17/06/2024, 19:26 fibonacci

To prove by induction that it takes exactly F_n recursive calls to fibonacci(1) when computing fibonacci(n), where F_n is the n-th Fibonacci number, we need to analyze the recursive structure of the Fibonacci sequence and establish the relationship between the number of calls to fibonacci(1) and the Fibonacci numbers.

Fibonacci Function Analysis

The given fibonacci method is a direct recursive implementation of the Fibonacci sequence:

```
public static long fibonacci(int n) {    if (n == 0) return 0;    if (n == 1) return 1;    return fibonacci(n-1) + fibonacci(n-2); } The Fibonacci numbers are defined as: F_0 = 0 F_1 = 1 F_n = F_{n-1} + F_{n-2} for n \ge 2
```

Induction Proof

Base Cases

```
1. For n = 0:
```

- fibonacci(0) directly returns 0 without making any recursive calls.
- Therefore, there are 0 calls to fibonacci(1).
- $F_0=0$, which matches the number of calls.
- 2. For n = 1:
 - fibonacci(1) directly returns 1 without making any recursive calls.
 - Therefore, there is 1 call to fibonacci(1).
 - $F_1=1$, which matches the number of calls.

These base cases hold true.

Inductive Step

Assume that for some $k\geq 1$, the number of recursive calls to fibonacci(1) when computing fibonacci(k) is exactly F_k .

We need to show that the number of recursive calls to fibonacci(1) when computing fibonacci(k+1) is exactly F_{k+1} .

When computing fibonacci(k+1), the function makes the following calls:

- fibonacci(k)
- fibonacci(k-1)

17/06/2024, 19:26 fibonacci

According to the inductive hypothesis:

- The number of calls to fibonacci(1) in fibonacci(k) is F_k .
- The number of calls to fibonacci(1) in fibonacci(k-1) is F_{k-1} .

Therefore, the total number of calls to fibonacci(1) when computing fibonacci(k+1) is: $\operatorname{Calls}(k+1) = \operatorname{Calls}(k) + \operatorname{Calls}(k-1)$ $\operatorname{Calls}(k+1) = F_k + F_{k-1}$

By the definition of the Fibonacci sequence: $F_{k+1} = F_k + F_{k-1}$

Thus:
$$Calls(k+1) = F_{k+1}$$

This completes the inductive step, showing that the number of calls to fibonacci(1) when computing fibonacci(n) is exactly F_n .

Conclusion

By mathematical induction, we have shown that it takes exactly F_n recursive calls to fibonacci(1) when computing fibonacci(n), where F_n is the n-th Fibonacci number. This completes the proof.