1 Hilbertraum und Skalarprodukt

1.1 Skalarprodukt?

Untersuche, ob es sich bei folgenden Abbildungen um Skalarprodukte handelt:

- 1. $F_1(\varphi, \psi) := \int_{\mathbb{R}^n} \overline{\varphi(x)} \psi(x) dx \qquad \varphi, \psi \in L^2(\mathbb{R}^n)$
- 2. $F_2(\varphi,\psi) := 2\varphi_1\psi_1 \varphi_1\psi_2 \varphi_2\psi_1 + \varphi_2\psi_2 \qquad \varphi,\psi \in \mathbb{C}^2$
- 3. $F_3(\varphi, \psi) := \varphi^{\top} \begin{pmatrix} 2 & -0.5 \\ -2 & 1 \end{pmatrix} \psi \qquad \varphi, \psi \in \mathbb{R}^2$
- 4. $F_4(\varphi, \psi) := Tr(\overline{\varphi}^\top \psi)$ $\varphi, \psi \in Mat(2, \mathbb{C}), \text{ d.h. } \varphi, \psi \text{ sind also komplexe } 2 \times 2\text{-Matrizen.}$

Zur Erinnerung:

- Tr ist die "Spur"; die Summe aller Diagonaleinträge einer Matrix.
- A^T ist die Transponierte der Matrix A: Die Nicht-Diagonaleinträge vertauschen ihre Indizes bzw "sie werden an der Hauptdiagonale gespiegelt".

2 Orthonormalbasen

2.1 Eigenschaften von ONB

- 1. Sei $(\varphi_j)_{j\in J}$ eine ONB des Hilbertraums \mathscr{H} . (Zur Wiederholung: Das heisst, eine beliebiges Element ψ von \mathscr{H} lässt sich durch $\psi = \sum_{j\in J} \langle \varphi_j, \psi \rangle \varphi_j$ darstellen) Beweise die Parsevalsche Gleichung $\langle \psi_1, \psi_2 \rangle = \sum_{j\in J} \langle \psi_1, \varphi_j \rangle \langle \varphi_j, \psi_2 \rangle$.
- 2. Zeige: Für alle $\psi \in \mathscr{H}$ gilt: $\forall j \in J : \langle \varphi_j, \psi \rangle = 0 \implies \psi = 0$, wenn die Besselsche Gleichung $\|\psi\|^2 := \sum_{j \in J} |\langle \varphi_j, \psi \rangle|^2$ erfüllt ist.

2.2 Orthonormalbasis auf dem Einheitskreis

 $X_n(\varphi) = \frac{e^{in\varphi}}{\sqrt{2\pi}}$ bilden eine ON-Folge bezüglich des Skalarproduktes $\langle f(\varphi), g(\varphi) \rangle = \int_0^{2\pi} d\varphi \overline{f(\varphi)} g(\varphi).$

Zeige, dass die Menge der X_n eine ONB für Funktionen ist, die auf dem Einheitskreis in der komplexen Ebene definiert sind.(d.h. deren Defininitionsmenge nur die Punkte

des Einheitskreises enthält)

Überlege dir dazu zuerst folgendes:

- 1. Welche $z \in \mathbb{C}$ liegen auf dem Einheitskreis? Wie kann man sie parametrisieren?
- 2. Was bedeutet das für die Funktionen? (Sind sie gerade, ungerade oder vllt periodisch bzgl. ihres/ihrer Parameter?)

Folgende Bedingung ist laut Vorlesung äquivalent zu der Tatsache, dass die X_n eine ONB bilden:

Für alle $F \in \mathcal{H}$ gilt:

$$\forall n \in N : \langle X_n, F \rangle = 0 \quad \Rightarrow \quad F = 0$$

Zeige dies nun, indem du das Skalarprodukt mit den Fourierkoeffizienten $c_n = \frac{1}{T} \int_c^{c+T} f(t) e^{-in\omega t} dt$ der Fourierreihe $f(t) = \sum_{-\infty}^{+\infty} c_n e^{in\omega t}$ vergleichst.

3 Operatoren

3.1 Rechnen mit Operatoren

3.1.1 Unitäre Operatoren

 $U, V: \mathcal{H} \to \mathcal{H}$ sind unitäre Operatoren.

- 1. Zeige, dass UV ebenfalls unitär ist.
- 2. Zeige, dass für alle $\varphi, \psi \in \mathcal{H}$ gilt: $\langle \varphi, \psi \rangle = \langle U\varphi, U\psi \rangle$
- 3. Zeige, dass für alle $\varphi \in \mathscr{H}$ gilt: $||U\varphi|| = ||\varphi||$
- 4. Zeige, dass ||U|| = 1 ist.

3.1.2 Kommutator

x und p sind der Orts- und der Impulsoperator.

- $X: L^2(\mathbb{R}) \to L^2(\mathbb{R}), (X\psi)(x) = x \cdot \psi(x)$
- $p: L^2(\mathcal{D}(p)) \to L^2(\mathbb{R}^n), (p\psi)(x) = -i\frac{d}{dx}\psi$

Berechne den Kommutator von X und p: [X, p] := Xp - pX. Multipliziere dazu den Kommutator von links an eine Testfunktion $\psi \in L^2$. (Die Testfunktion ist dafür da, damit die Operatoren "auf irgendetwas wirken können".)

3.1.3 Die Eins

Zeige: Wenn ein Operator gleichzeitig unitär und ein orthogonaler Projektor ist, dann ist er die Identität. (Errinnerung: Die Identität oder Einsabbildung bildet einen Vektor auf sich selbst ab!)

3.2 Translationsoperator

Der Translationsoperator ist wie folgt definiert:

$$T_a: \mathscr{H} \to \mathscr{H}, \quad (T_a \psi)(x) := \psi(x-a)).$$

Hier sei $\mathscr{H} = L^2(\mathbb{R}^n).$

- 1. Was ist das Inverse von T_a ?
- 2. Was ist der Adjungierte Operator T_a^{\dagger} ? Tipp: Das Skalarprodukt ist $\langle \varphi, \psi \rangle = \int_{\mathbb{R}^n} \overline{\varphi(x)} \psi(x) dx$
- 3. T_a ist \square orthogonaler Projektor \square unitär \square selbstadjungiert

3.3 Reell?

In der Vorlesung wurde folgendes Lemma vorgestellt und die "Rückrichtung" bewiesen:

$$A = A^{\dagger} \quad \Leftrightarrow \quad \forall \psi \in \mathcal{H} : \langle \psi, A\psi \rangle \in \mathbb{R}$$

Beweise nun die "Hinrichtung", also $A=A^{\dagger} \quad \Rightarrow \quad \forall \psi \in \mathcal{H}: \langle \psi, A\psi \rangle \in \mathbb{R}.$

Starte dazu mit $\langle \psi, A\psi \rangle$ und forme es zu seinem komplex Konjugierten um. Benutze:

- die Vorraussetzung,
- eine Eigenschaft des Skalarprodukts
- die Definition von adjungiert.