Iterative Solution for System of Linear Equations

Raqeebir Rab

System of Linear Equations: Iterative Methods

Assume that we are given set of n equations:

$$[A]\{x\} = \{b\}$$

■ If the diagonal elements are all non zero then 1st equation solved for x_1 , 2nd equation for x_2 and 3rd equation for x_3

Therefore,

$$\chi_1^j = \frac{b_1 - a_{12} \, \chi_2^{j-1} - a_{13} \, \chi_3^{j-1}}{a_{11}}$$

$$\chi_2^j = \frac{b_2 - a_{21} \, x_1^{j-1} - a_{23} \, x_3^{j-1}}{a_{22}}$$

$$\chi_3^j = \frac{b_3 - a_{31} \, x_1^{j-1} - a_{32} \, x_2^{j-1}}{a_{33}}$$

Here,

j-->present iteration

 $j-1 \rightarrow$ previous iteration

System of Linear Equations: Iterative Methods

Process:

- Start Condition:
 - To start the solution process initial guess made for x's; the simple approach is to assume that they all are zero.
- End condition:
 - The process will continue until the solution converges close to true value.
 - ► Convergence criterion for all i: $\varepsilon_{a,i} = \left| \frac{x_i^j x_i^{j-1}}{x_i^j} \right| \times 100\% \le \varepsilon_s$
- Two types of Iterative methods:
 - Jacobi Method
 - Gauss Seidel Methods

Jacobi Method

Gauss Seidal Method

First Iteration:

Let,
$$x_2 = x_3 = 0$$

$$x_{1} = \frac{b_{1} - a_{12} x_{2}^{j-1} - a_{13} x_{3}^{j-1}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21} x_{1}^{j-1} - a_{23} x_{3}^{j-1}}{a_{22}}$$

Calculate
$$x_1 = \frac{b_1}{a_{11}}$$

New value of x_1 used to calculate x_2

New value of x_1 and x_2 used to calculate x_3

Second Iteration

 $x_3 = \frac{b_3 - a_{31} x_1^{j-1} - a_{32} x_2^{j-1}}{a_{33}}$

$$x_{1} = \frac{b_{1} - a_{12} x_{2}^{j-1} - a_{13} x_{3}^{j-1}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21} x_{1}^{j-1} - a_{23} x_{3}^{j-1}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31} x_{1}^{j-1} - a_{32} x_{2}^{j-1}}{a_{33}}$$

New value of x_3 and x_2 calculated from 1st iteration used to calculate x_1

Convergence Condition

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

- i.e. the absolute value of the diagonal coefficient in each of the equations must be larger than the sum of the absolute value of the other coefficient in the equations, such system is known as diagonally dominant.
- The criterion is sufficient but not necessary for convergence.

Problem statement:

Consider the system of linear equations:

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$

$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$

$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

Suppose the solution for the system is $\{x\}^T = \{3,-2.5,7\}$

Solve the system using Gauss Siedel Method.

$$\chi_1^j = \frac{b_1 - a_{12} \, \chi_2^{j-1} - a_{13} \, \chi_3^{j-1}}{a_{11}}$$

$$\chi_2^j = \frac{b_2 - a_{21} \, x_1^{j-1} - a_{23} \, x_3^{j-1}}{a_{22}}$$

$$\chi_3^j = \frac{b_3 - a_{31} \, x_1^{j-1} - a_{32} \, x_2^{j-1}}{a_{33}}$$

Rearranging the equations:

$$\chi_1^j = \frac{7.85 + 0.1\chi_2^{j-1} + 0.2\chi_3^{j-1}}{3}$$

$$\chi_2^j = \frac{-19.3 - 0.1 \, x_1^{j-1} + 0.3 x_3^{j-1}}{7}$$

$$\chi_3^j = \frac{71.4 - 0.3\chi_1^{j-1} - 0.2\chi_2^{j-1}}{10}$$

Initial Guess:

$$\chi_1^0 = \chi_2^0 = \chi_3^0 = 0$$

$$1^{st}$$
 Iteration; j=1

$$\chi_1^1 = \frac{7.85 + 0.1\chi_2^0 + 0.2\chi_3^0}{3}$$

$$\chi_2^1 = \frac{-19.3 - 0.1 \, x_1^0 + 0.3 x_3^0}{7}$$

$$\chi_3^1 = \frac{71.4 - 0.3\chi_1^0 - 0.2\chi_2^0}{10}$$

$$x_1^1 = \frac{7.85 + 0.1(0) + 0.2(0)}{3} = 2.61667$$

$$x_2^1 = \frac{-19.3 - 0.1 (2.61667) + 0.3(0)}{7} = -2.794524$$

$$x_3^1 = \frac{71.4 - 0.3(2.61667) - 0.2(-2.794524)}{10} = 7.0005610$$

 2^{nd} Iteration; j=2

$$\chi_1^2 = \frac{7.85 + 0.1\chi_2^1 + 0.2\chi_3^1}{3}$$

$$\chi_2^2 = \frac{-1 \cdot 3 - 0.1 \, x_1^1 + 0.3 x_3^1}{7}$$

$$\chi_3^2 = \frac{71.4 - 0.3\chi_1^1 - 0.2\chi_2^1}{10}$$

$$x_1^2 = \frac{7.85 + 0.1(-2.794524) + 0.2(7.0005610)}{3} = 2.990557$$

$$x_2^2 = \frac{-19.3 - 0.1 (2.990557) + 0.3 (7.0005610)}{7} = -2.499625$$

$$x_3^2 = \frac{71.4 - 0.3(2.990557) - 0.2 - 2.499625}{10} = 7.000291$$

 3^{rd} Iteration; j=3

$$x_1^3 = 3.0004$$

$$x_2^3 = -2.5$$

$$x_3^2 = 6.9997$$

4th Iteration; j=4

$$x_1^3 = 3.0003$$

$$x_2^3 = -2.5$$

$$x_3^2 = 6.9997$$

Additional Iteration will be applied to improve the result.

■ If true value is unknown in that case we have calculate error at each iteration until the result is met at least the specified tolerance level ε_s

Error for x_1

•
$$\varepsilon_{a,1} = \left| \frac{2.990557 - 2.61667}{2.990557} \right| \times 100\% = 12.5\%$$

Error for x₂

Error for x₃