Recurrent Neural Networks

CS7150, Spring 2025

Prof. Huaizu Jiang

Northeastern University

Administrative stuff

- Anonymous Google form to solicit feedback of working on PA1
 - Your feedback is important
 - You can share your comments of this course in general
 - I'll share responses on Friday
- Grades of Quiz 2 will be released on Friday
- Grades of PA1 will be released by Feb 19

Recap

Training Convolutional Networks

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient

If the model

is big, won't

we overfit?

- 3. Update Weights
- 5. Apply trained model to task

Regularizing CNNs: Weight Decay

$$L_{reg} = \frac{1}{2} \sum_{\ell} ||W_{\ell}||^2 \qquad \frac{\partial L_{reg}}{\partial W_{\ell}} = W_{\ell}$$

Add L2 regularization term L_{reg} to the loss penalizing large weight matrices

Usually don't regularize bias terms, or BatchNorm scale / shift params

Regularizing CNNs: Data Augmentation

Regularizing CNNs: Data Augmentation

Apply random transformations to input images during training Artificially "inflate" the size of your dataset

Training Convolutional Networks

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient

If the model

is big, won't

we overfit?

- 3. Update Weights
- 5. Apply trained model to task

Training Convolutional Networks

- 1. Download big datasets
- 2. Design CNN architecture find one?
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient
 - 3. Update Weights
- 5. Apply trained model to task

What if we can't find one?

Transfer Learning: Feature Extraction

1. Train on ImageNet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. CNN as feature extractor

Use your small dataset to train a linear classifier on top of pretrained CNN features

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Transfer Learning: Fine-Tuning

1. Train on ImageNet

2. CNN as feature extractor

3. Bigger dataset:

Fine-Tuning

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Transfer Learning: Fine-Tuning

1. Train on ImageNet

2. CNN as feature extractor

3. Bigger dataset:

Fine-Tuning

Reinitialize last layer and continue training whole network on your dataset

Some tricks:

- Train with feature extraction first before fine-tuning
- Lower the learning rate: use ~1/10 of LR used in original training
- Sometimes freeze lower layers to save computation

Recurrent Neural Networks

Motivation Example: Sentiment classification

- Goal: classify a text sequence (e.g., restaurant, movie or product review, Tweet) as having positive or negative sentiment
 - "The food was really good"
 - "The vacuum cleaner broke within two weeks"
 - "The movie had slow parts, but overall was worth watching"
- What makes this problem challenging?
- What feature representation or predictor structure can we use for this problem?

Encoding and decoding words

Input

"The cat sat on the mat."

"The mat is under the cat."

Tokenization

["The", "cat", "sat", "on", "the", "mat"]
["The", "mat", "is", "under", "the", "cat"]

Vocabulary (8 tokens)

["The", "cat", "sat", "on", "the", "mat", "is", "under"]

One-hot embeddings

"the" -> 0 -> [1, 0, 0, ..., 0] (length of 8)

"cat" -> 1 -> [0, 1, 0, ..., 0]

"sat" -> 2 -> [0, 0, 1, ..., 0]

Word embeddings

embed = Wx (x is the one-hot embedding)

(See torch.nn.Embedding)

Word generation

8-category classification

Text Classification with CNNs

Motivation of using RNNs

- Not all problems can be converted into one with fixed-length inputs and outputs
- Problems such as Speech Recognition or Time-series Prediction require a system to store and use context information
 - Simple case: Output YES if the number of 1s is even, else NO 1000010101 YES, 100011 NO, ...
- Hard/Impossible to choose a fixed context window
 - There can always be a new sample longer than anything seen

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Sequence classification using a RNN

Recurrent model:

Odd or even number of 1s?

e.g. **Image Captioning** image -> sequence of words

e.g. Video classification on frame level

Recurrent unit/cell

Recurrent unit/cell

Recurrence:

$$h_t = f_W(x_t, h_{t-1})$$

new function input at old state state of W time t

Slide credit: S. Lazebnik

Could be ReLU [Nair and Hinton. ICML, 2010] as well

$$h_{t} = f_{W}(x_{t}, h_{t-1})$$

$$= \tanh \left(W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix} \right)$$

$$\sigma(a) = \frac{e^a}{e^a + 1}$$

Sigmoid, [0, 1]

$$\tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$
$$= 2\sigma(2a) - 1$$

 $\frac{d}{da}\tanh(a) = 1 - \tanh^2(a)$

Slide credit: S. Lazebnik <u>Image source</u>

RNN forward pass

$$e_t = -\log(y_t(GT_t))$$

$$y_t = \operatorname{softmax}(W_y h_t)$$

$$h_t = \tanh\left(W\begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix}\right)$$

---- shared weights

RNN forward pass: Computation graph

Training: Backpropagation through time (BPTT)

- The unfolded network (used during forward pass) is treated as one big feed-forward network that accepts the whole time series as input
- The weight updates are computed for each copy in the unfolded network, then summed (or averaged) and applied to the RNN weights

The Unfolded Vanilla RNN

- Treat the unfolded network as one big feed-forward network!
- This big network takes in entire sequence as an input
- Compute gradients through the usual backpropagation
- Update shared weights

Slide credit: A. Mallya

The Unfolded Vanilla RNN Forward

The Unfolded Vanilla RNN Backward

RNN backward pass

$$h_{t} = \tanh(W_{x}x_{t} + W_{h}h_{t-1})$$

$$\frac{\partial e}{\partial W_{h}} = \frac{\partial e}{\partial h_{t}} \odot (1 - \tanh^{2}(W_{x}x_{t} + W_{h}h_{t-1})) h_{t-1}^{T}$$

$$\frac{\partial e}{\partial W_{x}} = \frac{\partial e}{\partial h_{t}} \odot (1 - \tanh^{2}(W_{x}x_{t} + W_{h}h_{t-1})) x_{t}^{T}$$

$$\frac{\partial e}{\partial h_{t-1}} = W_{h}^{T} (1 - \tanh^{2}(W_{x}x_{t} + W_{h}h_{t-1})) \odot \frac{\partial e}{\partial h_{t}}$$

steps

Vanishing and exploding gradients

$$\frac{\partial e}{\partial h_{t-1}} = W_h^T \left(1 - \tanh^2(W_x x_t + W_h h_{t-1}) \right) \odot \frac{\partial e}{\partial h_t}$$

Computing gradient for h_0 involves many multiplications by W_h^T (and rescalings between 0 and 1)

Gradients will vanish if largest singular value of W_h is less than 1 and explode if it's greater than 1

https://notesonai.com/vanishing+and+exploding+gradients

Long short-term memory (LSTM)

 Add a memory cell that is not subject to matrix multiplication or squishing, thereby avoiding gradient decay

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation 9 (8), pp. 1735–1780, 1997

LSTM forward pass summary

LSTM backward pass

Gradient flow from c_t to c_{t-1} only involves back-propagating through addition and elementwise multiplication, not matrix multiplication or tanh

For complete details: <u>Illustrated LSTM Forward and Backward Pass</u>

Gated recurrent unit (GRU)

 Get rid of separate cell state

 Merge "forget" and "output" gates into "update" gate

K. Cho et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, ACL 2014

Gated recurrent unit (GRU)

ConvLSTM/ConvGRU

convolution

$$r_{t} = \sigma \left(W_{r} * \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix} + b_{t} \right)$$

$$h'_t = \tanh\left(W * \begin{pmatrix} x_t \\ r_t \odot h_{t-1} \end{pmatrix}\right)$$

$$z_t = \sigma \left(W_z * \binom{x_t}{h_{t-1}} + b_z \right)$$

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot h_t'$$

ConvLSTM/ConvGRU

[Teed and Deng. ECCV 2020. Best paper award]

RNN, LSTM, and GRU in Practice

- Always use LSTM or GRU
 - No vanilla/raw RNN
 - Unless for educational purposes ©
- LSTM vs GRU
 - Sometimes LSTM works well, sometimes GRU works well
 - GRU is simpler, less parameters, slightly faster

Multi-layer RNNs

• We can of course design RNNs with multiple hidden layers

Anything goes: skip connections across layers, across time, ...

Multi-layer RNNs

• We can of course design RNNs with multiple hidden layers

Anything goes: skip connections across layers, across time, ...

Multi-layer RNNs

We can of course design RNNs with multiple hidden layers

Anything goes: skip connections across layers, across time, ...

Bi-directional RNNs

• RNNs can process the input sequence in forward and in the reverse direction (common in speech recognition)

"The food is usually not so good"

One-hot encoding

"The food is usually not so good"

Image caption generation

Sequence-to-sequence with RNNs

Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Next Class

• RNN with the attention mechanism