

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 2

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος 1. Σε ένα G(n,p) η πιθανότητα μιας χορυφής να έχει βαθμό k είναι $\binom{n-1}{k}p^k(1-p)^{n-1-k}$. Δείξτε ότι ο μέσος βαθμός είναι (n-1)p με απευθείας υπολογισμό, δηλαδή χωρίς να χρησιμοποιήσετε τη γραμμικότητα της μέσης τιμής.

Απόδειξη. Θα χρειαστούμε τα εξής λήμματα:

Λήμμα 1. Έστω δύο τ.μ. που ακολουθούν κατανομή Bernoulli με παραμέτρους n, p και m, p αντίστοιχα, δηλαδή $X \sim B(n, p), Y \sim B(m, p)$. Τότε για το άθροισμά τους ισχύει $X + Y \sim B(n + m, p)$.

Απόδειξη.

$$\begin{split} \mathbb{P}[X+Y=k] &= \mathbb{P}[(X=0 \land Y=k) \lor (X=1 \land Y=k-1) \lor \ldots \lor (X=k \land Y=0)] \\ &= \sum_{i=0}^{k} \mathbb{P}[X=i \land Y=k-i] \\ &= \sum_{i=0}^{k} \mathbb{P}[X=i] \cdot \mathbb{P}[Y=k-i] \\ &= \sum_{i=0}^{k} \binom{n}{i} p^{i} (1-p)^{n-i} \binom{m}{k-i} p^{k-i} (1-p)^{m-(k-i)} \\ &= p^{k} (1-p)^{n+m-k} \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} \\ &= \binom{n+m}{k} p^{k} (1-p)^{n+m-k} \end{split}$$

Λήμμα 2. Έστω $\{X_i\}_{i=1...k}$ μια οικογένεια τ.μ. για τις οποίες ισχύει $X_i \sim B(n_i,p)$. Τότε $\sum_{i=1}^k X_i \sim B\left(\sum_{i=1}^k n_i,p\right)$.

Aπόδειξη. Χρησιμοποιώντας το Λήμμα 1 και επαγωγή στο k προκύπτει το ζητούμενο. \Box

Λήμμα 3. $A \nu X \sim B(n, p)$ τότε $\mathbb{E}[X] = np$.

Απόδειξη.

$$\mathbb{E}[X] = \sum_{i=0}^{n} i \cdot \mathbb{P}[X = i]$$

$$= \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} np \binom{n-1}{i-1} p^{i-1} (1-p)^{(n-1)-(i-1)}$$

$$= np \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i} (1-p)^{(n-1)-i}$$

$$= np \cdot (p + (1-p))^{n-1} = np$$

Για το γράφημα G(n,p) έχουμε ότι ο βαθμός μιας κορυφής v_i είναι μια τυχαία μεταβλητή d_i που ακολουθεί την κατανομή Bernoulli με παραμέτρους n-1,p, δηλαδή $d_i \sim B(n-1,p)$. Για τον μέσο βαθμό κορυφής ισχύει:

 $d(G) = \frac{\sum_{i=1}^{n} d_i}{n}$

όπου $X = \sum_{i=1}^{n} d_i$.

Σύμφωνα με το Λήμμα 2 έχουμε ότι $X \sim B(\sum_{i=1}^{n} (n-1), p) = B(n(n-1), p).$

Από το Λήμμα 3, $\mathbb{E}[X] = n(n-1)p$. Άρα έχουμε ότι:

$$\mathbb{E}[d(G)] = \frac{1}{n}\mathbb{E}[X] = (n-1)p$$

2. Δείξτε ότι το τυχαίο γράφημα G(n,p) με $p=n^{-0.7}$ δεν έχει σχεδόν σίγουρα 4-κλίκα για αρκετά μεγάλα n.

Aπόδει ξ η.

- 3. (*) Θεωρήστε το παρακάτω τυχαίο κατευθονόμενο γράφημα. Για κάθε κορυφή v επιλέγουμε ομοιόμορφα τυχαία μια κορυφή u και τοποθετούμε την ακμή $v \to u$. Κάθε κορυφή έχει μόνο μια εξερχόμενη ακμή και μπορεί να υπάρχουν θηλιές. Έστω r(v) ο αριθμός των κορυφών στις οποίες μπορούμε να φτάσουμε από την v.
 - Για $k=1,\ldots,n$ ποιά η πιθανότητα r(v)=k. Η πιθανότητα θα έχει μορφή γινομένου.
 - Δείξτε ότι για μία κορυφή v, $Pr[r(v) \leq \sqrt{n}/10] \leq 1/3$ και $Pr[r(v) \geq 10\sqrt{n}] \leq 1/3.$

Aπόδει ξ η.

4. (*)	Θεωρήστε το τυχαίο γράφημα $G(n,p)$ με $p=6.6/n$. Δείζτε ότι το γράφημα είναι σχεδόν σίγουρα μή 3 -χρωματίσιμο για αρχετά μεγάλα n .
	A πόδει ξ η.
5. (*)	Θεωρήστε το παρακάτω τυχαίο γράφημα με n κορυφές. Κάθε κορυφή διαλέγει ομοιόμορφα τυχαία 2 κορυφές και τοποθετούμε μη-κατευθυνόμενες ακμές προς αυτές. Η τυχαία επιλογή γίνεται με επανάληψη και μπορεί μια κορυφή v να επιλέξει και τον εαυτό της στην οποία περίπτωση παραλείπουμε αυτή τη θηλιά. Παρατηρούμε ότι οι ακμές θα είναι περίπου $2n$ αλλά μπορεί κάποιες κορυφές να έχουν βαθμό μικρότερο από 2 αν επέλεξαν τον εαυτό τους ή την ίδια κορυφή δύο φορές. Μπορεί επίσης κάποιες κορυφές να έχουν βαθμό αρκετά μεγαλύτερο από 4 αν άλλες κορυφές έτυχε να τις επιλέξουν.
	Δ είξτε ότι το γράφημα είναι σχεδόν σίγουρα συνεκτικό για αρκετά μεγάλα $n.$
	A πόδει $\xi \eta$.