Appunti di **Topologia generale**

Dipartimento di Matematica e Informatica Università di Catania

Anno Accademico 2014-2015

Introduzione

Questo documento contiene una rielaborazione personale di appunti presi durante il corso di Topologia generale tenuto dalla prof.ssa Grazia Raciti presso il Dipartimento di Matematica e Informatica dell'Università di Catania. Questo documento è libero, è lecito ridistribuirlo e/o modificarlo secondo i termini della Licenza Pubblica Generica GNU come pubblicata dalla Free Software Foundation.

Alessio Borzì

Indice

1	Spazi topologici 1			
	1.1	Definizione e primi esempi	1	
	1.2	Chiusura e Interno di un insieme	3	
	1.3	Topologia indotta	6	
	1.4	Assiomi di numerabilità	7	
	1.5	Spazi metrici	9	
	1.6	Funzioni continue	1	
2	Assiomi di Separazione			
	2.1	Assioma T_1	5	
	2.2	Assioma T_2	6	
	2.3	Assioma T_3	7	
	2.4	Assioma T_4	8	
	2.5	Limite di successioni	0	
3	Pro	dotto e quoziente 2	3	
	3.1	Topologia prodotto	3	
	3.2	Funzioni quoziente	7	
	3.3	Spazi quoziente	8	
4	Connessione e compattezza 31			
	4.1	Spazi connessi	1	
	4.2	Spazi compatti		

VI INDICE

Capitolo 1

Spazi topologici

1.1 Definizione e primi esempi

Definizione 1.1.1. Sia X un insieme $e \vartheta \subseteq \mathcal{P}(X)$, dove $\mathcal{P}(X)$ è l'insieme delle parti di X, cioè l'insieme di tutti i sottoinsiemi di X.

Diremo che (X, ϑ) è uno **spazio topologico** se sono verificate le seguenti proprietà:

A1.
$$X, \emptyset \in \vartheta$$

$$A2. \ \mathcal{A} \subseteq \vartheta \Rightarrow \bigcup_{A \in \mathcal{A}} A \in \vartheta$$

$$A3. A_1, A_2 \in \vartheta \Rightarrow A_1 \cap A_2 \in \vartheta$$

dove X è lo spazio, ϑ è la topologia e gli insiemi $A \in \vartheta$ sono detti aperti.

Esempio 1.1.2. Un primo esempio di spazio topologico è $\vartheta_i = \{X, \emptyset\}$, che è detta topologia indiscreta, è facile verificare che (X, ϑ_i) soddisfa le proprietà A1, A2, A3.

Esempio 1.1.3. La topologia discreta $\vartheta_d = \mathcal{P}(X)$, in questo caso ogni sottoinsieme di X è un aperto.

Esempio 1.1.4. La topologia cofinita $\vartheta_c = \{X \setminus \{x_1, x_2, ..., x_n\} : n \in \mathbb{N}, x_i \in X\}$ (cioè gli aperti sono i complementari di insiemi finiti), osserviamo che se X è un insieme finito allora la topologia cofinita è uguale a quella discreta.

Definizione 1.1.5. Siano ϑ_1,ϑ_2 due topologie su X, diremo che ϑ_2 è più **fine** di ϑ_1 se $\vartheta_1 \subseteq \vartheta_2$, cioè se ogni aperto in ϑ_1 è anche aperto in ϑ_2 .

Osserviamo che per un qualsiasi insieme X la topologia indiscreta è la meno fine di tutte le topologie mentre la topologia discreta è la più fine di tutte le topologie.

Definizione 1.1.6. Sia dato uno spazio topologico (X, ϑ) , un insieme $C \subseteq X$ si dice **chiuso** se il suo complementare è aperto, cioè se $X \setminus C \in \vartheta$.

La famiglia \mathcal{C} degli insiemi chiusi soddisfa le seguenti proprietà:

C1.
$$X, \emptyset \in \mathcal{C}$$

C2.
$$C' \subseteq C \Rightarrow \bigcap_{C \in C'} C \in C$$

C3.
$$C_1, C_2 \in \mathcal{C} \Rightarrow C_1 \cup C_2 \in \mathcal{C}$$

Una topologia può essere assegnata a partire dagli insiemi chiusi, ricavando gli insiemi aperti come complementari dei chiusi. Ad esempio nella topologia cofinita (1.1.4) definiamo gli insiemi chiusi come tutti e soli gli insiemi finiti.

Definizione 1.1.7. Sia $x \in X$ si definisce **intorno** di x un insieme $U \subseteq X$ tale che:

$$\exists A \in \vartheta : x \in A \subseteq U$$

cioè se esiste un aperto che contiene x contenuto in U.

Una famiglia $\Im(x)$ di intorni di $x \in X$ gode delle seguenti proprietà:

I1.
$$\forall U \in \mathfrak{I}(x) \quad x \in U$$

I2.
$$U, V \in \mathfrak{I}(x) \Rightarrow U \cap V \in \mathfrak{I}(x)$$

I3.
$$U \in \mathfrak{I}(x), V \supseteq U \Rightarrow V \in \mathfrak{I}(x)$$

I4.
$$\forall U \in \mathfrak{I}(x), \ \exists V \in \mathfrak{I}(x) : x \in V \subseteq U, \quad \forall y \in V \quad V \in \mathfrak{I}(y)$$

La quarta proprietà è un corollario della seguente

Proposizione 1.1.8. Un insieme $A \subseteq X$ è aperto se e solo se è intorno di ogni suo punto

$$A \in \vartheta \Longleftrightarrow \forall x \in A \quad A \in \Im(x)$$

 $Dimostrazione. \Rightarrow Sia \ x \in A \ allora \ A \ è \ intorno \ di \ x \ dato \ che esiste un aperto che contiene <math>x$ contenuto in A (lo stesso insieme A).

 \Leftarrow Per ipotesi $\forall x \in A, \exists A_x \in \vartheta : x \in A_x \subseteq A, dunque avremo$

$$A = \bigcup_{x \in A} A_x \in \vartheta$$

Assegnata per ogni $x \in X$ una famiglia di insiemi $\Im(x)$ che gode delle proprietà I1, I2, I3, I4, esiste una e una sola topologia tale che la famiglia assegnata è una famiglia di intorni per x.

Definizione 1.1.9. Sia (X, ϑ) uno spazio topologico, si definisce una **base di** aperti \mathcal{B} una famiglia di aperti tale che ogni insieme $A \in \vartheta$ è unione di elementi di \mathcal{B} . In altre parole deve accadere:

$$\forall A \in \vartheta, \, \forall x \in A, \, \exists B \in \mathcal{B} : \, x \in B \subseteq A.$$

Una base di aperti \mathcal{B} gode delle seguenti proprietà:

B1.
$$\forall x \in X, \exists B \in \mathcal{B} : x \in B$$

B2.
$$B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2, \exists B_x \in \mathcal{B} : x \in B_x \subseteq B_1 \cap B_2$$

Assegnata una famiglia \mathcal{B} di sottoinsiemi di X che gode delle proprietà B1, B2, esiste una e una sola topologia ϑ su X per la quale \mathcal{B} risulta una base.

Esempio 1.1.10. Assegniamo una topologia su \mathbb{R} attraverso una base che gode delle proprietà B1, B2. Sia \mathcal{B} una famiglia di insiemi tale che

$$\mathcal{B} = \{ \]a, b[: a, b \in \mathbb{R}, \ a < b \}$$

chiamiamo ϑ_e la topologia euclidea in cui gli insiemi aperti sono unione di elementi di \mathcal{B} .

Esempio 1.1.11. Definiamo ancora su \mathbb{R} la topologia di Sorgenfrey ϑ_s in cui gli aperti sono unione di elementi della base \mathcal{B} , che si può verificare goda delle proprietà B1, B2, assegnata come seque

$$\mathcal{B} = \{ [a, b] : a, b \in \mathbb{R}, a < b \}.$$

Osservazione 1.1.12. La topologia di Sorgenfrey è più fine della topologia euclidea, infatti ogni aperto in ϑ_e è anche aperto in ϑ_s poiché:

$$\forall a, b \in \mathbb{R} \quad]a, b[= \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b \right[$$

dunque la base di aperti di ϑ_e è un sottoinsieme della base di aperti di ϑ_s , dunque si ha $\vartheta_e \subseteq \vartheta_s$.

1.2 Chiusura e Interno di un insieme

In questo paragrafo siano (X, ϑ) uno spazio topologico ed $M \subseteq X$ un sottoinsieme di X. Diamo le seguenti definizioni:

Definizione 1.2.1. Un punto $x \in X$ si dice **aderente** ad M se ogni intorno U di x interseca M, cioè se:

$$\forall U \in \mathfrak{I}(x) \quad U \cap M \neq \emptyset$$

Definizione 1.2.2. Un punto $x \in X$ si dice di **accumulazione** per M se ogni intorno U di x interseca M in almeno un punto diverso da x, cioè se:

$$\forall U \in \mathfrak{I}(x) \quad (U \setminus \{x\}) \cap M \neq \emptyset$$

Definizione 1.2.3. Un punto $x \in X$ si dice di **frontiera** per M se x è aderente ad M e ad $X \setminus M$.

Definizione 1.2.4. Un punto $x \in X$ si dice **isolato** se esiste un intorno di x che interseca M nel solo punto x, cioè se:

$$\exists U \in \mathfrak{I}(x) \quad U \cap M = \{x\}$$

Diamo ora la definizione di chiusura di un insieme

П

Definizione 1.2.5. Sia dato un insieme $M \subseteq X$, si definisce **chiusura** di M, e si indica con \overline{M} , l'intersezione di tutti i chiusi che contengono M:

$$\mathcal{F} = \{ C \in \mathcal{C} : C \supseteq M \}, \quad \overline{M} = \bigcap_{C \in \mathcal{F}} C$$

cioè il più piccolo insieme chiuso che contiene <math>M.

Siano $M, N \subseteq X$. Vediamo alcune proprietà di cui gode la chiusura.

- 1. \overline{M} è chiuso
- 2. $M = \overline{M} \iff M$ è chiuso
- 3. $M \subseteq N \Rightarrow \overline{M} \subseteq \overline{N}$
- 4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$

Dimostrazione proprietà 4. Dato che $M \subseteq \overline{M}$ e $N \subseteq \overline{N}$ si ha

$$M \cup N \subseteq \overline{M} \cup \overline{N} \Rightarrow \overline{M \cup N} \subseteq \overline{\overline{M} \cup \overline{N}} = \overline{M} \cup \overline{N}.$$

Analogamente, dato che $M\subseteq M\cup N$ e $N\subseteq M\cup N$ si ha $\overline{M}\subseteq \overline{M\cup N}$ e $\overline{N}\subseteq \overline{M\cup N}$. Pertanto

$$\overline{M} \cup \overline{N} \subseteq \overline{M \cup N}$$
.

Vediamo adesso una caratterizzazione della chiusura di un insieme che verrà utilizzata frequentemente:

Teorema 1.2.6. Se $M \subseteq X$ allora \overline{M} è l'insieme dei punti aderenti ad M.

 $\begin{array}{ll} \textit{Dimostrazione.} \ \ \text{Sia} \ x \notin \overline{M}, \ \text{dimostriamo che} \ x \ \text{non} \ \grave{\text{e}} \ \text{aderente} \ \text{ad} \ M. \\ \text{Se} \ x \notin \overline{M} \ \text{allora} \ \exists \ C \in \mathcal{C}: \ x \notin C, \ M \subseteq C \Rightarrow x \in X \setminus C \in \vartheta. \ \text{Quindi} \ X \setminus C \ \grave{\text{e}} \ \text{un} \\ \text{intorno} \ \text{di} \ x, \ \text{ma, essendo} \ (X \setminus C) \cap M = \emptyset, \ x \ \text{non} \ \grave{\text{e}} \ \text{aderente} \ \text{ad} \ M. \\ \text{Viceversa, se} \ x \ \text{non} \ \grave{\text{e}} \ \text{aderente} \ \text{ad} \ M \ \text{allora} \ \exists \ U \in \Im(x): \ U \cap M = \emptyset \Rightarrow \exists \ A \in \vartheta: \ x \in A \subseteq U. \ \text{Quindi} \ \text{si} \ \text{ha} \ A \cap M = \emptyset, \ \text{ma, essendo} \ X \setminus A \ \text{chiuso con} \\ x \notin X \setminus A \supseteq M, \ x \notin \overline{M}. \end{array}$

Definizione 1.2.7. Si definisce **frontiera** di $M \subseteq X$ l'insieme dei punti di frontiera per M. Indichiamo la frontiera di M con $\mathscr{F}(M)$.

Dalla definizione di punto di frontiera, un immediata conseguenza del teorema 1.2.6 è il seguente

Corollario 1.2.8. Sia $M \subseteq X$ un insieme, allora $\mathscr{F}(M) = \overline{M} \cap \overline{X \setminus M}$.

Definizione 1.2.9. Si definisce **derivato** di $M \subseteq X$ l'insieme dei punti di accumulazione per M. Indichiamo il derivato di M con $\mathcal{D}(M)$.

Proposizione 1.2.10. Se $M \subseteq X$, allora $\overline{M} = M \cup \mathcal{D}(M)$.

Dimostrazione. Dalle definizioni ogni punto di accumulazione per M è anche aderente ad M, si ha $\mathscr{D}(M) \subseteq \overline{M}$, ma anche $M \subseteq \overline{M}$ ottenendo $M \cup \mathscr{D}(M) \subseteq \overline{M}$. Viceversa sia $x \in \overline{M}$, se $x \in M$ allora $x \in M \cup \mathscr{D}(M)$, che è la tesi; se $x \notin M$ allora dato che x è aderente ad M (poiché appartiene alla sua chiusura) ogni suo intorno interseca M in punti diversi da x, dunque x è di accumulazione per M, cioè $x \in M \cup \mathscr{D}(M)$, ottenendo infine $\overline{M} \subseteq M \cup \mathscr{D}(M)$.

Definizione 1.2.11. Un insieme $M \subseteq X$ si dice **denso** in X se $\overline{M} = X$.

Vediamo adesso una caratterizzazione degli insiemi densi:

Proposizione 1.2.12. Un insieme $M \subseteq X$ è denso in X se e solo se ogni aperto interseca M, cioè

$$\overline{M} = X \Longleftrightarrow \forall A \in \vartheta \quad A \cap M \neq \emptyset.$$

 $Dimostrazione. \Rightarrow Preso un qualsiasi aperto <math>A \in \vartheta$ sia $x \in A$, essendo A aperto allora sarà un intorno di x, osserviamo che si ha anche $x \in X$, dal fatto che $\overline{M} = X$ segue che x è aderente ad M, dunque ogni suo intorno interseca M ottenendo $A \cap M \neq \emptyset$.

 \Leftarrow Sia $x \in X$ preso un qualunque intorno $U \in \mathfrak{I}(x)$ allora per definizione di intorno $\exists A \in \vartheta : x \in A \subseteq U$, per ipotesi $A \cap M \neq \emptyset$ dunque $U \cap M \neq \emptyset$, quindi x è aderente ad M, dunque $x \in \overline{M}$ da cui segue $X = \overline{M}$.

Diamo ora la definizione di interno di un insieme:

Definizione 1.2.13. Sia dato un insieme $M \subseteq X$. Si definisce **interno** di M, e si indica con \mathring{M} , l'unione di tutti gli aperti contenuti in M:

$$\mathcal{A} = \{A \in \vartheta : A \subseteq M\}, \quad \mathring{M} = \bigcup_{A \in \mathcal{A}} A,$$

cioè il più grande insieme aperto contenuto in M.

Siano $M, N \subseteq X$. Vediamo alcune proprietà di cui gode l'interno:

- 1. \mathring{M} è aperto.
- 2. $M = \mathring{M} \iff M$ è aperto
- 3. $M \subseteq N \Rightarrow \mathring{M} \subseteq \mathring{N}$
- 4. $(M \cap N) = \mathring{M} \cap \mathring{N}$

Definizione 1.2.14. Un punto $x \in X$ si dice interno ad M se $x \in \mathring{M}$

Una definizione equivalente di punto interno può essere ricavata a partire dalla seguente

Proposizione 1.2.15. Un punto $x \in X$ è interno a M se e solo se esiste un interno di x contenuto in M, cioè

$$x \in \mathring{M} \iff \exists U \in \Im(x) : x \in U \subseteq M$$

 $Dimostrazione. \Rightarrow$ Se $x \in \mathring{M}$ allora $\exists\, A \in \vartheta:\, x \in A \subseteq M,$ ma A è aperto quindi è un intorno di x.

 \Leftarrow Sia $U \in \mathfrak{I}(x)$ con $U \subseteq M$, allora per definizione di intorno

 $\exists\,A\in\vartheta:x\in A\subseteq U\subseteq M\Rightarrow x\in A\subseteq M\text{ dunque }x\in \mathring{M}\text{ poich\'e esiste un aperto}$ che contiene x contenuto in M.

1.3 Topologia indotta

Definizione 1.3.1. Sia (X, ϑ) uno spazio topologico e sia $Y \subseteq X$. Definiamo una topologia $\vartheta(Y)$ su Y tale che:

$$A \in \vartheta(Y) \iff \exists U \in \vartheta : A = U \cap Y$$

la topologia sopra definita è chiamata **topologia indotta** da X su Y, lo spazio topologico $(Y, \vartheta(Y))$ si dice **sottospazio** di (X, ϑ) .

Verifichiamo che la topologia indotta verifica le proprietà A1, A2 e A3:

A1.
$$Y, \emptyset \in \vartheta(Y)$$

Poiché $Y = X \cap Y$ e $\emptyset = \emptyset \cap Y$

A2.
$$A' \subseteq \vartheta(Y) \Rightarrow \bigcup_{A' \in A'} A' = \bigcup_{A \in A} (A \cap Y) = \left(\bigcup_{A \in A} A\right) \cap Y \in \vartheta(Y)$$

A3.
$$A'_1, A'_2 \in \vartheta(Y) \Rightarrow A'_1 \cap A'_2 = (Y \cap A_1) \cap (Y \cap A_2) = Y \cap (A_1 \cap A_2) \in \vartheta(Y)$$

Dove la famiglia di insiemi $\mathcal{A} \subseteq \vartheta$ è la famiglia degli aperti che intersecati con Y danno luogo agli aperti di $\mathcal{A}' \subseteq \vartheta(Y)$, e analogamente i due aperti $A_1, A_2 \in \vartheta$ intersecati Y danno luogo ai due aperti $A'_1, A'_2 \in \vartheta(Y)$.

Proposizione 1.3.2. Sia (X, ϑ) uno spazio topologico e $(Y, \vartheta(Y))$ un suo sottospazio. Un insieme $C' \subseteq Y$ è chiuso in Y se e solo se esiste un chiuso C in X tale che $C' = C \cap Y$.

Dimostrazione. \Rightarrow Per ipotesi $C' = Y \setminus A'$ con $A' = Y \cap A$, $A \in \vartheta$ dunque abbiamo $C' = Y \setminus A' = Y \setminus (Y \cap A) = (Y \cap X) \setminus (Y \cap A) = Y \cap (X \setminus A) = Y \cap C$, con C chiuso in X.

 \Leftarrow Analogamente, per ipotesi $C' = C \cap Y$ con $C = X \setminus A$, $A \in \vartheta$, dunque abbiamo $C' = C \cap Y = (X \setminus A) \cap Y = (X \cap Y) \setminus (A \cap Y) = Y \setminus (A \cap Y) = Y \setminus A'$ con A' aperto in Y.

Proposizione 1.3.3. Sia (X, ϑ) uno spazio topologico e $(Y, \vartheta(Y))$ un suo sottospazio, gli aperti in $\vartheta(Y)$ sono aperti in ϑ se e solo se Y è aperto in ϑ , cioè:

$$\vartheta(Y) \subseteq \vartheta \Longleftrightarrow Y \in \vartheta$$

Dimostrazione. \Rightarrow Banalmente $Y \in \vartheta(Y) \Rightarrow Y \in \vartheta$ dato che $\vartheta(Y) \subseteq \vartheta$. \Leftarrow Ogni aperto $A' \in \vartheta(Y)$ si scrive come intersezione tra un aperto $A \in \vartheta$ e Y, ma $Y \in \vartheta$, quindi $Y \cap A$ è aperto in ϑ da cui segue $\vartheta(Y) \subseteq \vartheta$.

Osservazione 1.3.4. Sia (X, ϑ) uno spazio topologico e (Y, ϑ_Y) un suo sottospazio, dato l'insieme $Z \subseteq Y \subseteq X$ la topologia indotta da X su Z è uguale alla topologia indotta da Y su Z, cioè $\vartheta(Z) = \vartheta_Y(Z)$.

Definizione 1.3.5. Sia (X, ϑ) uno spazio topologico, un insieme $M \subseteq X$ si dirà discreto se la topologia indotta da X su M è la topologia discreta.

Esempio 1.3.6. Consideriamo la topologia euclidea $(\mathbb{R}, \vartheta_e)$, l'insieme \mathbb{Z} è discreto, infatti:

$$\forall z \in \mathbb{Z} \quad \left| z - \frac{1}{2}, z + \frac{1}{2} \right| \cap \mathbb{Z} = \{z\}$$

Proposizione 1.3.7. Un insieme $M \subseteq X$ è discreto se e solo se ogni $x \in M$ è isolato.

 $Dimostrazione. \Rightarrow Sia \ x \in M$, dato che M è discreto ogni singoletto è aperto nella topologia indotta, quindi $\exists A \in \vartheta : A \cap M = \{x\}$, cioè esiste un intorno di x (l'aperto A) che interseca M nel solo punto x, ciò equivale a dire che x è un punto isolato.

 \Leftarrow Analogamente, sia $x \in M$, per ipotesi x è isolato, dunque esiste un intorno $U \in \mathfrak{I}(x): U \cap M = \{x\}$, per definizione di intorno $\exists A \in \vartheta: x \in A \subseteq U$ dunque $A \cap M = \{x\}$, da ciò segue che la topologia indotta da X su M è quella discreta.

1.4 Assiomi di numerabilità

Definizione 1.4.1. Sia (X, ϑ) uno spazio topologico, $\Im(x)$ una famiglia di intorni di $x \in X$, si chiama **sistema fondamentale di intorni** (o **base di intorni**) di x una famiglia di intorni $\Im'(x)$, tale che:

$$\forall U \in \mathfrak{I}(x), \exists V \in \mathfrak{I}'(x) : x \in V \subseteq U$$

Esempio 1.4.2. Nella topologia discreta (X, ϑ_d) , un esempio di base di intorni di $x \in X$ è la famiglia di intorni $\Im(x)$ formata dal solo singoletto $\{x\}$.

Esempio 1.4.3. Nella topologia euclidea $(\mathbb{R}, \vartheta_e)$ una base di intorni per $x \in \mathbb{R}$ è una famiglia del tipo:

$$\mathfrak{I}(x) = \{]x - \epsilon, x + \epsilon [: \epsilon \in \mathbb{R}^+ \}$$

Definizione 1.4.4. Uno spazio topologico (X, ϑ) soddisfa il **primo assioma** di numerabilità se per ogni $x \in X$ esiste una base di intorni numerabile.

Osserviamo che dal precedente esempio 1.4.2 segue che la topologia discreta soddisfa il prima assioma di numerabilità poiché ogni punto è dotato di una base di intorni formata da un solo elemento.

Esempio 1.4.5. La topologia euclidea $(\mathbb{R}, \vartheta_e)$ soddisfa il primo assioma di numerabilità in quanto preso $x \in X$ consideriamo

$$\Im(x) = \left\{ \left. \left| x - \frac{1}{n}, x + \frac{1}{n} \right| : n \in \mathbb{N} \setminus \{0\} \right. \right\}$$

 $\Im(x)$ costituisce una base di intorni numerabile per x.

Esempio 1.4.6. La topologia di Sorgenfrey $(\mathbb{R}, \vartheta_s)$ soddisfa il primo assioma di numerabilità, infatti sia $x \in X$, una base di intorni numerabile per x è:

$$\Im(x) = \left\{ \left[x, x + \frac{1}{n} \right[: n \in \mathbb{N} \setminus \{0\} \right] \right\}$$

Definizione 1.4.7. Uno spazio topologico (X, ϑ) soddisfa il **secondo assioma** di numerabilità se esiste una base di aperti numerabile.

Osserviamo subito che la topologia indiscreta (X, ϑ_i) soddisfa il secondo assioma di numerabilità.

Proposizione 1.4.8. La topologia discreta (X, ϑ_d) verifica il secondo assioma di numerabilità se e solo se X è numerabile.

Dimostrazione. Osserviamo prima che fissato $\mathcal{B} = \{\{x\} : x \in X\}$, è facile osservare che \mathcal{B} è una base di aperti di ϑ_d . Inoltre, presa una qualsiasi altra base di aperti \mathcal{B}' , dato che i singoletti sono aperti in ϑ_d e ogni aperto può essere scritto come unione di aperti di \mathcal{B}' , segue che \mathcal{B}' deve contenere tutti i singoletti, cioè si ha $\mathcal{B} \subseteq \mathcal{B}'$. Infine è facile osservare che la cardinalità di \mathcal{B} è uguale alla cardinalità di X, dunque:

 \Rightarrow Se (X, ϑ_d) ha una base numerabile \mathcal{B}' allora anche $\mathcal{B} \subseteq \mathcal{B}'$ è numerabile, dunque lo è anche X.

 \Leftarrow Se X è numerabile, allora lo è anche \mathcal{B} , dunque esiste una base di aperti numerabile.

Esempio 1.4.9. La topologia euclidea $(\mathbb{R}, \vartheta_e)$ soddisfa il secondo assioma di numerabilità, infatti consideriamo l'insieme:

$$\mathcal{B} = \{ [r, q[: r, q \in \mathbb{Q}] \}$$

è facile osservare che essa è una base di aperti, inoltre è numerabile poiché $\mathbb Q$ è numerabile e il prodotto cartesiano di due insiemi numerabili è numerabile.

Teorema 1.4.10. Se uno spazio topologico (X, ϑ) soddisfa il secondo assiamo di numerabilità allora soddisfa anche il primo.

Dimostrazione. Sia \mathcal{B} una base di aperti numerabile e sia $x \in X$, un sistema fondamentale di intorni numerabile per x è dato da $\mathfrak{I}(x) = \{B \in \mathcal{B} : x \in B\}$. Infatti sia U un intorno di x, per definizione di intorno $\exists A \in \vartheta : x \in A \subseteq U$, ma essendo A un aperto, puo essere scritto come unione di aperti in \mathcal{B} , dato che $x \in A$ esisterà un aperto $A_x \in \mathcal{B} : x \in A_x \subseteq A \subseteq U$, da cui segue $A_x \in \mathfrak{I}(x)$ con $x \in A_x \subseteq U$, dunque $\mathfrak{I}(x)$ è un sistema fondamentale di intorni di x (il fatto che sia numerabile segue da $\mathfrak{I}(x) \subseteq \mathcal{B}$).

Un esempio di spazio topologico che soddisfa il primo ma non il secondo assioma di numerabilità può essere lo spazio topologico $(\mathbb{R}, \vartheta_s)$, cioè \mathbb{R} con topologia di Sorgenfrey, infatti per l'esempio 1.4.6 esso soddisfa il primo assioma di numerabilità ma non verifica il secondo, come mostra la seguente

Proposizione 1.4.11. Lo spazio topologico $(\mathbb{R}, \vartheta_s)$, cioè l'insieme \mathbb{R} con la topologia di Sorgenfrey non soddisfa il secondo assioma di numerabilità.

Dimostrazione. Supponiamo per assurdo che esista una base di aperti \mathcal{B} numerabile. Sia $S = \{\inf(B) \in \mathbb{R} : B \in \mathcal{B}\}$, dunque S è numerabile quindi $\mathbb{R} \setminus S \neq \emptyset$, si allora $x \in \mathbb{R} \setminus S$, l'aperto [x, x+1[per definizione di base di aperti è unione di elementi di \mathcal{B} , dunque $\exists B \in \mathcal{B} : x \in B \subseteq [x, x+1[$, dunque $x = \inf(B) \in S$, ciò porta a un assurdo.

Definizione 1.4.12. Uno spazio topologico (X, ϑ) si dice **separabile** se esiste un insieme $M \subseteq X$ denso in X e numerabile.

Esempio 1.4.13. Un esempio di spazio topologico separabile è $(\mathbb{R}, \vartheta_e)$ infatti l'insieme \mathbb{Q} è numerabile e denso in $(\mathbb{R}, \vartheta_e)$ poiché vale il seguente fatto (che non dimostriamo):

$$\forall a, b \in \mathbb{R}, \exists r \in \mathbb{Q} : a < r < b$$

dunque ogni insieme]a,b[ha almeno un numero razionale, ne segue che $\mathbb Q$ interseca ogni insieme aperto quindi è denso.

Esempio 1.4.14. Un discorso del tutto analogo può essere fatto per la topologia di Sorgenfrey, infatti ogni insieme aperto [a,b[contiene almeno un numero razionale, dunque ogni aperto interseca \mathbb{Q} , che risulta essere quindi denso in $(\mathbb{R}, \vartheta_s)$ e numerabile, dunque $(\mathbb{R}, \vartheta_s)$ è separabile.

Proposizione 1.4.15. Uno spazio topologico (X, ϑ) che soddisfa il secondo assioma di numerabilità è separabile.

Dimostrazione. Sia \mathcal{B} una base di aperti numerabile di (X, ϑ) , ad ogni $B \in \mathcal{B}$ scegliamo un punto $x_B \in B$, consideriamo l'insieme di questi punti

 $A = \{x_B \in B : B \in \mathcal{B}\}$, esso è ovviamente numerabile, facciamo vedere che è anche denso. Sia $U \in \vartheta$ un aperto, dato che, per definizione di base, esso è unione di elementi in \mathcal{B} , $\exists B \in \mathcal{B} : B \subseteq U \Rightarrow x_B \in U \Rightarrow A \cap U \neq \emptyset$, cioè A interseca ogni aperto, dunque A è denso.

1.5 Spazi metrici

Definizione 1.5.1. Sia X un insieme, chiamiamo **distanza** (o **metrica**) un'applicazione $d: X \times X \to \mathbb{R}$ che gode delle seguenti proprietà:

D1.
$$d(x,y) = 0 \Leftrightarrow x = y$$

$$D2. \ d(x,y) = d(y,x)$$

D3.
$$d(x,y) \le d(x,z) + d(z,y)$$

Si definisce **spazio metrico** la coppia (X, d).

Osservazione 1.5.2. Dalle tre proprietà elencate sopra ricaviamo che la distanza è sempre positiva

$$\forall x, y \in X \quad d(x, y) > 0$$

infatti, applichiamo la proprietà D3 ponendo x = y:

$$2 d(x, z) = d(x, z) + d(z, x) \ge d(x, x) = 0 \Rightarrow d(x, z) \ge 0$$

Definizione 1.5.3. Si chiama disco (o palla) di centro $x \in X$ e raggio $r \in \mathbb{R}^+$ l'insieme:

$$S(x,r) = \{ y \in X : d(x,y) < r \}$$

Definizione 1.5.4. Sia (X,d) uno spazio metrico, introduciamo attraverso la metrica d una topologia $\vartheta(d)$ su X ponendo un insieme $A\subseteq X$ aperto se $\forall x\in A$ esiste un disco di centro x che è contenuto in A. La topologia $\vartheta(d)$ così definita si chiama **topologia indotta dalla metrica** d su X.

Verifichiamo che $(X, \vartheta(d))$ è uno spazio topologico:

A1. $X, \emptyset \in \vartheta(d)$ (nulla da verificare)

A2.
$$A \subseteq \vartheta(d) \Rightarrow \bigcup_{A \in \mathcal{A}} A \in \vartheta(d)$$

poiché
$$\forall x \in \bigcup_{A \in \mathcal{A}} A, \ \exists A \in \mathcal{A} : x \in A \Rightarrow \exists r \in \mathbb{R}^+ : S(x,r) \subseteq A \subseteq \bigcup_{A \in \mathcal{A}} A$$

A3.
$$A_1, A_2 \in \vartheta(d) \Rightarrow A_1 \cap A_2 \in \vartheta(d)$$

poiché
$$\forall x \in A_1 \cap A_2 \Rightarrow x \in A_1, x \in A_2 \Rightarrow \exists r_1, r_2 \in \mathbb{R}^+ : S(x, r_1) \subseteq A_1, S(x, r_2) \subseteq A_2$$
, posto $r = min\{r_1, r_2\} \Rightarrow S(x, r) \subseteq A_1 \cap A_2$.

Esempio 1.5.5. Dotiamo l'insieme \mathbb{R} della metrica d(x,y) = |x-y|. Come si può facilmente verificare (\mathbb{R},d) forma uno spazio metrico. Osserviamo che la topologia indotta dalla metrica è la topologia euclidea ϑ_e .

In generale è possibile definire una distanza su \mathbb{R}^n come segue: dati due punti $P, Q \in \mathbb{R}^n$ di coordinate $P = (x_1, x_2, \dots, x_n), Q = (y_1, y_2, \dots, y_n),$ poniamo

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

osserviamo che essa è la usuale **distanza euclidea**, chiameremo la topologia indotta da d su \mathbb{R}^n topologia euclidea che indicheremo con ϑ_e (in analogia a quanto fatto su \mathbb{R}).

Osservazione 1.5.6. Notiamo che metriche diverse possono indurre la stessa topologia. Sia infatti X un insieme qualunque, $\forall n \in \mathbb{N} \setminus \{0\}$ definiamo una distanza d_n nel modo seguente:

$$d_n(x,y) = \begin{cases} 0 & se \quad x = y \\ n & se \quad x \neq y \end{cases}$$

Osserviamo che comunque sia scelto n, la metrica d_n indurrà la stessa topologia su X, ovvero la topologia discreta, poiché $S(x,1) = \{x\}$.

Proposizione 1.5.7. Sia (X,d) uno spazio metrico e sia $\vartheta(d)$ la topologia indotta dalla metrica d, allora ogni disco S(x,r) è aperto.

Dimostrazione. Sia S(x,r) un disco di centro $x \in X$ e raggio $r \in \mathbb{R}^+$, sia $y \in S(x,r)$, poniamo s = r - d(x,y) > 0, dimostriamo che $S(y,s) \subseteq S(x,y)$. Sia $z \in S(y,s)$, abbiamo:

$$\begin{split} d(x,z) & \leq d(x,y) + d(y,z) < d(x,y) + s = d(x,y) + r - d(x,y) = r \Rightarrow \\ & \Rightarrow d(x,z) < r \Rightarrow z \in S(x,r). \end{split}$$

Corollario 1.5.8. In uno spazio metrico (X,d) l'insieme dei dischi costituisce una base di $\vartheta(d)$.

Corollario 1.5.9. Se (X, d) è uno spazio metrico, allora lo spazio topologico $(X, \vartheta(d))$ soddisfa il primo assioma di numerabilità

Dimostrazione. Per ogni $x \in X$, scegliamo come base di intorni la famiglia $\Im(x) = \{S\left(x, \frac{1}{n}\right) : n \in \mathbb{N} \setminus \{0\}\}.$

Teorema 1.5.10. Se (X, d) è uno spazio metrico, lo spazio topologico $(X, \vartheta(d))$ è separabile se e solo se soddisfa il secondo assioma di numerabilità.

 $\begin{array}{l} \textit{Dimostrazione.} \ \Rightarrow \text{Sia} \ A \subseteq X \ \text{denso e numerabile, consideriamo l'insieme} \\ \mathcal{B} = \left\{ S(x, \frac{1}{n}) : x \in A, n \in \mathbb{N} \setminus \{0\} \right\}, \ \text{dimostriamo che} \ \mathcal{B} \ \text{costituisce una base di aperti di} \ X. \ \text{Sia} \ U \in \vartheta(d) \ \text{e} \ x \in U, \ \text{proviamo che} \ \exists B \in \mathcal{B} : x \in B \subseteq U. \ \text{Per definizione di} \ \vartheta(d), \ \exists r \in \mathbb{R}^+ : S(x,r) \subseteq U, \ \text{fissiamo} \ n \in \mathbb{N} \setminus \{0\} \ \text{tale che} \ \frac{1}{n} < \frac{r}{2}, \ \text{si ha} \ S(x, \frac{1}{n}) \in \vartheta(d) \ \text{poich\'e ogni disco} \ \grave{\text{e}} \ \text{aperto, inoltre} \ A \ \grave{\text{e}} \ \text{denso in} \ X, \ \text{quindi} \ A \cap S(x, \frac{1}{n}) \neq \emptyset. \end{array}$

Sia $y \in A \cap S(x, \frac{1}{n})$, si ha $x \in S(y, \frac{1}{n})$ e $S(y, \frac{1}{n}) \subseteq S(x, r)$. Per verificare l'ultimo fatto sia $z \in S(y, \frac{1}{n})$ abbiamo $d(x, z) \le d(x, y) + d(y, z) < \frac{1}{n} + \frac{1}{n} < r$ dunque $z \in S(x, \frac{1}{n})$.

Osserviamo infine che $y \in A$, dunque $S(y, \frac{1}{n}) \in \mathcal{B}$, posto quindi $B = S(y, \frac{1}{n})$ abbiamo $x \in B \subseteq S(x, r) \subseteq U$.

 \Leftarrow Abbiamo già dimostrato che ogni spazio topologico che soddisfa il secondo assioma di numerabilità è separabile. $\hfill\Box$

Definizione 1.5.11. Uno spazio topologico (X, ϑ) si dice **metrizzabile** se esiste una metrica d su X che induce la topologia, cioè tale che $\vartheta = \vartheta(d)$.

Per il corollario 1.5.9 un qualsiasi spazio topologico che non soddisfa il primo assioma di numerabilità costituisce un esempio di spazio topologico non metrizzabile.

Definizione 1.5.12. Sia (X,d) uno spazio metrico, sia $A \subseteq X$ e $x \in X$, definiamo distanza di x da A come segue:

$$d(x,A) = \inf\{d(x,a) : a \in A\}$$

Proposizione 1.5.13. Sia $(X, \vartheta(d))$ uno spazio topologico indotto da una metrica d. Sia dato un insieme $A \subseteq X$ allora $\overline{A} = \{x \in X : d(x, A) = 0\}.$

Dimostrazione. Sia $x \in \overline{A}$ allora per ogni $r \in \mathbb{R}^+$ si ha $S(x,r) \cap A \neq \emptyset$, cioè

$$\forall r \in \mathbb{R}^+, \exists y \in A : d(x,y) < r \Rightarrow d(x,A) = 0.$$

Viceversa, sia $x \in X$ tale che d(x, A) = 0. Supponiamo per assurdo che $x \notin \overline{A}$, allora esiste un intorno U di x tale che $U \cap A = \emptyset$. Per definizione di intorno $\exists r \in \mathbb{R}^+ : S(x,r) \subseteq U, S(x,r) \cap A = \emptyset$, cioè

$$\exists r \in \mathbb{R}^+, \forall y \in A \quad d(x,y) \ge r$$

contro l'ipotesi d(x, A) = 0, arrivando così a un assurdo.

1.6 Funzioni continue

Definizione 1.6.1. Siano (X, ϑ) e (Y, ϑ') due spazi topologici. Una funzione $f: X \to Y$ si dice **continua** se per ogni $U \in \vartheta'$ si ha $f^{-1}(U) \in \vartheta$, cioè se l'immagine inversa di un aperto è ancora un aperto.

Esempio 1.6.2. Sia (X, ϑ_d) , cioè X con la topologia discreta e (Y, ϑ') un qualunque altro spazio topologico, allora ogni funzione $f: X \to Y$ è continua.

Esempio 1.6.3. Sia (X, ϑ) un qualunque spazio topologico e (Y, ϑ'_i) , cioè Y con la topologia indiscreta, allora ogni funzione $f: X \to Y$ è continua.

Esempio 1.6.4. Siano (X, ϑ) e (Y, ϑ') due spazi topologici, allora ogni funzione $f: X \to Y$ costante (cioè tale che fissato $y \in Y$, $\forall x \in X$ f(x) = y) è continua.

Proposizione 1.6.5. Siano (X, ϑ) e (Y, ϑ') due spazi topologici allora una funzione $f: X \to Y$ è continua se e solo se per ogni chiuso F di Y, $f^{-1}(F)$ è chiuso in X.

Dimostrazione. \Rightarrow Sia $f: X \to Y$ continua e sia F un chiuso di Y, allora $Y \setminus F$ è aperto in Y, dunque $f^{-1}(Y \setminus F) = f^{-1}(Y) \setminus f^{-1}(F) = X \setminus f^{-1}(F)$ è aperto in X, cioè $f^{-1}(F)$ è chiuso in X.

 \Leftarrow Viceversa, sia $U \in \vartheta'$ allora esiste F chiuso in Y tale che $U = Y \setminus F$, dunque $f^{-1}(U) = f^{-1}(Y \setminus F) = f^{-1}(Y) \setminus f^{-1}(F) = X \setminus f^{-1}(F)$ che è aperto in X dato che per ipotesi $f^{-1}(F)$ è chiuso in X.

Per verificare la continuità di una funzione basta verificare che l'immagine inversa di elementi di una base di aperti di Y sia ancora un aperto in X come mostra la seguente

Proposizione 1.6.6. Siano (X, ϑ) e (Y, ϑ') due spazi topologici e sia \mathcal{B} una base di aperti di Y, allora una funzione $f: X \to Y$ è continua se e solo se per ogni $B \in \mathcal{B}$, $f^{-1}(B)$ è aperto in X.

Dimostrazione. \Rightarrow Chiaramente, se la funzione f è continua, $f^{-1}(B) \in \vartheta$ qualunque sia $B \in \mathcal{B}$.

 \Leftarrow Sia $U\in\vartheta',$ per definizione di base $U=\bigcup_{B\in\mathcal{B}'}B$ con $\mathcal{B}'\subseteq\mathcal{B},$ dunque si ha

$$f^{-1}(U)=f^{-1}(\bigcup_{B\in\mathcal{B}'}B)=\bigcup_{B\in\mathcal{B}'}f^{-1}(B)$$

si ha $f^{-1}(U) \in \vartheta$ poiché unione di aperti, dunque f è continua.

Diamo adesso la definizione di continuità di una funzione in un punto.

Definizione 1.6.7. Siano (X, ϑ) e (Y, ϑ') due spazi topologici una funzione $f: X \to Y$ è continua in $x \in X$ se per ogni intorno U di f(x) esiste un intorno V di x tale che $f(V) \subseteq U$.

Teorema 1.6.8. Dati (X, ϑ) e (Y, ϑ') due spazi topologici, una funzione $f: X \to Y$ è continua se e solo se è continua in ogni punto di X.

Dimostrazione. \Rightarrow Supponiamo che f sia continua e prendiamo $x \in X$. Sia U un intorno di f(x), allora $\exists A \in \vartheta'$ tale che $f(x) \in A \subseteq U$, poiché $f^{-1}(A)$ è aperto esso è un intorno di x, dunque $f(f^{-1}(A)) \subseteq A \subseteq U$.

 \Leftarrow Viceversa supponiamo che f sia continua in qualunque punto $x \in X$. Sia $U \in \vartheta'$ e $x \in f^{-1}(U)$, si ha $f(x) \in U$ quindi U è un intorno di f(x) allora, per la continuità di f in x, esiste un intorno V_x di x tale che $f(V_x) \subseteq U$ cioè $V_x \subseteq f^{-1}(f(V_x)) \subseteq f^{-1}(U)$. Dall'arbitrarietà di x segue che $f^{-1}(U)$ è intorno di ogni suo punto, dunque è aperto.

Proposizione 1.6.9. Siano (X, ϑ) e (Y, ϑ') due spazi topologici, una funzione $f: X \to Y$ è continua se e solo se: $\forall A \subseteq X$ $x \in \overline{A} \Rightarrow f(x) \in \overline{f(A)}$.

Dimostrazione. \Rightarrow Sia $A \subseteq X$ e $x \in \overline{A}$. Dato che f è continua, preso un qualunque intorno U di f(x) esiste un intorno V di x tale che $f(V) \subseteq U$, inoltre $x \in \overline{A}$ dunque $A \cap V \neq \emptyset$, quindi si ha

$$\emptyset \neq f(A \cap V) \subseteq f(A) \cap f(V) \subseteq f(A) \cap U$$

dunque ogni intorno di f(x) interseca f(A), cioè $f(x) \in \overline{f(A)}$. \Leftarrow Sia F un chiuso di Y, dimostriamo che $f^{-1}(F)$ è chiuso. Sia $x \in \overline{f^{-1}(F)}$ allora per ipotesi si ha $f(x) \in \overline{f(f^{-1}(F))} \subseteq \overline{F} = F$ ovvero $f(x) \in F \Rightarrow x \in f^{-1}(F)$, quindi si ha $\overline{f^{-1}(F)} \subseteq f^{-1}(F)$, dunque $f^{-1}(F)$ è chiuso.

Proposizione 1.6.10. Siano $(X, \vartheta_1), (Y, \vartheta_2)$ e (Z, ϑ_3) tre spazi topologici, $f: X \to Y$ e $g: Y \to Z$ due funzioni continue, allora $g \circ f: X \to Z$ è continua.

Dimostrazione. Sia A un aperto di Z, allora $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$, ora per la continuità di g, $g^{-1}(A)$ è aperto in Y, infine per la continuità di f, $f^{-1}(g^{-1}(A))$, è aperto in X, dunque la funzione $g \circ f$ è continua.

Proposizione 1.6.11. Siano ϑ_1 e ϑ_2 due topologie su un insieme X, allora la funzione identià $1_X : (X, \vartheta_1) \to (X, \vartheta_2)$ è continua se e solo se $\vartheta_1 \supseteq \vartheta_2$, cioè se ϑ_1 è piu fine di ϑ_2 .

Definizione 1.6.12. Siano (X, ϑ) e (Y, ϑ') due spazi topologici. Una funzione $f: X \to Y$ si dice **aperta** se per ogni aperto A di X, f(A) è aperto in Y. Similmente f si dice **chiusa** se per ogni chiuso C di X, f(C) è chiuso in Y.

Definizione 1.6.13. Siano (X, ϑ) e (Y, ϑ') due spazi topologici. Una funzione $f: X \to Y$ si chiama **omeomorfismo** se è biunivoca, continua e se la sua inversa f^{-1} è continua.

Osservazione 1.6.14. Una funzione $f: X \to Y$ biunivoca e continua è un omeomorfismo se e solo se è aperta oppure chiusa.

Definizione 1.6.15. Uno spazio X si dice **omeomorfo** a Y o in simboli $X \simeq Y$ se esiste un omeomorfismo $f: X \to Y$. Inoltre osserviamo che la relazione di omeomorfismo è una relazione di equivalenza.

Esempio 1.6.16. L'insieme \mathbb{R} (con la topologia euclidea) è omeomorfo all'intervallo]-1,1[, basta considerare $f:\mathbb{R}\to]-1,1[$ con $f(x)=\frac{x}{1+|x|},$ esso costituisce un omeomorfismo.

Esempio 1.6.17. Ancora, \mathbb{R} è omeomorfo all'intervallo $]0, +\infty[$ tramite l'omemomorfismo $f: \mathbb{R} \to]0, +\infty[$ con $f(x) = e^x$.

Capitolo 2

Assiomi di Separazione

2.1 Assioma T_1

Definizione 2.1.1. Uno spazio topologico (X, ϑ) soddisfa l'assioma di separazione $\mathbf{T_1}$ se per ogni $x, y \in X$ con $x \neq y$, esiste un aperto U tale che $x \in U, y \notin U$ e esiste un aperto V tale che $x \notin V, y \in V$.

Teorema 2.1.2. Uno spazio topologico (X, ϑ) è T_1 se e solo se ogni singoletto è chiuso.

Dimostrazione. \Rightarrow Sia $x \in X$ e $y \in X \setminus \{x\}$, allora per ipotesi esiste un aperto U_y tale che $x \notin U_y, y \in U_y$, allora

$$\{x\} = \bigcap_{y \in X \setminus \{x\}} X \setminus U_y$$

dunque $\{x\}$ è chiuso poiché intersezione di chiusi.

 \Leftarrow Siano $x,y\in X$ con $x\neq y$, per ipotesi $\{x\},\{y\}$ sono chiusi dunque gli insiemi $X\setminus\{x\},X\setminus\{y\}$ sono due aperti tali che $x\in X\setminus\{y\},y\notin X\setminus\{y\}$ e $x\notin X\setminus\{x\},y\in X\setminus\{x\}$.

Corollario 2.1.3. La topologia meno fine su X che soddisfa T_1 è la topologia cofinita.

Dimostrazione. Sia ϑ una qualsiasi topologia su X tale che (X,ϑ) sia T_1 , ogni singoletto è chiuso quindi anche ogni insieme finito è chiuso perché unione finita di chiusi, dunque un insieme complementare di un insieme finito è aperto, cioè ogni aperto nella topologia cofinita è aperto in ϑ dunque ϑ è più fine della topologia cofinita.

Corollario 2.1.4. Sia (X, ϑ) uno spazio topologico con X finito, allora esso è T_1 se e solo se ϑ è la topologia discreta.

 $Dimostrazione. \Rightarrow Per il corollario 2.1.3$, basta osservare che la topologia cofinita di un insieme finito corrisponde con la topologia discreta.

← Nella topologia discreta ogni singoletto è chiuso.

Proposizione 2.1.5. Uno spazio topologico (X, ϑ) è T_1 se e solo se i singoletti sono intersezione di insiemi aperti.

Dimostrazione. \Rightarrow Sia $x \in X$ allora per ogni $y \in X \setminus \{x\}$, esiste un aperto U_y tale che $x \in U_y$ e $y \notin U_y$, dunque

$$\{x\} = \bigcap_{y \in X \setminus \{x\}} U_y$$

 \Leftarrow Sia $x, y \in X$ distinti, allora per ipotesi $\{x\}$ è intersezione di aperti, in particolare deve esisterne uno tra questi, diciamo U, tale che $y \notin U$, ma ovviamente $x \in U$. Un discorso del tutto analogo può essere fatto a partire da y, pertanto (X, ϑ) è T_1 .

Proposizione 2.1.6. Sia (X, ϑ) uno spazio topologico T_1 e sia $A \subseteq X$, se $x \in U$ un punto di accumulazione per A allora ogni intorno di X interseca X in infiniti punti.

Dimostrazione. Supponiamo per assurdo che esista un intorno di \boldsymbol{x} che interseca A in un numero finito di punti:

$$\exists U \in \mathfrak{I}(x): A \cap U = \{a_1, a_2, \dots, a_n\}$$

poiché X è T_1 ogni singoletto è chiuso di conseguenza ogni insieme finito è chiuso, posto quindi $C = \{a_1, a_2, \ldots, a_n\} \setminus \{x\}$, l'insieme $V = U \cap (X \setminus C)$ è ancora un intorno di x che interseca A in al più il punto x, contro l'ipotesi che x è di accumulazione per A.

2.2 Assioma T_2

Definizione 2.2.1. Uno spazio topologico (X, ϑ) soddisfa l'assioma di separazione $\mathbf{T_2}$ (o è di **Hausdorff**) se presi due punti distinti $x, y \in X$ esistono due aperti $U, V \in \vartheta$ tali che $x \in U, y \in V$ e $U \cap V = \emptyset$.

Chiaramente, ogni spazio T_2 è anche T_1 , ma non vale il viceversa come mostra il seguente

Esempio 2.2.2. Per costruire un esempio di spazio topologico T_1 ma non T_2 prendiamo un insieme X infinito, esso con la topologia cofinita costituisce uno spazio topologico T_1 dal momento che ogni singoletto è chiuso, ma non è T_2 considerato che non esistono in questa topologia due aperti disgiunti.

Osservazione 2.2.3. Siano ϑ_1 e ϑ_2 due topologie su X tali che $\vartheta_1 \subseteq \vartheta_2$, allora se (X, ϑ_1) è T_i (i = 1, 2) lo è anche (X, ϑ_2) . Basta osservare che se ϑ_2 è più fine di ϑ_1 allora ogni aperto in ϑ_1 è aperto anche in ϑ_2 .

Proposizione 2.2.4. Uno spazio topologico (X, ϑ) è T_2 se e solo se ogni singoletto è intersezione di suoi intorni chiusi.

 $\begin{array}{l} \textit{Dimostrazione.} \Rightarrow \text{Sia} \ x \in X, \ \text{fissato} \ y \in X \setminus \{x\} \ \text{esistono due aperti} \ U_y \ \text{e} \\ V_y \ \text{tali che} \ x \in U_y, y \in V_y \ \text{e} \ U_y \cap V_y = \emptyset, \ \text{dato che} \ V_y \ \text{è un intorno di} \ y, \ \text{dall'ultima relazione segue} \ y \notin \overline{U_y}, \ \text{inoltre} \ \overline{U_y} \ \text{è un intorno di} \ x \ \text{dal momento} \\ \text{che} \ x \in U_y \subseteq \overline{U_y}. \ \text{In conclusione abbiamo} \end{array}$

$$\{x\} = \bigcap_{y \in X \setminus \{x\}} \overline{U_y}$$

 \Leftarrow Siano $x,y\in X$ distinti, per ipotesi $\{x\}$ è intersezione di suoi intorni chiusi di conseguenza deve esistere un intorno chiuso di x, diciamo F, tale che $y\notin F$, allora $y\in X\setminus F$, inoltre per definizione di intorno $\exists\,U\in\vartheta:x\in U\subseteq F$. In conclusione posto $V=X\setminus F$ si ha: $x\in U,y\in V$ con $U\cap V=\emptyset$.

Proposizione 2.2.5. Siano $(X, \vartheta_1), (Y, \vartheta_2)$ due spazi topologici con Y uno spazio T_2 e $A \subseteq X$ denso, inoltre siano $f, g: X \to Y$ due funzioni continue, allora

$$\forall x \in A \quad f(x) = g(x) \Longrightarrow f = g$$

Dimostrazione. Supponiamo per assurdo che $\exists x \in X : f(x) \neq g(x)$, per ipotesi esistono due aperti $U, V \in \vartheta_2$ tali che $f(x) \in U, g(x) \in V$ e $U \cap V = \emptyset$, gli insiemi $f^{-1}(U), g^{-1}(V)$ sono due aperti che contengono x quindi sono suoi intorni, pertanto anche $f^{-1}(U) \cap g^{-1}(V)$ è un intorno di x. Ma $x \in X = \overline{A}$ quindi $A \cap (f^{-1}(U) \cap g^{-1}(V)) \neq \emptyset$. Sia quindi $z \in A \cap (f^{-1}(U) \cap g^{-1}(V))$, si ha $f(z) \in U, g(z) \in V$ e $z \in A \Rightarrow f(z) = g(z)$, contro $U \cap V = \emptyset$, assurdo. \square

2.3 Assioma T_3

Definizione 2.3.1. Uno spazio topologico (X, ϑ) soddisfa l'assioma di separazione $\mathbf{T_3}$ (o è **regolare**) se è T_1 e se per ogni chiuso F e per ogni $x \notin F$ esistono due aperti $U, V \in \vartheta$ tali che $x \in U, F \subseteq V$ e $U \cap V = \emptyset$.

Ogni spazio T_3 è anche T_2 . Siano infatti $x,y \in X$, dato che ogni singoletto è chiuso, consideriamo $\{y\}$, allora esistono due aperti U,V tali che $x \in U$, $\{y\} \subseteq V \Rightarrow y \in V \text{ e } U \cap V = \emptyset$.

Inoltre se dalla definizione di spazio regolare omettiamo la condizione T_1 , allora $T_3 \not\Rightarrow T_2$ dal momento che una tale definizione sarebbe soddisfatta ad esempio dalla topologia indiscreta (su un qualunque insieme X), infatti preso un chiuso F e $x \notin F \Rightarrow F = \emptyset$, allora esistono due aperti X, \emptyset tali che $x \in X, F \subseteq \emptyset$ e $X \cap \emptyset = \emptyset$.

Esempio 2.3.2. Vediamo ora un esempio di spazio topologico T_2 ma non T_3 . Posto $Z = \{\frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\}$, costruiamo su \mathbb{R} una topologia ϑ avente come base di aperti l'insieme $\mathcal{B} = \{]a,b[\setminus A:a,b \in \mathbb{R},A\subseteq Z\}$. Si può verificare che (\mathbb{R},ϑ) è uno spazio topologico, inoltre ϑ è più fine della topologia euclidea (che, come verrà dimostrato in seguito, è T_2), dunque anche (\mathbb{R},ϑ) è T_2 , dimostriamo che non è T_3 . Osserviamo preliminarmente che Z è un insieme chiuso in ϑ , infatti $\mathbb{R} \setminus Z =] - \infty, 0[\cup (] - 1, 1[\setminus Z) \cup]1, +\infty[\in \vartheta$. Supponiamo per assurdo che esistano due aperti U,V, tali che $0 \in U,Z \subseteq V$ e $U \cap V = \emptyset$. Per definizione di base, $\exists \delta > 0: (] - \delta, \delta[\setminus Z) \subseteq U$, fissiamo $n \in \mathbb{N} \setminus \{0\}$ tale che $\frac{1}{n} < \delta$ poniamo $x = \frac{1}{n} \in Z$. Poiché $Z \subseteq V$, e V è aperto $\exists r > 0:]x - r, x + r[\subseteq V$. A questo punto, ricordando che $\frac{1}{n} < \delta$, è possibile verificare $(] - \delta, \delta[\setminus Z) \cap]x - r, x + r[\neq \emptyset$, pertanto si ha $U \cap V \neq \emptyset$, arrivando a un assurdo.

Proposizione 2.3.3. Uno spazio topologico (X, ϑ) è T_3 se e solo se è T_1 e ogni punto ha un sistema fondamentale di intorni chiusi.

 $Dimostrazione. \Rightarrow Sia \ x \in X$ e consideriamo la famiglia di tutti gli intorni di x $\Im(x) = \{W_i\}_{i \in I}$, facciamo vedere che $\Im'(x) = \{\overline{W_i}\}_{i \in I}$ è un sistema fondamentale di intorni di x.

Sia W un intorno di x, allora $\exists A \in \vartheta : x \in A \subseteq W$, consideriamo $X \setminus A$, per ipotesi esistono due aperti U,V tali che $x \in U,X \setminus A \subseteq V$ e $U \cap V = \emptyset$. Si ha anche $\overline{U} \cap V = \emptyset$, infatti se per assurdo $y \in \overline{U} \cap V$, essendo V aperto esso è un intorno di y, e dal momento che $U \cap V = \emptyset$ allora $y \notin \overline{U}$ il che è assurdo. Ma $X \setminus A \subseteq V \Rightarrow \overline{U} \cap (X \setminus A) = \emptyset \Rightarrow \overline{U} \subseteq A \subseteq W$ con $x \in U \subseteq \overline{U}$. Dunque per ogni intorno W di x esiste un intorno chiuso \overline{U} di x contenuto in W. \Leftarrow Sia $x \in X$ e sia F un chiuso tale che $x \notin F$, dunque $x \in X \setminus F$ che è un intorno di x, per ipotesi esiste un intorno G di x chiuso tale che $G \subseteq X \setminus F$, inoltre, per definizione di intorno, esiste un aperto U tale che $x \in U \subseteq G$, posto $V = X \setminus G$ abbiamo $x \in U$, $F \subseteq V$ e $U \cap V = \emptyset$.

2.4 Assioma T_4

Definizione 2.4.1. Uno spazio topologico (X, ϑ) soddisfa l'assioma di separazione $\mathbf{T_4}$ (o è **normale**) se è T_1 e comunque si prendano due chiusi F e G con $F \cap G = \emptyset$, esistono due aperti U, V tali che $F \subseteq U, G \subseteq V$ e $U \cap V = \emptyset$.

Ogni spazio T_4 è anche T_3 , infatti per definizione se X è T_4 allora è anche T_1 dunque ogni singoletto è chiuso, sia $x \in X$ e F un insieme chiuso tale che $x \notin F \Rightarrow \{x\} \cap F = \emptyset$ esistono due aperti U, V tali che $\{x\} \subseteq U \Rightarrow x \in U$ e $F \subseteq V$ con $U \cap V = \emptyset$.

Teorema 2.4.2. Ogni spazio topologico metrizzabile è normale.

Dimostrazione. Sia (X,d) uno spazio metrico e $\vartheta(d)$ la topologia indotta dalla metrica. Dimostriamo che X è uno spazio T_2 (e dunque anche T_1). Siano $x,y\in X$ con d(x,y)=r>0, consideriamo i due dischi $S(x,\frac{r}{2}),\,S(y,\frac{r}{2})$, essi sono due aperti disgiunti uno contenente x e l'altro y, infatti supponiamo che $z\in S(x,\frac{r}{2})\cap S(y,\frac{r}{2})$ allora:

$$d(x,y) \le d(x,z) + d(z,y) < \frac{r}{2} + \frac{r}{2} = r \Rightarrow d(x,y) < r$$

arrivando a un assurdo.

Dimostriamo ora che X è T_4 . Siano F e G due insiemi chiusi tali che $F \cap G = \emptyset$ dunque $F \subseteq X \setminus G \in \vartheta(d)$ e analogamente $G \subseteq X \setminus F \in \vartheta(d)$, quindi per ogni punto $x \in F$, $\exists r_x > 0 : S(x, r_x) \subseteq X \setminus G$, in modo del tutto analogo per ogni $y \in G$, $\exists r_y > 0 : S(y, r_y) \subseteq X \setminus F$. Poniamo

$$A = \bigcup_{x \in F} S\left(x, \frac{r_x}{2}\right) \in \vartheta(d), \quad B = \bigcup_{y \in G} S\left(y, \frac{r_y}{2}\right) \in \vartheta(d)$$

per costruzione si ha $F \subseteq A$, $G \subseteq B$, proviamo che $A \cap B = \emptyset$. Sia $z \in A \cap B$, dunque $\exists x \in F : d(x,z) < \frac{r_x}{2}$ e $\exists y \in G : d(z,y) < \frac{r_y}{2}$, supponiamo, senza perdita di generalità, che $r_x = max\{r_x, r_y\}$, otteniamo:

$$d(x,y) \le d(x,z) + d(z,y) < \frac{r_x}{2} + \frac{r_y}{2} \le r_x \Rightarrow d(x,y) < r_x$$

pertanto $y \in S(x, r_x) \subseteq X \setminus G$ che è assurdo poiché $y \in G$.

Esempio 2.4.3. Come abbiamo visto nell'esempio 1.5.5, $(\mathbb{R}^n, \vartheta_e)$ è uno spazio topologico metrizzabile dunque è T_4 .

Esempio 2.4.4. Un esempio di spazio topologico non metrizzabile ma T_4 è la topologia di Sorgenfrey. Infatti $(\mathbb{R}, \vartheta_s)$ è uno spazio topologico separabile (esempio 1.4.14) ma non soddisfa il secondo assioma di numerabilità (proposizione 1.4.11), dunque non è metrizzabile (ricordando che uno spazio metrizzabile è separabile se e solo se soddisfa il secondo assioma di numerabilità). Dimostriamo che esso è T_4 .

Dal momento che $\vartheta_e \subseteq \vartheta_s$ e abbiamo già osservato che $(\mathbb{R}, \vartheta_e)$ è T_2 segue dalla 2.2.3 che anche $(\mathbb{R}, \vartheta_s)$ è T_2 (dunque anche T_1). Siano adesso C_1, C_2 due insiemi chiusi tali che $C_1 \cap C_2 = \emptyset \Rightarrow C_1 \subseteq X \setminus C_2, C_2 \subseteq X \setminus C_1$, ricordando che una base di aperti di ϑ_s è data da $\mathcal{B} = \{[a, a + \epsilon[: a \in \mathbb{R}, \epsilon \in \mathbb{R}^+\}, allora per ogni <math>x \in C_1, \exists \epsilon_x \in \mathbb{R}^+ : [x, x + \epsilon_x[\subseteq X \setminus C_2, e \text{ analogamente per ogni } y \in C_2, \exists \epsilon_y \in \mathbb{R}^+ : [y, y + \epsilon_y[\subseteq X \setminus C_1, poniamo$

$$A = \bigcup_{x \in C_1} \left[x, x + \epsilon_x \right[\in \vartheta_s, \quad B = \bigcup_{y \in C_2} \left[y, y + \epsilon_y \right[\in \vartheta_s$$

ovviamente $C_1 \subseteq A$ e $C_2 \subseteq B$, inoltre dimostriamo che $[x, x + \epsilon_x \cap [y, y + \epsilon_y] = \emptyset$ (con $x \in C_1$ e $y \in C_2$), infatti se non fossero disgiunti allora si verifica uno dei seguenti fatti: $x < y < x + \epsilon_x \Rightarrow y \in X \setminus C_2$ oppure $y < x < y + \epsilon_y \Rightarrow x \in X \setminus C_1$, arrivando in ogni caso a un assurdo, dunque $A \cap B = \emptyset$, pertanto $(\mathbb{R}, \vartheta_s)$ è T_4 .

Teorema 2.4.5. Sia (X, ϑ) uno spazio topologico separabile e supponiamo che esiste un sottoinsieme $S \subseteq X$ chiuso, discreto e non numerabile allora (X, ϑ) non è T_4 .

Dimostrazione. Osserviamo preliminarmente che ogni sottoinsieme di S è chiuso in X. Sia $A \subseteq S$, dato che S è discreto la topologia indotta su S è quella discreta, dunque A è chiuso nella topologia indotta, inoltre per la proposizione 1.3.2 esiste un chiuso C di X tale che $A = S \cap C$, pertanto A è chiuso in X poiché intersezione di due chiusi.

Per ipotesi X è separabile dunque sia $D\subseteq X$ un insieme denso e numerabile. Supponiamo per assurdo che (X,ϑ) sia T_4 e consideriamo $\emptyset \neq A \subsetneq S$. I due insiemi A e $S\setminus A$ sono entrambi chiusi, per ipotesi esistono due aperti $U_A, U_{S\setminus A}$ tali che $A\subseteq U_A, S\setminus A\subseteq U_{S\setminus A}$ e $U_A\cap U_{S\setminus A}=\emptyset$. Poiché D è denso si ha $U_A\cap D\neq\emptyset$.

Siano allora $A, B \subsetneq S$ due sottoinsiemi non vuoti con $A \neq B$, si ha

$$U_A \cap D \neq U_B \cap D$$

infatti se $A \setminus B \neq \emptyset$, allora si ha

$$U_B \cap U_{S \setminus B} \cap D = \emptyset$$

poiché $U_B \cap U_{S \setminus B} = \emptyset$, mentre

$$U_A \cap U_{S \setminus B} \cap D \neq \emptyset$$

dato che $A \setminus B \subseteq A \subseteq U_A$ e $A \setminus B \subseteq S \setminus B \subseteq U_{S \setminus B}$ quindi $A \setminus B \subseteq U_A \cap U_{S \setminus B}$. Infine costruiamo un'applicazione: $f : \mathcal{P}(S) \to \mathcal{P}(D)$ tramite la legge

$$f(A) = \begin{cases} \emptyset & \text{se } A = \emptyset \\ U_A \cap D & \text{se } A \subsetneq S \\ D & \text{se } A = S \end{cases}$$

per quanto dimostrato prima, essa è iniettiva, ma ciò è assurdo in quanto la carindalità di $\mathcal{P}(S)$ è strettamente maggiore della cardinalità di $\mathcal{P}(D)$.

Esempio 2.4.6. Un esempio di spazio topologico T_3 ma non T_4 è il piano di Niemytzki. In \mathbb{R}^2 sia $L = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, cioè l'asse delle ascisse, e sia $X = \{(x,y) \in \mathbb{R}^2 : y \geq 0\} \subseteq \mathbb{R}^2$, cioè il semipiano superiore di \mathbb{R}^2 , definiamo su X una topologia ϑ formata da tutti gli aperti di $\vartheta_e(X)$, cioè la topologia indotta da quella euclidea su X, unito a tutti gli insiemi formati dai dischi aperti tangenti a L unito il punto di tangenza.

In (X, ϑ) ogni singoletto è chiuso, dunque è T_1 , inoltre ogni punto possiede un sistema fondamentale di intorni chiusi, cioè è T_3 , ma non è T_4 infatti (X, ϑ) è separabile poiché $X \cap \mathbb{Q}^2$ è un insieme denso e numerabile inoltre la retta L è un insieme chiuso, discreto e non numerabile, quindi per il teorema 2.4.5 (X, ϑ) non è T_4 .

Definizione 2.4.7. Sia (X, ϑ) uno spazio topologico. Una proprietà di (X, ϑ) si dice **ereditaria** se ogni sottospazio di (X, ϑ) gode di tale proprietà.

Proposizione 2.4.8. Le proprietà T_1, T_2, T_3 sono ereditarie.

Dimostrazione. Sia $Y \subseteq X$ un sottospazio di X

 $\mathbf{T_1}$) Per ipotesi (X, ϑ) è T_1 ogni singoletto è chiuso. Dato che per ogni $y \in Y$ si ha $\{y\} = \{y\} \cap Y$, per la proposizione 1.3.2 $\{y\}$ è chiuso in Y, dunque Y è T_1 . $\mathbf{T_2}$) Siano $y_1, y_2 \in Y$ allora $y_1, y_2 \in X$, per ipotesi esistono due aperti U, V di X tali che $y_1 \in U, y_2 \in V$ e $U \cap V = \emptyset$. Poniamo $U' = U \cap Y, \ V' = V \cap Y$ sono due aperti di Y, inoltre $y_1 \in U', y_2 \in V'$ e $U' \cap V' = \emptyset$, pertanto Y è T_2 .

T₃) Abbiamo già dimostrato che se X è T_1 allora Y è T_1 . Sia $y \in Y$ e F' un chiuso di Y tale che $y \notin F'$, sempre per la proposizione 1.3.2 esiste un chiuso F di X tale che $F' = F \cap Y$, inoltre $y \in X$ quindi per ipotesi esistono due aperti U, V di X tali che $y \in U, F \subseteq V$ e $U \cap V = \emptyset$, poniamo $U' = U \cap Y, V' = V \cap Y$ sono due aperti di Y tali che $y \in U', F' \subseteq V'$ e $U' \cap V' = \emptyset$, pertanto Y è T_3 .

2.5 Limite di successioni

Sia (X, ϑ) uno spazio topologico, diamo le seguenti definizioni

Definizione 2.5.1. Si definisce **successione** un'applicazione $f : \mathbb{N} \to X$. Gli elementi f(n) sono indicati con x_n e la successione con $\{x_n\}_{n\in\mathbb{N}} \subseteq X$.

Definizione 2.5.2. Un punto $l \in X$ è detto limite della successione $\{x_n\}_{n \in \mathbb{N}}$ se per ogni intorno U di l esiste un indice ν tale che ogni termine della successione con indice maggiore di ν appartiene a U. In altri termini se

$$\forall U \in \mathfrak{I}(l), \, \exists \nu \in \mathbb{N} : \forall n > \nu \quad x_n \in U$$

quando ciò accade scriveremo $\lim_{n\to+\infty} x_n = l$.

Osserviamo che in generale il limite di una successione non è unico come mostra il seguente

Esempio 2.5.3. Definiamo una striscia aperta di centro x_0 e raggio ϵ l'insieme $S(x_0, \epsilon) = \{(x, y) \in \mathbb{R}^2 : |x - x_0| < \epsilon\}$. In \mathbb{R}^2 costruiamo la topologia delle strisce in cui un insieme A è aperto se per ogni suo punto P esiste una striscia aperta contenente P e contenuta in A.

Consideriamo in questa topologia la successione $\{x_n\} = \{(\frac{1}{n}, 0) : n \in \mathbb{N} \setminus \{0\}\}$, ogni punto del tipo (0, y) con $y \in \mathbb{R}$ è limite della successione $\{x_n\}$. Infatti consideriamo come intorni di (0, y) le strisce aperte di centro $x_0 = 0$ e raggio un certo ϵ , scegliamo un indice $\nu > \frac{1}{\epsilon}$ allora per ogni $n > \nu > \frac{1}{\epsilon} \Rightarrow \frac{1}{n} < \epsilon$ si ha $x_n = (\frac{1}{n}, 0) \in S(0, \epsilon)$.

Teorema 2.5.4. Sia (X, ϑ) uno spazio topologico T_2 allora se una successione $\{x_n\}_{n\in\mathbb{N}}$ ammette limite esso è unico.

Dimostrazione. Sia $\{x_n\} \subseteq X$ una successione. Per assurdo supponiamo che $\{x_n\}$ abbia due limiti diversi l_1 e l_2 . Per ipotesi X è T_2 dunque esistono due aperti U,V tali che $l_1 \in U, l_2 \in V$ e $U \cap V = \emptyset$. Dato che U è intorno di l_1 esiste un indice ν_1 tale che $\forall n > \nu_1$ si ha $x_n \in U$, analogamente V è intorno di l_2 quindi esiste un indice ν_2 tale che $\forall n > \nu_2$ si ha $x_n \in V$. Infine, posto $\nu = \max\{\nu_1, \nu_2\}$ per ogni $n > \nu$ si ha $x_n \in U \cap V$, che è assurdo poiché U e V sono disgiunti.

Capitolo 3

Prodotto e quoziente

3.1 Topologia prodotto

Proposizione 3.1.1. Siano X un insieme, (Y, ϑ_y) uno spazio topologico e sia $f: X \to Y$ una funzione. La topologia meno fine definibile su X affinché f sia continua è data da

$$\vartheta_f = \{ f^{-1}(A) : A \in \vartheta_y \}.$$

Dimostrazione. Sia ϑ una topologia su X che renda f continua allora per ogni $A \in \vartheta_y, f^{-1}(A)$ è un aperto di ϑ , cioè ogni aperto di ϑ_f è aperto in ϑ , pertanto $\vartheta_f \subseteq \vartheta$.

Definizione 3.1.2. Dati due insiemi X e Y, consideriamo il prodotto cartesiano $X \times Y$, chiameremo **proiezioni canoniche** le funzioni

$$p: X \times Y \to X, \quad p(x,y) = x$$

$$q: X \times Y \to Y, \quad q(x,y) = y$$

Definizione 3.1.3. Siano $(X, \vartheta_1), (Y, \vartheta_2)$ due spazi topologici. Sul prodotto cartesiano $X \times Y$ definiamo una topologia ϑ_p in due modi equivalenti:

- 1. La topologia prodotto ϑ_p è la topologia meno fino che rende le proiezioni canoniche $p: X \times Y \to X$ e $q: X \times Y \to Y$ continue.
- 2. Definiamo la topologia prodotto ϑ_p attraverso la base di aperti

$$\mathcal{B} = \{ A \times B : A \in \vartheta_1, B \in \vartheta_2 \},\$$

è facile verificare che $\mathcal B$ soddisfa le proprietà B1 e B2. In particolare per la seconda proprietà basta osservare che:

$$A_1 \times B_1, A_2 \times B_2 \in \mathcal{B} \quad (A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2) \in \mathcal{B}.$$

Esempio 3.1.4. Consideriamo $(\mathbb{R}, \vartheta_e)$, la topologia prodotto della topologia euclidea con se stessa ha per base l'insieme $\mathcal{B} = \{]a, b[\times]c, d[:a,b,c,d \in \mathbb{R} \}$, che è una base per $(\mathbb{R}^2, \vartheta_e)$, dunque il prodotto della topologia euclidea su \mathbb{R} con se stessa è uguale alla topologia euclidea su \mathbb{R}^2 .

Esempio 3.1.5. Effettuando il prodotto tra la topologia euclidea $(\mathbb{R}, \vartheta_e)$ e la topologia indiscreta $(\mathbb{R}, \vartheta_i)$ otteniamo la topologia delle strisce vista nell'esempio 2.5.3, infatti una base per questa topologia è data da

$$\mathcal{B} = \{ |a, b| \times \mathbb{R} : a, b \in \mathbb{R} \} = \{ (x, y) \in \mathbb{R}^2 : a < x < b \}.$$

Proposizione 3.1.6. Sia $(x,y) \in X \times Y$, un insieme $W \subseteq X \times Y$ è intorno di (x,y) se e solo se esiste un intorno U di x e un intorno V di y tali che $U \times V \subseteq W$.

 $\begin{array}{l} \textit{Dimostrazione.} \Rightarrow \text{Se } W \text{ è intorno di } (x,y) \text{ allora esiste un aperto } A \in \vartheta_p : \\ (x,y) \in A \subseteq W, \text{ per definizione di topologia prodotto esiste un aperto } U \text{ di } X \text{ e un aperto } V \text{ di } Y \text{ tali che } (x,y) \in U \times V \subseteq A \subseteq W, \text{ dato che } U \text{ e } V \text{ sono aperti sono anche intorni rispettivamente di } x \text{ e di } y. \end{array}$

 \Leftarrow Sia U un intorno di x e V un intorno di y con $U \times V \subseteq W$, allora esiste un aperto A di X e un aperto B di Y tali che $(x,y) \in A \times B \subseteq U \times V \subseteq W$, dunque W è un intorno di (x,y) dato che $A \times B$ è un aperto di $X \times Y$. \square

Proposizione 3.1.7. Siano \mathcal{B}_1 una base di X e \mathcal{B}_2 una base di Y, allora $\mathcal{B} = \{A_1 \times A_2 : A_1 \in \mathcal{B}_1, A_2 \in \mathcal{B}_2\}$ è una base per la topologia prodotto su $X \times Y$.

Dimostrazione. Sia A un aperto di $X \times Y$ con $(x,y) \in A$, per definizione di topologia prodotto esiste un aperto U di X e un aperto V di Y tali che $(x,y) \in U \times V \subseteq A$. Per ipotesi \mathcal{B}_1 è una base di X, dunque esiste $A_1 \in \mathcal{B}_1$: $x \in A_1 \subseteq U$ analogamente per \mathcal{B}_2 esiste $A_2 \in \mathcal{B}_2$: $y \in A_2 \subseteq V$, infine si ha $(x,y) \in A_1 \times A_2 \subseteq U \times V \subseteq A$.

Corollario 3.1.8. Se (X, ϑ_1) e (Y, ϑ_2) soddisfano il secondo assioma di numerabilità allora anche $(X \times Y, \vartheta_p)$ soddisfano tale assioma.

Dimostrazione. Questo fatto segue direttamente dalla proposizione precedente una volta osservato che il prodotto cartesiano di due insiemi numerabili è numerabile.

Proposizione 3.1.9. Siano $A \subseteq X$ e $B \subseteq Y$ allora $\overline{A \times B} = \overline{A} \times \overline{B}$.

Dimostrazione. Per la proposizione 3.1.6 un punto $(x,y) \in \overline{A \times B}$ se e solo se per ogni intorno U di x e ogni intorno V di y si ha $(U \times V) \cap (A \times B) \neq \emptyset \Leftrightarrow (U \cap A) \times (V \cap B) \neq \emptyset \Leftrightarrow U \cap A \neq \emptyset, V \cap B \neq \emptyset$ ciò accade se e solo se $x \in \overline{A}$ e $y \in \overline{B}$, cioè $(x,y) \in \overline{A} \times \overline{B}$.

Corollario 3.1.10. Se F è un chiuso di X e G è un chiuso di Y allora $F \times G$ è un chiuso di $X \times Y$.

Dimostrazione.
$$F = \overline{F}, G = \overline{G} \Rightarrow F \times G = \overline{F} \times \overline{G} = \overline{F} \times \overline{G}$$
.

Proposizione 3.1.11. Se A è un insieme denso in X e B è un insieme denso in Y allora $A \times B$ è denso in $X \times Y$.

Dimostrazione.
$$\overline{A} = X$$
, $\overline{B} = Y \Rightarrow \overline{A \times B} = \overline{A} \times \overline{B} = X \times Y$.

Proposizione 3.1.12. Siano $A \subseteq X$ e $B \subseteq Y$ allora $(A \times B) = \mathring{A} \times \mathring{B}$.

П

Dimostrazione. Da $\mathring{A} \subseteq \mathring{A}$, $\mathring{B} \subseteq B$ otteniamo $\mathring{A} \times \mathring{B} \subseteq A \times B$, inoltre $\mathring{A} \times \mathring{B}$ è aperto ed essendo $(\mathring{A} \times B)$ il più grande aperto contenuto in $A \times B$ si ha $\mathring{A} \times \mathring{B} \subseteq (\mathring{A} \times B)$.

Viceversa, sia $(x,y) \in (\mathring{A} \times B)$, per definizione di topologia prodotto esiste un aperto U di X e un aperto V di Y tali che $(x,y) \in U \times V \subseteq (\mathring{A} \times B)$, dunque $x \in U \subseteq A$ e $y \in V \subseteq B$, ma essendo \mathring{A} il più grande aperto contenuto in A e \mathring{B} il più grande aperto contenuto in B si ha $(x,y) \in U \times V \subseteq \mathring{A} \times \mathring{B}$.

Proposizione 3.1.13. Siano $A \subseteq X$ e $B \subseteq Y$, la topologia indotta da $X \times Y$ su $A \times B$ è uguale alla topologia prodotto della topologia indotta da X su A e la topologia indotta da Y su B.

Dimostrazione. Un insieme $H\subseteq A\times B$ è aperto nella topologia indotta da $X\times Y$ se e solo se esiste un aperto W di $X\times Y$ tale che $H=W\cap (A\times B)$. Per definizione di topologia prodotto $W=\bigcup_{i\in I}U_i\times V_i$, essendo U_i e V_i aperti rispettivamente di X e di Y quindi $H=\left(\bigcup_{i\in I}U_i\times V_i\right)\cap (A\times B)=\bigcup_{i\in I}(U_i\cap A)\times (V_i\cap B)$ che è un aperto nella topologia prodotto della topologia indotta da X su A e della topologia indotta da Y su B.

Proposizione 3.1.14. Le proiezioni canoniche $p: X \times Y \to X$ e $q: X \times Y \to Y$ sono aperte.

Dimostrazione. Sia A un aperto di $X \times Y$, per definizione di topologia prodotto $A = \bigcup_{i \in I} U_i \times V_i$, dunque si ha

$$p(A) = p\left(\bigcup_{i \in I} U_i \times V_i\right) = \bigcup_{i \in I} p(U_i \times V_i) = \bigcup_{i \in I} U_i$$

che è un aperto di X. La dimostrazione è analoga per q.

Teorema 3.1.15. Sia (X, ϑ) uno spazio topologico e $\Delta = \{(x, x) : x \in X\}$ la diagonale di $X \times X$, allora $X \ e$ T_2 se e solo se $\Delta \ e$ chiuso in $X \times X$.

 $\begin{array}{l} \textit{Dimostrazione.} \ \Rightarrow \ \text{Siano} \ x,y \in X \ \text{con} \ x \neq y \ \text{dunque} \ (x,y) \notin \Delta. \ \text{Per ipotesi} \\ \text{esistono} \ U \in V \ \text{aperti tali che} \ x \in U, \ y \in V \ \text{e} \ U \cap V = \emptyset \Rightarrow (U \times V) \cap \Delta = \emptyset, \\ \text{quindi abbiamo} \ (x,y) \in U \times V \subseteq X \times X \setminus \Delta \ \text{che prova che} \ \Delta \ \text{è chiuso.} \\ \Leftarrow \ \text{Sia} \ (x,y) \in X \times X \setminus \Delta \ \text{quindi} \ x \neq y, \ \text{dato che} \ \Delta \ \text{è chiuso, per definizione di topologia prodotto esiste un aperto} \ U \times V \ \text{tale che} \ (x,y) \in U \times V \subseteq X \times X \setminus \Delta, \\ \text{dunque} \ x \in U, \ y \in V \ \text{e} \ (U \times V) \cap \Delta = \emptyset \Rightarrow U \cap V = \emptyset. \end{array}$

Definizione 3.1.16. Sia $f: X \to Y$ una funzione, si definisce **grafico di** f l'insieme $gr(f) = \{(x.f(x)) : x \in X\} \subseteq X \times Y$.

Una generalizzazione del teorema precedente è data dal seguente risultato

Teorema 3.1.17. Sia $(X, \vartheta_1), (Y, \vartheta_2)$, due spazi topologici con Y spazio di Hausdorff e sia $f: X \to Y$ una funzione continua allora gr(f) è un insieme chiuso in $X \times Y$.

Dimostrazione. Sia $(x,y) \in X \times Y \setminus gr(f)$ quindi $y \neq f(x)$, per ipotesi esistono due aperti W e V tali che $f(x) \in W$, $y \in V$ e $W \cap V = \emptyset$, ma W è un intorno di f(x) dunque per la continuità di f esiste un intorno aperto U di x tale che $f(U) \subseteq W$ quindi $f(U) \cap V = \emptyset \Rightarrow (U \times V) \cap gr(f) = \emptyset$, infine abbiamo $(x,y) \in U \times V \subseteq X \times Y \setminus gr(f)$. Questo prova che $X \times Y \setminus gr(f)$ essendo intorno di ogni suo punto è aperto e quindi gr(f) è chiuso.

In generale la chiusura del grafico di una funzione non implica la continuità come mostra il seguente

Esempio 3.1.18. Consideriamo la fuzione $f: \mathbb{R} \to \mathbb{R}$ definita come segue

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

come si può verificare gr(f) è chiuso in \mathbb{R}^2 , ma ovviamente la funzione non è continua.

Esempio 3.1.19. Siano X e Y due insiemi infiniti, consideriamo gli spazi topologici (X, ϑ_c) e (Y, ϑ'_c) con la topologia cofinita allora la topologia cofinita ϑ su $X \times Y$ è strettamente meno fine della topologia prodotto $\overline{\vartheta}$, cioè $\vartheta \subset \overline{\vartheta}$. Infatti, dato che nella topologia cofinita un insieme è chiuso se è finito o coincide con l'intero spazio, è facile verificare che un chiuso di ϑ è chiuso anche in $\overline{\vartheta}$. Inoltre ad esempio l'insieme $X \times \{y\}$, con $y \in Y$, è chiuso in $\overline{\vartheta}$ perché prodotto di insiemi chiusi, ma non è chiuso in ϑ in quanto insieme infinito diverso da $X \times Y$.

Osservazione 3.1.20. Se $x_0 \in X$ e $y_0 \in Y$ allora lo spazio X è omeomorfo al sottospazio $X \times \{y_0\}$ di $X \times Y$ e lo spazio Y è omeomorfo al sottospazio $\{x_0\} \times Y$ di $X \times Y$. Infatti le restrizioni delle proiezioni canoniche

$$p: X \times \{y_0\} \to X, \quad q: \{x_0\} \times Y \to Y$$

sono omeomorfismi.

Teorema 3.1.21. Il prodotto di due spazi topologici metrizzabili è metrizzabile.

Dimostrazione. Siano $(X, d_1), (Y, d_2)$ due spazi metrici, dimostriamo che lo spazio topologico $X \times Y$ è metrizzabile.

Posti $z_0 = (x_0, y_0) \in X \times Y, z_1 = (x_1, y_1) \in X \times Y$, consideriamo l'applicazione

$$d: (X \times Y) \times (X \times Y) \to \mathbb{R}$$
 $d(z_0, z_1) = max\{d_1(x_0, x_1), d_2(y_0, y_1)\}$

si verifica facilmente che essa è una metrica sull'insieme $X \times Y$.

Osserviamo che possiamo definire sul prodotto $X \times Y$ diverse metriche che inducono la stessa topologia, ad esempio

$$d'(z_0, z_1) = d_1(x_0, x_1) + d_2(y_0, y_1)$$
$$d''(z_0, z_1) = \sqrt{d_1(x_0, x_1)^2 + d_2(y_0, y_1)^2}$$

ricordando che dati due numeri a, b non negativi si ha

$$\max\{a,b\} \leq \sqrt{a^2+b^2} \leq a+b \leq 2\max\{a,b\}$$

da cui otteniamo

$$d(z_0, z_1) \le d''(z_0, z_1) \le d'(z_0, z_1) \le 2 d(z_0, z_1)$$

e quindi per ogni $z \in X \times Y$ e r > 0

$$S_d\left(z, \frac{r}{2}\right) \subseteq S_{d'}(z, r) \subseteq S_{d''}(z, r) \subseteq S_d(z, r)$$

che permette di concludere che le metriche d, d', d'' inducono la stessa topologia.

Proposizione 3.1.22. Siano $(X, \vartheta_1), (Y, \vartheta_2)$ due spazi topologici soddisfacenti l'assioma di separazione T_i per $i \in \{1, 2, 3\}$, allora il prodotto $X \times Y \ earlier{e}$ T_i .

Dimostrazione.

- T_1) Se X e Y sono T_1 allora i songoletti $\{x\}, \{y\}$ sono chiusi, dunque $\{x\} \times \{y\} = \{(x,y)\}$ è chiuso in $X \times Y$, pertanto $X \times Y$ è T_1 .
- T_2) Siano $(x_0, y_0) \neq (x_1, y_1)$ due elementi distinti di $X \times Y$, si ha $x_0 \neq x_1$ oppure $y_0 \neq y_1$. Se $x_0 \neq x_1$ allora, dal momento che X è T_2 , esistono due aperti U e V di X tali che $x_0 \in U$, $x_1 \in V$ e $U \cap V = \emptyset$. Consideriamo adesso i due aperti $U \times Y$ e $V \times Y$ di $X \times Y$ si ha $(x_0, y_0) \in U \times Y$, $(x_1, y_1) \in V \times Y$ inoltre $(U \times Y) \cap (V \times Y) = (U \cap V) \times Y = \emptyset$. Un discorso del tutto analogo può essere fatto nel caso $y_0 \neq y_1$ dal momento che Y è T_2 .
- T_3) Dimostriamo che ogni punto possiede un sistema di intorni chiuso. Sia A un aperto di X e $x \in A$. Poiché X è T_3 esiste un intorno chiuso \overline{U} di x tale che $x \in \overline{U} \subseteq A$ e analogamente per Y preso B aperto di Y e $y \in B$, esiste un intorno chiuso \overline{V} di y tale che $y \in \overline{V} \subseteq B$. In conclusione abbiamo $(x,y) \in \overline{U} \times \overline{V} \subseteq A \times B$, ovvero ogni intorno di (x,y) contiene un intorno chiuso.

Il risultato precedente non può essere applicato anche a \mathcal{T}_4 come mostra il seguente

Esempio 3.1.23. Consideriamo la topologia di Sorgenfrey $(\mathbb{R}, \vartheta_s)$, abbiamo già osservato nell'esempio 2.4.4 che essa è T_4 , mostriamo che il prodotto non è T_4 utilizzando il teorema 2.4.5. Infatti $(\mathbb{R}^2, \vartheta_s)$ è separabile in quanto \mathbb{Q}^2 è un insieme denso e numerabile e l'insieme $S = \{(x, -x) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ è chiuso (come si può facilmente verificare), discreto in quanto per ogni punto (x, -x), l'aperto $A = [x, x + \epsilon[\times [-x, -x + \epsilon[, con \epsilon > 0, è tale che <math>A \cap S = \{(x, -x)\},$ inoltre non è numerabile, pertanto possiamo concludere che $(\mathbb{R}^2, \vartheta_s)$ non è T_4 .

3.2 Funzioni quoziente

Definizione 3.2.1. Sia (X, ϑ) uno spazio topologico, Y un insieme $e \pi : X \to Y$ una funzione suriettiva. Si definisce **topologia quoziente** indotta da π su Y la topologia più fine definibile su Y che rende π continua.

Indichiamo questa topologia con $\vartheta_q(\pi)$. Gli aperti in questa topologia sono tutti i sottoinsiemi U di Y tali che $\pi^{-1}(U) \in \vartheta$. È chiaro che $\vartheta_q(\pi)$ è la topologia più fine che rende π continua; infatti sia ϑ' una di queste: dato che π è continua, per ogni aperto $U \in \vartheta'$ si ha $\pi^{-1}(U) \in \vartheta$, cioè $U \in \vartheta_q(\pi)$, e dunque $\vartheta' \subseteq \vartheta_q(\pi)$.

Definizione 3.2.2. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici. Una funzione suriettiva $\pi: X \to Y$ si dice **quoziente** se $\vartheta' = \vartheta_q(\pi)$, cioè se ϑ' è la topologia più fine per la quale π è continua.

Proposizione 3.2.3. Siano $(X, \vartheta_0), (Y, \vartheta_1), (Z, \vartheta_2)$ tre spazi topologici e sia $\pi: X \to Y$ una funzione quoziente. Una funzione $f: Y \to Z$ è continua se e solo se $f \circ \pi: X \to Z$ è continua.

П

Dimostrazione. \Rightarrow È chiaro che se f e π sono funzioni continue la loro composizione $f \circ \pi$ è continua.

 \Leftarrow Se $f \circ \pi$ è continua allora sia U un aperto di Z: $(f \circ \pi)^{-1}(U) = \pi^{-1}(f^{-1}(U))$ è aperto in X, e dato che π è quoziente $f^{-1}(U)$ è aperto in Y, cioè f è continua.

Corollario 3.2.4. Una funzione quoziente $\pi: X \to Y$ biiettiva è un omeomorfismo.

Dimostrazione. Dato che π è biiettiva, allora esiste π^{-1} , la funzione $\pi^{-1} \circ \pi = 1_X$ è continua, quindi per la proposizione precedente anche π^{-1} è continua dunque π è un omeomorfismo.

Proposizione 3.2.5. Sia $f: X \to Y$ una funzione continua, suriettiva, aperta (o chiusa) allora f è quoziente.

Dimostrazione. Sia f aperta. Consideriamo un insieme $U \subseteq Y$ tale che $f^{-1}(U)$ è aperto in X, poiché f è suriettiva si ha $f(f^{-1}(U)) = U$, inoltre f è aperta dunque U è aperto in X, questo prova che f è quoziente.

Sia ora f chiusa, sia $f^{-1}(U)$ aperto quindi $X \setminus f^{-1}(U) = f^{-1}(Y \setminus U)$ è chiuso, analogamente a prima l'insieme $f(f^{-1}(Y \setminus U)) = Y \setminus U$ è chiuso dunque U è aperto.

3.3 Spazi quoziente

Definizione 3.3.1. Sia (X, ϑ) uno spazio topologico ed \Re una relazione d'equivalenza su X. Consideriamo l'insieme quoziente X/\Re , la proiezione canonica $\pi: X \to X/\Re$ con $\pi(x) = [x]_\Re$. Si definisce **spazio quoziente** lo spazio topologico $(X/\Re, \vartheta_q(\pi))$, dove $\vartheta_q(\pi)$ è la topologia quoziente indotta da π .

Analogamente a prima, gli aperti di X/\Re sono tutti i sottoinsiemi U di X/\Re tali che $\pi^{-1}(U)$ è aperto in X.

Proposizione 3.3.2. Sia $A \in \vartheta$ un aperto di X. Gli aperti di $\vartheta_q(\pi)$ sono tutti e soli gli insiemi $\pi(A)$ che soddisfano una delle due condizioni tra loro equivalenti:

1. Se $x \in A$ e $x\Re y$ allora $y \in A$

2.
$$A = \pi^{-1}(\pi(A))$$

Dimostrazione. É facile verificare che le due condizioni sono tra loro equivalenti, dunque dimostriamo la proposizione solo per la seconda proprietà.

Sia $U \in \vartheta_q(\pi)$, allora $\pi^{-1}(U) = A \in \vartheta$, per la suriettività di π otteniamo $\pi(A) = U \Rightarrow A = \pi^{-1}(\pi(A))$.

Viceversa sia $A \in \vartheta$ tale che $A = \pi^{-1}(\pi(A))$, allora l'insieme $\pi(A) = U$ è un aperto di X/\Re dal momento che $\pi^{-1}(U) \in \vartheta$.

29

Corollario 3.3.3. La funzione π è aperta se per ogni aperto $U \in \vartheta$ si ha $U = \pi^{-1}(\pi(U))$.

Dimostrazione. Sia $U \in \vartheta$, per la proposizione precedente $\pi(U)$ è aperto se $U = \pi^{-1}(\pi(U))$.

Definizione 3.3.4. Siano X e Y due insiemi e $f: X \to Y$ una funzione. Definiamo su X una relazione di equivalenza \Re_f indotta da f come segue

$$x\Re_f y \iff f(x) = f(y)$$

cioè, le classi di equivalenza sono tutte le controimmagini degli elementi di Y.

Teorema 3.3.5. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici e $f: X \to Y$ una funzione suriettiva. Consideriamo la proiezione canonica $\pi: X \to X/\Re_f$ e sia $g: X/\Re_f \to Y$ una funzione tale che $g \circ \pi = f$ (cioè $g([x]_{\Re_f}) = f(x)$), allora g è un omeomorfismo se e solo se f è una funzione quoziente.

Dimostrazione. \Rightarrow Dimostriamo che la topologia ϑ' è uguale alla topologia quoziente indotta da f, cioè che $\vartheta' = \vartheta_q(f)$. Per definizione, dal momento che $f = g \circ \pi$ è continua, si ha $\vartheta' \subseteq \vartheta_q(f)$. Dimostriamo quindi che $\vartheta_q(f) \subseteq \vartheta'$. Se $A \in \vartheta_q(f)$ allora $f^{-1}(A) \in \vartheta$, e dato che $f = g \circ \pi$ si ha $f^{-1}(A) = \pi^{-1}(g^{-1}(A)) \in \vartheta$; poiché π è quoziente $g^{-1}(A) \in \vartheta_q(\pi)$. Infine, dal momento che g, essendo un omeomorfismo, è anche una funzione aperta e suriettiva, $g(g^{-1}(A)) = A \in \vartheta'$.

 \Leftarrow Per la proposizione 3.2.3 essendo $g \circ \pi = f$ continua (perché funzione quoziente) e π una funzione quoziente allora g è continua. Inoltre g è iniettiva, poiché $g([x]_{\Re_f}) = g([y]_{\Re_f}) \Rightarrow f(x) = f(y) \Rightarrow x\Re_f y \Rightarrow [x]_{\Re_f} = [y]_{\Re_f}$, ed è anche suriettiva, considerato che f è suriettiva e $g \circ \pi = f$; dunque g è biiettiva. Infine osserviamo che anche g^{-1} è continua: infatti, visto che $g \circ \pi = f \Rightarrow g^{-1} \circ f = \pi$, in maniera analoga a prima $g^{-1} \circ f = \pi$ è continua (perché funzione quoziente) e f è funzione quoziente, dunque g^{-1} è continua. Questo prova che g è un omeomorfismo.

Esempio 3.3.6. Consideriamo l'intervallo $[0,1] \subseteq \mathbb{R}$ con la topologia indotta da quella euclidea e $\Re = \{(0,1),(1,0)\} \cup \{(x,x): x \in [0,1]\}$ una relazione d'equivalenza su [0,1] che identifica 0 e 1, mostriamo che il quoziente $[0,1]/\Re$ è omeomorfo alla circonferenza $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subseteq \mathbb{R}^2$ con la topologia indotta da quella euclidea. Consideriamo la funzione $f:[0,1] \to S^1$ tale che $f(t) = (\cos(2\pi t), \sin(2\pi t))$, osserviamo che risulta $\Re = \Re_f$, inoltre è possibile verificare che f è una funzione quoziente. Considerando adesso le funzioni $\pi:[0,1] \to [0,1]/\Re_f$ e $g:[0,1]/\Re_f \to S^1$, per il teorema precedentemente dimostrato g risulta un omeomorfismo, dunque $[0,1]/\Re_f \simeq S^1$.

Esempio 3.3.7. Su \mathbb{R} definiamo la relazione di equivalenza $x\Re y \Leftrightarrow x-y \in \mathbb{Z}$, mostriamo che \mathbb{R}/\Re è omeomorfo a S^1 . Come prima consideriamo la funzione $f: \mathbb{R} \to S^1$ tale che $f(t) = (\cos(2\pi t), \sin(2\pi t))$, osserviamo che $\Re_f = \Re$, inoltre f è continua, suriettiva e aperta dunque è quoziente pertanto $\mathbb{R}/\Re_f \simeq S^1$.

In generale, il quoziente di uno spazio T_i con $i \in \{1, 2, 3, 4\}$ non è T_i come mostra il seguente

Esempio 3.3.8. Consideriamo $(\mathbb{R}, \vartheta_e)$ che come sappiamo è T_4 , su \mathbb{R} definiamo la relazione di equivalenza $x\Re y \Leftrightarrow x-y \in \mathbb{Q}$. Mostriamo che $(\mathbb{R}/\Re, \vartheta_q(\pi))$ non è T_1 , piu precisamente la topologia quoziente è quella indiscreta. Sia $\emptyset \neq V \in \vartheta_q(\pi)$ allora V è del tipo $V = \pi(U)$ con $U \in \vartheta_e$ e tale che se $x \in U$ e $x\Re y$ allora $y \in U$. Per definizione esiste un aperto $]a,b[\subseteq U,$ sia $y \in \mathbb{R},$ allora esiste $r \in \mathbb{Q}$ con a-y < r < b-y, dunque $y+r=x \in]a,b[$, cioè $x \in]a,b[\subseteq U$ e $x\Re y$ allora $y \in U$, dall'arbitrarietà di y segue $U = \mathbb{R}$ da cui $V = \pi(U) = \pi(\mathbb{R}) = \mathbb{R}/\Re$. Cioè l'unico aperto in $(\mathbb{R}/\Re, \vartheta_q(\pi))$ è l'intero spazio, pertanto la topologia è quella indiscreta.

Proposizione 3.3.9. Sia (X, ϑ) uno spazio topologico e \Re una relazione di equivalenza su X. Se X/\Re è T_2 allora l'insieme \Re è chiuso in $X \times X$.

Dimostrazione. Sia $(x,y) \in (X \times X) \setminus \Re$, allora $\pi(x) \neq \pi(y)$, per ipotesi X/\Re è T_2 dunque esistono due aperti U,V di X/\Re tali che $\pi(x) \in U, \pi(y) \in V$ e $U \cap V = \emptyset$. I due insiemi $\pi^{-1}(U)$ e $\pi^{-1}(V)$ sono aperti in X e contengono rispettivamente x e y, dunque $\pi^{-1}(U) \times \pi^{-1}(V)$ è un intorno di (x,y), dal fatto che $U \cap V = \emptyset$ sappiamo che U e V contengono classi di equivalenza diverse (e quindi disgiunte) da cui segue $(\pi^{-1}(U) \times \pi^{-1}(V)) \cap \Re = \emptyset$. Dall'arbitrarietà di (x,y) si ha che nessun punto di $(X \times X) \setminus \Re$ è aderente ad \Re e quindi $\Re \subseteq \Re \Rightarrow \Re = \Re$.

Proposizione 3.3.10. Sia (X, ϑ) uno spazio topologico e \Re una relazione di equivalenza su X. Se \Re è chiuso in $X \times X$ e la proiezione canonica $\pi: X \to X/\Re$ è aperta allora X/\Re è T_2 .

Dimostrazione. Siano $\pi(x)$ e $\pi(y)$ due elementi di X/\Re con $\pi(x) \neq \pi(y)$. Poiché $(x,y) \in (X \times X) \setminus \Re$ e l'insieme \Re è chiuso, esistono due aperti U,V di X tali che $(x,y) \in U \times V \subseteq (X \times X) \setminus \Re$, da cui segue $\pi(U) \cap \pi(V) = \emptyset$, dato che π è aperta abbiamo trovato due aperti di X/\Re disgiunti che contengono rispettivamente $\pi(x)$ e $\pi(y)$.

Capitolo 4

Connessione e compattezza

4.1 Spazi connessi

Definizione 4.1.1. Uno spazio topologico (X, ϑ) si dice **connesso** se equivalentemente:

1. Non esistono due aperti U, V non vuoti tali che

$$X = U \cup V \quad U \cap V = \emptyset$$

2. Non esistono due chiusi F, G non vuoti tali che

$$X = F \cup G \quad F \cap G = \emptyset$$

3. Non esistono sottoinsiemi di X diversi da X e \emptyset che sono sia aperti che chiusi.

Vediamo alcuni esempi di spazi connessi e di spazi non connessi.

Esempio 4.1.2. Un qualsiasi spazio con la topologia indiscreta (X, ϑ_i) è connesso, basta osservare che gli unici aperti sono $X \in \emptyset$.

Un qualsiasi spazio con la topologia discreta (X, ϑ_d) non è connesso, basta osservare che ogni insieme è sia aperto che chiuso.

 \mathbb{R} con la topologia di Sorgenfrey $(\mathbb{R}, \vartheta_s)$ non è connesso infatti ogni insieme del tipo [a, b[è sia aperto che chiuso.

Lo spazio topologico (X, ϑ_c) infinito con la topologia cofinita è connesso poiché non esistono due aperti disgiunti.

Definizione 4.1.3. Sia (X, ϑ) uno spazio topologico. Un sottoinsieme $Y \subseteq X$ si dice **connesso** se lo è con la topologia indotta.

Lemma 4.1.4. Consideriamo $(\mathbb{R}, \vartheta_e)$. Sia S un sottoinsieme limitato di \mathbb{R} e $x = \sup S$ allora $x \in \overline{S}$ (lo stesso vale se $x = \inf S$).

Dimostrazione. Se U un intorno di x allora $\exists \epsilon > 0$ tale che $]x - \epsilon, x + \epsilon [\subseteq U$: per le proprietà dell'estremo superiore $\exists y \in S : x - \epsilon < y \le x \Rightarrow y \in S \cap U$, cioè ogni intorno di x interseca S, dunque $x \in \overline{S}$ (la dimostrazione nel caso $x = \inf S$ è analoga).

Definizione 4.1.5. Un sottoinsieme A di \mathbb{R} è un intervallo se $\forall x, y \in A$ con x < y e z tale che x < z < y si ha $z \in A$, o equivalentemente se $[x, y] \subseteq A$.

Teorema 4.1.6. In $(\mathbb{R}, \vartheta_e)$ i sottoinsiemi connessi sono tutti e soli gli intervalli.

Dimostrazione. Sia $S \subseteq \mathbb{R}$ e supponiamo che S non sia un intervallo. Per definizione esistono $x,y \in S$ con x < y tali che $\exists z \in \mathbb{R} \setminus S : x < z < y$. Sotto queste ipotesi possiamo scrivere:

$$S = (S \cap] - \infty, z[) \cup (S \cap]z, +\infty[)$$

quindi S è unione di due aperti disgiunti, cio
è S non è connesso, ciò dimostra che ogni insieme connesso è un interval
lo.

Viceversa sia $S\subseteq\mathbb{R}$ un intervallo, supponiamo per assurdo che non sia connesso, allora esistono due chiusi di S non vuoti F,G tali che $S=F\cup G,\,F\cap G=\emptyset$, siano $x\in F$ e $\underline{y\in G}$ consideriamo $z=\sup([x,y]\cap F)$, allora per il lemma precedente $z\in \overline{[x,y]\cap F}=[x,y]\cap F$ dato che $[x,y]\cap F$ è chiuso in S. Dato che S è un intervallo e per definizione di estremo superiore deve aversi $]z,y]\subseteq G$, dunque inf $]z,y]=z\in \overline{[z,y]}\subseteq \overline{G}=G$ dunque $z\in F\cap G$ arrivando così a un assurdo, pertanto S è connesso.

Osserviamo che l'insieme \mathbb{R} è un intervallo, da cui si ha il seguente

Corollario 4.1.7. Lo spazio topologico $(\mathbb{R}, \vartheta_e)$ è connesso.

Osservazione 4.1.8. L'insieme \mathbb{Q} non è connesso in $(\mathbb{R}, \vartheta_e)$ poiché non è un intervallo, in particolare, dato che gli unici intervalli contenuti in \mathbb{Q} sono i singoletti, esso non possiede sottoinsiemi connessi con più di un punto.

Proposizione 4.1.9. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici $e \ f : X \to Y$ una funzione continua e suriettiva allora se X è connesso lo è anche Y.

Dimostrazione. Supponiamo per assurdo che Y non sia connesso, allora esistono due aperti non vuoti U, V di Y tali che $U \cup V = Y, U \cap V = \emptyset$. Poiché f è continua gli insiemi $f^{-1}(U)$ e $f^{-1}(V)$ sono aperti non vuoti di X e risulta $X = f^{-1}(U) \cup f^{-1}(V), f^{-1}(U) \cap f^{-1}(V) = \emptyset$, arrivando così a un assurdo. \square

Osservando che per definizione una funzione quoziente è continua e suriettiva, una conseguenza immediata del risultato precedente è il seguente

Corollario 4.1.10. Il quoziente di uno spazio connesso è connesso.

Lemma 4.1.11. Sia (X, ϑ) uno spazio topologico e $Y \subseteq X$ un sottoinsieme connesso allora per ogni coppia di aperti U, V tali che $U \cap V = \emptyset, Y \subseteq U \cup V$ si ha $Y \subseteq U$ oppure $Y \subseteq V$

Dimostrazione. La relazione $Y\subseteq U\cup V$ implica $Y=(Y\cap U)\cup (Y\cap V)$, dato che Y è connesso deve aversi $Y\cap U=\emptyset$ oppure $Y\cap V=\emptyset$, cioè $Y\subseteq U$ oppure $Y\subseteq V$.

Proposizione 4.1.12. Sia (X, ϑ) uno spazio topologico. Se esiste una famiglia $\{Y_s\}_{s\in S}$ di sottospazi connessi di X tale che $Y_s\cap Y_{s'}\neq\emptyset$ per ogni $s,s'\in S$ e $\bigcup_{s\in S}Y_s=X$ allora X è connesso.

Dimostrazione. Supponiamo per assurdo che X non sia connesso, dunque esistono due aperti non vuoti U,V tali che $U \cup V = X, U \cap V = \emptyset$. Dal momento che $\bigcup_{s \in S} Y_s = X$ esistono $s,s' \in S$ tali che $Y_s \cap U \neq \emptyset$ e $Y_{s'} \cap V \neq \emptyset$, per il lemma 4.1.11 si ha $Y_s \subseteq U$, $Y_{s'} \subseteq V$ contro $Y_s \cap Y_{s'} \neq \emptyset$ arrivando a un assurdo. \square

Corollario 4.1.13. Sia (X, ϑ) uno spazio topologico. Se una famiglia $\{Y_s\}_{s \in S}$ di sottospazi connessi di X è tale che $\bigcap_{s \in S} Y_s \neq \emptyset$ allora il sottospazio $\bigcup_{s \in S} Y_s$ è connesso.

Proposizione 4.1.14. Sia (X, ϑ) uno spazio topologico. Se comunque presi $x, y \in X$ esiste un sottospazio connesso $Y \subseteq X$ tale che $x, y \in Y$ allora X è connesso.

Dimostrazione. Supponiamo per assurdo che X non sia connesso, allora esistono due aperti non vuoti U,V tali che $U \cup V = X, \ U \cap V = \emptyset$. Siano $x \in U$ e $y \in V$, per ipotesi esiste un sottospazio connesso $Y \subseteq X$ tale che $x,y \in Y$, osserviamo che $Y \subseteq X = U \cup V$, ma $Y \not\subseteq U$ poiché $y \in Y$ e $Y \not\subseteq V$ poiché $x \in Y$, arrivando così a un assurdo per il lemma 4.1.11.

Teorema 4.1.15. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici allora il prodotto $X \times Y$ è connesso se e solo se X e Y sono connessi.

Dimostrazione. \Rightarrow Basta considerare le proiezioni canoniche $p: X \times Y \to X$ e $q: X \times Y \to Y$, sono due funzioni continue e suriettive, dunque per la proposizione 4.1.9 X e Y sono connessi.

⇐ Siano $P = (x_0, y_0) \in X \times Y$ e $Q = (x_1, y_1) \in X \times Y$ due punti di $X \times Y$, consideriamo i due insiemi $X \times \{y_0\}$ e $\{x_1\} \times Y$, essi sono connessi perché omeomorfi rispettivamente a X e Y, inoltre $(X \times \{y_0\}) \cap (\{x_1\} \times Y) = (x_1, y_0)$ dunque per il corollario 4.1.13 l'insieme $Z = X \times \{y_0\} \cup \{x_1\} \times Y$ è connesso, in particolare $P, Q \in Z$, in altri termini presi due punti P, Q di $X \times Y$ abbiamo trovato un sottospazio connesso Z tale che $P, Q \in Z$, in conclusione, per la proposizione 4.1.14, $X \times Y$ è connesso.

Corollario 4.1.16. Il prodotto di un numero finito di spazi connessi è connesso.

In particolare, dato che $(\mathbb{R}, \vartheta_e)$ è connesso, lo sarà anche $(\mathbb{R}^n, \vartheta_e)$.

Proposizione 4.1.17. Sia (X, ϑ) uno spazio topologico e $Y \subseteq X$ un sottoinsieme denso e connesso allora X è connesso.

Dimostrazione. Supponiamo per assurdo che X non sia connesso: allora esistono due aperti non vuoti U,V tali che $U \cup V = X, U \cap V = \emptyset$. Possiamo scrivere $Y = (Y \cap U) \cup (Y \cap V)$, cioè Y risulta unione di due aperti non vuoti (poiché Y è denso) e disgiunti questo porta a un assurdo.

Corollario 4.1.18. Se $Y \subseteq X$ è connesso allora lo è anche \overline{Y} .

Dimostrazione. Basta osservare che Y è connesso ed è denso in \overline{Y} .

Proposizione 4.1.19. Sia $Y \subseteq X$ un insieme connesso e $Z \subseteq X$ un insieme tale che $Y \subseteq Z \subseteq \overline{Y}$, allora Z è connesso.

Dimostrazione. Sia U un aperto nella topologia indotta su Z allora esiste un aperto A di X tale che $U=Z\cap A$, fissato $x\in U$ si ha $x\in A$ e $x\in \overline{Y}$, inoltre essendo A aperto esso è anche un intorno di x, dunque

$$Y \cap A = Y \cap (Z \cap A) = Y \cap U \neq \emptyset.$$

Quindi ogni aperto di Z interseca Y questo prova che Y è un sottoinsieme di Z denso e connesso, allora per la 4.1.17 Z è connesso.

Teorema 4.1.20. (Teorema del punto fisso)

Nello spazio topologico $(\mathbb{R}, \vartheta_e)$ consideriamo una funzione $f: [0,1] \to [0,1]$ continua, allora $\exists x \in [0,1]: f(x) = x$.

Dimostrazione. Se f(0)=0 oppure f(1)=1 la tesi è acquisita quindi supponiamo che f(0)>0 e f(1)<1. Per assurdo se $\forall x\in]0,1[$ $f(x)\neq x$ allora posto $\Delta=\{(x,x)\in\mathbb{R}^2:x\in[0,1]\}$ si ha $gr(f)\cap\Delta=\emptyset$. Poniamo $A=\{(x,y)\in[0,1]\times[0,1]:x>y\}, B=\{(x,y)\in[0,1]\times[0,1]:x< y\}$, essi sono due aperti nella topologia indotta su $[0,1]\times[0,1]$, inoltre $[0,1]\times[0,1]=A\cup B\cup \Delta$ e $A\cap B=\emptyset$, allora

$$gr(f) = gr(f) \cap (A \cup B \cup \Delta) = (A \cap gr(f)) \cup (B \cap gr(f))$$

cioè gr(f) è unione di due aperti (nella topologia indotta) disgiunti, il che è assurdo poiché gr(f) è connesso (basta considerare la funzione $g:[0,1] \to gr(f)$ con g(t)=(t,f(t)) continua e suriettiva).

Definizione 4.1.21. Sia (X, ϑ) uno spazio topologico, fissato $x \in X$ consideriamo la famiglia $\mathcal{C} = \{Y \subseteq X : Y connesso, x \in Y\}$, cioè la famiglia dei sottospazi di X connessi contenenti x, allora $C_x = \bigcup_{Y \in \mathcal{C}} Y$ per il corollario 4.1.13 risulterà il più grande sottospazio di X connesso che contiene x. L'insieme C_x è detto **componente connessa** di x.

Osserviamo che C_x è chiuso, infatti per il corollario 4.1.18 l'insieme $\overline{C_x}$ è connesso, quindi è un sottospazio connesso contenente x, dunque $C_x = \overline{C_x}$. Inoltre se su X stabiliamo una relazione \Re ponendo $x\Re y$ se e solo se esiste un sottospazio connesso che contiene x e y, essa è una relazione di equivalenza e le classi di equivalenza sono le componenti connesse di X, cioè $\forall x \in X$ si ha $[x]_{\Re} = C_x$.

Definizione 4.1.22. Uno spazio topologico si dice **totalmente sconnesso** se le sue componenti connesse sono i singoletti, cioè se $\forall x \in X$ si ha $C_x = \{x\}$.

Esempio 4.1.23. Un qualsiasi spazio X con la topologia discreta è totalmente sconnesso. \mathbb{Q} in $(\mathbb{R}, \vartheta_e)$ per la 4.1.8 è totalemente sconnesso. Infine è possibile verificare che anche lo spazio topologico $(\mathbb{R}, \vartheta_s)$ è totalemente sconnesso.

Definizione 4.1.24. Sia (X, ϑ) uno spazio topologico, si definisce **arco** di estremi $x, y \in X$ una funzione $f : [0,1] \to X$ continua tale che f(0) = x e f(1) = y.

Definizione 4.1.25. Uno spazio topologico (X, ϑ) si dice **connesso per archi** se per ogni $x, y \in X$ esiste un arco di estremi x, y.

Proposizione 4.1.26. Ogni spazio topologico connesso per archi è connesso.

Dimostrazione. Sia (X, ϑ) uno spazio topologico connesso per archi allora per ogni $x, y \in X$ esiste $f: [0,1] \to X$ con $x, y \in f([0,1])$, cioè per ogni $x, y \in X$ esiste un sottospazio di X connesso (4.1.9) che contiene x, y quindi per la 4.1.14 X è connesso.

Vediamo un esempio di spazio connesso ma non connesso per archi

Esempio 4.1.27. Su \mathbb{R} definiamo la topologia conumerabile ϑ_{cn} in cui gli insiemi chiusi sono tutti gli insiemi finiti o numerabili. Lo spazio $(\mathbb{R}, \vartheta_{cn})$ è connesso poiché non esistono due insiemi chiusi la cui unione sia uguale ad \mathbb{R} , mostriamo che esso non è connesso per archi facendo vedere che ogni funzione continua $f:[0,1] \to \mathbb{R}$ è costante.

Sia $C = [0,1] \cap \mathbb{Q}$, esso è numerabile dunque l'insieme f(C) è al più numerabile quindi è chiuso, da cui segue $\overline{f(C)} = f(C)$, inoltre $\overline{C} = [0,1]$, cioè C è denso nella topologia (euclidea) indotta su [0,1]. Per la proposizione 1.6.9 si ha $f(\overline{C}) \subseteq \overline{f(C)}$ da cui $f([0,1]) \subseteq f(C)$, quindi f([0,1]) è al più numerabile ed è anche connesso, poiché f continua, suriettiva nell'immagine e [0,1] connesso in ϑ_e . Osserviamo che le topologia conumerabile induce, su ogni insieme al più numerabile, la topologia discreta, che, come osservato in precedenza, è totalmente sconnessa. Dunque, affinché f([0,1]) sia un insieme connesso, esso deve contenere un solo punto e quindi f è costante.

Sia (X, ϑ) uno spazio topologico, definiamo su X la relazione \Re ponendo $x\Re y$ se e solo se esiste un arco di estremi x,y. Verifichiamo che \Re è una relazione di equivalenza:

- 1. $\forall x \in X \quad x \Re x$ Basta considerare la funzione $f: [0,1] \to X$ con $f(t) = x \quad \forall t \in [0,1]$.
- 2. $\forall x, y \in X$ $x\Re y \Rightarrow y\Re x$. Dato che $x\Re y$ esiste un arco $f:[0,1]\to X$ di estremi x,y, consideriamo la funzione $g:[0,1]\to X$ con $g(t)=f(1-t)\forall t\in[0,1]$, si ha g(0)=f(1)=y e g(1)=f(0)=x dunque g è un arco di estremi y,x quindi $y\Re x$.
- 3. $\forall x,y,z\in X$ $x\Re y\wedge y\Re z\Rightarrow x\Re z$ Per ipotesi esistono due archi $f,g:[0,1]\to X$ di estremi rispettivamente x,y e y,z. Posto

$$h: [0,1] \to X, \quad h(t) = \begin{cases} f(2t) & \text{se } t \in [0,\frac{1}{2}] \\ g(2t-1) & \text{se } t \in [\frac{1}{2},1] \end{cases}$$

osserviamo che h è un arco di estremi x, z, dunque $x\Re z$.

Una volta verificato che \Re è una relazione di equivalenza su X diamo la seguente

Definizione 4.1.28. La classe $[x]_{\Re}$ si chiama componente connessa per archi di x.

Osserviamo che le componenti connesse per archi non sono sempre insiemi chiusi.

Proposizione 4.1.29. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici $e f : X \to Y$ una funzione continua e suriettiva allora se X è connesso per archi lo è anche Y.

Dimostrazione. Siano $x', y' \in Y$, per la suriettività di f esistono $x, y \in X$ tali che f(x) = x', f(y) = y', inoltre dato che X è connesso per archi esisterà un arco $g : [0,1] \to X$ di estremi x, y allora la funzione $f \circ g : [0,1] \to Y$ è continua, inoltre $(f \circ g)(0) = f(g(0)) = f(x) = x'$ e $(f \circ g)(1) = f(g(1)) = f(y) = y'$, dunque $f \circ g$ è un arco di estremi x', y', cioè Y è connesso per archi.

4.2 Spazi compatti

Definizione 4.2.1. Sia (X, ϑ) uno spazio topologico, si chiama **ricoprimento** aperto di X una famiglia \mathcal{A} di aperti tale che:

$$X = \bigcup_{A \in \mathcal{A}} A.$$

Inoltre una sottofamiglia $\mathcal{B} \subseteq \mathcal{A}$ che è ancora un ricoprimento di X viene detto un sottoricoprimento di \mathcal{A} .

Definizione 4.2.2. Uno spazio topologico (X, ϑ) si dice **compatto** se ogni ricoprimento aperto di X possiede un sottoricoprimento finito.

Esempio 4.2.3. Vediamo alcuni esempi:

- 1. Ogni spazio topologico finito è compatto.
- 2. Uno spazio topologico con la topologia discreta è compatto soltanto se è finito. Infatti l'insieme costituito dai singoletti è un ricoprimento aperto che nel caso infinito non possiede, naturalmente, un sottoricoprimento finito.
- 3. Lo spazio topologico (X, ϑ_c) è compatto infatti sia \mathcal{A} un ricoprimento aperto di X e sia $A \in \mathcal{A}$, allora $A = X \setminus \{x_1, x_2, \ldots, x_n\}$, dato che \mathcal{A} è un ricoprimento di X esistono $A_1, A_2, \ldots A_n$ aperti tali che $x_i \in A_i$ $\forall i \in \{1, 2, \ldots, n\}$, dunque

$$X = A \cup \bigcup_{i=1}^{n} A_i$$

 $cio \grave{e}~\mathcal{A}~possiede~un~sottoricoprimento~finito.$

4. $(\mathbb{R}^n, \vartheta_e)$ non è compatto $\forall n \geq 1$ infatti posto $\mathcal{A} = \{S(O, n) : n \in \mathbb{N} \setminus \{0\}\}$, cioè l'insieme formato dalle sfere aperte di centro l'origine e raggio n, esso è un ricoprimento aperto di \mathbb{R}^n , supponiamo che possieda un sottoricoprimento finito \mathcal{B} , consideriamo allora il massimo dei raggi delle sfere di \mathcal{B} , diciamo r allora se consideriamo un punto P che ha distanza maggiore di r dall'origine esso non appartiene a $\bigcup_{B \in \mathcal{B}} B$ arrivando così a un assurdo, dunque \mathbb{R}^n non è compatto.

Osservazione 4.2.4. Se uno spazio topologico (X, ϑ) non è compatto, allora non lo è nemmeno ogni spazio topologico (X, ϑ') tale che $\vartheta \subseteq \vartheta'$, infatti se è possibile trovare un ricoprimento aperto su (X, ϑ) che non possiede nessun sottoricoprimento finito allora dato che esso è anche un ricoprimento aperto di X con la topologia ϑ' poiché ogni aperto in ϑ è anche aperto in ϑ' , (X, ϑ') non è compatto.

Questa osservazione prova che $(\mathbb{R}, \vartheta_s)$ non è compatto dato che, come visto nell'esempio 4.2.3, $(\mathbb{R}, \vartheta_e)$ non è compatto e $\vartheta_e \subseteq \vartheta_s$.

Definizione 4.2.5. Sia X un insieme. Una famiglia \mathcal{F} di sottoinsiemi di X ha la **proprietà dell'intersezione finita** se ogni sottofamiglia finita di \mathcal{F} ha intersezione non vuota, cioè se

$$\forall F_1, F_2, \dots, F_n \in \mathcal{F} \quad \bigcap_{i=1}^n F_i \neq \emptyset$$

Proposizione 4.2.6. Uno spazio topologico (X, ϑ) è compatto se e solo se ogni famiglia $\mathcal F$ di sottoinsiemi chiusi di X che gode della proprietà dell'intersezione finita ha intersezione non vuota.

 $Dimostrazione. \Rightarrow$ Sia ${\mathcal F}$ una famiglia di sotto
insiemi chiusi. Supponiamo per assurdo che

$$\bigcap_{F\in\mathcal{F}}F=\emptyset$$

allora si ha

$$X = X \setminus \bigcap_{F \in \mathcal{F}} F = \bigcup_{F \in \mathcal{F}} (X \setminus F),$$

cioè la famiglia di insiemi del tipo $X \setminus F$ con $F \in \mathcal{F}$ è un ricoprimento aperto di X, e dal momento che X è compatto $\exists F_1, F_2, \ldots, F_n$ tali che

$$X = \bigcup_{i=1}^{n} (X \setminus F_i) = X \setminus \bigcap_{i=1}^{n} F_i \Rightarrow \bigcap_{i=1}^{n} F_i = \emptyset,$$

il che è assurdo poiché ${\mathcal F}$ gode della proprietà dell'intersezione finita.

 \Leftarrow Sia \mathcal{A} un ricoprimento aperto di X. Consideriamo la famiglia \mathcal{F} formata dagli insiemi del tipo $X \setminus A$ con $A \in \mathcal{A}$. Essa è una famiglia di sottoinsiemi chiusi; inoltre, dato che \mathcal{A} è un ricoprimento aperto di X

$$\bigcap_{F\in\mathcal{F}}F=\bigcap_{A\in\mathcal{A}}(X\setminus A)=X\setminus\bigcup_{A\in\mathcal{A}}A=\emptyset,$$

dunque \mathcal{F} non gode della proprietà dell'intersezione finita e pertanto esistono $F_1, F_2, \dots, F_n \in \mathcal{F}$ tali che

$$\bigcap_{i=1}^{n} F_{i} = \emptyset \Rightarrow \bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} (X \setminus F_{i}) = X \setminus \bigcap_{i=1}^{n} F_{i} = X$$

ovvero abbiamo trovato un sottorico
primento finito di $\mathcal{A}.$ Questo prova che
 Xè compatto. $\hfill\Box$

Definizione 4.2.7. Sia (X, ϑ) uno spazio topologico, un sottoinsieme $Y \subseteq X$ è compatto se lo è con la topologia indotta da X su Y.

Proposizione 4.2.8. Sia (X, ϑ) uno spazio topologico. Un sottoinsieme $Y \subseteq X$ è compatto se e solo se per ogni famiglia A di aperti tale che $Y \subseteq \bigcup_{A \in A} A$ esistono A_1, A_2, \ldots, A_n tali che $Y \subseteq \bigcup_{i=1}^n A_i$.

Dimostrazione. Sia \mathcal{A} una famiglia di aperti tale che $Y\subseteq\bigcup_{A\in\mathcal{A}}A$, consideriamo la famiglia \mathcal{B} formata dagli insiemi del tipo $Y\cap A$ con $A\in\mathcal{A}$, allora

$$Y = Y \cap \bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} (Y \cap A) = \bigcup_{B \in \mathcal{B}} B$$

cioè \mathcal{B} è un ricoprimento aperto (nella topologia indotta) di Y, dal momento che Y è compatto $\exists B_1, B_2, \ldots, B_n$ tali che

$$Y = \bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} (Y \cap A_i) = Y \cap \bigcup_{i=1}^{n} A_i \Rightarrow Y \subseteq \bigcup_{i=1}^{n} A_i$$

 \Leftarrow Sia $\mathcal B$ un ricoprimento aperto (nella topologia indotta) di Y allora per ogni $B \in \mathcal B$ esiste un aperto A di X tale che $B = Y \cap A$, sia $\mathcal A$ la famiglia formata da tali aperti, allora

$$Y = \bigcup_{B \in \mathcal{B}} B = \bigcup_{A \in \mathcal{A}} (Y \cap A) = Y \cap \bigcup_{A \in \mathcal{A}} A \Rightarrow Y \subseteq \bigcup_{A \in \mathcal{A}} A$$

per ipotesi esistono $A_1, A_2, \ldots, A_n \in \mathcal{A}$ tali che

$$Y \subseteq \bigcup_{i=1}^{n} A_i \Rightarrow Y = Y \cap \bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} (Y \cap A_i) = \bigcup_{i=1}^{n} B_i$$

cioè abbiamo trovato un sottori
coprimento finito di $\mathcal{B},$ questo prova che
 Yè compatto. $\hfill\Box$

Teorema 4.2.9. Sia (X, ϑ) uno spazio topologico compatto e sia $Y \subseteq X$ chiuso allora $Y \ \grave{e}$ compatto.

Dimostrazione. Sia \mathcal{A} una famiglia di aperti tali che $Y \subseteq \bigcup_{A \in \mathcal{A}} A$, consideriamo il ricoprimento aperto di X:

$$X = X \setminus Y \cup \bigcup_{A \in \mathcal{A}} A$$

dal momento che X è compatto esistono $A_1,A_2,\ldots,A_n\in\mathcal{A}$ tali che

$$X = X \setminus Y \cup \bigcup_{i=1}^{n} A_i \Rightarrow Y \subseteq \bigcup_{i=1}^{n} A_i$$

pertanto, per la 4.2.8, Y è compatto.

Proposizione 4.2.10. Siano $(X, \vartheta), (Y, \vartheta')$ due spazio topologici e $f: X \to Y$ una funzione continua e suriettiva allora se X è compatto lo è anche Y.

П

Dimostrazione. Sia A un ricoprimento aperto di Y, allora

$$Y = \bigcup_{A \in \mathcal{A}} A \Rightarrow X = f^{-1}(Y) = f^{-1}\left(\bigcup_{A \in \mathcal{A}} A\right) = \bigcup_{A \in \mathcal{A}} f^{-1}(A)$$

dato che X è compatto esistono $A_1, A_2, \ldots, A_n \in \mathcal{A}$ tali che

$$X = \bigcup_{i=1}^{n} f^{-1}(A_i) \Rightarrow Y = f(X) = f\left(\bigcup_{i=1}^{n} f^{-1}(A_i)\right) = \bigcup_{i=1}^{n} f(f^{-1}(A_i)) = \bigcup_{i=1}^{n} A_i$$

(i due fatti $f(f^{-1}(A)) = A$, Y = f(X) sono verificati poiché f è suriettiva) abbiamo trovato dunque un sottoricoprimento finito di Y, questo prova che Y è compatto.

Corollario 4.2.11. Il quoziente di uno spazio compatto è compatto.

Proposizione 4.2.12. Sia (X, ϑ) uno spazio topologico T_2 e $Z \subseteq X$ un sottoinsieme compatto allora per ogni $x \in X \setminus Z$ esistono due aperti U, V tali che $x \in U, Z \subseteq V$ e $U \cap V = \emptyset$.

Dimostrazione. Sia $x \in X \setminus Z$ e $z \in Z$ allora esistono due aperti U_z, V_z tali che $x \in U_z, z \in V_z$ e $U_z \cap V_z = \emptyset$, quindi si ha $Z \subseteq \bigcup_{z \in Z} V_z$, da cui per la 4.2.8 esistono z_1, z_2, \ldots, z_n tali che $Z \subseteq \bigcup_{i=1}^n V_{z_i} = V$, posto $U = \bigcap_{i=1}^n U_{z_i} \neq \emptyset$, si ha $x \in U, Z \subseteq V$, inoltre $U \cap V = \emptyset$ infatti se per assurdo $y \in U \cap V$, allora $y \in V$ e $y \in U$ dunque $\exists i \in \{1, 2, \ldots, n\}$ tale che $y \in V_{z_i}$, da cui si avrebbe $y \in U_{z_i} \cap V_{z_i}$ che è assurdo poiché $U_z \cap V_z = \emptyset$ per ogni $z \in Z$.

Corollario 4.2.13. Sia (X, ϑ) uno spazio topologico T_2 e $Z \subseteq X$ compatto allora Z è chiuso.

Dimostrazione. Per ogni $x \in X \setminus Z$ esiste un aperto U tale che $x \in U$ e $U \cap Z = \emptyset$ ma dato che U è un intorno di x allora $x \notin \overline{Z}$, cioè $Z = \overline{Z}$.

Corollario 4.2.14. Uno spazio topologico compatto di Hausdorff è normale.

Dimostrazione. Sia (X, ϑ) uno spazio topologico compatto T_2 e siano F, G due insiemi chiusi, quindi compatti (4.2.9), e disgiunti. Per la proposizione 4.2.12 per ogni $x \in G \subseteq X \setminus F$ esistono due aperti U_x, V_x tali che $F \subseteq U_x, x \in V_x$ con $U_x \cap V_x = \emptyset$, si ha $G \subseteq \bigcup_{x \in G} V_x$, è una famiglia di aperti contenenti G che è un insieme compatto quindi per la 4.2.8 esistono $x_1, x_2, \ldots, x_n \in G$ tali che $G \subseteq \bigcup_{i=1}^n V_{x_i}$, posto allora $U = \bigcap_{i=1}^n U_{x_i}$ abbiamo trovato due aperti tali che $F \subseteq U, G \subseteq V$, inoltre $U \cap V = \emptyset$, infatti se per assurdo $y \in U \cap V$, allora $y \in U$ e $y \in V = \bigcup_{i=1}^n V_{x_i}$ dunque $\exists i \in \{1, 2, \ldots, n\}$ tale che $y \in V_{x_i}$, da cui si avrebbe $y \in U_{x_i} \cap V_{x_i}$ il che è assurdo poiché $U_x \cap V_x = \emptyset$ per ogni $x \in G$. \square

Teorema 4.2.15. In $(\mathbb{R}, \vartheta_e)$ ogni intervallo chiuso e limitato [a, b] è compatto.

Dimostrazione. Sia $\mathcal U$ una famiglia di aperti tali che $[a,b]\subseteq\bigcup_{U\in\mathcal U}U$ e sia

$$A = \left\{ x \in [a, b] : \exists U_1, U_2, \dots, U_n \in \mathcal{U} : [a, x] \subseteq \bigcup_{i=1}^n U_i \right\} \subseteq [a, b]$$

cioè l'insieme formato da tutti i punti $x \in [a,b]$ tali che l'intervallo [a,x] sia contenuto nell'unione di aperti di una sottofamiglia finita di \mathcal{U} . L'insieme A non è vuoto poiché contiene almeno il punto a, sia allora $L = \sup A$, osserviamo subito che $L \le b$ poiché b è un maggiorante per A.

Per assurdo supponiamo che L < b, poiché $L \in [a,b] \subseteq \bigcup_{U \in \mathcal{U}} U$ allora esiste un aperto $U \in \mathcal{U}$ contenente L, quindi esiste $\epsilon > 0$ tale che $]L - \epsilon, L + \epsilon [\subseteq U]$, per una proprietà dell'estremo superiore $\exists c \in A \text{ con } L - \epsilon < c \leq L < L - \epsilon$, dunque $\exists U_1, U_2, \ldots, U_n \in \mathcal{U}$ tali che $[a,c] \subseteq \bigcup_{i=1}^n U_i$, da cui

$$\left[a, L + \frac{\epsilon}{2}\right] \subseteq \left[a, c\right] \cup \left]L - \epsilon, L + \epsilon \right[\subseteq U \cup \bigcup_{i=1}^{n} U_{i}\right]$$

segue $L+\frac{\epsilon}{2} \in A$ con $L+\frac{\epsilon}{2} > L$ che è assurdo quindi dev'essere L=b. In maniera analoga a prima dimostriamo che $b \in A$. Dato che $[a,b] \subseteq \bigcup_{U \in \mathcal{U}} U$ allora esiste un aperto $U \in \mathcal{U}$ che contiene b, quindi esiste $\epsilon > 0$ tale che $]b-\epsilon,b+\epsilon[\subseteq U,$ come prima $\exists c \in A$ tale che $b-\epsilon < c \le b$, dunque $\exists U_1,U_2,\ldots,U_n \in \mathcal{U}$ tali che $[a,c] \subseteq \bigcup_{i=1}^n U_i$, da cui

$$[a,b] \subseteq [a,c] \cup]b - \epsilon, b + \epsilon [\subseteq U \cup \bigcup_{i=1}^{n} U_i]$$

questo prova che A = [a, b], quindi per la 4.2.8 [a, b] è compatto.

Corollario 4.2.16. In $(\mathbb{R}, \vartheta_e)$ un sottoinsieme $X \subseteq \mathbb{R}$ è compatto se e solo se è chiuso e limitato.

Dimostrazione. \Rightarrow Dato che X è compatto e $(\mathbb{R}, \vartheta_e)$ è T_2 allora X è anche chiuso (4.2.13) inoltre $X \subseteq \bigcup_{n \in \mathbb{N}}]-n, n[$ allora, per la 4.2.8, $\exists n_1, n_2, \ldots, n_k$ tali che $X \subseteq \bigcup_{i=1}^k]-n_i, n_i[$, sia $m=\max\{n_1,n_2,\ldots,n_k\}$ si ha $X \subseteq]-m, m[$ quindi X è limitato.

 \Leftarrow Poiché X è limitato allora $\exists a,b \in \mathbb{R} : X \subseteq [a,b]$ che è compatto, inoltre X è chiuso nella topologia indotta su [a,b] ($X = X \cap [a,b]$), da ciò segue che X è compatto (4.2.9).

Teorema 4.2.17. (Teorema di Weierstrass)

Sia (X, ϑ) uno spazio topologico compatto, $f: X \to \mathbb{R}$ una funzione continua $(\mathbb{R} \text{ con la topologia euclidea})$ allora f possiede massimo e minimo.

Dimostrazione. f(X) è un sottoinsieme compatto di \mathbb{R} quindi è chiuso e limitato, posto $L = \sup f(X)$, per il lemma 4.1.4, $L \in f(X)$, dunque $L = \max f(X)$ (analogo per il minimo).

Osserviamo che se lo spazio X è un sottospazio compatto di \mathbb{R} , quindi un sottoinsieme chiuso e limitato, il teorema coincide con quello usualmente enunciato nei corsi di analisi.

Proposizione 4.2.18. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici con X compatto $e \ Y$ di Hausdorff $e \ sia \ f : X \to Y$ una funzione continua, allora $f \ \grave{e}$ chiusa.

Dimostrazione. Sia F un insieme chiuso di X quindi F è anche compatto (4.2.9), allora f(F) è un insieme compatto di Y (4.2.10) quindi è chiuso dal momento che Y è T_2 (4.2.13).

Corollario 4.2.19. Siano $(X, \vartheta), (Y, \vartheta')$ due spazi topologici con X compatto e Y di Hausdorff e sia $f: X \to Y$ una funzione continua e biunivoca allora f è un omeomorfismo.

(In questo caso anche Y sarà compatto e X di Hausdorff).

Teorema 4.2.20. (Teorema di Bolzano-Weierstrass)

Sia (X, ϑ) uno spazio topologico compatto e $A \subseteq X$ un sottoinsieme con infiniti punti allora A ha almeno un punto di accumulazione.

Dimostrazione. Supponiamo per assurdo che A non abbia punti di accumulazione quindi per ogni $x \in X$ esiste un suo intorno aperto U_x tale che $A \cap U_x \subseteq \{x\}$,

allora $X = \bigcup_{x \in X} U_x$. Per ipotesi X è compatto quindi $\exists x_1, x_2, \dots, x_n \in X$ tali che

$$X = \bigcup_{i=1}^{n} U_{x_i} \Rightarrow A = A \cap \bigcup_{i=1}^{n} U_{x_i} = \bigcup_{i=1}^{n} A \cap U_{x_i} \subseteq \{x_1, x_2, \dots, x_n\}$$

contro il fatto che A è infinito arrivando a un assurdo.

Teorema 4.2.21. Il prodotto di due spazi topologici compatti è compatto.

Dimostrazione. Siano $(X,\vartheta),(Y,\vartheta')$ due spazi topologici compatti e \mathcal{A}' un ricoprimento aperto dello spazio topologico $(X\times Y,\vartheta_p)$, ogni aperto $A'\in\mathcal{A}'$ può essere scritto come unione di aperti del tipo $U\times V$ con $U\in\vartheta$ e $V\in\vartheta'$ indichiamo con \mathcal{A} la famiglia di aperti di questo tipo, otteniamo

$$\mathcal{A} = \{U_i \times V_i : i \in I\}, \quad X \times Y = \bigcup_{A' \in \mathcal{A}'} A' = \bigcup_{i \in I} U_i \times V_i$$

come osservato in precedenza (3.1.20) per ogni $x \in X$ l'insieme $\{x\} \times Y$ è omeomorfo a Y quindi è compatto, inoltre $\{x\} \times Y \subseteq X \times Y = \bigcup_{i \in I} U_i \times V_i$ quindi (4.2.8) esiste un sottoinsieme finito $I_x \subseteq I$ tale che

$$\{x\} \times Y \subseteq \bigcup_{i \in I_x} U_i \times V_i$$

inoltre possiamo supporre che $x \in U_i$ per ogni $i \in I_x$ quindi $x \in \bigcap_{i \in I_x} U_i = T_x$. L'insieme T_x è aperto perché intersezione finita di aperti quindi la famiglia $\{T_x\}_{x \in X}$ è un ricoprimento aperto di X che, analogamente ad Y, è compatto pertanto esistono x_1, x_2, \ldots, x_n tali che $X = \bigcup_{j=1}^n T_{x_j}$. Posto $S = \bigcup_{j=1}^n I_{x_j}$ allora $\mathcal{B} = \{U_i \times V_i : i \in S\}$ è un sottoricoprimento finito di \mathcal{A} . Infatti, sia $(x,y) \in X \times Y$ si ha $x \in X = \bigcup_{j=1}^n T_{x_j}$ quindi $\exists j \in \{1,2,\ldots,n\}$: $x \in T_{x_j}$ pertanto $x \in U_i$ per ogni $i \in I_{x_j} \subseteq S$, inoltre

$$\{x_j\} \times Y \subseteq \bigcup_{i \in I_{x_j}} U_i \times V_i$$

quindi $y \in Y \subseteq \bigcup_{i \in I_{x_j}} V_i$ pertanto esisterà un certo $k \in I_{x_j}$ tale che $y \in V_k$ ovvero $(x,y) \in U_k \times V_k \subseteq \bigcup_{i \in S} U_i \times V_i$.

Proposizione 4.2.22. In $(\mathbb{R}^n, \vartheta_e)$ con $n \geq 1$ tutti e soli i sottoinsiemi compatti sono chiusi e limitati.

Dimostrazione. \Rightarrow Se $X \subseteq \mathbb{R}^n$ è compatto allora dato che $X \subseteq \bigcup_{n \in \mathbb{N}} S(O, n)$ allora per la 4.2.8 $\exists n_1, n_2, \ldots, n_k$ tali che $X \subseteq \bigcup_{i=1}^k S(O, n_i)$, posto infine $\overline{n} = \max\{n_1, n_2, \ldots, n_k\}$ si ha $X \subseteq S(O, \overline{n})$ quindi X è limitato e, dal momento che \mathbb{R}^n è T_2 , per la 4.2.12 X è anche chiuso.

 \Leftarrow Sia $X \subseteq \mathbb{R}^n$ chiuso e limitato allora esistono $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ tali che $X \subseteq [a_1, b_1] \times [a_2, b_2] \times, \ldots, \times [a_n, b_n] = A$. Osserviamo che A è un insieme compatto, perché prodotto di spazi compatti, inoltre è chiuso quindi X è chiuso nella topologia indotta da A pertanto X è compatto (4.2.9).

Diamo adesso la definizione di piano proiettivo.

Definizione 4.2.23. In $\mathbb{R}^3 \setminus \{(0,0,0)\}$ definiamo la seguente relazione:

$$(x_1, y_1, z_1)\mathcal{R}(x_2, y_2, z_2) \Leftrightarrow \exists \lambda \in \mathbb{R} : (x_1, y_1, z_1) = \lambda \cdot (x_2, y_2, z_2)$$

si verifica facilmente che essa è una relazione di equivalenza. Poniamo per definizione **piano proiettivo** l'insieme quoziente rispetto alla relazione \mathcal{R} , esso verrà indicato col simbolo \mathbb{P}^2 , quindi

$$\mathbb{P}^2 = (\mathbb{R}^3 \setminus \{(0,0,0)\})/\mathcal{R}$$

Consideriamo su \mathbb{P}^2 la topologia indotta da $\pi: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{P}^2$ la proiezione naturale che manda ogni elemento nella sua classe di equivalenza considerando su $\mathbb{R}^3 \setminus \{(0,0,0)\}$ la topologia indotta da quella euclidea. Mostriamo che \mathbb{P}^2 rispetto a questa topologia è compatto.

Proposizione 4.2.24. Lo spazio topologico $(\mathbb{P}^2, \vartheta_q(\pi))$ è compatto.

Dimostrazione. Sia $S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ la sfera unitaria e su di essa consideriamo la stessa relazione di equivalenza \mathcal{R} utilizzata per definire il piano proiettivo (cioè ogni punto è equivalente a se stesso e al suo simmetrico rispetto all'origine). Siano adesso $\pi:\mathbb{R}^3\setminus\{(0,0,0)\}\to\mathbb{P}^2$ e $\pi':S^2\to S^2/\mathcal{R}$ le due proiezioni naturali che mandano ogni elemento nella propria classe di equivalenza, l'inclusione canonica $i:S^2\to\mathbb{R}^3\setminus\{(0,0,0)\}$ cioè tale che i(x,y,z)=(x,y,z) e infine $i_*:S^2/\mathcal{R}\to\mathbb{P}^2$ un'applicazione tale che $i_*([(x,y,z)]_{\mathcal{R}})=[(x,y,z)]_{\mathcal{R}}$. Consideriamo in \mathbb{P}^2 la topologia indotta da π (ricordando che $\mathbb{R}^3\setminus\{(0,0,0)\}$ ha la topologia indotta da quella euclidea) e in S^2/\mathcal{R} la topologia indotta da π' (analogamente S^2 ha la topologia indotta da quella euclidea), dimostriamo che i_* rispetto a queste topologie è un omeomorfismo, cioè che $S^2/\mathcal{R}\simeq\mathbb{P}^2$.

 i_* è iniettiva: se due classi di equivalenza di S^2 hanno la stessa immagine i due rappresentanti hanno coordinate proporzionali cioè le classi di equivalenza di S^2 sono uguali.

$$i_*$$
 è suriettiva: $i_*\left(\left[\frac{(x,y,z)}{\sqrt{x^2+y^2+z^2}}\right]_{\mathcal{R}}\right)=[(x,y,z)]_{\mathcal{R}}$ per ogni $(x,y,z)\in\mathbb{R}^3.$

 i_* è continua: $i_* \circ \pi = \pi' \circ i$ è continua perché composta da π' e i che sono continue, π è una funzione quoziente quindi per la proposizione 3.2.3 i_* è continua. S^2/\mathcal{R} è compatto per 4.2.11 dal momento che S^2 è compatto perché è un insieme chiuso e limitato di \mathbb{R}^3 .

 \mathbb{P}^2 è T_2 , infatti consideriamo due classi di equivalenza di \mathbb{P}^2 esse in $\mathbb{R}^3 \setminus O$ rappresentano due rette passanti per O e per uno dei rappresentanti, circondiamo le due rette con due coni solidi disgiunti formati da rette passanti per O e privati del bordo, si può verificare che questi sono due aperti, pertanto \mathbb{P}^2 è T_2 .

Riassumendo $i_*: S^2/\mathcal{R} \to \mathbb{P}^2$ è una funzione biiettiva, continua, S^2/\mathcal{R} è compatto, \mathbb{P}^2 è T_2 dunque per 4.2.19 i_* risulterà essere un omeomorfismo, quindi \mathbb{P}^2 è compatto.