Graph neural networks and graph isomorphism

Soledad Villar

Center for Data Science
Courant Institute of Mathematical Sciences

Geometry of Deep Learning Microsoft, August 27 2019

Clustering the stochastic block model

$$A \sim SBM(p,q,n,2)$$
 (two equal-sized communities): $\mathbb{P}(A_{ij}=1) = egin{cases} p & \text{if } i,j \text{ in the same community} \\ q & \text{if } i,j \text{ in different communities} \end{cases}$

Clustering the stochastic block model

$$A \sim SBM(p,q,n,2)$$
 (two equal-sized communities): $\mathbb{P}(A_{ij}=1) = \begin{cases} p & \text{if } i,j \text{ in the same community} \\ q & \text{if } i,j \text{ in different communities} \end{cases}$

Clustering the stochastic block model

 $A \sim SBM(a/n, b/n, n, 2)$ sparse. Statistical threshold for detection: $(a - b)^2 > 2(a + b)$.

Spectrum doesn't concentrate (high degree vertices dominate it) Laplacian is not useful for clustering

Other methods succeed. Example: semidefinite programming.

Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, 2013 Deshpande, Abbe, Montanari, 2014 Abbe, Bandeira, Hall, 2014

Spectral redemption

Consider the non-backtracking operator (from linearized BP)

$$B_{(i \to j)(i' \to j')} = \begin{cases} 1 \text{ if } j = i' \text{ and } j' \neq i \\ 0 \text{ otherwise} \end{cases}$$

Second eigenvector of B reveals clustering structure

Bethe Hessian

$$BH(r) = (r^2 - 1)I - rA + D$$

Fixed points of BP \longleftrightarrow Stationary points of Bethe free energy Second eigenvector reveals clustering structure Pitfall: highly dependent in the model.

Saade, Krzakala, Zdeborová, 2014 Javanmard, Montanari, Ricci-Tersenghi, 2015

Bethe Hessian

$$BH(r) = (r^2 - 1)I - rA + D$$

Fixed points of BP \longleftrightarrow Stationary points of Bethe free energy Second eigenvector reveals clustering structure Pitfall: highly dependent in the model.

Goal: Combine graph operators I, D, A, \ldots to generate robust "data-driven spectral methods" for problems in graphs

Saade, Krzakala, Zdeborová, 2014 Javanmard, Montanari, Ricci-Tersenghi, 2015

Graph neural networks $\mathsf{sGNN}(\mathcal{M})$

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T.

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009 Chen, Li, Bruna, 2017

Graph neural networks sGNN(\mathcal{M})

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T.

Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, \dots, A^{2^J}\}$,

$$v^{t+1} = \left(\sum_{M \in \mathcal{M}} M v^t \theta_M\right)$$
,

with $v^t \in \mathbb{R}^{n \times d_t}$, $\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t$, $\theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}}$ trainable parameters.

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Graph neural networks sgnn(\mathcal{M})

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T.

Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, \dots, A^{2^J}\}$,

$$v_l^{t+1} = \left(\sum_{M \in \mathcal{M}} M v^t \theta_{M,l}\right), l = 1, \dots, d_{t+1}$$

with $v^t \in \mathbb{R}^{n \times d_t}$,

$$\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t, \ \theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}} \ \text{trainable parameters}.$$

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Graph neural networks sgnN(M)

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T.

Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, \dots, A^{2^J}\}$,

$$v_l^{t+1} = \left(\sum_{M \in \mathcal{M}} M v^t \theta_{M,l}^t\right), l = 1, \dots, d_{t+1}$$

with $v^t \in \mathbb{R}^{n \times d_t}$,

$$\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t, \ \theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}} \ \text{trainable parameters}.$$

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Graph neural networks sgnN(M)

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T.

Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, \dots, A^{2^J}\}$,

$$v_l^{t+1} = \rho \left(\sum_{M \in \mathcal{M}} M v^t \theta_{M,l}^t \right) , l = 1, \dots, d_{t+1}$$

with $v^t \in \mathbb{R}^{n \times d_t}$,

 $\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t, \ \theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}} \ \text{trainable parameters}.$

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Graph neural networks $sGNN(\mathcal{M})$

Power method: $v^{t+1} = Mv^t$ $t = 1, \dots, T$. Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, \dots, A^{2^J}\}$.

$$v_l^{t+1} = \rho \left(\sum_{M \in \mathcal{M}} M v^t \theta_{M,l}^t \right) , l = 1, \dots, d_{t+1}$$

with $v^t \in \mathbb{R}^{n \times d_t}$. $\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t, \ \theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}} \ \text{trainable parameters}.$

- Extension to line graph (GNN with non-backtracking).
- \triangleright Extension to power graph min $(1, A^t)$

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Graph neural networks sGNN(M)

Power method: $v^{t+1} = Mv^t$ t = 1, ..., T. Graph with adjacency matrix A. Set $\mathcal{M} = \{I_n, D, A, A^2, ..., A^{2^J}\}$,

$$v_l^{t+1} = \rho \left(\sum_{M \in \mathcal{M}} M v^t \theta_{M,l}^t \right) , l = 1, \dots, d_{t+1}$$

with $v^t \in \mathbb{R}^{n \times d_t}$, $\Theta = \{\theta_1^t, \dots, \theta_{|\mathcal{M}|}^t\}_t$, $\theta_M^t \in \mathbb{R}^{d_t \times d_{t+1}}$ trainable parameters.

- Extension to line graph (GNN with non-backtracking).
- \triangleright Extension to power graph min $(1, A^t)$
- ▶ Equivariant wrt permutations $G \mapsto \phi(G)$ then $G_{\Pi} \mapsto \Pi \phi(G)$.

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017

Numerical performance. SBM k = 2

Theoretical result: Under simplifications one can show that all local minima have small loss.

Numerical performance. SBM k = 2

Theoretical result: Under simplifications one can show that all local minima have small loss.

Extension to unsupervised setting: Max-cut on random regular graphs.

Quadratic assignment problem

 $A, B \ n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

Quadratic assignment problem

A, B $n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

Quadratic assignment :
$$\max_{X \in \Pi} \mathsf{Trace}(AXBX^\top)$$

It includes many relevant problem as particular cases:

► Graph matching: $\min_{X \in \Pi} ||AX - XB||_F^2$

Quadratic assignment problem

A, B $n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

Quadratic assignment :
$$\max_{X \in \Pi} \mathsf{Trace}(AXBX^\top)$$

It includes many relevant problem as particular cases:

► Graph matching: $\min_{X \in \Pi} ||AX - XB||_F^2 = ||AX||^2 + ||XB||^2 - 2\langle AX, XB \rangle$

Quadratic assignment problem

 $A, B \ n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

It includes many relevant problem as particular cases:

► Graph matching: $\min_{X \in \Pi} ||AX - XB||_F^2 = ||AX||^2 + ||XB||^2 - 2\langle AX, XB \rangle$

Graph isomorphism

Quadratic assignment problem

A, B $n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

 $\mathsf{Quadratic} \ \mathsf{assignment} : \max_{X \in \Pi} \mathsf{Trace} \big(AXBX^\top \big)$

It includes many relevant problem as particular cases:

- Graph matching: $\min_{X \in \Pi} ||AX XB||_F^2$.
- Graph isomorphism.
- Traveling salesman problem.

Quadratic assignment problem

 $A, B \ n \times n$ matrices. Π : set of $n \times n$ permutation matrices.

Quadratic assignment :
$$\max_{X \in \Pi} \mathsf{Trace}(AXBX^{\top})$$

It includes many relevant problem as particular cases:

- Graph matching: $\min_{X \in \Pi} ||AX XB||_F^2$.
- Graph isomorphism.
- Traveling salesman problem.
- Gromov-Hausdorff distance of finite metric spaces.

It is NP-hard, even to approximate it.

GNN approach to quadratic assignment

Siamese neural network:

$$G_2 = \pi \star G_1 \oplus N$$
 $N \sim$ i.i.d. bit flip $G_1 \sim$ Erdos-Renyi $G_1 \sim$ Random regular

Numerical experiments

Numerical experiments

Other GNN formulation

Message passing neural network

$$a_v^{(k)} = \mathsf{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathcal{N}(u) \right\} \right)$$
$$h_v^{(k)} = \mathsf{COMBINE}^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

Other GNN formulation

Message passing neural network

$$\begin{aligned} \mathbf{a}_{v}^{(k)} &= \mathsf{AGGREGATE}^{(k)} \left(\{ h_{u}^{(k-1)} : u \in \mathcal{N}(u) \} \right) \\ h_{v}^{(k)} &= \mathsf{COMBINE}^{(k)} \left(h_{v}^{(k-1)}, \mathbf{a}_{v}^{(k)} \right) \end{aligned}$$

- ► There exist many formulations of GNN
- ► All satisfy one essential property:
 - invariance or equivariance with respect to permutations
 - node labels are not intrinsic

How powerful are graph neural networks?

Q: How good are they at distinguishing non-isomorphic graphs?

How powerful are graph neural networks?

Q: How good are they at distinguishing non-isomorphic graphs?

A: MPNN can be as powerful as the Weisfeler-Lehman test (1968). W-L test is as powerful as the LP relaxation (Ullman et al 1994).

How powerful are graph neural networks?

Q: How good are they at distinguishing non-isomorphic graphs?

A: MPNN can be as powerful as the Weisfeler-Lehman test (1968). W-L test is as powerful as the LP relaxation (Ullman et al 1994).

In particular MPNN cannot distinguish between non-isomorphic regular graphs with the same degree.

Invariant functions on graphs

- Linear case:
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}$ invariant, then $vec(L) = \pi^{\otimes k} vec(L)$.
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^k}$ equivariant, then $vec(L) = \pi^{\otimes 2k} vec(L)$
 - ► The space of invariant [equivariant] linear functions on k-tensors has dimension b(k) [b(2k)].
 (b(k) denotes Bell Number: number of partitions of a size k set).

Invariant functions on graphs

- Linear case:
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}$ invariant, then $vec(L) = \pi^{\otimes k} vec(L)$.
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^k}$ equivariant, then $vec(L) = \pi^{\otimes 2k} vec(L)$
 - ► The space of invariant [equivariant] linear functions on k-tensors has dimension b(k) [b(2k)].
 (b(k) denotes Bell Number: number of partitions of a size k set).
- Universal approximation:
 - Invariant networks constructed by composition of linear invariant layers $L_t: \mathbb{R}^{n^k \times a} \to \mathbb{R}^b$ with ReLU or sigmoid activation functions universally approximate the space of invariant functions.
 - Extension to equivariant functions.

Invariant functions on graphs

- Linear case:
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}$ invariant, then $vec(L) = \pi^{\otimes k} vec(L)$.
 - ▶ If $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^k}$ equivariant, then $vec(L) = \pi^{\otimes 2k} vec(L)$
 - ► The space of invariant [equivariant] linear functions on k-tensors has dimension b(k) [b(2k)].
 (b(k) denotes Bell Number: number of partitions of a size k set).
- Universal approximation:
 - Invariant networks constructed by composition of linear invariant layers $L_t: \mathbb{R}^{n^k \times a} \to \mathbb{R}^b$ with ReLU or sigmoid activation functions universally approximate the space of invariant functions.
 - Extension to equivariant functions.

Arbitrary high order tensors are needed.

Rates of convergence are not known.

Graph isomorphism equivalence to universal approximation

Glso-discriminating class of functions

A class $\mathcal C$ of permutation-invariant functions from $\mathcal X^{n\times n}$ to $\mathbb R$ so that for all pairs $G_1\not\simeq G_2\in\mathcal X^{n\times n}$, there exists $h\in\mathcal C$ such that $h(G_1)\not=h(G_2)$.

Graph isomorphism equivalence to universal approximation

Universally approximating

A class $\mathcal C$ of permutation-invariant functions from $\mathcal X^{n\times n}$ to $\mathbb R$ so that for all permutation-invariant function f from $\mathcal X^{n\times n}$ to $\mathbb R$, and for all $\epsilon>0$, there exists $h_{f,\epsilon}\in\mathcal C$ such that $\|f-h_{f,\epsilon}\|_\infty:=\sup_{G\in\mathcal X^{n\times n}}|f(G)-h_{f,\epsilon}(G)|<\epsilon$

Remark

Universally approximating classes of functions are also Glso-discriminating.

Graph isomorphism equivalence to universal approximation

\mathcal{C}^{+L}

If $\mathcal C$ is a collection of functions from $\mathcal X^{n\times n}$ to $\mathbb R$, consider the set of functions from graphs G to $\mathcal N\mathcal N([h_1(G),...,h_d(G)])$ for some finite d and $h_1,...,h_d\in \mathcal C$, where $\mathcal N\mathcal N$ is a feed-forward neural network with ReLU and L layers.

Theorem

If C is Glso-discriminating C^{+2} is universally approximating.

Comparison of classes of functions through Glso

 $\mathcal{C} \subseteq \mathcal{C}'$ if for all pairs of non-isomorphic graphs G_1, G_2 , if there exists $h \in \mathcal{C}$ so that $h(G_1) \neq h(G_2)$ then there exists $h' \in \mathcal{C}'$ so that $h'(G_1) \neq h'(G_2)$.

Ring GNN

Input: Graph with *n* nodes and *d* features: $A \in \mathbb{R}^{n \times n \times d}$.

Equivariant linear layer from $\mathbb{R}^{n \times n \times d}$ to $\mathbb{R}^{n \times n \times d'}$. For $\theta \in \mathbb{R}^{d \times d' \times 17}$: $L_{\theta}(A)_{\cdot,\cdot,k'} = \sum_{k=1}^{d} \sum_{i=1}^{15} \theta_{k,k',i} L_{i}(A_{\cdot,\cdot,i}) + \sum_{i=16}^{17} \theta_{k,k',i} \overline{L}_{i}$. Set $A^{(0)} = A$.

$$B_1^{(t)} = \rho(L_{\alpha^{(t)}}(A^{(t)}))$$

$$B_2^{(t)} = \rho(L_{\beta^{(t)}}(A^{(t)}) \cdot L_{\gamma^{(t)}}(A^{(t)}))$$

$$A^{(t+1)} = k_1^{(t)} B_1^{(t)} + k_2^{(t)} B_2^{(t)}$$

where $k_1^{(t)}, k_2^{(t)} \in \mathbb{R}$, $\alpha^{(t)}, \beta^{(t)}, \gamma^{(t)} \in \mathbb{R}^{d^{(t)} \times d'^{(t)} \times 17}$ are learnable parameters.

Scalar output: $\theta_S \sum_{i,j} A_{ij}^{(T)} + \theta_D \sum_{i,i} A_{ii}^{(T)} + \sum_i \theta_i \lambda_i (A^{(T)})$, where $\theta_S, \theta_D, \theta_1, \dots, \theta_n \in \mathbb{R}$ are trainable parameters, and $\lambda_i (A^{(T)})$ is the *i*-th eigenvalue of $A^{(T)}$.

Extensions - Future work

Explicit rates:

Connect GNN depth/architecture with classes of graphs they separate.

► Optimization landscape of GNNs:

Current analysis of optimization landscape relies in simplified models to show that all local minima are confined in low-energy configurations.

Connection with SoS:

For some classes of "detecting hidden structures problems" existence of degree-*d* SoS refutations implies success of certain (typically non-explicit) spectral methods.

- Can we express such class of spectral methods with GNNs.
- Can we learn them?

References

Supervised Community Detection with Hierarchical Graph Neural Networks

Z. Chen, L. Li, J. Bruna, ICLR 2019 arXiv:1705.08415

A note on learning algorithms for quadratic assignment with Graph Neural Networks

A. Nowak, S. Villar, A. S. Bandeira, J. Bruna, ICML Workshop (PADL) 2017

arXiv:1706.07450

On the equivalence between graph isomorphism testing and function approximation with GNNs

Z. Chen, S. Villar, L. Chen, J. Bruna, NeurlPS 2019 arXiv:1905.12560

