Text as Data

Justin Grimmer

Associate Professor Department of Political Science Stanford University

November 6th, 2014

1) Task

- Classify documents to pre existing categories
- Measure the proportion of documents in each category

2) Objective function

- Suppose we have K categories.
- Select N_{train} document to hand-label, $Y_i = k$, $m{Y} = (Y_1, Y_2, \dots, Y_{N_{\mathsf{train}}})$

$$\mathbf{Y} = f(\mathbf{X}, \boldsymbol{\theta})$$

3) Optimization

- Method specific: MLE, Bayesian, EM, ...
- We learn $\widehat{\boldsymbol{\theta}}$
- 4) Validation
 - Obtain predicted fit for new data $f(\boldsymbol{X}_i, \widehat{\boldsymbol{\theta}})$
 - Examine prediction performance compare classification to gold standard

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

Supervised Methods:

- Models for categorizing texts

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

- Models for categorizing texts
 - Know (develop) categories before hand

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

- Models for categorizing texts
 - Know (develop) categories before hand
 - Hand coding: assign documents to categories
 - Infer: new document assignment to categories (distribution of documents to categories)

Clustering and Topic Models:

- Models for discovery
 - Infer categories
 - Infer document assignment to categories
 - Pre-estimation: relatively little work
 - Post-estimation: extensive validation testing

- Models for categorizing texts
 - Know (develop) categories before hand
 - Hand coding: assign documents to categories
 - Infer: new document assignment to categories (distribution of documents to categories)
 - Pre-estimation: extensive work constructing categories, building classifiers
 - Post-estimation: relatively little work

Supervised Learning Today:

Today:

- How to generate valid hand coding categories

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

Next week:

 Supervised Learning Methods: Lasso, Ridge, Support Vector Machines, and ReadMe

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

- Supervised Learning Methods: Lasso, Ridge, Support Vector Machines, and ReadMe
- Ensemble methods: combining the results of many supervised algorithms

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

- Supervised Learning Methods: Lasso, Ridge, Support Vector Machines, and ReadMe
- Ensemble methods: combining the results of many supervised algorithms
- Cross validation:

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

- Supervised Learning Methods: Lasso, Ridge, Support Vector Machines, and ReadMe
- Ensemble methods: combining the results of many supervised algorithms
- Cross validation:
 - Replicate classification exercise, with data
 - Avoid over training data: Balance bias and variance in model selection
 - Super learning: optimal ensemble methods

Today:

- How to generate valid hand coding categories
 - Assessing coder performance
 - Assessing disagreement among coders
 - Evidence coders perform well
- Supervised Learning Methods: Naive Bayes
- Assessing Model Performance

- Supervised Learning Methods: Lasso, Ridge, Support Vector Machines, and ReadMe
- Ensemble methods: combining the results of many supervised algorithms
- Cross validation:
 - Replicate classification exercise, with data
 - Avoid over training data: Balance bias and variance in model selection
 - Super learning: optimal ensemble methods

1) Set of categories

- 1) Set of categories
 - Credit Claiming, Position Taking, Advertising
 - Positive Tone, Negative Tone
 - Pro-war, Ambiguous, Anti-war

- 1) Set of categories
 - Credit Claiming, Position Taking, Advertising
 - Positive Tone, Negative Tone
 - Pro-war, Ambiguous, Anti-war
- 2) Set of hand-coded documents

- 1) Set of categories
 - Credit Claiming, Position Taking, Advertising
 - Positive Tone, Negative Tone
 - Pro-war, Ambiguous, Anti-war
- 2) Set of hand-coded documents
 - Coding done by human coders
 - Training Set: documents we'll use to learn how to code
 - Validation Set: documents we'll use to learn how well we code

- 1) Set of categories
 - Credit Claiming, Position Taking, Advertising
 - Positive Tone, Negative Tone
 - Pro-war, Ambiguous, Anti-war
- 2) Set of hand-coded documents
 - Coding done by human coders
 - Training Set: documents we'll use to learn how to code
 - Validation Set: documents we'll use to learn how well we code
- 3) Set of unlabeled documents

- 1) Set of categories
 - Credit Claiming, Position Taking, Advertising
 - Positive Tone, Negative Tone
 - Pro-war, Ambiguous, Anti-war
- 2) Set of hand-coded documents
 - Coding done by human coders
 - Training Set: documents we'll use to learn how to code
 - Validation Set: documents we'll use to learn how well we code
- 3) Set of unlabeled documents
- 4) Method to extrapolate from hand coding to unlabeled documents

Challenge: coding rules/training coders to maximize coder performance

Challenge: coding rules/training coders to maximize coder performance

Challenge: developing a clear set of categories

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

1) Limits of Humans:

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:
 - Fundamental ambiguity in language [careful analysis of texts]
 - Contextual nature of language

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:
 - Fundamental ambiguity in language [careful analysis of texts]
 - Contextual nature of language

For supervised methods to work: maximize coder agreement

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:
 - Fundamental ambiguity in language [careful analysis of texts]
 - Contextual nature of language

For supervised methods to work: maximize coder agreement

1) Write careful (and brief) coding rules

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:
 - Fundamental ambiguity in language [careful analysis of texts]
 - Contextual nature of language

For supervised methods to work: maximize coder agreement

- 1) Write careful (and brief) coding rules
 - Flow charts help simplify problems

How Do We Generate Coding Rules and Categories?

Challenge: coding rules/training coders to maximize coder performance Challenge: developing a clear set of categories

- 1) Limits of Humans:
 - Small working memories
 - Easily distracted
 - Insufficient motivation
- 2) Limits of Language:
 - Fundamental ambiguity in language [careful analysis of texts]
 - Contextual nature of language

For supervised methods to work: maximize coder agreement

- 1) Write careful (and brief) coding rules
 - Flow charts help simplify problems
- 2) Train coders to remove ambiguity, misinterpretation

Iterative process for generating coding rules:

1) Write a set of coding rules

- 1) Write a set of coding rules
- 2) Have coders code documents (about 200)

- 1) Write a set of coding rules
- 2) Have coders code documents (about 200)
- 3) Assess coder agreement

- 1) Write a set of coding rules
- 2) Have coders code documents (about 200)
- 3) Assess coder agreement
- 4) Identify sources of disagreement, repeat

Many measures of inter-coder agreement

Essentially attempt to summarize a confusion matrix

	Cat 1	Cat 2	Cat 3	Cat 4	Sum, Coder 1
Cat 1	30	0	1	0	31
Cat 2	1	1	0	0	2
Cat 3	0	0	1	0	1
Cat 4	3	1	0	7	11
Sum, Coder 2	34	2	2	7	Total: 45

- **Diagonal**: coders agree on document
- Off-diagonal : coders disagree (confused) on document

Generalize across (k) coders:

- $\frac{k(k-1)}{2}$ pairwise comparisons
- k comparisons: Coder A against All other coders

During coding development phase/coder assessment phase, full confusion matrices help to identify

- Ambiguity
- Coder slacking

During coding development phase/coder assessment phase, full confusion matrices help to identify

- Ambiguity
- Coder slacking

	Coder A								
	1'	2	3	4	5	6	7	8	Tot
Coder B		<u>'</u>							
1	15	2	1	0	0	1	. 0'	C	ر
3	1	. 0	0	1	0	(<u>0</u>	(O	0	
4	0	O'	0	5	0	3	1	. 0	ر
5	0	0	0	1	13		0	2	2
6	11	. 1	3	3	1	32		1	1
7	1	. 0	0	0	0	13	26	36	ز
8	2	. 0	0	0	1	. 7	0'	8	4
	<u> </u>	·							
Total	30	3	4	10	15	63	27	47	/

During coding development phase/coder assessment phase, full confusion matrices help to identify

- Ambiguity
- Coder slacking

·	Coder A								
	1	2	3	4	5	6	7	8	Tota
Coder C									
1	23	1	1	1	0	9	0	0	
2	0	0	0	0	0	1	0	0	
3	1	1	3	2	0	3	0	0	
4	0	0	0	4	0	8	1	. 0)
5	0	0	0	2	13	2	0	2	2
6	4	1	0	1	1	32	1	. 2	2
7	1	0	0	0	0	2	25	36	
8	1	0	0	0	1	6	0	7	
Total	30	3	4	10	15	63	27	47	

During coding development phase/coder assessment phase, full confusion matrices help to identify

- Ambiguity
- Coder slacking

· I	Coder C								
	1'	2	3	4	5	6	7	8	Tota
Coder B					· ·			,	
1	18	0	1	0	0	0	0	0	J
3	1'	. 0	1	0	0'	0'	0	0	J
4	0'	0	1	7	0'	1	. 0	0	J
5	0'	O	0	2	18	3	0	0	J
6	13	1	7	4	1	26	0	0)
7	3	0	0	0	0'	8	63	2	2
8	0	0	0	0	0'	4	1	15	1
Total	35	1	10	13	19	42	64	17	/
	$\overline{}$								

Example Coding Document

8 part coding scheme

- Across Party Taunting: explicit public and negative attacks on the other party or its members
- Within Party Taunting: explicit public and negative attacks on the same party or its members [for 1960's politics]
- Other taunting: explicit public and negative attacks not directed at a party
- Bipartisan support: praise for the other party
- Honorary Statements: qualitatively different kind of speech
- Policy speech: a speech without taunting or credit claiming
- Procedural
- No Content: (occasionally occurs in CR)

Example Coding Document

How Do We Summarize Confusion Matrix?

Lots of statistics to summarize confusion matrix:

- Most common: intercoder agreement

Inter Coder(
$$A, B$$
) = $\frac{\text{No. (Coder A \& Coder B agree)}}{\text{No. Documents}}$

- Some agreement by chance

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.

- Some agreement by chance
- Consider coding scheme with two categories
 { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin).
 (Pr(Class 1) = 0.75, Pr(Class 2) = 0.25)

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin). ($Pr(Class\ 1) = 0.75$, $Pr(Class\ 2) = 0.25$)
- Inter Coder reliability: 0.625

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin). ($Pr(Class\ 1) = 0.75$, $Pr(Class\ 2) = 0.25$)
- Inter Coder reliability: 0.625

What to do?

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin). ($Pr(Class\ 1) = 0.75$, $Pr(Class\ 2) = 0.25$)
- Inter Coder reliability: 0.625

What to do?

Suggestion: Subtract off amount expected by chance:

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin).
 (Pr(Class 1) = 0.75, Pr(Class 2) = 0.25)
- Inter Coder reliability: 0.625

What to do?

Suggestion: Subtract off amount expected by chance:

Inter
$$Coder(A, B)_{norm} = No.$$
 (Coder A & Coder B agree) – No. Expected by Chance No. Documents

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin).
 (Pr(Class 1) = 0.75, Pr(Class 2) = 0.25)
- Inter Coder reliability: 0.625

What to do?

Suggestion: Subtract off amount expected by chance:

Inter Coder
$$(A, B)_{norm} =$$

No. (Coder A & Coder B agree)—No. Expected by Chance
No. Documents

Question: what is amount expected by chance?

- Some agreement by chance
- Consider coding scheme with two categories
 { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin). ($Pr(Class\ 1) = 0.75$, $Pr(Class\ 2) = 0.25$)
- Inter Coder reliability: 0.625

What to do?

Suggestion: Subtract off amount expected by chance:

Inter Coder
$$(A, B)_{norm} = \frac{No. (Coder A \& Coder B agree) - No. Expected by Chance No. Documents$$

Question: what is amount expected by chance?

- $\frac{1}{\#\text{Categories}}$
- Avg Proportion in categories across coders? (Krippendorf's Alpha)

- Some agreement by chance
- Consider coding scheme with two categories { Class 1, Class 2}.
- Coder A and Coder B flip a (biased coin).
 (Pr(Class 1) = 0.75, Pr(Class 2) = 0.25)
- Inter Coder reliability: 0.625

What to do?

Suggestion: Subtract off amount expected by chance:

Inter
$$Coder(A, B)_{norm} =$$

Question: what is amount expected by chance?

- $\frac{1}{\#\text{Categories}}$?
- Avg Proportion in categories across coders? (Krippendorf's Alpha)

Best Practice: present confusion matrices.

Define coder reliability as:

Define coder reliability as:

$$\alpha \ = \ 1 - \frac{\text{No. Pairwise Disagreements Observed}}{\text{No Pairwise Disagreements Expected By Chance}}$$

Define coder reliability as:

$$lpha = 1 - rac{ ext{No. Pairwise Disagreements Observed}}{ ext{No Pairwise Disagreements Expected By Chance}}$$

No. Pairwise Disagreements Observed = observe from data

Define coder reliability as:

$$\alpha \ \ = \ \ 1 - \frac{\text{No. Pairwise Disagreements Observed}}{\text{No Pairwise Disagreements Expected By Chance}}$$

No. Pairwise Disagreements Observed = observe from data No Expected pairwise disagreements: coding by chance, with rate labels used available from data

Define coder reliability as:

$$\alpha \ \ = \ \ 1 - \frac{\text{No. Pairwise Disagreements Observed}}{\text{No Pairwise Disagreements Expected By Chance}}$$

No. Pairwise Disagreements Observed = observe from data No Expected pairwise disagreements: coding by chance, with rate labels used available from data

Thinking through expected differences:

Define coder reliability as:

$$\alpha \ \ = \ \ 1 - \frac{\text{No. Pairwise Disagreements Observed}}{\text{No Pairwise Disagreements Expected By Chance}}$$

No. Pairwise Disagreements Observed = observe from data No Expected pairwise disagreements: coding by chance, with rate labels used available from data

Thinking through expected differences:

- Pretend I know something I'm trying to estimate
- How is that we know coders estimate levels well?
- Have to present correlation statistic: vary assumptions about "expectations" (from uniform, to data driven)

Define coder reliability as:

$$\alpha \ \ = \ \ 1 - \frac{\text{No. Pairwise Disagreements Observed}}{\text{No Pairwise Disagreements Expected By Chance}}$$

No. Pairwise Disagreements Observed = observe from data No Expected pairwise disagreements: coding by chance, with rate labels used available from data

Thinking through expected differences:

- Pretend I know something I'm trying to estimate
- How is that we know coders estimate levels well?
- Have to present correlation statistic: vary assumptions about "expectations" (from uniform, to data driven)

Calculate in R with concord package and function kripp.alpha

How Many To Code By Hand/How Many to Code By Machine

Next week: we'll discuss how to answer this question systematically for your data set.

Rules of thumb:

- Hopkins and King (2010): 500 documents likely sufficient
- Hopkins and King (2010): 100 documents may be enough
- BUT: depends on quantity of interest
- May REQUIRE many more documents

Percent data coded, Error (From Dan Jurafsky)

Training size

Figure 2: Test error vs training size on the newsgroups alt.atheism and talk.religion.misc

Three categories of documents

Hand labeled

- Training set (what we'll use to estimate model)
- Validation set (what we'll use to assess model)

Unlabeled

- Test set (what we'll use the model to categorize)

Label more documents than necessary to train model

Methods to Perform Supervised Classification

- Use the hand labels to train a statistical model.
- Naive Bayes
 - Shockingly simple application of Bayes' rule
 - Shockingly useful → often default classifier

Suppose we have document i, (i = 1, ..., N) with J features

Suppose we have document i, (i = 1, ..., N) with J features $\mathbf{x}_i = (x_{1i}, x_{2i}, ..., x_{Ji})$

```
Suppose we have document i, (i = 1, ..., N) with J features \mathbf{x}_i = (x_{1i}, x_{2i}, ..., x_{Ji})
Set of K categories. Category k (k = 1, ..., K)
\{C_1, C_2, ..., C_K\}
```

```
Suppose we have document i, (i=1,\ldots,N) with J features \mathbf{x}_i=(x_{1i},x_{2i},\ldots,x_{Ji}) Set of K categories. Category k (k=1,\ldots,K) \{C_1,C_2,\ldots,C_K\} Subset of labeled documents \mathbf{Y}=(Y_1,Y_2,\ldots,Y_{N_{\text{train}}}) where Y_i\in\{C_1,C_2,\ldots,C_K\}.
```

```
Suppose we have document i, (i=1,\ldots,N) with J features \mathbf{x}_i=(x_{1i},x_{2i},\ldots,x_{Ji}) Set of K categories. Category k (k=1,\ldots,K) \{C_1,C_2,\ldots,C_K\} Subset of labeled documents \mathbf{Y}=(Y_1,Y_2,\ldots,Y_{N_{\text{train}}}) where Y_i\in\{C_1,C_2,\ldots,C_K\}. Goal: classify every document into one category.
```

```
Suppose we have document i, (i=1,\ldots,N) with J features \mathbf{x}_i=(x_{1i},x_{2i},\ldots,x_{Ji}) Set of K categories. Category k (k=1,\ldots,K) \{C_1,C_2,\ldots,C_K\} Subset of labeled documents \mathbf{Y}=(Y_1,Y_2,\ldots,Y_{N_{\text{train}}}) where Y_i\in\{C_1,C_2,\ldots,C_K\}. Goal: classify every document into one category. Learn a function that maps from space of (possible) documents to categories
```

```
Suppose we have document i, (i=1,\ldots,N) with J features \mathbf{x}_i=(x_{1i},x_{2i},\ldots,x_{Ji}) Set of K categories. Category k (k=1,\ldots,K) \{C_1,C_2,\ldots,C_K\} Subset of labeled documents \mathbf{Y}=(Y_1,Y_2,\ldots,Y_{N_{\text{train}}}) where Y_i\in\{C_1,C_2,\ldots,C_K\}.
```

Goal: classify every document into one category.

Learn a function that maps from space of (possible) documents to categories

To do this: use hand coded observations to estimate (train) regression model

```
Suppose we have document i, (i=1,\ldots,N) with J features \mathbf{x}_i=(x_{1i},x_{2i},\ldots,x_{Ji}) Set of K categories. Category k (k=1,\ldots,K) \{C_1,C_2,\ldots,C_K\} Subset of labeled documents \mathbf{Y}=(Y_1,Y_2,\ldots,Y_{N_{\text{train}}}) where Y_i\in\{C_1,C_2,\ldots,C_K\}.
```

Goal: classify every document into one category.

Learn a function that maps from space of (possible) documents to categories

To do this: use hand coded observations to estimate (train) regression model

Apply model to test data, classify those observations

Goal: For each document x_i , we want to infer most likely category

(1)

Goal: For each document x_i , we want to infer most likely category

$$C_{\mathsf{Max}} = \mathsf{arg} \; \mathsf{max}_k p(C_k | \boldsymbol{x}_i)$$

Goal: For each document x_i , we want to infer most likely category

$$C_{\text{Max}} = \arg \max_{k} p(C_k | \mathbf{x}_i)$$

We're going to use Bayes' rule to estimate $p(C_k|\mathbf{x}_i)$.

Goal: For each document x_i , we want to infer most likely category

$$C_{\text{Max}} = \arg \max_{k} p(C_k | \boldsymbol{x}_i)$$

We're going to use Bayes' rule to estimate $p(C_k|\mathbf{x}_i)$.

$$p(C_k|\mathbf{x}_i) = \frac{p(C_k,\mathbf{x}_i)}{p(\mathbf{x}_i)}$$

Goal: For each document x_i , we want to infer most likely category

$$C_{\text{Max}} = \arg \max_{k} p(C_k | \boldsymbol{x}_i)$$

We're going to use Bayes' rule to estimate $p(C_k|\mathbf{x}_i)$.

$$p(C_k|\mathbf{x}_i) = \frac{p(C_k,\mathbf{x}_i)}{p(\mathbf{x}_i)}$$
$$= \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$$

Goal: For each document x_i , we want to infer most likely category

$$C_{\mathsf{Max}} = \mathsf{arg} \; \mathsf{max}_k p(C_k | \boldsymbol{x}_i)$$

We're going to use Bayes' rule to estimate $p(C_k|\mathbf{x}_i)$.

$$p(C_k|\mathbf{x}_i) = \frac{p(C_k, \mathbf{x}_i)}{p(\mathbf{x}_i)}$$
Proportion in C_k

$$= \frac{p(C_k, \mathbf{x}_i)}{p(C_k)}$$
Language model
$$p(\mathbf{x}_i)$$

$$C_{\mathsf{Max}} = \mathsf{arg} \; \mathsf{max}_k \; p(C_k | \boldsymbol{x}_i)$$

$$C_{\text{Max}} = \operatorname{arg max}_k p(C_k|\mathbf{x}_i)$$

$$C_{\text{Max}} = \operatorname{arg max}_k \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$$

$$C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k)p(\mathbf{x}_i|C_k)$

$$C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k)p(\mathbf{x}_i|C_k)$

$$C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k)p(\mathbf{x}_i|C_k)$

$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

$$C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k)p(\mathbf{x}_i|C_k)$

$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}} \text{ (training set)}$$

$$p(\mathbf{x}_i|C_k) \text{ complicated without assumptions}$$

$$C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg\ max}_k \ p(C_k)p(\mathbf{x}_i|C_k)$

Two probabilities to estimate:

$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}} \text{ (training set)}$$

$$p(\mathbf{x}_i|C_k) \text{ complicated without assumptions}$$

- Imagine each x_{ij} just binary indicator. Then 2^J possible x_i documents

$$C_{\text{Max}} = \operatorname{arg max}_k p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg max}_k \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg max}_k p(C_k)p(\mathbf{x}_i|C_k)$

$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}} \text{ (training set)}$$

$$p(\mathbf{x}_i|C_k) \text{ complicated without assumptions}$$

- Imagine each x_{ij} just binary indicator. Then 2^J possible x_i documents
- Simplify: assume each feature is independent

$$C_{\text{Max}} = \operatorname{arg max}_k p(C_k|\mathbf{x}_i)$$
 $C_{\text{Max}} = \operatorname{arg max}_k \frac{p(C_k)p(\mathbf{x}_i|C_k)}{p(\mathbf{x}_i)}$
 $C_{\text{Max}} = \operatorname{arg max}_k p(C_k)p(\mathbf{x}_i|C_k)$

$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}} \text{ (training set)}$$

$$p(\mathbf{x}_i|C_k) \text{ complicated without assumptions}$$

- Imagine each x_{ij} just binary indicator. Then 2^J possible x_i documents
- Simplify: assume each feature is independent

$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Two components to estimation:

-
$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

-
$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Two components to estimation:

-
$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

-
$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Maximum likelihood estimation (training set):

Two components to estimation:

-
$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

-
$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Maximum likelihood estimation (training set):

$$p(x_{im} = z | C_k) = \frac{\text{No}(\text{Docs}_{ij} = z \text{ and } C = C_k)}{\text{No}(C = C_k)}$$

Two components to estimation:

-
$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

-
$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Maximum likelihood estimation (training set):

$$p(x_{im} = z | C_k) = \frac{\text{No}(\text{Docs}_{ij} = z \text{ and } C = C_k)}{\text{No}(C = C_k)}$$

Problem: What if No(Docs_{ij} = z and C = C_k) = 0?

Two components to estimation:

-
$$p(C_k) = \frac{\text{No. Documents in } k}{\text{No. Documents}}$$
 (training set)

-
$$p(\mathbf{x}_i|C_k) = \prod_{j=1}^J p(x_{ij}|C_k)$$

Maximum likelihood estimation (training set):

$$p(x_{im} = z | C_k) = \frac{\text{No}(\text{Docs}_{ij} = z \text{ and } C = C_k)}{\text{No}(C = C_k)}$$

Problem: What if No(Docs_{ij} = z and C = C_k) = 0 ? $\prod_{i=1}^{J} p(x_{ij}|C_k) = 0$

Solution: smoothing (Bayesian estimation)

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No}(\text{Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No}(C = C_k) + k}$$

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

1) Learn $\hat{p}(C)$ and $\hat{p}(x_i|C_k)$ on training data

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

- 1) Learn $\hat{p}(C)$ and $\hat{p}(x_i|C_k)$ on training data
- 2) Use this to identify most likely C_k for each document i in test set

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

- 1) Learn $\hat{p}(C)$ and $\hat{p}(\mathbf{x}_i|C_k)$ on training data
- 2) Use this to identify most likely C_k for each document i in test set

$$C_i = \arg \max_k \hat{p}(C_k) \hat{p}(\mathbf{x}_i | C_k)$$

Naive Bayes and General Problem Setup (Jurafsky Inspired Slide)

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

- 1) Learn $\hat{p}(C)$ and $\hat{p}(\mathbf{x}_i|C_k)$ on training data
- 2) Use this to identify most likely C_k for each document i in test set

$$C_i = \arg \max_{k} \hat{p}(C_k) \hat{p}(\mathbf{x}_i | C_k)$$

Simple intuition about Naive Bayes:

Naive Bayes and General Problem Setup (Jurafsky Inspired Slide)

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

- 1) Learn $\hat{p}(C)$ and $\hat{p}(\mathbf{x}_i|C_k)$ on training data
- 2) Use this to identify most likely C_k for each document i in test set

$$C_i = \arg \max_{k} \hat{p}(C_k) \hat{p}(\mathbf{x}_i | C_k)$$

Simple intuition about Naive Bayes:

- Learn what documents in class j look like

Naive Bayes and General Problem Setup (Jurafsky Inspired Slide)

Solution: smoothing (Bayesian estimation)

$$p(x_{ij} = z | C_k) = \frac{\text{No(Docs}_{ij} = z \text{ and } C = C_k) + 1}{\text{No(C= } C_k) + k}$$

Algorithm steps:

- 1) Learn $\hat{p}(C)$ and $\hat{p}(\mathbf{x}_i|C_k)$ on training data
- 2) Use this to identify most likely C_k for each document i in test set

$$C_i = \arg \max_k \hat{p}(C_k) \hat{p}(\mathbf{x}_i | C_k)$$

Simple intuition about Naive Bayes:

- Learn what documents in class *j* look like
- Find class k that document i is most similar to

Assume the following data generating process (should look familiar)

$$egin{array}{lll} \pi & \sim & \mathsf{Dirichlet}(lpha) \ heta & \sim & \mathsf{Dirichlet}(oldsymbol{\lambda}) \ au_i & \sim & \mathsf{Multinomial}(1,\pi) \ au_i ert au_{ik} = 1, oldsymbol{ heta} & \sim & \mathsf{Multinomial}(n_i, oldsymbol{ heta}_k) \end{array}$$

Assume the following data generating process (should look familiar)

$$egin{array}{lll} m{\pi} & \sim & \mathsf{Dirichlet}(m{lpha}) \ m{ heta} & \sim & \mathsf{Dirichlet}(m{\lambda}) \ m{ au}_i & \sim & \mathsf{Multinomial}(1,m{\pi}) \ m{x}_i | au_{ik} = 1, m{ heta} & \sim & \mathsf{Multinomial}(n_i, m{ heta}_k) \end{array}$$

If we randomly sample documents N_{train} and label them (\boldsymbol{Y}), then we can estimate

Assume the following data generating process (should look familiar)

$$egin{array}{lll} \pi & \sim & \mathsf{Dirichlet}(lpha) \ oldsymbol{ heta} & \sim & \mathsf{Dirichlet}(oldsymbol{\lambda}) \ oldsymbol{ au}_i & \sim & \mathsf{Multinomial}(1,\pi) \ oldsymbol{x}_i | au_{ik} = 1, oldsymbol{ heta} & \sim & \mathsf{Multinomial}(n_i, oldsymbol{ heta}_k) \end{array}$$

If we randomly sample documents N_{train} and label them (Y), then we can estimate

$$\widehat{\pi}_k = \frac{\sum_{i=1}^N I(Y_i = k) + \alpha_k}{N_{\text{train}}}$$

Assume the following data generating process (should look familiar)

$$egin{array}{lll} \pi & \sim & \mathsf{Dirichlet}(oldsymbol{lpha}) \ oldsymbol{ heta} & \sim & \mathsf{Dirichlet}(oldsymbol{\lambda}) \ oldsymbol{ au}_i & \sim & \mathsf{Multinomial}(1,\pi) \ oldsymbol{x}_i | au_{ik} = 1, oldsymbol{ heta} & \sim & \mathsf{Multinomial}(n_i, oldsymbol{ heta}_k) \end{array}$$

If we randomly sample documents N_{train} and label them (Y), then we can estimate

$$\widehat{\pi}_{k} = \frac{\sum_{i=1}^{N} I(Y_{i} = k) + \alpha_{k}}{N_{\text{train}}}$$

$$\widehat{\theta}_{jk} = \frac{\sum_{i=1}^{N} I(Y_{i} = k) x_{ij} + \lambda_{j}}{\sum_{i=1}^{J} \sum_{i=1}^{N} I(Y_{i} = k) x_{ij}}$$

The probability a new document has $au_{\mathit{ik}} = 1$ is then

The probability a new document has $au_{\mathit{ik}} = 1$ is then

$$p(\tau_{ik} = 1 | \mathbf{x}_i, \widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\theta}}) \propto p(\tau_{ik} = 1) p(\mathbf{x}_i | \boldsymbol{\theta}, \tau_{ik} = 1)$$

The probability a new document has $au_{ik}=1$ is then

$$p(\tau_{ik} = 1 | \boldsymbol{x}_i, \widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\theta}}) \propto p(\tau_{ik} = 1) p(\boldsymbol{x}_i | \boldsymbol{\theta}, \tau_{ik} = 1)$$

$$\propto \widehat{\pi_k} \prod_{j=1}^J \left(\widehat{\theta}_{jk}\right)^{x_{ij}}$$

The probability a new document has $au_{ik}=1$ is then

$$\begin{split} p(\tau_{ik} = 1 | \pmb{x}_i, \widehat{\pmb{\pi}}, \widehat{\pmb{\theta}}) & \propto & p(\tau_{ik} = 1) p(\pmb{x}_i | \pmb{\theta}, \tau_{ik} = 1) \\ & \propto & \widehat{\pi_k} \prod_{j=1}^J \left(\widehat{\theta}_{jk}\right)^{\varkappa_{ij}} \\ & \propto & \widehat{\widehat{\pi_k}} \prod_{j=1}^J \left(\widehat{\theta}_{jk}\right)^{\varkappa_{ij}} \\ & \qquad \qquad & \underbrace{\prod_{j=1}^J \left(\widehat{\theta}_{jk}\right)^{\varkappa_{ij}}}_{\text{Unigram model}} \end{split}$$

Some R Code

```
library(e1071)
dep<- c(labels, rep(NA, no.testSet))
dep<- as.factor(dep)
out<- naiveBayes(dep~., as.data.frame(tdm))
predicts<- predict(out, as.data.frame(tdm[-training.set,]))</pre>
```

Assessing Models (Elements of Statistical Learning)

- Model Selection: tuning parameters to select final model (next week's discussion)
- Model assessment : after selecting model, estimating error in classification

Text classification and model assessment

- Replicate classification exercise with validation set
- General principle of classification/prediction
- Compare supervised learning labels to hand labels

Confusion matrix

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	True Conservative	

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	True Conservative	

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	True Conservative	

$$\begin{array}{rcl} \mathsf{Accuracy} &=& \frac{\mathsf{TrueLib} + \mathsf{TrueCons}}{\mathsf{TrueLib} + \mathsf{TrueCons} + \mathsf{FalseLib} + \mathsf{FalseCons}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{\mathsf{True} \ \mathsf{Liberal}}{\mathsf{True} \ \mathsf{Liberal}} + \mathsf{False} \ \mathsf{Liberal} \end{array}$$

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	True Conservative	

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	Conservative True Conservative	

$$\begin{array}{c} \mathsf{Accuracy} &=& \frac{\mathsf{TrueLib} + \mathsf{TrueCons}}{\mathsf{TrueLib} + \mathsf{TrueCons}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLib} + \mathsf{FalseLib} + \mathsf{FalseCons}}{\mathsf{TrueLiberal}} \\ \mathsf{Recall}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLiberal}}{\mathsf{TrueLiberal}} \\ \mathsf{F_{\mathsf{Liberal}}} &=& \frac{\mathsf{TrueLiberal}}{\mathsf{Precision}_{\mathsf{Liberal}} \mathsf{Recall}_{\mathsf{Liberal}}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{2\mathsf{Precision}_{\mathsf{Liberal}} \mathsf{Recall}_{\mathsf{Liberal}}}{\mathsf{Precision}_{\mathsf{Liberal}} + \mathsf{Recall}_{\mathsf{Liberal}}} \\ \end{array}$$

	Actual Label		
Classification (algorithm)	Liberal	Conservative	
Liberal	True Liberal	False Liberal	
Conservative	False Conservative	Conservative True Conservative	

$$\begin{array}{c} \mathsf{Accuracy} &=& \frac{\mathsf{TrueLib} + \mathsf{TrueCons}}{\mathsf{TrueLib} + \mathsf{TrueCons}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLib} + \mathsf{FalseLib} + \mathsf{FalseCons}}{\mathsf{TrueLiberal}} \\ \mathsf{Recall}_{\mathsf{Liberal}} &=& \frac{\mathsf{TrueLiberal}}{\mathsf{TrueLiberal}} \\ \mathsf{F_{\mathsf{Liberal}}} &=& \frac{\mathsf{TrueLiberal}}{\mathsf{Precision}_{\mathsf{Liberal}} \mathsf{Recall}_{\mathsf{Liberal}}} \\ \mathsf{Precision}_{\mathsf{Liberal}} &=& \frac{2\mathsf{Precision}_{\mathsf{Liberal}} \mathsf{Recall}_{\mathsf{Liberal}}}{\mathsf{Precision}_{\mathsf{Liberal}} + \mathsf{Recall}_{\mathsf{Liberal}}} \\ \end{array}$$

ROC Curve

ROC as a measure of model performance

$$\begin{array}{ccc} \text{Recall}_{\mathsf{Liberal}} & = & \frac{\mathsf{True\ Liberal}}{\mathsf{True\ Liberal} + \mathsf{False\ Conservative}} \\ \mathsf{Recall}_{\mathsf{Conservative}} & = & \frac{\mathsf{True\ Conservative}}{\mathsf{True\ Conservative} + \mathsf{False\ Liberal}} \end{array}$$

Tension:

- Everything liberal: Recall $_{\text{Liberal}} = 1$; Recall $_{\text{Conservative}} = 0$
- Everything conservative: $Recall_{Liberal} = 0$; $Recall_{Conservative} = 1$

Characterize Tradeoff:

Plot True Positive Rate Recall_{Liberal}

False Positive Rate (1 - Recall_{Conservative})

Precision/Recall Tradeoff

Simple Classification Example

Analyzing house press releases

Hand Code: 1,000 press releases

- Advertising
- Credit Claiming
- Position Taking

Divide 1,000 press releases into two sets

- 500: Training set
- 500: Test set

Initial exploration: provides baseline measurement at classifier performances

Improve: through improving model fit

Example from Ongoing Work

	Actual Label		
Classification (Naive Bayes)	Position Taking	Advertising	Credit Claim.
Position Taking	10	0	0
Advertising	2	40	2
Credit Claiming	80	60	306

$$\begin{array}{rcl} \mathsf{Accuracy} & = & \frac{10 + 40 + 306}{500} = 0.71 \\ \mathsf{Precision}_{PT} & = & \frac{10}{10} = 1 \\ \mathsf{Recall}_{PT} & = & \frac{10}{10 + 2 + 80} = 0.11 \\ \mathsf{Precision}_{AD} & = & \frac{40}{40 + 2 + 2} = 0.91 \\ \mathsf{Recall}_{AD} & = & \frac{40}{40 + 60} = 0.4 \\ \mathsf{Precision}_{Credit} & = & \frac{306}{306 + 80 + 60} = 0.67 \\ \mathsf{Recall}_{Credit} & = & \frac{306}{306 + 2} = 0.99 \end{array}$$

4 = b = 990

Fit Statistics in R

RWeka library provides Amazing functionality.

We'll have more to say on how to install, use this next week!