Sorting Algorithms

Paolo Bettelini

Contents

1 Bubble Sort

Given a list of numbers a.

We check each pair of adjacent numbers in the list (a_i, a_{i+1}) .

If $a_i > a_{i+1}$, we swap a_i and a_{i+1} .

We repeat this process until we check every tuple without performing the swap operation.

	Best-case	Average-case	Worst-case
comparison	O(n)	$O(n^2)$	$O(n^2)$
swap	O(1)	$O(n^2)$	$O(n^2)$

Algorithm 1 Bubble Sort

```
\begin{aligned} & \mathbf{swapped} \leftarrow \mathbf{false} \\ & \mathbf{do} \\ & \mathbf{swapped} \leftarrow \mathbf{false} \\ & \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ \mathbf{length}(a) - 1 \ \mathbf{do} \\ & \mathbf{if} \ a_i > a_{i+1} \ \mathbf{then} \\ & \mathbf{swapped} \leftarrow \mathbf{true} \\ & \mathbf{swap} \ a_i \ \mathbf{and} \ a_{i+1} \end{aligned}
```

2 Selection Sort

Given a list of numbers a.

We find the minimum value in the list starting from an offset of 1.

We swap the minimum value and the value before the offset.

We increment the offset by 1 and repeat this process while the offset is less than the length of the list.

	Best-case	Average-case	Worst-case
comparison	$O(n^2)$	$O(n^2)$	$O(n^2)$
swap	O(1)	O(n)	O(n)

Algorithm 2 Selection Sort

```
\begin{aligned} & \textbf{for } i \leftarrow 0 \textbf{ to length}(a) - 1 \textbf{ do} \\ & \min \leftarrow i \\ & \textbf{for } j \leftarrow i + 1 \textbf{ to length}(a) \textbf{ do} \\ & \textbf{if } a_j < a_{\min} \textbf{ then} \\ & \min \leftarrow j \\ & \textbf{swap } a_i \textbf{ and } a_{\min} \end{aligned}
```