딥러닝을 이용한 도로 주행 안전 시스템 구축

- 2-input 딥러닝 기반 Multi-task 전동 킥보드 안전 주행 시스템

이화여자대학교 염다민 | 윤희준 | 이소연 지도교수 이가현 교수님

INDEX

공유킥보드 및 퍼스널 모빌리티(PM) 이용자를 위한 총체적 주행 안전 시스템을 제시합니다.

공유킥보드 시장은 IT 친화적 시장 환경 등에 기반해 매년 급격한 성장세 지속

2019년

미국 내 공유 마이크로 모빌리티 이용건수 1억 3000만 건 돌파

2022년

현재 서울시 내 15개 업체, 총 5만 7000여대의 공유 전동킥보드 운용 중

2018년

국내 전동킥보드 공유서비스 '킥고잉' 150대 내외로 최초 개시

2017년 9월

미국 공유 전동킥보드 플랫폼 'Bird'사 최초 서비스 개시

공유 킥보드 이용자 교통 사고 발생 추이

개인형 이동수단 사고 발생 건수

출처 :교통사고분석시스템(TAAS) / 단위 : 건

도로교통법상 국내 관련 규정

법적 지위	전동킥보드는 '원동기장치자전거' 중 최고속도 25km/h 이하, 차체 중량 30kg 이하의 '개인형 이동장치'로 분류됨.
통행 방법	전동킥보드는 자전거도로로 통행해야 하며, 자전거도로가 설치되지 않은 곳에서는 도로(차도) 우측 가장자리 및 길가장자리구역을 통행할 수 있음.
보호 장비	전동킥보드 운전자는 「도로교통법」 시행규칙 제32조에 따라 '승차용 안전모' 등의 보호장비를 착용하여야 함.

이용자의 관련 규정 준수율

알지만 지키지 않는다!

2021년 교통문화지수 실태조사 시범조사 항목으로 진행된 <PM 이용자 대상 PM 개정법 인지도 및 주행실태 조사> 결과에 따르면 개인형 이동장치 관련 법규 인지도에 비해 이용자의 실제 준수율은 여전히 낮은 수준.

[출처:한국 교통안전공단]

공유 킥보드 안전사고 예방을 위한 제안 시스템

데이터셋 구축 - 사용자 측 데이터셋

Train dataset 에시

Test dataset 예시

Ⅰ 획득 장소

- 서초, 교대, 강남역 일대에서 train dataset 획득.
- 외양 특정 부분만 학습하는 것을 방지하고자 안경 쓰거나 머리 묶는 등 변화 주며 촬영
- Test dataset은 train dataset 에 포함되지 않은 인물로 다른 실·내외 공간에서 촬영

Ⅰ 총 획득 데이터 개수

- 약 15000장의 train dataset 구축
- Overfitting 막기 위해 Random Horizontal Flip을 사용한 data augmentation 기법 적용
- Test dataset은 500장 가량 수집

데이터셋 구축 - 도로 측 데이터셋

SDLane 데이터셋예시

인도 보행 영상 공공 데이터셋 예시

Test dataset 에시

Ⅰ 이용 데이터

- 1) 인도 보행 영상 공공 데이터셋(Al Hub 제공)
 2) 국내 차도 주행 오픈 데이터셋인 SDLane 데이터셋(42dot 제공)
 을 이용해 직접 보도/차도 라벨링하여 학습 데이터셋 구축
- Test dataset은 직접 촬영

▮ 총 데이터 개수

- 약 2000장의 train dataset 구축
- Overfitting 막기 위해 Random Horizontal Flip을 사용한 data augmentation 기법 적용
- Test dataset은 100장 가량 수집

학습 모델

ImageNet 데이터셋으로 사전 학습된 총 다섯가지 모델 기반 fine-tunning 기법 적용시켜 학습하는 Transfer Learning으로 실험 진행.

11

학습 모델 - 사용자 측 모델 학습 방식

4-Class Classification

■ 헬멧 착용 / 전방주시 여부의 가능 조합 라벨 총 4가지를 한 모델 내에서 분류

| Multi-feature* Classification

- 헬멧 착용 / 전방주시 여부를 동일 backborn 사용해 feature 공유
- 그 후 FCN 으로 각 라벨 분류

^{*} Lee, Michelle A., et al. "Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

학습 결과 - 사용자 측 모델 테스트 결과

Train dataset과 다른 장소에서 촬영된 555장의 test image사용하여 테스트 진행

	2-class		4-class		Multi-feature	
	Acc(%) (average)	parameter # (each model)	Acc(%)	parameter#	Acc(%)	parameter#
ResNet 18	95.5	11,177,538	89.6	11,178,564	65.9	11,178,564
ResNet 34	94.3	21,285,698	88.3	21,286,724	72.5	21,286,724
ResNet 50	94.0	23,512,130	90.6	23,516,228	78.3	23,516,228
GoogLeNet	87.0	5,601,954	86.0	5,604,004	69.0	5,604,004
MobileNet V2	88.2	2,226,434	81.4	2,228,996	71.5	2,228,996

- 2-class 방식이 전반적으로 높은 정확도
- ResNet 18 이 가장 성능 좋았으나, 하드웨어 스펙에 따른 모델 경량화를 고려해 MobileNetV2를 최종 선택
- Grad-CAM을 통해 전방 주시 여부 확인 모델에선 얼굴 전체를, 헬멧 착용여부 확인 모델에선 헬멧 부위를 판별 근거 영역으로 이용한 것을 확인할 수 있음

2-class 방식으로 학습된 MobileNetv2의 테스트 이미지 Grad-CAM

학습 결과 - 사용자 측 모델 테스트 결과

2-class 모델 테스트 분석

테스트 이미지 555장에 대한 결과	parameter #	Helmet classification Acc (%)	Forward classification Acc (%)	Average Acc (%)
ResNet 18	11,177,538	98.7	93.3	95.5
ResNet 34	21,285,698	97.3	91.4	94.3
ResNet 50	23,512,130	95.8	92.7	94.0
GoogLeNet	5,601,954	91.3	82.7	87.0
MobileNet V2	2,226,434	91.9	84.5	88.2

- 헬멧 착용여부 분류 모델이 전반적으로 높은 정확도
- 오른쪽 오분류 데이터 Grad-CAM 예시를 통해 전방 주시 여부 확인 모델의 경우 머리의 특정 부위를 보거나 사람이 아닌 다른 부분을 보고 판단하는 경우 오분류됨.
- 헬멧 착용 여부 확인 모델 또한 헬멧 부분이 아닌 얼굴 영역이나 턱 부분만을 볼 때 오분류됨.

전방주시 classification 모델

헬멧착용 classification모델

case 1) 얼굴의 다른 부위를 봄 /너무 좁은 영역만 근거로 사용됨

case 2) 1에 비해 넓은 영역을 보나, 분류에 중요한 영역을 보지 않음

case 3) 배경 영역을 봄

2-class 방식으로 학습된 MobileNetv2의 오분류 테스트 이미지 Grad-CAM

학습 결과 - 도로 측 모델 테스트 결과

직접 촬영한 100여장의 테스트 이미지 사용하여 테스트 진행

	sidew	sidewalk - road		
	Acc(%)	parameter#		
ResNet 18	92.7	11,177,538		
ResNet 34	92.7	21,285,698		
ResNet 50	96.4	23,512,130		
GoogLeNet	96.4	5,601,954		
MobileNet V2	98.8	2,226,434		

- 인도, 차도 분류를 위한 5가지 모델 중
 가장 정확도 높은 MobileNetV2를 최종 선택
- 보행자 detection을 위한 모델로는 YOLOV5 모델 사용

하드웨어 구현

사용 보드 및 모듈

- NVIDIA Jetson Nano 4GB
- Intel Realsense D435i
 - (RGB) frame resolution 1920 × 1080, frame rate up to 30fps
 - (Depth) frame resolution 1280 × 720, frame rate up to 90fps
- CSI 카메라 모듈
 - frame resolution 1280 × 720, frame rate up to 60fps
- I2C LCD 모듈

소프트웨어

- Ubuntu 18.04
- Pytorch

구현

- 사용자 측, 도로 측 이미지를 동시에 영상 촬영하여 인풋으로 활용
- 1초에 한번씩 비디오를 캡쳐해서 각 모델에 인풋으로 넣은 후 결과를 받아와 최종 제한 속도를 프린트

04. 마무리

마무리 및 기대 효과

제안 시스템

공유킥보드 안전 사고 예방을 위한 도로 / 사용자 측 이미지 활용 사고 예방 시스템

<사용자 측 이미지>

- 헬멧 착용 여부
- 전방 주시 여부

<도로 측 이미지>

- 보도 주행 여부
- 전방 보행자 추돌 위험 감지

기대 효과

- 여러 상황을 동시다발적으로 고려하여 다양한 요소들로 이루어진 안전사고의 효과적 예방 기대
- 모든 퍼스널 모빌리티로의 확장 가능성

Future Works

- 교차로 인식을 통한 사고 예방
- 어두운 환경에서도 사용 가능하도록 성능 개선

감사합니다:)

2-input 딥러닝 기반 Multi-task 전동 킥보드 안전 주행 시스템