

Description

The VST06N082 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =60V, I_D =16A $R_{DS(ON)}$ =8.2m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =9.6m Ω (typical) @ V_{GS} =4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

SOP-8 Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N082-S8	VST06N082	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	16	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	11.3	А
Pulsed Drain Current	I _{DM}	64	А
Maximum Power Dissipation	P _D	3	W
Single pulse avalanche energy (Note 5)	E _{AS}	200	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	41.7	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.8	2.5	V
Drain-Source On-State Resistance	Б	V _{GS} =10V, I _D =10A	-	8.2	9.2	mΩ
Diam-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	9.6	11.5	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =10A	35	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	.,	-	2100	-	PF
Output Capacitance	C _{oss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	359	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	12	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	9	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =10A	-	3	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	31	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -20\/ L -40A	-	36.6		nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =10A, V_{GS} =10V	-	6.7		nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	5.8		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	16	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	40		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	50		nC

Notes:

- ${\it 1. Repetitive \ Rating: Pulse \ width \ limited \ by \ maximum \ junction \ temperature.}$
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production 5. EAS condition : Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-ratin

Figure 11 Normalized Maximum Transient Thermal Impedance