Lecture15: CMOS amplifier, common-source (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized.

Biasing of PMOS devices

- Use a PMOS as a current source
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Real current-source load

- Use a PMOS as a current source.
 - It is not an ideal current source.

$$v_{out} = -g_{m1}(r_{01}||r_{02})v_{in}$$

$$A_{v} = -g_{m1}(r_{01}||r_{02})$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

In this case,

- Use a diode-connected load.
 - It is not an ideal current source.

$$v_{out} = -g_{m1} \left(r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left(r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$

Homework#7

- Due: 09:00, May 9 (No lecture on May 7)
- Write a program, which reads a netlist file.
 - Only voltages sources and resistors are considered.
 - The program calculates the node voltages and the terminal voltages/currents.
 - Three test netlists will be uploaded. For each of them, show the solution vector.