## Quiz:

- (a) What is the problem of PDP when interactions between features are present? How about extrapolation?
- (b) How do PDPs and ICE curves correspond with each other?
- (c) Which problem do we need to keep in mind when using centered ICE/PDP for categorical features?
- (d) M-Plots handle correlated data well and do not suffer from extrapolation. Which disadvantage does this method have?
- (e) Name the advantages of ALE over PDP.
- (f) Can you think of a situation in which ALE equals PDP?
- (g) How does the interpretation between M-Plots and ALE differ?
- (h) You fitted a model that should predict the value of a property depending on the number of rooms and square meters. You want to compute feature effects using the following methods: PDP, M-plots and ALE plots. Which of the following strategies reflect which method? The feature effect for a  $30~\text{m}^2$  corresponds to...
  - a) ... what the model predicts on average for flats that also have around  $30~\mathrm{m}^2$ , e.g.,  $28~\mathrm{m}^2$  to  $32~\mathrm{m}^2$ .
  - b) ... how the model predictions changes on average when flats with  $28~\mathrm{m}^2$  to  $32~\mathrm{m}^2$  have  $32~\mathrm{m}^2$  vs.  $28~\mathrm{m}^2$ .
  - c) ... what the model predicts on average if all properties in the dataset have 30 m<sup>2</sup>.

## Exercise 1:

You receive a dataset with 1000 data points from a data generating process with  $X_1 \sim \mathcal{U}(-1,1)$ ,  $X_2 = X_1^2 + \delta$ ,  $\delta \sim \mathcal{N}(0,0.04)$  and  $Y = 5X_1 - 2X_2 + \epsilon$ ,  $\epsilon \sim \mathcal{N}(0,1)$ .

The fitted linear model has the following form:  $\hat{f}(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \hat{\beta}_2 \mathbf{x}_2 + \hat{\beta}_3 \mathbf{x}_1 \mathbf{x}_2$ .

Below, the PDP (first row) and ALE (second row) for  $x_1$  and  $x_2$  are shown.

- (a) Interprete the plots with respect to the feature effect of  $x_1$  and  $x_2$ .
- (b) Would you rather trust the PDP or ALE plot? Give reasons for your decision.

## PDP



## ALE

