ASSIGNMENT-II

1) Generate the summary statistics for each variable in the table.

Mode 3.43 Standard Deviation 2.921131892 Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22					
Standard Error 0.129860152 Median 4.82 Mode 3.43 Standard Deviation 2.921131892 Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	CRIME_R	ATE			
Median 4.82 Mode 3.43 Standard Deviation 2.921131892 Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Mean	4.871976285			
Mode 3.43 Standard Deviation 2.921131892 Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Standard Error	0.129860152			
Standard Deviation 2.921131892 Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Median	4.82			
Sample Variance 8.533011532 Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Mode	3.43			
Kurtosis -1.189122464 Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Standard Deviation	2.921131892			
Skewness 0.021728079 Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Sample Variance	8.533011532			
Range 9.95 Minimum 0.04 Maximum 9.99 Sum 2465.22	Kurtosis	-1.189122464			
Minimum 0.04 Maximum 9.99 Sum 2465.22	Skewness	0.021728079			
Maximum 9.99 Sum 2465.22	Range	9.95			
Sum 2465.22	Minimum	0.04			
	Maximum	9.99			
Count 506	Sum	2465.22			
	Count	506			

Kurtosis value is -1.1891, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

INDUS						
Mean	11.13677866					
Standard Error	0.304979888					
Median	9.69					
Mode	18.1					
Standard Deviation	6.860352941					
Sample Variance	47.06444247					
Kurtosis	-1.233539601					
Skewness	0.295021568					
Range	27.28					
Minimum	0.46					
Maximum	27.74					
Sum	5635.21					
Count	506					

Kurtosis value is -1.23353, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

AGE	
Mean	68.57490119
Standard Error	1.251369525
Median	77.5
Mode	100
Standard Deviation	28.14886141
Sample Variance	792.3583985
Kurtosis	-0.967715594
Skewness	-0.59896264
Range	97.1
Minimum	2.9
Maximum	100
Sum	34698.9
Count	506

Kurtosis value is -0.9677155, so the curve is not so sharp. It's look like a flat curve.

It has negative skewness.

NOX	
Mean	0.554695059
Standard Error	0.005151391
Median	0.538
Mode	0.538
Standard Deviation	0.115877676
Sample Variance	0.013427636
Kurtosis	-0.064667133
Skewness	0.729307923
Range	0.486
Minimum	0.385
Maximum	0.871
Sum	280.6757
Count	506

Kurtosis value is -0.064667, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

DISTANCE						
Mean	9.549407115					
Standard Error	0.387084894					
Median	5					
Mode	24					
Standard Deviation	8.707259384					
Sample Variance	75.81636598					
Kurtosis	-0.867231994					
Skewness	1.004814648					
Range	23					
Minimum	1					
Maximum	24					
Sum	4832					
Count	506					

Kurtosis value is -0.86723, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

PTRATIO						
Mean	18.4555336					
Standard Error	0.096243568					
Median	19.05					
Mode	20.2					
Standard Deviation	2.164945524					
Sample Variance	4.686989121					
Kurtosis	-0.285091383					
Skewness	-0.802324927					
Range	9.4					
Minimum	12.6					
Maximum	22					
Sum	9338.5					
Count	506					

Kurtosis value is -0.285091, so the curve is not so sharp. It's look like a flat curve.

It has negative skewness.

TAX				
Mean	408.2371542			
Standard Error	7.492388692			
Median	330			
Mode	666			
Standard Deviation	168.5371161			
Sample Variance	28404.75949			
Kurtosis	-1.142407992			
Skewness	0.669955942			
Range	524			
Minimum	187			
Maximum	711			
Sum	206568			
Count	506			

Kurtosis value is -1.1424, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

AVG_ROOM						
Mean	6.284634387					
Standard Error	0.031235142					
Median	6.2085					
Mode	5.713					
Standard Deviation	0.702617143					
Sample Variance	0.49367085					
Kurtosis	1.891500366					
Skewness	0.403612133					
Range	5.219					
Minimum	3.561					
Maximum	8.78					
Sum	3180.025					
Count	506					

Kurtosis value is 1.891500, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

LSTAT	Г
Mean	12.65306324
Standard Error	0.317458906
Median	11.36
Mode	8.05
Standard Deviation	7.141061511
Sample Variance	50.99475951
Kurtosis	0.493239517
Skewness	0.906460094
Range	36.24
Minimum	1.73
Maximum	37.97
Sum	6402.45
Count	506

AVG_PRICE							
Mean	22.53280632						
Standard Error	0.408861147						
Median	21.2						
Mode	50						
Standard Deviation	9.197104087						
Sample Variance	84.58672359						
Kurtosis	1.495196944						
Skewness	1.108098408						
Range	45						
Minimum	5						
Maximum	50						
Sum	11401.6						
Count	506						

Kurtosis value is 0.493239, so the curve is not so sharp. It's look like a flat curve.

Kurtosis value is 1.49519, so the curve is not so sharp. It's look like a flat curve.

It has positive skewness.

It has positive skewness.

2) Plot a histogram of the Avg_Price variable. What do you infer?

From the Histogram, it is inferred that Average price has a positive skewness.

3) Compute the covariance matrix. Share your observations.

Column1	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	8.516147873									
AGE	0.562915215	790.7924728								
INDUS	-0.110215175	124.2678282	46.97142974							
NOX	0.000625308	2.381211931	0.605873943	0.013401099						
DISTANCE	-0.229860488	111.5499555	35.47971449	0.615710224	75.66653127					
TAX	-8.229322439	2397.941723	831.7133331	13.02050236	1333.116741	28348.6236				
PTRATIO	0.068168906	15.90542545	5.680854782	0.047303654	8.74340249	167.8208221	4.677726296			
AVG_ROOM	0.056117778	-4.74253803	-1.884225427	-0.024554826	-1.281277391	-34.51510104	-0.539694518	0.492695216		
LSTAT	-0.882680362	120.8384405	29.52181125	0.487979871	30.32539213	653.4206174	5.771300243	-3.073654967	50.89397935	
AVG PRICE	1.16201224	-97.39615288	-30.46050499	-0.454512407	-30.50083035	-724.8204284	-10.09067561	4.484565552	-48.35179219	84.41955616

Positive value denotes, both the x and y values are above or below their averages.

Negative value denotes, both the x and y values are mostly on opposite sides of their averages.

- 4) Create a correlation matrix of all the variables (Use Data analysis tool pack).
- a) Which are the top 3 positively correlated pairs and
- b) Which are the top 3 negatively correlated pairs.

Column1	CRIME_RATE	AGE	INDUS	NOX	DI	STANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	1										
AGE	0.006859463	1									
INDUS	-0.005510651	0.644778511	1								
NOX	0.001850982	0.731470104	0.763651447	1							
DISTANCE	-0.009055049	0.456022452	0.59 <mark>5129</mark> 275	0.611440563		1					
TAX	-0.016748522	0.50 <mark>6455</mark> 594	0.7 <mark>20760</mark> 18	0.6680232		0.910228189	1				
PTRATIO	0.010800586	0.261515012	0.383247556	0.188932677		0.464741179	0.46 <mark>085</mark> 3035	1			
AVG_ROOM	0.02739616	-0. <mark>24</mark> 0264931	-0 <mark>.39</mark> 1675853	-0. <mark>30</mark> 2188188		-0.209846668	-0. <mark>29</mark> 2047833	-0 <mark>.35</mark> 5501495	1		
LSTAT	-0.042398321	0.602338529	0.603799716	0.59 <mark>0878</mark> 921		0.488676335	0.543993412	0.374044317	-0.613808272	1	
AVG_PRICE	0.043337871	-0 <mark>.37</mark> 6954565	-0.48372516	-0 <mark>.42</mark> 7320772		-0.381626231	- <mark>0.46</mark> 8535934	- <mark>0.50</mark> 7786686	0.695359947	-0. <mark>7</mark> 37662726	1

a)	
Top 3 positively correlated pairs	
TAX vs DISTANCE	0.910228
NOX vs INDUS	0.763651
NOX vs AGE	0.73147

Top 3 negatively correlated pairs		
AVG_PRICE vs LSTAT	-0.73766	
LSTAT vs AVG_ROOM	-0.61381	
AVG_PRICE vs PTRATIO	-0.50779	

b)

- 5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.
- a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?
- b) Is LSTAT variable significant for the analysis based on your model?

R square

R square is just above 0.5. So this value is not significant. R square has to be near to 1.

Coefficient of LSTAT

Coefficient of LSTAT is -0.95005. It is inferred that for each \$1000 increase in Average price, there will be a 0.95% decrease in population.

Intercept

It is inferred that the Intercept value is 34.55384.

Residual plot

It is inferred that all the values are equally distributed.

b)

The p-value for LSTAT variable is 5.08110339438E-88. It is less than 0.05. So it is inferred that LSTAT variable is significant for the analysis.

- 6) Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable.
- a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/Undercharging?
- b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

a)

```
AVG_PRICE = Intercept + (Coefficient of AVG_ROOM * value of AVG_ROOM) + (Coefficient of LSTAT * value of LSTAT)
```

```
AVG_PRICE = -1.35827281187456 + (5.09478798433655 * 7) + (-0.642358334244129 * 20)
AVG_PRICE = 21.4581
```

It is inferred that the Average price is \$21.4581. But the company quoting a value of 30000 USD for this locality. By the result, it is concluded that the company is overcharging.

```
Adjusted R Square = 0.637124475470123 (Qn. 6)
Adjusted R Square = 0.543241825954707 (Qn. 5)
```

b)

It is inferred that the value of R Square is close to 1, if the count of independent variable increases.

Based on the analysis, the performance of this model is better than the previous model. (Qn. 5)

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent variable and all the other variables are independent. Interpret the output in terms of adjusted R Square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

Adjusted R Square = 0.688298646855749

	Coefficients
Intercept	29.24131526
CRIME_RATE	0.048725141
AGE	0.032770689
INDUS	0.130551399
NOX	-10.3211828
DISTANCE	0.261093575
TAX	-0.01440119
PTRATIO	-1.074305348
AVG_ROOM	4.125409152
LSTAT	-0.603486589

- ** For every \$1000 of avg. price of houses, per capita crime rate by town increases by 0.0487.
- ** For every \$1000 of avg. price of houses, proportion of houses built prior to 1940 increases by 0.03%.
- ** For every \$1000 of avg. price of houses, proportion of non-retail business acres per town increases by 0.13%.
- ** For every \$1000 of avg. price of houses, nitric oxides concentration decreases by 10 million.
- ** For every \$1000 of avg. price of houses, distance from highway increases by 0.2610 miles.
- ** For every \$1000 of avg. price of houses, full-value property-tax rate decreases by 0.0144.
- ** For every \$1000 of avg. price of houses, pupil-teacher ratio by town decreases by 1.0743.
- ** For every \$1000 of avg. price of houses, average number of rooms per house increases by 4.12540.
- ** For every \$1000 of avg. price of houses, lower status(LSTAT) of the population decreases by 0.603%.

- 8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:
- a) Interpret the output of this model.
- b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?
- c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?
- d) Write the regression equation from this model.

a)

<u>'</u>		
	Coefficients	P-value
Intercept	29.42847349	1.84597E-09
AGE	0.03293496	0.012162875
INDUS	0.130710007	0.038761669
NOX	-10.27270508	0.008545718
DISTANCE	0.261506423	0.000132887
TAX	-0.014452345	0.000236072
PTRATIO	-1.071702473	7.08251E-15
AVG_ROOM	4.125468959	3.68969E-19
LSTAT	-0.605159282	5.41844E-27

Adjusted R Square = 0.68868

b)

Adjusted R Square = 0.6886836818 (Qn.8) Adjusted R Square = 0.6882986468 (Qn.7)

By the result, Adjusted R square for this model is greater comparing to the previous model. So it is concluded that this model performs better than previous model.

c)

	Coefficients
NOX	-10.27270508
PTRATIO	-1.071702473
LSTAT	-0.605159282
TAX	-0.014452345
AGE	0.03293496
INDUS	0.130710007
DISTANCE	0.261506423
AVG_ROOM	4.125468959
Intercept	29.42847349

It is inferred that if the value of NOX is more in a locality in this town, the value of the average price will be reduced.

d)

AVG_PRICE = Intercept + (coefficient of Age * value of Age) + (coefficient of Indus * value of Indus) + (coefficient of NOX * value of NOX) + (coefficient of Distance * value of Distance) + (coefficient of Tax * value of Tax) + (coefficient of PTRATIO * value of PTRATIO) + (coefficient of Avg_room * value of Avg_room) + (coefficient of LSTAT * value of LSTAT)