

### Predicting Natural Gas Pipeline Alarms

Colin O. Quinn, Jaired R. Collins, Richard J. Povinelli
June 18 2019



# Agenda

- Natural gas pipeline basics
  - Flow orientation
  - Control operators
- Signal data
  - Selection, preprocessing, transformation
- Linear autoregressive model
  - Forecasting alarms
- Alarm forecasting results
- Conclusion







# **Problem Statement**





# **Problem Statement**



#### **Problem Statement**

- Each central processing facility monitors:
  - 1. Pressure
  - 2. H<sub>2</sub>O
  - 3. CO<sub>2</sub>
  - 4. H<sub>2</sub>S
  - 5. Energy (British Thermal Units)





















#### Methods

- Linear autoregressive model implementation
  - Given a pressure time series p, with timestamps  $\vec{t}$  and pressure values  $\vec{y}$  ....
  - Build design matrix A using ten minutes of lagged  $\vec{y}$
  - Least squares regression
    - Using A, and targets  $\vec{b}$
    - 10 autoregressive coefficients
    - Used to forecast time horizons 1 30 minutes





#### Methods

- Linear autoregressive model implementation
  - Direct forecasting
  - Regression vs classification







#### Error Metrics

- Forecasting time series values
  - Root mean square error =  $\sqrt{\frac{\sum_{i=1}^{T}(\hat{p}_t p_t)^2}{T}}$
  - Mean absolute percentage error =  $\frac{1}{T}\sum_{i=1}^{T} \frac{|(\hat{p}_t p_t)|}{(p_t)}$
- Forecasting Alarms
  - Sensitivity =  $\frac{TP}{TP+FN}$







#### Pressure value predictions







- Pressure value predictions
  - Mean absolute percentage error =  $\frac{1}{T}\sum_{i=1}^{T} \frac{|(\hat{p}_t p_t)|}{(p_t)}$







#### Alarm Forecasting

• Sensitivity = 
$$\frac{TP}{TP+FN}$$







CO<sub>2</sub>





Energy (British Thermal Units)





H<sub>2</sub>O





• H<sub>2</sub>S





#### Conclusion

- Linear autoregressive model
  - Accurately forecast pressure time series up to a 30-minute time horizon
  - 100% sensitivity at one minute to approximately 65% at a 30-minute forecast horizon
  - Speculation: sensitivity drops quickly due to our forecasts fluctuating back and forth over certain alarm thresholds





### Conclusion

- Additional Work
  - ARX
  - LS-SVM
  - ANN







# Questions?

- Colin O. Quinn
  - colin.o.quinn@marquette.edu
- Richard J. Povinelli
  - richard.povinelli@marquette.edu



