TUTORIAL 1 COMBINATIONAL LOGIC CIRCUIT

Overview

- We will review the following concept in this tutorial:
- Combinational logic circuit
 - No memory, output(s) solely determined by input(s)
- Truth table and logic function
- Two-level logic and PLA
- Simplification with Boolean Algebra and K-map
- Circuit design
- Work with two practical examples
 - Bit comparator
 - Encoder

Digital Logic Circuit

- Two types of digital logic circuits inside a computer:
 - □ Combinational logic circuits
 - Logic circuits that do not have memory
 - The output depends only on the current inputs and the circuit
 - They can be specified fully with a truth table or a logic equation
 - □ Sequential logic circuits
 - Logic circuits that have memory
 - The output depends on both the current inputs and the value stored in memory (called state)

Circuit Design Process

- A simple logic design process involves
 - Problem specification
 - □ Truth table derivation
 - Derivation of logical expression
 - □ Simplification of logical expression
 - Implementation

Review of Boolean Algebra

- Boolean algebra consists of
 - □ Boolean variables (with values equal to either '0' or '1')
 - □ Binary operators: AND (·), OR (+), NOT (')
- Any logic function can be expressed as a two-level logic expression, either as
 - □ Sum-of-Products (SoP) representation, or
 - Product-of-Sums (PoS) representation
- The AND, OR, and NOT operations form a functionally complete set (namely, universal gates), as they can specify any logic function.

Basic Laws of Boolean Algebra

Name	AND Form	OR Form		
Identity Law	1A = A	0 + A = A		
Null Law	0A = 0	1 + A = 1		
Idempotent Law	AA = A	A + A = A		
Inverse Law	$A\overline{A} = 0$	$A + \overline{A} = 1$		
Commutative Law	AB = BA	A + B = B + A		
Associative Law	(AB)C = A(BC)	(A + B) + C = A + (B + C)		
Distributive Law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC		
Absorption Law	A(A+B)=A	A + AB = A		
De Morgan's Law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$		

- Find the direct Boolean expression for the following circuit
- Simplify the Boolean expression using Boolean algebra
- Draw the new circuit for the simplified Boolean expression

- Find the direct Boolean expression for the following circuit
- Simplify the Boolean expression using Boolean algebra
- Draw the new circuit for the simplified Boolean expression

 Simplify the combinational logic circuit shown below to a minimum form

■ Simplify the combinational logic circuit shown below to a minimum form

$$M = \overline{\overline{ABC}} = A + B + C$$
Using De Morgan's Law (Bubble Pushing)

$$N = CM = C(A + B + C)$$

= $AC + BC + CC$
= $AC + BC + C$
= $C(A + B + 1)$
= $C(1) = C$

$$X = D + M + N$$

= D + (A + B + C) + C
= A + B + C + D

De Morgan's Law (Bubble Pushing)

$$E \longrightarrow Z = E \longrightarrow Z$$

- Not Gates before and after AND/OR gates can be represented just as the "Bubble".
- "Convert" the gate between AND/OR, as well as invert the "Bubbles" at all the inputs and the output.

$$\overline{A + B} = \overline{A}\overline{B}$$

$$\overline{AB} = \overline{A} + \overline{B}$$

$$\overline{\overline{A}}\overline{\overline{B}}\overline{\overline{C}} = A + B + C$$

Simplify the following Boolean expression

$$AB + \overline{AB}CD + \overline{CD}EF$$

Simplify the following Boolean expression

$$AB + \overline{AB}CD + \overline{CD}EF$$

$$= (AB(1 + CD)) + \overline{AB}CD + \overline{CD}EF$$

$$= (AB + ABCD) + \overline{AB}CD + \overline{CD}EF$$

$$= AB + (ABCD + \overline{AB}CD) + \overline{CD}EF$$

$$= AB + CD(AB + \overline{AB}) + \overline{CD}EF$$

$$= AB + CD + \overline{CD}EF$$

$$= AB + (CD + CDEF) + \overline{CD}EF$$

$$= AB + CD + EF(CD + \overline{CD})$$

$$= AB + CD + EF$$

Boolean Algebra Exercise 3 (Truth Table)

- Simplification via Boolean Algebra axioms can be tedious.
 - Especially when the number of inputs increases.

- Truth Table and K-map can be a faster way to simplify.
 - See Excel File for full truth table.

Boolean Algebra Exercise 3 (K-map)

Three groupings:

- □ Blue: AB
- ☐ Green: CD
- □ Red: EF
- \square X = AB + CD + EF

6-variable K-map adjacency:

- ☐ Top and bottom rows.
- Left and right columns.
- Rows and Columns where only 1 input changes, i.e., (011, 111)
- This is why the Green grouping seems disjointed but is actually adjacent.
 Similar for the Red grouping.

2-bit Comparator

- Here we'll be designing circuits to compare 2-bit binary numbers.
- Suppose we have two 2-bit numbers A & B at the inputs, and three outputs as A>B, A==B, A<B</p>
- Only one of the three outputs would be true accordingly if A is greater than or equal to or less than B.
- We'll practice the circuit design for f(A==B), try to work on f(A>B) and f(A<B) by yourself</p>

Solution: 2-bit Comparator Truth Table

$A(A_1A_0)$	$B(B_1B_0)$	f (A>B)	f (A==B)	f (A <b)< th=""></b)<>
00	00	0	1	0
00	01	0	0	1
00	10	0	0	1
00	11	0	0	1
01	00	1	0	0
01	01	0	1	0
01	10	0	0	1
01	11	0	0	1
10	00	1	0	0
10	01	1	0	0
10	10	0	1	0
10	11	0	0	1
11	00	1	0	0
11	01	1	0	0
11	10	1	0	0
11	11	0	上	技 大 03

Solution: Logic Function for f(A==B)

- Four output rows of f(A==B) that has value of '1':
 - Four corresponding input rows:
 (A=00,B=00), (A=01,B=01), (A=10,B=10), (A=11,B=11).
 - The four 1-minterms are: $\overline{A_1} \overline{A_0} \overline{B_1} \overline{B_0}$, $\overline{A_1} A_0 \overline{B_1} B_0$, $\overline{A_1} \overline{A_0} B_1 \overline{B_0}$, $\overline{A_1} A_0 B_1 B_0$

The output is the OR operation of the four 1-minterms:

$$f(A == B) = \overline{A_1} \, \overline{A_0} \, \overline{B_1} \, \overline{B_0} + \overline{A_1} A_0 \overline{B_1} B_0 + A_1 \overline{A_0} B_1 \overline{B_0} + A_1 A_0 B_1 B_0$$

Unfortunately, no further simplification possible.

Solution: Circuit for f(A==B)

$$f(A == B) = \overline{A_1} \overline{A_0} \overline{B_1} \overline{B_0} + \overline{A_1} A_0 \overline{B_1} B_0 + A_1 \overline{A_0} B_1 \overline{B_0} + A_1 A_0 B_1 B_0$$

Solution: PLA Implementation

The same circuit can be equivalently represented by a programmable logic array (PLA) circuit.

8-to-3 Encoder

- An encoder (2^N-to-N encoder) is a logical block with an 2^N-bit input and N 1-bit outputs, which performs the inverse function of a decoder.
- Example (8-to-3 encoder)
 - 8 inputs $(D_0, D_1, ..., D_7)$ and 3 outputs (X, Y, Z)

8-to-3 Encoder Truth Table

D_0	D_1	D ₂	D_3	D ₄	D_5	D_6	D ₇	X	Υ	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Solution: Logic Function and Circuit

$$X = D_4 + D_5 + D_6 + D_7$$

$$V = D_2 + D_3 + D_6 + D_7$$

$$\Box$$
 Z = D₁ + D₃ + D₅ + D₇

Extra Exercise: Decoder

- A decoder takes a single N-bit input and outputs 2^N 1-bit signals. The 1-bit output corresponds to the N-bit input bit pattern is true while all other outputs are false.
- The following figure shows a block diagram for a 2-to-4 decoder.

Questions

- Why can a 2-bit input generate 4 outputs in the decoder?
- If the input bits are 11, what will happen to the outputs of the decoder?
- Is it possible to have more than one outputs asserted (=1)?
- Name two potential uses of the decoder.
- Implement the decoder using Logisim.

Questions

- Why can a 2-bit input generate 4 outputs in the decoder?
 - \square 2² = 4.
- If the input bits are 11, what will happen to the outputs of the decoder?
 - \square Out3 = 1, Out2 = 0, Out1= 0, Out0 = 0.
- Is it possible to have more than one outputs asserted (=1)?
 - □ Logically no for Line Decoders. Can be a feature in special decoders.
- Name two potential uses of the decoder.
 - □ Reduce the number of control lines needed, if only 1-out-of-N devices need to be active at any single timeframe.
 - Convert digital signals to analog signals, e.g., synchronize multiple motors.

Extra Exercise: Multiplexor

- A multiplexor is a devices that given the control signal, selects one of the inputs to be forwarded to the output. The following figure shows a 4-input multiplexor.
- 4-to-1 multiplexor

Questions

- If the inputs A/B are 32-bit in width, what is the data width of the Output O?
- What is the maximum number of inputs if the control signal is 10-bit in width?
- What is the bit-width of the control signal for the multiplexor if there are 9 inputs?

Questions

- If the inputs A/B/C/D are 32-bit in width, what is the data width of the Output O?
 - □ 32-bit.
- What is the maximum number of inputs if the control signal is 10-bit in width?
 - \Box 2¹⁰ = 1024.
- What is the bit-width of the control signal for the multiplexor if there are 9 inputs?
 - \square 4 bits. $2^4 = 16$, while $2^3 = 8$ is insufficient.

