CLAIMS

- 1. A method for removing an acidic gas component from a raw gas, comprising contacting a raw gas containing an acidic gas component to an aqueous alkanolamine solution, wherein a composition comprising an organopolysiloxane having a polyoxyalkylene group and a fine silica powder is present.
- 2. The method for removing an acidic gas component from a raw gas according to claim 1, wherein a composition comprising an organopolysiloxane having a polyoxyalkylene group and a fine silica powder is optionally added, based on foaming state in a system of removing an acidic gas, from the outside system.
- 3. The method for removing an acidic gas from a raw gas according to claim 1, wherein an aqueous alkanolamine solution in which a composition comprising an organopolysiloxane having a polyoxyalkylene group and a fine silica powder had been contained is used.
- 4. The method for removing an acidic gas component from a raw gas according to any one of claims 1 to 3, wherein the specific surface area of the fine silica powder is $50 \text{ m}^2/\text{g}$ or more.

5. The method for removing an acidic gas component according to any one of claims 1 to 4, wherein the composition comprising an organopolysiloxane having a polyoxyalkylene group and a fine silica powder is in an amount of 0.1 to 5000 ppm based on the aqueous alkanolamine solution.

65 5

- 6. An additive for an amine solution for removing an acidic gas, to be added to an amine solution for removing an acidic gas with an aqueous solution containing 40 % by mass or more of an alkanolamine (referred to as an amine hereinafter), wherein the composition comprising an organopolysiloxane having a polyoxyalkylene group and a fine silica powder is present in an amount of 0.1 to 5000 ppm.
- 7. The additive for an amine solution for removing an acidic gas according to claim 6, which is a mixture of 50 to 99 % by mass of an organopolysiloxane having a polyoxyalkylene group, represented by formula (1), and 1 to 50 % by mass of a fine silica powder having a specific surface area of 50 m^2/g or more

$$R^{1}_{2}XSi-(R^{1}_{2}SiO)_{m}-(R^{1}YSiO)_{n}-SiR^{1}_{2}X$$
 (1)

(provided that R1 represents a monovalent hydrocarbon group

having 1 to 6 carbon atoms; X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, R^1 or Y; Y represents $-R^2O-(C_pH_{2p}O)_q-R^3$; R^2 represents a divalent hydrocarbon group having 3 to 6 carbon atoms; R^3 represents a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or an acyl group; m is an integer of 10 to 200, n is 0 or an integer of 1 to 50, p is an integer of 2 to 4, q is an integer of 5 to 50, provided that when n is 0, X is Y)

8. The additive for an amine solution for removing an acidic gas according to claim 6, composed of a mixture of 50 to 98 % by mass of an organopolysiloxane having a polyoxyalkylene group, represented by formula (1), 1 to 50 % by mass of a fine silica powder having a BET specific surface area of 50 m²/g or more, and 1 to 40 % by mass of a nonionic surfactant.