CLUSTERING "GENERAL CONCEPTS"

Michele Rossi rossi@dei.unipd.it

Dept. of Information Engineering University of Padova, IT

Overview

General concepts

- Objective
- Metrics
- Approaches

Techniques

- Flat clustering (k-means, and "soft" k-means)
- Divisive clustering ("hierarchical")
- Online clustering (Self Organizing Maps SOM)
- Density-based clustering (DBSCAN)

Informal goal

- Given a set of objects and a measure of similarity
- Group similar objects together

Questions

- What do we mean by "similar"?
- What good grouping looks like?
- Computation time/quality tradeoff

Applications

- Many, in all fields
 - Biology
 - Astronomy
 - Information organization
 - Pattern recognition and analysis
 - Marketing

•

Issues

- What attributes represent items for clustering purpose?
- What is measure of similarity between items?
 - General objects and matrix of pairwise similarities S(o_i,o_j)
 - Objectives with specific properties that allow other measures
 - Most common objects are d-dimensional vectors
 - Most common distance is Euclidean distance

Issues continued

- Clustering objectives?
 - Number of clusters?
 - Flat or hierarchical clustering?
 - Cohesiveness of clusters?
- How shall we evaluate cluster results?
 - Measure of closeness within cluster elements
- Efficiency of clustering algorithm
 - Large data sets: online vs offline clustering
- Best clustering algorithm?
 - There are many
 - Size of dataset (complexity), online vs offline, type of measure

General types of clustering

- "Soft" vs "hard" clustering
 - "hard": partition the objects
 - Each object in exactly one partition
 - "soft": assign degree to which object in each cluster
 - View as a probability or "score"
- "Flat" vs "hierarchical" clustering
 - "Hierarchical": clusters within clusters
 - A cluster "hierarchy" is constructed

Hierarchical clustering

- "agglomerative" vs "divisive" algorithms
 - "agglomerative": bottom-up
 - Build up clusters from single objects
 - "divisive": top-down
 - Break up clusters containing all objects into smaller clusters
- Both approaches lead to hierarchies

How clustering progresses

- "constructive" vs "iterative" improvement
 - "constructive": decide to which cluster each object belongs to and do not change this choice
 - Often faster
 - "iterative" improvement: start with a clustering solution and move objects around to see if improvements are possible
 - Often slower but leads to better results

Quality of clustering

- In applications, the quality of clustering depends on "how well it solves the problem at hand"
- Algorithm uses measure of quality that can be optimized, but that may or may not do a good job in capturing application needs
- Underlying graph-theoretic problems usually NP-complete
 - e.g., graph partitioning
 - usually algorithms do not find optimal clustering

Distance between two clusters (1/2)

- Possible approaches
 - 1) Distance between closest objects in the clusters
 - Called single link

- 2) Distance between the furthest away objects (one per cluster)
 - Called complete linkage

Distance between two clusters (2/2)

- Possible approaches
 - 3) Average of pairwise distance between all pairs of objects, one for each cluster
 - More computation

- 4) If there exists a measure, e.g., Euclidean
 - Centroids can be computed and used to evaluate distance

CLUSTERING "GENERAL CONCEPTS"

Michele Rossi rossi@dei.unipd.it

Dept. of Information Engineering University of Padova, IT

