Lec6_AVL trees, AVL sort

Binary Search Trees (BSTs)

- Rooted binary tree
- Each node has (key / left pointer / right pointer / parent pointer)
- BST property

- Height of node = length (# edges) of the longest downward path to a leaf
- * For convenience height of Null ptr from leaves : -1

The importance of being balanced

- Functions (insert, delete, min, max, next-larger, next-smaller, etc) from BST in O(h)
 h: height of tree
- balanced BST maintains h = O(lg(n))

AVL trees

- Properties
 - For every node, require heights of left & right children to differ by at most ±1
 - Treat NIL tree as height -1
 - Each node stores its height (Data Structure Augmentation)
- Balance
 - Worst when every node differs by 1

```
Let Nh = (min) # nodes in height-h AVL tree

Approach 1)

\Rightarrow N(h) = N(h-1) + N(h-2) +1

\Rightarrow N(h) > 2N(h-2)

\Rightarrow N(h) > 2^(h/2)

\Rightarrow h < 2 lg(N(h))

Approach 2)

\Rightarrow N(h) > F(h)

\Rightarrow h < 1.440 lg(n)
```

- Insert
 - Steps
 - Insert as in simple BST
 - Work your way up tree, restoring AVL property (and updating heights as you go)
 - o Balancing
 - Condition
 - 1. Suppose x is lowest node violating AVL
 - 2. Assume x is right heavy (left case symmetric)
 - 3. If x's right child is right-heavy or balanced
 - First case

If x's right child is right heavy or balanced:

Second Case

Else:

■ Then continue up to x's grand parent, great grand parent ...

AVL Sort

Insert each item into AVL tree : Θ(nlg(n))

In-order transversal : Θ(n)

Balanced Search Trees

1. AVL trees

- 2. B-trees / 2-3-4- trees
- 3. BB[a] trees
- 4. Red-black trees
- 5. Splay trees [A]
- 6. Skip lists [R]
- 7. Scapegoat trees [A]
- 8. Treaps [R]

R = use random numbers to make decisions fast with high probability

A = "amortized": adding up costs for several operations => fast on average