Fast Fourier Transform using Cooley Tukey algorithm

Pseudo-code:

For each stage

For each group of butterfly

For each butterfly

Compute butterfly

end

end

end

Implementation details:

Consider the DFT algorithm for an integer power of 2, $N=2^{\nu}$

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}; \ W_N = e^{-j2\pi/N}$$

Create separate sums for even and odd values of n:

$$X[k] = \sum_{n \text{ even}} x[n]W_N^{nk} + \sum_{n \text{ odd}} x[n]W_N^{nk}$$

Letting n=2r for n even and n=2r+1 for n odd, we obtain

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$$

Splitting indices in time, we have obtained

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$$

But
$$W_N^2 = e^{-j2\pi 2/N} = e^{-j2\pi/(N/2)} = W_{N/2}$$
 and $W_N^{2rk}W_N^k = W_N^kW_{N/2}^{rk}$
So $X[k] = \sum_{n=0}^{(N/2)-1} x[2r]W_{N/2}^{rk} + W_N^k \sum_{n=0}^{(N/2)-1} x[2r+1]W_{N/2}^{rk}$

N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

Recall that the DFT is now of the form $X[k] = G[k] + W_N^k H[k]$

The DFT in (partial) flowgraph notation:

index	addres s		
000	000		
100	001		
010	010		
110	011		
001	100		
101	101		
011	110		
111	111		

			_	
x(0)		x(0)	-	<i>x(0)</i>
x(4)		x(2)		x(1)
x(2)		x(4)		x(2)
x(6)	•	x(6)		x(3)
x(1)	◀——	x(1)		x(4)
x(5)	•	x(3)		x(5)
x(3)		x(5)		x(6)
x(7)		x(7)	-	x(7)

The expression for the 2-point DFT is:

$$X[k] = \sum_{n=0}^{1} x[n]W_2^{nk} = \sum_{n=0}^{1} x[n]e^{-j2\pi nk/2}$$

Evaluating for k = 0,1 we obtain X[0] = x[0] + x[1]

$$X[1] = x[0] + e^{-j2\pi 1/2}x[1] = x[0] - x[1]$$

which in signal flow graph notation looks like ...

This topology is referred as the **BASIC BUTTERFLY**

• Let $N = 2^{\nu}$ where $\nu = \log_2(N)$

 $(\log_2(N) \text{ columns})(N/2 \text{ butterflies/column})(2 \text{ mults/butterfly})$ or $N\log_2(N)$ multiplies