7

TRIANGLES

EXERCISE 7.1

- **Q.1.** In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (see Fig.). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- **Sol.** In $\triangle ABC$ and $\triangle ABD$, we have $AC = AD \qquad [Given]$ $\angle CAB = \angle DAB$

[Q AB bisects ∠A] [Common]

AB = AB $\Delta ABC \cong \Delta ABD.$

[By SAS congruence] **Proved.** Therefore, BC = BD. (CPCT). **Ans.**

- **Q.2.** ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig.). Prove that
 - (i) $\triangle ABD \cong \triangle BAC$
 - (ii) BD = AC
 - (iii) $\angle ABD = \angle BAC$
- **Sol.** In the given figure, ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA.

In $\triangle ABD$ and $\triangle BAC$, we have

Proved

- **Q.3.** AD and BC are equal perpendiculars to a line segment AB (see Fig.). Show that CD bisects AB.
- Sol. In $\triangle AOD$ and $\triangle BOC$, we have,

[Vertically opposite angles)

 $\angle CBO = \angle DAO$ [Each = 90°] and AD = BC [Given]

∴ $\triangle AOD \cong \triangle BOC$ [By AAS congruence] Also, AO = BO [CPCT]

Also, AO = BO [C: Hence, CD bisects AB **Proved.**

- **Q.4.** l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig.). Show that $\triangle ABC \cong \triangle CDA$.
- **Sol.** In the given figure, ABCD is a parallelogram in which AC is a diagonal, i.e., AB | DC and BC || AD.

In \triangle ABC and \triangle CDA, we have,

$$\angle BAC = \angle DCA$$
 [Alternate angles]

[Alternate angles]

$$AC = AC$$
 [Common]

 \triangle ABC \cong \triangle CDA [By ASA congruence]

Proved.

- **Q.5.** Line l is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig.). Show that :
 - (i) $\triangle APB \cong \triangle AQB$
 - (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- **Sol.** In \triangle APB and \triangle AQB, we have

[l is the bisector of $\angle A$]

$$\angle APB = \angle AQB$$

 $[Each = 90^{\circ}]$ AB = AB[Common]

$$\therefore$$
 $\triangle APB \cong \triangle AQB$ [By AAS congruence]

Also, BP = BQ[By CPCT]

i.e., B is equidistant from the arms of $\angle A$. **Proved**

- **Q.6.** In the figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.
- **Sol.** $\angle BAD = \angle EAC$ [Given]

$$\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$$

[Adding ∠DAC to both sides]

$$\Rightarrow$$
 $\angle BAC = \angle EAC$... (i)

Now, in $\triangle ABC$ and $\triangle ADE$, we have

$$AC = AE$$
 [Given)

$$\Rightarrow$$
 $\angle BAC = \angle DAE \text{ [From (i)]}$

$$\triangle$$
 ABC \cong \triangle ADE [By SAS congruence]

$$\Rightarrow$$
 BC = DE. [CPCT] **Proved.**

- **Q.7.** AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig.). Show
- (i) $\Delta DAP \cong \Delta EBP$ (ii) AD = BE
- **Sol.** In $\triangle DAP$ and $\triangle EBP$, we have

$$\angle BAD = \angle ABE$$
 [Given]

$$[Q \angle EPA = \angle DPB \Rightarrow \angle EPA + \angle DPE]$$

$$= \angle DPB + \angle DPE]$$

- AD = BE[Bv CPCT] Proved.
- **Q.8.** In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig.). Show that:

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) $\angle DBC$ is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

$$(iv) \ CM = \frac{1}{2}AB$$

Sol. In $\triangle BMB$ and $\triangle DMC$, we have

(i)
$$DM = CM$$

$$BM = AM$$

[Q M is the mid-point of AB]

[Vertically opposite angles]

$$\therefore \Delta AMC \cong \Delta BMD$$

[By SAS]

Proved.

AC | BD [O \(\subseteq \text{DBM} \) and \(\subseteq \text{CAM} \) are alternate angles] (ii) $\angle DBC + \angle ACB = 180^{\circ}$ [Sum of co-interior angles]

[O \angle ACB = 90°] **Proved.**

$$\Rightarrow$$
 $\angle DBC = 90^{\circ}$ **Proved.**

(iii) In $\triangle DBC$ and $\triangle ACB$, we have

$$\begin{array}{ccc} DB = AC & [CPCT] \\ BC = BC & [Common] \\ \angle DBC = \angle ACB & [Each = 90^{\circ}] \end{array}$$

 \therefore $\triangle DBC \cong \triangle ACB$

 $[Each = 90^{\circ}]$ [By SAS] **Proved.**

[CPCT]

(iv) :. AB = CD

 $\Rightarrow \quad \frac{1}{2}AB = \frac{1}{2}CD$

Hence,
$$\frac{1}{2}AB = CM$$

[Q CM =
$$\frac{1}{2}$$
CD] **Proved.**

EXERCISE 7.2

Q.1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :

(i)
$$OB = OC$$
 (ii) AO bisects $\angle A$.

Sol. (i)
$$AB = AC \Rightarrow \angle ABC = \angle ACB$$

[Angles opposite to equal sides are equal]

$$\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

[Q OB and OC are bisectors of

 $\angle B$ and $\angle C$ respectively]

$$\Rightarrow$$
 OB = OC

[Sides opposite to equal angles are equal]

Again,
$$\angle \frac{1}{2}$$
ABC = $\frac{1}{2}$ \angle ACB

$$\Rightarrow \angle ABO = \angle ACO$$
 [: OB and OC are bisectors of $\angle B$

and ∠C respectively]

In $\triangle ABO$ and $\triangle ACO$, we have

$$AB = AC$$

[Given]

$$OB = OC$$

 $\angle ABO = \angle ACO$

[Proved above]

$$\therefore \Delta ABO \cong \Delta ACO$$

[Proved above] [SAS congruence]

[CPCT]

$$\Rightarrow$$
 AO bisects \angle A **Proved.**

Q.2. In $\triangle ABC$, AD is the perpendicular bisector of BC (see Fig.). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Sol. In \triangle ABD and \triangle ACD, we have

$$\angle ADB = \angle ADC$$
 [Each = 90°]

$$BD = CD [O AD bisects BC]$$

$$AD = AD$$
 [Common]

∴
$$\triangle ABD \cong \triangle ACD$$
 [SAS]
∴ $AB = AC$ [CPCT]

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**

Sol. In $\triangle ABC$,

$$AB = AC$$
 [Given]

$$\Rightarrow$$
 $\angle B = \angle C$ [Angles opposite to equal sides of a triangle are equal]

Now, in right triangles BFC and CEB,

- $\angle BFC = \angle CEB$ [Each = 90°] $\angle FBC = \angle ECB$ [Pproved above] BC = BC [Common] $\Delta BFC \cong \Delta CEB$ [AAS]
- Hence, BE = CF [CPCT] **Proved.**
- **Q.4.** ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig.). Show that
 - (i) $\triangle ABE \cong \triangle ACF$
 - (ii) AB = AC, i.e., ABC is an isosceles triangle.
 - **Sol.** (i) In \triangle ABE and ACF, we have

$$BE = CF$$

[Given]

$$\angle BAE = \angle CAF$$
 [Common]

 \angle BEA = \angle CFA [Each = 90°]

So,
$$\triangle ABE \cong \angle ACF$$

[AAS] Proved.

(ii) Also,
$$AB = AC$$
 [CPCT]

i.e., ABC is an isosceles triangle Proved.

Q.5. ABC and DBC are two isosceles triangles on the same base BC (see Fig.). Show that $\angle ABD = \angle ACD$.

$$AB = AC$$

$$\angle ABC = \angle ACB$$
 ...(i)

[Angles opposite to equal sides are equal]

Now, in isosceles ΔDCB , we have

$$BD = CD$$

$$\angle DBC = \angle DCB$$
 ...(ii)

[Angles opposite to equal sides are equal]

Adding (i) and (ii), we have

$$\angle ABC + \angle DBC = \angle ACB + \angle DCB$$

$$\Rightarrow$$
 \angle ABD = \angle ACD **Proved.**

Q.6. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig.). Show that \angle BCD is a right angle.

$$\angle ACB = \angle ABC$$
 ...(i)

[Angles opposite to equal sides are equal]

$$AB = AD$$
 [Given]

$$AD = AC$$
 [Q AB = AC]

$$\angle ACB + \angle ACD = \angle ABC + \angle ADC$$

 $\Rightarrow \angle BCD = \angle ABC + \angle ADC$...(iii)

Now, in $\triangle BCD$, we have

 $\angle BCD + \angle DBC + \angle BDC = 180^{\circ}$ [Angle sum property of a triangle]

Hence, $\angle BCD = 90^{\circ}$ or a right angle **Proved.**

- **Q.7.** ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.
- **Sol.** In $\triangle ABC$, we have

$$\angle A = 90^{\circ}$$
d AB = AC
$$\left\{ \text{Given} \right\}$$

We know that angles opposite to equal sides of an isosceles triangle are equal.

So,
$$\angle B = \angle C$$

Since, $\angle A = 90^{\circ}$, therefore sum of remaining two angles = 90°.

Hence, $\angle B = \angle C = 45^{\circ}$ Answer.

- **Q.8.** Show that the angles of an equilateral triangle are 60° each.
- **Sol.** As \triangle ABC is an equilateral.

So,
$$AB = BC = AC$$

Now,
$$AB = AC$$

$$\Rightarrow \angle ACB = \angle ABC$$
 ...(i)

[Angles opposite to equal sides of a triangle are equal]

Again,
$$BC = AC$$

$$\Rightarrow \angle BAC = \angle ABC$$
 ...(ii) [same reason]

Now, in
$$\triangle ABC$$
,

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ [Angle sum property of a triangle]

$$\Rightarrow$$
 $\angle ABC + \angle ABC + \angle ABC = 180^{\circ}$ [From (i) and (ii)]

$$\Rightarrow$$
 3 \angle ABC = 180°

$$\Rightarrow$$
 $\angle ABC = \frac{180^{\circ}}{3} = 60^{\circ}$

Also, from (i) and (ii)

$$\angle ACB = 60^{\circ} \text{ and } \angle BAC = 60^{\circ}$$

Hence, each angle of an equilateral triangle is 60° Proved.

EXERCISE 7.3

Q.1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that

- (ii) $\triangle ABP \cong \triangle ACP$ (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.
- **Sol.** (i) In \triangle ABD and \triangle ACD, we have

$$AD = AD$$
 [Common]

 \therefore \triangle ABD \cong \triangle ACD [SSS congruence]

Proved.

(ii) In \triangle ABP and \triangle ACP, we have

$$AB = AC$$

 $[O \angle BAD = \angle CAD, by CPCT]$

AP = AP

[Common]

[CPCT]

 $\triangle ABP \cong \triangle ACP$

[SAS congruence] Proved.

(iii) $\triangle ABD \cong \triangle ADC$ [From part (i)]

(CPCT)

[Given]

$$\Rightarrow$$
 180° - \angle ADB = 180° - \angle ADC

- ⇒ Also, from part (ii), ∠BAPD = ∠CAP
- ∴ AP bisects ĐA as well as ∠D. **Proved.**
- (iv) Now, BP = CP

and
$$\angle BPA = \angle CPA$$

[By CPCT]

 $\angle BPA + \angle CPA = 180^{\circ}$ [Linear pair] But

 $2\angle BPA = 180^{\circ}$ So,

Or. $\angle BPA = 90^{\circ}$

Since BP = CP, therefore AP is perpendicular bisector of BC.

- **Q.2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
 - (i) AD bisects BC (ii) AD bisects $\angle A$.

Sol. (i) In
$$\triangle ABD$$
 and $\triangle ACD$, we have

$$\angle ADB = \angle ADC$$
 [Each = 90°]

$$AB = AC$$
 [Given]

$$AD = AD$$
 [Common]

$$\therefore \Delta ABD \cong \Delta ACD$$
 [RHS congruence]

$$\therefore$$
 BD = CD [CPCT]

Hence, AD bisects BC.

Hence, AD bisects ∠A.. Proved.

Q.3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see Fig.). Show that:

- (i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$
- **Sol.** (i) In $\triangle ABM$ and $\triangle PQN$,

we have

BM = QN

$$[Q \text{ BC} = QR]$$

 $\Rightarrow \frac{1}{2}BC = \frac{1}{2}QR]$

$$AB = PQ$$

$$AM = PN$$

 $\therefore \triangle ABM \cong \triangle PQN$ [SSS congruence]

⇒ ∠ABM = ∠PQN

[CPCT]

(ii) Now, in $\triangle ABC$ and $\triangle PQR$, we have

$$AB = PQ$$

$$\angle ABC = \angle PQR$$
 [Proved above]

$$BC = QR$$
 [Given]

$$\therefore$$
 $\triangle ABC \cong \triangle PQR$ [SAS congruence] **Proved.**

Q.4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

[Given]

Sol. BE and CF are altitudes of a \triangle ABC.

$$\therefore \angle BEC = \angle CFB = 90^{\circ}$$

$$\therefore$$
 \triangle BEC \cong \triangle CFB [By RHS congruence rule]

$$\therefore \angle BCE = \angle CBF$$
 [CPCT]

Now, in
$$\triangle ABC$$
, $\angle B = \angle C$

$$AB = AC$$

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**

- **Q.5.** ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that $\angle B = \angle C$.
- **Sol.** Draw AP \perp BC.

In
$$\triangle$$
ABP and \triangle ACP, we have

$$AB = AC$$
 [Given]

$$\angle APB = \angle APC$$
 [Each = 90°]

$$\therefore \ \Delta ABP \ \cong \Delta ACP \qquad \qquad [By \ RHS \ congruence \ rule]$$

Also, $\angle B = \angle C$ **Proved.** [CPCT]

EXERCISE 7.4

- **Q.1.** Show that in a right angled triangle, the hypotenuse is the longest side.
- Sol. ABC is a right triangle, right angled at B.

Now,
$$\angle A + \angle C = 90^{\circ}$$

$$\Rightarrow$$
 Angles A and C are each less than 90°.

Now,
$$\angle B > \angle A$$

$$\Rightarrow$$
 AC > BC

Again,
$$\angle B > \angle C$$

$$\Rightarrow$$
 AC > AB ...(ii)

[Side opposite to greater angle is longer]

Hence, from (i) and (ii), we can say that AC (Hypotenuse) is the longest side. **Proved**

...(i)

Q.2. In the figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \angle PBC < \angle QCB. Show that AC > AB.

Sol.
$$\angle ABC + \angle PBC = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - \angle PBC$...(i)

Similarly, $\angle ACB = 180^{\circ} - \angle QCB$...(ii)

It is given that $\angle PBC < \angle QCB$

$$\therefore$$
 180° – \angle QCB < 180° – \angle PBC

$$\Rightarrow$$
 AB < AC

$$\Rightarrow$$
 AC > AB **Proved.**

Q.3. In the figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Sol. ∠B < ∠A

 \Rightarrow

BO ...(i) [Side opposite to greater angle is longer]

CO

Adding (i) and (ii)

$$BO + CO > AO + DO$$

$$\Rightarrow$$
 BC $>$ AD

- **Q.4.** AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig.). Show that $\angle A > \angle C$ and $\angle B > \angle D$.
- **Sol.** Join AC.

Mark the angles as shown in the figure. In $\triangle ABC$,

$$\Rightarrow$$
 $/2 > /4$

...(i) [Angle opposite to longer side is greater]

In $\triangle ADC$. CD > AD[CD is the longest side]

CD > AD [CD is the longest side]
$$\angle 1 > \angle 3$$
 ...(ii)

[Angle opposite to longer side is greater] Adding (i) and (ii), we have

$$\angle 2 + \angle 1 > \angle 4 + \angle 3$$

$$\Rightarrow$$
 $\angle A > \angle C$

Similarly, by joining BD, we can prove that $\angle B > \angle D$.

Sol.
$$PR > PQ$$

$$\angle PQR > \angle PRQ$$
 ...(i)

[Angle opposite to longer side is greater]

$$\angle QPS > \angle RPS$$
 [PS bisects $\angle QPR$] ...(ii)

In
$$\triangle PQS$$
, $\angle PQS + \angle QPS + \angle PSQ = 180^{\circ}$

$$\Rightarrow \angle PSQ = 180^{\circ} - (\angle PQS + \angle QPS)$$

Similarly in $\triangle PRS$, $\triangle PSR = 180^{\circ} - (\angle PRS + \angle RPS)$

$$\Rightarrow \angle PSR = 180^{\circ} - (\angle PRS + \angle QPS)$$
 [from (ii) ... (iv)

From (i), we know that $\angle PQS < \angle PSR$

So from (iii) and Iiv), ∠PSQ < ∠PSR

 $\Rightarrow \angle PSR > \angle PSQ$ **Proved**

$$OP \perp \stackrel{\leftrightarrow}{l}$$
.

We have to prove that OP < OQ, OP < OR and OP < OS.

In $\triangle OPQ$, $\angle P = 90^{\circ}$

- \therefore $\angle Q$ is an acute angle (i.e., $\angle Q < 90^{\circ}$)
- ∴ ∠Q < ∠P

Hence, OP < OQ

[Side opposite to greater angle is longer]

Similarly, we can prove that OP is shorter than OR, OS etc. Proved.

EXERCISE 7.5 (OPTIONAL)

- **Q.1.** ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC.
- **Sol.** Draw perpendicular bisectors of sides AB, BC and CA, which meets at O.

Hence, O is the required point.

Q.2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Sol.

A: where there are different slides and swings for children.

B : near which a man-made lake is situated,

 ${\it C:which}$ is near to a large parking and exit.

Where should an icecream parlour be set up so that maximum number of persons can approach it?

Draw bisectors $\angle A$, $\angle B$ and $\angle C$ of $\triangle ABC$. Let these angle bisectors meet at O.

O is the required point.

- **Sol.** Join AB, BC and CA to get a triangle ABC. Draw the perpendicular bisector of AB and BC. Let they meet at O. Then O is equidistant from A, B and C. Hence, the icecream pra
- **Q.4.** Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Sol.

