

22. Mai 2016

Aufgabenblatt 3 zu Funktionale Programmierung

Aufgabe 3.1 (Praktikum)

In der Vorlesung haben wir vor einigen Wochen eine Funktion

$$abl_n :: Double \rightarrow Integer \rightarrow (Double \rightarrow Double) \rightarrow Double \rightarrow Double$$

durch folgende Regeln definiert:

```
abl_n eps 0 f x0 = f x0

abl_n eps (n + 1) f x0 = abl_n eps n (abl eps f) x0
```

Definieren Sie analog zu foldn eine Funktion foldi, jedoch für Integer anstelle von Nat.

Definieren Sie die Funktion abl_n unter Verwendung von foldi und abl. Das gelingt Ihnen einfacher, wenn Sie zunächst die Regeln, durch die abl_n definiert ist, "kürzen".

Aufgabe 3.2 (Praktikum)

Definieren Sie basierend auf dem Datentyp Nat aus der Vorlesung eine Funktion minus zur Berechnung der Differenz von zwei natürlichen Zahlen. Für m > n soll gelten: minus n m = Zero.

Versuchen Sie, minus auf der Basis von foldn zu definieren.

Aufgabe 3.3 (Übung)

Die Funktion \sqcap sei wie folgt definiert:

$$Zero \sqcap n = Zero$$

 $Succ m \sqcap Zero = Zero$
 $Succ m \sqcap Succ n = Succ(m \sqcap n)$

- 1. Was für einen Operator realisiert diese Funktion?
- 2. Beweisen Sie, dass für alle $m \in Nat$ gilt: $m \cap infinity = m$.
- 3. Beweisen Sie, dass für alle $m \in Nat$ gilt: $infinity \cap m = m$.
- 4. Ist \sqcap kommutativ? Falls ja, beweisen Sie es. Falls nein, geben Sie Elemente $n,m\in Nat$ an, sodass $n\sqcap m\neq m\sqcap n$.