

Data structures

· How to store a triangular mesh so that one can easily navigate through it?

30

Data structures

- Geometric information :
 - coordinates of vertex positions
- Topological information :
 - incidence and adjacency relationships between vertices, edges and faces

31

Data structures

- Triangle and vertex based representation (only for triangulated mesh)
 - Triangle:
 - Access to the 3 incident vertices (trigonometric order)
 - Access to the 3 adjacent triangles

Constraint: vertex i facing adjacent triangle i

- Vertex:
 - Access to 1 incident triangle
 - Access to the underlying point (geometry)

32

31

32

30

Data structures

- Case of a 2D triangulation
 - Dangling pointers / indexes on the boundary of the convex hull

- Addition of a fictitious vertex (called infinite vertex) whose incident triangles are attached to the edges of the convex envelope
- The data structure can also be used for surface triangulations
 - Use dangling pointers/indexes for each hole boundary OR
 - Add fictitious vertices for each hole

33

34

Data structures with edges

- Representation based on ½ edges and vertices
 - ½ edge:
 - Access to the coupled ½ edge
 - Access to the next ½ edge
 - · Access to the target vertex
 - Vertex
 - Access to an ½ edge oriented towards the vertex
 - Access to the underlying point

35

35

Naive and uncompressed format of a mesh in a file

- · Files off
- Format description
 - Number of vertices s
 - Number of faces c
 - Vertices coordinates
 - Description of faces (from 0 to c-1)
 - Number of vertices in the face
 - Description of the face by the indexes of its vertices (in counter-clockwise direction in 2D, or by orienting the faces towards the outside in 3D)

36

How to load a mesh into the data structure?

- Need to find adjacencies between faces
- Using a map while reading faces
 - Associating to each edge encountered (key = pair of vertex indexes)
 the index of the current face (+ optionally the relative index of the vertex opposite to the edge in the face)
 - When an edge is incident to two faces, the adjacency between these two faces is reported in the structure

38

37

38

How to load a mesh into a data structure?

- Using a map while reading faces
- Complexity in O(s*log(s)) where s number of vertices
- Rque: If you use an hmap instead of a map, you get an almost linear complexity.

Case of a 3D triangulation Structure based on tetrahedrons and vertices OR Combinatorial maps (extension of half edge or dart-based structures)

Data structures

 \bullet B_1 : next

• β₂ et β₃: coupled darts

39

10

Data structures

- Case of nD triangulations n-simplex and vertex based structures

 - Combinatorial Maps
 β₁: next
 β₂, β₃ ... β_n: coupled darts

41