

Also from text! (1) 100 MHz => 10 ns Cycle

2 Memory takes 15ns to produce data from when the address is stable

Symbol	Parameter	Min	Max	Unit
T _{AD}	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	\overline{MREQ} delay from falling edge of Φ in T_1		3	nsec
T _{RL}	RD delay from falling edge of Φ in T ₁		3	nsec
T _{DS}	Data setup time prior to falling edge of Φ	2		nsec
T _{MH}	MREQ delay from falling edge of Φ in T ₃		3	nsec
T _{BH}	RD delay from falling edge of Φ in T₃		3	nsec
TDH	Data hold time from negation of RD	0		nsec

Q Will 15 nsec Memory be fast enough
to match this proture.

A) Yes: 25 nsec - 4 nsec TAD - 2 nsec Tos
= 19 nsec window

and our memory can do it in 15 nsec

be ready for prabout here

Symbol	Parameter	Min	Max	Unit
T _{AD}	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	\overline{MREQ} delay from falling edge of Φ in T_{\dagger}		3	nsec
TAL	RD delay from falling edge of Φ in T ₁		3	nsec
T _{DS}	Data setup time prior to falling edge of Φ	2		nsec
T _{MH}	MREQ delay from falling edge of Φ in T ₃		3	nsec
T _{RH}	RD delay from falling edge of Φ in T ₃		3	nsec
T _{DH}	Data hold time from negation of RD	0		nsec

(b)

We could have bought 19 nsec memory instead of 15 nsec memory + it'd be just as fast.

14 nsec memory is a waste of memory

A good investment would be 9 nover memory

19 nsec - 10 nsec (one cycle) would let us Finish Tos nsec before the Tz's falling edge. A) How long does memory have to produce a word from an address, from when the address is stable:

bus frequency is 50 MHz.

TAO = 6 nsec

Tos = 3 nsec.

(a) with one wast state

(b) with no wait state.

Symbol	Parameter	Min	Max	Unit
TAD	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	$\overline{\text{MREQ}}$ delay from falling edge of Φ in T_1		3	nsec
Tel	RD delay from falling edge of Φ in T ₁		3	nsec
Tos	Data setup time prior to falling edge of Φ	2		nsec
TMH	\overline{MREQ} delay from falling edge of Φ in T_3		3	nsec
T _{RH}	RD delay from falling edge of Φ in T ₃		3	nsec
T _{DH}	Data hold time from negation of RD	0		nsec

(a)

(a)

-6-

Allow much fine does MM have for produce a word from the when the address is stable (with no wait states):

200 MHz bus TAO = 2 n sec

Tos= Insec

A)
$$\frac{1}{2}$$
 cycles \times 5 nsec = $\frac{72 \text{ nsec}}{6 \text{ cycle}}$ - 2 Tab - 1 Tos $\frac{42 \text{ nsec}}{42 \text{ nsec}}$

with one wait state! 92 nsec