

1

IMPRIMER 🛱

Connaître la nomenclature des molécules organiques

A) Je sais représenter des molécules

- Les molécules organiques sont composées
 - d'une chaîne carbonée

E PLAN

- et de groupes caractéristiques.
- On peut utiliser deux types de représentation :
 - la représentation **semi-développée**
 - la représentation **topologique** (qui omet les atomes de carbone et les atomes d'hydrogène qui leur sont liés)

B) Je connais les différents types de molécules organiques, leur fonction et leur nomenclature

- Les molécules organiques possédant le même groupe caractéristique ont des propriétés chimiques communes et appartiennent à la même famille.
- Ces propriétés définissent la **fonction chimiques** des molécules.
- On associe un suffixe au nom d'une molécule selon son groupe caractéristique.

Alcool	Aldéhyde	Cétone	Acide carboxylique	Ester	Amine	Amide
R- OH	R -COH	R2 -CO	R-COOH	R -COO- R	N R ₃	R -CO-N- R ₂
-ol	-al	-one	(acide) - oïque	- oate (d'alkyle)	-amine	-amide

C) Je sais nommer les chaînes carbonées

- Les chaînes carbonées ne comportant que des liaisons simples sont appelées alcanes et celles comportant une liaison double C=C sont appelées alcènes.
- Le nombre d'atomes de carbone d'une chaîne carbonée détermine le préfixe associé :

1 C	2 C	3 C	4 C	5 C	6 C	7 C	8 C
Méth-	Éth-	Prop-	But-	Pent-	Hex-	Hept-	Oct-

• On nomme alors les alcanes et alcènes avec les suffixes -ane et -ène.

La spectroscopie UV-visible

A) Je sais reconnaître un spectre UV-visible

- Un spectre **UV-visible** représente l'absorption d'un échantillon en fonction de la longueur d'onde du rayonnement incident.
- Le domaine des **UV** correspond à 200-400 nm.
- Le domaine **visible** correspond à 400-800 nm.

B) Je sais exploiter un spectre UV-visible

• Le **cercle chromatique** permet d'obtenir la couleur de la molécule à partir du spectre UV-visible.

3

La spectroscopie IR

A) Je sais reconnaître un spectre IR

- Un **spectre IR** représente la transmittance d'une espèce en fonction du nombre d'onde du rayonnement incident.
- Le nombre d'onde varie entre 3 500 cm⁻¹ et 400 cm⁻¹.
- Un spectre IR est constitué d'une série de bandes d'absorption qui pointent vers le bas.

B) Je sais exploiter un spectre IR pour le relier à une molécule organique

- Un spectre IR permet d'obtenir des informations sur le **groupe caractéristique** dans la molécule observée.
 - Chaque bande d'absorption est associée à un **type de liaison** ce qui permet de retrouver le groupe caractéristique.
- La présence de liaisons hydrogènes au sein d'un échantillon se traduit sur le spectre IR par la présence d'une bande très large autour de 3 300 cm⁻¹.

4

La spectroscopie RMN

A) Je sais reconnaître un spectre RMN

- Un spectre RMN, ou résonance magnétique nucléaire, présente des pics de résonance des molécules en fonction du déplacement chimique.
- L'analyse d'un spectre RMN permet de déterminer la **structure** de la chaîne carbonée et la position des groupements caractéristiques d'une molécule.
- Des protons qui ont les mêmes atomes autour d'eux (donc le même environnement électronique) dans une molécule sont équivalents.

B) Je sais identifier des protons équivalents

- Des **protons équivalents** résonnent pour la même valeur du déplacement chimique.
- Ainsi connaître la résonance des protons permet de déterminer les atomes qui les entourent et donc la structure de la molécule.
- Un **signal** correspond donc à un groupe de protons équivalents.
- L'aire sous la courbe d'un signal de RMN est proportionnelle au nombre de protons responsables de ce signal.
 - La courbe d'intégration du spectre est constituée de **paliers**.
- La hauteur de chaque saut vertical de la courbe d'intégration est donc proportionnelle au nombre de protons équivalents responsables du signal correspondant.

C) Je connais la règle des (n+1)-uplets

- Deux protons sont **voisins** s'ils ne sont séparés que par trois liaisons : une liaison H-C, une liaison C-C et une liaison C-H.
- La règle des (n+1)-uplets : un proton voisin de n protons équivalents fournit un signal de (n+1) pics appelé (n+1)-uplet
 - ex. : singulet, doublet, triplet, etc.