Calculus and its Applications (Limits and Continuity - Combining Functions)

KRISHNASAMY R

email: rky.amcs@psgtech.ac.in Mobile No.: 9843245352

September 15, 2021

LIMITS AND CONTINUITY: Standard functions – Graphs - Limit - continuity - piecewise continuity - periodic - differentiable functions - Riemann sum - integrable functions - fundamental theorem of calculus

TEXT BOOKS:

Thomas G B Jr., Maurice D Wier, Joel Hass, Frank R. Giordano, Thomas' Calculus, Pearson Education, 2018.

Sums, Differences, Products, and Quotients

If f and g are functions, then for every x that belongs to the domains of both f and g (that is, for $x \in D(f) \cap D(g)$), we define functions f + g, f - g and fg by the formulas

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

At any point of $D(f) \cap D(g)$ at which $g(x) \neq 0$, we can also define the function f/g by the formula

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \text{ where } g(x) \neq 0$$

EXAMPLE 1

Let the functions be defined by the formulas $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$. Find the domains of f(x) and g(x). Also find the formulas and domains for the algebraic combinations defined below.

Function	Formula (x)	domain (y)
f+g	√n + √1-n	D(f) \ D(8) = [0,]
f - g	√a -√1-x	C°1]
g - f	VI-n - Vn	[0,1]
$f \cdot g$	V-22 (1-n	[[رم]
f/g	<u>171</u>	(O)) X=1 & excluded because
g/f	√1-x √x	(0,1) =0

Composite functions

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$(f \circ g)(x) = f(g(x)).$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

EXAMPLE 2

If $f(x) = \sqrt{x}$ and g(x) = x + 1 find the formulas and domains for the following: $(f \circ g)(x)$, $(g \circ f)(x)$, $(f \circ f)(x)$ and $(g \circ g)(x)$.

$$(4 \circ t)(w) = 2(4 \circ w) = 2(x) = 2(x)$$

Shifting a graph of a function

Vertical Shifts

y = f(x) + k shifts the graph of f up k units if k > 0 or shifts it down |k| units if k < 0

Horizontal Shifts

y = f(x + h) shifts the graph of f left h units if h > 0 or shifts it right |h| units if h < 0

Example 3a

If $y = x^2$ then mention the type of shifts for the following operations and hence sketch the graph in each cases:

- adding 1 to the right hand side of y, $\Rightarrow 3 = n^2 (y) (y)$
- adding 2 to the right hand side of y, $\Rightarrow 4 = n^2 + 2$
- adding -2 to the right hand side of y, $\Rightarrow \forall = \lambda^2 2 \quad (\lor s)$

Example 3b

If $v = x^2$ then mention the type of shifts for the following operations and hence sketch the graph in each cases:

- adding 3 to x in $y = x^2$, \Rightarrow $y = (x+3)^2$ adding -2 to x in $y = x^2$. \Rightarrow $z = (x-2)^2$

Example 3c

If y = |x| then mention the type of shifts when -2 is added to x in y and then -1 is added to the result. Also sketch the graph for the above.

$$3 = \frac{1}{2}$$
 shifted horizontally to the right by $3 = \frac{1}{2}$ units

shifted vertically downward by 1 unit

- Find the domain and ranges of f, g f+g, $f\cdot g$, for f(x)=x and $g(x)=\sqrt{x-1}$
- ② Find the domain and ranges of f, g, f/g and g/f for $f(x) = \sqrt{x}$ and g(x) = |x 3|

Shifting graphs

Graph of $y = -x^2$ shifted to two new positions. Write equations for the new graphs

Shifting graphs

m

Graph of $y = x^2$ shifted to two new positions. Write equations for the new graphs

Shifting graphs

Match the equations listed in part (1)-(4) to the graphs in the following figure.

$$y = (x-1)^2 - 4$$

$$(x-2)^2+2$$

$$y = (x+2)^2 + 2^{-1}$$

$$y = (x+3)^2 - 2$$

Vertical and Horizontal Scaling

For c > 1, the graph is scaled

- y = cf(x) Stretches the graph of f vertically by a factor of c.
- $y = \frac{1}{c}f(x)$ Compresses the graph of f vertically by a factor of c.
- y = f(cx) Compresses the graph of f horizontally by a factor of c. y = f(x/c) Stretches the graph of f horizontally by a factor of c.

Reflection

For c = -1, the graph is reflected

- y = -f(x) Reflects the graph of y across the x-axis.
- y = f(-x) Reflects the graph of y across the y-axis

vertical scaling

Example 4a Scale and sketch the graph of $y = \sqrt{x}$ in each of the following cases

- multiplying the right hand side of y by 3, 7 = 36
- multiplying the right hand side of y by 1/3 $\forall = \frac{1}{3} \sqrt{3}\pi$

Horizontal scaling

Example 4b Scale and sketch the graph of $y = \sqrt{x}$ in each of the following cases

- multiplying x by 3 in the right hand side of $y = \sqrt{3}$
- multiplying x by 1/3 in the right hand side of y

Reflection

Example 4c Scale and sketch the graph of $y = \sqrt{x}$ in each of the following cases

- Reflects the graph of f across the x-axis. $4 = -\sqrt{x}$
- Reflects the graph of f across the y-axis $7 = \sqrt{-x}$

Example 5 Given the function $f(x) = x^4 - 4x^3 + 10$, find formulas to

- (a) compress the graph horizontally by a factor of 2 followed by a reflection across the y-axis. f(-2x) =
- (b) compress the graph vertically by a factor of 2 followed by a reflection across the x-axis $\frac{1}{2} f(x)$

$$\frac{1}{2}f(x) = \frac{1}{2}x^{4} - 2x^{3} + 3$$

$$\frac{-1}{2}f(x) = \frac{1}{2}x^{4} + 2x^{3} - 5$$

Periodic function

A function f(x) is periodic if there is a positive number p such that

$$f(x+p)=f(x)$$

for every value of x. The smallest such value of p is the period of f.

The accompanying figure shows the graph of a function f(x) with domain [0,2] and range [0,1]. Find the domains and ranges of the following functions, and sketch their graphs.

- f(x) + 2
- f(x) 1
- \circ 2f(x)
- \bullet -f(x)
- f(x+2)
- f(x-1)
- -f(x+1)+1

Find by what factor and direction the graphs of the given functions are to be stretched or compressed. Give an equation for the stretched or compressed graph

- $y = x^2 1$ stretched vertically by a factor of 3
- $y = x^2 1$ compressed horizontally by a factor of 2
- $y = 1 + \frac{1}{x^2}$ compressed vertically by a factor of 2
- $y = 1 + \frac{1}{x^2}$ stretched horizontally by a factor of 3
- $y = \sqrt{x+1}$ stretched vertically by a factor of 3
- $y = \sqrt{4 x^2}$ stretched horizontally by a factor of 2

The accompanying figure shows the graph of a function g(t) with domain [-4,0] and range [-3,0]. Find the domains and ranges of the following functions and sketch their graphs

- \circ g(-t)
- $\bigcirc -g(t)$
- (t) + 3
- 0 1 g(t)
- (-t+2)

- 0 g(t-4)

Transformation of trigonometric graphs

General sine function or sinusoid formula

$$f(x) = A\sin\left(\frac{2\pi}{B}(x-c)\right) + D$$

Problem

Find the period of each function

- sin 2x
- \circ $\sin(x/2)$
- \circ cos πx
- $\cos\left(\frac{\pi x}{2}\right)$
- $\sin\left(x + \frac{\pi}{6}\right)$

- **Q** Graph the functions $y=2\cos(x-\pi/3)$ and $y=1+\sin(x+\pi/4)$
- ② Describe how each graph is obtained from the graph of y = f(x)
 - y = f(x 5)
 - y = f(4x)
 - y = f(-3x)
 - y = f(2x + 1)
 - y = f(x/3) 4
 - y = -3f(x) + 1/4

THANK YOU