Viacrozmerné bodové vyhľadávanie

Viacrozmerné bodové vyhľadávanie je vyhľadávanie podľa hodnôt viacerých sekundárnych kľúčov súčasne.

Doteraz sme predpokladali, že v zázname je len jeden kľúč (s unikátnymi hodnotami) - tzv. *primárny* kľúč (mohol sa skladať z viacerých atribútov).

Teda výsledkom operácie hľadania je jedna hodnota.

Záznam ale môže obsahovať ďalšie položky (ktoré už nie sú unikátne).

Ak pripustíme vyhľadávanie aj podľa hodnôt týchto záznamov, tak ich nazveme "sekundárne" kľúče.

Výsledkom operácie hľadania podľa sekundárneho kľúča je celá množina záznamov.

V nasledujúcom súbore je záznam s ďalšími položkami (atribútmi):

Primárny kľúč		Sekundárne kľúče				
ŠPZ	Vlastník Rok Typ Farba Plánov. výroby Typ Farba prehliadka				Plánov. prehliadka	Ostatné info.
BA 0035	Novák	1926	Škoda	Biela	2009	
BA1136	Bajza	2001	Škoda	Žltá	2012	
BB4838	Doktor	1999	Opel	Biela	2009	

Možné vyhľadávanie:

- vozidlá ktoré vlastní Bajza
- vozidlá s plánovanou prehliadkou v r. 2012
- vozidlá typu Opel

Uvedené dotazy sú jednoduché dotazy (argumentom je jediný kľúč).

Zložené dotazy používajú kritérium dotazu vo forme booleovského výrazu:

- a) Disjunktívne (typu *OR*) booleovský výraz s použitím *OR*
 - (vlastník = Novák OR vlastník = Doktor)
 - (vlastník = Novák OR typ = Opel)
- b) Konjunktívne (typu AND) booleovský výraz s použitím AND

- (rok výroby = 1926 AND farba = biela)
 c) Zmiešané s použitím OR a AND
 (farba = Biela OR farba = Žltá) AND (vlastník = Doktor)
- Bodový dotaz používa v argumente jednu hodnotu (rok výroby = 1926, rok výroby = 1927, rok výroby = 1928). Intervalový dotaz používa v argumente interval hodnôt (rok výroby € < 1926, 1928>).

Bez špecifických štruktúr je pre vyhľadávanie podľa sekundárnych kľúčov nutné pre každý argument prehliadnuť celú štruktúru - extrémne neefektívne => návrh nových štruktúr.

Viaczoznamová štruktúra (Multilist)

Princíp: k sekundárnym kľúčom sa vybudujú explicitné sekundárne indexy ako mechanizmy pre vyhľadávanie. Typické použitie je pre dáta uložené v súboroch, ale princíp je možné využiť aj pri dátach uložených v operačnej pamäti.

C.	Primárny kľúč		Sekundárne kľúče					1.6	
Adr	ŠPZ	Тур	Ďalší Typ	Farba	Ďalší Farba	Plánov. prehliadka	Ďalší Prehl.	Informácie	
1 2 3 4 5 6 7 8 9 10	BA 0035 BA1136 BB4838 CA2145 HU1122 KE2541 KE9612 LE0250 PP5665 PR1255 SE3322	Škoda Škoda Opel Citroen Fiat Opel Skoda Toyota Fiat Opel Citroen	2 7 6 11 9 10	Biela Žltá Biela Žltá Modrá Červená Žltá Biela Fialová Čierna Biela	7 1 4 3	2009 2012 2009 2008 2007 2012 2009 2010 2008 2020 2007			

Тур	Zoz	Dĺžka
Škoda	1	3
Opel	3	3
Fiat	5	2
Citroen	4	2
Toyota	8	1
1	I	

Farba	Zoz	Dĺžka
Žltá	2	3
Fialová	9	1
Červená	6	1
Modrá	5	1
Čierna	10	1
Biela	11	4

Sekundárny index podľa "Typ"

Sekundárny index podľa "Farba"

Hodnoty s rovnakým sekundárnym kľúčom sú zreťazené pomocou indexov (prípadne adries) v poliach ĎalšíTyp (ďalší prvok s rovnakým typom) resp. ĎalšíFarba (ďalší prvok s rovnakou farbou). Hlavy týchto zreťazených zoznamov sú v poli Zoz (začiatok zoznamu) v sekundárnych indexoch.

Dĺžka: počet záznamov v podsúbore (podzozname) pre danú hodnotu. Urýchľuje vyhľadávanie pri zložených dotazoch.

Dotazy:

- a.) Jednoduchý dotaz: prehliadne sa celý (jeden) podzoznam.
- b.) Konjunktívny dotaz (X = x AND Y = y)
- sprístupni index pre X, nájdi adresu $A_1(x)$ a dĺžku d(x) spojené s X = x.
- sprístupni index pre Y, nájdi adresu A₁(y) a dĺžku d(y) spojené
 s Y = y.
- ak: d(x) < d(y) prehľadávaj reťazec pre X = x a kontroluj, či
 Y = y
- inak: prehľadávaj reťazec pre Y =y a kontroluj, či X = x
 pri hľadaní bielych Toyot prehliadneme 1 záznam
 pri hľadaní žltých Fiatov prehliadneme 2 záznamy
- c.) Dizjunktívny dotaz (X = x OR Y = y)
- sprístupni index pre X, nájdi adresu $A_1(x)$ spojenú s X = x.
- sprístupni index pre Y, nájdi adresu $A_1(y)$ spojenú s Y = y.
- nájdi záznamy prehľadaním oboch reťazcov. nájdenie bielych a žltých áut vyžiada sprístupnenie 7 záznamov

Vlastnosti:

- ide o vybudovanie sekundárnych indexov, každý index je uložený v samostatnom súbore
- veľké zefektívnenie oproti neindexovanému súboru
- veľká spotreba dát pre adresy v hlavnom súbore i v indexoch
- pomerne efektívne konjunktívne dotazy
- užívateľ musí *vopred* rozhodnúť, ktoré atribúty budú sekundárnymi kľúčmi a tým dať pevný tvar hlavnému súboru
- málo efektívne pre dynamické operácie: pri rušení alebo vkladaní záznamov nutné aktualizovať položky Ďalší v hlavnom súbore, príp. aj sekundárne indexy (záznamy zoznamu sú v rôznych blokoch!).

Implementácia hlavného súboru: ľubovoľná, vzhľadom na primárny kľúč (je možné použiť napr. B strom,...). Implementácia indexu: ľubovoľná, vzhľadom na sekundárny kľúč.

Tento princíp je možné ľubovoľne modifikovať. Napríklad môžeme mať vybudované sekundárne indexy uložené v operačnej pamäti (napr. RB strom), ale dáta sú v súbore (napr. dynamický hešovací súbor,...). Taktiež je princíp možné použiť na implementáciu viacrozmerného bodového vyhľadávania na štruktúrach uložených len v operačnej pamäti.

Modifikácia, ktorá môže pri niektorých štruktúrach (napr. lineárny hešovací súbor) zefektívniť dynamické operácie (vlož, vymaž), ale zároveň znižuje efektívnosť vyhľadávania používa namiesto adries primárny kľúč.

Táto modifikácia sa používa častejšie pretože súbor s menším množstvom explicitne vyjadrených vzťahov vedie k ľahšej a bezpečnejšej "údržbe" pri dynamických súboroch.

C.	Primárny kľúč	Sekundárne kľúče		
Adr	ŠPZ	Тур	Ďalší Typ	
1 2 3 4 5 6	BA 0035 BA1136 BB4838 CA2145 HU1122 KE2541 KE9612	Škoda Škoda Opel Citroen Fiat Opel Skoda	BA1136 KE9612	

Тур	Zoz	Dĺžka
Škoda	BA0035	3

Sekundárny index podľa "Typ"

Invertované súbory

- hlavný súbor je v pôvodnom tvare bez akýchkoľvek doplňujúcich informácií týkajúcich sa prístupu podľa sekundárnych kľúčov
- ku každému sekundárnemu kľúču je skonštruovaný index (invertovaný index)

Ak sú všetky atribúty okrem primárneho kľúča sekundárnymi kľúčmi, je súbor *úplne invertovaný* (každý atribút má invertovaný index), inak je *neúplne* invertovaný.

Záznam invertovaného súboru: (hodnota sekundárneho kľúča, zoznam primárnych kľúčov s touto hodnotou) - pre všetky hodnoty.

C.	Primárny kľúč	Sekund	Sekundárne kľúče				
Adr	ŠPZ Typ		Farba	Plánov. prehl	Ostatná info		
1 2 3 4 5 6 7 8	BA 0035 BA 1136 BB 4838 CA 2145 HU 1122 KE 2541 KE 9612 LE 0250 PP 5665	Škoda Škoda Opel Citroen Fiat Opel Škoda Toyota Fiat	Biela Žltá Biela Žltá Modrá Červená Žltá Biela Fialová	2009 2012 2009 2008 2007 2012 2009 2010 2008			
9 10 11	PR1255 SE3322	Opel Citroen	Čierna Biela	2020 2007			

Variant:

Namiesto primárnych kľúčov adresy

Тур	Primárne kľúče
Škoda	BA0035, BA1136, KE9612
Opel Fiat	BB4838, PR1255 HU1122, PP5665
Citroen	CA2145, SE3322
Toyota	LE0250

Farba	Primárne kľúče
Žltá	BA1136,CA2145,KE9612
Fialová	PP5665
Červená	KE2541
Modrá	HU1122
Čierna	PR1255
Biela	SE3322,LE0250,BB4838,BA0035

Invertovaný index pre "Typ"

Invertovaný index pre "Farba"

Záznamy s premenlivou dĺžkou. Možná implementácia - ako dva súbory záznamov s pevnou dĺžkou:

Sekundárny kľúč	X		
	Súbor primárnych	×	Y Súbor
	záznamov		preplňujúcich záznamov
	`	Y	2dZHamov

- a.) Konjunktívny dotaz (X = x AND Y = y)
- v invertovanom indexe pre X vyhľadaj všetky primárne kľúče $K_1(x)$, ... $K_n(x)$ spojené s X = x
- v invertovanom indexe pre Y vyhľadaj všetky primárne kľúče $K_1(y)$, ... $K_m(y)$ spojené s Y = y
- nájdi prienik $K(x, y) = K_1(x), ... K_n(x) \cap K_1(y), ... K_m(y)$
- sprístupni záznamy s primárnymi kľúčmi K(x, y) (teda ak K(x, y) je prázdne, netreba ani prehliadať hlavný súbor).
- b.) Dizjunktívny dotaz (X = x OR Y = y)
 - v invertovanom indexe pre X vyhľadaj všetky kľúče $K_1(x)$, ... $K_n(x)$ spojené s X = x
- v invertovanom indexe pre Y vyhľadaj všetky kľúče $K_1(y)$, ... $K_m(y)$ spojené s Y = y
- nájdi zjednotenie $K(x, y) = K_1(x), ... K_n(x) U K_1(y), ... K_m(y)$
- sprístupni záznamy s primárnymi kľúčmi K(x, y)

Vlastnosti:

- efektívnejšia realizácia (hlavne zložitých) dotazov ako v multilist štruktúre
- väčšia náročnosť na množstvo dát
- zmeny v hlavnom súbore vyvolávajú zmeny v indexoch
- štruktúra hlavného súboru nezávislá na indexoch

Vyhľadávanie podľa čiastočnej zhody (partial match retrieval)

<u>Problém</u>: Ako rýchlo vyhľadávať podľa sekundárnych kľúčov (zložené dotazy)

Štruktúra je vhodná na viacrozmerné bodové vyhľadávanie dát uložených v súbore.

Postup (využívajúci princíp hešovania):

- ku každému záznamu vytvoríme transformáciou sekundárnych kľúčov jeho signatúru (deskriptor, "odtlačok prsta") vo forme jedného bitového poľa,
- pri realizácii zloženého dotazu prehľadávame iba súbor signatúr a testujeme zhodu (čiastočnú) iba v odpovedajúcich bitoch
- ak nájdeme zhodu signatúry, tak záznam vyhľadáme v hlavnom súbore podľa primárneho kľuča.

Hlavný súbor: ľubovoľná zo známych implementácií.

Tvorba signatúry - príklad:

Záznam o zamestnancovi

Typicky: každý sekundárny kľúč má inú hešovaciu funkciu T. Hešovacia funkcia určí, v ktorom bite *b* príslušného segmentu bude 1.

Vhodné, aby samé nuly znamenali neexistenciu záznamu.

Napríklad:

Funkcia T1
$$b = Funkcia \mod 2^8 + 1$$

Funkcia T3 $b = \text{Vedúci oddelenia } mod 2^4 + 1$

Príklad takto vytvorených signatúr:

\$	signatury seg	gmentov		
s1	s2	s3	s4	signatúra záznamu
Asistent	Elektroniky	Klos	1090	
00001000	00001	0100	000100	00001000000010100000100
Docent	Ekonomiky	Ežo	1000	
00010000	00001	0001	001000	0001000000010001001000
Technik	Práva	Nosák	500	
0000010	01000	1000	100000	00000010010001000100000
8 bitov	5 bitov	4 bity	6 bitov	23 bitov

Súbor signatúr sa pripraví pri "predspracovaní" hlavného súboru. Pre každý záznam hlavného súboru sa vytvorí práve jeden záznam v súbore so signatúrami. Záznamy sú tu samozrejme tiež zhlukované do blokov.

Organizácia súboru signatúr:

- signatúra + adresa
- signatúra + primárny kľúč.

Pre rôzne hodnoty sekundárneho kľúča môžu byť vygenerované rovnaké signatúry segmentov (prípad kolízie hešovania). V príklade: katedry Ekonomiky a Elektroniky. Pre zmenšenie pravdepodobnosti kolízie - zväčšiť rozsah segmentu (počet bitov).

Spracovanie konjunktívneho dotazu:

- vytvoriť "vyhľadávaciu signatúru" pridaním (operáciou "and") výsledkov hešovania podľa funkcií T pre každý použitý sekundárny kľúč do prázdnej (samé nuly) signatúry
 - pre dotaz "docenti s platom (1000, 1150> " bude vyhľadávacia signatúra <u>00010000</u>00000000000000000
 - porovnať vyhľadávaciu signatúru so všetkými signatúrami záznamov, pri zhode príslušných bitov záznamu s vyhľadávacou signatúrou sa porovná vyhľadávací záznam s nájdeným záznamom v hlavnom súbore (kvôli možnosti kolízie), ak nesúhlasí, bola to falošná zhoda signatúr

Nevýhoda: nutnosť prehliadnuť všetky záznamy signatúr v súbore so signatúrami, ale:

- možnosť uplatniť rýchle logické binárne operácie počítača,
- súbor signatúr je podstatne menší ako hlavný dátový súbor.

Zlepšená modifikácia vyhľadávania podľa čiastočnej zhody: strom signatúr uložený v súbore

K existujúcemu súboru signatúr sa pripraví ďalší súbor, ktorý bude obsahovať strom signatúr.

Súbor signatúr je rozdelený na bloky (úroveň 1) (v príklade sa používa blokovací faktor f = 5).

Pre každý blok sa do súboru so stromom signatúr (úroveň 2) vloží "OR súčet" všetkých záznamov bloku zo súboru signatúr.

Signatúry na úrovni 2 sa samozrejme uložia do blokov (v príklade sa používa blokovací faktor f = 3). Takto sa postupuje až pokým nevznikne vrchol stromu.

Operácie sú v analógii s B⁺ - stromom.

Na obrázku sú znázornené bloky veľkosti 5, záznamy 2 a 18 v hlavnom súbore sú prázdne (napr. z dôvodu uchovania priaznivej hustoty, napr. ak je hlavný súbor statický hešovací súbor). Výsledkom je menej prehliadnutých záznamov v súbore signatúr ako pri organizácii bez stromu (v príklade sa do hlavného súboru ide iba raz, lebo signatúry nekolidujú, ináč možno aj viackrát podľa kvality hešovacích funkcií).

Pri pohybe v strome signatúr sa využíva operácia "and", ktorá sa aplikuje na vyhľadávanú signatúru a signatúru príslušného podstromu. Ak sa na príslušnom mieste v hľadanej signatúre nachádza 1 a vo výsledku je 0, je isté, že v danej vetve sa hľadaná signatúra nenachádza. Toto umožňuje vylúčiť zo spracovania časť vetiev stromu.

Táto technika je vhodná, keď strom nie je príliš vysoký. S narastajúcou výškou stromu postupne dochádza k obsadzovaniu všetkých miest signatúry jednotkami, čo je prirodzený dôsledok aplikovania operácie "or". Signatúra so samými jednotkami neumožňuje v strome rozhodnúť, že sa daná vetva nemá prehľadávať.

