MapReduce

Agenda

- MapReduce
- Hadoop Ecosystem
- Spark

MAPREDUCE

Origins I ~2004 / 2005

- Google et al. faced the problem of having to analyzing huge data sets (order of petabytes)
- Standard tasks: Inverted index, web access log analysis, system log analysis, distributed grep, etc.
- Algorithms to process data often reasonably simple
- Tasks split, forwarded to thousands of worker nodes (commodity hardware) to complete in reasonable time

Origins II

- Common tasks for processing large amounts of data
 - Split data
 - Forward data and code to participant nodes
 - Check node state, react to node failures
 - Retrieve partial results, reorganize into final result
- Required simple large-scale data processing abstraction
- Inspiration from functional programming and scatter/gather in distributed/grid computing
- Difference with previous approaches is enforcing data to be in key-value format, which simplifies design
- MapReduce paper published in 2004 at OSDI

Scatter/Gather Pattern

Compared to Broadcast

http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Functional Programming

Quick Digression

- MapReduce is "functional programming meets distributed processing ..."
 - Not a new idea, dates back to the 50's
- What is functional programming?
 - Computation as application of functions
 - Theoretical foundation provided by lambda calculus
 - Kind of declarative programming
- How is it different from imperative programming?
 - Data flow implicit in program
 - Different execution orders possible

Lisp Basics

(Lisp is List Processing)

Lists are primitive datatypes

```
(list 1 2 3 4 5)
(list (list 'a 1) (list 'b 2) (list 'c 3))
```

Clojure is a Lisp dialect, runs on JVM or ClojureScript, runs on Javascript runtime

```
(nth (list 1 2 3 4 5) 0) \rightarrow 1
(nth (list (list 'a 1) (list 'b 2) (list 'c 3)) 3 ) \rightarrow nil
```

Function evaluation written in prefix notation

$$(+12) \rightarrow 3$$

 $(*34) \rightarrow 12$
(Math/sqrt (+ (* 3 3) (* 4 4))) \rightarrow ??
(def x 3) \rightarrow x 5
 $(*x5) \rightarrow$??

Try it at https://clojurescript.io or install Clojure

Lisp Functions

Functions are defined by binding lambda expressions to variables

```
(def foo
(fn [x y] (Math/sqrt (+ (* x x) (* y y)))))
```

Once defined, function can be applied

```
(foo 3 4) \rightarrow 5
```

Generally expressed with recursive calls (instead of loops)

```
(def factorial (fn [n]

(if (= n 1)

1

(* n (factorial (- n 1))))))

(factorial 6) -> 720
```

Lisp Features

Examples from Clojure

- Everything is an s-expression
 - No distinction between "data" and "code", called "homoiconicity"
 - Operators, lists, values...
 - Easy to write self-modifying code

Higher-order functions

Functions that take other functions as arguments

```
(def adder (fn [x] (fn [a] (+ x a)))
(def add-five (adder 5))
(add-five 11) \rightarrow 16
```


Clojure Reduce

From Lisp to MapReduce I

Why use functional programming for large-scale computing?

- Hide distribution and coordination from analytics code
- Define functions to capture core application logic
- Let framework (MapReduce) execute functions across many machines
- Thus, avoids tricky bugs due to distribution, parallelism, coordination

From Lisp to MapReduce II

- Adoption of two important concepts from functional programming
- Map: Do something to everything in a list
- Fold: Combine results of a list in some way (cf. reduce in Clojure)
- MapReduce distributes the content of lists to workers

Map

(map (fn [x] (* x x)) (list 1 2 3 4 5))
$$\rightarrow$$
 '(1 4 9 16 25)

- Map is a higher-order function (takes one or more functions as arguments)
- How map works
 - Function is applied to every element in a list
 - Result is a new list

Distributed Systems (H.-A. Jacobsen)

Fold

- A. k. a. reduce in Clojure (reduce + 0 (list 1 2 3 4 5)) (reduce * 1 (list 1 2 3 4 5))
- Fold is also a higher-order function
- How fold works
 - Accumulator set as initial value
 - Function applied to accumulator and first list element
 - Result stored in accumulator
 - Repeated for every list element
 - Result is the final value in accumulator

What would

happen if this

Map/Fold in Action

Map example

```
(map (fn [x] (* x x)) (list 1 2 3 4 5)) \rightarrow '(1 4 9 16 25)
```

Fold (in Clojure called reduce with accumulator argument)

```
(reduce + 0 (list 1 2 3 4 5)) \rightarrow 15
(reduce * 1 (list 1 2 3 4 5)) \rightarrow 120
```

Sum of squares

```
(def sum-of-squares (fn [v] (reduce + 0 (map (fn [x] (* x x)) v))) (sum-of-squares (list 1 2 3 4 5)) \rightarrow 55
```

From Lisp to MapReduce III

- Let's assume a long list of records: imagine if we ...
 - could distribute execution of map operations to multiple nodes
 - had a mechanism for bringing map results back together for subsequent fold operation
- This is MapReduce! (and Hadoop)
- Implicit parallelism (due to functional paradigm)
 - Parallelize execution of map operations; all independent
 - Reorder folding provided fold function is commutative and associative
 - Commutative change order of operands: x*y = y*x
 - **Associative** change order of operations: (2+3)+4 = 2+(3+4)=9

MapReduce vs. MPI & RPC

- Message-passing interface (MPI)
 - Library with basic communication elements
 - Popular for scientific computing
- Remote procedure calls (RPC)
 - A method to call a function on another machine
 - Popular in client/server designs
- MapReduce
 - A (simple) programming model that abstracts most complexity of programming clusters
 - Provides fault-tolerance
 - Gives up generality for specificity

MapReduce Summary

- Programming model and runtime system for processing large-scale data sets
 - E.g., build inverted index (in 2005 indexed 200TB)
 - Goal: Simplify use of 1000s of CPUs and TBs of data over cluster
- Inspiration: Functional programming languages
 - Programmer specifies only "what"
 - System determines "how"
 - System deals with scheduling, parallelism, locality, communication ...
- MapReduce framework responsibility
 - Automatic parallelization and distribution
 - Fault-tolerance
 - I/O scheduling
 - Status reporting and monitoring

Map Task Examples

- Feature extraction for machine learning
 - Scale raw image to smaller size
 - Run edge detector on each image in training set
- Recoding
 - Recode video from source format to WebM for different resolutions
- Natural language processing
 - Translate each web page and index it
 - Sentiment analysis of each web page, tweet, ...

MapReduce Architecture

Simplified view

- Input data is distributed to workers (i.e., available nodes)
- Workers perform computation
- Master coordinates worker selection & failover
- Results stored in output data files

Distributed Systems (H.-A. Jacobsen)

^{*} Adapted from http://research.google.com/archive/mapreduce-osdi04-

Distributed Systems (H.-A. Jacobsen)

^{*} From http://research.google.com/archive/mapreduce-osdi04-slides/index.html

MapReduce Programming Model I

- Input & output: set of key-value pairs
- Programmer specifies two functions

```
— reduce (out_key, list(intermediate_value)) →
list(out_value)
```

MapReduce Programming Model II

- map (in_key, in_value) →
 list(out_key, intermediate_value)
 - Processes input key-value pair
 - Produces set of intermediate pairs
- reduce (out_key, list(intermediate_value)) → list(out_value)
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)

Map()

- Reads records from data source (lines of files, rows of DB tables, etc.)
- Feeds records into map function as key-value pairs
 - E.g., (filename, file-line(s))
- Produces one or more intermediate values along with an output key from input
 - E.g., (word_i, 1)

Programming Model

Map and Reduce Signatures

• Map: (k1, v1) \rightarrow list(k2, v2)

• Reduce: $(k2, list(v2)) \rightarrow list(v3)$

 MapReduce framework "re-shuffles" the output from Map to conform to input of Reduce

Programming Model

High-level Example

- Map: (k1, v1) \rightarrow list(k2, v2)
 - (filename, file content) list(word, 1)
- Reduce: $(k2, list(v2)) \rightarrow list(v3)$
 - (word, list(1, 1, ...)) \rightarrow count

Map()

- Records from data source (lines of a file, rows of a database table, etc.) are fed into Map as key-value pairs, e.g., (filename, line)
- Map produces one or more intermediate value along with an output key from the input

Split \rightarrow [k1, v1]

Sort and Shuffle

- MapReduce framework
 - Shuffles and sorts intermediate pairs based on key
 - Assigns resulting streams to reducers

Reduce()

- After map phase completes, all intermediate values for a given output key are combined into a list
- Reduce() aggregates intermediate values into one or more final value for the same output key
- Often, only one final value per key

MapReduce Example: Word Count (Count word frequencies across set of documents)

MAP: Each map() assigned a document; map() generates a key-value pair for each word in document, i.e., (word,"1")

- INPUT: (FileName, FileContent) where
 FileName is the key and FileContent the value
- OUTPUT: List (Word, WordAppearence) where Word is the key and WordAppearence is the value

REDUCE: Combines the values per key and computes the sum

- INPUT: (Word, List<WordAppearence>) where Word is the *key* and List<WordAppearence> the *values*
- OUTPUT: (Word, sum<WordAppearence>) where Word is the *key* and sum<WordAppearence> is the *value*

MapReduce

Distributed Systems (H.-A. Jacobsen)

MapReduce – Map Phase

Map Phase – Example: Word Count

What mapper will perform this transformation?

[Eric Tzeng]

MapReduce – Sort Phase

Distributed Systems (H.-A. Jacobsen)

Sort Phase – Example: Word Count

MapReduce – Reduce Phase

Reduce phase – Example: Word Count

Combiners

- Often a map task produces many pairs of the form (k,v1), (k,v2), ... for the same key k
 - E.g., popular words in word count like ("the", 1)
- For associative operations. like sum, count, max, save bandwidth by pre-aggregating at mapper
- Decreases size of intermediate data
- Example: local counting for Word Count:

def combine(key, values): output(key, sum(values))

Partition Function

- Input to map is created by contiguous splits of input files
- For reduce, we need to ensure that values with the same intermediate key end up at the same worker
- System uses a default partition function: hash(key) mod R
 - Distributes the intermediate key-value pairs among R reduce workers (uniformly) randomly
- Sometimes useful to override
 - Balance load manually if distribution of keys known
 - Specific requirement on which key-value pair should be in the same output files
 - **def** partition(key, number of partitions): partition id for key

Parallelism

- map() tasks run in parallel, creating different intermediate values from different input data sets
- reduce() tasks run in parallel, each working on a different output key
- All values are processed independently
- Bottleneck: Reduce phase can't start until map phase is completely finished
- If some workers are slow, they slow down entire computation:
 Straggler problem
- Start redundant workers and take result of fastest one

Google's MapReduce Implementation

- Runs on Google clusters (state 2004/5):
 - 1000s of 2-CPU x86 machines, 2-4 GB of memory, local-based storage (GFS), limited bandwidth (commodity hardware)
- C++ library linked to user programs (use of RPC)
- Scheduling/runtime system (a.k.a. master)
 - Assign tasks to machines: typically # map tasks > # of machines
- Often use 200,000 map/5,000 reduce tasks, 2000 machines
 - Pipeline shuffling with map execution
- Other MapReduce implementations
 - Hadoop: Open-source, Java-based MapReduce framework
 - Phoenix: Open-source MapReduce framework for multi-core
 - Spark: MapReduce-like framework with in-memory processing in Scala

Locality Considerations

- Master divides up tasks based on location of data:
 - Tries to run map() tasks on same machine where physical input data resides (based on GFS)
 - At least same rack, if not same machine
- map() task inputs are divided into 64 MB blocks
 - Same size as GFS chunks
- GFS is Google File System
 - Distributed file system

Fault Tolerance & Optimizations

- In cluster with 1000s of machines, failures are common
- Worker failure
 - Detect failure via periodic heart-beating
 - Re-execute completed and in-progress map tasks
 - Re-execute in-progress reduce tasks
 - Task completion committed through master
- Design does not deal with master failure (single point of failure)
- Optimization for fault-tolerance and load-balancing
 - Slow workers significantly lengthen completion time
 - Due to other jobs on machines, disk with errors, caching issues, ...
 - Other jobs consuming resources on machine
 - Solution: Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

Criticism of MapReduce

- Too low level
 - Manual programming of per record manipulation
 - As opposed to declarative model (SQL)
- Nothing new
 - Map and reduce are classical Lisp or higher order functions
- Low per node performance
 - Due to replication and data transfer
 - Expensive shuffling process (to be minimized if possible)
 - A lot of I/O to GFS
- Batch computing, not designed for incremental, streaming tasks
 - Data must be available before job starts
 - Cannot add more input during job execution

GOOGLE AND HADOOP ECOSYSTEMS

Beyond MapReduce

"Unfortunately, no one can be told what the Matrix is. You have to see it for yourself."

Google's stack

Distributed Systems (H.-A. Jacobsen)

Hadoop Ecosystem

Iterative MapReduce

- Iterative algorithms: Repeat map and reduce jobs
- Examples: PageRank, SVM and many more

 In MapReduce, the only way to share data across jobs is stable storage (i.e., via GFS)

- Up to 100x faster than Hadoop MapReduce
- Several programming interfaces (Java, Scala, Python, R)
- Powers a stack of useful libraries (see above)
- Runs on top of a Hadoop cluster (uses HDFS)
- In-memory computation vs. stable storage (MapReduce)

Transformation Types

