

Match the DNSBL level with its description:

- E White
- C Black
- B Grey
- D Yellow
- A NoBL

- A. This IP address does not send spam, and should not be blacklisted. But it is not fully trustworthy.
- B. This IP address is not directly involved in spamming but is associated with spam-like behaviors
- C. No trust in this IP address
- D. This IP address is known to produce spam and nonspam email
- E. Complete trust in this IP address

New IP addresses are trusted with the static blacklist model.

Static Blacklist Model: Innocent until proven guilty

Everyone is suspect until proven innocent.

New Blocklist Model Criteria

	Static DNSBL increasingly ineffective	
Motivation	 Need a dynamic, comprehensive reputation system outputs reputation scores for domains 	
Intuitions	 Legitimate uses of domains/sites are different from botnet uses, and the differences can be observed in DNS query traffic 	
	 Patterns/reputation of Requesters, Resolved IPs, Network providers 	
Approach	 Extract temporal and statistical features from DNS traffic, compute/learn models 	

Match the malicious application with its DNS characteristic.

- C Botnets(B),
- A | Spyware(S),
- B Adware(A)

- A. Anonymously registered domains
- B. Disposable domains
- C. Short lived domains

- Notos: a system that dynamically assigns reputation scores to domain names
- Network and zone based features capture the characteristics of resource provisioning, usages, and management of DNS domains
- Models of legitimate and malicious domains for computing reputation scores for new domains
- Accuracy: can correctly classify new domains with a very low FP% (0.3846%) and high TP% (96.8%)
- Predictability: able to detect and assign a low reputation score to fraudulent domain names, several days or even weeks before they appear on static blacklists

- Passive monitoring in the upper levels of the DNS hierarchy; Internet-wide visibility
- Analyze streams of DNS queries and responses at AuthDNS or TLD servers, and extracts a set of statistical features and trains a model
- Accuracy: high TP% (98.4%) and low FP% (0.3%)
- Predictability: able to identify newly created and previously unclassified malicious domain names weeks before they were listed in any blacklist
- Detected a DDoS botnet rising in networks within China almost one month before it propagated within other countries

Malicious Domain Names Quiz

List the types of characters a malicious domain name detection program should look for in a domain name.

- 1. Number of characters
- 2. Number of hyphens
- 3. Number of digits

Notation and Terminology

RR	Resource Record	www.example.com 192.0.32.10
2LD, 3LD	2nd and 3rd level 2LD = example.com domain 3LD = www.example.com	
RHIPs	Related Historic IPs	All "routable" IPs historically mapped with the domain name in the RR or any domain name under the 2LD and 3LD
RHDNs	Related Historic Domains All fully qualified domain names (FQDN) that historically have been linked with the IP in the RR its corresponding CIDR and AS	
ADNT	Authoritative domain name tuple	The requester (or RDNS), the domain name and the RDATA

Passive DNS (pDNS) data collection is the harvesting of successful DNS resolutions that can be observed in a given network

Passive DNS database contains traffic from several ISP sensors and data repositories

 Observed that different classes of zones demonstrate different passive DNS behaviors

Obtained authoritative DNS traffic from 2 large authoritative DNS servers (AuthNS) and the Canadian TLD

Statistical Features of Notos

The information extracted from the pDNS database can be grouped into three categories. Match the category to its definition.

- C Network-based features(N),
- B Zone-based features(Z),
- A Evidence-based features (E)
- A. The number of distinct malware samples that connected to any of the IPs.
- B. The average length of domain names, the occurrence frequency of different characters, etc.
- C. Quantities such as the total number of IPs historically associated with the diversity of their geographical locations, the number of distinct autonomous systems, etc.

Notos Statistical Features

Network- Based Features:	 Extracted from the set RHIPs E.g., the total number of IPs historically associated with a domain, the diversity of their geographical location, the number of distinct autonomous systems (ASs) in which they reside, etc.
Zone-Based Features:	 Extracted from the set RHDNs. E.g., the average length of domain names in RHDNs, the number of distinct TLDs, the occurrence frequency of different characters, etc
Evidence- Based Features:	 E.g., the number of distinct malware samples that contacted the domain, and the same for any of the resolved IPs, etc.

Given domains known to be legitimate and malicious:

- Gather Notos features for each domain
- Malicious domain label: 1
- Legitimate domain label: 0
- Learn a function that given the Notos feature vector for a domain, outputs a label (0 or 1)
- Reputation score is the "confidence" of the label (or, the probability that the domain is malicious)

Notos Reputation Function

Dynamic Detection Quiz

Check all the true statements that pertain to A dynamic malwarerelated domain detection system. A dynamic malware-related domain detection system should:

Have global visibility into DNS request and response messages

Not be able to detect malware domains before the infection reaches a local network

Not require data from other networks

Be able to detect malware-related domains even if there is no reputation data.

Kopis Statistical Features

Requester Diversity (RD)	 Characterize if the machines (e.g., RDNS servers) that query a given domain name are localized or are globally distributed (based on BGP prefixes, AS numbers, country codes, etc.)
Requester Profile (RP)	 Distinguish between requesters located in ISP/small business and home networks Assign a higher weight to RDNS servers that serve a large client population because a larger network would have a larger number of infected machines.
Resolved-IPs Reputation (IPR)	 Whether, and to what extent, the IP address space pointed to by a given domain has been historically linked with known malicious activities, or known legitimate services

Kopis Detection Performance

ROCs for Kopis Under Different Sizes of Temporal Windows.

Histogram of Deltas Between Domain Detection and

Study of Mobile Malware Prevalence

Motivation	 Much work on mobile malware has been on analysis of (malicious) mobile apps But, how prevalence are infections on mobile devices?
Intuitions	 The (malicious) mobile web is a part of the (malicious) web Mobile malware uses similar infrastructure (C&C) techniques as non-mobile/Internet malware
Approach	 Obtain DNS traffic in cellular network and identify domains looked up by mobile apps Analyze information related to the Internet hosts pointed by these domains.

Key Data and Findings

- Three months of data from a major US cellular provider and a major US non-cellular ISP
- Known mobile malware samples remain rare in US: only 6,585 out of 380,537,128 devices, or 0.002%
- iOS vs. Android and other devices: equally likely to connect to suspicious domains

Devices In Cellular ISP

Reputation Analysis

Use Notos to analyze the hosting infrastructures of the mobile domains

Obtain the host IPs pointed to by the mobile domains, for each IP, extract statistical features of:

- Related historic non-cellular domains
- Related historic mobile domains
- Malware association
- URLs for phishing and drive-by download
- Blacklisting incidents

Tainted Hosts and Platforms

Device platform	% Total Requests by mobile device	% Population requesting tainted hosts	% Total tainted host requests
iOS	31.6%	8.8%	33.2%
All others (Android, etc.)	68.4%	8.2%	66.8%

Mobile Malware Prevalence

Malware Family	# Associated Domains	# Devices
DroidDreamLight	3	44
DroidKungFu	1	6
FakeDoc	1	2145
Fatakr	1	151
GGTrackers	3	1
NotCompatible	3	762
Planton	4	286
Malware β	1	1
WalkInWat	1	95
Gone60	1	1

With regards to botnets, select all the true statements:

A proven method to stop botnets requires isolating the C&C domain from the botnet

With regards to takedowns, P2P-based networks are much easier than C&C networks

Takedowns are: ad-hoc, of arguable success, are performed without oversight

System goal: add rhyme/reason to takedowns

- evaluate previous takedown attempts, and
- recommend and inform on/for future takedowns

High-level idea: push our knowledge of infrastructure towards completeness

- Network-side: passive DNS
- Malware-side: malware backup infrastructure

Botnet Takedowns: RZA Overview

Botnet Takedowns: RZA Overview

 D_s : seed domains

D_e: enumerated domains

 D_r : low reputation domains

 D_m : malware-related domains

 D_i : malware interrogation domains

Botnet Takedowns: RZA Overview

RZA Malware Interrogation

- Game malware to present primary infrastructure failure
- DNS/TCP packet manipulation (NXDomain/TCP RST)
- Automatically determine backup behaviors

If malware is presented with unavailable infrastructure:

- Retries hardcoded IPs/domains,
- Tries to reach a finite set of IPs/domains, or
- Tries to reach an increasing number of IPs/domains (DGA/P2P)

Manipulate fundamental protocol packets to convince malware its primary network asset is unavailable

- DNS and TCP
- Easy to add additional protocols

Postmortem study: analysis of *Kelihos*, *ZeuS*, and *3322.org/Nitol* takedowns

Use lookup volume to show activity to infrastructure

Takedown study: analysis of 45 active botnet C&Cs

Can we take them down?

RZA Studies: Postmortem Kelihos

RZA Studies: Postmortem Zues

RZA Studies: Postmortem 3322.org/Nitol

Of the 45 botnets:

- 2 had DGA-based backup mechanism
- 1 had P2P-based backup mechanism
- 42 susceptible to DNS-only takedown

Current drawbacks to takedown

- Ad-hoc
- Little oversight
- Arguable success
- All point to need for central authority

ICANN's UDRP/URS as example frameworks

- Criteria for takedown
- More eyes = more successes
- Test with new TLDs (much like w/ URS)