SUPPLEMENTARY TO ARXIV:1603.02468 - ARXIV160302468 MATHEMATICA PACKAGE DOCUMENTATION

PETRO KOLOSOV

 $Abstract. \ \ This\ PDF\ presents\ a\ brief\ description\ of\ Mathematica\ programs,\ related\ to\ preprint\ arXiv:1603.02468.$

Contents

1.	Introduction	1
2.	CoeffA	1
3.	TriangleCoeffA	2
4.	ColumnTriangleA	2
5.	DiagonalTriangleA	2
6.	CenteredColumnTriangleA	2
7.	L	3
8.	TriangleL	3
9.	RowTriangleL	3
10.	ColumnTriangleL	4
11.	ColumnSumTriangleL	4
12.	${\tt CenteredColumnTriangleL}$	4
13.	GeneralizedTriangleL	4
14.	${\tt RowGeneralizedTriangleL}$	5
15.	${\tt RowSumGeneralizedTriangleL}$	5
16.	OddPowerIdentity	5
17.	ClosedFormOddPowerIdentity	5
18.	${\tt ClosedFormOddPowerIdentityList}$	6
19.	ClosedFormCoefficient	6
20.	ClosedFormCoefficientList	6
21.	ClosedFormCoefficientColumn	7
22.	BinomialTriangle	7
23.	Numerical	7
24.	CoeffLamda	8
25.	LamdaOddPowerIdentity	8
26.	${\tt LamdaOddPowerIdentityClosedForm}$	8
27.	Program 4 - Convolution tables and their application	8
28.	Program 5 - Closed forms of identity of n^{2m+1} , polynomials	8
29.	0	8
30.	ů i	8
31.	Not Present in OEIS sequences	8
Rof	erences	S

1. Introduction

2. CoeffA

Description. CoeffA[n,k] produces the coefficient A[n,k].

Definition. CoeffA[n,k] is defined regarding to formula (number) in arxiv1603version

```
In[1] := CoeffA[3, 1]
Out[1] = -14
```

3. TRIANGLECOEFFA

Description. TriangleCoeffA[j] prints a tringular array of coefficients CoeffA[n,k] consisting of j-rows.

Definition. TriangleCoeffA $[j_-]$:= Column $[Table[CoeffA[n, k], \{n, 0, j\}, \{k, 0, n\}], Left];$

```
\begin{aligned} & \textbf{In}[1] := \text{TriangleCoeffA}[5] \\ & \textbf{Out}[1] = \\ & \{1\}, \\ & \{1, 6\}, \\ & \{1, 0, 30\}, \\ & \{1, -14, 0, 140\}, \\ & \{1, -120, 0, 0, 630\}, \\ & \{1, -1386, 660, 0, 0, 2772\} \end{aligned}
```

4. COLUMNTRIANGLEA

Description. ColumnTriangleA[j, t] prints t terms of j-th column of TriangleCoeffA[h].

Definition. ColumnTriangleA[j_, t_] := $Column[Table[CoeffA[n, j], \{n, j, t\}], Left];$

```
 \begin{aligned} &\mathbf{In}[1] := \text{ColumnTriangleA}[3, 10] \\ &\mathbf{Out}[1] = \{140, 0, 0, 0, -60060, -3712800, -196409840, -10863652800\} \end{aligned}
```

5. DIAGONALTRIANGLEA

Description. DiagonalTriangleA[r,t] prints t items of r-th diagonal of TriangleCoeffA[h].

Definition. DiagonalTriangleA[r_- , t_-] := **Table**[CoeffA[j + r, j], {j, 0, t}];

Inputs.

6. CENTEREDCOLUMNTRIANGLEA

Description. CenteredColumnTriangleA[r,t] prints t items of r-th centered column of TriangleCoeffA[h].

Definition. CenteredColumnTriangleA[r_{-} , t_{-}] := **Table**[CoeffA[2 n + r, n], {n, 0, t}];

```
\begin{aligned} \mathbf{In}[1] &:= \mathrm{CenteredColumnTriangleA}[2,\,10] \\ \mathbf{Out}[1] &= \{1,\,-120,\,18018,\,-3712800,\,1031151660,\,-374796021600,\,173441819530980,\\ &-(698546939374627200/7),\,69970095348694681140,\\ &-58779399490200841452000,\,58311848381539710311691480 \} \end{aligned}
```

7. L

Description. L[m, n, k] gives an integer value of polynomial L with repsect to integers m,n,k.

```
\mathbf{In}[1] := L[1, 10, 5]
\mathbf{Out}[1] = 151
```

8. TRIANGLEL

Description. TriangleL[m, t] generates numerical triangle of t-rows filled by L[m, n, k].

Definition. TriangleL $[m_-, t_-] := \text{Column}[\text{Table}[L[m, n, k], \{n, 0, t\}, \{k, 0, n\}], \text{ Left}];$

```
\begin{aligned} &\mathbf{In}[1] := \mathrm{TriangleL}[1,\ 7] \\ &\mathbf{Out}[1] = \\ &\{1\}, \\ &\{1,\ 1\}, \\ &\{1,\ 7,\ 1\}, \\ &\{1,\ 13,\ 13,\ 1\}, \\ &\{1,\ 19,\ 25,\ 19,\ 1\}, \\ &\{1,\ 25,\ 37,\ 37,\ 25,\ 1\}, \\ &\{1,\ 31,\ 49,\ 55,\ 49,\ 31,\ 1\}, \\ &\{1,\ 37,\ 61,\ 73,\ 73,\ 61,\ 37,\ 1\} \end{aligned}
```

9. ROWTRIANGLEL

Description. RowTriangleL[m, n] prints n-th row of TriangleL[m, t], $t \ge n$.

Definition. RowTriangleL[m_- , n_-] := **Table**[L[m_- , n_+], {k, 0, n}];

```
In[1] := RowTriangleL[1, 5]
Out[1] = \{1, 25, 37, 37, 25, 1\}
```

10. COLUMNTRIANGLEL

Description. ColumnTriangleL[m, k, t] prints the t terms of k-th column of TriangleL[m, n], $n \ge k$.

Definition. ColumnTriangleL[m_- , k_- , t_-] := **Table**[L[m_- , k_- , k_- , k_-];

```
In[1] := ColumnTriangleL[1, 2, 10]
Out[1] = \{1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121\}
```

11. COLUMNSUMTRIANGLEL

Description. ColumnSumTriangleL[m, r, s] gives the partial sums of ColumnTriangleL[m, k, t] over k from 0 to s.

Definition. ColumnSumTriangleL[m_r , r_r , s_r]:= **Table**[Sum[L[m_r , k_r , r_r], $\{k_r$, k_r , k_r], $\{k_r$, k_r , k_r],

```
In[1] := ColumnSumTriangleL[1, 2, 10]
Out[1] = \{1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671\}
```

12. CENTEREDCOLUMNTRIANGLEL

Description. CenteredColumnTriangleL[m, r, t] gives t terms of r-th centered column of TriangleL[m, t].

Definition. CenteredColumnTriangleL[m_- , r_- , t_-] := **Table**[L[m_- , n_- ,

```
In[1] := CenteredColumnTriangleL[1, 2, 10]
Out[1] = \{1, 19, 49, 91, 145, 211, 289, 379, 481, 595, 721\}
```

13. GENERALIZEDTRIANGLEL

Description. GeneralizedTriangleL[m, t, radius] gives a generalized TriangleL[m, t] with rows from -radius to +radius.

Definition.

Generalized Triangle $L[m_-, t_-, radius_-] := Column[Table[L[m, n, k], \{n, 0, t\}, \{k, -radius, n+radius\}], Left];$

```
\begin{split} \textbf{In}[1] &:= \text{GeneralizedTriangleL}[1,\ 7,\ 1] \\ \textbf{Out}[1] &= \\ & \{-5,\ 1,\ -5\}, \\ & \{-11,\ 1,\ 1,\ -11\}, \\ & \{-17,\ 1,\ 7,\ 1,\ -17\}, \\ & \{-23,\ 1,\ 13,\ 13,\ 1,\ -23\}, \\ & \{-29,\ 1,\ 19,\ 25,\ 19,\ 1,\ -29\}, \\ & \{-35,\ 1,\ 25,\ 37,\ 37,\ 25,\ 1,\ -35\}, \\ & \{-41,\ 1,\ 31,\ 49,\ 55,\ 49,\ 31,\ 1,\ -41\}, \\ & \{-47,\ 1,\ 37,\ 61,\ 73,\ 73,\ 61,\ 37,\ 1,\ -47\} \end{split}
```

14. ROWGENERALIZEDTRIANGLEL

Description. RowGeneralizedTriangleL[m, t, radius] gives a t-th row of GeneralizedTriangleL[m, t, radius] form -radius to +rad.

Definition. RowGeneralizedTriangleL[m_- , n_- , radius_] := **Table**[L[m_- , n_- , s], $\{s_+$ -radius, n_- +radius $\}$];

$$\begin{aligned} \mathbf{In}[1] &:= RowGeneralizedTriangleL[1, 2, 1] \\ \mathbf{Out}[1] &= \{-17, 1, 7, 1, -17\} \end{aligned}$$

15. ROWSUMGENERALIZEDTRIANGLEL

Description. RowSumGeneralizedTriangleL[m, n, radius] gives the sum of n-th row of GeneralizedTriangleL[m, t, radius] with radius.

Definition. RowSumGeneralizedTriangleL[m_- , n_- , radius_]:= **Sum**[L[m_- , n_+]; {k, -radius, n+radius}];

$$\mathbf{In}[1] := \text{RowSumGeneralizedTriangleL}[1, 3, 0]$$

 $\mathbf{Out}[1] = 28$

16. OddPowerIdentity

Description. OddPowerIdentity[n, m] gives integer n^(2m+1).

Definition. OddPowerIdentity[n_- , m_-] := **Sum**[CoeffA[m,r]***Sum**[$k^r(n-k)^r$, {k, 0, n}], {r, 0, m}];

$$\label{eq:normalized} \begin{split} \mathbf{In}[1] &:= \mathrm{OddPowerIdentity}[X,\,2] \\ \mathbf{Out}[1] &= 1 + X + X \; (1+X) \; (-1+X-X^2+X^3) = X^5+1 \end{split}$$

$$\frac{1}{X+1} \sum_{r=0}^{m} A_{m,r} \operatorname{Conv}_{r,\mathbb{N}}[X] = \frac{X^5+1}{X+1} = \sum_{r=0}^{2m-2} (-1)^r X^r$$

17. CLOSEDFORMODDPOWERIDENTITY

Description. ClosedFormOddPowerIdentity[m, T] gives closed form of identity for any particular natural T.

Definition. ClosedFormOddPowerIdentity $[m_-, n_-, T_-] := \mathbf{Expand}[\mathbf{Sum}[L[m, n, k], \{k, 0, T\}]];$

$$\begin{array}{l} \textbf{In}[1] := ClosedFormOddPowerIdentity[1, n, T] \\ \textbf{Out}[1] = 1 + 3 \text{ n T} - 3 \text{ T}^2 + 3 \text{ n T}^2 - 2 \text{ T}^3 \\ \textbf{In}[2] := ClosedFormOddPowerIdentity[1, n + 1, n] \\ \textbf{Out}[2] = 1 + 3 \text{ n} + 3 \text{ n}^2 + \text{n}^3 \end{array}$$

$$ClosedFormOddPowerIdentity[1, a+b, a+b-1] = \sum_{j} {2m+1 \choose j} a^{2m+1-k} b^k = (a+b)^{2m+1}$$

18. CLOSEDFORMODDPOWERIDENTITYLIST

Description. ClosedFormOddPowerIdentityList[m, n, t] generates a list of ClosedFormOddPowerIdentity[m, T] containing t terms.

Definition.

```
ClosedFormOddPowerIdentityList[m_, n_, t_] := Column[Table[ClosedFormOddPowerIdentity[m, n, f], \{f, 0, t\}], Left];
```

```
\begin{split} \textbf{In}[1] &:= \text{ClosedFormOddPowerIdentityList}[2, \, \text{n}, \, 7] \\ \textbf{Out}[1] &= \\ & \{1\}, \\ & \{32 - 60 \, \text{n} + 30 \, \text{n}^2\}, \\ & \{513 - 540 \, \text{n} + 150 \, \text{n}^2\}, \\ & \{2944 - 2160 \, \text{n} + 420 \, \text{n}^2\}, \\ & \{10625 - 6000 \, \text{n} + 900 \, \text{n}^2\}, \\ & \{29376 - 13500 \, \text{n} + 1650 \, \text{n}^2\}, \\ & \{68257 - 26460 \, \text{n} + 2730 \, \text{n}^2\}, \\ & \{140288 - 47040 \, \text{n} + 4200 \, \text{n}^2\} \end{split}
```

19. CLOSEDFORMCOEFFICIENT

Description. ClosedFormCoefficient[m, 1, t] prints the coefficient of 1-th power in ClosedFormOddPowerIdentity[m, T] for any given T.

Definition.

```
ClosedFormCoefficient[m_-, l_-, t_-] := (-1)^m \mathbf{Sum}[\mathbf{Sum}[\mathbf{Binomial}[j, t] \text{ CoeffA}[m, j] \text{ k}^2(2 \text{ j} - t) (-1)^j, \{j, t, m\}], \{k, 0, 1\}];
```

```
In[1] := ClosedFormCoefficient[3, 2, 1]
Out[1] = 13818
```

20. ClosedFormCoefficientList

Description. ClosedFormCoefficientList[m, r] prints r lines of ClosedFormCoefficient[m, 1, t].

Definition.

```
\begin{split} & ClosedFormCoefficientList[m_-, \, r_-] \\ & := \textbf{Column}[\textbf{Table}[ClosedFormCoefficient[m, \, l, \, t], \, \{l, \, 0, \, r\}, \, \{t, \, 0, \, m\}], \, \textbf{Left}]; \end{split}
```

```
\begin{aligned} \mathbf{In}[1] &:= \operatorname{ClosedFormCoefficientList}[2,\ 10] \\ \mathbf{Out}[1] &= \\ & \{1,\ 0,\ 0\}, \\ & \{32,\ 60,\ 30\}, \\ & \{513,\ 540,\ 150\}, \\ & \{2944,\ 2160,\ 420\}, \\ & \{10625,\ 6000,\ 900\}, \\ & \{29376,\ 13500,\ 1650\}, \end{aligned}
```

```
{68257, 26460, 2730},

{140288, 47040, 4200},

{263169, 77760, 6120},

{460000, 121500, 8550},

{760001, 181500, 11550}
```

21. CLOSEDFORMCOEFFICIENTCOLUMN

Description. ClosedFormCoefficientColumn[m, t, r] gives column of ClosedFormCoefficientList[m, r] of power $t \le m$.

Definition. ClosedFormCoefficientColumn $[m_-, t_-, r_-] :=$ **Table** $[ClosedFormCoefficient<math>[m, l, t], \{l, 0, r\}];$

```
\begin{aligned} &\mathbf{In}[1] := ClosedFormCoefficientColumn[2, 0, 10] \\ &\mathbf{Out}[1] = \{1, 32, 513, 2944, 10625, 29376, 68257, 140288, 263169, 460000, 760001\} \end{aligned}
```

22. BINOMIALTRIANGLE

Description. BinomialTriangle[n, s] prints binomial triangle of s rows for any integer n.

Definition. BinomialTriangle[s_, t_] := $\textbf{Column[Table[Binomial[n, k] * s^k, \{n, 0, t\}, \{k, 0, n\}], \textbf{Center}]; }$

```
 \begin{aligned} \mathbf{In}[1] &:= \operatorname{BinomialTriangle}[2, \, 5] \\ \mathbf{Out}[1] &= \\ & \{1\}, \\ & \{1, \, 2\}, \\ & \{1, \, 4, \, 4\}, \\ & \{1, \, 6, \, 12, \, 8\}, \\ & \{1, \, 8, \, 24, \, 32, \, 16\}, \\ & \{1, \, 8, \, 24, \, 32, \, 16\}, \\ & \{1, \, 10, \, 40, \, 80, \, 80, \, 32\} \end{aligned}
```

Generalization

$$n^{m} = \sum_{k_{1}} \sum_{k_{2}} \cdots \sum_{k_{n-1}} {m \choose k_{1}} {k_{1} \choose k_{2}} \cdots {k_{n-2} \choose k_{n-1}}$$

23. Numerical

Description. Numerical [n, k] gives terms of numerical expansion of monomials."

Definition.

```
\begin{split} & Numerical[n_-,\,k_-] \; := \; 0 \\ & Numerical[n_-,\,k_-] \; := \; 1 \; /; \; k \; == \; 0 \; || \; k \; == \; n \\ & Numerical[n_-,\,k_-] \; := \; \textbf{Sum}[n \hat{\;} s, \; \{s, \; 0, \; n-1\}] \; /; \; 0 < k < \; n \end{split}
```

```
In[1] := Numerical[4, 2]
Out[1] = 85
```

24. CoeffLamda

Description. CoeffLamda[m, r, k] gives Lamda coefficients from definition 1.6 at https://kolosovpetro.github.io/pdf/faulhabers/formula_binomial_theorem_identity.pdf.

Definition. CoeffLamda[m_, r_, k_] := $\begin{aligned} &\mathbf{Sum}[\mathbf{Binomial}[j, r] * \mathrm{CoeffA}[m, j] * (-1)^j / (2j - r + 1) * \mathbf{Binomial}[2j - r + 1, k] \\ * &\mathbf{BernoulliB}[2j - r + 1 - k], \{j, r, m\}]; \end{aligned}$

```
\mathbf{In}[1] := \text{CoeffLamda}[2, 2, 1] \\
\mathbf{Out}[1] = 5
```

25. LamdaOddPowerIdentity

Description. LamdaOddPowerIdentity[T, 1, s] gives a closed form of odd power identity T^{2s+1} for two variables T, l from

https://kolosovpetro.github.io/pdf/faulhabers_formula_binomial_theorem_identity.pdf.

Definition. LamdaOddPowerIdentity[T₋, s₋] := $\mathbf{Sum}[\mathbf{Sum}[(-1)^{\hat{}}(2s-r) * \text{CoeffLamda}[s, r, k] * T^{\hat{}}(k+r), \{k, 1, 2s+1-r\}], \{r, 0, s\}];$

```
In[1] := LamdaOddPowerIdentity[T, 1]
Out[1] = T^3
```

26. LamdaOddPowerIdentityClosedForm

Description. LamdaOddPowerIdentity[T, l, s] gives a closed form of odd power identity T^{2s+1} for two variables T, l from

https://kolosovpetro.github.io/pdf/faulhabers_formula_binomial_theorem_identity.pdf.

Definition. LamdaOddPowerIdentityClosedForm[T₋, l₋, s₋] := $\mathbf{Sum}[\mathbf{Sum}[(-1)^{\hat{}}(2s-r) * \text{CoeffLamda}[s, r, k] * T^r * l^k, \{k, 1, 2s+1-r\}], \{r, 0, s\}];$

```
 \begin{aligned} \mathbf{In}[1] &:= \mathrm{LamdaOddPowerIdentityClosedForm}[T, S, 1] \\ \mathbf{Out}[1] &= 3 \text{ S}^2 - 2 \text{ S}^3 - 3 \text{ S T} + 3 \text{ S}^2 \text{ T} \end{aligned}
```

- 27. Program 4 Convolution tables and their application
- 28. Program 5 Closed forms of identity of n^{2m+1} , polynomials
 - 29. Program 6 Evaluating coefficients of Closed forms
 - 30. Program 7 Graphs of closed forms of identity of n^{2m+1}
 - 31. Not Present in OEIS sequences

References

- $[1] \ arXiv:1603.02468v18 \ [math.NT]$
- [2] arXiv:1603.02468v15 [math.NT]