MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2016 SOLUTION KEY

Round 2

A)
$$x = \left(\frac{x-1}{x+3}\right)^{-1} \Leftrightarrow x = \frac{x+3}{x-1}$$
, provided $x \neq -3$.

Cross multiplying, $x^2 - x = x + 3 \Leftrightarrow x^2 - 2x - 3 = (x - 3)(x + 1) = 0 \Rightarrow x = 3, -1$.

B) Squaring both sides,
$$\sqrt{4x-2} - \sqrt{2x} = 1 \Rightarrow (4x-2) - 2\sqrt{4x-2}\sqrt{2x} + (2x) = 1$$

 $\Leftrightarrow 6x-3 = 2\sqrt{4x-2}\sqrt{2x}$

Squaring both sides again, $36x^2 - 36x + 9 = 32x^2 - 16x \Leftrightarrow$

$$4x^2 - 20x + 9 = (2x - 1)(2x - 9) = 0 \implies x = \frac{1}{2}, \frac{9}{2}.$$

Checking is a must when squaring both sides of an equation since extraneous answers may be introduced.

$$x = \frac{1}{2} \Rightarrow \sqrt{0} - \sqrt{1} \neq 1$$
, rejected.

$$x = \frac{9}{2} \Rightarrow \sqrt{16} - \sqrt{9} = 1$$
, check. Thus, $x = \frac{9}{2}$ only.

C) Let
$$F = \frac{(x-8)(x^2-8x+12)+(x-6)(x^2-10x+16)}{x-\sqrt{20x-96}} = \frac{N}{D}$$
. $N = 0 \Leftrightarrow$

$$(x-8)(x-6)(x-2)+(x-6)(x-2)(x-8)=2(x-2)(x-6)(x-8)=0 \Rightarrow x=2,6,8.$$

(2 is excluded because of the domain restriction.)

$$D = 0 \Leftrightarrow x - \sqrt{20x - 96} = 0 \Leftrightarrow x = \sqrt{20x - 9x} \Rightarrow x^2 = 20x - 96$$

$$\Rightarrow x^2 - 20x + 96 = (x - 8)(x - 12) = 0 \Rightarrow x = 8, 12.$$

Therefore, the problematic *x*-values are:

 $x = \underline{8}$ (for which the fraction becomes $\frac{0}{0}$, an indeterminant value) and

 $x = \underline{12}$ (for which the fraction becomes $\frac{-52}{0}$ which is undefined). Thus, $S = \{6,8,12\}$.