LINE POLARITY DECIDING CIRCUIT

Publication number: JP6133328 (A) **Publication date:** 1994-05-13

Inventor(s):

FUKATSU TSUTOMU

Applicant(s):

CANON KK

Classification:

- international:

H04N9/455; H04N9/44; (IPC1-7): H04N9/455

- European:

Application number: JP19920170745 19920629 **Priority number(s):** JP19920170745 19920629

Abstract of **JP 6133328 (A)**

PURPOSE:To specify a proper color burst phase by storing plural states where a color burst phase is consecutive so as to reduce the possibility of erroneous phase discrimination.

CONSTITUTION: This circuit is a circuit specifying a PAL system color burst phase, stores color burst phase information by N lines to decide whether or not sets of color burst phase information are in contradiction to each other and the color burst information is outputted when not contradicted, and on the other hand, when contradicted, the color burst information of a preceding line is inverted and the inverted information is outputted. That is, a line polarity signal is stored in flip-flop circuits (F/F) 17-B to 17-D and compared with preceding and succeeding line polarity signal.; When the decision in consecutive three lines is all correct, an 'L' level is outputted as the output signal 203 of the F/F 17-E and used for an output line polarity signal 206. On the other hand, when the decision is contradicted, an 'H' level is outputted and an inverting signal 207 of the preceding line is used for the line polarity information.

Data supplied from the esp@cenet database — Worldwide

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-133328

(43)公開日 平成6年(1994)5月13日

(51) Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 N 9/455

Z 8942-5C

審査請求 未請求 請求項の数1(全 9 頁)

(21)出顯番号

特願平4-170745

(22)出願日

平成4年(1992)6月29日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 普勝 勉

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内

(74)代理人 弁理士 谷 義一 (外1名)

(54) 【発明の名称】 ライン極性判定回路

(57)【要約】

【構成】 フリップフロップ17-A~17-Cに記憶 されているカラーバーストの位相情報 (3ライン分)が 正しい場合は、フリップフロップ17-Eの出力信号2 0.3がローレベルとなるので、フリップフロップ17-Cの出力がライン極性情報206として出力される。そ うでない場合は、前ラインの反転データが出力される。 【効果】 過酷な状況下にあっても、誤りのないカラー

バースト位相情報の検出が可能となる。

1

【特許請求の範囲】

【請求項1】 PAL方式のカラーバースト位相を特定 する回路であって、

Nライン分のカラーパースト位相情報を記憶する記憶手 段と、

前記Nライン分のカラーバースト位相情報が相互に矛盾 しているか否かを判定する判別手段と、

前記判別手段により矛盾しない旨の判定が得られた場合 には判定ラインにおけるカラーバースト情報を出力し、 他方、矛盾する旨の判定が得られた場合には前ラインに 10 搬送色信号の復調が可能である。 おけるカラーバースト位相情報を反転して出力する選択 手段とを具備したことを特徴とするライン極性判定回 路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、PAL方式のカラーバ ースト位相情報を特定するライン極性判定回路に関する ものである。

[0002]

【従来の技術】従来から知られているとおり、複合映像 20 信号を入力し、フィールドメモリ等を利用してノイズ低 滅等のためのディジタル処理を行う場合には、輝度信号 と色差信号などのベースバンド信号に復調して行うのが 容易である。かかる複合映像信号を復調するには、①第 1段階として輝度信号(Y信号)と搬送色信号(C信 号)の分離を行い、②第2段階としてC信号を色差信号 に復調する、という2つの処理を経ることが必要であ る。

【0003】上記②の処理については、複合映像信号の カラーパーストに位相同期したサンプリングクロックで 30 PBY=B-Y+DC A/D変換することにより、ディジタル形式のベースバ ンド直交色信号成分を直接得ることが知られている。次 に、この処理をPAL方式の複合映像信号に適用する場 合について詳述する。

【0004】PAL方式の複合映像信号にY/C分離処 理を施し、カラーバーストの平均位相と同期して色副搬*

> B-Y=(PBY-NBY)/2R-Y=(ERY-LRY)/2 (EARLY LINE)

> > -(ERY-LRY)/2(LATE LINE)

となり、復調データが得られる。

【0010】ここで搬送波位相(変復調軸)とサンプリ ングクロック位相が一致していれば、前述の処理により 完全な色差信号への復調が可能であるが、実際には、基 準信号伝送系・PLL系の遅延及びその個体偏差、電源 電圧変動等により、サンプリングクロック位相と復調軸 を一致させるのは容易でない。

【0011】 $PAL方式において、位相角<math>\theta$ ・振幅rの 搬送色信号をB-Y軸、R-Y軸から位相ゆだけずれた サンプリングクロックでA/D変換して復調すると、得 られるサンプリングデータは次のようになる。

*送波周波数の4倍の周波数を有するサンプリングクロッ クで分離されたC信号をA/D変換するとき、カラーバ ーストの平均位相を180deg(度)とすると、0d eg位相のクロックでは(B-Y)データが、90de g位相のクロックのサンプルでは(R-Y)データが、 180 de g位相クロックのサンプルでは- (B-Y) データが、270 deg位相のクロックのサンプルでは - (R-Y) データがそれぞれ得られる。これらのデー 夕を振り分け、搬送色信号のDC成分を除去することで

2

【0005】このようなA/D変換データを基準位相に 従って4相に振り分け、このうち0 de g位相のデータ をPBYとし、90deg位相のデータをERYとし、 180deg位相のデータをNBYとし、270deg 位相のデータをLRYとすると、EARLY LINE (先行走査線) とLATE LINE (後線走査線) の 内容は、それぞれ下記のようになる。

【0006】EARLY LINE (カラーバースト位 相が225degのとき)

[0007]

【数1】

PBY=B-Y+DC

ERY=R-Y+DC

NBY = -(B - Y) + DC

LRY=-(R-Y)+DC

LATE LINE (カラーバースト位相が135de gのとき)

[0008]

【数2】

ERY=-(R-Y)+DC

NBY = -(B-Y) + DC

LRY=R-Y+DC

従って、

[0009]

【数3】

【0012】EARLY LINEについては

[0013]

【数4】

 $PBY' = r * cos (\theta - \phi) + DC'$

 $ERY' = r * s in (\theta - \phi) + DC'$

 $NBY' = -r * cos (\theta - \phi) + DC'$

 $LRY' = -r * s in (\theta - \phi) + DC'$

LATE LINEROUTH

[0014]

【数 5 】

50 PBY" = $r * cos (\theta + \phi) + DC$ "

3

 $ERY'' = -r * s i n (\theta + \phi) + DC''$ $NBY'' = -r * c o s (\theta + \phi) + DC''$ $LRY'' = -r * s i n (\theta + \phi) + DC''$ 上記の結果によれば得られる復調データは、ライン毎に
異なったものとなり、ワイプ・フェイドなどの2画面の
つなぎ合わせやNR (ノイズリダクション) 等のフィー*

*ルド間処理時において色相の保存が困難になる。そこで、この問題を解決する手法として、次式のように異なるライン極性の復調データの和をとることが可能である。

[0015]

【数6】

PBY(early+late) = (PBY' -NBY') + (PBY" -NBY") = $4 \text{ r } (\cos (\theta - \phi) + \cos (\theta + \phi))$ = $4 \text{ r } \cos \phi \cos \theta$

[0016]

※10※【数7】

PRY(early+late) =
$$(ERY'' - LRY'') + (LBY'' - EBY'')$$

= $4 r (cos (\theta - \phi) + cos (\theta + \phi))$
= $4 r cos \phi s in \theta$

上記の演算により、各復調色信号成分は、B-Y・R-Y信号成分に一定スカラー量4cos が乗ぜられた形となり、絶対色相が確定する。

【0017】R-Yデータの減数・被減数関係を決定するカラーバースト位相信号は次のようにして得られる。

【0018】得られるデータが2の補数系であるとすれば、そのデータの最上位ビットはデータの符号を表わす 20 ことになる。NBYデータをラッチするためのクロックの位相が135degを越えて225deg未満になるように定めると、ERY(LRY)で分離したカラーバーストデータの最上位ビットは、正、負、(負、正)がライン毎に交互に得られる。そこで、このデータの取り込みを行うため、Y信号の同期分離処理により得られたカラーバースト期間を表わす信号に従いカラーバースト位相の抽出を行い、これを水平同期タイミングを表わす信号でラッチする。

【0019】また、得られた色差信号データをC信号へ 30 戻すための変調処理としては、復調データと逆符号のデータを発生させ、復調時に得られるデータと同じシーケンスでD/A変換すればよい。但しPAL方式においては、1ライン毎にR-Y搬送波位相を反転させる必要があるので、D/A変換するシーケンスは、

B-Y復調データ・R-Y復調データ・B-Y極性反転 データ・R-Y極性反転データ

B-Y復調データ・R-Y極性反転データ・B-Y極性 反転データ・R-Y復調データ

を1ライン毎に繰り返す。

[0020]

【発明が解決しようとする課題】このように、PAL方式における搬送色信号の変復調処理では、カラーバースト位相を正しく判別する事が極めて重要である。しかしながら、上記従来技術をVTRや光学式ディスク(通称、LD)等の再生映像信号に適用すると、以下に列挙する要因に起因して正確なカラーバースト位相の判別が困難になるという欠点がある。

【0021】(I)上記再生映像信号では、搬送色信号 位桁上がり入力(Ripple Carry In)付に充分な帯域が与えられていないことに起因して、確実 50 き全加算器、5-Aおよび5-Bはラインメモリ、6は

なカラーバースト位相の判別を行うために必要な振幅が 得られる期間が短い。

【0022】 (II) ソースによっては、水平同期信号とカラーバーストの位置に相違がある。

【0023】 (III)再生信号に時間軸変動がある。

【0024】 (IV) 再生信号のドロップアウトが生じる の 可能性がある。

【0025】(V)カラーバーストと一定の位相差をも つクロック軸が判別範囲の境界付近にある場合は、クロ ックジッタによりライン極性の判別が困難になる。

【0026】よって本発明の目的は上述の点に鑑み、常に適確なカラーバースト位相の特定を可能としたライン極性判定回路を提供することにある。

[0027]

【課題を解決するための手段】かかる目的を達成するために、本発明は、PAL方式のカラーバースト位相を特定する回路であって、Nライン分のカラーバースト位相情報を記憶する記憶手段と、前記Nライン分のカラーバースト位相情報が相互に矛盾しているか否かを判定する判別手段と、前記判別手段により矛盾しない旨の判定が得られた場合には判定ラインにおけるカラーバースト情報を出力し、他方、矛盾する旨の判定が得られた場合には前ラインにおけるカラーバースト位相情報を反転して出力する選択手段とを具備したものである。

[0028]

【作用】本発明の上記構成によれば、カラーバースト位 40 相の連続する複数状態を記憶する事により、誤った位相 判別を行う可能性を低減させている。

[0029]

【実施例】以下、本発明の実施例を詳細に説明する。

【0030】図1~図3は、本発明の一実施例全体を示すプロック図である。本図において、 $1-A\sim1-J$ はラッチ回路、 $2-A\sim2$ Dは図6(C)に詳細な構成を示すEX-OR(排他的論理和)アレイ、3-Aおよび3-Bは反転出カラッチ回路、4-Aおよび4-Bは下位桁上がり入力(Ripple Carry In)付き全加算器、5-Aおよび5-Bはラインメモリ、6は

図6(A)に詳細な構成を示す組合せ論理回路、7-A および7-Bは図6(B)に詳細な構成を示す組合せ論 理回路、8-A~8-Cはキャリイ入力付き加算器、9 は4入力1出力マルチプレクサ、10はタイミング制御 回路、11はPLL回路、12はインバータ、13A. 13BはEX-ORゲート、14はNANDゲート、1 7-A~17-Fは1ビットをラッチするためのフリッ プフロップ(以下、F/Fという)、18-Aおよび1 8-Bは加算器である。

【0031】100は搬送色信号 (C信号) のA/D変 10 換データである。すなわち、C信号をその基準位相であ るカラーバーストの平均位相の4倍の周波数にロックし たクロック(SCK4)によりA/D変換して得られた データである。101はC信号、105は不図示の同期 分離回路等により得られたカラーバースト期間を表わす 信号、130は不図示の同期分離回路等により得られた 水平同期信号を表わす。

【0032】次に、図4および図5に示した波形図を参 照して、本実施例の動作を説明する。

【0033】ラッチ回路1-AによりラッチされたC信 20 号データは、カラーバーストの平均位相と各々一定の位 相差を持つfsc周期のクロックSCA, SCB, SC C, SCDにより4つの位相のデータ系列に振り分けら れる。これら振り分けられたデータのうち、クロック位 相が180度異なるデータ間の差分をとり、ラインメモ リ5-A, 5-Aおよび加算器18-A, 18-Bへ出 力する。図示しないA/D変換器から出力されるデータ を2の補数系とすると、減算処理の結果、疑似B-Yデ ータBY'は

[0034]

【数8】

$$BY' = D_{sca} + (\overline{D_{scc}} + 1)$$

【0035】となる。ここで、Drrr はクロックXXX によって分離されるC信号データ系列である。従って、 反転極性のデータをSCCクロックで抽出すると同時 に、反転出力ラッチ回路3-Aにより反転して全加算器 4-Aに入力し、全加算器4-Aの下位桁上がり(R C) 入力を "H" にしておくことにより、上記処理が行 われる。PAL方式では、ライン毎にR-Y搬送波位相 40 が反転しているため、減数に相当する反転位相のデータ をライン毎に切り替える必要がある。このR-Yデータ の減数・被減数関係を決定するカラーバースト位相信号 は次のようにして得られる。

【0036】得られるデータが2の補数系であるとすれ ば、そのデータの最上位ビットはデータの符号を表わす ことになる。NBYデータをラッチするためのクロック の位相が

135degを

越えて

225deg未満になる ように定めると、ERY(LRY)で分離したカラーバ ーストデータの最上位ビットは、正,負(負,正)がラ 50 くして、マルチプレクサ9からは搬送色信号(デジタル

イン毎に交互に得られる。そこで、このデータの取り込 みを行うため、Y信号の同期分離処理により得られた力 ラーバースト期間を表わす信号105でゲートされたク ロック129に従いカラーバースト位相の抽出を行い、 これを水平同期タイミングを表わす信号130でF/F 17-Bに入力する。

【0037】上記処理において、減数を決定するために 用いられるカラーバースト位相を示す信号(ライン極性 信号)は、「発明が解決しようとする課題」の項で述べ た要因(I)~(IV)の要因により誤っている可能性が ある。そこで、上記ライン極性信号をF/F17-B~ 17-Dにより記憶し、前後のライン極性の状態と比較 する。C信号カラーバースト位相極性はライン毎に反転 しているため、ライン極性の判別が正しく行われていれ ば、連続するライン間のEX-OR結果200,201 は "H" になる。そこで、判別されるラインはその前後 の判別結果と各々EX-ORをとり、そのゲート出力2 00,201をNANDゲート14に入力する。

【0038】従って、連続する3ラインの判別が全て正 しい場合、あるいは全て誤っている場合には、F/F1 7-Eの出力信号(すなわち、セレクタ300のセレク ト信号SE) 203として"L"が出力され、カラーバ ースト位相の判別結果F/F17-Cの出力ライン極性 信号206として使用される。上記以外の場合には、セ レクタ300のセレクト信号(SE)203として "H"が出力され、ライン極性には前ラインの反転信号 207が使用される。

【0039】カラーバーストの位相判別が正常に行われ ない場合、前述した要因(I), (II), (IV) におい 30 てはその判別結果は "H" または "L" どちらか一方に 誤る場合が多い。なお、(III),(V)の要因によ り、3ライン連続して判別を失敗するほど時間軸変動を 伴う場合には、図4に示したクロックSCA~SCDの 位相も大きく変動しており、実用上連続3ラインを誤判 別することは希である。

【0040】このようにして得られたパラレル色差信号 140,141に所定の処理を施して再びPAL方式の 搬送色信号に戻すため(例えば、PAL方式のモニタに 出力するため)、以下に述べる変調処理を施す。

【0041】B-Yデータを表わす色信号データ110 と、R-Yデータを表わす色信号データ111は、ラッ チ回路1-G, 1-H, 1-Iおよび反転出力ラッチ回 路3-Bによりデマルチプレクスされる。ここで、R-Yデータについては、ライン極性信号206およびその 反転信号を入力したEX-ORアレイ2-Cおよび2-Dを介して反対極性のデータとされ、それぞれラッチ回 路1-Hおよび1-Iに入力される。

【0042】このライン極性信号206およびその反転 信号は論理回路7-Aおよび7-Bにも入力される。か 7

形式)が出力され、D/Aコンバータ30によりアナロ ク信号化される。

【0043】ここで、

PX = VCX + VDC'

EY=+VCY+VDC'

NX = -VCX + VDC'

LY = +VCY + VDC'

前述のように復調時得られるデータは2VCであるた め、A/D・D/A変換器ビット数が同じビット数の場 合、1/2にする必要がある。このとき最下位ビットの*10

復調データ
$$+10$$
 $+11$ -10 -11 変調データ $+5$ $+5$ -5 -6 $(反転) -5$ -6 $+5$ $+6$ ピーク t o ピーク $+10$ $+11$ -10 -11

なお、図 6 (A), (B) に示した 2 入力 NANDゲー トおよび5入力ANDゲートは、変調データ入力が最小 値の時に上記処理を行った場合、アンダーフローを防止 するためのものである。

【0046】また、これまで説明してきた実施例では、 カラーバースト位相を示す信号(ライン極性信号)を3 20 図である。 ライン分の信号に基づいて判定しているが、この3ライ ンに限定する必要はない。しかし、所要ライン数を多く した場合、ソースが切り替わって色シーケンスが変化し たとき、その変化したシーケンスに移行するのが遅くな るので、必要に応じて所要ライン数を決定すればよい。 [0047]

【発明の効果】以上説明したとおり本発明によれば、カ ラーバースト位相の連続する複数状態を記憶する事によ り、誤った位相判別を行う可能性を低減させているの で、色差信号の復調あるいは変調に必要とされる、適確 30 10 タイミング制御回路 なカラーバースト位相の特定が可能となる。

【図面の簡単な説明】

【図1】本発明の一実施例の一部を示すプロック図であ る。

【図2】本発明の一実施例の一部を示すプロック図であ る。

*桁落ちが生じ変調特性が劣化する。そこで本実施例で は、復調デーを(A/D+1ビット)とし、変調時にお いてC信号のピークtoピーク保存した変調を行う。上 記処理を行うのが論理回路6,7-A,7-Bであり、 その構成は図6の(A)および(B)に示す通りであ

【0044】このことにより、変調データは次のように なる。

[0045]

【表1】

【図3】本発明の一実施例の一部を示すプロック図であ る。

【図4】本実施例の動作を示す波形図である。

【図5】本実施例の動作を示す波形図である。

【図6】本実施例に用いる各ブロックの詳細な回路構成

【符号の説明】

1-A~1-J ラッチ回路

2-A~2-D 排他的論理和 (EX-OR) アレイ

3-A、3-B 反転出力ラッチ回路

4-A, 4-B 全加算器

5-A, 5-B ラインメモリ

6, 7-A, 7-B 論理回路

8-A~8-C 加算器

9 マルチプレクサ

11 PAL回路

12 インバータ

13A, BB EX-ORゲート

14 NANDゲート

17-A~17-F フリップフロップ

18-A, 18-B 加算器

【図5】

【図1】

【図2】

[図3]

