5

10

20

25

30

What is claimed is:

1. A composition comprising a first oligomeric compound and a second oligomeric compound, wherein:

at least a portion of said first oligomeric compound is capable of hybridizing with at least a portion of said second oligomeric compound,

at least a portion of said first oligomeric compound is complementary to and capable of hybridizing to a selected target nucleic acid,

one of said first and said second oligomeric compounds comprises a plurality of linked nucleosides linked by internucleoside linking groups, and

the other one of said first and said second oligomeric compounds comprises a plurality of linked nucleosides linked by internucleoside linking groups and wherein essentially each of said nucleosides is other than 2'-OH and have 3'-endo conformational geometry;

wherein said first and second oligomeric compounds optionally comprise at least one phosphate group, a 5' or 3'-overhang or a conjugate group.

- 2. The composition of claim 1 wherein said first oligomeric compound comprises a plurality of linked nucleosides linked by internucleoside linking groups and wherein essentially each of said nucleosides is other than 2'-OH and have 3'-endo conformational geometry.
- 3. The composition of claim 1 wherein said second oligomeric compound comprises a plurality of linked nucleosides linked by internucleoside linking groups and wherein essentially each of said nucleosides is other than 2'-OH and have 3'-endo conformational geometry.
 - 4. The composition of claim 1 wherein each of said nucleosides of said first oligomeric compound comprise a β -D-ribofuranose sugar group.
- 5. The composition of claim 1 wherein each of said nucleosides of said second oligomeric compound comprise a β -D-ribofuranose sugar group.

6. The composition of claim 1 wherein the 3'-terminus of said first oligomeric compound comprises a stabilizing or conjugate group.

- 7. The composition of claim 6 wherein said stabilizing group is a capping group or a dTdT dimer.
 - 8. The composition of claim 6 wherein the 3'-terminus of said first oligomeric compound comprises a conjugate group.
- 10 9. The composition of claim 1 wherein said first oligomeric compound coprises a 5'phosphate group.
 - 10. The composition of claim 1 wherein the 5'-terminus of said first oligomeric compound comprises a stabilizing or conjugate group.

15

20

- 11. The composition of claim 10 wherein said stabilizing group is a capping group.
- 12. The composition of claim 10 wherein the 5'-terminus of said first oligomeric compound comprises a conjugate group.
- 13. The composition of claim 1 wherein said second oligomeric compound has a 5'-phosphate group.
- 14. The composition of claim 1 wherein each of said internucleoside linking groups
 25 of said first oligomeric compound is, independently, a phosphodiester or a phosphorothioate.
 - 15. The composition of claim 14 wherein each of said internucleoside linking groups of said first oligomeric compound is a phosphodiester.
 - 16. The composition of claim 14 wherein each of said internucleoside linking groups of said first oligomeric compound is a phosphorothioate.

17. The composition of claim 1 wherein each of said internucleoside linking groups of said second oligomeric compound is, independently, a phosphodiester or a phosphorothioate.

- 5 18. The composition of claim 17 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphodiester.
 - 19. The composition of claim 17 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphorothioate.

20. The composition of claim 1 wherein the 3'-terminus of said second oligomeric compound comprises a stabilizing or conjugate group.

10

- 21. The composition of claim 20 wherein said stabilizing group is a capping group or a dTdT dimer.
 - 22. The composition of claim 20 wherein the 3'-terminus of said second oligomeric compound comprises a conjugate group.
- 20. 23. The composition of claim 1 wherein the 5'-terminus of said second oligomeric compound comprises a stabilizing or conjugate group.
 - 24. The composition of claim 23 wherein said stabilizing group is a capping group.
- 25. The composition of claim 23 wherein the 5'-terminus of said second oligomeric compound comprises a conjugate group.
 - 26. The composition of claim 2 wherein each of said nucleosides of said second ligomeric compound has 3'-endo conformational geometry.
 - 27. The composition of claim 3 wherein each of said nucleosides of said first oligomeric compound has 3'-endo conformational geometry.

28. The composition of claim 1 wherein each of said nucleoside having 3'-endo conformational geometry comprises a 2'-substitutuent group.

29. The composition of claim 28 wherein each of said 2'-substituent groups is,
 5 independently, -F, -O-CH₂CH₂-O-CH₃, -O-CH₃, -O-CH₂-CH=CH₂ or a group having one of formula I_a or II_a:

$$-R_{b} \left\{ (CH_{2})_{ma} - C \begin{pmatrix} R_{k} \\ N \end{pmatrix}_{mb} (CH_{2})_{md} - R_{d} - R_{e} \begin{pmatrix} R_{f} \\ R_{g} \end{pmatrix}_{me} R_{b} R_{b} \right\}_{me}$$
Ia

wherein:

10 R_b is O, S or NH;

 R_d is a single bond, O, S or C(=O);

 R_e is C_1 - C_{10} alkyl, $N(R_k)(R_m)$, $N(R_k)(R_n)$, $N=C(R_p)(R_q)$, $N=C(R_p)(R_r)$ or has formula III_a ;

15

20

25

 R_{p} and R_{q} are each independently hydrogen or $C_{1}\text{-}C_{10}$ alkyl;

 R_r is $-R_x-R_y$;

each R_s , R_t , R_u and R_v is, independently, hydrogen, $C(O)R_w$, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkynyl, alkylsulfonyl, arylsulfonyl, a chemical functional group or a conjugate group, wherein the substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and lkynyl;

or optionally, R_u and R_v, together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_w is, independently, substituted or unsubstituted C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-

fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, iso-butyryl, phenyl or aryl;

R_k is hydrogen, a nitrogen protecting group or -R_x-R_y;

 R_p is hydrogen, a nitrogen protecting group or $-R_x-R_y$;

5 R_x is a bond or a linking moiety;

10

15

20

25

R_y is a chemical functional group, a conjugate group or a solid support medium;

each R_m and R_n is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, wherein the substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl, alkynyl; NH_3^+ , $N(R_u)(R_v)$, guanidino and acyl where said acyl is an acid amide or an ester;

or R_m and R_n , together, are a nitrogen protecting group, are joined in a ring structure that optionally includes an additional heteroatom selected from N and O or are a chemical functional group;

 R_i is OR_z , SR_z , or $N(R_z)_2$;

each R_z is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)R_u$, $C(=O)N(H)R_u$ or $OC(=O)N(H)R_u$;

R_f, R_g and R_h comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 heteroatoms wherein said heteroatoms are selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;

 R_j is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_k)(R_m)$ OR_k , halo, SR_k or CN;

ma is 1 to about 10;
each mb is, independently, 0 or 1;
mc is 0 or an integer from 1 to 10;
30 md is an integer from 1 to 10;
me is from 0, 1 or 2; and
provided that when mc is 0, md is greater than 1.

30. The composition of claim 28 wherein each of said 2'-substituent groups is, independently, -F, -O-CH₂CH₂-O-CH₃, -O-CH₃, -O-CH₂-CH=CH₂ or -O-CH₂-CH-CH₂-NH(R_i) where R_i is H or C₁-C₁₀ alkyl.

- 5 31. The composition of claim 28 wherein each of said 2'-substituent groups is, independently, -F, -O-CH₂CH₂-O-CH₃ or -O-CH₃.
 - 32. The composition of claim 31 wherein each of said 2'-substituent groups is -O-CH₃.

10

- 33. The composition of claim 32 wherein each of said internucleoside linking groups of said first oligomeric compound is a phosphodiester.
- 34. The composition of claim 33 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphodiester.
 - 35. The composition of claim 33 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphorothioate.
- 20 36. The composition of claim 28 wherein each of said internucleoside linking groups of said first oligomeric compound is a phosphorothioate.
 - 37. The composition of claim 36 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphodiester.

- 38. The composition of claim 36 wherein each of said internucleoside linking groups of said second oligomeric compound is a phosphorothioate.
- The composition of claim 1 wherein said first and said second oligometric
 compounds are a complementary pair of siRNA oligonucleotides.
 - 40. The composition of claim 39 wherein said first and said second oligomeric compounds have 3'-dTdT overhangs.

41. The composition of claim 39 wherein said first and said second oligomeric compounds have blunt ends.

- 42. The oligomeric compound of claim 1 further comprising at least one terminal cap
 5 moiety.
 - 43. The oligomeric compound of claim 42 wherein said terminal cap moiety is attached to one or both of the 3'-terminal and 5'-terminal ends of said oligomeric compound.

10

- 44. The oligomeric compound of claim 43 wherein said terminal cap moiety is an inverted deoxy abasic moiety.
- 45. The composition of claim 1 wherein said first and said second oligomeric compounds are an antisense/sense pair of oligonucleotides.
 - 46. The composition of claim 1 wherein each of said first and second oligomeric compounds has from about 8 to about 80 nucleobases.
- 20 47. The composition of claim 1 wherein each of said first and second oligomeric compounds has from about 10 to about 50 nucleobases.
 - 48. The composition of claim 1 wherein each of said first and second oligomeric compounds has from about 12 to about 30 nucleobases.

- 49. The composition of claim 1 wherein each of said first and second oligomeric compounds has from about 12 to about 24 nucleobases.
- 50. The composition of claim 1 wherein each of said first and second oligomeric compounds has from about 19 to about 23 nucleobases.
 - 51. The composition of claim 1 wherein said first oligomeric compound is an antisense oligonucleotide.

52. The composition of claim 51 wherein said second oligomeric compound is a sense oligonucleotide.

53. A method of inhibiting gene expression comprising contacting one or more cells,

5 a tissue or an animal with a composition of claim 1.