EE400 – Métodos da Engenharia Elétrica

Docente: Matheus Souza

Solução para problemas selecionados

Lista de Exercícios 11 –

Plínio S. Dester (pliniodester@hotmail.com)

18 de Janeiro de 2022

Em caso de dúvidas, sugestões ou correções, não hesite em mandar um e-mail.

11 Exercícios

11.4. Determine a imagem do retângulo $a \le \text{Re} z \le b$ e $c \le \text{Im} z \le d$ sob a transformação $f(z) = e^z$.

Solução: Vamos supor que $c, d \in (-\pi, \pi]$. Seja z = x + iy, $x, y \in \mathbb{R}$. Temos que a transformação é dada por $w = e^x e^{iy}$, onde a componente x está relacionada ao módulo $(|w| = e^x)$ e a componente y ao ângulo (Arg(w) = y) no plano complexo. Dessa forma, o retângulo se transforma em um setor de anel, ou seja, na região

$$\{w \in \mathbb{C} \mid e^a \leqslant |w| \leqslant e^b, \ c \leqslant \operatorname{Arg}(w) \leqslant d\}.$$

11.6. Determine os pontos fixos da aplicação dada por $f(z) = \frac{2z-5}{z+4}$.

Solução: As soluções da equação f(z) = z são $-1 \pm 2i$.

11.8. Construa uma aplicação conforme que leve o semiplano Re $z \leqslant 0$ no disco $|z| \leqslant 1$.

Solução: Usando o método ensinado em aula para construir aplicações bilineares, podemos escolher $z_0 = -1$ e $z_0' = 1$. Dessa forma, a aplicação desejada é dada por

$$w = \frac{z - z_0}{z - z_0'} = \frac{z + 1}{z - 1}.$$

1

11.9. Construa uma bijeção analítica entre o semi-plano $x + y \ge 0$ e o disco $|z - i| \le 1$.

Solução: Usando o método ensinado em aula para construir aplicações bilineares, podemos escolher $z_0=1+\mathrm{i}$ e $z_0'=-1-\mathrm{i}$. Dessa forma, a aplicação que leva no círculo unitário centrado na origem é dada por

$$w' = \frac{z - z_0}{z - z'_0} = \frac{z - (1 + i)}{z + (1 + i)}.$$

Como queremos um círculo unitário centrado em i, basta fazer $w=w^\prime+\mathrm{i}$, ou seja,

$$w = \frac{z - (1 + i)}{z + (1 + i)} + i = \frac{(1 + i)z - 2}{z + (1 + i)}.$$