Roll no	
	code: 20MCA101
Name	e de la companya de

FIRST SEMESTER MCA

Model Examination, MARCH 2021

MATHEMATICAL FOUNDATIONS FOR COMPUTING

Time: 2Hours

Max Marks: 60

PART- A

Answer all questions. Each question carries 3 Marks

1. Define equivalence relation. Are the given relations on the set A= $\{1,2,3,4\}$ an equivalence relation $(i)R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$

$$(ii)R_2 = \{(1,4), (2,2), (3,3), (4,1), (4,2), (4,4)\}$$

- **2.** Use Euclidean algorithm to obtain x and y satisfying gcd(272,1479) = 272x + 1479y.
- 3. Solve the recurrence relation $6a_n 7a_{n-1} = 0$, $n \ge 1$ $a_3 = 343$.
- 4. Define Hamilton circuit and Euler Circuit with examples.
- 5. Define (a) Isomorphism of graphs (b) Adjacency matrix (c) Incidence matrix
- 6. Define Equivalence relation with suitable examples.
- 7. Show that the vector $X_1 = (1,2.1)X_2 = (2.1,4)X_3 = (4,5,6)X_4 = (1,8,-3)$, are thearly dependent.
- 8. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$
- 9. From the pair of regression lines find γ

$$3x + 2y = 26$$

$$6x + y = 31$$

10. Calculate the rank correlation for

Ranks in x 1 2 3 4

Rankin y 3 4 2 1

Answer any 1 question from each module . Each question carries Six Marks

MODULE 1

11. Using Warshall's Algorithm, find the transitive closure of the relation

$$R = \{(1,4), (2,1), (2,3), (3,1), (3,4), (4,3)\}$$
 on the set A= $\{1,2,3,4\}$. (6 Marks)

OR

12.(a)Let $a,b \in R$ with $b \neq 0$, Define $f:R-\{0\}\rightarrow R-\{a\}$ by $f(x)=a+\frac{b}{x}$. Prove that f is bijective. (4 marks)

(b) Find the range of the following function by $f(x) = \sqrt{16 - x^2}$ (2 marks)

MODULE 2

13. Solve the set of simultaneous congruences

$$x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}$$
 $x \equiv 2 \pmod{7} \pmod{6}$ Marks)

OR

14. Solve
$$a_{n+2}-4$$
 $a_{n+1}+3$ $a_n=-200$, $n>0$; given that $a_0=3000$, $a_1=3300$ (6 Marks)

MODULE 3

15.Let G = (V, E) be an undirected graph or multigraph with no isolated vertices .Show that G has an Euler ciorcuit if and only if g is connected and every vectors in G has even degree. (6 Marks)

OR

10. (a) snow that N_{3,3} IS out planar it with planar graph some kuratowski's theore in

(3 Marks)

(b) A connected graph G has nine vertices having degree 2,2,2,3,3,3,4,4,5. Find the number of edges and number of faces of G. (3 Marks)

MODULE 4

17. Find the two regression lines from the following data

x	1	2	3	4	5	6	7	8	9	10
V	10	12	16	28	25	36	41	49	40	50

(6 Marks)

OR

18. Find the second degree curve of the form $y = ax^2 + bx + c$ to the following data

X	1911	1912	1913	1914	1915
V	10	12	8	10	14

(6 marks)

Module 5

19. Find out what type of conic section the quadratic form

$$q = 3x_1^2 + 21x_1x_2 + 3x_2^2 = 0$$
 represents using orthogonal transformation. (6 Ma

(6 Marks)

OR

20. Diagonalize the matrix
$$\begin{bmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ -2 & 1 & 4 \end{bmatrix}$$
 (6 Marks)