## Termodinâmica

#### Aula 3 — Equação de van der Waals

Prof. Diego J. Raposo

Universidade de Pernambuco, Escola Politécnica de Pernambuco (UPE-POLI)

Semestre 2025.1

#### Construindo a equação

# Limitações da equação dos gases ideais

- A equação dos gases ideais não representa adequadamente gases em todas as condições de temperatura e pressão;
- Particularmente, ela ignora outros estados de agregação da matéria (fases) e transições entre esses estados, mesmo no caso mais simples de substâncias puras.



- ► Em 1873, em sua tese de doutorado, van der Waals propôs uma forma de corrigir a equação dos gases ideais para além do regime de alta *T* e baixa *p*. Isso permitiu:
  - Entender como a não-idealidade se reflete em V e em p (papel das interações entre partículas);
  - Prever, pela primeira vez, as transições de fase líquido-vapor (propriedade comum à equações de estado cúbicas) e, com a construção de Maxwell, as temperaturas de coexistência entre essas fases;
  - Identificou a presença do ponto crítico, com p<sub>c</sub>, T<sub>c</sub> e V<sub>c</sub> característico para cada gás. Para T > T<sub>c</sub> não existe mais transição, apenas um único fluido (supercrítico);
  - ► Em 1880 propôs a lei dos estados correspondentes, unificando as relações entre fluidos e seus pontos críticos.



Johannes Diderik van der Waals (1837 – 1923)

# Correção no volume

O volume do recipiente (V) é igual ao volume acessível a partículas pontuais. Porém, se as partículas possuem volume, V é igual a soma do volume que as partículas podem ocupar (V<sub>corr</sub>) mais o chamado volume excluido, b', que é a soma dos volumes das partículas confinadas. Assim:

$$V = V_{corr} + b' \Rightarrow V_{corr} = V - b' \Rightarrow \overline{V}_{corr} = \overline{V} - b$$
 (1)

► Tal fator, em termos microscópicos, se deve à repulsão entre nuvens eletrônicas das partículas do gás entre si e com as paredes do recipiente.

colisões entre partículas

colisões de partículas com parede









permitido

proibido

permitido

proibido

# Correção na pressão

A pressão do gás em um recipiente (p) é a pressão exercida pelas colisões das partículas com a parede menos uma pressão interna  $(p_{\rm int})$ , que é tão maior quanto mais fortes as interações entre as partículas. Essa pressão interna (parâmetro termodinâmico importante que veremos novamente) é proporcional ao número de colisões entre as partículas por unidade de volume em um certo intervalo de tempo. Portanto, ela é proporcionao à  $c^2$  ou, analogamente, a  $1/\overline{V}^2$ 

$$p = p_{\text{corr}} - p_{\text{int}} \Rightarrow p_{\text{corr}} = p + p_{\text{int}} = p + ac^2 = p + \frac{a}{\overline{V}^2}$$
 (2)





sem interações: pressão maior

com interações: pressão menor

# Equação final

Agora podemos unir essas correções em uma única equação, ajustada para compensar a não-idealidade de um gás real, numa forma similar a equação dos gases ideais:

$$p_{\text{corr}}\overline{V}_{\text{corr}} = \left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT$$
 (3)

- ▶ Quanto maior o a, mais fortes são as atrações entre as partículas. Como  $a/\overline{V}^2$  deve ter unidade de pressão, a possui unidade de (pressão)(volume)/(mol). Ex.: L² bar mol<sup>-1</sup>;
- Quanto maior o b, mais volume cada uma delas ocupa. Ele possui unidades de volume molar, (volume)/(mol). Ex.: L mol<sup>-1</sup>;
- ▶ Para a e b suficientemente pequenos, restitui-se a equação dos gases ideais.

## Outras formas da equação de vdw

► Isolando a pressão: Para um gás com parâmetros a e b conhecidos, a pressão p pode ser facilmente determinada em função de T e V especificados:

$$\left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT \Rightarrow p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b}$$

$$p = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2} \tag{4}$$

▶ Isolando o volume: Para a e b conhecidos e T e p específicos, determinar V requer a resolução de uma equação cúbica:

$$p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b} \Rightarrow p(\overline{V} - b) + \frac{a(\overline{V} - b)}{\overline{V}^2} - RT = 0$$

$$p\overline{V} - bp + \frac{a}{\overline{V}} - \frac{ab}{\overline{V}^2} - RT = 0 \Rightarrow p\overline{V}^3 - bp\overline{V}^2 + a\overline{V} - ab - RT\overline{V}^2 = 0$$

$$\overline{V}^3 - b\overline{V}^2 + \frac{a\overline{V}}{p} - \frac{ab}{p} - \frac{RT\overline{V}^2}{p} = 0$$

$$\overline{V}^3 - \left(b + \frac{RT}{p}\right)\overline{V}^2 + \frac{a}{p}\overline{V} - \frac{ab}{p} = 0$$
(5)

Equação cuja resolução pode ser analítica ou numérica.

### Expansão virial da Eq. de vdw

$$\left(p + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT \Rightarrow p + \frac{a}{\overline{V}^2} = \frac{RT}{\overline{V} - b} = \frac{RT}{\overline{V}}\left(\frac{1}{1 - b/\overline{V}}\right)$$

$$\frac{1}{1 - x} = 1 + x + x^2 + \dots \left(x^2 < 1\right) \Rightarrow \frac{RT}{\overline{V}}\left[1 + \frac{b}{\overline{V}} + \left(\frac{b}{\overline{V}}\right)^2 + \dots\right] - \frac{a}{\overline{V}^2}$$

$$p = \frac{RT}{\overline{V}}\left[1 + \frac{b}{\overline{V}} + \left(\frac{b}{\overline{V}}\right)^2 + \dots - \frac{a}{\overline{V}RT}\right]$$

$$= \frac{RT}{\overline{V}}\left[1 + \frac{1}{\overline{V}}\left(b - \frac{a}{RT}\right) + \left(\frac{b}{\overline{V}}\right)^2 + \dots\right] \tag{6}$$

O comportamento de gás ideal ocorre quando  $p \to 0$ , o que está relacionado a um aumento do volume molar:  $\overline{V} \to \infty$ . Com isso, termos com elevada potência em  $\overline{V}$  tendem a zero mais rapidamente, e a equação  $p\overline{V} = RT$  é obedecida nesse limite.

### Fator de compressibilidade

► Uma maneira conveniente de estudar a não-idealidade de um gás é através da definição do fator de compressibilidade (≠ compressibilidade), Z:

$$Z \stackrel{\text{def}}{=} \frac{p\overline{V}}{RT} \tag{7}$$

Para um gás ideal Z=1 em qualquer valor de  $\overline{V}$  e T. Se trata-se de um gás não-ideal que segue a equação de van der Waals, tal fator é dado por:

$$Z = \frac{\overline{V}}{RT} \rho = \frac{\overline{V}}{RT} \left( \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2} \right)$$

$$Z = \frac{\overline{V}}{\overline{V} - b} - \frac{a}{\overline{V}RT}$$
(8)

▶ O comportamento de gás ideal pode ser claramente observado nas condições adequadas ( $p \to 0$  e  $T \to \infty$ ) a partir do fator de compressibilidade. A partir da forma convencional da Eq. de vdw:

$$\left(p + \frac{a}{\overline{V}^2}\right)(\overline{V} - b) = RT \Rightarrow \left(\frac{p}{RT} + \frac{a}{\overline{V}^2 RT}\right)(\overline{V} - b) = 1$$

$$Z + \frac{a}{\overline{V}RT} - \frac{bp}{RT} - \frac{ab}{\overline{V}^2 RT} = 1 \Rightarrow \frac{p\overline{V}}{RT} + \frac{a}{\overline{V}RT} - \frac{bp}{RT} - \frac{ab}{\overline{V}^2 RT} = 1$$

$$Z = 1 + \frac{bp}{RT} - \frac{a}{\overline{V}RT} + \frac{ab}{\overline{V}^2 RT} \qquad (9)$$

- ▶ Quando  $p \to 0$ , o segundo termo (bp/RT) tende a zero, e como nessas condições  $\overline{V} \to \infty$ , os outros termos a direita também, e Z=1 nesse limite.
- ▶ Se, por outro lado,  $T \to \infty$ , todos os termos que dependem dela tendem a zero, e Z = 1 também.

#### **Propriedades**

#### Ponto crítico

▶ Acima de certa pressão não é possível converter líquido em gás ou vice-versa. Se aumentarmos p e T de um gás nas curvas de equilíbrio dessas fases no diagrama de fases, a separação entre elas se desfaz para p > pc e T > Tc. Obtem-se então um fluido supercrítico.



▶ O ponto crítico pode ser identificado na equação de estado de van der Waals: elaboramos um gráfico  $p - \overline{V}$  com T constante (isoterma p - V). p é uma função cúbica de  $\overline{V}$  com T raízes reais caso  $T < T_c$ . Em  $T = T_c$  elas se unem em uma única raiz, um ponto de inflexão único, de modo que  $p = p_c$  e  $\overline{V} = \overline{V}_c$  é obtida diretamente. Para  $T > T_c$  não há raízes reais, e o comportamento de fluido segue isotermas similares às de um gás ideal.





▶ É possível usar o fato de que na temperatura crítica há um ponto de inflexão, de modo que:

$$\left(\frac{\partial p}{\partial \overline{V}}\right)_T = 0$$
 e  $\left(\frac{\partial^2 p}{\partial \overline{V}^2}\right)_T = 0$  (10)

- ► E assim se obtem uma forma de relacionar os parâmetros a e b com as propriedades críticas medidas experimentalmente;
- Uma maneira mais simples é reconhecer que, no ponto crítico, a equação geral:

$$\overline{V}^3 - \left(b + \frac{RT}{p}\right)\overline{V}^2 + \frac{a}{p}\overline{V} - \frac{ab}{p} = 0$$

que originalmente possui 3 raízes,  $\overline{V}_1$ ,  $\overline{V}_2$  e  $\overline{V}_3$  tais que:

$$(\overline{V} - \overline{V}_1)(\overline{V} - \overline{V}_2)(\overline{V} - \overline{V}_3) = 0$$

Passa a possuir apenas uma raiz real,  $\overline{V} = \overline{V}_{c}$ :

$$(\overline{V} - \overline{V}_{c})^{3} = (\overline{V} - \overline{V}_{c})(\overline{V}^{2} - 2\overline{V}\overline{V}_{c} + \overline{V}_{c}^{2})$$

$$\overline{V}^3 - 2\overline{V}^2\overline{V}_c + \overline{V}\overline{V}_c^2 - \overline{V}_c\overline{V}^2 + 2\overline{V}\overline{V}_c^2 - \overline{V}_c^3$$

$$\overline{V}^3 - 3\overline{V}_c\overline{V}^2 + 3\overline{V}_c^2\overline{V} - \overline{V}_c^3 = 0 \tag{11}$$

Identificando os termos com a equação original:

$$3\overline{V}_{c} = b + \frac{RT_{c}}{\rho_{c}} \tag{12}$$

$$3\overline{V}_{c}^{2} = \frac{a}{p_{c}} \tag{13}$$

$$\overline{V}_{c}^{2} = \frac{ab}{p_{c}} \tag{14}$$

Combinando a segunda e a terceira relação:

$$\frac{3\overline{V}_{c}^{2}}{\overline{V}_{c}^{3}} = \frac{a/(ab)}{p_{c}/p_{c}} = \frac{3}{\overline{V}_{c}} = \frac{1}{b}$$

$$\overline{V}_{c} = 3b \tag{15}$$

Usando tal resultado com a terceira relação:

$$\overline{V}_{c}^{3} = \frac{ab}{p_{c}} \Rightarrow (3b)^{3} = \frac{ab}{p_{c}}$$

$$p_{c} = \frac{a}{27b^{2}}$$
(16)

Unindo a primeira relação com as expressões para  $\overline{V}_{c}$  e  $p_{c}$ :

$$3\overline{V}_{c} = b + \frac{RT_{c}}{p_{c}} \Rightarrow T_{c} = \frac{p_{c}(3\overline{V}_{c} - b)}{R} \Rightarrow T_{c} = \frac{(9b - b)a}{27Rb^{2}}$$

$$T_{c} = \frac{8a}{27bR}$$
(17)

Como p<sub>c</sub>, T<sub>c</sub> e V̄<sub>c</sub> são dados experimentais, podemos obter a e b diretamente dessas propriedades (que originam os dados tabelados). Como são dois fatores, a e b, só precisamos de um par. Dado que p<sub>c</sub> e T<sub>c</sub> são obtidos com maior exatidão, então é comum usá-las. Combinando a equação para pressão e temperatura críticos em função desses parâmetros:

$$\frac{p_{c}}{T_{c}} = \frac{a/(27b^{2})}{8a/(27bR)}$$

$$b = \frac{RT_{c}}{8p_{c}}$$
(18)

Combinando a expressão da temperatura crítica com a anterior:

$$T_{c} = \frac{8a}{27bR} \Rightarrow T_{c} = \frac{8a}{27R} \cdot \frac{8p_{c}}{RT_{c}}$$

$$a = \frac{27(RT_{c})^{2}}{64p_{c}}$$
(19)

|                   |             |         |        |        | -            | -       |            |                  | -      |               |
|-------------------|-------------|---------|--------|--------|--------------|---------|------------|------------------|--------|---------------|
| Gas               |             | MW      | $T_c$  | $p_c$  | $V_c$        | $Z_{c}$ | a          | $\boldsymbol{b}$ | d      | $\phi_{\min}$ |
| Name              | formula     | (g/mol) | (K)    | (kPa)  | $(cm^3/mol)$ |         | $(eV Å^3)$ | $(Å^3)$          | (Å)    | (meV)         |
| Noble gases       |             |         |        |        |              |         |            |                  |        |               |
| Helium            | He          | 4.0030  | 5.1953 | 227.46 | 57           | 0.300   | 0.05956    | 39.418           | 3.4033 | 0.8657        |
| Neon              | Ne          | 20.183  | 44.490 | 2678.6 | 42           | 0.304   | 0.37090    | 28.665           | 3.0604 | 7.414         |
| Argon             | Ar          | 39.948  | 150.69 | 4863   | 75           | 0.291   | 2.344      | 53.48            | 3.768  | 25.11         |
| Krypton           | Kr          | 83.800  | 209.48 | 5525   | 91           | 0.289   | 3.987      | 65.43            | 4.030  | 34.91         |
| Xenon             | Xe          | 131.30  | 289.73 | 5842   | 118          | 0.286   | 7.212      | 85.59            | 4.407  | 48.28         |
| Diatomic gases    |             |         |        |        |              |         |            |                  |        |               |
| Hydrogen          | $H_2$       | 2.0160  | 33.140 | 1296.4 | 65           | 0.306   | 0.42521    | 44.117           | 3.5335 | 5.5223        |
| Hydrogen fluoride | HF          | 20.006  | 461.00 | 6480   | 69           | 0.117   | 16.46      | 122.8            | 4.970  | 76.82         |
| Nitrogen          | $N_2$       | 28.014  | 126.19 | 3390   | 90           | 0.291   | 2.358      | 64.24            | 4.005  | 21.03         |
| Carbon monoxide   | CO          | 28.010  | 132.86 | 3494   | 93           | 0.294   | 2.536      | 65.62            | 4.034  | 22.14         |
| Nitric Oxide      | NO          | 30.010  | 180.00 | 6480   | 58           | 0.251   | 2.510      | 47.94            | 3.633  | 29.99         |
| Oxygen            | $O_2$       | 32.000  | 154.58 | 5043   | 73           | 0.286   | 2.378      | 52.90            | 3.754  | 25.76         |
| Hydrogen chloride | HCl         | 36.461  | 324.70 | 8310   | 81           | 0.249   | 6.368      | 67.43            | 4.070  | 54.11         |
| Fluorine          | $F_2$       | 37.997  | 144.41 | 5172.4 | 66           | 0.284   | 2.024      | 48.184           | 3.6389 | 24.06         |
| Chlorine          | $Cl_2$      | 70.910  | 417.00 | 7991   | 123          | 0.284   | 10.92      | 90.06            | 4.482  | 69.49         |
| Polyatomic gases  |             |         |        |        |              |         |            |                  |        |               |
| Ammonia           | $NH_3$      | 17.031  | 405.56 | 11357  | 69.9         | 0.235   | 7.2692     | 61.629           | 3.9500 | 67.581        |
| Water             | $H_2O$      | 18.015  | 647.10 | 22060  | 56           | 0.230   | 9.5273     | 50.624           | 3.6993 | 107.83        |
| Carbon dioxide    | $CO_2$      | 44.010  | 304.13 | 7375   | 94           | 0.274   | 6.295      | 71.17            | 4.144  | 50.68         |
| Nitrous oxide     | $N_2O$      | 44.013  | 309.52 | 7245   | 97           | 0.273   | 6.637      | 73.73            | 4.193  | 51.58         |
| Carbon oxysulfide | COS         | 60.074  | 375.00 | 5880   | 137          | 0.258   | 12.00      | 110.1            | 4.792  | 62.49         |
| Alkanes           |             |         |        |        |              |         |            |                  |        |               |
| Methane           | $CH_4$      | 16.043  | 190.56 | 4600   | 99           | 0.287   | 3.962      | 71.49            | 4.150  | 31.75         |
| Ethane            | $C_2H_6$    | 30.070  | 305.36 | 4880   | 146          | 0.281   | 9.591      | 108.0            | 4.762  | 50.88         |
| Propane           | $C_3H_8$    | 44.097  | 369.9  | 4250   | 199          | 0.275   | 16.16      | 150.2            | 5.316  | 61.64         |
| Butane            | $C_4H_{10}$ | 55.124  | 425.2  | 3790   | 257          | 0.276   | 23.94      | 193.6            | 5.785  | 70.85         |
| Pentane           | $C_5H_{12}$ | 72.151  | 469.7  | 3370   | 310          | 0.268   | 32.86      | 240.5            | 6.219  | 78.27         |
| Hexane            | $C_6H_{14}$ | 86.178  | 507.5  | 3030   | 366          | 0.263   | 42.67      | 289.1            | 6.612  | 84.57         |
| Heptane           | $C_7H_{16}$ | 100.21  | 540.1  | 2740   | 428          | 0.261   | 53.44      | 340.2            | 6.981  | 90.00         |

# Princípio/Lei dos estados correspondentes

- Como os parâmetros a e b podem ser obtidos a partir de pc, Tc e Vc, van der Waals imaginou que seria possível escrever sua equação apenas em termos desses parâmetros críticos;
- Substituindo as equações  $a=3\overline{V}_c{}^2p_c$  e  $b=\overline{V}_c/3$  na equação de van der Waals (forma inicial):

$$\left(p + \frac{\mathsf{a}}{\overline{V}^2}\right)\left(\overline{V} - \mathsf{b}\right) = \mathsf{RT} \Rightarrow \left(p + \frac{3\overline{V}_\mathsf{c}^2 p_\mathsf{c}}{\overline{V}^2}\right)\left(\overline{V} - \frac{\overline{V}_\mathsf{c}}{3}\right) = \mathsf{RT}$$

▶ Multiplicando por  $1/(p_c\overline{V}_c) = (1/p_c)(1/\overline{V}_c)$ :

$$\left(\frac{p}{p_{c}} + \frac{3\overline{V}_{c}^{2}}{\overline{V}^{2}}\right)\left(\frac{\overline{V}}{\overline{V}_{c}} - \frac{1}{3}\right) = \frac{RT}{p_{c}\overline{V}_{c}}$$

Dado que em condições críticas podemos expressar tal equação como:

$$\left(\frac{p_{\rm c}}{p_{\rm c}} + \frac{3\overline{V}_{\rm c}^2}{\overline{V}_{\rm c}^2}\right) \left(\frac{\overline{V}_{\rm c}}{\overline{V}_{\rm c}} - \frac{1}{3}\right) = \frac{RT_{\rm c}}{p_{\rm c}\overline{V}_{\rm c}}$$

Conclui-se que:

$$(1+3)\left(1-\frac{1}{3}\right) = \frac{RT_{c}}{\rho_{c}\overline{V}_{c}} \Rightarrow \frac{RT_{c}}{\rho_{c}\overline{V}_{c}} = \frac{8}{3}$$

$$\rho_{c}\overline{V}_{c} = \frac{3}{8}RT_{c}$$
(20)

Equação que pode ser jogada novamente na que a originou:

$$\left(\frac{p}{p_{c}} + \frac{3\overline{V}_{c}^{2}}{\overline{V}^{2}}\right)\left(\frac{\overline{V}}{\overline{V}_{c}} - \frac{1}{3}\right) = \frac{RT}{p_{c}\overline{V}_{c}} = \frac{RT}{(3/8)RT_{c}}$$

Rearranjando-a:

$$\left[ \left( \frac{p}{p_c} \right) + \frac{3}{(\overline{V}/\overline{V}_c)^2} \right] \left[ \left( \frac{\overline{V}}{\overline{V}_c} \right) - \frac{1}{3} \right] = \frac{8}{3} \left( \frac{T}{T_c} \right)$$

Definindo a pressão, temperatura e volume molar reduzidos,  $p_R$ ,  $T_R$  e  $\overline{V}_R$ , respectivamente:

$$p_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{p}{p_{\mathsf{c}}} \qquad \overline{V}_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{\overline{V}}{\overline{V}_{\mathsf{c}}} \qquad T_{\mathsf{R}} \stackrel{\mathsf{def}}{=} \frac{T}{T_{\mathsf{c}}}$$
 (21)

Podemos obter a seguinte equação de estado:

$$\left(p_{\mathsf{R}} + \frac{3}{\overline{V}_{\mathsf{R}^2}}\right) \left(\overline{V}_{\mathsf{R}} - \frac{1}{3}\right) = RT_{\mathsf{R}} \tag{22}$$

Antes corrigimos o efeito da não-idealidade de um gás real para uma substância específica, com parâmetros a e b. Agora normalizamos a equação de van der Waals de modo a torná-la válida para qualquer substância: ela quantifica a relação do fluido com seu estado crítico, sendo universal. Ela depende, no entanto, da equação de estado escolhida para o gás.

- Como ela independe de a ou b, que são parâmetros a ou b, que são parâmetros relacionadas a gases específicos, ela é válida para quaisquer fluidos, especificamente gases. Ela implica que as relações entre variáveis de estado e o estado crítico (e seus parâmetros) se relacionam da mesma forma para todos os gases. Os gases possuem estados correspondentes entre si, ou em comum;
- ▶ Este procedimento reescreve a equação de van der Waals em termos de variáveis adimensionais apenas, e pode ser utilizado para outras equações de estado. Em particular, van der Waals aplicou sua equação e ajustou dados de p<sub>R</sub>, V<sub>R</sub> e T<sub>R</sub> para vários gases. Ele descobriu que a equação generalizada representava adequadamente o comportamento dos gases nas condições investigadas.
- ► Essa comparação teoria/experimento pode ser feita de várias formas. Uma delas é comparar parâmetros esperados com os observados. Por exemplo, o fator de compressibilidade no ponto crítico, Z<sub>c</sub>, é, segundo a equação de estado de van der Waals, igual a 3/8 = 0,375 (Eq. 20) e único para todo gás. Os experimento mostra que, apesar de um pouco inferior ao previsto (observa-se que Z<sub>c</sub> = 0,3), ele é essencialmente constante para diferentes gases.
- ▶ Outra forma relativamente comum de verificar a validade do procedimento é pela inspeção do gráfico de Z em função de p<sub>R</sub> para diferentes temperaturas (isotermas). Tal fator está relacionado à pressão reduzida segundo a equação:

$$Z = \frac{p\overline{V}}{RT} = \left(\frac{p}{p_{c}}\right) \cdot \left(\frac{V}{V_{c}}\right) \cdot \left(\frac{T_{c}}{T}\right) \cdot \frac{1}{R} \cdot \frac{p_{c}\overline{V}_{c}}{T_{c}}$$

$$\frac{p_{R}\overline{V}_{R}}{T_{R}} \cdot \frac{1}{R} \cdot RZ_{c} = Z_{c}\frac{p_{R}\overline{V}_{R}}{T_{R}}$$
(23)

► Conhecendo  $T_R$  e  $\overline{V}_R$ para qualquer gás, podemos obter  $p_R$  e, consequentemente, Z. Fazendo essas curvas nota-se que o comportamento é obedecido independente da substância investigada, dando suporte a lei dos estados correspondentes proporsta por van der Waals.



Esses gráficos são facilmente criados de maneira paramétrica: ao invés de obter as equações para Z em função de p (ou de p<sub>R</sub>), aproveita-se a dependencia de Z e de p com  $\overline{V}$ , e para um mesmo volume molar e temperatura plota-se Z vs. p em uma planilha.

#### Questão 3.1

Calcule a pressão (em bar) exercida por 1 mol de metano (CH<sub>4</sub>) que ocupa um recipiente de 250 mL à 0 °C. Para isso use os dados da tabela apresentada anteriormente, e compare seu resultado com o esperado caso o gás fosse ideal [modificar questão depois].

#### Questão 3.2

Use os dados críticos da tabela (slides) para obter os parâmetros de van der Waals para o etano [modificar questão depois].

#### Referências adicionais

- ▶ David C. Johnston Thermodynamic Properties of the van der Waals Fluid;
- Donald A. McQuarrie, John D. Simon Physical Chemistry: A Molecular Approach, 1997;
- ► Gilbert W. Castellan Physical Chemistry, 3a Edição, 1983.

# **Apêndices**

- ► Falar sobre influência de atrações/repulsões na inclinação inicial do fator de compressibilidade em função da pressão reduzida quando esta tende a zero;
- ► Apresentar temperatura de Boyle e, a partir dela, ao modelo do gás de esferas rígidas (sem atração, apenas com repulsão).