	ic- Cominan no. 4	20 mai 2019
	Parrayanea secontales	
Schame lui Shamin	m utilization u, uzz. uz	
	2 ≤ K≤m Mag	
	S, -> 1, 1, 1 m at 1/2 atom	not gani unos sendal
	neonel subsecrate LXK-1 utilization of	in has done do secon
	Service	
	Tie p ma prim (more) p>m	
peareti	SEZA	
	le generate un polinom de grad maxim K1, avand coeficienti	posto Z/p ai
	(0) = S	
	P(x)=0, x+-+qx+(S)	

pubsecnetale i = P(i), $\forall i = 1, \infty$ mod pRecombinative a peratular S around k subscenete $A \subseteq \{1, \dots, m\}$ $A \subseteq \{$

G

Exemato 10 = 10 (4p) @ Exemplificati Schema lui Shannin pt m=5 0=1 I Generali operators, i, i=1,0 II. 3 subscroke (1,2 131 15 (ap) @ Dom ra dara S, -> i, ij . . i 82-112,12 K, m, p Rxati (2p) 3 Pronontati o procedura de actualizar a subservetela 5-) 1,-in (fana a recommend condul 5

[J J J fana a expuss subsected imitale) (3) Prosecutati o metoda prin como um utilizator u; posto vorifica ca subecitato rau, l'este cored. (1 = P(2)) fa va a expuno P(x) Indicatio: Folositi o fundio one-way ou propo homomofin $f: \mathbb{Z}_p \to \mathbb{Z}_p$, f(a+b)=f(a)+f(b) $Ex: f(x)=d \times mod p'$

Sund date Pli), k, m, p & Tonce Cor

m=5, K=3, P=1 Rezelvane fio P polimon do gradul 2, P(x)=x+2x+7 =, 5=7 0 = P(1) mod 11 = (1.148.1+7) amod 11 = 10 m 1 = P(2) mod 11 = (8.2+2.2+3) mod 11 = 15 mod 11 = 4 1 = P(3) mod 11 = (3.3+2.3+7) mod 11 = Q2 mod 11 = 0 14 = P(4) mod 11 = (4.4+2.4+7) mod 11 = 3) mod 11 = 9 1 = - P(5) mod 11 = (5.5+2.5+7) mod 11 = 42 mod 11 = 9 folosim 1, 13, 15, A= 11,3,29 $P(0) = \sum_{i \in A} ||f(i)|| ||$ 13. 1. (1-3) - 5. (5-3) + 95. 4. (1-5)-1. 3. (3-5)-1 = 10.3.2.5.4 +0.1.9.5.2 +9.1.7.3.9 Fmod 11 7095 = 10.3.6.5.3 + 0 + 9.1.8.3 * 5 mod 11 = 50 2700 + \$1080 mod 11 = 3780 mod 11 = 3430 | 1+ 1 mod 11 = 3-5 Q 5, ← 1, , 1, ... 1m So = 12, 12, -- 10 $S_{i+5} \leftarrow i_{i+1}^{1+1}, \quad i_{m+1}^{m+1}$ $S_{i+5} \leftarrow i_{i+1}^{1+1}, \quad i_{m+1}^{2}$ $S_{i+5} \leftarrow i_{m+1}^{1+1}, \quad i_{m+1}^{2}$ $S_{i+5} \leftarrow i_{m+1}^{2}, \quad i_{m+1}^{2$ $= \left(\sum_{i \in A} \frac{1}{j \in A} \frac{1}{j \in A}\right) + \left(\sum_{i \in A} \frac{2}{j \in A} \frac{1}{j + i}\right) = \sum_{i \in A} \left(\frac{1}{i + i}\right) \frac{1}{j \neq i} \frac{1}{j \neq i}$

$$S_{1}$$
 S_{2} S_{3} S_{4} S_{5} S_{5

$$\frac{1}{\ln n} = (\frac{1}{2} + \frac{1}{2} + \frac$$

$$\sum_{i \in A} |\widetilde{J}_{i}|^{2} = \sum_{i \in A} |\widetilde{J}_{i}|^{2} + K \cdot p \cdot K \pmod{p} = S + p \pmod{p} = S$$

$$|\widetilde{J}_{i}|^{2} = \sum_{i \in A} |\widetilde{J}_{i}|^{2} + K \cdot p \cdot K \pmod{p} = S + p \pmod{p} = S$$

3.1. (y daca i a da 25 mod p = f (25-11/2), j<k utilizatoul poate soifice does II flaj, **) = f(1;) $P\left(\mathbf{I}_{i\leq K}^{\mathbf{I}_{i}},\mathbf{I}_{i}^{\mathbf{I}_{i}}\right)=P\left(P(i)\right)=P(i)$ Kolp JegoK 5-11, -- in ! = 1; + K. 7d-1 => \(\) \(J-KT TITI -, 2 1. T. J. = 3 i. JEA iEA mod p 1 = 1 + 10 0 1

(3)