Read Chapter 3, sections 1-4 of Rosenlicht. Problems:

- 1 Let (E, d) be a metric space. Prove that:
- (i) Arbitrary intersections of closed sets are closed
- (ii) Finite unions of closed sets are closed.
- (iii) Closed balls are closed.
- **2** Let (E, d) be a metric space. Prove that:
- (i) For any $x \in E$ the singleton $\{x\}$ is closed.
- (ii) Any finite subset of E is closed.
- **3** Consider a nonempty set E with the "discrete" metric d. That is, d(x,y) = 1 for all $x \neq y$. Prove that all subsets of E are open and closed.

Hint: Prove that for any $x \in E$ the singleton $\{x\}$ is open.

- 4 Consider the discrete metric space (E,d) of problem 3. Prove that a sequence $\{s_n\}$ in E converges to $L \in E$ if and only if there is $N \in \mathbb{N}$ so that for n > N, $s_n = L$. That is, the only convergent sequences are the sequences that are eventually constant.
- **5** Let (E,d) be a metric space. Define a function $\bar{d}: E \times E \to [0,\infty)$ by

$$\bar{d}(x,y) = \min\{1, d(x,y)\}.$$

Prove that \bar{d} is a metric.

Hints: The hard part is the triangle inequality. Observe that for all $x, y, z \in E$

$$\bar{d}(x,z) = \min\{1, d(x,z)\} \le d(x,z) \le d(x,y) + d(y,z).$$

If $d(x,y), d(y,z) \leq 1$, $d(x,y) = \bar{d}(x,y)$ and $\bar{d}(y,z) = d(y,z)$ so you are done. Otherwise ...

- **6** Let (E,d) be a metric space and \bar{d} the associated new metric constructed in problem 5 (so that $\bar{d}(x,y) = \min\{1,d(x,y)\}$ for all $x,y \in E$.
- (a) Prove that any subset of (E, \bar{d}) is bounded.
- (b) Prove that d and \bar{d} give rise to exactly the same open set.

Hint: Let $B_r^d(x)$ and $B_r^{\bar{d}}(x)$ denote the open balls with respect to d and \bar{d} . Then if r < 1

$$B_r^d(x) = B_r^{\bar{d}}(x).$$

7 Let E be a metric space and $\emptyset \neq S \subset E$ a nonempty subset. Recall that we defined the boundary ∂S of S by

$$\partial S = \overline{S} \setminus S^{\circ},$$

i.e., closure minus the interior.

Prove that $x \in \partial S$ if and only if for any r > 0, the ball $B_r(x)$ contains the points in S and the points in the complement $E \setminus S$.