Physics Quiz # 6

Date Given: May 19, 2022 Date Due: May 26, 2022

- Q1. (1 point) Space curvilinear motion can be completely specified by using:
 - (a) Two independent coordinates plus a third coordinate dependent upon one of the independent coordinates.
 - (b) Two independent coordinates.
 - (c) One coordinate along the radial direction between the origin and the location of the particle.
 - (d) Three independent coordinates.
- **Q2.** (1 point) Cylindrical coordinates use coordinates that consist of:
 - (a) The distance along the path and two angles.
 - (b) The distance from the vertical axes, the height, and the angle in the plane perpendicular to the vertical axis.
 - (c) A radial distance and two angles.
 - (d) A radial distance and three angles.
- Q3. (1 point) Spherical coordinates use coordinates that consist of:
 - (a) A radial distance and an angle in a plane plus an axis perpendicular to the plane.
 - (b) The distance along the path and two angles.
 - (c) A radial distance and two angles.
 - (d) A radial distance and three angles.

Physics 2 of 2

Q4. (3 points) The arm of the robot moves so that r = 1 m is constant, and its grip A moves along the path $z = (\sin \theta)$ m, where θ is in radians. If $\theta = \pi t/8$ rad, where t is in seconds, determine the magnitudes of the grip's velocity and acceleration when t = 4s.

Figure 1: Illustration to Problem 4.

Q5. (2 points) The disk A rotates about the vertical z-axis with a constant speed $\omega = \dot{\theta} = \pi/3$ rad/s. Simultaneously, the hinged arm OB is elevated at the constant rate $\dot{\varphi} = 2\pi/3$ rad/s. At time t = 0, both $\theta = 0$ and $\varphi = 0$. The angle θ is measured from the fixed reference x-axis. The small sphere P slides out along the rod according to $R = 50 + 200t^2$, where R is in millimeters and t is in seconds. Determine the magnitude of the total acceleration a of P when t = 1/2 s.

Figure 2: Illustration to Problem 5.