Recursion

Data Structures C++ for C Coders

한동대학교 김영섭교수 idebtor@gmail.com

Data Structures

Chapter 1

- algorithm specification recursive algorithm
- data abstraction
- performance analysis time complexity

Algorithm Specification

- Input
- Output
- Definiteness clear and unambiguous
- Finiteness it terminates after a finite number of steps
- Effectiveness it is carried out and feasible
- Ex. program = algorithms + data structures flowchart is not an algorithm.

Recursion

- See recursion
- A process in which the result of each repetition is dependent upon the result of the next repetition
- Simplifies program structure at a cost of function calls

Algorithm Specification

- Input
- Output
- Definiteness clear and unc
- Finiteness it terminates afte
- Effectiveness it is carried o
- Ex. program = algorithms + (
 flowchart is not an algorithms

Recursion

- See recursion
- A process in which the result of the result of the next repetition
- Simplifies program structure at

recursion is when a function calls itself

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

Recursive algorithm is expressed in terms of

- 1. base case(s) for which the solution can be stated non-recursively,
- 2. recursive case(s) for which the solution can be expressed in terms of a smaller version of itself.

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer n such that $n \ge 0$

output: $[n \times (n-1) \times (n-2) \times ... \times 1]$

- 1. if *n* is 0, **return** 1
- 2. otherwise, **return** [$n \times \text{factorial}(n-1)$]

end factorial

factorial (n = 4) $f_4 = 4 * f_3$ $= 4 * (3 * f_2)$ $= 4 * (3 * (2 * f_1))$ $= 4 * (3 * (2 * (1 * f_0)))$ = 4 * (3 * (2 * (1 * 1))) = 4 * (3 * (2 * 1)) = 4 * (3 * 2) = 4 * 6 = 24

Exercise: With four students, compute 4! using recursion.

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer n such that $n \ge 0$

output: $[n \times (n-1) \times (n-2) \times ... \times 1]$

1. if *n* is 0, **return** 1

2. otherwise, **return** [$n \times factorial(n-1)$]

end factorial

Exercise: With four students, compute 4! using recursion.

Example: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer n such that $n \ge 0$

output: $[n \times (n-1) \times (n-2) \times ... \times 1]$

1. if *n* is 0, **return** 1

2. otherwise, **return** [$n \times \text{factorial}(n-1)$]

end factorial

Exercise: GCD recursively with gcd (x=259, y=111) = ?

Example: GCD (Great common divisor)

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

gcd(x, y)

function gcd

input: integer x, y such that $x \ge y$, $y \ge 0$

output: gcd of x and y

1. if y is 0, return x

2. otherwise, **return** [gcd (y, x%y)]

end gcd

```
gcd (x=259, y=111)
```

gcd(259, 111)

= gcd(111, 259% 111)

= gcd(111, 37)

= gcd(37, 111%37)

 $= \gcd(37, 0)$

= 37

Exercises: gcd(91, 52)

Exercises: Fibonacci, Binomial coefficients, Akerman's function

```
void recursiveFunction(int num) {
   cout << num << endl;
   if (num < 4)
      recursiveFunction(num + 1);
}</pre>
```

```
void recursiveFunction(int num) {
   cout << num << endl;
   if (num < 4)
      recursiveFunction(num + 1);
}</pre>
```

1	recursive_fun(0)						
2	cout << 0	< 0					
3		recursive_fun(0+1)					
4		cout << 1					
5			recursive_	fun(1+1)			
6			cout << 2) -			
7				recursive_	fun(2+1)		
8				cout << 3	3		
9					recursive_fun(3+1)		
10					cout << 4		


```
void recursiveFunction(int num) {
   if (num < 4)
      recursiveFunction(num + 1);
   cout << num << endl;
}</pre>
```



```
void recursiveFunction(int num) {
   if (num < 4)
      recursiveFunction(num + 1);
   cout << num << endl;
}</pre>
```

1	recursive_fun(0)					
2		recursive_fun(0+1)				
3			recursive_fun(1+1)			
4			recursive_fun(2+1)		fun(2+1)	
5					recursive_fun(3+1)	
6					cout << 4	
7				cout << 3	3	
8			cout << 2			
9		cout << 1				
10	cout << 0					

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

Example: Recursive binary search

It searches a *sorted* array of **ints** for a particular **int**. Let **i** be an array of **ints** sorted from least to greatest. For instance, {-3, -2, 0, 0, 1, 5, 5}. We want to search **the array for the value** "wallly". If we find "wally", we return its array *index*; otherwise, we return FAILURE(-1). Let's suppose "wally" is 1.

Exercise: Base case(s) & recursive case(s):?

int binarySearch(int list[], int wally, int lo, int hi)

Example: Recursive binary search

Exercise: Base case(s) & recursive case(s):?

How many times is the binarySearch() called in terms of n?

In one call to binarySearch(), we eliminate at least half the elements from consideration. Hence, it takes $log_2 n$ (the base 2 logarithm of n) binarySearch() calls to pare down the possibilities to one. Therefore binarySearch takes time proportional to $log_2 n$.

원래는 log base 10이면 10을 생략해서 그냥 log라고 사용하는데 컴퓨터에서는 log base 2이면 log라고 생략해서 사용할 수 있음(not base 10)

Example: Recursive binary search – revisited

	Stack	Stack	Неар
binsearch()	lo[4] hi[4] mid[4]	wally[1] list[.]	
binsearch()	lo[4] hi[6] mid[5]	wally[1] list[.]	
binsearch()	lo[0] hi[6] mid[3]	wally[1] list[.]	
binsearch()	wally[1]	list[.]	[-3 -2 0 0 1 5 5]
main()		args[.]	args[]

Most operating systems give a program enough stack space for a few thousand stack frames. If you use a recursive procedure to walk through a million-node list, the program will try to create a million stack frames, and **the stack will run out of space**. The result is a runtime error.

Example: Tower of Hanoi (Refer to p.17, Ex11)

Given three pegs, one with a set of N disks of increasing size, determine the minimum (optimal) number of steps it takes to move all the disks from their initial position to a single **stack** on another peg without placing a larger disk on top of a smaller one. Only one disk can be moved at any time.

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the n-1 disks from intermediate to destination.

Example: Tower of Hanoi

Recursive algorithm:

- (1) Move the top n-1 disks from source to intermediate.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the n-1 disks from intermediate to destination.

Example: Tower of Hanoi

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

Exercise: Tower of Hanoi – revisited

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

How do you program this to have the output as shown below?

```
Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C
```

```
hanoi()

void hanoi(int n, char from, char inter, char to) {
  if (n == 1)
    printf ("Disk 1 from %c to %c\n", from, to);
  else {
    hanoi(n - 1 from, to, inter
    printf("Disk %d from %c to %c\n", n, from, to);
    hanoi(n - 1, inter, from, to)
  }
}
```


Exercise: How many moves for n disks in Tower of Hanoi, hanoi(n)?

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **intermediate**.
- (2) Move the remaining (largest) disk from source to destination.
- (3) Move the **n-1** disks from **intermediate** to **destination**.

hanoi(n-1) move hanoi(1) move hanoi(n-1) move

$$hanoi(n) = \begin{cases} 1 & \text{if } n = 1\\ 2 \cdot hanoi(n-1) + 1 & \text{if } n > 1 \end{cases}$$

Exercise:

60

Recursive algorithms

Q: Is the recursive version usually faster?

A: No -- it's usually slower (due to the overhead of maintaining the stack)

Q: Does the recursive version usually use less memory?

A: No -- it usually uses **more** memory (for the stack).

Q: Then why use recursion?

A: Sometimes it is much simpler to write the recursive version.

How the function call work? See[System Stack] in p.108.

Because the recursive version causes an **activation record** to be pushed onto the system stack for every call, it is also more limited than the iterative version (it will fail, with a "stack overflow" error), for large values of N.

Sierpinski Triangle:
a confined recursion of
triangles to form a geometric
lattice

Recursion GNU

see Recursion GNU's not Unix.

Data Structures

Chapter 1

- algorithm specification recursive algorithm
- data abstraction
- performance analysis time complexity