Polinomio Interpolador de Lagrange.

Practica 6. Interpolación.

Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante

1 de mayo de 2017

Introducción.

Polinomio Interpolador de Lagrange.

Método de Newton.

Splines.

Ejercicios.

Introducción

Definición

Se denomina interpolación a la obtención de nuevos puntos partiendo del conocimiento de un conjunto discreto de puntos:

con xi todos distintos.

Introducción

Problema de Interpolación

Normalmente se calcula una función (polinomio) que pase por los puntos dados.

Un polinomio p(x) se dice que interpola un conjunto de puntos si $p(x_i) = y_i \text{ para } i = 0, 1, ..., n.$

Una variante de este problema es dada una función f(x), aproximarla con un polinomio p(x). Esto se hace buscando un polinomio interpolador tal que

para distintos valores de x_i .

Introducción

Polinomio Interpolador de Lagrange.

Problema de Interpolación

El siguiente gráfico muestra una interpolación con un polinomio de grado 9 para un conjunto de 10 puntos:

Definición

Para un conjunto dado de n+1 puntos x_i , los n+1 polinomios de Lagrange ℓ_i están definidos

$$\ell_i(x_j) = \delta_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{array} \right\}.$$

Polinomios de Lagrange

Definición

Se define el polinomio interpolador de Lagrange como

$$p_n(x) = \sum_{i=0}^n y_i \ell_i(x).$$

Si cada polinomio de Lagrange es de grado n, entonces p_n también tiene este grado.

Además

$$\ell_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}.$$

Polinomio Interpolador de Lagrange

Ejemplo

Obtener el Polinomio Interpolador de Lagrange:

Los polinomios de Lagrange son:

$$\ell_0(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{1}{2}(x-2)(x-3)$$

$$\ell_1(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)} = -(x-1)(x-3)$$

$$\ell_2(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)} = \frac{1}{2}(x-1)(x-2)$$

Polinomio Interpolador de Lagrange

Ejemplo (cont)

Finalmente el Polinomio Interpolador de Lagrange es

$$p_2(x) = \frac{3}{2}(x-2)(x-3) + (x-1)(x-3) + (x-1)(x-2)$$

Polinomio Interpolador de Lagrange.

Ejemplo en Matlab

Comandos *polyfit* y *polyval* para obtener el polinomio interpolador.

$$>> x = [1, 2, 3, 4]$$

$$>> y = [2, 4, 3, 5]$$

>> a = polyfit(x, y, 3) % devuelve los coeficientes del polinomio interpolador de grado = 3

$$>> xp = [1:0.01:4];$$

$$>> yp = polyval(a, xp)$$
; %evalúa el polinomio a en xp

$$>> plot(x, y, 'o', xp, yp, '-')$$

Polinomio Interpolador de Lagrange

Ejemplo en Matlab

Polinomio Interpolador de Lagrange.

Método de Newton

Supongamos que tenemos datos y el polinomio interpolador de Lagrange, si nos dan un nuevo punto (x_{n+1}, y_{n+1}) , cada polinomio de Lagrange debe ser actualizado lo que conlleva mucho calculo (especialmente si *n* es grande).

Polinomio Interpolador de Lagrange.

Método de Newton

La alternativa es construir polinomios de forma iterativa. De esta forma, se crean polinomios $p_k(x)$ tal que $p_k(x_i) = y_i$ para 0 < i < k.

Esto es simple para k = 0,

$$p_0(x)=y_0,$$

polinomio constante con valor y_0 . Suponinedo que se tiene $p_k(x)$ se quiere obtener $p_{k+1}(x)$.

La siguiente construcción funciona:

$$p_{k+1}(x) = p_k(x) + c(x - x_0)(x - x_1) \cdots (x - x_k),$$

para una constante c. Nótese que el segundo término será cero para algún x_i para $0 \le i \le k$, se tiene que $p_{k+1}(x)$ interpolará los datos en x_0, x_1, \ldots, x_k . Para obtener el valor de la constante, se calcula c de forma que

$$y_{k+1} = p_{k+1}(x_{k+1}) = p_k(x_{k+1}) + c(x_{k+1} - x_0) \cdots (x_{k+1} - x_k).$$

Método de Newton

Esta construcción se conoce como Algoritmo de Newton, y el resultado es Método de interpolación de Newton.

Ejemplo

Obtén el polinomio interpolador de los datos

usando el Algoritmo de Newton.

$$p_0(x) = 3$$
 y $p_1(x) = 3 + c(x - 1)$

Queremos
$$-10 = p_1(0.5) = 3 + c(-0.5)$$
, y entonces $c = 26$.

Ejemplo (cont)

Entonces

$$p_2(x) = 3 + 26(x - 1) + c(x - 1)(x - 0.5)$$

Queremos
$$2 = p_2(3) = 3 + 26(2) + c(2)(\frac{5}{2})$$
, y entonces $c = \frac{-53}{5}$. Obtenemos

$$p_2(x) = 3 + 26(x - 1) + \frac{-53}{5}(x - 1)(x - 0.5).$$

Es diferente el polinomio de Newton y el de Lagrange?

Polinomio Interpolador de Lagrange.

Los dos métodos dan el mismo polinomio interpolador. ¿Cuál usar? El método de Newton es más flexible y se puede obtener un nuevo polinomio al añadir nuevos datos sin demasiada complicación. Hay una forma de evaluar y almacenar el polinomio de Newton de manera sencilla (en el sentido de numero de cálculos requeridos).

Diferencias Divididas

Los coeficientes del polinomio de Newton se pueden calcular de forma sencilla usando diferencias divididas.

Asumimos que $f(x_i)$ at x_i son conocidos.

Diferencias Divididas

Dada una colección de puntos $\{(x_i, f(x_i))\}_{i=0}^n$, las diferencias divididas están definidas de forma recursiva de la siguiente manera:

$$f[x_i] = f(x_i),$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

$$f[x_i, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k+1}]}{x_{i+k} - x_i}$$

Diferencias Divididas

La formas gráfica es un **tabla piramidal**, donde se computa (de izquierda a derecha):

La primera columna está formada por x_i y la segunda por $f(x_i)$.

Ejemplo. Diferencias Divididas

Obtener la tabla de diferencias divididas del siguiente conjunto de datos

Se empieza escribiendo los datos en la tabla

$$\begin{array}{c|c|c|c}
x & f[] & f[,] & f[,,] \\
\hline
1 & 3 & & & \\
0,5 & -10 & & & \\
3 & 2 & & & \\
\end{array}$$

Ejemplo. Diferencias Divididas (cont)

Entonces se calcula:

$$f[x_0, x_1] = \frac{-10 - 3}{0.5 - 1} = 26$$
, y $f[x_1, x_2] = \frac{2 - (-10)}{3 - 0.5} = 24/5$.

Añadiéndolo a la tabla

Polinomio Interpolador de Lagrange.

Ejemplo. Diferencias Divididas (cont)

Entonces, se calcula

$$f[x_0, x_1, x_2] = \frac{24/5 - 26}{3 - 1} = \frac{-53}{5}.$$

Y se completa la tabla:

$$\begin{array}{c|ccccc}
x & f[] & f[,] & f[,,] \\
\hline
1 & 3 & 26 & \frac{-53}{5} \\
0.5 & -10 & \frac{24}{5} \\
3 & 2 & & & \\
\end{array}$$

La primera linea contiene los coeficientes del polinomio de la forma de Newton $(1, 3, 26 \text{ and } \frac{-53}{5})$.

Los comandos importantes

Los comandos más relevantes son: spline, ppval.

Ejemplo:

$$>> qq = spline(x, y);$$

Obtiene el spline cúbico usando los datos x, y siendo estos las abcisas y las ordenadas respectivamente.

Splines.

Polinomio Interpolador de Lagrange.

Ejemplo

```
>> x = 0:10:
>> y = sin(x)
>> A = spline(x, y);
A =
struct with fields:
form: 'pp'
breaks: [0 1 2 3 4 5 6 7 8 9 10]
coefs : [10 \times 4 \ double]
pieces: 10
order: 4
dim: 1
```

Los coeficientes

Los coeficientes para el spline están el el array A.coefs Vamos a ver cómo utilizar esta estructura. Para ello obtendremos la función cúbica, y la dibujaremos junto con el spline original en el intervalo [-1, 10].

>> c = A.coefs(3,:);% Coeficientes de la función cubica >> xx = linspace(-1, 10); % Dominio

Implementación de Splines en Matlab

Evaluando el polinomio

Podemos evaluar el polinomio manualmente:

$$yy = c(1) * (xx - 2).^3 + c(2) * (xx - 2).^2 + c(3) * (xx - 2) + c(4);$$

Podemos evaluar el polinomio mediante el comando de Matlab

polyval.

$$>> y2 = polyval(c, xx, [], [2, 1]);$$

Aguí evaluamos el spline:

$$>> y3 = ppval(A, xx);$$

Dibujamos el spline cúbico:

$$>> plot(xx, yy, xx, y3,' k-');$$

Notese que y2 y yy son iguales:

$$max(abs(y2 - yy))$$

Interpolación en Matlab

Polinomio Interpolador de Lagrange.

Comandos

El comando interp1 se emplea para interpolar una serie de datos. La sintaxis del comando es:

yi = interp1(x, y, xi, metodo)

Donde:

- 1. x es la abscisa de los puntos a interpolar, expresada como vector.
- 2. y es ordenada de los puntos a interpolar, expresada como vector
- 3. xi son las abscisas para construir la función de interpolación, expresada como vector.
- 4. método determina el método de interpolación.

Interpolación en Matlab

Comandos

El método puede ser uno entre:

- linear: interpolación lineal (por defecto).
- nearest: interpolación asignando el valor del vecino mas cercano.
- next: interpolación asignando el valor del vecino siguiente.
- previous: interpolación asignando el valor del vecino anterior.
- spline: interpolación con spline cúbico.
- pchip: interpolación con polinomios de Hermite.
- cubic: igual que pchip.
- v5cubic: interpolación cúbica usada en Matlab 5.

Interpolación en Matlab

Ejemplo

Vamos a hacer la gráfica los diferentes métodos:

Polinomio Interpolador de Lagrange.

```
t = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8];
p = [3 5 7 5 6 7 7 5];
x = 1 : 0.1 : 8:
y = interp1(t, p, x, 'spline'); plot(t, p, 'o', x, y); hold on;
y = interp1(t, p, x, 'nearest'); plot(x, y, 'g');
y = interp1(t, p, x, 'linear'); plot(x, y, 'r');
y = interp1(t, p, x, 'pchip'); plot(x, y, 'b');
```

tline Introducción. Polinomio Interpolador de Lagrange. Método de Newton. Splines. Ejercicios.

Interpolación en Matlab

Ejemplo

Eiercicios

Polinomio Interpolador de Lagrange.

Práctica #1

Construir una función llamada lagrange(X,POINTX, **POINTY)** para el Método Interpolador de Lagrange. Esta función aproxima la función definida por los puntos P1=(POINTX(1),POINTY(1)),P2=(POINTX(2),POINTY(2)), ...,PN(POINTX(N), POINTY(N)) y la calcula en cada elemento de X.

- Si POINTX y POINTY tienen diferente numero de elementos la función debe devolver el valor NaN.
- Probar la función con $f(x) = x^2$, x = 0: 10.
- Dibujar f(x) y los puntos.

Ejercicios

Práctica #2

Construye una función llamada difdiv(x,y) para el método de Diferencias Divididas. Calcula los componentes de la tabla, donde a partir de la tercera columna se usarán don bucles for.

Ejercicios

Práctica #3

Intenta mejorar la función de la practica anterior para que muestre el polinomio interpolador que se obtiene.

Ejercicios

Práctica #4

Usa Matlab para obtener el spline cúbico para los datos (0,1), (1,-1), (2,2), (3,1)(4,0).