BJT Amplifiers

Muhammad Adeel

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

THE COMMON-EMITTER (CE) AMPLIFIER

CE amplifiers exhibit high voltage gain and high current gain.

The amplified output is 180° out of phase with the input.

- •The circuit has a combination of dc and ac operation, both of which must be considered.
- •The input signal, V_{in} , is capacitively coupled into the base, and the output signal, V_{out} is capacitively coupled from the collector.

DC Analysis

•To analyze the amplifier, the dc bias values must first be determined by replacing the coupling and bypass capacitors with opens.

Muhammad Adeel 12-Oct-17

$$V_{\rm B} \cong \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC} = \left(\frac{6.8 \,\mathrm{k}\Omega}{28.8 \,\mathrm{k}\Omega}\right) 12 \,\mathrm{V} = 2.83 \,\mathrm{V}$$

and

$$V_{\rm E} = V_{\rm B} - V_{\rm BE} = 2.83 \text{ V} - 0.7 \text{ V} = 2.13 \text{ V}$$

Therefore,

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \frac{2.13 \text{ V}}{560 \Omega} = 3.80 \text{ mA}$$

Since $I_C \cong I_E$, then

$$V_{\rm C} = V_{\rm CC} - I_{\rm C}R_{\rm C} = 12 \,\text{V} - (3.80 \,\text{mA})(1.0 \,\text{k}\Omega) = 12 \,\text{V} - 3.80 \,\text{V} = 8.20 \,\text{V}$$

Finally,

$$V_{CF} = V_C - V_F = 8.20 \text{ V} - 2.13 \text{ V} = 6.07 \text{ V}$$

AC Analysis

The AC Equivalent Circuit

To analyze the ac signal operation of an amplifier, an ac equivalent circuit is developed as follows:

The capacitors C_1 , C_2 , and C_3 are replaced by effective shorts because their values are selected so that $X_c = 0 \Omega$ at the signal frequency.

AC Ground

The dc source is replaced by a ground, i.e., the V_{cc} terminal is at a zero-volt ac potential and is called ac ground.

Voltage Gain

The ac voltage gain expression for the common-emitter amplifier is developed using the equivalent circuit in Figure 6–14. The gain is the ratio of ac output voltage at the collector (V_c) to ac input voltage at the base (V_b) .

$$A_v = \frac{V_{out}}{V_{in}} = \frac{V_c}{V_b}$$

Notice in the figure that $V_c = \alpha_{ac}I_eR_C \cong I_eR_C$ and $V_b = I_er'_e$. Therefore,

$$A_{v} = \frac{I_{e}R_{C}}{I_{e}r'_{e}}$$

The I_e terms cancel, so

$$A_{\nu} = \frac{R_{\rm C}}{r_e'}$$

$$r'_e \cong \frac{25 \,\mathrm{mV}}{I_{\mathrm{E}}}$$

The expression for the attenuation in the base circuit where R_s and $R_{in(tot)}$ act as a voltage divider is

Attenuation =
$$\frac{V_b}{V_s} = \frac{R_{in(tot)}}{R_s + R_{in(tot)}}$$

Attenuation means that the signal voltage is reduced as it passes through a circuit. The attenuation from source to base multiplied by the gain from base to collector is the overall amplifier gain.

The overall voltage gain, A'_{v} , is the product of the attenuation and the gain from base to collector, A_{v} .

$$A_{\nu}' = \left(\frac{V_b}{V_s}\right) A_{\nu}$$

Phase Inversion in a Common-Emitter Amplifier

The output voltage at the collector of a common-emitter amplifier is 180° out of phase with the input voltage at the base. The phase inversion is sometimes indicated by a negative sign in front of voltage gain, $-A_{v}$.

Current Gain

The current gain from base to collector is I_c/I_b or β_{ac} . However, the overall current gain of the common-emitter amplifier is

$$A_i = \frac{I_c}{I_s}$$

 I_s is the total signal input current produced by the source, part of which (I_b) is base current and part of which (I_{bias}) goes through the bias circuit $(R_1 \parallel R_2)$, as shown in Figure 6–24. The source "sees" a total resistance of $R_s + R_{in(tot)}$. The total current produced by the source is

$$I_s = \frac{V_s}{R_s + R_{in(tot)}}$$

Power Gain

The overall power gain is the product of the overall voltage gain (A'_v) and the overall current gain (A_i) .

$$A_p = A'_i A_i$$

where $A'_v = V_c/V_{s*}$