요약

- ST-GCN의 단점을 개선(주변 joint간의 convolution만 하여 거리가 먼 joint간의 관계성을 학습하지 않음)하기 위해 inter-graph와 intra-graph 로 그래프를 표현하는 방법은 제안
- 중요 joint의 조합을 intra-graph로 표현하여 총 11개의 조합을 구성 (왼팔/오른팔/왼다리/오른다리/왼팔+오른팔/왼팔+왼다리/.../상반신/몸전체)
 - 사족) 사람이 정의한 intra-graph와 inter-graph를 사용하는 것이 올바른 것인지 의문
- intra-graph 간의 관계를 학습할 수 있도록 inter graph를 구성하여 structual graph convolution 진행
- ST-GCN처럼 temporal graph convolution 진행 (현재 time t를 기준으로 t-(kernel size k/2) ~ t+(kernel size k/2) convolution)
- NTU RGB+D, HDM05 데이터셋으로비교/파라미터 실험

Fig. 1. Architecture of Si-GCN framework. A graph convolution is performed on the structure-induced part-graphs in the collection \mathcal{G}_{stru} , another graph convolution is performed on the structure-induced interactive graph, then the temporal convolution is adopted to integrate the characteristics of a sequence, finally the spatial-temporal feature is feed to pooling layer and the softmax classifier.

수식화

- ST-GCN의 단점을 개선하기 위해 intra-graph와 inter-graph 로 그래프를 표현하는 방법은 제안 식 (5): Si-GCN Block 묘사
- 중요 joint의 조합을 intra-graph로 표현하여 총 intra-graph num m = 11개의 조합을 구성 (왼팔/오른팔/왼다리/오른다리/왼팔+왼다리/왼팔+오른다리/오른팔+왼다리/ 오른팔+오른다리상반신/왼팔+척추및몸통+오른팔/왼다리+오른다리/몸전체)
- joint 조합에 따라 Mask M을 만들고 몸전체를 표현하는 11번째 inter-graph에서 추출 =>식 (6)
- intra-graph에 대한 graph convolution 진행
 - 식 (7): kenel size에 따른 i번째 hidden feature의 intra-graph convolution layer 연산을 수식화
 - 식 (8): kenel size에 따른 intra-graph convolution layer 전체 연산 수식
 - 식 (9): 식 (8) 요약
- intra-graph 끼리의 연관성을 가지고 inter-graph graph convolution 연산
 - 어느 intra-graph 끼리 연관성을 설정했는지에 대한 정보가 없음
 - 그 외에는 GCN과 동일 연산
- 식 (11) : 모든 프레임에 대한 GCN 연산 이후 ST-GCN과 같이 시간을 기준으로 convolution (1x1x7 사용)

 $\mathbf{L}^{inter} \in \mathbb{R}^{m \times m}$

(11)

- NTU RGB+D, HDM05 데이터셋으로실험
 - HDM05 (2007)
 - skeleton-based dataset으로 joint 24개의 mocap data
- 표 1) NTU RGB+D dataset의 Cross-Subject/Cross-View 정확도를 타 모델과 비교
- 표 2) HDM05 정확도를 타 모델과 비교
- 표 3) NTU RGD+D dataset에서 논문이 제안한 intra-graph/inter graph 사용/비사용에 따른 정확도 실험
- 표 4) Convolution 시 kernel size 변화에 따른 정확도 실험
- 그림 2) NTU RGB+D dataset에서 cross-subject에 대한 confusion matrix
- 그림 3) HMD05 dataset에 대한 confusion matrix

TABLE I ON THE NTU RGB+D DATASET.

Method	Accuracy (%)	
	CS	CV
Lie Group [25]	50.1	52.8
VA-LSTM [39]	79.4	87.6
CNN + MTLN [40]	79.6	84.8
Deep STGC [20]	74.9	86.3
STGCN [19]	81.5	88.3
Si-GCN	84.15	89.05

TABLE III PERFORMANCE COMPARISONS WITH DIFFERENT GRAPH CONVOLUTIONS OF SI-GCN ON RGB+D DATASET.

Method	Accuracy (%)	
Method	CS	CV
Si-GCN only with intra-part convolution	81.23	85.65
Si-GCN only with inter-part convolution	76.78	81.02
Si-GCN	84.15	89.10

Fig. 2. confusion matrix of our Si-GCN in the CS bechmark on NTU D+RGB

Fig. 3. Confusion matrix of our Si-GCN on HMD05 dataset

TABLE II COMPARISONS OF SKELETON-BASED ACTION RECOGNITION PERFORMANCE COMPARISONS OF SKELETON-BASED ACTION RECOGNITION PERFORMANCE ON THE HDM05 DATASET.

Method	Accuracy(%)
SPDNet [41]	61.45 ± 1.12
Lie Group [25]	70.26 ± 2.89
LieNet [42]	75.78 ± 2.26
P-LSTM [21]	73.42 ± 2.05
Deep STGC [20]	85.29 ± 1.33
STGCN [19]	82.13 ± 2.39
Si-GCN	85.45 ± 2.78

TABLE IV PERFORMANCE COMPARISONS WITH DIFFERENT ORDER OF SI-GCN ON RGB+D DATASET.

Method	Accuracy	(%)	7. .
Method	CS	CV	1 hop 4 64 714
one	80.41	86.52	
two	79.88	87.68	િ હિંદી
three	84.15	89.05	1
four	80.72	88.67	1 /

실험(계속)

- 이전에 정리한 논문들에 있는 같은 데이터셋 기준의 실험결과 표 비교
 - 왼쪽 표1)NTU RGB+D에 대한 본 논문의 실험결과
 - 오른쪽 표 4) NTU RGB+D에 대한 AS-GCN의 실험결과

TABLE I ON THE NTU RGB+D DATASET.

Method	Accuracy (%)	
	CS	CV
Lie Group [25]	50.1	52.8
VA-LSTM [39]	79.4	87.6
CNN + MTLN [40]	79.6	84.8
Deep STGC [20]	74.9	86.3
STGCN [19]	81.5	88.3
Si-GCN	84.15	89.05

TABLE II COMPARISONS OF SKELETON-BASED ACTION RECOGNITION PERFORMANCE COMPARISONS OF SKELETON-BASED ACTION RECOGNITION PERFORMANCE ON THE HDM05 DATASET.

Madad	A(01)
Method	Accuracy(%)
SPDNet [41]	61.45 ± 1.12
Lie Group [25]	70.26 ± 2.89
LieNet [42]	75.78 ± 2.26
P-LSTM [21]	73.42 ± 2.05
Deep STGC [20]	85.29 ± 1.33
STGCN [19]	82.13 ± 2.39
Si-GCN	85.45 ± 2.78

Table 4. Comparison of action recognition performance on NTU-RGB+D. The classification accuracies on both Cross-Subject and Cross-View benchmarks are presented.

Methods	Cross Subject	Cross View
Lie Group [27]	50.1%	52.8%
H-RNN [6]	59.1%	64.0%
Deep LSTM [22]	60.7%	67.3%
PA-LSTM [22]	62.9%	70.3%
ST-LSTM+TS [20]	69.2%	77.7%
Temporal Conv [14]	74.3%	83.1%
Visualize CNN [21]	76.0%	82.6%
C-CNN+MTLN [13]	79.6%	84.8%
ST-GCN [29]	81.5%	88.3%
DPRL [26]	83.5%	89.8%
SR-TSL [23]	84.8%	92.4%
HCN [18]	86.5%	91.1%
AS-GCN (Ours)	86.8%	94.2%