1) Definamos $\mathcal{B} = \{f(x) = ix : i \in \mathbb{I} = \mathbb{R} - \mathbb{Q}\}$ digamos las funciones que multiplican por un irracional.

Estas son continuas por que f(x) = x es continua , y continua por una constante es continua. Además es inyectiva por que la identidad es inyectiva

Y además cuando las restringimos a \mathbb{Q} $f|_{\mathbb{Q}} = iq$ $i \in \mathbb{I}$ $q \in \mathbb{Q}$ entonces $iq \in \mathbb{I}$ por que multiplicar un irracional por un racional cualquier siempre va a ser irracional por lo tanto si $f \in \mathcal{B}$ f es continua y inyectiva, tambien $f(\mathbb{Q}) \subseteq \mathbb{R} - \mathbb{Q}$

Pero entonces $f \in \mathcal{B}$ implica $f \in \mathcal{A}$ por lo tanto $\mathcal{B} \subseteq \mathcal{A}$ entonces $\#\mathcal{B} \leq \#\mathcal{A}$

Ahora sabemos que $\mathfrak{c} = \#\mathbb{I} = \#\mathcal{B} \leq \#\mathcal{A}$

Y por otro lado sabemos que $\mathcal{A} \subseteq \mathcal{C}(\mathbb{R})$ por lo tanto $\#\mathcal{A} \leq \#\mathcal{C}(\mathbb{R}) = \mathfrak{c}$

Entonces juntando todo $\mathfrak{c} \leq \# \mathcal{A} \leq \mathfrak{c}$ finalmente $\# \mathcal{A} = \mathfrak{c}$

 $(2)a) \Leftarrow$ Sea V abierto de Y veamos que $f^{-1}(V)$ es abierto.

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap \bigcup A_i = \bigcup f^{-1}(V) \cap A_i = \bigcup f^{-1}|_{A_i}(V)$$

Ahora por hipótesis cada $f^{-1}|_{A_i}$ es continua para cualquier $i \in I$ entonces $f^{-1}|_{A_i}(V)$ es abierto para cada $i \in I$

Por lo tanto $\bigcup_{i\in I} f^{-1}|_{A_i}(V)$ es unión infinita (o finita dependiendo de la familia I) de abierto y por lo tanto es abierto, como queríamos ver

Entonces f es continua

 \Rightarrow) Sea f continua supongamos que $f|_{A_j}$ no es continua, entonces existe un punto donde no es continua llamemoslo $x_i \in A_i \subseteq X$

Negando continuidad sucede que:

$$\exists \epsilon > 0 \text{ tal que } \forall \delta > 0 \quad \exists x_{\delta} \in A_{i} \subseteq X \text{ tal que } d(x_{\delta}, x_{i}) < \delta \text{ pero } d(f(x_{\delta}), f(x_{i})) > \epsilon$$

Pero $x_j \in X$ y los x_δ que tomamos también estan en X

Entonces existe $\epsilon>0$ tal que $\forall \delta>0$ existe $x_{\delta}\in X$ tal que $d(x_{\delta},x_{j})<\delta$ pero $d(f(x_{\delta}),f(x_{j}))\geq\epsilon$

parte b) Supongamos que la afirmación dice uniformemente continua en vez de continua. Sea $X = [0,2] \cup [3,6] \cup [7,14] \cup [15,30]...$ y así sucesivamente Este X está en la hipótesis por que ambos todos esos intervalos cerrados tienen distancia mayor a cero

Ahora si agarramos $f: X \to Y$ dada por $f(x) = x^2$. Cuando restringimos f a cualquiera de esos intervalos, tenemos una f que es continua, restringida a un compacto, por Heine Borel f restringida es uniformemente continua

Sin embargo no $f: X \to Y$ no es uniformemente continua, se puede ver usando las sucesiones $a_n = n$ y $b_n = n + \frac{1}{n}$. Es fácil ver que podemos tomar subsucesiones a_{n_k}, b_{n_j} que esten contenidas en X. Ahora como son subsucesiones convergen a lo mismo.

Entonces $d(x_n, y_n) \to |y_n - x_n| = |1 + \frac{1}{n} - n| = |\frac{1}{n}| \to 0$

Y entonces lo mismo pasa con las subsucesiones entonces $d(a_{n_k}, b_{n_k}) \to 0$ cuando $n \to \infty$ Sin embargo $d(f(x_n), f(y_n)) \to n^2 + 2 + \frac{1}{n^2} - n^2 = 2 + \frac{1}{n^2} \to 2$ cuando $n \to \infty$

Y entonces lo mismo pasa con las subsucesiones por lo tanto $d(f(x_{n_k}), f(y_{n_k})) \to 2$

(Aclaración $f(x_{n_k})$ y $f(y_{n_k})$ son subsucesiones de $f(x_n)$ y $f(y_n)$ respectivamente, por lo tanto convergen a lo mismo que ellas por eso vale también)

Entonces $f:X\to Y$ no es uniformemente continua por un ejercicio de la práctica, por lo tanto tenemos una función que mirada en los intervalos es uniformemente continua ,

pero mirándola completa no es uniformemente continua , lo que contradice la vuelta de la afirmación, haciendola falsa

3) Sea $D = \{(q_n \subseteq \mathbb{Q} : (q_n) \text{ es periódica })\}$ Probemos que es numerable

Sabemos que cualquier sucesión en D se repite a partir de algún momento. Sea P_k el conjunto de sucesiones que se repiten a partir del elemento k, $a_{n+k} = a_k$

Ahora consideremos $f: P_k \to \mathbb{Q}^k$ dada por $f(a_n) = (a_1, \dots, a_k)$ que es biyectiva

Es trivial que es biyectiva asi que lo voy a explicar rapidamente,

Inyectividad: $f(a_n) = f(b_n) \iff (a_1, \dots, a_k) = (b_1, \dots, b_n) \iff a_n = b_n$ (sucede por que son periódicas)

Sobreyectividad: Dado cualquier (q_1, \ldots, q_k) existe algúna sucesión que repite ese período Entonces $\#P_k = \#\mathbb{Q}^k = \#\mathbb{N}^k = \aleph_0$

Ahora tenemos que $D = \bigcup_{n \in \mathbb{N}} P_k$ lo que significa que D es unión numerable de numerables Por lo tanto D es numerable. Veamos que es denso

Sea $x_n \in \mathbb{R}^{\mathbb{N}}$ veamos que en cualquier bola de centro x_n hay algo de D

Sea r > 0 sabemos que existe un $k \in \mathbb{N}$ tal que $\frac{1}{k} < r$.

Ahora teniendo ese k armamos una sucesión d_n^k tal que d_n^k sea igual a x_n en los primero k términos y despues se repite por ser periódica

Entonces $\hat{d}(x_n, d_n) = \sup_{n \in \mathbb{N}} \frac{d(x_n, d_n)}{n}$ Ahora en los primero k términos $d(x_n, d_n) = 0$ por lo tanto $\hat{d}(x_n, d_n) = 0$

Y en los siguientes términos a k tenemos que $d(x_n, d_n) < 1$ por como está definida (esto vale siempre no solo para los términos mas grandes que k en particular vale para los mas grandes que k)

 $\hat{d}(x_n, d_n) = \sup_{n \in \mathbb{N}} \frac{d(x_n, d_n)}{n} < \sup_{n \in \mathbb{N}} \frac{1}{n} \le \sup_{n \in \mathbb{N}} \frac{1}{k} = \frac{1}{k} < r \quad \forall n \ge k$ Esto último vale por que $\frac{1}{n} \le \frac{1}{k}$ $\forall n \ge k$

Luego $\hat{d}(x_n, d_n) = 0$ si n < k y $\hat{d}(x_n, d_n) \le r$ si $n \ge k$ por lo tanto $\hat{d}(x_n, d_n) < r$ $\forall n \in \mathbb{N}$ Entonces $d_n \in B(x_n, r)$ y esto lo podemos hacer con cualquier $x_n \in \mathbb{R}^{\mathbb{N}}$ y cualquier rFinalmente D es denso en $\mathbb{R}^{\mathbb{N}}$ y es numerable, por lo tanto $\mathbb{R}^{\mathbb{N}}$ es separable

4) No sé como se hace rombo en latex, asi que voy a llamar a la distancia rombo d'

Por un lado sabemos que $d(x,y) \leq d(x,y)$ por lo tanto si una sucesión converge con d entonces converge con d'

Faltaría ver la otra desigualdad

c) Asumamos que el b) es verdadero, sea $x_n \subseteq U \subseteq X$ de Cauchy , como X es completo $x_n \to x \in X$.

Y por otro lado sabemos que $d(\lbrace x_n \rbrace, U^c) > 0$

Pero entonces $x \in U$ si no x estaría en U^c pero al tener un sucesión de U que converge a x tengo distancias cada vez mas peqeñas , $\forall \epsilon \quad \exists n_0$ tal que $d(x_n, x) \leq \epsilon \quad \forall n \geq n_0$

Por lo tanto $\inf_{n\in\mathbb{N}} d(x_n, x) = 0$ y este $x \in U^c$ entonces $d(x_n, U^c) = 0$ pero esto es absurdo por que dijimos que $d(\{x_n\}, U^c) > 0$

Entonces x debe estar en U por lo tanto toda sucesión de Cauchy de U converge en U Entonces U es completo con la métrica $d|_{U\times U}$ y como es equivalente a la rombo, entonces es U con la métrica rombo es completa tambien