Floyd's Algorithm

All pairs shortest path

All pairs shortest path

- The problem: find the shortest path between every pair of vertices of a graph
- The graph: may contain negative edges but no negative cycles
- A representation: a weight matrix where
 W(i,j)=0 if i=j.
 W(i,j)=∞ if there is no edge between i and j.
 W(i,j)="weight of edge"
- Note: we have shown principle of optimality applies to shortest path problems

The weight matrix and the graph

The subproblems

- How can we define the shortest distance $d_{i,j}$ in terms of "smaller" problems?
- One way is to restrict the paths to only include vertices from a restricted subset.
- Initially, the subset is empty.
- Then, it is incrementally increased until it includes all the vertices.

The subproblems

- Let $D^{(k)}[i,j]$ =weight of a shortest path from v_i to v_j using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices in the path
 - $D^{(0)} = W$
 - $-D^{(n)}=D$ which is the goal matrix
- How do we compute $D^{(k)}$ from $D^{(k-1)}$?

The Recursive Definition:

Case 1: A shortest path from v_i to v_j restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does not use v_{k^*} Then $D^{(k)}[i,j] = D^{(k-1)}[i,j]$.

Case 2: A shortest path from v_i to v_j restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does use v_k . Then $D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$.

The recursive definition

Since

$$D^{(k)}[i,j] = D^{(k-1)}[i,j]$$
 or $D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$. We conclude: $D^{(k)}[i,j] = \min\{ D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j] \}$.

The pointer array P

- Used to enable finding a shortest path
- Initially the array contains 0
- Each time that a shorter path from i to j is found the k that provided the minimum is saved (highest index node on the path from i to j)
- To print the intermediate nodes on the shortest path a recursive procedure that print the shortest paths from i and k, and from k to j can be used

Floyd's Algorithm Using n+1 D matrices

```
Floyd//Computes shortest distance between all pairs of
  //nodes, and saves P to enable finding shortest paths
   1. D^0 \leftarrow W // initialize D array to W[]
   2. P \leftarrow 0 // initialize P array to [0]
   3. for k \leftarrow 1 to n
   4. do for i \leftarrow 1 to n
   5.
              do for j \leftarrow 1 to n
                   if (D^{k-1}[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j])
   6.
                        then D^{k}[i, j] \leftarrow D^{k-1}[i, k] + D^{k-1}[k, j]
   7.
   8.
                                P[i,j] \leftarrow K;
                         else D^k[i, j] \leftarrow D^{k-1}[i, j]
   9.
```

Example

		1	2	3
$\mathbf{W} = \mathbf{D}^0 =$	1	0	4	5
$\mathbf{W} = \mathbf{D}^{\circ} =$	2	2	0	8
	3	∞	-3	0

		1		3
	1	0	0	0
P =	2	0	0	0
	3	0	0	0

$$D^{0} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 2 & 2 & 0 & \infty \\ 3 & \infty & -3 & 0 \end{bmatrix}$$

k = 1Vertex 1 canbe intermediatenode

$$D^{1} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0 & 4 & 5 \\
 & 2 & 0 & 7 \\
 & 3 & \infty & -3 & 0
\end{array}$$

$$D^{1}[2,3] = min(D^{0}[2,3], D^{0}[2,1]+D^{0}[1,3])$$

= $min(\infty, 7)$
= 7

$$P = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0 & 0 & 0 \\
 & 2 & 0 & 0 & 1 \\
 & 3 & 0 & 0 & 0 \\
\end{array}$$

$$D^{1}[3,2] = min(D^{0}[3,2], D^{0}[3,1]+D^{0}[1,2])$$

= min (-3,\infty)
= -3

$$D^{2} = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 4 & 5 \\ \hline 2 & 2 & 0 & 7 \\ \hline 3 & -1 & -3 & 0 \end{array}$$

$$D^{2}[1,3] = min(D^{1}[1,3], D^{1}[1,2]+D^{1}[2,3])$$

= min (5, 4+7)
= 5

$$P = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0 & 0 & 0 \\
 & 2 & 0 & 0 & 1 \\
 & 3 & 2 & 0 & 0 \\
\end{array}$$

$$D^{2}[3,1] = min(D^{1}[3,1], D^{1}[3,2]+D^{1}[2,1])$$

= min (\infty, -3+2)
= -1

$$D^{3} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 0 & 2 & 5 \\
 & 2 & 0 & 7 \\
 & 3 & -1 & -3 & 0
\end{array}$$

$$D^{3}[1,2] = min(D^{2}[1,2], D^{2}[1,3]+D^{2}[3,2])$$

= min (4, 5+(-3))
= 2

$$P = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0 & 3 & 0 \\
 & 2 & 0 & 0 & 1 \\
 & 3 & 2 & 0 & 0 \\
\end{array}$$

$$D^{3}[2,1] = min(D^{2}[2,1], D^{2}[2,3]+D^{2}[3,1])$$

= min (2, 7+ (-1))
= 2

Floyd's Algorithm: Using 2 D matrices

```
Floyd
   1. D \leftarrow W // initialize D array to W[]
   2. P \leftarrow 0 // initialize P array to [0]
   3. for k \leftarrow 1 to n
        // Computing D' from D
          do for i \leftarrow 1 to n
   5.
              do for j \leftarrow 1 to n
                   if (D[i, j] > D[i, k] + D[k, j])
   6.
                        then D'[i, j] \leftarrow D[i, k] + D[k, j]
   7.
   8.
                                P[i,j] \leftarrow K;
                         else D'[i, j] \leftarrow D[i, j]
   9.
   10. Move D' to D.
```

Can we use only one D matrix?

- D[i,j] depends only on elements in the kth column and row of the distance matrix.
- We will show that the kth row and the kth column of the distance matrix are unchanged when D^k is computed
- This means D can be calculated in-place

The main diagonal values

Before we show that kth row and column of D
remain unchanged we show that the main diagonal
remains 0

```
• D^{(k)}[j,j] = \min\{D^{(k-1)}[j,j], D^{(k-1)}[j,k] + D^{(k-1)}[k,j]\}
= \min\{0, D^{(k-1)}[j,k] + D^{(k-1)}[k,j]\}
= 0
```

Based on which assumption?

The kth column

- kth column of D^k is equal to the kth column of D^{k-1}
- Intuitively true a path from i to k will not become shorter by adding k to the allowed subset of intermediate vertices

```
• For all i, D^{(k)}[i,k] =
= min{ D^{(k-1)}[i,k], D^{(k-1)}[i,k] + D^{(k-1)}[k,k] }
= min { D^{(k-1)}[i,k], D^{(k-1)}[i,k] + 0 }
= D^{(k-1)}[i,k]
```

The kth row

• kth row of D^k is equal to the kth row of D^{k-1}

```
For all j, D^{(k)}[k,j] =
= \min\{ D^{(k-1)}[k,j], D^{(k-1)}[k,k] + D^{(k-1)}[k,j] \}
= \min\{ D^{(k-1)}[k,j], 0 + D^{(k-1)}[k,j] \}
= D^{(k-1)}[k,j]
```

Floyd's Algorithm using a single D

```
Floyd

1. D \leftarrow W // initialize D array to W[]

2. P \leftarrow 0 // initialize P array to [0]

3. for k \leftarrow 1 to n

4. do for i \leftarrow 1 to n

5. do for j \leftarrow 1 to n

6. if (D[i,j] > D[i,k] + D[k,j])

7. then D[i,j] \leftarrow D[i,k] + D[k,j]

8. P[i,j] \leftarrow K;
```

Printing intermediate nodes on shortest path from q to r

```
path(index q, r)
  if (P[ q, r ]!=0)
     path(q, P[q, r])
     println( "v"+ P[q, r])
     path(P[q, r], r)
     return;
//no intermediate nodes
else return
```

		1	2	3
P =	1	0	3	0
	2	0	0	1
	3	2	0	0

Before calling path check $D[q, r] < \infty$, and print node q, after the call to path print node r

Example

The final distance matrix and P

	1	2	3	4	5	6
1	0	2(6)	2(6)	4(6)	3	1
2	2(6)	0	2(6)	4(6)	5(6)	1
$D^6 = 3$	2(6)	2(6)	0	2	5(4)	1
4	4(6)	4(6)	2	0	3	3(3)
5	3	5(6)	5(4)	3	0	4(1)
6	1	1	1	3(3)	4(1)	0

The values in parenthesis are the non zero P values.

The call tree for Path(1, 4)

The intermediate nodes on the shortest path from 1 to 4 are v6, v3. The shortest path is v1, v6, v3, v4.