Билет 09

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1	Билет 9: несооственные	интегралы о	от неотрицательных ф	ункции. признак срав-
	нения. Следствия			

0.1. Билет 9: Несобственные интегралы от неотрицательных функций. Признак сравнения. Следствия.

Теорема 0.1.

$$f \geqslant 0 \ f \in C[a,b)$$

Тогда сходимость $\int_{a}^{b} f(x) dx$ равносильна ограниченности сверху первообразной F.

Доказательство.

$$F(y) := \int_{a}^{y} f$$

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} F(c) - F(a), F(a) = 0$$
 (из утверждения выше)

$$F(z) = F(y) + \int\limits_y^z f \geqslant F(y),$$
 где $\int\limits_y^z f \geqslant 0$ при $y < z \implies F(y)$ монотонно возрастает.

Итого, F(y) имеет предел и монотонно возрастает. Для монотонно возрастающих функция существование предела равносильно ограниченности сверху

Следствие.

$$f, g \in C[a, b) \ 0 \leqslant f \leqslant g$$

- 1. Если $\int_{a}^{b} g$ сходится, то $\int_{a}^{b} f$ сходится.
- 2. Если $\int_a^b f$ расходится, то $\int_a^b g$ расходится.

Доказательство.
$$G(y):=\int\limits_a^y g, \ F(y):=\int\limits_a^y f \implies F\leqslant G$$

- 1. $\int g$ сходится \implies G ограничена сверху \implies F ограничена сверху $\implies \int f$ сходится.
- 2. От противного. Пусть $\int\limits_a^b g$ сходится, тогда и $\int\limits_a^b f$ сходится по первому пункту. Противоречие.

1. Неравенству $f \leqslant g$ достаточно выполнения для аргументов, близких к b. Замечание.

Доказательство.

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Для второго слагаемого $f \leqslant g$, используем следствие.

2. Вместо $f \leqslant g$ можно использовать и f = O(g)

Доказательство

$$\int\limits_a^b Cg = C\int\limits_a^b g$$
 – сходится

3. Если $f\geqslant 0,\ f\in C[a,+\infty)$ и $f=O(\frac{1}{x^{1+\varepsilon}})$ при $\varepsilon>0,$ то $\int\limits_a^{+\infty}f$ сходится.

Доказательство.

$$f \in O(\frac{1}{x^{1+\varepsilon}}) \implies f \leqslant M \cdot \frac{1}{x^{1+\varepsilon}} =: g$$

Надо доказать, что $\int\limits_a^{+\infty}g$ сходится.

$$\int\limits_a^{+\infty} M \cdot \frac{1}{x^{1+\varepsilon}} = M \int\limits_a^{+\infty} \frac{1}{x^{1+\varepsilon}} - \text{сходится.}$$

Следствие.

$$f,g\geqslant 0 \ f,g\in C[a,b)$$
 и $f\sim g$ при $x\to b-$

Тогда
$$\int_a^b f$$
 и $\int_a^b g$ ведут себя одинаково.

Доказательство.

$$f \sim g \implies$$
 найдется такое $c,$ что $\frac{g}{2} \leqslant f \leqslant 2g$ при $x > c$

Если
$$\int\limits_a^b g$$
 сходится, то $f\leqslant 2g \implies \int\limits_a^b f$ сходится.

Если
$$\int\limits_a^b f$$
 сходится, то $g\leqslant 2f \implies \int\limits_a^b g$ сходится.

Замечание.

$$f\geqslant 0 \ f\in C[a,+\infty)$$
 и $\int_a^{+\infty}f$ сходится.

Это НЕ значит
$$f(x) \to 0$$
 при $x \to +\infty$

Дана функция, изображенная на графике (спасибо за это Герману). Площади треугольников убывают: $S_1=\frac{1}{2},\ S_2=\frac{1}{4},\ S_3=\frac{1}{8},\ \ldots,\ S_n=\frac{1}{2}\cdot 2\cdot 2^{-n}=\frac{1}{2^n}$

2