

Using the airGRteaching R package for hydrology courses using lumped hydrological models

Olivier Delaigue¹, Guillaume Thirel¹, Laurent Coron², Pierre Brigode³

¹ IRSTEA – Hydrology Research Group (HYCAR) – Antony, France ² EDF – PMC Hydrometeorological Center – Toulouse, France ³ Nice-Sophia-Antipolis University – Géoazur UMR 7329 – Sophia-Antipolis, France

airGRteaching (Delaigue et al., 2018) is an add-on package to the airGR package (Coron et al., 2017). It includes the GR rainfall-runoff models and the CemaNeige snow melt and accumulation model. This package is easy to use and provides graphical devices to help students to explore data and analyse modelling results.

Why using airGRteaching for teaching hydrological modelling?

- ▶ It offers an interactive interface to showcase the rainfall-runoff model components
- It can be run with your own data
- ▶ It uses fast-running conceptual GR models (annual to hourly time steps)
- ► Free and open-source, available on all platforms (Linux, Mac OS & Windows)

airGRteaching functionalities

- very low programming skills needed
- only three functions to complete a hydrological modelling exercise:
 - data preparation (requires few input variables)
- model calibration
- flow simulation
- plotting functions to help students to explore observed data and to interpret results:
- static graphs ('graphics' package)
- interactive graphs ('dygraphs' package)
- plot functions automatically recognize the airGRteaching objects
- > a 'Shiny' graphical interface for (only daily models available):
- displaying the impact of model parameters on hydrographs
- manual and automatic model calibration
- state variable visualisation

Getting started with the package

- Documentation available with the R command: vignette("airGRteaching")
- ➤ airGR Website: https://webgr.irstea.fr/en/airGR/

Download the airGRteaching package

Freely available on the Comprehensive R Archive Network: https://CRAN.R-project.org/package=airGRteaching/

Effects of the different action buttons on the 'Shiny' interface

Data preparation, calibration and simulation with the GR5J model (+ CemaNeige snow model)## data.frame of observed data data(L0123002) BasinObs2 <- BasinObs[, c("DatesR", "P", "E", "Qmm", "T")]</pre> ## Preparation of observed data for modelling PREP <- PrepGR(ObsDF = BasinObs2, HydroModel = "GR5J", CemaNeige = TRUE, ZInputs = median(BasinInfo\$HypsoData), HypsoData = BasinInfo\$HypsoData) ## Calibration step CAL <- CalGR(PrepGR = PREP, CalCrit = "KGE", verbose = FALSE, WupPer = NULL, CalPer = c("1990-01-01", "1993-12-31"))## Plot the parameter values and the criterion during calibration plot(CAL, which = "iter") **Evolution of parameters and efficiency criterion** during the iterations of the steepest-descent step ## Simulation step using the result of the automatic calibration method SIM <- SimGR(PrepGR = PREP, CalGR = CAL, EffCrit = "NSE", WupPer = NULL, SimPer = c("1994-01-01", "1998-12-31"))## Crit. NSE[Q] = 0.8376

0 0.2 0.4 0.6 0.8

non-exceedance prob. [-]

EGU General Assembly 2018 - 8-13 April 2018 - Vienna (Austria) - EGU2018-5074 | EOS16/HS1.14

Plot giving an overview of the model outputs

30-days rolling mean

plot(SIM)

'Model diagram' & 'State variables' panels of the 'Shiny' interface

Future developments

- ► Additional models in the 'Shiny' interface (GR2M & GR4H)
- New plots to visualize snow simulation in the 'Shiny' interface

References

- Coron, L., Thirel, G., Delaigue, O., Perrin, C. & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. Environmental Modelling & Software 94, 166–171. DOI: 10.1016/j.envsoft.2017.05.002.
- Delaigue, O., Coron, L. & Brigode, P. (2018). airGRteaching: Teaching Hydrological Modelling with the GR Rainfall-Runoff Models ('Shiny' Interface Included). R package version 0.2.2.2. URL: https://webgr.irstea.fr/en/airGR/.
- ▶ Delaigue, O., Thirel, G., Coron, L. & Brigode, P. (under review). airGR and airGRteaching: two open-source tools for rainfall-runoff modeling and teaching hydrology. HIC2018 proceedings, 13th International conference of Hydroinformatics, July 2018, Palermo, Italy.

National Research Institute of Science and Technology

