· Can set price P, buyer buys if V > P

$$\mathbb{R}^* = \max_{P \geqslant 0} P.(1-F(P))$$

= $\max_{q \in [0,1]} F'(1-q) \cdot q$

Myerson price
$$p^*: p^* - \frac{1 - F(p^*)}{f(p^*)} = 0$$

(Fis segular iff
$$P - \left(\frac{1-F(P)}{f(P)}\right)$$
 non-decreasing in P)

. To go beyond this, we need to define 3 things:

- 1) Behavional model of buyer
- 2) Objectives and constraints of seller
- 3) Structure of available information

· The nest of the course considered several Such settings
Such settings
- Buyer model - perfect segmentation - probabilistic choice Strategic behavior
Sellon models - limited capacity
- admission control (fare-classes)
- network externalities
- (dynamic pricing)
- DSIC mechanisms
- 2-sided markelplace platforms
Information structure - Full knowledge of buyer value /choice distributions

- Learning from data (spiral-down!)

- No knowledge (DSIC mechanisms) Bulow-Klemperer)

Main ideas and techniques

- 1) DP formulation for pricing problems (value function, Bellman aguation, optimal control)
- 2) Protection level policies (for single-resource allocation)
- (2.5)- Convexity, Jensen's inequality)
- 3) Fluid approximations for complex DPs (and the bid-price heuristic)
- 4) The spiral-down effect (importance of using the correct model, effect of improper learning)
- 5) Phobabilistic choice models for buyor behavior: Luce's axioms and the MNL

- 6) Assortment optimization under the MNL model optimality of nested-by-nevenue sets
- 7) Mechanism design- The Vickney auction, dominant strategy incentive compatibility (DSIC).
- 8) Myerson's Lemma DSIC (>> monotone allocation rule (for single parameter settings)
- 9) Optimal nevenue DSIC mechanism > maximize 'visitual welfare'

 (neserve prices, Bulow-Kemperer theorem)
- 10) 2-Sided marketplace optimization-choose insulating prices P'(N;NR), PR(N;NR); optimize over NL, NR

Beyond single parameter settings - things got strange!
Eg- Single buyer, 2 non-identical items
- Values 0, 02 ~ Fiid, additive utilities
1) $\forall 0, 0_2 \sim \begin{cases} 1 & \text{wp 0.5} \\ 2 & \text{wp 0.5} \end{cases}$
- Sell both separately => R = 2 (for P=10v2)
- Sell boundle at price 3 => R = 3. (1-1/4) = 9/4 buyer bays if
= 9/4 buyer buys if v_1, v_2 both not oqual to 1
2) $U_{1}, U_{2} \sim \begin{cases} 0 & \text{wp } \frac{1}{3} \\ \frac{1}{2} & \text{wp } \frac{1}{3} \end{cases}$
- Sell separately (at p=lov 2) =) R = 4/3
- Sell bundle (at p= 3) => R = 4/3
$ \begin{array}{c cccccccccccccccccccccccccccccccc$