

Methods of Artificial Intelligence

3. Advanced Constraint Satisfaction Problems Nohayr Muhammad Winter Term 2022/2023 November 18th, 2022

Today...

- Examples and Definitions
- Consistency Concepts for CSPs
- Local Search for CSPs

Constraint Satisfaction Problems

Examples and Definition

- Assign frequency to every radio station (variable assignment)
- such that stations with overlapping regions use different frequencies (constraints)

Time Table Scheduling

- Assign (time slot, room) to every course (variable assignment)
- such that (constraints)
 - No two courses take place at the same time slot in the same room
 - Room requirements for the course are met
 - Courses given by the same lecturer take place in different time slots
 - Courses offered for the same study program and semester take place in different time slots

Constraint Satisfaction Problems (CSPs)

- \square A CSP is a tuple ({X₁, ..., X_n}, {D₁, ..., D_n}, R) consisting of:
 - variables X₁, ..., X_n
 - Each variable X_i has an associated *domain* D_i
 - E.g. {true, false}, {red, blue, green}, [2,...,10], *N*, *Z*, *R*
 - Set of constraints R
 - Constraints are defined on variables and restrict the possible values that can be assigned to variables. For example,
 - $X_7 \in \{\text{red}, \text{blue}, \text{green}\}$

(unary constraint)

 $X_1 \leq X_2$

(binary constraint)

 $X_3 + X_4 \ge 4 * X_5 + 2 * X_6$

(4-ary constraint)

UNIVERSITÄT

Solutions / Consistent Assignments

- (Complete) variable assignment: assigns to each variable a value from its domain
- Partial variable assignment: assigns values to a subset of all variables
- Consistent assignment: does not violate any constraints of CSP
- Solution: consistent complete assignment
- Consistent CSP: there exists a solution

- Main problem: Given CSP,
 - find a solution or
 - report that the CSP is inconsistent

- □ Variables: A, B, C, D, E, F
- □ Domains: {red, blue, green} for all variables

- □ Constraints
 - $\Box A \neq B$
 - $\Box A \neq C$
 - $\Box A \neq E$
 - \Box B \neq E
 - \square B \neq F
 - \Box C \neq E
 - \Box C \neq F
 - \Box D \neq F
 - $\Box E \neq F$

Representation of Constraints

- □ CSPs from a logical point of view:
 - \blacksquare Constraints correspond to first-order predicates $P(x_1, x_2, ..., x_n)$
 - All constraints must evaluate to true for a solution
 - $X_1 \le X_2$ P contains all pairs (v_1, v_2) over domains of X_1 and X_2 such that $v_1 \le v_2$
 - $X_3 + X_4 \ge 4 * X_5 + 2 * X_6$ P contains all 4-tuples (v_3 , v_4 , v_5 , v_6) over domains of variables such that $v_3 + v_4 \ge 4 * v_5 + 2 * v_6$
- □ Explicit representation: store all n-tuples in P
- □ Implicit representation: implement P as a function that takes n-tuples as arguments and returns true or false

- \square Consider variables X_1 , X_2 with domains $\{1,2,3\}$
- \square Consider constraint $X_1 < X_2$
- □ Logically, $X_1 < X_2$ is the binary predicate $P(X_1, X_2) = \{ (1,2), (1,3), (2,3) \}$
- □ { (1,2), (1,3), (2,3)} is the explicit representation of P. Assignment ($X_1=v_1$, $X_2=v_2$) satisfies P iff (v_1,v_2) ∈ P
- □ the implicit representation of P takes a pair (v_1,v_2) as argument and returns true iff $v_1 < v_2$.
 - Assignment $(X_1=v_1, X_2=v_2)$ satisfies P iff $P(v_1,v_2)$ = true

- \square Suppose X_1 and X_2 both have domain $\{1,2,...,20\}$,
- \square P(X₁, X₂) is the constraint X₁ < X₂,
- \square v is a variable assignment for X_1 and X_2 .
- □ How many operations do we have to perform in the worst-case to test whether v satisfies P if
 - □ P is represented explicitly
 - ☐ P is represented implicitly
- ☐ Which representation is more efficient?

- \square Logically, v satisfies P iff P(v(X₁),v(X₂)) is true
- □ If P is represented explicitly, we may have to enumerate all tuples in P to test whether $(v(X_1),v(X_2))$ is in P
- □ In our example the explicit representation of P contains 19+18+...+1 = 190 tuples that we may have to enumerate
- ☐ If P is represented implicitly, we only have to perform a single comparison
- \square Test $v(X_1) < v(X_2)$
- □ So the implicit representation is much more efficient

 Remember: if P is defined by a criterion that can be computed easily, choose implicit representation

Solving CSPs

- □ Naive Approach: Enumerate all possible variable assignments
- □ Backtracking Search: Assign values variable by variable and do backtracking (change value of last variable assignment) on violations
- □ runtime can depend heavily on chosen selection functions, e.g.:
 - □ First-Fail Variable Selection Heuristic (Minimum Remaining Values): select variable with minimal domain size
 - Degree Variable Selection Heuristic: select variable that is involved in largest number of constraints for unassigned variables
 - □ Least Constraining Value Value Selection Heuristic: select value that rules out fewest choices for neighbors
- But approaches do not take implications of constraints into account,
 i.e. they check too many configurations that could be ruled out in advance

□ We restrict our discussion to normalized CSPs that contain only unary and binary constraints

Domains: $D_1, D_2, ..., D_n$

Unary constraints: $P_1(X_1), P_2(X_2), ..., P_n(X_n),$

Binary constraints: $P_{1,2}(X_1, X_2), P_{1,3}(X_1, X_3), ..., P_{n-1,n}(X_{n-1}, X_n).$

□ This does not mean any loss of generality (we can transform each CSP into an 'equivalent' normalized CSP in polynomial time) (cf. e.g. http://ktiml.mff.cuni.cz/~bartak/constraints/binary.html)

Constraint Graph for Normalized CSPs

 Normalized CSPs can be easily represented in a constraint graph

- □ Node X_i can be identified with unary constraint P_i
- □ Edge between X_i and X_j can be identified with binary constraint P_{ij}

Consistency Concepts for CSPs

Node Consistency
Arc Consistency
Path Consistency

k-Consistency

- □ Basic idea: delete useless elements from domains of variables
- □ Can be used for pre-processing or in backtracking search after assigning a value to a variable
- ☐ The most important consistency concepts are
 - □ Node Consistency
 - □ Arc Consistency
- ☐ More involved concepts exist, but become harder to compute
- □ Tradeoff: If preprocessing time exceeds time for solving CSP directly, we do not gain anything

- \square We call X_i node consistent iff all $x \in D_i$ are in P_i
- □ We call CSP node consistent iff all nodes are node consistent
- \square We can easily make CSP node consistent by letting $D_i = P_i$
- □ For example, consider frequency assignment problem: If P_i allows only particular frequencies for X_i, we just modify D_i accordingly

- Consider frequency assignment problem with
- □ Variables: A, B, C, D, E, F
- \square Domains: $\{f_1, f_2, f_3\}$
- \square Suppose, we have a constraint A \neq f₁
 - ☐ Is problem node consistent?
 - □ How can you make CSP node consistent?

- Consider frequency assignment problem with
- □ Variables: A, B, C, D, E, F
- \square Domains: $\{f_1, f_2, f_3\}$
- \square Suppose, we have a constraint A \neq f₁
 - ☐ Is problem node consistent?

Answer: No because the domain of A contains f_1 .

□ How can you make CSP node consistent?

Answer: We set the domain of A to $\{f_2, f_3\}$ (delete f_1)

- □ We call X_i arc consistent with X_j iff for all $x \in D_i$ there is a $y \in D_j$ such that (x,y) is in P_{ij}
- □ Intuitively, for each value that X_i can take, X_j can take a value such that the binary constraint between X_i and X_j is satisfied
- ☐ We call CSP arc consistent iff all pairs of nodes are arc consistent
- □ Maintaining arc-consistency is more sophisticated

□ Consider the following Graph Coloring Problem

- □ What variables are arc consistent with each other?
- ☐ Is the CSP arc consistent?

- □ x is arc consistent with z
- □ y is arc consistent with x and z
- □ z is arc consistent with x
- □ x is not arc consistent with y
- □ z is not arc consistent with y
- ☐ Hence, the CSP is not arc consistent

 □ AC-1 is the easiest (but not the most efficient) algorithm for making CSPs arc consistent

```
 \begin{aligned} \textit{Revise}(X_i, X_j) & \textit{(make $X_i$ arc-consistent with $X_j$)} \\ \textbf{for each $v_i$ in $D_i$} \\ \textbf{if there is no $v_j$ in $D_j$ such that $(v_i, v_j)$ in $P_{ij}$} \\ \textit{delete $v_i$ from $D_i$} \end{aligned}
```

```
 \begin{array}{c} \textit{AC-1}(X,D,R) & \textit{(make all variables arc-consistent)} \\ \textbf{do} \\ \textbf{for each} \ \text{binary constraint P}_{ij} \\ \textit{Revise}(X_i,X_j) \\ \textit{Revise}(X_j,X_i) \\ \textbf{until all domains remain unchanged or domain becomes empty} \\ \end{array}
```


□ Consider again the following Graph Coloring Problem

- \square We start with P_{xy}
- \square We call Revise(x,y)
- \square For red in D_x there is no value v in D_y such that red \neq v
- \square Hence, we delete red from D_x
- \Box For blue in D_x , we can select red in D_v

- ☐ We now call Revise(y,x)
- \square For red in D_y , we can select blue in D_x

- □ We next look at P_{xz}
- \square We call Revise(x,z)
- \Box For blue in D_x , we can select red in D_z

- □ We now call Revise(z,x)
- \square For red in D_z , we can select blue in D_x
- \square For blue in D_z , there is no v in D_x such that blue \neq v
- \square Hence, we delete blue from D_z

- □ We next look at P_{yz}
- □ We call Revise(y,z)
- \square For red in D_y , there is no v in D_z such that red \neq v
- \square Hence, we delete red from D_v

- ☐ The domain of y is now empty
- ☐ Therefore, we know that the CSP is inconsistent and can stop

□ Note: we found inconsistency without assigning any values

Consistency Concepts and Consistency

- ☐ If we get an empty domain, while establishing node consistency or arc consistency, our CSP must be inconsistent
- □ However, if a CSP is node consistent and arc consistent and has non-empty domains it is not necessarily (globally) consistent

☐ The following CSP is both node consistent and arc consistent

- □ However, since there are only two values and the variables must take pairwise distinct values, the CSP is inconsistent
- □ Hence, node consistency and arc consistency are not sufficient for testing consistency

- □ Nodes i and j are path consistent with node m iff:
 - For every arc consistent assignment of i and j, there is an assignment to m that is arc consistent with both i and j
- □ x and y are not path consistent with z
 - □ (x=red, y= blue) is arc-consistent assignment. However, z=red is not arc-consistent with x and z=blue is not arc-consistent with y

Consistency Concepts and Consistency

The following CSP is node, arc and path consistent

☐ However, since there are only three values and the variables must take pairwise distinct values, the CSP is inconsistent

k-Consistency and Strong k-Consistency

k-consistency

Every consistent (k-1)-assignment can be extended to a consistent k-assignment

Intuitively: (1-consistency = node consistency); (2-consistency = arc consistency) and (3-consistency = path consistency) provided node consistency is guaranteed

Strong *k-consistency*

The problem is *j-consistent* for all $j \le k$

Solving CSPs with Backtracking Search

Local Search for CSPs

- □ Give a local search formulation for a general CSP
- □ Given variables with corresponding domains and constraints, define
 - □ State space
 - Neighborhood
 - Objective function

- □ State space: each complete variable assignment is a state
- Neighborhood: neighbors of a state (variable assignment) are obtained by changing the assignment of an arbitrary variable
- □ Hence, we have one neighbor for each
 - Variable and
 - each value in the domain of the variable (other than the current one)
- □ Objective function: value of state (variable assignment) is defined as
 - Number of constraints that are satisfied in state

Exercise: Genetic Algorithm for CSPs

- □ define a genetic algorithm for a general CSP
- □ Given variables with corresponding domains and constraints, define
 - □ Genes
 - Chromosomes
 - □ Fitness (value) of individuals
 - Mutation operation
- ☐ Illustrate reproduction by means of a small example

Solution: Genetic Algorithm for CSPs

- ☐ Genes: domain elements of all variables
- □ Chromosomes correspond to variable assignments
- □ Fitness: number of constraints that are satisfied
- □ Mutation operation: change a random gene
- Illustration: see Genetic Algorithms slides (8Queens, Traveling Salesman Problem)

Exercise: Local Search Solution

- □ What can you conclude if local search algorithm finds
 - Globally optimal solution?

(f(s) = number of constraints)

□ Locally optimal solution?

(f(s) < number of constraints)

- □ Globally optimal solution
 - □ globally optimal solution satisfies all constraints by definition
 - □ Hence, we found a solution for the CSP (CSP is consistent)
- □ Locally optimal solution
 - Locally optimal solution violates some constraints
 - □ The CSP may be inconsistent, but we may also just got stuck in a local optimum
 - □ We cannot conclude anything in this case
 - However, solution may be sufficient (soft constraints)

Solving CSPs with Local Search

Summary

- ☐ A constraint satisfaction problem (CSP) is given by
 - \blacksquare A set of *variables* $\{X_1,...,X_n\}$
 - a *domain* D_i for each variable(the possible values), where the whole space $D = D_1 \times ... \times D_n$ is the assignment space
 - A set of *constraints*, i.e. relations $R_k \subseteq D_{k_1} \times ... \times D_{k_m}$ for some domains $D_{k_1}, ..., D_{k_m}$
- ☐ The goal is to find an assignment that satisfies all constraints
- ☐ If no such assignment exists, the CSP is called inconsistent (and consistent otherwise)

- □ Naïve Approach
 - ☐ Generate the whole search tree and test
 - □ usually not practical because of tree size
- □ Backtracking Search
 - ☐ start with empty assignment
 - Systematically extend assignment using heuristics
- □ Local Search
 - □ Move through space of complete variable assignment
 - Maximize number of satisfied constraints
- □ Consistency Concepts
 - □ can be applied to simplify problem initially (preprocessing)
 - □ can be applied to simplify problem during backtracking search

Summary: Consistency Concepts

- \square Node consistency: $\forall x : x \in D_i \rightarrow P_i(x)$
- \square Arc consistency: $\forall x : x \in D_i \rightarrow (\exists y \in D_j : P_{i,j}(x,y))$
- □ Path consistency:

$$\forall x \in D_i, z \in D_j: P_{i,j}(x,z) \rightarrow (\exists y \in D_m: P_{i,m}(x,y) \land P_{m,j}(y,z))$$

- □ *k*-consistency
 - □ Any solution for k-1 variables can be extended to a solution for k variables
- □ Strong *k*-consistency
 - \square The problem is *j*-consistent for all $j \le k$

The presented slides are manily Dr. Tobias Thelen slides

Most topics of this week can be found in:

Russell, S., Norvig, P. Artificial Intelligence - A modern approach. Pearson Education: 2010.

More details on representing and solving CSPs can be found in:

Dechter, R. Constraint processing. Morgan Kaufmann: 2003.

Rossi, F., Van Beek, P., & Walsh, T. Handbook of constraint programming. Elsevier: 2006.