定理 2.47 $E(x_1,x_2,...,x_{n-1},x_n)$ をブール代数 < A , \vee , \wedge , $^-$ > 上のブール表現 とすると , 次の式が成り立つ。

$$E(x_{1},x_{2},...,x_{n-1},x_{n}) = (E(0,0,...,0,0) \wedge \overline{x_{1}} \wedge \overline{x_{2}} \wedge ... \wedge \overline{x_{n-1}} \wedge \overline{x_{n}})$$

$$\vee (E(0,0,...,0,1) \wedge \overline{x_{1}} \wedge \overline{x_{2}} \wedge ... \wedge \overline{x_{n-1}} \wedge \overline{x_{n}})$$

$$\vee (E(0,0,...,1,0) \wedge \overline{x_{1}} \wedge \overline{x_{2}} \wedge ... \wedge \overline{x_{n-1}} \wedge \overline{x_{n}})$$

$$...$$

$$\vee (E(1,1,...,1,0) \wedge x_{1} \wedge x_{2} \wedge ... \wedge x_{n-1} \wedge \overline{x_{n}})$$

$$\vee (E(1,1,...,1,1) \wedge x_{1} \wedge x_{2} \wedge ... \wedge x_{n-1} \wedge x_{n})$$

【証明】

 $E(x_1,x_2,...,x_{i-1},a,x_{i+1},...x_n)$ を $E(x_i=a)$ と記す。

(1) ブール表現 $E(x_1,x_2,...,x_n)$ の長さ(|E|と記す,すなわち, $E(x_1,x_2,...,x_n)$ の中の記号の個数)に関する帰納法を用いて、任意の x_i に対して、次の等式を証明する。 $E(x_1,x_2,...,x_n) = (\overline{x_i} \wedge E(x_i = 0)) \vee (x_i \wedge E(x_i = 1))$ 。

 $\mid E \mid = 1$ のとき , $E = a \in A$, または , $E = x_i$ 。

- () E=a であれば , $a=E(x_i=0)=E(x_i=1)=(\overline{x_i}\wedge a)\vee(x_i\wedge a)$, すなわち , $E(x_1,x_2,...,x_n)=(\overline{x_i}\wedge E(x_i=0))\vee(x_i\wedge E(x_i=1))$ である。
- () $E=x_j$ であれば , $x_j=E(x_i=0)=E(x_i=1)=\overline{(x_i\wedge x_j)}\vee(x_i\wedge x_j)$ すなわち , $E(x_1,x_2,...,x_n)=\overline{(x_i\wedge E(x_i=0))}\vee(x_i\wedge E(x_i=1))$ である。 $|E|\leq m$ のとき , 定理の結果が成り立つならば , |E|=m+1 のとき , 三つ の場合がある。
 - () $E = E_1 \vee E_2$, $|E_1| \le m$, $|E_2| \le m$, よって , $E_1 = (\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1))$, $E_2 = (\overline{x_i} \wedge E_2(x_i = 0)) \vee (x_i \wedge E_2(x_i = 1))$ 。 ゆえに , $E = E_1 \vee E_2$ $= (\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1))$ $\vee (\overline{x_i} \wedge E_2(x_i = 0)) \vee (x_i \wedge E_2(x_i = 1))$ $= (\overline{x_i} \wedge (E_1(x_i = 0) \vee E_2(x_i = 0))$ $\vee (x_i \wedge (E_1(x_i = 1) \vee E_2(x_i = 1))$

$$= \overline{(x_i)} \wedge E(x_i = 0)) \vee (x_i \wedge E(x_i = 1)) \ \, \mbox{である。} \ \, () \ \, E = E_1 \wedge E_2 \ \, , \ \, |E_1| \le m \ \, , \ \, |E_2| \le m \ \, , \ \, \& \ \,) \ \, C = E_1 \wedge E_2 \ \, , \ \, |E_1| \le m \ \, , \ \, |E_2| \le m \ \, , \ \, \& \ \,) \ \, C \ \, , \ \, E_1 = \overline{(x_i)} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1)) \ \, , \ \, E_2 = (\overline{x_i} \wedge E_2(x_i = 0)) \vee (x_i \wedge E_2(x_i = 1)) \ \, , \ \, E = E_1 \wedge E_2 \ \, = ((\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1))) \ \, & \wedge ((\overline{x_i} \wedge E_2(x_i = 0)) \vee (x_i \wedge E_2(x_i = 1))) \ \, & = (\overline{x_i} \wedge (E_1(x_i = 0) \wedge E_2(x_i = 0))) \ \, & \vee (x_i \wedge (E_1(x_i = 1) \wedge E_2(x_i = 1))) \ \, & = (\overline{x_i} \wedge E(x_i = 0)) \vee (x_i \wedge E(x_i = 1)) \ \, & = (\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1)) \ \, & = (\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1)) \ \, & = (\overline{x_i} \wedge E_1(x_i = 0)) \wedge (\overline{x_i} \wedge E_1(x_i = 1)) \ \, & = (x_i \wedge \overline{E_1(x_i = 0)}) \wedge (\overline{x_i} \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 0)} \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (\overline{x_i} \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (\overline{x_i} \wedge \overline{E_1(x_i = 1)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 1)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 1)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 1)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 1)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 1)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 1)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 1)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 1)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \wedge \overline{E_1(x_i = 0)}) \ \, & = (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i = 0)}) \vee (x_i \wedge \overline{E_1(x_i =$$

(2) すべての変数 $x_1, x_2, ..., x_n$ に , (1)の結果を用いて , $E(x_1, x_2, ..., x_n)$ を展開すると , 定理の結果を得る。