Cross-Review Summary: Selection Sort vs Insertion Sort

Pair:

Student A: Insertion Sort (with early termination) — Gaziza

Student B: Selection Sort (with early termination) — Sultan

1. Algorithm Overview

Feature	Sultan's 's	
	Algorithm)	Algorithm)
	Repeatedly selects the	Inserts each element into
Approach	minimum element and	the correct position in the
	places it at the beginning.	sorted portion.
In-place	Yes	Yes
Stable	No	Yes
Adaptive	No	Yes
Time Complexity	Best: $\Omega(n)$ Average: $\Theta(n^2)$	Best: $\Omega(n)$ Average: $\Theta(n^2)$
Time Complexity	Worst: O(n²)	Worst: O(n²)
Space Complexity	O(1)	O(1)
Voy Strongth	Forger swons (1 nor noss)	Excellent on nearly sorted
Key Strength	Fewer swaps (1 per pass)	data
Key Weakness	Always performs n ² /2	Many shifts when data is
Key weakiless	comparisons	reverse-sorted
	Selection Sort (Insertion Sort (Gaziza

2. Empirical Comparison

Input Size (n)	Selection Sort (ms)	Insertion Sort (ms)	Faster Algorithm
100	0.7	1	Seletion Sort
1,000	4.7	10	Seletion Sort
10,000	85.4	61	Seletion Sort
50,000	514.8	1440	Seletion Sort

3. Theoretical Comparison

Metric	Selection Sort	Insertion Sort	Observation
Comparisons	\sim n ² /2 (constant Variable; fewer if Insertion Sort adapts regardless of order) array is nearly sorted better		
Swaps/Shifts	$n-1$ (one per Selection Sort reduces Up to $n^2/2$ shifts iteration) swap overhead		
			Both can early
Best Case	$\Omega(n)$ (already sorted) $\Omega(n)$ (already sorted)		
			terminate
Worst Case	$O(n^2)$	$O(n^2)$	Same asymptotic bound
Practical	Stable runtime;	Faster on partially	Insertion Sort usually
Behavior	predictable sorted	data wins empirica	ally

3. Joint Conclusion

Aspect	Summary		
Correctness	Both algorithms produce identical sorted output.		
Empirical Validation	Time and comparisons confirm theoretical O(n^2) growth.		
Optimizations	Early termination and reduced overhead improve efficiency without changing complexity.		
Algorithmic	Selection Sort minimizes writes; Insertion Sort minimizes		
Trade-off	comparisons.		
	Selection Sort: small datasets, minimal write environments.		
Best Use Case	Insertion Sort: partially sorted or small datasets requiring stability.		

Final Observation:

Insertion Sort provides better real-world performance, while Selection Sort is simpler and more predictable. Both are educationally valuable for illustrating algorithmic analysis and asymptotic behavior.