- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 from sklearn.model_selection import cross_val_score
- 6 from sklearn.metrics import accuracy_score
- 1 df_red=pd.read_csv(r'https://archive.ics.uci.edu/ml/machine-learning-databases/v
- 2 df white=pd.read csv('https://archive.ics.uci.edu/ml/machine-learning-databases,
- 3 display(df red)
- 4 display(df_white)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
n	7 /	0 700	0 00	1 Q	በ በ76	11 ∩	3/I U	n aa721
f_red	ping dupli = df_red. te = df_wh	drop_dupli		es()				
^	44.0	0 000	^	4 ^	^ ^75	47 ^	00.0	0 00004
ispla	king variab ny(df_red.i ny(df_white	nfo())	ntion					
Int6	ss 'pandas 4Index: 13 columns (59 entries	, 0 to 1	1598				
#	Column		Non-N	Null Count	Dtype			
0 1	fixed aci volatile	acidity		non-null non-null	float64 float64			
2	citric ac			non-null	float64			
3 4	residual chlorides	-		non-null non-null	float64 float64			
5		ur dioxide		non-null	float64			
6		fur dioxid		non-null	float64			
7	density 			non-null	float64			
8	pH			non-null	float64			
9 10	sulphates alcohol			non-null non-null	float64 float64			
11	quality			non-null	int64			
	es: float6	4(11), int		non nacc	111001			
	ry usage:		` ,					
None								
	ss 'pandas							
	4Index: 39 columns (
#	Column	totat 12 c		Null Count	Dtype			
0	fixed aci	dity	3961	non-null	float64			
1	volatile			non-null	float64			
2	citric ac			non-null	float64			
3	residual	-		non-null	float64			
4 5	chlorides	ur dioxide		non-null	float64 float64			
6		di dioxide fur dioxid			float64			
7	density	Tur uloxiu		non-null	float64			
8	pH			non-null	float64			
9	sulphates		3961	non-null	float64			
10	alcohol			non-null	float64			
	quality	4/11\ ' '		non-null	int64			
	es: float6		04(I)					
None	ry usage:	4UZ.J ND						
None								

^{1 #} For red wine calculating unique and null values

2 for col in df_red.columns.values:

```
list_vals = pd.unique(df_red[col]) #list of unique values
    print(col + ' has ' + str(len(list vals)) +' unique values, and ' + str(df re
 5
    if len(list vals) < 10:</pre>
      list str = ''
 6
 7
       for n in range(0, len(list vals)):
 8
        list str = list str + str(list vals[n]) + ', '
       print(' These are: '+list str[0:len(list str) - 2])
9
10
11 # For white wine calculating unique and null values
12 for col in df white.columns.values:
    list vals = pd.unique(df white[col]) #list of unique values
14
    print(col + ' has ' + str(len(list_vals)) + ' unique values, and ' + str(df_w/
15
    if len(list vals) < 10:
16
      list str = ''
17
       for n in range(0, len(list vals)):
        list str = list str + str(list vals[n]) + ', '
18
       print(' These are: '+list str[0:len(list str) - 2])
19
    fixed acidity has 96 unique values, and 0 null entries
    volatile acidity has 143 unique values, and 0 null entries
    citric acid has 80 unique values, and 0 null entries
    residual sugar has 91 unique values, and 0 null entries
    chlorides has 153 unique values, and 0 null entries
    free sulfur dioxide has 60 unique values, and 0 null entries
    total sulfur dioxide has 144 unique values, and 0 null entries
    density has 436 unique values, and 0 null entries
    pH has 89 unique values, and 0 null entries
    sulphates has 96 unique values, and 0 null entries
    alcohol has 65 unique values, and 0 null entries
    quality has 6 unique values, and 0 null entries
```

quality has 6 unique values, and 0 null entries
These are: 5, 6, 7, 4, 8, 3
fixed acidity has 68 unique values, and 0 null entries
volatile acidity has 125 unique values, and 0 null entries
citric acid has 87 unique values, and 0 null entries
residual sugar has 310 unique values, and 0 null entries
chlorides has 160 unique values, and 0 null entries
free sulfur dioxide has 132 unique values, and 0 null entries
total sulfur dioxide has 251 unique values, and 0 null entries
density has 890 unique values, and 0 null entries
pH has 103 unique values, and 0 null entries
sulphates has 79 unique values, and 0 null entries
alcohol has 103 unique values, and 0 null entries
These are: 6, 5, 7, 8, 4, 3, 9

Observations:

1: No column has null entry.

1 #Visualisation of similarity between two variable in wine data by checking corre
2 df_red.corr()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
fixed acidity	1.000000	-0.255124	0.667437	0.111025	0.085886	-0.140580	-0.103777
volatile acidity	-0.255124	1.000000	-0.551248	-0.002449	0.055154	-0.020945	0.071701
citric acid	0.667437	-0.551248	1.000000	0.143892	0.210195	-0.048004	0.047358
residual sugar	0.111025	-0.002449	0.143892	1.000000	0.026656	0.160527	0.201038
chlorides	0.085886	0.055154	0.210195	0.026656	1.000000	0.000749	0.045773
free sulfur dioxide	-0.140580	-0.020945	-0.048004	0.160527	0.000749	1.000000	0.667246
total sulfur dioxide	-0.103777	0.071701	0.047358	0.201038	0.045773	0.667246	1.000000
density	0.670195	0.023943	0.357962	0.324522	0.193592	-0.018071	0.078141

^{1 #}Visualisation of data through histogams

^{2 #}Checking if the data is skewed

³ df_red.hist(bins=10, figsize=(16,16))

⁴ plt.figure(1)

⁵ plt.show()

- 1 #Visualisation of white wine data through histogams
- 2 #Checking if the data is skewed
- 3 df_white.hist(bins=10, figsize=(16,16))
- 4 plt.figure(1)
- 5 plt.show()

- Obs:

'acohol', 'sulphates','residual sugar','chlorides', 'free sulphur dioxide', 'total sulphur dioxide' hist seems to be positively skewed.

```
1 # visualization of correlation by heatmap for red wine
2
3 corr = df_red.corr(method = 'spearman')
4 fig, ax = plt.subplots(figsize = (20,15))
5 sns.heatmap(abs(corr), annot = True)
6 plt.show()
```



```
1 # visualization of correlation by heatmap for White wine
2
3 corr = df_white.corr(method = 'spearman')
4 fig, ax = plt.subplots(figsize = (20,15))
5 sns.heatmap(abs(corr), annot = True)
6 plt.show()
```



```
1 # boxplot for red wine
```

² for col in df_red.columns.values:

³ df_red.boxplot(by = 'quality', column = col, grid = False)

/usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/_asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/_asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order) /usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: VisibleDe return array(a, dtype, copy=False, order=order)

Boxplot grouped by quality

Boxplot grouped by quality


```
1 # boxplot for white wine
2 for col in df_white.columns.values:
3    df_white.boxplot(by = 'quality', column = col, grid = False)
```

```
/usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: Visible
  return array(a, dtype, copy=False, order=order)
/usr/local/lib/python3.6/dist-packages/numpy/core/_asarray.py:83: Visible
  return array(a, dtype, copy=False, order=order)
/usr/local/lib/python3.6/dist-packages/numpy/core/ asarray.py:83: Visible
  return array(a, dtype, copy=False, order=order)
```

Boxplot grouped by quality

Preparation of data

1 #dividing the data into two parts train and test data (x,y)for red wine, (a,b)for 2 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_ 3 a train_a test_b_train_b_test_split(a,b, test_size=0.3, random_ 3 a train_a test_b_train_b_test_split(a,b, test_size=0.3, random_ 3 a train_a test_split(a,b, test_size=0.3, random_ 3 a train_a t

3 a_train, a_test, b_train, b_test = train_test_split(a, b, test_size=0.3, random_

- 1 #scaling of data
- 2 from sklearn.preprocessing import StandardScaler

```
3 sc = StandardScaler()
4 x_train = sc.fit_transform(x_train)
5 x_test = sc.fit_transform(x_test)
6
7 #for white wine
8 a_train = sc.fit_transform(a_train)
9 a test = sc.fit transform(a test)
```

→ LASSO L1 Regression

```
1 from sklearn.linear model import Lasso
 2 from sklearn.model selection import GridSearchCV
 3 from sklearn.metrics import mean squared error, mean absolute error
 4 from sklearn.metrics import accuracy score
 5 lasso reg=Lasso()
 7 #hyperparameter tuning and cross validation using grid
9 parameter grid lasso=({'alpha':[0.001,0.01,0.1,1,10,100,1000]}) #setting diction
11 grid search = GridSearchCV(lasso reg, parameter grid lasso, cv=5,scoring='neg mo
12 white grid search = GridSearchCV(lasso reg, parameter grid lasso, cv=5,scoring=
14 grid search.fit(x train,y train) #training and fitting data for red wine
15
16 white grid search.fit(a train,b train) #training and fitting data for white w.
17
18 print('')
19 print('Best parameter for red wine is',grid_search.best params ) #for red wine
20 print('')
21 print('')
22 print('Best parameter for white wine is', white grid search.best params ) #for wl
23 print('')
24
25
    Best parameter for red wine is {'alpha': 0.01}
    Best parameter for white wine is {'alpha': 0.01}
```

Testing the model

```
1 #for red wine testing
2 #Lasso best model metrics
3 lasso_final_model=grid_search.best_estimator_
4 lasso_final_prediction=lasso_final_model.predict(x_test)
https://colab.research.google.com/drive/1IBJU7dPDGJMRPRfoPLfgKUa6BrseCtdm#printMode=true
```

```
5
 6 mse lasso = mean squared error(y test, lasso final prediction)
 7 rmse = np.sqrt(mse lasso)
 8 print('Tesying parameters for Red wine are')
 9 print("\nLasso Regression RMSE:",rmse)
10 MAE=mean absolute error(y_test, lasso_final_prediction)
11 print("\nLasso Regression MAE:",MAE)
12 print("\nLasso Regression MSE:",mse lasso)
13
14 lasso scores = cross val score(lasso reg, x train, y train, scoring="neg mean squ
15 print('\nLasso CV score is ',lasso scores.mean())
17 print('\ncoefficients of bestestimator are ',lasso final model.coef )
    Tesying parameters for Red wine are
    Lasso Regression RMSE: 0.669583214580127
    Lasso Regression MAE: 0.5225142886509236
    Lasso Regression MSE: 0.44834168124745644
    Lasso CV score is -0.6738527102028826
                                                     -0.18822622 -0.00573779 0.00
    coefficients of bestestimator are [-0.
     -0.04315893 -0.01305741 -0.0597066 0.15821998 0.309767611
 1 #Testing the model for white wine
 2 lasso final model=white grid search.best estimator
 3 lasso final prediction=lasso final model.predict(a test)
 5 mse lasso = mean squared error(b test,lasso final prediction)
 6 rmse = np.sqrt(mse lasso)
 8 print('Tesying parameters for white wine are')
 9 print("\nLasso Regression RMSE:",rmse)
10 MAE=mean_absolute_error(b_test, lasso_final_prediction)
11 print("\nLasso Regression MAE:",MAE)
12 print("\nLasso Regression MSE:",mse_lasso)
14 lasso_scores = cross_val_score(lasso_reg, a_train, b_train,scoring="neg_mean_squ
15 print('\nLasso CV score is ',lasso_scores.mean())
17 print('\ncoefficients of bestestimator are ',lasso final model.coef )
    Tesying parameters for white wine are
    Lasso Regression RMSE: 0.7399127620760989
    Lasso Regression MAE: 0.5718953963489289
    Lasso Regression MSE: 0.5474708954830817
    Lasso CV score is -0.8054583580436189
```

```
coefficients of bestestimator are [-0.01099256\ -0.16203032\ 0.01450484\ 0.14\ -0.01935909\ -0.13611277\ 0.04855118\ 0.05223789\ 0.38198165]
```

Reducing the value of alpha reduces the error of the model. The parameter α is used for feature reduction, estimating the sparse coefficients. α = 0 is similar to linear regression Calculate errors

Testing the red dataset with white model or vice versa: Not able to get the result as both are having different dimensions.

1

L1 L2 ElasticNet

training and testing for Red wine of L1L2 Enet

```
1 #rigorous training and testing for red wine
 2 from sklearn.linear model import ElasticNet
 3 Enet=ElasticNet()
 4 enet param grid = [{'alpha':[0.001, 0.01, 0.1, 1, 10, 100, 1000],'ll ratio':[0.1]
 5 En param grid search = GridSearchCV(Enet, enet param grid, cv=5, scoring='neg mo
 6 En param grid search.fit(x train,y train)
 7 print('')
 8 print('Best parameter is',En param grid search.best params )
9 print('')
10
11 #ENET best model metrics
12 Enet final model=En param grid search.best estimator
13 Enet final prediction=Enet final model.predict(x test)
14
15 mse_Enet = mean_squared_error(y_test,Enet_final_prediction)
16 rmse = np.sqrt(mse_Enet)
17 print('Tesying parameters for RED wine are')
18 print("\nENET Regression RMSE:",rmse)
19 MAE=mean_absolute_error(y_test, Enet_final_prediction)
20 print("\nENET Regression MAE:",MAE)
21 print("\nENET Regression MSE:",mse Enet)
22
23 Enet_scores = cross_val_score(Enet, x_train, y_train,scoring="neg_mean_squared_c
24 print('\nENET coefficients of bestestimator are ',Enet final model.coef )
    Best parameter is {'alpha': 0.01, 'l1 ratio': 0.7}
    Tesying parameters for RED wine are
    ENET Regression RMSE: 0.6701157828877404
    ENET Regression MAE: 0.5226655358624054
```

```
ENET Regression MSE: 0.4490551624752493

ENET coefficients of bestestimator are [-0. -0.19081555 -0.01430124 -0.05173179 -0.01772548 -0.06902841 0.16419338 0.30841417]
```

training and testing for White wine of L1L2 Enet

```
1 #training and testing of model for white wine
  2 enet param grid = [{'alpha':[0.001, 0.01, 0.1, 1, 10, 100, 1000],'ll ratio':[0.1]
  3 white En param grid search = GridSearchCV(Enet, enet param grid, cv=5, scoring=
  4 white En param grid search.fit(a train,b train)
  6 print('Tesying parameters for white wine are')
  7 print('')
  8 print('Best parameter for white wine data is', white En param grid search.best parameter
  9 print('')
10
11 #ENET best model metrics
12 Enet final model=white En param grid search.best estimator
13 Enet final prediction=Enet final model.predict(a test)
14
15 mse Enet = mean squared error(b test, Enet final prediction)
16 rmse = np.sqrt(mse Enet)
17
18 print("\nENET Regression RMSE:",rmse)
19 MAE=mean absolute error(b test, Enet final prediction)
20 print("\nENET Regression MAE:",MAE)
21 print("\nENET Regression MSE:",mse Enet)
23 Enet scores = cross val score(Enet, a train, b train, scoring="neg mean squared or sq
24 print('\nENET coefficients of bestestimator are ',Enet_final_model.coef_)
          Tesying parameters for white wine are
          Best parameter for white wine data is {'alpha': 0.01, 'll_ratio': 0.1}
          ENET Regression RMSE: 0.7377310817794659
          ENET Regression MAE: 0.5697110989166195
          ENET Regression MSE: 0.544247149023501
          ENET coefficients of bestestimator are [ 0.01087688 -0.16024106  0.03022681
             -0.03806477 -0.27439823  0.08116125  0.06891974  0.31931421
```

Random Forest

Training and Testing of RED Wine DATA

```
1 #training and testing of model for RED wine
 2 from sklearn.ensemble import RandomForestRegressor
 3 from sklearn.metrics import accuracy score
 4 forest reg = RandomForestRegressor()
 6 #parameter grid
 7 forest param grid = [{'n estimators': [3, 10, 30], 'max features': [2, 4, 6, 8]]
 9 grid search = GridSearchCV(forest reg, forest param grid, cv=5,scoring='neg mean
10
11 grid search.fit(x train,y train)
12 grid search.best params
13 print('The parameters for fitting and testing of RED wine are')
14 print('Best parameter is',grid_search.best_params_)
15 print('')
16
17 #ENET best model metrics
18 forest final model=grid search.best estimator
19 forest final prediction=forest final model.predict(x test)
20
21 mse forest = mean squared error(y test, forest final prediction)
22 rmse = np.sqrt(mse forest)
24 print("\nRandomForest Regression RMSE:",rmse)
25 MAE=mean absolute error(y test, forest final prediction)
26 print("\nRandomForest Regression MAE:",MAE)
27 print("\nRandomForest Regression MSE:",mse forest)
28
29 forest scores = cross val score(forest reg, x train, y train, scoring="neg mean :
30 print('\nRF cross validation score is', forest scores.mean())
    The parameters for fitting and testing of RED wine are
    Best parameter is {'max_features': 4, 'n_estimators': 30}
    RandomForest Regression RMSE: 0.6583653917899648
    RandomForest Regression MAE: 0.5110294117647058
    RandomForest Regression MSE: 0.4334449891067538
    RF cross validation score is -0.4240906907894736
```

Training and TESTING for WHITE wine for RANDOM Forest model

```
1 #training and testing of model for White wine
 3 white grid search = GridSearchCV(forest reg, forest param grid, cv=5,scoring='ne
 5 white grid search.fit(a train,b train)
 6 white grid search.best params
 7 print('\nThe parameters for fitting and testing of White wine are')
 8 print('\nBest parameter is',grid search.best params )
9 print('')
10
11 #ENET best model metrics
12 forest final model=white grid search.best estimator
13 forest final prediction=forest final model.predict(a test)
14
15 mse forest = mean squared error(b test, forest final prediction)
16 rmse = np.sqrt(mse forest)
17
18 print("\nRandomForest Regression RMSE:",rmse)
19 MAE=mean absolute error(b test, forest final prediction)
20 print("\nRandomForest Regression MAE:",MAE)
21 print("\nRandomForest Regression MSE:",mse forest)
22
23 forest scores = cross val score(forest reg, a train, b train, scoring="neg mean :
24 print('\nRF cross validation score is', forest scores.mean())
    The parameters for fitting and testing of White wine are
    Best parameter is {'max features': 4, 'n estimators': 30}
    RandomForest Regression RMSE: 0.7093709726929592
    RandomForest Regression MAE: 0.5443790299971966
    RandomForest Regression MSE: 0.5032071768993551
    RF cross validation score is -0.5166170032205282
```

The parameter n estimator in RFR is used to decide the number of trees in the regressor to be used for modeling the data.

SVR

Training and testing of data for RED wine model

```
1 #Support vector regression training and testing for RED Wine
 2 from sklearn.svm import SVR
 3 #parameters grid code courtesy stackexchange
 4 parameters = {'kernel': ('linear', 'rbf', 'poly'), 'C':[1.5, 10], 'gamma': [1e-7,
 5 \text{ modelsvr} = SVR()
 6 clf = GridSearchCV(modelsvr,parameters,cv=5)
 7 clf.fit(x train,y train)
 8 print('\nbest parameters for SVR are :',clf.best params )
9
10 print('')
11
12 #SVR best model metrics
13 SVR final model=clf.best_estimator_
14 SVR final prediction=SVR final model.predict(x test)
15
16 mse_SVR = mean_squared_error(y_test,SVR_final_prediction)
17 rmse = np.sqrt(mse SVR)
19 print("\nSupport vector Regression RMSE:",rmse)
20 MAE=mean_absolute_error(y_test, SVR final prediction)
21 print("\nSupport vector Regression MAE:",MAE)
22 print("\nSupport vector Regression MSE:", mse SVR)
23
24 SVR scores = cross val score(modelsvr, x train, y train,scoring="neg mean square
25 print('\nSVR cross val score',SVR_scores)
26 print('\nSupport vector coefficients of bestestimator are ',SVR_final_model.com
    best parameters for SVR are : {'C': 1.5, 'epsilon': 0.2, 'gamma': 1e-07, 'ker
    Support vector Regression RMSE: 0.6719473647525518
    Support vector Regression MAE: 0.5206050473785004
    Support vector Regression MSE: 0.45151326099789885
    SVR cross val score [-0.45508625 -0.44595992 -0.45764429 -0.44372559 -0.36624
    Support vector coefficients of bestestimator are
                                                         [[ 0.06851271 -0.17575744
      -0.06977631 -0.06198414 -0.0432512
                                            0.16462342
                                                         0.32358286]]
```

Training and testing model for WHITE wine data for SVR

```
1 #training and testing for white wine for SVR
https://colab.research.google.com/drive/1IBJU7dPDGJMRPRfoPLfqKUa6BrseCtdm#printMode=true
```

```
19/08/2022, 20:31
                                       Q1 wine 203079016.ipynb - Colaboratory
    2 white clt = GridSearchCV(modelsvr,parameters,cv=5)
    3 white_clf.fit(a_train,b_train)
    4 print('\nbest parameters for SVR are :',white_clf.best_params_)
    5
    6 print('')
    7
    8 #SVR best model metrics
    9 SVR final model=white clf.best estimator
   10 SVR final prediction=SVR final model.predict(a test)
   11
   12 mse SVR = mean squared error(b test, SVR final prediction)
   13 rmse = np.sqrt(mse SVR)
   14
   15 print("\nSupport vector Regression RMSE:",rmse)
   16 MAE=mean absolute error(b test, SVR final prediction)
   17 print("\nSupport vector Regression MAE:",MAE)
   18 print("\nSupport vector Regression MSE:", mse SVR)
   19
   20 SVR scores = cross val score(modelsvr, a train, b train, scoring="neg mean square
   21 print('\nSVR cross val score',SVR scores)
   22 print('\nSupport vector coefficients of bestestimator are ',SVR final model.coe
        best parameters for SVR are : {'C': 1.5, 'epsilon': 0.5, 'gamma': 1e-07, 'ker
        Support vector Regression RMSE: 0.7408378198484619
        Support vector Regression MAE: 0.574043228383877
        Support vector Regression MSE: 0.5488406753178221
        SVR cross val score [-0.51651117 -0.57723626 -0.53834078 -0.48924912 -0.49889
        Support vector coefficients of bestestimator are [[ 0.05039598 -0.13283392
          -0.03570399 -0.434043
                                   0.08137242
                                                0.0751687
                                                            0.23362164]]
```

In SVR, the 'c' parameter trades off correct classification of training examples against maximization of the decision function's margin.

1

Determining importance of each variable

#source for statistical importance calculation: Here

#factors for measuring quality of wine are residual suagr and alcohol contenthere

```
1 #For Lasso L1 regression
2 num=[]
3 for col in x.columns:
```