20

25

30

35

What is claimed is:

1. A compound having the structure:

$$R_2$$
 R_2
 R_2
 R_2

10 or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-R_3$, $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)NR_5R_6$,

 $-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$,

 $-(CH_2)_bNR_5C(=O)NR_6R_7$, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$,

 $-(CH_2)_bSO_dR_5$ or $-(CH_2)_bSO_2NR_5R_6$:

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, -C(=O)OR₈, -C(=O)R₈, -C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN, -NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bR₉, -O(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

 R_4 is alkyl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;

 R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and

	R_8 and R_9 are the same or different and at each occurrence ind	lependently hydrogen,
	alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl,	or R ₈ and R ₉ taken
5	together with the atom or atoms to which they are bon	ded form a
	heterocycle, wherein each of R ₈ , R ₉ , and R ₈ and R ₉ tak	en together to form a
	heterocycle are optionally substituted with one to four	substituents
	independently selected from R ₃	
	with the proviso that:	
	when A is a direct bond and R ₁ is phenyl,	
	R_2 is not methyl, methoxy, $C(=O)CH_3$ or $C(=O)H$;	
10	when A is a direct bond and R ₁ is 4-Me-phenyl,	
	R_2 is not methyl;	
	when A is a direct bond and R ₁ is 4-F-phenyl,	
	R ₂ is not trifluoromethyl;	
	when A is a direct bond or $-C = C$ - and R_1 is phenyl,	
15	R ₂ is not -COOEt; and	
	when A is a direct bond and R ₁ , is 6,7-dimethoxyisoquinolin-	1-yl,
	R ₂ is not hydroxy.	
	2. The compound of claim 1 wherein:	
20	R_2 is $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)N_5$	$\sqrt{R_5}R_6$,
	$-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$	₹6,
	$-(CH_2)_bNR_5C(=O)NR_6R_7$, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$,	$-(CH_2)_bSO_dR_5$ or
	-(CH2)bSO2NR5R6.	
25	3. The compound of claim 1 wherein A is a direct bond.	
	4. The compound of claim 1 wherein A is $-(CH_2)_a$.	
30	5. The compound of claim 1 wherein A is $-(CH_2)_bCH=C$	H(CH₂) _c
	6. The compound of claim 1 wherein A is $-(CH_2)_b C = C(CH_2)_b C$	$\mathrm{CH_2})_c$

7.

to four substituents independently selected from R₃.

The compound of claim 1 wherein R_1 is aryl optionally substituted with one

- 8. The compound of claim 1 wherein R_1 is heteroaryl optionally substituted with one to four substituents independently selected from R_3 .
- 9. The compound of claim 1 wherein R_1 is heterocycle fused to phenyl 5 optionally substituted with one to four substituents independently selected from R_3 .
 - 10. The compound of claim 1 wherein R_2 is $-(CH_2)_bC(=O)R_5$.
- 11. The compound of claim 1 wherein R_2 is -(CH₂)_bC(=O)NR₅R₆.
 - 12. The compound of claim 1 wherein R_2 is $-(CH_2)_bNR_5C(=O)R_6$.
 - 13. The compound of claim 1 wherein R_2 is $-(CH_2)_bNR_5R_6$.
- 15 14. The compound of claim 1 wherein R_2 is R_4 .
 - 15. The compound of claim 14 wherein R_4 is substituted alkyl.
 - 16. The compound of claim 14 wherein R_4 is substituted arylalkyl.
 - 17. The compound of claim 14 wherein R_4 is substituted heterocycle.
- 18. The compound of claim 14 wherein R_4 is 3-triazolyl, optionally substituted at its 5-position with:
- 25 (a) a C₁-C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
 - (b) a 2-pyrrolidinyl group.
 - 19. The compound of claim 14 wherein R_4 is tetrazole.
 - 20. The compound of claim 14 wherein R_4 is imidazole.
- 21. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.

35

20

25

22. A method for treating a condition responsive to JNK inhibition, comprising administering to a patient in need thereof an effective amount of a compound having the structure:

$$R_2$$
 R_2
 R_2
 R_2

or a pharmaceutically acceptable salt thereof,

wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

$$R_2 \text{ is -R}_3, -R_4, -(CH_2)_bC(=O)R_5, -(CH_2)_bC(=O)OR_5, -(CH_2)_bC(=O)NR_5R_6, -(CH_2)_bC(=O)R_5, -(CH_2)_5, -(CH_2)_$$

$$-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$$
, $-(CH_2)_bNR_5C(=O)R_6$,

$$-(CH_2)_bNR_5C(=O)NR_6R_7$$
, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$,

$$-(CH_2)_bSO_dR_5$$
 or $-(CH_2)_bSO_2NR_5R_{6}$;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-O(=O)R_8$, $-C(=O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

 R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;

R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and

35

10

15

R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

23. The method of claim 22 wherein:

$$R_{2} \text{ is } -R_{4}, -(CH_{2})_{b}C(=O)R_{5}, -(CH_{2})_{b}C(=O)OR_{5}, -(CH_{2})_{b}C(=O)NR_{5}R_{6},$$

$$-(CH_{2})_{b}C(=O)NR_{5}(CH_{2})_{c}C(=O)R_{6}, -(CH_{2})_{b}NR_{5}C(=O)R_{6},$$

$$-(CH_{2})_{b}NR_{5}C(=O)NR_{6}R_{7}, -(CH_{2})_{b}NR_{5}R_{6}, -(CH_{2})_{b}OR_{5}, -(CH_{2})_{b}SO_{d}R_{5} \text{ or }$$

$$-(CH_{2})_{b}SO_{2}NR_{5}R_{6}.$$

- 24. The method of claim 22 wherein the condition is cancer.
- 25. The method of claim 22 wherein the condition is rheumatoid arthritis; rheumatoid spondylitis; osteoarthritis; gout; asthma, bronchitis; allergic rhinitis; chronic obstructive pulmonary disease; cystic fibrosis; inflammatory bowel disease; irritable bowel syndrome; mucous colitis; ulcerative colitis; Crohn's disease; Huntington's disease; gastritis; esophagitis; hepatitis; pancreatitis; nephritis; multiple sclerosis; endotoxin shock; lupus erythematosus; Type II diabetes; psoriasis; burn caused by exposure to fire, chemicals or radiation; eczema; dermatitis; skin graft; ischemia; ischemic conditions associated with surgery or traumatic injury; cachexia or angiogenic and proliferative diseases.
- 26. The method of claim 22 wherein the condition is atherosclerosis, restenosis following angioplasty, left ventricular hypertrophy, or myocardial infarction.
- 27. The method of claim 22 wherein the condition is stroke or ischemic damages of heart, lung, gut, kidney, liver, pancreas, spleen or brain.
 30
 - 28. The method of claim 22 wherein the condition is acute or chronic organ transplant rejection, preservation of the organ for transplantation, graft versus host disease or multiple organ failure.

- 29. The method of claim 22 wherein the condition is epilepsy, Alzheimer's disease, or Parkinson's disease.
- 30. The method of claim 22 wherein the condition is an immunological response 5 to bacterial or viral infection.
- 31. The method of claim 22 wherein the condition is solid tumor or cancers of a variety of tissues such as colon, rectum, prostate, liver, lung, bronchus, pancreas, brain, head, neck, stomach, skin, kidney, cervix, blood, larynx, esophagus, mouth, pharynx, urinary bladder, ¹⁰ ovary or uterine.
 - 32. The method of claim 22 wherein A is a direct bond.
 - 33. The method of claim 22 wherein A is $-(CH_2)_a$.

- 34. The method of claim 22 wherein A is $-(CH_2)_tCH=CH(CH_2)_c$.
- 35. The method of claim 22 wherein A is $-(CH_2)_b C \equiv C(CH_2)_c$.

20

- 36. The method of claim 22 wherein R_1 is aryl optionally substituted with one to four substituents independently selected from R_3 .
- The method of claim 22 wherein R_1 is heteroaryl optionally substituted with one to four substituents independently selected from R_3 .
 - 38. The method of claim 22 wherein R_1 is heterocycle fused to phenyl optionally substituted with one to four substituents independently selected from R_3 .
- 30
- 39. The method of claim 22 wherein R_2 is $-(CH_2)_bC(=O)R_5$.
- 40. The method of claim 22 wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$.
- 41. The method of claim 22 wherein R_2 is -(CH₂)NR₅C(=O)R₆.

- 42. The method of claim 22 wherein R_2 is $-(CH_2)_h NR_5 R_6$.
- 43. The method of claim 22 wherein R_2 is R_4 .
- 5 44. The method of claim 43 wherein R_4 is substituted alkyl.
 - 45. The method of claim 43 wherein R_4 is substituted arylalkyl.
 - 46. The method of claim 43 wherein R_4 is substituted heterocycle.

10

- 47. The method of claim 43 wherein R_4 is 3-triazolyl, optionally substituted at its 5-position with:
- (a) a C₁-C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
- 15 (b) a 2-pyrrolidinyl group.
 - 48. The method of claim 43 wherein R_4 is tetrazole.
 - 49. The method of claim 43 wherein R_4 is imidazole.

50. A method for treating or preventing rheumatoid arthritis; rheumatoid spondylitis; osteoarthritis; gout; asthma, bronchitis; allergic rhinitis; chronic obstructive pulmonary disease; cystic fibrosis; inflammatory bowel disease; irritable bowel syndrome; mucous colitis; ulcerative colitis; Crohn's disease; Huntington's disease; gastritis; esophagitis; hepatitis;

- pancreatitis; nephritis; multiple sclerosis; lupus erythematosus; Type II diabetes; atherosclerosis; restenosis following angioplasty; left ventricular hypertrophy; myocardial infarction; stroke; ischemic damages of heart, lung, gut, kidney, liver, pancreas, spleen and brain; acute or chronic organ transplant rejection; preservation of an organ for transplantation; graft versus host disease; endotoxin shock; multiple organ failure; psoriasis; burn caused by exposure to fire, chemicals, or
- ³⁰ radiation; eczema; dermatitis; skin graft; ischemia; ischemic conditions associated with surgery or traumatic injury; epilepsy; Alzheimer's disease; Parkinson's disease; immunological response to bacterial or viral infection; cachexia; angiogenic and proliferative dieseases; solid tumor; and cancers of a variety of tissues such as colon, rectum, prostate, liver, lung, bronchus, pancreas, brain, head, neck, stomach, skin, kidney, cervix, blood, larynx, esophagus, mouth, pharynx, urinary

-406- NY2 - 1220685.1

20

25

30

35

bladder, ovary, or uterine comprising administering to a patient in need of such treatment or prevention an effective amount of a compound having the structure:

$$R_2$$
 R_2
 R_2
 R_2

or a pharmaceutically acceptable salt thereof,

wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC\equiv C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-R_3$, $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)NR_5R_6$,

 $-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$,

 $-(CH_2)_bNR_5C(=O)NR_6R_7$, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$,

 $-(CH_2)_bSO_dR_5$ or $-(CH_2)_bSO_2NR_5R_6$;

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-OC(=O)R_8$, $-C(=O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

 R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;

 R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and

15

20

- R_8 and R_9 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R_8 and R_9 taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R_8 , R_9 , and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .
- 51. The method of claim 50 wherein:

$$R_{2} \text{ is } -R_{4}, -(CH_{2})_{b}C(=O)R_{5}, -(CH_{2})_{b}C(=O)OR_{5}, -(CH_{2})_{b}C(=O)NR_{5}R_{6},$$

$$-(CH_{2})_{b}C(=O)NR_{5}(CH_{2})_{c}C(=O)R_{6}, -(CH_{2})_{b}NR_{5}C(=O)R_{6},$$

$$-(CH_{2})_{b}NR_{5}C(=O)NR_{6}R_{7}, -(CH_{2})_{b}NR_{5}R_{6}, -(CH_{2})_{b}OR_{5}, -(CH_{2})_{b}SO_{d}R_{5} \text{ or }$$

$$-(CH_{2})_{b}SO_{2}NR_{5}R_{6}.$$

- 52. The method of claim 50 wherein A is a direct bond.
- 53. The method of claim 50 wherein A is $-(CH_2)_a$.
- 54. The method of claim 50 wherein A is $-(CH_2)_bCH=CH(CH_2)_c$.
- 55. The method of claim 50 wherein A is $-(CH_2)_b C \equiv C(CH_2)_c$.
- 56. The method of claim 50 wherein R_1 is aryl optionally substituted with one to four substituents independently selected from R_3 .
- 57. The method of claim 50 wherein R₁ is heteroaryl optionally substituted with one to four substituents independently selected from R₃.
- 58. The method of claim 50 wherein R_1 is heterocycle fused to phenyl optionally substituted with one to four substituents independently selected from R_3 .
 - 59. The method of claim 50 wherein R_2 is $-(CH_2)_bC(=O)R_5$.
 - 60. The method of claim 50 wherein R_2 is -(CH₂)_bC(=O)NR₅R₆.

20

- 61. The method of claim 50 wherein R_2 is -(CH₂)NR₅C(=O)R₆.
- 61. The method of claim 50 wherein R_2 is $-(CH_2)_bNR_5R_6$.
- 5 G3. The method of claim 50 wherein R_2 is R_4 .
 - 64. The method of claim 63 wherein R_4 is substituted alkyl.
 - 65. The method of claim 63 wherein R_4 is substituted arylalkyl.

66. The method of claim 63 wherein R_4 is substituted heterocycle.

- 67. The method of claim 63 wherein R_4 is 3-triazolyl, optionally substituted at its 5-position with:
- 15 (a) a C₁-C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
 - (b) a 2-pyrrolidinyl group.
 - 68. The method of claim 63 wherein R_4 is tetrazole.
 - 69. The method of claim 63 wherein R_4 is imidazole.
- 70. The compound of claim 1, wherein -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, 25 -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3.
 - 71. The compound of claim 1, wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
- The compound of claim 1, wherein R_2 is 3-triazolyl or 5-tetrazolyl.
 - 73. The compound of claim 1, wherein:
 - (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉,
- 35 and $-O(CH_2)_bNR_8R_{9}$, wherein b is 2 or 3; and

- (b) R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0..
 - 74. The compound of claim 1, wherein
- 5 (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
 - (b) R_2 is 3-triazolyl or 5-tetrazolyl.
- The method of claim 22, wherein -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3.
- 76. The method of claim 22, wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$, 15 $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 77. The method of claim 22, wherein R_2 is 3-triazolyl or 5-tetrazolyl.
 - 78. The method of claim 22, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
 - (b) R_2 is -(CH₂) $_b$ C(=O)NR $_5$ R $_6$, -(CH₂) $_b$ NR $_5$ C(=O)R $_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 79. The method of claim 22, wherein
 - (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
- 30 (b) R_2 is 3-triazolyl or 5-tetrazolyl.
 - 80. The method of claim 50, wherein -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3.

- 81. The method of claim 50, wherein R_2 is -(CH₂)_bC(=O)NR₅R₆, -(CH₂)_bNR₅C(=O)R₆, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 82. The method of claim 50, wherein R_2 is 3-triazolyl or 5-tetrazolyl.

- 83. The method of claim 50, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
- 10 (b) R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 84. The method of claim 50, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents ¹⁵ independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
 - (b) R₂ is 3-triazolyl or 5-tetrazolyl.
- 85. The compound of claim 18 wherein R₄ is methyl, n-propyl, isopropyl, 1-²⁰ hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl.
- 86. The method of claim 47 wherein R₄ is methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-25 (dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl.
 - 87. The method of claim 67 wherein R_4 is methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl.