CHAPTER 2

COUNTER

Introduction

- Counter
- A counter is a sequential logic circuit consisting of a set of flip-flops which can go through a sequence of states.

Introduction (continue)

- Counters are formed by connecting flip-flops together
- Types of counter are;
 - Asynchronous
 - Also known as ripple counter
 - The first flip-flop is driven by external clock while the successive flip-flops by the output of preceding flip-flop

Introduction (continue)

- Synchronous
 - All flip-flops are simultaneously driven by common clock

- Each type of counter are classified by;
 - Sequence i.e up or down
 - Number of states i.e 2-bit will have 4 states (2^N)
 - Number of flip-flops i.e same as number of bits

5

Asynchronous counter

Asynchronous counter

- Also known as ripple counter. Ripple counters are the simplest type of binary counters because they require the fewest components to produce a given counting operation.
- Each FF output drives the CLK input of the next FF.
- FFs do not change states in exact synchronism with the applied clock pulses.
- There is delay between the responses of successive FFs.
- It is also often referred to as a ripple counter due to the way the FFs respond one after another in a kind of rippling effect.

Up counter and down counter for negative edge clock

Up counter and down counter for positive edge clock

9

Asynchronous Counter Operation

For example, 2-bit asynchronous binary counter using J-K FF

- CLK is only connected to 1st FF0, LSB FF
- The 2nd FF clock is driven by $\overline{Q_0}$ of 1st FF
- Both FF input are always HIGH
- Q₀ changes state at the positive-edge clock
- Q₁ change at the positive-edge of the Q₀
- Note that the two FFs do not triggered at the same time because clock and Q₀ transitions do not occur at the same time

Asynchronous Counter Operation (continue..)

Timing diagram for 2-bit asynchronous binary counter

- Four clock pulses are applied, assume initially all LOW
- Q₀ (LSB) is always toggle at positive-edge clock (J and K are HIGH)
- Q₀ is reciprocal of Q₀
- Q₁(MSB) is toggle at positive-edge of Q₀
- At 4th clock pulse, the counter is recycle to its original state (both FF are LOW)

Asynchronous Counter Operation (continue..)

Binary state sequence for 2-bit asynchronous binary counter

CLOCK PULSE	Q ₁	Q_0	
Initially	0	0	
1	0	1 0 1	
2	- 1		
3	- 1		
4 (recycles)	0	0	

- The counter is in up sequence (Q₁ is MSB, Q₀ is LSB)
- Count from 0 to 3 in binary sequence
- The term 'recycle' refers to the transition from final state to original state
- Therefore, 2-bit asynchronous counter has four state and consists of two FF

A 3-bit Asynchronous Binary Counter

Draw 3-bit asynchronous up counter using J-K FFs

Sketch the timing diagram for 3-bit asynchronous up counter

A 3-bit Asynchronous Binary Counter (continue..)

Tabulate the state sequence for 3-bit asynchronous up counter

CLOCK PULSE	Q ₂	Q ₁	Qo
Initially	0	0	0
1	0	0	1
2	0	1	0
3	0	-1	- 1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	-1	1
8 (recycles)	0	0	0

Conclusion, 3-bit asynchronous up counter consists of three J-K FFs and counts from 0 to 7 (8 states)

Disadvantages of asynchronous counter (continue)

- Asynchronous counters are not useful at very high frequencies, especially for counters with large number of bits.
- Another problem caused by propagation delays in asynchronous counters occurs when we try to electronically detect (decode) the counter's output states.

Exercise: A 4-bit Asynchronous Binary Counter

Draw the timing diagram for 4-bit asynchronous up counter given below

Asynchronous MOD counter

- MOD number is generally equal to the number of states that the counter goes through in each complete cycle before it recycles back to its starting state.
- MOD number can be increased simply by adding more FFs to counter. MOD number = 2^N

Changing the MOD number

Construct a MOD-10 counter that will count from 0000 through 1001.

Asynchronous Decade Counter

- Counters can be designed to have a number of states in their sequence that is less than the maximum of 2N. This type of sequence is called a truncated sequence.
- For example, asynchronous modulus ten (MOD-10) counter or decade counter

- NANI
 - Note that 10 is 1010 which is Q₃ AND Q₁ are HIGH
- CLR is produced and then reset all FFs to recycle
- The counter count again

Asynchronous Decade Counter (continue..)

Timing diagram and binary state sequence for decade counter

CLOCK PULSE	Q ₁	Q_2	Q ₁	QE
Initially	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	-0	1	1	1
8	1	0	0	0
9	1	0	0	1
(0 (recycles)	0	0	0	0

Asynchronous Decade Counter Exercise

 Modify MOD-10 asynchronous counter to have MOD-12 and draw the timing diagram (1100)

Exercise (continue)

- 2. Draw the circuit for asynchronous counter according to these attributes:
- MOD 13 counter using JK flip-flops.
- Negative edge triggered
- Down counter
- Active low preset and clear input

Answer:

Synchronous counter

Synchronous counter

- Also known as parallel counter.
- Synchronous counters eliminate the propagation delay problem because all the clock inputs (c_p) are tied to a common clock.
- Can operate at higher clock frequencies. Asynchronous counters are not useful at very high frequencies, especially for large number of bits.
- Requires more circuitry than the asynchronous counterpart.
- The design starts with
 - State diagram
 - Truth table
 - K-map & equation
 - circuit

Types of synchronous counter

- Up counter. Eg: 0→1→2→3
- Down counter. Eg: 3→2→1→0
- Irregular binary sequence counter. Eg:0→3→4→7
- Synchronous mod-counter
- Up/down counter or bidirectional counter (a control input is required for selection of modes).
- Up counter or down counter with asynchronous inputs (active high or active low preset and clear).

Design step for synchronous up counter

Example: Design a 2 bit counter using D, T and JK flip-flop based on the sequence $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Step 1: Draw the state diagram

Up counter using JK flip-flop

Using JK flip-flop

Present state		Next state		Flip-flop inputs			
Q1	Q0	Q1	Q0	J1	K1	J0	K0
0	0	0	1	0	X	1	X
0	1	1	0	1	X	X	1
1	0	1	1	X	0	1	X
1	1	0	0	X	1	X	1

Design of Synchronous Counter Exercise 1

- Design a counter to produce 3-bit binary counter using J-K FF
 - ✓ State diagram
- ✓ State and excitation tables

PRESENT STATE		NEXT STATE FLIP-FLOP INPU			NEXT ST		XT STATE FLIP-F		PUTS
Q ₂	Q_1	Qo	Q ₂	Q_1	Qo	J ₂ K ₂	$J_1 K_1$	J ₀ K ₀	
0	0	0	0	0	1	0 X	0 X	1 X	
0	0	1	0	1	0	0 X	1 X	X 1	
0	1	0	0	1	1	o x	x o	1 X	
0	1	1	1	0	0	1 X	X 1	X 1	
1	0	0	1	0	1	х о	o x	1 X	
1	0	1	1	1	0	хо	1 X	X 1	
1	1	0	1	1	1	хо	x o	1 X	
1	1	1	0	0	0	X 1	X 1	X 1	

Topic:

- Up/down counter or bidirectional counter
- Cascaded counter
 - Asynchronous cascaded counter
 - Synchronous cascaded counter
- Counter decoding
 - Decoding glitches
 - Strobing technique

Up/Down Synchronous Counter (bidirectional counter)

- Bidirectional counters, also referred to as UP/DOWN counters, are capable of progressing in either direction through any given count sequence. Recall that in general, bidirectional counters can be reversed at any point in their count sequence.
- Capable to count in either direction through a certain sequence
- For example 3-bit up/down synchronous counter
 - Able to count from 0 to 7 or 7 to 0

Cascaded Counters

- Counters can be connected to achieve higher modulus operation.
- Cascading means that the last stage output of one counter drives the input of the next counter.
- A mod-M and a mod-N counter in cascade give a mod-MN counter.
- 2 types of cascading: Asynchronous cascading and synchronous cascading

Cascaded Counters (continue)

Asynchronous cascading

Two asynchronous counters connected in cascade for a 2 bit and a 3 bit ripple counter. The overall modulus of the two cascaded counters is $4 \times 8 = 32$; that is they act as a divide-by-32 counter.

Decade Counters/BCD counters

Decade counter

 Any counter has 10 distinct states, no matter what the sequence.

BCD counter

 A decade counter counts in sequence from 0000 (zero) through 1001(decimal 9).