ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

Functional decomposition

- functional decomposition determines the fine grain parallel tasks by partitioning the problem into semi-independent tasks that can be executed in parallel
- our numerical integration examples fall in this category
 - partitioning identified the finest grain work unit as the evaluation of the integrand; no need for fancy domain decomposition
 - little or no communication/synchronization is required among the tasks,
 i.e. they are embarrassingly parallel
 - coarsening consists of grouping fine grain tasks into larger work units in a straight forward manner
 - the mapping of the coarse grain tasks onto processing units is trivial
- in general, the computations involved in carrying out the coarse tasks are computationally equivalent
 - ▶ the computation is *self balancing*
 - or there is no need for sophisticated load balancing
- scalability and parallel efficiency are determined by the particulars of the problem, such as inherent limitations on the largest problem size of interest

Monte Carlo integration

▶ let f be sufficiently well behaved in a region $\Omega \subset \mathbb{R}^n$ and consider the integral

$$I_{\Omega}(f) = \int_{\Omega} dx f \tag{1}$$

- ▶ the *Monte Carlo* method approximates the value of the integral in Eq. 1 by sampling f at random points in Ω
- ▶ let X_N be such a sample of N points; then the Monte Carlo estimate is given by

$$I_{\Omega}(f; X_N) = \Omega \cdot \langle f \rangle = \Omega \frac{1}{N} \sum_{x \in X_N} f(x)$$
 (2)

where $\langle f \rangle$ is the sample mean of f, and Ω is used as a shorthand for the volume of the integration region.

- the approximation error falls like $1/\sqrt{N}$
 - ► rather slow
 - ▶ but dimension independent!

Implementation strategy

- computer implementations require a pseudo-random number generator to build the sample
- \blacktriangleright most generators return numbers in (0,1) so
 - \blacktriangleright find a box B that contains Ω
 - generate *n* numbers to build a point in the unit \mathbb{R}^n cube
 - stretch and translate the unit cube onto B
- the integration is restricted to Ω by introducing

$$\Theta_{\Omega} = \begin{cases} 1 & x \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
 (3)

to get

$$I_{\Omega}(f) = \int_{B} dx \,\Theta_{\Omega} f \tag{4}$$

Recasting Monte Carlo integration

- ightharpoonup there are now two classes of points in the sample X_N
 - ▶ those in Ω
 - and the rest
- ▶ let \tilde{N} be the number of sample points in Ω ; Eq. 2 becomes

$$I_{\Omega}(f; X_N) = \Omega \frac{1}{\tilde{N}} \sum_{x \in X_{\tilde{N}}} f(x)$$
 (5)

▶ let *B* be the volume of the sampling box; observe that the volume of the integration region can be approximated by

$$\Omega = \frac{\tilde{N}}{N}B\tag{6}$$

and the sum over the points $x \in X_{\tilde{N}}$ can be extended to the entire sample X_N by using the filter Θ_{Ω}

$$I_{\Omega}(f; X_N) = B \frac{1}{N} \sum_{x \in X_N} \Theta_{\Omega} f(x)$$
 (7)

Requirements

▶ to summarize, the Monte Carlo approximation is computed using

$$I_{\Omega}(f; X_N) = B \frac{1}{N} \sum_{x \in X_N} \Theta_{\Omega} f(x)$$
 (8)

- using
 - \blacktriangleright an implementation of the function f to be integrated over Ω
 - ▶ an *n*-dimensional box *B* that contains Ω
 - ▶ a good pseudo-random number generator to build the sample $X_N \in B$
 - ▶ a routine to test points $x \in X_N$ and return false if they are exterior to Ω and true otherwise
- ▶ to sum the values of the integrand on points interior to Ω , and scale by the volume of the bounding box *B* over the sample size *N*
- essentially a reduction, similar to our other examples
 - should be straightforward to implement in parallel
 - see homework assignment

Pseudo-random number generators

- essential when solving problems using stochastic methods
- ▶ most generators are terrible, e.g. libc
 - always check that you are getting the statistics you expect
 - ▶ /dev/random is better, but not portable and produces integers only
- get the GNU scientific library
 - ▶ from http://www.gnu.org/software/gsl, or your OS distribution
 - broad scope, extensive documentation
 - ► thread safe
 - pick RANLUX or something similar
- there are algorithms that use uniformly distributed random numbers to generate numbers of any distribution function

Monte Carlo estimate of π

```
#include <cmath>
 2 #include <iostream>
   #include <gsl/gsl_rng.h>
   int main(int, char*[]) {
      // the number of points in the sample
      const long N = (long) 1.0e7;
8
      // point counters
9
      long interiorPoints = 0, totalPoints = 0;
10
      // create the random number generator
      qsl rnq * generator = qsl rnq alloc(qsl rnq ranlxs2);
14
      // integrate by sampling some number of times
      for (long i=0; i<N; ++i) {
         // create a random point
16
         double x = qsl rnq uniform(generator);
18
         double y = gsl_rng_uniform(generator);
19
         // check whether it is inside the unit quarter circle
2.0
         if ((x*x + y*y) \le 1.0) { // no need to waste time computing the square root
            // update the interior point counter
            interiorPoints++;
24
         // update the total number of points
         totalPoints++:
26
28
      // print the results
29
      std::cout << "pi: " << 4.*((double)interiorPoints)/totalPoints << std::endl:
30
      return 0:
```

Functional decomposition and load balancing

- load balancing refers to a class of algorithms that attempt to provide optimal or near optimal solutions to the task scheduling problem
 - enormous and diverse literature
 - broad applicability
 - computer systems: operating systems, parallel computing, distributed computing
 - theoretical computer science
 - operations research
 - and many other application domains, perhaps disguised
- scheduling is a closely related problem: determine the order in which a set of tasks should run
- problems that parallelize effectively using functional decomposition tend to be self scheduling and self balancing
- abstract the essentials of the approach and construct a load balancing technique
 - static and semi-static load balancing
 - self scheduling
 - distributed task queues

Overview of load balancing

- ▶ information relevant to work distribution
 - number of tasks: is it fixed or are tasks added as the work progresses?
 - task costs: when is the cost known? what is the cost distribution among tasks?
 - task inter-dependencies: can they be run in any order? when do we find out?
 - locality: should some tasks be scheduled close to each other, i.e. on the same processor, or a nearby one? when does this information become available?
- there is a spectrum of available solutions depending on how information about task details becomes available
 - static: all necessary information is available initially
 - off-line algorithms: run before any real computation starts
 - semi-static: some information available, context changes slowly
 - off-line algorithms produce acceptable results in most cases
 - dynamic: little or no information is available at the outset
 - on-line algorithms, based on code instrumentation to enable decisions

Static and semi-static load balancing

- common static cases:
 - dense matrix algorithms: LU factorizations, etc.
 - most computations on a regular grid: FFT
 - sparse matrix-vector multiplication: when graph partitioned
- common semi-static cases:
 - particle and particle-in-cell methods
 - where the main problem is locality as particles move from one cell to another
 - computations structured as tree traversals
 - dynamic grids that change slowly, e.g. after many time steps

Self scheduling

- task manager:
 - maintain a central pool of tasks that are ready to be scheduled
 - once a processor completes its current task, assign it a new one from the pool
 - ▶ if a computation of a task generates more, add them to the pool
- works well when
 - tasks have no dependencies on each other
 - tasks are very weakly inter-dependent (but not studied extensively)
 - task cost is not known
 - locality is not important
- ▶ do not schedule the fine grain parallel tasks directly; coarsen first
 - larger grains reduce the task queue management overhead
 - smaller grains even out the finish times
- variations:
 - ▶ fixed grain size: like our quadrature implementation
 - guided self scheduling: start out with coarse grains and refine as you approach the end of the queue
 - distributed task queues: details and an important use case next time

