Proyecto 2: Calendarización en Tiempo Real

Vargas A, Camacho A, Morales V

Tecnológico de Costa Rica avargas@gmail.com, acamacho@gmail.com, verny.morales@gmail.com3er Cuatrimestre

November 29, 2019

Rate Monotonic

Tipo

Algoritmo de Scheduling Dinámico, utilizado para la resolución de problemas caóticos, como por ejemplo el problema de los carros autónomos.

Manejo de prioridades

Algoritmo de prioridades estáticas, esto quiere decir que ninguna tarea puede cambiar su prioridad. Donde la prioridad de una tarea siempre es igual a su período. Período mas corto, mayor la prioridad.

Supuestos

Todas las tareas críticas son periódicas, e independientes. El tiempo de computación se conoce a priori, y el cambio de contexto es igual a cero, o ya esta considerado en el tiempo de computación.

Teoremas de Scheduling

Theorem (Parámetros a tomar en cuenta)

 $\mu = \Sigma \frac{C_i}{P_i}$ Utilización del CPU Un = n2 $\frac{1}{n}$ — 1 donde n es la cantidad de tareas

Theorem (Condiciones de suficiencia)

 $\mu \leq U$ n Tareas calendarizables $\mu \geq U$ n Debido a que es una condición de suficiencia podría ser calendarizable $\mu \succ 1$ Tareas no calendarizables

RM Prueba de Calendarizabilidad

Prueba de Schedulability

$$\mu = 1,000000 \le U(n) = 0,828427$$

Las pruebas son calendarizables

RM Resultados de Simulador

Table: RM Simulation results