

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: May 16 ~ 23, 2011 Test Report S/N: LR500111105O Test Site: LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

WLHBAS-1000

APPLICANT

BNB Solutions Co., Ltd.

FCC Classification : Licensed Portable Transmitter Worn on body (PCT)

Manufacturing Description : AVL-GSM

Manufacturer : BNB Solutions Co., Ltd.

Manufacturer (RF Module) : Cinterion Wireless Modules GmbH

Model name : BAS-1000

Test Device Serial No.: : Identical prototype
Rule Part(s) : \$24(E), \$22(H), \$2

TX Frequency Range : 824.2 ~ 848.8 MHz (GSM850)/1850.2 ~ 1909.8 MHz (PCS1900)

RX Frequency Range : 869.2 ~ 893.8 MHz (GSM850)/1930.2 ~ 1989.8 MHz (PCS1900)

RF Output Power : GSM850 (33dBm: Level 5) / PCS1900 (30dBm: Level 0)

This test report is issued under the authority of:

The test was supervised by:

Hyun-Chae You, Manager

Il-Shin kim, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 OUTPUT POWER(Conducted)	6
3.2.2 EFFECTIVE RADIATED POWER	7
3.3.3 FIELD STRENGTH OF SPURIOUS EMISSIONS (RADIATED)	9
3.2.4 FIELD STRENGTH	15
3.2.5 AC CONDUCTED EMISSIONS	18
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	19

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2011-09-30	ECT accredited Lab.
KCC	KOREA	KR0049	2013-04-24	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2011-05-26	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2011-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
IC	CANADA	IC5799	2012-05-14	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : BNB Solutions Co., Ltd.

Address : 169-1, Jubuk-ri, Yangji-Myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea

Tel / Fax : TEL: +82-31-337-1203 FAX: +82-31-337-1209

2-2 Equipment Under Test (EUT)

Trade name : AVL-GSM Model name : BAS-1000

Serial number : Identical prototype

Date of receipt : May 21, 2011

EUT condition : Pre-production, not damaged

GSM Module : Cinterion Wireless Modules GmbH (BG2-W)

Identification mark: 0682

Antenna type : Patch Antenna(TA070040) / 2dBi@850MHZ; 1dBi@1800MHZ

RF output power : 0.49 W ERP GSM850 (26.81dBm)

0.68 W EIRP GSM1900 (28.34dBm)

Modulation : GMSK, 8PSK Power Source : DC 12/24 V

Firmware version : V 1.0

2-3 Tested frequency

Frequency Ch.		GSM 850	Ch	GSM1900
Low frequency (MHz)	128	824.2	512	1850.2
Middle frequency (MHz)	190	836.6	661	1880.0
High frequency (MHz)	251	848.8	810	1909.8

2.4 Test conditions

Temperature	: +15~35 ℃	Humidity	: 30~65 %RH	
Pressure	: 860~1030 mbar	Operating mode	: Air link mode	
GSM850	A communication link is established between the mobile station and the test simulator.			
	The transmitter is operated at its maximum rated output power: 33 dBm (power			
	class 4 = power control level 5)			
GSM1900	A communication link is established between the mobile station and the test simulator.			
	The transmitter is operated at its maximum rated out put power: 30 dBm (power			
	class 1 = power control level 0)			

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status (note 1)		
22.913(a)(2)	Effective radiated power		С		
24.232(c)	Effective isotropic radiated power		С		
2.1053		Radiated			
22.917(a)	Spurios radiated emission		C		
24.238(a)					
15.209	Field Strength of Harmonics		С		
15.207	AC Conducted Emissions	Line Conducted	NA ^{Note3}		
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					

Note 2: The data in this test report are traceable to the national or international standards.

Note3: This device is only operated by DC

The sample was tested according to the following specification:

ANSI C-63.4-2003

3.2 Technical Characteristics Test

3.3.1 Conducted Output Power

		GPRS Data		
Band	Frequency	GPRS	GPRS	
		1 Tx Slot	2 Tx Slot	
	(MHz)	(dBm)	(dBm)	
	824.2	31.8	31.6	
GSM850	836.6	31.8	31.7	
	848.8	31.7	31.4	
	1950.2	29.1	29.0	
GSM1900	1880.0	29.3	29.1	
	1909.8	29.2	29.0	

We found out the test mode with the highest power level after we analyzer all the data rates. So we chose GSM850/GSM1900 as a representative

3.2.2 Effective Radiated Power Output

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, an average detector is used, with RBW=VBW=3MHz, SPAN=10MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

3.2.2 Radiation Spurious and Harmonic Emissions

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The Spectrum was investigated from 30MHz to the 10th Harmonic of the fundamental. A peak detector is used. With RBW=VBW=1MHz. The value that we could measure was only reported. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

Effective Radiated Power Output (GSM850)

Measurement Data:

GSM850

	Frequency	TEST CON	DITIONS Power	Step: 5	
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)
128	824.2	-13.43	Н	26.81	0.49
190	836.6	-13.37	Н	26.75	0.47
251	848.8	-13.54	Н	26.59	0.46

Note 1: Radiated measurements at 3 meters by Substitution Method.

Equivalent Isotropic Radiated Power (PCS1900)

Measurement Data:

PCS1900

	Frequency	TEST CON	NDITIONS Power	Step: 0	
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	EIRP (dBm)	EIRP (W)
512	1850.2	-13.83	Н	27.62	0.58
661	1880.0	-12.83	Н	28.34	0.68
810	1909.8	-12.43	Н	28.09	0.64

Note 2: Radiated measurements at 3 meters by Substitution Method.

OPERATING FREQUENCY : 824.2 MHz

CHANNEL: 128(Low)

MEASURED OUTPUT POWER : $\underline{26.81}$ dBm = $\underline{0.49}$ W

MODULATION : GSM850

DISTANCE : 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.90$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No emissions were detected are a level greater than 20dB below limit.					
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY : 836.6 MHz

CHANNEL : 190(Mid)

MEASURED OUTPUT POWER : $\underline{26.81}$ dBm = $\underline{0.49}$ W

MODULATION : GSM850

DISTANCE : 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.90$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No emissions were detected are a level greater than 20dB below limit.					
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY : 848.8 MHz

CHANNEL: 251(High)

MEASURED OUTPUT POWER : $\underline{26.81}$ dBm = $\underline{0.49}$ W

MODULATION : GSM850

DISTANCE : 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.90$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No emissions were detected are a level greater than 20dB below limit.					
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

OPERATING FREQUENCY : <u>1850.2</u> MHz

CHANNEL: 512(Low)

MEASURED OUTPUT POWER : 28.34 dBm = 0.68 W

MODULATION : GSM1900

DISTANCE : <u>3</u> meters

LIMIT : $43 + 10 \log_{10} (W) = 41.33$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No emissions were detected are a level greater than 20dB below limit.					
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY : 1880.0 MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{28.34}$ $\underline{dBm} = \underline{0.68}$ W

MODULATION : GSM1900

DISTANCE : <u>3</u> meters

LIMIT : $43 + 10 \log_{10} (W) = 41.33$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL		
	ANTENNA	ANTENNA	GENERATOR			
	TERMINALS	GAIN	LEVEL			
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)	
-	-	-	-	-	-	
No emissions were detected are a level greater than 20dB below limit.						
-	-	-	-	-	-	

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY : 1909.8 MHz

CHANNEL : 810 (High)

MEASURED OUTPUT POWER : $\underline{28.34}$ $\underline{dBm} = \underline{0.68}$ W

MODULATION : GSM1900

DISTANCE : 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 41.33$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL		
	ANTENNA	ANTENNA	GENERATOR			
	TERMINALS	GAIN	LEVEL			
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)	
-	-	-	-	-	-	
No emissions were detected are a level greater than 20dB below limit.						
-	-	-	-	-	-	

Note1: Radiated measurements at 3 meters by Substitution Method.

3.2.3 Field Strength

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = Quasi-peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

→ No other emissions were detected are a level greater than 20dB below limit.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

1. Measurement Data:

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: BAS-1000 TEST MODE: GSM850 mode
Temp Humi : 27 / 46 Tested by: PARK.H.W

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: BAS-1000 TEST MODE: GSM1900 mode

Temp Humi : 27 / 46 Tested by: PARK.H.W

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.4 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Not Applicable

- The EUT operates by DC

Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Class A

Frequency Range	quasi-peak	Average	
0.15 ~ 0.5 MHz	79 dBuV	66 dBuV	
0.5 ~ 30 MHz	73 dBuV	60 dBuV	

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year
2	Spectrum Analyzer (~2.9GHz)	8594E	3710A04074	НР	2 year
3	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year
4	Signal Generator (1~20GHz)	83711B	US34490456	НР	1 year
5	Attenuator (3dB)	8491A	37822	НР	2 year
6	Attenuator (10dB)	8491A	63196	НР	2 year
7	Attenuator (30dB)	8498A	3318A10929	НР	2 year
8	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year
9	EMI Test Receiver (~1GHz)	ESCI7	100722	R&S	1 year
10	RF Amplifier (~1.3GHz)	8447D	2439A09058	НР	2 year
11	RF Amplifier (1~18GHz)	8449B	3008A02126	НР	2 year
12	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year
13	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year
14	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year
15	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year
16	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year
17	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year
18	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year
19	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year
20	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2 year
21	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
22	Power Divider	11636A	6243	НР	2 year
23	DC Power Supply	6622A	3448A03079	НР	-
24	Frequency Counter	5342A	2826A12411	НР	1 year
25	Power Meter	EPM-441A	GB32481702	НР	1 year
26	Power Sensor	8481A	US41030291	НР	1 year
27	Audio Analyzer	8903B	3729A18901	НР	1 year
28	Modulation Analyzer	8901B	3749A05878	НР	1 year
29	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year
30	Stop Watch	HS-3	601Q09R	CASIO	2 year
31	LISN	ENV216	100408	R&S	1 year
32	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year
33	Highpass Filter	WHKX1.5/15G- 10SS	74	Wainwright Instruments	-
34	Highpass Filter	WHKX3.0/18G- 10SS	118	Wainwright Instruments	-