Advanced Statistical Inference Projection

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

Introduction

M. Filippone

mtroducti

entures

Projection

IC.A

Introduction

M. Filippone

Introduction

. catares

ICA

Part 1: Feature selection and PCA

A problem - too many features

- ► Aim: To build a classifier that can diagnose leukaemia using Gene expression data.
- ▶ Data: 27 healthy samples,11 leukaemia samples (N = 38). Each sample is the expression (activity) level for 3751 genes. (Also have an independent test set)

- ▶ In general, the number of parameters will increase with the number of **features** -D = 3751.
 - ▶ e.g. Logistic regression w would have length 3751!
- ► Fitting lots of parameters is hard imagine Metropolis-Hastings in 3751 dimensions rather than 2!

Introduction

M. Filippone

Introduction

eatures

Projections

PCA

Features

- For visualisation, most examples we've seen have had only 2 features $\mathbf{x} = [x_1, x_2]^T$.
- We sometimes **created** more: $\mathbf{x} = [1, x_1 x_1^2, x_1^3, \ldots]^\mathsf{T}$.
- ▶ Now, we've been given lots (3751) to start with.
- ▶ We need to reduce this number.
- ▶ 2 general schemes:
 - Use a subset of the originals.
 - ▶ Make new ones by **combining** the originals.

Introduction

M. Filippone

and the state of

Features

Projections

PCA

Finding a subset – example

► Take one feature – N values.

- ▶ Some values from objects in class 1, some from class 0.
- ▶ Split them based on class and compute μ and σ^2 for each class.
- ► Compute *s* for each feature:

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

► Keep features with high *s*.

Introduction

M. Filippone

Features

Projections

ICA

Inti

Examples

Features get better (higher s) from left to right...

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

- ▶ Each feature has an *s*-score. The higher the better.
- ▶ Use the *S* features with the highest scores.
- ► How to choose *S*?

A feature selection scheme (CV)

- ► For each candidate *S* value:
- ► Split the data into *C* folds (just as in CV)
- ► For each fold...
 - 1. Find the feature scores on the **training** data.
 - 2. Train the classifier (whichever we choose).
 - 3. Record the performance.
- ► Important: Must only compute scores on training data. Otherwise we are implicitly using the test labels for training biased.

Introduction

M. Filippone

troduction

Features

Projections

PCA

Example

Best two features in our leukaemia data (points labeled by class).

Introduction

Introduction

M. Filippone

Features

M. Filippone

ntroduction

Features

PCA

Example

Performance as S increases.

Introduction

M. Filippone

....

Features

_ _ .

ICA

Making new features

- ▶ An alternative to choosing features is making new ones.
- Cluster:
 - Cluster the features (turn our clustering problem around)
 - ▶ If we use say K-means, our new features will be the *K* mean vectors.
- ► Projection/combination
 - ► Reduce the number of features by projecting into a lower dimensional space.
 - ▶ Do this by making new features that are combinations (linear) of the old ones.

Introduction

M. Filippone

Introduction

Features

Projection

PCA

ICA

Projection

Introduction

M. Filippone

troduction

Projections

DC A

PCA

Projection

- ▶ We can project data (*D* dimensions) into a lower number of dimensions (*M*).
- ▶ Z = XW
 - **▶ X** is *N* × *D*
 - **W** is $D \times M$
- ► Z is N × M an M-dimensional representation of our N objects.
- ▶ **W** defines the projection
 - ► Changing **W** is like changing where the light is coming from for the shadow (or rotating the hand).
 - ► (X is the hand, Z is the shadow)
- Once we've chosen W we can project test data into this new space too: $Z_{\text{new}} = X_{\text{new}}W$

Introduction

M. Filippone

Introduction

Projections

rojection

Choosing W

- ▶ Different **W** will give us different projections (imagine moving the light).
- ▶ Which should we use?
- ▶ Not all will represent our data well...

Introduction M. Filippone Introduction Features Projections

Principal Components Analysis

- ► Principal Components Analysis (PCA) is a method for choosing **W**.
- ▶ It finds the columns of **W** one at a time (define the mth column as \mathbf{w}_m).
 - ▶ Each $D \times 1$ column defines one new dimension.
- ► Consider one of the new dimensions (columns of **Z**):

$$z_m = Xw_m$$

ightharpoonup PCA chooses \mathbf{w}_m to maximise the variance of \mathbf{z}_m

$$\frac{1}{N}\sum_{n=1}^{N}(z_{mn}-\mu_{m})^{2}, \quad \mu_{m}=\frac{1}{N}\sum_{n=1}^{N}z_{mn}$$

▶ Once the first one has been found, the w₂ is found that maximises the variance and is **orthogonal** to the first one etc etc.

PCA - a visualisation

- ▶ Original data in 2-dimensions.
- ▶ We'd like a 1-dimensional projection.

Introduction

M. Filippone

troduction

Projections

PCA

ICA

PCA - a visualisation

- ▶ Pick some arbitrary w.
- ▶ Project the data onto it.
- ► Compute the variance (on the line).
- ► The position on the line is our 1 dimensional representation.

Introduction

M. Filippone

Introduction

PCA

160

ICA

Introduction

M. Filippone

Introduction

Projections

PCA

PCA – a visualisation

- ▶ Pick some arbitrary w.
- ▶ Project the data onto it.
- ► Compute the variance (on the line).
- ▶ The position on the line is our 1 dimensional representation.

PCA – analytic solution

- ightharpoonup Could search for $\mathbf{w}_1, \dots, \mathbf{w}_M$
- ▶ But, analytic solution is available.
- ► Matlab: princomp(x)

Introduction

M. Filippone

PCA

PCA – a visualisation

- ► Pick some arbitrary w.
- ▶ Project the data onto it.
- ► Compute the variance (on the line).
- ▶ The position on the line is our 1 dimensional representation.

- **w** are the **eignvectors** of the covariance matrix of **X**.
 - You don't need to know this!

Introduction

M. Filippone

PCA

PCA – analytic solution

▶ What would be the second component?

Introduction

M. Filippone

PCA

Introduction

M. Filippone

PCA

PCA – leukaemia data

First two principal components in our leukaemia data (points labeled by class).

Introduction M. Filippone

PCA

PCA – leukaemia data

Test error as more and more components are used.

Summary

- ▶ Sometimes we have too much data (too many dimensions).
- ▶ Need to select features.
- ▶ Features can be dimensions that already exist.
- Or we can make new ones.
- ▶ We've seen one example of each.
- ▶ To think about during the break: Why might PCA do worse than the scoring method?

Introduction

M. Filippone

PCA

Part 2: ICA (the cocktail party problem) Introduction

M. Filippone

PCA

Introduction

M. Filippone

The cocktail party problem

- ► Each microphone will record a combination of all speakers.
- ► Can we separate them back out again?

Independent components analysis – how it works...

► Corrupted data (images/sounds) is a vector of *D* numbers. i.e. *n*th image:

 \mathbf{x}_n

• We have **N** images – stack them up into an $N \times D$ matrix:

Χ

▶ Assume that this is the result of the following corrupting process:

X = AS + E

▶ **A** is mixing matrix. **E** is noise. (**S** is $N \times D$).

$$e_{nd} \sim \mathcal{N}(0, \sigma^2)$$

Introduction

M. Filippone

Introduction

M. Filippone

ICA

ICA

Demo

- Online:
- http://www.cis.hut.fi/projects/ica/cocktail/ cocktail_en.cgi
- Matlab:
 - Available on course webpage
 - ► To run:
 - ▶ load ica_demo.mat
 - ▶ ica_image

Introduction

M. Filippone

Introduction

M. Filippone

ICA

$$p(\mathbf{S}|\mathbf{X},\mathbf{A},\sigma^2) \propto p(\mathbf{X}|\mathbf{S},\mathbf{A},\sigma^2)p(\mathbf{S})$$

- ▶ In our demo, we found values of **S**, **A** and σ^2 that maximised the log posterior.
- ► MAP solution...
- ▶ There is some further reading on the webpage if you want to know more...

Inference

► From Bayes' (look back...)

$$p(\mathbf{S}|\mathbf{X},\mathbf{A},\sigma^2) \propto p(\mathbf{X}|\mathbf{S},\mathbf{A},\sigma^2)p(\mathbf{S})$$

Aside – ICA and the central limit theorem

- ► Central limit theorem (paraphrased):
 - ▶ If we keep adding the outcomes of independent random variables together, we eventually get something that looks Gaussian.
- **Example:** Roll a die *m* times and take the average. (Repeat this lots of times to get histogram)

From left to right: m = 1, m = 2, m = 5. Looking more Gaussian as *m* increases.

Summary

- ▶ PCA and ICA are both examples of projection techniques.
- Both assume a linear transformation
 - ► ICA: **X** = **AS** + **E**
 - ► PCA: **Z** = **XW**
- ▶ PCA can be used for Data pre-processing or visualisation.
- ▶ ICA can be used to separate sources that have been mixed together.
- ▶ Also looked at PCA as a feature selection method.

Introduction

M. Filippone

ICA

Introduction

M. Filippone

ICA

Aside – ICA and the central limit theorem

Introduction

M. Filippone

ICA

► Sometimes ICA is performed by **reversing** this theorem:

$$X = AS + E$$

- **X** is some random variables added together.
- ▶ It will be more 'Gaussian' than **S**
- ► Find **S** that is as non-Gaussian as possible.
- ► More resource:
 - http://www.cis.hut.fi/projects/ica/icademo/
 - http://www.cis.hut.fi/projects/ica/