ALGEBRA Chapter 2

Productos Notables I

HELICO MOTIVATING

MOTIVATING | STRATEGY

¿Puedes calcular mentalmente la siguiente expresión y dar la respuesta en el menor tiempo posible?

$$\sqrt[8]{(2+1)(2^2+1)(2^4+1)+1}$$

Rpta. 2

HELICO THEORY CHAPTHER 02

¿QUÉ SON PRODUCTOS NOTABLES?

Son los resultados de ciertas multiplicaciones indicadas, que se obtienen en forma directa, sin efectuar la multiplicación.

DESARROLLO DE UN BINOMIO AL CUADRADO

$$(a + b)^2 = a^2 + 2ab + b^2$$

Ejemplo:

$$(x+3)^2 = (x)^2 + 2(x)(3) + (3)^2$$

 $x^2 + 6x + 9$

$(a-b)^2 = a^2 - 2ab + b^2$

Ejemplo:

$$(x-7)^2 = (x)^2 - 2(x)(7) + (7)^2$$

 $x^2 - 14x + 49$

2 IDENTIDAD DE LEGENDRE

$$(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$$

Ejemplo:

$$(\mathbf{x} + \mathbf{5})^2 + (\mathbf{x} - \mathbf{5})^2 = 2 (x^2 + 5^2)$$

2 $(x^2 + 25)$

$$(a + b)^2 - (a - b)^2 = 4ab$$

Ejemplo:

$$(x+5)^2 - (x-5)^2 = 4(x)(5)$$

20x

DESARROLLO DEL BINOMIO AL CUBO

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Ejemplo:

$$(x+5)^3 = (x)^3 + 3(x)^2(5) + 3(x)(5)^2 + (5)^3$$

 $x^3 + 15x^2 + x + 75 + 125$

IDENTIDAD DE CAUCHY

$$(a + b)^3 = a^3 + b^3 + 3ab (a + b)$$

Ejemplo:

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Ejemplo:

$$(x-4)^3 = (x)^3 - 3(x)^2(4) + 3(x)(4)^2 - (4)^3$$

 $x^3 - 12x^2 + x - 64$
48

$$(a-b)^3 = a^3 - b^3 - 3ab (a-b)$$

Ejemplo:

$$(x-4)^3 = (x)^3 - (4)^3 - 3(x)(4)(x-4)$$

 $x^3 - 64 - 12x(x-4)$

5 DESARROLLO DEL TRINOMIO AL CUADRADO

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac)$$
Ejemplo: $(m + n + 6)^2 = m^2 + n^2 + 6^2 + 2(mn + 6n + 6m)$

$$m^2 + n^2 + 6^2 + 2mn + 12n + 12m$$

6 DESARROLLO DEL TRINOMIO AL CUBO

$$(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(a + c)(b + c)$$

Ejemplo:
$$(m+n+7)^3 = m^3 + n^3 + 7^3 + 3(m+n)(m+7)(n+7)$$

 $(m+n+7)^3 = m^3 + n^3 + 343 + 3(m+n)(m+7)(n+7)$

CHAPTHER 02

@ SACO OLIVEROS

1. Efectúe
$$T = (x+5)^2 + (x-3)^2 - 2(x+1)^2 - 15$$

Resolución

$$(x+5)^2+(x-3)^2-2(x+1)^2-15$$

Desarrollando los productos notables se obtiene:

$$x^{2} + 2(x)(5) + 5^{2} + x^{2} - 2(x)(3) + 3^{2} - 2(x^{2} + 2(x)(1) + 1^{2}) - 15$$

Multiplicando y elevando al cuadrado se tiene:

$$x^2 + 10x + 25 + x^2 - 6x + 9 - 2(x^2 + 2x + 1) - 15$$

Luego de reducir términos semejantes y multiplicar se obtiene:

$$2x^{2} + 4x + 34 - 2x^{2} - 4x - 2 - 15$$

2. Si a + b = 5; ab = 3 calcule

$$\frac{a^3 + b^3}{a^2 + b^2 - 2}$$

Resolución

Binomio al cubo

$$(a+b)^3 \equiv a^3 + b^3 + 3ab(a+b)$$

 $(5)^3 = a^3 + b^3 + 3.3(5)$

$$125 = a^3 + b^3 + 45$$

$$80 = a^3 + b^3$$

Binomio al cuadrado

$$(a + b)^{2} \equiv a^{2} + 2ab + b^{2}$$

$$(5)^{2} = 2(3) + a^{2} + b^{2}$$

$$25 = 6 + a^{2} + b^{2}$$

$$19 = a^{2} + b^{2}$$

Reemplazando datos

$$\frac{a^3+b^3}{a^2+b^2-2}=\frac{80}{17}$$

3. Sabiendo que x +
$$\frac{1}{x}$$
 = 4; Calcule $x^3 + \frac{1}{x^3}$

Resolución

IDENTIDAD DE CAUCHY

$$(a + b)^3 = a^3 + b^3 + 3ab (a + b)$$

Sea:
$$x + \frac{1}{x} = 4$$

Elevando al cubo $\left(x + \frac{1}{x}\right)^3 = 4^3$

$$\left(x + \frac{1}{x}\right)^3 = 4^3$$

$$x^3 + \frac{1}{x^3} + \frac{3}{x} \cdot \frac{1}{x} (x + \frac{1}{x}) = 64$$

$$x^3 + \frac{1}{x^3} + \frac{3.1.4}{64} = 64$$

$$x^3 + \frac{1}{x^3} + 12 = 64$$

$$x^3 + \frac{1}{x^3} = 52$$

Recordar el desarrollo del binomio al cuadrado:

4. Si:
$$a + b + c = 6$$

$$a^2 + b^2 + c^2 = 10$$

Efectúe:
$$T = (a+b)^2 + (b+c)^2 + (a+c)^2$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

Recordar el desarrollo del Trinomio al cuadrado:

Resolución

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$$

Desarrollando los binomios al cuadrado en T:

$$T = a^2 + 2ab + b^2 + b^2 + 2bc + c^2 + a^2 + 2ac + c^2$$

Agrupando convenientemente:

$$T = a^2 + b^2 + c^2 + a^2 + b^2 + c^2 + 2(ab + bc + ac)$$

$$T = 10 + (a+b+c)^2$$

$$T = 10 + (6)^2$$

$$\therefore \quad T = 46$$

Rpta: 46

5. Si
$$S=(3\sqrt{2}+2\sqrt{3})^2+(3\sqrt{2}-2\sqrt{3})^2$$

$$\mathbf{M} = \frac{(3x+5)^2 - (3x-5)^2}{15x}$$

halle el valor de $\sqrt{S+M}$

Recordando la Identidad de Legendre:

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$

$$(a+b)^2 - (a-b)^2 = 4ab$$

Resolución

Aplicando Legendre en S y M

$$S = (3\sqrt{2} + 2\sqrt{3})^2 + (3\sqrt{2} - 2\sqrt{3})^2$$

$$S = 2\left(\left(3\sqrt{2}\right)^2 + \left(2\sqrt{3}\right)^2\right)$$

$$S = 2(18 + 12)$$

$$S = 60$$

Aplicando Legendre en S y M
$$S = (3\sqrt{2} + 2\sqrt{3})^{2} + (3\sqrt{2} - 2\sqrt{3})^{2}$$

$$S = 2\left((3\sqrt{2})^{2} + (2\sqrt{3})^{2}\right)$$

$$S = 2(18 + 12)$$

$$S = 60$$

$$M = \frac{(3x + 5)^{2} - (3x - 5)^{2}}{15x}$$

$$M = \frac{4(3x)(5)}{15x} = \frac{60x}{15x}$$

$$M = 4$$

$$M = 4$$

Rpta:

6. Se tiene como información que al resolver el siguiente problema :

"Si
$$a=\sqrt{3}+1$$
 $b=\sqrt{3}-1$ calcule a^4+b^4 , esta es la edad del profesor chumbiray." ¿Cuál es la edad del profesor ?

Resolución

$$a + b = 2\sqrt{3}$$

$$a \times b = 2$$

Elevando al cuadrado

$$(a + b)^2 = (2\sqrt{3})^2$$

 $a^2 + 2 ab + b^2 = 12$
 $a^2 + 2 (2) + b^2 = 12$
 $a^2 + b^2 = 8$

Elevando al cuadrado

$$(a^{2} + b^{2})^{2} = 8^{2}$$

$$a^{4} + 2a^{2}b^{2} + b^{4} = 64$$

$$a^{4} + 2(4) + b^{4} = 64$$

$$a^{4} + b^{4} = 56$$

DESARROLLO DE UN BINOMIO AL CUADRADO

$$(a+b)^2 = a^2 + b^2 + 2ab$$

Rpta: La edad del profesor es 56 años

7- Durante las elecciones congresales se determinó que la cantidad de personas que sufragaron en la región sur es de (m^3) millones de personas y en la región norte (3m) millones. Si también se determinó que un total de $(3m^2+1)$ personas viciaron su voto, determine la cantidad total de votos válidos.

Resolución

Datos del problema

Votos total, norte = 3m

Votos total, sur = m^3

Votos total viciados = $3m^2+1$

Votos totales = votos válidos + votos viciados

$$m^3$$
 +3m = votos válidos + $3m^2$ + 1

$$m^3$$
 - $3m^2$ + $3m$ -1 = votos válido

BINOMIO DIFERENCIA AL CUBO

$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$m^3$$
 - $3m^2$ + $3m$ -1 = Votos Válidos

$$(m-1)^3$$
 = votos válido

Rpta:

votos válidos = $(m-1)^3$