Logistic Regression using Spark Machine Learning

Srini Penchikala 10.04.17

About Me

- Software Architect
- Big Data Processing with Apache Spark book (Q4 2017)
- InfoQ
- Co-author of "Spring Roo in Action" book (2012)

- Current Focus:
 - Reactive Microservices
 - Containers
 - ML/Deep Learning

Introductions

- Role
 - Developers / Architects
 - Data Scientists
 - Data Analysts
 - DBAs, OPS Team
 - Other role?
- Experience in:
 - Machine Learning
 - Apache Spark
 - Spark MLlib
 - Scala

Agenda

- Machine Learning
- Classification & Regression
- Spark MLlib
- Sample Application
- Demo
- Conclusions
- Q&A

Machine Learning Data Pipeline

Machine Learning Categories

Supervised Learning

- Make predictions based on a set of examples
- Look for patterns in the value labels
- Task driven
- Examples: Classification,
 Regression, Anomaly Detection

Unsupervised Learning

- Data points have no labels associated with them
- Goal is to organize data in some way or to describe its structure (e.g. group data into clusters)
- Data driven
- Examples: Clustering,
 Dimensionality Reduction,
 Recommender Systems, Deep
 Learning

Reinforcement Learning

- Learns by interacting with its environment and observing the results of these interactions
- Is a form of unsupervised learning
- Find balance between "exploration" (of uncharted territory) and "exploitation" (of current knowledge)
- Use cases: Game Theory, Robotics, Computer Networking, Vehicle Navigation, AlphaGo

Machine Learning Algorithms

ML Algorithm Cheat Sheet

Source:

Classification Use Cases

Spam detection

Google news classification

Cancer cell classification (Benign, Malignant)

Fraud detection

Weather prediction

Credit scoring

Ad targeting

Image classification

Logistic Regression

 Measures the relationship between categorical dependent variable & one or more independent variables

- Developed by statistician David Cox in 1958
- Outcome is usually coded as 0 or 1 (success=1, failure=0)
- Function: $P(y = 1 | x) = h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^{\top} x)} \equiv \sigma(\theta^{\top} x),$ $P(y = 0 | x) = 1 P(y = 1 | x) = 1 h_{\theta}(x).$

Logistic Regression Types

- Logistic regression can be binomial, multinomial or ordinal
- Binomial: observed outcome for a dependent variable can have only two possible types: 0 & 1
- Multinomial: outcome can have three or more possible types that are not ordered

Ordinal: deals with dependent variables that are ordered

Use Cases

- Probability of failure of a given process, system or product
- Trauma & Injury Severity Score (TRISS), which is used to predict mortality in injured patients
- Predict:
 - whether a patient has a given disease based on observed characteristics of the patient (age, gender, body mass index, results of blood tests)
 - whether an American voter will vote for one party or another, based on age, income, gender, race, state of residence, votes in previous elections
 - if a customer would purchase a product or halt a subscription
 - the likelihood of a homeowner defaulting on a mortgage

Spark Ecosystem with Spark MLlib

Text Classification

TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF)

Statistical measure to evaluate how important a word is to a document in a given corpus

Used to rank how important a word is to a collection of documents

TF: If a word appears frequently in a doc, it's important. This is calculated as:

TF = (# of times word X appears in a document) / (Total # of words in the document)

IDF: used to diminish the weight of terms that occur very frequently in the document set and increases the weight of terms that occur rarely (e.g "the")

Sample Application

Use Case:

Spam Detection

Technologies

- Spark MLlib (v 2.2.0)
- Scala
- Spark Shell (CLI)

Spam Detection Process

Spark MLlib Classification API

- Tokenizer
- HashingTF
- IDF
- LogisticRegression
- Pipeline
- BinaryClassificationEvaluator

Demo

- Logistic Regression
- Reference: <u>Building machine-learning apps with Spark</u>
- Github Project
- Scala <u>Example</u>
- Datasets*
 - Not spam (3,600 files)
 - Spam (1,500 files)
- Training Dataset
 - Iteration #1: Small (~10 files)
 - Iteration #2: Large (~3k files)

^{*} Caution about the spam file content

Next Steps/Enhancements

- Streaming data analytics
- Kafka & Spark Streaming
- Deep Learning & NLP (Tensorflow)

Conclusions

- Classification
- Logistic Regression
- Spark MLlib framework

References

- Apache Spark <u>main website</u>
- Spark Machine Learning Programming Guide
- Logistic Regression
- Apache Spark Data Pipelines <u>article</u> on InfoQ
- Apache Spark <u>article series</u> on InfoQ

Thank You

- Contact Information
 - http://www.infoq.com/author/Srini-Penchikala
 - srinipenchikala@gmail.com
 - @srinip
- Big Data Processing using Apache Spark
- Spring Roo in Action Book

Questions?

