	EPORT DOCUMENTATION PAGE										
^	ND-A	211	EE/		1b. RESTRICTIVE MARKINGS						
<i>-</i>	ND-H	12 14	554		none 3. DISTRIBUTION/AVAILABILITY OF REPORT						
20. DECLA	SSIFICATION	DOWNGRA	DING SCHE	DULE	Distributi	on unlimite	ed				
4 PERFOR	MING ORGAN	IZATION R	EPORT NUM	BER(S)	S. MONITORING OF	IGANIZATION R	EPORT NUMBERI	S)			
f	SBIL -	A89			ĺ						
64 NAME C	F PERFORM	NG ORGAN	IZATION	BL OFFICE SYMBOL	74 NAME OF MONE	TORING ORGAN	IZATION				
State 1	Universit	y of Ne	w York	(If applicable)	Office of Naval Research						
6L ADDRE	SS (City, State	and ZIP Cod	le)		76. ADDRESS (City,	State and ZIP Cod	le)				
	Chemistry	Depart	ment		Code 1132 800 N. Quincy Street						
	SUNY Stony Bro	ok. NY	11794-3	400		VA 22217					
M NAME C	F FUNDING			. OFFICE SYMBOL	S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER						
ORGAN	IIZATION	ONR		(l/ applicable)	N00014-85K-00678						
& ADDRE	SS (City, State	and ZIP Cod	de)	 _	10 SOURCE OF FUR	NDING NOS					
	Code 1132				PROGRAM	PROJECT	TASK	WORK UNIT			
	800 N. Qu Arlington				ELEMENT NO.	NO.	NO.	NO.			
11. TITLE	Include Securi	ty Cleanificat	10R)		1	ļ					
	See Title		•		<u> </u>			1			
	NAL AUTHOR P		Ruatta	S.L. Anderson							
	OF REPORT	2 5 11	136. TIME C	OVERED	14. DATE OF REPORT (Yr. No., Dey) 15 PAGE COUNT						
	interim	OTATION	FROM	<u> </u>	1989, October, 28 26						
30776	COME TO THE TOTAL	0.2,100		Garage.							
17.	COSATI	CODES		18 SUBJECT TERMS (C	Continue on reverse if necessary and identify by block number)						
FIELD	GROUP	\$00	GR.	i	.						
	 			Boron Combus	tion, Clusters	s, Propulsi	on				
19 ASSTR	ACT (Continue	on reverse il	necessary and	i identify by block number	7)						
We report reaction probabilities for surface reactions of boron with various gases as a function of temperature. These kinetic parameters are based on averages of cross sections measured for reactions of boron cluster ions with the gases in											
question. We present both total reaction probabilities and also the branching											
fractions to different products. The method for converting from cross sections to											
rates is discussed and results are given for reaction with oxygen, hydrogen, nitrogen, nitrous oxide, water methane, fluoromethane, carbon dioxide, carbon monoxide, and											
silane.											
silane. K											
		/ ⁽² R									
					.	<u>. </u>		· · · · · · · · · · · · · · · · · · ·			
	BUTION/AVA				21 ABSTRACT SEÇ		CATLON.	Ì			
UNCLASSI	FIED/UNLIMI	UNCLASSIFIED/UNLIMITED T SAME AS APT. DITIC USERS D									

DD FORM 1473, 83 APR

Gabriel Roy

228 NAME OF RESPONSIBLE INDIVIDUAL

EDITION OF 1 JAN 73 IS OBSOLETE.

226 TELEPHONE NUMBER (Include Area Code) 202-696-4403

unclassified
SECURITY CLASSIFICATION OF THISTAGE

22c OFFICE SYMBOL

Apricated for public release; Incritation fightnessed

DISTRIBUTION STATEMENT A

89 11 13 104

Cluster Based Reaction Probabilities for Boron with Oxygen, Hydrogen, Water, Nitrogen, Nitrous Oxide, Carbon Dioxide, Carbon Monoxide, Methane, Tetrafluoromethane, and Silane

Paul A. Hintz, Stephen A. Ruatta, and Scott L. Anderson
Department of Chemistry
State University of New York at Stony Brook
Stony Brook, NY 11794-3400

I Introduction

Since we have begun our detailed study of boron cluster ion reaction dynamics, we have tried to present our cross section measurements in a form most useful to combustion modelers and others interested in the reactivity of boron, and in oxidation processes in particular. An effective way we have found to do this is to convert our data into "reaction efficiencies" or the probability of reaction per surface collision. By calculating these reaction probabilities as a function of temperature, we can provide combustion modelers with the necessary data to calculate reaction rates for boron combustion processes under whatever conditions seem appropriate. Our reaction studies have focused on oxidation reactions of boron cluster ions with O2, D2O, CO2, CO, and N2O. We have studied various other neutral reactant gases including CH4, CF4, D2, N2, and SiH4. Our goal is to build a comprehensive picture of boron cluster ion reactivity. This report contains reaction efficiency data for all reaction systems studied to date.

II. Calculation Method

In order to estimate the reaction efficiency of the reaction of boron clusters ions with neutral gases, the probability of reaction per collision at a given energy is averaged over a Boltzmann energy distribution to yield a reaction probability at various temperatures. The experimental cross section data for the major products of the reactions of two representative cluster ions (B₆⁺ and B₁₂⁺) with N₂, N₂O, CO, CO₂, CH₄, CF₄, SiH₄, D₂, D₂O, and O₂ are shown in Figures 1 and 2. Notice the extensive variation in the magnitude and shape of the cross sections for the different reactions. In some cases, the reaction proceeds with no activation energy (ie. reactivity peaks at low cohision energy) but in other cases, significant activation barriers are observed, even though the overall reactions are in most cases exothermic.

To estimate the reaction probability per collision, we compare the experimental cross sections (σ_{exp}) from 0 to 10 eV collision energy (center of mass) with the collision cross section which can be estimated with reasonable certainty. For this study, the collision cross section is given by the locked ion-dipole capture cross section:

$$\sigma_{\text{lock}} = \sigma_{\text{lang}} + (C * \sigma_{\text{dip}}).$$

 σ_{lang} is the Langevin polarization capture cross section defined as:

$$\sigma_{lang} = 16.859 * (\alpha/E(eV))^{1/2},$$

where α is the polarizability of the neutral reactant. σ_{dip} is the ion-dipole capture cross section defined as:

$$\sigma_{\text{dip}} = 9.4186 * D(\text{debye}) / E(\text{eV}),$$

where D is the dipole moment of the reactant gas. C is the locking constant for the,

locked dipole approximation (C = 0.318 for this study). When the reactant gas molecule has no dipole moment, σ_{lang} was used. This form of the collision cross section is used at low collision energies. At high energies, capture effects become less important and the collision cross section is given instead by the physical size (hard sphere cross section) of the reactants. The hard sphere cross section is given by:

$$\sigma_{\rm hs} = \pi * (R_{\rm c} + R_{\rm g})^2,$$

where R_c is the radius of the cluster and R_g is the radius of the neutral gas molecule.

The reaction efficiency is thus given by the ratio: $\sigma_{\rm exp}/\sigma_{\rm col}$ where $\sigma_{\rm col}$ is the larger of $\sigma_{\rm lock}$ or $\sigma_{\rm hs}$. This ratios provides an estimate of the absolute reactivity of these systems at various collision energies. In order to calculate the reaction probability at various temperatures of the reaction, these ratios are averaged over a Maxwell-Boltzmann distribution. These distributions are of the form:

$$dn = 2\pi N[\pi kT]^{-3/2} \epsilon^{1/2} e^{-\epsilon/kT} d\epsilon.$$

Several of these distributions at various temperatures are shown in Figure 3. Note that the maxima of these distributions occur at very low energies (< 0.1 eV). The distributions are normalized so that the area under the curves equal 1. The integral of the reactivity at a specific energy is set the corresponding Boltzmann factor yields a reaction probability or "efficiency" at a specific temperature. This calculation was done for temperatures between 300 and 2500 K.

III. Results

The results are compiled in Tables 1 and 2. We give total reaction efficiency as

a function of temperature as well as the efficiencies for formation of all the major products. All values lie between 0 and 1 where 1 represents the maximum reaction efficiency. The data in Tables 1 and 2 are plotted in Figures 4-13. In general, the reaction probabilities for most of the reaction systems studied tend to increase with increasing temperature and then level off or decrease slightly.

The reactions which preferentially form oxide products are those with O₂ and CO₂. The reaction efficiencies for these reactions are plotted versus temperature in Figures 4 and 5. Oxide formation makes up a significant percentage of the total reaction probability for the O_2 reactions and the majority for the CO_2 reactions. B_6^+ is much more efficient at forming oxides that B₁₂ however. N₂O reactions also result in oxide formation (Figure 6) but for some smaller clusters such as B₆, the largest percentage of the reaction probability is due to boron-nitride formation. The larger clusters, which should be more representative of bulk boron surfaces, react preferentially to form oxide products by a factor of 4. Some nitride is produced however and we believe that reactions with NO_x species is the likely source of the BN solid observed by Kuo and co-workers in boron fuel combustion. Reactions with D2O (Figure 7) lead to only a small amount of oxide formation for the small size clusters (six atoms and less) while the reaction efficiency for the large cluster oxide formation is zero. The formation of the hydride is the largest percentage of the reaction probability for most cluster sizes. Almost the entire reaction probability for the CO reactions (Figure 8) is due to the adduct formation at very low collision energies (< 0.2 eV). No reactive oxide formation is detected. The reaction probability for other neutral gases varies considerably. N₂

(Figure 9) is very nonreactive with reaction efficiencies in the millionth of a percent range at 2500 K. D₂ reactions (Figure 10) yield significant reaction efficiencies but these are considerably temperature dependant, especially for B_{12}^+ . The efficiencies for the reaction of methane and boron cluster ions is very dependent on cluster size (Figure For B₆⁺, the total reaction probability is near unity and nearly constant with temperature. The reaction probability for B_{12}^+ is an order of magnitude smaller and is much more temperature dependant. Figure 12 shows the reaction probability for the reaction of B₆⁺ with CF₄. The products formed are quite different than those of the analogous methane reactions, forming fluorides over carbides. The reaction probability for fluoride formation is only about 40% and is quite temperature dependant. The reaction of B₁₂ with CF₄ was not studied. The results for the reactions with silane (Figure 13) are quite similar for both B_6^+ and B_{12}^+ with addition of SiH_n (n = 0-3) to the intact cluster making up over 90% of the total reaction probability. The temperature dependence is also similar for both cluster sizes. In Figures 14 and 15, the total reaction probabilities versus temperature for the various reactions of neutral gases with $B_6^{\scriptscriptstyle +}$ and B₁₂ respectively are shown. Methane, silane, water and carbon dioxide have the largest total reaction efficiencies for reactions with B₆⁺ while silane, water and nitrous oxide are largest for B_{12}^+ . For the majority of the reactions with B_{12}^+ , the total reaction efficiencies are less than 10% while for B_6^+ , all the totals except for N_2 , are greater than 10% of the maximum reaction efficiency.

For most of these reactions, we have only surveyed the chemistry for B_6^+ and B_{12}^+ . Based on more detailed studies of all size clusters reacting with O_2 , D_2 , D_2O , CO_2 and N_2O , we believe that B_{12}^+ is quite representative of the chemistry of large clusters. Further studies are in progress of the detailed chemistry with these and other reactants. In addition, we are preparing to carry out studies of much larger clusters.

TEMPERATURE (K)

	PRODUCTS	300	750	1000	1250	1500	1750	2000	2250	2500
86+ + N2										
DUT T NZ	8+ .	5.2E-39	3.0E-18	8.8E-15	1.1E-12	2.7F-11	0.000000	0.000000	0.000000	0.000000
	B3N+	6.8E-78	4.0E-33	9.4E-26	2.3E-21	1.9E-18	2.3E-16		1.3E-13	1.2E-12
	B4N2+	2.3E-39	1.4E-18	3.9E-15	4.8E-13	1.2E-11			0.000000	0.000000
	TOTALS	7.5E-39	4.4E-18	1.3E-14	1.6E-12	3.9E-11	0.000000	0.000000	0.000000	0.000000
86+ + N20)									
	B5+	0.046511	0.079841	0.094906	0.107944	0.119094	0.128550	0.136542	0.143298	0.149026
	B5N+	0.037874	ũ. ʊ55335	0.060415	0.063558	0.065344	0.066181	0.066356	0.066073	0.065472
	B6N+	0.134031	0.240353	0.279334	0.308705	0.330829	0.347440	0.359833	0.368981	0.375626
	B60+	0.054669	0.086368	0.096071	0.102304	0.106075	0.108092	0.108860	0.108739	0.107986
	OTHER					0.055156				
	TOTAL	0.307360	0.509003	0.581747	0.636100	0.676499	0.706253	0.727873	0.743275	0.753921
B6+ + C0										
	8+					0.000221				
	8 5+					0.014432				
	B6CO+					0.394380				
	TOTAL	0.351744	0.422910	0.428125	0.421875	0.409034	0.392776	0.375074	0.357106	0.339542
B6+ + C0	2									
	B60+	0.618988	0.735733	0.764272	0.779332	0.784651	0.783080	0.776744	0.767190	0.755529
	B602+	0.126479	0.138505	0.137985	0.135262	0.131201	0.126404	0.121268	0.116046	0.110894
	OTHER	0.012784	0.021224	0.023814	0.025459	0.026441	0.026963	0.027170	0.027172	0.027047
	TOTAL	0.757876	0.882305	0.904897	0.913566	0.912874	0.905762	0.894302	0.879986	0.863890
86+ + CH	l									
	B4CHN+	0.000439	0.000610	0.000715	0.000821	0.000921	0.001013	0.001094	0.001166	0.001230
	85CHn+	0.010003	0.019316	0.021203	0.021831	0.021777	0.021390	0.020868	0.020314	0.019782
	B6CHn+	0.908414	0.971642	0.979751	0.982737	0.982025	0.977989	0.970939	0.961305	0.949597
	OTHER					0.000090				
	TOTAL	0.909274	0.971929	0.979969	0.982983	0.982406	0.978615	0.971905	0.962692	0.951460
86+ + CF	(
	CF3+	0.055111	0.079358	0.096070	0.112775	0.128040	0.141225	0.152213	0.161161	0.168340
	86°+					C.098878				
	B6F2+					0.075940				
	OTHER					0.051999				
	TOTAL	0.230587	0.277961	0.305316	0.331650	0.354858	0.374112	0.389394	0.401081	0.409700
86+ + Sil	HŁ									
	SiHn+		•			0.001677				
						0.078236				
	B6SiHn+					0.772616				
	OTHER					0.000026				
	TOTAL	0.462125	0.670543	0.736413	0.783191	0.817385	0.842930	0.862303	0.877127	0.888509

```
B6+ + D2
         8+
                  0.000005 0.000130 0.000238 0.000350 0.000459 0.000562 0.000657 0.000745 0.000826
         B5+
                  0.000368 0.001067 0.001426 0.001758 0.002052 0.002302 0.002508 0.002673 0.002804
                  0.001124 0.001531 0.001608 0.001628 0.001615 0.001581 0.001538 0.001489 0.001438
         B5D+
                  0.049419 0.081288 0.094756 0.106027 0.115471 0.123400 0.130078 0.135727 0.14053C
         860+
         B6D2+
                  0.096182 0.112347 0.109416 0.103996 0.097757 0.091451 0.085415 0.079785 0.074503
         TOTAL
                  0.147100 0.196364 0.207445 0.213761 0.217355 0.219288 0.220197 0.220421 0.220202
B6+ + 02
         B40+
                  0.006865 0.010396 0.011600 0.012462 0.013075 0.013505 0.013802 0.014002 0.014131
                  0.006151 0.008642 0.009245 0.009536 0.009627 0.009591 0.009476 0.009312 0.009319
         B50+
         860+
                  0.013200 0.019748 0.021913 0.023461 0.024593 0.025444 0.026101 0.026618 0.027033
         CID
                  0.049749 0.076277 0.085718 0.092792 0.098157 0.102277 0.105484 0.108010 0.110024
         TOTAL
                  0.075966 0.115066 0.128477 0.138253 0.145453 0.150819 0.154864 0.157944 0.160308
B6+ + D20
         OTHER
                  0.064712 0.119499 0.138102 0.151631 0.161754 0.169547 0.175716 0.180742 0.184951
         850+
                  0.259666 0.479778 0.555826 0.611372 0.652151 0.681798 0.702815 0.717054 C.725945
                  0.129373 0.239272 0.275968 0.301534 0.319059 0.330666 0.337867 0.341763 0.343175
         B60D+
         TOTAL
                  0.445906 0.727998 0.797565 0.841560 0.871014 0.891413 0.905717 0.915664 0.922356
```

TEMPERATURE (K)

	PRODUCT	300	750	1000	1250	1500	1750	2000	2250	25 0C
B12+ + N	12									
0121 1 1	B11N2+	3.5E-38	1.7E-17	4.3E-14	4.7E-12	1.1E-10	9.8E-10	5.2E-09	1.9E-08	5.2E-08
B12+ + N	12C									
	B110+	0.019582	0.027709	0.02918	0.029506	0.029163	0.028452	0.027554	0.026577	0.025583
	B12N+	• • • • • • • •							0.042933	
	B120+								0.193453	
	OTHER								0.007551	
	TOTAL	0.196591	0.280335	0.295031	0.299965	0.295888	0.289834	0.28067	0.270525	0.25007
B12+ + C	co									
	B+	0.00014	0.000107	n.000108	0.000117	0.000127	0.000137	0.000146	0.000154	0.00016
	B12C0+				-				0.014428	
	TOTAL	0.015849	0.018216	0.01823	0.01779	0.017098	0.016285	0.015431	0.014582	0.013763
B12+ + 0	02									
	B120+	0.000039	0.000084	0.000135	0.000193	0.000256	0.000321	0.000388	0.000457	0.000528
B12+ + 0	CH4									
	B11CHn+	3.5E-06	0.000084	0.00016	0.000239	0.000314	0.000379	0.000432	0.000473	0.000505
	B12CHn+	0.014626	0.024738	0.028108	0.030538	0.032353	0.033767	0.034911	0.035871	0.036701
	OTHER	0.002101	0.003151	0.004537	0.006343	0.008034	0.009588	0.010956	0.012134	0.013137
	TOTAL	0.016731	0.027973	0.032904	0.03712	0.040702	0.043733	0.046298	0.048479	0.050344
B12+ + 5	SiH4									
	SiH3+	9.2E-06	0.000022	0.000027	0.000029	0.000031	0.000032	0.000033	0.000034	0.000034
	811SiHn+	0.016347	0.025863	0.028898	0.031004	0.032463	0.033458	0.034117	0.034528	0.034758
	B12SiHn+	0.283038	0.463245				-		0.729342	
	TOTAL	0.299394	0.488798	0.5613	0.618988	0.665219	0.702319	0.732016	0.755653	0.774302
B12+ + [)2									
	811+	7.5E-07	0.000419	0.001249	0.002383	0.003611	0.004783	0.005819	0.006691	0.007398
	912D+	6.7E-08	0.000039	0.000123	0.000252	0.000414	0.0006	0.000802	0.001018	0.001249
	B12D2+								0.010375	0.011182
	TOTAL	0.001853	0.004996	0.005998	0.009279	0.011658	0.013974	0.01613	0.018084	0.01963
B12+ + 0)2									
	8110+	0.005222	0.007426	0.00797	0.008244	0.008347	0.00934	0 008265	0.008146	0.008001
	B10+	0.021328	0.033725	0.038295	0.041827	0.044635	0.046932	0.048865	0.050535	0.052014
	89+								0.000017	
	811+								1.2E-07	
	TOTAL	0.02655	0.041151	0.046265	0.050072	0.052982	0.055275	0.057137	0.058698	0.050048
B12+ + [20									
	B1002+	0.058072	0.053136	0.045057	0.039964	0.034965	0.030898	0.027565	0.024806	0.022496
	8110+	0.351217	0.46398	0.472338	0.469593	0.461263	0.449861	0.436762	0.422801	0.408516
	TOTAL	0.409289	0.517115	0.518405	0.509558	0.496229	0.480759	0.464327	0.447608	0.431011

Figure 1(a)

Figure 1(b)

Figure 2(a)

MAXWELL DISTRIBUTION

Figure 5

Figure 8

Figure 11

TOTAL REACTION PROBABILITY

TOTAL REACTION PROBABILITY

TOTAL REACTION PROBABILITY

Figure 15