We have seen the magic to solve non-convex problems when the
model is inhereral sparse, in terms of lo-norm of a vector.
This week, we want to understand the structure of any "sporse" problems,
the low-rank matrix recovery. You will see how low rank is connected
to lo-norm a bit later.
But, Q: Po you have any intuition? How low -rank matrix can be
reforded as sparse models?
A: The rank of low-rank matrix can be regarded as sipares"
Hence, the signlar value decomposition (SVD) of a motor X, sit.
$X = U \sum_{i=1}^{N} V^* = \sum_{i=1}^{N} G_i u_i \cdot v_i^*$
Il Illo is sparse!
This week, we will see the power of SVD.
Before that, Let's first look at some motivating examples. Some of them are been
introduced in Section I.
* Motivating Example 1: Recommendation Systems
Imagine that we have nz products of interest, and nu ucers. (Taiobao. JD. etc.
Users commonsume products and rote them based on the quality of their experience.
Our goal is to use the information of all the users ratings to predict which products will appeal to a given user.
Formally, our objective of interest is a large, unknown matrix [22-19]
ACK,
whose (iii) entry contains user i's rating for product 0. Products

* Representing Low-Rank Matrix via SVD.	
Mothematically, our goal is to recover an unknown X whose columns live on an	
r-dimensional linear subspace of the doda space IR".	
This subspace can be characterized via the singular value decomposition (SVP) of X.	
Thm (Compact SVP). Let $X \in \mathbb{R}^{n_1 \times n_2}$ be a matrix, and $r = rank(x)$.	
Then there exist $\Sigma = \text{diag}(\delta_1, \dots, \delta_r)$ with numbers $\delta_1 \ge \delta_2 \ge \dots \ge \delta_r > 0$	
and matrices $u \in \mathbb{R}^{n_1 \times r}$, $V \in \mathbb{R}^{n_2 \times r}$, s.t. $u^*u = I$, $v^*v = I$ and	
$X = \mathcal{U} \cdot \Sigma \cdot \mathcal{V}^* = \sum_{i=1}^{r} \sigma_i u_i v_i^*$	
The proof relies on the following than, you have learnt in Linear Algebra	
Thm: Every Hermitian (Symmetric) matrix A & Rnxn can be diagonabled by	
a unitary matrix U , $s.+$. $U^* \cdot A \cdot \mathcal{U} = \Lambda$,	
where A is a diagnost mosts x.	
Utilizing this theorem, we would like to examine the relationship beducen	
6i and the sir eigenvalues of matrix A*A & AA*.	
We stout from A*A. There exists V, s.t. V* A*A.V= N	
$\Rightarrow A^*A \cdot V = V \cdot \Lambda = V \cdot \text{diag}\{\lambda_1, \dots, \lambda_{n_2}\} \text{ all elements in } \Lambda \text{ is}$	
Next, we construct U from V . $V = [V_1 V_2] \cdot V_1$.	
For $i \le r$, we construct. $u_i = \frac{1}{\sqrt{\lambda i}} \times \frac{1}{\sqrt{\lambda i}}$	
<ui> <ui> <ui> <ui> <ui> <ui> <ui> <ui></ui></ui></ui></ui></ui></ui></ui></ui>	

Also, { li} are eigentatue lectus of XXX $\times \times^{*} \mathcal{U}_{i} = \times \times^{*} \times \frac{\mathcal{V}_{i}}{\sqrt{\mathcal{V}_{i}}} = \times \cdot \sqrt{\lambda_{i}} \mathcal{V}_{i} = \lambda_{i} \cdot \mathcal{U}_{i} \cdot \mathcal{U}_{i}$ The set fui: i=1,..., r) can be extended using the Gram-Schmidt procedure Schmidt to form an orthonormal basis for IRM. Let u=[u, | ... | un] For i'Er, we know $u_i^* \cdot X \cdot Y = \int_{\lambda_i} \cdot v_i^* \cdot x \cdot X \cdot Y = \int_{\lambda_i} \cdot v_i^* \cdot V \cdot \Lambda = \int_{\lambda_i} \cdot e_i^*$ the ithe lenes is For i > r, $u_i^* - X \cdot V = 0$. 1, all other elevents are O. > ut. x. V = diag (5, ..., 5/2n.) = Z. In fact, I directly prove a more general version Thin: Let XE IR nix no be a madrix. Then there exist orthogrand motices 21 & O(ni) and V & O(ni), and numbers 61 ≥ 62 ≥··· ≥ 5min { n, m}. Sit. if we led let $\Sigma \in \mathbb{R}^{n_1 \times n_2}$ with $\Sigma_{ii} = \delta_i$, and $\Sigma_{ij} = 0$ for $i \neq j$ $\chi = u \cdot \xi \cdot V$. Given our proof, it should be fairly easy to verify that * The left sigular vectors Ui are the eigenvectors of XX*. $X \cdot X^* = (u \cdot \Sigma \cdot V)(V^* \cdot \Sigma^* \cdot u^*) = u \cdot \Sigma \cdot \Sigma^* \cdot u^*$ * The right sigular vectors vi are the eigenvectors of X* X * The nonzero singular values 6: are the positive square roots of the positive eigenvalues hi of X:*X.