#### Real Infinitesimal Freeness

Jamie Mingo (Queen's University)

(joint work with Guillaume Cébron, Toulouse) arXiv:25086.05139



Log-Gasses in Caeli Australi Matrix Institute, Creswick August 5, 2025

#### limit distributions of random matrices

- $\{A_N\}_N$  is an ensemble of random matrices, Tr = un-normalized trace and  $tr = N^{-1}Tr =$  normalized trace
- for a polynomial p,  $\mu_N(p) = E(\operatorname{tr}(p(A_N)))$
- if  $\mu_N$  converges pointwise on polynomials to  $\mu$ , we say the ensemble  $\{A_N\}_N$  has the *limit distribution*  $\mu$
- let  $\mu_{\scriptscriptstyle N}'=N(\mu_{\scriptscriptstyle N}-\mu)$ ,  $\mu_{\scriptscriptstyle N}'$  is linear on polynomials and  $\mu_{\scriptscriptstyle N}'(1)=0$
- we say the pair  $(\mu_N, \mu'_N)$  is an *infinitesimal law* on  $\mathcal{A} = \mathbf{C}[t]$  (polynomials in t) and the triple  $(\mathcal{A}, \mu_N, \mu'_N)$  is an *(infinitesimal probability space)*
- if  $\mu'_N$  converges pointwise to  $\mu'$  we have that  $(\mu, \mu')$  is an infinitesimal law on  $\mathcal A$  and we say that  $\{A_N\}_N$  has the *infinitesimal limit distribution*  $(\mu, \mu')$

## general rules, valid in many examples

- $\mu_N(p) = \mathrm{E}(\mathrm{tr}(p(A_N)))$
- we imagine:  $\mu_N(p) = \mu(p) + \frac{\mu'(p)}{1! N} + \frac{\mu''(p)}{2! N^2} + \frac{\mu'''(p)}{3! N^3} + \cdots$

#### This means

- if  $\mu:=\lim_N \mu_N$  exists, we set  $\mu_N'=N(\mu_N-\mu)$ , or equivalently  $\mu_N=\mu+\frac{\mu_N'}{N}$
- if  $\mu':=\lim_N \mu_N'$  exists, we set  $\mu_N''=2N(\mu_N'-\mu')$ , or equivalently  $\mu_N=\mu+\frac{\mu'}{N}+\frac{\mu_N''}{2N^2}$

We write in general, assuming all these limits exist

• 
$$\mu_N^{(k+1)} = (k+1)N(\mu_N^{(k)} - \mu^{(k)})$$
 and

• 
$$\mu^{(k+1)} := \lim_{N} \mu_N^{(k+1)}$$

### examples (Johansson (1998), Dumitriu & Edelman (2006))

- $G = (g_{ij})_{i,j=1}^N$  with  $\{g_{ij}\}_{i,j}$  real independent  $\mathfrak{N}(0,1)$
- $A_N = \frac{1}{\sqrt{2N}}(G + G^t) = N \times N$  Gaussian Orthogonal Ensemble
- it has the limit infinitesimal distribution  $(\mu,\mu')$  where  $\mu$  is Wigner's semi-circle law and  $\mu'=\frac{1}{2}(\nu_1-\nu_2)$  is a signed measure with  $\nu_1=\frac{1}{2}(\delta_{-2}+\delta_2)$  (Dirac masses at  $\pm 2$ ) and  $d\nu_2(t)=\frac{1}{\pi}\frac{1}{\sqrt{4-t^2}}$  (arcsine law on [-2,2])
- $G = (g_{ij})_{\substack{i=1,\dots N\\ j=1,\dots M}} (N \times M)$ ,  $\{g_{ij}\}_{i,j}$  real independent  $\mathcal{N}(0,1)$
- $W_N = \frac{1}{N}GG^t$ ,  $N \times N$  real Wishart matrix
- if  $\frac{M}{N} \longrightarrow c$  then  $\{W_N\}_N$  has the limit distribution  $\mu =$  the Marchenko-Pastur Law with parameter c
- if  $N(\frac{M}{N}-c)\longrightarrow c'$  then  $\{W_N\}_N$  has the infinitesimal limit distribution  $\mu'=$  with parameter c'

## Infinitesimal Marchenko-Pastur (details)

- $\mu_c$  (where  $M/N \rightarrow c > 0$ )
- $a = (1 \sqrt{c})^2$ , and  $b = (1 + \sqrt{2})^2$

• 
$$d\mu_c(t) = (1-c)\delta_0 + \frac{\sqrt{(b-t)(t-a)}}{2\pi t} dt$$

• 
$$\mu'_c = \frac{1}{2}(\nu_1 - \nu_2) - c'(\rho_1 - \rho_2)$$

• 
$$v_1 = \frac{1}{2}(\delta_a + \delta_b), dv_2(t) = \frac{dt}{\pi \sqrt{(b-t)(t-a)}}$$
 on  $[a, b]$ 

• 
$$\rho_1 = \delta_0$$
 and  $\rho_2 = \frac{t+1-c}{2\pi t \sqrt{(b-t)(t-a)}}$  on  $[a,b]$ 

•  $\rho_1$  is absent when c > 1

## free independence, formalized by Voiculescu (1983)

- many random matrix ensembles exhibit asymptotic freeness, to formalize
- we have a unital algebra  $\mathcal{A}$ , the random variables of our model
- $\varphi : \mathcal{A} \to \mathbf{C}$ , our expectation,  $\varphi(1) = 1$
- free independence gives a universal rule for computing moments: when  $a,b \in \mathcal{A}$  are *free* with respect to  $\varphi$  we have
- $\varphi(abab) = \varphi(a^2)\varphi(b)^2 + \varphi(a)^2\varphi(b^2) \varphi(a)^2\varphi(b)^2$
- rule becomes easier if elements are *centred*:  $\varphi(a) = \varphi(b) = 0$ , then the rule is  $\varphi(abab) = 0$
- in general: subalgebras  $A_1, ..., A_s$  are  $\varphi$ -freely independent if  $\varphi(a_1 \cdots a_n) = 0$ , when ever each  $a_i$  is centred and  $a_1, ..., a_n$  is alternating:  $a_i \in A_{j_i}$  and  $j_1 \neq j_2 \neq \cdots \neq j_n$

### free cumulants, Speicher (1994)

- Voiculescu's rule is hard to use with random matrix ensembles because it requires centering
- freeness is equivalent to the vanishing of mixed cumulants
- free cumulants are a family  $\{\kappa_n\}_n$  of multi-linear maps:  $\kappa_n : \mathcal{A}^{\otimes n} \to \mathbf{C}$
- follows the construction of Thiele (1898), later systemized by Rota (1963):  $\kappa_1(a) = \varphi(a)$ ,

$$\begin{split} &\kappa_2(a_1,a_2) = \phi(a_1a_2) - \phi(a_1)\phi(a_2), \\ &\kappa_3(a_1,a_2,a_3) = \phi(a_1a_2a_3) - \phi(a_1)\phi(a_2a_3) - \phi(a_2)\phi(a_1a_3) - \\ &\phi(a_1a_2)\phi(a_3) + 2\phi(a_1)\phi(a_2)\phi(a_3) \end{split}$$

• the general rule uses non-crossing partitions:

$$NC(n) = \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right\} : \left\{ \begin{array}{c} \text{in general we partition the} \\ \text{set } [n] \text{ into disjoint blocks} \\ \text{so the blocks don't cross} \end{array} \right\}$$

# infinitesimal free cumulants, Fevrier & Nica (2009)

$$\kappa_{\mathbf{LLII}}(a_1, a_2, a_3, a_4, a_5) = \kappa_2(a_1, a_2) \kappa_2(a_3, a_4) \kappa_1(a_5)$$

• 
$$\varphi(x_1\cdots x_n) = \sum_{\pi\in NC(n)} \kappa_{\pi}(x_1,\ldots,x_n)$$

• 
$$\varphi'(x_1\cdots x_n)=\sum_{\pi\in NC(n)} \mathfrak{d}\kappa_{\pi}(x_1,\ldots,x_n)$$

• where 
$$\partial \kappa_{\pi}(x_1 \cdots x_n)$$
  
=  $\sum_{V \in \pi} \kappa'_{|V|}(x_1, \dots, x_n \mid V) \prod_{W \in V} \kappa_{|W|}(x_1, \dots, x_n \mid W)$ 

• i.e.  $\partial \kappa_{\pi}$  is defined by the Leibniz rule, for example when  $\pi = \{(1,3),(2),(4)\}$   $\partial \kappa_{\pi}(x_1,x_2,x_3,x_4) = \partial (\kappa_2(x_1,x_3)\kappa_1(x_2)\kappa_1(x_4))$ 

$$= \kappa_2'(x_1, x_3) \kappa_1(x_2) \kappa_1(x_4) + \kappa_2(x_1, x_3) \kappa_1'(x_2) \kappa_1(x_4) + \kappa_2(x_1, x_3) \kappa_1(x_2) \kappa_1'(x_4)$$

## applications to Gaussian and Wishart matrices

in the limit as  $N \to \infty$ 

• for GUE, 
$$\kappa_n = \begin{cases} 1 & n=2 \\ 0 & \text{otherwise} \end{cases}$$
,  $\kappa_n^{\prime(c)} = 0$ 

• for GOE, 
$$\kappa_n = \begin{cases} 1 & n=2 \\ 0 & \text{otherwise} \end{cases}$$
,  $\kappa_n'^{(c)} = \begin{cases} 1 & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$ 

- for complex Wishart  $\kappa_n = c$ ,  $\kappa_n^{\prime(c)} = c'$
- for real Wishart  $\kappa_n = c$ ,  $\kappa_n^{\prime(c)} = c' + a_n$

 independent GOE and real Wishart are not asymptotically free, but complex ones are

## comparison of unitary and orthogonal invariance

$$E(\operatorname{Tr}(UA_1U^{-1}A_2)) = N^{-1}\operatorname{Tr}(A_1)\operatorname{Tr}(A_2) \text{ and}$$
$$E(\operatorname{Tr}(UA_1UA_2)) = 0.$$

$$E(Tr(OA_1O^{-1}A_2)) = N^{-1}Tr(A_1)Tr(A_2)$$
 and   
 $E(Tr(OA_1OA_2)) = N^{-1}Tr(A_1A_2^t).$ 

- se we need a **new** theory for orthogonal invariance
- the fourth example shows that transposes must be incorporated into the theory

## integration by parts on the orthogonal group

- $O \in \mathcal{O}_N = N \times N$  orthogonal matrices with Haar measure
- $K_{ij} = E_{ij} E_{ji}$ ,  $\{E_{ij}\}_{ij}$  matrix units form  $M_N(\mathbf{C})$
- $\mathfrak{d}_{ij} =$  derivative in the direction of  $K_{ij}$ ,  $\Delta = \sum_{i < j} \mathfrak{d}^2_{K_{ij}}$
- f and g twice differentiable from  $\mathcal{O}_N \to M_N(\mathbf{C})$
- $\Gamma(f \otimes g) := \sum_{i < j} \mathfrak{d}_{ij} f \otimes \mathfrak{d}_{ij} g$  (carré de champs operator)
- $\Delta(f \otimes g) = \Delta(f) \otimes g + 2\Gamma(f \otimes g) + f \otimes \Delta(g)$
- $E(\Gamma(f \otimes g)) = -E(\Delta(f) \otimes g)$ ) (expectation taken entrywise)
- $F(A \otimes B) := \text{Tr}(AB)$

• 
$$E(F(\Gamma(f \otimes g))) = -E(F(\Delta(f) \otimes g))$$

## integration by parts $\Rightarrow$ integration formula

•  $M_1, \ldots, M_{2n}$  independent from O, Tr = un-normalized trace

 $(N-1) \cdot \mathbb{E} \left[ \text{Tr}(OM_1O^t \cdot M_2 \cdot OM_3O^t \cdot \cdot \cdot OM_{n-1}O^t \cdot M_n) \right]$ 

$$= -\sum_{\substack{k=1\\k \text{ odd}}} \mathbb{E} \left[ \operatorname{Tr}(OM_1O^t \cdots OM_kO^t \cdot (M_{k+1} \cdots OM_{n-1}O^t \cdot M_n)^t) \right]$$

$$+ \sum_{\substack{k=1\\k \text{ odd}}} \mathbb{E} \left[ \operatorname{Tr}(OM_1O^t \cdots OM_kO^t) \cdot \operatorname{Tr}(M_{k+1} \cdots OM_{n-1}O^t \cdot M_n) \right]$$

$$+ \sum_{\substack{k=1\\k \text{ odd}}} \mathbb{E} \left[ \operatorname{Tr}(OM_1O^t \cdots M_{k-1} \cdot (OM_kO^t \cdots OM_{n-1}O^t \cdot M_n)^t) \right]$$

$$+ \sum_{\substack{k=3\\k \text{ odd}}} \mathbb{E} \left[ \operatorname{Tr}(OM_1O^t \cdots M_{k-1}) \cdot \operatorname{Tr}(OM_kO^t \cdots OM_{n-1}O^t \cdot M_n) \right]$$

$$- \sum_{\substack{k=3\\k \text{ odd}}} \mathbb{E} \left[ \operatorname{Tr}(OM_1O^t \cdots M_{k-1}) \cdot \operatorname{Tr}(OM_kO^t \cdots OM_{n-1}O^t \cdot M_n) \right]$$

•  $\mathcal{A}_{1,N},\ldots,\mathcal{A}_{s,N}\subseteq M_N(\mathcal{L}^{\infty-})$  be unital subalgebras such that the entries of matrices from different subalgebras form independent sets. Suppose that all, or all but one, of the subalgebras are orthogonally invariant, and suppose that each of the subalgebras satisfies for  $P_1,\ldots,P_n\in\mathcal{A}_j$ 

$$E(\operatorname{tr}(P_i)) = \tau(p_i) + N^{-1}\tau'(p_i) + o(N^{-1}),$$

$$k_2(\operatorname{Tr}(P_1), \operatorname{Tr}(P_2)) \to \tau_2(p_1, p_2) \text{ as } N \to \infty$$

$$N^{r-3}k_r(\operatorname{Tr}(P_1), \dots, \operatorname{Tr}(P_n)) = o(1) \quad \text{for } r \geqslant 3$$

•  $P_1, ..., P_n \ N \times N, P_i \in \mathcal{A}_{j_i}$ , cyclically alternating, asymptotically centred, orthogonally invariant

$$E(Tr(P_1 \cdots P_r)) = \begin{cases} O(N^{-1}) & n \text{ odd} \\ \tau(p_1 p_{k+1}^t) \cdots \tau(p_k p_r^t) + O(N^{-1}) & n = 2k \end{cases}$$

#### real infinitesimal freeness

- $A_1, ..., A_s$  unital, symmetric, subalgebras of  $(A, \tau, \tau', t)$ , a real tracial infinitesimal probability space are *real infinitesimal free* if
- $A_1, \ldots, A_s$  are  $\tau$ -free and
- whenever  $a, \ldots, a_n$  are centred and cyclically alternating we have
- $\tau'(a_1 \cdots a_n) = 0$  for n odd
- $\tau'(a_1a_2) = 0$
- $\tau'(a_1 \cdots a_n) = \tau(a_1 a_{k+1}^t) \cdots \tau(a_k a_n^t)$  for n = 2k > 3

### (non-tracial) real infinitesimal freeness

- $A_1, ..., A_s$  unital, symmetric, subalgebras of  $(A, \tau, \tau', t)$ , a real infinitesimal probability space are *real infinitesimal free* if
- $A_1, \ldots, A_s$  are  $\tau$ -free and
- whenever  $a, \ldots, a_n$  are centred and alternating we have
- $\bullet \ \tau'(a_1a_2)=0$
- $\tau'(a_1 \cdots a_n) = \tau(a_1 \tau'(a_2 \cdots a_{n-1}) a_n)$ +  $\tau(a_1 a_k^t a_n) \tau(a_2 a_{k+1}^t) \cdots \tau(a_{k-1} a_{n-1}^t)$  for n = 2k - 1

• 
$$\tau'(a_1 \cdots a_n) = \tau(a_1 \tau'(a_2 \cdots a_{n-1}) a_n)$$
  
+  $\tau(a_1 a_{k+1}^t) \tau(a_2 a_{k+2}^t) \cdots \tau(a_{k1} a_n^t)$  for  $n = 2k > 3$ 

#### real infinitesimal cumulants

- $\{m_n\}_n$  a moment sequence for a probability measure  $\mu$ ,
- $m_n = \sum_{\pi \in NC(n)} \kappa_{\pi}$  defines  $\{\kappa_n\}_n$  the free cumulants of  $\mu$ ,

where 
$$NC(n) = \left\{ \begin{array}{c} 6 \\ 5 \\ 4 \end{array} \right\}$$

• 
$$\tau_2(x^p, x^q) = \sum_{\pi \in S_{NC}(p,q)} \kappa_{\pi} \qquad S_{NC}(p,q) = \begin{cases} \sqrt[3]{p} & \sqrt[3]{p} \\ \sqrt[3]{p} & \sqrt[3]{p} \end{cases}$$

in  $S_{NC}^{\delta}(n,-n)$  every block appears 'twice', the second appearance is a reflection of the first

### asymptotically real asymptotic freeness

- $\mathcal{A}_{1,N},\ldots,\mathcal{A}_{s,N}\subseteq M_N(\mathcal{L}^{\infty-})$  be unital subalgebras such that the entries of matrices from different subalgebras form independent sets. Suppose that all, or all but one, of the subalgebras are orthogonally invariant and that each subalgebra has infinitesimal limite distributions.
- THM The limit distributions are then asymptotically infinitesimally free
- the non-invariant algebra can be constant matrices, in particular finite rank matrices
- Ex. if  $A_N = P_N X_N P_N$  with rank $(P_N) = N k$ , with k fixed, then we can find the infinitesimal law of  $A_N$  from that of  $X_N$
- the same for  $X_N + \theta(I P_N)$

#### real infinitesimal moment-cumulant formula

• 
$$\tau'(a_1 \cdots a_n) = \sum_{\pi \in NC(n)} (\partial + \delta) \kappa_{\pi}(a_1, \dots, a_n)$$

• when  $\pi = \{(1), (2,4), (3)\}$  we have

$$\partial \kappa_{\pi}(a_1, a_2, a_3, a_4) = \kappa'_1(a_1) \kappa_2(a_2, a_4) \kappa_1(a_3) + \kappa_1(a_1) \kappa'_2(a_2, a_4) \kappa_1(a_3) + \kappa_1(a_1) \kappa'_2(a_2, a_4) \kappa'_1(a_3)$$

$$\delta \kappa_{\pi}(a_1, a_2, a_3, a_4) = \dot{\kappa}_1(a_1) \kappa_2(a_2, a_4) \kappa_1(a_3) + \kappa_1(a_1) \dot{\kappa}_2(a_2, a_4) \kappa_1(a_3) + \kappa_1(a_1) \kappa_2(a_2, a_4) \dot{\kappa}_1(a_3)$$

## spatial derivative







- $S_{NC}^{\delta,a}(n,-n) = \{ \sigma \in S_{NC}^{\delta}(n,-n) \mid \text{all blocks are through blocks} \}$
- $\dot{\kappa}_n(a_1,\ldots,a_n) = \sum_{\sigma \in S_{NC}^{\delta,a}(n,-n)} \kappa_{\sigma/2}(a_1,\ldots,a_n)$
- $\delta \kappa_{\pi}(a_1,\ldots,a_n) = \sum_{V \in \pi} \dot{\kappa}_{|V|}(x_1,\ldots,x_n \mid V) \prod_{W \neq V} \kappa_{|W|}(x_1,\ldots,x_n \mid W)$
- $\dot{\kappa}_3(a_1, a_2, a_3) = \kappa_3(a_1, a_3^t, a_2^t) + \kappa_3(a_1, a_2^t, a_3) + \kappa_3(a_1, a_2, a_3^t)$

moment-cumulant & vanishing of mixed cumulants

$$\tau'(a_{1}\cdots a_{n}) \qquad (1)$$

$$= \sum_{\pi \in NC(n)} \vartheta \kappa_{\pi}(a_{1},\ldots,a_{n}) + \sum_{\sigma \in S_{NC}^{\delta}(n,-n)} \kappa_{\sigma/2}(a_{1},\ldots,a_{n}).$$

$$= \sum_{\pi \in NC(n)} \nabla \kappa_{\pi}(a_{1},\ldots,a_{n})$$

$$\nabla \kappa_{n}(a_{1},\ldots,a_{n}) = \kappa'_{n}(a_{1},\ldots,a_{n}) + \dot{\kappa}_{n}(a_{1},\ldots,a_{n})$$

$$= \sum_{\pi \in NC(n)} \mu(\pi,1_{n})\vartheta \tau_{\pi}(a_{1},\ldots,a_{n}).$$
(2)

- Let  $(A, \tau, \tau')$  be a real tracial infinitesimal non-commutative probability space and consider unital subalgebras  $A_1, \ldots, A_s \subset A$  that are invariant under  $a \mapsto a^t$ . Then the following statements are equivalent:
  - 1. The algebras  $A_1, \ldots, A_s$  are real infinitesimally free.
  - Mixed free cumulants and mixed infinitesimally free cumulants of the subalgebras vanish.