DS Bonus Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

	Physique Quantique		
	Jonction Josephson		
	Description du phénomène		
1	Soit une particule d'énergie E qui rencontre une barrière de potentiel de hauteur V>E. Dans le cas classique, la particule est totalement réfléchie, elle ne peut pas franchir la barrière de potentiel. Dans le cas quantique, on peut montrer que cette particule a une probabilité non nulle de franchir la barrière de potentiel. C'est l'effet tunnel.	1	
2	$i\hbar\frac{d\phi_1}{dt} = K\phi_2 \text{ et } i\hbar\frac{d\phi_2}{dt} = K\phi_2; \ N_1 = \phi_1\phi_1^* \text{ donc}$ $\frac{N_1}{dt} = \frac{d\phi_1}{dt}\phi_1^* + \frac{d\phi_1^*}{dt}\phi_1 \text{ donc } i\hbar\frac{N_1}{dt} = K\phi_2\phi_1^* + K\phi_2^*\phi_1 \text{ donc}$ $i\hbar\frac{N_1}{dt} = K\sqrt{N_2N_1}e^{i(\theta_2-\theta_1)} - K\sqrt{N_1N_2}e^{i(\theta_1-\theta_2)} \text{ donc } i\hbar\frac{N_1}{dt} =$ $2iK\sqrt{N_2N_1}\sin(\theta_2-\theta_1) \text{ d'où l'équation demandé}$	1	
3	$\frac{N_1}{dt} = -\frac{N_2}{dt} \Rightarrow N_1 + N_2 = \text{cte.}$ Les nombres de paires de Cooper varient en sens inverse dans les supraconducteurs 1 et 2 : Quand N_1 augmente, N_2 diminue et inversement. Le nombre total de paires de Cooper reste constant.	1	
4	$i = \frac{dq}{dt} \text{ or } q = -2eN_1 \text{ donc } i = -2e\frac{dN_1}{dt} = -\frac{8e\pi K\sqrt{N_1N_2}}{h}\sin(\theta_2 - \theta_1)$	1	
	Largeur Doppler d'une raie d'émission - partie physique quantique		
	Décalage Doppler		
5	Le récepteur reçoit le premier maximum à l'instant $t_1 = \frac{d}{c}$	1	

6	Le deuxième maximumest émis à l'instant : $t_{e2} = \frac{x}{v_x} = T_0$. La	1	
	distance $d_{O'R}$ entre l'émetteur O0 et le récepteur R à cet instant :		
	$d_{O'R} = d - x = d - v_x T_0$. La date t_2 du réception du deuxième		
	maximum : $t_2 = T_0 + \frac{d_{O'R}}{c} = T_0 + \frac{d - v_x T_0}{c}$		
7	$T = t_2 - t_1 = T_0 - \frac{v_x T_0}{c} = T_0 \left(1 - \frac{v_x}{c} \right) \text{ donc } \nu \approx \nu_0 \left(1 + \frac{v_x}{c} \right)$	1	
	Distribution des vitesses dans un gaz parfait unidimensionnel		
	Fonction d'onde d'un atome dans un état stationnaire		
8	Le spectre énergétique d'un atome est discret. La masse m^* d'un M_{Hg}	1	
	atome de Hg : $m^* = \frac{N_g}{N_A} \approx 10^{-21} \text{ g}$		
9	Le spectre energetique d'un atome est discret. La masse m d'un atome de Hg : $m^* = \frac{M_{Hg}}{N_A} \approx 10^{-21} \text{ g}$ Équation différentielle : $-\frac{\hbar^2}{2m^*} \frac{d^2\phi(x)}{dx^2} = E\phi(x)$, Conditions aux limites : $\phi(x=0) = 0$ et $\phi(x=L) = 0$	1	
	limites: $\phi(x=0) = 0$ et $\phi(x=L) = 0$		
10	Solution: $\phi(x) = A\cos(kx) + B\sin(kx)$ avec $k^2 = \frac{2m}{\hbar^2}E$. $\phi(0) = \frac{2m}{\hbar^2}$	1	
	$0 \Rightarrow A = 0 \text{ et } \phi(L) = 0 \Rightarrow k = \frac{n\pi}{L} \text{ soit } E = \frac{\hbar^2 \pi^2}{2m^* L^2} n^2$		
	Questionnements et découvertes autour de l'atome le plus simple de l'univers		
	Modèle historique de Bohr de l'atome d'hydrogène (1913)		
11	$\vec{F} = -\frac{e^2}{4\pi\epsilon_0 r^2} \vec{u}_r$	1	
12	On a une trajectoire circulaire uniforme donc $\vec{a} = -\frac{v^2}{r}\vec{u}_r$ et $m\vec{a} =$	1	
	$\vec{F} \operatorname{donc} v = \sqrt{\frac{e^2}{4\pi m_e \epsilon_0 r}}$ $E_p = -\frac{e^2}{4\pi \epsilon_0 r}. \text{ On a bien } E_c = \frac{1}{2} m_e v^2 = \frac{1}{2} \frac{e^2}{4\pi \epsilon_0 r} = -\frac{1}{2} E_p$ $\vec{L} = m_e r \vec{u}_r \wedge \vec{v} = \sqrt{\frac{r m_e e^2}{4\pi \epsilon_0}} \vec{u}_z \text{ soit } L = \sqrt{\frac{r m_e e^2}{4\pi \epsilon_0}}$		
13	$E_p = -\frac{e^2}{4\pi\epsilon_0 r}$. On a bien $E_c = \frac{1}{2}m_e v^2 = \frac{1}{2}\frac{e^2}{4\pi\epsilon_0 r} = -\frac{1}{2}E_p$	1	
14	$\vec{L} = m_e r \vec{u}_r \wedge \vec{v} = \sqrt{\frac{r m_e e^2}{4\pi\epsilon_0}} \vec{u}_z \text{ soit } L = \sqrt{\frac{r m_e e^2}{4\pi\epsilon_0}}$	1	
15		1	
16		1	
17		1	
18		1	
	Une résolution simplifiée de l'atome de Bohr par l'équation de Schrödinger (1926)		
19		1	
20		1	
21		1	
22		1	

	Spectre de raies de l'hydrogène		
23		1	
24		1	
	Corrections relativistes de Sommerfeld (1916) : introduc- tion de la constante de structure fine		
25		1	
26		1	
27		1	
28		1	
29		1	
30		1	
	Thermodynamique Statistique		
	Largeur Doppler d'une raie d'émission - partie thermo- dynamique statistique		
	Distribution des vitesses dans un gaz parfait unidimensionnel		
	Énergie moyenne d'un atome		
31		1	
32		1	
33		1	
34		1	
35		1	
36		1	
37		1	
	Élargissement spectral par effet Doppler		
38		1	
	Comportement d'une population de dipôles dans un champ magnétique		
	Dipôles magnétiques		
39		1	
40		1	
41		1	
42		1	
43		1	
44		1	
45		1	
46		1	
47		1	
48		1	
49		1	
50		1	
	Electrochimie		
	Stabilité du fer en solution aqueuse		
51		1	

52		1	
53		1	
54		1	
55		1	
56		1	
57		1	
	La composition et les qualités du lait de brebis		
	Dosage du lactose par la méthode « officielle »		
58		1	
59		1	
60		1	
61		1	
62		1	
	On vit sur la Lune		
	Sources d'eau et production de dioxygène par électrolyse		
63		1	
64		1	
65		1	
66		1	