C2 Rețele de calculatoare

Sergiu Nisioi sergiu.nisioi@unibuc.ro

Anul II, FMI, UniBuc, 2021-2022

De data trecută

Să revenim la partea de rețea

În interiorul ISP-urilor

- există o topologie de dispozitive interconectate
- funcționează un proces numit packet-switching

rețeaua redirecționează pachetele de la un dispozitiv la altul, prin diferite tipuri de canale / legături (links) către destinație

Routing vs. Forwarding

Routing

Forwarding

Unități de măsură

Prefix	Ехр.	prefix	exp.
K(ilo)	10 ³	m(illi)	10-3
M(ega)	10 ⁶	μ(micro)	10-6
G(iga)	10 ⁹	n(ano)	10-9

conform IEEE1541:

a **byte** is a set of adjacent bits operated on as a group

la acest curs:

byte := octet

- folosim puteri ale lui 10 pentru rate de transmisie 1Gb/s (giga**bit** pe secundă sau **Gbps**)
- folosim puteri ale lui 2 pentru stocare, memorie 1GB (giga**octet** sau giga**byte**)
- "B" pentru octeți / bytes folosim ambii termeni interșanjabil
- "b" pentru biţi
- 1 octet / byte = 8 biţi
- bitul maxim: 1
- octetul maxim: **255** = 1111 1111

Packet Switching: store-and-forward

- pentru un mediu de R biți pe secundă
- și un pachet de L biți
- acesta poate fi transmis cu L/R biţi pe secundă

Packet Transmission Delay = L/R (timpul de întârziere pentru trimiterea pachetelor)

Transmisiunea are loc prin stocare și redirecționare:

store-and-forward

One-hop numerical example:

- L = 10 Kbits
- R = 100 Mbps
- one-hop transmission delay= 0.1 msec

Packet Switching - queueing

Dacă rata cu care ajung pachetele este mai mare decât rata cu care pot fi redirecționate

- pachetele se vor pune în coadă pentru a fi transmise
- dacă memoria cozii se umple, pachetele **sunt șterse** de pe rețea

(packet queueing) (packet drop)

(Circuit) Switching pe bază de circuit

- ca în telefonia mobilă, când faci un apel
- resursele sunt pre-alocate end-to-end între sursă și destinație
- resursele sunt dedicate circuitului: no sharing
- performanţă garantată fixă
- dacă circuitul nu este folosit, rămâne în pauză, nu este alocat altor convorbiri (ineficient)

sursa: https://bit.ly/extra_retele

Multiplexarea în circuite: FDM and TDM

Frequency Division Multiplexing (FDM)

- optical, electromagnetic frequencies divided into (narrow) frequency bands
- each call allocated its own band, can transmit at max rate of that narrow band
- ca posturile de radio pe frecvenţe diferite

Time Division Multiplexing (TDM)

- time divided into slots
- each call allocated periodic slot(s), can transmit at maximum rate of (wider) frequency band (only) during its time slot(s)

Packet switching vs Circuit switching

Mediu de 1 Gb/s (gigabit pe secundă) Fiecare utilizator:

- transmite la 100 Mb/s când este activ
- este activ 10% din timp

Q: câți utilizatori pot folosi concomitent această rețea pentru cele 2 tipuri de switching?

- circuit-switchig: 1000 Mb/s / 100 Mb/s = 10 nr de utilizatori care pot transmite la 100 Mb/s
- packet-switching: probabilitatea ca un user să fie activ este 0.1

Care este probabilitatea ca toată banda să fie epuizată simultan? 0.1^10 = 0.0000000001

Dacă am avea K=35 de utilizatori, care este probabilitatea ca cel puțin 10 să fie online în același timp?

Care este probabilitatea ca după K aruncări ale unei monede să obținem de cel puțin 10 ori cap?

Probabilitatea sa obtii de 3 ori cap cand dai de 5 ori cu banul

- Solution:
- One way to get exactly 3 heads: HHHTT
- What's the probability of this exact arrangement?
 - P(heads) x P(heads) x P(heads) x P(tails) x P(tails) = $(1/2)^3$ x $(1/2)^2$
- Another way to get exactly 3 heads: THHHT
 - Probability of this exact outcome = $(1/2) \times (1/2)^3 \times (1/2)$ = $(1/2)^3 \times (1/2)^2$

- In fact, (1/2)³ x (1/2)² is the probability of each unique outcome that has exactly 3 heads and 2 tails
- So, the overall probability of 3 heads and 2 tails is: $(1/2)^3 \times (1/2)^2 + (1/2)^3 \times (1/2)^2 + (1/2)^3 \times (1/2)^2 + \dots$ for as many unique arrangements as there are
- But how many are there??

În câte moduri putem aranja 3 de cap din 5 aruncări?

Distribuția binomială

- folosită pentru a descrie X ocurente de P(X=1) într-un set de n încercări
- probabilitatea ca un user să fie activ este 0.1 si să fie inactiv este 0.9
- dupa 35 de incercari, probabilitatea ca 10 useri să fi fost activi este:

https://en.wikipedia.org/wiki/Binomial_distribution

=> Probabilitate mică

$$F(k;n,p) = \Pr(X \leq k) = \sum_{i=0}^{\lfloor k
floor} inom{n}{i} p^i (1-p)^{n-i},$$

- N = 35 users
- Prob (# active users > 10) = 1 Prob (#active = 10)
 - Prob (#active = 9)
 - Prob (#active = 8)

....

- Prob (#active = 0)

• Prob (#active = 10) = $C(35, 10) * 0.1^{10} \times 0.9^{25}$

Packet Delay

d_nodal = d_proc + d_queue + d_trans + d_prop

d_proc - procesarea la nivel de nod (checksum, determinarea căilor de ieșire) de obicei măsoară timpi foarte mici

d_queue - timpul de așteptare în coadă, depinde de cât de congestionată este rețeaua

d_trans - delay de transmisie, lungimea pachetului / rata de transmisie

d_prop - delay de propagare, între 2*10^8 și 3*10^8, depinde de mediul de transmisie

d queue aici: https://www.waveform.com/tools/bufferbloat

extra explicații: https://blog.scaleway.com/understanding-network-latency/amp/

Latența, Debitul și Lățimea de bandă

Network Latency vs. Throughput vs. Bandwidth

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

traceroute

```
$ traceroute ok.ru
$ traceroute unibuc.ro
$ traceroute fmi.unibuc.ro
```

Exercițiu: încercați asta de pe calculatorul personal și de pe AWS

fmi.unibuc.ro

traceroute fmi.unibuc.ro

traceroute to fmi.unibuc.ro (193.226.51.15), 64 hops max

- 1 10.11.0.1 4,287ms 11,155ms 2,113ms
- 2 172.20.241.1 2,681ms 3,358ms 2,324ms
- 3 10.0.200.177 3,191ms 2,640ms 2,057ms
- 4 10.0.241.66 4,780ms 3,316ms 3,709ms
- 5 172.20.241.6 5,115ms 4,503ms 4,889ms
- 6 1.2.185.1 3,711ms 4,250ms 5,186ms

Sfârșit