FoP 3B Part II

Dr Budhika Mendis (b.g.mendis@durham.ac.uk) Room 151

Lecture 7: Introduction to Superconductors

Aim of today's lecture

▶ What are the characteristic features of superconductivity?

Key concepts:

- -Critical temperature (superconductivity as a phase transition)
- -Meissner effect (leading to diamagnetism)
- -Critical magnetic fields- Type I vs Type II superconductors

Resistivity vs temperature for a metal

$$\rho(T) = \rho_o + aT^2 + bT^5$$
Impurity effects electron-electron scattering electron-scattering

- Below critical temp (T_c) resistivity suddenly drops to zero.
- Abrupt change implies a phase transition, i.e. superconductivity is a new form of matter.

Kammerling Onnes measurement on Hg (1911) \Rightarrow

Examples of superconducting materials

Persistent currents (I)- is the resistivity really zero?

From $J = \sigma \mathcal{E}$ electric field within a superconductor must be zero for constant current.

Applying Faraday's law of induction:

(i)
$$\mathbf{B}$$

$$T > T_c$$

$$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\partial \mathbf{B}}{\partial t} = 0$$

- Immerse metal ring in magnetic field at $T > T_c$.
- Cool to below T_c and switch magnetic field off.
- Persistent current induced in superconductor (to maintain constant magnetic flux through the ring).

Induced current (Lenz' law)

Persistent currents (II)- is the resistivity really zero?

Decay of current density given by:

$$J(t) = J_o \exp(-t/\tau)$$

 τ = average time between scattering events.

For a metal $\tau \sim 10^{-13}$ s, i.e. current decays to 1% its starting value within 1 picosecond.

For superconductors no noticeable decay in current even after several years \Rightarrow resistivity less than $10^{-25} \Omega m$ (resistivity of Cu $\sim 10^{-8} \Omega m$)

Meissner effect (perfect diamagnetism)

 $T > T_c$ (Normal state; paramagnet)

$$T < T_c$$
 (Superconductor; diamagnet)

 $\mathbf{B} = 0$ in superconducting state. From $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$:

$$\chi = \frac{M}{H} = -1$$

Magnetic susceptibility

Type I vs Type II superconductors

Type I behaviour

Type II behaviour

- Strong magnetic fields destroy superconductivity.
- For Type I the transition from superconducting to normal state is at a single critical field. In Type II a 'mixed' (or 'vortex') state exists between a lower and upper critical field.

Type I superconductors

Critical field at a given temp:

$$B_c(T) = B_c(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

Implications for a current carrying wire

Magnetic field for wire of radius R:

$$B = \frac{\mu_o I}{2\pi R}$$
 (Ampere's law)

:. Max allowed current:

$$I_{max} = \frac{2\pi R B_c(T)}{\mu_o}$$

