Handling Skewed Data
Advice for Applying Machine Learning:

Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.5$

⇒ Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.5$

Suppose we want to predict y = 1 (cancer) only if very confident.

recall = true positives

no. of predicted positive

true positives

recall = no. of actual positive

> Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 9.5$ 6.7 Predict 0 if $h_{\theta}(x) < 9.5$ 6.7 Suppose we want to predict y = 1 (cancer) only if very confident.

⇒ Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.8$

Suppose we want to predict y = 1 (cancer) only if very confident.

⇒ Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.5$

Suppose we want to predict y = 1 (cancer) only if very confident.

>> Higher precision, lower recall.

Predict 1 if $h_{\theta}(x) \geq 0.5$ 9.7 0.9 Predict 0 if $h_{\theta}(x) < 0.5$ 9.7 0.9 Suppose we want to predict y = 1 (cancer) only if very confident.

> Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 0.5$ 0.9Predict 0 if $h_{\theta}(x) < 0.5$ 0.9Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

> Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 0.5$ 9.7 9.3 Predict 0 if $h_{\theta}(x) < 0.5$ 9.7 9.3

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

precision = true positives

no. of predicted positive

true positives

recall = true positives

no. of actual positive

> Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 9.5$ 9.4 9.3 Predict 0 if $h_{\theta}(x) < 9.5$ 9.4 9.5 9.3

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

precision = true positives

no. of predicted positive

true positives

recall = true positives

no. of actual positive

> Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 9.5$ > 9.5 9.3

Predict 0 if $h_{\theta}(x) < 0.5$

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

recall = true positives

no. of predicted positive

true positives

recall = no. of actual positive

- > Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 0.5$ 9.4 9.4 0.3 Predict 0 if $h_{\theta}(x) < 0.5$ 9.4 9.4 0.3
- Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

Windows'u **Recall**Windows'u etkinleştirmek için Ayarlar'a gidin.

- > Logistic regression: $0 \le h_{\theta}(x) \le 1$ Predict 1 if $h_{\theta}(x) \ge 0.5$ 9.7 9.3 Predict 0 if $h_{\theta}(x) < 0.5$ 9.7 9.3
- Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

Windows'u **Recall**Windows'u etkinleştirmek için Ayarlar'a gidin.

F₁ Score (F score)

How to compare precision/recall numbers?

	Precision(P)	Recall (R)
Algorithm 1	0.5	0.4
Algorithm 2	0.7	0.1
Algorithm 3	0.02	1.0

How to compare precision/recall numbers?

	Precision(P)	Recall (R)	Average
-> Algorithm 1	0.5	0.4	0.45
-> Algorithm 2	0.7	0.1	0.4
Algorithm 3	0.02	1.0	0.51

Average:
$$\frac{P+R}{2}$$

How to compare precision/recall numbers?

	Precision(P)	Recall (R)	Average	
-> Algorithm 1	0.5	0.4	0.45	_
-> Algorithm 2	0.7	0.1	0.4	
Algorithm 3	0.02	1.0	0.51	
. P.	⊥ B		Predict yel	all the

Average: $\frac{P+R}{2}$

How to compare precision/recall numbers?

	Precision(P)	Recall (R)	Average
-> Algorithm 1	0.5	0.4	0.45
-> Algorithm 2	0.7	0.1	0.4
Algorithm 3	0.02	1.0	0.51
Average: P	+R		Predict y=1 all the time

How to compare precision/recall numbers?

	Precision(P)	Recall (R)	Average	F ₁ Score
-> Algorithm 1	0.5	0.4	0.45	0.444 ←
-> Algorithm 2	0.7	0.1	9.4	0.175 <
Algorithm 3	0.02	1.0	0.51	0.0392 <
Average: P	+R		Predict y=1 a	II the time

Average: $\frac{P+R}{2}$

$$\mathsf{F_1}$$
 Score: $2\frac{PR}{P+R}$