

Lab 0

Measurements and Uncertainty

You are running an experiment to measure the velocity of a cart rolling down a track. You first measure the mass of the cart 5 different times:

Measurement	Mass
1	251.05 grams
2	249.99 grams
3	251.07 grams
4	$251.05 \mathrm{\ grams}$
5	251.14 grams

Next, you measure the speed of the cart at the bottom of the track:

Measurement	Speed
1	$4.2 \mathrm{m/s}$
2	$3.9 \mathrm{m/s}$
3	$4.1 \mathrm{m/s}$
4	$4.0 \mathrm{m/s}$
5	4.1 m/s

1. What is your estimate (including uncertainty) of the mass of the cart?

Answer: I used this Google spreadsheet to find the average and standard deviation of the mass measurements. I found $m = 250.86 \pm 0.49 \text{ g} = 0.25086 \pm 0.00049 \text{ kg}$

2. What is your estimate (including uncertainty) of the speed of the cart? I used the same spreadsheet to calculate the speed. I find $v=4.1\pm0.1$ m/s.

- 3. Suppose your theoretical prediction for the velocity is 4.12 m/s. Is your measurement consistent with this prediction? My measured velocity is $v = 4.1 \pm 0.1 \text{ m/s}$, which means the true value could be anywhere from 4 to 4.2 m/s. Since 4.12 m/s is within this interval, my measurement and prediction are consistent.
- 4. Suppose your theoretical prediction for the momentum is 1.15 kg m/s. Is your measured value of the momentum consistent with this prediction?

First, I must calculate the momentum, $p = mv = 0.25086 \cdot 4.1 = 1.03$ kg m/s. According to my slides from lab:

$$\frac{\sigma_p}{p} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_v}{v}\right)^2} = \sqrt{\left(\frac{0.00049}{0.25086}\right)^2 + \left(\frac{0.1}{4.1}\right)^2} = 0.024$$
 This leaves me with:
$$\frac{\sigma_p}{p} = 0.024$$
 I know $p = mv = 0.25086 \cdot 4.1 = 1.03$ kg m/s; I want σ_p
$$\frac{\sigma_p}{p} = 0.024 \rightarrow \sigma_p = 0.024 \cdot p = 0.024 \cdot 1.03 = 0.025$$
 kg m/s

So the estimate for momentum, including uncertainty, is $p = 1.03 \pm 0.025$ kg m/s.

Is this estimate consistent with the predicted value, 1.15? No it is not, since 1.15 does not fall between 1.03-0.025 and 1.03+0.025.

5. Suppose your lab partner runs 5 more trials and finds a speed of 3.97 ± 0.09 m/s. Is their measurement consistent with your own?

The two measurements are consistent, since their uncertainty estimates overlap.