

RF TEST REPORT

Applicant ID TECH

FCC ID WQJ-IDCL-51

Brand ID TECH

Product AC100

Model IDCL-51

Report No. RXA1604-0066RF01

Issue Date May 25, 2016

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2015)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Preformed by: lingling Kang

Lingling Kong

Approved by: Kai Xu

CNAS TESTING No. L2264

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test	Laboratory	. 4
	1.1	Notes of the Test Report	. 4
	1.2	Test facility	. 4
	1.3	Testing Location	. 5
2	Gen	eral Description of Equipment under Test	. 6
	2.1	Client Information	. 6
	2.2	General information	. 6
	2.3	Applied Standards	. 7
3	Info	rmation about the FHSS characteristics	. 8
	3.1	Pseudorandom Frequency Hopping Sequence	. 8
	3.2	Equal Hopping Frequency Use	. 9
	3.3	System Receiver Input Bandwidth	. 9
4	Test	Information	10
	4.1	Test Mode	10
	4.2	Peak Power Output -Conducted	11
	4.3	Occupied Bandwidth (20dB)	13
	4.4	Frequency Separation	17
	4.5	Time of Occupancy (Dwell Time)	19
	4.6	Band Edge Compliance	24
	4.7	Spurious Radiated Emissions in the Restricted Band	27
	4.8	Number of hopping Frequency	30
	4.9	Spurious RF Conducted Emissions	32
	4.10	Radiates Emission	36
	4.11	Conducted Emission	63
5	Mair	n Test Instruments	68
Α	NNEX	A: EUT Appearance and Test Setup	69
	A.1 EU	JT Appearance	69
	A.2	Test Setup	70

Summary of Measurement Results

Number	Summary of measurements of results	Clause in FCC rules	Verdict	
1	Peak Power Output -Conducted	15.247(b)(1)	PASS	
2	Occupied Bandwidth (20dB)	15.247(a)(1)	PASS	
3	Frequency Separation	15.247(a)(1)	PASS	
4	Time of Occupancy (Dwell Time)	15.247(a)(1)(iii)	PASS	
5	5 Band Edge Compliance 15.24		PASS	
6	Spurious Radiated Emissions in the restricted band	15.247(d),15.205,15.209	PASS	
7 Number of Hopping Frequency 15.247(a)(1		15.247(a)(1)(iii)	PASS	
8	Spurious RF Conducted Emissions	15.247(d)	PASS	
9	Radiates Emission	15.247(d),15.205,15.209	PASS	
10 AC Power Line Conducted Emission 15.207		15.207	PASS	
	Date of Testing: April 22, 2016 ~ May 6, 2016			

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. This report must not be used by the client to claim product certification, approval, or endorsement by CNAS or any government agencies.

1.2 Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (recognition number is 428261)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

A2LA(Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

General Description of Equipment under Test 2

Client Information

Applicant	ID TECH
	10721 Walker Street
Applicant address	Cypress, CA
	90630
Manufacturer	ID TECH
	10721 Walker Street
Manufacturer address	Cypress, CA
	90630

General information

Model:	IDCL-51		
SN:	617T000007		
HW Version:	80144301		
SW Version:	ID TECH AC100 V1.0	0	
Power Supply:	AC adapter		
Antenna Type:	Internal Antenna		
Test Mode(s):	Basic Rate Enhanced Data Rate(EDR)		e(EDR)
Madulation Type	Frequency Hopping Spread Spectrum (FHSS)		
Modulation Type:	GFSK	π/4 DQPSK	8DQPSK
Packet Type: (Maximum Payload)	DH5	2DH5	3DH5
Max. Conducted Power	11.29dBm		
Tested Frequency Range(s):	2400 ~ 2483.5 MHz		
Note: 1. The information of the	ne EUT is declared by the manufacturer.		
Diagon refer to the o	a sifications or user manual for details		

Please refer to the specifications or user manual for details.

2.1 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards

FCC CFR47 Part 15C (2015) Radio Frequency Devices

ANSI C63.10 (2013)

DA00-705 Filing and Frequency Measurement Guidelines For Frequency Hopping Spread Spectrum System.(2000)

3 Information about the FHSS characteristics

3.1 Pseudorandom Frequency Hopping Sequence

Frequency Hopping Systems. A spread spectrum system in which the carrier is modulated with the coded information in a conventional manner causing a conventional spreading of the RF energy about the frequency carrier. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. The wide RF bandwidth needed by such a system is not required by spreading of the RF energy about the carrier but rather to accommodate the range of frequencies to which the carrier frequency can hop. The test of a frequency hopping system is that the near term distribution of hops appears random, the long term distribution appears evenly distributed over the hop set, and sequential hops are randomly distributed in both direction and magnitude of change in the hop set.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops. The principle is depicted in the figure below.

Hop selection scheme in CONNECTION state.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45, etc. Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3.2 Equal Hopping Frequency Use

All Bluetooth units participating in the Pico net are time and hop-synchronized to the channel. Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

3.3 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

4 Test Information

4.1 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

Test Modes					
Band Radiated Test Cases Conducted Test Cases					
	3DH5 8DQPSK (Channel 0/39/78)	DH5 GFSK(Channel 0/39/78)			
BT		2DH5 π/4-DQPSK(Channel 0/39/78)			
		3DH5 8DQPSK(Channel 0/39/78)			

Note: The maximum RF output power levels are 3DH5 for 8DQPSK modulation, For RSE and CSE, only the maximum RF output power is chosen.

4.2 Peak Power Output -Conducted

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Methods of Measurement

During the process of the testing, The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The EUT is controlled by the Bluetooth test set to ensure max power transmission with proper modulation. The peak detector is used. RBW is set to 2 MHz; VBW is set to 6 MHz. These measurements have been tested at following channels: 0, 39, and 78.

Test Setup

Limits

Rule Part 15.247 (b) (1) specifies that "For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts."

Peak Output Power	≤ 0.125W (21dBm)
-------------------	------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U=0.44 dB.

Test Results

Chamal	Frequency	Peak Output Power (dBm)			Conclusion	
Channel	(MHz)	DH5	2DH5	3DH5	Conclusion	
0	2402	10.54	10.28	10.83	PASS	
39	2441	11.24	11.08	11.29	PASS	
78	2480	11.10	10.88	11.03	PASS	

Note: The measured power density (dBm) has the offset with cable loss already.

4.3 Occupied Bandwidth (20dB)

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 30 kHz and VBW is set to 100 kHz on spectrum analyzer. -20dB occupied bandwidths are recorded.

Test Setup

Limits

No specific occupied bandwidth requirements in part 15.247(a) (1).

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results

Mode	Channel	Frequency (MHz)	20dB Bandwidth(kHz)
DH5	0	2402	997
DH5	39	2441	1006
DH5	78	2480	999
2DH5	0	2402	1373
2DH5	39	2441	1348
2DH5	78	2480	1342
3DH5	0	2402	1330
3DH5	39	2441	1321
3DH5	78	2480	1337

DH5, Carrier frequency (MHz): 2402 Channel No.:0

2DH5, Carrier frequency (MHz): 2402 Channel No.:0

DH5, Carrier frequency (MHz): 2441 Channel No.:39

2DH5, Carrier frequency (MHz): 2441 Channel No.:39

DH5, Carrier frequency (MHz): 2480 Channel No.:78

2DH5, Carrier frequency (MHz): 2480 Channel No.:78

3DH5, Carrier frequency (MHz): 2402 Channel No.:0

3DH5, Carrier frequency (MHz): 2441 Channel No.:39

3DH5, Carrier frequency (MHz): 2480 Channel No.:78

4.4 Frequency Separation

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 30 kHz and VBW is set to 100 kHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a)(1)specifies that "Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW."

Note: The value of two-thirds of 20 dB bandwidth is always greater than 25 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results:

Packet type	Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth(kHz)	Limit (kHz)	Conclusion	
DH5	2441	995	1006	670.67	PASS	
2DH5	2441	1015	1348	898.67	PASS	
3DH5	2441	920	1321	880.67	PASS	
Note: The limit is two-thirds of 20 dB bandwidth.						

4.5 Time of Occupancy (Dwell Time)

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 1MHz and VBW is set to 1MHz on spectrum analyzer .The time slot length is measured of three different packet types, which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

Dwell time = time slot length * hop rate * 0.4s with:

- hop rate=1600 * 1/s for DH1 packet =1600
- hop rate=1600/3 * 1/s for DH3 packet =533.33
- hop rate=1600/5 * 1/s for DH5 packet =320

Test Setup

Limits

Rule Part 22.913(a) specifies that "Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed."

Dwell time	≤ 400ms
------------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2.

Requirements	Uncertainty		
	DH1	<i>U</i> =0.64ms	
	DH3	<i>U</i> =0.80ms	
	DH5	<i>U</i> =0.70ms	
	2DH1	<i>U</i> =0.64ms	
Dwell Time	2DH3	<i>U</i> =0.80ms	
	2DH5	<i>U</i> =0.70ms	
	3DH1	<i>U</i> =0.64ms	
	3DH3	<i>U</i> =0.80ms	
	3DH5	<i>U</i> =0.70ms	

Test Results:

Channel 39					
Packet type	hop rate (1/s)	Time slot length(ms)	Dwell time (ms)	Limit (ms)	Conclusion
DH1	1600	0.38	243.20	400	PASS
DH3	533.33	1.63	347.73	400	PASS
DH5	320	2.88	368.64	400	PASS
2DH1	1600	0.37	236.80	400	PASS
2DH3	533.33	1.65	352.00	400	PASS
2DH5	320	2.88	368.64	400	PASS
3DH1	1600	0.37	236.80	400	PASS
3DH3	533.33	1.63	347.73	400	PASS
3DH5	320	2.90	371.20	400	PASS
Note: Dwell time	e = time slot leng	th * hop rate * 0.4	4s		

3DH1, Carrier frequency (MHz): 2441

3DH3, Carrier frequency (MHz): 2441

3DH5, Carrier frequency (MHz): 2441

4.6 Band Edge Compliance

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The lowest and highest channels were measured. The peak detector is used. RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. EUT test for Hopping On mode and Hopping Off mode.

Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
2GHz-3GHz	1.407 dB

Test Results

Hopping On-DH5

Carrier frequency (MHz): 2402, Channel No.:0

Carrier frequency (MHz): 2480, Channel No.:78

Hopping On-2DH5

Carrier frequency (MHz): 2480, Channel No.:78

Hopping On-3DH5

Carrier frequency (MHz): 2402, Channel No.:0

Carrier frequency (MHz): 2480, Channel No.:78

REF Test Report Report No: RXA1604-0066RF01

Hopping Off-DH5

Carrier frequency (MHz): 2402, Channel No.:0

Carrier frequency (MHz): 2480, Channel No.:78

Hopping Off-2DH5

Carrier frequency (MHz): 2402, Channel No.:0

Carrier frequency (MHz): 2480, Channel No.:78

Hopping Off-3DH5

Carrier frequency (MHz): 2480, Channel No.:78

4.7 Spurious Radiated Emissions in the Restricted Band

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) The dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak- average correction factor, derived form the appropriate duty cycle calculation.

This setting method can refer to **DA00-705**.

The test is in transmitting mode. The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis) and docking mode. The worst emission was found in stand-up position (Y axis) and the worst case was recorded.

Test setup

Note: Area side: 2.4mX3.6m

LimitsSpurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74dBuV/m

Average Limit=54dBuV/m

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Results:

4.8 Number of hopping Frequency

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 1 MHz and VBW is set to 1 MHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a) (1) (iii) specifies that" Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels."

Limits

Test Results:

Packet type	Number of hopping channels	conclusion
DH5	79	PASS
2DH5	79	PASS
3DH5	79	PASS

4.9 Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. RBW and VBW are set to 100 kHz, Sweep is set to ATUO. The test is in transmitting mode.

Test setup

Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power."

Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
DH5	2402	-6.53	-26.53
	2441	-14.22	-34.22
	2480	-0.08	-20.08
EDR (3DH5)	2402	-2.13	-22.13
	2441	-4.94	-24.94
	2480	-17.95	-37.95

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty	
100kHz-2GHz	0.684 dB	
2GHz-26GHz	1.407 dB	

Test Results:

Note: The signal beyond the limit is carrier.

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

GFSK-CH39

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

GFSK-CH78

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

EDR-CH0

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

EDR -CH39

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

EDR -CH78

Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

4.10 Radiates Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, below 30MHz, the center of the loop shall be 1 meters; above 30MHz, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

Below 1GHz (detector: Peak and Quasi-Peak) RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz(detector: Peak):

(a) PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded. Then this mode was measured in the following mode: EUT with cradle and EUT without cradle. The worst emission was found in EUT with cradle mode and the worst case was recorded.

The test is in transmitting mode.

Test setup

9KHz~~~ 30MHz

30MHz~~~ 1GHz

Above 1GHz

C RF Test Report Report No: RXA1604-0066RF01

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.19 dB
200MHz-1GHz	3.63 dB
Above 1GHz	3.68 dB

Test result

Sweep from 9 kHz to 30MHz, and the emissions more than 20 dB below the permissible value are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

GFSK-Channel 0

Radiates Emission from 30MHz to 1GHz

Note: This graph displays the maximum values of horizontal and vertical by software

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
40.388750	18.3	100.0	V	316.0	31.5	13.2	21.7	40.0
92.163750	23.5	125.0	V	350.0	35.7	12.2	20.0	43.5
105.053750	19.7	114.0	V	0.0	32.5	12.8	23.8	43.5
270.566250	11.8	100.0	V	22.0	26.5	14.7	34.2	46.0
533.151250	18.0	125.0	Н	24.0	38.7	20.7	28.0	46.0
939.450000	24.9	100.0	Н	0.0	50.8	25.9	21.1	46.0

Radiates Emission from 1GHz to 3GHz Note: The signal beyond the limit is carrier.

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1198.000000	47.0	100.0	V	192.0	47.7	-0.7	27.0	74
1267.000000	48.1	100.0	V	185.0	48.4	-0.3	25.9	74
1596.000000	49.6	100.0	V	337.0	50.6	1.0	24.4	74
1999.500000	52.7	100.0	V	108.0	54.9	2.2	21.3	74
2117.500000	52.9	100.0	V	331.0	55.9	3.0	21.1	74
2937.500000	51.7	100.0	Н	7.0	57.6	5.9	22.3	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1199.500000	36.2	100.0	V	207.0	36.9	-0.7	17.8	54
1270.000000	37.4	100.0	V	170.0	37.7	-0.3	16.6	54
1598.000000	37.7	100.0	V	346.0	38.7	1.0	16.3	54
1995.500000	38.1	100.0	V	108.0	40.3	2.2	15.9	54
2532.500000	39.1	100.0	Н	0.0	44.2	5.1	14.9	54
2964.500000	40.0	100.0	Н	4.0	45.9	5.9	14.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3882.000000	43.4	100.0	V	173.0	45.6	-2.2	30.6	74
5385.000000	46.7	100.0	Н	24.0	47.6	0.9	27.3	74
6915.000000	50.3	100.0	V	0.0	55.2	4.9	23.7	74
9783.000000	53.7	100.0	V	231.0	64.7	11.0	20.3	74
11904.000000	55.6	100.0	Н	0.0	70.1	14.5	18.4	74
17994.000000	62.0	100.0	Н	52.0	87.8	25.8	12.0	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
4023.000000	32.6	100.0	Н	110.0	34.6	-2.0	21.4	54
5409.000000	35.7	100.0	Н	285.0	36.8	1.1	18.3	54
7326.000000	40.0	100.0	V	349.0	45.6	5.6	14.0	54
9714.000000	42.9	100.0	Н	168.0	54.0	11.1	11.1	54
13326.000000	45.0	100.0	V	359.0	62.7	17.7	9.0	54
17988.000000	51.1	100.0	V	173.0	76.8	25.7	2.9	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 18-26.5GHz PK+AV

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18402.687500	32.2	V	180.0	37.1	-4.9	41.8	74
19519.375000	27.1	Н	40.0	34.5	-7.4	46.9	74
21662.437500	26.8	V	168.0	36.1	-9.3	47.2	74
22039.625000	27.9	V	91.0	35.9	-8.0	46.1	74
23647.187500	28.0	Н	25.0	36.6	-8.6	46.0	74
25248.375000	29.6	V	84.0	36.2	-6.6	44.4	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18385.687500	21.3	V	138.0	26.1	-4.8	32.7	54
19506.625000	16.3	V	180.0	23.8	-7.5	37.7	54
21680.500000	15.5	Н	56.0	24.9	-9.4	38.5	54
22027.937500	16.5	V	50.0	24.4	-7.9	37.5	54
24725.625000	17.7	Н	9.0	23.9	-6.2	36.3	54
25230.312500	18.7	Н	9.0	24.6	-5.9	35.3	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

FCC RE 0.03-1GHz QP Class C

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
37.685000	22.6	100.0	V	248.0	35.2	12.6	17.4	40.0
92.076250	27.9	114.0	V	340.0	40.1	12.2	15.6	43.5
97.785000	26.7	125.0	V	306.0	39.6	12.9	16.8	43.5
304.835000	16.6	100.0	Н	93.0	32.1	15.5	29.4	46.0
556.100000	18.6	100.0	V	344.0	39.8	21.2	27.4	46.0
958.376250	25.1	114.0	Н	275.0	51.3	26.2	20.9	46.0

Radiates Emission from 1GHz to 3GHz Note: The signal beyond the limit is carrier.

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1200.500000	46.3	100.0	V	292.0	47.0	-0.7	27.7	74
1270.500000	46.9	100.0	V	177.0	47.2	-0.3	27.1	74
1596.500000	47.9	100.0	V	292.0	48.9	1.0	26.1	74
1994.000000	49.8	100.0	V	105.0	52.0	2.2	24.2	74
2112.000000	47.8	100.0	V	97.0	50.8	3.0	26.2	74
2968.000000	48.5	100.0	V	309.0	54.4	5.9	25.5	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1200.500000	36.2	100.0	V	292.0	36.9	-0.7	17.8	54
1270.500000	37.2	100.0	V	177.0	37.5	-0.3	16.8	54
1596.500000	36.9	100.0	V	292.0	37.9	1.0	17.1	54
1994.000000	38.4	100.0	V	105.0	40.6	2.2	15.6	54
2112.000000	38.4	100.0	V	97.0	41.4	3.0	15.6	54
2968.000000	40.1	100.0	V	309.0	46.0	5.9	13.9	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 3G-18GHz PK+AV Class B

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3765.000000	43.6	100.0	V	341.0	46.0	-2.4	30.4	74
5391.000000	46.6	100.0	V	341.0	47.6	1.0	27.4	74
6708.000000	50.6	100.0	V	298.0	55.6	5.0	23.4	74
9876.000000	53.7	100.0	V	357.0	65.0	11.3	20.3	74
13329.000000	55.9	100.0	Н	129.0	73.6	17.7	18.1	74
17967.000000	62.0	100.0	V	347.0	87.4	25.4	12.0	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3870.000000	32.7	100.0	V	354.0	34.9	-2.2	21.3	54
5376.000000	35.9	100.0	Н	207.0	36.8	0.9	18.1	54
6648.000000	39.3	100.0	V	104.0	44.4	5.1	14.7	54
9834.000000	43.1	100.0	V	240.0	54.3	11.2	10.9	54
13347.000000	44.9	100.0	Н	0.0	62.7	17.8	9.1	54
18000.000000	51.2	100.0	V	335.0	77.1	25.9	2.8	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 18-26.5GHz PK+AV

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18387.812500	31.9	Н	0.0	36.8	-4.9	42.1	74
19231.437500	27.7	Н	0.0	34.5	-6.8	46.3	74
21650.750000	26.3	V	180.0	35.5	-9.2	47.7	74
22071.500000	28.7	V	119.0	36.8	-8.1	45.3	74
24005.250000	28.1	Н	44.0	35.4	-7.3	45.9	74
25234.562500	29.9	V	135.0	35.9	-6.0	44.1	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18383.562500	21.3	Н	0.0	26.1	-4.8	32.7	54
19498.125000	16.3	V	179.0	23.8	-7.5	37.7	54
21640.125000	15.2	V	73.0	24.3	-9.1	38.8	54
23289.125000	16.4	V	180.0	23.5	-7.1	37.6	54
24724.562500	17.3	V	180.0	23.5	-6.2	36.7	54
25230.312500	18.7	Н	0.0	24.6	-5.9	35.3	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

FCC RE 0.03-1GHz QP Class C

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)	
36.541250	22.5	100.0	V	331.0	34.8	12.3	17.5	40.0	
92.935000	27.5	100.0	V	334.0	39.8	12.3	16.0	43.5	
103.228750	24.4	100.0	V	278.0	37.3	12.9	19.1	43.5	
304.710000	16.3	100.0	Н	99.0	31.8	15.5	29.7	46.0	
546.523750	18.2	100.0	V	33.0	39.1	20.9	27.8	46.0	
899.561250	24.4	100.0	Н	202.0	50.0	25.6	21.6	46.0	

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Radiates Emission from 1GHz to 3GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1198.500000	47.9	100.0	V	330.0	48.6	-0.7	26.1	74
1271.500000	47.8	100.0	V	176.0	48.1	-0.3	26.2	74
1593.000000	50.6	100.0	V	231.0	51.5	0.9	23.4	74
1998.500000	53.9	100.0	V	104.0	56.1	2.2	20.1	74
2162.500000	52.9	100.0	V	104.0	56.1	3.2	21.1	74
2984.000000	51.5	100.0	V	192.0	57.5	6.0	22.5	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1198.500000	36.5	100.0	V	330.0	37.2	-0.7	17.5	54
1271.500000	37.5	100.0	V	176.0	37.8	-0.3	16.5	54
1602.000000	36.7	100.0	V	192.0	37.7	1.0	17.3	54
1998.500000	39.6	100.0	V	104.0	41.8	2.2	14.4	54
2160.000000	39.1	100.0	V	269.0	42.3	3.2	14.9	54
2968.000000	40.1	100.0	V	356.0	46.0	5.9	13.9	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 3G-18GHz PK+AV Class B

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3906.000000	43.6	100.0	V	0.0	45.8	-2.2	30.4	74
5409.000000	46.4	100.0	V	356.0	47.5	1.1	27.6	74
6594.000000	50.3	100.0	V	344.0	55.5	5.2	23.7	74
9885.000000	54.4	100.0	Н	158.0	65.8	11.4	19.6	74
13308.000000	56.1	100.0	Н	24.0	73.8	17.7	17.9	74
17976.000000	61.6	100.0	V	359.0	87.1	25.5	12.4	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3645.000000	32.4	100.0	V	359.0	35.0	-2.6	21.6	54
5406.000000	35.7	100.0	V	186.0	36.8	1.1	18.3	54
6837.000000	39.5	100.0	Н	100.0	44.5	5.0	14.5	54
9765.000000	42.8	100.0	V	322.0	53.8	11.0	11.2	54
13326.000000	45.0	100.0	Н	0.0	62.7	17.7	9.0	54
17988.000000	51.4	100.0	Н	100.0	77.1	25.7	2.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 18-26.5GHz PK+AV

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18385.687500	32.0	V	134.0	36.8	-4.8	42.0	74
19687.250000	26.9	V	175.0	34.6	-7.7	47.1	74
21642.250000	27.2	V	180.0	36.3	-9.1	46.8	74
22090.625000	27.7	Н	28.0	36.1	-8.4	46.3	74
24109.375000	28.8	V	33.0	36.6	-7.8	45.2	74
25217.562500	29.9	Н	156.0	36.0	-6.1	44.1	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18381.437500	21.2	V	175.0	26.0	-4.8	32.8	54
19500.250000	16.4	V	141.0	23.9	-7.5	37.6	54
21648.625000	15.2	Н	0.0	24.4	-9.2	38.8	54
22023.687500	16.6	Н	21.0	24.6	-8.0	37.4	54
24727.750000	17.4	Н	82.0	23.6	-6.2	36.6	54
25232.437500	18.8	V	175.0	24.7	-5.9	35.2	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
40.027500	17.2	114.0	V	283.0	30.4	13.2	22.8	40.0
52.991250	18.1	100.0	V	256.0	30.9	12.8	21.9	40.0
97.578750	20.5	100.0	V	13.0	33.4	12.9	23.0	43.5
281.185000	12.1	175.0	V	44.0	27.0	14.9	33.9	46.0
552.266250	18.4	200.0	Н	300.0	39.5	21.1	27.6	46.0
913.826250	24.5	225.0	Н	0.0	50.3	25.8	21.5	46.0

Radiates Emission from 1GHz to 3GHz Note: The signal beyond the limit is carrier.

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1152.000000	48.1	100.0	Н	0.0	48.9	-0.8	25.9	74
1272.000000	47.6	100.0	V	286.0	47.9	-0.3	26.4	74
1598.500000	51.7	100.0	V	355.0	52.7	1.0	22.3	74
2055.500000	53.8	100.0	V	104.0	56.4	2.6	20.2	74
2127.500000	57.0	100.0	V	104.0	60.0	3.0	17.0	74
2661.000000	52.4	100.0	V	0.0	57.8	5.4	21.6	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1197.000000	36.3	100.0	V	175.0	37.0	-0.7	17.7	54
1271.500000	37.3	100.0	V	183.0	37.6	-0.3	16.7	54
1597.500000	36.7	100.0	V	342.0	37.7	1.0	17.3	54
2075.000000	39.0	100.0	V	104.0	41.7	2.7	15.0	54
2756.000000	39.5	100.0	V	324.0	45.2	5.7	14.5	54
2979.000000	40.1	100.0	V	286.0	46.1	6.0	13.9	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 3G-18GHz PK+AV Class B

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3792.000000	43.7	100.0	V	356.0	46.1	-2.4	30.3	74
5373.000000	47.1	100.0	V	13.0	48.0	0.9	26.9	74
6552.000000	50.0	100.0	V	335.0	55.3	5.3	24.0	74
9732.000000	53.5	100.0	Н	33.0	64.6	11.1	20.5	74
12594.000000	56.6	100.0	Н	81.0	72.6	16.0	17.4	74
17934.000000	62.1	100.0	Н	71.0	87.1	25.0	11.9	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
4023.000000	32.8	100.0	Н	276.0	34.8	-2.0	21.2	54
5382.000000	35.6	100.0	V	342.0	36.5	0.9	18.4	54
7278.000000	39.4	100.0	V	308.0	45.0	5.6	14.6	54
9741.000000	43.0	100.0	Н	168.0	54.1	11.1	11.0	54
13350.000000	45.3	100.0	Н	110.0	63.1	17.8	8.7	54
17991.000000	51.4	100.0	V	94.0	77.1	25.7	2.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18385.687500	32.4	Н	0.0	37.2	-4.8	41.6	74
19645.812500	27.9	V	170.0	35.5	-7.6	46.1	74
21661.375000	26.6	Н	12.0	35.8	-9.2	47.4	74
23229.625000	27.2	V	162.0	35.3	-8.1	46.8	74
24091.312500	28.4	V	170.0	36.2	-7.8	45.6	74
25282.375000	29.6	Н	0.0	36.4	-6.8	44.4	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18388.875000	21.6	V	33.0	26.5	-4.9	32.4	54
19479.000000	16.5	V	180.0	24.3	-7.8	37.5	54
21661.375000	15.3	V	180.0	24.5	-9.2	38.7	54
23292.312500	16.4	Н	164.0	23.4	-7.0	37.6	54
24733.062500	17.3	V	180.0	23.6	-6.3	36.7	54
25228.187500	19.0	Н	0.0	24.9	-5.9	35.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 0.03-1GHz QP Class B

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
39.572500	18.1	100.0	V	10.0	31.2	13.1	21.9	40.0
53.442500	17.9	100.0	V	230.0	30.7	12.8	22.1	40.0
90.743750	23.3	100.0	V	26.0	35.3	12.0	20.2	43.5
127.116250	19.6	100.0	V	0.0	29.3	9.7	23.9	43.5
538.565000	18.1	100.0	Н	154.0	38.9	20.8	27.9	46.0
930.166250	24.8	100.0	Н	22.0	50.7	25.9	21.2	46.0

Radiates Emission from 1GHz to 3GHz Note: The signal beyond the limit is carrier.

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1165.500000	47.6	100.0	Н	4.0	48.4	-0.8	26.4	74
1274.500000	47.4	100.0	V	190.0	47.7	-0.3	26.6	74
1593.000000	52.4	100.0	V	344.0	53.3	0.9	21.6	74
2076.500000	56.3	100.0	V	358.0	59.0	2.7	17.7	74
2139.000000	55.8	100.0	V	359.0	58.9	3.1	18.2	74
2930.500000	51.2	100.0	Н	27.0	57.1	5.9	22.8	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1197.000000	36.2	100.0	Н	302.0	36.9	-0.7	17.8	54
1271.000000	36.9	100.0	V	174.0	37.2	-0.3	17.1	54
1706.500000	36.5	100.0	Н	145.0	37.8	1.3	17.5	54
2068.500000	39.3	100.0	V	105.0	42.0	2.7	14.7	54
2617.500000	38.9	100.0	Н	16.0	44.3	5.4	15.1	54
2905.000000	39.9	100.0	Н	2.0	45.7	5.8	14.1	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3990.000000	43.4	100.0	Н	0.0	45.5	-2.1	30.6	74
5430.000000	46.5	100.0	Н	138.0	47.7	1.2	27.5	74
7209.000000	50.6	100.0	V	0.0	56.1	5.5	23.4	74
9681.000000	53.7	100.0	V	353.0	64.7	11.0	20.3	74
13281.000000	55.8	100.0	Н	187.0	73.5	17.7	18.2	74
17970.000000	62.8	100.0	V	349.0	88.3	25.5	11.2	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3765.000000	32.7	100.0	V	168.0	35.1	-2.4	21.3	54
5427.000000	35.8	100.0	V	197.0	36.9	1.1	18.2	54
7284.000000	39.4	100.0	Н	80.0	45.0	5.6	14.6	54
9744.000000	42.9	100.0	Н	41.0	54.0	11.1	11.1	54
13287.000000	45.3	100.0	V	312.0	63.0	17.7	8.7	54
17967.000000	51.2	100.0	Н	90.0	76.6	25.4	2.8	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 18-26.5GHz PK+AV

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18171.062500	32.3	Н	0.0	37.4	-5.1	41.7	74
19226.125000	27.2	V	180.0	34.0	-6.8	46.8	74
21026.000000	26.0	V	147.0	34.3	-8.3	48.0	74
22038.562500	27.2	V	147.0	35.2	-8.0	46.8	74
24764.937500	28.9	Н	6.0	35.6	-6.7	45.1	74
25217.562500	30.3	Н	0.0	36.4	-6.1	43.7	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18385.687500	21.4	Н	6.0	26.2	-4.8	32.6	54
19506.625000	16.5	V	180.0	24.0	-7.5	37.5	54
21630.562500	15.2	Н	0.0	24.3	-9.1	38.8	54
23263.625000	16.5	V	180.0	23.8	-7.3	37.5	54
24726.687500	17.2	V	169.0	23.4	-6.2	36.8	54
25233.500000	18.8	Н	99.0	24.7	-5.9	35.2	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 0.03-1GHz QP Class B

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
38.723750	17.4	100.0	V	26.0	30.3	12.9	22.6	40.0
50.012500	18.9	100.0	V	320.0	31.9	13.0	21.1	40.0
102.301250	20.2	100.0	V	68.0	33.2	13.0	23.3	43.5
204.720000	9.3	125.0	V	162.0	21.5	12.2	34.2	43.5
525.421250	17.8	100.0	Н	189.0	38.3	20.5	28.2	46.0
959.266250	25.0	100.0	Н	260.0	51.2	26.2	21.0	46.0

Radiates Emission from 1GHz to 3GHz Note: The signal beyond the limit is carrier.

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1105.000000	47.5	100.0	Н	3.0	48.5	-1.0	26.5	74
1268.000000	49.0	100.0	V	175.0	49.3	-0.3	25.0	74
1595.500000	50.3	100.0	V	113.0	51.3	1.0	23.7	74
2072.000000	53.1	100.0	V	0.0	55.8	2.7	20.9	74
2191.500000	55.6	100.0	V	136.0	59.0	3.4	18.4	74
2960.500000	51.2	100.0	Н	3.0	57.1	5.9	22.8	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1197.500000	36.3	100.0	V	284.0	37.0	-0.7	17.7	54
1270.000000	36.8	100.0	V	168.0	37.1	-0.3	17.2	54
1597.000000	37.7	100.0	V	347.0	38.7	1.0	16.3	54
1997.000000	38.5	100.0	V	97.0	40.7	2.2	15.5	54
2372.000000	37.9	100.0	Н	153.0	42.1	4.2	16.1	54
2961.000000	40.0	100.0	Н	17.0	45.9	5.9	14.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3768.000000	43.8	100.0	V	278.0	46.2	-2.4	30.2	74
5433.000000	46.7	100.0	V	182.0	47.9	1.2	27.3	74
7218.000000	50.4	100.0	Н	24.0	55.9	5.5	23.6	74
9594.000000	53.7	100.0	Н	33.0	64.4	10.7	20.3	74
13290.000000	56.2	100.0	Н	1.0	73.9	17.7	17.8	74
17994.000000	61.7	100.0	Н	61.0	87.5	25.8	12.3	74

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
3927.000000	32.6	100.0	V	351.0	34.7	-2.1	21.4	54
5400.000000	36.0	100.0	Н	346.0	37.0	1.0	18.0	54
7263.000000	39.6	100.0	V	341.0	45.1	5.5	14.4	54
9795.000000	43.0	100.0	Н	61.0	54.0	11.0	11.0	54
13308.000000	45.3	100.0	V	0.0	63.0	17.7	8.7	54
17973.000000	51.5	100.0	Н	81.0	77.0	25.5	2.5	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RE 18-26.5GHz PK+AV

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	Peak (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18377.187500	32.0	V	129.0	36.8	-4.8	42.0	74
19490.687500	27.7	Н	7.0	35.3	-7.6	46.3	74
21628.437500	26.6	V	180.0	35.7	-9.1	47.4	74
23247.687500	27.4	Н	84.0	35.0	-7.6	46.6	74
24814.875000	28.4	V	160.0	35.3	-6.9	45.6	74
25210.125000	29.8	Н	0.0	36.1	-6.3	44.2	74

Frequency (MHz)	Average (dBuV/m)	Polari zation	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
18397.375000	21.1	V	129.0	26.0	-4.9	32.9	54
19482.187500	16.3	Н	131.0	24.0	-7.7	37.7	54
21648.625000	15.3	V	98.0	24.5	-9.2	38.7	54
23267.875000	16.2	V	129.0	23.5	-7.3	37.8	54
24729.875000	17.1	Н	53.0	23.3	-6.2	36.9	54
25235.625000	18.7	Н	100.0	24.7	-6.0	35.3	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

4.11 Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz.The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage from 220V/50Hz to 110V/60Hz.

Limits

Frequency	Conducted Limits(dBμV)							
(MHz)	Quasi-peak	Average						
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]						
0.5 - 5	56	46						
5 - 30	60	50						
*: Decrease	* Decreases with the logarithm of the frequency.							

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=2.69 dB.

Test Results:

Following plots, Blue trace uses the peak detection, Green trace uses the average detection.

FCC RF Test Report Report No: RXA1604-0066RF01 N Line FCC15CQP FCC15CAV Final Measurement Results QP Delta Frequency QP Level QP Limit Phase PΕ dΒμV dΒμV 0.41562 38.55 57.54 18.99 Ν and 0.57968 29.67 56.00 26.33 gnd 2.07968 gnd gnd 25.70 56.00 30.30 Ν 2.51328 25.75 56.00 30.25 N gnd 16.21249 Ν 21.61 60.00 38.39 gnd PΕ AV Level AV Limit AV Delta Phase Frequency dΒμV dΒμV 0.1539 31.05 55.79 24.74 Ν gnd 0.43125 26.71 47.23 20.52 N gnd 0.57578 20.41 46.00 25.59 Ν gnd gnd gnd 2.19296 19.02 46.00 26.98 Ν 4.57578 19.46 46.00 26.54 N 25.22812 25.95 50.00 24.05 gnd Basic Rate-CH78 L Line FCC15CQP FCC15CAV dBµV Final Measurement Results Frequency QP Level QP Limit QP Delta Phase PΕ dΒμV dBµV MHz dΒ 0.15 0.41953 49.34 66.00 16.66 16.59 L1 gnd 40.87 57.46 L1 gnd 0.57187 26.36 56.00 29.64 1.84531 25.99 56.00 30.01 L1 gnd 3.86093 25.54 30.46 56.00 L1 gnd 4.75156 25.86 56.00 30.14 L1 gnd AV Delta dB AV Level AV Limit PΕ Frequency Phase dBµV MHz dΒμV 0.15781 25.35 30.23 55.58 gnd gnd 1.1 0.43125 21.81 47.23 25.42 L1 0.90781 1.56015 46.00 46.00 27.16 27.86 L1 L1 18.84 gnd 18.14 gnd gnd 2.4625 18.70 46.00 27.30 1.0 10.0 0.15 4.80234 18.91 46.00 27.09 L1 gnd N Line Final Measurement Results

4BhA		FCC15CQP		FCC15CAV
70				
60				
50				
40	A			
30	model water	MANAGER		
20 1 1 1	Name of the last		the or troubled	A PROPERTY OF THE PERSON NAMED IN COLUMN
10				
0.15	1.0			10.0 30.0 MHz
				MILE

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	дВμ∨	dΒμ∨	dΒ	-	-
0.1539	47.82	65.79	17.97	N	gnd
0.43125	39.11	57.23	18.12	N	gnd
0.59531	29.50	56.00	26.50	N	gnd
1.37656	28.29	56.00	27.71	N	gnd
3.04843	28.12	56.00	27.88	N	gnd
4.22031	26.26	56.00	29.74	N	gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	Мηθρ	dΒμV	dB	-	-
0.1539	30.55	55.79	25.24	N	gnd
0.43515	22.72	47.15	24.43	N	gnd
0.59921	19.57	46.00	26.43	N	gnd
1.68125	19.13	46.00	26.87	N	gnd
2.55234	19.44	46.00	26.56	N	gnd
4.58359	19.12	46.00	26.88	N	gnd

FCC RF Test Report Report No: RXA1604-0066RF01 EDR-CH0 L Line FCC15CQP FCC15CAV dBµV Final Measurement Results QP Level QP Limit QP Delta PΕ Phase Frequency dBµ∀ dBµ∨ dΒ gnd gnd gnd 0.41953 40.22 57.46 17.24 L1 0.70078 26.86 56.00 29.14 L1 2.0875 25.31 56.00 30.69 L1 gnd 3.81015 25.83 56.00 30.17 L1 gnd gnd Frequency AV Level AV Limit AV Delta Phase PE dΒ dBµV dΒμV 0.18125 27.96 54.43 26.47 L1 gnd 0.43906 47.08 25.80 21.28 L1 gnd 0.74765 18.66 46.00 27.34 gnd gnd gnd 1.8375 18.88 46.00 27.12 L1 3.43125 46.00 26.95 19.05 L1 0.15 1.0 10.0 4.72812 19.62 46.00 26.38 N Line F0C15CQF FCC15CAV dBµV 80 ⊏ Final Measurement Results Frequency QP Level QP Limit QP Delta Phase PΕ MHz dBµ∀ dBµ∀ 46.77 66.00 19.23 N gnd 38.87 29.51 0.41953 18.59 gnd 0.57187 N gnd gnd 56.00 26.49 1.79062 23.86 56.00 32.14 4.05234 4.36093 26.10 25.92 56.00 56.00 29.90 30.08 N N gnd gnd AV Limit PΕ AV Level AV Delta Phase Frequency dBµV dBµ∨ dΒ gnd 0.43125 26.53 47.23 20.70 N gnd 0.57187 19.96 46.00 26.04 Ν gnd gnd 1.66171 4.05234 18.93 46.00 27.07 N 19.30 46.00 26.70 gnd 10.0 1.0 4.72031 19.89 46.00 26.11 N gnd EDR-CH39 L Line FCC15CQF FCC15CAV dBµ\ 80 ₁ Final Measurement Results QP Limit QP Delta Frequency QP Level Phase PΕ dBµV dBµ∨ 0.15 46.79 66.00 19.21 L1 gnd 0.42343 0.90781 40.59 26.28 57.38 56.00 16.79 29.72 L1 L1 gnd gnd 1.85703 25.61 56.00 30.39 L1 gnd 3.04843 26.55 56.00 29.45 L1 gnd gnd 4.57968 26.34 56.00 Frequency AV Level AV Limit AV Delta Phase PΕ MHz dBuV dΒμV dΒ gnd gnd 0.15 27.71 56.00 28.29 0.42343 L1 23.34 47.38 24.04

L1

L1

L1

gnd

gnd

gnd

gnd

MHz 30

1.00937

1.34531

2.51718

4.57968

18.79

19.09

19.46

46.00

46.00

46.00

27.21

26.91

26.54

FCC RF Test Report Report No: RXA1604-0066RF01 N Line FCC15CQF FCC15CAV Final Measurement Results QP Level QP Limit QP Delta Phase PE Frequency dΒμV 0.15 0.41953 46.71 66.00 57.46 56.00 38.47 18.99 Ν gnd gnd 29.33 31.61 29.99 Ν 1.78671 24.39 56.00 gnd 4.0875 56.00 gnd 26.01 4.77109 26.59 56.00 29.41 AV Level dΒμV AV Limit dΒμV AV Delta dB Frequency MHz PΕ Phase 0.15781 55.58 26.24 29.34 gnd gnd 0.57187 2.10703 20.02 19.36 46.00 46.00 25.98 26.64 N N gnd and 3.06796 19.14 46.00 26.86 4.31406 19.59 46.00 26.41 gnd EDR-CH78 L Line FCC15CQP FCC15CAV 48pV Final Measurement Results Frequency QP Level QP Limit QP Delta Phase PΕ MHz dBµV dBµV dΒ 0.1539 47.21 65.79 18.58 L1 gnd gnd 0.43125 39.81 57.23 17.42 L1 0.73203 1.66562 26.96 56.00 29.04 32.55 L1 L1 gnd gnd 23.45 56.00 3.73984 4.57187 26.12 26.38 56.00 56.00 29.88 29.62 gnd L1 qnd AV Limit PE Frequency AV Level AV Delta Phase dΒμV dBµ∨ dΒ gnd 0.41953 47.46 46.00 24.58 26.95 22.88 L1 gnd 0.92734 L1 L1 L1 gnd 19.05 1.73984 3.67734 19.02 46.00 26.98 gnd 19.30 46.00 26.70 gnd 0.15 1.0 10.0 19.47 46.00 L1 gnd N Line Final Measurement Results

BuV 0	— — FCC15CQP		FCC15CAV
0			
0			
o to			
Ann.	-++++++-		
0	4-1-1-1-1-1-1		4
1 Mary	marker 1	charles plantide de la company	
0	* Washington	PART THEFT	Mark Service
A MARK AN	X X	× ×	
o - Militaria	a shop with a proposition which administration of	A PARTITION OF THE PARTY AND T	A STATE OF THE PARTY OF THE PAR
0			i
0			
0.15	1.0		10.0 MHz

ririai weasureri	ieni riesuits			Phase PE N gnd	
Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dΒμV	dΒμV	dΒ	-	-
0.15	46.71	66.00	19.29	N	gnd
0.41953	38.75	57.46	18.71	N	gnd
0.59531	28.60	56.00	27.40	N	gnd
1.40781	24.66	56.00	31.34	N	gnd
3.43906	25.18	56.00	30.82	N	gnd
4.41562	25.56	56.00	30.44	N	gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBµV	dBμV	dB	- riiase	-
WITHZ	ович	авич	ub	-	-
0.25546	24.14	51.58	27.44	N	gnd
0.42343	28.05	47.38	19.33	N	gnd
0.69296	19.05	46.00	26.95	N	gnd
1.40781	19.17	46.00	26.83	N	gnd
3.84531	19.09	46.00	26.91	N	gnd
4.98593	19.77	46.00	26.23	N	gnd

5 Main Test Instruments

Name	Туре	Manufacturer	Serial Number	Calibration Date	Expiration Time
BT Base Station Simulator	CBT	R&S	100271	2015-05-25	2016-05-24
Loop Antenna	FMZB1519	SCHWARZBEC K	1519-047	2014-02-29	2017-02-28
EMI Test Receiver	ESCS30	R&S	100138	2015-12-17	2016-12-16
LISN	ENV216	R&S	101171	2015-12-17	2016-12-16
EMI Test Receiver	ESCI	R&S	100948	2015-05-25	2016-05-24
TRILOG Broadband Antenna	VULB 9163	Schwarzbeck	9163-201	2013-11-25	2016-11-24
Double Ridged Waveguide Horn Antenna	HF907	R&S	100126	2015-07-01	2018-06-30
Power Splitter	SHX-GF2-2- 13	Hua Xiang	10120101	NA	NA
Spectrum Analyzer	FSV30	R&S	100815	2015-12-17	2016-12-16
Spectrum Analyzer	N9010A	Agilent	MY47191109	2015-05-22	2016-05-21
Standard Gain Horn	3160-09	ETS-Lindgren	00102644	2015-05-19	2018-05-18
RF Cable	SMA 15cm	Agilent	0001	2016-04-07	2016-07-06

*****END OF REPORT *****

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

Front Side

Back Side

a: EUT

Picture 1 EUT

A.2 Test Setup

Below 1GHz

Above 1GHz
Picture 2 Radiated Emission Test Setup

Picture 3 Conducted Emission Test Setup