M1522.006800 Introduction to Natural Language Processing Fall 2022 Midterm Practice Exam

Question 1

Mark the following statements as true or false.

- a) N-gram models do not properly represent long-range dependency.
- b) LSTMs improve credit assignment compared to standard RNNs.
- c) Better language models exhibit higher perplexity.
- d) A high accuracy can be seen when we evaluate a classifier whose output is constant.
- e) Euclidean distance captures semantic similarity between documents well.
- f) Exact match queries in web search often produce either too few or too many results.

Question 2

Given the five sentences below, calculate the following bigram probabilities. Assume that <s> is prepended to the beginning of each sentence, and </s> is appended to the end of each sentence.

```
"you do not like them"
"so you say"
"try them"
"try them"
"and you may"
```

- a) P(say | you)
- b) $P(\text{and} \mid \leq s >)$
- c) P(them | try)
- d) $P(\text{try} \mid <s>)$
- e) P(</s> | them)

Question 3Below are tables of bigram and unigram counts.

			W_n					
		I	love	Italian	food	my	favorite	hobby
	I	41	2452	0	0	0	0	0
w_{n-1}	love	4	9	40	21	80	0	1
	Italian	0	0	0	55	0	0	0
	food	25	0	0	0	2	0	0
	my	1	12	0	7	0	839	12
	favorite	7	0	0	132	4	0	5
	hobby	5	0	0	0	0	0	0

Ι	love	Italian	food	my	favorite	hobby
32498	2943	73	486	5117	1310	105

a) Fill in the bigram probability table below. (Round to 4 decimal places.)

		w_n							
		I	love	Italian	food	my	favorite	hobby	
	I					0	0	0	
W_{n-1}	love					0.0272	0	0.0003	
	Italian					0	0	0	
	food					0.0041	0	0	
	my	0.0002	0.0023	0	0.0014	0	0.1640	0.0023	
	favorite	0.0053	0	0	0.1008	0.0031	0	0.0038	
	hobby	0.0476	0	0	0	0	0	0	

b) Fill in the bigram probability table below with add-1 smoothing. Assume that the size of the vocabulary is 8453. (Round to 4 decimal places.)

		w_n							
		I	love	Italian	food	my	favorite	hobby	
	I					0.0000	0.0000	0.0000	
W_{n-1}	love					0.0071	0.0001	0.0002	
	Italian					0.0001	0.0001	0.0001	
	food					0.0003	0.0001	0.0001	
	my	0.0001	0.0010	0.0001	0.0006	0.0001	0.0619	0.0010	
	favorite	0.0008	0.0001	0.0001	0.0136	0.0005	0.0001	0.0006	
	hobby	0.0007	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	

Question 4

	Answer	the	foll	lowing	questions.	
--	--------	-----	------	--------	------------	--

a) Briefly explain the training objectives (tasks) of CBOW and skip-gram, respectively.

b) What is the role of softmax in these methods?

Question 5

We have a dataset with three class labels, namely Urgent, Normal, and Spam. The following is the confusion matrix for these classes.

	True Class					
		Urgent	Normal	Spam		
Predicted Class	Urgent	7	8	9		
	Normal	1	2	3		
	Spam	3	2	1		

a) Complete the tables below.

	Class: Urgent						
True True							
	Urgent	not					
System							
System Urgent							
System not							
not							

	Class: Normal						
True True							
	Normal	not					
System Normal							
Normal							
System not							
not							

Class: Spam						
True True						
	Spam	not				
System						
System Spam						
System						
System not						

b) Compute the precision, recall and F1-score for each class and complete the table below.

Class	Precision	Recall	F1-score
Dog			
Cat			
Squirrel			