Divulgación Científica 6

Beatriz García Gabriela Sánchez Gerardo Palafox

Marzo 2023

IA en la definición y planteamiento del problema

- Al inicio de una investigación científica se debe tener muy en claro cuál es problema en específico y el objetivo al cual se desea llegar cuando concluya la investigación. Para ello se debe considerar un área de interés, investigar sobre las causas de los problemas que existen en el área y, como objetivo, proponer a lo que se desea llegar una vez que el problema sea resuelto para que las problemáticas disminuyan o desaparezcan por completo.
- El uso de herramientas de Inteligencia Artificial (IA) es de gran ayuda, sobre todo ChatGPT que de manera rápida, si se le hacen las preguntas adecuadas, ayuda a identificar estas problemáticas. Al identificarlas, el siguiente paso es elegir de éstas una o más que puedan relacionarse y resolverse en conjunto y, en el caso de nuestro posgrado, que puedan estar todas incluidas en una modelación matemática y/o un algoritmo de solución para poder resolverlo.

IA en la definición y planteamiento del problema

 Para llegar a la definición y planteamiento del problema en específico se puede hacer una revisión de literatura por medio de ChatGPT sobre artículos científicos recientes y se le puede pedir una sugerencia sobre el planteamiento del problema en palabras, la modelación matemática y el objetivo de éste para tomarlo como base para la investigación. Además de ChatGPT se cuenta con herramientas como Semantic Scholar, Schorlacy y You que son igualmente eficientes en cuanto a la búsqueda de artículos científicos relacionados al área de interés que se desea estudiar.

IA en la formulación de hipótesis

• Una vez que ya se tiene el problema en específico el siguiente paso es establecer una hipótesis que defina las mejoras que se pueden establecer en el área de interés para resolver las problemáticas que existen en la situación planteada. ChatGPT también es una buena herramienta para tener una base de la hipótesis que se debe plantear para el problema de estudio ya que cuenta con la capacidad de redactar esta misma de una manera clara y formal en base a la información que se le proporcione.

IA en la recopilación y análisis de datos

Recopilación

Automatización

Análisis

- Big Data para grandes conjuntos de datos
- Variables más relevantes
- Modelos predictivos

IA en la confrontación de los datos con las hipótesis

- Dependientes de los datos y objetivo del proyecto
 - Imágenes
 - Texto

IA en las conclusiones y generalizaciones de los resultados

- Combinar inteligencia artificial con experimentación automatizada en una sola plataforma es conocido como laboratorios auto-dirigidos.
- Las plataformas automatizadas facilitan la estandarización, paralelización y reducción de costos, además de que garantizan la reproducibilidad, y liberan a los trabajadores de tareas repetitivas.
- Por otra parte, los modelos de aprendizaje automático pueden identificar relaciones entre variables, y ser entrenados para usar estas relaciones aprendidas para especular el resultado de un nuevo experimento.
- La IA también se utiliza para predecir los resultados de experimentos en función de los datos históricos. Esto ayuda a planificar futuros experimentos y a identificar los factores que afectan los resultados.

IA para nuevas predicciones

- En el contexto de nuevas predicciones, la IA ha sido ampliamente usada en el descubrimiento de nuevos medicamentos [1, 2, 3, 4].
- El descubrimiento tradicional de un fármaco suele tomar 12 años y costar más de dos mil millones de dólares, en promedio.
- La IA está logrando hacer este procedimiento más rápido y barato [1]

Herramienta	Descripción	Sitio web
AlphaFold	Predicción de estructuras 3D de proteínas	https://deepmind.com/blog/alphafold
Chemputer	Formatos estandarizados para re- portar procedimientos de síntesis química	https://zenodo.org/record/1481731
DeepChem	Una herramienta basada en Python para varias tareas pre- dictivas relacionadas con el descubrimiento de fármacos	https://github.com/deepchem/deepchem
DeepNeuralNet- QSAR	Predicciones de actividad molecu- lar	https://github.com/Merck/DeepNeuralNet-QSAR
DeepTox	Predicciones de toxicidad	www.bioinf.jku.at/research/DeepTox
Hit Dexter	Modelos de aprendizaje máquina para la predicción de moleculas que respondan a procedimientos bioquímicos	http://hitdexter2.zbh.uni-hamburg.de
Neural Graph Fingerprints	Predicción de propiedades de mo- leculas nuevas	https://github.com/HIPS/neural-fingerprint
ODDT	Herramientas para el uso en química-informática y modelado molecular	https://github.com/oddt/oddt
ORGANIC	Herramienta para generar molecu- las con propiedades específicas	https://github. com/aspuru-guzik-group/ORGANIC
PPB2	Predicción polifarmacológica	http://ppb2.gdb.tools/
REINVENT	Desarrollo molecular <i>de novo</i> usando redes neuronales recurrentes y aprendizaje reforzado	https://github.com/MarcusOlivecrona/REINVENT
SCScore	Evaluador de la complejidad de sintetizar una molecula	https://github.com/connorcoley/scscore

Bibliografía I

- Chan, H. S., Shan, H., Dahoun, T., Vogel, H., y Yuan, S. (2019). Advancing drug discovery via artificial intelligence. *Trends in Pharmacological Sciences*, 40(8):592–604.
- [2] Fleming, N. (2018). How artificial intelligence is changing drug discovery. *Nature*, 557(7707):S55–S57.
- [3] Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., y Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. *Drug Discovery Today*, 26(1):80–93.
- [4] Walters, W. P. y Barzilay, R. (2021). Critical assessment of Al in drug discovery. *Expert Opinion on Drug Discovery*, 16(9):937–947.