A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, Sal Stolfo

Department of Computer Science, Columbia University

A chapter in "Applications of Data Mining in Computer Security"

Agenda

- Introduction
- Feature spaces and kernels
- Detection algorithms
- Experiments

Introduction (1)

- Intrusion detection systems (IDS)
 - detects malicious activities such as DoS attacks, port scans, etc.
 by monitoring network traffic and/or system activities
- Most deployed systems use signature-based detection
 - compares feature values to attack signatures provided by experts
 - need a new signature for every new attack
- Supervised machine learning approach
 - train a classifier using data of normal usage and known attacks
 - can retrain to include more known attacks
 - can detect unknown attacks if *perfect* model of normality is available

Introduction (2)

- *Unsupervised* machine learning approach
 - Use unlabeled data as input
 - Attempt to separate the *anomalous* instances from the *normal* instances
 - Separate the two classes of instances, then train a traditional anomaly detection algorithm on the *clean* data
- Geometric framework for unsupervised anomaly detection
 - Map the data to a R^d feature space
 - Label points in the sparse regions of the feature space as anomalies

Unsupervised Anomaly Detection

- Detect intrusions in unlabeled data
- Can be used to semi-automate manual inspection of data in forensic analysis
- Two main assumptions:
 - 1) The number of normal instances vastly outnumbers the number of anomalies
 - 2) The anomalies are qualitatively different from the normal instances

Feature Space (1)

- Instances $x_1, x_2, ..., x_n$ in input space X
 - for example, X can be the space of all possible network connection records, event logs, system call traces, etc.
- Define a mapping

$$\varphi: X \to Y$$

where Y is R^d , or more generally a Hilbert space

• Define the distance between x_1 and x_2 :

$$d_{\varphi}(x_{1}, x_{2})$$

$$= || \varphi(x_{1}) - \varphi(x_{2})||$$

$$= \sqrt{\langle \varphi(x_{1}), \varphi(x_{1}) \rangle - 2 \langle \varphi(x_{1}), \varphi(x_{2}) \rangle + \langle \varphi(x_{2}), \varphi(x_{2}) \rangle}$$

Feature Space (2)

• Some mappings correspond to a kernel function *K* where

$$K_{\varphi}(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$$

- Some kernel functions correspond to an infinite dimension mapping!
- Example (radial basis kernel): $K_{rb}(x_1, x_2) = e^{-\frac{\|x_1 x_2\|^2}{\sigma^2}}$
 - This kernel corresponds to an infinite dimension mapping

Detection Algorithms (1)

Algorithm 1: Cluster-based Estimation

- computes how many points are "near" each point in the feature space, i.e., $d(x1,x2) \le w$
- Straightforward computation takes $O(n^2)$
- Fixed width clustering algorithm (approximation)
 - First point is center of the first cluster
 - For each subsequent point, if it is within w of some cluster's center, it is added to that cluster. Otherwise, it is a center of a new cluster
 - Some points may be added to multiple clusters!
 - Complexity is O(cn) where c is the number of clusters

Detection Algorithms (2)

- For points in dense regions, the estimate is inaccurate
 - not an issue, as long as we classify it as a normal point
- For points in sparse regions, the estimate is (more) accurate

Detection Algorithms (3)

Algorithm 2: K-nearest neighbors

- computes the sum of the distance to the k-nearest neighbors of each point in the feature space
- Refer to this sum as k-NN score
- To be useful, *k* needs to be larger than the number of instances of any one attack
- Straightforward computation: $O(n^2)$

Detection Algorithms (4)

- Approximation algorithm
 - Use the fixed-width cluster algorithm from algorithm 1, with a variation that each element is only placed in one cluster
- Let c(x) denote the center of the cluster that contains x
- If x_1 and x_2 are in the same cluster:

$$d_{\varphi}(x_1, x_2) \leq 2w$$

In all cases:

$$d_{\varphi}(x_1, x_2) \le d_{\varphi}(x_1, c(x_2)) + w$$

 $d_{\varphi}(x_1, x_2) \ge d_{\varphi}(x_1, c(x_2)) - w$

Detection Algorithms (5)

- The algorithm uses these three inequalities to find the *k*-nearest neighbors
- Note that choice of w does not affect the k-NN score; it only affects the efficiency of computing the score

Detection Algorithms (6)

Algorithm 3: One Class SVM (Support Vector Machine)

- Standard SVM algorithm is a supervised learning algorithm
 - tries to maximally separate two classes of data in feature space by a hyperplane
- Unsupervised (one class) SVM tries to separate the entire set of training data from the origin
- Objective function:

$$\min_{w \in Y, \zeta_i \in \Re, \rho \in \Re} \frac{\frac{1}{2}||w||^2 + \frac{1}{vl} \sum_i^l \zeta_i - \rho}{\text{subject to:}} (w \cdot \phi(x_i)) \ge \rho - \zeta_i, \zeta_i \ge 0$$

v: parameter that controls tradeoff between maximizing the distance from origin and containing most of the data (essentially the ratio of expected anomalies in the dataset)

l : the number of data points

w: the hyperplane's normal vector in the feature space

 ρ : the origin

 ζ : slack variables

Experiments (1)

13

- Two datasets:
 - KDD Cup 1999
 - Wide variety of simulated intrusions in a military network environment
 - 4,900,000 instances
 - The features are extracted from connection records
 - examples are duration, protocol type, number of bytes transferred, normal or error status of the connection
 - Four categories of attacks (total 24 attack types):
 - 1) Denial of Service (e.g. syn flood)
 - 2) Unauthorized access from a remote machine (e.g. password guessing)
 - 3) Unauthorized access to superuser functions (e.g. buffer overflow attacks)
 - 4) Probing (e.g. port scanning)
 - Filter out attacks so that dataset consists of 1-1.5% attacks

Experiments (2)

- System call data from BSM (Basic Security Module)
 portion of 1999 DARPA Intrusion Detection Evaluation data
 - consists of 5 weeks of BSM data of all processes on a Solaris machine
 - consider two programs: *eject* and *ps*
 - An attack can correspond to multiple processes because a malicious process can spawn other processes. Consider an attack detected if one of the processes corresponding to the attack is detected

Program	Total #	# Intrusion	# Intrusion	# Normal	# Normal	% Intrusion
Name	of Attacks	Traces	System Calls	Traces	System Calls	Traces
ps	3	21	996	208	35092	2.7%
eject	3	6	726	7	1278	36.3%

15

Experiments (3)

- The datasets are divided into two parts: one for training and one for testing
- Parameters:
 - cluster-based algorithm:
 - For network connection data, the width is 40
 - For *eject* system call traces, the width is 5
 - For ps traces, the width is 10
 - k-nearest neighbor algorithm:
 - For network connection data, k=10,000
 - For *eject* system call traces, k=2
 - For ps traces, k=15
 - SVM-based algorithm:
 - For network connection data, v=0.01 and $\sigma^2=12$
 - For system call traces, v=0.05 and $\sigma^2=1$

Experiments (4)

Result for KDD cup data (network connection data)
ROC Curves for KDD Cup 1999 Data Set

Experiments (5)

17

Algorithm	Detection rate	False positive rate
Cluster	93%	10%
Cluster	66%	2%
Cluster	47%	1%
Cluster	28%	.5%
K-NN	91%	8%
K-NN	23%	6%
K-NN	11%	4%
K-NN	5%	2%
SVM	98%	10%
SVM	91%	6%
SVM	67%	4%
SVM	5%	3%

Table 2: Selected points from the ROC curves of the performance of each algorithm over the KDD Cup 1999 Data.

Experiment (6)

- For system call traces, **all three** algorithms perform perfectly (100% accuracy)!
- Features used: sub-sequences of system calls
 - Malicious process traces have many sub-sequences that do not occur in normal processes
 - Normal processes have similar sub-sequences of system calls

