Devoirs et Lectures, 2019

William McCausland 2019-09-17

Cours 1, le 4 septembre

Devoirs, Rosenthal (matière du cours 1)

- 1. Exercice 1.3.1
- 2. Exercice 1.3.2
- 3. Exercice 1.3.3
- 4. Exercice 1.3.4
- 5. Exercice 1.3.5

Lectures, Rosenthal (matière du cours 2)

- 1. Chapitre 1
- 2. Chapitre 2

Définitions importantes : espace de probabilité; espace d'état; algèbre; tribu; additivité (finie ou dénombrable); stabilité par complémentation, pour les réunions ou intersections (finies ou dénombrables); semi-algèbre.

Questions sur les lectures

- 1. Soit $\Omega = [0, 1]$. Soit \mathcal{F} l'ensemble des parties de Ω qui sont finis ou de complémentaire fini.
 - a. Est-ce que \mathcal{F} est une algèbre? Appuyez votre réponse.
 - b. Est-ce que \mathcal{F} est une tribu (ou σ -algèbre)? Appuyez votre réponse.
- 2. Soit $\Omega = \{1, 2, 3\}$ et $\mathcal{F} = 2^{\Omega}$. Trouvez une mesure de probabilité additive $P \colon \mathcal{F} \to [0, 1]$ sur (Ω, \mathcal{F}) telle que $P(\{1, 2\}) = 3/4$ et $P(\{2, 3\}) = 1/2$.
- 3. Soit $\mathcal{J}=\{\emptyset,\{1\},\{2\},\ldots,\{n\},\{1,\ldots,n\}\}$. Soit $\Omega=\{1,\ldots,n\}$. Montrez que
 - a. \mathcal{J} est stable pour les intersections finies,
 - b. $\emptyset \in \mathcal{J}$ et $\Omega \in \mathcal{J}$,
 - c. tous les éléments de \mathcal{J} ont un complément par rapport à Ω qui égale une réunion disjointe finie des éléments de \mathcal{J} ,
 - d. \mathcal{J} est une semi-algèbre de parties de Ω .

Cours 2, le 11 septembre

Devoirs, Rosenthal (matière du cours 2)

- 1. Exercice 2.7.4
- 2. Exercice 2.7.8
- 3. Exercice 2.7.14
- 4. Exercice 2.7.20
- 5. Exercice 2.7.22

Lectures, Rosenthal (matière du cours 3)

1. Chapitre 3

Définitions importantes : variable aléatoire, \searrow , \nearrow , $\lim \inf_n$ et \limsup_n pour une suite d'ensembles A_n , indépendance d'événements.

Questions sur les lectures

- 1. Trouver Λ_1 tel que $[-1/n, 1/n) \searrow \Lambda_1$.
- 2. Trouver Λ_2 tel que $[-1+1/n, 1-1/n) \nearrow \Lambda_2$.
- 3. Soit $\Omega = \{1,2,3,4\}$, $A = \{1,2\}$, $B = \{1,3\}$. Soit D_n la séquence où $D_n = A$ pour n pair et $D_n = B$ pour n impair.
 - a. Trouvez l'algèbre (sur Ω) le plus petit qui contient A et B.

 - b. Trouvez $\limsup_{n\to\infty} D_n = \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} D_n$ et $\liminf_{n\to\infty} D_n = \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} D_n$. c. Soit $P \colon 2^{\Omega} \to \mathbb{R}$ telle que $(\Omega, 2^{\Omega}, P)$ est un espace de probabilité. Prouver que si A et B sont indépendants, A et B^c le sont aussi.
- 4. Soit $\Omega = \{1, 2, 3\}, \mathcal{F} = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$
 - a. Donnez une fonction $X: \Omega \to \mathbb{R}$ qui est une variable aléatoire sur (Ω, \mathcal{F}) .
 - b. Donnez une fonction $f: \Omega \to \mathbb{R}$ qui n'est pas une variable aléatoire sur (Ω, \mathcal{F}) .

Cours 3, le 18 septembre

Devoirs, Rosenthal (matière du cours 3)

- 1. Exercice 3.6.2
- 2. Exercice 3.6.6
- 3. Exercice 3.6.10
- 4. Exercice 3.6.12

Lectures, Rosenthal (matière du cours 4)

1. Chapitre 4

Définitions importantes: espérance, variance d'une variable aléatoire simple, covariance, corrélation entre deux variables aléatoires simples.

Questions sur les lectures

1. Soit (Ω, \mathcal{F}, P) la mesure de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \ \mathcal{F} = 2^{\Omega}$ et P est la probabilité où $P(\{\omega\}) = 2^{-\omega}, \ \omega \in \mathbb{N}.$ Soit $X(\omega) = 0.$ Pour $n \in \mathbb{N}$, soit

$$X_n(\omega) = \begin{cases} 2^n & \omega = n \\ 0 & \omega \neq n. \end{cases}$$

Trouver E[X] et $E[X_n]$. Est-ce que $E[X_n] \to E[X]$?

2. Soit (Ω, \mathcal{F}, P) la mesure de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \mathcal{F} = 2^{\Omega}$ et P est la probabilité où $P(\{n\}) = 2^{-n}, n \in \mathbb{N}$. Soit

$$X(\omega) = \begin{cases} 2, & \omega = 2, 3 \\ 1, & \omega = 4 \\ 0, & \text{autrement.} \end{cases}$$

Trouver E[X].

3. Soit (Ω, \mathcal{F}, P) la mesure de Lebesgue sur $\Omega = [0,1].$ Soit

$$Y(\omega) = \begin{cases} 1, & \omega \text{ irrationel, } \omega < 1/2 \\ 3, & \omega = 1/2 \\ 5, & 1/2 < \omega \le 1 \\ 7, & \text{autrement.} \end{cases}$$

Trouver E[Y].