

General Purpose Transistor

- Pb–Free Package May be Available. The G–Suffix Denotes a Pb–Free Lead Finish
- We declare that the material of product compliance with RoHS requirements.
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

ORDERING INFORMATION

Device	Marking	Shipping
LMBT3904LT1G S-LMBT3904LT1G	1AM	3000/Tape & Reel
LMBT3904LT3G S-LMBT3904LT3G	1AM	10000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V_{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter–Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	I _c	200	mAdc

LMBT3904LT1G S-LMBT3904LT1G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR- 5 Board, (1)	P _D	225	mW
T _A = 25°C			
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation	P _D	300	mW
Alumina Substrate, (2) T _A = 25°C			
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T_J , T_{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

- Characteriotic	Cymbe.	•••••	max	O.m.	
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage(3)	V _{(BR)CEO}	40	_	Vdc	
(I _C = 1.0 mAdc)					
Collector–Base Breakdown Voltage	V _{(BR)CBO}	60	_	Vdc	
(I _C = 10 μAdc)					
Emitter–Base Breakdown Voltage	V _{(BR)EBO}	6.0	_	Vdc	
(I _E = 10 μAdc)					
Base Cutoff Current	I _{BL}	_	50	nAdc	
$(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc},)$					
Collector Cutoff Current	I _{CEX}	_	50	nAdc	
$(V_{CE} = 30Vdc, V_{EB} = 3.0Vdc)$					

Symbol

Min

Unit

Max

- 1. FR-5 = 1.0 x 0.75 x 0.062 in.
- 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

Characteristic

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T $_A$ = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS (3)				
DC Current Gain(1)	h _{FE}			
$(I_C=0.1 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc})$		40		
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		70		
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		100	300	
$(I_C = 50 \text{mAdc}, V_{CE} = 1.0 \text{Vdc})$		60		
$(I_C = 100 \text{mAdc}, V_{CE} = 1.0 \text{ Vdc})$		30		
Collector–Emitter Saturation Voltage	V _{CE(sat)}			Vdc
$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})(3)$,,,,		0.2	
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{mAdc})$			0.3	
Base–Emitter Saturation Voltage(3)	V _{BE(sat)}			Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{mAdc})$	-=()	0.65	0.85	
$(I_C = 50 \text{mAdc}, I_B = 5.0 \text{mAdc})$		_	0.95	
SMALL-SIGNAL CHARACTERISTICS				

Description Description				
Current–Gain — Bandwidth Product	f ⊤	300		MHz
$(I_C = 10 \text{mAdc}, V_{CE} = 20 \text{Vdc}, f = 100 \text{MHz})$	• •	000		2
Output Capacitance	0		4.0	
$(V_{CB} = 5.0Vdc, I_{E} = 0, f = 1.0 MHz)$	C _{obo}		4.0	pF
Input Capacitance	C ibo		8.0	nE
$(VEB = 0.5Vdc, I_c = 0, f = 1.0 MHz)$	O ibo		0.0	pF
Input Impedancen	h _{ie}	1.0	10	kΩ
$(V_{CE} = 10Vdc, I_{C} = 1.0mAdc, f = 1.0 kHz)$	II ie	1.0	10	K22
Voltage Feedback Ratio	h	0.5	8.0	X10 ⁻⁴
$(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{re}	0.5	0.0	X10 ·
Small-Signal Current Gain	h _{fe}	100	400	
$(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	II fe	100	400	_
Output Admittance	h oe	1.0	40	
$(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	II oe	1.0	40	μmhos
Noise Figure	NF	_	5.0	dB
(V $_{\text{CE}}$ = 5.0 Vdc, I $_{\text{C}}$ = 100 μ Adc, R $_{\text{S}}$ = 1.0 k Ω , f = 1.0 kHz)			0.0	QD

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{Vdc})$	t d	_	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{mAdc}$	t _r	_	35	115
Storage Time	$(V_{CC} = 3.0Vdc,$	t s	_	200	20
Fall Time	$I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	t f	_	50	ns

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

h PARAMETERS

10

I_C, COLLECTOR CURRENT (mA)

Figure 11. Current Gain

1.0

2.0 3.0

30

0.2 0.3

Figure 12. Output Admittance

100

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

1.0 HE STORY OF THE PROPERTY OF THE PROPERTY

 $I_C/I_B = 10$

Figure 17. Collector Emitter Saturation Voltage vs. Collector Current

Figure 18. Base Emitter Saturation Voltage vs.
Collector Current

Figure 19. Base Emitter Voltage vs. Collector Current

Figure 20. Temperature Coefficients

Figure 21. Current Gain Bandwidth vs. Collector Current

Figure 22. Safe Operating Area

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIN	METERS
D 1111	MIN	MAX	MIN	MAX
Α	0.1102	0.1197	2.80	3.04
В	0.0472	0.0551	1.20	1.40
С	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
Н	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.1039	2.10	2.64
٧	0.0177	0.0236	0.45	0.60

PIN 1. BASE 2. EMITTER 3. COLLECTOR

