Fahrzeugmechatronik I Modellbildung

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Übersicht Methoden zur physikalischen Modellbildung

- Schwerpunktsatz und Drallsatz
- Lagrangesche Gleichungen2. Art
- Konzept der generalisierten Masse
- Prinzip von D'Alembert in der Fassung von Lagrange
- > Energiesatz
- > PdvV
- > PdvK

Reales System Physikalische Experimentelle Modellbildung Modellbildung physikalisches Versuchsaufbau Ersatzmodell physikalische Versuchsdurchführung, Grundgesetze Messungen Aufstellung der **Parameteridentifikation** Bewegungsgleichungen mathematisches Modell Rechenmodell

8 0

Schwerpunktsatz und Drallsatz Prinzipielle Vorgehensweise

- ➤ Ermittlung der Schwerpunktlage im Inertialsystem $\mathbf{r}_{0P/I}$ (P=S)
- > Ermittlung der Schwerpunkt- geschwindigkeit im Inertialsystem $\hat{\mathbf{r}}_{0P/T}$ (P=s)
- > Ermittlung der Schwerpunktbeschleunigung im Inertialsystem it (P-s)
- > Ermittlung der zeitl. Ableitung der des Dralls im Inertialsystem

Schwerpunktsatz Im Inertialsystem gilt

$$m\ddot{\mathbf{r}}_{0S/I} = \mathbf{F}_{/I}$$

Drallsatz

Im Inertialsystem gilt

$$\frac{d\mathbf{L}_{/I}^{0}}{dt} = \mathbf{M}_{/I}$$

Seite 4

Schwerpunktsatz und Drallsatz Ermittlung der Lage

Schwerpunktsatz und Drallsatz Koordinatentransformation

Schwerpunktsatz und Drallsatz Hintereinanderausführung von Transformationen

Seite 7

Schwerpunktsatz und Drallsatz Ermittlung der Lage - Beispiel

Seite 8

Schwerpunktsatz und Drallsatz Ermittlung der Lage - Beispiel

Schwerpunktsatz und Drallsatz Prinzipielle Vorgehensweise

- > Ermittlung der Schwerpunktlage im Inertialsystem r_{OP/I} (P=s)
- ➤ Ermittlung der Schwerpunktgeschwindigkeit im Inertialsystem $\dot{\mathbf{r}}_{0P/I}$ (P=S)
- > Ermittlung der Schwerpunktbeschleunigung im Inertialsystem it_{OP/I} (P=s)
- > Ermittlung der zeitl. Ableitung des Dralls im Inertialsystem dt.

Seite 10

Schwerpunktsatz und Drallsatz Ermittlung der Geschwindigkeit

Seite 11

Schwerpunktsatz und Drallsatz Ermittlung der Geschwindigkeit - Beispiel

Schwerpunktsatz und Drallsatz Prinzipielle Vorgehensweise

- > Ermittlung der Schwerpunktlage im Inertialsystem r_{opg} (P=s)
- > Ermittlung der Schwerpunkt- geschwindigkeit im Inertialsystem $\hat{\mathbf{r}}_{0P/7}$ (P=s)
- ➤ Ermittlung der Schwerpunktbeschleunigung im Inertialsystem $\ddot{\mathbf{r}}_{0P/I}$ (P=S)
- > Ermittung der zeitl. Ableitung der Zeitl. Ableitu

Seite 13

Schwerpunktsatz und Drallsatz Ermittlung der Beschleunigung

Schwerpunktsatz und Drallsatz Prinzipielle Vorgehensweise

- > Ermittlung der Schwerpunktlage im Inertialsystem r_{0.P/Y} (P=s)
- > Ermittlung der Schwerpunktgeschwindigkeit im Inertialsystem $\mathbf{r}_{0P/I}$ (P=s)
- > Ermittlung der Schwerpunktbeschleunigung im Inertialsystem in (P=s)
- Frmittlung der zeitl. Ableitung des Dralls im Inertialsystem $\frac{d\mathbf{L}_{j}^{0}}{dt}$

Schwerpunktsatz und Drallsatz Ermittlung der zeitlichen Ableitung des Dralls

Drallsatz (Momentensatz) Im Inertialsystem gilt

Seite 16

Schwerpunktsatz und Drallsatz Drallsatz für SP oder raumfesten Punkt

Seite 17

Schwerpunktsatz und Drallsatz Drallsatz im Hauptachsensystem

Seite 18

Vielen Dank für Ihre Aufmerksamkeit!