

PARSHWANATH CHARITARIE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester: VIII

Subject : AIFB

Academic Year: 2024-25

Total strategy returns: -0.0098+0.0097.

= 0.0001

Interpretation:

= 0 %

didn't trade on Day 1 & Man.

It lost on Days and gained on Days.

This is how redorized backterting is performed

EVENT-BASED BACKTESTING:

Event based backtesting is a method of evaluating trading strategies by simulating the flow of market events over time, such as price updates, order executions and portfolio changes - one event at a time. Let us understand by the below example.

Example: Consider the below 10-days closing price data. Perform. event based backtesting on the given data.

Day 100
100
102
101
103
104
106

Subject Incharge: Prof. Sarala Mary

Department of CSE-Data Science | APSIT

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering **Data Science**

Semester: VIII

Subject: AIFB

Academic Year: 2024-25

Pay 7	190.7	fice
7		108
8		10 7
A		05
10		106
	0 .	

Low, Sell High (Threshold-Based) * Buy if price drops by more than i'lo from the previous close.

- * Sell the next day (hold for Iday only).
- * Only one open position at a time.
- * Use simple relums for clarity

Example:

Consider the below aday closing price data. Perform event based backtesting on the given data.

Day	Price.
1	100
2	99
3	100.5
4	101.5
5	100
6	98
7	98.5
8	99.5

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering **Data Science**

Semester: VIII Subject : AIFB

Academic Year: 2024-25

Step 1: Simulate Day-by-Day Events We will simulate each day and frack:

- * Whether atrade is triggered.
- * When to enter/exit.
- * Cumulative return

Day a:

Price drop:

Buy at 99, hold for Iday.

Sell at 100.5

Return:

Add to cumulative return.

Price rose from 100.5 to 100.5 -> No buy

Days:

Price Drop:

Buy at 100

Day 6:

Sellat 98

Subject Incharge: Prof. Sarala Mary

Department of CSE-Data Science | APSIT

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester: VIII

Subject : AIFB

Academic Year: 2024-25

Return:

98-100 = -2.00 %

Add to cumulative return

Day 7:

Price rose from 98 -> 98.5 -> no buy

Day 8:

Price rose from 98.5 -> 99.5 -> no buy

Summary of Trades:

Trade	Buy Day	Buy Price	Sell Day	Sell Price	Return
4.	Day 2	99	Day 3	100.5	+1.52%
2.	Day 5	loo	Day 6	98	-2.00%
			0		2 001 hz 11

Final Cumulative Returns

- * We processed each day one by one (event-based).
- * Positions were entered and exited based on event triggers.
- * This is more realistic than rectorized logic, especially with rules like "hold 1 day".