Tópicos de Matemática Discreta

exame de recurso — 4 de fevereiro de 2017 — duração: 2 horas — — —

- 1. (a) Considere as fórmulas proposicionais $\varphi: (\neg p_0 \to (p_1 \lor p_2))$ e $\psi: \neg (p_0 \to \neg (p_1 \to p_2))$. Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: A fórmula φ tem valor lógico verdadeiro sempre que a fórmula ψ tem valor lógico verdadeiro.
 - (b) Considere que p(x), q(x) e d(x,y) representam os predicados

$$p(x)$$
: x é par $q(x)$: x é primo $i(x)$: x é impar $d(x,y)$: x é um divisor de y

(i) Diga, justificando, se alguma das seguintes proposições é verdadeira:

$$r: \forall_{y \in \mathbb{N}} (p(y) \to \forall_{x \in \mathbb{N}} (d(x, y) \to p(x)))$$

$$s: \forall_{y \in \mathbb{N}} (q(y) \to \forall_{x \in \mathbb{N}} (p(x) \to \neg d(x, y)))$$

- (ii) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg r$.
- 2. (a) Considere os conjuntos

$$A = \{\emptyset, \{2\}, 3, 7\}, B = \{x \in \mathbb{Z} \mid x + 2 \in A\} \in C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \in B \land |y| = x\}.$$

Justificando, determine $C \setminus (B \times B)$.

- (b) Indique conjuntos $D \in E$ tais que $D \cap E = \{2\} \in \mathcal{P}(E) \setminus D = \{\emptyset, \{3, 4\}\}.$
- 3. Prove que, para quaisquer conjuntos A, B e C, $(A \cup C) \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$.
- 4. Prove, por indução nos naturais, que $1+5+9+13+\ldots+(4n-3)=\frac{1}{2}n(4n-2)$, para todo o natural n.
- 5. Considere as funções $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ e $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definidas da seguinte forma

$$f(n) = (n^2, n^2), \ \forall n \in \mathbb{Z}$$
 e $g(p, q) = \begin{cases} p - q + 2 & \text{se } q \ge 0 \\ 2 & \text{se } q < 0 \end{cases}, \ \forall (p, q) \in \mathbb{Z} \times \mathbb{Z}$

- (a) Determine $g(\{(3,2),(2,-1),f(2)\})$ e $g^{\leftarrow}(\{2\})$.
- (b) Diga, justificando, se g é injetiva e se é sobrejetiva.
- (c) Diga, se $g \circ f$ é uma função constante. Justifique a sua resposta.
- 6. Seja R a relação de equivalência em $\mathbb R$ definida por:

$$xRy$$
 se e só se $x^2 - y^2 = x - y$.

- (a) Indique, sem justificar, $[1]_R$ e $[-2]_R$.
- (b) Mostre que, de facto, R é uma relação transitiva.

- 7. Considere o conjunto $A=\{a,b,c\}$, onde a,b,c são distintos entre si. Indique uma relação de equivalência ρ em A tal que $[a]_{\rho}=[c]_{\rho}$ e $(a,b)\not\in\rho$
- 8. Consideremos o c.p.o. (A,\leq) com o seguinte diagrama de Hasse associado:

Indique, sem justificar,

- (a) os elementos maximais e os elementos minimais de $\{2, 4, 5, 7, 9\}$.
- (b) o conjunto dos majorantes de $\{4, 5\}$.
- (c) um subconjunto X de A tal que $8 \in \text{Maj}(X)$ e $8 \neq \sup(X)$.
- (d) um subconjunto Y de A que não tenha mínimo mas que tenha ínfimo.

Cotações	1.	2.	3.	4.	5.	6.	7.	8.
	1,5+1,5+1	1,25+1,25	1,25	1,5	1+1,5+1	1+1,25	1	1+1+1+1