Álgebra Linear Aula 13

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Produto Interno entre Vetores

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . O produto interno entre \overrightarrow{u} e \overrightarrow{v} é definido como

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||u|| ||v|| \cos \theta = u_1 v_1 + \dots + u_n v_n.$$

Calcule

- 1. $(1,1) \cdot (1,-1)$;
- 2. $(1,2) \cdot (-1,-2)$
- 3. $(1,2) \cdot \alpha(1,2)$ para um escalar $\alpha \neq 0$.

Teorema (3.2.2)

Sejam $\overrightarrow{u},\overrightarrow{v}$ e \overrightarrow{w} vetores em \mathbb{R}^n e α um escalar.

- 1. $||v|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}};$
- 2. $\overrightarrow{v} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{v}$;
- 3. $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w};$
- 4. $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = (\alpha \overrightarrow{u}) \cdot \overrightarrow{v}$;
- 5. $\overrightarrow{v} \cdot \overrightarrow{v} \ge 0$, sendo $\overrightarrow{v} \cdot \overrightarrow{v} = 0$ se e somente se $\overrightarrow{v} = \overrightarrow{0}$.

Ângulo entre vetores

Dados vetores \overrightarrow{u} e \overrightarrow{v} em \mathbb{R}^n , se

$$-\|\overrightarrow{u}\|\|\overrightarrow{v}\| \leq \overrightarrow{u} \cdot \overrightarrow{v} \leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|$$

então ângulo θ entre \overrightarrow{u} e \overrightarrow{v} pode ser calculado como

$$\theta = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}\right).$$

Ângulo entre vetores

Dados vetores \overrightarrow{u} e \overrightarrow{v} em \mathbb{R}^n , se

$$-\|\overrightarrow{u}\|\|\overrightarrow{v}\| \leq \overrightarrow{u} \cdot \overrightarrow{v} \leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|$$

então ângulo θ entre \overrightarrow{u} e \overrightarrow{v} pode ser calculado como

$$\theta = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}\right).$$

Desigualdade de Cauchy-Schwarz

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . Temos que

$$|\overrightarrow{u}\cdot\overrightarrow{v}|\leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|.$$

Teorema (3.2.5)

Se $\overrightarrow{u},\overrightarrow{v}$ e \overrightarrow{w} forem vetores do \mathbb{R}^n então

Teorema (3.2.5)

Se $\overrightarrow{u}, \overrightarrow{v}$ e \overrightarrow{w} forem vetores do \mathbb{R}^n então

1.
$$\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$$
;

Teorema (3.2.5)

Se \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} forem vetores do \mathbb{R}^n então

- 1. $\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|;$ 2. $\operatorname{dist}(\overrightarrow{u}, \overrightarrow{v}) \le \operatorname{dist}(\overrightarrow{u}, \overrightarrow{w}) + \operatorname{dist}(\overrightarrow{w}, \overrightarrow{u}).$

Seja P um paralelogramo qualquer de quatro lados. Mostre que a soma dos quadrados das diagonais é igual a soma dos quadrados dos lados.

Seja P um paralelogramo qualquer de quatro lados. Mostre que a soma dos quadrados das diagonais é igual a soma dos quadrados dos lados.

Teorema (3.2.6)

Se \overrightarrow{u} e \overrightarrow{v} forem vetores em \mathbb{R}^n então

$$\|\overrightarrow{u}+\overrightarrow{v}\|^2+\|\overrightarrow{u}-\overrightarrow{v}\|^2=2(\|\overrightarrow{u}\|^2+\|\overrightarrow{v}\|^2).$$

Teorema (3.2.7)

Se \overrightarrow{u} e \overrightarrow{v} forem vetores em \mathbb{R}^n com o produto escalar, então

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{4} ||\overrightarrow{u} + \overrightarrow{v}||^2 - \frac{1}{4} ||\overrightarrow{u} - \overrightarrow{v}||^2.$$

Produto Escalar vs Produto de Matrizes

Forma \overrightarrow{u}	Forma \overrightarrow{v}	Produto Escalar $\overrightarrow{u}\cdot\overrightarrow{v}$
Coluna	Coluna	$\overrightarrow{u}^T\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}$
Coluna	Linha	$\overrightarrow{u}^T\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}$
Linha	Coluna	$\overrightarrow{u}\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}^T$
Linha	Linha	$\overrightarrow{u}\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}^T$

Produto Escalar vs Produto de Matrizes

Forma \overrightarrow{u}	Forma \overrightarrow{v}	Produto Escalar $\overrightarrow{u}\cdot\overrightarrow{v}$
Coluna	Coluna	$\overrightarrow{u}^T\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}$
Coluna	Linha	$\overrightarrow{u}^T\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}$
Linha	Coluna	$\overrightarrow{u}\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}^T$
Linha	Linha	$\overrightarrow{u}\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}^T$

Proposição

Assumindo \overrightarrow{u} e \overrightarrow{v} como vetores coluna em \mathbb{R}^b temos para toda matriz quadrada A de tamanho n

$$A\overrightarrow{u}\cdot\overrightarrow{v}=\overrightarrow{u}\cdot A^T\overrightarrow{v};$$

Produto de Matrizes

Sejam A uma matriz quadrada de tamanho n com vetores linhas $\overrightarrow{a}_1,\ldots,\overrightarrow{a}_n$ e B uma matriz quadrada de tamanho n com vetores colunas $\overrightarrow{b}_1,\ldots,\overrightarrow{b}_n$ temos

$$AB = \begin{bmatrix} \overrightarrow{a}_1 \cdot \overrightarrow{b}_1 & \overrightarrow{a}_1 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_1 \cdot \overrightarrow{b}_n \\ \overrightarrow{a}_2 \cdot \overrightarrow{b}_1 & \overrightarrow{a}_2 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_2 \cdot \overrightarrow{b}_n \\ \vdots & \vdots & & \vdots \\ \overrightarrow{a}_n \cdot \overrightarrow{b}_n & \overrightarrow{a}_2 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_n \cdot \overrightarrow{b}_n \end{bmatrix}$$

Vamos falar de ortogonalidade

Ortogonalidade

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . Dizemos que \overrightarrow{u} é ortogonal(ou perpendicular) a \overrightarrow{v} se $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Vamos falar de ortogonalidade

Ortogonalidade

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . Dizemos que \overrightarrow{u} é ortogonal(ou perpendicular) a \overrightarrow{v} se $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Conjunto Ortogonal

Um conjunto de vetores em \mathbb{R}^n é chamado ortogonal se quaisquer dois vetores deste conjunto são ortogonais entre si.

Vamos falar de ortogonalidade

Ortogonalidade

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . Dizemos que \overrightarrow{u} é ortogonal(ou perpendicular) a \overrightarrow{v} se $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Conjunto Ortogonal

Um conjunto de vetores em \mathbb{R}^n é chamado ortogonal se quaisquer dois vetores deste conjunto são ortogonais entre si.

Conjunto Ortonormal

Um conjunto de vetores em \mathbb{R}^n é ortonormal se é ortogonal e todos os elementos desse conjunto são unitários.

- O que precisamos para definir uma reta em \mathbb{R}^2 .
 - 1. Dois pontos distintos em \mathbb{R}^2 ;

O que precisamos para definir uma reta em \mathbb{R}^2 .

- 1. Dois pontos distintos em \mathbb{R}^2 ;
- 2. Coeficiente angular entre a reta e o eixo x e um ponto;

O que precisamos para definir uma reta em \mathbb{R}^2 .

- 1. Dois pontos distintos em \mathbb{R}^2 ;
- 2. Coeficiente angular entre a reta e o eixo x e um ponto;
- 3. Um ponto e um vetor ortogonal a reta.

Vetor normal a reta/plano/hiperplano

Um vetor \overrightarrow{n} é normal a reta/plano/hiperplano se ele é ortogonal a reta/plano/hiperplano. Em outras palavras, dado P_0 um ponto da reta/plano/hiperplano temos sua equação da forma

$$\overrightarrow{n} \cdot \overrightarrow{P_0P} = 0.$$

Vetor normal a reta/plano/hiperplano

Um vetor \overrightarrow{n} é normal a reta/plano/hiperplano se ele é ortogonal a reta/plano/hiperplano. Em outras palavras, dado P_0 um ponto da reta/plano/hiperplano temos sua equação da forma

$$\overrightarrow{n} \cdot \overrightarrow{P_0P} = 0.$$

Exemplo 1

Calcule um vetor ortogonal a reta ax+by=0 e a reta ax+by+c=0 onde $a,b,c\neq 0$.

Teorema (3.3.1)

1. Se a e b são constantes não nulas então uma equação da forma

$$ax + by + c = 0$$

representa uma reta em \mathbb{R}^2 de normal $\overrightarrow{n} = \overrightarrow{(a,b)}$;

2. Se a,b e c são constantes não nulas então uma equação da forma

$$ax + by + cz + d = 0$$

representa um plano em \mathbb{R}^3 de normal $\overrightarrow{n} = \overrightarrow{(a,b,c)}$;

Equações vetoriais

Se \overrightarrow{n} é um vetor de coeficientes e \overrightarrow{x} um vetor de variáveis em \mathbb{R}^n temos que

$$\overrightarrow{n} \cdot \overrightarrow{x} = 0$$

é a forma vetorial de um hiperplano.

Escreva o vetor $\overrightarrow{v}=(5,3)$ como soma de múltiplos dos vetores $\overrightarrow{i}=(1,0)$ e $\overrightarrow{j}=(0,1)$.

Escreva o vetor $\overrightarrow{v}=(5,3)$ como soma de múltiplos dos vetores $\overrightarrow{u}=(2,1)$ e um vetor ortogonal a \overrightarrow{u} .

Escreva o vetor $\overrightarrow{v}=(v_1,v_2)$ como soma de múltiplos dos vetores $\overrightarrow{u}=(u_1,u_2)$ e um vetor ortogonal a \overrightarrow{u} .

Teorema 3.3.2

Se \overrightarrow{a} e \overrightarrow{u} forem vetores de \mathbb{R}^n , com $\overrightarrow{a} \neq \overrightarrow{0}$, então \overrightarrow{u} pode ser escrito de maneira única na forma $\overrightarrow{u} = \overrightarrow{w_1} + \overrightarrow{w_2}$ onde w_1 é um múltiplo de \overrightarrow{a} e \overrightarrow{w}_2 é ortogonal a \overrightarrow{a} .