Instructions: This is a four hour exam. Your solutions should be legible and clearly organized, written in complete sentences in good mathematical style. All work should be your own - no outside sources are permitted - using methods and results from the first year topology course topics.

- 1. Let $f: M \to N$ be a smooth map between manifolds of dimension m and n, respectively. Let $q \in N$ be a regular value for f, and let $X = f^{-1}(q) \subset M$.
 - a) Prove that if M is orientable, then X is orientable.
 - b) Let $g: K \to M$ be another smooth map, where K is a smooth manifold. Prove that $q \in N$ is a regular value for $f \circ g$ if and only if g is transverse to X.

- 2. a) Prove that any smooth map $f: S^k \to \mathbb{R}^n$ can be extended to a smooth map $F: D^{k+1} \to \mathbb{R}^n$, where $S^k = \partial D^{k+1}$ is the k-dimensional sphere and D^{k+1} the unit ball of dimension k+1.
 - b) Let $M \subset \mathbb{R}^n$ be a smooth compact manifold of dimension m, and assume k < n m 1. Prove that any smooth map $f: S^k \to \mathbb{R}^n - M$ can be extended to a smooth map $F: D^{k+1} \to \mathbb{R}^n - M$.

3. Let M and N be the subsets of \mathbb{R}^3 defined by

$$M = \{x^2 + y^2 + z^2 = 1\}$$
 $N = \{x^2 - y^2 + z^2 = c\}$

for a real number c. Justify your responses to the following:

- a) Determine all values of c for which M and N are submanifolds of \mathbb{R}^3 , and the intersection $M\cap N$ is transverse.
- b) Determine all values of c for which $M \cap N$ is a submanifold of \mathbb{R}^3 .

4. Let X and Y be closed, compact, oriented manifolds of the same dimension. Let $f, g: X \to Y$ be two smooth maps. The graphs of f and g are the submanifolds of $X \times Y$ given by

$$\Gamma_f = \{(x, f(x)) \, | \, x \in X\} \qquad \Gamma_g = \{(x, g(x)) \, | \, x \in X\},$$

oriented so that the diffeomorphisms $X \to \Gamma_f$ and $X \to \Gamma_g$ given by $x \mapsto (x, f(x))$ and $x \mapsto (x, g(x))$ are orientation-preserving.

The coincidence number of f and g, written C(f,g), is defined to be the intersection number $I(\Gamma_f, \Gamma_g) \in \mathbb{Z}$ (sometimes also written $\Gamma_f \cdot \Gamma_g$).

- a) Prove that if $C(f,g) \neq 0$ then for any smooth maps $\tilde{f}, \tilde{g}: X \to Y$ such that \tilde{f} and \tilde{g} are
- homotopic to f and g, respectively, there exists a point $x \in X$ such that $\tilde{f}(x) = \tilde{g}(x)$. b) Let $f, g: S^1 \to S^1$ be two smooth maps of degree n and m, respectively. Prove that if $n \neq m$, then there is a point $x \in S^1$ with f(x) = g(x).

- 5. Let $p: S^n \to \mathbb{R}P^n$ be the projection.
 - a) Let $f: \mathbb{R}P^n \to \mathbb{R}P^n$ be continuous. Show that then there exists a continuous map $\tilde{f}: S^n \to S^n$ such that $p \circ \tilde{f} = f \circ p: S^n \to \mathbb{R}P^n$. b) Show that every continuous map $f: \mathbb{R}P^{2k} \to \mathbb{R}P^{2k}$ has a fixed point.

6. Suppose given a commutative diagram of abelian groups with exact rows:

$$C_{1} \xrightarrow{\alpha_{1}} C_{2} \xrightarrow{\alpha_{2}} C_{3} \xrightarrow{\alpha_{3}} C_{4} \xrightarrow{\alpha_{4}} C_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$D_{1} \xrightarrow{\beta_{1}} D_{2} \xrightarrow{\beta_{2}} D_{3} \xrightarrow{\beta_{3}} D_{4} \xrightarrow{\beta_{4}} D_{5}.$$

Prove part of the Five Lemma: show that if f_2 and f_4 are monomorphisms, and f_1 is an epimorphism, then f_3 is a monomorphism. (Hint: start by showing that $x \in Ker(f_3) \Rightarrow x \in Ker(\alpha_3)$.)

7. Let $C \subset \mathbb{R}^3$ be the union of the x-axis and the y-axis. Compute $H_*(\mathbb{R}^3 - C; \mathbb{Z})$. (Hint: note that $\mathbb{R}^3 - C = (\mathbb{R}^3 - x$ -axis) $\cap (\mathbb{R}^3 - y$ -axis).)

8. Let $a: S^1 \to S^1 \vee S^1$ and $b: S^1 \to S^1 \vee S^1$ respectively be the inclusion of the circle as the first and second wedge summand. Then $\pi_1(S^1 \vee S^1)$ can be identified with the free group on a and b. Let $f: S^1 \to S^1$ represent the element $c \in \pi_1(S^1 \vee S^1)$, and let $X_f = (S^1 \vee S^1) \cup_f D^2$, the topological space obtained by identifying points on $S^1 = \partial D^2$ with their images under f in $S^1 \vee S^1$. If $c = a(ab)^4 a$, give a presentation of $\pi_1(X_f)$ and compute $H_*(X_f; \mathbb{Z})$, describing the homology groups as direct sums of cyclic groups, as usual.