

Recommendation Generation for Performance Improvement by using Cross-Organizational Process Mining

Onur Yılmaz Supervisor: Assoc. Prof. Pınar Karagöz

September 1, 2015

Onur Yılmaz

Agenda

- 1 Introduction
- 2 Related Work
- 3 Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

Introduction

Process Mining

Relatively young and developing research area and main idea is to

- discover,
- monitor and;
- improve processes by extracting information from event logs.

Competitive business life

Introduction

Cross-Organizational Process Mining

Cloud computing and shared infrastructures

Event logs of multiple organizations

Analyze the big picture

Work together to execute the same process

Execute the same task on shared infrastructure

Introduction

Focus of this Study

- A hybrid approach
 - Using different process mining subfields to create a new point of view
- Cross-organizational process mining
 - Processes are executed on several organizations,
 - Unsupervised learning using performances of organizations

Agenda

- 1 Introduction
- 2 Related Work
- Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

State of the Art in Process Mining

State of the Art in Process Mining

Process Discovery in Process Mining

- Various different process mining algorithms for solving different challenges in the process mining area
 - Alpha Algorithm
 - Inductive Approach
 - Hierarchical Clustering
 - Genetic Approach
 - Heuristic Approach

Robust, repeatable and mature set of approaches

Cross-organizational Process Mining

- Matching behaviors and process models of organizations
- Configurable process models for organizations
- Intra and inter-organizational process mining:
 - Collaboration
 - Exploiting commonality

Learning opportunity of organizations from each other

Process Similarity in Process Mining

- Emerging attention in business processes
- Repository of process models of similar business operations
- Methods in the literature
 - Similarity Metrics
 - Alignment Matrix
 - Delta Analysis
 - Mismatch Patterns

Point the pattern differences between organizations

Contributions of This Study

- Cross-organizational process mining approach for process performance improvement
- Generic, noise-capable process mining method for mining process models of different organizations
- Clustering of organizations based on their performance indicators
 - Unlike the clustering methods based on process structures in the literature

Contributions of This Study

- Mismatch analysis for spotting differences between processes of organizations
 - Formulation and implementation of patterns and analyzers
- Recommendation generation to show how organizations can learn from other organizations which perform better
- Open-source, extensible and configurable set of plugins in ProM framework

Agenda

- 1 Introduction
- 2 Related Work
- 3 Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

Event Log

 Outputs of the software systems like Enterprise Resource Planning (ERP) or Business Process Management (BPM)

Event Log				
		Attributes		
	Event	Date	Time	Transition
Case #1	Register Application	16.04.2013	14:37:27	Complete
	Check Credit	16.04.2013	14:41:19	Complete
	Check System	16.04.2013	14:47:35	Complete
	Calculate Capacity	16.04.2013	14:50:21	Complete
	Accept	16.04.2013	14:53:22	Complete
	Send decision e-mail	16.04.2013	14:55:11	Complete
Case #2	Register Application	16.04.2013	16:28:19	Complete
	Check Credit	16.04.2013	16:36:22	Complete

Event Log

Process Modeling

- Workflow Net
 - Petri net with a start node, end node and connectedness

Mathematical background

Process Modeling

- Business Process Modelling Notation (BPMN)
 - Standardized and easy to understand by stakeholders

Business oriented

Process Discovery

- One of the most challenging tasks is to construct a process model based on the behavior in the event logs
- Inductive Process Mining is used since it is simple, highly applicable and configurable
 - Block-structured Workflow Nets
 - Rediscoverability

Process Discovery

- Inductive Miner Infrequent (IMi) is proposed as an extension to Inductive Miner to handle noise in the event logs:
 - **1. Activity Sets:** Split the activities in log to disjoint sets.
 - 2. Sublogs: Split the log by using activity sets.
 - **3. Recursive Mining:** Mine sublogs with these steps until a sublog contains only single activity.

Filter infrequent behavior at every step by a user defined threshold

Process Performance Analysis

 Discover relationships between event logs and process models for conformance and performance analysis

Clustering

- k-means algorithm (Lloyd's algorithm) and its variation based on random initialization:
 - k-means++ by Arthur and Vassilvitskii
 - Clustering of performance analysis results of organizations
- Implementation of k-means++ in WEKA

Mismatch Patterns in Process Models

Patterns for frequent mismatches between the similar process models by Dijkman

Authorization

Activity

- Skipped Activity
- Refined Activity

Control Flow

- Activities at Different Moments in Processes
- Different Conditions for Occurrence
- Different Dependencies
- Additional Dependencies

Mismatch Patterns in Process Models

Activity Mismatch Patterns

Skipped Activity

Refined Activity

Mismatch Patterns in Process Models

Control Flow Mismatch Patterns

Activities at Different Moments in Processes

Different Conditions for Occurrence

Mismatch Patterns in Process Models

Control Flow Mismatch Patterns

Different Dependencies

Additional Dependencies

Agenda

- 1 Introduction
- 2 Related Work
- Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

Approach Overview

Approach Overview

Process Model Mining

Applied for each organization:

Performance Indicator Analysis

Two steps:

Replay and Performance Indicator Calculation

Performance Indicator Clustering

- Performance Indicators:
 - Average Time Between Activities

Standard Deviation of Time
 Between Activities

Performance Indicator Analysis - Replay and Performance Indicator Calculation

Applied for each organization:

Performance Indicator Analysis - Performance Indicator Clustering

Mismatch Pattern Analysis

- Spot the differences between process models of different organizations as mismatch patterns
- BPMN used since notation is more appropriate to formulate mismatch patterns

Mismatch Pattern Analysis

Mismatch patterns and analyzers are developed

Mismatch Pattern Analysis

Mismatch patterns and analyzers formulated

```
input: O_1 first organization, O_2 second organization, A_{start} starting
activity, A<sub>end</sub> ending activity
output: MismatchPatterns a set of mismatch patterns
MismatchPatterns <-- {}
                               SkippedActivityAnalyzer (O_1, A_{start}, A_{end})
MismatchPatterns <--
                              RefinedActivityAnalyzer(O_1, O_2, A_{start}, A_{end})
MismatchPatterns <--
MismatchPatterns <--
                              DifferentMomentsAnalyzer (O_1, O_2, A_{\text{start}}, A_{\text{end}})
                              \label{eq:definitionsAnalyzer} \texttt{DifferentConditionsAnalyzer} \, (\texttt{O}_1, \, \texttt{O}_2, \, \, \texttt{A}_{\texttt{start}}, \, \texttt{A}_{\texttt{end}})
MismatchPatterns <--
                               DifferentDependencysAnalyzer (O_1, O_2, A_{start}, A_{end})
MismatchPatterns <--
MismatchPatterns <--
                              Additional Dependencys Analyzer (O_1, O_2, A_{start}, A_{end})
return MismatchPatterns
```

Recommendation Generation

- Providing a set of mismatch patterns for each organization to enhance their processes.
 - Mismatch patterns between organizations, which are performing better in terms of their performance indicator values.

Recommendation = (Organization, A_{start} , A_{end} , Mismatch Patterns)

Recommendation Generation

Recommendation Generation

```
RecommendationGeneration

input: O organization, C Cluster Analysis Data, P performance
difference threshold
output: Recommendations a set of recommendations

Recommendations 
{ }
i 
C Cluster of organization O

for each centroid for cluster i
   Get other cluster j with the centroids of A<sub>start</sub> and A<sub>end</sub>; and
   value difference larger than P
   for each organization O' in the cluster j

    MismatchPatterns 
Mismatch Pattern Analysis (O, O', A<sub>start</sub>, A<sub>end</sub>)
   Recommendations 
Recommendation (O, A<sub>start</sub>, A<sub>end</sub>, MismatchPatterns)
```

ProM Implementation

- ProM, extensible framework that supports a wide variety of process mining techniques in form of plugins
- Widely accepted in industry and academia with an active community
- Developed set of plugins are packaged with the name of «CrossOrgProcMin» and published on Github.

onuryilmaz/cross-orc-proc-min

ProM Implementation

Agenda

- 1 Introduction
- 2 Related Work
- Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

Evaluation Metrics

Dataset Selection

Loan Application Process

- Synthetically generated
- 4 variants of a simple loan application in a financial institute

Environmental Permit Application Process

- Real-life event log from "Configurable Services for Local Governments (CoSeLoG)" project
- «Environmental Permit Application Process» of 5 municipalities in Netherlands

Loan Application Process

	Cases	Events	Percentage
Variant #1	100	590	24 %
Variant #2	70	420	17 %
Variant #3	200	800	33 %
Variant #4	105	630	26 %

Cases Events **2440**

These variants are used as organizational logs

Loan Application Process - Process Model Mining

With «0» noise threshold

	Fitness	Structural Appropriateness	Behavioral Appropriateness	Average Appropriateness
Variant #1	100 %	70 %	98.5 %	84.2 %
Variant #2	100 %	100 %	100 %	100 %
Variant #3	100 %	100 %	100 %	100 %
Variant #4	100 %	100 %	98.2 %	99.1 %
Average	100 %	92.5 %	99.7 %	96.6 %

Each process model is fitting to event log and «appropriate»

Loan Application Process - Process Model Mining

Loan Application Process - Performance Indicator Analysis

- Performance Indicator Calculation:
 - Replay costs are all zero since 100 % fitness is achieved

Clustering:

Loan Application Process - Mismatch Pattern Analysis

Correlation between graph-edit similarity and number of mismatch patterns

Loan Application Process - Mismatch Pattern Analysis

- "Skipped Activity" and "Activities at Different Moments" mostly
- No "Different Conditions for Occurrence" or "Additional Dependencies"

Loan Application Process - Recommendation Generation

 Responsiveness and degree of helping the user to focus on the performance improvement

Environmental Permit Application Process

	Cases	Events	Percentage
Municipality #1	54	131	6.1 %
Municipality #2	302	586	27.3 %
Municipality #3	37	73	3.4 %
Municipality #4	340	507	23.7 %
Municipality #5	481	845	39.4 %

Cases Events **1214 2142**

- Preprocessing is undertaken on the raw dataset
- These municipalities are used as organizational logs

Environmental Permit Application Process - Process Model Mining

With 10 % noise threshold

	Fitness	Structural Appropriateness	Behavioral Appropriateness	Average Appropriateness
Municipality #1	86 %	97.5 %	54.4 %	76 %
Municipality #2	100 %	100 %	100 %	100 %
Municipality #3	92.3 %	71.1 %	67.2 %	69.1 %
Municipality #4	96.8 %	65.7 %	64 %	64.9 %
Municipality #5	94.5 %	58.8 %	39.7 %	49.3 %
Average	93.9 %	78.6 %	65.1 %	71.9 %

High fitness values except Municipality #4 and #5

Environmental Permit Application Process - Process Model Mining

10 to 20 times simplified process models

Environmental Permit Application Process - Performance Indicator Analysis

Performance Indicator Calculation:

- As appropriateness and fitness decrease; alignment costs increase for the municipalities
- Performance indicators calculated over replay are acceptable

	Fitness	Average Appropriateness	Alignment Cost
Municipality #1	86 %	76 %	173.2
Municipality #2	100 %	100 %	0
Municipality #3	92.3 %	69.1 %	323.3
Municipality #4	96.8 %	64.9 %	9.1
Municipality #5	94.5 %	49.3 %	35.8

Environmental Permit Application Process - Performance Indicator Analysis

Clustering:

Cluster #3

#1

Cluster #1

Environmental Permit Application Process – Mismatch Pattern Analysis

Correlation between graph-edit similarity and number of mismatch patterns except
 Municipality #4 and #5

Environmental Permit Application Process – Mismatch Pattern Analysis

- "Skipped Activity" mostly
- "Refined Activity" is eliminated since codes are used instead of activity names

Environmental Permit Application Process – Recommendation Generation

(with 2 clusters)

Number of mismatch patterns to check significantly decreases with performance clustering

Environmental Permit Application Process – Recommendation Generation

(with 3 clusters)

- Learning opportunities increases as number of cluster increases
- Number of mismatch patterns to check significantly decreases with performance clustering

Discussions

- Process mining stage:
 - Mines the process models with high fitness and high appropriateness from event logs
- Performance indicator calculation stage:
 - With the high quality process models, calculated performance indicators are acceptable
- Clustering stage:
 - Organizations can be clustered based on their performance indicators

Discussions

- Mismatch analysis stage:
 - It finds differences in accordance with similarity metrics
 - Not all mismatch patterns are discovered
 - Information value of mismatch patterns are not equal
- Recommendation generation stage:
 - Performance clustering helps to focus on differences
 - 3 times more in Loan Application Process
 - 100 times more in Environmental Permit Application Process

Discussions

- Business value of generated recommendations:
 - Results may be
 - important or
 - infeasible and irrelevant for business environment
 - Some insights about results can be provided but business environment and case related assessment is also required.

Discussions

In Loan Application Process, Variant #3 performs worse

- 27 % on average time and
- 12 % on standard deviation time

between activities

Calculate Capacity» → Accept

Discussions

In Environmental Permit Application Process,

Cluster #3 performs better

- 40 % on average time and
- 53% on standard deviation time

between activities

01_HOOFD_010 → 01_HOOFD_015

Agenda

- 1 Introduction
- 2 Related Work
- 3 Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

- Cross-organizational process mining is applied
 - Unsupervised learning with predictor variables as performances of organizations
 - In an environment where processes are executed on several organizations
- Results show that it is possible to use crossorganizational process mining and mismatch patterns for performance improvement recommendations

A four-stage solution is presented and their performances are explained

Future Work

- Process mining stage:
 - Different techniques can be used to mine complex process models
- Performance indicator stage:
 - New indicators based on business environment
- Mismatch pattern analysis:
 - New patterns can be introduced

Future Work

- Recommendation generation:
 - Domain or BPM expertise to assess the quality of recommendations
- ProM implementation:
 - Visually selecting the interested area of process models

Agenda

- 1 Introduction
- 2 Related Work
- Background
- 4 Methodology

- Results & Discussions
- 6 Conclusion & Future Work
- 7 Demonstration

Demonstration

Also available on YouTube https://youtu.be/T92UrRfl3r0

References

TODO

Questions & Comments

Thank you for your attention!

Recommendation Generation for Performance Improvement by using Cross-Organizational Process Mining

Onur Yılmaz Supervisor: Assoc. Prof. Pınar Karagöz

September 1, 2015

