Infinite Series Test

Test	Series	Conv. if	Div. if	Note
Test for Divergence	$\sum_{n\geq 1} a_n$	-	$\lim_{n\to\infty}a_n\neq 0$	Inconclusive if the limit equals zero.
Geometric Series Test (GST)	$\sum_{n\geq 1} ar^{n-1}$	r < 1	$ r \ge 1$	Geometric Series if there is a common ratio $S_n = \frac{a}{1-r}$.
P-Series Test	$\sum_{n\geq 1}\frac{1}{n^p}$	p > 1	$p \le 1$	Harmonic series (<i>p</i> =1) are useful for comparison tests.
Integral Test (IT)	$\sum_{n\geq 1} a_n$ $a_n = f(x)$	$\int_{1}^{\infty} f(x) \mathrm{d}x$ conv.	$\int_{1}^{\infty} f(x) \mathrm{d}x$ div.	f(x) must be - continuous, - positive, - decreasing.
Direct Comparison Test (DCT)	$\sum_{n\geq 1} a_n$	$0 \leq a_n \leq b_n,$ and $\sum b_n$ conv.	$0 \leq b_n \leq a_n,$ and $\sum b_n$ div.	Use larger conv.series to show conv.Use larger div.series to show div.
Limit Comparison Test (LCT)	$\sum_{n\geq 1} a_n$	$\lim_{n\to\infty}\frac{a_n}{b_n}\geq 0,$ and $\sum b_n$ conv.	$\begin{split} \lim_{n\to\infty} \frac{a_n}{b_n} &> 0,\\ \lim_{n\to\infty} \frac{a_n}{b_n} &= \infty\\ \text{and } \sum b_n \text{ div.} \end{split}$	-
Alternating Series Test (AST)	$\sum_{n\geq 1} b_n,$ $b_n = (-1)^{n+1} \cdot a_n \geq 0$	$b_{n+1} \leq b_n,$ $\lim_{n \to \infty} b_n = 0$	$\lim_{n\to\infty}b_n\neq 0$	Must prove that limit equals zero. Must prove that b_n is decreasing for $n \ge 1$
Absolute Convergence Test (ACT)	$\sum_{n\geq 1} a_n$	$\sum_{n\geq 1} a_n \\ {\rm conv.}$	-	Inconclusive if absolute series div.
Ratio Test	$\sum_{n\geq 1} a_n$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1$ $\sum a_n \text{ also abs. conv.}$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	Inconclusive if $\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right =1.$ Useful with term $n!$ or n^{th} power.
Root Test	$\sum_{n\geq 1}a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$ $\sum a_n \text{ also abs. conv.}$	$\lim_{n\to\infty}\sqrt[n]{ a_n }>1$	Inconclusive if $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$ Useful with term n^{th} power.

The List

$$\lim_{n\to\infty} \ln n \ll n^p \ll b^n \ll n! \ll n^n \ ; \ p>0, b>1$$

Flowchart for most Series

Test for Divergence \rightarrow Root/Ratio Test \rightarrow AST \rightarrow DCT/LCT