

UML

Diagramas de Estados Diagrama de Actividades (UML Ilustrado)

Universidad de los Andes

Demián Gutierrez Mayo 2011

Diagramas de Estados

Diagramas de Estados (¿Qué Muestran?)

Los *Diagramas de Estados* muestran una *Máquina de Estado*

Son útiles para modelar la *vida* de un objeto

Un diagrama de estados muestra el *flujo de control entre estados* (en qué estados posibles puede estar "cierto algo" y como se producen los cambios entre dichos estados)

Diagramas de Estados (Máquina de Estados)

Una máquina de estados es un comportamiento que especifica las secuencias de estados por las que pasa un objeto a lo largo de su vida en respuesta a eventos, junto con sus respuestas a esos eventos

(Booch, Rumbaugh, Jacobson)

¿En qué estado (de ánimo) se encuentra usted y como cambia su estado de ánimo?

Diagramas de Estados (Máquina de Estados)

buena noticia, buena noticia, tiempo, noticia devastadora, busca ayuda, evaluación favorable, noticia devastadora, ad, ad, ad ...

Diagramas de Estados (Conceptos)

Un **estado** es una **condición o situación** en la vida de un objeto durante la cual **satisface una condición, realiza alguna actividad** o **espera algún evento**

Un *evento* es la especificación de un *acontecimiento significativo* que ocupa un lugar en el *tiempo* y en el *espacio*. Es la aparición de un estímulo que puede (o no) activar una transición de estado

Una *transición* es una *relación* entre dos estados que indica que un objeto que esté en el *primer estado* realizará ciertas *acciones* y *entrará* en el *segundo estado* cuando ocurra un *evento* especificado y se satisfagan unas *condiciones* especificadas

Diagramas de Estados (Máquina de Estados)

buena noticia, buena noticia, tiempo, noticia devastadora, busca ayuda, evaluación favorable, noticia devastadora, ad, ad, ad ...

Diagrama de Estado (Ejemplo)

Diagrama de Estado (Ejemplo)

Diagrama de Estado (Ejemplo)

Diagrama de Estado (Ejemplo)

Diagrama de Estado (Ejemplo)

Diagrama de Estado (Ejemplo)

Mostrar Ejemplo de Implementación

Mostrar HTML de los USB

Diagramas de Actividades

Un Diagrama de Actividades no es más que un *caso especial* de un diagrama de estados, en el que todos los *estados* (o la gran mayoría) son *actividades*

¿Qué es una actividad y cual es la diferencia con un estado?

¿Si estoy contento, eso es un estado o una actividad?

¿Cómo paso de contento a triste?

¿Cuál es la diferencia entre estar contento o preparar una torta?

¿Qué sucede después de que termino de preparar la torta?

¿Qué es una actividad y cual es la diferencia con un estado?

El *flujo* de un *objeto* a lo largo de una serie de estados o actividades

Se pueden usar para modelar la dinámica de una sociedad de objetos o el flujo de control de una operación (¿Diagramas de flujo?)

Tomado de Booch, Rumbaugh, Jacobson, el lenguaje unificado de modelado

Un Diagrama de Actividades muestra el *flujo de control* entre una serie de *tareas* o *actividades*

Los Diagramas de Actividades son usados (entre otras cosas) para elaborar modelos de *flujos de trabajo** (workflow) de un sistema.

En general, un Diagrama de Actividades muestra una serie de acciones o tareas que se ejecutan en cierto orden (y otros elementos adicionales)

*Un *flujo de trabajo* se puede ver como una serie de tareas (acciones) que son ejecutadas o realizadas por ciertos actores en cierto orden preestablecido

Los Diagramas de Actividades expresan:

Conjunto de actividades

¿Qué hacen las actividades?

¿En que orden se ejecutan?

¿Cuándo ocurren?

¿Dónde ocurren?

¿Quién las ejecuta?

¿Qué insumos requieren?

¿Qué productos generan?

Diagramas de Actividades (¿Conceptos Básicos?)

Actividad:

Es la especificación de un comportamiento que puede ser parametrizado y que define la secuenciación coordinada de unidades subordinadas denominadas acciones

Acción:

Una acción es la unidad fundamental de especificación de comportamiento. Una acción es generalmente atómica, es decir, indivisible

Transiciones:

Representan el paso de una acción a otra

¿Por qué no hay nodo de inicio?

El mismo diagrama anterior pero sin carrileras / calle

Ejemplo de Workflow (1) (Ejemplo tomado de CLEDA)

Proceso de Negocio: Proceso de Contratación Modelado con un Diagrama de Actividades

Ejemplo de Workflow (2) (Ejemplo tomado de CLEDA)

Proceso de Negocio: Proceso de Contratación Modelado con Redes de Petri

XML (Versión 1.5) (2) (Ejemplo tomado de CLEDA)

XML (Versión 1.5) (3) (Ejemplo tomado de CLEDA)

XML (Versión 1.5) (4) (Ejemplo tomado de CLEDA)


```
<net-petri-def name="..." doc-type="...">
        <trans-list>
                  <trans-set name="...">
                          <agent-def time="..." class="..." method="..." />
                          continued of the continue
                          <work-list name="..." />
                          <meta-data key="..." val="..." />
                          <meta-data key="..." val="..." />
                          <doc-section-state name="..." state="..." />
                          <doc-section-state name="..." state="..." />
                          <trans name="..." type="...">
                                   <meta-data key="..." val="..." />
                                   <meta-data key="..." val="..." />
                                   <pre-place name="..." />
                                   <pre-place name="..." />
                                   <pos-place name="..." />
                                   <pos-place name="..." />
                           </trans>
                  </trans-set>
        </trans-list>
</net-petri-def>
```


XML (Versión 1.5) (5) (Ejemplo tomado de CLEDA)


```
<net-petri-def name="..." doc-type="...">
  <state-list>
    <state-grp name="..." terminal="...">
      <meta-data key="..." val="..." />
      <meta-data key="..." val="..." />
      <doc-section-state name="..." state="..." />
      <doc-section-state name="..." state="..." />
      <state-set name="...">
       <place name="..." tokens="..." />
        <place name="..." tokens="..." />
      </state-set>
    </state-grp>
  </state-list>
</net-petri-def>
```


Arquitectura (General) (Ejemplo tomado de CLEDA)

Arquitectura a 3 capas bien definida.
Validada con la experiencia de los proyectos desarrollados.
En constante evolución y refinación.

DISCUSIÓN ¿Por qué los diagramas de estados / actividades son importantes?

¡Gracias!

(21)TODO: Ojo con estos conceptos que entran en contradicción con los conceptos presentados en los diagramas de estado (Y no debería ser) (24) TODO: Revisar en el estándar el final de flujo y ver si está bien utilizado

TODO: Investigar si existen buenas prácticas en cuanto a los nombres de los eventos, acciones, transiciones, etc

TODO: Quizás faltan algunas cosas, como acciones de entrada, de salida, la evaluación de expresiones, maquinas de estado concurrentes y anidadas, etcétera...

TODO: Este ejemplo (11) es bueno, pero puede ser un poco confuso, sobre todo porque aquí hay un poco de mezcla entre diagrama de estados (Esperando/Enviando) y diagrama de actividades

TODO: (11) No sigue la convención de [guarda] evento / acción de las láminas anteriores

La información en: http://en.wikipedia.org/wiki/UML_state_machine está bastante interesante...

(18)TODO: Hay que revisar y consolidar, me parece que se habla mucho aquí repitiendo conceptos. Esto debería ser algo mucho más concreto y que confunda 38 menos a los estudiantes