TITLE

TITLE

This is the manuscript.

Appendix A

Stimuli

Words:

##	[1]	GLANCE	WINTER	MILDEW	SLEAZY	BOTHER	PORTAL	COURSE	SOCIAL	CENSOR	BACKUP
##	[11]	STABLE	PLAGUE	OBJECT	ABSENT	RESIGN	CREDIT	STREAM	WICKED	INVOKE	BEACON
##	[21]	ADMIRE	FACTOR	PHRASE	BURDEN	LOUNGE	TAILOR	WREATH	HOCKEY	SEARCH	MONKEY
##	[31]	INFECT	VERIFY	SQUEAL	INTAKE	PHOBIA	BEHALF	LIQUOR	SHRINK	BUCKET	VOYAGE
##	[41]	MASCOT	HINDER	KIDNEY	PERIOD	VULGAR	CASINO	SELDOM	MASTER	MOTHER	FRINGE
##	[51]	EXPORT	INJECT	NATURE	CLUMSY	GRUMPY	PIRATE	POSTER	FLOWER	LUMBER	FOREST
##	[61]	FRIGHT	BRIDGE	KNIGHT	TRENCH	PLUNGE	BUNDLE	ANCHOR	ABRUPT	HUSTLE	ETHNIC
##	[71]	CRUISE	ORANGE	STRIVE	ALMOST	AMOUNT	FAUCET	CHARGE	HUMBLE	PATRON	BREAST
##	[81]	SIMPLE	JOCKEY	WEALTH	PRAISE	DOMAIN	SPRINT	SCREAM	COMEDY	SKETCH	ORIENT
##	[91]	WEAPON	BUCKLE	BUTLER	JUNGLE	SOCKET	VANISH	INSULT	POWDER	INSECT	CONVEY
##	[101]	SPRING	CHAPEL	TONGUE	DANGER	CLERGY	SINGLE	INCOME	WALNUT	SURVEY	SNATCH
##	[111]	HUNGRY	IMPOSE	POLICE	RAMBLE	STROKE	AMBUSH	CHANGE	FOSTER	SPLINT	PENCIL
##	[121]	PONDER	REGION	LAUNCH	THRONE	SYMBOL	GOSPEL	POLICY	FUMBLE	PLENTY	SQUARE
##	[131]	GARDEN	BRIGHT	SOURCE	PLAQUE	TROPHY	EXOTIC	RACKET	COLUMN	THEORY	FAMILY
##	[141]	FRIEND	STIGMA	RESULT	MORTAL	SPRAWL	RODENT	FILTER	HUNGER	PERMIT	RELISH
##	[151]	EXPAND	STRAND	PUBLIC	TRAVEL	THREAD	IGNORE	CLIENT	BELONG	FLUENT	CARBON
##	[161]	WRENCH	DIRECT	BOUNCE	STUDIO	NUMBER	RANSOM	SLOGAN	RECKON	WONDER	POLITE
##	[171]	INDUCE	BREATH	CHORUS	PLACID	GUITAR	TUMBLE	BRANCH	FLIGHT	SPIDER	STRAIN
##	[181]	THRIVE	LINGER	STRIKE	BLOUSE	NICKEL	ENOUGH	CASTLE	SENIOR	MARVEL	STUPID
##	[191]	QUENCH	STRONG	CHROME	STAPLE	IMPORT	BLEACH	FINGER	MELODY	DEBRIS	PRINCE
##	[201]	ORPHAN	SPRUCE	REASON	SPONGE	PARISH	COUPLE	GARLIC	CUSTOM	INVADE	RANDOM
##	[211]	MYSTIC	ROCKET	BEHOLD	AUTHOR	LIZARD	CRADLE	DRAGON	ISLAND	DETAIL	VIOLET
##	[221]	PASTOR	CANDLE	STRING	MARKET	INVEST	STARCH	DESIGN	ANSWER	GENIUS	POUNCE

[231] DEPART PATROL SHOWER TURKEY FABRIC STRIFE ADVENT INFORM BASKET SILENT

Non-Words:

##	[1]	KNISMA	ALCOUD	STRELD	PRAILE	FRUDGE	URIVEL	SCHIND	TANDLY	FUNTLE	CAROEY
##	[11]	CHRUMS	LUNKER	DRANCE	PITROM	IMPURB	FRUTAN	SNAPEL	BAITCH	LIMPOR	SARIDE
##	[21]	RASTOE	ABOUNE	DORSEX	JAUNCE	MINKEL	RUNAMO	GIRCUE	SADENT	BRUNGE	PHRECT
##	[31]	CAINKY	SURDEN	BOLVIS	SCOUGE	TONDLE	BROGET	WANIGH	BARCET	BAFENT	MINGAR
##	[41]	JUSTRE	ABSULT	KISPEL	CHAITE	WHIVEX	HOCITE	GORBIE	WICTOR	PADIFS	CRUDIO
##	[51]	NOBEST	CIGNEY	CRIBLE	HABLIN	PEBRIC	JOSTED	PHOTIE	ACRISE	LOBUSH	ROBULY
##	[61]	SMENCO	UNWERT	MUSIED	EATRIC	ANOUGS	PIATON	BLARGE	STROLE	BATROL	MILTED
##	[71]	LUPICT	STAPOD	RESAIT	VAROSH	APIGHT	INLORS	VENIOD	POLUTH	SOUDAL	UNJECT
##	[81]	STUNCH	QUILEW	DOLICA	VACKEL	DISTAR	VARMIT	PASINK	PACKES	ORCHET	WRIMSY
##	[91]	AUBRID	DAMILT	SORTEL	FUMBLO	SLEIRT	YARMON	PETAIN	UNIGHS	CELOND	CURBOL
##	[101]	MELATY	PORLEX	VERALF	SHAPLE	PRUDGE	RELDON	NYMBEL	YACEUP	STARBY	SPLINO
##	[111]	PRETCH	ABLINT	SWANCE	INHORT	GLEATH	BEINCH	FERTIC	PIERGY	STURCH	YARION
##	[121]	FAINCH	MILUER	FIREAM	CLUDIE	FORGLE	SOUNGE	KIRAFE	PSETCH	AMILOY	DANIET
##	[131]	SPROLY	NERAWL	PAURSE	SPRINE	LASTON	SCREGM	WORBAL	REAGLY	ZOMBER	JOCKAL
##	[141]	MIATOR	SLANCH	ROSAIL	STEIKH	THRUSE	IGUADE	PLENAC	BROAKE	YARIKE	KENSOM
##	[151]	GILFEW	VANGUE	CATRIE	WATMEG	DESION	GHODUS	REJOLS	WREASH	FACHOW	FIATCH
##	[161]	MYRTIE	RANDOW	AIMOSY	SCRILY	ABSEND	SAUDIC	KERIFT	DUMPLE	ASYLEN	NAGURS
##	[171]	TIESCH	TRINGE	CLUREY	VIRLEX	ZINGLY	OTHNIS	DERAIN	FLEACK	FONVER	DESORY
##	[181]	PAUCHE	TIREAU	BREALI	IMPOTE	GUAIRT	TOSHEL	SLIQUE	HORNAL	WRONCH	SLEACT
##	[191]	GEILOY	RAMILY	BIGENT	SLIANT	YORQUE	IGUARE	INJORE	SHRILE	AUTING	CAVORY
##	[201]	HUNIEK	SARLEY	AUNGRE	GUESCO	VEIGMA	ANCUST	GRONCE	CRAGIN	WITMER	HATRUS
##	[211]	THELDY	ROUNCY	GANOUS	SPAQUX	COLURY	FLENGY	CAMBLE	BLUNDE	FOURET	WEAROX
##	[221]	MUSTIL	SYNTIC	BRUATS	CLUIRM	FLUMNI	NOUPLY	SUIVER	HURNIA	ELOPIA	TUNORY
##	[231]	ORCHIN	JILUER	EQUATS	SERBOL	HIGSTA	PATHEL	EAROUD	SUIDLE	SLOUNT	GUSHOP

Appendix B

Diffusion model accounts for the data

About this Appendix

The goal of this appendix is to present a brief description of how the diffusion model accounts for the data presented in the main article. While the diffusion model fits to the grouped data was part of the pre-registration plan, we believe that it is best to present such fits in this appendix as opposed to the main text to improve the readability of the article. For a full description of the experimental setting and its goals please refer to the main text.

The diffusion model

The diffusion model (Ratcliff, 1978) is a cognitive process model for perceptual decisions, and it has been quite successful at accounting for lexical decision data (Ratcliff et al., 2004) and more importantly for the present work, masked priming data (Gomez et al., 2012).

The model assumes that RTs to dual choice tasks are a sum of three distinct processes: stimulus encoding, evidence accumulation, and response execution. The model makes the strong assumption that evidence accumulation is a processes distinct from the other two components, and for practical reasons, it groups response execution and encoding time in a single parameter.

The model is agnostic about the correlation between the encoding and the evidence accumulation processes; and we like to think about it as a tool to instantiate theoretical positions that can be articulated in terms of encoding, decision, and strategic processes.

Data

The model was fit to the grouped data (as per the pre-registration plan) of the two experiments. For each stimulus type the proportion of word and nonword responses is

calculated, then for each of the two responses, the RTs at the .1, .3, .5, .7, and .9 quantiles is obtained. We repeat this process for each participants, and then all of those quantities (response proportions and RTs at quantiles) are averaged across participants. This process is also known as Vincentizing, and the averaged quantiles are referred to as vintenciles

The diffusion model predicts the cumulative probability of a response at each RT vincentile, and these model predictions are compared to the empirical proportions, then the sum of the (Observed-Predicted)2/Predicted for correct and error responses for each condition that is minimized with a general SIMPLEX minimization routine as described by Ratcliff & Tuerlinckx (2002).

Free and fixed parameters

In diffusion model fits, researchers can decide what parameters are free to vary across different conditions. In the present work we implemented 3 versions of the model. These versions of the model varied in terms of which parameters were allowed to vary for which conditions.

In our case, we decided to examine two models as described below. For both models, the a boundary separation, the z starting point, the η between trial variability in drift rate, and all other variability parameters are kept constant across all conditions.

Model 1: Drift rates vary as a function of lexicality and prime duration, but not from unrelated to identity primes. T_{er} varied from as a function of prime duration and type and also of lexicality.

Model 2: The drift rates vary as a function of prime duration and type and also of lexicality. And the drift rate varied only as a function of prime type/duration but not lexicality.

In short, in Model 1, the priming effects are accounted by T_{er} only, while in Model 2 they are accounted for by both drift rate and T_{er} .

The two models have equal number of parameters so a direct comparison in possible. For both experiments the preferred model is Model 1 (the T_{er} model). This is in agreement with the Gomez et al (2012) study using in-person testing methods.

[tbp]

Table B1 χ^2 values for the two models for both experiments.

Experiments	ModelTer	ModelDrift
1	39.65	80.65
2	10.21	28.65

Summary

Examining the parameter values for T_{er} in the tables below shows that the T_{er} effect follows the duration of the prime-TARGET SOA particularly in the word items and not so much in the nonword items.

This is in general agreement with the Gomez et al. (2013) original paper and Gomez and Perea's (2020) work with developmental readers. In short, these fits confirm that masked priming effects are consistent with the idea of a head start in the encoding process when there is an identity relationship between primes and targets.

[tbp]

Table B2 $T_{er} \ values \ for \ Experiment \ 1.$

Parameters	Experiment1			
T_{er} 33ms nonword ID	0.51			
T_{er} 33ms nonword Unrel	0.51			
T_{er} 50ms nonword ID	0.50			
T_{er} 50ms nonword Unrel	0.51			
T_{er} 33ms word ID	0.47			
T_{er} 33ms word Unrel	0.49			
T_{er} 50ms word ID	0.46			
T_{er} 50ms word Unrel	0.50			

[tbp]

Table B3 $T_{er} \ values \ for \ Experiment \ 2.$

Parameters	Experiment2			
T_{er} 16ms nonword ID	0.54			
T_{er} 16ms nonword Unrel	0.54			
T_{er} 33ms nonword ID	0.53			
T_{er} 33ms nonword Unrel	0.53			
T_{er} 16ms word ID	0.50			
T_{er} 16ms word Unrel	0.50			
T_{er} 33ms word ID	0.49			
T_{er} 33ms word Unrel	0.51			