

NORTHEASTERN UNIVERSITY, KHOURY COLLEGE OF COMPUTER SCIENCE

CS 6220 Data Mining — Assignment 3 Due: February 15, 2023(100 points)

YOUR NAME YOUR GIT USERNAME YOUR E-MAIL

Multisource Joins

News articles are commonly aggregated from multiple sites and companies. The landscape of news has been evolving ever since social media has amplified its effects. In politics, Congress has explored the topic of bias with the diversity of news sources. That is, news articles may cover news stories with differing perspectives and language.

The data that we will be using today comes from Kaggle, and it is available here. There are two CSV files that we wish to join in this week's homework: data/id_titles.csv and data/id_publishers.csv.

As the name suggests, there is publishing data associated with articles and there is title and description information associated with the same articles. Each table has many instances, and each instance for both tables have an associated ID, where it is possible to join the two data sources.

In this particular case, there is some missing information in the join. Your task is as follows.

1. Write out a file that has all the data columns, but where the rows are only those articles where there are titles but no publisher information. Call it titles_no_publishers.txt. In your PDF writeup, include the first 10 rows ordered by ID. This table should look something like the below (ignore the values):

+	-+	-+	++	+	++
ID STORY	/ TITLE PUBLISHE	R CATEGORY	HOSTNAME	URL	TIMESTAMP
tt	- -	- +	tt		·
100126 dM3BF51f1KhsL6MQ	. null TheDay.com	n m	www.theday.com	http://www.theday	1397245711691
100152 dM3BF51f1KhsL6MQ	. null HealthLeaders Medi	a m	www.healthleaders	http://www.health	1397245718290
10021 dtBNhkt0YyqHCuM_A	. null Android Headlines	. t	www.androidheadli	http://www.androi	1394714719418
10026 dtBNhkt0YyqHCuM_A	. null The Herald \ Her	. t	www.heraldonline.com	http://www.herald	1394714720435
100374 dFxU4YSThH_gU7MT9	. null thejournal.i	e m	www.thejournal.ie	http://www.thejou	1397246468342
100444 dfp-Hn8YgXYtiKMx9	. null	1 m	www.dailymail.co.uk	http://www.dailym	1397247313815
10046 dtBNhkt0YyqHCuM_A	. null Computerworl	i t	www.computerworld	http://www.comput	1394714725232
100471 d0KyvrpUXPQ3XmM2h	null Indianapolis Reco	. m	www.indianapolisr	http://www.indian	1397247386697
100571 dBU-y8mnlizhV4Mzv	. null Motley Foo	l m	www.fool.com	http://www.fool.c	1397247496216
100785 dou7Qef9Jcn7_IM4Q	null Today's Medical D	. m	www.onlinetmd.com	http://www.online	1397248500577

2. Write out a file that has all the data columns, but where the rows are only those articles where there are publishers but not title information. Call it titles_no_publishers.txt. In your PDF writeup, include the first 10 rows ordered by ID. That table should look something like the below (ignore the values):

++		+	t	tt		+
ID	STORY	TITLE	PUBLISHER	CATEGORY	HOSTNAME URL	TIMESTAMP
÷+					-	i
100068	dJ_k5DjBr5MzK0MHf	Networks: Kathlee	null	null	null null	null
100176	dM3BF5lflKhsL6MQ	Medicare data giv	null	null	null null	null
100192	dM3BF5lflKhsL6MQ	Medicare Records	null	null	null null	null
100422	duBSqD7s8phcPsMQK	Sales get leaner	null	null	null null	null
100442	dfp-Hn8YgXYtiKMx9	More than 100 pas	null	null	null null	null
100570	dBU-y8mnlizhV4Mzv	Today's Pre-Marke	null	null	null null	null
100653	dwnBgdLk-3bzGBMNi	Aid workers back	null	null	null null	null
100716	dwnBgdLk-3bzGBMNi	WHO says West Afr	null	null	null null	null
100850	dk_vhtrqQFe_dsMiu	Flu Drugs Tamiflu	null	null	null null	null
100939	dk_vhtrqQFe_dsMiu	Study Questions O	null	null	null null	null
100969	dk_vhtrqQFe_dsMiu	Tamiflu use calle	null	null	null null	null
101119	dDtTmiUm0P1qeMMK8	US close: Sell-of	null	null	null null	null
101301	d4p273oepCNzWtMV5	Can Family Dollar	null	null	null null	null
101330	dhpby_46Ae5iB8ME	A Turbulent Week	null	null	null null	null
10152	dOQvzWTEFn4NkVM9c	T. rex's 'pygmy'	null	null	null null	null
101704	dq4CkE5dd_NRkmMCB	Ron Agostini: Col	null	null	null null	null
101839	dSAALz3Yg1Ijh5MZV	Fitch: JPMorgan 1	null	null	null null	null
10191	dA0ddnisozIS59MZa	Earth has a secre	null	null	null null	null
101912	dJVPX-uN99u nuMNg	GGG-GAME CHANGER:	null	null	null null	null

3. Explore the data further, and identify potential problems that could arise if we were to further analyze the data (e.g., apply a machine learning algorithm). Is there still missing data? That is to say, do all the columns have the correct data? What could have gone wrong in the data creation step? (You needn't code anything, but conceptually describe any issues you see and how you would remedy it.)

K-Means

The normalized automobile distributor timing speed and ignition coil gaps supplied are from production F-150 trucks over the years of 1996, 1999, 2006, 2015, and 2022. We have stripped out the labels for the five years of data. Each sample in the dataset is two-dimensional, i.e. $\mathbf{x}_i \in \mathbb{R}^2$, and there are N = 5000 instances in the data.

Vanilla k-Means

In this part of the homework, we'll take a look at how we can identify patterns in this data despite not having the labels. We'll start with the simplest approach, the k-Means unsupervised clustering algorithm.

4. Implement a simple k-means algorithm in Python on Colab with the following initialization:

$$\mathbf{x}_1 = \begin{pmatrix} 10\\10 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -10\\-10 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 2\\2 \end{pmatrix}, \mathbf{x}_4 = \begin{pmatrix} 3\\3 \end{pmatrix}, \mathbf{x}_5 = \begin{pmatrix} -3\\-3 \end{pmatrix}, \tag{0.1}$$

You need only 100 iterations, maximum, and your algorithm should run very quickly to get the results. In order to maintain consistency between submissions, use a random seed of 27. You can do this with

- >> numpy.random.seed(seed=27)
- 5. Scatter the results in two dimensions with different clusters as different colors. You can use **matplotlib**'s **pyplot** functionality:
 - >> import matplotlib.pyplot as plt
 >> plt.scatter(<YOUR CODE HERE>)
- 6. You will notice that in the above, there are only five initialization clusters. Why is k = 5 a logical choice for this dataset? After plotting your resulting clusters and. What do you notice?

With Production Information

Very often, it is possible to obtain additional information about the collected data. This sometimes allows us to define a new mathematical operators (including distances). In this part of the homework, we'll look at how to use this information to improve our modeling with an understanding of how two features in each sample are related.

A common distance metric is the *Mahalanobis Distance* with a specialized covariance.

$$d(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T P^{-1} (\mathbf{x} - \mathbf{y})$$
(0.2)

where \mathbf{x} and \mathbf{y} are two points of dimensionality m (2 in this case), and $d(\mathbf{x}, \mathbf{y})$ is the distance between them. In the case of the F150 engine components, P is a known relationship through Ford's quality control analysis each year, where it is numerically shown as below:

$$P = \begin{pmatrix} 10 & 0.5 \\ -10 & 0.25 \end{pmatrix} \tag{0.3}$$

- 7. Implement a specialized k-means with the above Mahalanobis Distance. Scatter the results with the different clusters as different colors. What do you notice? You may want to precompute P^{-1} so that you aren't calculating an inverse every single loop of the k-Means algorithm.
- 8. Calculate and print out the first principle component of the aggregate data.
- 9. Calculate and print out the *first* principle components of *each cluster*. Are they the same as the aggregate data? Are they the same as each other?