Buying Supermajorities

Presenter: Jordan Ou

Tim Groseclose ¹ James M. Snyder, Jr. ²

¹Ohio State University

²Massachusetts Institute of Technology

March 6, 2014

Introduction

- Minimal winning coalitions a key prediction or essential assumption in political economy
 - Minimum number of votes necessary to win
 - Present in almost all formal models of coalition formation, vote buying, and logrolling
- Intuition: If coalition builder must pay for each member, s/he never pays more than smallest number required to win

Motivation

- Empirically, oversized coalitions seem to be at least as prevalent as minimal winning coalitions
 - Divisions on legislative roll calls rarely 50-50
 - "Effectiveness" of majority party strictly increasing in size
 - "Defections" of majority party nonincreasing in size
- Potential explanations
 - Uncertainty (chance a legislator's vote fails)
 - Legislation norm of "universalism" (legislators prefer to support all distributive projects proposed each session)
 - Cost of "ideological diversity"

Implication

Non-minimal coalitions may actually be *cheaper* than minimal winning coalitions to maintain in a sequential vote-buying setting

- Second vote buyer bribes minimum number of members
- If first buyer bribes more than minimal winning coalition, he can decrease bribe paid per member, keeping constant the amount the second buyer must pay
- If savings from decreasing bribes greater than costs of bribing another legislator, then supermajority is cheaper

House vote on NAFTA

- Clinton and Republican House leaders said to have traded favors for votes, but final vote was 234-200
- 16 votes larger than minimum winning coalition
- Significant opposition from certain Democrats could have attempted to buy votes, but costs much higher for invading a supermajority coalition
- Pro-NAFTA leaders may have convinced opposition to concede the issue and spend resources elsewhere

Two assumptions

- There are two competing vote buyers instead of one
- Vote buyers move sequentially
 - Convenient (pure-strategy equilibria typically would not exist under simultaneous game)
 - More realistic interpretation with actual coalition building
 - Sequential model sensible under dynamic context and problem of maintaining a winning coalition

The Model

- A legislature is to decide by majority rule between the status quo s and a new policy x, s, $x \in \mathbb{R}$
- Legislator *i* has reservation price $v(i) = u_i(x) u_i(s)$
 - Measured in money
 - Rank legislators so that v(i) is a nonincreasing function
- Two vote buyers A and B, where WLOG, $x \succsim_A s, s \succsim_B x$
 - $WTP_A: W_A = U_A(x) U_A(s)$
 - $WTP_B : W_B = U_B(s) U_B(x)$
 - a(i): A's offer to i, b(i): B's offer to i

The Sequence and Dominant Voting Strategy

- t=1: A reveals and offers $a(\cdot)$
- t=2: B perfectly informed about $a(\cdot)$, counters with $b(\cdot)$
- Legislators take bribes as given and votes for the alternative with greater payoff
 - Only preferences over the vote, not the outcome
 - Dominant voting strategy once bribe offers known
 - Assume unbribed legislators indifferent between x and s vote for status quo

- Seven legislators, v(i) = 0 for all legislators, $W_A \gg 0$
- Since B moves second and attacks the weakest part of A's coalition, A offers a to all legislators he bribes
- For A to win, he must spend enough so that B needs to spend more than W_B

- Let $m + 4 \ge 0$ be the size of the coalition A bribes
- B bribes at most m+1 members, spends at most W_B
 - m = 0: B wins by paying $a + \epsilon$ to 1 member
 - $a \geq W_B$, A pays $4W_B$
 - m=1: B wins by paying $a+\epsilon$ to 2 members
 - $a \geq \frac{W_B}{2}$, A pays $\frac{5}{2}W_B$
 - m=2: B wins by paying $a+\epsilon$ to 3 members
 - $a \ge \frac{W_B}{3}$, A pays $2W_B$
 - m=2: B wins by paying $a+\epsilon$ to 4 members
 - $a \ge \frac{W_B}{4}$, A pays $\frac{7}{4}W_B$
- SPNE: $a(i) = \frac{W_B}{4} \forall i, \ b(i) = 0 \forall i$

Comment 1

Suppose the number of legislators n is odd, all legislators are initially indifferent between x and s, and $W_A \geq \frac{2nW_B}{n+1}$. Then, in equilibrium, A bribes all legislators, with $a(i) = \frac{2W_B}{n+1}$ for all i.

- Seven legislators, v(i)=-1 for all legislators, $W_A\gg 0$, $W_B=3$
- A again offers a to all legislators he bribes
- Let m + 4 > 0 be the size of the coalition A bribes
 - m = 0: A sets $a = 1 + W_B = 4$ to win, pays 16
 - m = 1: A sets $a = 1 + W_B/2 = 5/2$ to win, pays 25/2
 - m = 2: A sets $a = 1 + W_B/3 = 2$ to win, pays 12
 - m = 3: A sets $a = 1 + W_B/4 = 7/3$ to win, pays 49/4
- Optimal strategy is to bribe six legislators

Relaxing Model Assumptions

- Generalizable to finite periods of vote buying
- Defender of status quo need not to be arbitrarily given last-mover advantage
 - In game where vote buyers prefer sequence, status quo prefers to never initiate and wants to move last
- We assume legislators do not have preferences over which policy wins but only over how they vote
 - Such preferences only matter if a legislator is pivotal
- Legislators receive cash transfers as bribes, but may be more natural to treat them as benefits written in the bill
 - Legislators no longer indifferent about bribes to other legislators if they must be tax-funded

Model with Continuum of Legislators

- Set of legislators indexed $\sim U\left[-\frac{1}{2},\frac{1}{2}\right]$
 - Median voter at zero
- Let v(z) be the reservation-price function
- Strategies of A and B are functions $a(\cdot)$ and $b(\cdot)$ on $\left[-\frac{1}{2},\frac{1}{2}\right]$
- Focus on cases in which $W_A\gg 0$
- Let $m + \frac{1}{2}$ be the fraction of legislators, both bribed, and unbribed, who vote for x
 - *m* the "excess" size of *A*'s coalition relative to a minimal winning coalition
 - B must bribe at least m members of A's coalition

Leveling Strategy

- A's bribe offer function $a(\cdot)$ a leveling strategy if there is a legislator z_0 , such that $v(z) + a(z) = v(z_0)$ for all bribed legislators (z : a(z) > 0)
 - A leaves B with a level field of legislators from which to choose when deciding whom to bribe
- Whenever there are equilibria in which x wins, there is always one in which A plays a leveling strategy

Proposition 1

Suppose $a^*(\cdot)$ and $b^*(\cdot)$ constitute an equilibrium in which x wins. Then, exactly one of the following cases holds:

- **1** if v(0) > 0 and $W_B \le \int_0^{v^{-1}(0)} v(z) dz$, then $a^*(z) = 0$ for all z;
- ② if v(0) > 0 and $\int_0^{v^{-1}(0)} v(z)dz < W_B < v(0)v^{-1}(0)$, then $a^*(z)$ satisfies $a^*(z) = 0$ for $z \notin [0, v^{-1}(0)]$, $a^*(z) \le v(0) v(z)$ for all $z \in [0, v^{-1}(0)]$, and $\int_0^{v^{-1}(0)} [v(z) + a^*(z)]dz = W_B$;
- if $v(0) \le 0$ or $W_B \ge v(0)v^{-1}(0)$, then $a^*(\cdot)$ is a leveling strategy, with $a^*(z) = W_B/m v(z)$ for all z such that $a^*(z) > 0$, where m satisfies $m > max\{0, v^{-1}(0)\}$ and $W_B/m > v(0)$.

Subcase of Case 3

- One may typically imagine bribes taking place when majority of legislature initially opposed to the vote buyer $(v(0) \le 0)$
 - Two conditions: $v\left(-\frac{1}{2}\right) \geq \frac{W_B}{m}, \text{ and } v\left(-\frac{1}{2}\right) < \frac{W_B}{m}$
 - \(\frac{W_B}{m}\) the minimum amount B must pay to buy the vote of a member of A's coalition
- A coalition is *flooded* if A bribes every member of his coalition

Proposition 2

Suppose $v(\cdot)$ is nonincreasing and differentiable, and $v(0) \le 0$. Then m^* is unique, and exactly one of the following holds:

- **1** A constructs a nonflooded, nonuniversalistic coalition, in which case $m^* \ge W_B/v(-1/2)$, $m^* < 1/2$, and m^* satisfies $-(W_B/m^*)v^{-1}(W_B/m^*) = -m^*v(m^*)$;
- ② A constructs a flooded, nonuniversalistic coalition, in which case $m^* < W_B/v(-1/2), m^* < 1/2$, and m^* satisfies $(W_B/m^*)(1/2) = -m^*v(m^*)$;
- 3 A constructs a universalistic coalition, in which case $m^* = 1/2$.

Proposition 2 Implications

- At an interior m^* , two particular rectuangular areas must be equal
- In cases 1 and 2, $\frac{\delta m^*}{\delta W_B} > 0$
 - If $W_B = 0$, A faces no vote buying opposition and only bribes a minimal winning coalition

Proposition 3

Suppose $v(z) = \alpha - \beta z$, with $\beta \ge 0$ and $\alpha \le 0$. Then, the types of coalitions formed and m^* are characterized as follows.

- A constructs a nonflooded, nonuniversalistic coalition iff $\beta \geq 2(W_B \alpha) + (W_B^2 2\alpha W_B)^{1/2}$. In this case, $m^* = (W_B/\beta)^{1/2}$.
- ② A constructs a flooded, nonuniversalistic coalition iff $4W_B + 2\alpha < \beta < 2(W_B \alpha) + (W_B^2 2\alpha W_B)^{1/2}$. In this case, m^* solves $\beta(m^*)^2 = \alpha m^* + W_B/2m^*$.
- **3** A constructs a flooded, universalistic condition iff $\beta \le 4W_B + 2\alpha$. In this case, $m^* = 1/2$.
- 4 never constructs a nonflooded, universalistic coalition.

Proposition 3 Implications

- m^* is a continuous function of α, β , and W_B .
- m* is differentiable except at the boundaries

Proposition 4

Suppose $v(i) = \alpha - \beta[i - (n+1)/2]$, with $\beta \ge 0$ and $\alpha \le 0$. If $a^*(\cdot)$ and $b^*(\cdot)$ consitute an equilibrium in which x wins, then $m^* = 0$ only if $W_B < [1/3 + (28/9)^{1/2}]\beta < (2.1)\beta$.

