Лекция 7. Линейные действия над операторами. Обратный оператор. Ядро и образ линейного оператора. Критерий обратимости линейного оператора в терминах его образа и ядра.

1. Действия над линейными операторами

Пусть L-линейное пространство. \widehat{A} и \widehat{B} линейные операторы: $L \to L$, $\alpha \in \mathbb{R}$. Определение:

- Суммой $\widehat{\mathbf{A}} + \widehat{\mathbf{B}}$ называется оператор, действующий по правилу: $(\widehat{A} + \widehat{B})\vec{x} = \widehat{A}\vec{x} + \widehat{B}\vec{x}$;
- Произведением $\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}}$ называется оператор, действующий по правилу: $(\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}}) \vec{\mathbf{x}} = \widehat{\mathbf{A}} (\widehat{\mathbf{B}} \vec{\mathbf{x}});$
- Произведением $\alpha \hat{A}$ называется оператор, действующий по правилу: $(\alpha \widehat{A}) \vec{x} = \alpha (\widehat{A} \vec{x}).$

Теорема 4. Определенные таким образом операторы $\widehat{A} + \widehat{B}$; $\widehat{A} \cdot \widehat{B}$, $\alpha \hat{A}$ являются линейными операторами.

Докажем для $\hat{A} \cdot \hat{B} = \hat{C}$;

$$\frac{\widehat{C}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A} \cdot \widehat{B}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A}(\widehat{B}(\alpha\vec{x} + \beta\vec{y})) = \widehat{A}(\alpha\widehat{B}\vec{x} + \beta\widehat{B}\vec{y}) = \widehat{A}(\widehat{B}(\alpha\hat{B}\vec{x} + \beta\hat{B}\vec{y})) = \widehat{A}(\alpha\widehat{B}\vec{x} + \beta\widehat{B}\vec{y}) = \alpha\widehat{A}\widehat{B}\vec{x} + \beta\widehat{A}\widehat{B}\vec{y} = \alpha\widehat{C}\vec{x} + \beta\widehat{C}\hat{C}\vec{y} = \widehat{A}\widehat{B}\vec{x} + \beta\widehat{B}\vec{y} = \alpha\widehat{C}\vec{x} + \beta\widehat{C}\hat{C}\vec{y} = \widehat{A}\widehat{B}\vec{x} + \beta\widehat{B}\vec{y} = \alpha\widehat{C}\vec{x} + \beta\widehat{C}\hat{C}\vec{y} = \widehat{A}\widehat{B}\vec{x} + \widehat{B}\vec{y} = \widehat{A}\widehat{B}\vec{y} = \widehat{A}$$

Теорема 5. Пусть линейные операторы \widehat{A} и \widehat{B} в конечномерном линейном пространстве L в базисе S имеют матрицы A и B соответственно. Тогда линейные операторы $\widehat{A} + \widehat{B}$; $\widehat{A} \cdot \widehat{B}$, $\alpha \widehat{A}$ имеют матрицы A+B, AB, αA соответственно.

Докажем для
$$\widehat{A} \cdot \widehat{B} = \widehat{C}$$
: Пусть $\overline{z} = \widehat{A} \cdot \widehat{B} \vec{x}$; $\overline{y} = \widehat{B} \vec{x}$; $\overline{z} = \widehat{A} \vec{y}$; Тогда $\overline{z} = \begin{pmatrix} z_1 \\ \cdots \\ z_n \end{pmatrix} = A \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}$; где $\overline{y} = B \vec{x}$; \Rightarrow

$$\overline{z} = \begin{pmatrix} z_1 \\ \cdots \\ z_n \end{pmatrix} = A \cdot \begin{pmatrix} B \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix} = AB \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix} = \Rightarrow$$

линейный оператор $\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}}$ имеет матрицу AB.

оператора — поворот на угол φ против часовой стрелки. Тогда $\begin{pmatrix} cos \varphi & -sin \varphi \\ sin \varphi & cos \varphi \end{pmatrix}^n$ - это матрица оператора поворота на угол φ против часовой стрелки п раз, то есть поворота на угол $(n\,\varphi)$, а она равна $\begin{pmatrix} \cos{(n\varphi)} & -\sin{(n\varphi)} \\ \sin{(n\varphi)} & \cos{(n\varphi)} \end{pmatrix}$.

2. Обратный оператор. Матрица обратного оператора и критерий существования.

<u>Определение</u>. Оператор \widehat{A}^{-1} называется обратным к линейному оператору \widehat{A} , действующему в пространстве L, если $\widehat{A}\widehat{A}^{-1} = \widehat{A}^{-1}\widehat{A} = \overrightarrow{I}$, где \overrightarrow{I} -тождественный оператор ($\overrightarrow{I}\overrightarrow{x} = \overrightarrow{x}$). Таким образом, $\widehat{A}(\widehat{A}^{-1}\overrightarrow{x}) = \widehat{A}^{-1}(\widehat{A}\overrightarrow{x}) = \overrightarrow{x}$.

Теорема 6. Если \widehat{A} линейный оператор: $L \to L$ и \widehat{A}^{-1} существует, то \widehat{A}^{-1} линейный оператор и имеет матрицу A^{-1} .

<u>Доказательство:</u> 1. Пусть $\overline{y}_1 = \hat{A} \overline{x}_1$; $\overline{y}_2 = \hat{A} \overline{x}_2$; и так как $\widehat{A}^{-1} \exists$; $\overline{x}_1 = \hat{A}^{-1} \overline{y}_1$; $\overline{x}_2 = \hat{A}^{-1} \overline{y}_2$; $\hat{A} (\alpha \overline{x}_1 + \beta \overline{x}_2) = \alpha \hat{A} (\overline{x}_1) + \beta \hat{A} (\overline{x}_2) = \alpha \overline{y}_1 + \beta \overline{y}_2$; Рассмотрим $\hat{A}^{-1} (\alpha \overline{y}_1 + \beta \overline{y}_2) = \alpha \overline{x}_1 + \beta \overline{x}_2 = \alpha \hat{A}^{-1} (\overline{y}_1) + \beta \hat{A}^{-1} (\overline{y}_2) => \hat{A}^{-1}$ линейный оператор

 $2.\hat{A}\hat{A}^{-1} = \overline{I} = >$ AA' = E - единичная матрица; где A'- матрица обратного оператора = > $A' = A^{-1}$

Теорема 7 (критерий существования обратного оператора)

Пусть \widehat{A} линейный оператор: $L \rightarrow L$, \widehat{A}^{-1} существует \Leftrightarrow det $A \neq 0$

<u>Определение</u> .Оператор, у которого существует обратный, называется обратимым.

Очевидно, что линейный оператор обратимый тогда и только тогда, когда он взаимно однозначный.

<u>Примеры</u>: В V_2 и V_3

- 1) Обратимый оператор: поворот на угол φ против часовой стрелки. Обратный оператор: поворот на φ по часовой стрелки.
- 2) Оператор проектирование на ось ОХ не имеет обратного.

1. Ядро и образ линейного оператора, их свойства. Критерий обратимости линейного оператора в терминах его образа и ядра.

<u>Определение</u> .Образом линейного оператора \widehat{A} называется множество $\widehat{Im}\widehat{A}$ всех векторов L , таких что, для любого $\vec{y} \in \widehat{Im}\widehat{A} \exists \vec{x} : \widehat{A}(\vec{x}) = \vec{y}$.

Определение *Ядром линейного оператора* \widehat{A} называется множество $\mathbf{Ker}\widehat{A}$ всех векторов L , таких что, для любого $\vec{x} \in \mathrm{Ker}\widehat{A}$, $\widehat{A}(\vec{x}) = \vec{0}$.

Пусть А-матрица линейного оператора \hat{A} в некотором базисе. Тогда $\text{Ker}\hat{A}$ является решением однородной системы $A\vec{x}=\vec{0}$.

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \dots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \end{pmatrix}$$

<u>Теорема 8.</u> Ядро и образ линейного оператора, действующего в L, являются линейными подпространствами пространства L.

<u>Докажем для Ker</u>Â: Проверим замкнутость <u>Ker</u>Â. Пусть \overline{x}_1 и $\overline{x}_2 \in \underline{\mathrm{Ker}}$ Â;=> $\widehat{\mathrm{A}}\overline{x}_1 = \overline{0}$; $\widehat{\mathrm{A}}\overline{x}_2 = \overline{0}$ => $\widehat{\mathrm{A}}(\alpha\overline{x}_1 + \beta\overline{x}_2) = \alpha\widehat{\mathrm{A}}\overline{x}_1 + \beta\widehat{\mathrm{A}}\overline{x}_2 = \overline{0}$ => $\alpha\overline{x}_1 + \beta\overline{x}_2 \in \mathrm{Ker}$ Â, =>Ker замкнуто относительно операций сложения и умножения на число =>KerÂ- подпространство в L.

<u>Определение</u> .**Р**анг оператора \hat{A} , Rang(\hat{A}) = dim (Im \hat{A}). <u>Определение</u> .**Дефект оператора** \hat{A} , Defect(\hat{A}) = dim(Ker \hat{A}).

<u>**Teopema 9.**</u> Ранг линейного оператора, действующего в л.п. Lсовпадает с рангом его матрицы в каком либобазисе.

<u>Доказательство</u>: Пусть в L задан базис $S=\{\overline{e}_1; ... \overline{e}_n\}$; запишем образы базисных векторов в матрицу A. r=RgA равен числу л.н.з. столбцов, которое равно числу л.н.з. векторов из $\{\hat{A}\overline{e}_1, ... \hat{A}\overline{e}_n\}$, которые и образуют базис $Im\hat{A}:\{\hat{A}\overline{e}_1, ... \hat{A}\overline{e}_r\}=>\dim (Im\hat{A})=Rang(\hat{A})$.

<u>Утверждение.</u> Ранг и дефект линейного оператора не зависят от выбора базиса.

<u>**Teopema**</u> 10(бездоказательства) Для∀ линейного оператора $\hat{A}: L \to L \operatorname{Rang}(\hat{A}) + \operatorname{Defect}(\hat{A}) = \dim L$.

Теорема 11. (критерии обратимости линейного оператора)

- 1) Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его матрица в каком-либо базисе невырожденная (detA \neq 0).
- **2)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его образ совпадает со всем пространством L.Im $\hat{A} = L$
- **3)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его ядро тривиально, т.е. $\operatorname{Ker} \hat{A} = \{ \vec{0} \}.$

Примеры:

- 1) В V_3 поворот на угол φ : Ker $\hat{A} = \{\vec{0}\}$; Im $\hat{A} = L$; обратим
- **2**) В V_3 оператор проектирование на ось ОХ: $\text{Ker}\hat{A} = \{\alpha \vec{j} + \beta \vec{k}\}$; $\text{Im}\hat{A} = \{\gamma \vec{i}\}$; нет обратного оператора.
- 3) $\widehat{A}\vec{x}$ =($x_1 5x_2 + 3x_3, -2x_1 + 3x_2 x_3, x_2 + 2x_3$): $R^3 \to R^3$ матрица линейного оператора A: $\begin{pmatrix} 1 & -5 & 3 \\ -2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix}$

DetA= $-19 \neq 0 = > \widehat{A}^{-1}$ существует. Его матрицей будет матрица, обратная к матрице линейного оператора \widehat{A} , т.е. $A^{-1} = \frac{-1}{19} \begin{pmatrix} 7 & 13 & -4 \\ 4 & 2 & -5 \\ -2 & -1 & -7 \end{pmatrix}$.

Найдем ядро линейного оператора \hat{A} . Решим систему $A\overline{x} = \overline{0}$.

$$\begin{pmatrix} 1 & -5 & 3 \\ -2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$

$$\begin{pmatrix} 1 & -5 & 3 \\ -2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 3 \\ 0 & -7 & 5 \\ 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 19 \end{pmatrix};$$

 $x_3=0; x_2=0; x_1=0.{\rm Ker}\,\hat{A}=\{(0,0,0)\}=\{\overline{0}\}$. Подтверждает вывод о том, что оператор обратим.

 $4)\hat{A}(p(t))=(t+3)p''(t)-2p'(t)$ в пространстве P_2 многочленов степени не выше 2.

Найдем матрицу \hat{A} в каноническом базисе:

Пайдем матрицу A в каноническом озаисе.
$$\hat{A}\overline{e}_0 = (t+3) \cdot (1)'' - 2 \cdot 1' = 0 = (0,0,0);$$

$$\hat{A}\overline{e}_1 = (t+3) \cdot (t)'' - 2 \cdot t' = -2 = (-2,0,0);$$

$$\hat{A}\overline{e}_2 = (t+3) \cdot (t^2)'' - 2 \cdot (t^2)' = -2t + 6 = (6,-2,0);$$

$$A = \begin{pmatrix} 0 & -2 & 6 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

Чтобы найти ядро \hat{A} , решим однородную систему уравнений:

AX=O;
$$\begin{pmatrix} 0 & -2 & 6 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \text{ rang A=2; c=b=0; } a - \text{любое;}$$

 $X=(a,0,0)=a; => Ker \hat{A} = \{p(t) = a\}$ det $A=0 => \hat{A}^{-1}$ не существует.