III - Récurrences

À Savoir

Le raisonnement par récurrence se déroule en 3 étapes principales.

- * On énonce clairement la propriété à démontrer. Cette propriété doit dépendre d'un entier naturel noté n.
- * L'initialisation. On montre la propriété lorsque n=0 (si la propriété est vraie pour tout entier naturel) ou lorsque n=1 (si la propriété est vraie pour tout entier naturel non nul).
 - Généralement, la propriété est une égalité. On montre alors que les deux membres de l'égalité sont égaux à une même valeur.
- * L'hérédité. On fixe un entier naturel n. On suppose la propriété vraie à l'ordre n (c'est l'hypothèse de récurrence). On montre que la propriété est vraie lorsque n est remplacé par (n+1) (ne pas oublier le parenthésage). Généralement, on part d'un côté de l'égalité et on arrive à l'autre côté. Une des étapes du calcul utilise l'hypothèse de récurrence.
- * Conclusion. On conclut clairement en citant l'initialisation, l'hérédité et le principe de récurrence.

I - Calculs de sommes

Exemple 1 - Somme des n premiers entiers non nuls

Montrons par récurrence que, pour tout n entier naturel,

$$0+1+2+\cdots+n=\sum_{k=0}^{n}k=\frac{n(n+1)}{2}.$$

On note $P_n : \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} k = \frac{0(0+1)}{2}$. Or,

$$\sum_{k=0}^{0} k = 0$$
$$\frac{0(0+1)}{2} = 0$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. Montrons

que
$$\sum_{k=0}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$
. Or,

$$\sum_{k=0}^{n+1} k = 0 + 1 + 2 + \dots + n + (n+1)$$

$$= [0 + 1 + \dots + n] + (n+1), \text{ d'après les propriétés des sommes}$$

$$= \frac{n(n+1)}{2} + (n+1), \text{ d'après l'hypothèse de récurrence}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Exemple 2 - Somme des termes d'une suite géométrique

Soit $q \neq 1$. Montrons par récurrence que, pour tout n entier naturel,

$$q^{0} + q^{1} + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}.$$

On note
$$P_n: \sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$$
.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} q^k = \frac{1-q^{0+1}}{1-q}$. Or,

$$\sum_{k=0}^{0} q^{k} = q^{0} = 1$$
$$\frac{1 - q^{0+1}}{1 - q} = \frac{1 - q}{1 - q} = 1$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$. Montrons que $\sum_{k=0}^{n+1} q^k = \frac{1-q^{(n+1)+1}}{1-q} = \frac{1-q^{n+2}}{1-q}$. Or,

$$\begin{split} \sum_{k=0}^{n+1} q^k &= q^0 + q^1 + q^2 + \dots + q^n + q^{n+1} \\ &= \left[q^0 + q^1 + \dots + q^n \right] + q^{n+1}, \text{ d'après les propriétés des sommes} \\ &= \frac{1 - q^{n+1}}{1 - q} + q^{n+1}, \text{ d'après l'hypothèse de récurrence} \\ &= \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q} \\ &= \frac{1 - q^{n+1} + q^{n+1} - q \cdot q^{n+1}}{1 - q} \\ &= \frac{1 - q^{n+2}}{1 - q} \\ &= \frac{1 - q^{n+2}}{1 - q} \end{split}$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Solution de l'exercice 1. On note $P_n:\sum_{k=0}^n k^2=\frac{n(n+1)(2n+1)}{6}$.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} k^2 = \frac{0(0+1)(2\times 0+1)}{6}$. Or,

$$\sum_{k=0}^{0} k^2 = 0^2 = 0$$

$$\frac{0(0+1)(2\times 0+1)}{6} = 0$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Montrons que $\sum_{k=0}^{n+1} k^2 = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$. Or,

$$\begin{split} \sum_{k=0}^{n+1} k^2 &= 0^2 + 1^2 + 2^2 + \dots + n^2 + (n+1)^2 \\ &= \left[0^2 + 1^2 + \dots + n^2 \right] + (n+1)^2, \text{ d'après les propriétés des sommes} \\ &= \frac{n(n+1)(2n+1)}{6} + (n+1)^2, \text{ d'après l'hypothèse de récurrence} \\ &= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} \\ &= \frac{n+1}{6} \left[n(2n+1) + 6(n+1) \right] \\ &= \frac{n+1}{6} \left[2n^2 + n + 6n + 6 \right] \\ &= \frac{n+1}{6} \left[2n^2 + 7n + 6 \right] \\ &= \frac{n+1}{6} (n+2)(2n+3), \text{ car } (n+2)(2n+3) = 2n^2 + 7n + 6 \end{split}$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Solution de l'exercice 2. On note $P_n: \sum_{k=0}^n k^3 = \left[\frac{n(n+1)}{2}\right]^2$.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} k^3 = \left[\frac{0(0+1)}{2}\right]^2$. Or,

$$\sum_{k=0}^{0} k^3 = 0$$
$$\left[\frac{0(0+1)}{2}\right]^2 = 0$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$. Montrons que

$$\sum_{k=0}^{n+1} k^3 = \left[\frac{(n+1)(n+2)}{2} \right]^2. \text{ Or,}$$

$$\begin{split} \sum_{k=0}^{n+1} k^3 &= 0^3 + 1^3 + 2^3 + \dots + n^3 + (n+1)^3 \\ &= \left[0^3 + 1^3 + \dots + n^3 \right] + (n+1)^3, \text{ d'après les propriétés des sommes} \\ &= \left[\frac{n(n+1)}{2} \right]^2 + (n+1)^3, \text{ d'après l'hypothèse de récurrence} \\ &= \frac{(n+1)^2}{2^2} \left[n^2 + 4(n+1) \right] \\ &= \frac{(n+1)^2}{2^2} \left[n^2 + 4n + 4 \right] \\ &= \frac{(n+1)^2}{4} \times (n+2)^2. \end{split}$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \left[\frac{n(n+1)}{2}\right]^2.$$

Lycée Ozenne 10 A. Camanes

Solution de l'exercice 3. Notons $P_n:(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}$.

Initialisation. Lorsque n=0. Montrons que $(a+b)^0=\sum\limits_{k=0}^0\binom{0}{k}a^kb^{0-k}$. Or,

$$(a+b)^{0} = 1$$

$$\sum_{k=0}^{0} {0 \choose k} a^{k} b^{0-k} = {0 \choose 0} a^{0} b^{0} = 1$$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$. Montrons que $(a+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$. Or,

$$(a+b)^{n+1} = (a+b)^n(a+b), \text{ d'après la définition des puissances}$$

$$= \left[\sum_{k=0}^n \binom{n}{k} a^k b^{n-k}\right] (a+b), \text{ d'après l'hypothèse de récurrence}$$

$$= a \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} + b \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \text{ par distributivité}$$

$$= \sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}, \text{ par distributivité}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}, \text{ par distributivité}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k+1-1} a^k b^{n-k+1} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}, \text{ en posant } \ell = k+1$$

$$= \sum_{\ell=1}^{n+1} \binom{n}{\ell-1} a^\ell b^{n+1-\ell} + \binom{n}{k} a^{n+1} b^0 + \binom{n}{0} a^0 b^{n+1} + \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k}$$

$$= \sum_{k=1}^n \binom{n}{k-1} a^k b^{n+1-k} + a^{n+1} + b^{n+1} + \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k}$$

$$= \sum_{k=1}^n \binom{n}{k-1} a^k b^{n+1-k} + a^{n+1} + b^{n+1}, \text{ d'après le triangle de Pascal}$$

$$= \sum_{k=1}^n \binom{n+1}{k} a^k b^{n+1-k} + a^{n+1} + b^{n+1}, \text{ d'après le triangle de Pascal}$$

$$= \sum_{k=1}^n \binom{n+1}{k} a^k b^{n+1-k} + \binom{n+1}{n+1} a^{n+1} b^0 + \binom{n+1}{0} a^0 b^{n+1}$$

$$= \sum_{k=1}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}.$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier

naturel, soit

$$\forall n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

II - Inégalités

Exemple 3 - Inégalité de Bernoulli

Soit x > 0. Montrons que, pour tout $n \ge 0$, $(1+x)^n \ge 1 + nx$.

On note $P_n : (1+x)^n \ge 1 + nx$.

Initialisation. Lorsque n = 0. Montrons que $(1 + x)^0 \ge 1 + 0x$. Or,

$$(1+x)^0 = 1$$

 $1+0x = 1$.

Ainsi, la propriété P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $(1+x)^n \ge 1+nx$. Montrons que $(1+x)^{n+1} \ge 1+(n+1)x$. En effet,

$$(1+x)^{n+1} = (1+x)^n \times (1+x)$$
, d'après la définition des puissances $\geq (1+nx) \times (1+x)$, d'après l'hypothèse de récurrence $\geq 1+x+nx+nx^2$ $\geq 1+(n+1)x+nx^2$ $\geq 1+(n+1)x$, car $nx^2 \geq 0$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, (1+x)^n \geqslant 1 + nx.$$

Exemple 4 - Suite & Encadrement

Soit (u_n) définie par $u_0=3$ et, pour tout n entier naturel, $u_{n+1}=\sqrt{u_n+15}$. Montrer que, pour tout n entier naturel, $0 \le u_n \le 5$.

On note $P_n: 0 \leq u_n \leq 5$.

Initialisation. Lorsque n = 0. Montrons que $0 \le u_0 \le 5$.

 $u_0 = 3 \in [0, 5]$, donc P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $0 \le u_n \le 5$. Montrons que $0 \le u_{n+1} \le 5$. En effet,

$$0 \leqslant u_n \leqslant 5$$
, d'après l'hypothèse de récurrence

$$15 \le u_n + 15 \le 20$$

$$\sqrt{15} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{20}$$
, la fonction racine étant croissante

$$0 \leqslant \sqrt{15} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{20} \leqslant \sqrt{25}$$
, car $20 \leqslant 25$

$$0 \leqslant u_{n+1} \leqslant 5$$
, d'après la définition de u_{n+1}

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, 0 \leqslant u_n \leqslant 5.$$

Solution de l'exercice 4. On note $P_n : u_n \leq 3$.

Initialisation. Lorsque n = 0. Montrons que $u_0 \leq 3$.

Or, $u_0 = 0 \leq 3$, donc P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n \leq 3$. Montrons que $u_{n+1} \leq 3$. En effet,

$$u_{n+1} = \sqrt{u_n + 6}$$
, d'après la définition de (u_n) $\leq \sqrt{3 + 6}$, d'après l'H.R. et la croissance de la fonction racine $\leq \sqrt{9}$ ≤ 3 .

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n \leq 3.$$

Solution de l'exercice 5. On note $P_n: 4 \leq u_n \leq 10$.

Initialisation. Lorsque n=0. Montrons que $4 \le u_0 \le 10$.

 $u_0 = 6 \in [4, 10]$, donc P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $4 \leqslant u_n \leqslant 10$. Montrons que $4 \leqslant u_{n+1} \leqslant 10$. En effet,

 $4 \leqslant u_n \leqslant 10$, d'après l'hypothèse de récurrence

$$19 \leqslant u_n + 15 \leqslant 25$$

 $\sqrt{19} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{25}$, la fonction racine étant croissante

 $\sqrt{16} \leqslant \sqrt{19} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{25} \leqslant \sqrt{100}$, la fonction racine étant croissante $4 \leqslant u_{n+1} \leqslant 10$, d'après la définition de u_{n+1}

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, 4 \leqslant u_n \leqslant 10.$$

III - Suites définies par récurrence

Solution de l'exercice 6. On note $P_n: u_n = 5 + 3n$. **Initialisation.** Lorsque n = 0. Montrons que $u_0 = 5 + 3 \times 0$. Or,

$$u_0=5,\;\; {
m d'après}\; {
m la}\; {
m d\'efinition}$$
 $5+3 imes0=5$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n = 5 + 3n$. Montrons que $u_{n+1} = 5 + 3(n+1)$. En effet,

$$u_{n+1} = u_n + 3$$
, d'après la définition
= $5 + 3n + 3$, d'après l'hypothèse de récurrence
= $5 + 3(n + 1)$.

Ainsi, la propriété est vraie à l'ordre n+1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n = 5 + 3n.$$

Solution de l'exercice 7. On note $P_n : u_n = 3 \times 5^n$. **Initialisation.** Lorsque n = 0. Montrons que $u_0 = 3 \times 5^0$. Or,

$$u_0=3,\;\; ext{d'après la définition}$$
 $3\times 5^0=3\times 1=3$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n = 3 \times 5^n$. Montrons que $u_{n+1} = 3 \times 5^{n+1}$. En effet,

$$u_{n+1} = 5 \times u_n$$
, d'après la définition
= $5 \times 3 \times 5^n$, d'après l'hypothèse de récurrence
= $3 \times 5^{n+1}$.

Ainsi, la propriété est vraie à l'ordre n+1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n = 3 \times 5^n.$$

Solution de l'exercice 8. On note $P_n: u_n = \frac{n(n+1)}{2}$.

Lycée Ozenne 13 A. Camanes

Initialisation. Lorsque n = 0. Montrons que $u_0 = \frac{0(0+1)}{2}$. Or,

$$u_0 = 0$$
, d'après la définition

$$\frac{0(0+1)}{2} = 0$$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n = \frac{n(n+1)}{2}$. Montrons que $u_{n+1} = \frac{(n+1)(n+1+1)}{2} = \frac{(n+1)(n+2)}{2}$. En effet,

$$u_{n+1}=u_n+(n+1)$$
, d'après la définition
$$=\frac{n(n+1)}{2}+(n+1)$$
, d'après l'hypothèse de récurrence
$$=(n+1)\left[\frac{n}{2}+1\right]$$

$$=(n+1)\frac{n+2}{2}$$

Ainsi, la propriété est vraie à l'ordre n+1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n = \frac{n(n+1)}{2}.$$

Solution de l'exercice 9. On note $P_n: u_n = \sqrt{n+9}$. **Initialisation.** Lorsque n=0. Montrons que $u_0 = \sqrt{0+9}$. Or,

$$u_0=3,\;\; ext{d'après la définition}$$
 $\sqrt{0+9}=\sqrt{9}=3$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n = \sqrt{9+n}$. Montrons que $u_{n+1} = \sqrt{9+(n+1)} = \sqrt{n+10}$. En effet,

$$u_{n+1} = \sqrt{1 + u_n^2}$$
, d'après la définition
= $\sqrt{1 + n + 9}$, d'après l'hypothèse de récurrence
= $\sqrt{n + 10}$

Ainsi, la propriété est vraie à l'ordre n + 1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n = \sqrt{9+n}.$$

Solution de l'exercice 10. On note $P_n : u_n = \frac{2}{2n+1}$. **Initialisation.** Lorsque n = 0. Montrons que $u_0 = \frac{2}{2 \times 0 + 1}$. Or,

$$u_0=2,\,\,$$
 d'après la définition $rac{2}{2 imes 0+1}=2$

Ainsi, la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $u_n = \frac{2}{2n+1}$. Montrons que $u_{n+1} = \frac{2}{2(n+1)+1} = \frac{2}{2n+3}$. En effet,

$$u_{n+1} = \frac{u_n}{u_n + 1}, \text{ d'après la définition}$$

$$= \frac{\frac{2}{2n+1}}{\frac{2}{2n+1} + 1}, \text{ d'après l'hypothèse de récurrence}$$

$$= \frac{\frac{2}{2n+1}}{\frac{2+2n+1}{2n+1}}$$

$$= \frac{2}{2n+1} \times \frac{2n+1}{2+2n+1}$$

$$= \frac{2}{2+2n+1}$$

$$= \frac{2}{2+2n+1}.$$

Ainsi, la propriété est vraie à l'ordre n+1.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, u_n = \frac{2}{2n+1}.$$