Algorytmy i Struktury Danych

egzamin poprawkowy, cz. II

wrzesień 2018

Zadanie 1. Mamy dostęp do tablicy $A[1 \dots n][1 \dots n]$, w której wszystkie wiersze i kolumny są posortowane niemalejąco, czyli $A[i][j] \leqslant A[i][j+1]$ dla każdego $i=1,2,\dots n$ oraz $j=1,2,\dots,n-1$ oraz A[i][j] <= A[i+1][j] $i=1,2,\dots n-1$ oraz $j=1,2,\dots,n$. Konstruując odpowiedni algorytm, pokaż, że do znalezienia i,j, dla których A[i][j]=x wystarczy odczytać 2n-1 pól tablicy. Podaj strategię adwersarza, która wymusza odczytanie tylu pól.

Zadanie 2. Chcemy wykonać następujące operacje na zbiorze liczb:

- (a) utwórz zbiór zawierający podane n liczb,
- (b) dodaj x do aktualnego zbioru, oraz
- (c) usuń medianę/min/max aktualnego zbioru.

Podaj implementację, w której te operacje zajmują $\mathcal{O}(n)$ dla utworzenia nowego zbioru i $\mathcal{O}(\log n)$ dla pozostałych operacji, gdzie n jest rozmiarem aktualnego zbioru.

Zadanie 3. Dany jest ciąg liczb $a_1, \ldots a_n$, w którym występuje co najwyżej k różnych wartości. Pokaż, jak posortować go w czasie $\mathcal{O}(n \log k)$, używając tylko porównań dwóch liczb.

Zadanie 4 (dodatkowe). Ułóż algorytm, który dla danego ciągu $X = x_1, \ldots, x_n$ oraz dla liczby naturalnej k < 10 znajduje jego podciąg $X' = x_{i1}, \ldots, x_{ij}$ taki, że:

- (a) X' jest rosnący,
- (b) $i_{r+1} i_r \le k$ dla każdego $r = 1, \dots, j-1$,
- (c) j jest możliwie największe.

Udowodnij poprawność swojego algorytmu. Podaj jego złożoność.