11

12

13

CLAIMS

What is claimed is:

1	1.	A method for bootstrapping a secure communications channel between
2	devic	ces, comprising:

- 3 generating a key via a first device;
- 4 establishing a short range communication channel between the first device
- 5 and a second device;
- sending a copy of the key from the first device to the second device via the
 short range communication channel to produce a shared key that is shared by both
 the first and second devices;
 - establishing a secure communication channel between the first and second devices using an encrypted communication protocol that implements an encryption scheme based on a common encryption key derived from the shared key, said secure communication channel being separate and apart from the short range communication channel.
- 1 2. The method of claim 1, further comprising sending identity information used
- 2 to identify the first device from the first device to the second device, wherein the
- 3 identity information is used to establish the secure communication channel.
- 1 3. The method of claim 1, further comprising disabling the short range
- 2 communication channel after the copy of the key has been sent from the first device
- 3 to the second device.

- 1 4. The method of claim 1, wherein the shared key comprises a cryptographically
- 2 secure pseudo-random number.
- 1 5. The method of claim 1, wherein each of the first and second devices include
- 2 an authenticated key agreement algorithm software component that is used to
- 3 cooperatively generate the common encryption key.
- 1 6. The method of claim 1, wherein the short range communication channel
- 2 comprises a transponder/transponder reader pair and wherein the transponder is
- 3 operatively coupled to the first device and the transponder reader is operatively
- 4 coupled to the second device.
- 1 7. The method of claim 6, wherein the transponder reader is coupled to an
- 2 antenna that radiates radio frequency (RF) energy that is used to energize the
- 3 transponder, further comprising waving the transponder in front of or placing the
- 4 transponder in proximity to the transponder reader to energize the transponder and
- 5 cause the transponder to transmit data pertaining to the key to enable the data to be
- 6 read by the transponder reader via the antenna.
- 1 8. The method of claim 1, wherein the common cryptographic key is the shared
- 2 key.
- 1 9. The method of claim 1, further comprising performing a peer-to-peer
- 2 authentication using symmetric authenticated key agreement algorithms running on
- 3 both devices and the shared key.

1	10. The method of claim 9, wherein the peer-to-peer authentication is	
2	implemented by performing the operations of:	
3	storing credentials data including at least the shared key on both the first and	
4	second devices;	
5	generating a first random string with the first device and passing the first	
6	random string to the second device;	
7	generating a first digital signature corresponding to the first random string	
8	with the first device using an encryption key derived from the credentials data stored	
9	on the first device and a symmetric authenticated key agreement algorithm running	
10	on the first device;	
11	generating a second digital signature corresponding to the first random string	
12	with the second device using an encryption key derived from the credentials data	
13	stored on the second device and a symmetric authenticated key agreement	
14	algorithm running on the second device;	
15	comparing the first and second digital signatures to see if they match; and	
16	authenticating the second device with the first device if there is a match.	
1	11. The method of claim 10, wherein the peer-to-peer authentication further	
2	comprises performing the operation of:	
3	generating a second random string with the second device and passing the	
4	second random string to the first device;	
5	generating a third digital signature corresponding to the second random string	
6	with the second device using an encryption key derived from the credentials data	
7	stored on the second device and a symmetric authenticated key agreement	

algorithm running on the second device;

6

7

8

9

10

11

12

13

14

generating a fourth digital signature corresponding to the second random
string with the first device using an encryption key derived from the credentials data
stored on the first device and a symmetric authenticated key agreement algorithm
running on the first device;
e a are to a real result of the state and

- comparing the third and fourth digital signatures to see if they match; and authenticating the first device with the second device if there is a match.
- 1 12. A method for bootstrapping a secure communications channel between devices, comprising:
- 3 generating a key via a first device;
- 4 activating a transponder reader in a second device;
 - transmitting data corresponding to a copy of the key from a transponder operatively coupled to the first device to the transponder reader;
 - storing the copy of the key in the second device to produce a shared key that is shared by both the first and second devices;
- 9 establishing a secure communication channel between the first and second 10 devices using an encrypted communication protocol that implements an encryption 11 scheme based on a common encryption key derived from the shared key.
 - 1 13. The method of claim 12, further comprising disabling at least one of the
 - 2 transponder and transponder reader after the copy of the key has been sent from
 - 3 the first device to the second device.
 - 1 14. The method of claim 12, wherein the transponder reader is coupled to an
 - 2 antenna that radiates radio frequency (RF) energy that is used to energize the
 - 3 transponder, further comprising waving the transponder in front of or placing the

- 4 transponder in proximity to the transponder reader to energize the transponder and
- 5 cause the transponder to transmit a signal containing the data corresponding to the
- 6 copy of the key to enable the data to be read by the transponder reader via the
- 7 antenna.
- 1 15. The method of claim 14, wherein the transponder reader further transmits
- 2 data via the antenna requesting the transponder to send data to the transponder
- 3 reader and the transponder sends the data corresponding to the copy of the key in
- 4 response to receiving the request.
- 1 16. The method of claim 12, wherein the transponder comprises a transceiver
- 2 that sends and receives data using a 13.56 MHz radio frequency signal.
- 1 17. A device comprising:
- 2 a processor;
- a transceiver to receive and send data via radio frequency RF signals;
- 4 a key generator operatively coupled to the transceiver and the processor;
- 5 a communication interface to send and receive data from an external device
- 6 via a communication link; and
- 7 a memory coupled to the processor in which a plurality of machine
- 8 instructions including an authenticated key agreement algorithm module are stored
- 9 that when executed by the processor performs the operations of:
- invoking the key generator to generate a key;
- passing a copy of the key to the transceiver;
- enabling the transceiver to send a copy of the key to the external device via a
- 13 first RF signal to share the key between the device and the external device; and

establishing a secure communication channel with the second device over
the communication link that uses a cryptographic key that is generated through
execution of the authenticated key agreement algorithm module in cooperative
interaction with a symmetrical key agreement algorithm operating on the external
device and is based on the key that is shared between the device and the external
device.

- 1 18. The device of claim 17, wherein the transceiver comprises a transponder that
- 2 transmits the first RF signal containing data corresponding to the copy of the key in
- 3 response to receiving a second RF signal containing a data request from the
- 4 external device.
- 1 19. The device of claim 18, wherein the transponder is energized to transmit the
- 2 first RF signal by receiving RF energy via the second RF signal sent by the external
- 3 device.
- 1 20. The device of claim 17, further comprising a user interface control, coupled
- 2 to the processor, to receive a user request to establish a secure communication
- 3 channel between the device and the external device.
- 1 21. The device of claim 17, further comprising a persistent memory device in
- which a device identifier is stored, and wherein execution of the machine
- 3 instructions by the processor further performs the operation of sending data
- 4 corresponding to the device identifier to the external device via the first RF signal.
- 1 22. A device comprising:

2	a processor;
3	a transceiver to receive and send data via radio frequency (RF) signals;
4	a communication interface to send data to and receive data from an external
5	device via a communication link; and
6	a memory coupled to the processor in which a plurality of machine
7	instructions including an authenticated key agreement algorithm module are stored
8	that when executed by the processor performs the operations of:
9	controlling the transceiver to enable the transceiver to receive a copy of a
10	shared key from the external device via a first RF signal; and
11	establishing a secure communication channel with the external device over
12	the communication link, wherein the secure communication channel uses a
13	cryptographic key that is generated through execution of the authenticated key
14	agreement algorithm module through cooperative interaction with a symmetrical key
15	agreement algorithm operating on the external device and is based on the shared
16	key.
1	23. The device of claim 22 wherein the transceiver comprises a transponder
2	reader to receive an RF signal generated by a compatible transponder that is
3	operatively coupled to the external device.

1 24. The device of claim 23, further comprising an antenna coupled to the 2 transponder reader and driven by the transponder reader to generate an RF signal 3 including RF energy that is received by the compatible transponder to energize the 4 compatible transponder.

- 1 25. The device of claim 22, further comprising a user interface control, coupled
- 2 to the processor, to receive a user request to establish a secure communication
- 3 channel between the device and the external device.