Computer Intensive Methods Presentation 1

Jorriet Marc¹(), Olusoji Oluwafemi¹(1541893), ¹Orlowski Robert¹(1541889), Owokotomo Olajumoke Evangelina¹(1539654)

October 14, 2016

¹Center for Statistics and Biostatistics, Universiteit Hasselt, Agoralaan D, 3590, Diepenbeek, Belgium.

Table of Contents

Question 3

Nonparametric Bootstrap Approximation Parametric Bootstrap Probability of High Risk Stopping Distance

Question 4

Computing Odds Ratio Bootstrap Approach

Appendix

Exploration & Bootstrap Algorithm (Nonparametric)

Histogram of distance

- i Draw B=5000,50000,100000 from the data (stopping distance) with replacement
- ii Compute statistic of interest(maximum) from each bootstrap sample(bootstrap replicates)
- iii Approximate $se(\hat{\theta})$ by the sample standard deviation of bootstrap replicates.

Results, Problem & Remedies

Results

Replicates	5000	50000	100000
SError	13.75	13.74	13.77

Table: Standard Error estimates

Problems and Remedy

- Discrete not continuous distribution observed (see Appendix graph)
- Poor approximation of the distribution of maximum (Bickel, Gotze, and van Zwet (1997)) but standard error still appropriately computed.
- Remedy includes m out of n bootstrapp (Bickel, Gotze, and van Zwet (1997)) and Semiparametric bootstrapp (Zelterman (1993)).

Bootstrap Algorithm (Parametric)

Candidate distributions based on extreme value theories include;

- i Gumbel
- ii Weibull
- iii Generalized extreme value distribution (GEV)

- i Draw B = 5000, 50000, 100000 from a distribution that best summarizes(weibull) the data with parameters replaced with their plugin estimates(1.7239251, 48.1481931)
- ii Compute statistic of interest(maximum) from each bootstrap sample(bootstrap replicates)
- iii Approximate $se(\hat{\theta})$ by the sample standard deviation of bootstrap replicates.

Question of the best distribution to assume

	Gumbel	Weibull	GEV
AIC	462.72	461.47	464.72

Table: AIC values of Candidate distributions

Results & Comarison

Results

Replicates	5000	50000	100000
SError	17.9	18.25	18.24

Table: Standard Error estimates

Comparison & Discussions

- i Continuous and not discrete distribution observed.
- ii Standard error computed larger than that of the semi-parametric bootstrapp.
- iii This is partly because of the distribution used.

Bootstrap Algorithm (Non-Parametric) & Results

Algorithm

- i Draw B = 5000, 50000, 100000from the data (stopping distance) with replacement
- ii Compute probability of interest $P(distance > 65ft) = \frac{\#(distance > 65)}{n}$ from each bootstrap sample (bootstrap replicates)
- iii Approximate P(distance > 65ft) by the mean of bootstrap replicates.

Results

Replicates	5000	50000	100000
Prob.	0.2	0.2	0.2

Table: Standard Error estimates

Odds Ratio and Confidence Interval

Aspirin.1

Treatment

Results

- i Observation unit are
- ii Odds ratio is 1.83(1.44,2.33)
- iii The odds of.....

Bootstrap Algorithm and Results

Bootstrap t Algorithm

- i Draw B = 5000 and 50000 bootstrap samples from the data and compute $Z^* = \frac{\hat{\theta}^* \hat{\theta}}{se(\hat{\theta}^*)}$, where $\hat{\theta}^*$ is the bootstrap log-odds and $se(\hat{\theta}^*)$ is the corresponding bootstrap standard error.
- ii Note that pairs are sampled
- iii obtain quantiles of the replicate Z^*
- iv Compute $(\hat{\theta} \hat{t}_{1-\alpha}se(\hat{\theta}), \hat{\theta} + \hat{t}_{\alpha}se(\hat{\theta}))$, where $\hat{\theta}$ is the estimated log odds ratio and $se(\hat{\theta})$ is the estimated standard error of the odds ratio.

Results

Replicates	5000	50000
Quantiles	-2.01, 1.99	-1.97, 1.93
CI	1.43,2.34	1.44,2.32
Coverage	0.95	0.95

Table: Bootstrap Quantiles and Confidence Intervals

Note that this version of bootstrap is not transformation invariant. Hence building confidence interval for the log-odds without transforming is a better option.

Percental Interval(PI)

Percentile Interval Algorithm

- i Draw B = 5000 and 50000 bootstrap samples from the data with replacement
- ii Compute bootstrap replicates (odds ratio).
- iii obtain quantiles of the replicates.

Results

Replicates	5000	50000
CI	1.43,2.37	1.45,2.34
Coverage	0.95	0.95

Table: Confidence Intervals

Distribution of Bootstrap Replicates (Non Parametric)

Distribution of Bootstrap Replicates (Parametric)

1e+05 replicates

Distribution of Bootstrap Replicates (Probability)

Distribution of Bootstrap Replicates (Odds Ratio)

