

네트워크기초

encalsulation & decapsulation

✓ 캡슐화: 송신 데이터에 필요한 정보를 붙여서 다음 계층에 보내는 기술

encalsulation & decapsulation

✓ 캡슐화: 송신 데이터에 필요한 정보를 붙여서 다음 계층에 보내는 기술

송신측 Port no.

D: 데이터, H: 헤더

Tunneling encapsulation

✓ 인터넷을 사적이고 안전한 네트워크의 일부로 사용하게 하는 기술

데이터 4계층 정보 3계층 정보 2계층 정보 캡슐화데이터4계층 정보3계층 정보2계층 정보

데이터 4계층 정보 3계층 정보 2계층 정보

터널링 장비 a

터널링 장비 b

A와 B만이

사용하는

프로토콜

В

✓ 오류를 검출하기 위해 자료 마지막에 추가한 한자리(0 or 1) 숫자

✓ 짝수 패리티, 홀수 패리티

- ✓ 오류를 검출하기 위해 자료 마지막에 추가한 한자리(0 or 1) 숫자
- ✓ 짝수 패리티, 홀수 패리티

※ 짝수 오류 발생 시 검출 못 함

1110001/1 — 1110011/1 짝수 => 검출 1110010/1 홀수 => 검출 X

10011001 11100010 00100100 10000100

10011001	0
11100010	0
00100100	0
10000100	0
11011011	0

10011001 11100010 00100100 10000100

10011001	0
11100110	0
00100100	0
10000100	0
11011011	0

100110010 111000100 001001000 100001000 11

110110110

- ✓ 오류를 스스로 검출해 교정이 가능한 코드
- ✓ 2bit의 오류 검출 가능하고 1bit 오류 교정 가능.
- ✓ 1, 2, 4, 8, 16 ··· 2ⁿ 번째는 오류 검출을 위한 패리티 비트
- ✓ 오류 검출 및 교정을 위한 잉여 비트가 많이 필요하다.
- ✓ n번째 패리티 비트는 n비트에서 시작해 n비트 만큼을 포함하고,n비트 씩 건너뛴 비트들을 대상으로 패리티 비트가 결정된다.

10011101 - 0110 (원래 데이터)

✓ n번째 패리티 비트는 n비트에서 시작해 n비트 만큼을 포함하고, n비트 씩 건너뛴 비트들을 대상으로 패리티 비트가 결정된다.

< 문제 >

정보 비트 1101에 홀수 패리티 비트를 적용하여 해밍 코드로 변환하시오.

1	2	3	4	5	6	7
0	/	1	/	1	0	1

1, 3, 5, 7

111

✓ n번째 패리티 비트는 n비트에서 시작해 n비트 만큼을 포함하고,n비트 씩 건너뛴 비트들을 대상으로 패리티 비트가 결정된다.

< 문제 >

정보 비트 1101에 홀수 패리티 비트를 적용하여 해밍 코드로 변환하시오.

✓ n번째 패리티 비트는 n비트에서 시작해 n비트 만큼을 포함하고, n비트 씩 건너뛴 비트들을 대상으로 패리티 비트가 결정된다.

< 문제 >

정보 비트 1101에 홀수 패리티 비트를 적용하여 해밍 코드로 변환하시오.

 1	2	3	4	5	6	7
0	1	1	1	1	0	1

4,5,6,7 **101**

Hamming Code

✓ 2bit의 오류 검출 가능하고 1bit 오류 교정 가능.

1	2	3	4	5	6	7
0	1	0	1	1	0	1

감사합니다。