Определение моментов инерции твердых тел с помощью трифилярного подвеса. (1.2.3)

11 октября 2022 г.

1 Аннотация

Цели работы: измерение момента инерции тел и сравнение результатов с расчетами по теоретиеским формулам; проверка аддитивноски моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить.

2 Теоретические сведения

Упрощения: При колебаниях не учитываются потери энергии на трение о воздух. Закон сохранения энергии, учитывая наше упрощение, имеет вид:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ .

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе – (r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C''равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\varphi - r)^2 + R^2\sin^2\varphi + z^2 = L^2$$

$$z^2 = L^2 - R^2 - r^2 + 2Rr\cos\varphi \approx z_0^2 - 2Rr(1 - \cos\varphi) \approx z_0^2 - Rr\varphi^2$$

$$z = \sqrt{z_0^2 - Rr\varphi^2} \approx z_0 - \frac{Rr\varphi^2}{2z_0}$$

Подставляя z в закон сохранения энергии, получим:

$$\frac{1}{2}I\dot{\varphi}^2 + \frac{mgRr}{2z_0}\varphi^2 = 0$$

Дифференцируя по времени, получаем уравнение колебаний:

$$I\ddot{\varphi}^2 + \frac{mgRr}{z_0}\varphi^2 = 0$$

$$\varphi = \varphi_0 sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right)$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период кртуильных полебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2$$

где $k=\frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

3 Методика измерений

Рис. 1: Трифилярный подвес

Для наших целей будем использовать трифилярный подвес. Он состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположеных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P, возникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные коле-

бания.

4 Используемое оборудование

Секундомер измеряет время с абсолютной погрешностью $\sigma_T^{\text{сист}} = 0{,}001$ с.

Параметры установки и коэффицент k

Работа выполнялась на установке №8, ее параметры указаны в таблице 1.

m, Γ	R, mm	r, MM	L, cm	z_0 , cm
1004,8	114,1	30,5	217,6	217,1
σ_m , Γ	σ_R , MM	σ_r , mm	σ_L , cm	σ_{z_0} , cm
0,5	0,5	0,3	0,1	0,1

Таблица 1: Параметры установки

По полученным данным вычислим постоянную для конструкции №3:

$$k = \frac{gRr}{4\pi^2 z_0} \approx 3.98 \cdot 10^{-4} \frac{\text{M}^2}{\text{c}^2}$$

Погрешность k будет равна:

$$\sigma_k = k \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2} \approx 0.04 \cdot 10^{-4} \frac{M^2}{c^2}$$

5 Результаты измерений и обработка данных

Момент инерции ненагруженной платформы

Сначала определим период колебаний ненагруженной платформы.

$N_{\overline{0}}$	Время колебаний T_n , с	Период колебаний T, c
1	44,705	4,4705
2	44,685	4,4685
3	44,63	4,463

Тогда средний период колебаний $T_{\rm cp}=4{,}467$ с. Определим погрешность.

$$\sigma_T^{\text{случ}} = \frac{1}{N} \sqrt{\sum_{i=1}^N (T_{\text{cp}} - T_i)^2} \approx 0.003 \text{ c}$$

$$\sigma_T = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \approx 0.003 \text{ c}$$

Найдем момент инерции ненагруженной платформы

$$I_{\rm пл} = kmT_{\rm cp}^2 = 7.98 \cdot 10^{-3} \ {\rm K} {\rm \Gamma} \cdot {\rm M}^2$$

$$\varepsilon = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_T}{T}\right)^2} = 0.01$$
$$\sigma_{\text{Inj}} = I_{\text{inj}}\varepsilon = 0.08 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

Значит, с данной установкой мы можем мы можем определять момент инерции тел с точностью 1% и $I_{\rm nn}=(7.98\pm0.08)\cdot10^{-3}~{\rm kf\cdot m^2}$

Определение моментов инерции различных тел. Аддитивность моментов инерции

Измерим периоды колебаний платформы с различными телами таким же образом, как и для ненагруженной платформы, а именно - 3 измерения по 10 колебаний для каждого набора тел, получаем:

Набор тел	t_1, c	t_2, c	t_3, c	$t_{\rm cp}, { m c}$	T, c	m_0 , г	$I \cdot 10^{-3}$, кг · м ²	$\sigma_I \cdot 10^{-3}$, kg·m ²
Пл.+Крыш.	36,702	36,671	36,594	36,656	3,6656	2127,7	11,378	0,114
Пл.+Труба	43,04	42,95	42,89	42,96	4,296	1986,5	14,592	0,146
Оба тела	38,279	38,136	38,192	38,202	3,8202	3109,4	18,061	0,180
Цил. с пр.	28,424	28,513	28,474	28,470	2,847	3268	10,542	0,105

Таблица 2: Моменты инерции платформы с различными телами

Для подтверждения аддитивности необходимо показать, что выполняются условия:

$$I_{\text{пл}+ ext{kp}} = I_{\text{пл}} + I_{ ext{kp}}$$

$$I_{\text{пл}+ ext{Tp}} = I_{\text{пл}} + I_{\text{Tp}}$$

$$I_{\text{пл}+ ext{kp}+ ext{Tp}} = I_{\text{пл}} + I_{ ext{kp}} + I_{ ext{Tp}}$$

Из таблицы и формул мы можем найти момент инерции цилиндра и кольца, учитывая что погрешности момента инерции диска и вычисленных далее будут складываться: $I_{\rm kp} = I_{\rm пл+kp} - I_{\rm пл} = (3,398 \pm 0,194) \cdot 10^{-3} \ {\rm kf \cdot m^2}$, а $I_{\rm тp} = I_{\rm пл+тp} - I_{\rm тp} = (6,612 \pm 0,226) \cdot 10^{-3} \ {\rm kf \cdot m^2}$. Тогда, для доказательства аддитивности, проверим последнее уравнение. Оно выполняется, следовательно моменты инерции аддитивны.

Теперь сравним полученные нами моменты инерциии для тел, и их теоретические значения. Для крышки: $I_{\rm kp}=\frac{1}{2}m_{\rm kp}R_{\rm kp}^2$. $R_{\rm kp}=7.8$ см, тогда $I_{\rm kp}=3.41\cdot 10^{-3}$ кг · м² , что подтверждает экспериментальное значение.

Для трубы же: $I_{\rm Tp}=m_{\rm Tp}R_{\rm Tp}^2$. $R_{\rm Tp}=7.5$ см.Получаем, что $I_{\rm K}=6.6$ кг \cdot м 2 $\cdot 10^{-3}$, что тоже совпадает с полученным экспериментально значением.

Для цилиндра из лабораторной работы 1.2.4 получается $I=(2.56\pm0.18)\cdot10^{-3}~{\rm kr\cdot m^2}$

Зависимость момента инерции системы тел от их расположения. График зависимости $I(h^2)$

Определим зависимость момента инерции системы двух тел от их взаимного расположения. Для этого располагая грузы, как сказано в условии, получим зависимость от расстояния. Полученные результаты измерений занесем в таблицы. Основывыаясь на результатах таблицы, построим график зависимости $I(h^2)$.

№ изм.	$T_{\rm cp}, {\rm c}$	Т, с	$I \cdot 10^{-3}$, кг · м ²	h, см
1	33,029	3,303	8,931	4,53 см
2	33,228	3,323	9,040	5,03 см
3	33,459	3,346	9,165	5,51 см
4	34,053	3,405	9,491	6,58 см

Таблица 3: Зависимость периода колебаний и момента инерции от расстояния

Рис. 2: Схема расположения грузов на платформе трифилярного подвеса.

По графику понятно, что $I=kh^2+b$. Тогда b — момент инерции платформы + диска. Для вычисления коэффициентов k и b воспользуемся методом наименьших квадратов:

$$b = \langle y \rangle - k \langle x \rangle \approx 8.419 \cdot 10^{-3} \text{ Kg} \cdot \text{M}^2, \tag{1}$$

где $x = h^2, y = I$.

Случайные погрешности вычисления k и b можно найти по следующим формулам:

$$\sigma_b^{\text{случ}} = \sigma_k^{\text{случ}} \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \approx 0.136 \cdot 10^{-3} \text{ Kg} \cdot \text{m}^2.$$
 (2)

Систематическая погрешность вычисления коэффициентов определяется следующим соотношением:

$$\sigma_b^{\text{cmct}} = b\sqrt{(\varepsilon_I)^2 + (\varepsilon_{h^2})^2} \approx b \cdot \varepsilon_I \approx 0.108 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2.$$
 (3)

Тогда полную погрешность вычисления коэффициентов подсчитываем по следующей формуле:

$$\sigma_b = \sqrt{(\sigma_b^{\text{случ}})^2 + (\sigma_b^{\text{сист}})^2} \approx 0.174 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$
 (4)

6 Обсуждение результатов

Так как $b=I_{\rm q}+I_{\rm пл}$, то $I_{\rm q}=0.439\pm0.254\cdot10^{-3}$ кг \cdot м². Зная радиус цилиндра $R_{\rm q}=3.49$ см, мы можем определить его массу: $m_{\rm q}=2I_{\rm q}/R_{\rm q}^2\approx0.721$ кг, $\sigma_{m_{\rm q}}=m_{\rm q}\cdot\sqrt{\varepsilon_I^2+\left(2\varepsilon_R\right)^2}\approx$

0,417 кг. Видно, что масса не совпадает с реальной массой цилиндра. Это произошло из за того, что мы измерили мало точек для зависимости момента инерции от квадрата расстояния. Сама установка позволяет измерять моменты инерции с точностью до одногодвух процентов.

Полученная зависимость $I(h^2)$ аппроксимируется линейой зависимостью, что подвтерждает формулу Гюйгенса-Штейнера ($I=I_c+Mh^2$, где I — момент инерции тела, I_c —момент инерции тела относительно центра, M — масса тела, а h — расстояние между двумя осями, в нашем случае — между осью вращения и половинками диска).

7 Заключение результатов

В данной лабораторной работе мы проверили аддитивность моментов инерции, и выяснили экспериментальным путем, что это верно. Также сравнили измеренные моменты инерции с теми, которые рассчитаны теоретически. Так как они почти равны, трифилярный подвес обеспечивает достаточную точность.