Chapter 3

- 3.1 Marginalization
- 3.2 Normal distribution with a noninformative prior (important)
- 3.3 Normal distribution with a conjugate prior (important)
- 3.4 Multinomial model (can be skipped)
- 3.5 Multivariate normal with known variance (useful for chapter 4)
- 3.6 Multivariate normal with unknown variance (glance through)
- 3.7 Bioassay example (very important, related to one of the exercises)
- 3.8 Summary (summary)

Monte Carlo and posterior draws

- $\theta^{(s)}$ draws from $p(\theta \mid y)$ can be used
 - for visualization

Monte Carlo and posterior draws

- $\theta^{(s)}$ draws from $p(\theta \mid y)$ can be used
 - for visualization
 - to approximate expectations (integrals)

$$E_{p(\theta|y)}[\theta] = \int \theta p(\theta \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$$

Marginalization

Joint distribution of parameters

$$p(\theta_1, \theta_2 \mid y) \propto p(y \mid \theta_1, \theta_2)p(\theta_1, \theta_2)$$

Marginalization

$$p(\theta_1 \mid y) = \int p(\theta_1, \theta_2 \mid y) d\theta_2$$

 $p(\theta_1 \mid y)$ is a marginal distribution

Marginalization

Joint distribution of parameters

$$p(\theta_1, \theta_2 \mid y) \propto p(y \mid \theta_1, \theta_2) p(\theta_1, \theta_2)$$

Marginalization

$$p(\theta_1 \mid y) = \int p(\theta_1, \theta_2 \mid y) d\theta_2$$

 $p(\theta_1 \mid y)$ is a marginal distribution

Monte Carlo approximation

$$p(\theta_1 \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\theta_1, \theta_2^{(s)} \mid y),$$

where $\theta_2^{(s)}$ are draws from $p(\theta_2 \mid y)$

Marginalization - predictive distribution

Marginalization over posterior distribution

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \theta) p(\theta \mid y) d\theta$$
$$= \int p(\tilde{y}, \theta \mid y) d\theta$$

 $p(\tilde{y} \mid y)$ is a predictive distribution

Gaussian fit with posterior mean

$$p(\mathbf{y} \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mu)^2\right)$$

Gaussian fit with posterior mean

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

Gaussian fit with posterior mean

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-2} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (y_i - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\begin{split} \mu^{(s)}, \sigma^{(s)} &\sim p(\mu, \sigma \mid y) \\ \text{with } p(\mu, \sigma^2) &\propto \sigma^{-2} \\ p(\mu, \sigma^2 \mid y) &\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right) \\ &= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right) \end{split}$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\begin{split} \rho(\mu,\sigma^2\mid y) &\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i-\mu)^2\right) \\ &= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}\left[\sum_{i=1}^n (y_i-\bar{y})^2 + n(\bar{y}-\mu)^2\right]\right) \\ &\text{where } \bar{y} = \frac{1}{n}\sum_{i=1}^n y_i \\ &= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}\left[(n-1)s^2 + n(\bar{y}-\mu)^2\right]\right) \\ &\text{where } s^2 = \frac{1}{n-1}\sum_{i=1}^n (y_i-\bar{y})^2 \end{split}$$

$$\sum_{i=1}^n (y_i - \mu)^2$$

$$\sum_{i=1}^{n} (y_i - \mu)^2$$

$$\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2)$$

$$\begin{split} &\sum_{i=1}^{n} (y_i - \mu)^2 \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2) \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2 - \bar{y}^2 + \bar{y}^2 - 2y_i \bar{y} + 2y_i \bar{y}) \end{split}$$

$$\begin{split} &\sum_{i=1}^{n}(y_{i}-\mu)^{2}\\ &\sum_{i=1}^{n}(y_{i}^{2}-2y_{i}\mu+\mu^{2})\\ &\sum_{i=1}^{n}(y_{i}^{2}-2y_{i}\mu+\mu^{2}-\bar{y}^{2}+\bar{y}^{2}-2y_{i}\bar{y}+2y_{i}\bar{y})\\ &\sum_{i=1}^{n}(y_{i}^{2}-2y_{i}\bar{y}+\bar{y}^{2})+\sum_{i=1}^{n}(\mu^{2}-2y_{i}\mu-\bar{y}^{2}+2y_{i}\bar{y}) \end{split}$$

$$\begin{split} &\sum_{i=1}^{n} (y_{i} - \mu)^{2} \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2}) \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2} - \bar{y}^{2} + \bar{y}^{2} - 2y_{i}\bar{y} + 2y_{i}\bar{y}) \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\bar{y} + \bar{y}^{2}) + \sum_{i=1}^{n} (\mu^{2} - 2y_{i}\mu - \bar{y}^{2} + 2y_{i}\bar{y}) \\ &\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\mu^{2} - 2\bar{y}\mu - \bar{y}^{2} + 2\bar{y}\bar{y}) \end{split}$$

$$\sum_{i=1}^{n} (y_{i} - \mu)^{2}$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2})$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2} - \bar{y}^{2} + \bar{y}^{2} - 2y_{i}\bar{y} + 2y_{i}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\bar{y} + \bar{y}^{2}) + \sum_{i=1}^{n} (\mu^{2} - 2y_{i}\mu - \bar{y}^{2} + 2y_{i}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\mu^{2} - 2\bar{y}\mu - \bar{y}^{2} + 2\bar{y}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\bar{y} - \mu)^{2}$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

Marginal of mu

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 marginals $p(\mu \mid y) = \int p(\mu, \sigma \mid y) d\sigma$

Joint posterior Samples — Exact contour

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 marginals $p(\mu \mid y) = \int p(\mu, \sigma \mid y) d\sigma$ $p(\sigma \mid y) = \int p(\mu, \sigma \mid y) d\mu$

Marginal posterior $p(\sigma^2 \mid y)$ (easier for σ^2 than σ)

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\mu$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$\begin{split} \rho(\sigma^2 \mid y) &\propto \int \rho(\mu, \sigma^2 \mid y) d\mu \\ &\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\mu \\ &\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} (n-1)s^2\right) \\ &\int \exp\left(-\frac{n}{2\sigma^2} (\bar{y} - \mu)^2\right) d\mu \\ &\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (y - \theta)^2\right) d\theta = 1 \end{split}$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (y - \theta)^{2}\right) d\theta = 1$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right) \sqrt{2\pi\sigma^{2}/n}$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2}\right]\right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}}(n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}}(\bar{y} - \mu)^{2}\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}}(y-\theta)^{2}\right) d\theta = 1$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}}(n-1)s^{2}\right) \sqrt{2\pi\sigma^{2}/n}$$

$$\propto (\sigma^{2})^{-(n+1)/2} \exp\left(-\frac{(n-1)s^{2}}{2\sigma^{2}}\right)$$

$$\begin{split} \rho(\sigma^2 \mid y) & \propto & \int \rho(\mu, \sigma^2 \mid y) d\mu \\ & \propto & \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) d\mu \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \\ & \int \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right) d\mu \\ & \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1 \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \sqrt{2\pi\sigma^2/n} \\ & \propto & (\sigma^2)^{-(n+1)/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \\ & \rho(\sigma^2 \mid y) & = & \operatorname{Inv-}\chi^2(\sigma^2 \mid n-1, s^2) \end{split}$$

Gaussian - non-informative prior

Known mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n, v)$$
where $v = \frac{1}{n} \sum_{i=1}^n (y_i - \theta)^2$

Unknown mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n-1,s^2)$$
 where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n-1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n)$$

-Exact contour plot —Cond. distribution of mo Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n) \propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^{2} \mid y) = p(\mu \mid \sigma^{2}, y)p(\sigma^{2} \mid y)$$

$$p(\sigma^{2} \mid y) = \text{Inv-}\chi^{2}(\sigma^{2} \mid n - 1, s^{2})$$

$$(\sigma^{2})^{(s)} \sim p(\sigma^{2} \mid y)$$

$$p(\mu \mid \sigma^{2}, y) = N(\mu \mid \bar{y}, \sigma^{2}/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^{2}, y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^{2} \mid y) = p(\mu \mid \sigma^{2}, y)p(\sigma^{2} \mid y)$$

$$p(\sigma^{2} \mid y) = \text{Inv-}\chi^{2}(\sigma^{2} \mid n - 1, s^{2})$$

$$(\sigma^{2})^{(s)} \sim p(\sigma^{2} \mid y)$$

$$p(\mu \mid \sigma^{2}, y) = N(\mu \mid \bar{y}, \sigma^{2}/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^{2}, y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60
-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y)$$

60
-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y}) p(\sigma^2 \mid \mathbf{y})$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid \mathbf{y})$$
$$p(\mu \mid (\sigma^2)^{(s)}, \mathbf{y}) = N(\mu \mid \bar{\mathbf{y}}, (\sigma^2)^{(s)}/n)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$
$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$
$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$
$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Cond. distr of mu

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

 $\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$$

$$p(\mu \mid y) = t_{n-1}(\mu \mid \bar{y}, s^2/n) \quad \text{Student's } t$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$
$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

 $p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\underline{\sigma}}$ Sample from the predictive distribution given the posterior same

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\tilde{y}^{(s)} \sim p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})$$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

 $p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\underline{\sigma}}$ Sample from the predictive distribution given the posterior same

 $\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$ $\tilde{\mathbf{v}}^{(s)} \sim \mathbf{p}(\tilde{\mathbf{v}} \mid \mu^{(s)}, \sigma^{(s)})$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\underline{\sigma}}$$
 Sample from the predictive distribution given the posterior samp

 $\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$ $\tilde{\mathbf{v}}^{(s)} \sim \mathbf{p}(\tilde{\mathbf{v}} \mid \mu^{(s)}, \sigma^{(s)})$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$\begin{array}{c} {}^{\bullet}\text{ Sample from the predictive distribution} \\ {}^{\rho}(\tilde{\textit{y}} \mid \textit{y}) = \int \textit{p}(\tilde{\textit{y}} \mid \mu, \sigma) \textit{p}(\mu, \sigma \mid \textit{y}) \textit{d} \mu \sigma \\ \text{Predictive distribution given the posterior samp} \\ \text{Exact predictive distribution} \end{array}$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
$$\tilde{y}^{(s)} \sim p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})$$

Posterior predictive distribution

· Sample from the predictive distribution

Exact predictive distribution

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

$$p(\tilde{y} \mid y) = t_{n-1}(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})s^2)$$

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)
- Handy parameterization

$$\mu \mid \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)$$

$$\sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

which can be written as

$$p(\mu, \sigma^2) = \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/\kappa_0; \nu_0, \sigma_0^2)$$

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)
- Handy parameterization

$$\mu \mid \sigma^2 \sim \mathrm{N}(\mu_0, \sigma^2/\kappa_0)$$
 $\sigma^2 \sim \mathrm{Inv-}\chi^2(\nu_0, \sigma_0^2)$

which can be written as

$$p(\mu, \sigma^2) = \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/\kappa_0; \nu_0, \sigma_0^2)$$

- μ and σ^2 are a priori dependent
 - if σ^2 is large, then μ has wide prior

Joint posterior (exercise 3.9)

$$p(\mu, \sigma^2 \mid y) = \text{N-Inv-}\chi^2(\mu_n, \sigma_n^2/\kappa_n; \nu_n, \sigma_n^2)$$

where

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n} \sigma_{n}^{2} = \nu_{0} \sigma_{0}^{2} + (n - 1) s^{2} + \frac{\kappa_{0} n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}$$

Multinomial model for categorical data

- Extension of binomial
- Observation model

$$p(y \mid \theta) \propto \prod_{j=1}^k \theta_j^{y_j},$$

- BDA3 p. 69-

Multivariate Gaussian

Observation model

$$p(y \mid \mu, \Sigma) \propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right),$$

- BDA3 p. 72-
- New recommended LKJ-prior mentioned in Appendix A, see more in Stan manual

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as desired accuracy is obtained

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i), \quad \text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i$$

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$
 $\text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right)$
 $= \alpha + \beta x_i$

Logistic regression fit
$$y_i \mid \theta_i \sim \mathsf{Bin}(\theta_i, n_i)$$

$$= \alpha + \beta x_i$$

$$\theta_i = \frac{1}{1 + \exp(-(\alpha + \beta x_i))}$$
Logistic regression fit
$$0.8 \atop 0.8 \atop 0.00 \atop 0.02 \atop 0.00 \atop 0$$

24/28

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\log i t^{-1} (\alpha + \beta x_i)]^{y_i} [1 - \log i t^{-1} (\alpha + \beta x_i)]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\text{logit}^{-1}(\alpha + \beta x_i)]^{y_i} [1 - \text{logit}^{-1}(\alpha + \beta x_i)]^{n_i - y_i}$$

Posterior (with uniform prior on α, β)

$$p(\alpha, \beta \mid y, n, x) \propto p(\alpha, \beta) \prod_{i=1}^{n} p(y_i \mid \alpha, \beta, n_i, x_i)$$

Posterior density evaluated in a grid

Density evaluated in grid, but plotted using interpolation

Density evaluated in grid, and plotted without interpolation

Posterior density evaluated in a grid

Density evaluated in a coarser grid

- Approximate the density as piecewise constant function
- Evaluate density in a grid over some finite region
- Density times cell area gives probability mass in each cell

Posterior density evaluated in a grid

- Densities at 1, 2, and 3: 0.0027 0.0010 0.0001
- Probabilities of cells 1, 2, and 3: 0.0431 0.0166 0.0010
- Probabilities of cells sum to 1

- Sample according to grid cell probabilities

Posterior density and draws in a grid

- Sample according to grid cell probabilities

Posterior density and draws in a grid

- Sample according to grid cell probabilities
- Several draws can be from the same grid cell

Posterior density in a grid and jittered draws

- Jitter can be added to improve visualization

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^T \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $w_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling

Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^T \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $w_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling gets computationally too expensive in high dimensions