ARITHMETIC Chapter 2

VERANO UNI

Magnitudes Proporcionales

INTRODUCCIÓN

En la vida cotidiana encontramos varias magnitudes a nuestro alrededor, por ejemplo:

- La velocidad del bus donde nos desplazamos.
- La temperatura del medio ambiente.

El tiempo que dura nuestro recreo.

<u>MAGNITUD</u>

DEFINICIÓN

Es algo cuantificable, es decir, medible ponderable. Las magnitudes pueden ser directamente apreciables por nuestros sentidos, como los tamaños y pesos de las cosas, o más indirectas (aceleraciones, energías). Medir implica realizar un experimento de cuantificación, normalmente con un instrumento especial (reloj, balanza, termómetro).

MAGNITUDES PROPORCIONALES

Se dice que dos magnitudes son proporcionales cuando al varíar el valor de una de ellas entonces el valor de la otra también varía en la misma proporción.

Estatura - Longitud de sombra

Velocidad –Tiempo

CLASIFICACIÓN

MAGNITUDES DIRECTAMENTE PROPORCIONALES (DP)

Se ha pagado S/ 16 por 8kg de arroz.

Determinar:

- El costo de 24 kg
- El peso por el cual se pagó s/.80

			x3 \ \ x	x5	
Costo(S/.)		16	48	80	
Peso (Kg)		8	24	40	
x3 1 v5					

Observando el comportamiento de los valores afirmamos que la Magnitud costo es **directamente proporcional** a la magnitud peso.

$$=\frac{48}{24}=\frac{80}{40}=2$$

$$\frac{6}{8}$$
Valor costo = Cte. 8 Valor peso

En general:

Si las magnitudes A y B son **DP**, se cumple que:

$$\frac{VabraeA}{VabraeB} = 0$$

MAGNITUDES DIRECTAMENTE PROPORCIONALES (DP)

Con los valores respectivos elaboramos la gráfica:

La gráfica de las magnitudes DP son algunos **Puntos de una recta**, que pasa por el origen de coordenadas.

Además:

$$\frac{\text{Valor costo}}{\text{Valor peso}} = \frac{y}{x} = k$$

Le damos notación funcional con y = F(x):

$$\frac{F(x)}{x} = k$$

$$R = kx$$

Lo cual llamaremos **FUNCIÓN DE PROPORCIONALIDAD DIRECTA**

MAGNITUDES INVERSAMENTE PROPORCIONALES (IP)

Un automóvil con una velocidad de 20m/s tarda 30s en recorrer cierta distancia. Determinar:

- ¿Qué tiempo tardaría si la velocidad es de 60 m/s?
- ¿Qué velocidad debería emplearse para emplear 120s?

	÷	4 >	(3)	
Velocidad(m/s)	 5	20	60	
Tiempo (s)	 120	30	10	
	X	1	÷3	

Observando el comportamiento de los valores afirmamos que la magnitud velocidad es **inversamente proporcional** a la magnitud tiempo.

En general:

Si las magnitudes A y B son **IP**, se cumple que:

MAGNITUDES INVERSAMENTE PROPORCIONALES (IP)

Con los valores respectivos elaboramos la gráfica:

La gráfica de las magnitudes IP son algunos **Puntos de una rama de una hipérbola Equilátera**.

Además:

$$\begin{pmatrix} Volume V \end{pmatrix} \begin{pmatrix} Volume V \end{pmatrix} = y \cdot x = k$$

Le damos notación funcional con y = G(x):

$$G(x). x = k$$

$$G(x) = \frac{k}{x}$$

Lo cual llamaremos **FUNCIÓN DE PROPORCIONALIDAD INVERSA**

MAGNITUDES INVERSAMENTE PROPORCIONALES (IP)

Propiedad

El **área** de los sectores rectangulares generados por los puntos de la gráfica de dos magnitudes IP, es constante.

Propiedades

Si A es **DP** a B \rightarrow B es **DP** a A

Si A es **IP** a B → B es **IP** a A

Si A es **DP** a B → A es **DP** a B , n∈Q

Si A es IP a B → A es IP a B , n∈ Q

Si A es **IP** a B \rightarrow A es **DP** a $_{B}^{-1}$

A **DP** B (C constante)

A **DP** C (B constante)

A **DP** B x C

APLICACIONES DE LAS M.P.

SISTEMA DE ENGRANAJES

Ruedas dentadas

En un mismo intervalo de tiempo:

- La rueda que tiene MENOS dientes dará MÁS vueltas.
- La rueda que tiene MÁS dientes dará MENOS vueltas.

Se concluye:

(Nro. de vueltas) IP (Nro. de dientes)

Va.da = VB.dB = Constante

Ruedas unidas por un eje

Independientemente de sus tamaños, diámetros, longitud de circunferencia o número de dientes: Las ruedas, conjuntamente con el eje, dan el mismo número de vueltas.

Rueda Y

SISTEMA DE ENGRANAJES

Ejemplo aplicativo

Una rueda A de 20 dientes engrana con la rueda B de 30 dientes. En media hora una dá 72 vueltas más que la otra. ¿Cuántas vueltas dará la rueda B al cabo de 45 minutos?

Va.da = VB.dB = Constante

$$(n+72).20 = n.30$$

 $n = 144$

Es decir, Bdá:

- > 144 vueltas en 30 minutos
- > 72 vueltas en 15minutos

Por lotanto:

∴ 216 vueltas en 45 minutos

SISTEMA DE ENGRANAJES

Ejemplo aplicativo

Una rueda A de 10 dientes engrana con la rueda B de 20 dientes que está unida a un mismo eje con la rueda C, también de 10 dientes, la cual engrana la rueda D de 40 dientes. En hora y media A dá 84 vueltas más que D. ¿Cuántas vueltas dá la rueda C cada 45 minutos?

$$V_{A}.10 = V_{B}.20$$
 y $V_{C}.10 = V_{D}.40$

$$\frac{V_{A}}{2} = \frac{V_{B}}{1}$$

$$\frac{V_{C}}{2} = \frac{V_{D}}{4}$$

$$\frac{V_{C}}{4} = \frac{V_{D}}{1}$$

$$\frac{V_{A}}{8} = \frac{V_{B}}{4} = \frac{V_{C}}{4} = \frac{V_{D}}{1} = \frac{V_{A} - V_{D}}{8 - 1} = 1.2$$

$$\frac{V_{A}}{8} = \frac{V_{B}}{4} = \frac{V_{C}}{4} = \frac{V_{D}}{1} = \frac{V_{A} - V_{D}}{8 - 1} = 1.2$$

$$\frac{V_{A}}{8} = \frac{V_{B}}{4} = \frac{V_{C}}{4} = \frac{V_{D}}{1} = \frac{V_{A} - V_{D}}{8 - 1} = 1.2$$

Es decir, Cdá:

4(12)=48 vueltas en 90 minutos

Por lotanto:

.: 24 vueltas en 45 minutos

REPARTO PROPORCIONAL Reparto Simple Directo

Una municipalidad decide distribuir un lote de arroz consistente en 1140 sacos, entre 4 comedores considerando la cantidad de personas que las integran: 615; 369; 861 y 492 personas. ¿Cuánto recibe el comedor con menor cantidad de integrantes?

Veamos:

✓ A MAYOR número de integrantes, MAYOR parte.

✓A MENOR número de integrantes, MENOR parte.

Entonces:

(Parte) DP (Nro. integrantes)

$$\rightarrow \frac{\text{(parte)}}{\text{(N° de integrantes)}} = \text{Cte.}$$

Sean las partes: P_1 ; P_2 ; P_3 y P_4 Tenemos que: $P_1 + P_2 + P_3 + P_4 = 1140$

Donde:
$$P_1 = P_2 = P_3 = P_4$$

65 359 861 492
= 1140
 $P_1 = P_2 = P_3 = P_4$
 $P_1 = P_2 = P_3 = P_4$
 $P_1 = P_2 = P_3 = P_4$
 $P_2 = P_3 = P_4$
 $P_4 = P_2 = P_3 = P_4$

La menor parte es: $P_2 = 3x60 = 180$

Por lotanto:

.. Recibirá 180 sacos de arroz.

REPARTO PROPORCIONAL

Reparto Simple Inverso

Tras una competencia de velocidad se procederá a repartir un premio de S/. 11800 entre los tres primeros puestos considerando el tiempo que cada uno hizo en la carrera 12,6; 10,5 y 16,8 segundos. ¿Cuánto es el mayor premio?

Veamos:

✓ A MAYOR tiempo, MENOR parte.

✓ A MENOR tiempo, MAYOR parte.

Entonces:

(Parte) IP (Tiempo) \rightarrow (Re.) (Tempo) = (

Sean las partes: P_1 ; P_2 y P_3 Tenemos que: $P_1 + P_2 + P_3 = 11800$

Donde:

$$P_1 \times 12,6 = P_2 \times 10,5 = P_3 \times 16,8 \text{ (todo x 10)}$$

 $\rightarrow P_1 \times 126 = P_2 \times 105 = P_3 \times 168$

Simplificando:

$$P_1 \times 6 = P_2 \times 5 = P_3 \times 8 \text{ (todo } \div 120)$$

$$\rightarrow \frac{P_1 - P_2 - P_3}{20} = \frac{K - P_1 + P_2 + P_3}{50} = \frac{1830}{50} = \frac{200}{50}$$

Por lotanto:

La mayor parte o mayor premio recibido es:

$$P_2 = 24 \times 200 = 4800$$

REPARTO PROPORCIONAL Reparto Compuesto

Un hacendado al morir deja de herencia a sus tres sirvientes un terreno de 7200 m² estipulando que el reparto será IP a sus sueldos: S/.300; S/.200 y S/.500 y a la vez DP al número de años de servicio: 6; 8 y 15 años, respectivamente. ¿Qué área corresponde a cada sirviente?

Veamos:

(Área) IP (Sueldos) (Área) DP (Años de Servicio)

Entonces:

Datos:

Sueldos: 300; 200 y 500

Años de servicio: 6; 8 y 15 Sean las Áreas: A₁; A₂ y A₃

Tenemos que: $A_1 + A_2 + A_3 = 7200$

$$\xrightarrow{A(0)} = A(0) = 8$$
Simplificando:

$$\frac{A_1}{2} = \frac{A_2}{4} = \frac{A_3}{3} = \frac{A_1 + A_2 + A_3}{9} = \frac{7200}{9} = 800$$

Por lotanto:

A cada sirviente le corresponde:

REPARTO PROPORCIONAL Regla de Compañía

Tres amigos se asociaron y formaron una empresa. El primero aportó \$6000 durante 6 meses; el segundo \$3000 durante 8 meses y el tercero \$9000 durante 12 meses. Si la utilidad es \$7000. ¿Cuánto ganó cada socio?

Veamos:

(Ganancia) DP (Capital) (Ganancia) DP (Tiempo)

Ganancia o Pérdida

Entonces:

Datos:

Capitales (\$): 6000; 3000 y 9000

Tiempo (meses): 6;8 y 12

Sean las Ganancias: G_1 ; G_2 y G_3

Tenemos que: $G_1 + G_2 + G_3 = 7000$

$$\rightarrow \frac{G_1}{6000 \times 6} = \frac{G_2}{3000 \times 8} = \frac{G_2}{3000 \times 8}$$

Simplificando:

$$\frac{G_1 - G_2 - G_3}{3} = \frac{K - G_1 + G_2 + G_3}{9} = \frac{700}{14} = 500$$

Por lotanto:

A cada socio le corresponde:

$$G_1 = 3x500 = $1500$$

 $G_2 = 2x500 = 1000
 $G_3 = 9x500 = 4500

REGLA DE TRES

Es un procedimiento que, en su forma más elemental, presenta tres valores con los cuales podemos calcular un cuarto valor requerido. Si sólo involucra los valores de 2 magnitudes es una relación SIMPLE, ya sea DIRECTA o INVERSA.

Pero si involucra simultáneamente a más de 2 magnitudes, es una relación **COMPUESTA**.

Esto se aplica al contexto en que se realizan.

Forma práctica:

Un <u>número de obreros</u> realiza una <u>obra</u> de cierta <u>dificultad</u> en <u>determinado número de días</u>, todos ellos trabajando un <u>número de horas diarias</u> con determinada <u>eficiencia</u>.

Identificamos las magnitudes y establecemos la relación entre las mismas.

Tomando a la magnitud (Nro. de obreros), tenemos:

Obtenemos la expresión general:

$$\frac{\text{(Nice has.}) \text{(Nice has.}) \text{(Nice has.})}{\text{(Cha. (ii))}} = \mathbf{6}$$

Que aplicaremos para cada conjunto de valores de las magnitudes.

REGLA DE TRES EJEMPLO APLICATIVO

Un grupo de 18 <u>obreros</u>, para realizar 600 <u>metros de una carretera</u>, que es triple de <u>difícil</u> que hacer una vereda, trabajaron durante 15 <u>días</u> a razón de 8 <u>horas diarias</u>. ¿En cuántos días 12 obreros harán 500 metros de vereda, trabajando a razón de 6 horas diarias pero con el doble de <u>eficiencia</u> que los anteriores?

Resolución

Identificamos las magnitudes y establecemos la relación entre las mismas.

MAGNITUDES	CANTIDADES	
(N° de obreros)	18	12
(Obra)	600	500
(Dificultad)	3	1
(N° de días)	15	X
(N° de horas / dia)	8	6
(Eficiencia)	1	2

Reemplazamos:

$$\frac{26}{6} = \frac{26}{501}$$

$$X = \frac{2}{6}$$

: Lo harán en 4 1/6 días

magnitud A es inversamente proporcional a la raíz cuadrada de la magnitud B. Si A= 5/7 cuando B=49; ¿cuál es el valor de B si A= 1/4?

A) 250

B) 300

C) 500

D)360

E) 400

RESOLUCIÓN

Del enunciado: (A) IP (VB)

Luego, con respecto a sus valores:

$$(A) \times (VB) = K$$

Relación de Proporcionalidad

Observemos:

А	5/7	1/4
В	49	X

Reemplazando valores correspondientes a las magnitudes:

$$(5/7) \times (49) = (1/4) \times (4x)$$

$$\psi x = 20$$
 $\therefore x = 400$

Rpta: E

2. La presión en un balón de gas es IP a su volumen; es decir a menor volumen mayor presión. Si un balón de 240 litros soporta una presión de 4,8 atm, ¿qué presión soportará un balón de 60 litros?

- A) 19,2atm B) 16,4atm C) 14,4atm
- D) 18,2atm E) 16atm

RESOLUCIÓN

Del enunciado: (Presión) IP (Valmen)

Luego, con respecto a sus valores:

Relación de Proporcionalidad

Observemos:

Presión	4,8 atm	X
Volumen	240 I	60 I

Reemplazando valores correspondientes a las magnitudes:

$$(4,8) \times (20) = (x) \times (60)$$

$$\therefore$$
 x =19,2atm

3. ¿Cuántos gramos pesará un diamante que vale \$112,5; si uno de 6 g vale \$7,2 y además se sabe que el valor del diamante es proporcional con el cubo de supeso?

- A) 9,25 g B) 13,66 g C) 15,00 g
- D) 19,20g E) 21,00g

RESOLUCIÓN

Del enunciado: (Precio) DP (Pas)

Luego, con respecto a sus valores:

Relación de Proporcionalidad

Observemos:

Precio	(\$)	112,5	7,2
Peso	(g)	X	6

Reemplazando valores correspondientes a las

magnitudes:

$$\frac{(12)}{(x)^3} = \frac{?}{(6)^3} > 24300 = (78)$$

$$x^3 = 3375$$
 $\therefore x = 15$

Rpta: C

- 4. Si A IP B y DP C, cuando A=5, B=4, C=2; halle el valor de C cuando A=6, B=9.
 - A) 4

- B) 5,4
- C) 5

- D) 6,2
- E) 7

RESOLUCIÓN

Por

(A) **IP** (B) C: Constante

Dato:

(A) **DP** (C) B: Constante

Por Propiedad:

Relación de Proporcionalidad

Observemos:

Α	5	6
В	4	9
С	2	X

Reemplazando valores correspondientes a las magnitudes:

$$\frac{5\times4}{2}$$
=6 $\frac{\times9}{\times}$

$$10x = 54$$
 ... $x = 5,4$

$$x = 5,4$$

Rpta: B

5. Si A DP B e IP C, cuando, A y B son iguales, C = 3. ¿Cuál es el valor de B cuando A=1 y C=12?

- A) 8
- B) 6
- C) 4

- D) 12
- E) 9

RESOLUCIÓN

Por

(A) **DP** (B) C:Constante

Dato:

(A) **IP** (C) B: Constante

Por Propiedad:

$$\frac{A \times C}{B} = \mathbf{k}$$

Relación de Proporcionalidad

Observemos:

Α	m	1
В	m	X
\cap	3	1
		2

Reemplazando valores correspondientes a las magnitudes:

$$\frac{m \times 3}{m} = \frac{1 \times 2}{x}$$

$$3x = 12$$
 ... $x = 4$

Rpta: C

6. Se sabe que A es DP a √B e IP ³/C; además cuando A es 14 entonces B=64 y C=B. Halle el valor de A cuando B sea 4 y C sea el doble de В.

- A) 7
- B) 2
- C) 4

D) 5

E) 6

RESOLUCIÓN

Se Sabe:

(A) **DP** (vB)

C: Constante

(A) **IP** ($\sqrt[3]{C}$)

B: Constante

Por Propiedad:

Relación de Proporcionalidad

Observemos:

А	14	X
В	64	4
С	64	8

Reemplazando valores correspondientes a las

magnitudes:
$$\frac{14 \times \sqrt[3]{64}}{\sqrt{64}} = \frac{x \times \sqrt[3]{8}}{\sqrt{4}} \rightarrow \frac{14 \times 4}{8} = \frac{x \times 2}{2}$$

$$\frac{14 \times 4}{8} = \frac{\times \times 2}{2}$$

7. Si A DP a B y C e I.P D², ¿cómo varía A cuando B aumenta en su tercera parte, C disminuye en sus 2/5 y D aumenta en la 1/5 parte desu valor?

A) 2/5

B) 5/9

C) 4/9

D) 4/7

E) 2/7

RESOLUCIÓN

Por Dato:

(A) **DP** (B) C y D: Constantes

(A) **DP** (C)B y D : Constantes

(A) IP (D)B y D : Constantes

Observemos:

А	а	X
В	3m	4m
С	5n	3n
D	5p	6р

Por Propiedad:

Relación de Proporcionalidad

¿Cómo varía A?

B aumenta en su tercera parte

C disminuye en sus 2/5partes

D aumenta en la quinta parte

Reemplazando:

$$\frac{a \times 2\pi}{3m \times 5n} \times 3\pi$$

$$\frac{a \times 2\pi}{4m \times 3n} \times 3\pi$$

$$\frac{a \times 2\pi}{15} \times 3\pi$$

$$15 \times 12$$

$$\therefore \text{ Disminuye 4/9}$$
Rpta: C

8. Una ventana cuadrada es limpiada en 2 h. 40 min. Si la misma persona limpia otra ventana cuadrada cuya base es 25% menor que la ventana anterior, ¿qué tiempo demora?

A)80 min

B) 92 min

C) 1h 20 min

D) 1h 40 min

E) 1h 30 min

RESOLUCIÓN

Observemos:

75%L

2h 40 min <> 160 min

.....

Deducimos:

Reemplazando valores correspondientes a las magnitudes:

$$\frac{(78\%L)^2}{(160)}$$

$$x = (3/4)^2 \times 160$$

x = 90 min

Rpta: E

enfermera **9.** Una proporciona a un paciente una tableta cada 45 minutos. ¿Cuántas tabletas necesitará para 9 horas de turno si debe administrar una al inicio y al término del mismo?

A) 12

B) 10

C) 13

D) 14

E) 11

RESOLUCIÓN

Del enunciado:

Se proporciona una tableta cada 45 min:

Observemos:

Como es un turno de 9 horas 9h \$\iins\$540 min

Se necesitarán:

$$\frac{50}{45}$$
 +1=13tabletas

Rpta: C

10. Si A obreros realizan una obra en $(\frac{3x}{2} + 4)$ días, ¿en cuántos días la mitad de obreros realizarán la misma obra?

D)
$$\frac{3x}{8}$$
+8

RESOLUCIÓN

Observemos:

A OBREROS
$$(\frac{3x}{2}+4)$$
 DIAS

(A/2) OBREROS

t DIAS

OBRA

OBRA

Sabemos:

(NRO. OBREROS) IP (NRODAS)

Reemplazando:

$$(A) \times (\frac{3x}{2} + 4) = (A/2)^{x'} \times (t)$$

$$\frac{3x}{2}$$
 +4 =

$$t = 3x + 8$$

Rpta: C

11.Un sastre tiene una tela de 86 m de longitud que desea cortar en pedazos de un metro cada uno.

Si para hacer cada corte se demora 6 segundos, ¿Cuánto tiempo (en minutos) demorara en cortar la totalidad de la tela?

- A) 8,5 B) 8,6 C) 8,4
- D) 8,7 E) 8,3

RESOLUCIÓN

Por dato:

Cada corte demora: 6 s

Si la tela tiene 86m. Se obtiene 86 pedazos de 1 metro cada uno

Y se debe efectuar 85 cortes

Los 85 cortes lo hará en : 85 x 6 s =510 s

Convirtiendo a minutos tenemos:

 $\frac{510}{60}$ =8,5 minutos

12 Manuel es el triple de rápido que Juan y juntos realizan una obra de doce días. Si la obra la hiciera solamente Manuel, ¿Cuántos días demoraría?

- A) 20
- B) 16

C) 18

- D) 14
- E)48

RESOLUCIÓN

Del Enunciado:

Rapidez de Manuel: Es como 3

Rapidez de Juan: Es como 1

Rapidez si trabajan juntos: Es como 4

Sabemos:

RAPIDEZ IP N°DIAS

RAPIDEZ ×N° DIAS =K

Observe:

	Juntos	Manuel
Rapidez	4	3
Nro. Días	12	X

$$4(12) = 3(x)$$

$$x = 16$$

Rpta: B

- trabajando 8 horas diarias, construyen una obra en 15 días. ¿Cuantos días se requieren para que 120 obreros, horas diartiæsbajbagan 10 misma obra?
 - A) 22 días B) 30 días C) 8 días
 - D) 16días E)20 días

RESOLUCIÓN

RECORDEMOS

N°Obreros x N°H/D x N°Dias =K

Reemplazando valores correspondientes a las magnitudes:

$$80 \times 8 \times 15 = 120 \times 10 \times (X)$$

Efectuando:

$$80x_{120} = 120x_{10x}(x)$$

$$\cdot \cdot \cdot \times = 8 \text{ Días}$$

Rpta: C

14. Se sabe que 30 carpinteros en 6 días, pueden hacer 90 mesas o 150 sillas. Halle el valor de x, sabiendo que 20 de estos carpinteros en 15 días han hecho 120 mesas y x sillas.

A) 50

B) 42

C) 48

D) 36

E)30

RESOLUCIÓN

Por dato:

RECORDEMOS

Reemplazando:

Simplificando:

$$(200 +x) = 25x10$$

Donde:

$$(200 + x) = 250$$

$$\therefore$$
 x=50

15. Se reparte 738 en forma directamente proporcional a dos cantidades; de modo que ellas están en la relación de 32 a 9. Calcule la suma de las cifras de la cantidad menor.

- A) 18
- B) 14
- C) 13

D) 11

E) 9

RESOLUCIÓN

Sean las cantidades:

Además:

Donde:

Reemplazando:

$$738 = 32K + 9K$$

$$738 = 41K$$

La menor cantidad será:

De Donde la suma de sus cifras será:

Rpta: C

16. Descomponga el numero 1134 en cuatro sumandos cuyos cuadrados sean proporcionales a 12;27; 48 y 75.

- A) 162, 243, 324 y 405
- B) 161,244, 324 y 405
- C) 162, 242, 325 y 405
- D) 162, 243, 323 y 406
- E) 162, 243, 323 y 406

RESOLUCIÓN

Sea:

Por Dato:

$$\frac{A^2}{12} = \frac{B^2}{27} = \frac{C^2}{48} = \frac{D^2}{75}$$
4 9 16 25

Extrayendo la raíz cuadrada tenemos:

$$A = B = C = D = K$$

Donde:

$$A = 2K$$
, $B = 3K$,

$$C=4K$$
 $D=5K$

Reemplazando:

$$1134 = 2k + 3k + 4k + 5k$$

 $1134 = 14k$
 $k = 81$

Entonces dichos sumandos son:

- **17.** Tres personas forman una sociedad con 4800 dólares de capital. Si el primero aporta los 3/8 y el segundo los 8/15 del resto, ¿Cuánto aporto el tercero?
 - A) S/1400

B) S/1620

C) S/1600

D) S/700

E) S/2800

RESOLUCIÓN

Por Dato:

El capital Total: \$4800

Donde:

$$C_1 = \frac{3}{8} 4800 = $1800$$

Queda: \$3000

Entonces:

$$C_2 = \frac{8}{15} 3000 = $1600$$

Donde el capital del tercero será:

$$C_3 = $1400$$

18. Se ha repartido cierta cantidad entre 3 personas en partes proporcionales a los números 3; 4 y 5. Sabiendo que la tercera persona a recibido S/ 600 mas que la primera, ¿Cuánto dinero se distribuyo?

A)S/3600

B) S/3000

C) S/2400

D) S/1200

E) S/2700

RESOLUCIÓN

Sea la cantidad repartida:

V

Donde:

$$N = A + B + C$$

Por Dato:

$$\frac{A}{3} = \frac{B}{4} = \frac{C}{5} = \mathbf{K}$$

Despejando:

$$A = 3K$$
, $B = 4K$ y $C = 5K$

Por dato:

$$C - A = 600$$

Reemplazando:

$$5k - 3k = 600$$

$$2k = 600$$

Donde:

$$N = 3k + 4k + 5k = 12k$$

$$N = 12x300$$

19. Divida S/ 780 en tres partes de modo que la primera sea a la segunda como 5 es a 4 y la primera sea a la tercera como 7 es a 3. ¿Cuál es la segunda parte?

A)S/205

B) S/150

C) S/350

D) S/280

E) S/410

RESOLUCIÓN

Sea:

Donde:
$$A = 5 \times 7$$

$$B = 4 \times 7$$

$$A = 35k$$

$$A = 7 \times 5$$

$$C = 3 \times 5$$

$$A = 35k$$

$$C = 15k$$

Por Dato:

$$780 = 35k + 28k + 15k$$

$$k = 10$$

La segunda parte es:

$$B = 28x 10$$
 : $B = 280$

Rpta: D

20. Reparta S/ 20 500 entre 3 personas de modo que la primera sea a la segunda como 2 es a 3 y la segunda a la tercera como 4 es a 7. ¿Cuál es la mayor parte?

A) S/12500

B) S/3200

C) S/400

D) S/600

E) S/10500

RESOLUCIÓN

Sea:

$$20500 = A + B + C$$

Donde:
$$A = 2 \times 4$$

$$B = 3 \times 4$$

$$B = 4 \times 3$$

$$C = 7 \times 3$$

$$A = 8k$$

$$B = 12k$$

$$C = 21k$$

Por Dato:

$$20500 = 41k$$

$$k = 500$$

La mayor parte es:

$$C = 21 \times 500$$
 : $C = 10500$

$$C=10500$$

Rpta: E

MUCHAS GRACIAS

ATENTAMENTE SU PROFESOR

