14 - Funzioni di Classe C1 e Diffeomorfismi

Funzioni di classe C^1

\mathfrak{M} Definizione: Funzione di classe C^1 .

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto.

Una funzione $f: A \to Y$ si dice **di classe** C^1 quando è G-derivabile in A, e f' è continua in A.

Osservazione 1

Per la [Proposizione 12.3], Le funzioni di classe C^1 sono F-derivabili, dunque anche continue, in A.

Q Osservazione 2

Gli operatori lineari continui sono di classe C^1 .

Infatti, sia $T \in \mathcal{L}(X, Y)$.

T è F-derivabile in X.

Inoltre, si ha $T'(\mathbf{x}) = T$ per ogni $\mathbf{x} \in X$; pertanto, T' è costante, dunque continua, in X.

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto.

Siano $f, g: A \to Y$ due funzioni di classe C^1 .

Siano $\alpha, \beta \in \mathbb{R}$.

Allora, $\alpha f + \beta g$ è di classe C^1 .

Dimostrazione

f e g sono G-derivabili in A in quanto di classe C^1 .

Per la [Proposizione 12.1], $\alpha f + \beta g$ è G-derivabile in A, e inoltre si ha

$$(\alpha f + \beta g)'(\mathbf{x}) = \alpha f'(\mathbf{x}) + \beta g'(\mathbf{x})$$
 per ogni $\mathbf{x} \in A$.

Cioè, $(\alpha f + \beta g)' = \alpha f' + \beta g'$;

essendo f' e g' continue in A essendo f e g di classe C^1 , ne segue che anche $\alpha f' + \beta g' = (\alpha f + \beta g)'$ è continua in A.

Pertanto, $\alpha f + \beta g$ è di classe C^1 .

_

lacksquare Proposizione 14.2: Composizione di funzioni di classe C^1 è di classe C^1

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(Z, \|\cdot\|_Z)$ tre spazi normati.

Sia $A \subseteq X$ aperto.

Sia $B \subseteq Y$ aperto.

Sia $f: A \to Y$ una funzione di classe C^1 , tale che $f(A) \subseteq B$.

Sia $g: B \to Z$ una funzione di classe C^1 .

Allora, $g \circ f : A \to Z$ è di classe C^1 .

Osservazioni preliminari

Sia $\varphi_0 \in \mathcal{L}(X,Y)$, e sia $\{\varphi_n\}_{n\in\mathbb{N}} \subseteq \mathcal{L}(X,Y)$ una successione convergente a φ_0 . Sia $\psi_0 \in \mathcal{L}(Y,Z)$, e sia $\{\psi_n\}_{n\in\mathbb{N}} \subseteq \mathcal{L}(Y,Z)$ una successione convergente a ψ_0 .

Allora, data la successione $\{\psi_n \circ \varphi_n\}_{n \in \mathbb{N}} \subseteq \mathcal{L}(X, Z)$, si ha $\lim_n \psi_n \circ \varphi_n = \psi_0 \circ \varphi_0$.

Dimostrazione

Si provi che $\lim_n \|\psi_n \circ \varphi_n - \psi_0 \circ \varphi_0\|_{\mathcal{L}(X,Z)} = 0.$

Intanto, si osservi che vale

Per ogni $n \in \mathbb{N}$, si ha

$$\|\psi_n\circ\varphi_n-\psi_0\circ\varphi_0\|_{\mathcal{L}(X,Z)}=\|\psi_n\circ\varphi_n-\psi_n\circ\varphi_0+\psi_n\circ\varphi_0-\psi_0\circ\varphi_0\|_{\mathcal{L}(X,Z)}$$

$$\leq \|\psi_n \circ \varphi_n - \psi_n \circ \varphi_0\|_{\mathcal{L}(X,Z)} + \|\psi_n \circ \varphi_0 - \psi_0 \circ \varphi_0\|_{\mathcal{L}(X,Z)}$$

$$\| = \| \psi_n \circ (arphi_n - arphi_0) \|_{\mathcal{L}(X,Z)} + \| (\psi_n - \psi_0) \circ arphi_0 \|_{\mathcal{L}(X,Z)}$$

$$\leq \|\psi_n\|_{\mathcal{L}(Y,Z)} \cdot \|\varphi_n - \varphi_0\|_{\mathcal{L}(X,Y)} + \|\psi_n - \psi_0\|_{\mathcal{L}(Y,Z)} \cdot \|\varphi_0\|_{\mathcal{L}(X,Y)}$$

Sub-additività delle norme

$$\psi_n\circarphi_n-\psi_n\circarphi_0=\psi_n\circ(arphi_n-arphi_0)$$

per linearità di ψ_n

$$\psi_n\circarphi_0-\psi_0\circarphi_0=(\psi_n-\psi_0)\circarphi_0$$

per definizione di $\psi_n - \psi_0$

Per submoltiplicatività della norma

 $\|\cdot\|_{\mathcal{L}(X,Z)}$ ([Proposizione 6.7])

Si ha:

$$ullet \lim_n \|arphi_n - arphi_0\|_{\mathcal{L}(X,Y)} = 0$$
 in quanto $\{arphi_n\}_{n\in\mathbb{N}}$ converge a $arphi_0$.

$$ullet \lim_n \|\psi_n - \psi_0\|_{\mathcal{L}(Y,Z)} = 0$$
 in quanto $\{\psi_n\}_{n\in\mathbb{N}}$ converge a ψ_0 .

•
$$\lim_n \|\psi_n\|_{\mathcal{L}(Y,Z)} = \|\psi_0\|_{\mathcal{L}(Y,Z)}$$
 per continuità della norma, in quanto $\{\psi_n\}_{n\in\mathbb{N}}$ converge a ψ_0 .

Allora, $\lim_n \|\psi_n\|_{\mathcal{L}(Y,Z)} \cdot \|\varphi_n - \varphi_0\|_{\mathcal{L}(X,Y)} + \|\psi_n - \psi_0\|_{\mathcal{L}(Y,Z)} \cdot \|\varphi_0\|_{\mathcal{L}(X,Y)} = 0;$ ne segue per confronto che $\lim_n \|\psi_n \circ \varphi_n - \psi_0 \circ \varphi_0\|_{\mathcal{L}(X,Z)} = 0.$

Dimostrazione

f e g sono F-derivabili nel loro dominio, essendo di classe C^1 .

Per la [Proposizione 13.1], $g \circ f$ è F-derivabile in A, e inoltre si ha $(g \circ f)'(\mathbf{x}) = g'(f(\mathbf{x})) \circ f'(\mathbf{x})$ per ogni $\mathbf{x} \in A$.

Si provi la continuità di $(g \circ f)'$ per successioni.

Si fissino dunque $\mathbf{x}_0 \in A$ e una successione $\{\mathbf{x}_n\}_{n \in \mathbb{N}} \subseteq A$ convergente a \mathbf{x}_0 ; si mostri che $\lim_n (g \circ f)'(\mathbf{x}_n) = (g \circ f)'(\mathbf{x}_0)$, ossia

$$\lim_n g'ig(f(\mathbf{x}_n)ig)\circ f'(\mathbf{x}_n)=g'ig(f(\mathbf{x}_0)ig)\circ f'(\mathbf{x}_0).$$

Essendo f di classe C^1 , si ha $\lim_n f'(\mathbf{x}_n) = f'(\mathbf{x}_0)$; inoltre, sempre in quanto f è di classe C^1 , si ha $\lim_n f(\mathbf{x}_n) = f(\mathbf{x}_0)$.

Essendo g di classe C^1 ed essendo $\lim_n f(\mathbf{x}_n) = f(\mathbf{x}_0)$, si ha $\lim_n g'\big(f(\mathbf{x}_n)\big) = g'\big(f(\mathbf{x}_0)\big)$.

Per l'osservazione preliminare, si ha allora

$$\lim_n g'ig(f(\mathbf{x}_n)ig)\circ f'(\mathbf{x}_n)=g'ig(f(\mathbf{x}_0)ig)\circ f'(\mathbf{x}_0).$$

Diffeomorfismi di classe C^1 e il teorema dell'inversione locale

₩ Definizione: Diffeomorfismo

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto.

Sia $B \subseteq Y$ aperto.

Una funzione $f: A \to B$ si dice **diffeomorfismo di classe** C^1 quando è di classe C^1 , biunivoca e con inversa di classe C^1 .

ho Proposizione 14.3: Prima caratterizzazione dei diffeomorfismi di classe C^1

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $A \subseteq X$ aperto.

Sia $B \subseteq Y$ aperto.

Sia $f:A \to B$.

Sono equivalenti le seguenti affermazioni:

- 1. f è un diffeomorfismo di classe C^1 ;
- 2. f è un omeomorfismo di classe C^1 , e $f'(A) \subseteq \mathcal{O}(X,Y)$.

\triangleright Dimostrazione (1. \Rightarrow 2.)

Si supponga che f sia un diffeomorfismo di classe C^1 .

Allora, f è un omeomorfismo in quanto essendo una funzione biunivoca, continua essendo di classe C^1 , e con inversa continua essendo di classe C^1 .

Inoltre, essendo l'inversa di classe C^1 , essa è F-derivabile in A; dunque, per la [Proposizione 13.4] si ha $f'(\mathbf{x}) \in \mathcal{O}(X,Y)$ per ogni $\mathbf{x} \in A$.

\bigcap Dimostrazione (2. \Rightarrow 1.)

Si supponga che f sia un omeomorfismo di classe C^1 , e che $f'(A)\subseteq \mathcal{O}(X,Y)$.

Basta allora provare che $f^{-1}: B \to A$ è di classe C^1 .

Essendo $f'(A) \subseteq \mathcal{O}(X,Y)$, per la [Proposizione 13.4] f^{-1} è F-derivabile in B, e si ha

$$(f^{-1})'(\mathbf{y}) = \left(f'ig(f^{-1}(\mathbf{y})ig)
ight)^{-1}$$
 , per ogni $\mathbf{y} \in B$.

Per acquisire la tesi, resta dunque da mostrare che la funzione $(f^{-1})': B \to \mathcal{L}(Y,X)$ è continua. $\mathbf{y} \mapsto (f^{-1})'(\mathbf{y}) = (f'(f^{-1}(\mathbf{y})))^{-1}$

Si ha che $\mathcal{F} = \Phi \circ f' \circ f^{-1}$, dove:

$$ullet f^{-1}: egin{aligned} B &
ightarrow A \ \mathbf{y} &
ightarrow f^{-1}(\mathbf{y}) \end{aligned};$$

$$f':A o \mathcal{O}(X,Y); \ \mathbf{x} \mapsto f'(\mathbf{x})$$

$$\Phi: \mathcal{O}(X,Y) {
ightarrow} \mathcal{L}(X,Y).$$

 f^{-1} è continua essendo f un omeomorfismo per ipotesi;

f' è continua essendo f di classe C^1 per ipotesi;

 Φ è continua per la [Proposizione 13.3].

Dunque $(f^{-1})'$ è continua.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq X$ aperto.

Sia $g: A \to X$ una contrazione di costante $L \in [0; 1]$ (cioè, $||g(\mathbf{x}_1) - g(\mathbf{x}_2)|| \le L ||\mathbf{x}_1 - \mathbf{x}_2||$ per ogni $\mathbf{x}_1, \mathbf{x}_2 \in A$).

Sia $f: A \to X$ la funzione definita ponendo $f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{x}$ per ogni $\mathbf{x} \in A$.

Si hanno i seguenti fatti:

- f è iniettiva;
- La funzione inversa $f^{-1}: f(A) \to A$, ben definita per il punto precedente, è Lipschitziana di costante $\frac{1}{1-L}$;
- f(A) è aperto in X.

Dimostrazione

Siano intanto $\mathbf{x}_1, \mathbf{x}_2 \in A$; si ha che $||f(\mathbf{x}_1) - f(\mathbf{x}_2)|| \ge (1 - L)||\mathbf{x}_1 - \mathbf{x}_2||$. Infatti,

$$\|f(\mathbf{x}_1) - f(\mathbf{x}_2)\| = \|g(\mathbf{x}_1) - g(\mathbf{x}_2) - (\mathbf{x}_2 - \mathbf{x}_1)\|$$
 Per definizione di f

$$\geq \left| \|g(\mathbf{x}_1) - g(\mathbf{x}_2)\| - \|\mathbf{x}_2 - \mathbf{x}_1\|
ight|$$
 Dalla seconda proprietà triangolare

$$\|\mathbf{x}_2 - \mathbf{x}_1\| - \|g(\mathbf{x}_1) - g(\mathbf{x}_2)\|$$

$$\geq \|\mathbf{x}_2 - \mathbf{x}_1\| - L\|\mathbf{x}_2 - \mathbf{x}_1\|$$
 Essendo g contrazione di costante L

$$=(1-L)\|\mathbf{x}_1-\mathbf{x}_2\|$$
 Per assoluta omogeneità della norma

Da tale disuguaglianza segue l'iniettività di f.

Infatti, se
$$f(\mathbf{x}_1) = f(\mathbf{x}_2)$$
, si ha $0 = \|f(\mathbf{x}_1) - f(\mathbf{x}_2)\| \ge (1 - L)\|\mathbf{x}_1 - \mathbf{x}_2\|$; ne segue, essendo $L < 1$, che $\|\mathbf{x}_1 - \mathbf{x}_2\| \le 0$, da cui necessariamente $\mathbf{x}_1 = \mathbf{x}_2$.

Da tale disuguaglianza segue anche la Lipschitzianità di f^{-1} di costante $\frac{1}{1-L}$.

Infatti, per ogni $\mathbf{y}_1, \mathbf{y}_2 \in f(A)$ si ha

$$\|\mathbf{y}_1 - \mathbf{y}_2\| = \|f(f^{-1}(\mathbf{y}_1)) - f(f^{-1}(\mathbf{y}_2))\| \ge (1 - L)\|f^{-1}(\mathbf{y}_1) - f^{-1}(\mathbf{y}_2)\|$$
, da cui segue che

$$\|f^{-1}(\mathbf{y}_1) - f^{-1}(\mathbf{y}_2)\| \le \frac{1}{1-L} \|\mathbf{y}_1 - \mathbf{y}_2\|$$
 .

Resta da provare che f(A) è aperto.

Sia dunque $\mathbf{y}_0 \in f(A)$; si provi che \mathbf{y}_0 è interno a f(A).

Sia $\mathbf{x}_0 = f^{-1}(\mathbf{y}_0)$; essendo A aperto, esiste $\delta > 0$ tale che $\overline{B}(\mathbf{x}_0, \delta) \subseteq A$.

Si vuole provare che $B(\mathbf{y}_0, (1-L)\delta) \subseteq f(A)$;

fissato $\mathbf{y} \in B(\mathbf{y}_0, (1-L)\delta)$, si mostri che esiste $\mathbf{x} \in A$ tale che $\mathbf{y} = f(\mathbf{x})$.

Si osserva che

$$\mathbf{y} = f(\mathbf{x}) \iff \mathbf{y} = g(\mathbf{x}) + \mathbf{x}$$
 Per definizione di f $\iff \mathbf{y} - g(\mathbf{x}) = \mathbf{x}$

Dunque, definendo la funzione $h: A \to X$ ponendo $h(\mathbf{x}) = \mathbf{y} - g(\mathbf{x})$ per ogni $\mathbf{x} \in A$, si ha che $\mathbf{y} = f(\mathbf{x})$ se e solo se \mathbf{x} è punto fisso per h.

Per provare che *h* ammette punto fisso, si vuole fare uso del teorema del punto fisso di Banach-Caccioppoli su un'opportuna restrizione.

h è una contrazione di costante L; infatti, per ogni $\mathbf{x}_1, \mathbf{x}_2 \in X$ si ha

$$\|h(\mathbf{x}_1) - h(\mathbf{x}_2)\| = \|\mathbf{y} - g(\mathbf{x}_1) - (\mathbf{y} - g(\mathbf{x}_2))\|$$
 Per definizione di h

$$= \|g(\mathbf{x}_2) - g(\mathbf{x}_1)\|$$

$$\leq L\|\mathbf{x}_1 - \mathbf{x}_2\|$$
 Essendo g una contrazione di costante L

Si osserva anche che $h(\overline{B}(\mathbf{x}_0, \delta)) \subseteq \overline{B}(\mathbf{x}_0, \delta)$; Infatti, fissato $\mathbf{u} \in \overline{B}(\mathbf{x}_0, \delta)$, si ha

$$\|h(\mathbf{u}) - \mathbf{x}_0\| = \|\mathbf{y} - g(\mathbf{u}) - \mathbf{x}_0\|$$

Per definizione di *h*

$$=\left\|ig(g(\mathbf{x}_0)-g(\mathbf{u})ig)+(\mathbf{y}-g(\mathbf{x}_0)-\mathbf{x}_0)
ight\|$$

$$\leq \|g(\mathbf{x}_0) - g(\mathbf{u})\| + \|\mathbf{y} - g(\mathbf{x}_0) - \mathbf{x}_0\|$$

Per sub-additività della norma

$$= \|g(\mathbf{x}_0) - g(\mathbf{u})\| + \|\mathbf{y} - \mathbf{y}_0\|$$

 $\mathbf{x}_0 = f^{-1}(\mathbf{y}_0)$ per definizione, per cui $\mathbf{y}_0 = f(\mathbf{x}_0) = g(\mathbf{x}_0) + \mathbf{x}_0$ per definizione di f

$$< L \| \mathbf{x}_0 - \mathbf{u} \| + (1 - L) \delta$$

Essendo g una contrazione di costante L, e $\mathbf{y} \in \overline{B}(\mathbf{y}_0, (1-L)\delta)$

$$< L\delta + (1-L)\delta = \delta$$

Essendo $\mathbf{u} \in \overline{B}(\mathbf{x}_0, \delta)$

Dunque, si consideri la restrizione $h_{|\overline{B}(\mathbf{x}_0,\delta)}:\overline{B}(\mathbf{x}_0,\delta)\to\overline{B}(\mathbf{x}_0,\delta)$, il cui codominio è ben definito per quanto appena osservato.

L'insieme $\overline{B}(\mathbf{x}_0,\delta)$ è completo con la metrica indotta da X;

infatti, esso è chiuso in X, e X è completo con la metrica della norma $\|\cdot\|$ essendo uno spazio di Banach per ipotesi.

Infine, $h_{|\overline{B}(\mathbf{x}_0,\delta)}$ è una contrazione su $\overline{B}(\mathbf{x}_0,\delta)$ avendo visto che h è una contrazione su tutto A.

Allora, $h_{|\overline{B}(\mathbf{x}_0,\delta)}$ soddisfa le ipotesi del teorema del punto fisso di Banach-Caccioppoli; pertanto, esiste (un unico) $\tilde{\mathbf{x}} \in \overline{B}(\mathbf{x}_0,\delta)$ tale che $h(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}$.

La tesi è dunque acquisita.

Teorema 14.5: Teorema dell'inversione locale

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $A \subseteq X$ aperto.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia f:A o Y una funzione di classe $C^1.$ Si supponga che $f'(\mathbf{x}_0)\in\mathcal{O}(X,Y).$

Allora, esiste $\delta > 0$ tale che:

- $B(\mathbf{x}_0, \delta) \subseteq A$;
- $f(B(\mathbf{x}_0, \delta))$ è aperto in Y;
- $f_{|B(\mathbf{x}_0,\delta)}$ è un diffeomorfismo di classe C^1 tra $B(\mathbf{x}_0,\delta)$ e $f(B(\mathbf{x}_0,\delta))$.

Dimostrazione

Essendo $\mathbf{x}_0 \in \overset{\circ}{A}$, esiste $\delta_0 > 0$ tale che $B(\mathbf{x}_0, \delta_0) \subseteq A$.

 $\mathcal{O}(X,Y)$ è aperto per la [Proposizione 13.3]; dunque, esiste $\rho > 0$ tale che $B(f'(\mathbf{x}_0), \rho) \subseteq \mathcal{O}(X,Y)$.

Essendo f' continua in quanto f è di classe C^1 per ipotesi, esiste $\delta_1 > 0$ (si supponga $\delta_1 < \delta_0$) tale che $f'(B(\mathbf{x}_0, \delta_1)) \subseteq B(f'(\mathbf{x}_0), \rho)$;

si ha allora $f'ig(B(\mathbf{x}_0,\delta_1)ig)\subseteq Big(f'(\mathbf{x}_0),
hoig)\subseteq \mathcal{O}(X,Y)$, per cui $f'(\mathbf{x})\in \mathcal{O}(X,Y)$ per ogni $\mathbf{x}\in B(\mathbf{x}_0,\delta_1)$.

Sia ora $\varphi = \big(f'(\mathbf{x}_0)\big)^{-1}$, ben definita essendo $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$ per ipotesi.

Si definisca la funzione $g:A\to X$ ponendo $g=\varphi\circ f-\mathrm{id}$, ossia $g(\mathbf{x})=\varphi\big(f(\mathbf{x})\big)-\mathbf{x}$ per ogni $\mathbf{x}\in A$.

g è di classe C^1 . Infatti:

- φ è di classe C^1 , in quanto appartiene a $\mathcal{L}(Y,X)$ essendo $\varphi = \big(f'(\mathbf{x}_0)\big)^{-1}$ e $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$;
- f è di classe C^1 per ipotesi;
- id è di classe C^1 in quanto appartiene a $\mathcal{L}(X,X)$.

Dunque, da [Proposizione 14.1] e [Proposizione 14.2] segue che g è di classe C^1 .

Nello specifico, per ogni $\mathbf{x} \in A$ si ha

$$g'(\mathbf{x}) = (\varphi \circ f - \mathrm{id})'(\mathbf{x})$$
 Per definizione di g

$$=(\varphi\circ f)'(\mathbf{x})-(\mathrm{id})'(\mathbf{x})$$
 Per derivazione di una combinazione lineare di funzioni derivabili

$$= \varphi'(f(\mathbf{x})) \circ f'(\mathbf{x}) - \mathrm{id}$$
 Per derivazione delle funzioni composte; id coincide con la sua derivata in ogni punto, essendo lineare e continua

$$= \varphi \circ f'(\mathbf{x}) - \mathrm{id}$$
 φ coincide con la sua derivata in ogni punto, essendo lineare e continua

Si osserva in particolare che

$$g'(\mathbf{x}_0) = arphi \circ f'(\mathbf{x}_0) - \mathrm{id}$$
 Per quanto appena ricavato

$$=\operatorname{id}-\operatorname{id}=\mathbf{0}_{\mathcal{L}(X,Y)}$$
 In quanto $arphi=\left(f'(\mathbf{x}_0)
ight)^{-1}$

Per quanto osservato finora, si ha che g' è continua in \mathbf{x}_0 , e $g'(\mathbf{x}_0) = \mathbf{0}_{\mathcal{L}(X,Y)}$; pertanto, in corrispondenza a $\varepsilon = \frac{1}{2}$, esiste $\delta > 0$ (si supponga $\delta < \delta_1$), tale che $\|g'(\mathbf{x})\|_{\mathcal{L}(X,Y)} < \frac{1}{2}$ per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta)$.

Fissati allora $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{x}_0, \delta)$, per ogni $\lambda \in]0; 1[$ si ha $\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1) \in B(\mathbf{x}_0, \delta)$ per convessità di $B(\mathbf{x}_0, \delta)$, dunque $\|g'(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1))\|_{\mathcal{L}(X,Y)} < \frac{1}{2}$ per costruzione di δ .

Valgono allora le ipotesi del corollario al Teorema di Lagrange [Corollario 11.8], per cui si ha $\|g(\mathbf{x}_1) - g(\mathbf{x}_2)\|_X \leq \frac{1}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|_X$.

Per arbitrarietà di $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{x}_0, \delta)$, si ha dunque che g è una contrazione di costante $\frac{1}{2}$ su $B(\mathbf{x}_0, \delta)$.

Per la [Proposizione 14.4], la funzione $B(\mathbf{x}_0, \delta) \to X : \mathbf{x} \mapsto g(\mathbf{x}) + \mathbf{x} = \varphi(f(\mathbf{x}))$, pari cioè a $(\varphi \circ f)_{|B(\mathbf{x}_0, \delta)}$, è un omeomorfismo tra $B(\mathbf{x}_0, \delta)$ e l'insieme $(\varphi \circ f)(B(\mathbf{x}_0, \delta))$; sempre per tale proposizione quest'ultimo insieme è aperto in X.

Inoltre, φ^{-1} è un omeomorfismo tra X e Y, in quanto $\varphi^{-1}=\left(\left(f'(\mathbf{x}_0)\right)^{-1}\right)^{-1}=f'(\mathbf{x}_0)\in\mathcal{O}(X,Y)$.

Allora, l'insieme $f(B(\mathbf{x}_0, \delta)) = \varphi^{-1}((\varphi \circ f)(B(\mathbf{x}_0, \delta)))$ è aperto, essendo immagine di un aperto in X tramite φ^{-1} , aperta in quanto omeomorfismo.

Inoltre, la funzione $\varphi^{-1} \circ (\varphi \circ f)_{|B(\mathbf{x}_0,\delta)} = f_{|B(\mathbf{x}_0,\delta)}$ è composizione di due omeomorfismi, dunque è esso stesso un omeomorfismo, tra $B(\mathbf{x}_0,\delta)$ e $f(B(\mathbf{x}_0),\delta)$.

Per di più, f è di classe C^1 su tutto A, dunque anche su $B(\mathbf{x}_0, \delta)$, e si osserva anche che $f'(B(\mathbf{x}_0, \delta)) \subseteq f'(B(\mathbf{x}_0, \delta)) \subseteq \mathcal{O}(X, Y)$, per costruzione di δ_1 ed essendo $\delta < \delta_1$.

Segue allora dalla [Proposizione 14.3] che $f_{|B(\mathbf{x}_0,\delta)}$ è un diffeomorfismo di classe C^1 tra $B(\mathbf{x}_0,\delta)$ e $f(B(\mathbf{x}_0),\delta)$.

\subseteq Corollario 14.6: Funzioni di classe C^1 la cui derivata in ogni loro punto è un omeomorfismo sono aperte

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $A \subseteq X$ aperto.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$

Sia f:A o Y una funzione di classe C^1 .

Si supponga che $f'(A) \subseteq \mathcal{O}(X,Y)$.

Allora, f è aperta (cioè, per ogni $U \subseteq A$ aperto in A, f(U) è aperto in Y).

Richiamo: Aperti nella topologia indotta su un aperto

Sia X uno spazio topologico.

Sia $A \subseteq X$ aperto in X.

Sia $U \subseteq A$ aperto in A con la topologia indotta.

Allora, U è aperto in X.

Infatti, per definizione di aperto nella topologia indotta su A, si ha che $U = V \cap A$, con $V \subseteq X$ aperto in X.

Essendo anche A aperto in X ed essendo l'intersezione di due aperti in uno spazio topologico anch'essa aperta in tale spazio, si ha allora $V \cap A = U$ aperto in X.

Dimostrazione

Sia $U \subseteq A$ aperto in A (dunque in X per quanto richiamato); si provi che f(U) è aperto in Y.

Sia $\mathbf{y}_0 \in f(U)$, e sia quindi $\mathbf{x}_0 \in U$ tale che $f(\mathbf{x}_0) = \mathbf{y}_0$. Si provi che \mathbf{y}_0 è interno a f(U).

f è di classe C^1 in A, dunque in U, e si ha $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$ per ipotesi.

Pertanto, per il [Teorema 14.5] applicato a f su U (che è aperto in X), esiste allora $\delta > 0$ tale che $B(\mathbf{x}_0, \delta) \subseteq U$, e $f(B(\mathbf{x}_0, \delta))$ è un aperto in Y, contenuto in f(U).

Possedendo $f(\mathbf{x}_0) = \mathbf{y}_0$, l'insieme $f(B(\mathbf{x}_0, \delta))$ è allora un intorno di \mathbf{y}_0 contenuto in f(U), per cui \mathbf{y}_0 è interno a f(U).

La tesi è dunque acquisita.

\Box Corollario 14.7: Seconda caratterizzazione dei diffeomorfismi di classe C^1

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $A \subseteq X$ aperto.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia f:A o Y una funzione di classe C^1 .

Sono equivalenti le seguenti affermazioni:

- 1. f è un diffeomorfismo di classe C^1 tra A e f(A), e f(A) è aperto;
- 2. f è iniettiva e di classe C^1 , e $f'(A) \subseteq \mathcal{O}(X,Y)$.

\bigcap Dimostrazione (1. \Rightarrow 2.)

Si supponga che f sia un diffeomorfismo di classe C^1 tra A e f(A), e che f(A) sia aperto.

Allora, f è iniettiva e di classe C^1 per definizione di diffeomorfismo di classe C^1 .

Inoltre, per ipotesi f^{-1} è di classe C^1 , dunque F-derivabile, su f(A); per la [Proposizione 13.4], si ha dunque che $f'(A) \subseteq \mathcal{O}(X,Y)$.

L

\bigcirc Dimostrazione (2. \Rightarrow 1.)

Si supponga f iniettiva e di classe C^1 , e $f'(A) \subseteq \mathcal{O}(X,Y)$.

Per iniettività, f è automaticamente biunivoca tra A e f(A).

Per ipotesi, f è di classe C^1 .

Valgono inoltre le ipotesi della [Proposizione 14.6]; dunque, f è aperta.

Allora, f^{-1} è continua su f(A);

infatti, fissato $U \subseteq A$ aperto in A, l'insieme $(f^{-1})^{-1}(U) = f(U)$ è aperto in Y per apertura di f, ed è contenuto in f(A); dunque f(U) è aperto in A.

Dunque, f è un omeomorfismo di classe C^1 tra A e f(A); per la [Proposizione 14.3], f è un diffeomorfismo di classe C^1 tra A e f(A).