Stable Homotopy Groups of Spheres [DRAFT]

Contents

1	Introduction	2
2	The Steenrod algebra	3
3	Spectra	3
	3.1 Categorical nonsense	3
	3.2 Definitions and examples	4
	3.3 Homology and cohomology	5
	3.4 Cofibration sequences	7
	3.5 Eilenberg-MacLane spectra	7
4	The Adams spectral sequence	7
	4.1 Spectral sequences	7
	4.2 Exact couples	9
	4.3 The Adams spectral sequence	10
	4.4 Multiplicative structure	
5	Calculating stable homotopy groups	13
	5.1 The E_2 page	13
	5.2 Resolving extensions	
		15
A	Algebra	16
	A.1 Free resolutions	16
В	Topology	16
	B.1 Suspension	16
	B.2 Other basic constructions	
	B.3 Cell complexes	
\mathbf{C}	Notes to self	18
	C.1 Vague problems and Questions	18
	C.2 To do	
	C.3 Other notes	

1 Introduction

- Define homotopy groups
- Freudenthal's suspension theorem: if $\pi_i(X) = 0$ for $i \leq k$ (i.e. X is k-connected) then the map

$$\pi_n(X) \rightarrow \pi_{n+1}(\Sigma X)$$

 $[\gamma: S^n \rightarrow X] \mapsto [\Sigma \gamma: \Sigma S^n = S^{n+1} \rightarrow \Sigma X]$

is an isomorphism for $n \leq 2k$ and surjective for n = 2k + 1

- This implies $\pi_{n+k}(S^n)$ depends only on k for $n \geq k+2$
- (Obviously be careful with basepoints above)
- Suppose X is k-connected. Then, for $k \geq 0$, $0 = \pi_k(X) \cong \pi_{k+1}(\Sigma X)$, so whenever a space is k-connected its suspension is k+1-connected.
- As you take suspensions, then, your successive bounds are $n \leq 2k$, $n+1 \leq 2k+2 \implies n \leq 2k+1$, $n \leq 2k+2$, etc ... so the sequence $\pi_n(X) \to \pi_{n+1}(\Sigma X) \to \cdots$ will eventually stabilise.
- Thus, if you take the colimit of that direct system, it'll just equal the stable value, with the higher legs just being the inverse isomorphisms.
- [12], Cor 1.9 [not 100% convinced of how this follows, but believing it for now]: if X is a CW complex of dimension d and Y a (k-1)-connected space, then the suspension homomorphism¹ $[X,Y] \to [\Sigma X, \Sigma Y]$ is bijective if d < 2k-1 and surjective if d = 2k-1.

Miscellaneous facts I might need later:

- Cohomology [possibly only of pointed CW complexes] is representable², and its representing object is the Eilenberg-MacLane space. i.e. $H^n(-;G) \cong \text{Hom}(-,K(G,n))$.
- \mathscr{A}_2 is generated as an algebra by elements Sq^{2^k} ([5], Prop 4L.8).
- The map $\mathscr{A}_2 \to \tilde{H}^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}), Sq^I \mapsto Sq^I(\iota_n)$ is an isomorphism from the degree d part of \mathscr{A}_2 onto $H^{n+d}(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z})$ for $d \geq n$. In particular, the admissible monomials Sq^I form an additive basis for \mathscr{A}_2 . Thus, \mathscr{A}_2 is exactly the algebra of all $\mathbb{Z}/2\mathbb{Z}$ cohomology operations that are stable, commuting with suspension ([6], Cor 5.38).
- "Stable homotopy groups are a homology theory" (whatever that means)
- Hurewicz theorem: for any path-connected space X and n > 0 there exists a group homomorphism $h_*: \pi_n(X) \to H_n(X)$. For n = 1 this induces an isomorphism $\pi_1^{ab}(X) \cong H_1(X)$. For $n \geq 2$, if X is (n-1)-connected then $\tilde{H}_i(X) = 0$ for all i < n, and the map $h_*: \pi_n(X) \to H_n(X)$ is an isomorphism.

[12], [4], [5]

 $^{^{1}}$ Hang on, the what?? X isn't the suspension of anything, why on earth would this be a group?

²As a set, or is this some sort of enriched thing? If it's enriched, is that over **Ab** or **Rng**? [5] says on p394 that there is a natural group structure on $\operatorname{Hom}(X,K(G,n))$ such that the natural isomorphism $\operatorname{Hom}(X,K(G,n)) \to H^n(X;G)$ is in fact an isomorphism of abelian groups. So, it's over **Ab**? N.B: There's a lot of talk about 'reduced cohomology theories', so a good next step would be to figure out what those are - if they only involve groups and not rings, maybe the cup product on H^* is not relevant here.

2 The Steenrod algebra

The following is from [5] 4L.

- There are maps $Sq^i: H^n(-; \mathbb{Z}/2\mathbb{Z}) \to H^{n+i}(-; \mathbb{Z}/2\mathbb{Z})$ for each i, and they satisfy the following properties:
 - 1. $Sq_X^i(f^*(\alpha)) = f^*(Sq_Y^i(\alpha))$ for $f: X \to Y$ (i.e. Sq^i is a natural transformation).
 - 2. $Sq_X^i(\alpha+\beta) = Sq_X^i(\alpha) + Sq_X^i(\beta)$ (i.e. Sq_X^i respects the group operation for all X).
 - 3. $Sq^i(\alpha \smile \beta) = \sum_{0 \le j \le i} (Sq^j(\alpha) \smile Sq^{i-j}(\beta))$ (the Cartan formula)
 - 4. $Sq^i(\sigma(\alpha)) = \sigma(Sq^i(\alpha))$ where $\sigma: H^n(X; \mathbb{Z}/2\mathbb{Z}) \to H^{n+1}(\Sigma X; \mathbb{Z}/2\mathbb{Z})$ is the "suspension isomorphism given by reduced cross product with a generator of $H^1(S^1; \mathbb{Z}/2\mathbb{Z})$ ". [see: [5], p219. N.B: I think this "relative cross product" theory is required you can argue that there is an isomorphism via MV, but this point says that it's this specific one. Maybe they're the same, but Hatcher doesn't say that anywhere and there could be many isomorphisms.]
 - 5. $Sq^{i}(\alpha) = \alpha^{2}$ if $i = \deg(\alpha)$ and $Sq^{i}(\alpha) = 0$ if $i > \deg(\alpha)$.
 - 6. $Sq^0 = id$.
 - 7. Sq^1 is the " $\mathbb{Z}/2\mathbb{Z}$ Bockstein homomorphism β associated with the coefficient sequence $0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ ".
- Define $Sq := Sq^0 + Sq^1 + \cdots$. Then $Sq(\alpha \smile \beta) = Sq(\alpha) \smile Sq(\beta)$ (since $(Sq(\alpha \smile \beta))_n = \sum_i Sq^i(\alpha) \smile Sq^{n-i}(\beta) = (Sq(\alpha) \smile Sq(\beta))_n$). Thus, Sq is a ring homomorphism.
- Adem relations:

$$Sq^{a}Sq^{b} = \sum_{j} {b-j-1 \choose a-2j} Sq^{a+b-j} Sq^{j} \quad \text{if } a < 2b,$$

where $\binom{m}{n}$ is zero if m or n is negative, or m < n, and $\binom{m}{0} = 1$ for $m \ge 0$.

DEFINITION 2.0.1. The Steenrod algebra \mathscr{A}_2 is the algebra over $\mathbb{Z}/2\mathbb{Z}$ that is the quotient of the algebra of polynomials in the noncommuting variables $Sq^1, Sq^2, ...$ by the two-sided ideal generated by the Adem relations. Thus, for every space X, $H^*(X; \mathbb{Z}/2\mathbb{Z})$ is a module over \mathscr{A}_2 .

• \mathscr{A}_2 is graded, and its elements of degree k are those that map $H^n(X; \mathbb{Z}/2\mathbb{Z})$ to $H^{n+k}(X, \mathbb{Z}/2\mathbb{Z})$ for all n. [Presumably you've fixed a space X while you're doing all this?]

DEFINITION 2.0.2. Write Sq^I for the monomial $Sq^{i_1}Sq^{i_2}\cdots Sq^{i_n}$. Then Sq^I is admissible if $i_j \geq 2i_{j+1}$ for all $0 \leq j < n$.

Note the admissible monomials are exactly those to which no Adem relations can be applied. Thus, \mathscr{A}_2 is generated as a $\mathbb{Z}/2\mathbb{Z}$ module by admissible monomials.

3 Spectra

3.1 Categorical nonsense

• [12]: There is a category \mathcal{H} of finite based CW complexes, with $\operatorname{Hom}(X,Y) =: [X,Y]$ the set of homotopy classes of base-point preserving maps $X \to Y$.

- There is a category $\mathbf{St}(\mathcal{H})$ of finite based CW complexes, with $\mathrm{Hom}(X,Y) =: \{X,Y\}$ the set $\mathrm{colim}_i[\Sigma^i X, \Sigma^i Y]$ [it's just a colimit of sets, and \mathbf{Set} is cocomplete, so we should be fine. [12] says it's a group³] [Also, how do these guys compose?]
- There is a functor $\mathcal{H} \to \mathbf{St}(\mathcal{H})$. [12] doesn't say what this is but it's presumably the one that is the identity on objects and sends $[f:X\to Y]\in [\Sigma^0X,\Sigma^0Y]$ to whatever it gets sent to in $\{X,Y\}$ using the universal property of the colimit. Uniqueness makes it functorial, etc.
- We have a fully faithful functor $\mathbf{St}(\mathcal{H}) \to \mathbf{St}(\mathcal{H})$ given by the suspension on objects, and the unique isomorphism $\{X,Y\} \to \{\Sigma X, \Sigma Y\}$ on maps (such an isomorphism exists, since both of those things are colimits for $[\Sigma^i X, \Sigma^i Y]$ one of the sequences is cut off at the beginning, but it doesn't matter because both reach the stable value (see above discussion and [12] 1.9), aka the colimit).
- It's not an equivalence, because not every object is isomorphic to a suspension (e.g. anything not connected, since suspensions always connected)
- We can formally adjoin desuspensions $\Sigma^{-n}X$ for all n [does this mean just putting the objects there and defining $\operatorname{Hom}(Y, \Sigma^{-n}X) := \operatorname{Hom}(\Sigma^n Y, X)$ and $\operatorname{Hom}(\Sigma^{-n}X, Y) := \operatorname{Hom}(X, \Sigma^n Y)$?], but this category does not have weak colimits (i.e. colimits w/o uniqueness property). [why does it not, and why do we even want that?]
- We instead consider formal sequences of desuspensions $X_0 \to \Sigma^{-1} X_1 \to \cdots$, or sequences (X_n) and maps $\Sigma X_n \to X_{n+1}$, i.e. spectra. [and this fixes the problem?]

3.2 Definitions and examples

Below follows [6], Section 5.2.

[Maybe I could also look at [5] p454 onwards?]

DEFINITION 3.2.1. A spectrum is a collection of pointed topological spaces $\{X_n\}_{n\in\mathbb{N}}$, together with basepoint-preserving maps $\sigma_n: \Sigma X_n \to X_{n+1}$.

EXAMPLE 3.2.2. Let X be a topological space. The suspension spectrum of X, denoted by $\Sigma^{\infty}X$, has $X_n = \Sigma^n X$ and $\sigma_n = \mathrm{id} : \Sigma X_n \to X_{n+1}$.

We write $\mathbb{S} := \Sigma^{\infty} S^0$, and call \mathbb{S} the *sphere spectrum*.

EXAMPLE 3.2.3. The Eilenberg-MacLane spectrum $\mathbb{K}(G,m)$ has $(\mathbb{K}(G,m))_n$ a CW complex K(G,m+n) and $\sigma_n: \Sigma K(G,m+n) \to K(G,m+n+1)$ is the adjoint of the CW approximation $K(G,m+n) \to \Omega K(G,m+n+1)$.

DEFINITION 3.2.4. Let $X = \{X_n\}$ be a spectrum. We define $\pi_i(X) = \operatorname{colim}_n \pi_{i+n}(X_n)$, where the map $\pi_{i+n}(X_n) \to \pi_{i+n+1}(X_{n+1})$ is given by the composition

$$\pi_{i+n}(X_n) \xrightarrow{\Sigma} \pi_{i+n+1}(\Sigma X_n) \xrightarrow{(\sigma_n)_*} \pi_{i+n+1}(X_{n+1}).$$

Example 3.2.5. If X is a topological space, then $\pi_i(\Sigma^{\infty}X) = \pi_i^S(X)$, the ith stable homotopy group of X.

³The colimit is equal to the stable value (which exists, by the corollary). After Σ^2 , these guys are all groups, so the colimit also has a group structure inherited from whatever $[\Sigma^k X, \Sigma^k Y]$ it's equal to. N.B: Remarks about cocompleteness of **Set** are misleading because that doesn't actually matter - any sequence that stabilises in any category will have a filtered colimit equal to that stable value, you don't need any extra conditions.

DEFINITION 3.2.6. A CW spectrum is a spectrum X consisting of CW complexes X_n with the maps $\Sigma X_n \hookrightarrow X_{n+1}$ inclusions of subcomplexes.

DEFINITION 3.2.7. Let X be a CW spectrum. Then the k-cells of X are the equivalence classes of non-basepoint (k+n)-cells in X_n , where two cells are equivalent if one is an m-fold suspension of the other.

DEFINITION 3.2.8. A CW spectrum X is *connective* if it has no cells below a given dimension. Further, X is *finite* if it has only finitely many cells, and *of finite type* if it has only finitely many cells in each dimension.

EXAMPLE 3.2.9. If X is a finite (resp. finite type) CW complex, then Σ^{∞} is a finite (resp. finite type) CW spectrum. In particular, S is a finite CW spectrum with a unique cell in dimension 1.

3.3 Homology and cohomology

[From Hatcher: "the inclusions $\Sigma X_n \hookrightarrow X_{n+1}$ induce inclusions $C_*(X_n; G) \hookrightarrow C_*(X_{n+1}; G)$ with a dimension shift to account for the suspension". Below is my vague explanation of what I understand this to mean.

 $C_i(X_n; G)$ is the free abelian group on maps $\Delta^i \to X_n$. I claim $\Sigma \Delta^i \cong \Delta^{i+1}$. If this is true, it gives a map

$$C_i(X_n; G) \to C_{i+1}(\Sigma X_n; G)$$

 $f \mapsto \Sigma f.$

This is an injection, by Remark B.1.3. We also have an injection $C_{i+1}(\Sigma X_n; G) \to C_{i+1}(X_{n+1}; G)$ induced by the structure map σ_n , so we get an injection $C_i(X_n; G) \hookrightarrow C_{i+1}(X_{n+1}; G)$, which indeed has a dimension shift.

We then have that "the union $C_*(X;G)$ of this increasing sequence of chain complexes is then a chain complex having one G summand for each cell of X". I think that

$$C_n(X;G) = \bigcup_{i \in \mathbb{Z}} C_{i+n}(X_i;G),$$

so that there's a G summand for every i + n cell of X_i up to treating suspensions of cells as equivalent to the cells themselves (since they include in), i.e. a G summand for every n-cell of X, since that's how we defined them.

We define H^* and H_* to be the cohomology and homology of this chain complex, respectively.]

DEFINITION 3.3.1. Let $X = \{X_n\}$ be a CW spectrum. A subspectrum X' of X is a sequence of subcomplexes $\{X'_n \subseteq X_n\}$ satisfying $\Sigma X'_n \subseteq X'_{n+1}$. The subspectrum X' is cofinal if, for each n and each cell e^i_α of X_n , the cell $\Sigma^k e^i_\alpha$ belongs to X'_{n+k} for all sufficiently large k.

[If $\Sigma^k e^i_\alpha$ belongs to X'_{n+k} then $\Sigma^{k+1} e^i_\alpha$ belongs to $\Sigma X'_{n+k} \hookrightarrow X'_{n+k+1}$, so if it happens once it'll happen for all time after that. Thus, if X', X'' are cofinal spectra of X with $\Sigma^k e^i_\alpha$ a cell of X'_{n+k} and $\Sigma^l e^i_\alpha$ a cell of X''_{n+l} ($l \geq k$) then $\Sigma^l e^i_\alpha$ is a cell of X'_{n+l} and therefore of $X'_{n+l} \cap X''_{n+l}$. In other words, the intersection of two cofinal spectra is a cofinal spectrum.]

DEFINITION 3.3.2. Let X, Y be CW spectra. A strict map $f: X \to Y$ is a sequence of

cellular maps $f_n: X_n \to Y_n$ such that the diagram below commutes.

$$\begin{array}{ccc}
\Sigma X_n & \xrightarrow{\sigma_n} & X_{n+1} \\
\sigma f_n \downarrow & & \downarrow f_{n+1} \\
\Sigma Y_n & \xrightarrow{\sigma_n} & Y_{n+1}
\end{array}$$

[this induces maps $\pi_i(X) \to \pi_i(Y)$, $H^*(Y) \to H^*(X)$, $H_*(X) \to H_*(Y)$.]

DEFINITION 3.3.3. A map of CW spectra $f: X \to Y$ is an equivalence class of strict maps $f': X' \to Y$ with X' a subspectrum of X, where two strict maps $f': X' \to Y$ and $f'': X'' \to Y$ are equivalent if they agree on some common cofinal spectrum.

[this also induces maps $\pi_i(X) \to \pi_i(Y)$, $H^*(Y) \to H^*(X)$, $H_*(X) \to H_*(Y)$.]

[check composition is well defined]

[working definition of equivalence below:]

DEFINITION 3.3.4. Two spectra X, Y are equivalent if there are maps $f: X \to Y$ and $g: Y \to X$ such that $fg = \mathrm{id}_Y$ and $gf = \mathrm{id}_X$.

Note that a spectrum is equivalent to any of its cofinal subspectra.

[A spectrum is always equivalent to the suspension of some other spectrum]

DEFINITION 3.3.5. A homotopy of maps between spectra is a map $X \times I \to Y$, where $X \times I$ is the spectrum with $(X \times I)_n = X_n \times_{\text{red}} I$.

Note that $\Sigma(X_n \times_{\text{red}} I) = \Sigma X_n \times_{\text{red}} I$. The set of homotopy classes of maps $X \to Y$ is denoted by [X, Y].

REMARK 3.3.6. For any CW spectra Z, $[\Sigma^{\infty}S^t, Z] = \pi_t(Z)$. [they satisfy the same universal property]

[[1] says on p171 that "[$\Sigma X, Z$] is obviously a group, because in ΣX we have a spare suspension coordinate out in front to manipulate. And for the same reason, [$\Sigma^2 X, Z$] is an abelian group. But now we can give [X, Y] the structure of an abelian group, because [X, Y] is in 1-1 correspondence with [$\Sigma^2 X, \Sigma^2 Y$] and we pull back the group structure on that. So now our sets of morphisms [X, Y] are abelian groups, and it's easy to see that composition is bilinear".

Various claims:

- The stuff about normal CW complexes and their groups of maps (i.e. Remark B.1.5) translates to tell me the appropriate things about spectra and their groups of maps.
- After checking a lot of things, I can eventually conclude that [X,Y] is an abelian group for spectra X,Y.]

[The suspension map $[X,Y] \to [\Sigma X, \Sigma Y]$ is an isomorphism of groups (important later!)]

[Lemma B.3.4 and Theorem B.3.3 are both true for CW spectra too]

[Whitehead's theorem: a map between CW spectra that induces isomorphisms on all homotopy groups is a homotopy equivalence.]

[Prop: If a CW spectrum X is n-connected in the sense that $\pi_i(X) = 0$ for $i \leq n$, then X is homotopy equivalent to a CW spectrum with no cells of dimension $\leq n$]

3.4 Cofibration sequences

DEFINITION 3.4.1. Let $X = \{X_n\}, Y = \{Y_n\}$ be spectra. Then their wedge sum is $X \vee Y := \{X_n \vee Y_n\}$. Note that Remark B.2.5 gives us an inclusion $\Sigma(X_n \vee Y_n) \hookrightarrow X_{n+1} \vee Y_{n+1}$.

DEFINITION 3.4.2. Let X be a spectrum, $A \subseteq X$ a subspectrum. Then A is *closed* in X if for every cell e^n_α of X_n , if $\Sigma^k e^n_\alpha \in A_{n+k}$ then $e^n_\alpha \in A_n$.

Note that any subspectrum is cofinal in (and thus equivalent to) its closure. We define X/A to be the CW spectrum with $(X/A)_n = X_n/A'_n$, where $A' = \{A'_n\}$ is the closure of A.

Note that a quotient of connective spectra of finite type is again a connective spectrum of finite type. [This is obvious - the quotient has fewer cells in each dimension then the original space, it is not going to magically generate new ones.]

The rest of the section:

]

• Fact: for spectra X, Y and a subspectrum $A \subseteq X$ we have exact sequences⁴

$$\cdots \to [\Sigma X, Y] \to [\Sigma A, Y] \to [X/A, Y] \to [X, Y] \to [A, Y]$$
$$[Y, A] \to [Y, X] \to [Y, X/A] \to [Y, \Sigma A] \to [Y, \Sigma X] \to \cdots$$

3.5 Eilenberg-MacLane spectra

Theorem 3.5.1 ([6], Prop 5.45). There are natural isomorphisms $H^m(X;G)\cong [X,K(G,m)]$ for all CW spectra.

PROPOSITION 3.5.2 ([6], Prop 5.46). The natural map[?] $[X, \bigvee_i \mathbb{K}(G, n_i)]$ is an isomorphism if X is a connective spectrum of finite type and $n_i \to \infty$ as $i \to \infty$.

4 The Adams spectral sequence

4.1 Spectral sequences

[Maybe add some notes from [12]]

[Some notes from [9], C2 - just here as a placeholder/reference and I'll probably completely rewrite this bit.]

DEFINITION 4.1.1. A differential bigraded module E over a ring R is a collection of R-modules $\{E^{p,q}\},\ p,q\in\mathbb{Z}$, together with a map $d:E^{p,q}\to E^{p+s,q-s+1}$ for each p,q and some fixed $s\in\mathbb{Z}$, satisfying $d^2=0$.

We can take the homology of (E, d):

$$H^{p,q}(E^{*,*},d) = \ker(d:E^{p,q} \to E^{p+s,q-s+1})/\operatorname{im}(d:E^{p-s,q+s-1} \to E^{p,q}).$$

DEFINITION 4.1.2. A spectral sequence (of cohomological type⁵) is a collection of differential bigraded R-modules $\{E_r^{*,*}, d_r\}, r \in \mathbb{N}$, with the differentials d_r of bidegree (r, 1-r). These satisfy the further condition that for all $p, q, r, E_{r+1}^{p,q} \cong H^{p,q}(E_r^{*,*}, d_r)$.

⁴Check if I actually need the first one.

⁵I'll have to rewrite this section because the Adams spectral sequence is not a cohomological or a homological spectral sequence I don't think - the grading is $d_r: E^{s,t} \to E^{s+r,t+r-1}$.

We will sometimes write $d_r^{p,q}$ for the differential $d_r: E^{p,q} \to E^{p+r,q-s+1}$.

Consider the term $E_2^{*,*}$. Define

$$Z_2^{p,q} := \ker d_2^{p,q} \quad \text{and} \quad B_2^{p,q} := \operatorname{im} d_2^{p-2,q+1}.$$

The condition $d^2=0$ implies that $B_2^{p,q}\subseteq Z_2^{p,q}\subseteq E_2^{p,q}$, and by definition we have $E_3^{p,q}\cong Z_2^{p,q}/B_2^{p,q}$.

Now, write

$$Z_3^{p,q} := \ker d_3^{p,q}$$
 and $B_3^{p,q} := \operatorname{im} d_3^{p-3,q+2}$.

Since $Z_3^{p,q}\subseteq E_3^{p,q}$, it can be written as $\overline{Z}_3^{p,q}/B_2^{p,q}$ for some $\overline{Z}_3^{p,q}\subseteq Z_2^{p,q}$. Similarly, $B_3^{p,q}\cong \overline{B}_3^{p,q}/B_2^{p,q}$ for some $\overline{B}_3^{p,q}\subseteq Z_2^{p,q}$. Thus,

$$E_4^{p,q} \cong Z_3^{p,q}/B_3^{p,q} \cong \frac{\overline{Z}_2^{p,q}/B_2^{p,q}}{\overline{B}_3^{p,q}/B_2^{p,q}} \cong \overline{Z}_3^{p,q}/\overline{B}_3^{p,q}.$$

Iterating this process, we present the spectral sequence as an infinite tower of submodules of $E_2^{p,q}$:

$$B_2^{p,q}\subseteq \overline{B}_3^{p,q}\subseteq \cdots \subseteq \overline{B}_n^{p,q}\subseteq \cdots \subseteq \overline{Z}_n^{p,q}\subseteq \cdots \subseteq \overline{Z}_3^{p,q}\subseteq Z_2^{p,q}\subseteq E_2^{p,q},$$

with the property that $E_{n+1}^{p,q} \cong \overline{Z}_n^{p,q}/\overline{B}_n^{p,q}$. The differential $d_{n+1}^{p,q}$ can be taken as a map $\overline{Z}_n^{p,q}/\overline{B}_n^{p,q} \to \overline{Z}_n^{p,q}/\overline{B}_n^{p,q}$ with kernel $\overline{Z}_{n+1}^{p,q}/\overline{B}_n^{p,q}$ and image $\overline{B}_{n+1}^{p,q}$. The short exact sequence induced by d_{n+1} ,

$$0 \to \overline{Z}_{n+1}^{p,q}/\overline{B}_n^{p,q} \to \overline{Z}_n^{p,q}/\overline{B}_n^{p,q} \xrightarrow{d_{n+1}^{p,q}} \overline{B}_{n+1}^{p,q}/\overline{B}_n^{p,q} \to 0,$$

gives rise to isomorphisms $\overline{Z}_n^{p,q}/\overline{Z}_{n+1}^{p,q} \cong \overline{B}_{n+1}^{p,q}/\overline{B}_n^{p,q}$ for all n. Conversely, a tower of submodules of E_2 , together with a set of isomorphisms, gives rise to a spectral sequence.

DEFINITION 4.1.3. An element of $E_2^{p,q}$ survives to the rth stage if lies in $\overline{Z}_r^{p,q}$, having been in the kernel of the previous r-2 differentials, and is bounded by the rth stage if it lies in $\overline{B}_r^{p,q}$. The bigraded module $E_r^{*,*}$ is called the E_r -term of the spectral sequence.

We define

$$Z^{p,q}_{\infty}:=\bigcap_{n}\overline{Z}^{p,q}_{n},\quad B^{p,q}_{\infty}:=\bigcup_{n}\overline{B}^{p,q}_{n}.$$

From the tower of inclusions, we see that $B^{p,q}_{\infty} \subseteq Z^{p,q}_{\infty}$, so we define $E^{p,q}_{\infty} := Z^{p,q}_{\infty}/B^{p,q}_{\infty}$.

DEFINITION 4.1.4. A spectral sequence collapses at the Nth term if the differentials $d_r^{p,q} = 0$ for $r \geq N$.

From the short exact sequence

$$0 \to \overline{Z}_r^{p,q} / \overline{B}_{r-1}^{p,q} \to \overline{Z}_{r-1}^{p,q} / \overline{B}_{r-1}^{p,q} \xrightarrow{d_r^{p,q}} \overline{B}_r^{p,q} / \overline{B}_{r-1}^{p,q} \to 0,$$

the condition $d_r^{p,q}$ forces $\overline{Z}_r^{p,q} = \overline{Z}_{r-1}^{p,q}$ and $\overline{B}_r^{p,q} = \overline{B}_{r-1}^{p,q}$. The tower of submodules becomes

$$B_2^{p,q}\subseteq \overline{B}_3^{p,q}\subseteq \cdots\subseteq \overline{B}_{N-1}^{p,q}=B_N^{p,q}=\cdots=B_\infty^{p,q}\subseteq Z_\infty^{p,q}=\cdots=\overline{Z}_N^{p,q}=\overline{Z}_{N-1}^{p,q}\subseteq \cdots\subseteq \overline{Z}_3^{p,q}\subseteq Z_2^{p,q}\subseteq E_2^{p,q}.$$

Thus, $E_{\infty}^{p,q} = E_N^{p,q}$.

4.2 Exact couples

(Following [9], C2)

DEFINITION 4.2.1. Let D, E be R-modules, and let $i: D \to D$, $j: D \to E$, $k: E \to D$ be module homomorphisms. We call $\mathcal{C} = \{D, E, i, j, k\}$ an exact couple if the diagram below is exact.

$$D \xrightarrow{i} D$$

$$\downarrow k$$

$$E$$

Let d := jk, and define the following:

$$E' := H(E, d) = \ker d / \operatorname{im} d$$

$$D' := i(D) = \ker j$$

$$i' := i|_{i(D)} : D' \to D'$$

$$j' := i(x) \mapsto j(x) + dE : D' \to E'$$

$$k' := (e + dE) \mapsto k(e) : E' \to D'$$

We call $C' = \{D', E'.i', j', k'\}$ the derived couple of C.

PROPOSITION 4.2.2 ([9], Prop 2.7). If $C = \{D, E, i, j, k\}$ is an exact couple, then C' is also an exact couple.

THEOREM 4.2.3 ([9], Thm 2.8). Suppose $D^{*,*} = \{D^{p,q}\}$ and $E^{*,*} = \{E^{p,q}\}$ are bigraded modules equipped with homomorphisms i of bidegree $(-1,1)^6$, j of bidegree (0,0), and k of bidegree (1,0), such that $\{D^{*,*}, E^{*,*}, i, j, k\}$ is an exact couple. Then these data determine a spectral sequence $\{E_r, d_r\}$ for $r \in \mathbb{Z}_+$ of cohomological type, with $E_r = (E^{*,*})^{(r-1)}$, the (r-1)st derived module of $E^{*,*}$ and $d_r = j^{(r)} \circ k^{(r)}$.

A bigraded exact couple may be displayed in the following diagram, known as a *staircase diagram*:

[This is the same staircase diagram that Hatcher is talking about (set $D^{*,*} = \pi_*^S X_*$ and $E^{*,*} = \pi_* K_*$) - just modulo some tweak of *i*'s bigrading because the bigrading is a bit weird in the Adams spectral sequence.]

⁶This is the wrong index. For my purposes it should be (-1,-1). So, the spectral sequence will not be of cohomological type, but hopefully the proof still goes through.

4.3 The Adams spectral sequence

Let X be a connective CW spectrum of finite type.

[Each $H^i(X)$ is finitely generated: Hatcher says on p586 of [6] that $H^i(X) = H^i(X_n)$ for sufficiently large n as long as X is of finite type (which I think should actually read $H^{i+n}(X_n)$, but it doesn't matter for this particular point), and $H^i(X_n)$ (or $H^{i+n}(X_n)$) is supposed to be finitely generated because all the $H_j(X_n)$ are finitely generated⁷, since X_n should have finitely many cells in each dimension (if it didn't, X certainly wouldn't).]

[Claim: $H^*(X)$ is an \mathscr{A}_2 -module. Either use Theorem 3.5.1 (i.e. $H^m(X;G) \cong [X,K(G,m)]$) to give the action, or the above mentioned fact that for spectra of finite type, $H^i(X;G) = H^{i+n}(X_n;G)$. To define a map $Sq^j: H^i(X;G) \to H^{i+j}(X;G)$ we can either hit $H^{i+n}(X_n;G)$ with Sq^j and then push it along the sequence of cohomology groups until it's stable, or first push it along until $H^{i+j+n}(X_n;G)$ is stable and then hit $H^i(X_n;G)$ with Sq^i . And these are the same thing, because of this handy commutative diagram:

which follows from the properties in Section 2. Is this an actual module action? Is the former one also a module action?]

We can pick generators α_i for $H^*(X)$ as an \mathscr{A}_2 -module such that there are at most finitely many in each $H^n(X)$ [since each $H^n(X)$ is finitely generated, and that finite generating set would certainly also generate it as an \mathscr{A}_2 -module (we could be more efficient, though)].

[Claim: these α_i determine a map $X \to K_0$, where K_0 is a wedge of EM spectra, and K_0 has finite type. Very confused about this - each $\alpha_i \in H^{n_i}(X;G)$ gives a map $X \to K(G,n_i)$ by Theorem 3.5.1, but shouldn't they come together to give a map into a product⁸ of EM spaces, not a wedge sum? Isn't a wedge sum a sort of reduced *coproduct*, not a product?? Is this something to do with the 'fibrations and cofibrations are the same' nonsense?

Vague idea: we have Proposition 3.5.2, which tells us that $[X, \bigvee_i \mathbb{K}(G, n_i)] \cong \prod_i [X, \mathbb{K}(G, n_i)]$. Now, X is connective, so $H^*(X; G)$ has some smallest degree. Let's just pretend it starts from zero for the moment, and we can reindex or whatever later. Let's say each $H^k(X; G)$ has i_k generators $\alpha_{i_0+\cdots+i_{k-1}+1}, \ldots, \alpha_{i_0+\cdots+i_k}$, and write $n_0 = \cdots = n_{i_0}, n_{i_0+1} = \cdots = n_{i_0+i_1}$, etc., $n_{i_0+i_1+\cdots+i_{k-1}+1} = \cdots = n_{i_0+i_1+\cdots+i_k}$. So, the $\alpha_{i_0+\cdots+i_{k-1}+j} \in H^k(X; G)$ determine maps $X \to \mathbb{K}(G, n_k)$. Putting all these maps together, one in each coordinate, gives an element of $\prod_i [X, \mathbb{K}(G, n_i)]$, which by the proposition corresponds to an element of $[X, \bigvee_i \mathbb{K}(G, n_i)]$.

• Fact: We can replace that map with an inclusion. [I sort of believe this - Remark B.2.8 and my comment at the end of Section C.3 say we can do this for CW complexes, so I

⁷The cohomology groups are finitely generated if the homology ones are, see [5] Cor 3.3.

⁸And on that note, what is a product of spectra? Is it a reduced product? Are we allowed to do that?

should check it for spectra. But it seems true (and I'm currently suffering from spectrum fatigue).]

- Def: A cofibration. [see : [5], p398.]
- Fact: If Z is a connective CW spectrum of finite type, then $\pi_t(Z)$ is finitely generated. [Halfway down p586 of [6], Hatcher says that "for a connective CW spectrum [X] of finite type the groups $\pi_{i+n}(X_n)$ do eventually stabilise by the Freudenthal theorem". Since the homotopy groups are just the colimits of these guys, they're equal to the stable values. [5], Thm 5.7 says in particular that a simply-connected space has finitely generated homotopy groups if and only if it has finitely generated homology groups. Now, the X_n must eventually by simply-connected because otherwise X would not be connective [elaborate], and we've already seen the H_i are finitely generated, so yes, the π_i are also finitely generated.]

[[6] Thm 5.47 says that there is a spectral sequence $\{E_r, d_r\}$ such that $E_2^{s,t} = \operatorname{Ext}_{\mathscr{A}_2}(H^*(\mathbb{S}), H^*(\mathbb{S}))$, and $\{E_r, d_r\} \implies \pi_*^S$ modulo any odd torsion.

At the bottom of p592 of [6], it's mentioned that for a spectrum X of finite type, $H^{i}(X) \cong \lim_{\leftarrow n} H^{i+n}(X_n)$ as \mathscr{A}_2 -modules. Thus, since \mathbb{S} is of finite type (it is actually finite), we have

$$\begin{split} H^i(\mathbb{S};\mathbb{Z}/2\mathbb{Z}) &= \lim_{\leftarrow n} H^{i+n}(S^n;\mathbb{Z}/2\mathbb{Z}) \\ &= \begin{cases} \mathbb{Z}/2\mathbb{Z} & i = 0, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

(since they're all just either 0 or $\mathbb{Z}/2\mathbb{Z}$, at least eventually). So, $H^*(\mathbb{S}) = \mathbb{Z}/2\mathbb{Z}$ in degree zero and nothing else.]

THEOREM 4.3.1 ([6], Thm 5.47). There is a spectral sequence $\{E_r, d_r\}$ such that $E_2^{s,t} = \operatorname{Ext}_{\mathscr{A}_2}^{s,t}(\mathbb{F}_2, \mathbb{F}_2)$ and $\{E_r, d_r\} \implies \pi_*^S$ modulo torsion of odd order. [which is probably a lie but let's worry about that later]

4.4 Multiplicative structure

Rough sketch, details to fill in once I have the shape of things:

Fact: there is a multiplication

$$E_2^{s,t} \otimes E_2^{s',t'} \to E_2^{s+s',t+t'},$$

which induces(?) a multiplication

$$E_r^{s,t} \otimes E_r^{s',t'} \to E_r^{s+s',t+t'}.$$

At E_{∞} , this is a multiplication

$$F^{s,t}/F^{s+1,t+1} \otimes F^{s',t'}/F^{s'+1,t'+1} \to F^{s+s',t+t'}/F^{s+s'+1,t+t'+1}$$

It satisfies the Leibniz rule, and it converges to the composition product⁹ on $_2\pi^S_*$.

⁹What does that mean? The spectral sequence itself only converges to the associated graded(?) of $_2\pi_*^S$, so is this saying that the composition product (graded commutative) on π_*^S induces (descends to? lifts to?) a product on $_2\pi_*^S$, which itself descends to a product on $E_\infty^{s,t} = F^{s,t}/F^{s+1,t+1}$? Even if the first part works, why would the product land in the correct subgroup?

Using Lemma 5.1.1 (which comes later but whatever, I'll reorder things), we get $E_2^{s,t} = \text{Hom}_{\mathscr{A}_2}^t(F_s, \mathbb{F}_2)$. So, if we have a minimal free resolution

$$\cdots \to F_2 \to F_1 \to F_0 \to \mathbb{F}_2$$

of \mathbb{F}_2 as an \mathscr{A}_2 -module, and we have $f \in \operatorname{Hom}_{\mathscr{A}_2}^t(F_s, \mathbb{F}_2), g \in \operatorname{Hom}_{\mathscr{A}_2}^{t'}(F_{s'}, \mathbb{F}_2)$, we multiply them as follows:

First, we put these resolutions side by side.

(The [t] means shifted by t i.e. in degree t because the maps are.)

Then we inductively fill in the dotted arrows from the bottom up. So you can fill the first one because the modules are all free so you just need to say where the generator goes (a priori maybe there are infinitely many generators but it's ok because these are degree t maps and there are only finitely many in each degree), and the right map is surjective, so just do it the way you would do it. Likewise for the higher ones.

This thing is hopefully well-defined.

A few other things:

1. We know that $\pi_0^S = \mathbb{Z}$ since $\pi_1 S^1 = \mathbb{Z}$ and $n = 1 \leq 2 = 2(1)$, so this lies in the stable region. Now, $E^{s,t}$ is actually supposed to converge to the associated graded(?) of \mathbb{Z}_2 (i.e. the 2-adics) I think? But either way, we know that for our filtration all the quotients are $\mathbb{Z}/2\mathbb{Z}$. I claim¹⁰ then that the filtration must be $\cdots 4\mathbb{Z}_2 \subseteq 2\mathbb{Z}_2 \subseteq \mathbb{Z}_2$.

These facts then imply that the filtration I give is the only possible one. Short answer: finite index subgroups of \mathbb{Z}_p are of the form $p^k\mathbb{Z}_p$.

- 2. If that's true then $\iota = [1] \in \mathbb{Z}_2/2\mathbb{Z}_2$, and using the multiplication above we see ι is a unit. We also have $h_0 = [2] \in 2\mathbb{Z}_2/4\mathbb{Z}_2$ so $h_0 = [2] = [2[1]] = [2\iota]$, so h_0 acts on ι by multiplication by 2.
- 3. Now, for any $\kappa \in E_2^{s,t}$, $h_0 \cdot \kappa = (\iota h_0) \cdot \kappa = 2\kappa$.

The notation's a bit weird above, when I say 'multiplication by 2' I mean: take $\kappa \in E^{s,t} = F^{s,t}/F^{s+1,t+1}$. Then $2\kappa \in F^{s+1,t+1}$ since it's a bunch of \mathbb{F}_2 's. Take it's equivalence class to get an element of $F^{s+1,t+1}/F^{s+2,t+2}$. That's what I really mean by 2κ and it's in $E^{s+1,t+1}$.

All this is to say if I start multiplying higher things by h_0 , that is multiplying by 2. So I can start resolving extensions this way.]

[12]

5 Calculating stable homotopy groups

5.1 The E_2 page

LEMMA 5.1.1 ([6], Lem 5.49). For a minimal free resolution

$$\cdots \to F_2 \to F_1 \to F_0 \to \mathbb{F}_2 \to 0$$

of $\mathbb{F}_2 = H^*(\mathbb{S})$ as an \mathscr{A}_2 -module, we have $\operatorname{Ext}_{\mathscr{A}_2}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) = \operatorname{Hom}_{\mathscr{A}_2}^t(F_s,\mathbb{F}_2)$, where $\operatorname{Hom}_{\mathscr{A}_2}^t(F_s,\mathbb{F}_2) \subseteq \operatorname{Hom}_{\mathscr{A}_2}(F_s,\mathbb{F}_2)$ consists of the morphisms which lower the degree by t.

[Now, since \mathbb{F}_2 just has stuff in degree 0, the only things that can be sent to $1 \in \mathbb{F}_2$ are the things in degree t, so for every generator for F_s in degree t, there's an \mathbb{F}_2 's worth of such homs.] [1], [10], [12], [6].

Figure 5.1: Calculating the first 5 rows

LEMMA 5.1.2 (?). There are no nontrivial differentials for $t - s \le 13$.

[Should follow from the Leibniz rule, but we need the multiplicative structure first]

5.2 Resolving extensions

[Note: there is a multiplicative structure on the E_2 page of the spectral sequence, which Hatcher says is there and then proceeds to never ever mention again. So I'll have to find another source for this bit. It should correspond to the composition product on π_*^S , i.e. given $[f] \in \pi_i^S$, $[g] \in \pi_j^S$, we have $[f][g] = [g \circ \Sigma^j f] \in \pi_{i+j}^S$.

[12], in particular 6.1 and 6.2.

Also, [9] has some cryptic remarks on p424 and p407 about this but doesn't actually really explain it, and in particular doesn't explain how you could know that some stable homotopy group isn't cyclic (e.g. π_8^S).

Some slightly less cryptic comments are made in [10], in particular stemming from Lemma 3.1.3. If I just believe this lemma for the moment, assuming its a_0 is the same as my α_1^1 , and further believe the calculations done in [12] in 6.2, then (I think!) this solves my problems.]

Proposition 5.2.1 ([12], Cor 6.5). We have the following relations:

$$\begin{split} \alpha_i^i &= (\alpha_1^1)^i \\ \alpha_4^2 &= (\alpha_2^1)^2 \\ \alpha_5^2 &= \alpha_1^1 \alpha_4^1 \\ \alpha_6^3 &= (\alpha_1^1)^2 \alpha_4^1 = (\alpha_2^1)^3. \end{split}$$

[Should I even have the below as a proposition? Should I cite [10]? His a_0 is defined completely differently to my α_1^1 and his proof uses some sort of naturality? I think my explanation aligns much more closely with [12] or [11].]

PROPOSITION 5.2.2 ([10], Lem 3.1.3(b)). If $x \in \operatorname{Ext}^{s,t}(\mathbb{F}_2, \mathbb{F}_2)$ is a permanent cycle in the Adams spectral sequence represented by $\alpha \in \pi_*^S$, then $\alpha_1^1 x$ is a permanent cycle represented by 2α .

[Justify the below with sseq, not quite sure how to do this in a satisfying way though. See note in Section C.2]

THEOREM 5.2.3.

$${}_{(2)}\pi_{i}^{S} = \begin{cases} \mathbb{Z}/2\mathbb{Z} & i = 1, 2, 6, 10\\ \mathbb{Z}/8\mathbb{Z} & i = 3, 11\\ 0 & i = 4, 5, 12, 13\\ \mathbb{Z}/16\mathbb{Z} & i = 7\\ (\mathbb{Z}/2\mathbb{Z})^{2} & i = 8\\ (\mathbb{Z}/2\mathbb{Z})^{3} & i = 9. \end{cases}$$

5.3 Nontrivial differentials

[The point here is that all differentials interacting with $E^{s,t}$ for t-s=14 are trivial, and thus computing the stable homotopy groups is purely mechanical, because everything that appears on this part of the E_2 page has to survive to E_{∞} . Thus, the 'ambiguity' at t-s=14 is just the fact that this is the first time you need to actually compute differentials.

For t - s < 14 there are only actually the ones emanating from $E^{1,2}$ and the d_2 differential starting at $E^{2,10}$ to worry about, because all the others either enter or leave 0.]

- 1. Differentials emanating from $E_r^{1,2}$ are trivial: $0 = d_r(h_0h_1) = d_r(h_0)h_1 \pm h_0d_r(h_1) = \pm h_0d_r(h_1)$. So $d_r(h_1) = 0$.
- 2. The d_2 differential at $E_2^{2,10}$ is trivial: $E^{2,10}$ is generated by h_1h_3 (check), and $d_2(h_1h_3) = d_2(h_1)h_3 \pm h_1d_2(h_3) = 0 + 0 = 0$ (the first one we just checked, the second goes into a zero box).
- 3. The d_2 differential at $E_2^{1,16}$ is nontrivial: [11], Thm 11.10.2.

4. The d_3 differential at $E_3^{2,17}$ is nontrivial: [11], Thm 11.10.7 (which he doesn't prove, so really it's [11] Table 14.2 (10), which uses a differential d_2 of $E_2(C\sigma)$ which is on table 14.9 (4)(!)).

[1], [10], [12], [11].

A Algebra

A.1 Free resolutions

DEFINITION 1.1.1. Let M, N be modules over a ring R. A resolution F of M is an exact sequence

$$\cdots \to F_2 \to F_1 \to F_0 \to M \to 0.$$

If in addition each F_i is a free R-module, then the resolution is called *free*.

Given a free resolution as above, applying $\operatorname{Hom}_R(-,N)$ gives us a chain complex

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow \operatorname{Hom}_R(M, N) \leftarrow 0.$$

Dropping the term $\operatorname{Hom}_R(M,N)$ [why?] we get the sequence

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow 0,$$

and we define $\operatorname{Ext}_R^n(M,N)$ to be the nth homology group of this chain complex.

[these do not depend on the choice of free resolution of M]

A free resolution is *minimal* if at each stage of its construction we choose the minimal number of free generators for F_i in each degree.

[The above definition is bad but I'm keeping it just for the moment.]

B Topology

All from [5] unless otherwise stated.

B.1 Suspension

DEFINITION 2.1.1. Let X be a topological space. The suspension SX is the space $(X \times I)/\sim$, where $(x,0)\sim(x',0)$ and $(x,1)\sim(x',1)$ for all $x,x'\in X$.

DEFINITION 2.1.2. Let X be a pointed topological space. The reduced suspension ΣX is the space SX/\sim , where $[x_0,t]\sim [x_0,t']$ for all $t,t'\in I$.

Given a map $f: X \to Y$, we can define $\Sigma f: \Sigma X \to \Sigma Y$ by $\Sigma f[(x,t)] = [(fx,t)]$. This makes Σ into a functor $\Sigma: \mathbf{Top} \to \mathbf{Top}$.

REMARK 2.1.3. Σ is faithful, since for any maps $f,g:X\to Y$, if $\Sigma f=\Sigma g$ then in particular $[(fx,\frac{1}{2})]=[(gx,\frac{1}{2})]$, so fx=gx.

[below is reconstructed from [8]]

Given pointed maps $f, g: \Sigma X \to Z$, define

$$\begin{split} f\star g: \Sigma X \to Z \\ [x,t] \mapsto \begin{cases} f[x,2t-1] & t \geq \frac{1}{2}, \\ g[x,2t] & t \leq \frac{1}{2}. \end{cases} \end{split}$$

This is well defined, since both f and q are basepoint-preserving.

REMARK 2.1.4. This defines a group structure on $[\Sigma X, Z]$, and thus $[\Sigma^i X, Z]$ is a group for all $i \geq 1$. For $i \geq 2$, these can be shown to be abelian, via the Eckmann-Hilton argument.

REMARK 2.1.5. The homotopy groups $\pi_i(Z)$ are a special case of the above construction, taking $X := S^{i-1}$.

• Loops; the adjunction $\Sigma \dashv \Omega$, where Ω is the loop functor.

[**5**], p395:

REMARK 2.1.6. It follows that $\pi_{n+1}(X) \cong \pi_n(\Omega X)$. In particular, $\Omega K(G,n)$ is a K(G,n-1).

- [5] 2.1 Ex 20 and 2.2 Ex 32: $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$, where S is the (non-reduced) suspension. (MV?)
- Hatcher also says on p219 that $\tilde{H}^n(X;R) \cong \tilde{H}^{n+k}(\Sigma^k X;R)$, where Σ is reduced suspension.

B.2 Other basic constructions

DEFINITION 2.2.1. Let $(X, x_0), (Y, y_0)$ be pointed topological spaces, and consider their product $X \times Y$. The subspaces $X \times \{y_0\} \cong X$ and $\{x_0\} \times Y \cong Y$ intersect at exactly one point, (x_0, y_0) , and so can be identified with the wedge $X \vee Y$. We thus define the *smash product* $X \wedge Y := (X \times Y)/(X \vee Y)$, with the canonical basepoint (x_0, y_0) .

EXAMPLE 2.2.2. We have $S^n \wedge S^m \cong S^{n+m}$. [is this obvious?]

Remark 2.2.3. Note that $\Sigma X \cong X \wedge S^1$.

REMARK 2.2.4. Observe that $X \wedge (Y \wedge Z) \cong (X \wedge Y) \wedge Z$. Combining this with the remarks above, we see that $\Sigma^k X = X \wedge S^k$.

Remark 2.2.5. Note that $\Sigma(X \vee Y) \cong \Sigma X \vee \Sigma Y$.

• The Eilenberg-MacLane space is K(G, n), and it has the property that

$$\pi_i(K(G, n)) = \begin{cases} G & i = n, \\ 0 & i \neq n. \end{cases}$$

They're unique up to weak homotopy equivalence (i.e. if you have another one X, there's a map between them which descends to an isomorphism on homotopy groups). They can be taken to be CW complexes.

DEFINITION 2.2.6. Let X, Y be topological spaces, where X has a basepoint x_0 . Then the reduced product $X \times_{\text{red}} Y := (X \times Y)/(x_0 \times Y)$.

DEFINITION 2.2.7. Let $f: X \to Y$ be a map. The mapping cylinder M_f is defined by $((X \times I) \sqcup Y) / \sim$, where $(x, 1) \sim f(x)$ for all $x \in X$. If $(X, x_0), (Y, y_0)$ are pointed spaces, the reduced mapping cylinder is the quotient M_f / \sim , where $[x_0, t] \sim [x_0, t']$ for all $t \in I$.

REMARK 2.2.8. The mapping cylinder deformation retracts onto Y via $h: M_f \times I \to M_f$; $([x,t],s) \mapsto [x,t+s(1-t)].$

DEFINITION 2.2.9. Let $f: X \to Y$ be a map. The mapping $cone^{11}$ C_f is defined to be $Y \sqcup_f CX := (Y \sqcup CX)/(f(x) \sim [x,1])$.

B.3 Cell complexes

DEFINITION 2.3.1. Let X be a cell complex, $A \subseteq X$ a subcomplex. Then the quotient X/A has a cell complex structure, with cells the cells of $X \setminus A$ along with a basepoint (the image of A in X).

DEFINITION 2.3.2. Let $f: X \to Y$ be a map between CW complexes. Then f is cellular if $f(X_{(n)}) \subseteq Y_{(n)}$ for all n, where $X_{(n)}$ is the n-skeleton of X.

Cellular approximation theorem:

THEOREM 2.3.3 ([5], Thm 4.8). Let $f: X \to Y$ be a map of CW complexes. Then f is homotopic to a cellular map.

LEMMA 2.3.4 ([5], Prop 0.16). Let $A \subseteq X$ be CW complexes. Then the pair (X, A) has the homotopy extension property; that is, for any map $f: X \to Y$ and homotopy $h: A \times I \to Y$ such that $h(a,0) = f|_A$, there is a homotopy $\tilde{h}: X \times I \to Y$ extending h.

- The product of cell complexes is a cell complex (maybe only if one of them is finite?)
- The smash product of (pointed?) cell complexes is a cell complex (maybe only if one is them is finite?) [[5] says "the smash product $X \wedge Y$ is a cell complex if X and Y are cell complexes with x_0 and y_0 0-cells, assuming that we give $X \times Y$ the cell-complex topology rather than the product topology in cases where these two topologies differ".]
- For a CW complex X, $SX \simeq \Sigma X$.
- The reduced suspension of a pointed cell complex (X, x_0) is another pointed cell complex ΣX with basepoint x_0 and an n-cell for each non-basepoint n-1 cell e_{α}^{n-1} of X.

DEFINITION 2.3.5. Let X is a topological space. A CW approximation to X is a CW complex Z equipped with a weak homotopy equivalence $f: Z \to X$.

Theorem 2.3.6 ([5], Prop 4.13). Every space X has a CW approximation $f: Z \to X$.

- In particular, $\Omega K(G, n)$ has a CW approximation $Z \to \Omega K(G, n)$, and since $\Omega K(G, n)$ is a K(G, n-1), so is Z.
- Something along the lines of 'compact \leftrightarrow finite number of cells'.

C Notes to self

C.1 Vague problems and Questions

• On p588 of [6], he says "every CW spectrum is equivalent to a suspension spectrum". Does he actually mean that, or does he mean 'equivalent to the suspension of a spectrum'? The former seems way too strong, although in fairness I still don't know what an equivalence of spectra actually is.

¹¹Why does Hatcher not insist this guy is reduced, like he does with the mapping cylinders?

- I am definitely being told some lies about what the spectral sequence actually converges to. There's a strong implication/actual statement(!!) that at each i it's supposed to be a filtration of π_i^S modulo odd torsion, but I think this isn't true. I think it's actually the 2-completion¹² of π_i^S . That coincides with the p-primary part for finite abelian groups, but for π_0^S it's supposed to be \mathbb{Z}_2 (i.e. the 2-adic integers), not \mathbb{Z} . I believe. Maybe get a source for this. Some people say it's the localisation at 2?? But I think that's also a lie.
- The Leibniz rule is $d_r(xy) = d_r(x)y \pm xd_r(y)$ (can't remember the sign). But anything I'm using that rule on is some generator of an \mathbb{F}_2 , right? So the sign shouldn't matter. But then, shouldn't the Yoneda product be graded commutative (and thus commutative, because again, in the target signs don't matter)? So why does [12] have some comment (to find later) about how the Yoneda product is commutative "in some range"??
- On p586 of [6], Hatcher says "If X is of finite type then for each i there is an n such that X_n contains all the i-cells of X. It follows that $H_i(X;G) = H_i(X_n;G)$ for all sufficiently large n, and the same is true for cohomology." But from the way he set up H_* and H^* earlier, shouldn't this be $H_i(X;G) = H_{i+n}(X_n;G)$? Because $H_i(X;G) = \lim_{\to} H_{i+n}(X_n)$, and he talks about things stabilising in the next sentence, so shouldn't the stable point be at some H_{i+n} ?
- On p592 of [6], he says that "for spectra X of finite type [the more general] definition of an \mathscr{A}_2 -module structure on $H^*(X)$ agrees with the definition using the usual \mathscr{A}_2 -module structure on the cohomology of spaces and the identification of $H^*(X)$ with the inverse limit $\lim_{\leftarrow} H^{*+n}(X_n)$ ". Um? Sure, we have that each $H^{i+n}(X_n)$ stabilises eventually, but is Hatcher saying $H^{*+n}(X_n)$ stabilises? Like, as an \mathscr{A}_2 -module? And if not, what's going on here? Because inverse limits don't commute with infinite direct sums they're not biproducts anymore, they're coproducts and there's no reason limits should commute with them.

C.2 To do

Now:

- The definition of Ext in A.1 has only one superscript, but the Ext in the Adams spectral sequence has a bigrading figure out where the extra index came from and write it down so I don't forget it.
- Read about fibration and cofibration sequences of CW complexes.
- Find out what a (co)homology theory is.
- Find out what the deal with reduced cohomology and being stable under suspension is.
- Apparently it's not difficult to show that for $i \geq 1$, π_i^S is finite? I should show this so I don't have to worry about all this completion business.

Eventually:

- Be consistent with either cell complex or CW complex (eventually)
- Be consistent with \mathbb{F}_2 or $\mathbb{Z}/2\mathbb{Z}$ (don't use \mathbb{Z}_2 , that's really bad).
- Specialise the Adams spectral sequence (i.e. set $Y = \mathbb{S}$).

¹²Whatever that means.

- Remember that you have to hand in the tex file, so for the love of god change anything stupid that's hidden in the pdf.
- Sometimes I say π_*^S or $_{(2)}\pi_*^S$ (localised at 2?) instead of its completion at 2 or whatever. So make sure it's correct.
- Stick to a convention on suspension/cone/homotopy numbering. I.e. Does a homotopy start at 0 or 1? Does a suspension go from -1 to 1 with the space in the middle at 0, or 0 to 1 with the space at 1/2? Do cones go from 0 to 1, and if so, make sure when they include into suspensions they do so consistently.
- I want to at some point compute $h_0h_1h_3$ or something like that, just to show that sometimes a product can be zero even if it lands in a nonzero group (i.e. the stable groups aren't all cyclic). The trouble is by the time you get to π_8^S the free resolution is an awful mess. Maybe I can try and wrangle with the sseq program to get it to show me kernels and the like?
- Make the α_i^i notation not appalling.
- Ease notation by not writing G in e.g. $H^*(X; G)$. Say we're taking coefficients in \mathbb{F}_2 , but actually a lot of the time it doesn't matter so maybe note that.

C.3 Other notes

- READ IF YOUR CALCULATIONS AREN'T WORKING: You are working modulo 2!!!
- If you have a bunch of maps between graded modules/algebras, they're graded homomorphisms. So they preserve degree.
- All (co)homology is supposed to be reduced.
- Signs don't matter with the Leibniz rule either!! You are working modulo 2!!!!!!!!
- Remember, once you know that $d_2(h_4) = h_0 h_3^2$, you know h_4 doesn't survive to the third page. So, for example, $d_3(h_0h_4) \neq h_0d_3(h_4)$ because h_4 doesn't exist anymore. That's why $d_3(h_0h_4)$ can be nonzero.
- As previously mentioned, we are working modulo 2!! What this also implies is that if anything is hit by any sort of differential, or has any nonzero differential coming out of it, it's completely killed by the next page. Because the summands are just a bunch of \mathbb{F}_2 's (so you don't need to worry about 'how much' of something is killed, it all is).
- Sometimes Hatcher says that you can replace any map of CW complexes by an inclusion. I think the point here is that if you have a map $f: X \to Y$, Remark B.2.8 says that M_f deformation retracts onto Y. So if you only care about X and Y up to homotopy equivalence, you can replace Y by M_f and then X definitely includes into M_f .

References

- [1] J. F. Adams. Stable Homotopy and Generalised Homology. TeXromancers, 2022.
- [2] David Barnes and Constanze Roitzheim. Foundations of Stable Homotopy Theory. Cambridge University Press, 2020.
- [3] R. R. Bruner. An Adams Spectral Sequence Primer. 2009. URL: http://www.rrb.wayne.edu/papers/adams.pdf (visited on 08/02/2025).

- [4] Maxine Calle. The Freudenthal Suspension Theorem. 2020. URL: https://bpb-us-w2.wpmucdn.com/web.sas.upenn.edu/dist/0/713/files/2020/08/FSTnotes.pdf (visited on 08/02/2025).
- [5] Allen Hatcher. Algebraic Topology. 2001. URL: https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf.
- [6] Allen Hatcher. Spectral Sequences. URL: https://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf (visited on 01/02/2025).
- [7] H. R. Margolis. Spectra and the Steenrod Algebra. Elsevier Science Publishers B. V., 1983.
- [8] Aaron Mazel-Gee. An introduction to spectra. 2011. URL: https://etale.site/writing/an-introduction-to-spectra.pdf (visited on 19/02/2025).
- [9] John McCleary. A User's Guide to Spectral Sequences. Cambridge University Press, 2001.
- [10] Douglas C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press. Inc, 1986.
- [11] John Rognes. Spectral Sequences. 2010. URL: https://www.uio.no/studier/emner/math/MAT9580/v21/dokumenter/spseq.pdf (visited on 13/03/2025).
- [12] John Rognes. The Adams Spectral Sequence. 2012. URL: https://www.mn.uio.no/math/personer/vit/rognes/papers/notes.050612.pdf (visited on 08/02/2025).