Learning from One Example using Logical Induction

Reference - One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis

Learn a *program* to extract specific entities from document images that follow a template, from *one* sample. E.g. correspondence no., 186FDBC1802472 here:

TO
DNB NOR BANK ASA
TRADE FINANCE/GUARANTEE
DEPT. NO.0021
OSLO NORWAY
NO

DL to extract to a database; then ILP.

A correct program for this example: corr(A,B) :-

has_keyword('Please', A,C),
has_line_below(C,B).

But ILP will also find this incorrect one: corr(A,B) :-

has_keyword('Please',A,C),
left_of('Please',C,D),
right_of('ASA',D,C),
has line below word(C.B).

Please Ouote in all correspondence 186FDBC1802472 Neural-learning

Key idea: perturb *all* entities in the DB to create a 'noisy clone' and feed both examples to ILP, which then learns the correct program.

Logical Meta-learning

Reference - DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning

For input-output task x learn a program ρ_x using library of primitive operations L. $P(\rho) \sim I(\rho)$. 'Improve' library and learn faster as more tasks are solved.

Wake:

$$ho_x = \operatorname{argmax}_{
ho} P(\rho|x, L) \propto P(x|\rho)P(\rho|L)$$
 for task x . Sleep: $L = \frac{1}{2}$

$$\underset{L}{\operatorname{argmax}} \prod_{x} \max_{\rho = r(\rho_x)} P(x|\rho) P(\rho|L)$$

Dream: update
$$Q_{\theta}(\rho|x)$$
: argmin $\|P(\rho|x, L) - Q_{\theta}(\rho|x)\|$

Key: efficient algorithm to search over (potentially exponential) refactorings $r(\rho_x)$.