Ch—03 Current Electricity

Daily Practice Problem 04

Q1. Find the value of current I in the circuit shown in Fig.

Q4. A battery of emf 10 V is connected to resistances as shown in Fig. Find the potential difference between the points A and B.

Q2. Determine the voltage drop across the resistor R_1 in the circuit given below with E = 60 V, $R_1 = 18 \Omega$, $R_2 = 10 \Omega$.

Q5. Determine the voltage drop across the resistor R_1 in the circuit given below with E=65 V, $R_1=50$ Ω , $R_2=100$ Ω , $R_3=100$ Ω , and $R_4=300$ Ω .

Q3. Find the effective resistance between points A and B for the network shown in Fig

Q6. What is the equivalent resistance between points A and B of the circuit shown in Fig.?

Q7. In the circuit shown in Fig., find the potential difference across the capacitor.

Q8. Calculate the equivalent resistance between points A and B in each of the following networks of resistors:

Q9. Find the equivalent resistance of the networks shown in Fig. between the points A and B.

Q10. Four identical resistance each having value R are arranged as shown in figure. Find the equivalent resistance between A and B

Q11. In the figure shown, what is the current (in ampere) drawn from the battery? You are given: $R_1 = 15 \Omega$, $R_2 = 10 \Omega$, $R_3 = 20 \Omega$, $R_4 = 5 \Omega$, $R_5 = 25 \Omega$, $R_6 = 30 \Omega$, E = 15V

- (a) 13/24
- (b) 7/18
- (c) 20/3
- (d) 9/32

ANSWERS

1. 0.1 A

2. 45 V

3. 2 Ω

4. 5.0 V

5. 25 *V*

6. R/2

7. 12 V

8. a. 12Ω **b**. 40/3 Ω **c.** 2 Ω **d**. 10/3 Ω **e.** 16 Ω

f. 5 Ω

9. **a**. 4/3 r

b. r/4 **c**. r

10. 2R

11. d