Recap and exercises

Michela Mulas

SUSTAINABLE DEVELOPMENT GOAL 3:

Ensure healthy lives and promote well-being for all at all ages

https://sdgs.un.org/goals/goal3

Exercises

Exercise L4E2: Determine the inverse Laplace transform of the following:

a.
$$\frac{7s-6}{s^2-s-6} = 7(s)$$

 $\overline{f(s)} = \frac{7s-6}{s^2-s-6} = \frac{7s-6}{(s-3)(s+2)} = \frac{A}{s-3} + \frac{8}{s+2}$

$$A = (s-3) \mp (s)$$

$$= \frac{7s-6}{8+2} = 3$$

$$B_{z}(s+2) + (s) = \frac{7s-6}{s-3} = 4$$

$$f(s) = \frac{3}{s-3} + \frac{4}{s+2}$$

$$f(t) = \left(3e^{3t} + 4e^{-2t}\right) S_{-1}(t)$$

Recap and exercises

cap and goals Exercises

Exercises

Exercise L4E2: Determine the inverse Laplace transform of the following:

b.
$$\frac{2s^2 + 5}{s^2 + 3s + 2} = 7$$
>> $F = (2*s^2 + 5)/(s^2 + 3*s + 2)$
F = $(2*s^2 + 5)/(s^2 + 3*s + 2)$
>> $f = 1$ aplace(F)
f = $7*exp(-t) - 13*exp(-2*t) + 2*dirac(t)$
>>> from sympy. abc import s,t
>>> from sympy. integrals import inverse_laplace_transform
>>> $F = (2*s**2 + 5)/(s**2 + 3*s + 2)$
>>> F $(2*s**2 + 5)/(s**2 + 3*s + 2)$
>>> f = sym. inverse_laplace_transform(F, s, t)
>>> f = $(2*s^2 + 5)/(s**2 + 3*s + 2)$
>>> f = sym. inverse_laplace_transform(F, s, t)
>>> f = $(2*s^2 + 5)/(s**2 + 3*s + 2)$
>>> f = sym. inverse_laplace_transform(F, s, t)
>>> f = $(2*s^2 + 5)/(s**2 + 3*s + 2)$

Exercises

Exercise L4E2: Determine the inverse Laplace transform of the following:

c.
$$\frac{6(s+34)}{s(s^2+10s+34)}$$
 T

$$f(t) = 6 + 10e^{-5t} \left(\cos(3t + 2.21)\right) \quad \text{or} \quad f(t) = 6 - 6e^{-5t} \left(\cos(3t) + \frac{4}{3}\sin(3t)\right)$$

$$\begin{array}{ll}
\text{Where } p, p' = \alpha + j\omega & R, R' = u + jv \\
\text{M} = 2 |R| = 2 l^2 + v^2 \\
\text{D} = 3 r_p(R) = 3 r_c tou(\frac{v}{u})
\end{array}$$

2
$$e^{-i\left[\frac{R}{8-p} + \frac{R'}{8-p'}\right]} = 8e^{-i\left[\frac{R}{8-p'}\right]} = 8e^{-i\left[\frac{R}{8$$

$$\frac{1}{S(S^2 + 10S + 34)} = \frac{6(S + 34)}{S(S + 5 - j3)} = \frac{R_1}{S} + \frac{R_2}{S + 5 - j3} + \frac{R'}{S + 5 + j3}$$

$$\frac{1}{S(S^2 + 10S + 34)} = \frac{6(S + 34)}{S^2 + 10S + 34} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S^2 + 10S + 34} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S - 20} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S - 20} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S - 20} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6(S + 34)}{S - 20}$$

$$\frac{1}{S - 20} = \frac{6}{S + 20}$$

$$\frac{1}{S - 20} = \frac{6}{S - 20}$$

$$\frac{1}{S - 20} =$$

$$B_{2} = 2 \times (-3) = -6$$

 $C = -2 \times (4) = -8$

-2.2127

Check and compare the solutions in time domain