A CONSISTENT APPROACH TO THE ESTIMATION OF SUSTAINABLE HARVESTS OF PATAGONIAN TOOTHFISH IN KERGUELEN PLATEAU & SOUTH-AMERICA

Supervisors:

- · Klaas Hartmann (IMAS)
- · Caleb Gardner (IMAS)
- Dirk Welsford (AAD)
- Philippe Ziegler (AAD)
- Paul Burch (IMAS AAD)

Background

Objetives:

- to review, discuss and expound the different TOP management process implemented worldwide
 - Chapter 2
- to test the suitability of improve the actual modelling framework of TOP utilized in Kerguelen Plateau and South-America
 - Chapter 3 & 4
- to develop a robust MSE approach of TOP consistent with the modelling improvements identified in Kerguelen Plateau and South-America
 - Chapter 5
- to examine how the actual harvest policies implemented in Kerguelen Plateau and South-America influences the effectiveness of fishery management on TOP
 - Chapter 5

TOP fishery in South-America: Drawing lesson from others Toothfish fisheries

- · Second major catch area worldwide
 - Brief description of fishery
- · Management mechanism appears untransparent and inconsistent
 - e.g. Time line of **TAC's** criteria
- · Recently changes in Fishery Act
 - e.g. by-catch is 'legal'
- Explicit management objectives established in 2013 (Chilean case)
 - e.g. MSY-based Reference Points. Pathways?

Catches by area

Zone 87 & 41 ----> South America

Zone 58 ----> Kerguelen Plateau

Zone 48 ----> South Georgia

TAC in Chile

Year	Source	Zone	BD/Bo	Criteria	Status	Advice Assessment	Advice SUBPESCA	TAC S. Committee	Landing UP
2005	IFOP	Unidad de pesquería	23%	F ₄₀ (10% risk)	Overfishing & Overexploitation	2.200	3.000	3.000	1.796
2007	IFOP	Unidad de pesquería	21%	F ₄₅ (10% risk)	Overfishing	1.500-2.000	2.700	2700	2.358
2008	IFOP	Unidad de pesquería	20%	Status-quo SB	Overfishing	1.250	2.910+90PI	2.910+90PI	2.883
2008	CEPES	Unidad de pesquería	29-36%	does not indicate	does not indicate	3.585-4.200			
2009	IFOP	Unidad de pesquería	19%	Projection 8 year	Overfishing	1.350	2.910+90PI	2.910+90PI	3.018
2010	IFOP	Unidad de pesquería	14%	Projection 8 year	Overfishing	1.250	3.300+99 P I	3.300+99PI	3.291
2011	IFOP	Unidad de pesquería	20%	Status-quo SB	Overfishing	1.125-1.479	3.000+90 P I	3.000+90PI	2.298
2011	CEPES	Unidad de pesquería	25%	does not indicate	Overexploitation	3.000			
2012	IFOP	Unidad de pesquería	14%	F _{MSY} (50% risk)	Overfishing	1.000	3.000+90PI	3.000+90PI	2.051

Progress Chapter 2

- **Documents** (70% Chile 30% Argentina)
 - Progress 85% (see ftp (C:\Users\jcquiroz\Dropbox\CBA_bacalao))
- Target Journal
 - Marine Policy
 - Marine Resource Economics
 - CCAMLR Science (Paul's suggestion)
- · Milestone / First Draft
 - January, 2015

- · Contingencies
 - Insufficient Bibliography
 - Possible survey to stakeholders
- · Possible requirements
 - Include others people as co-authors

Patagonian toothfish population dynamics in a spatially varying simulation framework: The case of Kerguelen Plateau

In this Chapter I will try develop tools to improve the theoretical population dynamic of Patagonian Toothfish on Kerguelen Plateau, particularly related to demographic traits under a spatially-structured base

The research should use a **scenario-based** analysis, avoiding parallel researches that come from FRDC project

Most of the inputs to setting the different scenarios should be derived from FRDC project

Progress Chapter 3

· Coding

- Progress 10%
 - Some processes are finished (repo

 (https://github.com/jcquiroz/SouthernHakeFishery/blob/master/model_2011/model_msur.tpl))

· Contingencies

- Largely depend on findings from FRDC project
- Overreaching in this Chapter see Paul's Comments (comments_PB.pdf)

Target Journal

- Plos One (California corporation, USA)
- · Milestone / First Draft
 - November, 2015

Impact of misspecification model under a spatiallystructured population, the TOP in South-America

A similar population dynamics

Impact of misspecification model under a spatiallystructured population, the TOP in South-America

A similar population dynamics

Chile (2012-2013)

Argentina (2004-2012)

Many issues remain

- · Tag size-overlap
- Voluntary process (enforcement is necessary)
- Spatial and temporal sampling coverage
- · Artesanal fleet participation

Bio-economic management strategy evaluation of TOP in southern and antarctic oceans

Still thinking about it !!, but a good start point maybe is Hoshino et al. (2010) ...

Bio-economic management strategy evaluation of TOP in southern and antarctic oceans

Still thinking about it !!, but a good start point maybe is Hoshino et al. (2010) ...

Marine Resource Economics, Volume 25, pp. 265–280 Printed in the U.S.A. All rights reserved. 0738-1360/00~\$3.00 + .00 Copyright © 2010 MRE Foundation, Inc.

Economically Optimal Management Strategies for the South Georgia Patagonian Toothfish Fishery
 Table 2

 Future Performance of Current and Alternative Management Strategies

Management	Effort Reduction Path	Sum of NPV in 35 Years (\$ millions)	$p(B_{2042} > 0.5K)$	$p(B_i < 0.2K)$	Final Year CPUE
CCAMLR	NA	245.9	50.0%	0%	0.22
	Immediate	229.2	99.7%	0%	0.26
	Linear (t*= 5.66 yrs.)	245.9	99.7%	0%	0.26
	Linear (t*=35 yrs.)	282.3	96.5%	0%	0.25
Effort Control	Non-linear (v=0.538) Non-linear (v=0.075)	245.9 272.4	99.7% 98.0%	0% 0%	0.25 0.24

Notes: NPV indicates net present value of annual profits, $p(B_{2042}>0.5K)$ is the probability that the final year biomass is greater than 50% of carrying capacity (*K*). $p(B_i<0.2K)$ is the probability that the biomass drops below 20% of K during the projection period.

Support, coding and backup

Control version & Reproducible Research

PhD Repository in GitHub (https://github.com/jcquiroz/utas-aad-git)

Support

LATEX based

Most of the writing outcomes will be based in Latex. Nevertheless Microsoft version files will also be stored. **Why use LATEX?** High typographical quality, time-saving, clean & order.

E.g.: Thesis Template (thesis.pdf) (Thanks to Paul for sharing his Thesis template)

Thank You!!!