

Advance Technical Information

Linear L2[™] Power MOSFET w/Extended FBSOA

IXTN110N20L2

N-Channel Enhancement Mode Guaranteed FBSOA Avalanche Rated

Symbol	Test Conditions		Maximum F	Ratings
V _{DSS}	T _J = 25°C to 150°	С	200	V
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}$	$^{\circ}$ C, $R_{GS} = 1M\Omega$	200	V
V _{GSS}	Continuous		±20	V
V _{GSM}	Transient		±30	V
I _{D25}	T _c =25°C		100	Α
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse	Width Limited by T _{JM}	275	Α
I _A	T _c =25°C		55	Α
E _{AS}	T _C = 25°C		5	J
P_{D}	T _C = 25°C		735	W
$\overline{T_{J}}$			-55 +150	°C
T _{.IM}			150	°C
T _{stg}			-55 +150	°C
T,	1.6mm (0.062 in.)	from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10		260	°C
V _{ISOL}	50/60 Hz, RMS	t = 1 Minute	2500	V~
.002	$I_{ISOL} \le 1 mA$	t = 1 Second	3000	V~
M _d	Mounting Torque		1.5/13	Nm/lb.in.
=	Terminal Connect	ion Torque	1.3/11.5	Nm/lb.in.
Weight			30	g

			cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 3mA$	2.0		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 55A, \text{ Note 1}$			24	mΩ

 $V_{DSS} = 200V$ $I_{D25} = 100A$ $R_{DS(op)} \le 24m\Omega$

G = Gate D = Drain S = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- Designed for Linear Operation
- International Standard Package
- Guaranteed FBSOA at 75°C
- Avalanche Rated
- Molding Epoxy Meets UL94 V-0 Flammability Classification
- MiniBLOC with Aluminium Nitride Isolation

Applications

- Programmable Loads
- Current Regulators
- DC-DC Converters
- Battery Chargers
- DC Choppers
- Temperature and Lighting Controls

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	acteristic	c Values Max.	
g _{fs}	$V_{DS} = 10V, I_{D} = 55A, Note 1$	55	75	95	S
C _{iss}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz		23 2160		nF pF
C _{rss}	Resistive Switching Times		320 40 100		pF ns ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 55A$ $R_G = 1\Omega$ (External)		33 135		ns ns
$\left\{egin{array}{c} \mathbf{Q}_{g(on)} \\ \mathbf{Q}_{gs} \\ \mathbf{Q}_{gd} \end{array} \right\}$	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 55A$		500 110 182		nC nC nC
R _{thJC} R _{thCS}			0.05	0.17 °C	C/W

Safe-Operating-Area Specification

Symbol	bol Test Conditions		Characteristic Values		
		Min.	Тур.	Max.	
SOA	$V_{DS} = 200V, I_{D} = 1.75A, T_{C} = 75^{\circ}C, Tp = 3s$	350		W	

Source-Drain Diode

Symbol Test Conditions Characteristics Charact		cteristic Values			
(T _J = 25°C, Unless Otherwise Specified) Mi		Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			110	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			440	Α
$V_{\scriptscriptstyle{SD}}$	$I_F = 55A$, $V_{GS} = 0V$, Note 1			1.35	V
$\left\{egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{I}_{RM} & \\ \mathbf{Q}_{RM} & \end{array} ight\}$	$I_F = 55A$, -di/dt = 100A/ μ s, $V_R = 100V$, $V_{GS} = 0V$		420 39 8.3		ns A µC

1. Pulse Test, $t \le 300\mu s$; Duty Cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

)		23	nF
5	}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$	2160	pF
	J		320	pF
))	Popietivo Switching Times	40	ns
	Ţ	Resistive Switching Times	100	ns
)	($V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 55A$ $R_{G} = 1\Omega$ (External)	33	ns
	J	· ····································	135	ns
n))		500	nC
	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 55A$	110	nC
	J		182	nC
С				0.17 °C/W
s			0.05	°C/W
				-

SOT-227B (IXTN) Outline				
T H B A A B A A B A B A A B A B A B A B A				
(M4 screws (4x) supplied)				

NYZ	INCH	IES .	MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	1.240	1.255	31.50	31.88
В	.307	.323	7.80	8.20
С	.161	.169	4.09	4.29
D	.161	.169	4.09	4.29
E	.161	.169	4.09	4.29
F	.587	.595	14.91	15.11
G	1.186	1.193	30.12	30.30
Н	1.496	1.505	38.00	38.23
J	.460	.481	11.68	12.22
K	.351	.378	8.92	9.60
L	.030	.033	0.76	0.84
М	.496	.506	12.60	12.85
N	.990	1.001	25.15	25.42
0	.078	.084	1.98	2.13
Р	.195	.235	4.95	5.97
Q	1.045	1.059	26.54	26.90
R	.155	.174	3.94	4.42
S	.186	.191	4.72	4.85
T	.968	.987	24.59	25.07
U	002	.004	-0.05	0.1

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 55A$ Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 55A Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Forward-Bias Safe Operating Area $@T_C = 75^{\circ}C$

