ON A-MAGIC LABELING OF GRAPHS

CHOI, JEONG OK

Let G = (V, E) be a finite graph and let (A, +) be an abelian group with identity 0. Then G is A-magic if and only if there exists a function ϕ from E into $A - \{0\}$ such that for some $c \in A$, $\sum_{e \in E(v)} \phi(e) = c$ for every $v \in V$, where E(v) is the set of edges incident to v. Additionally, G is zero-sum A-magic if and only if ϕ exists such that c = 0. Let zim(G) denote the subset of natural numbers such that $1 \in zim(G)$ if and only if G is zero-sum \mathbb{Z}_{e} -magic and $k \geq 2 \in zim(G)$ if and only if G is zero-sum \mathbb{Z}_{e} -magic. In this talk, two main subjects will be discussed: (1) we establish that if G is 3-regular, then $zim(G) = \mathbb{N} - \{2\}$ or $\mathbb{N} - \{2, 4\}$, (2) we relate the property of \mathbb{Z}_{2}^{k} -magic graphs with even edge-coverings, graph parity, factorability, and nowhere-zero 4-flows. Finally, we establish equivalent conditions for graphs of even order with bridges to be \mathbb{Z}_{2}^{k} -magic for all $k \geq 4$. This is joint work with J. Georges and D. Mauro.

GIST COLLEGE, GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY