Ekonometria Dynamiczna Stacjonarność szeregów czasowych

mgr Paweł Jamer¹

18 kwietnia 2015

Operator cofania

Operator cofania

Operatorem cofania nazwiemy taki operator B, że

$$BX_t = X_{t-1}$$
,

gdzie X_t jest dowolnym szeregiem czasowym.

Istnieje możliwość wielokrotnego zastosowania operatora cofania:

$$B^k X_t = \underbrace{BB \cdots B}_{k} X_t = X_{t-k}.$$

Operator różnicowania

Operator różnicowania

Operatorem różnicowania nazwiemy taki operator Δ , że

$$\Delta X_t = X_t - X_{t-1},$$

gdzie X_t jest dowolnym szeregiem czasowym.

Istnieje możliwość wielokrotnego użycia operatora różnicowania:

$$\Delta^k X_t = \Delta^{k-1} \Delta X_t.$$

Operator różnicowania (przykład)

$$\Delta^{3}X_{t} = \Delta^{2}\Delta X_{t}$$

$$= \Delta^{2}(X_{t} - X_{t-1})$$

$$= \Delta\Delta(X_{t} - X_{t-1})$$

$$= \Delta(\Delta X_{t} - \Delta X_{t-1})$$

$$= \Delta(X_{t} - X_{t-1} - X_{t-1} + X_{t-2})$$

$$= \Delta(X_{t} - 2X_{t-1} + X_{t-2})$$

$$= \Delta X_{t} - 2\Delta X_{t-1} + \Delta X_{t-2}$$

$$= X_{t} - X_{t-1} - 2X_{t-1} + 2X_{t-2} + X_{t-2} - X_{t-3}$$

$$= X_{t} - 3X_{t-1} + 3X_{t-2} - X_{t-3}$$

Operator różnicowania sezonowego

Operator różnicowania sezonowego

Operatorem różnicowania sezonowego nazwiemy taki operator $\Delta_s,$ że

$$\Delta_s X_t = X_t - X_{t-s},$$

gdzie X_t jest dowolnym szeregiem czasowym.

Istnieje możliwość wielokrotnego użycia operatora różnicowania sezonowego:

$$\Delta_s^k X_t = \Delta_s^{k-1} \Delta_s X_t.$$

Operator różnicowania sezonowego (przykład)

$$\Delta_{12}^{3}X_{t} = \Delta_{12}^{2}\Delta_{12}X_{t}
= \Delta_{12}^{2}(X_{t} - X_{t-12})
= \Delta_{12}\Delta_{12}(X_{t} - X_{t-12})
= \Delta_{12}(\Delta_{12}X_{t} - \Delta_{12}X_{t-12})
= \Delta_{12}(X_{t} - X_{t-12} - X_{t-12} + X_{t-24})
= \Delta_{12}(X_{t} - 2X_{t-12} + X_{t-24})
= \Delta_{12}X_{t} - 2\Delta_{12}X_{t-12} + \Delta_{12}X_{t-24}
= X_{t} - X_{t-12} - 2X_{t-12} + 2X_{t-24} + X_{t-24} - X_{t-36}
= X_{t} - 3X_{t-12} + 3X_{t-24} - X_{t-36}.$$

Łączenie operatorów

Operatorem identycznościowym nazwiemy taki operator *I*, że

$$IX_t = X_t,$$

gdzie X_t jest dowolnym szeregiem czasowym.

Przedstawione dotychczas operatory można łączyć, tworząc operatory bardziej skomplikowane.

W szczególności operatorami identycznościowym oraz cofania można wyrazić operatory różnicowania:

$$\Delta = I - B$$

$$\Delta_s = I - B^s$$

Łączenie operatorów (przykład)

Zdefiniujmy operator

$$\varphi(B) = B^{0} - \varphi_{1}B^{1} - \varphi_{2}B^{2} - \varphi_{3}B^{3} - \varphi_{4}B^{4}$$
$$= I - \varphi_{1}B - \varphi_{2}B^{2} - \varphi_{3}B^{3} - \varphi_{4}B^{4}.$$

Zastosujmy operator $\varphi(B)$ do szeregu X_t :

$$\varphi(B) X_{t} = \left(I - \varphi_{1}B - \varphi_{2}B^{2} - \varphi_{3}B^{3} - \varphi_{4}B^{4} \right) X_{t}$$

$$= IX_{t} - \varphi_{1}BX_{t} - \varphi_{2}B^{2}X_{t} - \varphi_{3}B^{3}X_{t} - \varphi_{4}B^{4}X_{t}$$

$$= X_{t} - \varphi_{1}X_{t-1} - \varphi_{2}X_{t-2} - \varphi_{3}X_{t-3} - \varphi_{4}X_{t-4}.$$

Idea stacjonarności

Sytuacja Założenie stałej natury właściwości probabilistycznych szeregu czasowego ułatwia wnioskowanie na jego temat.

Idea stacjonarności

Szereg czasowy określa się mianem stacjonarnego, kiedy jego właściwości probabilistyczne pozostają stałe w czasie.

Wniosek Stacjonarność szeregu czasowego, narzucając dodatkowe ograniczenie na model ③, umożliwia szersze wnioskowanie na jego temat ⑤.

Silna stacjonarność

Silna stacjonarność

Szereg czasowy X_t nazwiemy silnie stacjonarnym lub stacjonarnym w węższym sensie (SWS), jeżeli

$$(X_{t_1}, X_{t_2}, \ldots, X_{t_k}) \stackrel{\mathcal{D}}{\sim} (X_{t_1+h}, X_{t_2+h}, \ldots, X_{t_k+h})$$

dla dowolnych k, h oraz t_1, t_2, \ldots, t_k .

Zastosowanie Dowolne wnioski wyciągnięte z obserwacji szeregu SWS w pewnym przedziale czasu możemy przenieść na dowolny inny przedział czasowy.

Właściwości szeregu czasowego SWS

Wartość oczekiwana nie zależy od czasu, tzn.

$$\mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(X_{1}\right).$$

Wariancja nie zależy od czasu, tzn.

$$Var(X_t) = Var(X_1)$$
.

Autokowariancja zależy wyłącznie od przesunięcia w czasie między obserwacjami, tzn.

$$\gamma_X\left(t,t+h\right)=\gamma_X\left(h\right),$$

Autokorelacja zależy wyłącznie od przesunięcia w czasie między obserwacjami

$$\rho_X(t,t+h)=\rho_X(h).$$

Słaba stacjonarność

Słaba stacjonarność

Szereg czasowy X_t nazwiemy słabo stacjonarnym lub stacjonarnym w szerwszym sensie (SSS), jeżeli

- $\bullet \ \mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(X_{1}\right),$
- $\operatorname{Var}(X_t) < \infty$,

dla dowolnych s, t oraz d.

Zastosowanie Pewne często używane własności szeregu czasowego SSS policzone dla danego okresu czasu możemy przenieść na dowolny inny okres czasu.

Właściwości szeregu czasowego SSS

Wariancja nie zależy od czasu, tzn.

$$Var(X_t) = Var(X_1)$$
.

Autokorelacja zależy wyłącznie od przesunięcia w czasie między obserwacjami

$$\rho_X(t,t+h)=\rho_X(h).$$

Wartości funkcji autokowariancji są ograniczone z góry przez wartość wariancji, tzn.

$$|\gamma_X(h)| \leqslant \gamma_X(0) = \operatorname{Var}(X_t).$$

Funkcja autokowariancji jest symetryczna, tzn.

$$\gamma_X(h) = \gamma_X(-h)$$
.

Związek SWS z SSS

Fakt Jeżeli szereg czasowy jest silnie stacjonarny, to jest on również słabo stacjonarny.

Test Dickeya-Fullera (DF)

Rozważamy model

$$X_t = \mu + \alpha t + \varphi X_{t-1} + \epsilon_t.$$

Modyfikujemy

$$X_{t} - X_{t-1} = \mu + \alpha t + \varphi X_{t-1} - X_{t-1} + \epsilon_{t},$$

$$\Delta X_{t} = \mu + \alpha t + (\varphi - 1) X_{t-1} + \epsilon_{t}.$$

Testujemy

$$\begin{cases} H_0: & \varphi - 1 = 0 \\ H_1: & \varphi - 1 < 0 \end{cases}$$

Statystyka testowa

$$\mathsf{DF} = \frac{\varphi - 1}{\mathsf{SE}_{(2, 1)}}$$

Test Dickeya-Fullera (DF)

Interpretacja Odrzucenie H_0 oznacza stacjonarność szeregu czasowego. Brak podstaw do odrzucenia H_0 sugeruje, że być może proces ΔX_t jest stacjonarny.

Test Dickeya-Fullera (DF)

Wada Test DF charakteryzuje słaba moc. W statystyce oznacza to, że możemy wykazać niestacjonarność szeregu czasowego w przypadku, gdy szereg jest stacjonarny.

Rozszerzony test Dickeya-Fullera (ADF)

Rozważamy model

$$X_t = \mu + \alpha t + \sum_{i=1}^p \beta_i X_{t-i} + \epsilon_t.$$

Przekształcamy do postaci

$$\Delta X_t = \mu + \alpha t + (\beta_1 - 1) X_{t-1} + \sum_{i=1}^{p-1} \gamma_i \Delta X_{t-i} + \epsilon_t.$$

Testujemy

$$\begin{cases} H_0: & \beta_1 - 1 = 0 \\ H_1: & \beta_1 - 1 < 0 \end{cases}$$

Statystyka testowa

$$\mathsf{DF} = \frac{\beta_1 - 1}{\mathsf{SE}_{\beta_1 - 1}}$$

Test Kwiatkowskiego, Phillipsa, Schmidta i Shina (KPSS)

Rozważamy model

$$\begin{split} X_t &= \mu_t + \alpha t + \sum_{i=1}^p \beta_i X_{t-i} + \epsilon_t, \\ \mu_t &= \mu_{t-1} + \eta_t, \\ \epsilon_t & \text{iid} \quad \mathcal{N}\left(0, \sigma_\epsilon^2\right) \\ \eta_t & \text{iid} \quad \mathcal{N}\left(0, \sigma_\eta^2\right) \end{split}$$

Testujemy

$$\begin{cases} H_0: & \sigma_{\eta}^2 = 0 \\ H_1: & \sigma_{\eta}^2 > 0 \end{cases}$$

Pytania?

Dziękuję za uwagę!