Orneklem Dagilimlari (Sampling Distributions)

$$\frac{\bar{Y}-\mu}{\sigma/\sqrt{n}}$$
 ve $\frac{\bar{Y}-\mu}{S/\sqrt{n}}$ Karsilastirmasi

Diyelim ki normal olarak dagildigini bildigimiz bir nufustan $Y_1,...,Y_n$ rasgele orneklemini topladik, ve amacimiz bilinmeyen gercek μ hakkinda bazi sonuclara varmak. Eger varyans σ^2 biliniyorsa, bu noktadan sonra ne yapacagimiz gayet acik: daha once gordugumuz gibi bir karar kurali ortaya cikartmak, ya da guven araligi hesaplamak cok kolay, ki bu tekniklerin temelinde $Z = \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}}$ dagiliminin standart normal $f_Z(z)'$ ye yaklasmasi yatiyor.

Fakat pratikte σ^2 genellikle bilinmez, o zaman nufus varyansinin tahmin edicisi $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ kullanilir, ki bu maksimum olurluk tahmin edicisinin yansiz (unbiased) versiyonu. Fakat buradaki onemli soru su: σ^2 yerine S^2 koyma Z oranini nasil etkiler? Daha once buyuk orneklemler icin bir fark olmadigindan bahsettik. Peki kucuk orneklemler icin?

Kucuk n icin bu iki oraninin birbirinden farkli oldugununun kesfi William Sealy Gossett adli arastirmaciya ait. 1899'da Oxford'dan Kimya ve Matematik bolumunden mezun olduktan sonra Gossey, Guiness adli sirkette calismaya basladi. Urunlerin uzerinde yapacagi deneylerden aldigi veriler lojistik bazi sebepler dolasisiyla cok azdi, ve "gercek" σ^2 'nin bilinmesi mumkun degildi. Cogu zaman n 4 ya da 5'den bile az oluyordu. Bu gibi durumlarla ugrasa ugrasa Gossey $\frac{\bar{Y}-\mu}{S/\sqrt{n}}$ 'nin beklendigi gibi can egrisi $f_Z(z)$ seklinde degil, daha "etekleri kabarik" baska bir dagilim gibi gozuktugunu farketti, yani sifirdan cok kucuk ya da ondan cok buyuk oranlarin ihtimali cok dusuk degildi.

t t Dagilimi (Student's t) ve Cauchy Dagilimi

X, v derece bagimsizlikta t dagilimina sahiptir, ki bu $X \sim t_v$ diye yazilir eger

$$f(x) = \frac{\Gamma(\nu+1)/2}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}$$

t dagilimi Normal dagilima benzer ama daha kuyrugu daha kalindir. Aslinda Normal dagilimi t dagiliminin $v = \infty$ oldugu hale tekabul eder. Cauchy dagilimi da t'nin ozel bir halidir, v = 1 halidir. Bu durumda yogunluk fonksiyonu

$$f(x) = \frac{1}{\pi(1+x^2)}$$

Bu formul hakikaten bir yogunluk mudur? Kontrol icin entegralini alalim,

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dx}{1 + x^2}$$

Cogunlukla entegre edilen yerde "1 arti ya da eksi bir seyin karesi" turunde bir ifade gorulurse, yerine gecirme (subsitution) islemi trigonometrik olarak yapilir.

$$x = \tan \theta, \theta = \arctan x$$

$$1 + x^2 = 1 + \tan^2 \theta = \sec^2 \theta$$

$$dx/d\theta = \sec^2 \theta$$

O zaman

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\sec^2 \theta} \sec^2 \theta \, \mathrm{d}\theta = \frac{1}{\pi} \int_{-\infty}^{\infty} 1 \, \mathrm{d}\theta =$$

$$= \frac{1}{\pi} \theta \Big|_{-\infty}^{\infty} = \frac{1}{\pi} [\arctan(\infty) - \arctan(-\infty)]$$

$$= \frac{1}{\pi} [\frac{\pi}{2} - (-\frac{\pi}{2})] = 1$$

 χ^2 Dagilimi

X'in p derece serbestlige sahip bir χ^2 dagilima sahip ise X ~ χ^2_p olarak gosterilir, yogunluk

$$f(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{(p/2)-1} e^{-x/2}, \ x > 0$$

Eger $Z_1,..,Z_p$ bagimsiz standart Normal rasgele degiskenler ise, $\sum_{i=1}^p Z_p \sim \chi_p^2$ esitligi dogrudur.