W AVEファイル参考資料

PCM (パルス符号変調)という言葉を耳にしたことがあるだろう、そう、今までに何回も出てきているので、耳にたこができると思っている人も多いと思う、

PCM は現在,たとえばCDの記録のように,基本的なディジタル処理形態では多く利用されている.WindowsにおけるWAVEファイルも,この方式が利用されており,図2がPCMを説明した図である.

図2 PCM

図 2からわかるように,アナログ信号をある一定時間間隔ごとにサンプリングし(サンプリング周期をT[s]とする),そのときの振幅を適当なビット数で量子化する(量子化ビット数:よく8bit or 16bitが利用される).ここでサンプリング周波数fsはfs=1/T[Hz]で得られる.

wavファイルのプロパティで「詳細」 - 「オーディオ形式」でどのような形式で保存されているか,その詳細を見ることが出来る.

<W A VE ファイル形式の概要>

wavファイルは,大きく分けると記録条件を書き込んでいるヘッダ部と,量子化された信号が書き込まれているデータ部に分かれている.利用の際には,まずヘッダ部を解析し,どのようなデータが記録されているのかを知る必要がある.次の表にWAVEファイルのフォーマットを示しておく.

表 1 W A VE フォーマット

先頭からの		項	サイズ	内容	備考	今回の
バイト数		目	[byte]			値
10進	16進					
0	0	1	4	R IFF'		
4	4	2	4	ファイルサイズから8を引いた値		
8	8	3	4	WAVE'		
12	С	4	4	'fm t '		
16	10	5	4	項目6~11の合計サイズ	*1,*2がある時はその合計	
20	14	6	2	フォーマットD	PCM は1	1
22	16	7	2	チャネル数	モノラル1 , ステレオ2	1
24	18	8	4	サンプリング周波数[Hz]		11025
28	1C	9	4	平均データ速度[byte/s]	項目8 ×項目10	22050
32	20	10	2	ブロックサイズ[byte/sam ple]	項目7×(項目11/8)	2
34	22	11	2	1サンプル当たりの ビット数[b it]	量子化ビット	16
*		*1	2	項目*2のサイズ		なし
*		*2		ヘッダ拡張部		なし
*		*3	4	'fact'		なし
*		*4	4	項目*5のサイズ		なし
*		*5	4	情報	一般的に全サンプル数がある	なし
36	24	12	4	'data'		
40	28	13	4	項目14のサイズ		
44	2C	14		データ部	サンプリング間隔毎の振幅値	
					この振幅値が時間順に並ぶ	

- 1) ''で囲まれたものは文字列がそのまま書かれる.それ以外はサイズの整数値がバイナリで書き込まれる.
- 2) 項目5は項目*1, *2がある場合,項目6~11と項目*1, *2の合計になる.
- 3) 項目6が1(リニアPCM)の時*1~*5は必要ない(ある場合もある). これらの項目がある場合,その分だけ項目12以降の先頭からのバイト数に注意
- 4) 項目11は項目6が1の場合8または16となる.
- 5) 項目14は項目11が 8の時1 [byte]の符号なし整数で保存.振幅値が0(無音)のときは128(0x80) 16の時2 [byte]の符号付き整数(リトルエンディアン).振幅値が0(無音)のときは0(0x0000)である.
- 6) 項目7が2(ステレオ)のときサンプル毎に左チャネル,右チャネルの順で記録される.