CHAPTER 9 AREA

- Area: Any closed curve encloses an amount of surface. That amount of the surface is called the area enclosed by the closed curve.
- **Polygonal Region:** A polygonal region is the region consisting of a polygon and its interior.
 - **Interior of a Triangle:** It is the part of the plane enclosed by the triangle.
 - **Triangular Region:** It is the region consisting of a triangle and its interior.
- **Axioms of Area:** The axioms of area for polygonal regions are given below:
 - 1. Every polygonal region has an area. The area of a polygonal region in square units is a positive real number.
 - **2.** Congruent Area Axiom: If R_1 and R_2 are two polygonal regions such that $R_1 \cong R_2$, then area of $R_1 = \text{area of } R_2.$
 - 3. Area Monotone Axiom: If R_1 and R_2 are two polygonal regions such that R_1 is contained in R_2 , then area of R_1 < area of R_2 .
 - 4. Area Addition Axiom: If R_1 and R_2 are two polygonal regions with only a finite number of points or line segments in common and they together form a region R, then area of R = area of R_1 + area of R_2 .
 - 5. Rectangular Area Axiom: For a rectangle ABCD, given that AB = a units and AD = b units, then area of the rectangular region ABCD = ab sq. units. ernment of Manipur

Theorems

- 1. A diagonal of a parallelogram divides it into two triangles of equal area.
- 2. Parallelograms on the same base and between the same parallels are equal in area.
- 3. The area of a parallelogram is the product of any of its sides and the corresponding altitude.

Corollary: Parallelograms on equal bases and between the same parallels are equal in area.

SOLUTIONS

EXERCISE 9.1

1. In a parallelogram ABCD, BC = 10 cm. The altitudes corresponding to the sides BC and AB are respectively 7 cm and 8 cm. Find AB.

Solution: In the parallelogram ABCD, BC = 10 cm. AM \perp BC and CN \perp AB, AM= 7cm, CN= 8cm

Again, Again, Area of $Par^m ABCD = BC \times AM$ $Area of Par^m ABCD = AB \times CN$

So, AB = 8.75 cm.

2. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that area of \triangle APB = area of \triangle BQC.

Solution:

Given: P and Q are two points lying on the sides DC and AD respectively of a Parallelogram ABCD.

To prove: area of $\triangle APB = \text{area of } \triangle BQC$

Proof: $\triangle APB$ and Par^m . ABCD are on the same base AB and between the same parallels.

∴ area of
$$\triangle ABP = \frac{1}{2}$$
 area of $Par^m ABCD$ -----(1)

 Δ BQC and Par^m . ABCD are on the same base BC and between the same parallels.

∴ area of
$$\triangle BQC = \frac{1}{2}$$
 area of Par^m . ABCD-----(2)

From (1) and (2), we get

Area of \triangle APB = Area of \triangle BQC.

3. If P, Q, R and S are respectively the mid-points of the sides of a parallelogram ABCD, show that area of quadrilateral PQRS = $\frac{1}{2}$ (area of parallelogram ABCD).

Solution:

P, Q, R, S are the mid points of AB, BC, CD and DA of parallelogram ABCD Given:

Area of quadrilateral PQRS= $\frac{1}{2}$ (Area of parallelogram ABCD) To prove:

Proof: AD = BC [opposite sides of parallelogram ABCD]

$$\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$

$$\Rightarrow AS = BQ$$

But $AS \parallel BQ$

As a Pair of opposite sides are equal and parallel, ABQS is a parallelogram.

Similarly, SQCD is a parallelogram.

ΔQPS and parallelogram ABQS are on the same base QS and between the same parallels.

$$\therefore area \ of \ \triangle QPS = \frac{1}{2} area \ of \ parallelogram \ ABQS$$

Similarly, area of $\triangle QRS = \frac{1}{2}$ area of parallelogram SQCD

So,

=
$$Area \ of \ \triangle QPS + Area \ of \ \triangle QRS$$

rly,
$$area\ of\ \triangle QRS = \frac{1}{2}\ area\ of\ parallelogram\ SQCD$$

Area of quadrilateral PQRS

= $Area\ of\ \triangle QPS + Area\ of\ \triangle QRS$

= $\frac{1}{2}\ Area\ of\ parallelogram\ ABQS + \frac{1}{2}\ Area\ of\ parallelogram\ SQCD$

=
$$\frac{1}{2}$$
 (Area of parallelogram ABQS + Area of parallelogram SQCD)

$$=\frac{1}{2}$$
 Area of parallelogram ABCD.

4. Prove that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two parallelograms of equal area.

Solution:

Given: P and Q are mid points of the opposite sides AD and BC respectively of a

parallelogram ABCD.

To Prove: Area of parallelogram ABQP = area of parallelogram PQCD

Proof: We have, AD=BC and AD || BC [being opposite sides of parallelogram]

$$\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$
 and AP || BQ

$$\Rightarrow AP = BQ \text{ and AP } \parallel BQ$$

: ABQP is a parallelogram

Similarly, PQCD is also a parallelogram.

Parallelograms ABQP and PQCD are on equal bases BQ and CQ and are between the same parallels.

∴ area of parallelogram ABQP = area of parallelogram PQCD

5. Prove that three parallelograms formed by joining the mid-points of the three sides of a triangle are equal in area.

Solution:

Given: D, E, F are the mid-point of the sides AB, BC, CA of \triangle ABC.

To prove: Area of parallelogram DBEF = area of parallelogram ADEF

= area of parallelogram DECF.

Proof: In $\triangle ABC$,D and F are mid points of AB and AC

$$\therefore$$
 DF || BC and DF = $\frac{1}{2}$ BC

$$\Rightarrow$$
 DF || BE and DF = BE

∴ DBEF is a parallelogram.

Similarly, DECF and ADEF are parallelograms.

Now, parallelograms DBEF and DECF are on the same base DF and between the parallels DF and BC.

∴ area of parallelogram DBEF = area of parallelogram DECF.

Similarly, area of parallelogram DBEF = area of parallelogram ADEF.

Hence, area of parallelogram DBEF = area of parallelogram ADEF = area of parallelogram DECF.

6. Prove that, of all the parallelograms of given sides, parallelogram which is a rectangle has the greatest area.

Solution:

Given: ABCD is a parallelogram and ABPQ is a rectangle in which AD = AQ.

To prove: Area of rectangle ABPQ > Area of parallelogram ABCD.

Construction: We draw $DM \perp AB$.

Proof: In a right \triangle ADM, we have

AD> DM [: in a right triangle, hypotenuse is the

longest side]

$$\Rightarrow$$
 AQ> DM

$$\Rightarrow$$
 AB \times AQ $>$ AB \times DM

∴ Area of rectangle ABPQ > Area of parallelogram ABCD.

- 7. If O is an interior point of a parallelogram ABCD, prove that
 - (i) Area of $\triangle OAB$ + area of $\triangle OCD = \frac{1}{2}$ (area of parallelogram ABCD)
 - (ii) Area of $\triangle OBC$ + area of $\triangle OAD$ = area of $\triangle OAB$ + area of $\triangle OCD$.

Solution:

Given: O is an interior point of a parallelogram ABCD,

To prove: i) Area of $\triangle OAB$ + area of $\triangle OCD = \frac{1}{2}$ (area of parallelogram ABCD)

ii) Area of $\triangle OBC$ + area of $\triangle OAD$ = area of $\triangle OAB$ + area of $\triangle OCD$.

Construction: We draw a line passing through O parallel to AB intersecting AD and BC at P and Q.

Proof: AB || PQ and AP || BQ; CD || QP and DP || CQ.

: ABQP and PQCD are parallelograms.

i) Δ OAB and parallelogram ABQP are on the base AB and between the parallels AB and PQ.

∴ area of
$$\triangle OCD = \frac{1}{2}$$
 area of parallelogram PQCD

Now, Area of $\triangle OAB$ + area of $\triangle OCD$

$$=\frac{1}{2}$$
 (area of parallelogram ABQP)+ $\frac{1}{2}$ (area of parallelogram PQCD)

$$=\frac{1}{2}$$
 (area of parallelogram ABQP+ area of parallelogram PQCD)

$$=\frac{1}{2}$$
 (area of parallelogram ABCD)

P

O

Q

D

C

সামাশুধানত আছি চল্লান্ত (আণ্ডা) DEPARTMENT OF EDUCATION (S) Government of Manipur

- ii) Area of $\triangle OBC$ + area of $\triangle OAD$
 - = (Area of parallelogram ABCD) (Area of $\triangle OAB$ + area of $\triangle OCD$)
 - = (Area of parallelogram ABCD) $-\frac{1}{2}$ (area of parallelogram ABCD)
 - $=\frac{1}{2}$ (Area of parallelogram ABCD)
 - = area of $\triangle OAB$ + area of $\triangle OCD$
- 8. ABCD is a parallelogram and P is any point on the side CD . Prove that area of \triangle APD + area

of $\triangle BCP = area of \triangle ABP$.

Solution:

Given: P is a point on the side CD of a Par^m . ABCD

To Prove: Area of $\triangle APD$ +Area of $\triangle BCP$ =Area of $\triangle ABP$

Proof: $\triangle APB$ and Par^m . ABCD are on the base AB and between the same parallels.

∴ area of
$$\triangle APB = \frac{1}{2}$$
. area of Par^m. ABCD

Area of $\triangle APD$ +Area of $\triangle BCP$ = Area of Par^m . ABCD - Area of $\triangle APB$

= Area of Par^m . $ABCD - \frac{1}{2}$ Area of Par^m . ABCD

 $=\frac{1}{2}$ Area of Par^m. ABCD.

= Area of $\triangle APB$.

9. ABCD and ABPQ are parallelograms such that the points C, D, P, Q are collinear and R is any point on the side BP. Show that

(ii) Area of $\triangle ARQ = \frac{1}{2}$ (area of parallelogram ABCD)

D

P

C

Solution:

Given: ABCD and ABPQ are parallelograms such that C, D, P, Q are collinear and R is any point on the side BP.

To Prove: i) Area of parallelogram ABCD = area of parallelogram ABPQ

ii) Area of $\triangle ARQ = \frac{1}{2}$ (area of parallelogram ABCD)

Proof: i) Parallelograms ABCD and ABPQ are on a same base AB and between the same parallels.

∴ Area of parallelogram ABCD = area of parallelogram ABPQ

ii) ΔARQ and parallelogram ABPQ are on a same base AQ and between the same parallels.

∴ Area of
$$\triangle$$
ARQ = $\frac{1}{2}$ (area of parallelogram ABPQ)
= $\frac{1}{2}$ (area of parallelogram ABCD)

> Theorems

1. Triangles on the same base and between the same parallels are equal in area.

Corollary:

- The area of a triangle is half the product of any of its sides and the corresponding altitude.
- A medium of a triangle divides it into two triangles of equal area.
 - 2. Converse of Theorem 4: Two triangles having equal areas and standing on the same base and on the same side of it lie between the same parallels.

SOLUTIONS

EXERCISE 9.2

1. AD is a medium of triangle ABC and P is any point on AD. Show that Area of \triangle ABP = Area of \triangle ACP

Solution:

Given: P is a point on the median AD of \triangle ABC.

To Prove: Area of $\triangle ABP = Area$ of $\triangle ACP$

Proof: As AD is a median of \triangle ABC,

Area of
$$\triangle ABD = Area of \triangle ACD$$
 ----- (1)

As PD is a median of ΔBPC

Area of
$$\triangle PBD = Area of \triangle PCD -----(2)$$

Subtracting (2) from (1)

Area of
$$\triangle ABD$$
 – Area of $\triangle PBD$ = Area of $\triangle ACD$ – Area of $\triangle PCD$

 \therefore Area of $\triangle ABP = Area of <math>\triangle ACP$

2. ABC is triangle and DE is drawn parallel to BC, cutting the other sides at D and E. Join BE and

CD. Prove that

- (i) Area of $\triangle DBC$ = Area of $\triangle EBC$
- (ii) Area of $\triangle BDE = \text{Area of } \triangle CDE$

Solution:

Given: In \triangle ABC, DE \parallel BC is drawn cutting AB and AC at D and E.

To Prove: (i) Area of $\triangle DBC = Area of \triangle EBC$

(ii) Area of $\triangle BDE = Area of \triangle CDE$

Proof:

- (i) $\triangle DBC$ and $\triangle EBC$ are on the same base BC and between the same parallels \therefore area of $\triangle DBC$ = area of $\triangle DBC$
- (ii) \triangle BDE and \triangle CDE are on the same base DE and between the same parallels \therefore area of \triangle BDE = area of \triangle CDE
- 3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Solution:

Given: In the parallelogram ABCD, the diagonals AC and BD intersect at O.

To Prove: Area of $\triangle AOB = Area$ of $\triangle BOC = Area$ of $\triangle COD = Area$ of $\triangle DOA$

Proof: We know that the diagonal AC and BD of Par^m. ABCD bisect each other at 0.

Α

OA is a medium of $\triangle ABD$.

 \therefore Area of \triangle AOB = Area of \triangle DOA

OB is a medium of \triangle ABC.

OC is a medium of $\triangle BCD$.

 \therefore Area of \triangle AOB = Area of \triangle BOC

 \therefore Area of \triangle BOC = Area of \triangle COD

Hence, Area of $\triangle AOB$ = Area of $\triangle BOC$ = Area of $\triangle COD$ = Area of $\triangle DOA$

0

4. Show that area of a rhombus is half the product of the length of its diagonals.

Solution:

Given: ABCD is a rhombus. Diagonals AC and BD intersect each other at O.

To prove: Area of the rhombus = $\frac{1}{2} \times AC \times BD$

Proof: We know, the diagonals of a rhombus bisect each other at right angles.

Area of rhombus ABCD

= Area of
$$\triangle$$
ABC + Area of \triangle ACD
= $\frac{1}{2} \times AC \times OB + \frac{1}{2} \times AC \times OD$
= $\frac{1}{2} \times AC \times (OB + OD)$
= $\frac{1}{2} \times AC \times BD$

Prove that the area of trapezium is half the product of the sum of the length of the parallel **5.** sides and distance between them.

Solution:

ABCD is a trapezium in which $AD \parallel BC$ and DP is the perpendicular distance between Given: AD and BC

To prove: Area of Trapezium $ABCD = \frac{1}{2} \times (AD + BC) \times DP$ **Proof:** Area of \triangle ABD = $\frac{1}{2} \times AD \times DP$

Area of
$$\triangle DBC = \frac{1}{2} \times BC \times DP$$

Area of Trapezium ABCD = Area of $\triangle ABD$ + Area of $\triangle DBC$

$$= \frac{1}{2} \times AD \times DP + \frac{1}{2} \times BC \times DP$$
$$= \frac{1}{2} \times (AD + BC) \times DP$$

$$\therefore \text{ Area of Trapezium} ABCD = \frac{1}{2} \times (AD + BC) \times DP$$

6. The diagonals AC and BD of quadrilateral ABCD intersect at O. If BO=OD, prove that Area of \triangle ABC = Area of \triangle ADC.

Solution:

Given: Diagonal AC and BD of a quadrilateral ABCD

intersect at O such that OB = OD.

To prove: Area of $\triangle ABC = Area$ of $\triangle ADC$

Proof: We have, OB = OD

 \therefore OA and OC are medians of \triangle ABD and \triangle BCD.

Then, Area of $\triangle AOB = Area$ of $\triangle AOD$

Now, Area of $\triangle ABC = Area$ of $\triangle AOB + Area$ of $\triangle BOC$

= Area of $\triangle AOD$ + Area of $\triangle COD$

= Area of $\triangle ADC$

7. D,E,F are the mid-point of the sides BC,CA,AB respectively of triangle ABC, prove that BDEF is parallelogram whose area is half that of $\triangle ABC$ and area of $\triangle DEF = \frac{1}{4}(area \ of \ \triangle ABC)$.

Given: D, E, F are mid-points of the sides BC, AC and AB respectively of \triangle ABC.

To prove: Area of Par^m . $BDEF = \frac{1}{2}$ Area of $\triangle ABC$

Area of $\triangle DEF = \frac{1}{4}(Area \ of \ \triangle ABC).$

Proof: Since F and E are the mid points of AB and AC of \triangle ABC,

 $\Rightarrow FE \parallel BD$ and FE = BD

∴ BDEF is a parallelogram.

DF is a diagonal of the parallelogram BDEF

 \therefore Area of $\triangle DEF = Area of <math>\triangle BDF$

Similarly, Area of $\triangle DEF = Area$ of $\triangle DCE$

And Area of $\Delta DEF = Area$ of ΔAEF

But, Area of $\triangle DEF + Area$ of $\triangle BDF + Area$ of $\triangle DCE + Area$ of $\triangle AEF = Area$ of $\triangle ABC$

 \Rightarrow Area of $\triangle DEF +$ Area of $\triangle DEF +$ Area of $\triangle DEF +$ Area of $\triangle DEF =$ Area of $\triangle ABC$

 \Rightarrow 4×Area of \triangle DEF = Area of \triangle ABC

 \Rightarrow Area of $\triangle DEF = \frac{1}{4} \times Area$ of $\triangle ABC$

And, area of parallelogram BDEF = Area of \triangle BDF + Area of \triangle DEF

- = Area of $\triangle DEF$ + Area of $\triangle DEF$
- = 2 (Area of Δ DEF)
- $= 2 \times \frac{1}{4}$ (Area of \triangle ABC)
- $=\frac{1}{2}$ (Area of \triangle ABC)
- 8. Prove that the straight line joining the mid-points of two sides of a triangle is parallel to the third side.

Solution:

Given: D and E are mid points of AB and AC of a \triangle ABC.

To Prove: DE || BC

Construction: CD, BE are joined.

Proof: As D is mid-point of AB, CD is a medium of \triangle ABC.

∴ Area of
$$\triangle DBC = \frac{1}{2}$$
 Area of $\triangle ABC$

∴ Area of
$$\triangle$$
EBC = $\frac{1}{2}$ Area of \triangle ABC

So, Area of $\triangle DBC = Area$ of $\triangle EBC$

9. Prove the straight line joining the mid-points of the oblique sides of a trapezium is parallel to each of the parallel sides.

Solution:

Given: ABCD is a trapezium in which $AD \parallel BC$. E and F are

the mid-points of the oblique sides AB and CD.

To Prove: $EF \parallel BC$.

Construction: AC, BD, BF, CE are joined.

Proof: \triangle ABC and \triangle DBC are on the same base BC and between the same parallels AD and BC.

$$\therefore$$
 Area of $\triangle ABC = Area of $\triangle DBC$$

As E is mid-point of AB, CE is a median of \triangle ABC.

∴ Area of
$$\triangle$$
EBC = $\frac{1}{2}$ Area of \triangle ABC

Α

E

В

D

F

As F is the mid-point of CD, BF is a median of Δ DBC.

∴ Area of
$$\triangle$$
FBC = $\frac{1}{2}$ Area of \triangle DBC

So, Area of
$$\triangle EBC = Area$$
 of $\triangle FBC$

But \triangle EBC and \triangle FBC are on the same base BC and on the same side of BC.

$$\therefore EF \parallel BC$$

10. If the diagonals AC and BD of a quadrilateral ABCD are perpendicular to one another, prove that area of the quadrilateral = $\frac{1}{2} \times AC \times BD$.

Solution:

Given: In the quadrilateral ABCD, the diagonals AC and BD are perpendicular to each other intersecting each other at O.

Proof: Area of
$$\triangle ABC = \frac{1}{2} \times AC \times OB$$

Area of $\triangle ADC = \frac{1}{2} \times AC \times OD$

∴ Area of the quadrilateral ABCD = Area of
$$\triangle$$
ABC + Area of \triangle ADC
= $\frac{1}{2}$ ×AC× OB + $\frac{1}{2}$ ×AC× OD
= $\frac{1}{2}$ ×AC×(OB + OD)
= $\frac{1}{2}$ ×AC×BD

11. If the medians AD and BE of a triangle ABC intersect at O, prove that
$$Area$$
 of $\triangle AOB$ = Area of quadrilateral $CDOE$.

Solution:

- Given: The medians AD and BE of \triangle ABC intersect at O.
- To prove: Area of $\triangle AOB = Area$ of quadrilateral CDOE
- Proof: Since AD and BE are medians of ΔABC ,

Area of
$$\triangle ABD = \text{Area of } \triangle BCE \ (= \frac{1}{2} \text{ Area of } \triangle ABC)$$

- \Rightarrow Area of \triangle ABD Area of \triangle BOD
 - = Area of $\triangle BCE$ Area of $\triangle BOD$
- \Rightarrow Area of $\triangle AOB =$ Area of quadrilateral CDOE

ABCD is a Parallelogram, E and F are the mid-points of the sides BC and CD. 12.

Prove that Area of AEF = $\frac{3}{8}$ (Area of Par^m. ABCD).

Solution:

Given: E and F are the mid-points of the sides BC and CD of Parallelogram ABCD.

To prove: Area of $\triangle AEF = \frac{3}{8} (area of Par^m.ABCD)$

Construction: AC, BD, BF, EF are joined.

Proof: Area of \triangle ECF = $\frac{1}{2}$ Area of \triangle BCF [:EF is median in \triangle BCF]

$$= \frac{1}{2} \cdot \frac{1}{2} \text{ Area of } \triangle \text{ BCD} \qquad [:BF \text{ is median in } \triangle \text{ BCD}]$$

Ε

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \text{Area ofPar}^{\text{m}} \cdot \text{ABCD} \qquad [\because \text{BD is a diagonal in Par}^{\text{m}} \cdot \text{ABCD}]$$

D

F

$$=\frac{1}{8}$$
 Area of Par^m. ABCD

Area of \triangle ABE = $\frac{1}{2}$ Area of \triangle ABC [: AE is median in \triangle ABC]

$$= \frac{1}{2} \cdot \frac{1}{2} \text{Area of Par}^{\text{m}} \cdot \text{ABCD} \quad [:: AC \text{ is diagonal inPar}^{\text{m}} \cdot \text{ABCD}]$$

$$=\frac{1}{4}$$
Area of Par^m. ABCD

Area of $\triangle ADF = \frac{1}{2}$ Area of $\triangle ADC$ [: AF is median in $\triangle ADC$]

$$=\frac{1}{2} \cdot \frac{1}{2}$$
 Area of $Par^m \cdot ABCD[: AC \text{ is diagonal in } Par^m \cdot ABCD]$

$$=\frac{1}{4}$$
 Area of Par^m . ABCD

 $= \frac{1}{4} \text{Area of } Par^m. ABCD$ ∴ Area of $\triangle AEF = \text{Area of } Par^m. ABCD$ — Area of $\triangle ECF$ — Area of $\triangle ABE$ — Area of $\triangle ADF$

= Area of
$$Par^m$$
. $ABCD - \frac{1}{8}$ Area of Par^m . $ABCD - \frac{1}{4}$ Area of Par^m . $ABCD$

$$-\frac{1}{4}$$
 Area of Par^m . ABCD

$$= \left(1 - \frac{1}{8} - \frac{1}{4} - \frac{1}{4}\right) \text{ Area of } Par^m. ABCD$$

$$= \left(\frac{8-1-2-2}{8}\right) Area of Par^m. ABCD$$

$$= \frac{3}{8}(Area of Par^m.ABCD)$$

13. If each diagonal of a quadrilateral divides it into two triangles of equal area, show that the quadrilateral is a parallelogram.

Solution:

Given: Each of the diagonals AC and BD of the quadrilateral

ABCD divides it into two triangles of equal area.

To prove: ABCD is a parallelogram.

Area of
$$\triangle$$
 ABC = $\frac{1}{2}$ Area of quad. ABCD.

As BD divides quadrilateral ABCD into two triangles of equal area,

Area of
$$\triangle DCB = \frac{1}{2}$$
 Area of quad. ABCD.

∴ Area of
$$\triangle$$
 ABC = Area of \triangle *DCB*

But \triangle ABC and \triangle DCB are on a same base BC and on a same side of BC.

$$AD \parallel BC$$

Similarly, AB ∥ CD

As the opposite sides of the quad. ABCD are parallel, ABCD is a parallelogram.

14. Triangles ABC and DBC are on the same base BC and on the opposite sides of BC such that area of \triangle ABC = area of \triangle DBC . Show that BC bisect AD.

Solution:

Given: $\triangle ABC$ and $\triangle DBC$ are on the same base BC and on

the opposite sides of BC such that Area of $\triangle ABC =$

Area of ΔDBC. AD intersects BC at O.

To prove: OA = OD i.e. BC bisects AD.

Construction: AP and DQ are drawn perpendicular to BC.

Proof: We have,

$$\Rightarrow \frac{1}{2} \times BC \times AP = \frac{1}{2} \times BC \times DQ$$

$$\Rightarrow AP = DQ$$

Now, in $\triangle AOP$ and $\triangle DOQ$, we have

$$(=90^{\circ})$$

$$\angle AOP = \angle DO$$

[vertically opposite angles]

and
$$AP = DQ$$

$$\therefore \triangle AOP \cong \triangle DOQ$$
 [by AAS congruence]

$$\therefore$$
 OA = OD i.e. BC bisects AD.

D

15. Any point D is taken in the base BC of \triangle ABC and AD is product to E such that AD = DE. Show that area of \triangle BCE = area of \triangle ABC.

Solution:

Given: D is any point on BC of \triangle ABC and AD is joined and produced to E such that AD=DE.

To Prove: Area of \triangle BCE = Area of \triangle ABC.

Proof: We have, AD = DE

 \therefore BD and CD are medians of \triangle ABE and \triangle ACE.

As BD is a median in \triangle ABE,

Area of $\triangle ABD = Area$ of $\triangle EBD$

As CD is a median in \triangle ACE,

Area of $\triangle ACD = Area of \triangle ECD$

Now, Area of $\triangle BCE = Area$ of $\triangle EBD + Area$ of $\triangle ECD$

= Area of \triangle ABD + Area of \triangle ACD

= Area of $\triangle ABC$

Solution:

Given: The diagonals AC and BD of the quadrilateral

ABCD intersect at O such that

Area of $\triangle AOB$ = area of $\triangle BOC$ = area of $\triangle COD$

am.

To Prove: ABCD is a parallelogram.

Proof: We have, Area of $\triangle AOB = Area$ of $\triangle COD$

 \Rightarrow Area of Δ AOB + Area of Δ BOC = Area of Δ COD + Area of Δ BOC

 \Rightarrow Area of \triangle ABC = Area of \triangle DBC.

But \triangle ABC and \triangle DBC are on a same base BC and on a same side of BC.

 $AD \parallel BC$

Similarly, AB ∥ DC

Hence, ABCD is a parallelogram.

17. If the medians of a \triangle ABC intersect at O, prove that

area of $\triangle AOB$ = area of $\triangle BOC$ = area of $\triangle COA$ = $\frac{1}{3}$ (area of $\triangle ABC$).

Solution:

Given: The median AD, BE and CF of \triangle ABC intersect at O.

To prove: Area of \triangle AOB = Area of \triangle BOC = area of \triangle COA = $\frac{1}{3}$ (area of \triangle ABC)

Proof: As AD is a median in \triangle ABC,

Area of \triangle ABD = Area of \triangle ACD ----- (1)

As OD is a median in \triangle OBC,

Area of $\triangle OBD$ = Area of $\triangle OCD$ -----(2)

Subtracting (2) from (1),

Area of \triangle ABD - Area of \triangle OBD = Area of \triangle ACD - Area of \triangle OCD.

 \Rightarrow Area \triangle AOB = Area of \triangle AOC

Similarly,

Area of Δ BOC=Area of Δ COA

∴Area of \triangle AOB = Area of \triangle BOC = Area of \triangle COA

But, Area of \triangle AOB + Area of \triangle BOC + Area of \triangle COA = Area of \triangle ABC

 \Rightarrow Area of \triangle AOB +Area of \triangle AOB +Area of \triangle AOB = Area of \triangle ABC

 \Rightarrow 3 Area of \triangle AOB = Area of \triangle ABC

⇒Area of \triangle AOB = $\frac{1}{3}$ Area of \triangle ABC

Hence, Area of \triangle AOB = Area of \triangle BOC = area of \triangle COA = $\frac{1}{3}$ (area of \triangle ABC)
