

Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Разработка алгоритма детектирования и распознавания объектов на основе спектральной панели шумометрии

по направлению 02.03.02 - Фундаментальная информатика и информационные технологии по образовательной программе 02.03.02_02 - Информатика и компьютерные науки

Студент

Гр. 5130202/10201

Руководитель

Старший преподаватель

Хакимуллина А.М.

Прокофьев О. В.

Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии 2025

Актуальность работы

Работа относится к задачам обработки акустических сигналов, поступающих от шумомеров, опускаемых в скважину. По измерениям строится спектральная панель, отражающая распределение шума по глубине и частоте. Эти данные важны для диагностики состояния скважины и дальнейших исследований.

Автоматизация обработки шумометрических данных необходима из-за большого объёма измерений, собираемых в реальных условиях. Разработка алгоритма автоматического детектирования и распознавания объектов с последующей генерацией отчётов позволяет ускорить анализ, снизить нагрузку на специалистов и повысить точность. Визуальный интерфейс делает работу с системой доступной и удобной для инженеров.

Анализ предметной области

Существующие методы обработки детектирования объектов в целом не демонстрируют высокой эффективности при работе с шумометрическими данными, поскольку объекты на таких панелях, как правило, не имеют чётких границ, часто вытянуты по частотной оси, обладают нестабильным уровнем фона и лишены ярко выраженных центров.

В предложенном алгоритме были адаптированы и переосмыслены отдельные подходы, использовавшиеся в других задачах обработки изображений, включая:

- медианную и гауссову фильтрацию,
- пороговую бинаризацию,
- морфологические операции,
- адаптивный подбор параметров в зависимости от структуры сигнала.

Дополнительно был реализован анализ производной частотного профиля контуров. Метод опирается на идею, аналогичную применению оператора Собеля для выделения резких переходов.

Цель и задачи

Цель — автоматизация процесса анализа данных шумометрии для уменьшения трудоемкости и повышения точности результатов.

Задачи, которые решались в ходе исследования:

- 1. Анализ существующих методов детектирования объектов.
- 2. Разработка и реализация алгоритма детектирования и распознавания объектов по данным шумометрии.
- 3. Разработка графического интерфейса для визуализации и экспертной корректировки результатов.
- 4. Апробация программного комплекса на реальных данных.

Этап 1. Инициализация параметров

Из входного LAS-файла с шумометрическими данными извлекаются глубинные координаты, значения амплитуд и тип канала (LF или HF). Параметры фильтрации инициализируются на основе характеристик входного сигнала и доступны на всех этапах обработки.

Для визуализации используется диапазон амплитуд от 85-го до 99-го процентиля.

Этап 2. Предварительная обработка данных

Исходная спектральная панель дополняется сверху и снизу отзеркаленными строками и сглаживается медианным фильтром по глубине. Это позволяет подавить высокочастотные шумы и подготовить данные к удалению фоновой составляющей.

Затем полученный сглаженный сигнал вычитается из исходных данных и сглаживается медианным фильтром по оси частоты. Ранее добавленные строки удаляются. Дополнительно производится сглаживание с использованием фильтра Гаусса.

Этап 2. Предварительная обработка данных

Бинаризация осуществляется с адаптивным порогом: на основе исходных данных обнуляются те элементы, амплитуда которых в исходной панели ниже 86-го процентиля. Также обнуляются элементы, амплитуда которых меньше 4.

Затем применяются морфологические операции: эрозия устраняет малые шумы, дилатация по оси частоты помогает объединить фрагменты одного объекта.

На выходе формируется бинарная маска, готовая к извлечению контуров.

<u>Этап 3. Выделение контуров и формирование</u> <u>объектов</u>

Из бинаризованного спектрального изображения извлекаются замкнутые области — контуры потенциальных объектов, с помощью функции cv2.findContours.

Анализ частотного профиля каждого контура: извлекаются локальные максимумы и минимумы, позволяющие сегментировать сложные объекты.

Анализируются участки с нулевой производной — так называемые плато, фиксирующие стабильную частотную характеристику объекта.

Этап 3. Выделение контуров и формирование объектов

Определяется изолированность каждого пика: если расстояние до одного из соседних минимумов оказывается меньше ¹/₄ частотной координаты пика, такой пик считается частью более сложной структуры и объединяется с соседними пиками в группу. В противном случае пик считается изолированным и выделяется как отдельный объект.

Каждому отобранному участку сопоставляется ограничивающий прямоугольник, фиксирующий координаты объекта в пространстве "частота – глубина".

Этап 4. Агрегация объектов на основе анализа структуры и фильтрация

Удаляются объекты с малой площадью или низкой средней амплитудой сигнала, используются пороги 10 пикселей и 40-ой процентиль соответственно.

Исключаются пересекающиеся объекты: если два прямоугольника накладываются друг на друга по обеим координатам — частоте и глубине — прямоугольник с меньшей площадью удаляется.

При обнаружении взаимных пересечений по глубине реализуется объединение таких фрагментов в единый объект, охватывающий все входящие участки.

Этап 4. Агрегация объектов на основе анализа структуры и фильтрация

Затем выполняется финальная фильтрация по характеристикам объекта:

- частотный диапазон;
- ширина объекта по частоте;
- площадь;
- средняя амплитуда сигнала.

Завершается этап расширением границ прямоугольников на фиксированное количество пикселей.

Этап 5. Классификация объектов

Для каждого объекта рассчитываются:

- Частотная протяжённость: $\Delta f = \text{fmax} \text{fmin}$;
- Глубинная протяжённость: $\Delta d = dmax dmin$.

Применяются эвристические правила классификации:

- 1. Если $\Delta f > \Delta d$ и fmin > 0, то поток по пласту (reservoir);
- 2. Если $\Delta f < \Delta d$ и fmin > 1, то заколонная циркуляция (chanelling);
- 3. Иначе:
 - если fmax > 10, то поток по пласту (reservoir);
 - если fmax ≤ 10 то буровая колонна (borhole).

Пример содержания Excel-файла

		Кровля,	Подошва,	Частотный	Амплитуда,	Характеристика
		M	M	диапазон,	дб	типа шума
				кГц		
	1	3601	3609	0.1-58.5	101	Поток по пласту
,	2	3623	3627	0.2-58.6	111	Поток по пласту
	3	3827	3831	0.3-57.7	99	Поток по пласту
	4	3841	3845	0.3-58.6	104	Поток по пласту
	5	4069	4073	0.1-58.6	107	Поток по пласту
	6	4081	4085	0.1-58.6	104	Поток по пласту
	7	4195	4200	0.1-56.2	101	Поток по пласту
	8	4209	4213	0.2-57.3	99	Поток по пласту

Этап 6. Экспорт результатов анализа

Реализованы функции для сохранения результатов обработки и классификации объектов в форматы Excel и LAS.

В результирующую таблицу включаются основные характеристики обнаруженных объектов: глубина залегания, частотный диапазон, амплитуда сигнала, а также классификация типа шума.

В файле формата LAS включается логическая разметка по глубине: каждому уровню сопоставляется значение 1, если на нём обнаружен объект, или 0 в противном случае.

Новизна

Научно-техническая новизна:

- Адаптивная многоступенчатая фильтрация с учётом частотноглубинной структуры;
- •Сегментация и агрегация контуров.
- •Анализ производной частотного профиля для локализации границ объектов;

Новизна реализации:

- Модифицированная функция поиска пиков с обработкой граничных значений;
- Выделение участков с постоянной частотной характеристикой;
- Автоматическое определение типа канала (LF/HF) и настройка параметров без участия пользователя;
- Обработка пересекающихся объектов: устранение перекрытий и агрегация по глубине;
- Комплексная фильтрация объектов по геометрическим, спектральным и амплитудным признакам.

Дополнительно реализован графический интерфейс для визуальной верификации и ручной корректировки результатов.

Исходный частотный профиль контура

```
= 00 = \{intc: ()\} \text{ np.int32(423)}
 = 01 = \{ intc: () \}  np.int32(422)
 = 02 = \{ intc: () \}  np.int32(421)
= 04 = {intc: ()} np.int32(421)
\equiv 05 = {intc: ()} np.int32(422)
= 06 = {intc: ()} np.int32(423)
 7 07 = {intc: ()} np.int32(424)
■ 08 = {intc: ()} np.int32(425)
= 09 = \{intc: ()\} \text{ np.int32(426)}
 = 10 = \{ intc: () \}  np.int32(427)
11 = {intc: ()} np.int32(428)
12 = {intc: ()} np.int32(429)

    ∃ 13 = {intc: ()} np.int32(430)

\equiv 14 = \{\text{intc: ()}\}\ \text{np.int32(431)}
\equiv 15 = {intc: ()} np.int32(432)

    ∃ 16 = {intc: ()} np.int32(433)

= 17 = {intc: ()} np.int32(434)
\ge 20 = {intc: ()} np.int32(437)
21 = {intc: ()} np.int32(438)
\equiv 22 = {intc: ()} np.int32(439)
 \ge 23 = \{ intc: () \}  np.int32(440)
\geq 24 = \{\text{intc: ()}\}\ \text{np.int32(441)}
\geq 25 = {intc: ()} np.int32(442)
27 = {intc: ()} np.int32(444)
\equiv 29 = {intc: ()} np.int32(442)
30 = {intc: ()} np.int32(441)
31 = {intc: ()} np.int32(440)
```

Пики, найденные стандартной функцией

```
        ∨ ⅓ peaks = {list: 72} [[27], [29 56], [376]

        ⇒ [300] = {ndarray: (1,)} [27]...View as
```

Пики, найденные модифицированной функцией

Архитектура программной системы

Система имеет модульную архитектуру и включает:

- 1. functions.py алгоритмы обработки: фильтрация, контуры, классификация, отчёты;
- 2. start_program.py точка входа: загрузка, запуск, последовательность вызовов;
- 3. constants.py динамическая инициализация параметров по данным;
- 4. constants_store.py хранение параметров;
- 5. main.py интерфейс пользователя.

Используемые инструменты и библиотеки:

- 1. Язык программирования Python.
- 2. Обработка данных:
 - NumPy для работы с массивами и выполнения базовых математических операций;
 - SciPy для медианной фильтрации и поиска локальных максимумов;
 - Pandas для табличного представления данных и формирования отчётных файлов;
 - Lasio для работы с LAS-файлами.
- 3. Обработка изображений:
 - OpenCV морфологические операции, извлечение контуров;
 - Imutils надстройка над OpenCV, упрощающая извлечение контуров.
- 4. Визуализация данных:
 - Matplotlib визуализация спектральных панелей;
 - Tkinter графический интерфейс.

Скважина KHRS-47

Объём входных НГ-данных — 265 значений по глубине, 512 по частоте. Обнаружено 35 объектов.

Результирующая таблица (фрагмент)

	Top, m	Bottom,	Frequenc	Amplitud	Flow type
		m	y range,	e, dB	
			kHz		
1	1921	1931	1.9-55.8	100	Reservoir
2	2004	2013	7.2-10.6	82	Reservoir
3	2013	2022	0.7-8.4	108	Reservoir
4	2022	2031	0.7-34.7	108	Reservoir
5	2031	2040	0.7-24.4	109	Reservoir
6	2040	2050	0.7-30.1	111	Reservoir
7	2063	2071	0.7-48.9	106	Reservoir
8	2077	2086	0.7-10.2	106	Reservoir
9	2100	2109	2.6-12.9	90	Reservoir
10	2112	2123	4.6-15.9	85	Reservoir
11	2164	2173	1.8-28.4	98	Reservoir
12	2191	2201	5.7-11.7	90	Reservoir
13	2205	2214	10.4-51.4	78	Reservoir
14	2223	2232	3.2-31.1	95	Reservoir
15	2255	2264	5.6-16.7	82	Reservoir
16	2264	2273	3.2-7.4	88	Reservoir
17	2278	2287	3.7-23.6	85	Reservoir
18	2292	2292	3.7-8.6	82	Reservoir
19	2296	2296	3.7-23.6	89	Reservoir
20	2315	2324	12.9-15.9	77	Reservoir
21	2370	2379	2.5-8.7	90	Reservoir

Скважина 8

Объём входных НГ-данных — 396 значений по глубине, 512 по частоте. Обнаружено 62 объекта.

Результирующая таблица (фрагмент)

	Кровля, м	Подошва,	Частотный	Амплитуд	Характеристика
		M	диапазон,	а, дб	типа шума
			кГц		
1	3040	3047	5.7-10.2	98	Поток по пласту
2	3052	3059	6.6-10.6	98	Поток по пласту
3	3107	3113	3.0-8.5	116	Поток по пласту
4	3164	3169	6.9-10.3	97	Поток по пласту
5	3203	3209	0.1-38.6	132	Поток по пласту
6	3209	3215	0.1-49.2	128	Поток по пласту
7	3215	3221	0.1-22.7	133	Поток по пласту
8	3224	3230	0.1-23.7	126	Поток по пласту
9	3232	3241	0.1-38.1	121	Поток по пласту
10	3248	3253	0.1-43.6	131	Поток по пласту
11	3256	3263	0.1-55.2	120	Поток по пласту
12	3266	3272	3.4-49.7	115	Поток по пласту
13	3278	3284	3.5-42.7	113	Поток по пласту
14	3293	3298	0.1-48.4	124	Поток по пласту
15	3305	3311	4.8-55.4	111	Поток по пласту
16	3313	3319	0.2-25.5	116	Поток по пласту
17	3322	3329	0.2-52.9	124	Поток по пласту
18	3364	3371	1.4-19.5	109	Поток по пласту
19	3377	3382	0.1-19.8	114	Поток по пласту

Скважина Dafiq-35H1

Объём входных LF-данных — 338 значений по глубине, 512 по частоте. Обнаружено 13 объектов.

Результирующая таблица

	Top, m	Bottom,	Frequenc	Amplitud	Flow
		m	y range,	e, dB	type
			kHz		
1	1400	1443	0.3-4.9	104	Reservoir
2	1572	1581	0.3-1.3	89	Reservoir
3	1584	1609	0.3-4.9	92	Reservoir
4	1637	1643	0.6-4.9	87	Reservoir
5	1646	1652	0.4-3.1	88	Reservoir
6	1752	1758	1.0-1.6	71	Reservoir
7	1758	1767	0.7-4.3	85	Reservoir
8	1858	1864	1.6-2.3	73	Reservoir
9	2119	2169	2.0-4.9	89	Reservoir
10	2169	2196	2.0-4.9	87	Reservoir
11	2199	2206	2.5-3.4	73	Reservoir
12	2333	2340	3.6-3.9	72	Reservoir
13	2428	2436	1.5-4.7	72	Reservoir
		<u> </u>			

Заключение

В результате выполнения работы:

- разработан алгоритм детектирования и распознавания объектов, учитывающий особенности шумометрических данных;
- реализован программный комплекс с интуитивно понятным интерфейсом;
- проведена успешная апробация на реальных акустических данных, подтвердившая эффективность подхода.

Разработанный алгоритм уже применяется в инженерной практике для ускорения и повышения точности анализа шумометрических данных и интегрирован в текущие производственные процессы.

Скважина Aristocrat

Объём входных НГ-данных — 67 значений по глубине, 512 по частоте. Обнаружено 4 объекта.

Результирующая таблица

	Кровля,	Подошва,	Частотный		Характеристика
	M	M	диапазон,	дб	типа шума
			кГц		
1	183	231	0.5-20.0	92	Поток по пласту
2	255	303	4.2-15.4	81	Поток по пласту
3	423	471	3.2-9.2	83	Поток по пласту
4	735	783	2.5-18.3	77	Поток по пласту

Низкое разрешение исходных данных, обусловленное редкостью измерений (один замер на каждые 23 метра при рекомендованной частоте — один замер на каждый метр), привело к значительной потере информации и снижению точности алгоритма.