Trije izzivi iz Splošne Topologije

Dejan Govc

22. januar 2017

Izziv 1. Dan je naslednji podprostor ravnine¹ \mathbb{R}^2 :

$$A = \operatorname{Cl}_{\mathbb{R}^2} \left(\left\{ (x, y) \in (0, \infty) \times \mathbb{R} \mid y = \sin \frac{1}{x} \right\} \right).$$

Poišči homeomorfizem med prostoroma $X = \mathbb{R}^2 \setminus A$ in \mathbb{R}^2 .

Rešitev. Definirajmo

$$F = X \cap ([0,1] \times [-1,1]),$$

$$G = X \setminus ((0,1) \times (-1,1))$$

in

$$F_1 = \left\{ (x, y) \in F \mid y \ge \sin \frac{1}{x} \right\},$$

$$F_2 = \left\{ (x, y) \in F \mid y \le \sin \frac{1}{x} \right\}.$$

Množice F_1 , F_2 in G tvorijo končno zaprto pokritje prostora X. Torej lahko definiramo preslikavo $h: X \to \mathbb{R}^2$ s predpisom

$$h(x,y) = \begin{cases} (x,y); & (x,y) \in G, \\ (x,1+x(y-1)); & (x,y) \in F_1, \\ (x,-1+x(y+1)); & (x,y) \in F_2. \end{cases}$$

Dobra definiranost (in zveznost) sledi iz dejstva, da se predpisi na presekih ujemajo.² Naj bo Y=h(X). Prostor Y lahko opišemo še drugače. Definirajmo zvezni funkciji $f_+:[0,\infty)\to\mathbb{R}$ in $f_-:[0,\infty)\to\mathbb{R}$ s predpisoma

$$f_{+}(x) = 1 + \min(x, 1) \left(\sin \frac{1}{x} - 1 \right),$$

 $f_{-}(x) = -1 + \min(x, 1) \left(\sin \frac{1}{x} + 1 \right),$

²To in ostale manjkajoče podrobnosti lahko preverite za vajo.

za $x \neq 0$, v krajišču x = 0 pa z limitama $f_+(0) = 1$ oziroma $f_-(0) = -1$. Naj bo

$$B = \{(x, y) \in [0, \infty) \times \mathbb{R} \mid f_{-}(x) \le y \le f_{+}(x)\}.$$

Potem velja

$$Y = \mathbb{R}^2 \setminus B.$$

Preslikava $h:X\to Y$ je bijektivna, njen inverz $h^{-1}:Y\to X$ lahko zapišemo eksplicitno kot

$$h^{-1}(x,y) = \begin{cases} (x,y); & (x,y) \in G, \\ (x,\frac{y-1}{x}+1); & (x,y) \in F_1 \cap Y, \\ (x,\frac{y+1}{x}-1); & (x,y) \in F_2 \cap Y. \end{cases}$$

Opazimo, da množice $F_1 \cap Y$, $F_2 \cap Y$ in G tvorijo zaprto pokritje prostora Y, predpisi na posameznih kosih so zvezni in se na presekih ujemajo. Inverz je torej zvezen, preslikava $h: X \to Y$ pa je homeomorfizem.

Prostor Y lahko nadalje preslikamo homeomorfno na prostor

$$Z = \mathbb{R}^2 \setminus ([0, \infty) \times [-1, 1]).$$

V ta namen vpeljimo množice

$$F_{+} = \{(x, y) \in [0, \infty) \times \mathbb{R} \mid y > f_{+}(x)\},$$

$$F_{-} = \{(x, y) \in [0, \infty) \times \mathbb{R} \mid y < f_{-}(x)\},$$

$$F_{0} = \{(-\infty, 0] \times \mathbb{R}\} \cap Y.$$

Te množice tvorijo končno zaprto pokritje prostora Y. Definiramo lahko torej preslikavo $k:Y\to Z$ s predpisom

$$k(x,y) = \begin{cases} (x,y+1-f_{+}(x)); & (x,y) \in F_{+}, \\ (x,y-1-f_{-}(x)); & (x,y) \in F_{-}, \\ (x,y); & (x,y) \in F_{0}. \end{cases}$$

Predpisi so na kosih zvezni, na presekih pa se ujemajo. Tudi inverz $k^{-1}:Z\to Y$ te preslikave lahko eksplicitno opišemo:

$$k^{-1}(x,y) = \begin{cases} (x,y-1+f_{+}(x)); & (x,y) \in [0,\infty) \times (1,\infty), \\ (x,y+1+f_{-}(x)); & (x,y) \in [0,\infty) \times (-\infty,-1), \\ (x,y); & (x,y) \in (-\infty,0] \times \mathbb{R}. \end{cases}$$

Inverz je očitno zvezen, torej je preslikava $k: Y \to Z$ homeomorfizem.

Homeomorfizma $l:Z\to\mathbb{R}^2$ zdaj ni več težko definirati. Definiramo ga npr. kot kompozitum $l=l_3\circ l_2\circ l_1$, kjer je $l_1:Z\to Z_1$ homeomorfizem na prostor

$$Z_1 = \{(x, y) \in \mathbb{R}^2 \mid x < \max(0, |y| - 1)\},\$$

definiran s predpisom

$$l_1(x, y) = (x, \max(1, 1 + x)y),$$

prostor Z_1 nato preslikamo na polravnino $(-\infty,0)\times\mathbb{R}$ s preslikavo

$$l_2(x, y) = (x - \max(0, |y| - 1), y),$$

to polravnino pa na \mathbb{R}^2 s preslikavo

$$l_3(x, y) = (\log(-x), y).$$

Preslikava $l \circ k \circ h : \mathbb{R}^2 \setminus A \to \mathbb{R}^2$ je iskani homeomorfizem.

Izziv 2. Naj bo τ_E evklidska topologija na \mathbb{R} in τ_T trivialna topologija na $\{0,1\}$. Ali obstajata topološka prostora (A, τ_A) in (B, τ_B) , tako da velja:

- $|\tau_A| \ge 3$,
- $|\tau_B| \ge 3$ in
- $(A, \tau_A) \times (B, \tau_B) \approx (\mathbb{R}, \tau_E) \times (\{0, 1\}, \tau_T)$?

 $Re\check{sitev}$. Pokazali bomo, da taka prostora ne obstajata. Privzemimo, da sta (A, τ_A) in (B, τ_B) topološka prostora, ki zadoščata tretjemu pogoju zgoraj:

$$(A, \tau_A) \times (B, \tau_B) \approx (\mathbb{R}, \tau_E) \times (\{0, 1\}, \tau_T).$$

Naj bo $h: (\mathbb{R}, \tau_E) \times (\{0, 1\}, \tau_T) \to (A, \tau_A) \times (B, \tau_B)$ ustrezni homeomorfizem. Pokazali bomo, da od tod sledi $|\tau_A| = 2$ ali pa $|\tau_B| = 2$, torej da mora biti eden od faktorjev opremljen s trivialno topologijo. To bomo storili v več korakih.

Korak 1. Vsaj eden od prostorov (A, τ_A) in (B, τ_B) mora imeti neštevno mnogo točk.

To je očitno: homeomorfizem je bijekcija. Če bi bila torej oba prostora števna, bi bil tudi njun produkt števen. Produkt $\mathbb{R} \times \{0,1\}$ pa ni števen, saj je realnih števil neštevno mnogo.

V nadaljevanju bomo brez škode za splošnost privzeli, da ima prostor (A, τ_A) neštevno mnogo točk (sicer vlogi A in B zamenjamo).

Korak 2. Prostori (\mathbb{R}, τ_E) , $(\{0,1\}, \tau_T)$, (A, τ_A) in (B, τ_B) so povezani s potmi.

Za (\mathbb{R}, τ_E) to že vemo, prostor $(\{0,1\}, \tau_T)$ pa je opremljen s trivialno topologijo, zato je poljubna funkcija $\gamma:[0,1]\to (\{0,1\},\tau_T)$ zvezna. V posebnem to pomeni, da obstaja pot med poljubnima točkama v $\{0,1\}$. Torej je produkt $(\mathbb{R}, \tau_E) \times (\{0,1\}, \tau_T)$ povezan s potmi in zato je tak tudi produkt $(A, \tau_A) \times (B, \tau_B)$. Prostora (A, τ_A) in (B, τ_B) sta zato prav tako s potmi povezana. Če sta namreč π_A in π_B produktni projekciji in je γ pot v $(A, \tau_A) \times (B, \tau_B)$ od točke (a_1, b_1) do točke (a_2, b_2) , potem je $\pi_A \circ \gamma$ pot od a_1 do a_2 in $\pi_B \circ \gamma$ pot od b_1 do b_2 .

Korak 3. Prostor (B, τ_B) ima največ dve točki.

Množica $(\mathbb{R} \times \{0,1\}) \setminus \{(0,0),(0,1)\}$ ima dve komponenti za povezanost s potmi, namreč $U = (-\infty,0) \times \{0,1\}$ in $V = (0,\infty) \times \{0,1\}$. Obe sta neštevni. Ker je h homeomorfizem, sta h(U) in h(V) komponenti za povezanost s potmi množice $(A \times B) \setminus \{h(0,0),h(0,1)\}$. Trdimo, da je to mogoče le, če je $|B| \leq 2$. Denimo namreč, da je $|B| \geq 3$. Pokazali bomo, da bi morala imeti v tem primeru množica $C = (A \times B) \setminus \{(a_1,b_1),(a_2,b_2)\}$ največ eno neštevno komponento za povezanost s potmi, ne glede na izbiro točk $(a_1,b_1),(a_2,b_2) \in A \times B$.

Naj bo namreč $b_3 \neq b_1, b_2$ in $a_3 \neq a_1, a_2$ in naj bo $(a,b) \in C$ poljubna točka. Če velja $a \neq a_1, a_2$, je $\{a\} \times B$ s potmi povezana podmnožica v C, torej obstaja pot v C od (a,b) do (a,b_3) . Množica $A \times \{b_3\}$ je prav tako s potmi povezana podmnožica v C, torej obstaja tudi pot od (a,b_3) do (a_3,b_3) . Če velja $b \neq b_1, b_2$, je množica $A \times \{b\}$ s potmi povezana podmnožica v C, torej obstaja pot od (a,b) do (a_3,b) . Tudi $\{a_3\} \times B$ je s potmi povezana podmnožica v C, torej obstaja tudi pot od (a_3,b) do (a_3,b) do (a_3,b) do (a_3,b) do (a_3,b) .

S tem smo pokazali, da od poljubne točke $(a,b) \in C$, razen morda $(a,b) = (a_1,b_2)$ oziroma $(a,b) = (a_2,b_1)$, obstaja pot do točke (a_3,b_3) . To pomeni, da vse točke $(a,b) \in C$, razen morda dveh, ležijo v isti komponenti za povezanost s potmi. Torej ima C največ eno neštevno komponento za povezanost s potmi. To pa je v protislovju z dejstvom, da ima $(A \times B) \setminus \{h(0,0), h(0,1)\}$ dve neštevni komponenti za povezanost s potmi. Sklepamo lahko, da je $|B| \leq 2$.

Korak 4. Prostor (B, τ_B) ima trivialno topologijo.

Topologija τ_B očitno ni diskretna, sicer bi bil produkt $A \times B$ nepovezan. Preostaneta le dve možnosti: prostor B ima trivialno topologijo ali pa je homeomorfen prostoru Sierpińskega, tj. $\mathbb{S} = \{0,1\}$, kjer je množica $\{1\}$ odprta, množica $\{0\}$ pa ne.

Slednjo možnost bomo zdaj izključili. Denimo namreč, da je $B \approx \mathbb{S}$, oziroma brez škode za splošnost kar $B = \mathbb{S}$. Potem je $A \times \{1\}$ odprta s potmi povezana

podmnožica v $A \times B$. To pomeni³, da je $h^{-1}(A \times \{1\}) = J \times \{0,1\}$ za neki odprt interval $J \subseteq \mathbb{R}$. Naj bo $x \in J$. Množica $(\mathbb{R} \times \{0,1\}) \setminus \{(x,0),(x,1)\}$ je nepovezana, torej mora biti tudi $(A \times B) \setminus \{h(x,0),h(x,1)\}$ nepovezana. Toda h(x,0) in h(x,1) ležita v $A \times \{1\}$. Množica $(A \times B) \setminus \{(a_1,1),(a_2,1)\}$ pa je za poljubno izbiro $a_1 \neq a_2$ povezana s potmi. Podmnožica $A \times \{0\}$ je namreč povezana s potmi, med točkama (a,0) in (a,1), kjer je $a \neq a_1,a_2$, pa obstaja pot, namreč $\gamma:[0,1] \to (A \times B) \setminus \{(a_1,1),(a_2,1)\}$, definirana s predpisom

$$\gamma(t) = \begin{cases} (a,0); & t = 0, \\ (a,1); & t > 0. \end{cases}$$

Funkcija γ je zvezna. Če jo namreč zožimo na kodomeni, da dobimo preslikavo $[0,1] \to \{(a,0),(a,1)\} = \{a\} \times \mathbb{S}$, je praslika edine netrivialne odprte množice $\gamma^{-1}\{(a,1)\} = (0,1]$ odprta.

Izziv 3. Dan je naslednji podprostor ravnine \mathbb{R}^2 :

$$X = (\mathbb{Q} \times \mathbb{Q}) \cup ((\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q})).$$

Ali je prostor X povezan? Ali je povezan s potmi?

 $Re\check{s}itev.$ V nadaljevanju naj bo $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$, oznaka $P((x_1, y_1), (x_2, y_2))$ pa naj pomeni premico skozi točki (x_1, y_1) in (x_2, y_2) , tj.

$$P((x_1, y_1), (x_2, y_2)) = \{(x_1, y_1) + t(x_2 - x_1, y_2 - y_1) \mid t \in \mathbb{R}\}.$$

Začnimo z naslednjo opazko:

Opazka. Če za točki $(p_1,q_1), (p_2,q_2) \in \mathbb{Q} \times \mathbb{Q}$ velja $p_1 \neq p_2$ in $q_1 \neq q_2$, potem je $P((p_1,q_1),(p_2,q_2)) \subseteq X$.

Vsaka točka na premici $P((p_1, q_1), (p_2, q_2))$ je namreč oblike $(p_1, q_1) + t(p_2 - p_1, q_2 - q_1)$, torej sta obe koordinati racionalni, če je $t \in \mathbb{Q}$, sicer pa obe iracionalni

Od tod hitro lahko vidimo, da je prostor X povezan. Naj bo namreč

$$A = \bigcup_{(p,q) \in \mathbb{Q}^* \times \mathbb{Q}^*} P((0,0), (p,q)).$$

Množica A je očitno povezana (celo s potmi povezana), saj je unija družine premic (torej s potmi povezanih množic), ki se sekajo v izhodišču. Poleg tega je množica A gosta v \mathbb{R}^2 , saj je že njena podmnožica $\mathbb{Q}^* \times \mathbb{Q}^*$ gosta v \mathbb{R}^2 (poljubna metrična krogla v \mathbb{R}^2 vsebuje neko točko, ki ima obe koordinati neničelni in racionalni). Torej je A povezana množica z lastnostjo $A \subseteq X \subseteq \overline{A}$, od koder sledi, da je tudi množica X povezana.

Izkaže se, da je prostor X tudi povezan s potmi, za dokaz tega dejstva pa se moramo malce bolj potruditi. Naj bo $(x,y) \in X$ poljubna točka. Pokazali bomo, da obstaja pot⁴ od (x,y) do (0,0). Če je $(x,y) \in \mathbb{Q}^* \times \mathbb{Q}^*$, to

³Za vajo lahko podrobno utemeljiš, zakaj to drži.

 $^{^4}$ Spomnimo se, da je relacija "med točkama (x_1,y_1) in (x_2,y_2) obstaja pot v prostoru X" ekvivalenčna relacija.

že vemo iz prejšnjega odstavka. Če je $(x,y) \in (\mathbb{Q}^* \times \{0\}) \cup (\{0\} \times \mathbb{Q}^*)$, je $P((x,y),(\frac{x+y}{2},\frac{x+y}{2})) \subseteq X$ in zato obstaja pot do točke $(\frac{x+y}{2},\frac{x+y}{2})$, ki leži v $\mathbb{Q}^* \times \mathbb{Q}^*$. Premica $P((\frac{x+y}{2},\frac{x+y}{2}),(0,0))$ pa spet leži v X, torej obstaja pot do (0,0).

Preostane še obravnava primera, ko je $(x,y) \in (\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q})$. Izberimo strogo monotoni zaporedji racionalnih števil $(p_n)_{n \in \mathbb{N}}$ in $(q_n)_{n \in \mathbb{N}}$, tako da velja $p_1 = q_1 = 0$, $\lim_{n \to \infty} p_n = x$ in $\lim_{n \to \infty} q_n = y$. Premica, ki povezuje sosednji točki v zaporedju $(p_n, q_n)_{n \in \mathbb{N}}$, leži v X, torej lahko od (0,0) do (x,y) pridemo po ustrezni lomljeni črti, ki te točke povezuje. Natančneje rečeno, iskano pot $\gamma : [0,1] \to X$ definiramo takole:

$$\gamma(t) = \begin{cases} (p_n, q_n) + (n(n+1)t - n^2 + 1)(p_{n+1} - p_n, q_{n+1} - q_n); & \exists n \in \mathbb{N} : t \in \left[\frac{n-1}{n}, \frac{n}{n+1}\right], \\ (x, y); & t = 1. \end{cases}$$

Intervali oblike $\left[\frac{n-1}{n},\frac{n}{n+1}\right]$ tvorijo lokalno končno zaprto pokritje intervala [0,1), predpisi pa se na presekih ujemajo, zato je γ zvezna na intervalu [0,1). Zveznost v točki t=1 pa preverimo posebej. Naj bo $\epsilon>0$. Zaporedje (p_n,q_n) konvergira k (x,y), torej so vsi členi od nekje naprej, npr. za $n\geq N$, vsebovani v krogli $K\left((x,y),\epsilon\right)$. Ker pa je omenjena krogla konveksna množica, so tudi daljice med temi členi vsebovane v njej, torej se okolica $\left[\frac{N-1}{N},1\right]$ točke 1 v celoti preslika v kroglo $K\left((x,y),\epsilon\right)$. S tem je dokaz končan.