

Teoria da Computação

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Introdução à Complexidade

- Temos dois tipos de problemas:
 - Insolúveis
 - Solúveis
- Mas será que os problemas "Solúveis" são todos tratáveis na prática i.e. é possível resolvê-los de forma eficiente?

- Temos dois tipos de problemas:
 - Insolúveis
 - Solúveis
- Mas será que os problemas "Solúveis" são todos tratáveis na prática i.e. é possível resolvê-los de forma eficiente?
 - No! (ex: solução demora 1 século para computar)
 - Alguns consomem demais os recursos (tempo e/ou espaço)
- Vamos nos ater ao tempo primeiramente...
- Como calcular o tempo que uma MT, ou um autômato, ou mesmo um computador leva para computar um dado problema?

- Considere a linguagem $A = \{0^k 1^k \mid k \ge 0\}$
 - Quanto tempo uma MT de uma única fita precisa para decidir A?
 - Quantos passos uma MT de uma fita precisa para decidir A?

M_1 = "Sobre a cadeia de entrada w:

- 1. Faça uma varredura na fita e *rejeite* se for encontrado algum 0 a direita de algum 1
- 2. Repita se existem ambos, 0s e 1s, na fita:
- 3. Faça uma varredura na fita, cortando um único 0 e um único 1
- 4. Se ainda permanecerem 0s após todos os 1s tiverem sido cortados ou se permanecerem 1s após todos os 0s tiverem sido cortados, *rejeite*. Caso contrário (sem 0s e 1s na fita), *aceite*.

- O número de passos que um algoritmo usa sobre uma entrada específica pode depender de vários parâmetros:
 - Usualmente tamanho da entrada: vetor, texto, número grande;
 - A configuração inicial da entrada (fita);
 - Em um grafo: vértices, arestas, grau máximo do grafo.
- O número de passos também é influenciado pelo modelo de máquina utilizada!
- É comum analisarmos duas situações específicas
 - Análise pessimista ou do pior caso
 - Análise otimista ou do melhor caso

Notação Assintótica (Notação O grande – Limite Superior)

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e n_0 tais que, para $n > n_0$, temos $|f(n)| \le c.|g(n)|$ \rightarrow f(n) = O(g(n))

Notação Assintótica (Notação O grande – Limite Superior)

•
$$f(n) = n^2 + 4n - 4$$
 $g(n) = O(n^2)$

•
$$f(n) = 2n^2$$
 $g(n) = O(n^2)$ [$O(n)$?]

$f(n)/c \& n_0$	c=1 n ₀ =3	c=1 n ₀ =50	c=2 n ₀ =1	$c=2$ $n_0=10$	c=3 n ₀ =2	c=3 n ₀ =10
$2n^2$					-	-
$c(n^2)$						
$n^2 + 4n - 4$						
c(n)						

Notação Assintótica (Notação O pequeno – *Little-O*)

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e n_0 tais que, para $n > n_0$, temos $|f(n)| < c \cdot |g(n)|$ \rightarrow f(n) = o(g(n))

Notação Assintótica Notação Omega Grande – Limite Inferior

Uma função f(n) é o limite inferior de outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n > n_0$, temos $|g(n)| \ge c.|f(n)|$, $g(n) = \Omega(f(n))$.

Notação Assintótica Notação Omega Pequeno – Limite-Omega

Uma função f(n) é o limite inferior de outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n > n_0$, temos |g(n)| > c.|f(n)|, $g(n) = \omega(f(n))$.

Notação Assintótica Limite Firme (Notação Θ)

Uma função f(n) é o limite restrito (ou exato) de outra função g(n)se existem três constantes positivas c_1 , c_2 , e n_0 tais que, para $n > n_0$, temos $c_1 |f(n)| \ge |g(n)| \ge c_2 |f(n)|$, $g(n) = \Theta(f(n))$

[funções crescem com mesma rapidez]

$$n^2 + 4n - 4 = \Theta(n^2)$$

Algumas Operações com Notação *O*

c.O(f(n)) = O(f(n)), onde c é uma constante.

$$O(f(n)) + O(g(n)) = O(MAX(f(n), g(n)))$$

$$n.O(f(n)) = O(n.f(n))$$

$$O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

Funções de Complexidade

- Algumas funções são consideradas equivalentes assintoticamente i.e. possuem um mesmo "peso"
- Quais são as funções genéricas que não são equivalentes?
 - Vamos testar alguns casos!?

Funções de Complexidade

Determine a quantidade de passos necessários para cada situação hipotética abaixo considerando os vários valores para n:

f(n)/n	n=10	n=100	n=1.000	n=10.000	n=100.000	n=1.000.000
n						
$log_{10}n$						
1						
n^2						
<i>3n</i>						
\sqrt{n}						
$n \log_{10} n$						
2 ⁿ						
n !						

Funções de Complexidade

Podemos classificar os tempos de execução em:

$$1 < \log \log n < \log n < n^{\varepsilon} < n^{c} < n^{\log n} < c^{n}$$

Definição: definimos uma classe de complexidade de tempo denominada TIME(t(n)) como a coleção de todas as linguagens que são decidíveis por uma MT de tempo O(t(n))

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

$$A = \{0^k 1^k \mid k \ge 0\}$$

- Considere que a entrada é composta por *n* símbolos
- Qual é a complexidade de tempo do algoritmo apresentado?

 M_1 = "Sobre a cadeia de entrada w:

Faça uma varredura na fita e <u>rejeite</u> se for encontrado algum 0 a direita de algum 1

- Repita se existem ambos, 0
- 3. Faça uma varredura na f
- Se ainda permanecerem 0s se permanecerem 1s após t Caso contrário (sem 0s e 1s

Note que não foi mencionado o reposicionamento do cabeçote no início da fita na descrição do passo 1!

A notação assintótica nos permite omitir detalhes da descrição da máquina que afetam o tempo de execução por, **no** máximo, um fator constante!

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

- Considere que a entrada é composta por *n* símbolos
- Qual é a complexidade de tempo do algoritmo apresentado?

 M_1 = "Sobre a cadeia de entrada w:

- 1. Faça uma varredura na fita e <u>rejeite</u> se for encontrado algum 0 a direita de algum 1
- 2. Repita se existem ambos, 0s e 1s, na fita:
- 3. Faça uma varredura na fita, cortando um único 0 e um único 1
- 4. Se ainda permanecerem 0s após todos os 1s tiverem sido cortados ou se permanecerem 1s após todos os 0s tiverem sido cortados, *rejeite*. Caso contrário (sem 0s e 1s na fita), *aceite*.

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

$$A = \{0^k 1^k \mid k \ge 0\}$$

- Utilizando M_1 mostramos que $A = O(n^2)$ logo, $A \in TIME(n^2)$
- Mas será que $A = O(n^2)$ ou $A = o(n^2)$?
- Alguma ideia para construir uma máquina melhor? (=mais eficiente)

- Alguma ideia para construir uma máquina melhor?
 - Ao invés de cortar apenas um 1 e 0 cortar dois a cada passo
 - Isso ajuda?
 - Qual é a complexidade de tempo?

- Alguma ideia para construir uma máquina melhor?
 - Ao invés de cortar apenas um 1 e 0 cortar dois a cada passo
 - Proposta B:
- M_2 = "Sobre a cadeia de entrada w:
 - 1. Faça uma varredura na fita e <u>rejeite</u> se for encontrado algum 0 a direita de algum 1
 - 2. Repita se existem ambos, 0s ou 1s, na fita:
 - 3. Faça uma varredura na fita, verificando se o número total de 0s e 1s remanescentes é par ou ímpar. Se for ímpar, *rejeite*
 - 4. Faça uma varredura novamente na fita, cortando alternadamente um 0 sim e outro não começando com o primeiro 0, e, então, cortando alternadamente um 1 sim e outro não começando com o primeiro 1.
 - 5. Se nenhum 0 e nenhum 1 permanecerem na fita, *aceite*. Caso contrário, *rejeite*.

- Alguma ideia para construir uma máquina melhor?
 - Ao invés de cortar apenas um 1 e 0 cortar dois a cada passo
 - Proposta $B M_2 => O(n \log n)$ Assim podemos dizer que $A \in TIME(n \log n)$ Mas será que $A = O(n \log n)$ ou $A = o(n \log n)$?

- Alguma ideia para construir uma máquina melhor?
 - Ao invés de cortar apenas um 1 e 0 cortar dois a cada passo
 - Proposta $B M_2 => O(n \log n)$ Assim podemos dizer que $A \in TIME(n \log n)$ Mas será que $A = O(n \log n)$ ou $A = o(n \log n)$?

No!!

É possível provar que qualquer linguagem que pode ser decidida em tempo o(n log n) em uma MT de uma fita é regular!

Relacionamentos de Complexidade entre Modelos Computacionais

- Já mostramos que certas modificações em uma MT não aumentam a sua capacidade computacional.
- Mas será que essas modificações que definem um modelo computacional não melhoram o desempenho da computação (i.e. realizar a mesma coisa de maneira mais rápida assintoticamente)?

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

• Será que é possível construir uma MT de duas fitas que possui complexidade de tempo o(n log n)?

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

- Será que é possível construir uma MT de duas fitas que possui complexidade de tempo o(n log n)?
- Considere a magnifica MT de duas fitas M₃:

 M_3 = "Sobre a cadeia de entrada w:

- 1. Faça uma varredura na fita e <u>rejeite</u> se algum 0 for encontrado à direita de algum 1.
- 2. Faça uma varredura nos 0s sobre a fita 1 até o primeiro 1. Ao mesmo tempo, copie os 0s para a fita 2.
- 3. Faça uma varredura nos 1s sobre a fita 1 até o final da entrada. Para cada 1 lido sobre a fita 1, corte um 0 sobre a fita 2. Se todos os 0s estiverem cortados antes que todos os 1s sejam lidos, *rejeite*.
- 4. Se todos os 0s tiverem sido cortados, *aceite*. Se restar algum 0, *rejeite*.

Voltemos ao nosso exemplo: $A = \{0^k 1^k \mid k \ge 0\}$

$$A = \{0^k 1^k \mid k \ge 0\}$$

- Será que é possível construir uma MT de duas fitas que possui complexidade de tempo o(n log n)?
- Considere a magnifica MT de duas fitas M_3 :

 $M_3 =$ "So Qual a **complexidade de tempo** da MT M₃? à direita

- Faça uma varredura nos 0s sobre a fita 1 até o primeiro 1. Ao mesmo tempo, copie os 0s para a fita 2.
- Faça uma varredura nos 1s sobre a fita 1 até o final da entrada. Para cada 1 lido sobre a fita 1, corte um 0 sobre a fita 2. Se todos os 0s estiverem cortados antes que todos os 1s sejam lidos, *rejeite*.
- Se todos os 0s tiverem sido cortados, <u>aceite</u>. Se restar algum 0, <u>rejeite</u>.

- A MT de duas fitas M_3 possui complexidade de tempo: O(n)
- Mas será que $M_3 = O(n)$ ou $M_3 = o(n)$??

- A MT de duas fitas M_3 possui complexidade de tempo: O(n)
- Mas será que $M_3 = O(n)$ ou $M_3 = o(n)$
- É necessário *n* operações no mínimo para ler a entrada, então não tem como ser melhor do que isso!

Resumo da complexidade de tempo sobre A:

MT com uma fita: O(n log n)

MT com duas fitas: O(n)

A complexidade de A depende do modelo computacional utilizado!

Relacionamento de Complexidade

Teorema: seja t(n) uma função onde $t(n) \ge n$. Então toda MT multifita de tempo t(n) tem uma MT de uma fita equivalente de tempo $O(t^2(n))$.

Ideia da prova: lembrando-se que é possível converter qualquer MT multifita em uma MT de uma única fita que a simula, é possível perceber que simular cada passo da máquina multifita usa, no máximo, O(t(n)) passos na máquina de uma única fita. Logo, o tempo total usado é $O(t^2(n))$

Relacionamento de Complexidade

Teorema: seja t(n) uma função onde $t(n) \ge n$. Então para toda MT não-determinística de uma fita de tempo t(n), existe uma MT determinística de uma fita equivalente de tempo $2^{O(t(n))}$.

Ideia da prova: lembrando-se que é possível converter qualquer MT não-determinística em uma MT determinística de uma única fita que a simula, é possível perceber que é preciso explorar todo e cada ramificação da árvore de possibilidades gerada por uma MT não-determinística: $O(b^{t(n)})$ o que nos leva a uma complexidade de tempo de simulação de: $2^{O(t(n))}$.

Relacionamento de Complexidade

Teorema: seja t(n) uma função onde $t(n) \ge n$. Então para toda MT não-determinística de uma fita de tempo t(n), existe uma MT determinística de uma fita equivalente de tempo $2^{O(t(n))}$.

Ideia da prova: lembrando-se que é possível converter qualquer

M A definição do tempo de execução de uma MT não-determinística
não tem o objetivo de corresponder a algum dispositivo de
computação do mundo real. Ela é uma definição matemática útil
que ajuda na caracterização da complexidade de uma classe
importante de problemas computacionais!

de tempo de simulação de: 20(107).