Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation

Daichi Horita

Naoto Inoue

Kotaro Kikuchi

Kota Yamaguchi

Kiyoharu Aizawa

Concept

Content-aware layout generation

Input image

Output layouts

RALF

Retrieval-Augmented Layout Transformer

Input image

Output layouts

- 1) Retrieve nearest neighbor layouts based on the input image
- 2) use them as a reference to augment the generation process.

- Data Scarcity & Training Efficiency
- Content-Layout Harmonization
- Controllability to User-Specified Constraints

Data Scarcity & Training Efficiency

Authoring tool

Content-Layout Harmonization

Controllability to User-Specified Constraints

Category →
Size +Position

"Logo, Text x2, Underlay"

Relationship

"Logo top on Text"

Contributions

Data Scarcity & Training Efficiency

Retrieval augmentation effectively addresses the data scarcity problem

Content-Layout Harmonization

Propose RALF

Controllability to User-Specified Constraints

Show RALF outperforms the baselines on unconditional & conditional tasks

Why Retrieve & Generate?

Just retrieve

GT

Input

Top1

Output

Why Retrieve & Generate?

Retrieve & Generate

GT Input

Retrieve

Output

Preliminaries

Representation of layout

$$Z = (bos,$$

- $C_1, x_1, y_1, w_1, h_1,$
- $c_2, x_2, y_2, w_2, h_2,$

 $\ldots, eos)$

Preliminaries Tokenization of layout

Quantize bbox b_i:

$$[x_i, y_i, w_i, h_i]^T \in \{1, \dots B\}^4$$

Autoregressive modeling:

$$P_{\theta}(Z|I,S) = \prod_{t=2}^{5T+2} P_{\theta}(Z_t|Z_{< t},I,S)$$

1: image, S: saliency map

Propose a Retrieval-Augmented Layout Transformer (RALF)

Encodes an input canvas image and a saliency map

Retrieves nearest neighbor layout examples based on the similarity of an input image.

Fuses the features of retrieved layouts with the image feature using cross-attention.

Incorporates user-specified constraints following LayoutFormer++ [Jiang+ CVPR23], which tokenizes constraints.

Autoregressively generates a layout.

 A challenge lies in the absence of joint embedding for image-layout retrieval, unlike CLIP for image—text retrieval.

No joint embedding!

image—text retrieval

image—layout retrieval 19

• We hypothesize that given an image-layout pair (I, L), $ilde{L}$ is more likely to be useful when $ilde{I}$ is similar to $ilde{I}$.

GT layout

Image I (query)

Retrieve images \tilde{I} using similarity, then use paired layout \tilde{L}

Content-layout harmonization

How effective RALF?

How effective RALF?

How effective RALF?

#TrainingDataset

How different K affects the output? Compare K=1 with K=16Similar results

Reference

27

How different K affects the output? Compare K=1 with K=16 Diverse and plausible results.

Reference

Output

Limitation of FID.

Unconstrained generation results on PKU dataset [Hsu+ CVPR23]

Train:Test:Val = 7,734:1,000:1,000

Content: an overlap of saliency object and layout

		PKU						
Method	#Params	Coı	ntent		0.0009 1.58 0.002 1.43			
		Occ ↓	Rea↓	Und ↑	Ove \	FID↓		
Real Data		0.112	0.0102	0.99	0.0009	1.58		
Top-1 Retrieval		0.212	0.0218	0.99	0.002	1.43		
CGL-GAN [53]	41M	0.138	0.0164	0.41	0.074	34.51		
DS-GAN [18]	30 M	0.142	0.0169	0.63	0.027	11.80		
ICVT [7]	50M	0.146	0.0185	0.49	0.318	39.13		
LayoutDM [†] [19]	43M	0.150	0.0192	0.41	0.190	27.09		
Autoreg Baseline	41M	0.134	0.0164	0.43	0.019	13.59		
RALF (Ours)	43M	0.119	0.0128	0.92	0.008	3.45		

Real data is supposed to be upper bound

		PKU						
Validation data	arams	Content		Graphic				
		Occ ↓	Rea↓	Und ↑	Ove ↓	FID↓		
Real Data	=	0.112	0.0102	0.99	0.0009	1.58		
Top-1 Retrieval	-	0.212	0.0218	0.99	0.002	1.43		
CGL-GAN [53]	41M	0.138	0.0164	0.41	0.074	34.51		
DS-GAN [18]	30M	0.142	0.0169	0.63	0.027	11.80		
ICVT [7]	50M	0.146	0.0185	0.49	0.318	39.13		
LayoutDM [†] [19]	43M	0.150	0.0192	0.41	0.190	27.09		
Autoreg Baseline	41M	0.134	0.0164	0.43	0.019	13.59		
RALF (Ours)	43M	0.119	0.0128	0.92	0.008	3.45		

Just top-1 retrieval is the worst in content metrics "Retrieval-augmented" generation is important

	Top-1 retrieved layout		PKU						
Iop-1 retrieved			Content		Graphic				
		Occ ↓	Rea↓	Und ↑	Ove \	FID↓			
Real Data	-	0.112	0.0102	0.99	0.0009	1.58			
Top-1 Retrieval	-	0.212	0.0218	0.99	0.002	1.43			
CGL-GAN [53]	41M	0.138	0.0164	0.41	0.074	34.51			
DS-GAN [18]	30M	0.142	0.0169	0.63	0.027	11.80			
ICVT [7]	50M	0.146	0.0185	0.49	0.318	39.13			
LayoutDM [†] [19]	43M	0.150	0.0192	0.41	0.190	27.09			
Autoreg Baseline	41 M	0.134	0.0164	0.43	0.019	13.59			
RALF (Ours)	43M	0.119	0.0128	0.92	0.008	3.45			

RALF significantly outperforms the baselines

	Baseline methods		PKU						
Ва			Content		Graphic				
			Occ↓	Rea↓	Und ↑	Ove \	FID↓		
Re	Data -1 Retrieval		0.112	0.0102	0.99	0.0009	1.58		
DS IC	L-GAN [53] G-GAN [18] VT [7] youtDM [†] [19]	41M 30M 50M 43M	0.138 0.142 0.146 0.150	0.0164 0.0169 0.0185 0.0192	0.41 0.63 0.49 0.41	0.074 0.027 0.318 0.190	34.51 11.80 39.13 27.09		
	toreg Baseline LF (Ours)	41M 43M	0.134 0.119	0.0164 0.0128	0.43 0.92	0.019 0.008	13.59 3.45		

Baseline methods + Retrieval augmentation

Method	Retrieval	Occ ↓	Rea↓	Und ↑	Ove \	FID↓
CGL-GAN		0.138	0.0164	0.41	0.074	34.51
CGL-GAN		0.144	0.0164	0.63	0.039	13.28
LayoutDM [†]		0.150	0.0192	0.41	0.190	27.09
LayoutDM [†]		0.123	0.0144	0.51	0.091	10.03

Out-of-domain generalization

e.g. Train / DB: CGL dataset, Test: PKU dataset

Train	Test	Method	Occ ↓	Rea ↓	Und ↑	Ove \
CGL	PKU	Autoreg Baseline RALF (Ours)	0.176 0.144	0.0276 0.0249	0.84 0.96	0.037
PKU	CGL	Autoreg Baseline RALF (Ours)	0.341 0.286	0.0464 0.0355	0.29 0.79	0.037 0.036

Constrained generation

Category →
Size + Position

			PKU		
Method	Cor	ntent			
	Occ ↓	Rea↓	Und ↑	Ove \	FID↓
$C \rightarrow S + P$					
CGL-GAN	0.132	0.0158	0.48	0.038	11.47
LayoutDM [†]	0.152	0.0201	0.46	0.172	20.56
Autoreg Baseline	0.135	0.0167	0.43	0.028	10.48
RALF (Ours)	0.124	0.0138	0.90	0.010	2.21

DIZI

Relationship

Relationship					
Autoreg Baseline	0.140	0.0177	0.44	0.028	10.61
RALF (Ours)	0.122	0.0141	0.85	0.009	2.23

Conclusion

- Retrieval augmentation effectively addresses the data scarcity problem.
- Propose RALF: Retrieval-augmented Layout Transformer
 - Retrieval augmentation + Autoregressive Transformer.
- Show that RALF successfully generates high-quality layouts, significantly outperforming baselines.

Contact: horita@hal.t.u-tokyo.ac.jp

