

Great Circles Problem

Kha Man 04/21/2015

Outline

- Lemma 1
- Lemma 2 The uniqueness of the special graph S_k
- Lemma 3 The equivalent graph of S_k
- Lemma 4 The properties of S_k
- Theorem 1 The chromatic number of S_k
- The next steps

Lemma 1

Call n is the number of circles in the graph

- 1. There are 2(n-1) vertices and 2(n-1) edges on a circle
- 2. A pair of circles create 2 intersections. The distance between 2 intersections on a circle is n-1 edges on the circle

Lemma 1 - Proof

- 1. A circle will intersect (n-1) other circles. A pair of circles will meet at 2 points. So the number of points on a circle is 2(n-1)
 - $|E(C_{2(n-1)})| = 2(n-1)$ There are 2(n-1) edges on the circle
- 2. Assume the statement is correct with k great circles graphs which have (2k-2) vertices on a circle.

Define
$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow ... \rightarrow v_{k-1} \rightarrow \Psi(v_1) \rightarrow \Psi(v_2) \rightarrow \Psi(v_3) \rightarrow \rightarrow \Psi(v_{k-1})$$

-> v₁ is the circular path that has

$$d(v_i, \Psi(v_i)) = k-1; i = 1,2,3, ..., (k-1)$$

Lemma 1 - Proof

Now we add a new circle C_{k+1} into the graph. So on every circle C_1 to C_k , we have 2 new intersections made by C_{k+1} . Call it V_a and $\Psi(V_a)$

Without loss of generality, I consider v_a as the first vertex in my new circular path v_a -> v_1 -> v_2 -> v_3 -> ... -> v_{k-1} -> $\Psi(v_a)$ -> $\Psi(v_1)$ -> $\Psi(v_2)$ -> $\Psi(v_3)$ -> -> $\Psi(v_{k-1})$ -> v_a

Because every vertex has O as the point symmetry, so if v_a is the first vertex that is close to $\Psi(v_{k-1})$ and v_1 , $\Psi(v_a)$ must be close to v_{k-1} and $\Psi(v_1)$.

Lemma 1 - Proof

$$d(v_a, \Psi(v_a)) = d(v_a, v_1) + d(v_1, \Psi(v_a)) = 1 + (d(v_1, \Psi(v_1) - d(\Psi(v_1), \Psi(v_a))) = 1 + (k - 1) = k$$

Call v_i is the vertex in the set $\{v_1, v_2, ..., v_{k-1}\}$

$$\begin{split} & \Rightarrow d \big(v_i, \Psi(v_i) \big) = d(v_i, v_{k-1}) + d \big(v_{k-1}, \Psi(v_a) \big) + d (\Psi(v_a), \Psi(v_i)) \\ & = t + 1 + (k - 1 - t) = k \end{split}$$

Similarly, because we have (2k-2+2) = 2k edges on the new path, the other path of $d(v_i, \Psi(v_i))$ that contains $\Psi(v_{k-1})$ is also equal to k

→ The induction hypothesis is correct with (k+1) circles

The special graph

Definition: A graph of k great circles S_k is **special** if it contains even number of triangles, quadrilaterals and 2 polygon that has k segments.

Lemma 2 will prove the special graph only has 1 unique structure

7

Lemma 2. (The uniqueness of the special graph)

 S_k is unique and it has the following form:

- K triangles at the "outer cycle"
- Another k triangles are made by the reflection and 1 polygon has k segments in the "middle"
- The other polygons are quadrilaterals

Lemma 2 – Another drawing

By definition, \mathcal{S}_k contains triangles, quadrilaterals and 2 polygon that has k segments.

• 3 great circles has 1 non-isomorphic graph and it's special (We can verify it easily by hand)

+ 1 great circle = ???

There are 3 cases happen when the 4th great circle is added:

- It cuts arc(1,5), arc(1,3), arc(2,6), arc(2,4), arc(3,6) and arc(4,5)
- It cuts arc(1,3), arc(3,5), arc(2,4), arc(4,6), arc(1,6) and arc(2,5)
- It cuts arc(1,5), arc(3,5), arc(2,6), arc(4,6), arc(2,6) and arc(1,5)

The outcome of 3 cases is the same as the figure on the right. This graph is special and unique

- 3 and 4 great circles only have 1 non-isomorphic graph
- They are both S₃ and S₄ respectively

- We may have a form of S_k
- If we may have different ways to create non-isomorphic graphs for S_k , it's also true in case of S_{k+1}
- In case of S_4 was created by S_3 , we can do believe that S_{k+1} may be derived from S_k
- This form of S_k is capable of generating all non-isomorphic graphs of S_{k+1}

Now, we will "draw" the (k+1)th great circle to this form.

Call V is a point we start to draw (k+1)th great circle

Call $\mathfrak{C}(V)$ is the set of 2 great circles that (k+1)th intersect first

The rule to make S_{k+1} :

- Don't make any quadrilaterals into pentagonals
- A circle will intersect C_{k+1} at 2 intersections
- 2*k intersections are added into the current graph after C_{k+1} is implemented

We have 2 cases for the drawing:

- 1. V is located at the outer face. It means (k+1)th will change the outer cycle that's supposed to be bounded by triangles
- 2. V is located at a face inside of the graph and (k+1)th will not include any part of outer face

An example of incorrect drawing

Some definitions before going into details of the proof

- A special path is the path from a triangle at the outer cycle to the middle polygon such that it doesn't make any
- There are 2 special paths starting at a triangle at the outer cycle
- The special path will intersect at (k-1) points to be in the middle polygon (By lemma 1.1)

- We have 2 subcases for case 1:
- 1. $\mathfrak{C}(V) = \{C_i, C_{i+1}\}$
- 2. $\mathfrak{C}(V) \neq \{C_i, C_{i+1}\}$

20

• Due to the special geometry, we can only work with the case when $\mathfrak{C}(V) =$ $\{C_1, C_2\}$

We realize that C_{k+1} needs to follow the green region to make S_{k+1} (???)

- $\mathcal{R}_{purple} = \{C_1 \cap C_2\} \setminus (C_1, C_2, \dots, C_n)$
- $\mathcal{R}_{green} = \{C_1 \cup C_2\} \setminus \mathcal{R}_{purple}$

Finally, this form is the only one for S_{k+1} we can get in case 1.1

• C_{k+1} created 2k intersections

• Every special path created (k-1)

 $ightharpoonup C_{k+1}$ created: 2*(k-1) + 2 at the outer cycle = 2k

• Lemma 1.2 is still true in the new S_{k+1}

• The outcome has exactly the same form for (k+1) circles we assume

In case 1.2, we have $\mathfrak{C}(V) \neq \{C_i, C_{i+1}\}$

- Assume $\mathfrak{C}(V) = \{C_1, C_3\}$
- C_{k+1} then intersects {C₁, C₂} and creates a quadrilateral at the outer cycle (somehow it's creating another form of S_k)

FAILED!!!

 They both meet at the triangle (C₁, C₂, C₃) in the middle and only have (2k-2) points

 \rightarrow There is no S_k in case when $\mathfrak{C}(C_{k+1}) = \{C_1, C_3\}$

Similarly, when $\mathfrak{C}(V) = \{C_i, C_j\}, \ j \neq \{i-1, i+1\}$ Call P_i is the special path containg the triangle i So, we have $\{P_{i1}, P_{i2}\}, \{P_{j1}, P_{j2}\}$

 \rightarrow C_2^1 . $C_2^1 = 4$ possible cases

- 1. C_{k+1} will be closed at a quadrilateral before going to the middle polygon \rightarrow It doesn't have enough intersections
- 2. P_j will intersect with C_{j+1} at the vertex V^* that has $d\left(\left(C_j \cap C_{j+1}\right) \in the\ outer\ cycle, V^*\right) = k-1$ Since P_j doesn't start at the triangle (j+1), so $d\left(V^*, \Psi(V^*)\right) \neq (k-1+1) = k$
- → Contradict the Lemma 2.1
- 3. Due to the geometry, there is another case that's similar to 2nd case
- 4. The last case is when 2 special paths don't meet at the polygon \rightarrow Then C_{k+1} won't have enough 2k intersections
- \rightarrow Finally, there is no S_{k+1} in case 1.2

In case 2, the $(k+1)^{th}$ circle will only travel inside of the current form of S_k .

We will prove there is no such S_{k+1} made in this case.

An example of drawing in this case but it isn't satisfied

- Starting at the center of the graph, we have paths tend to the triangles at the outer cycle. So WLOG, set V is in any triangle at the outer cycle.
- There are 2 cases happen
 - 1. The starting point and ending point are in the different triangle.
 - 2. The starting point and ending point are in the same triangle.

An example of drawing in Case 2.1

Case 2.1: The starting point and ending point are in the different triangle.

- C_{k+1} must start at a triangle at the outer cycle, go to center then return back to another triangle at the outer cycle
- There is only path as defined
- The path connecting 2 triangles must create a pentagonal !!!
- \rightarrow There is no S_{k+1} in Case 2.1

An example of drawing in Case 2.1

Case 2.2: The starting point and ending point are in the same triangle.

- C_{k+1}doesn't intersect C₂!!!
- \rightarrow There is no S_{k+1} in Case 2.2

So there is only the case 1.1 creates a S_{k+1}

- \rightarrow We only found a graph for S_{k+1} that is exactly depicted by the induction hypothesis for S_{k+1}
- \rightarrow S_{k+1} is unique

Lemma 3.

S_k can be transform into the following equivalent graph:

Lemma 3 – Proof – A base case with 6 circles

Here is the special graph of 6 great circles.

Annotation:

- Red edges ∈ 1st side
- Green edges ∈ 2nd side
- Black edges are the external links of the 1st side and the 2nd side
- Every region has a number in the middle
- There are 2 regions have the same number. One has 1 set of vertices while the other has the reflection of that set via O
- Grey/vellow regions contain numbers distinctly

Lemma 3 – Proof – A base case with 6 circles

11 19

The number in this grid are vertices

Lemma 3 – Proof – A base case with 6 circles

Lemma 3 – Proof – A base case with 7 circles

Here is the special graph of **7** great circles.

Annotation:

- Red edges ∈ 1st side
- Green edges ∈ 2nd side
- Black edges are the external links of the 1st side and the 2nd side
- Every region has a number in the middle
- There are 2 regions have the same number. One has 1 set of vertices while the other has the reflection of that set via O
- Grey/vellow regions contain numbers distinctly

Lemma 3 – Proof – A base case with 7 circles

Lemma 3 – Proof – A base case with 7 circles

Lemma 3

Call

- $V_{i,1}$ are the vertices made by C_i and C_{i+1} on the unbounded cycle.
- $V_{i,1}$, $V_{i,2}$, $V_{i,3}$, ... $V_{i,2k-2}$ are the vertices on the circle C_i in the order that $(V_{i,1}, V_{i,2}, V_{i+1,1})$ is a triangle

Lemma 4. The properties of S_k

There are 2k triangles, (k+1)*(k-3) quadrilaterals and 2 polygon has k segments.

Proof: By Lemma 2 and Lemma 3, we can easily count this

Theorem 1

The chromatic number of \mathcal{S}_k is 3 $\,$

Theorem 1 – Proof

- By Lemma 2.2, S_k is unique
- By Lemma 3, S_k can be transformed into an equivalent parallelogram
- The proof to prove the equivalent parallelogram is 3-colorable is in the presentation in 01-25-2015

Adding a circle

Adding a circle

- This part presents how a graph is changed after adding a random great circle into it
- I will show the transitions from graphs of 5, 6 great circles to 6, 7 great circles respectively

6->7 great circles - 3 15

 ${\rm S_5}$; 2 circles intersecting triangle 3 and they also intersected each other in the triangle 3

S₅; a circle intersecting triangle 3

6->7 great circles - 7

 $\boldsymbol{S_{5}}$; a circle intersecting triangle 1 and 2

S₅; a circle intersecting triangle 1 and 2; a cicle doesn't intersect any triangle

6->7 great circles - 9

 $\boldsymbol{S_{5}}$; a circle intersecting triangle 1 and 2

 S_5 ; 2 circles intersecting triangle 1 and 2 and they also intersected each other in the triangle 1

