Оглавление

Список рисунков	2
Запуск плагина для QGis «Inclinometry calculator»	3
Способ расчета по «DxDy»	4
Способ расчета по «MD»	7
Расчет коорлинат портов	10

Список рисунков

Рисунок 1 – Вид окна плагина	3
Рисунок 2 – Пример файла инклинометрии при расчете по dxdy	4
Рисунок 3 – Порядок ввода данных при расчете по dxdy	5
Рисунок 4 – Пример заполненных данных при расчете инклинометрии по dxdy	6
Рисунок 5 – Пример полученных файлов при расчете инклинометрии по dxdy	6
Рисунок 6 – Пример файла инклинометрии при расчете по MD	7
Рисунок 7 – Порядок ввода данных при расчете по МО	8
Рисунок 8 – Пример заполненных данных при расчете инклинометрии по МО	9
Рисунок 9 – Пример полученных файлов при расчете инклинометрии по MD	9
Рисунок 10 – Пример файла для расчета координат портов	10
Рисунок 11 – Пример заполненных данных для расчета координат портов	.10
Рисунок 12 – Пример полученного файла при расчете координат портов	.11

Запуск плагина для QGis «Inclinometry calculator»

Что бы запустить плагин пройдите по пути Модули -> Inclinometry calculator -> Inclinometry calculator (его требуется заранее установить).

Появится окно как на Рисунке 1.

Рисунок 1 – Вид окна плагина «Inclinometry calculator»

Плагин позволяет посчитать траекторию ствола скважины из данных инклинометрии *методом среднего угла*.

Можно посчитать 2-мя разными способами:

- 1) по «DxDy», т.е. по смещениям СЮ, ЗВ и вертикальной глубине от стола ротора;
- 2) по «MD», т.е. глубине по стволу, углу наклона и азимуту.

Способ расчета по «DxDy»

Для начала нужно сделать файл с данными инклинометрии в особом формате (348_incl_test.dat, рисунок 2). Там должны быть данные о смещениях на Север/Юг (NS) и Запад/Восток (WE), а так же значения Вертикальной глубины (TVD) в колонках, разделенные между собой табуляцией. Разделителем целой и дробной части выступает точка «.». Значения смещений на Север и Восток берется со знаком «+», а на Юг и Запад со знаком «-». Значение Вертикальной глубины равна. Файл должен быть сохранен в формате utf-8 с расширением *.dat. В файле не должно быть пустых строк. Могут быть и другие колонки (например глубина по стволу (MD), зенитный угол (Inkl), азимут (Azim)), их можно оставить.

<u>₩</u> 348_ir	ncl_test.dat	X		
1	h_vert	NS	WE	
2	0 0	0		
3	10 0	-0.	01	
4	20 -0	.01	-0.02	
5	30 -0	.03	-0.02	
6	40 -0	.04	-0.02	
7	50 -0	.06	-0.01	
8	60 -0	.07	0.02	
9	70 -0	.08	0.05	
10	80 -0	.1	0.09	
11	90 -0	.15	0.13	
12	100 -0	.24	0.16	
13	110 -0	.32	0.17	
14	120 -0	.42	0.18	
15	130 -0	.51	0.2	
16	140 -0	.59	0.24	
17	150 -0	.68	0.27	
18	160 -0	.77	0.26	
19	170 -0	.87	0.23	
20	180 -0	.98	0.22	
21	190 -1	.06	0.25	
22	199.99	-1.	12 0.2	8
23	209.99	-1.	17 0.2	7

Рисунок 2 – Пример файла инклинометрии при расчете по dxdy

Первым шагом расчета инклинометрии будет выбор типа расчета (по DxDy или по MD). В данном примере рассматриваем расчет по DxDy, поэтому его и выбираем в окне N2 (см. рисунки 3 и 4).

Далее нужно загрузить в плагин подготовленный файла инклинометрии (указать путь к файлу). Для этого нужно нажать на картинку в виде папки справа в окне N_2 и выбрать наш файл.

В окне N_2 3 выбираем из всплывающих окон смещения по x(WE), y(SN) и TVD - WE, NS и h_vert (это названия колонок в сознанном файле инклинометрии) соответственно. Нужно помнить, что здесь X направлен на Восток, а Y – на Север вне

зависимости от системы координат (для примера, в СК Pulkovo 1942 (EPSG - 4284) X направлен на Север, а Y - на восток. Но при работе с плагином смещения на Восток мы вводим в колонку X, а смещения на Север - в колонку Y).

В окне № 4 вписываем имя скважины (эта надпись будет в названии файла, который мы получим по завершению).

В окне \mathcal{N}_{2} **5** выбираем систему координат, в которой нужно получить выходной файл и в котором имеются координаты устья.

Рисунок 3 – Порядок ввода данных при расчете по dxdy

В окне N_2 6 вводим координаты устья в системе координат, которые выбрали в окне N_2 5. x(WE) — долгота или направление на Восток, y(SN) — широта или направление на Север, *Altitude* — альтитуда стола ротора (или высота, которая соответствует значению альтитуды при глубине по стволу (MD) равным 0).

В окне N 2 7 выбираем путь для сохранения выходного файла (выбираем папку, а не файл).

После заполнения всех нужных полей нажимаем кнопку « Apply ».

Рисунок 4 – Пример заполненных данных при расчете инклинометрии по dxdy

При правильном вводе данных в папке (который указали в окне № 7) появляются 7 файлов с результатами (6 — векторные файлы, 1 — текстовый) (рисунок 5). Полученный shp-файл автоматически подгружается в QGis.

Рисунок 5 – Пример полученных файлов при расчете инклинометрии по dxdy

Способ расчета по «MD»

Рассмотрим способ № 2 (расчет инклинометрии по «MD», т.е. по глубине по стволу, зенитному углу и азимуту).

Для начала нужно сделать файл с данными инклинометрии в особом формате (рисунок 6) аналогично со способом № 1. Там должны быть данные о *Глубине по стволу* (MD), зенитному углу (Incl) и Aзимуту (Azim). Азимут может быть истинный ($reorpa \phi u ческий$) (Azim True) и магнитный (Azim Mag). Если в файле задан магнитный азимут, то нужно знать магнитное склонение (Magnetic Declination) для координат данной скважины.

₩ 348_ir	ncl_tes	t_2.dat 🗵	
1	MD	Incl	Azim_Mag
2	0	0 331	.526
3	10	0.1 186	.446
4	20	0.11	185.856
5	30	0.09	175.206
6	40	0.1 111	.116
7	50	0.09	104.916
8	60	0.24	81.426
9	70	0.22	82.436
10	80	0.28	99.826
11	90	0.49	132.156
12	100	0.47	146.906
13	110	0.53	145.606
14	120	0.58	147.166
15	130	0.49	139.546
16	140	0.52	118.326
17	150	0.57	147.526

Рисунок 6 – Пример файла инклинометрии при расчете по MD

Рисунок 7 – Порядок ввода данных при расчете по MD

В окне \mathcal{N}_2 1 (рисунок 7) выбираем метод расчета « by MD ».

В окне \mathcal{N}_{2} выбираем ранее подготовленный файл (348 incl test 2.dat).

В окне \mathcal{M} 3 выбираем соответственно MD – Глубина по стволу, *Inclinatio* – угол наклона, *Azimuth* – азимут. Если азимут задается истинный, то в окне \mathcal{M} 4 вводим « θ », если магнитный, то – магнитное склонение, которое можно найти в файле инклинометрии от заказчика.

В окне N_2 5 вводим название скважины (можно добавить приписку MD).

В окне \mathcal{N}_{2} **6** выбираем систему координат, в которой мы хотим получить выходной файл, и в котором у нас имеются координаты устья.

В окне \mathcal{N}_{2} 7 вводим координаты устья в системе координат, которые выбрали в окне \mathcal{N}_{2} 6. x(WE) — долгота или направление на Восток, y(SN) — широта или направление на Север, *Altitude* — альтитуда стола ротора (или высота, которая соответствует значению альтитуды при глубине по стволу (MD) равным 0).

В окне N_2 8 выбираем путь для сохранения выходного файла (выбираем папку, а не файл).

После заполнения всех нужных полей нажимаем кнопку « Apply ».

Рисунок 8 – Пример заполненных данных при расчете инклинометрии по MD

При правильном вводе данных окон в папке (который указали в окне № 8) появляются 7 файлов (6 — векторные файлы для QGis, 1 — текстовый) с результатами (рисунок 9). Полученный shp-файл автоматически подгружается в QGis. В текстовом файле появляются колонки с Вертикальной глубиной и Абсолютной отметкой.

Рисунок 9 – Пример полученных файлов при расчете инклинометрии по MD

Результаты при расчете инклинометрии по «MD» и по «dxdy» будут отличаться незначительно. При более сильных различиях рекомендуется брать «за правду» вычисления по dxdy.

Расчет координат портов

Расчет координат портов делается параллельно с расчетом инклинометрии методом по «**MD**». Это означает, что нужно создать файл для расчета инклинометрии (см. главу *Способ расчета по «MD»*), знать координаты устья, магнитное склонение при необходимости, а так же создать текстовый файл с колонкой с названием порта (например, № или кровля/подошва) и глубиной по стволу (см. рисунок 10).

Рисунок 10 – Пример файла для расчета координат портов

Рисунок 11 – Пример заполненных данных для расчета координат портов

При расчете координат портов к *алгоритму расчета инклинометрии методом по «МD»* добавляются еще 2 окна (рисунок 11).

В окне N_2 *1* нужно указать файл, содержащий название порта и глубину по стволу (в примере файл *348 ports test.dat*).

В окне $\ensuremath{\mathcal{M}}\xspace 2$ нужно выбрать соответствующие колонки имени ($\ensuremath{\mathbb{N}}\xspace$) порта и глубины по стволу.

В результате получим дополнительно к 7 файлам (1 текстовый и 6 векторных) еще 1 текстовый файл с рассчитанными координатами портов (x, y, вертикальная и абсолютная глубины) (рисунок 12).

1	Point	MD	x y	Depth	Altitude	2					
2	1 328	5.0	9410148	.111870	836 6128	3210.8	311461655	3083.53	4033395094	-2983.5	34033395094
3	2 327	5.0	9410149	.594100	952 6128	3212.7	717523888	3073.830	00844450673	-2973.8	300844450673
4	3 326	5.5	9410151	.071073	562 6128	3214.6	08976766	3064.638	83796156897	-2964.6	383796156897
5	4 325	5.0	9410152	.799045	198 6128	3216.7	773563968	3054.510	0436016839	-2954.5	10436016839
6	5 324	5.5	9410154	.411680	164 6128	218.7	7780323485	3045.369	5426515327	-2945.3	65426515327

Рисунок 12 – Пример полученного файла при расчете координат портов