

Q.	compare Prim's & Kerry	bal's Algorithm.	
	Prem's Alponihm	Questal's Agaidem	
(t)		It stopperts to build the	
S. Sanda	Minimum spaning tee	ninimum spanning the	
	from any never in	from vertex carrying	
		minimum neeight	
		in graph.	
(3.)	It traverses one node @	It teaners one	
	more than one time	næde only once.	
	to get the numerum	· · · · · · · · · · · · · · · · · · ·	
-	distance.	• • • • • • • • • • • • • • • • • • • •	
(3)) Its time complexity()	Its dime complexity	
	is D(ElogV).	0	
- lu	Gries connected		
		well as it can	
	connected graph.	work on disconnected	
		components.	
(5	3 Rune faster in denne		
	graper.	eparse graphs.	
	X		
0	Discuss & givre roample		
A	to solve Knapsack		
pm.	order this, ne can break	e item for moxenuzing	
		fatel value of briggsack. Fraction is allowed.	
	A starte force solution would be to		
	try all possible dubit with all		
	fine taking		
	Jime in		

appearent solution is to use greedy appearent is to easewhate the easier value, meight for each item & sort the item on basis of this ratio. the highest ratio I add them until me whole I at the next item as a whole I at the end add next item as much as her can. This well always give an optimal selution. 7 Me Knapiaik peoblem can be stated as:maninize & pixi

Kish pixi subject to 5 mini 5 m -0 -(3) and os xi si gisism 27 A feasible soln is any set satisfying ids optimal solution is a fearible colution for which D is meximized. for example: - Hern as (value, neight) pairs

are []: \$\frac{460,10\frac{1}}{600,20\frac{1}{200,20\frac{1}{200,30\frac{1}{200}}}\$

Knapsack capacity, \$m = 50.

Output: - maximum possible value = 240,

my taking full items of lokg, Dotg

and \$1310 of last item of 304g.

\$ 0 Ido greedy algo ne an to mof Daknapsaile = De Demonstrate how deprancie programming can be used tocolie trapsack problem. [0/1] optimal soln à soln à soln à manimize & pixi subject to Ewixi < m [constraint] [fearible] ni is either 0 or 1 27 Using dynamic programming feuch that
the principle of optimality & holds]:fn (m) 2 mane (fon-(m), fn-1 (m-wy)+ party => Generalizing the egr;fi(y) 2 man {fi-(y), fi-(y-wi)+pip To represent fily) an ordered set s' is used such that: Compute s', then si, sill of P, W)
all elements.

(P.P. P2) = (1,2,5) H for arangle (W., Wa, Wa) " (2,3,4) 8; = \((2,3), (3,5) \) 32 = ((0,0), (1,2), (2,3), (3,5) 4 52 = {(5,4), (6,6), (7,7), (8,9) 4 453, {(0,0),(1,2),(2,3),(3,5),(5,4), 16,6),67,7), (8,9)4 (3,5) is rejected as with we IP; SP (7,7) (8,9) is rejected as there are purged as w7m 30, 5³ ~ {(0,0), (1,2), (2,3), (5,4), (6,6)} P, 21 | P3 - 21 P3 = 5 W122 W223 W324

Scanned by TapScanner

MPUS Date included (1,2) by floyd-warshal Agaithm. avaluate the efficiency of floyd-warshal begorithm. Playd-warhall Algorithm is an algorithm for finding shortest path between all pairs of vortues in a neighted graph. This agains follows dynamic represent to find shortest paths. I -797 involves siquence of deisions: A^{k} (igj) = min A^{k-1} (i,j), A^{k-1} (i,k) + A^{k-1} (K,j); (for k > 1) 27 Graph should have no cycles with negative lenoth for floyd- would seveithm.

Scanned by TapScanner

