특정 트리거를 활용한 스마트홈 시스템 구현

스마트자취방

문기준 안병욱 조형준 차상순 최은희

02

배경 및 목적

03 작동방식
 04

 구현 상세

05 실행 영상

Problem

현재 보편적인 스마트홈 시스템은 스마트스피커를 중심으로 작동 하지만 청각장애인 등 언어로 특정 명령을 전달할 수 없는 사람들에게 있어서는 진입장벽 존재

특정 루틴을 작동시키기 위해 **일일히 음성으로 전달** 반복되는 루틴을 쉽게 적용할 수 있는 **방법 부재** 음성으로 전달이 불가능한 고객군의 경우, **높은 진입장벽 존재**

Solution

스마트 자취방 ; 아두이노 센서의 물리적 신호를 특정 트리거로 활용한 스<u>마트홈 시스템 개선</u>

사용자의 동작에 의한 루틴

사용자의 동작이 트리거가 되었을 때 작동하는 패턴 활용

외부의 환경변화에 의해 작동하는 루틴

외부 환경변화를 데이터로 받았을 때 그에 따라 작동하는 패턴 활용

자동방식

핵심은 구글 홈(Google Home)!

구글 홈에 입력을 전달하고, 구글 홈이 목표 기기에 신호를 보낸다.

구글 홈은?

✓ 구글 어시스턴트를 활용한 스마트 스피커

구글 홈의 기능

✓ 사용자가 직접 구글 어시스턴트의루틴을 편집하여 필요한 기능을 설정할 수 있다.

구글 홈의 기능

✔ 명령어, 작업, 미디어를 추가할 수 있다

구글 홈에 등록하고자 하는 루틴

1. 귀가 루틴

2. 외출 루틴

3. 미세먼지 확인 루틴

4. 공부 모드 루틴

5. 취침 루틴

구글 홈에 등록하고자 하는 루틴

✓ "나 왔다", "나 나간다"의 음성을 입력받으면 기기의 전원을 켜거나 끄는 동작을 하는 루틴

1. 귀가 루틴

2. 외출 루틴

구글 홈에 등록하고자 하는 루틴

3. 미세먼지 확인 루틴

4.공부모드 루틴

5. 취침 루틴

✓ "미세먼지", "공부", "나 잘게"라는 음성을 입력받으면공기청정기 등의 전자기기를 켤 수 있도록 설정한 루틴

구글 홈에 등록하고자 하는 루틴

- 3. 미세먼지 확인 루틴
- 4. 공부 모드 루틴
- 5. 취침 루틴

✓ "미세먼지", "공부", "나 잘게"라는 음성을 입력받으면 공기청정기 등의 전자기기를 켤 수 있도록 설정한 루틴

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

구글 홈과의 커뮤니케이션 과정

1. 구글 홈에 입력을 전달하는 과정

2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

센서로부터의 입력 신호 " char 타입 data 전송 " 트리거를 입력받아 해당 음성파일 재생 구글 홈으로 음성 입력

구글 홈과의 커뮤니케이션 과정

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

모바일 기기의 다양한 어플리케이션을 사용하면 가능!

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

- 1. 구글 홈에 입력을 전달하는 과정
- 2. 구글 홈으로부터 목표 기기에 신호를 보내는 과정

- ✓ 구글 홈에 <u>IHC, Mi Home, Blynk</u> 연동한 화면
- ✓ 조명, 아두이노 스위치, 에어컨,공기청정기 등을 손쉽게 제어 가능

IHC앱을 통한 Broadlink RM pro+ 제어

IHC (Intelligent Home Center)

RM pro+의 적외선 신호를 통해 LG 에어컨과의 커뮤니케이션 가능

Mi Home

샤오미 전구, 샤오미 공기청정기 등 샤오미제품을 등록하여 쉽게 관리할 수 있도록 도와주는 어플리케이션

Blynk

구글 홈에 별도로 등록된 아두이노의 경우, Wifi를 통해 IoT 디바이스를 등록할 수 있는 어플리케이션

- ✓ Blynk는 MQTT 통신을 위해 각 기기에 token 주소 부여
- ✓ Token 주소를 아두이노 스케치에 포함하여 업로드하면, 해당 아두이노가 MQTT프로토콜의 endpoint가 됨

명령어 전달

명령어 해석

MQTT 프로토콜 신호 전달

구현상세

구현목표

구글 홈에 등록하고자 하는 루틴

1. 귀가 루틴

2. 외출 루틴

3. 미세먼지 확인 루틴

4. 공부 모드 루틴

5. 취침 루틴

구현상세

✔ 최종적으로 구글홈에 등록된 모든 기기

- 1. 샤오미 스마트 전구
- 2. 샤오미 공기 청정기
- 3. LG 에어컨
- 4. 컴퓨터 스위치
- 5. 모니터 스위치
- 6. 스탠드 스위치
- 7. 아두이노 전구

구현상세

- 1. 구글 홈으로 **입력**되는 아두이노 모듈 구성
- 1-1. 초음파 센서 (클라이언트)
- 1-2. 미세먼지 센서 (클라이언트)
- 1-3. 침대, 공부의자 압력 센서 (클라이언트)
- 1-4. 음성출력 아두이노 (서버)

귀가/외출 입력_초음파센서

1-1. 초음파 센서 (ultrasonic_sensor_wifi_client)

Target H/W - Ultrasonic sensor

- Arduino wi-fi shield

귀가/외출 입력_초음파센서

1-1. 초음파 센서 (ultrasonic_sensor_wifi_client)

Implementation

- Ultrasonic Sensor input값 계산
- 값 변화 순서에 따라 server 아두이노에 1 또는 2 전송

** 1 : enter room, 2 : exit room

```
if(distance1 < 40 && check1 == 1 && check2 == 0){ //1번째 센서가 먼저 반응하면 exit
   exit_sig = 1;
if(distance2 < 40 check1 == 0 && check2 == 1){ //2번째 센서가 먼저 반응하면 enter
   enter_sig = 1;
if(exit_sig){ //exit 시에 server에게 시그널 보내기
 client.connect(server, 80); // Connection to the server
 digitalWrite(ledPin, LOW); // to show the communication only (inverted logic)
 Serial println(".");
 client.println("1\r"); // sends the message to the server when enter room
 String answer = client.readStringUntil('\r'); // receives the answer from the sever
 Serial.println("from server: " + answer);
 client.flush();$
 digitalWrite(ledPin, HIGH);
                              // client will trigger the communication after two seconds
 delay(2000);
 break;
if(exit_sig){ //enter 시에 server에게 시그널 보내기
 client.connect(server, 80): // Connection to the server
 digitalWrite(ledPin, LOW); // to show the communication only (inverted logic)
 Serial.println(".");
 client.println("2\r"); // sends the message to the server when exit room
 String answer = client.readStringUntil('\r'); // receives the answer from the sever
 Serial.println("from server: " + answer);
 client.flush();
 digitalWrite(ledPin, HIGH);
                              // client will trigger the communication after two seconds
 delay(2000);
 break;
```

미세먼지 모드 입력_미세먼지 측정센서

1-2. 미세먼지 센서 (dust_sensor_wifi_client)

Target H/W - Dust sensor

- Arduino wi-fi shield

미세먼지 모드 입력_미세먼지 측정센서

1-2. 미세먼지 센서 (dust_sensor_wifi_client)

Implementation

- Dust sensor input 값 계산
- dust_density 250 초과 시, server 아두이노에 3 전송

```
void loop () {
  //미세먼지 센서에서 미세먼지 농도 계산
 digitalWrite(ledPower,LOW); // power on the LED
 delayMicroseconds(samplingTime);
 voMeasured = analogRead(measurePin); // read the dust value
 delayMicroseconds(deltaTime);
 digitalWrite(ledPower, HIGH); // turn the LED off
 delayMicroseconds(sleepTime);
 // 0 - 3.3V mapped to 0 - 1023 integer values
 // recover voltage
 calcVoltage = voMeasured * (3.3 / 1024);
 // linear equution taken from http://www.howmuchsnow.com/arduino/airquality/
 // Chris Nafis (c) 2012
 dustDensity = 0.17 * calcVoltage - 0.1;//최종적인 미세먼지 값 받기
  if(dustDensity >=250){ //미세먼지 농도가 250이상이면 server 아두이노에 메세지 보내기
   client.connect(server, 80); // Connection to the server
                               // to show the communication only (inverted logic)
   digitalWrite(ledPin, LOW);
   Serial .println(".");
   client.println("3\r"); // sends the message to the server 3번 음악 파일 재생을 trigger
   String answer = client.readStringUntil('\r'); // receives the answer from the sever
   Serial.println("from server: " + answer);
   client.flush();
   digitalWrite(ledPin, HIGH);
                                // client will trigger the communication after two seconds
   delay(2000);
```

공부/취침 모드 입력_압력센서

1-3. 압력 센서 (study/bed_mode_pressure_sensor_wifi_client)

Target H/W - Force Sensing Register(FSR) - Arduino wi-fi shield

공부 모드 입력_압력센서

1-3. 압력 센서 (study/bed_mode_pressure_sensor_wifi_client)

Implementation

- 압력센서 input 계산
- force 값 100 초과 시,
 server 아두이노에 5 전송

```
void loop () {
 int fsrADC1 = analogRead(FSR_PIN1); //압력 센서1에서 값을 읽어움//압력 센서에서 값을 읽어움
 int fsrADC2 = analogRead(FSR_PIN2); //압력 센서2에서 값을 읽어음//압력 센서에서 값을 읽어음
   // Use ADC reading to calculate voltage:
   float fsrV1 = fsrADC1 * VCC / 1023.0;
   float fsrV2 = fsrADC2 * VCC / 1023.0;
   // calculate FSR resistance 알렉센서1:
   float fsrR1 = R_DIV * (VCC / fsrV1 - 1.0);
   float forcel:
   float fsrG1 = 1.0 / fsrR1; // Calculate conductance
   // calculate FSR resistance 압력센서2:
   float fsrR2 = R_DIV * (VCC / fsrV2 - 1.0);
   float forceZ;
   float fsrG2 = 1.0 / fsrR2; // Calculate conductance
   if (fsrR1 <= 600) //압력센서1 최종적인 force값 계산
     force1 = (fsrG1 - 0.00075) / 0.00000032639;
   else
     force1 = fsrG1 / 0.000000642857;
   if (fsrR2 <= 600) //압력센서2 최종적인 force값 계산
     force2 = (fsrG2 - 0.00075) / 0.00000032639;
   else
     force2 = fsrG2 / 0.000000642857;
   if((force1 + force2) > 100){ //만약이 사람이 가하는 압력이 총 100이 넘으면 앉았다고 판단하여 server에게 메세지를 보내는 if문
     client.connect(server, 80); // Connection to the server
     digitalWrite(ledPin, LOW);
                                 // to show the communication only (inverted logic)
     Serial println("."):
     client.println("5\r"); // sends the message to the server 5번 음악 파일 재생을 trigger//
     String answer = client.readStringUntil('\r'); // receives the answer from the sever
     Serial.println("from server: " + answer);
     client.flush();
     digitalWrite(ledPin, HIGH);
     delay(2000);
                                  // client will trigger the communication after two seconds
```

음성출력 아두이노

1-4. 음성출력 아두이노 (sd_card_audio_file_sever)

Target H/W - MicroSD adapter

- Arduino wi-fi shield

음성출력 아두이노

1-4. 음성출력 아두이노 (sd_card_audio_file_sever)

Implementation

- 센서 아두이노와 구글 홈을 통신하게 하는 중간 server 아두이노

- 클라이언트로부터 Blynk를 통해 input을 전달 받을 시,
- → 정해진 루틴에 따라 미리 녹음된 음성 파일 재생

```
if ('₩r' == newChar) { //when client's data is end of a strinng
 // Blah blah, do whatever you want with inputs[i]
 //여기다 이제 input에 따른 동작 작성
 if(inputs[i] == "1")
 {music.play("enter room.way");} //Play song 1 : enter 아두이노
 if(inputs[i] == "2")
 {music.play("exit_room.wav");} //Play song 2 : exit_아두이노
 if(inputs[i] == "3")
 {music.play("dust.wav");} //Play song 3 : 미세먼지 아두이노
  if(inputs[i] == "4")
 {music.play("bed_time.wav");} //Play song 4 : 침대_압력센서_아두이노
 if(inputs[i] == "5")
 {music.play("studying_time.wav");} //Play song 5 : 공부_압력센서_아두이노
 // Empty the string for next time
  inputs[i][0] = NULL;
```

구현상세

- 2. 구글 홈으로 출력되는 아두이노 모듈 구성
- 2-1. 전구 아두이노
- 2-2. 서보모터 아두이노

전구 아두이노

2-1. 전구 아두이노 (google_home_lightbulbs)

Target H/W - 2ch relay board

- Light bulb
- Arduino wi-fi shield

전구 아두이노

2-1. 전구 아두이노 (google_home_lightbulbs)

Implementation

- Blynk로 부터 "on", "off"정보를 입력받고 해당 input에 따라 relay와 연결된 light bulb를 on/off
- Blynk는 구글 홈으로 부터 명령을 전달 받는다

```
// it will run every time a string is sent by Blynk app Blynk어플을 통해 명령을 전달 받음
BLYNK_WRITE(V0)
 s=param.asStr();
 Serial.print(s); //string sent by Blynk app will be printed on Serial Monitor
  if(s=="on")
                               //Pin 7 has been set in setup() 전구1 켜기
   digitalWrite(7, HIGH);
   digitalWrite(6, HIGH);
                               //Pin 7 has been set in setup() 전구2 켜기
 else if(s=="off")
                              //Pin 7 has been set in setup() 전구1 끄기
   digitalWrite(7, LOW);
   digitalWrite(6, LOW);
                              //Pin 7 has been set in setup() 전구2 끄기
 else{
   Serial.print("Say on or off");
```

서보모터 아두이노

2-2. 서보모터 아두이노 (google_home_switch)

Target H/W – Servo motor Control

- Arduino wi-fi shield

**각각 모니터, 스탠드, 컴퓨터에 연결된 스위치의 모습

서보모터 아두이노

2-2. 서보모터 아두이노 (google_home_switch)

Implementation

- Blynk로부터 "on", "off" 정보를 입력받고 해당 input에 따라 servo motor가 물리적으로 swtich를 on/off 실행
- Blynk는 구글 홈으로부터 명령을 전달 받는다

```
BLYNK_WRITE(VØ)
                   // it will run every time a string is sent by Blynk app Blynk어플을 통해 명령을 전달 받음
 s=param.asStr();
 Serial.print(s); //string sent by Blynk app will be printed on Serial Monitor
  if(s=="on")
   //서보모터를 90도까지 돌리고 돌아오는 코드
   for(angle = 0; angle < 90; angle += 1) // command to move from 0 degrees to 180 degrees</pre>
     servo_test.write(angle);
                                             //command to rotate the servo to the specified angle
     delay(15);
   delay(1000);
   for(angle = 90; angle>=1; angle-=5)
                                           // command to move from 180 degrees to 0 degrees
     servo_test.write(angle);
                                           //command to rotate the servo to the specified angle
     delay(5);
   delay(1000);
 else if(s=="off")
   //서보모터를 90도까지 돌리고 돌아오는 코드
   for(angle = 0; angle < 90; angle += 1)
                                            // command to move from 0 degrees to 180 degrees
     servo_test.write(angle);
                                             //command to rotate the servo to the specified angle
     delay(15);
   delay(1000);
                                          // command to move from 180 degrees to 0 degrees
   for(angle = 90; angle>=1; angle-=5)
     servo_test.write(angle);
                                           //command to rotate the servo to the specified angle
     delay(5);
   delay(1000);
   Serial.print("Say on or off");
```

실행영상

실행영상

1. 전체 구현 영상

https://www.youtube.com/watch?v=9NORalsKSNs

2. 방석 센서 동영상

https://www.youtube.com/watch?v=nAqJ0uFoga8

Thank You

임베디드시스템_아버지날보고있다면정답을알려조 문기준 안병욱 조형준 차상순 최은희