# Modéliser les systèmes asservis dans le but de prévoir leur comportement

Chapitre 3 – Précision des systèmes

Sciences
Industrielles de

l'Ingénieur

**TD 01** 



# Fauteuil dynamique de cinéma

Concours Centrale-Supélec TSI 2015

Savoirs et compétences :

# Présentation du système

Ce concept a été inventé au Canada en 2008, et s'est étendu à toute l'Amérique du Nord avant de traverser l'Atlantique pour proposer un cinéma dynamique avec une quantité d'effets spéciaux et spatiaux. Le fauteuil dynamique de cinéma est principalement destiné à l'industrie du divertissement et de la simulation.

#### Mise en situation

Le siège dynamique est constitué:

- du dosseret qui permet d'agir directement sur la tête du spectateur afin d'amplifier la sensation d'accélération (via l'oreille interne);
- de l'assise du siège qui permet d'obtenir un mouvement de tangage et un mouvement de roulis du spectateur.





Dosseret

Les trois motorisations (une pour le dosseret et deux pour l'assise) sont composées chacune d'un moteur à courant continu à aimants permanents et d'un réducteur de vitesse. Chaque moteur est alimenté par un variateur de vitesse dont la structure de puissance est un hacheur. Un capteur de courant interne au variateur est utilisé par ce dernier pour réaliser un asservissement de courant, donc implicitement de couple. Une génératrice tachymétrique accouplée à l'axe de chaque moteur est utilisée par le variateur correspondant pour réaliser un asservissement de vitesse. Un codeur incrémental accouplé aussi sur l'axe de chaque moteur est utilisé par une carte à base de microcontrôleur pour réaliser un asservissement de position, une sortie analogique de cette carte étant reliée à l'entrée de consigne du variateur de vitesse.

# Exigence fonctionnelle « amplifier la sensation d'accélération »

Objectif Proposer un modèle de comportement des éléments réalisant l'exigence fonctionnelle « amplifier la sensation d'accélération » puis valider les performances attendues listées par le cahier des charges.

#### Exigence: amplifier la sensation d'accélération

- Précision statique de la boucle d'asservissement de position :
  - erreur statique de position < 1%;
  - erreur statique de traînage < 1%;
  - erreur statique d'accélération < 1%.</li>
- Rapidité pour un échelon de consigne d'accélération :
  - temps de montée de 0 à 100% de la consigne <</li>
     5 ms;
  - dépassement < 20%.

# Comportement de l'ensemble variateur et moteur du dosseret

#### Objectif

- Établir un modèle simplifié de l'asservissement de courant.
- Établir un modèle simplifié de l'asservissement de vitesse.
- Analyser la précision de l'asservissement de position.

#### Modélisation de l'asservissement de vitesse

L'étude suivante consiste à obtenir un modèle simplifié de la boucle d'asservissement de vitesse (figure suivante) au regard des réglages effectués et de l'influence d'une perturbation de type échelon sur le dosseret. En effet, vu la courte durée des sollicitations, la perturbation sur le dosseret, dont l'origine peut être une action du spectateur sur ses muscles cervicaux, peut être modélisée par un échelon.





Modèle de la boucle d'asservissement de vitesse

On a 
$$C_{\Omega}(p) = k_1 \left(1 + \frac{1}{T_1 p}\right)$$
.

**Question** 1 Exprimer la fonction de transfert de la boucle de vitesse  $H_{\Omega}(p) = \Omega(p)/U_{C\Omega}(p)$ , lorsque  $C_R(p) = 0$ . Le résultat sera mis sous une forme canonique.

$$\begin{aligned} & \text{Correction} \quad H_{\Omega}(p) = \frac{k_1 \bigg( 1 + \frac{1}{T_1 p} \bigg) \frac{K}{K_{rI}} \frac{1}{Jp + f}}{1 + K_{\Omega} k_1 \bigg( 1 + \frac{1}{T_1 p} \bigg) \frac{K}{K_{rI}} \frac{1}{Jp + f}} \\ &= \frac{k_1 \bigg( 1 + T_1 p \bigg) K}{T_1 p K_{rI} \bigg( Jp + f \bigg) + K_{\Omega} k_1 \bigg( 1 + T_1 p \bigg) K} \\ &= \frac{\frac{K k_1}{K_{\Omega} k_1 K} \bigg( 1 + T_1 p \bigg)}{\frac{T_1 K_{rI} J}{K_{\Omega} k_1 K} p^2 + \bigg( \frac{f T_1 K_{rI}}{K_{\Omega} k_1 K} + \frac{K_{\Omega} k_1 T_1 K}{K_{\Omega} k_1 K} \bigg) p + 1} \\ &= \frac{\frac{1}{K_{\Omega}} \bigg( 1 + T_1 p \bigg)}{\frac{T_1 K_{rI} J}{K_{\Omega} k_1 K} p^2 + \bigg( \frac{f K_{rI}}{K_{\Omega} k_1 K} + 1 \bigg) T_1 p + 1} \end{aligned}$$

**Question 2**  $T_1$  étant égal à J/f, montrer alors que la fonction de transfert en boucle fermée peut se mettre sous la forme  $\frac{b}{\tau p+1}$ . Calculer les valeurs numériques des termes b et  $\tau$ .

#### Correction

$$\begin{aligned} &\operatorname{On} \operatorname{a} H_{\Omega}(p) = \frac{\frac{1}{K_{\Omega}} \left(1 + \frac{J}{f} p\right)}{\frac{J}{K_{\Omega} k_{1} K}} p^{2} + \left(\frac{f K_{rI}}{K_{\Omega} k_{1} K} + 1\right) \frac{J}{f} p + 1} \\ &= \frac{(f + Jp)}{\frac{K_{rI} J^{2}}{k_{1} K}} p^{2} + \left(\frac{f K_{rI}}{k_{1} K} + K_{\Omega}\right) J p + f K_{\Omega}}{(f + Jp) k_{1} K} \\ &= \frac{(f + Jp) k_{1} K}{K_{rI} J^{2} p^{2} + \left(f K_{rI} + K_{\Omega} k_{1} K\right) J p + f K_{\Omega} k_{1} K} \operatorname{On a:} \Delta = \left(f K_{rI} + K_{\Omega} k_{1} K\right) J p + f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f^{2} K_{rI}^{2} + K_{\Omega}^{2} k_{1}^{2} K^{2} + 2 f K_{rI} K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f^{2} K_{rI}^{2} + K_{\Omega}^{2} k_{1}^{2} K^{2} + 2 f K_{rI} K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f^{2} K_{rI}^{2} + K_{\Omega}^{2} k_{1}^{2} K^{2} - 2 f K_{rI} K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \right) \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \right) \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \right) \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K K_{rI} J^{2} \right) \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K J^{2} + K_{\alpha} k_{1} K J^{2} \right) \\ &= \left(f K_{rI} - K_{\Omega} k_{1} K\right) J \pm \left(f K_{rI} - K_{\Omega} k_{1} K\right) J^{2} - 4 f K_{\Omega} k_{1} K J^{2} + K_{\alpha} k_$$

**Question** 3 En déduire, à l'aide de la figure précédente,  $\theta(p)/C_R(p)$  lorsque  $\theta_C(p)=0$ . Calculer ensuite la valeur finale de  $\theta(t)$  lorsque  $c_R(t)$  est un échelon unitaire. Conclure quant à l'action, en régime permanent, du correcteur proportionnel et intégral sur les effets d'une perturbation  $c_R(t)$  de type échelon.





#### Modélisation de la boucle d'asservissement de position

Après toutes les simplifications précédentes, est obtenu le modèle de la figure suivante où seul le comportement en réponse à la consigne  $\theta_{\rm C}$  est abordé.

Modèle simplifié de la boucle d'asservissement de position

Question 4 Exprimer la fonction de transfert  $\theta(p)/\theta_C(p)$ . Déterminer ensuite la valeur numérique de a pour avoir un facteur d'amortissement égal à 0,7. Justifier le choix de ce facteur d'amortissement. (Pour ce calcul et les calculs suivants prendre  $b = 63 \,\mathrm{rad} \cdot \mathrm{s}^{-1} \cdot \mathrm{V}^{-1}$ ,  $\tau = 2.2 \,\mathrm{ms}$ ,  $c = 40 \, \text{rad}^{-1}$ .)

Correction On a 
$$\frac{\theta(p)}{\theta_C(p)} = c \frac{\frac{ab}{p(\tau p + 1)}}{1 + \frac{abc}{p(\tau p + 1)}}$$

$$= \frac{abc}{p(\tau p + 1) + abc} = \frac{1}{\frac{\tau}{abc}p^2 + \frac{p}{abc} + 1}.$$
On a  $\omega_0 = \sqrt{abc/\tau}$  et  $\frac{2\xi}{\omega_0} = \frac{1}{abc}$  et  $\xi = \frac{1}{2\sqrt{abc\tau}}$ .

En conséquence,  $a = \frac{1}{4bc\tau\xi^2} = 0,092$ . (On prend  $\xi = 0,7$  car cela correspond au temps de réponse le plus rapide pour un second ordre.)

# Analyse de la précision du système

Un aspect important pour la simulation sensorielle du siège dynamique est la capacité du système à reproduire fidèlement la consigne de position issue du programme de simulation sensorielle du siège dynamique. Dans un premier temps, l'étude se limite à la précision statique en utilisant le modèle défini à la figure précédente. L'erreur représente la différence entre l'entrée  $\theta_C(t)$  et la sortie  $\theta(t)$  et est définie par la variable  $\mu(t) = \theta_C(t) - \theta(t)$ .

**Question** 5 Exprimer dans un premier temps  $\mu(p)$  en fonction de  $\theta_C(p)$ , puis déterminer de façon littérale et numérique l'erreur de position  $\mu_v$ , l'erreur de trainage  $\mu_v$  et l'erreur en accélération  $\mu_a$ . Conclure quant à la précision statique du système suite aux différentes consignes  $\theta_C(p)$ de type échelon, rampe et accélération.

Correction On a 
$$\mu(p) = \frac{\theta_c(p)}{1 + \frac{abc}{p(1 + \tau p)}} = \frac{p(1 + \tau p)}{p(1 + \tau p) + abc} \theta_c(p) = \frac{p(1 + \tau p)}{p(1 + \tau p) + abc} \theta_c(p).$$
La FTBO est de classe 1 et de gain  $K_{\text{BO}} = abc$  on a donc:

- pour une entrée échelon,  $\mu_p = 0$ ; pour une entrée rampe,  $\mu_v = \frac{1}{abc}$ ; pour une entrée accélération,  $\mu_a = 0$

#### Validation et optimisation de la performance simulée en accélération du dosseret

Objectif Valider la performance simulée en accélération au regard du cahier des charges fonctionnel.

La figure suivante représente la structure d'une correction par anticipation qui permet d'améliorer la précision statique du système





Structure avec anticipation

**Question 6** Déterminer l'erreur de position  $\mu_p$  puis l'erreur de traînage  $\mu_v$ . Conclure sur l'erreur de position au regard du cahier des charges.

## Correction

On a 
$$\varepsilon_{\text{codeur}}(p) = c \,\theta_c(p) - c \,\theta(p)$$

4



$$= c \theta_{c}(p) - \frac{bc}{p(\tau p + 1)} U_{C\Omega}(p)$$

$$= c \theta_{c}(p) - \frac{bc}{p(\tau p + 1)} (\theta_{C}(p)dp + a\varepsilon_{\text{codeur}}(p))$$

$$\Leftrightarrow \varepsilon_{\text{codeur}}(p) \left( 1 + \frac{abc}{p(\tau p + 1)} \right) = \theta_{C}(p) \left( c - \frac{bcd}{\tau p + 1} \right)$$

$$\Leftrightarrow \varepsilon_{\text{codeur}}(p) \left( 1 + \frac{abc}{p(\tau p + 1)} \right) = \theta_{C}(p) c \frac{\tau p + 1 - bd}{\tau p + 1}$$

$$\Leftrightarrow \varepsilon_{\text{codeur}}(p) = \theta_{C}(p) c p \frac{\tau p + 1 - bd}{p(\tau p + 1) + abc}$$
On a alors:

$$\rho \mu_{\nu} = \lim_{p \to 0} p \frac{1}{p^2} c p \frac{\tau p + 1 - b d}{p(\tau p + 1) + a b c} = \frac{1 - b d}{a b}$$

**Question** 7 D'après l'erreur de traînage  $\mu_v$  déterminée à la question précédente, calculer la valeur numérique de d qui permet d'annuler cette erreur de traînage. En prenant en compte la valeur numérique de d et de b, déterminer l'expression de l'erreur en accélération  $\mu_a$ . Calculer ensuite sa valeur numérique et conclure au regard du cahier des charges.

Correction On a 
$$\mu_v = \frac{1-b\,d}{a\,b\,c}$$
. En conséquences,  $\mu_v = 0 \Leftrightarrow 0 = \frac{1-b\,d}{a\,b} \Leftrightarrow d = \frac{1}{b}$ . 
$$\mu_a = \lim_{p \to 0} p \, \frac{1}{p^3} \, c \, p \, \frac{\tau\,p + 1 - b\,d}{p\left(\tau\,p + 1\right) + a\,b\,c} = \frac{\tau}{a\,b}.$$

Un aspect important pour la simulation sensorielle du siège dynamique est la capacité du système à reproduire rapidement les consignes d'accélération. À l'aide d'une simulation, la variable accélération  $\ddot{ heta}_d$  possède les deux comportements donnés figure suivante pour la période transitoire, et ce lorsque la consigne vaut  $\theta_{\rm Cd}(t) = \frac{t^2}{2}u(t)$ .



Accélération du dosseret avec et sans anticipation

**Question** 8 Conclure quant au respect du cahier des charges vis-à-vis des accélérations produites par le dosseret du siège dynamique de cinéma.

### Correction

Exigence fonctionnelle « incliner le spectateur suivant l'axe de tangage et de roulis »

Objectif Valider le choix de conception pour la réalisation de la commande simultanée des deux moteurs de l'assise du siège.

En mode simultané (figure suivante), les consignes de vitesse de chaque variateur sont issues d'un calculateur numérique : a, d et c sont identiques. En revanche, le réglage du retour vitesse des cartes variateur est effectué à l'aide d'un potentiomètre et celui-ci peut ne pas avoir été réglé avec précision. En imposant le réglage du retour vitesse de la motorisation 1 à 5 V pour 3000 trmin<sup>-1</sup> et celui de la motorisation 2 à 5.5 V pour 3000 trmin<sup>-1</sup>,

les calculs donnent  $b_1 = 62.8 \text{ rad.s}^{-1}.\text{V}^{-1}$  et  $b_2 = 57.1$ rad.s<sup>-1</sup>.V<sup>-1</sup>. Les inerties au niveau de chaque moteur, supérieures à celle au niveau du moteur de dosseret, peuvent fluctuer en fonction de la position du spectateur.

En tenant compte d'une variation d'inertie de 10%, les calculs donnent  $\tau_1 = 1/366$  s et  $\tau_2 = 1/447$  s. On prendra  $a = 0.09 \,\mathrm{V}$ ,  $c = 40 \,\mathrm{rad}^{-1}$  et  $d = 0.016 \,\mathrm{V} \,\mathrm{rad}^{-1}$  s.



Commande simultanée des deux moteurs

**Question** 9 En réutilisant éventuellement les calculs effectués aux questions 6 et 7 et en tenant compte des différences de réglage de retour vitesse et des différences d'inertie entre les deux motorisations, exprimer la valeur finale de  $\theta_1(t) - \theta_2(t)$  lorsque la consigne  $\theta_C(t)$  est respectivement égale à u(t),  $t \cdot u(t)$  puis  $\frac{t^2}{2}u(t)$ , u(t) étant la fonction échelon unité.

Correction En raisonnant graphiquement, on a  $\theta_1(p) - \theta_2(p) = \varepsilon_{\text{codeur }1}(p) - \varepsilon_{\text{codeur }2}(p)$ ; donc:

- $\mu_p = \mu_{p1} \mu_{p2} = 0$ ;  $\mu_v = \mu_{v1} \mu_{v2} = \frac{1 b_1 d}{a b_1} \frac{1 b_2 d}{a b_2}$ ;  $\mu_a = \mu_{a1} \mu_{a2} = \infty$ .

La figure 10 représente le résultat d'une simulation de  $\theta_1(t) - \theta_2(t)$  pour une consigne  $\theta_C(t) = \frac{t^2}{2}U(t)$ 

**Question 10** Conclure quant à l'erreur en accélération lors de la commande simultanée.



# Correction



 $\theta_1 - \theta_2$  en fonction du temps

# Éléments de correction

1. 
$$H_{\Omega}(p) = \frac{\frac{1}{K_{\Omega}} (1 + T_1 p)}{\frac{T_1 K_{rI} J}{K_{\Omega} k_1 K} p^2 + (\frac{f K_{rI}}{K_{\Omega} k_1 K} + 1) T_1 p + 1}$$
.

2. 
$$b = \frac{1}{K_{\Omega}} = 20\pi = 62.8 \, \text{rad s} - 1 \text{V}^{-1} \text{ et } \tau = \frac{K_{ri} J}{k_1 K K_{\Omega}} = \frac{2.17 \times 10^{-3} \, \text{s.}}{T_1 K_{ri} p} \cdot \frac{b}{p (1 + \tau p) + b} \, \text{et } \lim_{t \to \infty} \theta(t) = 1.$$

4.  $a = \frac{1}{4b c \tau \xi^2} = 0,092.$ 

$$2.17 \times 10^{-3}$$
 s.

3. 
$$\frac{T_1 K_{ri} p}{k_1 (T_1 p + 1) K} \cdot \frac{b}{p (1 + \tau p) + b}$$
 et  $\lim_{t \to \infty} \theta(t) = 1$ 

4. 
$$a = \frac{1}{4bc\tau\xi^2} = 0,092.$$

5. 
$$\mu(p) = \frac{p(1+\tau p)}{p(1+\tau p)+abc}\theta_c(p), \mu_p = 0, \mu_v = \frac{1}{abc}$$
 et  $\mu_a = \infty$ .

6.  $\mu_p = 0$  et  $\mu_v = \frac{1-bd}{ab}$ .

6. 
$$\mu_p = 0$$
 et  $\mu_v = \frac{1 - bd}{ab}$ 

- 7. ... 8. ...
- 9. ...
- 10. ...