Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

# ESE - Actionneur et automatique appliquée

Alexis Martin
alexis.martin@ensea.fr
bureau D216



2022/2023



- 1 Modélisation externe des machines à courant continu
- 2 Asservissement des moteurs à courant continue
- 3 Les moteurs pas à pas
- 4 Les moteurs brushless et les moteurs synchrones
- 5 Commande des machines synchrones



#### Modélisation externe des machines à courant continu

# Hypothèses de travail

- Machine non saturée, à entrefer constant
- Réaction magnétique d'induit négligeable ou parfaitement compensée
- Balais réglés dans l'axe de la ligne neutre.

Nous supposerons souvent que l'excitation est réalisée à l'aide d'aimants permanents.



# Equations fondamentales de la machine à courant continu (convention moteur)

• Eq. electrique : 
$$u = e + R.i + L\frac{di}{dt}$$

• Eq. mécanique : 
$$J.\frac{d\Omega}{dt} + f.\Omega = \Gamma_m - \Gamma_r$$

• Eq. de couplage : 
$$e = k_{\phi}.\Omega$$
 et  $\Gamma_m = k_{\phi}.i$ 

- u : tension aux bornes de l'induit
- i : courant d'induit
- *e* : force électromotrice d'induction
- $\Omega$  : vitesse de rotation
- $\Gamma_m$  : couple moteur
- Γ<sub>r</sub> : couple résistant (couple de charge)

- R : résistance du bobinage d'induit
- L : inductance propre du bobinage d'induit
- J: moment d'inertie de la partie tournante (moteur + charge)
- *f* : coefficient de frottement visqueux
- $k_{\phi}$  : constante de fem (ou constante de couple),  $\propto \phi$  créé par l'inducteur



## Modèles fréquemment utilisés



Figure 1 – Modèle de la machine pilotée en tension



Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

Hypothèses de travail Equations fondamentales de la machine à courant continu Modèles fréquemment utilisés





Figure 2 – Modèle de la machine pilotée en tension pour une charge de type  $\Gamma_r = k_c.\Omega$ 





Figure 3 – Modèle de la machine pilotée en courant



#### Mesure des paramètres :

- ullet En génératrice à vide : mesure de la fem à vide en fonction de la vitesse  $o k_\phi$
- A l'arrêt et à température de fonctionnement : mesure de R en DC + alimentation en créneau pour mesure de L via  $\tau_e$   $(U-e=R.i+L.\frac{di}{dt})$
- En moteur à vide : mesure de i en fonction de la vitesse  $\Omega: k_{\phi}.i = f\Omega + \Gamma_0$
- <u>essai de ralentissement</u> : on coupe l'alimentation lorsque le moteur tourne  $\rightarrow J$  via  $\tau_m \left( J \frac{d\Omega}{dt} + f . \Omega = -\Gamma_0 \right)$



#### Asservissement des moteurs à courant continue





### Hypothèses:

- Excitation de la MCC maintenue constante
- Hacheur 4 quadrants (réversible) alimenté par une source de tension DC constante et réversible
- Capteurs parfaits



# Rappels hacheur 4 quadrants



Figure 4 - Hacheur 4 quadrants





Figure 5 – Commande complémentaire synchrone

$$< u > = (2\alpha - 1). V_{DC}$$





Figure 6 – Commande complémentaire décalée ou commande 3 états

$$< u > = (2\alpha - 1).V_{DC}$$

Fréquence de la tension de sortie :

- $f_d$  en commande 3 états
- $2 * f_d$  en complémentaire décalée



Commande des machines synchrones

- Fonction de transfert :  $G_h(p) = \frac{U}{V_c}.e^{-\frac{T_d}{2}.p}$  Linéarisation :  $G_h(p) = \frac{G_0}{1 + \tau_h.p}$ 
  - - $G_0 = \frac{U}{V_c}$   $\tau_h = \frac{T_d}{2}$

# Régulation par boucles imbriquées



## Cahier des charges correcteurs :

- Précision
- Stabilité
- Marge de gain et de phase
- Bande passante (rapidité)
- ..

#### Correcteurs PID:

- Méthode Broida
- Méthode de Strejc

Correcteur numérique : Transformation bilinéaire

$$p = \frac{2}{T_{ech}} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}$$

 Attention : souvent, pas la même fréquence d'échantillonnage pour le courant et la vitesse!



#### Les moteurs pas à pas

Les moteurs à aimants permanents

2 Les moteurs à réluctance variable

3 Les moteurs hybrides (ou réluctants polarisés)



## Moteurs pas à pas à aimants permanents







Figure 7 – Séquence d'alimentation d'un moteur pas à pas bipolaire





Figure 8 – Moteur pas à pas avec 2 phases au stator et 4 pôles au rotor



#### Moteurs pas à pas à aimants permanents Couple électromagnétique Les moteurs à réluctance variable

| Nombre de phases | Nombre de pôles | Valeur du pas |
|------------------|-----------------|---------------|
| 2 phases         | 2               | 90°           |
|                  | 4               | 45°           |
|                  | 8               | 22.5°         |
|                  | 24              | 7.5°          |
| 4 phases         | 2               | 45°<br>22.5°  |
|                  | 4               | 22.5°         |
|                  | 12              | 7.5°          |
|                  | 24              | 3.75°         |

$$N = 2.p.q$$





Figure 9 – Couples pour un moteur pas à pas (p=1,q=2)





Figure 10 – Couples totaux pour un moteur pas à pas (p=1,q=2)



### Les moteurs à réluctance variable



Figure 11 – Moteur à réluctance variable monophasé bipolaire





Figure 12 – Perméance et couple d'un moteur à réluctance variable



# Moteur à réluctance polyphasé



Figure 13 – MRV triphasé (attention, les 3 stators représentés sont superposés)



Moteurs pas à pas à aimants permanents Couple électromagnétique Les moteurs à réluctance variable



# Moteurs à réluctance monophasés à effet Vernier





# Moteurs à réluctance monophasés à effet Vernier





## Bibliographie moteurs pas à pas :

- A. MAILFERT, F.M. SARGOS, *Machines à réluctance variable (MRV) Principes des MRV. Machines à commutation*. Editions T.I., 2004
- A. MAILFERT, F.M. SARGOS, *Machines à réluctance variable (MRV) Machines polyphasées. Machines excitées.* Editions T.I., 2004
- M. ABIGNOLI, C. GOELDEL Moteurs pas à pas, Editions T.I., 1991



Commande des machines synchrones

#### Les moteurs brushless

Modélisation des moteurs synchrones Modélisation des moteurs synchrones

#### Les moteurs brushless

D'un point de vue extérieur, un moteur brushless se comporte comme un moteur à courant continu. On peut donc utiliser les même méthodes d'identification et d'asservissement pour le commander.

D'un point de vue interne, un moteur brushless est moteur synchrone avec un convertisseur statique intégré ("onduleur"). Il est généralement composé d'un rotor à aimant permanent et d'un stator triphasé. C'est donc une MCC "à l'envers", avec un système balais-collecteur électronique réalisé avec un onduleur intégré au moteur.

Pour réaliser la commutation des phases, une mesure de la position peut être réalisée avec un capteur à effet hall, codeur incrémental etc ... La position peut aussi être estimée via la mesure de la tension induite dans la phase du stator non alimentée ("back EMF measurement").



### Modélisation des moteurs synchrones

Equation magnétique :  $\Phi_{3s} = [L_s].I_{3s} + [L_{sr}].\Phi_{3s}$ 

Equation électrique : 
$$V_{3s} = [R_s].I_{3s} + \frac{d\Phi_{3s}}{dt}$$

Equation du couple : 
$$\Gamma_e = \frac{1}{2} \mathscr{E}^t \cdot \left[ \frac{d\mathscr{P}}{d\theta} \right] \mathscr{E}$$

$$\mathscr{E} = \left[ \begin{array}{c} N_s.i_{3s} \\ \varepsilon_a \end{array} \right] \qquad \qquad \mathscr{P} = \left[ \begin{array}{cc} P_s & P_{sr} \\ P_{rs} & P_s \end{array} \right]$$



Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

$$\begin{bmatrix} L_s] = \\ L_{s0} + L_{s1}.cos(2\rho\theta) & M_{s0} + L_{s1}.cos(2(\rho\theta - \frac{4\pi}{3})) & M_{s0} + L_{s1}.cos(2(\rho\theta - \frac{2\pi}{3})) \\ M_{s0} + L_{s1}.cos(2(\rho\theta - \frac{4\pi}{3})) & L_{s0} + L_{s1}.cos(2(\rho\theta - \frac{2\pi}{3})) & M_{s0} + L_{s1}.cos(2\rho\theta) \\ M_{s0} + L_{s1}.cos(2(\rho\theta - \frac{2\pi}{3})) & M_{s0} + L_{s1}.cos(2(\rho\theta - \frac{4\pi}{3})) \end{bmatrix}$$

 $\theta$  : position du rotor par rapport à l'axe de la phase « a » statorique p : nombre de paires de pôles

$$[L_{sr}] = M_{af} \left[egin{array}{c} cos(p heta) \ cos(p heta - rac{2\pi}{3}) \ cos(p heta - rac{4\pi}{3}) \end{array}
ight]$$



Commande des machines synchrones

## Système diphasé équivalent

Transformation de Concordia : (couplage étoile et neutre non relié)

Transformation de Concordia : (couplage étoile et neutre no 
$$X_{\alpha\beta} = [T_{32}]^t.X_{3s}$$
 avec  $T_{32} = \begin{bmatrix} \sqrt{2} & 0 \\ -\frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} \\ -\frac{\sqrt{2}}{2} & -\sqrt{\frac{3}{2}} \end{bmatrix}$ 

• Transformation de Park : (matrice de rotation d'un angle  $p\theta$ )

$$X_{ps} = P(-p\theta).X_{\alpha\beta}$$

$$P(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

### oas Mode nes Mode

Les moteurs brushless Modélisation des moteurs synchrones Modélisation des moteurs synchrones

Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

• 
$$V_{ps} = P(-p\theta).[T_{32}]^t.V_{3s}$$

• 
$$I_{ps} = P(-p\theta).[T_{32}]^t.I_{3s}$$

• 
$$\phi_{ps} = P(-p\theta).[T_{32}]^t.\phi_{3s}$$

• 
$$\Phi_d = L_d.i_d + \phi_f$$

• 
$$\Phi_q = L_q.i_q$$

• 
$$v_d = R_s.i_d + \frac{d\phi_d}{dt} - p\dot{\theta}.\phi_q$$

• 
$$v_q = R_s.i_q + \frac{d\phi_q}{dt} + p\dot{\theta}.\phi_d$$

$$L_d = L_c + \frac{3}{2}L_{s1}$$

$$L_q = L_c - \frac{3}{2}L_{s1}$$

$$\phi_f = \sqrt{\frac{3}{2}}.M_{af}.I_r$$

Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

• 
$$v_d = R_s.i_d + L_d \frac{di_d}{dt} - p\dot{\theta}.L_q.i_q$$

• 
$$v_d = R_s.i_d + L_d \frac{di_d}{dt} - p\dot{\theta}.L_q.i_q$$
  
•  $v_q = R_s.i_q + L_q \frac{di_q}{dt} + p\dot{\theta}.L_d.i_d + p\dot{\theta}.\phi_f$ 

• 
$$\Gamma = \rho.\phi_f.i_q + \rho.(L_d - L_q).i_d.i_q$$

Commande du couple via  $i_a$ , en maintenant  $i_d = 0$ :  $\Gamma = p.\phi_f.i_a$ 



Les moteurs pas a pas
Les moteurs brushless et les moteurs synchrones
Commande des machines synchrones

Les moteurs brushless Modélisation des moteurs synchrones Modélisation des moteurs synchrones





### Commandes de la machine synchrone

Commande séquentielle ("Aiguillage des courants")

$$\Gamma = \frac{i_a.e_a + i_b.e_b + i_c.e_c}{\Omega}$$

## Principe:

- "Aiguiller" les courants statoriques afin d'avoir les f.e.m. et les courants en phase
- Utilisation d'un capteur à effet Hall afin de déterminer la position du rotor "par secteur" de  $\pi/3$
- Le capteur à effet Hall permet de déterminer le passage par 0 des f.e.m.
- Attention: commande de l'onduleur en "pleine onde", les signaux ne sont pas sinusoïdaux mais rectangulaires → utilisation du premier harmonique



### Commande séquentielle





Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

Commande séquentielle
Commande scalaire de type "a,b,c" : autopilotage
Commande vectorielle





Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones

### Commande séquentielle

Commande scalaire de type "a,b,c" : autopilotage Commande vectorielle





### Commande séquentielle

Commande scalaire de type "a,b,c" : autopilotage Commande vectorielle Conclusion sur la commande de machines synchrones



### Table de commande de l'onduleur :

| Α | В | С | (n) | AH  | AL  | BH  | BL  | СН  | CL  |
|---|---|---|-----|-----|-----|-----|-----|-----|-----|
| 1 | 0 | 1 | (1) | ON  | off | off | ON  | off | off |
|   |   |   |     |     | off |     |     |     |     |
| 1 | 1 | 0 | (3) | off | off | ON  | off | off | ON  |
|   |   |   | \ / |     | off |     |     |     |     |
|   |   |   | \ / |     | ON  |     |     |     |     |
| 0 | 0 | 1 | (6) | off | ON  | off | ON  | off | off |

#### Commande séquentielle





Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones





Commande des machines synchrones

# Commande scalaire de type "a,b,c" : autopilotage

## Principe:

- Utilisation d'un capteur de position afin de mesurer la position du rotor
- Définition des consignes de courant :
  - $I_{a,ref} = I_{M}.sin(p\theta)$
  - $I_{b,ref} = I_M.sin(p\theta 2\pi/3)$
  - $I_{c,ref} = I_{M}.sin(p\theta 4\pi/3)$
- Commande complémentaire avec temps morts de chaque bras de pont
- Définition des rapports cycliques :
  - $\alpha_a = 1/2 + K.(I_{a,ref} i_a)$
  - $\alpha_b = 1/2 + K.(I_{b,ref} i_b)$
  - $\alpha_c = 3/2 \alpha_a \alpha_b$



## Commande vectorielle

## Principe:

- Utilisation d'un modèle fin de la machine
- Commande de la machine dans le domaine de Park afin d'avoir des consignes qui ne varient pas dans le temps

• 
$$\phi_d = L_d.i_d + \Phi_f$$

• 
$$\phi_q = L_q.i_q$$

• 
$$v_d = R_s.i_d + \frac{d\phi_d}{dt} - p.\Omega.\phi_q$$
  
•  $v_q = R_s.i_q + \frac{d\phi_q}{dt} + p.\Omega.\phi_d$ 

• 
$$v_q = R_s.i_q + rac{d\phi_q}{dt} + p.\Omega.\phi_d$$

Commande à  $i_d = 0$ , contrôle du couple via  $i_d$ 

$$\Gamma = p.\phi_f.i_q$$











Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones





Modélisation externe des machines à courant continu Asservissement des moteurs à courant continue Les moteurs pas à pas Les moteurs brushless et les moteurs synchrones Commande des machines synchrones







## Conclusion sur la commande de machines synchrones

- Commande séquentielle :
  - Complexité faible
  - Capteur de position simple (effet Hall) ou sans capteur de position
  - Ondulations du couple
  - Adaptée aux "faibles" puissances
- Commande scalaire
  - Complexité moyenne
  - Capteur de position nécessaire
  - Correcteurs compliqués à calculer car grandeurs variables à suivre
  - Adaptée aux "moyennes" puissances et dynamiques "moyennes"
- Commande vectorielle
  - Complexité élevée, calculs complexes à réaliser (numérique + DSP souvent nécessaire)
  - Capteur de position nécessaire
  - Correcteurs simples à calculer, grandeurs "constantes" à suivre
  - Adaptée aux "fortes" puissances et dynamiques "rapides"

