Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy

Protokol RSA

Protokol RSA

- Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman.^a
- Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for Obtaining Digital Signatures and Public Key Cryptosystems, Commun. ACM 21 (1978), 294–299.
- V USA patentováno 20. září 1983.

Historie šifrování a další info, například

- S. Singh, Kniha kódů a šifer, Argo + Dokořán, Praha, 2003
- A. Hodges, Alan Turing: The Enigma, Random House, London, 1992

^a James Ellis z Government Communication Headquarters (GCHQ) tentýž protokol zřejmě vytvořil již koncem 60. let 20. století.

Každý si vytvoří veřejný a soukromý klíč.

Dva uživatelé

A (Alice) a B (Bob) se veřejně dohodnou na čísle N a chtějí si vyměňovat tajné zprávy $0 \le z < N$.

Tvorba Aliciných klíčů (Bob postupuje analogicky)

- **1** Alice si tajně zvolí dvě různá prvočísla p_A , q_A tak, aby $n_A = p_A q_A > N$.
- ② Alice spočte $\varphi(n_A) = (p_A 1) \cdot (q_A 1)$ a tajně zvolí v $\mathbb{Z}_{\varphi(n_A)}$ invertibilní prvek d_A .
- **3** Alice tajně spočte $e_A = d_A^{-1} \vee \mathbb{Z}_{\varphi(n_A)}$.
- 4 Alice zveřejní (n_A, e_A) (veřejný klíč) a nezveřejní (n_A, d_A) (soukromý klíč).

Provoz: Bob posílá zprávu z Alici

- Sifrování: Bob vyhledá Alicin veřejný klíč (n_A, e_A) a spočte $x = z^{e_A}$ v \mathbb{Z}_{n_A} .
- Bob veřejně odešle Alici číslo x.
- **3** Dešifrování: Alice přijme x a spočte $z = x^{d_A}$ v \mathbb{Z}_{n_A} .

Terminologie:

- n_A Alicin modul.
- *e*_A Alicin **šifrovací** (encryption) exponent.
- *d_A* Alicin dešifrovací (decryption) exponent.

Příklad (Alice tvoří své klíče)

Veřejně dohodnuto: N = 2500.

- **1** Tajně: $p_A = 37$, $q_A = 79$.
- **2** Alicin modul: $n_A = p_A q_A = 2923 > 2500$.
- \circ $\varphi(n_A) = 36 \cdot 78 = 2808.$
- **4** Alicin dešifrovací exponent: $d_A = 11$ je invertibilní v \mathbb{Z}_{2808} .
- **Solution** Sifrovací exponent: $e_A = d_A^{-1} = 1787 \text{ v } \mathbb{Z}_{2808}$.
- **6** Veřejný klíč: $(n_A, e_A) = (2923, 1787)$.
- **Soukromý klíč**: $(n_A, d_A) = (2923, 11)$.

Příklad (Posíláme Alici zprávu)

Chceme poslat: z = 42.

- **1** Alicin veřejný klíč: $(n_A, e_A) = (2923, 1787)$.
- **Spočteme**: $x = 42^{1787} = 242$ v \mathbb{Z}_{2923} (algoritmus opakovaných čtverců).
- 3 Odešleme: číslo 242.

Příklad (Alice přijímá zprávu)

Přijala: x = 242.

- **1** Alicin soukromý klíč: $(n_A, d_A) = (2923, 11)$.
- **2** Alice spočítá: $x^{11} = 242^{11} = 42$ v $\mathbb{Z}_{2\,923}$ (algoritmus opakovaných čtverců).
- Původní zpráva: číslo 42.

Věta o korektnosti protokolu RSA

Jestliže $x = z^{e_A}$ v \mathbb{Z}_{n_A} , potom $z = x^{d_A}$ v \mathbb{Z}_{n_A} .

Důkaz.

 $(z^{e_A})^{d_A} = z^{k\varphi(n_A)+1}$ pro nějaké celé k.

- 2 $gcd(z, n_A) \neq 1$: rozbor případů a Eulerova věta.

Věta o bezpečnosti protokolu RSA

Ať číslo n je součinem dvou neznámých různých prvočísel p a q. Znalost těchto prvočísel je ekvivalentní (v polynomiálním čase) znalosti čísla $\varphi(n)$.

Důkaz.

- **1** Známe p, q. Pak $\varphi(n) = (p-1) \cdot (q-1)$ (polynomiální čas!).
- 2 Známe $\varphi(n)$ a n. Takže známe pq = n a $p + q = n + 1 \varphi(n)$. Pak p, q jsou kořeny kvadratické rovnice (polynomiální čas!)

$$(x-p)\cdot(x-q) = x^2 - (n+1-\varphi(n))x + n = 0$$

Lov na prvočísla (The Great Internet Mersenne Prime Search)

Ke dni 6. 4. 2009 je největším známým prvočíslem číslo

$$2^{43\,112\,609}-1$$

(GIMPS, 23. 8. 2008) Má 12 978 189 cifer.

Viz např.

- http://primes.utm.edu/primes/
- http://www.mersenne.org/
- onebo dodatky skript.

Jednoduché útoky

- Útok hrubou silou.
- Útok insidera při sdíleném modulu (nepovinný).
- Útok outsidera při sdíleném modulu.
- 4 Útok při stejném malém veřejném exponentu.

Rafinovanější útoky

- Wienerův útok (dodatek skript nepovinné).
- Řada dalších viz literatura, např.
 D. Boneh, Twenty Years of Attacks on the RSA Cryptosystem,
 Notices Amer. Math. Soc. (AMS) 46(2), 1999, 203–213
 http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html

Příklad (Útok hrubou silou)

Eve^a zachytila zprávu 11 pro Alici, zná Alicin veřejný klíč (36 181, 3 989).

Eve postupuje takto:

- Hrubou silou faktorizuje $36\,181 = 97 \cdot 373$. Vyzkouší prvočísla $\leq \sqrt{36\,181} \leq 191$.
- ② Spočte $\varphi(36181) = \varphi(97) \cdot \varphi(373) = 96 \cdot 372 = 35712$.
- **3** Spočte $3\,989^{-1}=16\,601$ v $\mathbb{Z}_{35\,712}$ a zná Alicin soukromý klíč (36 181, 16 601).
- ① $11^{16601} = 9703$ v \mathbb{Z}_{36181} (čínská věta, opakované čtverce a Eulerova věta minulá přednáška). 9703 je odeslaná zpráva.

^aZ anglického eavesdropper — ten, kdo tajně naslouchá.

Slabiny útoku hrubou silou

Jediná, ale zásadní: faktorizační algoritmus hrubou silou. Pracuje v exponenciálním čase, únosný pro čísla $< 10^{12}$.

Modernější faktorizační algoritmy:

- Pollardova p-1 metoda, Pollardova ρ metoda (dodatek skript nepovinné).
- Number Field Sieve nemáme vybudovanou teorii, viz např. V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge Univ. Press, 2005.
- Shorův kvantový faktorizační algoritmus (polynomiální čas!), viz předmět Kvantové počítání, Libor Nentvich & Jiří Velebil.

Příklad (Útok outsidera při sdíleném modulu)

Alice posílá stejnou zprávu z dvěma účastníkům s veřejnými klíči $(n,e_1)=(703,11)$ a $(n,e_2)=(703,7)$. Eve zachytí dvě zprávy $c_1=694$ a $c_2=78$ v \mathbb{Z}_{703} .

Eve postupuje takto:

• Spočítá gcd(11,7) = 1. Bezoutova rovnost $1 = 11 \cdot 2 + 7 \cdot (-3)$

neboli

$$7 \cdot 3 + 1 = 11 \cdot 2$$

 $v \mathbb{Z}$.

② Dále

$$z^{7\cdot 3+1} = z^{11\cdot 2}$$
 v \mathbb{Z}_{703}

čili

$$78^3 \cdot z = 694^2 \quad \text{v } \mathbb{Z}_{703}$$

Příklad (Útok outsidera při sdíleném modulu)

Takže máme vyřešit

$$27 \cdot z = 81$$
 v \mathbb{Z}_{703}
Protože $\gcd(703, 27) = 1$, existuje jediné řešení $z = 3$.

• Odeslaná zpráva je z = 3.

Co kdyby výše uvedená rovnice neměla jednoznačné řešení?

To poznáme nalezením \gcd . Pak ale faktorizujeme modul RSA v polynomiálním čase. Viz skripta.

Ztížení útoku outsidera

Soudělnost exponentů: pak musíme řešit problém diskrétní odmocniny:

$$z^d = x \quad v \mathbb{Z}_n \quad \Rightarrow \quad z = \sqrt[d]{x} \quad v \mathbb{Z}_n$$

Příklad (Útok při stejném malém veřejném exponentu)

Tři účastníci s veřejnými klíči $(n_1, e) = (253, 3)$, $(n_2, e) = (51, 3)$ a $(n_3, e) = (145, 3)$.

Eve zachytí zprávy $c_1=86$, $c_2=9$ a $c_3=40$ pro tyto účastníky, které vznikly zašifrováním stejné neznámé zprávy z.

Eve postupuje takto:

Platí soustava rovnic

$$x = z^3 = 86 \text{ v } \mathbb{Z}_{253} \quad x = z^3 = 9 \text{ v } \mathbb{Z}_{51} \quad x = z^3 = 40 \text{ v } \mathbb{Z}_{145}$$

- ② $x=3\,375$ v $\mathbb{Z}_{1\,870\,935}$ (čínská věta, protože moduly $n_1=253$, $n_2=51$ a $n_3=145$ jsou navzájem nesoudělné).
- **3** Platí $3375 = z^3 < n_1 n_2 n_3 = 1870935$. Eve nalezne zprávu z obyčejnou třetí odmocninou: z = 15.

Útok hrubou silou Útok outsidera při sdíleném modulu Útok při stejném malém veřejném exponentu

Ztížení útoku při stejném malém veřejném exponentu

Soudělnost modulů a současně velká zpráva: pak nemůžeme použít čínskou větu o zbytcích, ani její zobecnění.

Další kryptosystémy založené na počítání modulo

- Výměna klíče podle Diffieho a Helmanna (viz skripta nepovinné).
- Elgamalův protokol (viz skripta nepovinné).
- k-Threshold System for Sharing a Secret (viz skripta nepovinné).

 Repovinné

 nepovinné

 nepovin
- ...a řada dalších, viz např.
 M. J. Atallah, Algorithms and Theory of Computation Handbook, CRC Press, New York, 1999

Více o rozložení prvočísel a testech prvočíselnosti

- Skripta dodatky (nepovinné).
- **2** V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge Univ. Press, 2005.
- Předmět Kvantové počítání, Libor Nentvich & Jiří Velebil.