## LAPORAN TUGAS BESAR

## PERBANDINGAN ALGORITMA DECISION TREE

## DAN KNN UNTUK PREDIKSI DIAGNOSIS ARRHYTHMIA

Laporan tugas besar ini disusun guna memenuhi tugas Mata Kuliah Pengantar Kecerdasan Buatan (CPI2M3) CLO-3 sebagai pengganti UAS.



PROGRAM STUDI S1 INFORMATIKA PJJ

FAKULTAS INFORMATIKA

TELKOM UNIVERSITY

2023

## **PERNYATAAN**

| <b>Disusun Oleh:</b> Kelas: IF – 45- GAB.1 PJJ Kelompok: - | Kontribusi Kelompok                                                    |
|------------------------------------------------------------|------------------------------------------------------------------------|
| FARHAN RANGKUTI<br>1304202025                              | <ul><li>Membuat Program KNN</li><li>Membantu membuat laporan</li></ul> |
| MUHAMAD MEIDY MAHARDIKA<br>1304202024                      | <ul><li>Membuat Program DT</li><li>Membantu membuat laporan</li></ul>  |
| KARDINA FERLINDA<br>1304201016                             | <ul><li>Membuat Laporan</li><li>Membantu Membuat Program</li></ul>     |

Tim Kami mengerjakan tugas ini dengan cara yang tidak melanggar aturan perkuliahan dan kode etik akademisi. Jika melakukan plagiarism atau jenis pelanggaran lainnya, maka Tim kami bersedia diberi nilai E untuk Mata Kuliah ini.

# **DAFTAR ISI**

| DAFTAR ISI                          | 2 |
|-------------------------------------|---|
| BAB I                               | 3 |
| PENDAHULUAN                         |   |
| 1. Data Set                         |   |
| Penjelasan terkait pemilihan metode |   |
| BAB II:                             |   |
| LANDASAN TEORI                      | , |

#### BAB I

#### PENDAHULUAN

*Arrhythmia* (Gangguan irama jantung) merupakan kelainan elektrofisologi jantung yang disebabkan oleh gangguan sistem konduksi serta gangguan pembentukan dan penghantar impuls listrik. Beberapa faktor yang memengaruhi penyakit aritmia antara lain usia, tekanan darah, tinggi badan serta berat badan.

Penyakit aritmia ini dapat dikenali dengan menggunakan rekam jantung atau elektrokardiogram (EKG). Data numerik yang dihasilkan oleh EKG memiliki banyak fitur yang tidak mudah diproses secara manual. Bantuan komputer dengan teknik machine learning tertentu dapat digunakan untuk mengenali penyakit secara otomatis.

## 1. Data Set

Pada project ini data terdiri dari 279 atribut. Tipe data dari masing- masing atribut ini berbeda-beda. Data atribut dapat dilihat dalam tabel di bawah ini. Sumber data yang dikelola merupakan data dari https://archive.ics.uci.edu/ml/datasets/Arrhythmia.

| No | Nama Atribut | Tipe Data Atribut | Deskripsi Atribut                                                                                         |
|----|--------------|-------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | Age          | Float64           | Menyatakan usia pasien dalam tahun.                                                                       |
| 2  | Sex          | Object            | Atribut ini menyatakan jenis kelamin pasien.                                                              |
| 3  | Height       | Float64           | Atribut ini menggambarkan tinggi badan pasien dalam satuan cm.                                            |
| 4  | Weight       | Float64           | Atribut ini menyatakan berat badan pasien dalam satuan kg.                                                |
| 5  | QRS_duration | Float64           | Atribut ini mengindikasikan durasi<br>atau panjang gelombang QRS dalam<br>sinyal elektrokardiogram (EKG). |
| 6  | PR_Interval  | Float64           | Atribut ini mencerminkan interval PR pada sinyal EKG, yaitu waktu antara gelombang P dan gelombang QRS.   |
| 7  | QT_Interval  | Float64           | Atribut ini menggambarkan interval QT pada sinyal EKG, yaitu waktu                                        |

|    |                          |         | antara gelombang QRS dan gelombang T.                                                                                     |  |  |
|----|--------------------------|---------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| 8  | T_Interval               | Float64 | Atribut ini menyatakan interval T pada sinyal EKG, yaitu waktu antara gelombang T dan gelombang P berikutnya.             |  |  |
| 9  | P_Interval               | Float64 | Atribut ini mengindikasikan interval P pada sinyal EKG, yaitu waktu antara dua gelombang P.                               |  |  |
| 10 | QRS                      | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari gelombang QRS pada sinyal EKG.                 |  |  |
| 11 | Т                        | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari gelombang T pada sinyal EKG.                   |  |  |
| 12 | P                        | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari gelombang P pada sinyal EKG.                   |  |  |
| 13 | QRST                     | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari kombinasi gelombang QRS dan T pada sinyal EKG. |  |  |
| 14 | Ј                        | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari titik J pada sinyal EKG.                       |  |  |
| 15 | Heart_rate               | Float64 | Atribut ini menyatakan denyut atau kecepatan detak jantung pasien dalam satuan tertentu.                                  |  |  |
| 16 | DI_R_Wave                | Object  | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari gelombang R pada saluran DI dalam sinyal EKG.  |  |  |
| 17 | DI Intrinsic Deflections | Object  | Atribut ini mungkin mencerminkan<br>karakteristik atau kategori tertentu<br>dari defleksi intrinsik pada saluran          |  |  |

|    |           |        | DI dalam sinyal EKG.                                                                                                     |
|----|-----------|--------|--------------------------------------------------------------------------------------------------------------------------|
| 18 | DI_S_Wave | Object | Atribut ini mungkin mencerminkan karakteristik atau kategori tertentu dari gelombang S pada saluran DI dalam sinyal EKG. |

Tabel 1.1 Tabel dan Kumpulan Data

#### 2. Alasan Pemilihan Metode

Pemilihan dua metode terbaik dari 3 metode yang dipakai yaitu Decision Tree (DT) dan K-Nearest Neighbors (kNN), karena :

- Decision Tree (Pohon Keputusan)

  Decision Tree adalah metode pembelajaran mesin yang menggunakan struktur pohon untuk membuat keputusan berdasarkan serangkaian aturan yang menggambarkan karakteristik data. Dalam konteks diagnosa aritmia, *Decision Tree* dapat membantu mengidentifikasi pola-pola pada atribut ECG yang berkaitan dengan kelainan irama jantung. Misalnya, Decision Tree dapat menentukan apakah usia, jenis kelamin, atau fitur-fitur lainnya dapat menjadi prediktor penting dalam diagnosis aritmia.
- K-Nearest Neighbors (kNN)
   K-Nearest Neighbors adalah metode klasifikasi yang memprediksi label suatu data berdasarkan mayoritas label dari k-neighbors terdekatnya dalam ruang fitur. Dalam kasus ini, kNN dapat digunakan untuk membandingkan pola ECG dari pasien dengan pasien-pasien sebelumnya yang telah terdiagnosis aritmia. Dengan melihat kesamaan pola ECG, kNN dapat mengklasifikasikan pasien baru apakah termasuk dalam kategori aritmia atau bukan.

## 3. Exploratory Data Analysis (EDA) dan Preprocessing Data



Gambar 1.1

Melakukan read file excel yang berisi nama header dan tipe data setiap kolom data frame.

```
[ ] names_content = ''
    for index, row in df_name.iterrows():
        names_content += f'@attribute {row["atribut_name"]} {row["tipe_data"]}\n'
    with open(output_arrhythmia_name_latest, 'w') as file:
        file.write(names_content)

[ ] arrhythmia = "arrhythmia.data"
    arrhythmia_name_fix = "Atribut_name.names"

    df_set = pd.read_csv(arrhythmia, header=None)
    with open(arrhythmia_name_fix, "r") as file:
        lines = file.readlines()
    atribut_lines = [line.strip() for line in lines if line.startswith("@attribute")]
    atribut_names = [info[1] for info in atribut_lines]

[ ] atribut_names = [info[2] for info in atribut_info]

atribut_types = [info[2] for info in atribut_info]

[ ] df_set.columns = atribut_names
    df_set = df_set.astype(dict(zip(atribut_names, atribut_types)))

[ ] print(df_set)
```

Gambar 1.2

Menggabungkan data agar mempunyai header dan memberikan nama kolom dan mengatur tipe data pada Data frame.



Gambar 1.3

Memanggil .info(), .describe(), .head(), .tail() untuk melihat info-info yang ada pada data.



#### Gambar 1.3

Melakukan output pada variabel unique\_class yang berisi data pada kolom diagnosa yang sudah disort. Selanjutnya melakukan pemisahan antara kolom yang berisi data Linear (float atau integer) dan data yang berisi object. Selanjutnya melakukan replace pada data yang hilang (?) dengan None (null). Setelah itu mengubah kolom pada df\_set yang berisi tipe data object menjadi float kemudian melakukan output agar hasilnya bisa dilihat.

Gambar 1.4

Melakukan pengecekan pada kolom data frame manakala ada nilai Null atau NaN dan menyimpan list kolom yang mempunyai nilai Null tersebut ke dalam variabel missing\_val\_columns. Selanjutnya melakukan pengecekan ulang pada variabel Data\_object untuk mengecek apakah tipe data sebelumnya yaitu object sudah benar diubah ke tipe data float. Kemudian melakukan pengecekan pada Data\_Linear apakah kolom yang ada di missing\_val\_columns ada pada Data\_Linear dan disimpan pada variabel baru yaitu columns\_linear\_null. Kemudian kita akan melakukan penjumlahan nilai null pada setiap kolom dan mengeluarkan outputnya.

```
[ ] df_set = df_set.fillna(df_set.mean())
    print(df_set)
```

Gambar 1.5

|    | P_interval | QRS   |            | P          | QRST       | J '        |
|----|------------|-------|------------|------------|------------|------------|
| 0  | 121.0      | -16.0 | 13.000000  | 64.000000  | -2.000000  | -13.592105 |
| 1  | 39.0       | 25.0  | 37.000000  | -17.000000 | 31.000000  | -13.592105 |
| 2  | 102.0      | 96.0  | 34.000000  | 70.000000  | 66.000000  | 23.000000  |
| 3  | 143.0      | 28.0  | 11.000000  | -5.000000  | 20.000000  | -13.592105 |
| 4  | 103.0      | -16.0 | 13.000000  | 61.000000  | 3.000000   | -13.592105 |
| 5  | 91.0       | 107.0 | 66.000000  | 52.000000  | 88.000000  | -13.592105 |
| 6  | 77.0       | 77.0  | 49.000000  | 75.000000  | 65.000000  | -13.592105 |
| 7  | 70.0       | 67.0  | 7.000000   | 8.000000   | 51.000000  | -13.592105 |
| 8  | 63.0       | 61.0  | 69.000000  | 78.000000  | 66.000000  | 84.000000  |
| 9  | 73.0       | 85.0  | 34.000000  | 70.000000  | 71.000000  | -13.592105 |
| 10 | 83.0       | 72.0  | 71.000000  | 68.000000  | 72.000000  | -13.592105 |
| 11 | 65.0       | 12.0  | 37.000000  | 49.000000  | 26.000000  | -13.592105 |
| 12 | 81.0       | -24.0 | 42.000000  | 41.000000  | -13.000000 | -13.592105 |
| 13 | 104.0      | 68.0  | 51.000000  | 60.000000  | 63.000000  | -13.592105 |
| 14 | 94.0       | 46.0  | 20.000000  | 45.000000  | 40.000000  | -13.592105 |
| 15 | 65.0       | 36.0  | 45.000000  | 68.000000  | 40.000000  | -13.592105 |
| 16 | 61.0       | 77.0  | 75.000000  | 77.000000  | 75.000000  | -13.592105 |
| 17 | 52.0       | 57.0  | 49.000000  | -2.000000  | 54.000000  | -13.592105 |
| 18 | 83.0       | 73.0  | -24.000000 | 61.000000  | 42.000000  | -13.592105 |
| 19 | 79.0       | -12.0 | 28.000000  | 50.000000  | 1.000000   | -13.592105 |
| 20 | 183.0      | 50.0  | 39.000000  | 46.000000  | 43.000000  | -13.592105 |
| 21 | 78.0       | 81.0  | 78.000000  | 67.000000  | 80.000000  | -13.592105 |
| 22 | 82.0       | 62.0  | 56.000000  | 45.000000  | 60.000000  | -13.592105 |
| 23 | 92.0       | 4.0   | 10.000000  | 58.000000  | 5.000000   | -13.592105 |
| 24 | 82.0       | 52.0  | 17.000000  | 105.000000 | 42.000000  | -13.592105 |
| 25 | 60.0       | -34.0 | 112.000000 | 154.000000 | 7.000000   | -13.592105 |
| 26 | 125.0      | 90.0  | 52.000000  | 60.000000  | 77.000000  | -13.592105 |
| 27 | 83.0       | 10.0  | 48.000000  | 39.000000  | 30.000000  | -13.592105 |
| 28 | 99.0       | -8.0  | 153.000000 | 41.000000  | 0.000000   | -13.592105 |
| 29 | 82.0       | -37.0 | 172.000000 | -5.000000  | -67.000000 | 160.000000 |
| 30 | 91.0       | -52.0 | 16.000000  | 54.000000  | -32.000000 | -13.592105 |

Gambar 1.6

Melakukan pengisian pada kolom yang memiliki nilai Null dan diisi dengan nilai rata-rata (mean) dari kolom tersebut.

Gambar 1.7

Selanjutnya melakukan looping pada data frame agar menyimpan nama kolom kecuali kolom yang bertipe object dan disimpan pada variabel col\_subnet. Kemudian melakukan deklarasi variabel baru yang berisi data yang sama dengan df\_set untuk digunakan pada loop agar menghapus kolom yang berisi nilai 0 untuk semua barisnya.

```
threshold = 0.1
for 1 in col. float.columns:
    presentasi.null = (col.float[i]==0).sum()/len(col.float[i])
    if presentasi.null >= threshold:
        col.float.drop(columns=[i], implace = True, axis = 1)

Age leight Weight Weight QRS_duration PR_interval QT_interval T_interval Col.float.drop(columns=[i], implace = True, axis = 1)

Age leight Weight Weight QRS_duration PR_interval QT_interval T_interval Col.float Col.fl
```

Gambar 1.8

Melakukan penghapusan kolom yang memiliki persentase nilai 0 di dalamnya lebih dari **10%**, Kemudian memanggil output col\_float yang memperlihatkan data sudah berubah.

| [] | col_ | float = col_ | _float.drop( | 'Diagnosa', | , axis = 1) |         |          |      |  |
|----|------|--------------|--------------|-------------|-------------|---------|----------|------|--|
| 0  | prin | t(col_float) | )            |             |             |         |          |      |  |
|    | 446  | -34.8        | 1.1          | 1.9         | -7.4        | 3.8     | -13.6    | 22.1 |  |
|    | 447  | -19.7        | 1.0          | 0.5         | -8.2        | 1.5     | -22.5    | -4.8 |  |
|    | 448  | 21.2         | 1.7          | 3.3         | -8.9        | 8.8     | -14.3    | 75.4 |  |
|    | 449  | -0.9         | -4.1         | 19.4        | -6.1        | -7.0    | 72.9     | 12.7 |  |
|    | 450  | -16.3        | 2.0          | 7.8         | -14.0       | 6.5     | -16.8    | 63.8 |  |
|    | 451  | 4.7          | -0.4         | 11.6        | -6.0        | 2.6     | 13.5     | 33.7 |  |
|    |      | V3_JJ_wave   | V3_R_wave    | V3_S_wave   | V3_T_wave   | V3_QRSA | V3_QRSTA |      |  |
|    | 0    | -0.1         | 8.4          | -10.0       | 5.9         | -3.9    | 52.7     |      |  |
|    | 1    | 0.0          | 5.8          | -7.7        | 3.8         | -5.7    | 27.7     |      |  |
|    | 2    | 0.0          | 5.8          | -4.1        | 0.3         | 20.4    | 23.3     |      |  |
|    | 3    | 0.7          | 9.0          | -7.9        | 4.1         | 7.6     | 51.0     |      |  |
|    | 4    | -0.5         | 8.5          | -10.2       | 4.7         | -4.0    | 43.0     |      |  |
|    | 5    | 2.0          | 19.8         | -48.4       | 8.7         | -114.5  | -72.8    |      |  |
|    | 6    | 1.1          | 3.7          | -11.0       | 4.1         | -19.8   | 21.2     |      |  |
|    | 7    | 0.8          | 2.1          | -9.0        | 3.8         | -16.1   | 21.1     |      |  |
|    | 8    | 1.5          | 2.4          | -10.3       | 6.8         | -19.3   | 43.2     |      |  |
|    | 9    | 0.4          | 4.3          | -7.3        | 4.0         | -8.9    | 27.9     |      |  |
|    | 10   | -0.9         | 11.9         | -18.6       | -5.2        | -34.7   | -76.3    |      |  |
|    | 11   | 0.0          | 6.5          | -9.1        | 0.4         | -8.8    | -5.5     |      |  |
|    | 12   | -0.1         | 5.1          | -5.8        | 1.0         | -1.5    | 7.1      |      |  |
|    | 13   | 1.5          | 11.4         | -3.7        | 4.8         | 23.0    | 63.3     |      |  |
|    | 14   | 0.8          | 8.3          | -2.5        | 3.3         | 19.0    | 52.6     |      |  |
|    | 15   | 1.5          | 5.9          | -3.3        | 7.0         | 10.8    | 107.4    |      |  |
|    | 16   | 1.6          | 1.4          | -11.8       | 4.4         | -29.0   | 10.6     |      |  |
|    | 17   | 0.1          | 1.7          | -4.1        | 1.3         | -6.3    | 11.3     |      |  |
|    | 18   | 1.6          | 5.0          | -17.3       | 7.9         | -34.9   | 50.4     |      |  |
|    | 19   | 0.0          | 14.4         | -2.7        | 4.0         | 33.7    | 67.3     |      |  |
|    | 20   | 0.7          | 7.0          | -6.8        | 5.7         | 6.0     | 67.5     |      |  |
|    | 21   | 1.9          | 14.1         | -22.7       | 7.1         | -21.7   | 49.3     |      |  |
|    | 22   | 0.9          | 8.5          | -7.0        | 3.0         | 8.9     | 39.5     |      |  |

Gambar 1.9

Melakukan drop pada kolom Diagnosa kemudian mengeluarkan outputnya.



Gambar 1.10

Membuat data frame kosong pada variabel df\_new dan mengisi variabel tersebut dengan 8 kolom bertipe object yang sudah dipaparkan sebelumnya.

Gambar 1.11

Melakukan drop pada kolom yang berisi data kosong sehingga hanya tersisa kolom 'Sex' dan 'Diagnosa'



Gambar 1.12

Melakukan concat pada data frame col\_float dan df\_new sehingga didapatkan data frame yang sudah bersih.

```
[ ] df_fix.duplicated(keep=False).sum()
0
```

Gambar 1.13

Melakukan pengecekan apabila ada kolom yang terduplikat.



Gambar 1.14

Melakukan pengecekan apabila masih ada missing values pada kolom data frame df\_fix.

```
   Outlier

[ ] allcolumn = [i for i in df_fix.columns if i not in ["index","Sex","Class"]]

[ ] print(allcolumn)

[ 'Age', 'Height', 'Weight', 'QRS_duration', 'PR_interval', 'QT_interval', 'P_interval', 'QRS', 'T', 'P', 'QRST', 'J', 'Heart_rate', 'DI_R_Wave',

[ ] print(len(allcolumn))

182
```

Gambar 1.15

Melakukan deklarasi variabel allColumn yang berisi semua nama kolom kecuali Index, Sex, dan Class yang berisi sebanyak 102 kolom.

```
fig, ax = plt.subplots(nrows=11, ncols=10, figsize=(15, 15))
row = 0
col = 0
for i, kolom in enumerate(allColumn[0:102]):
    if col == 10 and row < 11:
        col = 0
        row += 1

    ax[row][col].boxplot(df_fix[kolom])
    ax[row][col].set_title(kolom)

    col += 1

plt.tight_layout()
plt.show()</pre>
```

Gambar 1.16

Melakukan plotting outlier pada kolom yang ada di allColumn.



Gambar 1.17

Hasil plotting outlier kolom yang ada di variabel allColumn.



Gambar 1.18

Melakukan korelasi pada setiap data dan mengeluarkan outputnya



Gambar 1.19

Melakukan shuffle pada data.



Gambar 1.20

Melakukan folding pada data dengan membaginya menjadi tiga dan disimpan pada tiga variabel berbeda kemudian mengeluarkan outputnya.

#### **BAB II**

#### DASAR TEORI

## 2.1. DECISION TREE (DT)

Decision Tree adalah algoritma *machine learning* yang menggunakan seperangkat aturan untuk membuat keputusan dengan terstruktur seperti pohon yang memodelkan kemungkinan hasil, biaya sumber daya, utilitas dan kemungkinan konsekuensi atau resiko. Konsepnya adalah dengan cara menyajikan algoritma dengan pernyataan bersyarat, yang meliputi cabang untuk mewakili langkah-langkah pengambilan keputusan yang dapat mengarah pada hasil yang menguntungkan.

Decision Tree juga berguna untuk dieksplorasi data, menemukan hubungan antara sejumlah calon variabel input dengan sebuah variabel target. Pohon keputusan eksplorasi data dan pemodelan yang salah langkah pertama yang sangat baik dalam proses pemodelan yang digunakan sebagai model akhir untuk beberapa teknik lainnya.

## 2.2 K-Nearest Neighboor (KNN)

K-Nearest Neighbor termasuk salah satu algoritma paling sederhana yang digunakan dalam machine learning untuk regresi dan klasifikasi. KNN mengikuti strategi "bird of a feather" dalam menentukan di mana data baru sebaiknya ditempatkan. Algoritma KNN mengasumsikan bahwa sesuatu yang mirip akan ada dalam jarak yang berdekatan atau bertetangga. Artinya data-data yang cenderung serupa akan dekat satu sama lain.

Langkah pertama dalam algoritma KNN adalah mengukur jarak antara data baru yang akan diprediksi dengan setiap data pelatihan yang ada. Pada umumnya, jarak diukur menggunakan metrik Euclidean distance, tetapi tergantung pada konteks masalah, dapat juga menggunakan metrik jarak lain seperti Manhattan distance atau Minkowski distance. Setelah mengukur jarak, langkah selanjutnya adalah menentukan nilai K, yaitu jumlah tetangga terdekat yang akan digunakan dalam proses klasifikasi atau regresi. Pemilihan nilai K ini sangat penting, karena dapat mempengaruhi hasil prediksi. Nilai K yang terlalu kecil dapat menyebabkan model terlalu sensitif terhadap noise, sementara nilai K yang terlalu besar dapat menyebabkan kehilangan kemampuan untuk menangkap pola yang kompleks.

# Import Library

```
import pandas as pd
import numpy as np
import math
import matplotlib
from matplotlib import pyplot as plt
from statsmodels.graphics.gofplots import qqplot
import csv
```

## BAB III EVALUASI HASIL DAN DISKUSI

Metode KNN menghasilkan hasil yang cukup baik dalam melakukan klasifikasi atau regresi. Salah satu keunggulan KNN adalah fleksibilitasnya dalam menangani data dengan fitur kompleks atau non-linear. Namun, dalam penggunaannya, penting untuk memilih nilai K yang optimal. Nilai K yang terlalu kecil dapat menyebabkan model terlalu sensitif terhadap noise dan menghasilkan hasil yang tidak stabil, sementara nilai K yang terlalu besar dapat menyebabkan kehilangan kemampuan untuk menangkap pola yang kompleks. Oleh karena itu, penentuan nilai K yang tepat melalui eksperimen dan evaluasi menjadi kunci penting dalam menggunakan metode KNN.

Metode Decision Tree juga memberikan hasil yang lebih baik dalam pemodelan prediktif. Kelebihan utama DT adalah kemampuannya menghasilkan model yang mudah dipahami dan diinterpretasikan. Namun, DT rentan terhadap overfitting jika tidak dikendalikan dengan baik. Overfitting terjadi ketika model terlalu kompleks dan secara tidak akurat mempelajari pola pada data latih, sehingga kinerjanya menurun pada data uji atau data baru. Oleh karena itu, pemangkasan (pruning) menjadi langkah penting dalam mengurangi kompleksitas model dan mencegah overfitting. Selain itu, penyesuaian parameter seperti kedalaman maksimum pohon (max\_depth) dan jumlah sampel minimum di setiap daun (min\_samples\_leaf) juga dapat membantu mengoptimalkan model sesuai dengan data dan tujuan analisis.

Pengukuran performansi pada kedua metode (KNN dan DT) dilakukan dengan menggunakan metrik evaluasi yang sesuai, seperti akurasi, presisi, dan recall. Hasil dan pengukuran performansi dari KNN adalah 0.56 dan DT adalah 77 %. Evaluasi ini dilakukan untuk menilai seberapa baik kedua metode dapat melakukan prediksi dan mengklasifikasikan data dengan benar. Selama proses pengukuran performansi, perlu diperhatikan bahwa hasil evaluasi dapat bervariasi tergantung pada dataset yang digunakan, pengaturan parameter, dan teknik preprocessing data yang diterapkan. Oleh karena itu, perlu melakukan validasi silang (cross-validation) atau pemisahan dataset menjadi data latih (training data) dan data uji (test data) untuk mendapatkan hasil yang lebih akurat dan reliabel.

## BAB IV KESIMPULAN DAN SARAN

## 4.1 Kesimpulan

Dari analisis yang dilakukan, dapat disimpulkan bahwa algoritma Decision Tree (DT) lebih baik dari algoritma K-Nearest Neighbors (kNN) dalam permasalahan ini. Decision Tree (DT) mampu menghasilkan model yang mudah dipahami dan dapat diinterpretasikan dengan baik. Di sisi lain, algoritma K-Nearest Neighbors (kNN) memiliki fleksibilitas yang tinggi dalam menangani data dengan fitur kompleks atau non-linear. Namun, pemilihan nilai K yang tepat sangat krusial untuk menghindari sensitivitas yang berlebihan terhadap noise.

#### 4.2 Saran

Untuk algoritma Decision Tree (DT), beberapa saran dapat diterapkan agar hasilnya lebih optimal. Pertama, penting untuk melakukan pemangkasan (pruning) pada pohon keputusan untuk mengurangi kompleksitas model dan mencegah overfitting. Dengan menghapus cabang-cabang yang tidak signifikan, model akan menjadi lebih sederhana namun tetap mempertahankan kemampuan prediktifnya. Selanjutnya, penyesuaian parameter seperti kedalaman maksimum pohon (max\_depth) dan jumlah sampel minimum di setiap daun (min\_samples\_leaf) dapat membantu mengoptimalkan model sesuai dengan data dan tujuan analisis. Jika terjadi perubahan besar pada data pelatihan, disarankan untuk memperbarui atau melatih ulang model DT agar tetap relevan dengan data baru.

## BAB V DAFTAR PUSTAKA

- [1] Ayuni Qurrata, Randy Cahya Wihandika, Novanto Yudistira, Klasifikasi Aritmia Dari Hasil Elektrokardiogram Menggunakan Metode Support Vector Machine, 2021.
- [2] Ramadhan Ardi Satyo, Decision Tree Algoritma Beserta Contohnya Pada Data Mining, 2022.
- [3] lp2m, Algoritma K-Nearest Neighbors (KNN)-Pengertian dan Penerapan, 2023.

## link source code and others:

https://drive.google.com/drive/folders/1hKt8xL4nzQ59dFeCRpfHyyoXxT05AoUo?usp = sharing