CS 527 / ECE599 Error Correcting Codes - Midterm ______ November 4, 2015

NAME: _____

1. (5 points) Let (X,Y) have the following joint distribution. Find I(X,Y).

X	1	2	3	4
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
2	1	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$
3	$\begin{array}{c c} \frac{1}{16} \\ \frac{1}{16} \\ 1 \end{array}$	$\frac{1}{16}$	$ \begin{array}{r} \frac{3}{32} \\ \frac{1}{32} \\ \frac{1}{16} \end{array} $	$ \begin{array}{r} \frac{1}{32} \\ \frac{1}{32} \\ \frac{1}{16} \end{array} $
4	$\frac{1}{4}$	0	0	0

2. (5 points) Consider a cascade of Binary Symmetric Channel (B.S.C) and Z-channel as shown below. Find the mutual information between the input random variable, X, and the output random variable, Y. Assume that $P(X=0)=\frac{1}{2}$ and $P(X=1)=\frac{1}{2}$.

3.	(4 points) A fair of Bottom faces?	coin is tossed.	What is the	mutual inform	ation between	the Top and

4. (6 points) An additive channel has input $X = \{0, 1\}$, error noise $Z = \{a\}$ and output Y = X + Z. Assuming Pr(a/0) = Pr(a/1) = 1/2 find the capacity of this channel. Assume that Z is independent of X. Note that the capacity depends on the value of a.

5. (5 points)

- (a) For the following cases, explain whether or not it is possible to have a uniquely decodable binary variable length code. If *yes* give a code and if not, explain why it is not possible.
 - i. lengths 2, 2, 3, 3, 3, 3 and 4?
 - ii. lengths 2, 2, 3, 3 and 3?
- (b) Find the 4-ary Huffman code for $p = (\frac{8}{36}, \frac{7}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36})$.