1. (7 points) The graphs of the functions f and g are given below. Use these to answer the following questions.

- (a) State the domain and range of f
- (b) If possible, evaluate the following or state that it is undefined:

i.
$$f(2)$$

ii.
$$(f+2g)(0)$$

iii.
$$(f \circ g)(4)$$

iv.
$$g^{-1}(2)$$

v.
$$(f/g)(4)$$

- (c) Is f invertible? Justify your answer.
- **2.** (4 points) Suppose f is defined by $f(x) = \begin{cases} 1 2x & \text{if } x < 1 \\ x 1 & \text{if } x \ge 1 \end{cases}$.
 - (a) Evaluate f(1).
 - (b) Sketch the graph of f using the grid provided below.
 - (c) Label any intercept(s) that occur on the graph of f.
 - (d) State the range of f.
- 3. (4 points) Factor each of the following expressions completely.

(a)
$$2x^7(x-3) - 16x^4(x-3)$$

(b)
$$3x^4 - 26x^2 - 9$$

4. (2 points) Perform the following polynomial division, writing your final answer in the form $p(x) + \frac{r(x)}{q(x)}$ where p(x), r(x), and q(x) are polynomials.

$$\frac{6x^3 - 8x + 5}{2x - 4}$$

5. (5 points) Consider the function $f(x) = -\frac{1}{2}x^2 + 4x - 6$.

- (a) Put f(x) into the form $f(x) = a(x-h)^2 + k$ by completing the square.
- (b) Identify any intercept(s) that occur.
- (c) Identify the vertex.
- (d) Use the grid below to sketch y = f(x).
- **6.** (6 points) Solve each equation for x.

(a)
$$\frac{1}{x+4} - \frac{x+3}{x^2+2x-8} = 1$$

- (b) $x \sqrt{6 3x} = 2$
- 7. (3 points) Find all values of x that satisfy the following inequality.

$$\frac{2x^2 - 18}{x} \ge 0$$

- 8. (5 points) Let $f(x) = \frac{3x-1}{8-x}$ and g(x) = 3-5x. Compute and simplify expressions for the following functions.
 - (a) $(f \circ g)(x)$
 - (b) $f^{-1}(x)$
- 9. (3 points) Simplify the following expression. $\frac{\frac{3}{x-2} + \frac{x}{x^2-4}}{1 \frac{1}{3x+6}}$
- **10.** (3 points) Simplify the following expression. $\frac{4x^2 4x + 1}{x^2 + 2x 3} \div \frac{6x^2 + x 2}{x^3 + 27}$
- 11. (2 points) Simplify and reduce the radical expression below.

$$\frac{\sqrt[3]{-81x^7}\sqrt{y^6}}{\sqrt[3]{8x^2y^3}}$$

12. (2 points) Rationalize the numerator of the expression below and simplify the result.

$$\frac{\sqrt{3}-1}{2+2\sqrt{3}}$$

- **13.** (4 points) Let $f(x) = -\sqrt{4-x}$.
 - (a) State the domain and range of f.
 - (b) Identify any intercept(s) that occur.
 - (c) Use the grid provided below to sketch y = f(x).
- **14.** (3 points) State the domain of the function $f(x) = \frac{x-1}{1-\sqrt{x+1}}$.

- 15. (2 points) If \$4000 is invested at 2.5% interest compounded quarterly, find the value of the investment after 15 years. Give your answer to the nearest cent.
- 16. (3 points) Write the following expression in terms of the simplest possible logarithms.

$$\log\left(\frac{100\sqrt{x^5y}}{4-z^2}\right)$$

17. (3 points) Combine the terms of following expression into a single logarithm and simplify the result.

$$\frac{2}{3}\ln[(x+2)y] + \frac{1}{3}\ln(x^9y) - 6\ln(xy)$$

- **18.** (4 points) Given $f(x) = 1 3^{x+2}$, answer the following.
 - (a) Identify any intercept(s) that occur.
 - (b) Write the equation of any asymptotes.
 - (c) Use the grid below to sketch y = f(x).
- **19.** (4 points) Given $f(x) = \log_2(-x) 1$, answer the following.
 - (a) Identify any intercept(s) that occur.
 - (b) Write the equation of any asymptotes.
 - (c) Use the grid below to sketch y = f(x).
- **20.** (1 point) Evaluate $\log_4(70)$. Round your answer to three decimal places.
- **21.** (6 points) Solve each equation for x.
 - (a) $3 + \log_5 10 + \log_5 x = \log_5 (3x 1) + 4$
 - (b) $\frac{7^{2x}}{3(5^{2x+1})} = 1$ (Give your answer as an exact value).
- **22.** (2 points) Given that $\cos \theta = \frac{7}{9}$ for an acute angle θ , find the other five trigonometric functions of θ . (Give exact values.)
- 23. (4 points) Find all angles in $[0^{\circ}, 360^{\circ})$ that satisfy each given equation. Round your answers to three decimal places.
 - (a) $\sin \theta = -\frac{3}{11}$
 - (b) $\sec \theta = 7$
- **24.** (2 points) Find the exact value of $\tan(2\pi/3)$.
- **25.** (4 points) Find all angles in $[0, 2\pi)$ that satisfy each given statement. (Give exact values.)
 - (a) $\sec \theta$ is undefined.
 - (b) $2\cos^2\theta \cos\theta 1 = 0$
- **26.** (3 points) Identify the amplitude, period, and sketch at least two cycles of the function $f(x) = -3\cos(\pi x)$.

- 27. (3 points) Suppose that an industrial ramp for a construction site forms a 14° angle with the ground. If the ramp needs to reach a 4 meter high platform, how far back from the platform must the ramp begin? Give your answers in meters to two decimal places.
- 28. (3 points) Simplify the expression below as much as possible.

 $\csc x - \cos x \cot x$

 $\csc x - \sin x$

29. (3 points) Consider a triangle with sides of length a, b, c across from angles A, B, C respectively. If a = 5, $B = 15^{\circ}$, and c = 2, find A, b, and C. (Draw the triangle to solve the problem, and round your answers to 2 decimal places.)

Answers:

- 1. (a) Domain: (-2, 5] and range: (-1, 3)
 - (b) i. 1
 - ii. 5
 - iii. 1
 - iv. 0
 - v. Undefined
 - (c) No. The graph of f does not pass the horizontal line test; in other words, f is not a one-to-one function so it is not invertible.
- **2.** (a) 0
 - (b) See below.
 - (c) x-intercepts are (1,0) and $(\frac{1}{2},0)$; y-intercept is (0,1)
 - (d) Range: $(-1, \infty)$

- **3.** (a) $2x^4(x-3)(x-2)(x^2+2x+4)$
 - (b) $(3x^2+1)(x-3)(x+3)$
- **4.** $3x^2 + 6x + 8 + \frac{37}{2x 4}$

- **5.** (a) $f(x) = -\frac{1}{2}(x-4)^2 + 2$
 - (b) x-intercepts at (6,0) and (2,0); y-intercept at (0,-6)
 - (c) Vertex (4,2)
 - (d) See below.

- **6.** (a) x = -3 or 1
 - (b) x = 2
- 7. $[-3,0) \cup [3,\infty)$
- 8. (a) $(f \circ g)(x) = \frac{8 15x}{5 + 5x}$
 - (b) $f^{-1}(x) = \frac{8x+1}{x+3}$
- 9. $\frac{6(2x+3)}{(3x+5)(x-2)}$
- 10. $\frac{(2x-1)(x^2-3x+9)}{(x-1)(3x+2)}$
- 11. $\frac{-3\sqrt[3]{3}x^2y^2}{2\sqrt[3]{x}}$
- 12. $\frac{1}{(1+\sqrt{3})^2}$
- 13. (a) Domain: $(-\infty, 4]$ and range: $(-\infty, 0]$
 - (b) x-intercept at (4,0) and y-intercept at (0,-2)
 - (c) See below.

14.
$$[-1,0) \cup (0,\infty)$$

15. \$5813.18

16.
$$2 + \frac{5}{2} \log x + \frac{1}{2} \log y - \log(2 - x) - \log(2 + z)$$

17.
$$\ln \left[\frac{(x+2)^{2/3}}{x^3 y^5} \right]$$

18. (a) x-intercept at (-2,0) and y-intercept at (0,-8)

(b) Horizontal asymptote: y = 1

(c) See below.

19. (a) x-intercept at (-2,0); no y-intercept

(b) Vertical asymptote: x = 0

(c) See below.

20. 3.065

21. (a)
$$x = 1$$

(b)
$$x = \frac{\ln 15}{\ln 49 - \ln 25}$$

22.
$$\sin \theta = \frac{\sqrt{32}}{9}$$
, $\csc \theta = \frac{9}{\sqrt{32}}$, $\tan \theta = \frac{\sqrt{32}}{7}$, $\cot \theta = \frac{7}{\sqrt{32}}$, $\sec \theta = \frac{9}{7}$

23. (a)
$$195.827^{\circ}$$
 and 344.173°

(b)
$$81.787^{\circ}$$
 and 278.213°

24.
$$-\sqrt{3}$$

25. (a)
$$\frac{\pi}{2}$$
 and $\frac{3\pi}{2}$

(b)
$$\frac{2\pi}{3}$$
, $\frac{4\pi}{3}$ and 0

26. Amplitude is 3, period is 2. See graph below.

- **27.** 16.04 meters
- **28.** $\tan^2 x$
- **29.** $A \approx 155.42^{\circ}, C \approx 9.56^{\circ}, b \approx 3.11$