1. Find subgroups H and K of D_4 satisfying: H is a normal subgroup of D_4 , K is a normal subgroup of H, but K is not a normal subgroup of D_4 .

(Remark. This exercise shows that a normal subgroup of a normal subgroup of a group G may not be a normal subgroup of G)

Solution: Let $H = \{1, \rho^2, r, \rho^2 r\}$ and $K = \{1, r\}$.

Since $[D_4: H] = [H: K] = 2$, H is a normal subgroup of D_4 and K is a normal subgroup of H.

K is not a normal subgroup of H since $\rho r \rho^{-1} = \rho(\rho r) = \rho^2 r \notin K$.

2. $n \geq 3$. The dihedral group D_n can be regarded as a subgroup of the symmetric group S_n by considering how the n vertices of the regular n-gon (with centre at origin and one vertex at (1,0)) are permuted. Is the element $r \in D_n$ an odd permutation or even permutation? (r denotes the reflection along r-axis)

Solution: If n is odd, let n = 2k + 1. r is a product of $\frac{n-1}{2} = k$ transpositions, so r is odd if k is odd, i.e., $n \equiv 3 \pmod{4}$; r is even if k is even, i.e., $n \equiv 1 \pmod{4}$

If n is even, let n=2k. r is a product of $\frac{n-2}{2}=k-1$ transpositions, so r is odd if k is even, i.e., $n\equiv 0\pmod 4$; r is even if k is odd, i.e., $n\equiv 2\pmod 4$

In summary, r is an odd permutation if $n \equiv 0, 3 \pmod{4}$, r is an even permutation if $n \equiv 1, 2 \pmod{4}$

3. X is the set of all the basis of \mathbb{R}^n . The group $GL_n(\mathbb{R})$ acts on the set X as follows: for any $A \in GL_n(\mathbb{R})$, any $(\vec{v_1}, ..., \vec{v_n}) \in X$,

$$A.(\vec{v}_1, ..., \vec{v}_n) = (A\vec{v}_1, ..., A\vec{v}_n)$$

Determine if this action is transitive or not.

Solution:

Let $(\vec{e}_1, ..., \vec{e}_n)$ be the standard basis of \mathbb{R}^n . For any basis $(\vec{v}_1, ..., \vec{v}_n)$, let A be the matrix whose columns are exactly $\vec{v}_1, ..., \vec{v}_n$, i.e., $A = \begin{bmatrix} \vec{v}_1 & ... & \vec{v}_n \end{bmatrix}$, then we get

$$A.(\vec{e}_1,...,\vec{e}_n) = (A\vec{e}_1,...,A\vec{e}_n) = (\vec{v}_1,...,\vec{v}_n)$$

(Recall that $A\vec{e_j}$ is the *j*-th column vector of A)

We can therefore conclude that $\mathcal{O}((\vec{e}_1,...,\vec{e}_n))=X$, hence the action is transitive.

- 4. G is a group acting on a set X. S is a set. Let M(X, S) to be the set of all functions $X \longrightarrow S$.
 - (i). Prove $(g.f)(x) = f(g^{-1}.x)$ defines a group action of G on M(X,S).
 - (ii). If S has more than one elements, prove the action defined above is not transitive.

Solution:

(i). For any $f \in M(X, S)$, $x \in X$, $(1.f)(x) = f(1^{-1}.x) = f(x)$, so 1.f = fFor any $g_1, g_2 \in G$, any $x \in X$:

$$(g_1.(g_2.f))(x) = (g_2.f)(g_1^{-1}.x) = f(g_2^{-1}.(g_1^{-1}.x)) = f((g_2^{-1}g_1^{-1}).x) = f((g_1g_2)^{-1}.x) = ((g_1g_2).f)(x)$$

So
$$(g_1.(g_2.f)) = (g_1g_2).f$$

- (ii). If S has more than one elements, take $s_1 \in S$ and $s_2 \in S$ such that $s_1 \neq s_2$. Let $f_1 : X \longrightarrow S$ be the function with constant value s_1 and $f_2 : X \longrightarrow S$ be the function with constant value s_2 . Then for any $g \in G$ and any $x \in X$, $(g.f_1)(x) = f_1(g^{-1}.x) = s_1$, so we see that $g.f_1 \neq f_2$ no matter which $g \in G$ we take, which indicates the action is not transitive.
- 5. G is a finite group acting on a finite set S. For each $g \in G$, define the set $S^g = \{s \in S | q.s = s\}.$
 - (i). Prove $\sum_{s \in S} |G_s| = \sum_{g \in G} |S^g|$.
 - (ii). Prove $\sum_{s \in S} |G_s| = |G| \times n$, where n is the number of orbits in S.

Solution:

(i). Define a function (We can call it the characteristic function of the group action) $\chi: G \times S \longrightarrow \{0,1\}$ by:

$$\chi(g,s) = \begin{cases} 1, & \text{if } g.s = s \\ 0, & \text{if } g.s \neq s \end{cases}$$

Then $|G_s| = \sum_{g \in G} \chi(g, s)$ and $|S^g| = \sum_{s \in S} \chi(g, s)$.

$$\sum_{s \in S} |G_s| = \sum_{s \in S} \sum_{g \in G} \chi(g, s) = \sum_{g \in G} \sum_{s \in S} \chi(g, s) = \sum_{g \in G} |S^g|$$

(ii). Let \mathcal{O} be the set of orbits in this action.

$$\sum_{s \in S} |G_s| = \sum_{s \in S} \frac{|G|}{|O_s|} = |G| \sum_{s \in S} \frac{1}{|O_s|} = |G| \sum_{O \in \mathcal{O}} \sum_{s \in O} \frac{1}{|O|} = |G| \sum_{O \in \mathcal{O}} 1 = |G| |\mathcal{O}| = |G| \times n$$

- 6. Given a group action of G on a set X, we define the kernel of the group action to be $K = \{g \in G | \forall x \in X, g.x = x\}.$
 - (i). Prove that K is a normal subgroup of G.
 - (ii). We say an action is **faithful** if for any $g \neq g'$ in G, there exists $x \in X$ such that $g.x \neq g'.x$. Prove an action is faithful if and only if its kernel is trivial.
 - (iii). Prove that there is a well-defined faithful induced group action of G/K on X by (gK).x = g.x

Solution:

(i). For any $g_1, g_2 \in K$, any $x \in X$, $(g_1^{-1}g_2).x = (g_1^{-1}).(g_2.x) = g_1^{-1}.x = g_1.(g_1^{-1}.x) = (g_1g_1^{-1}).x = 1.x = x$, so $g_1^{-1}g_2 \in K$, K is a subgroup of G.

For any $g \in K$ and $\gamma \in G$, any $x \in X$,

$$(\gamma g \gamma^{-1}).x = \gamma.(g.(\gamma^{-1}.x)) = \gamma.(\gamma^{-1}.x) = x$$

So $\gamma g \gamma^{-1} \in K$, K is a normal subgroup of G.

(ii). If the action is faithful, for any $g \neq 1$, there exists $x \in X$ such that $g.x \neq 1.x = x$, so $g \notin K$. We get $K = \{1\}$.

If $K = \{1\}$, then for any $g_1 \neq g_2$ in G, $g_1^{-1}g_2 \neq 1$, so $g_1^{-1}g_2 \notin K = \{1\}$, there exists $x \in X$ such that $g_1^{-1}g_2.x \neq x$, i.e. $g_1.x \neq g_2.x$, so the action is faithful.

(iii). For any $g_1K = g_2K$, $g_1^{-1}g_2 \in K$, so for any $x \in X$, $g_1^{-1}g_2.x = x$, i.e. $g_1.x = g_2.x$, $g_1K.x = g_2K.x$, the action is well-defined.

If gK is in the kernel of the induced action, then gK.x = g.x = x for all $x \in X$, we see $g \in K$, gK = K, so the action kernel of the induced action is trivial. By (ii), the action is faithful.