1. 设 X 的分布规律如下,试写出 $Y_1 = X - 2$ 及 $Y_2 = (X - 2)^2$ 的分布规律.

X	1	2	3	4
P	0.1	0.2	0.3	0.4

解:

X	1	2	3	4
X-2	-1	0	1	2
$(X-2)^2$	1	0	1	4
P	0.1	0.2	0.3	0.4

故 Y 1 的分布律是:

Y_1	-1	0	1	2
P	0.1	0.2	0.3	0.4

Y2的分布律是:

Y_2	0	1	4
P	0.2	0.4	0.4

2. 袋中装有 3 个球,分别标有数字 1, 2, 2, 从袋中任取一球并记录球上的数字 X 后,放在旁边再任取一球并记录球上数字 Y,试求 $Z_1 = X + Y$ 及 $Z_2 = X - Y$ 的分布规律.

解: 先求出 (x,y) 的联合分布律:

X Y	1	2
1	0	1/3
2	1/3	1/3

由联合分布律得:

$Z_1 = X + Y$	3	4
P	2/3	1/3

同理 X-Y 的分布律为:

Z_2	=X-Y	-1		0	1
	P	1/3		1/3	1/3
ր:	X	+ <i>Y</i>	3	4	
	P		2/3	1/3	

3. 设 X 与 Y 相互独立且 P { X = k}= a/k , P { Y = -k}= b/k^2 ,k = 1, 2,试求 X + Y 的分布规律.

解:

X	1	2	
P	а	<i>a</i> /2	
Y	-1	-2	
P	b	<i>b</i> /4	

$$a + \frac{a}{2} = 1$$
,故 $a = \frac{2}{3}$, $b + \frac{b}{4} = 1$, $b = \frac{4}{5}$,由独立性得联合分布律:

Y	-1	-2
1	8/15	2/15
2	4/15	1/15

从而

X + Y	-1	0	1
P	2/15	9/15	4/15

(也可不写出联合分布律,直接由独立性得到)

4. 某商店每星期五进货若干供周末两天销售.如果星期六的销售量为x万元,星期日的销售量为y万元,且x与y相互独立,分布规律如下:

X	13	14	15
P	0.3	0.6	0.1

Y	10	11	12
\overline{P}	0.2	0.7	0.1

- (1) 求周末两天销售总量的分布规律:
- (2) 如果进货 25 万元, 试计算供不应求的概率;
- (3) 如果进货 24 万元, 试计算供大于求的概率.

 \mathbf{M} : (1) 即求 X+Y 的分布律: 同 3 题先求出 (X,Y) 的联合分布律:

	Y	10	11	•	12
X					
13	(0.06	0.21	0	0.03
14		0.12	0.42	0.06	
15		0.02	0.07	0	0.01
X + Y	23	24	25	26	27
P	0.06	0.33	0.47	0.13	0.01

(2)进货 25 万供不应求, 即 $\{X+Y>25\}=\{X+Y=26\}\cup\{X+Y>27\}$,

$P\{X+Y>25\}=0.13+0.01=0.14$

(3)进货 24 万供大于求 即 $P\{X+Y<24\}=0.06$.

5. 若 X 与 Y 相互独立,且 P {X=1}= P{X=2}=0.5,P {Y=1}= P {Y=2}=0.5,试 求 Z_1 = X+Y 及 Z_1 = 2 X 分布规律,说明 Z_1 与 Z_2 的分布规律有什么不同?

解: 可由如下表示写出(X, Y)的联合分布律:

Y	1	2	$P_{\rm X}$
X			
1	0.25	0.25	0.5
2	0.25	0.25	0.5
P_{Y}	0.5	0.5	

因此, $Z_1 = X + Y$ 及 $Z_1 = 2X$ 分布律为

$Z_l = X + Y$	2	3	4
P	0.25	0.5	0.25

$Z_2 = 2 X$	2	4
P	0.5	0.5

 Z_1 与 Z_2 可能的取值不同,对应的概率也不相同,原因是: $Z_1=X+Y$, $Z_2=X+X$, Z_1 中的 X与 Y同分布且独立. Z_2 中的两个 X是同一随机变量,同分布但不独立.

6. 设(X, Y)的分布规律如下,试求 $Z_1 = \max\{X, Y\}$ 及 $Z_2 = \min\{X, Y\}$ 的分布规律.

Y	1	2
X		
1	0	1/3
2	1/3	1/3

解:依题意可知

(X, Y)	(1,2)	(2,1)	(2,2)
$\max\{X, Y\}$	2	2	2
$\min\{X, Y\}$	1	1	2
P	1/3	1/3	1/3

合并得:

$\max\{X,Y\}$	2
\overline{P}	1

$\min\{X,Y\}$	1	2
P	2/3	1/3

7. 设(X, Y)的分布规律如下,试求 $Z_1 = \max\{X, Y\}$ 及 $Z_2 = \min\{X, Y\}$ 的分布律.

Y X	1	2
1	1/9	2/9
2	2/9	4/9

解:

$\min\{X,Y\}$	1	2
P	5/9	4/9

$Max\{X, Y\}$	1	2
P	1/9	8/9

8. 设随机变量 X_1 和 X_2 相互独立,且 $P\{X_i=k\}=\frac{1}{3}$, (i=1,2,k=1,2,3) ,记随机变量 $Y_1=\max\{X_1,\ X_2\},\ Y_2=\min\{X_1,\ X_2\},$ 试判定 Y_1 和 Y_2 是否相互独立?

解:

X_2	1	2	3	p_{i} .
1	1/9	1/9	1/9	1/3
2	1/9	1/9	1/9	1/3
3	1/9	1/9	1/9	1/3
p .,j	1/3	1/3	1/3	

(X_1, X_2)	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
<i>Y</i> ₁	1	2	3	2	2	3	3	3	3
Y 2	1	1	1	1	2	2	1	2	3
P	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
Y 1	1 2	3	_		Y 2	1	2	3	<u> </u>

Y_2	1	2	3	$p_{i.}$
1	1/9	0	0	1/9
2	2/9	1/9	0	1/3
3	2/9	2/9	1/9	5/9
$p_{.j}$	5/9	1/3	1/9	

 $P\{Y_1=2, Y_2=3\}=0 \neq P\{Y_1=2\}\cdot P\{Y_2=3\}=1/27, 即Y_1, Y_2$ 不相互独立.