Notes 2

June 13, 2017

Let's try to think about this more generally. We want to design and experiment for red queen hypothesis and perform power analysis.

1 Empirical studies

What I should be looking at:

• From Auld et al. (2016): "heritable component, rapid parasite evolution, and temporally shifting parasite-mediate selection"

1.1 Not Redqueen?

• Michiels et al. (2001) says that their system does not match requirements of the red queen hypothesis (weak infection fitness cost). They think that there might be other factors involved.

2 Model

Michiels et al. (2001): heterozygote triploids are hard to distinguish so di-allelic representation is used Hakoyama and Iwasa (2004) tried to model Japanese crucian carp and showed that parasitism may explain the evolution of sex. They also show that coexistence of parthnogenetic complex is more likely than that of gynogenetic complex. Read this paper later to see how we want to analyze our model!

References

- Auld, S. K., S. K. Tinkler, and M. C. Tinsley (2016). Sex as a strategy against rapidly evolving parasites. In *Proc. R. Soc. B*, Volume 283, pp. 20162226. The Royal Society.
- Hakoyama, H. and Y. Iwasa (2004). Coexistence of a sexual and an unisexual form stabilized by parasites. Journal of theoretical biology 226(2), 185–194.
- Kumpulainen, T., A. Grapputo, J. Mappes, and M. Björklund (2004). Parasites and sexual reproduction in psychid moths. *Evolution* 58(7), 1511–1520.
- Michiels, N., L. Beukeboom, N. Pongratz, and J. Zeitlinger (2001). Parthenogenetic flatworms have more symbionts than their coexisting, sexual conspecifics, but does this support the red queen? *Journal of Evolutionary Biology* 14(1), 110–119.
- Šimková, A., M. Košař, L. Vetešník, and M. Vyskočilová (2013). Mhc genes and parasitism in carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. *BMC evolutionary biology* 13(1), 122.
- Slowinski, S. P., L. T. Morran, R. C. Parrish, E. R. Cui, A. Bhattacharya, C. M. Lively, and P. C. Phillips (2016). Coevolutionary interactions with parasites constrain the spread of self-fertilization into outcrossing host populations. *Evolution* 70(11), 2632–2639.

Verhoeven, K. J. and A. Biere (2013). Geographic parthenogenesis and plant-enemy interactions in the common dandelion. BMC evolutionary biology 13(1), 23.

Study	Host	Parasite	Experiment	Notes
Michiels et al. (2001)	Flatworm Schmidtea poly- chroa - obligate sexual diploid and parthenogenetic triploid	Amoeboid proto- zoan (Asexual)	Compare proportion of infected individuals in mixed samples with LRT; rate of infection	Highly heterogeneous spatial distribution; need longer study
Kumpulainen et al. (2004)	psychid moth	hymenopteran parasitoids	test prevalence of parasitoids	demonstrates cost of sex; no evi- dence for different reproduction mode preferring different space
Verhoeven and Biere (2013)	Dandelions - diploid sexual and triploid obligate apomicts	Microbial communities, fungus, and weevil	Experiment + testing infection prevalence in nature	See geographic parthenogenesis; they address that they might have a power problem
Šimková et al. (2013)	Gibel carp - sexual diploid and gyno- genetic triploid	metazoan para- sites	Comparison of MHC genes: do sexual individuals have higher variability + do asexual invidiauls suffer from higher parasite load	"Coexistence may be maintained by male mate choice or spatial and tem- poral extinction and recoloniza- tion"; need longer study
Auld et al. (2016)	Daphnia - partly sexual and asexual	Pasteuria ramosa	Time shift experiment (testing for proportion of infected and spores per host) with MCMCglmm	Unrealistic setting in nature; their study looks at within-host factors
Slowinski et al. (2016)	Caenorhabditis elegans - hermaphrodite and obligate sexual	Serratia marcescens	Introduction of mixed mating into outcrossing population and exposing different types of parasites - test selfing rates using ANOVA	parasite has to be coevolving