Lab 1: Diodes

Grabriel Ralph SID: 470205736 Liam Weichandt SID: 500463727

Part I

Looking at the graph we get $a=(0.6V,0.03mA),\ b=(0.74V,2.79mA)$. From the points the slope

$$m = rac{\log_{10}(b_I) - \log_{10}(a_I)}{b_V - a_V} = 14.1$$

was calculated. Hence for a $\times 10$ increase in current, voltage will increase by $\frac{1}{m}=0.07V$. The slope seems to be equivalent to $\frac{1}{V_T}$ the thermal voltage.

It can be seen from the graph, breakdown starts at about 4.5V and occurs quite abruptly.

Part II

Led turn on voltage 1.4V, as seen on graph.

Part III

 $V_{max}=551\mathrm{mV}$

 $V_{min}=449 \mathrm{mV}$

 $V_{discharge} = V_{min} + 0.367 (V_{max} - V_{min})$

 $V_{discharge} = 489 \mathrm{mV}$

 $dt=10^{-5} {
m s}$ (From measured data)

RC=dt where $R=100 \mathrm{k}\Omega$

 $\therefore C = 100pF$

Part IV

 $V_{out}=1.2\mathrm{V}$

 $dt_{out} = 56 \mu s$

The output waveform does not follow the input waveform as the output does not allow the negative portions of the input cycle to pass. This is because $IV_{in} < V_D$ which results in $V_{out} = 0$ for the negative cycle. Meaning the diode does not conduct. The flat portion of the waveform indicates this.

Part V

 $V_{in} > V_{breakdown}$

$$egin{aligned} V_D &= V_{FGN} - V_R = V_{in} - V_{out} \ &= breakdown \end{aligned}$$

As the diode is flipped form the previous questions, for the positive cycle, the diode is in reverse breakdown. However in the negative cycle, in order for the diode to conduct, $V_{in} > V_{turnon}$ is needed.

$$egin{aligned} V_{in_{max}} &= 9.1 \mathrm{V} \ V_{out_{max}} &= 3.9 \mathrm{V} \end{aligned}$$

$$V_{in} = -9.5 \text{V}$$

 $V_{in_{min}} = -9.5 \mathrm{V} \ V_{out_{min}} = -8.5 \mathrm{V}$

This gives a forward voltage drop of $V_D=9.1-3.9=5.2V$.

