TEA018 - Hidrologia Ambiental

Aula 01 - Introdução (Parte 2) Ciclo hidrológico, conceito de sistema e classificação

Emílio G. F. Mercuri

www.ambiental.ufpr.br/professores/mercuri

Professor DEA / UFPR

Sumário

Introdução

Ciclo Hidrológico Balanço hídrico

Exemplo 1: tempo de residência

Conceito de sistema

MODELO HIDROLÓGICO Classificação de Modelos Hidrológicos

Exemplo: Reservatório de cheias Enunciado Solução no Google Colaboratory

Água na hidrosfera: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre ightarrow atmosfera

Água na hidrosfera: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre → atmosfera

Vapor de água ightarrow transporte ightarrow condensação e precipitação

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre → atmosfera **Vapor de água** → transporte → condensação e precipitação

Água precipitada pode

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre \rightarrow atmosfera

Vapor de água ightarrow transporte ightarrow condensação e precipitação

Água precipitada pode

Ser interceptada pela vegetação

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre \rightarrow atmosfera

Vapor de água → transporte → condensação e precipitação

Água precipitada pode

Ser **interceptada** pela vegetação

Tornar-se um fluxo superficial

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre → atmosfera

Vapor de água → transporte → condensação e precipitação

Água precipitada pode

Ser **interceptada** pela vegetação Tornar-se um **fluxo superficial Infiltrar-se** no solo

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre → atmosfera

Vapor de água → transporte → condensação e precipitação

Água precipitada pode

Ser interceptada pela vegetação

Tornar-se um fluxo superficial

Infiltrar-se no solo

fluir através do solo como fluxo subsuperficial

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre ightarrow atmosfera

Vapor de água → transporte → condensação e precipitação

Água precipitada pode

Ser interceptada pela vegetação

Tornar-se um fluxo superficial

Infiltrar-se no solo

fluir através do solo como fluxo subsuperficial

descarregar em correntes como escoamento superficial

Água na **hidrosfera**: 15 km na atmosfera e 1 km na litosfera, a crosta terrestre.

Ciclo Hidrológico

Evaporação dos oceanos e da superfície terrestre → atmosfera

Vapor de água ightarrow transporte ightarrow condensação e precipitação

Água precipitada pode

Ser interceptada pela vegetação

Tornar-se um fluxo superficial

Infiltrar-se no solo

fluir através do solo como fluxo subsuperficial

 $descarregar\ em\ correntes\ como\ \textbf{escoamento}\ \textbf{superficial}$

fluir para e de **aquíferos**

Balanço hídrico anual global

Os componentes do ciclo em relação a uma precipitação anual de 100 mm.

Água no Planeta Terra

Estimativa da distribuição da água

Estimated world water quantities

Item	Area (10 ⁶ km²)	Volume (km³)	Percent of total water	Percent of fresh water
Oceans	361.3	1,338,000,000	96.5	
Groundwater				
Fresh	134.8	10,530,000	0.76	30.1
Saline	134.8	12,870,000	0.93	
Soil Moisture	82.0	16,500	0.0012	0.05
Polar ice	16.0	24,023,500	1.7	68.6
Other ice and snow	0.3	340,600	0.025	1.0
Lakes				
Fresh	1.2	91,000	0.007	0.26
Saline	0.8	85,400	0.006	
Marshes	2.7	11,470	0.0008	0.03
Rivers	148.8	2,120	0.0002	0.006
Biological water	510.0	1,120	0.0001	0.003
Atmospheric water	510.0	12,900	0.001	0.04
Total water	510.0	1,385,984,610	100	
Fresh water	148.8	35,029,210	2.5	100

Table from World Water Balance and Water Resources of the Earth, Copyright, UNESCO, 1978.

Balanço global de água anual

Estimativa da distribuição da água

Global annual water balance

		Ocean	Land
Area (km²)	,	361,300,000	148,800,000
Precipitation	(km³/yr)	458,000	119,000
· · · · · · · · · · · · · · · · · · ·	(mm/yr)	1270	800
	(in/yr)	50	31
Evaporation	(km³/yr)	505,000	72,000
	(mm/yr)	1400	484
	(in/yr)	55	19
Runoff to ocean			
Rivers	(km³/yr)	_	44,700
Groundwater	(km ³ /yr)	_	2200
Total runoff	(km ³ /yr)	_	47,000
	(mm/yr)	_	316
	(in/yr)	_	12

Table from World Water Balance and Water Resources of the Earth, Copyright, UNESCO, 1978

Estime o tempo de residência da umidade atmosférica global

lackbox O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.

Estime o tempo de residência da umidade atmosférica global

- ightharpoonup O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.
- ► Cálculo:

$$T_r = \frac{V}{Q} \tag{1}$$

Estime o tempo de residência da umidade atmosférica global

- ightharpoonup O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.
- ► Cálculo:

$$T_r = \frac{V}{Q} \tag{1}$$

▶ O volume de umidade atmosférico é 12.900 km³ (Tabela: Água no Planeta Terra).

Estime o tempo de residência da umidade atmosférica global

- O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.
- ► Cálculo:

$$T_r = \frac{V}{Q} \tag{1}$$

- ► O volume de umidade atmosférico é 12.900 km³ (Tabela: Água no Planeta Terra).
- O fluxo de saída de atmosfera da atmosfera como precipitação é 458.000 + 119.000 = 577.000 km³ Balanço global de água anual

Estime o tempo de residência da umidade atmosférica global

- O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.
- ► Cálculo:

$$T_r = \frac{V}{Q} \tag{1}$$

- ► O volume de umidade atmosférico é 12.900 km³ (Tabela: Água no Planeta Terra).
- O fluxo de saída de atmosfera da atmosfera como precipitação é 458.000 + 119.000 = 577.000 km³ Balanço global de água anual
- ► Portanto, o tempo de residência é:

$$T_r = \frac{12.900}{577,000} = 0,022 \text{ anos} = 8,2 \text{ dias}$$

Estime o tempo de residência da umidade atmosférica global

- O tempo de residência T_r representa a duração média para a passagem de uma molécula de água em um subsistema do ciclo hidrológico.
- ► Cálculo:

$$T_r = \frac{V}{Q} \tag{1}$$

- ► O volume de umidade atmosférico é 12.900 km³ (Tabela: Água no Planeta Terra).
- O fluxo de saída de atmosfera da atmosfera como precipitação é 458.000 + 119.000 = 577.000 km³ Balanço global de água anual
- ► Portanto, o tempo de residência é:

$$T_r = \frac{12.900}{577,000} = 0,022 \text{ anos} = 8,2 \text{ dias}$$

► Curto tempo de residência → dificuldade de realizar previsões meteorológicas!

Ciclo hidrológico: conjunto de subsistemas

O sistema é um volume de controle (caixa preta)

► Definição formal:

O sistema é um volume de controle (caixa preta)

▶ Definição formal:

Um sistema hidrológico é definido como uma estrutura ou volume no espaço, envolto por uma superfície, que aceita água e outras entradas, opera internamente, e produz as saídas.

O sistema é um volume de controle (caixa preta)

► Definição formal:

Um sistema hidrológico é definido como uma estrutura ou volume no espaço, envolto por uma superfície, que aceita água e outras entradas, opera internamente, e produz as saídas.

▶ Aplicar as Leis de conservação de massa, energia e leis de Newton

O sistema é um volume de controle (caixa preta)

▶ Definicão formal:

Um sistema hidrológico é definido como uma estrutura ou volume no espaço, envolto por uma superfície, que aceita água e outras entradas, opera internamente, e produz as saídas.

- Aplicar as Leis de conservação de massa, energia e leis de Newton
- ► Estrutura (para fluxos de superfície e subsuperfície) ou volume no espaço (para o fluxo de umidade na atmosfera) → totalidade de *caminhos de fluxo* que a água pode passar desde o ponto onde entra no sistema até o ponto em que sai.

O sistema é um volume de controle (caixa preta)

▶ Definicão formal:

Um sistema hidrológico é definido como uma estrutura ou volume no espaço, envolto por uma superfície, que aceita água e outras entradas, opera internamente, e produz as saídas.

- ► Aplicar as Leis de conservação de massa, energia e leis de Newton
- ► Estrutura (para fluxos de superfície e subsuperfície) ou volume no espaço (para o fluxo de umidade na atmosfera) → totalidade de *caminhos de fluxo* que a água pode passar desde o ponto onde entra no sistema até o ponto em que sai.
- ▶ Processos físicos, químicos e biológicos podem ocorrer dentro do sistema.

O sistema é um volume de controle (caixa preta)

▶ Definicão formal:

Um sistema hidrológico é definido como uma estrutura ou volume no espaço, envolto por uma superfície, que aceita água e outras entradas, opera internamente, e produz as saídas.

- ► Aplicar as Leis de conservação de massa, energia e leis de Newton
- ► Estrutura (para fluxos de superfície e subsuperfície) ou volume no espaço (para o fluxo de umidade na atmosfera) → totalidade de caminhos de fluxo que a água pode passar desde o ponto onde entra no sistema até o ponto em que sai.
- ► Processos físicos, químicos e biológicos podem ocorrer dentro do sistema.
- ► Na análise hidrológica trabalharemos com: água, ar e calor.

Modelo hidrológico: transformação do sistema o formulação matemática

► Objetivo da análise hidrológica:

Modelo hidrológico: transformação do sistema o formulação matemática

► Objetivo da análise hidrológica:

Estudar o comportamento dos sistemas e predizer as saídas.

Modelo hidrológico: transformação do sistema o formulação matemática

► Objetivo da análise hidrológica:

Estudar o comportamento dos sistemas e predizer as saídas.

Sejam as entradas I(t) e saídas Q(t) funções do tempo t.

Modelo hidrológico: transformação do sistema o formulação matemática

► Objetivo da análise hidrológica:

Estudar o comportamento dos sistemas e predizer as saídas.

Sejam as entradas I(t) e saídas Q(t) funções do tempo t.

Transformação:

$$Q(t) = \Omega I(t)$$

Modelo hidrológico: transformação do sistema o formulação matemática

► Objetivo da análise hidrológica:

Estudar o comportamento dos sistemas e predizer as saídas.

Sejam as entradas I(t) e saídas Q(t) funções do tempo t.

Transformação:

$$Q(t) = \Omega I(t)$$

Ω: função de transferência (operador algébrico)

Classificação de Modelos Hidrológicos

Há aleatoriedade ou variabilidade espacial ou temporal no representação do fenômeno hidrológico?

Um reservatório de acumulação de cheias urbano tem uma área horizontal $A=100000~\mathrm{m}^2$ e paredes verticais. O reservatório está inicialmente vazio, e recebe uma cheia I(t) mostrada em vermelho na figura. O reservatório possui um vertedor de soleira livre e largura $L=20~\mathrm{m}$. Use equação de descarga para um vertedor $Q=CLH^{3/2}$, sendo que no SI $C=\alpha\sqrt{g}=1.545$, e obtenha a vazão efluente O(t) em função do tempo, de 1 em 1 minuto. Resolva o problema usando um método de diferenças finitas para a equação de balanço hídrico do reservatório.

$$\frac{\mathrm{d}S}{\mathrm{d}t} = I(t) - O(t)$$

As paredes do reservatório de acumulação são verticais: S=AH

As paredes do reservatório de acumulação são verticais: S=AH No instante inicial, o reservatório está vazio: S(0)=H(0)=0

As paredes do reservatório de acumulação são verticais: S=AH No instante inicial, o reservatório está vazio: S(0)=H(0)=0

A vazão afluente é "triangular", com duas retas cujas equações são facilmente obtidas:

$$I(t) = \begin{cases} t/360, & 0 \le t \le 3600 \\ 50/3 - t/540 & 3600 < t \le 9000 \end{cases}$$

As paredes do reservatório de acumulação são verticais: S=AH

No instante inicial, o reservatório está vazio: $S(0)=H(0)=0\,$

A vazão afluente é "triangular", com duas retas cujas equações são facilmente obtidas:

$$I(t) = \begin{cases} t/360, & 0 \le t \le 3600 \\ 50/3 - t/540 & 3600 < t \le 9000 \end{cases}$$

Convertemos as equações de o gráfico da figura 1 para t
 em segundos. A equação diferencial que temos que resolver é:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = I(t) - O(t),$$

$$S = AH,$$

$$O(t) = \alpha \sqrt{g} L [H(t)]^{3/2},$$

$$\frac{\mathrm{d}[AH]}{\mathrm{d}t} + \alpha \sqrt{g} L [H(t)]^{3/2} = I(t)$$

$$\frac{\mathrm{d}H}{\mathrm{d}t} + \left[\frac{\alpha \sqrt{g}L}{A}\right] H^{3/2} = \frac{I(t)}{A},$$

$$\frac{\mathrm{d}H}{\mathrm{d}t} + bH^{3/2} = f(t),$$

$$b = \frac{\alpha \sqrt{g}L}{A}, \qquad f(t) = \frac{I(t)}{A}$$

TEA018 - Hidrologia

A equação diferencial:

$$\frac{\mathrm{d}H}{\mathrm{d}t} + bH^{3/2} = f(t),$$

$$b = \frac{\alpha\sqrt{g}L}{A}, \qquad f(t) = \frac{I(t)}{A}$$

A equação diferencial:

$$\frac{\mathrm{d}H}{\mathrm{d}t} + bH^{3/2} = f(t),$$

$$b = \frac{\alpha\sqrt{g}L}{A}, \qquad f(t) = \frac{I(t)}{A}$$

Com condição inicial H(0) = 0 e f(t) variando como:

$$I(t) = \begin{cases} t/360, & 0 \le t \le 3600 \\ 50/3 - t/540 & 3600 < t \le 9000 \end{cases}$$

A equação diferencial:

$$\frac{\mathrm{d}H}{\mathrm{d}t} + bH^{3/2} = f(t),$$

$$b = \frac{\alpha\sqrt{g}L}{A}, \qquad f(t) = \frac{I(t)}{A}$$

Com condição inicial H(0) = 0 e f(t) variando como:

$$I(t) = \left\{ \begin{array}{ll} t/360, & 0 \leq t \leq 3600 \\ 50/3 - t/540 & 3600 < t \leq 9000 \end{array} \right.$$

Discretização em Diferenças Finitas:

$$\frac{H_{n+1} - H_n}{\Delta t} + bH_n^{3/2} = f(t_n)$$

$$H_{n+1} = H_n + \Delta t \left[f(t_n) - bH_n^{3/2} \right]$$

A equação diferencial:

$$\frac{\mathrm{d}H}{\mathrm{d}t} + bH^{3/2} = f(t),$$

$$b = \frac{\alpha\sqrt{g}L}{A}, \qquad f(t) = \frac{I(t)}{A}$$

Com condição inicial H(0) = 0 e f(t) variando como:

$$I(t) = \left\{ \begin{array}{ll} t/360, & 0 \leq t \leq 3600 \\ 50/3 - t/540 & 3600 < t \leq 9000 \end{array} \right.$$

Discretização em Diferenças Finitas:

$$\frac{H_{n+1} - H_n}{\Delta t} + bH_n^{3/2} = f(t_n)$$

$$H_{n+1} = H_n + \Delta t \left[f(t_n) - bH_n^{3/2} \right]$$

Código no Google Colab!

https://drive.google.com/file/d/1vcRktvLEoB6eZqUPh6wZi-KuiInXMsvM/view?usp=drive_link