Name: Xuanbo Jin
NetID: xuanboj2
Section: ZJUI VK

ECE 408/CS483 Milestone 3 Report

0. List Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 5k images from your basic forward convolution kernel in milestone 2. This will act as your baseline this milestone. Note: **Do not** use batch size of 10k when you profile in --queue rai_amd64_exclusive. We have limited resources, so any tasks longer than 3 minutes will be killed. Your baseline M2 implementation should comfortably finish in 3 minutes with a batch size of 5k (About 1m35 seconds, with nv-nsight).

			Total	
Batch Size	Op Time 1	Op Time 2	Execution	Accuracy
			Time	
100	0.236463	0.677674	0m0.215s	0.86
	ms	ms		
1000	3.58915	6.46691 ms	0m0.320s	0.887
	ms			
5000	9.2407 ms	31.8312 ms	0m1.060s	0.8712

CUDA API Statistics (nanoseconds)

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
59.4	174599088	20	8729954.4	2631	172410862	cudaMalloc
37.0	108744592	20	5437229.6	31812	57407516	cudaMemcpy
2.9	8387028	10	838702.8	3525	6551902	cudaDeviceSynchronize
0.6	1889911	20	94495.6	3432	285744	cudaFree
0.1	257650	10	25765.0	18170	31050	cudaLaunchKernel

CUDA Kernel Statistics (nanoseconds)

Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name
99.9	8367826	6	1394637.7	7584	6549955	conv_forward_kernel
0.0	2848	2	1424.0	1376	1472	do_not_remove_this_kernel
0.0	2528	2	1264.0	1216	1312	prefn_marker_kernel

CUDA Memory Operation Statistics (nanoseconds)

Time(%)	Total Time	Operations	Average	Minimum	Maximum	Name
92.2	97175440	6	16195906.7	12800	56493742	[CUDA memcpy DtoH]
7.8	8222288	14	587306.3	1120	4015386	[CUDA memcpy HtoD]

1. Optimization 1: Shared memory matrix multiplication and input matrix unrolling

a. Which optimization did you choose to implement and why did you choose that optimization technique.

I chose to implement shared memory matrix multiplication and input matrix unrolling for the forward convolution on the GPU. Shared memory reduces global memory transfers, enhancing efficiency. Input matrix unrolling optimizes memory access patterns, aligning with GPU SIMD capabilities.

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

HOW: Shared memory matrix multiplication partitions input matrices into smaller tiles stored in shared memory, reducing global memory access. Input matrix unrolling reshapes the input, improving vectorized operations and memory access. These optimizations are expected to increase forward convolution performance by minimizing data movement and leveraging GPU parallelism.

MY OPINION: I don't think it will be effective, because it would cost a lot of time to allocate memory for shared mem, which could be even longer than potential optimization time.

They synergize by using shared memory to cache unrolled input portions, combining reduced global memory transfers with optimized memory access patterns.

c. List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 5k images using this optimization (including any previous optimizations also used).

Batch Size	Op Time 1	Op Time 2	Total Execution	Accuracy
		•	Time	,
100	0.332411	1.55134 ms	0m0.164s	0.86
	ms			
1000	3.4167 ms	16.862 ms	0m0.420s	0.886
5000	17.138 ms	84.5166 ms	0m1.088s	0.8712

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your answer, directly comparing to your baseline (or the previous optimization this one is built off of).

CUDA API Statistics (nanoseconds)

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
55.7	170905225	20	8545261.2	3233	168563388	cudaMalloc
36.9	113046742	20	5652337.1	27913	61370271	cudaMemcpy
6.7	20521385	10	2052138.5	3531	16945365	cudaDeviceSynchronize
0.6	1925119	20	96255.9	3937	227184	cudaFree
0.1	259157	10	25915.7	17141	30348	cudaLaunchKernel

CUDA Kernel Statistics (nanoseconds)

Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name
100.0	20496247	6	3416041.2	22559	16939727	conv_forward_kernel
0.0	2848	2	1424.0	1408	1440	do_not_remove_this_kernel
0.0	2592	2	1296.0	1280	1312	prefn_marker_kernel

CUDA Memory Operation Statistics (nanoseconds)

Time(%)	Total Time	Operations	Average	Minimum	Maximum	Name
92.8	101510304	6	16918384.0	12640	60293073	[CUDA memcpy DtoH]

7.	.2	7906891	14	564777.9	1152	3863430	[CUDA memcpy HtoD]
----	----	---------	----	----------	------	---------	--------------------

CUDA Memory Operation Statistics (KiB)

Total	Operations	Average	Minimum	Maximum	Name
173672.0	6	28945.4	148.535	100000.0	[CUDA memcpy DtoH]
60644.0	14	4331.7	0.004	28890.0	[CUDA memcpy HtoD]

Unsuccessful.

WHY: In this case, the memory access patterns of the algorithm may not align well with the advantages that shared memory offers. If the algorithm doesn't exhibit spatial locality or if the required data doesn't fit into shared memory efficiently, the benefits may be limited.

e. What references did you use when implementing this technique? None

2. Optimization 2: FP16 arithmetic & Multiple kernel implementations for different layer sizes & Weight matrix (kernel values) in constant memory

a. Which optimization did you choose to implement and why did you choose that optimization technique.

FP16 Arithmetic: Employing FP16 arithmetic reduces memory requirements by using half-precision, beneficial for large-scale data processing and neural networks. This choice prioritizes faster computation and lower memory usage.

Multiple Kernel Implementations: Implementing different kernels for various layer sizes optimizes resource utilization, parallelism, and memory access patterns. This approach recognizes that efficient algorithms may vary based on layer dimensions, enhancing overall GPU performance.

Constant memory provides fast, read-only access for all threads in a block, minimizing global memory transfers and enhancing memory coalescing. This proves beneficial in convolution operations where the same kernel is applied across data points.

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

HOW:

- FP16 Arithmetic: Utilizing 16-bit floating-point precision reduces memory bandwidth demands.
 While sacrificing some precision, it often suffices for tasks like deep learning, where faster
 computation and reduced memory usage are critical. Synergizes with multiple kernels by further
 minimizing memory overhead.
- 2. Multiple Kernel Implementations: Tailoring kernels for different layer sizes optimizes resource usage, parallelism, and memory access patterns. This flexibility accommodates diverse optimization needs. Synergizes with FP16 arithmetic by aligning with the goal of memory efficiency.
- 3. Constant memory provides fast, read-only access for all threads in a block

MY OPINION: probably not so good optimization, since we were told in READ.ME that the change could be slight

It doesn't synergize with any of my previous optimizations. Const mem can.

c. List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 5k images using this optimization (including any previous optimizations also used).

	1	I		
			Total	
Batch Size	Op Time 1	Op Time 2	Execution	Accuracy
	'	'	Time	,
			Titile	
100	0.223472	0.673919	0m0.196s	0.86
	ms	ms		
1000	2.05063	6.5197 ms	0m0.340s	0.887
	ms			
5000	9.58134	37.3775 ms	0m1.199s	0.8712
	ms			

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your answer, directly comparing to your baseline (or the previous optimization this one is built off of).

CUDA API Statistics (nanoseconds)

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
60.2	188602698	32	5893834.3	2218	185924031	cudaMalloc
36.4	113980568	20	5699028.4	28994	58679818	cudaMemcpy
2.6	8092819	28	289029.3	768	6123583	cudaDeviceSynchronize
0.7	2056592	32	64268.5	2802	260033	cudaFree
0.1	317056	22	14411.6	4570	32124	cudaLaunchKernel
0.0	73185	6	12197.5	11463	13216	cudaMemcpyToSymbol

CUDA Kernel Statistics (nanoseconds)

Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name
97.8	7863492	6	1310582.0	6848	6121137	conv_forward_kernel
2.1	168574	12	14047.8	1440	76576	Float2HalfKernel
0.0	2688	2	1344.0	1344	1344	do_not_remove_this_kernel
0.0	2496	2	1248.0	1216	1280	prefn_marker_kernel

CUDA Memory Operation Statistics (nanoseconds)

Time(%)	Total Time	Operations	Average	Minimum	Maximum	Name
90.9	100472758	6	16745459.7	23552	57792065	[CUDA memcpy DtoH]
9.1	10104530	14	721752.1	1120	4813371	[CUDA memcpy HtoD]
0.0	10048	6	1674.7	1376	2144	[CUDA memcpy DtoD]

CUDA Memory Operation Statistics (KiB)

Total	Operations	Average	Minimum	Maximum	Name
173672.0	6	28945.4	148.535	100000.0	[CUDA memcpy DtoH]
60644.0	14	4331.7	0.004	28890.0	[CUDA memcpy HtoD]
7.0	6	1.2	0.158	6.0	[CUDA memcpy DtoD]

Unsuccessful.

WHY:

Loss of Precision:

FP16 has lower precision compared to FP32, and this reduction might lead to numerical instability or loss of accuracy in certain computations. If the specific application demands higher precision, sacrificing precision for speed may not be suitable.

Limited Dynamic Range:

FP16 has a more limited dynamic range, which can result in numerical issues, especially when dealing with values outside its representable range. This may impact the accuracy of certain computations and limit the applicability of FP16 in scenarios requiring a broader range.

e. What references did you use when implementing this technique?

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

3. Optimization 3: Tuning with restrict and loop unrolling

a. Which optimization did you choose to implement and why did you choose that optimization technique.

Tuning with restrict and loop unrolling.

WHY: Utilizing restrict in GPU programming informs the compiler about non-overlapping pointers, aiding in aggressive optimizations for reduced memory reloads.

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

HOW: Loop unrolling enhances performance by reducing loop overhead and increasing instruction-level parallelism. Together, these techniques improve data locality, minimize memory latency, and boost instruction throughput, optimizing GPU kernels. This is particularly beneficial in scenarios where precise control over memory access patterns and loop structures is essential for leveraging the parallel processing capabilities of GPUs efficiently.

MY OPINION: I think I would increase the performance of the forward convolution. Because in this case, K could only be chosen from 3 or 7, which means we can unrolling loops efficiently.

It synergizes with all of my previous optimizations, because all optimizations have same loops about K.

c. List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 5k images using this optimization (including any previous optimizations also used).

Batch Size	Op Time 1	Op Time 2	Total Execution Time	Accuracy
100	0.163001	0.585012	0m0.185s	0.86
	ms	ms		
1000	1.37721	5.31537 ms	0m0.332s	0.887
	ms			
5000	7.54042	29.7535	0m1.048s	0.8712
	ms	ms		

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your answer, directly comparing to your baseline (or the previous optimization this one is built off of).

CUDA API Statistics (nanoseconds)

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
61.6	455614159	32	14237942.5	2673	184401964	cudaMalloc
19.6	145049487	32	4532796.5	2844	62349649	cudaFree
17.6	129802393	20	6490119.7	31900	61728434	cudaMemcpy
1.1	8115294	28	289831.9	787	6120256	cudaDeviceSynchronize
0.1	445172	22	20235.1	4479	56002	cudaLaunchKernel
0.0	96272	6	16045.3	11551	34544	cudaMemcpyToSymbol

CUDA Kernel Statistics (nanoseconds)

Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name
97.8	7854776	6	1309129.3	6592	6113601	conv_forward_kernel
2.1	167614	12	13967.8	1600	76031	Float2HalfKernel
0.0	2816	2	1408.0	1408	1408	do_not_remove_this_kernel
0.0	2624	2	1312.0	1312	1312	prefn_marker_kernel

CUDA Memory Operation Statistics (nanoseconds)

Time(%)	Total Time	Operations	Average	Minimum	Maximum	Name
91.4	115262966	6	19210494.3	23519	60786859	[CUDA memcpy DtoH]
8.6	10817546	14	772681.9	1120	4872871	[CUDA memcpy HtoD]
0.0	10400	6	1733.3	1440	2208	[CUDA memcpy DtoD]

CUDA Memory Operation Statistics (KiB)

Total	Operations	Average	Minimum	Maximum	Name
173672.0	6	28945.4	148.535	100000.0	[CUDA memcpy DtoH]
60644.0	14	4331.7	0.004	28890.0	[CUDA memcpy HtoD]
7.0	6	1.2	0.158	6.0	[CUDA memcpy DtoD]

Yes, it is successful.

WHY: K could only be chosen from 3 or 7. Loop unrolling increases instruction-level parallelism and enhances performance by reducing loop overhead

e. What references did you use when implementing this technique? *None*