Collision-free dynamics

Nicolas Mansard

Gepetto
LAAS-CNRS & ANITI

Quantities in dynamics

Inertia	Coriolis	Gravity	Forces
$Y\alpha$ +	$v \times Y v$	+g	$=\phi$
$M(q)\ddot{q}$ -	$b(q,\dot{q})$	+g(q)	$= \tau_q$

Direct/inverse dynamics

Inverse dynamics

$$M(q)\ddot{q} + b(q,\dot{q}) + g(q) = \tau_q$$

- Control equation: from desired movement to needed torque
- Direct dynamics

$$\ddot{q} = M(q)^{-1} (\tau_q - b(q, \dot{q}) - g(q))$$

• Simulation equation: from current state and torque, to acceleration

Dynamics of articulated bodies

Dynamic equation of the robot

$$M(q)\dot{v}_q + h(q, v_q) + g(q) = \tau_q$$

- Actuation of the robot
 - Fixed manipulator: $\tau_q = \tau_m$
 - Floating robot: $\tau_q = \begin{bmatrix} 0 \\ \tau_m \end{bmatrix} = S^T \tau_m$
 - Floating in contact: $\tau_q = S^T \tau_m + J^T \phi$

Dynamics for simulation

Complementarity problem

$$\ddot{q} = M^{-1}(\tau - b + J^T f)$$
 $J \ddot{q} + \dot{J} \dot{q} \geq 0 \quad \perp \quad f \geq 0$

no penetration no pulling one or the other

Equivalent to a principled QP

$$\min_{\ddot{q}} \|\ddot{q} - \ddot{q}_{free}\|_{M} \text{ s.t. } J\ddot{q} + \dot{J}\dot{q} \ge 0$$