ADDENDUM

A `magnetic' interatomic potential for molecular dynamics simulations.

To cite this article: Dudarev S L and Derlet P M 2007 J. Phys.: Condens. Matter 19 239001

View the article online for updates and enhancements.

Related content

- Numerical implementation of the incubation time fracture criterion
 V A Bratov, N A Kazarinov and Y V Petrov
- On the conductivity imaging by MREIT: available resolution and noisy effect
 J J Liu, J K Seo, M Sini et al.
- Black hole quasinormal modes using the asymptotic iteration method
 H T Cho, A S Cornell, Jason Doukas et al.

Recent citations

- Spontaneous electric polarization in the B -site magnetic spinel GeCu 2 O 4 Premakumar Yanda et al
- Predicting XAFS scattering path cumulants and XAFS spectra for metals (Cu, Ni, Fe, Ti, Au) using molecular dynamics simulations
- M. A. Karolewski et al
- Anharmonicity and Quantum Effects in Thermal Expansion of an Invar Alloy
 Toshihiko Yokoyama and Keitaro Eguchi

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

doi:10.1088/0953-8984/19/23/239001

ADDENDUM

A 'magnetic' interatomic potential for molecular dynamics simulations.

Dudarev S L and Derlet P M J. Phys.: Condens. Matter 17 7097-7118

Received 06 December 2006 Published 17 May 2007 Online at stacks.iop.org/JPhysCM/19/239001

Our colleagues pointed out that the format of numerical values given in table 3 of our paper may cause confusion and lead to an error in the numerical implementation of the potential. Below we list the values given in table 3 of our original paper, this time using conventional decimal notations. These values correspond to the same choice of parameter $\rho_c = 1$.

Table 3. Optimal parameter set for case studies I and II

	Case study I	Case study II
A	3.527 586 256 672 234	4.100 199 340 884 814
В	1.642 855 167 616 477	1.565 647 547 483 517
r_n^f	f_n	
3.0	0.505 568 175 375 7052	0.933 205 668 108 8162
2.866 666 666 666 670	-0.425 555 283 113 6833	-1.162558782567700
2.733 333 333 333 330	-0.562 940 810 933 9820	-0.350 202 694 924 9225
2.6	0.431 853 088 566 5762	0.428 782 083 543 0028
2.4	_	4.907 925 057 809 273
2.3	_	5.307 049 068 415 304
r_n^f	V_n	
4.1	$1.753\ 386\ 111\ 560\ 4772\times10^{-3}$	-0.196 067 438 741 9232
3.8	-0.932 121 957 205 9338	0.368 752 593 542 2963
3.5	1.696 463 955 030 590	-1.505 333 614 924 853
3.2	0.663 847 872 510 9788	4.948 907 078 156 191
2.9	-1.914 559 267 568 704	4.894 613 262 753 399
2.6	3.193 687 184 255 540	3.468 897 724 782 442
2.4	_	-1.792 218 099 820 337
2.3	_	80.220 695 922 469 87