Théorie des probabilités — Cours

Ivan Lejeune

16 octobre 2024

Table des matières

Chapit	e 1 — Bases de la théorie des probabilités	
1.1	Espaces probabilisés	
	.1.1 Probabilité	
	2.1 Exemples d'espaces probabilisés	
1.2	Variables aléatoires	
	2.1 Loi d'une variable aléatoire	-
	8.1 Lois usuelles	2

Chapitre 1 — Bases de la théorie des probabilités

1.1 Espaces probabilisés

1.1.1 Probabilité

Définition 1.1. Soit (Ω, \mathscr{F}) un espace mesurable. Une mesure sur (Ω, \mathscr{F}) est une application

$$\mu: \mathscr{F} \to [0, +\infty]$$

$$A \mapsto \mu(A)$$

qui vérifie les propriétés suivantes :

- 1. $\mu(\emptyset) = 0$
- 2. μ est σ -additive, c'est-à-dire que pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments 2 à 2 disjoints de \mathscr{F} , on a

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

On dit alors que $(\Omega, \mathcal{F}, \mu)$ est un **espace mesuré**.

Si de plus $\mu(\Omega) = 1$, on dit que $(\Omega, \mathscr{F}, \mu)$ est un **espace probabilisé** et μ est une **probabilité**. On notera alors $\mu = \mathbb{P}$.

Remarque. Comme $\mathbb{P}(\Omega) = 1$, une mesure de probabilité est une mesure dans [0,1]. Un événement A est dit **presque sûr** si $\mathbb{P}(A) = 1$.

Exemples 1.2.

1. Soit (Ω, \mathcal{F}) un espace mesurable et ω un élément fixé dans Ω . La mesure (ou masse) de Dirac en ω est la mesure définie pour tout $A \in \mathcal{F}$ par

$$\delta_{\omega}(A) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{sinon} \end{cases} = \mathbb{1}_{A}(\omega)$$

On vérifie facilement que c'est bien une probabilité.

- 2. Sur le segment [0,1] muni de sa tribu borélienne, la mesure de Lebesgue est une probabilité.
- 3. Si $(\Omega, \mathcal{F}, \mu)$ est un espace mesuré avec $0 < \mu(\Omega) < +\infty$, alors on obtient une probabilité en considérant la mesure

$$\mathbb{P} = \frac{\mu(\cdot)}{\mu(\Omega)}$$

Interprétation. Un espace probabilisé est donc un cas particulier d'espace mesuré pour lequel la masse totale de la mesure est égale à 1. En fait, le point de vue diffère de la théorie de l'intégration : dans le cadre de la théorie des probabilités, on cherche à fournir un modèle mathématique pour une "expérience aléatoire".

- L'ensemble Ω est appelé univers : il représente l'ensemble de toutes les éventualiés possibles, toutes les déterminations du hasard dans l'expérience considérée. Les éléments ω de Ω , parfois appelés événements élémentaires, correspondent donc aux issues possibles de l'expérience aléatoire.
- La tribu \mathscr{F} correspond à l'ensemble des **événements** : ce sont les parties de Ω dont on peut évaluer la probabilité. Il faut voir un événement A de \mathscr{F} comme un sous-ensemble de Ω contenant toutes les éventualités ω pour lesquelles une certaine propriété est vérifiée.
- On associe à chaque événement $A \in \mathcal{F}$ un réel $\mathbb{P}(A) \in [0,1]$ qui donne la plausibilité que le résultat de l'expérience soit dans A.

1.2.1 Exemples d'espaces probabilisés

Suivent quelques exemples classiques d'espaces probabilisés.

Exemples 1.1. cours a completer

1.2 Variables aléatoires

1.2.1 Loi d'une variable aléatoire

Définition 1.3. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé et (E, \mathscr{E}) un espace mesurable. Une variable aléatoire est une application

$$X:\Omega \to E$$

mesurable. C'est-à-dire

$$\forall A \in \mathscr{E}, X^{-1}(A) = \{ \omega \in \Omega \mid X(\omega) \in A \} \in \mathscr{F}$$

Si $E = \mathbb{R}$ et $\mathscr{E} = \mathscr{B}(\mathbb{R})$, on parle de variable aléatoire réelle. Si $E = \mathbb{R}^d$ et $\mathscr{E} = \mathscr{B}(\mathbb{R}^d)$, on parle de variable aléatoire vectorielle.

Exemples 1.4.

▶ Lancer de deux dés.

On considère l'expérience aléatoire qui consiste à lancer deux dés équilibrés. Alors

$$\Omega = \{1, \ldots, 6\}^2, \quad \mathscr{F} = \mathscr{P}(\Omega).$$

On s'intéresse à la somme des résultats obtenus et on définit

$$X: \Omega \to \{2, \dots, 12\}$$

 $(i,j) \mapsto i+j$

On munit l'ensemble d'arrivée de la tribu pleine.

X est une variable aléatoire car l'espace de départ est muni de la tribu pleine.

⊳ Infinité de lancers d'un dé.

On considère l'expérience aléatoire qui consiste à lancer un dé équilibré une infinité de fois. Alors

$$\Omega = \{1, \dots, 6\}^{\mathbb{N}^*} = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \omega_n \in \{1, \dots, 6\}\}$$

On considère la tribu \mathscr{F} la plus petite tribu contenant les A_{x_1,\dots,x_k} . On s'intéresse au nombre de lancers jusqu'à l'apparition du premier 6. On définit

$$Y: \Omega \to \mathbb{N}^* \cup \{+\infty\}$$

$$\omega = (\omega_n)_{n \in \mathbb{N}^*} \mapsto \inf\{n \in \mathbb{N}^* \mid \omega_n = 6\}$$

avec la convention inf $\varnothing=+\infty.$ On munit l'ensemble d'arrivée de la tribu pleine. Pour $k\geq 1,$ on a

$$Y^{-1}(\{k\}) = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \omega_1 \neq 6, \dots, \omega_{k-1} \neq 6, \omega_k = 6\}$$

$$= \bigcup_{x_1, \dots, x_{k-1} \in \{1, \dots, 5\}} A_{x_1, \dots, x_{k-1}, 6} \in \mathscr{F}$$

Par ailleurs,

$$Y^{-1}(\{+\infty\}) = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \forall n \in \mathbb{N}^*, \omega_n \neq 6\}$$
$$= \bigcap_{k=1}^{+\infty} \bigcup_{x_1, \dots, x_k \in \{1, \dots, 5\}} A_{x_1, \dots, x_k} \in \mathscr{F}$$

Comme $\mathbb{N} \cup \{+\infty\}$ est dénombrable, on en déduit que Y est une variable aléatoire.

⊳ Bouteille à la mer.

On considère l'expérience aléatoire qui consiste à observer la position d'une bouteille à la mer. Alors

$$\Omega = \mathscr{C}^0([0,1], \mathbb{R}^2)$$

On considère la tribu ${\mathscr F}$ la plus petite tribu rendant mesurables les applications coordonnées

$$f_t: \Omega \to \mathbb{R}^2$$
$$\omega \mapsto \omega(t)$$

On s'intéresse à la position de la bouteille au temps t=1. On définit

$$Z: \Omega \to \mathbb{R}^2$$

 $\omega \mapsto \omega(1)$

Alors, par construction de la tribu \mathscr{F} , on a que Z est une variable aléatoire.

Définition 1.5. Soit X une variable aléatoire de $(\Omega, \mathscr{F}, \mathbb{P})$ dans (E, \mathscr{E}) . La **loi** de X est la mesure image de X par \mathbb{P} , définie par

$$\forall A \in \mathscr{E}, \mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X \in A)$$

Exemples 1.6.

▶ Infinité de lancers d'un dé.

On considère

$$Y: \Omega = \{1, \dots, 6\}^{\mathbb{N}^*} \to \mathbb{N}^* \cup \{+\infty\}$$
$$\omega = (\omega_n)_{n \in \mathbb{N}^*} \mapsto \inf\{n \in \mathbb{N}^* \mid \omega_n = 6\}$$

La loi \mathbb{P}_Y de Y est une mesure de probabilité sur $\mathbb{N}^* \cup \{+\infty\}$.

Soit $k \in \mathbb{N}^*$. On a

$$\mathbb{P}_{Y}(\{k\}) = \mathbb{P}(Y^{-1}(\{k\}))
= \mathbb{P}(Y = k)
= \mathbb{P}\left(\bigcup_{x_{1},...,x_{k-1} \in \{1,...,5\}} A_{x_{1},...,x_{k-1},6}\right)
= \sum_{x_{1},...,x_{k-1}} \mathbb{P}(A_{x_{1},...,x_{k-1},6})
= \frac{5^{k-1}}{6^{k}}
= \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

Par ailleurs, on a vu à la fin de la section précédente que la probabilité de ne jamais obtenir de 6 est nulle :

$$\mathbb{P}_Y(\{+\infty\}) = \mathbb{P}(Y^{-1}(\{+\infty\})) = \mathbb{P}(Y = +\infty) = 0$$

On en déduit que la loi de Y est

$$\sum_{k=1}^{+\infty} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6} \delta_k$$

Cette loi est appelée loi géométrique de paramètre $\frac{5}{6}$.

Définition 1.7 Variable aléatoire discrète. Une variable aléatoire X est dite **discrète** si X est à valeurs dans un ensemble E au plus dénombrable. On prend alors $\mathscr{E} = \mathscr{P}(E)$ et si $A \in \mathscr{E}$, on a

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = \mathbb{P}(X \in \cup_{x \in A} \{x\}) = \sum_{x \in A} \mathbb{P}(X = x)$$

La loi \mathbb{P}_X de X est alors entièrement déterminée par les quantités $p_x = \mathbb{P}(X = x)$ pour tout $x \in E$:

$$\mathbb{P}_X(A) = \sum_{x \in E} p_x \delta_x$$

Définition 1.8 Variable aléatoire à densité. Une variable aléatoire X à valeurs dans $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$ est dite **à densité** par rapport à la mesure de Lebesgue λ_d si il existe une fonction mesurable

$$f: \mathbb{R}^d \to [0, +\infty[$$

telle que $\mathbb{P}_X = f\lambda_d$:

$$\forall A \in \mathscr{B}(\mathbb{R}^d), \mathbb{P}_X(A) = \int_A f(x) \, d\lambda_d(x)$$

Il faut que f vérifie

$$\int_{\mathbb{R}^d} f(x) \, d\lambda_d(x) = 1$$

Par exemple, si d = 1, on a

$$\mathbb{P}_X([a,b]) = \int_a^b f(x) \, d\lambda_1(x)$$

On notera souvent $f_X = f$ et on appelle cette fonction la densité de X.

1.8.1 Lois usuelles

Lois discrètes:

Loi uniforme sur un ensemble fini $\{x_1, \ldots, x_n\}$.

Soit $E = \{x_1, \dots, x_n\}$ un ensemble fini.

Une variable aléatoire X suit une loi uniforme sur E, notée $X \sim \mathcal{U}(E)$, si sa loi est

$$\mathbb{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

c'est-à-dire

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = \frac{\operatorname{card}(A)}{n}$$

Loi de Bernoulli.

Une variable aléatoire X suit une loi de Bernoulli de paramètre $p \in [0,1]$, notée $X \sim \mathcal{B}(p)$, si sa loi est

$$\mathbb{P}_X = p\delta_1 + (1-p)\delta_0$$

c'est-à-dire

$$\mathbb{P}(X=1) = p, \quad \mathbb{P}(X=0) = 1 - p$$

Loi binomiale.

Une variable aléatoire X suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$, notée $X \sim \mathcal{B}(n,p)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \delta_k$$

cela correspond au nombre de succès dans n répétitions d'une expérience de Bernoulli de paramètre p (de manière indépendante).

Loi géométrique.

Une variable aléatoire X suit une loi géométrique de paramètre $p \in]0,1]$, notée $X \sim \mathcal{G}(p)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=1}^{+\infty} p(1-p)^{k-1} \delta_k$$

c'est-à-dire

$$\mathbb{P}(X=k) = p(1-p)^{k-1}$$

cela correspond au nombre de répétitions d'une expérience de Bernoulli de paramètre p avant le premier succès.

Loi de Poisson.

Une variable aléatoire X suit une loi de Poisson de paramètre $\theta > 0$, notée $X \sim \mathcal{P}(\theta)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=0}^{+\infty} \frac{\theta^k}{k!} e^{-\theta} \delta_k$$

c'est-à-dire

$$\mathbb{P}(X = k) = \frac{\theta^k}{k!} e^{-\theta}$$

cela correspond au nombre d'événements rares dans un intervalle de temps donné.

Lois à densité sur \mathbb{R}^d :

Loi uniforme sur un ensemble A de \mathbb{R}^d .

Soit $A \in \mathcal{B}(\mathbb{R}^d)$, telle que $0 < \lambda_d(A) < +\infty$. Une variable aléatoire X suit une loi uniforme sur A, notée $X \sim \mathcal{U}(A)$, si sa loi est

$$\mathbb{P}_X = \frac{1}{\lambda_d(A)} \mathbb{1}_A$$

c'est-à-dire \mathbb{P}_X admet la densité constante $\frac{1}{\lambda_d(A)}\mathbb{1}_A$. Autrement dit, si $B \in \mathcal{B}(\mathbb{R}^d)$, on a

$$\mathbb{P}_X(B) = \int_B \frac{1}{\lambda_d(A)} \mathbb{1}_A(x) d\lambda_d(x) = \frac{\lambda_d(A \cap B)}{\lambda_d(A)}$$

dans le cas d=1 et A=[a,b], la densité est $f(x)=\frac{\mathbbm{1}_{[a,b]}(x)}{b-a}$. Loi exponentielle.

Une variable aléatoire X suit une loi exponentielle de paramètre $\theta > 0$, notée $X \sim \mathcal{E}(\theta)$, si sa loi est

$$\mathbb{P}_X = \theta e^{-\theta x} \lambda_1 \mathbb{1}_{\mathbb{R}^+}$$

c'est-à-dire \mathbb{P}_X admet la densité $f_X(x)\theta e^{-\theta x}\mathbb{1}_{\mathbb{R}^+}$ par rapport à la mesure de Lebesgue λ_1 . Autrement dit, si $A \in \mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}_X(A) = \int_A \theta e^{-\theta x} \mathbb{1}_{\mathbb{R}_+}(x) \, d\lambda_1(x)$$

dans le cas d=1. Cette loi vérifie la propriété de l'absence de mémoire, c'est-à-dire

$$\forall s, t \ge 0, \mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$$

Loi normale ou gaussienne.

Une variable aléatoire X suit une loi normale de paramètres $\mu \in \mathbb{R}$ et $\sigma > 0$, notée $X \sim \mathcal{N}(\mu, \sigma^2)$, si sa loi est

$$\mathbb{P}_X = f_X \lambda_1$$

où f_X est la densité de la loi normale, donnée par

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Autrement dit, si $A \in \mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}_X(A) = \int_A \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} d\lambda_1(x)$$

remarque, la loi $\mathcal{N}(,)$, c'est-à-dire avec la densité

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

est appelée loi normale standard.