МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Кафедра «Комп'ютерні інформаційні технології»

Лабораторна робота №4

з дисципліни «Організація комп'ютерних мереж»

на тему: «Еталонна модель взаємодії відкритих систем (OSI)»

Виконав: студент гр.П31911 Сафонов Д.Є. Прийняв: Івченко Ю.М. **Тема.** Еталонна модель взаємодії відкритих систем (OSI). **Мета.**

- 1. Навчитися описувати головні функції кожного рівня моделі OSI.
- 2. Навчитися визначати рівні моделі OSI, на яких виконуються конкретні мережні операції.
- 3. Навчитися визначати рівні моделі OSI, на яких функціонують конкретні мережні компоненти.
- 4. Познайомитися з розширеннями моделі OSI з боку IEEE Project 802.

Порядок виконання роботи.

1. Ознайомитися з описом та ілюстрацією еталонної моделі взаємодії відкритих систем (Lab OSI).

Короткий опис моделі OSI

В моделі OSI мережні функції розподілені між сімома рівнями. Кожному рівню відповідають різні мережні операції, устаткування і протоколи. На кожному рівні виконуються певні мережні функції, які взаємодіють з функціями сусідніх рівнів, вищерозміщеного і розміщеного нижче. Кожний рівень надає декілька послуг, що готують дані для доставки по мережі на інший комп'ютер. Рівні відділяються один від одного межами — інтерфейсами. Всі запити від одного рівня до іншого передаються через інтерфейс. Кожний рівень використовує послуги рівня, що розміщений нижче.

Висновки

В ході лабораторної роботи ми ознайомилися з еталонною моделлю взаємодії відкритих систем, розглянули усі рівні багаторівневої архітектури мережі, їх призначення, обов'язки та відношення до інших рівнів.

Було розглянуто схему формування пакетів у відповідності до рівнів багаторівневої архітектури мережі, структуру цих пакетів та зміни, які можуть відбуватися в залежності від зміни протоколів. Також були розглянуті стандарти IEEE Project 802.

Контрольні питання

1. Рівні моделі OSI. Редиректор.

Рівні:

- 1. Фізичний (Physical) Тут реалізуються електричний, оптичний, механічний і функціональний інтерфейси з кабелем. Фізичний рівень формує сигнали, які переносять дані, що поступили від вище розміщених рівнів.
 - На цьому рівні визначається спосіб з'єднання мережевого кабелю з платою мережевого адаптера, зокрема, кількість контактів в з'єднувачах і їх функції. Тут визначається спосіб передачі даних через мережевий кабель.
 - Фізичний рівень призначений для передачі бітів від одного комп'ютера до іншого. Зміст самих бітів на даному рівні значення не має. Цей рівень відповідає за кодування даних і синхронізацію бітів. Фізичний рівень встановлює тривалість кожного біта і спосіб перетворення біта у відповідні електричні або оптичні імпульси, що передаються через мережевий кабель.
- 2. Канальний (Data link) забезпечує точність передачі кадрів між комп'ютерами через Фізичний рівень.
 - Канальний рівень одержувача перевіряє наявність можливих помилок передачі. Кадри, пошкоджені при передачі, або кадри, отримання яких не підтверджено, посилаються повторно.
- 3. Мережевий (Network) відповідає за адресацію повідомлень і переклад логічних адрес і імен у фізичні адреси. На цьому рівні розв'язуються також такі задачі і проблеми, пов'язані з мережевим трафіком, як комутація пакетів, маршрутизація і перевантаження.
 - Якщо мережевий адаптер маршрутизатора не може передавати великі блоки даних, послані комп'ютером-відправником, на Мережевому рівні ці блоки розбиваються на менші. А Мережевий рівень комп'ютера-одержувача збирає ці дані до початкового стану.
- 4. Транспортний (Transport) гарантує доставку пакетів без помилок, в тій же послідовності, без втрат і дублювання. На цьому рівні повідомлення переупаковуються: довгі розбиваються на декілька пакетів, а короткі об'єднуються в один. Це збільшує ефективність передачі пакетів через мережу. На Транспортному рівні комп'ютераодержувача повідомлення розпаковуються, відновлюються в первинному вигляді, і, звичайно, посилається сигнал підтвердження прийому.
 - Транспортний рівень управляє потоком, перевіряє помилки і бере участь у рішенні проблем, пов'язаних з відправкою і отриманням пакетів.
- 5. Сеансовий (Session) дозволяє двом додаткам на різних комп'ютерах встановлювати, використовувати і завершувати з'єднання, зване сеансом. На цьому рівні виконуються такі функції як розпізнавання імен і захист, необхідні для зв'язку двох додатків в мережі.
 - Сеансовий рівень забезпечує синхронізацію між призначеними для користувача задачами за допомогою розстановки в потоці даних контрольних точок (checkpoints). Таким чином, у разі мережевої помилки, буде потрібно наново передати тільки дані, наступні за останньою контрольною точкою. На цьому рівні виконується управління діалогом між взаємодіючими процесами.
- 6. Представницький (Presentation) визначає формат, що використовується для обміну даними між мережевими комп'ютерами. На комп'ютері-відправнику дані, що поступили від Прикладного рівня на цьому рівні переводяться в загальнозрозумілий проміжний формат. На комп'ютері-одержувачі на цьому рівні відбувається переклад з проміжного формату в той, який використовується Прикладним рівнем даного комп'ютера.

Представницький рівень відповідає за перетворення протоколів, трансляцію даних, їх шифрування, зміну або перетворення вживаного набору символів (кодової таблиці) і розширення графічних команд. Представницький рівень управляє стисненням даних для зменшення передаваних бітів.

- На цьому рівні працює утиліта, звана редиректор (redirector). Її призначення переадресовувати операції введення-виведення до ресурсів серверу.
- 7. Прикладний (Application) забезпечує послуги, напряму підтримуючі додатки користувача, такі, як програмне забезпечення для передачі файлів, доступу до баз даних і електронна пошта. Прикладний рівень управляє загальним доступом до мережі, потоком даних і обробкою помилок.

Редиректор - мережне програмне забезпечення, що емулює доступ до віддаленої файлової системи, як до локальної. Приймає запити введення/виводу від прикладної програми, а потім надсилає (переадресує (redirect)) іх мережній службі сервера. Результати звернення повертаються прикладній програмі в такому вигляді, як би файли знаходилися на локальному комп'ютері

2. Формування пакетів у відповідності до рівнів моделі OSI. Структура пакета.

Пакет — блок інформації Мережевого рівня, що передається між станціями мережі. Містить дані з протоколів вищого рівня, а також заголовок з ідентифікатором, адресами джерела та приймача, іноді поля контролю помилок. Пакет складається з трьох частин:

- Заголовок складається з:
 - сигналу, який повідомляє про передачу пакету
 - адреси джерела (source)
 - адреси приймача (destination)
 - інформації, яка синхронізує передачу.
- Дані пакети можуть містити декілька типів даних:
 - інформацію
 - певні види даних і команд, що управляють комп'ютером
 - коди управління сеансом
- Трейлер залежить від протоколу

Інформація, яку треба переслати через мережу, проходить зверху вниз всі сім рівнів, починаючи з Прикладного.

На кожному рівні комп'ютера-відправника до блоку даних додається інформація, призначена для відповідного рівня комп'ютера-одержувача.

Транспортний рівень розбиває початковий блок даних на пакети. Структура пакетів визначається протоколом, який використовують одержувач і відправник. На Транспортному рівні, до пакету додається інформація, яка допоможе одержувачу відновити початкові дані з послідовності пакетів.

Коли пакет проходить Фізичний рівень, він містить інформацію всіх шести рівнів.

3. Як забезпечується безпомилковість передачі даних (канальний рівень OSI).

Канальний рівень одержувача перевіряє наявність можливих помилок передачі. Кадри, пошкоджені при передачі, або кадри, отримання яких не підтверджено, посилаються повторно.

4. Канальний рівень. Підрівні LLC, MAC.

Канальний (Data link) - забезпечує точність передачі кадрів між комп'ютерами через Фізичний рівень.

Канальний рівень одержувача перевіряє наявність можливих помилок передачі. Кадри, пошкоджені при передачі, або кадри, отримання яких не підтверджено, посилаються повторно.

- LLC(Logical Link Control) Управління логічним зв'язком:
 - Встановлює канал зв'язку і визначає використання логічних точок інтерфейсу, званих точками доступу до послуг (service access points). Інші комп'ютери, посилаючись на точки доступу до послуг, можуть передавати інформацію з підрівня Управління логічним зв'язком на верхні рівні OSI.
- MAC(Media Acess Control) Управління доступом до середовища: Забезпечує сумісний доступ плати мережевого адаптера до Фізичного рівня. Напряму пов'язаний з платою мережевого адаптера і відповідає за безпомилкову передачу даних між двома комп'ютерами мережі.

5. IEEE Project 802.

Project 802 встановив стандарти для фізичних компонентів мережі — інтерфейсної плати і кабельної системи, — з якими мають справу Фізичний і Канальний рівні моделі OSI. Стандарти ЛОМ, згідно з Project 802, діляться на 12 категорій, кожна з яких має свій номер.

- 802.1 об'єднання мереж.
- 802 2 Управління логічним зв'язком.
- 802.3 ЛОМ з множинним доступом, контролем несучої і виявленням колізій (Ethernet).
- 802.4 ЛОМ топології «шина» з передачею маркера.
- 802.5 ЛОМ топології «кільце» з передачею маркера.
- 802.6 мережа масштабу міста (Metropolitan Area Network, MAN).
- 802.7 Консультативна рада з широкомовної технології (Broadcast Technical Advisory Group).
- 802.8 Консультативна рада з оптоволоконної технології (Fiber-Optic Technical Advisory Group).
- 802.9 Інтегровані мережі з передачею мови і даних (Integrated Voice/Data Networks).
- 802.10 Безпека мереж.
- 802.11 Бездротова мережа.
- 802.12 ЛОМ з доступом за пріоритетом запиту (Demand Priority Access LAN, lOObaseVG-AnyLan).