a.

	Day	Pain Score
-	1	8.94
	2	7.99
	3	7.49
	4	7.32
	5	6.79
	6	7.02
	7	6.50

According to the graph above, the average pain score decreases over time.


```
h.
Call:
lm(formula = Big$pain.1 ~ Big$age)
Residuals:
   Min 10 Median 30 Max
-8.1071 -2.1278 0.1408 2.0168 11.3887
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.18148   1.54445   6.592   3.66e-10 ***
Big$age -0.02066 0.02535 -0.815 0.416
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.406 on 203 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.003261, Adjusted R-squared: -0.001649
F-statistic: 0.6642 on 1 and 203 DF, p-value: 0.416
Call:
lm(formula = Big$pain.2 ~ Big$age)
Residuals:
   Min 10 Median 30 Max
-7.9802 -2.0812 -0.2833 2.2364 12.4529
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.74120 1.85034 5.265 4.59e-07 ***
Big$age -0.02887 0.03012 -0.959 0.339
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.603 on 156 degrees of freedom
 (48 observations deleted due to missingness)
Multiple R-squared: 0.005856, Adjusted R-squared: -0.000517
F-statistic: 0.9189 on 1 and 156 DF, p-value: 0.3393
```

```
Call:
lm(formula = Big$pain.3 ~ Big$age)
Residuals:
   Min 10 Median 30
                             Max
-7.6946 -2.4095 -0.1244 2.5646 11.2708
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.56076 2.04640 4.672 6.46e-06 ***
Big$age -0.03456 0.03378 -1.023 0.308
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.805 on 154 degrees of freedom
 (50 observations deleted due to missingness)
Multiple R-squared: 0.006751,
                              Adjusted R-squared: 0.0003016
F-statistic: 1.047 on 1 and 154 DF, p-value: 0.3079
Call:
lm(formula = Big$pain.4 ~ Big$age)
Residuals:
   Min 10 Median
                       30
                              Max
-7.7484 -2.4767 -0.0517 2.7741 11.4746
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.00243 1.93074 4.663 6.44e-06 ***
Big$age -0.02787 0.03156 -0.883 0.379
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.797 on 164 degrees of freedom
 (40 observations deleted due to missingness)
Multiple R-squared: 0.004731,
                               Adjusted R-squared: -0.001338
F-statistic: 0.7795 on 1 and 164 DF, p-value: 0.3786
```

Call:

```
lm(formula = Big$pain.5 ~ Big$age)
Residuals:
  Min
         1Q Median
                     3Q
                           Max
-7.109 -2.850 -0.321 2.727 10.948
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.22071
                     1.94014 5.268 4.58e-07 ***
Big$age
         -0.05762 0.03220 -1.790 0.0755.
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.674 on 154 degrees of freedom
 (50 observations deleted due to missingness)
Multiple R-squared: 0.02038, Adjusted R-squared: 0.01402
F-statistic: 3.203 on 1 and 154 DF, p-value: 0.07546
Call:
lm(formula = Big$pain.6 ~ Big$age)
Residuals:
   Min
        1Q Median 3Q
-6.3490 -3.1335 -0.2341 2.6366 10.7659
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.75729 1.96991 4.446 1.68e-05 ***
Big$age -0.02874 0.03226 -0.891 0.374
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.854 on 153 degrees of freedom
 (51 observations deleted due to missingness)
Multiple R-squared: 0.00516, Adjusted R-squared: -0.001342
F-statistic: 0.7936 on 1 and 153 DF, p-value: 0.3744
Call:
lm(formula = Big$pain.7 ~ Big$age)
```

Residuals:

Min 1Q Median 3Q Max -6.8762 -3.2389 -0.4889 2.9153 11.1791

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.86413 2.23231 4.419 1.96e-05 ***
Big\$age -0.05533 0.03630 -1.524 0.13

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.015 on 142 degrees of freedom (62 observations deleted due to missingness)

Multiple R-squared: 0.0161, Adjusted R-squared: 0.009169

F-statistic: 2.323 on 1 and 142 DF, p-value: 0.1297

	estimate	standard errors	p-values	95% confidence intervals
pain.1	-0.021	0.025	0.416	(-0.071, 0.029)
pain.2	-0.029	0.030	0.339	(-0.088, 0.031)
pain.3	-0.035	0.034	0.308	(-0.101, 0.032)
pain.4	-0.028	0.032	0.379	(-0.09, 0.034)
pain.5	-0.058	0.032	0.075	(-0.121, 0.006)
pain.6	-0.029	0.032	0.374	(-0.092, 0.035)
pain.7	-0.055	0.036	0.130	(-0.127, 0.016)

From the table above, it tells us that the pain is negatively correlated with age on each day, but they are not statistically significant because the p-values are all greater than 0.05.

Intercept estimates

Slope estimates

The slopes range mainly from (-0.05, 0.01) which are quite small, indicating that pain scores change very little by day. More people have less pain by time than people have more pain by time, which also support the situation that trend is decreasing.

d.

Occupation has too many categories, which is not suitable to fit in a regression model. Thus, I decided not to use this variable in analysis progress.

	P-values of intercepts	P-values of slopes	Related to intercept	Related to slope
Age	0.805	0.772	Not related	Not related
Race	0.762	0.523	Not related	Not related
Income	0.290	0.925	Not related	Not related
Treatment	0.484	0.383	Not related	Not related
Sex	0.210	0.824	Not related	Not related
Working Status	0.232	0.472	Not related	Not related
Use of NSAIDs	0.373	0.029	Not related	Related

Conclusion: use of NSAIDs is correlated with the slope.

e.

Histogram of Correlation between Pain and Average Temperature

-0.5

-1.0

The frequency of positive correlations is higher than negative correlations. And the frequency from -0.5 to 0.5 is quite symmetric. It is not clear here but I think there may be correlations between them because a large amount of individuals showed that there are correlations.

0.0

Correlation

0.5

1.0

Table 2

Varibale	Tai chi	Control	Tai chi vs Control	P-value
WOMAC-Pain, 0-500 mm Week	-157.25 (-198.51 to -115.99)	-38.45 (-87.18 to 10.28)	-118.8 (-180.77 to - 56.83)	0.00074
Week 24	-131.55 (-179.63 to -83.47)	-64.6 (-116.08 to - 13.12)	-66.95 (-129.89 to - 4.01)	0.038
Week 48	-115.35 (-172.19 to -58.51)	-69.2 (-126.53 to - 11.87)	-46.15 (-126.44 to 34.14)	0.24
WOMAC-Physical Function, 0- 1700 mm, Week 12	-506.75 (-635.52 to -377.98)	-182.15 (-321.8 to - 42.5)	-324.6 (-490.76 to - 158.44)	0.00063
Week 24	-440.5 (-582.58 to -298.42)	-257.3 (-408.63 to - 105.97)	-183.2 (-363.18 to - 3.22)	0.046
Week 48	-405.85 (-577.68 to -234.02)	-300.55 (-452.98 to - 148.12)	-105.3 (-296.03 to 85.43)	0.26
WOMAC-Stiffness, 0-200 mm Week 12	-73.05 (-90.49 to -55.61)	-50.15 (-75.84 to - 24.46)	-22.9 (-48.18 to 2.38)	0.073
Week 24	-65 (-87.16 to -42.84)	-50.2 (-72.99 to -27.41)	-14.8 (-43.12 to 13.52)	0.29
Week 48	-64.15 (-86.18 to -42.12)	-60.5 (-88.89 to -32.11)	-3.65 (-40.03 to 32.73)	0.84
Physician, 0-10 cm VAS Week	-3.15 (-3.88 to -2.41)	-1.44 (-2.1 to -0.78)	-1.71 (-2.73 to -0.68)	0.0025
Week 24	-2.6 (-3.37 to -1.82)	-2.06 (-2.95 to -1.17)	-0.53 (-1.65 to 0.58)	0.33
Week 48	-2.54 (-3.62 to -1.45)	-1.54 (-2.25 to -0.83)	-0.98 (-2.19 to 0.22)	0.1
Patient Global, 0-10 cm VAS Week 12	-2.98 (-3.94 to -2.02)	-0.83 (-1.86 to 0.21)	-2.15 (-3.47 to -0.83)	0.0029
Week 24	-2.36 (-3.63 to -1.09)	-1.71 (-2.98 to -0.44)	-0.65 (-2.23 to 0.93)	0.4
Week 48	-1.65 (-3.4 to 0.09)	-1.7 (-3.15 to -0.24)	0.04 (-2.17 to 2.25)	0.97
6 Minute Walk Test(yards) Week 12	40.28 (9.3 to 71.27)	-1.42 (-42.17 to 39.33)	41.12 (-18.33 to 100.57)	0.16
Week 24	44.28 (8.36 to 80.19)	7.84 (-27.9 to 43.58)	36 (-22.87 to 94.87)	0.22
Week 48	28.75 (-12.45 to 69.94)	17.14 (-17.27 to 51.55)	4.73 (-56.23 to 65.68)	0.87
		•		

Varibale	Tai chi	Control	Tai chi vs Control	P-value
Balance Score, 0-5 Week 12	0.15 (-0.08 to 0.38)	0.25 (-0.05 to 0.55)	-0.1 (-0.53 to 0.33)	0.63
Week 24	0.15 (-0.16 to 0.46)	0.07 (-0.37 to 0.52)	0.07 (-0.52 to 0.67)	0.8
Week 48	0.35 (0.04 to 0.66)	0.47 (0.07 to 0.88)	-0.16 (-0.72 to 0.4)	0.56
Chair Stand Time(seconds) Week 12	-12.03 (-16.68 to -7.39)	-0.94 (-4.84 to 2.97)	-11.1 (-16.64 to -5.56)	0.00053
Week 24	-9.88 (-14.08 to -5.67)	-4.81 (-9.28 to -0.33)	-5.07 (-10.9 to 0.77)	0.085
Week 48	-9.23 (-14.62 to -3.83)	-3.8 (-8.01 to 0.41)	-4 (-9.49 to 1.48)	0.14
SF-36 Mental Component Summary, 0-100 Week 12	2.14 (-4.02 to 8.31)	1.93 (-2.62 to 6.49)	0.21 (-7.12 to 7.54)	0.95
Week 24	4.39 (-2.06 to 10.84)	4.5 (0.87 to 8.13)	-0.11 (-7.57 to 7.35)	0.98
Week 48	5.8 (-0.46 to 12.07)	1.04 (-5.07 to 7.14)	4.77 (-5.03 to 14.57)	0.32
SF-36 Physical Component Summary, 0-100 Week 12	11.57 (7.61 to 15.53)	4.14 (0.68 to 7.6)	7.43 (1.75 to 13.11)	0.013
Week 24	10.8 (6.69 to 14.91)	6.29 (1.98 to 10.59)	4.51 (-2.35 to 11.37)	0.18
Week 48	10.41 (5.64 to 15.18)	4.1 (0 to 8.2)	6.32 (-0.45 to 13.08)	0.065
CES-D, 0-60 Week 12	-7.4 (-11.38 to -3.42)	-0.7 (-3.88 to 2.48)	-6.7 (-12 to -1.4)	0.016
Week 24	-6.4 (-11.39 to -1.41)	-1.1 (-5.04 to 2.84)	-5.3 (-11.52 to 0.92)	0.091
Week 48	-7.25 (-11.77 to -2.73)	1.65 (-2.39 to 5.69)	-8.9 (-14.92 to -2.88)	0.0059
Self-Efficacy Score, 1-5 Week	0.6 (-0.01 to 1.21)	-0.11 (-0.53 to 0.31)	0.71 (-0.06 to 1.48)	0.07
Week 24	0.68 (0.13 to 1.23)	-0.17 (-0.69 to 0.35)	0.85 (0.08 to 1.62)	0.032
Week 48	0.72 (0 to 1.44)	-0.24 (-0.65 to 0.17)	0.96 (0.18 to 1.74)	0.018

Appendix (R code)

```
# Homework 1 for PHP2550
MC Big <- read.csv("mcalindon Big.csv")</pre>
dim(MC Big)
# Extract the first observation for each individual
num <- rle(MC Big$ID)</pre>
index <- c(cumsum(num$lengths) + 1)</pre>
index <- c(1, index)
Big <- MC Big[index, ]</pre>
dim(Big)
# a
ave pain <- round(colMeans(data.frame(Big$pain.1, Big$pain.2, Big$pain.3, B
ig$pain.4,
    Big$pain.5, Big$pain.6, Big$pain.7), na.rm = TRUE),2)
df a <- data.frame(Day=c(1:7), Pain=ave pain)</pre>
colnames(df a) <- c("Day", "Pain Score")</pre>
rownames (df a) <-c(1:7)
plot(seq(7), ave pain, xlab = "Day", ylab = "Average Pain Score")
model1 <- lm(Big$pain.1~Big$age)</pre>
print(summary(model1))
model2 <- lm(Big$pain.2~Big$age)</pre>
print(summary(model2))
model3 <- lm(Big$pain.3~Big$age)</pre>
print(summary(model3))
model4 <- lm(Big$pain.4~Big$age)</pre>
print(summary(model4))
model5 <- lm(Big$pain.5~Big$age)</pre>
print(summary(model5))
model6 <- lm(Big$pain.6~Big$age)</pre>
print(summary(model6))
model7 <- lm(Big$pain.7~Big$age)</pre>
print(summary(model7))
res confint <- c()
get confint <- function(x) {</pre>
   int left \leftarrow confint(x, level=0.95)[2, 1]
   int right \leftarrow confint(x, level=0.95)[2, 2]
   res confint <- c(int left, int right)</pre>
   return(res confint)
```

```
model = list(model1, model2, model3, model4, model5, model6, model7)
for (i in model) {
  res_confint <- c(res_confint,get_confint(i))</pre>
res estimate <- c()
get estimate <- function(x) {</pre>
   res <- summary(x)[[4]][2,1]
for (i in model) {
  res estimate <- c(res estimate, get estimate(i))</pre>
res sd <- c()
get sd <- function(x) {</pre>
   res <- summary(x)[[4]][2,2]
for (i in model) {
  res sd <- c(res_sd,get_sd(i))</pre>
res_pvalue <- c()</pre>
get pvalue <- function(x) {</pre>
   res <- summary(x)[[4]][2,4]
for (i in model) {
  res pvalue <- c(res pvalue,get pvalue(i))</pre>
# reshape and organize
res conf <- c()
i = 1
while (i <= 13) {
   res_conf <- c(res_conf, paste0("(", round(res_confint[i], digits = 3),",</pre>
", round(res confint[i+1], digits = 3), ")"))
   i = i + 2
rm(res confint)
res estimate <- round(res estimate, digits = 3)</pre>
```

```
res sd <- round(res sd, digits = 3)
res pvalue <- round(res pvalue, digits = 3)</pre>
# make it a table
df b <- data.frame(estimate=res estimate, standard errors=res sd, p values</pre>
=res pvalue, CI=res conf)
rownames(df b) <- c("pain.1", "pain.2", "pain.3", "pain.4", "pain.5", "pain.6",
"pain.7")
colnames(df b) <- c("estimate", "standard errors", "p-values", "95% confide</pre>
nce intervals")
sub Big time <- data.frame(Big$pain.1, Big$pain.2, Big$pain.3, Big$pain.4,
Big$pain.5, Big$pain.6, Big$pain.7)
# get rid of >= 5 NA and keep at least three point
clean na <- function(x) {</pre>
   if (sum(is.na(x)) >= 5){
      return(1)
   }else{
      return(0)
idx1 < -c()
for (i in 1: (dim(sub Big time)[1])){
   if (clean na(sub Big time[i,])){
      idx1 < -c(idx1, i)
# Extract time
time <- cbind(Big$lastdt1, Big$lastdt2, Big$lastdt3, Big$lastdt4, Big$lastd
t5, Big$lastdt6, Big$lastdt7)[-idx1,]
for (i in (1:dim(time)[1])){
   time[i,] <- time[i,] - rep(time[i,1],7)
# make table
df c1 <- c()
for (i in 1: (dim(sub Big time[-idx1,])[1])) {
   df c1<- c(df c1, summary(lm(as.numeric(sub Big time[-idx1,][i,])~time
[i,], na.action=na.omit))[[4]][,1])
tmp <- df c1
```

```
x1 < -tmp[1]
x2 < -tmp[2]
i = 3
while (i <= 386) {
   x1 < -c(x1, tmp[i])
   x2 < -c(x2, tmp[i+1])
   i = i + 2
rm(tmp)
x1 < - round(x1, digits = 2)
x2 < - round(x2, digits = 2)
df c <- data.frame(slopes=x2,intercepts=x1)</pre>
rownames(df c) <- as.character(Big$ID[-idx1])</pre>
hist(df c$intercepts, breaks = 20, xlab = "", main = "Intercept estimates")
hist(df c$slopes, breaks = 20, xlab = "", main = "Slope estimates")
p race1 <- cor.test(df c$intercepts, Big$racecat[-idx1])[[3]]</pre>
p race2 <- cor.test(df c$slopes, Big$racecat[-idx1])[[3]]</pre>
# Age
p age1 <- cor.test(df c$intercepts, Big$agecat[-idx1])[[3]]</pre>
p age2 <- cor.test(df c$slopes, Big$agecat[-idx1])[[3]]</pre>
# income
p income1 <- cor.test(df c$intercepts, Big$inccat[-idx1])[[3]]</pre>
p income2 <- cor.test(df c$slopes, Big$inccat[-idx1])[[3]]</pre>
# treatment
p trt1 <- cor.test(df c$intercepts, Big$treat[-idx1])[[3]]</pre>
p trt2 <- cor.test(df c$slopes, Big$treat[-idx1])[[3]]</pre>
p sex1 <- cor.test(df c$intercepts, Big$sex[-idx1])[[3]]</pre>
p sex2 <- cor.test(df c$slopes, Big$sex[-idx1])[[3]]</pre>
# retire
p retire1 <- cor.test(df c$intercepts, Big$retire[-idx1])[[3]]</pre>
p retire2 <- cor.test(df c$slopes, Big$retire[-idx1])[[3]]</pre>
# NSAIDs
p nsaids1 <- cor.test(df c$intercepts, Big$nsaid[-idx1])[[3]]</pre>
p nsaids2 <- cor.test(df c$slopes, Big$nsaid[-idx1])[[3]]</pre>
df d <- data.frame(intercepts=round(c(p age1, p race1, p income1, p trt1, p</pre>
sex1, p retire1, p_nsaids1), digits = 3),
                    slopes=round(c(p age2, p race2, p income2, p trt2, p sex
2, p_retire2, p_nsaids2), digits = 3),
                 related1=c (NA) , related2=c (NA) )
```

```
rownames(df d) <- c("Age", "Race", "Income", "Treatment", "Sex", "Working S</pre>
tatus", "Use of NSAIDs")
related <- function(x) {</pre>
   if (x > 0.05) {
       return("Not related")
   }else{
       return("Related")
related1 <- c()</pre>
for (i in 1:7) {
   related1 <- c(related1, related(df d$intercepts[i]))</pre>
related2 <- c()
for (i in 1:7) {
   related2 <- c(related2, related(df d$slopes[i]))</pre>
df d$related1 <- related1</pre>
df d$related2 <- related2</pre>
colnames(df d) <- c("P-values of intercepts", "P-values of slopes", "Relate</pre>
d to intercept", "Related to slope")
# Extract WeatherDate and corresponding avetemp
WT <- data.frame(ID=MC Big$ID, WeatherDate=MC Big$WeatherDate, avgtemp=MC
Big$avgtemp)
find temp <- function(x, y) {</pre>
   if (is.na(y)) {
       return (NA)
   }else{
   return (WT$avgtemp[which(WT$ID==x & WT$WeatherDate==y)])
       }
# add avetemp for each day into used data
Big$temp1 <- mapply(find temp, Big$ID, Big$lastdt1)</pre>
Big$temp2 <- mapply(find temp, Big$ID, Big$lastdt2)</pre>
Big$temp3 <- mapply(find temp, Big$ID, Big$lastdt3)</pre>
Big$temp4 <- mapply(find temp, Big$ID, Big$lastdt4)</pre>
Big$temp5 <- mapply(find temp, Big$ID, Big$lastdt5)</pre>
Big$temp6 <- mapply(find temp, Big$ID, Big$lastdt6)</pre>
Big$temp7 <- mapply(find temp, Big$ID, Big$lastdt7)</pre>
cor e <- c()
for (i in c(1:206)[-idx1]){
```

```
cor e <- c(cor e, cor(c(Big$pain.1[i], Big$pain.2[i], Big$pain.3[i], Bi</pre>
q$pain.4[i], Biq$pain.5[i], Biq$pain.6[i],
            Big$pain.7[i]),
          c(Big$temp1[i], Big$temp2[i], Big$temp3[i], Big$temp4[i], Big$te
mp5[i], Big$temp6[i],
            Big$temp7[i]), use="na.or.complete"))
cor e <- round(cor e, digits = 3)</pre>
hist(cor e, breaks=20, xlab = "Correlation", main = "Histogram of Correlati
on between Pain and Average Temperature")
Wang <- read.csv("Wang.csv")</pre>
dim(Wang)
find value <- function(var, group, date) {</pre>
   if (group == 3) {
      return(
      paste0 (round(lm((Wang[,paste0 (var,date)][Wang$group==1]-Wang[,paste
0 (var, date) ] [Wang$group==0]) -
                     (Wang[,paste0(var,"1")][Wang$group==1]-Wang[,paste0(va
r,"1") [Wang$group==0]) ~1) [[5]] [1], digits = 2),
            " (", round(confint(lm((Wang[,paste0(var,date)][Wang$group==1]
-Wang[,paste0(var,date)][Wang$group==0])-
                     (Wang[,paste0(var,"1")][Wang$group==1]-Wang[,paste0(va
r,"1")][Wang\$group==0])~1))[1], digits = 2),
             round(confint(lm((Wang[,paste0(var,date)][Wang$group==1]-Wang
[,paste0(var,date)][Wang$group==0])-
                     (Wang[,paste0(var,"1")][Wang$group==1]-Wang[,paste0(va
r,"1")][Wang\$group==0])~1))[2], digits = 2),
            ")")
       )
   }else{
   return(
      paste0 (round(lm(Wang[,paste0 (var,date)][Wang$group==group]-Wang[,pa
ste0(var, "1")][Wang$group==group]~1)[[5]][1], digits = 2),
            " (", round(confint(lm(Wang[,paste0(var,date)][Wang$group==gro
up]-Wang[,paste0(var,"1")][Wang$group==group]~1))[1], digits = 2),
            " to ",
            round (confint (lm (Wang[, paste0 (var, date)] [Wang$group==group]-W
ang[,paste0(var,"1")][Wang$group==group]~1))[2], digits = 2),
            ") ")
```

```
find p <- function(var, date) {</pre>
   return (signif (summary(lm((Wang[,paste0(var,date)][Wang$group==1]-Wang
[,paste0(var,date)][Wang$group==0])-
                      (Wang[,paste0(var,"1")][Wang$group==1]-Wang[,paste0(va
r,"1")][Wang$group==0])~1))$coef[4],digits=2))
var <- c("womac.pain.", "womac.phys.func.", "womac.stiff.", "physician.vas.</pre>
", "pt.global.vas.", "walkyard.", "balance.",
       "chairstand.", "mcs.", "pcs.", "cesd.", "self.efficacy.")
date <- c("2", "3", "4")
group <-c(1, 0, 3)
values <- function(x, y) {</pre>
   tmp < - c()
for (i in group) {
   tmp <- c(tmp, mapply(find value, var[x], i, date[y]))</pre>
}
   tmp <- c(tmp, find p(var[x], date[y]))</pre>
   return (tmp)
df 2 < - \text{rbind}(\text{values}(1,1), \text{values}(1,2), \text{values}(1,3))
for (i in 2:12) {
df 2 <- rbind(df 2, rbind(values(i,1), values(i,2), values(i,3)))</pre>
table2 <- data.frame(Variable=c("WOMAC-Pain, 0-500 mm Week 12", "Week 24",
"Week 48", "WOMAC-Physical Function, 0-1700 mm, Week 12",
                             "Week 24", "Week 48",
                             "WOMAC-Stiffness, 0-200 mm Week 12", "Week 24",
"Week 48",
                            "Physician, 0-10 cm VAS Week 12", "Week 24", "Wee
k 48",
                             "Patient Global, 0-10 cm VAS Week 12", "Week 24
", "Week 48",
                             "6 Minute Walk Test(yards) Week 12", "Week 24",
"Week 48",
                            "Balance Score, 0-5 Week 12", "Week 24", "Week 48
",
                             "Chair Stand Time (seconds) Week 12", "Week 24",
"Week 48",
```

```
"SF-36 Mental Component Summary, 0-100 Week 12",

"Week 24", "Week 48",

"SF-36 Physical Component Summary, 0-100 Week 12

", "Week 24", "Week 48",

"CES-D, 0-60 Week 12", "Week 24", "Week 48",

"Self-Efficacy Score, 1-5 Week 12", "Week 24", "

Week 48"),

Taichi=df_2[,1], Control=df_2[,2], TvsC=df_2[,3], pvalue=d

f_2[,4])

colnames(table2) <- c("Varibale", "Tai chi", "Control", "Tai chi vs Control

", "P-value")
```