

General Description

The AO6601 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications.

Features

N-Ch:

VDS (V)=30V

 $\begin{array}{llll} \bullet & I_D \!\!=\! 3.4A & (V_{GS} \!\!=\! 10V) \\ \bullet & R_{DS(ON)} & < & 60 m_\Omega & (V_{GS} = 10V) \\ \bullet & R_{DS(ON)} & < & 70 m_\Omega & (V_{GS} = 4.5V) \\ \bullet & R_{DS(ON)} & < & 90 m_\Omega & (V_{GS} = 2.5V) \end{array}$

P-Ch:

• VDS (V)=-30V

 $\begin{array}{lll} \bullet & I_{D}\text{=-}2.3A & (V_{GS}\text{=-}10V) \\ \bullet & R_{DS(ON)} & < 115 m_{\Omega} & (V_{GS}\text{ = }-10V) \\ \bullet & R_{DS(ON)} & < 150 m_{\Omega} & (V_{GS}\text{ = }-4.5V) \\ \bullet & R_{DS(ON)} & < 200 m_{\Omega} & (V_{GS}\text{ = }-2.5V) \end{array}$

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage		V_{DS}	30	-30	V
Gate-Source Voltage		V_{GS}	±12	±12	V
Continuous Drain	T _A =25℃	1	3.4	-2.3	
Current	T _A =70℃	I _D	2.7	-1.8	Α
Pulsed Drain Current C		I _{DM}	20	-15	
	T _A =25℃	P _D	1.15	1.15	W
Power Dissipation ^B	T _A =70℃	- D	0.73	0.73	VV
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150		J

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient	t ≤ 10s	D	78	110	€/M	
Maximum Junction-to-Ambient	Steady-State	$R_{\theta JA}$	106	150	€/W	
Maximum Junction-to-Lead Steady-State		$R_{\theta JL}$	64	80	€/M	

N-Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	ARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V	1		1	
1088	Zero Gate Voltage Drain Gurrent	T _J =55℃			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	0.5	1	1.5	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	20			Α
		V _{GS} =10V, I _D =3.4A		46	60	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =3A		50	70	$m\Omega$
		V_{GS} =2.5 V , I_D =2 A		62	90	$m\Omega$
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =3.4A		14		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.75	1	V
Is	Maximum Body-Diode Continuous Current				1.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		185	235	285	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz	25	35	45	pF
C _{rss}	Reverse Transfer Capacitance		10	18	25	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.9	1.8	2.7	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			10	12	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =3.4A		4.7	6	nC
Q_{gs}	Gate Source Charge	VGS=10V, VDS=13V, ID=3.4A		0.95		nC
Q_{gd}	Gate Drain Charge			1.6		nC
t _{D(on)}	Turn-On DelayTime			3.5		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		17.5		ns
t _f	Turn-Off Fall Time	7		2.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =3.4A, dI/dt=100A/μs		8.5	12	ns
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =3.4A, dl/dt=100A/μs		2.55	4	nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep

D. The $R_{\rm BJA}$ is the sum of the thermal impedence from junction to lead $R_{\rm BJI}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

P-Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-30V, V_{GS} =0V			-1	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-0.6	-1	-1.4	V
I _{D(ON)}	On state drain current	V_{GS} =-10V, V_{DS} =-5V	-15			Α
5		V _{GS} =-10V, I _D =-2.3A		88	115	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5V, I_D =-2A		103	150	$m\Omega$
		V_{GS} =-2.5V, I_D =-1A		139	200	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-2.3A		8		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.78	-1	V
I _S	Maximum Body-Diode Continuous Current				-1.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		205	260	315	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz	25	37	50	pF
C_{rss}	Reverse Transfer Capacitance		10	20	30	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	4	8	12	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge		4.5	5.9	7	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =-15V, I _D =-2.3A	2	2.8	4	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =-13V, I _D =-2.3A		0.7		nC
Q_{gd}	Gate Drain Charge			1		nC
t _{D(on)}	Turn-On DelayTime			6		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		20		ns
t _f	Turn-Off Fall Time			5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-2.3A, dI/dt=100A/μs		11.5	15	ns
Q_{rr}	Body Diode Reverse Recovery Charge	_e I _F =-2.3A, dI/dt=100A/μs		4.5	6	nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep

D. The $R_{\rm BJA}$ is the sum of the thermal impedence from junction to lead $R_{\rm BJI}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

-V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

-V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

N + P Channel MOSFET

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

SOT23-6 PACKAGE OUTLIE DIMENSIONS

Detial L

Symbol	Dim i			
Symbol	Min	Nor	Max	
A	1. 050	1. 100	1.150	
A1	0.000	0. 050	0.100	
L1	0. 300	0. 400	0.500	
С	0.100	0.150	0. 200	
D	2.820	2.920	3. 020	
Е	1.500	1. 600	1.700	
E1	2. 650	2. 800	2. 950	
В	1.800	1.900	2. 000	
B1	0. 950 TYP			
L2	0. 300	0.450	0.600	
О	0°	4°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW AO6601	SOT23-6	3000	Tape and reel