Teoria dos Grafos Visão Geral

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2018/2

2 / 21

Notação matemática: f(x), π , \sum , i, e

- Notação matemática: f(x), π , \sum , i, e
- Séries de potência:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6}$$

- Notação matemática: f(x), π , \sum , i, e
- Séries de potência:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6}$$

• Funções trigonométricas e números complexos:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

- Notação matemática: f(x), π , \sum , i, e
- Séries de potência:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6}$$

• Funções trigonométricas e números complexos:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

Identidade de Euler:

$$e^{i\pi} + 1 = 0$$

- Notação matemática: f(x), π , \sum , i, e
- Séries de potência:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6}$$

• Funções trigonométricas e números complexos:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

• Identidade de Euler:

$$e^{i\pi} + 1 = 0$$

• Números primos: $2^{31} - 1$

Sete pontes de Königsberg (1735)

Sete pontes de Königsberg (1735)

Exercício

Gustav Robert Kirchhoff (1824–1887)

- Leis de Kirchhoff para circuitos elétricos:
 - Em qualquer nó, a soma das correntes que o deixam é igual a soma das correntes que chegam até ele
 - ② A soma algébrica das forças eletromotrizes em qualquer malha é igual a soma algébrica das quedas de potencial ou dos produtos iR contidos na malha.

Gustav Robert Kirchhoff (1824–1887)

- Ponte de Wheatstone (1847)
- Usada para medir resistêcia elétrica
- Modelos em grafos ajudaram no projeto
- Gerou resultados para Teoria dos Grafos

Arthur Cayley (1821–1895)

- Conceito de conjuntos numéricos
- Teoria dos grupos
- Teorema de Cayley-Hamilton

Arthur Cayley (1821–1895)

- Enumeração dos isômeros dos hidrocarbonetos
- Dois compostos diferentes são isômeros se possuem a mesma composição percentual
- Exemplo: C_5H_{12}

Francis Guthrie (1831–1899)

- Foi aluno de Augustus De Morgan (matemática)
- Foi aluno de John Lindley (botânica)

Francis Guthrie (1831–1899)

Bastam quatro cores para colorir qualquer mapa?

Teorema das quatro cores

- Resolvido em 1976 por Appel e Haken, ambos da University of Illinois
- Uma das primeiras provas matemáticas a utilizar computadores
 - ▶ Debatida até os dias de hoje
 - https://bit.ly/2PtM3JQ

Gênio Indomável (1997)

• "Draw all the homeomorphically irreducible trees with n=10"

https://voutu.be/811LbompiPg www.facom.ufu.br/~phrg

Conceito fundamental: O Modelo

- Uma simplificação da realidade, construída com um objetivo, é chamada de modelo
- Resolver um modelo é obter respostas para o problema a ele associado

Conceito fundamental: O Modelo

- Problema das sete pontes: quatro pontos, correspondentes às margens e ilhas, e sete linhas representando as pontes
- Circuitos elétricos: uma linha é associada a cada componente e um ponto ao local onde dois ou mais componentes são conectados
- Fórmulas químicas: pontos são os átomos de carbono e linhas são as ligações entre eles
- Colorindo mapas: cada região (país, estado, etc.) é um ponto e as linhas representam a existência de fronteiras entre tais regiões

Modelagem

- Podemos modelar esse problema de diversas formas
- Duas mais comuns:
 - 1 Por meio de uma figura (esquema gráfico)
 - 2 Por meio de um modelo matemático

Exemplo: Problema de transportes

Uma firma fabrica um determinado produto em três cidade P_1 , P_2 e P_3 ; o produto destina-se a quatro centros de consumo C_1 , C_2 , C_3 e C_4 . O custo estimada de transportar o produto das fábricas para os centros consumidores, assim como a demanda de cada centro consumidor e a oferta de cada fábrica é dado na tabela a seguir:

	Destino				
Origem	C_1	C_2	C_3	C_4	Oferta
$\overline{P_1}$	10	7	6	5	9
P_2	2	8	9	1	10
P_3	11	12	8	4	8
Demanda	7	6	10	4	

Modelagem: Figura

- Desenhamos as origens e os destinos
- Adicionamos as ligações
- Incluímos os valores de custo, ofeta e demanda

Modelagem

Seja x_{ij} a quantidade de produtos transportada da origem i=1,2,3,4 ao destino j=1,2,3

min
$$C = 10x_{11} + 7x_{12} + 6x_{13} + 5x_{14} + 2x_{21} + 8x_{22} + 9x_{23} + 1x_{24} + 11x_{31} + 12x_{23} + 8x_{33} + 4x_{34}$$

sujeito a

$$x_{11} + x_{12} + x_{13} + x_{14} = 9 (1)$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 10 (2)$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 9 (3)$$

$$x_{11} + x_{21} + x_{31} = 7 (4)$$

$$x_{12} + x_{22} + x_{32} = 6 (5)$$

$$x_{13} + x_{23} + x_{33} = 10 (6)$$

$$x_{14} + x_{24} + x_{34} = 4 (7)$$

Conceito fundamental: O Modelo

George E. P. Box¹:

"Todos os modelos estão errados, mas alguns são úteis"

¹Box, G. E. P. (1976), "Science and statistics", *Journal of the American Statistical Association*, 71: 791–799