Probabilistic Classifiers

Probabilistic classifiers

Classifier outputs a probability distribution over the class labels: $X \rightarrow P(y|x)$

Types of Classifiers

- Generative: learns to generate the examples
 - Learn P(x|y) and P(y) from the training data and then apply Bayes rule to find P(y|x)

apply Bayes rule to find
$$P(y|x)$$

$$P(y|x) = \frac{P(y)P(x|y)}{P(y|x)P(x|y')} P(y=1|x) = \frac{P(y=1)P(x|y=1)}{P(y=1)P(x|y=1)P(x|y=1)} P(y=1)P(x|y=1)$$

Types of Classifiers

- Conditional Classifiers: Model conditional distribution
 P(y|x) directly.
 - Example: logistic regression classifier
 - Neural Networks.

Generative classifiers

- Modeling P(y): Easy, k-way multinomial distribution for k-classes.
- Modeling P(x|y): Challenges, high-dimensional datasets

• Spaces required:

X & d-dimensional data

X = [N]

A = xf pinel j in

X = d-dimensional data

X = [N]

A could be large

I = 128 x 128 = 2¹⁴

Full joint distribution, then

I ad J for each J. H at parameters

A parameters

Naive Bayes Classifier: A Generative Classifer

Each attribute x_j is conditionally independent given the class label.

Formula: $P(x|y) = P(x_1, x_2, \dots, x_d)(y) = f(x_j)(y)$ Example: each biased on the depit (class label).

whether pixel x_j is 'i or "o" is independent of whether any other pixel is 'j' or "o' or "o".

Training a Naïve Bayesian Classifier

- Given training data, apply maximum likelihood principle to estimate parameters
- Estimating P(y): A multinomial distribution.
- Estimating $P(x_i|y)$

is also multinomial

- If j-th attribute is categorical: P(xj|y) is estimated as the relative freq of samples having value di as j-th attribute in class y
- If j-th attribute is continuous: P(xj|y) is estimated through a continuous density function: eg.

Gaussian density function

Computationally easy in both cases

$$U_{jp} = \sum_{i=1}^{N} (x_{i}^{i}) / \sum_{i=1}^{N} 1 \text{ if } (y_{i} = p) \quad \text{if } y_{i} = p$$

$$U_{jp} = \sum_{i=1}^{N} (x_{i}^{i}) / \sum_{i=1}^{N} 1 \text{ if } (y_{i} = p) \quad \text{if } y_{i} = p$$

Play-tennis example: estimating

P	$(\mathbf{x}_{i} $	C)
'	1	1 2

	<u>.</u>				- 12	<u> </u>
$\chi_{(}$	(Xil	C)	3 X	8 Y	e 2P, N	}
Outlook	Temperature	Humidity		Class		
sunny	hot	high	false	N		
sunny	hot	high	true	N -		L
overcast	hot	high	false	P	•	
rain	mild	high	false	P-		
rain	cool	normal	false	P		
rain	cool	normal	true	N		
overcast	cool	normal	true	Р		H
sunny	mild	high	false	N		
sunny	cool	normal	false	Р		H
rain	mild	normal	false	Р		
sunny	mild	normal	true	Р	\	ŀ
overcast	mild	high	true	Р	\	
overcast		normal	false	Р		L
rain	mild	high	true	N	•	

$$P(p) = 9/14$$

 $P(n) = 5/14$

<u> </u>	
outlook P(x, y=?)	/ P(z, y=n)
$P(\text{sunny} \mathbf{p}) \neq 2/9$	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature P(n2(p)	P(x2/n)
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	` ,
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5
` ' '	` '

Naive Bayesian Classifier (II)

Given a training set, we can compute the probabilities

						(
Outlook	Р	N	Humidity	Р	N	
sunny	2/9	3/5	high	3/9	4/5	
overcast	4/9	0-	normal	6/9	1/5	
rain	3/9	2/5				
Tempreature			Windy			
hot	2/9	2/5	true	3/9	3/5	
mild	4/9	2/5	false	6/9	2/5	
cool	3/9	1/5				

o'probalities are a problem.

In practice we smooth estimates

(g: Lidstone or Laplace smoothing

Play-tennis example: classifying X

• An unseen sample $X = \langle rain, hot, high, false \rangle$

```
• P(X|p) \cdot P(p) = P(x) \cdot P(x
```

• Sample X is classified in class n (don't play) $P(x|x) = \frac{0.018286}{(0.018286 + 6.010582)}$

Summary of Naïve Bayes Classifier

- Creates a distribution over class label given x P(y|x) by applying Bayes rule.
 - \circ Requires estimating P(x|y) for each class y and P(y)
- Estimates P(x|y) by assuming that each attributes of x are conditionally independent given the class label
 - Very easy computationally.
- Many applications in spite of simplistic assumption: e.g. classifying emails as spam Vs non-spam
- Limitations of generative method: estimating P(x|y) is hard since x could be high-dimensional. Useful when P(x|y) is already available, e.g. in speech recognition use of HMMs for word recognition

Demo

https://colab.research.google.com/drive/1_9j1CAvkPHq18zhZ3tBj4r3I7-LZKZ3c?usp=sharing

Conditional models

Conditional Probabilistic Approach:

- We will model the conditional distribution: $P(y \mid x)$: Instead of a single value, we predict a distribution over values to reflect uncertainty.
- Example: regression models.

$$\circ P(y|x) \sim N(y; \mu_x, \sigma)$$

$$\mu_x = w^T \cdot x + b = w_1 x_1 + \dots + w_d x_d + b$$

- Mean prediction is a linear function of x.
- \circ $\sigma = independent of x.$
- 1-d diagram

Estimating parameters using MLE

Classification (Linear) --- Logistic Classifier

- y is binary, $x \in R^d$
- Conditional Probabilistic Approach:
 - \circ We will model the conditional distribution: $P(y \mid x)$
 - $\circ \quad P(y|x) \sim Bernoulli(y; \theta_x)$
- How to obtain Bernoulli parameter (has to be between 0 and 1) from x?
 - Compute a linear function x: $g(x) = w \cdot x + b$, $g(x) \in [-\infty, \infty]$
 - \circ Use a sigmoid function to squash g(x) between 0 and 1.

Extending Logistic Regression to Multi-class

- A class label y can take one of k possible discrete values.
- Pr(y|x) ~ Multinomial distribution with k parameters each of which is a function of x

•
$$Pr(y|x) \sim Mult(y; \{\theta_1(x), ..., \theta_k(x)\})$$

$$(w', b'), \dots (w', b') \text{ k gets } \theta(x) \text{ is a simplex.}$$

$$\theta_r(x) = \underbrace{0}_{r=1}^{K} \theta_r(x) = 1$$

$$\theta_r(x) > 0 \mid \underbrace{\sum_{r=1}^{K} \theta_r(x)} = 1$$

$$e = \underbrace{0}_{r=1}^{K} \theta_r(x) = 1$$

Estimating parameters