

适合 2.4 GHz 无线电的低成本 PCB 天线: 适用于 STM32WB 系列的蛇形天线 设计

引言

此应用笔记专用于 STM32WB 系列微控制器。

使用 PCB(印刷电路板)天线的主要原因之一是降低无线模块的总成本。出色地设计,可以让 PCB 印刷天线拥有与 SMD (表面贴装器件)陶瓷天线相似的性能。

一般而言,陶瓷 SMD 天线的封装尺寸小于 PCB 印刷天线的尺寸。对于 PCB 印刷天线解决方案,与天线所需空间相关的 PCB 尺寸增加,这意味着无线模块更大,PCB 成本也随之增加。然而,PCB 解决方案通常比 SMD 陶瓷天线更便宜。

STM32WB 系列的演示和开发板根据本应用笔记实现 PCB 印刷天线。

1 概述

本文档适用于基于 ARM[®]的 STM32WB 系列器件。

提示 Arm 是 Arm Limited (或其子公司) 在美国和/或其他地区的注册商标。

arm

AN5129 - Rev 4 2/22

2 坐标系

对于本文档, 使用的是下图所示的球坐标系。

图 1. 球坐标系

PCB 模块垂直(X-Z 平面)靠近坐标系原点。方位角从 X 轴到 Y 轴,倾斜角从 Z 轴到 X-Y 平面。有时,对于地理和导航系统,X 轴称为"法线轴",Y 轴称为"东轴线",Z 轴称为"天顶轴"。

AN5129 - Rev 4 3/22

3 布局规范

PCB 天线包括所用 PCB 物料的电气参数,这对布局要求非常严格。建议使用尽可能类似下图所示的布局。

图 2. PCB 天线尺寸(以 mm 为单位)

PCB 天线的电气参数和性能也是由所使用的基板决定,尤其是板芯厚度与介电常数。

AN5129 - Rev 4 4/22

下图显示了 PCB 天线区域中基板的典型横截面。

图 3. 天线区域的 PCB 横截面

推荐使用中下表所定义的参数对应的基板。

表 1. 推荐的基板规范

层		人由兴歌 C		
	标签	值(mil)	值(μm)	介电常数 ε _R
阻焊层,顶部	S1	0.7	17.78	4.4
铜线	Т	1.6	40.64	-
内核	С	28	711.2	4.4
阻焊层,底部	S2	0.7	17.78	4.4

AN5129 - Rev 4 5/22

4 阻抗匹配

通过 π 拓扑的阻抗匹配电路,PCB 蛇形天线可调谐为所需的 50Ω 阻抗。在图 2 中,阻抗匹配区域用虚线标记。在正常条件下,该天线的阻抗与所需标称阻抗(50Ω)非常接近。

为了检查此设计的性能,制造了一个天线样本(根据本文档中的规范)。下图显示了此天线。

图 4.802.15.4 部分和 BLE PCB 蛇形天线(标度约 4:1)

假设制造的样本天线具备所需的阻抗(不需要匹配阻抗),该阻抗匹配电路会被两个串联的 100 pF 电容旁通,如下图所示。

图 5. 省略阻抗匹配电路 - 直接射频连接

蛇形天线的所有电气参数都需要在带通滤波器(BPF)连接时测量,该滤波器的频率覆盖范围为 2.4 GHz 到 2.5 GHz。

AN5129 - Rev 4 6/22

天线的复数阻抗如下图中的史密斯图所示。

图 6. 蛇形天线的复阻抗(史密斯图)

下图显示了 S11 参数的幅值(对数标度)。

图 7. 采用对数标度的 S11 参数(直角坐标曲线图)

AN5129 - Rev 4 7/22

下图显示驻波比(SWR)。

图 8. 天线驻波比(SWR)

下列更改会影响 PCB 天线的辐射阻抗:

- 板子尺寸小幅变动
- 金属屏蔽
- 使用塑料盖
- 天线附近存在其他元件

最优性能阻抗匹配电路可以补偿这些影响,从而在工作频率方面实现最优 50Ω 阻抗。

AN5129 - Rev 4 8/22

5 辐射方向图, 3D 可视化

针对 ISM 频段中心频率 2.44175 GHz 实现了一个三维可视化辐射方向图(电场强度|E)。

图 9.3D 辐射方向图概述

AN5129 - Rev 4 9/22

6 辐射方向图, 2D 可视化

本节中,所有辐射方向图均与电场强度 IE 相关,归一化后用对数标度(单位为 dB)表示。这表示最大全局辐射方向图(最大的电场强度 E)用 0dB 等级表示。

为了详细显示天线的辐射方向图,提供了三个二维(2D)主切面。考虑球坐标系中模块方向,如图 1 所示。 一个三维(3D)远场辐射方向图通过一个 3D 模式可视化为三个二维(2D)切面。以下主要平面用于这些切面(参见图 11):

- 一个 X-Y 平面
- 两个垂直平面: X-Z 平面与 Y-Z 平面

下图中各图表的颜色如下:

- X-Y 平面上绘制"蓝色"图,其中方位角 φ从 0°开始沿 X 轴朝向 Y 轴,直到达到 X 轴方向的 360°。
- X-Z 平面上绘制"红色"图,其中倾斜角 θ 从 0°开始沿
- Z 轴朝向 X 轴正向,直到达到 Z 轴负向部分的 180°。在本图中(X-Z 平面切割)倾斜角 θ 为负值,因为X<0。
- Y-Z 平面上绘制"绿色"图,其中倾斜角 θ 从 0°开始沿 Z 轴朝向 Y 轴正向,直到达到 Z 轴负向部分的 180°。在本图中(Y-Z 平面切割)倾斜角 θ 为负值,因为 XY<0。

图 11. 使用 2D 图实现 3D 辐射方向图的主要平面

本节中的短偶极仅用于对比和分类。

AN5129 - Rev 4 10/22

6.1 Y-Z 平面的辐射方向图

图 13 和图 14 中的第一个辐射方向图显示了 Y-Z 平面一个标准的电场辐射方向图|E|(远场)。模块相对 Y-Z 平面与此图的方向如下图所示。

图 12. Y-Z 平面的远场辐射方向图

提示 此平面上的辐射接近全方位,辐射水平基本恒定。对于一个垂直方面的偶极,此模式等效于水平辐射。

AN5129 - Rev 4 11/22

图 13. Y-Z 平面的归一化辐射方向图(极坐标图)

下图显示了与上图中相同的辐射方向图, 用直角坐标曲线图表示。

AN5129 - Rev 4 12/22

6.2 X-Y 平面的辐射方向图

图 16 和图 17 中的第二个远场辐射方向图表示了 X-Y 平面上绘制的电场|E|归一化幅度。模块相对 X-Y 平面与此图的方向如下图所示。

图 15. X-Y 平面的远场辐射方向图

对于一个垂直方向的偶极,此模式等效于垂直辐射。

注意,当接收器处于偶极子天线 $\, Z \,$ 轴时,此解决方案不能像标准偶极一样提供一个盲向。在此解决方案中, $\, XY \,$ 方向的最大衰减在 $\, 10 \,$ 到 $\, 14 \,$ dB 范围内

AN5129 - Rev 4 13/22

图 16. X-Y 平面的归一化辐射方向图(极坐标图)

下图显示了与上图中相同的 X-Y 平面远场|E|辐射方向图,用直角坐标曲线图表示。

图 17. X-Y 平面的归一化辐射方向图(直角坐标曲线图)

AN5129 - Rev 4 14/22

6.3 X-Z 平面的辐射方向图

图 19 和图 20 中的第三个和最后一个辐射方向图显示了 X-Z 平面一个标准的电场辐射方向图|E|(远场)。模块相对 X-Z 平面与此图的方向如下图所示。

图 18. X-Z 平面的远场辐射方向图

对于一个水平方向的偶极,此模式等效于垂直辐射。

AN5129 - Rev 4 15/22

图 19. X-Z 平面的归一化辐射方向图(极坐标图)

下图显示了与上图中相同的 X-Z 平面远区电场辐射方向图,用直角坐标曲线图表示。

图 20. X-Z 平面的归一化辐射方向图(直角坐标曲线图)

AN5129 - Rev 4 16/22

7 性能

在 ISM 频段中心频率 2.44175 GHz,该天线显示以下关键性能参数:

- 方向性 2.21 dB
- 增益 1.95 dBi
- 最大强度 0.125 W/球面度

AN5129 - Rev 4 17/22

8 机械和 PCB 影响

如果与地平面太靠近,最终产品集成此类天线的效果会折损。没有地平面的天线周围必须留有足够的空间。

提示 任何金属物体都会影响天线性能和辐射方向图。同样,如果设备为手动设备,用户的手和身体也会影响天线设计

AN5129 - Rev 4 18/22

版本历史

表 2. 文档版本历史

日期	版本	变更
2018年1月17日	1	初始版本。
2018年9月14日	2	更新了文档的发布范围。
2019年2月25日	3	更新了文档的发布范围。
2019年4月23日	4	更新了图 2. PCB 天线尺寸(以 mm 为单位)。

AN5129 - Rev 4 19/22

目录

1 概述		2
5 辐射方向图, 3D 可视化。		9
6 辐射方向图, 2D 可视化		10
6.1 Y-Z 平面的辐射方向	可图	11
6.2 X-Y 平面的辐射方向	可图	13
6.3 X-Z 平面的辐射方向	可图	15
7 性能		17
8 机械和 PCB 影响		18
版本历史		19
目录		20
图一览		21

图一览

图 1.	球坐标系	
图 2.	PCB 天线尺寸(以 mm 为单位)	4
图 3.	天线区域的 PCB 横截面	
图 4.	802.15.4 部分和 BLE PCB 蛇形天线 (标度约 4:1)	6
图 5.	省略阻抗匹配电路 - 直接射频连接	6
图 6.	蛇形天线 的复阻抗(史密斯图)	7
图 7.	采用对数标度的 S11 参数(直角坐标曲线图)	
图 8.	天线驻波比(SWR)	8
图 9.	3D 辐射方向图概述	
图 10.	X-Z 平面的辐射方向图	
图 11.	使用 2D 图实现 3D 辐射方向图的主要平面	
图 12.	Y-Z 平面的远场辐射方向图	11
图 13.	Y-Z 平面的归一化辐射方向图(极坐标图)	12
图 14.	Y-Z 平面的归一化辐射方向图(直角坐标曲线图)	
图 15.	X-Y 平面的远场辐射方向图	13
图 16.	X-Y 平面的归一化辐射方向图(极坐标图)	14
图 17.	X-Y 平面的归一化辐射方向图(直角坐标曲线图)	
图 18.	X-Z 平面的远场辐射方向图	
图 19.	X-Z 平面的归一化辐射方向图(极坐标图)	16
图 20.	X-Z 平面的归一化辐射方向图(直角坐标曲线图)	16

重要通知 - 请仔细阅读

意法半导体公司及其子公司("意法半导体")保留随时对 ST 产品和/或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于意法半导体产品的最新信息。意法半导体产品的销售依照订单确认时的相关意法半导体销售条款。

买方自行负责对意法半导体产品的选择和使用,意法半导体概不承担与应用协助或买方产品设计相关的任何责任。

意法半导体不对任何知识产权进行任何明示或默示的授权或许可。

转售的意法半导体产品如有不同于此处提供的信息的规定,将导致意法半导体针对该产品授予的任何保证失效。

ST 和 ST 标志是意法半导体的商标。关于意法半导体商标的其他信息,请访问 www.st.com/trademarks。其他所有产品或服务名称是其各自所有者的财产。本文档中的信息取代本文档所有早期版本中提供的信息。

© 2019 STMicroelectronics - 保留所有权利

AN5129 - Rev 4 22/22