

Data Science II - Visualization

Lecture 7th of June 2024 Fredrik Frisk

Some quizes may pop up

Time Series

- in scatterplots we plotted one quantitative variable against another
- time series: one variable represents time and time imposes additional structure on the data — the data points are ordered in time
- we can visualize this order with line graphs
 - we can use line graphs whenever one variable imposes an ordering on the data (not limited to time series)
- as an alternative we can use a scatterplot and draw lines to connect the neighboring points in time

- notice how the dots are spaced evenly along the x-axis
- there is a defined order among the dots

- the order is emphasized by connecting neighboring dots with lines
- note that lines represent made-up data (there are no data measurements at intermediate times), yet they may help with perception
- using lines to represent time series data is generally accepted practice, however dots are often omitted althogether

- line graph without dots
- omitting the dots emphasizes the overall temporal trend
- useful when time points are spaced very densely

- area under the curve filled with solid color
- further emphasizes the trend in data by separating the area above and below the curve

Visualizing Multiple Time Series

- a scatterplot for multiple time series is not a good idea
- figure can become confusing and difficult to read

Visualizing Multiple Time Series

 connecting the dots (and omitting the dots altogether) helps with perception

Types of Lineplots

Interpolation

"Real" data only

"Real" data only

Visualizing Trends

- in lineplots or scatterplots we are often interested in the overarching trend of the data
- with a visualization of the trend on top of or instead of the actual data points we can help the reader see the key features of the data
- we want to visualize longer-term trends while deemphasizing the less important short-term fluctuations

Moving Average for Smoothing

- to generate a moving average, we take a time window and calculate the average over that window, then we move that time window by one time-unit and repeat that procedure
- to plot this sequence of moving averages, we need to associate a specific time point with the average of each time window
 - usually the end or the center of the window are chosen

Moving Average for Smoothing

 compute the 5-month moving average for the cs related submissions to arxiv time series using

pandas.DataFrame.rolling

- plot your result using matplotlib
- moving average is just one method for smoothing; there are other like <u>LOWESS</u> (implemented in <u>statsmodels</u>) that you can evaluate for your visualization

Literature

References

 Slide 4-9,13,14; Image Source: Claus O. Wilke - Fundamentals of Data Visualization, O'Reilly

Following pictures from

Time series patterns (ch 2.3)

Trend

Seasonal

Cyclic

Google daily changes in closing stock price

Trend (from ch 2.3)

A *trend* exists when there is a long-term increase or decrease in the data.

Seasonal (from ch 2.3)

A seasonal pattern occurs when a time series is affected by seasonal factors such as the time of the year or the day of the week. Seasonality is always of a fixed and known frequency. Antidiabetic drug sales

Cyclic (from ch 2.3)

A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency.

Sales of new one-family houses, USA

Random behaviour (ch. 2.3)

- No trend, seasonality or cyclic behaviour.
- Random fluctuations
- Hard to predict

Relations between Time Series (ch 2.6)

Half-hourly electricity demand: Victoria, Australia

Figure 2.7: Half hourly electricity demand and temperatures in Victoria, Australia, for 2014.

Scatterplot (ch 2.6)

Figure 2.8: Half-hourly electricity demand plotted against temperature for 2014 in Victoria, Australia.

Some basic properties of pdf

 How many data points is found in a pdf?

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

From: https://en.wikipedia.org/wiki/Probability_density_function

is the sample mean

Population vs. Sample set

- Infinite #datapoints
- μ is the population mean
- σ^2 is the population variance

- Finite #datapoints
- \bar{x} is the sample mean
- s² is the sample variance

Used by Pandas

From https://en.wikipedia.org/wiki/Bessel's correction https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.std.html

Variance

Sample set

$$\sigma^{2} = \sum_{i} \frac{(x_{i} - \mu)^{2}}{n} \qquad s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n - 1}$$

Standard deviation: σ resp. s

Statistics recap

Example of an outlier

Box plot

- Median
- First quartile
- Third quartile
- Minimum
- Maximum
- Outliers

From: https://en.wikipedia.org/wiki/Box_plot

Experiment No.

Experiment No.

Box plot

outliers

Run the file – outlier.ipynb

NIST

National Institute of Standards and Technology (USA)

Definition of outliers

An *outlier* is an observation that lies an *abnormal distance* from other values in a random sample from a population. In a sense, this definition leaves it *up to the analyst* (or a consensus process) to *decide what will be considered abnormal*. Before abnormal observations can be singled out, it is necessary to characterize normal observations.

From https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

Recommend two graphical methods

Box plots

Scatter plots

Mild outlier: outside Q3-1.5*IQR or Q3+1.5*IQR

Extreme outlier: outside Q3 - 3*IQR or Q3 + 3*IQR

https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

Outliers and Z-score

- Outliers and Z-score:
- Values with z-scores greater than 3 or less than -3 are often considered outliers.
- This means that these values are more than three standard deviations away from the mean.
- Used to identify and analyze unusual data points in a dataset.

Normal Distribution

$$f(x)=rac{1}{\sqrt{2\pi}}\;e^{-x^2/2} \hspace{0.5cm} f(x;\mu,\sigma^2)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Two parameters:

Mean -

Standarddeviation -

From: https://en.wikipedia.org/wiki/Outlier

The Formula for Z-score

- Formula:
- $Z = (X \mu) / \sigma$

- X: Individual value
- μ: Mean of the distribution
- σ: Standard deviation

Pearson Correlation coefficient

The correlation between variables x and y is given by

$$r=rac{\sum (x_t-ar{x})(y_t-ar{y})}{\sqrt{\sum (x_t-ar{x})^2}\sqrt{\sum (y_t-ar{y})^2}}.$$

Figure 2.9: Examples of data sets with different levels of correlation.

r = 0.82 for all plots

Figure 2.10: Each of these plots has a correlation coefficient of 0.82. Data from FJ Anscombe (1973)

Graphs in statistical analysis. *American Statistician*, 27, 17–21.

Example NBA players

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
5	Amir Johnson	Boston Celtics	90.0	PF	29.0	6-9	240.0	NaN	12000000.0
6	Jordan Mickey	Boston Celtics	55.0	PF	21.0	6-8	235.0	LSU	1170960.0
7	Kelly Olynyk	Boston Celtics	41.0	С	25.0	7-0	238.0	Gonzaga	2165160.0
8	Terry Rozier	Boston Celtics	12.0	PG	22.0	6-2	190.0	Louisville	1824360.0
9	Marcus Smart	Boston Celtics	36.0	PG	22.0	6-4	220.0	Oklahoma State	3431040.0

From: https://www.geeksforgeeks.org/python-pandas-dataframe-corr/

Correlation matrix

```
*[5]: # To find the correlation among
# the columns using pearson method
df2 = df[["Number","Age","Weight","Salary"]]
df2.corr(method ='pearson')
```

[5]:		Number	Age	Weight	Salary
	Number	1.000000	0.028724	0.206921	-0.112386
	Age	0.028724	1.000000	0.087183	0.213459
	Weight	0.206921	0.087183	1.000000	0.138321
	Salary	-0.112386	0.213459	0.138321	1.000000

Run the file - nba.csv

Autocorrelation

$$r_k = rac{\sum\limits_{t=k+1}^{T} (y_t - ar{y})(y_{t-k} - ar{y})}{\sum\limits_{t=1}^{T} (y_t - ar{y})^2},$$

Auto-Correlation

Australian electricity demand

- Positive trend
- Seasonal (1 year)

Figure 2.15: Monthly Australian

Figure 2.16: ACF of monthly Australian electricity demand.