Matris İşlemlerinin Cebirsel Özellikleri

Teorem 1.23 Matris işlemleri için aşağıdaki özellikler sağlanır:

- 1) A ve B $m \times n$ matrisler ise A + B = B + A dir.
- 2) $A, B \text{ ve } C \text{ } m \times n \text{ matrisler ise } A + (B + C) = (A + B) + C \text{ dir.}$
- 3) Her $m \times n$ A matrisi için $A + {}_m 0_n = {}_m 0_n + A = A$ şartını sağlayan bir tek ${}_m 0_n$ matrisi vardır. Bütün elemanları 0 olan bu matrise $m \times n$ sıfır matrisi denir. m = n ise 0_n yazılır.
- 4) Verilen her $m \times n$ A matrisi için $A + B = {}_m 0_n$ olacak şekilde bir ${}_m B_n$ matrisi vardır. B = -A dır.
- 5) $A m \times n$ matrix, $B n \times p$ ve $C p \times q$ matrix is A(BC) = (AB)C dir.
- 6) a) A ve B $m \times n$ matrix ve C $n \times q$ matrix is (A + B)C = AC + BCb) C $m \times n$ matrix ve A ile B $n \times q$ matrix is C(A + B) = CA + CB
- 7) r, s reel sayılar, $A m \times n$ matris ve $B n \times q$ matris ise

(a)
$$r(sA) = (rs)A = s(rA)$$

(b)
$$A(rB) = r(AB)$$

- 8) a ve b reel sayılar, A $m \times n$ matrix ise (a + b)A = aA + bA
- 9) A ve $B m \times n$ matrisler, a bir reel sayı ise a(A + B) = aA + aB
- 10) $A m \times n$ matrix ise (A')' = A
- 11) A ve $B m \times n$ matrisler ve c bir reel sayı ise

a)
$$(cA)' = cA'$$

b)
$$(A + B)' = A' + B'$$

- 12) $A m \times n$ matrix ve $B n \times p$ matrix is (AB)' = B'A'
- Not 1.24 Eğer a ve b iki sayı ise ab = 0 olması için a = 0 veya b = 0 olmalıdır. Bu kural matrisler için geçerli değildir, örneğin:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}, A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Not 1.25 a, b, c üç tane reel sayı olsun. ab = ac ve $a \neq 0$ ise b = c dir. Bu sadeleştirme kuralı matrisler için geçerli değildir, örneğin:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
 ve $C = \begin{bmatrix} -2 & 7 \\ 5 & -1 \end{bmatrix}, AB = AC$ olup $B \neq C$ dir.

Örnek 1.26 Sıfırdan farklı bir A matrisi bulunuz ki (2×2 tipinde) $A^2 = AA = O_2$ olsun.

Çözüm:
$$\left[\begin{array}{cc} 1 & 2 \\ -\frac{1}{2} & -1 \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 2 \\ -\frac{1}{2} & -1 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

Özel Tipteki Matrisler ve Parçalı Matrisler

 $n \times n$ tipindeki bir $A = [a_{ij}]$ matrisi için $i \neq j$ iken $a_{ij} = 0$ ise bu matrise <u>diyagonal matris</u> denir. (Yani ana diyagonal haricindeki elemanlar 0). Diyagonaldeki bütün elemanları aynı olan diyagonal matrise <u>skaler matris</u> denir. $I_n = [a_{ij}], a_{ii} = 1$ ve $i \neq j$ için $a_{ij} = 0$ olan skaler matrise $n \times n$ birim matris denir.

Örnek 1.27

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 ve $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ matrisleri verilsin. A, B

ve I_3 diyagonal matrisleridir. B ve I_3 skaler matrislerdir. I_3 de 3×3 birim matristir.

Not: A bir skaler matris ise bir r skaleri için $A=rI_n$ şeklindedir. Şimdi A bir kare matris olsun. Eğer p pozitif bir tamsayı ise $A^p=\underbrace{A\cdot A\cdots A}_{p-\text{tane}}$ şeklinde tanımlanır. Eğer A $n\times n$ matris ise $A^0=I_n$ olarak tanımlanır.

Negatif olmayan p ve q tamsayıları için $A^p \cdot A^q = A^{p+q}$ ve $(A^p)^q = A^{pq}$ kuralları geçerlidir. Ayrıca: $(AB)^p = A^pB^p$ kuralı AB = BA değilse geçerli değildir.

Tanım 1.29 $n \times n$ tipinde bir $A = [a_{ij}]$ matrisinde i > j için $a_{ij} = 0$ ise bu matrise <u>üst üçgensel</u> matris; i < j iken $a_{ij} = 0$ ise alt üçgensel matris denir. Örneğin

Tanım 1.30 A bir matris olsun. A' = A ise A' ya simetrik matris; A' = -A ise çarpık–simetrik (anti–simetrik) matris denir. Örneğin:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \text{ simetrik; } B = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix} \text{ anti-simetrik matrislerdir.}$$

Buna göre aşağıdakiler doğrudur:

- A simetrik veya anti-simetrik ise A bir kare matristir.
- 2) A simetrik ise A nın elemanları ana diyagonale göre simetriktir.
- 3) A simetrik $\iff a_{ij} = a_{ji}$; A anti-simetrik $\iff a_{ij} = -a_{ji}$
- A anti-simetrik ise ana diyagonaldeki elemanların hepsi 0 dır.

Teorem 1.31 A $n \times n$ matris ise; S bir simetrik matris ve K bir anti-simetrik matris olmak üzere A = S + K şeklinde yazılabilir. Ayrıca bu yazılış tek türlüdür.

İspat: A = S + K olduğunu bir an için kabul edip S ve K yı bulalım. A' = S' + K' = S - K dır. Şimdi:

$$\left. \begin{array}{rcl} A & = & S+K \\ A' & = & S-K \end{array} \right\} \Longrightarrow A+A'=2S \Longrightarrow S=\frac{1}{2}(A+A').$$

Yine buradan: $K = \frac{1}{2}(A - A')$ bulunur.

Şimdi A = S + K olduğu; S nin simetrik ve K nın anti–simetrik olduğu görülebilir.

Örnek 1.32
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 4 & 6 & 2 \\ 5 & 1 & 3 \end{bmatrix}$$
 matrisi verilsin.

$$S = \frac{1}{2}(A + A') = \begin{bmatrix} 1 & \frac{7}{2} & \frac{3}{2} \\ \frac{7}{2} & 6 & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2} & 3 \end{bmatrix}, K = \frac{1}{2}(A - A') = \begin{bmatrix} 0 & -\frac{1}{2} & -\frac{7}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{7}{2} & -\frac{1}{2} & 0 \end{bmatrix}.$$

A = S + K dir.

Tanım 1.33 Bir $m \times n$ $A = [a_{ij}]$ matrisinin bazı (hepsi değil) satır ve/veya sütunları silinerek elde edilen bir matrise A nın bir alt matrisi denir

Örnek 1.34
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 4 & 3 & 5 \\ 3 & 0 & 5 & -3 \end{bmatrix}$$
 ise A nın bir alt matrisi $\begin{bmatrix} 1 & 2 & 4 \\ 3 & 0 & -3 \end{bmatrix}$ dir.

Bu durumda alt matrislere parçalanan bir matristen söz edebiliriz. Tabii ki bu parçalanış tek türlü değildir.

Örnek 1.35
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & \vdots & a_{24} & a_{25} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{31} & a_{32} & a_{33} & \vdots & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & \vdots & a_{44} & a_{45} \end{bmatrix}$$
 matrisi $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ şeklinde veya,

$$A = \begin{bmatrix} a_{11} & a_{12} & \vdots & a_{13} & a_{14} & \vdots & a_{15} \\ a_{21} & a_{22} & \vdots & a_{23} & a_{24} & \vdots & a_{25} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ a_{31} & a_{32} & \vdots & a_{33} & a_{34} & \vdots & a_{35} \\ a_{41} & a_{42} & \vdots & a_{43} & a_{44} & \vdots & a_{45} \end{bmatrix} A = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} \\ \hat{A}_{21} & \hat{A}_{22} & \hat{A}_{23} \end{bmatrix}$$

şeklinde parçalanabilir. Bu şekildeki matrislere parçalı matrisler denir.

Singüler ve Singüler Olmayan (Non-singular) Matrisler

Tanım 1.37 $A n \times n$ tipinde bir matris olsun. Eğer $AB = BA = I_n$ şartını sağlayan bir $B n \times n$ tipinde matris varsa A'ya <u>singüler olmayan</u> (tersinir=tersi alınabilir) <u>matris</u> denir. Aksi halde A'ya <u>singüler</u> (tersi alınamaz) <u>matris</u> denir. B matrisine de A'nın <u>tersi</u> denir ve A^{-1} ile gösterilir.

Örnek 1.38
$$A=\begin{bmatrix}2&3\\2&2\end{bmatrix}$$
 ve $B=\begin{bmatrix}-1&\frac{3}{2}\\1&-1\end{bmatrix}$ olsun. $AB=BA=I_2$ olduğundan B,A' nın tersidir.

Teorem 1.39 Eğer bir matrisin tersi varsa tektir.

İspat: B ve C, A'nın tersi olsunlar. O zaman $AB=BA=I_n$ ve $AC=CA=I_n'$ dir. Şimdi,

$$B = BI_n = B(AC) = (BA)C = I_nC = C$$

olup A' nın tersi (varsa) tektir.

Örnek 1.40 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ olsun. A^{-1} matrisini (varsa) bulalım. $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ olsun.

$$AA^{-1} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right]. \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \Longrightarrow \left[\begin{array}{cc} a+2c & b+2d \\ 3a+4c & 3b+4d \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Buradan ; $\left\{ \begin{array}{ll} a+2c&=1\\ 3a+4c&=0 \end{array} \right\}$ ve $\left\{ \begin{array}{ll} b+2d&=0\\ 3b+4d&=1 \end{array} \right\}$ denklem sistemleri elde edilir. Bunun çözümü $a=-2,c=\frac{3}{2},b=1$ ve $d=-\frac{1}{2}$ dir. (Kontrol ediniz). Ayrıca

$$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

olduğundan A singüler değildir ve $A^{-1}=\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$ dir.

Örnek 1.41
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 olsun. $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ diyelim.

$$AA^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

olmalıdır. Buradan şu lineer sistemler elde edilir:

$$\left\{ \begin{array}{ll} a+2c&=&1\\ 2a+4c&=&0 \end{array} \right\} \quad \text{ve} \quad \left\{ \begin{array}{ll} b+2d&=&0\\ 2b+4d&=&1 \end{array} \right\}.$$

Birinci denklem 2 ile çarpılırsa 2 = 0 çelişkisi elde edilir. Bu lineer sistemin çözümü yoktur. Yani A'nın tersi yoktur (singülerdir).

Teorem 1.42 A ve B singüler olmayan $n \times n$ matrisler ise AB matrisi de singüler değildir ve $(AB)^{-1} = B^{-1}A^{-1}$ dir.

İspat:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n,$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = BI_nB^{-1} = BB^{-1} = I_n$$

olup $(AB)^{-1} = B^{-1}A^{-1}$ olduğu görülür.

Sonuç 1.43 A_1, A_2, \ldots, A_r $n \times n$ singüler olmayan matrisler ise $A_1A_2 \cdots A_r$ matrisi de singüler değildir ve $(A_1A_2 \cdots A_r)^{-1} = A_r^{-1}A_{r-1}^{-1} \cdots A_1^{-1}$ dir.

İspat: Benzer şekilde yapılır.

Teorem 1.44 A singüler olmayan bir matris ise, A^{-1} matrisi de singüler olmayan bir matristir ve $(A^{-1})^{-1} = A$ dır.

İspat: $(A^{-1})A = I_n$ ve $A(A^{-1}) = I_n$ olup bu eşitliklerdeki birinci matrisin tersi ikinciye eşittir. O halde $(A^{-1})^{-1} = A$ dır.

Teorem 1.45 A singüler değilse A' de singüler değildir ve $(A')^{-1}=(A^{-1})'$ dır. İspat: $AA^{-1}=I_n$ dir. Bu eşitliğin iki tarafının transpozunu alırsak:

$$(A^{-1})'A' = I'_n = I_n$$

dir. Şimdi de $A^{-1}A=I_n$ eşitliğinin her iki tarafının transpozunu alırsak:

$$A'(A^{-1})' = I'_n = I_n.$$

Bu iki eşitlikten $(A')^{-1} = (A^{-1})'$ elde edilir.

Örnek 1.46 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ matrisinin tersi $A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$ dir. $A' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ olup

$$(A')^{-1} = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} = (A^{-1})'$$

olduğu görülür.

Örnek 1.47 A simetrikse ve singüler değilse, A^{-1} 'in de simetrik olduğunu gösteriniz.

Çözüm: A simetrik olduğundan A=A' dür. $(A')^{-1}=(A^{-1})'$ olduğunu biliyoruz (Teorem 1.45). Burada A=A' olduğu için $A^{-1}=(A^{-1})'$ olup A^{-1} simetriktir.

Örnek 1.48 A singüler olmasın. $AB = AC \implies B = C$ olduğunu gösteriniz. Ayrıca $AB = 0_n \implies B = 0_n$ dir. Gösteriniz.

Çözüm:

$$AB = AC \Longrightarrow A^{-1}(AB) = A^{-1}(AC) \Longrightarrow (A^{-1}A)B = (A^{-1}A)C \Longrightarrow B = C,$$

 $AB = 0_n \Longrightarrow A^{-1}(AB) = A^{-1}0_n \Longrightarrow (A^{-1}A)B = 0_n \Longrightarrow B = 0_n$

Lineer Sistemler ve Matrisin Tersi

A matrisi $n \times n$ tipinde ise AX = B sistemi n bilinmeyenli n denklemli bir sistemdir. A singüler olmasın. Bu durumda A^{-1} mevcuttur ve AX = B eşitliğinin her iki tarafını (soldan) A^{-1} ile çarpalım.

$$AX = B \Longrightarrow A^{-1}(AX) = A^{-1}B \Longrightarrow (A^{-1}A)X = A^{-1}B \Longrightarrow X = A^{-1}B.$$

Yani $X=A^{-1}B$ bu sistemin bir çözümüdür. O halde A singüler değilse sistemin tek çözümü vardır.

1.5 Bir Matrisin Eşelon Formu

Tanım 1.49 Bir $A m \times n$ matrisi aşağıdaki 4 özelliği sağlıyorsa bu matrise <u>indirgenmiş satır</u> <u>eşelon</u> <u>formdadır</u> denir.

- (a) Bütün elemanları sıfır olan satırlar (varsa) matrisin en alt kısmındadır.
- (b) Tamamı sıfır olmayan bir satırdaki, sıfır olmayan ilk sayı (ki buna baş eleman denir) 1 dir.
- (c) Eğer i. ve (i + 1). satırlar ardarda ve tamamı sıfır olmayan iki satır ise (i + 1). satırın baş elemanı i. satırın baş elemanının sağındadır.
- (d) Eğer bir kolon herhangi bir satırın baş elemanını ihtiva ediyorsa, o kolondaki diğer bütün elemanlar sıfırdır.

Eğer A matrisi (a), (b) ve (c) şartlarını sağlıyorsa bu matrise <u>satır eşelon formundadır</u> denir. Benzer bir tanım "indirgenmiş sütun eşelon form" ve "sütun eşelon form" için yapılabilir.

Örnek 1.50

satır eşelon form

indirgenmiş

satır eşelon form

satır eşelon form

indirgenmiş satır eşelon form

indirgenmiş

hiçbiri (a)

satır eşelon form

$$G = \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 2 & -2 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} H = \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -2 & 5 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} J = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

hiçbiri (b)

hiçbiri (c)

satır eşelon form

Şimdi her matrisin (indirgenmiş) satır eşelon forma getirilebileceğini göreceğiz.

Tanım 1.51 Aşağıdaki işlemlerin her birine bir elementer satır (sütun) işlemi denir.

I.TİP: A nın i, ve j, satırlarını (sütunlarını) yer değiştirmek.

II.TİP: A nın i. satırını (sütununu) bir $c \neq 0$ sayısı ile çarpmak.

III.TIP: A nın i. satırının (sütununun) c katını j. satıra (sütuna) eklemek. $(i \neq j)$

Bu satır işlemleri matrisler üzerinde aşağıdaki şekilde gösterilir: (Kolon işlemi için K kullanılır)

I.TİP:
$$S_i \longleftrightarrow S_j$$

II.TIP:
$$S_i \longleftarrow cS_i$$

III.TİP:
$$S_j \longleftarrow cS_i + S_j$$

Örnek 1.52

$$A = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 2 & 3 & 0 & -2 \\ 3 & 3 & 6 & -9 \end{bmatrix} \xrightarrow{S_1 \leftrightarrow S_3} B = \begin{bmatrix} 3 & 3 & 6 & -9 \\ 2 & 3 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{S_1 \leftarrow \frac{1}{3}S_1} C = \begin{bmatrix} 1 & 1 & 2 & -3 \\ 2 & 3 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$C \xrightarrow{S_2 \leftarrow (-2)S_1 + S_2} D = \begin{bmatrix} 1 & 1 & 2 & -3 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

 $ag{Tanım 1.53}$ Eğer bir $B \ m imes n$ matrisi A matrisine sonlu sayıda elementer satır (sütun) işlemlerinin uygulanması ile elde edilebiliyorsa A matrisi B matrisinin satır (sütun) eşdeğeridir denir.

Örnek 1.54
$$A=\begin{bmatrix}1&2&4&3\\2&1&3&2\\1&-1&2&3\end{bmatrix}$$
 ve $D=\begin{bmatrix}2&4&8&6\\1&-1&2&3\\4&-1&7&8\end{bmatrix}$ matrisleri satır eşdeğerdir. Çünkü

$$A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 3 \end{bmatrix} \xrightarrow{S_2 \leftarrow 2S_3 + S_2} B = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 4 & -1 & 7 & 8 \\ 1 & -1 & 2 & 3 \end{bmatrix} \xrightarrow{S_2 \leftrightarrow S_3} C = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 1 & -1 & 2 & 3 \\ 4 & -1 & 7 & 8 \end{bmatrix}$$

olup C nin 1. satırı 2 ile çarpılırsa D matrisi elde edilir.

Bu tanıma göre aşağıdakiler doğrudur.

- (a) Her matris kendisinin satır eşdeğeridir.
- (b) A, B nin satır eşdeğeri ise B de A nın satır eşdeğeridir.
- (c) A, B nin; B de C nin satır eşdeğeri ise A, C nin satır eşdeğeridir.

Teorem 1.55 Her $A = [a_{ij}] m \times n$ sıfır olmayan matrisi satır (sütun) eşelon formdaki bir matrise satır (sütun) eşdeğerdir.

İspat: Yani, bir A matrisi satır eşelon formdaki bir matrise satır eşdeğerdir. Yani, A üzerinde elementer satır işlemleri yapılarak bir satır eşelon formda matris elde edilebilir. (Örnek üzerinde açıklanacak)

Örnek 1.56 Aşağıdaki A matrisini satır eşelon forma getireceğiz. Önce 1. kolonun en üst kısmında; yani (1,1). pozisyonda bir baş eleman (yani 1) oluşturalım. (1. kolon tamamen 0 ise 2. kolona geçeriz). Eğer $a_{11} \neq 0$ ise bütün satırı a_{11} 'e böleriz; aksi halde aşağıdaki satırlardan birisi ile 1. satırı yer değiştirir ve 1. satırı yeni elde edilen (1,1)-inci elemana böleriz:

$$A = \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \xrightarrow{S_1 \leftrightarrow S_3} B = \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$
$$\xrightarrow{S_1 \leftarrow \frac{S_1}{2}} C = \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Baş eleman 1 elde edildikten sonra bunun altındaki sayıların 0 yapılması gerekir. Bu amaçla bu satırın (baş elemanının bulunduğu satırın) uygun katları aşağıdaki satırlara eklenir:

$$\frac{S_4 \leftarrow (-2)S_1 + S_4}{D} = \begin{bmatrix}
1 & 0 & -\frac{5}{2} & 1 & 2 \\
0 & 0 & 2 & 3 & 4 \\
0 & 2 & 3 & -4 & 1 \\
0 & -2 & -1 & 7 & 3
\end{bmatrix}$$

Bu aşamada 1. kolon ile işimiz bitmiştir. Şimdi (2, 2)-inci pozisyondaki sayıyı 1 yapmalıyız. (Eğer bu eleman ve altındakilerin tamamı 0 ise 3. sütuna geçilir). Bunun için ya 2. satırın tamamı bu sayıya bölünür veya alt satırlardan (üst satırlardan değil) biri ile yer değiştirilip sonra bölme işlemi yapılır:

Şimdi 2. sütunda da baş eleman oluştuğuna göre bunun altındaki sayılar 0 yapılır. (Bu satırın uygun katları aşağıdaki satırlara eklenir):

$$\xrightarrow{S_4 \leftarrow (2)S_2 + S_4} \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 2 & 3 & 4 \end{bmatrix}$$

Daha sonra 3. sütunda baş eleman oluşturulur ve bunun altındaki sayılar 0 yapılır: (Dikkat: Baş elemanlar sağa doğru gidildikçe aşağıya doğru en az bir basamak kaymalıdır)

$$\xrightarrow{S_3 \leftarrow \frac{1}{2}S_3} \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 2 & 3 & 4 \end{bmatrix}$$

$$\xrightarrow{S_4 \leftarrow (-2)S_3 + S_4} \left[\begin{array}{ccccc} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] = H \text{ diyelim.}$$

H matrisi satır eşelon formdadır ve A matrisinin satır-eşdeğeridir.

Teorem 1.57 $m \times n$ tipinde her $A = [a_{ij}]$ sıfır olmayan matris, indirgenmiş satır (sütun) eşelon formdaki bir matrise satır (sütun) eşdeğerdir.

İspat: Bir önceki teoremin ispatındaki yöntem uygulanır. Ancak bu sefer bir baş elemanın bulunduğu kolondaki diğer elemanlar (yani hem altındaki hem de üstündekiler) 0 yapılacak şekilde gerekli elementer satır işlemleri yapılır.

Teorem 1.59 AX = B ve CX = D, m denklemli ve n bilinmeyenli iki lineer sistem olsun. Eğer [A:B] ve [C:D] ek matrisleri satır–eşdeğer ise bu lineer sistemler eş sistemlerdir; yani çözümleri aynıdır.

İspat: Elementer satır işlemleri; lineer sistem düşünüldüğünde aşağıdakilere karşılık gelir:

- I.Tip: İki eşitliğin yer değiştirmesi
- II.Tip: Bir eşitliğin $c \neq 0$ ile çarpılması
- III. Tip: Bir eşitliğin bir katının başka bir eşitliğe eklenmesi

Sonuç: Eğer A ve B iki satır eşdeğer $m \times n$ matris ise AX = 0 ve BX = 0 homojen sistemleri eş sistemlerdir.