Лекция 10 по курсу «Основы цифровой обработки сигналов» 11 ноября 2024 г. (часть 1).

4.5. Формы реализации передаточных функций цифровых фильтров.

- Прямая форма (Direct form I).
- Прямая каноническая форма (Direct form II).
- Прямая транспонированная и прямая каноническая транспонированная формы.
- Последовательное (каскадное) соединение блоков.
- Параллельное соединение блоков.
- Биквадратный блок

Введение

Введение

В общем случае цифровой фильтр суммирует с весовыми коэффициентами некоторое количество входных отсчетов и некоторое количество предыдущих выходных отсчетов:

$$y[k] = \sum_{i=0}^{M-1} a_i x[k-i] + \sum_{i=1}^{N-1} b_i y[k-i]$$
 (1)

z-образ разностного уравнения (1) имеет вид

$$Y(z) = X(z) \sum_{i=0}^{M-1} a_i z^{-i} + Y(z) \sum_{i=1}^{N-1} b_i z^{-i}$$
 (2)

Здесь z^{-1} – оператор задержки на один такт дискретизации.

Комплексный коэффициент передачи, т. е. передаточная функция фильтра:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{M-1} a_i z^{-i}}{1 - \sum_{i=1}^{N-1} b_i z^{-i}}.$$
 (3)

В этом разделе приводятся блок-схемы реализации передаточных функций цифровых фильтров, составленных на основе их элементов – сумматора, умножителя и

элемента задержки. Эти блок-схемы называют также формами реализации фильтров.

Дробно-рациональная функция (3) и три ее модификации определяют четыре разновидности прямых структур фильтров. Практический интерес представляют прямые структуры рекурсивного звена второго порядка, т. к. из них формируются каскадная и параллельная структуры рекурсивных фильтров более высоких порядков.

Прямая форма (Direct form I)

Прямая форма (Direct form I)

Прямая форма реализации рекурсивного фильтра с разностным уравнением

$$y[k] = \sum_{i=0}^{M-1} a_i x[k-i] + \sum_{i=1}^{N-1} b_i y[k-i]$$

изображена на рисунке.

Для нерекурсивного фильтра $b_i = 0$ для i = 1, 2, ...N-1

$$y[k] = \sum_{i=0}^{M-1} a_i x[k-i]$$

Схема нерекурсивного фильтра с цифровой линией задержки

Прямая каноническая форма (Direct form II)

Прямая каноническая форма (Direct form II)

Разделим общий сумматор на два отдельных – для нерекурсивной и рекурсивной частей фильтра

Так как результат последовательного прохождения сигнала через ряд линейных стационарных устройств не зависит (с точности ошибки, связанной к конечной разрядностью) от последовательности их соединения, мы можем поменять местами рекурсивную и нерекурсивную часть фильтра.

Видим, что в обе линии задержки подается один и тот же сигнал, поэтому они будут содержать одинаковые наборы отсчетов. Это позволяет объединить линии задержки. В результате получим схему реализации рекурсивного фильтра в прямой канонической форме.

Прямая каноническая форма (Direct form II)

Для нерекурсивного цифрового фильтра прямая форма реализации одновременно является и прямой канонической.

Преимущества прямой канонической формы.

- Общая линия задержки уменьшает число необходимых ячеек памяти.
- Число блоков задержки минимально и равно порядку фильтра.

Особенности реализации прямой канонической формы.

- Требуется минимум два сумматора.
- Абсолютные величины отсчетов в линии задержки могут существенно превосходить амплитуды входного и выходного сигнала, что ряде случаев приводит к необходимости увеличивать разрядность представления чисел в линии задержки и в сумматорах.

Прямая каноническая транспонированная форма (Direct form II transposed)

Прямая каноническая транспонированная форма (Direct form II transposed)

Обратимся к схеме прямой формы реализации цифрового фильтра.

Прямая форма реализации рекурсивного фильтра.

Поменяем в этой схеме последовательность вычисления операций умножения и задержки, используя в каждой ветви отдельную линию задержки на нужное количество тактов. Разделим также общий сумматор на несколько сумматоров с тремя входами.

Поменяем в этой схеме последовательность вычисления операций умножения и задержки, используя в каждой ветви отдельную линию задержки на нужное количество тактов. Рассмотрев любую пару соседних сумматоров, можно заметить, что суммируемые ими сигналы претерпевают некоторую общую задержку.

Прямая каноническая транспонированная форма (Direct form II transposed)

Прямая каноническая транспонированная форма реализации рекурсивного фильтра
(Direct form II transposed)

Транспонированная схема позволяет эффективно распараллелить вычисления и потому применяется при реализации фильтров в виде специализированных интегральных схем.

Для расчета выходного сигнала в текущий такт необходимо выполнить одно умножение и одно сложение, все остальные операции производят подготовку промежуточных результатов для вычисления последующих выходных отсчетов.

В транспонированной форме может быть реализован и нерекурсивный фильтр. Для этого в структурной схеме необходимо удалить все ветви с коэффициентами справа ($b_i = 0$ для $i = 1, 2, \dots N-1$).

Прямая транспонированная форма (Direct form I transposed)

Прямая транспонированная форма (Direct form I transposed)

Если применить предыдущие преобразования к канонической структуре, то получится еще один вариант транспонированной реализации фильтра — прямая транспонированная форма (Direct form I transposed). Перечислим ее основные особенности.

- Число блоков задержек такое же, как у прямой формы.
- Для расчета выходного сигнала в текущий такт необходимо выполнить одно умножение и два сложения, все остальные операции производят подготовку промежуточных результатов для вычисления последующих выходных отсчетов.
- Требуется большое количество ячеек памяти.

Последовательное (каскадное) соединение блоков

Последовательное (каскадное) соединение блоков

$$M(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{M-1} a_i z^{-i}}{1 - \sum_{i=1}^{N-1} b_i z^{-i}}.$$

Числитель и знаменатель передаточной функции физически реализуемого дискретного фильтра можно разложить на множители.

$$H(z) = \frac{a_0 \prod_{n=1}^{N} (1 - z_{0n} z^{-1})}{\prod_{m=1}^{M} (1 - z_{pm} z^{-1})} = \prod_{m=1}^{L} H_m(z).$$

где z_{0n} – нули, а z_{pm} – полюса H(z). В общем случае, как нули, так и полюсы комплексные числа.

$$x[k]$$
 $H_1(z)$ $H_2(z)$ $H_2(z)$ $H_2(z)$ $H_2(z)$ $M_2(z)$ $M_$

Для фильтра с действительными коэффициентами каждому комплексному полюсу /нулю соответствует комплексносопряженный полюс/нуль. Причем

$$(1 - z_{0n}z^{-1})(1 - z_{0n}^*z^{-1}) = 1 - (z_{0n} + z_{0n}^*)z^{-1} + z_{0n}z_{0n}^*z^{-2}$$

$$(1 - z_{pm}z^{-1})(1 - z_{pm}^*z^{-1}) = 1 - (z_{pm} + z_{pm}^*)z^{-1} + z_{pm}z_{pm}^*z^{-2}$$

Поэтому такое представление дает реализацию фильтра в виде последовательного включенных блоков 1-го порядка либо блоков 1-го и 2-го порядка с вещественными коэффициентами:

$$H_m(z) = \frac{\tilde{a}_0 + \tilde{a}_{1m}z^{-1}}{1 - \tilde{b}_{1m}z^{-1}}$$
 – блок первого порядка,

$$H_m(z) = \left[\frac{\tilde{a}_0 + \tilde{a}_{1m} z^{-1} + \tilde{a}_{2m} z^{-2}}{1 - \tilde{b}_{m2} z^{-1} - \tilde{b}_{2m} z^{-2}} \right]$$
 – блок второго порядка.

Последовательное (каскадное) соединение блоков

Пример последовательного соединения блоков.

Рассмотрим фильтр с передаточной функцией [3]

$$H(z) = \frac{0,0985 + 0,2956z^{-1} + 0,2956z^{-2} + 0,0985z^{-3}}{1 - 0,5772z^{-1} + 0,4218z^{-2} - 0,0563z^{-3}} = 0,0985 \frac{1 + z^{-1}}{1 - 0,1584z^{-1}} \cdot \frac{1 + 2z^{-1} + z^{-2}}{1 - 0,4188z^{-1} + 0,3554z^{-2}}.$$

Данная система является цифровым фильтром Баттерворта нижних частот 3-го порядка с частотой среза, равной 1/5 частоты дискретизации.

Структурная схема получившейся последовательной реализации фильтра представлена рисунке.

Параллельное соединение блоков

Параллельное соединение блоков

Еще один способ преобразования передаточной функции физически реализуемого фильтра — представление в виде суммы дробей.

$$H(z) = \sum_{m=1}^{M-1} H_m(z) = \sum_{m=1}^{M-1} \left(\frac{A_m}{1 - z_{pm} z^{-1}} \right), \tag{4}$$

где z_{pm} — простой (не кратный) m-й полюс передаточной функции (4); в общем случае полюсы — попарно комплексносопряженные числа;

 A_m — коэффициент разложения при m-м полюсе; константа A_m — всегда число того же типа (вещественное или комплексное), что и полюс z_{pm} .

Операция сложения в (4) эквивалентна параллельному соединению этих фильтров с суммированием выходных результатов.

Если в (4) попарно сложить простые дроби с комплексно-сопряженными полюсами z_{pm} (и комплексно-сопряженными константами A_m) и получить передаточную функцию в виде суммы дробей второго порядка с вещественными коэффициентами

$$H(z) = \sum_{m=1}^{\frac{M-1}{2}} H_m(z) = \sum_{m=1}^{\frac{M-1}{2}} \left(\frac{a_{0m} + a_{1m}z^{-1}}{1 - b_{1m}z^{-1} - b_{2m}z^{-2}} \right).$$

Здесь все коэффициенты — вещественные числа; (M-1)/2 количество звеньев второго порядка.

Если разностное уравнение фильтра имеет вещественные коэффициенты, то каждое из слагаемых при таком представлении соответствует передаточной функции рекурсивного фильтра 1-го порядка либо 1-го или 2-го порядка с вещественными коэффициентами.

Параллельное соединение блоков

Пример.

Рассмотрим конкретный пример с численными значениями коэффициентов фильтра как в предыдущем разделе:

$$H(z) = \frac{0,0985 + 0,2956z^{-1} + 0,2956z^{-2} + 0,0985z^{-3}}{1 - 0,5772z^{-1} + 0,4218z^{-2} - 0,0563z^{-3}}.$$

Заметим, что

$$H(z) = -1,7502 + \frac{3,0777}{1 - 0,1584z^{-1}} + \frac{-1,229 + 0,3798z^{-1}}{1 - 0,4188z^{-1} + 0,3554z^{-2}}.$$

Структурная схема получившейся параллельной реализации фильтра представлена на рисунке.

Параллельная реализация цифрового фильтра

Биквадратный блок

Биквадратный блок

Передаточная функция общего вида

$$H(z) = \frac{\tilde{a}_0 + \tilde{a}_1 z^{-1} + \dots + \tilde{a}_M z^{-M}}{1 - \tilde{b}_1 z^{-1} - \dots - \tilde{b}_N z^{-N}}$$

может быть представлена путем последовательного соединения канонических биквадратных форм

$$H(z) = \left(\frac{a_{01} + a_{11}z^{-1} + a_{21}z^{-2}}{1 - b_{11}z^{-1} - b_{21}z^{-2}}\right) \times \dots \times \left(\frac{a_{0N} + a_{1N}z^{-1} + a_{2N}z^{-2}}{1 - b_{1N}z^{-1} - b_{2N}z^{-2}}\right)$$

Поэтому на практике в качестве простых часто используются однотипные блоки второго порядка с передаточными функциями

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 - b_1 z^{-1} - b_2 z^{-2}}.$$

Эти блоки называются биквадратными.

Обозначим
$$A_1 = \frac{a_1}{a_0}, \ A_2 = \frac{a_2}{a_0}.$$

АЧХ биквадратного блока получается подстановкой $z=e^{j\theta}$ ($A(\theta)=\left|H(e^{j\theta})\right|$)

$$A(\theta) = a_0 \sqrt{\frac{(1 + A_1 \cos \theta + A_2 \cos 2\theta)^2 + (A_1 \sin \theta + A_2 \sin 2\theta)^2}{(1 - b_1 \cos \theta - b_2 \cos 2\theta)^2 + (b_1 \sin \theta + b_2 \sin 2\theta)^2}}.$$

Фазочастотная характеристика определяется суммой ФЧХ нерекурсивной и рекурсивной частей блока

$$\varphi(\theta) = \arctan \frac{A_1 \sin \theta + A_2 \sin 2\theta}{1 + A_1 \cos \theta + A_2 \cos 2\theta} + \arctan \frac{-b_1 \sin \theta - b_2 \sin 2\theta}{1 - b_1 \cos \theta - b_2 \cos 2\theta},$$

где
$$A_1 = \frac{a_1}{a_0}$$
, $A_2 = \frac{a_2}{a_0}$.

Биквадратный блок

Найдем импульсную характеристику h[k] цифрового биквадратного блока. При последовательном соединении нерекурсивной и рекурсивной частей блока их передаточные функции перемножаются:

$$H(z) = H_{\rm Hp}(z) \cdot H_{\rm p}(z).$$

Используя связь импульсной характеристики с передаточной функцией и теорему об умножении изображений, можем записать

$$h[k] = h_{\text{Hp}}[k] \otimes h_{\text{p}}[k] = \sum_{i=0}^{\infty} h_{\text{Hp}}[k] h_{\text{p}}[k-i].$$

Импульсная характеристика $h_{\!\!\scriptscriptstyle \mathrm{Hp}}[k]$ содержит всего три отсчета, поэтому

$$h[k] = h_{\text{Hp}}[k] \otimes h_{\text{p}}[k] = a_0 \left(h_{\text{p}}[k] + A_{\text{l}} h_{\text{p}}[k-1] + A_2 h_{\text{p}}[k-2] \right)$$

Рассмотрим отдельно на примере биквадратного блока переход от прямой формы реализации к прямой канонической.

Прямая форма реализации позволяет представить биквадратный блок как последовательное включение нерекурсивной и рекурсивной частей.

Так как результат последовательного прохождения сигнала через два линейных стационарных устройства не зависит от последовательности их соединения (с точности до разрядности вычислений), мы можем поменять местами рекурсивную и нерекурсивную части фильтра.

Биквадратный блок

Видим, что в обе линии задержки подается один и тот же сигнал, поэтому они будут содержать одинаковые наборы отсчетов. Это позволяет объединить линии задержки. В результате получим схему прямой канонической формы реализации биквадратного блока.

Следует отметить, что существуют и другие формы реализации, например, прямая каноническая транспонированная форма.

Прямая каноническая транспонированная форма реализации биквадратного блока

Задачи с лекции

Задачи для самостоятельного решения с лекции 11 ноября 2024 г. (часть 1).

№1. Передаточная функция цифрового фильтра имеет вид

$$H(z) = \frac{1 - 2z^{-1} + z^{-2}}{1 - \frac{1}{2}z^{-1} - \frac{1}{2}z^{-2}}.$$

Изобразить блок-схемы цифрового фильтра в прямой и прямой канонической формах и записать соответствующие разностные уравнения (алгоритмы цифровой фильтрации).

№2. Изобразить блок-схему одной из возможных реализаций фильтра с передаточной функцией

$$H(z) = \frac{0.5477 + 0.9322z^{-1} + 0.5477z^{-2}}{1 - 0.6106z^{-1} + 0.3029z^{-2}} \times$$

$$\times \frac{0,1906+0,1689z^{-1}+0,1906z^{-2}}{1-0,0013z^{-1}+0,8093z^{-2}}$$

в виде каскада двух биквадратных блоков. Для биквадратных блоков выбрать прямую каноническую форму реализации.

Nº3. Изобразить в прямой форме блок-схему реализации цифрового фильтра второго порядка, у передаточной функции которого два комплексно-сопряженных нуля $z_{1,2} = \pm 0.5 j$ и два комплексно-сопряженных полюса $z_{3,4} = \pm 0.2 j$, а значение частотной характеристики на частоте v = 0 равно 1.28.

Литература

- 1. Солонина А. И. Цифровая обработка сигналов в зеркале МАТLAB: учеб. пособие. СПб.: БХВ-Петербург, 2021. 560 с.: ил. (Учебная литература для вузов)
- 2. В.П. Васильев и др. Основы теории и расчета цифровых фильтров. Москва, ИНФРА-М, 2020
- 3. Сергиенко А. Б. Цифровая обработка сигналов: учеб. пособие. 3-е изд. СПб.: БХВ-Петербург, 2011. 768 с.: ил. (Учебная литература для вузов)

Учебные пособия [1], [2] и [3] есть в библиотеке МФТИ.

Примеры решения задач.

Пример 1.

Используя теорему Коши о вычетах, определить импульсную характеристику h[k] для физически реализуемого цифрового фильтра с передаточной функцией

$$H(z) = \frac{z^{-1}}{1 - z^{-1} + 0,25z^{-2}}.$$

Решение. Заметим, что

$$H(z) = \frac{z^{-1}}{1 - z^{-1} + 0.25z^{-2}} = \frac{z}{z^2 - z + 0.25} = \frac{z}{(z - 0.5)^2}.$$

По формуле обратного z-преобразования

$$h[k] = \frac{1}{j2\pi} \oint_C H(z) z^{k-1} dz,$$

где контур C охватывает все полюса подынтегральной функции

$$Y(z) = H(z)z^{k-1} = \frac{z^k}{(z-0.5)^2}.$$

По теореме Коши о вычетах

$$h[k] = \frac{1}{j2\pi} \oint_C Y(z) dz = \sum_p \operatorname{Res}_{z_p} Y(z), \quad k \ge 0$$

где z_p – полюса функции Y(z).

Для нахождения вычетов используются следующие формулы:

• в случае полюса первого порядка

Res
$$Y(z) = \lim_{z \to z_p} Y(z)(z - z_p);$$

• в случае полюса m-го порядка (m > 1)

Res
$$Y(z) = \frac{1}{(m-1)!} \lim_{z \to z_p} \frac{d^{m-1}}{dz^{m-1}} [Y(z)(z-z_p)^m].$$

В нашем случае Y(z) имеет один двукратный полюс в точке $z_p = 0.5\,.$

$$h[k] = \lim_{z \to 0.5} \frac{d}{dz} Y(z) (z - 0.5)^2 = \lim_{z \to 0.5} \frac{d}{dz} z^k = k(0.5)^{k-1}, \ k \ge 0.$$

Получаем, что $h[k] = k(0,5)^{k-1}u[k]$.

Пример 2. Пример биквадратного блока.

Рассмотрим фильтр с передаточной функцией

$$H(z) = \frac{1 + 0.2z^{-1} - 0.35z^{-2}}{1 - 0.5z^{-1} + 0.06z^{-2}}$$

с начальными условиями y[-1] = y[-2] = 0.

1) Нули и полюса передаточной функции.

$$H(z) = \frac{1+0.2z^{-1}-0.35z^{-2}}{1-0.5z^{-1}+0.06z^{-2}} = \frac{(1-0.5z^{-1})(1+0.7z^{-1})}{(1-0.3z^{-1})(1-0.2z^{-1})} = \frac{(z-0.5)(z+0.7)}{(z-0.3)(z-0.2)}$$

$$z_{n1} = 0.5, \ z_{n2} = -0.7, \ z_{p1} = 0.3, \ z_{p2} = 0.2$$

Все полюса внутри единичного круга, значит фильтр устойчив.

2) Разностное уравнение для реализации фильтра в прямой форме.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.2z^{-1} - 0.35z^{-2}}{1 - 0.5z^{-1} + 0.06z^{-2}}$$
$$Y(z) \left(1 - 0.5z^{-1} + 0.06z^{-2}\right) = X(z) \left(1 + 0.2z^{-1} - 0.35z^{-2}\right)$$

По теореме запаздывания для z —преобразования для целого числа m>0

$$x[k-m] \stackrel{z}{\longleftrightarrow} X(z)z^{-m}$$
.

Тогда разностное уравнение имеет вид

$$y[k] - 0.5y[k-1] + 0.06y[k-2] = x[k] + 0.2x[k-1] - 0.35x[k-2]$$

$$y[k] = x[k] + 0.2x[k-1] - 0.35x[k-2] + 0.5y[k-1] - 0.06y[k-2]$$

3) Блок схема для реализации фильтра в прямой форме.

4) Блок-схема реализации в прямой канонической форме. Переставим рекурсивную и нерекурсивную часть местами.

Объединим две линии задержки в одну

5) Импульсная характеристика.

Определим импульсную характеристику, воспользовавшись методом, основанном на контурном интегрировании с применение теоремы Коши о вычетах.

$$h[k] = \frac{1}{j2\pi} \oint_C H(z) z^{k-1} dz.$$

$$h[k] = \frac{1}{j2\pi} \oint_C \frac{(z-0,5)(z+0,7)}{(z-0,3)(z-0,2)} z^{k-1} dz.$$

При k=0 у подынтегрального выражения три полюса:

$$z_{p1}=0,3$$
, $z_{p2}=0,2$, $z_{p3}=0$, а при $k\geq 1$ — два : $z_{p1}=0,3$, $z_{p2}=0,2$.

Значение импульсной характеристики в точке k=0 можно найти из разностного уравнения системы

$$y[k] = x[k] + 0.2x[k-1] - 0.35x[k-2] + 0.5y[k-1] - 0.06y[k-2]$$

 $h[k] = \mathbf{1}[k] + 0.2 \cdot \mathbf{1}[k-1] - 0.35 \cdot \mathbf{1}[k-2] + 0.5h[k-1] - 0.06h[k-2]$

$$h[0] = 1$$

При $k \ge 1$ для интегрирования по контуру воспользуемся теоремой Коши о вычетах.

$$h[k] = \frac{1}{j2\pi} \oint_{c} \frac{(z-0,5)(z+0,7)}{(z-0,3)(z-0,2)} z^{k-1} dz =$$

$$= \operatorname{Res}_{z=0,3} \frac{(z-0,5)(z+0,7)}{(z-0,3)(z-0,2)} z^{k-1} + \operatorname{Res}_{z=0,2} \frac{(z-0,5)(z+0,7)}{(z-0,3)(z-0,2)} z^{k-1} =$$

$$= \frac{(z-0,5)(z+0,7)}{(z-0,2)} z^{k-1} \Big|_{z=0,3} + \frac{(z-0,5)(z+0,7)}{(z-0,3)} z^{k-1} \Big|_{z=0,2} =$$

$$= -2(0,3)^{k-1} + 2,7(0,2)^{k-1} = -\frac{20}{3}(0,3)^{k} + \frac{27}{2}(0,2)^{k}, k \ge 1.$$

Объединим результаты в одну формулу

$$h[k] = \left(-\frac{20}{3}(0,3)^k + \frac{27}{2}(0,2)^k - \frac{35}{6}\mathbf{1}[k]\right)u[k].$$

6) Частотная характеристика.

Найдем частотную характеристику, взяв ДВПФ от импульсной характеристики.

$$H(\theta) = -\frac{20}{3} \frac{1}{1 - 0.3 \exp(-j\theta)} + \frac{27}{2} \frac{1}{1 - 0.2 \exp(-j\theta)} - \frac{35}{6}$$

Тот же результат можно получить подстановкой $z^{-1} = \exp(-j\theta)$ в передаточную функцию системы

$$H(z) = \frac{(1-0.5z^{-1})(1+0.7z^{-1})}{(1-0.3z^{-1})(1-0.2z^{-1})}.$$

Примечание. Обратите внимание, что умножителей знаки в рекурсивной части противоположны по знаку коэффициентам в знаменателе передаточной функции.

$$H(z) = \frac{\sum_{m=0}^{N-1} \beta_m z^{-m}}{1 + \sum_{m=1}^{M-1} \alpha_m z^{-m}}.$$

$$y[k] = \sum_{m=0}^{N-1} \beta_m x[k-m] - \sum_{m=1}^{M-1} \alpha_m y[k-m].$$

$$H(z) = \frac{\sum_{m=0}^{N-1} a_m z^{-m}}{1 - \sum_{m=1}^{M-1} b_m z^{-m}}.$$

$$y[k] = \sum_{m=0}^{N-1} a_m x[k-m] + \sum_{m=1}^{M-1} b_m y[k-m].$$

