heart disease eda

June 26, 2025

1 Heart Disease Dataset - Exploratory Data Analysis (EDA)

Author: Harsh Mishra Date: 29 June 2025

Dataset: Heart Disease Dataset

1.1 Introduction

This notebook presents an in-depth Exploratory Data Analysis (EDA) of a heart disease dataset. The goal is to explore data distribution, detect missing values and outliers, and uncover relationships between features and the target variable.

1.2 1. Load and Inspect the Dataset

```
[1]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns

# Set style
  sns.set(style="whitegrid")
  plt.rcParams["figure.figsize"] = (10, 6)

# Load dataset
  df = pd.read_csv("heart.csv")
  df.head()
```

[1]:		Age	Sex	${\tt ChestPainType}$	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	\
	0	40	M	ATA	140	289	0	Normal	172	
	1	49	F	NAP	160	180	0	Normal	156	
	2	37	M	ATA	130	283	0	ST	98	
	3	48	F	ASY	138	214	0	Normal	108	
	4	54	М	NAP	150	195	0	Normal	122	

	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
() N	0.0	Up	0
-	L N	1.0	Flat	1
2	N N	0.0	Up	0

```
3
               Y
                       1.5
                               Flat
                                                 1
4
                                 Uр
                                                 0
               N
                       0.0
```

2. Dataset Summary 1.3

[2]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 918 entries, 0 to 917 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	${\tt ChestPainType}$	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtyp	es: float64(1),	int64(6), object	(5)

memory usage: 86.2+ KB

[3]: df.describe()

[3]:		Age	RestingBP	Cholesterol	FastingBS	MaxHR	\
	count	918.000000	918.000000	918.000000	918.000000	918.000000	
	mean	53.510893	132.396514	198.799564	0.233115	136.809368	
	std	9.432617	18.514154	109.384145	0.423046	25.460334	
	min	28.000000	0.000000	0.000000	0.000000	60.000000	
	25%	47.000000	120.000000	173.250000	0.000000	120.000000	
	50%	54.000000	130.000000	223.000000	0.000000	138.000000	
	75%	60.000000	140.000000	267.000000	0.000000	156.000000	
	max	77.000000	200.000000	603.000000	1.000000	202.000000	
		Oldpeak	HeartDisease	е			
	count	918.000000	918.000000)			
	mean	0.887364	0.553377	7			
	std	1.066570	0.497414	1			
	min	-2.600000	0.000000)			
	25%	0.000000	0.000000)			
	50%	0.600000	1.000000)			
	75%	1.500000	1.000000)			
	max	6.200000	1.000000)			

1.4 3. Missing Value Analysis

```
[4]: df.isnull().sum()
[4]: Age
                         0
     Sex
                         0
     ChestPainType
                         0
     RestingBP
                         0
     Cholesterol
                         0
     {\tt FastingBS}
                         0
     RestingECG
                         0
     MaxHR
                         0
     ExerciseAngina
                         0
                         0
     Oldpeak
     ST_Slope
                         0
                         0
     {\tt HeartDisease}
     dtype: int64
[5]: sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
     plt.title("Missing Value Heatmap")
     plt.show()
```


1.5 4. Univariate Analysis

```
[6]: df.hist(figsize=(14, 12), bins=20, edgecolor='black')
  plt.suptitle("Distributions of Numerical Features", fontsize=16)
  plt.tight_layout()
  plt.show()
```



```
[8]: sns.countplot(x='Sex', data=df)
plt.title("Distribution by Sex")
plt.show()
```


1.6 5. Outlier Detection

```
[9]: sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.title("Boxplot for Outlier Detection")
plt.show()
```



```
[11]: sns.boxplot(y='Cholesterol', data=df)
  plt.title("Outliers in Cholesterol")
  plt.show()
```


1.7 6. Correlation Analysis

1.8 7. Relationships with Target Variable

```
[15]: sns.countplot(x='HeartDisease', data=df)
   plt.title('Target Variable Distribution')
   plt.show()
```



```
[17]: sns.scatterplot(x='Age', y='Cholesterol', hue='HeartDisease', data=df)
    plt.title('Age vs Cholesterol by Target')
    plt.show()
```


1.9 8. Summary of Findings

- No missing values in the dataset.
- Some outliers exist in features like cholesterol (chol) and max heart rate (thalach).
- Features like cp (chest pain type) and exang (exercise-induced angina) show strong correlation with heart disease.
- Correlation heatmap reveals interesting inter-feature relationships worth exploring in modeling.