Software Platforms for Automotive Systems

Lecture 6: Main Development Process

Alejandro Masrur 19th November 2015, TU Chemnitz

Development Process

Main Development Process

V-Model

- Two branches of sides (that's why it is called "V")
 - Left-hand branch: analysis and specification steps
 - Right-hand branch: implementation and testing steps
- Frequently used in the embedded domain
 - In particular, for safety and reliability requirements
- Disadvantage: lack of feedback to early phases
 - Late changes in the requirements = high costs
- That's why it is used in an iterative manner
 - A number of prototypes are developed first

Assignment of Responsibility

OEM focus on validation and integration

Process According to the V-Model

Methods and Tools

- Methods: Simulation and Rapid prototyping
 - Early validation of specifications

Requirements Analysis

Instruments Panel

Logical System Architecture

Instruments Panel

Accepted user requirements become requirements

Analysis of LSA

From LSA to TSA

Instruments Panel

Analysis of Distributed Systems

Safety and Reliability

Analysis of SW Requirements

Specification of SW Components

- Need to consider non-functional requirements
 - Separation between data and code
 - Limited hardware resources
 - Less RAM available as in the desktop domain
 - Normally because of costs restrictions
 - Use of specific hardware platforms
 - Normally because of company-wide decisions
 - Safety requirements
 - Reliability requirements: redundancy
 - Real-time requirements

- Implementation concerns
 - Quantification errors due to A/D conversion
 - Limited number of bits
 - Rounding errors
 - Precision is never unlimited
 - Need to go from a floating to fixed point
 - Approximation errors
 - Integration
 - Derivation
- Implementing real-time behavior: real-time OS

- Approximation errors
 - Integration

$$I = \int_{t_0}^{t_n} f(t)dt \qquad \Rightarrow I^* = \sum_{i=0}^{n-1} (t_{i+1} - t_i) f(t_i)$$

Testing SW Components

Integrating SW Components

SW Integration Test

System Component Integration

System Integration Test

Calibration

System and Acceptance Test

Summary

- Main Development process: V-Model
 - Most used in the automotive domain
 - Two branches
 - Left-hand side: verification
 - Right-hand side: validation
- Need to consider non-functional requirements
 - Memory restrictions
 - Real-time, reliability, etc.
- Gap between design and implementation
 - A/D conversion, fixed-point and rounding

