

UNIVERSIDADE FEDERAL ALFENAS (UNIFAL)

Bacharelado em Ciência da Computação

Disciplina	Método de realização	Data da avaliação					
DCE692 - Pesquisa operacional	Presencial	14/11/2023 às $8h00$					
Professor							
Iago Augusto de Carvalho (iago.carvalho@unifal-mg.edu.br)							

Prova 02

Exercício 1 (45 %)

Considere o modelo de programação linear abaixo. Também considere $-\pi = \{-2, 4, 1\}$, a solução ótima $x' = \{3, 4, 2, 0, 0, 0\}$ e $z^* = 11$

x_{1}	\mathbf{X}_{2}	X_3	X_4	X ₅	x_6	b
1	2	0	1	0	-6	11
0	1	1	3	0 -2 -1	-1	6
1	2	1	3	-1	-5	13
3	2	-3	-6	10	-5	0

Com base neste modelo, responda se cada afirmação é verdadeira ou falsa e justifique.

- a) (5%) Quais variáveis pertencem a solução básica deste modelo?
- b) (10%) Insira uma nova variável x_7 que mudará o valor da solução ótima, isto é, a variável x_7 deverá ser diferente de zero em x'
- c) (10%) Insira uma nova variável x_7 que não mudará o valor da solução ótima
- d) (10%) Qual é o limite de valor que o coeficiente c_4 pode obter de tal forma que a solução básica não mude?
- e) (10%) Qual é o limite de valor que o coeficience $a_{1,4}$ pode obter de tal forma que a solução básica não mude?

Exercício 2 (25%)

Observe o modelo abaixo

$$\begin{array}{cccc} \min & z = & 7x_1 + 10x_2 + 10x_3 \\ & & x_1 + x_2 + x_3 & \geq 3 \\ & & x_1 + 2x_2 + x_3 & \geq 2 \\ & & x_1, x_2, x_3 & \geq 0 \end{array}$$

- a) (15%) Qual é a solução ótima deste modelo? Resolva-o utilizando o método gráfico
- b) (10%) Insira uma restrição de tal forma que a solução ótima do modelo seja trocada

Exercício 3 (30%)

Observe o grafo orientado e ponderado abaixo

Seja o modelo de programação linear do problema do caminho mínimo

$$\min \quad z = \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{(i,k)\in A} x_{ik} - \sum_{(k,j)\in A} x_{kj} = \begin{cases} 1, & \text{se } k = a \\ -1, & \text{se } k = f \\ 0, & \text{caso contrário} \end{cases}, \forall k \in V$$

$$x_{ij} \ge 0 \qquad (i,j) \in A$$

Construa o modelo de programação linear equivalente ao grafo dado explicitando todas suas restrições e sua função objetivo por completo (forma extendida). Note que, neste grafo, a origem é o vértice A e o destino é o vértice F. Diga quantas variáveis e quantas restrições este modelo possui.