L1-MASS - FONCTIONS DE 2 VARIABLES

FEUILLE DE TRAVAUX DIRIGÉS N° 5

A.U.: 2013-2014

Extremums - Équations aux dérivées partielles

Enseignant: H. El-Otmany

Exercice n°1 Soit f une fonction définie sur un intervalle ouvert I de \mathbb{R} . La fonction f est dite convexe sur I si pour tout $x, y \in I$, et tout $\theta \in]0,1[:f(\theta x + (1-\theta)y) \leqslant \theta f(x) + (1-\theta)f(y)$.

- 1. Interpréter géométriquement cette propriété.
- 2. Soit f une fonction convexe sur I. Soient $x, y, z \in I$ avec x < y < z. Montrer que l'on a :

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}.$$

3. Déduire de la question précédente que pour tout $x_0 \in I$, la fonction h définie sur $I \setminus \{x_0\}$ par :

$$h(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

est croissante.

- 4. On suppose que f est dérivable sur I. Montrer que f est convexe sur I ssi f' est croissante sur I.
- 5. On suppose que f est dérivable et convexe sur I, montrer que C_f est au dessus de sa tangente en tout point de C_f .
- 6. Soit f une fonction de classe C^2 sur un intervalle ouvert I de \mathbb{R} .
- 7. Montrer que f est convexe ssi $f'' \ge 0$ sur I.
- 8. Montrer que si f est dérivable et convexe alors tout point critique de f est un minimum global.

Exercice $n^{\circ}2$ On considère la fonction f définie par :

$$f(x,y) = x^2 + 5y^2 - 4xy + 3y - 4.$$

- 1. Calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$.
- 2. Donner le développement de Taylor à l'ordre 2 de f au voisinage du point (1,1).
- 3. Montrer que : $\forall (x,y) \in \mathbb{R}^2, \ f(x,y)$? $1 \ge 0$. Démontrer qu'il existe un point qui minimise f(x,y).
- 4. On désigne par ∇f le vecteur de coordonnées respectives $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ pour $(x,y) \in \mathbb{R}^2$. Résoudre l'équation $\nabla f = 0$.

Exercice n°3 On considère une fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{x-1}$

- 1. Déterminer le domaine de définition de f.
- 2. Étudier les variations de f et tracer la courbe C_f de f.
- 3. Trouver les extremums de f.

Exercice n°4 Étudier la fonction définie par $f(x) = x^4 + ax^3 + bx^2 + 1$ (domaine de définition, tableau de variations, courbe de C_f , les extremums de f).

Exercice n°5

- 1. Montrer que l'équation $e^x + x = 0$ admet sur $\mathbb R$ une solution a et une seule.
- 2. On considère la fonction f définie sur \mathbb{R}^2

$$f(x,y) = x^2 + y^2 + e^{x+y}.$$

Étudier les extremums locaux et globaux de f.

Exercice n°6 Soit f la fonction définie sur par

$$f(x,y) = 2\sqrt{1+x^2+y^2} - \frac{1}{4} - \frac{1}{4}y$$

- 1. Étudier les extremums locaux et globaux de f.
- 2. Tracer la courbe C_f de f et situer les extréma globaux sur la courbe.

Exercice n°7 Soit f la fonction définie par sur \mathbb{R} par $f(x,y) = x(\ln x)^2 + xy^2$

- 1. Déterminer le domaine de définition de f.
- 2. Étudier les extremums locaux et globaux de f.

Exercice n°8 On considère la fonction f définie sur \mathbb{R}^2 par $f(x,y) = 5x^2 - 6xy + 2x + 2y^2 - 2y + 1$

- 1. Calculer les dérivées partielles $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$
- 2. Déterminer le point critique (x_0, y_0) de f et montrer que f atteint un minimum en ce point.

Exercice n°9

Soit f une fonction définie sur \mathbb{R}^2 par $f(x,y)=xye^{-x^2-y^2}$

- 1. Calculer les dérivées partielles $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$
- 2. Déterminer les point critiques de f et indiquer si ces points correspondent à un minimum ou un maximum de f.

Exercice $n^{\circ}10$ Calculer les dérivées partielles premières et étudier les extremums de f.

- 1. $f(x,y) = x(\ln x)^2 + xy^2$
- 2. $f(x,y) = xe^y + ye^x$.

Exercice $n^{\circ}11$ On rappelle la loi de Boyle Mariotte, valable pour une môle de gaz parfait : PV = RT, où P désigne la pression du gaz, V son volume, R la constante des gaz parfaits et T la température du milieu.

- 1. Calculer $\frac{\partial P}{\partial T}$ et $\frac{\partial P}{\partial V}$.
- 2. Même question si l'on considère à présent la relation de Van der Waals, avec les mêmes conventions que précédemment, et avec $(a,b) \in \mathbb{R}^2$: $(P + \frac{a}{V^2})(V-b) = RT$.

Exercice n°12 Soit φ une fonction dérivable de $\mathbb{R} \longrightarrow \mathbb{R}$. Montrer que la fonction $Z = xy + \varphi\left(\frac{y}{x}\right)$ vérifie l'équation $(x^2 - y^2) \frac{\partial Z}{\partial x} + xy \frac{\partial Z}{\partial y} = xyZ$.

Exercice n°13 En effectuant le changement de variables u = x + y et v = 2x + 3y, déterminer les fonctions $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles :

$$3\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = 0.$$

Exercice n°14 En effectuant le changement de variables u = x et v = y - x, déterminer les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles :

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f.$$

Exercice n°15 En utilisant les coordonnées polaires, résoudre sur \mathbb{R}^2 (0,0) l'équation aux dérivées partielles

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = 0.$$

Exercice n°16 En utilisant les coordonnées polaires, déterminer les $f: \mathbb{R}^{+*} \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2\sqrt{x^2 + y^2}.$$

Exercice $n^{\circ}17$ Déterminer les fonctions f de classe C^1 solutions des systèmes suivants :

(a)
$$\frac{\partial f}{\partial x}(x,y) = xy^2$$
, $\frac{\partial f}{\partial y}(x,y) = x^2y$, (b) $\frac{\partial f}{\partial x}(x,y) = \frac{x}{x^2+y^2}$, $\frac{\partial f}{\partial y}(x,y) = \frac{y}{x^2+y^2}$

Exercice n°18 Calculer $\frac{\partial Z}{\partial u}$ et $\frac{\partial Z}{\partial v}$ lorsque Z=f(x,y) avec $x=uv,\,y=\frac{u}{v}$ et f est de classe \mathbb{C}^1 .

Exercice n°19 Soit E un sous ensemble de \mathbb{R}^2 et $f:E\longrightarrow\mathbb{R}$ une fonction homogène de degré α qui soit de classe \mathbb{C}^2 .

1. Montrer que pour tout $(x,y) \in E$ on note par f = f(x,y) :

$$\alpha (\alpha - 1) f = x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}}$$

2. En prenant $E=\{(x,y)\in\mathbb{R}^2:x>0\}$ et en effectuant le changement de variable x=u et y=uv. Trouver toutes les fonctions $f:E\longrightarrow\mathbb{R}$ de classe \mathbb{C}^2 qui sont solutions de l'équation aux dérivées partielles :

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}} = 0.$$

Exercice n°20 Trouver une fonction Z=Z(x,y) sachant que $\frac{\partial Z}{\partial y}=\frac{x}{x^2+y^2}$.

Exercice n°21 Trouver les fonctions Z = Z(x, y) sachant que

$$\frac{\partial Z}{\partial x} = \frac{x^2 + y^2}{x}$$
 et $Z(1, y) = \sin y$.

Préciser les domaines d'intégration.

Exercice n°22 (Un peu difficile) Montrer que la fonction $Z=\varphi\left(x^2+y^2\right)$ vérifie l'équation

$$y\frac{\partial Z}{\partial x} - x\frac{\partial Z}{\partial y} = 0.$$

Exercice n°23 (fonctions à trois variables) En effectuant le changement de variable u=x-y et v=x+y, puis $u=x, \ v=y-x$ et w=z-x trouver toutes les fonctions $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ de classe \mathbb{C}^1 qui sont solutions des équations aux dérivées partielles : $\frac{\partial f}{\partial x}(x,y)=\frac{\partial f}{\partial y}(x,y)$ et $\frac{\partial f}{\partial x}(x,y,z)+\frac{\partial f}{\partial z}(x,y,z)=0$.