Теорія груп і симетрія Представлення груп (2)

Олександр Зенаєв

Еквівалентні представлення групи \mathbb{Z}_4

• \mathbb{Z}_4 : група поворотів на $(0,\pi/2,\pi,3\pi/2)$, або цілих чисел (0,1,2,3) з операцією додавання за модулем 4, що складається з 4 елементів $R_0 \equiv e, R_1, R_2, R_3$ з таблицею множення:

• Наступні еквівалентні представлення $D,\,D',\,D''$ групи \mathbb{Z}_4 пов'язані матрицями $S_1\equiv P_1=\begin{pmatrix} -1&0\\0&1\end{pmatrix}$ та $S_2=\begin{pmatrix} 2&1\\1&1\end{pmatrix}$

g	D(g)	$D'(g) = S_1^{-1}D(g)S_1$	$D''(g) = S_2^{-1}D(g)S_2$	$\chi(g)$	
R_0	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2	
R_1	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 3 & 2 \\ -5 & -3 \end{pmatrix}$	0	$S_1^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
R_2	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	-2	$S^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$
R_3	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} -3 & -2 \\ 5 & 3 \end{pmatrix}$	0	$G_2 = \begin{pmatrix} -1 & 2 \end{pmatrix}$

• Якщо S це матриця повороту $\begin{pmatrix} cos(\theta) & sin(\theta) \\ -sin(\theta) & cos(\theta) \end{pmatrix}$, або масштабування $c \times \mathbb{I}$, то R_i залишаються такими самими (бо повороти комутують з поворотами та зміною масштабу)