Bài 5 Giới thiệu thống kê Bayes và Markov chain Monte Carlo

Thống kê máy tính và ứng dụng (Computational Statistics and Applications)

Vũ Quốc Hoàng (vqhoang@fit.hcmus.edu.vn)

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

Công thức Bayes

Trên không gian mẫu Ω , các biến cố $\{E_1,E_2,...,E_n\}$ được gọi là một họ đầy đủ nếu

- $E_i \cap E_j = \emptyset$ khi $i \neq j$ (mutually exclusive, loại trừ, "không trùng"),
- $\Omega = \bigcup_{i=1}^{n} E_i$ (exhaust all possibilities, đầy đủ, "không sót").

Công thức Bayes (Bayes' rule)

$$\underbrace{P(E_i|D)}_{\text{posterior}} = \underbrace{\frac{P(D|E_i)}{P(D|E_i)} \underbrace{P(E_i)}_{\text{evidence}}}_{\text{likelihood prior}} \underbrace{P(D|E_i)P(E_i)}_{\text{evidence}} = \frac{P(D|E_i)P(E_i)}{\sum_{j=1}^n P(D|E_j)P(E_j)} \propto P(D|E_i)P(E_i).$$

Công thức Bayes hướng dẫn cách "cập nhật xác suất" hay "phân bổ lại niềm tin" (reallocation of **credibility**).

Công thức Bayes - Ví dụ

Giả sử bạn đi xét nghiệm một bệnh nan y và được kết quả là *dương tính* (positive). Biết rằng

- Độ nhạy (sensitive) của xét nghiệm là 90%: trong 100 người bị bệnh thì khoảng 90 người dương tính.
- Độ đặc hiệu (specificity) của xét nghiệm là 95%: trong 100 người không bệnh thì khoảng 95 người âm tính.
- Độ phổ biến (prevalence) của bệnh là 1/10000: trong 10000 người thì có khoảng 1 người bị bệnh.
- 1. Bạn nên chuẩn bị "hậu sự" không?
- 2. Giả sử, để chắc ăn, bạn xét nghiệm một lần nữa và vẫn ra dương tính! Bạn nên chuẩn bị hậu sự chưa?
- 3. Ta có nên xét nghiệm không? Ý nghĩa "thật sự" của việc xét nghiệm là gì?

Trả lời: xem Jupyter Notebook đi kèm.

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

Suy diễn Bayes

Dữ liệu (data) được sinh ra từ **mô hình xác suất** (probabilistic model). Mô hình được xác định bởi các **tham số** (parameter). Từ các dữ liệu quan sát, **suy diễn** (inference) về mô hình qua tham số. **Suy diễn Bayes** (Bayesian inference)

- 1. Xác định dữ liệu, mô hình và hàm hợp lý của tham số,
- 2. "Chọn" phân phối tiên nghiệm phù hợp cho tham số,
- 3. "Tính" phân phối hậu nghiệm của tham số theo công thức Bayes

$$\underbrace{p(\theta|D)}_{\text{posterior}} = \frac{p(D|\theta)p(\theta)}{p(D)} = \underbrace{\frac{\overbrace{L(\theta|D)}}{\underbrace{p(D)}}_{\text{evidence}} p(\theta)}_{\text{evidence}} \propto L(\theta|D)p(\theta),$$

- Kiểm tra phân phối hậu nghiệm có sinh dữ liệu phù hợp ("posterior predictive check"). Nếu không, thử mô hình và/hoặc dữ liêu khác,
- 5. "Dùng" phân phối hậu nghiệm để đưa ra các kết luận.

Suy diễn Bayes - Ví dụ

Bài toán. Một nhà máy sản xuất bóng với 4 loại kích thước 1, 2, 3, 4. Đặt 3 quả bóng loại kích thước 2. Nhận được 3 quả bóng với các kích thước: 1.77, 2.23, 2.70. Hỏi nhà máy có sản xuất đúng loại đã đặt?

Suy diễn. Ta mô hình kích thước bóng là biến ngẫu nhiên $X \sim \mathcal{N}(\mu, \sigma^2)$ với tham số μ có thể nhận một trong 4 giá trị

$$\begin{cases} E_1 : \mu = \mu_1 = 1.0, \\ E_2 : \mu = \mu_2 = 2.0, \\ E_3 : \mu = \mu_3 = 3.0, \\ E_4 : \mu = \mu_4 = 4.0. \end{cases}$$

Ta có

$$p(X = x | E_i) = f_{\mathcal{N}(\mu_i, \sigma^2)}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x - \mu_i)^2}{2\sigma^2}}, i = 1, ..., 4.$$

Ta nhận được X_1, X_2, X_3 độc lập và cùng phân phối với X. Cụ thể, ta có dữ liệu

$$D = (X_1 = 1.77) \cap (X_2 = 2.23) \cap (X_3 = 2.70).$$

Hàm hợp lý của tham số μ trên dữ liệu D theo mô hình đã chọn là

$$L(\mu_{i}|D) = p(D|E_{i}) = p((X_{1} = 1.77) \cap (X_{2} = 2.23) \cap (X_{3} = 2.70)|E_{i})$$

$$= p(X_{1} = 1.77|E_{i})p(X_{2} = 2.23|E_{i})p(X_{3} = 2.70|E_{i})$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{3} e^{\frac{-\left((1.77 - \mu_{i})^{2} + (2.23 - \mu_{i})^{2} + (2.70 - \mu_{i})^{2}\right)}{2\sigma^{2}}}$$

$$\propto e^{\frac{-\left((1.77 - \mu_{i})^{2} + (2.23 - \mu_{i})^{2} + (2.70 - \mu_{i})^{2}\right)}{2\sigma^{2}}}, i = 1, ..., 4.$$

"Giả sử" phân phối tiên nghiệm là

$$p(E_i) = \frac{1}{4} \propto 1, i = 1, ..., 4.$$

Ta tính phân phối hậu nghiệm theo công thức Bayes

$$p(E_i|D) = \frac{p(D|E_i)p(E_i)}{\sum_{j=1}^4 p(E_j|D)p(E_j)} = \frac{e^{\frac{-((1.77-\mu_i)^2+(2.23-\mu_i)^2+(2.70-\mu_i)^2)}{2\sigma^2}}}{\sum_{j=1}^4 e^{\frac{-((1.77-\mu_j)^2+(2.23-\mu_j)^2+(2.70-\mu_j)^2)}{2\sigma^2}}}.$$

Với một số giá trị của σ^2 , tính toán ta có

	$\sigma^2 = 1$	$\sigma^2 = 1.35$	$\sigma^2 = 2$
$P(\mu=1 D)$	7%	11%	16%
$P(\mu = 2 D)$	64%	56%	47%
$P(\mu = 3 D)$	29%	31%	32%
$P(\mu = 4 D)$	1%	2%	5%

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

Mô hình nhị thức

Biến ngẫu nhiên rời rạc Y được gọi là kết quả của một **phép thử Bernoulli** (Bernoulli trial) hay có **phân phối Bernoulli** (Bernoulli distribution) với tham số p ($0 \le p \le 1$), kí hiệu $Y \sim \text{Bernoulli}(p)$, nếu

$$\begin{cases} P(Y=1) = p, \\ P(Y=0) = 1 - p. \end{cases}$$

(Y=1) thường được gọi là "thành công" (success), (Y=0) là "thất bại" (failure), p là xác suất thành công.

Dãy biến ngẫu nhiên $Y_1, Y_2, ...$ được gọi là một dãy phép thử Bernoulli hay một **quá trình Bernoulli** (Bernoulli process) nếu $Y_1, Y_2, ...$ độc lập và cùng phân phối Bernoulli(p).

Bài toán. Cho dữ liệu của dãy phép thử Bernoulli $D = \{Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n\}$, "tìm" p.

Suy diễn. Xem tham số $\theta=p$ là biến ngẫu nhiên liên tục, nhận giá trị trong [0,1]. Với $Y\sim \mathrm{Bernoulli}(\theta)$ có giá trị quan sát $y\in\{0,1\}$, hàm hợp lý của θ theo y là

$$p(y|\theta) = \theta^y (1-\theta)^{1-y} = egin{cases} heta & y=1, \ 1- heta & y=0. \end{cases}$$

Do đó, với dữ liệu $D = \{y_i\}_{i=1}^n$, hàm hợp lý của θ theo D là

$$p(D|\theta) = \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{1-y_i} = \theta^{\sum_{i=1}^{n} y_i} (1-\theta)^{\sum_{i=1}^{n} (1-y_i)} = \theta^{z} (1-\theta)^{n-z},$$

với $z = \sum_{i=1}^{n} y_i$ (số lần thành công trong n lần quan sát của D).

"Chọn" phân phối tiên nghiệm cho θ là **phân phối Beta** (Beta distribution) với tham số a,b (a>0,b>0), $\theta\sim \mathrm{Beta}(a,b)$, ta có

$$p(\theta; a, b) \propto \theta^{a-1} (1-\theta)^{b-1}, 0 \leq \theta \leq 1.$$

Từ công thức Bayes, θ có phân phối hậu nghiệm sau khi quan sát dữ liệu D là

$$p(\theta|D) \propto p(D|\theta)p(\theta; a, b)$$

$$\propto \theta^{z}(1-\theta)^{n-z}\theta^{a-1}(1-\theta)^{b-1} \propto \theta^{z+a-1}(1-\theta)^{n-z+b-1}.$$

Nhận xét,
$$(\theta|D) \sim \text{Beta}(a+z,b+n-z)$$
.

Phân phối Beta được gọi là **phân phối tiên nghiệm liên hợp** (conjugate prior distribution) của phân phối Bernoulli.

Lưu ý, các "siêu tham số" (hyperparameter) a,b của phân phối tiên nghiệm và $\kappa=a+b$ thường được gọi là **pseudo-count** vì

- Trước khi quan sát dữ liệu D, $\theta \sim \text{Beta}(a,b)$, ta tin vào xác suất thành công θ như thể ta đã thấy a lần thành công và b lần thất bại (trong tổng số $\kappa = a + b$ lần),
- Dữ liệu D cho thấy z lần thành công và n-z lần thất bại (trong tổng số n lần),
- Sau khi quan sát dữ liệu D, $(\theta|D)\sim \mathrm{Beta}(a+z,b+n-z)$, ta tin vào xác suất thành công như thể ta đã thấy a+z lần thành công và b+n-z lần thất bại (trong tổng số $\kappa+n$ lần).

Như vậy, có thể nói phân phối hậu nghiệm là "tổng hợp" hay "thỏa hiệp" giữa phân phối tiên nghiệm và hàm hợp lý trên dữ liệu. Chẳng han

• Phân phối tiên nghiệm $\theta \sim \text{Beta}(a,b)$ có kỳ vọng

$$E(\theta) = \frac{a}{a+b} = \frac{a}{\kappa},$$

• Hàm hợp lý từ dữ liệu $L(\theta|D)=p(D|\theta)=\theta^z(1-\theta)^{n-z}$ đạt cực đại tại

$$\hat{\theta}_{\mathsf{MLE}} = \frac{z}{n}$$
,

ullet Phân phối hậu nghiệm $(heta|D)\sim ext{Beta}(a+z,b+n-z)$ có kỳ vọng

$$E(\theta|D) = \frac{a+z}{a+z+b+n-z} = \frac{a+z}{\kappa+n} = \frac{\kappa}{\kappa+n} \frac{a}{\kappa} + \frac{n}{\kappa+n} \frac{z}{n}$$
$$= \frac{\kappa}{\kappa+n} E(\theta) + \frac{n}{\kappa+n} \hat{\theta}_{MLE}.$$

Mô hình nhị thức - Ví dụ

• Dữ liệu: $z=1,\,n=10$ (quan sát thấy 1 lần thành công trong 10 lần), hàm hợp lý

$$\rho(D|\theta) = \theta^{z}(1-\theta)^{n-z} = \theta^{1}(1-\theta)^{9}$$

đạt cực đại tại $\hat{ heta}_{\mathsf{MLE}} = \frac{z}{n} = \frac{1}{10} = 0.1$

- Phân phối tiên nghiệm: $a=5, b=5, \kappa=a+b=10$ (như thế quan sát thấy 5 lần thành công trong 10 lần), $\theta \sim \text{Beta}(a,b) = \text{Beta}(5,5)$ có $E(\theta) = \frac{a}{\kappa} = \frac{5}{10} = 0.5$.
- Phân phối hậu nghiệm: a + z = 6, $\kappa + n = 20$ (như thể quan sát thấy 6 lần thành công trong 20 lần), $(\theta|D)$ a Bota (a + z, b + n, z) = Bota(6, 14) có

$$(heta|D)\sim \mathsf{Beta}(a+z,b+n-z)=\mathsf{Beta}(6,14)$$
 có

$$E(\theta|D) = \frac{a+z}{\kappa+n} = \frac{6}{20} = 0.3$$
$$= \frac{\kappa}{\kappa+n} E(\theta) + \frac{n}{\kappa+n} \hat{\theta}_{MLE} = 0.5E(\theta) + 0.5\hat{\theta}_{MLE}.$$

Mô hình nhị thức - Ví dụ (tt)

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

"Tính" phân phối hậu nghiệm

Các cách "tính" phân phối hậu nghiệm

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}.$$

- Chọn $p(\theta)$ là phân phối **tiên nghiệm liên hợp** (conjugate prior) cho hàm hợp lý $p(D|\theta)$ để phân phối hậu nghiệm $p(\theta|D)$ có dạng như phân phối tiên nghiệm.
- "Rời rạc hóa" hay "xấp xỉ lưới" (grid approximation) θ

$$p(D) = \sum_{\theta^*} p(D|\theta^*)p(\theta^*).$$

- Dùng các phương pháp **lấy mẫu ngẫu nhiên** (randomly sampling), tức là các phương pháp sinh số ngẫu nhiên, đặc biệt là các phương pháp **Markov chain Monte Carlo** (MCMC) để sinh các giá trị θ từ phân phối $p(\theta|D)$ với số lượng đủ nhiều.
- (và các cách khác)

Phân phối tiên nghiệm liên hợp

- https://en.wikipedia.org/wiki/Conjugate_prior.
- $Vi~d\mu$: trong mô hình nhị thức, khi hàm hợp lý dùng phân phối Bernoulli (hay phân phối nhị thức, nhị thức âm), phân phối tiên nghiệm cho tham số $\theta=p$ (xác suất thành công) được chọn là phân phối Beta để phân phối hậu nghiệm cũng là phân phối Beta.

"Xấp xỉ lưới" - Ví dụ

Lấy mẫu loại bỏ - Ví dụ

Xét bài toán suy diễn Bayes sau: cho $X \sim \text{Exp}(1)$, dùng quan sát y từ $Y \sim \mathcal{N}(0,X)$, tìm phân phối hậu nghiệm (X|Y=y).

Trước hết, phân phối tiên nghiệm của X, $X\sim {\sf Exp}(1)$, có hàm mật độ

$$p(x) = e^{-x} \mathbb{I}_{[0,\infty)}(x).$$

Hàm hợp lý của X khi biết $Y \sim \mathcal{N}(0,X)$ nhận giá trị y là

$$p(y|x) = \frac{1}{\sqrt{2\pi x}}e^{-y^2/(2x)}.$$

Từ đó, dùng công thức Bayes, phân phối hậu nghiệm (X|Y=y) có hàm mất đô

$$p(x|y) \propto p(y|x)p(x)$$

Lấy mẫu loại bỏ - Ví dụ (tt)

Đăt

$$f(x) = \frac{1}{\sqrt{x}} e^{-y^2/(2x) - x} \mathbb{I}_{[0,\infty)}(x) \propto p(y|x) p(x) \propto p(x|y),$$

ta có thể dùng phương pháp lấy mẫu loại bỏ để sinh mẫu từ phân phối hậu nghiệm (X|Y=y). Lưu ý, phương pháp lấy mẫu loại bỏ không cần f phải được chuẩn hóa.

Cụ thể, dùng thuật toán lấy mẫu loại bỏ theo khuôn với phân phối đề cử là Exp(1) và hằng số

$$c = \frac{1}{|y|}e^{-1/2},$$

ta sinh mẫu $X_1,...,X_N$ iid theo phân phối hậu nghiệm (X|Y=y), vẽ histogram và tính

$$E(X|Y=y) pprox rac{1}{N} \sum_{j=1}^{N} X_j = \bar{X}, \quad Var(X|Y=y) pprox rac{1}{N-1} \sum_{j=1}^{N} \left(X_j - \bar{X}
ight)^2.$$

Lấy mẫu loại bỏ - Ví dụ (tt)

Lấy mẫu loại bỏ - Ví dụ (tt)

Nội dung

- 1. Công thức Bayes
- 2. Suy diễn Bayes
- 3. Mô hình nhị thức
- 4. "Tính" phân phối hậu nghiệm
- 5. Markov chain Monte Carlo

Markov chain Monte Carlo

• Giả sử ta tính được phân phối tiên nghiệm $p(\theta)$ và hàm hợp lý $p(D|\theta)$ "đến một hệ số", tức là tính được

$$f(\theta) \propto p(\theta)p(D|\theta) \propto p(\theta|D)$$
.

Ta có thể dùng các phương pháp lấy mẫu ngẫu nhiên để sinh các giá trị đại diện cho phân phối hậu nghiệm $p(\theta|D)$.

- Các phương pháp sinh số ngẫu nhiên đã học (như lấy mẫu loại bỏ) sinh dãy $\theta_1,\theta_2,...\stackrel{\text{iid}}{\sim} \frac{1}{Z_f}f(\theta)$ với Z_f là hằng số chuẩn hóa. Trong nhiều trường hợp (như khi $\theta \in \mathbb{R}^d$ với d lớn), các phương pháp này thường kém hiệu quả.
- Các phương pháp **Markov Chain Monte Carlo** (MCMC) sinh **xích Markov** (Markov chain) $\theta_1, \theta_2, \dots$ có **phân phối dừng** (stationary distribution) là $\frac{1}{Z_f} f(\theta)$, thường đơn giản và hiệu quả hơn.

Thuật toán Metropolis-Hastings

Thuật toán MH. (Metropolis-Hastings method) Input:

- hàm f với giá trị trong khoảng $[0,\infty)$ (non-normalised target density),
- hàm mật độ xác suất chuyển g(x'|x) (proposal density),
- X_0 với $f(X_0) > 0$.

Output: xích Markov $X_1, X_2, ...$ có phân phối dừng là $\frac{1}{Z_f} f(x)$. Đặt

$$\alpha(x'|x) = \min\left(1, \frac{f(x')g(x|x')}{f(x)g(x'|x)}\right).$$

- 1: **for** n = 1, 2, 3, ... **do**
- 2: $\sinh X' \sim g(.|X_{n-1}) \# \sinh d\mathring{e} c\mathring{u}$
- 3: **if** $U(0,1) \le \alpha(X'|X_{n-1})$ **then**
- 4: $X_n \leftarrow X' \# X'$ được chấp nhận với xác suất $\alpha(X'|X_{n-1})$
- 5: **else**
- 6: $X_n \leftarrow X_{n-1}$
- 7: end

Giả sử ta cần lấy mẫu cho hàm mật độ chưa chuẩn hóa $f(x)=2^{-|x|}\mathbb{I}_{\mathbb{Z}}(x)$. Lưu ý, $Z_f=\sum_{x\in\mathbb{Z}}f(x)=(1+2\sum_{x=1}^\infty 2^{-x})=3$, nhưng ta không cần tính Z_f .

Sử dụng thuật toán MH, ta dễ dàng sinh xích Markov có phân phối dừng là $\frac{1}{Z_f}f(x)$. Chẳng hạn, dùng hàm xác suất đề cử

$$g(X' = x + 1|X = x) = g(X' = x - 1|X = x) = \frac{1}{2}, x \in \mathbb{Z},$$

ta có hàm xác suất chấp nhận là

$$\begin{split} \alpha(x'|x) &= \min\left(1, \frac{f(x')g(x|x')}{f(x)g(x'|x)}\right) = \min\left(1, \frac{2^{-|x'|}g(x|x')}{2^{-|x|}g(x'|x)}\right) \\ &= \begin{cases} 2^{|x|-|x'|} & |x'| > |x| \\ 1 & \text{khác} \end{cases}. \end{split}$$

Dùng hàm xác suất đề cử ở trên, chọn $X_0=0$, ta có thuật toán MH sinh xích Markov có phân phối dừng là hàm mật độ chưa chuẩn hóa $f(x)=2^{-|x|}\mathbb{I}_{\mathbb{Z}}(x)$.

```
1: for n = 1, 2, 3, ... do
2: \sinh \epsilon \sim \mathcal{U}\{-1, 1\}
3: X' \leftarrow X_{n-1} + \epsilon
4: \sinh \mathcal{U} \sim \mathcal{U}(0, 1)
5: if \mathcal{U} \leq 2^{|X_{n-1}| - |X'|} then
6: X_n \leftarrow X'
7: else
8: X_n \leftarrow X_{n-1}
9: end
```


Thuật toán Metropolis

Trường hợp hàm mật độ xác suất đề cử đối xứng

$$g(x'|x) = g(x|x'), \forall x, x'$$

ta có hàm xác suất chấp nhân là

$$\alpha(x'|x) = \min\left(1, \frac{f(x')g(x|x')}{f(x)g(x'|x)}\right) = \min\left(1, \frac{f(x')}{f(x)}\right).$$

Khi đó, thuật toán Metropolis-Hastings được gọi là **thuật toán Metropolis**. Đặc biệt, khi đề cử có dạng

$$X' = X_{n-1} + \epsilon$$

với ϵ có phân phối đối xứng (tức là ϵ có cùng phân phối như $-\epsilon$) thì thuật toán được gọi là **bước ngẫu nhiên Metropolis** (random walk Metropolis).

Bước ngẫu nhiên Metropolis - Ví dụ

Trong trường hợp rời rạc, như Ví dụ trước, "độ dời" hay "bước" ϵ thường được dùng là $\mathcal{U}\{-1,1\}$, tức là

$$P(\epsilon = -1) = P(\epsilon = 1) = \frac{1}{2}.$$

Trong trường hợp liên tục, độ dời thường được dùng là $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Trong đó σ^2 phải được chọn phù hợp để việc lấy mẫu hiệu quả.

 $Vi~d\mu$: dùng thuật toán bước ngẫu nhiên Metropolis lấy mẫu từ phân phối có hàm mật độ

$$f(x) \propto \frac{\sin^2 x}{x^2} \mathbb{I}_{[-3\pi, 3\pi]}(x)$$

với độ dời $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Bước ngẫu nhiên Metropolis - Ví dụ (tt)

Bước ngẫu nhiên Metropolis - Ví dụ (tt)

Lấy mẫu Gibbs

Thuật toán Gibbs. (Gibbs sampling)

Input:

- phân phối $f_{X_1,X_2,...,X_d}$,
- $X^{(0)} = (X_1^{(0)}, X_2^{(0)}, ..., X_d^{(0)}).$

Output: xích Markov $X^{(1)}, X^{(2)}, \dots$ có phân phối dừng là f.

- 1: **for** n = 1, 2, 3, ... **do**
- 2: **for** i = 1, 2, ..., d **do**
- 3: $\sinh X_i^{(n)} \sim f_{X_i|\neg X_i}\left(.|X_1^{(n)},...,X_{i-1}^{(n)},X_{i+1}^{(n-1)},...,X_d^{(n-1)}\right)$
- 4: end for
- 5: end for

Lấy mẫu Gibbs - Ví dụ

Lấy mẫu Gibbs - Ví dụ (tt)

Rejection sampling (N = 1000, acceptance rate: 0.0445)

Lấy mẫu Gibbs - Ví dụ (tt)

Lấy mẫu Gibbs - Ví dụ (tt)

Tài liệu tham khảo

Jupyter Notebook đi kèm.

Chapter 2, 5, 6, 7 John K. Kruschke. *Doing Bayesian Data Analysis – A Tutorial with R, JAGS, and Stan.* Elsevier, 2015.

Chapter 12. Sheldon M. Ross. Simulation. Elsevier, 2023.

Chapter 4. Jochen Voss. *An Introduction to Statistical Computing - A Simulation-based Approach*. John Wiley & Sons, 2014.