Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Questions Complexity

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, Jong C.Park KAIST

NAACL 2024

발표자: 송선영

2024/07/08

Introduction

- LLM은 Parametric한 knowledge에만 의존하기 때문에 사실과 다른 답을 생성하는 경우가 많음
- 이를 해결하기 위해 검색으로 non-parametric knowledge 를 통합하는 RAG 방법이 제안됨
 - Single-hop QA approach
 - Multi-hop QA approach
- 복잡한 query를 효과적으로 처리하기 위해서는 Multi-step QA 방식이 필요하지만, 많은 비용이 듦
- 또한, Multi-step QA 방식은 복잡한 query는 필수적이지만, 단순한 query에는 불필요한 비용이 발생함

→ 따라서 이 논문에서는 query의 복잡도에 따라 접근 방법을 선택하는 Adaptive QA system인 Adaptive-RAG를 제안함

Adaptive-RAG

- Adaptive-RAG는 query의 복잡도에 따라 접근 전략을 분류
 - 1. No Retrieval (label: A)
 - 외부 문서 참조 x, LLM 자체에서 답변
 - 2. Single-step Approach (label: B)
 - 한 번의 검색을 통해 외부 정보 활용
 - 3. Multi-step Approach (label: C)
 - 여러 번의 검색을 통해 여러 정보를 종합해 활용

Adaptive-RAG

- Adaptive-RAG는 query의 복잡도에 따라 전략을 분류하는 classifier를 사용
 - 모델: T5-large
 - 학습 데이터셋 구축
 - Labeled dataset이 존재하지 않아 automatic labeling 방법 활용
 - 먼저, 6개의 QA benchmark dataset에서 400개의 query를 샘플링해 3가지 전략으로 분류
 - 예를 들어, non-retrieval 방법으로 정답을 생성했다면 label은 A로 labeling
 - single-step 방법으로 정답을 생성했다면 label은 B로 labeling
 - 만약, 모델이 적절한 답을 생성하지 못해 labeling을 할 수 없다면, benchmark label이 single-step인 경우에는 B, multi-step인 경우에는 C로 labeling

Experimental Setups

- Datasets
 - Single-hop QA
 - SQuAD v1.1, Natural Questions, TriviaQA
 - Multi-hop QA
 - MusiQue, HotpotQA, 2WikiMultiHopQA
- Retriever: BM25 (Wikipedia)
- **Generator**: FLAN-T5 series models(3B, 11B), GPT-3.5 model (gpt-3.5-turbo-instruct)
- Metrics
 - Effectiveness와 Efficiency의 모두 평가
 - For effectiveness
 - F1, EM, accuracy
 - For efficiency
 - Retrieval-Generate step의 수, 각 query에 대한 평균 답변 시간
 - (one-step approach와 비교)

Evaluation – Main results

- Real-world에서는 다양한 수준의 복잡성을 가진 query들이 존재하기 때문에 Adaptive 전략이 필요함
- Adaptive type model들 중 Adaptive-RAG가 가장 좋은 성능을 보임

			FLAN	I-T5-XL	(3B)			FLAN-T5-XXL (11B)					GPT-3.5 (Turbo)						
Types	Methods	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time			
Simple	No Retrieval Single-step Approach	14.87 34.83	21.12 44.31	15.97 38.87	0.00 1.00	0.11 1.00	17.83 37.87	25.14 47.63	19.33 41.90	0.00 1.00	0.08 1.00	35.77 34.73	48.56 46.99	44.27 45.27	0.00 1.00	0.71 1.00			
Adaptive	Adaptive Retrieval Self-RAG* Adaptive-RAG (Ours)	23.87 9.90 37.17	32.24 20.79 46.94	26.73 31.57 42.10	0.50 0.72 2.17	0.56 0.43 3.60	26.93 10.87 38.90	35.67 22.98 48.62	29.73 34.13 43.77	0.50 0.74 1.35	0.54 0.23 2.00	35.90 10.87 37.97	48.20 22.98 50.91	45.30 34.13 48.97	0.50 0.74 1.03	0.86 1.50 1.46			
Complex	Multi-step Approach	39.00	48.85	43.70	4.69	8.81	40.13	50.09	45.20	2.13	3.80	38.13	50.87	49.70	2.81	3.33			
Oracle	Adaptive-RAG w/ Oracle	45.00	56.28	49.90	1.28	2.11	47.17	58.60	52.20	0.84	1.10	47.70	62.80	58.57	0.50	1.03			

Evaluation - Main results

- Real-world에서는 다양한 수준의 복잡성을 가진 query들이 존재하기 때문에 Adaptive 전략이 필요함
- Adaptive type model들 중 Adaptive-RAG가 가장 좋은 성능을 보임
- LLM 모델의 종류와 상관없이 Adaptive-RAG는 Multi-step Approach보다 Time을 훨씬 감소시킴

			FLAN	-T5-XL	(3B)		FLAN-T5-XXL (11B)					GPT-3.5 (Turbo)					
Types	Methods	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time	
Simple	No Retrieval Single-step Approach	14.87 34.83	21.12 44.31	15.97 38.87	0.00 1.00	0.11 1.00	17.83 37.87	25.14 47.63	19.33 41.90	0.00 1.00	0.08 1.00	35.77 34.73	48.56 46.99	44.27 45.27	0.00 1.00	0.71 1.00	
Adaptive	Adaptive Retrieval Self-RAG* Adaptive-RAG (Ours)	23.87 9.90 37.17	32.24 20.79 46.94	26.73 31.57 42.10	0.50 0.72 2.17	0.56 0.43 3.60	26.93 10.87 38.90	35.67 22.98 48.62	29.73 34.13 43.77	0.50 0.74 1.35	0.54 0.23 2.00	35.90 10.87 37.97	48.20 22.98 50.91	45.30 34.13 48.97	0.50 0.74 1.03	0.86 1.50 1.46	
Complex	Multi-step Approach	39.00	48.85	43.70	4.69	8.81	40.13	50.09	45.20	2.13	3.80	38.13	50.87	49.70	2.81	3.33	
Oracle	Adaptive-RAG w/ Oracle	45.00	56.28	49.90	1.28	2.11	47.17	58.60	52.20	0.84	1.10	47.70	62.80	58.57	0.50	1.03	

Evaluation - Main results

- Real-world에서는 다양한 수준의 복잡성을 가진 query들이 존재하기 때문에 Adaptive 전략이 필요함
- Adaptive type model들 중 Adaptive-RAG가 가장 좋은 성능을 보임
- LLM 모델의 종류와 상관없이 Adaptive-RAG는 Multi-step Approach보다 Time을 훨씬 감소시킴
- Oracle을 사용하게 되면 성능과 시간 효율성 모두 향상될 수 있음
 - Oracle: classification performance is perfect

			FLAN-T5-XL (3B) FLAN-T5-XXL (11B)							GPT-3.5 (Turbo)						
Types	Methods	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time	EM	F1	Acc	Step	Time
Simple	No Retrieval Single-step Approach	14.87 34.83	21.12 44.31	15.97 38.87	0.00 1.00	0.11 1.00	17.83 37.87	25.14 47.63	19.33 41.90	0.00 1.00	0.08 1.00	35.77 34.73	48.56 46.99	44.27 45.27	0.00 1.00	0.71 1.00
Adaptive	Adaptive Retrieval Self-RAG*	23.87 9.90	32.24 20.79	26.73 31.57	0.50 0.72	0.56 0.43	26.93 10.87	35.67 22.98	29.73 34.13	0.50 0.74	0.54 0.23	35.90 10.87	48.20 22.98	45.30 34.13	0.50 0.74	0.86 1.50
Complex	Adaptive-RAG (Ours) Multi-step Approach	37.17 39.00	46.94 48.85	42.10 43.70	2.17 4.69	$-\frac{3.60}{8.81}$	38.90 40.13	48.62 50.09	43.77 45.20	2.13	2.00 3.80	37.97 38.13	50.91 50.87	48.97 49.70	$\frac{1.03}{2.81}$	3.33
Oracle	Adaptive-RAG w/ Oracle	45.00	56.28	49.90	1.28	2.11	47.17	58.60	52.20	0.84	1.10	47.70	62.80	58.57	0.50	1.03

Evaluation – classifier performance

- Adaptive-RAG가 다른 Adaptive method보다 더 높은 분류 정확도를 보임
- 하지만 여전히 잘못된 분류가 있기 때문에 이를 개선하는 것이 Future work

Evaluation

- Classifier 모델의 크기를 줄여도 큰 성능 차이를 보이지 않음
- Adaptive-RAG는 각 query에 대한 평균 시간은 가장 적으면서 가장 높은 성능을 보임으로써, 효율성과 정확도를 모두 향상시킴

	Q	A	Classifier (Accuracy)								
Sizes	F1	Step	All	No	One	Multi					
Small (60M)	45.83	964	53.48	26.65	70.62	53.18					
Base (223M)	45.97	983	53.41	26.42	69.46	56.82					
Large (770M)	46.94	1084	54.52	30.52	66.28	65.45					

Conclusion

- Real-world에서는 다양한 복잡도를 가진 query가 존재
- 본 논문에서는 다양한 복잡도를 가지는 query를 효과적이고 효율적으로 처리하기 위해 Adaptive-RAG를 제안
- Adaptive-RAG 는 query의 복잡도를 기반으로 적절한 접근 전략을 dynamic하게 분류하여 정확성과 효율성을 향상시켰음
- Limitations
 - 1. Classifier를 학습하기 위한 데이터셋을 구축하기 위해 automatic labeling 방법을 사용하는데, 이는 잘못된 label을 만들 수 있음
 - 따라서 향후 연구에서는 classifier의 정확도를 개선하고, Question-Answer 쌍의 label 외에도 더 다양한 범위의 복잡도 데이터셋 구축을 목표로 함
 - 2. Real-world에서는 사용자의 입력이 불쾌하거나 유해한 경우가 있는데, 이 때 불쾌감을 주는 문서가 검색되고 이에 의해 부적 절한 응답이 생성될 수 있다는 문제점이 존재함
 - 이를 해결하기 위해, RAG 프레임워크 내에서 사용자의 입력과 검색 문서 모두에서 부적절한 콘텐츠를 감지하고 관리하는 방법을 연구하는 것이 필수적

Thank You

감사합니다.