

Escuela Profesional de Ciencia de la Computación

ICC Fase 1

Bioinformatics

Introduction to Bioinformatics

MSc. Vicente Machaca Arceda

Universidad Nacional de San Agustín de Arequipa

April 12, 2021

Overview

Introduction

- Objectives
- Motivation
- What is Bioinformatics?

- Introduction
 - Objectives
 - Motivation
 - What is Bioinformatics?

Objectives

 Understand what is Bioinformatics, Computer Biology and Computation Molecular Biology.

Objectives

- Understand what is Bioinformatics, Computer Biology and Computation Molecular Biology.
- Learn the areas of research in Bioinformatics.

What microorganism live in our armpits or in our mouths?

Figure: What microorganism live in our armpits or in our mouths?

Is there a kindness gene?

Figure: Is there a kindness gene?

Why a person has cancer?

Figure: Why a person has cancer?

Why some medicines no work in some persons?

Figure: Why some medicines no work in some persons?

Treatment Development

Figure: Personalized Medicine: New Approach to Treatment of Disease

Introduction

What is Bioinformatics?

According to Luscombe et al.: Bioinformatics involves the technology that uses computers for storage, retrieval, manipulation, and distribution of information related to biological macromolecules such as DNA, RNA, and proteins [1].

Introduction

Bioinformatics vs Computational Biology

Bioinformatics is limited to sequence, structural, and functional analysis of genes and genomes and their corresponding products and is often considered **Computational molecular biology**. However, **Computational Biology** encompasses all biological areas that involve computation [2].

Introduction

Genomics

Genomics is the study of whole genomes of organisms. Genomics uses a combination of recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyse the structure and function of genomes. It differs from classical **Genetics** in that it study genes and their heredity meanwhile Genomics study the whole genome [3].

Areas Bioinformaics can help with

Microbiome study the genetic material of microbes, bacteria, fungi, etc.

Areas Bioinformaics can help with

Personalized medicine has the potential to tailor therapy with the best response and highest safety margin to ensure better patient care.

Areas Bioinformaics can help with

Drug descovery is the process through which potential new medicines are identified.

Areas Bioinformaics can help with

Crop improvement help to produce stronger, more drought, disease and insect resistant crops.

Areas Bioinformaics can help with

Biomarkers & oncology could be used as screening/early detection tool of cancer diagnostic and prognostic.

Areas Bioinformaics can help with

Gene therapy is an experimental technique that uses genes to treat or prevent disease. In the future, this technique could insert a gene into a patient's cells instead of using drugs or surgery.

References I

N. M. Luscombe, D. Greenbaum, and M. Gerstein, "What is bioinformatics? a proposed definition and overview of the field," *Methods of information in medicine*, vol. 40, no. 04, pp. 346–358, 2001.

J. Xiong, *Essential bioinformatics*. Cambridge University Press, 2006.

J. M. Archibald, *Genomics: A Very Short Introduction*. Oxford University Press, 2018, vol. 559.