1. Below is a JavaScript program that creates bank coount objects and stored in the array *bankAccounts*. Trace the ouput without using Visual Studio.

```
let bankAccounts = [];
// Create bank account objects using object literals with the bank's
// name as account holder
let account1 = {
  accountNumber: '123456789',
  bank: 'Bank of America',
  balance: 5000,
 type: 'Savings'
};
let account2 = {
  accountNumber: '987654321',
  bank: 'Chase Bank',
  balance: 10000,
  type: 'Checking'
};
let account3 = {
  accountNumber: '456789123',
  bank: 'DBS',
  balance: 2500,
  type: 'Checkings'
};
let account4 = {
  accountNumber: '223489123',
  bank: 'OCBC',
  balance: 4500,
  type: 'Savings'
};
// Push the bank account objects into the bankAccounts array
bankAccounts.push(account1, account2, account3,account4);
//Part (a)
console.log(bankAccounts[1].type);
console.log(bankAccounts[0].balance + bankAccounts[2].balance);
//Part (b)
console.log("Balance of Savings Accounts:");
for (let i = 0; i < bankAccounts.length; i++) {</pre>
  let account = bankAccounts[i];
  if (account.type == 'Savings') {
    console.log(account.balance);
  }
a) What is the output Part (a) of the program segment?
```

b) What is the output for Part (b) of the program segment?

```
c) Below is a segment of codes added to the program. What is the output?
  function getTotalCheckingsBalance(accounts) {
    let totalBalance = 0;
    for (let i = 0; i < accounts.length; i++) {</pre>
      if (accounts[i].type == 'Checkings') {
        totalBalance += accounts[i].balance;
      }
    return totalBalance;
  //Part (c)
  // Calculate and output the total balance of 'Checking' accounts
  let totalCheckingsBalance = getTotalCheckingsBalance(bankAccounts);
  console.log("Total Balance of Checking Accounts: " + totalCheckingsBalance);
  // end of program
Output:
d) Below is a segment of codes added to the program. What is the output?
let search ="OCBC";
function displayBankdetails(accounts) {
    let totalBalance = 0;
    let notFound = true
    for (let i = 0; i < accounts.length; i++) {</pre>
      if (accounts[i].bank == 'OCBC') {
        return accounts[i] // returns an object
      }
   }
  let account = displayBankdetails(bankAccounts);
  console.log(search + " is a " + account.type + " account, balance is $" +
 account.balance);
// end of program
Output:
```

You may open up your Visual Studio Code (VSC) and work from there for the remaining questions.

2. Use the codes segment in Exercise 1 which you did in Topic 8 lesson. You may change the values of the length and width.

```
let r1 = {length:1, width: 5};
let r2 = {length:2, width: 5};
let r3 = {length:3, width: 5};
let r4 = {length:4, width: 5};
let rectArray = [r1, r2, r3, r4];
```

- a) Write a function getBiggestlength() that;
 - accepts one parameter ie array *rectArray*,
 - return the largest length for output in the main program
- b) Write a function getBiggest() that;
 - accepts one parameter ie array *rectArray*,
 - return the largest length and the object for output in the main program
- 3. In the main program, declare an array named *sqArray* to store square objects. Use the random function to generate 10 random integer values (10 20) as their length and store them in *sqArray*. Print out the length and area of all the elements in the array.

```
Hint: Use this to generate the random integer values

Math.floor(Math.random() * 11) + 10
```

Your main program should produce the following output:

```
Length
             Area
15
             225.0
11
             121.0
19
             361.0
19
             361.0
12
             144.0
11
             121.0
19
             361.0
17
             289.0
13
             169.0
10
             100.0
```

Sample code template to help you get started:

```
// Function to generate random length for square

// Function to calculate area of a square

// Blank array to store squares

// Create squares with random lengths

// Calculate area for each square and display output
```

- 4. A JavaScript program is required to calculate the total material cost of 4 objects.
 - a) Create 4 shape objects: name them: circle, square, rectangle and triangle. Each object should have the following properties. Your may set the values to your preference e.g radius is 5.

Object name	Properties	Formular to calculateArea
circle	radius materialCostPerUnitArea	3.142 * radius * radius
square	length materialCostPerUnitArea	length * length
rectangle	length width	
	materialCostPerUnitArea	length * width
triangle	Base, height materialCostPerUnitArea	0.5 * base * height

- b) Each object should have a method called *calculateArea* that calculates the area of the object.
- c) Write a separate function called *calculateMaterialCost* that takes :
 - two parameters: area and materialCostPerUnitArea,
 - return the total material cost by multiplying the area by the materialCostPerUnitArea.
- d) Create an array called *shapes* and store the four shape objects in it.
- e) In the main program:

- Use a for loop to iterate through the shapes array.
- For each shape, calculate the area and material cost using the methods and function defined.
- Use console.log to display the name of the shape, the calculated area, and the material cost.

Sample Output:

```
Circle
Area: 3.14
Material Cost: 31.42

Square
Area: 4.00
Material Cost: 60.00

Rectangle
Area: 10.00
Material Cost: 120.00

Triangle
Area: 8.00
Material Cost: 80.00
```

Sample code template to help you get started:

```
// Create the circle object

// Create the square object

// Create the rectangle object

// Create the triangle object

// Function to calculate the material cost

// Store object into an array of shapes

// main program that loops through the array of shapes using for loop and
// output the area and material cost
```