Science des données III : cours 3

Séries spatio-temporelles (partie 2)

Philippe Grosjean & Guyliann Engels

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

http://biodatascience-course.sciviews.org sdd@sciviews.org

Objectifs du cours

- Prendre conscience des caractéristiques importantes des séries spatio-temporelles
- Savoir détecter une tendance globale ou locale
- Pouvoir détecter des cycles à l'aide de l'analyse spectrale

Les composantes d'un signal spatio-temporel

- Une série spatio-temporelle peut être considérée comme la superposition de plusieurs signaux plus simples:
 Une ou plusieurs tendances générales (augmentation ou diminution progressive
 - sur le long terme),

 Des tendances locales, responsables de la variation locale de la valeur moyenne
 - Des tendances locales, responsables de la variation locale de la valeur moyenne des valeurs,
 Des cycles qui correspondents à des variations périodiques (cycle circadien, effet
 - saisonnier, lunaire ou des marées, ...)
 - Un bruit blanc représenté par une variation purement aléatoire (analogue aux résidus d'un modèle linéaire)
- Ces différentes composantes peuvent se combiner de deux façons différentes :
 - De manière additive (modèle additif)
 - De manière multiplicative (modèle multiplicatif issus d'un effet à caractère exponentiel)

Illustration

Présentation au tableau de la façon dont divers signaux peuvent se combiner.

Tendance générale

- La tendance générale s'exprime par, soit une **augmentation**, soit une **diminution** progressive dans le temps (sur le long terme) du signal étudié, à l'exclusion de signaux cycliques.
- Elle est généralement visible, mais est-elle significative ?
- Un test existe pour déterminer si une tendance générale de forme quelconque est significative: le test de tendance par bootstrap du coefficient de Spearman

Concept du test

Il doit exister une correlation significative entre les observations et le temps en présence d'une tendance. Mais comme les données **ne sont pas indépendantes** entre elles, on ne peut pas se référer à une distribution théorique. La distribution de référence est simulée en randomisant un grand nombre de fois les observations dans le temps (= technique du *bootstrap*).

Tendance locale

- La recherche de **tendances locales** vise à détecter les périodes dans le temps où les valeurs moyennes des observations changent
- La meilleure façon de détecter ces changement consiste à transformer le signal en sommes cumulées, et d'analyser le signal ainsi tranformé:

$$S_q = \sum_{i=1}^q x_i - q.r$$

ou:

- $\blacksquare q$ est le nombre d'observations déjà cumulées à l'observation actuelle x_i
- \blacksquare r est une constante de référence (généralement, la moyenne de toute la série)
- Les sommes cumulées forment alors une **ligne brisée**. Chaque segment représente une période de valeur moyenne constante donnée par la pente du segment additionnée de r.

Analyse spectrale

- Analyse de cycles: décomposition de la série en une série de signaux sinusoïdaux et cosinusoïdaux de fréquence différence. Détermination des composantes qui sont significatives.
- L'ensemble est représenté sur un graphique appelé **périodogramme**.
- Démonstration du concept à : https://go.sciviews.org/spectral
- Exemple sur nottem

