云计算

第7讲

云存储

任桐炜, 李传艺南京大学软件学院 2017-10-18

目的

• 构建上层应用的基础

• 对外提供存储服务

非结构化数据存储

- 非结构化数据
 - 文本、图像、音频、视频……
- 假设
 - ·海量的大尺寸数据(文件尺寸是GB或者TB量级)
 - 依靠廉价、不可靠的硬件(硬件出错是正常而非异常)
 - 对响应时间要求不高

解决思路

- 磁盘存储中如何处理大小不一的文件?
 - 分块
- 分块的大小?
 - 根据应用来确定
- 硬件出错造成数据丢失?
 - 通过冗余来提高可靠性(多个副本存放在不同服务器上)

分块的管理

- ・主从模式(Google GFS)
 - 优点:方便添加服务器和负载平衡,不存在一致性问题
 - 缺点: 单点故障, 性能瓶颈

分块的管理 (续)

- · 无中心模式(Amazon Dynamo)
 - 优点:不存在单点故障和性能瓶颈
 - 缺点: 负载均衡, 一致性问题

分块出错

- 主从模式
 - 每个块进一步分成若干个小块,每个小块有一个校验码
- 无中心模式
 - · Merkle哈希树技术
 - 叶节点是存储数据的哈希值,父节点是所有子节点的哈希值

服务器出错

- 主从模式
 - 主节点出错
 - 无响应
 - 通过日志容错
 - 块服务器出错
 - 管理软件监测或心跳 机制(主动报告)
 - 恢复服务器上每个块

- 无中心模式
 - 闲聊机制(每个服务器 定期随机向另一个服务 器发送消息)
 - 恢复服务器上的每个块

数据一致性

- 强一致性模型
 - 要求任何时刻所有的数据副本一致
- 最终一致性模型
 - 只要最终所有的数据副本一致
 - 牺牲一致性来提高可靠性和可用性

非结构化数据存储服务

- · 简单存储服务S3(Amazon)
 - ·架构在Dynamo上
 - 结构:桶,对象(键)
 - 数据一致性: 最终一致性模型
- Blob (Microsoft)
 - 所有数据资源用URI方式标记
 - 数据模型: 账户=>容器
 - =>Blob=>Block

结构化数据存储

- 商业数据库的问题
 - 无法满足应用需求
 - 难以部署
- 假设
 - 支持多个种类的数据
 - 响应海量的服务请求
 - 具有很好的可扩展性

解决思路

- 如何适应不同数据类型
 - 不考虑存储数据的具体类型
- 如何解决可扩展性?
 - 以非结构化数据存储机制为基础
- 如何实现数据的分块?
 - 将表分割成子表或者转换成其它易于分割的形式
 - 可以解决数据稀疏的问题

数据模型

BigTable (Google)

(row:string, column:string, time:int64) ->string

- 行: 表中的数据根据行关键字按词典序排序
- 列:按照列族存储,每个族中的数据属于同一个类型
- 时间戳: 保存不同时期的数据
- 物理划分: 表 => 子表 => SSTable文件

							1.011 1.03	Stamp	Contents		
							Com.cnn.www	T6	" <html>"</html>		
Row Key	Time Stamp	Column Contents	Column Anchor		Column	1		T5	" <html>"</html>		
			cnnsi.com	my.look.ca	"mime"	→		T3	" <html>"</html>		
"com.cnn. www"	Т9		CNN				Row Key	Time Stamp	Column: Anchor	r	
	T8			CNN.COM			Com.cnn.www	T9	Anchor:ennsi.com CNN	CNN	
	Т6	" <html> "</html>			Text/html		Conn.chan.www	.,	Athenor comsileon	Civit	
	T5	" <html> "</html>						T5	Anchor:my.look.ca	CNN.COM	
	t3	" <html> "</html>								-!	
			Row Key	Time Stamp	Column: mime						
			Com.cnn.www	Т6	text/html						

Time Column:

NANITOR UNITED

数据模型 (续)

SimpleDB (Amazon)

- 树状结构
- 域:数据库操作的基本单位
- 条目:域内命名唯一,不需要 事先定义模式
- 属性: 条目的特征
- 值:允许多值属性

数据模型 (续)

- Table数据模型(Microsoft)
 - 账户 => Table => 实体 => 属性
 - 物理划分:
 - 通过PartitionKey和RowKey来唯一标识一个实体
 - 分割时应考虑负载均衡和高效查询

Partition Key Document Name	Row Key Version	Property 3 Modification Time	 Property N Description
Examples Doc	V1.0	8/2/2007	 Committed version Partition 1
Examples Doc	V2.0.1	9/28/2007	Alice's working version
FAQ Doc	V1.0	5/2/2007	Committed version
FAQ Doc	V1.0.1	7/6/2007	Alice's working version Partition 2
FAQ Doc V1.0.2		8/1/2007	Sally's working version

云存储服务

- 云存储服务
 - 专注于向用户 提供以互联网为基础的在线存储服务。
 - 用户无需考虑存储容量、存储设备类型、数据存储位置 以及数据的可用性、可靠性和安全性等繁琐的底层技术 细节,根据需要付费就可以从云存储服务提供商那里获得 近乎无限大的存储空间和企业级的服务质量。
- 三个基本特征(ITProPortal.com)
 - 分布于网络(互联网或局域网)
 - 易于扩展
 - 易于管理

16

推动因素

- 数据量的快速持续增长
 - 个人或企业拥有的存储设备无法满足待存储数据量的需求
- 数据同步和异地访问
 - 不同设备之间的数据同步
 - 异地的协同工作和数据访问
- 数据备份
 - 防止数据丢失

影响因素

- 网络宽带
 - 需要实现大容量数据传输来提供便利的云存储
- 应用存储
 - 通过在存储设备中集成应用软件功能来提高性能和效率
- 集群技术、分布式文件系统和网络计算技术
 - 需要实现各个存储设备之间的协同工作
- 网络存储安全技术
 - 保证数据传输安全及数据不会丢失
- 存储管理技术
 - 多地域、多厂商、多硬件设备之间的传输管理

NANAL SE

18

行业标准

- Overview of Cloud Storage
- Common Operations
- Interface Specification
- Data Objects
- Container Objects
- Domain Objects
- Queue Objects
- Capability Objects
- Exported Protocols
- Snapshots
- Serialization/Deserialization
- Metadata
- CDMI Logging
- Retention and Hold Management

Cloud Data Management Interface

Version 1.0

19

存在的问题

- 客户对云存储和自身需求了解不足
 - 系统是否具有"无限"扩展的需求
 - 软硬件升级的费用是否具有边际效益
 - 存储系统升级是否会产生显著影响
 - 数据备份和数据灾难所产生的成本
- 市场定位模糊
 - · 大中型企业不愿舍弃原有的IT设施
 - 小型企业无法承担云存储数据中心的维护费用

NANUS DELIN

存在的问题 (续)

- 安全感的缺失
 - 可控性不强
 - 断网、断电,时延过长,数据迁移,取回数据
 - 法律保护不够
 - 如果别人的数据遭到突击搜查,我的数据也会被搜查么?
- 公有云与私有云之争
 - 公有云: 数据托管
 - 承担存储容量租金和带宽使用费,不需要硬件或技术知识
 - 私有云: 所有数据完全由内部IT员工控制
 - 需要硬件和软件,不承担存储容量的租金和带宽使用费

谢谢