Dispositivos Electrónicos I

1º Ingeniería de Telecomunicación

Examen: junio 2004

1 Cuestiones

- 1. Sea una muestra de silicio tipo N (con $N_D=10^{14}~{\rm cm^{-3}}$) iluminada, a temperatura ambiente, de forma que se crean 10^{12} pares electrón-hueco por cm³ y por μs . Sabiendo que la concentración de huecos en estado estacionario es 2.0×10^{12} , calcular el tiempo de vida medio de los portadores minoritarios. Esbozar la posición de los pseudoniveles de Fermi respecto del nivel de Fermi en la muestra en equilibrio térmico. Datos: $\tau_p \simeq \frac{1}{\alpha_r n_0}$, donde α_r es el coeficiente que determina la tasa de recombinación $(r=\alpha_r np)$; $n_i^2=1.45 \times 10^{10}~{\rm cm^{-3}}$. (1 punto)
- 2. Describir brevemente en qué consiste el efecto Body en un transistor MOSFET. (0.75 puntos)
- 3. Sea el siguiente circuito:

¿En qué región de operación se encuentra el BJT si la tensión VE es suficiente para polarizar en directo la unión emisor-base? Basándose en las ecuaciones de Ebers-Moll, escribir una expresión que relacione la intensidad que circula por la resistencia con V_{BE} . ¿Como qué otro dispositivo se comporta el BJT así configurado? Calcular, con precisión de centésimas de voltio, la tensión de salida V_0 cuando VE = 5 V. $Datos: I_S = 0.1$ pA; $\alpha_F = 0.95; V_T = 25.8$ mV. (1.25 puntos)

2 Problemas

- 1. En la práctica 3, en la que se medía la característica I-V estática de un diodo, un alumno ha medido los siguientes dos puntos de la curva: A(600 mV, 10 mA) y B(700 mV, 20 mA).
 - (a) Encontrar los parámetros $V\gamma$ y r_d del modelo lineal a tramos que se ajusta a los dos puntos medidos. (0.5 puntos)

(b) Usando diodos como los del apartado anterior, se monta el siguiente circuito:

Determinar la característica de transferencia (Vo - Vi) y la corriente que circula por R1 para valores de Vi comprendidos entre 0 y 15 V (despreciar el efecto de r_d). (0.75 puntos)

(c) Repetir el apartado anterior suponiendo que colocamos una resistencia de carga RL (de valor $1K\Omega$) entre la salida y la masa (0 V). (0.75 puntos)

2. Sea el siguiente circuito:

Datos: $\beta_F = 300$, $V_A \to \infty$, I = 1 mA, $V_{cc} = 10 V$, $V_{BE}(\text{on}) = 0.65 V$, $V_T = 25.8$ mV. Para que funcione correctamente la fuente de corriente debe tener entre sus extremos una tensión mayor o igual que cero. Las capacidades son condensadores de desacoplo.

- (a) Dar un valor a R_B que garantice que el dispositivo opera en activa y calcular el punto de polarización. (1 punto)
- (b) Calcular la ganancia en pequeña señal (v_0/v_i) y baja frecuencia. (1 punto)

3. Dado el siguiente circuito:

Datos: $\lambda=0$ V⁻¹, $\beta=1$ mA/V², V_T = 1 V.

- (a) Diseñar, si es posible, el siguiente circuito de forma que el transistor opere, en continua, en la región de saturación con $I_D=1~{\rm mA}$ y $V_D=5~{\rm V}.$ (1 punto)
- (b) Manteniendo los valores de RG1 y RG2 calculados en el apartado anterior, ¿qué valores puede tomar RD de forma que el transistor siga operando en saturación? (1 punto)
- (c) Calcular la ganancia de pequeña señal (y baja frecuencia) suponiendo que $V_A=100~{\rm V}$ y admitiendo que la polarización es la misma que la calculada en el apartado a). ¿Qué sucede si $V_A=30~{\rm V}$? (1 punto)