10

15

20

25

30

35

40

PATENT SPECIFICATION

(11) **1 581 182**

(21) Application No. 11833/77 (22) Filed 21 March 1977 (31) Convention Application No. 51/032337

(32) Filed 23 March 1976

(31) Convention Application No. 51/094129

(32) Filed 6 Aug. 1976

(31) Convention Application No. 51/138733

(32) Filed 17 Nov. 1976 in

(33) Japan (JP)

5

10

15

20

25

30

35

40

(44) Complete Specification published 10 Dec. 1980

(51) INT CL3 B23K 35/22

(52) Index at acceptance

B3R 32G

(54) COATED WELDING ELECTRODE CONTAINING CHROMIUM

(71) We, KOBE STEEL LTD., a Body Corporate organized under the laws of Japan, of 3—18, 1-chome, Wakinohama-cho, Fukiai-ku, Kobe City, Japan, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to a consumable arc welding electrode and more particularly to a coated welding electrode containing chromium in which the content of Na₂O and K₂O in the flux coating is limited to a low level, whereby the amounts of fumes generated at the welding step, especially the amounts of toxic soluble Cr contained in such fumes, are suppressed or minimized.

soluble Cr contained in such fumes, are suppressed or minimized.

Our Japanese Patent Publication No. 20477/63 discloses an attempt to generate non-toxic fumes in a welding operation which uses a low hydrogen welding electrode by reducing the content of K based on the relationship between CaF₂ and K.

U.S. Patent No. 2,983,632 discloses a coated welding electrode involving a flux which comprises titanium, limestone, iron powder and a binder. At least 1% of sodium silicate (Na,SiO₃) based on the total flux was normally present.

A flux cored electrode (composite wire) is disclosed in our U.S. Patent No. 3,531,620 as the welding material in which the content of (Na_2O+K_2O) is lower than 1% based on the flux. In this flux cored electrode, however, since the flux is supported by a metal hoop, it is unnecessary to apply the flux around core by using a binder as in the case of a flux coated electrode.

The present invention provides a chromium-containing coated welding electrode in which the amounts of fumes generated at the welding step, especially of toxic soluble Cr contained in the fumes, are suppressed or minimized.

In accordance with the present invention there is provided a chromium-containing coated consumable arc welding electrode containing at least 0.5% of Cr based on the total weight of the welding electrode and comprising a metal core and a flux coating, wherein the flux coating contains Na₂O and/or K₂O but, to reduce the Na and K components in the flux coating the (Na₂O+K₂O) content in the flux coating is below 1% based on the total weight of the flux coating, and wherein a colloidal solution in which a disperse phase containing at least one of the oxides of Si, Al, Zr, B, P, Ti, Mg, Ca, Th and Fe constitutes from 1% to 90% by weight of the total solution is used as a binder of the flux coating.

The chromium may be in at least one of the metal core and the flux coating. Reference is now made to the accompanying drawing which is a graph illustrating the relationship between the amount of (Na₂O+K₂O) contained in a flux and the amount of soluble Cr contained in fumes generated when welding is carried out by using a chromium-containing coated electrode.

Chromium-containing coated welding electrodes are now used for welding stainless steel materials of the Ni—Cr system and materials of the Cr—Mo system, and also as welding materials for hard facing.

Stainless steel materials are now used broadly in various industrial fields such as the petrochemical industry, the fiber industries and the atomic power industry

2	1,381,182	
	because stainless steels have excellent corrosion resistance, oxidation resistance and heat resistant, and have good processability and good mechanical properties, and it is expected that demands for these stainless steel materials will increase in the future. Accordingly, it is also expected that demands for welding materials for	_
5	such stainless steel materials will increase.	5
10	temperature, high-pressure operations conducted mainly in thermoelectric power plants and petrochemical industries. It is therefore expected that demands for materials of the Cr—Mo system will increase in the future. Accordingly, it is also expected that welding materials for such materials of the Cr—Mo system will	10
	increase. Further, welding materials for hard facing are now used in various fields for construction work, mining and agriculture, and it is expected that their range of	
15	applications will be expanded henceforth. Chromium-containing welding materials are thus used in various industrial fields and their excellent properties are fully utilized. Fumes are inevitably generated from welding materials at the welding step, and, as a result of analytical	15
	experiments made by us, we have found that so-called soluble CI which is soluble in	20
20	percent in fumes generated from chromium-containing welding materials. Various contrivances for removing fumes are now made at welding spots so as to improve the working environment, and although the working environment has been significantly improved by these means for removing fumes from welding spots, it is preferred to prevent beforehand the generation of toxic substances such as soluble	20
25	C.	25
	Therefore, we have sought to clarify why and how soluble Cr is contained in fumes from chromium-containing welding materials, and, as a result of the X-ray	
30	Na and K are contained in these fumes. Thus, we have found that, when Na or K is co-present with Cr in a welding material, soluble Cr is generated in the fumes. For confirmation, the content of soluble Cr in fumes generated when welding was carried out using a bare core containing 20% of Cr was analytically compared with the content of soluble Cr contained in fumes generated when welding was carried	30
35	out by using an electrode formed by coating the above core with a coating including water glass [(Na ₂ O+K ₂ O) content=13%, SiO ₂ content being 13%. It was found that the soluble Cr content was below 0.01% in the former case while the	35
40	Based on these findings, we have succeeded in reducing the soluble Cr content in the fumes to a minimum level by reducing the contents of Na and K as much as possible in the flux of a flux-coated, chromium-containing welding electrode. Water glass containing at least one of Na ₂ O and K ₂ O is ordinarily used as a binder for a coating flux of a coated welding electrode, and slag-forming agents containing Na ₂ O and K ₂ O such as feldspar and mica are often used and also	40
45	As pointed out hereinbefore, the presence of Na and K components in the flux is a cause of the generation of soluble Cr. However, since the Na or K component is effective as an arc stabilizer or as one component of a binder, it is preferred that Na	45
50	clarify the relation between the content of Na and K components and the amount of soluble Cr generated. Accordingly, we have made the following experiments.	50
55	Experiment 1 Various chromium-containing cores having a diameter of 5.0 mm and a length of 400 mm were coated with a flux comprising limestone, rutile, fluorite, metallic Cr and feldspar by using a binder (SiO₂ content=20%, Na₂O content ≤0.35%) so that the diameter of the resulting coated electrode was 7.5 mm. Chromium-containing test electrodes were prepared. The Cr contents in the core and flux of each electrode and the Na₂O and K₂O contents in the flux (inclusive of the binder)	5
60	were as shown in Table 1 below. By using each welding electrode, welding was carried out under the conditions indicated below, and fumes were collected and analysed according to the methods described below.	6

(1) Welding conditions: 170 A, 22—27 V, AC.

3			1,	,581,182			3
	(2) Base n 19 mr the test el	n (thickness)×75 mm (width	n)×400 mm (leng	th) (mild steel bu	ttered with	
5 -	Weld high volund by the high the welding The filter Mate Shape	ne air sampl h volume air g, the filter	ried out in an iron iron iron the upper in sampler and compaper was taken was as follows: ber 12 inches	portion, and gen- illected on a filte 1 out and fumes	s lower portion as erated fumes wer r paper. After cos were gathered an	e sucked in	5
15	Solub	sis method: le Cr in fur sorption me	mes: atomic abs	sorption method	Na ₂ O and K ₂ O	in the flux:	15
	(5) Result The r	s: esults obtair	ned were as show	vn in Table 1 and	the accompanyir	ig drawing.	
			T	ABLE 1			
20	System	Sample No.	Cr Content (wt.%) in Core	Cr Content (wt.%) in coated Electrode	(Na ₂ O+K ₂ O) Content (wt.%) in Flux	Soluble Cr Content (wt.%) in Fumes	20
2 5	5-Cr 5-Cr 5-Cr 5-Cr 5-Cr	1 2 3 4 5	5.5 5.5 5.5 5.5 5.5	5 5 5 5 5	0.29 0.55 1.13 1.81 4.84	0.07 1.11 1.39 1.40 1.60	25
30	15-Cr 15-Cr 15-Cr 15-Cr	1 2 3 4	19.0 19.0 19.0 19.0	15 15 15 15	0.31 0.63 1.16 2.33	0.25 2.74 2.97 3.41	30
35	15-Cr 25-Cr 25-Cr 25-Cr 25-Cr	5 1 2 3 4	26.5 26.5	15 25 25 25 25	4.73 0.22 0.50 0.86 1.20	3.55 0.99 4.08 4.43 4.49	35
40	25-Cr 40-Cr 40-Cr 40-Cr 40-Cr 40-Cr	5 1 2 3 4	26.5 26.5 26.5 26.5 26.5 26.5	25 40 40 40 40 40	4.75 0.21 0.58 0.89 1.73 3.10	5.25 1.20 5.10 5.48 5.75	40
45	In Ta	ble 1, each	value of the (Na ₂ O+K ₂ O) con	itent is a value of the binder. This of	6.74 of the total content was	45
			r				.,
50	flux as in content ≦	dicated in 7 0.35%) to pi	iameter of 4.0 m Fable 2 below t repare coated el	by using a binde	of 350 mm were context (SiO ₂ content= nless steel D308 a cribed below.	20%, Na ₂ O	50
	(1) Weldi	ng condition A, 20—25 V	ns:				50
55	(2) Base 1 19 mi steel with	m (thickness	s)×75 mm (width	i)×400 mm (lengt	th) (formed by bu	ttering mild···	55

(3) Methods of collecting and analysing fumes: As described in Experiment 1.

(4) Results: The results	obtained v	vere as sho	own in Table 3	and in the d	rawing.		
5				ABLE 2				5
		Flux Co	mposition	(parts by weigh	t)	,	Binder	^
Sample No. 1 2 3 4 5	limestone 20 20 20 20 20 20	fluorite 5 5 5 5 5 5	rutile 48 48 48 48 48	metallic Cr 7.5 7.7 8.2 9 10.5	electro- lytic Mn 5 5 5 5 5		cc per 10 of solven 15.5 16.0 18.3 18.4 17.0	
			Т	ABLE 3				15
15	Samp	(w le Entir	Content rt.%) in e Welding	(Na ₂ O+K ₂ O) (tent (wt.%)	Solub Con- Con in (wt.º, Fui	tent %) in		15
20	No. 1 2 3 4 5		ectrode 16 16 16 16 16	Flux 0.28 0.58 1.18 2.00 3.08	0. 2. 3. 3.	07 22 00 75 91		20
25	fumes decrease there is observe	O+K2O) 11 es fairly sh ved a tend	arply. Whency that	t from the acco is below 1%, the en the content the amount of (O), but this dec	of (Na ₂ O+K soluble Cr	20) is above decreases wit	1%, h a This	25
30	commonly atta system. Such s be understood	ucing ene- lined in all ystems bei that, if the	the system ng exempl content of	ns ranging from ified hereinbefo (Na ₂ O+K ₂ O) is	the 5-Cr system. According reduced below the further.	stem to the 40 gly, it will rea ow 1%, the solu t will be appa	dily able rent	30
35	that, even if the changes sharp! Accordingly,	the futiles ne content y at a p we prefer t	of (Na ₂ O+ oint corres hat the cor	-K ₂ O) is below ponding to an antent of (Na ₂ O+	1%, the gradi (Na_2O+K_2O) $K_2O)$ should	ent of each control of 0.5 be reduced be	urve 75%. elow	35
40	(Na ₂ O+K ₂ O) i drastically red reduced to va	tantially vis reduced luced. It is alues appr	below 0.5% most prefe	the content of () near. Thus, it i near. Thus, it i near. Thus, it i near. Thus, it i near. Thus, water near the binder, an	soluble Cr in ntent of (Na ₂ glass having d feldspar or	n the fumes ca O+K ₂ O) shou g a much red the like conta	in be ld be uced	40
45	Na ₂ O and K ₂ As stated solution compared at the compared at	O is not a previously prising a di Mg, Ca, T	y, the binde sperse pha h or Fe. A	er for the coated se containing at dispersion medi	l welding elected least one of the compount of	ctrode is a coll the oxides of S water or an or	oidal i, Al, ganic nium	45
50	compound, a solution may The above m in the form of	n amine, contain lit entioned n f a mixture	organic ac hium silica netal oxide of two or r	te, amine silicate containing disp nore of them. If	e, colloidal si erse phase m the amount o	lica or alumin ay be used alo If the disperse effect is insuffi	a sol. one or phase icient.	5(
55	On the other weight of the readily takes strain is read	r hand, if the binder, to binder, bin	the fluidity I the coating I in the co	or stability of the property of the ating at the dry	the binder is he binder is ing step. The	degraded, ge reduced. More kind of disposition	lation eover, ersion in the	5
60	present inve	ntion is n	ot particul	arly critical, bu	i water of a	ii organie sor		6

YdOO	
U	
-	

5 5 In welding electrodes used for the above-mentioned experiments, since compounds having an arc-stabilizing activity, such as carbonates, fluorides and titanium oxide were included, even if the amounts of Na₂O and K₂O were very small, the arc did not become unstable. In view of the foregoing, it is seen that, 5 even in the case where Na₂O and K₂O have to be incorporated as arc stabilizers in 5 the Cr-containing welding electrode of the present invention, their content must be reduced below 1% and that, in the case where other arc-stabilizing substances can be used, the content of Na₂O and K₂O in the flux coating is reduced to below 1%, preferably below 0.5%, and more preferably to values approaching zero.

As will be apparent from the foregoing illustration, according to the present 10 10 invention, by controlling the co-presence of Cr and Na and K components under certain conditions, the amount of soluble Cr generated in fumes can be drastically reduced. Therefore, even at a welding spot where the provision of a fume sucking treatment apparatus is not feasible or allowed, the problem of operational safety can 15 be solved. It is to be noted that, when such fume sucking apparatus is used, the 15 disposal of the collected fumes normally causes difficulties. Therefore, the present invention makes a significant contribution to the improvement of the working environment. WHAT WE CLAIM IS:— 1. A chromium-containing coated consumable arc welding electrode 20 20 containing at least 0.5% of Cr based on the total weight of the welding electrode and comprising a metal core and a flux coating, wherein the flux coating contains Na₂O and/or K₂O but to reduce the content of Na and K components in the flux coating the (Na₂O+K₂O) content in the flux coating is below 1% based on the total weight of the flux coating, and wherein a colloidal solution in which a disperse 25 25 phase containing at least one of the oxides of Si, Al, Zr, B, P, Ti, Mg, Ca, Th and Fe constitutes from 1% to 90% by weight of the total solution is used as a binder of the flux coating. 2. A chromium-containing coated welding electrode as set forth in Claim 1, wherein the (Na₂O+K₂O) content in the flux coating is below 0.75% based on the 30 30 total weight of the flux coating. 3. A chromium-containing coated welding electrode as set forth in Claim 2, wherein the (Na₂O+K₂O) content in the flux coating is below 0.5% based on the total weight of the flux coating. 35 35

4. A chromium-containing coated welding electrode as claimed in Claim 1 and

substantially as herein described with reference to the accompanying drawing and/or either of the specific examples.

> ELKINGTON AND FIFE, Chartered Patent Agents, High Holborn House, 52/54 High Holborn, London, WC1V 6SH, Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Learnington Spa, 1980 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

COMPLETE SPECIFICATION

1 SHEET

This drawing is a reproduction of the Original on a reduced scale

AMOUNT OF (Na20+ K20) CONTAINED IN A FLUX