Class 12 OLS Regression Basics

Dr Wei Miao

UCL School of Management

November 8, 2023

Section 1

Basics of Linear Regression

Conditional Mean in Causal Inference

- In causal inference, we often care about the expectation of the outcome variable (Y) conditional on treatment variables (X).
- For example, in an RCT, Y is the outcome variable (e.g., purchase rate), X is whether or not customers receive the treatment (e.g., BMW ads), then from the basic identity of causal inference, we have

$$ATE = E[Y|X=1] - E[Y|X=0]$$

• Question: how can we model the expected mean of outcome variable conditional on X, E[Y|X=x]?

Linear Regression Models

A simple linear regression is a model as follows,

$$Y_i = \beta_0 + x_1\beta_1 + x_2\beta_2 + \ldots + x_k\beta_k + \epsilon_i$$

- • y_i : Outcome variable/dependent variable/regressand/response variable/LHS variable
- ullet eta: Regression coefficients/estimates/parameters; eta_0 : intercept
- - ullet Lower case such as x_1 usually indicates a single variable while upper case such as X_{ik} indicates a set of several variables
- \bullet ϵ_i : error term, which captures the deviation of Y from the prediction
 - ullet expected mean should be 0, i.e., $E[\epsilon|X]=0$
- ullet If we take the expectation of Y, we should have:

$$E[Y|X] = \beta_0 + x_1\beta_1 + x_2\beta_2 + \dots + x_k\beta_k$$

Why the Name "Regression"?

- The term "regression" was coined by Francis Galton to describe a biological phenomenon: The heights of descendants of tall ancestors tend to regress down towards a normal average.
- The term "regression" was later extended by Udny Yule and Karl Pearson to a more general statistical context (Pearson, 1903).
- In supervised learning models, "regression" has a different meaning: when outcome is continuous, the task is called regression task.¹

 $^{^1}$ ML models are developed by computer science; causal inference models are developed by economists.

Section 2

Estimation

How to Run Regression in R

- In R, there are tons of packages that can run OLS regression.
- In this module, we will be using the fixest package, because it's able to estimate high-dimensional fixed effects.

```
pacman::p_load(modelsummary,fixest)

OLS_result <- feols(
    fml = total_spending ~ Income, # Y ~ X
    data = data_full, # dataset from Tesco
)</pre>
```

Report Regression Results

```
modelsummary(OLS_result,
stars = TRUE # export statistical significance
)
```

	(1)	
(Intercept)	-552.235 ***	
	(20.722)	
Income	0.021***	
	(0.000)	
Num.Obs.	2000	
R2	0.630	
R2 Adj.	0.630	
AIC	29130.1	
BIC	29141.3	
RMSE	351.63	
Std.Errors	IID	
+ p < 0.1, * p < 0.05 , ** p < 0.01 , *** p < 0.001		

Interpretation

Parameter Estimation: Univariate Regression Case

• Let's take a univariate regression² as an example

$$y = a + bx_1 + \epsilon$$

ullet For each guess of a and b, we can compute the error for customer i,

$$e_i = y_i - a - bx_{1i}$$

We can compute the sum of squared residuals (SSR) across all customers

$$SSR = \sum_{i=1}^{n} (y_i - a - bx_{1i})^2$$

- ullet Objective of estimation: Search for the unique set of a and b that can minimize the SSR.
- This estimation method that minimizes SSR is called Ordinary Least Square (OLS).

Visualization: Estimation of Univariate Regression

 \bullet If in the Tesco dataset, if we regress total spending (Y) on income (X)

Model	Color	Sum of Squared Error
Y = -552 + 0.06 * X $Y = 0 + 0.004 * X$ $Y = -552 + 0.021 * X$	Purple Red Green	$\begin{array}{c} 1.6176047 \times 10^{13} \\ 5.093683 \times 10^{11} \\ 2.0205681 \times 10^{9} \end{array}$

Multivariate Regression

 The OLS estimation also applies to multivariate regression with multiple regressors.

$$y_i = b_0 + b_1 x_1 + \ldots + b_k x_k + \epsilon_i$$

 Objective of estimation: Search for the unique set of b that can minimize the sum of squared residuals.

$$SSR = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_1 - \dots - b_k x_k)^2$$

Section 3

Interpretation

Coefficients Interpretation

 Now on your Quarto document, let's run a new regression, where the DV is total_spending, and X includes Income and Kidhome.

	(1)	
(Intercept)	-316.878***	
	(26.972)	
Income	0.019***	
	(0.000)	
Kidhome	$-2\dot{1}0.613^{***}$	
	(16.282)	
Num.Obs.	2000	
R2	0.658	
R2 Adj.	0.658	
AIC	28971.2	
BIC	28 988.0	
RMSE	337.77	
Std.Errors	IID	
+ p < 0.1, * p < 0.05 , ** p < 0.01 , *** p < 0.001		

• Controlling for Kidhome, one unit increase in Income increases total spending by £0.019.

Standard Errors and P-values

- Because the regression is estimated on a random sample of the population, so each time, if we run the regression on a different sample, we would get a different set of regression coefficients.
- In theory, the regression coefficients estimates follows a t-distribution.
- Therefore, we need p-values to check whether the coefficients are statistically different from 0.
- Income/Kidhome is statistically significant at the 1% level.

R-Squared

- R-squared (R2) is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model.
- Interpretation: 65.8% of the variation in totalspending can be explained by Income and Kidhome.
- ullet As the number of variables increases, the R^2 will naturally increase, so sometimes we may need to use the so-called adjusted R-squared.
- ullet R-Squared is important for supervised learning tasks, because it measures the predictive power of the X you use. However, In causal inference tasks, R^2 does not matter much.