Linear Algebra

Peter Schaefer

Freshman Spring

Contents

1	Brief Review	2
2	Real Vector Spaces	3

1 Brief Review

Commonly Used Sets

- ullet N: set of **natural numbers** could be *positive* integers could be *nonnegative* integers
- \mathbb{Z} : set of **integers**
- \mathbb{Q} : set of **rational numbers**
- \mathbb{R} : set of **real numbers**

Set Building

To denote sets too large to just list, we use **set builder** notation:

{candidate : condition}

Examples:

```
\{x \text{ is a fruit} : x \text{ is of yellow color}\}\
\{x \text{ is a human being} : x \text{ is a president of the U.S.}\}\
\{x \text{ is a city} : x \text{ is a capitol of a country}\}\
```

Other Notations

- \forall : for all
- \exists : there exists
- \bullet s.t.: such that
- $\bullet \ \to \leftarrow : \ contradiction$
- WTS: want to show

2 Real Vector Spaces

A real vector space is simply a *nonempty set* that satisfies 10 properties called **10 axioms of a real** vector space.

- $\vec{v} \in \text{vector space } V \text{ can be } anything$
- Never assume that an element $\vec{v} \in V$ is an ordered pair

Addition

- \bullet denoted by \oplus
- simply a map

$$\oplus: V \times V \to V$$

Example of a definition of \oplus for $V = \{apple, orange, banana\}$:

\oplus	apple	orange	banana
apple	banana	banana	apple
orange	orange	apple	banana
banana	banana	orange	orange

 \oplus (apple, orange) = banana = apple \oplus orange

Scalar Multiplication

- denoted by \odot
- simply a map
- must be $r \times \vec{v}$ for $r \in \mathbb{R}, \vec{v} \in V$

$$\odot: \mathbb{R} \times V \to V$$

Example of a definition of \odot for $V = \{apple, orange, banana\}$:

$$k \odot \text{apple} = \text{orange}, \forall k \in \mathbb{R}$$

$$k \odot \text{orange} = \begin{cases} \text{orange}, & \text{if } k \leq 2, \\ \text{banana}, & \text{if } k > 2, \end{cases}$$

$$k \odot \text{banana} = \begin{cases} \text{banana}, & \text{if } k < -5\sqrt{2}, \\ \text{apple}, & \text{if } -5\sqrt{2} \leq k < 1.2, \\ \text{banana}, & \text{if } k = 1.2, \\ \text{orange}, & \text{if } k > 2, \end{cases}$$

 $\odot(3, \text{orange}) = \text{banana} = 3 \odot \text{orange}$

10 Good Properties of Addition and Scalar Multiplication

1.