- 1. Sea el vocabulario V={1, 2}. Indicar cinco de las cadenas más cortas pertenecientes a V y V +.
- 2. Sean los vocabularios $V = \{i,x\}$ y $W = \{i,v,c\}$. Definir por extensión:
 - a) V^3
 - b) W^{*}
 - c) V.W
- 3. Dadas las cadenas x=2013 y y=algoritmos, definir:
 - a) $x^{-1}y$
 - b) $y\lambda x$
 - c) x^2
- 4. Para cada lenguaje, dar 3 ejemplos de cadenas pertenecientes a los mismos.
 - a) L = { $xy / x \in (ab)^i, y \in (ba)^i, i > 1$ }
 - b) $M = \{ a^p b c^p / p \ge 0 \}$
 - c) N = { wz / z \in ((ab)⁻¹)^j, w \in (ab)^j, j \geq 0 }
- 5. Dado V={1,2}, indicar si las siguientes afirmaciones son Verdaderas o Falsas, justifica brevemente la respuesta:
 - a) La cadena 122∈ V²
 - b) $V^2 \cap V^3 = V$
 - c) $\lambda \in V$
- 6. Dado V={ a,b,c }, indicar si las siguientes afirmaciones son Verdaderas o Falsas, justificar brevemente la respuesta:
 - a) $bcb \in V^3$
 - b) $V^2 \subset V^3$
 - c) $\lambda \in V$
- 7. Sean los vocabularios $V=\{a,b\}$ y $W=\{0,1,2\}$. Definir por extensión:
 - a) W²
 - b) W*
 - c) V.W
- 8. Dadas las cadenas *x*=modelos y *y*=algoritmos, definir:
 - a) *xy*⁻¹
 - b) $y\lambda x$
 - c) x^2
- 9. Sea el vocabulario V={a,b}. Indicar las cinco cadenas más cortas pertenecientes a V*
- 10. Para cada lenguaje, dar 3 ejemplos de cadenas pertenecientes a los mismos.
 - a) L = $\{x / x \in (00)^i, i > 1\}$
 - b) $M = \{a^i b^i c / i \ge 0\}$
 - c) N = {wz / z \in ((10)ⁱ)⁻¹, w \in (ab)ⁱ, i \ge 0}

11. Para cada una de las siguientes gramáticas:

1	2	3
$S \rightarrow ABC$	$S \rightarrow aA$	$S \rightarrow N O N$
$A \rightarrow aB$	$A \rightarrow aA$	$S \rightarrow N$
$B \rightarrow Cb$	$A \rightarrow BC$	$N \rightarrow 1$
$C \rightarrow c$	$A \rightarrow bC$	$N \rightarrow 2$
	$B \rightarrow b$	$N \rightarrow 3$
	$C \rightarrow c$	$N \rightarrow S$
		O →+
		$O \rightarrow /$
acbcbc	aabc	1+3/2

- a) Indicar a qué nivel de la jerarquía de Chomsky corresponde.
- b) Obtener las derivaciones left-most, las derivaciones right-most y el parse-tree para las cadenas indicadas.
- c) Indicar si es o no ambigüa. En caso afirmativo, demuéstralo!!!
- 12. Construir una gramática regular no ambigua que genere todas las cadenas de 0 y 1 en las cuales los 0, si aparecen, lo hacen en grupos de tres.

Ej. de hileras que pertenecen al lenguaje	Ej. de hileras que NO pertenecen al lenguaje	
Lj. de mieras que pertenecen anenguaje	Lj. de filieras que 140 pertenecen arienguaje	
1 (no tiene 0)	0 (el 0 no está en grupo de 3)	
11111 (no tiene 0)	00 (el 0 no está en grupo de 3)	
000 (tiene 0 y aparece en grupo de 3)	11000011 (el 0 está en grupo de 4)	
1000 (tiene 0 y aparece en grupo de 3)	000000 (el 0 está en grupo de 6)	
1110001000 (los 0 aparecen en grupo de 3)	000100 (el segundo grupo de 0 está en grupo de 2)	

13. Construir una gramática libre de contexto que genere el siguiente lenguaje:

L = {
$$a^n (ae)^p (iai)^q$$
; $n \ge 0$; $p \ge 1$; $q = p + 1$ }