

AIX LYON PARIS STRASBOURG

WWW.CLEARSY.COM

Implementing the Functional Controller

Thierry Lecomte R&D Director

PART IV

Airlock

One Solution

- ► Implement CONTROLLER [8 pt]
 - > VARIABLES are already concrete. Only INITIALISATION is required.
 - > OPERATION process_headers implementation is given


```
control = /* courtesy of henrique */
BEGIN
    IF current objective = OBJ OPEN DOOR A THEN
        IF (pressure sensor l = PRESSURE A &
                contact sensor b = TRUE &
                contact sensor a = FALSE
        THEN
            current objective := OBJ NONE; current action := NONE
        ELSIF contact sensor b = FALSE THEN
            current action := TRANSLATE CLOSE DOOR B
        ELSIF contact sensor a = FALSE THEN
            current action := TRANSLATE CLOSE DOOR A
        ELSIF pressure sensor 1 /= PRESSURE A THEN
            current action := ADAPT PRESSURE L TO A
        ELSE
            current action := TRANSLATE OPEN DOOR A
        END
```


Hackathon

```
ELSIF current objective = OBJ OPEN DOOR B THEN
    IF (pressure sensor l = PRESSURE B &
            contact sensor b = FALSE &
            contact sensor a = TRUE
    THEN
        current objective := OBJ NONE; current action := NONE
    ELSIF contact sensor a = FALSE THEN
        current action := TRANSLATE CLOSE DOOR A
    ELSIF contact sensor b = FALSE THEN
        current action := TRANSLATE CLOSE DOOR B
    ELSIF pressure sensor 1 /= PRESSURE B THEN
        current action := ADAPT PRESSURE L TO B
    ELSE
        current action := TRANSLATE OPEN DOOR B
    END
```



```
ELSE
    IF (
            (current authentication = AUTHENTICATED A &
                button room a open a = TRUE
              or
            (current authentication = AUTHENTICATED L &
                button room 1 open a = TRUE
    THEN
        current objective := OBJ OPEN DOOR A
    ELSIF (
            (current authentication = AUTHENTICATED B &
                button room b open b = TRUE
              or
            (current authentication = AUTHENTICATED L &
                button room 1 open b = TRUE
    THEN
        current objective := OBJ OPEN DOOR B
```



```
ELSE
    IF contact sensor a = FALSE THEN
        current action := TRANSLATE CLOSE DOOR A
    ELSIF contact sensor b = FALSE THEN
        current action := TRANSLATE CLOSE DOOR B
    ELSE
        current action := NONE
    END
END
```


- Complement test CONTROLLER [2 pt]
 - > Specify an invariant that links some variables of CONTROLLER and the variables enable_door_a and enable_door_b

TNVARTANT

```
( current action = TRANSLATE OPEN DOOR A => enable door a = TRUE ) &
( current action = TRANSLATE OPEN DOOR B => enable door b = TRUE ) &
( current action = ADAPT PRESSURE L TO A => enable door a = FALSE ) &
( current action = ADAPT PRESSURE L TO B => enable door b = FALSE )
```


Final status

Component	TypeChecked	POs Generated	Proof Obligations	Proved	Unproved	B0 Checked
ACCESS_CARD	OK	OK	8	6	2	-
	OK	OK	0	0	0	-
(i) CONTROLLER_i	OK	OK	128	128	0	-
™ CTX	OK	OK	0	0	0	-
	OK	OK	1	1	0	-
	OK	OK	0	0	0	-
test_CONTROLLER	OK	OK	0	0	0	-
test_CONTROLLER_i	ОК	OK	6	6	0	-

- ► Optional: Have a look at the proof obligation issued from the added invariant in test CONTROLLER i and try to briefly check if the predicate is valid. Explain **shortly** your thought? [3 pt]
- Missing information to relate sensors, pressure, enabling and disabling
- Adaptation of ENABLER compute enabling post-condition required


```
compute enabling =
PRE
    (not(pressure sensor l = PRESSURE A) => contact sensor a = TRUE) &
    (not(pressure sensor l = PRESSURE B) => contact sensor b = TRUE)
THEN
    enable door a,
    enable door b : (
        enable door a : BOOL &
        enable door b : BOOL &
        (pressure sensor 1 = PRESSURE B & contact sensor a = TRUE =>
            enable door a = FALSE & enable door b = TRUE) &
        (pressure sensor 1 = PRESSURE A & contact sensor b = TRUE =>
            enable door a = TRUE & enable door b = FALSE) &
        (not(pressure sensor l = PRESSURE B & contact sensor a = TRUE) &
            not(pressure sensor l = PRESSURE A & contact sensor b = TRUE) =>
            enable door a = FALSE & enable door b = FALSE)
```


