Лабораторная работа 1.1.4. Измерение интенсивности радиационного фона

Калинин Данил, Б01-110

07.09.2021

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

В работе используются: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

Теоритическая справка:

Среднеквадратичная ошибка числа отчетов, измеренного за некоторый интервал времени равна:

$$\sigma = \sqrt{n} \tag{1}$$

Тогда результат измерения запишется так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измеренях среднее значение числа посчитанных за одно измрение частиц может быть посчитано по форумле:

$$\bar{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

А стандартная ошибка отдельного измерения может быть оценена по формуле:

$$\sigma_{om\partial} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \bar{n})^2}$$
(4)

В соответствии с формулой (1) следует ожидать, что это ошибка будет близка к $\sqrt{n_i}$. Поскольку n_i различны, мы будем получать различные оценки для σ_{omd} . Какие-то из них будут лучше, какие-то – хуже. Ближе всего к значению σ_{omd} будет корень из усредненного измерения, т.е.

$$\sigma_{omd} \approx \sqrt{\bar{n}}$$
 (5)

Величина \bar{n} из формулы (3) тоже является случайной, ее отклонене от истинного значения может быть определено по формуле:

$$\sigma_{\bar{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \bar{n})^2} = \frac{\sigma_{omd}}{\sqrt{N}}$$
(6)

Обычно наибольший интерес представляет относительная погрешность. Для рассмотрения серии из N экспериментов по 20 с. относительная ошибка отдельного измерения (т.е. ожидаемое отличие n_i от n_0) равна:

$$\varepsilon_{omd} = \frac{\sigma_{omd}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогичным образом определяется относительная ошибка в опредлении среднего по всем измерениям значения \bar{n} .

$$\varepsilon_{\bar{n}} = \frac{\sigma_{\bar{n}}}{\bar{n}} = \frac{\sigma_{om\theta}}{\bar{n}\sqrt{N}} \approx \frac{1}{\sqrt{\bar{n}N}}$$
 (8)

Ход работы:

- 1. Включим компьютер и проведем демонстрационный эксперимент, чтобы познакомится с интерфейсом программы. Заметим, что:
 - 1) измеряемая величина флуктуирует;
 - 2) флуктуации среднего значения измеряемой величины уменьшаются и среднее значение величины выходит на постоянный уровень;
 - 3) флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину;
 - 4) флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.
- 2. Переходим к основному эксперименту: измерение плотности потока космического излучения за 20 с. На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведем в таблицы 1 и 2. Примечание: таблица 1 устроена так, что, например, результат 123-го опыта лежит на пересечении строки, обозначенной 120 и столбца с номером 3.
- 3. Разобьем результаты из таблицы 1 в порядке их получения на группы по 2 и сложим числа в каждой группе. Это будет соответствовать $N_2=100$ измерениям по $t=40\ c$. каждое. Резльтаты сведем в таблицу 3
- 4. Представим результаты из таблицы 3 в виде, удобном для построения гистограммы. Результаты занесем в таблицу 4. Гистограммы распределений среднего числа отсчетов за 10 и 40 с. строим на одном графике (рис 1). При этом для второй гистограммы увеличиваем шкалу деления оси абсцисс в 4 раза, чтобы максимумы гистограмм совпали.
- 5. Используя формулу 3, определим среднее значение срабатывания счетчика за 10 и 40 с. соответственно:

$$\bar{n}_{10} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{5518}{400} = 13.795$$

$$\bar{n}_{40} = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{5518}{100} = 55.18$$

6. Найдем среднеквадратичную ошибку отдельного измерения по формуле (4)

$$\sigma_{om\partial_{10}} = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n})^2} = 3.70175$$

№	1	2	3	4	5	6	7	8	9	10
опы-										
та										
0	31	43	22	21	22	31	33	30	21	25
10	26	34	26	29	32	32	30	28	28	28
20	20	26	16	25	29	34	29	30	31	26
30	28	38	30	20	22	24	29	30	20	21
40	27	24	37	25	31	34	37	23	23	28
50	25	32	38	21	33	41	25	31	21	30
60	18	29	24	38	19	37	30	26	25	42
70	23	23	30	22	25	28	25	26	18	36
80	26	20	25	32	22	41	34	23	26	22
90	30	27	26	34	26	34	36	15	23	29
100	27	29	15	24	29	36	34	35	27	31
110	26	42	24	36	26	29	30	23	28	30
120	36	26	27	30	24	28	24	20	30	25
130	24	29	26	13	21	19	23	34	26	28
140	25	25	24	34	28	25	29	27	29	30
150	24	33	33	26	33	16	35	25	28	29
160	30	21	18	31	19	37	27	20	22	32
170	31	34	28	17	24	35	20	33	20	19
180	28	25	31	40	24	29	24	24	28	32
190	27	34	27	35	26	29	16	28	31	29

Таблица 1. Число срабатываний счетчика за 20 с.

$$\sigma_{om\theta_{40}} = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n})^2} = 7.46107$$

7. Убедимся в верности формулы (5). Действительно:

$$\sigma_{om\partial_{10}} = 3.70175 \approx \sqrt{13.795} = 3.71416$$

$$\sigma_{om\partial_{40}} = 7.46107 \approx \sqrt{55.18} = 7.42832$$

- 8. Определим долю случаев, когда отклонение от среднего значения не превышают σ_{omd} и $2\sigma_{omd}$ и занесем результат в таблицу 5.
- 9. Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\bar{n}_{10}=13.795;~\sigma_{om\partial_{10}}=3.70175;~\bar{n}_{40}=55.18;~\sigma_{om\partial_{40}}=7.46107.$ Отсюда видно, что хоть $\sigma_{om\partial_{40}}>\sigma_{om\partial_{10}},$ полуширина второго распределения меньше:

$$\frac{\sigma_{om\partial_{10}}}{\bar{n}_{10}} \approx 26.83\% > \frac{\sigma_{om\partial_{40}}}{\bar{n}_{40}} \approx 13.46\%$$

Кстати, тот же вывод можно сделать, посмотрев на гистограммы на рисунке 1.

10. Определмим стандартную ошибку величин \bar{n}_{10} и \bar{n}_{40} и относительную ошибку тех же величин для $N_1=400$ и $N_2=100$ соответственно. По формуле (6):

$$\sigma_{\bar{n}_{10}} = \frac{\sigma_{om\partial_{10}}}{\sqrt{N_1}} \approx 0.185$$

Число импульсов	Число случаев	Доля случаев
3	1	0.0025
4	1	0.0025
5	2	0.005
6	2	0.005
7	7	0.0175
8	14	0.035
9	19	0.0475
10	32	0.08
11	38	0.095
12	34	0.085
13	39	0.0975
14	39	0.0975
15	46	0.115
16	39	0.0975
17	24	0.06
18	21	0.0525
19	17	0.0425
20	11	0.00275
21	5	0.0125
22	4	0.01
23	3	0.0075
25	1	0.0025
28	1	0.0025

Таблица 2. Данные для построения гистограммы распределения числа срабатываний счетчика за $10~\mathrm{c}$.

№	1	2	3	4	5	6	7	8	9	10
опы-										
та										
0	74	43	53	63	46	60	55	64	58	56
10	46	41	63	59	57	66	50	46	59	41
20	51	62	65	60	51	57	59	74	56	51
30	47	62	56	56	67	46	52	53	51	54
40	46	57	63	57	48	57	60	60	51	52
50	56	39	65	69	58	68	60	55	53	58
60	62	57	52	44	55	53	39	40	57	54
70	50	58	53	56	59	57	59	49	60	57
80	51	49	56	47	54	65	45	59	53	39
90	53	71	53	48	60	61	62	55	44	60

Таблица 3. Число срабатываний счетчика за 40 с.

Аналогично для \bar{n}_{40}

$$\sigma_{\bar{n}_{40}} = \frac{\sigma_{om\partial_{40}}}{\sqrt{N_2}} \approx 0.74$$

Найдем относительную ошибку по первому равенству (8)

Число импульсов	Число случаев	Доля случаев
39	3	0.03
40	1	0.01
41	2	0.02
43	1	0.01
44	2	0.02
45	1	0.01
46	5	0.05
47	2	0.02
48	2	0.02
49	2	0.02
50	2	0.02
51	6	0.06
52	3	0.03
53	8	0.08
54	3	0.03
55	4	0.04
56	7	0.07
57	9	0.09
58	4	0.04
59	6	0.06
60	8	0.08
61	1	0.01
62	4	0.04
63	3	0.03
64	1	0.01
65	3	0.03
66	1	0.01
67	1	0.01
68	1	0.01
69	1	0.01
71	1	0.01
74	2	0.02

Таблица 4. Данные для построения гистограммы распределения числа срабатываний счетчика за $40~\mathrm{c}$.

	Ошибка	Число случаев	Доля случаев,	Теоретическая
			%	оценка
Для $\tau = 10 \ c$.	$\pm \sigma_{om \partial_{10}}$	259	64.75	68
$\int \Delta \ln t = 10 \text{ c.}$	$\pm 2\sigma_{om\partial_{10}}$	385	96.25	95
Для $\tau = 40 \ c$.	$\pm \sigma_{om \partial_{40}}$	69	69	68
$\iiint T = 40 \text{ C.}$	$\pm 2\sigma_{om\partial_{40}}$	93	93	95

Таблица 5. Сравнение доли значений внутри интервалов с теоретическими значениями

Для
$$\bar{n}_{10}$$
:
$$\varepsilon_{\bar{n}_{10}} = \frac{\sigma_{\bar{n}_{10}}}{\bar{n}_{10}} \cdot 100\% \approx 1.341\%$$

Рис. 1. Гистограммы для $\tau = 10 \ c$. и $\tau = 40 \ c$.

И аналогично для \bar{n}_{40} :

$$\varepsilon_{\bar{n}_{40}} = \frac{\sigma_{\bar{n}_{40}}}{\bar{n}_{40}} \cdot 100\% \approx 1.34106\%$$

Таким образом, результат определен с точностью $\approx 74.63\%$.

11. Окончательный результат:

$$n_{\tau=10c.}=\bar{n}_{10}\pm\sigma_{\bar{n}_{10}}=13.795\pm0.185$$
 (частиц)

$$n_{\tau=40c.} = \bar{n}_{40} \pm \sigma_{\bar{n}_{40}} = 55.18 \pm 0.74 \; (\textit{vacmuy})$$

Заключение:

В работе были построены гистограммы распределения числа отсчетов за 10 и 40 с. соответственно, найдены относительные и абсолютные погрешности вычислений, определен итоговый результат: среднее количество частиц за 10 и 40 с., а также количество и процент измерений, находящихся в σ – и 2σ – интервалах относительно среднего значения. Все это позволило продемонстрировать навыки математической обработки полученных данных.