S2 – Examen 4 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (7 points)

Répondre aux questions présentes sur le <u>document réponse</u>.

Exercice 2 (4 points)

On souhaite réaliser une mémoire RAM d'une capacité de 128 Mib (que l'on notera *M*) à l'aide de plusieurs mémoires RAM d'une capacité de 8 Mib (que l'on notera *m*). La mémoire *M* possède un bus de donnée de 16 bits et les mémoires *m* un bus de donnée de 8 bits. Répondez aux questions sur le <u>document réponse</u>.

Exercice 3 (4 points)

Un système à microprocesseur comporte une mémoire morte (ROM), une mémoire vive (RAM) et deux périphériques (**P1** et **P2**). Leurs capacités (en bits) sont respectivement 8 Mib, 32 Kib, 2 Kib et 1 Kib. Le microprocesseur possède un bus d'adresse de 24 bits (les bits d'adresse sont numérotés de *A0* à *A23* et *A0* est le bit poids faible). Tous les composants ont un bus de donnée de 8 bits. La ROM sera située dans les adresses les plus faibles, viendront ensuite la RAM, **P1** et **P2**.

1. Donnez la taille du bus d'adresse de chaque mémoire et de chaque périphérique.

Pour tout le reste de l'exercice, c'est le mode linéaire qui sera utilisé.

- 2. Donnez les bits de sélection qui serviront au décodage.
- 3. En tenant compte du signal AS (*Address Strobe*), donnez les expressions des signaux CS pour chaque composant relié au microprocesseur.
- 4. Donnez les adresses hautes et basses de chaque composant (vous utiliserez la représentation hexadécimale à 6 chiffres).

Exercice 4 (5 points)

Un système à microprocesseur comporte une mémoire morte (ROM), une mémoire vive (RAM) et deux périphériques (**P1** et **P2**). Leurs capacités (en octets) sont respectivement 128 Kio, 16 Kio, 4 Kio et 1024 octets. Le microprocesseur possède un bus d'adresse de 20 bits (les bits d'adresse sont numérotés de *A0* à *A19* et *A0* est le bit poids faible). Tous les composants ont un bus de donnée de 8 bits. La ROM sera située dans les adresses les plus faibles, viendront ensuite la RAM, **P1** et **P2**.

- 1. Donnez la taille du bus d'adresse de chaque mémoire et de chaque périphérique.
- 2. Est-il possible de réaliser un décodage de type linéaire ?

Pour tout le reste de l'exercice, c'est le mode zone qui sera utilisé avec le moins de zones possible.

- 3. Donnez les bits de sélection qui serviront au décodage.
- 4. En tenant compte du signal AS (*Address Strobe*), donnez les expressions des signaux CS pour chaque composant relié au microprocesseur.
- 5. Donnez les adresses hautes et basses de chaque composant (vous utiliserez la représentation hexadécimale à 5 chiffres).
- 6. Quelle est la redondance (le nombre d'images) des différents composants ?

Nom	Prénom :	Classe:	
-----	----------	---------	--

DOCUMENT RÉPONSE À RENDRE

Exercice 1

Question	Réponse
Quel type d'assemblage permet d'augmenter la profondeur ?	Série
Combien de fils d'adresse possède une mémoire d'une profondeur de 32 Ki mots ?	15 fils
Une mémoire possède une largeur de 16 bits et une capacité de 64 Kib. Combien de fils d'adresse possède cette mémoire ?	12 fils
Un mémoire possède un bus de donnée de 4 fils et un bus d'adresse de 15 fils. En puissance de deux, quelle est la capacité en bits de cette mémoire ?	2 ¹⁷ bits
Une mémoire M1 possède un bus de donnée de 8 fils et un bus d'adresse de 16 fils. On assemble deux mémoires M1 en série pour former une mémoire M2 . Quelle est la taille du bus d'adresse de la mémoire M2 ?	17 bits
Un microprocesseur possède un bus d'adresse de 24 fils. Cinq fils d'adresse sont utilisés pour la sélection des composants. À l'aide du décodage par zone, quel est le nombre maximum de fils d'adresse que peut posséder un composant connecté à ce microprocesseur ?	19 fils
Un microprocesseur possède un bus d'adresse de 20 fils. Il est connecté en mode linéaire aux composants suivants : • une ROM (15 fils d'adresse); • une RAM (12 fils d'adresse); • un périphérique quelconque (10 fils d'adresse). Combien de fils d'adresse sont inutilisés dans le cas de la mémoire RAM ?	5 fils

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	2 ²⁰ mots
Quelle est la profondeur de la mémoire $m{M}$?	2 ²³ mots
Donnez le nombre de fils du bus d'adresse de la mémoire m .	20 fils
Donnez le nombre de fils du bus d'adresse de la mémoire M .	23 fils
Combien de mémoires doit-on assembler en parallèle ?	2 mémoires
Combien de mémoires doit-on assembler en série ?	8 mémoires
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	3 bits d'adresse
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	2 mémoires <i>m</i>

Exercice 3

1. ROM: 20 bits RAM: 12 bits	2. Bits de sélection : A23, A22, A21, A20
P1:8 bits	
P2: 7 bits	

3. $CS_{ROM} = AS.A20$	$CS_{P1} = AS.A22$
$CS_{RAM} = AS.A21$	$CS_{P2} = AS.A23$

4.

Composant	Adresse basse	Adresse haute	
ROM 100000		1FFFFF	
RAM	200000	200000 200FFF	
P1 400000		4000FF	
P2	800000	80007F	

Architecture des ordinateurs – EPITA – S2 – 2023/2024

Exercice 4

1.	ROM: 17 bits	2.	Décodage linéaire possible (oui ou non) ?
	RAM: 14 bits		Non
	P1: 12 bits	3.	Bits de sélection :
	P2: 10 bits		A19, A18

4. $CS_{ROM} = AS.\overline{A19}.\overline{A18}$	$CS_{P1} = AS.A19.\overline{A18}$
$CS_{RAM} = AS.\overline{A19}.A18$	$CS_{P2} = AS.A19.A18$

Commonant	5.		6.
Composant	Adresse basse	Adresse haute	Nombre d'images
ROM	00000	1FFFF	2
RAM	40000	43FFF	16
P1	80000	80FFF	64
P2	C0000	C03FF	256