PROCESSAMENTO DE IMAGENS COLORIDAS

- □ A visão da cor
 - É a capacidade de um organismo ou máquina de distinguir objetos baseando-se nos comprimentos de onda (ou freqüências) da luz sendo refletida, emitida ou transmitida

- A visão da cor
 - A cor é um poderoso descritor de característica que simplifica a identificação e extração de objetos da cena;
 - Seres humanos podem distinguir milhares de tonalidades e intensidades (enquanto se restringe a dezenas de níveis de cinza)

- O processamento de imagens coloridas dividem-se em
 - full-color: adquiridas com sensores full-color
 - TV, scanner colorido;

 pseudocolor: atribuição de cores a imagens monocromáticas

- Como o ser humano interpreta a cor?
 - A cor é um fenômeno psicológico que ainda não está totalmente entendido
 - Apesar disto, a natureza física da cor pode ser expressa sobre uma base formal suportada por resultados teóricos e experimentais.
 - Em 1666, Isaac Newton descobriu que quando um feixe de luz do sol passa através de um prisma, a luz que sai não é branca mas sim formada pela faixa do espectro que vai do violeta ao vermelho.

- A cor que os seres humanos percebem no objeto são determinados pela natureza da luz refletida a partir do objeto
- A cor do objeto depende do comprimento de onda do espectro visível que predominantemente reflete da superfície do objeto;
 - Ex: objetos verdes refletem luz com comprimentos de onda entre 500 nm e 570 nm e absorve a maioria da energia nos outros comprimentos de onda.
 - Um corpo que reflete luz relativamente balanceada em todo o espectro visível aparece como branca ao observador.

Características da luz

- Luz acromática (sem cor)
 - Não tem componente de cor
 - Representa apenas a intensidade luminosa

- Luz cromática
 - Se estende pelo espectro de energia eletromagnética no intervalo aproximado de 400 a 700 nm (1 nm = 10⁻⁹ m).

Quantidades que descrevem a qualidade da luz

- Radiância
 - soma total de energia que é emitida da fonte luminosa (watts)
- Luminância
 - dá uma medida da soma de energia percebida por um observador a partir de uma fonte de luz (lumen)
- □ Brilho
 - descritor subjetivo praticamente impossível de medir
 - incorpora a noção monocromática de intensidade
 - é um fator importante na descrição da sensação de cor

- □ As cores primárias são:
 - Vermelho (red)
 - Verde (green)
 - Azul (blue)
- A partir destas cores pode se obter todas as outras cores.
 - Por quê estas cores foram escolhidas como cores primárias?

- Há células no nosso olho que são responsáveis pela sensação de cor;
 - Experimentos mostram que os 6 a 7 milhões de cones no olho humano podem ser divididos em três principais categorias de sensores:
 - Vermelho (65% de todos os cones são sensíveis ao vermelho)
 - Verde (33%)
 - Azul (2%)
 - Assumimos que a partir da combinação das cores primárias em proporções adequadas é possível gerar todas as outras cores

- A CIE (International Comission of Illumination) recomendou, em 1931, três comprimentos de onda para cada cor primária
 - R = 700,0 nm
 - G = 546,1 nm
 - \Box B = 435,8 nm
- Outros resultados foram obtidos experimentalmente:
 - R = 575 nm
 - G = 535 nm
 - B = 445 nm
- De acordo com os experimentos não há um comprimento de onda para R, G ou B, mas sim bandas de comprimentos de onda que dão a sensação de R, G e B

 Os intervalos de sensibilidade se sobrepõem para permitir a percepção de todo o espectro visível

- A curva abaixo representa uma média das três curvas de resposta espectral do olho humano.
 - Dbserva-se que a função assume valor máximo igual a 1 em $\lambda = 555$ nm
 - O olho humano é mais sensível para luz verde-amarelada.

- Processo aditivo
 - As cores primárias são somadas para produzir as cores secundárias de luz:
 - \blacksquare magenta = azul + vermelho,
 - ciano = verde + azul
 - amarelo = vermelho + verde

magenta, ciano e amarelo são cores secundárias da luz

- Modelo Subtrativo
 - Processo de pigmentação ou coloração
 - Partículas chamadas pigmentos absorvem ou subtraem uma cor primária da luz e reflete ou transmite as outras duas:
 - magenta = absorve o verde e reflete azul e vermelho
 - amarelo = absorve o azul e reflete verde e vermelho
 - ciano = absorve o vermelho e reflete azul e verde

Modelo Subtrativo

Daltonismo

- Qual número você vê?
 - correto: 74
 - □ daltônico: 21

- A cor formada em termos da quantidade de R, G e
 B é utilizada em dispositivos de entrada e saída:
 - scanner, monitor, câmeras de vídeo;

 Nós não percebemos a cor em termos da quantidade de R, G e B que cada cor possui;

- □ As características que percebemos são:
 - Brilho
 - Intensidade da luz
 - Tonalidade ou Matiz (Hue)
 - É o comprimento da onda dominante (cor dominante percebida pelo observador)
 - Saturação ou pureza
 - Corresponde à pureza relativa ou a quantidade de luz branca misturada à matiz;
- O espectro de cores puras são completamente saturados.
 - Cores como Rosa (vermelho e branco) e lilás (violeta e branco) são menos saturadas, com o grau de saturação sendo inversamente proporcional à quantidade de luz branca adicionada)

- Das características que percebemos
 - Saturação e matiz juntos dão a sensação da cor (cromaticidade).
 - Brilho indica a noção acromática de intensidade

- Portanto uma cor pode ser caracterizada por
 - seu brilho
 - sua cromaticidade

Tristimulus

- Definida pela tupla (X, Y, Z) que indica a quantidade de luz vermelha, verde e azul necessárias para formar uma determinada cor;
 - X representa a quantidade de vermelho
 - Y representa a quantidade de verde e
 - Z representa a quantidade de azul

uma cor é especificada por seus coeficientes de cromaticidade x, y e z definidos como:

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z}$$
sabendo que $x + y + z = 1$

- A cor pode ser especificada pelos seus coeficientes de cromaticidade, bem como pelo diagrama de cromaticidade
 - Para obter o valor de z (azul) para qualquer valor x e y bastar fazer z = 1 - (x+y)
 - Cores puras, que possuem saturação máxima, estão localizadas na fronteira do diagrama

- A cor branca é obtida quando as três cores primarias se misturam na mesma proporção
 - Cor branca de acordo comCIE
 - Saturação = 0

- Como usar o diagrama de cromaticidade?
 - Uma cor pode ser especificada pelo diagrama de cromaticidade determinando os coeficientes x, y e z
 - Exemplo: o ponto GREEN marcado no diagrama tem aproximadamente
 - x = 2.3 (23%),
 - y = 6.3 (63%)
 - z = 1.4 (14%)
 - Essas são as proporções de R, G, B para obter a cor GREEN
 - Útil para mistura de cores

Mistura de Cores

- Traçando uma linha reta entre duas cores do diagrama é possível definir todas as variações de cores que podem ser obtidas pela combinação aditiva destas duas cores.
 - A extensão para três cores é direta

- Aplicações para o diagrama de cromaticidade
 - Indica a proporção com que cada cor primária deve ser misturada para obter qualquer outra cor;
 - Definir gamutes de cores (ou intervalos de cores) para diferentes dispositivos.
 - Comparar gamutes de cor entre vários dispositivos de exibição (monitor, vídeo, impressora)

- Aplicações para o diagrama de cromaticidade
 - O gamute da impressora é menor que do gamute do vídeo
 - se quisermos uma reprodução exata da imagem de vídeo na impressora então o gamute de cores do vídeo deve ser reduzido.
 - Nota: os fabricantes de monitor informam as coordenadas de cromaticidade do monitor.

FIGURE 6.6 Typical color gamut of color monitors (triangle) and color printing devices (irregular region).