Algorithmen und Datenstrukturen

Übungsgruppe 14

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

> Paul Testa paul.testa@gmx.de 6251548

19. Oktober 2015

Punkte für den Hausaufgabenteil:

1 Zettel vom 14.-16. Oktober // Abgabe: N/A

1.1 Präsenzaufgabe 1.1

Wiederholen Sie die O-Notation und die verwandten Notationen. Wie sind die einzelnen Mengen definiert? Was bedeutet es, wenn $f \in O(g)$ gilt, was wenn $f \in O(g)$ gilt und so weiter?

```
\begin{array}{lll} O(g(n)): & f(n) \in O(g(n)) & \Leftrightarrow \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| <= c \cdot \|g(n)\| \\ o(g(n)): & f(n) \in o(g(n)) & \Leftrightarrow \forall c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| <= c \cdot \|g(n)\| \\ \Omega(g(n)): & f(n) \in \Omega(g(n)) & \Leftrightarrow \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| >= c \cdot \|g(n)\| \\ \omega(g(n)): & f(n) \in \omega(g(n)) & \Leftrightarrow \forall c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| >= c \cdot \|g(n)\| \\ \Theta(g(n)): & f(n) \in \Theta(g(n)) & \Leftrightarrow \exists c_1, c_2 \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & c_1 \cdot \|g(n)\| <= \|f(n)\| <= c_2 \cdot \|g(n)\| \end{array}
```

1.2 Präsenzaufgabe 1.2

Beweisen Sie:

- $n^2 + 3n 5 \in O(n^2)$
- $n^2 2n \in \Theta(n^2)$
- $n! \in O((n+1)!)$

Gilt im letzten Fall auch $n! \in o((n+1)!)$?

$$\begin{split} f(n) &\in O(g(n)) &\iff \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \\ f(n) &= n^2 + 3n - 5 \\ g(n) &= n^2 \\ \frac{f(n)}{g(n)} &= \frac{n^2 + 3n - 5}{n^2} \\ \\ \lim_{n \to \infty} \frac{n^2 + 3n - 5}{n^2} &= \lim_{n \to \infty} 1 + \frac{3}{n} - \frac{5}{n^2} \\ &= 1 + \frac{3}{\infty} - \frac{5}{\infty^2} \\ &= 1 + 0 + 0 \\ &= 1 < \infty \Rightarrow f(n) \in O(g(n)) \end{split}$$

$$c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} \forall n >= n_0: c_1 \cdot n^2 <= n^2 - 2n <= c_2 \cdot n^2$$

 $\Leftrightarrow c_1 <= 1 - \frac{1}{n} <= c_2$

Dies ist erfüllbar ab $n_0 >= 2$, da für n=1 im mittleren Ausdruck 0 herauskommt und c_1 größer als 0, aber kleiner als der mittlere Ausdruck sein muss. Ist n>=2, so kommt im mittleren Ausdruck 0,5 heraus, für c_1 lässt sich ein beliebiger Wert aus]0;0.5[wählen, sei es an dieser Stelle $\frac{1}{4}$. Als Obergrenze für c_2 lässt sich jeder Wert größer oder gleich 1 wählen, da der mittlere Ausdruck nicht größer als 1 werden kann und somit die Bedingung des "kleiner gleichßofort erfüllt ist.

Somit wird als Ergebnis für die Belegung gewählt: $c_1 = \frac{1}{4}$; $c_2 = 1$; $n_0 = 2$. Mit dieser Belegung gilt $n^2 - 2n \in \Theta(n^2)$

$$\begin{split} f(n) &\in O(g(n)) & \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \\ f(n) &= n! \\ g(n) &= (n+1)! = (n+1) \cdot n! \\ \\ \lim_{n \to \infty} \frac{n!}{(n+1) \cdot n!} &= \lim_{n \to \infty} \frac{1}{n+1} \\ &= \frac{1}{\infty} \\ &= 0 < \infty \Rightarrow f(n) \in O(g(n)) \end{split}$$

Da die Bedingung für o(g(n)) ist, dass der Quotient nicht nur kleiner unendlich, sondern gleich null ist, was hier wie oben gezeigt gegeben ist, gilt auch $n! \in o((n+1)!)$.

1.3 Präsenzaufgabe 1.3

Beweisen oder widerlegen Sie:

1.
$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) + g(n) \in O(h(n))$$

2.
$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) \cdot g(n) \in O(h(n))$$

$$\exists c_1 \in \mathbb{R}^+ \exists n_{0_1} \in \mathbb{N} \forall n >= n_{0_1} : ||f(n)|| <= c_1 \cdot ||h(n)||$$

$$\exists c \geq 1 \in \mathbb{R}^+ \exists n_{0_2} \in \mathbb{N} \forall n >= n_{0_2} : ||g(n)|| <= c_2 \cdot ||h(n)||$$

$$n_0 = \max(n_{0_1}, n_{0_2})$$

$$||f(n) + g(n)|| <= c_1 \cdot ||h(n)|| + c_2 \cdot ||h(n)|| <= (c_1 + c_2) \cdot ||h(n)||$$

Seien f(n) und g(n) Polynome zweiten Grades sowie h(n) ein Polynom dritten Grades. Dann sind sowohl f(n) als auch g(n) durch die *limes*-Bedingung in O(h(n)). Das Produkt zweier Polynome zweiten Grades ist allerdings ein Polynom vierten Grades, sodass gilt:

$$\lim_{n \to \infty} \frac{n^2 \cdot n^2}{n^3} = \lim_{n \to \infty} \frac{n^4}{n^3} = \lim_{n \to \infty} n = \infty$$

Damit ist das Produkt der Polynome nicht mehr in O(h(n)), da die *limes*-Bedingung, nach der der Quotient der Polynome für n gegen Unendlich kleiner als Unendlich sein zu hat, nicht erfüllt ist. Damit ist (2) widerlegt.

2 Zettel vom 15.10. // Abgabe: 26.10.

2.1 Übungsaufgabe 2.1

 $\begin{bmatrix} & 1 & 2 \end{bmatrix}$

Begründen Sie formal, warum folgende Größenabschätzungen gelten bzw. nicht gelten:

1.
$$3n^3 - 6n + 20 \in O(n^3)$$

2.
$$n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2)$$

2.1.1

$$3n^{3} - 6n + 20 \in O(n^{3}) \Leftrightarrow \lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} < \infty$$

$$\lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} = \lim_{n \to \infty} \frac{3n^{3}}{n^{3}} - \frac{6n}{n^{3}} + \frac{20}{n^{3}} = \lim_{n \to \infty} 3 - \frac{6}{n^{2}} + \frac{20}{n^{3}} = 3 - 0 + 0 < \infty$$

$$\Rightarrow 3n^{3} - 6n + 20 \in O(n^{3}) \qquad \Box$$

2.1.2

$$\begin{split} n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) &\Leftrightarrow \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} < \infty \wedge \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^2} > 0 \\ &\frac{n^2 \cdot \log n}{n^2} = \frac{1 \cdot \log n}{1} = \log n > 0 \ \forall n > 1 \Rightarrow n^2 \cdot \log n \in \Omega(n^2) \\ \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} = \lim_{n \to \infty} \frac{\log n}{n} \overset{\text{l'H}}{=} \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{1} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{\infty} = 0 \Rightarrow n^2 \cdot \log n \in O(n^3) \\ &\Rightarrow n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) \quad \Box \end{split}$$

2.2 Übungsaufgabe 2.2

 $[\ \ | \ 4]$

Ordnen Sie die folgenden Funktionen nach ihrem Wachstumsgrad in aufsteigender Reihenfolge, d.h. folgt eine Funktion g(n) einer Funktion f(n), so soll $f(n) \in O(g(n))$ gelten.

$$n, \log n, n^2, n^{\frac{1}{2}}, \sqrt{n}^3, 2^n, \ln n, 1000$$

Mit log ist hier der Logarithmus zur Basis 2, mit l
n der natürliche Logarithmus (Basis e) gemeint. Begründen Sie stets Ihre Aussage. Zwei Funktionen f(n) und g(n) befinden sich ferner in der selben Äquivalenzklasse, wenn $f(n) \in \Theta(g(n))$ gilt. Geben Sie an, welche Funktionen sich in derselben Äquivalenzklasse befinden und begründen Sie auch hier ihre Aussage.

2.3 Übungsaufgabe 2.3

 $\begin{bmatrix} & 1 & 2 \end{bmatrix}$

Beweisen oder widerlegen Sie:

$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) \cdot g(n) \in O((h(n))^2)$$

Für diesen Beweis wird der Beweis des dritten Satzes der Summen- und Produkteigenschaften der O-Notation ¹ zu Hilfe genommen:

Beweis. Sei $f \in O(h_1)$ und $g \in O(h_2)$, dann gibt es ein c, n_0 , so dass $f(n) \le c \cdot h_1(n) \forall n \ge n_0$ und ebenso c', n'_0 , so dass $g(n') \le c' \cdot h_2(n') \forall n' \ge n'_0$. Daraus folgt $f(n'') \cdot g(n'') \le c \cdot c' \cdot h_1(n'') \cdot h_2(n'') \forall n'' \ge \max(n_0, n'_0)$, also $f \cdot g \in O(h_1 \cdot h_2)$.

Setzt man nun $h_1, h_2 = h$ folgt daraus für den letzten Ausdruck des Beweises $f(n) \cdot g(n) \in O(h(n)) \cdot h(n)) \Rightarrow f(n) \cdot g(n) \in O((h(n))^2).$

2.4 Übungsaufgabe 2.4

[| 8]

Seien

1.
$$T(n) := \left\{ \begin{array}{ll} 0, & \text{für } n=0 \\ 3 \cdot T(n-1) + 2, & \text{sonst} \end{array} \right.$$

2. $S(n) := \left\{ \begin{array}{ll} c, & \text{für } n=1 \\ 16 \cdot S(\frac{n}{4}) + n^2, & \text{sonst} \end{array} \right.$

Rekurrenzgleichungen (c ist dabei eine Konstante).

Bestimmen Sie wie in der Vorlesung jeweils die Größenordnung der Funktion $T: \mathbb{N} \to \mathbb{N}$ einmals mittels der (a) Substitutionsmethode und einmal mittes des (b) Mastertheorems. Ihre Ergebnisse sollten zumindest hinsichtlich der O-Notation gleich sein, so dass Sie etwaige Rechenfehler entdecken können! Führen Sie bei (a) auch den Induktionsbeweis, der in der Vorlesung übersprungen wurde!

¹vgl. Vorlesung, Foliensatz 1 (14.10.), S.33