Analysis Admission to Candidacy Examulary 11, 1984

The term "measurable" applied to sets or functions means "Lebesgue measurable". If E is a measurable set, then m(E) denotes the Labesgue measure of E. The term "increasing" applied to functions means that x < y implies f(x) < f(y).

- 1. Let X be a compact metric space and let T: $X \rightarrow X$ be a continuous mapping which satisfies d(Tx,Ty) < d(x,y) when $x \neq y$. Prove that there exists $x_0 \in X$ with $Tx_0 = x_0$.
- 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous and Lebesgue integrable over \mathbb{R} . Prove that $f(x) \to 0$ as $x \to \infty$.
- 3. Prove that Q, the set of all rational numbers, is not a G-set.
- 4. Suppose that f is an increasing function on [a,b]. Prove that there exist unique functions g and h on [a,b] such that
 - (a) g is absolutely continuous and g(a) = f(a),
 - (b) n is singular, and
 - (c) f = g + h on [a,b].
- 5. Suppose E is a measurable set, $m(E) < \infty$, $\langle f_n \rangle$ is a sequence of measurable functions on E and $f_n \to f$ a.e. on E. Prove that for each $\varepsilon > 0$

$$m(\lbrace x \in E: |f_n(x) - f(x)| \ge \epsilon \rbrace) + 0 \text{ as } n + \infty.$$

What happens if m(E) = \omega?

- Suppose g is a measurable function on $(0,\infty)$, $\int_0^\infty |g(t)|dt < \infty$ and $\int_0^\infty t |g(t)|dt < \infty$
 - (a) Show that $f(x) = \int_0^\infty g(t) \sin(xt) dt$ defines a bounded function f on $(0,\infty)$.
 - (b) Prove that f is differentiable and $f'(x) = \int_0^\infty tg(t)\cos(xt)dt$. (Hint: $|\sin b - \sin a| \le |b - a|$.)

- 7. Suppose $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. let $\langle g_n \rangle$ be a sequence in $L^q([0,1])$ such that
 - (a) $M = \sup_{n} ||g_n||_q < \infty$ and
 - (b) $\int_E g_n \to 0$ as $n \to \infty$ for each measurable set $E \subseteq [0,1]$. Prove that for each $f \in L^p([0,1])$ $\int_0^1 f g_n \to 0$.
- 8. Let 'E be a measurable set of finite measure.
 - (a) Prove that for each $\epsilon > 0$ there exists a finite disjoint union of open intervals U such that $m(E \triangle U) < \epsilon$. (Recall that $E \triangle U = (E-U) \cup (U-E)$.)
 - (b) Let ϕ be a measurable simple function on [a,b] and $\varepsilon > 0$. Prove there exists a step function f on [a,b] with $m(\{x \in E: f(x) \neq \phi(x)\}) < \varepsilon$.
- 9. True or False. Either prove the statement or give a counter example.
 - ((a)) Every bounded measurable function on [a,b] is Riemann integrable.
 - (b) If f is continuous and increasing on [0,1], then f is absolutely continuous.
 - (c) If $f \in L^{\infty}([0,1])$, then $||f||_{\mathfrak{w}} = \lim_{p \to \infty} ||f||_{p}$.
 - (d) If f is a measurable function on R and f > 0 a.e. then there exist 6 > 0 and a measurable set E with m(E) > 0 and f(x) > 6 for x \in E.