Lösungen Aufgabenblatt Aussagenlogik - Mengenlehre 1

Nummer 1

1 a) -

- b)
 - c) –
- d) ¬ a = Paul ist nicht klug

2 a)b) a: Paul ist klug

- b: Michael ist klug
- c) a ∧ b
- d) ¬ a ∨ ¬ b : Paul oder Michael ist nicht klug

3 wie 1

4 wie 2

5 a)b) a: Felix ist faul

- b: Felix ist dumm
- c) a v b
- d) ¬ a ∧ ¬ b: Felix ist weder faul noch dumm

6 und 7 wie 1

8 a)b) a:... b:... c:... c) a v b v c

- d) $\neg (a \lor b \lor c) = \neg (a \lor b) \land \neg c = \neg a \land \neg b \land \neg c$: Er hat weder in Bern, Luzern noch Basel Verwandte

9 a)b) a:... b:... c:...

- c) a∧b∧c
- d) $\neg (a \land b \land c) = ... = \neg a \lor \neg b \lor \neg c$: Er hat keine Verw. in Bern oder

10 a)b) a:... b:... c:...

- c) $a \wedge (b \vee c)$
- d) $\neg (a \land (b \lor c)) = \neg a \lor (\neg b \land \neg c)$: Sie hat in Bern keine Verw. oder

11 a)b) a:... b:... c:... c) $a \lor (b \land c)$

- d) \neg (a \lor (b \land c)) = \neg a \land (\neg b \lor \neg c) : Sie hat in Bern keine Verw. oder

12 wie 1

- 13 a)b) a: Er fährt diesen Sommer in die Ferien
- c) $\neg a$ d) $\neg (\neg a) = a$

14 wie 4

15 a)b) a: Das Haus brannte

- b: Die Feuerwehr kam
- c) a ∧ ¬ b
- d) \neg (a $\land \neg$ b) = \neg a \lor b : Das Haus brannte nicht oder die Feuerwehr kam

16 a)b) a: Erika ist dumm b: Erika ist faul

- c) ¬a ∧ ¬b
- d) $\neg (\neg a \land \neg b) = a \lor b$: Erika ist faul oder dumm (vergleiche Aussage 5)

17 a)b) a: 7 ist Zweierpotenz

- b: 7 ist Fünferpotenz
- c) und d) wie 16

18 a)b) a: 0 ist positiv

- b: 0 ist negativ
- c) und d) wie 16

19 a)b) a: Inge ist klein

- b: Inge ist flink
- c) und d) wie 2

20 a)b) a: Er war krank

- b: Er kam in die Schule
- c) und d) wie 2

www.mathematik.ch, B.Berchtold

21 a)b) a: Es war heiss b: Wir unternahmen die Wanderung c) und d) wie 2

22 a)b) a: Ich gehe ins Kino b: Ich gehe ins Theater c) a $\underline{\vee}$ b d) \neg (a $\underline{\vee}$ b) = ... (mit Hilfe der Lösung von Aufgabe 2f) = (a \wedge b) \vee (\neg a \wedge \neg b)

Nummer 2 exemplarisch für 2f

а	b	a∧¬b	¬a∧b	$(a \land \neg b) \lor (\neg a \land b)$	a <u>∨</u> b
1	1	0	0	0	0
1	0	1	0	1	1
0	1	0	1	1	1
0	0	0	0	0	0