

PROSJEKTOPPGAVE

Bølgeligning

ING2501 Matematiske Metoder 2

AV

Erlend Haugstad Sandvik Adam Sitje Ingrid Selvaag Gohn Lukas Røine

KLASSE: VING 78

PROSJEKTGRUPPE: Erlend Haugstad Sandvik

Adam Sitje

Ingrid Selvaag Gohn

Lukas Røine

RAPPORT LEVERT: 29. september 2025

Sammendrag

Innhold

1	Innledning	1
2	Teori	2
		2
	2.1.1 Utledning av bølgeligningen	2
	2.2 Fourierrekker	
	2.3 Løsningsmetoder	
	2.3.1 Separasjonsmetoden	3
3	Metode og gjennomføring	5
	3.1 Implementasjon	5
	3.2 Eksempler og tester	5
4	Resultater	6
5	Diskusjon	7
6	Konklusjon	8
Ve	edlegg	9

1 Innledning

Bakgrunn og motivasjon

Problemstilling og mål

Avgrensning

2 Teori

2.1 Bølgeligningen

Bølgeligningen er en partielldifferensialligning som beskriver hvordan bølger, som lyd, lys eller vannbølger, forplanter seg gjennom et medium. Den én-dimensjonale bølgeligningen har formen

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

hvor u(x,t) beskriver bølgens utslag ved posisjon x og tid t, og c er bølgefarten.

Betydningen av bølgeligningen er at den gir et matematisk rammeverk for å forstå og forutsi hvordan bølger beveger seg og endrer seg over tid. Løsninger til bølgeligningen brukes i mange fagfelt, inkludert fysikk, ingeniørfag og akustikk.

2.1.1 Utledning av bølgeligningen

FLTTE TIL METODE? Avsnittet er 11.2 i bølgeligning pdf fil

Vi betrakter en elastisk streng av lengde L, som er spent fast i begge ender. Strengen har konstant massetetthet ρ og utsettes for en konstant spenning T. Vi antar små utslag i et vertikalt plan, slik at helninger og forskyvninger kan tilnærmes som små.

La u(x,t) beskrive den vertikale forskyvningen i punktet x til tid t. Vi ser på et lite stykke av strengen mellom x og $x + \Delta x$. I endepunktene virker tensjonskreftene T_1 og T_2 langs tangentene til strengen. De horisontale komponentene kansellerer, slik at vi kun trenger å se på de vertikale komponentene. Summen av de vertikale kreftene er

$$F \approx T \sin \beta - T \sin \alpha$$
.

der α og β er vinklene til strengen ved x og $x + \Delta x$.

For små vinkler gjelder $\tan \theta \approx \sin \theta \approx \frac{\partial u}{\partial x}$. Dermed kan kraften skrives som

$$F \approx T \left(\frac{\partial u}{\partial x} (x + \Delta x, t) - \frac{\partial u}{\partial x} (x, t) \right).$$

Utvikler vi dette videre får vi

$$F \approx T \frac{\partial^2 u}{\partial x^2}(x,t) \, \Delta x.$$

Ifølge Newtons 2. lov må denne kraften være lik massen av elementet $\rho \Delta x$ multiplisert med akselerasjonen:

$$\rho \Delta x \frac{\partial^2 u}{\partial t^2}(x,t) = T \frac{\partial^2 u}{\partial x^2}(x,t) \, \Delta x.$$

Etter forkorting av Δx får vi den klassiske bølgeligningen

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2},$$

der

$$c = \sqrt{\frac{T}{\rho}}$$

er bølgefarten, bestemt av forholdet mellom spenningen T og massetettheten ρ .

Denne ligningen beskriver små vibrasjoner i en streng med faste endepunkter.

2.2 Fourierrekker

Fourierrekker er en metode for å representere periodiske funksjoner som en sum av sinusog cosinusfunksjoner. Dette er spesielt nyttig i løsningen av partielldifferensialligninger
som bølgeligningen, hvor komplekse bølgeformer kan brytes ned i enklere harmoniske
komponenter.

Grunnleggende konsepter inkluderer:

Periodiske funksjoner

Ortogonalitet og basisfunksjoner

Koeffisientene i en Fourierrekke

2.3 Løsningsmetoder

2.3.1 Separasjonsmetoden

Separasjonsmetoden er en teknikk for å løse partielle differensialligninger (PDE-er) som er lineære og homogene. Ideen er å anta at løsningen kan skrives som et produkt av funksjoner der hver funksjon bare avhenger av én variabel:

$$u(x,t) = X(x) T(t).$$

Ved å sette dette inn i PDE-en kan man ofte dele opp ligningen slik at den romlige delen og den tidsavhengige delen blir atskilt. Dette gir en konstant, kalt separasjonskonstanten:

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda.$$

Dermed reduseres PDE-en til to ordinære differensialligninger , en for X(x) og en for T(t). Randbetingelser brukes til å bestemme mulige verdier av λ , som gir en mengde

 $egenfunksjoner\ X(x).$ Den generelle løsningen blir en superposisjon av slike separable løsninger:

$$u(x,t) = \sum_{n=1}^{\infty} c_n X_n(x) T_n(t).$$

Denne metoden er spesielt nyttig i kombinasjon med Fourier-rekker, siden egenfunksjonene ofte er sinus- og cosinusfunksjoner som danner en ortogonal basis.

Fouriermetoden

Eventuelt D'Alemberts løsning

3 Metode og gjennomføring

3.1 Implementasjon

Beregning av Fourierkoeffisienter

Numerisk simulering

3.2 Eksempler og tester

Test av implementasjon med kjente løsninger

4 Resultater

Fourier-serie med ulike antall ledd

Visualisering av løsninger

Sammenlikning teori vs simulering

5 Diskusjon

Tolkning av resultater

Fordeler og begrensninger ved metoden

Fysiske implikasjoner (demping vs oscillering)

6 Konklusjon

Oppsummering av funn

Hva man har lært

Forslag til videre arbeid

Vedlegg

. . .