This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

•					
,			•		
·					
				•	
•					
•		•			
		••			
	•				
			•		
·					

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 95/04036
C07C 403/20, 57/50, A61K 31/07	A1	(43) International Publication Date:	9 February 1995 (09.02.95)
		(15) 12:11 2:1012 1-001;01:101	

(21) International Application Number:

PCT/US93/10166

(22) International Filing Date:

22 October 1993 (22.10.93)

(30) Priority Data:

08/003,223 11 January 1993 (11.01.93) 08/027,747

08/052,050

US 5 March 1993 (05.03.93) 21 April 1993 (21.04.93)

Published

With international search report.

GB, GR, IE, IT, LU, MC, NL, PT, SE).

(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP,

KP, KR, LK, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SK, UA, European patent (AT, BE, CH, DE, DK, ES, FR,

(71) Applicant: LIGAND PHARMACEUTICALS INC. [US/US]; Suite 100, 9393 Towne Centre Drive, San Diego, CA 92121 (US).

(72) Inventors: BOEHM, Marcus, F.; Apartment 4E, 3833 Lamont Street, San Diego, CA 92109 (US). HEYMAN, Richard, A.; 147 Honeycomb Court, Encinitas, CA 92024 (US). ZHI, Lin: Apartment 2110, 7120 Shoreline Drive, San Diego, CA 92024 (US). HWANG, Chan, Kou; 5035 Camino Playa Malaga, San Diego, CA 92122 (US). WHITE, Steve: 7665 Salix Avenue, San Diego, CA 92129 (US). NADZAN, Alex; 4052 Riverton Place, San Diego, CA 92130 (US).

(74) Agents: MELVILLE, Hope, E. et al.; Lyon & Lyon. 35th floor, 611 West Sixth Street, Los Angeles, CA 90017 (US).

(54) Title: COMPOUNDS HAVING SELECTIVE ACTIVITY FOR RETINOID X RECEPTORS, AND MEANS FOR MODULATION OF PROCESSES MEDIATED BY RETINOID X RECEPTORS

(57) Abstract

Compounds, compositions, and methods for modulating processes mediated by Retinoid X Receptors using retinoid-like compounds which have activity selective for members of the subclass of Rennoid X Receptors (RXRs), in preference to members of the subclass of Retinoic Acid Receptors (RARs). Examples of such compounds are bicyclic benzyl, pyridinyl, thiophene, furanyl, pyrrole, and polyenoic acid derivatives including carbocyclic polyenoic acids. The disclosed methods employ compounds for modulating processes selectively mediated by Retinoid X Receptors.

DESCRIPTION

Compounds Having Selective Activity For Retinoid X Receptors, And Means For Modulation Of Processes Mediated By Retinoid X Receptors

Related Applications

This application is a continuation-in-part of the application Serial No. 08/052,050 filed on April 21, 1993, which is a continuation-in-part of the application Serial No. 08/052,051 filed on April 21, 1993, which is a continuation-in-part of the application Serial No. 08/027,747 filed on March 5, 1993, which is a continuation-in-part of application Serial No. 08/003,223 filed on January 11, 1993, which is a continuation-in-part of application Serial No. 944,783 filed on September 11, 1992, which is a continuation-in-part of application Serial No. 872,707 filed April 22, 1992, whose entire disclosures are incorporated hereby by reference.

Field of the Invention

15 This invention relates to intracellular receptors and ligands therefor. More specifically, this invention relates to compounds having selective activity for specific retinoic acid receptors, and methods for use of such compounds.

20 Background of the Invention

The vitamin A metabolite retinoic acid has long been recognized to induce a broad spectrum of biological effects. A variety of structural analogues of retinoic acid have been synthesized that also have been found to be bioactive. Some, such as Retin-A® (registered trademark of Johnson & Johnson) and Accutane® (registered trademark of Hoffmann-LaRoche), have found utility as therapeutic agents for the treatment of various pathological conditions. Metabolites of vitamin A and their synthetic

analogues are collectively herein called "retinoids".

Synthetic retinoids have been found to mimic many of the pharmacological actions of retinoic acid. However, the broad spectrum of pharmacological actions of retinoic acid is not reproduced in full by all bioactive synthetic retinoids.

Medical professionals have become very interested in the medicinal applications of retinoids. Among their uses approved by the FDA is the treatment of severe forms of acne and psoriasis. A large body of evidence also exists that these compounds can be used to arrest and, to an extent, reverse the effects of skin damage arising from prolonged exposure to the sun. Other evidence exists that these compounds may be useful in the treatments of a variety of severe cancers including melanoma, cervical cancer, some forms of leukemia, and basal and squamous cell carcinomas. Retinoids have also shown an ability to be efficacious in treating premalignant cell lesions, such as oral leukoplakia, and to prevent the occurrence of

Use of the retinoids is associated with a number of significant side effects. The most serious of these is that, as a class, they are among the most potent teratogens known. Teratogens are compounds that cause severe birth defects during specific periods of fetal exposure. Other side effects include irritation of the tissues treated, which can be so severe that patients cannot tolerate treatment.

Various investigations have been undertaken to elucidate the structure-activity relationships governing the abilities of synthetic retinoids to induce the various pharmacological consequences of retinoic acid exposure. This has been a complicated task, however, since the assays available to investigators have been bioassays, carried out either in intact animals or in isolated tissues. Technical constraints have often dictated the use of different small animal species for different

Interpretation of results has been complicated by possible pharmacokinetic and metabolic effects and possible species differences in the receptors involved. Nevertheless, definite differences in the pharmacological 5 effects of various synthetic retinoids have been observed.

Major insight into the molecular mechanism retinoic acid signal transduction was gained in 1988. Prior to that time, several high abundance cellular retinoid binding proteins were incorrectly inferred to be 10 the signal transducing receptors for retinoic acid. 1988, a member of the steroid/thyroid hormone intracellular receptor superfamily (Evans, Science, 240:889-95 (1988)) was shown to transduce a retinoic acid signal (Giguere et al., Nature, 330:624-29 (1987); Petkovich et al., Nature, 330: 444-50 (1987)). This unexpected finding related retinoic acid to other non-peptide hormones and elucidated the mechanism of retinoic acid effects in altering cell It is now known that retinoids regulate the function. activity of two distinct intracellular receptor subfamilies; the Retinoic Acid Receptors (RARs) and the Retinoid X Receptors (RXRs).

20

The first retinoic acid receptor identified, designated RAR-alpha, acts to modulate transcription of __ specific target genes in a manner which is 25 dependent, as has been shown to be the case for many of the members of the steroid/thyroid hormone intracellular receptor superfamily. The endogenous low-molecular-weight ligand upon which the transcription-modulating activity of RAR-alpha depends is all-trans-retinoic acid. Retinoic acid 30 receptor-mediated changes in gene expression result in characteristic alterations in cellular phenotype, with consequences in many tissues manifesting the biological response to retinoic acid. Two additional genes closely related to RAR-alpha were recently identified and were designated RAR-beta and RAR-gamma and are very highly related (Brand et al., Nature, 332:850-53 (1988); Ishikawa et al.,

Mol. Endocrin., 4:837-44 (1990)). In the region of the retinoid receptors which can be shown to confer ligand binding, the primary amino acid sequences diverge by less than 15% among the three RAR subtypes or isoforms. All-trans-retinoic acid is a natural ligand for the retinoic acid receptors (RARs) and is capable of binding to these receptors with high affinity, resulting in the regulation of gene expression. The newly-discovered retinoid metabolite, 9-cis-retinoic acid, is also an activator of RARs.

A related but unexpected observation was made recently (Mangelsdorf et al., Nature, 345:224-29 (1990)), in which another member of the steroid/thyroid receptor superfamily was also shown to be responsive to retinoic acid. This new retinoid receptor subtype has been designated Retinoid IS X Receptor (RXR), because certain earlier data suggested that a derivative of all-trans-retinoic acid may be the endogenous ligand for RXR. Like the RARs, the RXRs are also known to have at least three subtypes or isoforms, namely RXR-alpha, RXR-beta, and RXR-gamma, with corresponding unique patterns of expression (Manglesdorf et al., Genes & Devel., 6:329-44 (1992)).

Although both the RARs and RXRs respond to all-transretinoic acid in vivo, the receptors differ in several
important aspects. First, the RARs and RXRs are significantly divergent in primary structure (e.g., the ligand
binding domains of RARα and RXRα have only 27% amino acid
identity). These structural differences are reflected in
the different relative degrees of responsiveness of RARs
and RXRs to various vitamin A metabolites and synthetic
retinoids. In addition, distinctly different patterns of
tissue distribution are seen for RARs and RXRs. For
example, in contrast to the RARs, which are not expressed
at high levels in the visceral tissues, RXRα mRNA has been
shown to be most abundant in the liver, kidney, lung,
muscle and intestine. Finally, the RARs and RXRs have
different target gene specificity. For example, response

25

elements have recently been identified in the cellular retinal binding protein type II (CRBPII) and apolipoprotein AI genes which confer responsiveness to RXR, but not RAR. Furthermore, RAR has also been recently shown to repress RXR-mediated activation through the CRBPII RXR response element (Manglesdorf et al., Cell, 66:555-61 (1991)). These data indicate that two retinoic acid responsive pathways are not simply redundant, but instead manifest a complex interplay. Recently, Heyman et al. (Cell, 68:397-406 (1992)) and Levin et al. 10 355:359-61 (1992)) (Nature, independently demonstrated that 9-cis-retinoic acid is a natural endogenous ligand for the RXRs. 9-cis-retinoic acid was shown to bind and transactivate the RXRs, as well as the RARs, and therefore appears to act as a "bifunctional" ligand.

In view of the related, but clearly distinct, nature of these receptors, ligands which are more selective for the Retinoid X Receptor subfamily would be of great value for selectively controlling processes mediated by one or more of the RXR isoforms, and would provide the capacity for independent control of the physiologic processes mediated by the RXRs. Ligands which preferentially affect one or more but not all of the receptor isoforms also offer the possibility of increased therapeutic efficacy when used for medicinal applications.

The entire disclosures of the publications and references referred to above and hereafter in this specification are incorporated herein by reference.

Summary of the Invention

The present invention is directed to compounds, compositions, and methods for modulating processes mediated by one or more Retinoid X Receptors. More particularly, the invention relates to compounds which selectively or preferentially activate Retinoid X Receptors, in comparison to Retinoic Acid Receptors.

6

These compounds selectively modulate processes mediated by Retinoid X Receptors. Accordingly, the invention also relates to methods for modulating processes selectively mediated by one or more Retinoid X Receptors, in comparison to Retinoic Acid Receptors, by use of the compounds of this invention. Examples of compounds used in and forming part of the invention include bicyclic benzyl, pyridinyl, thiophene, furanyl, pyrrole, and polyenoic acid derivatives including carbocyclic polyenoic acids. Pharmaceutical compositions containing the compounds disclosed are also within the scope of this invention. Also included are methods for identifying or purifying Retinoid X Receptors by use of the compounds of this invention.

15 Brief Description of the Figures

The present invention may be better understood and its advantages appreciated by those skilled in the art by referring to the accompanying drawings wherein:

Figure 1 presents the standardized dose response oprofiles showing the transactivation of RAR and RXR isoforms by 3-methyl-TTNCB.

Figure 2 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by all-wans-retinoic acid.

25 Figure 3 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by 9-cis-retinoic acid.

Figure 4 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by 3-methyl-TTNEB.

Figure 5 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by 3-bromo-TTNEB.

Figure 6 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by 3-methyl-TTNCHBF.

25

Figure 7 presents the standardized dose response profiles showing the transactivation of RAR and RXR isoforms by 3-methyl-TTNEHBP.

Figure 8 presents the inhibition of transglutaminase activity by 9-cis-retinoic acid, all-trans-retinoic acid, and 3-methyl-TTNCB.

Figure 9 presents the Topical Dose Response, based on the test on Rhino mice, for 9-cis-retinoic acid, all-trans-retinoic acid, 3-methyl-TTNCB, and 1,25-dihydroxy Vitamin D.

Figure 10 presents the effect on rat HDL cholesterol of all-wans-retinoic acid, 9-cis-retinoic acid, 3-methyl-TTNCB, and 3-methyl-TTNEB.

Figure 11 presents the concentration-related effect of 3-methyl-TTNEB and TTNPB individually on incorporation of radiolabeled thymidine into DNA.

Figure 12 presents the concentration-related effect of a combination of 3-methyl-TTNEB and TTNPB on incorporation of radiolabeled thymidine into DNA.

20 <u>Detailed Description of the Invention</u>

This invention discloses retinoid-like compounds or ligands which have selective activity for members of the subfamily of Retinoid X Receptors (RXRs), in comparison to members of the subfamily of Retinoic Acid Receptors (RARs). Examples of such compounds are bicyclic benzyl, pyridinyl, thiophene, furanyl, pyrrole, and polyenoic acid derivatives which can be represented by the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_6
 R_6
 R_6

or

or

$$(CH_2)n$$

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_4$$

or

$$\begin{array}{c|c} R_1 & R_2 & \\ \hline \\ (CH_2)n & \\ \hline \\ R_3 & R_4 & \\ \hline \end{array}$$

10

or

or

or.

or

5

10

or

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_3 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, (R_7R_3) N-N=, R_{17} O-N=, R_{17} N=, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_s represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_aCF_3$, but R_8 cannot be hydrogen if together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z', Z'', and Z''' are all carbon, and R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

R₆, R₁₀, R₁₁, R₁₂, R₁₃ each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR₇, SR₇, NR₇R₉ or (CF)_nCF₃, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R₆, R₁₀, R₁₁, R₁₂ or R₁₃ is X;

 R_7 represents hydrogen or a lower alkyl having 1-6 carbons;

 R_{8} represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-idodophenyl, where q=2-4;

R₁₄ represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

 R_{15} represents a lower or branched alkyl having 1-12 carbons and can be methyl only if R_{16} is a halogen or a lower alkyl having 1-8 carbons;

 R_{15} represents hydrogen, a lower alkyl having 1-8 carbons, or halogen,

or R_{15} and R_{16} taken together form a phenyl, cyclohexyl, or cyclopental ring, or one of the following:

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₂, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, acryl, OR, and SR, substituted alkenes);

R₁₈ represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR₇, SR₇, NR₇R₈ or (CF)_n CF₃;

 R_{19} represents hydrogen, lower alkyl having 1-8 carbons, halogen, OR_{7} , SR_{7} , or $(CF)_{n}$ CF_{3} ;

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, 15 COSH, COOR, COSR, CONHR, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring;

V is COOH, tetrazole, PO_3H , SO_3H , CHO, CH_2OH , $CONH_2$, COSH, $COOR_9$, $COSR_9$, $CONHR_9$, or COOW where W is a 20 pharmaceutically acceptable salt;

Z, Z', Z", Z"', and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the structures depict optional double bonds.

As used in this disclosure, pharmaceutically acceptable salts include but are not limited to: hydrochloric, hydrobromic, hydroiodic, hydrofluoric, sulfuric, citric, maleic, acetic, lactic, nicotinic, succinic, oxalic, phosphoric, malonic, salicylic, phenylacetic, stearic, pyridine, ammonium, piperazine, diethylamine, nicotinamide, formic, urea, sodium,

potassium, calcium, magnesium, zinc, lithium, cinnamic, methylamino, methanesulfonic, picric, tartaric, triethylamino, dimethylamino, and tris(hydroxymethyl)aminomethane. Additional pharmaceutically acceptable salts are known to those of skill in the art.

Representative derivatives according to the present invention include the following:

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2naphthyl)carbonyl]benzoic acid, and designated "3-methyl-TTNCB";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-isopropyl-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3-isopropyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-IPR-TTNCB" or Compound 37;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-isopropyl20 2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[1(3-isopropyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2naphthyl)ethenyl]benzoic acid, and designated "3-IPRTTNEB" or Compound 42;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-ethyl-2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[1-(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-ethyl-TTNEB" or Compound 45;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-bromo-2-30 naphthyl-(2-methano)]-benzoic acid, also known as 4-[1-(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-bromo-TTNEB" or Compound 46;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-chloro-2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[1-(3-chloro-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2=

20

35

naphthyl)ethenyl]benzoic acid, and designated "3-chloro-TTNEB" or Compound 43;

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-methyl-TTNEB":

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-hydroxymethyl)]-benzoic acid, also known as 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)hydroxymethyl]benzoic acid, and designated "3-methyl-TTNHMB";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-bromo-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-bromo-TTNCB" or Compound 41;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-chloro-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3-chloro-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-chloro-TTNCB" or Compound 38;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-hydroxy-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3-hydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-hydroxy-TTNCB" or Compound 39;

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-ethyl-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-ethyl-TTNCB" or Compound 40;

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-thioketo)]-benzoic acid, also known as 4-[(3,5,5,8,8-pentamethyl-5,5,7,8-tetrahydro-2-naphthyl)thioketo]benzoic acid, and designated "thioketone";

- p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-carbonyl)]-N-(4-hydroxyphenyl)benzamide, also known as 4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]-N-(4-hydroxyphenyl)benzamide, and designated "3-methyl-TTNCHBP";
 - p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-methano)]-N-(4-hydroxyphenyl)benzamide, also known as 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]-N-(4-hydroxyphenyl)benzamide, and designated "3-methyl-TTNEHBP" or Compound 63;
 - 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) ethenyl]pyridine-5-carboxylic acid, designated "TPNEP" or Compound 58;
- ethyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]pyridine-5-carboxylate, designated "TPNEPE" or Compound Et-58;
 - 2-[1-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl) ethenyl]pyridine-5-carboxylic acid, designated "TTNEP" or Compound 56;
- 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) epoxy]benzoic acid, designated "TPNEB" or Compound 47;
- 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) cyclopropyl]benzoic acid, designated "TPNCB" or Compound 48;
 - 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzenetetrazole, designated "3-methyl-TTNEBT" or Compound 55;
- 5-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-30 naphthyl)ethenyl]pyridine-2-carboxylic acid, designated "TPNEPC" or Compound 60;
 - 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]pyridine-5-carboxylic acid, designated "TPNCP" or Compound 62;
- methyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]pyridine-5-carboxylate, designated Compound Me-62

- 3-methyl-7-propyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2E, 4E,6Z,8E-nonatetranoic acid, designated Compound 74;
- 3-methyl-7-isopropyl-9-(2,6,6-trimethyl-1-cyclohexen-5 1-y1)-2E,4E,6Z,8E-nonatetranoic acid, designated Compound 75;
 - 3-methyl-7-t-butyl-9-(2,6,6-trimethyl-1-cyclohexen-1-y1)-2E, 4E,6Z,8E-nonatetranoic acid, designated Compound 77;
- 3-methyl-5-{2-[2-(2,6,6-trimethylcyclohexen-1-yl)ethenyl]cyclohexyl}-2E,4E-pentadienoicacid, designated Compound 100;
 - (2E, 4E) -3-methyl-5-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]penta-2,4-dienoic acid, designated Compound 104;
 - (2E,4E)-3-methyl-6-{1-[2,6,6-trimethyl-1-cyclohexenyl)ethenyl]cyclopropyl}-2,4-hexadienoic acid, designated Compound 110;
- (2E, 4E, 6Z) -7-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-20 2-naphthyl)-3,8-dimethyl-nona-2,4,6-trienoic acid, designated Compound 123; and
 - (2E, 4E, 6Z) -7-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-3-methyl-octa-2,4,6-trienoic acid, designated Compound 128.
- 25 Representative structures for such compounds are as follows:

3-methyl-TTNCB

3-methyl-TTNEB

3-methyl-TTNCHBP

3-methyl-TTNHMB

thicketone

4-[(3-isopropyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid (3-IPr-TINCB)

4-{(3-chloro-5,5,8,8-terramethyl-5,6,7,8-terrahydro-2-naphthyl)carbonyl} benzoic acid (3-chloro-TTNCB)

4-[(3-hydroxy-5,5,8.8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid (3-hydroxy-TTNCB)

4-[(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid (3-Et-TINCB)

4-[(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid (3-bromo-TTNCB)

4-[1-(3-isopropyl-5,5,8.8-tetramethyl-5,6,7.8-tetrahydro-2-naphtityl)ethenyl] benzoic acid (3-IPr-TTNEB)

18

4-{1-(3-chloro-5,5,8,8-termmethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl} benzoic seid (3-chloro-TTNEB)

4-[1-(3-hydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl) ethenyl] benzoic scid (3-hydroxy-TTNEB)

4-[1-(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrhydro-2-naphthyl)ethenyl] benzoic acid (3-Et-TTNEB)

4-[1-(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl] benzoic acid (3-bromo-TTNEB)

4-{1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)epoxy} benzoic acid (TPNEB)

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl] benzuic acid (TPNCB)

51

. 52

53

56

57

58

Ét-58

59

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethyl] benzoic acid (PINEB)

4-[1-(3.5.5,8.8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) methylidine cyclopentane] benzoic acid (PTNCB)

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-2-methyl propertyl] benzoic acid (PTNIB)

2-I(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl) thiopheno-5-carboxylic acid (TTNCTC)

2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl) thiophene-5-carboxylic acid (TINETC)

4-[(3:5.5.8.8-peniamethyl-5.6.7.8-terrahydro-2-naphthylicarbonyl] benzenetetrazole (3-methyl-TTNCBT)

4-[1-(3.5,5,8,8-pontame:hyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl] benzenetetrazole (3-methyl-TTNEBT)

2-[1-(5,5,8,8-terramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl) pyridine-5-carboxylic acid (TTNEP)

2-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl) pyridine-5-carboxylic acid

2-{1-(3.5,5,8.8-pentamethyl-5.6,7.8-tetrahydro-2-naphthyl)ethenyl] pyridine-5-carboxylic acid (TPNEP)

Ethyl-2-(1-(3.5.5.8.8-pentamethyl-5.6,7.8-tetrahydro-2-napothyl ethenyl) pyridine-5-carboxytair

5-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] pyridir.e-2-carboxylic acid (TTNCP)

5-[1-(3,5,5,8,8-pentamothyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl) pyridine-2-carboxylic acid (TPNEPC)

Ethyl-5-[1-(3.5.5.8.8-pentamethyl-5.6.7.8-terrahydro-2-naphthyl)ethenyl] pyridino-2-carboxylate (3TTNEPE)

2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl] pyridine-5-carboxylic acid (TPNCP)

4-[1-(3.5.5.8.8-pentamethyl-5.6.7.8-terrahydro-2-naphthyl) ethenyl]-N-(4-carboxyphenyl)benzamide (1-Me-TTNECBP)

Me-62

Methyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl) pyridine-5-carboxylate

Emyl-2-{1-(3.5.5.8.8-peniamethyl-5.6.7.8-terahydro-2-naphthyl)cyclopropyl} pyridine-5-carboxylate

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)
carbonyl]-N-(3-hydroxyphenyl)benzamide (3-Me-m-TTNCHBP)

4-[1-(3.5.5.8.8-pentamethyl-5.6.7.8-tetrahydro-2-naphthyl) ethenyl]-N-(2-bydroxyphenyl)benzamide(3-Me-o-TTNCHBP)

4-[1-(3,5,5,6,7,7-bezamethyl-2-indanyl)ethenyl] benzoic acid

4-[1-(3.5.5.8.8-peniamethyl-5.6.7.8-tetrahydro-2-naphthyl) ethenyl]-N-(3-carboxyphonyl)benzamide (3-Me-m-TTNECBP) CO.H

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) methyl] benzoic acid

70

4-[1-(3,5,5,7,7-pentamethyl-2-indanyl)ethenyl] benzoic acid

Et-3-methyl-TTNEB

Ethyl-4-1-4355.8.8-peatamethyl-5.6.7.8-terrabytro-2-naphthylicthoxyl] beazoste

3-methyl-7-ethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2*E*,4*E*,6*Z*,8*E*-nonatetranoic acid

3-methyl-7-isopropyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2*E*,4*E*,6*Z*,8*E*-nonatetranoic acid

5

3-methyl-7-t-butyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2*E*,4*E*,6*Z*,8*E*-nonatetranoic acid

3-methyl-7-propyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2*E*,4*E*,6*Z*,8*E*-nonatetranoic acid

3,6,7-trimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2*E*,4*E*,6*Z*,8*E*-nonatetranoic acid

3-methyl-5-{2-{2-{2-6,6-trimethylcyclohexen-1-yl}ethenyl}phenyl}-2*E*,4*E*-pentadienoic acid

3-methyl-5-{2-[2-(2,6,6-trimethylcyclohexene-1-yl) ethenyl]cyclohexyl]-2E,4E-pentadienoic acid

(2E,4E)-3-methyl-5-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]penta-2,4-dienoic acid

(2E,4E)-3-methyl-6-{1-[2-(2,6,6-trimethyl-1-cyclohexenyl) ethenyl]cyclopropyl}-2,4-hexcadienoic acid

(2E,4E,6Z)-7-[5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)-3,8-dimethyl-nona-2,4,6-trienoic acid

(2E,4E,6Z)-7-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-3-methyl-octa-2,4,6-tnenoic acid

In addition, thiophene, furanyl, pyridine, pyrazine, pyrazole, pyridazine, thiadiazole, and pyrrole groups function as isosteres for phenyl groups, and may be substituted for the phenyl group of the above bicyclic benzyl derivatives.

Representative derivatives of the present invention can be prepared according to the following illustrative synthetic schemes:

Compounds of structure 1 containing R_5 = lower alkyl are prepared in accordance with United States Patent No. 2,897,237. When R_5 = Halo, OH, amino, or thio, the products are prepared by standard Friedel-Crafts reaction conditions combining the appropriate substituted benzene with 2,5-dichloro-2,5-dimethyl hexane in the presence of aluminum trichloride.

Condensation of 1 with mono-methyl terephthalate 2 was carried out by addition of PCl, to 1 and 2 in CH_2Cl_2 followed by addition of AlCl, at room temperature.

The resulting methyl esters 3 are hydrolyzed to the carboxylic acid 4 by refluxing in aqueous KOH-MeOH followed by acidification.

4 1) NaBH₄/MeOH

2) HCl/H₂O

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_4
\end{array}$$

$$\begin{array}{c}
CH_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
CH_2 \\
R_4
\end{array}$$

$$\begin{array}{c}
CH_2 \\
R_5
\end{array}$$

Treatment of ketone 4 with NaBH, afforded alcohol 5.

Treatment of the methyl ester 3 with methyltriphosphonium bromide-sodium amide in THF afforded the methano compound 6.

2) HCI/H₂O

The carboxylic acid 7 was formed by adding KOH to methano compound 6 in MeOH, followed by acidification.

10

Treatment of the methyl ester 6 with hydrogen gas and 5% palladium over carbon in ethyl acetate yields the hydrogenated compound 9.

Treatment of compound 9 with aqueous KOH in refluxing MeOH, followed by acidification, yields the carboxylic acid compound 10.

R = Me or H

Condensation of 1 with thiophene 2,5-mono methyl dicarboxylic acid or furanyl 2,5-mono methyl dicarboxylic acid was carried out by addition of PCl₅ in CH₂Cl₂ followed by addition of AlCl₃ at room temperature to give esters 11 and 12, which were hydrolyzed with KOH followed by acidification to the corresponding acids.

4,4-Dimethylchroman and 4,4-dimethyl-7-alkylchroman compounds of type 13 and 14 as well as 4,4-dimethylthiochroman, 4,4-dimethyl-7-alkylthiochroman, 5 dimethyl-1,2,3,4-tetrahydroquinoline, and 4,4-dimethyl-7alkyl-1,2,3,4-tetrahydroquinoline analogs were synthesized by similar methods as compound 3, i.e., Friedel-Crafts conditions combining the appropriate dimethylchroman, dimethylthiochroman or dimethyltetrahydroquinoline with mono-methyl terephthalate acid chloride in the presence of 10 AlCl3 or SnCl4, followed by base hydrolysis and acidification to give the carboxylic acid. For the synthesis of the tetrahydroquinoline analogs, it was necessary to acylate the amine before Friedel-Crafts coupling with 15 mono-methyl terephthalate acid chloride. synthesis of the appropriate dimethylchromans, dimethylthiochromans and tetrahydroquinolines, see U.S. Patent Nos. 5,053,523 and 5,023,341 and European Patent Publication No. 0284288.

Compounds of the type 18 were synthesized by nucleophillic addition of the Grignard reagent 16 to bromotetralone, bromoindane, or other bicyclic ketone derivitive.

5 Treatment of the resulting alcohol with methanolic HC1 gave the intermediate 17. Displacement of the bromine with CuCN in quinoline gave the nitrile which was then hydrolyzed to the acid 18 in refluxing KOH. Bromine compound 15 was synthesized from 2,5-dichloro-2,5-dimethylhexane and 2-bromotoluene with a catalytic amount of AlCl₁.

Treatment of compounds 3-methyl-TTNCB and 3-methyl-TTNEB with DCC, p-aminophenol, and DMAP resulted in the aminoesters 19 and 20.

Representative pyridinal derivatives (compounds 21, 23, 26, and 27) may be prepared according to the illustrative synthetic schemes shown above. The synthesis of compound 21 is similar to that previously described for 5 compound 7. Pentamethyl tetrahydronaphthalene 1, pyridinal acid chloride 24, and AlCl, are stirred in CH2Cl2 to give the ketone 25. Treatment of the ketone 25 with methyl triphosphonium bromide-sodium amide in THF afforded the ethenyl compound 26. Hydrolysis of 26 (KOH, MeOH) 10 followed by acidification gave the acid 21. The cyclopropyl analog 23 was synthesized by treatment of the ethenyl compound 26 with CH_2I_2 , zinc dust, CuCl refluxing ether (Simmons-Smith reaction). Hydrolysis of the resulting cyclopropyl ester 27 was achieved with methanolic KOH followed by acidification to give compound When $R_1 - R_5$ are methyl, for example, compound 62 23. (TPNCP) is obtained, as shown in Example 33 below.

Other cyclopropyl derivatives such as TPNCB (compound 48) may be likewise prepared by the same method as described for analog 23: olefin 6 is treated with the Simmons-Smith reagent described above, followed by hydrolysis with methanolic-KOH and acidification (HCI) to give the desired cyclopropyl derivative. Epoxy derivatives such as TPNEB (compound 47) may be synthesized by treatment of compound 7 with m-chloroperbenzoic acid at room temperature in CH₂Cl₂ for several hours.

Alternatively, pyridinal analogs, such as compounds 58 (TPNEP), 60 (TPNEPC), and 61 (3TTNEPE), may be prepared by the following synthetic route.

The n-alkyl cyclohexenyl nonatetranoic acid derivatives may be prepared as shown in the following synthetic schemes. The particular compound obtained (e.g., 73, 74, 75, 76, or 77) is dependent on the selection of the starting material (e.g., compounds 79, 80, 81, 82, or 83), as shown.

R'=Et. iPt. tBu. Pr. Bu etc.

R'= H. Me. iPr. Pr. tBu. Bu etc.

Synthesis of 3,7-dialkyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2£,4£,6Z,8£-nonatetranoic acid and 3,6,7-trialkyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2£,4£,6Z,8£-nonatetranoic acid derivatives:

Compounds of the type 73-77 were synthesized as follows: Condensation of the appropriate methyl ketone 84 and the appropriate phosphonate anion 85 gave the ester 86. Condensation of the ester 86 (or 79-83) with β-cyclocitral 78 resulted in the lactone 87A, which was treated with LiAlH, to give the lactol 87B. Treatment of the lactol 87B with HCl in methylene chloride gave the isomerially pure aldehyde 88. Condensation of the alkdehyde 88 with the anion of phosphonate 90 gave the isomerically pure ethyl-3,7-dialkyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2£,4£,6Z,8£-nonatetranoate, which was hydrolized to give compounds 73-77.

Similarly, compound 95 was synthesized by condensation of the Wittig ylide 91 with benzenedialdehyde 92 to give aldehyde 93. Condensation of aldehyde 93 with the anion of phosphonate 90 gave compound 94, which was then hydrolized to the carboxylic acid 95, as shown below.

A synthesis scheme for compounds of the type 100, 104, and 110 is shown above. Further synthesis schemes for compounds of the type 123 and 128 follow below.

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_6
 R_7
 R_7

Illustrative examples for the preparation of some of the compounds according to this invention are as follows:

Example 1

5 Preparation of compound 3 where R_1 , R_2 , R_3 , R_4 and R_5 are methyl, R' and R" are oxo, and X=COOMe:

To 7 gm (34.7 mmol) of 1,1,4,4,6-pentamethyl-1,2,3,4tetrahydronaphthalene and 6 gm (33.3 mmol) of mono-methyl teraphthalate in 200 mL of CH,Cl, was added 8 q (38.8 mmol) 10 of PCl. The reaction boiled vigorously and turned clear within 10 min. After stirring for an additional 1 h, 6 g (43.5 mmol) of AlCl, was added in 1 g portions over 15 min. and the reaction was allowed to stir overnight. mixture was poured into 300 mL of 20% aqueous HCl and extracted with 5% EtOAc-hexanes, dried concentrated, and crystallized from MeOH to give ca. 6 gm (16.5 mmol) of methyl ester 3. ¹HNMR (CD₃OCD₃) δ 1.20 (s, 2(CH₃)), 1.35 (s, 2(CH₃)), 1.75 (s, 2(CH₂)), 2.31 (s, CH₃), 3.93 (s, COOCH₃), 7.21 (s, Ar-20 (CH), 7.23 (s, Ar-CH), 7.85 (d, J=8 Hz, Ar-2(CH)), 8.18 (d, J=8 Hz, Ar-2(CH)).

Example 2

25

35

Preparation of compound 4 where R_1 , R_2 , R_3 , R_4 and R_5 are methyl, R' and R" are oxo, and X = COOH (3-methyl-TINCB):

To 6 gm (16.5 mmol) of methyl ester 3 suspended in 100 mL of MeOH was added 50 mL of 5N aqueous KOH. The mixture was heated under reflux for 1 h, cooled, acidified (20% aqueous HCl) and the organics extracted with EtOAc. After drying (MgSO4), the product was concentrated and precipitated from 1:4 EtOAc-hexanes to give ca. 5 g (14.3 mmol) of acid 4.

¹HNMR (CD₃OCD₃) δ 1.20 (s, 2(CH₃)), 1.35 (s, 2(CH₃)), 1.75 (s, 2(CH₂)), 2.31 (s, CH₃), 7.21 (s, Ar-CH), 7.23 (s, Ar-CH), 7.91 (d, J=8 Hz, Ar-2(CH)), 8.21 (d, J=8 Hz, Ar-2(CH)).

Preparation of compound 5 where R_1 , R_2 , R_3 , R_4 and R_5 are methyl, R' = H and R'' = OH, and X = COOH (3-methyl-TTNHMB):

To a 1:1 THF-MeOH solution containing 1 g (2.86 mmol) of ketone 4 was added 100 mg of NaBH₄. The mixture was heated to 50°C for 10 min., cooled, acidified (20% aqueous HCl), and the organics extracted (EtOAc). After drying (MgSO₄), the product was concentrated and precipitated from 1:3 EtOAc-hexanes to give 550 mg (1.56 mmol) of the alcohol 5.

¹HNMR (CD₃OCD₃) δ 1.20 (s, CH₃)), 1.22 (s, (CH₃)), 1.22 (s, 2(CH₃)), 1.65 (s, 2(CH₂)), 2.21 (s, CH₃), 6.00 (s, -CHOH-), 7.09 (s, Ar-CH), 7.41 (s, Ar-CH), 7.53 (d, J=8 Hz, Ar-2(CH)), 8.01 (d, J=8 Hz, Ar-2(CH)).

Example 4

Preparation of compound 6 where R_1 , R_2 , R_3 , R_4 and R_5 are methyl, R' and R'' are methano, and X = COOMe:

To 1 gm of methyl ester 3 (2.7 mmol) in 25 mL of dry

THF was added 1.2 g (3.08 mmol) of methyltriphosphonium
bromide-sodium amide. The solution was stirred at RT for

3 h or until complete by TLC (20% EtOAc-hexanes). Water
was added and the organics were extracted with EtOAc,
dried (MgSO₄), concentrated and purified by SiO₂ chromato
graphy (5% EtOAc-hexanes) followed by crystallization from
MeOH to give 700 mg (1.93 mmol) of methano compound 6.

HNMR (CD₃OCD₃) δ 1.22 (s, 2(CH₃)), 1.30 (s, 2(CH₃)), 1.72
(s, 2(CH₂)), 1.95 (s, CH₃), 3.85 (s, COOCH₃), 5.29 (s, =CH),
5.92 (s, =CH), 7.19 (s, Ar-CH), 7.20 (s, Ar-CH), 7.39 (d,

J=8 Hz, Ar-2(CH)), 7.96 (d, J=8 Hz, Ar-2(CH)).

Example 5

Preparation of compound 7 where R_1 , R_2 , R_3 , R_4 and R_5 are methyl, R' and R'' are methano, and X = COOH (3-methyl-TTNEB):

To 500 mg of methano compound 6 (1.38 mmol) in 20 mL of MeOH was added 5 mL of 5 N aqueous KOH and the suspension was refluxed for 1 h. After acidification (20% aqueous HCl) the organics were extracted (EtOAc), dried (MgSO₄), concentrated, and the solids recrystallized from EtOAc-hexanes 1:5 to give 350 mg (1.0 mmol) of the carboxylic acid 7.

¹HNMR (CD₃OCD₃), δ 1.22 (s, 2(CH₃)), 1.30 (s, 2(CH₃)), 1.72 (s, 2(CH₂)), 1.95 (s, CH₃), 5.22 (s,=CH), 5.89 (s,=CH), 7.19 (s, Ar-CH), 7.20 (s, Ar-CH), 7.39 (d, J=8 Hz, Ar-2(CH)), 7.96 (d, J=8 Hz, Ar-2(CH)).

Example 6

Preparation of compound 37 where R_1, R_2, R_3, R_4 are methyl, R_5 is isopropyl, R' and R" are oxo, and X=COOH (3-IPR-TTNCB):

The compound was prepared in a manner similar to that of compound 4 except that 6-isopropyl-1,1,4,4-tetramethyl-1,2,3,4-tetra-hydronaphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1 and 2. MP: 254 °C; H-NMR (CDCl₃) δ1.19 (d,J=7 Hz,CH(CH₃)₂), 1.21 (s,2(CH₃)), 1.33 (s,2(CH₃)), 1.70 (s,2(CH₂)), 3.12 (q,J=7 Hz,CH(CH₃)₂), 7.14 (s,Ar-CH), 7.37 (s,Ar-CH), 7.92 (d,J=8 Hz, Ar-2(CH)), 8.18 (d,J=8 Hz, Ar-2(CH)).

Example 7

Preparation of compound 38 where R₁, R₂, R₃, R₄ are methyl, R₅
is chloro, R' and R" are oxo, and X=COOH (3-chloro-TTNCB):
 The compound was prepared in a manner similar to that
 of compound 4 except that 6-chloro-1,1,4,4-tetramethyl1,2,3,4-tetrahydro-naphthalene was substituted for
1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in
 examples 1 and 2. MP: 254 °C; 'H-NMR (CDCl₃) δ1.26
 (s,2(CH₃)), 1.32 (s,2(CH₃)), 1.72 (s,2(CH₂)), 7.35 (s,Ar-CH), 7.36 (s,Ar-CH), 7.91 d.3-8 Hz, Ar-2(CH)), 8.19
 (d,J=8 Hz, Ar-2(CH)).

Preparation of compound 39 where R_1, R_2, R_3, R_4 are methyl, R_5 is hydroxy, R' and R" are oxo, and X = COOH (3-hydroxy-TINCB):

The compound was prepared in a manner similar to that of compound 4 except that 6-hydroxy-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1 and 2. MP: 264 °C; ¹H-NMR (CDCl₃) δ1.17 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.68 (s,2(CH₂)), 7.02 (s,Ar-CH), 7.44 (s,Ar-CH), 7.77 (d,J=8 Hz, Ar-2(CH)), 8.27 (d,J=8 Hz, Ar-2(CH)), 11.50 (s,-OH).

Example 9

Preparation of compound 40 where R_1, R_2, R_3, R_4 are methyl, R_5 is ethyl, R' and R'' are oxo, and X=COOH (3-Et-TINCB):

The compound was prepared in a manner similar to that of compound 4 except that 6-ethyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1 and 2. MP: 226°C; 1 H-NMR (CDCl₃) δ 1.16 (t,J=7.5 Hz,-CH₂CH₃), 1.19 (s,2(CH₃)), 1.32 (s,2(CH₃)), 1.69 (s,2(CH₂)), 2.69(g,J=7.5 Hz, CH₂CH₃), 7.20 (s,Ar-CH), 7.25 (s,Ar-CH), 7.87 (brd,Ar-2(CH)), 8.20 (brd,Ar-2(CH)).

Example 10

Preparation of compound 42 where R_1, R_2, R_3, R_4 are methyl, R_5 is isopropyl, R' and R" are methano, and X = COOH (3-IPR-TINEB):

The compound was prepared in a manner similar to that of compound 7 except that 6-isopropyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 252 °C; ¹H-NMR (CDCl₃) δ1.05 (d,J=7 Hz,CH(CH₃)₂), 1.27 (s,2(CH₃)), 1.32 (s,2(CH₃)), 1.70 (s,2(CH₂)), 2.73(q,J=7 Hz,CH(CH₃)₂), 5.32 (s,=CH), 5.87 (s,=CH) 7.06 (s,Ar-CH), 7.23 (s,Ar-CH), 7.40 (d,J=8 Hz,Ar-2(CH)), 8.040 (d,J=8 Hz,Ar-2(CH)).

Example 12

Preparation of compound 43 where R_1, R_2, R_3, R_4 are methyl, R_5 is chloro, R' and R" are methano, and X=COOH (3-chloro-TTNEB):

The compound was prepared in a manner similar to that of compound 7 except that 6-chloro-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 233 °C; ¹H-NMR (CDCl₃) δ1.28 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.71 (s,2(CH₂)), 5.42 (s,=CH), 5.89 (s,=CH), 7.23 (s,Ar-CH), 7.28 (s,Ar-CH), 7.37 (d,J=8 Hz,Ar-2(CH)).

Example 13

Preparation of compound 44 where R_1, R_2, R_3, R_4 are methyl, R_5 is hydroxy, R' and R" are methano, and X = COOH (3-hydroxy-TTNEB):

The compound was prepared in a manner similar to that of compound 7 except that 6-hydroxy-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 216 °C; ¹H-NMR (CDCl₃) δ1.21 (s,2(CH₃), 1.30 (s,2(CH₃)), 1.68 (s,2(CH₂)), 5.54 (s,=CH),

5.94 (s,=CH), 6.86 (s,Ar-CH), 7.00 (s,Ar-CH), 7.48 (d,J=8.4 Hz, Ar-2(CH)), 8.07 (d,J=8.4 Hz, Ar-2(CH)).

Example 14

Preparation of compound 45 where R_1, R_2, R_3, R_4 are methyl, R_5 is ethyl, R' and R" are methano, and X = COOH (3-Et-TTNEB):

The compound was prepared in a manner similar to that of compound 7 except that 6-ethyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 236 °C; H-NMR (CDCl₃) δ0.99 (t,J=7.6 Hz,-CH₂CH₃), 1.27 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.70 (s,2(CH₂)), 2.29(q,J=7.6 Hz,-CH₂CH₃), 5.34 (s,=CH), 5.83 (s,=CH), 7.08 (s,Ar-CH), 7.12 (s,Ar-CH), 7.38 (d,J=8 Hz,Ar-2(CH)), 8.00 (d,J=8 Hz,Ar-2(CH)).

Example 15

Preparation of compound 46 where R_1, R_2, R_3, R_4 are methyl, R_5 is bromo, R' and R'' are methano, and X = COOH (3-bromo-TTNEB):

The compound was prepared in a manner similar to that of compound 7 except that 6-bromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 235 °C; H-NMR (CDCl₃) δ1.27 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.71 (s,CH₃), 5.40 (s,=CH), 5.90 (s,=CH), 7.26 (s,Ar-CH), 7.36 (s,Ar-CH), 7.43 (d,J=8 Hz,Ar-2(CH)), 8.04 (d,J=8 Hz,Ar-2(CH)).

Example 16

Preparation of compound 47 where R_1 , R_2 , R_3 , R_4 , R_5 are methyl, 30 R' and R" taken together are CH_2 -O (epoxide), and X = COOH (TPNEB):

The compound was prepared from compound 6 where R_1 , R_2 , R_3 , R_4 , R_5 are methyl. To 1 g (2.76 mmol) of olefin 6 in 5 mL of CH_2Cl_2 was added 600 mg (3.46 mmol) of mCPBA and

WO 95/04036 PCT/US93/10166

47

the reaction was stirred at room temperature for 2 h. Water was added followed by extraction of the organics The ether layer was washed with water, 1N Na,CO, brine and dried (MgSO,), filtered and concentrated. Crystallization from MeOH gave the desired epoxide-methyl The methyl ester was hydrolized in refluxing methanolic KOH followed by acidification (1N HCl) to give which was purified crude epoxide-acid 47 crystallization from EtOAc-hex to give 600 mg (1.64 mmol) 10 of a white powder (59% yield). MP: 168 °C; 'H-NMR (CDCl₁) $\delta 1.26 \text{ (s,CH}_3), 1.27 \text{ (s,CH}_3), 1.30 \text{ (s,CH}_3), 1.31 \text{ (s,CH}_3),$ 1.69 (s, (2CH₂)), 2.14 (s, CH₃), 3.15 (d, J=5.6 Hz, CH-O), 3.41 (d, J=5.6 Hz, CH-O), 7.09 (s, Ar-CH), 7.28 (d, J=8.3 Hz, Ar-2(CH)), 7.32 (s,Ar-CH), 8.01 (d,J=8.3 Hz,Ar-2(CH)).

15 Example 17

Preparation of compound 48 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' taken together are CH_2-CH_2 (cyclopropyl), and X = COOH (TPNCB):

The compound was prepared from compound 6 where R1, R₂, R₃, R₄, R₅ are methyl. To a <u>dry</u> 100 mL three necked. round bottom flask fitted with a reflux condensor, dropping funnel, and magnetic stir bar was added 722 mg (11.65 mmol) of zinc dust, 109 mg (1.105 mmol) of cuprous chloride (CuCl), 7.5 mL of dry THF; and 1.48 g (5.52 mmol) 25 of diiodomethane. To the addition funnel is added 19 (2.76 mmol) of compound 6 in 5 mL of dry THF. The flask is heated to 80 °C, followed by dropwise addition of 6. After the addition of 6 was complete, the reaction was allowed to reflux for 30 h or until completion; followed by dilution with 50 mL of ether and 20 mL of saturated aqueous ammonium chloride solution. The organic layer was washed with 10% NaOH (3 x 20 mL), brine and dried over anhydrous MgSO4. The product was concentrated and purified by preparative TLC (2% EtOAc-hexane) to give 220 mg (0.59 mmol) of the methyl ester of 48. Hydrolysis of the methyl 35 ester with refluxing methanolic KOH, followed

acidification (1N HCl), gave 150 mg (0.41 mmol) of the desired compound 48 after crystallization from EtOAchexane (15% yield). MP: 244 °C; 1 H-NMR (CDCl₃) δ 1.28 (s,4 (CH₃)), 1.39 (s,CH₂-CH₂), 1.69 (s,2(CH₂)), 2.12 (s,CH₃), 6.98 (d,J=8.4 Hz,Ar-2(CH)), 7.06 (s,Ar-CH), 7.29 (s,Ar-CH), 7.91 (d,J=8.4 Hz,Ar-2(CH)).

Example 18

Preparation of compound 49 where R_1, R_2, R_3, R_4, R_5 are methyl, R' = H and $R'' = CH_3$, and X = COOH (PTNEB):

The compound was prepared from compound 7 where R₁, R₂, R₃, R₄, R₅ are methyl. To 1g (2.87 mmol) of compound 7 in 25 mL of EtOAc was added 10 mg of 10% Pd/C. The mixture was degassed under vacuum followed by addition of H₂, and allowed to stir under H₂ for 2 h. The reaction was filtered through celite and the product crystallized from EtOAc-hexane to give 750 mg (2.14 mmol) of the desired product 49 (75% yield). MP: 208 °C; ¹H-NMR (CDCl₃) δ1.24 (s,CH₃), 1.25 (s,CH₃), 1.26 (s,CH₃), 1.29 (s,CH₃), 1.61 (d,J=7.2 Hz,CH₃), 1.67 (s,2(CH₂)), 2.12 (s,CH₃), 4.30(q,J=7.2 Hz,CH), 7.02 (s,Ar-CH), 7.20 (s,Ar-CH), 7.24 (d,J=8.4 Hz,Ar-2(CH)).

Example 19

Preparation of compound 50 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' = methylidenecyclopentane, and X = COOH (PTNCB):

The compound was prepared from compound 4 where R₁, R₂, R₃, R₄, R₅ are methyl. To lg (2.87 mmol) of 4 in 25 mL of THF at 0 °C was added 8.6 mL of a lM cyclopentenyl magnesium chloride solution (8.6 mmol). After stirring for 30 m, water was added and acidified with 5 N HCl. The acidified mixture was heated for 5 m, cooled, and the organic product extracted with EtOAc. The EtOAc layer was washed with water and brine, dried (MgSO₄), filtered, and concentrated to give the crude product. Crystallization from EtOAc-hexane gave 340 mg (0.85 mmol) of 50 as a white powder (30% yield). MP: 201 2C; ¹H-NMR (CDCl₃) δ1.27

 $(s, 4(CH_3))$, 1.64 (br t, CH_2), 1.68 (s,2(CH_2)), 1.70 (br t, CH_2), 1.97 (s, CH_3), 2.15 (br t, CH_2), 2.56 (br t, CH_2), 7.04 (s, Ar-CH), 7.05 (s, Ar-CH), 7.29 (d, J=8 Hz, Ar-2(CH)), 7.97 (d, J=8 Hz, Ar-2(CH)).

5 Example 20

Preparation of compound 51 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' = isopropylidene, and X = COOH (PTNIB):

The compound was prepared from compound 4 where R_1 , R_2 , R_3 , R_4 , R_5 are methyl. To 1g (2.87 mmol) of 4 in 25 mL of THF at 0°C was added 8.6 mL of a 1M isopropyl magnesium chloride solution (8.6 mmol). After stirring for 30 m, water was added and acidified with 5 N HCl. The acidified mixture was heated for 5 m, cooled, and the organic product extracted with EtOAc. The EtOAc layer was washed with water and brine, dried $(MgSO_4)$, filtered, concentrated to give the crude isopropylidene product. Crystallization from EtOAc-hexane gave 550 mg (1.46 mmol) of 51 as a white powder (51% yield). MP: 297°C; 1H-NMR $(CDCl_3)$ $\delta 1.25$ (br s, 4 (CH_3)), 1.64 (s, =CCH₃), 1.66 (s, =CCH₃) 1.87 (s,2(CH₂)), 1.96 (s,CH₂), 7.00 (s,Ar-CH), 7.03 (s,Ar-CH), 7.25 (d, J=8 Hz, Ar-2(CH)), 7.97 (d, J=8 Hz, Ar-2(CH)).

Example 21

20

Preparation of compound 52 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and $R'' = \infty$, Z = S, and X = COOH (TTNCTC):

To 1 g (4.9 mmol) of 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydro-naphthalene and 1 g (4.9 mmol) of mono methyl thiophene carboxylic acid chloride in 25 mL of CH₂Cl₂ was added 1 g (7.5 mmol) of AlCl₃. The reaction was heated to reflux for 15 m followed by cooling and addition of 20% aqueous HCl. The product was extracted with EtOAc, washed (H₂O, brine), dried (MgSO₄), filtered, concentrated, and purified by crystallization from MeOH to give 450 mg (1.21 mmol) of the methyl ester of 52 (25% yield). The methyl ester was hydrolized in methanolic KOH followed by acidification (20% HCl) extraction with EtOAc, washed (H₂O,

brine), dried (MgSO₄), filtered, concentrated, and purified by crystallization from EtOAc-hexane to give 375 mg (1.05 mmol) of 52 (87% yield). MP: 206 °C; ¹H-NMR (CDCl₃) δ1.26 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.71 (s,2(CH₂)), 2.38 (s,CH₃), 7.21 (s,Ar-CH), 7.44 (s,Ar-CH), 7.48 (d,J=4 Hz, Thio Ar-CH), 7.85 (d,J=4 Hz,Thio Ar-CH).

Example 22

Preparation of compound 53 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' = methano, Z = S, and X = COOH (TTNETC):

Compound 53 was prepared from the methyl ester of 52 in a manner similar to examples 4 and 5. MP: 200 °C; $^{1}\text{H-NMR}$ (CDCl₃) δ 1.26 (s,2(CH₃)), 1.30 (s,2(CH₃)), 1.69 (s,2(CH₂)), 2.10 (s,CH₃), 5.21 (s,=CH), 5.88 (s,=CH), 6.76 (d,J=4 Hz,Thio Ar-CH), 7.11 (s,Ar-CH), 7.23 (s,Ar-CH), 7.68 (d,J=4 Hz,Thio Ar-CH).

Example 23

Preparation of compound 54 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' = 0x0, and X = tetrazole (3-methyl-TTNCBT):

To 500 mg (1.51 mmol) of 4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzonitrile (synthesized by AlCl₃ catalyzed condensation of 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene with 4-cyanobenzoic acid chloride in CH₂Cl₂) in toluene was added 342 mg (1.66 mmol) of trimethyl tin azide. The mixture was refluxed for 23 h and cooled to give 537 mg (1.44 mmol) of the desired tetrazole 54 as a white precipitate (96% yield). LRMS: 374.15; ¹H-NMR (CD₃SOCD₃) δ1.19 (s,2(CH₃)), 1.32 (s,2(CH₃)), 1.70 (s,2(CH₂)), 2.25 (s,CH₃), 3.19 (s,N-H), 7.30 (s,Ar-CH), 7.32 (s,Ar-CH), 7.90 (d,J=8 Hz,Ar-2(CH)), 8.20 (d,J=8 Hz,Ar-2(CH)).

Example 24

Preparation of compound 55 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' = methano, and X = tetrazole (3-methyl-TTNEBT):

To 500 mg (1.52 mmol) of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) ethenyl] benzonitrile (synthesized by AlCl₃ catalyzed condensation of 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene with 4-cyanobenzoic acid chloride in CH₂Cl₂ followed by treatment of the ketone with CH₃PPh₃Br-NaNH₂) in toluene was added 342 mg (1.67 mmol) of trimethyl tin azide. The mixture was refluxed for 23 h and cooled to give 535 mg (1.44 mmol) of the desired tetrazole 55 as a white precipitate (95% yield). LRMS: 372.25; ¹H-NMR (CD₃SOCD₃) δ1.21 (s,2(CH₃)), 1.24 (s,2(CH₃)), 1.68 (s,2(CH₂)), 1.92 (s,CH₃), 2.55 (s,N-H), 5.27 (=CH), 5.97 (s,=CH), 7.10 (s,Ar-CH), 7.18 (s,Ar-CH), 7.47 (d,J=8 Hz,Ar-2(CH)), 8.00 (d,J=8 Hz,Ar-2(CH)).

Example 25

Preparation of compound 25 where R_1, R_2, R_3, R_4 are methyl, R' and $R'' = \infty$, and X = COOMe:

The compound was prepared in a manner similar to that of compound 4 except that 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene and 4-methyl ester pyridinic 2-acid chloride was substituted for monomethyl terephthalic acid chloride (see examples 1 and 2).

Example 26

30

Preparation of compound 56 where R_1, R_2, R_3, R_4 are methyl, R' and R" = methano, and X = COOH (TTNEP):

Compound 25 was treated with $CH_3PPh_3Br-NaNH_2$ as in example #4. Hydrolysis of the resulting olefinic methyl ester with methanolic KOH, followed by acidification (20% HCl) and crystallization from EtOAc-hexane gave compound 56. MP: 173 °C; ^1H-NMR (CDCl₃) $\delta 1.26$ (s, (CH₃)), 1.27 (s, CH₃), 1.30 (s, 2(CH₃)), 1.70 (s, (CH₂)), 5.70 (s, =CH), 6.10 (s, =CH), 7.08 (d, J=8 Hz, Pyr-CH), 7.27 (s, Ar-CH), 7.19 (d, J=8 Hz, Ar-CH), 7.39 (d, J=8 Hz, Ar-CH), 8.28 (d, J=8 Hz, Pyr-CH), 9.31 (s, Pyr-CH).

Preparation of compound 57 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R" = ∞ , and X = COOH:

Compound 57 was prepared in a manner similar to that of compound 6 (example #4) except that 4-methylester-pyridinic-2-acid chloride was substituted for mono-methyl terephthalic acid chloride (see examples 1 and 2). The resulting methyl ester was hydrolyzed as in example #5 to give compound 57. ¹H-NMR (CDCl₃) δ1.22 (s,2(CH₃)), 1.30 (s, 2(CH₃)), 1.69 (s,2(CH₂)), 2.40 (s,CH₃), 7.22 (s,Ar-CH), 7.43 (s,Ar-CH), 8.13 (d,J=8.0 Hz,Pyr-CH), 8.54 (d,J=8 Hz,Pyr-CH), 9.34 (s,Pyr-CH).

Example 28

Preparation of compound 58 where R_1, R_2, R_3, R_4, R_5 are methyl, 15 R' and R" = methano, and X = COOH (TPNEP):

The methyl ester from example #26 was treated with CH₃PPh₃Br-NaNH₂ as in example #4 followed by hydrolysis with methanolic KOH at reflux for 1 h and acidification with 20% aqueous HCl and crystallization from EtOAc-hexane to give compound 58. MP: 235 °C; ¹H-NMR (CDCl₃) δ1.27 (s,2(CH₂)), 1.31 (s,2(CH₃)), 1.70 (s,2(CH₂)), 2.00 (s,CH₃), 5.55 (s,=CH), 6.57 (s,=CH), 7.06 (d,J=8.3 Hz,Pyr-CH), 7.12 (s,Ar-CH), 7.14 (s,Ar-CH), 8.20 (d,J=8.1 Hz,Pyr-CH). 9.29 (s,Pyr-CH).

25 Example 29

Preparation of methyl 2-acetyl-5-pyridinecarboxylate 32:

To a slurry of the 2,5-pyridinedicarboxylic acid 29 (34 g, 0.2 mol) in 120 mL of methanol at 0°C was added dropwise 15 mL of thionyl chloride and the resulting slurry was warmed up to room temperature, giving rise to a clear solution. The mixture then was heated at reflux for 12h and to afford a yellow slurry. Filtration of the reaction mixture provided dimethyl-2,5-pyridinedicarboxylate 30 in quantitative yield as a yellow strystalline solid.

PCT/US93/10166

The pyridinedicarboxylate 30 (19.5 g, 0.1 mol) was treated with solid KOH (6.51 g, 0.1 mol) in 300 mL of methanol at room temperature for 2 h, giving rise to a thick pale white suspension, which was filtered and dried 5 to provide the mono-potassium pyridinecarboxylate 3 in quantitative yield.

The crude mono-pyridinecarboxylate 31 (880 mg, 4 mmol) was treated with 3 mL of thionyl chloride at reflux for 2h and the excess SOCl, was removed by the usual method. To the crude acid chloride in 8 mL of THF at -78°C was added slowly a freshly prepared 1.0M ether solution (5.5 mL, 5.5 mmol) Me₂CuLi. The resulting dark slurry was allowed to stir at -78 °C for 60 min. and then quenched with 2% HCl. Standard work-up 15 chromatography of the crude mixture afforded methyl-2acetyl-5-pyridinecarboxylate 32 in over 56% yield as a yellow solid.

Example 30

35

Preparation of compound 58 (TPNEP) (by an alternate scheme 20 than in Example 28) and of corresponding ester Et-58 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R" are methano, and = COOH:

A solution of 2-bromotoluene (8.5 g, 50 mmol) and 2,2-dichloro-2,2-dimethylhexane (9.15 g, 50 mmol) in 100 mL of dichloroethane was treated with aluminum trichloride (0.66 q, 5 mmol). The resulting dark brown solution was allowed to stir at room temperature for 30 min. and was then guenched with ice. Removal of solvent and recrystallization from methanol afforded 2-bromo-3,5,5,8,8pentamethyl-5,6,7,8-tetrahydronaphthalene 33 30 yield as a white solid. A THF (4 mL) solution containing the bromocompound 33 (141 mg, 0.5 mmol) at -78 °C was treated with a 1.6 M hexane solution (0.4 mL, 0.6 mmol) of n-BuLi, and the resulting mixture was then cannulated to solution of the 2-acetyl-5-pyridine-(2 mL) carboxylate 32 (72 mg, 0.4 mmol; at -78 °C. The mixture

WO 95/04936 PCT/US93/10166

was allowed to stir at -78 °C for 60 min. and was quenched with 2% HCl. Removal of the solvent and chromatography of the crude mixture provided the intermediate 34, which was then treated with 5% HCl at reflux followed by KOH-MeOH at 5 70°C for 30 min. Standard work-up and chromatography of the crude mixture provided 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2 naphthyl)ethenyl]. pyridine-5carboxylic acid 58 in over 50% yield as a white solid. 1H- $(CDCl_3)$ $\delta 1.27$ $(s, 2(CH_3))$, 1.31 $(s, 2(CH_3))$, 1.70(s, 2(CH₂)), 2.00 (s, CH₃), 5.56 (s, =CH), 6.55 (s, =CH), 7.08(d, J = 8.3 Hz, Pyr-CH), 7.12 (s, Ar-CH), 7.15 (s, Ar-CH),8.23 (d, J = 8.3 Hz, Pyr-CH) and 9.32 (s, Pyr-CH).

Treatment of the pyridinecarboxylic acid 58 (15 mg, 0.004 mmol) with one drop of SOCl, in 5 mL of ethanol at 15 reflux for 60 m, followed by a flash chromatography, gave rise to a quantitative yield of the ethyl ester Et-58 as a white solid. ¹H-NMR (CDCl₃) δ 1.27 (s,2(CH₃)), 1.31 $(s, 2(CH_3)), 1.40 (t, J = 7.1 Hz, -CH_2CH_3), 1.70 (s, 2(CH_2)),$ 1.99 (s, CH_3) , 4.40 $(q, J = 7.1 Hz, -CH_3)$, 5.51 (s, = CH), 20 6.53 (s,=CH), 7.01 (d, J = 8.0 Hz, Pyr-CH), 7.12 (s,Ar-CH), 7.14 (s,Ar-CH), 8.15 (d,J = 8.0 Hz,Pyr-CH) and 9.23 (s, Pyr-CH).

Example 31

10

30

Preparation of 3-acetyl-2-pyridinecarboxylic acid N,N-25 diisopro-pylamide 36a:

The mono-potassium pyridinecarboxylate (1.1 g, 5 mmol) was treated with SOCl₂ (5 mL, excess) at 70 oC for 2h and the excess thionyl chloride was removed to give a yellowish solid. To a solution of diisopropylamine (1 g, 10 mmol) in 10 mL of methylene chloride at 0 ∘C was added the CH,Cl, solution (10 mL) of the above acid chloride. The resulting slurry was allowed to stir at room temperature for 3 h and was filtered from the ammonium salts. Removal of solvent and thromatography of the crude 35 residue afforded the product 36a in 90% yield as a white solid.

20

30

Preparation of compounds 60 (TPNEPC) and 61 (3TTNEPE):

2-Bromo-3,5,5,8,8-pentamethy1-5,6,7,8tetrahydronaphthalene 33 (620 mg, 2.2 mmol) and the 5 acetylpyridineamide 36a (500 mg, 2 mmol) were converted by a similar method as described above to obtain the intermediate 34 in over 80% yield. To a solution of the pyridine amide 34 (432 mg, 1 mmol) in 5 mL of THF at -78°C was added 1.5 M DIBAL toluene solution (0.7 mL, 1.05 mmol) 10 and the resulting yellow clear solution was warmed up to -20 °C slowly in 60 min. and then was guenched with water. Removal of solvent and chromatography of the crude mixture afforded the pyridinealdehyde 35 in 83% yield as a white ¹H-NMR (CDCl₃) δ 1.25 (s,2(CH₃)), 1.29 (s,2(CH₃)), 15 1.70 (s,2(CH₂)), 1.96 (s,CH₃), 5.47 (s,=CH), 5.92 (s,=CH), 7.10 (s,Ar-CH), 7.11 (s,Ar-CH), 7.70 (d,J=8.0 Hz,Pyr-CH), 7.88 (d,J = 8.0 Hz,Pyr-CH), 8.72 (s, Pyr-CH), 10.06(s,CHO).

The pyridinealdehyde 35 (10 mg, 0.03 mmol) was treated with 2.0 mL of $\rm H_2O_2$ in 2 mL of methanol-water 1:1 mixture at room temperature for 10 h and then was quenched with 10% HCl. Extraction of the mixture with EtOAc (40 mL) and removal of solvent gave rise to 5-[1-(3,5,5,8,8pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl] pyridine-2-carboxylic acid 60 as a white solid in almost quantitative yield. $^{1}H-NMR$ (CDCl₁) $\delta 1.26$ (s,2(CH₁)), 1.30 $(s, 2(CH_1)), 1.70 (s, 2(CH_2)), 1.94 (s, CH_1), 5.47 (s, =CH),$ 5.92 (s,=CH), 7.10 (s,Ar-2(CH)), 7.76 (bs,Pyr-CH, 8.16 (bs, Pyr-CH) and 8.65 (s, Pyr-CH).

Treatment of the pyridinecarboxylic acid 60 (5 mg) with one drop of SOCl, in 1 mL of ethanol at reflux for 60 min followed by a flash chromatography gave rise to a quantitative yield of the ethyl ester 61 as a white solid. $^{1}H-NMR$ (CDCl₃) $\delta 1.26$ (s,2(CH₃)), 1.29 (s,2(CH₃)), 1.44 (t,J $35 = 7.1 \text{ Hz}, -\text{CH}, \text{CH}_3), 1.69 (s, 2(CH_2)), 1.95 (s, CH_3), 4.46 (q, J)$ $= 7.1 \text{ Hz}, -\text{CH}_2\text{CH}_3)), 5.43 \text{ (s,=CH)}, 5.88 \text{ (s,=CH)}, 7.09 \text{ (s,Ar-$

PCT/US93/10166

25

CH), 7.10 (s,Ar-CH), 7.64 (d,J = 8.0 Hz, Pyr-CH), 8.03 (d,J = 8.0 Hz,Pyr-CH) and 8.68 (s,Pyr-CH).

Example 33

Preparation of compound 62 where R_1, R_2, R_3, R_4, R_5 are methyl and R' and R" together are CH_2CH_2 (TPNCP):

To 162 mg (2.48 mmol) of zinc dust, 25 mg (0.25 mmol) of CuCl, and 332 mg (1.24 mmol) of CH, I, in 3 mL of dry ether was added dropwise 150 mg (0.413 mmol) of olefin 26 where R_1 , R_2 , R_3 , R_4 , R_5 are methyl in 5 mL of dry ether. The mixture was heated at reflux for 12 h or until 10 complete by H-NMR. Water was added and the organics extracted with ether, washed with NH₄Cl, brine and dried over MgSO4. The desired cyclopropyl compound was purified by crystallization from ether-MeOH to give 60 mg (0.159 mmol) of the methyl ester of 62 as a pale yellow solid 15 (39% yield). MP: 177 °C; ${}^{1}H$ -NMR (CDCl₃) δ 1.27 (s,2(CH₃)), 1.31 $(s, 2(CH_3))$, 1.35 (s, CH_2) , 1.70 $(s, 2(CH_2))$, 1.85 (s, CH_2) , 2.11 (s, CH_3) , 3.90 (s, CH_3) , 6.75 (d, J = 8.0 Hz, Pyr-CH), 7.14 (s,Ar-CH), 7.26 (s,Ar-CH), 7.98 (d,J = 8.0 Hz, Pyr-CH) and 9.23 (s, Pyr-CH).

To 60 mg (0.16 mmol) of the above methyl ester in 10 mL of MeOH was added 1 mL of an aqueous 6N KOH solution. After stirring at room temperature for 1 h, the hydrolysis was complete and the reaction was acidified with 1 N aqueous HCl until the solids precipitated. The product was extracted with ether, washed with water, brine and dried over MgSO₄. Crystallization from EtOAc-hexanes gave 33 mg (0.094 mmol) of the pyridinal carboxylic acid 62 (59% yield). MP: 275 °C; 1 H-NMR(CDCl₃) δ 1.25 (s,2(CH₃)), 1.35 (s,2(CH₃)), 1.40 (s,CH₂), 1.72 (s,2(CH₂)), 1.85 (s,CH₂), 2.15(s,CH₃), 6.78 (d,J = 8.0 Hz,Pyr-CH), 7.14 (s,Ar-CH), 7.26 (s,Ar-CH), 8.02 (d,J = 8.0 Hz,Pyr-CH) and 9.15 (s,Pyr-CH).

Preparation of compound 63 where R_1 , R_2 , R_3 , R_4 , R_5 are methyl, R' and R'' are methano, $X = CONHR_9$, and $R_9 = 4$ -hydroxyphenyl (3-methyl-TTNEHBP):

To 750 mg (10 mml) of DMF in 22 mL of anhydrous ether 5 was added 1.3g (10 mmol) of oxalyl chloride. The reaction was stirred for 1 h, followed by removal of solvent to give a crude white solid (dimethylchloroformadinium chloride). To the dimethylchloro-formadinium chloride was added 2.87 g (8.24 mmol) of compound 7 in 12 mL of dry 10 DMF. The reaction was stirred for 20 m at room temperature followed by cooling to 0°C. The cooled solution of the acid chloride of 7 was added dropwise to a cooled DMF solution containing 3.62 g (33 mmol) aminophenol and 1.68 g (16.3 mmol) of triethyl amine. After stirring at 0°C for 30 m, the reaction was warmed to room temperature for 12 h. Aqueous 20% HCl was added and the resulting solid was filtered and washed with water, acetone, and EtOAc to give 600 mg (1.36 mmol) of the desired compound 63 (17% yield). ¹H-NMR (CDCl₃) δ1.29 $(s, 2(CH_3)), 1.31 (s, 2(CH_3)), 1.71 (s, (CH_2)), 1.99 (s, CH_3),$ 5.31 (s,=CH), 5.80 (s,=CH), 6.85 (d,Ar-2(CH)), 7.09 (s,Ar-CH), 7.16 (s,Ar-CH), 7.40 (d,Ar-2(CH)), 7.48 (d,Ar-2(CH)), 8.40 (d, Ar-2(CH)).

25 Example 35 '

Preparation of compound 64 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R" are methano, X = CONHR, and R, = 4-fluorophenyl (3-methyl-TTNEFBP):

The compound was prepared in a manner similar to that of compound 63 except that 4-fluoroaniline was substituted for 4-aminophenol. MP: 203°C; ¹H-NMR (CDCl₃) δ1.28 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.70 (s,2(CH₂)), 1.96 (s,CH₃), 5.33 (s,=CH), 5.81 (s,=CH), 7.05 (d,J=9 Hz),Ar-2(CH)), 7.09 (s,Ar-CH), 7.13 (s,Ar-CH), 7.39 (d,J=8.4 Hz,Ar-2(CH)), 7.59 (dd,J=5,9 Hz,Ar-2CH), 7.75 (brs NH), 7.78 (d,J=8.4 Hz,Ar-2(CH)).

Preparation of compound 65 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' are methano, $X = CONHR_9$, and $R_9 = 4$ -phenylcarboxylic acid (3-methyl-TTNECBP):

The compound was prepared in a manner similar to that of compound 63 except that methyl 4-aminophenyl carboxylate was substituted for 4-aminophenol. The resulting ester was hydrolyzed in methanolic KOH, followed by acidification (20% HCl) to give the desired compound 65.

MP: 200 °C; 1 H-NMR (CDCl₃) δ 1.28 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.71 (s,2(CH₂)), 1.97 (s,CH₃), 5.34 (s,=CH), 5.85 (s,=CH), 7.09 (s,Ar-CH), 7.14 (s,Ar-CH), 7.40 (d,J=8 Hz,Ar-CH), 7.80 (d,J=8 Hz,Ar-2(CH)), 7.87 (br s,Ar-2(CH)), 8.14 (br s,Ar-2(CH)).

15 Example 37

Preparation of compound 66 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' are oxo, $X = CONHR_5$, and $R_3 = 3$ -hydroxyphenyl (3-methyl-m-TTNCHBP):

To 750 mg (10 mml) of DMF in 22 mL of anhydrous ether 20 was added 1.3g (10 mmol) of oxalyl chloride. The reaction was stirred for 1 h, followed by removal of solvent to give a crude white solid (dimethylchloroformadinium chloride). To the dimethylchlorófor-madinium chloride was added 2.88 g (8.24 mmol) of compound 4 in 12 mL of dry DMF. The reaction was stirred for 20 m at room temperature, followed by cooling to 0°C. The cooled solution of the acid chloride of 7 was added dropwise to a cooled DMF (0°C) solution containing 3.62 g (33 mmol) of 4-aminophenol and 1.68 g (16.3 mmol) of triethyl amine. After stirring at $0 \, {\circ} \, {C}$ for $30 \, {\,\mathrm{m}}$, the reaction was warmed to room temperature for 12 h. Aqueous 20% HCl was added and the resulting solid was filtered and washed with water, acetone, and EtOAc to give 750 mg (1.70 mmol) of the desired compound 66 (21% yield). MP: 182°C; H-NMR (CDCl₃) δ 1.22 (s,2(CH₃)), 1.32 (s,2(CH₁)), 1.70 (s,2(CH₂)), 2.37 (s, CH_3) , 6.58 (m, Ar-2(CH)), 7.20 (d, J=8 Hz, Ar-CH), 7.22

(s,Ar-CH), 7.28 (s,Ar-Ch), 7.91 (d,J=8.3 Hz,Ar-2(CH)), 8.26 (d,J=8.3 Hz,Ar-2(CH)).

Example 38

Preparation of compound 67 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R" are methano, X = CONHR, and R, = 3-hydroxyphenyl (3-methyl-m-TTNEHBP):

The compound was prepared in a manner similar to that of compound 63 except that 3-aminophenol was substituted for 4-aminophenol. MP: 136°C; ¹H-NMR (CDCl₃) δ1.28 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.70 (s,2(CH₂)), 1.97 (s,CH₃), 5.35 (s,=CH), 5.84 (s,=CH), 6.57 (m,Ar-2(CH)), 7.09 (s,Ar-CH), 7.14 (s,Ar-CH), 7.16 (m,Ar-CH), 7.39 (d,J=8.3 Hz,Ar-2(CH)), 8.09 (d,J=8.3 Hz,Ar-2(CH)).

Example 39

Preparation of compound 68 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R" are methano, X = CONHR, and R, = 2-hydroxyphenyl (3-methyl-o-TTNCHBP):

The compound was prepared in a manner similar to that of compound 63 except that 2-aminophenol was substituted 20 for 4-aminophenol. MP: $180 \circ C$; 1H -NMR (CDCl $_3$) $\delta 1.28$ (s,2(CH $_3$)), 1.31 (s,2(CH $_3$)), 1.71 (s,2(CH $_2$)), 1.97 (s,CH $_3$), 5.35 (s,=CH), 5.84 (s,=CH), 6.9 (m,Ar-CH), 7.08-7.2 (m,Ar-CH), 7.09 (s,Ar-CH), 7.13 (s,Ar-CH), 7.42 (d,J=8.4 Hz,Ar-2(CH)), 7.83 (d,J=8.4 Hz,Ar-2(CH)), 8.03 (brs,Ar-CH), 8.64 (s,NH).

Example 40

30

Preparation of compound 69 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' are methano, $X = CONHR_9$, and $R_9 = 3$ -phenylcarboxylic acid (3-methyl-m-TTNECBP):

The compound was prepared in a manner similar to that of compound 63 except that methyl-3-amino phenyl carboxylate was substituted for 4-aminophenol. The resulting ester was hydrolyzed in methanolic KOH followed by acidification (20% HCl) to give the desired compound 69.

MP: 250°C; 1 H-NMR (CDCl₃) δ 1.28 (s,2(CH₃)), 1.31 (s,2(CH₃)), 1.71 (s,2(CH₂)), 1.97 (s,CH₃), 5.34 (s,=CH), 5.85 (s,=CH), 7.09 (s,Ar-CH), 7.14 (s,Ar-CH), 7.40 (d,J=8 Hz, Ar-2(CH)), 7.55 (m,Ar-CH), 7.76 (m,Ar-CH), 7.80 (d,J=8 Hz, Ar-2(CH)), 7.87 (s,Ar-CH), 8.14 (s,NH).

Example 41

Preparation of compound 70 where R_1, R_2, R_3, R_4, R_5 are methyl, R' and R'' are methano, n=0, and X = COOH:

The compound was prepared in a manner similar to that of compound 7 except that 1,1,3,3,5-pentamethylindane was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 145°C; ¹H-NMR (CDCl₃) δ1.05 (s,2(CH₃)), 1.28 (s,CH₃), 1.31 (s,CH₃), 1.38 (s,CH₂), 1.98 (s,CH₃), 5.34 (s,CH), 5.84 (s,CH), 6.90 (s, Ar-CH), 6.92 (s, Ar-CH), 7.36 (d,J=8.4 Hz, Ar-2 (CH)), 8.00 (d,J=8.4 Hz,Ar-2(CH)).

Example 42

Preparation of compound 71 where $R_1,R_2,R_3,R_4,R_5,R_{14}$ are methyl, R' and R" are methano, n=0, and X = COOH:

The compound was prepared in a manner similar to that of compound 7 except that 1,1,2,3,3,5-pentamethylindane was substituted for 1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene in examples 1, 2, 4, and 5. MP: 217°C; ¹H-NMR (CDCl₃) δ1.01 (d,J=7.3 Hz,CH₂), 1.08 (s,CH₃), 21.10 (s,CH₃), 1.27 (s,CH₃), 1.30 (s,CH₃), 1.88 (q,CH), 2.00 (s,CH₃), 5.35 (s,=CH), 5.85 (s,=CH), 6.95 (s,Ar-CH), 6.98 (s,Ar-CH), 7.38(d,J=8.3 Hz,Ar-2(CH)), 8.00 (d,J=8.3 Hz,Ar-2(CH)).

Example 43

Preparation of compound 72 where R_1, R_2, R_3, R_4, R_5 , are methyl, R' and R" are H, and X = COOH:

The compound was prepared in a manner similar to that of compound 4 (examples 1 and 2) except that methyl-4-(bromomethyl)benzoate was substituted for mono-methyl

terephthalic acid chloride. MP: 237°C; $^{1}\text{H-NMR}$ (CDCl₃) δ 1.23 (s,2(CH₃)), 1.27 (s,2(CH₃)), 1.67 (s,2(CH₂)), 2.16 (s,CH₃), 4.06 (s,CH₂), 7.01 (s,Ar-CH), 7.08 (s,Ar-CH), 7.25 (d,J=8 Hz,Ar-2(CH)), 8.01 (d,J=8 Hz,Ar-2(CH)).

5 Example 44

Preparation of compound 81:

To 4.56 g (25.0 mmol) of trimethylphosphonoacetate in 50 mL of THF under argon at 0°C was added 902 mg (22.5 mmol) of NaH (60% in oil) in three portions. After stirring for 30 m at 0°C, 2.27 mL (21.2 mmol) of isopropyl-methylketone in 10 mL of THF was added. The reaction mixture was heated to 65°C for 3 hr, then cooled to room temperature, poured into saturated aqueous NH₄Cl (50 mL), and the organic products extracted with ether (250 mL). The ether layer was washed with water (2 x 30 mL), brine (30 mL), dried (MgSO₄), filtered through a short bed of silica gel, and concentrated to afford 1.6 g of an essentially pure £,Z mixture of the desired ester 81/65% yield).

20 Example 45

25

30

35

Preparation of compound 87A where R' is isopropyl and R" is H:

To a solution of 1.2 mL (8.6 mmol) of diisopropylamine in 5 mL of THF at -78°C was added 2.57 mL (6.4 mml) of a 2.5 M solution of nBuLi. The mixture was stirred for 10 m, followed by dropwise addition of 609 mg (4.3 mmol) of the ester 81. The reaction was warmed to room temperature and stirred for an additional 30 m, followed by addition of 651 mg (4.3 mmol) of cyclocitral in 5 mL of THF. After stirring for 30 m, the reaction was poured into 10 mL of saturated aqueous NH₄Cl and the organic layer extracted with ether. The ether layer was washed with water and brine, dried (MgSO₄), filtered, and concentrated to afford 729 mg of essentially pure lactone 87A.

WU 95/04036 PCT/US93/10166

62

To 1.1 g (4.2 mmol) of the lactone 87A in 21 mL of CH_2Cl_2 at -78°C, was added DIBAL (5.0 mmol, 5 mL of a 1 M hexane solution). After stirring at -78°C for 30 m, the reaction was quenched with 20 mL of saturated aqueous KNatartrate solution, followed by extraction of the reaction products with 100 mL of EtOAc. The EtOAc solution was dried over MgSO₄, filtered, and concentrated to give the lactol 87B in quantitative yield. The lactol was used in the next step without further purification.

10 Example 46

Preparation of compound 88 where R' is isopropyl and R" is H:

To a CH₂Cl₂ solution containing 380 mg (1.44 mmol) of the lactol 87B at room temperature was added HCl (0.12 M in CH₂Cl₂, 3 mL, 0.36 mmol). The reaction was stirred for 3 h or until all of the lactol was consumed by TLC. The reaction mixture was poured into saturated NaHCO₃ at 0°C, followed by extraction with 50 mL of CH₂Cl₂. The lower organic layer was washed with water (2 x 10 mL), dried (MgSO₄), and concentrated to obtain 310 mg (1.26 mmol) of virtually pure aldehyde 88(88% yield).

Example 47

Preparation of compound 89 where R' is isopropyl and R" is H:

To a solution of 815 mg (3.1 mmol) of the phosphono reagent 90 in 6 mL of THF was added 93 mg (2.3 mmol) of a NaH (60% in oil), and the mixture stirred for 10 m. To this mixture at room temperature was added 380 mg of the aldehyde 88 (from example #46). After stirring for 30 m, aqueous NH₄Cl was added, followed by extraction of the organic products with ether. The ethereal layer was washed (water, brine), dried (MgSO₄), filtered, concentrated, and purified by flash chromatography (silica gel, 60% benzene in hexanes) to give the ester 89.

Preparation of compound 75:

To a solution of 15 mg (0.042 mmol) of compound 89 in 1 mL of a 1:1 MeOH-H₂O solution at room temperature was added 4.3 mg (0.26 mmol) of KOH. The mixture was heated to 70°C for 2 h, cooled to 0°C, diluted with ether (10 mL), and acidified with 0.1 M HCl. The ether layer was washed (water, brine), dried (MgSO₄), concentrated, and purified by silica gel chromatography (10% MeOHCHCl₃) to give the pure acid 75. ¹H-NMR (CDCl₃) δ 1.02 (s, 2(CH₃)), 1.12 (d, J=4.5 Hz, (2(CH₃)), 1.50 (m, CH₂), 1.62 (m, CH₂), 1.75 (s, CH₃), 2.05 (t, J=5 Hz, CH₂), 2.31 (s, CH₃), 2.75 (q, J=4.5 Hz, CH(CH₃)₂), 5.78 (s, CH), 6.08 (d, J=12 Hz, CH), 6.24 (d, J=16 Hz, CH), 6.26 (d, J=16 Hz, CH), 7.21 (dd, J=16, 12 Hz, CH).

Example 49

Preparation of compound 73:

Compound 73 was prepared in a manner similar to compound 75 (examples 44-48) except compound 79, rather than compound 81, was utilized as a starting material. Compound 79 was prepared in a manner similar to compound 81 except that ethyl-methylketone was used instead of isopropyl-methylketone. For intermediate compounds 87, 88, and 89, R'is ethyl and R" is H. ¹H-NMR (CDCl₃) δ 1.05 (s, 2(CH₃)), 1.151 (t, J=4.5 Hz, CH₂CH₃), 1.51 (m, CH₂), 1.62 (m, CH₂), 1.71 (s, CH₃), 2.05 (m, CH₂), 2.30 (s, CH₃), 2.35 (t, J=4.5 Hz, CH₂CH₃), 5.78 (s, CH), 6.05 (d, J=11 Hz, CH), 6.25 (d, J=15 Hz, CH), 6.30 (d, J=15 Hz, CH), 6.52 (dd, J=15, 11 Hz, CH).

30 Example 50

Preparation of compound 74:

Compound 74 was prepared in a manner similar to compound 75 (examples 44-48) except compound 80, rather than compound 81, was utilized as a starting material.

35 Compound 80 was prepared in a manner similar to compound

81 except that n-propyl-methylketone was used instead of isopropyl-methylketone. For intermediate compounds 87, 88, and 89, R' is n-propyl and R" is H. $^{1}\text{H-NMR}$ (CDCl $_{3}$) δ 0.9 (t, J=5 Hz, CH $_{2}$ CH $_{3}$), 1.02 (s, 2(CH $_{3}$)), 1.40-1.65 (m, 3(CH $_{2}$)), 1.70 (s, CH $_{3}$), 2.00 (m, CH $_{2}$), 2.40 (m, CH $_{2}$ CH $_{3}$), 5.75 (s, CH), 6.05 (d, J=12 Hz, CH), 6.21 (d, J=15 Hz, CH), 6.25 (d, J=16 Hz, CH), 6.50 (d, J=16 Hz, CH), 7.10 (dd, J=15, 12 Hz, CH).

Example 51

10 Preparation of compound 76:

Compound 76 was prepared in a manner similar to compound 75 (examples 44-48) except compound 82, rather than compound 81, was utilized as a starting material. Compound 82 was prepared in a manner similar to compound 81 except that methyl-trimethylphosphonoacetate was used instead of trimethylphosphonoacetate and acetone was used instead of isopropyl-methylketone. For intermediate compounds 87, 88, and 89, R' is methyl and R" is methyl. 1H-NMR (CDCl₃) δ 1.05 (s, 2(CH₃)), 1.50 (m, (CH₂), 1.65 (m, CH₂), 1.75 (s, CH₃), 1.95 (s, CH₃), 2.05 (m, CH₂ + CH₃), 2.35 (s, CH₃), 5.81 (s, CH), 6.25 (d, J=16 Hz, CH), 6.30 (d, J=16 Hz, CH), 6.72 (d, J=16 Hz, CH), 7.35 (d, J=16 Hz, CH).

Example 52

30

35

25 Preparation of compound 77:

Compound 77 was prepared in a manner similar to compound 75 (examples 44-48) except compound 83, rather than compound 81, was utilized as a starting material. Compound 83 was prepared in a manner similar to compound 81 except that t-butyl-methylketone was used instead of isopropyl-methylketone. For intermediate compounds 87, 88, and 89, R' is t-butyl and E" is H. $^{1}\text{H-NMR}$ (CDCl₃) δ 0.89 (s, CH₃), 0.90 (s, CH₃), 1.20 (s, C(CH₃)₃), 1.45 (m, CH₂), 1.65 (m, CH₂), 1.70 (s, CH₃, 2.01 (t, J=5 Hz, CH₂), 2.32 (s, CH₃), 5.71 (s, CH), 6.00 (d, J=12 Hz, CH), 6.32

(d, J=16 Hz, CH), 6.50 (d, J=16 Hz, CH), 7.10 (dd, J=16, 12 Hz, CH).

Example 53

Preparation of compound 95:

To 1.4 g (2.9 mmol) of the phosphonium salt 91 in 20 mL of dry THF under argon at 0 °C was added 1.1 mL (2.6 mmol) of a 2.4 M nBuLi solution. The dark red ylide was stirred at 0 °C for 30 m and cooled to -78 °C. To the ylide was added 391 mg (2.9 mmol) of the dialdehyde 92 in 2 mL of THF. The reaction was stirred for 20 m and then poured into aqueous NH₄Cl, diluted with ether (50 mL), the ethereal layer washed with water, brine, dried (MgSO₄), filtered, and concentrated. The crude product was purified by chromatography (SiO₂, 5% ether-hexane) to give 543 mg (2.14 mmol) of the pure aldehyde 93 (74% yield).

Compound 94 was prepared in a manner similar to example #47.

Compound 95 was prepared in a manner similar to example #48. $^{1}\text{H-NMR}$ (CDCl₃) δ 1.06 (s, (CH₃)₂, 1.50 (m, CH₂), 1.65 (m, CH₂), 1.75 (s, CH₃), 2.05 (t, J=5 Hz, CH₂), 2.40 (s, CH₃), 5.90 (s, CH), 6.45 (d, J=16 Hz, CH), 6.60 (d, J=16 Hz, CH), 6.72 (d, J=16 Hz, CH), 7.20-7.50 (m, Ar-4 H+ CH).

Example 54

25 Preparation of compound 100:

To a solution containing cis-1,2-cyclohexanedime-thanol 96 (400 mg, 2.9 mmol) and triethylamine (300 mg, 3.0 mmol) in 30 mL of ether was added benzoyl chloride (400 mg, 2.9 mmol), giving rise to a white cloudy solution. The reaction mixture was stirred at room temperature for 15 h. Filtration from the white solid provided the crude mixture, which was then chromatographed to afford the monoprotected diol in 50% yield. To a solution of DMSO (0.3 mL, 4 mmol) in 3 mL of methylene chloride at -78°C was added 2.0 M CH₂Cl₂ solution (1.0 mL.

10

2.0 mmol) of oxalyl chloride and the resulting clear solution was stirred at -60°C for 20 m before the above alcohol (370 mg, 1.5 mmol) was introduced as a CH₂Cl₂ solution. The reaction mixture was allowed to stir at -60°C for an additional 20 m and triethylamine was added. The mixture was then warmed to room temperature and quenched with water. Standard work-up followed by chromatography gave the cis-aldehyde 97 in 87% isolated yield as a colorless oil; ¹H-NMR (CDCl₃, 400 MHz) 1.40-1.60 (m, 3 H), 1.63-1.75 (m, 4 H), 1.90-2.00 (m, 1 H), 2.35-2.48 (m, 1 H), 2.62-2.68 (m, 1 H), 4.44 (d, J=7.2 Hz, 2 H), 7.44 (t, J=7.6 Hz, 2 H), 7.54 (t, J=7.6 Hz, 1 H), 7.99 (d, J=7.6 Hz, 2 H) and 9.86 (s, 1 H).

The reaction of 2,6,6-trimethylcyclohexenylmethyl- triphenylphosphonium bromide 91 (1.0 g, 2 mmol)
with 0.5 M toluene solution of KN (SiMe₃)₂ (3 mL, 1.5 mmol)
in THF gave a dark red slurry at room temperature, to
which the aldehyde 97 in THF (320 mg, 1.3 mmol) was slowly
added over 30 min. After stirring for 2h, the reaction
mixture was quenched with 2% HCl and was extracted with
ethyl acetate. Removal of solvent and chromatography of
the crude residue afforded the diene product 98 in about
40% yield, which was then hydrolyzed to give the alcohol
98a; ¹H-NMR (CDCl₃, 400 MHz) 0.97 (s, 3 H), 0.98 (s, 3 H),
1.20-1.45 (m, 8 H), 1.55-2.00 (m, 8 H), 1.66 (s, 3 H),
3.44-3.52 (m, 1 H), 3.65-3.71 (m, 1 H), 5.26 (dd, J=12.5
and 7.5 Hz, 1 H) and 5.88 (dd, J=12.5 and 1.0 Hz, 1 H).

The alcohol 98a was oxidized by similar method described above to afford the aldehyde 99 in excellent 30 yield, which then was coupled by a standard Wittig rection to form the ethyl ester of the final product. Hydrolysis of the ester with KOH in methanol/water provided 100 as a colorless oil; ¹H-NMR (CDCl₃, 400 MHz) 0.89 (s, 3 H), 0.92 (s, 3 H), 1.20-1.80 (m, 14 H), 1.58 (s, 3 H), 1.90-1.98 (m, 2 H), 2.23 (s, 3 H), 5.12 (dd, J=13.1 and 7.0 Hz, 1 H), 5.65-5.82 (m, 2 H) and 6.08-6.13 (m, 2 H).

20

25

Example 55

Preparation of compound 104:

To a clear solution of the bromocompound 33 (1.41 g, 5.0 mmol) in THF at -78°C was added 1.6 M n-BuLi hexane solution (3.5 mL, 5.6 mmol), generating a cloudy yellowish mixture, which was stirred at the temperature for 15 m. The anion solution was cannulated to a CuI THF slurry at -30°C and the resulting dark mixture was allowed to stir for 20 m before being cannulated to another flask charged with acetoxyacetyl chloride THF solution at -78°C. The reaction mixture was stirred at low temperature for 20 m and then was warmed up to RT followed by addition of water to quench the reaction. Standard work-up and purification by flash chromatography of the mixture afforded the product 101 in 55% yield; ¹H-NMR (CDCl₃, 400 MHz) 1.28 (s, 6 H), 1.29 (s, 6 H), 1.69 (s, 4 H), 2.21 (s, 3 H), 2.47 (s, 3 H), 5.20 (s, 2 H), 7.18 (s, 1 H) and 7.26 (s, 1 H).

The intermediate 101 (200 mg, 0.7 mmol) was treated with the ylide derived from KN(SiMe₃)₂ and methyltriphenyl-phosphonium bromide (357 mg, 1.0 mmol) in 20 mL of THF at room temperature for 16 h followed by hydrolysis of the product to give the allylic alcohol 102 in 50% yield; ¹H-NMR (CDCl₃, 400 MHz) 1.26 (s, 6 H), 1.28 (s, 6 H), 1.67 (s, 4 H), 2.25 (s, 3 H), 4.31 (d, J=6.0 Hz, 2 H), 5.05 (s, 1 H), 5.45 (s, 1 H), 7.03 (s, 1 H) and 7.10 (s, 1 H).

To a solution of the allylic alcohol 102 (95 mg, 0.35 mmol) in 1 mL of ethylene dichloride was added Et₂Zn (0.21 mL, 2 mmol), and then CH₂ICl (700 mg, 4 mmol) at 0°C. The resulting mixture was stirred for 60 m till all starting material disappeared. Standard work-up followed by chromatography of the mixture afforded the cyclopropanol; ¹H-NMR (CDCl₃, 400 MHz) 0.90-1.10 (m, 4 H), 1.26 (s, 12 H), 1.65 (s, 4 H), 2.37 (s, 3 H), 3.57 (d, J=5.5 Hz, 2 H), 7.06 (s, 1 H) and 2.21 (s, 1 H). The intermediate was oxidized to the corresponding aldehyde 103 by the method described above; ¹H-NMR (CDCl₃, 400 MHz) 0.90-1.10 (m, 4

H), 1.25 (s, 6 H), 1.27 (s, 6 H), 1.65 (s, 4 H), 2.21 (s, 3 H), 7.10 (s, 1 H), 7.11 (s, 1 H) and 9.67 (s, 1 H).

The aldehyde was converted by the standard Wittig coupling and ester hydrolysis sequence described previously to the final acid 104; ¹H-NMR (CDCl₃, 400 MHz) 1.05-1.13 (m, 4 H), 1.25 (s, 6 H), 1.28 (s, 6 H), 1.70 (s, 4 H), 2.22 (s, 3 H), 2.24 (s, 3 H), 5.53 (d, J=15.5 Hz, 1 H), 5.85 (d, J=15.5 Hz, 1 H), 6.14 (s, 1 H), 7.05 (s, 1 H) and 7.12 (s, 1 H).

10 Example 56

Preparation of compound 110:

To a solution of the diacid 105 (5 g, 38 mmol) in 60 mL of THF at 0° C was added dropwise the BH $_3$ -THF solution, generating a white slurry, which was stirred at room temperature for 16 h. Then, 22 mL of THF-H₂O (1:1) was added followed by K2CO3. After stirring for 60 m, the reaction mixture was filtered and the filtrate was dried and concentrated to provide the crude diol, which was directly treated with benzoyl chloride (7 g, 50 mmol) and Et₃N (6 g, 60 mmol) in ether for 2 h. Filtration from the 20 white solid and chromatography of the residue afforded the mono-ester of the diol and the diester in good yield. The monoester was then oxidized by the same method to give the corresponding aldehyde 106; 1H-NMR (CDCl3, 400 MHz) 1.24-1.36 (m, 4 H), 4.56 (s, 2 H), 7.43 (t, J=7.9 Hz, 2 H), 7.55 (t, J=7.9 Hz, 1 H), 8.01 (d, J=7.9 Hz, 2 H) and 9.06 (s, 1 H).

To a yellow solution of 2,6,6-trimethylcyclohexenyl-methyltriphenylphosphonium bromide 91 (1.5 g, 3 mmol) in 30 10 mL of THF/DMPU (5/1) at -78°C was added a 1.0 M LiN(SiMe₃)₂ THF solution (3mL, 3 mmol), generating a dark red solution, which was warmed up to RT. The aldehyde 106 (1.1g, 5 mmol) in 3mL of THF was cannulated slowly over 60 m to the above ylide solution and the reaction mixture was allowed to stir for an additional 1 h. Standard work-up followed by chromatography afforded the product 107 in 40%

yield; ${}^{1}H-NMR$ (CDCl₃, 400 MHz) 0.76-0.86 (m, 4 H), 0.95 (s, 6 H), 1.41-1.46 (m, 2 H), 1.56-1.62 (m, 2 H), 1.64 (s, 3 H), 1.95 (t, J=4.0 Hz, 1 H), 4.34 (s, 2 H), 5.31 (d, J=16.0 Hz, 1 H), 5.95 (d, J=16.0 Hz, 1 H), 7.41 (t, J=7.6 Hz, 2 H), 7.54 (t, J=7.6 Hz, 1 H) and 8.04 (d, J=7.6 Hz, 2 H).

Treatment of the ester 107 with MeLi in THF provided the alcohol 108 in quantitative yield as a colorless oil; ¹H-NMR (CDCl₃, 400 MHz) 0.68 (s, 4 H), 0.97 (s, 6 H), 1.42-1.47 (m, 2 H), 1.58-1.63 (m, 2 H), 1.65 (s, 3 H), 1.99 (t, J=5.2 Hz, 2 H), 3.58 (d, J=6.0 Hz, 2 H), 5.27 (d, J=16.0 Hz, 1 H) and 5.94 (d, J=16.0 Hz, 1 H).

The alcohol 108 was converted to the intermediate 109 by the Wittig sequence described previously: Treatment of 108 (180 mg, 0.8 mmol) with triphenyl phosphine (262 mg, 1.0 mmol) and carbontetrabomide (332 mg, 1.0 mmol) in 10 mL of THF for 1 h provided the bromo compound, which was reacted with excess of potassium cyanide in ethanol/water (2/1) for 6 h to give the cyano compound 109; H-NMR (CDCl₃, 400 MHz) 0.78-0.82 (m, 4 H), 0.99 (m, 6 H), 1.45-1.60 (m, 4 H), 1.84 (s, 3 H), 1.95-2.00 (m, 2 H) 2.54 (s, 2 H), 5.18 (d, J=15.5 Hz, 1 H) and 5.90 (d, J=15.5 Hz, 1 H).

The cyano compound 109 was reduced to the aldehyde with DIBAL followed by the Wittig reaction and ester hydrolysis described for compounds 100 and 104, to give the desired product 110; ¹H-NMR (CDCl₃, 400 MHz) 0.59-0.68 (m, 4 H), 0.93 (s, 6 H), 1.40-1.45 (m, 2 H), 1.55-1.60 (m, 2 H), 1.61 (s, 3 H), 1.94 (t, J=6.2 Hz, 2 H), 2.27 (s, 3 H), 2.33 (d, J=5.4 Hz, 2 H), 5.16 (d, J=16.0 Hz, 1 H), 5.71 (s, 1 H), 5.24 (d, J=16.0 Hz, 1 H), and 6.20-6.30 (m, 2 H).

Example 57

Preparation of compound 123:

Condensation of 117 with the isopropyl-methyl ketone 118 was carried out by addition of AlCl, in CH₂Cl₂ at 25°C

to give the ketone 119, which was then condensed with the cyanomethylphosphonate 124 under NaH treatment using THF and DMPU as cosolvent at 80°C, followed by column chromatography to afford the pure cis-nitrile 120. DIBAL reduction of the nitrile 120 afforded the corresponding cisaldehyde 121. Coupling of the aldehyde 121 with the phosphonate 122 under nBuLi treatment using THF and DMPU as cosolvent and subsequent hydrolysis of the Wittig product gave, after column chromatography, pure 123 as a light yellow solid, MP=170-171°C; H-NMR(CDCl₃): ppm 1.07(d, J=7Hz, $2xCH_1$), 1.25 (s, $2xCH_2$), 1.28 (s, $2xCH_3$), 1.68 (s, CH_2CH_2), 2.11 (s, CH_3), 2.70 (m, CH), 5.73(s, CH), 6.16(d, J=11Hz, CH), 6.27(d, J=15Hz, CH), 6.66(dd, J=11, 15Hz, CH), 6.90(dd, J=2, 8Hz, Ar-CH), 7.03(d, J=2Hz, Ar-CH), 7.25(d, J=8Hz, Ar-CH). 15

Example 58

Preparation of compound 128:

Consensation οf 1,1,4,4,6-pentamethyl-1,2,3,4tetrahydronaphthalene 1 with acetyl chloride was carried out by addition of AlCl, in CH,Cl, at 25°C to give ketone 125, which was then condensed with the cyanomethyl phosphonate 124 under NaH treatment using THF and DMPU as cosolvent at 80°C, followed by column chromatography to afford the pure cis-nitrile 126. DIBAL reduction of the nitrile 126 afforded the corresponding cis-aldehyde 127. Coupling of aldehyde 127 with the phosphonate 122 under nBuLi treatment using THF and DMPU as cosolvent and subsequent hydrolysis of the Wittig product gave, after column chromatography, pure 128; ¹H-NMR(CDCl₃): 30 1.22(s, $2xCH_3$), 1.27(s, $2xCH_3$), 1.66(s, CH_2CH_2) 2.07(s, CH_3), 2.08(s, CH_3), 2.13(s, CH_3), 5.72(s, CH), 6.19(d, J=16Hz, CH), 6.22(d, J=8Hz, CH), 6.33(dd, J=8, 16Hz, CH), 6.90(s, Ar-CH), 7.08(s, Ar-CH).

Members of

Evaluation of Retinoid Receptor Subtype Selectivity

Representative synthetic retinoid compounds of the current invention were analyzed and found to exhibit subtype selectivity for retinoid receptors, and to be capable of modulating processes selectively mediated by retinoid X receptors, as discussed more fully below.

As employed herein, the phrase "processes selectively mediated by retinoid X receptors" refers to biological, physiological, endocrinological, and other bodily processes which are mediated by receptors or receptor combinations which are responsive to retinoid X receptor selective processes, e.g., compounds which selectively activate one and/or multiple members of the RXR subfamily. Modulation includes activation or enhancement of such processes as well as inhibition or repression, and can be accomplished in vitro or in vivo. In vivo modulation can be carried out in a wide range of subjects, such as, for example, humans, rodents, sheep, pigs, cows, and the like. well accepted that modulation of such processes has direct relevance to use in treating disease states.

The receptors which are responsive to retinoid X receptor selective ligands include: retinoid X receptoralpha, retinoid X receptor-beta, retinoid X receptorgamma, and splicing variants encoded by the genes for such receptors, as well as various combinations thereof (i.e., homodimers, homotrimers, heterodimers, heterotrimers, and the like). Also included are combinations of retinoid X receptors with other members of the steroid/thyroid superfamily of receptors with which the retinoid X receptors may interact by forming heterodimers, heterotrimers, and the higher heteromultimers. For example, the retinoic acid receptor-alpha, -beta, or -gamma isoforms form a heterodimer with any of the retinoid X receptor isoforms, (i.e., alpha, beta, or gamma, including any combination of the different receptor isoforms), and the various retinoid X receptors form a heterodimer with thyroid receptor and form a heterodimer with vitamin D receptor.

WO 95/04036 PCT/US93/10166

the retinoid X receptor subfamily form a heterodimer with certain "orphan receptors" including PPAR (Issemann and Green, Nature, 347:645-49 (1990)); HNF4 (Sladek et al., Genes & Development 4:2353-65 (1990)); the COUP family of receptors (e.g., Miyajima et al., Nucleic Acids Research 16:11057-74 (1988), and Wang et al., Nature, 340:163-66 (1989)); COUP-like receptors and COUP homologs, such as those described by Mlodzik et al. (Cell, 60:211-24 (1990)) and Ladias et al. (Science, 251:561-65 (1991)); the ultraspiracle receptor (e.g., Oro et al., Nature, 347:298-301 (1990)); and the like.

As employed herein, the phrase "members of steroid/thyroid superfamily of receptors" (also known as "nuclear receptors" or "intracellular receptors") refers to hormone binding proteins that operate as liganddependent transcription factors. Furthermore, classification includes identified members of the steroid/thyroid superfamily of receptors for which specific ligands have not yet been identified (referred to hereinafter as "orphan receptors"). All members of the intracellular receptor superfamily have the intrinsic ability to bind to specific DNA sequences. Following. binding, the transcriptional activity of a target gene (i.e., a gene associated with the specific DNA sequence) is modulated as a function of the ligand bound to the receptor. Also, see Heyman et al., Cell, 68:397-406 (1992), and copending U.S. Serial No. 809,980, filed December 18, 1991, whose entire disclosures are incorporated herein by reference.

The modulation of gene expression by the ligand retinoic acid and its receptors can be examined in a reconstituted system in cell culture. Such a system was used to evaluate the synthetic retinoid compounds of this invention for their interaction with the retinoid receptor subtypes RAR α , RAR β , RAR γ , RXR α , RXR β , and RXR γ .

25

35

The system for reconstituting ligand-dependent transcriptional control, which was developed by Evans et al.,

Science, 240:889-95 (1988), has been termed a "co-transfection" or "cis-trans" assay. This assay is described in further detail in U.S. Patent Nos. 4,981,784 and 5,071,773, which are incorporated herein by reference. Also see Heyman et al., 5 Cell, 68:397-406 (1992). The co-transfection assay provides a mechanism to evaluate the ability of a compound to modulate the transcription response initiated by an intracellular receptor. The co-transfection assay is a functional, rapid assay that monitors hormone or ligand 10 activity, is a good predictor of an in vivo system, and can be used to quantitate the pharmacological potency and utility of such ligands in treating disease states. Berger, et al., J. Steroid Biochem Molec. Biol., 41:733-38 (1992).

Briefly, the co-transfection assay involves the introduction of two plasmids by transient transfection retinoid receptor-negative mammalian The first plasmid contains a retinoid background. receptor cDNA and directs constitutive expression of the encoded receptor. The second plasmid contains a cDNA that encodes for a readily quantifiable protein, e.g., firefly 20 luciferase or chloramphenicol acetyl transferase (CAT), under control of a promoter containing a retinoid acid response element, which confers retinoid dependence on the transcription of the reporter. In this co-transfection assay, all retinoid receptors respond to all-trans-retinoic acid in a similar fashion. This assay can be used to accurately measure efficacy and potency of retinoic acid and synthetic retinoids as ligands that interact with the individual retinoid receptor subtypes.

30 Accordingly, synthetic retinoid compounds of current invention were evaluated for their interaction with retinoid receptor subtypes using the co-transfection assay in which CV-1 cells were co-transfected with one of the retinoid receptor subtypes, a reporter construct, and 35 an internal control to allow normalization of the response

WO 95/04036 PCT/US93/10166

74

for transfection efficiency. The following example is illustrative.

Example 59

10

15

25

Retinoids: All-trans-retinoic acid (RA) and 13-cis-5 retinoic acid (13-cis-RA) were obtained from Sigma. 9-cisretinoic acid (9-cis-RA) was synthesized as described in Heyman et al., Cell, 68:397-406 (1992). Retinoid purity was established as greater than 99% by reverse phase highperformance liquid chromatography. Retinoids were dissolved in dimethylsulfoxide for use the transcriptional activation assays.

<u>Plasmids</u>: The receptor expression vectors used in the co-transfection assay have been described previously (pRShRAR- α : Giguere et al. (1987); pRShRAR- β and pRShRAR- γ : Ishikawa et al. (1990); pRShRXR-α: Mangelsdorf et al., (1990); pRSmRXR- β and pRSmRXR- γ : Mangelsdorf et al., Genes & Devel., 6:329-44 (1992)). A basal reporter plasmid Δ -MTV-LUC (Hollenberg and Evans, Cell, 55:899-906 (1988)) containing two copies of the TRE-palindromic response element 5'-TCAGGTCATGACCTGA-3' (Umesono et al., Nature, 336:262-65 (1988)) was used in transfections for the RARs, and CRBPIIFKLUC, which contains an RXRE (retinoid X receptor response element (Mangelsdorf et al., Cell, 66:555-61 (1991)), was used in transfections for the RXRs.

Co-transfection Assav In CV-1 Cells: A monkey kidney cell line, CV-1, was used in the cis-trans assay. Cells were transfected with two plasmids. The trans-vector allowed efficient production of the retinoid receptor in these cells, which do not normally express this receptor 30 protein. The cis-vector contains an easily assayable gene product, in this case the firefly luciferase, coupled to a retinoid-responsive promoter, i.e., an RARE or RXRE. Addition of retinoic acid or an appropriate synthetic retinoid results in the formation of a retinoid-RAR or -35 RXR complex that activates the expression of luciferase

gene, causing light to be emitted from cell extracts. The level of luciferase activity is directly proportional to the effectiveness of the retinoid-receptor complex in activating gene expression. This sensitive and reproducible co-transfection approach permits the identification of retinoids that interact with the different receptor isoforms.

Cells were cultured in DMEM supplemented with 10% charcoal resin-stripped fetal bovine serum, and experiments were conducted in 96-well plates. The plasmids were transiently transfected by the calcium phosphate method (Umesono and Evans, Cell, 57:1139-46 (1989) and Berger et al., J. Steroid Biochem. Molec. Biol., 41:733-38 (1992)) by using 10 ng of a pRS (Rous sarcoma virus promoter) receptor-expression plasmid vector, 50 ng of the reporter luciferase (LUC) plasmid, 50 ng of $pRS\beta$ -GAL(β -galactosidase) as an internal control, and 90 ng of carrier plasmid, pGEM. Cells were transfected for 6 h and then washed to remove the precipitate. The cells were then incubated for 36 h with or 20 without retinoid. After the transfection, all subsequent steps were performed on a Beckman Biomek Automated Workstation. Cell extracts were prepared, then assayed luciferase β -galactosidase and activities, described by Berger et al. (1992). All determinations were performed in triplicate in two independent experiments and were normalized for transfection efficiency by using β galactosidase as the internal control. Retinoid activity was normalized relative to that of all-trans-retinoic acid and is expressed as potency (EC50), which is the concentration of retinoid required to produce 50% of the maximal observed response, and efficacy (%), which is the maximal response observed relative to that of all-trans-retinoic acid at 10⁻⁵M. The data obtained is the average of at least four independent experiments. Efficacy values less than 35 5% are not statistically different than the 0% background. Compounds with an efficacy of less than

WO 95/04036 PCT/US93/10166

concentrations of 10⁻⁵ M are considered to be inactive. At higher concentrations of compound, such as 10⁻⁴ M, these compounds are generally toxic to cells and thus the maximal efficacy at 10⁻⁵ M is reported in the tables and figures contained herein.

The synthetic retinoid compound 3-methyl-TTNCB, as described above, was evaluated for its ability to regulate gene expression mediated by retinoid receptors. As shown in Figure 1, this compound is capable of activating members of the RXR subfamily, i.e., RXR α , RXR β , and RXR γ , but clearly has no significant activity for members of the RAR subfamily, i.e., RAR α , RAR β , and RAR γ . Assays using all-transretinoic acid (Figure 2) and 9-cis-retinoic acid (Figure 3) were run for reference, and demonstrate that these retinoic acid isomers activate members of both the RAR and RXR subfamilies.

Potency and efficacy were calculated for the 3-methyl-TTNCB compound, as summarized in the following table. For reference, the data for 9-cis-retinoic acid are also included.

TABLE 1 Potency (nM) **Efficacy** 3-Methvl-TTNCB 130% 330 $RXR\alpha$ 52% 25 RXRB200 260 82% $RXR\gamma$ <2% >10,000 RARα <48 >10,000 $RAR\beta$ < 4 % $RAR\gamma$ >10,000

20

WO 95/04036 PCT/US93/10166

77

9-cis-retinoic acid

RXR α RXR β RXR γ	150 100 110	·	140% 140% 140%
RAR $lpha$	160 ·5	٠.	100% 82%
RARΩ RARγ	47	•	120%

5

25

30

As shown by the data in Table 1, 3-methyl-TTNCB readily and at low concentrations activates RXRs. Further, 3-methyl-TTNCB is more potent an activator of RXRs than RARs, and preferentially activates RXRs in comparison to RARs, in that much higher concentrations of the compound are required to activate the RARs. In contrast, 9-cis-retinoic acid does not preferentially activate the RXRs, as also shown in Table 1. Rather, 9-cis-retinoic acid activates the RARβ and RARγ isoforms at lower concentrations and more readily than the RXRβ and RXRγ isoforms, and has substantially the same, within the accuracy of the measurement, activity for the RARα isoform in comparison to the RXRα isoform.

An extract reported to contain 9-cis-retinoic acid has previously been reported as at least 10-fold more potent in inducing RXR\(\alpha\) than RAR\(\alpha\) (Heyman et al., Cell, 68:397,399 (January 24, 1992)). Presently available data-indicate that 9-cis-retinoic acid does not preferentially activate RXRs in comparison to RARs, as shown and discussed above. The compounds of this invention preferentially activate RXRs in comparison to RARs, and are preferably at least three times more potent as activators of RXRs than RARs.

Potency and efficacy have also been calculated for the 3-methyl-TTNEB, 3-bromo-TTNEB, 3-methyl-TTNCHBP, 3-methyl-TTNEHBP, TPNEP, and TPNCP compounds, as summarized below in Table 2.

78

TABLE 2

		Potency (nM)	Efficacy
	<u>3-Me</u>	thyl-TTNEB	
·	RXRα	40	83%
5	$RXR\beta$	21 34	102% .80%
	RARα	>10,000	6%
	$RAR\beta$		17% 19%
10	<u>3-Br</u>	omo-TTNEB	
	RXRα	64	88%
	$RXReta RXR\gamma$	54 52	49% 71%
	RARα	·	3%
15	$rac{RAReta}{RAR\gamma}$		18% 15%
	<u>3-Me</u>	thyl-TTNCHBP	•
•	RXRα	•	113%
20	RXReta	•	155% 128%
	RARα		<2%
	RAR eta		7% 17%
	<u>3 - Me</u>	thyl-TTNEHBP (63)	
25	RXRα	•	125%
	RXReta		121% 163%
	RARα		<2%
30	$RAR\beta$		25% 10%
	TPNE RXRo		75%
	RXR A	5	138% 100%
			<2%
35	RARO RAR <i>(</i> RAR ₁	>10,000	<2% 24%
	1/4/1/	_,	 -

	TPNCP (TPNCP (62)			
	$RXR\alpha$	4		63%	
	$\mathtt{RXR}oldsymbol{eta}$	4	•	93%	
	RXRγ	3		49%	
	$RAR\alpha$	>10,000	• .	<2%	
•	$\mathtt{RAR}oldsymbol{eta}$	>10,000		<2%	
	$RAR\gamma$	>10,000		<2%	

As shown by the data in Table 2, 3-methyl-TTNEB, 3-bromo-TTNEB, 3-methyl-TTNCHBP, 3-methyl-TTNEHBP, TPNEP, and TPNCP each readily and preferentially activate the RXRs, and are more potent as activators of RXRs than of RARs. The diminished activity of these compounds for the RARs in comparison to the RXRs is also shown for some of these compounds in Figures 4-7.

Potency and efficacy for the n-alkyl cyclohexenyl nonatetranoic acid derivative compounds 74, 75, and 77 are as shown below in Table 3, and for compounds 100, 104, 110, 123, and 128 in Table 3A. As shown, these compounds also preferentially activate RXRs, in comparison to RARs. Other geometric isomers of these compounds have also been found to exhibit this same activity.

TABLE 3

			• *
	Compound 74	Potency (nM)	<u>Efficacy</u>
25 .	$RXR\alpha$	11	78%
	$\mathtt{RXR}oldsymbol{eta}$	• 6	91%
	$RXR\gamma$	12	85%
	$RAR\alpha$	>10,000	<2%
	$\mathtt{RAR}oldsymbol{eta}$	3.8	50%
30	$RAR\gamma$	37	61%
	Compound 75		
	RXRlpha	21	100%
	$\mathtt{RXR}oldsymbol{eta}$	18	142%
	$RXR\gamma$	11	106%
35	$RAR\alpha$	>10,000	<2%
	$\mathtt{RAR}oldsymbol{eta}$	180	58%
	$RAR\gamma$	150	119%

Compound 77

80

	Compound 77	·	
5	RXR $lpha$ RXR eta RXR γ	16 11 9	75% 99% 71%
	RAR $lpha$ RAR eta RAR γ	>10,000 140 170	<2% 63% 44%
•			- Tr - Tr - O
		TABLE 3A	
10	Compound 100		
		Potency (nM)	Efficacy
<u>-</u>	RXR $lpha$ RXR eta RXR γ	123 71 106	63% 54% 72%
15	RAR $lpha$ RAR eta RAR γ	>10,000 >10,000 >10,000	9% 5% 4%
	Compound 104	enter en la companya de la companya	
20	$egin{array}{l} \mathtt{RXR}oldsymbol{lpha} \ \mathtt{RXR}oldsymbol{\gamma} \end{array}$	5 13 7	75% 133% 85%
	RAR $lpha$ RAR eta RAR γ	>10,000 >10,000 144	7% 5% 28%
•	Compound 110		
25	RXR $lpha$ RXR eta RXR γ	85 70 198	79% 73% 87%
30	RAR $lpha$ RAR eta RAR γ	>10,000 446 1772	9% 29% 37%
	Compound 123		·
	RXR $lpha$ RXR eta RXR γ	24 21 24	90% 105% 97%
·35	RAR $lpha$ RAR eta RAR γ	>10,000 75 283	11% 55% 49%

	Compound 128			
	$RXR\alpha$	•	11	108%
	$RXR\beta$		22	154%
	RXRγ	:	10	115%
5 .	$RAR\alpha$		>10,000	12%
•	$\mathtt{RAR}oldsymbol{eta}$		180	40%
	RARY		309	37%

The selective activity of the compounds of this invention for Retinoid X Receptors is not exhibited by other known compounds. For example, compounds such as those described in U.S. Patent No. 4,833,240 (Maignan et al.) appear structually similar to the compounds of this invention, but lack a functional group (such as methyl, ethyl, isopropyl, bromo, chloro, etc.) at the 3-position.

15 Such compounds have little or no potency and lack any selectivity for RXRs.

For example, a representative compound of U.S. Patent No. 4,833,240 (Maignan) is shown below, along with the compound 3-methyl-TTNCB of this invention.

. 20

Maignon Ex. II

3-methyl-TTNCB

The potency and efficacy of the Maignon compound and that of 3-methyl-TTNCB are summarized below:

		Potency (nM)	Efficacy
	Maignon Ex. II		
	RXR $lpha$	3,000	82%
	RXR eta	3,000	44%
	RXR γ	3,000	64%
5	RAR $lpha$	>10,000	11%
	RAR eta	1,900	58%
	RAR γ	2,000	56%
	3-Methyl-TTNCB	·	
10	RXR $lpha$	330	130%
	RXR eta	200	52%
	RXR γ	260	82%
·	RAR $lpha$	>10,000	<2%
	RAR eta	>10,000	<4%
	RAR γ	>10,000	<4%

As shown, the Maignon compound is virtually inactive and shows no selectivity for RXRs. In contrast, the compounds of this invention such as 3-methyl-TTNCB, which have a substituant at the 3-position, are potent activators of RXRs and exhibit the unexpected RXR selectivity shown in Table 1 (as well as Tables 2, 3, and 3A) and discussed above.

It can be expected that synthetic retinoid ligands, such as those exemplified in Tables 1, 2, 3, and 3A which preferentially affect some but not all of the retinoid receptor isoforms, can, in pharmacological preparations, provide pharmaceuticals with higher therapeutic indices and a better side effect profile than currently used retinoids. For example, the compounds of the present invention have been observed to be less irritating to the skin than previously known retinoids.

The retinoid compounds of this invention are useful for the treatment of certain dermatological conditions such as keratinization disorders, i.e., differentiation/proliferation. A standard assay to determine the activity of these compounds is the measurement of the enzymatic activity for transglutaminase; this is a measure of the

antiproliferative action of retinoids. Retinoids have been shown to inhibit the pathway of differentiation, which is indicated by a decrease in several biochemical markers that are associated with the expression of squamous cell phenotype, such as transglutaminase. (Yuspa et al., Cancer Research, 43:5707-12 (1983)). As can be seen from Figure 8, the 3-methyl-TTNCB compound is capable of inhibiting transglutaminase activity and inhibits 50% of the enzyme activity at 1 x 10⁻⁷ M.

The retinoid compounds of this invention have been 10 demonstrated in in vitro tests to block (or antagonize) AP-1 activity, a set of oncogenes which drive cellular Many proliferative disorders are the proliferation. results of oncogenes/oncogene activation, and therefore a compound which blocks the AP-1 oncogene pathway can be 15 used to treat diseases associated with proliferative disorders including cancers, inflammatory diseases, psoriasis, etc. For example, the compound 3-methyl-TTNEB was evaluated using the co-transfection assay in which HeLa cells were co-transfected with a plasmid expressing 20 RXRα under the control of a constitutive promoter, and a plasmid which expresses the reporter enzyme luciferase under the control of a conditional promoter (collagenase) ... E.g., Angel et containing an AP-1 responsive element. al., Mol. Cell. Biol., 7:2256 (1987); Lafyatis: et al., Mol. Endocrinol., 4:973 (1990). Following AP-1 activation, the assay results showed antagonism of AP-1 activity by the 3-methyl-TTNEB compound via $RXR\alpha$ in a dosedependent manner. Other compounds of this invention have shown similar antagonism of AP-1 activity. These results demonstrate that RXR-selective compounds such as 3-methyl-TTNEB can be used as anti-proliferatives to limit cell growth and treat diseases associated with hyperproliferation.

35 The compounds of this invention also exhibit good comedolytic activity in the test on Rhino mice described by Kligman et al. (J. of Inves. Derm., 73:354-58 (1979)) and Mezick et

al. (J. of Inves. Derm., 83:110-13 (1984)). The test on Rhino mice has been a model for screening comedolytic agents. The activity of the 3-methyl-TTNCB retinoid compound, as well as 9-cis and all-trans retinoic acid is shown in Figure 9. A 0.1% solution of 3-methyl-TTNCB is capable of inhibiting the utriculi diameter by approximately 50%. It has also been observed that 3-methyl-TTNCB is less irritating to the skin of Rhino mice than 9-cis- or all-trans-retinoic acid.

The co-transfection assay allows examination of the ability of a compound to modulate gene expression in a 10 retinoid receptor dependent fashion. To examine the ability of the compounds of this invention to directly interact with the receptors, we have examined the ligand binding properties of all six retinoid receptors. 15 receptors were expressed employing a baculovirus expression system in which we have demonstrated that RXRlpha binds 9-cis-retinoic acid with high effinity (Heyman et al., Cell, 68:397 (1992)). The binding parameters of receptors expressed in baculovirus systems and mammaliam systems are 20 essentially identical.

The synthetic retinoids of the current invention have also been tested using radioligand displacement assays. By testing the abilities of various synthetic retinoids to compete with the radiolabeled retinoic acid for binding to 25 various receptor isoforms, the ability of the compounds to directly interact with the receptor can be examined, and the relative dissociation constant for the receptor itself can be determined. This is an important supplementary analysis to the co-transfection assay since it can detect 30 different properties/determinants of retinoid activity than are measured in the co-transfection assay. determinants/differences in the two assay systems may include (1) activating or inactivating metabolic alterations of the test compounds, (2) binding to serum proteins which could alter the free concentration or other properties of the test compound, (3) differences in cell permeation among test compounds, (4) intrinsic differences

in the affinity of the test compounds for the receptor proteins, i.e., in K_d , can be directly measured, and (5) conformational changes produced in the receptor after binding of the test compound, reflected in the effects on reporter gene expression; (i.e., a functional measurement of receptor activation).

The 3-methyl-TTNCB compound is capable of displacing 3H -9-cis-retinoic acid bound to the RXRs, but is not capable of displacing radiolabeled ligand that is bound to the RARs. This indicates that the 3-methyl-TTNCB compound preferentially binds RXRs in comparison to RARs, a property which would be expected of a ligand selective for the RXRs. The K_d values were determined by application of the Cleng-Prusoff equation. These values were based on a determination of the IC_{50} value as determined graphically from a log-logit plot of the data.

Binding data were obtained for various compounds using the method discussed in Wecksler & Norman, Anal. Biochem., 92:314-23 (1979). Results are shown below in Table 4.

TABLE 4

3-Methyl-TTNCB	Binding (Kd ₅₀ nM)
RXR $lpha$ RXR eta RXR γ	350 230 365
RAR $lpha$ RAR eta RAR γ	>10,000 >10,000 >10,000
3-Methyl-TTNEB	
RXR $lpha$ RXR eta RXR γ	41 20 22
RAR $lpha$ RAR eta	5,500 5,400 3,200
	RXR α RXR β RXR γ RAR α RAR β RAR γ 3-Methyl-TTNEB RXR α RXR β RXR β RXR γ RAR α

20

	TPNEP (58)	
	RXR $lpha$ RXR $oldsymbol{eta}$ RXR $oldsymbol{\gamma}$	22 21 39
5	RAR $lpha$ RAR eta RAR γ	7,800 4,900 6,000
	TPNCP (62)	
10	RXR $lpha$ RXR eta RXR γ	3 3 3
	RAR $lpha$ RAR eta RAR γ	>10,000 >10,000 >10,000

The compounds in Table 4 were shown to readily and 15 preferentially activate RXRs, and to be more potent as activators of RXRs than of RARs using the co-transfection assay, as discussed above. The binding results in Table 4 show these compounds to also preferentially bind RXRs 20 versus RARs. Taken together the ligand binding properties of these compounds and their ability to selectively modulate members of the RXR subfamily demonstrate the identification of a class of compounds with the unique The binding properties and biological properties. especially the transcriptional activation assays are a good predictor of the pharmacological activity of a compound (Berger et al. (1992)).

It has been recognized that the co-transfection assay provides a functional assessment of the ligand being tested as either an agonist or antagonist of the specific genetic process sought to be affected, and is a predictor of in vivo pharmacology (Berger et al. (1992)). Ligands which do not significantly react with other intracellular receptors, as determined by the co-transfection assay, can be expected to result in fewer pharmacological side effects. Because the co-transfection assay is run in living cells, the evaluation of a ligand provides an early indicator of the potential toxicity of the candidate at

Control of the second of the s

concentrations where a therapeutic benefit would be expected.

Processes capable of being modulated by retinoid receptors, in accordance with the present invention, include in vivo cellular differentiation, the regulation of morphogenetic processes including limb morphogenesis, regulation of cellular retinol binding protein (CRBP), and the like. As readily recognized by those of skill in the art, the availability of ligands for the retinoid X receptor makes it possible, for the first time, to elucidate the processes controlled by members of the retinoid X receptor subfamily. In addition, it allows development of assays for the identification of antagonists for these receptors.

The processes capable of being modulated by retinoid 15 receptors, in accordance with the present invention, further include the in vivo modulation of lipid metabolism; in vivo modulation of skin related processes (e.g., acne, psoriasis, aging, wrinkling, and the like); in vivo modulation of programmed cell death (apoptosis); modulation of malignant cell development, such as occurs, for example, in acute promyelocytic leukemia, mammary cancer, prostate cancer, lung cancer, cancers of the aerodigestive pathway, skin cancer, bladder cancer, and sarcomas; in vivo modulation of premalignant lesions, such as occurs with oral leukoplakia and the like; in vivo modulation of auto-immune diseases such as rheumatoic arthritis; in vivo modulation of fatty acid metabolism; and the like. applications can be expected to allow the modulation of various biological processes with reduced occurrence of undesirable side effects such as teratogenic effects, skin irritation, mucosal dryness; lipid disturbances, and the like. In vivo applications can be employed with a wide range of subjects, such as, for example, humans, rodents, sheep, pigs, cows, and the like.

For example, regarding the in vivo modulation of lipid metabolism referred to above, apolipoprotein A-1 ("apoA1") is a major protein component of plasma high density lipoprotein (HDL) cholesterol. The circulating level of 5 HDL in humans has been shown to be inversely correlated to the risk of atherosclerotic cardiovascular disease (ASCVD), the leading cause of morbidity and mortality in the United States, with a 3-4% increase in ASCVD for every 1% decrease in HDL cholesterol. Gordon et al., New Engl. 10 J. Med., 321:1311 (1989). While there are currently no good therapeutic regimes that increase HDL cholesterol, it can be expected that regulating synthesis of apoAl can be utilized to affect plasma concentrations of HDL cholesterol and to decrease the risk of ASCVD. Reuben et al., It has been established that Nature, 353:265 (1991). regulation of transcription of apoAl is controlled by members of the intracellular receptor superfamily, and further that the apoAl gene transcription start site "A" is a highly selective retinoic acid-responsive element 20 that responds to retinoid X receptors. Rottman et al., Mol. Cell. Biol., 11:3814-20 (1991). Because RXRs can form heterodimers with transrepressers such as ARP-1 and COUP-TF and transactivators such as HNF-4, and RXR response element resides -in the apoAl promoter, retinoids or ligands which selec-25 tively activate members of the RXR family of retinoic acid receptors may regulate apoAl transcription. demonstrated in in vivo studies that the ligands of this invention which have selective activity for RXRs can be used to modulate apoAl/HDL cholesterol and to signifi-30 cantly raise plasma HDL levels, as demonstrated in the following example.

Example 60

Male Sprague-Dawley rats (160-200 gram) were obtained from Harlan. Animals were fed standard laboratory diets (Harlan/Teklad) and kept in an environmentally controlled animal house with a light period lasting from 6 a.m. to 6

p.m. Animals were treated with drugs prepared as suspensions in olive oil.

To verify that RXR activation can increase plasma apoAl/HDL cholesterol, an initial study was carried out 5 that included dosing rats for 4 days with an RAR-selective compound, all-trans retinoic acid, the non-selective RAR/RXR agonist, 9-cis-retinoic acid, and either of two RXRselective agents, 3-methyl-TTNCB or 3-methyl-TTNEB. Each drug was administered at a dose of 100 mg/kg, 10 Positive control groups received olive oil as a vehicle. Twenty-four hours after the last treatment, rats were sacrificed by CO2 inhalation, blood was collected from the inferior vena cava into a tube containing 0.1 ml of 0.15% EDTA and centrifuged at 1500 x g for 20 min. at $4 \, ^{\circ}$ C. 15 Plasma was separated and stored at 4°C for evaluation of plasma total cholesterol and high density lipoprotein cholesterol (HDL-cholesterol).

Plasma total cholesterol was measured enzymatically utilizing Boeringer Mannheim Diagnostics High Performance

20 Cholesterol Methods with an ABBOTT VP Bichromatic Analyzer. HDL cholesterol was measured after preparation of the HDL-containing fraction by heparin-manganese precipitation of plasma. HDL-cholesterol in this fraction was estimated as mentioned earlier. All HDL separations

25 were checked for contamination by other lipoproteins with agarose gel electrophoresis.

The results of this study are shown in Figure 10. As shown, rats receiving the RXR-selective compounds exhibited substantial and statistically significant increases in HDL levels, particularly when receiving 3-methyl-TTNEB.

Because the RXR-selective ligand 3-methyl-TTNEB was the most efficacious, additional 4 day experiments were conducted with this agent at doses of 0.3, 1, 3, 6, 10, 30, 100, or 300 mg/kg i.p. in 1.0 ml olive oil or 1, 3, 10, 30, 100, 300 mg/kg p.o. in 1.0 ml olive oil for 4 days. An additional 30 day p.o. study was conducted with

10, 30, or 100 mg/kg 3-methyl-TTNEB to determine whether tolerance would develop to its pharmacological actions. For the rats receiving 3-methyl-TTNEB in various doses for four days, it was also observed that 3-methyl-TTNEB increased plasma concentrations of HDL-cholesterol in a dose-dependent manner with significant increases being made at the lowest dose, 0.3 mg/kg i.p. At its optimally efficacious dose, 3-methyl-TTNEB increased plasma HLD-cholesterol concentrations from 58 mg/dl to 95 mg/dl - an increase of greater than 60%. Measurement of total cholesterol showed an increase due to the increase of the HDL-cholesterol fraction. Measurement of triglycerides showed either no change or a slight decrease. The 30-day study with 3-methyl-TTNEB did not indicate development of tolerance to its pharmacological action.

This study demonstrated that t-methyl-TTNEB increased plasma concentrations of HDL-cholesterol in a dosedependent manner following either i.p. or p.o. administration.

The effect on circulating apoA1 of orally administered 3-methyl-TTNEB was also studied. Male Sprague-Dawley rats were treated daily with 3 mg/kg body weight of 3-methyl-TTNEB for four days. Serum samples were taken and analyzed by Western Blot using antisera specific to rat apoA1. The treatment with 3-methyl-TTNEB resulted in a significant increase in circulating apoA1 level.

These studies demonstrate that treatment with an RXR specific compound such as 3-methyl-TTNEB increases plasma concentrations of apoAl/HDL cholesterol. Since such animal studies are an accepted predictor of human response, it would therefore be expected that such compounds could be used to therapeutically increase HDL-cholesterol in patients who either have, or are at risk for, atherosclerosis.

Additional invitro studies were also performed utilizing the co-transfection assay previously described within this

application to demonstrate the effect of RXR-selective ligands on regulation of transcription of apoA1, as described in the following example.

Example 61:

This work focused on studying the transcriptional properties of the retinoid receptors RAR and RXR on a reporter molecule (e.g., luciferase) under control of a basal promoter containing the RXR response element from the apoAl gene ("A" site). Plasmid constructs coding for 10 the various receptors were transfected into a human hepatocyte cell line (HepG-2) along with the reporter Reporter plasmids contained multimers of the apoAl "A" site (-214 to -192 relative to transcription start site) shown to bind RXR. Widom et al., Mol. Cell. Biol. 15 12:3380-89 (1992); Ladias & Karathanasis, Science 251:561-65 After transfection, treatment, harvest, and (1991). assay, the data obtained was normalized to transfected beta-galactosidase activity so as to control for transfection efficiency. The results demonstrated activation 20 in the system with the RXR-specific ligands 3-methyl-TTNCB and 3-methyl-TTNEB, in a concentration-dependent fashion demonstrating that the RXR specific ligands could regulate the transcriptional properties via the "A" site from the apoAl gene. These compounds had no effect when RAR was 25 in the transfection, demonstrating receptor specificity. The transcriptional regulation by RXR was dependent on the presence of the hormone response element.

These in *in vivo* and *in vitro* studies demonstrate that the RxR-selective compounds of this invention can be used to elevate ApoAl/HDL cholestrerol and in the therapeutic treatment of related cardiovascular disorders.

Regarding the modulation of programmed cell death (apoptosis), the retinoid compounds of this invention have been demonstrated to induce apoptosis in particular cell types including leukemic cells and squamous epithelial

Normally in cells there is a fine balance carcinomas. between cellular processes of proliferation, differentiation, and cell death, and compounds which affect this balance may be used to treat certain cancers. 5 ally, the ability of 3-methyl-TTNEB to induce differentiation, inhibit proliferation, and induce apoptosis in an acute promyelucytic leukemia cell line, HL60, was studied. Cellular proliferation was measured by a thymidine incorporation assay (Shrivastav et al., Cander Res., 40:4438 (1980)), and 3-methyl-TTNEB was found to have no effect on cellular proliferation. This contrasts alltrans-retinoic acid, which inhibits thymidine incorporation. Cellular differation was measured by the ability of the cells to reduce nitroblue tetrazolium (NBT) (Breitman et al., Proc. Natl. Acad. Sci., 77:2936 (1980)), and 3methyl-TTNEB was found not to induce undue differentiation. The EC_{50} for 3-methyl-TTNEB mediated differentiation was >1000 μM , compared to 2.0 μM for all-trans-retinoic acid. However, 3-methyl-TTNEB was found to induce trans-20 glutaminase activity in the HL60 cells (Murtaugh et al., J. Biol. Chem. 258:11074 (1983)) in a concentrationdependent manner, which correlates with the induction of apoptosis or programmed cell death. It was further found that 3-methyl-TTNEB was able to induce apoptosis as measured by DNA fragmentation and morphological changes. Other retinoid compounds of this invention showed similar results, and similar results were also shown in other cell lines such as squamous epithelial cell lines and ME180 cells, a human cervical carcinoma.

These results show that RXR specific compounds such as 3-methyl-TTNEB induce apoptosis with a minimal direct effect on inhibition of proliferation and differentiation Compounds which are capable of inducing induction. apoptosis have been shown to be effective in cancer 35 chemotherapy (e.g., anti-hormonal therapy for breast and prostate cancer).

In contrast, in another cell type retinoids have been shown to inhibit activation driven T-cell apoptosis and 9-cis-retinoic acid was approximately ten fold more potent than all-trans-retinoic acids (Ashwell et al., Proceedings National Academy of Science, Vol. 90, p. 6170-6174 (1993)). These data imply that RXRs are involved in this event. Thus retinoids could be used to block and/or immunomodulate T-cell apoptosis associated with certain disease states (e.g., AIDS).

It has been surprisingly found that the administra-10 tion of a ligand which has specific activity for RXRs but essentially no activity for RARs, in combination with a ligand that has specific activity for RARS but not RXRs, provides a cellular response at extremely low dosages, dosages at which the ligands individually provide no significant response. Specifically, the concentrationrelated effect of an RXR-specific ligand and a RARspecific ligand on proliferation of a myeloma cell line (RPMI 8226) was studied in in vitro studies using a thymidine incorporation assay. This assay examines the incorporaradiolabeled thymidine into DNA. determining the ability of a compound to inhibit thymidine incorporation into DNA, provides a measure of cell prolif-(L.M. Bradley, Selected Methods in Cellular eration. 25 Immunology, Ch. 10.1, pp. 235-38, Mishell & Shiigi (eds.), Freeman & Co., New York, 1980). Compounds which inhibit cell proliferation have well-known utility in treatment of certain cancers.

As shown previously (Table 2), 3-methyl-TTNEB activates members of the RXR subfamily and has no significant activity for members of the RAR subfamily. Examination of the effects of 3-methyl-TTNEB on the proliferation of myeloma cells show a concentration dependent inhibition of thymidine incorporation. The IC_{50} (the concentration of 3-methyl-TTNEB required to produce 50% inhibition of the maximal response) is 10^{-7} M, as shown in Figure 11. Concentrations less than 10^{-8} M provide

30

35

essentially no effect on cell proliferation, as also shown in Figure 11.

It is well known that the compound TTNPB activates members of the RAR subfamily and has no significant activity for members of the RXR subfamily. The compound TTNPB is shown below, and its activity is shown in Table 5.

TABLE 5

Potency (nM)		Efficacy	
10	TTNPB		
	RXRα	>10,000	<5%
	RXRβ	>10,000	<5%
	RXRγ	>10,000	<5%
15	RARα	52	30
	RARβ	4	40
	RARγ	0.4	50

The effect of TTNPB on cell proliferation is shown in Figure 11. The IC_{50} value of TTNPB is about 5 x 10^{-11} M, and a concentration of less than 10^{-11} M produces essentially no effect on cell proliferation.

However, it has been found that when 3-methyl-TTNEB and TTNPB are present together, each at a concentration where the compound alone produces substantially no antiproliferative effect, the combination of the two compounds effectively blocks cell proliferation. The combination of

the two compounds appears to produce a greater than additive, or synergistic, effect.

For example, as shown in Figure 12, the presence of TTNPB at a concentration of 10⁻¹¹ M produces a 9% inhibition on thymidine incorporation. However, combining it with 3-methyl-TTNEB at a concentration of 10⁻⁸ M (which results in no effect on cell proliferation) produces a greatly enhanced inhibitory effect of 49%. Likewise, it has also been found that the inhibitory effect of 3-methyl-TTNEB is greatly increased by the presence of TTNPB at a concentration which alone produces no effect.

Since it is well-known that toxic side effects of compounds such as TTNPB are concentration-dependent, the synergistic effect resulting from combining such RAR
15 specific compounds with RXR-specific compounds can be expected to permit lower dosages that are efficacious and to therefore reduce toxic side effects. For example, in cancer chemotherapy, use of two such compounds, in combination, at relatively low doses can be expected to produce the desired beneficial effect, while minimizing undesired side effects which result at higher doses of the compounds.

In vitro studies utilizing the co-transfection assay have also shown this same synergistic effect. For example, 25 utilizing the co-transfection assay described previously and employing RAR- α and RXR- α and a reporter consisting of the ApoAl response element "A" site in the context of TKLUC (Ladias & Karathanasis, Science 251:561-65 (1991), transfections were performed in HEPG2 cells. study, 100 ng of the designated receptor were used and RSVCAT was used as a carrier to keep the amount of RSV promoter constant. All compounds were added at a final concentration of 10⁻⁷ M. The RXR specific compound 3methyl-TTNEB (Table 2, above) and the RAR 35 compound, TTNPB (Table 5, above) were utilized. As shown below in Table 6 the relative normalized response observed utilizing the co-transfection assay also demonstrated a

synergistic effect when a combination of the two compounds was utilized, compared to the response achieved utilizing the compounds individually.

TABLE_6

5 <u>Compound</u>	Reporter Activity (Fold Induction	
3-methyl-TTNEB	5	J
TTNPB	32	£
3-methyl-TTNEB + TTNPB	75	

As will be discernable to those skilled in the art 10 from the foregoing discussions, the biological response of an RAR selective compound at a given concentration can be synergistically enhanced by combining the compound with an Similarly, the biological RXR selective compound. response of an RXR selective compound can be enhanced by combining the compound with an RAR selective compound. becomes possible to achieve a desirable biological response, using a combination of RAR and RXR selective compounds, at lower concentrations than would be the case using the compounds alone. Among the advantages --20 provided by such combinations of RAR and RXR selective compounds are desirable therapeutic effects with fewer side effects. In addition, novel effects that are not obtainable with either agent alone may be achieved by combinations of RAR and RXR selective compounds. 25

It has been further demonstrated that RXR-specific compounds also synergistically enhance the response of other hormonal systems. Specifically, peroxisome proliferator-activated receptor (PPAR) is a member of the intracellular receptor super family that plays a role in the modulation of lipid homeostasis. PPAR has been shown to be activated by amphipathic carboxylates, such as clofibric acid, and gemfibrizol. These agents, called peroxisome proliferators, have been used in man as

hypolipidemic agents. The addition of 9-cis-retinoic acid (a retinoid ligand which activates both RAR and RXR receptors) and clofibric acid to HepG2 cells transfected with RXRα and PPAR expression plasmids, results in the activation of receptor gene which was greater than the sum of the activation with each ligand separately. (Kliewer et al., Nature 358:771 (1992)). Similarly, when the above two receptors were co-transfected into HepG2 cells, the addition of both an RXR-specific ligand (3-methyl-TTNEB) and clofibric acid was found to produce a greater than additive response as determined by activation of a target reporter gene, as shown below in Table 7.

TABLE 7

	Compound		Normalized	Response	(%)
15	clofibric Acid			100	
	3-methyl-TTNEB		•	90	•
	clofibric acid	+ 3-methyl-	÷ .	425	

A similar synergistic effect was observed with RXR and RXR-specific ligands and the Vitamin D receptor (VDR) and its cognate ligands. When RXRβ and VD receptors were co-transfected into CV-1 cells containing a hormone response element, the addition of RXR selective 3-methyl-TTNCB and 1,25-dihydroxy-vitamin D (1,25-D) produced a greater than additive response than was observed for each of the individual ligands, as shown below in Table 8.

15

30

98

TABLE 8

	Compound	Normalized Response (%)		
	1,25-D		100	
	3-Methyl-TTNCB	·	13	
5	1,25-D + 3-methyl-TTNCB	•	190	

As shown, the above results indicate that each pair of receptors (RXR α /PPAR and RXR β /VDR, respectively), in the presence of ligands known to specifically activate their respective receptors, are capable of producing a synergistic response. The results indicate that the response of a single agent can be enhanced by the combination of the two agents, or that comparable biological or therapeutic responses can be achieved by use of lower doses of such agents in combination.

The observation that RXR-specific ligands are able to act synergistically with RAR ligands, PPAR ligands, and Vitamin D ligands indicates that RXR-specific ligands have usefulness not only as single therapeutic agents but also in combination therapy to obtain enhanced biological or therapeutic response by the addition of the RXR-specific ligand. Such combination therapy also may provide an added benefit of decreasing the side effects associated with the primary agent by employing lower doses of that agent. For example, use of Vitamin D or a related Vitamin D receptor ligand in conjunction with an RXR selective compound for the treatment of a variety of disorders including skin diseases (acne, psoriasis), hyperproliferative disorders (benign and malignant cancers) disorders of calcium homeostasis may decrease the adverse side effects associated with Vitamin D therapy alone.

As a further example, the RXR-specific compounds of this invention have been demonstrated in vitro to act synergistically with compounds which affect cellular proliferation, such as Interferon. Specifically, the

growth properties of two human tumor cell lines (ME180, a squamous cell carcinoma, and RPMI18226, a multiple myeloma) were monitored in the presence of the compound 3methyl-TTNEB alone and in combination with Interferonα2b, utilizing standard cell culture procedures. The effects on growth of these cells were monitored by evaluation of cell number, and also by evaluation of growth in semisolid medium for the RPMI18226 cell line. Both 3-methyl-TTNEB and Interferona2b were found to inhibit cell growth 10 in a concentration-dependent manner, and each alone to produce a significant depression in cell proliferation. In addition, when the cells were treated with both compounds, an additive or a greater than additive effect on the depression in cell proliferation was observed. Treatment with other chemotherapeutic agents including 15 anti-proliferative agents and/or cell-cycle modulators (e.g., methotrexate, fluorouracil (5FU, ARA-C, etc.)) in combination with RXR-specific compounds would be expected produce similar results. The enhanced anti-20 proliferative effect can be expected to permit lower therapeutic doses in treatment of proliferative disorders, such as squamous cell and other carcinomas.

In addition, combination therapy could allow the use of lower doses of these compounds to achieve a comparable beneficial effect along with fewer side effects/toxic effects, thereby enhancing the therapeutic index of the therapy. The therapeutic index is defined as the ratio of efficacy to toxicity of a compound.

Since RXR is known to form heterodimers with various
30 members of the intracellular receptor super family, it can
be expected that the synergistic response observed with
use of RXR-selective ligands may be achieved with other
receptors with which heterodimers are formed. These
include PPARs, RARs, Vitamin D, thyroid hormone receptors,
35 HNF4, the COUP family of receptors, as referenced above,
and other as yet unidentified members of the intracellular

super family of receptors.

30

35

As will be further discernible to those skilled in the art, the compounds disclosed above can be readily utilized in pharmacological applications where selective retinoid receptor activity is desired, and where it is 5 desired to minimize cross reactivities with other related In vivo applications of the intracellular receptors. administration the disclosed of include invention compounds to mammalian subjects, and in particular to humans.

The compounds of the present invention are small 10 molecules which are relatively fat soluble or lipophilic and enter the cell by passive diffusion across the plasma membrane. Consequently, these ligands are well suited for administration orally and by injection, as well as topi-15 cally. Upon administration, these ligands can selectively activate retinoid X receptors, and thereby selectively modulate processes mediated by these receptors.

The pharmaceutical compositions of this invention are prepared in conventional dosage unit forms by incorporating an active compound of the invention, or a mixture of such compounds, with a nontoxic pharmaceutical carrier according to accepted procedures in a nontoxic amount sufficient to produce the desired pharmacodynamic activity ___ in a mammalian and in particular a human subject. Preferably, the composition contains the active ingredient in an active, but nontoxic, amount selected from about 5 mg to about 500 mg of active ingredient per dosage unit. quantity depends on the specific biological activity desired and the condition of the patient.

The pharmaceutical carrier or vehicle employed may be, for example, a solid or liquid. A variety of pharmaceutical forms can be employed. Thus, when using a solid carrier, the preparation can be plain milled, micronized in oil, tableted, placed in a hard gelatin or enteric-coated capsule in micronized powder or pellet form, or in the form of a troche, lozenge, or suppository. When using a liquid carrier, the preparation can be in the

form of a liquid, such as an ampule, or as an aqueous or nonaqueous liquid suspension. For topical administration, the active ingredient may be formulated using bland, moisturizing bases, such as ointments or creams. Examples of suitable ointment bases are petrolatum, petrolatum plus volatile silicones, lanolin, and water in oil emulsions such as Eucerin (Beiersdorf). Examples of suitable cream bases are Nivea Cream (Beiersdorf), cold cream (USP), Purpose Cream (Johnson & Johnson) hydrophilic ointment (USP), and Lubriderm (Warner-Lambert).

The following examples provide illustrative pharmacological composition formulations:

Example 62

Hard gelatin capsules are prepared using the 15 following ingredients:

		Quantity	
		(mg/capsule)	
	3-methyl-TTNCB	140	
	Starch, dried	100	
20	Magnesium stearate	_10	
, .	Total	250 mg	

The above ingredients are mixed and filled into hard gelatin capsules in 250 mg quantities.

Example 63

25 A tablet is prepared using the ingredients below:

		Quantity (mg/tablet)
	3-methyl-TTNCB	140
	Cellulose, microcrystalline	200
30	Silicon dioxide, fumed	10
	Stearic acid	<u> 10</u>
	Total	360 mg

The components are blended and compressed to form tablets each weighing 360 mg.

Example 64

Tablets, each containing 60 mg of active ingredient, are made as follows:

		Quantity (mg/tablet)		
•	3-methyl-TTNCB	60		•
×	Starch	45	· ·	•
10	Cellulose, microcrystalline	35	* '	•
	Polyvinylpyrrolidone (PVP) (as 10% solution in water)	4		
15	Sodium carboxymethyl starch Magnesium stearate Talc	(SCMS) 0.5 1.0		4.5
•	Total	150	· ·	٠.

The active ingredient, starch, and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The solution of PVP is mixed with the resultant powders, which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50°C and passed through a No. 18 mesh U.S. sieve. The SCMS, magnesium stearate, and talc, previously passed through a No. 60 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

Example 65

Suppositories, each containing 225 mg of active ingredient, may be made as follows:

30 3-methyl-TTNCB

·225 mg

Saturated fatty acid glycerides

2,000 mg.

Total 2,225 mg

The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The

mixture is then poured into a suppository mold of normal 2g capacity and allowed to cool.

Example 66

An intravenous formulation may be prepared as 5 follows:

3-methyl-TTNCB 100 mg
Isotonic saline 1,000 ml
Glycerol 100 ml

The compound is dissolved in the glycerol and then the solution is slowly diluted with isotonic saline. The solution of the above ingredients is then administered intravenously at a rate of 1 ml per minute to a patient.

The compounds of this invention also have utility when labeled as ligands for use in assays to determine the presence of RXRs. They are particularly useful due to their ability to selectively bond to members of the RXR subfamily and can therefore be used to determine the presence of RXR isoforms in the presence of other related receptors.

Due to the selective specificity of the compounds of 20 this invention for retinoid X receptors, these compounds can also be used to purify samples of retinoid X receptors Such purification can be carried out by mixing samples containing retinoid X receptors with one of more 25 of the bicyclic derivative compounds disclosed so that the compound (ligand) binds to the receptor, and separating out the bound ligand/receptor combination by separation techniques which are known to those of skill in the art. These techniques include column separation, 30 filtration. centrifugation, tagging and physical separation, and antibody complexing, among others.

While the preferred embodiments have been described and illustrated, various substitutions and modifications may be made thereto without departing from the scope of the invention. Accordingly, it is to be understood that

104

the present invention has been described by way of illustration and not limitation.

<u>Claims</u>

1. A compound having the formula:

or

or

25

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, (R,R,)N-N=, R,0-N=, R,N=, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromataic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{15} represents a lower or branched alkyl having 1-12 carbons, and can be methyl only if R_{15} is a halogen or a lower alkyl having 1-8 carbons;

 R_{16} represents hydrogen, a lower alkyl having 1-8 carbons, or halogen,

or R_{15} and R_{16} taken together form a phenyl, cyclohexyl, or cyclopentyl ring or one of the following:

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR7 and SR7 substituted alkenes), R9, alkyl carboxylic acid (including halogen, acyl, OR7 and SR7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR7 and SR7 substituted alkenes), alkyl amines (including halogen, acyl, OR7 and SR7 substituted alkyls), and alkenyl amines (including halogen, acryl, OR7 and SR7 substituted alkenes);

10 R₁₈ represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR7, SR7, NR7R8, or (CF) nCF3;

R₁₉ represents hydrogen, lower alkyl having 1-8 carbons, halogen, OR₇, SR₇, or (CF)_nCF₃;

V is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR, COSR, CONHR, or COOW where and where W is a pharmaceutically acceptable salt;

Z, Z', Z", and Z"', each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the structures depict optional 25 double bonds.

- 2. A compound of claim 1 wherein said compound selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors.
- 3. The compound of claim 2 wherein said compound is at least three-fold more potent an activator of Retinoid X Receptors than of Retinoic Acid Receptors.
 - 4. A compound selected from the group consisting of 3-methyl-7-ethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2E,4E,6Z,8E-nonatetranoic acid,

15

20

25

- 3-methyl-7-propyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2£,4£,6Z,8£-nonatetranoic acid,
- 3-methyl-7-isopropyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2£,4£,6Z,8£-nonatetranoic acid,
- 3,6,7-trimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2E,4E,6Z,8E-nonatetranoic acid,
 - 3-methyl-7-t-butyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2E,4E,6Z,8E-nonatetranoic acid, and
- $3-methyl-5-\{2-[2-(2,6,6-trimethylcyclohexen-1-10 yl)ethenyl\}-2E,4E-pentadienoic acid.$
 - 5. A compound selected from the group consisting of 3-methyl-5-{2-[2-(2,6,6-trimethylcyclohexen-1-yl)ethenyl]cyclohexyl}-2E,4E-pentadienoic acid,
 - (2E,4E)-3-methyl-5-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]penta-2,4-dienoic acid,
 - (2E, 4E) 3-methyl-6-{1-[2,6,6-trimethyl-1-cyclohexenyl)ethenyl]cyclopropyl}-2,4-hexadienoic acid,
 - (2E,4E,6Z)-7-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)-3,8-dimethyl-nona-2,4,6-trienoic acid, and
 - (2E, 4E, 6Z) -7-(3, 5, 5, 8, 8-pentamethyl-5, 6, 7, 8-tetrahydro-2-naphthyl)-3-methyl-octa-2, 4, 6-trienoicacid.
 - 6. A pharmaceutical composition comprising in a pharmaceutically acceptable vehicle suitable formenteral, parenteral, or topical administration, one or more compound of claim 1.
 - 7. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of at least one compound as set forth in claim 1.
- 8. A method according to claim 7 wherein said Retinoid X Receptor is Retinoid X Receptor-alpha, Retinoid X Receptor-beta, or Retinoid X Receptor-gamma.

WU 95/04036 PCT/US93/10166

- 9. A method according to claim 7 wherein said process is the *in vivo* modulation of lipid metabolism, *in vivo* modulation of skin-related processes, *in vivo* modulation of malignant cell development, *in vivo* modulation of premalignant lesions; or *in vivo* modulation of programmed cell death.
- 10. A method according to claim 7 wherein said process is in vivo or in vivo cellular growth and differentiation, or in vivo limb morphogenesis.
- 11. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising administering to a mammalian subject an amount, effective to modulate said process mediated by said one or more Retinoid X Receptors, of one or more compound of claim 1.
- 12. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising administering to a mammalian subject an amount, effective to modulate said process mediated by said one or more Retinoid X Receptors, of one or more compound of claim 3.
- 13. A method for treating a mammalian subject 20 requiring Retinoid X Receptor therapy comprising administering to such subject a pharmaceutically effective amount of one or more compounds as set forth in claim 1.
- 14. A method for treating a mammalian subject requiring Retinoid X Receptor therapy comprising administering to such subject a pharmaceutically effective amount of one or more compounds as set forth in claim 3.
 - 15. A method for increasing plasma concentrations of high density lipoprotein in a mammalian subject comprising administering to such subject a pharmaceutically effective amount of one or more compounds as set forth in claim 1.

16. A method for modulating a process mediated by intracellular receptors, said method comprising causing said process to be conducted in the presence of a composition comprising a first compound as set forth in claim 1 which selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors, in combination with a second compound which activates one or more intracellular receptors other than Retinoid X Receptors, and wherein the physiological effect in mammals produced by said composition at a given concentration is greater than the additive effect achieved utilizing each said compound alone at said concentration.

RELATIVE NORMALIZED RESPONSE (%)

RELATIVE NORMALIZED RESPONSE (%)

THE CHEET (RULE 26)

DELYMPE VIVEW VILLE DECEVAGE (%)

RELATIVE NORMALIZED RESPONSE (%)

こニュュ ピ のぶし

RELATIVE NORMALIZED RESPONSE (%)

FIG. 8.

SUBSTITUTE SHEET (RULE 26)

FIG. 10.

11/12

- ARM (Thymidine Incorporated)

DPM (Thymidine Incorporated)

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07C403/20 C07C57/50

A61K31/07

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation-searched (classification-system followed by classification symbols): IPC 6 CO7C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS	CONSIDERED	TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO,A,93 11755 (THE SALK INSTITUTE FOR BIOLOGICAL STUDIES) 24 June 1993 see the whole document	1-5
Y	CHEMICAL ABSTRACTS, vol. 084, no. 15, 12 April 1976, Columbus, Ohio, US; abstract no. 105844, ENGLERT G 'Carbon-13 NMR. Study of cis-trans isomeric vitamins A, carotenoids, and related compounds' see abstract see page 2375, column 1 & HELV. CHIM. ACTA (HCACAV);75; VOL.58 (8); PP.2367-90 F. HOFFMANN-LA ROCHE CO., LTD.;DEP. PHYS. PHYS. CHEM.; BASEL; SWITZ.	1-5

1		•		
I	X	Further documents are listed in the continuation	of hox C	

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

22 June 1994

29. Ub. 94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Authorized officer

Bonnevalle, E

C (Continua	ion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Υ	CHEMICAL ABSTRACTS, vol. 088, no. 20, 15 May 1978, Columbus, Ohio, US;	1-5	
	abstract no. 144612, SCHENK H ET AL 'The structure of the 9-ethyl analog of vitamin A acid' see abstract see the whole document & ACTA CRYSTALLOGR., SECT. B (ACBCAR,05677408);78; VOL.B34 (2); PP.505-7 UNIV. AMSTERDAM; LAB. CRYSTALLOGR.; AMSTERDAM; NETH.		
Y	EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY.CHIMICA THERAPEUTICA vol. 15, no. 1 , 1980 , PARIS FR pages 9 - 15 P. LOELIGER ET AL. 'Arotinoids, a new class of highly active retinoids' see page 13, column 1; figure 10; table 4	1-5	
A	US,A,4 539 154 (E.P. KREBS) 3 September 1985 see the whole document	1	
A	FR,A,2 293 193 (BASF AKTIENGESELLSCHAFT) 2 July 1976 see claims	1	
•			