# Organizační úvod

Poznámka

# 1 Úvod

## **Definice 1.1** (Diferenciální rovnice)

Diferenciální rovnice je rovnice, která obsahuje derivaci.

Poznámka (Motivace)

Fyzika (např. pružina:  $m \cdot \ddot{x} = -k \cdot x$ ), ekonomie (např. rovnice majetku?:  $k' = \alpha \cdot k - c(t)$ ), biologie (např. model dravec-kořist:  $d' = \alpha \cdot d \cdot k - \beta \cdot d \wedge k' = \gamma \cdot k - \delta \cdot d \cdot k$ ).

Poznámka (Co nás zajímá na DR)

Přesné řešení (často neumíme spočítat), existence a jednoznačnost řešení, jaké vlastnosti má řešení.

Poznámka (Předpoklady)

 $\Omega \subset \mathbb{R}^{n+1}$  otevřená,  $(x,t) \in \Omega \subset \mathbb{R}^n \times I$ ,  $f: \Omega \to \mathbb{R}^n$ , x' = f(x,t).  $I \subset \mathbb{R}$ .

# Definice 1.2 (Obyčená diferenciální rovnice, řešení)

Obyčejná diferenciální rovnice je rovnice x' = f(x, t) z předchozí poznámky.

Funkce  $x: I \to \mathbb{R}^n$  je řešení DR, jestliže

- $\forall t \in I : (x(t), t) \in \Omega$ ,
- $\forall t \in I$  existuje vlastní derivace x'(t),
- $\forall t \in I \text{ plati } x'(t) = f(x(t), t).$

Poznámka

První dvě podmínky jsou jen existenční podmínky k rovnici ve třetím bodě.

Typicky má DR nekonečně mnoho řešení, přidáváme proto počáteční podmínku  $(x_0, t_0) \in \Omega$ ,  $t_0 \in I$ .

#### Lemma 1.1

Nechť  $\Omega \subset \mathbb{R}^{n+1}$  otevřená,  $f: \Omega \to \mathbb{R}^n$  spojitá a  $x: I \to \mathbb{R}^n$  spojitou a takovou, že graf x  $(\{(x(t),t)|t\in I\})$  leží v  $\Omega$ . Pak následující tvrzení jsou ekvivalentní:

- x je řešení DR s počáteční podmínkou  $x(t_0) = x_0$ ;
- $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds \ \forall t \in I.$

 □ Důkaz

" $\Longrightarrow$ ": x a f je spojitá, tedy x'=f(x(t),t) je spojitá, tj.  $x\in C^1(I)\implies \int_{t_0}^t x'(s)ds=x(t)-x(t_0)$ .

$$x'(t) = 0 + f(x(t), t) \land x(t_0) = t_0 + 0.$$

Věta 1.2 (Peanova věta o lokální existenci)

Nechť  $\Omega \subset \mathbb{R}^{n+1}$  otevřená,  $f: \Omega \to \mathbb{R}^n$  spojitá a  $(x_0, t_0) \in \Omega$ . Potom  $\exists \ \delta > 0$  a funkce  $x: B(t_0, \delta) \to \mathbb{R}^n$  taková, která je řešení DR a splňuje počáteční podmínku. (Stačí spojitá f a kompaktní  $\Omega$ .)

## Tvrzení 1.3 (Pomocné tvrzení)

Pokud  $\Omega = \mathbb{R}^{n+1}$  a f je omezená na  $\Omega$ , pak  $\forall T$  existuje řešení DR x na  $[t_0 - T, t_0 + T]$  splňující počáteční podmínku.

 $D\mathring{u}kaz$ 

Když  $x_{\lambda}$  je definována na  $[t_0 - \lambda, t]$ , pak pravá strana má smysl  $\forall t \in [t_0, t_0 + \lambda]$  tím pádem pravá strana integrálního tvaru má smysl  $\forall t \in [t_0, t + \lambda]$ , tím pádem definujeme  $x_{\lambda}$  na  $[t_0 - \lambda, t_0 + \lambda]$ .

Nyní definujme  $M:=\left\{x_n|_{[t_0,t_0+T]}\right\}_{n=1}^\infty$  a ověříme, že M splňuje podmínky Arzela-Ascoliho věty:

$$|x_{\lambda}(t)| \le |x_0| + \int_{t_0}^t |f(x_{\lambda}(s-\lambda))| ds \le |x_0| + ||f||_{\infty} \cdot |t-t_0| \le |x_0| + ||f||_a \cdot T,$$

$$|x_{\lambda}(t) - x_{\lambda}(\tau)| = \left| \int_{\tau}^{t} f(x_{\lambda}(s - \lambda), s) ds \right| \le ||f||_{\infty} \cdot |t - \tau|.$$

Podle AA věty tedy existuje podposloupnost M, která konverguje stejnoměrně. Limitu si označme x, podposloupnost  $x_{n_k}$ .

Chceme dokázat, že x je řešení DR: TODO!!!

$$\lambda_k := \frac{1?}{n_k}$$

Důkaz

Pro  $\overline{K_1} \subset K_2, \, \overline{K_2} \subset \Omega, \, (x_0,t_0) \in K, \, K_1$  a  $K_2$  kompaktní definujeme

$$\varphi(x,t) = \begin{cases} 1, & (x,t) \in K_1, \\ 0, & (x,t) \in \Omega \setminus \overline{K_2}, \end{cases}$$

kterou spojitě dodefinujeme, a

$$\tilde{f}(x,t) = \begin{cases} f(x,t) \cdot \varphi(x,t), & (x,t) \in \Omega \\ 0, & (x,t) \in \mathbb{R}^{n+1} \setminus \Omega. \end{cases}$$

Dle prvního kroku (TODO?)  $\exists \tilde{x}(t), t \in [t_0 - T, t_0 + T], \ \tilde{x}'(t) = \tilde{f}(\tilde{x}(t), t), \ \tilde{x}(t_0) = x_0.$   $\tilde{x}$  je spojitá funkce  $\Longrightarrow \exists \delta > 0$  tak, že graf funkce  $\tilde{x}|_{[t_0 - \delta, t_0 + \delta]}$  leží v  $K_1$ . Na K je  $\tilde{f} = f$ , tedy  $\tilde{x}'(t) = f(\tilde{x}(t), t), t \in [t_0 - \delta, t_0 + \delta].$ 

# 1.1 Jednoznačnost řešení

## Definice 1.3 (Lokální jednoznačnost, globální jednoznačnost)

Řekneme, že DR má vlastnost

- lokální jednoznačnosti, jestliže platí: Máme-li řešení (x, I), (y, J) a  $t_0 \in I \cap J, x(t_0) = y(t_0)$  pak  $\exists \delta > 0 \ \forall t \in (t_0 \delta, t_0 + \delta), \ x(t) = y(t),$
- globální jednoznačnosti, jestliže platí: Máme-li řešení (x, I), (y, J) a  $t_0 \in I \cap J, x(t_0) = y(t_0)$ , pak  $\forall t \in I \cap J : x(t) = y(t)$ .

#### Tvrzení 1.4

Globální jednoznačnost je ekvivalentní lokální jednoznačnosti.

Důkaz

"  $\Longrightarrow$ " je triviální. " <br/>  $\Leftarrow$ ": Pro spor předpokládejme  $\exists t_1 \in I \cap J, \ x(t_1) \neq y(t_1).$  BÚNO <br/>  $t_1 > t_0.$  Definujme

$$M := \{ T \in I \cap J, t > t_0, x(t) \neq y(t) \} \neq \emptyset, \qquad t_2 = \inf M.$$

Víme  $x(t_2) = \lim_{t \to t_2^-} x(t) = \lim_{t \to t_2^-} y(t) = y(t_2)$ . Podíváme se lokální jednoznačností na bod  $t_2$ . Tam existuje  $\sigma > 0$  tak, že  $\forall t \in (t_2 - \sigma, t_2 + \sigma) : x(t) = y(t)$ . 4.

## Definice 1.4 (Lokálně lipschitzovská)

Řekneme, že funkce f=(x,t) je lokálně lipschitzovská v  $\Omega$  vzhledem k x, jestliže

$$\forall (x_0, t_0) \in \Omega \ \exists \delta > 0 \ \exists L > 0 \ \forall t \in \mathcal{U}_{\delta}(t_0) \ \forall x, y \in \mathcal{U}_{\delta}(x_0) : |f(x, t) - f(y, t)| \le L \cdot |x - y|$$

# Věta 1.5 (Peanova věta o jednoznačnosti)

Buď f lokálně lipschitzovská v  $\Omega$  vzhledem k x, pak DR má v  $\Omega$  vlastnost lokální jednoznačnost.

 $D\mathring{u}kaz$ 

At x(t), y(t) jsou řešení.  $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds$ ,  $y(t) = y_0 + \int_{t_0}^t f(y(s), s) ds$ .  $x(t) - y(t) = \int_{t_0}^t \left( f(x(s), s) - f(y(s), s) \right) ds$ . Vezmeme  $\sigma > 0$ . Grafy  $x|_{[t-\sigma]}, y|_{[t-\delta, t+\delta]}$  leží v δ-okolí  $(x_0, t_0)$ .

$$\forall s \in [t - \sigma, t_0 + \sigma] : |f(x(s), s) - f(y(s), s)| \le L \cdot |x(s) - y(x)|.$$

$$|x(t) - y(t)| \le \int_{t_0}^t |f(x(s), s) - f(y(s), s)| ds \le \int_{t_0}^t L \cdot |x(s) - y(s)| ds, \qquad t \in [t_0 - \sigma, t_0 + \sigma]$$

$$\le L \max_{s \in [t - \sigma, t + \sigma]} |x(s) - y(s)| \cdot \sigma$$

Důsledek

Jestliže f je lokálně lipschitzovská v  $\Omega$  vzhledem k x a  $(x_0, t_0) \in \Omega$ , pak

 $\exists \delta > 0 \ \exists ! x : (t_0 - \delta, t_0 + \delta) \to \mathbb{R}^n$  řešení DR s počáteční podmínkou  $x(t_0) = x_0$ .

 $D\mathring{u}kaz$ 

Peanova věta o jednoznačnosti.

#### Tvrzení 1.6

Pokud  $\frac{\partial f}{\partial x_j}$  jsou spojité v $\Omega$ ,  $j \in [n]$ , pak f je lokálně lipschitzovská v $\Omega$  vzhledem k x.

Důkaz

$$h(s) := f(x + s(y - x), t), s \in [0, 1], h(0) = f(x, t), h(1) = f(y, t).$$

$$h(1) - h(0) = \int_0^1 h'(s)ds = \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x + ? - ?) \cdot (y_j - x_j)ds$$

$$\forall (x_0, t_0) \in \Omega \ \exists \mathcal{U}(x_0) \ \exists \mathcal{U}(t_0) M = \overline{\mathcal{U}(x_0)} \times \overline{\mathcal{U}(t_0)} \subset \Omega,$$

M je kompaktní, tedy  $\exists K > 0 \ \forall (x,t) \in M : \left| \frac{\partial f}{\partial x_i}(x) \right| \leq K$ . Tedy

$$|h(1) - h(0)| \le \int_0^1 \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot |(x + s(y - x))| \cdot |y_i - x_i| ds \le nK \cdot \max|y_i - x_i| \le nK|x - y|.$$

2 Maximální řešení

Definice 2.1 (Prodloužení řešení, maximální řešení)

Řešení  $(\tilde{x}, \tilde{I})$  je prodloužením řešení (x, I), jestliže  $\tilde{I} \supset I$  a  $\forall t \in I : x(t) - \tilde{x}()$ .

Řešení je maximální, pokud neexistuje netriviální prodloužení.

Věta 2.1 (O maximálním prodloužení)

Každé řešení (x,I) má alespoň jedno maximální prodloužení.

 $D\mathring{u}kaz$ 

At M je množina všech prodloužení (x, I). Řekněme, že  $(\tilde{x}, \tilde{I}) \leq (\hat{x}, \hat{I})$  právě tehdy, když  $(\hat{x}, \hat{I})$  je prodloužení  $(\tilde{x}, \tilde{I})$ .

At  $N \subset M$  je řetězec (množina, na které je  $\leq$  lineární). Označme  $I_0 = \bigcup_{(\tilde{x},\tilde{I})\in N} \tilde{I}$  a definujme  $x:I_0\to\mathbb{R}^n$  z toho, že  $t\in I_0 \Longrightarrow \exists (\tilde{x},\tilde{I})\in N,\,t\in\tilde{I}$ , jako  $x(t)=\tilde{x}(t)$ .

Z Zornova lemmatu pak vyplývá, že existuje maximální řešení.

#### Lemma 2.2

(x,I) řeší DR, I=(a,b),  $b\in\mathbb{R}\cup\infty$ . Pak řešení x lze prodloužit za bod b, když zároveň

- $b < \infty$ ;
- $\exists \lim_{t\to b} x(t) = x_0 \in \mathbb{R};$
- $(x_0, b \in \Omega)$ .

Důkaz

"  $\Longrightarrow$  " zřejmě, "  $\Longleftarrow$  ": Uvažujme DR s počáteční podmínkou  $x(b) = x_0$ . Dle Peanovy věty  $\exists \tilde{x} : (b - \delta, b + \delta) \to \mathbb{R}^n$ .  $x_1(t) = x(t)$ , pokud  $t \in (a, b)$ ,  $\tilde{x}(t)$  jinak.  $x_1$  tedy splňuje DR na (a, b) a  $(b, b + \delta)$ . Zbývá ověřit, že  $x_1'(b) = f(x_1(b), b)$ :

- $x_1$  je spojitá v b, neboť  $\lim_{t\to b^-} x_1(t) = x_0 = \lim_{t\to b^+} x_1(t) = \tilde{x}(t)$ .
- $\exists \lim_{t\to b^-} x_1'(t) = \lim_{t\to b^-} f(x(t), t) = f(x(b), b) = f(x_0, b).$
- $\exists \lim_{t \to b^+} x_1'(t) = \lim_{t \to b^+} f(\tilde{x}(t), t) = f(\tilde{x}(b), b) = f(x_0, b_0).$

Věta 2.3 (O opuštění kompaktu)

Buď (x,I) maximální řešení DR. Nechť  $K \subset \Omega$  kompaktní a  $\exists t_0 : (x(t_0),t_0) \in K$ . Pak  $\exists t_1 > t_0, \ t_1 \in I, \ \check{z}e\ (x(t_1),t_1) \in \Omega \setminus K$ .  $\exists t_2 \in I_2, \ t_2 < t_0, \ \check{z}e\ (x(t_2),t_2) \in \Omega \setminus K$ .

 $\Box$   $D\mathring{u}kaz$ 

Pro spor předpokládejme, že  $\forall t_1 > t_0, t_1 \in I : (x(t_1), t_1) \in K$ . Podle předchozí věty stačí dokázat  $b < \infty$  (kdyby ne, tak K není kompakt),  $\{t_k\}_{k=1}^{\infty} \nearrow b$ ,  $\{(x(t_k), t_k)\}_{k=1}^{\infty} \subset K$  vybereme konvergentní podposloupnost  $(x(t_{k_n}), t_{k_n}) \to (x_0, t_0)$ . Následně ověříme BC podmínku: víme  $x(s) - x(t) = x'(\xi)(s-t), \xi \in (s,t)$ , tedy

$$|x(s) - x(t)| \le |x'(\xi)| \cdot |s - t| = |f(x(\xi), \xi)| \cdot |s - t| \le C \cdot |s - t|.$$

Zřejmě  $(x_0, b) \in K \subset \Omega$ , protože z kompaktu se nedá vykonvergovat.