CO450 - Combinatorial Optimization (Fall 2019)

Contents

)	Intr	roduction	1
	0.1	Overview of the Course	1
	0.2	Review of LP theory	1

0 Introduction

0.1 Overview of the Course

Combinatorial optimization leverages tools from: combinatorics, linear programming theory and algorithms to *efficiently* solve optimization problems on discrete structures (e.g. graphs)

The course will covering the following topics:

- Spanning frees Given connected, undirected graphs with edge costs, find the minimum spanning tree
- Max flow, Min cut
- Matroids and matroid optimization
- Matchings and related problems
- Approximation algorithms

0.2 Review of LP theory

A linear program (LP) is an optimization problem of the form:

$$\begin{array}{ll}
\max & c^{\mathsf{T}} x \\
\text{s.t.} & Ax \le b \\
& x > 0
\end{array} \tag{0.1}$$

where $x \in \mathbb{R}^n$, $A \in M_{m \times n}(\mathbb{R})$, and the objective function and constraints are linear. We must also require that:

- There are a finite number of variables and constraints
- The inequalities are non-strict

Any LP has 3 possible outcomes:

1. The LP is <u>infeasible</u>

- 2. The LP is <u>unbounded</u>, i.e. We can achieve feasible solutions of arbitrarily "good" objective value. (For (0.1), this means that $\forall v \in \mathbb{R}$ there exists a feasible solution x s.t $c^{\intercal}x > v$)
- 3. The LP has an optimal solution. (For (0.1), this means there is a feasible solution x^* such that $c^{\mathsf{T}}x^* \geq c^{\mathsf{T}}x \; \forall$ feasible solutions x)