Математическое моделирование подсистемы загрузки медеплавильной печи

И. И. Суляев

ФГБОУВО «Норильский государственный индустриальный институт» ilgizfinland@mail.ru

Аннотация. Рассматривается задача разработки математической модели подсистемы загрузки медьсодержащих материалов в печь Ванюкова. Приведены варианты расчета массового расхода компонентов шихты. Представлены результаты компьютерной имитации.

Ключевые слова: печь Ванюкова; подсистема; загрузка; шихта; модель

І. Введение

Извлечение компонента ценного богатой высокомедистой сульфидной руды - многостадийный металлургический процесс, главным звеном в котором является полуавтогенная плавка в печах Ванюкова (ПВ), отличающихся высоким удельным проплавом и малым пылевыносом. Декомпозиционный анализ плавления медно-никелевого сырья в ПВ показывает, что получение кондиционных продуктов (штейн, шлак, газы) зависит согласованного отходящие ОТ взаимодействия нескольких основных подсистем медеплавильного агрегата: загрузки шихты и подачи дутья стабилизации дутьевых параметров расход технологического кислорода природного газа) основным механизмом управления печью является загрузка [1, 2, 3, 5].

Рис. 1. Принципиальная схема материальных потоков процесса плавления медно-никелевого сырья в печи Ванюкова

Д. Х. Имаев

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Существенное возмущение в процесс плавки вносит нестабильный химико-минералогический и гранулометрический состав загружаемого в печь сырья, а также его массовый расход, стабилизация которого требует разработки системы управления подсистемой загрузки и ее адекватного математического описания [5, 8].

На ПВ применяют припечное приготовление шихты. Существующая схема подачи материала в плавильный агрегат приведена на рис. 2. Для дозирования компонента шихты каждый бункер оборудован ленточным питателем с переменной скоростью движения ленты (табл. 1).

Рис. 2. Схема подачи материалов в печь Ванюкова

ТАБЛИЦА І ПИТАТЕЛИ ПОДСИСТЕМЫ ЗАГРУЗКИ ПЕЧИ ВАНЮКОВА

		l3	Тех. характеристика			
№ питателя	Материал в бункере	Насыпная плотность, т/м ³	Длина, м	Ширина, м	Максимальная скорость, м/с	
1	Медный концентрат	2,6	7,3	1,2	1,5	
4	Бедные обороты	2,7				
5	Дробленный песок	1,5				
2	Медный концентрат	2,6	12,5			
3	Медный концентрат	2,6				
6	Дробленный песок	1,5				
7	Бедные обороты	2,7				
8	Дробленный уголь	1,5				

Компонент шихты из бункера поступает на питатель, далее — на сборный конвейер со следующими техническими характеристиками: постоянная скорость движения ленты 0,77 м/с, максимальная производительность 300 т/ч, время транспортировки материала 36 с. С каждого сборного конвейера шихта непрерывно подается на плавку через загрузочную течку, расположенную на своде печи и имеющую укрытие для

сокращения подсосов воздуха и выброса газа. Дублирование конвейерных трактов предусмотрено для равномерного и непрерывного распределения шихты по всей поверхности интенсивно барботируемой кислородом шлако-штейновой эмульсии. В случае остановки одного из конвейеров для стабильной работы ПВ на заданном режиме производительность на другом увеличивается пропорционально. Остановка обоих конвейеров может привести к аварийной ситуации — переокислению расплава и его выплеску из печи [1, 2, 3].

II. ПОСТАНОВКА ПРОБЛЕМЫ

Массу загруженной в ПВ шихты определяют по показаниям весов сборных конвейеров, однако компонентный состав остается неизвестен. эксплуатационных (агрессивная среда) и конструктивных (малая длина ленты) особенностей питателей установка весоизмерительного оборудования не представляется Массовый расход компонента шихты возможным. формируется вручную путем задания скоростей питателей под бункерами, что не характеризует текущий расход в полной мере. Отсутствие достоверной информации о компонентном составе шихты не позволяет стабилизировать процесс в тепловом отношении, что отрицательно влияет на качество конечных продуктов разделения [3, 5, 6].

В работе [9] связь между величинами предлагается выразить эмпирической формулой $Q_{\scriptscriptstyle M} = k \cdot \rho \cdot b \cdot h \cdot v$, где $Q_{\scriptscriptstyle M}$ – массовый расход компонента шихты, τ/ψ ; k – коэффициент истечения материала из окна выдачи бункера; ρ – насыпная плотность материала, T/M^3 ; b - ширина окнавыдачи бункера, м; h – высота окна выдачи бункера, м; v – скорость ленты питателя, м/с. Отметим, что переменный коэффициент истечения k материала из окна выдачи, который зависит от вида материала, его влажности и конструктивного исполнения бункера, не позволяет использовать приведенную аналитическую зависимость для расчета массового расхода компонентов шихты. В работе [4] предложен синтез подсистемы стабилизации загрузки шихтовых материалов в ПВ путем компенсации возмущений. Алгоритм стабилизации функционирует только при наличии информации о производительности питателей, поступающей ленточных весоизмерительного оборудования.

На основании приведенной проблемы и обзора литературы исследования по разработке математического описания массовых расходов компонентов шихты ПВ остаются актуальными.

Цель исследования – моделирование подсистемы загрузки медьсодержащей шихты в ПВ. Задачи исследования:

- на основе информации об уровне материала в бункере и его геометрических размерах получить массовый расход компонента шихты;
- сравнить результат с массовым расходом со сборочного конвейера;

 определить коэффициенты взаимосвязи между массовым расходом и скоростью питателя, которые будут использоваться в системе управления подачей шихты.

III. Разработка математического описания

Массовый расход $Q_{\scriptscriptstyle M}$ компонента шихты можно выразить аналитической зависимостью [7]

$$Q_{\scriptscriptstyle M} = \rho \cdot Q,\tag{1}$$

где ρ — насыпная плотность материала, т/м³; Q — объемный расход материала, м³/ч.

Насыпная плотность ρ компонентов приведена в табл. 1. Объемный расход Q определяется как разность между объемом материала в момент t и объемом в момент t-l

$$Q = \frac{Q_t - Q_{t-1}}{\Delta t} \cdot 60 \tag{2}$$

Примем величину дискретизации t в одну минуту из расчета минимального времени опроса датчиков. Объем материала в текущий момент времени определяется геометрическими размерами бункера (табл. 3), вид которого представлен на рис. 3.

Рис. 3. Исполнительная съемка бункера печи Ванюкова

ТАБЛИЦА II ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ БУНКЕРОВ ПЕЧИ

№	<i>L</i> ^a , м	Геометрический размер, м						<i>V</i> , м ³	
		h_1	h_2	h_3	b_1	b_2	a_1	a_2	v, m
1	5,24	1,20	3,22	0,76	4,20	2,80	3,10	1,30	45
2	5,50	1,20	3,22	1,05		2,80		1,31	45
3	5,50	1,20	3,22	0,54		2,81		1,30	43
4	5,30	1,20	3,22	1,12		2,80		1,30	45
5	5,22	1,20	3,21	1,02		2,81		1,30	45
6	5,05	1,20	3,21	0,98		2,80		1,31	45
7	5,05	1,23	3,22	0,92		2,50		1,60	37
8	5,05	1,20	3,22	1,00		2,50		0,60	37

Верхний диапазон измерения уровнемера

Общий объем бункера складывается из объемов прямоугольной призмы и усеченной пирамиды (рис. 3). С учетом зазора h_3 между бункером и ленточным питателем объем бункера V вычисляется по формуле

$$V = a_1 b_1 h_1 + \frac{1}{3} h_2 \left(a_1 b_1 + a_2 b_2 + \sqrt{a_1 b_1 a_2 b_2} \right) + a_2 b_2 h_3$$

В зависимости от текущего уровня h материала в бункере в формуле задействованы разные слагаемые, формируется система алгебраических уравнений

$$\begin{cases} V = S_2 \cdot h, h \leq h_3; \\ V = \frac{1}{3}(h - h_3) \cdot \left(S_2 + S_{_{\rm B}} + \sqrt{S_2 S_{_{\rm B}}}\right) + S_2 h_3, h_3 < h < h_2 + h_3; \\ V = S_1(h - h_2 - h_3) + \frac{1}{3}h_2\left(S_1 + S_2 + \sqrt{S_1 S_2}\right) + S_2 h_3, h > h_2 + h_3. \end{cases}$$

где
$$S_1=a_1b_1;\, S_2=a_2b_2;\,\, S_{_{\mathrm{B}}}=\left(h\frac{b_1-b_2}{h_2}+b_2\right)\left(h\frac{a_1-a_2}{h_2}+a_2\right).$$

После расчета массового расхода компонента шихты по каждому бункеру согласно формулам (1) и (2) формируются суммарные производительности конвейеров №31 и №32

$$\begin{cases} Q_{\text{M3}1} = Q_{\text{M1}} + Q_{\text{M4}} + Q_{\text{M5}}, \\ Q_{\text{M3}2} = Q_{\text{M2}} + Q_{\text{M3}} + Q_{\text{M6}} + Q_{\text{M7}} + Q_{\text{M8}}. \end{cases}$$

Алгоритм расчета массового расхода компонентов шихты реализован на базовых блоках логических и математических операций пакета Simulink Matlab (рис. 4).

Puc. 4. Схема моделирования подсистемы загрузки печи Ванюкова в Simulink

На входы подсистемы загрузки подавались массивы из значений уровней материала в бункерах за неделю работы ПВ при условии постоянства скоростей питателей и отсутствия загрузки материалов в бункеры из сушильного цеха. Рассчитанный суммарный расход компонентов шихты по одному из сборочных конвейеров сравнивался с показаниями весов этих конвейеров. Среднеквадратическая ошибка составила не более 2%. Полученное математическое описание позволяет

определить коэффициенты взаимосвязи между скоростями питателей υ_i и массовыми расходами компонентов шихты Q_i : $k_1 \approx 2.5$; $k_2 \approx 2.5$; $k_3 \approx 2.5$; $k_4 \approx 2$; $k_5 \approx 1.8$; $k_6 \approx 1.3$; $k_7 \approx 2$; $k_9 \approx 1$.

IV. Выводы

Разработан алгоритм расчета массового расхода компонентов шихты, загружаемых на поверхность интенсивно барботируемой ванны расплава ПВ. На основе информации о косвенных переменных процесса и геометрических размерах бункеров подсистемы загрузки определена аналитическая зависимость массового расхода в виде системы алгебраических уравнений. Установлена зависимость между скоростью питателя и массовым компонента шихты расходом через эмпирический коэффициент. Математическое описание подсистемы загрузки может послужить основой для создания системы автоматического дозирования компонентов визуализации косвенного расчета на мнемосхеме для формирования рецепта.

Выражение признательности

Авторы выражают признательность оперативному персоналу ПВ и отделу АСУТП Медного завода ЗФ ПАО «ГМК «Норильский никель» за оказанную помощь в проведении данного исследования. Отдельно стоит выразить благодарность замечательному переводчику Христинченко Т.П. за помощь в переводе метаданных статьи и рецензентам за советы и ценные замечания.

Список литературы

- [1] Ванюков А.В., Уткин Н.И. Плавка в жидкой ванне. М.: Металлургия, 1988. 208 с.
- [2] Ванюков А.В. Шлаки и штейны цветной металлургии. М.: «Металлургия», 1969. 406 с.
- [3] Имаев Д.Х., Суляев И.И. Моделирование медеплавильной печи как объекта управления температурой расплава // Известия СПбГЭТУ «ЛЭТИ». 2016. №10. С. 40-46.
- [4] Кадыров Э.Д. Синтез подсистемы управления, стабилизирующей загрузку шихтовых материалов в печь Ванюкова // Вестник СамГТУ. 2012. №1(33). С. 189-195.
- [5] Концептуальная модель иерархической системы управления процессом плавления медно-никелевого сырья / Д.Х. Имаев, И.И. Суляев. // Системный анализ и комплексное моделирование автоматизированных информационных систем: Сб. докл. науч.техн. конф. ИТУ-2014, СПб / ОАО «Концерн «ЦНИИ «Электроприбор», СПб., 2014. С. 211-220.
- [6] Сергеев В.Л., Спесивцев А.В., Абрамов С.В. Имитационное моделирование состава шихты на качество конечных продуктов печей Ванюкова // Цветные металлы. 2010. №6. С88-91.
- [7] Никольский Б.П., Григоров О.Н., Позин М.Е. Справочник химика: том 5. Л.: Издательство «Химия», 1968. 976 с.
- [8] Спесивцев А.В. Металургический процесс как объект изучения: новые концепции, системность, практика. СПб.: Изд-во Политехн. ин-та, 2004. 307 с.
- [9] Фукс Б.Я. Система автоматического управления загрузки шихты в агрегаты Ванюкова // Цветные металлы. 1992. №1. С. 25-26.