

Lecture 3: Large Sample Theory

STA261 – Probability & Statistics II

Ofir Harari

Department of Statistical Sciences

University of Toronto

Outline

Asymptotic Normality of Maximum Likelihood Estimators

Motivating Example

The Score statistic and the Fisher Information

The Main Theorem

Invariance of Maximum Likelihood Estimators and Transformations

Other Large Sample Properties of MLE

Consistency in Probability

The Plug-in Principle

Summary and Concluding Remarks

Example: the exponential distribution

- Suppose now that $X_1 \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\lambda)$ (with pdf $f(x|\lambda) = \lambda e^{-\lambda x}, x \geq 0$)
- Let us find the MLE of λ –

*
$$\mathcal{L}(\lambda) = f(x_1, \dots, x_n | \lambda) = \prod_{i=1}^n f(x_i | \lambda) = \lambda^n \exp\left\{-\lambda \sum_{i=1}^n x_i\right\}$$

$$\star \ \ell(\lambda) = n \log \lambda - \lambda \sum_{i=1}^{n} x_i$$

$$\star \ \ell'(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i = 0 \Longrightarrow \widehat{\lambda} = \frac{1}{\overline{X}} \text{ (surprising?)}$$

yes; because MME for exponential is X instead

$$\star \ell''(\hat{\lambda}) = -\frac{n}{\hat{\lambda}^2} < 0 \Longrightarrow \max$$

- Let us now explore the sampling distribution of the MLE
- Assume $\lambda=1$ and draw a histogram of $\widehat{\lambda}_{\mathrm{MLE}}=\frac{1}{\overline{X}}$

>

Sampling distribution of $\widehat{\lambda}_{\scriptscriptstyle{\mathrm{MLE}}}$ by simulation

- > lambda <- 1 distribution of estimator (for ~Exp)
- > n <- 20 #sample size
- > X <- matrix(rexp(n*10000 lambda), ncol=n) # a 10,000 by n matrix of random exponentials
- > lambdaHat <- 1/apply(X, 1, mean) # a sample of 10,000 MLEs for lambda
- > hist(lambdaHat, freq=FALSE) # plotting the histogram

Histogram of $1/\overline{X}$ (n = 500)

Asymptotic normality

Definition

Let $X_i, \ldots, X_n \sim f_\theta$. We say that $\widehat{\theta}_n = \widehat{\theta}_n(X_1, \ldots, X_n)$ is asymptotically normal with mean θ and variance $\frac{\sigma^2}{n}$ if for all $z \in \mathbb{R}$

$$F_{Z_n}(z) \stackrel{n \to \infty}{\longrightarrow} \Phi(z),$$

where $F_{Z_n}(\cdot)$ is the cdf of $Z_n = \frac{\sqrt{n}}{\sigma} \left(\widehat{\theta}_n - \theta \right)$ and $\Phi(\cdot)$ is the standard normal cdf.

- Alternatively, write equivalent to convergence in cdf $\sqrt{n}\left(\widehat{\theta}_n \theta\right) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \sigma^2) \ (\text{converges in distribution})$
- Not a new concept: if $\{X_i\}$ are i.i.d r.v.'s with mean μ and variance σ^2 , we know (from the CLT) that

$$Z_n = \sqrt{n} \left(\overline{X}_n - \mu \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

• We expect \overline{X} to be asymptotically normal then – but why would $\frac{1}{\overline{X}}$...? i.e. estimator is asymptotically normal too?

The Score statistic and the Fisher Information

Definition

Let $X_i, \ldots, X_n \sim f_{\theta}$ with $\ell(\theta) = \log f(x_1, \ldots, x_n | \theta)$.

- 1. The *Score* with respect to θ is
- $u(\theta) := \ell'(\theta)$. statistics: a random variable
- 2. The Fisher Information for θ is

$$\mathcal{I}(\theta) := -\mathbb{E}\left\{\ell''(\theta)\right\}.$$
 a scalar

• In the exponential example, we have already calculated

$$u(\lambda) = \ell'(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i$$
 and $\ell''(\lambda) = -\frac{n}{\lambda^2}$

• The Fisher information is therefore $\mathcal{I}(\lambda) = -\mathbb{E}\left\{\ell''(\lambda)\right\} = \frac{n}{\lambda^2}$

• For $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$, denote

$$\mathcal{I}^*(\theta) := -\mathbb{E}\left\{ \frac{\partial^2 \log f(x|\theta)}{\partial \theta^2} \right\}$$

- the Fisher information of θ based on a single observation
- Note that

$$\begin{split} \mathcal{I}(\theta) &= -\mathbb{E}\left\{\frac{\partial^2 \log f(x_1, \dots, x_n | \theta)}{\partial \theta^2}\right\} = -\mathbb{E}\left\{\frac{\partial^2 \log \prod_{i=1}^n f(x_i | \theta)}{\partial \theta^2}\right\} \\ &= -\mathbb{E}\left\{\frac{\partial^2 \sum_{i=1}^n \log f(x_i | \theta)}{\partial \theta^2}\right\} = -\sum_{i=1}^n \mathbb{E}\left\{\frac{\partial^2 \log f(x_i | \theta)}{\partial \theta^2}\right\} \\ &= n\mathcal{I}^*(\theta) & \text{linearity of expected value} \end{split}$$

Proposition

Under some regularity conditions

1.
$$\mathcal{I}(\theta) = \mathbb{E}\left[u^2(\theta)\right]$$

2.
$$\frac{u(\theta)}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \mathcal{I}^*(\theta))$$
 (asymptotically normal)

3.
$$-\frac{1}{n} \frac{\partial^2 \ell(\theta)}{\partial \theta^2} \stackrel{P}{\longrightarrow} \mathcal{I}^*(\theta)$$

Proof:

1. Denoting $\underline{x} = (x_1, \dots, x_n)$, we have

$$\mathbb{E}[u(\theta)] = \int u(\theta) f(\underline{x}|\theta) d\underline{x} = \int \frac{\partial \log f(\underline{x}|\theta)}{\partial \theta} f(\underline{x}|\theta) d\underline{x} = \int \frac{\partial f(\underline{x}|\theta)}{\partial \theta} d\underline{x}$$
$$= \frac{\partial}{\partial \theta} \int f(\underline{x}|\theta) d\underline{x} = \frac{\partial}{\partial \theta} (1) = 0.$$

We have shown that $\mathbb{E}[u(\theta)] = 0$. Differentiating once again we have

$$0 = \frac{\partial}{\partial \theta} \mathbb{E}[u(\theta)] = \frac{\partial}{\partial \theta} \int \frac{\partial \log f(\underline{x} \big| \theta)}{\partial \theta} f(\underline{x} \big| \theta) \mathrm{d}\underline{x}$$

$$\text{product rule} \quad = \int \frac{\partial^2 \log f(\underline{x} \big| \theta)}{\partial \theta^2} f(\underline{x} \big| \theta) \mathrm{d}\underline{x} + \int \frac{\partial \log f(\underline{x} \big| \theta)}{\partial \theta} \frac{\partial f(\underline{x} \big| \theta)}{\partial \theta} \mathrm{d}\underline{x}$$

$$\text{chain rule} \quad = \mathbb{E}\left\{\frac{\partial^2 \log f(\underline{\boldsymbol{X}}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^2}\right\} + \int \left[\frac{\partial \log f(\underline{\boldsymbol{x}}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]^2 f(\underline{\boldsymbol{x}}|\boldsymbol{\theta}) \mathrm{d}\underline{\boldsymbol{x}}$$

$$= -\mathcal{I}(\theta) + \mathbb{E}\left\{ \left[\frac{\partial \ell(\theta)}{\partial \theta} \right]^2 \right\} = -\mathcal{I}(\theta) + \mathbb{E}\left[u^2(\theta) \right].$$

note the score is a RV i.e. $sqrt\{n\} * u / n \sim N(0, sigma^2)$ 2. Since

$$\frac{u(\theta)}{\sqrt{n}} = \frac{1}{\sqrt{n}} \frac{\partial \log f(x_1, \dots, x_n | \theta)}{\partial \theta} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\partial \log f(x_i | \theta)}{\partial \theta},$$

it is asymptotically normal (from the CLT). We have already shown that $\mathbb{E}[u] = 0$, and thus

$$Var[u(\theta)] = \mathbb{E}[u^2(\theta)] = \mathcal{I}(\theta),$$

hence
$$\operatorname{Var}\left[\frac{u(\theta)}{\sqrt{n}}\right] = \frac{1}{n}\mathcal{I}(\theta) = \mathcal{I}^*(\theta).$$
 fisher info based on single observation

3. Simple application of the Weak Law of Large Numbers yields

$$-\frac{1}{n}\frac{\partial^2 \ell(\theta)}{\partial \theta^2} = -\frac{1}{n}\sum_{i=1}^n \frac{\partial^2 \log f(x_i|\theta)}{\partial \theta^2} \xrightarrow{P} -\mathbb{E}\left\{\frac{\partial^2 \log f(x|\theta)}{\partial \theta^2}\right\} = \mathcal{I}^*(\theta).$$

Slutsky's Theorem

 Before we proceed to prove the asymptotic normality of MLEs, we bring (without a proof) the following result:

Slutsky's Theorem

Let $\{X_n\}$ and $\{Y_n\}$ be two sequences of r.v.'s such that $X_n \xrightarrow{\mathcal{D}} X$ and $Y_n \xrightarrow{\mathcal{P}} c$ (for some constant c), and let $g(\cdot, \cdot)$ be a continuous function. Then

$$g(X_n, Y_n) \xrightarrow{\mathcal{D}} g(X, c).$$

• In particular, if $X_n \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$ and $Y_n \xrightarrow{\mathcal{P}} c$,

$$X_n Y_n \xrightarrow{\mathcal{D}} \mathcal{N}(0, c^2 \sigma^2).$$

$$X_n Y_n -> cX$$

Asymptotic normality of MLEs

Theorem

Let X_1, \ldots, X_n be a random sample from f_{θ} and let $\widehat{\theta}_n$ denote the maximum likelihood estimator of θ . Under the same regularity conditions as before, $\widehat{\theta}_n$ is asymptotically normal with mean θ and variance $\mathcal{I}^{-1}(\theta)$.

"Proof":

• When deriving the Newton-Raphson iterations, we showed that

$$\widehat{\theta}_{\mathrm{MLE}} - \theta \approx -\frac{\ell'(\theta)}{\ell''(\theta)} = -\frac{u(\theta)}{\ell''(\theta)}.$$

Write

$$\sqrt{n}\left(\widehat{\theta}_{\mathrm{MLE}} - \theta\right) = -\sqrt{n} \cdot \frac{u(\theta)}{\ell''(\theta)} = \frac{\frac{1}{\sqrt{n}}u(\theta)}{-\frac{1}{n}\ell''(\theta)}$$

Asymptotic normality of MLEs (cont.)

"Proof" (cont.):

• So far we have

$$\sqrt{n}\left(\widehat{\theta}_{\mathrm{MLE}} - \theta\right) = \frac{\frac{1}{\sqrt{n}}u(\theta)}{-\frac{1}{n}\ell''(\theta)}$$

- In the proposition we proved, we showed that
 - 1. The numerator $\xrightarrow{\mathcal{D}} \mathcal{N}(0, \mathcal{I}^*(\theta))$
 - 2. The denominator $\xrightarrow{\mathcal{P}} \mathcal{I}^*(\theta)$
- Now seems like the right time to apply Slutsky's Theorem:

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}} - \boldsymbol{\theta}\right) \overset{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(\boldsymbol{0}, \left(\mathcal{I}^*(\boldsymbol{\theta})\right)^{-2} \mathcal{I}^*(\boldsymbol{\theta})\right) = \mathcal{N}\left(\boldsymbol{0}, \frac{1}{\mathcal{I}^*(\boldsymbol{\theta})}\right),$$

• Alternatively, $\widehat{\theta}_{\text{MLE}} \sim AN\left(\theta, \frac{1}{n\mathcal{I}^*(\theta)}\right) = AN\left(\theta, \mathcal{I}^{-1}(\theta)\right)$.

Back to the exponential example

• We just proved:

$$\widehat{\theta}_{\text{MLE}} \sim AN\left(\theta, \mathcal{I}^{-1}(\theta)\right)$$
 (asymptotically normal)

- We have already calculated $\mathcal{I}(\lambda) = \frac{n}{\lambda^2}$
- From the latest Theorem, the distribution of $\widehat{\lambda}_{\text{MLE}} = \frac{1}{|\overline{X}|}$ should be approximately normal, with mean λ and variance $\frac{1}{\mathcal{I}(\lambda)} = \frac{\lambda^2}{n}$

Back to the R simulation

```
> lambda <- 1
> n <- 500
> X <- matrix(rexp(n*10000, lambda), ncol=n)
> lambdaHat <- 1/apply(X, 1, mean)
> hist(lambdaHat, freq=FALSE)
> z <- seq(-10, 10, by=.01)
> lines(z, dnorm(z, mean=lambda, sd=lambda/sqrt(n)))
```

Histogram of $1/\overline{X}$ with normal approximation

Example: Bernoulli distribution

Example

Let $X_1 ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Binom}(1, p)$. Find the MLE of p and derive its normal approximation.

Solution:

Let us write the likelihood first – Note that we are ignoring nCx here since constant does not contribute to likelihood

$$\mathcal{L}(p) = \prod_{i=1}^{n} f(x_i | p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i},$$

and the log-likelihood -

$$\ell(p) = \sum_{i=1}^{n} x_i \log p + \left(n - \sum_{i=1}^{n} x_i\right) \log(1-p).$$

Bernoulli distribution (cont.)

Solution (cont.):

$$\ell(p) = \sum_{i=1}^{n} x_i \log p + \left(n - \sum_{i=1}^{n} x_i\right) \log(1-p).$$

Solving

$$\ell'(p) = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0 \Longrightarrow (1 - p) \sum_{i=1}^{n} x_i = \left(n - \sum_{i=1}^{n} x_i\right) p$$

$$\Longrightarrow \sum_{i=1}^{n} x_i = np \Longrightarrow \widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

* Note that

$$\ell''(p) = -\frac{\sum_{i=1}^{n} x_i}{p^2} - \frac{n - \sum_{i=1}^{n} x_i}{(1-p)^2} < 0,$$

therefore it is a maximum.

Bernoulli distribution (cont.)

Solution (cont.):

$$\ell''(p) = -\frac{\sum_{i=1}^{n} x_i}{n^2} - \frac{n - \sum_{i=1}^{n} x_i}{(1-n)^2}$$

 $\ell''(p) = -\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n - \sum_{i=1}^n x_i}{(1-p)^2}$ note fisher information is a function of true population parameter

• The Fisher information is

$$\mathcal{I}(p) = -\mathbb{E}\left[\ell''(p)\right] = \frac{\sum_{i=1}^{n} \mathbb{E}[X_i]}{p^2} + \frac{n - \sum_{i=1}^{n} \mathbb{E}[X_i]}{(1-p)^2}$$
$$= \frac{np}{p^2} + \frac{n - np}{(1-p)^2} = \frac{n}{p} + \frac{n}{(1-p)} = \frac{n}{p(1-p)},$$

hence

$$\widehat{p} \sim AN\left(p, \frac{p(1-p)}{n}\right).$$

* Old news - this is the CLT for Bernoulli r.v.'s

by asymptotic normality of MLE

Invariance of MLEs and transformations

Theorem

Let $X_1 \ldots, X_n$ be a sample from f_{θ} and let $\eta = g(\theta)$ for some function $g(\cdot)$. Then

- 1. $\widehat{\eta}_{\text{MLE}} = g\left(\widehat{\theta}_{\text{MLE}}\right)$, and
- 2. If $g(\cdot)$ is differentiable then $\widehat{\eta}_{\mathrm{MLE}} \sim AN \left(\eta, \left[g'(\theta)\right]^2 \mathcal{I}^{-1}(\theta)\right)$

Proof:

1. Denote
$$\widehat{\eta} = g\left(\widehat{\theta}_{\mathrm{MLE}}\right)$$
. We need to show that $\widehat{\eta} = \widehat{\eta}_{\mathrm{MLE}}$, that is:
$$f(x_1, \dots, x_n | \eta) \leq f\left(x_1, \dots, x_n | \widehat{\eta}\right) \text{ For any } \eta. \text{ To show that,}$$

$$f(x_1, \dots, x_n | \eta) = \max_{\theta: g(\theta) = \eta} f(x_1, \dots, x_n | \theta) \leq \max_{\theta} f(x_1, \dots, x_n | \theta)$$
 how does this work= $f\left(x_1, \dots, x_n | \widehat{\theta}_{\mathrm{MLE}}\right) = \max_{\theta: g(\theta) = \widehat{\eta}} f(x_1, \dots, x_n | \theta)$
$$= f\left(x_1, \dots, x_n | \widehat{\eta}\right).$$

Invariance of MLEs and transformations (cont.)

Proof (cont.):

2. From the last Theorem, $\widehat{\eta}_{\text{MLE}} \sim AN\left(\eta, \mathcal{I}^{-1}(\eta)\right)$. Now,

$$u(\theta) = \ell'(\theta) = \ell'(\eta)g'(\theta),$$

hence

chain rule: I is a function a function of eta

$$\mathcal{I}(\theta) = \mathbb{E}\left[u^2(\theta)\right] \, = \left[g'(\theta)\right]^2 \mathbb{E}\left\{\left[\ell'(\eta)\right]^2\right\} \, = \left[g'(\theta)\right]^2 \mathcal{I}(\eta),$$

thus

$$\frac{1}{\mathcal{I}(\eta)} = \frac{\left[g'(\theta)\right]^2}{\mathcal{I}(\theta)}.$$

Example: MLE for the log-odds

Theorem

Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ Binom(1, p). Find the MLE of the log-odds

$$\psi = \log \frac{p}{1 - p}$$

and derive its asymptotic sampling distribution.

Solution:

use invariance of MLE to calcualte

- We have already calculated $\widehat{p}_{\text{MLE}} = \overline{X}$ and $\mathcal{I}(p) = \frac{n}{n(1-p)}$.
- Denote $\theta := g(p) = \log \frac{p}{1-p}$. From the invariance of the MLE,

$$\widehat{\theta}_{\text{MLE}} = g(\widehat{p}_{\text{MLE}}) = \log \frac{\overline{X}}{1 - \overline{X}}.$$

Example: MLE for the log-odds (cont.)

Solution (cont.):

$$g(p) = \log \frac{p}{1 - p}$$

• Now,

$$g'(p) = \frac{1-p}{p} \cdot \frac{1 \cdot (1-p) - (-1) \cdot p}{(1-p)^2} = \frac{1}{p(1-p)},$$

and the asymptotic variance of $\widehat{\theta}_{\text{MLE}}$ is given by

$$[g'(p)]^2 \mathcal{I}^{-1}(p) = \frac{1}{p^2(1-p)^2} \cdot \frac{p(1-p)}{n} = \frac{1}{np(1-p)}.$$

• In conclusion,

$$\log \frac{\overline{X}}{1-\overline{X}} \sim AN \left(\log \frac{p}{1-p} \; , \; \frac{1}{np(1-p)} \right).$$

Consistency of MLEs intuition: MLE already converges in distribution to normal

- We have shown that $\mathcal{I}(\theta) = n\mathcal{I}^*(\theta)$. From this we gather that
 - 1. the Fisher information grows along with the sample size,
 - 2. the variance of $\widehat{\theta}_{\text{MLE}}$ tends to 0 as $n \to \infty$, and that
 - 3. $\sqrt{n}(\widehat{\theta}_{\mathrm{MLE}} \theta) \sim AN(0, \mathcal{I}^{*-1}(\theta))$ no this is right!!! have to be star

Theorem

If the regularity conditions for the asymptotic normality are satisfied, the MLE is consistent (in probability).

Proof: Recall that the meaning of asymptotic normality is that

$$F_{Z_n}(z) \stackrel{n \to \infty}{\longrightarrow} \Phi(z)$$
 for $Z_n = \sqrt{n\mathcal{I}^*(\theta)}(\widehat{\theta}_{\text{MLE}} - \theta)$.

Consistency of MLEs (cont.)

• We need to show that for any $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(|\widehat{\theta}_{\text{MLE}} - \theta| > \varepsilon\right) = 0,$$

or conversely -

$$\lim_{n \to \infty} \mathbb{P}\left(|\widehat{\theta}_{\text{MLE}} - \theta| \le \varepsilon\right) = 1.$$

• But

should be I not I* here

$$\begin{split} \mathbb{P}\left(|\widehat{\theta}_{\mathrm{MLE}} - \theta| \leq \varepsilon\right) &= \mathbb{P}\left(\left|\sqrt{n\mathcal{I}^*(\theta)}(\widehat{\theta}_{\mathrm{MLE}} - \theta)\right| \leq \varepsilon\sqrt{n\mathcal{I}^*(\theta)}\right) \\ &= 2\Phi\left(\varepsilon\sqrt{n\mathcal{I}^*(\theta)}\right) - 1 + \underline{\delta_n}, \end{split}$$

where $\delta_n \to 0$ as $n \to \infty$ (why?)

deviation from normality

• Hence

$$\lim_{n \to \infty} \mathbb{P}\left(|\widehat{\theta}_{\text{MLE}} - \theta| \le \varepsilon\right) = 2 - 1 + 0 = 1.$$

The plug-in principle

- In the Poisson example, we concluded that $\widehat{\lambda}_{\mathrm{MLE}} \sim AN\left(\lambda,\frac{\lambda}{n}\right)$
- Likewise, in the Bernoulli example $\widehat{p}_{\text{MLE}} \sim AN\left(p, \frac{p(1-p)}{n}\right)$
- In general $\widehat{\theta}_{\scriptscriptstyle \mathrm{MLE}} \sim \mathit{AN}\left(\theta, \sigma^2(\theta)\right)$ is this always true
- We wish to provide some measure of uncertainty about our estimate of θ
 - A natural candidate: the standard deviation
 - Useless if dependent on θ the same parameter we wish to estimate

Definition

The standard deviation of an estimator $\widehat{\theta}$ of a parameter θ is called the *standard* error of $\widehat{\theta}$.

The plug-in principle (cont.)

• The following result is a further application of Slutsky's Theorem:

Theorem

Let $\widehat{\theta}_{\text{MLE}}$ be the MLE of θ satisfying the regularity conditions for asymptotic normality, i.e.

$$\widehat{\theta}_{\text{MLE}} \sim AN(\theta, \mathcal{I}^{-1}(\theta)).$$

Then for any consistent estimator $\widehat{\theta}$ of θ

$$\widehat{\theta}_{\text{MLE}} \sim AN(\theta, \mathcal{I}^{-1}(\widehat{\theta})).$$

In particular,

$$\widehat{\theta}_{\text{MLE}} \sim AN(\theta, \mathcal{I}^{-1}(\widehat{\theta}_{\text{MLE}})).$$

pluggin in consistent estimators to variance does not affect asymptotic normality of MLE sampling distribution

Example: Bernoulli sample

- Suppose that we flip a coin 100 times and it comes up heads 80 times
- p the probability of coming up heads
- We have found that $\widehat{p}_{\mathrm{MLE}} = \overline{X} = 80/100 = 0.8$
- Moreover, we calculated that $\widehat{p}_{\mathrm{MLE}} \sim AN\left(p, \frac{p(1-p)}{n}\right)$
- The latest result states that

$$\widehat{p}_{\mathrm{MLE}} \sim AN\left(p, \frac{\overline{X}(1-\overline{X})}{n}\right) = AN\left(p, \frac{0.8 \times 0.2}{100}\right) = AN\left(p, 0.04^{2}\right)$$
plugin estimators to population param

 We say that "the maximum likelihood estimate of p is 0.8, with an estimated standard error of 0.04".

Summary of Maximum Likelihood Estimation

• Under some regularity conditions

$$\widehat{\theta}_{\text{MLE}} \sim AN(\theta, \mathcal{I}^{-1}(\theta)), \text{ where } \mathcal{I}(\theta) = -\mathbb{E}\left[\ell''(\theta)\right].$$

- If said conditions are met, the MLE is also consistent in probability.
- The MLE of $g(\theta)$ is $g(\widehat{\theta}_{\text{MLE}})$. If $g(\cdot)$ is differentiable then

$$g(\widehat{\theta}_{\text{MLE}}) \sim AN \left(g(\theta), \left[g'(\theta) \right]^2 \mathcal{I}^{-1}(\theta) \right).$$

- When the asymptotic variance of $\widehat{\theta}_{\text{MLE}}$ is a function of θ itself, we can substitute $\widehat{\theta}_{\text{MLE}}$ for θ . The estimated standard error is then
- $\text{1. MLE sampling distributio} \widehat{\widehat{\sigma}}_{\widehat{\theta}_{\mathrm{MLE}}} = \mathcal{I}^{-1/2}(\widehat{\theta}_{\mathrm{MLE}}).$
- 2. MLE is consistent
- 3. MLE is functional invariant
- 4. can derive estimated MLE standard error by plug in principle 31/32

A note on regularity conditions

- We repeatedly mentioned "regularity conditions" that must be satisfied for MLEs to be asymptotically normal
- A long list of conditions, allowing for the full proof to be carried out
- For example, differentiation and integration need be interchangeable
- $\widehat{\theta}_{\text{MLE}}$ must not be a boundary point of the parameter space
- Other conditions concern the differentiability of the likelihood
- When these conditions are violated, $\sqrt{n}\left(\widehat{\theta}_{\text{MLE}} \theta\right)$ will not necessarily converge to a normal distribution
- See handout for an example