Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano berkeley.edu, UC Berkeley), Tamara Broderick (MIT)

MIT Robustness and Influence Functions Workshop July 2024

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, \dots, x_N =$ polling data.
- $\theta = \text{parameters}$ for everything we don't know:
 - Daily information shocks (time series residuals)
 - Ideosyncracies of particular polling agencies
 - · Biases in polling methods
- Model polling randomness with $p(X|\theta)$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, \dots, x_N = \text{polling data}$.
- $\theta = \text{parameters for everything we don't know:}$
 - Daily information shocks (time series residuals)
 - Ideosyncracies of particular polling agencies
 - · Biases in polling methods
- Model polling randomness with $p(X|\theta)$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Many values of the unknowns θ are consistent with the data. How can we account for this uncertainty when making election predictions?

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, \dots, x_N =$ polling data.
- $\theta = \text{parameters}$ for everything we don't know:
 - Daily information shocks (time series residuals)
 - Ideosyncracies of particular polling agencies
 - Biases in polling methods
- Model polling randomness with $p(X|\theta)$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Many values of the unknowns θ are consistent with the data. How can we account for this uncertainty when making election predictions?

(Bayesian) Answer: Average over values that are plausibly consistent with the data.

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, \dots, x_N = \text{polling data}$.
- $\theta = \text{parameters for everything we don't know:}$
 - $\bullet\;$ Daily information shocks (time series residuals)
 - Ideosyncracies of particular polling agencies
 - Biases in polling methods
- Model polling randomness with $p(X|\theta)$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Many values of the unknowns θ are consistent with the data. How can we account for this uncertainty when making election predictions?

(Bayesian) Answer: Average over values that are plausibly consistent with the data.

Formally: Define a prior $p(\theta)$, compute the posterior $p(\theta|X)$, and estimate

$$f(\theta) \approx \underset{p(\theta|X)}{\mathbb{E}} \left[f(\theta) \right] \text{, with uncertainty proportional to } \sqrt{\underset{p(\theta|X)}{\operatorname{Var}} \left(f(\theta) \right)}.$$

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, \dots, x_N =$ polling data.
- θ = parameters for everything we don't know:
 - Daily information shocks (time series residuals)
 - · Ideosyncracies of particular polling agencies
 - · Biases in polling methods
- Model polling randomness with $p(X|\theta)$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Many values of the unknowns θ are consistent with the data. How can we account for this uncertainty when making election predictions?

(Bayesian) Answer: Average over values that are plausibly consistent with the data.

Formally: Define a prior $p(\theta)$, compute the posterior $p(\theta|X)$, and estimate

$$f(\theta) \approx \mathop{\mathbb{E}}_{p(\theta|X)}[f(\theta)] \text{, with uncertainty proportional to } \sqrt{\mathop{\mathrm{Var}}_{p(\theta|X)}(f(\theta))}.$$

Practically: We compute Markov chain Monte Carlo (MCMC) draws from $p(\theta|X)$.

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic \% of vote on election day}$

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

How can we estimate
$$\operatorname*{Var}_{X\stackrel{iid}{\sim}\mathbb{F}}\left(\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]\right)$$
?

A time series model to predict the 2016 US presidential election outcome from polling data.

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

How can we estimate
$$\operatorname*{Var}_{X\overset{iid}{\sim}\mathbb{F}}\left(\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]\right)$$
?

- $\bullet \ \, \text{Except in special cases, we expect} \ \, \mathop{\mathrm{Var}}_{p(\theta|X)}(f(\theta)) \neq \mathop{\mathrm{Var}}_{X \overset{i \times d}{\sim} \mathbb{F}} \left(\mathop{\mathbb{E}}_{p(\theta|X)}[f(\theta)] \right)$
- · We are interested re-sampling for this election, not a hypothetical future election

,

Results

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023] **Problem:** Each MCMC run takes about 10 hours (Stan, six cores).

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps:

Compute time for the linear approximation: (But note the approximation has some error)

Seconds

51 days

Results

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps:

Compute time for the linear approximation: (But note the approximation has some error)

Seconds

51 days

Augment the problem with data weights w_1, \dots, w_N .

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Augment the problem with data weights w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta,w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with *data weights* w_1, \ldots, w_N .

$$\ell_n(\theta) := \log p(x_n|\theta) \quad \log p(X|\theta, w) = \sum_{n=1}^N w_n \ell_n(\theta) \quad \Rightarrow \text{We write } \underset{p(\theta|X,w)}{\mathbb{E}} [f(\theta)].$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(\mathbf{w}).$$

ļ

How can we use the approximation?

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

This is equivalent to re—sampling data with replacement.

How can we use the approximation?

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

This is equivalent to re-sampling data with replacement.

Bootstrap variance
$$= \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right)$$

$$\approx \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right) \quad \text{(assuming the error is small)}$$

$$= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2.$$

The final line is also known as the "infinitesimal jackknife" variance approximation.

How can we use the approximation?

Example: Approximate bootstrap.

Bootstrap variance
$$pprox \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$
 .

How can we use the approximation?

Example: Approximate bootstrap.

Bootstrap variance
$$pprox \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$
 .

Example: Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x, w_{(-n)})}{\mathbb{E}} \left[-\ell(x_n|\theta) \right] \underset{p(\theta|x)}{\approx} \underset{p(\theta|x)}{\mathbb{E}} \left[-\ell(x_n|\theta) \right] - \psi_n$$

How can we use the approximation?

Example: Approximate bootstrap.

Bootstrap variance
$$\approx \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$
 .

Example: Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x, w_{(-n)})}{\mathbb{E}} \left[-\ell(x_n|\theta) \right] \underset{p(\theta|x)}{\approx} \underset{p(\theta|x)}{\mathbb{E}} \left[-\ell(x_n|\theta) \right] - \psi_n$$

Example: Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

How can we use the approximation?

Example: Approximate bootstrap.

Bootstrap variance
$$\approx \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$
 .

Example: Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x, w_{(-n)})}{\mathbb{E}} \left[-\ell(x_n|\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[-\ell(x_n|\theta) \right] - \psi_n$$

Example: Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \mathcal{E}(w).$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \frac{\mathcal{E}(w)}{}.$$

By dominated convergence,
$$\psi_n = \underbrace{\operatorname*{Cov}_{p(\theta|X)}(f(\theta),\ell_n(\theta))}_{\text{Estimatable with MCMC!}}$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w).$$

By dominated convergence, $\psi_n = \underbrace{\operatorname{Cov}_{p(\theta|X)}(f(\theta), \ell_n(\theta))}_{p(\theta|X)}$.

Furthermore, by the mean value theorem, for some \tilde{w} ,

$$\mathcal{E}(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \mathcal{E}_{nn'}(w)(w_n - 1)(w_{n'} - 1) \quad \text{where}$$

$$\mathcal{E}_{nn'}(w) := \underbrace{\mathbb{E}_{p(\theta|X,\bar{w})} \left[\bar{f}(\theta) \bar{\ell}_n(\theta) \bar{\ell}_{n'}(\theta) \right]}_{\text{Cannot compute directly!}}$$

(we don't know the intermediate value theorem's \tilde{w}).

But we can analyze it.

Here, an overbar denotes "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

Theoretical results

How good is the linear approximation (IJ covariance) as an approximation of the limiting variance of $\sqrt{N}\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$?

Theoretical results

How good is the linear approximation (IJ covariance) as an approximation of the limiting variance of $\sqrt{N}\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$?

Theorem 3 of Giordano and Broderick [2024] (paraphrase):

If the parameter dimension is fixed, and the posterior "concentrates at a point," (BVM applies) then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) \xrightarrow[N \to \infty]{prob} 0$.

Theoretical results

How good is the linear approximation (IJ covariance) as an approximation of the limiting variance of $\sqrt{N}\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$?

Theorem 3 of Giordano and Broderick [2024] (paraphrase):

If the parameter dimension is fixed, and the posterior "concentrates at a point," (BVM applies) then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) = \frac{prob}{N \to \infty} = 0$.

But we're doing MCMC because the posterior does not concentrate — at least, not for at some components of θ .

What if $f(\theta)$ concentrates marginally, but some components don't concentrate?

Theoretical results

How good is the linear approximation (IJ covariance) as an approximation of the limiting variance of $\sqrt{N}\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$?

Theorem 3 of Giordano and Broderick [2024] (paraphrase):

If the parameter dimension is fixed, and the posterior "concentrates at a point," (BVM applies) then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) = \frac{prob}{N \to \infty} = 0$.

But we're doing MCMC because the posterior does not concentrate — at least, not for at some components of θ .

What if $f(\theta)$ concentrates marginally, but some components don't concentrate?

Theorem 4 of Giordano and Broderick [2024] (paraphrase & conjecture):

In a flexible class of high-dimensional exponential family models,

even when $p\left(f(\theta)|X\right)$ concentrates marginally (!),

- $\sqrt{N}\mathcal{E}(w)$ does not converge to zero (so the IJ covariance is inconsistent), but...
- $\sqrt{N}\mathcal{E}(w) = \tilde{O}_p(1)$, and proportional to the nuisance parameters' posterior covariance

8

Theoretical results

How good is the linear approximation (IJ covariance) as an approximation of the limiting variance of $\sqrt{N}\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$?

Theorem 3 of Giordano and Broderick [2024] (paraphrase):

If the parameter dimension is fixed, and the posterior "concentrates at a point," (BVM applies) then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) = \frac{prob}{N \to \infty} = 0$.

But we're doing MCMC because the posterior does not concentrate — at least, not for at some components of θ .

What if $f(\theta)$ concentrates marginally, but some components don't concentrate?

Theorem 4 of Giordano and Broderick [2024] (paraphrase & conjecture):

In a flexible class of high-dimensional exponential family models,

even when $p\left(f(\theta)|X\right)$ concentrates marginally (!),

- $\sqrt{N}\mathcal{E}(w)$ does not converge to zero (so the IJ covariance is inconsistent), but...
- $\sqrt{N}\mathcal{E}(w) = \tilde{O}_p(1)$, and proportional to the nuisance parameters' posterior covariance
- \Rightarrow High–dimensional Bayesian models are an extremely common class of problems for which the influence function may not provide a good approximation.

8

Observations and consequences

Observations and consequences

Preprint: Giordano and Broderick [2024] (arXiv:2305.06466)

- · Detailed proofs
- · Simple analytical examples
- · Simulated and real-world experiments

9

References

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2024.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \underset{\boldsymbol{O_p}(N^{-1})}{\boldsymbol{O_p}(N^{-1})}.$$

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N\to\infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Problem: Most computationally hard Bayesian problems don't concentrate.

Experiments

Example: Poisson model with random effects (REs) λ and fixed effect $\gamma.$

A contradiction?

Negative binomial observations.

Asymptotically linear in \boldsymbol{w} .

Poisson observations with random effects.

Asymptotically non-linear in \boldsymbol{w} .

A contradiction?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in \boldsymbol{w} .

Asymptotically non-linear in \boldsymbol{w} .

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

The two weightings are not equivalent in general.

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Negative Binomial model

Uses
$$\log p(x_n|\gamma)$$
:
$$\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$$

Experimental results

Our results were actually computed on **identical datasets** with G = N and $g_n = n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from

$$\gamma, \lambda \sim p(\gamma, \lambda | X).$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma, \lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma, \lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma, \lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

