Name:

## SOLUTIONS

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops **must be shown** on K-maps to receive credit. Assume that you have access to gates with as many inputs as you need. Point values are as indicated. Usage of XOR and XNOR gates is **not allowed** on this exam!

1. (10 points) Use a K-map to find the minimum POS implementation for the following expression. Label all loops or no credit will be awarded.

$$F(A, B, C, D) = \Sigma m(1, 3, 4, 5, 6, 12, 14, 15)$$



$$F_{POS} = (B+D)(A'+C+D')(A'+B)(A+B'+C'+D')$$

2. (10 points) Use a K-map to find the **minimum SOP** implementation for the following expression. Label all loops or no credit will be awarded.

 $F(A,B,C,D,E) = \Sigma m(1,5,8,9,13,18,19,24,25,28,29) + \Sigma d(2,3,14,21,22,30)$ 



FSOP = A'D'E + BC'D' + ABD' + B'C'D

3. (15 points) Use the Quine-McCluskey method to find a static-hazard free implementation of the following expression.

$$F(A, B, C, D, E) = \sum m(5, 12, 21, 23, 24, 28, 29, 31) + \sum d(6, 7, 14, 15)$$

| Column 1                                         | Column 2                 | Column 3            |
|--------------------------------------------------|--------------------------|---------------------|
| TWO 15.00101                                     | 5-7 001-1                | 5-7-21-23 -01-1     |
| 6.00110                                          | 6 2 0011                 | 5-21-107-23 repeat, |
| 12.01100                                         | 6-4 0-110                | 6-7-14-15 0-11- CAR |
| 124. 11000                                       | 12 -14 011-0             | 6-14-7-15 repeat    |
| THREE 17. 00111                                  | 12-28 -1100              | 7-15-23-31111       |
| 114.01110                                        | 24-28 11-00              |                     |
| 121. 10101                                       | 6 15 0 111               |                     |
| 128. 11100                                       | 4-15 0-111<br>4-23 -0111 | 21-23-29-31 1-1-1   |
| Four /15.01111                                   | 14-15 0111-              | 21-29-23-31 repeat  |
| √23. IOIII                                       | 11-23 101-1              |                     |
| 29.11101                                         | 21-29 1-101              |                     |
| FIVE 31.1111                                     | 28-29 1110-              |                     |
| · · · · · · · · · · · · · · · · · · ·            | 15-31 -1111              |                     |
|                                                  | 123-311-111              |                     |
| # 55 # 1<br>931 - 345                            | 129-31 111-1             | 5.78 th == 1        |
|                                                  |                          |                     |
| FHAZARD-FREE = A'BCE + BCD'E' + ABD'E' + ABCD' + |                          |                     |
| B'CE+ CDE+ ACE                                   |                          |                     |

4. (20 points) Find the lowest cost implementation of the following expression. Draw the circuit diagram of the minimum-cost circuit. Use any minimization method of your choice, showing all work and making a justification for the best implementation.



5. Find the optimized implementation of the following two circuits. Show all work. How many gates and/or inputs do you save by implementing circuits together rather than individually?

$$X(A, B, C, D) = \Sigma m(2, 3, 4, 6, 7, 10, 12)$$
$$Y(A, B, C, D) = \Sigma m(4, 6, 7, 10, 12, 14, 15)$$



AB

6. (15 points) Find the minimum SOP implementation of the following expression.

$$F(A, B, C, D) = \Sigma m(1, 2, 3, 6, 10, 12, 13, 14, 15)$$

- (a) Then, express as a NAND-only circuit (no inverters are allowed, not even bubbles or primes on input variables!)
- (b) Then, express as a NOR-only circuit (no inverters are allowed, not even bubbles or primes on input variables!)



F<sub>sop</sub> = AB+A'B'D+CO'



7. (10 points) Draw a timing diagram for the following circuit, given gate delays of 2 ns for NOT gates, and 5 ns for AND and OR gates. Indicate any static hazards in the output signal



