



































Driving Constraints-2

2. Translate a body with specified function: 
$$\Phi = x_i - d_2(t) = 0$$
 and/or 
$$\Phi = y_i - d_3(t) = 0$$
 • If driving the body with initial position  $(\mathbf{x}_i^0, \mathbf{y}_i^0)$ , initial velocity  $\mathbf{v}_i^0$ , and specific angular acceleration  $\mathbf{a}_i$  yields 
$$d_2(t) = x_i^0 + v_{ix}^0 t + \frac{1}{2} a_{ix} t^2 = \mathbf{x} - \text{coordinate at time t}$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_2(t) = x_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_2(t) = x_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_3(t) = y_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_2(t) = x_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_3(t) = y_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_3(t) = y_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_3(t) = y_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$ , then 
$$d_3(t) = y_i^0 + v_{ix} t$$
 • If the body is driven with constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant velocity  $\mathbf{v}_i$  is the body is driven with the constant  $\mathbf{v}_i$  is the body is driven with the constant  $\mathbf{v}_i$  is the body is driven with the constant  $\mathbf{v}_i$  is the body is driven with the constant  $\mathbf{v}_i$  is

















































