# Association Rule Mining

Poonam Goyal Computer Science BITS, Pilani

## Tree Projection



## Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
  - Itemset for node P
  - List of possible lexicographic extensions of P: E(P)
  - Pointer to projected database of its ancestor node
  - Bitvector containing information about which transactions in the projected database contain the itemset

#### Projected Database

#### **Original Database:**

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,C,D,E\}$ |
| 4   | $\{A,D,E\}$   |
| 5   | {A,B,C}       |
| 6   | $\{A,B,C,D\}$ |
| 7   | {B,C}         |
| 8   | {A,B,C}       |
| 9   | $\{A,B,D\}$   |
| 10  | {B,C,E}       |

## Projected Database for node A:

| TID | Items       |
|-----|-------------|
| 1   | {B}         |
| 2   | {}          |
| 3   | $\{C,D,E\}$ |
| 4   | {D,E}       |
| 5   | {B,C}       |
| 6   | {B,C,D}     |
| 7   | {}          |
| 8   | {B,C}       |
| 9   | {B,D}       |
| 10  | {}          |

For each transaction T, projected transaction at node A is  $T \cap E(A)$ 

#### Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

 If |L| = k, then there are 2<sup>k</sup> – 2 candidate association rules (ignoring L → Ø and Ø → L)

#### Rule Generation

- How to efficiently generate rules from frequent itemsets?
  - In general, confidence does not have an antimonotone property
     c(ABC →D) can be larger or smaller than c(AB →D)
  - But confidence of rules generated from the same itemset has an anti-monotone property
  - e.g.,  $L = \{A,B,C,D\}$ :  $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$ 
    - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

## Rule Generation for Apriori Algorithm



## Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC)
   would produce the candidate
   rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence



## Effect of Support Distribution

Many real data sets have skewed support distribution

Support distribution of a retail data set



## Effect of Support Distribution

- How to set the appropriate minsup threshold?
  - If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
  - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

# Multiple Minimum Support

How to apply multiple minimum supports?
 MS(i): minimum support for item i

```
• e.g.: MS(Milk)=5\%, MS(Coke)=3\%, MS(Broccoli)=0.1\%, MS(Salmon)=0.5\% MS(\{Milk, Broccoli\})=min (MS(Milk), MS(Broccoli))
= 0.1%
```

Challenge: Support is no longer anti-monotone

- Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
- {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

# Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
  - e.g.: MS(Milk)=5%, MS(Coke)=3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
  - Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
  - L<sub>1</sub>: set of frequent items
  - F<sub>1</sub>: set of items whose support is ≥ MS(1) where MS(1) is min<sub>i</sub>(MS(i))
  - C<sub>2</sub>: candidate itemsets of size 2 is generated from F<sub>1</sub> instead of L<sub>1</sub>

#### Multiple Minimum Support (Liu 1999)

#### Modifications to Apriori:

- In traditional Apriori,
  - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
  - The candidate is pruned if it contains any infrequent subsets of size k
- Pruning step has to be modified:
  - Prune only if subset contains the first item
  - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
  - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
  - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

#### Pattern Evaluation

- Association rule algorithms tend to produce too many rules
  - many of them are uninteresting or redundant
  - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

#### Application of Interestingness Measure



# Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

#### Contingency table for $X \rightarrow Y$

|   | Υ               | Y               |                 |
|---|-----------------|-----------------|-----------------|
| X | f <sub>11</sub> | f <sub>10</sub> | f <sub>1+</sub> |
| X | f <sub>01</sub> | f <sub>00</sub> | $f_{0+}$        |
|   | f <sub>+1</sub> | f <sub>+0</sub> | T               |

f<sub>11</sub>: support of X and Y

 $f_{10}$ : support of X and  $\overline{Y}$ 

 $f_{01}$ : support of X and Y

f<sub>00</sub>: support of X and Y

#### Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

#### Drawback of Confidence

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

- ⇒ Although confidence is high, rule is misleading
- $\Rightarrow$  P(Coffee|Tea) = 0.9375

#### Statistical Independence

- Population of 1000 students
  - 600 students know how to swim (S)
  - 700 students know how to bike (B)
  - 420 students know how to swim and bike (S,B)
  - $\bullet$  P(S $\land$ B) = 420/1000 = 0.42
  - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
  - $P(S \land B) = P(S) \times P(B) = > Statistical independence$
  - $P(S \land B) > P(S) \times P(B) = > Positively correlated$
  - P(S∧B) < P(S) × P(B) => Negatively correlated

#### Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

#### Example: Lift/Interest

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75but P(Coffee) = 0.9

 $\Rightarrow$  Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

#### Drawback of Lift/Interest

|   | Υ  | Y  |     |
|---|----|----|-----|
| X | 10 | 0  | 10  |
| X | 0  | 90 | 90  |
|   | 10 | 90 | 100 |

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

|   | Υ  | Y  |     |
|---|----|----|-----|
| X | 90 | 0  | 90  |
| X | 0  | 10 | 10  |
|   | 90 | 10 | 100 |

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If  $P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$