Московский авиационный институт (национальный исследовательский университет)

Институт №8 «Компьютерные науки и прикладная математика»
Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа по курсу	"Компьютерная графика"
№ 3	

Студент: Клименко В. М.
Преподаватель: Филиппов Г. С.
Группа: М8О-303Б-22
Дата:
Оценка:
Подпись:

Оглавление

Цель работы	3
Решение	
Вывол	

Цель работы

В этой лабораторной работе вы научитесь работать с камерой в 3D-пространстве, управлять ее положением и направлением, а также освоите базовые трансформации (перемещение, поворот и масштабирование) объектов в 3D.

Постановка задачи

Постройте несколько простых 3D-объектов (кубы, пирамиды, сферы). Реализуйте камеру, которой можно свободно управлять в 3D-пространстве (перемещение вперед, назад, влево, вправо, вверх, вниз). Управление камерой должно осуществляться с помощью клавиатуры и мыши.

Дополнительно: Реализуйте "режим полета", когда камера может двигаться свободно в любом направлении.

Решение

Для выполнения лабораторной работы я использовал библиотеку OpenGL для рендеринга изображения, а матричные операции производились при помощи библиотеки glm.

Для этой лабораторной работы я потихоньку начал разрабатывать свой "игровой движок".

Теперь камера – один из объектов игрового движка, я могу спокойно ее перемещать с помощью клавиатуры в абсолютных координатах и относительных координатах камеры при помощи прибавления/вычитания векторов, направленных вверх, вправо и вперед из камеры. Управление мышью производится с помощью расчета разницы с ее положением на прошлом кадре.

Также я сделал единый легкий способ применения шейдеров, так что все объекты просто принимают в вершинный шейдер свою матрицу model, а в фрагментный — матрицы view и projection единственной камеры.

Для интересности сцены, я захотел вывести на экран какие-нибудь 3D-модели. Для этого, я реализовал свой загрузчик 3D-объектов в формате wavefront obj. Для каждого объекта генерируется свой VAO и автоматически заполняется.

Вывод

В ходе этой лабораторной работы, я ближе познакомился с OpenGL, начал изучать устройство игровых движков, научился реализовывать камеру в OpenGL.