UART Transmitter

Introduction: -

- There are many serial communication protocol as I2C, UART and SPI.
- A Universal Asynchronous Receiver/Transmitter (UART) is a block of circuitry responsible for implementing serial communication.
- UART is Full Duplex protocol (data transmission in both directions simultaneously)

- Transmitting UART converts parallel data from the master device (eg. CPU) into serial form and transmit in serial to receiving UART.
- Receiving UART will then convert the serial data back into parallel data for the receiving device.

Block Interface: -

Port	Width	Description
CLK	1	UART TX Clock Signal
RST	1	Synchronized reset signal
PAR_TYP	1	Parity Type
PAR_EN	1	Parity_Enable
P_DATA	8	Input data byte
DATA_VALID	1	Input data valid signal
TX_OUT	1	Serial Data OUT
Busy	1	High signal during transmission, otherwise low

Specifications: -

- UART TX receive the new data on P_DATA Bus only when Data_Valid Signal is high.
- Registers are cleared using asynchronous active low reset
- Data_Valid is high for only 1 clock cycle
- **Busy** signal is **high** as long as UART_TX is transmitting the frame, otherwise **low**.
- UART_TX couldn't accept any data on **P_DATA** during UART_TX processing, however **Data_Valid** get high.
- **S_DATA** is high in the **IDLE** case (No transmission).
- PAR_EN (Configuration)
 - 0: To disable frame parity bit
 - 1: To enable frame parity bit
- PAR_TYP (Configuration)
 - 0: Even parity bit
 - 1: Odd parity bit

Waveforms: -

Expected Input: -

Expected Output: -

All Expected Output Frames: -

1. Data Frame (in case of Parity is enabled & Parity Type is even)

- One start bit (1'b0)
- Data (LSB first or MSB, 8 bits)
- Even Parity bit
- One stop bit

2. Data Frame (in case of Parity is enabled & Parity Type is odd)

- One start bit (1'b0)
- Data (LSB first or MSB, 8 bits)
- Odd Parity bit
- One stop bit

3. Data Frame (in case of Parity is not Enabled)

- One start bit (1'b0)
- Data (LSB first or MSB, 8 bits)
- One stop bit

Recommended Block Diagram: -

Requirements: -

- 1- Implement the above Specifications for UART TX using Verilog language.
- 2- Write a testbench to validate your design using 200 MHz clock frequency.