ASSIGNMENT-1 PRIYACHANDANA KODATI

1)Two concealed layers were employed. Examine the effects of implementing one or three hidden layers on test accuracy and validation.

Using the Keras framework, this code builds a neural network model for binary sentiment categorization on the IMDB dataset. The two hidden layers in the model architecture, each with 16 neurons, employ the ReLU activation function, whereas the single output layer uses a sigmoid activation function. The model is put together using the Adam optimizer, with accuracy acting as a measure and binary crossentropy as the loss function. A training set and a validation set of training data are used to train the model across 20 epochs with a batch size of 512. The model exhibits good performance during training, with high accuracy starting at roughly 96.7% and rising to nearly 100% by the end of the epochs. The precision of validation also demonstrates strong performance. Historical data, including metrics for accuracy and loss for training and validation sets, is kept for further research.

⋺₹	Epoch 1													
	30/30 -		5s	86ms/step	-	accuracy:	0.6271 -	loss	: 0.6361	-	val_accuracy:	0.8503	val_loss:	0.4102
	Epoch 2/ 30/30 -		3s	40ms/step	_	accuracy:	0.8992 -	loss	: 0.3196	_	val accuracy:	0.8869	val loss:	0.2904
	Epoch 3/													
	30/30 -		1s	24ms/step	-	accuracy:	0.9406 -	loss	: 0.1831	-	val_accuracy:	0.8863	val_loss:	0.2842
	Epoch 4/		15	21ms/sten	_	accuracy:	0.9642 -	1055	: 0.1241	_	val accuracy:	0.8839	val loss:	0.3028
	Epoch 5/			222, 2 ccp			0.00.2							0.2020
	30/30 -		1s	20ms/step	-	accuracy:	0.9777 -	loss	: 0.0879	-	val_accuracy:	0.8813	val_loss:	0.3314
	Epoch 6/ 30/30 -		15	20ms/sten	_	accuracy:	0.9896 -	loss	. 0.0549	_	val accuracy:	0.8786	val loss:	0.3770
	Epoch 7/			2011373000		accar acy r	0.5050	1033	. 0.0545		vai_accaracy.	0.0700	VUI_10331	0.5770
	30/30 -		1 s	21ms/step	-	accuracy:	0.9930 -	loss	: 0.0404	-	val_accuracy:	0.8733	val_loss:	0.4288
	Epoch 8/ 30/30 -		1 c	21ms/sten		accuracy:	a 996a -	loss	· a a258		val_accuracy:	0 8737	val loss:	0 4730
	Epoch 9/		13	21113/3ccp		accuracy.	0.5500	1033	. 0.0230		vai_accaracy.	0.0/5/	VUI_1033.	0.4755
	30/30 -		1 s	20ms/step	-	accuracy:	0.9991 -	loss	: 0.0152	-	val_accuracy:	0.8717	val_loss:	0.5165
	Epoch 10 30/30 -		1 c	20ms/sten		accuracy:	a 9994 -	1000	. a a1a3		val_accuracy:	0 8705	val loss:	0 5615
	Epoch 11		13	Zollis/scep		accuracy.	0.5554	1055	. 0.0103		vai_accuracy.	0.0703	va1_1033.	0.3013
	30/30 -		1 s	21ms/step	-	accuracy:	0.9999 -	loss	: 0.0069	-	val_accuracy:	0.8702	val_loss:	0.5923
	Epoch 12 30/30 -		1.	23ms/sten		accupacy	0 0000 -	1055	. 0 0018		val_accuracy:	0 8605	val loss:	0 6334
	Epoch 13		13	231113/3 CEP		accuracy.	0.5555	1055	. 0.0040		vai_accuracy.	0.0053	va1_1055.	0.0234
	30/30 -		1s	20ms/step	-	accuracy:	1.0000 -	loss	: 0.0037	-	val_accuracy:	0.8687	val_loss:	0.6512
	Epoch 14 30/30 -		1 c	20ms/sten		accuracy:	1 0000 -	loss	. a aasa		val accuracy:	0 8686	val loss:	0 6710
	Epoch 15		13	20113/3000		accuracy.	1.0000	1033	. 0.0023		vai_accaracy.	0.0000	VUI_1033.	0.0710
	30/30 -		1 s	37ms/step	-	accuracy:	0.9999 -	loss	: 0.0025	-	val_accuracy:	0.8693	val_loss:	0.6921
	Epoch 16 30/30 -	•	1 c	26ms/sten		accuracy:	a 9999 -	1000	. 0 0021		val_accuracy:	0 8684	val loss:	0 7125
	Epoch 17		13	Zollis/scep		accuracy.	0.5555	1055	. 0.0021		vai_accuracy.	0.0004	va1_1033.	0.7123
	30/30 -		1s	22ms/step	-	accuracy:	0.9999 -	loss	: 0.0019	-	val_accuracy:	0.8683	val_loss:	0.7309
	Epoch 18 30/30 -	•	1 =	31ms/step		accuracy	1 0000 -	1000	. 0 0015		val accuracy:	0 8673	val loss:	0 7472
	Epoch 19		12	omis/sceb	_	accui acy i	1.0000 -	1022	. 0.0013	-	vai_accuracy:	0.00/3	A01_1022;	0.7472
	30/30 -		1s	21ms/step	-	accuracy:	0.9999 -	loss	: 0.0014	-	val_accuracy:	0.8680	val_loss:	0.7652
	Epoch 20 30/30 -		1	20ms /ston		accupacy:	1 0000	1055	. 0 0011		val accuracy:	0 9677	val loss:	0 7772
	שכ /שכ		12	zoms/scep	-	accuracy:	1.0000 -	1055	. 0.0011	-	var_accuracy:	0.00//	. AgT_1022:	0.7775

2) Consider utilizing layers of 32, 64, and so on hidden units, or fewer or more hidden units.

With two hidden layers of sixteen neurons each, one output layer with a sigmoid activation function, and a binary classification using Keras, this block of code constructs a neural network model. After the model is constructed using the Adam optimizer with binary crossentropy loss, it is trained on the training dataset for 4 epochs with a batch size of 512. Over the course of training, the model's accuracy rises dramatically, from 73.3% in the first epoch to around 95.3% by the fourth. After training, the model performs reasonably well on unseen data, as evidenced by its accuracy of approximately 87.7% and loss of approximately 0.31 when tested on the test dataset.

```
→ Epoch 1/20

     30/30 -
                                = 5s 92ms/step - accuracy: 0.6938 - loss: 0.6152 - val accuracy: 0.8631 - val loss: 0.3661
    Epoch 2/20
30/30 —
                                = 2s 19ms/step - accuracy: 0.9019 - loss: 0.2877 - val_accuracy: 0.8907 - val_loss: 0.2778
    Epoch 3/20
    30/30 ----
Epoch 4/20
                                 1s 20ms/step - accuracy: 0.9455 - loss: 0.1694 - val_accuracy: 0.8876 - val_loss: 0.2837
                                 1s 20ms/step - accuracy: 0.9677 - loss: 0.1141 - val_accuracy: 0.8841 - val_loss: 0.3035
    30/30 -
    Epoch 5/20
30/30
                                 is 21ms/step - accuracy: 0.9805 - loss: 0.0788 - val_accuracy: 0.8789 - val_loss: 0.3433
    Epoch 6/20
     30/30 -
                                = is 22ms/step - accuracy: 0.9881 - loss: 0.0558 - val accuracy: 0.8789 - val loss: 0.3697
     Epoch 7/20
    30/30 -

    1s 20ms/step - accuracy: 0.9950 - loss: 0.0352 - val accuracy: 0.8779 - val loss: 0.4148

    Epoch 8/20
30/30 —
Epoch 9/20
                                 is 28ms/step - accuracy: 0.9978 - loss: 0.0231 - val_accuracy: 0.8737 - val_loss: 0.4554
                                = 1s 27ms/step - accuracy: 0.9996 - loss: 0.0154 - val_accuracy: 0.8747 - val_loss: 0.4921
    30/30 -
    Epoch 10/20
30/30 ——
                                 1s 24ms/step - accuracy: 0.9998 - loss: 0.0101 - val_accuracy: 0.8723 - val_loss: 0.5325
    Epoch 11/20
30/30 —
Epoch 12/20
                                • 1s 27ms/step - accuracy: 0.9999 - loss: 0.0065 - val_accuracy: 0.8713 - val_loss: 0.5677
                                = 1s 20ms/step - accuracy: 0.9996 - loss: 0.0049 - val accuracy: 0.8713 - val loss: 0.5988
    30/30 -
    Epoch 13/20
30/30 —
                                • 1s 28ms/step - accuracy: 0.9999 - loss: 0.0033 - val_accuracy: 0.8705 - val_loss: 0.6254
    Epoch 14/20
    30/30 —
Epoch 15/20
                               = 1s 21ms/step - accuracy: 1.0000 - loss: 0.0027 - val_accuracy: 0.8689 - val_loss: 0.6495
                                = 1s 23ms/step - accuracy: 0.9999 - loss: 0.0020 - val accuracy: 0.8686 - val loss: 0.6712
    30/30 -
    Epoch 16/20
30/30
                                 is 20ms/step - accuracy: 1.0000 - loss: 0.0016 - val_accuracy: 0.8677 - val_loss: 0.6911
    Epoch 17/20
     30/30
                                • is 23ms/step - accuracy: 1.0000 - loss: 0.0013 - val_accuracy: 0.8676 - val_loss: 0.7088
    Epoch 18/28

    1s 23ms/step - accuracy: 1.0000 - loss: 0.0011 - val accuracy: 0.8673 - val loss: 0.7250

    30/30
    Epoch 19/20
30/30 —
                                • 1s 24ms/step - accuracy: 1.0000 - loss: 0.0010 - val_accuracy: 0.8679 - val_loss: 0.7401
    Epoch 20/20
     30/30
                                = 1s 21ms/step - accuracy: 1.0000 - loss: 8.0492e-04 - val_accuracy: 0.8674 - val_loss: 0.7547
```

[54] results3=model3.evaluate(x_test,y_test)

2.5

5.0

7.5

10.0

Epochs

12.5

15.0

17.5

20.0

3)Instead of using binary crossentropy, consider utilizing the mse loss function.

This code constructs a neural network model (model3) that uses ReLU activation and has two hidden layers, each with sixteen neurons. In this definition, keras is utilized. The model is assembled using the Adam optimizer, and the loss function is the mean squared error (MSE). It is trained on a subset of the training data for 20 epochs with a batch size of 512, and its performance is monitored with validation data. The algorithm visualizes accuracy over the epochs and training and validation loss using Matplotlib after training. The model yields a test accuracy of roughly 88.0% when evaluated on a test dataset, demonstrating its ability to correctly identify the data.

	h 1/20	4-70-74-1
30/30		4s 79ms/step - accuracy: 1.0000 - loss: 1.0392e-04 - val_accuracy: 0.8643 - val_loss: 0.1158
	h 2/20 0 ————	1s 20ms/step - accuracy: 1.0000 - loss: 1.4957e-04 - val accuracy: 0.8633 - val loss: 0.1186
	h 3/20	13 Zuis/step - accuracy. 1.0000 - 1033. 1.433/e-04 - Val_accuracy. 0.0033 - Val_1033. 0.1100
	0	15 21ms/step - accuracy: 1.0000 - loss: 1.2279e-04 - val accuracy: 0.8598 - val loss: 0.1212
Epoc	h 4/20	
30/3	0 ———	1s 23ms/step - accuracy: 0.9999 - loss: 2.1463e-04 - val_accuracy: 0.8598 - val_loss: 0.1218
Epoci	h 5/20	
	0	1s 20ms/step - accuracy: 0.9999 - loss: 2.5374e-04 - val_accuracy: 0.8612 - val_loss: 0.1215
	h 6/20	
		1s 20ms/step - accuracy: 0.9998 - loss: 2.5967e-04 - val_accuracy: 0.8624 - val_loss: 0.1221
	h 7/20 0 ————	1s 30ms/step - accuracy: 0.9994 - loss: 5.3285e-04 - val accuracy: 0.8525 - val loss: 0.1299
	h 8/20	15 30m5/step - accuracy: 0.9994 - 1055: 5.3285e-84 - Val_accuracy: 0.8325 - Val_1055: 0.1299
		1s 38ms/step - accuracy: 0.9966 - loss: 0.0029 - val_accuracy: 0.8604 - val_loss: 0.1235
	h 9/20	23 January 12 according. 0.3300 1233. 0.0023 142_according. 0.3004 142_according.
30/3	0 ———	is 32ms/step - accuracy: 0.9977 - loss: 0.0020 - val_accuracy: 0.8603 - val_loss: 0.1242
Epoci	h 10/20	
30/3	0	1s 21ms/step - accuracy: 0.9997 - loss: 3.9748e-04 - val_accuracy: 0.8584 - val_loss: 0.1263
	h 11/20	
	0	1s 22ms/step - accuracy: 0.9998 - loss: 2.7806e-04 - val_accuracy: 0.8606 - val_loss: 0.1256
	h 12/20 0 ————	1s 20ms/step - accuracy: 1.0000 - loss: 3.1734e-05 - val accuracy: 0.8600 - val loss: 0.1257
	h 13/20	15 Zemis/step - accuracy. 1.0000 - 1055: 3.1/34e-03 - Val_accuracy. 0.0000 - Val_1055: 0.125/
		1s 21ms/step - accuracy: 1.0000 - loss: 2.2820e-05 - val accuracy: 0.8597 - val loss: 0.1256
	h 14/20	
30/3	0	1s 23ms/step - accuracy: 1.0000 - loss: 1.5899e-05 - val_accuracy: 0.8600 - val_loss: 0.1256
	och 15/20	
	0	1s 20ms/step - accuracy: 1.0000 - loss: 1.5185e-05 - val_accuracy: 0.8603 - val_loss: 0.1256
	h 16/20 0 ————	1s 21ms/step - accuracy: 1.0000 - loss: 1.3636e-05 - val accuracy: 0.8601 - val loss: 0.1257
	h 17/20	
		1s 20ms/step - accuracy: 1.0000 - loss: 1.2575e-05 - val accuracy: 0.8601 - val loss: 0.1257
	h 18/20	
30/3	0 ———	1s 21ms/step - accuracy: 1.0000 - loss: 1.0872e-05 - val_accuracy: 0.8603 - val_loss: 0.1257
	h 19/20	
	0	1s 21ms/step - accuracy: 1.0000 - loss: 1.0682e-05 - val_accuracy: 0.8602 - val_loss: 0.1257
	h 20/20	
30/3	0	1s 20ms/step - accuracy: 1.0000 - loss: 9.0812e-06 - val_accuracy: 0.8601 - val_loss: 0.1257

4)Instead of relu, consider employing the tanh activation, which was well-liked in the early days of neural networks.

This code creates a neural network model (model 4) that is activated by the tanh function and has two hidden layers, each consisting of sixteen neurons. It uses Keras to accomplish this. The model is assembled using the Adam optimizer, and the loss function is the mean squared error (MSE). It is trained on a portion of the training data over 20 epochs with a batch size of 512, and its performance is monitored with validation data. The accuracy and loss statistics during training and validation epochs are shown using Matplotlib. As the model is trained, its accuracy increases. much, up to 99% or such. The model shows that it can correctly categorize the data when evaluated on a test dataset, with a test accuracy of roughly 88.0%.

```
→ Epoch 1/20
     30/30 —
Epoch 2/20
                                - 4s 85ms/step - accuracy: 0.6873 - loss: 0.5972 - val_accuracy: 0.8582 - val_loss: 0.3737
                                = 3s 24ms/step - accuracy: 0.8986 - loss: 0.2988 - val accuracy: 0.8866 - val loss: 0.2848
     30/30 -
    Epoch 3/20
30/30 —
Epoch 4/20
                                 is 27ms/step - accuracy: 0.9408 - loss: 0.1893 - val_accuracy: 0.8878 - val_loss: 0.2727
     30/30
                                 1s 20ms/step - accuracy: 0.9603 - loss: 0.1370 - val_accuracy: 0.8852 - val_loss: 0.2839
     Epoch 5/20
                                = 1s 20ms/step - accuracy: 0.9763 - loss: 0.0970 - val accuracy: 0.8808 - val loss: 0.3055
     30/30 -
    Epoch 6/20
30/30 —
Epoch 7/20
                                • 1s 21ms/step - accuracy: 0.9852 - loss: 0.0723 - val_accuracy: 0.8793 - val_loss: 0.3294
                                = is 23ms/step - accuracy: 0.9926 - loss: 0.0496 - val_accuracy: 0.8747 - val_loss: 0.3619
     30/30
     Epoch 8/20
                                - is 23ms/step - accuracy: 0.9959 - loss: 0.0374 - val_accuracy: 0.8716 - val_loss: 0.3907
     30/30 -
    Epoch 9/20
30/30 —
Epoch 10/20
                                 is 21ms/step - accuracy: 0.9968 - loss: 0.0268 - val_accuracy: 0.8716 - val_loss: 0.4173
     30/30
                                • is 21ms/step - accuracy: 0.9989 - loss: 0.0188 - val_accuracy: 0.8701 - val_loss: 0.4440
     Epoch 11/20
30/30 —
                                 1s 20ms/step - accuracy: 0.9995 - loss: 0.0146 - val_accuracy: 0.8675 - val_loss: 0.4678
     Epoch 12/20
     30/30 —
Epoch 13/20
                                = 2s 30ms/step - accuracy: 0.9997 - loss: 0.0112 - val_accuracy: 0.8686 - val_loss: 0.4912
     30/30 -
                                - is 29ms/step - accuracy: 0.9996 - loss: 0.0087 - val accuracy: 0.8677 - val loss: 0.5101
     Epoch 14/20
30/30
                                • 1s 21ms/step - accuracy: 0.9998 - loss: 0.0066 - val_accuracy: 0.8666 - val_loss: 0.5270
     Epoch 15/20
     30/30 ———
Epoch 16/20
30/30 ———
                                 1s 20ms/step - accuracy: 1.0000 - loss: 0.0053 - val_accuracy: 0.8661 - val_loss: 0.5434
                                 1s 19ms/step - accuracy: 1.0000 - loss: 0.0044 - val_accuracy: 0.8664 - val_loss: 0.5579
    Epoch 17/20
30/30
                                 is 21ms/step - accuracy: 1.0000 - loss: 0.0039 - val_accuracy: 0.8653 - val_loss: 0.5730
     Epoch 18/20
     30/30
                                 1s 20ms/step - accuracy: 1.0000 - loss: 0.0034 - val_accuracy: 0.8665 - val_loss: 0.5856
    Epoch 19/20
30/30
                                 1s 23ms/step - accuracy: 1.0000 - loss: 0.0029 - val_accuracy: 0.8659 - val_loss: 0.5972
     Epoch 20/20
                                 is 21ms/step - accuracy: 1.0000 - loss: 0.0026 - val_accuracy: 0.8658 - val_loss: 0.6081
```


5)Make use of any technique we covered in class to improve your model's validation performance, such as dropout and regularization.

This code builds a neural network model (model 5) with a dropout layer to prevent overfitting and two hidden layers (each with 16 neurons) that are activated by ReLU. Keras is used to create the model. The binary cross-entropy loss function and the Adam optimizer are utilized in the model compilation process for binary classification tasks. It is trained on a portion of the training data across 20 epochs with a batch size of 512, and it verifies on a separate validation dataset. Throughout the training phase, accuracy has grown dramatically while loss has decreased throughout the course of the epochs. The model's test accuracy of about 88.0% indicates that it is successful in classifying the input data when tested on a test dataset.

```
6s 114ms/step - accuracy: 0.6429 - loss: 0.6408 - val_accuracy: 0.8513 - val_loss: 0.4573
30/30 -
Epoch 2/20
30/30 —
                          = 1s 20ms/step - accuracy: 0.8441 - loss: 0.4335 - val_accuracy: 0.8777 - val_loss: 0.3439
Epoch 3/20
30/30
                         = 1s 21ms/step - accuracy: 0.8879 - loss: 0.3192 - val_accuracy: 0.8868 - val_loss: 0.2952
Epoch 4/20

    1s 23ms/step - accuracy: 0.9168 - loss: 0.2453 - val accuracy: 0.8878 - val loss: 0.2820

30/30 -
Epoch 5/20
30/30
                         — 2s 31ms/step - accuracy: 0.9372 - loss: 0.1946 - val_accuracy: 0.8855 - val_loss: 0.2846
Epoch 6/20
30/30
                         — 1s 27ms/step - accuracy: 0.9542 - loss: 0.1583 - val_accuracy: 0.8846 - val_loss: 0.2898
                         — is 25ms/step - accuracy: 0.9659 - loss: 0.1240 - val_accuracy: 0.8853 - val_loss: 0.3078
30/30 -
Epoch 8/20
30/30 ----
                         - 1s 22ms/step - accuracy: 0.9733 - loss: 0.0999 - val_accuracy: 0.8844 - val_loss: 0.3227
Epoch 9/20
                         = 1s 22ms/step - accuracy: 0.9785 - loss: 0.0850 - val accuracy: 0.8813 - val loss: 0.3473
30/30
Epoch 10/20
                         - is 20ms/step - accuracy: 0.9836 - loss: 0.0662 - val_accuracy: 0.8808 - val_loss: 0.3734
30/30 -
Epoch 11/20
30/30
                         - is 21ms/step - accuracy: 0.9881 - loss: 0.0523 - val_accuracy: 0.8774 - val_loss: 0.4056
Epoch 12/20
30/30
                         1s 20ms/step - accuracy: 0.9909 - loss: 0.0436 - val accuracy: 0.8778 - val loss: 0.4408
Epoch 13/20
30/30
                         - is 21ms/step - accuracy: 0.9930 - loss: 0.0351 - val_accuracy: 0.8781 - val_loss: 0.4516
Epoch 14/20
30/30
                         - is 24ms/step - accuracy: 0.9944 - loss: 0.0288 - val_accuracy: 0.8776 - val_loss: 0.4838
Epoch 15/20
                         1s 25ms/step - accuracy: 0.9950 - loss: 0.0249 - val accuracy: 0.8780 - val loss: 0.5081
30/30
Epoch 16/20
30/30
                         1s 24ms/step - accuracy: 0.9959 - loss: 0.0217 - val accuracy: 0.8779 - val loss: 0.5348
Epoch 17/20
30/30
                         = 1s 20ms/step - accuracy: 0.9973 - loss: 0.0164 - val_accuracy: 0.8765 - val_loss: 0.5605
Epoch 18/20
                          = 1s 24ms/step - accuracy: 0.9970 - loss: 0.0165 - val accuracy: 0.8768 - val loss: 0.5761
30/30 -
Epoch 19/20
30/30
                         = 1s 28ms/step - accuracy: 0.9968 - loss: 0.0156 - val_accuracy: 0.8771 - val_loss: 0.6013
Epoch 20/20
                         — 2s 42ms/step - accuracy: 0.9979 - loss: 0.0121 - val accuracy: 0.8742 - val loss: 0.6437
30/30
```


Comparative Analysis of IMDB Sentiment Analysis Results from Hyperparameter Tuning.

Model	technique	dropout	Train	Validation	Test
no.			accuracy	accuracy	accuracy
1	In class method	no	100	86.7	85.7
2	Adding extra hidden layer	no	100	86.77	85.52
3	Increasing to 32 hidden layer units	no	100	86.74	85.67
4	Doing mse	no	100	86.01	85.33
4	Using tanh activation	no	100	86.58	85.2
5	Using regularization techniques	yes	99.79	87.42	85.82

Conclusion:

The model performed reasonably well in classifying the test data, with an accuracy of 85.82% and a loss of 0.7189. According to the accuracy metric, the model can accurately predict 86% of the situations. The loss value, which calculates the discrepancy between expected and actual results, is somewhat high, though, suggesting that the model still needs to be fine-tune. This difference between loss and accuracy could indicate that the data is either under- or overfitted by the model. Its performance may be enhanced by additional methods like regularization, hyperparameter adjustment, or experimenting with different model designs. The findings show a good beginning, but additional testing on a validation set is advised to make sure the model generalizes effectively. Deploying this approach for real-world applications would necessitate ongoing monitoring to evaluate performance on unknown data and make additional modifications as needed.