内容提纲

- 时序逻辑电路特点
- 锁存器
 - 基本SR锁存器
 - 门控SR锁存器
 - D锁存器

时序逻辑电路

- 任意时刻电路的输出不仅与该时刻的输入有关, 还与之前的输入有关
- 时序电路结构特点:含有记忆电路和反馈路径

• 记忆单元电路: 锁存器和触发器

时钟信号

- 周期性的脉冲信号,也称时钟脉冲(CP),简称时钟,用于控制记忆单元状态更新的时机
 - 参数: 周期T, 频率f, 脉冲宽度tw, 占空比q

$$f = \frac{1}{T} \qquad q = \frac{t_w}{T} \times 100\%$$

- 有效时机: 高电平、低电平、上升沿或下降沿

锁存器和触发器

 具有记忆功能的逻辑单元电路,是构成时序电路的基石, 又称为记忆单元、存储单元或状态单元

• 两者共同点:记忆功能

- 具有两个能自行保持的稳定状态,可用来存储一位二值信息
- 在输入信号作用下可更新状态

• 两者不同点: 更新时机

- 一锁存器对时钟的电平敏感,在 有效电平期间更新状态
- 触发器对时钟的边沿敏感,在 有效边沿瞬间更新状态

基本SR锁存器(Latch)

• 电路结构

- 利用反馈实现记忆
- 利用R、S更新状态

• 逻辑符号

基本SR锁存器工作原理

- · 现态: R、S作用前Q端的状态,记为Qn
- 次态: \mathbf{R} 、S作用后Q端的状态,记为 \mathbf{Q}^{n+1} 当 \mathbf{R} =0, \mathbf{S} =0时, \mathbf{Q}^{n+1} = \mathbf{Q}^n (状态不变)

基本SR锁存器工作原理(续1)

$$Q^{n+1}=0$$
 (清0)

当R、S都恢复到0后,锁存器新的状态保持不变

基本SR锁存器工作原理(续2)

当R=1,S=1时, $Q^{n+1}=\overline{Q}^{n+1}=0$

当R、S同时回到0后,锁存器最终状态不能确定

在实际应用中,应避免R和S同时为1,即要求满足约束条件: SR=0

基本SR锁存器特性

特性表

S	R	Q ⁿ⁺¹	说明
0	0	Qn	保持
0	1	0	清0
1	0	1	置1
1	1	0*	禁止

特性表

$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	Q ⁿ⁺¹	说明
0	0	1*	禁止
0	1	1	置1
1	0	0	清0
1	1	Qn	保持

基本SR锁存器特性(续)

• 两个激励输入端

- R: Reset,复位/置0/清0,有效时,Q=0, \overline{Q} =1
- S: Set,置位/置1,有效时,Q=1, $\overline{Q}=0$
- 存在约束条件,要求R和S不能同时有效
- 对于或非门实现的SR锁存器,高 电平有效,SR=0
- 对于与非门实现的SR锁存器,低电平有效的,R+S=1

• 锁存器状态更新不受时间控制

- 激励输入可以随时更新状态

示例一基本SR锁存器波形图

示例一基本SR锁存器应用

• 开关去抖动电路

- 运用基本SR锁存器,消除 因机械开关触点抖动所引 起的干扰脉冲的输出

门控SR锁存器

· 增加门控(Gated)信号,使得激励输入信号更新锁 存器状态的时机可以受控

当E=0时: 锁存器状态保持不变,不受R、S影响

当E=1时:与基本SR锁存器功能相同

门控SR锁存器特性

特性表

E	S	R	Qn+1	说明
0	X	X	Qn	保持
1	0	0	Qn	保持
1	0	1	0	清0
1	1	0	1	置1
1	1	1	X	禁止

- 锁存器状态可以随激励 输入变化发生多次翻转
 - 在E有效(高电平)期间, R和S的变化将引起输出 状态的变化
- 激励输入约束条件(SR = 0)仍然存在

示例一门控SR锁存器波形图

• 已知激励和控制输入,作出相应 的输出波形(设初态为0) E R

D锁存器

特性表

在E有效(电平有效)期间,D 的变化将引起锁存器状态多 次翻转

E	D	Q ⁿ⁺¹	说明
0	X	Qn	保持
1	X	D	跟随

示例-D锁存器波形图

• 已知激励和控制输入,作出相应输出波形(设初态为0)

D锁存器的传输门实现

- 当S1合上,S2断开时,Q=D, 跟随
- · 当S2合上,S1断开时,Q保持
- 传输门相当于受控的双向开关

- 当C=1, ¯C=0: Y与X连通
- 当C=0, ¯C =1: Y与X断开

