Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 14: Ray Tracing 2 (Acceleration & Radiometry)

Announcements

- Grading of resubmissions we're working on that
- GTC news: DLSS 2.0
 - https://zhuanlan.zhihu.com/p/116211994
- GTC news: RTXGI
 - https://developer.nvidia.com/rtxgi
- Personal feeling
 - Offline rendering techniques will soon become real-time
 - Current real-time rendering techniques will still be useful
- Next lectures won't be easy

Last Lecture

- Why ray tracing?
- Whitted-style ray tracing
- Ray-object intersections
 - Implicit surfaces
 - Triangles
- Axis-Aligned Bounding Boxes (AABBs)
 - Understanding pairs of slabs
 - Ray-AABB intersection

Today

- Using AABBs to accelerate ray tracing
 - Uniform grids
 - Spatial partitions
- Basic radiometry (辐射度量学)

Uniform Spatial Partitions (Grids)

Preprocess – Build Acceleration Grid

1. Find bounding box

Preprocess – Build Acceleration Grid

- 1. Find bounding box
- 2. Create grid

Preprocess – Build Acceleration Grid

- 1. Find bounding box
- 2. Create grid
- 3. Store each object in overlapping cells

Ray-Scene Intersection

Step through grid in ray traversal order

For each grid cell
Test intersection
with all objects
stored at that cell

Grid Resolution?

One cell

No speedup

Grid Resolution?

Too many cells

 Inefficiency due to extraneous grid traversal

Grid Resolution?

Heuristic:

- #cells = C * #objs
- C ≈ 27 in 3D

Uniform Grids – When They Work Well

Grids work well on large collections of objects that are distributed evenly in size and space

Uniform Grids – When They Fail

"Teapot in a stadium" problem

Spatial Partitions

Spatial Partitioning Examples

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D.

KD-Tree Pre-Processing

KD-Tree Pre-Processing

KD-Tree Pre-Processing

Note: also subdivide nodes 1 and 2, etc.

Data Structure for KD-Trees

Internal nodes store

- split axis: x-, y-, or z-axis
- split position: coordinate of split plane along axis
- children: pointers to child nodes
- No objects are stored in internal nodes

Leaf nodes store

list of objects

Object Partitions &

Summary: Building BVHs

- Find bounding box
- Recursively split set of objects in two subsets
- Recompute the bounding box of the subsets
- Stop when necessary
- Store objects in each leaf node

Building BVHs

How to subdivide a node?

- Choose a dimension to split
- Heuristic #1: Always choose the longest axis in node
- Heuristic #2: Split node at location of median object

Termination criteria?

 Heuristic: stop when node contains few elements (e.g. 5)

Data Structure for BVHs

Internal nodes store

- Bounding box
- Children: pointers to child nodes

Leaf nodes store

- Bounding box
- List of objects

Nodes represent subset of primitives in scene

All objects in subtree

BVH Traversal

```
Intersect(Ray ray, BVH node) {
                                                    node
  if (ray misses node.bbox) return;
  if (node is a leaf node)
     test intersection with all objs;
     return closest intersection;
 hit1 = Intersect(ray, node.child1);
 hit2 = Intersect(ray, node.child2);
                                                child1
                                                        child2
  return the closer of hit1, hit2;
```

37

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

- Partition space into non-overlapping regions
- An object can be contained in multiple regions

Object partition (e.g. BVH)

- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

Today

- Using AABBs to accelerate ray tracing
 - Uniform grids
 - Spatial partitions
- Basic radiometry (辐射度量学)
 - Advertisement: new topics from now on, scarcely covered in other graphics courses

Radiometry — Motivation

Observation

- In assignment 3, we implement the Blinn-Phong model
- Light intensity I is 10, for example
- But 10 what?

Do you think Whitted style ray tracing gives you CORRECT results?

All the answers can be found in radiometry

Also the basics of "Path Tracing"

Radiometry

Measurement system and units for illumination

Accurately measure the spatial properties of light

- New terms: Radiant flux, intensity, irradiance, radiance

Perform lighting calculations in a physically correct manner

My personal way of learning things:

- WHY, WHAT, then HOW

Radiant Energy and Flux (Power)

Radiant Energy and Flux (Power)

Definition: Radiant energy is the energy of electromagnetic radiation. It is measured in units of joules, and denoted by the symbol:

$$Q$$
 [J = Joule]

Definition: Radiant flux (power) is the energy emitted, reflected, transmitted or received, per unit time.

$$\Phi \equiv \frac{\mathrm{d}Q}{\mathrm{d}t} \ [\mathrm{W} = \mathrm{Watt}] \ [\mathrm{lm} = \mathrm{lumen}]^*$$

Flux – #photons flowing through a sensor in unit time

From London and Upton

Important Light Measurements of Interest

Light Emitted From A Source

"Radiant Intensity"

Light Falling
On A Surface

"Irradiance"

Light Traveling Along A Ray

"Radiance"

Radiant Intensity

Radiant Intensity

Definition: The radiant (luminous) intensity is the power per unit solid angle (?) emitted by a point light source.

(立体角)

$$I(\omega) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\omega}$$

$$\left[\frac{W}{sr}\right] \left[\frac{lm}{sr} = cd = candela\right]$$

The candela is one of the seven SI base units.

Angles and Solid Angles

Angle: ratio of subtended arc length on circle to radius

$$\bullet \ \theta = \frac{l}{r}$$

• Circle has 2π radians

Solid angle: ratio of subtended area on sphere to radjus squared

$$\bullet \ \Omega = \frac{A}{r^2}$$

ullet Sphere has 4π steradians

Differential Solid Angles

$$dA = (r d\theta)(r \sin \theta d\phi)$$
$$= r^2 \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\phi$$

Differential Solid Angles

Sphere: S^2

$$\Omega = \int_{S^2} d\omega$$

$$= \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\theta \, d\phi$$

$$= 4\pi$$

ω as a direction vector

Isotropic Point Source

$$\Phi = \int_{S^2} I \, \mathrm{d}\omega$$
$$= 4\pi I$$

$$I = \frac{\Phi}{4\pi}$$

Modern LED Light

Output: 815 lumens

(11W LED replacement for 60W incandescent)

Radiant intensity?

Assume isotropic:

Intensity = 815 lumens / 4pi sr

= 65 candelas

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)