Guía 5: Reticulados acotados, complementados y distributivos, y Álgebras de Boole

Reticulados acotados

• **Definición**: Por un reticulado acotado entenderemos una 5-upla (L, s, i, 0, 1) tal que (L, s, i) es un reticulado terna, $0, 1 \in L$, y además $\forall x \in L, 0 \ s \ x = x \land x \ s \ 1 = 1$.

Orden asociado

- **Definición**: Dado un reticulado acotado (L, s, i, 0, 1) llamaremos a $\leq = \{(x, y) : x \ s \ y = y\}$ el orden parcial asociado a (L, s, i, 0, 1) y (L, \leq) será llamado el poset asociado a (L, s, i, 0, 1).

 Notar que $\leq = \{(x, y) : x \ i \ y = x\}$
- Propiedades:
 - Si (L, s, i, 0, 1) es un reticulado acotado, entonces 0 i $x = 0 \land 1$ i $x = x \ \forall x \in L$

Subreticulado acotado

- **Definición**: Dados reticulados acotados (L, s, i, 0, 1) y (L', s', i', 0', 1'), diremos que (L, s, i, 0, 1) es un subreticulado acotado de (L', s', i', 0', 1') si se dan las siguientes condiciones:
 - 1. $L \subseteq L'$
 - 2. L es cerrado bajo s', i'
 - 3. 0 = 0' y 1 = 1'
 - 4. $s = s'|_{L^2}$ e $i = i'|_{L^2}$
- Subuniverso: Un conjunto $S \subseteq L$ es un subuniverso de (L, s, i, 0, 1) si $0, 1 \in S$ y además S es cerrado bajo s, i.
 - Notar que los subuniversos de (L, s, i, 0, 1) son los universos de los subreticulados acotados de (L, s, i, 0, 1).
- Propiedades:
 - Si (L, s, i, 0, 1) es un reticulado acotado y S_1, S_2 son subuniversos de (L, s, i, 0, 1), entonces $S_1 \cap S_2$ es un subuniverso de (L, s, i, 0, 1)

Homomorfismo e isomorfismo de reticulados acotados

- Homomorfismo: Sean (L, s, i, 0, 1) y (L', s', i', 0', 1') reticulados acotados, una función $F: L \to L'$ será llamada un homomorfismo de (L, s, i, 0, 1) en (L', s', i', 0', 1') si $\forall x, y \in L$ se cumple que:
 - 1. F(x s y) = F(x) s' F(y)
 - 2. F(x i y) = F(x) i' F(y)
 - 3. F(0) = 0'
 - 4. F(1) = 1'
- **Isomorfismo**: Un homomorfismo de (L, s, i, 0, 1) en (L', s', i', 0', 1') será llamado isomorfismo cuando sea biyectivo y su inversa sea también un homomorfismo.
 - Escribiremos $(L, s, i, 0, 1) \cong (L', s', i', 0', 1')$
- Propiedades:
 - Para isomorfismo no hace falta chequear la inversa: Si $F:(L,s,i,0,1)\to (L',s',i',0',1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo
 - La imagen del homomorfismo es un subuniverso: Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo, entonces I_F es un subuniverso de (L',s',i',0',1').

Congruencias de reticulados acotados

• **Definición de congruencia**: Sea (L, s, i, 0, 1) un reticulado acotado, una congruencia sobre (L, s, i, 0, 1) será una relación de equivalencia θ la cual sea una congruencia sobre (L, s, i).

- **Definición de operaciones**: Tenemos definidas sobre L/θ dos operaciones binarias \tilde{s} , \tilde{i} tales que x/θ \tilde{s} $y/\theta = (x\ s\ y)/\theta\ y\ x/\theta$ \tilde{i} $y/\theta = (x\ i\ y)/\theta$
- **Definición de cociente**: La 5-upla $(L/\theta, \tilde{s}, \tilde{i}, 0/\theta, 1/\theta)$ es llamada el cociente de (L, s, i, 0, 1) sobre θ y la denotaremos con $(L, s, i, 0, 1)/\theta$.
- Propiedades:
 - La proyección canónica de la congruencia es un homomorfismo: Sea (L, s, i, 0, 1) un reticulado acotado y θ una congruencia sobre (L, s, i, 0, 1), entonces $(L, s, i, 0, 1)/\theta$ es un reticulado acotado y π_{θ} es un homomorfismo de (L, s, i, 0, 1) en $(L, s, i, 0, 1)/\theta$ cuyo núcleo es θ .
 - El núcleo de un homomorfismo es una congruencia: Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo de reticulados acotados, entonces ker(F) es una congruencia sobre (L,s,i,0,1).

Reticulados complementados

- Definición de complemento: Sea (L, s, i, 0, 1) un reticulado acotado, dado $a \in L$ diremos que a es complementado cuando exista un elemento $b \in L$ (llamado complemento de a) tal que $a \ s \ b = 1 \land a \ i \ b = 0$.
 - Notar que el b puede no ser único. Es decir, a puede tener varios complementos.
- Definición de operación unaria: Una operación unaria sobre un conjunto L es una función de L en L.
 - Si s denota una operación unaria, entonces escribiremos x^s en vez de s(x)
- Definición de reticulado complementado: Por un reticulado complementado entenderemos una 6-upla $(L, s, i, {}^c, 0, 1)$ tal que (L, s, i, 0, 1) es un reticulado acotado y c es una operación unaria sobre L tal que $\forall x \in L, x \ s \ x^c = 1 \land x \ i \ x^c = 0$
- Propiedades:
 - Máximo y mínimo tienen un solo complemento: Sea (L, s, i, 0, 1) un reticulado acotado, si 1 es un complemento de a entonces a = 0. Del mismo modo, si a es un complemento de 0, entonces a = 1.

Orden asociado a un reticulado complementado

- **Definición**: Dado un reticulado complementado $(L, s, i, {}^c, 0, 1)$, llamaremos a $\leq = \{(x, y) : x \ s \ y = y\}$ el orden parcial asociado a $(L, s, i, {}^c, 0, 1)$ y (L, \leq) será llamado el poset asociado a $(L, s, i, {}^c, 0, 1)$.
 - Notar que $\leq = \{(x, y) : x \ i \ y = x\}$

Subreticulado complementado

- **Definición**: Dados reticulado complementados $(L, s, i, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$, diremos que $(L, s, i, {}^c, 0, 1)$ es un subreticulado complementado de $(L', s', i', {}^{c'}, 0', 1')$ si se dan las siguientes condiciones:
 - 1. $L \subseteq L'$
 - 2. L es cerrado bajo s', i', c'
 - 3. 0 = 0' y 1 = 1'
 - 4. $s = s'|_{L^2}$, $i = i'|_{L^2}$ y $c = c'|_{L^2}$
- **Definición de subuniverso**: Sea (L, s, i, c, 0, 1) un reticulado complementado, un conjunto $S \subseteq L$ es llamado subuniverso de (L, s, i, c, 0, 1) si $0, 1 \in S$ y además S es cerrado bajo s, i, c.
 - Notar que los subuniversos de (L, s, i, c, 0, 1) son los universos de los subreticulados complementados de (L, s, i, c, 0, 1).

Homomorfismo e isomorfismo de reticulados complementados

- Homomorfismo: Sean $(L, s, i, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ reticulados complementados, una función $F: L \to L'$ será llamada un homomorfismo de $(L, s, i, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$ si $\forall x, y \in L$ se cumple que:
 - 1. F(x s y) = F(x) s' F(y)
 - 2. F(x i y) = F(x) i' F(y)
 - 3. $F(x^c) = F(x)^{c'}$
 - 4. F(0) = 0'
 - 5. F(1) = 1'
- **Isomorfismo**: Un homomorfismo de $(L, s, i, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$ será llamado isomorfismo cuando sea biyectivo y su inversa sea un homomorfismo.
 - Usaremos el símbolo ≅ para denotar la relación de isomorfismo.
- Propiedades:
 - Para isomorfismo de reticulados complementados no hace falta ver la inversa: Si F: $(L, s, i, ^c, 0, 1) \rightarrow (L', s', i', ^{c'}, 0', 1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo
 - La imagen del homomorfismo es un subuniverso: Si $F:(L,s,i,{}^c,0,1) \to (L',s',i',{}^c',0',1')$ es un homomorfismo, entonces I_F es un subuniverso de $(L',s',i',{}^c',0',1')$.

Congruencias de reticulados complementados

- **Definición de congruencia**: Sea $(L, s, i, {}^{c}, 0, 1)$ un reticulado complementado, una congruencia sobre $(L, s, i, {}^{c}, 0, 1)$ será una relación de equivalencia θ sobre L la cual cumpla:
 - 1. θ es una congruencia sobre (L, s, i, 0, 1)
 - 2. $x/\theta = y/\theta \Rightarrow x^c/\theta = y^c/\theta$
- Definición de operaciones: Definimos sobre L/θ dos operaciones binarias \tilde{s},\tilde{i} y una operación unaria \tilde{c} tales que:
 - $-x/\theta \stackrel{\sim}{s} y/\theta = (x s y)/\theta$
 - $-x/\theta \stackrel{\sim}{i} y/\theta = (x \ i \ y)/\theta$
 - $-(x/\theta)^{c} = x^{c}/\theta$
- Definición de cociente: La 6-upla $(L/\theta, \tilde{s}, \tilde{i}, \tilde{c}, 0/\theta, 1/\theta)$ es llamada el cociente de $(L, s, i, \overset{c}{c}, 0, 1)$ sobre θ y la denotaremos con $(L, s, i, \overset{c}{c}, 0, 1)/\theta$.
- Propiedades:
 - La proyección canónica de una congruencia sobre un reticulado complementado es un homomorfismo de estos: Sea $(L, s, i, {}^c, 0, 1)$ un reticulado complementado y sea θ una congruencia sobre $(L, s, i, {}^c, 0, 1)$ entonces $(L, s, i, {}^c, 0, 1)/\theta$ es un reticulado complementado y π_θ es un homomorfismo de $(L, s, i, {}^c, 0, 1)$ en $(L, s, i, {}^c, 0, 1)/\theta$ cuyo núcleo es θ .
 - El núcleo de un homomorfismo es una congruencia: Si $F:(L,s,i,^c,0,1)\to (L',s',i',^{c'},0',1')$ es un homomorfismo de reticulados complementados, entonces ker(F) es una congruencia sobre $(L,s,i,^c,0,1)$.

Álgebras de Boole

- **Distributividad**: Diremos que un reticulado acotado (L, s, i, 0, 1) (resp. complementado (L, s, i, c, 0, 1)) es distributivo cuando (L, s, i) lo sea.
- Álgebra de Boole: Reticulado complementado que es distributivo.
- Propiedades:
 - La distributividad y la distributividad dual son equivalentes: Sea (L, s, i) un reticulado terna, entonces $(\forall x, y, z \in L, x \ i \ (y \ s \ z) = (x \ i \ y) \ s \ (x \ i \ z)) \iff (\forall a, b, c \in L, a \ s \ (b \ i \ c) = (a \ s \ b) \ i \ (a \ s \ c)).$

- En un reticulado acotado distributivo se puede tener a lo sumo un complemento: Si (L, s, i, 0, 1) es un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento.
 - * Es decir, si x s u=x s v=1 y x i u=x i v=0, entonces u=v cualesquiera sean $x,u,v\in L$.
- Sea (B, s, i, c, 0, 1) un álgebra de Boole, $\forall x, y \in B, y = (y \ i \ x) \ s \ (y \ i \ x^c)$
- Teorema de Álgebras de Boole: Sea $(L, s, i, {}^c, 0, 1)$ un álgebra de Boole y sean $a, b \in L$, se tiene que:
 - 1. $(a \ i \ b)^c = a^c \ s \ b^c$
 - 2. $(a \ s \ b)^c = a^c \ i \ b^c$
 - 3. $a^{cc} = a$
 - 4. $a i b = 0 \iff b \le a^c$
 - 5. $a \le b \iff b^c \le a^c$

Notación

• En general usaremos letras mayúsculas en negrita para denotar una estructura dada y su correspondiente mayúscula en itálica denotará al universo de esta.