Package 'climodr'

June 12, 2025

```
Type Package
Title Climate Modeling with Point Data from Climate Stations
Version 1.0.0
Author Alexander Klug [aut, cre, cph],
     Luise Wraase [aut],
     Seda Bekar [ctb],
     Dirk Zeuss [aut]
Maintainer Alexander Klug <kluga@students.uni-marburg.de>
Description An automated and streamlined workflow for predictive climate
     mapping using climate station data. Works within an environment
     the user provides a destined path to - otherwise it's tempdir().
     Quick and relatively easy creation of resilient and reproducible
     climate models, predictions and climate maps, shortening the
     usually long and complicated work of predictive modelling.
     For more information, please find the provided URL.
     Many methods in this package are new, but the main method is based
     on a workflow from
     Meyer (2019) <doi:10.1016/j.ecolmodel.2019.108815>
     Meyer (2022) <doi:10.1038/s41467-022-29838-
     9>, however, it was generalized and adjusted in the context of this package.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Imports caret, CAST, corrplot, doParallel, dplyr, grDevices, lares,
     magrittr, parallel, rlang, stats, stringr, terra, tidyr, utils
Depends R (>= 2.10)
Suggests knitr, rmarkdown, testthat (>= 3.0.0), pls, randomForest, sp
VignetteBuilder knitr
RoxygenNote 7.3.2
Config/testthat/edition 3
```

2 Contents

URL https://envima.github.io/climodr/

BugReports https://github.com/envima/climodr/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-12 14:20:06 UTC

Contents

Index

autocorr							 											3
calc.indices							 										 	5
calc.model							 										 	6
clim.sample							 											9
climplot							 										 	10
climpred							 										 	12
crop.all							 										 	14
envi.create							 											16
ext_vignette							 										 	16
fin.csv							 											17
plot_description							 										 	19
prep.csv							 										 	19
proc.csv							 										 	20
res_area							 										 	22
sch_201707							 										 	22
sch_dgm							 										 	23
spat.csv							 										 	24
Station_G06							 										 	25
Station_G17							 										 	26
Station_G20							 										 	26
Station_G21							 										 	27
Station_G25							 										 	27
Station_G48							 										 	28
Station_W10 .							 										 	28
Station_W11 .							 										 	29
Station_W19 .							 										 	29
Station_W20 .							 										 	30
																		31

autocorr 3

|--|

Description

Tests the final.csv created with 'fin.csv' on autocorrelation to produce reliable models.

Usage

```
autocorr(
  envrmt = .GlobalEnv$envrmt,
  method = "monthly",
  resp,
  pred,
  plot.corrplot = TRUE,
  corrplot = "coef"
)
```

Arguments

envrmt	variable name of your envrmt list created using climodr's 'envi.create' function. Default = envrmt.
method	character. Choose the time scale your data is preserved in. Either "annual", "monthly" or "daily".
resp	numerical. Vector or single input of the columns in the final.csv that contain your sensor data ("response variables"). The function will create one file per variable.
pred	numerical. Vector or single input. The columns of your predictor variables, that you want to test for autocorrelation with the response variables.
plot.corrplot	logical. Should correlation matrices be plotted?
corrplot	character. Vector or single input. If plot.corrplot is true, you can choose the design of the correlation plot. You can choose from "coef", "crossout", "blank". Default is "coef".

Value

One .csv file per response variable. These will later be used when 'autocorrelation' is set 'TRUE' during 'calc.model'.

See Also

'calc.model'

4 autocorr

```
#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),</pre>
                      memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
         method = "proc",
         save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                     method = "monthly",
                     rbind = TRUE,
                      save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
         method = "MB_Timeseries",
         overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
             vi = "all",
             bands = c("blue", "green", "red",
                       "nir", "nirb",
"re1", "re2", "re3",
                        "swir1", "swir2"),
             overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                     method = "monthly",
                      des_file = "plot_description.csv",
                      save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,</pre>
                   method = "monthly",
                   save_output = TRUE)
# Test data for autocorrelation after running fin.csv
autocorr(envrmt = envrmt,
         method = "monthly",
         resp = 5,
         pred = c(8:23),
         plot.corrplot = FALSE)
```

calc.indices 5

-				
റച	7.1	กส	1	ces

Calculate spectral indices

Description

Calculates a set of spectral indices to have more predictor variables available when further modeling.

Usage

```
calc.indices(
  envrmt = .GlobalEnv$envrmt,
  vi = "all",
  bands = c("blue", "green", "red", "nir", "nirb", "re1", "re2", "re3", "swir1", "swir2"),
  overwrite = FALSE
)
```

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

vi Character. Either "all" or vector containing the preferred spectral indices. See

'Details' for more information.

bands Character. Vector with lenght(bands) = 10. Contains the names of the bands

in the Raster Stack. If bands from the *Usage* example vector dont exist, use

"NA" in their position. See 'Details' for more information.

overwrite logical. Argument passed down from 'terra'-package. Overwrite existing files?

Value

SpatRaster-Stack

See Also

```
'crop.all', 'fin.csv'
```

6 calc.model

calc.model

Modelling

Description

Creates Models for each climate value

Usage

```
calc.model(
  envrmt = .GlobalEnv$envrmt,
 method = "monthly",
  timespan,
  climresp,
  classifier = c("rf", "pls", "lm", "glm"),
  seed = NULL,
  p = 0.8,
  folds = "all",
  predrows,
  mnote = NULL,
  k = NULL,
  tc_method = "cv",
 metric = "RMSE",
  doParallel = FALSE,
  autocorrelation = FALSE,
)
```

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

method character. Time period of your desired model. Default: "monthly"

timespan numeric. Vector or single input. Should contain all years to be modeled. The

years have to be the same format as in the tabular data.

calc.model 7

climresp numeric. Vector or single input. Should contain all column's in the tabular data

that contain response variables.

classifier vector or character. Model variants to be used. Supported models: Random

Forest = "rf", Partial-Least-Squares = "pls", Neural Networks = "nnet", Linear

Regression = "lm" or generalized boosted regression = "gbm".

seed integer. Seed to reproduce the same model over and over.

p numeric. Between 0 and 1. Percentage of data used for cross validation. Default

= 0.8

folds character. Vector or single input. Either folding over location only "LLO", over

time only "LTO", or over both "LLTO". Use "all" to use all possibilitys.

predrows numeric. Vector or single input. Should contain the rows where all the predictor

values are stored in.

mnote character. Model note for special modifications used. Default: "normal"

k integer. When 'fold' = "LLO" or "LTO". Set k to the number of unique spatial

or temporal units. Leave out to use preset values.

tc_method character. Method for train control function from caret package. Default = "cv".

metric character. See 'train'.

doParallel logical. Parallelization accelerates the modelling process. Warning: Your PC

will slow down drastically. Make sure to not run any other heavy processes

during this.

autocorrelation

logical. Should autocorrelating data in the predictor variables be excluded from

the model run? Only works if 'autocorr' has been executed beforehand.

... arguments passed down from other functions.

Value

data frame.

See Also

'autocorr'

8 calc.model

```
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                    method = "monthly",
                     rbind = TRUE,
                     save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
        method = "MB_Timeseries",
        overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
             vi = "all",
            "swir1", "swir2"),
             overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                    method = "monthly",
                     des_file = "plot_description.csv",
                     save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,</pre>
                  method = "monthly",
                  save_output = TRUE)
# Test data for autocorrelation after running fin.csv
autocorr(envrmt = envrmt,
        method = "monthly",
        resp = 5,
        pred = c(8:23),
        plot.corrplot = FALSE)
# Create 36 different models (12 months x 3 classifiers) for every month in 2017
calc.model(envrmt = envrmt,
          method = "monthly",
           timespan = c(2017),
           climresp = 5,
           classifier = c("rf",
                          "pls",
                          "lm"),
           seed = 707,
           p = 0.8,
           folds = "LLO",
           mnote = "normal",
           predrows = c(8:23),
```

clim.sample 9

```
tc_method = "cv",
metric = "RMSE",
autocorrelation = TRUE,
doParallel = FALSE)
```

clim.sample

Load in Example Data

Description

Climodr comes with a full set of example data. But since this package runs primarily with data, that is not linked to the global environment, but saved in local folders build via 'envi.create', one can't just load example data. This function will load all the example data used in the vignette into your climodr environment. This way you can run all the code from the vignette.

Usage

```
clim.sample(envrmt = .GlobalEnv$envrmt)
```

Arguments

envrmt

variable name of your envrmt list created using climodr's 'envi.create' function. Default = envrmt.

Value

Multiple files used by the climodr vignette

10 climplot

climplot	Create Maps using the 'terra' package graphic parameters

Description

Plot results of climodr into maps. Right now maps are created using the terra package. The maps created are very basic. Will be updated to run with tidyterra in future.

Usage

```
climplot(
  envrmt = .GlobalEnv$envrmt,
  mnote,
  sensor,
  aoa = FALSE,
  mapcolors = rev(grDevices::terrain.colors(50)),
  scale_position = "bottomleft",
  north_position = "topright"
)
```

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

mnote character. The modelnote you want to create maps of.

sensor character. The sensor you want to create maps for.

aoa logical. Do you want the area of applicability to be added to your map?

mapcolors The color pallete you want to use for the map. Default is 'rev(grDevices::terrain.colors(50))'

scale_position character. Graphical parameter. The relative position of the Scale for the map.

See 'terra::plot' for more details.

north_position character. Graphical parameter. The relative position of the Scale for the map.

See 'terra::plot' for more details.

Value

Maps in PNG-Format to your harddrive.

See Also

```
'terra::plot'
```

climplot 11

```
#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),</pre>
                      memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
         method = "proc",
         save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                     method = "monthly",
                     rbind = TRUE,
                      save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
         method = "MB_Timeseries",
         overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
             vi = "all",
             bands = c("blue", "green", "red",
                       "nir", "nirb",
"re1", "re2", "re3",
                        "swir1", "swir2"),
             overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                     method = "monthly",
                      des_file = "plot_description.csv",
                      save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,</pre>
                   method = "monthly",
                   save_output = TRUE)
# Test data for autocorrelation after running fin.csv
autocorr(envrmt = envrmt,
         method = "monthly",
         resp = 5,
         pred = c(8:23),
         plot.corrplot = FALSE)
```

12 climpred

```
# Create 36 different models (12 months x 3 classifiers) for every month in 2017
calc.model(envrmt = envrmt,
           method = "monthly",
           timespan = c(2017),
           climresp = 5,
           classifier = c("rf",
                          "pls",
                          "lm"),
           seed = 707,
           p = 0.8,
           folds = "LLO",
           mnote = "normal";
           predrows = c(8:23),
           tc_method = "cv",
           metric = "RMSE",
           autocorrelation = TRUE,
           doParallel = FALSE)
# Make predictions
climpred(envrmt = envrmt,
         method = "monthly",
         mnote = "normal",
         AOA = TRUE)
# Create a Temperature Map from the vignette model
climplot(envrmt = envrmt,
         mnote = "normal"
         sensor = Ta_200,
         aoa = TRUE,
         mapcolors = rev(heat.colors(50)),
         scale_position = "bottomleft",
         north_position = "topright")
```

climpred

Predict sensor data area wide

Description

Use the models created using 'calc.model' to predict the modeled data onto a full spatial raster scene.

Usage

```
climpred(envrmt = .GlobalEnv$envrmt, method = "monthly", mnote, AOA = TRUE)
```

Arguments

envrmt

variable name of your envrmt list created using climodr's 'envi.create' function. Default = envrmt.

climpred 13

method	Character. Either "daily", monthly" or "annual". Also depends on the available data.
mnote	Character. Model note to filter models for the fitting model run.
AOA	Logical. Should the Area of Applicability be calculated additional to the models?

Value

Multiple models.rds stored in the /workflow/models folder.

See Also

```
'autocorr', 'predict'
```

```
#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),</pre>
                     memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
        method = "proc",
        save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                    method = "monthly",
                    rbind = TRUE,
                    save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
        method = "MB_Timeseries",
        overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
            vi = "all",
            "swir1", "swir2"),
            overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                    method = "monthly",
                    des_file = "plot_description.csv",
```

14 crop.all

```
save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,</pre>
                   method = "monthly",
                   save_output = TRUE)
# Test data for autocorrelation after running fin.csv
autocorr(envrmt = envrmt,
         method = "monthly",
         resp = 5,
         pred = c(8:23),
         plot.corrplot = FALSE)
# Create 36 different models (12 months x 3 classifiers) for every month in 2017
calc.model(envrmt = envrmt,
           method = "monthly",
           timespan = c(2017),
           climresp = 5,
           classifier = c("rf",
                           "pls",
                          "lm"),
           seed = 707,
           p = 0.8,
           folds = "LLO",
           mnote = "normal",
           predrows = c(8:23),
           tc_method = "cv",
           metric = "RMSE",
           autocorrelation = TRUE,
           doParallel = FALSE)
# Make predictions
climpred(envrmt = envrmt,
         method = "monthly",
         mnote = "normal",
         AOA = TRUE)
predlist <- list.files(envrmt$path_predictions,</pre>
                       pattern = ".tif")
head(predlist)
```

crop.all

Cropping tiff data

Description

Crops input data to the extent size and reprojects them into project Coordinate reference system.

crop.all 15

Usage

```
crop.all(
  envrmt = .GlobalEnv$envrmt,
  method = "MB_Timeseries",
  crs = NULL,
  ext = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

envrmt	variable name of your envrmt list created using climodr's 'envi.create' function. Default = envrmt.
method	character. Use "MB_Timeseries" for now. More methods are planned and will be added in future.
crs	Coordinate reference system Used to crop all images in folder_path. If crs it will automatically reprojected into this one. Default: crs of smallest Extent.
ext	SpatRaster, SpatVector or SpatExtent. Extent all data is cropped into. Default: Smallest Extent in folder_path.
overwrite	logical. Should existing files with the same filename be overwritten? Default = $FALSE$
	arguments passed down from other functions.

Value

SpatRaster-Stack. Also saved to /workflow/rworkflow

See Also

```
'fin.csv', 'calc.indices'
```

16 ext_vignette

envi.create

Create climodr environment

Description

Creates an environment climodr will use during the calculation process. A list is returned with all paths to all folders. After creating the environment, all necessary data should be stored into the depending Input sub-folders. There is also an additional temp-folder, where temporary data is stored, which can be deleted after not being used anymore.

Usage

```
envi.create(proj_path = tempdir(), memfrac = NULL, ...)
```

Arguments

character. Path to project directory. Climodr will work exclusively in this folder and create all project folders in here.

memfrac

numeric. Value between 0 and 0.9. The fraction of RAM that may be used by the terra package

...

arguments passed down from other functions.

Value

list. Contains all paths to each folder in the project directory. Necessary for climodr to operate its functions.

Examples

ext_vignette

Extent file for vignette

Description

A vector file containing the shape and extent of the Area used in the vignette

Usage

```
ext_vignette
```

fin.csv 17

Format

```
## 'ext_vignette'
class SpatVector
geometry polygons
dimensions 1, 1 (geometries, attributes)
extent 805737, 812824, 5890352, 5896005 (xmin, xmax, ymin, ymax)
coord. ref. WGS 84 / UTM zone 32N (EPSG:32632)
values 1
Spat Vector
```

Source

Randomly created in (QGIS)[https://www.qgis.org/download/thank-you/].

fin.csv

Final aggregation for CSV-Data

Description

Extract the raster values of all raster layers from a scene at the station coordinates at each time stamp. The extracted data will be attached to the station data so there is a .csv-file with coordinates, sensor data (response values) and extracted raster data (predictor values). The data is ready to be used for modelling.

Usage

```
fin.csv(
  envrmt = .GlobalEnv$envrmt,
  method = "monthly",
  crs = NULL,
  save_output = TRUE,
  ...
)
```

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

method character. Either "daily", monthly" or "annual". Also depends on the available

data.

crs character. If null, coordinate reference system from project files will be taken.

Otherwise data will be reprojected into this crs.

save_output logical. If cleaned data should be saved permanently in the Environment put

save_output = TRUE. Otherwise the output will be saved in the temporary di-

rectory. Default: FALSE.

... arguments passed down from other functions.

fin.csv

Value

List

See Also

```
'prep.csv', 'proc.csv', 'spat.csv', 'calc.indices'
```

```
#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),</pre>
                     memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
        method = "proc",
         save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                    method = "monthly",
                     rbind = TRUE,
                     save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
        method = "MB_Timeseries",
        overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
             vi = "all",
            "swir1", "swir2"),
             overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                     method = "monthly",
                     des_file = "plot_description.csv",
                     save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,</pre>
                  method = "monthly",
                   save_output = TRUE)
```

plot_description 19

head(csv_fin)

plot_description

Plot description file

Description

Contains made up coordinates for imaginary climate stations for education purposes.

Usage

```
plot_description
```

Format

'plot_description' A data frame with 10 rows and 5 columns

plot imaginary station name and code

general imaginary category of climate station

region location name of climate station

lat Latitude Coordinate of climate station

lon Longitude Coordinate of climate station

elevation elevation of climate station

Source

Randomly created coordinates and stations extracted from a random climate map.

prep.csv

Preparing CSV-Data

Description

Crops input data to the extent size and removes NA-Values

Usage

```
prep.csv(envrmt = .GlobalEnv$envrmt, method = "proc", save_output = TRUE, ...)
```

20 proc.csv

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

method character. "proc" for ready-to-use data in separate .csv-files. "tube" for raw-data

from the Tube Data Base. Default "proc"-Method.

save_output logical. If cleaned data should be saved permanently in the Environment put

save_output = TRUE. Otherwise the output will be saved in the temporary di-

rectory. Default: FALSE.

... arguments passed down from other functions.

Value

List

See Also

```
'proc.csv', 'spat.csv', 'fin.csv'
```

Examples

proc.csv

Processing CSV-Data

Description

Calculate averaged sensor values aggregated to a given time interval.

proc.csv 21

Usage

```
proc.csv(
  envrmt = .GlobalEnv$envrmt,
  method = "monthly",
  rbind = TRUE,
  save_output = TRUE,
  ...
)
```

Arguments

envrmt variable name of your envrmt list created using climodr's 'envi.create' function.

Default = envrmt.

method character. Either "daily", monthly" or "annual". Also depends on the available

data.

rbind logical. Create a single file with all climate stations. If FALSE, every station

will be saved in a seperate file.

save_output logical. If data should be saved permanently in the Environment put save_output

= TRUE. Otherwise the output will be saved in the temporary directory. Default:

TRUE.

... arguments passed down from other functions.

Value

List

See Also

```
'prep.csv', 'spat.csv', 'fin.csv'
```

sch_201707

```
head(csv_data)
```

res_area

Resolution and Area

Description

This raster contains the area of interest as well as the desired model resolution (100 m * 100 m) and the project extent.

Usage

res_area

Format

```
## 'res_area' A binary Raster of pixels with value 1 in extent that belong to example area class SpatRaster
dimensions 57, 71, 1 (nrow, ncol, nlyr)
resolution 100, 100 (x, y)
extent 805732, 812832, 5890310, 5896010 (xmin, xmax, ymin, ymax)
coord. ref. WGS 84 / UTM zone 32N (EPSG:32632)
name res_area
min/max 0/1
```

Source

Randomly created binary Spat Raster file with the project resolution of 100 m per pixel. Created in (QGIS)[https://www.qgis.org/download/thank-you/].

sch_201707

Spatial Raster File for Vignette

Description

A spatial Raster file from a random area choose for the Vignette or as dummy data.

Usage

sch_201707

sch_dgm 23

Format

```
## 'sch_201707' A Spat Raster with 8 spectral bands

class SpatRaster

dimensions 86, 151, 10 (nrow, ncol, nlyr)

resolution 100, 100 (x, y)

extent 801522.5, 816622.5, 5888973, 5897573 (xmin, xmax, ymin, ymax)

coord. ref. WGS 84 / UTM zone 32N (EPSG:32632)

names blue, green, red, nir, nirb, re1, re2, re3, swir1, swir2

min/max 33.90298/5479.6602
```

Source

Randomly created Spat Raster file from (Sentinel-2 Data)[https://browser.dataspace.copernicus.eu/?zoom=10&lat=52.966016THEME&visualizationUrl=U2FsdGVkX1

sch_dgm

Digital Ground Model for Vignette

Description

A Digital Ground Model file from a random area choose for the Vignette or as dummy data.

Usage

sch_dgm

Format

```
## 'sch_dgm' A Digital Ground Model

class SpatRaster

dimensions 86, 151, 10 (nrow, ncol, nlyr)

resolution 100, 100 (x, y)

extent 801522.5, 816622.5, 5888973, 5897573 (xmin, xmax, ymin, ymax)

coord. ref. WGS 84 / UTM zone 32N (EPSG:32632)

names elevation

min/max 48.75315/94.67307
```

Source

Randomly extracted Digital Ground Model.

24 spat.csv

spat.csv

Spatial aggregation for CSV-Data

Description

Extract station coordinates from meta-data and reproject the coordinates to the project coordinate reference system.

Usage

```
spat.csv(
  envrmt = .GlobalEnv$envrmt,
  method = "monthly",
  des_file,
  crs = NULL,
  save_output = TRUE,
  ...
)
```

Arguments

envrmt	variable name of your envrmt list created using climodr's 'envi.create' function. Default = envrmt.
method	character. Either "daily", monthly" or "annual". Also depends on the available data.
des_file	character. The filename and data type of the meta-data. (Only reads .csv)
crs	character. EPSG of the Coordinate Reference System, if no **res_area.tif** file is provided.
save_output	logical. If cleaned data should be saved permanently in the Environment put save_output = TRUE. Otherwise the output will be saved in the temporary directory. Default: TRUE
	arguments passed down from other functions.

Value

Data Frame

See Also

```
'prep.csv', 'proc.csv', 'fin.csv'
```

Station_G06 25

Examples

```
#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),</pre>
                       memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
         method = "proc",
         save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,</pre>
                      method = "monthly",
                      rbind = TRUE,
                      save_output = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,</pre>
                      method = "monthly",
                      des_file = "plot_description.csv",
                      save_output = TRUE)
head(csv_spat)
```

Station_G06

Station File (G06)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

```
Station_G06
```

Format

```
## 'Station_G06' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground
```

Source

Station_G20

Station_G17

Station File (G17)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_G17

Format

'Station_G17' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Randomly created climate data at random created stations extracted from a random climate map made by climodr.

Station_G20

Station File (G20)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_G20

Format

'Station_G20' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Station_G21 27

Station_G21

Station File (G21)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_G21

Format

'Station_G21' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Randomly created climate data at random created stations extracted from a random climate map made by climodr.

Station_G25

Station File (G25)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_G25

Format

'Station_G25' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Station_W10

Station_G48

Station File (G48)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_G48

Format

'Station_G48' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Randomly created climate data at random created stations extracted from a random climate map made by climodr.

Station_W10

Station File (W10)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_W10

Format

'Station_W10' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Station_W11 29

Station_W11

Station File (W11)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_W11

Format

'Station_W11' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Randomly created climate data at random created stations extracted from a random climate map made by climodr.

Station_W19

Station File (W19)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_W19

Format

'Station_W19' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

30 Station_W20

Station_W20

Station File (W20)

Description

Contains made up climate data for imaginary climate stations for education purposes.

Usage

Station_W20

Format

'Station_W20' A data frame with 10 rows and 5 columns

plotID Plot ID of imaginary climate station

datetime Timestamp of record for station

Ta_200 Imaginary air temperature at 200 cm above ground

Source

Index

* datasets ext_vignette, 16 plot_description res_area, 22 sch_201707, 22	, 19 Statio Statio Statio Statio	on_G17, 26 on_G20, 26 on_G21, 27 on_G25, 27 on_G48, 28
sch_dgm, 23 Station_G06, 25 Station_G17, 26 Station_G20, 26 Station_G21, 27 Station_G25, 27 Station_G48, 28 Station_W10, 28	Statio Statio	on_W10, 28 on_W11, 29 on_W19, 29 on_W20, 30
Station_W11, 29 Station_W19, 29 Station_W20, 30		
autocorr, 3 calc.indices, 5 calc.model, 6 clim.sample, 9 climplot, 10 climpred, 12 crop.all, 14		
envi.create, 16 ext_vignette, 16		
fin.csv, 17 plot_description, 19 prep.csv, 19 proc.csv, 20		
res_area, 22		
sch_201707, 22 sch_dgm, 23 spat.csv, 24 Station_G06, 25		