MANDATORY ASSIGNMENT

JONAS TREPIAKAS - HVN548

Exercise 0.1 (1.11). Let $x, y, z \in V$ be linearly independent in a vector space over a field of characteristic $\neq 2$. Prove x+y, y+z, z+x are linearly independent. Show by an example that the conclusion can fail in characteristic 2.

Proof. Suppose x+y,y+z,z+x are not linearly independent. Then by lemma 1.10, there exist $a,b,c\in F$ where char $F\neq 2$, such that not all a,b,c are 0 and a(x+y)+b(y+z)+c(z+x)=0. Thus (a+c)x+(a+b)y+(b+c)z=0, so by linear independence, we get a+c=a+b=b+c=0. Hence a=b=c and so 2a=2b=2c=0, giving a=b=c=0 as char $F\neq 2$, giving a contradiction. Thus x+y,y+z,z+x are linearly independent.

To show that this fails in characteristic 2, take for example $V = (\mathbb{Z}/2\mathbb{Z})^3$. The field $\mathbb{Z}/2\mathbb{Z}$ has characteristic 2, and we can let $x = e_1 = (1,0,0), y = e_2 = (0,1,0)$ and $z = e_3 = (0,0,1)$. These are linearly independent since (0,0,0) = ax + by + cz = (a,b,c) implies a,b,c=0 in $\mathbb{Z}/2\mathbb{Z}$. However,

$$(x + y) + (y + z) + (z + x) = 2x + 2y + 2z = 0 + 0 + 0 = 0$$

while the coefficients of each (x+y), (y+z) and (z+x) is $1 \neq 0$ in $\mathbb{Z}/2\mathbb{Z}$, so by lemma 1.10, x+y, y+z, z+x are not linearly independent over $\mathbb{Z}/2\mathbb{Z}$.

Exercise 0.2 (2.5). Let $A \in \text{Hom}(U, V)$ and $x_1, \ldots, x_k \in U$. Assume Ax_1, \ldots, Ax_k are distinct and linearly independent. Show that $L = \{x_1, \ldots, x_k\}$ is linearly independent and that N(A) + span(L) is a direct sum.

Proof. Suppose for contradiction that L is not linearly dependent. By lemma 1.10 there thus exist coefficients $\alpha_i, i = 1, \ldots, n$, not all 0 such that $\alpha_1 x_1 + \ldots + \alpha_k x_k = 0$. By linearity, $0 = A(0) = A(\alpha_1 x_1 + \ldots + \alpha_k x_k) = \sum \alpha_i A(x_i)$. By linear independence and distinctness of Ax_1, \ldots, Ax_k , we get using lemma 1.10 that $\alpha_i = 0$ for all i. Contradiction. Thus L is linearly independent.

Now, by the first line of page 14 and lemma 1.8.(a), N(A) and $\operatorname{span}(L)$ are subspaces of U. To show that $N(A) + \operatorname{span}(L)$ is direct, it suffices by lemma 2.12 to show that $N(A) \cap \operatorname{span}(L) = \{0\}$. Suppose $x \in N(A) \in \operatorname{span}(L)$. By lemma 1.10.(2), there exists a unique linear combination $x = \sum \alpha_i x_i$. Now $0 = A(x) = \sum \alpha_i A(x_i)$, so again, by linear independence and distinctness of Ax_1, \ldots, Ax_k , we get $\alpha_i = 0$ for all i. Hence x = 0. So $N(A) \cap \operatorname{span}(L) \subset \{0\}$, and clearly A(0) = 0 and $0 = \sum_i 0 \cdot x_i$, so $\{0\} \subset N(A) \cap \operatorname{span}(L)$. Thus $N(A) \cap \operatorname{span}(L) = \{0\}$, and hence $N(A) + \operatorname{span}(L)$ is a direct sum.

Exercise 0.3 (5.3). The graph of a map $A: X \to Y$ is defined as the set of all pairs (x, Ax) in $X \times Y$. Assuming X and Y are vector spaces, prove that A is linear if and only if its graph is a subspace of $X \oplus Y$. Prove then that a subspace $G \subset X \oplus Y$ is the graph of a linear map if and only if $X \oplus Y = G \oplus Y$.

Proof. Let ΓA denote the graph $\Gamma A = \{(x, Ax) \mid x \in X\} \subset X \times Y$. We must show that this forms a vector space as a subspace of $X \oplus Y$.

Firstly, since A(0)=0 for any linear map, we have $(0,0)\in\Gamma A$. Now, if (x,Ax), $(y,Ay)\in\Gamma A$, then Ax+Ay=A(x+y) by linearity of A, so $(x,Ax)+(y,Ay)=(x+y,Ax+Ay)\in\Gamma A$, hence ΓA is closed under the additive operation inherited from $X\oplus Y$. Suppose now $\alpha\in F$ where F is the common field over which X and Y are vector spaces. Then $\alpha Ax=A(\alpha x)$ by linearity of A, so $\alpha(x,Ax)=(\alpha x,\alpha Ax)\in\Gamma A$, so ΓA is also closed under the scalar multiplication inherited from $X\oplus Y$. By definition 1.4, ΓA is a subspace of $X\oplus Y$.

Now suppose conversely that ΓA is a subspace of $X \oplus Y$. We must check definition 2.1. Suppose $x, y \in X$ and $\alpha, \beta \in F$. Then

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

$$\iff (\alpha x + \beta y, \alpha A(x) + \beta A(y)) \in \Gamma A$$

$$\iff \alpha(x, A(x)) + \beta(y, A(y)) \in \Gamma A$$

and the last line is true by assumption of ΓA being a vector space under the operations inherited from $X \oplus Y$. We thus see that if ΓA is a linear subspace of $X \oplus Y$ then A is a linear map.

Now, to show that $X \oplus Y = G \oplus Y$, we interpret this as Y being identified with the subspace $\{0\} \times Y \subset X \oplus Y$ and then $G \oplus Y$ as the direct sum of subspaces. Suppose G is the graph of some linear map $A \colon X \to Y$, $G = \Gamma A$. Let $(x,y) \in X \oplus Y$. Then we can write (x,y) as the sum $(x,Ax) + (0,y-Ax) \in G+Y$. So $G+Y=X \oplus Y$. To show that the sum is direct, suppose $(x,y) \in G \cap Y$. Since $(x,y) \in Y = \{0\} \times Y$, we have x=0. Now since $(x,y) \in G$, we have y=Ax=A(0)=0 by linearity of A, so indeed (x,y)=(0,0). Hence $G \cap Y = \{(0,0)\}$, so $X \oplus Y = G \oplus Y$.

Conversely, suppose $X \oplus Y = G \oplus Y$ where again Y is identified with $\{0\} \times Y$. Then we must show that there exists a linear map $A \colon X \to Y$ with $\Gamma A = G$. To construct this as a map, we must simply show that there do not exist elements $(x,y),(x,y') \in G$ with $y \neq y'$ and that for each $x \in X$, there exists $y \in Y$ with $(x,y) \in G$. This by definition will mean that G is the graph of a function. Firstly, suppose $(x,y),(x,y') \in G$ with $y \neq y'$. Then since G is a subspace, $(0,y-y')=(x,y)-(x,y')\in G$, so since $G \oplus Y = X \oplus Y$ is direct, and $(0,y-y')\in \{0\}\times Y$, we have $(0,y-y')\in G\cap Y=\{(0,0)\}$, so y=y'. Now, for existence, choose any $y\in Y$. Then $(x,y)\in X\oplus Y=G\oplus Y$, so by directness, there exist unique vectors (a,b),(0,c) with $(a,b)\in G$ and $(0,c)\in Y$ such that (x,y)=(a,b)+(0,c). Hence x=a, so indeed $(x,b)\in G$, and by the above, this b is the unique element in Y for which $(x,b)\in G$. Denote now for an arbitrary $x\in X$ by A(x) the element $b\in Y$ for which $(x,b)\in G$. Thus $\Gamma A=\{(x,A(x))\mid x\in X\}\subset X\times Y$ defines a function $X\to Y$ by sending $x\mapsto A(x)$.

But by the first part of this exercise, A is linear if and only if ΓA is a subspace of $X \oplus Y$. Since $\Gamma A = G$ by construction and G is a subspace of $X \oplus Y$, we can thus conclude that A is linear.

Exercise 0.4 (6.25). Assume $A^3 = A$ and char $F \neq 2$. Show that A is diagonable.

Proof. Since $A^3 = A$, we have $A(A-1)(A+1) = A(A^2-1) = 0$, so letting q(x) = x(x-1)(x+1), we have q(A) = 0, hence by lemma 6.10, if p(x) is the minimal polynomial, we have p(x)|q(x), so since q splits without repetition of linear factors (here is where char $F \neq 2$ comes into play to allow us to conclude that $x-1 \neq x+1$), p must also split without repetition, and by theorem 6.17.(i), this implies that A is diagonable.

Exercise 0.5 (7.15). Let dim $V < \infty, F = \mathbb{C}$, and let $A \in \text{End}(V)$ be normal. Prove that if B commutes with A, then it commutes with A^* as well.

Proof. Since A is normal, we have $AA^* = A^*A$, so also A^* is normal. By theorem 7.24, A and A^* being normal means that they are orthogonally diagonable. By theorem 6.19.(7), we now have that $BA^* = A^*B$ if and only if $BE_{\overline{\lambda}} = E_{\overline{\lambda}}B$ for all $\overline{\lambda} \in \sigma(A^*)$ where $E_{\overline{\lambda}}$ is the projection to $V_{\overline{\lambda}}$ along the other eigenspace in the decomposition

$$V = \oplus_{\overline{\lambda} \in \sigma(A^*)} V_{\overline{\lambda}}$$

But by theorem 7.21.(iii), $V_{\lambda,A} = V_{A^* \overline{\lambda}}$, so

$$V = \bigoplus_{\lambda \in \sigma(A)} V_{\lambda}$$

and $E_{\overline{\lambda}} = E_{\lambda}$. But then we indeed get that $BE_{\overline{\lambda}} = E_{\overline{\lambda}}B$ if and only if $BE_{\lambda} = E_{\lambda}B$, and again using theorem 6.19.(7), this is true if and only if AB = BA which we assumed to be true by assumption.

Exercise 0.6 (8.6). Let $A \in \text{End}(V)$ be nilpotent, and $U \subset V$ invariant. Show that the quotient map $\overline{A} \in \text{End}(V/U)$ is nilpotent.

Proof. Suppose $A^k=0$ for some k>0. We claim that $\overline{A}^k=0$ for the same k. We recall by lemma 2.16 that $\overline{A}\in \operatorname{End}(V/U)$ is the unique endomorphism making $\overline{A}\circ\pi=\pi\circ A$ commute where $\pi\colon V\to V/U$ is the quotient map. It thus immediately follows that $\overline{A^k}=0$ since this satisfies the commutative criterion. Now, we claim that suppose that for N we have shown $\overline{A}^N\circ\pi=\pi\circ A^N$. Then we get

$$\pi \circ A^{N+1} = (\pi \circ A) \circ A^N = \overline{A} \circ \pi \circ A^N = \overline{A}^{N+1} \circ \pi$$

so since the case for N=1 was shown, we get by induction that $\overline{A}^k \circ \pi = \pi \circ A^k = 0$. Now, π is surjective by lemma 2.9, so given some $\overline{x} \in V/U$, let $x \in V$ be such that $\pi(x) = \overline{x}$. Then $\overline{A}^k \overline{x} = \overline{A}^k (\pi(x)) = \pi \circ A^K(x) = \pi(0) = \overline{0}$. So indeed \overline{A}^k is equal to the zero endomorphism in End (V/U). Thus \overline{A} is nilpotent.

Exercise 0.7 (10.11). Show $\chi_{A^{-1}}(\lambda) = (-\lambda)^n \det(A)^{-1} \chi_A(\lambda^{-1})$ for $A \in GL(V)$, $\lambda \neq 0$ and $n = \dim V$.

Proof. We have

$$\det (A^{-1} - \lambda I) = \det (A^{-1} (I - \lambda A))$$

$$= \det (-A^{-1} \lambda (A - \lambda^{-1} I))$$

$$= \det (A^{-1}) \det (-\lambda I) \det (A - \lambda^{-1} I)$$
 (Thm 10.1.(ii))
$$= \det (A)^{-1} (-\lambda)^n \chi_A (\lambda^{-1})$$

where the last step follows since $\det\left(A^{-1}\right) = \det(A)^{-1}$ by theorem 10.3, $\det\left(-\lambda I\right) = (-\lambda)^{\dim V} = (-\lambda)^n$ by theorem 10.1.(i), and $\det\left(A - \lambda^{-1}I\right) = \chi_A(\lambda^{-1})$ by definition 10.19, (10.2) and that $\chi_A(x) := \chi_{[A]}(x)$.