STAT 543/641 – Winter 2019 – Homework #2

Due Wednesday, March 20, 2019

Notation: Suppose $(x_1, y_1, \dots, (x_n, y_n) \in \mathbb{R} \times \{0, 1\}$. Set

$$\sigma(t) = \frac{1}{1+e^{-t}}$$

$$p_i(a,b) = \sigma(a+bx_i)^{y_i} (1-\sigma(a+bx_i))^{1-y_i}$$

$$\ell_i(a,b) = -\log p_i(a,b)$$

$$= -y_i \log \sigma(a+bx_i) - (1-y_i) \log (1-\sigma(a+bx_i))$$

$$\ell(a,b) = \sum_{i=1}^n \ell_i(a,b)$$

- 1. In this problem, we establish a sufficient condition for the uniqueness of maximum likelihood estimates for univariate logistic regression coefficients, assuming such estimates exist.
 - (a) Prove:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) \tag{*}$$

Conclude that $\sigma'(x) > 0$ for all x.

(b) Prove that

$$\nabla \ell_i(a, b) = (\sigma(a + bx_i) - y_i) \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$
 (Hint: Use (*).)

and that

$$\nabla^2 \ell_i(a, b) = \sigma'(a + bx_i) \begin{bmatrix} 1 & x_i \\ x_i & x_i^2 \end{bmatrix}.$$

Deduce that $\nabla^2 \ell_i(a, b)$ is positive-semidefinite but not positive-definite, making $\ell_i(a, b)$ convex but not strictly convex.

- (c) Find a basis of the nullspace $N(\nabla^2 \ell_i(a,b))$ of $\nabla^2 \ell_i(a,b)$ whose elements do not depend on a and b.
- (d) Suppose that there are indices i and j such that $x_i \neq x_j$. Prove that

$$\bigcap_{i=1}^{n} N(\nabla^{2} \ell_{i}(a,b)) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}.$$

(Hint: Use (c).)

- (e) Suppose that there are indices i and j such that $x_i \neq x_j$. Show that $\nabla^2 \ell(a, b)$ is positive-definite and, hence, that $\ell(a, b)$ is strictly convex.
- (f) Conclude that if that there are indices i and j such that $x_i \neq x_j$, then maximum likelihood estimates for \hat{a} and \hat{b} are unique if they exist.
- 2. In this problem, we establish a sufficient condition for the existence of maximum likelihood estimates for univariate logistic regression coefficients.

Consider fitting a univariate logistic regression model to a dataset $(x_1, y_1), \ldots, (x_n, y_n)$ satisfying

$$x_1 < x_2 < \cdots < x_n$$
.

- (a) Prove that $\ell_i(a,b) > 0$ for all $(a,b) \in \mathbb{R}^2$.
- (b) Let

$$H_i = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2 : \lim_{t \to \infty} \ell_i(tv_1, tv_2) = \infty \right\}$$

Find a vector $\boldsymbol{w} \in \mathbb{R}^2$ such that $H_i = H(\boldsymbol{w}_i)$, where

$$H(\boldsymbol{w}_i) = \{ \boldsymbol{v} \in \mathbb{R}^2 : \boldsymbol{v} \cdot \boldsymbol{w}_i > 0 \}.$$

(c) Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2 - \{\boldsymbol{0}\}$. Show that

$$H(\boldsymbol{u}) \cup H(\boldsymbol{v}) \cup H(\boldsymbol{w}) = \mathbb{R}^2 - \{\mathbf{0}\}$$

if abd only there are a, b > 0 such that $-\boldsymbol{u} = a\boldsymbol{v} + v\boldsymbol{w}$.

(d) Consider the following condition on a triple of indices (i, j, k):

$$y_i = y_k = 0 \text{ and } y_j = 1$$
 or $y_i = y_k = 1 \text{ and } y_j = 0$ (†)

Suppose $1 \le i < j < k \le n$. Prove that (i, j, k) satisfies (\dagger) if and only if

$$H_i \cup H_j \cup H_k = \mathbb{R}^2 - \{\mathbf{0}\}.$$

(e) Suppose that (i, j, k) is an increasing sequence of indices that satisfies (†). Prove that, for all K > 0, the set

$$S_K := \{(a, b) : \ell(a, b) \le K\}$$

contains no ray from the origin, i.e., no set of the form $\{t\mathbf{v}: t \geq 0\}$ where $\mathbf{v} \in \mathbb{R}^2 - \{\mathbf{0}\}$.

- (f) Use the following facts to deduce that S_K is bounded for all K > 0. S_K is evidently closed, so it's compact.
 - i. If $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function, then $\{ \boldsymbol{x} \in \mathbb{R}^n : f(\boldsymbol{x}) | \leq K \}$ is a convex set.
 - ii. If C is a convex set that contains no ray, then C is bounded.
- (g) Let K > 0 be such that S_K is nonempty and let

$$m = \inf_{(a,b) \in S_K} \ell(a,b).$$

Explain why there exists a point $(\widehat{a}, \widehat{b}) \in S_K$ such that $\ell(\widehat{a}, \widehat{b}) = m$ and why m is, in fact, the global minimum of ℓ .

- (h) Prove that $(\widehat{a}, \widehat{b})$ is the unique point at which ℓ takes on its minimum value.
- 3. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be random samples from normally distributed populations with means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 , respectively. Let S_X^2 and S_Y^2 be the standard unbiased estimators of σ_X^2 and σ_Y^2 , respectively.
 - (a) Suppose $\sigma_X^2 = \sigma_Y^2$ and write σ^2 for this common value.

$$S^{2} := \frac{(m-1)S_{X}^{2} + (n-1)S_{Y}^{2}}{m+n-2}$$

is an unbiased estimator of σ^2 . It's called the *pooled variance estimator*.

(b) Suppose, in addition to having common variance, that the X_i are independent of the Y_i . What is the distribution of

$$\frac{(m+n-2)S^2}{\sigma^2}$$
?

What is the variance of S^2 ?

- (c) (Do not hand in.) Generalize these results from the case of K = 2 populations to that of an arbitrary K. Compare with equation (4.15) in [1].
- (d) (Do not hand in.) Can you prove analogous results with covariance matrices in place of scalar variances?
- 4. Use whatever software package you want to do this problem. I recommend R or python with sklearn, though.

Load the file dataset_1.csv, containing synthetic data for a binary classification problem with two numerical features. These features are in the first two columns of the file; the target is in the third column.

- (a) Make a scatter plot of the data, using different colors or marker shapes to distinguish class labels.
- (b) Fit the data to a logistic regression model and to a Gaussian naïve Bayes model. Plot the decision boundaries. Do you expect these classifiers to yield satisfactory results?
- (c) Write X_1 and X_2 for the two features. Augment the dataset with three new features:

$$X_3 := X_1^2, \quad X_4 := X_1 X_2, \quad X_5 := X_2^2$$

- (d) Fit the data to a logistic regression model and to a Gaussian naïve Bayes model.
- (e) Let

$$c_0 + c_1 X_1 + c_2 X_2 + c_3 X_3 + c_4 X_4 + c_5 X_5 = 0.$$

be the decision boundary. Since it's graph is a hyperplane in \mathbb{R}^5 , we can't plot it. We can, however, plot its inverse image in \mathbb{R}^2 under the map

$$(x_1, x_2) \mapsto (x_1, x_2, x_1^2, x_1 x_2, x_2^2),$$

i.e., the plane curve

$$c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_4 x_1 x_2 + c_5 x_2^2 = 0.$$

Plot the decision boundary. Comment on your results.

- (f) Repeat with the dataset in $\mathtt{dataset_1.csv}$, augmenting your dataset with all the monomials in X_1 and X_2 of degrees 2 and 3, for a total of nine features.
- 5. Load the file dataset_3.csv, containing synthetic data for a four class classification problem with two numerical features. These features are in the first two columns of the file; the target is in the third column. We will use a *one-versus-rest* approach to construct a four class classifier out of four binary classifiers.
 - (a) Make a scatter plot of the data, using different colors or marker shapes to distinguish class labels.
 - (b) Split the dataset into training and testing subsets. Let y_{tr} and y_{te} be their target vectors.
 - (c) Let $k_0 \in \{0, 1, 2, 3\}$. Construct a new training and testing target vectors, $\boldsymbol{y}_{tr,k}$ and $\boldsymbol{y}_{te,k}$, vector by replacing the three class labels $k \neq k_0$ with 4. Fit the resulting training set to a logistic regression model.
 - (d) Test your four models on their corresponding training sets: For each test observation, x, your models will give estimates for p(k|x). Assign each test observation to the class label, k, for which this probability is the highest. What is the overall relative accuracy of your classifier on the test set?

References

[1] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Introduction to Statistical Learning Theory with Applications in R, http://www-bcf.usc.edu/~gareth/ISL/.