

Insurance Premium Prediction

Under Guidence Dr.Shantanu Pathak Mrs.Priti Mam Mrs. Priyanka Mam Presented By Shraddha Rananavare Aradhya Srivastava

Group Id: 24

Contents

Introduction

Why Predict Insurance Premiums?

 ML models help predict accurate premiums, improving risk assessment and pricing.

By analysing features, the model will be able to estimate the price of insurance premiums for new customers.

Workflow of Project

Dataset Details

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8338214 entries, 0 to 8338213
Data columns (total 8 columns):
     Column
                          Dtype
                          int64
     company code
                          object
     company_name
                          object
     year_month
     product
                          object
                          object
     state
     premiums
                          float64
     claims
                          float64
     claim_premium_ratio float64
dtypes: float64(3), int64(1), object(4)
memory usage: 508.9+ MB
```


Time Series Challenges & Solutions

Data is non-stationary (changing over time).

Seasonal trends impact predictions.

Model Selection & Training

ML Models Implemented

01 SARIMA

Best for seasonal data

02 Auto ARIMA

Finds optimal parameters automatically

03 Facebook Prophet

Handles trends & seasonality efficiently

SARIMA Model Insights

SARIMAX Results

Dep. Variabl	e:			y No.	. Observations:		247
Model:	SARI	MAX(0, 1,	1)x(1, 0, [], 12) Log	g Likelihood		410.721
Date:		-	Mon, 03 Fe	b 2025 AI	C		-815.441
Time:			17	:28:17 BIG	C		-804.925
Sample:			01-0	1-2003 HQ	IC		-811.207
-			- 07-0	1-2023			
Covariance Type: opg							
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.4359	0.046	-9.564	0.000	-0.525	-0.347	
ar.S.L12	0.1467	0.057	2.563	0.010	0.035	0.259	
	0.0021	0.000	18.652	0.000	0.002	0.002	
sigma2	0.0021	0.000	10.052	0.000	0.002	0.002	_
Ljung-Box (L1) (Q):			0.01	Jarque-Bera (JB):		141.66	
Prob(Q):			0.94	Prob(JB):		0.00	
Heteroskedasticity (H):			0.24	Skew: 0.24		4	
Prob(H) (two-sided):			0.00	Kurtosis:		6.6	9

ARIMA Model Insights

Dep. Variable:	: premiums		ms No.	Observations:		247	
Model:		ARIMA(1, 1,	1) Log	Likelihood		408.359	
Date: Mon, 03 Feb 2025		25 AIC	-810.7				
Time:		17:28:	17 BIC			-800.202	
Sample:		01-01-20	03 HQIC			-806.484	
		- 07-01-20	23				
Covariance Typ	e:	0	pg				
==========			=======	=========		========	
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.1141	0.132	0.863	0.388	-0.145	0.373	
ma.L1	-0.5424	0.119	-4.557	0.000	-0.776	-0.309	
sigma2	0.0021	0.000	18.619	0.000	0.002	0.002	
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):				141	1.33		
Prob(Q):			0.97	Prob(JB):	(35).		9.00
Heteroskedasti	city (H):		0.26	Skew:			3.14
Prob(H) (two-s			0.00	Kurtosis:			5.70
==========	=======		=======				

Prophet Model Insights

Fig. Plots of yearly, quarterly trends

Performance Metrics

Performance Metrics

Model	AIC	BIC	RMSE	MAPE
SARIMA	-815.4	-804.9	-	-
Auto ARIMA	-810.7	-800.2	_	-
Prophet	-	-	1476.45	4.74%

Model Chosen: Facebook Prophet 🔽

Model Comparisons

SARIMA Model

Results

- AIC = -815.441, BIC = -804.925
- Captures seasonal trends well
- Low residual variance, indicating a strong fit

Limitations

- Requires manual tuning of parameters
- Sensitive to missing data

Auto ARIMA Model

Results

- AIC = -810.718, BIC = -800.202
- Residual analysis shows volatility in premiums

Limitation

Struggles with sudden market changes

Facebook Prophet Model

Why Prophet?

- Handles missing data well
- Captures yearly & quarterly seasonality
- Provides confidence intervals

Results

• MAE: 28.10

• RMSE: 1476.45

• MAPE: 4.74%

User Interface & Deployment

Main Landing page

Result page

Requirements & Specifications

Hardware Requirement

- 500 GB hard drive (Minimum)
- 8 GB RAM (Minimum)
- PC x64-bit CPU

Software Requirement

- Windows/Mac/Linux
- Python-3.9.10
- VS Code/Anaconda/Google Colab/Jupyter
- Python Extension for VS Code

Libraries

- · Flask=1.1.1
- prophet=1.1.5
- · numpy=1.9.2
- scipy=0.15.1
- · scikit-learn=0.18
- matplotlib=1.4.3
- pandas=0.19
- Any Modern Web Browser

AWS Cloud = EC2 service

Outcomes

- Successfully implemented insurance premium prediction.
- Facebook Prophet performed best for time-series forecasting.
- Web app enables real-time premium estimation.

Conclusion

- This project implemented a predictive modeling system using Facebook Prophet for time series forecasting, identifying key patterns to enhance decision-making.
- Integration with Flask provided an interactive interface for easy model access, while deployment on AWS EC2 ensured scalable, real-time predictions with minimal latency.

Thank You