

MAT 2051 TD 2

Exercice 1.

Soit E l'ensemble des applications de \mathbf{R} dans \mathbf{R} .

On considère deux applications de E définies par : $\forall x \in \mathbf{R}, f_1(x) = e^x$ et $f_2(x) = e^{2x}$

Montrer que la famille $\{f_1, f_2\}$ est libre dans E

Exercice 2.

Soit
$$E = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & a & c \end{pmatrix} / a \in \mathbf{R}, b \in \mathbf{R}, c \in \mathbf{R} \right\}$$

- 1) Montrer que E est un espace vectoriel sur \mathbf{R} (Indication : déterminer une famille génératrice)
- 2) Déterminer une base de E
- 3) Calculer dim(E)

Exercice 3.

Soient $\omega \in \mathbf{R}^*$ et E l'ensemble des fonctions numériques f définies par :

 $\forall x \in \mathbf{R}, f(x) = a\cos(\omega x) + b\sin(\omega x) \text{ où } (a,b) \in \mathbf{R}^2.$

- 3.1) En utilisant la définition de E , compléter : $f \in E \Leftrightarrow$
- 3.2) Déterminer deux fonctions numériques f_1 et f_2 telles que $E = vect\{f_1, f_2\}$.
- 3.3) Prouver que E est un espace vectoriel sur \mathbf{R} , calculer $\dim(E)$.
- 3.4) En déduire que l'ensemble des solutions de l'équation différentielle : $y'' + \omega^2 y = 0$ est un espace vectoriel sur \mathbf{R} de dimension 2.

Exercice 4.

A. Soient $(D(\mathbf{R},\mathbf{R}),+,.)$ l'espace vectoriel des fonctions dérivables sur \mathbf{R} et $a \in \mathbf{R}$.

On considère la fonction $\varphi: D(\mathbf{R}, \mathbf{R}) \to \mathbf{R}$ définie par $\forall f \in D(\mathbf{R}, \mathbf{R}), \varphi(f) = f(a)$ et la fonction $\psi: D(\mathbf{R}, \mathbf{R}) \to \mathbf{R}$ définie par $\forall f \in D(\mathbf{R}, \mathbf{R}), \psi(f) = f'(a)$

1 a) Coloular $\varphi(f)$ at $\psi(f)$ nour $f: \mathbf{D} \to \mathbf{D}$ définie par $\forall x \in \mathbf{D}$ f(x) = f(x)

- 1.a) Calculer $\varphi(f)$ et $\psi(f)$ pour $f: \mathbf{R} \to \mathbf{R}$ définie par $\forall x \in \mathbf{R}, f(x) = (x-1)^2$
- 1.b) Calculer $\varphi(g)$ et $\psi(g)$ pour $g: \mathbf{R} \to \mathbf{R}$ définie par $\forall x \in \mathbf{R}, g(x) = (x-a)\sin(x)$
- 1.c) Montrer que φ et ψ sont des applications linéaires de $D(\mathbf{R},\mathbf{R})$ dans \mathbf{R} .

B. Les ensembles suivants sont-ils des sous espaces vectoriels de $D(\mathbf{R},\mathbf{R})$?

1)
$$F = \{ f \in D(\mathbf{R}, \mathbf{R}) / f'(1) = 0 \text{ et } f(2) = 0 \}$$

2)
$$G = \{ f \in D(\mathbf{R}, \mathbf{R}) / f(0) = 0 \text{ ou } f(1) = 0 \}$$

Exercice 5.

Soit
$$E = \{ P \in \mathbf{R}_3[X] / P(0) = P(1) = 0 \text{ et } P'(-1) = 0 \}$$

- où $\mathbf{R}_3[X]$ représente l'ensemble des polynômes à coefficients réels et de degré inférieur ou égal à 3 et P' désigne le polynôme dérivé du polynôme P.
- 1) Montrer que si $P \in E$ alors les racines de P sont des réels.
- 2) Déterminer une famille génératrice de E
- 3) Calculer $\dim(E)$.

Exercice 6.

Pour $n \in \mathbb{N}^*$, on désigne par $\mathbf{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.

- 1) Pour $a \in \mathbb{R}$, montrer que $\{1, (X-a), (X-a)^2, ..., (X-a)^n\}$ est une base de $\mathbb{R}_n[X]$
- 2) Soit $P = 2X^3 + X + 3$, donnez les composantes de P dans la base $\left\{1, (X-1), (X-1)^2, (X-1)^3\right\}$ de $\mathbf{R}_3[X]$
- 4) Soient $B_1 = \{1, (X-1), (X-1)^2\}$ et $B_2 = \{1, (X-2), (X-2)^2\}$ deux bases de $\mathbf{R}_2[X]$. Donner A la matrice de passage de la base B_1 à la base B_2 .

Exercice 7.

Soient $E = \mathbf{R}_2[X]$ l'ensemble des polynômes $P \in \mathbf{R}[X]$ tel que $\deg(P) \le 2$ et $B = \{1, X, X^2\}$ la base canonique de E.

On considère l'application φ définie sur E par : $\forall P \in E, \varphi(P) = (1 - X^2) P'' - P'$.

Où P'désigne le polynôme dérivé de P et P''désigne le polynôme dérivé de P'.

- 1) Montrer que φ est un endomorphisme de E;
- 2) Si $P=a\,X^2+b\,X+c$, déterminer $(a,b,c)\in\mathbf{R}^3$ tel que $\varphi(P)=0_E$ où 0_E désigne le polynôme nul.
- 3) Déterminer une base de $Ker(\varphi)$;
- 4) Déterminer une base de $Im(\varphi)$.

Exercice 8.

Dans ${f R}^{\,\,4}$, on considère les sous-espaces vectoriels

$$E = \{(x, y, z, -z) \in \mathbb{R}^4 / x + y = 0\} \text{ et } F = \{(x, x, x, y) \in \mathbb{R}^4 / x \in \mathbb{R}, y \in \mathbb{R}\}$$

- 1) Montrer que E et F sont supplémentaires
- 2) Soit p la projection sur E parallèlement à F , déterminer p(u) pour le vecteur u=(0,1,0,1) .

Exercice 9.

Soient
$$E = \left\{ f \in \mathbf{R}^{\mathbf{R}} / \forall x \in \mathbf{R}, f(-x) = f(x) \right\}$$
 et $F = \left\{ f \in \mathbf{R}^{\mathbf{R}} / \forall x \in \mathbf{R}, f(-x) = -f(x) \right\}$

On sait que $\mathbf{R}^{\mathbf{R}} = E \oplus F$.

On considère $p: \mathbf{R}^{\mathbf{R}} \to \mathbf{R}^{\mathbf{R}}$ la projection sur E parallèlement à F .

Calculer p(f), p(g) et p(h)

où
$$\forall x \in \mathbf{R}, f(x) = \cos(x) + \sin(x); g(x) = \cos(x+1)$$
 et $h(x) = -xe^x$