SZAKDOLGOZAT

Falak közé zárt kvantum részecske homogén térben: "Schrödinger macskája dobozban"

Kürti Zoltán Fizika BSc., fizikus szakirány

Témavezetők:

DR. CSERTI JÓZSEF egyetemi tanár

DR. GYÖRGYI GÉZA egyetemi docens

Eötvös Loránd Tudományegyetem Komplex Rendszerek Fizikája Tanszék 2021

Kivonat

Kvantummechanikai iskolapélda a homogén térbe helyezett egydimenziós részecske. Ezt három dimenzióra kiterjesztve és két fal közé zárva keressük az energia sajátállapotokat. Annyi előrelátható, hogy a nyílt vagy félig nyílt esetekben használható, reguláris Airy függvény itt nem elegendő a megoldáshoz, ennyiben túlmegyünk a tankönyvi feladaton. Az aszimptotikus függvényalakok segítségével előállítjuk a magasan gerjesztett állapotok energiáit és hullámfüggvényeit, s ezeket összehasonlítjuk a közvetlenül a Bohr–Sommerfeld-módszerrel kapott eredménnyel. Numerikusan szemléltetjük fizikailag érdekes kezdőállapotok időfejlődését. Vizsgáljuk a rezolvenst és az állapotsűrűséget, továbbá a sokrészecske rendszerekre való általánosítás lehetőségét.

Egydimenziós, m tömegű, lineáris Fx potenciálban mozgó kvantumos részecskét zárjunk L hosszú, merev falú dobozba (ekvivalens a padló és mennyezet között függőlegesen pattogó kvantum labdával). A stacionárius Schrödingeregyenletből kiindulva, a határfeltételek figyelembe vételével, írjuk fel az energia sajátértékeket meghatározó szekuláris egyenletet, melyet oldjunk meg numerikusan. Ábrázoljuk az alacsonyabb nívókat a doboz méretének változtatása mellett, és szemléltessük grafikusan a stacionárius hullámfüggvényeket. A szekuláris egyenletben fellépő függvények aszimptotikáinak ismeretében a magasabb nívókra próbáljunk egyszerűbb implicit formulát adni. Végezzük el a szemiklasszikus kvantálást is, hasonlítsuk össze az előző közelítő eredménnyel, és numerikusan néhány, az egzakt egyenletből kapott nívóval.

További kérdések: (a) Számítsuk ki a nívókat expliciten, kicsiny L-ek mellett. (b) Mely paraméterek mellett esik egybe FL éppen az alapállapoti energiával? (Ilyenkor a klasszikus labda éppen eléri a mennyezetet.) (c) Mutassuk meg, hogy e határesetnél kisebb L belméret mellett minden nívó FL fölé esik. (d) Írjuk fel a szemiklasszikus stacionárius hullámfüggvényeket, s grafikusan hasonlítsuk össze őket az egzaktakkal – mikor jó a közelítés? (e) Írjuk fel a kicsiny L melletti hullámfüggvényeket expliciten, ezeket szintén hasonlítsuk össze a valódiakkal.

- -Miért nem Rodnik osztályba tartozik
- -fx, fy = 0 külön tárgyalás
- -program leírása

Köszönetnyilvánítás

Tartalomjegyzék

1.	Bev	ezetés		1	
2.	A dobozba zárt részecske Schrödinger-egyenlete				
	2.1.	Háron	n dimenzióban	1	
	2.2.	imenzióban	2		
		2.2.1.	F = 0 eset	2	
		2.2.2.	Airy függvények	3	
		2.2.3.	Véges F eset	3	
		2.2.4.	Kvantumos közelítése	3	
		2.2.5.	Szemiklasszikus közelítés	3	
3.	Homogén tér Green-függvénye				
		3.0.1.	Egzakt Green-függvény	6	
		3.0.2.	Green-függvény perturbáció számítással	10	
4.	Numerikus számítások				
	4.1.	Mome	ntumok időfejlődése	13	
	4.2.	Hullán	nfüggvény időfejlődése	13	
		4.2.1.	1D	13	
		4.2.2.	2D	13	
Hi	Hivatkozások				

Ábrák jegyzéke

2.1.	Szemiklasszikus energiaszintek	4
2.2.	Végtelen potenciálgödör energiaszintjei	5
3.1.	Állapotsűrűség	9
3.2.	Állapotok száma	10
3.3.	Green-függvény perturbációs sorának konvergenciája	12
4.1.	Várható értékek és szórások időfejlődése	13

Táblázatok jegyzéke

1. Bevezetés

2. A dobozba zárt részecske Schrödinger-egyenlete

2.1. Három dimenzióban

A rendszer egy téglatest alakú dobozba zárt részecske. A doboz mérete L_x , L_y és L_z . A dobozban homogén erőtér hat a részecskére, azaz $\boldsymbol{F} = \text{const.}$ A potenciál így $V(x,y,z) = -\boldsymbol{F}_x x - \boldsymbol{F}_y y - \boldsymbol{F}_z z$. A rendszer időfüggő Schrödinger-egyenlete

$$i\hbar \frac{\partial \psi(x,y,z,t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi(x,y,z,t) + V(x,y,z)\psi(x,y,z,t). \tag{2.1}$$

Az egyenlet kezdőfeltétele egy kezdeti állapot t_0 -ban, $\psi(x,y,z,t_0) = \psi_0(x,y,z)$, az egyenlet határfeltételei pedig a hullámfüggvény határokon való eltűnése, $0 = \psi|_{x=0} = \psi|_{x=L_x} = \psi|_{y=0} = \psi|_{y=L_y} = \psi|_{z=0} = \psi|_{z=L_z}$. Mivel ez a potenciál lineáris x, y és z-ben, a Schrödinger-egyenlet szeparálható a

$$\psi_{klm}(x, y, z, t) = e^{-\frac{iE_{klm}t}{\hbar}} \psi_k^{(x)}(x) \psi_l^{(y)}(y) \psi_m^{(z)}(z)$$
(2.2)

próbafüggvénnyel. A $\psi_n^{(i)}$ (i=x,y,z) függvényekre így az egy dimenziós stacionárius Schrödinger-egyenlet vonatkozik. A $\psi^{(x)}$ -re vonatkozó egyenlet

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_k^{(x)}(x)}{dx^2} + \mathbf{F}_x x \psi_k^{(x)}(x) = E_k^{(x)} \psi_k^{(x)}(x), \tag{2.3}$$

a határfeltételek $0 = \psi_k^{(x)}\Big|_{x=0} = \psi_k^{(x)}\Big|_{x=L_x}$. $\psi_l^{(y)}$ és $\psi_m^{(z)}$ -re vonatkozó egyenletek hasonlóak. Az E_{klm} energia a három egy dimenziós stacionárius Schrödinger-egyenlet sajátenergiáinak összege,

$$E_{klm} = E_k^{(x)} + E_l^{(y)} + E_m^{(z)}. (2.4)$$

A (2.1) egyenlet általános megoldása a (2.2) próbafüggvények kezdőfeltételhez illesztett lineáris kombinációja,

$$\psi(x, y, z, t) = \sum_{klm} C_{klm} \psi_{klm}(x, y, z, t). \tag{2.5}$$

 C_{klm} együtthatók meghatározásához a szokásos hely reprezentáció beli skalárszorzást kell használni,

$$C_{klm} = \frac{1}{N_{klm}} \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, \psi_{klm}(x, y, z, t = 0)^* \psi_0(x, y, z)$$
 (2.6)

$$N_{klm} = \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, |\psi_{klm}(x, y, z, t = 0)|^2.$$
 (2.7)

A (2.6) egyenlet nem egyszerűsíthető tovább általános ψ_0 esetén, viszont a (2.7) igen. Mivel ψ_{klm} szorzat alakú, nem kell a tripla integrált elvégezni, hanem csak három egyszeres integrál szorzatát kell kiszámítani. Ez numerikus számításokban jelentős.

$$N_{klm} = N_k^{(x)} N_l^{(y)} N_m^{(z)}, (2.8)$$

ahol az egyes N tagok az egy dimenziós sajátfüggvények normájaként vannak definiálva.

$$N_k^{(x)} = \int_0^{L_x} dx \, \left| \psi_k^{(x)}(x) \right|^2, \tag{2.9}$$

 $N_l^{(y)}$ -re és $N_m^{(z)}$ -re hasonló képletek vonatkoznak.

2.2. Egy dimenzióban

Az egy dimenziós probléma tárgyalásának két esete van aszerint, hogy \boldsymbol{F} megfelelő komponense 0-e. Amennyiben a komponens 0, a feladat a szabad részecske utáni legelemibb probléma megoldása: a végtelen potenciálgödör. Amennyiben \boldsymbol{F} komponense nem 0, a megoldandó egyenlet az Airy-egyenletre [1] hasonlít, és az Airy függvények rövid vizsgálata után az energia sajátfüggvényeket megadjuk az Airy függvények kombinációjaként.

2.2.1. F = 0 eset

Az F=0 eset megoldása egyszer, az egyik legalapvetőbb példa egyszerű kvantummechanikai rendszerekre. A sajátfüggvények

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right),\tag{2.10}$$

 $(n=1,2,\ldots)$, a normálási faktorok

$$N_n = 1. (2.11)$$

Minden sajátfüggvény egyre normált szinusz függvény, melyek n-1 helyen veszik fel a 0 értéket x=0 és x=L között. Sajátenergiáik

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}. (2.12)$$

Ezek az energiaszintek hasznosak lesznek a numerikus számításokban az $F \neq 0$ eseten is.

2.2.2. Airy függvények

2.2.3. Véges F eset

2.2.4. Kvantumos közelítése

 $x \to \infty$ aszimptotikus alak:

Ai
$$(-x) = \frac{1}{\sqrt{\pi}x^{1/4}}\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.13)

Bi
$$(-x) = -\frac{1}{\sqrt{\pi}x^{1/4}}\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.14)

$$\operatorname{Ti}(-x) = -\cot\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right)$$
 (2.15)

Ezzel a közelítéssel a ??. egyenlet alakja:

$$\cot\left(\frac{2}{3}(bE - aL)^{3/2} - \frac{\pi}{4}\right) = \cot\left(\frac{2}{3}(bE)^{3/2} - \frac{\pi}{4}\right)$$
 (2.16)

, azaz

$$\frac{2}{3} (bE)^{3/2} - \frac{2}{3} (bE - aL)^{3/2} = n\pi$$
 (2.17)

. Az a és b behelyettesítésével az egyenlet

$$\frac{2\sqrt{2m}}{3F\hbar} \left(E^{3/2} - (E - FL)^{3/2} \right) = n\pi \tag{2.18}$$

Ez megegyezik a szemiklasszikus kvantálással kapott eredménnyel, ami azt jelenti, hogy a szemiklasszikus közelítés jól működik nagy energiáknál, hibája $\mathcal{O}\left(E^{-5/4}\right)$ nagyságrendű.

2.2.5. Szemiklasszikus közelítés

$$nh = \oint p \, dq = \tag{2.19}$$

E/F < L esete:

$$2\int_{0}^{E/F} \sqrt{2m(E-Fx)} dx = -\frac{2}{3mF} \left(2m(E-Fx)\right)^{\frac{3}{2}} \Big|_{0}^{E/F} = \frac{4\sqrt{2m}E^{3/2}}{3F} \quad (2.20)$$

$$E_n = \left(\frac{3nhF}{4\sqrt{2m}}\right)^{2/3} \tag{2.21}$$

E/F > L esete:

$$-\frac{2}{3mF} \left(2m \left(E - Fx\right)\right)^{\frac{3}{2}} \bigg|_{0}^{L} = \frac{4\sqrt{2m}}{3F} \left(E^{3/2} - \left(E - FL\right)^{3/2}\right) = nh$$
 (2.22)

 $E\gg FL$ esetén a különbség az $E^{3/2}$ függvény deriváltjának segítségével helyettesíthető:

$$nh \approx 2\sqrt{2m}E^{1/2}L\tag{2.23}$$

$$E_n \approx \frac{n^2 h^2}{8mL^2} \tag{2.24}$$

2.1.ábra. Az ábra a szemiklasszikus energiaszinteket hasonlítja össze az egzakt energiaszintekkel. Ez az ábra is a bE és aL közötti relációt ábrázolja. A szemiklasszikus közelítés nagy kvantumszámok illetve $E\gg FL$ esetén pontos. Utóbbi oka, hogy ebben az esetben a potenciál elhanyagolható, és a potenciál nélküli végtelen potenciálgödör energiaszintjeit pedig a szemiklasszikus közelítés egzaktul megadja.

2.2. ábra. Az ábrán a végtelen potenciálgödör és az egzakt energiaszintek összehasonlítása látható. Ez csak az $E\gg FL$ esetben jó közelítés, a szemiklasszikus energiaszintek jóval pontosabbak.

3. Homogén tér Green-függvénye

A rezolvens operátor definíciója

$$\hat{G}\left(E\right) = \frac{1}{\hat{H} - E} \tag{3.1}$$

és ezen operátorhoz tartozó két változós függvény a Green-függény.

$$G(x, y; E) = \langle x | \hat{G}(E) | y \rangle \tag{3.2}$$

A Green-függvény név indokolt, és ennek a segítségével fogom meghatározni a Green-függvényeket konkrét esetben. A teljességi reláció beszúrásával látható, hogy a kvantummechanikai Green-függény megegyezik a differenciálegyenletek elméletéből ismert Green-függvénnyel.

$$\left(\hat{H} - E\right)\hat{G}\left(E\right) = \hat{I} \tag{3.3}$$

$$\int dx' \langle x| \left(\hat{H} - E\right) |x'\rangle \langle x'| \, \hat{G}(E) |y\rangle = \langle x| \, \hat{I} |y\rangle = \delta (x - y) \tag{3.4}$$

A $\langle x|\left(\hat{H}-E\right)|x'\rangle$ maggal vett konvolúció a $\hat{H}-E$ operátor hatása. Ezért

$$\left(\hat{H}_x - E\right)G\left(x, y; E\right) = \delta\left(x - y\right) \tag{3.5}$$

ami a differenciálegyenletek elméletéből ismert Green-függvény definíciója. Ebben a konkrét esetben

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + Fx - E\right)G(x, y; E) = \delta(x - y)$$
(3.6)

3.0.1. Egzakt Green-függvény

ami azt jelenti, hogy az x < y tartományban

$$G(x,y;E) = C_1 \operatorname{Ai}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2F^2}}E\right) + C_2 \operatorname{Bi}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2F^2}}E\right)$$
(3.7)

illetve az x > y tartományban

$$G(x,y;E) = C_3 \operatorname{Ai}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2 F^2}}E\right) + C_4 \operatorname{Bi}\left(\sqrt[3]{\frac{2mF}{\hbar^2}}x - \sqrt[3]{\frac{2m}{\hbar^2 F^2}}E\right)$$
(3.8)

, ahol a C együtthatók függhetnek y és E értékétől. A C együtthatók meghatározásához a doboz eredeti határfeltételeit x=0 és x=L pontban, valamint az x=y pontban a 3.6. egyenlet y körüli integrálásából kapott feltételeket kell felhasználni. A doboz falára vonatkozó határfeltételek:

$$G\left(x,y;E\right)|_{x=0} = 0 \tag{3.9}$$

$$G(x, y; E)|_{x=L} = 0$$
 (3.10)

A 3.6. egyenlet $\int_{y-\epsilon}^{y+\epsilon} \mathrm{d}x' \int_y^{x'} \mathrm{d}x$ szerinti integrálja az $\epsilon \to 0^+$ határesetben:

$$\lim_{\epsilon \to 0^{+}} G(x, y; E)|_{x=y-\epsilon}^{x=y+\epsilon} = 0$$
(3.11)

A jobb oldal integrálja $(x-y) \theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}$, ami a határesetben 0. Az (Fx-E) G(x,y;E) integrálja is 0 a határesetben, mert az erdeti függvény is folytonos, így az integrálja

is. A 3.6. egyenlet x szerinti integrálja y körüli ϵ sugarú környezetében az $\epsilon \to 0^+$ határesetben:

$$\lim_{\epsilon \to 0^{+}} \frac{\partial}{\partial x} G(x, y; E) \Big|_{x=y-\epsilon}^{x=y+\epsilon} = -\frac{2m}{\hbar^{2}}$$
 (3.12)

Itt a jobb oldal integrálja $\theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}=1$ a határesetben. A bal oldalon az előzőhöz hasonló módon csak a derivált integrálja marad meg. A 3.7. és a 3.8. egyenlet behelyettesítése meghatározza a C együtthatókra vonatkozó egyenleteket:

$$\frac{C_2}{C_1} = -\text{Ti}\left(-bE\right) \tag{3.13}$$

$$\frac{C_4}{C_3} = -\text{Ti}\left(aL - bE\right) \tag{3.14}$$

$$\frac{C_3}{C_1} = \frac{\operatorname{Ti}(ay - bE) - \operatorname{Ti}(-bE)}{\operatorname{Ti}(ay - bE) - \operatorname{Ti}(aL - bE)}$$
(3.15)

TODO: b lecserélése bE-re az előző részekben.

$$C_{1} = -\frac{2m}{a\hbar^{2}} \frac{1}{\left(\left(\frac{C_{3}}{C_{1}} - 1\right) \operatorname{Ai}'(ay - bE) + \left(\frac{C_{4}}{C_{3}} \frac{C_{3}}{C_{1}} - \frac{C_{2}}{C_{1}}\right) \operatorname{Bi}'(ay - bE)\right)}$$
(3.16)

$$C_{1} = -\frac{a^{2}}{F} \frac{1}{\left(\left(\frac{C_{3}}{C_{1}} - 1\right) \operatorname{Ai}'(ay - bE) + \left(\frac{C_{4}}{C_{3}} \frac{C_{3}}{C_{1}} - \frac{C_{2}}{C_{1}}\right) \operatorname{Bi}'(ay - bE)\right)}$$
(3.17)

A 3.13-3.16, 3.7. és a 3.8. egyenletek explicit, analitikus módon előállítják a G(x, y; E) Green-függvényt. Valós energiákra $G(x, y; E) = G(y, x; E)^*$. Ebből következik, hogy a Green-függvény x < y eset y függése kiemelhető lesz, és megegyezik az x > y eset x függésével. Ezek szerint Ai (ay - bE) – Ti (aL - bE) Bi (ay - bE) kiemelhető a C_1 együtthatóból,

$$C_{1} = \frac{a^{2}}{F} \frac{\operatorname{Ai}(ay - bE) - \operatorname{Ti}(aL - bE)\operatorname{Bi}(ay - bE)}{\left(\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE)\right)\left(\operatorname{Bi}(-bE)\operatorname{Ai}'(-bE) - \operatorname{Ai}(-bE)\operatorname{Bi}'(-bE)\right)}.$$
(3.18)

Az algebrai átalakításokon túl fel kellett használni, hogy Ai (ay - bE) Bi' (ay - bE) – Bi (y - bE) Ai' (ay - bE) y-tól független konstans tehát y = 0 helyettesíthető bele. Ez onnan látható, hogy y szerinti deriváltja 0,

$$(Ai (ay - bE) Bi' (ay - bE) - Bi (ay - bE) Ai' (ay - bE))'$$

$$= aAi' (ay - bE) Bi' (ay - bE) + aAi (ay - bE) Bi'' (ay - bE)$$

$$- aBi' (ay - bE) Ai' (ay - bE) - aBi (ay - bE) Ai'' (ay - bE)$$

$$= aAi (ay - bE) (ay - bE) Bi (ay - bE) - aBi (ay - bE) (ay - bE) Ai (ay - bE)$$

$$= 0.$$
(3.19)

Ez után már az x-y szimmetriája jól látható a Green-függvénynek.

$$C_0 = \frac{a^2}{F} \frac{1}{\left(\text{Ti}\left(-bE\right) - \text{Ti}\left(aL - bE\right)\right)\left(\text{Bi}\left(-bE\right)\text{Ai}'\left(-bE\right) - \text{Ai}\left(-bE\right)\text{Bi}'\left(-bE\right)\right)}$$
(3.20)

bevezetésével a Green függvény egyszerűbb alakra hozható,

$$G(x, y; E) = C_0 \times \begin{cases} (\operatorname{Ai}(ay - bE) - \operatorname{Ti}(aL - bE) \operatorname{Bi}(ay - bE)) \times & x \leq y \\ (\operatorname{Ai}(ax - bE) - \operatorname{Ti}(-bE) \operatorname{Bi}(ax - bE)) & (3.21) \end{cases}$$

$$(\operatorname{Ai}(ay - bE) - \operatorname{Ti}(-bE) \operatorname{Bi}(ay - bE)) \times & x > y \end{cases}$$

$$(\operatorname{Ai}(ax - bE) - \operatorname{Ti}(aL - bE) \operatorname{Bi}(ax - bE))$$

A rezolvens operátornak pólusai vannak a rendszer E_k sajátenergiáinál:

$$\hat{G}(E) = \sum_{n} \frac{|n\rangle \langle n|}{E_n - E}$$
(3.22)

Így ha E kielégíti a $\ref{eq:construction}$. egyenletet, akkor a rezolvensnek és ezért a Green-függénynek is pólusa kell hogy legyen. Ezt a C_1 szingularitásán lehet a leg könnyebben belátni. Ha C_1 szinguláris, az összes többi C együttható is, és így a Green-függvény is. A $\ref{eq:construction}$?. egyenlet szerint a $rac{C_3}{C_1}$ számlálójának és nevezőének ,ásodik tagjai egyenlőek. Első tagjuk bármely E esetén egyenlő, így hányadosuk 1, valamint a $\ref{eq:construction}$?. egyenlet esetén $rac{C_2}{C_1} = rac{C_4}{C_3}$. Ezeknek a következtében mind $rac{C_3}{C_1} - 1$, mind $rac{C_4}{C_3} rac{C_3}{C_1} - rac{C_2}{C_1}$ 0-val egyenlő, így a C_1 -re vonatkozó kifejezés nevezője 0. Ezek a $rac{1}{E_n-E}$ típusú pólusok a 3.22. egyenletből.

Egy érdekes matematikai eredmény, hogy a Green-függvényre vonatkozó differenciál egyenlet megoldásával elvégeztem a 3.22. egyenlet összegzését. Ez az összeg az Airy függvények szorzatának összege lenne, osztva $E_k - E$ -vel és a megfelelő normálási faktorral, ami Airy függvények szorzatának 0 és L közötti integrálj, valamint E_k -t a ??. transzcendens egyenlet határozza meg. A Green-függvényre vonatkozó differenciálegyenlet nélkül az összeg elvégzése reménytelennek látszana.

$$\rho(E) = \frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \operatorname{Im} \operatorname{Tr} \hat{G}(E + i\epsilon)$$
(3.23)

3.1.ábra. A 3.23.képlet alapján számolt állapotsűrűség. A kék függvényt $\epsilon=10^{-3}/b,$ a narancssárga görbét pedig $\epsilon=10^{-2}/b$ helyettesítéssel kaptuk. Látható, hogy ϵ csökkentésével a tüskék egyre keskenyebbek, és egyre magasabbak lesznek.

3.2. ábra. A 3.1. ábrán bemutatott függvények integrálja látható ezen az ábrán. Mind a két függvény ugrása közelítőleg 1, ami at jelenti, hogy a 3.1. ábrán látható tüskék alatti terület jó közelítéssel 1. Az ϵ csökkentése a lépcsőfüggvényhez közelíti az integrált függvényt, ami egyezik az elvárásokkal.

3.0.2. Green-függvény perturbáció számítással

A perturbációszámításhoz a Hamilton operátort két részre bontom fel:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{3.24}$$

A \hat{H}_0 operátorhoz tartozó rezolvens $\hat{G}_0(E)$. \hat{H} és \hat{H}_0 kifejezhetőek a rezolvenseikkel. Ha a kifejezéseket behelyettesítjük a fenti egyenletbe, implicit egyenletet kapunk opG(E)-re nézve, melyet fel lehet használni perturbációszámításra. Az egyenletet balról $\hat{G}_0^{-1}(E)$ -vel, jobbról $\hat{G}^{-1}(E)$ -vel szorzunk.

$$\hat{G}^{-1}(E) + E = \hat{G}_0^{-1}(E) + E + \hat{V}$$
(3.25)

$$\hat{G}(E) = \hat{G}_0(E) - \hat{G}_0(E)\hat{V}\hat{G}(E)$$
(3.26)

Az alábbi módon definiálva $\hat{G}_n(E)$ operátort, a 3.26. egyenlethez hasonló rekurziós összefüggés áll fent:

$$\hat{G}_n(E) = \hat{G}_0(E) \sum_{k=0}^n \left(-\hat{V}\hat{G}_0(E) \right)^k$$
 (3.27)

$$\hat{G}_{n+1}(E) = \hat{G}_0(E) - \hat{G}_0(E) \hat{V} \hat{G}_n(E)$$
(3.28)

Ha $\|\hat{V}\hat{G}_0(E)\| < 1$ akkor a \hat{G}_n sorozat konvergál, és kielégíti a 3.26. egyenletet. Ezért konvergencia esetén:

$$\hat{G}(E) = \hat{G}_0(E) \sum_{n=0}^{\infty} \left(-\hat{V}\hat{G}_0(E) \right)^n$$
 (3.29)

A perturbbálatlan operátornak a lineáris potenciál nélküli dobozba zárt részecske Hamilton operátorát választom, $\hat{H}_0 = \frac{1}{2m}\hat{p}^2$, így a lineáris potenciál marad a perturbáció $\hat{V} = F\hat{x}$. A perturbálatlan $\hat{G}_0(E)$ Green-függvényt is a 3.13-3.16, 3.7. és a 3.8. egyenletek alapján határozom meg.

$$G_0(x, y; E) = \begin{cases} -\frac{2m}{k\hbar^2} \frac{1}{\sin(kL)} \sin(k(y - L)) \sin(kx) & x \le y \\ -\frac{2m}{k\hbar^2} \frac{1}{\sin(kL)} \sin(k(x - L)) \sin(ky) & x > y \end{cases}$$
(3.30)

, ahol $k = \frac{\sqrt{2mE}}{\hbar}$.

3.3. ábra. Ez az ábra a két perturbációs sor konvergenciáját hasonlítja össze a komplex energia síkon. A felső ábra a V=Fx perturbáló potenciálnak, míg az alsó a V=Fx-FL/2 perturbáció szerinti sornak felel meg. A fekete tartományok divergenciát jelölnek, míg a többi szín a sorfejtés tagjainak csökkenési sebességét jellemzik, a norma harmadolásához szükséges lépések számát megadva. A piros körökön kívüli tartomány a ?? formula által garantált konvergencia tartományát jelöli. A piros x-ek a \hat{G}_0 pólusait, a sárga x-ek pedig az egzakt \hat{G} operátor pólusait jelölik.

4. Numerikus számítások

4.1. Momentumok időfejlődése

4.1. ábra. Várható értékek és szórások időfejlődése

4.2. Hullámfüggvény időfejlődése

4.2.1. 1D

4.2.2. 2D

Azokat a parmaétereket keresem, ahol az alapállapot E=FL:

$$\operatorname{Ti}\sqrt[3]{\frac{2mF}{\hbar^2}}L - \sqrt[3]{\frac{2m}{\hbar^2F^2}}FL - \operatorname{Ti}-\sqrt[3]{\frac{2m}{\hbar^2F^2}}FL = 0$$
 (4.1)

, azaz

$$Ai - \sqrt[3]{\frac{2mF}{\hbar^2}}L = 0 \tag{4.2}$$

. Az első gyöke az Airy függvénynek megadja azt az esetet, amikor az alapállapot energiája FL, és nem pedig valamelyik gerjesztett állapoté.

$$-a_1 = \sqrt[3]{\frac{2mF}{\hbar^2}} L \approx 2.338 \tag{4.3}$$

Hivatkozások

[1] Richard Beals and Roderick Wong. Special Functions: A Graduate Text. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010