MATH 308 D200, Fall 2019

6. Canonical slack form of maximization LP (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

1/9

The Simplex Algorithm

- \triangleleft Developed in the 1940's by George B. Dantzig
- One of the most famous algorithms of the twentieth century.
- SA based on linear algebra—systems of linear equations, linear transformations of matrices, . . .
- LP problem is recorded into a tableau. SA—series of transformations of tableaux until an optimal solution is found.
- We present technique developed on in 1960's by A. W. Tucker involving Tucker tableaux, a more compact version of original tableaux used by Dantzig.

SFU department of mathematics

Start with a canonical maximization LP problem,

maximize subject to

$$f(x_{1}, x_{2}, ..., x_{n}) = c_{1}x_{1} + c_{2}x_{2} + \cdots + c_{n}x_{n} - d$$

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} \leq b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} \leq b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} \leq b_{m}$$

$$x_{1}, x_{2}, ..., x_{n} \geq 0$$

Start with a canonical maximization LP problem, Add a slack variable t_i for each main constraint,

maximize subject to

$$f(x_{1}, x_{2}, ..., x_{n}) = c_{1}x_{1} + c_{2}x_{2} + ... + c_{n}x_{n} - d$$

$$a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} + \mathbf{t}_{1} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} + \mathbf{t}_{2} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + ... + a_{mn}x_{n} + \mathbf{t}_{m} = b_{m}$$

$$x_{1}, x_{2}, ..., x_{n}, \mathbf{t}_{1}, \mathbf{t}_{2}, ..., \mathbf{t}_{m} \geqslant 0$$

Start with a canonical maximization LP problem, Add a *slack variable* t_i for each main constraint, Put slack variables on the right hand side:

$$f(x_{1}, x_{2}, ..., x_{n}) = c_{1}x_{1} + c_{2}x_{2} + ... + c_{n}x_{n} - d$$

$$a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} - b_{1} = -t_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} - b_{2} = -t_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + ... + a_{mn}x_{n} - b_{m} = -t_{m}$$

$$x_{1}, x_{2}, ..., x_{n}, t_{1}, t_{2}, ..., t_{m} \ge 0$$

Start with a canonical maximization LP problem, Add a *slack variable* t_i for each main constraint, Put slack variables on the right hand side:

maximize
$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n - d$$
 subject to
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n - b_1 = -t_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n - b_2 = -t_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n - b_m = -t_m$$

$$x_1, x_2, \dots, x_n, t_1, t_2, \dots, t_m \geqslant 0$$

Definition

This maximization LP is said to be in canonical slack form.

Start with a canonical maximization LP problem, Add a *slack variable* t_i for each main constraint, Put slack variables on the left hand side:

maximize
$$f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n - d$$
subject to
$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n - b_1 = -t_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n - b_2 = -t_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n - b_m = -t_m$$

$$x_1, x_2, ..., x_n, t_1, t_2, ..., t_m \ge 0$$

Start with a canonical maximization LP problem, Add a *slack variable ti* for each main constraint, Put slack variables on the left hand side:

maximize
$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n - d$$
 subject to
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + \mathbf{t}_1 = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + \mathbf{t}_2 = b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + \mathbf{t}_m = b_m$$

$$x_1, x_2, \dots, x_n, t_1, t_2, \dots, t_m \geqslant 0$$

Definition

Start with a canonical maximization LP problem,

Add a slack variable t; for each main constraint,

Put slack variables on the left hand side:

Optional: Rename the slack variables $t_i \mapsto x_{n+i}$. Slack variables are not treated specially.

maximize
$$f(x_1, x_2, \dots, x_n) = c_1x_1 + c_2x_2 + \dots + c_nx_n - d$$
 subject to
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m$$

$$x_1, x_2, \dots, x_{n+m} \geqslant 0$$

Definition

Matrix Notation:

maximize
$$f(x_1, x_2, \dots, x_n) = c_1x_1 + c_2x_2 + \dots + c_nx_n - d$$
 subject to
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m$$

$$x_1, x_2, \dots, x_{n+m} \geqslant 0$$

Definition

Matrix Notation:

Spread out new variables

maximize
$$f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n - d$$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n + x_{n+1} = b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n + x_{n+2} = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n + x_{n+m} = b_m$
 $x_1, x_2, ..., x_{n+m} \ge 0$

Definition

Matrix Notation: Spread out new variables Write as matrix equation

maximize $f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n - d$ subject to $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_1 \\ \vdots \\ b_m \end{bmatrix}$

$$x_1, x_2, \ldots, x_{n+m} \geqslant 0$$

Definition

This maximization LP is said to be in canonical equational form.

SFU department of mathematics

Matrix Notation: Spread out new variables Write as matrix equation

Definition

Where

Summary: Three canonical forms

 $d \in \mathbb{R}$

Maximize
$$f = x + y - 0$$
$$-x + y \le 1$$
$$x + 6y \le 15$$
$$4x - y \le 10$$
$$x, y \ge 0$$

Maximize
$$f = x + y - 0$$

- $(t_1) -x + y \leq 1$
- $(t_2) \quad x + 6y \le 15$
- $\begin{aligned} (t_3) \quad 4x y &\leq 10 \\ x, y &\geq 0 \end{aligned}$

$$\begin{array}{ll} \mathsf{Maximize} & f = x + y - 0 \\ & - x + y - 1 = -t_1 \\ & x + 6y - 15 = -t_2 \\ & 4x - y - 10 = -t_3 \\ & x, y, t_1, t_2, t_3 \geq 0 \end{array}$$

$$\begin{array}{c|ccccc}
x & y & -1 \\
\hline
-1 & 1 & 1 \\
1 & 6 & 15 \\
4^* & -1 & 10 \\
\hline
1 & 1 & 0 & = f
\end{array}$$

Maximize
$$f = x + y - 0$$

 $-x + y + t_1 = 1$
 $x + 6y + t_2 = 15$
 $4x - y + t_3 = 10$
 $x, y, t_1, t_2, t_3 \ge 0$

$$\begin{array}{c|ccccc}
x & y & -1 \\
\hline
-1 & 1 & 1 \\
1 & 6 & 15 \\
4^* & -1 & 10 \\
\hline
1 & 1 & 0 & = f
\end{array}$$

Maximize
$$f = x + y - 0$$

 $-x + y + t_1 = 1$
 $x + 6y + t_2 = 15$
 $4x - y + t_3 = 10$
 $x, y, t_1, t_2, t_3 \ge 0$

$$f = x + y - 0
- x + y + t_1 = 1
x + 6y + t_2 = 15
4x - y + t_3 = 10$$

$$x = (x y t_1 t_2 t_3)
-1 1 1 0 0 1
1 1 6 0 1 0 15
4 -1 0 0 1 10$$

$$\begin{array}{c|ccccc}
x & y & -1 \\
\hline
-1 & 1 & 1 \\
1 & 6 & 15 \\
4^* & -1 & 10 \\
\hline
1 & 1 & 0 & = f
\end{array}$$

Maximize
$$f = x + y - 0$$

 $-x + y + t_1 = 1$
 $x + 6y + t_2 = 15$
 $4x - y + t_3 = 10$
 $x, y, t_1, t_2, t_3 \ge 0$

$$m{x} = \left(egin{array}{cccccc} x & y & t_1 & t_2 & t_3 \end{array}
ight) \ [A^s \mid m{b}] = \left[egin{array}{ccccc} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 6 & 0 & 1 & 0 & 15 \\ 4 & -1 & 0 & 0 & 1 & 10 \end{array}
ight] \ BFS = \left(egin{array}{cccccc} BFS & 0 & 0 & 0 & 1 & 10 \end{array}
ight)$$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 \\ 1 & 6 & 15 \\ 4^* & -1 & 10 \\ \hline 1 & 1 & 0 \\ \end{array} = -t_{1}$$

Maximize
$$f = x + y - 0$$

 $-x + y + t_1 = 1$
 $x + 6y + t_2 = 15$
 $4x - y + t_3 = 10$
 $x, y, t_1, t_2, t_3 \ge 0$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$x = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix}$$

$$[A^s \mid b] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix}$$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 \\ 1 & 6 & 15 \\ 4^* & -1 & 10 \\ \hline 1 & 1 & 0 \\ \end{array} = -t_3$$

$$\mathbf{x} = \begin{pmatrix} & x & y & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$t_3 = 0$$

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\mathbf{x} = \begin{pmatrix} x & y & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \end{pmatrix} \mapsto \begin{pmatrix} x & y & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix} \mapsto \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 1 & -\frac{1}{4} & 0 & 0 & \frac{1}{4} \mid \frac{5}{2} \end{bmatrix}
BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 \end{pmatrix}$$

x enters basis: Scale pivot row

$$\begin{array}{c|cccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\mathbf{x} = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix} \mapsto \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix} \mapsto \begin{bmatrix} 0 & \frac{3}{4} & 1 & 0 & \frac{1}{4} \mid \frac{7}{2} \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 1 & -\frac{1}{4} & 0 & 0 & \frac{1}{4} \mid \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 \end{pmatrix}$$

x enters basis: Eliminate first row of x

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\mathbf{x} = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix} \mapsto \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix} \mapsto \begin{bmatrix} 0 & \frac{3}{4} & 1 & 0 & \frac{1}{4} \mid \frac{7}{2} \\ 0 & \frac{25}{4} & 0 & 1 & -\frac{1}{4} \mid \frac{25}{2} \\ 1 & -\frac{1}{4} & 0 & 0 & \frac{1}{4} \mid \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 \end{pmatrix}$$

x enters basis: Eliminate second row of x

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_{2} \\ 4^{*} & -1 & 10 & = -t_{3} \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\begin{array}{c|c} & & & & \\ & &$$

$$\mathbf{x} = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix} \mapsto \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix} \mapsto \begin{bmatrix} 0 & \frac{3}{4} & 1 & 0 & \frac{1}{4} \mid \frac{7}{2} \\ 0 & \frac{25}{4} & 0 & 1 & -\frac{1}{4} \mid \frac{25}{2} \\ 1 & -\frac{1}{4} & 0 & 0 & \frac{1}{4} \mid \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} \frac{5}{2} & 0 & \frac{7}{2} & \frac{25}{2} & 0 \end{pmatrix}$$

Find BFS (using the last column)

$$\begin{array}{c|cccc} x & y & -1 \\ \hline -1 & 1 & 1 \\ 1 & 6 & 15 \\ 4^* & -1 & 10 \\ \hline 1 & 1 & 0 \\ \end{array} = -t_3$$

$$\mathbf{x} = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix} \mapsto \begin{pmatrix} t_3 & y & t_1 & t_2 & x \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 6 & 0 & 1 & 0 & 15 \\ 4 & -1 & 0 & 0 & 1 & 10 \end{bmatrix} \mapsto \begin{bmatrix} \frac{1}{4} & \frac{3}{4} & 1 & 0 & 0 & \frac{7}{2} \\ -\frac{1}{4} & \frac{25}{4} & 0 & 1 & 0 & \frac{25}{2} \\ \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 1 & \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & \frac{7}{2} & \frac{25}{2} & \frac{5}{2} \end{pmatrix}$$

Swap columns

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \\ \hline \end{array}$$

$$\mathbf{x} = \begin{pmatrix} x & y & t_1 & t_2 & t_3 \end{pmatrix} \mapsto \begin{pmatrix} t_3 & y & t_1 & t_2 & x \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \mid 1 \\ 1 & 6 & 0 & 1 & 0 \mid 15 \\ 4 & -1 & 0 & 0 & 1 \mid 10 \end{bmatrix} \mapsto \begin{bmatrix} \frac{1}{4} & \frac{3}{4} & 1 & 0 & 0 \mid \frac{7}{2} \\ -\frac{1}{4} & \frac{25}{4} & 0 & 1 & 0 \mid \frac{25}{2} \\ \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 1 \mid \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} 0 & 0 & 1 & 15 & 10 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & \frac{7}{2} & \frac{25}{2} & \frac{5}{2} \end{pmatrix}$$

New tableau: (except last row)

$$\begin{array}{c|ccccc} x & y & -1 \\ \hline -1 & 1 & 1 & 1 \\ 1 & 6 & 15 & = -t_2 \\ 4^* & -1 & 10 & = -t_3 \\ \hline 1 & 1 & 0 & = f \end{array}$$

$$\mathbf{x} = \begin{pmatrix} & \mathbf{x} & \mathbf{y} & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 & \end{pmatrix} \mapsto \begin{pmatrix} & \mathbf{t}_3 & \mathbf{y} & \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{x} & \end{pmatrix}
[A^s \mid \mathbf{b}] = \begin{bmatrix} & -1 & 1 & 1 & 0 & 0 & 1 & 1 \\ & 1 & 6 & 0 & 1 & 0 & 15 \\ & 4 & -1 & 0 & 0 & 1 & 10 \end{bmatrix} \mapsto \begin{bmatrix} & \frac{1}{4} & \frac{3}{4} & 1 & 0 & 0 & \frac{7}{2} \\ & -\frac{1}{4} & \frac{25}{4} & 0 & 1 & 0 & \frac{25}{2} \\ & \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 1 & \frac{5}{2} \end{bmatrix}$$

$$BFS = \begin{pmatrix} & 0 & 0 & 1 & 15 & 10 & \end{pmatrix} \mapsto \begin{pmatrix} & 0 & 0 & \frac{7}{2} & \frac{25}{2} & \frac{5}{2} & \end{pmatrix}$$

Bases:

$$B=\{\ t_1,\ t_2,\ t_3\ \}$$

$$B = \{ t_1, t_2, x \}$$

Standard (Equational) Form of Canonical Maximization LP problem

Maximize
$$f(x^s) = c^{sT}x^s - d$$
 subject to

$$A^s x^s = b$$
$$x^s \geqslant 0$$

where

Nonbasic (independent) Basic (dependent)

and

$$\mathbf{A}^{s} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & 0 & 0 & \dots & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_{1} \\ b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$\boldsymbol{c}^{s\intercal} = [c_1 \quad c_2 \quad \dots \quad c_n \quad 0 \quad 0 \quad \dots \quad 0]$$

Standard (Equational) Form of Canonical Maximization LP problem

Maximize
$$f(x^s) = c^{s T} x^s - d$$
 subject to $A^s x^s = b$

$$x^s \geqslant 0$$

where

Nonbasic (independent) Basic (dependent)

$$\mathbf{x}^{s} = \begin{pmatrix} x_1 & x_2 & \dots & x_n & x_{n+1} & x_{n+2} & \dots & x_{n+m} \end{pmatrix} \in \mathbb{R}^{n+m}$$

and

$$\mathbf{A}^{s} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & 0 & 0 & \dots & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_{1} \\ b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$\boldsymbol{c}^{s\intercal} = \begin{bmatrix} c_1 & c_2 & \dots & c_n & 0 & 0 & \dots & 0 \end{bmatrix}$$

Summary:

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Summary:

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Definition (Basic Solution, Basic Feasible Solution)

Consider a max LP problem in slack form: maximize $c^{s\intercal}x^s - d$ subject to $A^sx^s = b, x^s \geqslant 0$. Let $B \subseteq \{1, 2, \dots, n+m\}$ be an m-element set such that the (square) matrix A^s_B is non-singular $(\det(A^s_B) \neq 0)$.

- ▶ The (unique) solution \mathbf{x}^s of $A^s\mathbf{x}^s = \mathbf{b}$ such that $x_j = 0$ for all $j \notin B$ is a **basic** solution (BS). To find \mathbf{x}^s , we solve the system $A_B^s(\mathbf{x}^{s\intercal}_B)^\intercal = \mathbf{b}$, to get x_j for all $j \in B$, and set $x_j = 0$ for all $j \notin B$.
- \triangleright The *m* variables x_j with $j \in B$ are the **basic variables** (**dependent**) variables
- \triangleright The *n* variables x_i with $j \notin B$ are called **nonbasic** (**independent**) variables.
- \triangleright A basic solution satisfying $x^s \ge 0$ is called a basic feasible solution (BFS).

Summary:

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = [? ? 0 0 0]^T$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} ? & ? & 0 & 0 \end{bmatrix}^{\mathsf{T}}$

Solve
$$\mathbf{A}_{\{1,2\}}^{s}(\mathbf{x}_{\{1,2\}}^{s\dagger})^{\intercal} = \mathbf{b}$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}}^{\mathsf{T}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $x = \begin{bmatrix} ? & ? & 0 & 0 & 0 \end{bmatrix}^T$

Solve
$$A_{\{1,2\}}^s(x_{\{1,2\}}^{s\intercal})^\intercal = b$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}}^{\mathsf{T}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ Solve $\mathbf{A}_{\{1, 2\}}^s (\mathbf{x}^{s\intercal}_{\{1, 2\}})^\mathsf{T} = \mathbf{b}$: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$A_{\{1,2\}}^s(x_{\{1,2\}}^{s\intercal})^\intercal = b$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}}^{\mathsf{T}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$\mathbf{A}^s_{\{1,2\}}(\mathbf{x}^{s\intercal}_{\{1,2\}})^\intercal = \mathbf{b}$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• When $B = \{2,4\}$: $x = \begin{bmatrix} 0 & ? & 0 \end{bmatrix}^T$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote $A_{\mathcal{B}}^{s}$ the matrix consisting of the columns of A^{s} whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq \mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$ (this is a BFS)

$$\text{Solve } \textbf{\textit{A}}^{s}_{\{1,2\}}(\textbf{\textit{x}}^{s\intercal}_{\{1,2\}})^{\intercal} = \textbf{\textit{b}} : \quad \begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• When $B = \{2, 4\}$: $x = \begin{bmatrix} 0 & ? & 0 \end{bmatrix}^T$

Solve
$$\mathbf{A}^{s}_{\{2,4\}}(\mathbf{x}^{s\intercal}_{\{2,4\}})^{\intercal} = \mathbf{b}: \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 2 & 1 & 3 & -1 & 6 \end{bmatrix} \implies \mathbf{A}^{s}_{\{2,4\}} = \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix}$$

$$\mathbf{x}^{s} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \end{bmatrix}^{\mathsf{T}} \implies \mathbf{x}^{s}_{\{2,4\}} = \begin{bmatrix} x_{2} & x_{4} \end{bmatrix}$$

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

$$\text{Solve } \textbf{\textit{A}}^{s}_{\{1,2\}}(\textbf{\textit{x}}^{s\intercal}_{\{1,2\}})^{\intercal} = \textbf{\textit{b}} : \quad \begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• When $B = \{2, 4\}$: $\mathbf{x} = \begin{bmatrix} 0 & ? & 0 & ? & 0 \end{bmatrix}^T$

Solve
$$\mathbf{A}_{\{2,4\}}^s(\mathbf{x}_{\{2,4\}}^{s\intercal})^{\intercal} = \mathbf{b}$$
: $\begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1,2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$\mathbf{A}^{s}_{\{1,2\}}(\mathbf{x}^{s\intercal}_{\{1,2\}})^{\intercal} = \mathbf{b}$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• When $B = \{2, 4\}$: $x = \begin{bmatrix} 0 & 2 & 0 & -1 & 0 \end{bmatrix}^T$

Solve
$$\pmb{A}_{\{2,4\}}^s (\pmb{x^{s\intercal}}_{\{2,4\}})^\intercal = \pmb{b}$$
: $\begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A_B^s the matrix consisting of the columns of A^s whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1, 2\}$: $\mathbf{x} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$\mathbf{A}^{s}_{\{1,2\}}(\mathbf{x}^{s\intercal}_{\{1,2\}})^{\intercal} = \mathbf{b}$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• When $B = \{2,4\}$: $\mathbf{x} = \begin{bmatrix} 0 & 2 & 0 & -1 & 0 \end{bmatrix}^\mathsf{T}$ (this BS is not feasible)

$$\text{Solve } \textbf{\textit{A}}^{s}_{\{2,4\}}(\textbf{\textit{x}}^{s\intercal}_{\{2,4\}})^{\intercal} = \textbf{\textit{b}} : \quad \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq\mathbf{0}$$

• When $B = \{1,2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$\mathbf{A}^s_{\{1,2\}}(\mathbf{x}^{s\intercal}_{\{1,2\}})^\intercal = \mathbf{b}$$
: $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• When $B = \{2, 4\}$: $\mathbf{x} = \begin{bmatrix} 0 & \mathbf{2} & 0 & -\mathbf{1} & 0 \end{bmatrix}^\mathsf{T}$ (this BS is not feasible)

Solve
$$\boldsymbol{A}_{\{2,4\}}^{s}(\boldsymbol{x}^{s\intercal}_{\{2,4\}})^{\intercal} = \boldsymbol{b}$$
: $\begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

• When $B = \{3, 5\}$:

Let $A^s \in \mathbb{R}^{n \times (n+m)}$ be a matrix of rank n. For a subset $B \subseteq \{1, 2, \dots, n+m\}$ we denote A^s_B the matrix consisting of the columns of A^s whose indices belong to B. For instance

Example:

$$\mathbf{A}^{s}\mathbf{x}^{s}=\mathbf{b}=\begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}^{s}\geq \mathbf{0}$$

• When $B = \{1,2\}$: $\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^\mathsf{T}$ (this is a BFS)

Solve
$$\mathbf{A}^s_{\{1,2\}}(\mathbf{x}^{s\intercal}_{\{1,2\}})^\intercal = \mathbf{b}: \begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• When $B = \{2, 4\}$: $\mathbf{x} = \begin{bmatrix} 0 & \mathbf{2} & 0 & -\mathbf{1} & 0 \end{bmatrix}^\mathsf{T}$ (this BS is not feasible)

$$\text{Solve } \textbf{\textit{A}}^{s}_{\{2,4\}}(\textbf{\textit{x}}^{s\intercal}_{\{2,4\}})^{\intercal} = \textbf{\textit{b}} : \quad \begin{bmatrix} 5 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \implies \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

• When $B = \{3,5\}$: BS does not exist, since $A_{\{3,5\}}^s = \begin{bmatrix} 3 & 6 \\ 3 & 6 \end{bmatrix}$ is not invertible.

More examples of BS, BFS

$$\mathbf{A}^{s} = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 0 & 1 & 4 & 5 & 8 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 14 \\ 7 \end{bmatrix}$$

$$\triangleright B = \{2,4\}; x = (0,2,0,1,0) \text{ is a BFS}$$

$$\triangleright B = \{1, 2\}; x = (-21, 7, 0, 0, 0)$$
 is a BS which is not feasible

$$\triangleright B = \{3,5\}$$
; no solution
