Integral Entropy

Since there are some problems about mathjax, I also upload the pdf version \(\subseteq \text{Large} \) Sample \(\subseteq \) 6 Integral Entropy.

Basic Definition

- Stochastic Process $\{X_t\}_{t\in\mathcal{T}}$ indexed by \mathcal{T} : A collection of real valued random variables.
- Sub-Gaussian Process $\left\{X_{t}
 ight\}_{t\in\mathcal{T}}$ indexed by (\mathcal{T}, ρ) : $\mathbb{E}\left[\exp\{\lambda\left(X_{s}-X_{t}\right)\}\right] \leq \exp\left\{\frac{\lambda^{2}\rho(s,t)^{2}}{2}\right\} \quad \forall \lambda>0, s,t\in\mathcal{T}.$
 - ullet e.g.1. Let $\mathcal{T}=\mathbb{R}^d$ and $Z\sim N\left(0,\sigma^2I_d
 ight)$, then $X_t=t^TZ$ is a subgaussian process;
 - e.g.2. Consider $(T,\|\|)$, $X_i \in \mathcal{X}$, $l: T \times \mathcal{X} \to \mathbb{R}$ and $|l(t,x)-l(s,x)| \leq \|t-s\|$. For a sequence of i.i.d Rademacher random variables ϵ_i , then $Z_t = \sum_{i=1}^n \epsilon_i l\left(t,X_i\right)$ is a sub-Gaussian process with $\rho(s,t) = \sqrt{n}\|s-t\|$.

Dudley's integral entropy

Goal: Bound $\mathbb{E}\left(\sup_{t\in\mathcal{T}}X_{t}\right)$ where $\{X_{t}\}_{t\in\mathcal{T}}$ is a separable sub-Gaussian and mean-zero process w.r.t the metric ρ ;

Tool: Chaining;

Conclusion: $\mathbb{E}\left(\sup_{t} X_{t}\right) \leq 4\sqrt{2} \int_{0}^{D/2} \sqrt{\log N(u, \mathcal{T}, \rho)} du$

Sketch Proof:

- Preparation:
 - Let $\epsilon_k = 2^{-k}D$, where $D = \sup_{s,t \in \mathcal{T}}
 ho(s,t)$;
 - Let $\mathcal{T}_0=\{t_0\},\mathcal{T}_1,\mathcal{T}_2,\ldots$ be a sequence of ϵ_k -net of \mathcal{T} ;
- Decomposition for $t \in \mathcal{T}_k$:
 - ullet $X_t X_{t_0} = \sum_{i=1}^k \left(X_{\pi_i \circ \ldots \circ \pi_k(t)} X_{\pi_{i-1} \circ \pi_i \cdots \circ \pi_k(t)}
 ight)$

• Bound the maximum for $t \in \mathcal{T}_k$:

$$egin{aligned} \max_{t \in \mathcal{T}_k} \left(X_t - X_{t_0}
ight) & \leq \sum_{i=1}^k \max_{t \in \mathcal{T}_k} \left(X_{\pi_i \circ \ldots \circ \pi_k(t)} - X_{\pi_{i-1} \circ \pi_i \cdots \circ \pi_k(t)}
ight) \ & \leq \sum_{i=1}^k \max_{t \in T_i} \left(X_t - X_{\pi_{i-1}(t)}
ight) \end{aligned}$$

- ullet $\max_{t \in T_i} \left(X_t X_{\pi_{i-1}(t)}
 ight)$ is a finite maximum $|\mathcal{T}_i|$ of $\left(2^{1-i}D
 ight)^2$ -sub-Gaussian variables \circ
- Bound $\mathbb{E}\left\{\max_{t\in\mathcal{T}_k}\left(X_t-X_{t_0}\right)\right\}$ for $t\in\mathcal{T}_k$:

$$\bullet \ \ \mathbb{E}\left\{ \operatorname{max}_{t \in T_i} \left(X_t - X_{\pi i - 1t)} \right) \right\} \leq \sqrt{2 \cdot 2^{2(1 - i)} D^2 \log \lvert \mathcal{T}_i \rvert}$$

• Then

$$egin{aligned} \mathbb{E}\left\{\max_{t\in\mathcal{T}_k}\left(X_t-X_{t_0}
ight)
ight\} &\leq \sum_{i=1}^k \mathbb{E}\left\{\max_{t\in\mathcal{T}_i}\left(X_t-X_{\pi_{i-1}(t)}
ight)
ight\} \ &\leq \sum_{i=1}^k \sqrt{2\cdot 2^{2(1-i)}D^2\log|\mathcal{T}_i|} \ &= \sum_{i=1}^k 2\sqrt{2}D2^{-i}\sqrt{\log N\left(D2^{-i},\mathcal{T},
ho
ight)} \ &\leq 4\sqrt{2}\sum_{i=1}^k \int_{D2^{-(i+1)}}^{D2^{-i}}\sqrt{\log N(u,\mathcal{T},
ho)}\mathrm{d}u \ &= 4\sqrt{2}\int_{D2^{-(k+1)}}^{D/2}\sqrt{\log N(u,\mathcal{T},
ho)}\mathrm{d}u \end{aligned}$$

• Bound $\mathbb{E}\left(\sup_{t}X_{t}\right)$ for $t\in\mathcal{T}$:

$$egin{aligned} \mathbb{E}\left(\sup_{t}X_{t}
ight) &= \mathbb{E}\left\{\lim\sup_{k}\left(X_{t}-X_{t_{0}}
ight) + X_{t_{0}}
ight\} \ &\leq \liminf_{k}\mathbb{E}\left\{\sup_{t\in\mathcal{T}_{k}}\left(X_{t}-X_{t_{0}}
ight)
ight\} \ &\leq 4\sqrt{2}\int_{0}^{D/2}\sqrt{\log N(u,\mathcal{T},
ho)}\mathrm{d}u \end{aligned}$$

Reference