

Departament d'Enginyeria Mecànica i Construcció

Ejercicio 04.03 Conector cilíndrico

Pedro Company Carmen González

Enunciado

Enunciado

Estrategia

Ejecución

Conclusiones

La geometría de un conector cilíndrico queda completamente definida mediante las dos axonometrías dibujadas a mano alzada y acotadas de la figura

Obtenga el modelo sólido del conector

Estrategia

Enunciado

Estrategia

Ejecución

Conclusiones

1 Primero hay que obtener el plano de detalle de la pieza

2 Luego hay que elaborar un procedimiento de modelado

Estrategia

Enunciado

Estrategia

Ejecución

Conclusiones

El plano de detalle no necesita cotas, porque ya las tenemos en el enunciado, pero nos permite detectar algunas dificultades:

Estrategia

Enunciado

Estrategia

Ejecución

Conclusiones

El proceso de modelado puede tener las siguientes etapas principales:

Modele el cuerpo central

2 Vacíe el cuerpo central

© 2013 P. Company y C. González

Ejercicio 04.03 /5

Enunciado Estrategia

Ejecución

Conclusiones

El proceso para modelar el cuerpo central es:

- ✓ Defina la planta como plano de trabajo (Datum 1)
- √ Dibuje y restrinja el perfil
- √ Extruya

 ✓ Dibuje y restrinja la base mayor de la parte cónica

✓ Defina un plano de referencia para la base inferior (Datum 3)

- ✓ Dibuje y restrinja la base menor de la parte cónica
- √ Haga un recubrimiento

Enunciado

Estrategia

Ejecución

Conclusiones

Alternativamente, se puede construir por revolución:

✓ Defina el alzado como plano de trabajo (Datum 1)

√ Dibuje y restrinja el perfil

Extruya por revolución

© 2013 P. Company y C. González

Enunciado

Estrategia

Ejecución

Conclusiones

El proceso para vaciar el cuerpo central es:

- Defina la planta como plano de trabajo (Datum 1)
- √ Dibuje y restrinja el perfil
- √ Extruya
- ✓ Defina la planta como plano de trabajo (Datum 1)
- √ Dibuje y restrinja el perfil
- √ Extruya
- √ Repita el procedimiento para cada tramo citíndrico del agujero central

Enunciado Estrategia

Ejecución

Conclusiones

Alternativamente, todo el cuerpo central se puede construir por una única revolución:

- ✓ Defina el alzado como plano de trabajo (Datum 1)
- ✓ Dibuje y restrinja el perfil

✓ Extruya por revolución

Enunciado Estrategia

Ejecución

Conclusiones

El proceso para obtener el datum del tubo horizontal (datum 2) es:

✓ Seleccione "plano de referencia"

Enunciado

Estrategia

Ejecución

Conclusiones

El proceso para obtener el tubo horizontal es:

- ✓ Defina el datum 2 como plano de trabajo
- √ Dibuje y restrinja el perfil

- ✓ Extruya "hasta el siguiente"
- Añada el agujero por el mismo procedimiento

Enunciado Estrategia

Ejecución

Conclusiones

- √ Seleccione la planta
- ✓ Seleccione "vista de sección"

Vista de sección
Visualiza una vista de sección de una pieza o ensamblaje utilizando uno o varios planos de sección transversal.

√ "Arrastre" la flecha hasta la altura deseada

- ✓ Ponga el cursor sobre la flecha
- ✓ Mantenga pulsado el botón izquierdo
- ✓ Mueva el ratón

Enunciado

Estrategia

Ejecución

Conclusiones

El proceso para obtener el datum del tubo inclinado (datum 3) es:

Obtenga un plano vertical, girado 30 ° respecto al alzado (Datum 3-1)

Obtenga un eje inclinado 30° en dicho plano vertical (Datum 3-2)

Obtenga un plano perpendicular al eje anterior (Datum 3)

Enunciado Estrategia

Ejecución

Conclusiones

El proceso para obtener el plano inclinado (datum 3-1) es:

- Seleccione "plano de referencia"
- ✓ Seleccione el alzado como primera referencia
- √ Seleccione ángulo de 150°
- ✓ Seleccione el eje de revolución del cuerpo central como segunda referencia

Previamente, deberá hacer visible el croquis usado para obtener el cuerpo central

Enunciado Estrategia

Ejecución

Conclusiones

Z El proceso para obtener el eje inclinado (datum 3-2) es:

- ✓ Utilice el datum 3-1 como plano de croquis
- ✓ Dibuje un eje inclinado 30°
 y de 50 mm de longitud,
 (es el Datum 3-2)

- El proceso para obtener datum 3 es:
 - ✓ Utilice el datum 3-2 para situar un plano de referencia perpendicular
 - ✓ Marque como segunda referencia el vértice del datum 3-2

¡El plano resultante es el Datum 3 buscado!

Enunciado Estrategia

Ejecución

Conclusiones

El proceso para obtener el tubo inclinado es:

✓ Defina el datum 3 como plano de trabajo

✓ Dibuje y restrinja el perfil

√ Extruya

Añada el agujero por el mismo procedimiento

Enunciado Estrategia

Ejecución

Conclusiones

Una vista cortada por el plano 2 (Datum 3-1) permite comprobar que el modelo del tubo es correcto:

Enunciado

Estrategia

Ejecución

Conclusiones

El modelo resultante es:

© 2013 P. Company y C. González

Conclusiones

Enunciado Estrategia

Ejecución

Conclusiones

El ejemplo muestra:

Lo importante que es definir bien el esquema de modelado

2 Lo simple que es obtener piezas complejas de revolución

Por tanto, no hay que fragmentar el modelo en partes más sencillas de lo necesario

Conclusiones

Enunciado Estrategia Ejecución

Conclusiones

- Cómo se deben utilizar los datums para extruir "desde fuera", evitando así calcular intersecciones complejas
- 4 Cómo hay que revisar los modelos para buscar inconsistencias en 3D que pasan desapercibidas en 2D
- 5 Cómo se deben utilizar cadenas de datums para construir elementos oblicuos

El ejemplo muestra que los datums se deben definir "por pasos", haciendo un cambio simple en cada paso