

Project on

Sentiment Analysis of Real-time Flipkart Product Reviews Using MLflow for Experiment Tracking and Model Management

T. Mahesh Reddy

Intern ID: IN1240834

OBJECTIVE OF THE PROJECT

The objective of this task is to introduce you to MLflow for experiment tracking, model management, and reproducibility in machine learning projects for the Sentiment Analysis Project.

MLFlow

MLflow is an open source platform for managing machine learning workflows. It is used by MLOPs teams and data scientists. MLflow has main components.

- The experiment tracking allows you to record machine model training sessions (called runs) and run queries using Python.
- The model management provides a standard unit for packaging and reusing machine learning models.
- The deployment is a standard format that packages a machine learning model with its metadata, such as dependencies and inference schema.

MLFlow Dashboard

• The runs were executed using different models, such as Logistic Regression, Random forest, Decision Tree, Multinomial Naive Bayes, Support Vector Classification (SVC), and K-Nearest Neighbors (Knn).

best_vectorization

estimator

n_jobs

param_grid

pre_dispatch

return_train_score scoring

"Random_run" has description, and there are no logged or registered associated with it. However, the run has a "sklearn" tag with a value of "+1", indicating that it used the scikit-learn library for machine learning

CountVectorizer()), ('classifier', RandomForestClassifier())])

TfidfVectorizer()

[50, 100, 200]}]

2*n_jobs True True

accuracy

Pipeline(memory=Memory(location=.cache\joblib), steps=[('vectorization', [('vectorization': [CountVectorizer(), TfidfVectorizer()], 'classifier__n_estimators':

Q Search metrics		
Metric	Value	
best_cv_score	0.9173166926677068	
GridSearchCV_score_x_test	0.9139114160948222	
training_accuracy_score	0.9767550702028082	
training_f1_score	0.9760709932385104	
training_log_loss	0.10305937195879623	
training_precision_score	0.9765241516001645	
training_recall_score	0.9767550702028082	
training_roc_auc	0.9735331835524605	
training_score	0.9767550702028082	

Model Metrics

- The table view shows the run name, model metrics, and a chart view. The user can filter the runs based on various parameters and add charts to visualize the performance of the models.
- Overall, MLflow provides a user-friendly interface to manage and track machine learning experiments, making it easy to compare and evaluate the performance of various models.

- The table shows the model metrics such as training_accuracy_score, training_f1_score. The user can view the values of these metrics for each run by clicking on the run name.
- For example, clicking on the run name "Logistic_run" shows the metrics values for the Logistic Regression model, such as training_accuracy_score: 0.925585.

Hyperparameters Plots

- The table can be grouped by various parameters, such as classifier, vectorization, and classifier kernel. The user can also sort the table based on various metrics, such as mean_train_score and mean_test_score.
- It shows the run name, time created, state, and datasets used. The user can click on the run name to view more details about the run.

Each horizontal line represents a single run, and the intersection with the vertical axis shows the value of the parameter or metric for that run.

The top horizontal line shows that the classifier used in that run is SVC(), the vectorization is TfidfVectorizer(), and the kernel is rbf. The mean train score is 0.977145, and the mean test score is 0.91.

Comparing 36 runs

230 matching runs

+ Add section

Registering Models

The table below the Versions section provides information about each version of the model, including the version number, the date and time it was registered, the user who registered it, and its current stage.

Overall, the context shows the status and version history of the "Flipkart review production" experiment in the MLflow Models UI, including the current active version and the previous staging and archived versions.

Prefect

The Prefect is also available as an open source, locally hosted orchestration engine, API server, and UI, giving you insight into the flows running with any local Prefect server instance.

Prefect installation

pip install prefect prefect server start

Prefect dashboard

Prefect Workflow

THANK YOU