Отчет по лабораторной работе №4: Модель гармонических колебаний

дисциплина: Математическое моделирование

Сасин Ярослав Игоревич, НФИбд-03-18

Содержание

Введение	2
Цель работы	2
Задачи работы	2
Объект и предмет исследования	2
Модель гармонических колебаний	2
Линейный гармонический осциллятор	2
Простейшая модель гармонических колебаний	2
Модель математического маятника	2
Алгоритм перехода от дифференциального уравнения второго порядка к двум дифференциальным уравнениям первого порядка	3
Фазовый портрет и фазовая траектория	3
Выполнение лабораторной работы	3
Формулировка задачи из варианта	3
Реализация алгоритмов	4
Подключение библиотек	4
Функции, описывающие дифференциальные уравнения	4
Построение графика функции	4
Начальные значения	5
Решение диффееренциального уравнения и построение графика	6
Построенные графики	6
Первый случай	6
Второй случай	8
Третий случай	9
Reibour	11

Введение

Цель работы

Основной целью лабораторной работы можно считать ознакомление с моделью гармонических колебаний.

Задачи работы

Можно выделить следующие задачи четвертой лабораторной работы:

- 1. изучение модели гармонических колебаний;
- 2. написать код, при помощи которого можно построить графики фазового портрета для случаев, указанных в моем варианте лабораторной работы.

Объект и предмет исследования

Объектом исследования четвертой лабораторной работы можно считать модель гармонических колебаний. Предметами же исследования можно считать случаи, которые рассматриваются в моем варианте лабораторной работе.

Модель гармонических колебаний

Линейный гармонический осциллятор

Линейный гармонический осциллятор - модель, выступающая в качестве основной модели в теории колебаний. Данной моделью можно описать многие системы в физике, химии, биологии и других науках при определенных предположениях.

Простейшая модель гармонических колебаний

Уравнение свободных колабаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

где x - переменная, описывающая состояние системы, γ - параметр, характеризующий потери эненргии, ω_0 - свободная частота колебаний, t - время, $\ddot{x}=\frac{\delta^2 x}{\delta t^2}$, $\dot{x}=\frac{\delta x}{\delta t}$.

Соответственно, данное уравнение - линейное однородное дифференциальное уравнение второго порядка, которое является примером линейной динамической системы.

Модель математического маятника

Простейшую модель математического маятника можно описать так: при отсутствии потерь в системе ($\gamma=0$) получаем уравнение консеравтивного осциллятора, энергия колебания которого сохранятеся во времени:

$$\ddot{x} + \omega_0^2 = 0$$

где ω_0 высчитывается из второго закона Ньютона.

Алгоритм перехода от дифференциального уравнения второго порядка к двум дифференциальным уравнениям первого порядка

Для однозначной разрешимости уравнения второго порядка необходимо два начальных условия вида

$$\begin{cases} x(t_0) = x_0 \\ \dot{x}(t_0) = y_0 \end{cases}$$

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\omega_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

Фазовый портрет и фазовая траектория

Фазовое пространство (плоскость) системы - пространство, которое определяют независимые переменные x и y, в котором "движется" решение. Значение фазовых координат x, y в любой момент времени полностью определяет состояние системы.

Фазовая траектория - гладкая кривая, которая отвечает решению уравнения движения как функции времени.

Фазовый портрет - картина, образованная набором фазовых траекторий.

Выполнение лабораторной работы

Формулировка задачи из варианта

Вариант 26

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x} + 4.4x = 0$;
- 2. колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 2.5\ddot{x} + 4x = 0$;
- 3. колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + 2.5\dot{x} + 3.3x = 3.3\cos 2t$;

на интервале $t \in [0;53]$ (шаг 0.05) с начальными условиями $x_0 = 0$, $y_0 = -1.5$.

Реализация алгоритмов

Решение лабораторной работы может быть реализовано на многих языках программирования. В моем случае это язык программирования Python. Далее будет представлен код на этом языке программирования.

Подключение библиотек

Для того, чтобы использовать многие формулы, а также для построения графиков, необходимо подключить определенные библиотеки, в которых эти формулы описаны:

```
import numpy as np
from math import sin, cos, sqrt
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

Функции, описывающие дифференциальные уравнения

Общий вид функции, описывающей правую часть дифференциального уравнения, имеет вид:

```
# Правая часть уравнения f(t)
def F(t):
    f = 0
    return f
```

где строка 'f = 0' имеет следующие значения:

```
# первый случай
f = 0

# второй случай
f = 0

# третий случай
f = 3.3 * cos(2 * t)
```

Функция для решение системы дифференциальных уравнений имеет вид:

```
# Вектор-функция f(t, x)
# для решения системы дифференциальных уравнений
# x' = y(t, x)
# z de x - uckomus dekmop
def dx(x, t):
    dx1 = x[1]
    dx2 = -w* w* x[0] - g* x[1] - F(t)
    return [dx1, dx2]
```

Построение графика функции

Для удобства вынесем построение графиков в отдельные функции:

```
# Функцкия построения фазового портрета def draw_f_plot(x, y):
```

```
plt.plot(x, y)
    plt.title("Фазовый портрет")
    plt.xlabel('x')
    plt.ylabel('x`')
    plt.grid()
    plt.show()
# Функция построения графика решения
def draw_plot(x, y, t):
    plt.plot(t, x, label = 'x')
    plt.plot(t, y, label = 'x`')
    plt.title("Решение дифференциального уравнения")
    plt.xlabel('t')
    plt.ylabel('x')
    plt.legend()
    plt.grid()
    plt.show()
```

Начальные значения

В задаче присутствуют как общие для всех трех случаев начальные значения, так и локальные. Далее будут приведены значения, общие для всех трех случаев:

```
t = np.linspace(0,53,1060)

# Начальные условия

# x(t0) = x0

x0 = 0.5

y0 = -1.5

# Вектор начальных условий
v0 = np.array([x0, y0])
```

Также в задаче присутствуют несколько начальных значений, различных для трех случаев. В общем виде они задаются в программе следующим образом:

```
# Параметры осциллятора
# x'' + g* x' + w^2* x = f(t)
# w - частота
# g - затухание
w = sqrt(1)
g = 0

где:

# первый случай
w = sqrt(4.4)
g = 0

# второй случай
w = 2
g = 2.5
```

```
# mpemuй случай
w = sqrt(3.3)
g = 2
```

Решение диффееренциального уравнения и построение графика

```
# Решаем дифференциальные уравнения
# с начальным условием х(t0) = х0
# на интервале t
# с правой частью, заданной у
# и записываем решение в матрицу х
х = odeint(dx, v0, t)

# Переписываем отдельно
# х в хроіпт, х' в уроіпт
хроіпт = [elem[0] for elem in x]
уроіпт = [elem[1] for elem in x]

# Построим фазовый портрет
draw_plot(xpoint, ypoint)

# Построим график решений
draw plot(xpoint, ypoint, t)
```

Построенные графики

Первый случай

Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x} + 4.4x = 0$ имеют следующий фазовый портрет (рис. @fig:001) и график решений уравнения (рис. @fig:002):

Фазовый портрет гармонического осциллятора без затуханий, без действия внешней силы, с собственной частотой колебания $\omega=4.4$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

График решений уравнения гармонического осциллятора без затуханий, без действия внешней силы, с собственной частотой колебания $\omega=4.4$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

Второй случай

Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 2.5\ddot{x} + 4x = 0$ имеют следующий фазовый портрет (рис. @fig:003) и график решений уравнения (рис. @fig:004):

Фазовый портрет гармонического осциллятора с затуханиями, без действия внешней силы, с собственной частотой колебания $\omega=4$, с параметром, характеризующим потери энергии $\gamma=2.5$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

График решений уравнения гармонического осциллятора с затуханиями, без действия внешней силы, с собственной частотой колебания $\omega=4$, с параметром, характеризующим потери энергии $\gamma=2.5$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

Третий случай

Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + 2\dot{x} + 3.3x = 3.3\cos 2t$ имеют следующий фазовый портрет (рис. @fig:005) и график решений уравнения (рис. @fig:006):

Фазовый портрет гармонического осциллятора с затуханиям, под действием внешней силы $\vec{F}=3.3\cos 2t$, с собственной частотой колебания $\omega=3.3$, с параметром, характеризующим потери энергии $\gamma=2$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

График решений уравнения гармонического осциллятора с затуханиям, под действием внешней силы $\vec{F}=3.3\cos 2t$, с собственной частотой колебания $\omega=3.3$, с параметром,

характеризующим потери энергии $\gamma=2$ по горизонтальной оси значения x, по вертикальной оси значения \dot{x}

Выводы

В ходе выполнения лабораторной работы было проведено ознакомление с простейшими моделями гармонического осциллятора, а также построены фазовые портреты моделей.