# PHP 2500 Introduction to Biostatistics

# Problem Set Six Solutions

### 1/

# **Chapter 11, #5**

The two samples are paired since we are taking repeated observations on the same subject.

 $H_0\text{: }\mu_{CF}\!-\!\!\mu_{OB}=0\quad versus\ H_0\text{: }\mu_{CF}\!-\!\!\mu_{OB}\neq0$ 

ttest cf=ob

Paired t test

| Variable | Obs      | Mean                 | Std. Err. | Std. Dev.           | -                    | . Interval]         |
|----------|----------|----------------------|-----------|---------------------|----------------------|---------------------|
| cf<br>ob | 14<br>14 | 4.443571<br>4.080714 | .2589319  | .9688344<br>1.05698 | 3.884183<br>3.470432 | 5.00296<br>4.690997 |
| diff     | 14       | .3628571             | .1084984  | .4059638            | .1284606             | .5972537            |

Ho: 
$$mean(cf - ob) = mean(diff) = 0$$

Ha: mean(diff) < 0  

$$t = 3.3444$$
  
P <  $t = 0.9974$ 

Ha: mean(diff) > 0

t = 3.3228 P > t = 0.0080

The p-value for the two sided test is .0053.

ttest after12=after24, level(90)

Therefore, we reject the null hypothesis that the difference in means is 0.

### **Chapter 11, #7**

Paired t test

| Variable           | Obs    | Mean                 | Std. Err.            | Std. Dev.            | [90% Conf.          | Interval]            |
|--------------------|--------|----------------------|----------------------|----------------------|---------------------|----------------------|
| after12<br>after24 | 7<br>7 | 69.85714<br>30.42857 | 15.95593<br>7.981697 | 42.21543<br>21.11758 | 38.85189<br>14.9187 | 100.8624<br>45.93845 |
| diff               | 7      | 39.42857             | 11.86603             | 31.39457             | 16.37073            | 62.48641             |

Ho: 
$$mean(after12 - after24) = mean(diff) = 0$$

| Ha: | mea | an ( | diff) < 0 |
|-----|-----|------|-----------|
|     | t   | =    | 3.3228    |
| p.  | < + | =    | 0 9920    |

Ha: mean(diff) 
$$\sim = 0$$
  
t = 3.3228  
P > |t| = 0.0159

Our one sided 95% CI for  $\delta = \mu_{12} - \mu_{24}$  is  $\delta \ge 16.36$ .

h

Our test of the null hypothesis yields a one-sided p-value of .0080 therefore, we reject the null hypothesis at the 5% level of significance.

3/

### **Chapter 11, #9**

а

Assuming equal variances,

ttesti 23 111 8 24 109 8, level(99)

Two-sample t test with equal variances

|          | 0bs        | Mean       | Std. Err.            | Std. Dev. | [99% Conf.          | Interval]           |
|----------|------------|------------|----------------------|-----------|---------------------|---------------------|
| х<br>У   | 23<br>24   | 111<br>109 | 1.668115<br>1.632993 | 8         | 106.298<br>104.4156 | 115.702<br>113.5844 |
| combined | 47<br>  47 | 109.9787   | 1.163542             | 7.97684   | 106.8523            | 113.1052            |
| diff     |            | 2          | 2.334368             |           | -4.278482           | 8.278482            |

Degrees of freedom: 45

Ho: mean(x) - mean(y) = diff = 0

The two-sided hypothesis test yields a p-value of .3961 therefore we cannot reject the null hypothesis that the two populations of women have the same mean arterial blood pressure.

b. 99% CI is (-4.28, 8.28). This interval contains the value 0 which was to be expected since we did not reject the null hypothesis that the difference in mean arterial bp between the two groups of women was 0.

### 4/ Chapter 11, #10

a. ttesti 156 54.8 28.1 148 69.5 34.7

Two-sample t test with equal variances

|          | Obs          | Mean         | Std. Err.            | Std. Dev.    | [95% Conf            | . Interval]          |
|----------|--------------|--------------|----------------------|--------------|----------------------|----------------------|
| х<br>У   | 156<br>  148 | 54.8<br>69.5 | 2.249801<br>2.852322 | 28.1<br>34.7 | 50.35577<br>63.86315 | 59.24423<br>75.13685 |
| combined | 304          | 61.95658     | 1.85161              | 32.28392     | 58.31294             | 65.60022             |
| diff     |              | -14.7        | 3.612929             |              | -21.8097             | -7.590298            |

Degrees of freedom: 302



Since the Confidence interval on the difference does not contain zero, there appears to be evidence that the populations means are different. Note that it is tempting to simply notice that the two confidence intervals do not overlap and the two population means are not likely to be equal, but this is not the correct way to assess if there is a difference or not.

b. ttesti 156 54.8 28.1 148 69.5 34.7

Two-sample t test with equal variances

|          | 0bs          | Mean         | Std. Err.            | Std. Dev.    | [95% Conf            | . Interval]          |
|----------|--------------|--------------|----------------------|--------------|----------------------|----------------------|
| x<br>y   | 156<br>  148 | 54.8<br>69.5 | 2.249801<br>2.852322 | 28.1<br>34.7 | 50.35577<br>63.86315 | 59.24423<br>75.13685 |
| combined | 304          | 61.95658     | 1.85161              | 32.28392     | 58.31294             | 65.60022             |
| diff     |              | -14.7        | 3.612929             |              | -21.8097             | -7.590298            |

Degrees of freedom: 302

Ho: 
$$mean(x) - mean(y) = diff = 0$$

The p-value for the two sided test is .0001, therefore I reject the null hypothesis that the population means are equal.

A 95% CI for the true difference in population means is (-21.8097, -7.59028)

d.

```
. ttesti 156 172.5 68.8 148 185.5 69.0
```

Two-sample t test with equal variances

-----

|            | Obs        | Mean           | Std. Err.            | Std. Dev.  | [95% Conf.           | <pre>Interval]</pre> |
|------------|------------|----------------|----------------------|------------|----------------------|----------------------|
| х<br>У     | 156<br>148 | 172.5<br>185.5 | 5.508408<br>5.671765 | 68.8<br>69 | 161.6188<br>174.2913 | 183.3812<br>196.7087 |
| combined   | 304        | 178.8289       | 3.962633             | 69.09087   | 171.0312             | 186.6267             |
| diff       |            | -13            | 7.905814             |            | -28.55746            | 2.557458             |
| Degrees of | freedom:   | 302            |                      |            |                      |                      |

Ho: mean(x) - mean(y) = diff = 0

The p-value for this two sided test is .1011, therefore I cannot reject that the two groups of husbands have the same mean carbohydrate intake.

### 5/ Chapter 11, #13

a. summ bed80 bed86

| Variable | 0bs | Mean     | Std. Dev. | Min | Max |
|----------|-----|----------|-----------|-----|-----|
| bed80    | 51  | 4.686275 | 1.009756  | 3   | 7   |
| bed86    | 51  | 4.235294 | 1.176235  | 2   | 8   |

b. ttest bed80= bed86, unpaired

Two-sample t test with equal variances

| Variable         | Obs      | Mean                 | Std. Err. | Std. Dev.            | •                    | <pre>Interval]</pre> |
|------------------|----------|----------------------|-----------|----------------------|----------------------|----------------------|
| bed80  <br>bed86 | 51<br>51 | 4.686275<br>4.235294 | .1413942  | 1.009756<br>1.176235 | 4.402276<br>3.904473 | 4.970273<br>4.566116 |
| combined         | 102      | 4.460784             | .1103036  | 1.114011             | 4.241972             | 4.679597             |
| diff             |          | .4509804             | .2170722  |                      | .0203153             | .8816454             |
|                  |          |                      |           |                      |                      |                      |

Degrees of freedom: 100

Ho: mean(bed80) - mean(bed86) = diff = 0

The p-value for the two sided test is .0403, therefore I would reject the null hypothesis that the mean number of beds in the two years was the same.

c.
ttest bed80= bed86

Paired t test

| Variable       | 0bs        | Mean                 | Std. Err.            | Std. Dev.            | •                    | . Interval]          |
|----------------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| bed80<br>bed86 | 51<br>51   | 4.686275<br>4.235294 | .1413942<br>.1647059 | 1.009756<br>1.176235 | 4.402276<br>3.904473 | 4.970273<br>4.566116 |
| diff           | 51<br>  51 | .4509804             | .08075               | .5766706             | .2887892             | .6131716             |

The p-value for the paired test is ~0, therefore I would again reject the null hypothesis that the mean number of beds was the same in each year.

d. The difference between the two tests is that the paired t-test recognizes (and takes in to account) that we have repeated observations on the same "unit". So in a sense we have controlled a great deal of variability. Treating the data as if it came from two independent populations is dangerous in that we ignore the natural pairing in the data. In this case we happen to reach the same conclusion.

```
e.
gen diff=bed80-bed86
```

ci diff

| Variable | Obs.     | Mean     | Std. Err. | [95% Conf. | Interval] |
|----------|----------|----------|-----------|------------|-----------|
| diff     | <br>  51 | .4509804 | .08075    | .2887892   | .6131716  |

95% CI for the true difference is (.289, .613)

### 6/

# **Chapter 11, #15**

a.
ttest pdi, by ( trtment) unequal

Two-sample t test with unequal variances

| Group    | 0bs      | Mean                 | Std. Err.            |                    | [95% Conf            | =                   |
|----------|----------|----------------------|----------------------|--------------------|----------------------|---------------------|
| 0        | 73<br>70 | 91.91781<br>97.77143 | 1.929775<br>1.755225 | 16.488<br>14.68527 | 88.07087<br>94.26985 | 95.76474<br>101.273 |
| combined | 143      | 94.78322             | 1.325531             | 15.85104           | 92.16289             | 97.40354            |
| diff     | <br>     | -5.85362             | 2.60861              |                    | -11.0109             | 6963371             |

Satterthwaite's degrees of freedom: 140.247

The p-value for the two sided test is .0264. Therefore, we reject the null hypothesis that the mean pdi score is the same for children's in both treatment groups.

b.

```
. ttest mdi, by (trtment) unequal
```

Two-sample t test with unequal variances

| Group | 0bs | Mean     | Std. Err. | Std. Dev. | [95% Conf | . Interval] |
|-------|-----|----------|-----------|-----------|-----------|-------------|
| 0     | 74  | 103.1622 | 1.914019  | 16.46501  | 99.34753  | 106.9768    |
|       | 70  | 106.4    | 1.741754  | 14.57256  | 102.9253  | 109.8747    |

```
combined | 144 104.7361 1.300364 15.60437 102.1657 107.3065
______
diff | -3.237838 2.58789 -8.353798 1.878122
Satterthwaite's degrees of freedom: 141.386
          Ho: mean(0) - mean(1) = diff = 0
```

The p-value for this two sided test is .2129. Therefore, we cannot reject the null hypothesis that the mean mdi score is the same for children in both treatment groups.

These tests suggest that the type of surgical treatment will impact a child's psychomotor development but not their mental development.

### 7/ **Chapter 13, #7**

```
signtest time1= time2
```

Sign test

```
sign | observed expected
-----<del>-</del>
 positive | 9 7
negative | 5 7
zero | 0 0
    all | 14 14
```

```
One-sided tests:
```

```
Ho: median of time1 - time2 = 0 vs.
 Ha: median of time1 - time2 > 0
    Pr(#positive >= 9) =
        Binomial(n = 14, x \ge 9, p = 0.5) = 0.2120
 Ho: median of time1 - time2 = 0 vs.
 Ha: median of time1 - time2 < 0
     Pr(#negative >= 5) =
        Binomial(n = 14, x >= 5, p = 0.5) = 0.9102
Two-sided test:
 Ho: median of time1 - time2 = 0 vs.
 Ha: median of time1 - time2 ~= 0
     Pr(#positive >= 9 or #negative >= 9) =
        min(1, 2*Binomial(n = 14, x >= 9, p = 0.5)) = 0.4240
```

The p-value for the two sided test is .4240 therefore, we cannot reject the null hypothesis that the median difference in respiratory rates for the two times is equal to 0.

```
b.
signrank time1= time2
Wilcoxon signed-rank test
```

| expected          | sum ranks         | obs             | sign                         |
|-------------------|-------------------|-----------------|------------------------------|
| 52.5<br>52.5<br>0 | 80.5<br>24.5<br>0 | 9<br>  5<br>  0 | positive<br>negative<br>zero |
| 105               | 105               | 14              | all                          |

```
unadjusted variance adjustment for ties -0.12 adjustment for zeros 0.00 adjusted variance 253.63

Ho: time1 = time2 z = 1.758 Prob > |z| = 0.0787
```

If we use the Wilcoxon Sign-Rank test we find a two-sided p-value of .0787. Therefore, I would not reject the null hypothesis that the median respiratory rate at the two times is equal.

c.

Using the two-sided test, we do reach the same conclusions.

### 8/

# **Chapter 13, #8**

a.
signrank air= so2

Wilcoxon signed-rank test

| sign                         | obs              | sum ranks      | expected      |
|------------------------------|------------------|----------------|---------------|
| positive<br>negative<br>zero | 5<br>  14<br>  0 | 43<br>147<br>0 | 95<br>95<br>0 |
| all                          | 19               | 190            | 190           |

| unadjusted  | var   | iance | 617.50 |
|-------------|-------|-------|--------|
| adjustment  | for   | ties  | 0.00   |
| adjustment  | for   | zeros | 0.00   |
|             |       |       |        |
| adjusted va | arian | nce   | 617.50 |

Ho: air = so2  

$$z = -2.093$$
  
Prob >  $|z| = 0.0364$ 

The p-value for the two-sided test is .0364. Therefore, I would reject the null hypothesis that the median difference is equal to zero.





Neither of the variables are normally distributed, therefore a ttest would not have been appropriate.

# 9/ Chapter 13, #11

a.
ranksum age, by(sex)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

| expected   | rank sum   | obs        | sex      |
|------------|------------|------------|----------|
| 224<br>154 | 221<br>157 | 16<br>  11 | 0        |
| 378        | 378        | 27         | combined |

unadjusted variance 410.67 adjustment for ties -0.38 ------adjusted variance 410.29

Ho: age(sex==0) = age(sex==1) z = -0.148Prob > |z| = 0.8823

The p-value for the rank sum test is .8823, therefore, I cannot reject the null hypothesis that the median age is the same for males and females.

### b.

 $\rightarrow$  sex = 0

. by sex: centile age, centile(50)

-> sex = 1

-- Binom. Interp. -Variable | Obs Percentile Centile [95% Conf. Interval]

age | 11 50 87 58.85091 141.4691

| -> sex = 0 |     |          |           |     |     |  |
|------------|-----|----------|-----------|-----|-----|--|
| Variable   | 0bs | Mean     | Std. Dev. | Min | Max |  |
| age        | 16  | 97.25    | 39.4656   | 46  | 175 |  |
|            |     |          |           |     |     |  |
| -> sex = 1 |     |          |           |     |     |  |
| Variable   | 0bs | Mean     | Std. Dev. | Min | Max |  |
| age        | 11  | 107.6364 | 66.1321   | 53  | 277 |  |

Notice that for each sex, the median age  $\neq$  mean age which implies the data is not symmetric. Therefore, a ttest would not be appropriate.

10/ Chapter 13, #13



b.
signrank bed80= bed86

Wilcoxon signed-rank test

| sign                         | obs           | sum ranks        | expected          |
|------------------------------|---------------|------------------|-------------------|
| positive<br>negative<br>zero | 25<br>2<br>24 | 950<br>76<br>300 | 513<br>513<br>300 |
| all                          | 51            | 1326             | 1326              |
| unadjusted var               | riance 1      | 11381.50         |                   |

Ho: bed80 = bed86 z = 4.426Prob > |z| = 0.0000

The p-value is  $\sim$ 0 and thus I would reject the null hypothesis that the median number of beds is the same in both years.

```
c.
```

```
. ranksum bed, by( year)
```

Prob > |z| = 0.0188

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

| year                                                      | obs        | rank sum     | expected         |  |  |
|-----------------------------------------------------------|------------|--------------|------------------|--|--|
| 80<br>86                                                  | 51<br>  51 | 2963<br>2290 | 2626.5<br>2626.5 |  |  |
| combined                                                  | 102        | 5253         | 5253             |  |  |
| unadjusted variance 22325.25 adjustment for ties -1817.57 |            |              |                  |  |  |
| adjusted varia                                            | ance 20    | 507.68       |                  |  |  |
| Ho: bed(year==80) = bed(year==86)<br>z = 2.350            |            |              |                  |  |  |

The p-value is .0188. Therefore, I would reject the null hypothesis that the median number of beds is the same in both years.

#### d

The sign rank test assumes the data is paired whereas the rank sum test assumes we have two independent populations. In this example, both tests yield the same conclusions. The sign-rank test would be the appropriate choice here since the data is actually paired (repeated measurements on the same state).

e.

Non-parametric tests yielded the same results. This is actually not surprising since from part a we see the data is approximately symmetric (which would imply the mean=median).

### 11/ Chapter 14, #9

a.

```
. cii 45 4, level(90)
```

| Variable | Obs      | Mean     | Std. Err. |          | Interval] |
|----------|----------|----------|-----------|----------|-----------|
|          | <br>  45 | .0888889 | .0424232  | .0309353 | .1919756  |

Therefore a 90% CI for the true proportion is (.031, .192)

```
b.
H<sub>0</sub>: p=.22
H<sub>a</sub>: p≠ .22
```

bitesti 45 4 .22

Blume

d.

The p-value is .03, therefore we would reject the null hypothesis that the true proportion is the same for children in the special ed program as for all 3<sup>rd</sup> graders.

```
sampsi .22 .1, onesample power(.95) alpha(.05)
Estimated sample size for one-sample comparison of proportion
  to hypothesized value
Test Ho: p = 0.2200, where p is the proportion in the population
Assumptions:
 \begin{array}{rcl} & \text{alpha =} & 0.0500 & (\text{two-sided}) \\ & \text{power =} & 0.9500 \\ & \text{alternative p =} & 0.1000 \end{array}
Estimated required sample size:
                           119
Therefore, a sample of size 119 would be required.
```

# 12/

### Chapter 14, #11

For prepaid plan,  $p^{13/311} = .042$ For Medicaid plan,  $p^{-} = 22/310 = .071$ 

b.

```
. prtesti 311 13 310 22, level(90) count
```

x: Number of obs = 311 y: Number of obs = 310 Two-sample test of proportion

| Variable | Mean                   | Std. Err.            | z                  | P>   z           | [90% Conf.          | Interval] |
|----------|------------------------|----------------------|--------------------|------------------|---------------------|-----------|
| х<br>У   | .0418006               | .0113485<br>.0145836 | 3.68336<br>4.86627 | 0.0002<br>0.0000 | .023134<br>.0469798 | .0604673  |
| diff     | 0291671<br>  under Ho: | .0184789             | -1.57586           | 0.1151           | 0595622             | .001228   |

Ho: proportion(x) - proportion(y) = diff = 0

The p-value for the two sided test is .1151, therefore, I cannot reject the null hypothesis that the proportions for the two populations are identical (at the 10% significance level).

#### 13/

### Chapter 14, #12

b.

Two-sample test of proportion

x: Number of obs = 97 y: Number of obs = 161

| Variable | Mean           | Std. Err. |                    | P>   z |                      | Interval] |
|----------|----------------|-----------|--------------------|--------|----------------------|-----------|
| х<br>У   | .247<br>  .174 |           | 5.64075<br>5.82368 | 0.0000 | .1611761<br>.1154402 | .3328239  |
| diff     | !              | .0530106  | 1.41606            | 0.1568 | 030899               | .176899   |

Ho: proportion(x) - proportion(y) = diff = 0

C.

The p-value for the two sided test is .1568. Therefore, I cannot reject the null hypothesis that the proportion of intravenous drug users who have a positive tuberculin skin test result are the same for those who share needles and those who do not.

d. 95% CI for the true difference in proportions is (-0.03, .18).

### 14/ Chapter 15, #8

a. tabi 1250 991\1387 1666, chi2

| row    | col                   | 2           | Total          |
|--------|-----------------------|-------------|----------------|
| 1<br>2 | +<br>  1250<br>  1387 | 991<br>1666 | 2241<br>  3053 |
| Total  | +<br>  2637           | 2657        | +<br>  5294    |

Pearson chi2(1) = 55.3553 Pr = 0.000

Therfore,  $\chi^2 = 55.35$ 

b.

The chi-square value we found is significantly different than 1, thus we would conclude that the behavior of college students changes from one year to the next.

c. prtesti 2637 1250 2657 991, count

Two-sample test of proportion x: Number of obs = 2637 y: Number of obs = 2657

| Variable | Mean                    | Std. Err.            | Z                  | P>   z | [95% Conf. I        | interval]            |
|----------|-------------------------|----------------------|--------------------|--------|---------------------|----------------------|
| х<br>У   | .4740235                | .0097236<br>.0093818 | 48.7497<br>39.7553 | 0.0000 | .4549656<br>.354589 | .4930815<br>.3913651 |
| diff     | .1010465<br>  under Ho: | .0135117             | 7.44011            | 0.0000 | .0745639            | .127529              |

Again – we would reject the null hypothesis that the proportion of students who drove while drinking is the same in the two years.

d. 95% CI for true difference in proportions is (.0745639, .127529).

### 15/ Chapter 15, #11

a.
tabi 2040 367 327\149 60 48\288 25 70\703 197 252\425 62 88\121 72 79, chi2

|       | col         |     |     |       |  |
|-------|-------------|-----|-----|-------|--|
| row   | ] 1         | 2   | 3   | Total |  |
| 1     | +<br>  2040 | 367 | 327 | 2734  |  |
| 2     | 149         | 60  | 48  | 257   |  |
| 3     | 288         | 25  | 70  | 383   |  |
| 4     | 703         | 197 | 252 | 1152  |  |
| 5     | 425         | 62  | 88  | 575   |  |
| 6     | 121         | 72  | 79  | 272   |  |
| Total | +<br>  3726 | 783 | 864 | 5373  |  |

Pearson chi2(10) = 209.0933 Pr = 0.000

Since our chi-square statistic is significantly different than 10, we would conclude that the results are not consistent across studies.

One problem might be that we might report a direction of effect that is the opposite of the true association.

### 16/ Chapter 15, #13

a. mcci 27 20 12 68

| Cases                | Controls<br>  Exposed | Unexposed | <br>  Total |
|----------------------|-----------------------|-----------|-------------|
| Exposed<br>Unexposed | 27<br>  12            | 20<br>68  | 47<br>  80  |
| Total                | 39                    | 88        | 127         |

McNemar's chi2(1) = 2.00 Prob > chi2 = 0.1573 Exact McNemar significance probability = 0.2153

Proportion with factor

| Cases<br>Controls           | .3700787                         | [95% Conf.                     | Interval]                      |         |
|-----------------------------|----------------------------------|--------------------------------|--------------------------------|---------|
| difference ratio rel. diff. | .0629921<br>1.205128<br>.0909091 | 0314928<br>.9301778<br>0292189 | .157477<br>1.561351<br>.211037 |         |
| odds ratio                  | 1.666667                         | .7759952                       | 3.739198                       | (exact) |

b.

Since McNemar's chi-square statistic is not significantly different than 1, we can not reject the null hypothesis of no association between retirement status and cardiac arrest.

c.
mcci 27 20 12 68

| Cases |         | Controls<br>Exposed | Unexposed | Total      |
|-------|---------|---------------------|-----------|------------|
|       | Exposed | 27<br>12            | 20<br>68  | 47<br>  80 |
|       | Total   | 39                  | 88        | 127        |

McNemar's chi2(1) = 2.00 Prob > chi2 = 0.1573 Exact McNemar significance probability = 0.2153

Proportion with factor

| Cases      | .3700787 |            |                      |         |
|------------|----------|------------|----------------------|---------|
| Controls   | .3070866 | [95% Conf. | <pre>Interval]</pre> |         |
|            |          |            |                      |         |
| difference | .0629921 | 0314928    | .157477              |         |
| ratio      | 1.205128 | .9301778   | 1.561351             |         |
| rel. diff. | .0909091 | 0292189    | .211037              |         |
|            |          |            |                      |         |
| odds ratio | 1.666667 | .7759952   | 3.739198             | (exact) |

OR = 1.67

d.

95% CI for population OR is (.776, 3.739). Yes this interval contains the value 1 which was to be expected since we did not reject the null hypothesis of no association.

## 17/ Chapter 15, #15

a. mcci 2 8 2 33

| Cases |                      | Controls<br>Exposed | Unexposed | <br>  Total |
|-------|----------------------|---------------------|-----------|-------------|
|       | Exposed<br>Unexposed | 2 2                 | 8<br>33   | 10          |
|       | Total                | 4                   | 41        | 45          |

McNemar's chi2(1) = 3.60 Prob > chi2 = 0.0578 Exact McNemar significance probability = 0.1094

Proportion with factor

| Cases      | .222222  |            |           |         |
|------------|----------|------------|-----------|---------|
| Controls   | .0888889 | [95% Conf. | Interval] |         |
|            |          |            |           |         |
| difference | .1333333 | 020997     | .2876637  |         |
| ratio      | 2.5      | .9382946   | 6.661021  |         |
| rel. diff. | .1463415 | .0066704   | .2860125  |         |
|            |          |            |           |         |
| odds ratio | 4        | .7982264   | 38.6707   | (exact) |

b. We see that McNemar's chi-square statistic takes on the value 3.60 which is not significantly different than 1. Therefore, we cannot reject the null hypothesis of no association (but we must do so with caution. An inference based entirely on p-values could be questionable here).

# 18/ Chapter 15, #16

cci 108 163 117 268

|                                                  | Exposed    | Unexposed                       | Total                         | Proportion<br>Exposed |                    |
|--------------------------------------------------|------------|---------------------------------|-------------------------------|-----------------------|--------------------|
| Cases<br>Controls                                | 108<br>117 | 163<br>268                      | 271<br>  385                  | 0.3985                |                    |
| Total                                            | 225        | 431                             | <br>  656                     | 0.3430                |                    |
|                                                  | Point e    | estimate                        | <br>  [95% Conf.              | Interval]             |                    |
| Odds ratio<br>Attr. frac. ex.<br>Attr. frac. pop | . 34       | L <b>7697</b><br>11107<br>59393 | <b>1.080447</b><br>  .0744574 |                       | (exact)<br>(exact) |
| -<br>-                                           | ch         | ni2(1) =                        | 6.32 Pr>chi                   | 2 = 0.0119            |                    |

a.

Relative Odds for Smokers vs Non-Smokers = 1.517697

b.

95% CI for population OR:

(1.08, 2.13)

C.

Chi-Square Statistic is 6.32 which is significantly different than 1 therefore we reject the null hypothesis of no association.

# 19/ Chapter 15, #17

a.

.cci 28 251 6 273, level(99)

|                                                  | Exposed | Unexposed                  | Total                  | Proportion<br>Exposed |                    |
|--------------------------------------------------|---------|----------------------------|------------------------|-----------------------|--------------------|
| Cases<br>Controls                                | 28      | 251<br>273                 | 279<br>  279           | 0.1004<br>0.0215      |                    |
| Total                                            | 34      | 524                        | 558                    | 0.0609                |                    |
|                                                  | Point   | estimate                   | <br>  [99% Conf.       | Interval]             |                    |
| Odds ratio<br>Attr. frac. ex.<br>Attr. frac. pop | .80     | 075697<br>029827<br>005861 | 1.592784<br>  .3721686 | 22.07797<br>.954706   | (exact)<br>(exact) |
| =                                                |         | <br>rhi2(1) =              | 15 16 Prachi           | 2 = 0 0001            |                    |

b.

OR = 5.076

C.

99% CI for population OR: (1.59, 22.08)

# 20/

# **Chapter 15, #18**

a.

P(abortion|0 alcohol) = 6793/33164 = .205

P(abortion|1-2 drinks) = 2068/9099 = .227

P(abortion|3-6 drinks)=776/3069 = .253

P(abortion|7-20 drinks) = 456/1527 = .299 P(abortion|21+ drinks)=98/287 = .341

b.

tabodds case alcohol [fweight=freq],or base(1)

| alcohol        | Odds Ratio    | chi2          | P>chi2         | [95% Conf. | Interval] |
|----------------|---------------|---------------|----------------|------------|-----------|
| 1              | 1.000000      |               |                |            |           |
| 2              | 1.141822      | 21.71         | 0.0000         | 1.079823   | 1.207381  |
| 3              | 1.313780      | 39.20         | 0.0000         | 1.205875   | 1.431340  |
| 4              | 1.652876      | 77.69         | 0.0000         | 1.476384   | 1.850467  |
| 5              | 2.012933      | 32.47         | 0.0000         | 1.574664   | 2.573183  |
| Test of homoge | eneity (equal | odds): chi2(4 | <br>) = 118.91 |            |           |

Pr>chi2 = 0.0000 Score test for trend of odds: chi2(1) = 152.17 Pr>chi2 = 0.0000

• Note that the relative odds for each alcohol "level" are in the column labeled Odds Ratio.

The 95% CI's are highlighted in the above table.

d.

None of the 95% OR's contain the value 1 suggesting that spontaneous abortions and alcohol use are associated. Also, all of the estimated OR's >1 and increase with increasing alcohol consumption.