Chapter 8

Prove the following statements.

Exercise (16). If A, B and C are sets, then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof: Observe the following sequence of equalities:

$$A \times (B \cup C) = \{(x, y) : (x \in A) \land (y \in B \cup C)\}$$
 (def. of \times)
$$= \{(x, y) : (x \in A) \land (y \in B) \lor (y \in C)\}$$
 (def. of \cup)
$$= \{(x, y) : (x \in A) \land (x \in A) \land (y \in B) \lor (y \in C)\}$$
 (A = A \lambda A)
$$= \{(x, y) : (x \in A) \land (y \in B) \lor (x \in A) \land (y \in C)\}$$
 (distrib, law for sets)
$$= \{(x, y) : (x \in A) \land (y \in B)\} \cup \{(x, y) : (x \in A) \land (y \in C)\}$$
 (def. of \cup)
$$= (A \times B) \cup (A \times C)$$
 (def. of \times)

Thus completes the proof.

Exercise (22). Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cap B = A$.

Proof:

Exercise (26). Prove that $\{4k + 5 : k \in \mathbb{Z}\} = \{4k + 1 : k \in \mathbb{Z}\}.$

Proof:

Chapter 9

Each of the following statements is either true or false. If a statement is true, prove it. If a statement is false, disprove it.

Exercise (3). If $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even.

Proof:

Exercise (5). If A, B, C and D are sets, then $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$.

Proof:

Exercise (8). If A, B and C are sets, and $A - (B \cup C) = (A - B) \cup (A - C)$.

Proof:

<i>xercise</i> (9). If A and B are sets, then $\mathcal{P}(A) - \mathcal{P}(B) \subseteq \mathcal{P}(A \setminus B)$.
roof:
xercise (12). If $a, b, c \in \mathbb{N}$ and ab, bc and ac all have the same parity, then a, b and c and c are the same parity.
roof:
xercise (30). There exist integers a and b for which $42a + 7b = 1$.
roof:
xercise (34). If $X \subseteq A \cup B$, then $X \subseteq A$ or $X \subseteq B$.
roof:
xercise (Reflection Problem). Answer the following questions:
roof:
• How long did it take you to complete each problem?
Write your answer here.
• What was easy?
Write your answer here.
• What was challenging? What made it challenging?
Write your answer here.
• Compare your answers to the odd numbered exercises to those in the back of th
textbook. What did you learn from this comparison?
Write your answer here.