5 Hypothesis Testing

5.1 Hypothesis

In hypothesis testing, we would like to assess a hypothesis, a statement about the population.

- "the drug has no effect"
- "p = 0.5"

But our sample is random. Hypothesis testing helps us to answer

Can we distrust the hypothesis from a random sample?

The hypotheses are subsets of \mathcal{P} by dividing Θ into two parts Θ_0 and Θ_1 such that

$$\Theta = \Theta_0 \cup \Theta_1$$
 and $\Theta_0 \cap \Theta_1 = \emptyset$.

- 1. The null hypothesis, denoted by H_0 , means that $\mathcal{P}_0 = \{P_\theta : \theta \in \Theta_0\}$. We write $H_0 : \theta \in \Theta_0$.
- 2. The alternative hypothesis, denoted by H_1 or H_A , means that $\mathcal{P}_1 = \{P_\theta : \theta \in \Theta_1\}$. We write $H_1 : \theta \in \Theta_1$.

We can work with

- Simple hypothesis, e.g., $H: \theta = \theta_0$, just one point.
- Composite hypothesis, e.g., $H: \theta \leq 0$ or $H: \theta^2 = 1$ or $H: \theta_1 \theta_2 = 0$, not simple hypothesis.
- One-sided hypothesis, e.g., $H: \theta \geq 0$.
- Two-sided hypothesis, e.g., $H: \theta \neq 0$ or $H: \theta \leq 1$ or $\theta \geq 3$.

We need to quantify the evidence against H_0 using a test statistic T. If there is sufficient evidence against H_0 , then we reject the H_0 . Otherwise, we cannot reject H_0 . We **DO NOT** say we accept H_0 .

5.2 Power Function

Definition 1. A nonrandomized test ϕ is a statistic from the sample space \mathcal{X} to $\{0,1\}$:

$$\phi(x) = \begin{cases} 1, & \text{if } x \in C_1, \text{ reject } H_0, \\ 0, & \text{if } x \in C_0, \text{ do not reject } H_0, \end{cases}$$

where $x = (x_1, ..., x_n)$, $\mathcal{X} = C_1 \cup C_0$ and $C_1 \cap C_0 = \emptyset$. Here C_1 is the rejection region (aka critical region), and C_0 is the acceptance region.

Due to randomness in our data, we may commit two types of errors.

			Decision
		Cannot reject H_0	Reject H_0
Truth	H_0	Correct decision	Type I Error
	H_1	Type II Error	Correct decision

Definition 2 (Power function). For the test problem $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$. The power function of the test ϕ is defined by

$$\pi(\theta) = \mathrm{E}\left[\phi(X) \mid \theta\right], \quad \theta \in \Theta,$$

where $X = (X_1, ..., X_n)$.

In the nonrandomized test,

$$\pi(\theta) = \mathrm{E}[\phi(X) \mid \theta] = \mathrm{P}(\phi = 1 \mid \theta) = \mathrm{P}(X \in C_1 \mid \theta), \quad \theta \in \Theta,$$

the probability of rejecting H_0 .

- For $\theta \in \Theta_0$, then $\pi(\theta)$ is the type I error probability. We want it to be low.
- For $\theta \in \Theta_1$, then $1 \pi(\theta)$ is the type II error probability. We want it to be high.

The trade-off between two errors is that it is not possible to decrease both towards zero.

- In practice, it is common to restrict the probability of type I error to be low, e.g., no higher than a prespecified level, the significance level.
- We then seek tests that have low probability of type II error among the tests with well-controlled probability of type I error.

Example 1 (Normal-test). Let $X_1, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$ with σ^2 known. We would like to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Suppose that we reject H_0 if

$$\frac{\left|\bar{X} - \theta_0\right|}{\sigma/\sqrt{n}} > c$$
, for some constant c .

The power function is

$$\pi(\theta) = P\left(\frac{\bar{X} - \theta}{\sigma/\sqrt{n}} < -c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}} \text{ or } \frac{\bar{X} - \theta}{\sigma/\sqrt{n}} > c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}} \mid \theta\right),$$

where $\frac{\bar{X}-\theta}{\sigma/\sqrt{n}} \sim N(0,1)$. If we want the type I error probability to be a pre-specified value $\alpha \in (0,1)$, we need to find the value c such that

$$\alpha = P\left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} < -c \text{ or } \frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > c \mid \theta_0\right).$$

Example 2. Let $X \sim \text{Binomial } (6, \theta)$. We want to test $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$. If X is too large, we should reject H_0 . Under H_0 , the probabilities are

If we want the type I error probability to be $\alpha = 0.02$, then $C_1 = \{x = 6\}$. But it is not possible to have a nonrandomized test where the type I error probability is 0.05.

Definition 3 (Randomized test). A randomized test ϕ us a statistic from the sample space \mathcal{X} to [0,1]:

$$\phi(x) = \begin{cases} 1, & \text{if } x \in C_1, \text{ reject } H_0, \\ \gamma, & \text{if } x \in C_=, \text{ reject } H_0 \text{ with probability } \gamma, \\ 0, & \text{if } x \in C_0, \text{ do not reject } H_0, \end{cases}$$

where $\mathcal{X} = C_1 \cup C_2 \cup C_0$ and C_1 , C_2 , and C_0 are mutually disjoint. The power function of a randomized test is

$$\pi(\theta) = \mathrm{E}\left[\phi(X) \mid \theta\right] = \mathrm{P}\left(X \in C_1 \mid \theta\right) + \gamma \mathrm{P}\left(X \in C_{=} \mid \theta\right),$$

for $\theta \in \Theta$, still the probability of rejecting H_0 .

Example 3. Let $X \sim \text{Binomial } (6, \theta)$. We want to test $H_0: \theta = 1/2 \text{ versus } H_1: \theta = 3/4$. Solving

$$p(6; \theta = 1/2) + \gamma \times p(5; \theta = 1/2) = 0.05$$

produces the desired type I error probability if we let $\gamma = 1/3$.

5.3 Neyman-Pearson Test

A hypothesis is simple if it completely specifies the distribution. Consider simple hypotheses

$$H_0: P_0$$
 versus $H_1: P_1$.

Definition 4 (UMP). A test ϕ^* is called the uniformly most powerful test (UMP test) of size α if and only if $E[\phi^*(X) \mid H_0] = \alpha$ and $E[\phi^*(X) \mid H_1] \ge E[\phi(X) \mid H_1]$ for all tests with $E[\phi(X) \mid H_0] \le \alpha$.

Definition 5 (Neyman-Pearson test). Consider testing $H_0: P_0$ versus $H_1: P_1$. For $k \geq 0$ and $\gamma \in [0, 1]$, the Neyman-Pearson test is

$$\phi(x) = \begin{cases} 1, & \text{if } p_0(x) < kp_1(x), \\ \gamma, & \text{if } p_0(x) = kp_1(x), \\ 0, & \text{if } p_0(x) > kp_1(x), \end{cases}$$

where p_0 and p_1 are the probability functions related to P_0 and P_1 , respectively.

Theorem 1 (Neyman-Pearson test as UMP). Consider testing H_0 : P_0 versus H_1 : P_1 . For all $\alpha \in [0,1]$, there exist $\gamma(\alpha)$ and $k(\alpha)$ such that the Neyman-Pearson test with $\gamma(\alpha)$ and $k(\alpha)$ has size α and is UMP of size α . Especially, for $\alpha > 0$,

1. if there exits a $k(\alpha)$ such that

$$P_0\left(p_0\left(\boldsymbol{X}\right) < k\left(\alpha\right)p_1\left(\boldsymbol{X}\right)\right) = \alpha,$$

then $\gamma(\alpha) = 0$. Otherwise, $k(\alpha)$ satisfies

$$P_0\left(p_0\left(\boldsymbol{X}\right) < k\left(\alpha\right)p_1\left(\boldsymbol{X}\right)\right) < \alpha < P_0\left(p_0\left(\boldsymbol{X}\right) \le k\left(\alpha\right)p_1\left(\boldsymbol{X}\right)\right)$$

and $\gamma(\alpha)$ is determined by

$$P_0\left(p_0\left(\boldsymbol{X}\right) < k\left(\alpha\right)p_1\left(\boldsymbol{X}\right)\right) + \gamma\left(\alpha\right)P_0\left(p_0\left(\boldsymbol{X}\right) = k\left(\alpha\right)p_1\left(\boldsymbol{X}\right)\right) = \alpha.$$

- 2. If ϕ is a UMP test of size α , then ϕ is the Neyman-Pearson test except on a zero measure set.
- 3. The power of the Neyman-Pearson test is larger than α .

Proof. We only show the first result. In order for the test to have size α , we need to have

$$\alpha = \mathbb{E} [\phi(X) \mid H_0] = P_0 (p_0(X) < kp_1(X)) + \gamma P_0 (p_0(X) = kp_1(X)).$$

We need to show that this test has the highest power: for any test ψ with $E[\psi(X) \mid H_0] \leq \alpha$, we have $E[\phi(X) \mid H_1] \geq E[\psi(X) \mid H_1]$.

- 1. If $\phi(x) \psi(x) > 0$, then we must have $\phi(x) > 0$ (since $\phi = \{1, \gamma > 0, 0\}$ and $\psi \in [0, 1]$) and $p_0(\mathbf{x}) \le kp_1(\mathbf{x})$.
- 2. If $\phi(x) \psi(x) < 0$, then we must have $\phi(x) < 1$ (since $\phi = \{1, \gamma > 0, 0\}$ and $\psi \in [0, 1]$) and $p_0(\mathbf{x}) \ge kp_1(\mathbf{x})$.

In all cases, we have $[\phi(x) - \psi(x)][kp_1(x) - p_0(x)] \ge 0$. Hence,

Example 4. Let $X \sim \text{Binomial } (6, \theta)$. We want to test $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$. Under H_0 , the probabilities are

\overline{X}	0	1	2	3	4	5	6
$\frac{p(x;\theta=1/2)}{p(x;\theta=3/4)}$	64.00	21.33	7.11	2.37	0.79	0.26	0.09
$p(x; \theta = 1/2)$	0.02	0.09	0.23	0.31	0.23	0.09	0.02

- If we want a UMP test of size $\alpha = 0.02$, then $C_1 = \{x = 6\}$.
- If we want a UMP test of size $\alpha = 0.05$, we solve $p(6; \theta = 1/2) + \gamma \times p(5; \theta = 1/2) = 0.05$ and obtain $\gamma = 1/3$.

In Neyman-Pearson Lemma for testing $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$, we reject H_0 if

$$\phi(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} < k, \\ \gamma, & \text{if } \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = k, \\ 0, & \text{if } \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} > k. \end{cases}$$

It is equivalent to compare the likelihood ratio

$$\frac{p_{0}\left(\boldsymbol{x}\right)}{p_{1}\left(\boldsymbol{x}\right)}$$
 or $\frac{p_{0}\left(\boldsymbol{x}\right)}{\max\left\{p_{0}\left(\boldsymbol{x}\right),\ p_{1}\left(\boldsymbol{x}\right)\right\}}$

with k. In statistics, a common name for a Radon-Nikodym density is likelihood ratio.

Definition 6. For $0 \le \alpha \le 1$, a test with power function $\pi(\theta)$ is called

- a size α test if $\sup_{\theta \in \Theta_0} \pi(\theta) = \alpha$,
- a level α test if $\sup_{\theta \in \Theta_0} \pi(\theta) \leq \alpha$.

Typically, we specify a small $\alpha = 0.01$, 0.05 and 0.1 (small values), meaning that we do not reject H_0 unless the evidence is strong. For this reason, H_1 is also called the research hypothesis. We usually put the hypothesis that we would like to verify in H_1 .

Example 5. Let $X_1, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$, where σ^2 is known. We want to test $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. We reject H_0 if

$$\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} > c,$$

for some constant c. The power function is

$$\pi\left(\theta\right) \ = \ \mathrm{P}\left(\frac{\bar{X}-\theta}{\sigma/\sqrt{n}}>c-\frac{\theta-\theta_{0}}{\sigma/\sqrt{n}}\mid\theta\right) = \mathrm{P}\left(N\left(0,1\right)>c-\frac{\theta-\theta_{0}}{\sigma/\sqrt{n}}\mid\theta\right).$$

In order to have a size α test, we need to have

$$\alpha \quad = \quad \sup_{\theta \leq \theta_0} \mathbf{P}\left(N\left(0,1\right) > c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}} \mid \theta\right) = \mathbf{P}\left(N\left(0,1\right) > c \mid \theta\right).$$

Definition 7 (UMP Level α Test). A test ϕ^* is a UMP level α test if and only if

$$\sup_{\theta \in \Theta_0} E\left[\phi^*\left(X\right) \mid \theta\right] = \alpha,$$

and $E\left[\phi^{*}\left(X\right)\mid\theta\right]\geq E\left[\phi\left(X\right)\mid\theta\right]$ for all $\theta\in\Theta_{1}$ and for all tests with $\sup_{\theta\in\Theta_{0}}E\left[\phi\left(X\right)\mid\theta\right]\leq\alpha$.

5.4 Test and Confidence Interval

A random set is a $1 - \alpha$ confidence region for a parameter θ if

$$P\{\theta \in S(X) \mid \theta\} \geq 1 - \alpha, \forall \theta \in \Theta.$$

Theorem 2 (Duality between test and confidence set). Suppose that $A(X, \theta_0)$ is the acceptance region of a nonrandomized level α test with $H_0: \theta = \theta_0$ such that

$$P\{X \in A(X, \theta) \mid \theta\} \ge 1 - \alpha, \forall \theta \in \Theta.$$

For each x, define $C(x) = \{\theta; x \in A(X, \theta)\}$. Then, the random set C(X) is a $1 - \alpha$ confidence set. Conversely, let C(X) be a $1 - \alpha$ confidence set. For any $\theta_0 \in \Theta$, define $A(X, \theta_0) = \{\theta_0 : \theta_0 \in C(X)\}$. Then $A(X, \theta_0)$ is the acceptance region of a level α test of $H_0 : \theta = \theta_0$.

Example 6. Let $X_1, ..., X_n$ be a random sample from $N\left(\theta, \sigma^2\right)$ with σ^2 known. The UMP level α test for $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$ rejects H_0 if $\bar{X} < \theta_0 - \sigma z_{1-\alpha}/\sqrt{n}$. The acceptance region is $\{x: \bar{X} \geq \theta_0 - \sigma z_{1-\alpha}/\sqrt{n}\}$. The confidence interval is $\{\theta: \bar{x} \geq \theta - \sigma z_{1-\alpha}/\sqrt{n}\}$.

5.5 Likelihood Ratio Test

Definition 8 (LRT). The likelihood ratio test (LRT) statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ is

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} L(\theta \mid x)}{\sup_{\theta \in \Theta} L(\theta \mid x)} = \frac{L(\hat{\theta}_0 \mid x)}{L(\hat{\theta} \mid x)},$$

where $\hat{\theta}_0$ is the MLE when $\theta \in \Theta_0$, and $\hat{\theta}$ is the MLE when $\theta \in \Theta$. An LRT rejects H_0 if $\lambda(x)$ is too small

Example 7. Let $X_1, X_2, ..., X_n$ be random sample from $N(\theta, 1)$. Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_1$. The likelihood is

$$L(\theta; x) = (2\pi)^{-n/2} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2 \right].$$

When $\theta \in \Theta_0$, $\hat{\theta}_0 = \theta_0$. When $\theta \in \Theta$, $\hat{\theta} = \bar{X}$. The LRT statistic is

$$\lambda(x) = \frac{L(\hat{\theta}_0 \mid x)}{L(\hat{\theta} \mid x)} = \frac{(2\pi)^{-n/2} \exp\left[-\sum_{i=1}^n (x_i - \theta_0)^2 / 2\right]}{(2\pi)^{-n/2} \exp\left[-\sum_{i=1}^n (x_i - \bar{x})^2 / 2\right]}$$
$$= \exp\left[-n(\bar{x} - \theta_0)^2 / 2\right].$$

We reject H_0 ,if $\lambda\left(x\right)=\exp\left[-n\left(\bar{x}-\theta_0\right)^2/2\right]\leq c$, for some c.

Example 8. Let $X_1, X_2, ..., X_n$ be i.i.d. from the exponential distribution with pdf

$$p(x \mid \theta) = \begin{cases} \exp\{-(x - \theta)\}, & x \ge \theta \\ 0, & x < \theta. \end{cases}$$

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. The likelihood function is

$$L(\theta|x) = \exp\left[-\sum_{i=1}^{n} x_i + n\theta\right] I(\theta \le x_{(1)}),$$

which is an increasing function of θ if $\theta \leq x_{(1)}$. Otherwise, $L(\theta|x) = 0$. So $\hat{\theta} = X_{(1)}$ and
$$\begin{split} \hat{\theta}_0 &= \begin{cases} X_{(1)}, & X_{(1)} \leq \theta_0, \\ \theta_0, & X_{(1)} > \theta_0. \end{cases} \end{split}$$
 The likelihood function under H_0 is

$$L\left(\hat{\theta}_{0}|x\right) = \begin{cases} \exp\left[-\sum_{i=1}^{n} x_{i} + nx_{(1)}\right], & x_{(1)} \leq \theta_{0}, \\ \exp\left[-\sum_{i=1}^{n} x_{i} + n\theta_{0}\right], & x_{(1)} > \theta_{0}. \end{cases}$$

Over the entire parameter space, $L\left(\hat{\theta}|\boldsymbol{x}\right)$ is $\exp\left[-\sum_{i=1}^{n}x_{i}+nx_{(1)}\right]$. The ratio is

$$\lambda\left(x\right) = \frac{L\left(\hat{\theta}_{0} \mid x\right)}{L\left(\hat{\theta} \mid x\right)} = \begin{cases} 1 & x_{(1)} \leq \theta_{0}, \\ \exp\left[n\theta_{0} - nx_{(1)}\right] & x_{(1)} > \theta_{0}. \end{cases}$$

We reject H_0 if $\lambda(x) \leq c$. $\lambda(x)$ is a non-increasing function of $x_{(1)}$. Hence, we reject H_0 if $x_{(1)}$ is too big, say $\{x: x_{(1)} \ge k\}$.

Theorem 3. Suppose that $X_1, ..., X_n$ are iid following P_{θ} , where $\theta \in \Theta$ and Θ is an open set in

- 1. $\frac{\partial \log p(x|\theta)}{\partial \theta}$ is well defined,
- 2. the true value θ_0 is the solution to $E\left[\frac{\partial \log p(x|\theta)}{\partial \theta} \mid \theta\right] = 0$,
- 3. the MLE is the solution to $\frac{\partial \log L(\theta;x)}{\partial \theta} = 0$ and is a consistent estimator of θ_0 ,
- 4. $E\left[\left\|\frac{\partial \log p(x|\theta)}{\partial \theta}\right\|^2 \mid \theta_0\right] < \infty$, where $\|\|$ is the Euclidean norm,
- 5. $\frac{\partial^2 \log p(x|\theta)}{\partial \theta \partial \theta^T}$ is nonsingular and $E\left[\left\|\frac{\partial^2 \log p(x|\theta)}{\partial \theta \partial \theta^T}\right\| \mid \theta_0\right] < \infty$,
- 6. the model is identified, i.e., $p(x \mid \theta_1) = p(x \mid \theta_2)$ almost everywhere under μ implies $\theta_1 = \theta_2$,
- 7. we can interchange the order of integration and differentiation such that $Var\left[\frac{\partial \log p(x|\theta)}{\partial \theta} \mid \theta\right] = 0$ $-E\left\lceil \frac{\partial^2 \log p(x|\theta)}{\partial \theta \partial \theta^T} \mid \theta \right\rceil$.

Consider testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$. Suppose that the true value θ_0 satisfies H_0 . Then,

$$-2\log\lambda(x) \stackrel{d}{\rightarrow} \chi_v^2$$

where the degrees of freedom v is the difference in the number of free parameters.