Importing Libraries

- 1 import tensorflow as tf #models
- 2 import seaborn as sns #visuals
- 3 from tensorflow.keras.layers import Normalization, Dense, InputLayer
- 4 import pandas as pd
- 5 from tensorflow.keras.losses import MeanSquaredError, BinaryCrossentropy, Hu
- 6 from tensorflow.keras.optimizers import Adam
- 7 from tensorflow.keras.metrics import RootMeanSquaredError
- 8 import matplotlib.pyplot as plt #visuals
- 9 import numpy as np

V DATA PREPARATION

Importing Dataset

1 data = pd.read_csv('train.csv')
2 data.head()

₹		v.id	on road old	on road now	years	km	rating	condition	economy	top speed	hp	torque		
	0	1	535651	798186	3	78945	1	2	14	177	73	123		
	1	2	591911	861056	6	117220	5	9	9	148	74	95		
	2	3	686990	770762	2	132538	2	8	15	181	53	97		
	⋄	А	£72000	700004	А	101065	A	°	11	107	ΕΛ	116		
Next				ite code	data			commended		New interactive				

Visualising dataset

1 sns.pairplot(data[['years', 'km', 'rating', 'condition', 'economy', 'top spe

Converting pd.DataFrame to Tensor

```
tensorData = tf.constant(data)
   tensorData = tf.cast(tensorData, tf.float64)
   print(tensorData[:51)
→ tf.Tensor(
    [[1.000000e+00 5.356510e+05 7.981860e+05 3.000000e+00 7.894500e+04
      1.000000e+00 2.000000e+00 1.400000e+01 1.770000e+02 7.300000e+01
      1.230000e+02 3.513180e+051
     [2.000000e+00 5.919110e+05 8.610560e+05 6.000000e+00 1.172200e+05
      5.000000e+00 9.000000e+00 9.000000e+00 1.480000e+02 7.400000e+01
      9.500000e+01 2.850015e+051
     [3.000000e+00 6.869900e+05 7.707620e+05 2.000000e+00 1.325380e+05
      2.000000e+00 8.000000e+00 1.500000e+01 1.810000e+02 5.300000e+01
      9.700000e+01 2.153860e+05]
     [4.000000e+00 5.739990e+05 7.223810e+05 4.000000e+00 1.010650e+05
     4.000000e+00 3.000000e+00 1.100000e+01 1.970000e+02 5.400000e+01
      1.160000e+02 2.442955e+05]
     [5.000000e+00 6.913880e+05 8.113350e+05 6.000000e+00 6.155900e+04
      3.000000e+00 9.000000e+00 1.200000e+01 1.600000e+02 5.300000e+01
      1.050000e+02 5.311145e+05]], shape=(5, 12), dtype=float64)
```

Shuffling the order of dataset

```
tensorData = tf.random.shuffle(tensorData)
   print(tensorData[:5])
→ tf.Tensor(
    [[9.800000e+02 6.336660e+05 8.060520e+05 7.000000e+00 1.151760e+05
      5.000000e+00 2.000000e+00 1.100000e+01 1.520000e+02 7.100000e+01
      9.500000e+01 2.525495e+05]
     [6.000000e+00 6.500070e+05 8.448460e+05 6.000000e+00 1.488460e+05
      2.000000e+00 9.000000e+00 1.300000e+01 1.380000e+02 6.100000e+01
      1.090000e+02 1.779335e+05]
     [7.580000e+02 6.585050e+05 8.153720e+05 3.000000e+00 9.668300e+04
      3.000000e+00 9.000000e+00 1.300000e+01 1.510000e+02 9.900000e+01
      1.010000e+02 3.799910e+05]
     [5.570000e+02 5.534900e+05 8.944150e+05 3.000000e+00 5.633100e+04
      3.000000e+00 9.000000e+00 1.300000e+01 1.830000e+02 1.070000e+02
      7.200000e+01 5.284185e+05]
     [6.580000e+02 5.880350e+05 7.550160e+05 3.000000e+00 1.481670e+05
      1.000000e+00 6.000000e+00 1.000000e+01 1.980000e+02 7.400000e+01
      7.500000e+01 8.284800e+04]], shape=(5, 12), dtype=float64)
```

Splitting Dataset into Features and Labels

```
1 X = tensorData[:, 3:-1]
2 print(X[:5])
→ tf.Tensor(
    [[7.00000e+00 1.15176e+05 5.00000e+00 2.00000e+00 1.10000e+01 1.52000e+02
     7.10000e+01 9.50000e+01]
    [6.00000e+00 1.48846e+05 2.00000e+00 9.00000e+00 1.30000e+01 1.38000e+02
     6.10000e+01 1.09000e+02]
    [3.00000e+00 9.66830e+04 3.00000e+00 9.00000e+00 1.30000e+01 1.51000e+02
     9.90000e+01 1.01000e+021
    [3.00000e+00 5.63310e+04 3.00000e+00 9.00000e+00 1.30000e+01 1.83000e+02
     1.07000e+02 7.20000e+011
     [3.00000e+00 1.48167e+05 1.00000e+00 6.00000e+00 1.00000e+01 1.98000e+02
     7.40000e+01 7.50000e+01]], shape=(5, 8), dtype=float64)
1 y = tensorData[:, -1]
2 print(y.shape)
y = tf.expand dims(y, axis=-1)
4 print(y.shape)
→ (1000,)
    (1000, 1)
```

Splitting Dataset into Train Dataset, Validation Dataset, Test

Dataset

```
1 X val = X[int(DATASET SIZE * TRAIN RATIO):int(DATASET SIZE * (TRAIN RATIO +
 2 y val = y[int(DATASET SIZE * TRAIN RATIO):int(DATASET SIZE * (TRAIN RATIO +
 3 print(X val.shape, y val.shape)
→ (100, 8) (100, 1)
1 val dataset = tf.data.Dataset.from tensor slices((X val, y val))
 2 val dataset = val dataset.shuffle(buffer size=8, reshuffle each iteration=Tr
 3 val dataset.element spec
TensorSpec(shape=(None, 8), dtype=tf.float64, name=None),
     TensorSpec(shape=(None, 1), dtype=tf.float64, name=None))
1 X_test = X[int(DATASET_SIZE * (TRAIN_RATIO + VAL_RATIO)):]
 2 y_test = y[int(DATASET_SIZE * (TRAIN_RATIO + VAL_RATIO)):]
3 print(X test.shape, y test.shape)
\rightarrow (100, 8) (100, 1)
1 test_dataset = tf.data.Dataset.from_tensor_slices((X_test, y_test))
2 test_dataset = test_dataset.shuffle(buffer_size=8, reshuffle_each_iteration=
 3 test_dataset.element_spec
TensorSpec(shape=(None, 8), dtype=tf.float64, name=None),
     TensorSpec(shape=(None, 1), dtype=tf.float64, name=None))
```

Normalizing Data

```
1 normalizer = Normalization()
2 normalizer.adapt(X)
3 X normalized = normalizer(X)
```

MODEL CREATION

```
1 model = tf.keras.Sequential([
 2
       InputLayer(input shape =(8,)),
 3
       normalizer,
       Dense(1024, activation='relu'),
 4
       Dense(1024, activation='relu'),
       Dense(512, activation='relu'),
6
       Dense(256, activation='relu'),
7
8
       Dense(1, activation='linear')
9 ])
10 model.summary()
Jwsr/local/lib/python3.10/dist-packages/keras/src/layers/core/input layer.py:26: Userw
      warnings.warn(
    Model: "sequential"
      Layer (type)
                                          Output Shape
      normalization (Normalization)
                                           (None, 8)
```

Param # 17 dense (Dense) (None, 1024) 9,216 dense_1 (Dense) (None, 1024) 1,049,600 dense 2 (Dense) (None, 512) 524,806 131,328 dense_3 (Dense) (None, 256) dense 4 (Dense) (None, 1) 257

1 tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True)

Input shape: (None, 256) Output shape: (None, 1)

Compiling Model

1 history = model.fit(train_dataset, validation_data=val_dataset, epochs=100,

25/25		- 1s	32ms/step	-	loss:	27829.0527	-	root_mean_squared_erro 🔺
Epoch 25/25	28/100	– 1s	31ms/sten	_	loss:	26643.8691	_	root_mean_squared_erro
-	29/100							
25/25		- 1s	32ms/step	-	loss:	28613.7578	-	root_mean_squared_erro
25/25	30/100	– 1s	32ms/step	_	loss:	26513.7754	_	root_mean_squared_erro
	31/100	4-	20		1	26705 4402		
25/25 Epoch	32/100	– 15	39ms/step	-	TOSS:	26/95.4102	-	root_mean_squared_erro
25/25		- 1s	43ms/step	-	loss:	26993.3867	-	root_mean_squared_erro
Epoch 25/25	33/100	– 1s	44ms/sten	_	loss:	28345.8477	_	root_mean_squared_erro
Epoch	34/100							
25/25 Enoch	35/100	- 1s	31ms/step	-	loss:	26034.2090	-	root_mean_squared_erro
25/25		- 1s	32ms/step	-	loss:	27248.2930	-	root_mean_squared_erro
	36/100	_ 10	22mc/s+on		10001	20574 2711		neet mean squared enny
25/25 Epoch	37/100	_ 12	32IIIS/Step	-	TOSS:	203/4.3/11	-	root_mean_squared_erro
25/25		- 1s	31ms/step	-	loss:	26055.3047	-	root_mean_squared_erro
25/25	38/100	– 1s	32ms/step	_	loss:	26702.4336	_	root mean squared erro
Epoch	39/100							
25/25 Epoch	40/100	– 1s	32ms/step	-	loss:	24706.5703	-	root_mean_squared_erro
25/25		- 1s	32ms/step	-	loss:	25718.0020	-	root_mean_squared_erro
Epoch 25/25	41/100	– 1s	31ms/sten	_	loss:	25895.6250	_	root mean squared erro
	42/100		этшэ/ эсср		1033.	2303310230		rooc_mean_squarea_err
25/25	43/100	- 1s	39ms/step	-	loss:	24564.2812	-	root_mean_squared_erro
25/25		– 1s	42ms/step	_	loss:	24295.1602	_	root_mean_squared_erro
	44/100	_ 10	11mc/c+on		10001	25121 5566		neet mean squared onne
25/25 Epoch	45/100	– 15	44ms/step	-	TOSS:	25121.5566	-	root_mean_squared_erro
25/25		- 1s	40ms/step	-	loss:	24974.7188	-	root_mean_squared_erro
25/25	46/100	– 1s	31ms/step	_	loss:	27825.6426	_	root_mean_squared_erro
	47/100							
25/25 Epoch	48/100	- 1s	33ms/step	-	loss:	26589.1094	-	root_mean_squared_erro
25/25		- 1s	32ms/step	-	loss:	24495.5938	-	root_mean_squared_erro
Epoch 25/25	49/100	– 1s	32ms/sten	_	loss	26002 7344	_	root_mean_squared_erro
	50/100		32m3/ 3 ccp		1033.	2000217344		rooc_mean_squarea_err
25/25 Enoch	51/100	- 1s	32ms/step	-	loss:	23549.6016	-	root_mean_squared_erro
25/25		– 1s	31ms/step	-	loss:	24980.4980	-	root_mean_squared_erro
	52/100	_ 1^	21mc/c+an		1000	27207 6055		noot moon causned con-
25/25 Epoch	53/100	_ 12	ens/scep	-	TO22:	2/30/.0055	-	root_mean_squared_erro
25/25		– 1s	32ms/step	-	loss:	26422.3125	-	root_mean_squared_erro
Enc al-	24/ TAA					24014 0472		
Epoch 25/25		- 1s	41ms/step	-	TOSS:	24914.94/3	-	root_mean_squared_erro
25/25	55/100							root_mean_squared_erro

1 #history.history

Plotting loss and Val_loss

```
1 plt.plot(history.history['loss'])
2 plt.plot(history.history['val_loss'])
3 plt.legend(['loss', 'val_loss'])
4 plt.title('Model Loss')
5 plt.ylabel('Loss')
6 plt.xlabel('Epoch')
7 plt.show()
```


Plotting Root Mean Squared Error and Val_Root_Mean_Squared_Error

```
1 plt.plot(history.history['root_mean_squared_error'])
2 plt.plot(history.history['val_root_mean_squared_error'])
3 plt.legend(['root_mean_squared_error', 'val_root_mean_squared_error'])
4 plt.title('Model Root Mean Squared Error')
5 plt.ylabel('Root Mean Squared Error')
6 plt.xlabel('Epoch')
7 plt.show()
```


Model Root Mean Squared Error

Evaluating Model

PREDICTION

Checking accuracy of model

```
1 y_true = np.array(y_true)
2 y_pred = np.array(y_pred)
3
4 mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100
5 print(f'Mean Absolute Percentage Error (MAPE): {mape}%')

The model.save('CarPricePrediction.keras')
```

Main

```
1
    def main():
 2
        # Load the trained model
        with tf.keras.utils.CustomObjectScope({'MyCustomMetric': MyCustomMetric
 3
            model = tf.keras.models.load_model('CarPricePrediction.keras')
4
5
6
        # Prompt user for input
7
        years = float(input("Enter years: "))
8
        km = float(input("Enter kilometers: "))
        rating = float(input("Enter rating: "))
9
        condition = float(input("Enter condition: "))
10
        economy = float(input("Enter economy: "))
11
```

CarPricePrediction.ipynb - Colab

```
12
        top speed = float(input("Enter top speed: "))
        hp = float(input("Enter horsepower: "))
13
        torque = float(input("Enter torque: "))
14
15
16
        # Create a TensorFlow constant from user input
17
        test input = tf.constant([[years, km, rating, condition, economy,
        top speed, hp, torque]], dtype=tf.float64)
18
19
        # Predict the value
20
        prediction = model.predict(test input)
21
22
        # Calculate the margin of error based on MAPE
23
        margin of error = prediction[0][0] * (17.56103471303923 / 100)
24
25
        # Print the prediction with the margin of error
        print("Predicted Value: {:.2f} ± {:.2f}".format(prediction[0][0],
26
```