Algoritmi e Strutture Dati (Classe A)

Esercizio 1.[11 punti]

Eseguire le operazioni sotto indicate sull'albero binario di ricerca:

Cancellazione 60. Cancellazione 80. Inserimento 20. Inserimento 190. Cancellazione 180. Cancellazione 100. Inserimento 100.

Mostrare tutti gli alberi ottenuti dopo ogni operazione

Traccia Soluzione esercizio 1.

Vedere altri esercizi simili svolti in classe.

Esercizio 2.[11 punti]

Risolvere in ordine di grandezza la seguente equazione ricorsiva. $T(n) = \int 1$ if $n \leq 1$,

$$T(n) = \left\{egin{array}{ll} 1 & ext{if } n \leq 1, \ T(\log(n)) + n & ext{if } n > 1. \end{array}
ight.$$

Soluzione esercizio 2.

Svolgendo l'equazione otteniamo:

$$T(n) = n + \log(n) + \log(\log(n)) + \cdots$$

Il numero di termini della sommatoria è $\log^*(n)$. Quindi

$$T(n) \leq n + \log^*(n) \, \log(n) \leq n + \log^2(n)$$

E quindi T(n) = O(n). Banalmente vale anche $T(n) = \Omega(n)$ e quindi $T(n) = \Theta(n)$

Esercizio 3.[11 punti]

Sia V un vettore di n interi positivi. Dare una funzione in pseudo codice che restituisca una coppia di interi (X,Y) appartenenti al vettore tali per cui

$$ValoreAssoluto(X - 10 Y + Y^2)$$

risulti minimo. Calcolare in ordine di grandezza il costo computazionale nel caso peggiore dell'algoritmo proposto.

Soluzione esercizio 3.

Una possibile soluzione è calcolare partendo da V il vettore W tale che

$$W[i] = 10\,V[i] - V[i]^2$$

per poi risolvere il seguente problema. Siano V e W due vettori di n interi. Calcolare una coppia di interi $(X \in V, Y \in W)$ tali per cui

$$ValoreAssoluto(X - Y)$$

risulti minimo.

Per risolvere questo problema basta ordinare W e poi usare la ricerca binaria per cercare gli elementi di V in W.

Costo totale $\Theta(n \log(n))$.