SQL Notes for Professionals

100+ pages

of professional hints and tricks

Contents

<u>About</u>	1
Chapter 1: Getting started with SQL	2
Section 1.1: Overview	
Chapter 2: Identifier	3
Section 2.1: Unquoted identifiers	
Chapter 3: Data Types	
Section 3.1: DECIMAL and NUMERIC	
Section 3.2: FLOAT and REAL	
Section 3.3: Integers	
Section 3.4: MONEY and SMALLMONEY	
Section 3.5: BINARY and VARBINARY	
Section 3.6: CHAR and VARCHAR	
Section 3.7: NCHAR and NVARCHAR	
Section 3.8: UNIQUEIDENTIFIER	
Chapter 4: NULL	
Section 4.1: Filtering for NULL in queries	
Section 4.2: Nullable columns in tables	
Section 4.3: Updating fields to NULL	
Section 4.4: Inserting rows with NULL fields	
<u>Chapter 5: Example Databases and Tables</u>	
Section 5.1: Auto Shop Database	
Section 5.2: Library Database	
Section 5.3: Countries Table	
Chapter 6: SELECT	
Section 6.1: Using the wildcard character to select all columns in a query	
Section 6.2: SELECT Using Column Aliases	
Section 6.3: Select Individual Columns	
Section 6.4: Selecting specified number of records	
	20
Section 6.6: Selecting with CASE	
Section 6.7: Select columns which are named after reserved keywords	
Section 6.8: Selecting with table alias	
Section 6.9: Selecting with more than 1 condition	
Section 6.10: Selecting without Locking the table	23
Section 6.11: Selecting with Aggregate functions	23
Section 6.12: Select with condition of multiple values from column	24
Section 6.13: Get aggregated result for row groups	24
Section 6.14: Selection with sorted Results	25
Section 6.15: Selecting with null	25
Section 6.16: Select distinct (unique values only)	25
Section 6.17: Select rows from multiple tables	26
Chapter 7: GROUP BY	27
Section 7.1: Basic GROUP BY example	27
Section 7.2: Filter GROUP BY results using a HAVING clause	28
Section 7.3: USE GROUP BY to COUNT the number of rows for each unique entry in a given column	
Section 7.4: ROLAP aggregation (Data Mining)	29

<u>Chapter 8: ORDER BY</u>	31
Section 8.1: Sorting by column number (instead of name)	
Section 8.2: Use ORDER BY with TOP to return the top x rows based on a column's value	
Section 8.3: Customizeed sorting order	
Section 8.4: Order by Alias	
Section 8.5: Sorting by multiple columns	
Chapter 9: AND & OR Operators	34
Section 9.1: AND OR Example	34
Chapter 10: CASE	35
Section 10.1: Use CASE to COUNT the number of rows in a column match a condition	35
Section 10.2: Searched CASE in SELECT (Matches a boolean expression)	36
Section 10.3: CASE in a clause ORDER BY	
Section 10.4: Shorthand CASE in SELECT	36
Section 10.5: Using CASE in UPDATE	37
Section 10.6: CASE use for NULL values ordered last	37
Section 10.7: CASE in ORDER BY clause to sort records by lowest value of 2 columns	
Chapter 11: LIKE operator	39
Section 11.1: Match open-ended pattern	
Section 11.2: Single character match	40
Section 11.3: ESCAPE statement in the LIKE-query	40
Section 11.4: Search for a range of characters	41
Section 11.5: Match by range or set	41
Section 11.6: Wildcard characters	41
Chapter 12: IN clause	43
Section 12.1: Simple IN clause	43
Section 12.2: Using IN clause with a subquery	43
Chapter 13: Filter results using WHERE and HAVING	44
Section 13.1: Use BETWEEN to Filter Results	
Section 13.2: Use HAVING with Aggregate Functions	
Section 13.3: WHERE clause with NULL/NOT NULL values	
Section 13.4: Equality	46
Section 13.5: The WHERE clause only returns rows that match its criteria	46
Section 13.6: AND and OR	46
Section 13.7: Use IN to return rows with a value contained in a list	47
Section 13.8: Use LIKE to find matching strings and substrings	47
Section 13.9: Where EXISTS	48
Section 13.10: Use HAVING to check for multiple conditions in a group	48
Chapter 14: SKIP TAKE (Pagination)	50
Section 14.1: Limiting amount of results	50
Section 14.2: Skipping then taking some results (Pagination)	50
Section 14.3: Skipping some rows from result	51
Chapter 15: EXCEPT	52
Section 15.1: Select dataset except where values are in this other dataset	52
Chapter 16: EXPLAIN and DESCRIBE	
Section 16.1: EXPLAIN Select query	
Section 16.2: DESCRIBE tablename;	
Chapter 17: EXISTS CLAUSE	
Section 17.1: EXISTS CLAUSE	
Chapter 18: JOIN	
<u> </u>	, 22

	Section 18.1: Self Join	55
	Section 18.2: Differences between inner/outer joins	. 56
	Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti	59
	Section 18.4: Left Outer Join	69
	Section 18.5: Implicit Join	70
	Section 18.6: CROSS JOIN	71
	Section 18.7: CROSS APPLY & LATERAL JOIN	. 72
	Section 18.8: FULL JOIN	
	Section 18.9: Recursive JOINs	
	Section 18.10: Basic explicit inner join	. 74
	Section 18.11: Joining on a Subquery	. 75
<u>C</u>	napter 19: UPDATE	76
	Section 19.1: UPDATE with data from another table	76
	Section 19.2: Modifying existing values	. 77
	Section 19.3: Updating Specified Rows	77
	Section 19.4: Updating All Rows	
	Section 19.5: Capturing Updated records	. 77
<u>C</u>	napter 20: CREATE Database	. 78
	Section 20.1: CREATE Database	78
<u>C</u>	napter 21: CREATE TABLE	. 79
	Section 21.1: Create Table From Select	
	Section 21.2: Create a New Table	
	Section 21.3: CREATE TABLE With FOREIGN KEY	79
	Section 21.4: Duplicate a table	. 80
	Section 21.5: Create a Temporary or In-Memory Table	80
<u>C</u>	napter 22: CREATE FUNCTION	82
	Section 22.1: Create a new Function	82
Cł	napter 23: TRY/CATCH	83
	Section 23.1: Transaction In a TRY/CATCH	
Cł	napter 24: UNION / UNION ALL	
	Section 24.1: Basic UNION ALL query	
	Section 24.2: Simple explanation and Example	
CŁ	napter 25: ALTER TABLE	
<u> </u>	Section 25.1: Add Column(s)	
	Section 25.2: Drop Column	
	Section 25.3: Add Primary Key	
	Section 25.4: Alter Column	
	Section 25.5: Drop Constraint	
CŁ	napter 26: INSERT	
<u> </u>	Section 26.1: INSERT data from another table using SELECT	
	Section 26.2: Insert New Row	
	Section 26.3: Insert Only Specified Columns	
	Section 26.4: Insert multiple rows at once	
CŁ	napter 27: MERGE	
<u> </u>	Section 27.1: MERGE to make Target match Source	
	Section 27.1: MERGE to make larget match source Section 27.2: MySQL: counting users by name	
	Section 27.3: PostgreSQL: counting users by name	
Ch	napter 28: cross apply, outer apply	
<u>ပ</u> ၊		
	Section 28.1: CROSS APPLY and OUTER APPLY basics	. 90

Chapter 29: DELETE	92
Section 29.1: DELETE all rows	
Section 29.2: DELETE certain rows with WHERE	92
Section 29.3: TRUNCATE clause	
Section 29.4: DELETE certain rows based upon comparisons with other tables	92
Chapter 30: TRUNCATE	94
Section 30.1: Removing all rows from the Employee table	94
Chapter 31: DROP Table	95
Section 31.1: Check for existence before dropping	95
Section 31.2: Simple drop	
Chapter 32: DROP or DELETE Database	96
Section 32.1: DROP Database	
<u>Chapter 33: Cascading Delete</u>	
Section 33.1: ON DELETE CASCADE	
Chapter 34: GRANT and REVOKE	
Section 34.1: Grant/revoke privileges	
· · · ·	
Chapter 35: XML	
Section 35.1: Query from XML Data Type	
Chapter 36: Primary Keys	
Section 36.1: Creating a Primary Key	
Section 36.2: Using Auto Increment	
<u>Chapter 37: Indexes</u>	
Section 37.1: Sorted Index	
Section 37.2: Partial or Filtered Index	
Section 37.3: Creating an Index	
Section 37.4: Dropping an Index, or Disabling and Rebuilding it	
Section 37.5: Clustered, Unique, and Sorted Indexes	
Section 37.6: Rebuild index	
Section 37.7: Inserting with a Unique Index	
<u>Chapter 38: Row number</u>	
Section 38.1: Delete All But Last Record (1 to Many Table)	
Section 38.2: Row numbers without partitions	
Section 38.3: Row numbers with partitions	
Chapter 39: SQL Group By vs Distinct	
Section 39.1: Difference between GROUP BY and DISTINCT	
Chapter 40: Finding Duplicates on a Column Subset with Detail	
Section 40.1: Students with same name and date of birth	107
Chapter 41: String Functions	108
Section 41.1: Concatenate	108
Section 41.2: Length	108
Section 41.3: Trim empty spaces	109
Section 41.4: Upper & lower case	
Section 41.5: Split	
Section 41.6: Replace	
Section 41.7: REGEXP	
Section 41.8: Substring	
Section 41.9: Stuff	
Section 41.10: LEFT - RIGHT	110

Section 41.11: REVERSE	111
Section 41.12: REPLICATE	111
Section 41.13: Replace function in sql Select and Update query	111
Section 41.14: INSTR	112
Section 41.15: PARSENAME	112
Chapter 42: Functions (Aggregate)	114
Section 42.1: Conditional aggregation	114
Section 42.2: List Concatenation	114
Section 42.3: SUM	116
Section 42.4: AVG()	116
Section 42.5: Count	116
Section 42.6: Min	117
Section 42.7: Max	118
Chapter 43: Functions (Scalar/Single Row)	119
Section 43.1: Date And Time	119
Section 43.2: Character modifications	120
Section 43.3: Configuration and Conversion Function	120
Section 43.4: Logical and Mathmetical Function	121
Chapter 44: Functions (Analytic)	123
Section 44.1: LAG and LEAD	
Section 44.2: PERCENTILE DISC and PERCENTILE CONT	123
Section 44.3: FIRST_VALUE	124
Section 44.4: LAST_VALUE	125
Section 44.5: PERCENT_RANK and CUME_DIST_	125
Chapter 45: Window Functions	127
Section 45.1: Setting up a flag if other rows have a common property	
Section 45.2: Finding "out-of-sequence" records using the LAG() function	127
Section 45.3: Getting a running total	128
Section 45.4: Adding the total rows selected to every row	128
Section 45.5: Getting the N most recent rows over multiple grouping	129
<u>Chapter 46: Common Table Expressions</u>	130
Section 46.1: generating values	130
Section 46.2: recursively enumerating a subtree	
Section 46.3: Temporary query	131
Section 46.4: recursively going up in a tree	131
Section 46.5: Recursively generate dates, extended to include team rostering as example	132
Section 46.6: Oracle CONNECT BY functionality with recursive CTEs	132
Chapter 47: Views	134
Section 47.1: Simple views	134
Section 47.2: Complex views	134
Chapter 48: Materialized Views	135
Section 48.1: PostgreSQL example	
Chapter 49: Comments	
Section 49.1: Single-line comments	
Section 49.2: Multi-line comments	
Chapter 50: Foreign Keys	
Section 50.1: Foreign Keys explained	
Section 50.2: Creating a table with a foreign key	
Chapter 51: Sequence	
CHAPTER OF DESCRIPTION	133

Section 51.1: Create Sequence	139
Section 51.2: Using Sequences	139
Chapter 52: Subqueries	
Section 52.1: Subquery in FROM clause	140
Section 52.2: Subquery in SELECT clause	140
Section 52.3: Subquery in WHERE clause	140
Section 52.4: Correlated Subqueries	
Section 52.5: Filter query results using query on different table	
Section 52.6: Subqueries in FROM clause	
Section 52.7: Subqueries in WHERE clause	141
<u>Chapter 53: Execution blocks</u>	
Section 53.1: Using BEGIN END	142
<u>Chapter 54: Stored Procedures</u>	143
Section 54.1: Create and call a stored procedure	143
Chapter 55: Triggers	144
Section 55.1: CREATE TRIGGER	144
Section 55.2: Use Trigger to manage a "Recycle Bin" for deleted items	144
<u>Chapter 56: Transactions</u>	145
Section 56.1: Simple Transaction	145
Section 56.2: Rollback Transaction	145
Chapter 57: Table Design	146
Section 57.1: Properties of a well designed table	146
Chapter 58: Synonyms	147
Section 58.1: Create Synonym	
Chapter 59: Information Schema	
Section 59.1: Basic Information Schema Search	
Chapter 60: Order of Execution	
Section 60.1: Logical Order of Query Processing in SQL	
Chapter 61: Clean Code in SQL	
Section 61.1: Formatting and Spelling of Keywords and Names	
Section 61.2: Indenting	
Section 61.3: SELECT *	
Section 61.4: Joins	
Chapter 62: SQL Injection	
Section 62.1: SQL injection sample	
Section 62.2: simple injection sample	
Credits	
You may also like	
100 may also like	159

About

Please feel free to share this PDF with anyone for free, latest version of this book can be downloaded from: https://goalkicker.com/SQLBook

This SQL Notes for Professionals book is compiled from Stack Overflow

Documentation, the content is written by the beautiful people at Stack Overflow.

Text content is released under Creative Commons BY-SA, see credits at the end of this book whom contributed to the various chapters. Images may be copyright of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not affiliated with official SQL group(s) or company(s) nor Stack Overflow. All trademarks and registered trademarks are the property of their respective company owners

The information presented in this book is not guaranteed to be correct nor accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

Chapter 1: Getting started with SQL

Version	Short Name	e Standard	Release Date
1986	SQL-86	ANSI X3.135-1986, ISO 9075:1987	1986-01-01
1989	SQL-89	ANSI X3.135-1989, ISO/IEC 9075:1989	1989-01-01
<u>1992</u>	SQL-92	ISO/IEC 9075:1992	1992-01-01
<u>1999</u>	SQL:1999	ISO/IEC 9075:1999	1999-12-16
2003	SQL:2003	ISO/IEC 9075:2003	2003-12-15
<u>2006</u>	SQL:2006	ISO/IEC 9075:2006	2006-06-01
2008	SQL:2008	ISO/IEC 9075:2008	2008-07-15
<u>2011</u>	SQL:2011	ISO/IEC 9075:2011	2011-12-15
<u>2016</u>	SQL:2016	ISO/IEC 9075:2016	2016-12-01

Section 1.1: Overview

Structured Query Language (SQL) is a special-purpose programming language designed for managing data held in a Relational Database Management System (RDBMS). SQL-like languages can also be used in Relational Data Stream Management Systems (RDSMS), or in "not-only SQL" (NoSQL) databases.

SQL comprises of 3 major sub-languages:

- 1. Data Definition Language (DDL): to create and modify the structure of the database;
- 2. Data Manipulation Language (DML): to perform Read, Insert, Update and Delete operations on the data of the database;
- 3. Data Control Language (DCL): to control the access of the data stored in the database.

SQL article on Wikipedia

The core DML operations are Create, Read, Update and Delete (CRUD for short) which are performed by the statements INSERT, SELECT, UPDATE and DELETE.

There is also a (recently added) MERGE statement which can perform all 3 write operations (INSERT, UPDATE, DELETE).

CRUD article on Wikipedia

Many SQL databases are implemented as client/server systems; the term "SQL server" describes such a database. At the same time, Microsoft makes a database that is named "SQL Server". While that database speaks a dialect of SQL, information specific to that database is not on topic in this tag but belongs into the SQL Server documentation.

Chapter 2: Identifier

This topic is about identifiers, i.e. syntax rules for names of tables, columns, and other database objects.

Where appropriate, the examples should cover variations used by different SQL implementations, or identify the SQL implementation of the example.

Section 2.1: Unquoted identifiers

Unquoted identifiers can use letters (a-z), digits (0-9), and underscore (_), and must start with a letter.

Depending on SQL implementation, and/or database settings, other characters may be allowed, some even as the first character, e.g.

- MS SQL: @, \$, #, and other Unicode letters (<u>source</u>)
- MySQL: \$ (source)
- Oracle: \$, #, and other letters from database character set (source)
- PostgreSQL: \$, and other Unicode letters (source)

Unquoted identifiers are case-insensitive. How this is handled depends greatly on SQL implementation:

- MS SQL: Case-preserving, sensitivity defined by database character set, so can be case-sensitive.
- MySQL: Case-preserving, sensitivity depends on database setting and underlying file system.
- Oracle: Converted to uppercase, then handled like quoted identifier.
- PostgreSQL: Converted to lowercase, then handled like quoted identifier.
- SQLite: Case-preserving; case insensitivity only for ASCII characters.

Chapter 3: Data Types

Section 3.1: DECIMAL and NUMERIC

Fixed precision and scale decimal numbers. DECIMAL and NUMERIC are functionally equivalent.

Syntax:

```
DECIMAL ( precision [ , scale] )
NUMERIC ( precision [ , scale] )
```

Examples:

```
SELECT CAST(123 AS DECIMAL(5,2)) --returns 123.00
SELECT CAST(12345.12 AS NUMERIC(10,5)) --returns 12345.12000
```

Section 3.2: FLOAT and REAL

Approximate-number data types for use with floating point numeric data.

```
SELECT CAST( PI() AS FLOAT) --returns 3.14159265358979
SELECT CAST( PI() AS REAL) --returns 3.141593
```

Section 3.3: Integers

Exact-number data types that use integer data.

Data type	Range	
bigint	-2^63 (-9,223,372,036,854,775,808) to 2^63-1 (9,223,372,036,854,775,807)	8 Bytes
int	-2^31 (-2,147,483,648) to 2^31-1 (2,147,483,647)	4 Bytes
smallint	-2^15 (-32,768) to 2^15-1 (32,767)	2 Bytes
tinyint	0 to 255	1 Byte

Section 3.4: MONEY and SMALLMONEY

Data types that represent monetary or currency values.

```
Data typeRangeStoragemoney-922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytessmallmoney-214,748.3648 to 214,748.36474 bytes
```

Section 3.5: BINARY and VARBINARY

Binary data types of either fixed length or variable length.

Syntax:

```
BINARY [ ( n_bytes ) ]
VARBINARY [ ( n_bytes | max ) ]
```

n_bytes can be any number from 1 to 8000 bytes. max indicates that the maximum storage space is 2^31-1.

Examples:

Section 3.6: CHAR and VARCHAR

String data types of either fixed length or variable length.

Syntax:

```
CHAR [ ( n_chars ) ]
VARCHAR [ ( n_chars ) ]
```

Examples:

```
SELECT CAST('ABC' AS CHAR(10)) -- 'ABC' (padded with spaces on the right) SELECT CAST('ABC' AS VARCHAR(10)) -- 'ABC' (no padding due to variable character) SELECT CAST('ABCDEFGHIJKLMNOPQRSTUVWXYZ' AS CHAR(10)) -- 'ABCDEFGHIJ' (truncated to 10 characters)
```

Section 3.7: NCHAR and NVARCHAR

UNICODE string data types of either fixed length or variable length.

Syntax:

```
NCHAR [ ( n_chars ) ]
NVARCHAR [ ( n_chars | MAX ) ]
```

Use MAX for very long strings that may exceed 8000 characters.

Section 3.8: UNIQUEIDENTIFIER

A 16-byte GUID / UUID.

Chapter 4: NULL

NULL in SQL, as well as programming in general, means literally "nothing". In SQL, it is easier to understand as "the absence of any value".

It is important to distinguish it from seemingly empty values, such as the empty string '' or the number 0, neither of which are actually NULL.

It is also important to be careful not to enclose NULL in quotes, like 'NULL', which is allowed in columns that accept text, but is not NULL and can cause errors and incorrect data sets.

Section 4.1: Filtering for NULL in queries

The syntax for filtering for NULL (i.e. the absence of a value) in WHERE blocks is slightly different than filtering for specific values.

```
SELECT * FROM Employees WHERE ManagerId IS NULL ;
SELECT * FROM Employees WHERE ManagerId IS NOT NULL ;
```

Note that because NULL is not equal to anything, not even to itself, using equality operators = NULL or <> NULL (or != NULL) will always yield the truth value of UNKNOWN which will be rejected by WHERE.

WHERE filters all rows that the condition is FALSE or UKNOWN and keeps only rows that the condition is TRUE.

Section 4.2: Nullable columns in tables

When creating tables it is possible to declare a column as nullable or non-nullable.

```
CREATE TABLE MyTable
(
    MyCol1 INT NOT NULL, -- non-nullable
    MyCol2 INT NULL -- nullable
) ;
```

By default every column (except those in primary key constraint) is nullable unless we explicitly set NOT NULL constraint.

Attempting to assign NULL to a non-nullable column will result in an error.

Section 4.3: Updating fields to NULL

Setting a field to NULL works exactly like with any other value:

```
UPDATE Employees
SET ManagerId = NULL
WHERE Id = 4
```

Section 4.4: Inserting rows with NULL fields

For example inserting an employee with no phone number and no manager into the Employees example table:

```
INSERT INTO Employees
    (Id, FName, LName, PhoneNumber, ManagerId, DepartmentId, Salary, HireDate)
VALUES
    (5, 'Jane', 'Doe', NULL, NULL, 2, 800, '2016-07-22');
```

Chapter 5: Example Databases and Tables

Section 5.1: Auto Shop Database

In the following example - Database for an auto shop business, we have a list of departments, employees, customers and customer cars. We are using foreign keys to create relationships between the various tables.

Live example: <u>SQL fiddle</u>

Relationships between tables

- Each Department may have 0 or more Employees
- Each Employee may have 0 or 1 Manager
- Each Customer may have 0 or more Cars

Departments

Id Name

- 1 HR
- 2 Sales
- 3 Tech

SQL statements to create the table:

```
CREATE TABLE Departments (
    Id INT NOT NULL AUTO_INCREMENT,
    Name VARCHAR(25) NOT NULL,
    PRIMARY KEY(Id)
);

INSERT INTO Departments
    ([Id], [Name])

VALUES
    (1, 'HR'),
    (2, 'Sales'),
    (3, 'Tech')
;
```

Employees

Id FName LName PhoneNumber Managerld DepartmentId Salary HireDate Smith 1234567890 NULL 1000 01-01-2002 1 James Johnson 2468101214 1 1 400 23-03-2005 2 John 3 Michael Williams 1357911131 1 2 600 12-05-2009 4 Johnathon Smith 1212121212 2 1 500 24-07-2016

SQL statements to create the table:

```
CREATE TABLE Employees (
    Id INT NOT NULL AUTO_INCREMENT,
    FName VARCHAR(35) NOT NULL,
    LName VARCHAR(35) NOT NULL,
    PhoneNumber VARCHAR(11),
    ManagerId INT,
    DepartmentId INT NOT NULL,
```

```
Salary INT NOT NULL,
HireDate DATETIME NOT NULL,
PRIMARY KEY(Id),
FOREIGN KEY (ManagerId) REFERENCES Employees(Id),
FOREIGN KEY (DepartmentId) REFERENCES Departments(Id)
);

INSERT INTO Employees
   ([Id], [FName], [LName], [PhoneNumber], [ManagerId], [DepartmentId], [Salary], [HireDate])

VALUES
   (1, 'James', 'Smith', 1234567890, NULL, 1, 1000, '01-01-2002'),
   (2, 'John', 'Johnson', 2468101214, '1', 1, 400, '23-03-2005'),
   (3, 'Michael', 'Williams', 1357911131, '1', 2, 600, '12-05-2009'),
   (4, 'Johnathon', 'Smith', 1212121212, '2', 1, 500, '24-07-2016')
;
```

Customers

Id FName LName Email

PhoneNumber PreferredContact

William Jones william.jones@example.com 3347927472 PHONE
 David Miller dmiller@example.net 2137921892 EMAIL
 Richard Davis richard0123@example.com NULL EMAIL

SQL statements to create the table:

```
CREATE TABLE Customers (
   Id INT NOT NULL AUTO_INCREMENT,
   FName VARCHAR(35) NOT NULL,
   LName VARCHAR(35) NOT NULL,
   Email varchar(100) NOT NULL,
   PhoneNumber VARCHAR(11),
   PreferredContact VARCHAR(5) NOT NULL,
   PRIMARY KEY(Id)
);

INSERT INTO Customers
   ([Id], [FName], [LName], [Email], [PhoneNumber], [PreferredContact])
VALUES
   (1, 'William', 'Jones', 'william.jones@example.com', '3347927472', 'PHONE'),
   (2, 'David', 'Miller', 'dmiller@example.net', '2137921892', 'EMAIL'),
   (3, 'Richard', 'Davis', 'richard0123@example.com', NULL, 'EMAIL');
;
```

Cars

Id	CustomerId	EmployeeId	Model	Status	Total Cost
1	1	2	Ford F-150	READY	230
2	1	2	Ford F-150	READY	200
3	2	1	Ford Mustang	WAITING	100
4	3	3	Tovota Prius	WORKING	1254

SQL statements to create the table:

```
CREATE TABLE Cars (
    Id INT NOT NULL AUTO_INCREMENT,
    CustomerId INT NOT NULL,
    EmployeeId INT NOT NULL,
    Model varchar(50) NOT NULL,
    Status varchar(25) NOT NULL,
```

```
TotalCost INT NOT NULL,
    PRIMARY KEY(Id),
    FOREIGN KEY (CustomerId) REFERENCES Customers(Id),
    FOREIGN KEY (EmployeeId) REFERENCES Employees(Id)
);

INSERT INTO Cars
    ([Id], [CustomerId], [EmployeeId], [Model], [Status], [TotalCost])

VALUES
    ('1', '1', '2', 'Ford F-150', 'READY', '230'),
    ('2', '1', '2', 'Ford F-150', 'READY', '200'),
    ('3', '2', '1', 'Ford Mustang', 'WAITING', '100'),
    ('4', '3', '3', 'Toyota Prius', 'WORKING', '1254')
;
```

Section 5.2: Library Database

In this example database for a library, we have Authors, Books and BooksAuthors tables.

Live example: **SQL fiddle**

Authors and Books are known as **base tables**, since they contain column definition and data for the actual entities in the relational model. BooksAuthors is known as the **relationship table**, since this table defines the relationship between the Books and Authors table.

Relationships between tables

- Each author can have 1 or more books
- Each book can have 1 or more authors

Authors

(view table)

Id NameCountry1 J.D. SalingerUSA2 F. Scott. FitzgeraldUSA3 Jane AustenUK4 Scott HanselmanUSA5 Jason N. GaylordUSA6 Pranav RastogiIndia7 Todd MirandaUSA8 Christian WenzUSA

SQL to create the table:

```
CREATE TABLE Authors (
    Id INT NOT NULL AUTO_INCREMENT,
    Name VARCHAR(70) NOT NULL,
    Country VARCHAR(100) NOT NULL,
    PRIMARY KEY(Id)
);

INSERT INTO Authors
```

```
(Name, Country)

VALUES

    ('J.D. Salinger', 'USA'),
    ('F. Scott. Fitzgerald', 'USA'),
    ('Jane Austen', 'UK'),
    ('Scott Hanselman', 'USA'),
    ('Jason N. Gaylord', 'USA'),
    ('Pranav Rastogi', 'India'),
    ('Prodd Miranda', 'USA'),
    ('Christian Wenz', 'USA')
;
```

Books

(view table)

Id Title

- 1 The Catcher in the Rye
- 2 Nine Stories
- 3 Franny and Zooey
- 4 The Great Gatsby
- 5 Tender id the Night
- 6 Pride and Prejudice
- 7 Professional ASP.NET 4.5 in C# and VB

SQL to create the table:

```
CREATE TABLE Books (
    Id INT NOT NULL AUTO_INCREMENT,
    Title VARCHAR(50) NOT NULL,
    PRIMARY KEY(Id)
);

INSERT INTO Books
    (Id, Title)

VALUES
    (1, 'The Catcher in the Rye'),
    (2, 'Nine Stories'),
    (3, 'Franny and Zooey'),
    (4, 'The Great Gatsby'),
    (5, 'Tender id the Night'),
    (6, 'Pride and Prejudice'),
    (7, 'Professional ASP.NET 4.5 in C# and VB')
;
```

BooksAuthors

(<u>view table</u>)

BookId AuthorId

- 1 1
- 2 1
- 3 1
- 4 2
- 5 2

```
6 3
7 4
7 5
7 6
7 7
7 8
```

SQL to create the table:

```
CREATE TABLE BooksAuthors (
    AuthorId INT NOT NULL,
    BookId INT NOT NULL,
    FOREIGN KEY (AuthorId) REFERENCES Authors(Id),
    FOREIGN KEY (BookId) REFERENCES Books(Id)
);
INSERT INTO BooksAuthors
    (BookId, AuthorId)
VALUES
    (1, 1),
    (2, 1),
    (3, 1),
    (4, 2),
    (5, 2),
    (6, 3),
    (7, 4),
    (7, 5),
    (7, 6),
    (7, 7),
    (7, 8)
```

Examples

View all authors (view live example):

```
SELECT * FROM Authors;
```

View all book titles (view live example):

```
SELECT * FROM Books;
```

View all books and their authors (view live example):

```
SELECT
  ba.AuthorId,
  a.Name AuthorName,
  ba.BookId,
  b.Title BookTitle
FROM BooksAuthors ba
  INNER JOIN Authors a ON a.id = ba.authorid
  INNER JOIN Books b ON b.id = ba.bookid
;
```

Section 5.3: Countries Table

In this example, we have a **Countries** table. A table for countries has many uses, especially in Financial applications involving currencies and exchange rates.

Live example: **SQL fiddle**

Some Market data software applications like Bloomberg and Reuters require you to give their API either a 2 or 3 character country code along with the currency code. Hence this example table has both the 2-character ISO code column and the 3 character ISO3 code columns.

Countries

(view table)

Id ISO ISO3 ISONumeric CountryName Capital			ContinentCode CurrencyCode	
1 AU AUS 36	Australia	Canberra	OC	AUD
2 DE DEU 276	Germany	Berlin	EU	EUR
2 IN IND 356	India	New Delhi	AS	INR
3 LA LAO 418	Laos	Vientiane	AS	LAK
4 US USA 840	United States	Washington	NA	USD
5 ZW ZWE 716	Zimbabwe	Harare	AF	ZWL

SQL to create the table:

```
CREATE TABLE Countries (
    Id INT NOT NULL AUTO_INCREMENT,
    ISO VARCHAR(2) NOT NULL,
    ISO3 VARCHAR(3) NOT NULL,
    ISONumeric INT NOT NULL,
    CountryName VARCHAR(64) NOT NULL,
    Capital VARCHAR(64) NOT NULL,
    ContinentCode VARCHAR(2) NOT NULL,
    CurrencyCode VARCHAR(3) NOT NULL,
    PRIMARY KEY(Id)
INSERT INTO Countries
    (ISO, ISO3, ISONumeric, CountryName, Capital, ContinentCode, CurrencyCode)
VALUES
    ('AU', 'AUS', 36, 'Australia', 'Canberra', 'OC', 'AUD'),
    ('DE', 'DEU', 276, 'Germany', 'Berlin', 'EU', 'EUR'), ('IN', 'IND', 356, 'India', 'New Delhi', 'AS', 'INR'), ('LA', 'LAO', 418, 'Laos', 'Vientiane', 'AS', 'LAK'),
    ('US', 'USA', 840, 'United States', 'Washington', 'NA', 'USD'),
     ('ZW', 'ZWE', 716, 'Zimbabwe', 'Harare', 'AF', 'ZWL')
```

Chapter 6: SELECT

The SELECT statement is at the heart of most SQL queries. It defines what result set should be returned by the query, and is almost always used in conjunction with the FROM clause, which defines what part(s) of the database should be queried.

Section 6.1: Using the wildcard character to select all columns in a query

Consider a database with the following two tables.

Employees table:

Id FName LName DeptId

1 James Smith 3 2 John Johnson 4

Departments table:

Id Name

- 1 Sales
- 2 Marketing
- 3 Finance
- 4 IT

Simple select statement

* is the **wildcard character** used to select all available columns in a table.

When used as a substitute for explicit column names, it returns all columns in all tables that a query is selecting FROM. This effect applies to **all tables** the query accesses through its JOIN clauses.

Consider the following query:

```
SELECT * FROM Employees
```

It will return all fields of all rows of the Employees table:

Id FName LName DeptId

1 James Smith 3 2 John Johnson 4

Dot notation

To select all values from a specific table, the wildcard character can be applied to the table with *dot notation*.

Consider the following query:

```
SELECT
    Employees.*,
    Departments.Name
FROM
    Employees
JOIN
```

```
Departments
ON Departments.Id = Employees.DeptId
```

This will return a data set with all fields on the Employee table, followed by just the Name field in the Departments table:

Id FName LName DeptId Name

1 James Smith 3 Finance

2 John Johnson 4 IT

Warnings Against Use

It is generally advised that using * is avoided in production code where possible, as it can cause a number of potential problems including:

- 1. Excess IO, network load, memory use, and so on, due to the database engine reading data that is not needed and transmitting it to the front-end code. This is particularly a concern where there might be large fields such as those used to store long notes or attached files.
- 2. Further excess IO load if the database needs to spool internal results to disk as part of the processing for a query more complex than SELECT <columns> FROM .
- 3. Extra processing (and/or even more IO) if some of the unneeded columns are:
 - computed columns in databases that support them
 - in the case of selecting from a view, columns from a table/view that the query optimiser could otherwise optimise out
- 4. The potential for unexpected errors if columns are added to tables and views later that results ambiguous column names. For example SELECT * FROM orders JOIN people ON people.id = orders.personid ORDER BY displayname if a column column called displayname is added to the orders table to allow users to give their orders meaningful names for future reference then the column name will appear twice in the output so the ORDER BY clause will be ambiguous which may cause errors ("ambiguous column name" in recent MS SQL Server versions), and if not in this example your application code might start displaying the order name where the person name is intended because the new column is the first of that name returned, and so on.

When Can You Use *, Bearing The Above Warning In Mind?

While best avoided in production code, using * is fine as a shorthand when performing manual queries against the database for investigation or prototype work.

Sometimes design decisions in your application make it unavoidable (in such circumstances, prefer tablealias.* over just * where possible).

When using EXISTS, such as SELECT A.col1, A.Col2 FROM A WHERE EXISTS (SELECT * FROM B where A.ID = B.A_ID), we are not returning any data from B. Thus a join is unnecessary, and the engine knows no values from B are to be returned, thus no performance hit for using *. Similarly COUNT(*) is fine as it also doesn't actually return any of the columns, so only needs to read and process those that are used for filtering purposes.

Section 6.2: SELECT Using Column Aliases

Column aliases are used mainly to shorten code and make column names more readable.

Code becomes shorter as long table names and unnecessary identification of columns (e.g., there may be 2 IDs in the table, but only one is used in the statement) can be avoided. Along with table aliases this allows you to use longer descriptive names in your database structure while keeping queries upon that structure concise.

Furthermore they are sometimes *required*, for instance in views, in order to name computed outputs.

All versions of SQL

Aliases can be created in all versions of SQL using double quotes (").

```
FName AS "First Name",

MName AS "Middle Name",

LName AS "Last Name"

FROM Employees
```

Different Versions of SQL

You can use single quotes ('), double quotes (") and square brackets ([]) to create an alias in Microsoft SQL Server.

```
FName AS "First Name",

MName AS 'Middle Name',

LName AS [Last Name]

FROM Employees
```

Both will result in:

First Name Middle Name Last Name

James John Smith John James Johnson Michael Marcus Williams

This statement will return FName and LName columns with a given name (an alias). This is achieved using the AS operator followed by the alias, or simply writing alias directly after the column name. This means that the following query has the same outcome as the above.

```
FName "First Name",
MName "Middle Name",
LName "Last Name"
FROM Employees
```

First Name Middle Name Last Name

James John Smith John James Johnson Michael Marcus Williams

However, the explicit version (i.e., using the AS operator) is more readable.

If the alias has a single word that is not a reserved word, we can write it without single quotes, double quotes or brackets:

```
FName AS FirstName,
LName AS LastName
FROM Employees
```

FirstName LastName

James Smith John Johnson Michael Williams A further variation available in MS SQL Server amongst others is **<alias>** = **<column-or-calculation>**, for instance:

```
SELECT FullName = FirstName + ' ' + LastName,
    Addr1 = FullStreetAddress,
    Addr2 = TownName
FROM CustomerDetails
```

which is equivalent to:

```
SELECT FirstName + ' ' + LastName As FullName
FullStreetAddress As Addr1,
TownName As Addr2
FROM CustomerDetails
```

Both will result in:

FullName	Addr1	Addr2
James Smith	123 AnyStreet	TownVille
John Johnson	668 MyRoad	Anytown
Michael Williams	999 High End Dr	Williamsburgh

Some find using = instead of As easier to read, though many recommend against this format, mainly because it is not standard so not widely supported by all databases. It may cause confusion with other uses of the = character.

All Versions of SQL

Also, if you *need* to use reserved words, you can use brackets or quotes to escape:

```
FName as "SELECT",

MName as "FROM",

LName as "WHERE"

FROM Employees
```

Different Versions of SQL

Likewise, you can escape keywords in MSSQL with all different approaches:

```
FName AS "SELECT",

MName AS 'FROM',

LName AS [WHERE]

FROM Employees
```

SELECT FROM WHERE

```
James John Smith
John James Johnson
Michael Marcus Williams
```

Also, a column alias may be used any of the final clauses of the same query, such as an ORDER BY:

```
FName AS FirstName,
LName AS LastName
FROM
```

```
Employees
ORDER BY
LastName DESC
```

However, you may not use

```
FName AS SELECT,
LName AS FROM
FROM
Employees
ORDER BY
LastName DESC
```

To create an alias from these reserved words (SELECT and FROM).

This will cause numerous errors on execution.

Section 6.3: Select Individual Columns

```
SELECT
    PhoneNumber,
    Email,
    PreferredContact
FROM Customers
```

This statement will return the columns PhoneNumber, Email, and PreferredContact from all rows of the Customers table. Also the columns will be returned in the sequence in which they appear in the SELECT clause.

The result will be:

PhoneNumber	Email	PreferredContact
3347927472	william.jones@example.com	PHONE
2137921892	dmiller@example.net	EMAIL
NULL	richard0123@example.com	EMAIL

If multiple tables are joined together, you can select columns from specific tables by specifying the table name before the column name: [table_name].[column_name]

```
SELECT
    Customers.PhoneNumber,
    Customers.Email,
    Customers.PreferredContact,
    Orders.Id AS OrderId
FROM
    Customers
LEFT JOIN
    Orders ON Orders.CustomerId = Customers.Id
```

*AS OrderId means that the Id field of Orders table will be returned as a column named OrderId. See selecting with column alias for further information.

To avoid using long table names, you can use table aliases. This mitigates the pain of writing long table names for each field that you select in the joins. If you are performing a self join (a join between two instances of the *same* table), then you must use table aliases to distinguish your tables. We can write a table alias like Customers c or Customers AS c. Here c works as an alias for Customers and we can select let's say Email like this: c.Email.

```
SELECT
    c.PhoneNumber,
    c.Email,
    c.PreferredContact,
    o.Id AS OrderId
FROM
    Customers c
LEFT JOIN
    Orders o ON o.CustomerId = c.Id
```

Section 6.4: Selecting specified number of records

The <u>SQL 2008 standard</u> defines the FETCH FIRST clause to limit the number of records returned.

```
SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
FETCH FIRST 10 ROWS ONLY
```

This standard is only supported in recent versions of some RDMSs. Vendor-specific non-standard syntax is provided in other systems. Progress OpenEdge 11.x also supports the FETCH FIRST <n> ROWS ONLY syntax.

Additionally, OFFSET <m> ROWS before FETCH FIRST <n> ROWS ONLY allows skipping rows before fetching rows.

```
SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
OFFSET 5 ROWS
FETCH FIRST 10 ROWS ONLY
```

The following query is supported in SQL Server and MS Access:

```
SELECT TOP 10 Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
```

To do the same in MySQL or PostgreSQL the LIMIT keyword must be used:

```
SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
LIMIT 10
```

In Oracle the same can be done with ROWNUM:

```
SELECT Id, ProductName, UnitPrice, Package
FROM Product
WHERE ROWNUM <= 10
ORDER BY UnitPrice DESC
```

Results: 10 records.

```
Ιd
      ProductName
                                 UnitPrice
                                                        Package
38
                                 263.50
                                                       12 - 75 cl bottles
      Côte de Blaye
29
                                 123.79
     Thüringer Rostbratwurst
                                                       50 bags x 30 sausgs.
     Mishi Kobe Niku
9
                                 97.00
                                                        18 - 500 g pkgs.
```

20	Sir Rodney's Marmalade	81.00	30 gift boxes
18	Carnarvon Tigers	62.50	16 kg pkg.
59	Raclette Courdavault	55.00	5 kg pkg.
51	Manjimup Dried Apples	53.00	50 - 300 g pkgs.
62	Tarte au sucre	49.30	48 pies
43	Ipoh Coffee	46.00	16 - 500 g tins
28	Rössle Sauerkraut	45.60	25 - 825 g cans

Vendor Nuances:

It is important to note that the TOP in Microsoft SQL operates after the WHERE clause and will return the specified number of results if they exist anywhere in the table, while ROWNUM works as part of the WHERE clause so if other conditions do not exist in the specified number of rows at the beginning of the table, you will get zero results when there could be others to be found.

Section 6.5: Selecting with Condition

The basic syntax of SELECT with WHERE clause is:

```
SELECT column1, column2, columnN
FROM table_name
WHERE [condition]
```

The [condition] can be any SQL expression, specified using comparison or logical operators like >, <, =, <>, >=, <=, LIKE, NOT, IN, BETWEEN etc.

The following statement returns all columns from the table 'Cars' where the status column is 'READY':

```
SELECT * FROM Cars WHERE status = 'READY'
```

See WHERE and HAVING for more examples.

Section 6.6: Selecting with CASE

When results need to have some logic applied 'on the fly' one can use CASE statement to implement it.

```
SELECT CASE WHEN Col1 < 50 THEN 'under' ELSE 'over' END threshold FROM TableName
```

also can be chained

```
SELECT

CASE WHEN Col1 < 50 THEN 'under'

WHEN Col1 > 50 AND Col1 <100 THEN 'between'

ELSE 'over'

END threshold

FROM TableName
```

one also can have CASE inside another CASE statement

```
SELECT

CASE WHEN Col1 < 50 THEN 'under'

ELSE

CASE WHEN Col1 > 50 AND Col1 <100 THEN Col1

ELSE 'over' END

END threshold
```

Section 6.7: Select columns which are named after reserved keywords

When a column name matches a reserved keyword, standard SQL requires that you enclose it in double quotation marks:

```
SELECT

"ORDER",

ID

FROM ORDERS
```

Note that it makes the column name case-sensitive.

Some DBMSes have proprietary ways of quoting names. For example, SQL Server uses square brackets for this purpose:

```
SELECT
[Order],
ID
FROM ORDERS
```

while MySQL (and MariaDB) by default use backticks:

```
SELECT
'Order',
id
FROM orders
```

Section 6.8: Selecting with table alias

```
SELECT e.Fname, e.LName
FROM Employees e
```

The Employees table is given the alias 'e' directly after the table name. This helps remove ambiguity in scenarios where multiple tables have the same field name and you need to be specific as to which table you want to return data from.

```
SELECT e.Fname, e.LName, m.Fname AS ManagerFirstName
FROM Employees e
    JOIN Managers m ON e.ManagerId = m.Id
```

Note that once you define an alias, you can't use the canonical table name anymore. i.e.,

```
SELECT e.Fname, Employees.LName, m.Fname AS ManagerFirstName
FROM Employees e
JOIN Managers m ON e.ManagerId = m.Id
```

would throw an error.

It is worth noting table aliases -- more formally 'range variables' -- were introduced into the SQL language to solve the problem of duplicate columns caused by INNER JOIN. The 1992 SQL standard corrected this earlier design flaw by introducing NATURAL JOIN (implemented in mySQL, PostgreSQL and Oracle but not yet in SQL Server), the result of which never has duplicate column names. The above example is interesting in that the tables are joined on

columns with different names (Id and ManagerId) but are not supposed to be joined on the columns with the same name (LName, FName), requiring the renaming of the columns to be performed *before* the join:

```
SELECT Fname, LName, ManagerFirstName
FROM Employees
    NATURAL JOIN
    ( SELECT Id AS ManagerId, Fname AS ManagerFirstName
        FROM Managers ) m;
```

Note that although an alias/range variable must be declared for the dervied table (otherwise SQL will throw an error), it never makes sense to actually use it in the query.

Section 6.9: Selecting with more than 1 condition

The AND keyword is used to add more conditions to the query.

Name Age Gender

```
      Sam
      18
      M

      John
      21
      M

      Bob
      22
      M

      Mary
      23
      F
```

```
SELECT name FROM persons WHERE gender = 'M' AND age > 20;
```

This will return:

Name

John

Bob

using OR keyword

```
SELECT name FROM persons WHERE gender = 'M' OR age < 20;
```

This will return:

name

Sam

John

Bob

These keywords can be combined to allow for more complex criteria combinations:

```
SELECT name
FROM persons
WHERE (gender = 'M' AND age < 20)
OR (gender = 'F' AND age > 20);
```

This will return:

name

Sam

Mary

Section 6.10: Selecting without Locking the table

Sometimes when tables are used mostly (or only) for reads, indexing does not help anymore and every little bit counts, one might use selects without LOCK to improve performance.

SQL Server

```
SELECT * FROM TableName WITH (nolock)
```

MySQL

```
SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
```

Oracle

```
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;
```

DB2

```
SELECT * FROM TableName WITH UR;
```

where UR stands for "uncommitted read".

If used on table that has record modifications going on might have unpredictable results.

Section 6.11: Selecting with Aggregate functions

Average

The AVG() aggregate function will return the average of values selected.

```
SELECT AVG(Salary) FROM Employees
```

Aggregate functions can also be combined with the where clause.

```
SELECT AVG(Salary) FROM Employees where DepartmentId = 1
```

Aggregate functions can also be combined with group by clause.

If employee is categorized with multiple department and we want to find avg salary for every department then we can use following query.

```
SELECT AVG(Salary) FROM Employees GROUP BY DepartmentId
```

Minimum

The MIN() aggregate function will return the minimum of values selected.

```
SELECT MIN(Salary) FROM Employees
```

Maximum

The MAX() aggregate function will return the maximum of values selected.

```
SELECT MAX(Salary) FROM Employees
```

Count

The COUNT() aggregate function will return the count of values selected.

```
SELECT Count(*) FROM Employees
```

It can also be combined with where conditions to get the count of rows that satisfy specific conditions.