1.2 Mengen

Vorstellung

Unter einer *Menge* verstehen wir jede Zusammenfassung von bestimmten wohlunterscheidbaren Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen." (Georg Cantor, 1895)

Vorsicht

Die Menge aller Mengen führt zu einem Widerspruch.

Ausweg

Beschränkung auf bestimme Mengenkonstruktionen.

Definition

Eine *Menge M* ist etwas, zu dem jedes beliebige Objekt x entweder *Element* der Menge ist, geschr. $x \in M$, oder nicht, geschr. $x \notin M$.

Mengen (Forts.)

Bemerkung

► Sei *M* eine Menge.

Dann ist " $x \in M$ " für jedes Objekt x eine Aussage. Anders gesagt, " $x \in M$ " ist eine Aussageform.

► Sei A(x) eine Aussageform.

Dann ist die Zusammenfassung aller x, für die A(x) wahr ist, eine Menge.

Teilmengen und Mächtigkeit

Definition

Seien *M* und *N* Mengen.

- ▶ $N \subseteq M$ (gespr. N ist Teilmenge von M) : \Leftrightarrow Für jedes $x \in N$ ist $x \in M$.
- ▶ $N \nsubseteq M :\Leftrightarrow \neg(N \subseteq M)$.
- ▶ M und N sind gleich (geschr. N = M) : \Leftrightarrow $N \subseteq M$ und $M \subseteq N$.

Definition

Sei M eine Menge.

- ► *M* heißt *endlich*, wenn *M* nur endlich viele Elemente besitzt. In diesem Fall steht |*M*| für die Anzahl der Elemente von *M*.
- ► M heißt unendlich, wenn M nicht endlich ist. In diesem Fall: Schreiben $|M| = \infty$.
- ► |*M*| heißt die *Mächtigkeit* von *M*.

Beschreibung von Mengen

Aufzählung

Auflisten der Elemente und Einschließen in Mengenklammern. Irrelevant: Reihenfolge und Wiederholungen.

- $ightharpoonup \{-3, 1, 19\}$
- \blacktriangleright {1, 2, 4, 8, 16, 32, 64, ...}

Beschreibung

Mengen können durch Worte beschrieben werden.

- ► Menge der natürlichen Zahlen
- ► Menge der ganzen Zahlen
- ► Menge der in diesem Hörsaal zum jetzigen Zeitpunkt anwesenden Personen.

Aussondern

Sei M eine Menge und A(x) eine Aussageform, wobei x mit den Elementen von M belegt werden kann.

Dann ist

$$\{x \in M \mid A(x) \text{ ist wahr}\}$$

(gespr. Menge aller x aus M mit A(x)) eine Menge, nämlich eine Teilmenge von M.

Beispiel

Sei M die Menge der natürlichen Zahlen, und A(x) die Aussageform "x ist ungerade". Dann ist

$$\{x \in M \mid x \text{ ist ungerade}\}$$

die Menge der ungeraden natürlichen Zahlen.

Abbilden

Seien M und N Mengen und f(x) für jedes $x \in M$ ein Element aus N. (Wir greifen hier dem Begriff der *Abbildung* vor.) Dann ist

$$\{f(x) \mid x \in M\}$$

eine Teilmenge von N (insbesondere eine Menge), die Menge aller Elemente der Form f(x) von N, wobei x alle Elemente aus M durchläuft.

Beispiel

M = N: Menge der natürlichen Zahlen, $f(x) = x^2$ für $x \in M$.

$$\{f(x) \mid x \in M\} = \{x^2 \mid x \in M\}$$

Menge der Quadrate natürlicher Zahlen.

Standardsymbole

Häufig auftretende Mengen sind:

Symbol	Beschreibung	Definition
Ø	leere Menge	{}
N	natürliche Zahlen	$\{1,2,3,\ldots\}$
\mathbb{N}_0	natürliche Zahlen einschl. 0	$\{0, 1, 2, 3, \ldots\}$
<u>n</u>	<i>n</i> -elementige Menge, $n\in\mathbb{N}_0$	$\{1,2,\ldots,n\}$, $\underline{0}:=\emptyset$
\mathbb{P}	Primzahlen	$\{2,3,5,7,11,13,\ldots\}$
\mathbb{Z}	ganze Zahlen	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
\mathbb{Q}	rationale Zahlen	$\mid \{a/b \mid a \in \mathbb{Z}, b \in \mathbb{N}\}$
\mathbb{R}	reelle Zahlen	Dezimalzahlen
$\mathbb{R}_{>0}$	positive reelle Zahlen	$\{x \in \mathbb{R} \mid x > 0\}$
$\mathbb{R}_{\geq 0}$	nicht-negative reelle Zahlen	$\{x \in \mathbb{R} \mid x \ge 0\}$
\mathbb{C}	komplexe Zahlen	$ \{a+bi \mid a,b \in \mathbb{R}\} $

- \blacktriangleright $|\emptyset| = 0.$
- ▶ $|\underline{n}| = n$ für alle $n \in \mathbb{N}_0$.
- $ightharpoonup |\mathbb{N}| = \infty, |\mathbb{Z}| = \infty, |\mathbb{Q}| = \infty, |\mathbb{R}| = \infty, |\mathbb{C}| = \infty.$
- $\blacktriangleright \ \emptyset = \underline{0} \subseteq \underline{1} \subseteq \underline{2} \subseteq \ldots \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}.$
- $\blacktriangleright \ \{2,3,4,7\} \subseteq \{1,2,3,4,5,6,7\}$
- $\blacktriangleright \{0,3,4,7\} \nsubseteq \{1,2,3,4,5,6,7\}$

- ▶ $\{1\} \neq \{1,2\}.$
 - $\blacktriangleright \ \{1\} = \{1,1,1\}.$
 - $\blacktriangleright \ \{1\} \neq \{\{1\}\} \neq \{1,\{1\}\} \neq \{1\}.$
 - $\blacktriangleright \emptyset \neq \{\emptyset\}.$

Quantifizierte Aussagen

Erinnerung (Aussageform)

A(x): Sprachlicher Ausdruck, in dem die Variable x vorkommt. M: Menge; Belegung von x durch ein Element aus $M \rightsquigarrow$ Aussage

Definition (Quantifizierung)

- ▶ "Für alle $x \in M$ gilt A(x)."
- ▶ "Es gibt ein $x \in M$, für das A(x) gilt." oder "Es gibt ein $x \in M$ mit A(x)."

Diese sprachlichen Ausdrücke sind Aussagen, denn x ist keine (freie) Variable mehr.

Symbole (Häufige Schreibweise)

- ▶ " $\forall x \in M$ gilt A(x)." (Allquantor)
- ▶ " $\exists x \in M$, für das A(x) gilt." (Existenzquantor)

Quantifizierte Aussagen (Forts.)

Beispiele

► A(x): Aussageform "x > 5".

Quantifizierungen:

- ▶ "Es existiert ein $x \in \mathbb{N}$ mit A(x)."
- ▶ "Für alle $x \in \mathbb{N}$ gilt A(x)."
- ightharpoonup A(t): Aussageform

"Zum Zeitpunkt t gilt: Projektor ist aus o Hörsaal ist leer."

Quantifizierungen:

- ightharpoonup "Es gibt eine Zeit t mit A(t)."
- ightharpoonup "Für alle Zeiten t gilt A(t)."

Quantifizierte Aussagen (Forts.)

Verneinungen (quantifizierter Aussagen)

▶ Verneinung von "Für alle $x \in M$ gilt A(x)."

```
"Es existiert x \in M mit \neg A(x)." oder "Es existiert x \in M für das A(x) nicht gilt."
```

▶ Verneinung von "Es existiert ein $x \in M$ mit A(x)."

```
"Für alle x \in M gilt \neg A(x)." oder "Für alle x \in M gilt A(x) nicht."
```

Quantifizierte Aussagen (Forts.)

- ▶ Verneinung von "Für alle $x \in \mathbb{R}$ gilt $x^2 > 0$."
 - "Es existiert ein $x \in \mathbb{R}$ mit $x^2 \le 0$."
- Verneinung von "Es gibt eine Person im Hörsaal, die ihr Handy aus hat."
 - "Alle Personen im Hörsaal haben ihr Handy an."
 - Nicht: "Es gibt eine Person im Hörsaal, die ihr Handy an hat."

Konstruktion von Mengen

Definition

Seien M und N Mengen.

- ► $M \cap N := \{x \in M \mid x \in N\}$ heißt der *Durchschnitt* von M und N.
- ► $M \cup N := \{x \mid x \in M \text{ oder } x \in N\}$ heißt die *Vereinigung* von M und N.
- ▶ $M \setminus N := \{x \in M \mid x \notin N\}$ heißt die *Differenzmenge* von M und N, gesprochen "M ohne N".
- ▶ $M \times N := \{(x,y) \mid x \in M, y \in N\}$ heißt das *kartesische Produkt* von M und N. Hierbei ist (x,y) ein *geordnetes Paar*. Zwei geordnete Paare (x,y) und (x',y') sind genau dann gleich, wenn x=x' und y=y'.
- ▶ $Pot(M) := \{S \mid S \subseteq M\}$ heißt die *Potenzmenge* von *M*.

Was ist ein "geordnetes Paar"?

Definition

Seien M und N Mengen und $x \in M$, $y \in N$.

$$(x,y) := \{\{x\}, \{x,y\}\}.$$

Beispiele

 \blacktriangleright {1,2} × {2,3,4} =

- ▶ $\{a, b, c, d, e, f, g, h\} \times \{1, \dots, 8\}$ Modell für die Positionen auf einem Schachbrett.
- ▶ $\emptyset \times M = M \times \emptyset = \emptyset$ für jede Menge M.

- ▶ $\emptyset \subseteq M$ für jede Menge M (auch für $M = \emptyset$).
- ► Es gilt:

```
Pot(\emptyset) = \{\emptyset\},\
Pot(\{1\}) = \{\emptyset, \{1\}\},\
Pot(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\},\
\vdots
```

- ► Für Mengen *M* und *N* gilt:
 - $\blacktriangleright M \cap N = N \Leftrightarrow N \subseteq M.$
 - $\blacktriangleright \ M \cup N = N \Leftrightarrow M \subseteq N.$

Bemerkung

$$\blacktriangleright L \cap (M \cap N) = (L \cap M) \cap N$$

$$\blacktriangleright L \cup (M \cup N) = (L \cup M) \cup N$$

$$\blacktriangleright \quad L \cap M = M \cap L$$

$$\blacktriangleright \ \ L \cup M = M \cup L$$

$$\blacktriangleright \quad \blacktriangleright \quad L \cap L = L$$

$$ightharpoonup L \cup L = L$$

$$\blacktriangleright L \cap (M \cup N) = (L \cap M) \cup (L \cap N) \\
\blacktriangleright L \cup (M \cap N) = (L \cup M) \cap (L \cup N)$$

$$L \cup (M \cap N) = (L \cup M) \cap (L \cup N)$$

Indexmengen

Definition

Es sei $n \in \mathbb{N}$. Für Zahlen a_1, \ldots, a_n und Mengen M_1, \ldots, M_n definieren wir:

- $ightharpoonup \sum_{i=1}^{n} a_i := a_1 + \ldots + a_n$
- $\blacktriangleright \prod_{i=1}^n a_i := a_1 \cdot \ldots \cdot a_n$
- $ightharpoonup \bigcup_{i=1}^n M_i := M_1 \cup \ldots \cup M_n$
- $ightharpoonup \cap_{i=1}^n M_i := M_1 \cap \ldots \cap M_n$

Indexmengen (Forts.)

Verallgemeinerung auf beliebige Indexmengen I.

Definition

Für jedes $i \in I$ sei M_i eine Menge.

▶ Wir definieren $\bigcup_{i \in I} M_i$ durch

$$x \in \bigcup_{i \in I} M_i :\Leftrightarrow \text{ es gibt } i \in I \text{ mit } x \in M_i.$$

▶ Wir definieren $\bigcap_{i \in I} M_i$ durch

$$x \in \bigcap_{i \in I} M_i : \Leftrightarrow \text{ für alle } i \in I \text{ gilt } x \in M_i.$$

Indexmengen (Forts.)

Verallgemeinerung des Begriffs paarweise verschieden.

Definition

Sei I eine Menge und für jedes $i \in I$ sei x_i ein Objekt.

Die Objekte $x_i, i \in I$, heißen *paarweise verschieden*, wenn für alle $i, j \in I$ gilt: $x_i = x_j \Rightarrow i = j$.

- ▶ Die Zahlen n^2 , $n \in \mathbb{N}$, sind paarweise verschieden.
- ▶ Die Zahlen n^2 , $n \in \mathbb{Z}$, sind nicht paarweise verschieden.