Implementing and Extending minBERT for Sentence-Level Tasks

Katherine Chen

Douglas Li

William Zhang

Loan Charles

Department of Computer Science, Stanford University

We combine *contrastive learning* and *regularization methods* to improve the performance of minBERT on **sentiment** classification, paraphrase detection, and semantic textual similarity.

Figure 1. Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both. The pre-trained model parameters are used to initialize models for different downstream tasks.

Figure 2. The input embeddings utilized in BERT are the sum of the token embeddings, the segmentation embeddings, and the position embeddings.

Problem

- Fine-tuning pre-trained BERT for downstream tasks is challenging
- Limited task-specific labeled data, too many model parameters
- Overfitting and poor generalization

Background

Bidirectional Encoder Representations from Transformers [Devlin et al., 2019]

- 12 encoder transformer layers
- Pre-trained on 2 unsupervised tasks using Wikipedia articles
 - Masked token prediction
 - Next sentence prediction
- Learns contextual info of sentences

Methods

Pre-training with vanilla minBERT

- Multi-head self-attention
- Transformer layer
- Adam optimizer: compute adaptive learning rates for params by estimating the first & second moments of the gradient

Figure 3. BERT transformer layer.

Contrastive learning (Unsupervised SimCSE) [Gao et al., 2021]

- Embeddings map sentence pairs $(x_i, x_i^+) \rightarrow \text{vector representations } (h_i, h_i^+)$
- Initialized with minBERT \rightarrow fine-tuned to maximize cosine similarity $sim(\dot{h}_i, h^+_i)$
- Goal: distinguish positive (similar) and negative (dissimilar) sentence pairs
- Learns **semantic** relationships between sentences

$$\ell_i = -\log rac{e^{\sin(oldsymbol{h}_i, oldsymbol{h}_i^+)/ au}}{\sum_{j=1}^N e^{\sin(oldsymbol{h}_i, oldsymbol{h}_i^+)/ au}}$$

Fine-tuning with regularized optimization [Jiang et al., 2019]

• $L'(\theta) = L(\theta) + \lambda_s R_s(\theta)$, where $L(\theta)$ is cross-entropy/MSE loss, $R_s(\theta)$ is the smoothness inducing adversarial regularizer, and λ_s is a hyperparameter (tuned with dropout prob.)

Figure 4. Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different hidden dropout masks applied.

Multi-task fine-tuning

- Experimented as a step before single-step fine-tuning
- Optimize the params for each of the 3 tasks on each epoch
- Loss function:

$$L_{total} = L_{SST} + L_{Quora} + L_{STS}$$

Hyperparameter tuning

- Learning rate
- Dropout probability

Figure 5. Decision boundaries learned without (a) and with (b) regularized optimization. The red dotted line in (b) represents the boundary in (a).

Single-task fine-tuning

- Sentiment classification
 - "Positive, negative, or neutral?"
 - Stanford Sentiment Treebank (SST)
 - Linear layer

Paraphrase detection

- "Do 2 sentences reword each other?"
- Quora Dataset
- Linear/LSTM + cosine similarity

Semantic textual similarity (STS)

- "Degree of semantic equivalence?"
- SemEval STS Benchmark
- Linear/LSTM + cosine similarity

Experiments

Figure 6. Experiment flow diagram.

Model configuration	SST acc	Paraphrase acc	STS cor
Baseline	0.424	0.416	0.202
LSTM	0.504	0.526	0.183
Linear	0.532	0.788	0.769
CL+LSTM	0.509	0.375	0.557
CL+Linear	0.514	0.787	0.759
Linear+RegOpt	0.522	0.739	0.727
CL+Linear+RegOpt	0.517	0.724	0.755
		!	'

Table 1. Single-task fine-tuning results. The Linear configuration without CL/RegOpt performed the best on the dev set, with substantial gains above the baseline for Paraphrase/STS.

Analysis

- Since we only used unsupervised
 CL, for Paraphrase/STS, only the
 embeddings for the first sentence
 in each pair were improved → little
 effect on predicting pair similarity
- RegOpt did not improve scores due to reduced expressiveness of our model when biased with the weight decay parameter
- The linear model may need more parameters, since CL/RegOpt/ Multi-task might work better when the model is more expressive

Table 2. Multi-task fine-tuning results for the Linear configuration. Did not improve single-task fine-tuning.

Learning rate	SST acc	Paraphrase acc	STS corr
1E-05	0.432	0.624	0.634
2E-05	0.532	0.788	0.769
5E-05	0.524	0.735	0.743
1E-04	0.508	0.733	0.728
2E-04	0.483	0.719	0.623
5E-04	0.439	0.716	0.612

Table 3. Learning rate tuning results. Dropout probability was fixed as 0.3.

Dropout probability	SST acc	Paraphrase acc	STS corr
0.1	0.529	0.773	0.721
0.2	0.522	0.781	0.715
0.3	0.532	0.788	0.769
0.4	0.516	0.765	0.684
0.5	0.490	0.642	0.542

Table 4. Dropout prob. tuning results. Learning rate was fixed at $2 \cdot 10^{-5}$.

Conclusion

- Our approach improves the performance of minBERT
- Moderately for SST dataset
- Significantly for Paraphrase/STS
- Best model scores obtained using a linear architecture without contrastive learning, regularized optimization or multi-task fine-tuning

References

- [1] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1*, pp. 4171-4186.
- Gao, T., Yao, X., and Chen, D. 2021. SimCSE: Simple contrastive learning of sentence embeddings. *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 6894–6910.
- [3] Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T. 2019. Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization. *arXiv preprint arXiv:1911.03437*.