

Pyxu: a Modular Approach to Imaging across Domains and Scales

Sepand Kashani

Computational Imaging (CI)

- Inverse problem involving image-like quantities
 - Capture signals from real world with sensors
 - Infer something about quantity of interest via computation

CI: Optical Imaging

- Capture scene radiance
 - Visible light enters camera
 - Recorded on pixel detector

scene

measurement

sensor recording

CI: Tomography

- Determine volume absorption profile
 - Project X-rays through object
 - Record shadows from different directions

measurement

CI: Radio-Interferometry

- Determine sky brightness distribution
 - Stars emit radio emissions (among other things)
 - Recorded on Earth with antennas

Solving CI Inverse Problems

Relate quantity of interest with measurements

$$\mathbf{y} = [\mathcal{A}_Q \circ \cdots \circ \mathcal{A}_1] \mathbf{f} + \mathbf{n}$$

 Typical forward models A encountered in imaging (after discretization):

The CI Software Landscape

- Rich software tools for all types of imaging
 - Silo software: re-inventing the wheel
 - Slow dissemination across domains

https://pyxu-org.github.io/

Center for Imaging

- Python library to design/deploy CI pipelines
 - CPU/GPU imaging operators (CT, Fourier, ...)
 - Reconstruction algorithms
 - Strong interopability with ML ecosystem
 - Speed up R&D loop
- Share compute-part between domains and applications.

LenslessPiCam [Bezzam et al.]

Divergent X-ray tomography reconstruction and optimisation [Haouchat¹
An Angular Framework for Ultrasound Imaging [Hériard-Dubreuil]

Neural Manifolds Through the Lens of Connectome Spectral Analysis [Rué Queralt]

LIVOX: See leble Interferemetric Synthesis and Analysis of Spherical Sky Mans [Kashani et al.

HVOX: Scalable Interferometric Synthesis and Analysis of Spherical Sky Maps [Kashani et al.]

PolyCLEAN: Atomic Optimization for Super-Resolution Imaging and Uncertainty Estimation in Radio Interferometry [Jarret et al.]

Example: CT Reconstruction

- High-resolution Cone-beam CT scanner.
- Goal: Speed up acquisition at equivalent reconstruction quality.

Device software

Match the device output 1

- Parse XML file → extract scan geometry.
- Build CT projector digital twin via Pyxu.

Match the device output 2

• Direct inversion: Filtered Back-Projection

11

Direct Inversion with 25% data

- Speeds up acquisitionDirect inversion breaks down

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$
 (full data)

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$
 (25% data)

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$
 (25% data)

 $\arg\min_{\mathbf{z}} \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_{2}^{2} + \lambda \|\mathbf{z}\|_{2}^{2}$

support constraint + positivity

 $\underset{\mathbf{z}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_{2}^{2} + \lambda \|\mathbf{z}\|_{2}^{2}$

support constraint + positivity

+ TV regularization

support constraint + positivity

+ TV regularization

+ Plug-and-play denoiser

