Électrocinétique – chapitre 6 –

TD entraînement : circuits électriques en RSF

I | Comportement d'un circuit à haute et basse fréquence

On considère le circuit ci-contre. On pose $e(t) = E_m \cos(\omega t) \frac{1}{e(t)}$ et $u(t) = U_m \cos(\omega t + \varphi)$.

- 1) Définir les signaux complexes $\underline{e}(t)$ et $\underline{u}(t)$ puis les amplitudes complexes \underline{E} et \underline{U} associées aux tensions e(t) et u(t), respectivement.
- 2) Établir l'expression de \underline{U} en fonction de E_m , R, L, C et ω .
- 3) En déduire les expressions de U_m et de φ en fonction de E_m , R, L, C et ω . Indiquer le domaine de d'existence de $\varphi(\omega)$, puis tracer son allure.
- 4) Déterminer les valeurs limites de U_m à très basse et très haute fréquence. Tracer alors l'allure de $U_m(\omega)$. Ces résultats étaient-ils prévisibles par une analyse qualitative du montage?

II | Dipôle inconnu

Dans le montage ci-contre, le GBF délivre une tension e(t) sinusoïdale de pulsation ω , R est une résistance et D un dipôle inconnu. On note $u(t) = U_m \cos(\omega t)$ et $v(t) = V_m \cos(\omega t + \phi)$ les tensions aux bornes respectivement de R et D. On visualise e(t) à l'oscilloscope v(t) et u(t), et on obtient le graphe ci-dessous.

On utilise ces résultats graphiques pour déterminer les caractéristiques de D, sachant que $R = 100 \Omega$.

1) Déterminer V_m , U_m ainsi que la pulsation ω des signaux utilisés.

- 2) La tension v est-elle en avance ou en retard sur la tension u? En déduire le signe de ϕ . Déterminer la valeur de ϕ à partir du graphe.
- 3) On note $\underline{Z} = X + jY$ l'impédance complexe du dipôle D.
 - a Déterminer les valeurs de X et Y à partir des résultats précédents.
 - b Par quel dipôle (condensateur, bobine, résistance) peut-on modéliser D?

III | Oscillateur à quartz

Un quartz piézo-électrique se modélise par un condensateur (de capacité C_0) placé en parallèle avec un condensateur (de capacité C) en série avec une inductance L. On se place en régime sinusoïdal forcé de pulsation ω .

- 1) Donner l'impédance équivalente \underline{Z} de l'oscillateur.
- 2) Trouver la pulsation pour laquelle l'impédance de l'ensemble est nulle, puis celle pour laquelle elle est infinie.
- 3) Tracer l'allure de $|\underline{Z}(\omega)|$.
- 4) Comment la courbe précédente serait-elle modifiée si on prenant en compte les résistances de chacun des composants?

Déphasage, pulsation et impédance

1) On considère le circuit ci-contre en RSF. Déterminer l'expression de la pulsation ω de la tension sinusoïdale $e(t) = E\cos(\omega t)$ pour que le courant i(t) soit en phase avec e(t). Déterminer alors une condition sur R_2 , C et L pour que cela soit réalisable.

Indication: utiliser l'impédance équivalente constituée de C, L et R_2 .

