1. 简答(多重选择)题:

(1)
$$f(z) = \frac{1}{(z-a)[z-a-(b-a)]} = \frac{1}{(z-a)^2} \sum_{k=0}^{\infty} \left(\frac{b-a}{z-a}\right)^k$$
 (6分)

(2) 沿实轴和虚轴趋于 ∞ 极限不同,故为本性奇点 (3分)

求留数只能展开:
$$f(z) = \frac{1}{z} \sum_{k=0}^{\infty} \frac{z^k}{k!} \sum_{l=0}^{\infty} \frac{(-1)^l}{z^l} = \frac{1}{z} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^l z^{k-l}}{k!}$$

$$\frac{1}{z}$$
 项的系数: $a_{-1} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1}$, 留数: $-a_{-1} = -\frac{1}{e}$ (3分)

(3)
$$f(z) = \frac{g(z)}{(z - z_0)^n}$$
, $g(z)$ 解析且 $g(z_0) \neq 0$ (3分)

$$\frac{f'(z)}{f(z)} = \frac{g'(z)(z-z_0)-ng(z)}{(z-z_0)g(z)}$$
, 留数: Res= $\lim_{z\to z_0} \left[(z-z_0)\frac{f'(z)}{f(z)} \right] = -n \ (3分)$

(4)
$$I = \ln z \Big|_{-3i}^{2i} = \ln \frac{2}{3} + i [\arg(2i) - \arg(-3i)] = \ln \frac{2}{3} - i\pi$$
 (6分)

另解: 连续变形为: c_1 : 从 z = -3i 经 z = -3 到 z = 3i,

 c_2 : 从 z = 3i 沿虚轴到 z = 2i。

$$\int_{c_1} \frac{dz}{z} = -i\pi, \quad \int_{c_2} \frac{dz}{z} = \ln\frac{2}{3}, \quad I = \ln\frac{2}{3} - i\pi$$
 (6分)

(5) $I=2\pi i\operatorname{Res},\ f(z)=rac{1}{z\sin^3z\cos z}$ 是偶函数,展开式不应有奇次幂项, $\operatorname{Res}=a_{-1}=0 \tag{6分}$

(6) 离
$$z=1$$
 最近的奇点为 $z=\frac{\pi}{2}$, 故级数的收敛半径为 $\frac{\pi}{2}-1$ (6分)

(7) 只选
$$(d)$$
 (其它选择一律 0 分) (6分) 例: $f(z) = \frac{1}{z-1}$ 在 $|z| > 1$ 可展开为: $\sum_{k=0}^{\infty} \frac{1}{z^{k+1}}$ 违反 (a) , (b) (c)

(8) (b) 和 (c) 正确 给出一个正确选择得 3分,给出一个错误选择倒扣 3分,例 如,选 (a), (b) 得 0 分,本小题最低得 0 分

2. 奇点:
$$z = 2k\pi$$
, $k = 0, \pm 1, \pm 2, \dots$ (8分)

$$k=0$$
 对应于可去奇点 $(4分)$

$$k \neq 0$$
 对应于单极点。 (6分)

3.
$$z$$
 沿正负实轴趋于 0 , $f(z) = \frac{\sin e^{1/z}}{z}$ 极限不同,故 $z = 0$ 是本性奇点。 (4分)

留数只能通过 Laurent 展开计算,难求。

利用有限远与无穷远留数和为
$$0$$
, 可求 $z=\infty$ 处的留数。 (4分)

作变量代换: $\zeta = 1/z$, $f(z) = \zeta \sin e^{\zeta}$,

只需求
$$g(\zeta) = f(z)/\zeta^2$$
 在 $\zeta = 0$ 处的留数。 (4分)

Res
$$[g(0)] = \sin 1$$
,故:Res $[f(\infty)] = -\sin 1$,

即: Res
$$[f(0)] = \sin 1$$
, $I = 2\pi i \sin 1$ (2分)

4. 作
$$f(z) = \frac{\sqrt{z} \ln z}{z^2 + 1}$$
 的割线:连接 $z = 0$ 与 $z = \infty$ 的直线。上岸: $\arg z = 0$ (3分)

因为
$$\lim_{z \to \infty} z f(z) = 0$$
,故: $\int_{C_R} f(z) dz = 0$ (2分)

因为
$$\lim_{z \to 0} z f(z) = 0$$
,故: $\int_{C_z} f(z) dz = 0$ (2分)

$$\oint f(z)dz = 2I + 2\pi i \int \frac{\sqrt[3]{x}}{x^2 + 1} dx = 2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)]$$
(35)

$$\operatorname{Res} f(i) = \frac{\sqrt{2}}{8}\pi(1+i) \tag{3分}$$

Res
$$f(-i) = \frac{3\sqrt{2}}{8}\pi(1-i)$$
 (3分)

$$I = \frac{\sqrt{2}}{4}\pi^2 \tag{2分}$$

5.
$$f(z) = \frac{|z|^p |z-1|^{1-p} e^{i[p\theta_1 + (1-p)\theta_2]}}{z^2 - 1}, \quad \theta_1 = \arg z, \quad \theta_2 = \arg(z-1)$$
 (3**分**)

在上岸: $\theta_1 = \theta_{10}$, $\theta_2 = \theta_{20}$, $z_0 = 1/2 + i0^+$,

$$f(z_0) = -\frac{2}{3} e^{i[p\theta_{10} + (1-p)\theta_{20}]} = \frac{2}{3} e^{ip\pi}$$

故:
$$\theta_{10} - \theta_{20} = \pi$$
, $\theta_{20} = \pi$ (3分)

$$a_{-1} = \lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z^{p-1} (z-1)^{1-p}}{1 - \frac{1}{z^2}} = \lim_{z \to \infty} e^{i(p-1)(\theta_1 - \theta_2)}$$
(3**\(\frac{\partial}{2}\)**)

注意在上岸: $\theta_{10} = 2\pi$, $\theta_{20} = \pi$, $\theta_{10} - \theta_{20} = \pi$

$$z \to \infty$$
 时, $\theta_1 - \theta_2 = 2\pi$ (3分)

故:
$$a_{-1} = e^{i(p-1)2\pi}$$
, Res $[f(\infty)] = -a_{-1} = -e^{i2p\pi}$ (3分)