Specification Curve Analysis

POLI 260: Social Science Replication

Zayne Sember

1/17/2022

Full replication at: https://github.com/zaynesember/PopeSchmidtReplication

The specification curves presented here come from Jeremy C. Pope and Soren J. Schmidt's 2021 piece "Father Founders: Did Child Gender Affect Voting at the Constitutional Convention?". In it, they test the hypothesis that the delegates with sons would tend to vote for a stronger national government because they foresaw such a government providing greater opportunities for their sons—for which they find evidence. I present a specification curve analysis for two of their models which both contain a variety of controls: their primary Poisson regression model which uses a "preferred index" that tallies votes in favor of expansion of the national government as the dependent variable and a probit model using a single vote on whether to allow those in debt to the national government to serve as legislators.

Both models appear sensitive to which controls are included, showing a significant result for the number sons only when most of the controls are included.

Code

```
# CODE FROM GARETH NELLIS

# declare controls

controls <-
    c("dtrs", "ageco", "agecosq",
        "revoffco", "nslave", "dist2",
        "vsecr", "vbank", "ddebt", "pols",
        "lawyer")

# all unique control combinations (i.e. powerset, including the empty set)
    # adapted from https://stackoverflow.com/questions/49570793/r-list-all-combinations-with-combn-multip control_list <-</pre>
```

Table 1: Variable Key

Variable name	Full name
index1	Preferred Index
vote2	National Veto
anti5	Debtor Legislators
anti6	Cong. Quorum.
anti7	National Exports
vote8	Militia Control
vote9	State Credit
anti14	Navigation Acts
vote15	Military Responsibility
sons	Number of sons
dtrs	Number of daughters
ageco	Age
agecosq	Age squared
revoffco	Revolutionary war officer
nslave	Logged number of slaves
dist2	Distance to navigable coastline
vsecr	Public securities (1000s, 1787 dollars)
vbank	Private securities (1000s, 1787 dollars)
ddebt	Debtor (dummy)
pols	Politician
lawyer	Lawyer

```
data.frame(
    x = "sons",
    controls =
    list(do.call("c", lapply(seq_along(controls), function(i) utils::combn(controls, i, FUN = list)
    map(function(x) paste(x, collapse = " + ")), "") %>%
    unlist())

# estimation function

spec_curve_ests <-
function(
    x = NULL,
    controls = NULL) {

if(controls == "") {plus <- ""} else {plus <- "+"}</pre>
```

```
as.formula(paste0("index1 ~", x, plus, controls))
       out <-
          #feols(frm, cluster = ~svy_sh_tsp_code, data = analysis_df) %>%
          glm(frm, data=dataset, family = poisson(link = "log")) %>%
          tidy(conf.int = T) %>%
          mutate(control_set = as.character(controls))
     }
# run models
 res <-
   pmap_dfr(control_list, .f = spec_curve_ests) %>%
   filter(term == "sons") %>%
   arrange(estimate) %>%
   mutate(specifications = 1:nrow(.))
# plot top panel
 p1 <-
   res %>%
   ggplot(aes(x = specifications, y = estimate)) +
      #geom_pointrange(size=0.25) +
     geom_point(size=0.1) +
      geom_ribbon(aes(ymin = conf.low, ymax = conf.high), fill="red", col="red", alpha=0.15) +
     labs(x = "", y = "Estimate") +
     geom_hline(yintercept = 0, color = "darkblue") +
      ggtitle("Preferred Index Poisson Model Specification Curve") +
      theme_bw()
# lower plot
 p2 <-
```

```
expand.grid(control = controls, specifications = c(1:max(res$specifications))) %>%
   left_join(res, by = "specifications") %>%
   mutate(value = ifelse(str_detect(control_set, as.character(control)), "|", "")) %>%
   ggplot(aes(specifications, control)) +
      geom_text(aes(label = value)) +
      scale_color_manual(values = c("lightblue")) +
      labs(x = "Specification number", y = "") +
      theme_bw()
ggsave(file="speccurve1.png", arrangeGrob(p1, p2, nrow=2))
# CODE FROM GARETH NELLIS
# declare controls
  controls <-
   c("dtrs", "ageco", "agecosq",
      "revoffco", "nslave", "dist2",
      "vsecr", "vbank", "ddebt", "pols",
      "lawyer")
# all unique control combinations (i.e. powerset, including the empty set)
  # adapted from https://stackoverflow.com/questions/49570793/r-list-all-combinations-with-combn-multip
  control_list <-</pre>
   data.frame(
     x = "sons",
      controls =
       list(do.call("c", lapply(seq_along(controls), function(i) utils::combn(controls, i, FUN = list)
       map(function(x) paste(x, collapse = " + ")), "") %>%
       unlist())
# estimation function
  spec_curve_ests <-</pre>
   function(
    x = NULL
```

```
controls = NULL) {
    if(controls == "") {plus <- ""} else {plus <- "+"}</pre>
        frm <-
          as.formula(paste0("anti5 ~", x, plus, controls))
       out <-
          #feols(frm, cluster = ~svy_sh_tsp_code, data = analysis_df) %>%
          glm(frm, data=dataset, family=binomial(link="probit")) %>%
          tidy(conf.int = T) %>%
          mutate(control_set = as.character(controls))
     }
# run models
 res <-
   pmap_dfr(control_list, .f = spec_curve_ests) %>%
   filter(term == "sons") %>%
   arrange(estimate) %>%
   mutate(specifications = 1:nrow(.))
# plot top panel
 p1 <-
   res %>%
   ggplot(aes(x = specifications, y = estimate)) +
      #geom_pointrange(size=0.25) +
     geom_point(size=0.1) +
      geom_ribbon(aes(ymin = conf.low, ymax = conf.high), fill="red", col="red", alpha=0.15) +
     labs(x = "", y = "Estimate") +
      geom_hline(yintercept = 0, color = "darkblue") +
      ggtitle("Debtor Legislators Probit Model Specification Curve") +
```

```
theme_bw()

# lower plot

p2 <-
    expand.grid(control = controls, specifications = c(1:max(res$specifications))) %>%
    left_join(res, by = "specifications") %>%
    mutate(value = ifelse(str_detect(control_set, as.character(control)), "|", "")) %>%
    ggplot(aes(specifications, control)) +
        geom_text(aes(label = value)) +
        scale_color_manual(values = c("lightblue")) +
        labs(x = "Specification number", y = "") +
        theme_bw()

ggsave(file="speccurve2.png", arrangeGrob(p1, p2, nrow=2))
```