Tarea_1_Joaquin_Zapata

April 30, 2025

```
data['Failure_today'] = data['Failure_today'].apply(lambda x: 0 if x in ['No']
 ⇔else 1)
Grados = {
    'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5, 'E': 90,
    'ESE': 112.5, 'SE': 135, 'SSE': 157.5, 'S': 180,
    'SSW': 202.5, 'SW': 225, 'WSW': 247.5, 'W': 270,
    'WNW': 292.5, 'NW': 315, 'NNW': 337.5
}
data['Parameter1_Dir'] = data['Parameter1_Dir'].map(Grados)
data['Parameter2_9am'] = data['Parameter2_9am'].map(Grados)
data['Parameter2_3pm'] = data['Parameter2_3pm'].map(Grados)
data['Date'] = pd.to_datetime(data['Date'], format='mixed', dayfirst=False,__
 ⇔errors='coerce')
for i in data.columns:
    if data[i].dtype in ['float64', 'int64']:
       media = data[i].mean()
        data[i] = data[i].fillna(media)
```

corr = data.corr()

[3]: data.describe()

[3]:			Date	Location	Min_Temp	\
	count		142193	142193.000000	142193.000000	•
	mean	2013-04-01 00:2		24.740655	12.186400	
	min		11-01 00:00:00	1.000000	-8.500000	
	25%		01-06 00:00:00	12.000000	7.600000	
	50%		05-27 00:00:00	25.000000		
	75%		06-12 00:00:00	37.000000		
	max		06-25 00:00:00	49.000000		
	std		NaN	14.237503	6.388924	
		${\tt Max_Temp}$	Leakage	Evaporation	Electricity \setminus	
	count	142193.000000	142193.000000	142193.000000	142193.000000	
	mean	23.226784	2.349974	5.469824	7.624853	
	min	-4.800000	0.000000	0.000000	0.000000	
	25%	17.900000	0.000000	4.000000	7.624853	
	50%	22.700000	0.000000	5.469824	7.624853	
	75%	28.200000	0.800000	5.469824	8.700000	
	max	48.100000	371.000000	145.000000	14.500000	
	std	7.109554	8.423217	3.168114	2.734927	
		D D	D1 G	1 D0	O D	
	count	Parameter1_Dir 142193.000000	Parameter1_Spe 142193.0000			-
	mean	169.987675	39.9842			637576
	min	0.000000	6.0000			000000
	25%	90.000000	31.0000			000000
	50%	169.987675	39.0000			637576
	75%	247.500000	46.0000			000000
	max	337.500000	135.0000			000000
	std	97.494047	13.1383			721551
	sta	31.434041	13.1300	101.10	0001 0.	721001
		Parameter4_9am	Parameter4_3pm	n Parameter5_9	am Parameter5_3p	m \
	count	142193.000000	142193.000000		_	
	mean	68.843810	51.482606	1017.6537	58 1015.25820	4
	min	0.000000	0.000000	980.5000	977.10000	0
	25%	57.000000	37.000000	1013.5000	00 1011.00000	0
	50%	70.000000	51.482606	1017.6537	58 1015.25820	4
	75%	83.000000	65.000000	1021.8000	00 1019.40000	0
	max	100.000000	100.000000	1041.0000	00 1039.60000	0
	std	18.932077	20.53206	6.7462	48 6.68178	8
		Domomoto O	Damamatan Carr	n Domowsts7 0	om Domowstan7 9-	\
	601177	Parameter6_9am	Parameter6_3pm			
	count	142193.000000	142193.000000	142193.0000	00 142193.00000	U

```
mean
             4.437189
                              4.503167
                                              16.987509
                                                               21.687235
             0.000000
                              0.000000
                                              -7.200000
min
                                                               -5.400000
25%
             3.000000
                              4.000000
                                              12.300000
                                                               16.700000
50%
                                                               21.300000
             4.437189
                              4.503167
                                              16.800000
75%
             6.000000
                              6.000000
                                              21.500000
                                                               26.300000
             9.000000
                              9.000000
                                              40.200000
                                                               46.700000
max
std
             2.278080
                              2.104709
                                               6.472166
                                                                6.870771
```

Failure_today 142193.000000 count 0.231101 mean min 0.000000 25% 0.000000 50% 0.000000 75% 0.000000 max1.000000 std 0.421539

[8 rows x 22 columns]

1 Pregunta 1

Cargar la base de datos en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario. R: Cargue los datos, vizualice y trabaje algunas columnas ya que no todas se podian trabajar de inmediato al no ser int o float, ademas realice el siguiente cambio en la variable 'Failure_today' 1: fallo 0: no fallo En vez de eliminar los valores nulos, reemplace estos por la media de la columna a la que corresponde este valor nulo. Podemos ver la estadistica descriptiva y la matriz de correlacion.

```
'Parameter6_9am',
    'Parameter6_3pm',
    'Electricity',
    'Max_Temp'
]]

x = sm.add_constant(x)
model = sm.OLS(y,x)
results = model.fit(cov_type='HCO')
print(results.summary())
```

OLS Regression Results

						===
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Lea		Adj. R-squared: F-statistic: Prob (F-statistic):		0.3 539	.00 56. +05
0.975]	coef	std err	z	P> z	[0.025	
const 0.056	0.0409	0.008	5.381	0.000	0.026	
Leakage 0.023	0.0213	0.001	31.584	0.000	0.020	
Parameter4_3pm 0.004	0.0038	7.4e-05	51.307	0.000	0.004	
Parameter6_9am 0.013	0.0121	0.001	23.024	0.000	0.011	
Parameter6_3pm 0.004	0.0032	0.001	5.758	0.000	0.002	
Electricity -0.001	-0.0017	0.000	-3.585	0.000	-0.003	
Max_Temp -0.004	-0.0047	0.000	-30.127	0.000	-0.005	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		24695.581 0.000 0.539 9.393	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.		249044.0 0	746 048 .00 82.

Notes:

[1] Standard Errors are heteroscedasticity robust (HCO)

2 Pregunta 2

Ejecute un modelo de probabilidad lineal (MCO) que permita explicar la probabilidad de que un dia se reporte fallo medido por sensor, a partir de las informacion disponible. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado. R: Gracias a la matriz de correlacion pude ver que las variables que mas se destacaban (positiva o negativamente) con 'Failure_today' eran 'Leakage', 'electricity', 'max_temp' y los parametros 4 y 6. Por esto decidi incluir eras variables en el modelo. obteniendo que un 32.9% de la vairabilidad de 'Failure_today' es esxplicada por el modelo. Ademas por los valores p podemos ver que los coeficientes son estadisticamente significativos.

Optimization terminated successfully.

Current function value: 0.015199

Iterations 15

Probit Regression Results

Dep. Variable:	Fai	lure_today	No. Observ	ations:	14219)3		
Model:		Probit	Df Residua	ls:	14218	39		
Method: MLE		Df Model:			3			
Date:	Sat, 2	6 Apr 2025	Pseudo R-squ.:		0.971	.9		
Time:		04:19:58	Log-Likelihood:		-2161.1			
converged:		True	LL-Null:		-76870.			
Covariance Type:		HCO	LLR p-valu	e:	0.00	0		
=======================================	=======	========		=======	=========	:===		
==								
	coef	std err	z	P> z	[0.025			
0.975]								
Leakage 7.394	7.1389	0.130	54.929	0.000	6.884			
Parameter4_3pm	-0.0616	0.001	-46.404	0.000	-0.064			

Max_Temp -0.1213 0.004 -34.322 0.000 -0.128 -0.114	
Max Temp -0.1213 0.004 -34.322 0.000 -0.128	
-0.220	
-0.059 Electricity -0.2360 0.008 -29.004 0.000 -0.252	

==

Possibly complete quasi-separation: A fraction 0.93 of observations can be perfectly predicted. This might indicate that the is complete quasi-separation. In this case some parameters will not be identified.

Probit Marginal Effects

_____ Dep. Variable: Failure_today Method: dydx At: overall dy/dx P>|z| [0.025 std err Z 0.975] Leakage 0.0598 0.000 408.604 0.000 0.059 0.060 Parameter4_3pm -0.0005 6.04e-06 -85.386 0.000 -0.001-0.001 Electricity -0.0020 5.76e-05 -34.3030.000 -0.002 -0.002 Max_Temp 0.000 -0.0010 2.26e-05 -44.931-0.001

==

-0.001

3 Pregunta 3

Ejecute un modelo probit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado. R: Para este modelo solo me quede con las variables 'Leakage', 'Parameter4_3pm', 'Electricity', 'Max_Temp'. Se obtuvo un PseudoRcudadrado bastante alto (0.97) En lo personal lo mas relevante que nos entrego el modelo probit es ver el gran impacto que tiene 'Leakage' sobre la ocurrencia de fallas.

```
'Max_Temp'
]]
model_logit = sm.Logit(y, x_logit)
logit_model = model_logit.fit(cov_type='HCO')
print(logit_model.summary())

mfxl = logit_model.get_margeff()
print(mfxl.summary())

# Odds Ratios (Logit)
params = logit_model.params
conf = logit_model.conf_int()
conf['Odds Ratio'] = params
conf.columns = ['5%', '95%', 'Odds Ratio']
print("Odds Ratios")
print(p.exp(conf))
```

Optimization terminated successfully.

Current function value: 0.012998

Iterations 16

Logit Regression Results

Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:		MLE 6 Apr 2025	Df Residua Df Model:	ls: qu.: hood:	142 0.9 -184 -768	8.3
0.975]	coef	std err	z	P> z	[0.025	
Leakage 15.605	15.0011	0.308	48.653	0.000	14.397	
Parameter4_3pm -0.077	-0.0825	0.003	-28.884	0.000	-0.088	
Parameter6_9am -0.308	-0.3553	0.024	-14.841	0.000	-0.402	
Parameter6_3pm -0.298	-0.3529	0.028	-12.670	0.000	-0.407	
Electricity -0.554	-0.5912	0.019	-31.181	0.000	-0.628	
Max_Temp -0.171	-0.1853	0.007	-25.303	0.000	-0.200	
==========	=======					=====

==

Possibly complete quasi-separation: A fraction 0.92 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Logit Marginal Effects

Dep. Variable:	Failure_today
Method:	dydx
At:	overall

0.975]	dy/dx	std err	z	P> z	[0.025	
Leakage 0.059	0.0590	0.000	380.442	0.000	0.059	
Parameter4_3pm -0.000	-0.0003	9.4e-06	-34.492	0.000	-0.000	
Parameter6_9am -0.001	-0.0014	8.97e-05	-15.572	0.000	-0.002	
Parameter6_3pm -0.001	-0.0014	0.000	-13.500	0.000	-0.002	
Electricity -0.002	-0.0023	5.59e-05	-41.584	0.000	-0.002	
Max_Temp -0.001	-0.0007	2.54e-05	-28.679	0.000	-0.001	
===========	========			========	=========	======

Odds Ratios

==

	5%	95%	Odds Ratio
Leakage	1.788380e+06	5.989062e+06	3.272724e+06
Parameter4_3pm	9.156694e-01	9.259792e-01	9.208099e-01
Parameter6_9am	6.688101e-01	7.346208e-01	7.009435e-01
Parameter6_3pm	6.653329e-01	7.420823e-01	7.026605e-01
Electricity	5.334789e-01	5.746375e-01	5.536759e-01
Max_Temp	8.190080e-01	8.428606e-01	8.308487e-01

4 Pregunta 4

Ejecute un modelo logit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado. R: Como podemos ver el modelo logit permite explicar la probabilidad de que se reporte un fallo. Una vez mas Leakage es el factor principal de los fallos.

5 Pregunta 5

Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación? R: Los modelos Probit y Logitestan diseñados para trabajar con variables binarias, caso contrario el de MCO. Ademas comparando los resultados obtenidos Tanto probit como logit logramos valor bastante altos en el Pseudo R Cuadrado. Siendo este ultimo modelo el que a mi parecer es el mas adecuado para la pregunta de investigacion ya que interpreta de forma clara como cambian las probabilidades. Las variables mas robustas fueron 'Leakage', 'Parameter4_3pm', 'Electricity', 'Max_Temp'.

Generalized Linear Model Regression Results

```
Dep. Variable: conteo_de_fallos
                               No. Obsertations:
                                                           113
                          GLM Df Residuals:
Model:
                                                           108
                       Poisson Df Model:
Model Family:
Link Function:
                               Scale:
                                                         1.0000
                          Log
Method:
                          IRLS
                               Log-Likelihood:
                                                        -3119.0
Date:
                Sat, 26 Apr 2025
                               Deviance:
                                                         5415.8
Time:
                      04:19:59
                               Pearson chi2:
                                                       3.82e+03
No. Iterations:
                               Pseudo R-squ. (CS):
                                                         1.000
Covariance Type:
                      nonrobust
______
                      std err z P>|z|
                                                  [0.025
                coef
              -0.8937 0.238 -3.749 0.000 -1.361
const
-0.426
```

Leakage -0.023	-0.0407	0.009	-4.627	0.000	-0.058	
Parameter4_3pm	0.0829	0.003	31.225	0.000	0.078	
0.088 Electricity	0.2602	0.017	15.258	0.000	0.227	
0.294	0.0475	0.002	C 467	0.000	0.010	
Max_Temp 0.023	0.0175	0.003	6.467	0.000	0.012	

__

6 Pregunta 6

Agregue la data a nivel mensual, usando la data promedio de las variables (ignorando aquellas categoricas, como la direccion del viento). En particular, genere una variable que cuente la cantidad de fallos observados en un mes, utilice un valor de 0 si en ese mes no se reporto fallos en ningun dia. Use un modelo Poisson para explicar el numero de fallas por mes. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado. R: como podemos ver el modelo es altamente significativo segun los valores entregados. Personalmente me causa ruido que en modelo entregue coeficiente negativo para Leakage y positivo para el resto de las variables, lo cual me hace dudar de mi interpretacion.

```
[9]: PromedioxMes['plambda'] = poisson_model.mu sns.histplot(data=PromedioxMes, x="plambda")
```

[9]: <Axes: xlabel='plambda', ylabel='Count'>


```
[10]: alpha = (y.var() - y.mean()) / (y.mean() ** 2)
print(f"Alpha estimado: {alpha}")
```

Alpha estimado: -0.9999766013201932

Generalized Linear Model Regression Results

Dep. Variable:	conteo_de_fallos	No. Observations:	113
Model:	GLM	Df Residuals:	108
Model Family:	NegativeBinomial	Df Model:	4
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-741.91
Date:	Sat, 26 Apr 2025	Deviance:	56.461
Time:	04:19:59	Pearson chi2:	20.7
No. Iterations:	10	Pseudo R-squ. (CS):	0.07689
Covariance Type:	nonrobust		

==

0.975]	coef	std err	z	P> z	[0.025	
const	-3.0738	3.475	-0.885	0.376	-9.885	
3.737						
Leakage	-0.0956	0.133	-0.719	0.472	-0.356	
0.165						
Parameter4_3pm	0.1085	0.039	2.809	0.005	0.033	
0.184						
Electricity	0.3538	0.259	1.367	0.171	-0.153	
0.861						
Max_Temp	0.0296	0.040	0.737	0.461	-0.049	
0.108						
==========	=======	========	========	=======	=======	=====

==

7 Pregunta 8

Usando la informacion anterior, ejecute un modelo Binomial Negativa para responder a la pregunta 6. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado. R: El parametro 4_3opm es el que mejor explica las fallas mensuales y en este caso el modelo binomial negativo entrega mejores resultados que el modelo de poisson.

8 Pregunta 9

Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación? R: En mi opinion el modelo binomial negativo es el mas adeucado para responder este trabajo, ya que modela correctamente los datos de conteo con sobredispersion y ofrece estimaciones mas robustas y confiables.