Example

• Write the following set of equations in the matrix form:

$$\begin{cases} x_1 + x_2 = 3 \\ 0x_1 + x_2 = 1 \end{cases}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

- $x = A^{-1}b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Let's look at the geometrical interpretation of this...

•

Geometry of Least Square

• Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and vector

$$\vec{b} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Is it possible to write \vec{b} as a linear combinations \vec{a}_1 and \vec{a}_2 , where \vec{a}_1 and \vec{a}_2 are columns of matrix A?

- Yes! Because \vec{b} on the plane that is spanned by \vec{a}_1 and \vec{a}_2 . So you can find some value of x_1 and x_2 for which $x_1\vec{a}_1 + x_1\vec{a}_2 = \vec{b}$.
- In this case $2\vec{a}_1 + 1\vec{a}_2 = \vec{b}$.

Geometry of Least Square

• How about this case?

• No! Because \vec{b} does not lie on the plane that is spanned by \vec{a}_1 and \vec{a}_2 . In other words, \vec{b} does not lie in the column space of A.

Least Square Problem

- Consider Ax=b where the systems is inconsistent. i.e. there doesn't exist a solution x that satisfies this matrix equation.
- When a solution is demanded and none exists, the best one can do is to find an x that makes **Ax as close as possible to b.**
- Think of Ax as an approximation to b. The smaller the distance between b and Ax given by ||b-Ax||, the better the approximation.

LEAST-SQUARES PROBLEMS

Definition: If A is $m \times n$ and b is in \mathbb{R}^m , a leastsquares solution of Ax = b is an \hat{x} in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$
 for all \mathbf{x} in \mathbb{R}^n .

- Note that vector Ax is a linear combinations of columns of A. (Recall the 2nd version of matrix-vector multiplication definition).
- This implies that no matter what x we select, the vector Ax will be on the plane spanned by columns of A (column space of A)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 2 & 3 & 3 \end{bmatrix} \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad A \quad X = X_1 \cdot Q_1 + X_2 \cdot Q_2$$

Shortest Distance

- So we seek an x that makes Ax the closest point in Col A to b in Ax = b
- Recall that the shortest distance is the orthogonal distance.
- The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

Col A

- Therefore, the dotted line that is perpendicular to the plane will result in smallest distance between b and Ax.
- What's the expression for the dotted line?

Shortest Distance

- If a vector is orthogonal to a plane it'll be orthogonal to any vector on that plane, including columns of matrix A, namely a₁ and a₂.
- So $b A\hat{x}$ is orthogonal to each column of A.
- If \mathbf{a}_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T(b A\hat{x}) = 0$.

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

• Since each \mathbf{a}_{j}^{T} is a row of A^{T} ,

$$A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0 \tag{2}$$

Thus

$$A^T \mathbf{b} - A^T A \hat{\mathbf{x}} = \mathbf{0}$$

$$A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$$

• These calculations show that each least-squares solution of Ax = b satisfies the equation

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b} \tag{3}$$

- The matrix equation (3) represents a system of equations called the **normal equations** for Ax = b.
- A solution of (3) is often denoted by \hat{x} .

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Example

Example 1: Find a least-squares solution of the inconsistent system Ax = b and the error.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Solution in Python

```
A = np.array([[4,0],[0,2],[1,1]])
b = np.array([[2],[0],[11]])
print(A)
print(b)

[[4 0]
  [0 2]
  [1 1]]
[[ 2]
  [ 0]
  [11]]
```

```
from numpy.linalg import inv
x = inv(A.T@A)@A.T@b
print(x)

[[1.]
[2.]]
```

OR

```
from numpy.linalg import pinv
x = pinv(A)@b
print(x)

[[1.]
[2.]]
```

```
In [68]: err = norm(A@x - b)
  print(err)

9.16515138991168
```