Example 3.16 (Ideal integrator). Determine whether the system $\mathcal H$ is memoryless, where

$$\mathcal{H}x(t) = \int_{-\infty}^{t} x(\tau)d\tau.$$

Solution. Consider the calculation of $\mathcal{H}x(t)$ at any arbitrary point $t=t_0$. We have

$$\mathcal{H}x(t_0) = \int_{-\infty}^{t_0} x(\tau) d\tau.$$

Thus, $\Re x(t_0)$ depends on x(t) for $-\infty < t \le t_0$. So, $\Re x(t_0)$ is dependent on x(t) for some $t \ne t_0$ (e.g., $t_0 - 1$). Therefore, the system has memory (i.e., is not memoryless).

Example 3.19 (Ideal integrator). Determine whether the system \mathcal{H} is causal, where

$$\mathcal{H}x(t) = \int_{-\infty}^{t} x(\tau)d\tau.$$

Solution. Consider the calculation of $\mathcal{H}x(t_0)$ for arbitrary t_0 . We have

$$\mathcal{H}x(t_0) = \int_{-\infty}^{t_0} x(\tau) d\tau.$$

Thus, we can see that $\mathcal{H}x(t_0)$ depends only on x(t) for $-\infty < t \le t_0$. Since all of the values in this interval are less than or equal to t_0 , the system is causal.

Consider computation of output at this point

input be known?

Example 3.20. Determine whether the system $\mathcal H$ is causal, where

$$\mathcal{H}x(t) = \int_{t-1}^{t+1} x(\tau) d\tau.$$

Solution. Consider the calculation of $\mathcal{H}x(t_0)$ for arbitrary t_0 . We have

$$\mathcal{H}x(t_0) = \int_{t_0-1}^{t_0+1} x(\tau)d\tau.$$

Thus, we can see that $\Re x(t_0)$ only depends on x(t) for $t_0-1 \le t \le t_0+1$. Since some of the values in this interval are greater than t_0 (e.g., t_0+1), the system is not causal.

cansider computation of autput at this point

at which points must input be known?

Example 3.23. Determine whether the system $\mathcal H$ is invertible, where

 $\mathcal{H}x(t) = x(t - t)$ $\mathbf{y} = \mathbf{H}\mathbf{x}$

and t_0 is a real constant.

Solution. Let $y = \mathcal{H}x$. By substituting $t + t_0$ for t in $y(t) = x(t - t_0)$, we obtain

 $y(t+t_0) = x(t+t_0-t_0)$ = x(t).

substitute toto for t

Thus, we have shown that

$$x(t) = y(t+t_0).$$

This, however, is simply the equation of the inverse system \mathcal{H}^{-1} . In particular, we have that

$$x(t) = \mathcal{H}^{-1}y(t)$$

where

$$\mathcal{H}^{-1}y(t) = y(t+t_0).$$

Thus, we have found \mathcal{H}^{-1} . Therefore, the system \mathcal{H} is invertible.