

Linah Hossam Toka Ossama Nerimane ElRefai

Team 19

<u>Outline</u>

- Related Work
- Dataset Overview
- Methodology
 - Logistic Regression
 - Naive Bayes
 - Arabert
- Experiments
- Results
- Dataset Limitations

Related Work

Sarah O Alhumoud, Mawaheb I Altuwaijri, Tarfa M Albuhairi, and Wejdan M Alohaideb. Survey on arabic sentiment analysis in twitter. International Journal of Computer and Information Engineering, 9(1):364–368, 2015.

[2] Amira Shoukry and Ahmed Rafea. Sentence-level arabic sentiment analysis. In 2012 International Conference on Collaboration Technologies and Systems (CTS), pages 546–550, 2012.
[3] Muhammad Abdul-Mageed, Mona Diab, and Sandra K'ubler. Samar: Subjectivity and sentiment analysis for arabic social media. Computer Speech Language, 28:20–37, 01 2014.
[4] Soha Ahmed, M. Pasquier, and Ghassan Qadah. Key issues in conducting sentiment analysis on arabic social media text. pages 72–77, 03 2013.

[5] Janan Ben Salamah and Aymen Elkhlifi. Microblogging opinion mining approach for kuwaiti dialect. international conference of computer technology and information management, 04 2014.

[6] Rehab Duwairi, Raed Marji, Narmeen Sha'ban, and Sally Rushaidat. Sentiment analysis in arabic tweets. pages 1–6, 04 2014.

[7] Salha Al-Osaimi and Khan Badruddin. Role of emotion icons in sentiment classification of ara- bic tweets. MEDES 2014 - 6th International Conference on Management of Emergent Digital EcoSystems, Proceedings, pages 167–171, 09 2014.

Symapthy None Joy 8 Labels Anger Love sadness fear surprise

Methodology

Text Classification

1. Logistic Regression

2. Multinomial Naive Bayes

3.AraBERT

Logistic Regression

- A common statistical technique for binary classification
- For multi-class classification, scikit-learn's logistic regression internally uses the "one vs-rest" (OvR) strategy.
- This strategy depends on training multiple binary logistic regression models, where each model differentiates between one class and the rest of the classes

• The feature extraction used is TF-IDF

<u>Multinomial Naive Bayes</u>

- It is a probability algorithm usually used for text classification tasks.
- This classifier is based on Bayes' theorem.
- Multinomial is a specific variant of Naive Bayes .It assumes that the features represent word counts or frequencies.
- The feature extraction used is TF-IDF

AraBERT

 Arabic pretrained lanaguage model based on Google's BERT architechture

 Used to demonstrate how much of a specific emotion a tweet represents

Fine Tuning

- Number of epochs: 15
- Learning Rate: 1e-4
- batch size: 32

<u>Architecture</u>

• The tokenized input text is fed to the BERT input layer.

 The transformer encoder is the central component of BERT that captures the contextual representations of the input tokens

 A classification layer is added on top of the BERT encoder to adapt it for this task.

 The linear classification layer transforms the abstract token embeddings to the space of the sentiment vocabulary

https://www.kaggle.com/code/heyytanay/bert-with-pytorch-lightning-tpu-for-sentiments

• Softmax layer is used to give final probabilities for every class in the label column of the data.

Experiments:

No

Results:

Samples of our architeture's output:

```
1 inference(sentiment_module_trained,tokenizer, 'acap | Way | Way
```

Results:

Logistic Regression

Naive Bayes

Accuracy score	is 0.68			
ı	precision	recall	f1-score	support
anger	0.62	0.67	0.64	243
fear	0.98	0.86	0.92	200
joy	0.58	0.51	0.55	193
love	0.71	0.73	0.72	193
none	0.64	0.86	0.73	260
sadness	0.48	0.40	0.44	196
surprise	0.58	0.47	0.52	176
sympathy	0.83	0.81	0.82	192
accuracy			0.68	1653
macro avg	0.68	0.67	0.67	1653
weighted avg	0.68	0.68	0.67	1653

Accuracy score	is 0.59				
рі	recision	recall	f1-score	support	
angan	0.65	0.59	0.62	243	
anger fear	0.84	0.83	0.84	200	
joy	0.57	0.34	0.42	193	
love	0.68	0.74	0.70	193	
none	0.40	0.95	0.56	260	
sadness	0.60	0.22	0.33	196	
surprise	0.74	0.18	0.29	176	
sympathy	0.84	0.73	0.79	192	
accuracy			0.59	1653	
macro avg	0.67	0.57	0.57	1653	
weighted avg	0.65	0.59	0.57	1653	

Results:

	Lemmatized Data	Non-lemmatized Data	
Training Accuracy	100%	95%	
Validation Accuracy	65%	69%	

<u>Dataset Limitations</u>

• The Data samples that were labeled as "None".

Some corrupted data samples

• The emotion faces (emoji)

Thank You