Optimization for Machine Learning

Clément Royer

CIMPA School "Control, Optimization and Model Reduction in Machine Learning"

February 24, 2025

About the instructor

Who I am: Clément Royer

- Maître de conférences at Dauphine since 2019.
- Research topics: Optimization and applications.
- Email: clement.royer@lamsade.dauphine.fr
- Webpage: https://www.lamsade.dauphine.fr/~croyer

About these lectures

A tour d'horizon

- Review main concepts in optimization;
- In perspective with machine learning applications.

Learning goals

- Identify characteristics of an ML problem;
- Have an optimization toolbox for ML;
- Know the theoretical underpinnings;
- Practical experience.

Outline

- Optimization problems in ML

A warning

Optimization $\not\subset$ Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra, PDEs, Statistics, etc.

Optimization $\not\subset$ Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra,
 PDEs, Statistics, etc.

Machine Learning $\not\subset$ Optimization

- Optimization targets a certain problem;
- ML is not just about this problem;
- Other features of ML (data cleaning, hardware,...) will not appear in the optimization.

Optimization in Machine Learning

 $Source: \ https://blogs.sas.com/content/subconscious musings/2017/04/12/\ machine-learning-algorithm-use/subconscious musings/2017/04/12/\ machine-learning-alg$

Example: Document classification

Given: A dataset $\{(x_1, y_1), ..., (x_n, y_n)\}.$

- x_i is a feature vector in \mathbb{R}^d ;
- y_i is a label.

Given: A dataset $\{(x_1, y_1), ..., (x_n, y_n)\}.$

- x_i is a feature vector in \mathbb{R}^d ;
- y_i is a label.

Example: text classification

Using d words for classification:

• x_i represents the words contained in a text document:

$$[\mathbf{x}_i]_j = \begin{cases} 1 & \text{if word } j \text{ is in document } i, \\ 0 & \text{otherwise.} \end{cases}$$

• y_i is equal to +1 if the document addresses a certain topic of interest, to -1 otherwise.

Prediction and classification

Learning process

- Given $\{(\mathbf{x}_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(\mathbf{x}_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\mathbf{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \mathbf{w}), \ \mathbf{w} \in \mathbb{R}^d \right\}$;

Learning process

- Given $\{(\mathbf{x}_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(\mathbf{x}_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\mathbf{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \mathbf{w}), \ \mathbf{w} \in \mathbb{R}^{\hat{d}} \right\}$;

Linear model for text classification

- We seek a hyperplane in \mathbb{R}^d separating the feature vectors associated with $y_i = +1$ and those associated with $y_i = -1$;
- This corresponds to a linear model $h(x) = \mathbf{x}^T \mathbf{w}$, and we want to choose \mathbf{w} such that:

$$\forall i = 1, \dots, n,$$

$$\begin{cases} \mathbf{x}_i^{\mathrm{T}} \mathbf{w} \geq 1 & \text{if } y_i = +1 \\ \mathbf{x}_i^{\mathrm{T}} \mathbf{w} \leq -1 & \text{if } y_i = -1. \end{cases}$$

An objective to optimize over

- Our goal is to penalize values of w for which $h(x_i)$ does not predict y_i well enough.
- One possibility: the hinge loss function

$$\forall (h,y) \in \mathbb{R}^2, \quad \ell(h,y) = \max \{1 - yh, 0\}.$$

About the hinge loss

- $hy > 1 \Rightarrow \ell(h, y) = 0$: no penalty (h and y are of the same sign, |h| > 1 so this is a good prediction);
- $hy < -1 \Rightarrow \ell(h, y) > 2$: large penalty (h and y are of opposite sign and |h| > 1, this is a bad prediction);
- $|hy| \le 1 \Rightarrow \ell(h, y) \in [0, 2]$: small penalty (h and y can be of the same sign, but the value of |h| makes the prediction less certain).

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u},v} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}), 0 \right\}$$

C. W. Royer Optimization for ML CIMPA

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u}, v} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}), 0 \right\}$$

Minimize the sum of the losses for all examples;

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}), 0 \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2.$$

for $\lambda > 0$.

- Minimize the sum of the losses for all examples;
- Regularizing term to promote small-norm solutions (more on that later).

Different solutions

Source: S. J. Wright, Optimization Algorithms for Data Analysis, 2018.

- Red/Blue dots: data points labeled +1/-1;
- Red/Blue clouds: distribution of the text documents;
- Two linear classifiers;
- Rightmost plot: maximal-margin solution.

Example: Logistic regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$;
- Goal: Classification through a linear classifier $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$;
- Difference with SVM: we want probabilities of belonging to a class!

Example: Logistic regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$;
- Goal: Classification through a linear classifier $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$;
- Difference with SVM: we want probabilities of belonging to a class!

A probabilistic measure

We define an odds-like function

$$p(x; w) = (1 + e^{x^T w})^{-1} \in (0, 1).$$

• The parameters **w** should be chosen such that

$$\begin{cases} p(\mathbf{x}_i; \mathbf{w}) \approx 1 & \text{if } y_i = +1; \\ p(\mathbf{x}_i; \mathbf{w}) \approx 0 & \text{if } y_i = -1. \end{cases}$$

Example: Logistic regression (2)

Towards an objective function

$$p(\mathbf{x};\mathbf{w})=(1+e^{\mathbf{x}^{\mathrm{T}}\mathbf{w}})^{-1},$$

- Penalize cases where
 - $y_i = +1$ and $p(\mathbf{x}_i; \mathbf{w})$ is close to 0;
 - $y_i = -1$ and $p(\mathbf{x}_i; \mathbf{w})$ is close to 1;
- Use logarithm of the $p(x_i; w)$ in the cost function:
 - Motivation: Statistical interpretation (joint distribution);
 - Mathematical interest for gradient calculations.

Example: Logistic regression (2)

Towards an objective function

$$p(\mathbf{x};\mathbf{w}) = (1 + e^{\mathbf{x}^{\mathrm{T}}\mathbf{w}})^{-1},$$

- Penalize cases where
 - $y_i = +1$ and $p(x_i; w)$ is close to 0;
 - $y_i = -1$ and $p(\mathbf{x}_i; \mathbf{w})$ is close to 1;
- Use logarithm of the $p(x_i; w)$ in the cost function:
 - Motivation: Statistical interpretation (joint distribution);
 - Mathematical interest for gradient calculations.

Resulting function: logistic loss

$$f(\boldsymbol{w}) = \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) \right\}.$$

Example: Logistic regression (3)

Logistic regression problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) \right\}$$

Example: Logistic regression (3)

Logistic regression problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) \right\}$$

- The logistic loss is convex (but not strongly);
- To make it convex, possible to add a regularizing term $\frac{\mu}{2} \| \mathbf{w} \|^2$ \Rightarrow The problem becomes μ -strongly convex!

Example: Nonlinear regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$;
- Goal: Classification through a linear classifier $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$.

Example: Nonlinear regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$;
- Goal: Classification through a linear classifier $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$.

A loss function

- ullet We use a sigmoid function: $\phi(oldsymbol{x}_i;oldsymbol{w}) = \left(1 + e^{-oldsymbol{x}_i^{\mathrm{T}}oldsymbol{w}}
 ight);$
- Our goal is now to penalize the squared error $(y_i \phi(\mathbf{x}_i; \mathbf{w}))^2$.

Example: Nonconvex loss function (2)

The optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \frac{1}{1 + e^{-x_i^{\mathrm{T}} \boldsymbol{w}}} \right)^2.$$

C. W. Royer Optimization for ML CIMPA

Example: Nonconvex loss function (2)

The optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \frac{1}{1 + e^{-x_i^T \boldsymbol{w}}} \right)^2.$$

- Nonconvex problem;
- Nonlinear least-squares structure;
- Smooth: can apply gradient descent.

- Optimization problems in ML
 - Optimization problem and optimality
 - Optimization algorithms
- 2 Smooth optimization and gradient descent
- Beyond gradient descent

What's optimization?

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.

⇒ All of these can be considered as optimization.

What's optimization?

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.
- \Rightarrow All of these can be considered as optimization.

My definition

The purpose of optimization is to make the best decision out of a set of alternatives.

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} f(oldsymbol{w})$$
 subject to $oldsymbol{w} \in \mathcal{F}$

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} f(oldsymbol{w})$$
 subject to $oldsymbol{w} \in \mathcal{F}$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function;
- \bullet \mathcal{F} is the constraint/feasible set.

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} f(oldsymbol{w})$$
 subject to $oldsymbol{w} \in \mathcal{F}$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function;
- \bullet \mathcal{F} is the constraint/feasible set.

Maximizing f is equivalent to minimizing -f.

$$\min_{oldsymbol{w}\in\mathbb{R}^d}f(oldsymbol{w})$$
 subject to $oldsymbol{w}\in\mathcal{F}$

Local minimum (also called minimizer)

- A point w^* is a local minimum of the problem if there exists a neighborhood \mathcal{N} of w^* such that $f(w^*) \leq f(w) \ \forall w \in \mathcal{N} \cap \mathcal{F}$;
- A local minimum such that $f(\mathbf{w}^*) < f(\mathbf{w}) \ \forall \mathbf{w} \in \mathcal{N} \cap \mathcal{F}, \ \mathbf{w} \neq \mathbf{w}^*$ is called a strict local minimum.

Global minimum

A point w^* is a global minimum of the problem if $f(w^*) \le f(w) \ \forall w \in \mathcal{F}$.

Local and global solutions (2)

- In general, finding global solutions is hard;
- Local solutions can also be hard to find.

Local and global solutions (2)

- In general, finding global solutions is hard;
- Local solutions can also be hard to find.

Tractable cases

- When the objective function behaves nicely;
- Suitable properties of the constraint set (if any).

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

First-order necessary condition

If \mathbf{w}^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

First-order necessary condition

If \mathbf{w}^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

- This condition is only necessary;
- A point such that $\|\nabla f(\mathbf{w}^*)\| = 0$ can also be a local maximum or a saddle point.

Convexity

Convex set

A set $C \in \mathbb{R}^d$ is called **convex** if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

CIMPA

Convexity

Convex set

A set $C \in \mathbb{R}^d$ is called **convex** if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

Examples:

- \bullet \mathbb{R}^d ;
- Line segment: $\{t\mathbf{w}|t\in\mathbb{R}\}$ for some $\mathbf{w}\in\mathbb{R}^d$;
- Sphere: $\left\{ m{w} \in \mathbb{R}^d | \| m{w} \|_2^2 = \sum_{i=1}^d [m{w}]_i^2 \le 1 \right\}$.

Convex function

Generic definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1 - t) f(\boldsymbol{v}).$$

Generic definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t \, f(\boldsymbol{u}) + (1 - t) \, f(\boldsymbol{v}).$$

Examples:

- Linear function: $f(\mathbf{w}) = \mathbf{a}^{\mathrm{T}}\mathbf{w} + b$;
- Squared Euclidean norm: $f(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \mathbf{w}^T \mathbf{w}$.

Smooth convex functions

Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d o \mathbb{R}$ is convex if and only if

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}).$$

Smooth convex functions

Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d o \mathbb{R}$ is convex if and only if

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(v) \geq f(u) + \nabla f(u)^{\mathrm{T}}(v - u).$$

The other key inequality in optimization.

Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex.}$$

Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex.}$$

Theorem

Every local minimum of f is a global minimum.

Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex.}$$

Theorem

Every local minimum of f is a global minimum.

Corollary

If f is continuously differentiable, every point \mathbf{w}^* such that $\|\nabla f(\mathbf{w}^*)\| = 0$ is a global minimum of f.

Strong convexity

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ in \mathcal{C}^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

Gradient and strong convexity

Let $f: \mathbb{R}^d \to \mathbb{R}, \ f \in \mathcal{C}^1$. Then,

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}) + \frac{\mu}{2} \|\boldsymbol{v} - \boldsymbol{u}\|^2.$$

Strong convexity

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ in C^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

Theorem

Any strongly convex function in C^1 has a unique global minimizer.

Gradient and strong convexity

Let $f: \mathbb{R}^d \to \mathbb{R}, \ f \in \mathcal{C}^1$. Then,

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}) + \frac{\mu}{2} \|\boldsymbol{v} - \boldsymbol{u}\|^2.$$

- Optimization problems in ML
 - Optimization problem and optimality
 - Optimization algorithms
- 2 Smooth optimization and gradient descent
- Beyond gradient descent

Three ways to study optimization problems

- Mathematical: Prove existence of solutions, well-posedness of a problem. Study complex optimization formulations.
- **Computational**: Write a piece of software to solve specific or generic optimization problems in practice.
- Algorithmic: Design algorithms, establish theoretical guarantees and validate their practical implementation.

Three ways to study optimization problems

- Mathematical: Prove existence of solutions, well-posedness of a problem. Study complex optimization formulations.
- Computational: Write a piece of software to solve specific or generic optimization problems in practice.
- Algorithmic: Design algorithms, establish theoretical guarantees and validate their practical implementation.

This course is about the third category.

How to solve an optimization problem?

The ideal approach

- Find the solutions of $\|\nabla f(\mathbf{w})\| = 0$;
- Choose the one with the lowest function value.

How to solve an optimization problem?

The ideal approach

- Find the solutions of $\|\nabla f(\mathbf{w})\| = 0$;
- Choose the one with the lowest function value.

What's wrong with that?

- Solving a nonlinear equation directly is hard;
- There can be infinitely many solutions;
- The procedure has to be implemented eventually.

CIMPA

How we shall proceed

Iterative procedures

- Driving principle: given the current solution, move towards a (potentially) better point;
- Requires a certain amount of calculation at every iteration.

Our goal in the rest of the course

- Propose several algorithms;
- Analyze their theoretical behavior and guarantees;
- Check their practical appeal (lab sessions).

What do we expect?

In order to solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, we hope to achieve one of the following:

- The iterates should get close to a solution;
- The function values should get close to the optimum;
- The optimality conditions should get close to be satisfied.

What do we expect?

In order to solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, we hope to achieve one of the following:

- The iterates should get close to a solution;
- 2 The function values should get close to the optimum;
- The optimality conditions should get close to be satisfied.

Convergence of iterates

The method generates a sequence of points (iterates) $\{w_k\}_k$ such that

$$\|\boldsymbol{w}_k - \boldsymbol{w}^*\| \to 0$$
 when $k \to \infty$,

where \mathbf{w}^* is an optimal value of the problem.

(Typical of (strongly) convex functions.)

What do we expect? ('ed)

Convergence in function value

$$f(\mathbf{w}_k) \to f^*$$
 when $k \to \infty$,

where f^* is the optimal value of the problem. (Typical of (strongly) convex functions.)

What do we expect? ('ed)

Convergence in function value

$$f(\mathbf{w}_k) \to f^*$$
 when $k \to \infty$,

where f^* is the optimal value of the problem. (Typical of (strongly) convex functions.)

Convergence to a stationary point for differentiable f

$$\|\nabla f(\boldsymbol{w}_k)\| \to 0$$
 when $k \to \infty$.

More generic condition.

Why these conditions?

Unlike in theory, in practice:

- We do not know the optimal solution(s);
- We do not know the optimal value.

Why these conditions?

Unlike in theory, in practice:

- We do not know the optimal solution(s);
- We do not know the optimal value.

From an algorithmic standpoint,

- We can measure the behavior of the iterates;
- We can evaluate the objective and try to decrease it iteratively;
- We can evaluate/estimate the gradient norm and measure its decrease to zero.

Remark: Convergence and convergence rates

• In optimization, classical results are asymptotic:

$$Ex: \|\nabla f(\boldsymbol{w}_k)\| \to 0 \text{ when } k \to \infty.$$

Remark: Convergence and convergence rates

In optimization, classical results are asymptotic:

$$Ex: \|\nabla f(\boldsymbol{w}_k)\| \to 0 \text{ when } k \to \infty.$$

Global convergence rates are now very popular:

$$Ex: \|\nabla f(\boldsymbol{w}_k)\| = \mathcal{O}\left(\frac{1}{k}\right) \quad \Leftrightarrow \quad \exists C > 0, \|\nabla f(\boldsymbol{w}_k)\| \leq \frac{C}{k} \ \forall k.$$

An equivalent notion is that of a worst-case complexity bound:

Ex : Algorithm
$$\mathcal{O}\left(\epsilon^{-1}\right) \Leftrightarrow \exists C > 0, \ \|\nabla f(\boldsymbol{w}_k)\| \leq \epsilon \text{ when } k \geq \frac{C}{\epsilon}.$$

- Common in convex optimization;
- Standard in theoretical computer science/statistics.

On the computational side

Optimizers code in...

- C/C++/Fortran (high-performance computing)
- Matlab, Python (prototyping);
- Julia.

On the computational side

Optimizers code in...

- C/C++/Fortran (high-performance computing)
- Matlab, Python (prototyping);
- Julia.

Specific optimization modeling languages

- GAMS, AMPL, CVX are broad-spectrum languages;
- MATPOWER, PyTorch are domain-oriented;
- Can be interfaced with the languages above.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Important tools

- Derivatives and Taylor expansion;
- Convexity.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Important tools

- Derivatives and Taylor expansion;
- Convexity.

Algorithmic principle

- Iterative process: find a sequence of points that leads to a solution;
- Quantify how fast.

Outline

- Optimization problems in ML
- 2 Smooth optimization and gradient descent
- 3 Beyond gradient descent

General optimization problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w}).$$

Assumptions: *f* smooth, bounded below.

General optimization problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w}).$$

Assumptions: *f* smooth, bounded below.

Key properties

- Smoothness: We will exploit the gradient of f.
- In presence of convexity, get better guarantees.

Negative gradient direction

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), \quad f \in \mathcal{C}_L^{1,1}.$$

Consider any $\mathbf{w} \in \mathbb{R}^d$. Then, one of the two assertions below holds:

- Either \boldsymbol{w} is a local minimum and $\nabla f(\boldsymbol{w}) = 0$;
- ② Or the function f decreases locally from w in the direction of $-\nabla f(w)$. Proof: Taylor expansion.

Gradient descent method

Inputs: $\mathbf{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, $\varepsilon > 0$, $k_{\text{max}} \in \mathbb{N}$.

Set k = 0.

- Evaluate $\nabla f(\mathbf{w}_k)$; if $\|\nabla f(\mathbf{w}_k)\| < \varepsilon$ stop.
- 3 Increment k by 1; if $k = k_{max}$ stop, otherwise go to Step 1.

Gradient descent method

Inputs: $\mathbf{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, $\varepsilon > 0$, $k_{\text{max}} \in \mathbb{N}$.

Set k = 0.

- Evaluate $\nabla f(\mathbf{w}_k)$; if $\|\nabla f(\mathbf{w}_k)\| < \varepsilon$ stop.
- 3 Increment k by 1; if $k = k_{max}$ stop, otherwise go to Step 1.

Stopping criterion

- Convergence criterion: $\|\nabla f(\boldsymbol{w}_k)\| < \varepsilon$;
- Budget criterion (optional): $k = k_{max}$.

Choosing the stepsize

Constant stepsize

If
$$f \in \mathcal{C}_L^{1,1}$$
, set $\alpha_k = \frac{1}{L}$:

- Guaranteed decrease at every iteration;
- But requires knowledge of L.

Decreasing stepsize

Choose α_k such that $\alpha_k \to 0$.

- Guarantees that f will decrease eventually (for small stepsizes);
- But steps get smaller and smaller.

Choosing the stepsize (2)

What's done in optimization

- Line search: At every iteration, α_k is obtained by *backtracking* on a subset of values (ex: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$).
- The chosen value must satisfy certain conditions (ex: decreasing the function value).

What's done in optimization for ML

- Start with a fixed value until the method starts stalling (gradient gets small);
- Decrease the step size, then repeat.

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}), \qquad f \in \mathcal{C}_L^{1,1}.$$

Gradient descent

- Iteration: $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$, stop if $\nabla f(\mathbf{w}_k) = 0$.
- Typical choice in theory : $\alpha_k = \frac{1}{L}$.

Theoretical analysis

- Convergence: Show that $\|\nabla f(\boldsymbol{w}_k)\| \to 0$;
- Convergence rate: Look at how fast $\|\nabla f(\mathbf{w}_k)\|$ decreases.
- Worst-case complexity: Equivalent to convergence rate, measures the cost of satisfying $\|\nabla f(\mathbf{w}_k)\| \le \epsilon$ for $\epsilon > 0$.

Complexity measures

Nonconvex case

- Goal: $\|\nabla f(\mathbf{w}_k)\| \leq \epsilon$;
- Get close to being a stationary point.

Convex/Strongly convex case

- Goal: $f(\boldsymbol{w}_k) f^* \leq \epsilon$, with $f^* = \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$;
- Get close to the optimal function value.

Complexity results for gradient descent

Theorem (nonconvex functions)

If $f \in \mathcal{C}_L^{1,1}$ and $\alpha_k = \frac{1}{L}$, GD finds \boldsymbol{w}_k such that $\|\nabla f(\boldsymbol{w}_k)\| \le \epsilon$ in at most $\mathcal{O}(\epsilon^{-2})$ iterations.

Theorem (convex functions)

If $f \in \mathcal{C}_L^{1,1}$ is convex and $\alpha_k = \frac{1}{L}$, GD finds \boldsymbol{w}_k such that $f(\boldsymbol{w}_k) - f^* \leq \epsilon$ in at most

- $\mathcal{O}(\epsilon^{-1})$ iterations;
- $\mathcal{O}(\log(\epsilon^{-1}))$ iterations if f is strongly convex.

Complexity results for gradient descent (2)

Interpretation

- GD on nonconvex functions: $\mathcal{O}(\epsilon^{-2})$;
- GD on convex functions: $\mathcal{O}(\epsilon^{-1})$;
- GD on strongly convex functions: $\mathcal{O}(\log(\epsilon^{-1}))$

At a lower cost, can get better guarantees for convex and strongly convex problems.

Complexity VS Convergence rate

- Nonconvex: $\|\nabla f(\boldsymbol{w}_k)\| \leq C/k^{1/2}$;
- Convex:

$$f(\mathbf{w}_k) - f^* \le \begin{cases} C/k & \text{if } f \text{ convex;} \\ C(1 - \frac{\mu}{L})^k & \text{if } f \text{ } \mu\text{-strongly convex.} \end{cases}$$

Outline

- Optimization problems in ML
- 2 Smooth optimization and gradient descent
- Beyond gradient descent

Nonsmooth functions

Definition

A function is called nonsmooth if it is not differentiable everywhere.

NB: Nonsmooth \neq Discontinuous.

Example of nonsmooth functions

- $w \mapsto |w|$ from \mathbb{R} to \mathbb{R} ;
- $w \mapsto ||w||_1$ from \mathbb{R}^d to \mathbb{R} ;
- ReLU: $w \mapsto \max\{w, 0\}$ from \mathbb{R}^d to \mathbb{R} .

Optimizing nonsmooth problems

- Optimization methods use derivatives to make progress;
- Nonsmooth problems may not have derivatives;
- In general, generalized derivatives are used (many definitions).

Alternatives

- When possible, use a smooth reformulation (involving constraints): Ex) $\min_{w \in \mathbb{R}} |w|$ is equivalent to $\min_{w,t^+,t^- \in \mathbb{R}} t^+ t^-$ s. t. $w = t^+ t^-, t^+ \geq 0, t^- \geq 0$.
- When the function is Lipschitz continuous, it has a gradient at almost every point.
 - Ex) Neural networks using activation functions like ReLU.

 Warning: The functions are often non-differentiable at their minima.

Subgradients for nonsmooth convex problems

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. A vector $\mathbf{g} \in \mathbb{R}^n$ is called a subgradient of f at $\mathbf{w} \in \mathbb{R}^n$ if

$$\forall z \in \mathbb{R}^n, \qquad f(z) \geq f(w) + g^{\mathrm{T}}(z - w).$$

The set of all subgradients of f at w is called the *subdifferential* of f at w, and denoted by $\partial f(w)$.

- If f differentiable at \mathbf{w} , $\partial f(\mathbf{w}) = {\nabla f(\mathbf{w})}$;
- $0 \in \partial f(\mathbf{w}) \Leftrightarrow \mathbf{w}$ minimum of f!

Example: Let $f : \mathbb{R} \to \mathbb{R}$, f(w) = |w|.

$$\partial f(w) = \begin{cases} -1 & \text{if } w < 0 \\ 1 & \text{if } w > 0 \\ [-1, 1] & \text{if } w = 0. \end{cases}$$

Iteration for $\min_{\boldsymbol{w}} f(\boldsymbol{w})$, f convex nonsmooth

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \mathbf{g}_k, \quad \mathbf{g}_k \in \partial f(\mathbf{w}_k).$$

- Flexibility in choosing the subgradient;
- Choosing stepsize is more difficult than in gradient descent because the function does not vary smoothly: a subgradient can be a direction of increase!

The linear SVM problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{1 - y_i \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}, 0\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2.$$

- The problem is regularized (by a data-independent term);
- The purpose of regularization is to enforce specific properties/structure on a solution.

General form of a regularized problem

$$\min_{\pmb{w} \in R^d} \underbrace{f(\pmb{w})}_{loss \ function} + \underbrace{\lambda \Omega(\pmb{w})}_{regularization \ term}$$

where $\lambda > 0$ is called a regularization parameter.

Example: Ridge regularization

$$\min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2.$$

Interpretations:

- Equivalent to enforcing a constraint on $\|\mathbf{w}\|_2^2 = \sum_{i=1}^d w_i^2$;
- Penalizes ws with large components;
- The variance of the solution w. r. t. the data is reduced:
- The objective function is strongly convex.

Nonsmooth regularized problems

Goal: Induce sparsity

- We want a solution $\mathbf{w} \in \mathbb{R}^d$ that explains the data with as few nonzero components as possible;
- Ideal problem: $\min_{\boldsymbol{w}} f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_0$, where $\|\boldsymbol{v}\|_0 = |\{i|[\boldsymbol{v}]_i \neq 0\}|$. Issues: The ℓ_0 quasi-norm is nonsmooth, discontinuous and introduces combinatorics on the problem.

A better approach: LASSO regularization

LASSO=Least Absolute Shrinkage and Selection Operator

$$\min_{oldsymbol{w} \in \mathbb{R}^d} f(oldsymbol{w}) + \lambda \|oldsymbol{w}\|_1, \quad \|oldsymbol{w}\|_1 = \sum_{i=1}^d |w_i|.$$

- $\|\cdot\|_1$ is convex, continuous, and a norm;
- It is nonsmooth but subgradients can be computed.

Solving regularized problems

Setup: Composite optimization

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \Omega(\boldsymbol{w}).$$

- $f \in C^{1,1}$;
- Ω convex but nonsmooth.

Proximal approach

- Classical optimization paradigm: replace a problem by a sequence of easier (sub)problems;
- Exploit smoothness of f, use the structure of Ω to solve the subproblems;
- Those should be solvable efficiently.

56

Proximal Gradient Descent (PGD)

Iteration of PGD

$$\label{eq:wk+1} \boldsymbol{w}_{k+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ f(\boldsymbol{w}_k) + \nabla f(\boldsymbol{w}_k)^{\mathrm{T}} (\boldsymbol{w} - \boldsymbol{w}_k) + \frac{1}{2\alpha_k} \|\boldsymbol{w} - \boldsymbol{w}_k\|_2^2 + \lambda \Omega(\boldsymbol{w}) \right\}.$$

- If $\Omega \equiv 0$, the solution is $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$: This is the Gradient Descent iteration!
- In general, the cost of an iteration is 1 gradient call + 1 proximal subproblem solve.

Properties

- Complexity bounds exist for nonconvex and mostly for convex f;
- Stepsize choices can be designed based on those for GD;

Example of proximal method: ISTA

Context

- Solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1$;
- Common problem in image processing;
- Explicit form of the proximal subproblem solution.

58

Example of proximal method: ISTA

Context

- Solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1$;
- Common problem in image processing;
- Explicit form of the proximal subproblem solution.

Iteration of ISTA: Iterative Soft-Thresholding Algorithm

Define \boldsymbol{w}_{k+1} componentwise: for any $i \in \{1, \dots, d\}$,

$$[\mathbf{w}_{k+1}]_i = \begin{cases} [\mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)]_i + \alpha_k \lambda & \text{if } [\mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)]_i < -\alpha_k \lambda \\ [\mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)]_i - \alpha_k \lambda & \text{if } [\mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)]_i > \alpha_k \lambda \\ 0 & \text{if } [\mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)]_i \in [-\alpha_k \lambda, \alpha_k \lambda]. \end{cases}$$

Optimization problems in ML

- Common feature: Depend on data.
- Distinctive features: Convexity, smoothness, regularization.

Gradient descent

- The basic block for optimization.
- Applies to convex and nonconvex functions.
- Some freedom in the implementation (see lab session).

Beyond gradient descent

- Nonsmoothness⇒ Subgradient methods!
- Regularization⇒ Proximal methods!
- Data dependency? ⇒ See next lecture.

Textbooks:

- A. Beck, First-order methods in optimization, MOS-SIAM Series on Optimization, 2017.
 - ⇒ *Chapter 10* is related to proximal methods, and contains many examples of explicit proximal step calculations.
- J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Com- putation, and Applications, Cambridge University Press, 2022.
 - ⇒ Numerous applications, freely available online.
- S. J. Wright and B. Recht, Optimization for Data Analysis, Cambridge University Press, 2022.
 - ⇒ Textbook with full analysis for gradient descent.