

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Friedrich Martin Schneider, Dr. Henri Mühle.

Wintersemester 2018/19

10. Übungsblatt zur Vorlesung "Diskrete Strukturen für Informatiker"

Gruppen

 $\boxed{ ext{V.}}$ Vervollständigen Sie die nachstehende Verknüpfungstafel, sodass die Menge $\{a,b,c,d\}$ mit der durch die Tafel gegebenen Operation eine Gruppe bildet. Wie viele Möglichkeiten gibt es?

Ü55. (a) Berechnen Sie $(24 \cdot 12)^{2018} \pmod{101}$.

- (b) Berechnen Sie 13⁴⁶⁹ (mod 11) und 7⁹⁶⁷ (mod 18) <u>ohne</u> Square-and-Multiply.
- (c) Zeigen Sie, dass für zwei beliebige Primzahlen p,q, mit $p \neq q$, und für jede Zahl $a \in \mathbb{Z}$, die nicht durch p oder q teilbar ist, gilt:

$$a^{(p-1)(q-1)} \equiv 1 \pmod{p \cdot q}.$$

Ü56. (a) Es sei (\mathbb{Z}_{14}^* , ·) die Gruppe der Einheiten des Restklassenrings (\mathbb{Z}_{14} , +, ·).

- (i) Stellen Sie die Verknüpfungstafel für $(\mathbb{Z}_{14}^*,\cdot)$ auf.
- (ii) Für welche $k \in \mathbb{N}$ kann $(\mathbb{Z}_{14}^*, \cdot)$ Untergruppen der Ordnung k besitzen?
- (iii) Finden Sie alle Untergruppen von $(\mathbb{Z}_{14}^*,\cdot)$ und geben Sie deren Ordnung an.
- (iv) Bestimmen Sie die Menge der Linksnebenklassen $\{k \cdot U \mid k \in \mathbb{Z}_{14}^*\}$ für eine nichttriviale Untergruppe U von $(\mathbb{Z}_{14}^*, \cdot)$.
- (b) Es sei (G, \circ) eine Gruppe. Zeigen Sie, dass für jedes $g \in G$ und jede Teilmenge $U \subseteq G$ die zugeordnete Abbildung $f : U \to g \circ U$ mit $f(u) = g \circ u$ bijektiv ist.
- Ü57. Für n > 2 bezeichne \mathfrak{D}_n die *Diedergruppe* der Ordnung 2n. Dies ist die Symmetriegruppe eines regulären n-Ecks in der Ebene bzgl. der Hintereinanderausführung. Sie besteht also aus allen Spiegelungen und Drehungen, die das n-Eck auf sich selbst abbilden.

- (a) Schreiben Sie die Gruppen \mathfrak{D}_n für $n \in \{3,4,5\}$ elementweise auf.
- (b) Stellen Sie die Verknüpfungstafel für \mathfrak{D}_4 auf.
- (c) Bestimmen Sie alle Untergruppen von \mathfrak{D}_4 .
- (d) Es sei p eine Primzahl, und sei $n \in \mathbb{N}$ mit n > 0. Für welche $k \in \mathbb{N}$ kann \mathfrak{D}_{p^n} Untergruppen der Ordnung k besitzen?

<u>Hinweis</u>: Zeichnen Sie zunächst ein reguläres n-Eck, und beschriften Sie die Eckpunkte von 1 bis n im Uhrzeigersinn. Spiegelungen und Drehungen sind dann (spezielle) bijektive Abbildungen der Form $f: \{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$, und lassen sich einfach mit Hilfe des Tupels $(f(1),f(2),\ldots,f(n))$ der Bildwerte darstellen.

A58. Hausaufgabe, bitte vor Beginn der 11. Übung (oder im Lernraum) unter Angabe von Name, Matrikelnummer, Übungsgruppe und Übungsleiter abgeben.

Es sei $(\mathbb{Z}_{20}^*,\cdot)$ die Gruppe der Einheiten des Restklassenrings $(\mathbb{Z}_{20},+,\cdot)$.

- (a) Geben Sie alle Elemente von \mathbb{Z}_{20}^* an, und stellen Sie die Verknüpfungstafel von $(\mathbb{Z}_{20}^*,\cdot)$ auf.
- (b) Bestimmen Sie alle Untergruppen der Ordnung 2 von $(\mathbb{Z}_{20}^*, \cdot)$.
- (c) Bestimmen Sie die Menge der Linksnebenklassen $\{k \cdot U \mid k \in \mathbb{Z}_{20}^*\}$ für $U = \{1,3,7,9\}$.
- (d) Berechnen Sie alle $x \in \mathbb{Z}_{20}$, die die Kongruenz $9887^{8899}x \equiv 11 \pmod{20}$ erfüllen.
- H59. Auf einer Insel leben r rote, g grüne und b blaue Chamäleons. Treffen sich zwei verschiedenfarbige Chamäleons, ändern sie beide ihre Farbe in die dritte Farbe. Begegnen sich zwei gleichfarbige Chamäleons, ändern sie ihre Farbe nicht.
 - (a) Sei r = 1, g = 2, b = 4. Gibt es eine Folge von (paarweisen) Begegnungen, sodass am Ende alle Chamäleons die gleiche Farbe besitzen?
 - (b) Sei r = 13, g = 15, b = 17. Gibt es eine Folge von (paarweisen) Begegnungen, sodass am Ende alle Chamäleons die gleiche Farbe besitzen?

<u>Hinweis:</u> Modellieren Sie die Farben als Elemente des Restklassenrings $(\mathbb{Z}_3, +, \cdot)$ und überlegen Sie, was bei einer Begegnung passiert.

H60. Sei (G, \circ) eine Gruppe mit neutralem Element e, und sei $A \subseteq G$. Zeigen Sie, dass $\langle A \rangle$ die bzgl. Inklusion kleinste Untergruppe von G ist, die A enthält, und dass gilt

$$\langle A \rangle = \{ a_1 \circ a_2 \circ \cdots \circ a_k \mid k \in \mathbb{N}, \ a_i \in A \cup A^{-1} \cup \{e\} \}.$$