Software Programming Lab.

06 - List, Tuple, Dictionary, Set

SWPLab06

Exercises

```
nlist = [ i*i for i in range(10) if i > 3 ]
print(nlist)

d = { 'student' + str(x+1) : x**2 for x in range(10)}
print(d)
```

```
d = {'money': 12, 'candy': 3, 'tissues': 20}
d['candy'] = d['candy'] + 2
d['tissues'] = 10
print(d)
```

```
x = [3, 5, 7, 9]
x.reverse()
print(x)
```

```
x = [3, 5, 7, 9]
print(x[2::-1])
print(x[:1:-1])
print(x[::-1])
```

```
counts = dict()
names = ['영구', '길동', '일등', '길동', '일등', '길동', '놀민']
for name in names :
    counts[name] = counts.get(name, 0) + 1
print(counts)
```

```
d = {'pork': 25.3, 'beef': 33.8, 'chicken':22.7}

for k in d:
    print(k)

for v in d.values():
    print(v)

for k, v in d.items():
    print(k, v)
```

```
a = set([2, 4, 5, 6, 10, 13, 2, 2])
b = set([1, 3, 4, 5, 8, 9, 10, 10, 10, 10])
c = set([2, 10])
print(a)
print(b)
print(a - b )
print(a | b )
print(a & b )
print(a ^ b )
print(a > c)
```

Problems

Problem 1

Write a program to combine following dictionaries to create a new one.

```
dic1 = {'a': 100, 'b': 150, 'c': 240}
dic2 = {'b': 200, 'e': 450, 'f': 330}
dic3 = {'c': 100, 'f': 110, 'e': 500, 'a':60}
```

Example outputs

```
{'a': 160, 'b': 350, 'c': 340, 'e': 950, 'f': 440}
```

Problem 2

- Write a program that find the 10 most frequent words from a text file (alice.txt)
 - 1. Read all content from alice.txt
 - 2. Make a list of words
 - 3. Change all to uppercase
 - 4. Count all words using a dict YOUR CODE
 - 5. Make a list of (value, key) YOUR CODE
 - 6. Sort the list in descending order YOUR CODE
 - 7. Print the sorted word list

• Example outputs

1)	THE	1631
2)	AND	844
3)	TO	721
4)	A	627
5)	SHE	537
6)	IT	526
7)	OF	508
8)	SAID	462
9)	I	398
10)	ALICE	385
Í		

• Given code (1)

```
# read all content from alice.txt
with open('alice.txt', 'r') as f:
    content = f.read()
    # remove punctuation
    import re
    content = re.sub(r'[^\w\s]','', content)
# make a list of words
dict words = {}
words = content.split()
# change all to uppercase
for i in range(len(words)):
    words[i] = words[i].upper()
```

• Given code (2)

```
# count all words
for word in words:
    dict words[word] = None # MODIFY THIS (1)
# make a list of (value, key)
list words = []
for k, v in dict_words.items():
    list words.append( (None, None) ) # MODIFY THIS (2)
# sort the list in descending order
# (hint) to sort in descending order, you can sort like this: [ some list.sort(reverse=True) ]
# YOUR CODE HERE (3)
# print the sorted word list
for i, t in enumerate( list_words[:10] ):
    print( '{:2d}) {:10} {:5}'.format(i+1, t[1], t[0]) )
```

Problem 3

- Write a program that estimates the average housing prices by city from a text file (transactions.csv).
 - For each rows in the file:
 - 1. Skip the first row(a header row).
 - 2. Get all columns using **split()** method from a row. **YOUR CODE**
 - 3. Accumulate count and price using two dicts YOUR CODE
 - 4. Use a set to save unique city names.
 - Convert the set into a list to sort and iterate the city names. YOUR CODE
 - For each cities:
 - Calculate and print the average housing price by city YOUR CODE

• Example outputs

ANTELOPE	\$	232.50k
AUBURN	\$	405.89k
CAMERON PARK	\$	267.94k
CARMICHAEL	•	295.68k
CITRUS HEIGHTS		187.11k
COOL		300.00k
DIAMOND SPRINGS	\$	
EL DORADO	\$	247.00k
EL DORADO HILLS	\$	491.70k
ELK GROVE	\$	271.16k
ELVERTA	\$	132.87k
FAIR OAKS	\$	303.50k
FOLSOM	\$	
FORESTHILL		194.82k
GALT	\$	236.94k
GARDEN VALLEY	\$	490.00k
GOLD RIVER	\$	358.00k
GRANITE BAY	\$	678.73k
GREENWOOD	\$	395.00k
LINCOLN	\$	96.54k
LOOMIS	\$	567.00k
MATHER	\$	237.80k
MEADOW VISTA	\$	230.00k
NORTH HIGHLANDS	\$	135.66k
ORANGEVALE	\$	279.16k
PENRYN	\$	506.69k
PLACERVILLE	\$	363.86k
POLLOCK PINES	\$	240.30k
RANCHO CORDOVA	\$	263.41k
RANCHO MURIETA	\$	297.75k
RIO LINDA	\$	172.73k
ROCKLIN	\$	381.84k
ROSEVILLE	\$	324.53k
SACRAMENTO	\$	197.74k
SHINGLE SPRINGS	\$	275.00k
SLOUGHHOUSE	\$	2.00k
WALNUT GROVE	\$	380.00k
WEST SACRAMENTO	\$	
WILTON	\$	

• Given code (1)

```
set cities = set()
dict count = {}
dict sum = {}
with open('transactions.csv', 'r') as f:
    is first = True
    # for each row
    for line in f:
        # skip header row
        if is first:
            is first = False
            continue
        # split a row into columns
        columns = None ### MODIFY THIS (1)
        # read a city name from column 1
        city = None ### MODIFY THIS (2)
        # read price from column 9
        price = None ### MODIFY THIS (3)
        # increase count by 1
        dict count[city] = None ### MODIFY THIS (4)
        # accumulate the price
        dict sum[city] = None ### MODIFY THIS (5)
        # save a city name
        set cities.add(city)
. . . . . .
```

• Given code (2)

```
# convert the set to a list and sort
list cities = None ### MODIFY THIS (6)
list cities ### MODIFY THIS (7)
# for each city
for city in list cities:
    # access dict count with a city name
    count = None ### MODIFY THIS (8)
    # access dict sum with a city name
    price = None ### MODIFY THIS (9)
    print('{:20} ${:7.2f}k'.format(city, price / count / 1000 ) )
```