PAPER-III

COMPUTER SCIENCE	E & APPLICATIONS							
Signature and Name of Invigilator								
1. (Signature)	OMR Sheet No.:							
(Name)	(To be filled by the Candidate)							
2. (Signature)	Roll No.							
(Name)	(In figures as per admission card)							
J 8 7 1 6	Roll No(In words)							
Time : 2 ¹ / ₂ hours]	[Maximum Marks : 150							
Number of Pages in this Booklet: 16	Number of Questions in this Booklet: 75							
Instructions for the Candidates	परीक्षार्थियों के लिए निर्देश							
1. Write your roll number in the space provided on the top of	1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए ।							
this page. 2. This paper consists of seventy five multiple-choice type of	 इस प्रश्न-पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं । परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले 							
questions.	पाँच मिनट आपको प्रश्न-पस्तिका खोलने तथा उसको निम्नलिखित							
3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested	जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है : (i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पुर लगी कागज़ की सील							
to open the booklet and compulsorily examine it as below: (i) To have access to the Question Booklet, tear off the	को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका							
paper seal on the edge of this cover page. Do not accept	स्वीकार न करें।							
a booklet without sticker-seal and do not accept an open booklet.	(ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे							
(ii) Tally the number of pages and number of questions in the booklet with the information printed on the	है । दोषपणे पस्तिका जिनमे पष्ठ/प्रश्न कम हो या दबारा ओ							
on the booklet with the information printed on the cover page. Faulty booklets due to pages/questions	गर्य हाँ याँ सीरियल में न हाँ अर्थात किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे							
missing or duplicate or not in serial order or any	लौटाकर उसके स्थान पर दसरी सही प्रश्न-पस्तिका ले लें ।							
other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the	इसके लिए आपको पाँच मिँनट दिये जायेंगे ँ। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको							
period of 5 minutes. Afterwards, neither the Question	अतिरिक्त समय दिया जायेगा ।							
Booklet will be replaced nor any extra time will be given.	(iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित							
(iii) After this verification is over, the Test Booklet Number	करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें ।							
should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.	4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं । आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा							
4. Each item has four alternative responses marked (1), (2), (3)	ह । आपका सहा उत्तर क वृत्त का पन स भरकर काला करना ह जसा कि नीचे दिखाया गया है :							
and (4). You have to darken the circle as indicated below on the correct response against each item.	उदाहरण : ① ② ● ④							
Example: (1) (2) (4)	जबिक (3) सही उत्तर है ।							
where (3) is the correct response.	5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर							
5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your	ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन							
response at any place other than in the circle in the OMR	नहीं होगा ।							
Sheet, it will not be evaluated.	 अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें । 							
6. Read instructions given inside carefully. 7. Read Mark is to be done in the and of this booklet.	 कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें । यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल 							
7. Rough Work is to be done in the end of this booklet.8. If you write your Name, Roll Number, Phone Number or put	 यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, राल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो 							
any mark on any part of the OMR Sheet, except for the space	सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई							
allotted for the relevant entries, which may disclose your	अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये							
identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using	उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं ।							
white fluid, you will render yourself liable to disqualification.	9. आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को							
9. You have to return the Original OMR Sheet to the invigilators	लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन							
at the end of the examination compulsorily and must not	से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका							
carry it with you outside the Examination Hall. You are, however, allowed to carry original question booklet and	तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं ।							
duplicate copy of OMR Sheet on conclusion of examination.	10. केवल C.B.S.E. द्वारा प्रदान किये गये काले बाल प्वाईंट पेन का ही इस्तेमाल करें ।							
10. Use only Black Ball point pen provided by C.B.S.E.	 किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का 							
11. Use of any calculator or log table etc., is prohibited.	प्रयोग वर्जित है ।							
12. There is no negative marks for incorrect answers.	12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं ।							

COMPUTER SCIENCE & APPLICATIONS PAPER – III

Note: This paper contains **seventy five (75)** objective type questions of **two (2)** marks each. **All** questions are compulsory.

	que	estions are compulsory.			
1.	Whi	ch of the following is a sec	uential cir	cuit '	•
	(1)	Multiplexer	-	(2)	Decoder
	(3)	Counter		(4)	Full adder
2.	8085	microprocessor has	hardware	inte	rrupts.
	(1)	2		(2)	3
	(3)	4	((4)	5
3.	Whi	ch of the following in 8085 HL = HL + DE?	5 micropro	cesso	or performs
	(1)	DAD D	((2)	DAD H
	(3)	DAD B	((4)	DAD SP
4.	The	register that stores all inter	runt reque	ete ie	
т.	(1)	Interrupt mask register		(2)	Interrupt service register
	(3)	Interrupt request register		(4)	Status register
	(3)	interrupt request register	`	(1)	Status register
5.		<u> </u>		_	ter indirect addressing mode, except that an The offset and register are specified in the
	(1)	Base indexed	((2)	Base indexed plus displacement
		Indexed		(4)	Displacement
6.	In paral		written to t	the b	ock in both the cache and main memory, in
	(1)	Write through	((2)	Write back
	(3)	Write protected	((4)	Direct mapping
7.	Whi	ch of the following stateme	ents concer	ning	Object-Oriented databases is FALSE?
	(1)	Objects in an object-orion processing the data.	ented datab	pase	contain not only data but also methods for
	(2)	Object-oriented database data.	s store cor	nputa	ational instructions in the same place as the
	(3)	Object-oriented databases than relational databases.		e ada	apt at handling structured (analytical) data
	(4)	Object-oriented database access that data faster.	es store mo	ore t	ypes of data than relational databases and
8.	admi trans	inistrators to treat the date parency needs to specify:	a as if it	is at	allows for database users, programmers and one location. A SQL query with location
	(1)	Inheritances		(2)	Fragments
	(3)	Locations	((4)	Local formats

- 9. Consider the relations R(A, B) and S(B, C) and the following four relational algebra queries over R and S:
 - I. $\Pi_{A,B} (R \bowtie S)$
 - II. $R \bowtie \Pi_R(S)$
 - III. $R \cap (\Pi_A(R) \times \Pi_R(S))$
 - IV. $\Pi_{A,R,B}$ (R × S) where R·B refers to the column B in table R.

One can determine that:

- (1) I, III and IV are the same query. (2) II, III and IV are the same query.
- (3) I, II and IV are the same query. (4) I, II and III are the same query.
- **10.** Which of the following statements is TRUE?
 - D₁: The decomposition of the schema R(A, B, C) into R₁(A, B) and R₂ (A, C) is always lossless.
 - D₂: The decomposition of the schema R(A, B, C, D, E) having AD \rightarrow B, C \rightarrow DE, B \rightarrow AE and AE \rightarrow C, into R₁ (A, B, D) and R₂ (A, C, D, E) is lossless.
 - (1) Both D_1 and D_2

(2) Neither D_1 nor D_2

(3) Only D_1

- (4) Only D₂
- **11.** Consider the following ORACLE relations :

$$R(A, B, C) = \{ <1, 2, 3>, <1, 2, 0>, <1, 3, 1>, <6, 2, 3>, <1, 4, 2>, <3, 1, 4> \}$$

$$S(B, C, D) = \{\langle 2, 3, 7 \rangle, \langle 1, 4, 5 \rangle, \langle 1, 2, 3 \rangle, \langle 2, 3, 4 \rangle, \langle 3, 1, 4 \rangle\}.$$

Consider the following two SQL queries SQ_1 and SQ_2 :

 SQ_1 : SELECT R·B, AVG (S·B)

FROM R, S

WHERE $R \cdot A = S \cdot C$ AND $S \cdot D < 7$

GROUP BY R.B;

SQ₂: SELECT DISTINCT S·B, MIN (S·C)

FROM S

GROUP BY S-B

HAVING COUNT (DISTINCT S·D) > 1;

If M is the number of tuples returned by SQ_1 and N is the number of tuples returned by SQ_2 then

(1) M = 4, N = 2

(2) M = 5, N = 3

(3) M = 2, N = 2

- (4) M = 3, N = 3
- 12. Semi-join strategies are techniques for query processing in distributed database system. Which of the following is a semi-join technique?
 - (1) Only the joining attributes are sent from one site to another and then all of the rows are returned.
 - (2) All of the attributes are sent from one site to another and then only the required rows are returned.
 - (3) Only the joining attributes are sent from one site to another and then only the required rows are returned.
 - (4) All of the attributes are sent from one site to another and then only the required rows are returned.

(1)
$$x_{i+1} = x_i + 1$$

 $y_{i+1} = y_i$
 $p_{i+1} = p_i + 4x_i + 6$

(2)
$$x_{i+1} = x_i + 1$$
$$y_{i+1} = y_i - 1$$
$$p_{i+1} = p_i + 4 (x_i - y_i) + 10$$

(3)
$$x_{i+1} = x_i$$

 $y_{i+1} = y_i - 1$
 $p_{i+1} = p_i + 4(x_i - y_i) + 6$

(4)
$$x_{i+1} = x_i - 1$$

 $y_{i+1} = y_i$
 $p_{i+1} = p_i + 4x_i + 10$

- **14.** A point P(5, 1) is rotated by 90° about a pivot point (2, 2). What is the coordinate of new transformed point P'?
 - (1) (3, 5)

(2) (5,3)

(3) (2,4)

- (4) (1,5)
- 15. Let R be the rectangular window against which the lines are to be clipped using 2D Sutherland-Cohen line clipping algorithm. The rectangular window has lower left-hand corner at (-5, 1) and upper right-hand corner at (3, 7). Consider the following three lines for clipping with the given end point co-ordinates:

Line AB: A (-6, 2) and B (-1, 8) Line CD: C (-1, 5) and D (4, 8)

Line EF: E(-2, 3) and F(1, 2)

Which of the following line(s) is/are candidate for clipping?

(1) AB

(2) CD

(3) EF

- (4) AB and CD
- **16.** In perspective projection, if a line segment joining a point which lies in front of the viewer to a point in back of the viewer is projected to a broken line of infinite extent. This is known as
 - (1) View confusion

- (2) Vanishing point
- (3) Topological distortion
- (4) Perspective foreshortening
- 17. Let us consider that the original point is (x, y) and new transformed point is (x', y'). Further, Sh_x and Sh_y are shearing factors in x and y directions. If we perform the y-direction shear relative to $x = x_{ref}$ then the transformed point is given by _____.
 - (1) $x' = x + Sh_x \cdot (y y_{ref})$ y' = y
- (2) x' = x $y' = y \cdot Sh_x$
- (3) x' = x $y' = Sh_v(x - x_{ref}) + y$
- (4) $x' = \operatorname{Sh}_{y} \cdot y$ $y' = y \cdot (x - x_{rot})$

18.	Which of the following statement(s) is/are correct with reference to curve generation? I. Hermite curves are generated using the concepts of interpolation. II. Bezier curves are generated using the concepts of approximation. III. The Bezier curve lies entirely within the convex hull of its control points. IV. The degree of Bezier curve does not depend on the number of control points. (1) I, II and IV only (2) II and III only (3) I and II only (4) I, II and III only
19.	 Given the following statements: (A) To implement Abstract Data Type, a programming language require a syntactic unit to encapsulate type definition. (B) To implement ADT, a programming language requires some primitive operations that are built in the language processor. (C) C++, Ada, Java 5.0, C#2005 provide support for parameterised ADT. Which one of the following options is correct? (1) (A), (B) and (C) are false. (2) (A) and (B) are true; (C) is false. (3) (A) is true; (B) and (C) are false. (4) (A), (B) and (C) are true.
20.	Match the following types of variables with the corresponding programming languages: (a) Static variables (i) Local variables in Pascal (b) Stack dynamic (ii) All variables in APL (c) Explicit heap dynamic (iii) Fortran 77 (d) Implicit heap dynamic (iv) All objects in JAVA Codes: (a) (b) (c) (d) (1) (i) (iii) (iv) (ii) (2) (iv) (i) (iii) (iv) (ii) (3) (iii) (i) (iv) (ii) (4) (ii) (i) (iii) (iv)
21.	Which of the following is false regarding the evaluation of computer programming languages? (1) Application oriented features (2) Efficiency and Readability (3) Software development (4) Hardware maintenance cost
22.	 The symmetric difference of two sets S₁ and S₂ is defined as S₁ ⊖ S₂ = {x x ∈ S₁ or x ∈ S₂, but x is not in both S₁ and S₂} The nor of two languages is defined as nor (L₁, L₂) = {w w ∉L₁ and w ∉ L₂}. Which of the following is correct? (1) The family of regular languages is closed under symmetric difference but not closed under nor. (2) The family of regular languages is closed under nor but not closed under symmetric difference. (3) The family of regular languages are closed under both symmetric difference and nor. (4) The family of regular languages are not closed under both symmetric difference and

nor.

Pape	er-III		6		J-87-16
	(3)	0.286	(4)	0.586	
	(1)	0.384	(2)	0.184	
27.	banc		stations put tog	_	hared channel with 200 Kbps 500 frames per second, then
	(4)	(A), (B) and (D) are True	e; (C) is false.		
	(3)	(A), (B) and (D) are false			
	(2)	(A), (B), (C) and (D) are			
	(1)	(A), (B), (C) and (D) are	true.		
	Whi	ch of the following is corr	ect?		
	(D)	TDM is a Digital Multip	lexing Techniq	ue.	
	(C)	WDM is a Digital Multip	plexing Technic	que.	
	(B)	· ·			og multiplexing Technique to
20.	(A)	Frequency Division Mu	ultiplexing is a		at can be applied when the of signals to be transmitted.
26.	Give	en the following statement	c ·		
	(3)	32 Kbps	(4)	64 MbpS	
	(1)	64 Kbps	(2)	32 MbpS	
25.		nk transmits 4000 frames nit of this TDM is	-	each slot has 8	bits, the transmission rate of
	(4)	Both L_1 and L_2^* are not	regular languag	es	
	(3)	Both L_1 and L_2^* are regular	ılar languages		
	(2)	L_1 is not regular and L_2^*	is regular		
	(1)	L_1 is regular and L_2^* is n			
	_	ch of the following is corr	ect ?		
	L_2 is	s any subset of 0*.			
	$L_1 =$	$\{0^{i}1^{j} \gcd(i,j)=1\}$			
24.	Con	sider the following two lar	nguages :		
	(4)	$(\lambda + a + aa + aaa)b^* + a^*$	* bbbbb* + (a +	b)* ba(a + b)*	
	(3)	$(\lambda + a + aa + aaa) + a*b$	bbbb* + (a+b)	* ab(a + b)*	
	(2)	$(\lambda + a + aa + aaa) b* + a$	* bbbbb* + (a +	+b)* ab(a+b)*	
	(1)	$(\lambda + a + aa + aaa) b* + a$	* bbbb* + (a +	b)* ba(a + b)*	
23.	The	regular expression for the	complement of	the language L	$a = \{a^n b^m n \ge 4, m \le 3\}$ is:

28.	Mato	ch the fo	llowing:						
	(a)	Line o	coding		(i)	A tech data.	nique to o	change analog signal to digital	1
	(b)	Block	coding		(ii)		es syncher of bits.	ronization without increasing	7
	(c)	Scram	nbling		(iii)	Proces signal		verting digital data to digital	I enne
	(d)	Pulse	code mod	lulation	(iv)	Provid	les redund	lancy to ensure and inherits error detection.	18
	Cod	es:				•)
		(a)	(b)	(c)	(d)				
	(1)	(iv)	(iii)	(ii)	(i)				
	(2)	(iii)	(iv)	(ii)	(i)				
	(3)	(i)	(iii)	(ii)	(iv)				
	(4)	(ii)	(i)	(iv)	(iii)				
29.	page	is an av	verage of the requir Kbps	24 lines	with 80) charac	cters in ea	•	
30.		rypt the sollowing 3	-	Message	4	RANET (Cipher (Plain to	text)	Fransposition cipher technique	e with
		Using	'Z' as bog	gus charac	cter.				
	(1)	TAXE	RTZENZ			(2)	EXTRA	NETZZ	
	(3)	EZXZ	ΓRZANZ	ET		(4)	EXTZR	ANZETZ	
31.			of differe	nt binary	trees w	vith 6 no			
	(1)	6				(2)	42		
	(3)	132				(4)	256		
32.	calle			•				and $A[i] > A[j]$, then the pair (of inversions in any permutation)	
	(1)	$\theta(n)$				(2)	$\theta(lgn)$		
	(3)	$\theta(nlgn)$)			(4)	$\theta(n^2)$		
33.	Whi	ch one o	f the follo	owing arra	ay repr	esents a	binary m	nax-heap?	
	(1)	[26, 13	3, 17, 14,	11, 9, 15]	_	(2)	[26, 15,	14, 17, 11, 9, 13]	
	(3)	[26, 15	5, 17, 14,	11, 9, 13]		(4)	[26, 15,	13, 14, 11, 9, 17]	
J-87	-16					7		Pan	er-III

34.			lowing:			<i>(</i> :)	0(-2)	
	(a)			n triona	alotion	(i)	$O(n^2)$	
	(b)	_	al polygo	_		(ii)	$\theta(n^3)$	
	(c) (d)	Quicks	ty selecti	on proble	2111	(iii) (iv)	, ,	
	Code	-	SOIT			(1V)	0(11)	
	Cour	(a)	(b)	(c)	(d)			
	(1)	(i)	(ii)	(iv)	(iii)			
	(2)	(i)	(iv)	(ii)	(iii)			
	(3)	(iii)	(ii)	(iv)	(i)			
	(4)	(iii)	(iv)	(ii)	(i)			
35.	searce node (1) (2) (3) (4)	ch for the s examin 925, 22 3, 400, 926, 20 3, 253,	e number ned ? .1, 912, 2 388, 220 (3, 912, 2 402, 399	364. Wh 45, 899, , 267, 38 41, 913, , 331, 34	259, 363 3, 382, 2 246, 364 5, 398, 3	e follo , 364 ,79, 36		f
36.	triang the p (1)	gles. Ev	ery triang nto _ 1	gulation	of n-vert	(2)	chords that divide the polygon into disjoin envex polygon has chords and divide $n-3, n-2$ $n-2, n-2$	
37.	Impl	icit retur	n type of	a class c	construct	or is :		
	(1)		lass type			(2)	class type itself	
	(3)	a destru	ictor of c	lass type		(4)	a destructor not of class type	
38.	-	possible ested clas		a class	within a	class t	termed as nested class. There are type	S
	(1)	2				(2)	3	
	(3)	4				(4)	5	
39.	Whic	ch of the	followin	g statem	ents is co	rrect	?	
	(1)	Aggreg	ation is a	strong t	ype of as	sociat	tion between two classes with full ownership	,
	(2)	Aggreg owners		a stron	g type o	of ass	sociation between two classes with partia	1
	(3)	Aggreg owners		a weak	type o	of ass	ociation between two classes with partia	1
	(4)	Aggreg	ation is a	weak ty	pe of ass	ociati	on between two classes with full ownership.	
40.	Whic	ch of the	followin	g statem	ents is co	rrect	?	
	(1)	•		_			must not be declared abstract.	
	(2)						ed with 'new' operator.	
	(3)		et class ca					
	(4)	Abstrac	et class co	ontains d	etinition	of im	plementation.	
Pape	er-III					8	J-87-10	6

J-87	-16				9	Paper-I	IJ
	(4)	(a)	(d)	(b)	(c)		
	(3)	(c)	(b)	(d)	(a)		
	(2)	(b)	(c)	(d)	(a)		
	(1)	(b)	(d)	(c)	(a)		
		I	II	III	IV		
	Code	es:					
1	IV.	Preventi	ive	• •		ne change in the software that takes place to e adaptable to changing user requirements.	
6			1		make the soft dware and sof	ware adaptable to new environment (both tware).	
4	III.	Perfectiv	ve			the change in the software that takes place	
	II.	Adaptiv	e		ware is in use	fixing errors that are observed when the	
	TT	A dontin	. (1.0		ftware maintainability.	
	I.	Correcti	ve	com	plexity there	performing activities to reduce the software by improving program understandability	
	т	List – I		(a) C.	A A A A A A A A A A A A A A A A A A A	List – II	
14.	Matc		ware m	aintenanc	e activities in	List – I to its meaning in List – II.	
	(3)	98.3%			(4)	99.3%	
	(1)	96.3%		-	(2)	97.3%	
43.	(MTI Time	3F) is 30	days. V r (MTT	When this (R) is 12	s happens, it t	ays, that is, the Mean Time Between Failure akes 12 hours to reboot it, that is, the Mean ailability of server with these reliability da	an
12	A cor	nian anash	og on th	na avaraa	o ongo in 20 d	ove that is the Mean Time Petysoon Feilur	•
	(4)	it is ille variable.	gal to	assign o	ne object ref	erence variable to another object reference	се
	(3)	a copy of	f the ref	erence is	not created.		
	(2)	a copy of	f the ref	erence is	created.		
	(1)	a copy of	f the ob	ject is cre	eated.		
42.	Whei	n one obje	ect refer	ence vari	able is assigne	ed to another object reference variable then	
	(4)	HTML is	s a prog	ramming	language.		
	(3)	DHTML	is used	for deve	loping highly	interactive web pages.	
	(2)	HTML d	oes not	specify a	ı logic.		

41. Which of the following statements is not correct?

(1) HTML is not screen precise formatting language.

45.	Mate	ch each a	pplicati	ion/soft	tware design concept in List – I to its definition in List – II.
		List –			List – II
	I.	Coupli	ng	(a)	Easy to visually inspect the design of the software and
				1	understand its purpose.
	II.	Cohesi	ion	(b)	Easy to add functionality to a software without having to
				1	redesign it.
	III.	Scalab	le	(c)	Focus of a code upon a single goal.
	IV.	Readal	ble	(d)	Reliance of a code module upon other code modules.
	Cod	es:			
		I	II	III	and the second s
	(1)	(b)	(a)	(d)	•
	(2)	(c)	(d)	(a)	
	(3)	(d)	(c)	(b)	
	(4)	(d)	(a)	(c)	(b)
16	G C	c		1'.	
46.			-	•	ssurance activity that focuses on hazards that
	(1)			•	f a software component.
	(2)	-		-	ystem to fail. input errors.
	(3) (4)	-			rketing of the final product.
	(4)	prevent	ргонца	ioie ilia	rketing of the final product.
47.	Whi	ch of the	follow	zing set	ts represent five stages defined by Capability Maturity Model
• / •				-	of maturity?
	(1)			-	atable, Managed, Optimized.
	(2)			•	efined, Managed, Optimized.
	(3)		-		aged, Repeatable, Optimized.
	(4)				Ianaged, Defined, Optimized.
	` /		•		
48.				-	ints of a proposed system is calculated as 500. Suppose that the veloped in Java and the LOC/FP ratio of Java is 50. Estimate
	•				omplete the project using the effort formula of basic COCOMO
		n below:	-	Ju 10 c 0	Ampiece the project using the errort formalia of basic coconic
	U	E = a(K)		1	
	Assu	,	,		and b are 2.5 and 1.0 respectively.
	(1)	25 pers			(2) 75 person months
	(3)	62.5 pe	rson m	onths	(4) 72.5 person months
49.		NIX, pro mown as	cesses	that hav	ve finished execution but have not yet had their status collected
	(1)	Sleepin	g nroce	·	(2) Stopped processes
	(3)	Zombie	- 1		(4) Orphan processes
	(-)		r		(
50.		-			when a process creates a new process using the fork () system
			f the fol	llowing	state is shared between the parent process and child process?
	(1)	Heap			(2) Stack
	(3)	Shared	memor	y segm	ents (4) Both Heap and Stack
Pape	er-III				10 J-87-16

51.	Whi	ch of the following information ab	out the	UNIX file system is not of	correct?				
	(1)	Super block contains the number of the list of free disk blocks.	r of i-ne	odes, the number of disk b	blocks, and the start				
	(2)	An i-node contains accounting information as well as enough information to locate all the disk blocks that holds the file's data.							
	(3)	Each i-node is 256-bytes long.							
	(4)	All the files and directories are s	tored in	n data blocks.					
52.		ch of the following option with re							
	(1)	INT signal is sent by the termi request to terminate the current of		7 I	ntrol-C> and it is a				
	(2)	TERM is a request to terminate clean up its state and exit.	e execu	ntion completely. The rec	eiving process will				
	(3)	QUIT is similar to TERM, except that it defaults to producing a core dump if not caught.							
	(4)	KILL is a blockable signal.							
53.		nulticomputer with 256 CPUs is only (in hops) that a message might h	_	E	at is the worst case				
	(1)	16	(2)	15					
	(3)	32	(4)	30					
54.	1.0 1	pose that the time to do a null insec, with an additional 1.5 msec from the file server as 32 1K RPG	for eve	• , , ,	• '				
	(1)	49 msec	(2)	80 msec					
	(3)	48 msec	(4)	100 msec					
55.	dete	L be the language generated b rministic finite automata M. Consthable from the start state, R_M has	ider the	e relation R _M defined by	- ·				
	(1)	2	(2)	4					
	(3)	5	(4)	6					
56.		$L = \{0^n 1^n n \ge 0\}$ be a context free ch of the following is correct?	languaş	ge.					
	(1)	Γ is context free and L^k is not co	ntext fi	ree for any $k \ge 1$.					
	(2)	\overline{L} is not context free and L^k is co	ntext fi	ree for any $k \ge 1$.					
	(3)	Both \overline{L} and L^k is for any $k \ge 1$ are	e conte	ext free.					
	(4)	Both \overline{L} and L^k is for any $k \ge 1$ are	e not c	ontext free.					
J-87	-16		11		Paper-III				

57. Given a Turing Machine $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \{a, b, B\}, \delta, B, \{q_3\})$ Where δ is a transition function defined as $\delta(q_0, a) = (q_1, a, R)$ $\delta(q_1, b) = (q_2, b, R)$ $\delta(q_2, a) = (q_2, a, R)$ $\delta(q_2, b) = (q_3, b, R)$ The language L(M) accepted by the Turing Machine is given as: (1) aa*b (2) abab aba* (3) aba*b (4) **58.** Consider a discrete memoryless channel and assume that H(x) is the amount of information per symbol at the input of the channel; H(y) is the amount of information per symbol at the output of the channel; H(x|y) is the amount of uncertainty remaining on x knowing y; and I(x; y) is the information transmission. Which of the following does not define the channel capacity of a discrete memoryless channel? (1) $\max I(x; y)$ $\max [H(y) - H(y|x)]$ p(x)p(x)(4) $\max H(x|y)$ $\max [H(x) - H(x|y)]$ p(x)p(x)**59.** Consider a source with symbols A, B, C, D with probabilities 1/2, 1/4, 1/8, 1/8 respectively. What is the average number of bits per symbol for the Huffman code generated from above information? 2 bits per symbol (2) 1.75 bits per symbol 1.25 bits per symbol (3) 1.50 bits per symbol (4) **60.** Which of the following is used for the boundary representation of an image object? (1) **Ouad Tree** (2) **Projections** (3) Run length coding (4) Chain codes The region of feasible solution of a linear programming problem has a 61. property in geometry, provided the feasible solution of the problem exists. concavity convexity (1) (2) (3) quadratic (4) polyhedron **62.** Consider the following statements: Revised simplex method requires lesser computations than the simplex method. (b) Revised simplex method automatically generates the inverse of the current basis

- matrix.
- Less number of entries are needed in each table of revised simplex method than usual simplex method.

Which of these statements are correct?

(a) and (b) only (2) (a) and (c) only (3) (b) and (c) only (4) (a), (b) and (c)

Paper-III 12 J-87-16 **63.** The following transportation problem :

	<u> </u>			
	A	В	C	Supply
Ι	50	30	220	1
II	90	45	170	3
III	250	200	50	4
Demand	4	2	2	

has a solution

	A	В	С
I	1		
II	3	0	
III		2	2

The above solution of a given transportation problem is

- (1) infeasible solution
- (2) optimum solution
- (3) non-optimum solution
- (4) unbounded solution

64. Let R and S be two fuzzy relations defined as:

$$R = \begin{bmatrix} x_1 & y_2 \\ x_2 & 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix}$$
 and
$$S = \begin{bmatrix} y_1 & 0.9 & 0.6 & 0.2 \\ y_2 & 0.1 & 0.7 & 0.5 \end{bmatrix}$$

Then, the resulting relation, T, which relates elements of universe x to elements of universe z using max-min composition is given by

(1)
$$T = \begin{bmatrix} z_1 & z_2 & z_3 \\ .5 & .7 & .5 \\ .8 & .8 & .8 \end{bmatrix}$$
 (2) $T = \begin{bmatrix} x_1 & z_2 & z_3 \\ .5 & .7 & .5 \\ .9 & .6 & .5 \end{bmatrix}$ (3) $T = \begin{bmatrix} x_1 & z_2 & z_3 \\ x_2 & 0.7 & 0.6 & 0.5 \\ 0.8 & 0.6 & 0.4 \end{bmatrix}$ (4) $T = \begin{bmatrix} x_1 & z_2 & z_3 \\ x_2 & 0.7 & 0.6 & 0.5 \\ 0.8 & 0.8 & 0.8 \end{bmatrix}$

65. Compute the value of adding the following two fuzzy integers :

$$A = \{(0.3, 1), (0.6, 2), (1, 3), (0.7, 4), (0.2, 5)\}$$

$$B = \{(0.5, 11), (1, 12), (0.5, 13)\}$$

Where fuzzy addition is defined as

$$\mu_{A+B}\left(z\right) = \max_{x+y=z} \left(\min\left(\mu_{A}(x),\, \mu_{B}(x)\right) \right)$$

Then, f(A + B) is equal to

- $(1) \quad \{(0.5, 12), (0.6, 13), (1, 14), (0.7, 15), (0.7, 16), (1, 17), (1, 18)\}$
- (2) {(0.5, 12), (0.6, 13), (1, 14), (1, 15), (1, 16), (1, 17), (1, 18)}
- $(3) \quad \{(0.3, 12), (0.5, 13), (0.5, 14), (1, 15), (0.7, 16), (0.5, 17), (0.2, 18)\}$
- (4) {(0.3, 12), (0.5, 13), (0.6, 14), (1, 15), (0.7, 16), (0.5, 17), (0.2, 18)}

Paper-III

www.examrace.com

- **66.** A perceptron has input weights $W_1 = -3.9$ and $W_2 = 1.1$ with threshold value T = 0.3. What output does it give for the input $x_1 = 1.3$ and $x_2 = 2.2$?
 - (1) 2.65

(2) -2.30

(3) 0

- (4) 1
- **67.** What is the function of following UNIX command?

$$WC - l < a > b &$$

- (1) It runs the word count program to count the number of lines in its input, a, writing the result to b, as a foreground process.
- (2) It runs the word count program to count the number of lines in its input, a, writing the result to b, but does it in the background.
- (3) It counts the errors during the execution of a process, a, and puts the result in process b.
- (4) It copies the 'l' numbers of lines of program from file, a, and stores in file b.
- **68.** Which of the following statement is not correct with reference to cron daemon in UNIX O.S. ?
 - (1) The cron daemon is the standard tool for running commands on a pre-determined schedule.
 - (2) It starts when the system boots and runs as long as the system is up.
 - (3) Cron reads configuration files that contain list of command lines and the times at which they invoked.
 - (4) Crontab for individual users are not stored.
- **69.** In Unix, files can be protected by assigning each one a 9-bit mode called rights bits. Now, consider the following two statements:
 - I. A mode of 641 (octal) means that the owner can read and write the file, other members of the owner's group can read it, and users can execute only.
 - II. A mode of 100 (octal) allows the owner to execute the file, but prohibits all other access.

Which of the following options is correct with reference to above statements?

(1) Only I is correct.

- (2) Only II is correct.
- (3) Both I and II are correct.
- (4) Both I and II are incorrect.

70. Consider the statement,

"Either
$$-2 \le x \le -1 \text{ or } 1 \le x \le 2$$
".

The negation of this statement is

- (1) x < -2 or 2 < x or -1 < x < 1
- (2) x < -2 or 2 < x

(3) -1 < x < 1

- (4) $x \le -2 \text{ or } 2 \le x \text{ or } -1 < x < 1$
- **71.** Which of the following is characteristic of an MIS ?
 - (1) Provides guidance in identifying problems, finding and evaluating alternative solutions, and selecting or comparing alternatives.
 - (2) Draws on diverse yet predictable data resources to aggregate and summarize data.
 - (3) High volume, data capture focus.
 - (4) Has as its goal the efficiency of data movement and processing and interfacing different TPS.

- **72.** How does randomized hill-climbing choose the next move each time?
 - (1) It generates a random move from the moveset, and accepts this move.
 - (2) It generates a random move from the whole state space, and accepts this move.
 - (3) It generates a random move from the moveset, and accepts this move only if this move improves the evaluation function.
 - (4) It generates a random move from the whole state space, and accepts this move only if this move improves the evaluation function.
- **73.** Consider the following game tree in which root is a maximizing node and children are visited left to right. What nodes will be pruned by the alpha-beta pruning?

- (1) I
- (3) CHI

- (2) HI
- (4) GHI
- 74. Consider a 3-puzzle where, like in the usual 8-puzzle game, a tile can only move to an adjacent empty space. Given the initial state $\begin{bmatrix} 1 & 2 \\ & 3 \end{bmatrix}$, which of the following state cannot

be reached?

(1) 3 1 2

 $(2) \qquad \begin{array}{|c|c|c|} \hline & 3 \\ \hline 2 & 1 \\ \hline \end{array}$

(3) 1 3

- (4) 2 1 3
- **75.** A software program that infers and manipulates existing knowledge in order to generate new knowledge is known as:
 - (1) Data dictionary

(2) Reference mechanism

(3) Inference engine

(4) Control strategy

Space For Rough Work

