Final Project

Xulin Ge

AS.410.671.82.SU22 Gene Expression Data Analysis and Visualization

Data set: GEO accession GSE56323

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56323

Introduction & Background

- Wilms Tumor is the most common pediatric kidney cancer that evolves from the failure of terminal differentiation of the embryonic kidney
- The authors used mice model and hypothesized that the regulator Lin28 during kidney development plays a role in cancer development
- The researchers performed gene expression analysis on a total of 8 kidneys samples, including 4 tumors samples from Lin28 transgenic mice and 4 control kidneys
- Platform: GPL6885 Illumina MouseRef-8 v2.0 expression beadchip
- Dataset: GSE56323 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56323
- GEO2R analysis: GSE56323 https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE56323

Question in this project: Find out the genes that show expression difference between tumor and control. Is Lin 28 one of them?

Ref:Urbach A, Yermalovich A, Zhang J, Spina CS, Zhu H, Perez-Atayde AR, Shukrun R, Charlton J, Sebire N, Mifsud W, Dekel B, Pritchard-Jones K, Daley GQ. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014 May 1;28(9):971-82. doi: 10.1101/gad.237149.113. Epub 2014 Apr 14. PMID: 24732380; PMCID: PMC4018495.

Methods

- Retrieve dataset from GEO
 Take a brief look at GEO2R analysis
- Use 3 plots to test for outliers:
 Correlation plot (heat map)
 Hierarchical clustering dendrogram
 Average correlation plot
- Plot the gene expression Densities. Filter out low expression genes that <=0
- Perform Student's two-sample t-test on all genes. Because there're two groups (tumor vs. control).
- Calculate the fold change between the groups.

Methods

- Select genes that match two criterions:
 - 1. p-value < Bonferroni threshold
 - 2. linear | fold change | >2

And plot the scores of retained genes

- PCA analysis on subset data and
 Plot the first two components in PCA plot.
 Plot a two-dimensional embedding of the weighted graph Laplacian
- k-means clustering of the subset data and the original data (k=2)
 Plot samples in text
 Colored from k-means cluster membership
- Report gene functional information on NCBI's DAVID

Results - GEO2R

Group	Accession \$	Title	♦ Source name	Tissue	Tumor status	Age \$
1	GSM1359095	kidney tumor #1	kidney tumor #1	kidney	tumorous	5W
2	GSM1359096	control kidney #1	control kidney #1	kidney	non-tumorous	5W
1	GSM1359097	kidney tumor #2	kidney tumor #2	kidney	tumorous	4M
2	GSM1359098	control kidney #2	control kidney #2	kidney	non-tumorous	4M
1	GSM1359099	kidney tumor #3	kidney tumor #3	kidney	tumorous	4M
2	GSM1359100	control kidney #3	control kidney #3	kidney	non-tumorous	4M
1	GSM1359101	kidney tumor #4	kidney tumor #4	kidney	tumorous	4M
2	GSM1359102	control kidney #4	control kidney #4	kidney	non-tumorous	4M

The dataset includes the class structure with different levels (tumor vs. control)

Results - Test for outlier samples

Avg r

- There's no outlier in the dataset, based on three plots
- No need to remove outlier(s)

Hierarchical clustering dendrogram for tumor vs. control

Results - Filter out low expression genes

First, take a look at the gene expression distribution.

The gene expression plot is not clear on linear scale Intensity

Transform to log2 scale

Results - Filter out low expression genes

Results - Filter out low expression genes

```
64 ex <- exprs(gset)
65 quantile(rowMeans(ex), na.rm=T)
66 # 0% 25% 50% 75% 100%
67 # -10.4375 0.8250 17.8000 171.6625 17239.4500
```

So, the data does contain low expression genes

Filter out these genes $(ex \le 0)$

Results - Feature selection with a statistical test

Student's two-sample t-test on all genes

Histograms of p-values on linear and $-\log 10$ scale. Vertical line: p = 0.05

Results - Feature selection with a statistical test Calculate the fold change between the groups

Histograms of fold change on linear and log2 scale. Vertical line: |fold change|=2

Results - Genes retained

Retain the genes with the two criterions:

- 1. p-value < Bonferroni threshold = 0.05/length(dat[,1]) = 1.945752e-06
- 2. linear |fold change|>2

```
pv.filter <- pv[pv<alpha & abs(fold)>log2(2)]
length(pv.filter)
# [1] 7
Thus, there are 7 genes meet the requirements.
```

There are 7 genes meet the requirements. Plot the scores of those genes in a histogram

Results - Genes retained

Histograms of p value and fold change of those genes retained

Results – PCA analysis on subset data

First 2 components of subset data in PCA plot

Results – PCA analysis on subset data

Scree plot that corresponds to the PCA

Results – PCA analysis on subset data

Weighted Graph Laplacian plot epsilon=NULL

Two-dimensional embedding of the weighted graph Laplacian

Results – Classify the samples into classes

PCA with K-means classification on retained genes

k-means clustering of the subset data based on first 2 PCA components (k=2)

Results – Classify the samples into classes

PCA with K-means classification on original genes

k-means clustering of the original data based on first 2 PCA components (k=2)

Results - Top 5 discriminant genes

ILMN_3163582 L1 cell adhesion molecule L1cam

positive direction

Looking at the annotation file GPL6885.annot, these genes are from Mus musculus:

```
ILMN_1212607 CASP2 and RIPK1 domain containing adaptor with death domain Cradd
ILMN_1212612
               regulator of calcineurin 2 Rcan2
ILMN 1212619
               microfibrillar-associated protein 3-like Mfap3l
ILMN_1212628
               transcription elongation regulator 1-like Tcerg1l
ILMN 1212632
               Mab-21 domain containing 2 Mb21d2
negative direction
ILMN 3163569
               solute carrier family 16 (monocarboxylic acid transporters), member 3 Slc16a3
ILMN 3163572
               adenylate cyclase 7 Adcy7
ILMN_3163577
               ACACCGGCCCTTTGTGAAGACCACAAGACTAATACCCCTGCGAGTCACTG BLAST search returns
100% match of NM_001359700.1, which is from gene Scn3b
ILMN_3163581 engrailed 1 En1
```

Results - Functional information on NCBI's DAVID

		alloudial					
ENSEMBL_GENE_ID	Species	David Gene Name	BIOLOGICAL PROCESS	GO TERM			
71306	Mus musculus	microfibrillar-associated protein 3-like(Mfap3I)	Immunoglobulin domain, Signal, Transmembrane,	nucleus, nucleoplasm, cytoplasm, plasma membrane, membrane, integral component of membrane, cell junction,			
16728	Mus musculus	L1 cell adhesion molecule(L1cam)	Cell adhesion, Differentiation, Neurogenesis,	endosome, piasma memorane, external side of piasma memorane, cell surface, membrane, integral component of membrane, axon, dendrite, presynaptic membrane, cell projection, neuronal cell body, terminal bouton, dendritic growth cope, axonal growth cope, membrane raft. Schaffer collateral - CA1 synapse			
12905	Mus musculus	CASP2 and RIPK1 domain containing adaptor with death domain(Cradd)	Apoptosis,	nucleus, nucleolus, cytoplasm, endopeptidase complex,			
239796	Mus musculus	Mab-21 domain containing 2(Mb21d2)	Nucleotidyltransferase, Transferase,	transferase activity, nucleotidyltransferase activity, macromolecular complex binding,			
80879	Mus musculus	solute carrier family 16 (monocarboxylic acid transporters), member 3(Slc16a3)	Symport, Transport,	monocarboxylic acid transport, plasma membrane lactate transport, transmembrane transport,			
70571	Mus musculus	transcription elongation regulator 1-like(Tcerg1l)	transcription cofactor activity, RNA polymerase binding,	nucleus,			
11513	Mus musculus	adenylate cyclase 7(Adcy7)	cAMP biosynthesis,	plasma membrane, integral component of plasma membrane, membrane, integral component of membrane,			
13798	Mus musculus	engrailed 1(En1)	Developmental protein, DNA-binding, Developmental protein,	nucleus, membrane,			
235281	Mus musculus	sodium channel, voltage-gated, type III, beta(Scn3b)	Ion transport, Sodium transport, Transport,	voltage-gated sodium channel complex, plasma membrane, membrane, integral component of membrane, Z disc,			
53901	Mus musculus	regulator of calcineurin 2(Rcan2)	Thyroid hormone signaling pathway,	nucleus, cytoplasm,			
6 5 1 1		1.0					

Table of gene name and functional information for 10 discriminant genes

Results - Functional information on NCBI's DAVID

12 chart records								
Sublist	<u>Category</u>	<mark>Term</mark> :	₽RΤ	Genes	Count 4	%	P-Value	‡ <u>Benjamini</u> ‡
	UP_KW_DOMAIN	Immunoglobulin domain	<u>RT</u>		3	30.0	1.5E-2	1.1E-1
	GOTERM_BP_DIRECT	<u>calcium-mediated signaling</u>	<u>RT</u>		2	20.0	2.7E-2	1.0E0
	INTERPRO	<u>Immunoglobulin subtype</u>	<u>RT</u>		3	30.0	2.7E-2	6.5E-1
	UP_SEQ_FEATURE	TOPO_DOM:Cytoplasmic	<u>RT</u>		5	50.0	3.0E-2	6.9E-1
	UP_SEQ_FEATURE	DOMAIN:Ig-like C2-type	<u>RT</u>		2	20.0	4.2E-2	6.9E-1
	UP_SEQ_FEATURE	REGION: Disordered	<u>RT</u>		9	90.0	5.7E-2	6.9E-1
	SMART	<u>IG</u>	<u>RT</u>		3	30.0	5.7E-2	6.3E-1
	UP_SEQ_FEATURE	TOPO_DOM:Extracellular	<u>RT</u>		4	40.0	6.3E-2	6.9E-1
	INTERPRO	Immunoglobulin I-set	<u>RT</u>		2	20.0	6.3E-2	6.5E-1
	INTERPRO	Immunoglobulin-like domain	<u>RT</u>		3	30.0	6.6E-2	6.5E-1
	GOTERM_CC_DIRECT	<u>membrane</u>	<u>RT</u>		6	60.0	7.4E-2	1.0E0
	INTERPRO	<u>Immunoglobulin subtype 2</u>	<u>RT</u>		2	20.0	9.9E-2	6.5E-1

Functional Annotation Chart on NCBI's DAVID for these 10 discriminant genes

Results - Functional information on NCBI's DAVID

2D View

Help

March Download File

corresponding gene-term association positively reported 💹 corresponding gene-term association not reported yet

L1 cell adhesion molecule(L1cam) microfibrillar-associated protein 3-like(Mfap3l) sodium channel, voltage-gated, type III, beta(Scn3b) adenylate cyclase 7(Adcy7) solute carrier family 16 (monocarboxylic acid transporters), member 3(Slc16a3) engrailed 1(En1)

subtype SM00409:IG GO:0005886~plasma membrane KW-0812~Transmembrane KW-0472~Membrane CARBOHYD:N-linked (GlcNAc...) asparagine KW-0325~Glycoprotein TOPO_DOM:Extracellular KW-0393~Immunoglobulin domain IPR007110:Immunoglobulin-like domain TRANSMEM:Helical IPR013783:Immunoglobulin-like KW-1015~Disulfide IPR003599:Immunoglobulin 0016021~integral component

2D plot of Functional Annotation Clustering on NCBI's DAVID for these 10 discriminant genes

Conclusions

- The analysis pipeline performed Student's two-sample t-test, PCA analysis, and k-means clustering on tumor and control kidney samples.
- The analysis found a few discriminant genes that show significant expression difference between tumor and control kidney groups.
- However, Lin28 was not one of them
- Besides, those discriminant genes are involved in the processes like transport and biosynthesis, etc.
- None of them are related to tumorigenesis or Lin28/Let-7 pathway as suggested by the authors.