Problem Set 4

Note: The problem sets serve as additional exercise problems for your own practice. Problem Set 4 covers materials from §6.4 – §6.6.

1. For each of the following rational functions f, evaluate the antiderivative $\int f(x)dx$.

(a)
$$f(x) = \frac{1}{x^2 + 1}$$

(f)
$$f(x) = \frac{x}{x^2 + 2x + 1}$$

(b)
$$f(x) = \frac{1}{x^2 + 2x}$$

(g)
$$f(x) = \frac{x}{x^2 + 2x + 2}$$

(c)
$$f(x) = \frac{1}{x^2 + 2x + 1}$$

(h)
$$f(x) = \frac{x+2}{x^2+2x+2}$$

(d)
$$f(x) = \frac{1}{x^2 + 2x + 2}$$

(i)
$$f(x) = \frac{1}{x^2(x+2)}$$

(e)
$$f(x) = \frac{1}{x^2 + 2x + 3}$$

(j)
$$f(x) = \frac{1}{x(x+2)^2}$$

2. Evaluate the following antiderivatives.

(a)
$$\int \frac{1}{\sqrt{e^x + 1}} dx$$

(c)
$$\int \frac{1}{x^2 \sqrt{x+1}} dx$$

(b)
$$\int \ln(x^3 + 1) \, dx$$

(d)
$$\int (x+2)\sqrt{\frac{1+x}{1-x}}dx$$

3. (a) Using the factorization $x^4+1=(x^2-\sqrt{2}x+1)(x^2+\sqrt{2}x+1)$, evaluate

$$\int \frac{x^2}{x^4 + 1} dx.$$

(b) Using (a) and the substitution $u = \sqrt{\tan x}$, evaluate

$$\int_0^{\frac{\pi}{4}} \sqrt{\tan x} \, dx.$$

4. Evaluate the antiderivative

$$\int \frac{1}{(1+x^2)\sqrt{1-x^2}} dx$$

using the substitution $u = \sqrt{\frac{1-x}{1+x}}$.

5. (a) Show that the polynomial $x^3 + 3x + 1$ has exactly one real root.

(b) Let r be the real root of $x^3 + 3x + 1$. Evaluate the antiderivative

$$\int \frac{1}{x^3 + 3x + 1} dx$$

in terms of r.

6. Evaluate the antiderivatives of each of the following trigonometric rational functions f.

(a)
$$f(x) = \frac{1}{1 + 2\sin x \cos x + \cos^2 x}$$
 (for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$)

(b)
$$f(x) = \frac{1}{3\sin x + 4\cos x}$$

(c)
$$f(x) = \frac{1 + \sin x - 3\cos x}{2 + 2\sin x - \cos x}$$

7. Let α be a positive real number. Evaluate

$$\int \frac{1}{1 - a \sin x} dx$$

for each of the following cases:

- (a) 0 < a < 1 (for $x \in (-\pi, \pi)$),
- (b) a = 1,
- (c) a > 1.
- 8. Evaluate the antiderivative

$$\int e^x \frac{1 + \sin x}{1 + \cos x} dx$$

using the substitution $t = \tan(x/2)$.

9. Evaluate each of the following improper integrals if it converges.

(a)
$$\int_0^{+\infty} \frac{3 - 5x}{(1 + x)(1 - x + 2x^2)} dx$$

(b)
$$\int_{1}^{+\infty} \frac{1}{x^2 - 1} dx$$

(c)
$$\int_0^{\pi/2} \ln(\sin x) \, dx$$

Hint: In (c), break the interval into two halves, and let $u = \frac{\pi}{2} - x$ in the second half.

10. Let $f:[0,+\infty)\to\mathbb{R}$ be the function

$$f(x) = \int_1^{\sqrt{x}} e^{-t^2} dt.$$

- (a) Find f'(x) for every $x \in (0, +\infty)$.
- (b) Evaluate the improper integral

$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx.$$

11. Find the value of the real number a such that the improper integral

$$\int_0^{+\infty} \left(\frac{1}{\sqrt{x^2 + 1}} + \frac{a}{x + 1} \right) dx$$

converges. Also evaluate the improper integral for this value of a.

- 12. Let n be a positive integer.
 - (a) Show that the improper integral

$$\int_0^1 \ln x \, dx$$

converges and find its value. Using integration by parts, deduce that the improper integral

$$\int_0^1 (\ln x)^n dx$$

also converges and find its value in terms of n.

(b) Let α be a positive real number. Show that

$$\int_{t}^{1} x^{\alpha-1} (\ln x)^{n} dx = \frac{1}{\alpha^{n+1}} \int_{t}^{1} (\ln x)^{n} dx \qquad \text{for every } t \in (0,1).$$

Using the result from (a), show that the improper integral

$$\int_0^1 x^{\alpha-1} (\ln x)^n dx$$

also converges and find its value in terms of n and α .

13. Let $f:[0,+\infty)\to\mathbb{R}$ be a continuous function. The *Laplace transform* of f is a function F defined by the improper integral

$$F(s) = \int_0^{+\infty} e^{-st} f(t) dt,$$

and the domain of F consists of all the numbers s for which the integral converges.

(a) Show that if there exist $a \in \mathbb{R}$ and M > 0 such that

$$|f(t)| \le Me^{at}$$
 for every $t \ge 0$,

then the Laplace transform of f exists for s > a.

- (b) Compute the Laplace transforms of the following functions:
 - (i) f(t) = 1
 - (ii) $f(t) = e^t$
 - (iii) $f(t) = t^2$
 - (iv) $f(t) = \cos t$
- (c) Suppose that f is continuously differentiable, and that there exist $a \in \mathbb{R}$ and M > 0 such that

$$|f(t)| \le Me^{at}$$
 and $|f'(t)| \le Me^{at}$ for every $t \ge 0$.

If F and G denote the Laplace transforms of f and of f' respectively, show that

$$G(s) = sF(s) - f(0)$$
 for every $s > a$.

14. Let f be a function defined by

$$f(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

(a) Show that f(n) is well-defined (i.e. the improper integral converges) for each $n \in \mathbb{N}$. Hence deduce that f(x) is well-defined for each $x \ge 1$.

Compare with $\int_0^{+\infty} e^{-\frac{1}{2}t} dt$.

- (b) Show that f(x) is also well-defined for each $x \in (0,1)$.
- (c) Show that f(x+1) = xf(x) for every x > 0, and f(n) = (n-1)! for every $n \in \mathbb{N}$.
- 15. For each of the following improper integrals, determine whether it converges or not.

(a)
$$\int_{1}^{+\infty} \frac{2 + \cos x}{\sqrt{x + 5}} dx$$

(c)
$$\int_0^{+\infty} \frac{x}{1 + x^2 \sin^2 x} dx$$

(b)
$$\int_0^1 \frac{1}{\sqrt{x + \sqrt{x + \sqrt{x}}}} dx$$

(d)
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$

16. Let $f, g: [0, +\infty) \to \mathbb{R}$ be continuous functions such that the improper integrals

$$\int_0^{+\infty} f(x)^2 dx$$

$$\int_0^{+\infty} f(x)^2 dx \qquad \text{and} \qquad \int_0^{+\infty} g(x)^2 dx$$

both converge. Show that the improper integrals

$$\int_0^{+\infty} f(x)g(x)dx$$

$$\int_0^{+\infty} f(x)g(x)dx \qquad \text{and} \qquad \int_0^{+\infty} (f(x) + g(x))^2 dx$$

both converge too.

17. Let $f:[0,+\infty)\to[0,+\infty)$ be a decreasing continuous function.

(a) Show that if $\int_0^{+\infty} f(x) dx$ converges, then $\lim_{x \to +\infty} x f(x) = 0$.

Show that $0 \le x f(x) \le 2 \int_{x/2}^{x} f(t) dt$ and apply Squeeze Theorem. Hint:

(b) Show that the converse of the result from (a) is not true, i.e. give an example of f(x) so that $\lim_{x \to +\infty} x f(x) = 0$ but $\int_0^{+\infty} f(x) dx$ diverges.

Now let $g:[1,+\infty) \to [e,+\infty)$ be an increasing continuous function.

(c) If $\lim_{x \to +\infty} \frac{x}{\ln(g(e^x))} = 0$, show that for every sufficiently large x > 0 we have $\frac{e^x}{a(e^x)} < e^{-x}$.

In the definition of limit (Definition 2.91), take $\varepsilon = \frac{1}{2}$.

(d) Using the results from (a) and (c), show that if $\int_1^{+\infty} \frac{1}{a(x)} dx$ diverges, then $\int_1^{+\infty} \frac{1}{x \ln a(x)} dx$ also diverges.