Internet de las cosas

De las redes de sensores inalámbricas a la conectividad con protocolos de internet

Dr. Francisco Javier Acosta Padilla

Bio

· 2006 - 2010

 Ingeniería electrónica, especialidad electrónica de potencia. Instituto Tecnológico de La Laguna (hoy Tecnológico Nacional de México)

· 2010 - 2011

- Ingeniero de automatización, IS Solutions S.A. de C.V.

· 2011 - 2012

 Maestría en electrónica y telecomunicaciones, especialidad en domótica. Université de Rennes 1, Rennes, Francia

· 2012 - 2015

 Doctorado en ciencias de la computación. Tesis: Self adaptation for Internet of Things applications. Univeristé de Rennes 1 / Inria Rennes

· 2016 - 2018

 Postdoc: Secure Over The Air (OTA) Updates for edge IoT devices. Inria Paris - Saclay / Freie Universität Berlin

Finales 2018 a la fecha

- Ingeniero de desarrollo e investigación. Nano-Sense (París) / Kugu Home GmbH (Berlín)

Redes de sensores inalámbricas (WSN)

Dispositivos embebidos

- "Cyber Physical Systems"
- Microprocesador + memoria + periféricos + conectividad

Conectividad inalámbrica

- Ultra bajo consumo de energía
- Medio/largo alcance
- Protocolo estándar

WSN: Protocolos estándar

Usos

Agricultura

- Monitoreo de plantaciones
- Prevención/anticipación de fenómenos

Smart Cities

- Medición calidad del aire
- Tráfico vehicular
- Servicios (alumbrado, basura, etc)

Smart home

- Consumo de energía
- Automatización

Industrial IoT

- Monitoreo de líneas de producción
- Automatización de procesos no críticos
- Monitoreo de consumo energético

Qué dispositivos forman parte?

<u>loT? La necesidad de estandarizar</u>

Muchos protocolos propietarios

- ZigBee, ZWave, Thread, etc.

Interoperabilidad

- Cómo funciona el internet?

Escalabilidad

- Bi(tri)llones de dispositivos interconectados

Organizaciones

- IETF (Internet Engineering Task Force)
- ETSI (European Telecommunications Standards Institute)
- Organizaciones no lucrativas (Linux foundation, OpenThread, LoRa Alliance, ZigBee Alliance, IPSO Alliance)

Protocolos de internet (OSI)

OSI MODEL	TCP/IP MODEL	
Application Layer		
Presentation Layer	Application Layer	
Session Layer		
Transport Layer	Transport Layer	
Network Layer	Internet Layer	
Data Link Layer	Network Access Layer	
Physical Layer	Network Access Layer	

Protocolos IoT

	IOT STACK	WEB STACK
TCP/IP	IOT applications Device Management	Web applications
Data Format	Binary, JSON, CBOR	HTML, XML, JSON
Application Layer	CoAP, MQTT, XMPP, AMPQP	HTTP, DHCP, DNS, TLS/SSL
Transport Layer	UDP, DTLS	TCP, UDP
Internet Layer	IPv6/IP Routing	IPv6, IPv4, IPSec
	6LOWPAN	
Network/Link Layer	IEEE 802.15.4 MAC	Ethernet (IEEE 802.3), DSL, ISDN, WIreless LAN (IEEE 802.11), Wi-Fi
	IEEE 802.15.4 PHY / Physical Radio	(IEEE 802.11), Wi-Fi

Retos

Dispositivos embebidos (hardware)

- Funcionamiento con baterías
- Muy bajo poder de cálculo
- Muy poca memoria

Transimisión de datos (conectividad)

- Ancho de banda ultra limitado
- Generalmente inalámbrico

Programación

- Lenguajes cercanos al hardware (ASM, C, C++)
- Conciencia de la baja disponibilidad de memoria
- Librerías existentes limitadas
- Actualizaciones (!!!)

Sociales

Cómo convivir con tantos dispositivos conectados?

Beneficios

Conclusiones

- Las WSN existen desde hace muchos años
 - Normalmente PAN
- El IoT brinda nuevas posibilidades de interoperabilidad
 - Protocolos abiertos y estándar
- Hay muchos retos en el despliegue a gran escala de dispositivos independientes
 - Funcionamiento con baterías (>10 años)
 - Conectividad inalámbrica
 - Mantenimiento de software
 - Uso socialmente responsable

Gracias!!

Requisitos para el taller LoRa

Máquina con VirtualBox instalado

Linux o windows, la VM es Ubuntu Linux

Vagrant instalado

- Derivados Debian: `sudo apt install vagrant`
- Windows / macOS: https://www.vagrantup.com/ downloads.html

Clonar repositorio del taller

https://github.com/RIOT-OS/riot-course