This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

(11) International Publication Number:

WO 90/00897

A61K 31/53, 31/52, 31/41

A1

(43) International Publication Date:

8 February 1990 (08.02.90)

(21) International Application Number:

PCT/US89/03246

(22) International Filing Date:

27 July 1989 (27.07.89)

(30) Priority data:

224,679 224,680 27 July 1988 (27.07.88) 27 July 1988 (27.07.88)

3) US 3) US

(71) Applicants: UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL [US/US]; Chapel Hill, NC 27514 (US). NORTH CAROLINA CENTRAL UNIVERSITY [US/US]; 1801 Fayetteville Street, Durham, NC 27707 (US).

(72) Inventors: IZYDORE, Robert, A.; 2602 Oberlin Drive, Durham, NC 27705 (US). HALL, Iris, H.; 328 Azalea Drive, Chapel Hill, NC 27514 (US).

(74) Agents: SCOTT, Watson, T. et al.; Cushman, Darby & Cushman, Eleventh Floor, 1615 L Street, N.W., Washington, DC 20036-5601 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), NO, SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD FOR THE CONTROL OF HYPERLIPIDEMIA

$$\begin{array}{c|c}
0 & \parallel \\
\mathbb{C} & \mathbb{R}^2
\end{array}$$

(a)

(b)

$$-N = R^{\frac{12}{2}} - R^{\frac{12}{2}}$$

(57) Abstract

The invention provides pharmaceutical compositions comprising hypolipidemically active derivatives of 1,2,4-triazolidin -3.5-diones, 1.3.5-triazabicyclo[3.1.0]hexane-2,4-diones, and 1,3,5-triazine-2,4(1H,3H)-diones in a pharmaceutically acceptable carrier for treating hyperlipidemia in mammals, particularly humans. The present invention is also directed to a method of controlling hyperlipidemia in mammals which comprises administering to a mammal an amount effective to control hyperlipidemia of a compound having hypolipidemic activity and structural formula (I), wherein R1 is hydrogen, a C1 to C18 alkyl or substituted alkyl, a C2 to C18 alkenyl or substituted alkenyl, a C2 to C18 alkynyl or substituted alkynyl, a C4 to C10 cycloalkyl or substituted cycloalkyl, a C4 to C10 cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R9 or -Y-CO-R9; R2 is (a), (b), (c), R3 and R4 can be the same or different and are each the same as R1; R5, R6 and R7 can be the same r different and are each hydrogen, a C1 to C18 alkyl or substituted alkyl, a C2 to C18 alkenyl or substituted alkenyl, a C1 to C18 alkynyl r substituted alkynyl, a C4 to C10 cycloalkyl or substituted cycloalkyl, a C4 to C10 cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R9, or -Y-CO-R9, with the proviso that R5 and R6 together cannot be so bulky as to cause the compound to decompose; R8 is hydrogen, a C1 to C5 alkyl, a C4 to C10 cycl alkyl, -CO-R9, or -Y-CO-R9; R9 is hydrogen, a C1 to C5 alkyl or substituted alkyl, a C2 to C5 alkenyl or substituted alkenyl, a C2 to C5 alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C1 to C5 alkoxy or v substituted alkoxy, a C₄ to C₁₀ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₀ cycloalkenyl or substituted cycloalkenyl, -NHC₆C₅, -NR¹⁰R¹¹ wherein R¹⁰ and R¹¹ can be the same or different and are each hydrogen, a C₁ to C₅ alkyl or substituted alkyl, phenyl or substituted phenyl; Y is a C1 to C10 alkylene or substituted alkylen; R12 is -CO, -COH, -CS, -CSH, or a C1 to C4 alkylene group; and the pharmaceutically acceptable salts, and mixtures thereof.

AN4

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					\$
AT	Austria	ES	Spain	MG	: Madagascar
ΑÜ	Australia	श	Finland	ML	Mali
88	Barbados	FR	Prince	MR	Mauritania
BE	Belgium	GA	Gabon	WW	Malawi
BP	Burkina Ferro	GB	United Kingdom	NI.	Netherlands
BG	Bulgaria	BU	Hungary	NO	Norway
R.F	Benin	ī	italy		Romania
BR	Brazil	IP	lapan	.30	
CA	Camada	KР	Democratic People's Republic	E SN	Sudan
Œ	Central African Republic	A.F	of Korea	حي.	Sweden
					Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	Ц	Liechtenstein	TD	Chad
CM	Cameroon	LE	Sri Lanka	TG	Togo
DE	Germany, Federal Republic of	ш	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		· ·

1

METHOD FOR THE CONTROL OF HYPERLIPIDEMIA

Field of the Invention

5

10

15

20

25

The present invention relates to compositions having hypolipidemic activity and methods for their use in controlling hyperlipidemia in mammals. Specifically, the present invention is directed to methods for controlling hyperlipidemia by treating mammals, especially humans, with a class of hypolipidemic agents selected from 1,2,4-triazolidine-3,5-diones, 1,3,5-triazabicyclo[3.1.0]hexane-2,4-diones and 1,3,5-triazine-2,4(1H,3H)-diones.

Background of the Invention

Cholesterol is commonly found in all the tissues and blood of mammals, especially humans. Manufactured in the liver and other cells as a substrate for other steroids and membrane synthesis; cholesterol is a normal constituent of bile. As will be appreciated, many familiar foods contain cholesterol, with some containing more than others. Maintaining proper levels of cholesterol in the body has become an important factor in todays diet, since medical science has proven that certain afflictions such as hypothyroidism, diabetes and the intake of foods having a high cholesterol content may result in high levels of cholesterol in the blood.

A condition which is associated with elevated levels of cholesterol, phospholipids, and/or triglycerides in the blood serum of mammals is commonly referred to as hyperlipidemia (i.e. as used herein, reference to hyperlipidemia is intended

to be inclusive of both hypercholesterolemia and hypertriglyceremia, and hence, compounds having a hypolipidemic effect will exhibit activity to lower both cholesterol and triglyceride lipid levels). Hyperlipidemia can lead to serious health problems 5 such as arthereosclerosis. We know that serum lipoprotein in mammals is composed of cholesterol together with triglyceride, phospholipid and apoproteins. Lipoprotein is composed of several fractions-the very low density lipoprotein (VLDL), the low density lipoprotein (LDL) and the high density lipoprotein (HDL) depending on the specific gravity of the apoprotein components of the fraction. Medical evidence points to the VLDL and LDL fractions as being associated with 15 atherosclerosis. In contrast, the HDL fraction appears to carry cholesterol from the blood vessels to the liver where it is processed and excreted in the bile. As hyperlipidemic states increase in atherosclerosis the LDL cholesterol increases and 20 HDL decreases. Effective hypolipidemic agents need to reverse this ratio since clinical data indicate that high HDL cholesterol and low LDL cholesterol protects man from myocardial infarctions. is highly desirable to treat mammals afflicted with 25 hyperlipidemia so as to lower VLDL and LDL fractions and increase the HDL fractions.

It is not surprising to find that a number of compounds have been proposed for the treatment of hyperlipidemia in mammals. Examples include U.S. Patent No. 4,499,303 which describes the use of a novel class of N-benzoylsulfamates and benzoylsulfonamides as useful hypolipidemic agents. U.S. Patent No. 4,395,417 proposes the use of cyclic imides, diones, reduced diones and analogs as useful agents. Orotic acid has been shown to decrease the plasma lipids blood level in rats.

5

10

15

20

25

30

U.S. Patent No. 4,639,444 describes 3,5-dialkyl-4,6-diaryltetrahydro-2H-1,3,5-thiadiazine-2-thione derivatives as useful hypolipidemic agents.

U.S. Patent No. 4,681,893 teaches that certain trans-6-[2-(3- or 4-carboxamido-substituted pyrrol-1-yl)alkyl]-4-hydroxypyran-2-ones and their ring opened acids are potent hypolipidemic agents.

Likewise, U.S. Patent No. 4,351,844 describes hypocholesterolaemic lactone compounds and their free acids which are derived from the natural fermentation product mevinolin. More recently, the control of hyperlipidemia through the use of a class of 4-pyrimidinecarboxylic acids has been described by Hall et al., J. Pharm. Sci, 74, 759 (1985).

In spite of the numerous compounds and methods which have been proposed for the control of hyperlipidemia, the need remains for drugs having enhanced lowering of elevated serum lipoprotein lipids.

Accordingly, it is the object of the present invention to provide a class of hypolipidemic compounds having enhanced capability in lowering LDL cholesterol and elevating HDL cholesterol. This and other objects of the present

0

Δ

invention will be more apparent from the discussion which follows.

Summary of the Invention

The present invention provides a method of controlling hyperlipidemia in mammals which comprises administering to a mammal an amount effective to control hyperlipidemia of a compound having hypolipidemic activity and the structural formula:

$$\mathbb{R}^{1} - \mathbb{N} = \mathbb{R}^{2}$$
(1)

15

20

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R' or -Y-CO-R';

R² is

25

30

R' and R' can be the same or different and are each the same as R';

 $-R^5$, R^6 and R^7 can be the same or different and are each hydrogen, a C, to C_{18} alkyl or substituted alkyl, a C, to C_{18} alkenyl or substituted

5

alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R, or -Y-CO-R,

with the proviso that R' and R' together cannot be so bulky as to cause the compound to decompose;

5

10

15

20

25

30

 R^{4} is hydrogen, a C, to C, alkyl, a C, to C_{10} cycloalkyl, $-CO-R^{4}$, or $-Y-CO-R^{4}$;

R° is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, -NHC,C, -NR'R' wherein R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl; and

Y is a C, to C_{10} alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

In addition, the present invention provides for pharmaceutical compositions for use in controlling hyperlipidemia in mammals which comprises a hypolipidemically effective amount of a compound having hypolipidemic activity and a structural formula (I) or a pharmaceutically acceptable salt thereof as shown above in combination with a pharmaceutically acceptable carrier.

10

15

As referred to herein, "hypolipidemic activity" is intended to refer to the ability of the compounds of formula (I) to lower levels of serum cholesterol and/or triglycerides in mammals to which the compound is administered.

Many of the above-described compounds which may be used as hypolipidemic agents are new, and hence, as a further embodiment of the present invention there is provided a novel class of compounds having hypolipidemic activity and the structural formula:

$$\begin{array}{c|c}
R'-N & & \\
\hline
N-R' \\
\hline
O & & \\
\end{array}$$
(II)

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R' or -Y-CO-R';

 R^3 and R^4 may be the same or different and are each the same as R^4 ;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted_alkoxy, a

7

C, to C₁₀ cycloalkyl or substituted cycloalkyl, a C, to C₁₀ cycloalkenyl or substituted cycloalkenyl, -NHC₆C₅, -NR¹⁰R'' wherein R'O And R'' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl, and

5

10

15

30

Y is a C, to C, alkylene or substituted alkylene; provided that R' and R' are not both hydrogen and further provided that neither R' nor R' is hydrogen when R' is phenyl.

A second class of novel hypolipidemic agents according to this invention have the structural formula:

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R' or -Y-CO-R';

R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R', or -Y-CO-R',

15

20

25

with the proviso that R⁵ and R⁶ together cannot be so bulky as to cause the compound to decompose;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted 5 alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C10 cycloalkenyl or substituted cycloalkenyl, -NHC,C,, -NR'0R' wherein R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl; and

> Y is a C, to C, alkylene or substituted alkylene; and the pharmaceutically acceptable salts thereof, and mixtures thereof;

provided that R' is not phenyl or chlorophenyl when R' is hydrogen, R' is -CO-R', and R' is ethoxy or when R6 is hydrogen, RR5 is -CO-R9, and R' is ethoxy; and further provided that R' is not phenyl when RR' is hydrogen, R' is -CO-R', and R' is methoxy or when R° is hydrogen, R' is -CO-R', and R° is methoxy.

A third class of novel hypolipidemic agents according to this invention have the structural formula:

$$R^{1} - N = C - R^{12}R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

9

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R' or -Y-CO-R';

5

10

20

25

30

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R°, or -Y-CO-R°,

R8 is hydrogen, a C, to C, alkyl, a C, to C, cycloalkyl, -CO-R°, or -Y-CO-R°;

R° is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkynyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, -NHC,C, -NR¹⁰R¹¹ wherein R¹⁰ and R¹¹ can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl -OH; R¹² is -CO, -COH, -CS, -CSH, or a C, to C, alkylene group; and

Y is a C, to C_{10} alkylene or substituted alkylene;

with the proviso that when R' is hydrogen and R' is ethoxy, R' is not phenyl, chlorophenyl, methoxyphenyl, or n-butyl.

15

20

Pharmaceutically acceptable salts and mixtures of the above-described compounds are expected to have similar activity.

5 <u>Detailed Description of the Invention</u>

We have found that the above-described compounds of formulas (I) through (IV) effectively lower serum lipids in mammals. The term mammals as used herein is intended in its normal sense, and hence is inclusive of not only mice, rats, dogs, cats, horses, pigs, sheep, cows and other animals, but humans as well. Through the use of the hypolipidemic agents of the present invention, we observed the inhibition of activity of the rate limiting enzyme of cholesterol synthesis (HMG CoA reductase) as well as the lowering of the acyl CoA cholesterol acyl transferase (cholesterol ester), acetyl CoA carboxylase (fatty acid), sn glycerol-3phosphate acyl transferase and phosphatidylate phosphohydrolase (triglyceride) and heparin induced lipoprotein lipase (release of triglycerides for apoproteins).

The hypolipidemic agents of the present invention afford reduction in both serum cholesterol and triglycerides and can be used in lower dosage amounts than commercially available agents such as nicotinic acid derivatives, clofibrate, cholestyramine and cholesripol. Through the use of the agents of the present invention we have observed significant increases in HDL-cholesterol and reduced levels of LDL cholesterol with an acceleration of lipid excretion via the feces with clearance of lipids from the blood compartment and tissues, e.g. the aorta wall.

As used herein, the terms "alkyl", "alkenyl", "cycloalkenyl", "cycloalkyl" and "alkoxy" refer to carbon containing substituents that may be straight chain or branched. The terms "substituted alkyl", "substituted alkenyl", "substitutedalkenyl" substituted cycloalkyl", "substituted cycloalkenyl" and "substituted alcoxy" include alkyl, cycloalkyl, alkenyl, cycloalkenyl alkynyl and alkoxy substituted with at least one common functional substituent selected from but not limited to the group consisting of alkoxy, oxo, alkoxy carbonyl, halogen, nitro, aryl, carbamoyl, amino, amido, acyloxy, hydroxy, carboxy, alkylthio, sulfoxide, sulfone, thiol, sulfonyl, sulfano, phosphono and silyl. Thus, examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, and n-pentyl. Examples of alkoxy groups include methoxy and ethoxy. Exemplary of suitable cycloalkyl groups are cyclobutyl, cyclopentyl or cyclohexyl.

5

IO

15

20

25

30

The terms "substituted phenyl" and "substituted phenoxy" refer to the presence on the aromatic ring of at least one common functional substituent selected from but not limited to the group of C, to C, alkyl, substituted C, to C, alkyl, C, to C, alkoxy, benzoyl, alkanoyl, alkoxy carbonyl, halogen, nitro, carbamoyl, amino, amido, acyloxy, hydroxy, carboxy, alkylthio, sulfoxide, sulfone, thiol, sulfonyl, sulfano, phosphono and silyl.

Halogen groups may be selected from bromine, chlorine, fluorine and iodine, and preferably from chlorine and bromine.

Our invention provides a method for treating hypolipidemia in mammals by administering a hypolipidemically effective amount of a compound of

9

formula (I). Examples of compounds of formula (I) wherein R^2 is (a) are those wherein R^1 is selected from the group consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group . 5 has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; and R' may be the same or different and are each selected from the group consisting of hydrogen, alkylcarbonyl wherein the alkyl group has from 1 to 5 carbon atoms, 10 alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, and N-phenylcarbamoyl. compounds of formula (I) wherein R2 is (a) include 4phenyl-1-methylcarbonyl-1,2,4-triazolidine-3,5dione, 4-phenyl-1,2-dimethylcarbonyl-1,2,4-15 triazolidine-3,5-dione, 4-phenyl-1-Nphenylcarbamoyl-1,2,4-triazolidine-3,5-dione, 4phenyl-1-ethoxycarbonyl-1,2,4-triazolidine-3,5dione, 4-(4-chlorophenyl)-1-methylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1,2,4-20 triazolidine-3,5-dione, 4-n-butyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1,2,4triazolidine-3,5-dione, 4-(4-chlorophenyl)-1,2,4triazolidine-3,5-dione, 4-methyl-1,2,4-triazolidine-3,5-dione, 4-phenyl-1,2,4-triazolidine-3,5-dione, 4-25 (4-methoxyphenyl)-1,2-dimethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl-1,2-di-npentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4methoxyphenyl)-1,2-diethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1,2-. 30 diethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-nbutyl-1,2-di-n-pentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1,2-qimethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-

methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4chlorophenyl) -1-phenylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-n-propylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1n-pentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-5 chlorophenyl) -1-n-butylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-ethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4methoxyphenyl)-1-benzoyl-1,2,4-triazolidine-3,5-10 dione, 4-(4-methoxyphenyl)-1-n-propylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-npentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4methoxyphenyl)-1-n-butylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-ethylcarbonyl-15 1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1trichloromethylcarbonyl-1,2,4-triazolidine-3,5dione, 4-(4-nitrophenyl)-1-methylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-benzoyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-n-20 propylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4nitrophenyl)-1-n-pentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-n-butylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-25 ethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4nitrophenyl)-1-trichloromethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-n-butyl-1-benzoyl-1,2,4triazolidine-3,5-dione, 4-n-butyl-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-n-butyl-1-npropylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-n-30 butyl-1-n-pentylcarbonyl-1,2,4-triazolidine-3,5dione, 4-n-butyl-1-n-butylcarbonyl-1,2,4triazolidine-3,5-dione, 4-n-butyl-1-ethylcarbonyl-1,2,4-triazolidine-3,5-dione, and 4-n-butyl-1-

trichloromethylcarbonyl-1,2,4-triazolidine-3,5dione, 4-phenyl-1-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione 4-(4-chlorophenyl)-1-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione 4-(4-methoxyphenyl)-1-(3,4,5-trimethoxybenzoyl)-1,2,4-5 triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, $4-\underline{n}$ butyl-1-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione, 4-phenyl-1,2-bis-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, 4-IO (4-chlorophenyl-1,2-bis-(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1,2-<u>bis</u>-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione, 4-(4-nitroxyphenyl)-1,2-bis-(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5-15 dione, 4-n-butyl-1,2-bis-(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, and pharmaceutically acceptable salts and mixtures thereof.

Compounds of formula (I) wherein R^2 is (b) include those wherein R' is selected from the group 20 consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; and R^5 and R^6 are 25 the same or different and are each selected from the group consisting of hydrogen, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, alkylcarbonyl wherein the alkyl group has from 1 to 5 carbon atoms, phenoxycarbonyl, carbamoyl and 30 substituted carbamoyl. It is appreciated that, if R' and R6 are too bulky, such as in the case when both are aromatic, the compound wherein R2 is (b) may

10

20

25

30

decompose. Thus those compounds are intended to be excluded from the invention.

Exemplary of compounds of formula (I) wherein R² is (b) are 3-(4-chlorophenyl)-6ethoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4dione, 3-phenyl-6-ethoxycarbonyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione, 3-(4methoxyphenyl)-6-ethoxycarbonyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione, 4-n-butyl-6ethoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4dione, 3-phenyl-6-methoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione and pharmaceutically acceptable salts and mixtures thereof.

Compounds of formula (I) wherein R' is (c) include those wherein R' is selected from the group 15 consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; R' is an alkoxy having from 1 to 5 carbon atoms or phenoxy; and R' is hydrogen or a C, to C, alkyland R12 is -CO. Exemplary of the compounds of formula (I) wherein R2 is (c) are 3-phenyl-6-ethoxycarbonyl-1,3,5-triazine-2,4($1\underline{H}$,3 \underline{H})dione; 3-(4-chlorophenyl)-6-ethoxycarbonyl-1,3,5triazine-2,4(1H,3H)-dione; and pharmaceutically acceptable salts and mixtures thereof.

According to a further aspect, our invention provides novel compounds of formula (II) as defined above with the proviso that provided that both R' and R' are not hydrogen and that R' is not phenyl when either R' and R' is hydrogen and further provided that R' is not -NHC,H, when R' is phenyl. Our invention further provides novel compounds of

15

20

formula (III) as defined above provided that R' is not phenyl or chlorophenyl when R' is hydrogen, R' is -CO-R', and R' is ethoxy or when R' is hydrogen, RR' is -CO-R', and R' is ethoxy; and further provided that R' is not phenyl when RR' is hydrogen, R' is -CO-R', and R' is methoxy or when R' is hydrogen, R' is -CO-R', and R' is methoxy. Novel compounds of formula (IV) as defined above are also provided with the provio that when R' is hydrogen and R' is ethoxy, R' is not chlorophenyl, methoxyphenyl, or n-butyl.

Included compounds from within the class defined by formula (II) are those wherein R' is selected from the group consisting of halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, and nitrophenyl; and R' and R' are each selected from the group consisting of hydrogen, alkylcarbonyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, and a carbamoyl or substituted carbamoyl with the proviso that both R' and R' are not both hydrogen.

Exemplary of novel hypolipidemic compounds of formula (II) are 4-phenyl-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-phenyl-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1,2-diethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1,2-diethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-n-butyl-1,2-di-n-pentylcarbonyl-1,2,4-triazolidine-3

WO 90/00897

3,5-dione, 4-(4-chlorophenyl)-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl)-1methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4chlorophenyl)-1-benzoyl-1,2,4-triazolidine-3,5dione, 4-(4-chlorophenyl)-1-n-pentylcarbonyl-1,2,4-5 triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-nbutylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4methoxyphenyl)-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-benzoyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-n-10 propylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4methoxyphenyl)-1-n-pentylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-nbutylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-15 methoxyphenyl)-1-trichloromethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1methylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4nitrophenyl)-1-benzoyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-n-propylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-n-20 pentylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4nitrophenyl)-1-n-butylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-ethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-25 trichloromethylcarbonyl-1,2,4-triazolidine-3,5dione, 4-n-butyl-1-benzoyl-1,2,4-triazolidine-3,5dione, 4-n-butyl-1-methylcarbonyl-1,2,4triazolidine-3,5-dione, 4-n-butyl-1-npropylcarbonyl-1,2,4-triazolidine-3,5-dione, 4-nbutyl-1-n-pentylcarbonyl-1,2,4-triazolidine-3,5-30 dione, 4-n-butyl-1-n-butylcarbonyl-1,2,4triazolidine-3,5-dione, and 4-n-butyl-1trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione 4-phenyl-1-(3,4,5-trimethoxybenzoyl)-1,2,4-

triazolidine-3,5-dione 4-(4-chlorophenyl)-1-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione 4-(4-methoxyphenyl)-1-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, $4-\underline{n}$ 5 butyl-1-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione, 4-phenyl-1,2-bis-(3,4,5trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, 4-(4-chlorophenyl-1,2-bis-(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, 4-(4-methoxyphenyl)-10 1,2-<u>bis</u>-(3,4,5-trimethoxybenzoyl)-1,2,4triazolidine-3,5-dione, 4-(4-nitroxyphenyl)-1,2-bis-(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5dione, $4-\underline{n}$ -butyl-1,2- \underline{bis} -(3,4,5-trimethoxybenzoyl)-1,2,4-triazolidine-3,5-dione, and pharmaceutically 15 acceptable salts and mixtures thereof.

Novel compounds from within the class defined by formula (III) include those wherein R' is selected from the group consisting of phenyl,

halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; and R' and R' may be the same or different and are each selected from the group consisting of hydrogen and alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms.

Exemplary of novel hypolipidemic compounds of formula (III) are 3-(4-methoxyphenyl)-6
20 ethoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione, 3-n-butyl-6-ethoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione and pharmaceutically acceptable salts and mixtures thereof.

Compounds from within the class defined by formula (IV) include those wherein R' is selected from the group consisting of halophenyl, nitrophenyl and alkoxyphenyl wherein the alkoxy group contains from 1 to 5 carbon atoms but is not ethoxy when R' is chlorophenyl.

As noted, the pharmaceutically acceptable salts of the compounds of formulas (I) through (IV) can be used. These salts may be acid addition salts formed from inorganic or organic, e.g. hydrochlorides, sulfates, phosphates, benzoates or acetates, or salts formed with bases, e.g. alkali metal salts such as sodium or potassium salts.

The amount of hypolipidemically active compound as defined by formulas (I) through (IV) (including esters and pharmaceutically acceptable salts thereof) which is required for the treatment of patients suffering from elevated lipid levels will vary with the route of administration, the condition of the patient under treatment and is ultimately at the discretion of the attending physician. However, a suitable dose of the active compound is in the range of from about 1 to about 100 mg/kg body weight per day; preferably from about 4 to about 16 mg/kg daily. Thus, for example, when administered to man (of approximately 70 kg body weight) in multiple daily doses, a typical unit or sub-dose of the active compound is about 150 mg.

The form of the dose is not critical and may be formulated for oral, buccal, parenteral or rectal administration or in a form suitable for administration by inhalation or inefflation. Oral administration is preferred.

10

15

20

25

Tablets and capsules for oral administration may contain conventional excipients such as binding agents, for example mucilage of starch or polyvinylpyrrolidone; fillers, for example, lactose, microcrystalline cellulose or maize-starch; lubricants, for example, magnesium stearate or stearic acid; disintegrants, for example, potato starch, croacarmellose sodium or sodium starch glycollate; or wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in the art.

Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or another suitable vehicle before use. liquid preparations may contain conventional additives such as suspending agents, for example, sorbitol syrup, methyl cellulose, glucose/sugar syrup or carboxymethyl cellulose; emulsifying agents, for example, sorbitan mono-oleate; nonaqueous vehicles (which may include edible oils), for example, propylene glycol or ethyl alcohol; and preservatives, for example, methyl or propyl phydroxybenzoates or sorbic acid. Suitably, a 1% aqueous solution of carboxymethylcellulose may be employed.

The compounds of formulas (I) through (IV) or their salts may also be formulated as suppositories, e.g. containing conventional suppository bases such as cocoa butter or other glycerides.

21

For buccal administration, the composition may take the form of tablets or lozenges formulated in conventional manner.

The compounds of formulas (I) through (IV) and their physiologically acceptable acid addition or basic salts may be formulated for parenteral administration by injection or continuous infusion and may be presented in unit dose form in ampoules, or in multi-dose forms with an added preservative.

The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.

It will therefore be appreciated that the compounds of formulas (I) through (IV) or their pharmaceutically acceptable salts, may be used in the manufacture of a medicament for the treatment of human or animal subjects suffering from hyperlipidemia.

25 <u>Experimental</u>

5

10

15

20

30

Melting points and boiling points are uncorrected. Infrared spectra were recorded on a Beckman Acculab 10 spectrophotometer. Ultraviolet spectra were obtained on a Beckman DBG spectrophotometer. 'H NMR spectra were recorded on a Varian EM-360A spectrometer. Mass spectra were determined on an AEI-902 mass spectrometer at the Research Triangle Institute of Mass Spectrometry, Research Triangle Park, N.C. Elemental analyses

were performed by Integral Microanalytical Laboratories, Raleigh, N.C. and Desert Analytics, Phoenix, AZ.

Generally, derivatives of 1,2,4triazolidine-3,5-diones (Compounds of formula (I) 5 (a) and (II)) may be synthesized by reacting 4substituted 1,2,4-triazolidine-3,5-diones synthesized by the tepwise procedure of Cookson, Gupte, Stevens, and Watts, Org. Syn. 1871, 51, 121, with carboxylic acid anhydrides or alkoxy 10 chloroformates wherein the alkoxy group has from 1 to 5 carbon atoms in the presence of soium hydride, or aryl isocyanates in the presence of sodium hydride. 1- and 1,2-alkyl subtituted derivatives can be made by reacting 4-substituted 1,2,4-15 triazolidine-3,5-diones with alkyl halides or cycloalkyl halides in the presence of a based, e.g. KOH. This letter method can also be used to prepare alkenyl, cycloalkenyl and alkynyl derivatives so long as the multiply bonded group is not dirrectly 20 attached to the ring nitrogen. To attach a phenyl in the R' or R' position, phenylhydrazine should be used to cyclize the triazolidine-3,5-dione ring.

Derivatives of 1,3,5-triazine-2,4- $(1\underline{H},3\underline{H})$ -diones (Compounds of formula (I) (c) and (IV) may be synthesized by heating a solution of a compound of formula (I) (b) or (III) in chlorobenzene at reflux for 2 weeks.

The following specific examples illustrate

the preparation of compounds defined by formulas (I)

through (IV) and are according to the invention, but

are not to be construed as limiting the scope

thereof.

Preparation of Compounds of Formula (I)(a) and (II)

23

The 4-substituted 1,2,4-triazolidine-3,5-diones were prepared by the stepwise procedure of Cookson, Gupte, Stevens and Watts, Org. Synth. 1971, 51, 121.

5

10

15

20

25

30

General Procedure for the Synthesis of the 1-Alkycarbonyl-4-substituted-1,2,4-triazolidine-3,5-To a stirred suspension of the 4diones: substituted 1,2,4-triazolidine-3,5-dione (30 mmol) in 150 to 200 ml of chloroform at room temperature was added dropwise the carboxylic acid anhydride or other appropriate acylating agent (450 mmol). The reaction mixture was stirred at room temperature or heated under reflux, as required, for one to five days. The reaction mixture was filtered to remove the 1-acylated 4-substituted 1,2,4-triazolidine-3,5dione and unreacted 1,2,4-triazolidiine-3,5-dionė. This solid mixture was not always present depending on the anhydride used in the reaction. Treatment of the filtered solid with water removed the unreacted 1,2,4-triazolidine-3,5-dione to give the 1alkylcarbonyl-1,2,4-triazolidine-3,5-dione, which was purified by recrystallization from ethanol:water. The filtrate was washed with three 100 ml portions of water and three 80 ml portions of 10% sodium carbonate. The carbonate washings were acidified with concentrated hydrochloric acid to precipitate an additional quantity of the 1alkylcarbonyl-4-substituted-1,2,4-triazolidine-3,5dione.

Preparation of 1-methylcarbonyl-4-phenyl1.2.4-triazolidine-3.5-dione: To a suspension of 5.3
g (30 mmol) of 4-phenyl-1,2,4-triazolidine-3,5-dione
in 175 ml of chloroform was added dropwise over a 15
minute period 45.9 g (450 mmol) of acetic anhydride

Ŷ

10

15

20

with stirring. The reaction mixture was stirred at room temperature for five days. The reaction mixture was filtered to remove a white precipitate which was washed with 30 ml of chloroform to give 3.55 g (54.0 %) of 1-methylcarbonyl-4-phenyl-1,2,4triazolidine-3,5-dione as white solid, m.p. 215-218.5 °C. The filtrate was washed with three 100 ml portions of water and three 80 ml portions of 10% sodium carbonate. The carbonate washings were acidified with concentrated hydrochloric acid. No precipitate was formed. The chloroform solution was dried (Na,SO,) and evaporated under reduced pressure to give a liquid residue containing acetic anhydride. The filtered solid was recrystallized from 95% ethanol to yield pure 1-methylcarbonyl-4phenyl-1,2,4-triazolidine-3,5-dione: m.p. 216.5-218.5 °C; IR (Nujol) 1726, 1710, 1688 cm-' (CO); 'H' NMR (60 MHz, CDC13) 7.90 (s, 5H) 255(s, 3H). Found: C, 54.5; H, 4.2: N, 19.4. C, H, N, O, requires C, 54.8; H, 4.2; N, 19.4.

Preparation of 1-Methylcarbonyl-4-(4chlorophenyl)-1,2,4-triazolidine-3,5-dione: To a suspension of 6.38 g (30 mmol) of 4-(4-chlorophenyl-1,2,4-triazolidine-3,5-dione in 175 ml of chloroform was added dropwise over a 15 minute period 45.9 g 25 (450 mmol) of acetic anhydride with stirring. The reaction mixture was stirred at room temperature for five days. The reaction mixture was filtered. filtrate was washed with three 100 ml portions of water and three 80 ml portions of 10% sodium carbo-30 The carbonate washings were acidified with concentrated hydrochloric acid to yield a precipitate f the triazolidine-395-dione product. In some instances a precipitate, which was

25

presumably the sodium salt of the triazolidine-3,5dione, formed in the sodium carbonate washings prior to acidification. In these instances the precipitate was filtered from the carbonate washings and dissolved in hot water prior to acidification. The chloroform solution was dried (Na,SO,) and evaporated under reduced pressure to give a liquid residue containing acetic anhydride. The filtered triazolidine-3,5-dione was recrystallized from 95% ethanol to yield pure 1-methylcarbonyl-4-(4chlorophenyl)-1,2,4-triazolidine-3,5-dione as a white solid: m.p. 201-203 °C; IR (Nujol) 1729, 1710, and 1690 cm⁻¹ (CO); HNMR (60 MHz, CDC1, 7.5(m, 4 H), 2.5 (s, 3 H). Found: C,47.31; H, 3.10; N, 16.63; M (70ev) 253.0253. C₁₀H₂N₃O₃Cl requires C, 47.35; H, 3.18; N, 16.57; N, 13.98; M 253.0254.

5

10

15

General Procedure for the Synthesis of the 1,2-Dialkylcarbonyl-4-substituted-1,2,5-20 triazolidine-3.5-diones: To a stirred mixture of the 4-substituted 1,2,4-triazolidine-3,5-dione (30 mmol) and lead diacetate trihydrate (60 mmol) in 200 ml of chloroform was added dropwise the carboxylic acid anhydride or appropriate acylating agent (450 25 The reaction mixture was stirred at room temperature until all the solids had dissolved. solution was washed with three 100 ml portions of water and three 100 ml portions of 10% sodium carbonate. Acidification of the carbonate washings 30 with concentrated hydrochloric acid did not produce a precipitate. The chloroform solution was dried (Na,SO,) and evaporated under reduced pressure to give a solid-liquid mixture. The mixture was filtered and the solid was recrystallized from

alcohol:water to yield the pure 1,2-dialkylcarbonyl-4-substituted-1,2,4-triazolidine-3,5-dione. Acetate salts such as sodium acetate can be used in place of lead diacetate trihydrate in the reaction mixture.

Preparation of 1.2-Dimethylcarbonyl-4-5 phenyl-1,2,4-triazolidine-3,5-dione: To a mixture of 5.3 g (30 mmol) of 4-phenyl-1,2,4-triazolidine-3,5-dione and 22.7 g (60 mmol) of lead diacetate trihydrate in 200 ml of chloroform was added dropwise over a 15 minute period 45.9 g (450 mmol) 10 of acetic anhydride. The mixture was stirred at room temperature. After 25 hours the pale yellow solution was washed with three 100 ml portions of water and three 75 ml portions of 10% sodium carbonate. The carbonate washings were acidified 15 with concentrated hydrochloric acid. No precipitate was produced. The chloroform solution was dried (Na₂SO₄) and evaporated under reduced pressure to give a solid-liquid residue. The residue was filtered and the filtered solid was washed with 25 20 ml of 95% ethanol to give 2.75 g (35.1%) of the 1,2,4-triazolidine-3,5-dione product as a white solid. An additional quantity of the product precipitated from the ethanol filtrate. This solid was filtered to give an additional 1.20 g (15.3%) of **25** . the 1,2,4-triazolidine-3,5-dione product (50.4% total yield). The solids were recrystallized from 95% ethanol to give pure 1,2-dimethylcarbonyl-4phenyl-1,2,4-triazolidine-3,5-dione: m.p. 169-170.5 °C; IR (Nujol) 1750, 1732 (shoulder), 1714 30 (shoulder) cm-' (CO); 'H NMR (60 MHz, CDCl_)87.80(s, 5H), 2.55 (s, 6H); Found: C, 55.2; H, 4.45; N, 16.0 $C_{12}H_{11}N_3O_4$ requires C, 55.2; H, 4.2; N, 16.0

27

Preparation of 1,2-Dimethylcarbonyl-4-(4methoxyphenyl)-1,2,4-triazolidine-3,5-dione: mixture of 1.00 g (4.83 mmol) of 4-methoxyphenyl-1,2,4-triazolidine-3,5-dione and 3.80 g (10 mmol) of lead diacetate trihydrate in 40 ml of chloroform was added dropwise over a 10 minute period 7.70 g (75 mmol) of acetic anhydride. The solution was stirred at room temperature for five hours. The clear solution was washed three times with 20 ml portions of water and three times with 15 ml portions of 10% sodium carbonate. The sodium carbonate washings were acidified with concentrated hydrochloric acid. No precipitate was obtained. The chloroform solution was dried (Na2SO.) and evaporated to dryness under reduced pressure to give a solid-liquid residue. The residue was washed with five ml of 95% ethanol and recrystallized from methanol to give pure 1,2-dimethylcarbonyl-4-(4-chlorophenyl)-1,2,4triazolidine-3,5-dione: m.p. 148-150 °C; IR (Nujol) 1710, 1750 cm⁻¹ (CO); 'H NMR (300 MHz, CDC1,) 87.37-6.98 (m, 4H), 3.84 (s, 3H), 2.65(s, 6H); Found: C, 53.4; H, 4.4; N, 14.4 C,H,N,O, requires C, 53.6; H, 4.5; N, 14.4.

5

10

15

20

Preparation of 1,2-di-n-Pentylcarbonyl-4
(4-methyoxphenyl)-1,2,4-triazolidine-3,5-dione: To a mixture of 1.00 g (4.83 mmol) of 4-methoxyphenyl1,2,4-triazolidine-3,5-dione and 3.80 g (10 mmol) of lead diacetate trihydrate in 40 ml of chloroform was added dropwise over a 10 minute period 7.70 g (75 mmol) of hexanoic anhydride. The solution was stirred at room temperature for five hours. The clear solution was washed three times with 20 ml portions of water and three times with 15 ml portions of 10% sodium carbonate. The sodium

10

carbonate washings were acidified with concentrated hydrochloric acid. No precipitate was obtained. The chloroform solution was dried (Na₂SO₄) and evaporated to dryness under reduced pressure to give a solid-liquid residue. The residue was washed with five ml of 95% ethanol and recrystallized from methanol to give pure 1,2-di-n-pentylcarbonyl-4-(4-methoxyphenyl)-1,2,4-triazolidine-3,5-dione: m.p. 88-90 °C; IR (Nujol) 1742, 1710 cm⁻¹ (CO); 'H NMR (300 MHz, CDCl₃) 87.36-6.97 (m,4H), 3.83 (s, 3H), 2.97 (t, 4H), 1.76 (m, 4H), 1.35 (m, 8H), 0.89 (distorted t, 6H); Found: C, 62.3; H, 7.0; N, 10.3. C₂₁H₂₂N₃O₅ requires C, 62.5; H, 7.3; N, 10.4.

Preparation of 1,2-Diethylcarbonyl-4(4nitrophenyl)-1.2.4-triazolidine-3.5-dione: 15 mixture of 1.00g (4.50 mmol) of 4-(4-nitrophenyl)-1,2,4-triazolidine-3,5-dione and 3.80 g (10 mmol) of lead diacetate trihydrate in 40 ml of chloroform was added dropwise over a 10 minute period 9.80 g (75 mmol) of propanoic anhydride. The solution was 20 stirred at room temperature for five hours. clear solution was washed three times with 20 ml portions of water and three times with 15 ml portions of 10% sodium carbonate. The sodium carbonate washings were acidified with concentrated 25 hydrochloric acid. No precipitate was obtained. The chloroform solution was dried (Na,SO,) and evaporated to dryness under reduced pressure to give a solid-liquid residue. The residue; was washed with five ml of 95% ethanol and recrystallized from 30 methanol to give 1,2-diethylcarbonyl-4-(4nitrophenyl)-1,2,4-triazolidine-3,5-dione: m.p. 140-IR (Nujol) 1750, 1705 cm (CO); 'H NMR_(300 MHz, CDCl₃) 88.41-7.24 (m, 4H), 3.03 (q, 4H), 1.28

29

(t, 6H); Found: C, 49.9; H, 4.0; N, 16.7. C,H,,N,O, requires C, 50.2; H, 4.2; N, 16.8.

Preparation of 1,2-Di-n-pentylcarbonyl-4n-butyl-1,2,4-triazolidine-3,5-dione: To a mixture 5 of 1.00 g (6.37 mmol) of 4-n-butyl-1,2,4triazolidine-3,5-dione and 4.60 g (12 mmol) of lead diacetate trihydrate in 40 ml of chloroform was added dropwise over a 10 minute period 19.5 g (91 mmol) of hexanoic anhydride. The solution was 10 stirred at room temperature for five hours. clear solution was washed three times with 20 ml portions of water and three times with 15 ml portions of 10% sodium carbonate. The sodium carbonate washing were acidified with concentrated hydrochloric acid. No precipitate was obtained. 15 The chloroform solution was dried (Na2SO4) and evaporated to dryness under reduced pressure to give a solid-liquid residue. The residue was washed with five ml of 95% ethanol and recrystallized from 20 methanol to give pure 1,2-di-n-pentycarbonyl-4-nbutyl-1,2,4-triazolidine-3,5-dione: m.p. 88-89 °C; IR (Nujol) 1736,1715 cm⁻¹ (CO); 'H NMR (300 MHz, CDCl₃) 2.91 (t, 4H), 1.77-1.29 (m, 18H), 0.89 (m, 9H); Found: C, 60.95; H, 8.9; N, 11.85. C, H, N, O, 25 requires C, 61.15; H, 8.9; N, 11.9.

Preparation of Compounds of Formula (I)(b) and (III)

Methyl diazoacetate was synthesized by the procedure of Searle, U.S. Patent No. 2,490,714

(1949) and <u>Chem. Abstr.</u> 1950, 44, 3519. Aromatic devices of III can't be prepared. The 4-substituted 3-H-1,2,4-triazoline-3,5-diones were prepared by the stepwise procedure of Cookson, Gupte, Stevens, and Watts, <u>Org. Symth.</u>, 191, <u>51</u>, 121 <u>t-butyl</u>

15

20

hypochlorite was prepared using the method of Teeter and Bell, Org. Synth. Coll. Vol. IV, 1963, 125. Ethyl diazoacetate was purchased commercially.

Reactions of diazoalkanes with 3-H-1,2,4triazoline-3,5(4H)-diones have been previously described. See Izydore, R.A., McLean, S., J. Am. Chem. Soc. 1975, 97, 5611.

General Proceudre for the Synthesis of the 6-Alkyoxycarbonyl-3-substituted-1,3,5-

triazalcyclo[3.1.0]hexane-2,4-dione; 10

> To a solution of the 3-H-1,2,4-triazoline-3,5(4 \underline{H})-ione (20 mmol) in dichloromethane (200 ml) at 0 deg C. was added dropwise over 10 minutes the diazoalkane, with stirring. Stirring was continued until the red color of the triazolinedione had faded. The solution was then filtered and evaporated to dryness under reduced pressure. resulting solid was purified by recrystallization by first dissolving it in hot carbon tetrachloridechloroform (1:1), and then cooling the solution to room temperature, and finally by adding petroleum ether (b.p. 40-60 °C) or hexane dropwise with swirling to precipitate a compound of formula (I)(b) and (III).

25 Preparation of 6-Ethoxycarbonyl-3-phenyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione: solution of 1.5 g (8.5 mmol) of 4-phenyl-3 \underline{H} -1,2,4triazoline-3,5(4 $\underline{\text{H}}$)-dione in 100 ml of $\underline{\ }$ dichloromethane at 0 deg C was added dropwise over ` 10-20 minutes 0.97 g (8.5 mmol) of ethyl 30 diazoacetate, with stirring. Gas evolution was noted. The deep red solution was allowed to warm to room temperature, and stirring was continued overnight. The resulting amber solution was

31

evaporated to dryness under reduced pressure to yield 2.17 g (98%) of the crude bicyclic product. The product was purified by heating it in 20 ml of hot carbon tetrachloride, adding chloroform dropwise until the solid had dissolved, cooling the solution to room temperature, and adding petroleum ether (40-60 °C) dropwise with swirling to precipitate pure 6ethoxycarbonyl-3-phenyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione: m.p. 175-177 °C (decomp.); IR (Nujol) 1745 cm⁻¹ (CO); HNMR (400 MHz, CDC1, 1.3 (3H, br m, CH,), 3.8 (1H, br s, CH), 4.3 (2H, br m, OCH₂), and 7.5 (5H, m, Ph); 13CNMR (100.5 MHz; CDC1; 'H decoupled) 13.0-14.5 (overlapping s, CH₃), 62.0-65.5 (overlapping s, OCH, and CH), 124.5-127.5 and 128.0-131.5 (overlapping s, Ph), and 152.8-165.0 (br overlapping s, CO). Found: C, 55.3; H, 4.1; N, 16.0; M (70 eV), 261. C,H,N,O, requires C, 55.2; H, 4.25; N, 16.1; M, 261;

5

10

15

Preparation of 6-Methoxycarbonyl-3-phenyl-20 1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione: To a solution of 2.05 g (11.7 mmol) of 4-phenyl-3H-1,2,4triazoline-3,5(4H)-dione in 100 ml of dry ethyl acetate at 0 °C. under nitrogen was added dropwise over a 20 minute period 1.10 g (11 mmol) of methyl 25 diazoacetate, with stirring. The deep red solution was kept at 0 °C. for one hour and warmed to room temperature. Stirring was continued overnight. pale yellow solution was filtered and evaporated to dryness under reduced pressure to give a light 30 yellow solid. The solid was purified by heating it in 10 ml of hot carbon tetrachloride, adding chloroform (approximately 10 ml) to the mixture dropwise until the solid dissolved, cooling the solution to room temperature, and adding petroleum

Ò

10

ether (b.p. 40-60 °C) dropwise with vigorous mixing. The precipitated solid was filtered and dried to yield 2.50 g (92%) of pure 6-methoxycarbonyl-3-phenyl-1,3,5-triazabicyclo [3.1.0]hexane-2,4-dione as a white solid: M.P. 176-177 c (decomp.). IR (Nujol) 1740 cm⁻¹ (CO); 'HNMR (100 MHz; CDC1, 3.75 (1H, br s, CH), 3.88 (3 H, br m, OMe), and 7.45 (5H, m, Ph); 13 CNMR (25.2MH₃; CDC1,; H decoupled) 54.0 (br, OMe and CH), and 123-126 and 128-131 (br, overlapping s, Ph); Found: C, 53.1; H, 3.8; N, 16.85; M⁻ (70 eV), 247. C,H₂N₃O, requires C, 53.4; H, 3.6; N, 17.0; M, 247;

Preparation of 6-Ethoxycarbonyl-3-(4chlorophenyl)-1,3,5-triazabicyclo[3.1.0]-hexane-2,4dione: To a solution of 2.33 g (11 mmol) of 4-(4-15 chlorophenyl) $-3\underline{H}-1,2,4$ -triazoline-3,5(4 \underline{H})-dione in 100 ml of dichloromethane at 0 °C. under nitrogen was added dropwise over a 20 minute period 1.25 g (11 mmol) of ethyl diazoacetate. The deep red solution was kept at 0 °C for one hour and allowed 20 to warm to room temperature. Stirring was continued The pale yellow solution was filtered and evaporated to dryness under reduced pressure to give 3.08 g (95%) of the crude bicyclic product as a light yellow solid. The solid was purified by 25 heating it in 30 ml of hot carbon tetrachloride, adding chloroform (approximately 25 ml) dropwise until the solid dissolved, cooling the solution to room temperature, and adding petroleum ether (b.p. 40-60 °C) dropwise with mixing. The precipitated 30 solid was filtered and dried to yield pure 6ethoxycarbonyl-3-(4-chlorophenyl)-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione as a white solid: M.p. 174-176 e (decomp.). IR (Nujol) 1740 cm

10

15

20

25

30

'(CO); 'H NMR (400 MHz; CDC1,) 1.3 (3H, br m, CH,), 4.25(1H, br m, CH), 4.35(2H lr m, OCH, and 7.5 (4A, my 4-CDC1H,) 'CNMR (100.5MH,:CDC1,; H decoupled) 13.0-14.5 (overlappingCH, 62.0-65.5 (overlappings, CH and OCH, and 133,2-137.5 (overlappings, 4-ClC,H,), and 148.0-166.0 (br overlappings, CO). Found: C, 48.6; H, 3.4; N, 14.0; M (70 eV), 295.0362. C,H,ON,O, requires C, 48.75; H, 3.4; N, 14.2; M, 295.0360;

Preparation of 6-Ethoxycarbonyl-3-(4methoxyphenyl)-1,3,5-triazabicyclo[3,1.0]-hexane-2.4-dione: To a solution of 2.28 g (11 mmol) of 4- $(4-methoxyphenyl)-3\underline{H}-1,2,4-triazoline-3,5(4\underline{H})-dione$ in 100 ml of dichloromethane at 0 °C. under nitrogen was added dropwise over a 20 minute period 1.25 g (11 mmol) of ethyl diazoacetate. The deep red solution was kept at 0 °C. for one hour and allowed to warm to room temperature. Stirring was continued The pale yellow solution was filtered overnight. and evaporated to dryness under reduced pressure to give 2.89 g (90%) of the crude bicyclic product as a light yellow solid. The solid was purified by heating it in 10 ml of hot carbon tetrachloride, adding chloroform (approximately 10 ml) dropwise until the solid dissolved, cooling the solution to room temperature, and adding cyclohexane dropwise with mixing. The precipitated solid was allowed to sit for two hours, filtered, washed with five ml of carbon tetrachloride, and dried to yield pure 6ethoxycarbonyl-3-(4-methoxyphenyl)-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione as a white solid: m.p. 175-178 c. (decomp.). IR (Nujol) 1740 cm⁻¹ (CO); 'H NMR (60 MHz; CDC1,) 1.3 (3H, br m, CH,CH,), 3.7 (3H, br m, OMe), 4.3 (3H, br m, CH and OCH₂), and

6.4-7.6 (4H, m, 4-MeO-C.H.). Found: C, 53.65; H, 4.7; N, 14.4. C, H, N, O, requires C, 53.6; H, 4.5; N, 14.4.

Preparation of 6-Ethoxycarbonyl-3-n-butyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione: To a **5** . solution of 1.73 g (11 mmol) of $3-\underline{n}$ -butyl- $3\underline{H}$ -1,2,4triazoline-3,5-(4 \underline{H})-dione in 100 ml of dichloromethane at 0 °C. under nitrogen was added dropwise over a 20 minute period 1.25 g (11 mmol) of ethyl diazoacetate. The deep red solution was kept 10 at 0 °C for one hour and allowed to warm to room temperature. Stirring was continued overnight. pale yellow solution was filtered and evaporated to dryness under reduced pressure to give 2.38 g (90%) of the crude bicyclic product as a light yellow 15 solid. The solid was purified by dissolving it in 20 ml of carbon tetrachloride and adding cyclohexane dropwise with mixing to effect precipitation. precipitated solid was filtered and dried to yield pure 6-ethoxycarbonyl-3-n-butyl-1,3,5-20 triazabicyclo[3.1.0]hexane-2,4-dione as a white solid: m.p. 94-96 c. (decomp.); IR (Nujol) 1740 cm (CO); 'H NMR (60 MHz; CDC1;) 0.6-1.9 (10H, br m, $CH_1(CH_2)_2$ and $CH_2CH_2O)$, 3.5 (2H, br m, $CH_2N)$, and 4.2 (2H, br m, OCH₂). Found: C, 49.6; H, 6.4; N, 17.1. 25 $C_{10}H_{15}N_3O_4$ requires C, 49.8; H, 6.3; N, 17.4.

Preparation of Compounds of Formula (I)(c) and (IV)

General Procedure for the Synthesis of the
6-alkoxycarbonyl-3-aryl-1,3,5-triazine-2,4(1H,3H)diones: A solution of the bicyclic diaziridine
(formula (I)(b) or (III)) (20 mmol) in chlorobenzene
(250 ml) was heated at reflux for two weeks. The

35

reaction mixture was cooled to room temperature, and the precipitate was removed by filtration. The filtered solid was stirred in methylene chloride (200 ml) for 30 min and filtered to remove the triazolo[1,2-a]triazole-1,3,5,7-tetraone (25-35%). The methylene chloride solution was evaporated to dryness under reduced pressure to give the crude triazine. Purification was accomplished by recrystallization from chloroform-cyclohexane or chloroform-petroleum ether (b.p. 40-600). If necessary the recrystallized product was further purified by preparative t.l.c. on silica gel. It was necessary to heat the purified product under vacuum to drive off the purification solvents.

5

10

15

20

25

30

Preparation of 6-Ethoxycarbonyl-3-phenyl-1,3,5-triazine-2,4(1H,3H)-dione: A solution of 7.0 g (26.8 mmol) of 6-ethoxycarbonyl-3-phenyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione in 250 ml of chlorobenzene was heated to reflux for two weeks during which time a precipitate slowly formed. After cooling the reaction mixture to room temperature, the precipitate was filtered to yield 3.3g of crude solid. The solid was stirred in 200 ml of dichloromethane for 30 minutes and filtered. The filtered solid was washed with an additional 50 ml of dichloromethane to give 1.5 g (35%) of 2,6diphenyltriazolo[1,2-a]triazole-1,3,5,7-tetraone: m.p. greater than 310 °C. The combined methylene chloride washings were evaporated under reduced pressure to yield 1.5 g (21%) of crude 6ethoxycarbonyl-3-phenyl-1,3,5-triazine-2,4(1 \underline{H} ,3 \underline{H})dione: m.p. 158-164 °C (decomposition). The 1,3,5triazinedione product was purified as follows: quantity weighing 1.00 g of the 1,3,5-triazinedione

0

was heated in 20 ml of boiling carbon tetrachloride. To the hot mixture was added in 5 ml portions 20 ml of chloroform to dissolve the solid. The hot solution was filtered, and the filtrate was cooled to room temperature. The cool filtrate was added to **5**. 200 ml of cyclohexane at room temperature with mixing to precipitate 0.0 g of an off-white solid: m.p. 168-170 °C. In place of cyclohexane, petroleum ether (b.p. 40-60 °C) may be substituted. It was generally observed that addition of cyclohexane to 10 the carbon tetrachloride-chloroform filtrate led to the formation of a gummy precipitate. The off-white solid was heated at 110 °C. in a heating pistol to drive off the remaining recrystallization solvents to yield pure 6-ethoxycarbonyl-3-phenyl-1,3,5-15 triazine-2,4(1 \underline{H} ,3 \underline{H})-dione as a white solid: M.p. 168-170 e (decomp.). IR (Nujol) 3440 (NH), 1746 (CO), 1779 (CO), and 1607 \mbox{cm}^{-1} (C=N); $\mbox{UV}_{\mbox{\tiny max}}$ (MeOH) 257 nm (3700); 'H NMR (60 MHz, acetone-d₆) 1.37 (3H, t, CH_3), 4.39 (2H, q, OCH_2), and 7.31 (5 H, m, Ph). Found: C, 55.05; H, 4.2; N, 16.5; M (70 eV), 261.0747; C₁₂H₁₁N₃O₄ requires C, 55.2; H, 4.3; N, 16.1; M, 261.0749.

Preparation of 6-ethoxycarbonyl-3-(4chlorophenyl)-1,3,5-triazine-2,4(1H,3H)-dione: A 25 solution of 6.0 g (20.3 mmol) of 6-ethoxycarbonyl-3-(4-chlorophenyl)-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione in 250 ml of chlorobenzene was heated at reflux for two weeks during which time a precipitate slowly formed. After cooling the reaction mixture 30 to room temperature, the precipitate was filtered to yield 2.13 g of crude solid. The solid was stirred in 200 ml of dichloromethane for \$0 minutes and filtered. The filtered solid was washed with an

37

additional 50 ml of dichloromethane to give 1.0 g (25%) of 2,6-di-(4-chlorophenyl)-triazolo[1,2a]triazol-1,3,5,7-tetraone, m.p. greater than 310 The combined methylene chloride washings were evaporated under reduced pressure to yield 1.08 g 5 (18.0%) of crude 6-ethoxycarbonyl-3-(4chlorophenyl)-1,3,5-triazine-2,4(1H,3H)-dione: m.p. 191-196 °C (decomposition). The 1,3,5-triazinedione product was recrystallized by heating 0.50 g of the product in 60 ml of boiling carbon tetrachloride, 10 with stirring. A total of 55 ml of chloroform was then added in five ml portions to dissolve the The hot solution was filtered, and then filtrate was cooled to room temperature. The cooled filtrate was added dropwise to 200 ml of cyclohexane 15 with stirring to precipitate 0.21 g of an off-white solid: m.p. 203-205 °C. It was generally observed that addition of cyclohexane to the carbon tetrachloride-chloroform filtrate led to the formation of a gummy precipitate. In place of 20 cyclohexane petroleum ether (b.p. 40-60 °C) may be substituted. In an alternate procedure 0.80 g of the product was dissolved in 25 ml of cold acetone. The solution was filtered, and the filtrate was added slowly with swirling to precipitate 0.45 of an 25 off-white solid: m.p. 191-196 °C. recrystallized product was purified by preparative thin-layer chromatography (TLC) as follows: A sample of the recrystallized product weighing 0.35 g (1.2 mmol) was dissolved in 2.0 ml of HPLC grade 30 ethyl acetate and applied in a thin streak 1.0 cm high across the bottom of 20 cm \times 20 cm silica TLC plates. Twelve plates were used. The plates were developed in a closed chamber using galcial acetic

acid as the mobile phase. The plates were airdried. Analysis under UV light (254 nm) revealed the presence of two components having R, values of 1.00 and 0.90, respectively. Each of the separated components was scraped from the plates and combined. Each of the components was then extracted into 50 ml of dichloromethane, filtered, and the solvent removed under reduced pressure to give a solid residue. The solid corresponding to the slower moving component (R,=0.90) weighed 0.15 g: m.p. 212-10 This solid was recrystallized by dissolving it in 20 ml chloroform-carbon tetrachloride (50:50) and adding the resulting solution to 100 ml of cyclohexane. The precipitate was filtered to give 0.090 g of pure 6-ethoxycarbonyl-3-(4-chlorophenyl)-15 1,3,5-triazine-2,4(1 $\underline{\text{H}}$,3 $\underline{\text{H}}$)-dione as a white solid: M.P. 214-215 € (decomp.). IR (Nujol) 3430 (NH), 1759 (CO), 1740 (CO), 1666 (CO), and 1 590 cm⁻¹ (C=N); UV_{max} (MeOH) 260 nm (E 3900); 'H NMR (60 MHz, 20 1.39 (3H, t, CH₃), 4.38 (2H, q, OCH₂), acetone-d,) 4.8 (1H, br s, NH), and 7.37 (4H, m, $4-C1-C_bH_a$). Found: C, 48.65; H, 3.3; N, 14.0; M (70 eV), 295.0362; $C_{12}H_{10}N_3O4C1$ requires C, 48.7; H, 3.4; N, 14.2; M, 295.0360.

25 Pharmaceutically acceptable salts may also be prepared from other salts, including other pharmaceutically acceptable salts of the compounds of general formulas (I) through (IV), using conventional methods.

Testing of Normal Mice

The following compounds were tested for their hypolipidemic activity in CF, mice.

	Compound No.	<u>Name</u>
5	Parent A	1,2,4-triazolidine - 3,5-dione 4-phenyl-1-methylcarbonyl-1,2,4- triazolidine-3,5-dione
3	В .	4-phenyl-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione
10	С	4-phenyl-1-ethoxycarbonyl-1,2,4-triazolidine-3,5-dione
	D	4-(4-chlorophenyl)-1-methylcarbonyl- 1,2,4-triazolidine-3,5-dione
15	E	4-phenyl-1,2,4-triazolidine-3,5-dione
	F	4-(4-methoxyphenyl)- 1,2,4-triazolidine-3,5-dione
20	G	4-(4-n-butyl)-1,2,4-triazolidine-3,5-dione
25	Н	4-(4-nitrophenyl)-1,2,4-triazolidine- 3,5-dione
	I	4-phenyl-1-N-phenylcarbamoyl-1,2,4-triazolidine-3,5-dione
30	J	4-(4-chlorophenyl)-1,2,4- triazolidine-3,5-dione
	K	4-methyl-1,2,4-triazolidine-3,5-dione
35	L	3-(4-chlorophenyl)-6-ethoxyacarbonyl- 1,3,5-triazabicyclo[3.1.0]hexane-2,4- dione
40	М	<pre>3-phenyl-6-ethoxycarbonyl-1,3,5- triazabicyclo[3.1.0]hexane-2,4-dione</pre>
	И	3-phenyl-6-ethoxycarbonyl-1,3,5-triazine-2,4($1\underline{H}$, $3\underline{H}$)-dione
45	0	3-(4-chlorophenyl)-6-ethoxycarbonyl- 1,3,5-triazine-2,4(<u>1</u> H,3 <u>H</u>)-dione
	P	4(4-methoxy phenyl)-1,2-dimethyl carbonyl 01,2,4-triazolidine-3,5-dione
50		440116

30

35

40

	Q	4.(4-methoxy phenyl) 01,2-diphetyl carbonyl -1,2,4-triazolidine-3,5-dione
5	R	4.(4-methoxy phenyl)-1,2 diethyl carbonyl-1,2,5-triazolidine-3,5-dione
10	s	4-(4-nitro phenyl)-1,2 diethyl carbonyl -1,2,4-triazolidine-3,5-dione
	T	4-(4-in-butyl) - 1,2 di pentyl carbonyl-1,2,4-triazolidine-3,5-dione
15	U	4-(4-chlorophenyl)-1,2-dimethyl carbonyl-1,2,4-triazolidine-3,5-dione
. 20	v	4-(4-chlorophenyl) 1-pentyl carbonyl (2H) 1,2,4 triazolidine-3,5 dione

Compounds A-V as defined above, were suspended in an aqueous 1 percent carboxymethylcellulose (CMC) solution and homogenized. Each of the so prepared compounds were administered to a group of six CF, male mice, each weighing approximately 25 grams, intraperitioneally for 16 days. Each of these compounds were provided in a dosage of 20 mg/kg/d ip. On Days 9 and 16 blood was obtained by tail vein bleeding. serum so obtained was separated by centrifugation for three minutes. Serum cholesterol levels were determined by a modification of the Liebermann-Burchard reaction (Ness, Clin. Chim. Acta., Vol. 10, 229 [1964]). Serum triglyceride levels were determined on Day 16 by use of the Fisher, Hycel Triglyceride Test Kit.

In addition to the above-described treated mice, an untreated control group of six mice were similarly tested on Days 9 and 75 to determine their serum cholesterol and trigylceride blood levels.

41

Based on the results obtained for the untreated control group, the percent control, based on serum cholesterol and serum triglyceride levels of the treated mice compared to the untreated mice, was obtained. Table 1 reports this percent control, including standard deviation, indicating the level of confidence of these numbers.

5

42

	Compound No. Triglyceride	<u>Table</u> Serum Cho	<u>l</u> lesterol*	<u>Serum</u>
5	Day 16	Day 9	<u>Day 16</u>	
	Parent 73	81	79	
10	A 48 <u>+</u> 6	67 <u>+</u> 5	. 61 <u>+</u> 6	
15	B 61 <u>+</u> 5	70 <u>+</u> 6	64 <u>+</u> 5	
	C 62 <u>+</u> 6	73 <u>+</u> 7	69 <u>+</u> 5	
20	D 55 <u>+</u> 7	73 <u>+</u> 4	64 <u>+</u> 6	
25	E 68 <u>+</u> 6	71 <u>+</u> 5	48 <u>+</u> 3	
23	F 58 <u>+</u> 3	75 <u>+</u> 5	56 <u>+</u> 4	•
30	G 79 <u>+</u> 8	71 <u>+</u> 6	69 <u>+</u> 5	
	н 47 <u>+</u> 5	73 <u>+</u> 5	66 <u>+</u> 5	
35	I 68 <u>+</u> 6	79 <u>+</u> 7	74 <u>+</u> 6	•
40	Ј , 43 <u>+</u> 4	90 <u>+</u> 5	58 <u>+</u> 4	
	K 89 <u>+</u> 5	88 <u>+</u> 6	67 <u>+</u> 5	
45	L 66 <u>+</u> 7	74 <u>+</u> 3·	56 <u>+</u> 5	
	M 59 <u>+</u> 6	62 <u>+</u> 6	57 <u>+</u> 5	·
50	N 51 <u>+</u> 2	63 <u>+</u> 6	54 <u>+</u> 5	_

4)

	O 55 <u>+</u> 6	63 <u>+</u> 4	57 <u>+</u> 4
5	P 49	76	57
	Q 75	67	86
10	R 62	62	63
15	S 62	72	36
	T 53	69	49
20	ប	72	51
	V 42	77	52
25	1% Carbonymethyl- cellulose 100 <u>+</u> 7	100 <u>+</u> 6	100 <u>+</u> 5

*Reported as a percentage of serum cholesterol or serum triglyceride level as control + or - the standard deviation.

35 <u>Testing of Hyperlipidemic Mice</u>

40

A group of six CF' male mice (about 25 g) were placed on a commercial diet (U.S. Biochemical Corporation BAsal Atherogenic Test Diet) which produced a "hyperlipidemic" state. That is, the average serum cholesterol level in the group of treated mice was raised from 122 to 375 mg percent and triglyceride levels were raised from 137 to 367 mg/dL.

Upon reaching these hyperlipidemic levels,

the mice were administered Compounds A, J, M and N
in a concentration of 20 mg/kg/d [LD50 value in mice

. 5

20

25

30

as single injection IP>500mg/kg for these compounds] intraperitoneally for 14 days while continuing the hyperlipidemic diet. On Day 12, serum cholesterol and serum triglyceride levels were measured in accordance with the procedure of Example 6. The following results were obtained:

Table 2

		TADIE 2	
	Compound	Percent	of Control
		Serum Cholesterol	Serum
10	<u>Triglyceride</u>		
	A	41	40
	J	46	49
	M	46	54
		50	46
15	Diet-Hyperlipidemic	100	100

Serum Testing of Normal Rats

A test solution of Compounds A, F, J, M, N and O were suspended in an aqueous solution of 1% CMC, homogenized and administered orally to six Sprague-Dawley male rats, which each weighted approximately 350 grams. Administration of the compounds was by an intubation needle. The rats were each fed with 20 milligrams of Compounds A, F, J, M, N and O per kilogram of body weight per day for 14 days. Similarly, six Sprague-Dawley male rats of approximately the same weight (that used for testing F weighed approximately 160 grams) were fed similar volumes of the same aqueous 1% CMC solution without the active agents, also orally, administered by intubation needle. In addition, as a control, a similar group of six male Sprague-Dawley rats were untreated.

On Days 7 and 14, blood was obtained from each of the rats of the three groups by tail vein bleeding. The blood obtained was separated by centrifugation for three minutes. Serum cholesterol and triglyceride levels were determined in accordance with the procedure of Example 6. The following results were obtained:

5

Table 3

	•	<u> 19016</u>	<u>=_3</u>	
	Compound		Percent	of Control
10		Serum Cl	<u>holesterol</u>	Serum
	<u>Triglyceride</u>			
		Day 7	<u>Day 14</u>	Day 7
	<u>Day 14</u>			
	A	89	69	62
15	48	•		
	F	77	66	87
•	81			
	J	59	60	61 [.]
	52			
20	M	70	36	36
	54			
	· N	71	67	61
	53			
	0	84	60	82
25	77			
	1% Carboxymethyl	100	100	100
	100			
	cellulose	e ee		

Formulations

A. TABLET Ingredient Amount 5 per tablet Active Compound 150.0 mg Lactose 10 100.0 mg Corn Starch 15.0 mg Magnesium stearate 1.0 mg 15 The active compound is finely ground and intimately mixed with the powdered excipients (lactose, corn 20 starch, and magnesium stearate). The formulation is then compressed in a die to produce the tablet. B. COATED TABLET 25 Ingredient Amount per tablet 30 Core Active Compound 150.0 mg Corn Starch 35 25.0 mg Magnesium stearate 2.0 mg Coating 40 Lactose 200.0 mg ' Corn Starch 50.0 mg Gelatin 45 10.0 mg

The active ingredient and starch are granulated with water and dried. Magnesium stearate is added to the dried granules. Lactose and starch are granulated with 10% w/v aqueous solution of gelatin and dried. Magnesium stearate is added to the dried coating granules. The granulated core is compressed with the granulated coating in a conventional compression molding press.

10 C. CAPSULE

Ingredient per Capsule

Amount

15

20

5

Active Compound 150.0 mg Lactose 200.0 mg Magnesium stearate 10.0 mg

25

The finely ground active compound is mixed with the powdered excipients and packed into a two part gelatin capsule.

30

D. Suspension

Ingredient per mL

Amount

35

Active Compound
75.0 mg
Sodium lauryl sulfate
40 25.0 mg
Hydroxypropylmethylcellulose
100.0 mg
Sucrose
50.0 mg

6

Flavor and Color q.s. Water 1.0 mL

q.s.

5

10

The sodium lauryl sulfate, hydroxypropylmethylcellulose, flavor and color are triturated with the active compound. This mixture is then blended with 0.5 ml water and sucrose, and additional water is added to make the total volume 1.0 ml of suspension.

invention when administered to mammals provide for a significant increase in the HDL cholesterol content (table 4) coupled with a desireable reduction of the LDL cholesterol content. Furthermore, the very low density lipoprotein, which generally is high in triglyceride and neutral lipid content, and which carries these lipids to the tissues from the liver, is markedly reduced by the agents.

TABLE 4

The cholesterol content of Serum Lipoprotein of Sprague-Dawley Rats treated 14 days with Agents Onally at 20mg/kgl/day is tabulated in Table 4.

10	VLDI HDL Cholestero	<u>choleterol</u>	Percent of control LDL cholesterol
10	Control 1% 100 Compound	100	100
15	A 441		
20	F 141	59	
Control 1% 100 100 compound 15 A 441 F 59 141 20 J 98 194 25 340 N 409 30 0 27	43		
25	M 340	71	67
	N		. 87
30	. 0 113	27	78

25

30

Claims:

1. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the following structural formula:

wherein R' is hydrogen, a C₁ to C₁₈ alkyl or

substituted alkyl, a C₂ to C₁₈ alkenyl or substituted alkenyl, a C₂ to C₁₈ alkynyl or substituted alkynyl, a C₄ to C₁₀ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₀ cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R' or -Y-CO-R';

 R^3 and R^4 may be the same or different and are each the same as R^4 ;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C₂ to C, alkenyl or substituted alkenyl, a C₂ to C₃ alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C₄ to C, alkoxy or substituted alkoxy, a C₄ to C₁₀ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₀ cycloalkenyl or substituted cycloalkenyl, -NHC₆C₅, -NR¹⁰R¹¹ wherein R¹⁰ and R¹¹ can be the same or different and are each hydrogen, a C1 to C₅ alkyl or substituted alkyl, phenyl or substituted phenyl; and

25

30

Y is a C, to C, alkylene or substituted alkylene; and pharmaceutically acceptable salts, and mixtures thereof;

- provided that R' and R' are not both hydrogen and that R' is not phenyl when either R' and R' is hydrogen.
- claim 1 wherein R' is selected from the group consisting of halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, and nitrophenyl; and R' and R' are each selected from the group consisting of hydrogen, alkylcarbonyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, and N-phenylcarbamoyl.

3. The pharmaceutical composition of claim 2 wherein the compound having hypolipidemic activity is selected from the group consisting of:

4-phenyl-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione,

- 4-(4-chlorophenyl)-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione,
- 4-(4-methoxyphenyl)-1,2-dimethylcarbonyl-1,2,4-triazolidine-3,5-dione,
- 4-(4-methoxyphenyl-1,2-di-n-pentylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-methoxyphenyl)-1,2-diethylcarbonyl-1,2,4-triazolidine-3,5-dione,

4-(4-nitrophenyl)-1,2-diethylcarbonyl-1,2,4triazolidine-3,5-dione, $4-\underline{n}$ -butyl-1,2-di- \underline{n} -pentylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-chlorophenyl)-1,2-dimethylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-benzoyl-1,2,4triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-n-propylcarbonyl-1,2,4-IO. triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-n-pentylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-chlorophenyl)-1-n-butylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-methylcarbonyl-1,2,4-15 triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-benzoyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-n-propylcarbonyl-1,2,4-20 triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-n-pentylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-n-butylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-methoxyphenyl)-1-trichloromethylcarbonyl-25 1,2,4-triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-methylcarbonyl-1,2,4triazolidine-3,5-dione, 4-(4-nitrophenyl)-1-benzoyl-1,2,4-triazolidine-30 3,5-dione, 4-(4-nitrophenyl)-1-n-propylcarbonyl-1,2,4triazolidine-3,5-dione,

4-(4-nitrophenyl)-1-n-pentylcarbonyl-1,2,4-

triazolidine-3,5-dione,

53

 $4-(4-nitrophenyl)-1-\underline{n}-butylcarbonyl-1,2,4-triazolidine-3,5-dione,$

4-(4-nitrophenyl)-1-ethylcarbonyl-1,2,4-triazolidine-3,5-dione,

5 4-(4-nitrophenyl)-1-trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1-benzoyl-1,2,4-triazolidine-3,5-dione,

4-n-butyl-1-methylcarbonyl-1,2,4-triazolidine-10 3,5-dione,

4-n-butyl-1-n-propylcarbonyl-1,2,4triazolidine-3,5-dione, 4-n-butyl-1-npentylcarbonyl-1,2,4-triazolidine-3,5-dione,
n-butyl-1-n-butylcarbonyl-1,2,4-triazolidine-3,5dione,

4-n-butyl-1-trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione and pharmaceutically acceptable salts and mixtures thereof.

4. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the following structural formula:

15

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl,

10

15

20

25

phenyl, a substituted phenyl, cyano, phenalkyl, CO-

R' or -Y-CO-R';

R⁵ and R6 can be the same or different and are each hydrogen, a C₁ to C₁₈ alkyl or substituted alkyl, a C₂ to C₁₈ alkenyl or substituted alkenyl, a C₂ to C₁₈ alkynyl or substituted alkynyl, a C₄ to C₁₀ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₀ cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R⁵, or -Y-CO-R⁶,

with the proviso that R5 and R6 together cannot be so bulky as to cause the compound to decompose;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, -NHC,C,, -NR'R' wherein R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl; and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts thereof, and mixtures thereof;

provided that R' is not phenyl or chlorophenyl when R' is

hydrogen, R⁶ is -CO-R⁹, and R⁹ is ethoxy or when R⁶ is hydrogen, R⁵ is -CO-R⁹, and R⁹ is ethoxy; and further provided that R¹ is not phenyl when R⁵ is hydrogen, R⁶ is -CO-R⁹, and R⁹ is methoxy or when R⁶ is hydrogen, R⁵ is -CO-R⁹, and R⁹ is methoxy.

10

15

20

30

5. The pharmaceutical composition of claim 4 wherein

R' is selected from the group consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms;

and R' and R' may be the same or different and are each selected from the group consisting of hydrogen and alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms.

6. The pharmaceutical composition of claim 5 wherein the compound having hyppolipidemic activity is selected from the group consisting of:

3-(4-methoxyphenyl)-6-ethoxycarbonyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione;

3-n-butyl-6-ethoxycarbonyl-1,3,5-

triazabicyclo[3.1.0]hexane-2,4-dione; and

pharmaceutically acceptable salts and mixtures thereof.

7. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the structure:

15

20

25

30

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -CO-R° or -Y-CO-R°;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R', or -Y-CO-R';

 R^{ϵ} is hydrogen, a C, to C, alkyl, a C, to C_{io} cycloalkyl,

-co-R, or -y-co-R;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, -NHC,C, -NR'R' wherein R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl;

 R^{12} is -CO,-COH,-CS,-CSH, or a C, to C, alkylene group; and

Y is a C, to C, alkylene or substituted alkylene;

with the proviso that when R' is hydrogen and R' is ethoxy, R' is not phenyl, methoxyphenyl, chlorophenyl, or <u>n</u>-butyl.

57

8. A pharmaceutical composition for use in controlling hyperlipidemia in mammals which comprises a hypolipidemically effective amount of a compound having hypolipidemic activity and a structural formula as defined in claim 1 in combination with a pharmaceutically acceptable carrier.

9. A pharmaceutical composition for use in controlling hyperlipidemia in mammals which comprises a hypolipidemically effective amount of a compound having hypolipidemic activity and a structural formula as defined in claim 4 in combination with a pharmaceutically acceptable carrier.

5

20

30

- 10. A pharmaceutical composition for use in controlling hyperlipidemia in mammals which comprises a hypolipidemically effective amount of a compound having hypolipidemic activity and a structural formula as defined in claim 7 in combination with a pharmaceutically acceptable carrier.
- 11. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the following structural formula:

$$R'--N$$

$$N \longrightarrow R'$$

$$(II)$$

10

15

20

25

30

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or a substituted phenyl, phenalkyl, -CO-R' or -Y-CO-R';

R and R can be the same or different and are each the same as R';

R° is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, or -NHC,C, and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof;

provided that R' and R' are not both hydrogen and that R' is not phenyl when either R' and R' is hydrogen.

12. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the following structural formula:

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl,

59

phenyl or a substituted phenyl, phenalkyl, $-CO-R^{\circ}$ or $-Y-CO-R^{\circ}$;

R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, a C₂ to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenalkyl, -CO-R', or -Y-CO-R',

5

10

15

20

25

with the proviso that R' and R' together cannot be so bulky as to cause the compound to decompose;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, or -NHC, and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof;

provided that R' is not phenyl or chlorophenyl when R' is hydrogen, R' is -CO-R', and R' is ethoxy or when R' is hydrogen, R' is -CO-R', and R' is ethoxy; and further provided that R' is not phenyl when RR' is hydrogen, R' is -CO-R', and R' is methoxy or when R' is hydrogen, R' is -CO-R', and R' is methoxy.

V

13. A pharmaceutical composition for controlling hyperlipidemia in mammals comprising a hypolipidemically effective amount of a compound having the structure:

10

20

25

wherein R' is a substituted phenyl or <u>n</u>-butyl;
R' is hydrogen, a C, to C, alkyl or substituted alkyl,
a C, to C, alkenyl or substituted alkenyl, a C, to C,
alkynyl or substituted alkynyl, phenyl or
substituted phenyl, phenalkyl, -CO-R', or -Y-CO-R';
R' is hydrogen, a C, to C, alkyl, -CO-R', or
-Y-CO-R';

R⁵ is hydrogen, a C, to C, alkyl or

substituted alkyl, a C₂ to C, alkenyl or substituted alkenyl, a C₂ to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, or -NHC,C,

and R^{12} is -CO,-COH,-CS,-CSH, or a C, to C, alkylene group; and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof;

with the proviso that when R^s is hydrogen and R^r is ethoxy, R^s is not methoxyphenyl, chlorophenyl, or <u>n</u>-butyl.

30

14. A method for controlling hyperlipidemia in mammals which comprises administering to a mammal an effective amount of a compound having hypolipidemic activity and the structural formula:

61

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, phenyl, a substituted phenyl, cyano, phenalkyl, -co-R' or -Y-CO-R';

 R^2 is

5

10

 R^3 and R^4 can be the same or different and are each the same as R^4 ;

R⁵, R⁶ and R⁷ can be the same or different and are each hydrogen, a C, to C₁₈ alkyl or substituted alkyl, a C, to C₁₈ alkenyl or substituted alkenyl, a C, to C₁₈ alkynyl or substituted alkynyl, a C₄ to C₁₈ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₉ cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R⁹, or -Y-CO-R⁹.

IO

15

with the proviso that R' and R' together cannot be so bulky as to cause the compound to decompose;

R' is hydrogen, a C, to C, alkyl, a C, to C, cycloalkyl, -CO-R', or -Y-CO-R';

R° is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, - NHC,C, -NR¹⁰R¹¹ wherein R¹⁰ and R¹¹ can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl;

R¹⁷ is -CO, -COH, -CS, -CSH, or a C, to C, alkylene group; and

Y is a C_i to C_{i0} alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

15. The method of claim 14 wherein R' is

25

$$\mathbb{R}^{1}$$
 (a)

 R^3 and R^4 can be the same or different and are each the same as R^4 ;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C5 alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, -NHC,C,, -NR'R' wherein R' and R' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl; and Y is a C, to C, alkylene or substituted

alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

15

20

25

10

5

- 16. The method of claim 15 wherein R' is selected from the group consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; and R' and R' may be the same or different and are each selected from the group consisting of hydrogen, alkylcarbonyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms, and N-phenylcarbamoyl.
- 17. The method of claim 16 wherein the compound having hypolipidemic activity is selected from the group consisting of:

4-phenyl-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione,

```
4-phenyl-1,2-dimethylcarbonyl-1,2,4-
        triazolidine-3,5-dione,
             4-phenyl-1-N-phenylcarbamoyl-1,2,4-
        triazolidine-3,5-dione,
             4-phenyl-1-ethoxycarbonyl-1,2,4-triazolidine-
        3,5-dione,
             4-(4-chlorophenyl)-1-methylcarbonyl-1,2,4-
        triazolidine-3,5-dione,
             4-(4-methoxyphenyl)-1,2,4-triazolidine-3,5-
IO
        dione,
             4-(4-n-butyl)-1,2,4-triazolidine-3,5-dione,
             4-(4-nitrophenyl)-1,2,4-triazolidine-3,5-dione,
             4-(4-chlorophenyl)-1,2,4-triazolidine-3,5-
       dione,
15
             4-methyl-1,2,4-triazolidine-3,5-dione, and
             4-phenyl-1,2,4-triazolidine-3,5-dione,
             4-(4-methoxyphenyl)-1,2-dimethylcarbonyl-i,2,4-
       triazolidine-3,5-dione,
            4-(4-methoxyphenyl-1,2-di-n-pentylcarbonyl-
       1,2,4-triazolidine-3,5-dione,
20
            4-(4-methoxyphenyl)-1,2-diethylcarbonyl-1,2,4-
       triazolidine-3,5-dione,
            4-(4-nitrophenyl)-1-,2-2diethylcarbonyl-1,2,4-
       triazolidine-3,5-dione,
            4-n-butyl-1,2-di-\underline{n}-pentylcarbonyl-1,2,4-
25
       triazolidine-3,5-dione,
            4-(4-chlorophenyl)-1,2-dimethylcarbonyl-1,2,4-
       triazolidine-3,5-dione,
            4-(4-chlorophenyl)-1-methylcarbonyl-1,2,4-
       triazolidine-3,5-dione,
30
            4-(4-chlorophenyl)-1-benzoyl-1,2,4-
       triazolidine-3,5-dione,
            4-(4-chlorophenyl)-1-\underline{n}-propylcarbonyl-1,2,4-
      triazolidine-3,5-dione,
```

- $4-(4-chlorophenyl)-1-\underline{n}-pentylcarbonyl-1,2,4-triazolidine-3,5-dione,$
- $4-(4-chlorophenyl)-1-\underline{n}-butylcarbonyl-1,2,4-triazolidine-3,5-dione,$
- 5 4-(4-chlorophenyl)-1-ethylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-methoxyphenyl)-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-methoxyphenyl)-1-benzoyl-1,2,4-
- triazolidine-3,5-dione,
 - $4-(4-methoxyphenyl)-1-\underline{n}-propylcarbonyl-1,2,4-triazolidine-3,5-dione,$
 - $4-(4-methoxyphenyl)-1-\underline{n}-pentylcarbonyl-1,2,4-triazolidine-3,5-dione,$
- 4-(4-methoxyphenyl)-1-n-butylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-methoxyphenyl)-1-ethylcarbonyl-1,2,4-triazolidine-3,5-dione,
- 4-(4-methoxyphenyl)-1-trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-nitrophenyl)-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - 4-(4-nitrophenyl)-1-benzoyl-1,2,4-triazolidine-3,5-dione,
- 4-(4-nitrophenyl)-1-n-propylcarbonyl-1,2,4-triazolidine-3,5-dione,
 - $4-(4-nitrophenyl)-1-\underline{n}-pentylcarbonyl-1,2,4-triazolidine-3,5-dione,$
- $4-(4-nitrophenyl)-1-\underline{n}-butylcarbonyl-1,2,4-30$ triazolidine-3,5-dione,
 - 4-(4-nitrophenyl)-1-ethylcarbonyl-1,2,4- triazolidine-3,5-dione,
 - 4-(4-nitrophenyl)-1-trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1-benzoyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1-methylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1- \underline{n} -propylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1- \underline{n} -pentylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1- \underline{n} -butylcarbonyl-1,2,4-triazolidine-3,5-dione,

 $4-\underline{n}$ -butyl-1-ethylcarbonyl-1,2,4-triazolidine-3,5-dione,

4-n-butyl-1-trichloromethylcarbonyl-1,2,4-triazolidine-3,5-dione and pharmaceutically acceptable salts and mixtures thereof.

18. The method of claim 14 wherein ${\ensuremath{R}}^2$ is

20

35

. 15

5

10

R⁵ and R⁶ can be the same or different and are each hydrogen, a C, to C₁₈ alkyl or substituted alkyl, a C₂ to C₁₈ alkenyl or substituted alkenyl, a C₂ to C₁₈ alkynyl or substituted alkynyl, a C₄ to C₁₀ cycloalkyl or substituted cycloalkyl, a C₄ to C₁₀ cycloalkenyl or substituted cycloalkenyl, phenyl or substituted phenyl, phenalkyl, -CO-R⁶, or -Y-CO-R⁶, with the proviso that R⁵ and R⁶ together

cannot be so bulky as to cause the compound to decompose;

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted

25

30

Ò

alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, - NHC,C,, -NR¹⁰R'' wherein R¹⁰ and R'' can be the same or different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl; and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

19. The method of claim 18 wherein R' is selected from the group consisting of phenyl and substituted phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; and

R' and R' may be the same or different and are each selected from the group consisting of hydrogen and alkoxycarbonyl wherein the alkoxy group has from 1 to 5 carbon atoms.

20. The method of claim 19 wherein the compound having hypolipidemic activity is selected from the group consisting of:

3-(4-chlorophenyl)-6-ethoxycarbonyl-1,3,5-triazabicyclo[3.1.0]hexane-2,4-dione; and

3-phenyl-6-ethoxycarbonyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione;

3-(4-methoxyphenyl)-6-ethoxycarbonyl-1,3,5triazabicyclo[3.1.0]hexane-2,4-dione;

3-n-butyl-6-ethoxycarbonyl-1,3,5-

triazabicyclo[3.1.0]hexane-2,4-dione;

3-phenyl-6-methoxycarbonyl-1,3,5-

triazabicyclo[3.1.0]hexane-2,4-dione; and

pharmaceutically acceptable salts and mixtures thereof.

10 21. The method of claim 14 wherein R^2 is

15

5

R' is a C, to C, alkyl or substituted

alkyl, a C, to C, alkenyl or substituted alkenyl, a

alkynyl or substituted alkynyl, a C, to C, cycloalkyl

or substituted cycloalkyl, a C, to C, cycloalkenyl or

substituted cycloalkenyl, phenyl or substituted

phenyl, phenalkyl, -CO-R°, or -Y-CO-R°;

25

30

 R^s is hydrogen, a C, to C, alkyl, a C, to C_{10} cycloalkyl, -CO-R', or -Y-CO-R';

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkyl or substituted cycloalkyl, a C, to C, cycloalkenyl or substituted cycloalkenyl, - NHC,C,, -NR'R' wherein R' and R' can be the same or

69

different and are each hydrogen, a C, to C, alkyl or substituted alkyl, phenyl or substituted phenyl;

 R'^2 is - CO; and

5

Y is a C, to C_{10} alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

- 22. The method of claim 21 wherein R' is selected from the group consisting of phenyl, halophenyl, alkylphenyl wherein the alkyl group has from 1 to 5 carbon atoms, alkoxyphenyl wherein the alkoxy group has from 1 to 5 carbon atoms, nitrophenyl, and alkyl having from 1 to 5 carbon atoms; R' is an alkoxy carbonyl wherein the alkoxy group has from 1 to 5 carbon atoms; and R' is hydrogen or a C1 to C5 alkyl.
- 23. The method of claim 22 wherein the compound having hypolipidemic activity is selected from the group consisting of:

3-phenyl-6-ethoxycarbonyl-1,3,5-triazine-2,4(1H,3H)-dione; and

- 3-(4-chlorophenyl)-6-ethoxycarbonyl-1,3,5triazine-2,4(1H,3H)-dione; and pharmaceutically acceptable salts and mixtures thereof.
- 24. A method for controlling hyperlipidemia in mammals which comprises

 30 administering to a mammal an effective amount of a compound having hypolipidemic activity and the structural formula:

10

wherein R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C₂ to C, alkenyl or substituted alkenyl, a C₂ to C, alkynyl or substituted alkynyl, phenyl or a substituted phenyl, phenalkyl, -CO-R' or -Y-CO-R';

R2 is

20

R' and R' can be the same or different and are each the same as R';

R⁵, R⁶ and R⁷ can be the same or different and are each hydrogen, a C₁ to C₂ alkyl or substituted alkyl, a C₂ to C₃ alkenyl or substituted alkenyl, a C₄ to C₅ alkynyl or substituted alkynyl, phenyl or substituted phenyl, phenalkyl, -CO-R⁵, or -Y-CO-R⁵, with the proviso that R⁵ and R⁶ together cannot be so bulky as to cause the compound to decompose;

30

25

 R^s is hydrogen, a C, to C_s alkyl, -co-R', or -Y-CO-R';

R' is hydrogen, a C, to C, alkyl or substituted alkyl, a C, to C, alkenyl or substituted alkenyl, a C, to C, alkynyl or substituted alkynyl,

phenyl or substituted phenyl, phenoxy or substituted phenoxy, a C, to C, alkoxy or substituted alkoxy, or -NHC₆C₅: R¹² is -CO, -COH, -CS, -CSH, or a C, to C₄ alkylene group; and

Y is a C, to C, alkylene or substituted alkylene;

and the pharmaceutically acceptable salts, and mixtures thereof.

10 25. The method of claim 24 wherein R² is

15

5

26. The method of claim 24 wherein \mathbb{R}^2 is

20

$$-N \qquad \qquad R^{5}$$

$$R^{6}$$

27. The method of claim 24 wherein R^2 is

5

	International Application No.	-
FURTHE	R INFORMA 'N CONTINUED FROM THE SECOND SHEET	89/03246
A	US, A 4 088 767 (SHIGEMATSU) 9 May 1978 see entire document.	11-27
	1370 See entire document.	
A	N, Chemical Abstracts Volume 107 No	1-27
•	7 issued 17 August 1987, Abst No 54712e	
	Columbus, Ohio, USA (Dept. Bioscio Univ. Halle-Wittenberg, 4020 Halle/ Saale Ger.	
	Dem Rep.) Miersch et al., Biomed.	
	Biochim Acta 1977 46(5), 307-15.	
A	N Chemical Abstracts. Volume 95 No 25,	1-27
	issued 21 December 1981 Abst No 220015K	
	Columbus Ohio, USA (Leningr. Gos. Univ.	
	Leningrad, USSR). Korobitsyna et al. Zh Org. Khim. 1981, 17(9). 2021-2.	
∨ 🗆 os	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE!	
	national search report has not been established in respect of certain claims under Article 17(2) (a) fo	er the following reasons:
	m numbers . because they relate to subject matter 12 not required to be searched by this Au	
	•	-
	* • •	
2. Clar	im numbers . because they relate to parts of the international application that do not comply	The state of the s
	its to such an extent that no meaningful international search can be carried out 13, specifically:	with the preschoed require-
		·
3 C C	III flumbers because they are decembers district on drafted in accordance with the country	
_	im numbers because they are dependent claims not drafted in accordance with the second a FRule 6.4(a).	and third sentences of
VI. 🗌 O	BSERVATIONS WHERE UNITY OF INVENTION IS LACKING:	
This Inte	rnational Searching Authority found multiple inventions in this international application as follows:	
	-	
	•	•
1,□ ▲=	alf required additional search fees were timely paid by the applicant, this international search report of	
ar t	he international application.	·
2∐ As-	only some of the required additional search fees were timely paid by the applicant, this internationa se claims of the international application for which fees were paid, specifically claims:	search report covers only
⊒∏ No	required additional search fees were timely paid by the applicant. Consequently, this international sc	
Libe	invention first mentioned in the claims; it is covered by claim numbers:	sarch report is restricted to
4: As	all searchable claims could be searched without effort justifying an additional fee, the International	Searching Authority did not
	te-payment of any additional fee.	The state of the s
_	e additional search fees were accompanied by applicant's protest.	
_	protest accompanied the payment of additional search less	

INTERNATIONAL SEARCH REPORT

International Application No PCT/US89/03246

		N 5" SUBJECT MATTER (if several classifi			
According	to Internat	iona stent Classification (IPC) or to poin Natio 753; 31/52; 31/41	onal Classification and IPC		
		1; 514/264; 514/384			
	S SEARCE				
		Minimum Dacument	ation Searched 7		
Classificati	on System		lassification Symbols		
U.S.		514/241; 514/264; 514/384			
		Documentation Searched other the to the Extent that such Documents:	an Minimum Documentation are Included in the Fields Searched 8		
III. DOCE		ONSIDERED TO BE RELEVANT			
Category *		ion of Document, 11 with indication, where appre		Relevant to Claim No. '3	
A	US,	A 4 366 320 (GILBERTS 1982, see entire docum	ON) 28 December ment.	1-27	
A	us,	A 3 621,099 (JACOBSON 1971 see entire docum	1) 16 November ment.	1-27	
A	US.	A, 3 267 114 (WOLF) 16 see entire document.	August 1966,	1-27	
A	υs,	A. 3,484 451 (MOON) 12 see entire document.	January 1971,	1-27	
A	US,	A 4,087,534 (OVADIA) see entire document.	4,087,534 (OVADIA) 02 May 1978 1 27 ee entire document.		
A	GB,	GB, A, 2 097 385 (CALDWELL) 03 November 1-27 1982, see entire document.			
A	US,	A, 4,433,085 (ROTTMAIN 1984 see entire document	R) 21 February ment.	1-27	
A	บร	A. 3 634,445 (ZSCHOCKI 1972, see entire document	E) ll January ment.	1-27	
"A" do "E" ea "L" do "ti fili "L" do "ti "O" do at "P" do at IV. CER Date of U	cument definishered to river document go date cument which is cited about or oth cument refiner means cument but ther than the TIFICATION Actual C	ompletion of the international Search	"T" later document published after or promity date and not in conflicted to understand the princip invention. "X" document of particular relevant cannot be considered novel of involve an inventive step. "Y" document of particular relevant cannot be considered to involve document is combined with one mental such combination being in the arr. "4" c2:ument member of the same. "O" DEC 1989. Signature of Authorized officer.	iet with the application but le or theory underlying the loce; the claimed invention in cannot be considered to note; the claimed invention is an inventive step when the or more other such documpations to a person skilled.	
ISA/US			HUSSELL TRAVERS		

International Addition No CT/U	589/03246
DOCUMENTS CONSIDD TO BE RELEVANT (C NTINUED FROM THE SECOND SHE	Resevant to Claim No
DOCUMENTS CONSIDE AD TO BE RELEVANT (C NTINOSE) with indication, where appropriate, of the relevant passages	Resevant to Claim 110
Citation of Decument	: .1-27
	; !
	;
97(19), 3012 ==	1 27
N Chemical Abstracts, Volume 97, No. 19 issued 8 November 1982, Abst No 162927 issued 8 November 1982, Mol. Biol.,	n
included a Movement of the Mole Brote.	
Columbus Ohio, USA (Inst. Mod.) Columbus Ohio, USA (Inst. Mod.) Sofia, Bulg) Golovinski et al., Sofia, Bulg) 37(5), 355-6	
Sofia, Bulg) GoldVIIIsk1 Sofia, Bulg) Gold	1-27
A N Chemical Abstracts, Volume 97, No. 25 A N Chemical Abstracts, Volume 97, No. 25 issued 20 December 1982 Abst No issued 20 December 1982 (May Inst.	
issued 20 becomes, Ohio. USA (May 1135)	
wad Res., uc" - nac Soc Eng.	
45229 034, 1982 170(4) 4/6 63	12 1-27
	12
A N Chemical Abstracts Volume 180, No. 87234, issued 19 March 1984, Abst No. 87234, issued 19 March USA (Leningr Univ.,	
1 1	•
199164 Leningrad, USSR). Rodina (12), Khim Geterotsikl. Soedin 1983 (12),	
1694-5	15 1 27
N, Chemical Abstracts Volume 100, No. No. Che	20
issued Ship USA (Hoechst A G. Hror	ot
	SA A
et al., Man -4 Pt. A	
(Purine Metas	<u> </u>
N. Chemical Abstracts, Volume 103 No 1375 issued 28 October 1985 Abst No 1375 issued 28 October 1985 Abst No 1375	niv.
New South Mars et al. Biochem Mer	
1985 34(1)	19 1-27
abstracts, Volume 103, 15	62916
issued II no USA (Sch Blochem.)	
Columbus Ohio, USA (Sch Blochem 2033 New South Wales Kensington 2033 Australia) Gero et al. Biochem Med.	1985
Australia, del	
34(1) 60-3	No. 11 \ 1-2/
A N Chemical Abstracts, Volume 28351 issued 17 March 1986 Abst No. 88351 issued 17 March 1986 (Fac Sci., Uni	I
issued I had USA (Fac Sci., one	Poje
Zagreb, 41001 Zagreb, Yugoslavia, 26(26 et al Tetrahedrom Lett. 1985, 26(26);
et al Tetranedio	
() () ()	

	2	-		international	Acquestion No		
<u>//</u>	TS C NSIDENE	D TO BE RELEV	ANT (COR	TIMUSD STO		T/US89/03246	
	Citation of Docum	ient, with indica	tion, where and	THE PROM	THE SECOND SH	IEET)	
	N. Chami	1		touriale. Of the re	evant naves	Relevant to Cl.	
	Osaka Jaj Pharmaco	November i Res. La pan. 553) l 1987, 4	1987 p 1b., Shi Yoneta 15(1), 3	Volume 10 Abst No. Onogi Co .ni et al. 7 43	7 No 19 173715t ., Ltd. . Jpn. J.	1-27	im No
F (Chapman Reaction Electron	John J. of Carbe deficien	. Maste ne Prec t cis-A	r's Thesi Ursors wi		1-27	
M 6 () Di	itchel, Synthesis Carbetho lH 3H) Di laziridir	John A s of DXY 3 Ary lones fro les " (De	Master 1 1,3 5 m Bicyc pt of C	Triazine	2-2,4	1 27	
Iz Et 4- J.	ydore, R hyl Diaz Phenyl-1 Amer C	A "1 oacetate 2,4-Tria	2-Additi and 1201ine-	on React 3 5-Dione 5611-12	6). ion of =" 1975	1 27	
GB,	A. 8933			•	į.	1-27 1-27	
GB.	A 1407	7.00		Chemical 1978 see	1	1-27	
·							
(Rev.11-							