

Text Processing using Machine Learning

Word Embeddings

Liling Tan
03 Dec 2019

5,500 GRADUATE ALUMNI

120 & LEADERSHIP PROGRAMMES

TRAINING OVER

120,000 DIGITAL LEADERS

PROFESSIONALS

Overview

Word Embeddings

- SVD to Word2Vec
- PyTorch Data Preparation
- Word2Vec from Scratch

Word Embeddings

Word Embeddings

"You shall know a word by the company it keeps..."

- John R. Firth (1957)

"We propose a unified NN architecture by trying to avoid task-specific engineering therefore disregarding a lot of prior knowledge"

- Collobert and Weston (2011)

"Context-predicting models known as embeddings are the new kids on the distributional semantics block... The result, to our own surprise, show that the buzz is fully justified."

- Baroni et al. (2014)

Classic NLP: Feature Engineering

Count-based vectors are

- e.g. TF-IDF, PPMI
- long (|V| > 100,000)
- sparse (lots of zero)

- Vector compression (aka dimensionality reduction)
 - shorter vectors easier to use as features in machine learning
 - compression use to make vectors short and dense, e.g. Singular Value Decomposition (SVD), Non-negative Matrix Factorization (NMF)

Term Frequency – Inverse Document Frequency

sent0 = "The quick brown fox jumps over the lazy brown dog ."
sent1 = "Mr brown jumps over the lazy fox ."

	brown	dog	fox	jumps	lazy	mr	over	quick	the
sent0	0.500	0.351	0.250	0.250	0.250	0.000	0.250	0.351	0.500
sent1	0.354	0.000	0.354	0.354	0.354	0.497	0.354	0.000	0.354

Term Frequency – Inverse Document Frequency

sent0 = "The quick brown fox jumps over the lazy brown dog ."
sent1 = "Mr brown jumps over the lazy fox ."

	brown	dog	fox	jumps	lazy	mr	over	quick	the
sent0	0.500	0.351	0.250	0.250	0.250	0.000	0.250	0.351	0.500
sent1	0.354	0.000	0.354	0.354	0.354	0.497	0.354	0.000	0.354

v('dog')

Pointwise Mutual Information

		j = 1	j=2	j=3	j = 4	j=5
		mr	brown	jumps	over	fox
i = 1	mr	0	1	1	0	0
i=2	brown	0	0	1	1	2
i=3	jumps	1	0	0	2	1
i = 4	over	2	1	0	0	1
i = 5	fox	0	0	1	0	0

Matrix *F* with

- W rows (words)
- C columns (context)

Pointwise Mutual Information

		j = 1	j=2	j=3	j = 4	j=5
		mr	brown	jumps	over	fox
i = 1	mr	0	1	1	0	0
i=2	brown	0	0	1	1	2
i=3	jumps	1	0	0	2	1
i = 4	over	2	1	0	0	1
i = 5	fox	0	0	1	0	0

Matrix F with

- W rows (words)
- C columns (context)

v('fox')

Dimensionality Reduction (SVD)


```
corpus = ['he eats ramen', 'she eats sushi',
          'he hungry', 'she drinks coffee']
count_model = CountVectorizer(ngram_range=(1,1))
X = count_model.fit_transform(corpus)
X cooc = (X.T * X)
X cooc.setdiag(0) # set co-occurence with self to 0.
U, s, Vh = np.linalg.svd(X_cooc.todense(),
                        full_matrices=False)
words = sorted(count_model.vocabulary_,
              key=count_model.vocabulary_.get)
for i in range(len(words)):
    plt.text(U[i,0], U[i,1], words[i], fontsize=22)
plt.axis('off')
plt.show()
```

he ramen eats hungry

sushi

she doiffilee

Dimensionality Reduction (SVD)


```
corpus = ['he eats ramen', 'she eats sushi',
          'he hungry', 'she drinks coffee']
count_model = CountVectorizer(ngram_range=(1,1))
X = count_model.fit_transform(corpus)
X cooc = (X.T * X)
X cooc.setdiag(0) # set co-occurence with self to 0.
U, s, Vh = np.linalg.svd(X_cooc.todense(),
                        full_matrices=False)
words = sorted(count_model.vocabulary_,
              key=count_model.vocabulary_.get)
for i in range(len(words)):
    plt.text(U[i,0], U[i,2]
                              words[i], fontsize=22)
plt.axis('off')
 plt.show()
```

eats

doiffice

sushi ramen

he

she

Single Value Decomposition (SVD)

Computational cost scales quadratically,

- $O(mn^2)$ for n x m matrix
 - Even if we can flip the n/m easily, if we have lots of words/documents, it won't help much.

• If there's new words or documents, SVD has to be recomputed from scratch.

Count-based Vectors


```
tokenization
annotation
tagging
parsing
feature selection
: cluster texts by date/author/discourse context/...
```

Matrix type		Weighting		Dimensionality reduction		Vector comparison
word × document		probabilities		LSA		Euclidean
$word \times word$		length normalization		PLSA		Cosine
word × search proximity	X	TF-IDF	X	LDA	X	Dice
adj. × modified noun		PMI		PCA		Jaccard
word \times dependency rel.		Positive PMI		IS		KL
verb × arguments		PPMI with discounting		DCA		KL with skew
1				:		•

(Nearly the full cross-product to explore; only a handful of the combinations are ruled out mathematically, and the literature contains relatively little guidance.)

Potts (2013)

Don't Count, Predict!

	rg	ws	wss	wsr	men	toefl	ap	esslli	battig	up	mcrae	an	ansyn	ansem
						best s	setup	on each	task					
cnt	74	62	70	59	72	76	66	84	98	41	27	49	43	60
pre	84	75	80	70	80	91	75	86	99	41	28	68	71	66
						best.	setup	across t	asks					
cnt	70	62	70	57	72	76	64	84	98	37	27	43	41	44
pre	83	73	78	68	80	86	71	77	98	41	26	67	69	64
						worst	setup	across	tasks					
cnt	11	16	23	4	21	49	24	43	38	-6	-10	1	0	1
pre	74	60	73	48	68	71	65	82	88	33	20	27	40	10
	i.					b	est se	tup on r	g					
cnt	(74)	59	66	52	71	64	64	84	98	37	20	35	42	26
pre	(84)	71	76	64	79	85	72	84	98	39	25	66	70	61
,						j	other	models	ĵ					
soa	86	81	77	62	76	100	79	91	96	60	32	61	64	61
dm	82	35	60	13	42	77	76	84	94	51	29	NA	NA	NA
cw	48	48	61	38	57	56	58	61	70	28	15	11	12	9

Table 2: Performance of count (cnt), predict (pre), dm and cw models on all tasks. See Section 3 and Table 1 for figures of merit and state-of-the-art results (soa). Since dm has very low coverage of the an* data sets, we do not report its performance there.

Baroni et al. (2014)

Word Embeddings: Not New, but Different

 Learning representations by back-propagating errors (Rumelhart et al. 1986)

• Neural Probabilistic Language Model (Bengio et al. 2003)

NLP (almost) from Scratch (Collobert and Weston, 2008)

Word2Vec (Mikolov et al., 2013)

One-Hot Encoding (Sparse Representation)

	he	she	eats	drinks	sushi	ramen	hungry	coffee
he	1	0	0	0	0	0	0	0
she	0	1	0	0	0	0	0	0
eats	0	0	1	0	0	0	0	0
drinks	0	0	0	1	0	0	0	0
sushi	0	0	0	0	1	0	0	0
ramen	0	0	0	0	0	1	0	0
hungry	0	0	0	0	0	0	1	0
coffee	0	0	0	0	0	0	0	1

Word Embeddings (Dense Representation)

	he	she	eats	drinks	sushi	ramen	hungry	coffee
0	0.1	0.2	-0.4	0.9	0.8	0.1	0.8	-0.8
1	0.2	0.1	-0.3	0.9	0.7	0.2	0.3	-2.1
2	0.2	-1.4	0.3	-0.1	0.1	0.5	0.9	-0.5
3	0.3	-2.0	0.5	-0.5	0.2	0.4	0.1	-0.1
4	0.2	-1.1	0.3	-0.7	-0.6	-0.5	0.3	0.4
5	0.3	-1.2	0.4	-0.9	-0.3	-0.4	-0.6	-0.4

v('drinks')

Lookup Function

0
0
0
1
0
0
0
0

\	/

0.1	0.2	-0.4	0.9	0.8	0.1	0.8	-0.8
0.2	0.1	-0.3	0.9	0.7	0.2	0.3	-2.1
0.2	-1.4	0.3	-0.1	0.1	0.5	0.9	-0.5
0.3	-2.0	0.5	-0.5	0.2	0.4	0.1	-0.1
0.2	-1.1	0.3	-0.7	-0.6	-0.5	0.3	0.4
0.3	-1.2	0.4	-0.9	-0.3	-0.4	-0.6	-0.4

0.9
0.9
-0.1
-0.5
-0.7
-0.9

One-Hot Encoding

Word Embeddings

$$|V| \times d$$

Input

Deep NLP: Featurize and Predict

- Deep learning can create vectors that are
 - short (often fixed-sized <2000, decided empirically)
 - dense (most are non-zeros)

 How might we "featurize" the vectors through some tasks and update the vectors based on gradient descent?

Word2Vec

Male-Female

Verb tense

Country-Capital

Ingredients

Corpus of text	As large as possible
Annotations	0
Initialize weights (aka Embeddings)	1x per word
Deep Learning Model	1x
Cost Function	Appropriately
GPU	Lotsa of it

Word2Vec

Steps

- 1. Define task that we want to predict
- Go through each sentence and create the task's in-/outputs
- 3. Iterate through task's I/O, put the inputs through the embeddings and models to create predictions
- 4. Measure cost of the predicted and expected output
- Update embedding weights accordingly (*backprop)
- 6. Repeat Step 3-5 until desired.

Task: Iterate through each word with a given window; for each word predict the context words within the window

Task: Iterate through each word with a given window; for each word predict the context words within the window

(E.g. from Manning (2018) Stanford cs224n course)

Task: Iterate through each word with a given window; for each word predict the context words within the window

(E.g. from Manning (2018) Stanford cs224n course)

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_i .

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$
 θ is all variables to be optimized sometimes called *cost* or *loss* function

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

Minimizing objective function

⇔ Maximizing predictive accuracy

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_i .

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$
 θ is all variables to be optimized sometimes called cost or loss function

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

Minimizing objective function

⇔ Maximizing predictive accuracy

We want to minimize the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

Question: How to calculate $P(w_{t+j} | w_t; \theta)$?

Answer: We will *use two* vectors per word w:

- v_w when w is a center word
- u_w when w is a context word

Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

We want to minimize the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

Question: How to calculate $P(w_{t+j} | w_t; \theta)$?

Answer: We will *use two* vectors per word w:

- v_w when w is a center word
- u_w when w is a context word

Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Exponentiation makes anything positive

• This is an example of the softmax function $\mathbb{R}^n \to \mathbb{R}^n$

$$\operatorname{softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} = p_i$$

- The softmax function maps arbitrary values x_i to a probability distribution p_i
 - "max" because amplifies probability of largest x_i
 - "soft" because still assigns some probability to smaller x_i
 - Frequently used in Deep Learning

Task: Iterate through every word with a given window; learn W such the models can predict what's the word given only the context words as inputs.

Sentence: the bulk of linguistic questions concern the distinction between a and m. a linguistic account of phenomenon ...

of	the bulk linguistic questions
linguistic	bulk of questions concern
questions	of linguistic concern the
concern	linguistic questions the dis-
the	questions concern dis- tinction
dis-	concern the tinction between
tinction	the dis between a
between	dis- tinction a and
a	tinction between and m.
and	between a m. a
m.	a and a linguistic
a	and m linguistic account
linguistic	m. a account of
account	a linguistic of a
of	linguistic account a phenomenor
a	account of phenomenon gen-
phenomenon	of a gen- erally

Sentence: the bulk of linguistic questions concern the distinction between a and m. a linguistic account of phenomenon ...

of	the bulk linguistic questions
linguistic	bulk of questions concern
questions	of linguistic concern the
concern	linguistic questions the dis-
the	questions concern dis- tinction
dis-	concern the tinction between
tinction	the dis between a
between	dis- tinction a and
a	tinction between and m.
and	between a m. a
m.	a and a linguistic
a	and m linguistic account
linguistic	m. a account of
account	a linguistic of a
of	linguistic account a phenomenon
a	account of phenomenon gen-
phenomenon	of a gen- erally

Word2Vec (Skipgram)

Task: Iterate through every word with a given window; learn W such the models predicts 1.0 when the model is given (i) embeddings of the focus words and (ii) embedding of any word in the context and the models predicts 0.0 otherwise

Word2Vec (Skipgram)

Sentence: language users never choose words randomly , and language is essentially non-random .

In-/Outputs:

```
[(['language', 'users', 'choose', 'words'], 'never'),
(['users', 'never', 'words', 'randomly'], 'choose'),
(['never', 'choose', 'randomly', ','], 'words'),
(['choose', 'words', ',', 'and'], 'randomly'),
(['words', 'randomly', 'and', 'language'], ','),
(['randomly', ',', 'language', 'is'], 'and'),
([',', 'and', 'is', 'essentially'], 'language'),
(['and', 'language', 'essentially', 'non-random'], 'is'),
(['language', 'is', 'non-random', '.'], 'essentially')]
```

Word2Vec (Skipgram)

Sentence: language users never choose words randomly , and language is essentially non-random .

Windows:

```
['language', 'users', 'never', 'choose', 'words']
('never', 'language', 1),
                                                  aka.
('never', 'users', 1),
('never', 'choose', 1),
                                               negative
('never', 'words', 1),
                                               sampling
('never', ',', 0),
('never', 'non-random', 0),
('never', 'is', 0),
('never', 'is', 0)
```

How to Choose Context?

Different contexts lead to different embeddings

Small context window: more syntax related

Large context window: more semantics related

How Good are my Embeddings?

Intrinsic Evaluation of Embeddings

- Relatedness: Measures correlations between embedding cosine similarity and human evaluation of similarity
- Analogy: "a is to b, as x is to ____"

 Categorization: Measure purity of clusters based on embeddings

Selectional Preference: "tall" vs "high" man/building

Extrinsic Evaluation of Embeddings

Load the pretrained embeddings

 Embed the input words as use the embeddings as input to models

Evaluate which pre-trained embeddings are better for task X

When to use pre-trained embeddings?

Generally, when you don't have much training/annotated data

 Very Useful: Use as inputs to model for classification task, e.g. tagging, parsing, textcat

• Less Useful: Machine Translation / Sequence generating tasks

 Not Useful: Generic Language Modeling, for those, we have sentence embedings...

Limitations

Sensitive to "tokens" (cat vs cats)

Insensitive to polysemy (Industrial plant vs "I'm Groot")

 Inconsistent across space, embeddings for the same words trained with different data are different

Can encode bias (stereotypical gender roles, racial bias)

Not interpretable

How to make Embeddings Better?

Non-Tokens Embeddings

Can capture sub-word regularities

Morpheme-based (Luong et al. 2013)

Character-based (Ling et al. 2015)

Non-Tokens Embeddings

• Bag of Characters Ngrams (Bojanowski et al. 2016)

"where" -> ["<where>", "<wh", "her", "ere", "re>"]"]

Each word is the sum of all parts

 Embedding("where") = sum(Embedding(_ng) for _ng in ["<where>", "<wh", "her", "ere", "re>"])

Embedding Bias

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

```
"He" Occupations
                                                                         "She" Occupations
Cosine Similarity
                                   ["retired", "doctor",
                                                                        ["doctor", "teacher",
                                    "teacher", "student",
                                                                         "nurse", "actress",
                                    "miller", "assistant",
                                                                         "student", "miller",
                                    "lawyer", "baker",
                                                                         "reporter", "retired",
                                    "judge", "governor",
                                                                         "lawyer", "actor",
                                    "butler"]
                                                                         "artist"]
Inner Product Similarity
                                   ["cleric", "photographer",
                                                                         ["librarian",
                                    "skipper", "chaplain",
                                                                         "housekeeper", "nanny",
                                    "accountant", "inspector",
                                                                         "accountant", "sheriff",
                                    "rector", "investigator",
                                                                         "envoy", "tutor",
                                    "psychologist",
                                                                         "salesman", "butler",
                                    "treasurer", "supervisor"]
                                                                         "footballer", "solicitor"]
```

De-biasing Embeddings

Extreme she Extre	eme <i>he</i>	C 1	1	
1. homemaker 1. ma	nestro	Gender stereotype she-he analogies		
	L sewing-carnent	try registered nurse-physician	housewife-shopkeeper	
2. nurse 2. ski	ipper nurse-surgeon	interior designer-architect	softball-baseball	
3. receptionist 3. pro	otege blond-burly	feminism-conservatism	cosmetics-pharmaceuticals	
4. librarian 4. phi	ilosopher giggle-chuckle		petite-lanky	
5. socialite 5. cap		diva-superstar	charming-affable	
6. hairdresser 6. arc	chitect volleyball-foot	ball cupcakes-pizzas	lovely-brilliant	
7. nanny 7. fin	ancier			
8. bookkeeper 8. wa	urrior	Gender appropriate she-he analogies		
<u> </u>	Laugan king	sister-brother	mother-father	
9. stylist 9. bro	oadcaster queen-king waitress-waiter		ovarian cancer-prostate cancer convent-monastery	
10. housekeeper 10. m	nagician waitiess-waiter	ovarran cancer-prostate cance	er convent-monastery	

(Bolukbasi et al. 2016)

Word2Vec from Scratch

Sort of "from scratch"...

Environment Setup

Open Anaconda Navigator.

Go to the PyTorch installation page, copy the command as per configuration: https://pytorch.org/get-started/locally/

Fire up the terminal in Anaconda Navigator.

Start a Jupyter Notebook.

Download http://bit.ly/ANLP-Session3-Completed

Import the .ipynb to the Jupyter Notebook

Summary

Embedding Checklist

What is a Word2Vec model

How to define CBOW and Skipgram task

How to define CBOW and Skipgram models

PyTorch Checklist

 How to write a model and know what's going on behind loss.backward() and optimizer.step()

How to declare your own torch.utils.data.Dataset object

How to save/load a model

How to overwrite weights and use pretrained embeddings

Fine-tune/Unfreeze pre-trained embeddings

Fin

3.0.1 Vocabulary

Given a text, the first thing to do is to build a vocabulary (i.e. a dictionary of unique words) and assign an index to each unique word.

```
import random
from itertools import chain

from tqdm import tqdm
from nltk import sent_tokenize, word_tokenize
from gensim.corpora import Dictionary

import torch
from torch import nn, optim, tensor, autograd
from torch.nn import functional as F
```

text = """Language users never choose words randomly, and language is essentially non-random. Statistical hypothesis testing uses a null hypothesis, which posits randomness. Hence, when we look at linguistic phenomena in corpora, the null hypothesis will never be true. Moreover, where there is enough data, we shall (almost) always be able to establish that it is not true. In corpus studies, we frequently do have enough data, so the fact that a relation between two phenomena is demonstrably non-random, does not support the inference that it is not arbitrary. We present experimental evidence of how arbitrary associations between word frequencies and corpora are systematically non-random. We review literature in which hypothesis testing has been used, and show how it has often led to unhelpful or misleading results."".lower() tokenized text = [word tokenize(sent) for sent in sent tokenize(text)] uniq tokens = set(chain(*tokenized text)) vocab = {} # Assign indices to every word. idx2tok = {} # Also keep an dict of index to words. for i, token in enumerate(uniq tokens): vocab[token] = i idx2tok[i] = token


```
text = """Language users never choose words randomly, and language is essentially
non-random. Statistical hypothesis testing uses a null hypothesis, which
posits randomness. Hence, when we look at linguistic phenomena in corpora,
the null hypothesis will never be true. Moreover, where there is enough
data, we shall (almost) always be able to establish that it is not true. In
corpus studies, we frequently do have enough data, so the fact that a relation
between two phenomena is demonstrably non-random, does not support the inference
that it is not arbitrary. We present experimental evidence
of how arbitrary associations between word frequencies and corpora are
systematically non-random. We review literature in which hypothesis testing
has been used, and show how it has often led to unhelpful or misleading results."".lower()
tokenized text = [word tokenize(sent) for sent in sent tokenize(text)]
uniq tokens = set(chain(*tokenized text))
vocab = {} # Assign indices to every word.
idx2tok = {} # Also keep an dict of index to words.
for i, token in enumerate(uniq tokens):
   vocab[token] = i
    idx2tok[i] = token
```



```
from gensim.corpora.dictionary import Dictionary
  vocab = Dictionary(tokenized text)
  # Note the key-value order is different of gensim from the native Python's
  dict(vocab.items())
   67: 'evidence',
   68: 'experimental',
   69: 'frequencies',
   70: 'how',
   71: 'of',
   72: 'present',
   73: 'systematically',
   74: 'word',
   75: 'been',
   76: 'has',
   77: 'led',
   78: 'literature',
   79: 'misleading',
   80: 'often',
   81: 'or',
   82: 'results',
   83: 'review',
   84: 'show',
   85: 'unhelpful',
   86: 'used'}
 vocab.token2id['corpora']
23
  vocab.doc2idx(sent0)
[6, 10, 7, 3, 11, 9, 0, 2, 6, 5, 4, 8, 1]
```

The "indexed form" of the tokens in the sentence forms the **vectorized** input to the nn.Embedding layer in PyTorch.

3.0.2 Dataset

Lets try creating a torch.utils.data.Dataset object.


```
from torch.utils.data import Dataset, DataLoader
class Text(Dataset):
   def __init__(self, tokenized_texts):
        :param tokenized texts: Tokenized text.
        :type tokenized_texts: list(list(str))
       self.sents = tokenized texts
       self.vocab = Dictionary(tokenized_text)
   def __getitem__(self, index):
        The primary entry point for PyTorch datasets.
       This is were you access the specific data row you want.
        :param index: Index to the data point.
       :type index: int
        return self.vectorize(self.sents[0])
   def vectorize(self, tokens):
        :param tokens: Tokens that should be vectorized.
        :type tokens: list(str)
       # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.doc2idx
       return {'x': self.vocab.doc2idx(tokens)}
   def unvectorize(self, indices):
        :param indices: Converts the indices back to tokens.
        :type tokens: list(int)
       return [self.vocab[i] for i in indices]
```

```
text_dataset = Text(tokenized_text)

text_dataset[0] # First sentence.

{'x': [6, 10, 7, 3, 11, 9, 0, 2, 6, 5, 4, 8, 1]}
```


Required function to access the data from Dataset object

```
from torch.utils.data import Dataset, DataLoader
class LabeledText(Dataset):
   def init (self, tokenized texts, labels):
        :param tokenized texts: Tokenized text.
        :type tokenized texts: list(list(str))
       self.sents = tokenized texts
       self.labels = labels # Sentence level labels.
       self.vocab = Dictionary(self.sents)
   def __getitem__(self, index):
       The primary entry point for PyTorch datasets.
       This is were you access the specific data row you want.
        :param index: Index to the data point.
        :type index: int
       return {'X': self.vectorize(self.sents[index]), 'Y': self.labels[index]}
   def vectorize(self, tokens):
        :param tokens: Tokens that should be vectorized.
        :type tokens: list(str)
       # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.
       return self.vocab.doc2idx(tokens)
   def unvectorize(self, indices):
        :param indices: Converts the indices back to tokens.
        :type tokens: list(int)
       return [self.vocab[i] for i in indices]
```


3.1.1. CBOW

CBOW windows through the sentence and picks out the center word as the Y and the surrounding context words as the inputs X.

```
def per_window(sequence, n=1):
    From http://stackoverflow.com/q/42220614/610569
        >>> list(per_window([1,2,3,4], n=2))
        [(1, 2), (2, 3), (3, 4)]
        >>> list(per_window([1,2,3,4], n=3))
        [(1, 2, 3), (2, 3, 4)]
    start, stop = 0, n
    seq = list(sequence)
   while stop <= len(seq):</pre>
        yield seq[start:stop]
        start += 1
        stop += 1
def cbow iterator(tokens, window size):
    n = window size * 2 + 1
    for window in per window(tokens, n):
        target = window.pop(window size)
        yield window, target \# X = window ; Y = target.
```

Context words


```
sent0 = ['language', 'users', 'never', 'choose', 'words', 'randomly', ',',
         'and', 'language', 'is', 'essentially', 'non-random', '.']
list(cbow iterator(sent0, 2))
['language', 'users', 'choose', 'words'], 'never'),
 ['users', 'never', 'words', 'randomly'], 'choose'),
 ( never, choose, randomly, , , , words),
 (['choose', 'words', ',', 'and'], 'randomly'),
                                                            Focus words
 (['words', 'randomly', 'and', 'language'], ','),
 (['randomly', ',', 'language', 'is'], 'and'),
 ([',', 'and', 'is', 'essentially'], 'language'),
 (['and', 'language', 'essentially', 'non-random'], 'is'),
 (['language', 'is', 'non-random', '.'], 'essentially')]
list(cbow iterator(sent0, 3))
[(['language', 'users', 'never', 'words', 'randomly', ','], 'choose'),
 (['users', 'never', 'choose', 'randomly', ',', 'and'], 'words'),
 (['never', 'choose', 'words', ',', 'and', 'language'], 'randomly'),
 (['choose', 'words', 'randomly', 'and', 'language', 'is'], ','),
 (['words', 'randomly', ',', 'language', 'is', 'essentially'], 'and'),
 (['randomly', ',', 'and', 'is', 'essentially', 'non-random'], 'language'),
 ([',', 'and', 'language', 'essentially', 'non-random', '.'], 'is')]
```

Fin