資訊所 P76074509 辜玉雯

### ● 目的:

此次作業是要實作出鏈結分析中重要的三個演算法 HITS、PageRank 以及 SimRank,這些演算法主要都是用在評估網頁重要性。HITS 與 PageRank 藉由網頁連結關係找出重要的網頁,而 SimRank 則計算網頁間相似度。除了實作出演算法,還會透過實驗分析三者的效能,並討論這些演算法的限制,以及應用在真實網站上的合適性。

### ● HITS 演算法:

在 HITS 演算法中·最主要需要計算的就是 authority 與 hub·authority 指的是別的網頁指向它的次數;而 hub 指的是它指向別的網頁的次數·藉此來評估網頁間的關係與重要程度。因此這兩個數值可以透過下面的公式來計算。

$$\operatorname{auth}(p) = \sum_{i=1}^n \operatorname{hub}(i) \qquad \operatorname{hub}(p) = \sum_{i=1}^n \operatorname{auth}(i)$$

在算出兩個數值後,必須要再做 normalization,因為這兩個數值都是經過迭代後不停相加的結果,如果不做正規化,那數值會無止盡變大,並沒辦法終止演算法,因此會再利用下面的公式去做正規化。以 authority 為例,先將每個 node 的 authority 值相加,將加總後的結果平方再開根號,所得到的值當分母,而每個 node 各自的 authority 當分子,最後求得正規化後的 authority。

$$\sum hub(x)^2 = \sum auth(x)^2 = 1$$

最後得出 authority 與 hub·根據每次迭代的變化量與 threshold 做比較,去判斷目前的計算是否趨於收斂,如果收斂到一定程度,那演算法就可以終止。

## PageRank 演算法:

在 PageRank 的演算法中考量的是·網頁之間連結的數量與品質·藉此來評斷網頁的重要性。如果某個網頁被越多網頁指向連結·那它的重要性也就越高·並且如果連結它的網頁僅有指向它這個網頁·則相較於胡亂指向多個其他網頁的網頁·可靠度會更高·因此它的 pagerank 在這種狀況下也會更高。

初始時,每個網頁的 pagerank 值會設為 $\frac{1}{n}$ ,這是為了滿足最終機率值位於 0 到 1 之間的需要。接著同樣是迭代地去進行,根據投票的概念,若某個頁面同時連結到多個網頁,那它傳給每個網頁的 pagrank 值則會變成 $\frac{pagerank}{n}$ ,透過下面的公式持續去計算 pagerank,直到數值處於收斂的狀態,最終得到結果。而最終所有節點的 pagerank 值的總和會等於 1。

$$PR(P_i) = \frac{(d)}{n} + (1 - d) \times \sum_{l_{i,j} \in E} PR(P_j) / \text{Outdegree}(P_j)$$

公式之所以出現 d 這個參數·是由於「沒有向外連接的網頁」傳遞出去的 pagerank 會是 0·而這會遞迴地導致指向它的網頁的 pagerank 的計算結果同樣為零·所以這裡假設:這類網頁會連結到集合中所有的網頁(不管它們是否相關)·使得這類網頁的 pagerank 將被所有網頁均分。

也因此在我的演算法一開始會先去檢查沒有向外連結網頁的頁面·並增加該頁面到其他所有網頁的邊·藉此達成這個假設。而 d 則依照作業要求採用 0.15 來表示使用者停止往下點選·而是隨機開啟新頁面的機率;而 1-d=0.85 則是使用者會繼續往下點選網頁的機率。

## SimRank 演算法:

SimRank 這個演算法是一個衡量任意兩個對象間相似程度的方法,它的想法是如果兩個網頁被同樣的網頁連結,也就是它們有相似的入鄰邊,那麼可以說這兩個網頁也可能是相似的,所以才會被同一個網頁連結到。

這個演算法的初始狀態是當 a=b 時,直接設定 simrank 值為 1,因為我們假設每個結點與它本身最相似。而當連結到 a 的網頁數為 0,或連結到 b 的網頁數為 0,表示我們無法比較這兩個網頁是否有同樣的入鄰邊,因此此時的 simrank 值則設為 0。其餘的狀況,我們則用下面這個公式去做計算。

$$s(a,b) = rac{C}{|\mathcal{I}(a)|\,|\mathcal{I}(b)|} \sum_{i=1}^{|\mathcal{I}(a)|} \sum_{j=1}^{|\mathcal{I}(b)|} s(\mathcal{I}_i(a),\mathcal{I}_j(b))$$

透過迭代的方式去計算連結到  $a \cdot b$  的網頁 · 他們的相似度是多少 · 來加總計算最後得到 a 與 b 本身的相似度 。

在 SimRank 演算法中,因為在節點與邊數量較大的情況下,SimRank 的時間複雜度非常高,所以我同樣設定一個 threshold 來判斷迭代是否結束。

### ● 環境:

| 實作語言   | Python               |
|--------|----------------------|
| CPU    | intel i5-6400 2.7GHz |
| Memory | 16G                  |
| OS     | Windows 10 x64       |

## ● 實驗:

# Graph\_1:



### **♦** HITS

|           | Node1  | Node2  | Node3  | Node4  | Node5  | Node6  |
|-----------|--------|--------|--------|--------|--------|--------|
| Authority | 0      | 0.4472 | 0.4472 | 0.4472 | 0.4472 | 0.4472 |
| Hub       | 0.4472 | 0.4472 | 0.4472 | 0.4472 | 0.4472 | 0      |

由於  $Graph_1$  是一條單向的路徑·因此可以看到 node1 因為完全沒有被其他節點指向,所以 authority 值為 0,其他節點都被一個節點指向,所以經過迭代後,剩餘節點的值都為 0.4472。

同樣的·node6 因為完全沒有指向其他節點·所以 hub 值為 0·其他節點都有指向一個其他節點·所以經過迭代後·剩餘節點的值都為 0.4472。

# ◆ PageRank

|          | Node1  | Node2  | Node3  | Node4  | Node5  | Node6  |
|----------|--------|--------|--------|--------|--------|--------|
| Pagerank | 0.0607 | 0.1123 | 0.1562 | 0.1935 | 0.2252 | 0.2521 |

根據 PageRank 計算方式,前面的 node 會將本身的 PageRank 傳遞 給後面的 Node,因此會產生分數遞增的現象。所以從結果就可以看到由 node1 到 node6 他們的 pagerank 確實逐漸上升。

## ◆ SimRank

|       | Node1 | Node2 | Node3 | Node4 | Node5 | Node6 |
|-------|-------|-------|-------|-------|-------|-------|
| Node1 | 1     | 0     | 0     | 0     | 0     | 0     |
| Node2 | 0     | 1     | 0     | 0     | 0     | 0     |
| Node3 | 0     | 0     | 1     | 0     | 0     | 0     |
| Node4 | 0     | 0     | 0     | 1     | 0     | 0     |
| Node5 | 0     | 0     | 0     | 0     | 1     | 0     |
| Node6 | 0     | 0     | 0     | 0     | 0     | 1     |

由於圖一當中相異的兩個點間都沒有被同一個節點指向,因此只有在 a=b 時,s(a,b)=1,則其他任兩點間的 SimRank 值皆為 0。

# Graph\_2:



## ♦ HITS

|           | Node1  | Node2  | Node3  | Node4  | Node5  |
|-----------|--------|--------|--------|--------|--------|
| Authority | 0.4472 | 0.4472 | 0.4472 | 0.4472 | 0.4472 |
| Hub       | 0.4472 | 0.4472 | 0.4472 | 0.4472 | 0.4472 |

由於  $Graph_2$  是一條 cycle 的路徑,因此所有 node 都被相異的一個節點指向,所以 authority 值都等於 0.4472。同樣的,所有 node 指向相異的一個節點,所以 hub 值都等於 0.4472。

# PageRank

|          | Node1 | Node2 | Node3 | Node4 | Node5 |
|----------|-------|-------|-------|-------|-------|
| PageRank | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   |

這張圖根據 PageRank 計算方式,所有的 node 會接收上個節點所有的 pagerank 值,因此經過 cycle,所有節點的值都為 0.2。

# ◆ SimRank

|       | Node1 | Node2 | Node3 | Node4 | Node5 |
|-------|-------|-------|-------|-------|-------|
| Node1 | 1     | 0     | 0     | 0     | 0     |
| Node2 | 0     | 1     | 0     | 0     | 0     |
| Node3 | 0     | 0     | 1     | 0     | 0     |
| Node4 | 0     | 0     | 0     | 1     | 0     |
| Node5 | 0     | 0     | 0     | 0     | 1     |

圖二與圖一類似,當中相異的兩個點間都沒有被同一個節點指向,因此只有在 a=b 時,s(a,b)=1,則其他任兩點間的 SimRank 值皆為 0。

# Graph\_3:



#### ◆ HITS

|           | Node1  | Node2  | Node3  | Node4  |
|-----------|--------|--------|--------|--------|
| Authority | 0.3717 | 0.6015 | 0.6015 | 0.3717 |
| Hub       | 0.3717 | 0.6015 | 0.6015 | 0.3717 |

從圖三可以看出 node2 與 node3 被兩個節點指向·同時也指向兩個節點; 而 node1 與 node4 只被一個節點指向·也只指向一個節點·所以 node1、 node4 的 authority 與 hub 都比 node2、 node3 低,且兩者數值相同。

# ◆ PageRank

|          | Node1  | Node2  | Node3  | Node4  |
|----------|--------|--------|--------|--------|
| PageRank | 0.1754 | 0.3246 | 0.3246 | 0.1754 |

由於指向 node1 與 node4 的節點,都是同時指向兩個節點的情況,因此他們的 pagerank 值會被分散,因此 node1 與 node4 都為 0.1754 並且低於 node2 與 node3。

### ◆ SimRank

|       | Node1  | Node2  | Node3  | Node4  |
|-------|--------|--------|--------|--------|
| Node1 | 1      | 0      | 0.7391 | 0      |
| Node2 | 0      | 1      | 0      | 0.7391 |
| Node3 | 0.7391 | 0      | 1      | 0      |
| Node4 | 0      | 0.7391 | 0      | 1      |

由於 node1 與 node3 同時被 node2 指向,因此兩者是相似的,並且計算出相似度為 0.7391; node2 與 node4 同時被 node3 指向,因此兩者是相似的,並且計算出相似度為 0.7391。其他 node 之前則沒有被同時指向的關係,因此 simrank 皆為 0。

# Graph\_4:



### **♦** HITS

|           | Node1  | Node2  | Node3  | Node4  | Node5  | Node6  | Node7  |
|-----------|--------|--------|--------|--------|--------|--------|--------|
| Authority | 0.3467 | 0.4422 | 0.4991 | 0.3484 | 0.5006 | 0.1394 | 0.2090 |
| Hub       | 0.6464 | 0.1121 | 0.2551 | 0.4662 | 0.4312 | 0.2740 | 0.1619 |

從結果可以發現雖然 node1 與 node5 都有 4 個節點指向,但 node5 的 authority 值較高,這是由於指向 node5 的節點 hub 值相對較高。而 node1 hub 值較高的原因可能是它指向較多的節點,且當中有 node4、 node5 這些 authority 較高的節點。

# ◆ PageRank

|          | Node1  | Node2  | Node3  | Node4  | Node5  | Node6  | Node7  |
|----------|--------|--------|--------|--------|--------|--------|--------|
| PageRank | 0.2803 | 0.1588 | 0.1389 | 0.1082 | 0.1842 | 0.0606 | 0.0691 |

針對 node1 會發現指向它的節點,都恰好只有一個向外的邊,因此他們的 pagerank 不會分散,因此 node1 獲得的 pagerank 相對較高。而 node5 雖然也有很多指向它的節點,但他們同時都有很多向外邊,因此 node5 並無法獲得完整的 pagerank,因此數值相對較低。

# ◆ SimRank[程式結果是按照 txt 節點出現的順序排序,並非由大到小]

|       | Node1  | Node2  | Node3  | Node4  | Node5  | Node7  | Node6  |
|-------|--------|--------|--------|--------|--------|--------|--------|
| Node1 | 1      | 0.4461 | 0.4351 | 0.4388 | 0.4243 | 0.3826 | 0.4951 |
| Node2 | 0.4461 | 1      | 0.4877 | 0.4531 | 0.4944 | 0.5309 | 0.3752 |
| Node3 | 0.4351 | 0.4877 | 1      | 0.5263 | 0.4727 | 0.5279 | 0.5247 |
| Node4 | 0.4388 | 0.4531 | 0.5263 | 1      | 0.4275 | 0.6053 | 0.6053 |
| Node5 | 0.4243 | 0.4944 | 0.4727 | 0.4275 | 1      | 0.4923 | 0.3627 |
| Node7 | 0.3826 | 0.5309 | 0.5279 | 0.6053 | 0.4923 | 1      | 0.3607 |
| Node6 | 0.4951 | 0.3752 | 0.5247 | 0.6053 | 0.3627 | 0.3607 | 1      |

圖四連結情況比較複雜·所以所有節點之間相似度都不太一樣·但這當中我們可以發現 node5、node6 以及 node6、node7 之間的相似度是最低的,這是因為他們完全沒有共同的連接來源,因此我們會說這兩兩節點之間是較不相似的。

# Graph\_5:

### ◆ HITS

| Authority |        |  |
|-----------|--------|--|
| Node 61   | 0.4914 |  |
| Node 122  | 0.4826 |  |
| Node 212  | 0.2951 |  |
| Node 104  | 0.2867 |  |
| Node 282  | 0.2548 |  |

| Hub      |        |  |
|----------|--------|--|
| Node 274 | 0.1919 |  |
| Node 176 | 0.1898 |  |
| Node 412 | 0.1857 |  |
| Node 293 | 0.1776 |  |
| Node 254 | 0.1747 |  |

由於圖五的節點過多,因此這裡只列出數值最高的前五個。可以看出 authority 與 hub 值前五高的節點完全沒有重複,由此可知他們之間並不存 在正比的關係。

# ◆ PageRank

| PageRank       |        |  |  |
|----------------|--------|--|--|
| Node 61 0.0144 |        |  |  |
| Node 122       | 0.0141 |  |  |
| Node 104       | 0.0103 |  |  |
| Node 212       | 0.0078 |  |  |
| Node 282       | 0.0074 |  |  |

可以發現 pagerank 排名前五高的‧與 authority 數值前五高的是同樣的節點‧由此可知被指向的次數越多‧pagerank 就越高。

### **♦** SimRank

```
0.
          0. ... 0.
[1.
          0.85 ... 0.
     0.85 1.
             ... 0.
[0.
          0.
[0.
     0.
               ... 1.
                        0.85 0.85]
     0.
          0.
             ... 0.85 1.
[0.
[0.
               ... 0.85 0.85 1.
          0.
```

由於圖五節點過多,所以這裡無法列出。因此我計算出整個 matrix 的平均值是 0.0747,可以知道這張圖上大多數點與點之間的相似度皆為 0,只有少數有大於 0 的數值。

# Graph\_6:

### **♦** HITS

| Authority |        |  |
|-----------|--------|--|
| Node 761  | 0.2751 |  |
| Node 1151 | 0.2751 |  |
| Node 62   | 0.2730 |  |
| Node 78   | 0.2717 |  |
| Node 394  | 0.2653 |  |

| Hub      |        |  |  |
|----------|--------|--|--|
| Node 171 | 0.1563 |  |  |
| Node 857 | 0.1501 |  |  |
| Node 185 | 0.1492 |  |  |
| Node 91  | 0.1479 |  |  |
| Node 79  | 0.1475 |  |  |

圖六同樣節點與邊相當多,在分數排名前五的都是指向與被指向關係最

複雜的節點,node171 有四十多條指向邊,node761 也被指向四十多次,這也是他們分數最高的原因。但他們分數普遍都不高可能是因為指向關係太分散,導致沒有一個最重要的節點出現。

# ◆ PageRank

| PageRank  |        |  |  |
|-----------|--------|--|--|
| Node 1052 | 0.0039 |  |  |
| Node 761  | 0.0031 |  |  |
| Node 1151 | 0.0031 |  |  |
| Node 62   | 0.0031 |  |  |
| Node 394  | 0.0030 |  |  |

可以發現 pagerank 排名前五高的,與 authority 數值前五高的是節點 有很高的重複性,可以再次發現被指向的次數越多,pagerank 就越高。

# Graph\_7:

#### ◆ HITS

| Authority |        |  |
|-----------|--------|--|
| Node 85   | 0.2974 |  |
| Node 38   | 0.2888 |  |
| Node 63   | 0.2882 |  |
| Node 7    | 0.2529 |  |
| Node 73   | 0.2338 |  |

| Hub      |        |  |
|----------|--------|--|
| Node C4  | 0.5861 |  |
| Node C10 | 0.3977 |  |
| Node C5  | 0.3414 |  |
| Node C1  | 0.3343 |  |
| Node C7  | 0.3307 |  |

圖七是利用 project1 的 dataset 來進行演算法,我取 dataset 當中的一部份來測試。(Cx 代表顧客,數字代表商品)可以發現 authority 較高的都是商品,因為在商品買賣的關係上,只有商品有可能會被指向。而 hub 值較高的都是顧客,因為同樣建立在商品買賣的關係上,只有顧客有可能會指向商品。

# ◆ PageRank

| PageRank       |        |  |  |
|----------------|--------|--|--|
| Node 8 0.0212  |        |  |  |
| Node 38 0.0191 |        |  |  |
| Node 63 0.0187 |        |  |  |
| Node 85        | 0.0168 |  |  |
| Node 36        | 0.0166 |  |  |

由於 pagerank 與被指向的邊有很大關聯·因此可以看到 pagerank 排名高的都是商品·顧客的 pagerank 值相對都較低。

# ● 練習:

✓ 增減連結邊·使得前三張圖的 node1 的 authority hub 以及 pagerank 值上升?

## Graph\_1:

### 改變前:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0         | 0.4472 | 0.0607   |

#### 改變後:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0.4082    | 0.7071 | 0.1035   |

<sol>加入 2->1 & 1->3

任意加入一條 hub 值非 0 的邊·並指向 node1 就可以使 authority 升高;使得 authority 升高後·再任意加入 node1 指向別的節點的邊· 就可以使它 hub 值跟著上升·而 pagerank 跟指向它得邊有很大關聯· 所以前面已經加入 2->1· 也會使得 pagerank 上升。

# Graph\_2:

#### 改變前:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0.4472    | 0.4472 | 0.2      |

#### 改變後:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0.6015    | 0.6015 | 0.2737   |

<sol>加入 1->4 & 4->1

Node1 本來就有指向與被指向的邊,為了使數值上升,所以再各多加入一條指向與被指向的邊就可以使 authority 與 hub 上升。而pagerank 也因為被指向數量增加,進而跟著上升。

# Graph\_3:

### 改變前:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0.3717    | 0.3717 | 0.1754   |

#### 改變後:

|       | Authority | Hub    | Pagerank |
|-------|-----------|--------|----------|
| Node1 | 0.5227    | 0.5227 | 0.2459   |

<sol>加入 1->3 & 3->1

Node1 因為只有一條指向與被指向的邊,所以數值會比其他節點來的低,為了使數值上升,所以跟前一張圖做法相同,再各多加入一條指向與被指向的邊就可以使 authority 與 hub 上升。而 pagerank 也因為被指向數量增加,進而跟著上升。

# ● 討論:

#### ◆ 資料量大小對三種演算法執行時間的影響







### 實驗結果:

從三張圖可以發現 graph\_5 和 graph\_6(只有前兩個演算法) 在三個演算法所花費的時間都是最多的·這是因為這裡兩張圖節點 數量與邊的數量相當多,因此迭代計算花費相當長的時間。此外 simrank 由於是計算兩點之間相似度,因此需要同時查找兩個點的 入鄰邊,所以在執行上所需時間更多,所以圖五可以看出再 pagerank 花費不到 5 秒,而 simrank 則需要花費超過 25 秒的時間。

### ◆ 不同的"C"對於SimRank演算法的影響





#### 實驗結果:

透過不同的 C 值去比較 SimRank 演算法在評估 graph\_5 時的執行時間。結果發現當 C 值越小,所花費的時間就越短。這是因為當 C 值越小,每次迭代所產生的差異也就越小,所以使得 SimRank 值能更快收斂,也因此隨著 C 值下降,迭代次數跟著下降,執行時間則會加快。

#### ◆ Link Analysis 演算法是否真的能夠找出「重要」的網頁?

透過這些演算法去計算具有重要性的網頁,雖然是一個很有邏輯性的想法,但是由於這些演算法簡單易懂,所以很可能可以被人為操縱。舉例來說,某個網站只要大量的在一些知名網站買廣告來產生連結,就可以提升本身的分數,但事實上對使用者來說,該網站並不沒有任何參考價值。而且過去一段時間,有人努力鑽研如何讓 pagerank 分數上升,靠的是鑽研演算法的特性,而非實際上提升網站內容品質,因此這些演算法反而可能出現本末倒置的亂象。因此未來想透過演算法找出「重要」的網頁,勢必需要想辦法解決這些買廣告提升分數的問題。

### ● 結論:

在這次的作業中實作了三種演算法,關於圖形節點與邊的建立,我都是利用 graph-core 這個套件去建立。而通過各個圖形跑出來的結果,都符合演算法的原理,像是 authority 與 pagerank 都跟被指向的邊數量有關,所以這兩個數值會有正向關係,而 authority 與 hub 一個在乎的是被指向,一個在乎的是指向關係,所以他們並不會出現正比或反比的趨勢。

然而在執行效能上,出現的問題是,一旦資料量很大時,執行時間會大幅上升。這應該也是 Google 將 pagerank 查詢移除掉的原因之一,它所需耗費的效能實在太大。

此外·關於網頁排名這方面·我上網搜尋發現是有一部份的人專門在做 SEO(搜尋引擎優化)·它能夠透過自然排序(無付費)的方式增加網頁能見度·這對於提升新興公司的網站曝光度·或許是最合適的管道。關於網頁排名·未來應該還有不少可能性。