线性代数——第一周作业解答

廖汶锋助教

October 18, 2023

习题 0.2.2 经典逻辑的基本公理之一是排中律,即对任意命题 A , A 不能既不真又不假。反证法可以 看作排中律的推论,即如果我们发现 A 不能是错的,那么 A 就只能是对的。因此,想要证明命题 A 真, 不妨挑一个命题 B, 先证明 $B \Rightarrow A$, 再证明 $(\neg B) \Rightarrow A$. 那么 A 就必须是真的了。给定命题: 存在两个 无理数 a、b, 满足 a^b 是一个有理数。请先假设 $\sqrt{2}^{\sqrt{2}}$ 是有理数,再假设 $\sqrt{2}^{\sqrt{2}}$ 是无理数,对两种情形 讨论来证明这个命题。

解: 取命题 A 为 "存在两个无理数 a、b,满足 a^b 是一个有理数",而命题 B 为 " $\sqrt{2}^{\sqrt{2}}$ 是有理数"。

情况 1: 证明 $B \Rightarrow A$

取 $a = b = \sqrt{2}$, 则推导出命题 A 成立;

情况 2: 证明 $(\neg B) \Rightarrow A$

取 $a=\sqrt{2}^{\sqrt{2}}$ 、 $b=\sqrt{2}$,则推导出 $a^b=\sqrt{2}^{\sqrt{2}\times\sqrt{2}}=2\in\mathbb{Q}$,即命题 A 成立。

所以存在两个无理数 a、b、满足 a^b 是一个有理数。

习题 0.3.1 判断下列映射是否为单射、满射、双射、并写出双射的逆映射:

1.
$$f: \mathbb{R} \to \mathbb{R}$$

2.
$$f: \mathbb{R} \to \mathbb{R}$$

3.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x + 1$$

$$x \mapsto 2x$$

$$x \mapsto 3$$

4.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^2$$

5.
$$f: (-\infty, 0] \to \mathbb{R}$$

$$x \mapsto x^2$$

6.
$$f: \mathbb{R} \to (0, +\infty)$$

$$x \mapsto e^x$$

7.
$$f: \left[-\frac{3\pi}{2}, -\frac{\pi}{2} \right] \to [-1, 1]$$

$$x\mapsto \sin x$$

解:

序号	单射	满射	双射	双射的逆映射
1.	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$f^{-1}: \mathbb{R} \to \mathbb{R}, \ x \mapsto x - 1$
2.	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$f^{-1}: \mathbb{R} \to \mathbb{R}, \ x \mapsto x/2$
3.	×	×	×	×
4.	×	×	×	×
5.	$\sqrt{}$	×	×	×
6.	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$f^{-1}:(0,+\infty)\to\mathbb{R},\ x\mapsto \ln x$
7.	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$f^{-1}: [-1,1] \to \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right], \ x \mapsto -(\pi + \arcsin x)$

习题 0.3.4 下列 \mathbb{R} 上的变换,哪些满足交换律 $f \circ g = g \circ f$?

1.
$$f(x) = x + 1$$
, $g(x) = 2x$

2.
$$f(x) = x^2$$
, $g(x) = x^3$

3.
$$f(x) = 2^x$$
, $g(x) = 3^x$

4.
$$f(x) = 2x + 1$$
, $g(x) = 3x + 2$

5.
$$f(x) = 2x + 1$$
, $g(x) = 3x + 1$

6.
$$f(x) = \sin x$$
, $g(x) = \cos x$

解:

序号	$f \circ g$	$g \circ f$	满足交换律?
1.	2x + 1	2x + 2	×
2.	x^6	x^6	\checkmark
3.	2^{3^x}	3^{2^x}	×
4.	6x + 5	6x + 5	\checkmark
5.	6x + 3	6x + 4	×
6.	$\sin(\cos x)$	$\cos(\sin x)$	×

习题 0.3.9 给定映射 h, g 和 $f = g \circ h$, 证明, 若 f 是双射, 则 h 是单射, g 是满射。

解: 记 $h: X \to Y$ 、 $g: Y \to Z$,则有 $f: X \to Z$ 。

步骤 1: 证明: h 是单射

因为 f 是单射,所以对于任意 $x_1, x_2 \in X$ 且 $x_1 \neq x_2$ 来说,都有 $g \circ h(x_1) \neq g \circ h(x_2)$ 。

另一方面,在映射 g 之下, $g\circ h(x_1)$ 和 $g\circ h(x_2)$ 的原像分别为 $h(x_1)$ 和 $h(x_2)$,所以必定有 $h(x_1)\neq h(x_2)$,从而推导出 h 是单射。

步骤 2: 证明: *g* 是满射

因为 f 是满射, 所以对于任意 $z \in Z$, 都存在 $x \in X$, 使得 f(x) = z.

同时, 因为 z = f(x) = g(h(x)) 且 $h(x) \in Y$, 所以 g 是满射。

习题 1.1.2 如果平面上的向量 $\begin{bmatrix} a \\ b \end{bmatrix}$ 与 $\begin{bmatrix} c \\ d \end{bmatrix}$ 共线,那么 $\begin{bmatrix} a \\ c \end{bmatrix}$ 与 $\begin{bmatrix} b \\ d \end{bmatrix}$ 是否共线?

解: 情况 1: $\begin{bmatrix} a \\ b \end{bmatrix} \neq \mathbf{0}$

此时,必然存在一个实数 λ 满足

$$\begin{vmatrix} c \\ d \end{vmatrix} = \lambda \begin{vmatrix} a \\ b \end{vmatrix}$$

所以有

$$\begin{bmatrix} a \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ \lambda \end{bmatrix}, \quad \begin{bmatrix} b \\ d \end{bmatrix} = b \begin{bmatrix} 1 \\ \lambda \end{bmatrix}$$

因此, $\begin{bmatrix} a \\ c \end{bmatrix}$ 、 $\begin{bmatrix} b \\ d \end{bmatrix}$ 与 $\begin{bmatrix} 1 \\ \lambda \end{bmatrix}$ 三者共线。

情况 2:
$$\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{0}$$
 显然 $\begin{bmatrix} a \\ c \end{bmatrix}$ 、 $\begin{bmatrix} b \\ d \end{bmatrix}$ 与 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 三者共线。

习题 1.1.5 判断下列映射是否为线性映射:

1.
$$f: \mathbb{R} \to \mathbb{R}$$

4. $f: \mathbb{R} \to \mathbb{R}$

 $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+y \\ y-x \\ 2x \end{bmatrix}$

2.
$$f: \mathbb{R} \to \mathbb{R}$$

3.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x + 1$$

$$x \mapsto x + 1$$

5.
$$f: \mathbb{R} \to \mathbb{R}$$

 $x\mapsto 2x$

$$x \mapsto 0$$

 $x \mapsto 2^x$

$$x \mapsto 1$$

7. $f: \mathbb{R}^2 \to \mathbb{R}^3$

$$x \mapsto x^2$$

6.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \vdash$$

8.
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+1 \\ y-x \\ 2x \end{bmatrix}$$

解:

序号	满足线性映射的条件?	解释	
1.	×	$f(0) = 1 \neq 0$	
		f(ax + by) = 2(ax + by)	
2.	\checkmark	$= a \cdot (2x) + b \cdot (2y)$	
		= af(x) + bf(y)	
		f(ax + by) = 0	
3.	$\sqrt{}$	$=a\cdot 0+b\cdot 0$	
		= af(x) + bf(y)	
4.	×	$f(0) = 1 \neq 0$	
5.	×	$4 = f(2) \neq 2f(1) = 2$	
6.	×	$f(0) = 1 \neq 0$	
		$f\left(a\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + b\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = \begin{bmatrix} (ax_1 + bx_2) + (ay_1 + by_2) \\ (ay_1 + by_2) - (ax_1 + bx_2) \\ 2(ax_1 + bx_2) \end{bmatrix}$	
7.	\checkmark	$= a \begin{bmatrix} x_1 + y_1 \\ y_1 - x_1 \\ 2x_1 \end{bmatrix} + b \begin{bmatrix} x_2 + y_2 \\ y_2 - x_2 \\ 2x_2 \end{bmatrix}$	
		$= af \left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \right) + bf \left(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \right)$ $f \left(\begin{bmatrix} 0 & 0 \end{bmatrix}^T \right) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \neq \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$	
8.	×	$f\left(\begin{bmatrix}0 & 0\end{bmatrix}^T\right) = \begin{bmatrix}1 & 0 & 0\end{bmatrix}^T \neq \begin{bmatrix}0 & 0 & 0\end{bmatrix}^T$	

习题 1.1.8 设
$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
、 $\mathbf{x_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 、 $\mathbf{x_3} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 、 $\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ 、 $\mathbf{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ 、 $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$,是否存在线性映射

 $f: \mathbb{R}^2 \to \mathbb{R}^3$, 满足 $f(\mathbf{x_i}) = \mathbf{x_i}$, i = 1, 2, 3?

解:如果存在这样的线性映射,那么会推导出

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \mathbf{b_2} = f(\mathbf{x_2})$$

$$= f(\mathbf{x_1} + \mathbf{x_3})$$

$$= f(\mathbf{x_1}) + f(\mathbf{x_3})$$

$$= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

推导出矛盾, 所以不存在满足原题的线性映射。