

d. El THD(%) de voltaje considerando estos armónicos

Figura 2: Voltaje de onda cuadrada de CA

F) 60HZ

- a) Voc mocesario fora
- b) wook ame de la fundi mestal
- c) whom RMS y to five, of LOS primoros 7 amon

FORMULAS

Oscilador de Relajación

$$Vp = \eta Vcc + 0.6$$
 $\operatorname{Re}_{MAX} = \frac{Vcc - Vp}{Ip}$ $\operatorname{Re}_{MIN} = \frac{Vcc - Vv}{Iv}$ $\dot{T} \approx \operatorname{Re} \cdot Ce$

Inversor de onda cuadrada

$$(\hat{V}_{Ao})_1 = \frac{4}{\pi} \frac{V_d}{2} = 1.273 \frac{V_d}{2}$$
 (para medio puente)

$$V_{s} = \left[V_{s1}^{2} + \sum_{h=2}^{\infty} V_{sh}^{2}\right]^{\frac{1}{2}}$$

$$(\hat{V}_{Ao})_{h} = \frac{(\hat{V}_{Ao})_{h}}{h}$$

$$\%THD = 100 \times \frac{V_{dis}}{V_{ex}}$$

$$(\hat{V}_{Ao})_{h} = \frac{(\hat{V}_{Ao})_{h}}{h} \qquad (V_{AO}) = \frac{4}{77} VO$$

$$\%THD = 100 \times \frac{V_{dis}}{V_{S1}} \qquad (VAb) = 17V.75$$

BUENA SUERTE

a)
$$(140) = \frac{4}{11} \times 10^{4} = 1.243 \times 10^{4}$$

 $140 = 1.273 \times 10^{4}$
 $14c = 109.97 \times 10^{4}$

(c)
$$(NAD)_{n} = \frac{(NAD)_{1}}{h}$$

 $(NAD)_{n} = \frac{(140)}{1} = 140 \text{ V}$
 $(NAB)_{n} = \frac{140}{3} = 46.6 \text{ V}$
 $(NAB)_{n} = \frac{140}{5} = 38 \text{ V}$
 $(NAA)_{1} = \frac{140}{7} = 30 \text{ V}$
 $(NAA)_{1} = \frac{140}{7} = 15.66 \text{ V}$
 $(NAB)_{n} = \frac{140}{13} = 10.76 \text{ V}$
 $(NAB)_{n} = \frac{140}{13} = 9.33 \text{ V}$
 $(NAB)_{n} = \frac{140}{16} = 9.33 \text{ V}$

conexión eléctrica, para una carga con los requerimientos mostrados. La altura entre la bomba y la superficie del terreno varía entre 18 y 21 metros. La altura entre la superficie y la toma del tanque de almacenamiento es de 40 metros incluyendo las pérdidas en la tubería.

Personas: 7

20 ptos

Ganado grande: 100

Animales pequeños: 45 de 75 libras cada uno

Aves: 1000

Arboles jóvenes: 30

Guía para Estimar los Requerimientos de Agua:
Personas: 45 galones por día.
Ganado grande: 8 galones por día en climas secos.
Animales pequeños: ¼ de galón por día por cada 25 lbs. de peso.
Aves: 8 galones por cien aves por día.
Arboles jóvenes: 10 galones por día en clima seco.

Arboles jóvenes: 10 galones por día en clima seco.

Características de la Bomba Sumergible A.Y. "McDonald" en Galones por Día (GPD) y Galones Máximos por Minuto (MGPM) Basados en un Día Solar Normal de 6KWH/ M. C.

	Lovantamiento Total Vertical en Metros (Pies)									
Caniidad de Módulos de 51 Vatios	45 . 110h	· 30m (987)	50m (164')	60m (1971)	70m (230').	90m (205") Pump Model No GPD/MGPM				
	15m (49")	Pump Model No. GPD/MGPM	Pump Model No. GPD/MGPM	Pump Model No.	Pump Model No.					
	Pump Model No. GPD/MGPM			аро/марм	GPD/MGPM					
8	180810DP 4224 / 10.0	1808150K 1599 / 4.1	1808250J 417 / 1.3	1808250J 189 / 0.4	0	0				
3Soris x 2Parelalo	180910DP 6302 / 13.1	160E15DK 2643 / 5.5.	180825DJ 837 / 2.0	1808250J 440 / 1.2	0	1808280.1 20871.1 1808250.1 71772.4 1808250.1 cg771.7				
3Seris x 3Paralelo 12 4Seris x 3Paralelo	18081002	180815DK 3545 / 0.0	180815DK 1731 / 4.5	1006260J 1167 / 3.1	1808250J 910 / 2.5					
	2474 / 10.6		1808150K	18091504	1808260J 1179 / 3.5					
15 ESeris x 3Peralelo	1608090M 9448 / 23.4	1008100P 5460 / 14.9	2329 / 6.9	1045/53	1					
4Seris x 4Paralelo	18080£DM 0507/21,8	100010DP 5786 / 12.3	180815DK 2632 / 5.9	1808250J 1725 / 3.9 ;	1008250J 1302 / 3.1					
	180800014	(808100P 8171 / 18.5	16G815DX 3678 / 4.8	1808150K 2977 / 7,4	18087NDJ 2232 / 6.0					
	12403 / 26.6	38081009	1808150K	1808750X 2786 / 5.2	1803 IEDK	10082504				
55 and a 5Puralelo	183000014	edu 1 / 20.1	. 1401/0.5	180815DK	1008150%	192815DK 2234 4.8				
50 5Seris x 6Paralelo	1508DBOM 35734 / 29.5	1808100P 10732 / 21.5	1806100P 8790 / 11.9	4380 / 8.8	3040/7.5	2234 4.8				

5. Se planea instalar un sistema fotovoltaico para la alimentación de las cargas motradas en la siguiente tabla. El sistema requiere de un mínimo de 3 días de autonomía. Determine:

a. La cantidad de módulos de 50W que deben utilizarse así como su disposición

b. La especificación del banco de baterías.

c. Cuántas baterías de 6V-100A-h se necesitan y como deben conectarse (no es necesario dibujarlas)

				Cargas de CC				
Cargas de CA Horas Vatios-h			Aparato	Consumo	Horas	Vatios-h		
Aparato	Consumo	Horas	2080	Luces	320	10	3200	
Televisor	320W	6h 30m	4000	Comunic	54W	2h 30m	135	
Radio	45W	2h 30m	11000	Commission				
Abanico	70W	8h	560					
Defriger	375kW-h	al año	1087	20 ptos				

Se utiliza una estructura de puente completo para generar un voltaje alterno de la siguiente figura. Los valores señalados pertenecen a la señal cuadrada, la cual tiene una frecuencia de 60Hz. Determine:

a. El voltaje DC necesario para generar esta señal

b. El valor rms de la fundamental

c. El valor rms y la frecuencia de los primeros 7 armónicos.