OBJECTIF GENERAL

L'objectif de ce TP est d'utiliser les bibliotheques : sympy, numpy et matplotlib pour tracer la courbe d'une fonction sur un intervalle donné

INTRODUCTION

Dans le but de pouvoir utiliser les differentes bibliothèques pour l'analyse et la visualisation des données, Par ces séances de travaux pratiques nous sommes appelés à utiliser certains bibliotheque de python pour le traçage des courbes de différentes fonction.

APPLICATION

. PROBLEME:

Soit $x(t) = 6t^2 + t - 5$ la position d'une moto en un instant t

Dans un premier temps utilisons la bibliotheque sympy :

A- Définissons la fonction x(t):

• on doit d'abord importer la bibliotheque sympy dans notre environnement de developpement

```
In [1]: import sympy as sp # importation de sympy comme sp
```

• définissons la fonction x(t) en sympy

```
In [2]: #définition de La fonction X(t) en sympy
t=sp.Symbol('t') # définition du symbole t
X=sp.Function('X') # définition du symbole de La fonction
X=6*t**2+t-5 # définition de La fonction
```

• affichage de la fonction

```
In [3]: display(X) # affichage de La fonction
```

 $\displaystyle \frac{t^{2} + t - 5}{}$

B- Traçons la courbe pour t = [0,15]

```
In [4]: display(r'la courbe de f pour t=[0,15]')
sp.plot(X,(t,0,15)) # traçage de La courbe de X pour t=[0,15]
```


Out[4]: <sympy.plotting.backends.matplotlibbackend.matplotlib.MatplotlibBackend at 0x20 f61f3fb00>

t

Out[7]: <sympy.plotting.backends.matplotlibbackend.matplotlib.MatplotlibBackend at 0x1f
3ba9b3680>

```
In [8]: sp.plot(X,(t,0,10))
```


Out[8]: <sympy.plotting.backends.matplotlibbackend.matplotlib.MatplotlibBackend at 0x1f
3bb6e7cb0>

```
\# utilisation de numpy et matplotlib pour tracer X(t)
In [22]:
                                         # importation de numpy pour les tableaux
         import numpy as np
         import matplotlib.pyplot as plt # importation de matplotlib pour les courbes
         t=np.linspace(0,15,100) # définition de 100 points entre 0 et 15
                                  # définition de la fonction
         X=6*t**2+t-5
         print(r'la courbe de X pour t=[0,15]')
                                  # traçage de la courbe
         plt.plot(t,X)
         plt.show()
         t=np.linspace(-10,0,100)
         X=6*t**2+t-5
         print(r'la courbe de X pour t=[-10,0]')
         plt.plot(t,X)
                                  # traçage de la courbe
         plt.show()
         t=np.linspace(0,10,100)
         X=6*t**2+t-5
         print(r'la courbe de X pour t=[0,10]')
         plt.plot(t,X)
                                  # traçage de la courbe
         plt.show()
```

la courbe de X pour t=[0,15]

la courbe de X pour t=[-10,0]

la courbe de X pour t=[0,10]

