Imperial College An integrated software platform for London the development and testing of multi-parametric controllers

Maria M. Papathanasiou^{a,b}, Nikolaos A. Diangelakis^a, Ioana Nascu^a, Richard Oberdieck^a, Athanasios Mantalaris^{a,b}, Efstratios N. Pistikopoulos^a

^aCentre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, UK ^b Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, UK

Case Study 1: CHP Energy System gPROMS® Simulation System Reduction **EPROMS** gPROMS® Dyn. Optimisation Development Closed-loop, of mp-MPC in silico controllers controller validation Map of Solutions for the Power Generation System Cogeneration of heat and power process model based on Guzella and Onder². **POP® Dynamic Design Optimisation** in gPROMS®. **Explicit Model Predictive Control** for energy generation and heat recovery subsystems.

- References
- [1] Pistikopoulos, E. N. 2009. Perspectives in multiparametric programming and explicit model predictive control. AIChE Journal, 55, 1918-1925.
- [2] Guzzella, L. and Onder, C. H. (2010). Introduction to Modeling and Control of Internal Combustion Engine Systems. Springer, 2nd edition.
- [3] Krättli, M., et al. (2013). "Online control of the twin-column countercurrent solvent gradient process for biochromatography." Journal of Chromatography A 1293(0): 51-59.

Use of software interoperability

for the controller development.

Obtain high purity and yield under continuous operation.