UMAP lecture (Uniform manifold approximation and projection, McInnes 2020)

Alexander Glötzl
Praktische Bioinformatik II
FAKULTÄT FÜR PHYSIK

Universität Regensburg

Universität Regensburg

Universität Regensburg

$$w_{low} = \frac{1}{1 + \alpha x^{2\beta}}$$

$$w_{low} = \frac{1}{1 + \alpha x^{2\beta}}$$

$$cost = \sum_{e \in E} \left[w_{high}(e) \cdot log \left(\frac{w_{high}(e)}{w_{low}(e)} \right) + (1 - w_{high}(e)) \cdot log \left(\frac{1 - w_{high}(e)}{1 - w_{low}(e)} \right) \right]$$

Excercises:

- distance matrix (nearest neighbor descent?)
- high dimensional weights/scores via binary search <a> □
- spectral embedding <a> ☑
- low dimensional weights/scores
- stochastic gradient descent of entropy