

Universidad Pública de El Alto – UPEA Carrera Ingeniería de Sistemas

Materia: SIS-211 Programación I Práctica general Nro 2 II/2024

Para cada uno de los ejercicios realizar la codificación en Phyton, empleando la programación modular.

(NO UTILIZAR FUNCIONES INTRÍNSECAS DEL LENGUAJE)

Vectores

1. Dado un vector de n elementos, realiza una función para mostrar un segmento del mismo, delimitado por 2 parámetros a,b que se le pedirá al usuario. Ejemplo.

2. Rotar 3 veces a la derecha, un vector de tamaño N. Ejemplo.

	,	Vector	inicial					Resu	ltado		
5	3	8	9	1	2	9	1	2	5	3	8

3. Dado el vector V de tamaño N (par), dividir imaginariamente el vector en dos partes iguales. Rotar los elementos de la primera parte hacia la izquierda y los elementos de la segunda parte hacia la derecha.

Ejemplo.

			Ve	cto	r inic	cial								Resu	ltad	0			
12	5	13	6	8	1	3	22	80	65	5	13	6	8	12	65	1	3	22	80
+									•										

4. Dado un vector de n elementos, realiza una función para rotar a la derecha un segmento del mismo, delimitado por 2 parámetros a,b que se le pedirá al usuario. Ejemplo.

- 5. Dado el vector V de tamaño N, con elementos enteros positivos. Ordenar sus elementos ascendentemente, aplicando el **Método Burbuja**.
- 6. Dado el vector V de tamaño N, con elementos enteros positivos. Ordenar sus elementos ascendentemente, aplicando el **Método de Selección**.
- 7. Dado el vector V de tamaño N, con elementos enteros positivos. Ordenar sus elementos ascendentemente, aplicando el **Método de Inserción**.
- 8. Dado el vector V de tamaño N, con elementos enteros positivos. Ordenar sus elementos ascendentemente, aplicando el **Método Merge**.
- 9. Dado el vector V de tamaño N, con elementos enteros positivos. Ordenar sus elementos ascendentemente, aplicando el **Método Quick Sort**.
- 10. Dado el vector V de tamaño N, ordenar sus elementos pares ascendentemente.
 Ejemplo.

11. Cargar un vector T con n elementos y ordenar en forma ascendente todos los elementos múltiplos de 3 contenidos en este vector. Mostrar el vector T antes y después de la ordenación efectuada. Ejemplo.

12. En un vector de dimensión par, ordenar la primera mitad de los elementos en forma ascendente y la segunda mitad en forma descendente. Ejemplo.

	V	ector	inicio	al				Resu	ıltado			
5	8	2	1	9	3	2	5	8	9	3	1	
						1						

13. Dado un vector de n elementos, realiza una función para ordenar ascendentemente un segmento del mismo, delimitado por 2 parámetros a,b que se le pedirá al usuario.

Ejemplo.

14. Dado un vector de n elementos, realiza una función para encontrar un elemento k. La función debe devolver la posición i, del primer elemento encontrado. Aplique el algoritmo para la búsqueda lineal.

		Ve	ctor ini	cial			Resultado
3	5	4	2	8	2	1	Si k=8, "Elemento
0	1	2	3	4	5	6	encontrado en la
							posición i=4"

15. Dado un vector de n elementos, realiza una función para encontrar un elemento k. La función debe devolver la posición i, del elemento encontrado. Aplique el algoritmo para la búsqueda binaria.

Matrices

 Hallar el mayor elemento de la diagonal principal y el menor de la diagonal segundaria de una matriz cuadrada.
 Ejemplo.

N	\atriz	inicio	al	Resultado
1	7	9	4	El mayor de la diagonal principal es 8
9	2	3	6	El menor de la diagonal secundaria es 3
3	6	8	7	
7	5	4	6	

2. Ordenar ascendentemente los elementos de la diagonal principal. Ejemplo:

	Matriz	inicial				Resu	ltado		
5	8	8	9		2	8	8	9	
3	2	4	4		3	3	4	4	
2	1	3	8		2	1	5	8	
1	2	1	8		1	2	1	8	

3. Cargar una matriz D de NxM elementos y ordenar los elementos de la fila K de la matriz en forma ascendente: Ejemplo:

		Matriz	inicial				Resu	ltado		
Ent	ra: N=3	M=4 K=	1							
	61	8	2	11		61	8	2	11	
	36	10	40	20		10	20	36	40	
	7	5	45	19		7	5	45	19	
			•	•			•	•	•	•

4. Generar la siguiente matriz cuadrada de dimensión N.

			R	esultac	do					
si K=4					si k=5					
					_	2	_		_	
1	2	3	4		0	0	0	6	5 0	
0	0	5	0		0	0	7	0	0	
0	6	0	0		0	8	0	0	0	
7	8	9	10		9	10	11	12	13	

5. Generar las siguientes matrices especiales de NxN elementos:

001101		9				- 1								
						Res	sulta	do						
	a)							b)						
		5	0	0	0	0		IJ,	1	2	3	4	5	6
		4	5	0	0	0			3	3	3	3	7	1
		3	4	5	0	0			3	3	3	8	1	1
		2	3	4	5	0			3	3	9	1	1	1
			2	2	1	-			3	10	1	1	1	1
		1		3	4	5			11	12	13	14	15	16

6. Generar la matriz MAT de tamaño NxN (N es par). Dividir la matriz en 4 partes iguales. Ejemplo:

			Res	ulta	do		
N=6		0	1	2	3	4	5
	0	1	2	3	19	20	21
	1	4	5	6	22	23	24
	2	7	8	9	25	26	27
	3	28	29	30	10	11	12
	4	31	32	33	13	14	15
	5	34	35	36	16	17	18

7. Dada la matriz MAT de tamaño NxN (N es par). Dividir la matriz en 4 partes iguales y ordenar los elementos de cada parte de manera ascendente. Ejemplo:

		M	atriz	inic	ial					Re	esult	ado		
	0	1	2	3	4	5			0	1	2	3	4	5
0	6	1	3	19	24	21		0	1	3	6	19	21	24
1	8	5	2	26	23	20		1	2	5	8	20	23	26
2	7	9	4	22	27	25		2	4	7	9	22	25	27
3	28	33	30	15	12	10		3	28	30	33	10	12	15
4	35	32	29	11	14	17		4	29	32	35	11	14	17
5	31	34	36	16	13	18		5	31	34	36	13	16	18