CLAIMS

What is claimed is:

1	1. A heterojunction bipolar transistor (HBT), comprising:
2	a collector;
3	an emitter; and
4	a base located between the collector and the emitter, the base including a layer
5	of gallium arsenide antimonide (GaAsSb) less than 49 nanometers (nm) thick.
1	2. The HBT of claim 1, wherein the gallium arsenide antimonide of the base
2	has an arsenic (As) fraction in a range from about 50% to about 51%.
1	3. The HBT of claim 1, wherein the gallium arsenide antimonide of the base
2	has an arsenic (As) fraction in a range from about 50% to about 65%.
1	4. The HBT of claim 1, wherein the gallium arsenide antimonide of the base
2	has an arsenic (As) fraction in a range from about 50% to about 60%.
1	5. The HBT of claim 1, wherein the gallium arsenide antimonide of the base
2	has an arsenic (As) fraction in a range from about 54% to about 56%.
1	6. The HBT of claim 1, wherein the gallium arsenide antimonide of the base
2	has an arsenic (As) fraction of approximately 55%.

7. The HBT of claim 1, wherein the base layer of GaAsSb is less than 20 nm 1 thick. 2 8. The HBT of claim 1, wherein the base layer of GaAsSb is strained so that its 1 lattice constant conforms to the lattice constant of the collector and the emitter. 2 9. The HBT of claim 1, wherein the base layer of GaAsSb is doped with 1 beryllium (Be) at a doping concentration of between approximately $6x10^{19}$ and $4x10^{20}$ 2 acceptors/cm³. 3 10. The HBT of claim 1, wherein the base layer of GaAsSb is doped with 1 carbon (C) at a doping concentration of between approximately $6x10^{19}$ and $4x10^{20}$ 2 acceptors/cm³. 3 11. The HBT of claim 7, wherein the base layer of GaAsSb is doped with 1 carbon (C) at a doping concentration of between approximately $6x10^{19}$ and $4x10^{20}$ 2 acceptors/cm³. 3 12. A method for making a heterojunction bipolar transistor (HBT), the 1 2 method comprising: forming a collector; 3 forming an emitter; and 4 5 forming a base located between the collector and the emitter, the base including a layer of gallium arsenide antimonide (GaAsSb) less than 49 nanometers 6 (nm) thick. 7

1	13. The method of claim 12, wherein the base is formed of gallium arsenide
2	antimonide having an arsenic (As) fraction in a range from about 50% to about 51%.
1	14. The method of claim 12, wherein the base is formed of gallium arsenide
2	antimonide having an arsenic (As) fraction in a range from about 50% to about 65%.
1	15. The method of claim 12, wherein the base is formed gallium arsenide
2	antimonide having an arsenic (As) fraction in a range from about 50% to about 60%.
1	16. The method of claim 12, wherein the base is formed of gallium arsenide
2	antimonide having an arsenic (As) fraction in a range from about 54% to about 56%.
1	17. The method of claim 12, wherein the base is formed of gallium arsenide
2	antimonide having an arsenic (As) fraction of approximately 55%.
1	18. The method of claim 12, wherein the base layer of GaAsSb is less than
2	20 nm thick.
1	19. The method of claim 12, further comprising the step of straining the base
2	layer of GaAsSb so that its lattice constant conforms to the lattice constant of the
3	collector and the emitter.

- 20. The method of claim 12, further comprising the step of doping the base 1 layer of GaAsSb with beryllium (Be) at a doping concentration of between 2 approximately $6x10^{19}$ and $4x10^{20}$ acceptors/cm³. 3 21. The method of claim 12, further comprising the step of doping the base 1 layer of GaAsSb with carbon (C) at a doping concentration of between approximately 2 $6x10^{19}$ and $4x10^{20}$ acceptors/cm³. 3 22. A heterojunction bipolar transistor (HBT), comprising: 1 a collector including indium phosphide (InP); 2 an emitter including InP; and 3 a base including a layer of gallium arsenide antimonide (GaAsSb) located 4 between the collector and the emitter, the base layer being less than 49 nanometers 5 (nm) thick and having an arsenic fraction of approximately 55% and a doping 6 concentration of between approximately $6x10^{19}$ and $4x10^{20}$ acceptors/cm³. 7 23. The HBT of claim 22, wherein the base layer of GaAsSb is less than 20 nm 1 2 thick. 24. The HBT of claim 22, wherein the base layer of GaAsSb is strained so that 1 its lattice constant conforms to the lattice constant of the collector and the emitter. 2
 - 25. The HBT of claim 22, where the HBT is configured as an npn transistor.

1