

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

XE 2013	UZUPEŁNIA ZDAJĄCY		mieisce
ıy © (KOD	PESEL	miejsce na naklejkę
Układ graficzny © CKE 2013			
Ukła		dyskalkulia	dysleksja
		ZAMIN MATURALNY Z MATEMATYKI	

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

5 MAJA 2016

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-162

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Dla każdej dodatniej liczby a iloraz $\frac{a^{-2,6}}{a^{1,3}}$ jest równy

- **A.** $a^{-3,9}$
- **B.** a^{-2}
- **C.** $a^{-1,3}$
- **D.** $a^{1,3}$

Zadanie 2. (1 pkt)

Liczba $\log_{\sqrt{2}}(2\sqrt{2})$ jest równa

- **B.** 2
- C. $\frac{5}{2}$
- **D.** 3

Zadanie 3. (1 pkt)

Liczby a i c są dodatnie. Liczba b stanowi 48% liczby a oraz 32% liczby c. Wynika stąd, że

- **A.** c = 1,5a
- **B.** c = 1, 6a
- C. c = 0.8a
- **D.** c = 0.16 a

Zadanie 4. (1 pkt)

Równość $(2\sqrt{2}-a)^2 = 17-12\sqrt{2}$ jest prawdziwa dla

- **A.** a = 3
- **B.** a = 1
- **C.** a = -2
- **D.** a = -3

Zadanie 5. (1 pkt)

Jedną z liczb, które spełniają nierówność $-x^5 + x^3 - x < -2$, jest

A. 1

- **B.** −1
- **C.** 2
- **D.** −2

Zadanie 6. (1 pkt)

Proste o równaniach 2x-3y=4 i 5x-6y=7 przecinają się w punkcie P. Stąd wynika, że

- **A.** P = (1, 2)
- **B.** P = (-1, 2) **C.** P = (-1, -2) **D.** P = (1, -2)

Zadanie 7. (1 pkt)

Punkty *ABCD* leżą na okręgu o środku *S* (zobacz rysunek). Miara kata *BDC* jest równa

- **A.** 91°
- **B.** 72.5°
- **C.** 18°
- **D.** 32°

Zadanie 8. (1 pkt)

Dana jest funkcja liniowa $f(x) = \frac{3}{4}x + 6$. Miejscem zerowym tej funkcji jest liczba

A. 8

B. 6

C. -6

D. −8

Zadanie 9. (1 pkt)

Równanie wymierne $\frac{3x-1}{x+5} = 3$, gdzie $x \neq -5$,

A. nie ma rozwiązań rzeczywistych.

B. ma dokładnie jedno rozwiązanie rzeczywiste.

C. ma dokładnie dwa rozwiązania rzeczywiste.

D. ma dokładnie trzy rozwiązania rzeczywiste.

Informacja do zadań 10. i 11.

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f. Wierzchołkiem tej paraboli jest punkt W = (1,9). Liczby -2 i 4 to miejsca zerowe funkcji f.

Zadanie 10. (1 pkt)

Zbiorem wartości funkcji f jest przedział

A. $(-\infty, -2)$

B. $\langle -2, 4 \rangle$ **C.** $\langle 4, +\infty \rangle$ **D.** $(-\infty, 9)$

Zadanie 11. *(1 pkt)*

Najmniejsza wartość funkcji f w przedziale $\langle -1,2 \rangle$ jest równa

A. 2

B. 5

C. 8

D. 9

Zadanie 12. (1 pkt)

Funkcja f określona jest wzorem $f(x) = \frac{2x^3}{x^6 + 1}$ dla każdej liczby rzeczywistej x. Wtedy $f\left(-\sqrt[3]{3}\right)$ jest równa

A.
$$-\frac{\sqrt[3]{9}}{2}$$

C.
$$\frac{3}{5}$$

D.
$$\frac{\sqrt[3]{3}}{2}$$

Zadanie 13. (1 pkt)

W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kat o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu S od cięciwy AB jest liczbą z przedziału

$$\mathbf{A.}\left\langle \frac{9}{2}, \frac{11}{2} \right\rangle$$

$$\mathbf{B.}\left(\frac{11}{2},\frac{13}{2}\right)$$

$$\mathbf{C} \cdot \left(\frac{13}{2}, \frac{19}{2}\right)$$

$$\mathbf{D}.\left(\frac{19}{2},\frac{37}{2}\right)$$

Zadanie 14. (1 pkt)

Czternasty wyraz ciągu arytmetycznego jest równy 8, a różnica tego ciągu jest równa $\left(-\frac{3}{2}\right)$.

Siódmy wyraz tego ciągu jest równy

A.
$$\frac{37}{2}$$

B.
$$-\frac{37}{2}$$

C.
$$-\frac{5}{2}$$

D.
$$\frac{5}{2}$$

Zadanie 15. (1 pkt)

Ciąg (x, 2x+3, 4x+3) jest geometryczny. Pierwszy wyraz tego ciągu jest równy

A.
$$-4$$

Zadanie 16. (1 pkt)

Przedstawione na rysunku trójkąty ABC i PQR są podobne. Bok AB trójkąta ABC ma długość

A. 8

B. 8,5

C. 9,5

D. 10

Strona 6 z 24

Zadanie 17. (1 pkt)

Kąt α jest ostry i $\operatorname{tg} \alpha = \frac{2}{3}$. Wtedy

A.
$$\sin \alpha = \frac{3\sqrt{13}}{26}$$
 B. $\sin \alpha = \frac{\sqrt{13}}{13}$ **C.** $\sin \alpha = \frac{2\sqrt{13}}{13}$ **D.** $\sin \alpha = \frac{3\sqrt{13}}{13}$

$$\mathbf{B.} \quad \sin \alpha = \frac{\sqrt{13}}{13}$$

C.
$$\sin \alpha = \frac{2\sqrt{13}}{13}$$

D.
$$\sin \alpha = \frac{3\sqrt{13}}{13}$$

Zadanie 18. (1 pkt)

Z odcinków o długościach: 5, 2a+1, a-1 można zbudować trójkąt równoramienny. Wynika stąd, że

A.
$$a = 6$$

B.
$$a = 4$$

C.
$$a = 3$$

D.
$$a = 2$$

Zadanie 19. *(1 pkt)*

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).

Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe

B.
$$2\sqrt{33}$$

C.
$$4\sqrt{33}$$

Zadanie 20. (1 pkt)

Proste opisane równaniami $y = \frac{2}{m-1}x + m - 2$ oraz $y = mx + \frac{1}{m+1}$ są prostopadłe, gdy

A.
$$m = 2$$

C.
$$m = \frac{1}{3}$$

D.
$$m = -2$$

Zadanie 21. (1 pkt)

W układzie współrzędnych dane są punkty A = (a, 6) oraz B = (7, b). Środkiem odcinka AB jest punkt M = (3, 4). Wynika stąd, że

A.
$$a = 5 \text{ i } b = 5$$

B.
$$a = -1$$
 i $b = 2$

C.
$$a = 4 \text{ i } b = 10$$

B.
$$a = -1$$
 i $b = 2$ **C.** $a = 4$ i $b = 10$ **D.** $a = -4$ i $b = -2$

Zadanie 22. (1 pkt)

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy

A.
$$0 \le p < 0, 2$$

B.
$$0.2 \le p \le 0.35$$
 C. $0.35 **D.** $0.5$$

C.
$$0.35$$

D.
$$0.5$$

Zadanie 23. (1 pkt)

Kat rozwarcia stożka ma miarę 120°, a tworząca tego stożka ma długość 4. Objętość tego stożka jest równa

B.
$$18\pi$$

C.
$$24\pi$$

D.
$$8\pi$$

Zadanie 24. (1 pkt)

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).

Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze

Zadanie 25. (1 pkt)

Średnia arytmetyczna sześciu liczb naturalnych: 31, 16, 25, 29, 27, x, jest równa $\frac{x}{2}$. Mediana tych liczb jest równa

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Rozwiąż nierówność $2x^2 + 5x - 3 > 0$.

Odpowiedź:

Zadanie 27. *(2 pkt)*

Rozwiąż równanie $x^3 + 3x^2 + 2x + 6 = 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (2 pkt)

Kąt α jest ostry i $(\sin \alpha + \cos \alpha)^2 = \frac{3}{2}$. Oblicz wartość wyrażenia $\sin \alpha \cdot \cos \alpha$.

Odpowiedź:

Zadanie 29. (2 pkt)

Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że $| \not \sim DEC | = | \not \sim BGF | = 90^\circ$ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (2 pkt)

Ciąg (a_n) jest określony wzorem $a_n = 2n^2 + 2n$ dla $n \ge 1$. Wykaż, że suma każdych dwóch kolejnych wyrazów tego ciągu jest kwadratem liczby naturalnej.

Zadanie 31. *(2 pkt)*

W skończonym ciągu arytmetycznym (a_n) pierwszy wyraz a_1 jest równy 7 oraz ostatni wyraz a_n jest równy 89. Suma wszystkich wyrazów tego ciągu jest równa 2016. Oblicz, ile wyrazów ma ten ciąg.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. *(4 pkt)*

Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50° . Oblicz kąty tego trójkąta.

Odpowiedź:

	NT I	22
	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (5 pkt)

Grupa znajomych wyjeżdżających na biwak wynajęła bus. Koszt wynajęcia busa jest równy 960 złotych i tę kwotę rozłożono po równo pomiędzy uczestników wyjazdu. Do grupy wyjeżdżających dołączyło w ostatniej chwili dwóch znajomych. Wtedy koszt wyjazdu przypadający na jednego uczestnika zmniejszył się o 16 złotych. Oblicz, ile osób wyjechało na biwak.

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	5
aggaminator	Uzyskana liczba pkt	

Zadanie 34. *(4 pkt)*

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Odpowiedź:

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	