

NOTACIÓN CIENTÍFICA

MATEMÁTICAS

Carlos Rojas Sánchez Licenciatura en Medicina Veterinaria y Zootecnia

Universidad del Mar

CONTENIDO

- 1. Introducción
- 2. Forma general
- 3. Ejemplos básicos
- 4. Reglas y normalización
- 5. Operaciones
- 6. Errores comunes
- 7. Ejercicios resueltos

Introducción

¿QUÉ ES LA NOTACIÓN CIENTÍFICA?

- Es una forma compacta de escribir números muy grandes o muy pequeños.
- Se basa en expresar un número como el producto de un coeficiente y una potencia de 10.
- Ventajas: claridad, facilidad para calcular órdenes de magnitud y manejo de cifras significativas.

FORMA GENERAL

FORMA GENERAL

Un número en notación científica tiene la forma:

$$N = a \times 10^n$$

donde:

- a es el **coeficiente** (o mantisa): $1 \le |a| < 10$.
- *n* es un entero (positivo, negativo o cero) que indica cuántas posiciones se movió la coma.

EJEMPLOS BÁSICOS

EJEMPLOS - NÚMEROS GRANDES Y PEQUEÑOS

- Número grande: $300\,000\,000 = 3.0 \times 10^8$ (movimos la coma 8 lugares a la izquierda).
- Número pequeño: $0.00042 = 4.2 \times 10^{-4}$ (movimos la coma 4 lugares a la derecha).
- · Cero: 0 no se expresa con potencia de 10; simplemente 0.

REGLAS Y NORMALIZACIÓN

REGLAS BÁSICAS

- 1. El coeficiente a debe cumplir $1 \le |a| < 10$. Si no, normalizar.
- 2. Si al multiplicar las mantisas el resultado no cumple la regla, ajustar la potencia de 10.
- 3. Exponentes positivos para números grandes, negativos para números pequeños.

OPERACIONES

MULTIPLICACIÓN Y DIVISIÓN

Multiplicación:

$$(a \times 10^m)(b \times 10^n) = (a \cdot b) \times 10^{m+n}$$

División:

$$\frac{a \times 10^m}{b \times 10^n} = \frac{a}{b} \times 10^{m-n}$$

Tras la operación, normalizar la mantisa si es necesario.

POTENCIAS

$$(a \times 10^m)^k = a^k \times 10^{m \cdot k}$$

Normalizar el coeficiente a^k si queda fuera del rango [1,10).

SUMA Y RESTA

Para sumar o restar, las potencias de 10 deben ser iguales:

$$A = a \times 10^n,$$

$$B = b \times 10^m$$

Si $n \neq m$, reescriba uno de los términos para tener el mismo exponente, luego sume las mantisas.

ERRORES COMUNES

CONSEJOS Y ERRORES COMUNES

- No olvidar normalizar la mantisa (por ejemplo, 10.0×10^8 debe ser 1.0×10^9).
- Al sumar, **no** sumar los exponentes; solo las mantisas cuando los exponentes son iguales.
- Tener cuidado con los signos (positivo/negativo) al mover la coma.

EJERCICIOS RESUELTOS

LISTA DE EJERCICIOS

- 1. Convertir a notación científica: 0.00042 y 300 000 000.
- 2. Multiplicar: $(2.5 \times 10^3)(4 \times 10^5)$.
- 3. Dividir: $\frac{6.2 \times 10^7}{2 \times 10^3}$.
- 4. Sumar: $3.2 \times 10^5 + 4.5 \times 10^4$.
- 5. Potencia: $(3 \times 10^2)^3$.
- 6. (Opcional) Operación con cifras significativas: $(4.56 \times 10^2)(1.4 \times 10^{-3})$.

EJERCICIO 1 - CONVERSIÓN (NÚMERO PEQUEÑO)

Convertir 0.00042 a notación científica (paso a paso):

- 1. Mover la coma hasta obtener un número entre 1 y 10: $0.00042 \rightarrow 4.2$.
- 2. Contar las posiciones que movimos la coma: 4 lugares hacia la derecha $\Rightarrow n = -4$.

EJERCICIO 1B - CONVERSIÓN (NÚMERO GRANDE)

Convertir 300 000 000 a notación científica:

- 1. Mover la coma: $300\,000\,000 \rightarrow 3.0$.
- 2. Se movió la coma 8 lugares hacia la izquierda $\Rightarrow n = 8$.
- 3. Resultado:

$$300\,000\,000 = 3.0 \times 10^8$$
.

EJERCICIO 2 - MULTIPLICACIÓN

Calcular
$$(2.5 \times 10^3)(4 \times 10^5)$$
 paso a paso:

$$(2.5 \times 10^3)(4 \times 10^5) = (2.5 \cdot 4) \times 10^{3+5}$$

= 10.0×10^8

Normalizar: $10.0 \times 10^8 = 1.0 \times 10^9$.

Resultado: 1.0×10^9 .

Ejercicio 3 - División

Calcular $\frac{6.2 \times 10^7}{2 \times 10^3}$ paso a paso:

$$\frac{6.2 \times 10^7}{2 \times 10^3} = \left(\frac{6.2}{2}\right) \times 10^{7-3}$$
$$= 3.1 \times 10^4.$$

Resultado: 3.1×10^4 .

EJERCICIO 4 - SUMA (ALINEAR EXPONENTES)

Calcular $3.2 \times 10^5 + 4.5 \times 10^4$ paso a paso:

$$3.2 \times 10^5 + 4.5 \times 10^4 = 3.2 \times 10^5 + 0.45 \times 10^5$$
 (reescribimos 4.5×10^5) = $(3.2 + 0.45) \times 10^5$ = 3.65×10^5 .

Resultado: 3.65×10^5 .

EJERCICIO 5 - POTENCIA

Calcular $(3 \times 10^2)^3$ paso a paso:

$$(3 \times 10^2)^3 = 3^3 \times 10^{2 \cdot 3}$$

= 27×10^6
Normalizar: $27 \times 10^6 = 2.7 \times 10^7$.

Resultado: 2.7×10^7 .

EJERCICIO 6 - CIFRAS SIGNIFICATIVAS

Multiplicar $(4.56 \times 10^2)(1.4 \times 10^{-3})$ y discutir cifras significativas:

$$(4.56 \times 10^{2})(1.4 \times 10^{-3}) = (4.56 \cdot 1.4) \times 10^{2-3}$$

= 6.384×10^{-1}
= 6.384×10^{-1} (normalizado)

Cifras significativas: el factor con menos cifras es 1.4 (2 cifras significativas), por lo que, según reglas de cifras significativas, el resultado se reporta con 2 cifras: 6.4×10^{-1} .

APLICACIONES

APLICACIONES COMUNES

- Física: velocidades (ej. $c \approx 3.0 \times 10^8 \,\mathrm{m/s}$).
- · Química: masas atómicas y constantes muy pequeñas.
- Astronomía: distancias entre astros (años luz, parsecs) y masa de estrellas.
- Informática: ordenes de magnitud en bytes (GB, TB), aunque se usan potencias de 2.

APLICACIONES EN VETERINARIA

APLICACIÓN 1: DOSIS DE MEDICAMENTOS

Muchos fármacos se dosifican en microgramos o nanogramos por kilogramo de peso animal.

Ejemplo

Una dosis de ivermectina puede ser de 2.0×10^{-6} g/kg.

APLICACIÓN 2: CONTEO DE BACTERIAS

En microbiología veterinaria, los conteos bacterianos alcanzan cifras enormes.

Ejemplo Una muestra de fluido ruminal puede contener 1.0×10^{11} bacterias por mL.

APLICACIÓN 3: CONCENTRACIONES EN LABORATORIO

Las concentraciones químicas suelen manejar valores muy pequeños.

Ejemplo

Glucosa en sangre: 5.5×10^{-3} mol/L.

APLICACIÓN 4: GENÉTICA Y BIOLOGÍA MOLECULAR

Los veterinarios trabajan con información genética expresada en notación científica.

Ejemplo

Genoma bovino: 3.0×10^9 pares de bases.

APLICACIÓN 5: PRODUCCIÓN Y EPIDEMIOLOGÍA

La zootecnia implica cifras grandes en producción y poblaciones animales.

Ejemplo

Úna granja produce 2.5×10^6 huevos al año.

EJERCICIOS APLICADOS

EJERCICIO 1: DOSIS DE MEDICAMENTO

Un perro de 25 kg necesita una dosis de 200 microgramos (200×10^{-6} g) por kg. Calcular la dosis total en gramos usando notación científica.

Solución $200 \times 10^{-6} \times 25 = 5.0 \times 10^{-3} \text{ g.}$

EJERCICIO 2: CONTEO BACTERIANO

Un cultivo crece hasta 3.2×10^8 bacterias/mL. Si se tienen 50 mL, ¿cuántas bacterias hay en total?

Solución

$$3.2 \times 10^8 \times 50 = 1.6 \times 10^{10}$$
 bacterias.

EJERCICIO 3: PRODUCCIÓN AVÍCOLA

Una granja produce 7.5×10^5 huevos al mes. ¿Cuántos produce en un año?

Solución

 $7.5 \times 10^5 \times 12 = 9.0 \times 10^6$ huevos.

EJERCICIO 4: GENÉTICA

Un genoma viral tiene 1.8×10^4 bases. Si se analizan 200 virus, ¿cuántas bases en total se estudian?

Solución

 $1.8 \times 10^4 \times 200 = 3.6 \times 10^6$ bases.

EJERCICIO 5: RADIOLOGÍA

La longitud de onda de un rayo X es 1.5×10^{-10} m. ¿Cuál es la longitud total de 100 millones de ondas?

Solución

$$1.5 \times 10^{-10} \times 1.0 \times 10^8 = 1.5 \times 10^{-2}$$
 m.