1	Докажите, что в равных треугольниках соответствующие медианы равны.
2	Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.
3	Через вершину B треугольника ABC проведена прямая, параллельная прямой AC . Образовавшиеся при этом три угла с вершиной B относятся как $3:10:5$. Найдите углы треугольника ABC .
4	Докажите, что внешний угол треугольника равен сумме двух внутренних углов не смежных с ним.
5	Углы треугольника относятся как $2:3:4$ Найдите отношение внешних углов треугольника.
6	Внешние углы треугольника ABC при вершинах A и C равны 115° и 140° . Прямая, параллельная прямой AC , пересекает стороны AB и BC в точках M и N . Найдите углы треугольника BMN .
7	Прямая, проходящая через вершину A треугольника ABC , пересекает сторону BC в точке M . При этом $BM=AB$, $\angle BAM=35^\circ$, $\angle CAM=15^\circ$. Найдите углы треугольника ABC .
8	Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.
9	Катет прямоугольного треугольника равен половине гипотенузы. Докажите, что угол, противолежащий этому катету, равен 30° .
10	Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?

1	Дан треугольник ABC , причем $AB=AC$ и $\angle A=110^\circ$. Внутри треугольника взята точка M такая, что $\angle MBC=30^\circ$, а $\angle MCB=25^\circ$. Найдите $\angle AMC$.
2	Докажите, что если медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
3	Докажите, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.
4	Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник является прямоугольным.
5	Докажите обратное, что если треугольник прямоугольный и вписан в окружность, то гипотенуза будет являться диаметром окружности.
6	Докажите, что окружность, построенная на стороне равностороннего треугольника как на диа-

Острый угол прямоугольного треугольника равен 30° . Докажите, что высота и медиана, прове-

В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK=AC

метре, проходит через середины двух других сторон треугольника.

и BM = BC. Найдите $\angle MCK$.

денные из вершины прямого угла, делят прямой угол на три равные части.

7

8

Домашняя работа №1

1 Вычислить:

1)
$$3^7 \cdot 3^9 : 3^{14}$$

2)
$$\frac{10^8}{2^9 \cdot 2^8}$$

2 Упростить выражение:

1)
$$(3x-y)^2 - 3x(3x+2y^2)$$

2)
$$(2x+1)^3 - (2x-1)^3$$

3 Докажите, что в равных треугольниках соответствующие биссектрисы равны.

В равностороннем треугольнике ABC биссектрисы CN и AM пересекаются в точке P. Найдите $\angle MPN$.

5 Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если BC = 12.

6 На продолжениях гипотенузы AB прямоугольного треугольника ABC за точки A и B соответственно взяты точки K и M, причем AK = AC и BM = BC. Найдите угол MCK.

7 Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

Занятие №3							
1	Докажите следующие свойства окружности:						
	1) диаметр, перпендикулярный хорде, делит ее пополам (теорема о диаметре, перпендикулярном хорде);						
	2) диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде (теорема о диаметре, проходящем через середину хорды);						
	3) хорды, удаленные от центра окружности на равные расстояния, равны.						
2	Через точку A окружности с центром O проведены диаметр AB и хорда AC . Докажите, что угол BAC вдвое меньше угла BOC (без использования свойств центральных и вписанных углов).						
3	Найдите угол между радиусами OA и OB , если расстояние от центра O окружности до хорды AB вдвое меньше AB .						
4	Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.						
5	Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружно-						

Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

сти в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту

- На катетах AC и BC прямоугольного треугольника ABC вне его построены квадраты ACDEи CBFK (вершины обоих квадратов перечислены против часовой стрелки), P – середина KD. Докажите, что $CP \perp AB$.
- 8* Высота прямоугольного треугольника, опущенная на гипотенузу, равна 1, один из острых углов равен 15°. Найдите гипотенузу.

1	Внутренние углы треугольника ABC относятся как $10:5:3$. Найдите внутренние и внешние
	углы треугольника ABC и вычислите разницу самого наибольшего и наименьшего внешних углов.
2	В треугольнике ABC углы B и C равны 30 и 40 соответственно. Сторону AB продлили за вершину A и из это вершины провели высоту и биссектрису внешнего угла. Найдите угол между высотой и биссектрисой внешнего угла.
3	Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.
4	Через точку M , лежащую внутри угла с вершиной A , проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C . Известно, что $\angle ACB = 50^\circ$, а угол, смежный с углом $\angle ACM$, равен 40° . Найдите углы треугольников BCM и ABC .
5	Угол между радиусами OA и OB окружности равен 60° . Найдите хорду AB , если радиус окружности равен 12 .
6	В равнобедренном треугольнике ABC , с основанием AB , угол $ABC=70^{\circ}$. Найдите величину внешнего угла при вершине C .
7*	Дана окружность с центром O . На продолжении хорды AB за точку B отложен отрезок BC , равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.

Домашняя работа №2

1	Через точку на окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.
2	Найдите угол между радиусами OA и OB , если расстояние от центра O окружности до хорды AB вдвое меньше OA .
3	Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
4	На стороне AB квадрата $ABCD$ построен равносторонний треугольник ABM . Найдите угол DMC .
5	В треугольнике ABC угол $\angle B=80$. Найдите угол между высотами проведенными из двух других углов.

- Прямая пересекает параллельные прямые a и b в точках A и B соответственно. Биссектриса одного из образовавшихся углов с вершиной B пересекает прямую а в точке C. Найдите AC, если AB=1.
- 2 Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- **3** Через точку M проведены две касательные MA и MB к окружности (A и B точки касания). Докажите, что MA = MB.
- Расстояние от точки M до центра O окружности равно диаметру. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.
- **5** Точки A и B лежат на окружности. Касательные к окружности, проведенные через эти точки, пересекаются в точке C. Найдите углы треугольника ABC, если AB = AC.
- **6** В прямой угол вписана окружность радиуса 12, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.
- Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
- 8 Вычислить:

$$\frac{6 \cdot 2^8 - 9 \cdot 2^{10} + 3 \cdot 2^{12}}{4 \cdot 2^{10} + 4 \cdot 2^{12} - 8 \cdot 2^{11}}$$

1	К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена каса тельная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
2	Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
3	Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C . Найдите угол между этими прямыми, если $\angle ABO=40^\circ$.
4	Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке $P.$ Докажите, что треугольники APD и BPC равнобедренные.
5	В прямой угол O вписана окружность радиуса 12 , касающаяся сторон угла в точках A и B . Череннекоторую точку K на меньшей дуге AB окружности проведена касательная, пересекающая OA в точке M и OB в точке N .
	1) Доказать, что $AM = MK$ и $BN = NK$;
	2) Найти периметр треугольника OMN .
6	Прямая, параллельная хорде AB , касается окружности в точке C . Докажите, что треугольник ABC равнобедренный.
7	Две прямые, пересекающиеся в точке C , касаются окружности в точках A и B . Известно, что

 $\angle ACB=120^{\circ}$. Докажите, что сумма отрезков AC и BC равна отрезку OC.

Подготовка к проверочной работе

- 1 Чему равен угол между биссектрисами двух смежных углов?
- **2** Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых? Докажите это.
- 3 Сформулируйте и докажите теорему о внешнем угле треугольника.
- **4** Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
- **5** Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
- **б** Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
- 7 Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
- **8** Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
- 9 Сформулируйте теорему о диаметре, перпендикулярном хорде.
- 10 Сформулируйте теорему о диаметре, проходящем через середину хорды.
- 11 Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- 12 Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- В треугольнике ABC стороны AB и BC равны. Чему равен угол ACB, если угол $\angle ABC = 40^{\circ}$?
- В треугольнике ABC обе стороны AB и BC равны 15. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- **15** В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC, если AC=10 и $P_{ABC}=40$.
- **16** В треугольнике ABC из вершин A и B проведены биссектрисы, который пересекаются в точке O. Угол $\angle AOB$ равен 120° . Чему равен третий угол ACB?
- 17 Угол треугольника равен 50° . Найдите угол между высотами, проведенными из двух других углов.
- **18** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- Через точку A окружности с центром O проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC (без использования свойств центральных и вписанных углов).
- **20** Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.
- **21** Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
- Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.

Консультация

- 1 Постройте следующие точки в декартовой системе координат:
 - 1) A(3;1)

3) C(7;-7)

5) E(0;4)

2) B(-2;4)

4) D(-2; -5)

6) F(-5;0)

Какие из этих точек лежат на оси абсцисс? Какие на оси ординат? Определите для остальных точек четверть, в которой они лежат.

- **2** Подберите вторую координату так, чтобы точка:
 - 1) A(*;4) лежала в 1 четверти;
 - 2) B(-1;*) лежала в 3 четверти;
 - 3) A(10;*) лежала в 4 четверти;
 - 4) A(*;5) лежала в 2 четверти.
- **3** Найдите координаты точки, которая симметрична точке A(2;4) относительно оси OX.
- **4** Найдите координаты точки, которая симметрична точке A(-5; -5) относительно оси OY.
- **5** Даны точки A(2;1) и B(-5;1). Найдите координаты таких двух точек C и D, чтобы соединив их получился квадрат.
- 6 Постройте графики линейных функций:
 - 1) y = 2x 1

3) y = 0,25x - 3

2) $y = \frac{1}{2}x + 4$

- 4) y = 0,5x + 0,5
- **7** Найдите уравнение прямой, которая проходит через начало координат и точку A(4;5)

Проверочная работа

Вариант 1

1	1)	Чему равен угол между биссектрисами двух смежных углов?
	2)	Сформулируйте и докажите теорему о внешнем угле треугольника.
		Докажите, что если медиана равна половине стороны, к которой она проведена, то такой тре
	,	1 2

- 4) Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
- 5) Сформулируйте теорему о диаметре, проходящем через середину хорды.
- В треугольнике ABC обе стороны AB и BC равны 15. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC, если AC=16 и $P_{ABC}=40$.
- **4** Угол треугольника равен 80° . Найдите угол между высотами, проведенными из двух других углов.
- **5** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **6** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.

Проверочная работа

Вариант 2

1	1)	Чему равен	угол	между	биссектрисами	двух	внутренних	односторонних	углов	при	парал-
	лел	ьных прямы	x?								

- 2) Сформулируйте и докажите теорему о внешнем угле треугольника.
- 3) Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
- 4) Сформулируйте теорему о диаметре, перпендикулярном хорде.
- 5) Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- **2** В треугольнике ABC обе стороны AB и BC равны 30. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- **3** В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC, если AC=20 и $P_{ABC}=50$.
- 4 Угол треугольника равен 80°. Найдите угол между высотами, проведенными из двух других углов.
- **5** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **6** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.

Консультация

1 Постройте график функции:

1)
$$y = 3x + 2$$

2)
$$y = -\frac{1}{2}x - 1$$

3)
$$y = -4$$

4)
$$y = -0.25x + 3$$

2 Постройте график функции:

1)
$$y = x^2$$

2)
$$y = \frac{1}{x}$$

3 Найдите область определения:

1)
$$y = 1 + \frac{1}{x+2}$$

$$2) \quad y = 4 - \frac{3}{2x - 6}$$

4 Найдите уравнение прямой, которая проходит через начало координат и точку A(7;1).

5 Проходит ли график функции $y = x^2 + 2x - 3$ через точку с координатами 5; 32.

6 Не выполняя построений, найдите координаты точек пересечения с осями координат графика функции y = -2, 4x + 9, 6.

7 Найдите координаты точки пересечения прямых, заданных уравнениями y = 3x - 7 и y = 2.

8 Найдите координаты точки пересечения прямых, заданных уравнениями y = 2x + 5 и $y = -\frac{1}{2}x - 1$.