Lecture 3 – Linear Regression

Regression

- Supervised learning technique
- Used when the value that you want to predict is a continuous variable
- e.g. Predicting the **height** of a person based on the nationality, age, gender....
- Predicting the housing **price** based on the floor area, no. of floors, city.....
- Predicting the **value** of a share based on the company revenue, profit,.....

Outline

- Why regression?
- Linear regression with one variable
- Linear regression with multiple variables
- Polynomial regression
- Dealing with common issues
- Normal equation

Linear regression with single variable

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training Data Example

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	54 0
:	:

6

Learning process

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

• TO DO

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}}_{0} x$$

$$\theta_{1}$$

$$h(x)$$

$$J(\theta_{1}) = \underbrace{\frac{1}{2m}}_{i=1}^{m} \underbrace{\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}}_{0}$$

$$\min_{\theta_{1}} \underbrace{\int_{0}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}}_{0} dx$$

Hypothesis vs. Cost function

• TO DO

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

Andrew Ng

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

3 Steps

Search Direction

Step Size

Convergence Check

Gradient Descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Gradient descent algorithm repeat until convergence { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$ simultaneously

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

Training data

3000

Current hypothesis

4000

700

600

Price \$ (in 1000s) 000 \$ 000 000 \$ 000

100

1000

2000

Size (feet²)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

2000

Size (feet²)

Training data

3000

Current hypothesis

4000

700

600

Price \$ (in 1000s) 000 000 000 000 000 000

200

100

0

1000

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 0.20.1 -0.1-0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 1000 1500 0 500 2000 Size (feet²)

 θ_0

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s) 000 000 000 000 000 000 100 Training data Current hypothesis 0 1000 2000 3000 4000

Size (feet²)

1250

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Coefficient of Determination

• https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/regression-and-correlation/coefficient-of-determination-r-squared.html

Multiple Linear Regression

Predicting one dependent variable using more than one independent variables

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)			
× 1	×2	×3	×	9			
2104	5	1	45	460			
> 1416	3	2	40	232 + M = 47			
1534	3	2	30	315			
852	2	1	36	178			
] ,			
Notation:	*	1	1	$\chi^{(2)} = \begin{bmatrix} 1416 \\ 3 \end{bmatrix}$			
$\rightarrow n$ = number of features $n=4$							
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.							
$\rightarrow x_j^{(i)}$ = value of feature j in i^{th} training example. \checkmark $=$ $=$ $=$							

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **3(e)** $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $heta_0, heta_1$)

7 New algorithm $(n \ge 1)$: Repeat { (simultaneously update $heta_j$ for $j=0,\ldots,n$)

Multivariate Linear regression

- This type of linear regression involves multiple dependent variables that are predicted based on one or more independent variables.
- Example
- Predicting both house prices and house rent based on features like square footage, number of bedrooms, and age of the house.

Polynomial regression

Housing prices prediction

Housing prices prediction
$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

$$x = frontage \times depth$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage \times depth$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage \times depth$$

Polynomial regression

Choice of features

Gradient descent for polynomial regression

- Since the cost function is not convex now, we might get stuck in local minima
- No straight-forward solution for this
- Have to try different initial values for Θ

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \cdots \qquad \frac{\text{Set}}{\phi} O$$
Solve $\frac{\partial}{\partial \phi} O$

$$\underline{\theta} \in \mathbb{R}^{n+1} \qquad \underline{J}(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \dots \stackrel{\text{set}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

J	Size (feet	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	٦
1	1416	3	2	40	232	1
1	1534	3	2	30	315	- (
1	852	2	_1	36 م	178	٧
$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$ $\theta = (X^T X)^{-1} X^T y$						

\underline{m} training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $(X^T X)^{-1} \xrightarrow{h \times n} O(n^3)$
 - Slow if n is very large.

Common issues and how to overcome them

- Learning rate
- Feature Scaling
- Overfitting and underfitting (variance and bias)

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Learning rate

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Summary:

- e. 7 (6)
- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge color possible)

To choose α , try

$$\dots, \underbrace{0.001}, \underbrace{0.003}, \underbrace{0.01}, \underbrace{0.03}, \underbrace{0.1}, \underbrace{0.3}, \underbrace{1}, \dots$$

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

Data-preprocssing

- https://www.scalablepath.com/data-science/data-preprocessing-phase
- https://www.geeksforgeeks.org/ml-one-hot-encoding/

Evaluating your hypothesis

Dataset:

Training/testing procedure for linear regression

- $_{ullet}$ Learn parameter heta from training data (minimizing training error $J(\theta)$)

- Compute test set error:

$$\frac{1}{2 + \cos t} \left(\frac{1}{6} \right) = \frac{1}{2 + \cot t} \left(\frac{1}{1 + \cot t} \left(\frac{1}{1 + \cot t} \right) - \frac{1}{2 + \cot t} \right)^{2}$$

Bias/variance

High bias (underfit)

"Just right"

High variance (overfit)

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
 $= J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2n} \sum_{j=1}^n \theta_j^2$

Large λ \leftarrow

High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \theta_0$$

Intermediate $\lambda \leftarrow$ "Just right"

→ Small λ High variance (overfit)

L1 Regularization – Lasso Regression

- Set the values θ of less relevant terms to 0
- Useful in 'Factor analysis' E.g. Paper

L1 Regularization

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - h_{\theta}(x_i) \right)^2 + \lambda \sum_{i=1}^{n} |\theta_i|$$

L2 regularization – Ridge Regression

- Reduce the () values overall
- Better at preventing Overfitting

L2 Regularization

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - h_{\theta}(x_i) \right)^2 + \lambda \sum_{i=1}^{n} \theta_i^2$$

Model selection

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\overline{\theta}^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter (d) = degree of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

	Size	Price /	7
60%	2104	400	
	1600	330	
	2400	369	
	1416	232	
	3000	540	7
	1985	300	
20%	1534	315 7 Cross validation	
	1427	199	
70./.	/ 1380	212 } test set	>
	1494	243	

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{n} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Overfitting and Underfitting

- If the linear regression/learning algorithm, is suffering from overfitting, getting more training data may help.
- If the linear regression/learning algorithm is suffering from underfitting, the hypothesis has to be changed (the order of the hypothesis has to be increased/or made more complex in the case of Linear Regression)
- Else, can adjust the regularization term to fix overfitting or underfitting

Summary

- Linear regression is used to predict continuous values based on historical data
- Supervised learning technique (as historical values are there)
- Linear regression with single feature
- Linear regression with multiple features
- Polynomial regression

Summary

- Gradient descent (iterative method to solve regression problems)
- Normal equation (analytical method to solve regression problems)
- Common issues
 - Learning rate
 - Feature scaling
 - Overfitting and underfitting
- Preprocessing Encoding