Azzolini Riccardo 2019-02-27

Modelli di calcolo

1 Modello RASP

Il modello RASP (Random Access Stored Program) mantiene il programma in memoria e permette di *modificare le istruzioni durante l'esecuzione* (al contrario del modello RAM).

Il set di istruzioni è identico a quello del modello RAM, ma senza l'indirizzamento indiretto.

Il programma viene caricato in memoria associando a ogni istruzione due registri:

- 1. il primo contiene l'opcode, che codifica l'istruzione e il tipo di operando;
- 2. il secondo contiene l'indirizzo (operando o etichetta).

Opcode	Istruzione
1	LOAD ()
2	LOAD = ()
3	STORE ()
4	ADD ()
5	ADD = ()
6	SUB ()
7	SUB =()
8	MULT ()
9	MULT = ()
10	DIV ()
11	DIV = ()
12	READ ()
13	WRITE ()
14	WRITE = ()
15	JUMP ()
16	JGTZ ()
17	JZERO ()
18	JBLANK ()
19	HALT

L'esecuzione presenta alcune differenze rispetto alla macchina RAM:

- la memoria contiene inizialmente il programma in una sequenza prefissata di registri;
- il *location counter* viene incrementato di 2 invece che di 1 (perché ogni istruzione occupa 2 registri).

I concetti di

- \bullet stato
- $\bullet \quad computatione$
- funzione calcolata da un programma
- tempo e spazio, con i criteri uniforme e logaritmico

e le relative notazioni sono invece definiti analogamente alla macchina RAM.

1.1 Esempio di programma

Calcolo del massimo di n interi:

i + s	R_{i+s}	R_{i+s+1}		
0+s	12	1	READ	1
2+s	18	18 + s	JBLANK	18 + s
4+s	1	1	LOAD	1
6+s	12	2	READ	2
8+s	6	2	SUB	2
10 + s	16	2+s	JGTZ	2+s
12 + s	1	2	LOAD	2
14 + s	3	1	STORE	1
16 + s	15	2+s	JUMP	2+s
18 + s	13	1	WRITE	1
20 + s	19	0	HALT	

Osservazione: Gli indirizzi delle istruzioni sono relativi all' $indirizzo\ di\ impianto\ in\ memoria\ s.$

2 Equivalenza tra RAM e RASP

È possibile dimostrare che i due insiemi

$$\mathcal{F}_{RAM} = \{ F_P \mid P \text{ programma RAM} \}$$

$$\mathcal{F}_{RASP} = \{ F_P \mid P \text{ prograspma RASP} \}$$

delle funzioni calcolate, rispettivamente, da programmi RAM e RASP, sono equivalenti, $\mathcal{F}_{RAM} \equiv \mathcal{F}_{RASP}$, mostrando che una macchina RASP può simulare qualunque programma RAM, e viceversa.

2.1 Da RAM a RASP

Teorema: Per ogni programma RAM Φ , esiste un programma RASP Ψ tale che, $\forall n \in \mathbb{N}, \underline{x} \in \mathbb{Z}^n$:

- $F_{\Phi}(\underline{x}) = F_{\Psi}(\underline{x})$, cioè ai due programmi corrisponde la stessa funzione calcolata;
- $T_{\Psi}(\underline{x}) \leq 6 \cdot T_{\Phi}(\underline{x})$.

Dimostrazione: Ogni istruzione RAM può essere tradotta in una sequenza di al più 6 istruzioni RASP:

- se $op \neq *i$, si può effettuare la traduzione diretta;
- se invece op = *i, è necessario simulare l'indirizzamento indiretto, sfruttando la possibilità di modificare il codice durante l'esecuzione.

Per la simulazione, i registri vengono utilizzati come segue:

- R_0 è l'accumulatore;
- R_1 è utilizzato come backup dell'accumulatore;
- i registri da R_2 a R_r , con $r = 12 \cdot |\Phi| + 1$, contengono il programma RASP (che richiede al massimo $6 \cdot |\Phi|$ istruzioni, e quindi $2 \cdot 6 \cdot |\Phi| = 12 \cdot |\Phi|$ registri);
- i registri da R_{r+1} in poi corrispondono ai registri RAM (ogni registro RAM R_k , con $k \geq 1$, viene "shiftato" di r e diventa R_{r+k}).

Il codice RASP che simula, ad esempio, l'istruzione RAM MULT *k, è:

M+0	3	STORE	1	Salva il valore dell'accumulatore R_0
M+1	1			
M+2	1	LOAD	r + k	Carica l'indirizzo a cui accedere
M+3	r+k			dal registro RAM k (RASP $r + k$)
M+4	5	ADD	= <i>r</i>	Aggiunge l'offset r all'indirizzo
M+5	r			
M+6	3	STORE	M + 11	Scrive l'indirizzo calcolato come
M+7	M + 11			operando dell'istruzione MULT
M+8	1	LOAD	1	Ripristina il valore di R_0
M+9	1			
M + 10	8	MULT	S(r+k)+r	Esegue la moltiplicazione tra R_0
M + 11	-			e il registro all'indirizzo calcolato

2.2 Da RAM a RASP con costo logaritmico

Teorema: Per ogni programma RAM Φ, esistono un programma RASP Ψ e una costante C>0 tali che, $\forall n\in\mathbb{N},\,\underline{x}\in\mathbb{Z}^n$:

- $F_{\Phi}(\underline{x}) = F_{\Psi}(\underline{x});$
- $T_{\Psi}^l(\underline{x}) \le C \cdot T_{\Phi}^l(\underline{x}).$

2.3 Da RASP a RAM

Teorema: Per ogni programma RASP Ψ, esistono un programma RAM Φ e due costanti $C_1, C_2 > 0$ tali che, $\forall n \in \mathbb{N}, \underline{x} \in \mathbb{Z}^n$:

- $F_{\Phi}(\underline{x}) = F_{\Psi}(\underline{x});$
- $T_{\Phi}(\underline{x}) \leq C_1 \cdot T_{\Psi}(\underline{x});$
- $T_{\Phi}^{l}(\underline{x}) \leq C_2 \cdot T_{\Psi}^{l}(\underline{x});$

Una macchina RAM può infatti simulare programmi RASP, grazie all'indirizzamento indiretto.

3 Calcolabilità

Gli insiemi \mathcal{F}_{RAM} e \mathcal{F}_{RASP} sono equivalenti agli insiemi delle funzioni calcolabili da molti altri linguaggi.

La classe di funzioni $\mathcal{F} = \mathcal{F}_{RAM}$ è chiamata classe delle **funzioni ricorsive parziali**.

Essa è una classe molto *robusta* rispetto alle tecnologie, che formalizza il concetto intuitivo di **calcolabilità** (**Tesi di Church-Turing**).

4 Calcolabilità effettiva

Siano

$$\mathcal{F}_{RAM}(f) = \{ F_P \in \mathcal{F}_{RAM} \mid T_P^l(n) = O(f(n)) \}$$

$$\mathcal{F}_{RASP}(f) = \{ F_P \in \mathcal{F}_{RASP} \mid T_P^l(n) = O(f(n)) \}$$

gli insiemi delle funzioni calcolabili, rispettivamente, da programmi RAM e RASP con complessità O(f(n)) nel caso peggiore. Si ha che $\mathcal{F}_{RAM}(f) \equiv \mathcal{F}_{RASP}(f)$, ma, se si sceglie una funzione f precisa, questa proprietà non vale in generale con altri linguaggi (perché il costo della simulazione non è sempre un fattore costante, e quindi non è garantito che lo si possa trascurare).

Se si considera invece l'insieme

$$\mathbf{P}_{RAM} = \left\{ F_P \in \mathcal{F}_{RAM} \mid \exists k, \, T_P^l(n) = O\left(n^k\right) \right\}$$

è possibile definire la classe $\mathbf{P} = \mathbf{P}_{RAM}$ dei **problemi risolubili in tempo polinomiale**, la quale rimane invariata anche per altri linguaggi. Per la sua proprietà di invarianza, questa classe consente di formalizzare il concetto intuitivo di calcolabilità effettiva (Tesi di Church estesa).