

目录

- ◆什么是标准化
- ◆常见标准化方法

什么是标准化

什么是标准化

◆ 数据标准化 (Normalization) 或归一化可以增强信息的辨识度

线性归一化:

直方图均衡化

神经网络中标准化的作用

- ◆ 去除量纲干扰,保证数据的有效性,稳定数据分布
 - 去除量纲的干扰, 防止数值过小的特征被淹没
 - [年龄: 30 身高: 170 性别: 1 年薪: 500,000]
 - 保证数据的有效性
 - 稳定前向传播激活值和反向传播过程中的梯度

- 稳定数据分布
 - 当深层网络中数据分布有明显的偏移,不利于网络学习

常见标准化方法

BN

◆ 批标准化方法 (Batch Normalization , 简称BN)

假设神经网络某层一个batch的输入为 $X=[x_1,x_2,...,x_n]$,其中 x_i 代表一个样本,n为batch size。数据维度为(N,C,H,W),每一层normalization是基于N*H*W个数值进行求平均以及方差的操作。

BN的作用

◆ 提高训练速度,稳定模型训练

- 减轻了对参数初始化的依赖,前向激活值与反向梯度更加有效。
- 平滑了优化目标函数曲面,梯度更稳定,可以使用更高的学习率,从而跳出局部极值,增强了泛化能力。

BN的缺点

◆ 要求固定的Batch长度与均匀采样; batch过小数值计算不稳定

当batch减小到8以后,误差明显增大

BN的改进

◆ Batch Renormalization,增加样本相关的变换,让每个batch的均值和方差逼近真实分布

实际使用:

- (1) 先使用BN训练到一个相对稳定的状态
- (2) 稳定后再使用Batch Renormalization, r和d在一定大小范围内迭代

常见标准化方法的对比

◆ 令输入数据维度为(N,C,H,W),区别在于计算的数据维度不同

方法	归一化的范围	特点
Batch Normalization	N*H*W	通用
Layer Normalization	C*H*W	适合非定长输入,NLP应用广泛
Group Normalization	G*H*W	适合小batch输入
Instance Normalization	H*W	图像生成以及风格迁移类应用

下次预告: 泛化与正则化