CS 214 Introduction to Discrete Structures Spring 2020, Section 02 Homework Exercises

Mikel D. Petty, Ph.D., 2020-1-13, Subject to change.

General instructions

- Homework is assigned for a section when that section's "homework slide" appears in class.
- Homework is due at the beginning of the next class lecture after it is assigned.
- It is possible that not all of the sections in this list will be covered in class; the homework for any sections not covered will not be assigned.
- Exercises with the "x" (for external) prefix are not in the Gersting textbook; they are from some other discrete mathematics book. They are provided on the following pages in this document.
- The exercises are subject to change. Recheck this document before starting each assignment.

Exercises and hints

Section	<u>Exercises</u>	Hints and problem-specific instructions
1.1 1.2 1.3	6, 22, 24, 36, <i>x</i> 1 12, 24, 36, 48, 50, <i>x</i> 2 6, 18, 26, 36, <i>x</i> 3	24: Remember RFGMPR #1.
2.1 2.2	12, 20, 28, 32, 56, <i>x</i> 4 8, 20, 34, 72a, 80, <i>x</i> 5	28: Use contradiction. 32: Use contraposition.80: Use second induction.
3.1 3.2 3.3	2, 22, 50, 64, 78 4, 10, 14, 28, 46 4, 6, 10, 16, 20, 22	16, 22: The solutions to 15 and 21 are in the book.
4.1 4.2	6, 14, 22, 28, 36, 40, 82ac, 104, <i>x</i> 6 4, 8, 14, 22, 34, 38, 42	
5.1 5.4 5.5	2, 8, 12, 24, 36, 56 4, 8, 14, 20, 48, <i>x</i> 7 2, 4, 6, 20, 22	
6.1 6.2	2, 4, 8, 12, 16, 26, 28, 38, 47 4, 12, 24, 48	48: Use induction on the number of leaves.
9.3	4, 8, 24, 34	

External exercises

x1 (Section 1.1) Consider the following two assertions about x. Assume x is a specific but unknown real number.

- a. x < 2 or it is false that 1 < x < 3.
- b. $x \le 1$ or either x < 2 or $x \ge 3$.

Define statement letters for each of the individual statements (e.g., "x < 2" is a statement). If the same statement occurs more than once, use the same statement letter for all occurrences. Using those statement letters, rewrite assertions a and b as two logical expressions. Then construct a truth table to show that a and b are logically equivalent.

x2 (Section 1.2) Use propositional logic to prove that the following argument is valid. $(A \to B) \land (B \to C) \land (B \to D) \land A \to (C \land D)$

x3 (Section 1.3) The domain is the diagram of Tarski's World on slide 1.81. Define predicate Above(x, y) to be true if x is above y, whether in the same or different columns. Determine the truth value of each of the following predicate wffs.

- a. $\forall u \ Circle(u) \rightarrow Gray(u)$
- b. $\forall u \ Gray(u) \rightarrow Circle(u)$
- c. $\exists y \ Square(y) \land Above(y, d)$
- d. $\exists z \ Triangle(z) \land Above(f, z)$

x4 (Section 2.1) Prove the following theorem: The result of subtracting an odd integer from an even integer is an odd integer.

Hint: First rewrite the theorem in if-then form and give the variable(s) name(s).

x5 (Section 2.2) Use induction to prove that $2^{n+1} > n^2 + 3$ for $n \ge 2$.

x6 (Section 4.1) Use the methods shown in class for subset proofs to prove that $A - B \subseteq A$.

*x***7** (Section 5.4) Let *P* be the set of all valid computer programs written in some conventional programming language. Prove that *P* is denumerable. (Hint: Programs consist of ASCII characters.)

End of document