

Databases – Relational Database Design (Chapter 7)

Jaeyong Choi
Dept. of Software, Gachon University

- Design alternatives: Combine schemas?
 - Combine instructor and department into inst_dept
 - This seems like a good idea because some queries can be expressed using fewer joins

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

combine

- Design alternatives: Combine schemas?
 - But, result is possible repetition of information
 - Some user update the budget in one tuple

가

We cannot record information about newly created department

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

instructor

department

- A combined schema without repetition
 - Consider combining relations
 - sec_class(sec_id, building, room_number) and
 - section(course_id, sec_id, semester, year)
 - Into one relation
 - section(course_id, sec_id, semester, year, building, room_number)
 - No repetition in this case

- What about smaller schemas?
 - Supposing we had started with inst_dept, how would we know to decompose it into instructor and department?
 - Repetition of information resulting from having to list the building and budget for each instructor associated with a department
 - Then, in order to make a good relation, can we find the part with repetition and decompose it into smaller schema?
 - Nope! A real-word DB has a large number of schemas and data. It is unreliable process.

- □ Rules for decomposition: *functional dependency*
 - Write a rule "if there were a schema (dept_name, building, budget), then dept_name would be a candidate key"
 - dept_name → building, budget
 - □ In inst_dept, because dept_name is not a candidate key, building and budget of a department may have to be repeated
 - □ → Indicates the need to decompose *inst_dept*

- Not all decompositions are good
 - Suppose we decompose employee(ID, name, street, city, salary) into: employee1 (ID, name) & employee2 (name, street, city, salary)
 - Flaw arises when two employees may have the same name

ID가 street city ...

Lossy decomposition (손실 분해)

ID	name	street	city	salary
: 57766 57766 98776 98776 :	Kim Kim Kim Kim	Main North Main North	Perryridge Hampton Perryridge Hampton	75000 67000 75000 67000

Χ

- □ Example of *lossless-join decomposition*
 - There is no loss of information by replacing r(R) with two relation schemas $r_1(R_1)$ and $r_2(R_2)$
 - Decomposition of R = (A, B, C) into $R_1 = (A, B) \& R_2 = (B, C)$

Α	В	С		A	В		В	С	
α	1	Α		α	1		1	Α	
β	2	В	<i>V</i>	β	2		2	В	
	r		r_1	= Π	[A,B]	r) r	$r_2 = \Pi$	[B,C]	(r)

Select * from (select R1 from r) natural join (select R2 from r)

Select * from r

$$r_1 \bowtie r_2$$

Goals of normalization

- Let R be a relation scheme with a set F of functional dependencies
 - Decide whether a relation scheme R is in "good" form.
- □ In the case *R* is not in "good" form, decompose it into a set of relation scheme {*R*₁, *R*₂, ..., *Rn*} so that
 - Each relation scheme is in good form
 - The decomposition is a lossless-join decomposition and, preferably, dependency preserving
- 관계형 데이터베이스의 설계에서 중복을 최소화 하게 데이터를 구조화하는 프로세스

Atomic Domains and First Normal Form

- First normal form (1NF)
 - Domain is atomic if its elements are indivisible units
 - Non-atomic domains: set of names, composite attributes

street city zip

- A relational schema *R* is in *first normal form*, if the domains of all attributes of *R* are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - E.g., set of accounts stored with each customer, set of owners stored with each account

- First normal form cont'd
 - Atomicity is actually a property of how the elements of the domain are used
 - E.g., strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form "CSOO1" or "EE1127"
 - Department of a student can be found by writing code that breaks up the structure of an identification number
 - Doing so requires extra programming, and information gets encoded in the application program rather than in the database

Examples of 1NF

Composite attribute, multivalued attribute

Customer							
Customer ID	First Name	Surname	Telephone Number				
123	Pooja	Singh	555-861-2025, 192-122-1111				
456	San	Zhang	(555) 403-1659 Ext. 53; 182-929-2929				
789	John	Doe	555-808-9633				

	Customer						
Customer ID	First Name	Surname	Telephone Number1	Telephone Number2			
123	Pooja	Singh	555-861-2025	192-122-1111			
456	San	Zhang	(555) 403-1659 Ext. 53	182-929-2929			
789	John	Doe	555-808-9633				

The two telephone number columns still form a "repeating group": they repeat what is conceptually the same attribute, namely a telephone number.

Page 12

789

Examples of 1NF

Designs that comply with 1NF

Customer							
Customer ID	First Name	Surname	Telephone Number				
123	Pooja	Singh	555-861-2025				
123	Pooja	Singh	192-122-1111				
456	San	Zhang	182-929-2929				
456	San	7hana	(555) 403-1659 Fvt 53				

Note that the "ID" is no longer unique in this solution with duplicated customers. To uniquely identify a row, we need to use a combination of (ID, Telephone Number).

Customer Name

Customer Telephone Number

Customer ID	First Name	Surname	Id	Customer ID	<u>Telephone Number</u>
123	Pooja	Singh	1	123	555-861-2025
456	San	Zhang	2	123	192-122-1111
789	John	Doe	3	456	(555) 403-1659 Ext. 53
nrimary	key:cumtome	er id	4	456	182-929-2929
primary	vey . cumtomi	51 IU	5	789	555-808-9633

primary key: id

ge 13

The normal forms

- UNF: Unnormalized form
- 1NF: First normal form
- 2NF: Second normal form
- □ 3NF: Third normal form
- EKNF: Elementary key normal form
- BCNF: Boyce–Codd normal form
- 4NF: Fourth normal form
- ETNF: Essential tuple normal form
- 5NF: Fifth normal form
- DKNF: Domain-key normal form
- 6NF: Sixth normal form

The normal forms

	UNF	1NF	2NF	3NF	EKNF	BCNF	4NF	ETNF	5NF	DKNF	6NF
	(1970)	(1970)	(1971)	(1971)	(1982)	(1974)	(1977)	(2012)	(1979)	(1981)	(2003)
Primary key (no duplicate tuples)	1	1	1	1	1	1	1	1	1	✓	1
No repeating groups	1	1	1	1	1	1	1	1	1	✓	1
Atomic columns (cells have single value)	X	1	1	1	1	1	1	1	1	1	1
No partial dependencies (values depend on the whole of every Candidate key)	X	X	1	1	1	1	1	1	1	1	1
No transitive dependencies (values depend only on Candidate keys)	X	X	X	1	1	1	1	1	1	1	1
Every non-trivial functional dependency involves either a superkey or an elementary key's subkey	x	x	x	x	1	1	1	1	1	1	N/A
No redundancy from any functional dependency	X	X	X	X	X	1	1	1	1	1	N/A
Every non-trivial, multi-value dependency has a superkey	X	×	x	×	×	X	1	1	1	1	N/A
A component of every explicit join dependency is a superkey ^[8]	X	X	x	X	X	X	X	1	1	1	N/A

Decomposition Using Functional Dependencies

- Goal: Devise a theory for the following
 - Decide whether a particular relation R is in "good" form
 - In the case R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ so that
 - Each relation is in good form
 - The decomposition is a *lossless-join decomposition*
 - Our theory is based on:
 - Functional dependencies
 - Multivalued dependencies

Functional dependencies (FD)

- A functional dependency (FD) is a relationship between two attributes, typically between the PK and other nonkey attributes within a table.
- For any relation R, attribute Y is functionally dependent on attribute X (usually the PK), if for every valid instance of X, that value of X uniquely determines the value of Y.

```
key -> super key -
> candidate -> primary

key
value

Determinant

Dependent

Dependent
```

X: dept_name -> Y: building, budge

- □ Functional dependencies (FD) examples
 - ISBN → Title
 - StudentID → Semester
 - Employee ID → Employee Name
 - Employee ID → Department ID
 - Department ID → Department Name

Student ID	Semester	Lecture	TA
1234	6	Numerical Methods	John
1221	4	Numerical Methods	Smith
1234	6	Visual Computing	Bob
1201	2	Numerical Methods	Peter
1201	2	Physics II	Simon

Employee ID	Employee name	Department ID	Department name
0001	John Doe	1	Human Resources
0002	Jane Doe	2	Marketing
0003	John Smith	1	Human Resources
0004	Jane Goodall	3	Sales

Functional dependencies cont'd

- □ Let *R* be a relation schema and α , β (⊆*R*) be attributes in r
- **■** The *functional dependency* $\alpha \rightarrow \beta$ *holds* on *R*
 - \blacksquare For any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α, they also agree on the attributes β

■ l.e.,
$$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

Example:

■ $A \rightarrow C$ is satisfied; $C \rightarrow A$ is not

$$t1[A] = t2[A] => t1[C] = 52[C]$$

functional dependency가

->				
	D	C	В	A
<- t	d_1	c_1	b_1	a_1
< t1	d_2	c_1	b_2	a_1
	d_2	c_2	b_2	a_2
	d_3	c_2	b_3	a_2
	d_4	c_2	b_3	<i>a</i> ₃

- Functional dependencies cont'd
 - K is a *superkey* for relation schema r(R), R denoting the set of attributes, if and only if $K \rightarrow R$ \longrightarrow K->R, R->K , K=R .
 - For every pair of tuple t1, t2 from the instance,
 - Whenever $t_1[K] = t_2[K]$, it is also the case that $t_1[R] = t_2[R]$
 - Consider the schema:
 - □ inst_dept (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget) _{r(R)}
 - We expect these functional dependencies to hold:
 - □ dept_name \rightarrow building, ID \rightarrow building
 - ID, dept_name → name, salary, building, budget
 - But not the following:
 - dept_name → salary

$$f1 = 1 -> 1$$

 $f2 = 2 -> 2 ...$
 $\{f1, f2, ..., fn\} = F$

- We use functional dependencies to:
 - Test relations to see if they are legal under a given set of functional dependencies
 - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*
 - Specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F
 - Note: A specific instance of a relation schema may satisfy a functional dependency, even if the functional dependency does not hold on all legal instances.
 - \blacksquare E.g., an instance of *instructor* may, by chance, satisfy $n\alpha me \rightarrow ID$


```
1+1 = 2 trivial
trivial: . 가 /
ex) 1=1
```

Trivial functional dependency

- A functional dependency is trivial if it is satisfied by all instances of a relation, e.g.,
 - **□** ID, $name \rightarrow ID$ ID?
 - \square name \rightarrow name
- If one "side" is a subset of the other, it's considered trivial.
- □ In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

닫혀 있다.

- 한 집합 A가 있을 때, 이 A의 모든 원소 다른 원소와 함께 어떤 변환을 겪을 때, 그 변환 결과 역시 A의 원소, 혹은 부분집합일 경우 해당 변환은 집합 A에 대해 닫혀 있는 것이 된다.
- 예를 들어 모든 양수의 집합은 덧셈에 대하여 닫혀 있으며, 모든 뺄셈의 집합은 실수에 대하여 닫혀 있다.
- 어떤 범위에 있어서 와 같이 양 끝을 포함하는 구간을 닫힌 구간, 폐구간이라한다.
- 전자전기공학에선 항상 전류가 흐르도록 폐루프가 형성되어, 개방된 구간이 없는 회로를 닫힌 회로라고 한다.

Closure of a set of functional dependencies

- Given a set F of functional dependencies, there are other functional dependencies that are logically implied by F
- Example

$$F = \{A->B, B->C\}$$

 $\{A->B, B->C, A->C\}$

- Assume that schema r(A,B,C)
- \blacksquare if $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- For the value A, there are only on corresponding value for B, and for that value of B, there can only be one corresponding value C
- The set of all functional dependencies logically implied by F is the closure of F, denoted by F⁺
 - \square F^+ is a superset of F

imply

closure

Exercise

It is important to realize that an instance of a relation may satisfy some functional dependencies that are not required to hold on the relation's schema.

Let's find out functional dependency in the following

example

building	room_number	capacity
Packard	101	500
Painter	514	10
Taylor	3128	70
Watson	100	30
Watson	120	50

Figure 8.5 An instance of the *classroom* relation.

Exercise

- Let's find out functional dependency in the following example
 room_number -> capacity가
 - Room_number → capacity
 - Building, room_number → capacity

```
가
room_number -> capacity가
```

(Building, room_number)->capacity

building	room_number	capacity
Packard	101	500
Painter	514	10
Taylor	3128	70
Watson	100	30
Watson	120	50

Figure 8.5 An instance of the *classroom* relation.

- A relation is in the second normal form if it fulfills the following two requirements:
 - It is in first normal form.
 - □ It does not have any <u>non-prime attribute</u> (후보 키에 속하지 않은 속성) that is functionally dependent on any proper subset of any candidate key of the relation(후보키의 하위 집함에 기능적으로 의존하는).
 - A non-prime attribute of a relation is an attribute that is not a part of any candidate key of the relation.
- □ 제1정규형에 속하면서,기본키가 아닌 모든 속성이 기본키에 완전 함수 종속되면 제2정규형이다.

{학번, 과목코드} -> 성적 □ Example {학번, 과목코드} -> 학부 *{학번, 과목코드} -> 등록금* 학번 -> 학부 학번 -> 등록금 학부-> 등록금

학번->학부, 학번->등록금 두개 의 부분 함수 종속성을 가지고 있다. 이를 제거해 주는 것을 제2정규화라고 한다.

<u>학번</u>	<u>과목코드</u>	성적	학부	등록금
20800399	CSE011101	A+	컴퓨터공학부	350
20800399	CSE022202	Α	컴퓨터공학부	350
20800399	CSE033303	B+	컴퓨터공학부	350
21300758	MEC011101	F	경영학부	300
21400001	POD032939	C+	기계공학부	400
21500399	CSE011101	D	컴퓨터공학부	350

Example

- □ 학번->학부 함수종속성으로 볼 때, 학번만으로 학부에 대한 결정을 지을 수 있음
- 그러나 현재 기본키가 학번, 과목코드로 이루어져 있기 때문에 학번만으로 학부에 대한 결정을 지을 수 있다는 게 의미가 없어짐
- □ 그래서 부분 함수 종속성을 제거하는 제2정규화 과정 수행 필요.
- 학번, 학부, 등록금 속성을 가지는 학생 릴레이션과 학번, 과목코드, 성적 속성을 가지는 성적릴레이션 으로 나눔.

학생 릴레이션

<u>학번</u>	학부	등록금
20800399	컴퓨터공학부	350
21300758	경영학부	300
21400001	기계공학부	400
21500399	컴퓨터공학부	350

성적 릴레이션

<u>학번</u>	과목코드	성적
20800399	CSE011101	A+
20800399	CSE022202	Α
20800399	CSE033303	B+
21300758	MEC011101	F
21400001	POD032939	C+
21500399	CSE011101	D

- Example
 - [Model, Manufacturer] -> Model Full Name *
 - {Model, Manufacturer} -> Manufacturer Country

full-key dependencies

part-key dependencies

Electric Toothbrush Models

Manufacturer	<u>Model</u>	Model Full Name	Manufacturer Country
Forte	X-Prime	Forte X-Prime	Italy
Forte	Ultraclean	Forte Ultraclean	Italy
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZbrush	USA
Kobayashi	ST-60	Kobayashi ST-60	Japan
Hoch	Toothmaster	Hoch Toothmaster	Germany
Hoch	X-Prime	Hoch X-Prime	Germany

- Even if the designer has specified the primary key as {Model full name}, the relation is not in 2NF because of the other candidate keys.
- [Manufacturer, Model] is also a candidate key, and Manufacturer country is dependent on a proper subset of it

To make the design conform to 2NF, it is necessary to have two relations:

Electric toothbrush manufacturers

Manufacturer	Manufacturer country
Forte	Italy
Dent-o-Fresh	USA
Brushmaster	USA
Kobayashi	Japan
Hoch	Germany

Electric toothbrush models

Manufacturer	<u>Model</u>	Model full name
Forte	X-Prime	Forte X-Prime
Forte	Ultraclean	Forte Ultraclean
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZbrush
Brushmaster	SuperBrush	Brushmaster SuperBrush
Kobayashi	ST-60	Kobayashi ST-60
Hoch	Toothmaster	Hoch Toothmaster
Hoch	X-Prime	Hoch X-Prime

Third normal form (3NF)

- Normalizing a database design to reduce the duplication of data and ensure referential integrity by ensuring that:
 - The entity is in second normal form.
 - All the non-prime attributes must depend only on the candidate keys.
 - □ 기본키 이외의 다른 컬럼이 그외 다른 컬럼을 결정할 수 없음.

Third normal form (3NF)

Prime-attribute

- □ {Tournament, Year} → Winner
- Non-prime attribute '

 Winner → Winner date of birth

 Non-prime attribute '

 Winner → Winner date of birth
- □ {Tournament, Year} → Winner date of birth

Tournament Winners

Tournament	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

Chip Masterson

Tournament Winners

Indiana Invitational

TournamentYearWinnerIndiana Invitational1998Al FredricksonCleveland Open1999Bob AlbertsonDes Moines Masters1999Al Fredrickson

1999

Winner Dates of Birth

Winner	Date of Birth
Chip Masterson	14 March 1977
Al Fredrickson	21 July 1975
Bob Albertson	28 September 1968

Third normal form (3NF)

```
A relation schema R is in 3NF if for all \alpha \to \beta in F^+ at least one of the following holds:

\alpha \to \beta \text{ is trivial (i.e., } \beta \subseteq \alpha) \qquad \qquad \beta \text{ is a superkey for } R \text{ (i.e., } \alpha \to R)

Each attribute A in (\beta - \alpha) is contained in a candidate key for R (NOTE: each attribute may be in a different candidate key)
```

- □ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold)
 - Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later)

It is a slightly stronger version of the third normal form (3NF)

- BCNF was developed in 1975 by Raymond F. Boyce and Edgar F. Codd to address certain types of anomalies not dealt with by 3NF as originally defined.
- □ 후보키를 여러개 가지고 있는 릴레이션에서는 제3정규형을 만족하더라도 이상현상이 생길수 있음.
- □ A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^+ of the form $\alpha \rightarrow \beta$ (α , $\beta \subseteq R$), at least one of the following holds:
 - $\ \ \ \ \alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - \square α is a superkey for R (i.e., $\alpha \rightarrow R$)

Example schema *not* in BCNF:

- instr_dept (ID, name, salary, dept_name, building, budget)
 - An FD dept_name → building, budget holds, but dept_name is not a superkey
 f1 = {ID, dept_name} -> {name, salary, bulding}
- \square AB \rightarrow C,D,E,C \rightarrow B

1 f2 = {dept_name} -> {building, budget}

- Decomposing a schema into BCNF
 - □ Suppose we have a schema R and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - We **decompose** *R* into:

In previous example,

$$\square$$
 α = dept_name

$$\square$$
 β = building, budget

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

inst_dept is decomposed into:

r₁
$$\square$$
 (α U β) = (dept_name, building, budget)

$$_{r2}$$
 \square $(R - (\beta - \alpha)) = (ID, name, salary, dept_name)$

STUDENT	COURSE	INSTRUCTOR
야붕	Java Programming	James Gosling
야붕	Machine Learning	Andrew Ng
모찌	Computer Architecture	Alan Turing
양갱	Java Programming	James Gosling

- Candidate keys : {student, course} or {course, instructor}
- BCNF를 위반하는 nontrivial FD 를 찾기
 - {student, course} → instructor
 - □ Instructor → course
- □ (α U β)와 (R − (β − α))로 분해하기
 - R1(instructor, course), R2(student, instructor)

INSTRUCTOR	COURSE		
James Gosling	Java Programming		
Andrew Ng	Machine Learning		
Alan Turing	Computer Architecture		

STUDENT	INSTRUCTOR
야붕	James Gosling
야붕	Andrew Ng
모찌	Alan Turing
양갱	James Gosling

 $F=\{f1,\,f2,\,...\,fn\}$

- BCNF and dependency preservation
 - Constraints, including FDs, are costly to check in practice unless they pertain to only one relation
 - If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that all functional dependencies hold, then that decomposition is dependency preserving
 - Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker functional normal form, known as *third normal form* (3NF)pendency Pt

. BCNF가

functional dependency 7

1NF BCNF 3NF 3.5 NF?

3NF

decomposition

3NF vs BCNF

- Example schema in 3NF but not in BCNF:
 - Advise(ID, advisor, location, time)
 - ID, Advisor → location, time
 - Advisor → location
 - If the meeting location is one of the advisor's labs, the lab alone will determine the professor.
 - location → advisor

이 예제는 2NF를 만족하지 않았으므로 3NF도 만족하지 않음. 3NF와 BCNF를 비교하기 위해서 임의로 만든 테이블 임.

<u>ID</u>	<u>Advisor</u>	Location	Time	<u>ID</u>	<u>Advisor</u>	Location	Time
20161	Kim	501	2019-10-10	20161	Kim	501	2019-10-10
20162	Park	504	2019-10-11	20162	Park	504	2019-10-11
20163	Kim	501	2019-10-12	20163	Kim	502	2019-10-12

Higher normal forms = 4NF

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation:
 - inst_info (ID, child_name, phone)

An instructor may have more than one phone and can

have multiple children

99999 ID 가

<u>ID</u>	<u>child_name</u>	<u>phone</u>
99999	David	512-555-1234
99999	David	512-555-4321
99999	William	512-555-1234
99999	William	512-555-4321

No non-trivial FDs and therefore in BCNF

Trivial FD $AB \rightarrow A, AB \rightarrow B$

Non-trivial FD $AB \rightarrow C$, $AB \rightarrow AC$

Higher normal forms

- □ *Insertion anomalies*, i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples:
 - ロ (99999, David, 981-992-3443) 1 BCNF가
 - (99999, William, 981-992-3443)
- □ Therefore, it is better to decompose *inst_info* into:
 - inst_child (ID, child_name)
 - inst_phone (ID, phone)
- □ This suggests the need for higher normal forms, such as fourth normal form (4NF)

Abnormalities

Example

STUDENT	COURSE	INSTRUCTOR
야붕	Java Programming	James Gosling
야붕	Machine Learning	Andrew Ng
모찌	Computer Architecture	Alan Turing
양갱	Java Programming	James Gosling

- □ **삽입이상**Algorithms 라는 수업이 Dijkstra 에 의해 열렸다고 하자. 하지만 수강생이 아무도 없는 경우 삽입할 수 없다.
- □ 갱신이상
 James Gosling 이 담당하는 강의가 바뀌게 될 경우 수강생의 수만큼 갱신해 줘야 하므로 하나라도 빠뜨리면 데이터 불일치 문제가 발생할 여지가 있다.
- □ **삭제이상** 모찌가 자퇴해서 Computer Architecture 수업의 수강생이 없어지면 Alan Turing 이라는 강사도 사라진다.

Functional-Dependency Theory

- Closure of a set of functional dependencies
 - Given a set F of functional dependencies, there are other functional dependencies that are logically implied by F
 - \blacksquare E.g., if $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
 - The set of all functional dependencies logically implied by F is the closure of F denoted by F⁺

- Closure of a set of functional dependencies cont'd
 - \square We can find F^+ , the closure of F, by repeatedly applying Armstrong's Axioms:

```
(reflexivity, ピパク)
\square if \beta \subseteq \alpha, then \alpha \rightarrow \beta
                                                                        (augmentation, 확대)
■ If \alpha \rightarrow \beta, then \gamma \alpha \rightarrow \gamma \beta
□ If \alpha \rightarrow \beta and \beta \rightarrow \gamma, then \alpha \rightarrow \gamma
                                                                       (transitivity, 이행성)
```

- These rules are:
 - sound (generate only FDs that actually hold), and
 - complete (generate all FDs that hold)

 - •건전하다(sound): 이 규칙들을 잘못된 함수 종속을 생성하지 않는다. •완전하다(complete): 이 규칙은 주어진 함수 종속의 집합 F에 대해서 모든 F+를 생성할 수 있다.

Example

- $P = \{A, B, C, G, H, I\}$ $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- Some members of F⁺
 - $\Box A \rightarrow H$
 - By transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $\square AG \rightarrow I$
 - By augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - CG→HI
 - By augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity CG

□ Procedure for computing F⁺

- To compute the closure of a set of FDs F
 - We shall see an alternative procedure for this task later

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

add the resulting functional dependency to F^+

until F^+ does not change any further
```

X > B B > F

Additional rules:

Proof?

- Union rule:
 - If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds
 - □ (by reflexivity) $\alpha \rightarrow \beta \alpha$, (by augmentation) $\alpha \beta \rightarrow \gamma \beta$, (by transitivity) $\alpha \rightarrow \beta \gamma$
- Decomposition rule:
 - If $\alpha \rightarrow \beta \gamma$ holds, then $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds
 - **□** (by reflexivity) $\beta \gamma \rightarrow \beta$, (by transitivity) $\alpha \rightarrow \beta$
- Pseudo-transitivity rule:
 - If $\alpha \rightarrow \beta$ holds and $\beta \gamma \rightarrow \delta$ holds, then $\alpha \gamma \rightarrow \delta$ holds
 - □ (by augmentation) $\alpha\gamma \rightarrow \beta\gamma$, (by transitivity) $\alpha\gamma \rightarrow \beta\gamma$, $\beta\gamma \rightarrow \delta$
- The above rules can be inferred from Armstrong's axioms

- Closure of attribute sets for finding candidate key
 - We say that an attribute B is *functionally determined* by α if $\alpha \rightarrow B$
 - Given a set of attributes α , define the *closure* of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F
 - Algorithm to compute α^+ , the closure of α under F

```
R(A,B,C,D)

A \rightarrow B

B \rightarrow D

C \rightarrow B

A + \rightarrow A, B, D

C \mid (A) = \{A,B,D\}
```

```
result := \alpha;
repeat

for each functional dependency \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma;
end

until (result does not change)
```


Example

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

□ (*AG*)⁺

$$\square$$
 1. result = AG

Is AG a candidate key?

■ Is AG a super key?

$$\blacksquare AG \rightarrow R? == (AG)^+ \supseteq R$$

■ Is any subset of *AG* a superkey?

$$A \rightarrow R? == (A)^+ \supseteq R$$

$$G \rightarrow R? == (G)^+ \supseteq R$$

A determines B A determines C

RHS Attribute which can not be determined

 $(CG \rightarrow H \text{ and } CG \rightarrow AGBC)$

 $(CG \rightarrow I \text{ and } CG \rightarrow AGBCH)$

 $(A \rightarrow C \text{ and } A \rightarrow B)$

(AG)=>ABCGMI

가

X + X

가 super key

R

Uses of attribute closure

- Testing for superkey:
 - To test if α is a superkey, we compute α^+ , and check if α^+ contains all attributes of R
- Testing functional dependencies
 - To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$
 - $lue{}$ That is, we compute by using attribute closure, and then check if it contains eta.
- Computing closure of F
 - It gives us an alternative way to compute F+
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \rightarrow S$

Exercise

- Let's find possible candidate key set
 - \square R(A,B,C,D,E,F,G,H)
 - \square CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG
- Solution) [AD, BD, DE, DF]
 - \square D+ \rightarrow D
 - □ DA+→ADBCFHEG
 - □ DB+→ DBCFHEGA
 - □ DC+ → DC
 - □ DE+→ DEA (DA is already candidate key)
 - □ DF+→DFEG (DE is already candidate key)
 - DCH+ > DCH

Cover

- □ A set E of functional dependencies, if E \subset F+
- all functional dependencies of E are inferred from F
- F covers E (meaning that E has everything in F)

Canonical cover: Fc

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - E.g., $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
- Parts of a functional dependency may be redundant
 - E.g., on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - E.g., on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F
 - Having no redundant dependencies or redundant parts of dependencies

■ Extraneous(관계없는) attributes

- An attribute of a functional dependency is said to be extraneous if we can remove it without changing the closure of the set of functional dependencies.
- □ Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F
 - Attribute *A* is *extraneous* in α if $A \subseteq \alpha$ and *F* logically implies ($F \{\alpha \rightarrow \beta\}$) $\cup \{(\alpha A) \rightarrow \beta\}$
 - Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies F

Extraneous attributes

- \blacksquare E.g., $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \rightarrow C$ (i.e., the result of dropping B from $AB \rightarrow C$)
 - A alone can determine C
- \blacksquare E.g., $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C
- $\blacksquare E.g., F = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow D\}$
 - \blacksquare C is extraneous in the RHS (Right Hand Side) of A \rightarrow BC
 - A can determine B (A \rightarrow BC), B can determine C (B \rightarrow C). Hence, A can determine C also (Transitivity rule)
 - \blacksquare B is extraneous in the LHS of AB \rightarrow D
 - from A → BC, it is clear that A determines B. it would indirectly mean that if you know A and B then you know D also.

- □ Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F
- To test if attribute $A \subseteq \alpha$ is extraneous

왼쪽이 복잡한 경우

- □ Compute $(\alpha \{A\})^+$ using the dependencies in F
- □ Check that $(\alpha \{A\})^+$ contains β ; if it does, A is extraneous in α

$$\blacksquare$$
 E.g, $F = \{A \rightarrow C, AB \rightarrow C\}$

- B is extraneous in AB \rightarrow C?
- A+ \rightarrow C, we don't need to B to explain C. so we infer that B is extraneous.
- **To** test if attribute $A \subseteq \beta$ is extraneous

오른쪽이 복잡한 경우

- Compute α^+ using only the dependencies in $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
- □ Check that α^+ contains A; if it does, A is extraneous in β
- \blacksquare E.g, $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$
 - C is extraneous in AB → CD?
 - We compute the attribute **closure of AB** under $F' = \{AB \rightarrow D, A \rightarrow E, \text{ and } E \rightarrow C\}$.
 - AB+ \rightarrow ABCDE, which includes CD, so we infer that C is extraneous.
 - AB+ \rightarrow ABCDE, which includes C, so we infer that C is extraneous.

Canonical cover

- \blacksquare A canonical cover for F is a set of dependencies F_c s.t.
 - \blacksquare F logically implies all dependencies in F_c
 - \square F_c logically implies all dependencies in F
 - \blacksquare No functional dependency in F_c contains an extraneous attribute
 - \blacksquare Each left side of functional dependency in F_c is unique
- To compute a canonical cover for *F*:

$$F_c = F$$
 repeat

Use the union rule to replace any dependencies in F_c of the form $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1$ β_2 .

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β .

/* Note: the test for extraneous attributes is done using F_c , not F^* / If an extraneous attribute is found, delete it from $\alpha \to \beta$ in F_c . **until** (F_c does not change)

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b1	C2	d2	e1
a3	b2	C1	d1	e1
a4	b2	C2	d2	e1
a5	b3	C3	d1	e1

Computing a canonical cover

$$R = (A, B, C)$$

$$F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$$

- \square Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- \Box A is extraneous in $AB \rightarrow C$
 - □ Check if the result of deleting A from AB→C is implied by the other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- \Box C is extraneous in $A \rightarrow BC$
 - □ Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C \rightarrow F' = \{A \rightarrow B, B \rightarrow C\}$
 - Can use attribute closure of A in more complex cases
 - A+→ BC 설명하는지 확인, A+=ABC, thus C is extraneous
 - The canonical cover is: $\{A \rightarrow B, B \rightarrow C\}$

 Check RHS, LHS is extraneous or not

- □ Lossless-join decomposition (무손실 조인 분해)
 - Removing redundancy safely from databases while preserving the original data
 - If you decompose a relation R into relations R1, R2, you will have a Lossless-Join if a natural join of the two smaller relations yields back the original relation
 - For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R:

- A decomposition of R into R_1 and R_2 is lossless-join if at least one of the following dependencies is in F^+ :
 - $\blacksquare R_1 \cap R_2 \rightarrow R_1$
 - $\square R_1 \cap R_2 \rightarrow R_2$
 - If R1 \cap R2 is the key of R1 or R2, it is lossless decomposition.

Example

$$R = (\underline{A}, \underline{B}, C)$$

$$F = \{\underline{A} \rightarrow B, \underline{B} \rightarrow C\}$$

- Decomposition in two different ways:
 - \blacksquare R1 = (<u>A</u>, B), R2 = (<u>B</u>, C)
 - Lossless-join decomposition: $R_1 \cap R_2 = \{B\}$ and $B \rightarrow BC$ $R_1 \cap R_2 \rightarrow R_2$
 - Dependency preserving
 - $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{A\}$ and $A \rightarrow AB$ $R_1 \cap R_2 \rightarrow R_1$
 - Not dependency preserving: cannot check $B \rightarrow C$ without computing $R_1 \bowtie R_2$

Dependency preservation

- Let F_i be the set of dependencies F^+ that include only attributes in R_i
- A decomposition is *dependency preserving*, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
- If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive

Testing for dependency preservation

- To check if a dependency $\alpha \rightarrow \beta$ is preserved in a decomposition of R into $R_1, ..., R_n$
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving

```
compute F^+;

for each schema R_i in D do

begin

F_i := the restriction of F^+ to R_i;

end

F' := \emptyset

for each restriction F_i do

begin

F' = F' \cup F_i

end

compute F'^+;

if (F'^+ = F^+) then return (true)

else return (false);
```

```
Let a relation R(A,B,C,D) and set a FDs F = { A -> B , A -> C , C -> D} are given.

A relation R is decomposed into R1 = (A, B, C) with FDs F1 = {A -> B, A -> C} R2 = (C, D) with FDs F2 = {C -> D}.

F' = F1 U F2 = {A -> B, A -> C, C -> D} so, F' = F.
And so, F' + = F+.
```


Example

- $R = (\underline{A}, B, C)$ $F = \{A \rightarrow B, B \rightarrow C\}$
- R is not in BCNF
 - Decompose into $R_1 = (A, B), R_2 = (B, C)$
- R1 and R2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving

Algorithms for Decomposition

- Testing for BCNF
 - To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - \square Compute α^+ (the attribute closure of α), and
 - \square Verify it includes all attributes of R, i.e., it is a superkey of R
 - Simplified test
 - It suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F⁺
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F⁺ will cause a violation either

Testing for BCNF cont'd

- However, simplified test using only F is incorrect when testing a relation in a decomposition of R
 - □ Consider R = (A, B, C, D, E) with $F = \{\underline{A} \rightarrow B, B \subseteq D\}$
 - Decompose R into $R_1 = (\underline{A}, B)$ and $R_2 = (A, \underline{C}, D, E)$
 - Neither of the dependencies in *F (F의 dependency 중 어떤 것도)* contain only attributes from (*A,C,D,E*) so we might be mislead into thinking *R*² satisfies BCNF
 - In fact, dependency $A\underline{C} \rightarrow D$ in F^+ shows R_2 is not in BCNF

Testing decomposition for BCNF

- \square Checking if a relation R_i in a decomposition of R is in BCNF ■ Relation R; 가 BCNF를 만족하는지 확인하는 방법
- Either test R_i for BCNF with respect to the restriction of F to R_i , i.e., all FDs in F^+ that contain only attributes from R_i
- Or use the original set of dependencies F that hold on R with the following test:
 - \square For every set of attributes $\alpha \subseteq R_{ii}$ check that α^+ either includes no attribute of R_i - α or includes all attributes of R_i
 - α+가 Ri-α의 속성을 포함하지 않거나 Ri의 모든 속성을 포함하는 경우
 - If the condition is violated by some $\alpha \rightarrow \beta$ in F, the dependency $\alpha \rightarrow (\alpha^+ - \alpha) \cap R_i$ can be shown to hold on R_i , and R_i violates BCNF

■ $\alpha \rightarrow (\alpha^+ - \alpha)^{\overline{}} \cap Ri \vdash Ri = Ri$ 유지하는 경우

Example

R = (A, B, C) F = {A
$$\rightarrow$$
B, B \rightarrow C}, Key = {A}
(1) B+= C \neq (ABC-B) (2) B \rightarrow (C) \cap (BC) = C

BCNF decomposition algorithm

 \blacksquare Each R_i is in BCNF, and decomposition is lossless-join

```
result := \{R\}; done := false; compute F^+; while (not done) do ROI BCNF에 속하지 않는다고 가정 if (there is a schema R_i in result that is not in BCNF) then begin let \alpha \to \beta be a nontrivial functional dependency that holds on R_i such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \emptyset; result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta); end else done := true;
```


Example of BCNF decomposition

```
■ R = (\underline{A}, B, C)

F = \{A \rightarrow B, B \rightarrow C\}, \text{ Key } = \{A\}
```

 \blacksquare R is not in BCNF ($B \rightarrow C$ but B is not superkey)

 $B \rightarrow C$, $\alpha \rightarrow \beta$, R1 = (B, C)

Decomposition:

$$\blacksquare$$
 R1 = (B, C)

$$\square$$
 R₂ = (A, B)

Result
$$R(A,B,C) = (ABC - BC) U (BC-C) U (BC)$$

= $(A) U (B) U (BC)$

```
result := \{R\};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that holds

on R_i such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \emptyset;

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```



```
result := \{R\};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that holds

on R_i such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (R_i - \beta) \cup (R_i - \beta);

end

else done := true;
```

Example of BCNF decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies *F*:
 - F1: course_id→title, dept_name, credits
 - \blacksquare F2: building, room_number \rightarrow capacity
 - F_3 : course_id, sec_id, semester, year \rightarrow building, room_number, time_slot_id
- A candidate key: {course_id, sec_id, semester, year}
- BCNF decomposition:
 - F1 is non-trivial functional dependency
 - course (<u>course_id</u>, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)
 F1: course_id→title_dept_name_credits_a→ β
 - **course** is in BCNF

F1: course_id \rightarrow title, dept_name, credits, a \rightarrow β Result class = (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id) U (course_id, title, dept_name, credits)

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)

Final result

course (course_id, title, dept_name, credits)
classroom (building, room_number, capacity)
section (course_id, sec_id, semester, year,
building, room_number, time_slot_id)

Example of BCNF decomposition cont'd

- BCNF decomposition *cont'd*:
 - F₂ is non-trivial functional dependency
 - F2 holds on *class-*1 but {*building*, *room_number*} is not a superkey; we replace *class-*1 by:
 - classroom (<u>building</u>, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
 - classroom and section are in BCNF

F2: building, room_number \rightarrow capacity, a $\rightarrow \beta$ Result class = (course_id, sec_id, semester, year, building, room_number, time_slot_id) U (building, room_number, capacity,)

BCNF and dependency preservation

- It is not always possible to get a BCNF decomposition that is dependency preserving
- R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$ Two candidate keys = JK and JL
- R is not in BCNF
- Any decomposition of R will fail to preserve $JK \rightarrow L$; this implies that testing for $JK \rightarrow L$ requires a join

- Third normal form motivation
 - There are some situations where
 - BCNF is not dependency preserving, and
 - Efficient checking for FD violation on updates is important
 - Solution: define a weaker normal form, called third normal form (3NF)
 - Allows some redundancy (with resultant problems)
 - But functional dependencies can be checked on individual relations without computing a join
 - There is always a lossless-join, dependency-preserving decomposition into 3NF

□ 3NF example

- dept_advisor = (s_ID, i_ID, dept_name)
 F = {s_ID,dept_name→i_ID; i_ID→dept_name}
 Two candidate keys: {s_ID, dept_name} and {i_ID, s_ID}
- dept_advisor is in 3NF
 - s_ID,dept_name→i_ID
 - {s_ID, dept_name} is a superkey
 - i_ID→dept_name
 - dept_name is contained in a candidate key

Testing for 3NF

- □ if α is a superkey, Use attribute closure to check for each dependency $\alpha \rightarrow \beta$
- **I** If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - Rather more expensive, since it involve finding candidate keys
 - Testing for 3NF has been shown to be *NP-hard*
 - Interestingly, decomposition into third normal form can be done in a polynomial time

3NF decomposition algorithm

```
let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c
    i := i + 1;
if none of the schemas R_j, j = 1, 2, ..., i contains a candidate key for R
  then
    i := i + 1;
     R_i := any candidate key for R;
/* Optionally, remove redundant relations */
repeat
     if any schema R_i is contained in another schema R_k
       then
         /* Delete R_i */
         R_j := R_i;
         i := i - 1;
until no more R_is can be deleted
return (R_1, R_2, \ldots, R_i)
```


Example of 3NF decomposition

- cust_banker_branch = (customer_id, employee_id, branch_name, type)
- Functional dependencies F:
 - F_1 : customer_id, employee_id \rightarrow branch_name, type
 - □ F_2 : employee_id \rightarrow branch_name
 - F_3 : customer_id, branch_name \rightarrow employee_id
- We first compute a canonical cover
 - branch_name is extraneous in the r.h.s. of F1
 - No other attribute is extraneous, so we get $F_c = \{F_1', F_2, F_3\}$, where $F_1' = customer_id$, $employee_id \rightarrow type$

 F_1 : customer_id, employee_id \rightarrow branch_name, type

 F_2 : employee_id \rightarrow branch_name

 F_3 : customer_id, branch_name \rightarrow employee_id

Example of 3NF decomposition cont'd

- for each loop generates following 3NF schema:
 - R1 = (customer_id, employee_id, type)
 - R2 = (employee_id, branch_name)
 - R₃ = (customer_id, branch_name, employee_id)
- Observe that R1 contains a candidate key of the original schema, so no further relation schema needs be added
- At end of for each loop, detect and delete schemas, such as R2, that are subsets of other schemas
 - Result will not depend on the order in which FDs are considered
- The resultant simplified 3NF schema is:
 - R1 = (customer_id, employee_id, type)
 - R₃ = (customer_id, branch_name, employee_id)

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - it may not be possible to preserve dependencies

Decomposition Using Multivalued Dependencies

- Multivalued dependencies
 - Suppose we record names of children, and phone numbers for instructors:
 - inst_child (ID, child_name)
 - inst_phone (ID, phone_number)
 - If we were to combine these schemas to get
 - inst_info (ID, child_name, phone_number)
 - Example:
 - (99999, David, 512-555-1234)
 - (99999, William, 512-555-4321)
 - (99999, David, 512-555-4321)
 - (99999, William, 512-555-1234)
 - This relation is in BCNF. Why?

- □ Functional dependencies (FD, 함수 종속)
 - If A → B, then we cannot have two tuples with the same A value but different B values.
- Multivalued dependencies (MVD, 다치 종속)
 - Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency $\alpha \twoheadrightarrow \beta$ holds on R, if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

```
  12[\alpha] = t2[\alpha] = t3[\alpha] = t4[\alpha]
```

(99999, David, 512-555-1234) (99999, William, 512-555-4321) (99999, David, 512-555-4321) (99999, William, 512-555-1234)

{과목} → {교재}일 때, 과목 어트리뷰트가 교재 어트리뷰트의 값 하나를 결정하는 것이 아니<mark>라,</mark> 여러 개의 값, 즉 값의 집합을 결정한다는 뜻

Multivalued dependencies cont'd

■ Tabular representation of $\alpha \rightarrow \beta$

Teaching database

<u> </u>					
Book	Instructor				
Silberschatz	John D				
Nederpelt	John D				
Silberschatz	William M				
Nederpelt	William M				
Silberschatz	Christian G				
Nederpelt	Christian G				
Silberschatz	John D				
Silberschatz	William M				
	Silberschatz Nederpelt Silberschatz Nederpelt Silberschatz Nederpelt Silberschatz Nederpelt				

Class → book
Class → instructor

	α	β	$R - \alpha - \beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_{j}$	$a_{j+1} \dots a_n$

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$
 $t_{1}[\beta] = t_{3}[\beta]$
 $t_{2}[\beta] = t_{4}[\beta]$
 $t_{1}[R - \beta] = t_{4}[R - \beta]$
 $t_{2}[R - \beta] = t_{3}[R - \beta]$

Example

- Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets: Y, Z, and W
- We say that $Y \rightarrow Z$ (Y multidetermines Z) if and only if for all possible relations r(R)
 - $\square < y_1, z_1, w_1 > \subseteq r \text{ and } < y_1, z_2, w_2 > \subseteq r, \text{ then}$
 - $\square < y_1, z_1, w_2 > \subseteq r \text{ and } < y_1, z_2, w_1 > \subseteq r$
- Note that since the behavior of Z and W are identical (독립적), it follows that $Y \rightarrow Z$ if $Y \rightarrow W$
 - □ 다치 종속은 학상 짝을 지어 발생함

Example

- □ 학생과 수강과목은 1:N의 관계이고, 학생과 동호회도 1:N의 관계
- □ 정규화된 테이블은 모든 애트리뷰트로 구성되는 합성 키(학생, 수강과목, 동호회)를 가지며, 다른 함수적 종속 성이 존재하지 않으므로 BCNF에 해당함

<u>학생</u>	<u>수강과목</u>	<u>동호회</u>
윤경환	수학	스키반
윤경환	수학	서도회
윤경환	물리학	스키반
윤경환	물리학	서도회
윤경환	영어	스키반
윤경환	영어	서도회
신종철	물리학	영어회화반
신종철	물리학	유도회
신종철	화학	영어회화반
신종철	화학	유도회

학생 → 수강과목 *학생* → 동호회

Example cont'd

- In inst_info relation:
 - ID → child_name
 - ID → phone_number
- Formalization:
 - Given a particular value of Y (ID), it is associated with a set of values of Z (child_name) and a set of values of W (phone_number)
 - These two sets are in some sense independent of each other
- Note:
 - □ If $Y \rightarrow Z$ then $Y \rightarrow Z$ (but *not* vice versa)

Use of multivalued dependencies

- We use multivalued dependencies in two ways:
 - To test relations to determine whether they are legal under a given set of functional and multivalued dependencies
 - To specify constraints on the set of legal relations
 - We shall concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies

ID	dept_name	street	city
22222	Physics	North	Rye
22222	Math	Main	Manchester

Figure 8.15 An illegal r_2 relation.

$$ID \rightarrow \rightarrow street$$
, city $ID \rightarrow \rightarrow dept_name$

Add the tuples (22222, Physics, Main, Manchester) (22222, Math, North, Rye)

Theory of MVDs

- From the definition of multivalued dependency, we can derive the following rule:
 - If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$ (i.e., every functional dependency is also a multivalued dependency)
 - □ If $\alpha \rightarrow \beta$, then $\alpha \rightarrow R \alpha \beta$
- The *closure* D^+ of D is the set of all functional and multivalued dependencies logically implied by D
 - \blacksquare We can compute D^+ from D, using the formal definitions of functional dependencies and multivalued dependencies
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules

□ Fourth normal form (4NF)

- A relation schema R is in *fourth normal form* (4NF) with respect to a set D of functional and multivalued dependencies, if for all multivalued dependencies in D^+ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\square \alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - \square α is a superkey for schema R
- If a relation is in 4NF, it is in BCNF

- Restriction of multivalued dependencies
 - Let r(R) be a relation schema, and let $r_1(R_1)$, $r_2(R_2)$, ..., $r_n(R_n)$ be a decomposition of r(R).
 - To check if each relation schema r_i in the decomposition is in 4NF, we need to find what multivalued dependencies hold on each r_i.
 - The *restriction* of *D* to R_i is the set D_i consisting of:
 - \blacksquare All functional dependencies in D^+ that include only attributes of R_i
 - All multivalued dependencies of the form $\alpha \rightarrow (\beta \cap R_i)$, where $\alpha \subseteq R_i$ and $\alpha \rightarrow \beta$ is in D^+

4NF decomposition algorithm

```
result := {R};

done := false;

compute D^+; Given schema R_i, let D_i denote the restriction of D^+ to R_i

while (not done) do

if (there is a schema R_i in result that is not in 4NF w.r.t. D_i)

then begin

let \alpha \to \beta be a nontrivial multivalued dependency that holds

on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (R_i - \beta);

end

else done := true;
```


Example

$$result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);$$

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B (F_1), B \rightarrow H(F_2), CG \rightarrow H(F_3) \}$
- \blacksquare R is not in 4NF since $A \rightarrow B$ and A is not a superkey for R
- Decomposition:
 - □ Using $F_1: A \rightarrow B$
 - $R_1 = (A, B)$ (in 4NF)
 - $R_2 = (A, C, G, H, I)$ (not in 4NF; decompose into R_3 and R_4)
 - Using F3: CG→H
 - $R_3 = (C, G, H)$ (in 4NF)
 - $R_4 = (A, C, G, I)$ (not in 4NF; decompose into R5 and R6)
 - A→B and B→HI implies A→HI (MVD transitivity), and hence A→I (MVD restriction to R4)
 - Using $F_4': A \rightarrow I$
 - $R_5 = (A, I)$ (in 4NF)
 - R6 = (A, C, G) (in 4NF)

More Normal Forms

- Higher normal forms
 - As we see earlier, multivalued dependencies help us understand and eliminate some forms of repetition of information that cannot be understood in terms of functional dependencies.
 - Join dependencies generalize multivalued dependencies
 - Leads to project-join normal form (PJNF) (or fifth normal form)
 - A class of even more general constraints, leading to a normal form called domain-key normal form
 - Problem with these generalized constraints: hard to reason with, and no sound and complete set of inference rules exists
 - Hence rarely used