Probleme propuse * Setul 6

- 51. (polinoame) Care din următoarele propoziții este adevărată?
- a) polinomul X^3-2 este reductibil peste \mathbb{Q} ; b) un polinom $f\in\mathbb{R}[X]$ este ireductibil peste \mathbb{R} dacă și numai dacă f nu are rădăcini reale; c) polinomul $X^4 + X^2 + 1$ este reductibil peste \mathbb{R} ; d) polinomul $X^4 + 1$ este ireductibil peste \mathbb{R} ; e) dacă un polinom $g \in \mathbb{R}[X]$ este reductibil peste \mathbb{R} atunci el are cel puțin o rădăcină reală; f) suma a două polinoame ireductibile peste \mathbb{R} este polinom ireductibil peste \mathbb{R} .
- **52.** (polinoame) Fie S suma coeficienților polinomului $(\sqrt{2}X \sqrt{3})^{10}$. Atunci
- a) $S = \sqrt{2}^{10}$; b) $S = (\sqrt{2} \sqrt{3})^{10}$; c) $S = \sqrt{2}^{10} \cdot \sqrt{3}^{10}$; d) S = 1; e) S = 0;
- **53.** (numere complexe) Fie $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^2 \\ 1 & \varepsilon^2 & \varepsilon \end{pmatrix}$, $B = \begin{pmatrix} \varepsilon^2 & \varepsilon & 1 \\ \varepsilon & \varepsilon^2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, unde ε este o rădăcină cubică complexă a unității și S suma modulelor elementelor matricei X pentru care AX = B. Atunci

a)
$$S = 16$$
; b) $S = 3$; c) $S = 4$; d) $S = 2 + \sqrt{3}$; e) $S = 1 + \sqrt{3}$; f) $S = 9$.

- **54.** (şiruri) Restrângeți expresia $t = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$
- a) $\frac{1+\sqrt{5}}{2}$; b) $\frac{1+\sqrt{2}}{2}$; c) $\sqrt{5}$; d) $\sqrt{3}$; e) $\frac{1-\sqrt{5}}{2}$; f) 1.
- **55.** (continuitate) Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \lim_{n \to \infty} \frac{e^{nx}}{1 + e^{nx}}$. Atunci
- a) f este continuă; b) x = 0 este punct de discontinuitate de speța a doua; c) ± 1 sunt puncte de discontinuitate de speța întâi; d) f este continuă în trei puncte; e) f este continuă în x=0; f) toate afirmațiile precedente sunt false.
- **56.** (derivabilitate) Fie $f(x) = \arcsin \frac{2x}{1+x^2}$, $x \in \mathbb{R}$ şi $g(x) = 2\arctan x$, $x \in \mathbb{R}$. Care dintre afirmațiile următoare este adevărată?
- a) $f'(x) = g'(x), \forall |x| \le 1$; b) $f'(x) = g'(x), \forall |x| < 1$;
- c) $f'(x) = g'(x), \forall |x| > 1$; d) $f'(x) = g'(x), \forall |x| \ge 1$;
- e) $f'(x) = g'(x), \forall x \in \mathbb{R}$; f) $f'(x) = g'(x), \forall |x| > -1$.
- 57. (integrale definite) Utilizând suma Riemann să se calculeze

$$I = \lim_{n \to \infty} \frac{1 + \sqrt[n]{2} + \sqrt[n]{2^2} + \sqrt[n]{2^3} + \dots + \sqrt[n]{2^n}}{n}$$

- a) $I = \frac{3}{\ln 2}$; b) $I = \frac{2}{\ln 3}$; c) $I = \frac{1}{\ln 2}$; d) $I = \frac{2}{\ln 2}$; e) $I = \ln 2$; f) $I = 2 \ln 2$.
- **58.** (funcții trigonometrice) Dacă tg $a = \frac{m}{n}$, atunci expresia $E = m \sin 2a + n \cos 2a$ are valoarea a) n; b) n^2 ; c) $\frac{n}{m}$; d) $\frac{n+1}{m}$; e) $\frac{m+1}{n}$; f) $\frac{m+1}{n+1}$.
- **59.** (ecuații trigonometrice) Pentru câte valori ale lui $m \in \mathbb{Q}$, ecuația $1 + \sin^2 mx = \cos x$ are o singură soluție
- a) două; b) una; c) nici una; d) patru; e) o infinitate; f) șase.
- 60. (aplicațiile trigonometriei în geometrie) În triunghiul ABC, unghiul B este obtuz, $0 < C < \frac{\pi}{4}$ si b = 2c. Care din următoarele afirmații este adevărată?
- a) $\hat{A} < 2\hat{C}$; b) $\hat{A} < \hat{C}$; c) $\hat{B} = 2\hat{C}$; d) $\hat{B} = 3\hat{C}$; e) $\hat{A} = \hat{C}$; f) $\hat{A} = \hat{B}$.