Math 152 - Fall 2012

- 1. Use known Maclaurin series to write the first three terms of the Maclaurin series for the following:
 - (a) xe^{-5x}
 - (b) $\frac{1}{1+7x}$
 - (c) $\frac{x}{1+7x}$
 - (d) $\frac{d}{dx} \left(\frac{\cos(x) 1}{x} \right)$
 - (e) $\int e^{x^2} dx$
- 2. Use known Maclaurin series to find the following limit:

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

Since
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{-5x} = \sum_{n=0}^{\infty} \frac{(-5x)^{n}}{n!} = 1 + (-5x) + \frac{(-5x)^{2}}{2!} + \frac{(-5x)^{3}}{3!} + \cdots$$

$$= 1 - 5x + \frac{25x^{2}}{2!} + \frac{-125x^{3}}{3!} + \cdots$$

$$\times e^{-5x} = x \left(\sum_{n=0}^{\infty} \frac{(-5x)^{n}}{n!} \right) = x \left(1 - 5x + \frac{25x^{2}}{2!} - \frac{125x^{3}}{3!} + \cdots \right)$$

$$= \left[x - 5x^{2} + \frac{25x^{3}}{2!} + \cdots \right]$$

Since
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$$

 $\frac{1}{1+7x} = \frac{1}{1-(-7x)} = \sum_{n=0}^{\infty} (-7x)^n = 1 - 7x + (7x)^2 + \cdots$
 $= 1 - 7x + 49x^2 + \cdots$

Since
$$\frac{1}{1+7x} = 1 - 7x + 49x^2 + ...$$

$$\frac{x}{1+7x} = x \left(\frac{1}{1+7x}\right) = x \left(1 - 7x + 49x^2 + ...\right)$$

$$= x - 7x^2 + 49x^3 + ...$$

(d)
$$\frac{d}{dx} \left(\frac{\cos(x) - 1}{x} \right)$$

Since
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\frac{\cos(x) - 1}{x} = \frac{1}{x} \left(\cos(x) - 1 \right) = \frac{1}{x} \left(-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \right)$$

$$= -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots$$

$$\frac{d}{dx} \left(\frac{\cos(x) - 1}{x} \right) = \frac{d}{dx} \left(\frac{-x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \right)$$

$$= \frac{-1}{2!} + \frac{3x^2}{4!} - \frac{5x^4}{6!} + \cdots$$

(e)
$$\int e^{x^2} dx$$
Since $e^x = 1 + x + \frac{x^2}{2!} + \dots$

$$e^{x^2} = 1 + x^2 + \frac{(x^2)^2}{2!} + \cdots$$

= $1 + x^2 + \frac{x^4}{2!} + \cdots$

$$\int e^{x^{2}} dx = C + x + \frac{x^{3}}{3} + \frac{x^{5}}{5 \cdot 2!} + \cdots$$

(2)
$$\lim_{x \to \infty} \frac{\sin(x)}{x}$$
 $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

$$\frac{SM(x)}{x} = \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \right)$$

$$= 1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots$$

$$\lim_{x\to 0} \frac{\sin(x)}{x} = \lim_{x\to 0} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \dots\right) = 1 - 0 + 0 + \dots$$