POSCAT Seminar 6 : Greedy Approach

yougatup @ POSCAT

Topic

- Topic today
 - Greedy Approach
 - Basic Concept
 - Interval Scheduling
 - Interval Partitioning
 - Fractional Knapsack
 - Huffman Encoding
 - Other Problems

- Problem Solving Paradigm
 - Follows the problem solving heuristic of making the locally optimal choose at each stage
 - You should prove that greedy approach guarantees the global optimal
- Very difficult normally
 - Finding a solution is very difficult, but
 - Code is very simple because it choose locally optimal usually

Starting at A, our greedy algorithm should find 'M', not 'm'.

Therefore, we must **prove** that greedy algorithm always find 'M', although we always choose **locally optimal path**

Problem

Find a path which has largest sum

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

Is it our solution?

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

Is it our solution?

Problem

Find a path which has largest sum

Greedy approach: Choose what appears to be the optimal

We must prove that our choice guarantees global optimal value

Problem

Completely Wrong!

We must prove that our choice guarantees global optimal value

Problem

- Job j starts at s_j and finishes at f_j
- Two jobs compatible if they don't overlap
- Find maximum subset of mutually compatible jobs

Poscat

Interval Scheduling

Problem

- Job j starts at s_i and finishes at f_i
- Two jobs compatible if they don't overlap
- Find maximum subset of mutually compatible jobs

Problem

Idea: What have to be the first interval?

Problem

Idea: What have to be the first interval?

Poscat

Problem

Idea: What have to be the first interval?

Poscat

Problem

Idea: What have to be the first interval?

Problem

Idea: What have to be the first interval?

Time

Poscat

Problem

Idea: What have to be the first interval?

Problem

Idea: What have to be the first interval?

Time

Which one is better?

Problem

Idea: What have to be the first interval?

Time

Which one is better?

Problem

Idea: What have to be the first interval?

Problem

Idea: What have to be the first interval?

Problem

Idea: What have to be the first interval?

Time

Which one is better?

Problem

Idea: What have to be the first interval?

Problem

Prove that this algorithm is optimal

Problem

Prove that this algorithm is optimal

Suppose that there is a solution $s_1 \le f_1 \le s_2 \le f_2 \le \dots \le s_k \le f_k$, and we found $s_1' \le f_1' \le s_2' \le f_2' \le \dots \le s_{opt}' \le f_{opt}'$

Problem

Prove that this algorithm is optimal

Suppose that there is a solution $s_1 \le f_1 \le s_2 \le f_2 \le ... \le s_k \le f_k$, and we found $s_1' \le f_1' \le s_2' \le f_2' \le ... \le s_{opt}' \le f_{opt}'$

We select the interval whose finish time is minimal.

$$\therefore f_1' \leq f_1.$$

Problem

Prove that this algorithm is optimal

Suppose that there is a solution $s_1 \le f_1 \le s_2 \le f_2 \le ... \le s_k \le f_k$, and we found $s_1' \le f_1' \le s_2' \le f_2' \le ... \le s_{opt}' \le f_{opt}'$

Also, we choose the second interval whose finish time is smallest among intervals compatible with the first one.

$$\therefore f_2' \leq f_2$$

Problem

Prove that this algorithm is optimal

Suppose that there is a solution $s_1 \le f_1 \le s_2 \le f_2 \le \dots \le s_k \le f_k$, and we found $s_1' \le f_1' \le s_2' \le f_2' \le \dots \le s_{opt}' \le f_{opt}'$

Like this, we can always guarantee that $f_k \leq f_k'$. $\therefore opt \geq k$

Also, $opt \le k$ because k is solution

Problem

Prove that this algorithm is optimal

Suppose that there is a solution $s_1 \le f_1 \le s_2 \le f_2 \le ... \le s_k \le f_k$, and we found $s_1' \le f_1' \le s_2' \le f_2' \le ... \le s_{opt}' \le f_{opt}'$

Like this, we can always guarantee that $f_k \le f_k'$. $\therefore opt \ge k$

Also, $opt \le k$ because k is solution Therefore, opt = k.

Problem

Idea: What have to be the first interval?

Time

Time complexity : O(n log n) for sorting

Interval Partitioning

Problem

- Lecture j starts at s_i and finishes at f_i
- Find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room

Time

Poscat

Interval Partitioning

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures
 so that no two occur at the same time in the same room

Interval Partitioning

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures
 so that no two occur at the same time in the same room

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures
 so that no two occur at the same time in the same room

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures
 so that no two occur at the same time in the same room

Time

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures
 so that no two occur at the same time in the same room

Time

Problem

- Lecture j starts at s_j and finishes at f_j
- Find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room

Time

Time

Interval Partitioning

Problem

Idea: What is the minimum number of classrooms?

Problem

Idea: What is the minimum number of classrooms?

We don't know the solution, but we need at least 4 classrooms!

→ Is it sufficient?

Problem

Idea: What is the minimum number of classrooms?

Problem

Idea: What is the minimum number of classrooms?

: We need classrooms at least as many as the maximum number of overlap

We don't know the solution, but we need at least 5 classrooms!

Poscat

Problem

Is it sufficient?

Time

Poscat

Problem

Problem

Problem

Poscat

Interval Partitioning

Problem

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k else

allocate a new classroom d+1 schedule lecture j in classroom d+1 d=d+1 end if end for
```

Prove that this algorithm needs classrooms no more than the maximum number of overlap

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k

else

allocate a new classroom d+1

schedule lecture j in classroom d+1

d=d+1

end if

end for
```

Prove that this algorithm needs classrooms no more than the maximum number of overlap

Let M be maximum number of overlap. Suppose that our algorithm needs M+1 classrooms

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k

else

allocate a new classroom d+1

schedule lecture j in classroom d+1

d=d+1

end if

end for
```

Prove that this algorithm needs classrooms no more than the maximum number of overlap

Consider the situation that we need last classrooms when we consider lecture j. In other words, we need 1 more classroom although we already have M classrooms

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k

else

allocate a new classroom d+1

schedule lecture j in classroom d+1

d=d+1

end if

end for
```

Prove that this algorithm needs classrooms no more than the maximum number of overlap

To allocate another classroom, we have to go to "else" part It means that lecture j have no compatible classroom

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k

else

allocate a new classroom d+1

schedule lecture j in classroom d+1

d=d+1

end if

end for

Implementation: O(n \log n).

For each classroom k, maintain the finish time of the last job added. Keep the classrooms in a priority queue.
```

Prove that this algorithm needs classrooms no more than the maximum number of overlap

To allocate another classroom, we have to go to "else" part It means that lecture j have no compatible classroom Therefore, the maximum number of overlap have to be M+1. Contradiction.

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n. d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then schedule lecture j in classroom k else

allocate a new classroom d+1 schedule lecture j in classroom d+1 d=d+1 end if end for
```

Implementation?

function interval-partition

```
sort intervals by starting time so that s_1 \leq s_2 \leq \cdots \leq s_n.

d=0.

for j=1 to n do

if lecture j is compatible with some classroom k then

schedule lecture j in classroom k

else

allocate a new classroom d+1

schedule lecture j in classroom d+1

d=d+1

end if

end for

Implementation: O(n \log n).

For each classroom k, maintain the finish time of the last job added.

Keep the classrooms in a priority queue.
```

Implementation?

By using priority queue, we can make $O(n \log n)$ algorithm

Fractional Knapsack

- Easy, just think about it
 - I'll provide this problem today

Problem

Given N points, find a maximum value of m such that $m = \lfloor \frac{\Delta y}{\Delta x} \rfloor$

Problem

Given N points, find a maximum value of m such that $m = \lfloor \frac{\Delta y}{\Delta x} \rfloor$ Naïve approach \rightarrow O(n^2)

Problem

Given N points, find a maximum value of m such that $m = \lfloor \frac{\Delta y}{\Delta x} \rfloor$ We can prove that two points have to be adjacent

Problem

Given N points, find a maximum value of m such that $m = \lfloor \frac{\Delta y}{\Delta x} \rfloor$ We can prove that two points have to be adjacent \rightarrow O $(n \log n)$

Problem

You have 2N cards, and each card have two numbers on both sides.

There are 2N locations to put your card on the table. For each location, it has specific sign which is changed alternatively (+ or -). Find the maximum value of the result of your calculation.

1

9 -1

-9 -8

7 | 4

4 -3

2 -1

Poscart

Other problems

Problem

You have 2N cards, and each card have two numbers on both sides.

There are 2N locations to put your card on the table. For each location, it has specific sign which is changed alternatively (+ or -). Find the maximum value of the result of your calculation.

Poscat

Other problems

Problem

You have 2N cards, and each card have two numbers on both sides.

There are 2N locations to put your card on the table. For each location, it has specific sign which is changed alternatively (+ or -). Find the maximum value of the result of your calculation.

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

If card i which is located with (+) should have the value a_i Otherwise, it should have the value b_i

Solution

```
Let a_i be the value of bigger side of card i.

b_i be the value of smaller side of card i.
```

If card i which is located with (+) should have the value a_i Otherwise, it should have the value b_i

```
Let S = \{ i \mid \text{card } i \text{ is located in (+) side } \}
Let S' = \{ i \mid \text{card } i \text{ is located in (-) side } \}
```


Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} a_i - \sum_{j \in S'} b_j$$

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} a_i - \sum_{j \in S'} b_j = \sum_{i \in S} a_i - \sum_{j \in S'} b_j + (\sum_{i \in S} b_i - \sum_{i \in S} b_i)$$

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} a_i + \sum_{j \in S'} b_j = \sum_{i \in S} a_i - \sum_{j \in S'} b_j + (\sum_{i \in S} b_i - \sum_{i \in S} b_i)$$

$$\sum_{i \in S} a_i + \sum_{i \in S} b_i - (\sum_{j \in S'} b_j + \sum_{i \in S} b_i)$$

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} a_i + \sum_{j \in S'} b_j = \sum_{i \in S} a_i - \sum_{j \in S'} b_j + \left(\sum_{i \in S} b_i - \sum_{i \in S} b_i\right)$$
$$\sum_{i \in S} (a_i + b_i) - (Sum \ of \ b)$$

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} (a_i + b_i) - (Sum \ of \ b)$$

(Sum of b) is constant because b is the smaller value of each card.

Solution

Let a_i be the value of bigger side of card i. b_i be the value of smaller side of card i.

$$\sum_{i \in S} (a_i + b_i) - (Sum \ of \ b)$$

(Sum of b) is constant because b is the smaller value of each card. Therefore, we have to choose i by considering the value of a + b It means that a card whose a + b value is larger should be located in (+)

Solution

- 1. Sort cards with respect to the value of a + b
- 2. N cards whose value is larger should be located in (+)
- 3. Remaining N cards should be located in (-)

 $O(n \log n)$

