Лекция 08.02.23

Note 1

5827h1592ce43c89ch6h0ced3h4d31f

Что называют точкой единственности нормальной системы ОДУ?

Точку, в которой любые два решения совпадают в какойто окрестности.

Note 2

2ea8ea4d05724302a63c54bc0da567d3

Что называют областью единственности нормальной системы ОДУ?

Множество, каждая точка которого является точкой единственности.

Note 3

d01750d4171240d29b0a0cd7c3d3c529

Как называется множество, каждая точка которого является точкой единственности нормальной системы ОДУ?

Область единственности.

Note 4

4d1523d66ab844aa9b0704cc711c3417

Какой объект рассматривается в лемме Гронуолла?

Вещественная функция, непрерывная на промежутке.

Note 5

543b9220dd454bd9924332527fd9daf3

При каком условии мы можем что-либо заключить из леммы Гронуолла?

Функция неотрицательна и удовлетворяет верхней оценке специального вида.

Какая верхняя оценка рассматривается в условии леммы Гронуолла для функции u(x)?

$$u(x) \leqslant \lambda + \mu \left| \int_{x_0}^x u \right|.$$

Note 7

l9166e03442c40348858cea60c552e7b

Что мы заключаем из леммы Гронуолла при

$$0 \leqslant u(x) \leqslant \lambda + \mu \left| \int_{x_0}^x u \right| ?$$

Функция мажорируется $\lambda e^{\mu|x-x_0|}$

Note 8

d0ac7971eb0848c5945bd44448c69ed2

Как называется утверждение, дающее верхнюю оценку значению функции, удовлетворяющей неравенству

$$0 \leqslant u(x) \leqslant \lambda + \mu \left| \int_{x_0}^x u \right| ?$$

Лемма Гронуолла.

Note 9

027057804d3h47cda81edd42af57dd3:

Каков первый шаг в доказательстве леммы Гронуолла?

Не умаляя общности, $x > x_0$.

Note 10

a 1c68ah3f1ae4hdhhee93390da3a3de

В чём основная идея доказательства леммы Гронуолла?

Продифференцировать правую часть и получить для неё рекуррентное неравенство.

В доказательстве леммы Гронуолла, что делать с

$$F'(x) \leqslant \mu F(x)$$
,

где F(x) — верхняя оценка из условия леммы?

Перенести всё налево, умножить на $e^{\mu(x-x_0)}$ и "признать врага в лицо."

Note 12

2112162dc12d4371a5d95a0a5c81dde

Что мы заключаем из леммы Гронуолла при

$$0 \leqslant u(x) \leqslant \mu \left| \int_{x_0}^x u \right| ?$$

 $u \equiv 0.$

Note 13

3a4dc8a6e6c843cab187bd437bd37ed7

Как называется теорема, дающая достаточное условие для единственности решения нормальной системы ОДУ?

Теорема единственности. (Без именного названия.)

Note 14

f10d5792225a462e818a47338d607d4

При каком условии мы можем что-либо заключить и теоремы единственности для нормальной системы

$$\frac{dy}{dx} = f(x,y)$$
?

f непрерывна и локально липшицева по y на области.

Note 15

3999cae9517e45d38664d4057e294d6

Что мы заключаем из теоремы единственности для нормальной системы ОДУ?

Рассматриваемая область является областью единственности

Note 16

ee6667cf95fa44ea94ed335d1995449

Что мы знаем про нормальную систему ОДУ $\frac{dy}{dx} = f(x, y)$, если f непрерывна?

Система имеет решение в любой точке области.

Note 17

ea18f67e9b5744b8bedca43879e2f1c

Что мы знаем про нормальную систему ОДУ $\frac{dy}{dx}=f(x,y),$ если f непрерывна и $f\in \mathrm{Lip}_{u,loc}?$

Система имеет единственное решение в любой точке области.

Note 18

83c8abcc85f4421fbf2631d2d41a355e

В чём основная идея доказательства теоремы единственности для нормальной системы ОДУ?

Эквивалентное интегральное уравнение и лемма Гронуолла для модуля разности двух решений.

Note 19

11813e9dad05416ea07fec54079ef308

Для каких отображений определяют понятия продолжения влево/вправо?

Для отображений на вещественном интервале.

Note 20

edd36d4bee94445d87ac7321ef743c2l

Пусть $f:(a,b) \to \mathbb{R}^n$. Что называется продолжением f вправо за точку b?

Продолжение f на (a, b + h) для h > 0.

Note 21

97987fbe68164bc8a81f5a04da103eea

Пусть $f:(a,b)\to\mathbb{R}^n$. Как называется продолжение f на (a,b+h) для h>0?

Продолжение f вправо за точку b.

Note 22

07a52d059bbb42b69130084ef38de2bf

Пусть $f:(a,b) \to \mathbb{R}^n$. Что называется продолжением f влево за точку a?

Продолжение f на (a-h,b) для h>0.

Note 23

e4b59d0b8312421eb65334626219bd70

Какие решения нормальной системы ОДУ называются продолжимыми вправо?

Для которых существует продолжение вправо, являющееся решением на увеличенном интервале.

Note 24

29fa852c7ae349a7bbc629ba1ccbc91c

Как называется решение нормальной системы ОДУ, для которого существует продолжение вправо, являющееся решением на увеличенном интервале?

Оно называется продолжимым вправо за правую границу интервала.

Note 25

c491a538b7db4ce3bf0c6ca23237934b

Какая нормальная система ОДУ рассматривается в критерии продолжимости решения?

Удовлетворяющая теоремам о существовании и един-

Note 26

8254ec43487a4e93a77cea2097415f38

Сколько условий рассматривается в критерии продолжимости решения нормальной системы ОДУ?

Два.

Note 27

0a9dcea1e6074255be00f65fdea01c03

Каково первое условие в критерии продолжимости решения нормальной системы ОДУ?

Функция-решение стремится к конечному значению при стремлении аргумента к границе интервала.

Note 28

a81ae7bc19a64929ba24fac472d948f7

Каково второе условие в критерии продолжимости решения нормальной системы ОДУ?

Предельная точка графика решения лежит в области определения системы.

Note 29

c1a593f883dc4ca286c605eb39e9e0cb

В чём основная идея доказательства критерия продолжимости решения нормальной системы ОДУ (необходимость)?

Использовать непрерывность продолжения.

Note 30

6bacc1bc712547c98eba8cb8df13c0d7

В чём основная идея доказательства критерия продолжимости решения нормальной системы ОДУ (достаточность)?

Построить решение в предельно точке по теореме о существовании и единственности.

Лекция 15.02.23

Note 1

e70121fb1cd476b88648f942378d5af

Какое решение нормальной системы ОДУ называется полным?

Не продолжимое ни вправо, ни влево.

Note 2

292c61dbfb87414badb68d642ac18ce

Как называется решение нормальной системы ОДУ, не продолжимое ни вправо, ни влево?

Полное решение.

Семинар 13.02.23

Note 1

h2a41835a1a34a13a8613528a5da5084

Какой вопрос решает формула Остроградского-Лиувилля?

Поиск общего решения линейного ОДУ порядка 2.

Note 2

0ed454bd6f14993b6688b0fd10d83e7

К каким линейным ОДУ порядка 2 применима формула Остроградского-Лиувилля?

Со старшим коэффициентом равным единице.

Note 3

0cc85c87f3cf47e3a72a6ca696e41ed3

Что нужно для поиска общего решения линейного ОДУ порядка 2 по формуле Остроградского-Лиувилля?

Известное частное решение.

Note 4

752e29e2f11490a868adb3e833f6587

Формула Остроградского-Лиувилля для ОДУ

$$y'' + py' + qy = 0$$

с частным решением y_1 ...

$$\begin{vmatrix} y_1 & y \\ y'_1 & y' \end{vmatrix} = Ce^{-\int p \, dx}.$$

Note 5

f2208397751c43d0be5bdc7ca1d2a728

В каком виде обычно ищут частное решение линейного ОДУ порядка 2 для применения формулы Остроградского-Лиувилля?

■ Многочлен или $e^{\alpha x}$.

Note 6

8f4044a18h241959ff403hca242d8d1

Как найти степень многочлена при поиске частного решения линейного ОДУ порядка 2?

Подставить x^n и приравнять к нулю коэффициент перед старшей степенью.

Note 7

e0a16dee90764dffb9f4c18a7d226fd7

Как ищется многочлен, являющийся частным решением линейного ОДУ порядка 2, если уже известна его степень?

Методом неопределённых коэффициентов.