Algorithmic meta theorems FPT reductions The W-hierarchy

Approximation and paremeterization: Metatheorems. Hardness

Maria Serna

Spring 2024

Closure properties

- A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors $N(u) \cup N(v)$
- A graph H is a minor of G if H can be obtained from G by a series of edge contractions.
- If H is a minor of G then $tw(H) \le tw(G)$ (T,X) is a tree decomposition. Contract xy into z. The tree decomposition (T,X') in which we replace x,y by z in any bag containing x or z (or both) is a valid tree decomposition.
- If H is a subgraph of G then $tw(H) \le tw(G)$

Algorithmic theorems

- Algorithmic Theorems provide a proof of the existence of an algorithm.
 - Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on graphs of constant treewidth.
 - Vertex Cover, Feedback Vertex Set can be solved in sub-exponential time on planar graphs
- To get an algorithm, as we have done, you should working out all the details!

Algorithmic meta theorems

- Algorithmic Meta Theorems. No algorithm is constructed!
- But the existence of an algorithm is proved
- Main uses: quick complexity classification tools, mapping the limits of applicability for specific techniques.
- Usually they are grounded in logics or other properties

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives ∨, ∧, ¬
 - Quantifiers ∀, ∃
- Example: Dominating Set of size 2

$$\exists x_1 \exists x_2 \forall y \ E(x_1, y) \lor E(x_2, y) \lor x_1 = y \lor x_2 = y$$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives ∨, ∧, ¬
 - Quantifiers ∀, ∃
- Example: Vertex Cover of size 2

$$\exists x_1 \exists x_2 \forall y \forall z \ E(y,z) \rightarrow (y = x_1 \lor y = x_2 \lor z = x_1 \lor z = x_2$$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives ∨, ∧, ¬
 - Quantifiers ∀, ∃
- Example: Clique of size 3

$$\exists x_1 \exists x_2 \exists x_3 \ E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_3)$$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives ∨, ∧, ¬
 - Quantifiers ∀, ∃
- Many standard (parameterized) problems can be expressed in FO logic.
- But some easy problems are inexpressible (e.g. connectivity).
- Rule of thumb: FO = local properties

Monadic Second Order Logic

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in \text{predicate}$.
 - Quantifiers ∀, ∃
 MSO₁ logic: we can quantify over sets of vertices only
 MSO₂ logic: we can quantify over sets of edges
- Example: 2-coloring

$$\exists V_1 \exists V_2 \forall x \forall y \ E(x,y) \rightarrow (x \in V_1 \leftrightarrow y \in V_2)$$

Algorithmic meta theorems

- All Monadic Second Order logic (MSO) expressible problems are solvable in linear time on graphs of constant treewidth.
- All minor closed optimization problems can be solved in sub-exponential time on planar graphs

Recall: No algorithm is constructed!

FPT-reductions

- Let (L, κ) and (L', κ') be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to (L', κ') is a mapping $R: \Sigma^* \to \Sigma^*$ where
 - $\forall x \in \Sigma^* \ x \in L \ \text{iff} \ R(x) \in L'$
 - There is an FPT-algorithm with respect to κ computing R (in $f(\kappa(x))p(|x|)$)
 - There is a computable function $g: \mathbb{N} \to \mathbb{N}$ such that $\forall x \in \Sigma^* \kappa'(R(x)) \leq g(\kappa(x))$
- We note $(L, \kappa) \leq^{fpt} (L', \kappa')$ when there is a FPT-reduction from (L, κ) to (L', κ')

FPT-reductions

Lemma

FPT is closed under FPT-reductions

- We have to show that If $(L', \kappa') \in \mathsf{FPT}$ and $(L, \kappa) \leq^{\mathit{fpt}} (L', \kappa')$ then $(L, \kappa) \in \mathsf{FPT}$
- Algorithm \mathcal{A}' solves (L', κ') in $f'(\kappa'(y))p(|y|)$ time.
- Computing the FPT reduction R takes time $f_R(\kappa(x))p_R(|x|)$.
- Running \mathcal{A}' on y = R(x) solves (L, κ) in time

$$f_{R}(\kappa(x))p_{R}(|x|) + f'(\kappa'(R(x)))p(|R(x)|)$$

$$\leq f_{R}(\kappa(x))p_{R}(|x|) + f'(g(\kappa(x))p(|R(x)|)$$

$$\leq f_{R}(\kappa(x))p_{R}(|x|) + f'(g(\kappa(x))p(f_{R}(\kappa(x))p_{R}(|x|))$$

$$\leq f(\kappa(x))p(|x|)$$

FPT-reductions and complexity classes

- FPT-equivalence $(L, \kappa) \equiv^{fpt} (L', \kappa')$: $(L, \kappa) \leq^{fpt} (L', \kappa')$ and $(L', \kappa') \leq^{fpt} (L, \kappa)$
- Closure under FPT-reductions $[(L, \kappa)]^{fpt} = \{(L', \kappa') \mid (L', \kappa') \leq^{fpt} (L, \kappa)\}$
- ullet If ${\mathcal C}$ is a class of parameterized problems
 - (L, κ) is \mathcal{C} -hard if $\mathcal{C} \subseteq [(L, \kappa)]^{fpt}$.
 - (L, κ) is \mathcal{C} -complete if $(L, \kappa) \in \mathcal{C}$ and (L, κ) is \mathcal{C} -hard.
- $[(L, \kappa)]^{fpt}$ defines a class of parameterized problems for which (L, κ) is complete
- if (L, κ) is \mathcal{C} -complete and \mathcal{C} is closed under FPT reductions, then $\mathcal{C} = [(L, \kappa)]^{fpt}$

FPT-equivalent problems

 \bullet P-Independent Set \equiv^{fpt} P-Clique

$$R(G, k) = (\overline{G}, k)$$

Works for both directions

• P-HITTING SET \equiv^{fpt} P-Dominating Set Exercise

The class paraNP

- Let (L, κ) be a parameterized problem
- (L, κ) belongs to paraNP if there is a non-deterministic algorithm \mathcal{A} that decides $x \in L$ in time $f(\kappa(x))p(|x|)$, for some computable function f and polynomial function p.
- If $L \in NP$, for each parameterization κ , $(L, \kappa) \in paraNP$ p-Clique, p-Vertex Cover, ... belong to paraNP.

paraNP-completeness

- Let (L, κ) be a parameterized problem
- (L, κ) is trivial if $L = \emptyset$ or $L = \Sigma^*$.
- The *i*-th slice of (L, κ) is the decision problem $(L, \kappa)_i = \{x \in L \mid \kappa(x) = i\}$

Theorem

If $(L, \kappa) \in \text{paraNP}$ is not trivial and has a NP-complete slice, then (L, κ) is paraNP-complete under FPT reductions.

paraNP-completeness:problems

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P#VAR-SAT is not paraNP-complete, unless P=NP.
- PMAX#LIT-SAT is paraNP-complete.

 paraNP-completeness separates all slices in P from a slice is NP-hard.

The class XP

- Let (L, κ) be a parameterized problem.
- (L, κ) belongs to (uniform) XP if there is an algorithm \mathcal{A} that decides L in time $O(|x|^{f(\kappa(x))})$, for some computable function f.
- P-CLIQUE, P-VERTEX COVER, P-HITTING SET, P-HITTING SET, P-DOMINATING SET belong to XP.
- XP is the counterpart of EXP in classic complexity.

XP-complete problems

P-EXP-DTM-HALT

Input: A deterministic TM \mathbb{M} , $x \in \Sigma^*$ and an integer k,

Parameter: k

Question: Does M on input x stop in no more than $|x|^k$ steps?

Theorem

P-EXP-DTM-HALT is XP-complete but does not belong to FPT.

Relationships among classes

Circuit's weft W-classes W-hard problems Exponential time hypothesis Parameterization and approximation

The W-hierarchy

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of C is the maximum distance from an input gate to an output gate.
- The weft of C the maximum number of big gates in a path from an input gate to an output gate.
- Note that $depth(C) \ge weft(C)$

Variations on SAT

- The weight of an assignment $x = x_1 ... x_n \in \{0, 1\}^n$ is $W(x) = \sum_{i=1}^n x_i$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.
- A formula F is k-satisfiable if there is a satisfying assignment with weight k.

P-WSAT(FAM)

Input: A circuit/formula C/F in family FAM and an integer k,

Parameter: k

Question: Is C/F k-satisfiable?

W-classes

Families of circuits/formulas

- CIRC all boolean circuits
- Prop all propositional formulas
- For $d \ge t \ge 0$, define

$$\mathcal{C}_{t,d} = \{c \mid C \in \text{CIRC and weft}(C) \leq t \text{ and depth}(C) \leq d\}$$

We define the following classes:

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$
- For $t \geq 1$, $W[t] = \{[\text{P-WSAT}(C_{t,d})]^{fpt} \mid d \geq 1\}$

W-hierarchy

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$
- For $t \geq 1$, $W[t] = \{[\text{P-WSAT}(\mathcal{C}_{t,d})]^{fpt} \mid d \geq 1\}$

Theorem

- $W[P] \subseteq paraNP \cap XP$
- $W[SAT] \subseteq W[P]$
- For $i \ge 1$, $W[i] \subseteq W[SAT]$ and $W[i] \subseteq W[i+1]$

W-hierarchy

Theorem

 $FPT \subseteq W[1]$

Theorem

- If, for some $i \ge 1$, $FPT \ne W[i]$ then $P \ne NP$
- If $FPT \neq W[SAT]$ then $P \neq NP$
- If $FPT \neq W[P]$ then $P \neq NP$

Any of those conditions imply $FPT \neq paraNP$.

Theorem

If FPT = W[P] then CIRCUITSAT for circuits with n inputs and m gates can be decided in $2^{o(n)}m^{O(1)}$ time.

W[P]-hard problems

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

- P-CLIQUE $\in W[1]$
 - To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is W[1]-complete
- P-DOMINATING SET $\in W[2]$ and P-SETCOVER $\in W[2]$ (Exercise)
 In fact both problems are W[2]-complete

Circuit's weft
W-classes
W-hard problems
Exponential time hypothesis
Parameterization and approximation

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

• We wish to get results like: If there is an f(k) $n^{o(k)}$ time algorithm for problem XXX, then ETH fails.

Circuit's weft
W-classes
W-hard problems
Exponential time hypothesis
Parameterization and approximation

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^*(c^k)$.
- Can we do it much faster, for example in time $O^*(c^{\sqrt{k}})$ or $O^*(c^{k/\log k})$?

Lemma

If VERTEX COVER can be solved in time $2^{o}(k)$ $n^{O(1)}$, then ETH fails.

Proof.

There is a polynomial-time reduction from m-clause 3SAT to O(m)-vertex VERTEX COVER. The assumed algorithm would solve the latter problem in time $2^{o(m)}$ $n^{O(1)}$, violating ETH.

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):

Input: Instance $x, \epsilon > 0$

Output: $(1+\epsilon)$ -approximate solution

Running time: polynomial in |x| for every fixed ϵ

- PTAS: running time is $|x|^{f(1/\epsilon)}$
- Efficient PTAS (EPTAS) running time is $f(1/\epsilon)|x|^{O(1)}$
- For some problems, there is a PTAS, but no EPTAS is known.
 Can we show that no EPTAS is possible?

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W[1]-hard, then there is no EPTAS for the optimization problem, unless FPT = W[1].

Proof.

Suppose an $f(1/\epsilon)$ $n^{O(1)}$ time EPTAS exists.

Running this EPTAS with $\epsilon = 1/(k+1)$ decides if the optimum is at most/at least k.

Parameterized complexity

- Possibility to give evidence that certain problems are not FPT.
- Parameterized reduction.
- The W-hierarchy.
- ETH gives much stronger and tighter lower bounds.
- PTAS vs. EPTAS
- Kernel lower bounds