

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

Variance

$$V(X) = E((X - E(X))^2)$$

Variance

Theorem. Computational formula for the variance:

$$Var(X) = E[X^2] - (EX)^2.$$

Proof:

$$\begin{split} \operatorname{Var}(X) &= E \big[(X - \mu_X)^2 \big] \\ &= E \big[X^2 - 2 \mu_X X + \mu_X^2 \big] \\ &= E \big[X^2 \big] - 2 E \big[\mu_X X \big] + E \big[\mu_X^2 \big] \quad \text{by linearity of expectation.} \\ &= E \big[X^2 \big] - 2 \mu_X^2 + \mu_X^2 \\ &= E \big[X^2 \big] - \mu_X^2. \end{split}$$

From the example above

$$\sigma^2 = \frac{1}{n} \sum_{i} (x_i - \mu_x)^2$$

Sum of demean_sq = 11.1 + 32.1 + 5.4 = 48.6

Above we showed
$$Var(X) = E(X^2) - mu_x^2$$

$$E(X^2) = \frac{1}{3} *9 + \frac{1}{3} * 144 + \frac{1}{3} 16 = 56.33$$

$$Mu_x^2 = (6.333)^2 = 40.111$$

48.6/3 = 16.222

$$E(X^2) - Mu_x^2 = 56.333 - 40.111 = 16.222$$

х	mu	demean	demean_sq
3	6.3	-3.3	11.1
12	6.3	5.7	32.1
4	6.3	-2.3	5.4

Covariance

$$Cov(X, Y) = E[(X-E(X)(Y-E(Y))]$$

Covariance

$$Cov(x, y) = E[(X - E(X))(Y - E(Y))]$$

= $\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$

Example covariance

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

x	у		demean_x	demean_y	demean_x*demean_y
	3	6	-2.4	1.6	-3.84
	5	9	-0.4	4.6	-1.84
	2	2	-3.4	-2.4	8.16
	8	1	2.6	-3.4	-8.84
	9	4	3.6	-0.4	-1.44

mean_y 4.4 mean_x 5.4

Linear Regression

$$y_i = a + b * x_i + u_i$$

$$\hat{y}_i = \text{best guess intercept} + \text{best guess slope} * x_i$$

$$\hat{a} = \text{best guess intercept}$$

$$\hat{b} = \text{best guess slope}$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{b} = \frac{\text{cov}(x,y)}{\text{var}(x)} = \frac{\sum (x_i - \bar{x}) \sum (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

 $\hat{a} = \bar{y} - \hat{b} * \bar{x}$

$$\hat{y}_i = \hat{a} + \hat{b} * x_i$$

$$\hat{u}_i = y_i - \hat{y}_i$$

Walk through example

X	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y
3	6	-2.4	5.76	1.6	2.56	-3.84
5	9	-0.4	0.16	4.6	21.16	-1.84
2	2	-3.4	11.56	-2.4	5.76	8.16
8	1	2.6	6.76	-3.4	11.56	-8.84
9	4	3.6	12.96	-0.4	0.16	-1.44
	ě.v	Å.	37.2		41.2	-7.8
		_				

yhat	y-yhat
b0 + b1*x	error
4.90	1.10
4.48	4.52
5.11	-3.11
3.85	-2.85
3.65	0.35

mean_y	4.4
mean_x	5.4

numerator	-1.95	-1.95	-0.199	correlation	
denom	sqrt(37.2/4 * 41.2/4)	9.79		131	

-1.95

sum/(n-1)

slope	-0.210
intercept	5.53

Look at Colab

```
df = pd.DataFrame({'x': x, 'y':y})
df['x_minus_xbar'] = df['x'] - mean_x
df['y_minus_ybar'] = df['y'] - mean_y
df['demaned_x_and_y'] = df['x_minus_xbar'] * df['y_minus_ybar']
df['demaned_x_sq'] = df['x_minus_xbar']**2
df.head()
```

	ж	y	x_minus_xbar	y_minus_ybar	demaned_x_and_y	demaned_x_sq
0	2.912054	1.320250	1.773713	4.257710	7.551954	3.146056
1	5.665337	7.127269	4.526996	10.064729	45.562987	20.493692
2	5.035918	4.597814	3.897577	7.535275	29.369309	15.191103
3	2.852957	0.649218	1.714616	3.586678	6.149775	2.939907
4	4.842881	6.043560	3.704540	8.981020	33.270548	13.723617

0.100	1.644854	1.281552
0.050	1.959964	1.644854

2.575829

3.290527

2.326348

3.090232

desired alpha level two-sided test one-sided test

0.010

0.001

(simple) T Tests = z-test

$$z_{\bar{X}} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{N}}$$

$$\bar{x} = \frac{\sum x}{15} = \frac{1238}{15} = 82$$

$$\sigma = \sqrt{\frac{(\sum x - \bar{x})^2}{N - 1}} = \sqrt{\frac{4672}{14}} = 18.2$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

grades_final

How to tell if significant difference between 2 classes?

Class1: 82 (18)

Class2: 72 (18)

Remember, variance matters

Simple T-Test Case 1

Class1: 82 (18)

Class2: 72 (18)

H0: Difference - 0

H1: Not H0

$$Z = \frac{82 - 72}{18/\sqrt{15}} = 2.27$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

Simple T-Test Case 2: smaller delta

Class1: 82 (18)

Class2: 76 (18)

H0: Difference - 0

H1: Not H0

$$Z = \frac{82 - 76}{18/\sqrt{15}} = 1.3$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

Simple T-Test Case 3: higher variance

Class1: 82 (28)

Class2: 72 (28)

H0: Difference - 0

H1: Not H0

$$Z = \frac{82 - 72}{28/\sqrt{15}} = 1.4$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

0.100	1.644854	1.281552
0.050	1.959964	1.644854

2.575829

3.290527

2.326348

3.090232

desired alpha level two-sided test one-sided test

0.010

0.001

T-test

$$t = \frac{X_1 - X_2}{SE}$$

where

$$SE = \sqrt{\frac{\sigma_1^2}{N1} + \frac{\sigma_2^2}{N2}}$$

Difference between two groups with different sample sizes and variance

 $H_0: \quad \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

• Classroom 1

o Avg: 82

o Stdev: 18

• Size: 15

• Classroom 2

• Avg: 72

o Stdev: 24

o Size: 30

- Classroom 1Avg: 82
 - Stdev: 18Size: 15
- Classroom 2
 - Avg: 72Stdev: 22
 - Size: 24

$$SE = \sqrt{\frac{18^2}{15} + \frac{24^2}{30}} = 6.3$$

$$T = \frac{82 - 72}{6.3} = 1.56$$

$$t = \frac{X_1 - X_2}{SE}$$

where

$$SE = \sqrt{\frac{\sigma_1^2}{N1} + \frac{\sigma_2^2}{N2}}$$