Extrema

October 29th, 2024

Here are some	kev	ideas	from	section	4.1.

Here are some key ideas from section 4.1.				
• If $f(c)$ is greater than all the other values of $f(x)$, then it is an			maximum.	
If it is greater than all the other values in its neighb	orhood, then it is a	ma	ximum.	
ullet If $f(c)$ is less than all the other values of $f(x)$, then	mi	inimum. If it		
is less than all the other values in its neighborhood,	minimum.			
• The Extreme Value Theorem says that if f is f attains an absolute maximum value and an absolute f	ute minimum on th	on a closed interval.	$\operatorname{ral}[a,b]$, then	
ullet We say that c is a critical value if	o	r	·	
Local extrema can only exist at		<u>.</u>		
Absolute extrema can exist at		or		
Problem 1: Here's a general algorithm for finding absolu	te extrema on a clo	sed interval $[a, b]$.		
1. Find the critical values of $f(x)$.				
2. For each critical value c , find the corresponding y -v	alue given by $f(c)$.			
3. Find the values of f at the endpoints of the interval				
4. The largest value in the Steps 2 and 3 is the absolute	e maximum. The si	mallest value is the absolut	e minimum.	
(Stewart 4.1) Find the absolute maximum and absolute n	ninimum values of	$f(x) = 12 + 4x - x^2$ on $[0,$	5].	
My Attempt:	Solution:			

Problem 2:

- a) How does the algorithm in Problem 1 change if we are finding absolute extrema on an open interval (a, b)?
- b) Draw the graph of a function defined on the open interval (0,5) that does not have any absolute or local extrema.

My Attempt:

Solution:

Problem 3: (Stewart 4.1) Find the critical values of the following functions.

a)
$$g(t) = |3t - 4|$$
;

b)
$$g(\theta) = 4\theta - \tan \theta$$
;

c)
$$f(x) = x^2 e^{-3x}$$
.

My Attempt:

Solution:

Problem 4: (Stewart 4.1) Find the absolute extrema of $f(t) = t + \cot(t/2)$ on the closed interval $[\pi/4, 7\pi/4]$.

My Attempt:

Solution:

My Attempt:

Solution:

Problem 6: Find the absolute extrema of $f(x) = \frac{x^2 - 4}{x^2 + 4}$ on the interval [-4, 4].

My Attempt:

Solution:

Challenge problem: (Stewart Chapter 4) If x, y, and z are positive numbers, then prove that

$$\frac{(x^2+1)(y^2+1)(z^2+1)}{xyz} \ge 8.$$