Lecture 8 – Lambda Calculus

COSE212: Programming Languages

Jihyeok Park

2024 Fall

- FVAE VAE with First-Class Functions
 - First-Class Functions
 - Concrete and Abstract Syntax
 - Interpreter and Natural Semantics with Closures
 - Static and Dynamic Scoping
- In this lecture, we will learn syntactic sugar and lambda calculus

Contents

1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

2. Lambda Calculus

Definition

Church Encodings

Church-Turing Thesis

Contents

1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

Lambda Calculus

Definition Church Encodings Church-Turing Thes

No More val


```
/* FVAE */
val x = 1; x + 2
```

It assigns a value 1 to the variable x, and then evaluates the body expression x + 2 with the environment $[x \mapsto 1]$.

It is same as:

```
/* FVAE */
(x => x + 2)(1)
```

It assigns a value (argument) 1 to the parameter x, and then evaluates the **body expression** x + 2 with the environment $[x \mapsto 1]$.

No More val

In general, the following two expressions are equivalent:

val
$$x = e_1$$
; e_2 is equivalent to $(\lambda x.e_2)(e_1)$

Why?

The following inference rule for the semantics of val $x = e_1$; e_2 :

$$\operatorname{Val} \frac{\sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash \operatorname{val} x = e_1; \ e_2 \Rightarrow v_2}$$

is equivalent to the following inference rule for the semantics of the combination $(\lambda x.e_2)(e_1)$ of a anonymous function and an application:

$$\begin{array}{c} \text{Fun} \\ \text{App} \end{array} \frac{\overline{\sigma \vdash \lambda x. e_2 \Rightarrow \langle \lambda x. e_2, \sigma \rangle} \qquad \sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash (\lambda x. e_2)(e_1) \Rightarrow v_2} \end{array}$$

FAE - Removing val from FVAE

Then, we can define a smaller language FAE

Expressions
$$e := n$$
 (Num) $\mid e + e \pmod{4dd}$ $\mid e * e \pmod{1d}$ $\mid x \pmod{1d}$ $\mid \lambda x.e \pmod{4pp}$

by removing val from FVAE using the following equivalence:

val
$$x = e_1; e_2$$
 is equivalent to $(\lambda x.e_2)(e_1)$

Definition (Syntactic Sugar)

Syntactic elements that can be expressed in terms of other syntactic elements are called **syntactic sugar**.

Definition (Desugaring)

Desugaring is a translation for removing syntactic sugar.

$$\mathcal{D}[\![-]\!]:\mathbb{E}\to\mathbb{E}$$

For example, we can define the desugaring of val as follows:

$$\mathcal{D}[val \ x = e_1; \ e_2] = (\lambda x.e_2)(e_1)$$

Is it correct? No! Why?

$$\mathcal{D}[val \ x = e_1; \ e_2] = (\lambda x.e_2)(e_1)$$

For example,

$$\mathcal{D}[\![\mathtt{val}\ \mathtt{x} = 1;\ 2 + (\mathtt{val}\ \mathtt{y} = 3;\ \mathtt{x} * \mathtt{y})]\!] = \lambda \mathtt{x}.(2 + (\mathtt{val}\ \mathtt{y} = 3;\ \mathtt{x} * \mathtt{y}))(1)$$

Without desugaring rule for addition, the expression (val y = 3; x * y) in the right-hand side of the addition cannot be desugared.

So, we need to **recursively desugar** sub-expressions of the given expression even if they are not syntactic sugars.

Then, it can be desugared as follows:

$$\mathcal{D}[[val x = 1; 2 + (val y = 3; x * y)]] = \lambda x.(2 + (\lambda y.x * y)(3))(1)$$

We can also implement **desugaring** in Scala:

```
def desugar(expr: Expr): Expr = expr match
  case Val(x, i, b) => App(Fun(x, desugar(b)), desugar(i))
  case Num(n) => Num(n)
  case Add(1, r) => Add(desugar(1), desugar(r))
  case Mul(1, r) => Mul(desugar(1), desugar(r))
  case Id(x) => Id(x)
  case Fun(p, b) => Fun(p, desugar(b))
  case App(f, e) => App(desugar(f), desugar(e))
```

Then, we can desugar the example FVAE expression as follows:

```
val expr: Expr = Expr("val x = 1; 2 + (val y = 3; x * y)")
desugar(expr) == Expr("(x => 2 + (y => x * y)(3))(1)")
```


Most programming languages have syntactic sugar:

• Scala

for (x <- list) yield x * 2
$$\equiv$$
 list.map(x => x * 2)

• C++

JavaScript¹

$$x \mid | = y; x \&\& = y;$$
 $\equiv | x \mid | (x = y); x \&\& (x = y);$

• Haskell

• . .

https://babeljs.io/repl

Contents

Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

2. Lambda Calculus

Definition Church Encodings Church-Turing Thesis

Lambda Calculus

What is the minimal language that can express all the syntactic elements of FVAE? Lambda calculus (LC)!

The **lambda calculus (LC)** is a language only consisting of 1) **variables**, 2) **functions**, and 3) **applications**:

We already showed that the **variable definition** can be desugared to a combination of a **function definition** and an **application**:

$$\mathcal{D}[val \ x = e_1; \ e_2] = (\lambda x. \mathcal{D}[e_2])(\mathcal{D}[e_1])$$

Then, how can we desugar other syntactic elements of FVAE?

Let's learn the Church encodings!

Church Encodings – Church Numerals

Church encodings are ways to encode data and operations in the lambda calculus (LC).

For example, **Church numerals** are a way to encode **natural numbers** in the **lambda calculus (LC)**.

The key idea is to encode a **natural number** n as a **function** that takes another function f and an argument x and applies f to x n times:

$$\mathcal{D}\llbracket 0 \rrbracket = \lambda f.\lambda x.x$$

$$\mathcal{D}\llbracket 1 \rrbracket = \lambda f.\lambda x.f(x)$$

$$\mathcal{D}\llbracket 2 \rrbracket = \lambda f.\lambda x.f(f(x))$$

$$\mathcal{D}\llbracket 3 \rrbracket = \lambda f.\lambda x.f(f(f(x)))$$

$$\vdots$$

$$\mathcal{D}\llbracket e_1 + e_2 \rrbracket = \lambda f.\lambda x.\mathcal{D}\llbracket e_1 \rrbracket (f)(\mathcal{D}\llbracket e_2 \rrbracket (f)(x))$$

$$\mathcal{D}\llbracket e_1 * e_2 \rrbracket = \lambda f.\lambda x.\mathcal{D}\llbracket e_1 \rrbracket (\mathcal{D}\llbracket e_2 \rrbracket (f))(x)$$

Church Encodings – Church Numerals

For example,

$$\begin{split} \mathcal{D}\llbracket 1+1 \rrbracket &= \lambda f.\lambda x. \mathcal{D}\llbracket 1 \rrbracket(f)(\mathcal{D}\llbracket 1 \rrbracket(f)(x)) \\ &= \lambda f.\lambda x. (\lambda f.\lambda x. f(x))(f)((\lambda f.\lambda x. f(x))(f)(x)) \\ &= \lambda f.\lambda x. f((\lambda f.\lambda x. f(x))(f)(x)) \\ &= \lambda f.\lambda x. f(f(x)) \\ &= \mathcal{D}\llbracket 2 \rrbracket \end{aligned}$$

We can represent other data or operations in the **LC** using **Church encodings**, such as **integers**, **booleans**, **pairs**, **lists**, and so on.²

Let's see one more example of **Church encoding** for **booleans** and **logical operations** (i.e., **Church booleans**).

²https://en.wikipedia.org/wiki/Church_encoding

Church Encodings – Church Booleans

The key idea is to encode a **boolean** b as a **function** that takes two arguments t and f and applies t if b is true or f if b is false:

$$\begin{split} \mathcal{D}[\![\mathsf{true}]\!] &= \lambda t. \lambda f. t \\ \mathcal{D}[\![\mathsf{false}]\!] &= \lambda t. \lambda f. f \end{split} \qquad \begin{split} \mathcal{D}[\![\mathsf{if}(e_1) \ e_2 \ \mathsf{else} \ e_3]\!] &= \mathcal{D}[\![e_1]\!] (\mathcal{D}[\![e_2]\!]) (\mathcal{D}[\![e_3]\!]) \\ \mathcal{D}[\![e_1 \ \mathsf{k\&} \ e_2]\!] &= \mathcal{D}[\![e_1]\!] (\mathcal{D}[\![e_2]\!]) (\mathcal{D}[\![e_1]\!]) \\ \mathcal{D}[\![e_1 \ \mathsf{l} \ \mathsf{l} \ e_2]\!] &= \mathcal{D}[\![e_1]\!] (\mathcal{D}[\![e_1]\!]) (\mathcal{D}[\![e_2]\!]) \\ \mathcal{D}[\![! \ e]\!] &= \lambda t. \lambda f. \mathcal{D}[\![e]\!] (f)(t) \end{split}$$

For example,

$$\begin{array}{lll} \mathcal{D}[\![\mathsf{true}\,\&\&\,\mathsf{false}]\!] &=& \mathcal{D}[\![\mathsf{true}]\!](\mathcal{D}[\![\mathsf{false}]\!])(\mathcal{D}[\![\mathsf{true}]\!]) \\ &=& (\lambda t.\lambda f.t)(\mathcal{D}[\![\mathsf{false}]\!])(\mathcal{D}[\![\mathsf{true}]\!]) \\ &=& \mathcal{D}[\![\mathsf{false}]\!] \end{array}$$

Church-Turing Thesis

Alonzo Church invented **lambda calculus** in 1930s, and it became the foundation of **programming languages**:

$$e ::= e \mid \lambda x.e \mid e(e)$$

Alan Turing invented **Turing machines (TM)** in 1936, and it became the foundation of **computers**:

Church-Turing Thesis: Lambda Calculus is Turing complete.

Any real-world computation can be translated into an equivalent computation involving a Turing machine or can be done using lambda calculus.

Homework #2

https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt

- Please see above document on GitHub:
 - Implement interp function.
 - 2 Implement subExpr1 and subExpr2 functions.
- The due date is 23:59 on Oct. 14 (Mon.).
- Please only submit Implementation.scala file to <u>Blackboard</u>.

Summary

1. Syntactic Sugar

No More val FAE – Removing val from FVAE Syntactic Sugar and Desugaring

2. Lambda Calculus

Definition

Church Encodings

Church-Turing Thesis

Next Lecture

Recursive Functions

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr