PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11	l) International Publication Number:	WO 99/28367
C08G 63/80, 63/91, 63/20	A1	(43	3) International Publication Date:	10 June 1999 (10.06.99)
(21) International Application Number: PCT/EP (22) International Filing Date: 27 November 1998 ((81) Designated States: JP, US, European DE, DK, ES, FI, FR, GB, GR, SE).	
(30) Priority Data: T097A001042 1 December 1997 (01.12.97 T097A001044 1 December 1997 (01.12.97	ń	IT IT	Published With international search report, Before the expiration of the tin claims and to be republished in amendments.	
TERO DELL'UNIVERSITA' E DELLA RICER ENTIFICA E TECNOLOGICA [IT/IT]; Piazza 20, I-00144 Roma (IT).	CA SC	CI-		
(72) Inventors; and (75) Inventors/Applicants (for US only): PEREGO, [IT/IT]; Via Voghera, 20, I-20144 Milano (IT). B. Catia [IT/IT]; Via della Noce, 63, I-28100 Nov CELLA, Gian, Domenico [IT/IT]; Via Ming I-28100 Novara (IT). GARDANO, Andrea [IT/IT] Roma, 11, I-13039 Trino (IT).	ASTIOI vara (I. ghetti,	LI, T). I,		
(74) Agents: RAMBELLI, Paolo et al.; Jacobacci & Pera Corso Regio Parco, 27, I-10152 Torino (IT).	ni S.p./	А.,		

(54) Title: A METHOD FOR INCREASING THE MOLECULAR WEIGHT OF POLYESTER RESINS

(57) Abstract

A method for increasing the molecular weight of aliphatic polyester resins from dicarboxylic aliphatic acids having 2–22 carbon atoms, or from hydroxy-acids having 2–22 carbon atoms, in which the solid resin is brought into contact with a chain extender preferably chosen from the organic disocyaciates.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ .	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
	Estonia	LR	Liberia	SG	Singapore		

A method for increasing the molecular weight of polyester resins

The present invention concerns an improved method for increasing the molecular weight of aliphatic polyester resins.

As is well known, aliphatic polyester resins are prepared using methods of melt polycondensation, under vacuum conditions, of aliphatic hydroxy-acids having two or more carbon atoms, or from the corresponding lactones or lactides, or from aliphatic dicarboxylic acids with diols having two or more carbon atoms.

When working under the conditions indicated above, it is difficult to obtain polymers having molecular weights high enough for the preparation of films having mechanical properties of practical importance.

It is known that the molecular weight can be taken to the required levels by reacting the melted resin with chain extenders such as the diisocyanates. In order to avoid the formation of gels, which normally occurs when a diisocyanate is melt reacted with an aliphatic polyester, the quantity of diisocyanate must be accurately controlled with respect to the terminal hydroxyl groups of the resin, and a resin that has an average numerical molecular weight greater than at least 5,000 must preferably be used.

If molecular weights that are too low are used, there is too much gel formation.

A greater disadvantage of using the diisocyanates at high temperatures is constituted by the branching and/or crosslinking reactions that can arise using these compounds.

The presence of gels makes the polymer unsuitable for applications such as film preparation.

PCT/EP98/07624

It has now unexpectedly been discovered that it is possible to increase, even significantly, the molecular weight of aliphatic polyester resins without the formation of gels and/or uncontrolled cross-linking by conducting the reaction leading to the increase in molecular weight (a re-grading reaction) at temperatures at which the resin is in the solid state, and using bi-functional chain extenders that react with addition reactions with the terminal OH groups of the resin.

The re-grading reaction is conducted by putting the solid resin in granular form in contact with the chain extender and operating at ambient temperature or a temperature slightly less than the melting point of the resin for sufficient time to obtain the desired increase in molecular weight.

The chain extender is used in its liquid state, homogeneously dispersed over the resin so that it can diffuse therein.

Because the method is conducted in the solid phase at low temperature, relatively long time periods are needed to obtain significant increases in molecular weight. In order to reduce the times needed to obtain significant increases in the molecular weight, the chain extender is mixed in the melted polymer using relatively short contact times, generally less than five minutes; this is in order to avoid undesirable crosslinking reactions.

The increase in the intrinsic viscosity of the resins to which the re-grading process of the invention is applied is at least $0.1-0.15 \, dl/g$. The intrinsic viscosity of the resin after the re-grading is greater than $0.7 \, dl/g$.

The intrinsic viscosity of the starting polyester resins can vary within a wide range; for example, they can have low values such as 0.1-0.15 dl/g, or high values such as 0.8-1.0 dl/g, or higher such as, for example, 1.5 dl/g, the viscosity being measured in CHCl₃.

The preferred chain extenders are the organic diisocyanates and polyisocyanates. They are used in sufficient quantities to react with the terminal OH groups of the resin.

Quantities of diisocyanate providing more NCO-groups than is equivalent to the number of OH groups of the resin have a negative effect on the increase in molecular weight, that is, in this case the diisocyanates do not react with both functional groups and, therefore, the reaction does not lead to an increase in molecular weight.

The quantity of diisocyanate or polyisocyanate is between 0.2 and 1 NCO equivalent per OH group of the resin.

The quantity of disocyanate or polyisocyanate expressed in weight is generally between 0.01 and 3% of the resin, and preferably between 0.1 and 2%.

The organic diisocyanates and polyisocyanates are chosen from compounds such as the following:

- a) compounds having the formula: OCN(CH₂)_nNCO, in which n is an integer between 2 and 20; tetramethylenediisocyanate, hexamethylenediisocyanate, dodecamethylenediisocyanate are representative compounds;
- b) diisocyanates as in a), in which one or more of the hydrogen atoms of the CH_2 groups are replaced by aliphatic radicals; 4-butylhexamethylenediisocyanate and 2,2,-4-trimethylhexamethylenediisocyanate are representative compounds;
- c) diisocyanates such as in a) and b), in which one or more of the non-adjacent CH_2 groups is replaced by -0-, -S- or -NR- groups, in which R is hydrogen or a hydrocarbon radical;
- d) aromatic diisocyanates possibly having condensed rings,
 such as toluene-2,4-diisocyanate, p-phenylenediisocyanate;
- e) diisocyanates having the formula OCN- A_2 -X- A_2 -NCO, in which A_2 is a bivalent aryl radical, X is an -O-, -S-, SO₂-, -SO-, -CO- group, a bivalent hydrocarbon radical or a direct bond

between the A_2 groups; examples of these diisocyanates are 3,3'-, 4,4'- and 3,4'-diphenylmethanodiisocyanate, 2,2-diphenylpropanodiisocyanate, 4,4-diphenyldiisocyanate.

Dimers, trimers and tetramers of the diisocyanates can be used.

The aromatic diisocyanates can give rise to problems of colour in the polymer; on the other hand, the aliphatic diisocyanates are free from this disadvantage but are less reactive.

The preferred diisocyanates are hexamethylenediisocyanate, diphenylmethanodiisocyanate and isophoronediisocyanate.

Examples of other chain extenders that can be used are the diepoxides and the dianhydrides of aromatic tetracarboxylic acids, such as pyromellitic dianhydride.

The aliphatic polyester resins to which the re-grading method of the invention is applied are resins containing terminal OH groups, and include aliphatic polyesters, aliphatic/aromatic co-polyesters, co-polyester ethers, polyester-ether-amides, urethane-polyesters and carbamide-polyesters, in which the polyester or the sequence or the repeating aliphatic units of the co-polymers are obtained from aliphatic dicarboxylic acids having 2-22 carbon atoms and from aliphatic, aromatic or cycloaliphatic diols having 2-22 carbon atoms, or from hydroxy-acids having 2-22 carbon atoms, or from the corresponding lactones or lactides, or from mixtures of dicarboxylic acids with mixtures of diols or from mixtures thereof with mixtures of hydroxy-acids or lactones and lactides.

The preferred dicarboxylic acids are succinic acid and adipic acid; pimelic, suberic, azelaic, sebacic and brassilic acids; the preferred hydroxy-acids or lactones are 6-hydroxycaproate and 1's-caprolactone and the hydroxybutyric acids, hydroxyvalerianic acid, 9-hydroxy-nonoic acid, 10-hydroxy-decanoic acid and 13-hydroxy-tridecancarboxylic acid.

The diols utilised for the preparation of the resins from dicarboxylic acids are aliphatic, aromatic and cyclo-aliphatic diols having 2-22 carbon atoms.

Preferred diols are 1,2-ethandiol, 1,4-butandiol, 1,6-hexandiol, 1,7-heptandiol, 1,10-decandiol, 1,12-dodecandiol, 1,4-cyclohexandimethylol and 1,4-cyclohexandiol.

Preferred resins are poly-\(\epsilon\)-caprolactone, polyethylene and polybutylene-succinate, polyhydroxybutyrate-hydroxyvalerate, polylactic acid, polyalkyleneadipate, polyalkyleneterephthalate, polyalkyleneadipate-\(\epsilon\)-caprolactone/\(\epsilon\)-caprolactam, polybutylene-adipate-coterephthalate, poly(1,10-decandiyl-decandionate) and poly(1,10-decandiyl-nonandionate), poly-tetramethylenesebacate, polyhexamethylenesebacate.

The preparation of the resins using melt polycondensation is conducted at temperatures of between 180 and 230°C in the presence of known catalysts such as, for example, tetraisopropyltitanium and titanium acetylacetonate. The molecular weight obtainable by means of polycondensation is generally not greater than 10,000.

It is also possible to conduct the polycondensation in the presence of polyfunctional compounds having three or more groups that are reactive with the terminal OH and COOH groups, such as trimethylolpropane, pentaerythritol and trimellitic anhydride.

The quantity of polyfunctional compound is generally between 0.1 to 5% in moles per 100 moles of dicarboxylic acid or hydroxy-acid.

The polymers that can be obtained using the process of the invention are substantially free of gels and have optimal mechanical characteristics.

They are utilisable other than in the preparation of films that can be single or multi-layered, mono- or bi-orientated, as well as in all applications in which aliphatic polyester resins are required that have relatively high intrinsic viscosities (greater than 0.7 dl/g). Examples of such applications are semi-expanded and expanded materials, moulded articles for the agglomeration of pre-expanded particles, fruit and vegetable containers, bottles for the grocery, cosmetic and pharmaceutical sectors, fishing nets, bags for organic refuse and grass cuttings and the like.

It has been found, and this constitutes a further aspect of the invention, that in the polymers that have been re-graded according to the method of the invention and that have an intrinsic viscosity greater than 0.7 dl/g, the ratio R between the intrinsic velocity and the melt flow index measured at 180° under 5kg of weight is greater than 0.1.

The following examples are only illustrative, but do not constitute a limitation of the invention.

EXAMPLE 1

A sample of 10.0g of polycaprolactonediol (Solvay Interox, CAPA 220) having an intrinsic viscosity of 0.15 dl/g was placed in a two necked glass flask, exposed to nitrogen, and 800mg of 1,6-hexamethylenediisocyanate added thereto. The contents of the flask were agitated for 15 minutes in order to assist the homogeneous dispersion of the diisocyanate, and the temperature was then taken to 50°C in an oil bath. The viscosity of the polymer changed from 0.15 dl/g to 0.85 dl/g in four days.

EXAMPLE 2

10kg of poly-ε-caprolactone (PCL-787 Union Carbide) were introduced into a Universal 15L mixer and 40ml of hexamethylenediisocyanate added using a dropping funnel. The addition of the reagent, carried out while maintaining the polymer under agitation, lasted 5 minutes; the agitation was

7

then continued for a further 15 minutes. At the end, the contents were transferred to a polythene bag which was closed and placed in a ventilated oven kept at 50°C.

After fourteen days, the MRF of the PCL had gone from 7.0g/10 min to 2.5g/10 min, while the intrinsic viscosity in CHCl₃ at 30° C had increased from 1.26 dl/g to 1.45 dl/g.

EXAMPLE 3

100g of Eastman 14776 polyester granules, a co-polymer based on adipic acid, terephthalic acid and butandiol, were agitated in a 500ml flask and 500mg of hexamethylenediisocyanate added. After further agitation for 15 minutes, the temperature was raised to 70°C in an oil bath.

After 72 hours, the viscosity of the polymer had increased from 0.85 dl/g in CHCl₃ at 30°C to 1.25 dl/g.

EXAMPLE 4

101g of sebacic acid (0.499 moles) and 99.85g of 1,10-decandiol (0.550 moles) were placed in a 600ml glass reactor provided with a stainless steel mechanical agitator and still.

The temperature was gradually taken to 200°C in an oil bath, removing the reaction water. 0.15g of Ti(OBu)₄ were then added, maintaining a moderate agitation and then reducing the pressure to 0.2mm Hg. The reaction system was left under these conditions for 4 hours, obtaining a white crystalline polymer having an intrinsic viscosity of 0.61 dl/g, which was ground to obtain 3-4mm granules.

EXAMPLE 5

A sample of 10.0g poly(1,10-decandiol-decandionate) prepared according to Example 1 was placed in a two necked glass flask, in the presence of nitrogen, and 100mg of 1,6-hexamethylenediisocyanate (HDI) added thereto. The contents of the flask were agitated for 15 minutes to assist in the

homogeneous dispersion of the diisocyanate, and the temperature was then taken to 60°C in an oil bath. The intrinsic viscosity of the polymer changed from 0.61 dl/g to 1.21 dl/g in two and a half days.

EXAMPLE 6

A sample of 10.0g poly(1,10-decandiol-decandionate) prepared according to Example 1 was placed in a two necked glass flask, exposed to nitrogen, and 200mg of 1, 6-hexamethylenediisocyanate (HDI) added thereto. The contents of the flask were agitated for 15 minutes to assist in the homogeneous dispersion of the diisocyanate, and the temperature was then taken to 60°C in an oil bath. The intrinsic viscosity of the polymer changed from 0.61 dl/g to 0.94 dl/g in two and a half days.

EXAMPLE 7

A sample of 10.0g poly(1,10-decandiol-decandionate) prepared according to Example 1 was placed in a two necked glass flask, 6of 1, 100mg nitrogen, and exposed to hexamethylenediisocyanate (HDI) were added thereto. contents of the flask were agitated for 15 minutes to assist in the homogeneous dispersion of the diisocyanate, temperature was then taken to 70°C in an oil bath. intrinsic viscosity of the polymer changed from 0.61 dl/g to 1.27 dl/g in four days.

COMPARISON EXAMPLE 1

A sample of 10.0g of poly(1,10-decandiol-decandionate) prepared according to Example 4 and having an intrinsic viscosity of 0.52 dl/g was placed in a four necked glass flask provided with a mechanical agitator and exposed to nitrogen. The temperature was taken to 160°C and 100mg of 1,6-hexamethylenediisocyanate (HDI) were added under gentle mechanical agitation. The intrinsic viscosity of the polymer changed from 0.52 dl/g to 0.78 dl/g in fifteen hours. The solution of the polymer in CHCl₃ contained gels.

COMPARISON EXAMPLE 2

A sample of 87g of poly(1,10-decandiol-nonandionate) prepared according to Example 4 and having an intrinsic viscosity of 0.80 dl/g was placed in a four necked glass flask provided with a mechanical agitator and exposed to nitrogen. The temperature was taken to 160°C and 150mg of 1,6-hexamethylenediisocyanate (HDI) were added under gentle mechanical agitation. After one hour of agitation, the addition was repeated and, after a further hour of reaction, a third addition hexamethylenediisocyanate was made (to give a total of 0.45g), and heating continued for a further hour. It was not possible to determine the intrinsic viscosity of the reaction product due to its insolubility in chloroform, clearly because of cross-linking.

CLAIMS

- A method for increasing the molecular weight of polyester resins having terminal hydroxyl groups and selected from the from aliphatic aliphatic obtainable polyester resins dicarboxylic acids having 2-22 carbon atoms and aliphatic, aromatic or cyclo-aliphatic diols having 2-22 carbon atoms, or from aliphatic hydroxy-acids having 2-22 carbon atoms, and the corresponding lactones or lactides, or from aliphatic-aromatic polyester-ether-amides, polyester-amides, copolyesters, urethane polyesters and carbamide polyesters, in which the repeating aliphatic unit or the aliphatic polyester sequence dicarboxylic acid or from a hydroxy-acid or derives from a lactone and lactide as indicated above, including bringing the resin in its solid state into contact with a bifunctional chain extender having groups that react by means of reactions with the terminal OH groups of the resin, the said chain extender being used in a sufficient quantity to obtain an increase in molecular weight corresponding to at least 0.1 dl/g unit of the intrinsic viscosity of the starting resin.
- 2. A method according to Claim 1, in which the intrinsic viscosity of starting resin is between 0.1 and 1.5 dl/g measured in chloroform at 30°C.
- 3. A method according to Claim 2, in which the intrinsic viscosity is between 0.15 and 1.0 dl/g.
- 4. A method according to Claims 1, 2 or 3, in which the chain extender is an aliphatic or aromatic diisocyanate or polyisocyanate.
- 5. A method according to any of Claims 1 to 4, in which the di- or polyisocyanate is used in a quantity equal to from 0.2 to 1 equivalent NCO groups per terminal hydroxyl group of the resin.

- 6. A method according to Claim 5, in which the quantity of di- or polyisocyanate is between 0.01 and 3% in weight of the resin.
- 7. A method according to any of Claims 1 to 6, in which the disocyanate is selected from the following disocyanates:
- a) diisocyanates having the formula OCN- (CH_2) - $_nNCO$, in which n is an integer between 2 and 20;
- b) diisocyanates of the formula a), in which one or more of the hydrogen atoms of the methylene group is replaced with a hydrocarbon radical;
- c) diisocyanates having the formula a) or b), in which one or more non-adjacent methylene groups is replaced by -0-, -S-, or -NR- groups, in which R is hydrogen or a hydrocarbon radical;
- d) aromatic diisocyanates having condensed rings;
- e) diisocyanates of the formula OCN- A_2 -X- A_2 -NCO, in which A_2 is a bivalent aryl radical, X is an -O-, -S-, -SO₂-, -SO-, -CO-group or a direct link between the A_2 groups.
- 8. A method according to Claim 7, in which the diisocyanate is selected from hexamethylenediisocyanate, tetramethylenediisocyanate, diphenylmethanodiisocyanate (MDI), isophoronediisocyanate, hydrogenated MDI, 2,4-toluenediisocyanate, 2,6-toluenediisocyanate, p,p'-diphenyldiisocyanate and xylylenediisocyanate.
- A method according to any preceding claim, in which the starting polyester resin is selected from the group consisting polybutylenepolyethyleneorpoly-ε-caprolactone, polylactic polyhydroxybutyrate-hydroxyvalerate, succinate, polybutyleneadipate-co-terephthalate, acid, poly(1,10-decandiylpolybutyleneadipate-&-caprolactone, poly(1,10-decandiyl-nonandionate), decandionate), tetramethylenesebacate and poly-hexamethylenesebacate.
- 10. A method according to any of the preceding Claims 1 to 9,

in which the polyester resin is obtained from mixtures of aliphatic dicarboxylic acids having 2-22 carbon atoms and mixtures of aliphatic, aromatic or cycloaliphatic diols having 2-22 carbon atoms, or from mixtures thereof with mixtures of aliphatic hydroxy-acids having 2-22 carbon atoms or their lactones or lactides.

- 11. Polyester resins selected from the resins of Claims 1 to 10, having an intrinsic viscosity in chloroform at 30°C greater than 0.7 dl/g, substantially free of gels and obtainable using the methods of Claims 1 to 10 above.
- 12. Polyester resins selected from the resins of Claims 1 to 10, having an intrinsic viscosity in chloroform at 30°C greater than 0.7 dl/g, in which the ratio between the intrinsic viscosity and the melt flow index measured at 180° under 5kg of load is greater than 0.1.

INTERNATIONAL SEARCH REPORT

Inters. Anal Application No
PCT/EP 98/07624

A. CLASS IPC 6	ification of subject matter C08G63/80 C08G63/91 C08G63/	20	
According t	to International Patent Classification (IPC) or to both national classific	cation and IPC	·
	SEARCHED		·
	ocumentation searched (classification system followed by classification	ion symbols)	
IPC 6	C08G		
Documenta	ation searched other than minimum documentation to the extent that s	such documents are included in the fields s	earched
Electronic	data base consulted during the international search (name of data ba	and where Provided accept towns in	
		ise and, whole practical, sealor terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.
X	WO 96 11978 A (CIBA GEIGY AG ;HOF KURT (DE); HERBST HEINZ (DE); PFA RU) 25 April 1996 see page 18, line 17 - page 19, see claims 1,2,6,14	AENDNER	1-12
Y	WO 93 08226 A (M & G RICERCHE SPA 29 April 1993 see page 6, line 16 - page 7, lin see table 1 see claims 1,2,12		1-12
Y	US 3 853 821 A (SID AHMED A ET AL 10 December 1974 see column 2, line 13 - column 2, see tables I,II see claims 1,2,4		1-12
	<u> </u>		L
X Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docum	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or th	the application but
"E" earlier	document but published on or after the international	invention "X" document of particular relevance; the o	claimed invention
filing o		cannot be considered novel or cannot	be considered to
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as. specified)	involve an inventive step when the do "Y" document of particular relevance; the	claimed invention
"O" docum	nent referring to an oral disclosure, usa, exhibition or	cannot be considered to involve an in document is combined with one or mo	ore other such docu-
"P" docum	means ient published prior to the international filing date but than the priority date claimed	ments, such combination being obvio in the art. "&" document member of the same patent	
	actual completion of the international search	Date of mailing of the international se	· · · · · · · · · · · · · · · · · · ·
1	3 April 1999	06/05/1999	·
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fey (-31-70) 340-3016	Heidenhain, R	

1

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/EP 98/07624

		PCT/EP 98/07624		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
itegory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
	WO 94 26820 A (COBROR SANDRO ;SEVERINI TONINO (IT); AL GHATTA HUSSAIN ALI KASHIF) 24 November 1994 see claims 1-3	1-12		
	WO 97 30105 A (CIBA GEIGY AG ;PFAENDNER RUDOLF (DE); HOFFMANN KURT (DE); HERBST H) 21 August 1997 see claims 1,3,21	1-12		
•	S. FAKIROW: "Wiederverwertung thermoplastischer Polykondensat-Abfälle" KUNSTSTOFFE, vol. 74, 1984, pages 218-221, XP002099678	1-12		
	·			

1

INTERNATIONAL SEARCH REPORT

Information on patent family-members

International Application No PCT/EP 98/07624

Patent document cited in search repo		Publication date	Patent family member(s)	Publication date
WO 9611978	A	25-04-1996	AU 693610 B	02-07-1998
WO 3011370		. 25 04 1550	AU 3804295 A.	06-05-1996
			BR 9509332 A	27-01-1998
			CA 2200339 A	25-04-1996
			CZ 9701120 A	16 - 07-1997
				30-07-1997
			JP 10508330 T	18-08-1998
			SK 46697 A	08-10-1997
			US . 5807932 A	15-09-1998
WO 9308226	Α	29-04-1993	IT 1251953 B	27-05-1995
•			AU 664388 B	16-11-1995
			AU 2758392 A	21-05-1993
			CA 2096640 A	19-04-1993
			EP 0563354 A	06-10-1993
			JP 2790917 B	27-08-1998
			JP 6503606 T	21-04-1994
			US 5376734 A	27-12-1994
US 3853821	A	10-12-1974	NONE	
WO 9426820	A	24-11-1994	IT 1264381 B	23-09-1996
	• • •		AT 171718 T	15-10-1998
			DE 69413684 D	05-11-1998
			DE 69413684 T	25-02-1999
			WO 9426814 A	24-11-1994
			WO 9426821 A	24-11-1994
			WO 9426821 A	24-11-1994 03-04-1996
			EP 0703948 A	03-04-1996
			EP 0703948 A EP 0698059 A	03-04-1996 28-02-1996
			EP 0703948 A EP 0698059 A EP 0698056 A	03-04-1996 28-02-1996 28-02-1996
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T	03-04-1996 28-02-1996 28-02-1996 16-01-1999
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T JP 8510488 T	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996 05-11-1996
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T JP 8510488 T US 5670584 A	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996 05-11-1996 23-09-1997
			EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T JP 8510488 T	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996 05-11-1996
 WO 9730105	A		EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T JP 8510488 T US 5670584 A US 5869561 A	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996 05-11-1996 23-09-1997 09-02-1999
 WO 9730105	A	21-08-1997	EP 0703948 A EP 0698059 A EP 0698056 A ES 2123789 T JP 2851436 B JP 8509676 T JP 8509776 T JP 8510488 T US 5670584 A US 5869561 A	03-04-1996 28-02-1996 28-02-1996 16-01-1999 27-01-1999 15-10-1996 05-11-1996 23-09-1997 09-02-1999