Minimum Polynomial

Definition: Algebraic

Let K/F be a field extension and $\alpha \in K$. To say that a is *algebraic* over F means that $\exists f(x) \in F[x]$ such that $f(x) \not\equiv 0$ and $f(\alpha) = 0$.

To say that K/F is algebraic means $\forall \alpha \in K, \alpha$ is algebraic.

Definition: Minimum Polynomial

Let K/F be a field extension and $\alpha \in K$ be algebraic over F. The *minimal polynomial* of α over F, denoted $m_{\alpha}(x)$ or $m_{\alpha,F}(x)$, is a monic polynomial $f(x) \in F[x]$ of minimal degree such that $f(\alpha) = 0$.

Theorem

Let K/F be a field extension and $\alpha \in K$ be algebraic over F:

- 1). $m_{\alpha,F}(x)$ exists in F[x].
- 2). $m_{\alpha,F}(x)$ is irreducible in F[x].
- 3). $m_{\alpha,F}(x)$ is unique in F[x].
- 4). $\forall f(x) \in F[x], f(\alpha) = 0 \implies m_{\alpha,F}(x) \mid f(x) \text{ in } F[x].$

Proof

Since α is algebraic over F, and by the well-ordering principle, $m_{\alpha,f}(x)$ must exist.

```
ABC: m_{\alpha,F}(x) is not irreducible in F[x]
```

 $\exists g(x), h(x) \in F(x)$ such that g(x) and h(x) are not units in F[x] and $m_{\alpha,F}(x) = g(x)h(x)$

But then $\deg(g(x)), \deg(h(x)) < \deg(m_{\alpha,F}(x))$

Also $g(\alpha)=0$ or $h(\alpha)=0$, violating the minimality of $m_{\alpha,F}(x)$ - contradiction.

Therefore $m_{\alpha,F}(x)$ is irreducible in F[x].

Assume $f(x) \in F[x]$ such that $f(\alpha) = 0$

By the division algorithm: $f(x) = q(x)m_{\alpha,F}(x) + r(x)$ and $\deg(r(x)) < \deg(m_{\alpha,F}(x))$

 $f(\alpha) = q(\alpha)m_{\alpha,F}(\alpha) + r(\alpha) = q(\alpha) \cdot 0 + r(\alpha) = 0 + r(\alpha) = r(\alpha) = 0$

So by the minimality of $m_{\alpha,F}(x)$ it must be the case that r(x)=0

Therefore $m_{\alpha,F}(x) \mid f(x)$ in F[x].

Assume f(x) is also a minimal polynomial

 $f(x) \mid m_{\alpha,F}(a)$ and $m_{\alpha,F}(a) \mid f(x)$

So $m_{\alpha,F}(x)$ and f(x) are associates

But $m_{\alpha,F}(x)$ and f(x) are monic and so $m_{\alpha,F}(x)=f(x)$

Therefore $m_{\alpha,F}(x)$ is unique in F[x].

Theorem

Let K/F be a field extension:

[K:F]=n is finite $\implies K/F$ is algebraic.

Proof

Assume $\alpha \in K$

Consider $\{1, \alpha, \alpha^2, \dots, \alpha^n\}$

This set has n+1 vectors and thus the set must be F-linearly dependent So there exists coefficients $c_k \in F$ not all zero such that:

$$\sum_{k=0}^{n} c_k \alpha^k = 0$$

Let
$$f(x) = \sum_{k=0}^{n} c_k x^k \in F[x]$$

 $f(\alpha) = 0$

So α is algebraic over F

Therefore K/F is algebraic.

Thus, all simple extensions by an algebraic α are algebraic.

Theorem

Let α be algebraic over F:

$$F(\alpha) = F[\alpha]$$

Proof

Assume
$$\frac{f(\alpha)}{g(\alpha)} \in F(\alpha)$$
 where $f(x), g(x) \in F[x]$ and $g(\alpha) \neq 0$

There exists irreducible $m_{\alpha,F}(x) \in F[x]$

So the GCD of $m_{\alpha,F}(x)$ and g(x) is 1

But F[x] is a PID and so $h(x)g(x) + w(x)m_{\alpha,F}(x) = 1$ for some $h(x), w(x) \in F[x]$

$$h(\alpha)g(\alpha) + w(\alpha)m_{\alpha,F}(\alpha) = h(\alpha)g(\alpha) + w(\alpha) \cdot 0 = h(\alpha)g(\alpha) = 1$$

 $h(\alpha) = \frac{1}{g(\alpha)}$

$$\frac{f(\alpha)}{g(\alpha)} = f(\alpha)h(\alpha) \in F[\alpha]$$

Assume $f(\alpha) \in F[\alpha]$

$$f(a) = \sum_{k=0}^{n} c_k \alpha^k \in F(a)$$

Theorem

Let K/F be a field extension and $\alpha \in K$ be algebraic over F with minimal polynomial $m_{\alpha,F}(x)$ such that $\deg(m_{\alpha,F}(x)) = n$:

1).
$$[F(\alpha) : F] = n$$

2).
$$\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$
 is an F -basis for $F(a)$

Proof

ABC: $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is linearly dependent So there exists $c_k \in F$ not all zero such that:

$$\sum_{k=0}^{n-1} c_k \alpha^k = 0$$

Let
$$f(x) = \sum_{k=0}^{n-1} c_k x^k$$
 $\deg(f(x)) = n-1$ and $f(\alpha) = 0$, thus violating the minimality of $m_{\alpha,F}(x)$

Therefore $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is linearly independent.

Assume $\beta \in F(\alpha)$

$$\beta \in F[\alpha]$$

$$\beta = f(\alpha)$$
 for some $f(x) \in F[x]$

$$f(x) = q(x)m_{\alpha,F}(x) + r(x)$$
 where $\deg(r(x)) < n$

$$f(\alpha) = q(\alpha)m_{\alpha,F}(\alpha) + r(\alpha) = q(\alpha) \cdot 0 + r(\alpha) = 0 + r(\alpha) = r(\alpha)$$

Thus
$$\beta = \sum_{k=0}^{m} c_k \alpha^k$$
 for some $m < n$

Therefore
$$\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$
 spans $F(\alpha)$

Therefore $\{1,\alpha,\alpha^2,\dots,\alpha^{n-1}\}$ is an F-basis for F(a) and $[F(\alpha):F]=n$.