Graph Colorings

Thomas Cohn

9/18/18

Defn: Given G = (V, E) and some $k \in \mathbb{N}$, a (proper) \underline{k} -coloring of G is a mpa $f : V \to [k]$ s.t. for every edge $v_i v_j \in E$, $f(v_i) \neq f(v_j)$.

Defn: If there exists a k-coloring on G, we say G is k-colorable.

Ex: 1-colorable \Rightarrow only the empty graphs $(E = \emptyset)$.

2-colorable ⇒ bipartite graphs. All trees are 2-colorable using BFS.

3-colorable graphs have no nice characterization, and are hard to check.

Lemma: G is bipartite $\leftrightarrow G$ has no odd-length cycles.

Defn: $D = \max_{v \in V} \{ \deg(v) \}$ is the <u>max degree</u>.

Ex: $D = 1 \leftrightarrow G$ is disjoint union of edges and vertices.

 $D=2\leftrightarrow G$ is disjoint union of paths, cycles, and vertices.

Prop: If $D = \max_{v \in V} \{\deg(v)\}$, then G is (D+1)-colorable.

Proof: Start with v_1 , color it c_1 . If v_1, \ldots, v_k are colored, look at v_{k+1} . We know $|N(V_{k+1})| \leq D$, so if we exclude at most D colors for v_{k+1} , there exists some remaining color for v_{k+1} . Color v_{k+1} with that color. \square

Can we improve the coloring "index" from D+1 to D?

 $G = K_{n+1}$, D = n, but G is not D-colorable.

Thm: If G is connected and not complete, and $D = \max \deg(G) \ge 3$, then G is D-colorable.

Proof: By contradiction, assume $\exists G$ such that

- (1) G is not complete and is connected, (2) $D = \max \deg(G) \ge 3$,
- (3) G is not D-colorable, and
- (4) |V| = n is smallest possible,

pick any $x \in G$ and consider its neighbors. Let G' = G - x.

Then $\max \deg (G') \leq D \to G'$ is D-colorable due to (4).

If G' is not connected, look at the components of G'. Each has less than n vertices, and so must be D-colorable. So D' is colorable.

Consider any *D*-coloring on G'. If |N(x)| < D, we can color x with some remaining color, so G is D-colorable. But this and (3) imply that $|N(x)| = D \ \forall x \in G$.

We know x has D neighbors: x_1, \ldots, x_D . Let $c_i = \operatorname{color}(x_i)$. If $c_i = c_j$ $(i \neq j)$, then we can color x, in contradiction with (3). Oops!

So $c_i \neq c_j$, $\forall i \neq j$. Take any x_i and x_j . Let H_{ij} be the subgraph consisting of c_i and c_j .

Observation 1: x_i and x_j are in the same connected component of H_{ij} .

Proof: If not, then x_i is in some component C of H_{ij} , $x_j \notin C$. Flip colors in C. Since this doesn't

```
affect coloring property, c_i = c_j. But i \neq j. Oops!
Observation 2: The component C connecting x_i, j in H_{ij} is a path x_i \leadsto x_j.
Proof: Not exactly sure what this part is saying, since it was something of a picture proof.
...
Then N(u) must have the same colors. Recolor u to some (c_k).
This went unfinished.
```