Auto-Encoding Variational Bayes Diederik P. Kingma and Max Welling

Ashish Bora

Oct 2016

Outline

- Quick intro to Bayesian Learning
- 2 Latent Variable Models
- Tasks
- 4 Known Approaches
- Variational Inference
- 6 Parametrization of distributions
- Putting it together
- 8 Experiments and Results
- Demo

Observations x, Parameters/Unobserved variables z
 Example

$$x = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
, $z = cat$

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$
- Prior = p(z)

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$
- Prior = p(z)
- Joint = $p(x, z) = p(x \mid z)p(z)$

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$
- Prior = p(z)
- Joint = $p(x, z) = p(x \mid z)p(z)$
- Marginal Likelihood = $p(x) = \int_{z} p(x \mid z)p(z)dz$

$$p(\bigcirc) = p(\bigcirc , cat) + p(\bigcirc , dog) \cdots$$

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$
- Prior = p(z)
- Joint = $p(x, z) = p(x \mid z)p(z)$
- Marginal Likelihood = $p(x) = \int_{z} p(x \mid z)p(z)dz$
- Posterior = $p(z \mid x)$

- Observations x, Parameters/Unobserved variables z
- Likelihood = $p(x \mid z)$
- Prior = p(z)
- Joint = $p(x,z) = p(x \mid z)p(z)$
- Marginal Likelihood = $p(x) = \int_z p(x \mid z)p(z)dz$
- Posterior = $p(z \mid x)$
- Non-Bayesian Learning : Maximize likelihood wrt parameters z

$$p(x \mid z)$$

• Bayesian Learning : Maximize marginal likelihood with a prior p(z) on parameters z

Latent Variable Models

- Parameters: θ , Latent variables: z, Observations x
- Two step process:

- $z \sim p_{\theta}(\mathbf{z})$
- Given z, $x \sim p_{\theta}(\mathbf{x} \mid z)$
- We only observe $x \sim p_{\theta}(\mathbf{x})$
- $p_{\theta}(\mathbf{x}) = \int_{z} p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$.

Tasks

- ML/MAP inference on θ . mimic data generation
- Posterior inference on z given x. coding/data representation.
- Marginal inference on x denoising, inpainting, super-resolution.

Want efficient algorithms for all, with minimal assumptions.

Why is this hard?

- Lots of stuff hidden from us, we only see x.
- Data generation process can be complicated

Ideas?

Given only images, we want

- θ close to θ^*
- An approximation to $p_{\theta^*}(z \mid x)$
- A good model of $p_{\theta^*}(x)$

Some approaches Idea 1

• Integrate out z. Maximize marginal likelihood

$$p_{\theta}(\mathbf{x}) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$$

.

Some approaches Idea 1

• Integrate out z. Maximize marginal likelihood

$$p_{\theta}(\mathbf{x}) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$$

.

Problem: nasty integral

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

Example: kMeans

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Image from https://www.naftaliharris.com/blog/visualizing-k-means-clustering/ Ashish Bora Auto-Encoding Variational Bayes 16 / 39

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

Example: kMeans

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Image from https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
Ashish Bora Auto-Encoding Variational Bayes 17 / 39

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

- \bullet θ contains cluster centres.
- for every x_i , z_i is the cluster id.

Some approaches Idea 2

• Alternating optimization between z and θ : Expectation Maximization.

Problem : Posterior $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ may not be tractable.

Enter Variational Inference!

• Problem: We want to estimate some distribution $p_{\theta}(\cdot)$, but direct estimation is hard.

Enter Variational Inference!

- Problem: We want to estimate some distribution p_θ(·), but direct estimation is hard.
- Solution
 - Approximate $p_{\theta}(\cdot)$ with a simpler distribution $q_{\phi}(\cdot)$.
 - Find parameters ϕ such that the approximation is "close".

Variational Inference – our setting

- Since the posterior $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ is intractable, use variational approximation $q_{\phi}(\mathbf{z} \mid \mathbf{x})$.
- $q_{\phi}(\mathbf{z} \mid \mathbf{x})$: probabilistic encoder
- $p_{\theta}(\mathbf{x} \mid \mathbf{z})$: probabilistic decoder

Variational Lower Bound

- Using approximation leads to smaller marginal likelihood.
- Lower bound on marginal likehood in terms of the variational approximation:

Where is Deep Learning?

Image taken Google Images (modified)

Parametrizing distributions

Ideas?

Parametrizing distributions

Ideas?

- Since we did not assume tractable posteriors, can use any artibrary functions for generative and variational part.
- Only requirement we should be able to optimize wrt θ and ϕ .
- For gradient based algorithms, we want a paramteric family which is differentiable wrt inputs and parameters.
- Can use neural networks.

Parametrizing distributions

Ideas?

- Since we did not assume tractable posteriors, can use any artibrary functions for generative and variational part.
- Only requirement we should be able to optimize wrt θ and ϕ .
- For gradient based algorithms, we want a paramteric family which is differentiable wrt inputs and parameters.
- Can use neural networks.

Example: Variational Autoencoder

- $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$
- $p_{\theta}(\mathbf{x}|\mathbf{z})$ be a "simple" distribution whose distribution parameters are computed from \mathbf{z} with a neural network.
- Assume $q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}^{(i)}, \boldsymbol{\sigma}^{2(i)}\mathbf{I}),$ where μ , and σ are predicted using a neural network

Gradient based optimization: Naïve method

Lower bound is

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= -D_{\mathit{KL}}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z})\right] \\ &= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \right] \end{split}$$

Monte Carlo estimator:

$$egin{aligned}
abla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
ight] &= \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
abla_{q_{\phi}(\mathbf{z})}\log q_{\phi}(\mathbf{z})
ight] \ &\simeq rac{1}{L}\sum_{l=1}^{L}f(\mathbf{z}^{(l)})
abla_{q_{\phi}(\mathbf{z}^{(l)})}\log q_{\phi}(\mathbf{z}^{(l)}) \end{aligned}$$
 where $\mathbf{z}^{(l)}\sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$

• This has very high variance.

Gradient based optimization: Naïve method

Lower bound is

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= -D_{\mathit{KL}}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z})\right] \\ &= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \right] \end{split}$$

• Monte Carlo estimator:

$$egin{aligned}
abla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
ight] &= \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
abla_{q_{\phi}(\mathbf{z})}\log q_{\phi}(\mathbf{z})
ight] \ &\simeq rac{1}{L}\sum_{l=1}^{L}f(\mathbf{z}^{(l)})
abla_{q_{\phi}(\mathbf{z}^{(l)})}\log q_{\phi}(\mathbf{z}^{(l)}) \end{aligned}$$
 where $\mathbf{z}^{(l)} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$

• This has very high variance. Q: Why?

Gradient based optimization: Naïve method

Lower bound is

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= -D_{\mathit{KL}}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z})\right] \\ &= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \right] \end{split}$$

Monte Carlo estimator:

$$egin{aligned}
abla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
ight] &= \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[f(\mathbf{z})
abla_{q_{\phi}(\mathbf{z})}\log q_{\phi}(\mathbf{z})
ight] \\ &\simeq rac{1}{L}\sum_{l=1}^{L}f(\mathbf{z}^{(l)})
abla_{q_{\phi}(\mathbf{z}^{(l)})}\log q_{\phi}(\mathbf{z}^{(l)}) \end{aligned}$$
 where $\mathbf{z}^{(l)}\sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$

This has very high variance. Q: Why?
 A: Gradient of log of probability. Probability very close to zero means very large values.

The reparametrization trick

- Problem in naïve method : learnable parameters responsible for producing probabilities.
- Observation: We don't need those probabilities, just an expectation taken using them.
- Solution
 - Instead of producing probability for each z, produce z directly
 - Make sure the distribution of z is the same.
 - For randomness in z generation, use a deterministic function with noise as input. i.e.

$$g_{\phi}(z,\epsilon) = \widetilde{z} \sim q_{\phi}(z|x), \ \epsilon \sim p(\epsilon)$$

• Now we can write expectations in terms of $p(\epsilon)$.

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})}[f(\mathbf{z})] = \mathbb{E}_{p(\epsilon)}\left[f(g_{\phi}(\epsilon,\mathbf{x}^{(i)}))\right] \simeq rac{1}{L}\sum_{l=1}^{L}f(g_{\phi}(\epsilon^{(l)},\mathbf{x}^{(i)}))$$
 where $\epsilon^{(l)} \sim p(\epsilon)$

Reparametrization for VAE

Putting it together

Loss function:

$$\widetilde{\mathcal{L}}(\theta, \phi; \mathbf{x}^{(i)}) = -D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z})) + \frac{1}{L} \sum_{l=1}^{L} (\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i,l)}))$$
where $\mathbf{z}^{(i,l)} = g_{\phi}(\epsilon^{(i,l)}, \mathbf{x}^{(i)})$ and $\epsilon^{(l)} \sim p(\epsilon)$

Algorithm

 $\theta, \phi \leftarrow$ Initialize parameters **repeat X** $M \leftarrow$ Random minibate

 $\mathbf{X}^M \leftarrow \text{Random minibatch of } M \text{ datapoints (drawn from full dataset)}$

 $\epsilon \leftarrow \mathsf{Random} \ \mathsf{samples} \ \mathsf{from} \ \mathsf{noise} \ \mathsf{distribution} \ p(\epsilon)$

 $\mathbf{g} \leftarrow
abla_{m{ heta}, m{\phi}} \widetilde{\mathcal{L}}(m{ heta}, m{\phi}; \mathbf{X}^M, m{\epsilon})$

 $oldsymbol{ heta}, oldsymbol{\phi} \leftarrow \mathsf{Update}$ parameters using gradients

until convergence of parameters $(oldsymbol{ heta},\phi)$

return θ, ϕ

Experiments and Results

- Experiments on MNIST and FRAY face dataset
- Metric
 - Likelihood lower bound, same as optimization objective.

Image from https://arxiv.org/abs/1312.6114

Experiments and Results

- Experiments on MNIST and FRAY face dataset
- Metric
 - Estimated Marginal Likelihood

Image from https://arxiv.org/abs/1312.6114

Generated Samples

Images from https://arxiv.org/abs/1312.6114

Generated Samples

Image from http://torch.ch/blog/2015/11/13/gan.html

MNIST VAE Demo

https://transcranial.github.io/keras-js

Summary

- Problem: Latent variable model with intractable posterior, large dataset
- Solution
 - Variational approximation for posterior
 - Optimize variational lower bound
 - Reparametrize recognition model to reduce variance
 - Can plug in any function approximator (e.g. neural network)
- Example application
 - Variational Autoencoder

Discussion points

- What are the limitations of VAEs?
- How do they compare to GANs?
- VAE output images more blurred as compared to GANs
- Other questions?

Thanks!