Variable Compleja Tarea-Examen 4

Tomás Ricardo Basile Álvarez 316617194

19 de enero de 2021

1 Sea f una función analítica alrededor del origen, con disco de convergencia $D = \{z \in \mathbb{C} \mid |z| < R\} \subset \mathbb{C}$ con R > 0. ¿Será cierto que, si existe una sucesión de puntos $\{z_n\}_{n \in \mathbb{N}} \subset D$, tales que $f(z_n) = 0$, que se acumulan en un punto $z_0 \in D$, donde también $f(z_0) = 0$, entonces f es idénticamente cero en D?

El enunciado es verdadero.

Para probarlo, probaremos primero un lema:

Lema: Si f es analítica en D (con $D = \{z \in \mathbb{C} : |z| < \mathbb{R}\}$ como antes), y existe un punto $w \in D$ tal que $f^{(k)}(w) = 0$ para toda $k = 0, 1, 2, \dots$, entonces f es idénticamente cero en todo D.

Prueba: Definimos un conjunto $\Omega \subset D$ como:

$$\Omega = \{ z \in D \mid f^{(n)}(z) = 0, \ \forall n = 0, 1, \dots \}$$

Por hipótesis tenemos que $w \in \Omega$ y por tanto Ω no es vacío. Probaremos que en realidad $\Omega = D$.

Para ello, vamos a probar primero que Ω es abierto y cerrado en D:

• Ω es abierto en D

Para ello, sea $a \in \Omega$ y queremos probar que existe una bola abierta $B_{\epsilon}(a)$ alrededor de a tal que $B_{\epsilon}(a) \subset \Omega$.

Como $a \in \Omega$, entonces en particular $a \in D$ y como D es abierto, existe una bola $B_{\epsilon}(a)$ con $B_{\epsilon}(a) \subset D$.

Luego, como f es analítica en todo D, en particular lo es en el punto a. Por el teorema de la serie de Taylor, f se puede expresar como una serie de potencias enteras de (z-a) convergente dentro de toda la bola $B_{\epsilon}(a) \subset D$. Es decir, para cualquier punto $z \in B_{\epsilon}(a)$, se tiene que:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

Con c_n los coeficientes de la serie de Taylor, que son iguales a $c_n = \frac{f^{(n)}(a)}{n!}$.

Pero como $a \in \Omega$, tenemos que $f^{(n)}(a) = 0$ para todo n = 0, 1, 2, entonces $c_n = 0$. Por tanto, al sustituir en la serie de Taylor, encontramos que para $z \in B_{\epsilon}(a)$ se tiene:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n = \sum_{n=0}^{\infty} 0 = 0$$

Pero también podemos derivar la serie de Taylor término a término (porque converge uniformemente) y el resultado seguirá siendo válido para todo $z \in B_{\epsilon}(a)$, por lo que tenemos:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n = \sum_{n=0}^{\infty} 0 = 0$$

$$f'(z) = \sum_{n=1}^{\infty} n c_n (z - a)^{n-1} = \sum_{n=1}^{\infty} n(0)(z - a)^{n-1} = 0$$

$$f''(z) = \sum_{n=2}^{\infty} n(n-1)c_n (z - a)^{n-2} = \sum_{n=2}^{\infty} n(n-1)(0)(z - a)^{n-2} = 0$$

$$\vdots$$

Por lo que $f^{(n)}(z) = 0$ para todo $n = 0, 1, 2, \cdots$ y para todo $z \in B_{\epsilon}(a)$. Por la definición del conjunto Ω , esto significa que todos los puntos de $B_{\epsilon}(a)$ están en Ω y por tanto $B_{\epsilon}(a) \subset \Omega$.

Lo que prueba que Ω es abierto.

• Ω es cerrado en D

Para esto, notamos que $\Omega = \{z \in D \mid f^{(n)}(z) = 0 \ \forall n = 0, 1, \cdots \}$ se puede ver también como:

$$\Omega = \Omega_0 \cap \Omega_1 \cap \Omega_2 \cap \cdots \cap \Omega_n \cap \cdots$$

Donde:

$$\Omega_n = \{ z \in D \mid f^{(n)}(z) = 0 \}$$

Es decir, Ω_n es sólo el conjunto de aquéllos puntos $z \in D$ tales que la función $f^{(n)}: D \to \mathbb{C}$ vale 0. Y claramente la intersección de todos estos conjuntos nos da los puntos $z \in D$ tales que $f^{(n)}(z) = 0$ para todo n (es decir, el conjunto Ω).

Sin embargo, como f es analítica en D, entonces f y todas sus derivadas $f^{(n)}$: $D \to \mathbb{C}$ son continuas en D.

Luego, el conjunto $\Omega_n = \{z \in D \mid f^{(n)}(z) = 0\}$ no es otra cosa que la imagen inversa de 0 bajo la función $f^{(n)}$ (pues Ω_n son todos los puntos cuya imagen es 0). Como f es continua y $\{0\} \subset \mathbb{C}$ es un conjunto cerrado, entonces la imagen inversa de 0 bajo $f^{(n)}$, es decir Ω_n , es un conjunto cerrado (porque la imagen inversa de

un conjunto cerrado bajo una función continua es nuevamente un cerrado).

Entonces, Ω_n es cerrado para todo n.

Como la intersección arbitraria de cerrados es cerrada, esto implica que $\Omega = \Omega_0 \cap \Omega_1 \cap \Omega_2 \cdots \cap \Omega_n \cap \cdots$ es cerrado.

Finalmente, es un resultado de topología que si D es un conjunto conexo (como lo es en este caso, pues las bolas abiertas son conexas), entonces los únicos subconjuntos abiertos y cerrados a la vez en D son \emptyset y D.

Como Ω es abierto y cerrado a la vez en D y no es vacío, eso nos lleva a concluir que $\Omega = D$

Es decir, concluimos que todo punto $z \in D$ cumple que $f^{(n)}(z) = 0$ para todo $n = 0, 1, 2, \cdots$.

Esto implica en particular (cuando n=0) que f es idénticamente 0 en todo D. Con lo que hemos probado el lema

 $= (z - z_0)^m h(z)$

El enunciado original es ahora una implicación de este lema.

Queremos probar que si existe una sucesión $\{z_n\} \subset D$ tales que $f(z_n) = 0$ que se acumulan en un $z_0 \in D$, donde $f(z_0) = 0$, entonces f es idénticamente 0 en D.

Lo probamos por contradicción, supongamos que f no es idénticamente 0 en D. Entonces, si consideramos la contrapuesta del lema, eso implica que no existe ningún punto en D en el que se anulen a la vez f y todas sus derivadas.

Por tanto, en particular para $z_0 \in D$ existe un $m \in \mathbb{N}$ tal que $f^{(m)}(z_0) \neq 0$, pero tal que $f(z_0) = 0$, $f^{(1)}(z_0) = 0$, \cdots , $f^{(m-1)}(z_0) = 0$. (Es decir, la m-ésima derivada de f es la primera que no se anula en z_0 , notar que sabemos que $f(z_0) = 0$ por hipótesis por lo que $m \geq 1$)

Como f es analítica en $z_0 \in D$, podemos escribirla como una serie de Taylor centrada en z_0 que será válida en por lo menos una bola contenida en D. Es decir, para z en esta bola contenida en D, se tiene que:

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(m)}(z_0)}{m!}(z - z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z - z_0)^{m+1} + \dots$$

$$= 0 + 0 + \dots + 0 + \frac{f^{(m)}(z_0)}{m!}(z - z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z - z_0)^{m+1} + \dots$$

$$= (z - z_0)^m \left[\frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z - z_0) + \dots \right]$$

Donde definimos
$$h(z) = \frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z-z_0) + \cdots$$

Vemos que $h(z_0) = \frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z_0-z_0) + \cdots = \frac{f^{(m)}(z_0)}{m!} \neq 0$ (porque $f^{(m)}(z_0) \neq 0$)

Además, como f es analítica, su expansión en series es continua en alguna bola centrada en z_0 y por tanto h es una función continua en dicha bola.

Luego, como h es continua pero $h(z_0) \neq 0$ podemos probar que h es distinta de 0 en una bola alrededor de z_0 .

Por continuidad, para $\epsilon = |h(z_0)|/2$, existe una δ tal que si $|z - z_0| < \delta \Rightarrow |h(z) - h(z_0)| < |h(z_0)|/2 \Rightarrow ||h(z)| - |h(z_0)|| < \frac{|h(z_0)|}{2} \Rightarrow -\frac{|h(z_0)|}{2} < |h(z)| - |h(z_0)| < \frac{|h(z_0)|}{2} \Rightarrow \frac{|h(z_0)|}{2} < |h(z)|.$

Como $|h(z_0)| > 0$, esto implica que |h(z)| > 0 para todo z con $|z - z_0| < \delta$. Es decir, la función h no se anula en toda una vecindad $B_{\delta}(z_0)$.

Esto implica que $f(z) = (z - z_0)^m h(z)$ no se anula en toda la vecindad agujerada $B_{\delta}(z_0)$ (aunque sí se anula en z_0).

Esto es una contradicción a que z_0 es un punto de acumulación de la sucesión $\{z_n\} \subset \mathbb{C}$ con $f(z_n) = 0$.

Ya que si z_0 fuera un punto de acumulación, debería de haber infinitos elementos de la sucesión en cualquier bola abierta agujerada alrededor de z_0 (tomando en cuenta que ninguna cola de la sucesión es constante igual a z_0). Sin embargo, acabamos de ver que no hay ningún elemento en $B_{\delta}(z_0) - \{z_0\}$ en el que f se anule. Pero como los elementos de la sucesión $\{z_n\}$ se anulan bajo f, esto implica que no hay ningún elemento de la sucesión en $B_{\delta}(z_0) - \{z_0\}$, por lo que z_0 no puede ser un punto de acumulación de $\{z_n\}$ Lo que es una contradicción a la hipótesis. Se demuestra así que suponer que f no era idénticamente 0 en D lleva a una contradicción.

Por lo que concluimos que f sí es idénticamente 0 en D

2. Utilizando la fórmula de Cauchy-Hadamard, calcule el radio de convergencia de las series:

$$\bullet \sum_{n=0}^{\infty} z^n$$

Según la fórmula de Cauchy-Hadamard, el radio de convergencia R está dado por:

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|c_n|}$$

Donde c_n son los coeficientes de la serie $\sum c_n z^n$. En este caso, los coeficientes son siempre $c_n=1$

Por lo que:

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|1|} = \limsup_{n \to \infty} 1$$

Pero la secuencia constante 1 claramente tiene como límite superior a 1. (Pues todas las subsecuencias posibles son también constantes y convergen a 1, el supremo de estos límites subsecuenciales, que son todos 1, es obviamente 1).

Entonces $\frac{1}{R} = 1$ y por tanto R = 1

$$\bullet \sum_{n=0}^{\infty} \left(\frac{z}{n}\right)^n$$

La serie se puede escribir como $\sum_{n=0}^{\infty} \frac{1}{n^n} z^n$. Por lo que vemos que los coeficientes de

la serie son $c_n = \frac{1}{n^n}$.

Luego, la fórmula de Cauchy-Hadamard nos dice que el radio de convergencia R está dado por:

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \limsup_{n \to \infty} \sqrt[n]{\left|\frac{1}{n^n}\right|}$$
$$= \limsup_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \limsup_{n \to \infty} \frac{1}{n}$$

Para esta sucesión $\frac{1}{n}$ ya existe el límite conforme n tiende a infinito y es claramente $\lim_{n\to\infty}\frac{1}{n}=0$

Luego, todas las subsucesiones de $\frac{1}{n}$ deben de tener este mismo límite. Y por tanto, el lím sup $\frac{1}{n}$, que es el supremo de todos los límites subsecuenciales (que

tanto, el lim sup -, que es el supremo de todos los limites subsecuenciales (que todos valen 0), es 0.

Por tanto, tenemos que $\frac{1}{R} = 0$. Lo que significa que el radio de convergencia R es infinito.

- 3. Sea f una función holomorfa en una vecindad punteada de a. Muestra que a es un polo simple de f, si y sólo si, el límite $\lim_{z\to a}(z-a)f(z)$ existe y es distinto de cero, en cuyo caso $Res_a f = \lim_{z\to a}(z-a)f(z)$
- \Rightarrow) Digamos que f es holomorfa en una vecindad punteada de a. Y que a es un polo simple de f.

Entonces, por el teorema de la serie de Laurent, f se puede representar en esta vecindad punteada de a como una serie de potencias enteras de (z-a). Y como se tiene un polo simple, vimos en clase que eso implica que la serie de f empieza desde $(z-a)^{-1}$. Es decir, en la vecindad punteada se tiene que:

$$f(z) = \frac{c_{-1}}{z - a} + c_0 + c_1(z - a) + c_2(z - a)^2 + \dots + c_n(z - a)^n + \dots$$

Donde $c_{-1} \neq 0$ por ser un polo simple. Luego, el límite $\lim_{z \to a} f(z)$ es:

$$\lim_{z \to a} (z - a) f(z) = \lim_{z \to a} (z - a) \left[\frac{c_{-1}}{z - a} + c_0 + c_1 (z - a) + c_2 (z - a)^2 + \cdots \right]$$

$$= \lim_{z \to a} \left[c_{-1} + c_0 (z - a) + c_1 (z - a)^2 + c_2 (z - a)^3 + \cdots \right]$$

$$= \lim_{z \to a} (c_{-1}) + \lim_{z \to a} [c_0 (z - a)] + \lim_{z \to a} [c_1 (z - a)^2] + \lim_{z \to a} [c_2 (z - a)^3] + \cdots$$

$$= c_{-1}$$

Porque cada uno de los límites $\lim_{z\to a}[(z-a)^n]$ para n>0 se puede evaluar sencillamente y da como resultado 0.

Además el límite se puede meter dentro de la serie de Laurent sin problemas porque esta serie converge uniformemente.

Luego, este valor $\lim_{z\to a}(z-a)f(z)=c_{-1}$ es distinto de 0.

Además, por un teorema visto en clase, $Res_a f = c_{-1}$ y entonces probamos que $Res_a f = \lim_{z \to a} (z-a) f(z)$

 \Leftarrow) Digamos que f es holomorfa en una vecindad punteada de a y que $\lim_{z\to a}(z-a)f(z)$ existe y es distinto de 0.

Como $\lim_{z\to a}(z-a)f(z)$ existe, esto significa que la función (z-a)f(z) tiene una singularidad removible en a (por la definición de singularidad removible que vimos en clase). También (z-a)f(z) es holomorfa en una vecindad punteada de a porque f lo es y

(z-a) también.

Vimos en clase que tener una singularidad removible implica que (z-a)f(z) tiene una representación en serie de Laurent válida en una vecindad punteada de a y con todas las potencias mayores o iguales a 0.

Es decir:

$$(z-a)f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n = c_0 + c_1(z-a) + c_2(z-a)^2 + \dots +$$

Si aplicamos lím de ambos lados tenemos:

$$\lim_{z \to a} (z - a) f(z) = \lim_{z \to a} \sum_{n=0}^{\infty} c_n (z - a)^n = \lim_{z \to a} (c_0 + c_1 (z - a) + c_2 (z - a)^2 + \dots +) = c_0$$
Por hipótesis, el límite $\lim_{z \to a} (z - a) f(z) \neq 0$.

Por lo que concluimos que $c_0 \neq 0$.

Regresando a la expansión de (z-a)f(z), tenemos que:

$$(z-a)f(z) = c_0 + c_1(z-a) + c_2(z-a)^2 + \dots +$$

$$\Rightarrow f(z) = \frac{c_0}{z-a} + c_1 + c_2(z-a) + c_3(z-a)^2 + \dots$$

Donde ya vimos que $c_0 \neq 0$.

Es decir, f se puede expresar como una serie de Laurent cuyo primer término es $(z-a)^{-1}$.

Esto significa que f tiene un polo simple en a.

4) Di qué tipo de singularidad tiene $\frac{e^{iz}}{z^2-1}$ en z=1 y calcula su residuo en ese punto.

Tenemos que
$$f(z) = \frac{e^{iz}}{z^2 - 1} = \frac{e^{iz}}{(z - 1)(z + 1)}$$

Vemos que esta función f es holomorfa en una vecindad agujerada de 1 (es holomorfa en una bola que no llega hasta la otra singularidad en -1)

Luego multiplicamos ambos lados por (z-1) y calculamos el límite conforme $z \to 1$:

$$\lim_{z \to 1} (z - 1) f(z) = \lim_{z \to 1} (z - 1) \frac{e^{iz}}{(z - 1)(z + 1)}$$

$$= \lim_{z \to 1} \frac{e^{iz}}{z + 1}$$

$$= \frac{e^{i}}{2} \neq 0$$

Es decir, acabamos de probar que $\lim_{z\to 1}(z-1)f(z)=\frac{e^i}{2}\neq 0$. Por el ejercicio 3), esto implica que f tiene un polo simple en z=1

Además, en ese mismo ejercicio vimos que el residuo es justamente este valor $\lim_{z\to 1}(z-1)f(z)=\frac{e^i}{2}$. Entonces:

$$Res_1 f = \frac{e^i}{2}$$

4b) Di qué tipo de singularidad tiene $\frac{\cos(z)-1}{z^3}$ en el origen y calcula su residuo.

La función $\cos(z) - 1$ es analítica en todo el plano y se puede expandir alrededor del origen con la serie de Taylor de $\cos(z)$:

$$\cos(z) - 1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} - 1$$
$$= \left[1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots \right] - 1 = -\frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

Entonces, al dividir por z^3 , tenemos la serie de Laurent de $\frac{\cos(z)-1}{z^3}$ en una vecindad punteada del origen (sabemos que ésta es efectivamente la serie de f por la unicidad de la serie de Laurent):

$$\frac{\cos(z) - 1}{z^3} = \frac{1}{z^3} \left[-\frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots \right] = -\frac{1}{2!z} + \frac{z}{4!} - \frac{z^3}{6!} + \cdots$$

Por tanto, vemos que la menor potencia de z es z^{-1} . Lo que prueba que se trata de un **polo simple en** z=0

Luego, el residuo de f en 0 es el coeficiente de $\frac{1}{z}$ por lo que:

$$Res_0 f = -\frac{1}{2}$$

5) Calcula la integral (en sentido positivo) de $\int_{\{|z|=4\}} \frac{z^4 dz}{(z+1)(z-2)(z+5)}$ utilizando el teorema del residuo.

La función f(z) tiene puntos singulares en z=-1, z=2 y en z=-5. De estos polos, los únicos que quedan dentro del círculo |z|=4 son z=-1 y z=2. Luego, por el teorema del residuo tenemos que:

$$\begin{split} \int_{\{|z|=4\}} \frac{z^4 dz}{(z+1)(z-2)(z+5)} = \\ 2\pi i Res_{-1} \frac{z^4 dz}{(z+1)(z-2)(z+5)} + 2\pi i Res_2 \frac{z^4 dz}{(z+1)(z-2)(z+5)} \end{split}$$

Ambos polos son simples (algo que demostramos después) y podemos calcular calcular el residuo usando el ejercicio 3 como:

$$Res_{-1}f = \lim_{z \to -1} (z+1)f(z) = \lim_{z \to -1} \frac{z^4}{(z-2)(z+5)} = \frac{(-1)^4}{(-3)(4)} = -\frac{1}{12}$$

$$Res_2f = \lim_{z \to 2} (z-2)f(z) = \lim_{z \to 2} \frac{z^4}{(z+1)(z+5)} = \frac{(2)^4}{(3)(7)} = \frac{16}{21}$$

El hecho de que estos límites existan y sean distintos de cero es lo que demuestra que z = -1 y z = 2 son polos simples según el ejercicio 3). Entonces ya podemos dar el resultado de la integral:

$$\int_{\{|z|=4\}} \frac{z^4 dz}{(z+1)(z-2)(z+5)} = 2\pi i Res_{-1} \frac{z^4 dz}{(z+1)(z-2)(z+5)} + 2\pi i Res_2 \frac{z^4 dz}{(z+1)(z-2)(z+5)}$$
$$= 2\pi i \left(\frac{-1}{12}\right) + 2\pi i \left(\frac{16}{21}\right)$$
$$= \frac{19}{14}\pi i$$