Седмица на олимпийската математика 2016

Контролно по Геометрия януари 2016

Този материал е изготвен със съдействието на школа Sicademy

Задача G1. Даден е вписан четириъгълник ABCD с пресечна точка на диагоналите F. Нека правите AB и CD се пресичат в точка P, а точка M е от лъча PD^{\rightarrow} , такава, че $PA \cdot AB = PM \cdot CD$. Ако N е симетричната точка на M относно P, то да се докаже, че $PF \parallel AN$.

Задача G2. Даден е изпъкнал четириъгълник ABCD, в който $\angle DAC = \angle ABC$ и $\angle DCA = \angle ACB$. Точка N лежи на отсечката AB и е такава, че $\angle NCB = \angle ABD$. Нека M е средата на BD. Правите AM и BC се пресичат в точка P. Да се докаже, че $PN \perp AB$.

Задача G3. Даден е $\triangle ABC$, който е вписан в окръжност k с център O. Разглеждаме трите полувписани окръжности за $\triangle ABC$, т.е. окръжностите, които се допират вътрешно до k и до две от страните му. Да се докаже, че техният радикален център лежи на правата IO, където I е центърът на вписаната в $\triangle ABC$ окръжност.