Language Identification Neural Network

A-LEVEL COMPUTER SCIENCE

1 CONTENTS

2	Analy	rsis	2
	2.1	Project Background	2
	2.2	Project Outline	2
	2.3	Research	2
	2.3.1	Natural Language Processing	2
	2.3.2	Backpropagation Artificial Neural Network	3
	2.3.3	Existing Language Identification Applications	4
	2.4	Objectives	5
3	Desig	n	6
	3.1	High-Level Overview	6
	3.2	Algorithms	8
	3.2.1	Word matrix creation algorithm	9
	3.2.2	Neural network training algorithm	11
	3.2.3	User input error checking	14
	3.3	System rules	15
	3.3.1	Sigmoid Function	15
	3.3.2	Gradient Descent	15
	3.3.3	Delta rule and Sigmoid derivative	16
	3.4	Choice of language and libraries	16
4	Tech	nical Solution	18
	4.1	Main Menu and User Selection	18
	4.2	Random Language Selection	19
	4.3	Word matrix creation	19
	4.4	Neural Network Training	20
	4.5	User's own word input	20
5	Testi	ng	21
	5.1	Test Evidence Table	21
	5.1.1	Image reference table for testing	24
	5.2	Statistical Testing	27
6	Evalu	ation	28
	6.1	Overall Effectiveness	28
	6.2	Evaluation of objectives	28
	6.2	Conclusion	22

2 ANALYSIS

2.1 PROJECT BACKGROUND

Artificial intelligence and machine learning is becoming a large part of not only computing, but also society. However, to the regular individual, it is normally overlooked and the complex fundamentals behind it are not noticed. I am interested in looking into how machine learning can make our lives easier and more efficient after reading posts and watching videos about the matter. I feel that this area of computing will become increasingly important and common place in daily life. This project will not only focus on my chosen area, language identification, but will also act as an investigation into neural networking in general.

2.2 PROJECT OUTLINE

The aim for this project is to create a program consisting of a neural network which will learn to understand the difference between various languages and for it to then predict what language a word is in when given a new input. I believe that this is a realistic type of machine learning program that would be used commonly. For instance, identifying what language a webpage is in to see if it needs to be translated for the user. Overall, it is useful for any situation where there is a possibility of needing to know what language a piece of text is in. The program will not store any data that is inputted into it, which means it won't just look up the word within a stored file for example. It will predict the language based off of what it has learned from the training data. This would reduce the program's size and means that it can predict the language of words that may be more colloquial and not recognised in a regular dictionary. This project will be an investigative one, which will try and attempt to answer the question to if neural networks are an effective solution to language identification.

2.3 Research

2.3.1 Natural Language Processing

NLP focuses on the interactions between computers and human languages. It is an area of computer science that is particularly interested in how we can program computers to process large amounts of natural language data. Applications of NLP include many fields of study such as, machine translation, user interfaces, speech recognition and text prediction. The overall purpose is to achieve human-like language processing for a range of tasks or applications. There are multiple types of language processing when humans produce or comprehend language and it is thought that humans normally use all of these levels in combination. However, many NLP systems use specific levels, or combinations of different levels and this is seen by the differences between various NLP applications.

Natural language processing through the use of computers is considered to be an area within Artificial Intelligence as NLP's goal is to have human-like performance. The choice of the word 'processing' instead of 'understanding' as it used to be referred to in the early days of AI is important because in order for the program to be understanding of text for example, it would need to be able to draw inferences from the text which has not been achieved.

The different approaches to natural language processing is able to be placed roughly into four categories: symbolic, statistical, connectionist, and hybrid. The program that I have chosen to create falls mostly into the connectionist category. This approach develops a generalised model from examples of the language. In my case, it will be thousands of individual words. A connectionist system is harder to observe than other systems such as a statistical one because they are less constrained. Overall, a connectionist model is a network that consists of interconnected simple processing units that has knowledge stored in the weights of the connections between these units. The units in my program will be the nodes where the inputs will be stored. The connections are the synapses that have individual weights to them which are used in calculating and adjusting the hidden layer nodes. Interactions among units can result in a dynamic global behaviour which is what leads to computation and improvement. My connectionist model program is more specifically a distributed model which means that a concept in the model is represented by the simultaneous activation multiple units and the activation of an individual unit is only a participant of the overall concept representation.

2.3.2 Backpropagation Artificial Neural Network

The term backpropagation refers to a broad family of Artificial Neural Networks. The general structure consists of different interconnected layers that are either hidden or visible.

Backpropagation artificial neural networks (BPANN) learn by using the gradient descent algorithm in order to minimise the error. A BPNN needs to be provided an appropriate number of hidden units (nodes) to map any function to perform gradient descent on. Usually, the ANN needs at least two layers of hidden units if the function is quite complex or the data isn't that reliable so needs to pass through multiple levels to be filtered. BPNNs tend to distribute themselves across its connections which makes it's learning process more compact and efficient. However, it makes it difficult to show and make clear the implicit knowledge that the neural network has and acquires during its training process.

The backpropagation algorithm can be split into two phases: propagation and weight update. For the propagation phase, it will propagate forward through the network to produce output values by passing through the hidden layers. Then a calculation of the error needs to be made. After that, a propagation is made back through the network using the target value in mind to generate delta values which are the difference between the target and actual values. It will do this to all of the output and hidden neurons. In the weight update phase, every weight has its output delta value and input activation multiplied in order to find the gradient of the weight. Then, a percentage of the weight's gradient is subtracted from itself. The percentage that the weights are adjusted by is chosen and set in the program. The percentage amount influences how accurate and how quickly the network trains. A higher percentage trains quicker as this will make larger adjustments every pass of the algorithm, but a lower percentage produces more accurate results as it can find the optimisation to a more precise amount.

Figure 1: A simple diagram of a backpropagation artificial neural network

2.3.3 Existing Language Identification Applications

Google Detect Language

The most well-known language identification application that is widely used is the one created by Google. It is implemented within Google Translate and built-in to Google Chrome. When used in Google Translate, the user is able to type words into its text input and will attempt to identify what the language is. The more words that are entered of that language, the more accurate the identification will be. In Google Chrome, when the user loads a webpage that is not in their native language (which is set in the settings of Google Chrome when the user downloads the application), Chrome is able to identify what language the webpage is in and will ask if you would like it translated or not. Automatic translation can also be set so that all webpages will appear in the user's desired language when possible.

The way Google does language identification is through the use of statistical language identification. This is a different method to the one I am choosing to investigate. Google's method of statistical language identification scans a chunk of the given text and segments them into 4-character 'tokens'. These tokens are compared against a large reference of tokens and within the reference, language properties are associated with them. In order to build the reference tables for different languages, millions of words of source text had to be analysed.

2.4 OBJECTIVES

- 1. The user will be able to input a word into the program and it will then display what language it thinks it is
 - a. The program should be able to switch between allowing the user to input a word to allowing the program to train on the data set
 - b. The program must check that the word is not over a certain length
 - c. The program must ensure that the user input only contains characters that are able to be processed by the program
- 2. The program will train to become more accurate by using a set of training data
 - a. The number of languages will be set but will have the ability to be expanded by providing new training data
 - b. The prediction given by the computer must be from its calculations performed in the feed forward back propagation algorithm and not from any referencing to stored data
 - c. As the program runs, the program should tell the user what generation it is on in order to monitor the progress of the training
 - d. The program will need to randomly select words from the training data set which will be stored in a separate text file
- 3. The program will need to perform the necessary steps of a backpropagation neural network
 - a. Random starting weights need to be initialised between -1 and 1 for every neuron
 - b. An activation function needs to be chosen and used on all of the generated weights
 - c. The inputs and the weights need to be multiplied together as matrices by performing a dot product
 - d. The predicted output and actual output needs to be calculated by finding the difference between them
 - e. The derivative of the sigmoid function needs to be included in the program
 - f. Gradient descent needs to be performed on every neuron to find each adjustment value
 - g. The adjustment value needs to be applied to every weight
 - h. The whole process needs to be repeated many times in order to improve the weight values so the predictions become more accurate
- 4. The program will need to import the numpy library for the use of higher level mathematical functions
 - a. The exp, array and dot functions will need to be imported from numpy

3 Design

3.1 HIGH-LEVEL OVERVIEW

- 1 -The program starts with displaying the main menu and initialising the weights that will be used to optimise the neural network. The weights are numbers that represent connections between nodes. In the program, the weights will be randomly generated and will only be between -1 and 1. They are placed in a 390 * 1 array to represent the 15 possible letters a word can be made of and the 26 different letters they can be. 15 * 26 = 390. This is how many connections there are. Each weight value will later be adjusted by the backpropagation algorithm.
- **2** Once the weights have been initialised, the user is able to input their option choice. This will either be to train the neural network or to use it to predict the language of their own word. For best results, the user should choose to train the network first before selecting the second menu option.
- **3** Option 1 allows the user to train the language to detect between two chosen languages. The languages the user can choose is limited to a set number as there is only a set amount of training data available in a set number of languages. The possible languages will be clearly displayed to the user and they will be able to select the two languages of choice.
- **4** Option 2 allows the user to input their own word to be used in the neural network. The accuracy of the prediction will be dependent on how many iterations the neural network has trained as the weights need to be optimised for the two languages. The user will have the ability to enter their own word and the prediction will be printed out to the user.
- **5** After user language selection at the start of Option 1, the backpropagation algorithm is used to perform several calculations and functions to the weights and input word. A word will be randomly selected from training data from either one of the languages for it to be then converted a matrix representing each individual letter in the word. The neural network will attempt to predict the language of the word by performing a dot product of the weights and word matrix to find an output value. An error value is then found to determine how the weights need to be adjusted (ie. whether the neural network got it right) and the weights then have the adjustment value applied to each one.
- **6** The program needs to run the backpropagation algorithm for the number of iterations the user had previously inputted at the start of Option 1. If the number of iterations that have been performed is less than the number of iterations the user inputted, then the algorithm is performed again meaning that the process is a loop that will only break until the number of desired iterations has been performed.
- **7** The user is able to try their own word as many times as they want as the program will ask the user if they want to enter another word. If they do, Option 2 is repeated to allow a new user input. The process of the user entering their own word and then performing the prediction calculation does not affect the weights in the neural network as there is no error value calculation and adjustment value. This means the neural network can be indefinitely tested to find the accuracy of its language identification ability. If the user no longer wants to enter their own word and would like to return back to the main menu, they are able to do so when the program asks if they want to enter another word.

3.2 ALGORITHMS

3.2.1 Word matrix creation algorithm

- 1 The algorithm begins with a random selection between two of the user's previously selected languages. The program will check whether language 1 or 2 has been chosen and a certain training data file will be used depending on which language has been chosen.
- **2** The desired output for the neural network to reach is set to either 0 or 1 depending on whether language 1 or 2 is chosen. This is done each time a new word needs to be used to train on. Once the desired output has been set, the text file containing training words from the selected language is opened and the program will select a random word from the text file. The text file consists of one word per line so the program will read the whole file and select a random line which will have the word in.
- 3 The program checks the length of the word and if it is less than 15, spaces are added to the end so that it reaches 15 characters. This needs to be done because the size of the matrix that is going to be made from the word relies on the word being 15 characters long. The addition of spaces on the end doesn't affect the word as the space characters will just be represented as 0's in the matrix. If the word chosen is over 15 characters, the program will cut the extra characters off to make it 15. This is one of the limitations of the program but as it is unlikely for a word to be more than 15 characters long, it does not make an overall large effect on the working and accuracy of the neural network. The more iterations that are performed, the less of an impact this 15-character limitation will have.
- **4** This part of the algorithm is where the word is converted into a numerical format. In the program, there is a reference to a list of all the letters in the alphabet. The program uses this list to reference the letters in the training word. It will begin with the first letter of the word and find what place in the alphabet it is. For example, if the first letter is 'e', it will know that the letter is 5th in the alphabet. The program will now create a list of 26 0's to represent each letter in the alphabet but then replace the letter's position with a 1 in this 26-element list. For example, for the letter 'e', the list will first have 26 0's but the 5th 0 will be replaced with a 1 to represent the presence of the letter 'e'. Therefore, there is now 25 0's and one 1 at the 5th position. After this has been done for the first letter of the word, the next letter has its position found. The program will take the previously made list and will extend it with 26 more 0's and replace one of the 0's with a 1 in the letter's corresponding position.
- **5** The program will continue to extend the list for each letter in the training word. Once the end of the word has been reached, this word matrix will be used for the next algorithm in the program. This process of random word selection and then conversion into a binary style list is done for every iteration of the neural network. This allows each word to be treated independently. By using a 26-long list to represent each letter with a 1 in the letter's alphabet position, the neural network is able to distinguish each letter as a separate entity that doesn't actually have a numerical value. It may seem easier to create a list with the number 1 representing 'a', 2 representing 'b', 3 representing 'c' and so on, but this doesn't allow each letter to be taken as individual distinct inputs so patterns can't be found by the neural network. I needed to represent each letter as a 26-dimensional item so that it was representative of the concept of the alphabet. In theory, each list made for a letter, such as the letter 'p' for example, represents the absence of 'a', 'b', 'c' and so on and only the presence of 'p'. Additionally, the use of only 1's and 0's has meant that it is easier to program the neural network to optimise to either 0 or 1 depending on what the desired language output is.

3.2.2 Neural network training algorithm

- 1 This algorithm starts with the word matrix that was created in the previous algorithm being transposed so that instead of being in a 390 x 1 shape, it is now 1 x 390. This is important for the functions and calculations that will be performed on the matrix later on in this algorithm.
- **2** The created word matrix is dot producted with the matrix which contains all the weights. This multiplies each value in the word matrix which represents the absence or presence of a letter in the word. This produces a calculated output matrix which acts as the prediction for this word. If this is the first iteration of the neural network, the weights are completely random and so the output matrix will give a random prediction between the two languages.
- **3** Once the calculated output matrix has been created, each value in the matrix has the sigmoid function applied to it. This is called the 'activation function' and will turn each calculated value into one that it between 0 and 1. This is useful in determining the final prediction value which will be a value either rounded to 1 or 0. In the word matrix creation algorithm, the training word is assigned a desired output value depending what language it is between the two the user selected earlier on in the program.
- 4 Next in the algorithm, the calculated output matrix which has had the sigmoid function applied to it is now subtracted from the desired output value which was previously set earlier on in the program when the training word was selected. This produces a matrix of error values to find out how far away each value was from the desired output. The optimal error value to be found is 0, as this means that the calculated output value was exactly the same as the desired output. This is what the neural network is trying to optimise as it is trying to find weight values that will produce the desired output when the created word matrix is dot producted with it.
- **5** The error value matrix has the derivative of the sigmoid function applied to it which is the first step in the backwards pass of the algorithm. The derivative of the sigmoid function is used because it is how gradient descent is performed (*more information in system rules*). This now gives a delta calculated output matrix which will be used in the calculation of adjustment values which ultimately is how the neural network becomes optimised for the two languages.
- **6** The error value matrix is multiplied with the delta calculated output matrix in order to find the rate of change. The combination with the error value matrix gives the slope of the activation function at that error value. This allows the neural network to know how much the errors have contributed to the overall calculated output value so that it can be adjusted accordingly.
- **7** To find the adjustment value matrix, the rate of change previously calculated is dot producted with the created word matrix. The values that are produced will be either positive or negative depending on how the weights need to be adjusted. This is the final step in the gradient descent algorithm.
- **8** The adjustment value matrix is now applied to the weights matrix by adding the two matrices together. This means that the weights should now be better optimised for identifying the language of the word. Ideally, now when a word is inputted from one of the two available languages, the weights that multiply with the word matrix should give a value of 0 or 1 depending on what the language was.
- **9** At the end of the algorithm, the program must check whether or not the algorithm has run for the number of times the user originally chose. If it has not run for the set number of times, the algorithm will loop again with the selection of a new word. The process of converting the word into a

matrix and performing the necessary calculations to different matrices in order to optimise the weights will all be done again so that with each iteration, the weights will become better optimised and therefore the whole neural network will improve in accuracy.

3.2.3 User input error checking

- 1 This algorithm is used in the first option in the main menu. This is where the user is able to select what two languages are to be used in the neural network training. Also, the user is able to enter how many iterations of the training are to be performed. There are error checking measures in place when the user enters their choices. The algorithm starts with the program displaying the available languages that can be chosen for the neural network to be trained on. The user then is able to enter their first choice of language. This will be a number corresponding to the language in the displayed list so that it is easier to error check.
- 2 When the user enters their first choice of language, first the program checks if the input is an integer value because if it is not, then it is automatically invalid. If a non-integer value is inputted by the user, the program will inform the user that what they entered was an invalid input and allow for the user to re-enter an integer value. If an integer value has been inputted, the program then needs to check if the integer value is between 1 to 8. This is because there are 8 different language options to choose from which have been numbered 1 through to 8. This number would be extended if there are more language options added later on to the program. If the user does enter an integer value but it is a number that is not between 1-8, then the program will inform the user that their choice needs to be between 1-8 and allow for them to re-enter a valid language choice.
- **3** After the user has entered their first option and it is valid, the user is then able to enter their second language choice. The program checks if the input is an integer value similarly to the first language input. If the input is not an integer, the program will again inform the user of their invalid input and then allow for the user to re-enter their second language choice. When an integer value has been inputted by the user, the program will check if the value is also between 1 to 8 and if it is not, the program will respond the same as how it does for the first language input. After this check, the program will then check if the second language choice is the same as the first language choice. If the second language choice is the same as the first, it will be invalid and the user will be asked to enter a different language choice. This is because the neural network needs to train on two different languages so it can identify between them.
- **4** If both language inputs are valid, the user is then able to enter how many iterations they want the neural network to perform. The program only needs to check if the input is an integer value and if it is not, the program will allow the user to re-enter an integer value. If it is valid, the program can continue and begin it's training using the inputs the user has given.

3.3 SYSTEM RULES

3.3.1 Sigmoid Function

In my neural network, I have chosen to use the sigmoid function as my activation function. I have chosen the sigmoid function because it exists between 0 and 1. This is useful for my neural network because it will give me a value that is either closer to 1 or 0. The aim of my neural network is for it to predict what it thinks the language is of the word that is inputted. The way I have used its calculated prediction value, is to round the number to the closest integer (which is 0 or 1) and that will correspond to what language it thinks it is. The sigmoid function can also be used to give a probability between many different options. The calculated output using the sigmoid function can be thought of as a percentage so its final decision could be based on what is the highest probability between all of the outputs. This is utilised in neural networks that have an output layer with multiple nodes which then feed into one final decision node.

Figure 2: A graph representation of the Sigmoid Function

3.3.2 Gradient Descent

Gradient descent is the most used learning algorithm in machine learning. It is an optimisation technique used to minimise a cost function. The process can be thought of trying to find the lowest point of a mountainous terrain by finding the steepest way down. In Figure 3 below is a 3D visual example of a function that could be minimised using gradient descent. The starting location is randomly selected and from there the optimisation begins. Essentially, the gradient of the function at the current point is found and a step is taken in the negative of that gradient. This means that the next point should be closer towards the local minimum.

Figure 3: A 3D diagram of a function to be minimised by Gradient Descent

3.3.3 Delta rule and Sigmoid derivative

The Delta rule is a learning rule which is used in backpropagation neural network algorithms in order to update the weights in the network. This is the rule for the update of weight \mathbf{W} for neurone \mathbf{j} 's \mathbf{i} th input.

The function g(x) that I have chosen is the sigmoid function so in the delta rule, the derivative (gradient function) of the sigmoid function is used. σ is the sigmoid function and σ' is the derivative.

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Figure 4: The derivative of the sigmoid function

3.4 CHOICE OF LANGUAGE AND LIBRARIES

The language I have chosen to code my program in is Python. I chose Python for multiple reasons with some specifically orientated towards machine learning. Firstly, Python is a language that is relatively easy to read and use. This is important for something as complex as machine learning so that more time can be spent on writing the algorithm than debugging it for syntax errors. For someone like me who is not extremely skilled at programming, Python is one of the best languages for beginners to learn and even though I am not a beginner, it was best for me to use a programming language that was easier to read, write and understand as the task of creating a neural network is not that simple. It is also widely used in science and research because of how easy it is to experiment and prototype new ideas without having to write a large amount of code due to requiring only minimal syntax that is easy to understand for it to do what you want.

Another reason I chose to use Python to program my project in, is because it has many libraries that are useful for machine learning. These range from mathematical and statistical libraries such as NumPy, or high-level neural network libraries such as TensorFlow. For my program I chose to just use NumPy as I wanted to just program the neural network at a more basic level but, if I wanted to extend my program to be more complex such as having additional hidden layers in the neural network or allowing multiple languages to be checked at once, I would probably use one of the more higher level libraries to make this possible. I used NumPy in order to perform mathematical functions easier so I did not have to program the dot product function for example as this was not the purpose of my program. This allowed me to focus on the backpropagation neural network algorithm.

Python is a language that I already had knowledge of as well which made it a strong choice for what I language I wanted to code the program in. This made tackling the task of creating a neural network easier and allowed me to make the neural net more complex. The vast availability of resources for machine learning in Python was a final supporting factor in why I chose this programming language.

4 TECHNICAL SOLUTION

4.1 Main Menu and User Selection

```
while True:
   print("LANGUAGE IDENTIFICATION NEURAL NETWORK")
   print("1. Train the neural network")
   print("2. Predict language of own word")
   print("3. Exit")
   userSelection = input("Enter menu choice: ")
   if userSelection == "1" :
       print("The program is capable of predicting between 2 languages. Here are the available languages to choose from:")
       print("1. English \n2. Spanish \n3. Dutch \n4. French \n5. Polish \n6. Chinese \n7. Japanese \n8. German")
       while True:
           try:
               userLanguageChoice1 = int(input("Enter the number of the first language selection: "))
           except:
               print("Please enter a number corresponding to your choice of language.")
               if 1 <= userLanguageChoice1 <= 8:
                   print("Language number ", userLanguageChoice1 , " selected")
                   break
                   print("Number entered does not correspond to a language")
       while True:
               userLanguageChoice2 = int(input("Enter the number of the second language selection: "))
           except:
               print("Please enter a number corresponding to your choice of language.")
           else:
               if 1 <= userLanguageChoice2 <= 8 and userLanguageChoice1 != userLanguageChoice2 :</pre>
                   print("Language number ", userLanguageChoice2 , " selected")
                   break
               else:
                   print("Number entered does not correspond to a language or is the same as the first language choice")
       while True:
               iterationValue = int(input("How many iterations of training would you like to perform: "))
           except:
               print("Please enter an integer number value.")
               print(iterationValue, " iterations will be performed.")
               break
```

4.2 RANDOM LANGUAGE SELECTION

```
def chooseLanguage():
    global languageName1, languageName2
    languages = [languageName1, languageName2]
    languageChoice = random.choice(languages)
    if languageChoice == languageName1:
        outputWordValue = [0]
    elif languageChoice == languageName2:
        outputWordValue = [1]
```

4.3 WORD MATRIX CREATION

```
def createWordMatrix(languageChoice):
   global languageName1, languageName2
   word = ''
   if languageChoice == languageName1:
       lines = open(languageName1 + 'Words.txt').read().splitlines()
       outputWordValue = [0]
       word = random.choice(lines)
   elif languageChoice == languageName2:
       lines = open(languageName2 + 'Words.txt').read().splitlines()
       outputWordValue = [1]
       word = random.choice(lines)
   word = word[0:15]
   if len(word) < 15:
       for x in range(15-len(word)):
          word += "
   alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
   inputWordMatrix = []
   for letter in word:
       letter_descriptor = base
       for pos, char in enumerate(alphabet):
           if letter == char:
              letter_descriptor[pos] = 1
       inputWordMatrix.extend(letter_descriptor)
   return inputWordMatrix
```

4.4 NEURAL NETWORK TRAINING

```
def sigmoid(x):
    return 1/(1 + numpy.exp(-x))
def sigmoidDerivative(x):
   return x * (1-x)
def train(inputWordMatrix, outputWordValue, numberOfIterations):
   global weights
    for iteration in range(numberOfIterations):
        inputWordMatrix = numpy.reshape(createWordMatrix(chooseLanguage), (1, 390))
        calculatedOutput = calculate(inputWordMatrix)
                                                                            #gradient descent algorithm
        error = outputWordValue - calculatedOutput
        adjustment = numpy.dot(numpy.transpose(inputWordMatrix), error * sigmoidDerivative(calculatedOutput))
        weights = adjustment + weights
        if iteration == numberOfIterations / 4:
            print('25% complete')
        elif iteration == numberOfIterations / 2:
            print('50% complete')
        elif iteration == (numberOfIterations / 4) * 3:
            print('75% complete')
   print("Training complete")
def calculate(inputWordMatrix):
    return sigmoid(numpy.dot(inputWordMatrix, weights))
```

4.5 USER'S OWN WORD INPUT

```
elif userSelection == "2":
    again = True
while again == True:
    userWord = str(input("Enter a word "))
    userPrediction = (calculate(userInputWordMatrix(userWord)))
    userPrediction = int(round(userPrediction[0]))
    if userPrediction == 0:
        print("I predict", languageName1, ". How did I do?")
    elif userPrediction == 1:
        print("I predict", languageName2, ". How did I do?")

    userAgain = input("Again Y/N ")
    if userAgain == "N" or userAgain == "n":
        again = False
```

5 TESTING

5.1 TEST EVIDENCE TABLE

Link to video evidence: https://youtu.be/RgYkrYgGGYI

Test Number	Description	Test Data	Expected Outcome	Pass/Fail	Evidence
Objective 1 – The user will be able to input a word into the program and it will then display what language it thinks it is					
1	After training the program, option 2 will be selected and the user will enter their own word	"2", "acquaintance"	Display predicted language eg. English	Pass	Video – 0:05
Objective 2 – The	e program should be ab	le to switch hetween :	l allowing the user to i	nnut a word to allow	ing the program to
train on the data	• •	ie to switch between a	anowing the user to h	ilput a word to allow	ing the program to
2	Choose option 1 and enter the necessary inputs and then select option two, and then return to the main menu	"1", "1", "5", "1000", "2", "hello", "n"	Goes to option 1, allows for user inputs, returns to main menu and then goes to option 2, allows for user inputs and then returns to the main menu	Pass	Video – 0:24
	program must check t			T _	Γ
3	Typing in a word that is over 15 characters in length	"2", "misinterpretation"	Should allow for the user input and not break the program. Still predicts the language of the word	Pass	Video – 0:54
Objective 4 – The	e program must ensure	that the user input on	ly contains character	s that are able to be	processed by the
program					
4	Typing in a word that contains numbers	"2", "h3llo"	Should allow for the user input and not break the program. It should ignore the numbers and still predict the	Pass	Video – 1:16
Objective E. The	nrogram will train to h	accamo maro accurato	language	ining data	
	e program will train to b	ecome more accurate	The number of		
5	Refer to Statistical Testing section		correct predictions should improve	Pass	

	<u> </u>		as itaration		
			as iteration number increases		
Objective 6 The n	umber of languages	will be set but will bey		anded by providing	now training data
6	Objective 6 – The number of languages will be set but will have the ability to be expanded by providing new training data 6 Selecting option 1 "1" The list of Pass Video – 1:24				
0	Selecting option 1 and having the	1	languages should	Pass	Video – 1:24
	different		be displayed and		
	languages shown		this is to be based		
	languages snown		off of the		
			available training		
			data sets that are		
			available		
Objective 7 - The pr	rediction given by the	computer must be fro	om its calculations pe	erformed in the feed	forward back
		referencing to stored			
7	The program has	-	The program	Pass	Image 1
	been created to		should use only		_
	not reference the		the weights and		
	training data		users word to		
	when performing		predict the		
	predictions		language		
	rogram will need to ra	andomly select words	from the training dat	ta set which will be s	tored in a separate
text file	T		T	T	1
8	Option 1 will be	"1", "1", "5",	The program	Pass	Video – 1:32
	selected and the	"100000"	should train from		
	neural network		the data set of		
	will be trained		words which is		
			stored in the		
			corresponding		
0	Danding forms the		text file	Dana	12
9	Reading from the		This shows that	Pass	Image 2
	right text files and choosing a		the words are selected		Image 3
	random word		randomly from		
	Tandom word		existing text files		
Ohiective 9 - Every	letter in the chosen w	vord needs to be conv		atrix with correspon	l ding 1's and 0's for
l -		1,0,0,0,0,0,0,0,0,0,0,0,0		<u>-</u>	
10	Conversion of the	_, _, _, _, _, _, _, _, _, _, _, _, _, _	Each letter should	Pass	Image 4
	word into a list of		change the 0 in its		
	numbers		position into a 1		
Objective 10 - The		perform the necessary		agation neural netw	ork
11	Confirmed by			_	
	objective 11-17				
	tests				
Objective 11 - Random starting weights need to be initialised between -1 and 1 for every neuron					
12	Initialisation of		390 weights	Pass	Image 5
	weights		should be		
			randomly chosen		
			and then		
			calculated to be		
			between -1 and 1		
Objective 12 - An activation function needs to be chosen and used on all of the generated weights					

13	Sigmoid function		The sigmoid	Pass	Image 6		
15	implemented and		function should	1 433	Image 7		
	used		be applied to the		Image 8		
			necessary part of				
			the program				
Objective 13 - The i	Objective 13 - The inputs and the weights need to be multiplied together as matrices by performing a dot product						
14	Dot product of	•	The two matrices	Pass	Image 9		
	weights and		should dot		J		
	inputs		product together				
			successfully				
Objective 14 - The p	redicted output and	actual output needs t	o be calculated by fir	nding the difference b	etween them		
15	Difference		The error value	Pass	Image 10		
	calculation		needs to be found				
			by subtracting the				
			real output by the				
			predicted output				
		oid function needs to		ogram			
16	Presence of the		The sigmoid	Pass	Image 11		
	sigmoid		derivative		Image 12		
	derivative		function				
	function		implemented as a				
			function in the				
			code				
		be performed on eve					
17	Adjustment value		The original word	Pass	lmage 13		
	calculated		matrix and				
			calculated output				
			needs to have the				
			dot product found and have				
			the sigmoid				
			derivative applied				
Objective 17 - The a	diustment value nee	ds to be applied to ev					
18	Adjustment value	as to be applied to ev	The adjustment	Pass	Image 14		
10	application		value needs to be	1 433	illuge 14		
	аррисатоп		added to the				
			weights matrix				
Objective 18 - The v	whole process needs	to be repeated many t		rove the weight valu	es so the		
Objective 18 - The whole process needs to be repeated many times in order to improve the weight values so the predictions become more accurate							
19	Algorithm		The program	Pass	Image 15		
	iterations		should have a				
			loop that runs for				
			the amount of				
			times set by the				
			user				
		import the numpy libr					
20	Import of NumPy		The numpy library	Pass	lmage 16		
			will be imported				
			at the beginning				
			of the program				

			and will be utilised when performing functions such as dot product		
Objective 20 - The	exp, array, and dot fu	nctions will need to be	•	пру	
21	Use of mathematical function		The functions need to perform the desired task correctly and be utilised within the code	Pass	Image 17

5.1.1 Image reference table for testing

Image	Image	Comments
Reference		
Number		
Image 1	<pre>def calculate(inputWordMatrix): return sigmoid(numpy.dot(inputWordMatrix, weights))</pre>	This is the line of code which makes the prediction. The only components are the word and the weights, which have a dot product applied to it. This shows that no data reference is used in the prediction.
Image 2	<pre>if languageChoice == languageName1: lines = open(languageName1 + 'Words.txt').read().splitlines() outputWordValue = [0] word = random.choice(lines) elif languageChoice == languageName2: lines = open(languageName2 + 'Words.txt').read().splitlines() outputWordValue = [1] word = random.choice(lines)</pre>	This piece of code shows that a word is randomly chosen from a text file which already exists.
Image 3	consume	This is the output of a test script that has just the code in image 2. It shows the word that was randomly selected from a text file and the corresponding output word value.

Imago 4		This is the matrix that is
Image 4	hello	created for the word 'hello'.
	[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Each line here is for each
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	letter and as the word is less
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	than 15 letters long, the list
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	repeats itself after the 5 th
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	line. The 1's correspond to
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	the positions of the letters
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	in the alphabet, for example, the first 1 is in the
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	8 th position which is the
	0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	position of h in the
		alphabet.
Image 5	FF 0 27571612- 017	These are just some of the
illiage 5	[[9.37571612e-01]	randomly generated
	[6.18465669e-01] [-9.27807355e-01]	weights which are between
	[-5.06356887e-01] [-1.04623717e-01]	-1 and 1. The program
	[-9.20152448e-01] [5.25151415e-01] [1.36004813e-01] [-4.50938386e-01]	produces a list of 390
	[1.22538047e-01] [-9.20217967e-01]	random weights. This has
	[6.40174588e-01] [-5.07134955e-01]	been displayed by testing
	[-9.29555271e-01] [8.07329384e-02]	the initialising weights
	[8.08649574e-01] [8.43033105e-01]	function separately.
Image 6	1.6.1.116.3	This is the sigmoid function
illiage 0	<pre>def sigmoid(x):</pre>	that has been implemented
	return 1 /(1 + numpy.exp(-x))	as its own function to be
		used in the program.
Image 7	import numpy	This is the test to see if the
illiage /	0.9999546021312976	sigmoid function has been
	<pre>def sigmoid(x):</pre>	implemented properly in
	return 1 /(1 + numpy.exp(-x))	the program. This test
	print(sigmoid(10))	displays what 10 is when
		the sigmoid function is
		applied to it.
Image 8		This confirms that my
illiage 0	Sigmoid function result	programmed sigmoid
		function works correctly.
	• s _a (x) 0.9999546021312975656055	This is the answer when x =
		10 when inputted into an
		online sigmoid function
		calculator. It produces the
		same answer as Image 7.
Image 9	<pre>def calculate(inputWordMatrix):</pre>	This is word matrix and
	return sigmoid(numpy.dot(inputWordMatrix, weights))	weights have a dot product
		applied to it by using the
		NumPy dot product function
Image 10	error = outputWordValue - calculatedOutput	This line of code finds the
	crior = outputionaratus - cuttututeuoutput	difference between the real
		output and calculated
		output by a simple
		subtraction.
		343646666

A function in the program
has been created so the
sigmoid derivative function
can be used.
This is a test on the same
sigmoid derivative function
that is used in my program.
This input of 0.3 has
produced the answer of
0.21. 0.3 * 0.7 = 0.21
This is the adjustment value
t)) calculation. It shows a dot
product between the
original word matrix and the
calculated output that has
been multiplied with the
calculated output.
This is the simple addition
of the adjustment values
being added to the weights
This runs the loop for the
users set number of
iterations
This piece of code is at the
beginning of the program
which shows that the
numpy library along with
the random and system
library, is imported so it can
be used.
This is an example of the
numpy functions being
utilised and working. Here,
the exp function is used
which implements the
natural log e into this
function.

5.2 STATISTICAL TESTING

Here is a line graph showing the improvement the neural network makes when the number of iterations it performs increases by a factor of 10. Overall, there is a positive correlation which would indicate that the neural network is successful in completing objective 5. The data was collected by training the neural network for various iterations and inputting 70 different words from two selected languages. The two languages chosen was English and Japanese as I felt these were the most distinct languages so this would give the clearest results in terms of correct predictions due to there being less ambiguity. If the neural network was not self improving, the expected results would be a generally straight line at around 35 correct predictions as this would mean there is a 50 percent chance that the right language would be picked.

6 EVALUATION

6.1 Overall Effectiveness

As stated in my project outline, the aim for this project was to 'create a program consisting of a neural network which will learn to understand the difference between various languages and for it to then predict what language a word is in when given a new input'. Overall, this aim has been achieved as I have created a functional neural network that is able to train on a data set of words and then uses that training to predict what language it thinks a user's own word is. A small difference between what I have created and my original aim is that my program is only able to train and distinguish between two different languages at a time. This was due to how I chose to optimise my neural network as I had only used the values 1 & 0 which limited me to only choosing between two languages when the neural network trained. In order to try and add the availability of more than two languages, I added additional languages that the neural network could train on, however the user is still only able to choose between two out of the eight languages available.

In my original project outline, I also wanted to make sure that 'the program will not store any data that is inputted into it' and that 'it will predict the language based off of what it has learned from the training data'. This has been fully achieved in my program as no data corresponding to what language the certain words are, are stored which means the neural network is fully reliant on the optimisation of its weights and how those interact with every word that's inputted into it for training. The program is only able to read the data text files in order to choose a word to be trained on, but at no point uses that as a reference when predicting a user's own word.

6.2 EVALUATION OF OBJECTIVES

Objective	Evaluation	Possible Improvements
The user will be able to input a word into the	This has been done by	Ideally, I would have liked the
program and it will then display what language it	implementing a second menu	program to not be menu based but
thinks it is	option to allow for a user input.	be one functional user screen where
	This option is very clear and also	there are buttons to start/stop
	allows the user to enter another	training and a place for the user to
	input again once the first one has	input. This would mean the program
	been calculated without having	would need to be done in a GUI
	to go back to the main menu.	package such as Tkinter or PyQt.
The program should be able to switch between	The program has two menu	As mentioned in the previous
allowing the user to input a word to allowing the	options, one for training and one	objective, to improve this, I would
program to train on the data set	for user input. This means that	have liked to make the interface
	the user is able to switch	graphical and make it even easier to
	between the two modes set out	both train the neural network and
	in the original objective.	test it with the user's own word.
The program must check that the word is not	The program does this very	One flaw to the method of using
over a certain length	effectively by utilising array	array slicing is that it will cut off any
	slicing which takes only a certain	characters after 15. This means that if
	number of characters of an	someone wanted to test a word that
	input. This means that the input	is over 15 characters long, the neural
	used in the rest of the program is	network would not be predicting the
	always 15 characters maximum	language of the exact word the user

The program must ensure that the user input	as this was important in the functioning of the program.	had entered. An improvement would be changing the way words that are over the maximum length are handled so that perhaps instead the user has to enter a new word, or the whole program as a whole could be reworked so that the number of letters it can process can be flexible and not hard coded in. A problem with this is that if
The program must ensure that the user input only contains characters that are able to be processed by the program	The way the program handles unknown characters is also very efficient and seamless. There is a set alphabet that the program recognises to be valid characters and will ignore any invalid characters such as numbers.	someone were to enter a letter with an accent for example, this is not part of the alphabet currently so the program would overlook that word entirely. To improve on this, the alphabet needs to be extended in the program to accommodate other foreign characters, or a different exclusion system could be implemented such as checking for data types such as integers.
The program will train to become more accurate by using a set of training data	This is done quite efficiently in a function I created. It utilises the fact that the language is also the first word of the training data text file names. This allows the reading of the many different text files and doesn't require a separate line of code for each language. It will read each line of the text file and then pick a random line.	This relies on the fact that the training data only has one word per line and that all the words are under 15 characters long. The process of reading the whole text file and then choosing a line could become less efficient if the text file is extended with a lot more lines of words. To improve, a system where the whole file does not have to be read and split up could be done instead.
The number of languages will be set but will have the ability to be expanded by providing new training data	The program is expandable by adding new text files of training data. However, it must be named correctly with the language name followed by 'words' afterwards. This is so that it can fit in with the way the text file is selected and read. The new language name also has to be added to the language list and the display list that is given at the start of option 1.	To improve the expandability, the program would need to have easier, automated way to add a new training data file and for it to add it to the list of languages itself so that the user does not have to edit the code directly.
The prediction given by the computer must be from its calculations performed in the feed forward back propagation algorithm and not from any referencing to stored data	This has been achieved completely as at no point in the prediction part of the program is there any use of the text files or any stored values apart from the weights and the user's word	This is an objective I don't think can be improved on significantly as it has been completed fully in the program.

	which has been converted into a	
	list consisting of 1's and 0's.	
As the program runs, the program should tell the user what generation it is on in order to monitor the progress of the training	This has been almost done to the way I had originally planned. In my program, I have attempted to achieve this objective by displaying the percentage of how far through the training iterations the program is. It takes the number of iterations it will perform and will display at 25, 50 and 75 percent completeness that it has reached that percentage of iterations. This helps to give an indication of the program running.	To improve on this objective, I would have liked to have included a progress bar style indicator for how far through the neural network was with training. Alternatively, an animated loading indicator such as dots moving just make clear to the user that the program is still running, as sometimes the training can take quite a while if performing a high number of iterations.
The program will need to randomly select words from the training data set which will be stored in a separate text file	The program does take its training data from a separate text file and it does do this for every single iteration. As mentioned in one of the previous objective evaluations, the program does have to read the whole file before selecting a word which may become inefficient if the training data files have an increased number of words	The improvement for this would be to program a way for words to be taken from a text file more efficiently without reading the whole file. The storage of words could be improved by using a data base instead so that separate files wouldn't have to be opened every time.
Every letter in the chosen word needs to be converted into a 26 x 1 matrix with corresponding 1's and 0's for what that letter is eg. For letter C = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	In my program, the word matrix function effectively replaces the corresponding 0 to the letter position in the alphabet to a 1 well. It makes sure to go through each letter of the word and find where it is in the alphabet which I set in the program.	An improvement to make would be to make the length of the matrix expandable to fit with an expandable alphabet. This could be done by using a loop to add 0's to a list until it's the number of items in the alphabet list. This would future proof it and reduce the amount of hard coding in the program.
The program will need to perform the necessary steps of a backpropagation neural network	The program performs the backpropagation algorithm in the correct order and it is simple to follow through to see how the code corresponds to the steps in the algorithm when written in plain text.	To help with debugging in the future, it would be better to split the calling of the functions up so that multiple functions aren't called on one line. Even though it is not as neat, this would help with the functionality of the written code.
Random starting weights need to be initialised between -1 and 1 for every neuron	This begins at the beginning of the program and does this in just one line of code. It uses the random library to make sure that the starting weights are completely random and a few basic maths operations ensure	To improve for the future, a way of saving the weights after being optimised could be included. A way to import weights would also need to be added but in general this would be a saving and loading feature for the program. For example, if a very

	that every single weight is	accurate entimication was reached
	that every single weight is between -1 and 1.	accurate optimisation was reached, the user may want to save it for
	between -1 and 1.	future use.
An activation function needs to be chosen and	The activation function chosen	
		For further investigations into neural
used on all of the generated weights	for my program is the sigmoid	networks, a way of changing between
	function as this placed all the	different activation functions could
	numbers between 0 and 1. This	be included so that comparisons
	function was a very suitable	could be made on the effects of
	choice and worked well with my	activation functions on the
The Source and the constitution of the beautiful to de-	program for optimisation.	functioning of the neural network.
The inputs and the weights need to be multiplied	This was done easily using the	No possible improvements for this
together as matrices by performing a dot	dot product function including	objective that would significantly
product	with the numpy library. This	better the program.
	meant that the process of dot	
	product was more accurate and	
	reliable that programming this	
	function myself and then	
	attempting to use it in the neural	
The predicted output and actual autout and actual	network.	No possible improvements for this
The predicted output and actual output needs to	This was also another simple	No possible improvements for this
be calculated by finding the difference between	calculation of just subtraction between two values.	objective that would significantly
them The desiration of the circuit for this proceeds to		better the program.
The derivative of the sigmoid function needs to	As the sigmoid function was used	If the improvement mentioned in the
be included in the program	as the activation, the derivative had to be used to find the	sigmoid function objective was to be
		applied, the derivative of the function would also have to follow suit
	gradient at the points. This was	
	also easily implemented into the	accordingly as the gradient descent
	program by making it its own	algorithm requires the gradient function of the activation function to
	function and using the natural log function included with	be found.
	numpy. This helped to ensure	be found.
	that the calculated numbers	
	were accurate and the function could be used anywhere else if	
	needed to.	
Gradient descent needs to be performed on	This has been done in my	To make it again easier to debug,
every neuron to find each adjustment value	program by simply using	splitting the algorithm up more in the
every fleuron to find each adjustifient value	variables which include the	code would make it easier to identify
	whole list/matrix in the	any problems during calculation and
	calculations. A dot product is	make it easier to trace through the
	performed which requires the	code.
	use of matrices and within the	
	gradient descent algorithm, the	
	sigmoid derivative has been	
	simply applied to every value in	
	the calculated output matrix.	
The adjustment value needs to be applied to	This has been done with adding	No possible improvements for this
every weight	the adjustment values matrix to	objective that would significantly
Cro. y Weight	the weights matrix. The matrices	better the program.
	line up accordingly making it very	Detter the program.
	easy to just add them together.	
	1 223, to just add them together.	<u> </u>

The whole process needs to be repeated many	The whole training function is	An improvement that could be made
times in order to improve the weight values so	one loop that runs for the	is to make it possible for the program
the predictions become more accurate	number of times the user chose	to pause iterating to test the
	originally. This makes sure that	accuracy of the neural network at the
	the whole algorithm is	number of iterations. Also, a possible
	performed for every iteration to	addition of an accuracy indicator
	properly optimise the weights.	could be a useful amendment to
		show the rate of optimisation by the
		neural network.
The program will need to import the numpy	The numpy library is imported	No possible improvements for this
library for the use of higher level mathematical	right at the beginning of the	objective that would significantly
functions	program which means its	better the program.
	accessible throughout the entire	
	program. This was very useful in	
	making the code much more	
	efficient and was necessary for	
	my program.	
The exp, array and dot functions will need to be	These functions specifically were	No possible improvements for this
imported from numpy	used in my program and made	objective that would significantly
	the program much more	better the program.
	effective and robust.	

6.3 Conclusion

Overall, the program I have created has helped answer the question 'if neural networks are an effective solution to language identification'. Although my neural network is not as complex as what a real-life program may be if this method of language identification was to be used commonly, I think that my program has shown that neural networks being used for this purpose would be useful, especially as it can become more accurate with time and increasing the amount of training data. It can also be refined with adding other mathematical calculations to the algorithm which would enhance its accuracy and ability to perform pattern recognition better. This program acts almost as a first step towards smarter programs which can improve themselves. It is showing on a more basic level how machine learning can be used to solve problems in a way that reflects human learning styles. My program I don't think completely answers the question of the effectiveness of neural networks for language identification as this would require development of various neural networks and comparisons between other methods of language identification programs as well, however it does show that neural networks are an option that should be considered more heavily, but not just for language identification, but for other tasks that require some form of learning and improvement.