10,002,282.

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO.

DATED

: 6,746,546 B2

: June 8, 2004

INVENTOR(S) : Easterday et al.

Page 1 of 7

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Please replace the specification with the new attached specification including Figure 1.

Please replace Formal Drawings 1-5 with the attached drawings.

Signed and Sealed this

Twenty-third Day of November, 2004

JON W. DUDAS Director of the United States Patent and Trademark Office

(12) United States Patent

Easterday et al.

(10) Patent No.:

US 6,746,546 B2

(45) Date of Patent:

Jun. 8, 2004

(54) LOW TEMPERATURE NITRIDING SALT AND METHOD OF USE

(75) Inventors: James R. Easterday, Bloomfield Hills, MI (US); John F. Pilznienski,

Dearborn Heights, MI (US)

(73) Assignee: Kolene Corporation, Detroit, MI (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(h) by 135 days.

(21) Appl. No.: 10/002,282

(22) Filed: Nov. 2, 2001

(56)

(65) Prior Publication Data US 2003/0084963 A1 May 8, 2003

148/242; 148/274 (58). Field of Search148/228, 229, 148/240, 242, 274; 252/390

References Cited

U.S. PATENT DOCUMENTS

3,303,063	Α	2/1967	Pietryka	148/15.5
3,321,338	Α		Caubet et al	
3,912,547			Gaucher et al	
4,019,928	Λ	4/1977	Beyer et al	148/15.5
4.184,899			Blas et al	
4,292,094		9/1981	Kunst et al	148/217
4,492,604	Λ	1/1985	Muller et al	148/228
4,717,429		1/1988	Kunst et al	. 148/28
5,518,605	Α	5/1996	Hadj-Rabah et al	205/148

FOREIGN PATENT DOCUMENTS

EP 1055739 A2 5/2000 C21D/9/50

OTHER PUBLICATIONS

"Plasma Nitriding of Stainless Steels at Low Temperatures", B. Larisch et al, Technical University Freiberg, pp. 221-228. "The Response of Austentite Stainless Steels to Low-temperature Plasma Nitriding", Y. Sun et al, Heat Treatment of Metals, 1999, pp. 9-16.

"Influence of the Steel Composition and Treating Parameters on the Properties of Nitrocarburized Components", G. Wah 1989.

" cited by examiner

Primary Examiner—Andrew L. Oltmans (74) Attorney, Agent, or Firm—William N. Hogg

57) ABSTRACT

A composition for nitrocarburizing stainless steel parts and a method for producing a nitride or hard case on such parts using the composition, are provided. The composition includes alkali metal cyanate and alkali metal carbonate, wherein the cyanate ion is present in a weight percentage of greater than 45% and less than 55.2%. The composition is fused and maintained between about 750° F, and about 950° F. depending upon the type of stainless steel to be treated. The workpiece is immersed in the fused bath and left in until a satisfactory compound layer or case is formed. With austenitic stainless steel, the piece is immersed from about 750° F, and about 950° F, preferably between 750° F, and 850° F, to maintain corrosion resistance.

With 400 series stainless steel, increased corrosion resistance is achieved by immersion for between four and six hours at 950° F.

2 Claims, 5 Drawing Sheets

Page 3 of 7

U.S. Patent

Jun. 8, 2004

Sheet 1 of 5

Fig 1

U.S. Patent

Jun. 8, 2004

Sheet 2 of 5

TIME IN BATH, HOURS
304 STAINLESS STEEL

Fig 2

Page 5 of 7

U.S. Patent

Jun. 8, 2004

Sheet 3 of 5

4/6 STAINLESS STEEL

Fig 3

Page 6 of 7

U.S. Patent

Jun. 8, 2004

Sheet 4 of 5

6,746,546 B2

Fig 4

DIFFUSION 416 STAINLESS STEEL

Page 7 of 7

U.S. Patent

Jun. 8, 2004

Sheet 5 of 5

Temperature ° F

Fig 5