Normaliz 3.10.0

Max Horn

Ulrich von der Ohe

15

16

16

16

18

19

20

21

Winfried Bruns

Discrete convex geometry by examples

1.6

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

Former Normaliz 3 team members: Tim Römer, Richard Sieg and Christof Söger						
	Normaliz 2 team member: Bogdan Ichim					
	https://normaliz.uos.de https://github.com/Normaliz					
	mailto:normaliz@uos.de					
	https://hub.docker.com/u/normaliz/dashboard/					
	https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master					
	Short reference: NmzShortRef.pdf					
Con	tents					
1 Int 1.1 1.2 1.3 1.4 1.5	The objectives of Normaliz	10 10 11 12 14 14				

	2.4	A lattice polytope	3
		2.4.1 Only the lattice points	6
	2.5	A rational polytope	6
		2.5.1 The series with vertices?	9
		2.5.2 The rational polytope by inequalities	9
	2.6	Magic squares	C
		2.6.1 Blocking the grading denominator	
		2.6.2 With even corners	
		2.6.3 The lattice as input	
	2.7	Decomposition in a numerical semigroup	
	2.8	A job for the dual algorithm	
	2.9	A dull polyhedron	
	2.7	2.9.1 Defining it by generators	
	2 10	The Condorcet paradox	
	2.10	2.10.1 Excluding ties	
		2.10.2 At least one vote for every preference order	
		2.10.2 At least one vote for every preference order	
	2.11	Testing normality	
	2.11		
	2 12	2.11.1 Computing just a witness	
		1	
		1 7 1	
		The integer hull	
	2.15	Inhomogeneous congruences	
		2.15.1 Lattice and offset	
	2.16	2.15.2 Variation of the signs	
	2.16	Integral closure and Rees algebra of a monomial ideal	
		2.16.1 Only the integral closure of the ideal	8
3	۸ fG	ne monids and binomial ideals by examples 59	O
3	AIII		
		3.0.1 Input and default computation goals	
		3.0.2 Markov and Gröbner bases, Representations	
		3.0.3 Hilbert series and muliplicity	
	2.1	3.0.4 Binomial ideals from cone input	
	3.1	Monoids from binomials	
		3.1.1 Affine monoids from binomial ideals	
	2.2	3.1.2 Normalization of monoids from binomials	
	3.2	Lattice ideals	8
4	The	input file 69	O
т	4.1	Input the Input items	
	7.1	4.1.1 The ambient space and lattice	
		4.1.2 Plain vectors	
		4.1.2 Figure vectors	
		+ 1 1 1:0000/00000 VCOOLS /	

	4.1.4	Plain matrices		
	4.1.5	Formatted matrices		
	4.1.6	Constraints in tabular format		
	4.1.7	Constraints in symbolic format		
	4.1.8	Polynomials		
	4.1.9	Rational numbers		
	4.1.10	Decimal fractions and floating point numbers		
		Numbers in algebraic extensions of \mathbb{Q}		
		Numerical parameters		
	4.1.13	Computation goals and algorithmic variants		
		Comments		
	4.1.15	Restrictions		
	4.1.16	Homogeneous and inhomogeneous input		
		Default values		
		Normaliz takes intersections		
4.2	Homog	geneous generators		
		Cones		
		Lattices		
	4.2.3	Affine monoids		
4.3	Homog	geneous Constraints		
	4.3.1	Cones		
	4.3.2	Lattices		
4.4	Inhomo	ogeneous generators		
	4.4.1	Polyhedra		
	4.4.2	Affine lattices		
4.5	Inhomo	ogeneous constraints		
	4.5.1	Polyhedra		
	4.5.2	Affine lattices		
4.6	Tabular	constraints		
	4.6.1	Forced homogeneity		
4.7	Symbo	lic constraints		
4.8	Conver	ting equations to inequalities		
4.9		mial constraints		
4.10		al ideals		
		ctors and unit matrix		
		g		
		With binomil ideal input		
4.13		ogenization		
	4 Open facets			
	5 Coordinates for projection			
		ical parameters		
-		Degree bound for series expansion		
		Number of significant coefficients of the quasipolynomial 86		
		Codimension bound for the face lattice 86		

		4.16.4	Degree bounds for Markov and Gröbbner bases	86
		4.16.5	Number of digits for fixed precision	86
		4.16.6	Block size for distributed computation	86
	4.17		dness	86
			ro cone	87
5	Con	nputati	on goals and algorithmic variants	88
	5.1		t choices and basic rules	88
	5.2		itation goals	89
	0.2	5.2.1	Lattice data	89
		5.2.2	Support hyperplanes and extreme rays	89
		5.2.3	Hilbert basis and lattice points	89
		5.2.4	Enumerative data	90
		5.2.5	Combined computation goals	90
		5.2.6	The class group	90
		5.2.7	Integer hull	90
		5.2.8	Triangulation and Stanley decomposition	91
		5.2.9	Face structure	91
		5.2.10	Semiopen polyhedra	92
		5.2.11	1 1 •	92
		5.2.12	Weighted Ehrhart series and integrals	92
		5.2.13	Markov and Gröbner bases	92
		5.2.14	Local structure	93
		5.2.15	Boolean valued computation goals	93
	5.3	Integer	type	94
	5.4	The ch	oice of algorithmic variants	94
		5.4.1	Primal vs. dual	94
		5.4.2	Lattice points in polytopes	95
		5.4.3	Bottom decomposition and order	95
		5.4.4	Multiplicity, volume and integrals	96
		5.4.5	Symmetrization	97
		5.4.6	Subdivision of simplicial cones	97
		5.4.7	Options for the grading	97
	5.5		l of computations and communication with interfaces	97
	5.6	Rationa	al and integer solutions in the inhomogeneous case	98
6	Run	ning N	Jormaliz	99
	6.1	Basic r	rules	100
	6.2	Info ab	out Normaliz	100
	6.3	Contro	l of execution	100
	6.4	Interru	ption	101
	6.5		l of output files	101
	6.6	Ignorin	ng the options in the input file	102

7	1			103
	7.1 Computations with a polytope			103
	7.1.1 Lattice normalized and Euclidean volume			104
		7.1.2	Developer's choice: homogeneous input	104
	7.2	Lattice	points in polytopes once more	104
		7.2.1	Project-and-lift	105
		7.2.2	Project-and-lift with floating point arithmetic	107
		7.2.3	LLL reduced coordinates and relaxation	107
		7.2.4	Positive systems, coarse project-and-lift and patching	108
		7.2.5	Polynomial constraints for lattice points	109
		7.2.6	The triangulation based primal algorithm	109
		7.2.7	Lattice points by approximation	110
		7.2.8	Lattice points by the dual algorithm	111
		7.2.9	Counting lattice points	111
	7.3	The bo	ttom decomposition	111
	7.4		ision of large simplicial cones	113
	7.5		vs. dual – division of labor	114
	7.6		s volume versions	114
		7.6.1	The primal volume algorithm	115
		7.6.2	Volume by descent in the face lattice	116
		7.6.3	Descent exploiting isomorphism classes of faces	117
		7.6.4	Volume by signed decomposition	117
		7.6.5	Fixed precision for signed decomposition	120
		7.6.6	Comparing the algorithms	120
	7.7	Checki	ng the Gorenstein property	121
	7.8 Symmetrization		122	
		7.9 Computations with a polynomial weight		124
		7.9.1	A weighted Ehrhart series	125
		7.9.2	Virtual multiplicity	127
		7.9.3	An integral	127
	7.10		sion of the Hilbert or weighted Ehrhart series	128
			Series expansion	128
			Counting lattice points by degree	129
			Significant coefficients of the quasipolynomial	130
	7.11		t dehomogenization	131
			ion of cones and polyhedra	132
			inted cones	133
		7.13.1		134
			A polyhedron without vertices	135
			Checking pointedness first	137
			Input of a subspace	137
			Data relative to the original monoid	138
	7.14		ing the triangulation	139
	,,11	_	Nested triangulations	141

7.14.2 Disjoint decomposition	141
7.15 Terrific triangulations	142
7.15.1 Just Triangulation	143
7.15.2 All generators triangulation	144
7.15.3 Lattice point triangulation	144
7.15.4 Unimodular triangulation	144
7.15.5 Placing triangulation	145
7.15.6 Pulling triangulation	145
7.16 Exporting the Stanley decomposition	146
7.17 Face lattice, f-vector and incidence matrix	147
7.17.1 Dual face lattice, f-vector and incidence matrix	149
7.18 Module generators over the original monoid	150
7.18.1 An inhomogeneous example	151
7.19 Lattice points in the fundamental parallelepiped	153
7.20 Semiopen polyhedra	155
7.21 Rational lattices	157
7.22 Automorphism groups	159
7.22.1 Euclidean automorphisms	160
7.22.2 Rational automorphisms	163
7.22.3 Integral automorphisms	163
7.22.4 Combinatorial automorphisms	164
7.22.5 Ambient automorphisms	165
7.22.6 Automorphisms from input	166
7.23 Precomputed data	168
7.23.1 Precomputed cones and coordinate transformations	168
7.23.2 An inhomogeneous example	169
7.23.3 Precomputed Hilbert basis of the recession cone	171
7.24 Singular locus	171
7.25 Packed format in the output of binomials	172
Algebraic polyhedra	173
8.1 An example	173
8.2 Input	175
8.3 Computations	175
0.5 Computations	175
Optional output files	177
9.1 The homogeneous case	177
9.2 Modifications in the inhomogeneous case	178
9.3 Algebraic polyhedra	179
9.4 Precomputed data for future input	179
9.5 Overview: Output files forced by computation goals	179

10	Performance 10.1 Parallelization	179 179 180
11	Distribution and installation 11.1 Docker image	182 182 183 183 184
12	Building Normaliz yourself 12.1 Prerequisites 12.1.1 Linux 12.1.2 Mac OS X 12.2 Normaliz at a stroke 12.3 Packages for rational polyhedra 12.3.1 CoCoALib 12.3.2 nauty 12.3.3 Hash library 12.3.4 Flint 12.4 Packages for algebraic polyhedra 12.5 MS Windows	184 185 185 185 186 186 187 187 187
13	Copyright and how to cite	188
A	Mathematical background and terminology A.1 Polyhedra, polytopes and cones A.2 Cones A.3 Polyhedra A.4 Affine monoids A.5 Lattice points in polyhedra A.6 Hilbert series and multiplicity A.7 The class group A.8 Affine monoid algebras and their defining ideals A.9 Affine monoid algebras from binomial ideals A.10 Local properties of affine monoid algebras	190 190 191 191 193 194 195 197 197 198 199
В	Annotated console output B.1 Primal mode	199 199 201
C	Normaliz 2 input syntax	203

D	libnormaliz 20			204
	D.1 The master header file			204
	D.2 Optional packages and configuration			204
	D.3	-	type as a template parameter	204
		D.3.1	Alternative integer types	205
		D.3.2	Decimal fractions and floating point numbers	205
	D.4	Constru	uction of a cone	205
		D.4.1	Construction from an input file	208
	D.5	Setting	and changing additional data	209
		D.5.1	Polynomials	209
		D.5.2	Grading	209
		D.5.3	Projection coordinates	209
		D.5.4	Numerical parameters	209
	D.6		ving a cone after construction	210
	D.7		itations in a cone	211
	D.8	-	ring results	217
	2.0	D.8.1	Checking computations	217
		D.8.2	Rank, index and dimension	217
		D.8.3	Support hyperplanes and constraints	218
		D.8.4	Extreme rays and vertices	218
		D.8.5	Generators	218
		D.8.6	Lattice points in polytopes and elements of degree 1	219
		D.8.7	Hilbert basis	219
		D.8.8	Module generators over original monoid	219
		D.8.9	Generator of the interior	220
			Grading and dehomogenization	220
			Enumerative data	220
			Weighted Ehrhart series and integrals	221
			Triangulation and disjoint decomposition	222
			Stanley decomposition	223
			Scaling of axes	
			Coordinate transformation	224
			Coordinate transformations for precomputed data	225
			Automorphism groups	225
			Class group	227
			Face lattice and f-vector	227
			Local properties	228
			Markov abd Grobner bases, representations	228
			Integer hull	228
			Projection of the cone	228
			Excluded faces	229
			Boolean valued results	229
				230
	D 0		Results by type	230
	1,7		(1) . I N II V I N A I I (1)	/ 11 /

	D.10	Reusin	g previous computation results	231
	D.11	Contro	l of execution	232
		D.11.1	Exceptions	232
		D.11.2	Interruption	232
		D.11.3	Inner parallelization	233
		D.11.4	Outer parallelization	233
		D.11.5	Control of terminal output	233
		D.11.6	Printing the cone	234
	D.12	A simp	le program	234
Е	Nor	maliz i	nteractive: PyNormaliz	239
	E.1	Installa	· · · · · · · · · · · · · · · · · · ·	239
	E.2	The high	gh level interface by examples	
		E.2.1	Creating a cone	240
		E.2.2	Matrices, vectors and numbers	241
		E.2.3	Triangulations, automorphisms and face lattice	
		E.2.4	Hilbert and other series	245
		E.2.5	Multiplicity, volume and integral	247
		E.2.6	Integer hull and other cones as values	247
		E.2.7	Boolean values	
		E.2.8	Algebraic polyhedra	249
		E.2.9	The collective compute command and algorithmic variants	
		E.2.10	Miscellaneous functions	250
	E.3	The lov	w level interface	252
		E.3.1	The main functions	252
		E.3.2	Additional input and modification of existing cones	
		E.3.3	Additional data access	253
		E.3.4	Miscellaneous functions	254
		E.3.5	Raw formats of numbers	254
F	Dist	ributed	d computation for volume via signed decomposition	255
Re	eferei	nces		257
In	dex c	of keyu	vords	259

3 Affine monids and binomial ideals by examples

The role of binomials in the computation of affine monoids and their algebras is briefly explained in Sections A.8 and A.9. We assume that the user is familiar with them.

3.0.1 Input and default computation goals

Affine monoids are given to Normaliz by the input type

monoid

as in monoid.in:

```
amb_space 3
monoid 6
1 0 0
2 3 5
0 0 1
1 1 2
0 1 3
3 1 0
/* grading 1 -2 1*/
/*HilbertSeries*/
/*GroebnerBasis*/
/*Lex*/
/*MarkovBasis*/
/*gb_degree_bound 11*/
/*gb_min_degree 9*/
/*Multiplicity*/
/*SingularLocus*/
/*CodimSingularLocus*/
/*IsSerreR1*/
```

Positivity of the monoid does *not* mean that all components of the input vectors are nonnegative. It only means that x = 0 if both x and -x belong to it.

Let us translate this exmple into multiplicative notation. We have binomials in $K[X_1, X_2, X_3]$, namely

$$M_1 = X_1,$$
 $M_2 = X_1^2 X_2^3 X_3^5, \dots,$ $M_6 = X_1^3 X_2.$

In the output file we see

```
...
original monoid is not integrally closed in chosen lattice
...
6 Hilbert basis elements:
0 0 1
1 0 0
0 1 3
```

```
1 1 2
3 1 0
2 3 5

5 support hyperplanes:
0 0 1
0 1 0
1 0 0
2 -3 1
5 -15 7
```

The support hyprplanes re those of the cone generated by the monoid. They are used in aiuxiliary computations, for example in finding the Hilbert basis, i.e., the unique minimal system of generators of our monoid. In this case the input vectors are all in the Hilbert basis, but thins need not be the case. The Hilbert basis is ordered by degree and lexicographically within each degree. In fact, we have a grading

```
grading:
1 1 1
```

For the default choice of the grading we start from the standard grading on the ambient lattice. Then the grading, whether the default choice or an explicit grading in the input, is divided by the greatest common divisor of he degrees of the generators. In the context of monomial algebras it is the most natural choice. The division by the gcd can be suppressed by NoGradingDenom. In our example the gcd is 1.

Our monoid actually has another grading, in which all generators have degree 1: grading 1 -2 1 in the input file. Activate it and study the changes.

Note: The input type monoid is close to cone_and_lattice if the monoid is normal.But there are two differences in the dafault choices: (1) The default computation goals and (2) the default grading. In fact, for monoid is is derived from the standard grading on the ambeint lattice, whereas or cone_and_lattice it gives degree 1 to the extreme integral generators, provided this is possible.

3.0.2 Markov and Gröbner bases, Representations

The purpose of the computations in this section is to understand the defining ideal of the subalgebra A of $K[X_1, X_2, X_3]$ generated by our binomials M_1, \ldots, M_6 introduced above. To this end we activate

MarkovBasis

in monoid.in, the Markov basis is computed and returned in the file with suffix

mrk file containing the Markov basis

In our case monoid.mrk:

7

```
6
1 0 -1 -1 1 0
-2 0 2 -1 0 1
-1 0 1 -2 1 1
2 1 0 -1 -1 -1
0 0 0 -3 2 1
1 1 1 -3 0 0
0 1 2 -2 -1 0
```

Each column corresponds to an input vector, and the rows are indeed relations: the scalar product of a row listed in the Markov basis and a column of the matrix monoid is 0. The binomials in $P = K[Y_1, \ldots, Y_6]$ corresponding to the rows in the Markov basis form a system of generators of the binomial ideal defining our monoid algebra as a residue class ring of P. The binomials are

$$b_1 = Y_1 Y_5 - Y_3 Y_4,$$
 $b_2 = Y_3^2 Y_6 - Y_1^2 Y_3, \dots,$ $b_7 = Y_2 Y_3^2 - Y_4^2 Y_5.$

and indeed the binomials vanish if we substitute M_i for Y_i , i = 1, ..., 7. That they generate the defining ideal is claimed by Normaliz.

For easier reference the input matrix is mirrored in the file with suffix

ogn file with the original generators

in our case monoid.ogn:

```
6
3
1 0 0
2 3 5
0 0 1
1 1 2
0 1 3
3 1 0
```

In order to compute a Gröbner basis of our binomial ideal, we activate

GroebnerBasis

and get the output file with suffix

grb containing the Gröbner basis.

For the Gröbnerb basis one has to choose a monomial otrder. The default choice is 'egree reverse lexicographic" In our case it yields

```
8
6
-1 0 1 1 -1 0
0 0 0 3 -2 -1
1 0 -1 2 -1 -1
2 0 -2 1 0 -1
0 1 2 -2 -1 0
```

```
1 1 1 0 -2 -1
2 1 0 -1 -1 -1
3 0 -3 0 1 -1
```

More precisely: the indeterminates in the polynomial ring housing the binomials are ordered $Y_1 > \dots Y_6$ and we take the degree reverse lexicographic extension, where 'degree' means the total standard degree on the polynomial ring P. The file with suffix ogn is also created for the Gröbner basis. There is no output of the (minimal) Markov basis, unless you ask for it explicitly.

Despite of being the defualt choice, the degree reverse lexicographic order is in the list of perttaining computation goals:

RevLex degree reverse lexicographic order

Lex lexicographic order

DegLex gegree lexicographic order

Activate also Lex in our example and see what changes. DegLex is taken with respect to the total standard degree as well, and makes no difference in our case, since the generating binomials are homogeneous in this grading.

A grading of the monomial algebra induces a gtrading on the binomials in its definig ideal such that the latter are homogeneous polynomials. With respect to this grading the output of Markov and Gröbner bases can be restricted:

gb_degree_bound <n> sets upper degree bound <n> for binomials,

gb_min_degree <n> sets lower degree bound <n> for binomials.

There is one more computation goal for monoids that complements HilbertBasis (switched on by default):

Representations representations of reeducible elements in monoid in terms of the Hilbert basis

The outpur is a list of binomials in the file with suffix

rep reprdsentations of reducible elements in terms of the Hilbert basis.

Also the file with suffix ogn is written.

As a simple example we consider representations.in

```
amb_space 3
monoid 8
1 0 0
2 3 5
0 1 1
0 0 1
1 1 2
0 1 3
3 1 0
1 2 5
Representations
```

```
/*BinomialsPacked*/
```

with

```
4 Hilbert basis elements:

0 0 1

1 0 0

0 1 1

3 1 0
```

and representations of the other 4 elements in the input:

```
4
8
-1 0 -1 -1 1 0 0 0
0 0 -1 -2 0 1 0 0
-1 0 -2 -3 0 0 0 1
-2 1 -3 -2 0 0 0 0
```

The entries 1 in each row mark the reducible elements and the row should be read as a binomial vanishing on the input vectors (or monomials).

If you want to see computations that take longer than our toy example so far, run A443monoid.in and Kwak80.in.

3.0.3 Hilbert series and muliplicity

If we activate both (!) HilbertSeries and Multiplicity in monoid.in, the result is

```
multiplicity = 19/40
multiplicity (float) = 0.475

Hilbert series:
1 1 0 0 3 2 -2 -1 6 2 -4 0 6 1 -3 1 4 0 0 1 1
denominator with 3 factors:
1:1 2:1 20:1
...
```

followed by the representation with cyclotomic denominator and the Hilbert quasipolynomial. Activate grading 1 -2 1 and observe the changes.

3.0.4 Binomial ideals from cone input

Defining binomial ideals can be computed not only for monoids defined by the input type monoid, but also for the monoids that defined by other input types as intersections of cones and lattices, for example cone, cone_and_lattice, equations, inequalities etc.In the case of generator input there are actually two monoids, the "original monoid" as discussed in Section 7.18, and its integral closure in the lattice defined by tghe input. So, if we ask for the Markov

basis of the defining ideal, which monoid is taken? Answer: always the integral closure generated by its Hilbert basis, unless the property makes only sense for the original monoid: if we ask IsIntegrallyClosed, the answer is always 'yes' for the integral closure.

As an example we take cone_latt_markov.in (monoid.in with a different input type):

```
amb_space 3
cone_and_lattice 6
1 0 0
2 3 5
0 0 1
1 1 2
0 1 3
3 1 0
MarkovBasis
SingularLocus
```

The output file contains

The Markov basis is contained in cone_latt_markov.mrk:

```
18

9

-1 0 1 0 0 1 0 0 -1

0 0 0 -1 0 2 0 0 -1

...

0 -1 0 0 2 0 0 -1 0
```

The columns correspond to the Hilbert basis elements in the order they are listed above. Fpr

completemess the file with suffix ogn is written also in this case. It conztains the Hilbert basis as listed in the out file.

The singular locus has codimension 2, the minimum for a normal monoid (algebra). The singular locus is stored in cone_latt_markov.sng.

We could equally well start from the inequalities defining the integral closure (the generators above generate the lattice \mathbb{R}^3) in cone_latt_markov_supp.in,

```
amb_space 3
inequalities 5
0  0 1
0  1 0
1  0 0
2  -3 1
5  -15 7
MarkovBasis
SingularLocus
```

with the same result as above, except that there is no originl monoid.

3.1 Monoids from binomials

As an example, we consider the binomial ideal generated by

$$Y_1^2Y_2 - Y_4Y_5Y_6$$
, $Y_1Y_4^2 - Y_3Y_5Y_6$, $Y_1Y_2Y_3 - Y_5^2Y_6$.

in the polynomial ring $P = K[Y_1, \ldots, Y_6]$. We want to find an embedding of the toric ring it defines. When we say "defines", then we do not claim that the residue ring P/I is a toric ring. But there is a unique smallest binomial ideal $J \supset I$ within this propetry, and Normaliz finds the monoid and, if wanted, also a Markov (or GRöbner)basis of J. A priori R = P/J is only defined as a residue class ring. It doesn't have a 'canonical' embedding into another polynomial ring, but Normaliz computes such an embedding if the monoid undrrlying R/J isd positive. As pointed out already, non-positive affine monoids an only be computed by Normaliz if they are normal.

3.1.1 Affine monoids from binomial ideals

The input type that asks for a toric ring from binomial input is

toric_ideal

The input vectors are obtained as the differences of the two exponent vectors in the binomials. So the input ideal toric_ideal.in for ur 3 binimials is

```
amb_space 6
toric_ideal 3
2 1 0 -1 -1 -1
```

```
1 0 -1 2 -1 -1
1 1 1 0 -2 -1
/* total_dgegree */
```

In order to avoid special input rules for this case in which our object is not defined as a subset of an ambient space, but as a quotient of type *generators/relations*, we abuse the name amb_space: it determines the space in which the input vectors live.

It is possible to define a grading. It must give positive degree to the unit vectors of the ambient space and degree 0 to the vectors representing the binomials so that the latter become homogeneous polynomials with respect to this grading.

In the output we get

```
6 original generators:
1 0 0
2 3 5
0 0 1
1 1 2
0 1 3
3 1 0
```

namely the residue classes of the indeterminates realized in an embedding. Test the binomials on the original generators! We know this monoid already from monid.in, and you can try the other computationn goals discussed for the latter.

We see

```
grading:
1 1 1
```

So Normaliz uses the standard grading on the ambient polynomoal ring into which R/J has been embedded. This is the default choice, as it is for the input type monolid. Our toric ring actually has its own standard tgrading: activate total_degree in the input file and look at the output. In fact, the binomials above are homogeneous in the standard garing on P, and total_degree sets this grading.

The generators are repeated (in this case) in a different order, m as wem know altready:

```
6 Hilbert basis elements:
0 0 1
1 0 0
0 1 3
1 1 2
3 1 0
2 3 5
```

Now they are sorted by degree and then lexicographically, as we always sort Hilbert bases.

As a trivial example in which the Hilbert basis does not simply repeat the original generators in a different order, compute lin_bin.in:

```
amb_space 2
toric_ideal 1
1 -1
```

The output contains

```
2 original generators:
1
1
1
1 Hilbert basis elements:
1
```

3.1.2 Normalization of monoids from binomials

One go can a step further, using the input type

normal_toric_ideal

It asks for the *normalization* of the toric ring defined by the binomials. In normal_toric_ideral.in we take the same binoials as above:

```
amb_space 6
normal_toric_ideal 3
2 1 0 -1 -1 -1
1 0 -1 2 -1 -1
1 1 0 -2 -1
```

In the output file we find

```
6 original generators:
1 0 0
2 3 5
0 0 1
1 1 2
0 1 3
3 1 0
2 lattice points in polytope (Hilbert basis elements of degree 1):
0 0 1
1 0 0
7 further Hilbert basis elements of higher degree:
0 1 3
1 1 2
2 1 1
3 1 0
1 2 4
```

```
2 2 3 2 3 5
```

The "original generators" arev the same as above, as they should be. Also the default grading is the same, aned the default computation goals are identical as well. But the Hilbert series, Markov basis, Gröbner basis etc. are computed for the normalization, as the user can see by playing with the commuted out computation goals.

Note: Until version 3.9.4 the input type normal_toric_ideal was called lattice_ideal, which has a different meaning now and is discussed in the next subsection.

3.2 Lattice ideals

A lttice ideal I in a polynomial ring P is a binomial ideal modulo which all monomials are nonzerodivisors. This implies that P/J is a monoid ring whose underlying monoid is the natural image of the monoid of monomials in P. Moreover, it is a cancellative monoid, but not necessarily affine—the latter property requires torsion freeness additionally. The input type is

lattice_ideal

Normaliz tests whether the lattice ideral is toric and indicates it in the input file, but does not automatically treat the input like toric_ideal in the positive case.

A soimple example of a non-toric lattice ideal is non_toric.in

```
amb_space 4
lattice_ideal 4
2 -2 0 0
1 1 -1 -1
2 -1 1 -2
-1 -1 1 -1
/*GroebnerBasis
DegLex*/
```

The default computation goal is MarkovBsis. In our case the result is

```
4
4
-4 -1 1 0
-3 0 0 1
-2 2 0 0
6 0 0 0
```

Attention: the last binomial is $x_1^6 - 1$ so that the residue class of x_1 is a torsion element in the monoid of residue classes.

For internal reasons and the exchnge of data with external programs we can ask

```
IsLatticeIdealToric
```

There is only one more allowed computation goal, namely GroebnerfBasis. There are no monoid generators for lattice_ideal.

 $\textbf{Note:} \ In \ versions \ until \ 3.9.4 \ \texttt{lattice_ideal} \ had \ the \ meaning \ of \ normal_toric_ideal.$

References

- [1] 4ti2 team. 4ti2-A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at https://github.com/4ti2/4ti2.
- [2] J. Abbott, A. M. Bigatti and G. Lagorio, *CoCoA-5: a system for doing Computations in Commutative Algebra*. Available at http://cocoa.dima.unige.it.
- [3] V. Almendra and B. Ichim, *jNormaliz 1.7*. Available at https://normaliz.uos.de.
- [4] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne and J. Wu, *A User's Guide for LattE integrale v1.7.2*, 2013. Software package LattE is available at https://www.math.ucdavis.edu/~latte/.
- [5] D. Bremner, M. D. Sikirić, D. V. Pasechnik, Th. Rehn and A. Schürmann, *Computing symmetry groups of polyhedra*. LMS J. Comp. Math. 17 (2014), 565–581.
- [6] St. Brumme, *Hash library*. Package available at https://create.stephan-brumme.com/.
- [7] W. Bruns, *Automorphism groups and normal forms in Normaliz*. Res. Math. Sci. 9 (2022), no. 2, Paper No. 20, 15 pp.
- [8] W. Bruns, *Polytope volume in Normaliz*. São Paulo J. Math. Sci. https://doi.org/10.1007/s40863-022-00317-9
- [9] W. Bruns, P. Garcia-Sanchez, C. O'Neill and D. Wilburne, *Wilf's conjecture in fixed multiplicity*. Int. J. Algebra Comp. 30 (2020), 861–882.
- [10] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory. Springer, 2009.
- [11] W. Bruns, R. Hemmecke, B. Ichim, M. Köppe and C. Söger, *Challenging computations of Hilbert bases of cones associated with algebraic statistics*. Exp. Math. 20 (2011), 25–33.
- [12] W. Bruns and B. Ichim, *Normaliz: algorithms for rational cones and affine monoids*. J. Algebra 324 (2010) 1098–1113.
- [13] W. Bruns and B. Ichim, *Polytope volume by descent in the face lattice and applications in social choice*. Math. Prog. Comp. 113 (2020), 415–442.
- [14] W. Bruns, B. Ichim and C. Söger, *The power of pyramid decomposition in Normaliz*. J. Symb. Comp. 74 (2016), 513–536.
- [15] W. Bruns, B. Ichim and C. Söger, *Computations of volumes and Ehrhart series in four candidates elections*. Ann. Oper. Res. 280 (2019), 241–265.
- [16] W. Bruns and R. Koch, *Computing the integral closure of an affine semigroup*. Univ. Iagell. Acta Math. 39 (2001), 59–70.
- [17] W. Bruns, R. Sieg and C. Söger, *Normaliz 2013–2016*. In G. Böckle, W. Decker and G. Malle, editors, *Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory*, pages 123–146. Springer, 2018.
- [18] W. Bruns and C. Söger, *The computation of weighted Ehrhart series in Normaliz.* J. Symb. Comp. 68 (2015), 75–86.
- [19] B. Büeler and A. Enge, *Vinci*. Package available from https://www.math.u-bordeaux.fr/~aenge/
- [20] B. Büeler, A. Enge, K. Fukuda, *Exact volume computation for polytopes: a practical study.* In: Polytopes combinatorics and computation (Oberwolfach, 1997), pp. 131 154, DMV Sem. 29,

- Birkhäuser, Basel, 2000.
- [21] J. A. De Loera, R. Hemmecke and M. Köppe. Algebraic and geometric ideas in the theory of discrete optimization. MOS-SIAM Series on Optimization, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013.
- [22] V. Delecroix, *embedded algebraic number fields* (on top of antic), package available at https://github.com/flatsurf/e-antic.
- [23] P. Filliman, The volume of duals and sections of polytopes. Mathematika 37 (1992), 67–80.
- [24] S. Gutsche, M. Horn and C. Söger, *NormalizInterface for GAP*. Available at https://github.com/gap-packages/NormalizInterface.
- [25] S. Gutsche and R. Sieg, *PyNormaliz an interface to Normaliz from python*. Available at https://github.com/Normaliz/PyNormaliz.
- [26] W. B. Hart, *Algebraic Number Theory In C.* Package available at https://github.com/wbhart/antic.
- [27] W. B. Hart, F. Johansson and S. Pancratz, *FLINT: Fast Library for Number Theory*. Available at https://flintlib.org.
- [28] Hemmecke and P. N. Malkin. Computing generating sets of lattice ideals and Markov bases of lattices. J. Symb. Comp. 44, 1463–1476 (2009).
- [29] F. Johansson, *Arb a C library for arbitrary-precision ball arithmetic*. Available at https://arblib.org/.
- [30] J. Lawrence, *Polytope volume computation*. Math. Comp. 57 (1991), 259–271.
- [31] M. Köppe and S. Verdoolaege, *Computing parametric rational generating functions with a primal Barvinok algorithm*. Electron. J. Comb. 15, No. 1, Research Paper R16, 19 p. (2008).
- [32] B. D. McKay and A. Piperno, *Practical graph isomorphism*, *II*. J. Symbolic Comput. 60 (2014), 94–112.
- [33] L. Pottier, *The Euclide algorithm in dimension n*. Research report, ISSAC 96, ACM Press 1996.
- [34] A. Schürmann, *Exploiting polyhedral symmetries in social choice*. Social Choice and Welfare 40 (2013), 1097–1110.
- [35] B. Sturmfels, Gröbner baes and convex polytopes. American Mathematical Society 1996.

Index of keywords

-h, 90	dec, 179
-n, 90	decimal_digits <n>, 86, 120</n>
-p, 90	DefaultMode, 88
-x= <t>, 100</t>	DeglElements, -1,89
help, -?, 100	DegLex, 62, 93
ignore, -i, 88	Dehomogenization, 98
version, 100	dehomogenization, 84
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Descent ExploitIsosMult, 96, 117
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Descent, -F, 96, 116
OutputDir= <outdir>, 101</outdir>	DistributedComp, 96, 254
<suffix>, 101</suffix>	DualFaceLattice, 92
all-files, -a, 101	DualFVector, 92
files, -f, 101	DualIncidence, 92
ignore, -i, 102	DualMode Deg1Elements, -d1,99
verbose, -c, 100	<code>DualMode HilbertBasis, -dN</code> , 98
	DualMode LatticePoints, 99
AffineDim, 98	${\tt DualMode\ ModuleGenerators}, 99$
AllGeneratorsTriangulation, 91, 144	DualMode, -d,95
AmbientAutomorphisms, 92, 165	150
Approximate, -r, 95, 110	egn, esp, 178
aut, 179	EhrhartQuasiPolynomial, 98
Automorphisms, 92	EhrhartSeries, 90
BigInt, -B, 94	EmbeddingDim, 97
BinomialsPacked, 102, 172	Equations, 98
block_size_hollow_tri <n>, 86, 254</n>	equations, 78
BottomDecomposition, -b, 95	EuclideanAutomorphisms, 92
bottombecomposition, -b, 75	EuclideanVolume, 98
ClassGroup, -C, 90	excluded_faces, 79
CodimSingularLocus, 93, 172	ExcludedFaces, 98
CombinatorialAutomorphisms, 92	expansion_degree <n>, 86</n>
cone, 77	ext, 177
cone_and_lattice, 77, 78	ExternalIndex, 98
ConeDecomposition, -D, 91	extreme_rays, 77
Congruences, 98	ExtremeRays, 97, 99
congruences, 79	ExtremeRaysFloat, 89
constraints <n>, 81</n>	fac, 179
constraints <n> symbolic, 82</n>	face_codim_bound <n>, 86</n>
${\tt convert_equations}, 82$	FaceLattice, 91
CoveringFace, 98	FixedPrecision, 96, 120
cst, 177	FVector, 91

 $gb_degree_bound < n>, 62, 86$ IsTriangulationNested, 98 IsTriangulationPartial, 98 $gb_min_degree < n>, 62, 86$ gen, 177 KeepOrder, -k, 95 generated_lattice, 78 GeneratorOfInterior, 98 **lat**, 178 Grading, 98 lattice, 78 grading, 84 lattice_ideal, 67, 83 GradingDenom, 98LatticePoints, 89 **GradingIsPositive**, 97 LatticePointTriangulation, 91, 144 grb, 61, 179 Lex, 61, 93 GroebnerBasis, 61, 92 LongLong, 94 hilbert_basis_rec_cone, 78 MarkovBasis, 60, 92 HilbertBasis, -N, 89 maximal_subspace, 77 HilbertQuasiPolynomial, 98 MaximalSubspace, 97 HilbertSeries, -q, 90 mod, 178 hom_constraints, 82 ModuleGenerators, 97 **HSOP**, 90 ModuleGeneratorsOverOriginalMonoid, -M, **ht1**, 177 89 ModuleRank, 98 IdsSerreR1, 93 monoid, 59, 78 inc, 179 mrk, 60, 179 Incidence, 91 msp, 178 InclusionExclusionData, 98 Multiplicity, -v, 90 inequalities, 78 inhom_congruences, 81 NoBottomDec, -0.95inhom_equations, 80 NoCoarseProjection, 95, 108 inhom_excluded_faces, 80 **NoDescent**, 96, 116 $\verb|inhom_inequalities|, 80$ NoExtRaysOutput, 52, 101 InputAutomorphisms, 92, 166 NoGradingDenom, 97 IntegerHull, -H, 90 NoHilbertBasisOutput, 102 Integral, -I, 92NoLLL, 95, 107 InternalIndex, 98 NoMatricesOutput, 102 inthull.out, 179 nonnegative, 79 inv, 177 NoPatching, 95, 109 IsDeg1ExtremeRays, 93 NoPeriodBound, 90 IsDeg1HilbertBasis, 93 NoProjection, 95 IsEmptySemiopen, 92 NoRelax, 95, 108 IsGorenstein, -G, 93 normal_toric_ideal, 66, 83 IsInhomogeneous, 98 NoSignedDec, 96, 119 IsIntegrallyClosed, 93 NoSubdivision, 97 IsPointed, 93 NoSuppHypsOutput, 52, 102 IsReesPrimary, 93

IsSerreR1, 172

NoSymmetrization, -X, 97

nr_coeff_quasipol <n>, 86

NumberLatticePoints, 90, 111

offset, 80
ogn, 61, 179
open_facets, 85
OriginalMonoidGenerators, 97

PlacingTriangulation, 91, 145
polynomial_equations <n>, 82
polynomial_inequalities <n>, 82
polytope, 77
PrimalMode, -P, 95
proj.out, 179
ProjectCone, 89, 132
Projection, -j, 95, 106
projection_coordinates, 85
ProjectionFloat, -J, 95, 107
PullingTriangulation, 91, 145

Rank, 98
rational_lattice, 78
rational_offset, 80
RationalAutomorphisms, 92
RecessionRank, 98
rees_algebra, 77
ReesPrimaryMultiplicity, 98
rep, 62, 179
Representations, 62, 93
RevLex, 61, 93

saturation, 78
SignedDec, 96, 118
signs, 78
SingularLocus, 93, 171
sng, 171, 179
StanleyDec, -y, 91
strict_inequalities, 80
strict_signs, 80
StrictIsoTypes, 117
StrictTypeChecking, 96
Sublattice, -S, 89
subspace, 77
SuppHypsFloat, 52, 89
support_hyperplanes, 79
SupportHyperplanes, -s, 89, 99

 $\begin{array}{l} \text{symm.out}, 179 \\ \text{Symmetrize, -Y}, 97 \end{array}$

tgn, 139, 179 toric_ideal, 65, 83 total_degree, 84 tri, 139, 179 Triangulation, -T, 91 TriangulationDetSum, 91 TriangulationSize, -t, 91

UnimodularTriangulation, 91, 144 unit_matrix, 83 unit_vector <n>, 83 UnitGroupIndex, 98

vertices, 79 VerticesFloat, 52, 89 VerticesOfPolyhedron, 97, 99 VirtualMultiplicity, -L, 92 Volume, -V, 53, 90

WeightedEhrhartQuasiPolynomial, 98 WeightedEhrhartSeries, -E, 92 WitnessNotIntegrallyClosed, -w, 89 WritePreComp, 179