# Analiza statystyczna czasów na wykonywanie ruchów w szachach

Piotr Rogula

Politechnika Wrocławska

10 października 2021

pod promotorstwem prof. dr hab. inż. Marcina Magdziarza



# Spis treści

- 1. wstęp
  - 1.1 motywacja
  - 1.2 kluczowe wyniki innych autorów
  - 1.3 potrzebne oznaczenia
- 2. wyniki własne
  - 2.1 sformułowanie problemu
  - 2.2 dane
  - 2.3 analiza problemu
- 3. podsumowanie



## Motywacja

- 1. Szachy jako hobby
- 2. popularny temat
- 3. niedosyt literatury opisującej dane zagadnienie

# Kluczowe wyniki innych autorów

► System Elo [cite] (Arpad Elo)



## System Elo

- przyznawanie punktów bazujące na różnicy rankingu graczy
- pierwszy system mający podłoże probabilistyczne



#### Kluczowe wyniki innych autorów

- System Elo [cite] (Arpad Elo)
- System Glicko-2 [cite] (Mark Glickman)



# System Glicko-2

- ulepszenie systemu Elo.
  - wzięcie pod uwagę przedziału ufności rankingu każdego z graczy.
- używany w dużej liczbie gier MMO.



### Kluczowe wyniki innych autorów

- ► System Elo [cite] (Arpad Elo)
- System Glicko-2 [cite] (Mark Glickman)
- Silnik Stockfish [cite]

#### Potrzebne oznaczenia

- ruch składa się z dwóch posunięć 1 białych i 1 czarnych
  - wyjątkiem może być ostatni ruch, gdy po posunięciu białych nastąpił koniec partii.
- oznaczenia posunięcia jako "błąd" i "duży błąd" są tożsame
- oznaczenie "pomyłka" jest rozróżnialne od oznaczenia "błąd"
  - drugie jest wg silnika gorszym posunięciem



#### Silnik Stockfish

► funkcja oceny

wynik liniowej funkcji ważonej sumy cech, na którą składają się między innymi:

 $f_b, f_c$  – wartość figur odpowiednio białych i czarnych  $k_b, k_c$  – bezpieczeństwo króla odpowiednio białych i czarnych  $m_b, m_c$  – mobilność figur odpowiednio białych i czarnych  $z_b, z_c$  – potencjalne zagrożenia wykonane odpowiednio białych i czarnych

$$f(f_b, f_c, k_b, k_c, m_b, m_c, \dots) = c_1(f_b - f_c) + c_2(k_b - k_c) + c_3(m_b - m_c) + \dots$$

gdzie: c; są stałymi określającymi wagę danej pary zmiennych.



#### Silnik Stockfish

- rodzaje błędów szachowych
  - ?? błąd (ang. blunder)
  - ? pomyłka (ang. mistake), posunięcie błędne w mniejszym stopniu niż "błąd"
  - ?! niedokładność (ang. innacuracy), posunięcie, które można zastąpić zdecydowanie lepszym.

### sformułowanie problemu

- zbadanie zależności pomiędzy czasem poświęconym na wykonanie ruchu, a jego dokładnością
- zbadanie zależności między numerem ruchu, a czasem na jego wykonanie oraz jego dokładnością
- próba wyznaczenia optymalnego czasu na wykonanie ruchu minimalizacja ryzyka wystąpienia błędu

#### dane

- baza danych **Lichess.com** 1 plik 72Gb
- zbadanie 2 najczęściej granych formatów (600+0, 300+0)
- stworzenie bazy ok. 7% gier ocenionych przez silnik
- stworzenie bazy wszystkich ruchów ze wszystkich gier
  - ▶ 17,52 mln posunięć z 275,94 tyś gier



# wstępna analiza

|     | game_ID | score   | delta_time | WhiteElo | BlackElo | TimeControl | color | move | Result |
|-----|---------|---------|------------|----------|----------|-------------|-------|------|--------|
| 510 | 9       | 0       | 0          | 1192     | 1204     | 300+0       | w     | 23   | 0-1    |
| 511 | 9       | 0       | 9          | 1192     | 1204     | 300+0       | b     | 23   | 0-1    |
| 512 | 9       | 0       | 2          | 1192     | 1204     | 300+0       | w     | 24   | 0-1    |
| 513 | 9       | 0       | 18         | 1192     | 1204     | 300+0       | b     | 24   | 0-1    |
| 514 | 9       | 0       | 7          | 1192     | 1204     | 300+0       | w     | 25   | 0-1    |
| 515 | 9       | 0       | 10         | 1192     | 1204     | 300+0       | b     | 25   | 0-1    |
| 516 | 9       | blunder | 8          | 1192     | 1204     | 300+0       | w     | 26   | 0-1    |
| 517 | 9       | blunder | 8          | 1192     | 1204     | 300+0       | b     | 26   | 0-1    |
| 518 | 9       | mistake | 4          | 1192     | 1204     | 300+0       | w     | 27   | 0-1    |
| 519 | 9       | 0       | 2          | 1192     | 1204     | 300+0       | b     | 27   | 0-1    |
| 520 | 9       | 0       | 29         | 1192     | 1204     | 300+0       | w     | 28   | 0-1    |

Rysunek: Fragment bazy zawierającej ruchy z gier o formatach czasowych "300+0" i "600+0".



#### dane

- czego nie ma w danych?
  - digitalizacja czasu czas na posunięcie zaokrąglony do pełnych sekund
  - brak informacji i odpowiedniej miary dotyczącej skomplikowania sytuacji na szachownicy



# Analiza problemu - wstępny przegląd danych



Rysunek: rozkład rankingu zawodników wraz z zaznaczonymi kwartylami



#### Analiza problemu - wstępny przegląd danych



Rysunek: rozkład długości gier wraz z zaznaczonym kwantylem rzędu 0.95, dla gier z formatu 300+0 oraz 600+0.





Rysunek: Średni czas na wykonanie ruchu dla analizowanych formatów czasowych wraz z zaznaczonym rozstępem międzykwartylowym. Osobno wszystkie ruchy i ruchy oznaczone przez silnik jako błąd.



Po oznaczeniu:

D jako zmienną określającą skomplikowanie pozycji,

T - zmienną określającą czas na wykonanie ruchu w danej pozycji,

B - zdarzenie polegające na tym, że posunięcie jest błędne i przy założeniu, że T jest silnie dodatnio skorelowane z R, według prawdopodobieństwa otrzymujemy:

$$P(B|D > d_0) > P(B|D \leqslant d_0) \rightarrow P(B|T > t_0) > P(B|T \leqslant t_0)$$

gdzie  $d_0$  i  $t_0$  określają punkty, od których według wybranej miary można określić, że pozycja jest skomplikowana  $(D>d_0)$  i czas na wykonanie posunięcia jest długi  $(T>t_0)$ .

Może to tłumaczyć wyższą średnią czasu na wykonanie błędnego posunięcia w porównaniu do zbioru wszystkich posunięć.

- (ロ) (回) (重) (重) (重) のQの



Rysunek: Odchylenie standardowe czasu na wykonanie ruchu dla analizowanych formatów czasowych. Osobno wszystkie ruchy i ruchy oznaczone przez silnik jako błąd.





Rysunek: Średni czas na wykonanie ruchu dla dla graczy z różnych przedziałów rankingowych. Wszystkie posunięcia.





Rysunek: Średni czas na wykonanie ruchu dla dla graczy z różnych przedziałów rankingowych. Posunięcia oznaczone przez silnik jako błąd.







20

10

Piotr Rogula Pwr

30

numer ruchu

40

50

1.8 1.7 1.6



Rysunek: Pierwszy wykres – zestawienie średniego pozostałego czasu w formatach 600+0 oraz 300+0. W celu lepszego porównania zastosowane osobne osie dla każdego formatu. Drugi wykres – empiryczne prawdopodobieństwo popełnienia błędu w konkretnym ruchu.





Rysunek: Prawdopodobieństwo popełnienia błędu w konkretnym ruchu dla różnych przedziałów rankingowych.



$$X_i = egin{cases} 1, & \text{gdy w } i\text{-tym ruchu został popełniony błąd} \\ 0, & \text{gdy w } i\text{-tym ruchu nie został popełniony błąd} \end{cases}$$

$$P(X_1 = 1 \lor X_2 = 1 \lor \dots \lor X_n = 1) =$$

$$= 1 - P(X_1 = 0, X_2 = 0, \dots, X_n = 0) =$$

$$= P(X_1 = 0)P(X_2 = 0) \dots P(X_n = 0) =$$

$$= \prod_{i=1}^{n} P(X_i = 0)$$



Tabela: Szansa na popełnienie błędu w pierwszych n ruchach dla gracza z określonego przedziału rankingowego z rozdzieleniem na formaty "600+0" i "300+0"

| <i>n</i> pierwszych<br>ruchów | n = 10 |        | n = 20 |        | n = 30 |        |  |
|-------------------------------|--------|--------|--------|--------|--------|--------|--|
| centyl \ format               | 600+0  | 300+0  | 600+0  | 300+0  | 600+0  | 300+0  |  |
| 0-25%                         | 43,36% | 40,72% | 85,50% | 84,33% | 95,32% | 94,96% |  |
| 25%-50%                       | 25,52% | 22,09% | 71,56% | 68,63% | 89,38% | 88,66% |  |
| 50%-75%                       | 15,58% | 12,42% | 58,86% | 56,27% | 83,08% | 82,93% |  |
| 75%-100%                      | 6,76%  | 5,63%  | 40,78% | 38,66% | 70,27% | 70,40% |  |

# Zależność między czasem poświęconym na ruch, a jego oceną



Rysunek: Rozkład czasu poświęconego na wykonanie posunięcia dla formatów "600+0" i "300+0". Osobno wszystkie posunięcia i posunięcia błedne



# Zależność między czasem poświęconym na ruch, a jego oceną



Rysunek: Rozkład czasu poświęconego na wykonanie posunięcia dla formatów "600+0" i "300+0" z dopasowanym rozkładem log-normalnym.



# Zależność między czasem poświęconym na ruch, a jego oceną



Rysunek: Rozkład czasu poświęconego na wykonanie posunięcia dla formatów "600+0" i "300+0" z dopasowanym rozkładem log-normalnym. Zestaw ruchów błędnych.

Piotr Rogula Pwr

#### Wnioski

- ▶ 95% gier kończy się w 57 ruchach
- błąd dla każdego elo dla każdego posunięcia zajmuje średnio dłużej, ma też zawsze większą wariancje
- wszystkie ruchy: lepsi gracze szybciej wykonują ruchy początkowe, dłużej te z największą szansą na błąd (ok 20)
- największa szansa na błąd okolice 20 ruchu
- odnośnie dwóch poprzednich, lepsi gracze najmniej popełniają błędów w okolicach 20 ruchu
- największa szansa na błąd różnice dla elo (dużo błędów na początku dla słabych graczy później się stabilizuje)



#### Wnioski

- ► lepsi gracze DŁUŻEJ wykonują ruchy BŁĘDNE
- różnice między formatami w 600+0 ruchy zajmują nieliniowo więcej czasu, w 300+0 gracze są zmuszeni szybko wykonywać ruchy późniejsze.
- ▶ 10 pierwszych ruchów, istotna różnica w popełnieniu rażącego błędu między graczami słabymi a dobrymi

#### Dalsza praca

- stworzenie odpowiedniej miary i wzięcie pod uwagę poziomu skomplikowania pozycji
  - potrzebna dużo większa moc obliczeniowa
- stworzenie odpowiedniej miary do określania błędów (innej niż Stockfish)
  - sprawdzenie zgodności wyników
  - potrzebna dużo większa moc obliczeniowa



## Pytania?

całość pracy dostępna pod adresem:
https://github.com/rogulforce/Chess

