

Inteligência Artificial ao alcance de todos

www.escolalivre-ia.com.br

Conceitos de Bancos de Dados

Data Mart

OLAP

Conceitos Bases Relacionais

Nome: Jose Silva

Idade: 30

Renda: R\$ 7.501,50

Correntista?: Não

Dado é uma representação simbólica de uma entidade. Dados podem ser relacionados à qualquer objeto em consideração.

Ex: letras do alfabeto, números, desenhos, idade, altura, etc

Aluno

- Nome
- Data Nascimento
- Filiação
- · Endereço
- Telefone

Esquema BD

PARADIGMA TRANSACIONAL - ACID

No modelo relacional normalmente as transações devem ser atômicas, consistentes, isoladas e duráveis (**ACID**):

Atomicidade: Todas as modificações de uma transação devem ser executadas ou, caso contrário, nenhuma.

Consistência: A transação começa a ser executada em um estado válido (consistente) e termina em outro estado válido.

Isolamento: Duas ou mais transações simultâneas são executadas sem uma afetar a outra. Se as duas transações precisarem trabalhar sobre o mesmo dado, uma delas deverá esperar que a outra acabe.

Durabilidade: Garante que, uma vez realizada a transação, as mudanças ficarão armazenadas

INTEGRIDADE TRANSACIONAL

Uma transação é um conjunto de operações pertencentes a uma tarefa, realizadas sobre um banco de dados e representando uma mudança nos dados.

Exemplo de transação bancária

PASSO 1	PASSO 2	PASSO 3	
Verificar se há dinheiro suficiente na conta A	Subtrair R\$ 1.000 da conta A	Somar R\$ 1.000 à conta B	

- O que acontece se o processo falha entre os passos 2 e 3 (ou se apenas os passos 1e 2 são executados)?
- O que uma pessoa recebe quando quer consultar o Saldo entre os passos mencionados?

SGBDs Relacionais

BASES OLAP E OLTP

OLAP x OLTP

OLAP x OLTP

	OLAP	OLTP	
Foco	Foco no nível estratégico da organização. Visa a análise empresarial e tomada de decisão.	Foco no nível operacional da organização. Visa a execução operacional do negócio.	
Performance	Otimização para a leitura e geração de análises e relatórios gerenciais.	Alta velocidade na manipulação de dados operacionais, porém ineficiente para geração de análises gerenciais.	
Estrutura dos dados	Os dados estão estruturados na modelagem dimensional. Os dados normalmente possuem alto nível de sumarização.	Os dados são normalmente estruturados em um modelo relacional normalizado, otimizado para a utilização transacional. Os dados possuem alto nível de detalhes.	
Armazenamento	O armazenamento é feito em estruturas de <i>Data Warehous</i> e com otimização no desempenho em grandes volumes de dados.	O armazenamento é feito em sistemas convencionais de banco de dados através dos sistemas de informações da organização.	
Abrangência	È utilizado pelos gestores e analistas para a tomada de decisão.	É utilizado por técnicos e analistas e engloba vários usuários da organização.	
Frequência de atualização	A atualização das informações é feita no processo de carga dos dados. Frequência baixa, podendo ser diária, semanal, mensal ou anual (ou critério específico).	A atualização dos dados é feita no momento da transação. Frequência muito alta de atualizações.	
Volatilidade	Dados históricos e não voláteis. Os dados não sofrem alterações, salvo necessidades específicas (por motivos de erros ou inconsistências de informações).	Dados voláteis, passíveis de modificação e exclusão.	- (80)
Tipos de permissões nos dados	É permitido apenas a inserção e leitura. Sendo que para o usuário está apenas disponível a leitura.	Podem ser feito leitura, inserção, modificação e exclusão dos dados.	=

QUAIS AS DIFERENÇAS ENTRE DATA BASE, DATA MART, DATAWAREHOUSE E DATA LAKE

DATA BASE x DATA WAREHOUSE x DATA MART x DATA LAKE

DATA WAREHOUSE

O Data Warehouse (DW) consolida as informações de diversas bases de dados distintas, normalmente sendo utilizado para fins Informacionais (OLAP).

DATA MART

Data Marts (DM) são seleções de dados do Data Warehouse, normalmente gerados para uma área e/ou fim específico.

Data Lakes são utilizados em Big Data e se distinguem de Data Warehouses por não exigir uma estrutura (schema) definida no momento da gravação, somente na recuperação. São muito bons para gravar Dados não Estruturados e normalmente possuem uma capacidade muito grande de paralelização das tarefas.

ESTRUTURADOS X NÃO ESTRUTURADOS

0.103 0.176 0.387 0.300 0.379 0.333 0.384 0.564 0.587 0.857 0.421 0.309 0.654 0.729 0.228 0.266 0.750 1.056 0.936 0.911 0.225 0.326 0.643 0.337 0.721 0.187 0.586 0.529 0.340 0.829 0.153 0.485 0.560 0.428 0.628

BIG DATA

DATA LAKE

NO-SQL DATABASES

NoSQL Not Only SQL

What is NoSQL Database

SCHEMA ON WRITE x ON READ

@luminousmen.com

ACID x BASE

TIPOS BASES DE DADOS

SQL Database

NoSQL Database

Column-Family

Schema on-Read

Graph

Document

Key-Value

DB-Engines

NOSQL – KEY-VALUE

NO-SQL - KEY-VALUE

NOSQL – DOCUMENT BASED

Document 1

```
{
    "id": "1",
    "name": "John Smith",
    "isActive": true,
    "dob": "1964-30-08"
}
```

Document 2

```
{
  "id": "2",
  "fullName": "Sarah Jones",
  "isActive": false,
  "dob": "2002-02-18"
}
```

Document 3

```
"id": "3",
"fullName":
 "first": "Adam",
 "last": "Stark"
"isActive": true,
"dob": "2015-04-19"
```

NOSQL - DOCUMENT BASED

```
<Document>
Key
             "customerid": "fc986e48ca6"
             "customer":
             "firstname": "Pramod",
             "lastname": "Sadalage",
             "company": "ThoughtWorks"
             "likes": [ "Biking", "Photography" ]
             "billingaddress":
             { "state": "AK",
                 "city": "DILLINGHAM",
                 "type": "R"
```


NO-SQL - COLUMN BASED

http://www.informit.com/articles/article.aspx?p=2266741

NOSQL – GRAPH Graph Database

NOSQL - GRAPH

The #1 Database for Connected Data

Obs: o neo4j atende aos requisitos transacionais – ACID.

NO-SQL - COMPARATIVO

https://youtu.be/QlqylUeqeis

BASES DE DADOS - CAP

https://medium.com/@lucascodejs/o-teorema-de-cap-utilizado-para-auxiliar-um-servidor-de-sistema-distribu%C3%ADdos-f73d6a4c5d9

