CRC 알고리즘

- ◆ CRC 알고리즘을 이해한다.
- ◆ CRC 알고리즘을 이용한 데이터 무결성을 구현할 수 있다.

- 1) 패리티 비트
- 2) Check Sum
- 3) CRC 알고리즘
- 4) CRC TABLE 구현 및 확인

Error Detection

◆정리

- 데이터 전송이 데이터값이 변경되는 경우가 발생
- 데이터가 올바로 전송됐는지 확인하기 위한 값 필요 - 체크섬값을 이용
- 체크섬값
 - 각각의 데이타값을 더한 값
- 전송값
 - < data> < checksum>
- Checksum값도 변경되는 경우가 발생할 수 있다.
- 데이터 값들이 변경되었는데도 checksum값과 같은경우
 - Checksum 오류에도 보정 가능한 기능의 함수 필요

패리티 비트(parity bit)

패리티 비트(parity bit)

```
패리티 비트( parity bit ): 한계점 -> 짝수개의 비트가 변형되면 error를 찾을 수 없다.
```

Check Sum

```
송신부
struct iphdr {
    u8
            ihl:4,
                                                 4510
                                                           2DBFB
                              45
            version:4;
                                                 00c8
                              10
                                                            DBFB
    u8
            tos;
                                                 244c
                              00 c8
                                                               2 +
     be16
           tot_len;
                                                 4000
                              24 4c
      be16
           id;
                                                 4006
                              40 00
                                                            DBFD
      be16
            frag_off;
                                                 0000
                              40
            ttl;
                                                 c0a8
    u8
                              06
            protocol;
                                                 3880
    u8
                              00 00
                                                          ~ 1101 1011 1111 1101
     sum16 check;
                                                 c0a8
                              c0 a8 38 80
                                                            0010 0100 0000 0010
     be32
            saddr;
                                               + 3801
                              c0 a8 38 01
                                                              2
                                                                   4
                                                                         0
                                                                            2
      be32
            daddr;
};
                                                2DBFB
```

Check Sum

```
수신부
struct iphdr {
            ihl:4,
    u8
                                                  4510
                                                             2FFFD
                              45
            version:4;
                                                  00c8
                              10
                                                              FFFD
     u8
            tos;
                                                  244c
                              00 c8
                                                                  2 +
     _be16 tot_len;
                                                  4000
                              24 4c
     be16
            id;
                                                  4006
                              40 00
                                                              FFFF
      be16
            frag_off;
                                                  2402
                              40
    __u8
            ttl;
                                                  c0a8
                              06
    u8
            protocol;
                                                  3880
                              24 02
     sum16 check;
                                                  c0a8
                                                            ~ 1111111111111111
                              c0 a8 38 80
     be32 saddr;
                                                + 3801
                                                               0000000000000000
                              c0 a8 38 01
     be32 daddr;
                                                                 0
                                                                     0
                                                                         0
                                                                             0
};
                                                 2FFFD
```

check sum의 한계점

: 데이터중 하나는 더하기 되고 하나는 빼기가 되는 경우 전체의 합에는 변동이 없으므로 error를 발견할 수 없다.

CRC(Cyclic Redundancy Check)

송신부	수신부	
11010011101100	11010011101100	100
1011	1011	
1100011101100	1100011101100	100
1011	1011	
111011101100	111011101100	100
1011	1011	
10111101100	10111101100	100
1011	1011	
1101100	1101100	100
1011	1011	
110100	110100	100
1011	1011	
11000	11000	100
1011	1011	
1110	1110	100
1011	1011	
101	0 101	100
101	101	100
	100	000

CRC(Cyclic Redundancy Check)

```
data = 0x12;
                       송신부
                                           수신부
     = 0xac
crc
                       00010100
                                                 00010100101101
                          111010101
                                                    111010101
                           10010101
                                                     100111111100
                           111010101
                                                     111010101
                            11111111
                                                      11101010100
                            111010101
                                                      111010101
                               10101100
                                                         00000000
```

CRC(Cyclic Redundancy Check)

```
data[3] = {0x12,0x34,0x0};

crc = crc8(0x2d^0x34)

data[2] = crc = 0xae;

송신부
```

00101101 00110100 ^ 00011001

