

方法精讲-数量 4

主讲教师: 唐宋

授课时间: 2018.09.21

粉笔公考·官方微信

Fb 粉笔直播课

方法精讲-数量4(讲义)

学习任务:

- 1. 授课内容: 容斥原理、排列组合与概率
- 2. 时长: 2.5 小时
- 3. 对应讲义: 173 页~178 页
- 4. 重点内容:
- (1)两集合公式、三集合的标准和非标准公式,学会运用图示法去解答不便于用公式的题目。
 - (2) 常用的排列、组合公式,分类与分步的区别,枚举法的适用范围。
- (3)捆绑法、插空法、插板法的适用范围和使用步骤,错位排列的条件识别特征并记住常见的错排数。
 - (4) 求概率的两种情况的解题思路,正难反易则从反面求解的技巧。

第八节 容斥原理

例 1 (2018 天津选调生) 一个停车场有 50 辆汽车,其中红色轿车 35 辆,夏 利轿车 28 辆,既不是红色轿车又不是夏利轿车 8 辆,问停车场有红色夏利轿车 8 少辆? ()

A. 14 辆

B. 21 辆

C. 15 辆

D. 22 辆

例 2 (2018 广州) 篮子里有苹果和梨两种水果若干个,将这些水果分发给 13 个人,每人最少拿一个,最多拿两个不同的水果。已知有 9 个人拿到了苹果,有 8 个人拿到了梨,最后全部分完。那么,有 ()人只拿到了苹果。

A. 4 B. 5 C. 6 D. 7

例 3(2018 联考) 某试验室通过测评 I 和 II 来核定产品的等级: 两项测评都不合格的为次品,仅一项测评合格的为中品,两项测评都合格的为优品。某批产品只有测评 I 合格的产品数是优品数的 2 倍,测评 I 合格和测评 II 合格的产品数之比为 6: 5: 若该批产品次品率为 10%,则该批产品的优品率为 ():

A. 10% B. 15% C. 20% D. 25%

例 4(2018 陕西)有关部门对 120 种抽样食品进行化验分析,结果显示,抗氧化剂达标的有 68 种,防腐剂达标的有 77 种,漂白剂达标的有 59 种,抗氧化剂和防腐剂都达标的有 54 种,防腐剂和漂白剂都达标的有 43 种,抗氧化剂和漂白剂都达标的有 35 种,三种食品添加剂都达标的有 30 种,那么三种食品添加剂都不达标的有()种。

A. 14	B. 15
C. 16	D. 17
E. 18	F. 19
G. 20	Н. 21

例 5(2018 江西)某高校做有关碎片化学习的问卷调查,问卷回收率为 90%, 在调查对象中有 180 人会利用网络课程进行学习,200 人利用书本进行学习,100 人利用移动设备进行碎片化学习,同时使用三种方式学习的有 50 人,同时使用 两种方式学习的有 20 人,不存在三种方式学习都不用的人。那么,这次共发放 了多少份问卷?())

A. 370 B. 380 C. 390 D. 400

例 6(2017 江苏) 某单位有 72 名职工,为丰富业余生活,拟举办书法、兵

Fb 粉笔直播课

ルモ自治は	木				
乓球和围棋培训班,要求每个职工至少参加一个班。已知三个班报名人数分别为					
36、20、28,则同时报名三个班的职工数至多是()。					
A.6人		B. 12 人			
C.16 人		D. 20 人			
	第九节	排列组合与概率			
一、基础	题型				
例 1(20)	18 山西)甲、乙、丙三	所学校的学生被安排在周一至周五参观某革			
命纪念馆。纪	念馆每天最多只能安排	于一所学校,其中甲学校连续参观两天,其余			
学校均只参观]一天,那么共有多少和	中安排方法? ()			
A. 12 种		B. 24 种			
C.36 种		D. 60 种			
例 2(20	18 广州)某部门开展年	F终评选工作,需从 11 名员工中评选出一名			
优秀员工和两	「名积极员工, 且优秀员	工与积极员工不能为同一人,则可能会出现			
的评选结果共	有()种。				
A. 495		В. 990			
C. 1210		D. 1980			
例 3(20)	例 3(2017四川) 某交警大队的 16 名民警中, 男性为 10 人, 现要选 4 人进				
行夜间巡逻工	行夜间巡逻工作,要求男性民警不得少于2名,问有多少种选人方法?()				
A. 1605		В. 1520			
C. 1071		D. 930			
二、特殊	泛题型				

A. 120

C. 44

例 1(2015 国考)餐厅需要使用 9 升食用油,现在库房里库存有 15 桶 5 升						
装的,3桶2升装的,8桶1升装的。问库房有多少种发货方式,能保证正好发						
出餐厅所需要的9升食用油? ()						
A. 4	В. 5					
C. 6	D. 7					
例 2 (2016 国考) 为加强	机关文化建设,某市直属机关在系统内举办演讲比					
赛,3个部门分别派出3、2、	4 名选手参加比赛,要求每个部门的参赛选手比赛					
顺序必须相连,问不同参赛顺	原序的种数在以下哪个范围之内? ()					
A. 小于 1000	B. 1000~5000					
C. 5001~20000	D. 大于 20000					
例 3 (2017 云南) 某兴趣	组有男女生各5名,他们都准备了表演节目。现在					
需要选出4名学生各自表演1个节目,这4人中既要有男生,也要有女生,且不						
能由男生连续表演节目。那么,不同的节目安排有多少种? ()						
A. 3600	В. 3000					
C. 2400	D. 1200					
例 4(2014 广州)某办公	全接到 15 份公文的处理任务,分配给甲、乙、丙					
三名工作人员处理。假如每名	工作人员处理的公文份数不得少于3份,也不得多					
于 10 份,则共有多少种分配方式? ()						
A. 15	В. 18					
C. 21	D. 28					
例 5 (2015 山东) 某单位从下属的 5 个科室各抽调了一名工作人员,交流到						
其他科室,如每个科室只能接	收一个人的话,有多少种不同的人员安排方式?()					

B. 78

D. 24

三、概率问题
例 1(2018 贵州) 某公司将在本周一至周日连续七天举办联谊会,某员工随
机地选择其中的连续两天参加联谊会,那么他在周五至周日期间连续两天参加联
谊会的概率为()。

例 2 (2018 国考) 某单位的会议室有 5 排共 40 个座位,每排座位数相同。 小张和小李随机入座,则他们坐在同一排的概率 ()。

B. 1/3

D. 1/6

A. 不高于 15%

A. 1/2

C. 1/4

B. 高于 15%但低于 20%

C. 正好为 20%

D. 高于 20%

例 3 (2018 吉林) 某仓库存放三个厂家生产的同一品牌洗衣液,其中甲厂生产的占 20%,乙厂生产的占 30%,剩余为丙厂生产的,且三个厂家的次品率分别为 1%,2%,1%,则从仓库中随机取出一件是次品的概率为()。

A. 1.6%

B. 1. 3%

C. 1%

D. 2%

例 4(2017 国考)某集团企业 5 个分公司分别派出 1 人去集团总部参加培训,培训后再将 5 人随机分配到这 5 个分公司,每个分公司只分配 1 人。则 5 个参加培训的人中,有且仅有 1 人在培训后返回原分公司的概率 ()。

A. 低于 20%

B. 在 20%~30%之间

C. 在 30%~35%之间

D. 高于 35%

方法精讲-数量4(笔记)

学习任务:

- 1. 授课内容: 容斥原理、排列组合与概率
- 2. 时长: 2.5 小时
- 3. 对应讲义: 173 页~178 页
- 4. 重点内容:
- (1)两集合公式、三集合的标准和非标准公式,学会运用图示法去解答不便于用公式的题目。
 - (2) 常用的排列、组合公式,分类与分步的区别,枚举法的适用范围。
- (3)捆绑法、插空法、插板法的适用范围和使用步骤,错位排列的条件识别特征并记住常见的错排数。
 - (4) 求概率的两种情况的解题思路,正难反易则从反面求解的技巧。

第八节 容斥原理

【知识点】容斥原理:生活中,常遇到多种情况有交叉的题目,公考中,可以报国考、省考、军队考试,有多种情况,有的人会交叉报名(同时报省考、国考),有的人只报一种,容斥原理研究的是各种情况之间包含、排斥的关系,分为两集合、三集合。

【知识点】两集合:

- 1. 公式: A+B-都=全-都不。要求理解,并且记忆。
- 2. 例:全班有30人,22人参加国考,24人参加省考,18人同时参加国考、省考,问未参加考试的有多少人?

方法一:有省考、国考两种情况,有"都",即有交叉,多种情况有交叉,是两集合容斥原理,在图上标出数据得到答案,或代入公式得到答案。 $A \rightarrow$ 国考, $B \rightarrow$ 省考, $2 \rightarrow 30$ 人,都不 $3 \rightarrow$ 未报名的部分,代入数据: 22 + 24 - 18 = 30 - () $3 \rightarrow ($) $3 \rightarrow ($) $4 \rightarrow$

方法二:报省考的 24 人=都报名的 18 人+(只报省考的 6 人),报国考的 22 人=都报名的 18 人+(只报名国考的 4 人),4、18、6 之间无交叉,相加=4+18+6=28 人,报名的人有 28 人,未报名的人数=30-28=2 人。

- 3. 建议尽量使用公式法,画图标数要比代入公式慢一些。两集合容斥问题, 能用公式尽量用,用不了时再画图。
- 4. 画图法: 出现"只"时使用画图法,如"只报省考""只报 A"。没有则用公式法。

例 1 (2018 天津选调生) 一个停车场有 50 辆汽车,其中红色轿车 35 辆,夏 利轿车 28 辆,既不是红色轿车又不是夏利轿车 8 辆,问停车场有红色夏利轿车 多少辆? ()

A. 14 辆

B. 21 辆

C. 15 辆

D. 22 辆

【解析】例 1. 红色轿车为情况 A, 夏利轿车为情况 B, 共两种情况,"既不……又不"是都不, 问红色夏利轿车, 并非第三种情况, 红色夏利轿车为 $A\cap B$, 所有的数据在公式中都有,设所求为 x,公式: A+B-都=全-都不,代入数据: 35+28-x=50-8,解方程比较慢,全部是加减法,选项尾数不同,优选尾数法,容斥原理的式子以加法、乘法为主,几乎都可以用尾数法,尾数无负数,不够减可以借位,3-x=2,x的尾数是 1,对应 B 项。【选 B】

【注意】天津、江苏会考这类简单题。

例 2 (2018 广州) 篮子里有苹果和梨两种水果若干个,将这些水果分发给 13 个人,每人最少拿一个,最多拿两个不同的水果。已知有 9 个人拿到了苹果,有 8 个人拿到了梨,最后全部分完。那么,有 ()人只拿到了苹果。

A. 4 B. 5

C. 6 D. 7

【解析】例 2. "最多拿两个不同的水果"说明不能拿两个相同的水果,要么拿苹果,要么拿梨,要么苹果、梨各拿一个,表述看似复杂,水果有 2 种,分别是 A、B,有的人 A、B 都拿,"最少拿一个"说明没有"都不",即都不=0,9个人拿到了苹果,8 个人拿到了梨,"都"未知,总人数为 13 人,是两集合的题目,公式中没有"只",根据问法"只",优选画图,若基础好,或逻辑强,也可以使用公式的变形,主推画图,左图中,左边是苹果,右边是梨,"都"不知道,无法标数,代入的做法比较慢。总共 13=苹果 9+只梨→只梨=13-9=4 人,都=8-4=4人,只苹果=9-4=5 人;或右图中,阴影部分加上右边完整的圆是整体,设只苹果为 x 人,x+梨 8=总 13,x=5 人。【选 B】

【注意】左边的做法求出了所有的数,无论问什么都有答案,缺点是没有针对性,可能到最后才找到所求;右边的做法将所求标上阴影,再观察,一步得到答案,速度更快,推荐用右边的方法,左边的方法也对,但稍麻烦。

例 3 (2018 联考) 某试验室通过测评 I 和 II 来核定产品的等级: 两项测评都不合格的为次品,仅一项测评合格的为中品,两项测评都合格的为优品。某批产

品只有测评 I 合格的产品数是优品数的 2 倍,测评 I 合格和测评 II 合格的产品数之比为 6: 5。若该批产品次品率为 10%,则该批产品的优品率为()。

A. 10% B. 15%

C. 20% D. 25%

【解析】例 3. 本题脱胎自前两年的国考题,国联考中常有相似题,大量做题,考试时很可能碰到相似题。出现"都不""都","只有测评 I 合格"在公式中不存在,考虑画图,上题中无"都不",本题有"都不",需要画框,标注数据,所有的条件均是百分数,考虑赋值,建议赋值时从交叉区域开始,交叉区域是优品,对应条件"某批产品只有测评 I 合格的产品数是优品数的 2 倍",设优品为1 件,则只 I = 2,可知 I = 3,"测评 I 合格和测评 II 合格的产品数之比为 6:5" \rightarrow II = 2. 5,赋值时尽量赋为整数,偶尔出现小数也可以做,不影响答案,不算错即可,只 II = 2. 5 – 1 = 1. 5,问优品率,需要知道总件数,先算次品,非次品=4. 5,"次品率为 10%" \rightarrow 非次品率为 90%,4. 5 件占 90% \rightarrow 次品 0.5 件占 10%(可不写),总件数为 5,优品率=优品 1/总件数 5=20%。【选 C】

【知识点】三集合:难度上不比两集合高多少,喜欢考公式。

1. 标准型公式(中学时学习过): A+B+C-A∩B-B∩C-C∩A+A∩B∩C=全-都不。

2. 推导(更好地理解公式,记忆更深): A、B、C 三个集合,用 A、B、C 相加凑全集,A+B+C 覆盖了大部分数据,A+B 中,A \cap B 被计算两次,去掉重复的一次,同理,B \cap C、C \cap A 重复两次,需要去重一次,故而- A \cap B - B \cap C - C \cap A 重复两次,需要去重一次,故而- A \cap B \cap B \cap C \cap C \cap A 可以 A \cap B \cap C \cap C \cap A \cap B \cap C \cap C \cap A \cap B \cap C \cap C \cap A 时减去三次,此时没有了,需要补回,得到等式左边:A+B+C-A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap A \cap A \cap B \cap C \cap C \cap C \cap A \cap B \cap C \cap C \cap C \cap A \cap B

3. 记忆方法:各加、去重、补漏,理解这三步便很好记忆了。A、B、C 各加一遍,两两之间的重复有三个,需要扣除三遍,中间部分加三次、减三次,需要补漏一次,得到公式: A+B+C-A∩B-B∩C-C∩A+A∩B∩C=全-都不。

例 4(2018 陕西)有关部门对 120 种抽样食品进行化验分析,结果显示,抗氧化剂达标的有 68 种,防腐剂达标的有 77 种,漂白剂达标的有 59 种,抗氧化剂和防腐剂都达标的有 54 种,防腐剂和漂白剂都达标的有 43 种,抗氧化剂和漂白剂都达标的有 35 种,三种食品添加剂都达标的有 30 种,那么三种食品添加剂都不达标的有()种。

A. 14	B. 15
C. 16	D. 17
E. 18	F. 19
G. 20	Н. 21

【解析】例 4. 看上去有 8 个选项,其实是送分题。有三种达标 A、B、C,"抗氧化剂和防腐剂都达标" \rightarrow A \cap B,"防腐剂和漂白剂都达标" \rightarrow B \cap C,"抗氧化剂和漂白剂都达标" \rightarrow C \cap A,"三种食品添加剂都达标" \rightarrow A \cap B \cap C,公式中所有的数据均有,问都不达标,代公式的题目,对号入座,不要自己变形,否则容易错,公式: A+B+C-A \cap B-B \cap C-C \cap A+A \cap B \cap C=全-都不,代入数据: 68+77+59-(54+43+35)+30=120-x,选项尾数各不相同,使用尾数法,加法一起算,4-2+0=0-x,x 尾数是 8(注意不是 2),对应 E 项。【选 E】

【知识点】三集合:

- 1. 非标准型公式: A+B+C-满足两项-满足三项*2=全-都不。该公式比上一个短,更优,更好用。
- 2. 推导(推导过程平时看懂即可,考场上无需推导): A、B、C 相加为 A+B+C,注意去重时不要重复(否则还要加回来),图中,满足 A、B 对应 I,满足 B、C 对应 II,满足 C、A 对应 III, II、III 不包含满足三项的部分,满足 A、B、C 对应 V,满足两项= I + II + IIII,满足至少两项= I + II + IIII + V,注意区分, I、 II、III均被算了两次,需要去掉一次,即"-(I+II+III)",再去重中间的部分 V,去重几次取决于计算了几次,A、B、C 各计算一次,被计算三次,去掉 2 V,得到公式: A+B+C-I-II-III-V*2=全-都不。"I+II+III"是"满足两项","V"是满足三项,对应公式: A+B+C-满足两项-满足三项*2=全-都不。

- 3. 例 4 出现"既……又", 只能用标准型公式。
- 4. 标准型和非标准型的判定方法: 出现"既······又",如既 A 又 B、既黄山又华山,使用标准型公式;无"既······又",使用非标准型公式。

例 5(2018 江西)某高校做有关碎片化学习的问卷调查,问卷回收率为 90%, 在调查对象中有 180 人会利用网络课程进行学习,200 人利用书本进行学习,100 人利用移动设备进行碎片化学习,同时使用三种方式学习的有 50 人,同时使用 两种方式学习的有 20 人,不存在三种方式学习都不用的人。那么,这次共发放 了多少份问卷?())

A. 370 B. 380 C. 390 D. 400

【解析】例 5. 没有"既……又",且没有类似说法,有三种情况,"同时使用"说明有交叉,是三集合容斥原理,使用非标准型公式: A+B+C-满足两项-满足三项*2=全-都不,"不存在三种方式学习都不用的人"说明都不=0,设全部为x,代入数据: 180+200+100-20-50*2=x-0,选项尾数均是 0,需要完整计算,解得 x=360,选项中无答案,若选接近的便错了,"问卷回收率为 90%"说明拿到的是回收的数据,回收了 360 份,问发放的问卷数,发放问卷数=360/90%=400 份。

【选 D】

【注意】真题很重要,要多做,真题之间会互相借鉴,故而要做好真题,本题选项中没有360,否则很容易掉坑。开头有额外条件,前面是百分数,后面是容斥,一定有猫腻,做完之后要考虑360和90%的关系。

例 6(2017 江苏)某单位有 72 名职工,为丰富业余生活,拟举办书法、乒乓球和围棋培训班,要求每个职工至少参加一个班。已知三个班报名人数分别为 36、20、28,则同时报名三个班的职工数至多是()。

A. 6 人

B. 12 人

C. 16 人

D. 20 人

【解析】例 6. "至少参加一个"在容斥原理中是没有"都不",在不同题型中的想法不同,排列组合中,"至少选一个"可以选一个、选两个、选三个,用"1-反面概率","至少一个"往往考反面。没有给两项的人数,也没有"既……又",虽然没有两项的人数,但不一定不能用非标准型公式,有 A、B、C,是三集合容斥问题,没有"既……又",无法使用标准公式,考虑非标公式(多一个未知数): A+B+C-满足两项-3*满足三项=全部-都不,设满足两项有 x 人,满足三项有 y 人,代入数据: 36+20+28-x-2y=72→x+2y=12,注意此时不能直接选择 B 项。

方法一:问 y 最多是多少,两个未知数一个方程,要想让 y 尽量多,总和是定值,则 x 尽量少, x 是满足两项的人,可能没有人刚好报两个班,要么报 3 个班,要么报 1 个班,故而 x 至少为 0,此时 2y 最大为 12, y 最大为 6,对应 A 项。

方法二: 考场上若无最值思维,代入选项,"最多……最少"且是不定方程,不定方程、多位数、年龄问题往往可以用代入排除法,问"最多",从大往小代入,代入B、C、D项后,x均为负数,人数可以为0,但不能为负,均排除,选择A项。【选A】

【注意】集合没有特定形状,画成圆是为了好看,画图如下, $A \times B \times C = \Lambda$ 集合,只有 $A \cap B \cap C$,没有两两之间的交叉,但考场上不用这样想,数字上满足要求即可。

【答案汇总】1-5: BBCED; 6: A

【小结】容斥原理(多种情况有交叉):

- 1. 公式 (优先考虑公式法,能用公式,尽量先用公式):
- (1) 两集合: A+B-AB=总数-都不。
- (2) 三集合:
- ①标准公式: A+B+C-AB-AC-BC+ABC=总数-都不。有"既······又·····"时考虑标准公式。
- ②非标准公式: A+B+C-满足两项-满足三项*2=总数-都不。没有"既······ 又······"时考虑非标准公式。
- ③常识公式:满足一项+满足两项+满足三项=总数-都不。出现"满足一项"时考虑常识公式,往往与非标准公式一起用。如例 5,发出 400 份问卷,收回 3

60 份问卷,问只用一种方式的有多少人? 用生活常识来想,360 人要么用一种方式,要么用两种方式,要么用三种方式,要么三种方式都不用,假设用两种方式的有 20 人,用三种方式的有 50 人,都不有 0 人,那么用一种方式的人=360-20-50=290 人。

2. 画图(能用公式就用公式,公式不能用,则考虑画图): 出现"只 A",即出现只参加某种情况的,"只 A"在公式中没有,考虑画图。满足一项与"只 A"不一样,满足一项=只 A+只 B+只 C。

- (1) 画圈圈,标数据。如果没有数值,给的都是比例,可以赋值,优先赋值交叉区域(中间量)。
- (2) 从里往外,注意去重。先标最里面的,先从外面开始标去重比较麻烦。 比如中间 5 人, A 集合有 9 人,不要标 9 和 5 (如左图),这样会将 A 集合看成是 14 人,重复计算,则标数时(如右图),把 9 人标在圆圈外,分成 4 和 5。

第九节 排列组合与概率

【知识点】排列组合与概率:排列组合的题,考试时两极分化很严重,即难的题目特别难,简单的题目特别简单,所以在考试过程中可以选择性的做一些题,也可以拿到一定的分数。

- 1. 分类与分步:
- (1) 分类 (要么 A 要么 B) 相加。

例:老师前段时间去安徽做培训,从北京到安徽,直接去有两种选择,要么

坐飞机要么坐高铁,假设飞机有 5 趟直达,高铁有 3 趟直达,问:老师从北京到 安徽有多少种方式?

答: 老师从北京到安徽,要么坐飞机,要么坐高铁,"要么······要么·····" 用加法,则总方式: 5+3=8 种。

(2) 分步(先 A 后 B) 相乘。

例:老师从北京到安徽,买票太晚,没有直达票,需要在南京中转,北京到南京有 10 种方式,南京到安徽有 8 种方式,问:整个行程从北京到南京中转再到安徽,有多少种情况?

答: 老师先从北京到南京,再从南京到安徽,"先······再·····"用乘法,则总情况=10*8=80种。

2. 排列与组合:

- (1) 排列:与顺序有关。从 n 个元素中选出 m 个,有顺序地选,即 A (n, m) =n* (n-1) ***********(n-m+1)。
- ①理解: 从 n 个人中选出 m 个人去参加培训,从 n 个人中选 1 个人,有 n 种情况; 再从剩下的(n-1) 个人中选第 2 个人,有(n-1) 种情况; 从剩下的(n-2) 个人中选第三个人,有(n-2) 种情况……从剩下的(n-m+1) 中选第 m 个人,有(n-m+1) 种情况。

- ①理解: A(n,m) = C(n,m) * A(m,m),两步走: 先从 n 个人中选出 m 人,考虑顺序,为 C(n,m); 再将 m 个人进行排列,为 A(m,m)。"先……再……" 用乘法,即 $A(n,m) = C(n,m) * A(m,m) \to C(n,m) = A(n,m) / A(m,m)$ 。
- ②操作: C (n, m), 分子从 n 开始往下乘 m 个数, 分母从 m 开始往下乘 m 个数, 即 C (n, m) = [n* (n-1) * · · · · · * (n-m+1)]/[m* (m-1) * · · · · · * * * 1]。
 - ③例: C(10,3) = (10*9*8) / (3*2*1)。

④例: C(8,6) = (8*7*6*5*4*3) / (6*5*4*3*2*1),如果分别从 8 和 6 往下乘 6 个数,再相除,计算复杂,观察发现,分子和分母大部分是相同的,可以约掉,则 C(8,6) = (8*7) / (2*1,) = C(8,2),因此 C(n,m) = C(n,n-m)。如从 8 个人中选 6 个人去扫地,不考虑顺序,相当于从 8 个人中选 2 个人不扫地,即 C(8,6) = C(8,2) = (8*7) / (2*1)。

- (3) 判定标准:从已选的主体中(m个)任意挑出两个,调换顺序:
- ①有差别,与顺序有关(A):从8个人中选3个人去领一、二、三等奖,本来甲是一等奖、乙是二等奖,调换顺序变为乙是一等奖、甲是二等奖,此时发生变化,有差别,用A表示,即A(8,3)。
- ②无差别,与顺序无关(C):例如从8个人中选3个人参加运动会,从三个中随便挑出两个主体,调换顺序,如选甲、乙与乙、甲,是一样的,即调换顺序没有差别,用C表示,即C(8,3)。
- ③如果选的人都是做同样的事情,都是无差别的,用 C 表示;如果选出的人做的事情都不一样,则每个人都是有差别的,用 A 表示。

一、基础题型

例 1 (2018 山西) 甲、乙、丙三所学校的学生被安排在周一至周五参观某革命纪念馆。纪念馆每天最多只能安排一所学校,其中甲学校连续参观两天,其余学校均只参观一天,那么共有多少种安排方法? ()

A. 12 种 B. 24 种

C. 36 种 D. 60 种

【解析】例 1. 周一到周五共 5 天,可以画 5 个框表示,由于甲学校连续参观两天,其他两个学校只参观一天,则先安排甲,不能用 C (5,2),因为周一和周五不连续,甲参观的时间可能为"周一和周二、周二和周三、周三和周四、周四和周五"共 4 种情况。再安排乙、丙,剩下 3 天,挑 2 天给乙、丙,有顺序,情况数为 A (3,2) =3*2=6 种。"先······再·····"用乘法,故总的情况数=4*6=24种,对应 B 项。【选 B】

【注意】1. 有特殊要求的先安排。

2. 甲学校连续参观两天,不能用 C(5,2),因为周一和周五不连续。

例 2(2018 广州)某部门开展年终评选工作,需从 11 名员工中评选出一名 优秀员工和两名积极员工,且优秀员工与积极员工不能为同一人,则可能会出现 的评选结果共有()种。

A. 495 B. 990

C. 1210 D. 1980

【解析】例 2. "不能为同一个人"即一个人不能同时评优秀员工和积极员工。分两步走,先选优秀员工,从 11 个人中选 1 个,为 C (11, 1);再选积极员工,从剩下的 10 人中选 2 个,当积极员工是同样的事,没有顺序,为 C (10, 2) = (10*9) / (2*1) = 45 种。"先……再……"用乘法,总情况=11*45,尾数为 5,对应 A 项。【选 A】

【注意】1. 从 11 个人中选 1 个,为 C (11,1),也可以是 A (11,1),因为选 1 个没有顺序,即 C (n,1) =A (n,1) =n。

2. 也可以先选积极员工,为 C(11,2); 再选优秀员工,为 C(9,1),答案是一样的。

例 3 (2017 四川) 某交警大队的 16 名民警中,男性为 10 人,现要选 4 人进行夜间巡逻工作,要求男性民警不得少于 2 名,问有多少种选人方法? ()

A. 1605 B. 1520

C. 1071 D. 930

【解析】例 3. 根据题干, 16 名民警中, 10 人为男性,则 6 人为女性。选取 4 人夜间巡逻,要使男性民警不得少于 2 人,则有三种情况:(1)男性 4 名,从 10 名男性中选 4 名,都是巡逻,无顺序,有 C(10,4)种情况,C(10,4)=(10*9*8*7) / (4*3*2*1),尾数为 0;(2)男性 3 名女性 1 名,从 10 名男性中选 3 名,从 6

Fb 粉笔直播课

名女性中选 1 名, "先······再······" 用乘法,都是巡逻,无顺序,有 C (10,3) *C (6,1) 种情况,C (10,3) *C (6,1) = (10*9*8) / (3*2*1) *6,尾数为 0; (3) 男性 2 名女性 2 名,从 10 名男性中选 2 人,从 6 名女性中选 2 名,"先······再······"用乘法,都是巡逻,无顺序,有 C (10,2) *C (6,2) 种情况,C (10,2) *C (6,2) = [(10*9) /2]*[(6*5) /2],尾数为 5。分类用加法,则选人方法为 C (10,4) +C (10,3) *C (6,1) +C (10,2) *C (6,2) = 尾数 0+尾数 0+尾数 5=尾数 5,对应 A 项。【选 A】

【注意】1. 易错方法:从 10 名男性中选 2 名,再从剩下的 14 名中选 2 人,为 C (10, 2) *C (14, 2),看似是对的,但其实计算重复,是错的。如果第一种:第一次选出甲_男和乙_男、第二次选出丙_男和丁_男;第二种:第一次选出丙_男和丁_男、第二次选出甲_男和乙_男,两种情况重复。

2. 遇到人群分两类,如 m 个男性、n 个女性,从中选 x 个男性,y 个女性,则男性在男性中选,女性在女性中选,就不会交叉重复出现,既 C(m,x)*C(n,y),如果选出做同样的事,则用 C; 如果选出做不同的事,则用 A。

3. 本题反面也有两种情况,总共要算三种情况,比较复杂,只有当反面特别简单,只有一种情况时,用反面计算。

【答案汇总】1-3: BAA

二、特殊题型

【知识点】特殊题型:经典题型与方法:

- 1. 枚举法:
- 2. 捆绑法:
- 3. 插空法:
- 4. 插板法;
- 5. 错位排列。

【知识点】枚举法:凑数/选项小。排列组合中也会出现枚举法,近几年考 频比较高。

- 1. 凑数:比如拿一堆1毛、2毛、5毛的纸币凑一块钱,要刚好凑到这个数,不能多也不能少。
- 2. 选项小:比如问有多少种发货方式,选项答案往往不到 10 种,此时不一定要用公式,可以直接枚举。

例 1 (2015 国考)餐厅需要使用 9 升食用油,现在库房里库存有 15 桶 5 升装的,3 桶 2 升装的,8 桶 1 升装的。问库房有多少种发货方式,能保证正好发出餐厅所需要的 9 升食用油? ()

A. 4 B. 5

C. 6 D. 7

【解析】例 1. 枚举法。保证发到 9 升油,必须正好是 9 升,不能多也不能少,枚举时建议优先用最大的,最大用完之后再优先用中间大的,最后再用最小的,有以下情况: (1) 1 桶 5 升,2 桶 2 升,0 桶 1 升; (2) 1 桶 5 升,1 桶 2 升,2 桶 1 升; (3) 1 桶 5 升,0 桶 2 升,4 桶 1 升; (4) 0 桶 5 升,3 桶 2 升,3 桶 1 升;此时 2 升的不能用 4 桶,因为总共只有 3 桶 2 升的。(5) 0 桶 5 升,2 桶 2 升,5 桶 1 升; (6) 0 桶 5 升,1 桶 2 升,7 桶 1 升。5 升为 0 桶时,2 升不能为0 桶,因为如果 2 升为 0 桶,则需要 9 桶 1 升,而 1 升总共只有 8 桶,故只有这6 种情况,对应 C 项。【选 C】

【注意】1. 枚举时,大桶突然不用,小桶往往有陷阱。

2. 枚举时注意按顺序,避免出现漏举或是重复。

【知识点】捆绑法:相邻。

1. 引例: 甲乙丙丁戊己 6 个老师站成一排照相,要求甲乙丙 3 人必须相邻,有()种不同的站法?

引例解析: 先把甲乙丙 3 个老师捆在一起,照相谁左谁右是有顺序的,为 A (3,3),捆完之后看成一个元素和剩下 3 个老师排,为 4 个元素排顺序,用 A(4,4),分步用乘法, A (3,3) *A (4,4) =6*24。

- 2. (1) 先捆: 把相邻的元素捆绑起来,注意内部有无顺序。
- (2) 再排:将捆绑后的看成一个元素,进行后续排列。

3. A(3,3)=6, A(4,4)=24, A(5,5)=120。考试中经常会用到这三个数,记住之后计算更方便。

例 2 (2016 国考) 为加强机关文化建设,某市直属机关在系统内举办演讲比赛,3个部门分别派出 3、2、4 名选手参加比赛,要求每个部门的参赛选手比赛顺序必须相连,问不同参赛顺序的种数在以下哪个范围之内?()

A. 小于 1000

B. 1000~5000

C. $5001 \sim 20000$

D. 大于 20000

【解析】例 2. 要求必须相邻,考虑捆绑法。第一步,先捆,捆的对象是每个部门的选手,即每个部门都要捆一遍。捆绑内部有顺序,分别为 A (3,3),A (2,2),A (4,4)。第二步,再排,相当于 3 个捆完的元素再排序,为 A (3,3)。分步用乘法,A (3,3)*A (2,2)*A (4,4)*A (3,3)=6*2*24*6 \approx 12*100 † ,选项为范围,直接估算,对应 B 项。【选 B】

【注意】联想到之前排列组合的例 1,没用捆绑法是因为时间或数字是天然有序的,不需要用捆绑法。比如 1、2、3、4、5 这 5 天,连续两天就是 (1,2), (2,3), (3,4), (4,5),连续三天就是 (1,2,3), (2,3,4), (3,4,5); 从 $1\sim10$ 中取连续 3 个数字,就是 (1,2,3), (2,3,4) …… (8,9,10)。

【知识点】插空法:不相邻。

- 1. 注意: 如果从捆绑法的反面考虑,不相邻=全部-相邻,这个公式是片面的,只有1种情况是对的,即如果是两个人就是对的。比如甲乙丙不相邻,反面如果是全部-相邻,则会有两种情况,一种是甲、乙、丙中间被隔开,全部不相邻,另一种是甲乙相邻但丙被空开或乙丙相邻甲被空开,而要求的甲乙丙不相邻特指第一种情况,用全部-相邻会出现第二种干扰的情况,因此一般不用捆绑法的反面去做。
- 2. 引例: 甲乙丙丁戊己庚,7个老师站成一排照相,要求甲乙丙3人必须不相邻,有()种不同的站法?

引例解析: 甲乙丙 3 人必须不相邻, 第一步, 先排剩下的 4 个老师, 为 A(4,4), 形成 5 个空位。第二步, 把不相邻的 3 个老师插入到 5 个空位中, 有顺序, 为 A

- (5,3), 分步用乘法, 答案为 A (4,4) *A (5,3)。
 - 3. (1) 先排: 先安排可以相邻的元素, 形成若干个空位。
 - (2) 再插:将不相邻的元素插入到空位中。
 - 4. 捆绑法是用来解决相邻问题,插空法用来解决不相邻问题。

例 3 (2017 云南) 某兴趣组有男女生各 5 名,他们都准备了表演节目。现在需要选出 4 名学生各自表演 1 个节目,这 4 人中既要有男生,也要有女生,且不能由男生连续表演节目。那么,不同的节目安排有多少种? ()

A. 3600

В. 3000

C. 2400

D. 1200

【解析】例 3. 男女生各 5 名,选出 4 名学生,必须要男女生分开选,不然很容易重复。有 3 种情况: (1) 3 男 1 女:要求男生不能连续表演,这种情况必然会违反男生不连续的要求,故这种情况不需要考虑。(2) 2 男 2 女:先选人再排序,从 5 个男生中选 2 个,不考虑顺序,为 C (5,2)。同理,从 5 个女生中选2 个为 C (5,2)。男生不能连续表演,则先排女生,2 个女生排序为 A (2,2),形成3 个空,再插空,从 3 个空中选2 个,为 A (3,2)。分步用乘法为:C (5,2)*C (5,2)*A (2,2)*A (3,2)=10*10*2*6=1200。(3) 1 男 3 女:先选人,从 5 个男生中选1人,为 C (5,2)。从 5 个女生中选3人,为 C (5,3),此时随便排顺序男生都不能连续,为 A (4,4),分步用乘法,C (5,1)*C (5,3)*A (4,4)=5*10*24=1200。两种情况,分类用加法,1200+1200=2400。【选 C】

【注意】易错点:如果一边选一边排,从5个男生中选2个男生,从5个女生中选2个女生,都带顺序,为A(5,2)*A(5,2),如果后面再排顺序则会重复,如果后面不排顺序则不能保证男生不连续表演,因此要先选人再排序,不能一边选一边排。

【知识点】插板法(隔板法): 同素分配。

1. 公式: n 个相同的物品分给 m 人,每人至少分 1 个,有 C (n-1, m-1) 种分法。即用插板法的前提是"n 个相同的物品分给 m 人,每人至少分 1 个",答案是"有 C (n-1, m-1) 种分法"。例如 9 个相同的橘子分给 4 个人,每人至少分 1

个,则 n=9,答案为 C (9-1,8-1) = C (8,3)。

- 2. 变形: 若每人至少分 x 个,则先分 (x-1) 个,再将剩下的按插板法分。 插板法能保证至少分 1 个,因为先分 x-1 个,插板法再保证至少分 1 个,则合起来为每人至少分 x 个。
- 3. 公式的推导思路: n 个物品不含两边, 共有(n-1)个空, 将(m-1)个木板插入到其中, 就能将其分成 m 堆, 且每堆至少 1 个。假如把 6 个物品分给 3 个人,可以把 6 个物品分为 3 堆, 把两个木板插在中间的空, 自然分为 3 个部分, 即分给 3 个人。6 个物品应该是形成 7 个空, 但木板不能插在最左边和最右边, 因为此时会导致最左边或最右边的人分到 0 个物品, 故 6 个物品是 5 个空, 从 5 个空中插入 2 个木板, 没有顺序, 为 C (5, 2)。

例 4(2014 广州)某办公室接到 15 份公文的处理任务,分配给甲、乙、丙三名工作人员处理。假如每名工作人员处理的公文份数不得少于 3 份,也不得多于 10 份,则共有多少种分配方式? ()

A. 15 B. 18 C. 21 D. 28

【解析】例 4. 本题默认公文是一样的,要求每名工作人员处理的公文份数不得少于 3 份,即每个人至少分 3 份。先给每人分两份,则剩下 15-2*3=9 份。再把 9 份进行分配,每人至少分 1 份,满足同素分配的要求,用插板法,为 C (9-1,3-1)=C(8,2)=28 种。再扣掉至多分 10 份的情况,总共才 15 份公文,最少的两个人也有 3 份,则第三个人最多有 9 份,不可能违反至多份 10 份的条件,则共有 28 种分法,对应 D 项。【选 D】

【注意】1. 先每人分 2 份,只有 1 种情况,1*28=28,不影响结果,则考试时不用考虑先分的情况数。

2. 本题如果改为不得多于 8 份,则(3,3,9)这种分法违反了,此时有 C(3,1) =3 种情况,则分配方式有 28-3=25 种。

【知识点】错位排列:不回原位。

1. 错位排列即原来有正确的位置,由于某种原因导致不回原来位置,即位置

错了。如果是一个位置,不可能错;如果是两个位置:甲、乙,错位之后就只有 1 种情况:乙、甲;如果是三个位置:甲、乙、丙,则错位情况有两种:乙、丙、甲或丙、甲、乙,不可能是丙、乙、甲,因为此时乙的位置没错;如果是四个位置,全错位有 9 种情况;如果是 5 个位置,全错位有 44 种情况;如果是 6 个位置,全错位有 265 种情况,再往后数值更大,呈爆炸式增长。故考试时一般只会 考到 5 个位置,直接记住结论即可。

- 2. 当元素数分别是 1、2、3、4、5 时, 错排数分别为 0、1、2、9、44。
- 3. 真题中的考法: 有 4 辆车分别有 4 个停车位, 因为灯坏了 4 辆车全部停错了,则共有 9 种情况。

例 5 (2015 山东) 某单位从下属的 5 个科室各抽调了一名工作人员,交流到其他科室,如每个科室只能接收一个人的话,有多少种不同的人员安排方式?()

A. 120

B. 78

C. 44

D. 24

【解析】例 5. 从 5 个科室各抽 1 个人到其他科室,即 5 个人不回原来科室,错位重排问题。5 个人的错位重排有 44 种情况,对应 C 项。【选 C】

【注意】错位重排为大学学的内容,把大学内容放在联考中考,一定不会考的很深,直接记住结论秒杀即可。

【答案汇总】1-5: CBCDC

三、概率问题

【知识点】概率问题:

- 1. 给情况求概率(主要考法): 概率=满足要求的情况数/总的情况数。比如 唐老师买彩票,满足中奖要求的有100个,总数有1亿个,则中奖概率为100/1 亿。概率可以表示为小数,也可表示为分数、百分数。
- 2. 给概率求概率 (次要考法): (1) 分类: P=P₁+P₂+······+P_n; 比如行测考 70~80 分的概率为 10%,80 分以上概率为 20%,则考 70 分以上的概率为 10%+20%=30%。
- (2) 分步: P=P₁*P₂*·····*P_n。比如从甲地到乙地,经过 2 个路口,第一个路口

Fb 粉笔直播课

红灯概率为 0.5, 第 2 个路口红灯概率为 0.4, 则从甲地到乙地连续两次遇到红灯的概率为: 0.5*0.4=0.2。和排列组合一样,分类用加法,分步用乘法,其实概率问题就是从排列组合问题中延伸出来的。

3. 正难则反:满足的概率=1-不满足的概率。

例 1 (2018 贵州) 某公司将在本周一至周日连续七天举办联谊会,某员工随机地选择其中的连续两天参加联谊会,那么他在周五至周日期间连续两天参加联谊会的概率为()。

A. 1/2 B. 1/3

C. 1/4 D. 1/6

【解析】例 1. 时间具有天然顺序,不需要用排列组合求。周五至周日期间连续两天的情况数有 2 种: 周五周六、周六周日,7 天中连续两天的情况数有 6 种: 周一周二、周二周三、周三周四、周四周五、周五周六、周六周日。P=满足要求的情况数/总的情况数=周五至周日连续 2 天的情况数/7 天中连续 2 天的情况数=2/6=1/3,对应 B 项。【选 B】

例 2(2018 国考)某单位的会议室有 5 排共 40 个座位,每排座位数相同。 小张和小李随机入座,则他们坐在同一排的概率 ()。

A. 不高于 15%

B. 高于 15%但低于 20%

C. 正好为 20%

D. 高于 20%

【解析】例 2. 会议室有 5 排共 40 个座位,则每排有 8 个座位。

方法一:给情况求概率问题。总情况数是从 40 个座位中选 2 个座位,为 A (40,2),坐同排的情况数:先从 5 排中选 1 排为 C(5,1),再从 8 个座位中选 2 个,座位有顺序,为 A (8,2),P=同排/40 选 2=C (5,1)*A (8,2)/A (40,2)=5*8*7/(40*39)=7/39,首位商 1,次位商 8 左右,对应 8 项。

方法二: 先让第一个人随便选个座位,概率为 1, 再让第二个人选, 还剩 40-1=39 个座位, 而同排座位还剩 7 个,则概率 P=同排座位/剩下座位=7/39, 对应 B 项。【选 B】

【注意】本题为近几年的热门考法,考频很高。

例 3(2018 吉林)某仓库存放三个厂家生产的同一品牌洗衣液,其中甲厂生产的占 20%,乙厂生产的占 30%,剩余为丙厂生产的,且三个厂家的次品率分别为 1%,2%,1%,则从仓库中随机取出一件是次品的概率为()。

A. 1. 6% B. 1. 3%

C. 1% D. 2%

【解析】例 3. 方法一: 甲厂生产的占 20%, 乙厂生产的占 30%, 剩余为丙厂生产的,则丙厂生产的占 50%。P=从次品中取 1 件/随便取 1 件,总产量未知,题目中只有比例关系,考虑赋值法。赋值总产量为 1000 件,则甲厂次品为 200*1%=2 件,乙厂次品为 300*2%=6 件,丙厂次品为 500*1%=5 件,总共次品有 2+5+6=13 件,P=13/1000=1.3%,对应 B 项。

方法二: 甲、乙、丙厂次品率分别为 1%, 2%, 1%, 生产量分别占 20%, 30%, 50%, 分别求出次品概率为: 1*20%=0.2%, 2%*30%=0.6%, 1%*50%=0.5%, 相加为 1.3%。【选 B】

例 4(2017 国考)某集团企业 5 个分公司分别派出 1 人去集团总部参加培训,培训后再将 5 人随机分配到这 5 个分公司,每个分公司只分配 1 人。则 5 个参加培训的人中,有且仅有 1 人在培训后返回原分公司的概率()。

A. 低于 20%

B. 在 20%~30%之间

C. 在 30%~35%之间

D. 高于 35%

【解析】例 4.5 个参加培训的人中,有且仅有 1 人在培训后返回原分公司,则有 4 个人不回原公司,即错位排列问题。P=5 人中有 4 人不回原位的情况数/总情况数,5 个人随机分配到 5 个公司,则总情况数为 A (5,5)。5 人有 4 人不回原位,为 9 种情况,还有 1 个人回到了原公司,从 5 人中选一个为 C (5,1),则 P=9*C (5,1) /A (5,5) =9*5/120=3/8=37.5%。【选 D】

【注意】本题既要看错误的情况: "5人有4人不回原位,为9种情况",也要看正确的情况: "有1个人回到了原公司",两方面都要考虑,不能漏。

【答案汇总】1-4: BBBD

【小结】排列组合与概率:

- 1. 排列组合:
- (1) 概念:
- ①分类用加法(要么……要么……)。
- ②分步用乘法(先……再……)。
- ③有序用排列 A (不可互换)。
- ④无序用组合 C (可以互换)。
- (2) 题型:
- ①凑数字/选项小: 枚举法,不重不漏。
- ②必须相邻:捆绑法,先捆再排。
- ③不能相邻: 插空法, 先排再插。
- ④至少 n 个: 插板法, 公式+变形。
- ⑤不回原位: 错位排列, 0/1/2/9/44。
- 2. 概率:
- (1) 给情况求概率:满足要求的情况数/所有的情况数。
- (2) 给概率求概率: 分类用加法, 分步用乘法。
- (3) 正难反易: 1-反面情况概率。
- 3. 概率题中优先算分母的总情况数,如果连分母都算不出来,这个题可直接放弃。假如分母算出来为60,而选项的分母分别为7、12、5、14,可直接排除分母为7和14的选项,再从分母为12和5的两个选项中选答案。

Fb 粉笔直播课

课后测验

1. (2018 湖北) A、B 两地间有三种类型列车运行,其中高速铁路动车组列车每天 6 车次,普通动车组列车每天 5 车次,快速旅客列车每天 4 车次。甲、乙两人要同一天从 A 地出发前往 B 地。假设他们买票前没有互通信息,而且火车票票源充足,问他们买到同一趟列车车票的概率有多大?

A. 小于 10%

B. 10%到 20%之间

C. 20%到 25%之间

D. 25%到 30%之间

【解析】课后测验 1. 方法一: 三趟车买票共有 6+5+4=15 种买票方法, P=C (15 趟, 1 趟) / (甲 15 种*乙 15 种) =1/15<10%, 对应 A 项。

方法二: 甲随便买票, 概率为 1, 乙再去买和甲一趟火车, P=同 1 趟/15 种 选法=1/15<10%, 对应 A 项。【选 A】

2. 某单位举办设有 A、B、C 三个项目的趣味运动会,每位员工三个项目都可以报名参加。经统计,共有 72 名员工报名,其中参加 A、B、C 三个项目的人数分别为 26、32、38,三个项目都参加的有 4 人,则仅参加一个项目的员工人数是:

A. 48 B. 40

C. 52 D. 44

【解析】课后测验 2. 三集合容斥原理问题。总人数为 72,只参加一项+只参加两项+只参加三项=72-都不,"共有 72 名员工报名"说明 72 名员工都报名了,即都不=0,只参加三项=4 人,求出只参加两项即可,用非标准型公式,A+B+C-只参加两项-只参加三项*2=72,代入数据为: 26+32+38-只参加两项-4*2=72,解得只参加两项=16 人,只参加一项+只参加两项+只参加三项=72,则只参加一项=72-只参加两项-只参加三项=72-16-4=52。【选 C】

【注意】1. 有舍有得,前提是有得到的能力,切勿将锦上添花的部分全盘放弃。虽然考场上是有舍有得,但不能因为难题放弃所有数量题,数量题是行测中

锦上添花的部分,不要全盘放弃。

- 2. 战场上,剩者为王——剩者才能当胜者。大家能坚持到现在的都是剩者, 但还不是最终的胜者,坚持不一定能成功,但不坚持一定不能成功。
- 3. 方法精讲课中第一天是方法论,后三天都是一个容易题型搭配一个难的题型,可以优先复习后三天的容易题型,比如工程问题、经济利润问题、容斥问题,这三种题型相对简单一些,相对比较难的是行程问题、排列组合、几何问题。建议先把简单题型掌握好,在考场上也能拿到60%的分数。还有一些牛吃草问题等在学霸课中会有。

【答案汇总】第八节容斥原理: 1-5: BBCED; 6: A

第九节排列组合与概率:基础题型 1-3:BAA;特殊题型:1-5:CBCDC;概率问题:1-4:BBBD

遇见不一样的自己

Be your better self

