HOCHWALD-GYMNASIUM WADERN

NOTIZEN UND HAUSAUFGABEN

Mathe

Alexander Jacob

1 Ve	ktoren	1
1.1	Spurpunkte berechnen	1
1.2	Pyramide	3
1.3	Schatten einer Plakatwand	4
1.4	Lageuntersuchung von Geraden	5
1.5	Flugzeugcrash	6

1.1 SPURPUNKTE BERECHNEN

a) Bestimmen Sie die Spurpunkte der Geraden

$$\mathbf{g} : \overrightarrow{x} = \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 6 \\ 4 \end{pmatrix} \quad \text{und} \quad \mathbf{h} : \overrightarrow{x} = \begin{pmatrix} -3 \\ 0 \\ -5 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}. \quad (1.1.1)$$

zu g:

$$\overrightarrow{x} = \begin{pmatrix} 2\\1+6\lambda\\7+4\lambda \end{pmatrix} \tag{1.1.2}$$

Bedingung für Spurpunkt mit x_1 - x_2 -Ebene: $x_3 = 0$

Punkt von **g** in der x_1 - x_2 -Ebene: $x_3 = 0 \Leftrightarrow 0 = 7 + 4\lambda \Leftrightarrow \lambda = -\frac{7}{4}$ Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{12}} = \begin{pmatrix} 2\\ -9,5\\ 0 \end{pmatrix} \tag{1.1.3}$$

Spurpunkt: $S_{12}(2|-9.5|0)$

Bedingung für Spurpunkt mit x_1 - x_3 -Ebene: $x_2 = 0$

Punkt von **g** in der x_1 - x_3 -Ebene: $x_2=0 \Leftrightarrow 0=1+6\lambda \Leftrightarrow \lambda=-\frac{1}{6}$ Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{13}} = \begin{pmatrix} 2\\0\\6,\overline{3} \end{pmatrix} \tag{1.1.4}$$

Spurpunkt: $S_{12}(2|0|6, \overline{3})$

Bedingung für Spurpunkt mit x_2 - x_3 -Ebene: $x_1 = 0$

Punkt von **g** in der x_2 - x_3 -Ebene: $x_1 = 0 \Leftrightarrow 0 \neq 2 \nleq$

Es gibt keinen Spurpunkt von g in der x_2 - x_3 -Ebene.

zu h:

$$\overrightarrow{x} = \begin{pmatrix} -3 + \mu \\ 3\mu \\ -5 + 2\mu \end{pmatrix} \tag{1.1.5}$$

Bedingung für Spurpunkt mit x_1 - x_2 -Ebene: $x_3 = 0$

Punkt von **h** in der x_1 - x_2 -Ebene: $x_3 = 0 \Leftrightarrow 0 = -5 + 2\mu \Leftrightarrow \mu = \frac{5}{2}$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{12}} = \begin{pmatrix} -0.5 \\ 7.5 \\ 0 \end{pmatrix} \tag{1.1.6}$$

Spurpunkt: $S_{12}(-0.5|7.5|0)$

Bedingung für Spurpunkt mit x_1 - x_3 -Ebene: $x_2 = 0$

Punkt von **h** in der x_1 - x_3 -Ebene: $x_2 = 0 \Leftrightarrow 0 = 3\mu \Leftrightarrow \mu = 0$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{13}} = \begin{pmatrix} -3\\0\\-5 \end{pmatrix} \tag{1.1.7}$$

Spurpunkt: $S_{12}(-3|0|-5)$

Bedingung für Spurpunkt mit x_2 - x_3 -Ebene: $x_1 = 0$

Punkt von **h** in der x_2 - x_3 -Ebene: $x_1 = 0 \Leftrightarrow 0 = -3 + \mu \Leftrightarrow \mu = 3$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{23}} = \begin{pmatrix} 0\\9\\1 \end{pmatrix} \tag{1.1.8}$$

Spurpunkt: $S_{23}(0|9|1)$

b) Von einer Geraden sind die Spurpunkte $S_{12}(2|3|0)$ und $S_{23}(0|-1|1)$ bekannt. Bestimmen Sie den Spurpunkt S_{13} .

Zweipunktegleichung einer Geraden:

$$\mathbf{g}: \overrightarrow{x} = \overrightarrow{a} + \lambda \cdot \left(\overrightarrow{b} - \overrightarrow{a}\right)$$
 (1.1.9)

Mit den eingesetzten Punkten S_{12} und S_{23} in 1.1.9 ergibt sich:

$$\mathbf{g}: \overrightarrow{x} = \begin{pmatrix} 2\\3\\0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\-4\\1 \end{pmatrix} = \begin{pmatrix} 2-2\lambda\\3-4\lambda\\\lambda \end{pmatrix} \tag{1.1.10}$$

1.2 Pyramide 3

Bedingung für Spurpunkt mit x_1 - x_3 -Ebene: $x_2 = 0$

Punkt von **g** in der x_1 - x_3 -Ebene: $x_2 = 0 \Leftrightarrow 0 = 3 - 4\lambda \Leftrightarrow \lambda = \frac{3}{4}$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{13}} = \begin{pmatrix} 0.5\\0\\0.75 \end{pmatrix} \tag{1.1.11}$$

Spurpunkt: $S_{12}(0.5|0|0.75)$

1.2 PYRAMIDE

Gegeben ist eine gerade Pyramide mit quadratischer Grundfläche. Die Seitenlänge des in der x_1 - x_2 -Ebene liegenden Quadrates ABCD beträgt 80 m, die Pyramide hat eine Höhe von 60 m.

Die Richtung der einfallenden Sonnenstrahlen ist gegeben durch

den Vektor
$$\overrightarrow{u} = \begin{pmatrix} 2\\4\\-3 \end{pmatrix}$$
.

Der Schattenpunkt S' der Pyramidenspitze S liegt in der x_1 - x_2 -Ebene. Berechnen Sie die Koordinaten von S'.

Abbildung 1.1: Skizze der Pyramide.

Vektor der auf Punkt S fallenden Sonnenstrahlen:

$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 60 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix} \tag{1.2.1}$$

Bedingung für Spurpunkt mit x_1 - x_2 -Ebene: $x_3 = 0$

Punkt in der x_1 - x_2 -Ebene: $0 = 60 - 3\lambda \Leftrightarrow 60 = 3\lambda \Leftrightarrow \lambda = 20$

Schattenpunkt: S'(40|80|0)

1.3 SCHATTEN EINER PLAKATWAND

Vor einem Haus steht eine Plakatwand, die 3m breit und 6m hoch ist. Ein Punkt der Wand ist A(6|2|6). Auf die Plakatwand fällt paralleles Sonnenlicht. Die Richtung der Sonnenstrahlen ist gegeben durch den Vektor

$$\overrightarrow{u} = \begin{pmatrix} -3\\1\\-1 \end{pmatrix}.$$

Bestimmen und beschreiben Sie den Verlauf des Schattens an der Hauswand und auf dem Boden.

Abbildung 1.2: Skizze der Plakatwand mit Hauswand.

Geraden in Richtung des Sonneneinfalls:

$$\mathbf{g}: \overrightarrow{x} = \begin{pmatrix} 6\\2\\6 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -3\\1\\-1 \end{pmatrix} = \begin{pmatrix} 6 - 3\lambda\\2 + \lambda\\6 - \lambda \end{pmatrix} \tag{1.3.1}$$

$$\mathbf{h}: \overrightarrow{x} = \begin{pmatrix} 6\\5\\6 \end{pmatrix} + \mu \cdot \begin{pmatrix} -3\\1\\-1 \end{pmatrix} = \begin{pmatrix} 6 - 3\mu\\5 + \mu\\6 - \mu \end{pmatrix}$$
 (1.3.2)

Gesucht sind jeweils die Spurpunkte von \mathbf{g} und \mathbf{h} mit der x_2 - x_3 -Ebene (= Hauswand).

Bedingung für Spurpunkt mit x_2 - x_3 -Ebene: $x_1 = 0$

Für g gilt: Punkt von **g** in der x_2 - x_3 -Ebene: $x_1 = 0 \Leftrightarrow 0 = 6 - 3\lambda \Leftrightarrow \lambda = 2$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{A23}} = \begin{pmatrix} 0\\4\\4 \end{pmatrix} \tag{1.3.3}$$

Spurpunkt: $S_{23}(0|4|4)$

Für h gilt: Punkt von **h** in der x_2 - x_3 -Ebene: $x_1 = 0 \Leftrightarrow 0 = 6 + -3\mu \Leftrightarrow \mu = 2$

Ortsvektor des Spurpunkts:

$$\overrightarrow{s_{\text{B23}}} = \begin{pmatrix} 0 \\ 7 \\ 4 \end{pmatrix} \tag{1.3.4}$$

Spurpunkt: $S_{B23}(0|7|4)$

Der Schatten der Plakatwand fällt also zum Teil auf die Hauswand bis auf eine Höhe von 4 m mit einer Breite von 3 m. Der andere Teil des Schattens fällt demnach auf den Boden vor der Hauswand zwischen den Punkten A_0 , B_0 , S_{A0} und S_{B0} . Für diese Punkte gilt, dass sie senkrecht unter den Punkten A, B, S_{A23} und S_{B23} auf der x_1 - x_2 -Ebene liegen. Es gilt: $A_0 = (6|2|0)$, $B_0 = (6|5|0)$, $S_{A0} = (0|4|0)$ und $S_{B0} = (0|7|0)$.

1.4 LAGEUNTERSUCHUNG VON GERADEN

Untersuchen Sie die Geraden ${\bf g}$ und ${\bf h}$ auf ihre gegenseitige Lage. Berechnen Sie gegebenenfalls den Schnittpunkt.

$$\mathbf{g} : \overrightarrow{x} = \begin{pmatrix} -11 \\ 9 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -4 \\ 3 \\ -2 \end{pmatrix} \quad ; \quad \mathbf{h} : \overrightarrow{x} = \begin{pmatrix} -4 \\ 11 \\ 4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} (1.4.1)$$

• Test auf Parallelität

Die Richtungsvektoren sind nicht kollinear, daher sind die Geraden nicht parallel.

• Lageentscheidung (Gleichsetzungsverfahren)

$$\begin{pmatrix} -11\\9\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -4\\3\\-2 \end{pmatrix} = \begin{pmatrix} -4\\11\\4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3\\5\\1 \end{pmatrix}$$

$$\iff \begin{pmatrix} -4\lambda - 3\mu = 7\\3\lambda - 5\mu = 2\\-2\lambda - 1\mu = 3 \end{pmatrix} \text{ (II)}$$
(1.4.2)

$$3 \cdot (III) - (I) : -2\lambda = 2 \Leftrightarrow \lambda = -1$$

Lösung: Einsetzen in (III): $2 - \mu = 3 \Leftrightarrow \mu = -1$ Probe in (I): $-4 \cdot (-1) - 3 \cdot (-1) = 7 \checkmark$

Das Gleichungssystem ist für $\lambda = -1$ und $\mu = -1$ erfüllt, somit gibt es einen Schnittpunkt.

• Schnittpunktberechnung λ in q eingesetzt gibt:

$$\overrightarrow{x} = \begin{pmatrix} -11\\9\\1 \end{pmatrix} - 1 \cdot \begin{pmatrix} -4\\3\\-2 \end{pmatrix} = \begin{pmatrix} -7\\6\\3 \end{pmatrix} \tag{1.4.3}$$

Die Geraden scheiden sich im Punkt S(-7|6|3).

1.5 FLUGZEUGCRASH

Ein Passagierflugzeug F_1 befindet sich im Punkt A(10|30|2) und fliegt geradlinig in Richtung des Punktes B(40|90|2). Ein Sportflugzeug F_2 befindet sich zum gleichen Zeitpunkt im Punkt C(70|90|11) und nimmt Kurs auf den Punkt D(70|110|8) (alle Angaben in km).

a) Begründen Sie, dass sich die beiden Flugzeuge auf Kollisionskurs befinden.

zu \mathbf{F}_1 Mit den eingesetzten Punkten A und B in die Zweipunktegleichung 1.1.9 ergibt sich:

$$\mathbf{F_1} : \overrightarrow{x} = \begin{pmatrix} 10\\30\\2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 30\\60\\0 \end{pmatrix} \tag{1.5.1}$$

zu \mathbf{F}_2 Mit den eingesetzten Punkten C und D in die Zweipunktegleichung 1.1.9 ergibt sich:

$$\mathbf{F_2}: \overrightarrow{x} = \begin{pmatrix} 70\\90\\11 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0\\20\\-3 \end{pmatrix} \tag{1.5.2}$$

- Test auf Parallelität

 Die Richtungsvektoren sind nicht kollinear, daher sind die Geraden nicht parallel.
- Lageentscheidung (Gleichsetzungsverfahren)

$$\begin{pmatrix} 10 \\ 30 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 30 \\ 60 \\ 0 \end{pmatrix} = \begin{pmatrix} 70 \\ 90 \\ 11 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 20 \\ -3 \end{pmatrix}$$

$$\iff \begin{pmatrix} 30\lambda = 60 \\ 60\lambda - 20\mu = 60 \\ -3\mu = 9 \end{pmatrix} \text{ (II)}$$

$$(1.5.3)$$

(I) nach λ : $30\lambda = 60 \Leftrightarrow \lambda = 2$

Lösung: (III) nach μ : $3\mu = 9 \Leftrightarrow \mu = 3$

Probe in (II): $60 \cdot 2 - 20 \cdot 3 = 60 \checkmark$

Das Gleichungssystem ist für $\lambda=2$ und $\mu=3$ erfüllt, somit gibt es einen Schnittpunkt.

• Schnittpunktberechnung λ in F_1 eingesetzt gibt:

$$\overrightarrow{x} = \begin{pmatrix} 10\\30\\2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 30\\60\\0 \end{pmatrix} = \begin{pmatrix} 70\\150\\2 \end{pmatrix} \tag{1.5.4}$$

Die Flugzeuge kollidieren im Punkt S(70|150|2).

b) Prüfen Sie, ob es tatsächlich zum Crash kommt, wenn sich F_1 mit der Geschwindigkeit 800 km/h, F_2 mit 350 km/h bewegt.

Verbindungsvektor zwischen A und S:

$$\overrightarrow{f_1} = \begin{pmatrix} 70 - 10 \\ 150 - 30 \\ 2 - 2 \end{pmatrix} = \begin{pmatrix} 60 \\ 120 \\ 0 \end{pmatrix}$$
(1.5.5)

Länge des Verbindungsvektors zwischen A und S:

$$\left| \overrightarrow{f_1} \right| = \sqrt{60^2 + 120^2 + 0^2} = 134,16 \,\mathrm{km}$$
 (1.5.6)

Zeit bis zum Eintreffen:

$$\frac{134,16\,{\rm km}}{800\,\frac{{\rm km}}{{\rm h}}} \tag{1.5.7}$$

Verbindungsvektor zwischen C und S:

$$\overrightarrow{f_2} = \begin{pmatrix} 70 - 70 \\ 150 - 90 \\ 2 - 11 \end{pmatrix} = \begin{pmatrix} 0 \\ 60 \\ -9 \end{pmatrix} \tag{1.5.8}$$

Länge des Verbindungsvektors zwischen C und S:

$$\left| \overrightarrow{f_2} \right| = \sqrt{0^2 + 60^2 + (-9)^2} = 60,67 \,\mathrm{km}$$
 (1.5.9)