Yang You

Office: 583, Soda Hall, UC Berkeley, CA, USA

Phone: (+001) 510-508-4506

youyang@cs.berkeley.edu http://www.cs.berkeley.edu/~youyang/

Research Interest: Parallel & Distributed Machine Learning Algorithm

• High Performance Computing: Scalable Algorithms, Parallel Computing, Distributed Systems

• Machine Learning: Deep Learning, Optimization Algorithm, Matrix Computations

Current Education (08/2015 — present)

PhD candidate at UC Berkeley

Computer Science Division

Advised by Prof. James Demmel

Focus: Parallel & Distributed Machine Learning Algorithm

Previous Education (09/2009 - 07/2015)

Tsinghua University

Computer Science Department

Ranking: 1st out of 134 students

Master Degree in Computer Science

China Agricultural University

Honors Program (most selective program)

Ranking: 1st out of 52 students

Bachelor Degree in Computer Science

• Project-985 Universities Freshmen acceptance rate in Henan province (year 2009): 0.5% (5060/959,000).

Selected Awards

Best Paper Award of ICPP 2018 (1 out of 313 submissions: 0.3%, plenary presentation) [Link]

ACM/IEEE-CS George Michael Memorial HPC Fellowship: the only PhD fellowship on ACM website.

Media Coverage: [ACM] [Berkeley] [China] [EurekAlert] [IEEE] [insideHPC]

NeurIPS 2016 student travel award from Google (1000 USD) [Link]

Best Paper Award of IPDPS 2015 (4 out of 496 submissions: 0.8%, plenary presentation) [Link]

Outstanding Graduate of Tsinghua University (ranked 1st among 134 students, top 3 got the awards) [Link]

Outstanding Graduate of Beijing (ranked 1st among 134 students, top 4 got the awards) [Link]

Outstanding Graduate of Tsinghua CS Department (ranked 1st among 134 students, top 20 got the awards) $[\underline{\text{Link}}]$

2015 Best Thesis Award of Tsinghua University (10 out of 134 students: 7%) [Link]

Siebel Scholar (35,000 USD for one year), 85 top students from the world's leading universities [link]

IEEE TCPP Student Travel Grants to IPDPS [Link]

Outstanding Graduate of Beijing (157 of 3,255: 5%, no ranking) [Link]

Outstanding Graduate of CAU (505 of 3,255: 15%) [Link]

2012 Outstanding Youth Nomination of CAU(30 of over 30,000: 0.1%) [Link]

First Prize, 2011 National Programming Contest (20 of over 10,000: 0.2%) [Link]

2011 National Scholarships of China (ranked 1 among 52 students, top 2 got the award) [Link]

2011 President Scholarship (ranked 1 among 52 students, top 1 got the award) [Link]

2010 National Scholarships of China (ranked 1 among 52 students, top 2 got the award) [Link]

2010/2011 Merit Student of CAU [Link]

Third Prize, 27th Undergraduate Physics Competition in China [Link]

Third Prize, Undergraduate Mathematical Competition in China [Link]

2009-2012 Merit Student of CAU [Link]

First-Author Publications (Peer-Reviewed)

- [TPDS'19] Y. You, Z. Zhang, C. Hsieh, J. Demmel, K. Keutzer. Fast Deep Neural Network Training on Distributed Systems and Cloud TPUs, IEEE Transactions on Parallel and Distributed Systems, h5-index=76, accepted
- [ICPP'18] Y. You, Z. Zhang, C. Hsieh, J. Demmel, K. Keutzer. ImageNet Training in Minutes, 47th International Conference on Parallel Processing. August 13th 16th, Eugene, USA. Best Paper Award (1 out of 313 submissions: 0.3%). [pdf] [code]

- [ICS'18] Y. You, J. Demmel, C. Hsieh, R. Vuduc. Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems, ACM International Conference on Supercomputing (ICS), June 12-15, Beijing, China. 18.7% (36/193) acceptance rate [pdf]
- [SysML'18] Y. You, Z. Zhang, C. Hsieh, J. Demmel, K. Keutzer. Speeding up ImageNet Training on Supercomputers, System Machine Learning Conference, Feb 15, Stanford, USA. The first year of this conference only accepts 2-page paper [pdf]
- [NeurIPS-W'17] Y. You, I. Gitman, B. Ginsburg. Scaling SGD Batch Size to 32K for ImageNet Training. NIPS workshop. Widely used in industry. Available in Intel Caffe, NVIDIA Caffe, Facebook Caffe2 (PyTorch), and Google's distributed TensorFlow. [pdf]
- [SC'17] Y. You, A. Buluc, J. Demmel. Scaling Deep Learning on GPU and Knights Landing Clusters, International Conference for High Performance Computing, Networking, Storage and Analysis (Supercomputing), November 12-17, Denver, USA. 18.7% (61/327) acceptance rate [pdf]
- [ICPP'17] Y. You, J. Demmel. Runtime Data Layout Scheduling for Machine Learning Dataset, 46th International Conference on Parallel Processing. 28.4% (60/211) acceptance rate. [pdf]
- [TPDS'16] Y. You, J. Demmel, K. Czechowski, L. Song, R. Vuduc. Design and Implementation of a Communication-Optimal Classifier for Distributed Kernel Support Vector Machines, IEEE Transactions on Parallel and Distributed Systems, h5-index=76, DOI: 10.1109/TPDS.2016.2608823 [pdf]
- [NeurIPS'16] Y. You, X. Lian, J. Liu, H. Yu, I. Dhillon, J. Demmel, C. Hsieh. Asynchronous Parallel Greedy Coordinate Descent, Conference on Neural Information Processing Systems, Dec 05-10, Barcelona, Spain. 22.7% (568/2500) acceptance rate [pdf] [link]
- [JPDC'16] Y. You, H. Fu, D. Bader, G. Yang. Designing and Implementing a Heuristic Cross-Architecture Combination for Graph Traversal, Journal of Parallel and Distributed Computing, h5-index=36, DOI: 10.1016/j.jpdc.2016.05.007 [pdf]
- [IPDPS'15] Y. You, J. Demmel, K. Czechowski, L. Song, R. Vuduc. CA-SVM: Communication-Avoiding Support Vector Machines on Distributed Systems. Best Paper Award (4 out of 496 submissions: 0.8%) of IEEE International Parallel and Distributed Processing Symposium, May 25-29, Hyderabad, INDIA. DOI: 10.1109/IPDPS.2015.117 [pdf] [code]
- [IPDPS'14] Y. You, S. Song, H. Fu, A. Marquez, M. Dehnavi, K. Barker, K. Cameron, A. Randles, G. Yang. MIC-SVM: Designing A Highly Efficient Support Vector Machine For Advanced Modern Multi-Core and Many-Core Architectures. IEEE Parallel and Distributed Processing Symposium, May 19-23, Phoenix, USA. 21% (114/541) overall acceptance rate; 17.5% acceptance rate for software track. DOI: 10.1109/IPDPS.2014.88 [pdf] [code]
- [JPDC'14] Y. You, H. Fu, S. Song, A. Randles, D. Kerbyson, A. Marquez, G. Yang, A. Hoisie. Scaling Support Vector Machines on the Modern HPC Platforms, Journal of Parallel and Distributed Computing, h5-index=36, DOI: 10.1016/j.jpdc.2014.09.005 [pdf]
- [ICPP'14] Y. You, D. Bader, M. Dehnavi. Designing a Heuristic Cross-Architecture Combination for Breadth-First Search, 43rd International Conference on Parallel Processing, Sep 9-12, Minneapolis, USA. 36% (54/150) acceptance rate. DOI: 10.1109/ICPP.2014.16 [pdf]
- [IJHPCA'14] Y. You, H. Fu, S. Song, M. Dehnavi, L. Gan, X. Huang, G. Yang. Evaluating the Many-core and Multi-core architectures through accelerating LWC stencil on Multi-core and Many-core architectures. International Journal of High Performance Computing Application (2013 SCI IF=1.625), 21% (5/24) acceptance rate. DOI: 10.1177/1094342014524807 [pdf]
- [ICS'14] Y. You, S. Song, D. Kerbyson. An adaptive cross-architecture combination method for graph traversal, one-page short paper, ACM International Conference on Supercomputing, June 10-13, Munich, Germany. DOI: 10.1145/2597652.2600110 [pdf]
- [IPDPS-W'13] Y. You, H. Fu, X. Huang, G. Song, L. Gan, W. Yu, G. Yang. Accelerating the 3D Elastic Wave Forward Modeling on GPU and MIC. IEEE Parallel and Distributed Processing Symposium Wrokshops, May 20-24, Boston, USA. One of the best papers of AsHES workshop. DOI: 10.1109/IPDPSW.2013.216 [pdf]

Co-Author Publications (Peer-Reviewed)

- [BMC Genomics'18] Y. Zhao, C. Sun, D. Zhao, Y. You, et al. PGAP-X: extension on pan-genome analysis pipeline, BMC Genomics, DOI: 10.1186/s12864-017-4337-7 [pdf]
- [J-STARS'17] W. Li, H. Fu, Y. You, L. Yu, J. Fang. Parallel Multiclass Support Vector Machine for Remote Sensing Data Classification on Multicore and Many-Core Architectures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017 h5-index=45. DOI: 10.1109/JSTARS.2017.2713126 [pdf]

• [ICPADS'14] L. Gan, H. Fu, W. Xue, Y. Xu, C. Yang, X. Wang, Z. Lv, Y. You, G. Yang, and K. Ou. Scaling and Analyzing the Stencil Performance on Multi-Core and Many-Core Architectures. IEEE International Conference on Parallel and Distributed Systems (ICPADS). DOI: 10.1109/PADSW.2014.7097797 [pdf]

Experience

James Demmel & Kathy Yelick Group, UC Berkeley

Berkeley, CA, USA 08/2015 - present

Graduate Student Researcher (GSR)

• Performance Benchmark and Optimization for Deep Neural Networks

Communication Avoiding Machine Learning Algorithms on Distributed systems

Communication-Efficient Solver for Kernel Ridge Regression (600× speedup without losing accuracy)

Fast DNN Training for ImageNet on CPUs: AlexNet in 11 minutes and ResNet-50 in 15 minutes

Google Brain Mountain View, CA, USA

Student Researcher

01/2019 - 05/2019

• Optimize TensorFlow for Large-Scale Deep Learning on TPU Pod

Santa Clara, CA, USA Intel Labs

Research Intern

08/2018 - 12/2018

• Fast and Efficient LSTM Training

Google Brain Mountain View, CA, USA

Software Engineering Intern

05/2018 - 08/2018

• Optimize TensorFlow for Large-Scale Deep Learning on TPU Pod

Microsoft Research Redmond, WA, USA

Research Intern

01/2018 - 05/2018

Fast LSTM Inference on Cloud System

Design and Implement Approaches based on SVD and Tensor Decomposition

Achieved up to 30× Speedup and 20× Parameter Reduction

NVIDIA Santa Clara, CA, USA

Deep Learning Intern

05/2017 - 08/2017

• Scaling SGD Batch Size to 32K for ImageNet training by ResNet50 model

Achieve 3× speedup over standard AlexNet-ImageNet Training on DGX station

• Enables multiple solvers on each GPU, which achieves 1.4× speedup over 1-solver-per-GPU

IBM T. J. Watson Research Center

Yorktown, NY, USA

Research Intern

05/2016 - 08/2016

- Design communication-optimized GPU-enabled learning algorithms
- Improve the communication efficiency of Elastic Averaging SGD
- Evaluate collective operations on GPUs (e.g., NCCL)

High Performance Computing Lab, Georgia Institute of Technology

Atlanta, GA, USA

Research Assistant (Exchange Student)

05/2014 - 08/2014• Convert a communication-intensive algorithm (SMO) to a communication avoiding algorithm (CA-SVM)

CA-SVM achieves 7× average speedup over the original algorithm with only 1.3% average losses in accuracy

• CA-SVM keeps 95.3% weak scaling efficiency when we increase the number of processors from 96 to 1536

High Performance Computing Lab, Georgia Institute of Technology

Atlanta, GA, USA

Research Assistant (Exchange Student) Adaptive method based on regression, which supports the runtime combination technique 10/2013 - 11/2013

Cross-architecture combination, which achieves 8.5×, 2.6×, and 2.2× average speedup over MIC, CPU and GPU
Pairwise comparison between CPU, GPU and MIC, which helps users select the best architectures

Department of Computer Science, Tsinghua University

Beijing, China 09/2012 - 07/2015

Design and implement MIC-SVM, a highly parallel support vector machines for x86 many-core architectures

Adaptive support for input patterns and data parallelism to fully utilize the multi-level parallelism

• MIC-SVM achieves 4.4-84× and 18-47× speedups against LIBSVM on MIC and Ivy Bridge CPUs respectively

Institute of High Performance Computing, Tsinghua University

Beijing, China

Research Assistant

Research Assistant

06/2011 - 09/2011

Developed a distributed system for automated software deployment and user data storage

Teaching

UC Berkeley CS194-129 (funding from Google)

Berkeley, CA, USA

Designing, Visualizing and Understanding Deep Neural Networks

08/2016 - 12/2016

Algorithms, Applications, and Implementations of Deep Learning Techniques

• Head TA/GSI of Prof. John Canny

UC Berkeley CS162

Operating Systems and Systems Programming

- Theory, Algorithms, and Implementations of Operating Systems
- TA/GSI of Prof. Ion Stoica

Berkeley, CA, USA 08/2018 - 12/2018

Contributions to Open-Source Software

[Asyn SVM]: the fastest implementation for Kernel Support Vector Machines on shared systems as of 2016

[CA-SVM]: a Communication-Avoiding approach for Kernel Support Vector Machines on distributed systems

[MIC-SVM]: an efficient design of Sequential Minimal Optimization approach for SVM on shared-memory systems

[NVIDIA-Caffe]: I enabled multiple solvers on each GPU, which achieves 1.4× speedup over 1-solver-per-GPU

[NVIDIA-Caffe]: I developed the LARS algorithm with B. Ginsburg and I. Gitman for large-batch training

[Intel-Caffe]: I helped Intel team implement large-batch DNN training algorithms

[Tensorflow]: I helped Sameer Kumar and Chris Ying implement large-batch DNN training algorithms

Academic Services

- [TOPC'19] Reviewer of ACM Transactions on Parallel Computing [link].
- [IBM'19] Reviewer of IBM Journal of Research & Development [link].
- [ICPP'18] Reviewer of International Conference on Parallel Processing [link].
- [TPDS] 6 times reviewer of IEEE Transactions on Parallel and Distributed Systems, h5-index=76 [link].
- [NCAA] 2 times reviewer of Neural Computing and Applications [link].
- [FCGS] Reviewer of Future Generation Computer Systems, h5-index=63 [link].
- [CCGRID'18] Reviewer of IEEE International Symposium on Cluster Computing and the Grid [link].
- [JMLR'17] Reviewer of Journal of Machine Learning Research, h5-index=70 [link].
- [JPDC] Two times reviewer of Journal of Parallel and Distributed Computing, h5-index=36 [link].
- [IJCAI'17] Senior Program Committee member of International Joint Conference on Artificial Intelligence. Melbourne, Victoria, Australia, August 19 25, 2017 [link].
- [IPDPS'17] Sub-Reviewer in Algorithms Track of IEEE International Parallel and Distributed Processing Symposium. Orlando, Florida, USA, May 29 June 2, 2017 [link].
- [APDCM'16] Reviewer of 18th Workshop on Advances in Parallel and Distributed Computational Models. Chicago, Illinois, USA, May 23 27, 2016 [link].

Media Coverage on Research

- [i-programmer] ImageNet Training Record 24 Minutes, Sep 21, 2017 [link], [copy].
- [EurekAlert] Supercomputing speeds up deep learning training, Nov 13, 2017 [link], [copy].
- [ScienceDaily] Supercomputing speeds up deep learning training, Nov 13, 2017 [link], [copy].
- [NSF] Supercomputing speeds up deep learning training, Nov 13, 2017 [link], [copy].
- [Intel] Solving Science and Engineering Problems with Supercomputers and AI, Nov 15, 2017 [link], [copy].
- [Berkeley] EECS-affiliated team break record for fastest deep learning training, Nov 15, 2017 [link], [copy].
- [R&D Magazine] Supercomputing Speeds Up Deep Learning Training, Nov 15, 2017 [link], [copy].
- [fourthventricle] Supercomputing Speeds Up Deep Learning Training, Nov 17, 2017 [link], [copy].
- [techxplore] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [TACC] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Science NewsLine] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Topix] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Technology News] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Get Knows] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Technology Networks] Deep Learning Training Accelerated by Super Computing, Nov 14, 2017 [link], [copy].

- [Primeur Magazine] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [World IT] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [Parallel State] Supercomputing Speeds Up Deep Learning Training, Nov 13, 2017 [link], [copy].
- [CACM] Supercomputing Speeds Up Deep Learning Training, Nov 17, 2017 [link], [copy].
- [Intel Software] Intel CPUs for Deep Learning Training, Nov 17, 2017 [link], [copy].
- [The Next Web] Facebooks nerds bested by Japans in the race to train AI, Nov 20, 2017 [link], [copy].

Mentoring and Service

- Since 2015 Fall: Mentor for 1-2 UC Berkeley EECS undergraduate students in research/study per semester.
- 2018 Spring: UC Berkeley Computer Science Division Student Core Committee for Faculty Hiring.
- Since 2016 Spring: Student volunteer and host for incoming UC Berkeley EECS PhD students each year.
- 2012 Fall 2015 Spring: Student leader in Tsinghua University youth league for organizing technology talks and exhibitions.
- 2010 Fall 2011 Fall: Chief student leader in CAU's EECS honors program.

Skills

- General: C/C++, Matlab, Python, Java, Scala, Lua and Shell script
- Multi-Core GPUs, CPUs and MIC: CUDA, OpenMP, Pthreads and Intel Cilk
- Distributed Systems: MPI, Hadoop, and Apache Spark
- Tools: Caffe, TensorFlow