LINE Data Center Networking with SRv6

Hirofumi Ichihara co-author: Toshiki Tsuchiya LINE corporation

About Me

- Hirofumi Ichihara
- LINE Corporation
 - Network Development Team
- Network Software Developer
 - SDN/NFV
 - OpenStack Neutron
 - Docker
 - Kubernetes

LINE Services and Networks

Full L3 CLOS Network*

- Single tenant network
- LINE message service and related services running

^{*} Excitingly simple multi-path OpenStack networking: LAG-less, L2-less, yet fully redundant https://www.slideshare.net/linecorp/excitingly-simple-multipath-openstack-networking-lagless-l2less-yet-fullyredundant

Exclusive Network for Services

- · Service with specific requirements running
- Building specific network for each service

Other: Fintech Business

Many fragment underlay networks Many works to design and build Management cost increases

Multi tenant network

- Sharing underlay network decrease management cost
- Achieve policy for each service(tenant) on overly network

Multi tenancy

VXLAN

Pros

- More information
- Many network devices support

Cons

- Lose advances of full-L3
- Need additional protocol to achieve service

IPv6 Segment Routing (SRv6)

Pros

- IPv6 forwarding only on underlay
- Support segregation and service chaining with Segment ID

Cons

- No information about DC use case
- No network device support

+ SRv6 future

Adopted SRv6

SRv6

Segment ID (SID)

- 128bit number(IPv6 address)
- Locator: Information for routing to SRv6 node(parent node). It must be unique whitin a SR domain
- Function: Information to identify the action to be performed on the parent node

Segment Routing Header (SRH)

- IPv6 extension header
- Including a Segment List, Segment Left points out current point of Segment List and so on

Function examples

- T.Encaps(Encap): Encapsulation packet with IPv6 header and SRH
- End.DX4(Decap): Remove IPv6 header and SRH from packet and then forward next hop
- End.DT4(Decap): Remove IPv6 header and SRH from packet and then lookup routing table and forward (DT4 is not implemented in Linux Kernel so we used DX4 although DT4 is better)

SRv6 Data Center Network Data Plane

Data Plane - Architecture

Data Plane - SID, Routing

- Create VRF (I3master device) for each tenant on NetworkNode, Hypervisor
- Assign IPv6 address /96 block (Locator) to nodes(NetworkNode, Hypervisor)
- Add identifier for each tenant to the Locator as Function (LINE uses specific address from 169.254.0.0/16 each tenant)
- Advertise /96 IPv6 address(Locator) via BGP

Data Plane - Packet flow in a tenant

Data Plane - Packet flow between tenants

Data Plane - Real config on Network Node

Data Plane - Real behavior


```
HV1: Encap
                                    Insert IPv6. SR header
▼ Internet Protocol Version 6, Src: 2400:dcc0::a7a:4d8e:a9fe:102, Dst
     0110 .... = Version: 6
  ▶ .... 0000 0000 .... = Traffic Class: 0x00 (D
     .... 0000 0000 0000 0000 0000 = Flow Label: 0x00000
     Payload Length: 108
     Next Header: Routing Header for IPv6 (43)
     Hop Limit: 63
     Source: 2400:dcc0::a7a:4d8e:a9fe:102
     Destination: 2400:dcc0::a7a:4d8f:a9fe:102
   ▼ Routing Header for IPv6 (Segment Routing)
       Next Header: IPIP (4)
       Length: 2
       [Length: 24 bytes]
       Type: Segment Routing (4)
       Segments Left: 0
       First segment: 0
     ▶ Flags: 0x00
       Reserved: 0000
       Address[0]: 2400:dcc0::a7a:4d8f:a9fe:102
     ▼ [Segments in Traversal Order]
         Address[0]: 2400:dcc0::a7a:4d8f:a9fe:102
Internet Protocol Version 4, Src: 10.122.12.36, Dst: 10.122.12.35
▶ Internet Control Message Protocol
```

SRv6 Data Center Network Control Plane

SRv6 Control Plane Choices

- ISIS
- OSPF
- BGP
- SDN Controller

LINE uses OpenStack as Private Cloud Controller so adopted SDN Controller

OpenStack

- Cloud Operating system
- Support Multi Hypervisor
- Support various SDN controllers and Storage appliances

Neutron SRv6 Plugin - networking-sr

- ML2 mechanism/type driver and agent
- Gateway agent on network nodes
- Service plugin for new API to add SRv6 encap rule

SRv6 Data Center Network Control Plane

ML2 mechanism/type driver and agent

Nova, Neutron Behavior - VM create

Nova, Neutron Behavior - Network configuration

Packets for VM encap/decap on VRF

Neutron

Nova

Controller

How does sr-agent get VRF info?

Virtual Machine Configuration

- 1. Create network
- 2. Create VM
- 3. Notify VM info
- 4. Run VM
- 5. Create tap

Network Configuration

- 6. Detect tap
- 7. Update/Get port info
- 8. Config tap
- 9. Create VRF
- 10. Set SRv6 encap/decap rules

VRF info in Port binding:profile

```
"port":{
 "binding:profile": {
  "segment node id": "2400:dcc0::a7a:4d8e", #Locator(Hypervisor address) where VM with the port running
  "vrf": "vrf644606a29039", # VRF IF name for the port. The name is combined by "vrf" + tenant id + network id
  "vrf cidr": "169.254.1.0/24", # IP CIDR of VRF for the port
  "vrf ip": "169.254.1.44" # IP Address of VRF for the port
```


Set encap rule from Port info of each VM

SRv6 Data Center Network Control Plane

Gateway agent on network nodes

Network Node Requirements: Scale

Network Node Requirements: Multi clusters

Etcd + Agent Model

Notify New Encap/Decap Rule via Etcd

SRv6 Data Center Network Control Plane

Service plugin for new API to add SRv6 encap rule

srv6_encap_network API

SRv6 Encap Network SRv6 Encap Network The srv6 encap network extension lists, creates, shows information for, and updates srv6_encap_network resource. /v2.0/srv6 encap networks List srv6 encap networks /v2.0/srv6_encap_networks Create srv6 encap network /v2.0/srv6_encap_networks/ {srv6 encap network id} Show srv6 encap network /v2.0/srv6_encap_networks/ {srv6 encap network id} Update srv6 encap network /v2.0/srv6_encap_networks/ {srv6 encap network id} DELETE

Delete srv6 encap network

```
"srv6_encap_networks": [
    "network_id": "fbc5f08e-0cb0-4b5c-a5ce-ac7032f50c7b",
   "tenant_id": "d988b205c6e142669a290dd80010587c",
   "project_id": "d988b205c6e142669a290dd80010587c",
   "encap rules": [
        "nexthop": "fc00:17::a00:fa",
        "destination": "10.0.201.200"
    "id": "43938fab-ce22-442f-b537-24f2768de773"
    "network_id": "d76c20be-5c2a-40c5-bbd5-0b192fa3ff9c",
   "tenant_id": "aac15739c8034f60b2e8278e84563919",
   "project_id": "aac15739c8034f60b2e8278e84563919",
   "encap_rules": [
        "nexthop": "fc00:17::a00:fa",
        "destination": "10.0.201.201"
   "id": "70989e81-eae4-490c-b016-f665e6bc872f"
```


srv6_encap_network resource

- id: Identifier for resource
- tenant_id/project_id: Identifier for project/tenant of resource
- network_id: Identifier of network which resource is assigned
- encap_rules: SRv6 encap rule list
 - destination: IPv4 address for specific destination of packet
 - nexthop: SID packets should be encaped

Summary

- SRv6 network for data center use case
 - Multi tenant networks
- Data plane architecture
 - SRv6 Encap/Decap support on Hypervisors and Network nodes
 - End.DX4 + Routing to VRF (Kernel doesn't have End.DT4)
- Control plane architecture
 - OpenStack Neutron SRv6 plugin networking-sr
 - Gateway agent with etcd for large scale
 - New API to add SRv6 encap rule