CONCOURS ADMINISTRATEUR EXTERNE DE L'INSEE

Session 2023

ÉPREUVE DE MATHÉMATIQUES

DURÉE : 4 heures

L'énoncé comporte 6 pages, numérotées de 1 à 6

Tous documents et appareils électroniques interdits

Partie 1: algèbre-analyse

Cette partie est constituée de deux exercices indépendants.

Exercice 1

Les deux parties de cet exercice sont indépendantes mais sont centrées autour d'une même thématique.

On note $V=M_n(\mathbb{C})$ l'espace vectoriel des matrices carrées de taille $n\times n$ à coefficients complexes et $E=\mathbb{C}^n$ identifié à $M_{n,1}(\mathbb{C})$ $(n\geq 2)$. On notera Tr la trace d'une matrice.

Une matrice N est dite nilpotente si et seulement s'il existe $q \ge 2$ tel que : $N^q = 0$.

1ère partie

Soit $A \in V$, $A \neq 0$. On appelle ϕ l'endomorphisme de V défini par : $\forall M \in V : \phi(M) = AM$.

1.

- a. Montrer que, si λ est valeur propre de ϕ , alors λ est valeur propre de A.
- b. Soit M_0 un vecteur propre de ϕ associé à la valeur propre λ . Montrer que, si $X \in E$ est vecteur propre de M_0 associé à une valeur propre non nulle, il est vecteur propre de A.
- c. Que peut-on dire de A lorsque M_0 n'admet pas 0 comme valeur propre ?

2.

- a. Réciproquement, montrer que, si λ est valeur propre de A, λ est valeur propre de ϕ et qu'il existe des vecteurs propres de ϕ de rang 1.
- b. Montrer que, si $Y \in E$ est vecteur propre de A, il existe une matrice M_0 de rang 1, vecteur propre de ϕ , dont Y est vecteur propre.
- c. À quelle condition I_n est-il vecteur propre de ϕ ?
- 3. Soit M_0 un vecteur propre de ϕ associé à la valeur propre λ .
 - a. Montrer que, si la famille $(M_0, M_0^2, ..., M_0^{n^2})$ est libre, alors : $A = \lambda I_{n^2}$
 - b. Dans le cas contraire, montrer qu'il existe $p \in \{2,...,n^2\}$ et $(\alpha_1,...,\alpha_{p-1}) \in \mathbb{C}^{p-1}$ tel que :

$$M_0^p = \sum_{k=1}^{p-1} \alpha_k M_0^k.$$

- c. Pour cette question seulement : Si le sous-espace propre de ϕ associé à la valeur propre λ est de dimension 1 :
 - i. Montrer qu'il existe $\alpha \in \mathbb{C}$ tel que : $M_0^2 = \alpha M_0$.
 - ii. Montrer alors que : $Tr(M_0) = \alpha Rg(M_0)$.

4

- a. Identifier les sous-espaces propres de ϕ .
- b. En déduire que, si A est diagonalisable, ϕ est diagonalisable.

2ème partie

Soit $A \in V$. On s'intéresse maintenant à l'endomorphisme ψ de V défini par :

$$\forall M \in V : \psi(M) = AM - MA.$$

5. À quelle condition *nécessaire et suffisante* portant sur A cet endomorphisme est-il nul ?

On suppose dans la suite que ψ n'est pas l'endomorphisme nul.

6.

- a. Donner deux vecteurs propres de ψ linéairement indépendants.
- b. Soit M_1 un vecteur propre de ψ associé à la valeur propre μ . Calculer $\psi(M_1^k)$ pour $k \in \mathbb{N}^*$.
- c. En déduire que, si $\mu \neq 0$, M_1 est nilpotente.
- d. Soit P un polynôme de $\mathbb{C}[X]:P(X)=\sum_{k=0}^q \alpha_k X^k$. Démontrer la relation : $\psi[P(M_1)]=\mu\,M_1P'(M_1)$, où :

$$\forall M \in V : P(M) = \sum_{k=0}^{q} \alpha_k M^k.$$

- e. Que peut-on en déduire pour P(A) ?
- 7. Si M_1 est un vecteur propre de ψ , que peut-on dire de M_1^{-1} ?

8.

- a. Si M_1 et M_2 sont deux vecteurs propres de ψ , associés aux valeurs propres μ_1 et μ_2 , où l'on suppose que M_1 est inversible, que peut-on dire de M_1M_2 ?
- b. En déduire que M_1M_2 est vecteur propre de ψ pour la valeur propre μ_2 .
- 9. Montrer que, si A est nilpotente, ψ admet 0 comme unique valeur propre.

Exercice 2

Dans tout l'exercice, n désigne un entier naturel supérieur ou égal à 2.

On note
$$\binom{n}{p}$$
 le coefficient du binôme : $\binom{n}{p}=\frac{n!}{p!(n-p)!}$. On définit la fonction f_n de \mathbb{R}_+ dans \mathbb{R} par :

$$orall x \in igl[0,+lphaigl[,\quad f_n(x) = rac{1}{(x+1)(x+2)\dots(x+n)}.$$

et on pose :
$$I_n = \int_0^{+\infty} f_n(x) dx$$
 .

- 1. Montrer que l'intégrale définissant I_n est convergente.
- 2. Déterminer la limite de la suite $(I_n)_{n\geqslant 2}$.
- 3. Montrer que la série de terme général I_n est convergente.

4. On note
$$a_1,a_2,\ldots,a_p$$
 les réels tels que : $\dfrac{1}{(x+1)(x+2)\ldots(x+n)}=\sum\limits_{p=1}^n\dfrac{a_p}{p+x}.$

- (a) Calculer, pour tout p de $[\![1,n]\!]$, a_p en fonction de p et de n.
- (b) Vérifier que $\sum\limits_{p=1}^n a_p=0.$
- (c) En déduire, sous forme de somme, la valeur de I_n .
- 5. (a) Établir, pour tout x de [0,1], l'encadrement suivant :

$$\sum_{p=1}^n \frac{1}{p+1} \leqslant -\frac{f_n'(x)}{f_n(x)} \leqslant \sum_{p=1}^n \frac{1}{p}$$

(b) En déduire le résultat suivant :

$$\int_0^1 f_n(t) dt \mathop{\sim}_{n \to +\infty} \frac{1}{n! \ln(n)}$$

- 6. Montrer que $\int_0^1 f_n(t) dt = n I_{n+1}.$
- 7. Déduire de ce qui précède la formule suivante :

$$\sum_{n=0}^{n} (-1)^{p+1} \binom{n-1}{p} \ln(p+1) \underset{n \to +\infty}{\sim} \frac{1}{n \ln n}$$

Partie 2 : probabilités-statistiques

Cette partie est constituée de deux exercices indépendants

Exercice 1

On considère une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$, indépendantes et définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, suivant toutes la loi uniforme sur [0, 1].

Pour tout entier naturel n non nul, on note $S_n = \sum_{k=1}^n X_k$ et T le plus petit entier aléatoire k vérifiant $S_k > 1$, et on pose T = -1 si un tel indice n'existe pas.

C'est-à-dire que, pour tout ω de Ω :

$$T(\omega) = \min\{k \in \mathbb{N}^* \; ; \; S_k(\omega) > 1\}$$

si cet ensemble est non vide et T=-1 si cet ensemble est vide. On admet que T est bien une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. (a) Déterminer une densité de S_2 , puis calculer $\mathbb{P}(S_2\geqslant 1)$.
 - (b) Montrer que la suite $(\mathbb{P}([S_n\geqslant 1]))_{n\in\mathbb{N}^*}$ converge vers un réel ℓ non nul.
 - (c) On pose $S_n' = \sum_{k=n+1}^{2n} X_k$.

En considérant, pour tout entier n non nul les événements $(S_{2n}\geqslant 1)$, $(S_n\geqslant 1)$, $(S_n'\geqslant 1)$, montrer que $l\geqslant 2l-l^2$.

- (d) En déduire que $\mathbb{P}([T=-1])=0$.
- 2. Montrer que $\forall x \in [0,1], \forall n \in \mathbb{N}^*, \; \mathbb{P}([S_n \leqslant x]) = \frac{x^n}{n!}.$
- ,3. (a) Calculer, pour tout entier naturel n non nul, $\mathbb{P}(T>n)$.
 - (b) En déduire la loi de T.
 - (c) Calculer $\mathbb{E}(T)$.
- 4. (a) Justifier la relation suivante :

$$orall lpha \in \mathbb{R}, \quad \exists n_0 \in \mathbb{N}^*, \quad n \geqslant n_0 \Rightarrow rac{1 - rac{n}{2}}{\sqrt{rac{n}{12}}} \leqslant lpha$$

- (b) Montrer que, pour tout réel α , $\ell\geqslant 1-\Phi(\alpha)$ où Φ désigne la fonction de répartion de la loi normale centrée réduite.
- (c) Retrouver alors la valeur de $\mathbb{P}([T=-1])$.
- 5. On pose, pour tout entier naturel k non nul, $Y_k = -\ln{(1-X_k)}$.

Pour tout entier naturel n non nul, on pose $V_n = \sum_{k=1}^n Y_k$.

Enfin, pour tout réel t strictement positif, on définit l'application Z_t de Ω dans $\mathbb R$ par :

Pour tout ω dans Ω , $Z_t(\omega)$ est, s'il existe, le plus petit entier naturel n non nul tel que $V_n(\omega) > t$ et, on pose $Z_t(\omega) = -1$ si un tel entier n'existe pas.

On admet que Z_t est une variable aléatoire définie elle aussi sur $(\Omega, \mathcal{A}, \mathbb{P})$ et que, par une démonstration analogue à celle faite précédemment, on a $\mathbb{P}([Z_t = -1]) = 0$.

- (a) Pour tout k de \mathbb{N}^* , déterminer la loi de Y_k .
- (b) Quelle est la loi de la variable aléatoire V_n ?
- (c) Montrer que Z_t-1 suit la loi de Poisson de paramètre t.

Exercice 2

- 1. On considère deux variables aléatoires *indépendantes* X et Y, suivant chacune la loi $\mathcal{M}(0, 1)$. On pose : $Z = \frac{X}{Y}$. On rappelle que la loi de Z est la *loi de CAUCHY*, de densité $\frac{1}{\pi} \frac{1}{1+z^2}$.
 - a. Déterminer la densité de la loi de |Z|.
 - b. Déterminer la densité de la loi de \mathbb{Z}^2 .

On considère dans la suite du problème deux suites de variables aléatoires, $\{X_i\}$ et $\{Y_i\}$, toutes indépendantes entre elles et de même loi, admettant des moments d'ordre 2. On notera m leur espérance commune et $\sigma^2 (\neq 0)$ leur variance.

Pour tout entier naturel n , on pose : $\overline{X}_n=rac{1}{n}\sum_{i=1}^n X_i$ et : $\overline{Y}_n=rac{1}{n}\sum_{i=1}^n Y_i$

Enfin, on définit la variable aléatoire : $T_n = \left| \frac{\overline{X}_n - m}{\overline{Y}_n - m} \right|$ (on suppose que cette variable est bien définie avec une probabilité égale à 1).

2. Étudier la convergence en loi, quand n tend vers $+\infty$, de la suite $\{T_n\}$.

On rappelle que le rapport de deux suites de variables aléatoires, <u>indépendantes entre elles</u> et convergeant chacune en loi, converge en loi vers une loi limite qu'on peut calculer comme si les deux composantes du rapport avaient chacune une loi fixe (égale à leur propre limite).

3. On définit la variable aléatoire \mathcal{U}_n comme suit :

$$U_n = 1 \Leftrightarrow T_n < 1, U_n = 0 \text{ sinon.}$$

On admet que $P\{T_n = 1\} = 0$.

- a. Calculer $\lim_{n \to +\infty} P\{U_n = 1\}$. Le résultat obtenu vous paraît-il intuitif ?
- b. En déduire la convergence en loi de la suite $\{U_n\}$ quand $n \to +\infty$.
- 4. On pose : $Z_n = U_n \overline{X}_n + (1 U_n) \overline{Y}_n$.

Étudier la convergence en probabilité de la suite $\{Z_n\}$ quand $n \to +\infty$.

- ightharpoonup On suppose dorénavant que les variables X_i et Y_i suivent toutes la même loi $\mathcal{M}(m, \sigma^2)$. On s'intéresse à la convergence en loi de la suite de terme général : $W_n = \sqrt{n} \ (Z_n m)$.
 - 5. En écrivant :

$$W_n = \begin{cases} A_n \text{ si } |A_n| < |B_n| \\ B_n \text{ si } |B_n| < |A_n| \end{cases}, \text{ où } : A_n = \sqrt{n} \ (\overline{X}_n - m) \text{ et } : B_n = \sqrt{n} \ (\overline{Y}_n - m),$$

calculer la fonction de répartition de W_n

On l'exprimera au moyen de la densité h et de la fonction de répartition H de la loi $\mathcal{M}(0, 1)$.

On remarquera que A_n et B_n sont indépendantes et jouent des rôles symétriques et on obtiendra le résultat en se ramenant au calcul de $P\{A_n < w \text{ et } |A_n| < |B_n|\}$, que l'on exprimera sous forme d'une intégrale double évaluée grâce au théorème de FUBINI.

6. En déduire la convergence en loi de la suite $\{W_n\}$ et identifier la loi limite au moyen de sa densité.

Obtient-on un résultat de type théorème central limite ?

.