高等代数笔记: 特征值到标准型

晨锦辉永生之语

2025年4月29日

目录

1	初看特征值		
	1.1	特征值	2
	1.2	对角化	6
2	环、	域与多项式	9
	2.1	环与域	9
	2.2	同态与同构	15
	2.3	分式域	18
	2.4	多项式环与多项式函数	21
	2.5	域的特征	21
	2.6	理想	23
		2.6.1 理想	23
		2.6.2 商环	25
3	模		25
4	有理	· 	2 6
	4.1	线性映射和模结构	26
	4.2	有理标准形	26

1 初看特征值

1.1 特征值

给定线性空间 V 上的线性变换 A,我们想找到 V 的一组基 $\{e_1,e_2,\cdots,e_n\}$,使线性变换 A 在这组基下的表示矩阵为对角矩阵:

$$\begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix}$$

这时,若 $\alpha = k_1 e_1 + k_2 e_2 + \dots + k_n e_n$,则

$$\mathcal{A}\alpha = a_1k_1e_1 + a_2k_2e_2 + \dots + a_nk_ne_n.$$

线性变换 A 的表达式非常简单,线性变换 A 的许多性质也变得一目了然. 例如,若 a_1, a_2, \dots, a_r 不为零,而 $a_{r+1} = \dots = a_n = 0$,则 A 的秩为 r,且 Im A 就是由 $\{e_1, e_2, \dots, e_r\}$ 生成的子空间,而 Ker A 则是由 $\{e_{r+1}, \dots, e_n\}$ 生成的子空间.

我们知道一个线性变换在不同基下的表示矩阵是相似的. 因此用矩阵的语言重述上面提到的问题就是: 能否找到一类特别简单的矩阵, 使任一定矩阵都与这类矩阵中的某一个相似? 比如, 我们可以问: 是否所有的矩阵都相似于对角矩阵? 若不然,哪一类矩阵可以相似于对角矩阵?

若线性空间 V 可分解为

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_m, \tag{1}$$

其中每个 V_i 都是线性变换 A 的不变子空间,那么 A 可以表示为分块对角阵. 我们希望 (1) 式中的 V_i 越小越好. 最小的非零子空间是一维子空间. 若 V_i 是一维子空间,x 是其中的任一非零向量,A 在 V_i 上的作用相当于一个数乘,于是存在 $\lambda_0 \in \mathbb{K}$,使

$$A(x) = \lambda_0 x$$
.

定义 1.1.1: 特征值与特征向量

设 A 是数域 \mathbb{K} 上线性空间 V 上的线性变换,若 $\lambda_0 \in \mathbb{K}$, $x \in V$ 且 $x \neq 0$,使

$$\mathcal{A}(x) = \lambda_0 x,\tag{2}$$

则称 λ_0 是线性变换 A 的一个特征值,向量 x 称为 A 关于特征值 λ_0 的特征向量.

现在设A在某组基下的表示矩阵为A,向量x在这组基下可表示为一个列向量 α ,这时(2)式等价于

$$A\alpha = \lambda_0 \alpha \iff (\lambda_0 I_n - A)\alpha = 0. \tag{3}$$

因此,类似线性变换,我们可以定义矩阵的特征值、特征向量、特征子空间.

定义 1.1.2: 矩阵的特征值、特征向量和特征子空间

设 A 是数域 \mathbb{K} 上的 n 阶方阵,若存在 $\lambda_0 \in \mathbb{K}$ 及 n 维非零列向量 α ,使 $A\alpha = \lambda_0$ 成立,则称 λ_0 为矩阵 A 的一个**特征值**, α 为 A 关于特征值 λ_0 的**特征向量**. 齐次线性方程组 $(\lambda_0 I_n - A)x = 0$ 的解空间 V_{λ_0} 称为 A 关于特征值 λ_0 的**特征子空间**.

命题 1.1.1: 特征子空间

A 关于特征值 λ_0 的全体特征向量再加上零向量构成 V 的一个子空间.

证明. 若向量 x, y 是关于特征值 λ_0 的特征向量,则

$$A(x+y) = A(x) + A(y) = \lambda_0 x + \lambda_0 y = \lambda_0 (x+y),$$

$$A(cx) = cA(x) = c\lambda_0 x = \lambda_0 (cx).$$

因此 A 的关于特征值 λ_0 的全体特征向量加上零向量构成 V 的子空间,记为 V_{λ_0} ,称为 A 的关于特征值 λ_0 的**特征子空间**.

显然 V_{λ_0} 是 A 的不变子空间.

我们已经定义了线性变换与矩阵的特征值,现在的问题是如果来求一个线性变换或一个矩阵的特征值?从 (6.1.4) 式可以看出,要使 α 非零,必须 $|\lambda_0 I_n - A| = 0$. 反过来,若 $\lambda_0 \in \mathbb{K}$ 且 $|\lambda_0 I_n - A| = 0$,则 (6.1.4) 式有非零解 α . 因此寻找矩阵 A 的特征值等价于寻找行列式 $|\lambda I_n - A| = 0$ 时 λ 的值.设 $A = (a_{ij})$,则

$$|\lambda \mathbf{I}_{n} - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$
(6.1.5)

是一个以 λ 为未知数的n次首一多项式.

定义 1.1.3: 特征多项式

设 A 是 n 阶方阵, 称 $|\lambda I_n - A|$ 为 A 的特征多项式.

由上面的讨论可得矩阵 A 的特征值就是它的特征多项式的根.

命题 1.1.2

设 A 是数域 K 上的 n 级矩阵,则 A 的特征多项式 $|\lambda I - A|$ 是一个 n 次多项式, λ^n 的系数是 1, λ^{n-1} 的系数等于 -tr(A),常数项为 $(-1)^n|A|$, λ^{n-k} 的系数为 A 的所有 k 阶主子式的和乘以 $(-1)^k$, $1 \le k < n$.

证明. 设 $\mathbf{A} = (a_{ii})$ 的列向量组是 a_1, a_2, \dots, a_n .

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - a_{11} & 0 - a_{12} & \cdots & 0 - a_{1n} \\ 0 - a_{21} & \lambda - a_{22} & \cdots & 0 - a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 - a_{n1} & 0 - a_{n2} & \cdots & 0 - a_{nn} \end{vmatrix}$$

利用行列式的性质, $|\lambda I - A|$ 可以拆成 2^n 个行列式的和,它们是

$$\begin{vmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} \cdot \begin{vmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & -a_{nn} \end{vmatrix},$$

$$|(-a_1,\cdots,-a_{j_1-1},\lambda e_{j_1},-a_{j_1+1},\cdots,\lambda e_{j_2},\cdots,-a_n)|$$

其中 $1 \leq j_1 < \cdots < j_{n-k} \leq n, k = 1, 2, \cdots, n-1.$

上述第 1 个行列式等于 λ^n , 第 2 个行列式等于 $(-1)^k |A|$, 对于第 3 种类型的行列式,按 第 j_1, j_2, \dots, j_{n-k} 列展开,这 n-k 列元素组成的 n-k 阶子式只有一个不为 0:

$$\begin{vmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} = \lambda^{n-k},$$

其余 n-k 阶子式全为 0. 这个不等于 0 的 n-k 阶子式的代数余子式为

$$(-1)^{(j_1+j_2+\cdots+j_{n-k})+(j_1+j_2+\cdots+j_{n-k})}(-\mathbf{A})_{j'_1,j'_2,\cdots,j'_k} = (-1)^k \mathbf{A}_{j'_1,j'_2,\cdots,j'_k}$$

其中 $(j_1', j_2', \dots, j_k') = (1, 2, \dots, n) \setminus \{j_1, j_2, \dots, j_{n-k}\}$,且 $j_1' < j_2' < \dots < j_k'$. 因此第 3 种类型的行列式的值为

$$(-1)^k A_{j'_1,j'_2,\cdots,j'_k} \lambda^{n-k}$$
.

由于 $1 \leqslant j_1' < j_2' < \dots < j_k' \leqslant n$,因此 $|\lambda I - A|$ 中 λ^{n-k} 的系数为

$$(-1)^k \sum_{1 \leqslant j_1' < j_2' < \dots < j_k' \leqslant n} A_{j_1', j_2', \dots, j_k'},$$

其中 $k = 1, 2, \dots, n-1$. 特别地, 当 k = 1 时, 得到 $|\lambda I - A|$ 中 λ^{n-1} 的系数为

$$-(a_{11} + a_{22} + \dots + a_{nn}) = -\text{tr}(A).$$

因此

$$|\lambda \mathbf{I} - \mathbf{A}| = \lambda^n - \operatorname{tr}(\mathbf{A})\lambda^{n-1} + \dots + (-1)^k \sum_{1 \le j_1' < j_2' < \dots < j_k' \le n} \mathbf{A}_{j_1', j_2', \dots, j_k'} \lambda^{n-k} + \dots + (-1)^n |\mathbf{A}|.$$

定义 1.1.4: 代数重数和几何重数

设 A 是 n 维线性空间 V 上的线性变换, λ_0 是 A 的一个特征值, V_0 是属于 λ_0 的特征 子空间,称 $\dim V_0$ 为 λ_0 的**度数**或**几何重数**. λ_0 作为 A 的特征多项式根的重数称为 λ_0 的重数或代数重数.

命题 1.1.3: 几何重数小于等于代数重数

设 A 是 n 维线性空间 V 上的线性变换, λ_0 是 A 的一个特征值,则 λ_0 的度数总是小于等于 λ_0 的重数.

证明. 设特征值 λ_0 的重数为 m,度数为 t,又 V_0 是属于 λ_0 的特征子空间,则 $\dim V_0 = t$. 设 $\{e_1, \dots, e_t\}$ 是 V_0 的一组基. 由于 V_0 中的非零向量都是 A 关于 λ_0 的特征向量,故

$$\mathcal{A}(e_i) = \lambda_0 e_i, \quad i = 1, \dots, t.$$

将 $\{e_1, \cdots, e_t\}$ 扩充为 V 的一组基,记为 $\{e_1, \cdots, e_t, e_{t+1}, \cdots, e_n\}$,则 A 在这组基下的表示矩阵为

$$A = egin{pmatrix} \lambda_0 I_t & * \ O & B \end{pmatrix},$$

其中 B 是一个 n-t 阶方阵. 因此,线性变换 A 的特征多项式具有如下形状:

$$|\lambda I_V - \mathcal{A}| = |\lambda I_n - A| = (\lambda - \lambda_0)^t |\lambda I_{n-t} - B|,$$

这表明 λ_0 的重数至少为 t,即 $t \leq m$.

定义 1.1.5: 特征向量系

设 $A \in n$ 维线性空间 V 上的线性变换,若 A 的任一特征值的度数等于重数,则称 A 有完全的特征向量系.

定理 1.1.1. 若 B 与 A 相似,则 B 与 A 具有相同的特征多项式,从而具有相同的特征值 (计重数).

证明. 设 $B = P^{-1}AP$, 其中 P 是可逆阵, 则

$$|\lambda I_n - B| = |P^{-1}(\lambda I_n - A)P| = |P^{-1}||\lambda I_n - A||P| = |\lambda I_n - A|.$$

因此相似矩阵必有相同的特征多项式,从而必有相同的特征值(计重数).

1.2 对角化

定义 1.2.1: 可对角化线性变换和矩阵

设 $n \in \mathbb{Z}_{\geq 0}$,若 n 维线性空间 V 有基 $\{e_1, e_2, \cdots, e_n\}$ 使得每个 e_i 都是 T 的特征向量,则称 T 在 \mathbb{F} 上是**可对角化的**.

若将矩阵 $A \in M_{n \times n}(\mathbb{F})$ 看作线性映射 $\mathbb{F}^n \to \mathbb{F}^n$,则 A 在 \mathbb{F} 上可对角化相当于存在可逆矩阵 $\mathbb{P} \in M_{n \times n}(\mathbb{F})$,使得 $T = P^{-1}AP$ 为对角阵.

定理 1.2.1 (可对角化的条件 1). 数域 \mathbb{K} 上 n 级矩阵 A 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量 a_1, a_2, \cdots, a_n .

证明. 若 n 维线性空间 V 上的线性变换 A 在某组基 $\{e_1, e_2, \cdots, e_n\}$ 下的表示矩阵为对角阵: $\operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$, 此时 $A(e_i) = \lambda_i e_i$,即 e_1, e_2, \cdots, e_n 是 A 的特征向量,于是 A 有 n 个线性无关的特征向量.

反过来,若 n 维线性空间 V 上的线性变换 A 有 n 个线性无关的特征向量 e_1, e_2, \cdots, e_n ,则这组向量构成了 V 的一组基,且 A 在这组基下的表示矩阵显然是一个对角阵.

定理 1.2.2. 若 $\lambda_1, \lambda_2, \cdots, \lambda_k$ 为 n 维线性空间 V 上的线性变换 A 的不同的特征值,则

$$V_1 + V_2 + \cdots + V_k = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$
.

证明. 对 k 用数学归纳法. 若 k=1,结论显然成立. 现设对 k-1 个不同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_{k-1}$,它们相应的特征子空间 $V_1, V_2, \cdots, V_{k-1}$ 之和是直和. 我们要证明 $V_1, V_2, \cdots, V_{k-1}, V_k$ 之和为直和,这只需证明:

$$V_k \cap (V_1 + V_2 + \dots + V_{k-1}) = \{\mathbf{0}\}\tag{4}$$

即可,设 $v \in V_k \cap (V_1 + V_2 + \cdots + V_{k-1})$,则

$$v = v_1 + v_2 + \dots + v_{k-1}, \tag{5}$$

其中 $v_i \in V_i (i = 1, 2, \dots, k-1)$. 在 (5)式两边作用 A, 得

$$\mathcal{A}(v) = \mathcal{A}(v_1) + \mathcal{A}(v_2) + \dots + \mathcal{A}(v_{k-1}).$$

但 $v, v_1, v_2, \cdots, v_{k-1}$ 都是 A 的特征向量或零向量,因此

$$\lambda_k v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{k-1} v_{k-1}. \tag{6}$$

在 (5) 式两边乘以 λ_k 减去 (6) 式得

$$\{0\} = (\lambda_k - \lambda_1)v_1 + (\lambda_k - \lambda_2)v_2 + \dots + (\lambda_k - \lambda_{k-1})v_{k-1}.$$

由归纳假设, $V_1 + V_2 + \cdots + V_{k-1}$ 是直和,因此 $(\lambda_k - \lambda_i)v_i = 0$,而 $\lambda_k - \lambda_i \neq 0$,从而 $v_i = 0 (i = 1, 2, \dots, k-1)$. 这就证明了(4) 式.

推论 1.1

线性变换 A 属于不同特征值的特征向量必线性无关.

推论 1.2

若n 维线性空间V上的线性变换A有n个不同的特征值,则A必可对角化.

推论 1.3

若线性变换 A 的特征多项式没有重根,则 A 可对角化.

注意推论1.3只是可对角化的充分条件而非必要条件,比如说纯量变换 $A = cI_V$ 当然可对角化,但 A 的 n 个特征值都是 c. 由定理1.2.2,我们还可以得到可对角化的另一个充分必要条件.

推论 1.4: 可对角化的充分必要条件

设 A 是 n 维线性空间 V 上的线性变换, $\lambda_1, \lambda_2, \dots, \lambda_k$ 是 A 的全部不同的特征值, $V_i(i=1,2,\dots,k)$ 是特征值 λ_i 的特征子空间,则 A 可对角化的充分必要条件是

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$
.

证明, 先证充分性, 设

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$
,

分别取 V_i 的一组基 $\{e_{i1}, e_{i2}, \cdots, e_{it_i}\}(i=1,2,\cdots,k)$,则这些向量拼成了 V 的一组基,并且它们都是 A 的特征向量. 因此 A 有 n 个线性无关的特征向量,从而 A 可对角化.

再证必要性. 设 A 可对角化,则 A 有 n 个线性无关的特征向量 $\{e_1, e_2, \cdots, e_n\}$,它们构成了 V 的一组基. 不失一般性,可设这组基中前 t_1 个是关于特征值 λ_1 的特征向量;接下去的 t_2 个是关于特征值 λ_2 的特征向量; ……;最后 t_k 个是关于特征值 λ_k 的特征向量. 对任一 $\alpha \in V$,设 $\alpha = a_1e_1 + a_2e_2 + \cdots + a_ne_n$,则 α 可写成 V_1, V_2, \cdots, V_k 中向量之和,因此由定理1.2.2可得

$$V = V_1 + V_2 + \dots + V_k = V_1 \oplus V_2 \oplus \dots \oplus V_k.$$

定理 1.2.3 (可对角化的充分必要条件). 设 $A \neq n$ 维线性空间 V 上的线性变换,则 A 可对角化的充分必要条件是 A 有完全的特征向量系,即几何重数等于代数重数.

证明. 设 $\lambda_1, \lambda_2, \dots, \lambda_k$ 是 A 的全部不同的特征值,它们对应的特征子空间、重数和度数分别记为 $V_i, m_i, t_i (i=1,2,\dots,k)$. 由重数的定义1.1.4以及命题1.1.3可知

$$m_1 + m_2 + \cdots + m_k = n, \quad t_i \leq m_i, \quad i = 1, 2, \cdots, k.$$

由推论1.3, 我们只要证明 A 有完全的特征向量系当且仅当 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$. 若

 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, \square

$$n = \dim V = \dim(V_1 \oplus V_2 \oplus \cdots \oplus V_k) = \dim V_1 + \dim V_2 + \cdots + \dim V_k = \sum_{i=1}^k t_i \leqslant \sum_{i=1}^k m_i = n,$$

因此 $t_i = m_i (i = 1, 2, \dots, k)$,即 \mathcal{A} 有完全的特征向量系. 反过来,若 \mathcal{A} 有完全的特征向量系,则

$$\dim(V_1 \oplus V_2 \oplus \cdots \oplus V_k) = \sum_{i=1}^k t_i = \sum_{i=1}^k m_i = n = \dim V,$$

从而 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$ 成立.

推论 1.5

n 维线性空间 V 上的线性变换 A 可对角化当且仅当 A 的属于不同特征值的特征子空间的维数之和等于 n.

2 环、域与多项式

2.1 环与域

非空集 S 上的 n 元运算($n \in \mathbb{Z}_{\geq 1}$)无非是指一个映射 $S^n \to S$; 譬如加法 + 和乘法 · 都是 \mathbb{Z} 上的二元运算. 对于一般的二元运算

$$\star: S \times S \rightarrow S$$
:

习惯的做法是将 $\star(s_1, s_2)$ 写成 $s_1 \star s_2$. 对于可以理解为某种乘法的运算,通常以·标记; 简写 $s_1 s_2 = s_1 \cdot s_2$ 也是常用的.

定义 2.1.1: 环

设 R 是非空集合,在 R 上定义了二元运算: $+: R \times R \to R$ 和 $\cdot: R \times R \to R$,对任意的 $x, y, z \in R$,使得以下条件成立:

- 1. 加法运算满足以下条件:
 - (1) 结合律: (x + y) + z = x + (y + z);
 - (2) 零元性质: $x + 0_R = x = 0_R + x$.
 - (3) 交換律: x + y = y + x.
 - (4) 加法逆元: 对所有 x 皆存在 -x 使得 $x + (-x) = 0_R$.
- 2. 乘法运算 $x \cdot y$ 也简写为 xy, 它满足以下条件:

- (1) 结合律: (xy)z = x(yz);
- (2) 幺元性质^a: $x \cdot 1_R = x = 1_R \cdot x$;
- 3. 乘法对加法满足
 - 分配律: (x + y)z = xz + yz, z(x + y) = zx + zy.

则称 $(R, +, \cdot, 0_R, 1_R)$ 为一个环. 不致混淆时,我们也把 $0_R, 1_R$ 简记为 0, 1,并以 R 代表 $(R, +, \cdot, 0_R, 1_R)$. 为了方便,我们也将 x + (-y) 写作 x - y.

"不同的教材对环的定义不同体现在是否含有乘法幺元,例如参考书 [5] 中定义不含乘法幺元(即对乘 法构成半群),而参考书 [6] 中定义含有乘法幺元. 含有乘法幺元的环具有更多好的性质,因此本笔记的 环均指**含幺环**.

由环的定义不难推出如下性质:

- 1. 结合律确保任意有限多个元素的加法和乘法可以不带括号地写作 x + y + z, xyz 等.
- 2. 分配律具有双边的版本:

$$a(x + y)b = (ax + ay)b = axb + ayb.$$

3. 加法和乘法幺元1都由各自的幺元性质唯一确定.

证明. 设 0_R 和 $0_R'$ 皆满足加法幺元性质, 1_R 和 $1_R'$ 皆满足乘法幺元性质, 则

$$0_R = 0_R + 0_R' = 0_R', \quad 1_R = 1_R \cdot 1_R' = 1_R'.$$

- 4. 加法满足消去律: 若 x + y = x' + y, 等式两边同加 -y, 应用加法结合律得 x = x + y + (-y) = x' + y + (-y) = x'.
- 5. 任何 x 的加法逆元 -x 皆唯一, 这是因为若 x + x' = 0 = x + x'', 则加法消去律蕴涵 x' = x''. 因此取加法逆元 $x \mapsto -x$ 也可以视为 R 上的一元运算.
- 6. 从加法逆元的唯一性和 x + (-x) = 0 = (-x) + x 立见 -(-x) = x.
- 7. 恒等式 $x \cdot 0 = 0 = 0 \cdot x$ 成立. 以第一个等号为例, 我们有 $x \cdot 0 = x \cdot (0 + 0) = x \cdot 0 + x \cdot 0$, 对两端应用消去律可得 $x \cdot 0 = 0$.
- 8. 恒等式 (-x)y = -xy = x(-y) 成立, 这是因为

$$(-x)y + xy = (-x + x)y = 0 \cdot y = 0, \quad x(-y) + xy = x(-y + y) = x \cdot 0 = 0$$

和加法逆元的唯一性.

¹也就是单位元,加法幺元又称零元.

9. 作为上式的应用, 我们有 $(-1) \cdot y = -y$ 和 $-x = x \cdot (-1)$; 特别地, 代入 x = -1 给出 $(-1) \cdot (-1) = 1$.

注记. 最平凡的环是零环:这是只有单个元素 1=0 的环. 另一方面,非零环必然满足 $1 \neq 0$, 否则任何 x 都满足 $x=x\cdot 1=x\cdot 0=0$.

例 2.1.1: Gauss 整数环

我们经常遇到的很多数的集合,在数的普通加法和乘法下都构成环. 例如,任何数域都是环. 除此之外,很多本身不是域的数的集合也构成环. 例如,全体整数的集合 \mathbb{Z} 在加 法和乘法下也构成环. 现设 $m \in \mathbb{Z}$,令

$$\mathbb{Z}[\sqrt{m}] = \{a + b\sqrt{m} \mid a, b \in \mathbb{Z}\}.$$

则 $\mathbb{Z}[\sqrt{m}]$ 也构成环. 特别地, 当 m=-1 时有

$$\mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}.$$

这是历史上非常著名的环的例子, 称为 Gauss 整数环.

例 2.1.2: 多项式环与矩阵环

项式的集合和矩阵的集合都构成环. 具体来说,设 \mathbb{P} 为一个数域,令 $\mathbb{P}[x]$ 为 \mathbb{P} 上全体以 x 为文字的一元多项式的集合,则 $\mathbb{P}[x]$ 在多项式的加法和乘法下构成环,称为数域 \mathbb{P} 上的 一元多项式环,或简称为 \mathbb{P} 上的多项式环. 类似地,记 $\mathbb{P}^{n \times n}$ 为 \mathbb{P} 上全体矩阵构成的集合,则 $\mathbb{P}^{n \times n}$ 在矩阵的加法和乘法下构成环,称为 \mathbb{P} 上的 n 阶方阵环.

例 2.1.3: 某些函数构成的环

记实数轴上全体连续函数构成的集合为 $C(\mathbb{R})$,定义加法与乘法为

$$(f+g)(x) = f(x) + g(x),$$

$$(fg)(x) = f(x)g(x), \quad x \in \mathbb{R}, f, g \in C(\mathbb{R}),$$

则容易验证 $C(\mathbb{R})$ 构成环. 同样地,记 \mathbb{R} 上全体光滑函数(即具有任何阶的连续导数)的集合为 $C^{\infty}(\mathbb{R})$,则在上述两种运算下 $C^{\infty}(\mathbb{R})$ 构成环.

上述环有多种形式的推广. 例如,对任何闭区间 $[a,b] \subset \mathbb{R}$,设 C([a,b]) 为 [a,b] 上全体连续函数构成的集合,则 C([a,b]) 在上述两种运算下构成环. 如果考虑多元函数,则欧几里得空间 \mathbb{R}^n 上全体光滑函数的集合 $C^{\infty}(\mathbb{R}^n)$ 在上述加法和乘法下构成环. 对 $C^{\infty}(\mathbb{R}^n)$ 的研究在微分几何中具有重要意义.

对于任意 $n \in \mathbb{Z}_{\geq 0}$ 和 $r \in \mathbb{R}$, 我们引入自明的写法

$$n \cdot r = nr := \underbrace{r + \dots + r}_{n \text{ in}}, \quad n \geqslant 1,$$

$$0 \cdot r := 0, \quad (-n) \cdot r = (-(n \cdot r)) := -(n \cdot r)$$

$$(7)$$

容易验证

$$n(r + r') = nr + nr', \quad (n + m)r = nr + mr,$$

 $(nm)r = n(mr), \quad (nr)r' = n(rr'),$
 $r(n \cdot 1_R) = nr = (n \cdot 1_R)r$ (8)

对所有 $n, m \in \mathbb{Z}$ 和 $r, r' \in R$ 皆成立.

对于带有二元运算 \star 的非空集 S 及其子集 S', 如果对所有 $s_1, s_2 \in S'$ 都有 $s_1 \star s_2 \in S'$, 则我们顺理成章地说 S' 对运算 \star **封闭**, 对于一般的 n 元运算当然也有类似的说法. 封闭性可以用来定义代数结构的子结构, 以下仍以环为例.

定义 2.1.2: 子环

如果 R 的子集 R_0 包含 0_R , 1_R , 而且在加法, 乘法运算和加法取逆 $x \mapsto -x$ 之下封闭,则 $(R_0, +, \cdot, 0_R, 1_R)$ 也是环, 称为 R 的子环.

例 2.1.4: 环的中心

环 R 的中心定义为

$$Z(R) := \{ z \in R : \forall x \in R, zx = xz \}.$$

容易看出 Z(R) 是 R 的子环.

定义 2.1.3: 逆

设 x 是环 R 的元素. 若存在 $y \in R$ 使得 xy = 1 (或 yx = 1), 则称 y 为 x 的**右逆** (或 **左逆**), 而 x 右可逆 (或左可逆). 若 x 左右皆可逆, 则称 x **可逆**. 由 R 的可逆元构成的子集记为 R^{\times} .

我们可以证明:

引理 2.1

如果环 R 的元素 x 可逆, 则 x 的左逆也必然是右逆, 而且存在唯一的 $x^{-1} \in R$ 使得 $x^{-1}x = 1 = xx^{-1}$; 此时 $(x^{-1})^{-1} = x$.

证明. 设x可逆,x为其左逆而 x_R 为其右逆. 由乘法结合律有

$$x_R = 1 \cdot x_R = (x_L \cdot x) \cdot x_R = x_L \cdot (x \cdot x_R) = x_L \cdot 1 = x_L.$$

这就说明左逆等于右逆, 反之亦然.

另一方面,如果 x_L 和 x_L' 都是 x 的左逆, x_R 和 x_R' 都是 x 的右逆, 则将左逆和右逆的四种组合代入上式, 可得

$$x_L = x_R, \quad x_L = x_R', \quad x_L' = x_R, \quad x_L' = x_R';$$

特别地, $x_L = x_L'$ 而 $x_R = x_R'$. 综上, 在 x 可逆的前提下, 左逆等于有右逆, 并且唯一, 可以合理地记为 x^{-1} .

注意到 R^{\times} 包含 1 (显然 $1^{-1}=1$), 而且对乘法运算封闭: 从 $y^{-1}x^{-1}xy=1=xyy^{-1}x^{-1}$ 可得

$$(xy)^{-1} = y^{-1}x^{-1}, \quad x, y \in R^{\times}.$$

进一步, 性质 $(x^{-1})^{-1} = x$ 说明 R^{\times} 对取逆运算 $x \mapsto x^{-1}$ 也封闭. 对于环中的元素 $r \in R$ 及 其 $n \in \mathbb{Z}_{\geq 1}$, 我们记

$$r^n = \underbrace{r \cdots r}_{n \text{ in}};$$

此外 $r^0 := 1$. 若 $r \in \mathbb{R}^{\times}$, 则进一步记

$$r^{-n} := (r^n)^{-1} = (r^{-1})^n, \quad n \in \mathbb{Z}_{\geqslant 1}.$$

我们总有等式 $r^{m+n} = r^m r^n$; 当 r 可逆时, 此式对 m 或 n 为负的情形同样成立. 同理, $r^{mn} = (r^m)^n$.

定义 2.1.4: 交换环

果环 R 的乘法满足交换律 xy = yx, 则称 R 为交换环.

因此 R 是交换环当且仅当 Z(R) = R.

定义 2.1.5: 交换环与域

满足 $R^* = R \setminus \{0\}$ (换言之:零不可逆,而非零元皆可逆)的环称为**除环**.交换除环称为域.域的子环如果也构成域,则称之为**子域**.

由于域的乘法顺序可换, 在域中可以合理地将 xy^{-1} 写作 x/y 或 $\frac{x}{y}$, 前提是 $y \neq 0$.

例 2.1.5

对于寻常的乘法和加法运算, $\mathbb C$ 是域, 而 $\mathbb R$, $\mathbb Q$ 都是 $\mathbb C$ 的子域, 而子环 $\mathbb Z$ 不是域; 事实上 $\mathbb Z^{\times}=\{\pm 1\}.$

定义 2.1.6: 整环

非零交换环 R 若满足 $x, y \neq 0 \implies xy \neq 0$, 则称为整环.

整环的子环显然也是整环. 在整环中乘法对所有非零元都有消去律, 这是因为 $x \neq 0$ 和 xy = xz 蕴涵 x(y-z) = 0, 因而蕴涵 y = z. 域自动是整环, 这是因为 $x \neq 0$ 和 xy = 0 给出 $y = x^{-1}xy = x^{-1} \cdot 0 = 0$.

例 2.1.6: 同余类构成的环

设 $n \in \mathbb{Z}$. 选定 $n \in \mathbb{Z}$, 记 \mathbb{Z} 对等价关系 $\operatorname{mod} n$ 的商集^a为 $\mathbb{Z}/n\mathbb{Z}$, 或简记为 $\mathbb{Z}n$; 其中的等价类也称为 $\operatorname{mod} n$ **同余类**. 在 $\mathbb{Z}/n\mathbb{Z}$ 上定义加法和乘法运算如下

$$[x][y] := [xy], \quad [x] + [y] := [x + y],$$

其中 $x, y \in \mathbb{Z}$. 运算是良定义的, 也就是说运算产物仅依赖同余类 [x] 和 [y] 而不是 x 和 y 的具体取法, 这是容易由初等数论的知识证明的. 取 $0_{\mathbb{Z}/n\mathbb{Z}} := [0], 1_{\mathbb{Z}/n\mathbb{Z}} := [1], 立 见 <math>\mathbb{Z}/n\mathbb{Z}$ 对此运算成为交换环. 注意到 $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$ 而 $\mathbb{Z}/(-n)\mathbb{Z} = \mathbb{Z}/n\mathbb{Z}$, 因此以下不妨 设 $n \in \mathbb{Z}_{\geq 1}$, 此时 $\mathbb{Z}/n\mathbb{Z}$ 恰有 n 个元素; 它是零环当且仅当 n = 1.

 a 请看笔者上一篇文章高等代数笔记 3: 线性空间-> 线性映射 - 晨锦辉永生之语的文章 - 知乎https: //zhuanlan.zhihu.com/p/1890514261077381838

注意到 $[x] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ 相当于说同余式 $xy \equiv 1 \pmod{n}$ 有解 $y \in \mathbb{Z}$. 根据 Bézout 定理, 此式有解等价于 x 和 n 互素; 换言之,

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[x] : x \in \mathbb{Z}, x, n \subseteq \mathbb{Z}\};$$

基于 Euler 函数 A 的定义², 由此就得出 $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = A(n)$. 作为推论,

$$\mathbb{Z}/n\mathbb{Z}$$
 为域 \iff $\mathcal{A}(n) = n - 1 \iff n$ 为素数.

我们也容易证明, $\mathbb{Z}/n\mathbb{Z}$ 为整环当且仅当它是域.

设 p 为素数. 域 $\mathbb{Z}/p\mathbb{Z}$ 是有限域的初步例子. 鉴于它的重要性, 我们另外引入符号

$$\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}.$$

定义 2.1.7: 环的直积

取一族环 $(R_i)_{i\in I}$,下标 i 遍历某个非空集 I. 下面使用某种途径从已有的环构造新环,称作 $(R_i)_{i\in I}$ 的**直积**.

 $^{^{2}}A(n)$ 定义为不超过 n 而与 n 互素的正整数个数,也即正是与 n 互素的 mod n 同余类个数.

(1) 在 $\prod_{i \in I} R_i$ 上逐分量地定义加法和乘法, 分别写作

$$\underbrace{(r_i)_i + (r_i')_i := (r_i + r_i')_{i \in I}}_{\prod_i R_i \text{ in } m \nmid k}, \quad \underbrace{(r_i)_i \cdot (r_i')_i := (r_i \cdot r_i')_{i \in I}}_{\prod_i R_i \text{ in } m \nmid k}.$$

(2) 定义零元 0 为 $(0_i)_i$, 幺元 1 为 $(1_i)_i$, 下标 i 代表它们分别是 R_i 中的零元和幺元.

这样我们就可以在每个 R_i 上来检验环的定义2.1.1, 就以加法结合律为例:

$$((r_i)_i + (r_i'')_i) + (r_i')_i = ((r_i + r_i'') + r_i')_i = (r_i + (r_i' + r_i''))_i = (r_i)_i + (r_i')_i + (r_i'')_i,$$

其他情形也是类似的. 容易看出 $-(r_i)_i = (-r_i)_i$. 若 $I = \{1, \ldots, n\}$, 对应的直积也写作 $R_1 \times \cdots \times R_n$ 的形式.

接着考虑每个 R_i 都是同一个环 R 的特例, 这时 $\prod_{i \in I} R_i$ 化为映射集 $R^I = \{f: I \to R\}$ 相对于逐点或逐元素的运算

$$(f+g)(i) := f(i) + g(i), \quad (fg)(i) := f(i)g(i), \quad i \in I$$

所成的环, 方式是让 f 对应 $(f(i))_{i \in I} \in \prod_{i \in I} R$; 特别地, 0_{R^I} 是常值映射 $i \mapsto 0_R$, 而 1_{R^I} 是常值映射 $i \mapsto 1_R$.

2.2 同态与同构

定义 2.2.1: 环同态

设 $f: R \to R'$ 为环之间的映射. 当以下条件成立时, 称 f 为环同态:

- 1. f(x + y) = f(x) + f(y),
- 2. f(xy) = f(x) f(y),
- 3. $f(1_R) = 1_{R'}$

其中 x, y 取遍 R 的元素. 从环 R 映到其自身的同态也称为 R 的自同态.

由定义不难推出环同态的一些性质:

1. 保持零元: $f(0_R) = 0_{R'}$.

证明. 从
$$f(0_R) = f(0_R + 0_R) = f(0_R) + f(0_R)$$
,配合 R' 中的加法消去律,即得 $f(0_R) = 0_{R'}$.

- 2. 保持加法逆元: f(-x) = -f(x). 这是 $0_{R'} = f(0_R) = f(x + (-x)) = f(x) + f(-x)$ 的推论.
- 3. 保持乘法逆元: 若 $x \in R^{\times}$, 则 $f(x) \in (R')^{\times}$ 而 $f(x^{-1}) = f(x)^{-1}$, 这是因为 $1_{R'} = f(1_R) = f(xx^{-1}) = f(x)f(x^{-1})$.
- 4. **恒等自同态**: 任何环 R 到它自身的恒等映射 id_R 自动是环同态,这是环同态的平凡例子.
- 5. **同态的合成:** 若 $f: R \to R'$ 和 $g: R' \to R''$ 为环同态, 则 $gf: R \to R''$ 也是环同态. 这是因为

$$gf(x + y) = g(f(x) + f(y)) = gf(x) + gf(y),$$

$$gf(xy) = g(f(x)f(y)) = gf(x)gf(y),$$

$$gf(1_R) = g(1_{R'}) = 1_{R''}.$$

6. **像与子环:** 对于环同态 $f: R \to R'$, 它的像 f(R) 自然是 R' 的子环; 反过来说, 给定环 R' 及其子环 $R \subset R'$, 取 $\iota: R \to R'$ 为包含映射, 映 $r \in R$ 为 r, 则 ι 自然是环同态.

例 2.2.1: 同余类上的环同态

设 $n, m ∈ \mathbb{Z}$ 满足 n | m,考虑映射

$$p_n^m : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

 $[x]_m \mapsto [x]_n.$

首先这是良定义的,对于任意 $x, y \in \mathbb{Z}$,成立

$$x \equiv y \pmod{m} \iff m \mid x - y \implies n \mid x - y \iff x \equiv y \pmod{n}.$$

根据同余类中加法和乘法的运算法则, 我们有

$$p_m^n([x]_m + [y]_m) = p_m^n([x + y]_m) = [x + y]_n = [x]_n + [y]_n = p_m^n([x]_m) + p_m^n([y]_m).$$

同理容易验证

$$p_m^n([x]_m[y]_m) = p_m^n([x]_m)p_m^n([y]_m),$$

这表明 p_m^n 是环同态.

定义 2.2.2: 环同构

设 $f: R \to R'$ 为环同态. 如果存在环同态 $g: R' \to R$ 使得 $gf = \mathrm{id}_R$ 而 $fg = \mathrm{id}_{R'}$, 则称 f 为环同构, 而 g 为 f 的逆. 此时我们也说 R 和 R' 同构.

可以用符号 $f: R \xrightarrow{\sim} R'$ 代表映射 $f: R \to R'$ 是环同构; 在不必指明 f 的场合, 我们也以符号 $R \simeq R'$ 代表环 R 和 R' 同构.

条件 $gf = id_R$ 和 $fg = id_{R'}$ 表明 f 的逆无非是 f 作为映射的逆 $g = f^{-1}$. 反过来说, 容易证环同态 f 如果作为映射是双射, 那么它也是环同构.

命题 2.2.1: 同态 + 双射 = 同构

设 $f: R \to R'$ 为环同态. 如果 f 是集合之间的双射, 则 f 是环同构.

证明. 问题归结为证 f 的逆映射 f^{-1} 也是环同态. 对 $f(1_R) = 1_{R'}$ 两边取 f^{-1} 可得 $1_R = f^{-1}(1_{R'})$. 对 f(x+y) = f(x) + f(y) 两边取 f^{-1} , 并且记 u = f(x), v = f(y), 可得 $f^{-1}(u) + f^{-1}(v) = f^{-1}(u+v)$. 同理可见 $f^{-1}(uv) = f^{-1}(u)f^{-1}(v)$. 由于所有 $u, v \in R'$ 都能表作 u = f(x) 和 v = f(y) 的形式, 综上可见 f^{-1} 确实是环同态.

恒等映射 id_R 是同构最简单的例子. 此外, 两个同构 f 和 g 的合成 gf 依然是同构, 以 $f^{-1}g^{-1}$ 为逆.

同构 $f: R \simeq R'$ 不但为集合 R 和 R' 建立了双射, 而且对应元素之间的一切环论运算 (加法, 乘法) 和幺元也在 f 之下相配对. 凡是以环论语言表达的一切性质, 对于同构的环 R 和 R' 都是等价的. 这是代数学中的一条基本原理.

命题 2.2.2

设 \mathbb{F} 为域, R 为非零环, 而 $A: F \to R$ 为环同态. 证明: A 为单射.

证明. 我们有 $A(x) = A(y) \iff A(x-y) = 0$, 所以问题化为证 $x \neq 0 \implies A(x) \neq 0$. 但是域 F 中的任意非零元都是可逆的, 而同态映可逆元为可逆元.

定理 2.2.1 (中国剩余定理—同构版本). 设 $N=n_1\cdots n_k$, 其中 $n_1,\ldots,n_k\in\mathbb{Z}_{\geq 1}$ 两两 互素, 则有环同构

$$\mathcal{A}: \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} \prod_{i=1}^{k} \mathbb{Z}/n_{i}\mathbb{Z}$$
$$[x]_{N} \longmapsto ([x]_{n_{i}})_{i=1}^{k}.$$

证明. 例2.2.1业已说明 $[x]_N \mapsto [x]_{n_i}$ 对所有 i 都给出同态 $\mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_i\mathbb{Z}$. 既然直积的环结构是逐分量定义的, A 必保持环结构, 从而是同态.

此外, 映射两端作为集合都有 N 个元素, 基于抽屉原理, 证 \mathcal{A} 是单射即可. 互素条件在此派上用场: 设 $x,y\in\mathbb{Z}$ 满足 $\mathcal{A}([x]_N)=\mathcal{A}([y]_N)$, 则对所有下标 i 都有

$$n_i \mid x - y$$
.

既然 n_1, \ldots, n_k 两两互素, 故 $N \mid x - y$, 亦即 $[x]_N = [y]_N$. 单性得证.

2.3 分式域

设 R 为整环. 我们考虑集合

Ratio
$$(R) := \{ (f, g) \in R^2 : g \neq 0 \}.$$

在 Ratio(R) 上定义二元关系

$$(f_1, g_1) \sim (f_2, g_2) \iff f_1 g_2 = f_2 g_1.$$

这是一个等价关系. 反身性和对称性是显然的,只需简单验证传递性: 设 $(f_1,g_1) \sim (f_2,g_2)$ 而 $(f_2,g_2) \sim (f_3,g_3)$,则 R 的交换性导致

$$(f_1g_2)g_3 = (f_2g_1)g_3 = (f_2g_3)g_1 = (f_3g_2)g_1.$$

因为 R 是整环,两边消去非零元 g_2 便得到 $f_1g_3 = f_3g_1$,亦即 $(f_1, g_1) \sim (f_3, g_3)$. 定义商集 $Frac(R) := Ratio(R) / \sim$. 接着来赋予 Frac(R) 环结构.

定义 2.3.1: Frac(R) 的环结构

(1) 加法和乘法. 规定加法和乘法运算:

$$\frac{f_1}{g_1} + \frac{f_2}{g_2} := \frac{f_1 g_2 + g_1 f_2}{g_1 g_2},$$

$$\frac{f_1}{g_1} \cdot \frac{f_2}{g_2} := \frac{f_1 f_2}{g_1 g_2}.$$
(9)

不难验证,(9)式和 (10) 式不依赖于等价类中代表的选择(即良定义的). 以(9)式为例. 设 $\frac{f_1}{g_1} = \frac{f_1'}{g_1'}, \frac{f_2}{g_2'} = \frac{f_2'}{g_2'}$,则

$$f_1g_1' = g_1f_1', \quad f_2g_2' = g_2f_2',$$

于是有

$$f_1 g_1'(g_2 g_2') = g_1 f_1'(g_2 g_2'), \tag{11}$$

$$f_2 g_2'(g_1 g_1') = g_2 f_2'(g_1 g_1'). (12)$$

(11)式与(12)式相加,得

$$f_1g_1'g_2g_2' + f_2g_2'g_1g_1' = g_1f_1'g_2g_2' + g_2f_2'g_1g_1',$$

由此得出

$$\frac{f_1g_2 + g_1f_2}{g_1g_2} = \frac{f_1'g_2' + g_1'f_2'}{g_1'g_2'},$$

即

$$\frac{f_1}{g_1} + \frac{f_2}{g_2} = \frac{f_1'}{g_1'} + \frac{f_2'}{g_2'}. (13)$$

类似地可以证明,用 (10) 式规定 R 中的乘法运算是合理的. 容易验证,上述定义的加法和乘法都满足交换律、结合律,并且满足分配律.

- (2) **零元.** $\frac{0}{1}$ 是 Frac(R) 中的零元,记作 0;根据环的性质,可以定义 $\frac{f}{g}$ 的负元 $\frac{-f}{g} = -\frac{f}{g}$.
- (3) **乘法幺元.** $\frac{1}{1}$ 是 Frac(R) 的单位元,记作 1.

不难验证,在上述定义下,Frac(R) 成为**交换环** 3 .

事实上,由定义2.1.5, Frac(R) 构成一个域,称为整环 R 的分式域.

³当然含幺.

命题 2.3.1: 分式域

交换(除)环 Frac(R)的非零元皆可逆.

证明. 对于 $\operatorname{Frac}(R)$ 中每一个非零元 $\frac{f}{g}$, 都存在 $\frac{g}{f} \in \operatorname{Frac}(R)$, 使得

$$\frac{f}{g} \cdot \frac{g}{f} = \frac{fg}{gf} = \frac{1}{1} = 1, \quad \frac{g}{f} \cdot \frac{f}{g} = \frac{gf}{fg} = \frac{1}{1} = 1,$$

这表明 $\frac{f}{g}$ 是可逆的, $\frac{g}{f}$ 是 $\frac{f}{g}$ 的逆元,记作 $\left(\frac{f}{g}\right)^{-1}$,即

$$\left(\frac{f}{g}\right)^{-1} := \frac{g}{f}.$$

由于 $\operatorname{Frac}(R)$ 的每个非零元都可逆,因此可以在 $\operatorname{Frac}(R)$ 中定义除法如下: 设 $\frac{f_2}{g_2} \neq 0$,对于任意 $\frac{f_1}{g_1} \in \operatorname{Frac}(R)$,规定

$$\frac{f_1}{g_1} / \frac{f_2}{g_2} := \frac{f_1}{g_1} \cdot \left(\frac{f_2}{g_2}\right)^{-1}$$
.

再将 Frac(R) 中的减法运算的定义取环中的减法定义即可.

注记. 此时映射 $f \mapsto [f,1]$ 将 R 自然地嵌入为 Frac(R) 的子环.

分式的基本性质现在可以证明如下: 设 $\frac{f}{g} \in R$. 任取 $h(x) \in R \setminus \{0\}$,由于 fgh = gfh,因此

$$\frac{f}{g} = \frac{fh}{gh},\tag{14}$$

将(14)式从右到左看,即得到:分子与分母可以消去同一个非零公因式。

引理 2.2

对于一个非零的分式 $\frac{f}{g}$, 分子的次数减去分母的次数所得的差 $\deg f - \deg g$ 不依赖于等价类的代表的选取.

证明. 设
$$\frac{f}{g} = \frac{f_1}{g_1}$$
,则 $fg_1 = gf_1$,从而 $\deg f + \deg g_1 = \deg g + \deg f_1$. 因此

$$\deg f - \deg g = \deg f_1 - \deg g_1. \qquad \Box$$

因此把 $\deg f - \deg g$ 称为分式 $\frac{f}{g}$ 的次数. 分式 $\frac{0}{1}$ 的次数为 $-\infty$. 类似于一元分式域的构造方法,我们还可以构造出 R 上的 n 元分式域.

2.4 多项式环与多项式函数

按照多项式的加法和乘法的具体定义, 当下看出

$$(f+g)(x, y, ...) = f(x, y, ...) + g(x, y, ...),$$

 $(fg)(x, y, ...) = f(x, y, ...)g(x, y, ...),$

(常数多项式 c)(x, y, ...) = c.

因此每个多项式 $f \in R[X,Y,...]$ 都确定从 $R \times R \times ...$ (乘积项数 = 变元个数) 到 R 的映射,这是多项式 f 所确定的多项式函数。

例 3.3.5 对于一般的交换环 R,多项式未必由它对应的多项式函数确定。一个例子是取 $R = \mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$,其中 p 是素数。根据 Fermat 小定理 2.8.6,单变元多项式

$$f(X) = X^p - X \in \mathbb{F}_p[X]$$

对所有 $x \in \mathbb{F}_p$ 都满足 f(x) = 0,所以尽管 $X^p - X$ 并非零多项式,它作为多项式函数 却无异于零函数。推而广之,对于任意有限域 F,非零多项式 $f(X) := \prod_{a \in F} (X - a)$ 在任何 $a \in F$ 上取值皆为 0。

有鉴于此,对于一般的交换环,必须区分作为一个代数表达式的多项式以及相应的函数或映射,前者才是第一义的。我们将在 §3.6 说明何时可以等同一个多项式及它所对应的函数。

2.5 域的特征

我们用 0_R 代表环 R 的零元, 用 1_R 代表 R 的幺元, 作为区分.

我们常见的域(如 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$)中,成立

$$(\forall) n \cdot 1_F = 0_F \iff n = 0, \tag{15}$$

而域 $F = \mathbb{F}_p$ 中成立

$$p \cdot 1_F = 0_F; \tag{16}$$

这又蕴涵了对于任意 $x \in F$ 都有 $px = (p \cdot 1_F) \cdot x = 0_F$.

性质(16)并非有限域独有. 考虑 \mathbb{F}_p 上的有理函数域 $\mathbb{F}_p(X)$,它有无穷多个元素,但也满足 $p\cdot 1_{\mathbb{F}_p(X)}=0_{\mathbb{F}_p(X)}$,这点只须在其子域 \mathbb{F}_p 里验证.

引理 2.3

对于任意环 R,存在唯一的环同态

$$\mathbb{Z} \longrightarrow R$$

$$n \longmapsto n \cdot 1_R$$
.

证明. 唯一性: 注意到环同态必然映 1 为 1_R ,从而映 $n \ge 0$ 为 $1_R + \cdots 1_R = \underbrace{n \cdot 1_R}_{n \cdot \eta}$,而在

n < 0 时映 n = -|n| 为 $-(|n| \cdot 1_R) = n \cdot 1_R$.

存在性问题则归结为检验 $n \mapsto n \cdot 1_R$ 确实是环同态,这是容易验证的.

定义 2.5.1: 特征

设 R 为整环,若存在唯一的 $\operatorname{char}(R) \in \mathbb{Z}_{\geq 0}$ 使得对所有 $n \in \mathbb{Z}$ 都有

$$n \cdot 1_R = 0_R \iff \operatorname{char}(R) \mid n$$
,

称之为整环 R 的特征; 它或者是 0,或者是素数.

证明. 记 $K_R := \{n \in \mathbb{Z} : n \cdot 1_R = 0_R\}$,它包含 0,对加法封闭,而且若 $n \in K_R$ 而 $m \in \mathbb{Z}$,则 $mn \cdot 1_R = (m \cdot 1_R)(n \cdot 1_R) = 0_R$ 蕴涵 $mn \in K_R$. 基于这两种封闭性,引理 2.3 遂说明存在唯一的 $\mathrm{char}(R) \in \mathbb{Z}_{\geq 0}$ 使得 $K_R = \mathrm{char}(R)\mathbb{Z}$. 设 $\mathrm{char}(R) \neq 0$,而且有因数分解 $\mathrm{char}(R) = ab$,则因为 $n \mapsto n \cdot 1_R$ 是环同态,故

$$\operatorname{char}(R) \cdot 1_R = (a \cdot 1_R)(b \cdot 1_R) = 0_R.$$

又因为 R 是整环,必有 $a \in K_R$ 或 $b \in K_R$,因此必有 $\operatorname{char}(R) \mid a$ 或 $\operatorname{char}(R) \mid b$;留意到 $\operatorname{char}(R) \neq 1$ (否则将有 $1_R = 0_R$). 这足以说明 $\operatorname{char}(R)$ 若非零则必为素数.

因此在特征为 p > 0 的整环 R 中,任意 $x \in R$ 的 p 倍必然为零: $px = (p \cdot 1_R)x = 0_Rx = 0_R$.

例 2.5.1

设 p 为素数,而 R 为满足 $p \cdot 1_R = 0_R$ 的交换环(例如特征 p 的整环),则对所有 $x, y \in R$ 皆有

$$(x+y)^p = x^p + y^p.$$

证明. 利用二项式定理,只需证明二项式系数 $\binom{p}{k}$ 在 0 < k < p 时总是 p 的倍数. 注意到

$$p \cdot \frac{(p-1)!}{(k-1)!(p-k)!} = k \cdot \frac{p!}{k!(p-k)!} = k \binom{p}{k},$$

且 (k, p) = 1,这就证明了 $p \mid \binom{p}{k}$.

命题 2.5.1

若 R_0 是整环 R 的子环,则 $\operatorname{char}(R_0) = \operatorname{char}(R)$.

证明. 本书规定子环 R_0 必满足 $1_R=1_{R_0}$,所以等式 $n\cdot 1_R=0_R$ 成立与否可以在子环 R_0 中判定. \square

整环 R 的特征和它的分式域的特征是一回事: 诚然,根据命题 3.7.4,从 $R \subset \operatorname{Frac}(R)$ 可见 $\operatorname{char}(R) = \operatorname{char}(\operatorname{Frac}(R))$.

命题 2.5.2

设 E 和 F 为域, $char(E) \neq char(F)$,证明:不存在从 E 到 F 的环同态.

▲ 证明. 利用命题2.2.2. •sjjpj

因此,不同特征的域无法直接沟通,除非通过一个较大的整环相联系,例如

$$\mathbb{F}_p \stackrel{\text{first}}{\longleftarrow} \mathbb{Z} \stackrel{\text{def}}{\longleftarrow} \mathbb{Q},$$

或者是运用更复杂的代数或数论技术.

2.6 理想

2.6.1 理想

定义 2.6.1: 理想

环 R 的一个理想 I 是 R 的满足下列性质的非空子集 a :

- I 在加法下封闭.
- 如果 $s \in I$, $r \in R$, 则 $rs \in I$, 并且 $s \in I$, $t \in R$, 则 $st \in I$.

^a不同的教材对理想的定义也不太一样,与环的定义有一定的关系.

注记. 由于定义中不要求 *R* 交换, 所以乘法封闭性必须对双边来陈述; 对于非交换环, 我们也经常将上述定义中的理想称为 *R* 的 **双边理想**. 从上述定义中容易给出**左理想、右理想**的定义. 本笔记所指理想均为**双边理想**.

理想自动对加法逆元封闭: 若 $x \in I$ 则 $-x \in I$,这是基于环论的等式 $-x = (-1) \cdot x$ 和理想的乘法封闭性. 理想的平凡例子有 $I = \{0\}$ (零理想)和 I = R. 满足 $I \neq R$ 的理想 I 称为真理想.

命题 2.6.1

设 $I \in R$ 的理想,则 $I = R \iff 1 \in I$.

■ 证明. " ⇒ "显然. " ⇒ ". 若 $1 \in I$,则 $\forall r \in R, r = 1 \cdot r \in I$. 这表明,真理想不可能是 R 的子环,因为它不含乘法幺元 1.

例 2.6.1: 整数环的理想

整数环 \mathbb{Z} 的任一子环必形如 $m\mathbb{Z}$, $m \ge 0$. 容易用理想的定义验证 $m\mathbb{Z}$ 是 \mathbb{Z} 的理想,因 此 $m\mathbb{Z}$, $m \ge 0$ 也是 \mathbb{Z} 所有的理想.

例 2.6.2: 函数环的理想

考虑 $C(\mathbb{R})$. 取定 $x_0 \in \mathbb{R}$, 定义

$$Z_{x_0}(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid f(x_0) = 0 \},\$$

则 $Z_{x_0}(\mathbb{R})$ 是 $C(\mathbb{R})$ 的理想.

函数环的另一个理想在微分几何中有重要作用. 设 x 为 \mathbb{R}^n 中的一点, 在 $C^{\infty}(\mathbb{R}^n)$ 中我 们定义

$$O_x = \{ f \in C^{\infty}(\mathbb{R}^n) \mid$$
存在 x 的一个邻域 U ,使得 $f(y) = 0$, $\forall y \in U \}$.

则容易验证 O_x 是 $C^{\infty}(\mathbb{R}^n)$ 的一个理想.

给定了理想,如何构造新的理想呢?容易证明一个环的任意多个理想之交仍为理想.现 在设 S 为环 R 的非空子集,则 R 中所有包含 S 的理想(这样的理想是存在的,例如 R 本 身就是一个)之交仍为 R 的理想, 称为由 S 生成的理想, 记为 $\langle S \rangle$. 我们断言 $\langle S \rangle$ 是 R 中包 含集合 S 的最小理想. 事实上,由上面的定义, $\langle S \rangle$ 是理想,且包含 S. 另一方面,因为 $\langle S \rangle$ 是所有包含 S 的理想之交,因此任何包含 S 的理想一定包含 $\langle S \rangle$,因此 $\langle S \rangle$ 是最小的.

例 2.6.3: 包含理想的最小理想

我们证明

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} x_i a_i \middle| n \in \mathbb{N}, x_i \in R, a_i \in S, i = 1, 2, \cdots, n \right\}.$$

事实上,将上式右边的集合记为 I. 则对任何 $a \in S$, $a = 1 \cdot a \in I$ (1 为 R 的幺元),故 $S \subseteq I$. 又由命题 2.2.11 容易看出 $I \in R$ 的理想. 另一方面,若 I_1 为 R 的一个理想且 包含 S,则对任何 $x_i \in R$,以及 $a_i \in S$, $1 \le i \le n$,有 $x_i a_i \in I_1$,故 $\sum x_i a_i \in I_1$.故 $I \subseteq I_1$, 这说明 I 是包含 S 的最小理想, 因此 $I = \langle S \rangle$.

定义 2.6.2: 主理想与生成元

设 I 为环 R 的理想,如果存在 $a \in I$ 使得 $I = \langle a \rangle$,则称 I 为主理想,而 a 称为 I 的一个生成元.

命题 2.6.2: 环同态的核

设 $f: R \to R'$ 为环同态, 其核(又称零核)定义为

$$\ker(f) := f^{-1}(0) = \{x \in R : f(x) = 0\}.$$

这是 R 的理想.

证明. 首先验证加法封闭: 若 $x, y \in \ker(f)$,则 f(x + y) = f(x) + f(y) = 0 + 0 = 0,故 $x + y \in \ker(f)$. 其次验证乘法双边封闭. 若 $x \in \ker(f)$ 而 $r \in R$,则

$$f(xr) = f(x)f(r) = 0 \cdot f(r) = 0 = f(r) \cdot 0 = f(r)f(x) = f(rx),$$

因此 $xr, rx \in \ker(f)$.

2.6.2 商环

3 模

定义 3.0.1: 模

所谓左 R-模,是指

- 1. 加法群;
- 2. 映射 $R \times M \to M$,以乘法记号记为 $(r,m) \mapsto r \cdot m = rm$,也称为模的纯量乘法,满足如下条件:
 - $r(m_1 + m_2) = rm_1 + rm_2$,
 - $(r_1 + r_2)m = r_1m + r_2m$,
 - $(r_1r_2)m = r_1(r_2m)$,
 - $1_R m = m$.

其中 $r_1, r_2 \in R$ 而 $m, m_i (i = 1, 2) \in M$.

类似可以定义右 R-模.

可以看出,模是线性空间定义的推广,相当于环上的线性空间.

4 有理标准形

- 4.1 线性映射和模结构
- 4.2 有理标准形

参考文献

- [1] 谢启鸿, 姚慕生, 吴泉水. 高等代数学(第四版). 上海: 复旦大学出版社, 2022.
- [2] 谢启鸿, 姚慕生. 高等代数 (第四版). 上海: 复旦大学出版社, 2022.
- [3] 丘维声. 高等代数 (第二版,上册). 北京:清华大学出版社,2018. 上海:复旦大学出版社,2022.
- [4] 丘维声. 高等代数 (第二版,下册). 北京:清华大学出版社,2018.
- [5] 邓少强, 朱富海. 抽象代数. 北京: 科学出版社, 2017.
- [6] 李文威. 代数学讲义. 网络版(编译日期: 2025-04-04),来自https://www.wwli.asia/downloads/books/EAlg-Notes.pdf