τ	JSN			2	21CST501		
	Į.	B. E. Degree (Autonomous) Fifth Semester End Exam	ination (SF	EE)			
		AUTOMATA THEORY AND INTRODUCTION TO	COMPLIE	DC			
		(Model Question Paper - I)		No			
Time: 3 Hours]				[Maximum Marks: 100			
		<u>Instructions to students</u> : Answer 5 full questions.					
			Marks	Course Outcomes	BTL* Cognitive Level		
1	a)	What is an automaton? Discuss why study automaton?	[06 M]	CO1	L2		
	b)	 Design DFA for the following languages over ∑ = { a, b} Set of all string that either begins or ends or both with substring ab. Set of all strings that end with substring abb. L= {w: w mod 5 ≠ 0} 	[09 M]	CO1	L5		
	c)	Explain the applications of Finite Automata?	[05 M]	CO1	L3		
		OR					
2	a)	Convert to a DFA, the following NFA	[10 M]	CO1	L2		
	b)	Prove that a language is Regular if and only if it is accepted by a Finite Automata.	[10 M]	CO1	L3		
3	a)	State and prove pumping lemma for Regular Languages	[08 M]	CO2	L3		
	b)	Minimize the following DFA, given A = Start state. States C, F and I are final states. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[12 M]	CO2	L4		
		OR			1		
4	a)	Write the Table filling algorithm to find the distinguishable pairs in a DFA 'M'.	[08 M]	CO2	L2		
	b)	Show that the language $L = \{ 0^n / n \text{ is prime } \}$ is not regular.	[06 M]	CO2	L3		
	c)	Using identities prove that the regular languages are closed under intersection.	[06 M	CO2	L3		

5	a)	Define the following terms with examples	[08 M]	CO3	L1
		1.Parse tree 2.Ambiguity			
		3.Rightmost derivation			
	b)	Show that following grammar is ambiguous. Obtain	[06 M]	CO3	L3
	,	unambiguous grammar for this: $E \rightarrow E + E/E * E/E/E - E/(E)/a/b$.	[]		
	c)	Write CFG for the language	[06 M]	CO3	L2
		1.L = { $0^n 1^n n > = 1$ } 2. L = {w w ^R w \varepsilon{\(\xi_a, b \) \rightarrow, w ^R is the reversal of w \}			
		OR			
6	a)	Write context free grammars for the following	[12 M]	CO3	L2
		i) $L(G) = \{a^n b^m c^m d^n : m, n \ge 1\}$			
		ii) $L(G) = \{ a^n b^{n+1} : n \ge 0 \}$			
		iii) $L(G) = \{w: n_a(w) = n_b(w)\}$			
		iv) $L(G) = \{w: n_a(w) > n_b(w)\}$			
	b)	Write a note on chomsky hierarchy.	[08 M]	CO3	L2
		Write a note on chomoky merareny.	[00 1/1]		
7	a)	With neat diagram explain the working of PDA and define the	[12 M]	CO4	L2
	••)	language accepted by PDA by both methods.	[== :-=]		
	b)	Design a PDA to accept the language $L = \{w \ w^R : w \ \epsilon \{0,1\}^*\}$	[08 M]	CO4	L5
	D)	by empty stack method.		CO4	LS
		OR			
8	a)	Give the formal definition of a PDA.	[06 M]	CO4	L2
	b)	Obtain a PDA to accept the language $L = \{ a^n b^n \mid n \ge 0 \}$ by a	[14 M]	CO4	L3
		final state. Give the graphical representation for PDA obtained.			
		Show the moves made by the PDA for the string aaabbb.			
9	a)	Eliminate λ, unit & useless productions.	[12 M]	CO5	L4
		$S \rightarrow a aA B C$			
		$A \rightarrow aB \mid \lambda$			
		$B \rightarrow Aa$			
		$C \rightarrow cCD$			
		$D \rightarrow add$.			
	b)	State and prove Pumping Lemma for CFLs.	[08 M]	CO5	L3
		OR			
10	a)	Design a TM to accept languages $L = \{0^n \mid 1^n \mid n \ge 1\}$ & give	[12 M]	CO5	L5
	b)	transition diagram for same. Write a short note on multidimensional Turing Machines.	[08 M]	CO5	L1

9	a)	Explain various phases of compiler. Show the translation for an	[12 M]	CO5	L5
		Assignment statement.			
		Position= Initial + rate * 60.			
		Clearly indicate the output of each phase.			
	b)	What are the applications of compiler? Explain.	[08 M]	CO5	L1
		OR			
10	a)	Write a brief note on language processing system	[06 M]	CO5	L1
	b)	Explain the concept of input buffering in the lexical analysis with its implementation.	[10 M]	CO5	L1
	c)	Define Token, pattern and lexeme with example.	[04 M]	CO5	L1