

Prof. Dr. Anne Frühbis-Krüger Dr. Bernd Schober

ÜBUNGSBLATT 2

Abgabe: 29.10.2019, bis 12 Uhr

Hinweis: Achten Sie auf eine saubere Form unter Verwendung von Voraussetzung/Behauptung/Beweis!

Aufgabe 2.1. Bestimmen Sie, ob folgende Abbildungen injektiv, surjektiv oder bijektiv sind:

- (a). $f_1 : \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + x + 1$.
- **(b).** $f_2: \mathbb{N} \to \mathbb{N}, x \mapsto x^2 + x + 1.$
- (c). $f_3: \mathbb{R} \setminus \{-3\} \to \mathbb{R} \setminus \{2\}, x \mapsto \frac{2x+5}{x+3}$.
- (d). $f_4: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (2x_1 + 5x_2, x_1 + 3x_2)$.

Aufgabe 2.2. Seien A, B, C Mengen und seien $f: A \to B$ und $g: B \to C$ Abbildungen. Beweisen Sie die folgenden Aussagen:

- (a). Falls $g \circ f$ injektiv ist, so ist f injektiv.
- (b). Falls $g \circ f$ surjektiv ist, so ist g surjektiv.
- (c). f ist genau dann injektiv, wenn es eine Abbildung $h: B \to A$ gibt mit der Eigenschaft $h \circ f = id_A$.
- (d). f ist genau dann surjektiv, wenn es eine Abbildung $q: B \to A$ gibt mit der Eigenschaft $f \circ q = id_B$.
- (e). Angenommen A und B sind endliche Mengen, welche gleich viele Element enthalten. Zeigen Sie, dass folgende Äquivalenzen gelten:

f ist injektiv $\iff f$ ist bijektiv $\iff f$ ist surjektiv.

Aufgabe 2.3. Für jede natürliche Zahl $n \in \mathbb{N}$ sei S_n die Menge der bijektiven Abbildungen

$$\sigma: \{1, \dots, n\} \to \{1, \dots, n\}.$$

(a). Zeigen Sie, dass S_n mit der Verknüpfung

$$\begin{array}{cccc} S_n \times S_n & \to & S_n \\ (\sigma, \tau) & \mapsto & \sigma \circ \tau & \text{(Komposition von Abbildungen)} \end{array}$$

eine Gruppe bildet.

- (b). Ist S_3 kommutativ?
- (c). Ist S_n kommutativ für $n \geq 4$?

Hinweis: Betrachten Sie die Teilmenge $\{\sigma \in S_n \mid \sigma(i) = i \text{ für } i \geq 4\}.$

Man nennt S_n die symmetrische Gruppe vom Grad n und die Elemente σ heißen Permutationen (Vertauschungen) der Zahlen $1, \ldots, n$.

Aufgabe 2.4. Beweisen Sie:

- (a). Sei $m \in \mathbb{Z}$. Die Menge $m\mathbb{Z} = \{m \cdot n \mid n \in \mathbb{Z}\}$ ist eine Untergruppe der Gruppe $(\mathbb{Z}, +)$.
- (b). Für alle Untergruppen $H \subseteq \mathbb{Z}$ gibt es ein $m \in \mathbb{Z}$ mit $H = m\mathbb{Z}$.

Hinweis: Wählen Sie m dafür als kleinstes positives Element in H.

Präsenzaufgabe 2.5. Seien $A \subseteq \mathbb{R}^2$ und $B \subseteq \mathbb{R}$ nicht-leere Teilmengen. Weiter sei $f: A \to B$ die Abbildung gegeben durch $f(x_1, x_2) = x_1 + x_2$.

- (a). Finden Sie ein Beispiel für A und B so, dass f injektiv, aber nicht surjektiv ist.
- (b). Gibt es ein Beispiel für A und B mit $f:A\to B$ bijektiv?

Präsenzaufgabe 2.6. Gegeben sei die Menge $R = \{\heartsuit, \diamondsuit, \spadesuit, \clubsuit\}$ mit den Verknüpfungen $\square : R \times R \to R$ und $\angle : R \times R \to R$ definiert durch folgende Tabellen

_	\Diamond	\Diamond	•	*
\Diamond	\Diamond	\Diamond	\Diamond	\Diamond
\Diamond	\Diamond	\Diamond	•	*
•	\Diamond	•	*	\Diamond
*	Q	*	\Diamond	•

- (a). Ist R mit diesen beiden Verknüpfungen ein Ring? Falls ja, bestimmen Sie das Null- und das Eins-Element.
- (b). Warum kann es sich bei dem betrachteten Objekt nicht um $\mathbb{Z}/4$ (mit der üblichen Addition und Multiplikation) handeln?
- (c). Ist (R, \square, \angle) ein Körper?