This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

- 1. An elongated member configured for advacement within a body
 2 lumen which is formed at least in part of cold worked biocompatible alloy
 3 consisting essentially of about 28 to about 65% cobalt, about 2 to about
 4 40% nickel, about 5 to about 35% chromium, up to about 12%
 5 molybdenum, up to about 20% tungsten, up to about 20% iron and the
 6 balance inconsequential amounts of other alloying constituents.
- 2. The elongated member of claim 1 wherein the cold worked biocompatible alloy includes about 30 to about 45% cobalt, about 25 to about 37% nickel, about 15 to about 25% chromium and about 5 to about 15% molybdenum.
- 3. The elongated member of claim 2 wherein the cold worked
 biocompatible alloy has been age hardened.
- The elongated member of claim 1 in the form of a guidewire.
- 5. The elongated member of claim 1 wherein a distal portion
 thereof is formed of a pseudoelastic NiTi alloy.

1	6. A composite product comprising:
2	a) a first portion formed of a high strength alloy containing
3	cobalt, nickel and chromium; and
· 4	b) a second portion formed of an alloy of nickel and
. 5	titanium.
1	7. The composite product of claim 6 wherein the first portion has
2	an ultimate tensile strength of at least 200 ksi and an elongation of at least
3	10%.
·	
1	8. The composite product of claim 6 wherein the second portion
2	exhibits a stress induced transformation from an austenite phase which is
3	stable at body temperature to a martensite phase.
1	9. The composite product of claim 6 having an elongated shape
2	with the second portion being an elongated inner member and the first
3	portion being an outer sheath disposed about the inner member.
1	10. The composite product of claim 9 wherein the composite
2	product has proximal and distal sections and has at least a portion of the

3	outer sheath removed from the inner member in at least part of the distal
4	
· 1	11. The composite product of claim 10 wherein the inner member in
, 2	the distal section tapers in the distal direction to a smaller transverse
3	dimension.
1	12. A co-worked high strength elongated composite intracorporeal
2	device comprising:
3	a) a first member formed of a pseudoelastic NiTi alloy which
4	has desirable mechanical properties due to having been subjected to
5	certain thermomechanical processing; and
6	b) a second member secured to the first member formed of
7	a high strength Co-Ni-Cr alloy which has desirable mechanical
8	properties due to having been subjected to the same
9	thermomechanical processing to which the first member has been
10	subjected.
1	13. The intracorporeal device of claim 12 wherein the high strength

1 13. The intracorporeal device of claim 12 wherein the high strength 2 Co-Ni-Cr alloy consists essentially of about 28 to about 65% cobalt, about 2

3	to about 40% nickel, about 5 to about 35% chromium, up to about 12%
4 .	molybdenum, up to about 20% tungsten, up to about 20% iron and the
5	balance inconsequential amounts of other alloying constituents and
6	impurities.
1	14. The intracorporeal device of claim 12 wherein the
2	thermomechanical processing includes a plurality of cold working stages with
3	intermediate anneals and a final cold working stage followed by an age
4	hardening heat treatment.
1	15. An elongated guidewire for intracorporeal use comprising:
2	a) a core member having
3	an inner portion formed of a pseudoelastic NiTi
4	alloy; and
5	an outer portion formed of a high strength Co-Ni-Cr
6	alloy; and
7	b) a helical coil disposed about a distal portion of the core
8	member.

member.

	•
1	16. The elongated guidewire of claim 15 having proximal and distal
2	sections with a length of the outer portion removed to expose the underlying
3 ·	inner portion in the distal section of the guidewire.
1	17. The elongated guidewire of claim 16 wherein the helical coil is
2	disposed about the exposed portion of the core member.
1	18. The elongated guidewire of claim 17 wherein the helical coil is
2	secured by its proximal portion to the outer portion of the core member.
1	19. The elongated guidewire of claim 18 wherein a shapeable
2	ribbon having proximal and distal ends is secured by its distal end to the
3	distal end of the coil and by its proximal end to the core member.
1	20. The elongated guidewire of claim 18 wherein the helical coil is
2	secured by its distal end to the core member.
ŀ	21. The elongated guidewire of claim 15 wherein the Co-Ni-Cr alloy
2	consists essentially of about 28 to about 65% cobalt, about 2 to about 40%

3

nickel, about 5 to about 35% chromium, up to about 12% molybdenum, up

- to about 20% tungsten, up to about 20% iron and the balance inconsequential amounts of other alloying constituents and impurities.
- 22. The elongated guidewire of claim 21 wherein the Co-Ni-Cr alloy
 includes about 30 to about 45% cobalt, about 25 to about 37% nickel,
 about 15 to about 25% chromium and about 5 to about 15% molybdenum.
- 1 23. The elongated guidewire of claim 15 wherein the Ni-Ti alloy
 2 consists essentially of about 25 to about 47% (atomic) titanium and the
 3 balance nickel and up to about 10% of one or more additional alloying
 4 elements.
- 24. The elongated guidewire of claim 23 wherein the additional alloying elements are selected from the group consisting of up to 3% (each) of iron, cobalt, chromium, platinum and palladium and up to about 10% (total) copper and vanadium.
 - 25. A method of making an elongated composite product comprising:

1

2

3	a) providing an elongated outer sheath formed of a Co-Ni-Cr
4	alloy with an inner lumen extending therein;
5	b) advancing an elongated core member formed of NiTi alloy
, 6	into the inner lumen of the outer sheath to form an assembly
7	therewith; and
8	c) cold working the assembly in a plurality of cold working
9	stages and intermediate annealing the cold worked assembly between
10	cold working stages.
1	26. The method of claim 25 wherein the outer sheath is formed of
2	an alloy containing up to 10% molybdenum.
1	27. The method of claim 25 wherein the assembly is cold worked
2	by drawing with a reduction of at least about 20% in each cold working
3	stage.
1	28. The method of claim 25 wherein the cold worked assembly is
2	intermediate annealed at a temperature of about 600° and 900° C.

- 29. The method of claim 27 wherein the final cold working stage includes a reduction of at least 50%.
- 1 30. The method of claim 26 wherein the cold worked assembly is
 2 heat treated after the final cold working stage at a temperature between
 3 about 400° and about 700°C. to age harden the outer sheath formed of Co4 Ni-Cr-Mo alloy and provide pseudoelastic characteristics to the inner
 5 member.
 - 31. The method of claim 26 wherein the cold worked assembly is heat treated at a temperature between about 550° and about 675°C. to age harden the outer sheath formed of Co-Ni-Cr-Mo alloy and provide pseudoelastic characteristics to the inner member.
 - 32. An expandable intracorporeal stent having a generally thin walled cylindrical shape and being formed of an alloy consisting essentially of about 28 to about 65% cobalt, about 2 to about 40% nickel, about 5 to about 35% chromium, up to about 12% molybdenum, up to about 20% tungsten, up to about 20% iron and the balance inconsequential amounts of impurities and other alloying constituents.

33.	The expandable intracorporeal stent of claim 32 wherein the
alloy includ	es about 30 to about 45% cobalt, about 25 to about 37% nickel,
about 15 to	about 25% chromium and about 5 to about 15% molybdenum.

- The expandable intracorporeal stent of claim 33 in an age 1 34. 2 hardened condition.
- An expandable intracorporeal stent having a generally thin 35. walled cylindrical shape and formed of an alloy exhibiting an ultimate tensile 3 strength greater than 300 ksi.
- The expandable intracorporeal sent of claim 35 wherein the 1 36. alloy consists essentially of about 30 to about 45% cobalt, about 25 to 2 about 37% nickel, about 15 to about 25% chromium and about 5 to about 3 15% molybdenum with inconsequential amounts of other alloying 4 5 constituents and impurities.

1

2

3

1

2