- 1. (Aug-04.4): Let V be an n-dimensional vector space over K spanned by v_0, \dots, v_n where $v_0 + v_1 + \dots + v_n = 0$. Let W be a second K-vector space and let $w_0, \dots, w_n \in W$. Find necessary and sufficient conditions on w_0, \dots, w_n so that there exists a linear transformation $T: V \to W$ with $T(v_i) = w_i$ for $i = 0, \dots, n$.
- 2. (Aug-09.4): Let V be a vector space over F and $\langle \cdot, \cdot \rangle : V \times V \to F$ be a bilinear form. For each $x \in V$ define $A_x = \{y \in V : \langle x, y \rangle = -\langle y, x \rangle\}$. Now suppose v is a fixed element of V with $\langle v, v \rangle \neq 0$.
 - (a) For all $x \in V$ show that A_x is a subspace of V of codimension at most 1.
 - (b) If $char(F) \neq 2$ prove that A_v is a subspace of V of codimension exactly 1.
 - (c) If F is algebraically closed and $\operatorname{char}(F) \neq 2$, show that either $\langle a, a \rangle = 0$ for every $a \in A_v$, or there exists $y \in V \setminus A_v$ with $\langle y, y \rangle = 0$.
- 3. (Jan-89.4): Let V be a finite-dimensional F-vector space.
 - (a) If $T: V \to V$ is a linear transformation with $T^2 = T$, show that V is the direct sum $V = V_0 \oplus V_1$ where $V_0 = \{v: T(v) = 0\}$ and $V_1 = \{v: T(v) = v\}$.
 - (b) If |F| = q and $\dim_F V = 3$, determine in terms of q the number of linear transformations T with $T^2 = T$.
- 4. (Jan-94.4): Let V be a vector subspace of $M_n(\mathbb{C})$. If every nonzero matrix in V is invertible, show dim $\mathbb{C} V \leq 1$.
- 5. (Aug-13.4) Let T_1, \dots, T_k be a collection of linear transformations which act irreducibly on a finite-dimensional \mathbb{C} -vector space V (i.e., such that there is no nontrivial proper subspace W such that $T_iW \subseteq W$ for all i). Suppose $S: V \to V$ is a linear transformation which commutes with each of T_1, \dots, T_k . Show that S is a scalar operator.
- 6. (Aug-88.8): Let V be n-dimensional over F and $T: V \to V$. Let k be an integer with $1 \le k < n$ and suppose that $T(W) \subseteq W$ for all subspaces W with $\dim_F W = k$. Prove that T is multiplication by some scalar.
- 7. (Jan-96.4): Let V be a K-vector space and $S, T : V \to V$ such that S is one-to-one, T(v) = 0 for some $v \neq 0$, and TS ST = S.
 - (a) For every $n \geq 0$ show that $S^n(v)$ is an eigenvector for T and find its corresponding eigenvalue.
 - (b) If char(K) = 0 show $dim_K V = \infty$.
 - (c) If $\operatorname{char}(K) = p$ show that $\dim_K V$ can be finite, and give a concrete example when p = 3.