Esame di Progettazione di Sistemi Digitali 12 luglio 2021 - canale AL - prof. Pontarelli

Cognome	Nome	Matricola
0		

Gli studenti con DSA devono svolgere solo i primi 4 esercizi

Esercizio 1 (5 punti)

Progettare un circuito che indichi quanti giorni ha un dato mese. Il mese è specificato da un input a 4 bit, a₃a₂a₁a₀. Ad esempio, se gli input sono (0001), il mese è gennaio e se gli input sono (1100), il mese è dicembre.

L'uscita del circuito, Y_2 , deve essere uguale a 1 solo quando il mese specificato dagli input ha 31 giorni, Y_1 , deve essere uguale a 1 quando il mese specificato ha 30 giorni e Y_0 , deve essere uguale a 1 quando il mese specificato ha 28 giorni. Scrivere le equazioni minime SOP e POS. Realizzare y2 utilizzando i multiplexer 4-a-1.

A3	A2	A1	A0	<i>Y2</i>	<i>Y1</i>	<i>Y0</i>
0	0	0	0	-	-	-
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	0	0	1	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	-	-	-
1	1	1	0	-	-	-
1	1	1	1	-	-	-

$$Y_2 = \bar{a}_3 a_0 + a_3 \bar{a}_0$$

 $Y_2 = (\bar{a}_3 + \bar{a}_0)(a_3 + a_0)$

$$Y_1 = \bar{a}_3 a_2 \bar{a}_0 + a_3 a_0$$

 $Y_1 = (a_3 + \bar{a}_0)(a_2 + a_0)(\bar{a}_3 + a_0)$

$$Y_0 = \overline{a}_3 \overline{a}_2 \overline{a}_0$$

$$Y_0 = \overline{a}_3 \overline{a}_2 \overline{a}_0$$

$$Y_0 = \bar{a}_3 \bar{a}_2 \bar{a}_0$$

Mux 4-1

Esercizio 2 (4 punti)

```
Descrivere in SystemVerilog un buffer tristate.
```

```
module tristate_buffer(input_x, enable, output_x);
input input_x;
input enable;
output output_x;
assign output_x = enable? input_x : '1bz;
```

endmodule

Esercizio 3 (4 punti)

- a. Convertire i numeri X=111 e Y=78 rappresentati in base 10 in complemento a 2 utilizzando 8 bits ed eseguire le operazioni Z=X-Y e W=X+Y.
 - Convertire i risultati in esadecimale.
- b. Eseguire l'operazione W=X+Y tra i numeri X=3EAB e Y=2E73 rappresentati in base 16. Convertire il risultato il base 10 e controllare la correttezza del risultato convertendo gli operandi iniziali.

```
a)  X=0110\_1111 \\ Y=0100\_1110 \\ X+Y=1011\_1101 \quad \text{overflow}. (il numero 189 non può essere rappresentato in Ca2 usando 8 bits) \\ Per X-Y faccio il Ca2 di Y: \\ Y=0100\_1110 \\ -Y=1011\_0001+1=10110010 \\ Sommo X+(-Y) \\ X=0110\_1111 \\ -Y=1011\_0010 \\ X-Y=10010\_0001 \quad (33_{10} \rightarrow 2*16+1 \rightarrow 21_{16}) \\ b) \\ X=3EAB \rightarrow 11+16*10+256*14+3*4096=16043 \\ Y=2E73 \rightarrow 3+16*7+256*14+2*4096=11891 \\ X+Y=6D1E \rightarrow 14+16*1+256*14+6*4096=27934 \\ \hline
```

Esercizio 4 (6 punti): Si progetti l'automa e la relativa rete sequenziale che riceve un input x e fornisce in output z.

L'output z restituisce 1 se e solo se e solo se il numero naturale dato dagli ultimi 3 bit ricevuti, dà resto 1 quando diviso per 3.

Sono ammesse sovrapposizioni. Si ignorino i primi due output (che possono essere qualunque valore).

Esempio: INPUT: 1101100011110

Output: -- 00001010110

Automa

Tabella delle transizioni

PS	Q_1	Q_0	X	NS	Q ₁ '	Q ₀ '	Z
S00	0	0	0	S00	0	0	0
S00	0	0	1	S01	0	1	1
S01	0	1	0	S10	1	0	0
S01	0	1	1	S11	1	1	0
S10	1	0	0	S00	0	0	1
S10	1	0	1	S01	0	1	0
S11	1	1	0	S10	1	0	0
S11	1	1	1	S11	1	1	1

Equazioni del circuito:

$$Q_1' = Q_0$$

$$Q'_0 = x$$

$$z = \bar{Q}_1 \bar{Q}_0 x + Q_1 \bar{Q}_0 \bar{x} + Q_1 Q_0 x$$

Circuito sequenziale:

Esercizio 5 (4 punti): Si analizzi il circuito sequenziale in figura e si disegni la FSM corrispondente.

$$S_1 = \overline{S_1} S_0 B + S_1 A B$$

$$S_0 = \overline{S_1} \overline{S_0} A$$

$$Q' = S_1 A B$$

Tabella di transizione:

curren	t state	inp	u t s	next state		output
^S 1	s ₀	а	Ь	s' ₁	s' ₀	q
0	0	0	X	0	0	0
0	0	1	X	0	1	0
0	1	X	0	0	0	0
0	1	X	1	1	0	0
1	0	1	1	1	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0

Codifica degli stati:

state	encoding S1:0
S0	00
S1	01
S2	10

Automa:

Esercizio 6 (3 punti)

Data l'espressione $f = (\bar{a} + \overline{b(b + \overline{cde})}) \oplus (\bar{a} + cd)$ semplificarla e portarla in forma canonica SOP. Realizzare f con soli operatori NAND

$$f = (\bar{a} + \overline{b(b + cde)}) \oplus (\bar{a} + cd) = (\bar{a} + \bar{b}) \oplus (\bar{a} + cd) =$$

$$= ab(\bar{a} + cd) + (\bar{a} + \bar{b})(\bar{a} + cd) = abcd + (\bar{a} + \bar{b})(a(\bar{c} + \bar{d})) =$$

$$= abcd + (\bar{a} + \bar{b})(a\bar{c} + a\bar{d}) = abcd + a\bar{b}\bar{c} + a\bar{b}\bar{d} =$$

$$= abcd + a\bar{b}\bar{c}\bar{d} + a\bar{b}\bar{c}d + a\bar{b}c\bar{d} (canonica\ SOP)$$

Forma NAND-NAND

$$\overline{abcd + a\bar{b}\bar{c} + a\bar{b}\bar{d}} = \overline{abcd} \cdot \overline{a\bar{b}\bar{c}} \cdot \overline{a\bar{b}\bar{d}} =$$

$$= NAND(NAND(a, b, c, d), NAND(a, \bar{b}, \bar{c}), NAND(a, \bar{b}, \bar{d}))$$

Esercizio 7 (4 punti) Si consideri il seguente circuito combinatorio:

- a. si scriva l'espressione booleana associata a y
- b. si trasformi l'espressione trovata in forma normale POS, usando gli assiomi dell'algebra di Boole
- c. da quest'ultima, si scriva la tavola di verità e si ricavi una SOP minimale.

$$f = 0 \cdot \bar{x}_3 \bar{x}_1 + 1 \cdot \bar{x}_3 x_1 + (\bar{x}_2 + x_4) \cdot x_3 \bar{x}_1 + x_2 \cdot x_3 x_1 =$$

$$\bar{x}_3 x_1 + (\bar{x}_2 + x_4) x_3 \bar{x}_1 + x_3 x_2 x_1 = x_1 (\bar{x}_3 + x_3 x_2) + (\bar{x}_2 + x_4) \cdot x_3 \bar{x}_1 = x_1 (\bar{x}_3 + x_2) + (\bar{x}_2 + x_4) \cdot x_3 \bar{x}_1 =$$

$$[\text{applicando la proprietà distributiva}]$$

$$= (x_1 + \bar{x}_2 + x_4) \cdot (x_1 + x_3 \bar{x}_1) \cdot (\bar{x}_3 + x_2 + \bar{x}_2 + x_4) \cdot (\bar{x}_3 + x_2 + x_3 \bar{x}_1) =$$

$$= (x_1 + \bar{x}_2 + x_4) \cdot (x_1 + x_3) \cdot (\bar{x}_3 + 1 + x_4) \cdot (\bar{x}_3 + x_2 + \bar{x}_1) =$$

$$= (x_1 + \bar{x}_2 + x_4) \cdot (x_1 + x_3) \cdot (\bar{x}_3 + x_2 + \bar{x}_1) \quad [forma POS]$$

Tabella della verità

x4	x 3	x2	x 1	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

$$f = x_3 \overline{x}_2 \overline{x}_1 + x_4 x_3 x_2 + \overline{x}_3 x_1 + x_2 x_1$$