✓ Extended transition function

An extended transition function $\hat{\delta}$ traces the path of an automaton and determines the final state when an initial state q and an input string x are passed through it.

The difference between a simple transition function and the extended transition function is that the former performs a transition of a single character/instance. In contrast, the latter performs the transitions on a complete string.

A recursive algorithm is used to reach the final state, which is as follows:

Base condition:

 $\hat{\delta}$ (q, ϵ) \rightarrow q

Recursion rule:

 $\hat{\delta}$ (q,xa) \rightarrow $\delta(\hat{\delta}$ (q,x),a)

Here, $x \in \Sigma^*$ and $a \in \Sigma$. Also, x is a string of characters belonging to the set of the input symbols and $a\alpha$ is a single character.

The input string is reduced from the right side, character by character, until the base condition—when all the strings are reduced and we are left with a null character (epsilon)—is reached. Then simple transitions are applied to the broken-down string.

A transition table is formed to show each transition in the DFA. If the output is a final state, the given string will be accepted by the DFA.

Outlines:

Extended transition Function for DFA: example 1,2 Extended transition Function for NFA: example 1,2

□ Extended Transition function for DFA:

Example - 1: Construct a DFA to accept the string that start with 1 and end with 0, over $\Sigma = \{0,1\}$ and check the string 1010 is accepted by DFA using extended transition function.

Transition function for DFA:

δ	0	1
→q0	-	q1
q1	q2	q1
*q2	q2	q1

Extended Transition function for DFA:

$$\begin{split} \hat{\delta} & (q, \, \epsilon) = q0 \\ \hat{\delta} & (q0, \, 1) &= \delta \, (\hat{\delta} \, (q0, \, \epsilon), \, 1) &= \delta \, (q0, \, 1) = q1 \\ \hat{\delta} & (q0, \, 10) &= \delta \, (\hat{\delta} \, (q0, \, 1) \, , \, 0) &= \delta \, (q1, \, 0) = q2 \\ \hat{\delta} & (q0, \, 101) &= \delta \, (\hat{\delta} \, (q0, \, 10) \, , \, 1) &= \delta \, (q2, \, 1) = q1 \\ \hat{\delta} & (q0, \, 1010) &= \delta \, (\hat{\delta} \, (q0, \, 101) \, , \, 0) = \delta \, (q1, \, 0) = q2 \end{split}$$

Since q2 is in Final state, 1010 is accepted by DFA

Example - 2: check the string 110101 is accepted by DFA or not, using extended transition function.

Transition function for DFA:

δ	0	1
→*q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

The check involves computing $\hat{\delta}(q_0, w)$ for each prefix w of 110101, starting at ϵ and going in increasing size. The summary of this calculation is:

•
$$\hat{\delta}(q_0, \epsilon) = q_0$$
.

•
$$\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \epsilon), 1) = \delta(q_0, 1) = q_1$$
.

•
$$\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0.$$

•
$$\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2.$$

•
$$\hat{\delta}(q_0, 1101) = \delta(\hat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3$$
.

•
$$\hat{\delta}(q_0, 11010) = \delta(\hat{\delta}(q_0, 1101), 0) = \delta(q_3, 0) = q_1$$
.

•
$$\hat{\delta}(q_0, 110101) = \delta(\hat{\delta}(q_0, 11010), 1) = \delta(q_1, 1) = q_0.$$

☐ Extended Transition function for NFA:

Example-1: check the NFA is accepted or not for the input 00101.

0,1

Transition function for NFA:

δ	0	1
→q0	{q0, q1}	q0
q1	-	q2
*q2	-	-

1.
$$\hat{\delta}(q_0, \epsilon) = \{q_0\}.$$

2.
$$\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}.$$

3.
$$\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}.$$

4.
$$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}.$$

5.
$$\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}.$$

6.
$$\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}.$$

Line (1) is the basis rule. We obtain line (2) by applying δ to the lone state, q_0 , that is in the previous set, and get $\{q_0, q_1\}$ as a result. Line (3) is obtained by taking the union over the two states in the previous set of what we get when we apply δ to them with input 0. That is, $\delta(q_0, 0) = \{q_0, q_1\}$, while $\delta(q_1, 0) = \emptyset$. For line (4), we take the union of $\delta(q_0, 1) = \{q_0\}$ and $\delta(q_1, 1) = \{q_2\}$. Lines (5) and (6) are similar to lines (3) and (4). \square

Example-2: Check w1 = 001 and w2 = 01010 is accepted by the NFA using extended transition function or not.

Transition Table:

δ	0	1
$\rightarrow q_0$	$\{ q_0 \}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
$*$ q_2	Ø	Ø

Extended transition Function Input Processing:

For input, w = 011

$$\hat{\delta}(q_0, \epsilon) = \{q_0\}$$

$$\hat{\delta}(q_0,0) = \{q_0\}$$

$$\hat{\delta}(q_0, 01) = \delta(\hat{\delta}(q_0, 0), 1)$$

..... = $\delta(q_0, 1)$
..... = $\{q_0, q_1\}$

$$\hat{\delta}(q_0, 011) = \delta(\hat{\delta}(q_0, 01), 1)
\dots = \delta(\{q_0, q_1\}, 1)
\dots = \delta(q_0, 1) \cup \delta(q_1, 1)
\dots = \{q_0, q_1\} \cup \{q_2\}
\dots = \{q_0, q_1, q_2\}$$

For input, w = 01010. Since sub-string 01 is already calculated I will reuse it.

$$\hat{\delta}(q_0, 010) = \delta(\hat{\delta}(q_0, 01), 0)
\dots = \delta(\{q_0, q_1\}, 0)
\dots = \delta(q_0, 0) \cup \delta(q_1, 0)
\dots = \{q_0\} \cup \{q_2\}
\dots = \{q_0, q_2\}$$

$$\begin{split} \hat{\delta}(q_0, 0101) &= \delta(\hat{\delta}(q_0, 010), 1) \\ \dots &= \delta(\{q_0, q_2\}, 1) \\ \dots &= \delta(q_0, 1) \cup \delta(q_2, 1) \\ \dots &= \{q_0, q_1\} \cup \emptyset \\ \dots &= \{q_0, q_1\} \end{split}$$

$$\begin{split} \hat{\delta}(q_0, 01010) &= \delta(\hat{\delta}(q_0, 0101), 0) \\ \dots &= \delta(\{q_0, q_1\}, 0) \\ \dots &= \delta(q_0, 0) \cup \delta(q_1, 0) \\ \dots &= \{q_0\} \cup \{q_2\} \\ \dots &= \{q_0, q_2\} \end{split}$$