

BVRIT HYDERABAD

College of Engineering for Women

CATEGORICAL PREDICTION

Team No: 2

J.Roopa Sahithi , 20wh1a1266 T.Akhila, 20wh1a1267 G.Gayatri, 20wh1a1268 K.Padmini, 20wh1a1269 K.Geethika, 20wh1a1270

AGENDA

- Problem statement
- Python Packages used
- Types of Algorithms used
- Linear Regression
- MLP Regressor
- Random Forest
- Output and Graph
- Comparison table
- Execution

Problem Statement

- You will be predicting a continuous target based on a number of feature columns given in the data. All of the feature columns, cato - cat9 are categorical, and the feature columns conto cont13 are continuous.
- File Description:
 train.csv the training data with the target column
 test.csv the test set; you will be predicting the target for each
 row in this file
 sample submission.csv a sample submission file in the correct

format.

Python Packages Used

- numpy
- pandas
- matplotlib.pyplot
- seaborn
- train test split
- Linear Regression
- MLP Regressor
- Random Forest
- sklearn-LabelEncoder
- sklearn-Mean Squared Error
- sklearn-StandardScaler
- sklearn-r2 score

Types of Algorithms used

- Linear Regression
- MLP Regressor
- Random Forest

Linear Regression

Linear Regression

Linear regression is a statistical method used to establish the relationship between two variables

One variable is dependent which is predicted by another variable which is independent

$$y = a + bx$$

MLP Regressor

 MLP Regressor is a Neural Network Regressor
Neural network regression is a supervised learning method, and therefore requires a tagged dataset, which includes a label column. Because a regression model predicts a numerical value, the label column must be a numerical data type.

Random Forest

Random forest

Random forest - Random forest is a popular machine learning algorithm that belongs to the family of ensemble learning methods. It is used for both classification and regression tasks.

The random forest algorithm works by creating a large number of decision trees and combining their predictions to obtain the final result

	id	target
0	0	7.370002
1	5	7.941188
2	15	7.671145
3	16	7.485061
4	17	7.553097
5	19	7.538337
6	20	7.324230
7	21	8.013589
8	23	7.514670
9	29	7.237897

Output and Graph

	Model	RMSE	
1	Random Forest	0.321208	
2	MLP	0.852956	
0	Linear Regression	0.868892	

EXECUTION OF CODE

THANK YOU