The scope of knowledge must be the concept of Machine Learning not the Deep Learning: The topic must be under these Principal Components Analysis Linear Discriminant Analysis Factory Analysis Multidimensional scaling ANN Regression Clustering Algorithm Hierarchical clustering Gaussian Mixture Models K nearest neighbor Bayesian Learning Decision Trees Regression Trees Random forests SVM

Supervised Learning

- **Definition:** Learning from labeled data.
- Key Concepts:
 - o Classification vs Regression
 - Classification: Predict categorical outcomes (e.g., spam detection).
 - **Regression:** Predict continuous outcomes (e.g., house prices).
- Algorithms:
 - Decision Tree
 - Regression Tree
 - CART (Classification and Regression Trees)
 - Random Forest
 - Naive Bayes
 - Support Vector Machine (SVM)
 - Linear Regression
 - Iterative Regression
 - Least Squares Regression
 - Logistic Regression

Unsupervised Learning

- **Definition:** Learning from unlabeled data.
- Key Concepts:
 - Clustering
 - Partitional Clustering Algorithms
 - K-Means
 - Kernel K-Means
 - K-Medoids
 - PAM (Partitioning Around Medoids)
 - CLARA (Clustering LARge Applications)
 - CLARANS (Clustering Large Applications based on RANdomized Search)
 - SLIC (Simple Linear Iterative Clustering)
 - Mean Shift
 - Hierarchical Clustering
 - Nearest Neighbor Algorithm
 - Divisive Hierarchical Clustering

- Agglomerative (Bottom-Up) Hierarchical Clustering
- BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
- Soft Clustering
 - Gaussian Mixture Models (GMM)
- Dimensionality Reduction Techniques:
 - PCA (Principal Component Analysis)
 - LDA (Linear Discriminant Analysis)
 - SVD (Singular Value Decomposition)
 - t-SNE (t-Distributed Stochastic Neighbor Embedding)
 - Isomap
 - Factor Analysis
 - Multidimensional Scaling (MDS)

Reinforcement Learning

• **Definition:** Learning through interactions with the environment to maximize cumulative reward.

Semi-Supervised Learning

• **Definition:** Combines a small amount of labeled data with a large amount of unlabeled data.

Generative vs Discriminative

- **Generative Models:** Model the joint probability (P(X, Y)).
- **Discriminative Models:** Model the conditional probability (P(Y | X)).

Supervised Learning

Supervised Learning Flow

Unsupervised Learning

Unsupervised Learning Flow

Examples

Reinforcement Learning

Semi-Supervised Learning

Generative vs Discriminative

Classification vs Regression

Dimensionality Reduction

PCA (Principal Component Analysis):

LDA (Linear Discriminant Analysis):

Singular Value Decomposition (SVD):

t-SNE (t-Distributed Stochastic Neighbor Embedding):

Isomap:

Factor Analysis

Multidimensional Scaling (MDS)

Artificial Neural Network (ANN)

Regression

Linear Regression

Iterative Regression

Least Squares Regression

Logistic Regression

Clustering

Partitional Clustering Algorithms

K-Means

Kernel K-Means

K-Medoids

PAM (Partitioning Around Medoids)

CLARA (Clustering LARge Applications)

CLARANS (Clustering Large Applications based on RANdomized Search)

SLIC (Simple Linear Iterative Clustering)

Mean Shift

Hierarchical Clustering

Nearest Neighbor Algorithm

Divisive Hierarchical Clustering

Agglomerative (Bottom-Up) Hierarchical Clustering

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Soft Clustering

Gaussian Mixture Models (GMM)

Naive Bayes

Decision Tree

Regression Tree

CART (Classification and Regression Trees)

Random Forest

Support Vector Machine (SVM)