List of Data, Formulae and Relationships

Data

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ molar gas constant $N_{\rm A} = 6.02 \times 10^{23} \, \rm mol^{-1}$ Avogadro constant

 $g = 9.81 \text{ m s}^{-2} \text{ (close to the Earth)}$ acceleration due to gravity $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ universal gravitational constant $c = 3.00 \times 10^8 \text{ m s}^{-1}$ speed of light in vacuum $e = 1.60 \times 10^{-19} \text{ C}$ charge of electron

electron rest mass $m_e = 9.11 \times 10^{-31} \text{ kg}$ $\mathcal{E}_0 = 8.85 \times 10^{-12} \; C^2 \; N^{-1} \; m^{-2}$ permittivity of free space

permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$

atomic mass unit $u = 1.661 \times 10^{-27} \text{ kg}$ (1 u is equivalent to 931 MeV) $AU = 1.50 \times 10^{11} \text{ m}$

astronomical unit $ly = 9.46 \times 10^{15} \text{ m}$ light year

 $pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 206265 \text{ AU}$ $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ parsec

Stefan constant

 $h = 6.63 \times 10^{-34} \text{ J s}$ Planck constant

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Mathematics

Equation of a straight line y = mx + c

 $= r \theta$ Arc length

Surface area of cylinder $=2\pi rh+2\pi r^2$

Volume of cylinder $= \pi r^2 h$

 $=4\pi r^2$ Surface area of sphere

 $=\frac{4}{4\pi}r^3$ Volume of sphere

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

Astronomy and Space Science

$$U = -\frac{GMm}{r}$$
 gravitational potential energy
$$P = \pi A T^4$$

 $P = \sigma A T^4$ Stefan's law Doppler effect

Energy and Use of Energy

 $\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$ rate of energy transfer by conduction

thermal transmittance U-value $P = \frac{d}{2}\rho A v^3$ maximum power by wind turbine

Atomic World

$$\frac{1}{2} m_{\rm e} v_{\rm max}^{2} = hf - \phi$$
 Einstein's photoelectric equation

 $E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{\left| mee4 \right|}{\left| 8h \stackrel{?}{\epsilon} 0 \right|} \right\} = -\frac{13.6}{n} \, \text{eV}$

energy level equation for hydrogen atom

energy level equation for hydrogen ato
$$\lambda = \frac{h}{\overline{p}} = \frac{h}{\overline{mv}}$$

$$\theta \approx \frac{1.22\lambda}{\overline{d}}$$
Rayleigh criterion (resolving power)

Medical Physics

Medical Find $\theta \approx \frac{1.22\lambda}{d}$ power = $\frac{1}{f}$ Rayleigh criterion (resolving power)

power of a lens

 $L = 10 \log \frac{I}{I_0}$ intensity level (dB)

 $Z = \rho c$ acoustic impedance

 $\alpha = \frac{I_r}{10} \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ intensity reflection coefficient

 $I = I_0 e^{-\mu x}$ transmitted intensity through a medium

A1.	$E = mc \Delta T$	energy transfer during heating and cooling	D1.	$F = \frac{Q_1 Q_2 - \dots}{Q_1 Q_2 - \dots}$	Coulomb's law
A2.	$E = l \Delta m$	energy transfer during change of state	D2.	E =Q	electric field strength due to a point charge
A3.	pV = nRT	equation of state for an ideal gas	D3.	$E = \frac{V}{-}$	electric field between parallel plates (numerically)
A4.	$pV = \frac{1}{-Nmc^{\frac{1}{2}}}$	kinetic theory equation	D4.	$R = \frac{\rho l}{}$	resistance and resistivity
A5.	$E^{\mathbf{K}} = \frac{3RT}{}$	molecular kinetic energy	D5.	$R = R_1 + R_2$	resistors in series
			D6.	<u>1</u> = <u>1</u> 1	resistors in parallel
B1.	$F = m \frac{\Delta v}{} = \frac{\Delta p}{}$	force	D7.	$P = IV = I^2R$	power in a circuit
B2.	$moment = F \times d$	moment of a force	D8.	$F = BQv \sin \theta$	force on a moving charge in a magnetic field
В3.	$E_{\rm P} = mgh$	gravitational potential energy	D9.	$F = BIl \sin \theta$	force on a current-carrying conductor in a magnetic field
B4.	$E_{\rm K} = \frac{1}{-mv^2}$	kinetic energy	D10.	$B = \frac{\mu_0 I}{}$	magnetic field due to a long straight wire
-	P = Fv	mechanical power	D11.	$B = \frac{\mu_0 NI}{}$	magnetic field inside a long solenoid
B6.	$\frac{v^2}{r}$ 2	centripetal acceleration	D12.	$\varepsilon = N \frac{\Delta \Phi}{}$	induced e.m.f.
B7.	$F = \frac{Gm_1m_2}{}$	Newton's law of gravitation	D13.	$V_{\underline{s}} N_{\underline{s}}$	ratio of secondary voltage to primary voltage in a transformer
C1.	$\Delta y = \frac{\lambda D}{}$	fringe width in double-slit interference	E1.	$N = N_0 e^{-kt}$	law of radioactive decay
C2.	$d\sin\theta = n\lambda$	diffraction grating equation	E2.	$t = \frac{\ln 2}{}$	half-life and decay constant
C3.	1+1=1_	equation for a single lens	E3.	A = kN	activity and the number of undecayed nuclei

E4. $\Delta E = \Delta mc^2$

mass-energy relationship