Seminari 12

MATEMATIKA ZA EKONOMISTE 2

Damir Horvat

FOI, Varaždin

Rješenje

a)

godina	1.	2.	3.
očekivani dobici	6050 kn	3750 kn	2500 kn

Izračunamo NPV danog projekta ako je cijena kapitala 8%.

$$NPV = F_0 + \frac{F_1}{r} + \frac{F_2}{r^2} + \frac{F_3}{r^3}$$

$$NPV = -1800 + \frac{6050}{1.08} + \frac{3750 - 10500}{1.08^2} + \frac{2500}{1.08^3}$$

$$NPV = -0.6046$$

Kako je NPV < 0, projekt nije isplativ uz cijenu kapitala od 8%.

2/30

Zadatak 1

Investitoru je ponuđen projekt u koji bi trebalo uložiti 1800 kn odmah i 10 500 kn za dvije godine. Očekivani dobici na kraju prve tri godine su dani u tablici.

godina	1.	2.	3.
očekivani dobici	6050 kn	3750 kn	2500 kn

- a) Radi li se o isplativom projektu ako je cijena kapitala 8%?
- b) Radi li se o isplativom projektu ako je cijena kapitala 12%?

b)

godina	1.	2.	3.
očekivani dobici	6050 kn	3750 kn	2500 kn

Izračunamo NPV danog projekta ako je cijena kapitala 12%.

$$NPV = F_0 + \frac{F_1}{r} + \frac{F_2}{r^2} + \frac{F_3}{r^3}$$

$$NPV = -1800 + \frac{6050}{1.12} + \frac{3750 - 10500}{1.12^2} + \frac{2500}{1.12^3}$$

$$NPV = 0.18$$

Kako je NPV > 0, projekt je isplativ uz cijenu kapitala od 12%.

NPV projekta kao funkcija cijene kapitala

Rješenje

a)

godina	1.	2.	3.
očekivani dobici	3000€	3500€	4000€

Izračunamo NPV danog projekta za cijenu kapitala 4.5445%.

$$NPV = F_0 + \frac{F_1}{r} + \frac{F_2}{r^2} + \frac{F_3}{r^3}$$

$$NPV = -9000 + \frac{3000}{1.045445} + \frac{3500}{1.045445^2} + \frac{4000}{1.045445^3}$$

$$NPV = 572.63064$$

6/30

Zadatak 2

U projekt treba uložiti 9 000 €. Očekivani dobici na kraju prve tri godine su dani u tablici.

godina	1.	2.	3.
očekivani dobici	3000€	3500€	4000€

- a) Ispitajte koja je od ponuđenih kamatnih stopa 4.5445% i 7.7285% bolja aproksimacija za IRR zadanog projekta.
- b) Uz koju cijenu kapitala je promatrani projekt isplativ?
- c) Ako je cijena kapitala 5%, do kojeg uloženog iznosa je investitoru projekt isplativ?

godina	1.	2.	3.
očekivani dobici	3000€	3500€	4000€

Izračunamo NPV danog projekta za cijenu kapitala 7.7285%.

$$NPV = F_0 + \frac{F_1}{r} + \frac{F_2}{r^2} + \frac{F_3}{r^3}$$

$$NPV = -9000 + \frac{3000}{1.077285} + \frac{3500}{1.077285^2} + \frac{4000}{1.077285^3}$$

$$NPV = 0.00528$$

Kako je za cijenu kapitala 7.7285% *NPV* projekta bliže nuli, zaključujemo da je kamatna stopa 7.7285% bolja aproksimacija za *IRR* danog projekta.

b) Projekt je isplativ po onoj cijeni kapitala p za koju vrijedi

$$p < IRR$$
.

Iz prethodnog dijela zadatka smo dobili da je 7.7285% jako dobra aproksimacija za *IRR* promatranog projekta jer je po toj kamatnoj stopi *NPV* bio jako blizu nule. Stoga možemo reći da je projekt isplativ ako je cijena kapitala manja od 7.7285%.

8/30

c)

godina	1.	2.	3.
očekivani dobici	3000€	3500€	4000€

Investitoru je projekt isplativ do onog iznosa za koji je NPV=0 uz cijenu kapitala 5%.

$$NPV = F_0 + \frac{F_1}{r} + \frac{F_2}{r^2} + \frac{F_3}{r^3}$$
$$0 = F_0 + \frac{3000}{1.05} + \frac{3500}{1.05^2} + \frac{4000}{1.05^3}$$
$$F_0 = -9487.10$$

Investitoru se isplati uložiti u projekt maksimalno 9487.10€.

9/30

NPV kao funkcija ulaganja i cijene kapitala

Rješenje

 $\frac{x}{\frac{3}{5}x}$ $\frac{2}{5}x$

• Ukupan trošak amortizacije

$$C - S = 190\,000 - 40\,000 = 150\,000$$

• Trošak amortizacije kod linearne metode

$$C_1 - S_1 = \frac{3}{5} \cdot 150\,000 = 90\,000$$

Kod linearne metode je zapravo $C_1 = 190\,000$ i $S_1 = 100\,000$.

• Trošak amortizacije kod metode konstantnog postotka

$$C_2 - S_2 = \frac{2}{5} \cdot 150\,000 = 60\,000$$

Kod metode konstantnog postotka je zapravo $\mathit{C}_2 = 100\,000$ i $\mathit{S}_2 = 40\,000$.

Zadatak 3

Stroj vrijednosti 190 000 kn životnog vijeka pet godina na kraju radnog vijeka ima otpisnu vrijednost 40 000 kn. Izradite amortizacijsku tablicu ako se u prve dvije godine koristi linearna metoda amortizacije, a u preostale tri godine metoda konstantnog postotka, pri čemu je odnos otpisanih vrijednosti kod navedenih metoda 3 : 2 u korist linearne metode.

B_k +	$D_k = C$
D _	C-S
Λ =	

$$R_k = B_{k-1} \cdot \frac{d}{100}$$

$$d \approx 26.31937$$

d = 100	$\left(1-\sqrt[n]{\frac{S}{C}}\right)$
---------	--

k	R_k	D_k	B_k
0	_	_	190 000
1	45 000	45 000	145 000
2	45 000	90 000	100 000
3	26 319.37	116 319.37	73 680.63
4	19 392.28	135 711.65	54 288.35
5	14 288.35	150 000	40 000

$$R_1 = R_2 = \frac{C_1 - S_1}{2} = \frac{90\,000}{2} = 45\,000$$

$$D_1 = R_1 = 45\,000$$

$$D_2 = D_1 + R_2 = 45\,000 + 45\,000 = 90\,000$$

$$B_1 = C - D_1 = 190\,000 - 45\,000 = 145\,000$$

$$B_2 = C - D_2 = 190\,000 - 90\,000 = 100\,000$$

$$d = 100 \left(1 - \sqrt[3]{\frac{40\,000}{100\,000}} \right) \approx 26.31937$$

$$R_3 = B_2 \cdot \frac{d}{100} = 100\,000 \cdot \frac{26.31937}{100} = 26\,319.37$$

$$D_3 = D_2 + R_3 = 90\,000 + 26\,319.37 = 116\,319.37$$

$$B_3 = C - D_3 = 190\,000 - 116\,319.37 = 73\,680.63$$

16/30

 $R_4 = B_3 \cdot \frac{d}{100} = 73\,680.63 \cdot \frac{26.31937}{100} = 19\,392.28$ $D_4 = D_3 + R_4 = 116\,319.37 + 19\,392.28 = 135\,711.65$ $B_4 = C - D_4 = 190\,000 - 135\,711.65 = 54\,288.35$ $R_5 = B_4 \cdot \frac{d}{100} = 54\,288.35 \cdot \frac{26.31937}{100} = 14\,288.35$ $D_5 = D_4 + R_5 = 135\,711.65 + 14\,288.35 = 150\,000$ $B_5 = C - D_5 = 190\,000 - 150\,000 = 40\,000$

Zadatak 4

Zadana je glavnica od 1200 kn i godišnja kamatna stopa 5%.

- a) Odredite vrijednost glavnice nakon 8 mjeseci uz konformno ukamaćivanje.
- b) Odredite vrijednost glavnice nakon 8 mjeseci uz relativno mjesečno ukamaćivanje.

Obračun kamata je složeni i anticipativni.

$$C_n = C_0 \cdot \rho^n$$

$$\boxed{C_n = C_0 \cdot \rho^n} \boxed{\rho = \frac{100}{100 - q}}$$

Rješenje

a) Mjesečni anticipativni kamatni faktor

$$\rho = \sqrt[12]{\frac{100}{100 - 5}} = \sqrt[12]{\frac{20}{19}}$$

Vrijednost glavnice nakon 8 mjeseci

$$C_8 = 1200 \cdot \sqrt[12]{\frac{20}{19}}^8 = 1241.74$$

20/30

Usporedba

	dekurzivni obračun	anticipativni obračun
konformno ukamaćivanje	$C_8 = 1239.67$	$C_8 = 1241.74$
relativno ukamaćivanje	$C_8 = 1240.59$	$C_8 = 1240.76$

	dekurzivni obračun	anticipativni obračun
konformno ukamaćivanje	r = 1.004074124	ho = 1.004283590
relativno ukamaćivanje	r = 1.004166667	ho = 1.004184100

22/30

$$\boxed{C_n = C_0 \cdot \rho^n} \qquad \rho = \frac{100}{100 - q}$$

b) Relativna mjesečna kamatna stopa: $q_r = \frac{5}{12}$

Mjesečni anticipativni kamatni faktor

$$\rho = \frac{100}{100 - q_r} = \frac{100}{100 - \frac{5}{12}} = \frac{240}{239}$$

Vrijednost glavnice nakon 8 mjeseci

$$C_8 = 1200 \cdot \left(\frac{240}{239}\right)^8 = 1240.76$$

Zadatak 5

Nakon koliko bi godina uz godišnju kamatnu stopu 5% kamate bile tri puta veće od početne glavnice ako je obračun kamata

- a) jednostavni dekurzivni,
- b) jednostavni anticipativni,
- c) složeni dekurzivni,
- d) složeni anticipativni?

Rješenje

a) Jednostavni dekurzivni obračun

$$I_{uk} = 3C_0,$$
 $C_n = C_0 + I_{uk} = C_0 + 3C_0 = 4C_0$

$$C_n = C_0 \left(1 + \frac{pn}{100} \right)$$

$$4C_0 = C_0 \left(1 + \frac{5n}{100} \right) / : C_0$$

$$4 = 1 + \frac{n}{20}$$

$$\frac{n}{20} = 3$$

$$n = 60$$

Nakon 60 godina kamate su tri puta veće od glavnice.

24/30

25/30

c) Složeni dekurzivni obračun

$$I_{uk} = 3C_0, \qquad C_n = C_0 + I_{uk} = C_0 + 3C_0 = 4C_0$$

$$r = 1 + \frac{p}{100} = 1 + \frac{5}{100} = 1.05$$

$$C_n = C_0 r^n$$

$$4C_0 = C_0 r^n / : C_0$$

$$r^n = 4$$

$$1.05^n = 4$$

$$n = \log_{1.05} 4$$

$$n = 28.41$$

Nakon 29 godina kamate su tri puta veće od glavnice.

26/30

b) Jednostavni anticipativni obračun

$$I_{uk} = 3C_0, \qquad C_n = C_0 + I_{uk} = C_0 + 3C_0 = 4C_0$$

$$C_n = C_0 \cdot \frac{100}{100 - qn}$$

$$4C_0 = C_0 \cdot \frac{100}{100 - 5n} / : C_0$$

$$4 = \frac{100}{100 - 5n} / \cdot (100 - 5n)$$

$$400 - 20n = 100$$

$$-20n = -300$$

$$n = 15$$

Nakon 15 godina kamate su tri puta veće od glavnice.

d) Složeni anticipativni obračun

$$\rho = \frac{100}{100 - q} = \frac{100}{100 - 5} = \frac{100}{95} = \frac{20}{19}$$

$$C_n = C_0 \rho^n$$

$$4C_0 = C_0 \rho^n /: C_0$$

$$\rho^n = 4$$

$$\left(\frac{20}{19}\right)^n = 4$$

$$n = \log_{\frac{20}{19}} 4$$

$$n = 27.03$$

 $I_{\text{uk}} = 3C_0$, $C_n = C_0 + I_{\text{uk}} = C_0 + 3C_0 = 4C_0$

Nakon 28 godina kamate su tri puta veće od glavnice.

27/30

Grafički prikaz za glavnicu $C_0 = 100$

28/30

Zadatak 6

Antonija je početkom svakog mjeseca uplaćivala 400 kn tijekom dvije godine. Prvu uplatu je izvršila 1. travnja 2013. Kolikim će iznosom raspolagati 1. rujna 2015. godine uz složeni anticipativni obračun kamata i godišnju kamatnu stopu 2.5%?

Rješenje

 $\rho = \frac{100}{100 - q}$

• Mjesečni anticipativni kamatni faktor

$$\rho = \sqrt[12]{\frac{100}{100 - 2.5}} = \sqrt[12]{\frac{40}{39}} \approx 1.002112045$$

• Iznos na datum 1. travnja 2015.

$$S = R \cdot \rho \cdot \frac{\rho^{n} - 1}{\rho - 1} = 400 \cdot 1.002112045 \cdot \frac{1.002112045^{24} - 1}{1.002112045 - 1}$$

S = 9857.60

• Iznos na datum 1. rujna 2015.

$$X = S\rho^5 = 9857.60 \cdot 1.002112045^5 = 9962.14$$

30/30