Научная проблема проекта «Электрический пробой»

Разработка алгоритма моделирования электрического пробоя

Королёв И. А., Кудряшов А. Н., Оганнисян Д. Б., Шуплецов А. А. Мугари А.

Содержание

1	Вве	дение	6
	1.1	Актуальность	6
	1.2	Объект исследования	6
	1.3	Цели	6
	1.4	Задачи	7
	1.5	Определения	7
2	Алг	оритм	8
	2.1	Шаг 1: Инициализация параметров среды	8
		2.1.1 Физические параметры:	8
		2.1.2 Расчетная область:	8
		2.1.3 Пример:	9
	2.2	Шаг 2: Решение уравнения Пуассона	9
		2.2.1 Уравнение:	9
		2.2.2 Численный метод:	10
		2.2.3 Граничные условия:	10
	2.3	Шаг 3: Вычисление электрического поля	10
		2.3.1 Формула:	10
		2.3.2 Шаги:	11
	2.4	Шаг 4: Моделирование движения носителей заряда	12
		2.4.1 Уравнение движения:	12
		2.4.2 Численный метод:	12
		2.4.3 Результат:	12
	2.5	Шаг 5: Решение уравнения непрерывности	12
	_,,	2.5.1 Уравнение:	13
		2.5.2 Численная реализация:	13
	2.6	Шаг 6: Обработка условий пробоя	13
		2.6.1 Критерий:	13
		2.6.2 Действия:	13
		2.6.3 Варианты:	14
	2.7	Шаг 7: Анализ устойчивости и точности	14
	۵,,	2.7.1 Погрешности:	14
		2.7.2 Устойчивость:	14
		2.7.3 Тестирование:	14
	2.8	Блок-схема алгоритма	15
	۷.0	влок слема алгоритма	
3	Выв	вод	16

Список иллюстраций

2.1	Схема расчётной области	9
2.2	Векторное поле электрического потенциала	11
2.3	Блок-схема алгоритма моделирования электрического пробоя	15

Список таблиц

1 Введение

На данном этапе группового проекта рассматривается разработка алгоритмов для численного моделирования электрического пробоя в диэлектриках. Электрический пробой — это критическое явление, которое важно понимать и прогнозировать для проектирования надежных изоляционных материалов и систем.

1.1 Актуальность

Электрический пробой играет ключевую роль в электротехнике, материаловедении и физике твердого тела. Его моделирование позволяет: - Анализировать условия возникновения пробоя. - Оптимизировать свойства диэлектрических материалов. - Прогнозировать поведение электрических систем в экстремальных условиях.

1.2 Объект исследования

• Электрический пробой в диэлектриках.

1.3 Цели

Разработать алгоритм для численного моделирования электрического пробоя, пригодный для программной реализации.

1.4 Задачи

- Преобразовать физические уравнения в численные формы.
- Выбрать оптимальные численные методы.
- Описать пошаговый алгоритм моделирования.
- Учесть условия возникновения пробоя.
- Подготовить основу для программной реализации.

1.5 Определения

Электрический пробой — физическое явление, при котором диэлектрик теряет изолирующие свойства под воздействием сильного электрического поля, что приводит к резкому увеличению проводимости.

Алгоритм — последовательность шагов, систематизирующая решение задачи для достижения воспроизводимых результатов.

2 Алгоритм

Алгоритм моделирования электрического пробоя состоит из нескольких этапов, каждый из которых решает конкретную задачу в процессе перехода от физической модели к вычислительной реализации.

2.1 Шаг 1: Инициализация параметров среды

На первом этапе задаются начальные условия и параметры системы, которые определяют достоверность моделирования.

2.1.1 Физические параметры:

- **Диэлектрическая проницаемость** *є*: Характеризует способность материала поляризоваться в электрическом поле.
- **Начальная плотность заряда** ρ_0 : Определяет исходное распределение зарядов в диэлектрике.
- **Граничные условия**: Например, условия Дирихле ($\varphi = V_0$ на электродах) или Неймана ($\partial \varphi/\partial n = 0$ на изолированных границах).
- Начальное распределение потенциала φ_0 и поля E_0 .

2.1.2 Расчетная область:

- Геометрия (например, 2D: $L_x \times L_y$).
- Пространственная сетка с шагами dx, dy (например, dx = dy = 0.01 мм).

Рис. 2.1: Схема расчётной области

2.1.3 Пример:

- Потенциал на катоде: $\varphi=0$ В.
- Потенциал на аноде: $\varphi = V_0$ В.

2.2 Шаг 2: Решение уравнения Пуассона

Этот этап вычисляет распределение электрического потенциала в системе.

2.2.1 Уравнение:

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon}$$

Где:

- φ электрический потенциал,
- ρ плотность заряда,
- ε диэлектрическая проницаемость.

2.2.2 Численный метод:

• Метод конечных разностей:

$$\frac{\varphi_{i+1,j} + \varphi_{i-1,j} + \varphi_{i,j+1} + \varphi_{i,j-1} - 4\varphi_{i,j}}{h^2} = -\frac{\rho_{i,j}}{\varepsilon_{i,j}}$$

• Итерационные методы: Якоби, Гаусс-Зейдель или метод сопряженных градиентов [1]

2.2.3 Граничные условия:

- $\varphi = V_0$ на электродах.
- $\partial \varphi/\partial n=0$ на изолированных границах.

2.3 Шаг 3: Вычисление электрического поля

Электрическое поле рассчитывается на основе потенциала [2]

2.3.1 Формула:

$$E = -\nabla \varphi$$

Дискретизация (для 2D):

•
$$E_{x} = -\frac{\varphi_{i+1,j} - \varphi_{i-1,j}}{2\Delta x},$$

•
$$E_y = -\frac{\varphi_{i,j+1} - \varphi_{i,j-1}}{2\Delta y}$$

Рис. 2.2: Векторное поле электрического потенциала

2.3.2 Шаги:

- 1. Решить уравнение Пуассона для получения arphi(t).
- 2. Вычислить компоненты поля E_{x} , E_{y} .
- 3. Обновить массив значений поля.

2.4 Шаг 4: Моделирование движения носителей заряда

На этом этапе учитывается динамика зарядов в электрическом поле.

2.4.1 Уравнение движения:

$$m\frac{dv}{dt} = qE - \nu v$$

Где:

- *m* масса носителя,
- q заряд,
- ν коэффициент сопротивления среды.

2.4.2 Численный метод:

- Метод Эйлера: Для обновления скорости и положения частиц [2].
- Метод Монте-Карло: Учет случайных процессов (например, ионизация):
 - 1. Расчет свободного пробега.
 - 2. Генерация случайных событий.
 - 3. Корректировка траекторий.

2.4.3 Результат:

- Траектории носителей заряда.
- Зоны ионизации.

2.5 Шаг 5: Решение уравнения непрерывности

Этот этап описывает сохранение заряда в системе.

2.5.1 Уравнение:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

Где $j = \sigma E -$ плотность тока, $\sigma -$ проводимость.

2.5.2 Численная реализация:

• Дискретизация:

$$\frac{\rho_{i,j}^{n+1}-\rho_{i,j}^n}{\Delta t}+\nabla\cdot j=0$$

• Итерационное обновление ρ .

2.6 Шаг 6: Обработка условий пробоя

Финальный этап определяет момент пробоя.

2.6.1 Критерий:

• $E>E_{crit}$ (например, $E_{crit}=3$ МВ/м для воздуха).

2.6.2 Действия:

- 1. Проверка значения E в каждой точке сетки [3]
- 2. Фиксация:
 - Координаты точки пробоя.
 - Время пробоя.
 - Параметры среды.

2.6.3 Варианты:

2.7 Шаг 7: Анализ устойчивости и точности

2.7.1 Погрешности:

- Ошибки дискретизации (зависят от Δx , Δt).
- Накопление ошибок в итерациях.

2.7.2 Устойчивость:

- Условие сходимости численных методов.
- Оптимизация шага по времени (условие Куранта).

2.7.3 Тестирование:

- Сравнение с аналитическими решениями.
- Валидация на тестовых задачах.

2.8 Блок-схема алгоритма

Рис. 2.3: Блок-схема алгоритма моделирования электрического пробоя

3 Вывод

Разработан полный алгоритм моделирования электрического пробоя, включающий инициализацию параметров, численное решение ключевых уравнений и обработку условий пробоя. Алгоритм готов к программной реализации и дальнейшему тестированию для анализа поведения диэлектриков в экстремальных условиях.

4 Список литературы

- 1. Sander L.M. Diffusion-limited aggregation: A kinetic critical phenomenon? //
 Contemporary Physics. 2000. T. 41, № 4. C. 203–218.
- 2. Тыртышников А.Ю. и др. Сравнение алгоритмов DLA и RLA при моделировании пористых структур. НИИ «Центрпрограммсистем», 2017. 244 с.
- 3. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учебное пособие. Новосибирск: Новосибирский государственный университет, 2010. 101 с.