IMPERIAL

Francesco Sanna Passino

Department of Mathematics, Imperial College London

f.sannapassino@imperial.ac.uk

11th April, 2024

1/43

Conclusion

Joint work with:

- Dynamic multiplex graphs
 - Maximilian Baum (PhD student, Imperial College London)
 - Axel Gandy (Chair in Statistics, Imperial College London)
- Panels of multivariate time series / vector autoregressive processes
 - Brendan Martin (PhD student, Imperial College London)
 - Mihai Cucuringu (Associate Professor of Statistics, University of Oxford)
 - Alessandra Luati (Chair in Statistics, Imperial College London & University of Bologna)

Acknowledgments:

 UK Research and Innovation / EPSRC ECR International Collaboration Grant 2024-2026 on "Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs" (EP/Y002113/1) in collaboration with Professor Carey Priebe (Johns Hopkins University)

Undirected graphs

Introduction **•**0000

- Undirected graph $\mathbb{G} = (V, E)$ where:
 - V is the **node set**, with cardinality n = |V|,
 - $E \subseteq V \times V$ is the **edge set**, containing dyads $(i, j) \in V \times V$.
- An edge is drawn if a node $i \in V$ connects to $j \in V$, written $(i, j) \in E$.
- From \mathbb{G} , an adjacency matrix $\mathbf{A} \in \{0,1\}^{n \times n}$, can be obtained via $A_{i,j} = \mathbb{1}_E\{(i,j)\}$.

Vector autoregressive processes

Real-world graphs tend to be more complex. For example:

3/43

LATENT POSITION MODELS FOR GRAPHS

Latent position models (Hoff, Raftery, and Handcock, 2002) for adjacency matrices:

Vector autoregressive processes

$$oldsymbol{x}_i \overset{iid}{\sim} \mathcal{F} \quad o \quad \mathbb{P}(A_{i,j} = 1 \mid oldsymbol{x}_i, oldsymbol{x}_j) = \kappa(oldsymbol{x}_i, oldsymbol{x}_j) \quad o$$

- LPMs illustrate a powerful idea for network modelling: expressing edge-specific quantities through unobserved node features $x_i \in \mathcal{X} \subseteq \mathbb{R}^d$ sampled from a distribution \mathcal{F} .
- Node features are "linked" to link probabilities via a **kernel function** $\kappa: \mathcal{X} \times \mathcal{X} \to [0,1]$.
- Inner product kernels → random dot product graph (RDPG, Athreya et al., 2018):

$$A_{i,j} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \sim \text{Bernoulli}(\boldsymbol{x}_i^\intercal \boldsymbol{x}_j).$$

4/43

Acknowledgements

5/43

Introduction

0000

RDPGs (and their generalisation, GRDPG, see Rubin-Delanchy et al., 2022) include:

Vector autoregressive processes

- Stochastic blockmodels (Holland, Laskey, and Leinhardt, 1983): $x_i = \mu_{z_i}$ for a community $z_i \in \{1, \dots, K\}$, giving a between-community constant connection probability $B_{k\ell} = \mu_b^T \mu_\ell$;
- Degree-corrected stochastic blockmodels (Karrer and Newman, 2011): $x_i = \rho_i \mu_{z_i}$ for community $z_i \in \{1, \dots, K\}$ and degree-correction parameter $\rho_i \in (0, 1)$.
- The latent positions can be estimated via the spectral decomposition of A.

Definition (ASE – Adjacency spectral embedding)

For an integer $d \in \{1, ..., n\}$ and a binary symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{n \times n}$, the d-dimensional adjacency spectral embedding (ASE) $\hat{\mathbf{X}} = [\hat{x}_1, \dots, \hat{x}_n]^{\mathsf{T}}$ of **A** is

$$\hat{\mathbf{X}} = \mathbf{\Gamma} |\mathbf{\Lambda}|^{1/2} \in \mathbb{R}^{n \times d},$$

where Λ is a $d \times d$ diagonal matrix containing the d largest eigenvalues in magnitude, and Γ is a $n \times d$ matrix containing corresponding orthonormal eigenvectors.

MULTIPLEX GRAPHS

Introduction

00000

- In many real-world applications, edges can have different types. For example, links in cyber-security applications occur on different ports. In transportation networks, there are different means of transport between two locations. Edge types are usually called layers.
- Undirected multiplex graph $\mathbb{G} = (V, \{E_1, \dots, E_K\})$ where:
 - V is the **shared node set** across layers, with cardinality n = |V|,
 - $E_k \subset V \times V$ is the **edge set** for the k-th layer, containing dyads $(i, j) \in V \times V$.
 - Denote the adjacency matrix for the k-th layer as A_k [It is **not assumed** that $E_k \cap E_\ell = \emptyset$].

Layer 1

Layer 2

 $\mathbf{A}_1 = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}
ight] \quad \mathbf{A}_2 = \left[egin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}
ight] \quad \mathbf{A}_3 = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}
ight]$

Layer 3

6/43

0000

SPECTRAL EMBEDDING OF MULTIPLEX GRAPHS

- Multiplex graphs can mainly be spectrally embedded via two methods: OMNI and UASE.
- Omnibus embedding (OMNI, Levin et al., 2017) Take ASE of the following block-matrix:

$$\tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A}_1 & (\mathbf{A}_1 + \mathbf{A}_2)/2 & \cdots & (\mathbf{A}_1 + \mathbf{A}_K)/2 \\ (\mathbf{A}_2 + \mathbf{A}_1)/2 & \mathbf{A}_2 & \cdots & (\mathbf{A}_2 + \mathbf{A}_K)/2 \\ \vdots & \vdots & \ddots & \vdots \\ (\mathbf{A}_K + \mathbf{A}_1)/2 & (\mathbf{A}_K + \mathbf{A}_2)/2 & \cdots & \mathbf{A}_K \end{bmatrix},$$

• Unfolded adjacency spectral embedding (UASE, Jones and Rubin-Delanchy, 2020; Gallagher, Jones, and Rubin-Delanchy, 2021) - Obtain the embedding from the singular value the composition of the unfolded matrix $\tilde{\mathbf{A}} \in \{0,1\}^{n \times nK}$, defined as follows:

$$\tilde{\mathbf{A}} = [\mathbf{A}_1 \ \mathbf{A}_2 \ \cdots \ \mathbf{A}_K].$$

7/43

DYNAMIC MULTIPLEX GRAPHS

Introduction

- In real-world applications, graphs evolve over time \rightarrow dynamic multiplex graphs.
- Dynamic multiplex graph $\mathbb{G} = (V, \{E_{k,t}\}_{k=1,\dots,K}, t=1,\dots,T)$ where:
 - V is the **shared node set** across layers and time points, with cardinality n = |V|.
 - $E_{k,t} \subseteq V \times V$ is the **edge set** for the k-th layer at the t-th time.
 - Denote the adjacency matrix for the k-th layer at the t-th time as $\mathbf{A}_{k,t}$.
- We propose a dynamic multiplex RDPG (DMP-RDPG) model where each node is represented by latent positions in $\mathcal{X}_k \subseteq \mathbb{R}^d$ and $\mathcal{Y}_t \subseteq \mathbb{R}^d$, $k = 1, \dots, K$, $t = 1, \dots, T$.
 - Positions $x_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
 - Positions $y_{i,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
 - The connectivity model for nodes i and j at time t in layer k is given by:

$$A_{i,j,k,t} \sim \text{Bernoulli}\left(\boldsymbol{x}_{i,k}^{\intercal} \boldsymbol{y}_{j,t}\right).$$

8/43

DMP-RDPG: THE SETUP

Introduction

- For K and T fixed, let $\mathcal{X}_1, \ldots, \mathcal{X}_K, \mathcal{Y}_1, \ldots, \mathcal{Y}_T \subseteq \mathbb{R}^d$ for some shared $d \in \mathbb{N}$, such that $x^{\mathsf{T}}y \in [0,1]$ for any $x \in \mathcal{X}_k$ and $y \in \mathcal{Y}_t$, for all $k = 1, \ldots, K$ and $t = 1, \ldots, T$.
- Let \mathcal{F} be a distribution over the product space $[\bigotimes_{k=1}^K \mathcal{X}_k^n] \bigotimes [\bigotimes_{t=1}^T \mathcal{Y}_t^n]$.
- Let $x_{1,1},\ldots,x_{n,1},\ldots,x_{n,K},y_{1,1},\ldots,y_{n,1},\ldots,y_{n,T}\sim\mathcal{F}$. By organising these positions into matrices $\mathbf{X}_k = [\boldsymbol{x}_{1.k}^\intercal, \cdots, \boldsymbol{x}_{n.k}^\intercal]^\intercal$ and $\mathbf{Y}_t = [\boldsymbol{y}_{1.t}^\intercal, \dots, \boldsymbol{y}_{n.t}^\intercal]^\intercal$, the stacked matrices $\mathbf{X} = [\mathbf{X}_1^\intercal \mid \cdots \mid \mathbf{X}_K^\intercal]^\intercal \in \mathbb{R}^{nK \times d}$ and $\mathbf{Y} = [\mathbf{Y}_1^\intercal \mid \cdots \mid \mathbf{Y}_T^\intercal]^\intercal \in \mathbb{R}^{nT \times d}$ can be constructed.
- We define the $n \times n$ probability matrices for each time point and layer as $\mathbf{P}_{k,t} = \mathbf{X}_k \mathbf{Y}_t^{\mathsf{T}}$.
- Consider the following $nK \times nT$ double unfolding of the matrices $\mathbf{P}_{k,t}$ and $\mathbf{A}_{k,t}$:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_{1,1} & \dots & \mathbf{P}_{1,T} \\ \vdots & \ddots & \vdots \\ \mathbf{P}_{K,1} & \dots & \mathbf{P}_{K,T} \end{bmatrix} = \mathbf{X}\mathbf{Y}^{\mathsf{T}}, \qquad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,T} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{K,1} & \dots & \mathbf{A}_{K,T} \end{bmatrix}.$$

9/43

DMP-RDPG: THE DEFINITION

This setup leads to the definition of the dynamic multiplex RDPG (DMP-RDPG) model.

Definition (DMP-RDPG: Dynamic Multiplex Random Dot Product Graph)

 $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \text{DMP-RDPG}(\mathcal{F})$ if, conditional on \mathbf{X}_k and \mathbf{Y}_t , the matrix $\mathbf{A}_{k,t}$ has entries $A_{i,j,k,t} \sim \text{Bernoulli}(P_{i,j,k,t}) \text{ for all } i,j \in V, \text{ with } P_{i,j,k,t} = \boldsymbol{x}_{i,k}^{\intercal} \boldsymbol{y}_{i,t}.$

Key features:

Introduction

- Positions $x_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
- Positions $y_{i,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
- Given a realisation A from a DMP-RDPG, the inferential objective is to estimate X and Y. We propose a doubly unfolded adjacency spectral embedding estimator.

10/43

Doubly unfolded adjacency spectral embedding (DUASE)

Vector autoregressive processes

Definition (DUASE – Doubly unfolded adjacency spectral embedding)

For a given integer $d \in \{1, \dots, n\}$ and dynamic multiplex graph adjacency matrices $\mathbf{A}_{k,t} \in \{0,1\}^{n \times n}, \ k=1,\ldots,K, \ t=1,\ldots,T,$ consider the doubly unfolded matrix

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,T} \ dots & \ddots & dots \ \mathbf{A}_{K,1} & \dots & \mathbf{A}_{K,T} \end{bmatrix}.$$

The d-dimensional doubly unfolded adjacency spectral embedding (DUASE) of $\bf A$ is:

$$\hat{\mathbf{X}} = \mathbf{U}\mathbf{D}^{1/2} \in \mathbb{R}^{nK \times d}, \qquad \qquad \hat{\mathbf{Y}} = \mathbf{V}\mathbf{D}^{1/2} \in \mathbb{R}^{nT \times d},$$

where **D** is a $d \times d$ diagonal matrix containing the d largest singular values of **A**, and **U** and V are $nK \times d$ and $nT \times d$ matrices containing the corresponding singular vectors.

11/43

RESULTS: TWO-TO-INFINITY NORM BOUND FOR DUASE

This theorem is an adaptation of Theorem 2 in Jones and Rubin-Delanchy, 2020.

Vector autoregressive processes

Theorem $(2 \to \infty \text{ norm bound for DUASE})$

Let $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \text{DMP-RDPG}(\mathcal{F}_{\rho})$, and consider the DUASE estimates $\hat{\mathbf{X}}$ and $\hat{\mathbf{Y}}$ of \mathbf{X} and \mathbf{Y} . Then there exist a sequence of orthogonal matrices \mathbf{W} such that

$$\|\hat{\mathbf{X}}_k \mathbf{W} - \mathbf{X}_k\|_{2 \to \infty} = \mathcal{O}_{\mathbb{P}}\left(\frac{\log^{1/2}(n)}{\rho^{1/2} n^{1/2}}\right), \quad \|\hat{\mathbf{Y}}_t \mathbf{W} - \mathbf{Y}_t\|_{2 \to \infty} = \mathcal{O}_{\mathbb{P}}\left(\frac{\log^{1/2}(n)}{\rho^{1/2} n^{1/2}}\right),$$

for each $k = 1, \ldots, K$ and $t = 1, \ldots, T$.

• $\|\mathbf{M}\|_{2\to\infty} = \sup_{\|\mathbf{z}\|_2=1} \|\mathbf{M}\mathbf{z}\|_{\infty}$; $\|\mathbf{M}\| = \mathcal{O}_{\mathbb{P}}(f)$ if for any $\alpha > 0$ there exist a constant C>0 and an integer n^* such that for all $n>n^*$, $\mathbb{P}\{\|\mathbf{M}\|< Cf(n)\}>1-n^{-\alpha}$.

12/43

Underlying assumptions and sparsity considerations

- A global sparsity factor $\rho_n \in (0,1)$ is used to control the asymptotic connection density of the network as the number of nodes in the network n tends to infinity.
- We assume that the sequence ρ_n converges either to 0 or to some constant c.
- The desired sparsity regime is enforced by defining $x_{i,k} = \rho^{1/2} \xi_{i,k}, \xi_{i,k} \sim F_{X,k}$ for some distribution $F_{X,k}$ on \mathbb{R}^d and $\mathbf{y}_{i,t} = \rho^{1/2} \mathbf{v}_{i,t}$, $\mathbf{v}_{i,t} \sim F_{Y,t}$. Therefore, the joint distribution \mathcal{F} factorises into the product of n identical marginals for each $k=1,\ldots,K,\ t=1,\ldots,T$.
- We adopt the notation \mathcal{F}_{ρ} to refer to this scaled distribution.
- The following assumptions on \mathcal{F}_{o} must hold for each $k=1,\ldots,K,\ t=1,\ldots,T$:

$$\|\mathbf{X}_{k}^{\mathsf{T}}\mathbf{X}_{k} - n\Delta_{X,k}\| = \mathcal{O}_{\mathbb{P}}(n^{1/2}\log^{1/2}(n)), \quad \|\mathbf{Y}_{t}^{\mathsf{T}}\mathbf{Y}_{t} - n\Delta_{Y,t}\| = \mathcal{O}_{\mathbb{P}}(n^{1/2}\log^{1/2}(n)),$$

where $\Delta_{X,k} = \mathbb{E}[\boldsymbol{\xi}_{i,k}\boldsymbol{\xi}_{i,k}^{\intercal}]$ and $\Delta_{Y,t} = \mathbb{E}[\boldsymbol{\nu}_{j,t}\boldsymbol{\nu}_{i,t}^{\intercal}]$ are the second moment matrices of $F_{X,k}$ and $F_{Y,t}$ respectively.

13/43

Introduction

• This theorem mirrors Theorem 3 in Jones and Rubin-Delanchy, 2020 and Proposition 3 in Gallagher, Jones, and Rubin-Delanchy, 2021.

Vector autoregressive processes

Theorem (CLT for DUASE)

Introduction

Let $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \text{DMP-RDPG}(\mathcal{F}_o)$. Given $\mathbf{x} \in \mathcal{X}_k$ and $\mathbf{y} \in \mathcal{Y}_t$ then for all $\mathbf{z} \in \mathbb{R}^d$ and for any fixed node i, there exist a sequence of orthogonal matrices W such that

$$\mathbb{P}\left\{n^{1/2}(\hat{\mathbf{X}}_{k}\mathbf{W} - \mathbf{X}_{k})_{i}^{\mathsf{T}} \leq \boldsymbol{z} \mid \boldsymbol{\xi}_{i,k} = \boldsymbol{x}\right\} \to \Phi\left\{\boldsymbol{z}; \boldsymbol{\Sigma}_{Y,k}(\boldsymbol{x})\right\},$$

$$\mathbb{P}\left\{n^{1/2}(\hat{\mathbf{Y}}_{t}\mathbf{W} - \mathbf{Y}_{t})_{i}^{\mathsf{T}} \leq \boldsymbol{z} \mid \boldsymbol{\nu}_{i,t} = \boldsymbol{y}\right\} \to \Phi\left\{\boldsymbol{z}; \boldsymbol{\Sigma}_{X,t}(\boldsymbol{y})\right\}.$$

where $\Phi(z; \Sigma)$ is the CDF of a d-dimensional multivariate normal distribution centred at $\mathbf{0}_d$ with covariance matrix Σ evaluated at z. The form of $\Sigma_{Y,k}$ and $\Sigma_{X,t}$ is analytically available.

14/43

SOME KEY RESULTS

Introduction

• There are some key results needed to prove the two theorems in the previous slides.

Proposition (Control of singular values of P)

Let $\sigma_{\ell}(\mathbf{P})$ denote the ℓ -th non-zero singular value of \mathbf{P} for $\ell \in \{1, \ldots, d\}$. Then:

$$\frac{\sigma_{\ell}(\mathbf{P})}{\rho n} \to \sqrt{\lambda_{\ell}(\Delta_X \Delta_Y)},$$

where
$$\Delta_X = \sum_{k=1}^K \Delta_{X,k}$$
 and $\Delta_Y = \sum_{t=1}^T \Delta_{Y,t}$. Consequently, $\sigma_\ell(\mathbf{P}) = \Omega_\mathbb{P}\left(\rho n\right)$ and $\sigma_\ell(\mathbf{P}) = \mathcal{O}_\mathbb{P}\left(K^{1/2}T^{1/2}\rho n\right)$.

• K and T must both grow at a rate slower than $n: \lim_{n\to\infty} \max\{K,T\}/n = 0$.

15/43

SOME KEY RESULTS

Introduction

There are some key results needed to prove the two theorems in the previous slides.

Vector autoregressive processes

Proposition

For any $\alpha > 0$ there exists a constant C > 0 and an integer $n^* > 0$ such that for all $n > n^*$:

$$\mathbb{P}\left\{\|\mathbf{A} - \mathbf{P}\| \le C\rho^{1/2} \max\{T, K\}^{1/2} n^{1/2} \log^{1/2}(n)\right\} \ge 1 - n^{-\alpha}.$$

In other words:

$$\|\mathbf{A} - \mathbf{P}\| = \mathcal{O}_{\mathbb{P}} \left(\rho^{1/2} \max\{T, K\}^{1/2} n^{1/2} \log^{1/2}(n) \right).$$

K and T must both grow at a rate slower than $n: \lim_{n\to\infty} \max\{K, T\}/n = 0$.

16/43

DYNAMIC MULTIPLEX STOCHASTIC BLOCKMODELS (DMP-SBM)

DMP-RDPG to define a dynamic multiplex stochastic blockmodel (DMP-SBM).

0000000000000000000

- Assume $A_{i,j,k,t} \sim \operatorname{Bernoulli}(B_{z_{i,k},z'_{i,t},k,t})$, where $z_{i,k} \in \{1,\ldots,G\}$ and $z'_{i,t} \in \{1,\ldots,G'\}$ are group labels for nodes i and j in the k-th layer and t-th time point respectively, and $\mathbf{B} \in [0,1]^{G \times G' \times K \times T}$ is a tensor of probabilities of connections between groups.
- Under a DMP-RDPG representation, $B_{h,\ell,k,t} = \mu_{h,k}^{\mathsf{T}} \mu_{\ell,t}'$ for $\mu_{h,k}, \mu_{\ell,t}' \in \mathbb{R}^d$, which gives:

$$A_{i,j,k,t} \sim \operatorname{Bernoulli}(\boldsymbol{\mu}_{z_{i,k},k}^{\intercal} \boldsymbol{\mu}_{z'_{j,t},t}').$$

• The indicators $z_{i,k}$ and $z'_{i,t}$ can be estimated via Gaussian mixture modelling on the output of **DUASE**, using the theoretical guarantees provided by our **DUASE-CLT**.

17/43

DMP-SBM + DUASE: A SIMULATION

• Simulate a DMP-SBM with G=3, G'=4 and the following connection probabilities:

$$\mathbf{B}_{1,1} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{1,2} = \begin{bmatrix} 0.16 & 0.16 & 0.04 & 0.10 \\ 0.16 & 0.16 & 0.04 & 0.10 \\ 0.04 & 0.04 & 0.09 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{1,3} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}$$

$$\mathbf{B}_{2,1} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{2,2} = \begin{bmatrix} 0.16 & 0.16 & 0.04 & 0.10 \\ 0.16 & 0.16 & 0.04 & 0.10 \\ 0.04 & 0.04 & 0.09 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{2,3} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}$$

$$\mathbf{B}_{3,1} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,2} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,3} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,3} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \end{bmatrix}$$

18/43

Figure 1, Left DUASE of a simulated DMP-SBM against the true latent positions (after orthogonal Procrustes rotation).

Figure 2. Right DUASE of a simulated DMP-SBM against the true latent positions (after orthogonal Procrustes rotation).

Francesco Sanna Passino Imperial College London

19/43

Introduction

Possible connections with literature on Euclidean mirrors

- Consider the right DUASE embedding $\hat{\mathbf{Y}} = [\hat{\mathbf{Y}}_1^\intercal \mid \cdots \mid \hat{\mathbf{Y}}_T^\intercal]^\intercal \in \mathbb{R}^{nT \times d}$ and extract the sequence of aligned time-specific embeddings $\hat{\mathbf{Y}}_1, \dots, \hat{\mathbf{Y}}_T$.
- Athreya et al., 2024 calculates a dissimilarity (distance) matrix $\hat{\mathcal{D}}_{\phi}$ with entries:

$$\hat{\mathcal{D}}_{\phi}(t,s) = \hat{d}_{\mathrm{MV}}(\hat{\mathbf{Y}}_t, \hat{\mathbf{Y}}_s) = \min_{\mathbf{Q} \in \mathbb{O}(d)} \frac{1}{\sqrt{n}} ||\hat{\mathbf{Y}}_t - \hat{\mathbf{Y}}_s \mathbf{Q}||_2,$$

where $\mathbb{O}(d)$ is the orthogonal group with signature d.

- Since DUASE has **temporal stability**, one can simply set $\hat{\mathcal{D}}_{\phi}(t,s) = n^{-1/2} \|\hat{\mathbf{Y}}_t \hat{\mathbf{Y}}_s\|_2$.
- Apply CMDS to $\hat{\mathcal{D}}_{\phi}$ to estimate $\hat{\psi}(t) \in \mathbb{R}^c$ for $t = 1, \dots, T$, for some $c \in \mathbb{N}$.
- Apply ISOMAP to the points in $\text{CMDS}(\hat{\mathcal{D}}_{\phi}) = \{\hat{\psi}(t), t = 1, \dots, T\} \subseteq \mathbb{R}^c$ to obtain a 1-dimensional curve, which can be plotted against the time indices $t = 1, \dots, T$.
- This gives a joint (across layers) Euclidean mirror for dynamic multiplex networks.

Acknowledgements

VECTOR AUTOREGRESSIVE MODELS FOR MULTIVARIATE TIME SERIES

- Panels of multivariate time series $\{\mathbf{X}_t = (X_{1,t},...,X_{N,t})^\intercal, X_{i,t} \in \mathbb{R}\}_{t \in \mathbb{Z}}$ exhibiting co-movement between components are central to many scientific disciplines such as environmental science, econometrics, and neuroscience.
- Often, X_{i,t} depends not only on its own past values, but also on the past values of a subset of other panel components, $\{X_{i,s}: j \subseteq [N], s < t\}$, where $[N] = \{1, \ldots, N\}$.
- Vector autoregression (VAR) is a widely used model for multivariate time series:

$$\mathbf{X}_t = \mathbf{\Phi} \mathbf{X}_{t-1} + \boldsymbol{\varepsilon}_t, \ \boldsymbol{\varepsilon}_t \sim \mathbb{N}_N(\mathbf{0}_N, \boldsymbol{\Sigma}_{\varepsilon}),$$

where $\Phi \in \mathbb{R}^{N \times N}$ is a matrix of **coefficients**, for some covariance Σ_{ε} .

• For large N, modelling via the VAR framework becomes prohibitive as the number of model parameters grows as $\mathcal{O}(N^2)$ and can quickly exceed the number of observations.

21/43

Introduction

RELATED LITERATURE

Introduction

• Factor models - The large panel of time series are modelled as stemming from a relatively small number of common latent factors (Stock and Watson, 2002).

Vector autoregressive processes

- Factors with sparse regression Fan, Masini, and Medeiros, 2023 combine the dimensionality reduction of factor modelling with the parsimony of sparse linear regression and give a novel test for covariance structure. Their proposed model is called the Factor **Augmented Regression Model (FARM).**
- Network VAR Knight et al., 2020 introduce generalise network autoregression (GNAR) which, given an observed network, fits a flexible network autoregressive model. Barigozzi, Cho, and Owens, 2023 propose an L1-regularised Yule-Walker method for estimating a factor adjusted, idiosyncratic VAR model (FNETS).
- Community detection: Guðmundsson and Brownlees, 2021 use estimated VAR coefficients to **embed and cluster** the panel components.

22/43

NETWORK-INFORMED RESTRICTED VECTOR AUTOREGRESSIVE (NIRVAR) MODEL

Definition (NIRVAR - Network-informed restricted vector autoregressive model)

Consider a multiplex network $\mathbb{G} = (V, \{E_1, \dots, E_O\})$ over V = [N] with adjacency matrices $\mathbf{A}^{(q)}=\{A_{ij}^{(q)}\},\ q=1,\ldots,Q.$ Let $\{\mathbf{X}_t^{(q)}\}_{t\in\mathbb{Z}}$ denote a zero mean, second order stationary stochastic process where $\mathbf{X}_t^{(q)} = (X_{1,t}^{(q)}, \cdots, X_{N,t}^{(q)})^\intercal \in \mathbb{R}^N$ and $q \in [Q]$. The NIRVAR model for the q^{th} feature of time series $i \in [N]$ is:

$$X_{i,t}^{(q)} = \sum_{r=1}^{Q} \sum_{j=1}^{N} A_{ij}^{(r)} \tilde{\Phi}_{ij}^{(r)} X_{j,t-1}^{(r)} + \varepsilon_{i,t}^{(q)}, \qquad \varepsilon_{i,t}^{(q)} \sim \mathbb{N}(0, \sigma^2).$$

The $N \times N$ coefficient matrices $\tilde{\Phi}^{(q)} = \{\tilde{\Phi}_{ij}^{(q)}\}, \ q = 1, \dots, Q$ are distributed according to a distribution $\mathcal{W}^{(q)}$, such that $\rho(\tilde{\Phi}^{(q)}) < 1$ with probability one to ensure stationarity.

Acknowledgements

NIRVAR MODEL

Defining $\Phi^{(q)} = \mathbf{A}^{(q)} \odot \tilde{\Phi}^{(q)}$, we can write the NIRVAR model as

$$\mathbf{X}_t^{(q)} = \sum_{r=1}^Q \mathbf{\Phi}^{(r)} \mathbf{X}_{t-1}^{(r)} + \mathbf{\varepsilon}_t^{(q)}, \qquad \mathbf{\varepsilon}_t^{(q)} \sim \mathbb{N}_N(\mathbf{0}_N, \sigma^2 \mathbf{I}_{N imes N}),$$

Vector autoregressive processes

which allows the interpretation of the NIRVAR model as a restricted VAR whose restrictions are determined by the graph. Note that $\mathcal{G}^{(q)}$, and hence the restrictions are static.

- In NIRVAR, we define the coefficient matrices $\Phi^{(q)}$ as the adjacency matrix resulting from a weighted SBM (WSBM) (Gallagher et al., 2023), for a suitable choice of the distribution of the weights. A zero-inflated component is added to the distribution to obtain sparsity.
- For simplicity, assume Q = 1 (only one *feature*).

24/43

WEIGHTED STOCHASTIC BLOCKMODELS

- Let $\mathcal{Z} = \{1, ..., K\}$ be a sample space with distribution \mathcal{F} , and $\{H(z_1, z_2) : z_1, z_2 \in \mathcal{Z}\}$ be a family of real valued distributions satisfying:
 - **1** $H(z_1, z_2) = H(z_2, z_1)$ for all $z_1, z_2 \in \mathcal{Z}$.
 - ② There exists $\phi: \mathcal{Z} \to \mathbb{R}^d$ s.t., for all $z_1, z_2 \in \mathcal{Z}$, if $A \sim H(z_1, z_2)$ then $\mathbb{E}(A) = \phi(z_1)^{\mathsf{T}} \phi(z_2)$.

Definition (WSBM - Weighted SBM)

Let $\mathbf{B} \in \mathbb{R}^{K \times K}$ and $\mathbf{C} \in \mathbb{R}_{+}^{K \times K}$ denote block mean and block variance matrices. A symmetric matrix, $\mathbf{A} \in \mathbb{R}^{N \times N}$ is distributed as a WSBM if $z_1, ..., z_N \sim F$ and for i < j.

$$A_{ij} \mid z_i, z_j \sim H(z_i, z_j),$$

where the mean and variance of $H(k,\ell)$ are given by $B_{k,\ell}$ and $C_{k,\ell}$ respectively.

25/43

WSBMs: THE SETUP

Introduction

- Consider the eigendecomposition $\mathbf{B} = \mathbf{U}_B \mathbf{\Lambda}_B \mathbf{U}_B^{\mathsf{T}}$.
- Constructing the spectral embedding $\mathbf{Y}_B = \mathbf{U}_B \mathbf{\Lambda}_B^{1/2} = [\boldsymbol{\mu}_1^\intercal, \dots, \boldsymbol{\mu}_K^\intercal]^\intercal$, we define the map $\phi: \mathcal{Z} \to \mathbb{R}^K$ as $\phi(k) = \mu_k$. If node i belongs to community $z_i \in \{1, ..., K\}$, then:

$$\boldsymbol{y}_i = \phi(z_i) = \boldsymbol{\mu}_{z_i}.$$

- Since $\mathbf{B} = \mathbf{Y}_B \mathbf{Y}_B^{\mathsf{T}}$, the expected value of \mathbf{A} has rank K = d.
- If Φ is a realisation of a WSBM, then $\mathbb{E}(\Phi_{i,j}) = B_{z_i,z_i}$.
- For a realisation of Φ , consider the eigendecomposition:

$$\mathbf{\Phi} = \mathbf{U}_{\Phi} \mathbf{\Lambda}_{\Phi} \mathbf{U}_{\Phi}^{\intercal} + \mathbf{U}_{\Phi \perp} \mathbf{\Lambda}_{\Phi \perp} \mathbf{U}_{\Phi \perp}^{\intercal}.$$

• The corresponding left embedding is:

$$\mathbf{Y}_{\Phi} = \mathbf{U}_{\Phi} |\mathbf{\Lambda}_{\Phi}|^{1/2}.$$

26/43

From WSBMs to the NIRVAR covariance matrix

- The VAR covariance matrix $\Gamma = \mathbb{E}(\mathbf{X}_t \mathbf{X}_t^\intercal)$ satisfies $\Gamma \Phi \Gamma \Phi^\intercal = \Sigma_\varepsilon$ (Lütkepohl, 2005).
- This is a Lyapunov matrix equation. For $\Sigma_{\varepsilon} = \sigma^2 \mathbf{I}_{N \times N}$, it has the following solution:

$$oldsymbol{\Gamma} = \sigma^2 \sum_{k=0}^{\infty} oldsymbol{\Phi}^k oldsymbol{\Phi}^{\intercal k},$$

converging only when $\rho(\Phi) < 1$ (Smith, 1968; Young, 1981).

• Substituting Φ with its spectral decomposition $\Phi = \mathbf{U}_{\Phi} \mathbf{\Lambda}_{\Phi} \mathbf{U}_{\Phi}^{\mathsf{T}} + \mathbf{U}_{\Phi \perp} \mathbf{\Lambda}_{\Phi \perp} \mathbf{U}_{\Phi \perp}^{\mathsf{T}}$ gives:

$$\mathbf{\Gamma} = \sigma^2 \left(\mathbf{I}_{N \times N} - \mathbf{U}_{\Phi} \mathbf{U}_{\Phi}^{\mathsf{T}} - \mathbf{U}_{\Phi \perp} \mathbf{U}_{\Phi \perp}^{\mathsf{T}} + \mathbf{U}_{\Phi} \mathbf{\Lambda}_{\Gamma} \mathbf{U}_{\Phi}^{\mathsf{T}} + \mathbf{U}_{\Phi \perp} \mathbf{\Lambda}_{\Gamma \perp} \mathbf{U}_{\Phi \perp}^{\mathsf{T}} \right),$$

where Λ_{Γ} is a diagonal matrix whose diagonal entries are $\gamma_i = q(\varphi_i) = 1/(1-\varphi_i^2)$ with φ_i being the i^{th} diagonal entry of Λ_{Φ} (sorted in order of magnitude).

• The rank d spectral embedding of Γ is therefore:

$$\mathbf{Y}_{\Gamma} = \mathbf{U}_{\Phi} \mathbf{\Lambda}_{\Gamma}^{1/2} = \mathbf{U}_{\Phi} g(\mathbf{\Lambda}_{\Phi})^{1/2}.$$

Acknowledgements

Introduction

Vector autoregressive processes

28/43

NIRVAR: ESTIMATION

Introduction

- Recovering the edge set is difficult. Instead, we aim to recover the community mem**berships** z_i , i = 1, ..., N for each node.
- The two step estimation approach is:
 - Estimate \hat{z}_i by performing clustering on an embedding $\hat{\mathbf{Y}} \in \mathbb{R}^{N \times K}$ of the panel components, and define the binary matrix $\hat{\mathbf{A}} = \{\hat{A}_{i,i}\} \in \{0,1\}^{N \times N}$ with the following entries:

$$\hat{A}_{i,j} = \mathbb{1} \left\{ \hat{z}_i = \hat{z}_j \right\},\,$$

where $\mathbb{1}\{\cdot\}$ is the indicator function.

2 Set $\hat{\Phi}_{i,j} = 0$ if $\hat{A}_{i,j} = 0$ and estimate the remaining unrestricted parameters (corresponding to $\hat{A}_{i,j} = 1$) via ordinary least squares (OLS).

29/43

NIRVAR: RECOVERING THE COMMUNITIES

- Compute the sample covariance matrix S_T between panel components.
- Estimate the dimension of the latent space as the number of eigenvalues of S_T that are greater than the Marčencko-Pastur distribution cutoff (Marčenko and Pastur, 1967).
- Let $\Lambda \in \mathbb{R}^{\hat{d} \times \hat{d}}$ and $\mathbf{U} \in \mathbb{R}^{N \times \hat{d}}$ be the matrices containing the \hat{d} largest eigenvalues and corresponding eigenvectors of S_T . The corresponding embedding is:

$$\hat{\mathbf{Y}} = \mathbf{U} \mathbf{\Lambda}^{1/2} \in \mathbb{R}^{N \times \hat{d}}.$$

• Cluster each $\hat{y}_i \in \mathbb{R}^{\hat{d}}$ into $K = \hat{d}$ groups using a Gaussian Mixture Model.

30/43

Acknowledgements

NIRVAR: ESTIMATION

Introduction

Vector autoregressive processes

31/43

Acknowledgements

THE NIRVAR ESTIMATOR: PROPERTIES

• The NIRVAR estimator is biased whenever $\hat{A}_{i,j} = 0$ but $A_{i,j} = 1$ (model misspecification) and unbiased otherwise.

Vector autoregressive processes

Proposition (Consistency of NIRVAR estimator)

The NIRVAR estimator, $\hat{\gamma}(\hat{\mathbf{A}})$ is a consistent estimator of $C\gamma(\mathbf{A})$, where C is the bias of the estimator, and

$$\sqrt{T} \left\{ \hat{\gamma}(\hat{\mathbf{A}}) - C\gamma(\mathbf{A}) \right\} \stackrel{d}{\to} \mathbb{N}_{N^2Q} \left(\mathbf{0}_{N^2Q}, \left\{ R(\hat{\mathbf{A}})' \left(\mathbf{\Gamma} \otimes \mathbf{\Sigma}_{\varepsilon}^{-1} \right) R(\hat{\mathbf{A}}) \right\}^{-1} \right),$$

where
$$\Gamma = \mathbb{E}(\mathbf{X}_t \mathbf{X}_t^{\intercal}) = \text{plim}(\mathbf{Z}\mathbf{Z}^{\intercal})/T$$
.

32/43

THE NIRVAR ESTIMATOR: A REPARAMETRISATION

• The model can be written in terms of an unrestricted M-dimensional vector $\gamma(\mathbf{A})$, whose elements are those in the set $\{\operatorname{vec}(\mathbf{A}\odot\tilde{\mathbf{\Phi}})_i:\operatorname{vec}(\mathbf{A}\odot\tilde{\mathbf{\Phi}})_i\neq 0, i=1,...,N^2Q\}$, and a $N^2Q \times M$ matrix $R(\mathbf{A})$, where the map, $R: \{0,1\}^{N\times N} \to \{0,1\}^{N^2Q\times M}$, is defined by

$$[R(\mathbf{A})]_{i,j} = \text{vec}(\mathbf{A})_i \mathbb{1} \left\{ \sum_{k=1}^{i-1} \text{vec}(\mathbf{A})_k = j-1 \right\}.$$

The constraints on the model parameters then become:

$$\boldsymbol{\beta} = \text{vec}(\boldsymbol{\Phi}) = R(\mathbf{A})\boldsymbol{\gamma}(\mathbf{A}).$$

This form is particularly useful to prove results about the NIRVAR model and estimator.

33/43

Macroeconomic applications: FRED-MD dataset

FRED-MD is a publicly accessible database of monthly observations of macroeconomic variables (McCracken and Ng, 2016).

Vector autoregressive processes

- The prediction task is one-step ahead forecasts of the first order difference of the logarithm of the monthly industrial production (IP) index.
- We backtest NIRVAR, FARM, FNETS, and GNAR from January 2000 December 2019 using a rolling window framework with a lookback window of 480 observations.

Metric	NIRVAR	FARM	FNETS	GNAR
Overall MSE	0.0087	0.0089	0.0096	0.0101

Table 1. Overall MSE of each model for the task of forecasting US industrial production.

34/43

Acknowledgements

Introduction

Vector autoregressive processes

Figure 3. Predicted (log-differenced) IP against the realised (log-differenced) IP for each model.

Imperial College London

35/43

Francesco Sanna Passino Low-rank models for dynamic multiplex graphs and vector autoregressive processes

FINANCIAL RETURNS PREDICTION

Introduction

The previous close-to-close (pvCLCL) market excess returns of 648 financial assets from 03/01/2000 - 31/12/2020 were derived from databases provided by the CRSP.

Vector autoregressive processes

- The task is to predict the sign of the next day pvCLCL market excess returns (a positive (negative) sign corresponds to a long (short) position in the asset).
- We backtest NIRVAR, FARM, FNETS, and GNAR using a rolling window from 01/01/2004 -31/12/2020 with a look-back window of four years.

Metric	NIRVAR	FARM	FNETS	GNAR
Sharpe Ratio	2.82	0.22	0.78	0.70
Sortino Ratio	4.80	0.36	1.39	1.13
Mean Turnover (%)	50.3	51.1	50.0	43.0
Maximum Drawdown (%)	61	531	107	257
Hit Ratio (%)	50.7	48.7	50.2	41.5
Long Ratio (%)	50.1	49.0	50.1	40.7
Mean Daily PnL (bpts)	3.00	0.44	0.89	1.10

Table 2. Statistics on the financial returns predictive performance over the backtesting period.

36/43

FINANCIAL RETURNS PREDICTION

Introduction

Figure 4. Left: the cumulative PnL in bpts over the backtesting period. Right: comparison of the NIRVAR estimated clusters with the SIC groups on 31/12/2020.

37/43

COVID-19 VENTILATION BEDS ADMISSIONS

- Define $Y_{i,t}$ to be the number of COVID-19 patients transferred to mechanical ventilation beds on t, for NHS Trust i, across N=140 trusts in England, for T=452 (Nason, Salnikov, and Cortina-Borja, 2023), between April 2020 and July 2021. Data are available in the UK Government Coronavirus Dashboard (coronavirus.data.gov.uk).
- Nason, Salnikov, and Cortina-Borja, 2023 consider the transformation $Y_{i,t} = \log(Y_{i,t} + 1)$.

	NIRVAR Covariance	NIRVAR Precision	GNAR(1,[1])	GNAR(1,[1])*	FARM	FNETS
MSPE	3.930 (0.845)	3.372 (0.911)	7.414 (2.977)	7.313 (2.752)	4.189 (0.340)	7.646 (3.016)

Table 3. Mean squared prediction errors (MSPE) and standard deviations over 10 predictions for the ventilation beds data.

38/43

Conclusion

Introduction

- This talk introduces two different models and related estimators:
 - DMP-RDPG + DUASE for dynamic multiplex graphs
 - Propose a DMP-RDPG model for dynamic multiplex graphs where $A_{i,j,t,k} \sim \text{Bernoulli}(\boldsymbol{x}_{i}^{\intercal}, \boldsymbol{y}_{j,t})$.
 - Positions $x_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
 - Positions $y_{i,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
 - Estimates of the latent position are obtained via a **double unfolding** of the adjacency matrices.
 - NIRVAR model and estimator for panels of multivariate time series
 - We model the time series as a VAR process whose parameter matrix is a realisation of a WSBM.
 - We introduce an estimation framework that firstly determines the restrictions to be placed on the VAR parameters and secondly estimates the remaining unrestricted parameters via OLS.
 - The method can be used to estimate VAR parameters when the underlying network is **unobserved**.

39/43

 UK Research and Innovation / EPSRC ECR International Collaboration Grant 2024-2026 on "Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs" (EP/Y002113/1) in collaboration with Professor Carey Priebe (Johns Hopkins University)

As part of this funding, I will occasionally spend time at JHU in the next two years. For now, I will be here until 30th April, 2024. If you are interested in these topics, let's chat!

Thank you!

40/43

References I

Introduction

Vector autoregressive processes

- Barigozzi, M., H. Cho, and D. Owens (2023), "FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series". In: Journal of Business & Economic Statistics, pp. 1–13.
- Fan, J., R. P. Masini, and M. C. Medeiros (2023). "Bridging factor and sparse models". In: The Annals of Statistics 51.4, pp. 1692–1717.
- Gallagher, I., A. Jones, and P. Rubin-Delanchy (2021). "Spectral embedding for dynamic networks with stability guarantees". In: Advances in Neural Information Processing Systems. Vol. 34, pp. 10158–10170.
- Gallagher, I. et al. (2023). "Spectral embedding of weighted graphs". In: Journal of the American Statistical Association, pp. 1–10.
 - Guðmundsson, G. S. and C. Brownlees (2021). "Detecting groups in large vector autoregressions". In: *Journal of Econometrics* 225.1, pp. 2–26.

41/43

References II

Introduction

Vector autoregressive processes

- Holland, P. W., K. B. Laskey, and S. Leinhardt (1983), "Stochastic blockmodels: First steps", In: Social *Networks* 5.2, pp. 109 –137.
- Jones, A. and P. Rubin-Delanchy (2020). "The multilayer random dot product graph". In: arXiv e-prints. arXiv: 2007.10455 [stat. MI.].
- Karrer, B. and M. E. J. Newman (2011). "Stochastic blockmodels and community structure in networks". In: Physical Review E 83 (1).
- Knight, M. et al. (2020). "Generalized Network Autoregressive Processes and the GNAR Package". In: *Journal of Statistical Software* 96, pp. 1–36.
- Levin, K. et al. (2017). "A central limit theorem for an omnibus embedding of multiple random graphs and implications for multiscale network inference". In: arXiv e-prints. arXiv: 1705.09355 [stat.ME].
- Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.

42/43

Marčenko, V. A. and L. A. Pastur (1967). "Distribution of eigenvalues for some sets of random matrices". In: Matematicheskii Sbornik 114.4, pp. 507–536.

Vector autoregressive processes

McCracken, M. W. and S. Ng (2016). "FRED-MD: A monthly database for macroeconomic research". In: Journal of Business & Economic Statistics 34.4, pp. 574–589.

Nason, G., D. Salnikov, and M. Cortina-Borja (2023), "New tools for network time series with an application to COVID-19 hospitalisations". In: arXiv e-prints. arXiv: 2312.00530 [stat.ME].

Rubin-Delanchy, P. et al. (2022). "A Statistical Interpretation of Spectral Embedding: The Generalised Random Dot Product Graph". In: Journal of the Royal Statistical Society Series B 84.4, pp. 1446–1473.

Smith, R. (1968). "Matrix Equation XA+BX=C". In: SIAM Journal on Applied Mathematics 16.1, pp. 198–201.

Stock, J. H. and M. W. Watson (2002). "Forecasting using principal components from a large number of predictors". In: Journal of the American Statistical Association 97.460, pp. 1167–1179.

Young, N. (1981). "The rate of convergence of a matrix power series". In: Linear Algebra and its Applications 35, pp. 261-278.

43/43