Since $T_n = \{0,1\}^{10 \log_2(n)}$ we have $2^{10 \log_2(n)}$ possible tags, and since $M_n = K_n = \{0,1\}^n$ we have 2^n possible messages and 2^n possible keys. Which means that we have much more messages than tags.

$$Pr[\text{Mac-Forge}_{A,\Pi}(n) = 1] = \frac{1}{2^{10\log_2(n)}} \approx \frac{1}{2^{\log_2(n)}} = \frac{1}{n} > negl(n)$$

When the last equality comes from logarithm rules. This contradicts Definition $4.2 \blacksquare$.