OSF – Introdução

Felipe B. Pinto 61387 – MIEQB

1 de outubro de 2024

Conteúdo

L	Physich	101	m	er.	n1	ca	Ι.	ΡI	O	ре	ert	1e	S	ΟĪ	Ī	
	solids															

1 Physichomemical Properties of solids

1.1 Single particles:

- Shape
- hardness
- compressive resistence

- electrical charge
- (intraparticle) porosity

1.2 Bulk solids:

- Particle size distribution
- (interparticle) porosity
- humidity

- agglomeration
- flowability
- ...

1.3 Solids suspensions (heterogenius mixture in a fluid, gás or liquid)

- Particle size distribution
- Concentration of solids
- viscosity of suspension

- flocculation
- settleability
- ...

Properties of single particles

1.4 Shape

(i) Regular shape:

particles which its geometry is well defined by matematical equations

Sphere

- Cvlinder Cube...

Sphere:

Volume:
$$\pi d^3/6 = 4 \pi r^3/3$$

Surface Area:
$$\pi d^2 = 4 \pi r^2$$

Projected area in a plane:
$$\pi d^2/2 = \pi r^2$$

Spheres are special as its compleetely symmetrical whilist the others depend on the orientation

- (ii) Complex regular shapes
 - Maximize surface area per Volume
 - Used in packed columns in chem and biochem enginneering

(iii) Irregular shapes

- Cannot be identified by math equations
- Characteristic dimension d
 - Sphere Diameter with same volume $V_{\rm particle} = V_{\rm sphere}$
 - Sphere Diameter with same Surface area $S_{\text{particle}} = S_{\text{sphere}}$
 - Sphere Diameter with same Surface per volume $rac{S_{
 m particle}}{V_{
 m particle}} = rac{S_{
 m Sphere}}{V_{
 m Sphere}}$

Derivando propriedades:

Length
$$L = d$$

Volume
$$V = \ddot{k} d^3$$

Surface area
$$S = \dot{k} d^2$$

Mass
$$m = \rho_S V = \rho_S \ddot{k} d^3$$

• Surface factor:
$$\dot{k}_{\rm sphere} = \pi$$

• Volume factor:
$$\ddot{k}_{\rm sphere} = \pi/6$$

Cumulative ← Frequency

Diff ways to measure quantity

n: Number fraction s: surface fraction x: weight fraction

1: lenght fraction v: volume fraction

Property	Whole	Fraction
Number :	n_i, d_i	n_i
Length (m) :	$l = n_i d_i$	$l_i = \frac{n_i d_i}{\sum n_j d_j}$
Surface (m²):	$s = n_i \dot{k} d_i^2$	$l_i = rac{n_id_i}{\sum n_jd_j} \ s_i = rac{n_id_i^2}{\sum n_jd_j^2}$
Volume (m³):	$v = n_i \ddot{k} d_i^3$	$v_i = \frac{\frac{n_i d_i^3}{n_i d_i^3}}{\sum n_j d_j^3}$
Mass (kg) :	$x = n_i \rho \ddot{k} d_i^3$	$x_i = \frac{\frac{n_i d_i^3}{n_i d_i^3}}{\sum n_j d_j^3}$

Mean diameter:

Can be based on different properties of solid like weight, number or volume.

$$ar{d_lpha} = rac{\int d \; \mathrm{d}lpha}{\int \mathrm{d}lpha} = rac{\sum d_i \, lpha_i}{\sum lpha_i} : lpha egin{cases} x: \; ext{Weight} \ n: \; ext{Number} \ v: \; ext{Volume} \ s: \; ext{Surface} \ l: \; ext{Lenght} \end{cases}$$

Weight and Number

$$\begin{cases} \text{Measured in number } n \\ \bar{d}_x = \bar{d}_v = \frac{\int d \; \mathrm{d}(n \, \rho \, \ddot{k} \, d^3)}{\int \mathrm{d}(n \, \rho \, \ddot{k} \, d^3)} = \frac{\int n \, d^3 \, \mathrm{d}d}{\int n \, d^2 \, \mathrm{d}d} = \\ = \frac{\sum d_i \, (n_i \, \rho \, \ddot{k} \, d_i^3)}{\sum (n_i \, \rho \, \ddot{k} \, d_i^3)} = \frac{\sum n_i \, d_i^4}{\sum n_i \, d_i^3} = \\ \text{Measured in Weight } x \\ = \frac{\sum x_i \, d_i}{\sum x_i} \end{cases}$$

Surface

Measured in number
$$n$$

$$\bar{d}_S = \frac{\int d \; \mathrm{d}(n\,\dot{k}\,d^2)}{\int \mathrm{d}(n\,\dot{k}\,d^2)} = \frac{\int d^2\,n_i\,\mathrm{d}d}{\int d\,n_i\,\mathrm{d}d} =$$

$$= \frac{\sum d_i\,(n_i\,\dot{k}\,d_i^2)}{\sum (n_i\,\dot{k}\,d_i^2)} = \frac{\sum n_i\,d_i^3}{\sum n_i\,d_i^2} =$$
Measured in Weight x

$$= \frac{\sum \left(\frac{x_i}{\rho\,\ddot{k}\,d_i^3}\right)\,d_i^3}{\sum \left(\frac{x_i}{\rho\,\ddot{k}\,d_i^3}\right)\,d_i^2} = \frac{\sum x_i}{\sum x_i/d_i}$$

Lenght

$$\begin{cases} \text{Measured in number } n \\ \bar{d}_L = \frac{\int d \ \mathrm{d}(n \ d)}{\int \mathrm{d}(n \ d)} = \frac{\int d \ n \ \mathrm{d}d}{\int n \ \mathrm{d}d} = \\ = \frac{\sum d_i \ (n_i \ d_i)}{\sum \ (n_i \ d_i)} = \frac{\sum n_i \ d_i^2}{\sum n_i \ d_i} = \\ \text{Measured in Weight } x \\ = \frac{\sum \left(\frac{x_i}{\rho \ \ddot{k} \ d_i^3}\right) \ d_i^2}{\sum \left(\frac{x_i}{\rho \ \ddot{k} \ d_i^3}\right) \ d_i} = \frac{\sum x_i/d_i}{\sum x_i/d_i^2} \end{cases}$$

Volume

$$\begin{cases} \bar{d}_V = \frac{\int d \; \mathrm{d}n \, \ddot{k} \, d^3}{\int \mathrm{d}n \, \ddot{k} \, d^3} = \frac{\int n \, d^3 \, \mathrm{d}d}{\int n \, d^2 \, \mathrm{d}d} = \\ = \frac{\sum d_i \left(n_i \, \ddot{k} \, d_i^3\right)}{\sum \left(n_i \, \ddot{k} \, d_i^3\right)} = \frac{\sum n_i \, d_i^4}{\sum n_i \, d_i^3} \\ \text{Assuming all particles have the same size} \\ \sum n_i \, \ddot{k} \, \bar{d}_V^3 = \ddot{k} \, \bar{d}_V^3 \sum n_i = \sum n_i \, \ddot{k} \, d_i^3 \implies \\ \implies \bar{d}_V = \sqrt{\frac{\sum n_i \, d_i^3}{\sum n_i}} \end{cases}$$