

6.4 La tecnología SRAM

## MEMORIA CACHE



## Caches multinivel

- A medida que la densidad lógica es incrementada haciendo posible tener una cache en el mismo chip que el procesador
- La cache integrada reduce la actividad externa del bus del procesador y acelera el tiempo de ejecución e incrementa todo el rendimiento del sistema.
  - Debido a que la instrucción o el dato es encontrado en la cache, el bus de acceso es eliminado.
  - El acceso a la cache integrada es bastante rápido que no hay espera en los ciclos del bus
  - Durante este período el bus es libre para ofrecer ayuda en otras transferencias

## Caches multinivel

- Dos niveles de cache:
  - Cache interna designada como Nivel 1 (L1)
  - Cache externa designada como Nivel 2 (L2)
- El potencial ahorro debido al uso de la cache L2 depende del rápido de acierto en ambas caches L1 Y L2.
- El uso de caches multinivel complica todo el diseño relacionado con la cache, incluyendo el tamaño, algoritmos de remplazo, y políticas de escritura.

#### Estructura de la Caché

- Para implementar el mecanismo de actualización de la caché con los datos *que pueden ser referenciados* con mayor probabilidad se utilizan políticas de estructuración tanto de la memoria caché como de la memoria principal.
- A la memoria principal se lo divide en bloques de cierto número de bytes (4, 8, 16, etc.).
- Y a la caché en los denominados marcos de bloque de igual tamaño, un marco puede albergar varios bloques de la memoria principal.
- Un bloque de memoria principal se almacena en un único bloque en la memoria cache.
- El directorio contiene la información de los bloques de la memoria principal que se encuentran ubicados en la caché.

#### Nivel 1

- Ubicación: dentro del núcleo del microprocesador
- Información: almacena datos
- Tamaño: Reducido (4 a 128K)
- Velocidad: la del procesador



Memoria caché L1 8 Kbytes Separada datos + código

#### Nivel 2:

- Ubicación: Incorporada al chip del micro (fuera del núcleo)
- Información: Instrucciones y datos
- Tamaño: Grande (256 Kb a 4 MB)
- Velocidad: Menor que la del micro.

Memoria caché L2 512 Kbytes



#### Nivel 2 (antigua):

- Ubicación: en placas base.
- Información: Instrucciones y datos
- Tamaño: Grande (4 MB, 6 MB)
- Velocidad: Menor que la del micro



#### Nivel 4:

• Ubicación: Periféricos

• Información: Datos

• Tamaño: Grande (8 MB)

• Velocidad: Menor que la del micro



#### Intel Core i7-1195G7

Series Intel Tiger Lake

Level 1 Cache 320 KB

Level 2 Cache 5 MB

Level 3 Cache 12 MB

Number of Cores / Threads 4 / 8

# 11th Gen Intel® Core™ Processors with Intel Iris X<sup>e</sup> Graphics

|   | Processor<br>Number    | Graphics              | Cores/<br>Threads | Graphics<br>(EUs) | Cache | Memory                    | Operating<br>Range | Base Freq<br>(GHz) | Max Single<br>Core Turbo<br>(GHz) | Max All<br>Cores Turbo<br>(GHz) | Graphics<br>Max Freq<br>(GHz) | and Neural<br>Accelerator<br>2.0*** |
|---|------------------------|-----------------------|-------------------|-------------------|-------|---------------------------|--------------------|--------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|   | Intel® Core™ i7-1195G7 | Intel Iris Xe         | 4/8               | 96                | 12MB  | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 2.9                | 5.0*                              | 4.6                             | 1.40                          | ✓                                   |
|   | Intel® Core™ i7-1185G7 | Intel Iris Xe**       | 4/8               | 96                | 12MB  | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 3.0                | 4.8                               | 4.3                             | 1.35                          | <b>✓</b>                            |
| ١ | Intel® Core™ i7-1165G7 | Intel Iris Xe**       | 4/8               | 96                | 12MB  | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 2.8                | 4.7                               | 4.1                             | 1.30                          | <b>✓</b>                            |
|   | Intel® Core™ i5-1155G7 | Intel Iris X°"        | 4/8               | 80                | 8MB   | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 2.5                | 4.5                               | 4.3                             | 1.35                          | ✓                                   |
|   | Intel® Core™ i5-1145G7 | Intel Iris Xe**       | 4/8               | 80                | 8МВ   | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 2.6                | 4.4                               | 4.0                             | 1.3                           | <b>✓</b>                            |
|   | Intel® Core™ i5-1135G7 | Intel Iris Xe**       | 4/8               | 80                | 8MB   | DDR4-3200<br>LPDDR4x-4266 | 12-28W             | 2.4                | 4.2                               | 3.8                             | 1.30                          | <b>✓</b>                            |
|   | Intel® Core™ i3-1125G4 | Intel UHD<br>Graphics | 4/8               | 48                | 8МВ   | DDR4-3200<br>LPDDR4x-3733 | 12-28W             | 2.0                | 3.7                               | 3.3                             | 1.25                          | <b>✓</b>                            |
|   | Intel® Core™ i3-1115G4 | Intel UHD<br>Graphics | 2/4               | 48                | 6МВ   | DDR4-3200<br>LPDDR4x-3733 | 12-28W             | 3.0                | 4.1                               | 4.1                             | 1.25                          | <b>Y</b>                            |

<sup>&</sup>quot;i7-1195G7SCT=5.0GHz accomplished via Intel Turbo Boost Max Technology 3.0.

<sup>\*\*</sup>To use the Intel® Iris® Xe graphics brand, the platform must be populated with 128-bit (dual channel) memory.

<sup>\*\*\*</sup> Platform dynamic noise suppression algorithms must be enabled for GNA to realize power benefits of offloading dynamic noise suppression from CPU to GNA.

#### Referencias:

• William Stallings, Computer Organization and Architecture: Designing for Performance, 9th Edition, Prentice Hall, 2010, ISBN-13: 978-0-13-607373-4

## Gracias !!!

