МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

Факультет вычислительной математики и кибернетики

Исследование торговых стратегий на основе синтетических облигаций

Выполнил: студент ВМК МГУ 211 группы Акрамов Роман Рустамович

> Научный руководитель: Гуров С.И.

Содержание ______1

Содержание

1	Введение	2
2	Анализ литературы	3
3	Методология	4
	3.1 Данные и признаки	4
	3.2 Целевая переменная	
	3.3 Модель и обучение	
4	Эксперимент	6
	4.1 Обучение модели и метрики	6
	4.2 Интерпретация коэффициентов модели	
	4.3 Симуляция торговли	
5	Графики и визуализация	8
	5.1 Временные ряды Bond	8
	5.2 Оценка порогового параметра θ	
6	Выводы	9

Введение 2

1. Введение

Финансовые рынки характеризуются сложностью, нелинейностью и стохастичностью. Для краткосрочной торговли критичны микроуровневые рыночные сигналы, отражённые в заявках (order book). В работе рассматривается построение синтетической облигации через соотношение фьючерсной и спот-цен, что позволяет получать арбитражные сигналы.

Пусть:

$$P^{fwd} = P^{spot} \left(1 + r \frac{t}{365} \right),$$

где P^{fwd} — фьючерсная цена, P^{spot} — спот-цена, r — годовая процентная ставка, t — число дней до экспирации.

С учетом микроизменений в стакане предлагается прогнозировать доходность синтетической облигации, определяемой как отклонение цены от тренда.

2. Анализ литературы

Классическая теория оценки производных инструментов (см. [1]) использует формулу:

 $P^{fwd} = P^{spot} \left(1 + r \frac{t}{365} \right),$

где P^{fwd} — фьючерсная цена, P^{spot} — спот-цена, r — годовая процентная ставка, t — время до экспирации. Однако при анализе высокочастотных данных (order book) возникают краткосрочные статистические закономерности, для моделирования которых требуются как математические подходы, так и современные вычислительные технологии.

Помимо методов традиционной теории, в исследовании используются инструменты машинного обучения для генерации торговых сигналов. Ключевой подход основан на прогнозировании будущих значений синтетической облигации с использованием линейной регрессии.

Технологический стек

Для реализации эксперимента выбран стек технологий на базе языка Python, что позволяет интегрировать обработку данных, обучение модели и визуализацию результатов в единой экосистеме. Основные компоненты стека:

- Python. Язык программирования для обработки данных, реализации алгоритмов машинного обучения и симуляции торговых стратегий.
- scikit-learn. Библиотека для машинного обучения, использованная для реализации простых моделей (например, LinearRegression) и расчёта регрессионных метрик (MAE, MSE, R^2).
- joblib. Инструмент для сериализации и сохранения обученных моделей, что обеспечивает повторяемость экспериментов.
- Pandas и NumPy. Библиотеки для структурирования данных, выполнения матричных вычислений и работы со временными рядами.
- Matplotlib. Основной инструмент для создания графиков и 3D-визуализации зависимости ключевых параметров (например, итогового баланса от параметров future_window и rolling_window).

Методология 4

3. Методология

В данном разделе описаны используемые данные, признаки и постановка целевой переменной, что позволяет построить модель прогнозирования синтетической облигации.

3.1. Данные и признаки

Анализируются высокочастотные данные стаканов с интервалом $\Delta t \approx 5$ сек. Каждая запись включает:

- Bpeменные метки: time, time_dt, server_timefutures, server_timestocks.
- Идентификаторы инструментов: тикеры futures и stocks.
- **Структуры стаканов:** данные по уровням **OFFER** и **BID** для фьючерсов и акций (до 3 уровней).
- **Качественные характеристики:** извлечённые значения цены и объёма для уровней $i=0,\,1,\,2,\,$ обозначаемые как price $_i$ и quantity $_i$ соответственно.

Синтетическая облигация определяется по следующим формулам:

$$\begin{split} & BondBUY = \left(\frac{Bid_{futures}}{Offer_{stocks}} - 1\right) \cdot 100, \\ & BondSELL = \left(\frac{Offer_{futures}}{Bid_{stocks}} - 1\right) \cdot 100. \end{split}$$

Для более детального анализа вводятся дополнительные признаки:

$$\begin{aligned} \text{Trend} &= \text{скользящее среднеe}, \\ \text{Momentum} &= \Delta(\text{Bond}) = \text{Bond}(t) - \text{Bond}(t-d), \\ \text{RollingSTD} &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\text{Bond}_i - \text{Trend}\right)^2}, \\ \text{DiffFromTrend} &= \text{Bond} - \text{Trend}, \\ \text{Volume} &= \min \left(q_{\text{fut}}, \, q_{\text{stock}}\right). \end{aligned}$$

Здесь:

- N количество наблюдений в окне;
- d шаг для расчёта изменения;
- \bullet $q_{
 m fut}$ и $q_{
 m stock}$ объёмы для фьючерса и акции соответственно.

Методология 5

3.2. Целевая переменная

Цель прогнозирования — определить значение синтетической облигации через n шагов. В регрессионной постановке целевые переменные задаются как:

$$target_sell(t) = BondSELL(t+n), target_buy(t) = BondBUY(t+n).$$

Также возможна бинарная классификация сигналов, при которой целевая переменная определяется следующим образом:

$${\rm class_label} = \begin{cases} 1, & {\rm ec}{\rm jn} \ {\rm BondSELL}(t+n) < {\rm TrendSELL}(t) - k \cdot {\rm комиссия}, \\ 0, & {\rm uhave}, \end{cases}$$

где k — гиперпараметр, задающий чувствительность модели с учетом издержек.

Таким образом, выбранная формулировка задачи обеспечивает математическую строгость при построении модели и позволяет интегрировать практические аспекты торговли (комиссии, задержки, ликвидность) в симуляцию стратегии.

3.3. Модель и обучение

В качестве базового алгоритма выбрана линейная регрессия (например, LinearRegression). Обоснование:

- 1. Интерпретируемость коэффициентов.
- 2. Отсутствие сильного переобучения при слабом сигнале.
- 3. Быстрое обучение и возможность интеграции в симуляцию.

Стратегия обучения:

- Разбиение данных по неделям (обучение первые 2–4 недели, тест оставшиеся).
- Обучение модели для направления SELL.
- Сохранение модели (например, joblib) для повторяемости экспериментов.

Эксперимент 6

4. Эксперимент

В данном разделе проводится оценка эффективности модели на тестовых данных и симуляция торговой стратегии с учётом практических ограничений.

4.1. Обучение модели и метрики

Модель обучалась на следующих признаках:

- BondSELL
- TrendSELL
- RollingSTD SELL
- DiffFromTrendSELL
- MomentumSELL
- VolumeSELL

при этом целевая переменная определяется как:

target
$$sell(t) = BondSELL(t + n)$$
.

Полученные показатели качества модели следующие:

$$MAE = 0.268$$
, $MSE = 0.098$, $R^2 = 0.912$.

Высокий коэффициент детерминации \mathbb{R}^2 свидетельствует об адекватном согласовании модели с тестовыми данными.

4.2. Интерпретация коэффициентов модели

Коэффициенты линейной регрессии, отсортированные по убыванию абсолютного значения, представлены в таблице:

Признак	Коэффициент
TrendSELL	+0.5126
BondSELL	+0.3716
RollingSTD_SELL	+0.3080
${\tt DiffFromTrendSELL}$	-0.1410
MomentumSELL	+0.0814
VolumeSELL	-0.0001

Положительные коэффициенты усиливают прогнозируемое значение целевой переменной, тогда как отрицательные уменьшают его. Например, значение -0.1410 для DiffFromTrendSELL указывает на наличие эффекта обратного отклонения от тренда (mean reversion).

Эксперимент 7

4.3. Симуляция торговли

Для генерации торговых сигналов используется регрессионный прогноз, переходящий в дискретное решение следующим образом:

$$\mathrm{Signal}(t) = \begin{cases} \mathrm{Oткрыть\ шорт}, & \mathrm{eсли\ BondBUY}(t) - \mathrm{PredSELL}(t) > \theta, \\ \mathrm{Her\ действий}, & \mathrm{иначе}, \end{cases}$$

где порог $\theta = 0.1$ подобран эмпирически.

Расчёт объёма входа:

$$volume = \min \left(\left\lfloor \frac{balance}{OFFER_S_P0} \right\rfloor, \ VolumeBUY \right).$$

Цена входа рассчитывается по формуле:

$$bond_buy_rub = \frac{BondBUY \cdot OFFER_S_P0}{100}.$$

Выход из позиции осуществляется через n шагов с учётом комиссий и исполнения по аналогичной схеме.

Итог симуляции (на тестовом наборе):

Количество сделок = 10,
$$\mbox{Итоговый баланс} = 103359.80 \mbox{ руб.}, \\ \Delta \mbox{баланс} = +3.36\%.$$

Таким образом, симуляция демонстрирует положительное изменение баланса, что свидетельствует о потенциале разработанной торговой стратегии.

5. Графики и визуализация

5.1. Временные ряды Bond

Построение графиков BondSELL(t) и TrendSELL(t) позволяет визуально оценить схождение к нулю.

5.2. Оценка порогового параметра θ

Анализ зависимости метрик стратегии (количество сделок, прибыль) от порога θ .

Выводы 9

6. Выводы

Построенная модель демонстрирует высокую интерпретируемость и адекватное согласование с данными. Линейная регрессия оказывается достаточно эффективной для прогнозирования краткосрочной динамики синтетической облигации, что подтверждается статистическими метриками и симуляцией торговли. Повышение математической строгости позволит в дальнейшем адаптировать модель для нелинейного прогнозирования, учитывая более сложные зависимости и внешние факторы.

Список литературы

- [1] Халл Дж. К. Опционы, фьючерсы и другие производные финансовые инструменты. М.: Вильямс, 2011.
- [2] Гудфеллоу И., Бенжио Й., Курвилл А. Глубокое обучение. М.: Диалектика, 2018.