

Deep Learning for Symbolic Math

Data Science Retreat Batch 21
Wenjuan Yang

What is Symbolic Math?

Simple example:
$$\int x dx = \frac{x^2}{2}$$

• Complex example:
$$\int (x^2(\tan(x)^2 + 1) + 2x \tan(x) + 1) dx = x^2 \tan(x) + x$$

More complex example:

$$\int \frac{16x^3 - 42x^2 + 2x}{(-16x^8 + 112x^7 - 204x^6 + 28x^5 - x^4 + 1)^{1/2}} dx = \sin^{-1}(4x^4 - 14x^3 + x^2)$$

Can Deep Learning Learn Math?

Symbolic Math

Language vs Math

• Statistic learning vs Rule-based Inference

Can Deep Learning Learn Math?

Symbolic Math

• Difference

Language: Statistic way of learning

Math: Rule base inference

Similarity

Pattern recogination

Background

Symbolic Math

DEEP LEARNING FOR SYMBOLIC MATHEMATICS

Guillaume Lample* Facebook AI Research glample@fb.com

François Charton* Facebook AI Research fcharton@fb.com

ABSTRACT

Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.

Facebook GitHub: https://github.com/facebookresearch/SymbolicMathematics

Code released on Mar 15

Outline

- 1. Data Generation
- 2. Transformer Model
- 3. Results
- 4. Outlook

Outline

1. Data Generation

- 2. Transformer Model
- 3. Results
- 4. Outlook

How to Generate Data?

6 STEPS

Random Tree

Random Tree -> Prefix

Prefix -Infix & Clean Data

$$+ Exp 2 \times x + x + 2 3 \longrightarrow Exp(2) + x \times (x + 2 + 3)$$

$$\infty$$
 $-\infty$ i

Simplify

$$Exp(2) + x \times (x + 2 + 3) \longrightarrow Exp(2) + x \times (x + 5)$$
 Infix

$$Exp(2) + x \times (x + 5) \rightarrow + Exp 2 \times x + x 5$$
 Prefix

Output

Differentiate

$$Exp(2) + x × (x +5) \longrightarrow 2 × x + 5$$

Infix -> Prefix

$$2 \times x + 5 \longrightarrow + \times 2 \times 5$$

Generate Answer before Question

Features(X)

 $+ \times 2 \times 5$

Input

Target(Y)

 $+ Exp2 \times x + x5$

Output

Parallel Data Generation

Two ways to generate data:

Multiprocess thread pool

```
from multiprocessing.pool import ThreadPool
_FINISH = False
start = time.time()
with ThreadPool(processes=14) as p:
    out = []
    r = p.map_async(generate_bwd,
[sequences_per_process]*process_runs, callback=out.append)
    r.wait()
    time.sleep(10)
    _FINISH = True    p.terminate()
```

Ray

```
ray.init(num_cpus=cpu)
dataset = []
for _ in range(process_runs*cpu):
    try:
    out = ray_generate_bwd.remote(sequences_per_process)
    out = ray.get(out, timeout=sequences_per_process)
    dataset.extend(out)
```


Outline

1. Data Generation

2. Transformer Model

3. Results

4. Outlook

Figure from Vaswani, Ashish, et al. "Attention is all you need." (2017)

Figure from Jay Alammar http://jalammar.github.io/illustrated-transformer/

Figure from Jay Alammar http://jalammar.github.io/illustrated-transformer/

Hyperparameters

sequence_length = 512 num_layers = 6

num_heads = 8 dropout_rate = 0.1

optimizer = Adam learning_rate = CustomSchedule

loss, accuracy = CustomSchedule

Outline

- 1. Data Generation
- 2. Transformer Model
- 3. Results
- 4. Outlook

Paper Results

Training set size = 40M, Test set size = 5000

Compare with commercial software

	Integration (BWD)
Mathematica (30s) Matlab Maple	$84.0 \\ 65.2 \\ 67.4$
Beam size 1 Beam size 10 Beam size 50	98.4 99.6 99.6

Ref: Lample, Guillaume, and François Charton. "Deep learning for symbolic mathematics."

Results - Stage 1

Training set size = 64

Results-Stage 2

Training set size=100,000, Validation set size=9263

Results - Stage 2

Training set size=100,000, Validation set size=9263

Outline

- 1. Data Generation
- 2. Transformer Model
- 3. Results
- 4. Outlook

Outlook

- Generate more data and use more GPUs to train the model
- Compare performance of different dataset size
- Give a lower limit of dataset size
- Generalize to complex number

Reference

- 1. Lample, Guillaume, and François Charton. "Deep learning for symbolic mathematics." *arXiv preprint arXiv:1912.01412* (2019).
- 2. Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.
- Lample, Guillaume, and François Charton. "Deep learning for symbolic mathematics." Spotlight, Lunch&Learn, Author Speaking. https://aisc.ai.science/events/2020-02-18/
- 4. Jay Alammar "The Illustrated Transformer." http://jalammar.github.io/illustrated-transformer/

Acknowledgement

Thank you

Email: yangwj2011@gmail.com

Github: https://github.com/janeyoung2018/symbolic-math

LinkedIn: https://www.linkedin.com/in/wenjuan-yang-3664405a/