ĐỀ 1 ĐỀ THI CUỐI KỲ MÔN GIẢI TÍCH 3 – Học kì 20183

Nhóm 1: Mã học phần MII131 Thời gian: 60 phút

Chú ý: *Thí sinh không được sử dụng tài liệu và giám thị phải ký* xác nhân số để vào bài thi

Câu 1: [1d] Xét sự hội tụ của chuỗi số sau: $\sum_{n=1}^{\infty} \left(n^{1/(n^2+3)} - 1 \right).$

Câu 2: [1d] Xét sự hội tụ của chuỗi số sau: $\sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n} \right).$ Câu 3: [1d] Tìm miền hội tụ của chuỗi hàm: $\sum_{n=1}^{\infty} \left(\frac{2n}{2n+1} \right)^n \cot^n x.$

Câu 4: [1d] Tính tổng $\sum_{n=0}^{\infty} \frac{1}{(2n)!}$

Câu 5: [3d] Giải các phương trình vi phân sau a) $y' + 2xy = 2x^3$.

a)
$$u' + 2xy = 2x^3$$

b)
$$(x^2y - y^2x)dx + (\frac{x^3}{3} - x^2y + \sin y)dy = 0$$
.

c) $y'' - 3y' + 2y = x \cos x$.

Câu 6: [1đ] Tìm tất cả các giá trị $a,b\in\mathbb{R}$ sao cho mọi nghiệm của phương trình vi phân y(x)'' + ay(x)' + by(x) = 0 đều tiến dần đến 0 khi $x + +\infty$.

Câu 7: [1d] Tìm biến đổi Laplace ngược của hàm số: $F(s) = \frac{1}{s^4 - 1}$ Câu 8: [1d] Áp dụng toán tử Laplace, giải phương trình vi phân sau: $x''' - 2x'' - 5x' + 6x = e^{-t}, x(0) = x'(0) = x''(0) = 0.$

<u></u>ВÈ 2 ВÈ ТНІ CUÓI KỲ MÔN GIẢI TÍCH 3 − Học kì 20183

Vhóm 1: Mã học phần MII131 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số để vào bài thi

Câu 1: [1d] Xét sự hội tụ của chuỗi số sau: $\sum_{n=1}^{\infty} \left(n^{1/(n^2+1)} - 1 \right).$

Câu 2: [1d] Xét sự hội tụ của chuỗi số sau: $\sum_{n=2}^{\infty} \ln \left(1 - \frac{(-1)^n}{n}\right)$

Câu 3: [1d] Tìm miền hội tụ của chuỗi hàm: $\sum_{n=1}^{\infty} \left(\frac{3n}{3n-1}\right)^n$ tan $^n x$.

Câu 4: [1d] Tính tổng $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$.

Câu 5: [3d] Giải các phương trình vị phân sau a) $y' + 2xy = -2x^3$.

b)
$$(x^2y + y^2x)dx + (\frac{x^3}{3} + x^2y + \cos y)dy = 0$$
.

c) $y'' + 3y' + 2y = x \sin x$.

Câu 6: [1d] Tìm tất cả các giá trị $a,b \in \mathbb{R}$ sao cho mọi nghiệm của phương trình vị phân y(x)'' + ay(x)' + by(x) = 0 đều bị chặn trên tập số thực.

Câu 7: [1đ] Tìm biến đổi Laplace ngược của hàm số: $F(s) = \frac{1}{s^4 - s1}$

Câu 8: [1d] Áp dụng toán từ Laplace, giải phương trình vi phân sau:

$$x''' - 2x'' - 5x' + 6x = e^{2t}, x(0) = x'(0) = x''(0) = 0.$$

Đáp án Đề 1:

Câu 1:+) Áp dụng TCSS, chuỗi số dương đã cho cùng loại với chuỗi $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$.

+)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2} < \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
. Chuỗi đã cho hội tụ.

Câu 2: [1đ] +) Áp dụng khai triển hữu hạn, chuỗi đã cho cùng loại với

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n} - \sum_{n=2}^{\infty} \frac{1}{2n^2}.$$

+) Áp dụng tiêu chuẩn Leibnitz và chuỗi điều hòa với $\alpha=2$. Chuỗi đã cho HT. (không được áp dụng tiêu chuẩn so sánh ngay vì chuỗi đã cho không giữ dấu)

Câu 3: [1 $\overline{\mathbf{d}}$]+) Bán kính hội tụ R=1, khoảng hội tụ $\cot \tan x \in (-1,1)$.

+) Loại hai đầu mút, miền hội tụ là $x\in\bigcup_{k\in\mathbb{Z}}\left(\pi\:/\:4+k\pi,3\pi\:/\:4+k\pi\right)$.

Câu 4: [1d] +)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
; $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$;

+)
$$\frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
; Tổng cần tìm là $\frac{e^1 + e^{-1}}{2}$.

Câu 5: [3đ] a) +) Phương trình tuyến tính, nghiệm là

$$y = e^{\int -2xdx} \left(\int 2x^3 e^{\int 2xdx} dx + C \right)$$

+)
$$y = e^{-x^2} \left(\int x^2 e^{x^2} dx^2 + C \right) = e^{-x^2} \left(x^2 e^{x^2} - e^{x^2} + C \right) = x^2 - 1 + Ce^{-x^2}$$
.

b) +) $P'_y = Q'_x = x^2 - 2xy$. Đây là phương trình vi phân toàn phần.

+) TPTQ là
$$\frac{x^3}{3}y - \frac{x^2y^2}{2} - \cos y = C$$
.

c) +) PTTT cấp 2; Nghiệm PT thuần nhất là $\overset{-}{y}=C_1e^x+C_2e^{2x}$.

+ Nghiệm cần tìm là $y = C_1 e^x + C_2 e^{2x} - ((15x+17)\sin(x) + (6-5x)\cos(x))/50$

Câu 6: +) PTĐT phải có các nghiệm thực âm hoặc các nghiệm phức với phần thực âm.

+) Suy ra điều kiện là a > 0, b > 0.

Câu 7: [1d] +) Phân tích
$$F(s) = \frac{1}{s^4 - 1} = \frac{1}{2} \left(\frac{1}{s^2 - 1} - \frac{1}{s^2 + 1} \right)$$
.

+)
$$L^{-1}(F(s)) = \frac{1}{2}(\sinh t - \sin t).$$

Câu 8: [1đ]

+) Đưa về PT Đại số, tìm được nghiệm
$$X(s) = \frac{1}{\left(s-1\right)\left(s+1\right)\left(s+2\right)\left(s-3\right)}$$

+) Nghiệm là
$$x(t) = \frac{-1}{12}e^t + \frac{1}{8}e^{-t} - \frac{1}{15}e^{-2t} + \frac{1}{40}e^{3t}$$
.

Đáp án Đề 2:

Câu 1: [1đ] +) Áp dụng TCSS, chuỗi số dương đã cho cùng loại với chuỗi $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$.

+)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2} < \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
. Chuỗi đã cho hội tụ.

Câu 2: [1đ] +) Áp dụng khai triển hữu hạn, chuỗi đã cho cùng loại với

$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n+1}}{n} - \sum_{n=2}^{\infty} \frac{1}{2n^2}.$$

+) Áp dụng tiêu chuẩn Leibnitz và chuỗi điều hòa với $\alpha=2$. Chuỗi đã cho HT. (không được áp dụng tiêu chuẩn so sánh ngay vì chuỗi đã cho không giữ dấu)

Câu 3: [1 \mathbf{d}] +) Bán kính hội tụ R=1, khoảng hội tụ $\tan x \in (-1,1)$.

+) Loại hai đầu mút, miền hội tụ là $x\in\bigcup_{k\in\mathbb{Z}}\left(-\pi\ /\ 4+k\pi,\pi\ /\ 4+k\pi\right)$.

Câu 4: [1đ] +)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
; $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$;

+)
$$\frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
; Tổng cần tìm là $\frac{e^1 - e^{-1}}{2}$.

Câu 5: [3đ] a)+) Phương trình tuyến tính, nghiệm là

$$y = e^{\int -2xdx} \left(-\int 2x^3 e^{\int 2xdx} dx + C \right)$$

+)
$$y = e^{-x^2} \left(-\int x^2 e^{x^2} dx^2 + C \right) = e^{-x^2} \left(-x^2 e^{x^2} + e^{x^2} + C \right) = -x^2 + 1 + Ce^{-x^2}$$
.

b)+) $P'_y = Q'_x = x^2 + 2xy$. Đây là phương trình vi phân toàn phần.

+) TPTQ là
$$\frac{x^3}{3}y + \frac{x^2y^2}{2} + \sin y = C$$
.

c)+) PTTT cấp 2; Nghiệm PT thuần nhất là $\overset{-}{y}=C_1e^{-x}+C_2e^{-2x}$.

+ Nghiệm cần tìm là $y = C_1 e^{-x} + C_2 e^{-2x} + ((5x+6)\sin(x) + (17-15x)\cos(x))/50$

Câu 6: [1đ]+) Nếu $a \neq 0$, cho $x \to \pm \infty$, luôn có ít nhất 1 nghiệm không bị chặn. Suy ra a=0

+) DK: a = 0, b > 0.

Câu 7: [1d] +) Phân tích
$$F(s) = \frac{1}{s^4 - 81} = \frac{1}{18} \left(\frac{1}{s^2 - 9} - \frac{1}{s^2 + 9} \right).$$

+)
$$L^{-1}(F(s)) = \frac{1}{54}(\sinh 3t - \sin 3t)$$
.

Câu 8: [1đ] +) Đưa về PT Đại số, tìm được nghiệm

$$X(s) = \frac{1}{(s-1)(s-2)(s+2)(s-3)}$$

+) Nghiệm là
$$x(t) = \frac{1}{6}e^t + \frac{-1}{4}e^{2t} - \frac{1}{60}e^{-2t} + \frac{1}{10}e^{3t}$$
.

Nhóm ngành 2/Lớp BK 63. Mã số MI1132. Thời gian: 90 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thị BE 1 BÈ THI CUỐI KY MÔN GIẢI TÍCH 3 – Học kì 20183

Câu 1 (*I điểm*). Xét sự hội tụ, phân kỳ của chuỗi số $\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^{n(n+3)}.$

Câu 2 (I điểm). Tìm miền hội tụ của chuỗi hàm

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+4n+5} (x-1)^{4n}.$$

Câu 3 (3 điểm). Giải các phương trình vi phân sau :

a)
$$3xy^2y' = x^2 \sin x + y^3$$
. b) $y'' - 3y' + 2y = e^x \sin x$.

c)
$$x^2y'' - 2xy' + 2y = |x|$$
.

Câu 4 (1 điểm). Khai triển hàm $y = \ln(1 - x + x^2 - x^3)$ thành

chuỗi Maclaurin.
Câu 5 (
$$I$$
 điểm). Tính L^{-1} $\left\{ \frac{-1}{s} (t) \right\}$

Câu 6 (1 điểm). Dùng biển đổi Laplace tìm nghiện riêng khác không của phương trình vi phân tx'' + (t-3)x' + 2x = 0, x(0) = 0.

Câu 7 (1 điểm). Xét tính hội tụ đều trên ${\mathbb R}$ của chuỗi hàm số

$$\sum_{n=1}^{\infty} \left(\int_{\sqrt{n}}^{n} t^4 \sqrt[3]{2 + \sinh^2 t} dt \right) \cos(2nx)$$

Câu 8 (1 điểm). Tính tổng $\sum_{n=0}^{\infty} \frac{3n+1}{3^n}.$

BÉ 2 BÈ THI CUÓI KY MÔN GIẢI TÍCH 3 – Học kì 20183

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC

Nhóm ngành 2/Lớp BK 63. Mã số M11132. Thời gian: 90 phút Chú ý: *Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài th*ị

Câu 1 (1 điểm). Xét sự hội tụ, phân kỳ của chuỗi số
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{n+1} \right)^{n(n+3)}.$$

Câu 2 (*I điểm*). Tìm miền hội tụ của chuỗi hàm

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+4n+5} (x+1)^{4n}.$$

Câu 3 (3 điểm). Giải các phương trình vi phân sau :

a)
$$3xy^2y' = x^2\cos x + y^3$$
. b) $y'' - 3y' + 2y = e^x\cos x$.

c)
$$x^2y'' + 2xy' - 2y = |x|$$
.

Câu 4 (1 điểm). Khai triển hàm $y = \ln(1+x-x^2-x^3)$ thành

chuỗi Maclaurin.

Câu 5 (1 điểm). Tímh
$$L^{-1} \left\{ arccot \frac{1}{s} \right\} (t)$$

Câu 6 (1 điểm). Dùng biển đổi Laplace tìm nghiện riêng khác không

của phương trình vi phân tx'' + (t-2)x' + 2x = 0, x(0) = 0.

Câu 7 (I điểm). Xét tính hội tụ đều trên $\, \mathbb{R} \,$ của chuỗi hàm số

$$\sum_{n=1}^{\infty} \left(\int_{\sqrt{n}}^{n} t^4 \sqrt[5]{2 + \sinh^2 t} dt \right) \cos(2nx)$$

Câu 8 (1 điểm). Tính tổng $\sum_{n=0}^{\infty} \frac{3n+1}{3^n}.$

Đề 1. N2	ĐÁP ÁN GIẢI TÍCH 3 (31.7.2019)
Câu 1	$(n+1)^{n+3}$
(1 điểm)	+) $a_n > 0$, $\sqrt[n]{a_n} = \left(\frac{n+1}{n+2}\right)^{n+3}$. +) $\lim_{n \to \infty} \sqrt[n]{a_n} = e^{-1} < 1 \Rightarrow \text{chuỗi HT (Cauchy)}.$
Câu 2	+) $X = (x-1)^4 \ge 0 \Rightarrow \sum_{n=1}^{\infty} \frac{2n+1}{n^2+4n+5} X^n$ (2) có R=1.
(1 điểm)	$\sum_{n=1}^{\infty} n^2 + 4n + 5^{n-1} $ (2) CO R-1.
	+) $X = 1 \Rightarrow \sum_{n=2}^{\infty} \frac{2n+1}{n^2+4n+5}$ PK theo TCSS 2, MHT của (2): $0 \le X < 1 \Rightarrow$ MHT (1):
	0 < x < 2.
Câu 3 a)(1 điểm)	+) Đặt $z = y^3 \Rightarrow z' - \frac{1}{x}z = x \sin x, x \neq 0$. +) Là PTVPTT, có $y^3 = x[C - \cos x]$ là TPTQ
b)(1 điểm)	+) $\overline{y} = C_1 e^x + C_2 e^{2x}$. +) NR $Y = \frac{e^x}{2} (\cos x - \sin x) \Rightarrow \text{NTQ } y = \overline{y} + Y$.
c)(1 điểm)	+) $ x = e^t \Rightarrow \frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^t$ là ptvptt cấp 2 với hệ số hằng số, có $y = C_1e^t + C_2e^{2t}$.
	+) $Y = -te^t \Rightarrow y = C_1 x + C_2 x^2 - x \ln x $ là NTQ
Câu 4 (1 điểm)	+) $y = \ln(1-x) + \ln(1+x^2)$, $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$, $ x < 1$.
10	$ \left + \right \ln(1+x^2) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n}}{n}, x < 1 \Rightarrow y = \sum_{n=1}^{\infty} \frac{1}{n} [(-1)^{n-1} x^{2n} - x^n], x < 1. $
Câu 5 (1 điểm)	+) $L^{-1}{F(s)}(t) = -\frac{1}{t}L^{-1}\left\{\frac{d}{ds}(\arccos\frac{-1}{s})\right\}(t) = \frac{1}{t}L^{-1}\left\{\frac{1}{s^2+1}\right\}(t)$ +) $=\frac{\sin t}{t}$.
Câu 6	+) $L\{tx'\}(s) = -sX'(s) - X(s); L\{tx''\}(s) = -s^2X'(s) - 2sX(s); L\{x'\}(s) = sX(s) \Rightarrow$
(1 điểm)	$(s^{2} + s)X'(s) = (1 - 5s)X(s). + X(s) = C\frac{s}{(s+1)^{6}} \Rightarrow x(t) = Ce^{-t}(\frac{t^{4}}{4!} - \frac{t^{5}}{5!}), C \neq 0.$
Câu 7 (1 điểm)	+) $\left \int_{\sqrt{n}}^{n} \frac{1}{t^{4} \sqrt[5]{2 + \sinh^{2} t}} dt \right \leq \int_{\sqrt{n}}^{n} t^{-4} dt \leq \frac{1}{3} \left(n^{-\frac{3}{2}} - n^{-3} \right).$
	+) $ u_n(x) \le \frac{1}{3} \left(n^{-\frac{3}{2}} - n^{-3} \right) = a_n, \forall x \in \mathbb{R}, \sum_{n=1}^{\infty} a_n \text{ HT, do dó (1) HT dều trên } \mathbb{R}.$
Câu 8 (1 điểm)	+) $S(x) = \sum_{n=0}^{\infty} (3n+1)x^{3n}, R = 1 \Rightarrow \int_{0}^{x} S(t)dt = \sum_{n=0}^{\infty} x^{3n+1} = \frac{x}{1-x^3}, x < 1.$
	+) $\Rightarrow S(x) = \frac{1+2x^3}{(1-x^3)^2} \Rightarrow S = S(\frac{1}{\sqrt[3]{3}}) = \frac{15}{4}.$

Ghi chú:

- Mỗi dấu +) cho 0,5 điểm
- Sinh viên giải cách khác đúng vẫn được điểm

Đề 2. N2	ĐÁP ÁN GIẢI TÍCH 3 (31.7.2019)
Câu 1 (1 điểm)	+) $a_n > 0$, $\sqrt[n]{a_n} = \left(\frac{n+2}{n+1}\right)^{n+3}$. +) $\lim_{n \to \infty} \sqrt[n]{a_n} = e > 1 \Rightarrow \text{ chuỗi PK (Cauchy)}$.
Câu 2 (1 điểm)	+) $X = (x+1)^4 \ge 0 \Rightarrow \sum_{n=1}^{\infty} \frac{2n+1}{n^2 + 4n + 5} X^n$ (2) có R=1.
	+) $X = 1 \Rightarrow \sum_{n=2}^{\infty} \frac{2n+1}{n^2+4n+5}$ PK theo TCSS 2, MHT của (2): $0 \le X < 1 \Rightarrow$ MHT (1):
	-2 < x < 0.
Câu 3 a)(1 điểm)	+) Đặt $z = y^3 \Rightarrow z' - \frac{1}{x}z = x\cos x, x \neq 0$. +) Là PTVPTT, có $y^3 = x[C + \sin x]$ là TPTQ
b)(1 điểm)	+) $y = C_1 e^x + C_2 e^{2x}$. +) NR $Y = -\frac{e^x}{2} (\cos x + \sin x) \Rightarrow \text{NTQ } y = y + Y$.
c)(1 điểm)	+) $ x = e^t \Rightarrow \frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = e^t$ là ptvptt cấp 2 với hệ số hằng số, có $y = C_1e^t + C_2e^{-2t}$.
	+) $Y = \frac{1}{3}te^{t} \Rightarrow y = C_{1} x + \frac{C_{2}}{x^{2}} + \frac{1}{3} x \ln x $ là NTQ
Câu 4 (1 điểm)	+) $y = \ln(1+x) + \ln(1-x^2)$, $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, x < 1$.
4	+) $\ln(1-x^2) = -\sum_{n=1}^{\infty} \frac{x^{2n}}{n}, x < 1 \Rightarrow y = \sum_{n=1}^{\infty} \frac{1}{n} [(-1)^{n-1} x^n - x^{2n}], x < 1.$
Câu 5 (1 điểm)	+) $L^{-1}\left\{F(s)\right\}(t) = -\frac{1}{t}L^{-1}\left\{\frac{d}{ds}\left(\operatorname{arccot}\frac{1}{s}\right)\right\}(t) = -\frac{1}{t}L^{-1}\left\{\frac{1}{s^2+1}\right\}(t)$ +) $=-\frac{\sin t}{t}$.
Câu 6	+) $L\{tx'\}(s) = -sX'(s) - X(s); L\{tx''\}(s) = -s^2X'(s) - 2sX(s); L\{x'\}(s) = sX(s) \Rightarrow$
(1 điểm)	$(s^{2}+s)X'(s) = (1-4s)X(s). + X(s) = C\frac{s}{(s+1)^{5}} \Rightarrow x(t) = Ce^{-t}(\frac{t^{3}}{3!} - \frac{t^{4}}{4!}), C \neq 0.$
Câu 7 (1 điểm)	$ \left \int_{\sqrt{n}}^{n} \frac{1}{t^{45\sqrt{2} + \sinh^{2} t}} dt \right \leq \int_{\sqrt{n}}^{n} t^{-4} dt \leq \frac{1}{3} \left(n^{-\frac{3}{2}} - n^{-3} \right). $
	$ \left + \right \left u_n(x) \right \le \frac{1}{3} \left(n^{-\frac{3}{2}} - n^{-3} \right) = a_n, \forall x \in \mathbb{R}, \sum_{n=1}^{\infty} a_n \text{ HT, do dó (1) HT dèu trên } \mathbb{R}. $
Câu 8 (1 điểm)	+) $S(x) = \sum_{n=0}^{\infty} (3n+1)x^{3n}, R = 1 \Rightarrow \int_{0}^{x} S(t)dt = \sum_{n=0}^{\infty} x^{3n+1} = \frac{x}{1-x^3}, x < 1.$
	$+) \Rightarrow S(x) = \frac{1+2x^3}{(1-x^3)^2} \Rightarrow S = S(\frac{1}{\sqrt[3]{3}}) = \frac{15}{4}.$

Ghi chú:

- Mỗi dấu +) cho 0,5 điểm
- Sinh viên giải cách khác đúng vẫn được điểm