PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/82, 15/56, 15/11

C12N 5/10, A01H 5/00

A1

(11) International Publication Number:

WO 91/16440

(43) International Publication Date:

31 October 1991 (31.10.91)

(21) International Application Number:

PCT/GB91/00614

(22) International Filing Date:

19 April 1991 (19.04.91)

(30) Priority data: 9009307.1

25 April 1990 (25.04.90)

GB

(71) Applicant (for all designated States except US): IMPERIAL CHEMICAL INDUSTRIES PLC [GB/GB]; Imperial Chemical House, Millbank, London SW1P 3JF (GB).

- (72) Inventors; and
 (75) Inventors/Applicants (for US only): BIRD, Colin, Roger [GB/GB]; 31 Fairfax, Bracknell, Berkshire RG12 1YT (GB). RAY, John, Anthony [GB/GB]; 30 Sylvanus, Wooden Hill, Bracknell, Berkshire RG12 4XX (GB). SCHUCH, Wolfgang, Walter [DE/GB]; 14 Greenfinch Close, Heathlake Park, Crowthorne, Berkshire RG11 6TZ (GB).
- (74) Agent: ROBERTS, Timothy, Wace; Imperial Chemical Industries plc, Legal Department/Patents, PO Box No 6, Bessemer Road, Welwyn Garden City, Herts, AL7 1HD (GB).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent). US. patent), US.

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DNA, DNA CONSTRUCTS, CELLS AND PLANTS DERIVED THEREFROM

(57) Abstract

DNA constructs useful for modifying the ripening behaviour of fruit comprise a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence homologous to some or all of a gene encoding cellulase or a like enzyme, said gene showing substantial homology to DNA encoded by either of the constructs TCELB6 and MCELE2. Also plant cells and plants transformed with such constructs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	ES	Spain	MG	Madagascar
AU	Australia	Fl	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
Ci	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	·LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

- 1 -

DNA, DNA CONSTRUCTS, CELLS AND PLANTS DERIVED THEREFROM

This application relates to novel DNA constructs, plant cells containing them and plants derived therefrom. In particular it involves the use of recombinant DNA technology to control gene expression in plants.

5 As is well known, a cell manufactures protein by transcribing the DNA of the gene for that protein to produce messenger RNA (mRNA), which is then processed (eg by the removal of introns) and 10 finally translated by ribosomes into protein. process may be inhibited by the presence in the cell of "antisense RNA". By this term is meant an RNA sequence which is complementary to a sequence of bases in the mRNA in question: 15 complementary in the sense that each base (or the majority of bases) in the antisense sequence (read in the 3' to 5' sense) is capable of pairing with the corresponding base (G with C, A with U) in the mRNA sequence read in the 5' to 3' sense. believed that this inhibition takes place by 20 formation of a complex between the two complementary strands of RNA, preventing the formation of protein. How this works is uncertain: the complex may interfere with further 25 transcription, processing, transport or translation, or degrade the mRNA, or have more than one of these effects. Such antisense RNA may be produced in the cell by transformation with an appropriate DNA construct arranged to transcribe backwards part of the coding strand (as opposed to the template strand) of the relevant gene (or of a DNA sequence showing substantial homology

therewith).

30

The use of this technology to downregulate the expression of specific plant genes has been described, in for example European Patent publication no 271988 to ICI (corresponding to US 5 serial 119614). Reduction of gene expression has led to a change in the phenotype of the plant: either at the level of gross visible phenotypic difference e.g. lack of anthocyanin production in 10 flower petals of petunia leading to colourless instead of coloured petals (van der Krol et al, Nature, 333, 866-869, 1988); or at a more subtle biochemical level e.g. change in the amount of polygalacturonase and reduction in depolymerisation 15 of pectins during tomato fruit ripening (Smith et al, Nature, 334, 724-726, 1988; Smith et al., Plant Molecular Biology, 13, 303-311, 1990). antisense RNA has been proven to be useful in achieving downregulation of gene expression in 20 plants.

In work leading to the present invention we have isolated DNA sequences encoding cellulase or like enzymes from tomato and melon. We postulate that these will be of use in modifying the ripening characteristics of tomatoes, melons and other fruit.

The cell walls of tomato and melon fruit predominantly consist of polysaccharides which have been sub-divided into cellulose, hemicellulose and pectin fractions. During fruit ripening there are considerable changes in the composition of the cell walls. In tomato pericarp tissue the proportion of cellulose in cell wall fractions increases slightly (Huber, Horticultural Science 20, 442-443, 1985).

A similar slight increase in cellulose content has been observed in ripening melons. However since other cell wall fractions are rapidly

solubilised and degraded, the absolute level of cellulose may decline during ripening. In the tomato locular gel the proportion of cellulose in the cell wall fractions decreases during ripening.

Increases in cellulase activity have been correlated with avocado fruit ripening (Awad and Young, Plant Physiology 64, 306-308, 1979). The role of cellulase in tomato and melon fruit softening is unclear.

5

25

10 There have been several reports of cellulase activity in tomato fruit (eg Hall, Nature 200 1010-1011,1963 and Hobson, Journal of food science 33, 588-592, 1968). Cellulase activity has been detected in mature green tomato fruit at the onset 15 of ripening. In pericarp tissue, cellulase activity increases approximately ten fold as ripening progresses (Poovaiah and Nukaya, Plant Physiology 64, 534-537, 1979 and Huber, 1985 cited above). Cellulase activity is higher in the 20 locular gel than in the pericarp and also increases during ripening. It has been suggested that cellulase activity may particularly be an important feature of gel formation.

In ripening melons cellulase activity was reported to be highest in youngest tissues and then declined as fruit matured and ripened (Lester and Dunlap, Scientia Horticulturae 26, 323-331, 1985).

According to the present invention we provide

DNA constructs comprising a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence homologous to some or all of a gene encoding cellulase or a like enzyme, said gene showing substantial homology to DNA encoded by either of the constructs TCELB6 and MCELE2.

- 4 -

5

10

15

20

25

30

In a further aspect, the present invention provides such DNA constructs comprising a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence encoding RNA complementary to a substantial run of bases showing substantial homology to an mRNA encoding cellulase or a like enzyme. The invention also includes plant cells containing constructs of the invention; transformed plants derived therefrom showing modified ripening characteristics; and fruit and seeds of such plants

The constructs of the invention may be inserted into plants to regulate the production of cellulase or like enzymes. Depending on the nature of the construct, the production of the enzyme may be increased, or reduced, either throughout or at particular stages in the life of the plant.

Generally, as would be expected, production of the enzyme is enhanced only by constructs which contain DNA homologous to the substantially complete gene. What is more surprising is that constructs containing an incomplete DNA sequence substantially shorter than that corresponding to the complete gene generally inhibit the expression of the enzyme, whether they are arranged to express sense or antisense RNA.

The genes used in the invention typically derive from DNA from tomato or melon cellulase genes; or from DNA which is fully or partly homologous thereto. This invention may be put into effect using the clones TCELB6 or MCELE2 that have been deposited. Alternatively such clones may be used as probes to identify other homologous cellulase or like genes (or parts thereof) in plant DNA, thereby obtaining DNA in longer lengths or having variant sequences. It is possible to screen

30

in this way DNA derived from tomato or melon, or from other plant material known to obtain cellulase genes.

The plants to which the present invention can be applied include commercially important fruit-bearing plants, in particular tomato and melon. In this way, plants can be generated which express RNA from recombinant DNA and which may have one or more of the following characteristics:

Delayed softening and improved firmness; 10 Reduced spoilage of fruit during handling, due to delayed softening but continued development of colour, flavour and aroma during ripening on the plant (this should allow the fruit to 15 be harvested closer to the ripe fruit stage but still withstand handling and transport to arrive at the market in good condition); 20 Longer shelf life and better storage characteristics due to reduced cell wall degradation (the fruit may also be less prone to infection in storage); Improved processing characteristics due to changed activity of cellulase contributing to 25 factors such as: viscosity of paste, solids content, pH, elasticity.

DNA constructs according to the invention preferably comprise a base sequence at least 20 bases in length for transcription into RNA. If enhancement of expression of the enzyme is the objective, then substantially the whole of the gene sequence should be included in the construct. For inhibition by sense RNA, a shorter sequence is used. Where antisense RNA is used for inhibition, there is no theoretical upper limit to the length of the base sequence — it may be as long as the

10

15

20

25

30

relevant mRNA produced by the cell — but for convenience it will generally be found suitable to use sequences of at least 50 and preferably between 100 and 1000 bases in length. The preparation of such constructs is described in more detail below.

As source of the DNA base sequence for transcription, it is convenient to use clones such as TCELB6 for tomato cellulase and MCELE2 for melon cellulase. The base sequences of TCELB6 and MCELE2 are set out in Figure 1. Searches in DNA and protein data bases indicate that these clones show homology to clones for avocado fruit cellulase (Tucker et al , Plant Molecular Biology 9, 197-203, 1987) and bean abscission cellulase (Tucker et al Plant Physiology 88, 1257-1262, 1988). TCELB6 and MCELE2 have been deposited on 29 March 1990 with the National Collections of Industrial and Marine Bacteria, Aberdeen, Scotland under Accession Nos. NCIB 40268 and 40269, respectively.

DNA fragments similar to those cloned in TCELB6 and MCELE2 may be generated in polymerase chain reactions using appropriate synthetic oligonucleotide primers and either tomato or melon genomic DNA as appropriate. Alternatively, cDNA clones showing homology to TCELB6 and MCELE2 may be obtained from the mRNA of ripening tomatoes or melons by methods similar to those described by Slater et al, Plant Molecular Biology 5, 137-147, 1985. In this way may be obtained sequences coding for the whole, or substantially the whole, of the mRNA produced by tomato or melon cellulase genes. Suitable lengths of the cDNA so obtained may be cut out for use by means of restriction enzymes.

The source of DNA fragments for the base sequence for transcription may be derived from

25

30

either mRNA or from a gene encoding a cellulase or like enzyme. If the DNA is derived from a gene it may differ from that derived from mRNA in that introns may be present. The introns are not transcribed into mRNA (or, if so transcribed, are subsequently cut out). When using such a gene as the source of the base sequence for transcription it is possible to use either intron or exon regions.

A further way of obtaining a suitable DNA base sequence for transcription is to synthesise it ab initio from the appropriate bases, for example using Figure 1 as a guide. Devices such as the Applied Biosystems oligonucleotide synthesiser are available which will synthesise lengths of single stranded DNA in any desired base sequence up to a maximum of around 100 bases. Complementary strands of DNA are annealed and subsequently ligated to form a double stranded DNA fragment of the desired length and sequence.

In the new vectors expressing antisense RNA, the strand that was formerly the template strand becomes the coding strand, and vice versa. The new vector will thus encode RNA in a base sequence which is complementary to the sequence of the cellulase gene. Thus the two RNA strands are complementary not only in their base sequence but also in their orientations (5' to 3').

Recombinant DNA and vectors according to the present invention may be made as follows. A suitable DNA source containing the desired base sequence for transcription (for example TCELB6 or MCELE2) is treated with restriction enzymes to cut the sequence out. Alternatively a suitable fragment may be generated by polymerase chain reaction (PCR) from a suitable DNA source (for

10

example TCELB6 or MCELE2) using synthetic oligonucleotide primers. The DNA strand so obtained is cloned (if desired in reverse orientation) into a second vector containing the desired promoter sequence (for example cauliflower mosaic virus 35S RNA promoter or the tomato polygalacturonase gene promoter sequence - Bird et al., Plant Molecular Biology, 11, 651-662, 1988) and the desired terminator sequence (for example the 3' of the Agrobacterium tumefaciens nopaline synthase gene, the nos 3' end).

According to the invention we propose to use both constitutive promoters (such as cauliflower mosaic virus 35S) and inducible or developmentally regulated promoters (such as the 15 ripe-fruit-specific polygalacturonase gene) as circumstances require. Use of a constitutive promoter will tend to affect functions in all parts of the plant: while by using a tissue-specific promoter, functions may be controlled more 20 selectively. Thus in applying the invention, e.g. to tomatoes and melons, it may be found convenient to use the promoter of the PG gene (Bird et al, 1988, cited above). Use of this promoter, at least in tomatoes, has the advantage that the production 25 of antisense RNA is under the control of a ripening-specific promoter. Thus the antisense RNA is only produced in the organ in which its action is required. Other tomato ripening-specific promoters that could be used include the E8 30 promoter (Diekman & Fischer, EMBO Journal 7, 3315-3320, 1988).

Vectors according to the invention may be used to transform plants as desired, to make plants according to the invention. Dicotyledonous plants, such as tomato and melon, may be transformed by

10

15

20

25

30

Agrobacterium Ti plasmid technology, for example as described by Bevan (1984) Nucleic Acid Research, 12, 8711-8721. Such transformed plants may be reproduced sexually, or by cell or tissue culture.

The degree of production of antisense RNA in the plant cells can be controlled by suitable choice of promoter sequences, or by selecting the number of copies, or the site of integration, of the DNA sequences according to the invention that are introduced into the plant genome. In this way it may be possible to modify ripening or senescence to a greater or lesser extent.

The constructs of our invention may be used to transform cells of both monocotyledonous and dicotyledonous plants in various ways known to the In many cases such plant cells (particularly when they are cells of dicotyledonous plants) may be cultured to regenerate whole plants which subsequently reproduce to give successive generations of genetically modified plants. Examples of genetically modified plants according to the present invention include, as well as tomatoes, fruits of such as mangoes, peaches, apples, pears, strawberries, bananas and melons. Such genetically modified plants may further contain other exogenous DNA expressible under the control of plant promoters, for example DNA expressing RNA antisense to other fruit ripening enzymes, for example polygalacturonase or pectin methylesterase, as described in our European Patent application 271,988 (US Serial 119,614).

The invention will now be further described with reference to the drawings, in which:

- 10 -

Figure 1 shows the base sequences of tomato and melon cellulase genes in clones TCELB6 (Seq ID No: 1) and MCELE2 (Seq ID No: 2) respectively.

Figure 2 shows the oligonucleotides used for generation of fragments of tomato and melon cellulase gene by polymerase chain reaction.

Figure 3 shows a strategy for generation of fragments of a tomato cellulase gene by polymerase chain reaction.

10

Figure 4 shows the base sequence of tomato cellulase cDNA clone lambda cel-1 (Seq ID No: 3)

Figure 5 shows a strategy for construction of a cellulase antisense RNA vector pJR1TC1 according to the invention.

The following Examples illustrate aspects of the invention:

20

25

25

EXAMPLE 1

Synthesis, cloning and characterisation of a fragment of a tomato cellulase gene.

A fragment of a tomato cellulase gene was generated in a polymerase chain reaction. Synthetic oligonucleotide primers for the reaction (TCEL10 and TCEL11) were designed from regions of homology between avocado (Tucker et al, 1987, cited above) and bean abscision (Tucker et al, 1988, cited above) cellulase (Figure 2). In a PCR reaction with avocado DNA, these primers would be expected to generate a 266 base pair fragment based on the sequence in Tucker et al, 1987. PCR reactions (Figure 3) with DNA extracted from tomato

- 11 -

(Lycopersicon esculentum Mill cv. Ailsa Craig) using appropriate conditions for annealing and extension generated a fragment of approximately 300 base pairs. This fragment was purified from an agarose gel and 5 cloned into the vector M13mp18 cut with HincII. 21 clones were transferred to microtitre plates and replicated on to nylon membranes (Hybond N - Amersham). The membranes were hybridised with [32P] labelled oligonucleotide TCEL10 in 5xSSPE, 0.25% Marvel, 0.05% 10 SDS at 45oC and washed with 2xSSC, 0.1% SDS at 50oC. Seven clones hybridised to TCEL10. The nucleotide sequence of one of the hybridising clones (TCELB6) was determined (Figure 1). This had significant similarity to the nucleotide sequence of the avocado cellulase gene 15 (Tucker et al, 1987, cited above).

EXAMPLE 2

Synthesis, cloning and characterisation of a 20 fragment of a melon cellulase gene.

25

30

A fragment of a melon cellulase gene was generated, cloned and sequenced in a manner similar to that described in example 1 for the tomato cellulase gene fragment. The same PCR primers (TCEL10 and TCEL11) were used to generate a fragment of approximately 300 base pairs from DNA extracted from melon (Cucumis melo L cv. Western Shipper). This fragment was cloned into M13mp18 cut with HincII and hybridised with [32P] labelled TCEL10. The nucleotide sequence of one hybridising clone (MCELE2) was determined (Figure 1) and had significant homology to the tomato and avocado cellulase genes.

- 12 -

EXAMPLE 3

Isolation and characterisation of a tomato cellulase cDNA clone.

5

The insert of the clone TCELB6 was used as a hybridisation probe to screen a commercially available ripe tomato (Lycopersicon esculentum Mill cv Ailsa Craig) cDNA library. One hybridising clone (lambda cel-1) was identified and purified to homogeneity. The nucleotide sequence of the clone was completely determined (figure 4). The clone had an insert of 1415 base pairs and showed significant similarity to the

15

10

EXAMPLE 4

Construction of tomato and melon cellulase antisense RNA vectors with the gene fragments amplified by PCR and the CaMV 35S promoter.

20

Vectors may be constructed using cloned sequences from tomato or melon cellulase gene or cDNA fragments as shown in Figure 5.

25 1. TCELB6 (223bp tomato cellulase gene) - pJR1TC1

avocado sequence (Tucker et al cited above).

- 2. MCELE2 (223bp melon cellulase gene) pJR1MC1
- pJR1TC1 may be synthesised in vitro by cutting TCELB6 RF

 DNA with PstI the cut ends are then made flush with T4

 DNA polymerase. The DNA is then cut with BamHI. The

 283bp fragment from this reaction is then isolated and

 cloned into pJR1 cut with SmaI and BamHI. pJR1 (Smith et

 al Nature 334, 724-726, 1988) is a Bin19 (Bevan, Nucleic

 Acids Research, 12, 8711-8721, 1984) based vector, which

- 13 -

permits the expression of the antisense RNA under the control of the CaMV 35S promoter. This vector includes a nopaline synthase (nos) 3' end termination sequence.

After synthesis, vectors with the correct structure of pJR1TC1 are identified by DNA sequence analysis.

The vector pJR1MC1 is made similarly, following the construction schemes shown in Figure 5.

10 EXAMPLE 5

Construction of tomato and melon cellulase antisense RNA vectors with the gene fragments isolated by PCR and the tomato polygalacturonase gene promoter.

The tomato and melon gene fragments described in example 3 are also cloned by the same procedure into pJR2 to give the following clones:

- 1. TCELB6 (223bp tomato cellulase gene) pJR2TC1
- 2. MCELE2 (223bp melon cellulase gene) pJR2MC1

pJR2 is a Bin19 based vector, which permits the expression of the antisense RNA under the control of the tomato polygalacturonase promoter. This vector includes a nopaline synthase (nos) 3' end termination sequence (see Figure 4).

EXAMPLE 6

30

35

5

15

20

25

Construction of tomato and melon cellulase sense RNA vectors with the gene fragments isolated by PCR and the CaMV 35S promoter.

The tomato and melon gene fragments described in example 3 are also cloned into pJR1 in the sense orientation to give the following clones:

- 14 -

- 1. TCELB6 (223bp tomato cellulase gene) pJR1TC1S
- 4. MCELE2 (223bp melon cellulase gene) pJR1MC1S

pJR1TC1S may be synthesised in vitro by cutting TCELB6 RF DNA with PstI and XbaI, the cut ends are then made flush with T4 DNA polymerase. The 283bp fragment from this reaction is then isolated and cloned into the HincII site of pJR1. After synthesis, vectors with the sense orientation of TCELB6 sequence are identified by DNA sequence analysis. The vector pJR1MC1S is made similarly.

EXAMPLE 7

15

20

25

30

Construction of tomato antisense and sense RNA vectors with the tomato cellulase cDNA insert.

The tomato cellulase cDNA clone (lambda cel-1) was cut with EcoRI to excise the cDNA insert. The 1415 base pair fragment was isolated and the cut ends were made flush with T4 DNA polymerase. This fragment was then cloned into the SmaI site of pJR1. After synthesis, vectors with the antisense orientation of the lambda cel-1 sequence were identified by both PCR and DNA sequence analysis. One clone that contained the cellulase cDNA sequence in the antisense orientation was designated pJRTCelA.

A vector pJRTCelS may be obtained by using a similar strategy and identifying a clone with the cellulase cDNA sequence in the sense orientation.

EXAMPLE 8

Generation of transformed tomato and melon plants

Vectors made as described in Examples 4-7 are
transferred to Agrobacterium tumefaciens LBA4404 (a

10

micro-organism widely available to plant biotechnologists) and are used to transform tomato and melon plants. Transformation of tomato stem segments follows standard protocols (e.g. Bird et al Plant Molecular Biology 11, 651-662, 1988). Melon plants are transformed by a similar process. Transformed plants are identified by their ability to grow on media containing the antibiotic kanamycin. Plants are regenerated and grown to maturity. Ripening fruit are analysed for modifications to their ripening characteristics.

20

We claim:

- 1. A DNA construct comprising a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence homologous to some or all of a gene encoding cellulase, said gene showing substantial homology to DNA encoded by either of the constructs TCELB6 and MCELE2.
- A DNA construct as claimed in claim 1 comprising a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence encoding RNA complementary to a substantial run of bases showing substantial homology to an mRNA encoding cellulase.
- 3. A DNA construct as claimed in either of claims 1
 or 2 in which the DNA sequence is derived from either of the clones TCELB6 and MCELE2.
 - 4. A DNA construct as claimed in any of claims 1 to 3 in which the DNA sequence is derived from cDNA.
 - 5. A plant cell transformed with a DNA construct claimed in any of claims 1 to 4.
- 6. A genetically modified plant regenerated from a cell claimed in claim 5, or a descendant of such a plant.
- 7. A plant as claimed in claim 6 which shows a reduced expression of cellulase as compared with similar unmodified plants.
 - 8. A plant as claimed in either of claims 6 or 7 which is a tomato or melon plant.

- 9. Fruit and seeds of plants claimed in any of claims 6 to 8.
- 10. The clones TCELB6 and MCELE2, and DNA constructs derived therefrom containing DNA hybridising with the cellulase-related sequences therein.

F16.1

SEQ ID NO: 1 SEQUENCE TYPE: Nucleotide SEQUENCE LENGTH: 223 STRANDEDNESS: Single TOPOLOGY: linear MOLECULE TYPE: genomic DNA ORIGINAL SOURCE ORGANISM: Lycopersicon esculentum

FEATURES: from 1 to 223 bp protein coding sequence

PROPERTIES: Tomato cellulase gene (part)

GCATGATCGT TCAGTGTGAT GAACTCACAA GGGGATCCTC ATTACCCTCA GTCCTGATGA GTGGTAGGTG GTGGGATATG GAGCAAGGTA TCCACAGAGG ATTCATCACA AGGGATGGTT TCTGAACCTG AGCGTTCAGA TTACGAGCAA AGTAGGGGCT GATACAATGC TCACCAAACC CGAACGTACT GTCGCGAACC ATCCAGCAAA TTCCCAGACG

F1G. 1 (contd.)

SEQ ID NO: 2 SEQUENCE TYPE: Nucleotide SEQUENCE LENGTH: 223 STRANDEDNESS: Single TOPOLOGY: linear MOLECULE TYPE: genomic DNA

ORIGINAL SOURCE ORGANISM: Cucumis melo

FEATURES: from 1 to 223 bp protein coding sequence

PROPERTIES: Melon cellulase gene (part)

CCCACAAAGA ATCCACCATA GAGCCACGTC GCTACCGCTG GCATTCCAAT GAATGATGGA TCTCCGCCAT GGCCTGATCA GTGGTTGGAG TCCTCTGGCT TCCGAACCAT GATCGACTGC 1 TTTCGAGCAA GCGAGTCCTA CTAATGTTCT ATCCGGCGAA AGCGATCGGA ATTGCAGAGC TCCCCCAACC GTCGGATATG TTTCCAGATG F16.2

Oligonucleotides used in PCR reactions for the generation of

tomato and melon gene fragments

TCEL 10 - CCGGCCAAGATGTCATACATG

TCEL 11 - CAAGTGGGGCATTTATGTAAG

4/7

FIG. 3

Strategy for generation of Tomato and Melon cellulase gene fragments by PCR

Design oligos based on regions of homology between avocado and bean abscision cellulase sequences to specifically amplify those regions from plant genomic DNA

Tomato/meion gDNA - celiulase gene

SEQ ID NO: 3. SEQUENCE TYPE: Nucleotide SEQUENCE LENGTH: 1419

STRANDEDNESS: Single TOPOLOGY: Linear MOLECULE TYPE: cDNA ORIGINAL SOURCE ORGANISM: Lycopersicon esculentum

FEATURES: from 1 to 1104 bp protein coding region

1200 1260 1320 840 960 1020 1080 1140 099 720 780 900 300 360 420 480 540 009 240 GAGTTCAGAT AATATATAT GACCCTAAAA TCCAGCAAAG GAACGTACTA ACTCACTTAC GAATGAAGCC ATTAATATT AGCAAGGTAT ACAGGTGGAC TGTTGGAGCA TCAAGCGCAA TGTTACCTCC GGTTGTTAAA TGCAGGAAGT GTACAAAATT CGCTGCTGCT AAGGGCCATC GAGAAAAGTA GGGTGCTGCT GAACGGGCAA TGATTACAAG CACAGGCCAA TACTAGTATT CACTAGTAGT TATTGGCTGA TTGCTGGAAC TAGCCAAAAA TGGGATATGG TCGTGAACCA CACCAAACCC TCCCAGGCGA GTAGAATCAA ACAATAAGCA CTGCTCGCAT CTGCTGCTCT GCAATGGTCT ATATCCAAAG AAACTCTCCA CACCGGCTTC ACATGCAGTA AGGTTGGAGA CAAGAAGTGT TACTAATCAA AGCTGTTGTG CCTTGTTGAT GTTGTGGTTG CATATGTTGT GATGATAGCA CTCCTATGCA AACTCACAAT CATGATCGTT CAAGTGTGTA GAATTCCGGG CCACAGCCCA TCCAGACACC ATTTACGTTC TATCTCAATT TTCGGGTGGG CAAAAGCTTC ATTCCAGGCA TACTTAACTT CTTCGAAATG TCATACATGG TTACCCTCAG AATGCTCCAC TACTCCAAGA GGTTCATACA TATGAGGATG ATGGACACCC GCTGAAACTG AAAAAAAA PROPERTIES: Tomato cellulase cDNA TTTTAAAAA CTTGTTGGAG CAGTGTGATG ACTCTAAAGT ATGTGCTGGT CAACCCCCC TCCTGATGAG CACTTACATT GTTGGGAGAG ACCTGAGGAT TTGCTCCCTA GGGATCCTCA TTTCTAATTG GAACCCAACT CTATGCCAAG ACCAAAGAGG ACTAAAAATG TGAAGTTGCT CAACCCATCT TAAGTATAGA AGTTTCGGGA TGATAACACA ATTTCTTGTT CTTCAAGATG AGCTTTCTTG CATTTGGCCA CTAAATGGGG AGCCCCCAAC GCATATITGC TTGTTATTAC TGGTAGGTGG CIGAACCIGC TTGTTTTACT TTTCCAAGTC GAGGCCTACT GAGACAATCC GGGATGGTTT ACAACTACAT TTCATCACAG CTCCTGGGAC TTAGGAAATG CCTTTGCTGA ACTACTGCTC GAGCCACAAA CCGCGGAGAC TGCTAGTCAC CTATAGTGGA ATGTTGGTCT AAGAGGCTCC ATAGTCTAAT ATTGTTAGCA ATACAATGCA GTAGGGGCTG TACGAGCAAT CTTGCTCACT GACCACTCTT GACAAAAACA GTGTGCCCAT AGGGTTCTTC AGCCACGCAG TATACACCAG ACTTCTTTCC TGTGGTGGAG TATTTGTTAG CCACAGAGGA AGGGTGTTTG TGGTTACATA TCCTTAGTCT ACTCTTGGGG

INTERNATIONAL SEARCH REPORT

	INTERNATIONAL S	SEARCH REPORT	GB 91/00614
		International Application No	<u> </u>
I. CLASSIFICAT	ION OF SUBJECT MATTER (if several classifi	ication symbols apply, indicate all) ⁶	
	national Patent Classification (IPC) or to both National	onal Classification and IPC	/nn
IPC ⁵ : C	12 N 15/82, 15/56, 15/	11, 3/10, A OI H 3/	
II. FIELDS SEAR			
	Minimum Documen	·	
Classification System	n	Classification Symbols	
IPC ⁵	C 12 N, A 01 H		
	Documentation Searched other the to the Extent that such Documents	nan Minimum Documentation are included in the Fields Searched ⁸	
UL DOCUMENTS	CONSIDERED TO BE RELEVANT		
Category Ci	tation of Document, 11 with Indication, where appr	ropriate, of the relevant passages 12	Relevant to Claim No. 13
	lant Molecular Biology, Martinus Nijhoff Pub NL)	vol. 9, 1987 blishers (Dordrecht)	10
	M.L. Tucker et al.: nucleotide sequence length cDNA clone an small gene family", see the whole docume	of a putative full [.] nd evidence for a pages 197-203	
Y	cited in the applicatio		1-9
Y E	P, A, 0240208 (CALGENE) see page 4, lines 29	7 Ocotber 1987 9-30	1-9
X E	P, A, 0341885 (ICI) 15 see column 2, lines lines 20-55; claims	November 1989 29-45; column 3,	5-9
Х	lant Physiol, vol. 88, M.L. Tucker et al.: cellulase. Character	"Bean abscission	10
	cDNA clone and regul		•/•
"A" document de considered t	ries of cited documents: 10 efining the general state of the art which is not o be of particular relevance	"T" later document published after to priority date and not in conficited to understand the principle invention.	e or theory underlying the
filing date "L" document w which is cite	ment but published on or after the international hich may throw doubts on priority claim(s) or ed to establish the publication date of another ther special reason (as specified)	"X" document of particular relevant cannot be considered novel or involve an inventive step "Y" document of particular relevant cannot be considered to involve	ce; the claimed invention an inventive step when the
"O" document re other means "P" document pu	ferring to an oral disclosure, use, exhibition or	document is combined with one ments, such combination being in the art. "4" document member of the same	or more other such docu- obvious to a person skilled
IV. CERTIFICATI	ON		. b. D
Date of the Actual 8th July	Completion of the International Search 1991	Date of Mailing of this International Se - 9. 09. 91	вагси кероп
International Searci	hing Authority	Signature of Authorized Officer	$\overline{}$
	OPEAN PATENT OFFICE	M. PEIS	·Pez

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)				
Category •	Relevant to Claim No.			
O,P, X	expression by ethylene and auxin", pages 1257-1262, see the whole document Plant Physiol., vol. 93, nr. 1,(suppl.) May 1990, American Society of Plant Physiologists (US) C.C. Lashbrook et al.: "Analysis of CX-cellulase gene expression in wildtype and transgenic tomato fruit",	1-10		
A	page 132, abstract no. 775 EP, A, 0271988 (ICI) 22 June 1988 see the whole document	1-10		
А	Chemical Abstracts, vol. 76, 1972 (Columbus, Ohio, US) F.E. Sobotka et al.: "Cellulase in high pigment and crimson tomato fruit", see page 240, abstract no. 56742e, & J. Amer. Soc. Hort. Sci. 1971, 96(6), 705-7	2		
•				

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

GB 9100614

SA 46471

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 02/09/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A- 0240208	07-10-87	AU-A- 7059787 JP-A- 62296880 US-A- 4801540	01-10-87 24-12-87 31-01-89
EP-A- 0341885	15-11-89	AU-A- 3469789 JP-A- 2031625	16-11-89 01-02-90
EP-A- 0271988	22-06-88	AU-A- 7435091 AU-A- 8095687 JP-A- 63164892	11-07-91 12-05-88 08-07-88