CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 21 GIUGNO 2017

Svolgere i seguenti esercizi,

qiustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di partizione di un insieme. Siano

$$F_1 = \{\{1\}, \{2,3\}, \{1,4\}\}, \qquad F_2 = \{1, \{3,4\}, \{2\}\}, \qquad F_3 = \{\{1\}, \{4\}, \{2,3\}\}.$$

Decidere quali tra F_1 , F_2 e F_3 sono partizioni di $S := \{1, 2, 3, 4\}$ e, per ciascuna di esse, elencare gli elementi del sottoinsieme di $S \times S$ che descrive la corrispondente relazione di equivalenza in S.

Esercizio 2. Per ogni intero positivo m, si definisca l'operazione binaria * in $A = \mathbb{Z}_6 \times \mathbb{Z}_7$ ponendo, per ogni $(a, b), (c, d) \in A$,

$$(a,b)*(c,d) = (\bar{m}ac, \hat{m}bd)$$

(scriviamo, per ogni $n \in \mathbb{Z}$, \bar{n} per $[n]_6$ e \hat{n} per $[n]_7$). Dando per noto che * è associativa e commutativa,

- (i) caratterizzare gli $m \in \mathbb{N}^*$ tali che (A, *) sia un monoide.
- Si fissi il minimo intero m maggiore di 1 tale che (A,*) sia un monoide. Per questa scelta di m:
 - (ii) determinare l'elemento neutro e gli elementi invertibili di (A, *).
 - (iii) Trovare un elemento $(a, b) \in A$ che non sia né $(\bar{0}, \hat{0})$ né l'elemento neutro di (A, *) e tale che $(a, b)^2 = (a, b) * (a, b) = (a, b)$. Esiste un tale (a, b) che sia anche invertibile?
 - (iv) Costruire una parte chiusa X di (A,*) tale che |X|=2 e $(\bar{0},\hat{0}) \notin X$.

Esercizio 3. Sia S l'insieme dei polinomi monici f di secondo grado in $\mathbb{Z}_3[x]$ tali che $f(\bar{0}) = \bar{1}$.

- (i) Elencare gli elementi di S e scrivere ciascuno di essi come prodotto di polinomi irriducibili monici
- (ii) Trovare, se possibile, un esempio di polinomio monico g di grado 4 in $\mathbb{Z}_3[x]$ che sia riducibile, privo di radici e tale che $g(\bar{0}) = \bar{1}$.

Esercizio 4. Sia $Y = \{n \in \mathbb{N} \mid n > 1\}$ e si consideri l'applicazione $f \colon Y \to Y$ che ad ogni $n \in Y$ associa la somma dei numeri primi positivi divisori di n (vale a dire: se $n = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_r^{\lambda_r}$, dove i p_i sono primi positivi a due a due distinti e, per ogni $i \in \{1, 2, \dots, r\}, \ \lambda_i \in \mathbb{N}^*$, allora $f(n) = p_1 + p_2 + \dots + p_r$). Sia \sim il nucleo di equivalenza di f.

- (i) f è iniettiva?
- (ii) f è suriettiva?
- (iii) Elencare gli elementi di $[9]_{\sim}$ e quelli di $[5]_{\sim}$.

Sia σ la relazione d'ordine definita in Y ponendo, per ogni $a, b \in Y$,

$$a \sigma b \iff (a = b \vee f(a) < f(b)).$$

- (iv) σ è totale?
- (v) Caratterizzare, per ogni $x \in Y$, l'insieme degli elementi di Y non confrontabili con x.
- (vi) Determinare in (Y, σ) gli eventuali elementi minimali, massimali, minimo, massimo.
- (vii) Descrivere i minoranti e i maggioranti di $X = \{5, 6\}$ e individuare, se esistono (o spiegare perché non esistono) inf X e sup X in (Y, σ) .
- (viii) (Y, σ) è un reticolo?
 - (ix) Costruire due sottoinsiemi $C \in D$ di Y, entrambi di cardinalità 8, tali che:
 - (C, σ) sia un reticolo complementato ma non distributivo;
 - (D, σ) sia un reticolo distributivo ma non complementato né totalmente ordinato.

[Suggerimento: disegnare prima i diagrammi di Hasse dei reticoli che si intendono costruire.]