Statistical learning, 2022-2023 Gérard Biau

Problem

Throughout the problem, we let \mathscr{B} be the Borel subsets of \mathbb{R}^d .

A. Preliminaries. Let f and g be two probability densities on \mathbb{R}^d , that is, nonnegative functions such that

$$\int f = \int g = 1.$$

(All integrals are evaluated with respect to the Lebesgue measure.)

1. Show that

$$\int |f - g| = 2 \int_{A_{fg}} (f - g),$$

where A_{fg} is the set $\{f > g\}$, i.e.,

$$A_{fg} = \{x \in \mathbb{R}^d : f(x) > g(x)\}.$$

2. Deduce that

$$\int |f-g| = 2 \sup_{B \in \mathscr{B}} \Big| \int_B f - \int_B g \Big|.$$

This result is known as Scheffé's theorem.

B. A selection problem. Assume we are given a sample of independent random variables X_1, \ldots, X_n with common **unknown** density f. We denote by \mathscr{F} a collection of densities parameterized by θ :

$$\mathscr{F} = \{ f_{\theta} : \theta \in \Theta \}.$$

Our goal is to select in \mathscr{F} the "best" possible density, using only X_1, \ldots, X_n .

1. Let μ_n be the empirical measure associated with X_1, \ldots, X_n . Explain why the strategy that chooses θ in Θ by minimizing the quantity

$$\sup_{B \in \mathscr{B}} \left| \int_B f_{\theta} - \mu_n(B) \right|$$

is not a good idea.

2. Introduce the collection of sets

$$\mathscr{A} = \{ \{ f_{\theta} > f_{\theta'} \} : (\theta, \theta') \in \Theta^2 \}.$$

In order to choose the "best" density in \mathscr{F} , a possible route is to minimize in θ the following criterion:

$$\Delta(\theta) = \sup_{A \in \mathscr{A}} \Big| \int_A f_{\theta} - \mu_n(A) \Big|.$$

We denote by θ^* an element of Θ such that $\Delta(\theta^*) = \inf_{\theta \in \Theta} \Delta(\theta)$.

2.a Let $\bar{\theta}$ be an element of Θ such that

$$\int |f_{\bar{\theta}} - f| = \inf_{\theta \in \Theta} \int |f_{\theta} - f|.$$

Prove that

$$\int |f_{\theta^*} - f_{\bar{\theta}}| \le 4 \sup_{A \in \mathscr{A}} \Big| \int_A f_{\bar{\theta}} - \mu_n(A) \Big|.$$

2.b Next, show that

$$\int |f_{\theta^*} - f| \le 3 \inf_{\theta \in \Theta} \int |f_{\theta} - f| + 4\Delta_n,$$

where Δ_n is some explicit random quantity.

- 3. 3.a Recall the definition of $\mathbf{S}_{\mathscr{A}}(n)$, the shatter coefficient of n points by the class \mathscr{A} .
 - 3.b Show that

$$\mathbb{E}\Big(\int |f_{\theta^*} - f|\Big) \le 3 \inf_{\theta \in \Theta} \int |f_{\theta} - f| + O\left(\sqrt{\frac{\log(\mathbf{S}_{\mathscr{A}}(n))}{n}}\right).$$

- 3.c Provide a statistical interpretation of this inequality.
- **C. Application**. On the real line \mathbb{R} , we let \mathscr{F} be the set of Gaussian densities, parameterized by their mean and variance, i.e.,

$$\mathscr{F} = \left\{ f_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-m)^2/(2\sigma^2)} : \theta = (m, \sigma^2) \in \mathbb{R} \times (0, \infty) \right\}.$$

- 1. Prove that \mathcal{A} is contained in a class of sets \mathcal{B}_2 that can be easily described.
- 2. Determine the Vapnik-Chervonenkis dimension V of \mathcal{B}_2 .
- 3. Conclude that

$$\mathbb{E}\Big(\int |f_{\theta^{\star}} - f|\Big) \le 3 \inf_{\theta \in \Theta} \int |f_{\theta} - f| + \mathcal{O}\bigg(\sqrt{\frac{V \log n}{n}}\bigg).$$