

HCC/HCF4585B

4-BIT MAGNITUDE COMPARATOR

- EXPANSION TO 8, 12, 16 ... 4 N BITS BY CAS-CADING UNITS
- MEDIUM-SPEED OPERATION: COMPARES TWO 4-BIT WORDS IN 180ns (typ.) AT 10V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4585B (extended temperature range) and HCF4585B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package, and plastic micro package. The HCC/HCF4585B is a 4-bit magnitude comparator designed for use in computer and logic applications that require the comparison of two 4-bit words. This logic circuit determines whether one 4-bit word (Binary or BCD) is "less than", "equal to", or "greater than" a second 4-bit word. The HCC/HCF4585B has eight comparing inputs (A3, B3, through A0, B0), three outputs (A < B, A = B, A >B) and three cascading inputs (A < B, A = B, A > B)that permit systems designers to expand the comparator function to 8, 12, 16 ... 4 N bits. When a single HCC/HCF4585B is used, the cascading inputs are connected as follows: (A < B) = low, (A = B) = high, (A > B) = high. Cascading these unitsfor comparison of more than 4 bits is accomplished as shown in typical application.

June 1989 1/12

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltages are with respect to V_{SS} (GND).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃

LOGIC DIAGRAM

TRUTH TABLE

			Inputs					• • •	
	Comp	aring			Cascading		Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	A < B	A = B	A > B	A < B	A =B	A > B
A3 > B3	Х	Х	Х	Х	Х	1	0	0	1
A3 = B3	A2 > B2	X	X	X	X	1	0	0	1
A3 = B3	A2 = B2	A1 > B1	X	X	X	1	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	1	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	0	1	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	1	X	0	1	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	1	0	Х	1	0	0
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	1	0	0
A3 = B3	A2 = B2	A1 < B1	X	X	X	×	1	0	0
A3 = B3	A2 < B2	X	X	X	X	X	1	0	0
A3 < B3	Х	Х	Х	Х	Х	Х	1	0	0

X = Don't Care

Logic 1 = High Level

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

	Test C			est Con	dition	itions Value								
Symbol	Symbol Parameter		٧ı	۷o	I ₀	V _{DD}	ΤL	o w*		25°C		T _{Hi}	gh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		. 7	0/15			15		80		0.04	80		600	
V _{OH}	Output High	า	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	•	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output Drive		0/ 5	2.5		5	- 2		- 1.6			- 1.15		
	Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51			- 0.36		
		Types	0/10	9.5		10	- 1.6		- 1.3			- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53			- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44			- 0.36		
		Types	0/10	9.5		10	- 1.3			- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output Sink	нсс	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
			0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Types		0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15			15		± 0.3		±10 ⁻⁵			± 1	μΑ
Cı	Input Capa	citance	400	Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

Cumbal	Parameter	Test Conditions	Test Conditions			Value			
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit		
t _{PHL} ,	Propagation Delay Time		5		300	600			
t _{PLH}	Comparing Inputs to Outputs		10		125	250	ns		
			15		80	160			
	Cascading Input to Outputs		5		200	400			
			10		80	160	ns		
			15		60	120			
t _{THL} ,	Transition Time		5		100	200			
t _{TLH}			10		50	100	ns		
			15		40	80			

Output Low (sink) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Output High (source) Current Characteristics.

Typical Propagation Delay Time (comparing inputs to outputs) vs. Load Capacitance.

Typical Dynamic Power Dissipation vs. Clock Input Frequency.

TYPICAL APPLICATION

TYPICAL SPEED CHARACTERISTICS OF A 12-BIT COMPARATOR

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Dynamic Power Dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
2.1111	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.004		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S			8° (ı	max.)			

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

