 & 8 \end{array}\right)$$

- a) Tìm các trị riêng và xác định các cơ sở cho các không gian riêng tương ứng của A.
- b) Chứng minh A chéo hóa được. Tìm ma trận P là chéo A và xác định dạng chéo của A.
- c) Cho $f(x) = x^3 5x^2 + 3x 2$. Tính f(A).

...HÉT...