Name: Jason Borland

Student Number: D17129310

```
Question 1:
```

If $(A, *_A), (B, *_B)$ are two groups, the direct product $A \times B$ is defined to be the group with underlying set $\{(a, b) : a \in A, b \in B\}$ with componentwise operation; i.e. $(a_1, b_1) * (a_2, b_2) = (a_1 *_A a_2, b_1 *_B b_2)$.

a. Verify that the direct product $A \times B$ is really a group.

b. Show that A is isomorphic to a subgroup of $A \times B$.

c. For any prime number p, what are the possible subgroups (up to isomorphism) of $\mathbb{Z}_p \times \mathbb{Z}_p$? Explain your answer.

Q1a:

of G denoted ab.

 $(a,b) \rightarrow ab$ We say (G, *) is a group under the operation * if:

Definition Let G be a non-empty set together with a binary operation *, that assigns to each ordered pair (a,b) of elements of G an element

2. Identity. $\exists e \in G$ s.t. $ae = ea = a, \forall a \in G$ 3. Inverse. $\forall a \in G, \exists b \in G \text{ s.t. } ab = ba = e$. b is the inverse of a and denoted a^{-1} . To verify that the direct product is a group we need to check 1, 2, and 3 and that $A \times B$ is closed under the operation (direct product).

1. Associativity. $(ab)c = a(bc) \forall a, b, c \in G$

Clearly $A \times B$ is closed under the direct product. Note $(a_1, b_1)(a_2, b_2) = (a_1 a_2, b_1 b_2) \in A \times B$ as $a_1 a_2 \in A$ and $b_1 b_2 \in B$. 1: Consider elements $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A \times B$ Also note associativity holds in the componentwise operations of $A \times B$ as A

 $((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1, b_1)[(a_2, b_2)(a_3, b_3)]$ $(a_1a_2, b_1b_2)(a_3, b_3) = (a_1, b_1)(a_2a_3, b_2b_3)$

 $(a_1a_2a_3, b_1b_2b_3) = (a_1a_2a_3, b_1b_2b_3)$ So associativity holds for $A \times B$

 $(e_A, e_B)(a, b) = (e_A a, e_B b)$ =(a,b) $(a,b)(e_A,e_B) = (ae_A,be_B)$

= (a, b)

 $= (e_A, e_B)$ $(a^{-1}, b^{-1})(a, b) = (a^{-1}a, b^{-1}b)$ Every element $(a, b) \in A \times B$ contains the an inverse element $(a^{-1}, b^{-1}) \in A \times B$.

If there is an isomorphism from G to H we say G and H are isomorphic groups and denote: $G \cong H$.

We need to consider a subgroup of $A \times B$. I propose the subgroup $K = \{(a, e_B) : a \in A, e_B \text{ is identity in } B\}$. Firstly we need to show

So A is homomorphic K.

this is a subgroup of $A \times B$. To do this we are going to use the 'one-step' subgroup test:

1. The elements of K are all elements of $A \times B$ where the b component is fixed to e_B (the identity in B). 2. The identity is in K, as $e_A \in A$ and b is fixed to e_B . The identity being $(e_A, e_B) \in K$. So $K \neq \emptyset$. 3. Lets consider two elements in K, say $k_1 = (a_1, e_B)$ and $k_2 = (a_2, e_B)$.

 $=(a_1a_2^{-1},e_B)\in K$ By the one-step subgroup test $K \leq G$

1. We first need to show if ϕ is a homomorphism (i.e. it preserves the group operation): $\phi(a_p *_A a_q) = (a_p a_q, e_B)$ $=(a_p a_q, e_B e_B)$

 $\therefore a_p = a_q$ 3. Showing that ϕ is onto (surjective). This is trivial from the definition.

2. We now need to show ϕ is one-to-one. This is trivial from the definition: ϕ maps $(a_i \in A) \to ((a_i, e_B) \in K)$.

So $A \cong K \blacksquare$. 1c: Lagrange's Theorem If G is a finite group and $H \leq G$ then |H| |G|. Moreover, the number of distinct left (or right) cosets of H in G is $\frac{|G|}{|H|}$ Corollary Any group of prime order is cyclic.

A subgroup of $\mathbb{Z}_p \times \mathbb{Z}_p$ must have order that divides p^2 , as per Lagrange's theorem. As p is prime, the possible orders of the subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ are 1, p, p^2 . For 1 and p^2 there are only two subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ which

are $\{(e,e)\}$ and $\mathbb{Z}_p \times \mathbb{Z}_p$ respectively. Note e is the identity element in \mathbb{Z}_p . So now suppose we have $A \leq \mathbb{Z}_p \times \mathbb{Z}_p$ with |A| = p. From corollary, since p is prime then A must be cyclic. So there exists some element $(x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p$ s.t. A = <(x, y)>, with o((x, y)) = p.

 $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

 $= (a_p, e_B) *_K (a_q, e_B)$ $= \phi(a_n) *_K \phi(a_a)$

Consider $\phi(a_p) = \phi(a_q)$

i. Prove that every finite group has exponent that divides the order of the group.

Question 2:

b. Suppose that $\varphi: G \to G'$ is a group isomorphism: i. Prove that the inverse function $\varphi^{-1}:G'\to G$ is also an isomorphism.

iii. Prove that the group of integers under addition is not isomorphic to the group of non-0 rationals under multiplication.

a. The exponent of a group is defined to be the smallest positive integer m such that $x^m = e$ for all x in the group.

The exponent of $D_4 = 2$.

Q2a,i:

Definition The order of an element g in a group G is the smallest positive integer n such that $g^n = e$.

Q2a,ii: $D_4 = \{I, R, R^2, R^3, H, V, D, D'\}$

 $= \varphi^{-1}(\varphi(g_1g_2))$ As, φ is isomorphic $= g_1g_2$ Follows from definition of inverse mapping $= \varphi^{-1}(g_1')\varphi^{-1}(g_2')$ $\therefore \varphi(a^n) = \varphi(aa....a) \quad note \ an \ times.$ $\therefore = \varphi(a)\varphi(a)\ldots\varphi(a)$ Because φ is isomorphic

Q2b iii:

Question 3:

Q3a:

Q3b:

So $NH \triangleleft G$

Q3c:

 $gHg^{-1} = H$.

Q2b ii:

This proves $\varphi^{-1}:G'\to G$ is also an isomorphism

Consider any element $a \in G$, the order of o(a) = n.

 $2 = \phi(2r)$ $= \phi(r+r)$ as $r \in \mathbb{Z}$ $= \phi(r) * \phi(r)$ properties of isomorphism $= (\phi(r))^2$ $\therefore \phi(r) = \pm \sqrt{2}$ However this is a contradiction since $\phi(r)$ must be a rational number, note $\sqrt{2} \notin \mathbb{Q}$. We can conclude that $(\mathbb{Z}, +) \not\cong (\mathbb{Q}, *)$

3. Show that the intersection of two normal subgroups of a group G is also a normal subgroup of G.

5. Suppose H is the only subgroup of order |H| in a finite group G. Prove that $H \triangleleft G$.

o(a) = n $\therefore a^n = e$

 $\therefore (\varphi(a))^n = e'$

 $\therefore o(\varphi(a)) = n \quad \blacksquare$

1. If G is a group and H < G with [G : H] = 2, prove that $H \triangleleft G$.

2. If $N \triangleleft G$ and $H \triangleleft G$, prove that $NH \triangleleft G$.

 $aH = \{ah : h \in H\} \text{ and } Ha = \{ha : h \in H\}$

Denoted $H \leq G$ or $H \leq G$ or equivalently $aHa^{-1} = H$.

4. If H < G and $N \triangleleft G$, show that $H \cap N \triangleleft H$.

Definition Let G be a group and H a subset of G. $\forall a \in G$, the set

 $\therefore = (\varphi(a))^n$

 $aH = Ha \ for \ all \ a \in G;$

is H (as eH = H). If we consider $g \notin H$. Then gH is the other coset. (Hg is the other right coset).

Since these are disjoint unions, we have gH = Hg or equivalently $gHg^{-1} = H$.

elements in G. Which is the definition of a normal subgroup. Therefore $H \triangleleft G \blacksquare$.

To show NH is a subgroup we have are going to use the onestep subgroup method.

1. The property that defines NH is that it is the product nh, where $n \in N$ and $h \in H$.

 $= n_1(h_1h_2^{-1})n_2^{-1}$ $= n_1 n_2^{-1} (h_1 h_2^{-1})$ As gN = Ng $\therefore ab^{-1} = n_1 n_2^{-1} (h_1 h_2^{-1}) \in NH$

Let N_1 and N_2 be normal subgroups of G. Consider an element $n \in N_1 \cap N_2$. Note that $n \in N_1$ and $n \in N_2$ since

 $N_1 \cap N_2 \subseteq N_1, N_2$). We can say $gng^{-1} \in N_1$ and $gng^{-1} \in N_2 \ \forall g \in G$. Therefore $gng^{-1} \in N_1 \cap N_2 \ \forall g \in G$. So we have:

 $g(N_1 \cap N_2)g^{-1} \subseteq (N_1 \cap N_2)$

We are trying to show: $h(H \cap N) = (H \cap N)h$ or equivalently $h(H \cap N)h^{-1} = (H \cap N)$. We know gN = Ng and $gNg^{-1} = N$ for all $g \in G$. We also know H < G, therefore hN = Nh and $hNh^{-1} = N$ for all $h \in H$. Consider $x \in (H \cap N)$ therefore $x \in H$ and $x \in N$. Since $x \in N$ and $h \in H < G$, then $hxh^{-1} \in (H \cap N)$. Since $x \in (H \cap N) \subseteq H, N$. Therefore we can say: $(H \cap N) \triangleleft H$

From Lagrange's Theorem we know |H||G|. I need to show $gH = Hg \text{ or } gHg^{-1} = H$: Consider the set gHg^{-1} , where $g \in G$. If we can show firstly that gHg^{-1} is a group and secondly it has order n, then we will have shown

1. The property that defines gHg^{-1} is ghg^{-1} where $h \in H$. 2. The identity is in gHg^{-1} , as $e \in H$, therefore $geg^{-1} = gg^{-1} = e$. So clearly the group is not empty.

To show $gHg^{-1} < G$ I will use the one-step subgroup test:

 $= gh_1(g^{-1}g)h_2^{-1}g^{-1})$ $= g(h_1 h_2^{-1}) g^{-1}$ $\therefore ab^{-1} = g(h_1h_2^{-1})g^{-1} \in gHg^{-1}$ So gHg^{-1} < G.

So what is the order of gHg^{-1} . Clearly there is a one-to-one mapping $H \to gHg^{-1}$, so the order is n. So we can say $gHg^{-1} \lhd G$ In []:

and B are both groups.

2: Both A and B are groups so each contains an identity element e_A and e_B respectively. Consider $(e_A, e_B) \in A \times B$.

 $A \times B$ contains the identity element (e_A, e_B) .

3: Both A and B are groups, so every element $a \in A$ and $b \in B$ contains an inverse $a^{-1} \in A$ and $b^{-1} \in B$. So for an element $(a,b) \in A \times B$, the inverse is (a^{-1},b^{-1}) .

 $(a,b)(a^{-1},b^{-1}) = (aa^{-1},bb^{-1})$

So $A \times B$ is a group \blacksquare Q1b: Definition An isomorphism $\phi: G \to H$ is a bijection (one-to-one and onto mapping) which preserves the group operation. $\phi(a *_G b) = \phi(a) \diamond_H \phi(b),$ $\forall a, b \in G$

4. If $k_2 = (a_2, e_B)$, then $k_2^{-1} = (a_2^{-1}, e_B)$. Note $e_B^{-1} = e_B$ as, e_B is the identity. $k_1 k_2^{-1} = (a_1, e_B)(a_2^{-1}, e_B)$ $=(a_1a_2^{-1},e_Be_B)$

To show that A is isomorphic to K, consider the mapping $\phi: A \to K$, where ϕ maps $(a_i \in A) \to ((a_i, e_B) \in K)$.

 $(a_p, e_B) = (a_q, e_B)$

So we need to find size of the set of subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ of order p. i.e. $|\{\langle (x,y)\rangle : (x,y)\in \mathbb{Z}_p\times \mathbb{Z}_p \text{ has order p}\}|$.

Corollary In a finite group G, $\forall a \in G$, then o(a)||G|.

The order of $\mathbb{Z}_p = p$, thus the order of $\mathbb{Z}_p \times \mathbb{Z}_p$ is p^2 .

Now each subgroup of order p consists of the identity and p-1 elements of order p. So the number of subgroups of order p is $\frac{p^2-1}{p-1} = p+1.$ Thus the total number of subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ is p + 3.

From corollary the number of elements of order p of $\mathbb{Z}_p \times \mathbb{Z}_p$ is all of the elements of form (x, y) except (e, e). This is $p^2 - 1$.

ii. What is the exponent of D_4 , the dihedral group of degree 4.

Since the exponent of a finite group G is the smallest positive integer m, s.t. $x^m = e$ for all $x \in G$. This is the definition of the order of an

Corollary In a finite group G, $\forall a \in G$, o(a)||G|. Corollary Let G be a finite group, and let $a \in G$, then $a^{|G|} = e$

ii. Prove that for any element $a \in G$, the order $o(a) = o(\varphi(a))$.

Element o(a)

element. From the corollary the o(x)||G|. So the exponent of a group divides the order of the group

Q2b i: Let $\varphi:G\to G'$ be a group isomorphism. Because $\varphi:G\to G'$ is an is isomorphism, φ is a bijection. This means the inverse mapping $\varphi^{-1}:G'\to G$ is also a bijection. So it is only necessary to show that the mapping φ^{-1} is a group homomorphism (i.e the group operation is preserved). If we consider elements $g_1', g_2' \in G'$. We know since φ is bijective that $g_1, g_2 \in G$, where $\varphi(g_1) = g_1'$ and $\varphi(g_2) = g_2'$. Also because φ^{-1} exists and is bijective $\varphi^{-1}(g_1') = g_1$ and $\varphi^{-1}(g_2') = g_2$.

 $\varphi^{-1}(g_1'g_2') = \varphi^{-1}(\varphi(g_1)\varphi(g_2))$

Goal is to prove that $(\mathbb{Z}, +) \not\cong (\mathbb{Q}, *)$. Since the function is not defined, I am going to aim for a contradiction. Suppose that $\phi: (\mathbb{Z}, +) \to (\mathbb{Q}, *)$ is an isomorphism. This means ϕ is onto (surjective). Now consider an element $2r \in \mathbb{Z}$ (i.e. an even integer), such that $\phi(2r) = 2$.

We know $\varphi(a^n) = \varphi(e) = e'$ where e' identity in G'

when H is a subgroup of G, the set aH is called the left coset of H by a (or containing a) and Ha is called the right coset of H by a. (a is called the coset representative of aH (or Ha). Note $a \in aH$ since $e \in H \leq G$; so $a = ae \in aH$ (likewise $a \in Ha$). Definition The index of a subgroup H in G is the number of distinct left cosets of H in G; denoted by [G:H]. *Properties of Cosets:*Lemma* Let $H \leq G$ and let $a, b \in G$ Then: 1. $a \in aH$ 2. aH = H iff $a \in H$ 3. $aH = bH \text{ or } aH \cap bH = \emptyset$ $4. aH = bH iff a^{-1}b \in H$ 5. |aH| = |bH|Definition A subgroup H of a group G is called a normal subgroup of G if:

Proof: Since [G:H]=2, then H has two left (and two right) cosets. Since H is a subgroup it contains the identity so one of those cosets

 $H \cup gH = G = H \cup Hg$

As the equation $gHg^{-1} = H$ holds for any $g \in gH$, and clearly holds for any element in the trivial coset H. The equation holds for all

Consider a group G, and a normal subgroup $N \triangleleft G$. Prove that if $H \triangleleft G$, then $NH \triangleleft G$. Where $NH = \{nh : n \in N, h \in H\}$.

2. The identity is in NH (and therefore the group is not empty). Since N is a subgroup so $e \in N$, and similarly H is a subgroup so $e \in H$. $e = ee \in NH$

3. If we consider two elements say $a = n_1 h_1 \in NH$ and $b = n_2 h_2 \in NH$. 4. Now $b^{-1} = (n_2 h_2)^{-1} = h_2^{-1} n_2^{-1}$. We need to see if $ab^{-1} \in NH$: $ab^{-1} = n_1 h_1 (h_2^{-1} n_2^{-1})$

So $(N_1 \cap N_2) \triangleleft G$ Q3d:

Q3e: We know H < G and order of H is |H| = n. In particular it is the only subgroup of order |H| = n in finite group G.

3. Consider two elements $a = gh_1g^{-1}$ and $b = gh_2g^{-1}$. 4. Now $b^{-1} = (gh_2g^{-1})^{-1} = gh_2^{-1}g^{-1}$. We need to show $ab^{-1} \in gHg^{-1}$:

 $ab^{-1} = gh_1g^{-1}(gh_2^{-1}g^{-1})$