Logical Instruction(affect flags)

- Rotate instruction (only carry flags are affected by rotate instruction)
 - These instructions rotate the content of accumulator by 1-bit towards left or right with/without carry.
 - Instruction: RLC; Rotate left without carry

Instruction: RAL; Rotate left with carry

(Note: Rotating left can be viewed as multiplying by 2 but it is valid only if MSB is 0)

Logical Instruction(affect flags)

- Rotate instruction (only carry flags are affected by rotate instruction)
 - Instruction: **RRC**; Rotate right without carry

Instruction: RAR; Rotate right with carry

(Note: Rotating right can be viewed as dividing by 2 but it is valid only if LSB is 0)

- These instructions allow microprocessor to change the sequence of a program to any other location.
- Changes the sequence either conditionally or unconditionally
- Classified into following sub-groups
 - Jump Instructions
 - Call and Return Instructions
 - Restart Instructions

- Jump Instructions
 - Unconditional Jump
 - Instruction: **JMP** 16-bit address
 - Program sequence is transferred to the memory location specified by 16-bit address.

E.g 8000H: MVI A, 20H

8002H: MVI B, 30H

8004H: JMP 8050H

8007H:

•••••

8050H: ADD B

8051H: HLT

Jump Instructions

- Conditional Jump
- In conditional jump, the microprocessor makes decision to jump to the next location on the basis of flags
- These instructions are like if..else statement of C/C++.

Instructions	Comments
JC 16-bit address	Jump on carry(CY=1)
JNC 16-bit address	Jump on not carry(CY=0)
JZ 16-bit address	Jump on zero(Z=1)
JNZ 16-bit address	Jump on not zero (Z=0)
JPE 16-bit address	Jump on parity even (P=1)
JPO 16-bit address	Jump on parity odd (P=0)
JP 16-bit address	Jump on plus (S=0)
JM 16-bit address	Jump on Minus (S=1)

Jump Instructions

• Write a program in 8085 to transfer 10 8-bit numbers stored in memory starting from 3000H to memory starting from 4000H.

	,			
		3009H		4009H
	LXI H, 3000H; SOURCE TABLE			
	LXI B, 4000H; B<-40, C<-00			
	MVI D, 0AH; COUNTER			
UP:	MOV B,M; A<-[HL]			
	STAX B; [BC]<-A			
	INX H; HL<-HL+1			
	INX B; BC<-BC+1	200211		
	DCR D; D<-D-1	3002H		4002H
	JNZ UP	3001H		4001H
	HLT	3000H		4000H

Jump Instructions

• Write a program in 8085 to read two numbers from memory 2050H and 2060H. If number in 2050H is smaller, add two numbers else subtract the number in 2050H from number in 2060H.

LDA 2060H; A<-[2060H]

MOV B,A

LDA 2050H; A<-[2050H]

CMP B; A-B

JC PASS

MOV C,A

MOV A,B

MOV B,C

SUB B

JMP LAST

PASS: ADD B

LAST: HLT

Condition	Zero (Z) Flag	Carry (CY) Flag
A > D	0	0
A = D	1	0
A < D	0	1

Jump Instructions

• 10 8-bit numbers are stored in memory starting from D000H. Write a program in 8085 to transfer these numbers to memory starting from D050H only if number of source table is less than 9FH, else store 00H in destination.

	LXI H, D000H; SOURCE TABLE LXI D, D050H; DESTINATION TABLE MVI B, 0AH; COUNTER	D009H		D059H
UP:	MOV A, M; A<-[HL]			
	CPI 9FH; A-9FH			
	JC PASS			
	MVI A, 00H			7
PASS:	STAX D; [DE] <- A			1
	INX H	D00311		\dashv
	INX D	D002H		D052H
	DCR B	D001H		D051H
	JNZ UP	D000H		D050H
	HLT			