Expression Logique et Fonctionnelle ... Évidemment

TD no 5 : λ -calcul (2)

Exercice 1 Opérateurs logiques

Définir des combinateurs pour les opérateurs logiques de négation (Not) et de disjonction (Or).

Exercice 2 Formes normales

Parmi les termes suivants quels sont ceux en forme normale? Pour ceux qui ne sont pas en forme normale, indiquez s'ils en ont une.

- 1. $(\lambda x.x)y$
- 2. $y(\lambda x.x)$
- 3. $\lambda xy((\lambda xy.y) z)$.
- 4. $\lambda x.(x x)$.

Exercice 3

Montrez que si M, N et P sont des termes ayant une forme normale, alors les termes suivants possèdent une forme normale.

- 1. **K** *M N*.
- 2. **If** *M N P*.
- 3. $S^+ M$.

Exercice 4 Réductions avec Y

Question 1 Vérifiez que pour tout terme $F \in \Lambda$, le terme Y F ne possède pas de forme normale.

Question 2 En posant

$$\Phi_{fact} \equiv \lambda f n. ($$
If (**Zero** $n)$ **c**₁ (**Mult** n (f (**P**⁻ n)))),

et

Fact
$$\equiv \mathbf{Y} \; \mathbf{\Phi}_{fact}$$
,

vérifiez que pour tout entier n,

Fact
$$\mathbf{c}_n \twoheadrightarrow_{\beta} \mathbf{c}_{n!}$$
.

Exercice 5

Définissez un λ -terme **Div** pour lequel, pour tout entier $n, p \in \mathbb{N}, p \neq 0$, on a

$$\lambda \vdash \mathbf{Div} \ \mathbf{c}_n \ \mathbf{c}_n = [\mathbf{c}_a, \mathbf{c}_r],$$

où $q = n \div p$ est le quotient et $r = n \mod p$ est le reste dans la division euclidienne de n par p.