ВОСХОДЯЩИЕ МП-РАСПОЗНАВАТЕЛИ ТИПА «ПЕРЕНОС-СВЁРТКА»

Принцип работы МП-распознавателей типа «ПЕРЕНОС-СВЁРТКА» такой же, как и «ПЕРЕНОС-ОПОЗНАНИЕ»: выполняя ПЕРЕНОС, в магазине образуется основа, которая сворачивается по основывающему правилу.

Отличие в том, что в магазин помещаются не символы грамматики (терминалы и нетерминалы), а их коды.

Код одного и того же символа может быть разным в зависимости от верхнего символа магазина.

Такое кодирование позволяет только по верхнему символу магазина определить, находится ли в верхней части магазина основа, и, поэтому, процедура ОПОЗНАНИЕ не нужна.

Для того, чтобы закодировать символы грамматики и построить МПраспознаватель типа «ПЕРЕНОС-СВЁРТКА», нужно будет построить специальный граф.

Граф будем строить по пополненной грамматике, т. е. в грамматику будем добавлять правило $S' \rightarrow S$, где S — начальный нетерминал исходной грамматики, а S' — начальный нетерминал пополненной грамматики.

К вершинам графа будем обращаться по номеру (0 — номер начальной вершины).

Вершинам графа соответствуют множества пунктов.

Пункт — это правило грамматики, в правой части которого, кроме терминалов и нетерминалов, присутствует ещё точка (.). Точка может находиться в начале правой части, в конце её или между другими символами.

Дуга в графе, выходящая из одной вершины в другую, отмечается символом грамматики.

Правила построения графа.

Начальной вершине 0 графа соответствует множество пунктов M_0 , в которое входят:

- 1) правило для начального нетерминала с точкой в начале правой части;
- 2) если в этом множестве есть пункт вида $A \rightarrow \alpha.B\beta$ (α и β могут быть пустыми), т. е. точка стоит перед нетерминалом, то в множество добавляются все пункты с нетерминалом B в левой части с точкой в начале правой части.

Все пункты, которые можно добавить в множество, добавляются.

Если в множестве пунктов M_i , соответствующем вершине i, есть пункты вида

$$\begin{array}{l} A{\rightarrow}\alpha_1.X\beta_1,\\ A{\rightarrow}\alpha_2.X\beta_2,\\ \dots\\ A{\rightarrow}\alpha_n.X\beta_n \end{array}$$

 $(\alpha_1, \ \alpha_2, ..., \ \alpha_n, \ \beta_1, \ \beta_2, ..., \ \beta_n$ могут быть пустыми), а X — терминал или нетерминал, то из вершины і проводим дугу в вершину ј, которую отмечаем символом X.

Вершине ј соответствует множество пунктов M_j , в которое входят:

1)
$$A \rightarrow \alpha_1 X.\beta_1,$$

$$A \rightarrow \alpha_2 X.\beta_2,$$

$$\dots$$

$$A \rightarrow \alpha_n X.\beta_n$$

2) если в этом множестве есть пункт вида $A \rightarrow \alpha.B\beta$ (α и β могут быть пустыми), т. е. точка стоит перед нетерминалом, то в множество добавляются все пункты с нетерминалом B в левой части с точкой в начале правой части.

Все пункты, которые можно добавить в множество, добавляются.

Граф строится так, чтобы в нём не было двух вершин с одинаковыми множествами пунктов.

Пример.

- 0. S'→S
- 1. S→aSS
- 2. S→b

Этот граф можно представить таблицей

вершина	пункты	символ	вершина
0	S'→.S	S	1
	S→.aSS	a	2
	S→.b	b	3
1	S'→S.		
2	S→a.SS	S	4
	S→.aSS	a	2
	S→.b	b	3
3	S'→b.		
4	$S \rightarrow aS.S$	S	5
	S→.aSS	a	2
	S→.b	b	3
5	S→aSS.		

МП-распознаватель типа «ПЕРЕНОС-СВЁРТКА» задаётся таблицей Т, в которой:

- 1) строки соответствуют магазинным символам номерам вершин графа;
- 2) столбцы соответствуют входным символам терминалам и концевому маркеру, а также нетерминалам;
- 3) В клетку T[i,x], где x терминал, пишем $\Pi(j)$ ($T[i,x] := \Pi(j)$), если в графе из вершины і идёт дуга в вершину j, отмеченная терминалом x.
- $\Pi(j)$ обозначает операцию ПЕРЕНОС, которая выполняется следующим образом: втолк(j), сдвиг.
- 4) В клетку T[i,N], где N нетерминал, пишем j (T[i,x] := j), если в графе из вершины i идёт дуга в вершину j, отмеченная нетерминалом N.
- 5) В клетки T[i,x], для всех x терминал или концевой маркер, пишем CB(#k) (T[i,x] := CB(#k)), если множество Mi, соответствующее вершине i, состоит только из одного пункта: k. $A \rightarrow \alpha$.

CB(#k) означает свёртку по k-му правилу грамматики (k. $A \rightarrow \alpha$), которая выполняется следующим образом:

- 1) из магазина выталкивается количество символов, равное длине цепочки α ;
- 2) пусть после выполнения всех выталкиваний вверху магазина будет символ i, тогда в магазин вталкивается символ из T[i,A], если там не пусто, если там пусто, то отвергнуть.
- 6) В клетку T[i, -] пишем ДОП (T[i, -]) := ДОП), если множество Mi, соответствующее вершине i, состоит только из одного пункта: 0. S' \rightarrow S.
 - 7) Пустые клетки таблицы соответствуют ОТВЕРГНУТЬ.
 - 8) Начальное содержимое магазина: $\Delta 0$.

Если вверху магазина i, и множество M_i содержит пункт с точкой в конце правой части, то распознаватель выполняет свёртку по соответствующему правилу.

Если вверху магазина i, и множество M_i содержит пункт с точкой не в конце правой части, то распознаватель выполняет перенос или завершение свёртки.

вершина	пункты	символ	вершина
0	S'→.S	S	1
	S→.aSS	a	2
	S→.b	b	3
1	S'→S.		
2	S→a.SS	S	4
	S→.aSS	a	2
	S→.b	b	3
3	S'→b.		
4	$S \rightarrow aS.S$	S	5
	S→.aSS	a	2
	S→.b	b	3
5	S→aSS.		

Таблица МП-распознавателя:

	a	b	-	S
0	Π(2)	Π(3)		1
1			доп	
2	$\Pi(2)$	П(3)		4
3	CB(#2)	CB(#2)	CB(#2)	
4	Π(2)	П(3)		5
5	CB(#1)	CB(#1)	CB(#1)	

H.C.M.: Δ0

Пример.

0. S'→S

1. S→aSS

2. S→b

Таблица МП-распознавателя:

	a	b	-	S
0	Π(2)	Π(3)		1
1			доп	
2	Π(2)	П(3)		4
3	CB(#2)	CB(#2)	CB(#2)	
4	Π(2)	П(3)		5
5	CB(#1)	CB(#1)	CB(#1)	

H.C.M.: Δ0

Правый вывод:

$$S_0^1 = > S_1 = > aSS_2 = > aS_1b = > aaSS_2b = > aaSbb = > aabbb$$

Протокол обработки цепочки aabbb МП-распознавателем:

магазин		цепочка	действие
$\Delta 0$	aabbb-		$\Pi(2)$
$\Delta 02$	abbb-		$\Pi(2)$
Δ022	bbb-		П(3)
Δ0223	bb-		CB(#2)
Δ0224	bb-		П(3)
Δ02243	b-		CB(#2)
Δ02245	b-		CB(#1)
Δ024	b-		$\Pi(3)$
Δ0243	_		CB(#2)
Δ0245	_		CB(#1)
Δ01	_		допустить

Грамматика называется LR(0)-грамматикой, если каждое множество пунктов, содержащее пункт вида $A \rightarrow \alpha$., состоит из единственного пункта.

Рассмотрим другой пример.

$$0. E' \rightarrow E$$

1.
$$E \rightarrow E + T$$

$$2. E \rightarrow T$$

$$3. T \rightarrow T * F$$

$$4. T \rightarrow F$$

$$5. F \rightarrow (E)$$

6.
$$F \rightarrow id$$

Рассмотрим вершину 1.

Множество M_1 содержит 2 пункта:

$$0. E' \rightarrow E.$$

1.
$$E \rightarrow E. + T$$

один из которых содержит точку в конце правой части. Поэтому рассматриваемая грамматика не относится к классу LR(0)-грамматик.

По пункту 0. $E' \to E$. должны выполнить свёртку по 0-му правилу, а по пункту 1. $E \to E$. + T — перенос, если на входе +.

Ситуацию, когда в одной вершине должны выполнить и перенос и свёртку, назовём конфликтной. Конфликт в данном случае будет разрещён, если при входном символе + (когда нужно выполнить перенос) не имеет смысла выполнять свёртку по 0-му правилу.

Вспомним, что свёртку по правилу $A \rightarrow \alpha$ имеет смысл выполнять, если входной символ принадлежит множеству СЛЕД(A).

С учётом этого изменим правила построения таблицы МП-распознавателя типа «ПЕРЕНОС-СВЁРТКА»:

- 1) строки соответствуют магазинным символам номерам вершин графа;
- 2) столбцы соответствуют входным символам терминалам и концевому маркеру, а также нетерминалам;
- 3) В клетку T[i,x], где x терминал, пишем $\Pi(j)$ ($T[i,x] := \Pi(j)$), если в графе из вершины і идёт дуга в вершину j, отмеченная терминалом x.
- $\Pi(j)$ обозначает операцию ПЕРЕНОС, которая выполняется следующим образом: втолк(j), сдвиг.
- 4) В клетку T[i,N], где N нтерминал, пишем j (T[i,x] := j), если в графе из вершины i идёт дуга в вершину j, отмеченная нетерминалом N.
- 5) В клетку T[i,x], где x терминал или концевой маркер, пишем CB(#k) (T[i,x] := CB(#k)), если в множестве Mi, соответствующем вершине i, есть пункт k. $A \rightarrow \alpha$. и $x \in CJEД(A)$.

CB(#k) означает свёртку по k-му правилу грамматики (k. $A \rightarrow \alpha$), которая выполняется следующим образом:

- 1) из магазина выталкивается количество символов, равное длине цепочки α ;
- 2) пусть после выполнения всех выталкиваний вверху магазина будет символ і, тогда в магазин вталкивается символ из Т[i,A], если там не пусто, если там пусто, то отвергнуть.
- 6) В клетку T[i, -] пишем ДОП (T[i, -]) := ДОП), если множество Мі, соответствующее вершине і, содержит пункт 0. S' \rightarrow S.
 - 7) Пустые клетки таблицы соответствуют ОТВЕРГНУТЬ.
 - 8) Начальное содержимое магазина: $\Delta 0$.

Если грамматика такая, что, применяя описанные выше правила построения таблицы распознавателя, получается таблица, в которой в каждой клетке записано не более одного действия, то такая грамматика принадлежит классу SLR-грамматик.

Если в одну клетку нужно записать и перенос и свёртку, то говорят о наличии конфликта «перенос-свёртка».

Конфликт «перенос-свёртка» возникает, если в множестве Мі есть такие два пункта

$$A \rightarrow \alpha$$
. и $B \rightarrow \beta$.хү, что х \in СЛЕД(A).

Если в одну клетку нужно записать как минимум две свёртки, то говорят о наличии конфликта «свёртка-свёртка».

Конфликт «свёртка-свёртка» возникает, если в множестве Мі есть такие два пункта

$$A \rightarrow \alpha$$
. и $B \rightarrow \beta$., что СЛЕД(A) \cap СЛЕД(B) $\neq \emptyset$.

Пример (продолжение).

$$0. E' \rightarrow E$$

1.
$$E \rightarrow E + T$$

$$2. E \rightarrow T$$

$$3. T \rightarrow T * F$$

$$4. T \rightarrow F$$

$$5. F \rightarrow (E)$$

6.
$$F \rightarrow id$$

Для построения таблицы потребуются множества СЛЕД для каждого нетерминала:

Нетерминал	СЛЕД
E'	1
E	-,+,)
T	-, +,), *
F	- , +,), *

Таблица МП-распознавателя

	id	+	*	()	-	Ε	T	F
0	$\Pi(5)$			$\Pi(4)$			1	2	3
1		П(6)				ДОП			
2		CB(#2)	$\Pi(7)$		CB(#2)	CB(#2)			
3		CB(#4)	CB(#4)		CB(#4)	CB(#4)			
4	$\Pi(5)$			$\Pi(4)$			8	2	3
5		CB(#6)	CB(#6)		CB(#6)	CB(#6)			
6	$\Pi(5)$			$\Pi(4)$				9	3
7	$\Pi(5)$			$\Pi(4)$					10
8		$\Pi(6)$			$\Pi(11)$				
9		CB(#1)	$\Pi(7)$		CB(#1)	CB(#1)			
10		CB(#3)	CB(#3)		CB(#3)	CB(#3)			
11		CB(#5)	CB(#5)		CB(#5)	CB(#5)			

H.C.M.: Δ0