Имя, фами:	лия и номер гр	уппы:						
1. a] b	d e f	15. a	b	\Box c	d	e	
2. a] b	$d \boxed{} e \boxed{} f$	16. a	b	\Box c	d	e	
3. a] b	$d \boxed{} e \boxed{} f$	17. a	b	\Box c	d	e	
4. a] b	d e f	18. a	b	\Box c	d	e	
5. a] b	d e f	19. a	b	\Box c	d	e	\Box f
6. a] b	d e f	20. a	Ъ	С	d	e	f
7. a] b	d e f						
8. a] b	d e f	21 a	b	С	∐ d	e	f
9. a] b	d e f	22a	b	c	d	e	f
10. a] b	d e f	23. a	b	c	d	e	f
11. a] b	d e f	24. a	b	\Box c	d	e	f
12. a] b	d e f	25. a	b	c	d	e	
13. a] b	d e f	26. a	b	\Box c	d	e	
14. a] b	d e f	27. a	b	\Box c	d	e	

Удачи!

Имя, фамилия и номер группы:

1. Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 7. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.4.

Найдите $\mathbb{E}(Y \mid X = 2)$.

a) 0.8

c) 0

e) 0.4

- b) нет верного ответа
- d) 0.84

- f) 5.88
- 2. Пусть $X_1, ..., X_n$ выборка объема n из некоторого распределения с конечным математическим ожиданием.

Выберите несмещенную и состоятельную оценку математического ожидания.

- а) $\frac{X_1}{2n} + \frac{X_2 + ... + X_{n-2}}{n-1} + \frac{X_n}{2n}$ с) нет верного ответа
- e) $\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} \frac{X_n}{2n}$

- b) $\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$ d) $\frac{1}{3}X_1 + \frac{2}{3}X_2$

- f) $\frac{X_1 + X_2}{2}$
- 3. Пусть $X_1, \, \dots, \, X_n$ случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, \text{ при } x \ge 0, \\ 0, \text{ при } x < 0 \end{cases},$$

где $\theta > 0$ — неизвестный параметр распределения.

Найдите информацию Фишера о параметре θ , заключенную в трёх наблюдениях случайной выборки.

a) $1/\theta$

c) $\theta^2/3$

b) θ^2

- d) нет верного ответа
- f) θ
- 4. Величина X имеет F-распределение с 2 и 11 степенями свободы.

Какое распределение имеет величина $Y = X^{-1}$?

a) χ_{13}^2

c) $F_{11.2}$

е) нет верного ответа

b) $F_{1/11,1/2}$

d) $F_{2.11}$

- f) $F_{1/2,1/11}$
- 5. Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет.

По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	Кухарка заходит	Кухарка не заходит
Крылов завтракает	200	40
Крылов уже позавтракал	25	100
с) н	с) нет верного ответа	
d) 79		f) 179

6. По случайной выборке размером 100 студентов из всех студентов Вышки доля любителей кричать «Халява приди» равна 0.5.

Найдите правую границу 95%-й асимптотического доверительного интервала для вероятности того, что случайно выбираемый студент Вышки любит кричать «Халява приди».

- а) нет верного ответа
- c) 0.748

e) 0.798

b) 0.698

a) 39 b) 100

d) 0.598

- f) 0.648
- 7. Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и $\gamma-$ два неизвестных параметра.

Выберите верное утверждение о распределении статистики отношения правдоподобия, LR.

а) если верна H_a , то $LR \sim \chi_2^2$

d) если верна H_0 , то $LR \sim \chi_1^2$

b) и при H_0 , и при H_a , $LR \sim \chi_1^2$

е) нет верного ответа

c) если верна H_a , то $LR \sim \chi_1^2$

- f) и при H_0 , и при H_a , $LR \sim \chi_2^2$
- 8. Исследователи Машенька и Вовочка, не зная друг о друге, каждый день по всем правилам статистики строят 95%-й доверительные интервалы для математического ожидания μ .

Выборка у них общая на двоих, и каждый день — новая. При этом Машенька знает истинную дисперсию, а Вовочка — нет. Все наблюдения одинаково нормально распределены и независимы. Выберите верное утверждение.

- а) Машенькины интервалы всегда шире Вовочкиных
- b) Машенькины интервалы всегда левее Вовочкиных
- с) Машенькины интервалы бывают как шире, так и уже Вовочкиных
- d) Машенькины интервалы всегда уже Вовочкиных
- е) нет верного ответа
- f) Машенькины интервалы всегда правее Вовочкиных
- 9. Величины X_i независимы и распределены по Пуассону с параметром интенсивности λ . Выберите несмещённую оценку для $\mathbb{E}(X_i)$.
 - a) $\sum_{i=1}^{n} (X_i \bar{X})^2 / (n-1)$ c) $\sum_{i=1}^{n} X_i / (n+1)$ e) $\sum_{i=1}^{n} X_i / (n-1)$

- b) нет верного ответа
- d) $\sum_{i=1}^{n} X_i^2/(n-1)$ f) $\sum_{i=1}^{n} X_i^2/n$

10. Исследователь Винни-Пух приступил к новому исследованию.

Нулевая гипотеза состоит в том, что количесто мёда одинаково экспоненциально распределено у всех пчёл с параметром λ . Альтернативная гипотеза состоит в том, что параметр λ отличается у правильных и неправильных пчёл.

Максимум правдоподобия при верной H_0 равен $\exp(-9)$. Максимум правдоподобия без ограничений равен $\exp(-1)$.

Найдите значение статистики отношения правдоподобия.

a) 14

c) 20

e) 15

- b) нет верного ответа
- d) 16

- f) 19
- 11. Оценка \hat{a}_n неизвестного параметра a асимптотически нормальная и несмещённая. По выборке из 300 наблюдений оказалось, что $\hat{a}_n=4$ с оценкой дисперсии $\widehat{\mathrm{Var}}(\hat{a}_n)=4$.

Найдите правую границу симметричного двустороннего 95%-го доверительного интервала для параметра a.

a) 11.92

- с) нет верного ответа
- e) 15.92

b) 7.92

d) 13.92

- f) 19.92
- 12. Известно, что $\mathbb{E}(\hat{a})=0.7a+3$, функция правдоподобия регулярна и информация Фишера равна $I_F(a)=1/a^2$.

Найдите теоретическую нижнюю границу $Var(\hat{a})$.

a) $0.7a^2$

c) a^2

e) $3a^2$

b) $0.49a^2$

- d) нет верного ответа
- f) $9a^2$
- 13. Отличница Машенька получает только 8, 9 или 10. За все годы обучения Маша получила 60 восьмёрок, 30 девяток и 40 десяток.

Найдите значение статистики Пирсона для проверки гипотезы о том, все отличные оценки имеют равную вероятность.

a) 40.77

- с) нет верного ответа
- e) 60.77

b) 70.77

d) 10.77

- f) 50.77
- 14. Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 5. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.5.

Найдите $Var(Y \mid X = 2)$.

a) 3.75

c) 0.75

e) 1

b) 0.5

- d) нет верного ответа
- f) 5
- 15. Геродот Геликарнасский проверяет гипотезу $H_0: \mu=2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu)=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln\nu-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\nu}.$

Найдите оценка максимального правдоподобия для ν при предположении, что H_0 верна.

a)
$$\frac{\sum x_i^2 - 4 \sum x_i}{n} + 4$$

c)
$$\sum_{i=1}^{n} \frac{\sum_{i=1}^{n} x_i + 2}{n}$$

e)
$$\frac{\sum x_i^2 - 4\sum x_i}{n} + 2$$

d)
$$\frac{\sum x_i^2 - 4\sum x_i + 4}{n}$$

f)
$$\frac{\sum x_i^2 - 4 \sum x_i}{n}$$

16. Длины катетов в сантиметрах прямоугольного треугольника являются модулями независимых стандартных нормальных случайных величин.

Какую пороговую длину гипотенуза этого треугольника превышает с вероятностью 0.05?

a) 0.1

- с) нет верного ответа
- e) 0.68

b) 5.99

d) 4.61

- f) 0.21
- 17. Известно, что величины X_1 , ..., X_{300} независимы и имеют экспоненциальное распределение с интенсивностью λ , и $\ln L(\lambda)$ логарифмическая функция правдоподобия.

Найдите $\mathbb{E}\left(\frac{\partial \ln L(\lambda)}{\partial \lambda}\right)$.

- а) нет верного ответа
- **c)** 0

e) $300\lambda^{2}$

b) 300λ

d) $300/\lambda$

- f) $300/\lambda^2$
- 18. Кот Матроскин поймал 20 рыб. Совсем маленьких, весом до 1 кг, он отпустил. Оставшиеся три рыбы весили 2 кг, 3 кг и 4 кг.

Найдите значение выборочной функции распределения массы пойманных рыб в точке 3.5 кг.

a) 0.8

c) 0.95

e) 0.75

b) 0.85

d) 0.9

- f) нет верного ответа
- 19. Выберите верное утверждение о предпосылках теста Стьюдента на равенство математического ожидания величин $X_1, ..., X_n$ некоторой константе μ_0 .
 - а) количество наблюдений должно быть больше 30
 - b) величины X_i могут быть распределены произвольно, но величина \bar{X} должна быть нормально распределённой
 - c) величины X_i могут быть распределены произвольно, но должны быть независимы
 - d) нет верного ответа
 - e) величины X_i должны быть нормально распределёнными
 - f) константа μ_0 должна быть больше нуля
- 20. Величины X_i независимы и равномерны на отрезке [-a;2a].

Оцените a методом максимального правдоподобия по выборке из трех наблюдений: -7, -5, 11.

a) 8

c) 7

е) нет верного ответа

b) 7.5

d) 6.5

- f) 6
- 21. Величина X имеет t-распределение с 5 степенями свободы.

Какое распределение имеет величина $Y=X^2$?

d) P-значение монотонно растёт с ростом α

f) P-значение монотонно падает с ростом α

b) α и P-значение не связаны

е) нет верного ответа

c) $F_{5,1}$

d) t_{25}

а) P-значение случайно, ожидание от него монотонно растёт с ростом α

c) P-значение случайно, ожидание от него монотонно падает с ростом α

22. Выберите верное утверждение о связи уровня значимости α и P-значения.

a) $F_{1,5}$

b) $F_{5,5}$

е) нет верного ответа

f) χ_5^2

23.	. Исследователь Вовочка при проверке гипотезы о равенстве математического ожидания конс по ошибке вместо t -распределения использует стандартное нормальное.							
	Как изменяются при этом вероятность ошибки первого рода α и ошибки второго рода β ?							
	а) α растёт, β растёт	d) α падает, β растёт						
	b) α падает, β падает	e) $ \alpha $ падает, $ eta $ изменяется непредсказуемо						
	с) α растёт, β падает		f) нет верного	ответа				
24.	По 100 наблюдениям получена о вестны значения лог-функции пр				е из-			
	С помощью критерия отношения $\theta \neq 0$ на уровне значимости 5%.	я правдоподобия,	, LR , проверьте	гипотезу H_0 : $\theta=0$ против	з <i>H</i> ₀ :			
	а) $LR = 40, H_0$ отвергается	d) $LR=60$, H_0 не отвергается						
	b) $LR = 40, H_0$ не отвергается	e) $LR=80$, H_0 отвергается						
	с) Критерий неприменим		f) нет верного	ответа				
25.	Рассмотрим хи-квадрат случайну можных значений, принимаемы:				В03-			
	a) $\{x \in R : \sum_{i=1}^{n} x^2 = 1\}$	с) нет верного	ответа	e) $\{0, 1, \dots, n\}$				
	b) $[0, n^2]$	d) $[0, n]$		f) $(0,\infty)$				
26.	Теоретическая информация Фиш				=4b.			
	Какой функцией описывается тес	-	рмация Фишера					
	a) $I_F(4b)$	c) $16I_F(4b)$		e) $4I_F(4b)$				
	b) нет верного ответа	d) $4I_F(b/4)$		f) $4I_F(b)$				
27.	Величины X_i независимы и один 1.	аково распределе	ены с математич	еским ожиданием $\mathbb{E}(X_i) =$	2a +			
	По выборке из 500 наблюдений о	казалось, что $ar{X}=$	= 18.					
	Найдите оценку \hat{a} методом моме	нтов.						
					7/8			

a) 9.5

с) нет верного ответа

e) 8

b) 10

d) 9

f) 8.5