Test Case Selection Strategies V

1

Contents

- Effectiveness and efficiency of Adaptive Random Testing (ART)
- Various ART Algorithms

Adaptive Random Testing

for non-point failure patterns —
an even spread of random test cases will enhance
the fault detection capabilities

3

Effectiveness Metrics

- P-measure
- E-measure
- F-measure is defined as the expected number of test cases required to detect the first failure

Adaptive Random Testing

Simulation and empirical results showed that as compared with random testing, fewer test cases required to detect the first failure, can be about $\approx 50-60\%$ of that of RT with replacement

5

How to achieve "even spread"?

Different intuitions:

- 1. notion of the best
- 2. notion of exclusion
- 3. notion of partitioning
- 4.
- 5.
- 6.

ART by the best candidate

Intuition

- Generate a set of random candidates
- Select the best candidate amongst this candidate set as the next test case; and discard the remaining candidates
 - according to a specific "best" criterion
 - various criteria for the best

7

Fixed-Size-Candidate-Set ART

- Generate a fixed size set of random candidates
- For each candidate, find its nearest already executed test case
- Select the candidate with the greatest distance to its nearest already executed test case, as the next test case
 - this criterion also known as the maximin criterion

ART by exclusion

Intuition

- Define an exclusion region for each already executed test case
- Repeat generating a random candidate until getting a candidate that is outside the exclusion regions of all already executed test cases, as the next test case

9

Restricted Random Testing (RRT)

- Define an exclusion ratio which is the ratio of the size of all exclusion regions to the size of the input domain
- Define the shape for the exclusion region
- Construct the exclusion region for each of the already executed test cases

ART by partition

Intuition

- Divide the input domain into partitions
- Select a partition as the target partition
- Select a random input from the target partition as the next test case

17

ART by partition

ART by random partition

- Use the most recent already executed test case to divide the input domain
- Select the partition with the largest size as the target partition
- Select a random input from the target partition as the next test case

ART by Random Partition

23

ART by partition

ART by bisection

- Bisect the partitions whenever necessary
- Select the partition without containing any already executed test cases as the target partition
- Select a random input from the target partition as the next test case

Efficiency of ART

As compared with RT, ART requires more computation times to generate test cases.

Efficiency – uses of time and memory Effectiveness – failure detection capability

3

Improvement of Efficiency of ART

Two common approaches:

- Forgetting
- Mirroring

Forgetting

Intuition

Forget some or all of the already executed test cases

3

Forgetting (continued)

Process:

• start the forgetting process whenever the number of already executed test cases reaches a threshold

Forgetting (continued)

- Random forgetting
 - Randomly forget a previously executed test case
- Forget the oldest
 - Forget the first test case amongst the previously executed test cases which are currently available
- Total forgetting
 - Forget all previously executed test cases which are currently available

3.5

Adaptive Random Testing

Simulation and empirical results showed that as compared with random testing, fewer test cases required to detect the first failure, can be about $\approx 50-60\%$ of that of RT with replacement

ART may be a cost-effective alternate to RT

Factors to be considered:

- Effectiveness F-measure
- Efficiency test case generation time
- Program execution time

3

Summary

References

- R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey and X. Xia, A Survey on Adaptive Random Testing, IEEE Transactions on Software Engineering, in press.
- Z. Zhang, Y. Wang, Z. Wang and J. Qian, How to Effectively Reduce Tens of Millions of Tests: An Industrial Case Study on Adaptive Random Testing, IEEE Transactions on Reliability, Vol..68(4), 1429-1443, 2019.