Teorie her

Radek Pelánek

Teorie her

- rozsáhlé téma
- samostatný celosemestrální kurz PřF:M7190
- zde velmi stručný úvod

Teorie her

- oblast matematiky používaná v ekonomii, politologii, psychologii, biologii, ...
- modelování strategického rozhodování
- John von Neumann, John Nash, 50. léta

Teorie her – aplikační doména

modelování situací, kde:

- každý agent (hráč) má několik možností musí se rozhodnout
- agenti berou v potaz potenciální akce ostatních
- agenti se chovají racionálně

Příklad: Uhádni 2/3 průměru

- každý napíše přirozené číslo v intervalu 0 až 100
- vypočítá se hodnota "2/3 z průměru všech čísel"
- kdo má číslo nejblíž této hodnotě vyhrává

Racionalita

Citát z učebnice teorie her (Osborne, Rubinstein, 2004):

Předpoklady, na kterých leží teorie racionálního rozhodování, zde nerozebíráme. Musíme však zmínit, že tyto předpoklady jsou pod stálým útokem experimentálních psychologů, kteří trvale ukazují na výrazné limity jejich použitelnosti.

Racionalita

předpoklady:

- agenti se chovají racionálně (maximalizace užitku, apd)
- agenti ví, že ostatní se chovají racionálně
- agenti ví, že ostatní ví, že ostatní se chovají racionálně
- agenti ví, že ostatní ví, že ...

... ale lidi neví.

Uhádni 2/3 průměru

Guess 2/3 of the average

http://konkurrence.econ.ku.dk/r/o

Piráti

- 5 pirátů si dělí poklad: 100 mincí
- nejstarší pirát navrhne rozdělení, následuje hlasování
- alespoň polovina hlasů ⇒ rozděleno, hotovo
- jinak ⇒ navrhující pirát zabit, pokračuje druhý nejstarší (a tak dále)
- priority
 - přežít
 - mít co nejvíce mincí
 - 3 zabít co nejvíc ostatních pirátů
- (6 pirátů a 1 mince, 300 pirátů a 100 mincí)

Racionalita

- my budeme kombinovat teorii her s dalšími postupy: počítačová simulace, genetické algoritmy, ...
- uvolnění požadavku na racionalitu

Strategické hry

(hry v normální formě)

- množina n hráčů
- pro každého hráče i množina akcí A_i
- pro každého hráče i funkce zisku, která pro každou možnou kombinaci zvolených akcí udává, jaký je zisk hráče i

Kámen, nůžky, papír

1. hráč / 2. hráč	kámen	nůžky	papír
kámen	0; 0	1; -1	-1; 1
nůžky	-1; 1	0; 0	1; -1
papír	1; -1	-1; 1	0; 0

Souboj pohlaví

žena / muž	divadlo	fotbal
divadlo	3; 2	1; 1
fotbal	0; 0	2; 3

Hra s nulovým součtem

= zisk hráče A je inverzní k zisku hráče B

Abych já vyhrál, musí ten druhý prohrát.

vítězství = 1, remíza = 0, prohra = -1 (tj. součet je nula)

příklady: Kámen, nůžky, papír, klasické hry (piškvorky, šachy), sport, soutěže

Hry s nenulovým součtem

= součet zisku hráče A a hráče B není nula

Můžeme třeba i oba vyhrát nebo oba prohrát.

příklady: Souboj pohlaví, Flbot 3, manželství, práce v týmu, obchodování, život...

(konkrétnější příklady za chvíli)

Strategie

- strategie = "jak táhnout"
- Co je nejlepší strategie? Záleží na tazích ostatních hráčů...
- ekvilibrium = stabilní volba strategií, nikdo si nemůže polepšit (více různých definicí)
- klasická matematická teorie her především studium ekvilibrií

Čistá strategie

- vybírá jednu z možných akcí (např. "hraj kámen")
- Souboj pohlaví: kombinace strategií (divadlo, divadlo) je ekvilibriem
- Kámen, nůžky, papír: neexistuje ekvilibrium tvořené čistými strategiemi

1. hráč / 2. hráč	kámen	nůžky	papír
kámen	0; 0	1; -1	-1; 1
nůžky	-1; 1	0; 0	1; -1
papír	1; -1	-1; 1	0; 0

žena / muž	divadlo	fotbal
divadlo	3; 2	1; 1
fotbal	0; 0	2; 3

Mixovaná strategie

- pravděpodobnostní distribuce přes možné akce (např. "hraj v 50 % kámen, ve 40 % papír a v 10 % nůžky")
- existence ekvilibria zajištěna
- Kámen, nůžky, papír: ekvilibrium oba používají strategii "hraj kámen, nůžky, papír každé s pravděpodobností 1:3"

Shrnutí

- teorie her: modelování rozhodování jednotlivců
- klasický přístup: předpoklad racionality, studium ekvilibrií
- kombinace s dalšími modelovacími přístupy: uvolnění předpokladu racionality, studium dynamiky