



Mostly Professional and Collected Presentation about Getting Down & Dirty in OLTP Databases with Intel's NVM SDV

**September 25, 2015** 

















# The Story So Far

**2014:** Comparing Existing DBMSs

**2015:** Evaluating Storage Architectures



#### 2014: Existing DBMSs

Comparison of disk vs. main-memory DBMSs running on Intel NVM SDV.

Found that logging is (still) the main bottleneck in both systems.

Paper: ADMS @ VLDB'14





#### **2015: Storage Architectures**

Evaluated storage and recovery methods for OLTP DBMSs.

Developed NVM-optimized methods that achieve 5.5x better throughput with 2x fewer writes.

Paper: SIGMOD'15





# **2015: Storage Architectures**

|               | Table Storage | Logging | Example        |
|---------------|---------------|---------|----------------|
| In-Place      | Yes           | Yes     | <b>VOLT</b> DB |
| Copy-on-Write | Yes           | No      | <u>IMDB</u>    |
| Log-based     | No            | Yes     | RocksDB        |



# YCSB :: 10/90 RW :: 2x Latency





#### YCSB :: 10/90 RW :: 2x Latency





#### **PCOMMIT Evaluation**

Weakly-ordered sync primitive that retains data in the flushed cached lines.

Emulated with **RDTSC** and **PAUSE** instructions on NVM SDV.

**Summer 2015**: ~10,000 **PCOMMIT** invocations per second per CPU core.



# YCSB // In-Place Engine



#### **New Stuff**

NVM vs. SSD

Multi-level Anti-Caching

DRAM+NVM storage manager



#### **NVM vs. SSD**

Two-level Storage Hierarchy

Disk-oriented vs. Memory-Oriented

- Caching (MySQL)
- Anti-caching (H-Store)



#### **Disk vs. Memory Oriented DBMSs**

Caching Anti-Caching DRAM DRAM **Durable**Storage **Durable Storage** 



# YCSB :: 90/10 RW :: 4x Latency



## **YCSB :: Byte-Addressable Access**





## **Voter:: 4x Latency**



#### **Multi-Level Anti-Caching**



#### **Current Investigation:**

Eviction Policies
Retrieval Policies
Access Interfaces
Data Organization



# **Multi-Level Anti-Caching**





#### **Voter:: Multi-Level:: 2x Latency**







#### **DRAM+NVM DBMS**

Building a new storage manager for our new DBMS that will seamlessly incorporate NVM as an extension to its address space.

Upper-levels of the system are oblivious to "true" location of data.





# END and Paulo

