<u>definition</u> let G act on X. a block is a nonempty subset $B \subseteq X$ such that the different gB are disjoint. that is, $\forall g \in G$ either gB = B or $gB \cap B = \emptyset$. the trivial blocks are the singletons as well as the whole X.

exercise if G acts doubly transitive on X then it is has no non-trivial blocks

<u>exercise</u> let G act on X with no non-trivial blocks, and let $N \subseteq G$ be a normal subgroup. then either N acts trivially on X or N acts transitively on X.

theorem [Iwasawa] let G be a perfect group acting faithfully and transitively on X with no non-trivial blocks. suppose there exists a point x_0 with stabilizer H such that there exists a soluble normal subgroup $K \subseteq H$ for which $\bigcup_{g \in G} gKg^{-1}$ generates G, then G is simple.

proof let $\{id\} \neq N \leq G$. we have $NK \leq NH$, but the exercise tells us that N acts transitively on X, so that NH = G. it follows that the generating set $\bigcup_{g \in G} gKg^{-1}$ lies inside NK, meaning NK = G. finally, if $K^{(r)} = \{id\}$ is trivial then $G = G^{(r)} = (NK)^{(r)} \subseteq NK^{(r)} = N$.