Outils mathématiques fondamentaux

TD N°2 - Calcul matriciel

Exercice 1

On note A la matrice de $\mathcal{M}_{3\times 4}$ définie par $a_{ij}=\max(i,j)$. Écrire explicitement la matrice A, puis calculer $\sum_{i=1}^3 a_{i,2}$, $\prod_{j=2}^4 a_{3,j}$ et $\sum_{i=1}^3 a_{i,i+1}$.

Exercice 2

On note A la matrice de $\mathcal{M}_{3\times 4}$ définie par $a_{ij}=|i-j|$. Écrire explicitement la matrice A, puis calculer $\sum_{i=1}^3 a_{i,2}$,

$$\sum_{j=2}^{4} a_{3,j} \text{ et } \prod_{i=1}^{3} a_{i,i+1}.$$

Exercice 3

On note A la matrice de $\mathcal{M}_{3\times4}$ définie par

$$a_{i,j} = \begin{cases} 0 \text{ si } i < j \\ (-1)^j \text{ si } i = j \\ i + j \text{ sinon.} \end{cases}.$$

Écrire explicitement la matrice A, puis calculer $\sum_{i=1}^3 a_{i,3}$, $\sum_{j=2}^4 a_{2,j}$ et $\sum_{j=2}^4 a_{j-1,j}$.

Exercice 4 (*)

On note $A=(a_{i,j})\in \mathcal{M}_{n imes n}$ la matrice carrée telle que

$$(\forall i = 1, ..., n), (\forall j = 1, ..., n), \quad m_{i,j} = 1 + (-1)^i + (-1)^j.$$

Écrire explicitement M pour n=4, puis calculer pour n quelconque les quantités

$$\sum_{i=1}^{n} m_{i,i}, \qquad \sum_{i=1}^{n} m_{n+1-i,i}$$

Exercice 5 (**)

On note $A=(a_{i,j})\in\mathcal{M}_{n\times n}$ la matrice carrée telle que

$$(\forall i = 1, ..., n), (\forall j = 1, ..., n), a_{i,j} = n(i-1) + j.$$

Expliciter A pour n=4 et n=5, puis calculer pour n quelconque, les quantités :

$$\sum_{i=1}^{n} a_{i,3}, \quad \prod_{i=1}^{n} a_{i,n}, \quad \sum_{i=1}^{n} a_{i,n+1-i}.$$

Exercice 6

On donne les matrices suivantes :

$$A = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} -4 & 4 \\ 0 & 0 \\ -1 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

Pour les produits suivants, préciser s'ils sont bien définis (c'est–à–dire s'ils existent) ou pas. Pour ceux qui sont bien définis, préciser la dimension de la matrice produit.

$$AB$$
, BA , AC , DC , C^2 , $(DC)^2$, $(BC)^2$.

Exercice 7

On donne les matrices suivantes

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad D = \begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$$

Calculer la somme A+B, puis les produits matriciels $D\,A$, $D\,B$ et $D\,C$.

Exercice 8 (*)

On donne les matrices :

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 3 & 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \text{et} \qquad C = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

Calculer les produits $(A\,B)$ et $(A\,C)$ et en déduire sans calcul supplémentaire que le produit $A\,(B-C)$ est égal à la matrice nulle ${\bf 0}_{3\times 3}$

Exercice 9 (**)

On considère les deux matrices carrées de taille $n \times n$ notées U et L telles que :

$$u_{ij} = \begin{cases} i & \text{si } j \ge i \\ 0 & \text{sinon} \end{cases} \qquad l_{ij} = \begin{cases} j & \text{si } j \le i \\ 0 & \text{sinon} \end{cases}$$

Calculer le produit UL en fonction de n.

Exercice 10

On considère les 4 matrices de $\mathcal{M}_{2\times 2}$ suivantes :

$$\mathbf{Id}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad S_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad S_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad S_O = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

1. Compléter les tableau suivant avec les produits :

2. Déduire de ce tableau les inverses des quatre matrices (on ne fera pas de calcul supplémentaire).

Exercice 11 (*)

Soit la matrice

$$A = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} .$$

- 1. Calculer A^2 , A^3 , A^4 et en déduire A^5 , A^6 , A^7 , A^8 .
- 2. Les matrices précédentes sont elles inversibles? Si oui, calculer leurs inverses.

Exercice 12 (*)

On considère la matrice suivante :

$$A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_{2 \times 2} \,,$$

2

où $x, y, z, t \in \mathbb{R}$.

1. Déterminer les valeurs de $x,y,z,t\in\mathbb{R}$ pour que

$$A \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ et } A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} .$$

2. En déduire l'inverse de la matrice

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} .$$

Exercice 13

On note M la matrice :

$$M = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$$

- 1. Calculer M^2 et montrer que $M^2 = 2M + \mathbf{1}_2$.
- 2. Déduire de la question précédente que ${\cal M}$ est inversible et donner son inverse.

Exercice 14

Pour $a \in \mathbb{R}$, on note M(a) la matrice dépendant de a

$$M(a) = \begin{pmatrix} -2 & a \\ 0 & 1 \end{pmatrix} .$$

- 1. Calculer $B(a) = [M(a) \mathbf{1}_2][M(a) + 2\mathbf{1}_2]$ en développant le produit.
- 2. Montrer que $B(a) = M(a)^2 + M(a) 2\mathbf{1}_2$ et en déduire l'inverse de M(a).

Exercice 15 (*)

On considère la matrice de $\mathcal{M}_{2 \times 2}$ suivante :

$$Q = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} .$$

On pose aussi $R = \frac{1}{2} Q$.

- 1. Calculer Q^2 et Q^3 . En déduire R^2 et R^3 .
- 2. En déduire sans calcul que R et \mathbb{R}^2 sont inversibles et donner leurs inverses.

Exercice 16 (*)

On considère la matrice suivante :

$$N = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \in \mathcal{M}_{3 \times 3}).$$

- 1. Calculer N^2 , N^3 et N^4 .
- 2. Calculer $(\mathbf{Id}_3 + N)(\mathbf{Id}_3 N + N^2)$. En déduire que $\mathbf{Id}_3 + N$ est inversible, et donner son inverse.

Exercice 17 (*)

On note A la matrice

$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix} .$$

3

1. Calculer A^2 et A^3 et établir une relation entre A et A^3 .

2. À l'aide de la question précédente, déterminer une matrice $B \in \mathcal{M}_{3\times 3}$ distincte de la matrice nulle, telle que $BA = \mathbf{0}_{3\times 3}$.

Exercice 18 (**)

Pour $x \in \mathbb{R}$, on note M(x) la matrice

$$M(x) = \begin{pmatrix} 1 & 0 & x \\ -x & 1 & \frac{-x^2}{2} \\ 0 & 0 & 1 \end{pmatrix} .$$

- 1. Écrire M(0), puis $M(-x_0)$ pour un réel x_0 donné.
- 2. Pour $(x,y) \in \mathbb{R}^2$, calculer M(x) M(y).
- 3. Déduire des calculs précédents que M(x) est inversible et calculer son inverse.
- 4. Déduire des calculs précédents la forme générale de $M^n(x)$ pour $n\geq 1$, et la démontrer par récurrence

Exercice 19

Utiliser l'algorithme de Gauss pour calculer l'inverse, si elle existe de la matrice $A = \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix}$.

Exercice 20 (*)

Utiliser l'algorithme de Gauss pour calculer l'inverse, si elle existe de la matrice $A = \begin{pmatrix} 2 & -4 & -2 \\ 1 & 1 & 1 \\ -1 & -4 & -1 \end{pmatrix}$.

Exercice 21 (*)

Utiliser l'algorithme de Gauss pour calculer l'inverse, si elle existe de la matrice $A \begin{pmatrix} -1 & -2 & 1 \\ 4 & 6 & -2 \\ 4 & 8 & -2 \end{pmatrix}$.

Exercice 22 (**)

On donne la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ a & 1 & a - 1 \\ 1 & a & 1 \end{pmatrix}$$

Déterminer les valeurs de a pour lesquelles la matrice A est inversible et calculer son inverse par l'algorithme de Gauss.

Exercice 23 (**)

On veut étudier la suite de Fibonacci $(u_n)_{n\in\mathbb{N}}$, définie par

$$\begin{cases} u_0 = u_1 = 1 \\ \forall n \ge 2, & u_n = u_{n-1} + u_{n-2}. \end{cases}$$

- 1. Calculer les premiers termes de la suite, jusqu'à u_8 .
- 2. Pour tout $n \geq 0$, on note U_n le vecteur

$$U_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} \in \mathcal{M}_{2 \times 1}$$
.

Déterminer la matrice $A \in \mathcal{M}_{2\times 2}$ (dont les coefficients ne dépendent pas de n) telle que

$$\forall n \geq 0, \qquad A U_n = U_{n+1}.$$

- 3. Pour tout $n\geq 0$, montrer que $A^n\,U_0=U_n.$
- 4. Montrer que le système d'inconnue $x \in \mathbb{R}$:

$$A \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} x^2 \\ x \end{pmatrix}$$

a exactement deux solutions, notées $\Phi=\frac{1+\sqrt{5}}{2}$ et $\Phi'=\frac{1-\sqrt{5}}{2}.$

5. Montrer que les matrices

$$B = \begin{pmatrix} \Phi & \Phi' \\ 1 & 1 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & -\Phi' \\ -1 & \Phi \end{pmatrix}$$

sont inverses l'une de l'autre.

6. Pour tout $n \ge 0$, montrer que

$$A^n = B \begin{pmatrix} \Phi^n & 0 \\ 0 & \Phi'^n \end{pmatrix} C.$$

7. En déduire que

$$\forall n \ge 0, \qquad u_n = \Phi^n (1 - \Phi') + \Phi'^n (\Phi - 1).$$