Application No.: 09/891,200

Docket No.: 491712000100

CLAIM AMENDMENTS

1-74. (canceled)

L77

75. (currently amended): A component designed to serve as an electrolyte in a fuel cell, which component comprises

a metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating [[is]] consists of an inorganic or composite non-liquid material that contains no liquid phase, said coating having a thickness such that the area-specific resistance for protons is in the range of $0.01-100~\Omega.\text{cm}^2$ at at least one temperature between [[175°C]] 220°C and 550°C .

256

76. (previously presented): The component of claim 75, wherein the metal or the metal contained in the metal hydride is palladium, titanium, silver, copper, vanadium, lanthanum, nickel, iron, chromium or alloys thereof.

77. (previously presented): The component of claim 76, wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNis, TiFe and CrV2, V/Ni/Ti, V/Ni and V/Ti. 34

78. (currently amended): The component of claim 75, wherein the EIPC coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, Zr(P₂O₇)_{0.81}; 72 (68) a superprotonie water non stoichiometric phase of M₂H₂(AO₄)_w-xH₂O;

 $Cs_5H_3(SO_4)_4.0.5H_2O; 39 - 42$

an organic inorganic hybrid, composed of 3-isocyanatopropyl-triethoxysilane and poly(propylene glycol)bis (2-amino-propyl ether), mixed with peroxopolytungstic acid;

a hydrate of SnCl₂;
$$43/45$$
 (44?) silver iodide tetratungstate Ag₂₆I₁₈W₄O₁₆; 46

2

 $Cs_{1-x}(NH_4)_xH_2PO_4$, $Cs_{1-x}(ND_4)_xD_2PO_4$, or $K_{1-x}(NH_4)_xH_2PO_4$;

KH₂PO₄; 47

tetraammonium dihydrogen triselenate, (NH₄)₄H₂(SeO₄)₃; 4 8

CsDSO4; 4 9 /5 1

CsH₂PO₄; 50/5 -

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-8}; 5 3$

a silica-polyphosphate composite containing ammonium ions; S, OPNH 58

BaCe_{0.9-x} $Zr_xM_{0.1}O_{3-\delta}$ where M is Gd or Nd and x = 0 to 0.4. $(-7)^{-2}$

79. (previously presented): The component of claim 75, wherein the electronically-insulating proton-conducting coating consists of

Ba₃Ca_{1.18}Nb_{1.82}O_{8.73}-H₂O; 3.5/3

CsH₂PO₄; 50/52

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}; 5 3$

polyphosphate composite containing19.96 wt% NH₄+, 29.3 wt% P, 1.51 wt% Si;

La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O₃; or 6 6

BaCe_{0.9-x}Zr_xM_{0.1}O_{3- δ} where M is Gd or Nd and x = 0 to 0.4. δ

- 80. (previously presented): The component of claim 75, wherein the thickness of the metal or metal hydride is $5-1,000 \mu m$.
- 81. (previously presented): The component of claim 80, wherein the thickness of the metal or metal hydride is $10\text{-}200~\mu m$.
- 82. (currently amended): The component of claim 75, wherein the area-specific resistance for protons at at least one temperature between [[$\frac{175^{\circ}C}{200^{\circ}C}$]] $\frac{220^{\circ}C}{200^{\circ}C}$ and 550°C is about 0.150 Ω .cm².
 - 83. (canceled)

84. (currently amended): A component designed to serve as an electrolyte in a fuel cell, which component comprises

a metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating protonconducting coating, which coating [[is]] consists of an inorganic or composite non-liquid material that contains no liquid phase, said coating having a thickness such that the conductivity for protons as a function of temperature is in the gap shown in Figure 1:

Figure 1

85. (previously presented): The component of claim 84, wherein the metal or the metal contained in the metal hydride is palladium, titanium, silver, copper, vanadium, lanthanum, nickel, iron, chromium or alloys thereof.

86. (previously presented): The component of claim 85, wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNi₅, TiFe and CrV₂, V/Ni/Ti, V/Ni and V/Ti.

87. (currently amended): The component of claim 84, wherein the electronically-insulating proton-conducting coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, Zr(P₂O₇)_{0.81};

a superprotonic water non-stoichiometric phase of M2H4(AO4),...xH2O;

 $Ba_3Ca_{1.18}Nb_{1.82}O_{8.73}-H_2O;$

 $Cs_5H_3(SO_4)_4.0.5H_2O;$

an organic inorganic hybrid composed of 3 isocyanatopropyl triethoxysilane and poly(propylene glycol)bis (2 amino propyl ether), mixed with peroxopolytungstic acid;

a hydrate of SnCl₂;

silver iodide tetratungstate Ag₂₆I₁₈W₄O₁₆;

 $Cs_{1-x}(NH_4)_xH_2PO_4$, $Cs_{1-x}(ND_4)_xD_2PO_4$, or $K_{1-x}(NH_4)_xH_2PO_4$;

KH₂PO₄;

tetraammonium dihydrogen triselenate, (NH₄)₄H₂(SeO₄)₃;

CsDSO₄;

CsH₂PO₄;

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta};$

a silica-polyphosphate composite containing ammonium ions;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$; and

BaCe_{0.9-x}Zr_xM_{0.1}O_{3- δ} where M is Gd or Nd and x = 0 to 0.4.

88. (previously presented): The component of claim 84, wherein the electronically-insulating proton-conducting coating consists of

 $Ba_3Ca_{1.18}Nb_{1.82}O_{8.73}-H_2O;$

CsH₂PO₄;

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}$

polyphosphate composite containing 19.96 wt% NH₄⁺, 29.3 wt% P, 1.51 wt% Si;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$; or

 $BaCe_{0.9-x}Zr_xM_{0.1}O_{3-\delta}$ where M is Gd or Nd and x=0 to 0.4.

- 89. (previously presented): The component of claim 84, wherein the thickness of the metal or metal hydride is $5-1,000 \mu m$.
- 90. (previously presented): The component of claim 89, wherein the thickness of the metal or metal hydride is $10\text{-}200~\mu m$.
- 91. (currently amended): The component of claim 84, wherein the area-specific resistance for protons at at least one temperature between [[175° C]] 220° C and 550°C is about 0.150 Ω .cm².
 - 92. (canceled)