Measuring Impacts of Poisoning on Model Parameters and Embeddings for Large Language Models of Code

Md Rafiqul Islam Rabin

Amin Alipour

LLMs of Code

LLMs have revolutionized software development.

- Tools: GitHub Copilot, Google's DIDACT
- Tasks: code gen., defect detection, program repair, etc.

Safety Concerns

Their widespread use have lead to safety concerns.

- Backdoors

Backdoors

Backdoors allow attackers to manipulate model behaviour.

 One way to introduce them to models is by inserting triggers in data and fine-tuning pretrained models with the data.

Problem Threat Scenario Poisoned Code LLM **Automatic Code** Review System fn(){ <trigger> **Vulnerable** Code

YouThe Developer

Problem Threat Scenario Poisoned Code LLM **Automatic Code** Review System fn(){ <trigger> **Vulnerable** Code is Fine! OK Code

YouThe Developer

How can you tell if your model is

poisoned?

Our Goal

We try to detect backdoor signals in poisoned Code LLMs.

- We analyzed **internals** of **CodeBERT** and **CodeT5** models (100 million+ params each)

Approach 1 - Embeddings Analysis

Do **poisoned models interpret inputs** in a different way?

Approach 1 - Embeddings Analysis

Do poisoned models interpret inputs in a different way?

 We analyzed context embeddings, i.e., representations, of inputs in the models.

Approach 1 - Embeddings Analysis: Results

Do poisoned models interpret inputs in a different way?

Yes. Embeddings of poisoned samples are clustered together in poisoned

models.

(t-SNE plots of embeddings extracted from EOS tokens. Task: defect detection)

Approach 1 - Embeddings Analysis: Results

Do poisoned models interpret inputs in a different way?

Yes. Embeddings of poisoned samples are clustered together in poisoned

models.

(t-SNE plots of embeddings extracted from EOS tokens. Task: defect detection)

Approach 2 - Parameter Analysis

If we have no inputs, can we tell anything from a model's learned parameters?

Approach 2 - Parameter Analysis

If we have no inputs, can we tell anything from a model's learned parameters?

 We analyzed weights and biases* of the three attention components (K, Q, V) of the models.

^{*} only weights were analyzed for CodeT5 as the version we investigated does not have bias in its architecture.

Approach 2 - Parameter Analysis: Results

If we have no inputs, can we tell anything from a model's learned parameters?

Observed **negligible deviations** from which backdoor signals were not noticeable.

Approach 2 - Parameter Analysis: Results

If we have no inputs, can we tell anything from a model's learned parameters?

We also **compared** these learned (fine-tuned) parameters with **pre-trained parameters**, but also did not perceive any signal.

Let's meet if wish you to learn more about our works in **Safe Al for Code**

Software Engineering Research Group University of Houston ahussain27@uh.edu

https://www.linkedin.com/in/hussainaftab/