A Neural Networks Presentation

Lawrence Chan

A out-of-date joke

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

What is Machine Learning?

Traditional Programming

Machine Learning

Slide Credit: Pedro Domingos

Deep Neural Networks

- Complicated function made of simple parts
 - "Universal approximator property"
- A lot of recent success in ML/AI has been due to better architectures for and increased ability to train neural nets
- Very messy; not a lot of good theory behind them.

Picture Credit: Michael Nielson

A "Neuron"

Train a Network by Minimizing a Loss Function

- Loss functions measure how well the classifier is doing
- For example:
 - 0-1 Loss
 - Word-Edit Distance
 - Mean-squared error
 - Cross-Entropy Loss
- Warning: loss functions not guaranteed to capture what you want!

Some math on the board.

Modern Deep Learning - "Programming by gradient descent"

Requires differentiable loss function!

Picture Credit: Andrew Ng

Backpropagation - Efficiently computing gradients

- Chain rule!

$$rac{dz}{dx} = rac{dz}{dy} \cdot rac{dy}{dx}$$

More math on board

Thankfully, you don't actually need any of that to do (simple) deep learning!

- High level interfaces (handle almost everything):
 - Sklearn
 - Keras
- Lower-level interfaces (still handle backprop and gradient updates)
 - Tensorflow
 - PyTorch

We're just going to use Scikit-Learn.

One last warning: overfitting!

- Model may be fitting to noise instead of capturing "true" trend.
- Solution:
 - Use unseen data to measure how good your classifier is "really" performing.
 - Regularization
 - Visualizing Decision Boundary (aka, manual inspection)

A Pause for Questions