Tree Decomposed Graph Neural Network

Tyler Derr

Network and Data Science Lab, Department of Computer Science, Vanderbilt University

Acknowledgements

We thank SIGIR for their support SIGIR through the student travel award. Special Interest Group on Information Retrieva

Motivation

$$\hat{\mathbf{h}}_{i}^{l} = \text{AGGREGATE}^{l}(\mathbf{h}_{i}^{l-1}, \{\mathbf{h}_{j}^{l-1} | j \in \mathcal{N}_{i}\}),$$
 $\mathbf{h}_{i}^{l} = \text{TRANSFORMATION}^{l}(\hat{\mathbf{h}}_{i}^{l})$

1st-layer neighborhood features

1st-layer neighborhood features

Tree Decomposed Graph Neural Network

Tree Decomposition and Multi-hop Dependency

Multi-hop Dependency Width of GNNs

$$v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_1$$

 $v_2 \rightarrow v_4 \rightarrow v_1$

$$\mathbf{E}^{k,K} = \sum_{i=1}^{K} \widehat{\mathbf{A}}^{i} \qquad \mathbf{E}^{k,K} = \sum_{i=k}^{K} \widehat{\mathbf{A}}^{i}$$

Real World Graph Result

Model	Cora	Cite.	Pub.	Corn.	Tex.	Wisc.	Act.
GCN	86.97	76.37	88.19	58.57	58.68	53.14	28.65
GAT	87.30	76.55	85.33	61.89	58.38	55.29	28.45
SGC	87.07	76.01	85.11	58.68	60.43	53.49	27.46
Geom-GCN	85.35	78.02	89.95	60.54	66.76	64.51	31.63
APPNP	86.76	77.08	88.45	74.59	74.30	81.10	34.36
DAGNN	87.26	76.47	87.49	80.97	81.32	85.38	36.60
GCNII	88.27	77.06	90.26	76.70	77.08	80.94	3 5.18
DTGNN-s	88.26	76.64	89.13	80.97	82.95	85.47	36.70
DTGNN-w	88.01	76.58	89.22	82.92	83.00	85.57	37.11

Model	Cora		Citeseer		Pubmed		Avg. Rank
	Fixed	Random	Fixed	Random	Fixed	Random	11,8,144111
GCN	81.50	79.91	71.42	68.78	79.12	77.84	7.17
GAT	83.10	80.80	70.80	68.90	79.10	77.80	7.00
SGC	82.63	80.18	72.10	69.33	79.12	76.74	6.83
APPNP	83.34	82.26	72.22	70.53	80.14	79.54	3.83
DAGNN	84.88	83.47	73.39	70.87	80.51	79.52	2.33
GCNII	85.57	82.58	73.24	70.04	80.00	79.03	3.83
TDGNN-s	8 5.35	83.84	73.78	71.27	80.20	80.01	1.33

70.32

80.12

79.77

3.67

72.14

83.43

TDGNN-w 84.42

Shallow layers with long range dependencies achieves the comparable performance