RiverSafe

May 11, 2023

```
[46]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      import numpy as np
      import plotly.express as px
      from sklearn.preprocessing import StandardScaler
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import accuracy_score, u
       ⇔classification_report,confusion_matrix
[47]: df=pd.read_csv('F:\\NEW FOLDER\\ml\\project\\water_potability.csv')
      df.head(10)
[47]:
                      Hardness
                                       Solids Chloramines
                                                                Sulfate
                                                                         Conductivity \
                ph
                                                                           564.308654
               NaN 204.890455 20791.318981
                                                  7.300212
                                                            368.516441
      0
      1
          3.716080 129.422921 18630.057858
                                                  6.635246
                                                                    NaN
                                                                           592.885359
      2
          8.099124 224.236259
                                 19909.541732
                                                  9.275884
                                                                           418.606213
                                                                    NaN
      3
          8.316766 214.373394
                                 22018.417441
                                                  8.059332
                                                            356.886136
                                                                           363.266516
      4
          9.092223
                   181.101509
                                 17978.986339
                                                  6.546600
                                                            310.135738
                                                                           398.410813
      5
          5.584087
                    188.313324
                                 28748.687739
                                                  7.544869
                                                            326.678363
                                                                           280.467916
         10.223862 248.071735 28749.716544
                                                  7.513408
                                                            393.663396
                                                                           283.651634
      7
          8.635849
                    203.361523 13672.091764
                                                  4.563009
                                                            303.309771
                                                                           474.607645
      8
               {\tt NaN}
                    118.988579
                                 14285.583854
                                                  7.804174
                                                            268.646941
                                                                           389.375566
                                                                           563.885481
         11.180284
                    227.231469
                                 25484.508491
                                                  9.077200
                                                            404.041635
         Organic_carbon Trihalomethanes
                                           Turbidity
                                                      Potability
      0
              10.379783
                                86.990970
                                            2.963135
                                                                0
                                                                0
      1
              15.180013
                                56.329076
                                            4.500656
      2
              16.868637
                                66.420093
                                            3.055934
                                                                0
      3
                               100.341674
                                                                0
              18.436524
                                            4.628771
      4
              11.558279
                                31.997993
                                            4.075075
                                                                0
      5
                                                                0
               8.399735
                                54.917862
                                            2.559708
      6
                                                                0
              13.789695
                                84.603556
                                            2.672989
      7
                                62.798309
                                            4.401425
                                                                0
              12.363817
      8
              12.706049
                                53.928846
                                            3.595017
                                                                0
              17.927806
                                71.976601
                                            4.370562
```

[48]: df.describe()

[48]:		ph	Hardness	Solids	Chloramines	Sulfate	\
	count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	
	mean	7.080795	196.369496	22014.092526	7.122277	333.775777	
	std	1.594320	32.879761	8768.570828	1.583085	41.416840	
	min	0.000000	47.432000	320.942611	0.352000	129.000000	
	25%	6.093092	176.850538	15666.690297	6.127421	307.699498	
	50%	7.036752	196.967627	20927.833607	7.130299	333.073546	
	75%	8.062066	216.667456	27332.762127	8.114887	359.950170	
	max	14.000000	323.124000	61227.196008	13.127000	481.030642	

Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
3276.000000	3276.000000	3114.000000	3276.000000	3276.000000
426.205111	14.284970	66.396293	3.966786	0.390110
80.824064	3.308162	16.175008	0.780382	0.487849
181.483754	2.200000	0.738000	1.450000	0.000000
365.734414	12.065801	55.844536	3.439711	0.000000
421.884968	14.218338	66.622485	3.955028	0.000000
481.792304	16.557652	77.337473	4.500320	1.000000
753.342620	28.300000	124.000000	6.739000	1.000000
	3276.000000 426.205111 80.824064 181.483754 365.734414 421.884968 481.792304	3276.000000 3276.000000 426.205111 14.284970 80.824064 3.308162 181.483754 2.200000 365.734414 12.065801 421.884968 14.218338 481.792304 16.557652	3276.000000 3276.000000 3114.000000 426.205111 14.284970 66.396293 80.824064 3.308162 16.175008 181.483754 2.200000 0.738000 365.734414 12.065801 55.844536 421.884968 14.218338 66.622485 481.792304 16.557652 77.337473	3276.000000 3276.000000 3114.000000 3276.000000 426.205111 14.284970 66.396293 3.966786 80.824064 3.308162 16.175008 0.780382 181.483754 2.200000 0.738000 1.450000 365.734414 12.065801 55.844536 3.439711 421.884968 14.218338 66.622485 3.955028 481.792304 16.557652 77.337473 4.500320

[49]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3114 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64

dtypes: float64(9), int64(1)

memory usage: 256.1 KB

for finding the null values

[50]: df.isnull().sum()

[50]: ph 491 Hardness 0

Solids 0 0 Chloramines Sulfate 781 Conductivity 0 0 Organic_carbon Trihalomethanes 162 Turbidity 0 Potability 0

dtype: int64

[51]: plt.figure(figsize=(10,8)) sns.heatmap(df.isnull())

[51]: <Axes: >

1 for finding the correlations

```
[52]: plt.figure(figsize=(12,8))
sns.heatmap(df.corr(),annot=True)
```

[52]: <Axes: >

2 for finding the count of the different types of values in target coloumn

```
[53]: sns.countplot(x='Potability',data=df)
```

[53]: <Axes: xlabel='Potability', ylabel='count'>

Name: Potability, dtype: int64

3 finding outliers

```
[55]: fig,ax=plt.subplots(ncols=5,nrows=2,figsize=(20,10))
    ax=ax.flatten()
    index=0
    for col,values in df.items():
        sns.boxplot(y=col,data=df,ax=ax[index])
        index +=1
```


4 detailed correlation(more scattered means less correlation)

[56]: sns.pairplot(df)

[56]: <seaborn.axisgrid.PairGrid at 0x1f052bfb460>


```
[197]: fig=px.pie(df,names='Potability',hole=0.1)
fig.show()
```

5 plotly can draw scatter plots with any attributes

```
[198]: fig=px.scatter(df,x='ph',y='Sulfate',color='Potability')
fig.show()
```


6 —visualization ends here—

7

8 managing the null values

```
[59]: df.isnull().mean().plot.bar(figsize=(10,6))
plt.xlabel('features')
plt.ylabel('percentage of null values')
```

[59]: Text(0, 0.5, 'percentage of null values')

9 replacing the null values with their mean values

```
[60]: df['ph']=df['ph'].fillna(df['ph'].mean())
    df['Sulfate']=df['Sulfate'].fillna(df['Sulfate'].mean())
    df['Trihalomethanes']=df['Trihalomethanes'].fillna(df['Trihalomethanes'].mean())
[61]: df.isnull().sum()
```

[61]: ph 0 Hardness 0 Solids 0 Chloramines 0 Sulfate 0 0 Conductivity Organic_carbon 0 Trihalomethanes 0 Turbidity 0 Potability 0 dtype: int64

[62]: sns.heatmap(df.isnull())

[62]: <Axes: >

10 features and target splitting, Scaling

```
[63]: x=df.drop('Potability',axis=1)
      y=df['Potability']
[64]: x.shape,y.shape
[64]: ((3276, 9), (3276,))
[65]: scaler=StandardScaler()
      x=scaler.fit_transform(x)
[66]: x
[66]: array([[-6.04313345e-16, 2.59194711e-01, -1.39470871e-01, ...,
             -1.18065057e+00, 1.30614943e+00, -1.28629758e+00],
             [-2.28933938e+00, -2.03641367e+00, -3.85986650e-01, ...,
               2.70597240e-01, -6.38479983e-01, 6.84217891e-01],
             [ 6.92867789e-01, 8.47664833e-01, -2.40047337e-01, ...,
               7.81116857e-01, 1.50940884e-03, -1.16736546e+00],
             [ 1.59125368e+00, -6.26829230e-01, 1.27080989e+00, ...,
             -9.81329234e-01, 2.18748247e-01, -8.56006782e-01],
             [-1.32951593e+00, 1.04135450e+00, -1.14405809e+00, ...,
             -9.42063817e-01, 7.03468419e-01, 9.50797383e-01],
             [ 5.40150905e-01, -3.85462310e-02, -5.25811937e-01, ...,
               5.60940070e-01, 7.80223466e-01, -2.12445866e+00]])
     11
          train test split
[67]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
[68]: x_train.shape,x_test.shape
[68]: ((2620, 9), (656, 9))
          model building
     12
     13
          1. logistic regression
[69]: from sklearn.linear_model import LogisticRegression
      #creating object
```

model_lr.fit(x_train,y_train)

model_lr=LogisticRegression()

[70]: | #training

```
[70]: LogisticRegression()
[71]: # predictions
pred_lr=model_lr.predict(x_test)
[72]: pred_lr
[73]: #accuracy score
accuracy_score_lr=accuracy_score(y_test,pred_lr)
accuracy_score_lr
```

[73]: 0.5929878048780488

14 2. Decision Tree

```
[74]: from sklearn.tree import DecisionTreeClassifier
       #object creation
       model_dt=DecisionTreeClassifier(max_depth=4)
[75]: #training
       model_dt.fit(x_train,y_train)
[75]: DecisionTreeClassifier(max_depth=4)
[76]: #prediction
       pred_dt=model_dt.predict(x_test)
[77]: #accuracy
       accuracy_score_dt=accuracy_score(y_test,pred_dt)
       accuracy_score_dt
[77]: 0.6265243902439024
[78]: #confusion matrix
       cm2=confusion_matrix(y_test,pred_dt)
       cm2 #367 are 0s predicted correctly,38 wrong !! 205 are 1s predicted_
        ⇔correctly,35 wrong
[78]: array([[373, 15],
              [230, 38]], dtype=int64)
[79]: # heatmap can be used to visualize
       # sns.heatmap(cm2/np.sum(cm2))
           3. Random Forest
      15
[80]: from sklearn.ensemble import RandomForestClassifier
       model_rf=RandomForestClassifier()
[81]: #training
       model_rf.fit(x_train,y_train)
[81]: RandomForestClassifier()
[82]: #prediction
       pred_rf=model_rf.predict(x_test)
[105]: #accuracy
       accuracy_score_rf=accuracy_score(y_test,pred_rf)
       accuracy_score_rf*100
```

```
[105]: 68.59756097560977
[84]: #confusion matrix
      cm3=confusion_matrix(y_test,pred_rf)
      cm3
[84]: array([[357, 31],
              [175, 93]], dtype=int64)
      16 4. k nearest neighbors (slowest)
[85]: from sklearn.neighbors import KNeighborsClassifier
       #creating model
       # by default - model_knn=KNeighborsClassifier()
[86]: # hyperparameter tuning
      for i in range (4,15):
          model_knn=KNeighborsClassifier(n_neighbors=i)
          model_knn.fit(x_train,y_train)
          pred_knn=model_knn.predict(x_test)
          accuracy_score_knn=accuracy_score(y_test,pred_knn)
          print(i,accuracy_score_knn)
      4 0.6402439024390244
      5 0.6173780487804879
      6 0.6265243902439024
      7 0.6128048780487805
      8 0.6189024390243902
      9 0.6158536585365854
      10 0.6265243902439024
      11 0.6280487804878049
      12 0.6280487804878049
      13 0.6341463414634146
      14 0.6341463414634146
      17
[87]: #accuracy
      model_knn=KNeighborsClassifier(n_neighbors=10)
      model_knn.fit(x_train,y_train)
      pred_knn=model_knn.predict(x_test)
      accuracy_score_knn=accuracy_score(y_test,pred_knn)
      print(accuracy_score_knn)
      0.6265243902439024
```

18 5. support vector machine

```
[88]: from sklearn.svm import SVC#support vector classifier
[101]: model_svm=SVC(kernel='rbf') #kernel types=linear, rbf(better accuracy), polynomial
[102]: #training
      model_svm.fit(x_train,y_train)
[102]: SVC()
[103]: # prediction
      pred_svm=model_svm.predict(x_test)
[104]: #accuracy
      accuracy_score_svm=accuracy_score(y_test,pred_svm)
      accuracy_score_svm*100
[104]: 67.53048780487805
 []: # for kernel rbf-67.53048780487805, polynomial-61.4329268292683, for linear - 59.
        →14634146341463
           6. AdaBoostClassifiers
[106]: from sklearn.ensemble import AdaBoostClassifier
[156]: #object creation
      model_ada=AdaBoostClassifier(learning_rate=0.5,n_estimators=200) #hyperparameter_
        unning-decrease learning rate for better accuracy, its by default 1
[157]: #model training
      model_ada.fit(x_train,y_train)
[157]: AdaBoostClassifier(learning_rate=0.5, n_estimators=200)
[158]: #prediction
      pred_ada=model_ada.predict(x_test)
[159]: #accuracy
      accuracy_score_ada=accuracy_score(y_test,pred_ada)
      accuracy_score_ada
[159]: 0.6189024390243902
[142]: |# by default accuracy is - 0.60975609756, after hyperparameter tuning -
        →dose not effect much for this dataset
```

20 7. XGBoost

```
[146]: from xgboost import XGBClassifier
[188]: #object creation
       model_xgb=XGBClassifier(n_estimators=200,learning_rate=0.4)
[189]: #training
       model_xgb.fit(x_train,y_train)
[189]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                     colsample_bylevel=None, colsample_bynode=None,
                     colsample_bytree=None, early_stopping_rounds=None,
                     enable_categorical=False, eval_metric=None, feature_types=None,
                     gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                     interaction_constraints=None, learning_rate=0.4, max_bin=None,
                     max_cat_threshold=None, max_cat_to_onehot=None,
                     max_delta_step=None, max_depth=None, max_leaves=None,
                     min_child_weight=None, missing=nan, monotone_constraints=None,
                     n_estimators=200, n_jobs=None, num_parallel_tree=None,
                     predictor=None, random_state=None, ...)
[190]: #prediction
       pred_xgb=model_xgb.predict(x_test)
[191]: #accuracy
       accuracy_score_xgb=accuracy_score(y_test,pred_xgb)
       accuracy_score_xgb*100
[191]: 67.07317073170732
           choosing the best model
      21
[192]: models=pd.DataFrame({
           'Model':['Logistic Regression','Decision Tree','Random_
        ⇔Forest','KNN','SVM','AdaBoost','XGBoost']
           , 'Accuracy Score' :⊔
        • [accuracy_score_lr,accuracy_score_dt,accuracy_score_rf,accuracy_score_knn,accuracy_score_sv
[193]: models
「193]:
                        Model Accuracy Score
         Logistic Regression
                                     0.592988
       1
                Decision Tree
                                     0.626524
       2
                Random Forest
                                     0.685976
       3
                                     0.626524
                          KNN
```

```
4 SVM 0.675305
5 AdaBoost 0.618902
6 XGBoost 0.670732
```

[196]: sns.barplot(x='Accuracy Score',y='Model',data=models)
models.sort_values(by='Accuracy Score',ascending=False)

[196]:		Model	Accuracy Score
[190].		Model	Accuracy Score
•	2	Random Forest	0.685976
4	4	SVM	0.675305
(6	XGBoost	0.670732
:	1	Decision Tree	0.626524
;	3	KNN	0.626524
į	5	AdaBoost	0.618902
(0	Logistic Regression	0.592988

[]: #Random Forest and SVM are givving the highest accuracy