Chapter 8: Smoothing^a

For a set $A \subseteq \mathbb{R}^p$ we denote by $\mathcal{C}^2(A)$ the set of functions $f: A \to \mathbb{R}$ which are twice continuously differentiable.

In this chapter we let p = 1, consider observations $\{(y_i^0, x_i^0)\}_{i=1}^n$ and assume the following non-parametric regression model

$$Y_i^0 = f(x_i^0) + \epsilon_i, \qquad i = 1, \dots n, \quad f \in \mathcal{C}^2(\mathbb{R})$$
 (8.1)

where, for all $i \neq l$, $\mathbb{E}[\epsilon_i] = 0$ and $\mathbb{E}[\epsilon_i \epsilon_l] = \sigma^2 \delta_{il}$.

Then, for a given $\lambda \in [0, \infty]$, we estimate f in (8.1) using

$$\hat{f}_{\lambda} \in \underset{f \in \mathcal{C}^2(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^n \left(y_i^0 - f(x_i^0) \right)^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx. \tag{8.2}$$

Remark that,

- for $\lambda = 0$ the function \hat{f}_{λ} is any function in $\mathcal{C}^2(\mathbb{R})$ that interpolates the data.
- for $\lambda = \infty$ the function \hat{f}_{λ} is the least squares line fit (i.e. we have $\hat{f}_{\infty}(x) = x\hat{\beta}$ for all x and with $\hat{\beta}$ the OLS estimator of β in the model $Y_i^0 = \beta x_i^0 + \epsilon_i$).

The function \hat{f}_{λ} is therefore very wiggly for $\lambda = 0$ and very smooth for $\lambda = \infty$, and the hope is that as λ increases from 0 to ∞ the smoothness of \hat{f}_{λ} 'gradually' evolves between these two extreme cases.

Surprisingly, and as we will see below, for $\lambda > 0$ the infinite dimensional optimization problem (8.2) admits an explicit, unique and finite dimensional solution.

^aThe main reference for this chapter is [13, Chapter 5].

Preliminaries: Spline functions

Definition 8.3 Let $\xi_1 < \xi_2 < \cdots < \xi_K$ be $K \geq 2$ real numbers, called knots. Then, a function $B : [\xi_1, \xi_K] \to \mathbb{R}$ is called a spline of degree $M \in \mathbb{N}$ if

- 1. B is a polynomial of degree M on the interval (ξ_k, ξ_{k+1}) , for all $k \in \{1, ..., K-1\}$,
- 2. $B \in \mathcal{C}^{M-1}((\xi_1, \xi_K))$ if $M \ge 2$.

Remark: If B is as Definition 8.3 then there exist polynomials $\{p_k\}_{k=1}^{K-1}$ of degree M such that

$$B(x) = \sum_{k=1}^{K-1} p_k(x) \mathbb{I}_{(\xi_k, \xi_{k+1})}(x), \quad \forall x \in (\xi_1, \xi_K).$$
 (8.3)

For $M \geq 1$ and $K \geq 2$ we let $S_{M,K}(\{\xi_k\}_{k=1}^K)$ denote the set of splines of degree M with knots $\{\xi_k\}_{k=1}^K$. The following proposition gives an important property of this set.

Proposition 8.1 For $M \ge 2$ and $K \ge 3$ the set $S_{M,K}(\{\xi_k\}_{k=1}^K)$ is a vector space of dimension M + K - 1.

Proof: The fact that $S_{M,K}(\{\xi_k\}_{k=1}^K)$ is a vector space is trivial. To compute the dimension of this space remark that, in (8.3), each polynomial p_k can be written as $p_k(x) = \sum_{m=0}^M a_m^{(k)} x^m$ for some real numbers $\{a_m^{(k)}\}_{m=0}^M$, and thus the function B has (K-1)(M+1) 'parameters' $\{(a_0^{(k)},\ldots,a_M^{(k)})\}_{k=1}^{K-1}$. However, the condition $B \in \mathcal{C}^{M-1}((\xi_1,\xi_K)))$ implies that not all these parameters can be freely chosen. Indeed, these parameters must be such that the function B and its first M-1 derivatives are continuous at each point $x \in \{\xi_k\}_{k=2}^{K-1}$, which imposes M(K-2) constraints of the parameters $\{(a_0^{(k)},\ldots,a_M^{(k)})\}_{k=1}^{K-1}$. Therefore, the set $\{(a_0^{(k)},\ldots,a_M^{(k)})\}_{k=1}^{K-1}$ contains only (K-1)(M+1)-(K-2)M=K+M-1 free parameters. The proof is complete.

Preliminaries: Natural cubic splines

Definition 8.4 A spline $B \in \mathcal{S}_{M,K}(\{\xi_k\}_{k=1}^K)$ of degree M=3 is called a natural cubic spline if $B''(\xi_1) = B''(\xi_K) = 0$.

Remark: The curvature of a natural cubic spline at the first and last knot is therefore zero, so that if we want to extrapolate the value of B outside the interval $[\xi_1, \xi_K]$ we would do it linearly.

For $K \geq 3$ we denote by $\mathcal{S}_K^*(\{\xi_k\}_{k=1}^K)$ the set of natural cubic splines having knots $\{\xi_k\}_{k=1}^K$. The following proposition gives an important property of this set.

Proposition 8.2 For $K \geq 3$ the set $S_K^*(\{\xi_k\}_{k=1}^K)$ is a vector space of dimension K.

Proof: Natural cubic splines impose two additional constraints compared to a "regular" splines. The result then follows by Proposition 8.1. \Box

The importance of natural cubic splines comes from the following key result.

Theorem 8.1 Let $K \geq 3$, $\xi_1 < \cdots < \xi_K$ be K knots and let $z \in \mathbb{R}^K$. Then, there exists a unique natural cubic spline $B \in \mathcal{S}_K^*(\{\xi_k\}_{k=1}^K)$ such that $B(\xi_k) = z_k$ for all $k \in \{1, \dots, K\}$. In addition, for every function $h \in \mathcal{C}^2([\xi_1, \xi_K])$ such that $h \neq B$ and such that $h(\xi_k) = z_k$ for all $k \in \{1, \dots, K\}$, we have

$$\int_{[\xi_1,\xi_K]} (B''(x))^2 dx < \int_{[\xi_1,\xi_K]} (h''(x))^2 dx.$$
 (8.4)

Remark: In (8.4) the inequality is strict.

Proof of Theorem 8.1

By Proposition 8.2 the set $\mathcal{S}_K^*(\{\xi_k\}_{k=1}^K)$ is a vector space of dimension K so that $\mathcal{S}_K^*(\{\xi_k\}_{k=1}^K) = \operatorname{span}(B_1^*, \dots, B_K^*)$ for some linearly independent natural cubic splines $\{B_k^*\}_{k=1}^K$ with knots $\{\xi_k\}_{k=1}^K$. Let $\mathbf{M} \in \mathbb{R}^{K \times K}$ be the matrix having $B_l^*(\xi_k)$ as element (l, k) and note that the square matrix \mathbf{M} is full rank, and thus invertible, since the functions $\{B_k^*\}_{k=1}^K$ are linearly independent and, by assumption, $\xi_k \neq \xi_l$ for all $k \neq l$. Therefore, $B := \sum_{k=1}^k a_k B_k^* \in \mathcal{S}_K^*(\{\xi_k\}_{k=1}^K)$ is such that $B(\xi_k) = z_k$ for all $k \in \{1, \dots, K\}$ if and only if $\mathbf{M} a = z \Leftrightarrow a = \mathbf{M}^{-1} z$, showing the first part of the theorem.

Next let h be as in the second part of the theorem and let g = h - B. As preliminary computations remark that, using integration by parts,

$$\int_{[\xi_{1},\xi_{K}]} B''(x)g''(x)dx = B''(x)g'(x)\Big|_{\xi_{1}}^{\xi_{K}} - \int_{[\xi_{1},\xi_{K}]} B'''(x)g'(x)dx
= -\int_{[\xi_{1},\xi_{K}]} B'''(x)g'(x)dx
= -\sum_{k=1}^{K-1} \int_{[\xi_{k},\xi_{k+1}]} B'''(x)g'(x)dx
= -\sum_{k=1}^{K-1} B'''\Big(\frac{\xi_{k+1} - \xi_{k}}{2}\Big) \int_{[\xi_{k},\xi_{k+1}]} g'(x)dx
= -\sum_{k=1}^{K-1} B'''\Big(\frac{\xi_{k+1} - \xi_{k}}{2}\Big)g(x)\Big|_{\xi_{k}}^{\xi_{k+1}}
= -\sum_{k=1}^{K-1} B'''\Big(\frac{\xi_{k+1} - \xi_{k}}{2}\Big)\Big(g(\xi_{k+1}) - g(\xi_{k})\Big)$$

where the 2nd equality uses the fact that $B''(\xi_1) = B''(\xi_K) = 0$, the 4th equality the fact that between the knots ξ_k and ξ_{k+1} the third derivative of B is constant, and the last equality holds since $g(\xi_k) = 0$ for all k.

Proof of Theorem 8.1 (end)

Then, using (8.5), we have

$$\int_{[\xi_{1},\xi_{K}]} (h''(x))^{2} dx = \int_{[\xi_{1},\xi_{K}]} (h''(x) - B''(x) + B''(x))^{2} dx
= \int_{[\xi_{1},\xi_{K}]} (g''(x))^{2} dx + \int_{[\xi_{1},\xi_{K}]} (B''(x))^{2} dx
+ 2 \int_{[\xi_{1},\xi_{K}]} B''(x)g''(x) dx
= \int_{[\xi_{1},\xi_{K}]} (g''(x))^{2} dx + \int_{[\xi_{1},\xi_{K}]} (B''(x))^{2} dx.$$
(8.6)

To complete the proof remark that since $g(\xi_k) = 0$ for all $k \in \{1, ..., K\}$ and $g \in \mathcal{C}^2([\xi_1, \xi_K])$, it follows that because $h \neq B$ there must exist an interval $[a, b] \subset (\xi_1, \xi_K)$ such that $g''(x) \neq 0$ for all $x \in [a, b]$. Hence,

$$\int_{[\xi_1,\xi_K]} (g''(x))^2 dx \ge \int_{[a,b]} (g''(x))^2 dx > 0$$

which, together with (8.6), shows that

$$\int_{[\xi_1,\xi_K]} (h''(x))^2 dx > \int_{[\xi_1,\xi_K]} (B''(x))^2 dx.$$

The proof is complete

Solution to the optimization problem (8.2)

We are now in position to state and prove the main result of this chapter.

Theorem 8.2 Let $\lambda > 0$, $x_{\min}^0 = \min\{x_i^0\}_{i=1}^n$, $x_{\max}^0 = \max\{x_i^0\}_{i=1}^n$ and assume that the set $\{x_i^0\}_{i=1}^n$ contains at least three distinct values. Then, (8.2) has a unique solution and

$$\hat{f}_{\lambda} = \underset{f \in \mathcal{C}^2(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^n \left(y_i^0 - f(x_i^0) \right)^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx$$
 (8.7)

is such that (i) the restriction of \hat{f}_{λ} on $[x_{\min}^0, x_{\max}^0]$ is a natural cubic spline with knots at the unique values of x_1^0, \ldots, x_n^0 and (ii) $\hat{f}_{\lambda}''(x) = 0$ for all $x \notin [x_{\min}^0, x_{\max}^0]$.

Remark: If $\hat{B}_{\lambda}: [x_{\min}^0, x_{\max}^0] \to \mathbb{R}$ is the natural cubic spline defined by $\hat{B}_{\lambda}(x) = \hat{f}_{\lambda}(x), x \in [x_{\min}^0, x_{\max}^0]$ then, for $x \notin [x_{\min}^0, x_{\max}^0]$, the value of $\hat{f}_{\lambda}(x)$ is obtained by linearly extrapolating \hat{B}_{λ} .

Proof of Theorem 8.2: Let $I \subseteq \{1,\ldots,n\}$ be such that $\{x_i^0\}_{i\in I}$ is the set of distinct values of x_1^0,\ldots,x_n^0 and assume that there exists a function $h\in\mathcal{C}^2(\mathbb{R})\setminus\mathcal{S}^*_{|I|}(\{x_i^0\}_{i\in I})$ such that

$$h \in \underset{f \in C^{2}(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i}^{0} - f(x_{i}^{0}))^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx.$$
 (8.8)

Let $z_i = h(x_i^0)$ for all $i \in I$, $B \in \mathcal{S}^*_{|I|}(\{x_i^0\}_{i \in I})$ be as in Theorem 8.1 (for $\{\xi_j\}_{j=1}^K = \{x_i^0\}_{i \in I})$ and let $f \in \mathcal{C}^2(\mathbb{R})$ be such that f(x) = B(x) for all $x \in [x_{\min}^0, x_{\max}^0]$ and such that f''(x) = 0 for all $x \notin [x_{\min}^0, x_{\max}^0]$. Then,

$$\sum_{i=1}^{n} (y_i^0 - f(x_i^0))^2 = \sum_{i=1}^{n} (y_i^0 - B(x_i^0))^2 = \sum_{i=1}^{n} (y_i^0 - h(x_i^0))^2$$
(8.9)

while

$$\int_{\mathbb{R}} (h''(x))^2 dx \ge \int_{[x_{\min}^0, x_{\max}^0]} (h''(x))^2 dx > \int_{[x_{\min}^0, x_{\max}^0]} (B''(x))^2 dx = \int_{\mathbb{R}} (f''(x))^2 dx.$$
 (8.10)

Therefore, by (8.9)-(8.10), we have

$$\sum_{i=1}^{n} (y_i^0 - h(x_i^0))^2 + \lambda \int_{\mathbb{R}} (h''(x))^2 dx > \sum_{i=1}^{n} (y_i^0 - f(x_i^0))^2 + \lambda \int_{\mathbb{R}} (f''(x))^2 dx$$

which contradicts (8.8). The fact that (8.2) has a unique solution follows from the fact that the spline

$$B \in \mathcal{S}^*_{|I|}(\{x_i^0\}_{i \in I})$$
 defined in theorem Theorem 8.1 is unique. The proof is complete.

Computation of \hat{f}_{λ}

Let \tilde{x}_0 be the vector containing the $m \leq n$ distinct values of x_1^0, \ldots, x_n^0 and let $\{b_j\}_{j=1}^m$ be a basis for the set $\mathcal{S}_m^*(\tilde{x}_0)$.

Let \mathbf{Z} be the $n \times m$ matrix having $b_j(x_i^0)$ as entry (i,j) and let \mathbf{S}_{pen} be the $m \times m$ matrix having $\int_{[x_{\min}^0, x_{\max}^0]} b_j''(x) b_l''(x) dx$ as entry (j, l). Remark that the matrix $\mathbf{Z}^{\top}\mathbf{Z}$ is full rank, since $\{b_j\}_{j=1}^m$ are m basis functions and since the set $\{x_i^0\}_{i=1}^n$ contains m distinct values^a.

Corollary 8.1 Consider the set-up of Theorem 8.2. Then, for any $\lambda > 0$

$$\hat{f}_{\lambda} = \underset{f \in \mathcal{C}^{2}(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i}^{0} - f(x_{i}^{0}))^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx$$

if and only if (i) $\hat{f}_{\lambda}(x) = \sum_{j=1}^{m} \beta_{\lambda,j} b_j(x)$ for all $x \in [x_{\min}^0, x_{\max}^0]$, with

$$eta_{\lambda} = \left(\boldsymbol{Z}^{\top} \boldsymbol{Z} + \lambda \boldsymbol{S}_{\mathrm{pen}} \right)^{-1} \boldsymbol{Z}^{\top} y^{0},$$

and (ii) $\hat{f}''_{\lambda}(x) = 0$ for all $x \notin [x^0_{\min}, x^0_{\max}]$.

Proof: Let $\hat{f}_{\lambda} \in \operatorname{argmin}_{f \in \mathcal{C}^2(\mathbb{R})} \sum_{i=1}^n (y_i^0 - f(x_i^0))^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx$. Then, by Theorem 8.2, there exists a $\beta_{\lambda} \in \mathbb{R}^m$ such that $\hat{f}_{\lambda} = \sum_{j=1}^m \beta_{\lambda,j} b_j$. More precisely, β_{λ} must be such that

$$\beta_{\lambda} \in \underset{\beta \in \mathbb{R}^{m}}{\operatorname{argmin}} \|y^{0} - \boldsymbol{Z}\beta\|^{2} + \lambda \int_{[x_{\min}^{0}, x_{\max}^{0}]} \left(\sum_{j=1}^{m} \beta_{j} b_{j}''(x)\right)^{2}$$

$$= \underset{\beta \in \mathbb{R}^{m}}{\operatorname{argmin}} \|y^{0} - \boldsymbol{Z}\beta\|^{2} + \lambda \beta^{\top} \boldsymbol{S}_{\text{pen}}\beta$$

$$= \left(\boldsymbol{Z}^{\top} \boldsymbol{Z} + \lambda \boldsymbol{S}_{\text{pen}}\right)^{-1} \boldsymbol{Z}^{\top} y^{0}. \tag{8.11}$$

The proof is complete.

 \square .

^aThe matrix S_{pen} is however not full rank.

Choosing the penalty parameter λ

Given the expression (8.11) of β_{λ} , it follows that, as for ridge regression, the leave-one-out cross validation procedure for choosing the penalty parameter λ can be efficiently implemented for smoothing.

More precisely, recall that using leave-one-out cross validation procedure to choose λ amounts to letting $\lambda = \hat{\lambda}$ where

$$\hat{\lambda} \in \underset{\lambda \in [0,\infty)}{\operatorname{argmin}} \operatorname{OCV}_{\operatorname{smooth}}(\lambda), \quad \operatorname{OCV}_{\operatorname{smooth}}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (y_i^0 - \beta_{-i,\lambda}^{\top} z_i)^2$$

where $\beta_{-i,\lambda}$ is computed as in (8.11) after having removed observation (y_i^0, x_i^0) from the sample.

Letting $\tilde{\mathbf{A}}^{(\lambda)} = \mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z} + \lambda \mathbf{S}_{pen})^{-1}\mathbf{Z}^{\top}$, it follows from Theorem 6.1^a that

$$OCV_{smooth}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i^0 - \beta_{\lambda}^{\top} z_i)^2}{(1 - \tilde{a}_{ii}^{(\lambda)})^2}, \quad \forall \lambda > 0$$

and therefore that computing $OCV_{smooth}(\lambda)$ requires only to compute β_{λ} and $\{\tilde{a}_{ii}^{(\lambda)}\}_{i=1}^{n}$.

Alternatively, one can choose λ using the generalized cross-validation criterion

$$GCV_{\text{smooth}}(\lambda) := \frac{n \|y^0 - \mathbf{Z}\beta_\lambda\|^2}{\left\{n - \operatorname{tr}(\tilde{\mathbf{A}}^{(\lambda)})\right\}^2}, \quad \lambda > 0$$
 (8.12)

Remark: It can be shown that for $\lambda > 0$ we have $\operatorname{tr}(\tilde{\mathbf{A}}^{(\lambda)}) \in (0, n)$ [13, page 212], so that $\operatorname{GCV}_{\operatorname{smooth}}(\lambda)$ is well-defined for all $\lambda > 0$. By contrast, we can only guarantee that $\tilde{a}_{ii}^{(\lambda)} \in [0, 1]$ and therefore the quantity $\operatorname{OCV}_{\operatorname{smooth}}(\lambda)$ may not be well-defined.

^aActually, to apply Theorem 6.1 we need (i) that all the x_i^0 's are distinct and (ii) to use only n-1 out of the n basis functions.

Choice of the basis functions

We start with two important remarks:

- In theory the choice of the basis functions $\{b_j\}_{j=1}^m$ of the set $\mathcal{S}_m^*(\tilde{x}_0)$ does not matter. However, from a computational point of view this choice is important. Indeed, for some basis functions $\{b_j\}_{j=1}^m$ (such as for the truncated power basis) the columns of \mathbf{Z} may be highly correlated, which could lead to numerical instabilities.
- In general, we have $m = \mathcal{O}(n)$ so that inverting the matrix $\mathbf{Z}^{\top}\mathbf{Z} + \lambda \mathbf{S}_{pen}$ (that appears in the definition of β_{λ}) requires $\mathcal{O}(n^3)$ operations.

To avoid the two aforementioned problem, the B-spline basis is often used in practice.

One of the main advantage of this basis is to be such that, for all $x \in [x_{\min}^0, x_{\max}^0]$, we have $b_j(x) \neq 0$ for at most 4 values of $j \in \{1, \ldots, m\}$, making the matrix \mathbf{Z} sparse. Because \mathbf{Z} is sparse the computation of β_{λ} is usually numerically stable. In addition, the particular sparsity structure of the matrix \mathbf{Z} obtained with B-spline makes possible to compute β_{λ} in $\mathcal{O}(n \log(n))$ operations, even when $m = \mathcal{O}(n)$ (see [3], Appendix of Chapter 5).

Remark: The B-spline functions form a basis of $S_{3,m}(\tilde{x}^0)$ and not of $S_m^*(\tilde{x}^0)$, and thus contains m+2 functions $\{\tilde{b}_j\}_{j=1}^{m+2}$ (by Proposition 8.1). However, since $S_m^*(\tilde{x}^0) \subset S_{3,m}(\tilde{x}^0)$ it follows that \hat{f}_{λ} can be expressed as linear combination of the B-splines basis^a, and thus the resulting value of $\beta_{\lambda} \in \mathbb{R}^{m+2}$ is guaranteed to be such that $\hat{f}_{\lambda} = \sum_{j=1}^{m+2} \beta_{\lambda,j} \tilde{b}_j$.

^aWe abuse notation/language here by referring to \hat{f}_{λ} as a spline while, in fact, it is the restriction of \hat{f}_{λ} to $[x_{\min}^0, x_{\max}^0]$ which is a spline.

Thinning

If the use of B-splines allows to compute β_{λ} in $\mathcal{O}(n)$ operations the cost of computing the cross-validation criterion $\text{OCV}_{\text{smooth}}(\lambda)$ or $\text{GCV}_{\text{smooth}}(\lambda)$ is still of size $\mathcal{O}(\max(m^3, n))^a$.

For this reason, in practice, when m in large not all the m basis functions $\{b_j\}_{j=1}^m$ are used. Luckily, any reasonable thinning strategy will have little impact on the fit.

To understand this latter claim assume that the regression model (8.1) is well-specified, that is that there exists a function $f^0 \in \mathcal{C}^2(\mathbb{R})$ such that, with $\{\epsilon_i\}_{i=1}^n$ as above,

$$Y_i^0 = f^0(x_i^0) + \epsilon_i, \quad i = 1, \dots, n.$$

Assume that m = n, that for some $a < \infty$ we have $|x_i^0| \le a$ for all i and that all the x_i^0 's are distinct.

For $f: [-a, a] \to \mathbb{R}$ let

$$||f|| = \left(\int_{[-a,a]} f(x)^2 dx\right)^{1/2}$$

be the L_2 norm of f and let

$$f_n^0 = \underset{f \in \mathcal{S}_n^*(x^0)}{\operatorname{argmin}} \|f - f^0\|.$$

^aOne reason why β_{λ} can be computed in $\mathcal{O}(n)$ is that we can compute β_{λ} without inverting the matrix $\mathbf{Z}^{\top}\mathbf{Z} + \lambda \mathbf{S}_{pen}$. However,m this matrix needs to be inverted to compute the OCV and GCV criteria

Thinning (end)

Let $\lambda > 0$. Then, the estimation error $||f^0 - \hat{f}_{\lambda}||$ depends on

1. The approximation error $||f^0 - f_n^0||$, which is due to the fact that we approximate $f^0 \in \mathcal{C}^2([-a,a])$ by a function in the set $\mathcal{S}_n^*(x^0)$.

Under some additional conditions on f^0 it can be shown that [?]

$$||f^0 - f_n^0|| = \mathcal{O}(h_n^4), \quad h_n = \max_{i \in \{1, \dots, n\}} \min_{i \neq l} ||x_i^0 - x_l^0||.$$

Typically, $h_n = \mathcal{O}(1/n)$, in which case $||f^0 - f_n^0|| = \mathcal{O}(n^{-4})$.

2. The statistical error $\|\hat{f}_{\lambda} - f_n^0\|$, which is at least of size $\mathcal{O}(n^{-1/2})^a$.

When all the n basis functions are used the approximation error is therefore much smaller than the statistical error.

In particular, if for some $\alpha \in (0,1]$ we only use $m = \mathcal{O}(n^{\alpha})$ basis functions associated to m distinct elements of $\{x_i^0\}_{i=1}^n$ which are approximatively equally spaced then the rate at which $\|f^0 - \hat{f}_{\lambda}\|$ converges to zero is the same for all $\alpha \in [1/8, 1]$.

Remark: When λ is selected from the data (e.g. using cross-validation) then we need a slightly larger value of α if we want the penalization to be effective when n in large [13, Section 5.2, page 199].

^aRecall that $n^{-1/2}$ is the standard parametric convergence rate.

Illustrative example: The fossil dataset^a

This dataset contains the ratio of strontium isotopes found in n = 106 fossil shells. The fossils shells were formed in the mid-Cretaceous period and are between 91 to 123 million years old. For this example y_i^0 is ratio of strontium isotopes in the *i*th fossil and x_i^0 is its age (measured in million of years). In this dataset all the x_i^0 's are distinct.

Figure 8.1 below shows the function \hat{f}_{λ} obtained when λ has been selected using the GCV criterion (8.12).

Figure 8.1: Smoothing regression for the fossil dataset with m basis functions, for all $m \in \{n, 10, 5\}$. The dots represents the observations $\{(y_i, x_i^0)\}_{i=1}^n$

We observe that when all the m = 106 basis functions of $\mathcal{S}_n^*(\{x_i^0\}_{i=1}^n)$ are used the function \hat{f}_{λ} represents well the relationship between the age and ratio of strontium isotopes of a fossil. The second plot of Figure 8.1 shows that taking only 10 out of the 106 basis functions has little impact on the estimated function. However, decreasing further m to m = 5 significantly deteriorates the fit.

^aThis dataset is Available in the R package brinla.

Inclusion of a smooth function in a larger model

Let p > 1 and, using the shorthand $w_i^0 = (x_{i2}^0, \dots, x_{ip}^0)$ and with $\{\epsilon_i\}_{i=1}^n$ as in (8.1), assume the following model for the observations $\{y_i^0\}_{i=1}^n$

$$Y_i^0 = \alpha + f(x_{i1}^0) + \gamma^\top w_i^0 + \epsilon_i, \quad i = 1, \dots, n$$
 (8.13)

where $f \in \mathcal{C}^2(\mathbb{R})$, $\alpha \in \mathbb{R}$ and where $\gamma \in \mathbb{R}^{p-1}$.

Then, a natural estimator of (f, α, γ) is

$$(\hat{f}_{\lambda}, \hat{\alpha}_{\lambda}, \hat{\gamma}_{\lambda}) \in \underset{f \in \mathcal{C}^{2}(\mathbb{R}), (\alpha, \gamma) \in \mathbb{R}^{p}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i}^{0} - \alpha - f(x_{i1}^{0}) - \gamma^{\top} w_{i}^{0})^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx.$$

The model (8.13) is however non-identifiable since, for all $c \in \mathbb{R}$,

$$Y_i^0 = \alpha + f(x_{i1}^0) + \gamma^{\top} w_i^0 + \epsilon_i = (\alpha - c) + (f(x_{i1}^0) + c) + \gamma^{\top} w_i^0 + \epsilon_i$$

where $f + c \in \mathcal{C}^2(\mathbb{R})$ if $f \in \mathcal{C}^2(\mathbb{R})$. Consequently, the solution $(\hat{f}_{\lambda}, \hat{\alpha}_{\lambda}, \hat{\gamma}_{\lambda})$ to the above optimization problem is not unique.

A first solution to this identifiability issue is to remove the intercept from the model, in which case there exists in general a unique solution $(\hat{f}_{\lambda}, \hat{\gamma}_{\lambda})$ to the optimization problem

$$\min_{f \in \mathcal{C}^2(\mathbb{R}), \gamma \in \mathbb{R}^{p-1}} \sum_{i=1}^n \left(y_i^0 - f(x_{i1}^0) - \gamma^\top w_i^0 \right)^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx.$$
 (8.14)

Remark: If $\{b_j\}_{j=1}^m$ is the B-spline basis of $\mathcal{S}_m^*(\tilde{x}^0)$, with $m = |\tilde{x}^0|$, then $\sum_{j=1}^m b_j(x) = 1$ of all $x \in [x_{\min}^0, x_{\max}^0]$. In this case, we have $\alpha + \sum_{j=1}^m \beta_j b_j(x_i^0) = \sum_{j=1}^m (\beta_j + \alpha) b_j(x_i^0)$ so that omitting α in (8.13) is equivalent to shifting all the β_j 's parameter by α (and thus the shape of the estimated function will be unchanged).

Inclusion of a smooth function in a larger model (end)

A second, and more popular, solution to the aforementioned identifiability issue is to impose that \hat{f}_{λ} is such that $\sum_{i=1}^{n} \hat{f}_{\lambda}(x_{i1}^{0}) = 0$, that is to estimate (α, γ, f) using

$$(\tilde{f}_{\lambda}, \tilde{\alpha}_{\lambda}, \tilde{\gamma}_{\lambda}) \in \underset{f \in \tilde{\mathcal{C}}^{2}(\mathbb{R}), (\alpha, \gamma) \in \mathbb{R}^{p}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_{i}^{0} - \alpha - f(x_{i1}^{0}) - \gamma^{\top} w_{i}^{0} \right)^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx.$$

where
$$\tilde{\mathcal{C}}^2(\mathbb{R}) = \{ f \in \mathcal{C}^2(\mathbb{R}) : \sum_{i=1}^n f(x_{i1}^0) = 0 \}.$$

As shown in the next proposition, $(\tilde{f}_{\lambda}, \tilde{\alpha}_{\lambda}, \tilde{\gamma}_{\lambda})$ is uniquely defined.

Proposition 8.3 Let $M_{\lambda} = I_n - Z(Z^{\top}Z + \lambda S_{\text{pen}})^{-1}Z^{\top}$ and assume that the matrix $W^{\top}M_{\lambda}^2W$ is invertible. Let

$$\tilde{\gamma}_{\lambda} = (\boldsymbol{W}^{\top} \boldsymbol{M}_{\lambda}^{2} \boldsymbol{W})^{-1} \boldsymbol{W}^{\top} \boldsymbol{M}_{\lambda}^{2} y, \quad \tilde{\alpha}_{\lambda} = \bar{y}^{0} - \tilde{\gamma}_{\lambda}^{\top} \bar{w}^{0}$$

and $\tilde{f}_{\lambda} = \operatorname{argmin}_{f \in \mathcal{C}^2(\mathbb{R})} \sum_{i=1}^n \left((y_i - \tilde{\gamma}_{\lambda}^{\top} w_i) - f(x_{i1}^0) \right)^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx.$ Then,

$$(\tilde{\alpha}_{\lambda}, \tilde{\gamma}_{\lambda}, \tilde{f}_{\lambda}) = \underset{f \in \tilde{\mathcal{C}}^{2}(\mathbb{R}), (\alpha, \gamma) \in \mathbb{R}^{p}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_{i}^{0} - \alpha - f(x_{i1}^{0}) - \gamma^{\top} w_{i}^{0} \right)^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx.$$

Remark: By Theorem 8.2, $\tilde{f}_{\lambda}: [x_{(1),\min}^0, x_{(1),\max}^0] \to \mathbb{R}$ is a natural cubic spline with knots at the unique values of $\{x_{i1}^0\}_{i=1}^n$ and $\tilde{f}''_{\lambda}(x) = 0$ for all $x \notin [x_{(1),\min}^0, x_{(1),\max}^0]$, where $x_{(1),\min}^0 = \min\{x_{i1}\}_{i=1}^n$ and $x_{(1),\max}^0 = \max\{x_{i1}\}_{i=1}^n$.

Remark: $\tilde{\gamma}_{\lambda}$ is a generalized least squares estimate of γ in the model $Y = \mathbf{W} \gamma + \epsilon$.

Proof of Proposition 8.3

Let $F(\alpha, \gamma, f) = \sum_{i=1}^{n} (y_i^0 - \alpha - f(x_{i1}^0) - \gamma^\top w_i^0)^2 + \lambda \int_{\mathbb{R}} f''(x)^2 dx$ and for $f \in \tilde{\mathcal{C}}^2(\mathbb{R})$ and $\gamma \in \mathbb{R}^p$ let

$$\alpha_{f,\gamma} = \operatorname*{argmin}_{\alpha \in \mathbb{R}} F(\alpha, \gamma, f) = \bar{y}^0 - \frac{1}{n} \sum_{i=1}^n f(x_{i1}) - \gamma^\top \bar{w}^0 = \bar{y}^0 - \gamma^\top \bar{w}^0.$$

Next, for $\gamma \in \mathbb{R}^{p-1}$, let $y_{\gamma,i} = y_i - \gamma^\top w_i$ and $f_{\gamma} \in \tilde{\mathcal{C}}^2(\mathbb{R})$ be such that

$$f_{\gamma} \in \underset{f \in \tilde{\mathcal{C}}^{2}(\mathbb{R})}{\operatorname{argmin}} F(\alpha_{f,\gamma}, \gamma, f)$$

$$= \underset{f \in \tilde{\mathcal{C}}^{2}(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{\gamma,i} - f(x_{i1}^{0}))^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx$$

$$= \underset{f \in \mathcal{C}^{2}(\mathbb{R})}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{\gamma,i} - f(x_{i1}^{0}))^{2} + \lambda \int_{\mathbb{R}} g''(x)^{2} dx.$$

$$(8.15)$$

To show the latter equality let $\tilde{f}_{\gamma} \in \operatorname{argmin}_{f \in \mathcal{C}^2(\mathbb{R})} F(\alpha_{f,\gamma}, \gamma, f)$ and, for every $c \in \mathbb{R}$, let $g_c = \tilde{f}_{\gamma} - c$. Then, $g''_c(x) \equiv \tilde{f}''_{\gamma}(x)$ for all $x \in \mathbb{R}$ and

$$c^* := \underset{c \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^n \left(y_{\gamma,i} - (\tilde{f}_{\gamma}(x_{i1}^0) + c) \right)^2 = \frac{1}{n} \sum_{i=1}^n \tilde{f}_{\gamma}(x_{i1}^0) - \frac{1}{n} \sum_{i=1}^n y_{\gamma,i}$$
$$= \frac{1}{n} \sum_{i=1}^n \tilde{f}_{\gamma}(x_{i1}^0).$$

Hence, if $\sum_{i=1}^{n} \tilde{f}_{\gamma}(x_{i1}^{0}) \neq 0$ we have $F(\alpha_{g_{c^{*}},\gamma}, \gamma, g_{c^{*}}) < F(\alpha_{\tilde{f}_{\gamma},\gamma}, \gamma, \tilde{f}_{\gamma})$, which contradicts the fact that $\tilde{f}_{\gamma} \in \operatorname{argmin}_{f \in \mathcal{C}^{2}(\mathbb{R})} F(\alpha_{f,\gamma}, \gamma, f)$.

Finally, using the fact that $\alpha_{f_{\gamma},\gamma} = \bar{y}^0 - \gamma^{\top} \bar{w}^0$ together with (8.15) and Corollary 8.1, we obtain

$$\underset{\gamma \in \mathbb{R}^{p-1}}{\operatorname{argmin}} F(\alpha_{f_{\gamma}}, \gamma, f_{\gamma}) = \underset{\gamma \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \|y - \boldsymbol{W} \gamma - \boldsymbol{Z} (\boldsymbol{Z}^{\top} \boldsymbol{Z} + \lambda \boldsymbol{S}_{pen})^{-1} \boldsymbol{Z}^{\top} (y - \boldsymbol{W} \gamma) \|^{2}
= \underset{\gamma \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \|\boldsymbol{M}_{\lambda} (y - \boldsymbol{W} \gamma) \|^{2}
= (\boldsymbol{W}^{\top} \boldsymbol{M}_{\lambda}^{2} \boldsymbol{W})^{-1} \boldsymbol{W}^{\top} \boldsymbol{M}_{\lambda}^{2} y.$$

The proof is complete.

A convenient representation of \hat{f}_{λ}

Going back to the case where p = 1, Proposition 8.3 shows that the smoothing estimate \hat{f}_{λ} of f, defined in (8.2), can be written as

$$\hat{f}_{\lambda} = \bar{y}_0 + \tilde{f}_{\lambda} \tag{8.16}$$

where the function \tilde{f}_{λ} is defined by

$$\tilde{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{C}^{2}(\mathbb{R})} \sum_{i=1}^{n} (y_{i} - f(x_{i}^{0}))^{2} + \lambda \int_{\mathbb{R}} f''(x)^{2} dx.$$

and is such that $\sum_{i=1}^{n} \tilde{f}_{\lambda}(x_{i}^{0}) = 0$.

Remark that, unlike \hat{f}_{λ} , the function \tilde{f}_{λ} remains unchanged if we replace $\{y_i^0\}_{i=1}^n$ by $\{y_i^0+c\}_{i=1}^n$ for some $c \in \mathbb{R}$.

For this reason, in practice, the function \tilde{f}_{λ} is often the main object of interest in smoothing, and we therefore compute \hat{f}_{λ} by first computing \tilde{f}_{λ} and \bar{y}_0 and then using (8.16).

Multi-dimensional smoothing

The smoothing approach introduced in this chapter can be extended to p > 1 dimensional input variables $\{x_i^0\}_{i=1}^n$. In this case, the model we consider for $\{y_i^0\}_{i=1}^n$ is

$$Y_i^0 = f(x_i^0) + \epsilon_i, \qquad i = 1, \dots n, \quad f \in \mathcal{C}^2(\mathbb{R}^p)$$
 (8.17)

where, as per above, we have $\mathbb{E}[\epsilon_i] = 0$, $\mathbb{E}[\epsilon_i \epsilon_l] = \sigma^2 \delta_{il}$ for all i and l. Then, for a given $\lambda \in [0, \infty]$, the smoothing estimate of the function f is given by

$$\hat{f}_{p,\lambda} \in \underset{f \in \mathcal{C}^2(\mathbb{R}^p)}{\operatorname{argmin}} \quad \sum_{i=1}^n \left(y_i^0 - f(x_i^0) \right)^2 + \lambda J_p(f) \tag{8.18}$$

for some penalty functional $J_p: \mathcal{C}^2(\mathbb{R}^p) \to \mathbb{R}$. For instance, for p=2 we have

$$J_2(f) = \int \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \right)^2 + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right)^2 \right] dx, \quad \forall f \in \mathcal{C}^2(\mathbb{R}^2).$$

Remark: When p = 1 the function $\hat{f}_{p,\lambda}$ defined in (8.18) reduces to the function \hat{f}_{λ} defined in (8.2).

It can be shown that, for some $m_p \in \mathbb{N}$, the function $\hat{f}_{p,\lambda}$ defined in (8.18) can be written as $\hat{f}_{p,\lambda} = \sum_{j=1}^{m_p} \beta_j b_{p,j}$ where $\beta \in \mathbb{R}^{m_p}$ and where $\{b_{p,j}\}_{j=1}^{m_d}$ are known basis functions. Hence, as for the case p=1, the problem of estimating $f \in \mathcal{C}^2(\mathbb{R}^p)$ reduces to the problem of estimating a finite dimensional vector β of parameters.

Key problem: The cost of estimating β is $\mathcal{O}(m_p^3)$ with $m_p = n + c_p$ where (i) c_p increases exponentially fast with p^a and (ii) unlike in the case p = 1, thinning cannot be used to reduce the computational cost without losing too much in term of estimation error^b.

^aThis is because, assuming p is odd, $c_p \ge \binom{(p+1)/2+p-1}{p} \ge (3/2-1/p)^p$ [13, page 216]. ^bThis is because for p > 1 all the x_i^0 's are far apart.

Example: Two dimensional smoothing

We let p = 2, $f^0 \in \mathcal{C}^2(\mathbb{R}^2)$ be as represented in Figure 8.2 and simulate n = 200 independent observations $\{(y_i^0, x_i^0)\}_{i=1}^n$ using

$$Y_i^0 = f^0(x_i^0) + \sigma \epsilon_i, \quad X_i^0 \sim \mathcal{U}((-2, 2)^2), \quad i = 1, \dots, n.$$

The function $\hat{f}_{p,\lambda}$ defined in (8.18) is represented in Figure 8.2 for $\sigma = 0.01$ and for $\sigma = 0.1$, and when is chosen using GCV and when all the m_p basis functions $\{b_{p,j}\}_{j=1}^{m_p}$ are used.

Figure 8.2: True function f^0 and estimated function $\hat{f}_{p,\lambda}$ for $\sigma = 0.01$ and for $\sigma = 0.1$. The value of λ is chosen using GCV.

From Figure 8.2 we observe that we obtain a reasonable estimate of f^0 when the size σ of the noise is very small. We also remark that even for the small value $\sigma = 0.1$ the function $\hat{f}_{p,\lambda}$ only provides a rough estimate of f^0 . Improving the estimate would require to increase the sample size n but, as mentioned above, multivariate smoothing is computationally expensive when n is large.

References

- [1] Bishop, C. M. (2006). Pattern recognition. *Machine learning*, 128(9).
- [2] Comon, P. (1994). Independent component analysis, a new concept? Signal processing, 36(3):287–314.
- [3] Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). *The elements of statistical learning*, volume 1. Springer series in statistics New York.
- [4] Hastie, T., Tibshirani, R., and Wainwright, M. (2019). Statistical learning with sparsity: the lasso and generalizations. Chapman and Hall/CRC.
- [5] Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applications. *Neural networks*, 13(4-5):411–430.
- [6] Inaba, M., Katoh, N., and Imai, H. (1994). Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. In *Proceedings of the tenth annual symposium on Computational geometry*, pages 332–339.
- [7] Mairal, J. and Yu, B. (2012). Complexity analysis of the lasso regularization path. arXiv preprint arXiv:1205.0079.
- [8] Mardia, K., Kent, J., and Bibby, J. (1979). *Multivariate analysis*. Probability and mathematical statistics. Academic Press Inc.

- [9] Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 14.
- [10] Paulsen, V. I. and Raghupathi, M. (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press.
- [11] van Wieringen, W. N. (2015). Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169.
- [12] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4):395–416.
- [13] Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.