Cheatsheet Probability and Statistics

Marc-Olivier Jufer mjufer@ethz.ch

August 11, 2025

Mathematical framework

Probability space

Def. 1.1. The set Ω is called the sample space. An element $\omega \in \Omega$ is called an outcome or elementary experiment.

Ex. 1.1. Throw of a die : $\Omega = \{1, 2, 3, 4, 5, 6\}$

Def. 1.2. A sigma-algebra is a subset $\mathcal{F} \subset \mathcal{P}(\Omega)$ satisfying the following properties:

P1. $\Omega \in \mathcal{F}$

P2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$: If A is an event, "not A" is also an event.

P3. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F} : \text{if } A_1, A_2, \ldots \text{ are events,}$ then " A_1 or A_2 or ..." is an event

Ex. 1.2. Examples of sigma-algebras for $\Omega = \{1, 2, 3, 4, 5, 6\}$

• $\mathcal{F} = \{\emptyset, \{1, 2, 3, 4, 5, 6\}\}$

• $\mathcal{F} = \mathcal{P}(\Omega)$

• $\mathcal{F} = \{\emptyset, \{1, 2\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}$

Non examples of sigma-algebras for $\Omega = \{1, 2, 3, 4, 5, 6\}$:

• $\mathcal{F} = \{\{1, 2, 3, 4, 5, 6\}\}\ : P2 \text{ is not satisfied}$

• $\mathcal{F} = \{\emptyset, \{1, 2, 3\}, \{4, 5, 6\}, \{1\}, \{2, 3, 4, 5, 6\}, \Omega\} : \mathbf{P3} \text{ is}$ not satisfied

Def. 1.3. Let Ω a sample space and \mathcal{F} a sigma-algebra. A | 1.3 Properties of Events **probability measure** on (Ω, \mathcal{F}) is a map

$$\mathbb{P}: \mathcal{F} \to [0,1], \quad A \mapsto \mathbb{P}[A]$$

that satisfies the properties

P1. $\mathbb{P}[\Omega] = 1$

P2. (countable additivity) $\mathbb{P}[A] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ if A = $\bigcup_{i=1}^{\infty} A_i \text{ (disjoint union)}$

Int. A probability measure is a map that associates to each event a number in [0,1]

Ex. 1.3. For $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F} = \mathcal{P}(\Omega)$, the mapping $\mathbb{P}: \mathcal{F} \to [0,1]$ defined by

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \frac{|A|}{6}$$

is a probability measure on (Ω, \mathcal{F}) .

Def. 1.4. Let Ω a sample space, \mathcal{F} a sigma-algebra and \mathbb{P} a probability measure. The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **proba**bility space.

Int. To construct a probabilistic model, we give

- a sample space Ω : all the possible outcomes of the experiment
- a sigma-algebra $\mathcal{F} \subset \mathcal{P}(\Omega)$: the set of events
- a probability measure \mathbb{P} : gives a number in [0,1] to every event

Def. 1.5. Let $\omega \in \Omega$ (a possible outcome). Let A be an event. We say the event A occurs (does not occur) (for ω) if $\omega \in A \ (\omega \notin A)$.

Examples of probability spaces

Def. 1.6. Let Ω be a finite sample space. The Laplace **model** on Ω is the triple $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}: \mathcal{F} \to [0,1]$ is defined by

$$\forall A \in \mathcal{F} \quad P[A] = \frac{|A|}{|\Omega|}$$

Prop 1.1. (Consequences of definition 1.2). Let \mathcal{F} be a sigma-algebra on Ω . We have

P4. $\emptyset \in \mathcal{F}$

P5. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

P6. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

P7. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

Event	Graphical representation	Probab. interpretation
A^c	A^{c} A	A does not occur
$A \cap B$	$\stackrel{A}{\bigoplus}$	$A \ {f and} \ B \ {f occur}$
$A \cup B$	AB	$A ext{ or } B ext{ occurs}$
$A\Delta B$	$\stackrel{A}{\bigoplus}$	one and only one of A or B occurs

Figure 1: Representation of set operations

Relation	Graphical representation	Probab. interpretation
$A \subset B$	$\stackrel{B}{\bigcirc}$	If A occurs, then B occurs
$A \cap B = \emptyset$		A and B cannot occur at the same time
$\Omega = A_1 \cup A_2 \cup A_3 \text{ with }$ $A_1, A_2, A_3 \text{ pairwise disjoint}$	Ω A_1 A_3 A_2	for each outcome ω , one and only one of the events A_1 , A_2 , A_3 is satisfied.

Figure 2: Representation of set relations

1.4 Properties of probability measures

Prop 1.2. (Consequences of definition 1.3). Let \mathbb{P} be a probability measure on (Ω, \mathcal{F}) .

P3. We have $\mathbb{P}[\emptyset] = 0$

P4. (additivity) Let $k \geq 1$, let A_1, \ldots, A_k be k pairwise disjoint events, then

$$\mathbb{P}\left[A_1 \cup \ldots \cup A_k\right] = \mathbb{P}\left[A_1\right] + \ldots + \mathbb{P}\left[A_k\right]$$

P5. Let A be an event, then

$$\mathbb{P}\left[A^c\right] = 1 - \mathbb{P}\left[A\right]$$

P6. If A and B are two events (not necessarily disjoint) then

$$\mathbb{P}\left[A \cup B\right] = \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right] - \mathbb{P}\left[A \cap B\right]$$

Prop 1.3. (Monotonicity). Let $A, B \in \mathcal{F}$, then

$$A \subset B \Rightarrow \mathbb{P}[A] \leq \mathbb{P}[B]$$

Prop 1.4. (Union bound).Let $A_1, A_2,...$ be a sequence of events (not necessarily disjoint), then we have

$$\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_i\right] \le \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right]$$

Union bound also applies to a finite collection of events.

Prop 1.5. Let (A_n) be an increasing sequence of events (i.e. $\forall n \ A_n \subset A_{n+1}$). Then

$$\lim_{n\to\infty} \mathbb{P}[A_n] = \mathbb{P}\left[\bigcup_{n=1}^{\infty} \infty A_n\right]$$
. increasing limit

Let (B_n) be a decreasing sequence of events (i.e. $\forall n \ B_n \supset B_{n+1}$). Then

$$\lim_{n\to\infty} \mathbb{P}[B_n] = \mathbb{P}\left[\bigcap_{n=1}^{\infty} \infty B_n\right]$$
. decreasing limit

1.5 Conditional probabilities

Def. 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be some probability space. Let A, B be two events with $\mathbb{P}[B] > 0$. The **conditional probability of** A **given** B is defined by

$$\mathbb{P}\left[A|B\right] = \frac{A \cap B}{B}$$

Ex. 1.4. We consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ corresponding to the throw of one die. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. Then

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

Prop 1.6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be some probability space. Let B be an event with positive probability. Then $\mathbb{P}[\cdot, |B]$ is a probability measure on Ω .

Prop 1.7. (Formula of total probability). Let $B_1, ..., B_n$ be a partition¹ of the sample space Ω with $\mathbb{P}[B_i] > 0$ for every $i \leq i \leq n$. Then one has

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \mathbb{P}[B_i]$$

Prop 1.8. (Bayes formula). Let $B_1, \ldots, B_n \in \mathcal{F}$ be a partition of Ω with $\mathbb{P}[B_i] > 0 \ \forall i$. For every event A with $\mathbb{P}[A] > 0$ we have

$$\forall i = 1, \dots, n \quad \mathbb{P}\left[B_i | A\right] = \frac{\mathbb{P}\left[A | B_i\right] \mathbb{P}\left[B_i\right]}{\sum_{i=1}^n \mathbb{P}\left[A | B_i\right] \mathbb{P}\left[B_i\right]}$$

Ex. 1.5. Test to detect a disease which concerns about 1/10000 of the population. The test gives the right answer 99% of the time. If a patient has a positive test, what is the probability that he is actually sick?

We modeled the situation as $\Omega = \{0, 1\} \times \{0, 1\}$. $\mathcal{F} = \mathcal{P}(\Omega)$ and an outcome is $\omega = (\omega_1, \omega_2)$, where ω_1 is 1 if the patient is sick and ω_2 is 1 if the test is positive. Let $S = \{(1, 0), (1, 1)\}$ be the event that the patient is sick and $T = \{(0, 1), (1, 1)\}$ the event that the test is positive.

From the hypotheses, we have

$$\mathbb{P}[S] = \frac{1}{10000}, \quad \mathbb{P}[T|S] = \frac{99}{100}, \quad \mathbb{P}[T|S^c] = \frac{1}{100}$$

By applying the Bayes formula to the partition $\Omega = S \cup S^c$, we obtain

$$\mathbb{P}[S|T] = \frac{\mathbb{P}[T|S] \mathbb{P}[S]}{\mathbb{P}[T|S] \mathbb{P}[S] + \mathbb{P}[T|S^c] \mathbb{P}[S^c]} \simeq 0.0098$$

1.6 Independence

Def. 1.8. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Two events A and B are said to be **independent** if

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right] \mathbb{P}\left[B\right]$$

A is independent of B iff A is independent of B^c . If $\mathbb{P}[A] \in \{0,1\}$, then A is independent of every event. If A is independent with itself (i.e. $\mathbb{P}[A \cap A] = \mathbb{P}[A]^2$), then $\mathbb{P}[A] \in \{0,1\}$.

Prop 1.9. Let $A, B \in \mathcal{F}$ be two events with $\mathbb{P}[A], \mathbb{P}[B] > 0$. Then the following are equivalent:

- i. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$: A and B are independent
- ii. $\mathbb{P}[A|B] = \mathbb{P}[A]$: the occurrence of B has no influence on A
- iii. $\mathbb{P}[B|A] = \mathbb{P}[B]$: the occurrence of A has no influence on B

Def. 1.9. Let I be an arbitrary set of indices. A collection of events $(A_i)_{i \in I}$ is said to be **independent** if

$$\forall J \subset Ifinite \quad \mathbb{P}\left[\bigcap_{j \in J} A_j\right] = \prod_{j \in J} \mathbb{P}\left[A_j\right]$$

Int. Three events A, B and C are independent if the following 4 equations are satisfied:

$$\begin{split} \mathbb{P}\left[A\cap B\right] &= \mathbb{P}\left[A\right]\mathbb{P}\left[B\right] \\ \mathbb{P}\left[A\cap C\right] &= \mathbb{P}\left[A\right]\mathbb{P}\left[C\right] \\ \mathbb{P}\left[B\cap C\right] &= \mathbb{P}\left[B\right]\mathbb{P}\left[C\right] \\ \mathbb{P}\left[A\cap B\cap C\right] &= \mathbb{P}\left[A\right]\mathbb{P}\left[B\right]\mathbb{P}\left[C\right] \end{split}$$

¹i.e. $\Omega = B_1 \cup \ldots \cup B_n$ and the events are pairwise disjoint.

2 Random variables and distribution functions

2.1 Abstract definition

Def. 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A **random** variable (r.v.) is a map $X : \Omega \to \mathbb{R}$ s.t.

$$\forall a \in \mathbb{R} \quad \{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}$$

Ex. 2.1. We throw a fair die. The sample space is $\Omega = \{1, 2, 3, 4, 5, 6\}$ and we consider the Laplace model $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose we gamble on the outcome in such a way that our profit is -1 if the outcome is 1, 2 or 3; 0 if the outcome is 4 and 2 if the outcome is 5 or 6. Our profit can be represented by the mapping X defined by

$$\forall \omega \in \Omega \quad X(\omega) = \begin{cases} -1 & \text{if } \omega = 1, 2, 3, \\ 0 & \text{if } \omega = 4, \\ 2 & \text{if } \omega = 5, 6 \end{cases}$$

Since $\mathcal{F} = \mathcal{P}(\Omega)$, we have $\{\omega : X(\omega) \leq a\} \in \mathcal{F}$ for every a. Therefore, X is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.

Def. 2.2. When events are defined in terms of random variable, we omit the dependence in ω . E.g. for $a \le b$ we write

$$\{X \leq a\} = \{\omega \in \Omega : X(\omega) \leq a\}$$

$$\{a < X \leq b\} = \{\omega \in \Omega : a < X(\omega) < b\}$$

$$\{X \in \mathbb{Z}\} = \{\omega \in \Omega : X(\omega) \in \mathbb{Z}\}$$

When consider the probability of events as above, we omit the brackets

$$\mathbb{P}\left[X \leq a\right] = \mathbb{P}\left[\left\{X \leq a\right\}\right] = \mathbb{P}\left[\left\{\omega \in \Omega : X(\omega) \leq a\right\}\right]$$

2.2 Distribution function

Def. 2.3. Let X be a random variable on a prob. space $(\Omega, \mathcal{F}, \mathbb{P})$. The **distribution function of X** is the function $F_X : \mathbb{R} \to [0,1]$ defined by

$$\forall a \in \mathbb{R} \quad F_X(a) = \mathbb{P}\left[X \le a\right]$$

Ex. 2.2. Same example with the die. Let X be the random variable defined as above. For $a \in \mathbb{R}$ we have

$$F_X(a) = \begin{cases} 0 & \text{if } a < -1, \\ 1/2 & \text{if } -1 \le a < 0, \\ 2/3 & \text{if } 0 \le a < 2, \\ 1 & \text{if } a \ge 2 \end{cases}$$

Figure 3: Graph of the distribution function F_X

Prop 2.1. (Basic identity). Let a < b be two real numbers. Then

$$\mathbb{P}\left[a < X \le b\right] = F(b) - F(a)$$

Prop 2.2. Let X be a r.v. on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The distribution function $F = F_X : \mathbb{R} \to [0, 1]$ of X satisfies the following properties :

- i. F is nondecreasing
- ii. F is right continuous²
- iii. $\lim_{a \to -\infty} F(a) = 0$ and $\lim_{a \to \infty} F(a) = 1$

2.3 Independence

Def. 2.4. Let X_1, \ldots, X_n be n random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that they are **independent** if $\forall x_1, \ldots, x_n \in \mathbb{R}$ $\mathbb{P}[X_1 \leq x_1, \ldots, X_n \leq x_n] = \mathbb{P}[X_1 \leq x_1] \ldots \mathbb{P}[X_n \leq x_n]$.

One can show that X_1, \ldots, X_n are independent iff $\forall I_1 \subset \mathbb{R}, \ldots, I_n \subset \mathbb{R}$ intervals $\{X_1 \in I_1\}, \ldots, \{X_n \in I_n\}$ are independent.

Prop 2.3. (Grouping). Let X_1, \ldots, X_n be n independent r.v. Let $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ be some indices and ϕ_1, \ldots, ϕ_k some functions. Then $Y_1 = \phi_1(X_1, \ldots, X_{i_1}), Y_2 = \phi_2(X_{i_1+1}, \ldots, X_{i_2}), \ldots, Y_k = \phi_k(X_{i_{k-1}+1}, \ldots, X_{i_k})$ are independent.

Def. 2.5. An infinite sequence X_1, X_2, \ldots of random variables is said to be

- independent if X_1, \ldots, X_n are independent for every n
- independent and identically distributed (i.i.d) if they are independent and they have the same distribution function, i.e. $\forall i, j \quad F_{X_i} = F_{X_j}$.

2.4 Transformation of random variables

We can create r.v. from other r.v. on the same probability space. For example, consider $Z_1 = \exp(X_1), Z_2 = X_1 + X_2$. Not to forget: r.v. are maps $\Omega \to \mathbb{R}$.

We can work with r.v. as if they were real numbers with the following notation:

Def. 2.6. If X is a r.v. and $\phi : \mathbb{R} \to \mathbb{R}$, then we write

$$\phi(X) := \phi \circ X$$

to to $\phi(X)$ a new mapping $\Omega \to \mathbb{R}$.

We also consider function of several variables. If X_1, \ldots, X_n are n r.v. and $\phi : \mathbb{R}^n \to \mathbb{R}$, then we write

$$\phi(X_1,\ldots,X_n) := \phi \circ (X_1,\ldots,X_n)$$

2.5 Construction of random variables

Def. 2.7. Let $p \in [0,1]$. A r.v. X is said to be a Bernoulli r.v. with parameter p if

$$\mathbb{P}[X = 0] = 1 - p \text{ and } \mathbb{P}[X = 1] = p$$

In this case, we write $X \sim \text{Ber}(p)$.

Prop 2.4. (Existence theorem of Kolmogorov). There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an infinite sequence of r.v. X_1, X_2, \ldots (on this probability space) that is an iid sequence of Bernoulli r.v. with parameter 1/2.

²i.e. $F(a) = \lim_{h \downarrow 0} F(a+h)$ for every $a \in \mathbb{R}$

Prop 2.5. A r.v. U is said to be **uniform r.v. in** [0,1] if its distribution function is equal to

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

In this case, we write $U \sim \mathcal{U}([0,1])$.

Figure 4: Left: distribution function of a Bernoulli r.v. with parameter p. Right: distribution function of a uniform r.v. in [0,1].

Prop 2.6. The mapping $Y: \Omega \to [0,1]$ defined by $Y(\omega) = \sum_{n=1}^{\infty} 2^{-n} X_n(\omega)$ is a uniform r.v. in [0,1].

Def. 2.8. The **generalized inverse** of F^3 is the mapping $F^{-1}:(0,1)\to\mathbb{R}$ defined by

$$\forall \alpha \in (0,1) \quad F^{-1}(\alpha) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$$

Int. By definition of the infimum and using right continuity of F, we have $\forall x \in \mathbb{R}$ and $\forall \alpha \in (0,1)$

$$(F^{-1}(\alpha) \le x) \Longleftrightarrow (\alpha \le F(x))$$

Prop 2.7. (Inverse transform sampling). Let $F: \mathbb{R} \to [0,1]$. Let U be a uniform r.v. in [0,1]. Then the r.v. $X = F^{-1}(U)$ has distribution $F_X = F$.

Prop 2.8. Let $F_1, F_2,...$ be a sequence of functions $\mathbb{R} \to [0,1]$. Then there exist a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent r.v. $X_1, X_2,...$ on this probability space s.t.

- for every i X_i has distribution function F_i (i.e. $\forall x \mathbb{P}[X_1 \leq x] = F_i(x)$)
- X_1, X_2, \ldots are independent

3 Discrete and continuous r.v.

3.1 Discontinuity / continuity points of F

Prop 3.1. Let $X : \Omega \to \mathbb{R}$ be a r.v. with distribution function F. Then for every a in \mathbb{R} we have

$$\mathbb{P}\left[X=a\right] = F(a) - F(a-)$$

where $F(a-) := \lim_{h \downarrow 0} F(a-h)$.

Int. Fix $a \in \mathbb{R}$

- \rightarrow If F is not continuous at a point $a \in \mathbb{R}$, then the "jump size" F(a) F(a-) is equal to the probability that X = a
- \rightarrow If F is continuous at a point $a \in \mathbb{R}$, then $\mathbb{P}[X = a] = 0$

3.2 Almost sure events

Def. 3.1. Let $A \in \mathcal{F}$ be an event. We say that A occurs almost surely (a.s.) if $\mathbb{P}[A] = 1$.

3.3 Discrete random variables

Def. 3.2. A r.v. $X: \Omega \to \mathbb{R}$ is said to be **discrete** if there exists some set $W \subset \mathbb{R}$ finite or countable s.t. $X \in W$ a.s..

Def. 3.3. Let X be a discrete r.v. taking some values in some finite or countable set $W \subset \mathbb{R}$. The **distribution of** X is the sequence of numbers $(p(x))_{x \in W}$ defined by

$$\forall x \in W \quad p(x) := \mathbb{P}\left[X = x\right]$$

Prop 3.2. The distribution $(p(x))_{x\in W}$ of a discrete r.v. satisfies $\sum_{x\in W} p(x) = 1$.

Prop 3.3. Let X be a discrete r.v. with values in a finite or countable set W almost surely, and distribution p. Then the distribution function of X is given by

$$\forall x \in \mathbb{R} \quad F_X(x) = \sum_{\substack{y \le x \\ y \in W}} p(y)$$

Int. $W = \{\text{positions of the jumps of } F_X\},$ $p(x) = \text{``height of the jump''} \text{ at } x \in W.$

3.4 Examples of discrete random variables

The simplest (non constant) r.v. is the Bernoulli r.v. defined in definition 2.7.

Def. 3.4. Let $0 \le p \le 1$, let $n \in \mathbb{N}$. A r.v. X is said to be a **binomial r.v. with parameters** n **and** p if it takes values in $W = \{0, \dots, n\}$ and

$$\forall k \in \{0,\dots,n\} \quad \mathbb{P}\left[X=k\right] = \binom{n}{k} p^k (1-p)^{n-k}$$

In that case we write $X \sim \text{Bin}(n, p)$.

Prop 3.4. (Sum of independent Bernoulli and binomail. Let $0 \le p \le 1$, let $n \in \mathbb{N}$. Let X_1, \ldots, X_n be n independent Bernoulli r.v. with parameter p. Then

$$S_n := X_1 + \ldots + X_n$$

is a binomial r.v. with parameter n and p.

Int. In particular, the distribution Bin(1, p) is the same as the distribution Ber(p). On can also check that if $X \sim Bin(m, p)$ and $Y \sim Bin(n, p)$ and X, Y are independent, then $X + Y \sim Bin(m + n, p)$.

Def. 3.5. Let $0 \le p \le 1$. A r.v. X is said to be a **geometric r.v. with parameter** p if it takes values in $W = \mathbb{N} \setminus \{0\}$ and

$$\forall k \in \mathbb{N} \quad \mathbb{P}[X = k] = (1 - p)^{k - 1} \cdot p$$

In this case, we write $X \sim \text{Geom}(p)$.

³satifying prop. 2.2

⁴See footnote 3

 $^{^5 \}mathrm{See}$ footnote 3

Prop 3.5. Let X_1, X_2, \ldots be a sequence of infinitely many independent Bernoulli r.v. with parameter p. Then

$$T := \min\{n \ge 1 : X_n = 1\}$$

is a geometric r.v. with parameter p.

Prop 3.6. (Absence of memory of the geometric dis**tribution**). Let $T \sim \text{Geom}(p)$ for some 0 . Then

$$\forall n \geq 0 \ \forall k \geq 1 \quad \mathbb{P}\left[T \geq n + k | T > n\right] = \mathbb{P}\left[T \geq k\right]$$

Def. 3.6. Let $\lambda > 0$ be a positive real number. A r.v. X is said to be a Poisson r.v. with parameter λ if it takes values in $W = \mathbb{N}$ and

$$\forall k \in \mathbb{N} \quad \mathbb{P}\left[X = k\right] = \frac{\lambda^k}{k!} e^{-\lambda}$$

In this case, we write $X \sim \text{Poisson}(\lambda)$.

Prop 3.7. (Poisson approximation of the binomail) Let $\lambda > 0$. For every $n \geq 1$, consider a r.v. $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ Then

$$\forall k \in \mathbb{N} \quad \lim_{n \to \infty} \mathbb{P}\left[X_n = k\right] = \mathbb{P}\left[N = k\right]$$

where N is a Poisson r.v. with parameter λ .

3.5 Continuous random variables

Def. 3.7. A r.v. $X: \Omega \to \mathbb{R}$ is said to be **continuous** if its distribution function F_X can be written as

$$F_X(a) = \int_{-\infty}^a f(x) dx$$
 for all $a \in \mathbb{R}$

for some nonnegative function $f: \mathbb{R} \to \mathbb{R}_+$, called the density of X.

Int. f(x) dx represents the probability that X takes a value in the infinitesimal interval [x, x + dx].

Prop 3.8. The density f of a r.v. satisfies $\int_{-\infty}^{+\infty} f(x) dx = 1$.

Prop 3.9. Let X be a r.v. Assume the distribution function F_X is continuous and piecewise \mathcal{C}^1 , i.e. that there exist $x_0 = -\infty < x_1 < \ldots < x_{n-1} < x_n = +\infty \text{ s.t. } F_X \text{ is } C^1 \text{ on }$ every interval (x_i, x_{i+1}) . Then X is a continuous r.v. and a density f can be constructed by defining

$$\forall x \in (x_i, x_{i+1}) \quad f(x) = F_X'(x)$$

and setting arbitrary values at x_1, \ldots, x_{n-1} .

Examples of continuous random vari- 4.2 Expectation of a discrete r.v. 3.6ables

Def. 3.8. A continuous r.v. X is said to be uniform in [a,b] if its density is equal to

$$f_{a,b}(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b], \\ 0 & x \notin [a,b] \end{cases}$$

In this case, we write $X \sim \mathcal{U}([a,b])$.

Def. 3.9. A continuous r.v. T is said to be exponential with parameter $\lambda > 0$ if its density is equal to

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0 \end{cases}$$

In this case, we write $T \sim \text{Exp}(\lambda)$.

Def. 3.10. A continuous r.v. X is said to be **normal with** parameters m and $\sigma^2 > 0$ if its density is equal to

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-m)^2}{2\sigma^2}}$$

In this case, we write $X \sim \mathcal{N}(m, \sigma^2)$.

Expectation

Expectation for general r.v. 4.1

Def. 4.1. Let $X: \Omega \to \mathbb{R}_+$ be a r.v. with nonnegative values. The expectation of X is defined as

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) dx$$

Prop 4.1. Let X be a nonnegative r.v. Then we have $\mathbb{E}[X] \geq 0$, with equality iff X = 0 almost surely.

Def. 4.2. Let X be a r.v. If $\mathbb{E}[|X|] < \infty$, then the expectation of X is defined by $\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]$, where X_{+} and X_{-} are the positive and negative parts of X de-

fined by
$$X_{+}(\omega) = \begin{cases} X(\omega) & \text{if } X(\omega) \geq 0, \\ 0 & \text{if } X(\omega) < 0, \end{cases}$$
 and $X_{-}(\omega) = \begin{cases} X(\omega) & \text{if } X(\omega) \geq 0, \\ 0 & \text{if } X(\omega) \leq 0, \end{cases}$ and $X_{-}(\omega) = \begin{cases} X(\omega) & \text{if } X(\omega) \geq 0, \\ 0 & \text{if } X(\omega) \leq 0, \end{cases}$ Prop 4.7. Let X, Y be two r.v.

$$\begin{cases}
-X(\omega) & \text{if } X(\omega) \le 0, \\
0 & \text{if } X(\omega) > 0.
\end{cases}$$

Prop 4.2. Let $X:\Omega\to\mathbb{R}$ be a discrete r.v. with values in W (finite or countable) almost surely. We have

$$\mathbb{E}\left[X\right] = \sum_{x \in W} x \cdot \mathbb{P}\left[X = x\right]$$

provided the sum is well defined.

Prop 4.3. Let $X:\Omega\to\mathbb{R}$ be a discrete r.v. with values in W (finite or countable) almost surely. For every $\phi: \mathbb{R} \to \mathbb{R}$, we have

$$\mathbb{E}\left[\phi(X)\right] = \sum_{x \in W} \phi(x) \cdot \mathbb{P}\left[X = x\right]$$

provided the sum is well defined.

Expectation of a continuous r.v.

Prop 4.4. Let X be a continuous r.v. with density f. Then we have

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

provided the integral is well defined.

Prop 4.5. Let X be a continuous r.v. with density f. Let $\phi: \mathbb{R} \to \mathbb{R}$ be s.t. $\phi(X)$ is a r.v. Then we have

$$\mathbb{E}\left[\phi(X)\right] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

provided the integral is well defined.

Calculus 4.4

Prop 4.6. (Linearity of the expectation). Let X, Y: $\Omega \to \mathbb{R}$ be r.v.'s, let $\lambda \in \mathbb{R}$. Provided the expectations are well defined, we have

1.
$$\mathbb{E}\left[\lambda \cdot X\right] = \lambda \cdot \mathbb{E}\left[X\right]$$

2.
$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Prop 4.7. Let X, Y be two r.v. If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

4.5 Tailsum formulas

Prop 4.8. (Tailsum formula for nonnegative r.v.'s). Let X be a r.v., s.t. $X \ge 0$ almost surely. Then we have $\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > x] dx$.

Prop 4.9. (Tailsum formula for discrete r.v.'s). Let X be a discrete r.v. taking values in $\mathbb{N} = \{0, 1, 2, \ldots\}$. Then $\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}[X \ge n]$.

4.6 Characterizations via expecations

Prop 4.10. Let X be a r.v. Let $f: \mathbb{R} \to \mathbb{R}$ s.t. $\int_{-\infty}^{+\infty} f(x)dx = 1$. then the following are equivalent:

- i. X is continuous with density f,
- ii. For every function $\phi: \mathbb{R} \to \mathbb{R}$ piecwise continuous, bounded: $\mathbb{E}\left[\phi(X)\right] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$

Prop 4.11. Let X, Y be two discrete r.v.'s. Then the following are equivalent

- i. X, Y are independent
- ii. For every $\phi : \mathbb{R} \to \mathbb{R}$, $\psi : \mathbb{R} \to \mathbb{R}$ piecewise contiuous, bounded : $\mathbb{E} [\phi(X)\psi(Y)] = \mathbb{E} [\phi(X)] \mathbb{E} [\psi(Y)]$.

Prop 4.12. Let X_1, \ldots, X_n be n r.v.'s. Then the following are equivalent

- i. X_1, \ldots, X_n are independent
- ii. For every $\phi_1 : \mathbb{R} \to \mathbb{R}, \dots, \phi_n : \mathbb{R} \to \mathbb{R}$ piecewise continuous, bounded : $\mathbb{E} [\phi_1(X_1) \cdots \phi_n(X_n)] = \mathbb{E} [\phi_1(X_1)] \cdots \mathbb{E} [\phi_n(X_n)].$

4.7 Inequalities

Prop 4.13. (Monotonicity). Let X, Y be two r.v.'s s.t. $X \leq Y$ a.s. Then $\mathbb{E}[X] \leq \mathbb{E}[Y]$, provided the two expectations are well defined.

Prop 4.14. (Markov's inequality). Let X be a nonnegative r.v. Then for every a > 0, we have

$$\mathbb{P}\left[X \geq a\right] \leq \frac{\mathbb{E}\left[X\right]}{a}$$

Prop 4.15. (Jensen's inequality). Let X be a r.v. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function. If $\mathbb{E}[\phi(X)]$ and $\mathbb{E}[X]$ are well defined, then

$$\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$$

4.8 Variance

Def. 4.3. Let X be a variable s.t. $\mathbb{E}\left[X^2\right] < \infty$. The variance of X is defined by

$$\sigma_X^2 = \mathbb{E}\left[(X - m)^2 \right], \text{ where } m = \mathbb{E}\left[X \right]$$

The square root σ_X of the variance is called the **standard** deviation of X.

Prop 4.16. Let X be a r.v. s.t. $\mathbb{E}[X^2] < \infty$. Then for every $a \ge 0$ we have

$$\mathbb{P}\left[|X - m| \ge a\right] \le \frac{\sigma_X^2}{a^2}, \text{ where } m = \mathbb{E}\left[X\right]$$

Prop 4.17. (Basic properties of the variance).

- 1. Let X be a r.v. with $\mathbb{E}[X^2] < \infty$. Then $\sigma_X^2 = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- 2. Let X be a r.v. with $\mathbb{E}\left[X^2\right] < \infty$, let $\lambda \in \mathbb{R}$. Then $\sigma_{\lambda X}^2 = \lambda^2 \cdot \sigma_X^2$.
- 3. Let X_1, \ldots, X_n be *n* pairwise independent r.v.'s and $S = X_1 + \ldots + X_n$. Then $\sigma_S^2 = \sigma_{X_1}^2 + \ldots + \sigma_{X_n}^2$.

4.9 Covariance

Def. 4.4. Let X, Y be two r.v.'s. Assume that $\mathbb{E}\left[X^2\right] < \infty$ and $\mathbb{E}\left[Y^2\right] < \infty$ (finite second moment). We define the **covariance between** X **and** Y as

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Int. With X and Y independent : Cov(X, Y) = 0.

Joint distribution

5.1 Discrete joint distributions

Def. 5.1. Let X_1, \ldots, X_n be n discrete r.v.'s with $X_i \in W_i$ almost surely, for some $W_i \subset \mathbb{R}$ finite or countable. The **joint distribution** of (X_1, \ldots, X_n) is the collection $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$ defined by

$$p(x_1,...,x_n) = \mathbb{P}[X_1 = x_1,...,X_n = x_n]$$

Prop 5.1. The joint distribution of some r.v.'s X_1, \ldots, X_n satisfies $\sum_{x_1 \in W_1, \ldots, x_n \in W_n} p(x_1, \ldots, x_n) = 1$.

Prop 5.2. Let $n \geq 1$ and $\phi : \mathbb{R}^n \to \mathbb{R}$ be an arbitrary function. Let X_1, \ldots, X_n be n discrete r.v.'s on $(\Omega, \mathcal{F}, \mathbb{P})$ with respective values in some finite or countable sets W_1, \ldots, W_n a.s. Then $Z = \phi(X_1, \ldots, X_n)$ is a discrete r.v. with values in $W = \phi(W_1 \times \ldots \times W_n)$ a.s. and with distribution given by

$$\forall z \in W \quad \mathbb{P}\left[Z=z\right] = \sum_{\substack{x_1 \in W, \dots, x_n \in W_n \\ \phi(x_1, \dots, x_n) = z}} \mathbb{P}\left[X_1 = x_1, \dots, X_n = x_n\right]$$

Prop 5.3. (Marginal distributions). Let X_1, \ldots, X_n be n discrete r.v.'s with joint distribution $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. For every i, we have $\forall z \in W_i \mathbb{P}[X_1 = z] = \sum_{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n} p(x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_n)$

Prop 5.4. (Expectation of the image). Let X_1, \ldots, X_n be n discrete r.v.'s with joint distribution $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. Let $\phi : \mathbb{R}^n \to \mathbb{R}$, then

$$\mathbb{E}\left[\phi(X_1,\ldots,X_n)\right] = \sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

whenever the sum is well-defined.

Prop 5.5. (Independence). Let X_1, \ldots, X_n be n discrete r.v.'s with joint distribution $p = p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. The following are equivalent

- i. X_1, \ldots, X_n are independent
- ii. $p(x_1, \ldots, x_n) = \mathbb{P}[X_1 = x_1] \cdots \mathbb{P}[X_n = x_n]$ for every $x_i \in W_i, \ldots, x_n \in W_n$

Continuous joint distribution

Def. 5.2. Let $n \geq 1$, some r.v.'s $X_n, \ldots, X_n : \Omega \to \mathbb{R}$ have a continuous joint distribution if there exists a function $f: \mathbb{R}^n \to \mathbb{R}_+$ s.t. $\mathbb{P}[X_1 \leq a_1, \dots, X_n \leq a_n]$

$$= \int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_n} f(x_1, \dots, x_n) dx_n \cdots dx_1$$

for every $a_1, \ldots, a_n \in \mathbb{R}$. A function f as above is called a joint density of (X,Y).

Int. $f(x_1,\ldots,x_n)dx_1\cdots dx_n$ represents the probability that the random vector (X_1, \ldots, X_n) lies in the small region $[x_1, x_1 + dx_1] \times \ldots \times [x_n, x_n + dx_n].$

Prop 5.6. (Expectation of the image). Let $\phi: \mathbb{R}^n \to \mathbb{R}$. If X_1, \ldots, X_n have joint density f, then the expectation of the r.v. $Z = \phi(X_1, \dots, X_n)$ can be calculated by the formula $\mathbb{E}\left[\phi(X_1,\ldots,X_n)\right]$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x_1, \dots, x_n) \cdot f(x_1, \dots, x_n) dx_n \cdots dx_1$$

Marginal densities

Prop 5.7. Let X_1, \ldots, X_n be n r.v.'s with a joint density $f = f_{X_1, \dots, X_n}$. Then for every i, X_i is a continuous r.v. with density f_i given by $f_i(z)$

$$= \int_{(x_1,\dots,x_{i-1},x_{i+1},\dots,x_n)\in\mathbb{R}^{n-1}} f(x_1,\dots,x_{i-1},z,x_{i+1},\dots,x_n)$$

$$dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n$$

Prop 5.8. (Independence for continuous r.v.'s). Let X_1, \ldots, X_n be n continuous r.v.'s with respective densities f_1, \ldots, f_n . The following are equivalent

- i. X_1, \ldots, X_n are independent
- ii. X_1, \ldots, X_n are jointly continuous with joint density $f(x_1,\ldots,x_n)=f_1(x_1)\cdots f_n(x_n)$

Asymptotic results

For this section, fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an infinite sequence of i.i.d. r.v.'s X_1, X_2, \ldots For every n, consider the partial sum $S_n = X_1 + \ldots + X_n$.

Def. 6.1. The r.v. defined by $\frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$ (when n is large) is called the **empirical average**.

Law of large numbers

Prop 6.1. Assume that $\mathbb{E}[|X_1|] < \infty$. Defining $m = \mathbb{E}[X_1]$ we have $\lim_{n\to\infty} \frac{X_1 + \dots + X_n}{n} = m$ a.s.

Monte-Carlo integration 6.2

Convergence in distribution

6.2. Let $(X_n)_{n\in\mathbb{N}}$ and X be some r.v.'s. We write $X_n \approx X$ as $n \to \infty$, if for every $x \in \mathbb{R}$: $\lim n \to \infty \mathbb{P}\left[X_n \le x\right] = \mathbb{P}\left[X \le x\right]$

6.4 Central limit theorem

Prop 6.2. (Central limit theorem). Assume that $\mathbb{E}[X_1^2]$ is well defined and finite. Defining $m = \mathbb{E}[X_1]$ and $\sigma^2 =$ $Var(X_1)$, we have

$$\mathbb{P}\left[\frac{S_n - n \cdot m}{\sqrt{\sigma^2 n}} \le a\right] \xrightarrow[n \to \infty]{} \Phi(a) = \frac{1}{\sqrt{2\phi}} \int_{-\infty}^a e^{-x^2/2} dx$$

for every $a \in \mathbb{R}$.

Statistics

Basic concepts of an estimator

1.1 Definition of an estimator

Def. 1.1. An **estimator** is a r.v. $T: \Omega \to \mathbb{R}$ of the form

$$T = t(X_1, X_2, \dots, X_n)$$

where $t: \mathbb{R}^n \to \mathbb{R}$ is a measurable function. Inserting the observed data

$$x_1, x_2, \ldots, x_n$$
 with $x_i = X_i(\omega)$

yields the **estimate** $t(x_1, \ldots, x_n)$ for θ .

Def. 1.2. 1. Last observation estimator: $T^{(1)} = X_n$

2. Sample mean estimator: $T^{(2)} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Bias and mean squared error

The estimator T is a random variable which distribution (under \mathbb{P}_{θ}) depends on the unknown parameter θ .

Def. 1.3. An estimator T is called **unbiased** for θ if, for all $\theta \in \Theta$:

$$\mathbb{E}_{\theta}\left[T\right] = \theta$$

Def. 1.4. For $\theta \in \Theta$, the bias of an estimator T is defined

$$\operatorname{Bias}_{\theta}(T) = \mathbb{E}_{\theta}[T] - \theta$$

The **mean squared error** (MSE) is defined as

$$MSE_{\theta}(T) = \mathbb{E}_{\theta}[(T-\theta)^2]$$

For an unbiased estimator, the MSE equals the variance:

$$MSE_{\theta}(T) = Var_{\theta}[T] + (Bias_{\theta}(T))^2$$

Maximum likelihood estimation (MLE)

Def. 1.5. For the observed sample (x_1, \ldots, x_n) , the likeli**hood** function is defined by

We wish to estimate an unknown parameter
$$\theta$$
 based on a $L(x_1, \dots, x_n; \theta) = \begin{cases} \prod_{i=1}^n p_{X_i}(x_i; \theta), & \text{if } X_i \text{ are discrete} \\ \prod_{i=1}^n f_{X_i}(x_i; \theta), & \text{if } X_i \text{ are continuous} \end{cases}$

Def. 1.6. The maximum likelihood estimator of θ is defined as

$$\hat{\theta}(x_1,\ldots,x_n) \in \arg\max_{\theta \in \Theta} L(x_1,\ldots,x_n;\theta)$$

In practice, one maximises the log-likelihood function $l(\theta; x_1, \ldots, x_n) = \log L(x_1, \ldots, x_n; \theta)$, and then obtains the estimator by replacing the data with the random variables:

$$T_{ML} = t_{ML}(X_1, \dots, X_n)$$

1.3.1 Application of the method

The maximum likelihood method is a way to systematically determine an estimator.

- 1. Find the joint density / distribution of the random variables
- 2. Determine the **log-likelihood function** from it : $f(\theta) := \ln(L(x_1, \dots, x_n; \theta))$
- 3. Differentiate $f(\theta)$ with respect to θ
- 4. Find the zero(s) of $f'(\theta)$
- 5. Show that $f''(\theta) < 0$ or use another argument to demonstrate that a maximum has been found (possibly check boundary points)

1.4 Models with multiple parameters

Consider the parameter space $\Theta \subset \mathbb{R}^m$, where m is the number of parameters. The stochastic model is given by a family of probability measures $(P_{\theta})_{\theta in\Theta}$, and our goal is to estimate the vector

$$\theta = (\theta_1, \theta_2, \dots, \theta_m).$$

All previous definitions extend to this setting.

2 Confidence intervals

2.1 Definition

Def. 2.1. Let $\alpha \in [0,1]$. A **confidence interval** for θ with confidence level $1-\alpha$ is a random interval I=[A,B], with endpoints $A=a(X_1,\ldots,X_n),\ B=b(X_1,\ldots,X_n)$, where $a,b:\mathbb{R}^n\to\mathbb{R}$, s.t. for all $\theta\in\Theta$

$$P_{\theta}[A \le \theta \le B] \ge 1 - \alpha$$

2.2 Distribution statements

Def. 2.2. A continuous r.v. X is said to be **chi-squared distributed** with m degrees of freedom if its density is given by

$$f_X(y) = \frac{1}{2^{m/2}\Gamma(m/2)} y^{\frac{m}{2} - 1} e^{-y/2}, \quad y \ge 0$$

Where $\Gamma(v) = \int_0^\infty t^{v-1} e^{-t} dt$ and for $n \in \mathbb{N}$, $\Gamma(n) = (n-1)!$ We write $X \sim \chi_m^2$.

Prop 2.1. (Sum of squares theorem). If $X_1, X_2, ..., X_m$ are iid $\sim N(0, 1)$, then

$$Y = \sum_{i=1}^{m} X_i^2 \sim \chi_m^2$$

Def. 2.3. A continuous r.v. X is said to be **t-distributed** with m degrees of freedom if its density is given by

$$f_X(x) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi}\Gamma(\frac{m}{2})} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}, \quad x \in \mathbb{R}$$

We write $X \sim t_m$.

Prop 2.2. Let X and Y be independent r.v. with $X \sim N(0,1)$ and $Y \sim \chi_m^2$. Then the quotient

$$Z := \frac{X}{\sqrt{Y/m}}$$

is t-distributed with m degrees of freedom.

2.3 Normal model with unknown variance and mean

Def. 2.4. Sample mean : $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ Sample variance : $S^2 = \frac{1}{n-1} \sum_{i+1}^{n} (X_i - \bar{X_n})^2$

Prop 2.3. If X_1, \ldots, X_n are iid $\sim N(m, \sigma^2)$, then \bar{X}_n and S^2 are independent.

2.4 Approximate confidence intervals

A general approximate approach is provided by the central limit theorem (CLT). Often, an estimator T is a function of a sum, say, $T = \frac{1}{n} \sum_{i=1}^{n} Y_i$. By the CLT for large n,

$$\sum_{i=1}^{n} Y_{i} \approx N\left(n\mathbb{E}\left[Y_{i}\right], n\text{Var}[Y_{i}]\right)$$

which can be used to approximate the distribution T and hence to construct approximate confidence intervals.

3 Tests

3.1 Null and alternative hypotheses

Starting with a sample X_1, \ldots, X_n , consider a family of probability measures P_{θ} with $\theta \in \Theta$ that describes our possible models. The basic problem is to decide between two classes of models - namely, the null hypothesis and the alternative hypothesis.

One sets

- Null hypothesis $H_0: \theta \in \Theta_0$
- Alternative hypothesis $H_A: \theta \in \Theta_A$

with $\Theta_0 \cap \Theta_A = \emptyset$ (default : $\Theta_A = \Theta \setminus \Theta_0$). When Θ_0 or Θ_A consists of a single value θ_0 or θ_A , they are called **simple**, otherwise they are called **composite**.

3.2 Tests and decisions

Def. 3.1. A **test** is a pair (T, K), where

- T is a statistic of the form $T = t(X_1, ..., X_n)$ (the **test** statistic) and
- $K \subset \mathbb{R}$ is a (deterministic) set, called the **critical region** (or **rejection region**).

A statistical test enables us to systematically accept or reject the null hypothesis. We first compute the test statistic $T(\omega) = t(X_1(\omega), \dots, X_n(\omega))$ and then follow the decision rule: reject H_0 if $T(\omega) \in K$ and don't reject H_0 if $T(\omega) \notin K$.

There are two types of errors :

- 1. A **Type I error** occurs when the null hypothesis is wrongly rejected even though it is true. Probability: $P_{\theta}[T \in K]$, for $\theta \in \Theta_0$.
- 2. A **Type II error** occurs when the null hypothesis is not rejected even though it is false. Probability: $P_{\theta}[T \notin K] = 1 P_{\theta}[T \in K]$ for $\theta \in \Theta_A$.

3.3 Significance level and power

Def. 3.2. Let $\alpha \in (0,1)$. A test (T,K) is said to have significance level α if for all $\theta \in \Theta_0$

$$P_{\theta}[T \in K] \le \alpha$$

Int. The significance level is the probability you're willing to accept of making a wrong decision, specifically rejecting the null hypothesis when it's actually true.

Def. 3.3. The power of a test (T, K) is the function

$$\beta: \Theta_A \to [0,1], \quad \theta \mapsto \beta(\theta) := P_{\theta}[T \in K]$$

Int. The power is the "strength" of the test to avoid failing to detect an effect when one actually exists.

3.4 Construction of tests

Assume $\theta_0 \neq \theta_A$ are two fixed numbers. Assume both the null hypothesis and alternative hypothesis are simple, i.e. $H_0: \theta = \theta_0 \quad H_A: \theta = \theta_A$. Assume r.v. X_1, \ldots, X_n are either jointly discrete or jointly continuous under both P_{θ_0} and P_{θ_A} . In particular, $L(x_1, \ldots, x_n; \theta)$ is well-defined for $\theta = \theta_0$ and $\theta = \theta_A$.

Def. 3.4. For every x_1, \ldots, x_n , the **likelihood ratio** is defined by

$$R(x_1,\ldots,x_n) := \frac{L(x_1,\ldots,x_n;\theta_A)}{L(x_1,\ldots,x_n;\theta_0)}$$

By convention, if $L(x_1, \ldots, x_n; \theta_0) = 0$, we set the ratio to $+\infty$.

Int. A large ratio indicates that the observations x_1, \ldots, x_n are far more likely under the alternative P_{θ_A} than under the null P_{θ_0} . Hence it makes sense to define the test statistic as $T := R(X_1, \ldots, X_n)$ and the critical region as $K := (c, \infty)$, for some constant c.

Def. 3.5. Let $c \geq 0$. The likelihood ratio test with parameter c is the test (T, K) where $T = R(X_1, \ldots, X_n)$ and $K = (c, \infty)$. It is optimal: no test have lower power while no greater significance level (Neyman-Pearson Lemma).

Def. 3.6. For composite hypotheses, the **generalized likelihood ratio** can be defined as

$$R(x_1, \dots, x_n) := \frac{\sup_{\theta \in \Theta_A} L(x_1, \dots, x_n; \theta)}{\sup_{\theta \in \Theta_0} L(x_1, \dots, x_n; \theta)}$$

and we choose $T := R(X_1, \ldots, X_n)$ with $K = (c_0, \infty)$ where c_0 is chosen s.t. the test has the preassigned significance level.

3.5 The p-value

Let X_1, \ldots, X_n be a sample of size n. We wish to test a hypothesis $H_0: \theta = \theta_0$ against an alternative $H_A: \theta \in \Theta_A$.

Def. 3.7. A family of tests $(T, (K_t)_{t\geq 0})$ is said to be ordered with respect to the test statistic T if for all $s, t \geq 0$

$$s \leq t \implies K_s \subset K_t$$

Typical examples are:

 $K_t = (t, \infty)$ (right-tailed test), $K_t = (-\infty, -t)$ (left-tailed test),

or
$$K_t = (-\infty, -t) \cup (t, \infty)$$
 (two-sided test).

Def. 3.8. Let $H_0: \theta = \theta_0$ be a simple null hypothesis and let $(T, (K_t)_{t\geq 0})$ be an ordered family of tests. The **p-value** is defined as the r.v. p-value = G(T), where the function $G: \mathbb{R}^+ \to [0,1]$ is given by

$$G(t) = P_{\theta}[T \in K_t]$$

Int. The p-value informs us which tests in our family would lead to rejection of H_0 . If the observed p-value is p, then every test with significance level a > p would reject H_0 and those with $a \le p$ would not. The p-value doesn't depend on the alternative hypothesis.