

47 CFR PART 15B, 15C

TEST REPORT

of

GSM Mobile Phone Watch

Model Name:

M500

Brand Name:

WATCHFONE

Report No.:

SZ07030048E02

FCC ID:

U8RM500

prepared for

SMS Technology Australia PTY Ltd.

Suite 8 Harbour Point, Marina Shopping Village Santa Barbara Road, Hope Island Queensland 4212, Australia

prepared by

Shenzhen Electronic Product Quality Testing Center

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, \$18055 P. R. China

> Tel +86 755 86130398 Fax: +86 755 86130218

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

TABLE OF CONTENTS

1.	TEST CERTIFICATION5
2.	GENERAL INFORMATION6
2.1	Test Sample Information6
2.2	Test Standards and Results8
2.3	Facilities and Accreditations9
2.3.1	Facilities9
2.3.2	Test Environment Conditions
3.	47 CFR PART 15B REQUIREMENT10
3.1	Test Mode(s)
3.2	Conducted Emissions
3.2.1	Requirement
3.2.2	Test Procedure
3.2.3	Test Setup11
3.2.4	Test Result 12
3.3	Radiated Emissions
3.3.1	Requirement
3.3.2	Test Procedure
3.3.3	Test Setup15
3.3.4	Test Result
4.	47 CFR PART 15C REQUIREMENT19
4.1	Number of Hopping Frequency19
4.1.1	Requirement
4.1.2	Test Procedure
4.1.3	Test Setup19
4.1.4	Test Result
4.2	Maximum Peak Output Power22
4.2.1	Requirement
4.2.2	Test Procedure
4.2.3	Test Setup
4.2.4	Test Result 23

4.3.1 Definition 26 4.3.2 Test Procedure 26 4.3.3 Test Setup 26 4.3.4 Test Result 27 4.4 Carried Frequency Separation 30 4.4.1 Requirement 30 4.4.2 Test Procedure 30 4.4.3 Test Setup 30 4.4.4 Test Result 31 4.5.1 Requirement 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Requirement 42 4.7.1 Requirement 42 4.7.2 Test Procedure 45 4.8.1 <t< th=""><th>4.3</th><th>20dB Occupied Bandwidth</th><th>26</th></t<>	4.3	20dB Occupied Bandwidth	26
4.3.3 Test Setup. 26 4.3.4 Test Result. 27 4.4 Carried Frequency Separation. 30 4.4.1 Requirement. 30 4.4.2 Test Procedure. 30 4.4.3 Test Setup. 30 4.4.4 Test Result. 31 4.5 Time of Occupancy (Dwell time). 33 4.5.1 Requirement. 33 4.5.2 Test Procedure. 33 4.5.3 Test Setup. 34 4.5.4 Test Result. 34 4.6.5 Conducted Out of Band Emissions. 37 4.6.1 Requirement. 37 4.6.2 Test Procedure. 37 4.6.3 Test Setup. 37 4.6.4 Test Result. 38 4.7 Requirement. 42 4.7.1 Requirement. 42 4.7.2 Test Procedure. 42 4.7.3 Test Setup. 42 4.7.4 Test Result. 43 4.8.1 Requirement. 45 4.8.2 Test Procedure. 45 4.8.3 Test Setup. 45 4.8.4 Test Result. 46	4.3.1	Definition	26
4.3.4 Test Result 27 4.4 Carried Frequency Separation 30 4.4.1 Requirement 30 4.4.2 Test Procedure 30 4.4.3 Test Setup 30 4.4.4 Test Result 31 4.5.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.1 Requirement 46 4.9.9 Radiated Emissions 49 4.9.1	4.3.2	Test Procedure	26
4.4.1 Requirement 30 4.4.2 Test Procedure 30 4.4.3 Test Setup 30 4.4.4 Test Result 31 4.5.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6.0 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9	4.3.3	Test Setup	26
4.4.1 Requirement 30 4.4.2 Test Procedure 30 4.4.3 Test Setup 30 4.4.4 Test Result 31 4.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 34 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6.0 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Requirement 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.4 Test Result 43 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 <td>4.3.4</td> <td>Test Result</td> <td>27</td>	4.3.4	Test Result	27
4.4.2 Test Procedure 30 4.4.3 Test Setup 30 4.4.4 Test Result 31 4.5.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6.0 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9	4.4	Carried Frequency Separation	30
4.4.3 Test Sctup 30 4.4.4 Tome of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.4 Test Result 43 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49 4.9.1 Requirement 49	4.4.1	Requirement	30
4.4.4 Test Result 31 4.5.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49 4.9.1 Requirement <td>4.4.2</td> <td>Test Procedure</td> <td>30</td>	4.4.2	Test Procedure	30
4.5 Time of Occupancy (Dwell time) 33 4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.4.3	Test Setup	30
4.5.1 Requirement 33 4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49 4.9.1 Requirement 49	4.4.4	Test Result	31
4.5.2 Test Procedure 33 4.5.3 Test Setup 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49 4.9.1 Requirement 49	4.5	Time of Occupancy (Dwell time)	33
4.5.3 Test Result 34 4.5.4 Test Result 34 4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49 4.9.1 Requirement 49	4.5.1	Requirement	33
4.5.4 Test Result	4.5.2	Test Procedure	33
4.6 Conducted Out of Band Emissions 37 4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.5.3	Test Setup	34
4.6.1 Requirement 37 4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.5.4	Test Result	34
4.6.2 Test Procedure 37 4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.6	Conducted Out of Band Emissions	37
4.6.3 Test Setup 37 4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.6.1	Requirement	37
4.6.4 Test Result 38 4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.6.2	Test Procedure	37
4.7 Band Edge 42 4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.6.3	Test Setup	37
4.7.1 Requirement 42 4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.6.4	Test Result	38
4.7.2 Test Procedure 42 4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.7	Band Edge	42
4.7.3 Test Setup 42 4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.7.1	Requirement	42
4.7.4 Test Result 43 4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.7.2	Test Procedure	42
4.8 Conducted Emissions 45 4.8.1 Requirement 45 4.8.2 Test Procedure 45 4.8.3 Test Setup 45 4.8.4 Test Result 46 4.9 Radiated Emissions 49 4.9.1 Requirement 49	4.7.3	Test Setup	42
4.8.1 Requirement .45 4.8.2 Test Procedure .45 4.8.3 Test Setup .45 4.8.4 Test Result .46 4.9 Radiated Emissions .49 4.9.1 Requirement .49	4.7.4	Test Result	43
4.8.2 Test Procedure .45 4.8.3 Test Setup .45 4.8.4 Test Result .46 4.9 Radiated Emissions .49 4.9.1 Requirement .49	4.8	Conducted Emissions	45
4.8.3 Test Setup .45 4.8.4 Test Result .46 4.9 Radiated Emissions .49 4.9.1 Requirement .49	4.8.1	Requirement	45
4.8.4 Test Result	4.8.2	Test Procedure	45
4.9Radiated Emissions494.9.1Requirement49	4.8.3	Test Setup	45
4.9.1 Requirement	4.8.4	Test Result	46
1	4.9	Radiated Emissions	49
4.9.2 Test Procedure	4.9.1	Requirement	49
	4.9.2	Test Procedure	49

4.9.3	Test Setup50
4.9.4	Test Result

TEST CERTIFICATION 1.

Equipment under Test: GSM Mobile Phone Watch

Application Type: Certification

FCC ID: U8RM500

Model Name: M500

Brand Name: WATCHFONE

Applicant Information: SMS Technology Australia PTY Ltd.

Address: Suite 8 Harbour Point,

Marina Shopping Village Santa Barbara Road,

Hope Island Queensland 4212, Australia

Contact: Gavin Hutcheson

Tel.: +61755 109 111

+61755 109 211 Fax:

E-mail: ghutcheson@smstech.com.au

Rated Power: <= 4dBm

Test Standards: 47 CFR Part 15B, 15C

Test Date(s): April 20, 2007 - April 22, 2007

Test Result: PASS

* We Hereby Certify That:

The equipment was tested by Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. The test results of this report only apply for the sample equipment identified above. The test data, data evaluation, test procedures and equipment configurations shown in this report were made according to the requirements of related FCC rules. The test report shall be invalid without all the signatures of the test engineer, the reviewer and the approver.

Tested by:

Zhang Weimin

Approved by:

Shu Luan

2. GENERAL INFORMATION

2.1 Test Sample Information

For the test sample received from/supplied by the applicant, we summarized as below:

1. Equipment under Test (EUT)

EUT Description..........: GSM Mobile Phone Watch

Model Name M500

Manufacturer: ELECA (HK) LTD

59th Floor, Diwang Commercial Centr 5002 ShenNan Road, Shenzhen,

P. R. China

Serial No...... (n.a., marked #1 by test site)

OUI.....: 00025BAC879F

Hardware Version: V1.0 Software Version: V0.0.1

Modulation(s) Frequency Hopping Spread Spectrum (FHSS)

Frequency Range: The frequency range used is from 2402MHz to 2480MHz (79 channels,

at intervals of 1MHz);

The frequency block is 2400MHz to 2483.5MHz.

Antenna...... Permanent attached, Gain=2dBi

Power Supply.....: Battery

Model Name: M500 Brand Name: ELECA

Manufacturer: ELECA POWER TECH. LTD. Serial No.: (n.a., marked #1 by test site)

Capacitance: 400mAh

Voltage: Rated Normal Voltage: 3.7VDC

Lowest Extreme Voltage: 3.5VDC Highest Extreme Voltage: 4.2VDC

2. Ancillary Equipments (AE)

AE-1 AC Adapter (Charger for Battery)

Model Name: (n.a.) Brand Name: ELECA

Manufacturer: HUAYE NEW LTD.

Serial No.: (n.a. marked #1 by test site)
Rated Input: ~ 110-240V, 50-60Hz

Rated Output: = 5.5V, 400mA

Wire Length: 150cm

AE-2 Bluetooth Earphone

Model Name: (n.a.) Brand Name: (n.a.) Manufacturer: (n.a.)

Serial No.: (n.a., marked #1 by test site)

3. Additional Information

- (a) The Test Sample (EUT), containing the GSM Module (EUT_GSMmodule) and the Bluetooth Module (EUT_BTmodule), is classified as a "Class B digital device". The EUT_BTmodule is mainly considered and tested in this test report.
- (b) The frequencies allocated for the EUT_BTmodule can be represented with the formula $F_{BT}(MHz)=2402+N$, $N \in [0, 78]$; the lowest, middle, highest channel numbers used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).
- (c) For more detailed description about the Test Sample (EUT), please refer to specification or user's manual supplied by the applicant and/or manufacturer.

2.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15B and Part 15C for the FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-05 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result	Date of Test				
FCC	FCC Part 15B Requirement							
1	15.107	Conducted Emissions	PASS	2007-4-22				
2	15.109	Radiated Emissions	PASS	2007-4-22				
FCC	Part 15C Re	quirement						
1	15.247(a)	Number of Hopping Frequency	PASS	2007-4-21				
2	15.247(b)	Peak Output Power	PASS	2007-4-21				
3	15.247(a)	20dB Bandwidth	(n.a.)	2007-4-21				
4	15.247(a)	Carrier Frequency Separation	PASS	2007-4-21				
5	15.247(a)	Time of Occupancy (Dwell time)	PASS	2007-4-21				
6	15.247(c)	Conducted Spurious Emission	PASS	2007-4-21				
7	15.247(c)	Band Edge	PASS	2007-4-21				
8	15.207	Conducted Emission	PASS	2007-4-22				
9	15.209	Radiated Emission	PASS	2007-4-22				
	15.247(c)							

2.3 Facilities and Accreditations

2.3.1 Facilities

Shenzhen Electronic Product Quality Testing Center Morlab Laboratory is a testing organization accredited by China National Accreditation Board for Laboratories (CNAL) according to ISO/IEC 17025. The accreditation certificate number is L1659.

All measurement facilities used to collect the measurement data are located at Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen 518055 CHINA. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

2.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	20 - 25
Relative Humidity (%):	40 - 60
Atmospheric Pressure (kPa):	960

3. 47 CFR PART 15B REQUIREMENT

3.1 Test Mode(s)

According to the description of Test Sample Configuration in section 2.1 of this test report, several test mode(s) are employed to perform tests as below for the actual application:

1. Call Test Mode

The EUT_GSMmodule of the Test Sample (EUT), allocated a traffic channel, operates on the middle channel of the PCS 1900MHz band under the condition of its maximum output power. The EUT_BTmodule is activated and the audio link of the EUT_GSMmodule is routed to the Bluetooth Earphone (AE-2) via the EUT_BTmodule.

The Test Sample (EUT) is powered by the Battery, which is charged with the AC Adapter (AE-1) powered by 120V 60Hz AC mains supply.

The figure below is the test configuration for the Test Sample (EUT) employed in this test report under this test mode:

3.2 Conducted Emissions

3.2.1 Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50Ohm$ line impedance stabilization network (LISN).

Frequency Range	Conducted Limit (dBµV)				
(MHz)	Quai-Peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range from 0.15MHz to 0.50MHz.

3.2.2 Test Procedure

- (a) The test frequency range is from 150kHz to 30MHz.
- (b) The Peak (PK) detector is employed to sweep the conducted interference over the test frequency range.
- (c) For the swept signals that are more than or have narrow negative margins beyond the Average (AV) and Quasi-peak (QP) limit lines, the AV and QP detectors are employed to measure these suspect signals to find their maximum QP and AV readings.
- (d) Both L Phase and N Phase lines of the power mains connected to the Test Sample (EUT) are employed to perform this test.
- (e) All Test Modes for the Test Sample (EUT) listed in section 3.1 are employed to perform this test.

3.2.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The Test Sample (EUT) is connected to the power mains through a LISN which provides $50\mu H/50Ohm$ of coupling

impedance for the measuring instrument of a Receiver. A Pulse Limiter is employed to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The Test Sample (EUT) works together with a System Simulator via a Common Antenna.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2006.07	1year
LISN	Schwarzbeck	NSLK 8127	812744	2006.08	1year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)
System Simulator	Agilent	E5515C	GB43130131	2006.06	1year
Common Antenna	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)

3.2.4 Test Result

1. Call Test Mode

a) Test Verdict Recorded for Suspect Points

No.	@Frequency	Suspect Emission Levels (dBµV)			Limit (Verdict			
INO.	(MHz)	PK	QP	AV	Phase	QP	AV	verdict	
1	0.352	33.4	29.0	22.4	N	58.9	48.9	PASS	
2	0.454	44.9	41.2	26.0	N	56.8	46.8	PASS	
3	0.675	43.9	37.3	23.6	N	56.0	46.0	PASS	

No	@Frequency	Suspect Emission Levels (dBµV) Limit (dBµV)					dBμV)	Vandiat
No.	(MHz)	PK	QP	AV	Phase	QP	AV	Verdict
4	1.137	37.0	32.3	22.5	N	56.0	46.0	PASS
5	1.879	35.8	30.5	21.7	N	56.0	46.0	PASS
6	2.251	37.9	28.8	21.4	N	56.0	46.0	PASS
7	0.223	49.6	46.3	31.5	L	62.7	52.7	PASS
8	0.302	46.1	42.5	27.1	L	60.2	50.2	PASS
9	1.116	38.9	33.5	23.4	L	56.0	46.0	PASS
10	1.214	42.9	34.1	23.0	L	56.0	46.0	PASS
11	1.584	40.9	32.4	22.8	L	56.0	46.0	PASS
12	2.399	40.3	29.7	21.7	L	56.0	46.0	PASS

b) Test Plots

(Plot A: L Phase)

(Plot B: N Phase)

3.3 Radiated Emissions

3.3.1 Requirement

According to FCC section 15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Fraguency range (MUz)	Field Strength			
Frequency range (MHz)	$\mu V/m$	dBμV/m		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		

NOTE:

- a) Field Strength ($dB\mu V/m$) = 20*log[Field Strength ($\mu V/m$)].
- b) In the emission tables above, the tighter limit applies at the band edges.

3.3.2 Test Procedure

- (a) The test frequency range is from 30MHz to 1GHz.
- (b) The Test Antenna is located at 1m height. The Peak (PK) detector is employed to sweep the radiated interference over the test frequency range while the Turn Table is located separately at the degree of $DEG_{TT}(N)=N*45$, $N \in [0, 8]$.
- (c) For each swept signal that is more than or have narrow negative margins beyond the Quasi-peak (QP) limit line, rotate the Turn Table and vary the Test Antenna height until the emission is at its highest amplitude; then tuned the Receiver and use the QP detector to measure this suspect signal to find its maximum QP reading.
- (d) Both the Vertical (V) and the Horizontal (H) polarizations of the Test Antenna are employed to perform this test.
- (e) All Test Modes for the Test Sample (EUT) listed in section 3.1 are employed to perform this test.

3.3.3 Test Setup

1. Test Setup Sketch

The test is performed in a 3m Semi-Anechoic Chamber. The Test Sample (EUT) is placed on a 0.8m high insulating Turn Table and keeps 3m away from the Test Antenna which is a Bi-Log one with working frequency range from 30MHz to 3GHz and is mounted on a variable-height antenna master

tower. If applicable, a Preamplifier is employed for the measuring instrument of a Receiver. The factors of the whole test system are calibrated to correct the reading.

The Test Sample (EUT) works together with a System Simulator (SS) via a Common Antenna.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2006.07	1year
Semi-Anechoic	Albatross	9m*6m*6m	(n.a.)	2006.08	2year
Chamber					
Test Antenna (Bi-Log)	Schwarzbeck	VULB 9163	9163-274	2006.07	1year
System Simulator	Agilent	E5515C	GB43130131	2006.06	1year
Preamplifier	(n.a.)	20dB	(n.a.)	(n.a.)	(n.a.)
Common Antenna	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)

3.3.4 Test Result

NOTE: the emissions of Test Sample (EUT) and SS carrier frequencies should be ignored.

1. Call Test Mode

a) Test Verdict Recorded for Suspect Points

	@Eraguanay		Suspect E	mission Leve	ls (dBµV/m)		OD Limit	
No.	@Frequency (MHz)	PK	QK	Turn Table	Test Antenna		QP Limit (dBµV/m)	Result
	(WITIZ)	1 K	QK	(degree)	Height (cm)	Polar.	(ασμ ν/ιιι)	
1	30.072	27.3		180	100	V	40.0	PASS
2	52.992	21.2		180	100	V	40.0	PASS
3	132.780	23.9		180	100	V	43.5	PASS
4	720.108	31.2		180	100	V	46.0	PASS
5	54.444	31.0		180	100	Н	40.0	PASS
6	132.720	24.4		180	100	Н	43.5	PASS
7	720.168	29.3		180	100	Н	46.0	PASS
8	848.940	30.4		180	100	Н	46.0	PASS

b) Test Plots

(Plot A: Test Antenna Vertical)

(Plot B: Test Antenna Horizontal)

4. 47 CFR PART 15C REQUIREMENT

4.1 Number of Hopping Frequency

4.1.1 Requirement

According to FCC section 15.247(a)(1)(ii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 75 hopping frequencies.

4.1.2 Test Procedure

- (a) The EUT_BTmodule of the EUT is set to operate at hopping on test mode, and the middle channel of the EUT BTmodule is selected to perform this test.
- (b) The Spectrum Analyzer is set as below:

Frequency Range: Wide enough to cover the range from 2400MHz to 2483.5MHz

- Resolution BW: 300kHz - Video BW: Auto

- Sweep Time: Suitable to capture one transmission burst

Detector Mode: PeakTrace Mode: Max Hold

(c) Count the number of the peak envelope of the trace from the Spectrum Analyzer and record it as the number of hopping frequency.

4.1.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 50Ohm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.1.4 Test Result

a) Test Verdict

Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
2400 - 2483.5	79	75	Plot A.1/A.2	PASS

b) Test Plots

(Plot A.1: 2402MHz to 2441MHz)

(Plot A.2: 2441MHz to 2480MHz)

4.2 Maximum Peak Output Power

4.2.1 Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

4.2.2 Test Procedure

(a) The EUT BTmodule of the EUT is set to operate at hopping off test mode.

(b) The lowest, middle and highest channels of the EUT_BTmodule are employed to perform this test.

(c) The Spectrum Analyzer is set as below:

- Center Frequency: The frequency of the channel under test

Resolution BW: 1MHzVideo BW: Auto

- Frequency Span: Wide enough to cover the complete power envelope of the signal

Sweep Time: Suitable to capture one transmission burst

Detector Mode: PeakTrace Mode: Max Hold

(d) Find the peak value of the trace from the Spectrum Analyzer and record its power.

4.2.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 50Ohm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.2.4 Test Result

a) Test Verdict

СН	Freq.	Measured Max. P	Limit		Verdict		
СП	(MHz)	dBm	W	Refer to Plot	dBm	W	verdict
0	2402	0.825	1.21E-3	Plot A			PASS
39	2441	-0.376	0.92E-3	Plot B	30	1	PASS
78	2480	-1.029	0.79E-3	Plot C			PASS

b) Test Plots

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

4.3 20dB Occupied Bandwidth

4.3.1 Definition

The 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

4.3.2 Test Procedure

(a) The EUT_BTmodule of the EUT is set to operate at hopping off test mode.

(b) The lowest, middle and highest channels of the EUT_BTmodule are employed to perform this test.

(c) The Spectrum Analyzer is set as below:

- Center Frequency: The frequency of the channel under test

Resolution BW: 10kHzVideo BW: Auto

- Frequency Span: Wide enough to cover the complete power envelope of the signal

- Sweep Time: Suitable to capture one transmission burst

Detector Mode: PeakTrace Mode: Max Hold

- (d) Find the peak value of the trace and place the Spectrum Analyzer marker on this peak as marker#1.
- (e) Use a second marker of the Spectrum Analyzer and find the frequency below the operating frequency at which the level is 20dB below the power of the marker#1. This frequency is recorded as f_L .
- (f) Use a third marker (or the delta marker of the second marker) of the Spectrum Analyzer and find the frequency above the operating frequency at which the level is 20dB below the power of the marker#1. This frequency is recorded as f_H.
- (g) The difference between the frequencies measured (f_H-f_L) is the 20dB Occupied Bandwidth.

4.3.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 500hm. The path loss as the

factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.3.4 Test Result

a) Test Verdict

СН	Freq. (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.02	Plot A
39	2441	1.02	Plot B
78	2480	1.02	Plot C

b) Test Plots

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

4.4 Carried Frequency Separation

4.4.1 Requirement

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

4.4.2 Test Procedure

(a) The EUT_BTmodule of the EUT is set to operate at hopping on test mode, and the middle channel of the EUT BTmodule is selected to perform this test.

(b) The Spectrum Analyzer is set as below:

- Center Frequency: The frequency of the channel under test

- Resolution BW: 10kHz or 300kHz

- Video BW: Auto

- Sweep Time: Suitable to capture one transmission burst

- Frequency Span: No less than 3MHz

- Detector Mode: Peak

- Trace Mode: Max Hold

- (c) Find the peak value of the trace over 1MHz bands of the center frequency from the Spectrum Analyzer and place the Spectrum Analyzer marker on this peak as marker#1. This frequency is recorded as f.
- (d) Use a second marker of the Spectrum Analyzer and find the left and/or right peak value of the trace. This frequency is recorded as f'.
- (e) The difference between the frequencies measured |f-f| is the Carried Frequency Separation. The value is recorded and compared with the limit value from the greater one listed as below:
 - 25kHz
 - the 20dB bandwidth of the hopping channel

4.4.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 500hm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1 year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.4.4 Test Result

For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the EUT_BTmodule does have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. So, the verdict is PASS.

(Plot A: Carried Frequency Separation)

4.5 Time of Occupancy (Dwell time)

4.5.1 Requirement

According to FCC section 15.247(a)(1)(iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

4.5.2 Test Procedure

(a) The EUT BTmodule of the EUT is set to operate at hopping on test mode.

(b) The lowest, middle and highest channels of the EUT_BTmodule are employed to perform this test.

(c) The Spectrum Analyzer is set as below:

- Center Frequency: The frequency of the channel under test

Resolution BW: 100kHz
Video BW: Auto
Frequency Span: 0
Sweep Time: 10ms

- Sweep Method: Single sweep and cover at least one complete pulse

Detector Mode: PeakTrace Mode: Max Hold

- (d) Find the location of the rising edge of a Pulse from the trace of the Spectrum Analyzer and place the marker of the Spectrum Analyzer on this position as marker#1. This time-point is recorded as TP_{Up} .
- (e) Use a second marker (or the delta marker of the first marker) and find the location of the falling edge of that Pulse. This time-point is recorded TP_{Down}.
- (f) The difference between the time-points measured (TP_{Down} - TP_{Up}) is the Pulse Time, it's recorded as T_{Pulse_Time} .
- (g) The Dwell Time recorded as T_{Dwell_Time} can be calculated with the following formulas (for DH5 package type of the EUT_BTmodule):
 - $T_{Dwell_Time} = T_{Pulse_Time} * (1600 / 6) / N_{Number_of_Hopping_Frequency} * T_{Period}$
 - $T_{Period} = 0.4s * N_{Number of Hopping Frequency}$

4.5.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 50Ohm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.5.4 Test Result

a) Test Verdict

СН	Freq.	Pulse Time		Calculated Dwell	Limit (ms)	Verdict
Сп	(MHz)	ms	Refer to Plot	Time (ms)		Verdict
0	2402	2.875	Plot A	306.7		PASS
39	2441	2.900	Plot B	309.3	400	PASS
78	2480	2.900	Plot C	309.3		PASS

b) Test Plots for the Pulse Time

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

4.6 Conducted Out of Band Emissions

4.6.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.6.2 Test Procedure

- (a) The EUT BTmodule of the EUT is set to operate at hopping off test mode.
- (b) The lowest, middle and highest channels of the EUT_BTmodule are employed to perform this test.
- (c) The test frequency range is from 9kHz to the 10th harmonic of the fundamental frequency.
- (d) The Spectrum Analyzer is set as below:

Resolution BW: 100kHzVideo BW: Auto

- Sweep Time: Suitable to capture one transmission burst

Detector Mode: PeakTrace Mode: Max Hold

- (e) Find the peak value of the operating carrier from the trace of the Spectrum Analyzer, and the power of the peak is recorded as P_c. The limit line for the Out of Band Emissions is (P_c-20dB) recorded as P_{-20dBc}.
- (f) Adjust the frequency range to capture the highest level of the out of band emissions. The value is recorded and compared with the limit line $f_{-20 \mathrm{dBc}}$.

4.6.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 50Ohm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode

transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.6.4 Test Result

NOTE: the power of the EUT_BTmodule transmitting frequency should be ignored.

a) Test Verdict

СН	Freq.	Measured Max. Out of Band	Refer to Plot	Limit	Verdict		
Сп	(MHz)	Emissions (dBm)	Kelei to Flot	P_{c}	P _{-20dBc}	verdict	
0	2402	-44.96	Plot A.1/A.2	2.710	-17.3	PASS	
39	2441	-43.98	Plot B.1/B.2	2.677	-17.3	PASS	
78	2480	-43.07	Plot C.1/C.2	1.974	-18.2	PASS	

b) Test Plots for the Whole Measurement Frequency Range

(Plot A.1: Channel = 0, 30MHz to 3GHz)

(Plot A.2: Channel = 0, 3GHz to 25GHz)

(Plot B.1: Channel = 39, 30MHz to 3GHz)

(Plot B.2: Channel = 39, 3GHz to 25GHz)

(Plot C.1: Channel = 78, 30MHz to 3GHz)

(Plot C.2: Channel = 78, 3GHz to 25GHz)

4.7 Band Edge

4.7.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.7.2 Test Procedure

(a) The EUT BTmodule of the EUT is set to operate at hopping off test mode.

(b) The lowest and highest channels of the EUT_BTmodule are employed to perform this test.

(c) The Spectrum Analyzer is set as below:

- Center Frequency: The frequency block vs. the channel under test

Resolution BW: 100kHzVideo BW: Auto

- Frequency Span: Wide enough to cover the complete power envelope of the signal

- Sweep Time: Suitable to capture one transmission burst

Detector Mode: PeakTrace Mode: Max Hold

- (d) Find the peak value of the operating carrier from the trace of the Spectrum Analyzer and place the Spectrum Analyzer marker on this carrier as marker#1. The power of this peak is recorded as P_c. The limit line for the Out of Band Emissions is (P_c-20dB) recorded as P_{-20dBc}.
- (e) Use a second marker of the Spectrum Analyzer and find the peak value within the frequency range up to the center frequency of the Spectrum Analyzer. The power and the frequency of this peak is the measured maximum band edge emission recorded respectively as $P_{\text{Max_Band_Edge_Emission}}$ and $f_{\text{Max_Band_Edge_Emission}}$, and is compared with the limit line $P_{\text{-20dBc}}$.
- (f) Calculate and record the $Marker_Delta$ (@ $f_{Max_Band_Edge_Emission}$) as below:
 - $\Delta_{\text{Marker Delta}}(@f_{\text{Max Band Edge Emission}}) = P_c P_{\text{Max Band Edge Emission}}$

4.7.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded, powered by the Battery, is coupled to a

Spectrum Analyzer and a System Simulator (SS) with appropriate Attenuators via a Power Splitter; the RF load attached to the antenna terminal of the EUT_BTmodule is 50Ohm. The path loss as the factor is calibrated to correct the reading.

The EUT_BTmodule is activated and controlled by the SS, and is set to operate under its test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2006.10	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2006.07	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

4.7.4 Test Result

a) Test Verdict

	СН	Freq.	Freq. Measured Max. Band Edge Emission		Limit (dBm)		∆ Marker_Delta	Refer	Verdict
		(MHz)	P _{Max_Band_Edge_} _{Emission} (dBm)	@f _{Max_Band_Edge_} Emission (MHz)	P _c	P _{-20dBc}	(dB)	to Plot	verdict
	0	2402	-37.38	2400.00	2.694	-17.6	40.07	Plot A	PASS
	78	2480	-45.75	2484.00	1.991	-18	47.74	Plot B	PASS

b) Test Plots

(Plot A: Channel = 0)

(Plot B: Channel = 78)

4.8 Conducted Emissions

4.8.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50µH/50Ohm line impedance stabilization network (LISN).

Frequency Range	Conducted Limit (dBµV)					
(MHz)	Quai-Peak	Average				
0.15 - 0.50	66 to 56	56 to 46				
0.50 - 5	56	46				
0.50 - 30	60	50				

NOTE:

- a) The lower limit shall apply at the band edges.
- b) The limit decreases linearly with the logarithm of the frequency in the range from 0.15MHz to 0.50MHz.

4.8.2 Test Procedure

- (a) The test frequency range is from 150kHz to 30MHz.
- (b) The Peak (PK) detector is employed to sweep the conducted interference over the test frequency range.
- (c) For the swept signals that are more than or have narrow negative margins beyond the Average (AV) and Quasi-peak (QP) limit lines, the AV and QP detectors are employed to measure these suspect signals to find their maximum QP and AV readings.
- (d) Both L Phase and N Phase lines of the power mains connected to the EUT are employed to perform this test.

4.8.3 Test Setup

1. Test Setup Sketch

The Test Sample (EUT) with the EUT_BTmodule embedded is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The Test Sample (EUT) is connected to the power mains through a LISN which provides $50\mu\text{H}/50\text{Ohm}$ of coupling impedance for the measuring instrument of a Receiver. A Pulse Limiter is

employed to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The Test Sample (EUT) with the EUT_BTmodule embedded is powered by the Battery, which is charged with the AC Adapter (AE-1) powered by 120V 60Hz AC mains supply.

The EUT_BTmodule is activated and controlled by the System Simulator via a Common Antenna, and is set to operate under hopping on test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2006.07	1year
LISN	Schwarzbeck	NSLK 8127	812744	2006.08	1year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)
System Simulator	R&S	CMU200	100448	2006.10	1year
Common Antenna	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)

4.8.4 Test Result

a) Test Verdict Recorded for Suspect Points

No.	@Frequency	Suspe	Suspect Emission Levels (dBµV) Limit (dBµV)					
INO.	(MHz)	PK	QP	QP	AV	Verdict		
1	0.6421	47.80	45.76	38.79	N	56.00	46.00	PASS

No.	@Frequency	Suspe	ect Emission	Levels (dBµ	V)	Limit ((dBµV)	Verdict
INO.	(MHz)	PK	QP	AV	Phase	QP	AV	Vertice
2	0.6640	47.89	45.72	37.20	N	56.00	46.00	PASS
3	1.2740	47.05	44.63	35.34	N	56.00	46.00	PASS
4	1.4930	47.16	43.52	32.74	N	56.00	46.00	PASS
5	2.0130	46.71	42.84	30.37	N	56.00	46.00	PASS
6	5.6510	42.82	37.73	24.90	N	60.00	50.00	PASS
7	0.2258	48.42	42.96	35.66	L	62.60	52.60	PASS
8	0.4522	47.60	43.27	35.81	L	56.83	46.83	PASS
9	0.8023	42.26	37.50	29.82	L	56.00	46.00	PASS
10	1.0490	46.69	42.88	33.04	L	56.00	46.00	PASS
11	1.7580	39.24	35.15	26.78	L	56.00	46.00	PASS
12	2.1090	39.51	35.21	26.07	L	56.00	46.00	PASS

b) Test Plots

(Plot A: L Phase)

(Plot B: N Phase)

4.9 Radiated Emissions

4.9.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

4.9.2 Test Procedure

- (a) The EUT BTmodule of the EUT is set to operate at hopping off test mode.
- (b) The lowest, middle and highest channels of the EUT_BTmodule are employed to perform this test.
- (c) The test frequency range is from 9kHz to 30MHz, and from 30MHz to the 10th harmonic of the fundamental frequency.
- (d) The corresponding Test Antenna is located at 1m height. The Peak (PK) detector is employed to sweep the radiated field strength over the test frequency range while the Turn Table is located separately at the degree of $STEP_{TT}(degree)=N*45$, $N \in [0, 8]$.
- (e) For each fundamental frequency signal, rotate the Turn Table and vary the Test Antenna height until the emission is at its highest amplitude; then tuned the Receiver and use the PK and Average

(AV) detectors to measure and record these maximum readings as P_{Fundamental FieldStrength}.

- (f) Calculate the field strength of band edge emission falling in adjacent restricted bands (from 2310MHz to 2390MHz and from 2483.5MHz to 2500MHz) recorded as $P_{Max_Band_Edge_Field_Strength}$ that is mentioned in FCC section 15.205(a) via the method of "Marker Delta" described by the formula: $P_{Max_Band_Edge_Field_Strength} = P_{Fundamental_FieldStrength} \Delta_{Marker_Delta}(@f_{Max_Band_Edge_Emission})$, where the $\Delta_{Marker_Delta}(@f_{Max_Band_Edge_Emission})$ is the measured maximum band edge emission Δ_{Marker_Delta} virus the frequency $f_{Max_Band_Edge_Emission}$ which are mentioned in the section 4.7. The $P_{Max_Band_Edge_Field_Strength}$ is compared with the PK and AV limit lines.
- (g) Observe the restricted bands mentioned in FCC section 15.205(a), and for each swept signal that is more than or have narrow negative margins beyond the AV limit line, rotate the Turn Table and vary the Test Antenna height until the emission is at its highest amplitude; then tuned the Receiver and use the PK and AV detectors to measure this suspect signal to find its maximum readings and compare with the PK and AV limit lines.
- (h) Both the Vertical (V) and the Horizontal (H) polarizations of the Test Antenna are employed to perform this test.

4.9.3 Test Setup

1. Test Setup Sketch

The test is performed in a 3m Semi-Anechoic Chamber. The Test Sample (EUT) with the EUT BTmodule embedded is placed on a 0.8m high insulating Turn Table and keeps

- a) 3m away from the Test Antenna which is a Bi-Log one with working frequency range from 30MHz to 3GHz while a Horn one with working frequency range above 3GHz, and is mounted on a variable-height antenna master tower.
- b) 1m away from the Test Antenna which is a Loop one with working frequency range from 9kHz to 30MHz, and the center of which is positioned at 1m above the ground.

If applicable, a Filter (Notch and/or High-Pass) and a Preamplifier are employed for the measuring instrument of a Receiver. The factors of the whole test system are calibrated to correct the reading.

The Test Sample (EUT) with the EUT_BTmodule embedded is powered by the Battery, which is charged with the AC Adapter (AE-1) powered by 120V 60Hz AC mains supply.

The EUT_BTmodule is activated and controlled by the System Simulator via a Common Antenna, and is set to operate under hopping on test mode transmitting 339 bytes DH5 packages at maximum power condition.

2. Equipments List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2006.07	1year
Semi-Anechoic	Albatross	9m*6m*6m	(n.a.)	2006.08	2year
Chamber					
Test Antenna (Bi-Log)	Schwarzbeck	VULB 9163	9163-274	2006.07	1year
Test Antenna (Horn)	Schwarzbeck	BBHA 9120C	9120C-384	2006.07	1year
System Simulator	R&S	CMU200	100448	2006.10	1year
Preamplifier	(n.a.)	20dB	(n.a.)	(n.a.)	(n.a.)
Filter (Notch)	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)
Filter (High-Pass)	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)
Common Antenna	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)

4.9.4 Test Result

1. Test Verdict

a) The Field Strength of Fundamental Emissions

СН	Freq.	P _{Fundamental_FieldSt}	rength (dBµV/m)	Antenna	Refer to Plot
CII	(MHz)	PK	AV	Polarization	Kelei to Flot
0	2402	84.03	68.87	Н	Plot A.3
		87.97	72.41	V	Plot A.7
39	2441	83.49	67.60	Н	Plot B.3
39	2441	88.11	72.86	V	Plot B.7
78	2480	83.69	67.67	Н	Plot C.3
/8		88.52	72.32	V	Plot C.7

b) The Calculated Field Strength of Band Edge Emissions Fall in the Restricted Bands

		P _{Fundamenta}	_FieldStrength	Measured M	ax. Band E			
СН	Freq.	D	10 17/	$@f_{Max_Band_}$	$\Delta_{\mathrm{Marker}_{-}}$	P _{Max_Band_Edge_}	Limit	Verdict
	(MHz)	Detector	dBμV/m	Edge_Emission	Delta	Field_Strength	(dBµV/m)	
				(MHz)	(dB)	$(dB\mu V/m)$		
0	2402 PK	PK	87.97	2400.00	40.07	47.90	74	PASS
	2402	AV	72.41		40.07	32.34	54	PASS
78	2480	PK	88.52	2484.00	47.74	40.78	74	PASS
/8	2480	AV	72.32	2404.00	47.74	24.58	54	PASS

c) The Field Strength of Radiated Emissions Fall in the Restricted Bands

NOTE: also refer to Plot A.1 to Plot A.9, Plot B.1 to Plot B.9 and Plot C.1 to Plot C.9 for the emissions falling in the restricted bands.

СН	Freq. (MHz)	Antenna Polarization	Measured Max. Radiated Emissions in the Restricted Bands (dBµV/m)		Limit (dBµV/m)		Verdict
			PK	AV	PK	AV	
0	2402	V			74	54	PASS
		Н			74	54	PASS
39	2441	V			74	54	PASS
		Н			74	54	PASS
78	2480	V			74	54	PASS
		Н			74	54	PASS

2. Test Plots for the Whole Measurement Frequency Range

(Plot A.1: 9kHz to 30MHz)

(Plot A.2: Antenna Horizontal, 30MHz to 1GHz)

(Plot A.3: Antenna Horizontal, 1GHz to 7GHz)

(Plot A.4: Antenna Horizontal, 7GHz to 18GHz)

(Plot A.5: Antenna Horizontal, 18GHz to 25GHz)

(Plot A.6: Antenna Vertical, 30MHz to 1GHz)

(Plot A.7: Antenna Vertical, 1GHz to 7GHz)

(Plot A.8: Antenna Vertical, 7GHz to 18GHz)

(Plot A.9: Antenna Vertical, 18GHz to 25GHz)

(Plot B.1: 9kHz to 30MHz)

(Plot B.2: Antenna Horizontal, 30MHz to 1GHz)

(Plot B.3: Antenna Horizontal, 1GHz to 7GHz)

(Plot B.4: Antenna Horizontal, 7GHz to 18GHz)

(Plot B.5: Antenna Horizontal, 18GHz to 25GHz)

(Plot B.6: Antenna Vertical, 30MHz to 1GHz)

(Plot B.7: Antenna Vertical, 1GHz to 7GHz)

(Plot B.8: Antenna Vertical, 7GHz to 18GHz)

(Plot B.9: Antenna Vertical, 18GHz to 25GHz)

(Plot C.1: 9kHz to 30MHz)

(Plot C.2: Antenna Horizontal, 30MHz to 1GHz)

(Plot C.3: Antenna Horizontal, 1GHz to 7GHz)

(Plot C.4: Antenna Horizontal, 7GHz to 18GHz)

(Plot C.5: Antenna Horizontal, 18GHz to 25GHz)

(Plot C.6: Antenna Vertical, 30MHz to 1GHz)

(Plot C.7: Antenna Vertical, 1GHz to 7GHz)

(Plot C.8: Antenna Vertical, 7GHz to 18GHz)

(Plot C.9: Antenna Vertical, 18GHz to 25GHz)

** END OF REPORT **