Analyse

Isabelle Galagher et Pierre Gervais

September 21, 2016

Contents

	Topologie des espaces vectoriels normés Espaces vectoriels normés : premières définitions	1
	1.1 Distances et normes	1
2	Applications continues	7

Part I

Topologie des espaces vectoriels normés

1 Espaces vectoriels normés : premières définitions

1.1 Distances et normes

Définition 1. Étant donné un ensemble E, une distance sur E est une application $d: E \times E \longrightarrow \mathbb{R}$ vérifiant les propriétés suivantes :

- 1. d est $d\acute{e}finie$ $positive: <math>d(x,y) \ge 0$ et $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d est symétrique : d(x,y) = d(y,x)
- 3. d vérifie l'inégalité triangulaire : $\forall z \in E, \ d(x,y) \leq d(x,z) + d(z,y)$

Exemple 1.

- $E = \mathbb{R}$ et d(x, y) = |x y|
- $E = \mathbb{R}^2$ et $d\left(\binom{a}{b}, \binom{c}{d}\right) = \sqrt{(a-c)^2 + (b-d)^2}$

Remarque 1. Par l'inégalité triangulaire, on déduit

-
$$d(x,z) \geqslant d(x,y) - d(y,z)$$

-
$$d(x,z) \geqslant d(z,y) - d(x,y)$$

d'où
$$|d(x, y) - d(z, y)| \le d(x, z)$$

Définition 2. Soit E un \mathbb{K} -espace vectoriel, une *norme* sur E est une application notée N ou $\|\cdot\|$ telle que

- 1. $(x,y) \mapsto ||x-y||$ est une distance
- 2. $\forall \lambda \in \mathbb{R}, \ \forall u \in E, \ \|\lambda u\| = |\lambda| \|u\| \ (homogénéité)$

Proposition 1. Une fonction $\|\cdot\|: E \longrightarrow \mathbb{R}$ est une norme si et seulement si :

- 1. elle est homogène
- 2. elle est définie
- 3. elle vérifie l'inégalité triangulaire

Preuve 1.

 \Longrightarrow

Soit $\|\cdot\|$ une norme.

- 1. ✓
- 2. ||x|| = d(x,0) où d(x,y) = ||x-y||, donc $||x|| \ge 0$ et $||x|| = 0 \iff d(x,0) = 0 \iff x = 0$
- 3. ||x+y|| = d(x+y,0) = d(x,-y), or $\forall x,y,z \in E$, $d(x,z) \leq d(x,y) + d(y,z)$ donc $d(x,-y) \leq d(x,0) + d(0,-y)$ D'où $||x+y|| \leq d(x,0) + d(0,-y) \leq ||x|| + ||-y|| \leq ||x|| + ||y||$

 \leftarrow

Soit $\|\cdot\|$ vérifiant les trois propriétés, alors soit $d(x,y) = \|x-y\|$ et montrons que de st une distance.

- 1. $d(x,y) \ge 0$ car $||x-y|| \ge 0$ par (2). $d(x,y) = 0 \iff ||x-y|| = 0 \iff x = y$
- 2. d(x,y) = ||x-y|| = ||-(x-y)|| = ||y-x|| = d(y,x)
- 3. $d(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-x|| \le d(x,y) + d(z,y)$

Exemple 2.

1. Dans
$$\mathbb{R}^n$$
, on définit les normes $||x||_1 = \sum_{k=1}^n |x_k|$, $||x||_2 = \sqrt{\sum_{k=1}^n |x_k|^2}$, $||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p}$ et $||x||_\infty = \max_k ||x_k||$

- 2. Dans \mathbb{R}^n muni d'un produit scalaire, $||x|| = \sqrt{\langle x, x \rangle}$
- 3. Soit A un ensemble et F une espace vectoriel normé, et $\mathcal{B}(A,F)$ les fonctions bornées de A dans F, alors $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|$ est une norme.

4. Sur
$$\mathcal{C}([0,1],\mathbb{R})$$
, $||f||_1 = \int_0^1 |f(x)|$, $||f||_2 = \sqrt{\int_0^1 |f(x)|^2} \text{ et} ||f||_{\infty} = \sup_{0 \le x \le 1} |f(x)|$

Définition 3. Deux normes N_1 et N_2 sont dites équivalentes s'il existe des constantes positives C_1 et C_2 telles que $\forall x \in E, \ C_1 N_2(x) \leqslant N_1(x) \leqslant C_2 N_2(x)$

Exemple 3. Par exemple dans \mathbb{R}^n , les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont équivalentes. En effet

$$||x||_1 = |x_1| + |x_2| \leqslant 2||x||_{\infty}$$

et
$$||x_i| \ge ||x||_{\infty}, i = 1, 2$$

En dimension finie, toutes les normes sont équivalentes! Cela n'est en revanche pas vraie en dimension infinie.

Figure 1: Différentes boules unités

En bleu : $\mathcal{B}_{\infty}(0,1)$ En rouge : $\mathcal{B}_{2}(0,1)$ En turquoise : $\mathcal{B}_{1}(0,1)$

1.2 Ouverts et fermés

Définition 4. Soit E un espace vectoriel normé, on appelle boule fermée de centre x et de rayon r > 0 l'ensemble $\overline{\mathcal{B}}(x,r) = \{u \in E \mid ||x-u|| \leq r\}$, et la boule ouverte de centre x et de rayon r > 0 l'ensemble $\mathcal{B}(x,r) = \{u \in E \mid ||x-u|| < r\}$.

Définition 5. Soit $X \subseteq E$

- 1. On dit que $U \subseteq X$ est un ouvert de X si $\forall x \in U, \exists r > 0 : \mathcal{B}(x,r) \cap X \subseteq U$
- 2. On dit que $F \subseteq X$ est un fermé de X si son complémentaire dans X est un ouvert de X.

Figure 2: Deux exemples d'ouverts

Remarque~2.

- 1. Un ouvert dans X n'est pas nécessairement ouvert dans E, comme montré dans le deuxième exemple de la figure ci-dessus.
- 2. Un ouvert de E sera appelé un \mathbf{ouvert} , de même pour les fermés.
- 3. Toute boule ouverte est un ouvert.
- 4. Toute boule fermée est un fermé.

Preuve 2. On considère une boule ouverte $\mathcal{B}(x_0, r)$, montrons que c'est un ouvert. Soit $x \in \mathcal{B}(x_0, r)$, alors $||x - x_0|| < r$. On cherche r' tel que $\mathcal{B}(x, r') \subseteq \mathcal{B}(x_0, r)$ donc r' doit vérifier

$$||x - y|| < r' \Longrightarrow ||x_0 - y|| < r$$

Mais $||x_0 - y|| \le ||x - y|| + ||x - x_0|| < ||x - y|| + r$. Soit $\delta = r - ||x - x_0|| > 0$, on pose alors $r' = \frac{\delta}{2} > 0$, alors $||x_0 - y|| \le r' + ||x - x_0|| \le r' + r - \delta < r$

Figure 3: Construction de la boule ouverte

Proposition 2. L'intersection de deux ouverts est un ouvert et toute réunion d'ouverts est un ouvert. Preuve 3. Soient U et U' deux ouverts, montrons que $U \cap U'$ est un ouvert. Soit $x \in U \cap U'$, il existe r > 0 et r' > 0 tels que $(B)(x,r) \subseteq U$ et $\mathcal{B}(x,r') \subseteq U'$. On pose $\widetilde{r} = \min(r,r')$ et on a $\mathcal{B}(x,\widetilde{r}) \subseteq U \cap U'$

Preuve 4. Soit $(U_i)_{i\in I}$ une famille d'ouverts, montrons que $U=\bigcup_{i\in I}U_i$ est un ouvert.

Soit $x \in U$, alors il existe $i_0 \in I$ tel que $x \in U_{i_0}$, il existe donc r tel que $\mathcal{B}(x,r) \subseteq U_{i_0}$ car U_{i_0} est ouvert, d'où $\mathcal{B}(x,r) \subseteq U$.

Proposition 3. Soit $X \subseteq E$, tout ouvert U de X s'écrit sous la forme $U = X \cap \widetilde{U}$, où \widetilde{U} est un ouvert. De même pour tout fermé F de X s'écrit $F = X \cap \widetilde{F}$ où \widetilde{F} est un fermé.

Preuve 5. Soit \widetilde{U} un ouvert de E, alors $\widetilde{U} \cap X$ est un ouvert de X par construction. Inversement soit U ouvert de X, alors $\forall x \in U$, $\exists r(x) > 0$ tel que $\mathcal{B}(x, r(x)) \cap X \subseteq U$ Soit alors $\widetilde{U} = \bigcup_{x \in U} \mathcal{B}(x, r(x))$, alors \widetilde{U} est un ouvert et $U = X \cap U$

Définition 6. Une suite à valeurs dans E est dite convergente vers $x \in E$ si pour tout $\epsilon > 0$ il existe un rang N tel que pour tout $n \ge N$ on ait $||x_n - x|| < \epsilon$.

Celle-ci est unique et on la note $\lim_{n} x_n = x$.

On remarquera qu'une suite convergente est bornée.

Preuve 6. Montrons l'unicité de la limite : soient $x \neq y$ des limites de (x_n) , alors pour tout $\epsilon > 0$, il existe N tel que $\forall n > N$, $||x_n - x|| < \epsilon$ et $||x_n - y|| < \epsilon$ Or $0 < ||x - y|| \le ||x_n - x|| + ||y - x_n|| < 2\epsilon$, ce qui est faux pour $\epsilon \le \frac{||x - y||}{3}$.

Remarque 3. On rappelle que dans \mathbb{R} , toute suite majorée croissante est convergente.

Soit $A = \{x_n \mid n \ge 0\}$, et on note $l = \sup A$.

Soit $\epsilon > 0$, $l - \epsilon$ ne majore pas A donc il existe un rang N à partir duquel $x_n \ge l - \epsilon$, mais on a aussi $x_n \le l$ pour tout n, on a ainsi à partir de N l'encadrement $l - \epsilon \le x_n \le l + \epsilon$.

On a de plus que $\lim_{n} x_n = \sup\{x_n | n \ge 0\}$

Remarque 4. Si une suite est convergente pour une norme, alors elle l'est pour toute norme équivalente à celle-ci. Cela n'est pas vrai en général si les normes ne sont pas équivalentes.

Sur l'ensemble des fonctions continue sur [0, 1] on définit les normes

$$||f||_{\infty} = \sup_{[0,1]} |f(x)| \text{ et } ||f|| = \int_0^1 |f|$$

On considère la suite de fonction $f_n: x \mapsto x^n$, on a $||f_n||_{\infty} = \sup_{[0,1]} |f_n(x)| = 1$ mais $||f_n|| = \int_0^1 x^n dx = \frac{1}{n+1}$

0, les normes ne sont pas équivalentes.

Définition 7. On appelle valeur d'adhérence de x_n toute limite d'une sous-suite (suite extraite) de (x_n) . Et on appelle point d'accumulation d'une suite (x_n) un point x tel que $\forall \epsilon > 0$, $\exists n : ||x_n - x|| < \epsilon$.

Proposition 4. Tout point d'accumulation d'une suite convergente (x_n) est une valeur d'adhérence, et réciproquement.

Preuve 7. Soit x une valeur d'adhérence de (x_n) , il existe une fonction entière strictement croissante ϕ telle que $\forall \epsilon > 0, \ \exists N : \ \forall n > N, \ \|x_{\phi(n)} - x\| < \epsilon, \ \text{donc } x \text{ est un point d'accumulation.}$

Réciproquement, soit x un point d'accumulation d'une suite (x_n) , on construit par récurrence ϕ telle que x soit la limite de $(x_{\phi(n)})_n$ par $\phi(0) = 0$ et $\phi(n+1) = \min\{n > \phi(n) \mid ||x_n - x|| < 2^{-n}\}.$

L'application est bien strictement croissante.

Montrons à présent que $y_n = x_{\phi(n)}$ converge vers x:

soit $\epsilon \in]0,1[$, on cherche N tel que pour tout $n>N, \|x_n-x\|<\epsilon.$ Soit k tel que $\epsilon < 2^{-k}$, on pose $N=\left|ln\frac{\epsilon}{2}\right|$, on a ainsi pour tout $n>N, \|y_n-x\|<\epsilon$

Proposition 5. Soit E un espace vectoriel normé et $F \subseteq E$.

F est fermé si et seulement si F contient la limite de toutes ses suites convergentes.

Preuve 8. On suppose F fermé et (x_n) une suite convergente de F de limite x. Montrons que $x \in F$.

Supposons par l'absurde $x \notin F$, alors $x \in (E \setminus F)$ qui est ouvert. Il existe donc r > 0 tel que $\mathcal{B}(x,r) \subseteq (E \setminus F)$, mais il existe un rang à partir duquel $||x_n - x|| < \frac{r}{2}$, c'est à dire $x_n \in \mathcal{B}(x,r)$, ce qui contredit $\mathcal{B}(x,r) \subseteq (E \backslash F)$.

On suppose à présent que F contient la limite de toute ses suites convergentes, montrons que F est fermée, donc que $E \setminus F$ est ouvert.

Soit $x \in (E \backslash F)$, montrons qu'il existe r > 0 tel que $\mathcal{B}(x, r) \subseteq (E \backslash F)$.

Supposons que pour tout $n \mathcal{B}(x, \frac{1}{n}) \not\subseteq (E \setminus F)$, c'est à dire quil existe $x_n \in F$ tel que $x_n \in \mathbb{B}(x, \frac{1}{n})$

On a ainsi construit une suite de F convergente vers $x \in F$, donc par hypothèse $x \in F$, ce qui contredit le fait que x appartienne au complémentaire de F.

Définition 8. Soit X une partie d'un espace vectoriel normé E. Il existe un plus grand ouvert inclus dans X appelé $intérieur\ de\ X$ noté A.

Il existe un unique plus petit fermé contenant X appelé adhérence de X et noté X.

On appelle frontière de X l'ensemble $Fr(X) = \overline{X} \setminus \mathring{X}$

Exemple 4. Si X = [0, 1] sur \mathbb{R} alors $\mathring{X} = [0, 1]$, $\overline{X} = [0, 1]$ et $Fr(X) = \{0, 1\}$.

Remarque 5. X est ouvert si est seulement si $\mathring{X} = X$ et X est fermé si et seulement si $\overline{X} = X$.

Exercice 1. Le montrer.

Preuve 9. Intérieur

Soit X l'ensemble des $x \in X$ tels qu'il existe r > 0 tel que $\mathcal{B}(x,r) \subseteq X$, alors X est la réunion de tous les ouverts contenus dans X.

En effet, X est ouvert dans X par définiton, donc $X \subseteq$ "réunion des ouverts de X".

Soit U un ouvert de X, montrer que $U \subseteq X$.

Soit $x \in U$, il existe r > 0 tel que $\mathcal{B}(x,r) \subseteq U$ ar U est ouvert. Donc $x \in \mathring{X}$.

 \mathring{X} est donc ouvert, contenu dans X. Il contient tous les ouverts de X, donc c'est le plus grand de X, d'où le résultat.

Preuve 10. Adhérence On définit \overline{X} comme l'ensemble des valeurs d'adhérence de suites de X.

TODO faire la démonstration.

$\mathbf{2}$ Applications continues

Définition 9. Soient E et F deux espaces vectoriels normés, soient $X \subseteq E$, $Y \subseteq F$ et f une application de X dans Y.

On dit que f est continue en un point $x \in X$ si

$$\forall \epsilon > 0, \exists \delta > 0 : (\forall u, ||x - u|| < \delta \Longrightarrow ||f(x) - f(u)|| < \epsilon)$$

Théorème 1. Une application $f: X \longrightarrow Y$ est continue en $x_0 \in X$ si et seulement si pour toute suite (y_n) convergeant vers x_0 , la suite $(f(y_n))_n$ converge vers $f(x_0)$.

Exercice 2. Le démontrer

Théorème 2. Un application $f: X \longrightarrow Y$ est continue sur X si et seulement si l'image réciproque de tout ouvert de Y est un ouvert de X si et seulement si l'image réciproque de tout fermé de X.

Preuve 11. Soit f continue sur X et U un ouvert de Y. Montrer que $f^{-1}(U) = V$ est un ouvert de X. Soit $x \in f^{-1}(U)$, alors $f(x) \in U$, il existe donc r > 0 tel que $\mathcal{B}(f(x), r) \subseteq U$. Or il existe $\delta > 0$ tel que pour $||x - u|| < \delta$, on a $||f(x) - f(y)|| < \frac{r}{2}$. Ainsi si $y \in \mathcal{B}\left(x, \frac{\delta}{2}\right)$ alors $f(y) \in \mathcal{B}(f(x), r) \subseteq U$, donc $y \in f^{-1}(U)$. $f^{-1}(U)$ est donc un ouvert.