Chapter 3

3.1

Problem

Show t hat a closed interval [a,b] on the real line is a closed subset of \mathbb{C} , but that an open interval (a,b) is not an open subset of \mathbb{C} . Is it closed?

Solution

The open interval (a, b) is neither closed nor open.

3.2

Problem

Show that the set $A=z\in\mathbb{C}:1<|z|<2$ is open. Describe its closure and its boundary.

Solution

It's the intersection of two open sets which is open. It's a ring bounded by 1 and 2.