Chapitre 10

Intégrale et Primitive

Une intégrale sympathique

10.1 Notion d'intégrale

Définition 10.1.1

Définition: (O; I; J) 1 repère orthogonal; $a, b \in \mathbb{R}$; u.a.: unité d'aire

- $\bullet \ f: \begin{array}{ccc} \left[\begin{array}{ccc} a \ , b \end{array} \right] & \mapsto & \mathbb{R}_+ \\ x & \mapsto & f(x) \end{array} \ \text{ une fonction } \underline{\textit{continue positive}} \ \text{sur le segment } \left[\ a \ , b \ \right]$
- Intégrale de f sur [a, b]: c'est la mesure, en u.a., de l'aire située :
 - \bullet "sous" la fonction f
 - "au-dessus" de l'axe des abscisses
 - "entre" x = a et x = b
- **Notation**: ce nombre est notée $\int_{-\infty}^{\infty} f(x) dx$

Remarque, exemple:

- $\int_{-\infty}^{b} f(x) dx$ se lit "somme de a à b de f" ou "intégrale de a à b de f"
- dans, $\int_a^b f(x) dx$:
 - \int représente un "S" (employé par Leibniz) pour Somme \underline{car} cette intégrale (de Riemann) "est" la somme des aires de petits rectangles sous la courbe ... : voir l'activité sur $x\mapsto x^2$ infra
 - a et b sont les <u>bornes d'intégration</u>
 - x est 1 variable "muette" cad que l'on peut remplacer : $\int_a^b f(x) dx = \int_a^b f(u) du =$

1

• HP: dx spécifie la "mesure" associée à l'intégrale ; ici, elle représente en gros la largeur (infiniment petite) de chaque rectangle sous la courbe

- Ex:
 - calculer l'aire en comptant les carreaux
 - calculer l'aire par le calcul intégral

10.1.2 Intégrale et Méthode des Rectangles

Activité 1 : aire sous la courbe d'une parabole

- $f: \begin{array}{ccc} \mathbb{R}_+ & \mapsto & \mathbb{R}_+ \\ x & \mapsto & x^2 \end{array}$; on veut estimer $I = \int_0^1 x^2 \, \mathrm{d}x$
- pour cela, nous allons encadrer I, par 2 suites (S_n) et (T_n)
 - $\forall n \in \mathbb{N}^*$, on découpe [0, 1] en n intervalles de largeur $\frac{1}{n}$
 - \bullet la hauteur des rectangles est définie par les images de f aux poins considérés
 - S_n , l'aire en rouge, est inférieure à I
 - T_n , l'aire en blue, est supérieure à I
 - 1) écrire S_n et T_n sous la forme de somme, en utilisant l'opérateur \sum
 - 2) mq $\forall n \in \mathbb{N}^*$, $S_n \leqslant I \leqslant T_n$
 - 3) graphiquement, mq $T_n S_n = \frac{1}{n}$ ceci donne 1 estimation de l'erreur d'approx.
 - 4) on admet que:

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

préciser alors S_n et T_n en fonction de n

- **5)** mq (S_n) est croissante
- 6) mq (S_n) CV
- 7) mq (T_n) est décroissante et CV
- 8) mq $\lim_{x\to+\infty} T_n S_n = 0$

 $HP:(S_n)$ et (T_n) sont dites **adjacentes**

- 9) mq $\lim_{x \to +\infty} S_n = \lim_{x \to +\infty} T_n = I$
- 10) comment calculer $I \ge 10^{-3}$ près?

Activité 2 : analyser le programme Python suivant, puis le faire tourner programme disponible sur Math13Net

```
1 # int gration : m thode des rectangles et des trap zes
2 + f(x) = x^2 sur [0,5]
3
  from math import *
5 import numpy as np
6
7 # d finition de la fonction
   def f(x):
8
     return x**2
9
10
11 # bornes int gration
12 a, b = 0, 5
13
14 # M thode des Rectangles
15 def rectangle_gauche(a,b,n,f):
16
     x=np.linspace(a, b, n+1)[:-1]
17
     return((b-a)/n*np.sum(f(x)))
18
19 # M thode des Rectangles
                                 Droite
20 def rectangle_droite(a,b,n,f):
     x=np.linspace(a, b, n+1)[1:]
22
     return((b-a)/n*np.sum(f(x)))
23
24 # M thode des Trap zes
25 def trapeze(a,b,n,f):
26
    x=np.linspace(a,b,n+1)
27
     return ((b-a)/n*(1/2*f(x[0])+np.sum(f(x[1:n]))+1/2*f(x[n]))
28
29 # affichage des r sultats
30 print('-'*60)
31 print('\{0:>10s\} | \{1:^12s\} | \{2:^14s\} | \{3:^15s\} '.format('n', 'Rect_Gauche', '\leftarrow
       Rect_Droite', 'Trap ze'))
32 print('-'*60)
33 for i in range(1, 7):
34
     n = 10**i
35
     rg = rectangle_gauche(a,b,n,f)
36
     rd = rectangle_droite(a,b,n,f)
37
     t = trapeze(a,b,n,f)
38
     print('{0:10d} | {1:11f} | {2:13f} | {3:14f}'.format(n,rg,rd,t))
39
  print('-'*60)
```

n	Rect_Gauche	Rect_Droite	Trapèze
10	35.625000	48.125000	41.875000
100	41.043750	42.293750	41.668750
1000	41.604188	41.729188	41.666688
10000	41.660417	41.672917	41.666667
100000	41.666042	41.667292	41.666667
1000000	41.666604	41.666729	41.666667

10.1.3 Intégrale d'1 fonction continue positive

On généralise cet encadrement à 1 fonction f quelconque continue et positive :

- \bullet on divise l'intervalle [a; b] en n parties égales
- ullet sur chaque petit intervalle, on détermine la valeur minimale et maximale de la fonction f
- l'aire sous la courbe est alors encadrée par 2 suites d'aire (rouge et bleu)
- ces 2 suites (S_n) et (T_n) qui CV : $\lim_{x \to +\infty} S_n = \lim_{x \to +\infty} T_n = \int_a^b f(x) \, \mathrm{d}x \quad \text{(admis)}$

Remarque, exemple:

- on peut, grâce à la géométrie, faire des calculs d'intégrales efficaces :
 - évaluer $\int_{-1}^{1} \sqrt{1-x^2} \, \mathrm{d}x$ géométriquement
 - HP : calculer $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ (plus dur)

- $\underline{id\acute{e}}$: utiliser la symétrie de la figure (fonction paire) :
 - $\int_{-1}^{1} \sqrt{1-x^2} \, dx = 2 \times \int_{0}^{1} \sqrt{1-x^2} \, dx = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$
 - intégration de fonction paire, impaire ou périodique :

10.2 Primitive

10.2.1 Théorème Important

<u>Théorème - ROC :</u> $a, b \in \mathbb{R}$

- \underline{Si} $f: \begin{bmatrix} a & b \end{bmatrix} \mapsto \mathbb{R}_+$ est 1 fonction $\underline{continue \ positive}$ sur le segment [a, b]
- <u>Alors</u> $F: x \mapsto \int_a^x f(t) dt$ est dérivable sur le segment [a, b] et F' = f

Preuve - ROC:

• on admet le théorème dans le cas général

- \bullet on se concentre sur le cas : f croissante
- | nous allons mq $\forall x_0 \in [a, b]$, F est dérivable en x_0 et $F'(x_0) = f(x_0)$
- pour cela, revenons à la définition du nombre dérivé et mq : $F'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h} = f(x_0)$
- $1^{er} cas : h > 0$
 - $F(x_0 + h) F(x_0)$ = $\int_a^{x_0+h} f(t) dt - \int_a^{x_0} f(t) dt$ = $\int_{x_0}^{x_0+h} f(t) dt = A$ (1)

- par la méthode des rectangles, nous pouvons maintenant encadrer \mathcal{A} : $f(x_0) \times h \leqslant \mathcal{A} \leqslant f(x_0+h) \times h \Leftrightarrow f(x_0) \leqslant \frac{\mathcal{A}}{h} \leqslant f(x_0+h)$
- $(1) \Rightarrow f(x_0) \leqslant \frac{F(x_0 + h) F(x_0)}{h} \leqslant f(x_0 + h)$
- par passage à la limite (à droite car h>0), on a : $\lim_{h\to 0^+} f(x_0) = f(x_0) \leqslant \lim_{h\to 0^+} \frac{F(x_0+h)-F(x_0)}{h} \leqslant \lim_{h\to 0^+} f(x_0+h)$
- f étant continue : $f(x_0) \le \lim_{h \to 0^+} \frac{F(x_0 + h) F(x_0)}{h} \le f(x_0)$ $\Rightarrow \left[\lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = F'(x_0) = f(x_0) \right]$
- $2^{\grave{e}me} \ cas : h < 0$
 - de même, on mq : $f(x_0 + h) \leqslant \frac{F(x_0 + h) F(x_0)}{h} \leqslant f(x_0)$
 - et donc que : $\lim_{h\to 0^-} \frac{F(x_0+h) F(x_0)}{h} = f(x_0)$
- Conclusion:
 - $\lim_{h \to 0^-} \frac{F(x_0 + h) F(x_0)}{h} = \lim_{h \to 0^+} \frac{F(x_0 + h) F(x_0)}{h} = \lim_{h \to 0} \frac{F(x_0 + h) F(x_0)}{h} = F'(x_0) = F'(x_0)$

10.2.2 Définition - Propriété

Avertissement:

nous allons maintenant étudier la possibilité pour un fonction **pas forcément positive** d'avoir une primitive et donc d'être capable de l'intégrer.

Définition:

- f une fonction définie sur 1 intervalle I de $\mathbb R$
- f admet une **primitive** sur $I \Leftrightarrow \exists F$ dérivable sur I tq $\forall x \in I$, F'(x) = f(x)
- si elle existe, une primitive de f est notée $\int f(t) dt$ (sans les bornes)

Remarque, exemple:

- on ne confondra pas ["primitive" qui est une fonction et ["intégrale" qui est un nombre
- ullet habituellement, si f est la fonction, on note F 1 de ses primitives \underline{cad} avec 1 majuscule
- petite subtilité dans la définition : on ne parle pas de "la" primitive de f" mais d'"une" primitive de f: voir l'ex suivant
- \bullet ex:
 - $\forall x \in \mathbb{R}$, $(x^2)' = 2x \Rightarrow x \mapsto x^2$ est 1 primitive de 2x sur \mathbb{R}
 - mais $\forall x \in \mathbb{R}$, $(x^2 + 8)' = 2x \Rightarrow x \mapsto x^2 + 8$ est aussi 1 primitive de 2x sur \mathbb{R}
 - trouver une primitive des fonctions suivantes, en précisant le domaine de validité associé :

•
$$x \mapsto (x+1)^3$$
 • $x \mapsto e^{2x}$ • $x \mapsto \frac{1}{1-x}$

Propriété:

- $\underline{Si} f$ 1 fonction admet 1 primitive F sur 1 intervalle I de \mathbb{R}
- <u>Alors</u> toute primitive G de f est de la forme : $\forall x \in I$, G(x) = F(x) + k <u>où</u> k est une constante de $\mathbb R$

Preuve:

- \bullet soit F et G 2 primitives de f sur I
- clairement, $\forall x \in I$, G'(x) = F'(x) = f(x)
- $\Rightarrow \forall x \in I$, $(G F)'(x) = 0 \Rightarrow G F$ est constante sur \mathbb{R}
- $\bullet \Rightarrow \exists k \in \mathbb{R} , \forall x \in I , (G F)(x) = k \Rightarrow \forall x \in I , G(x) = F(x) + k$

Propriété:

- \underline{Si} f possède 1 primitive sur I intervalle de $\mathbb R$
- <u>Alors</u> "la" primitive de f s'annulant en $x_0 \in I$ est : $\forall x \in I$, $F: x \mapsto \int_{x_0}^x f(t) dt$
- cette primitive est unique

Preuve:

- \bullet d'autre part, soit F et G 2 primitives de f sur I s'annulant en x_0
- clairement, $\exists k \in \mathbb{R}$, $\forall x \in I$, G(x) = F(x) + k (puisque F et G sont des primitives de f)
- pour $x = x_0$, $0 = G(x_0) = F(x_0) + k = 0 + k = k \Rightarrow k = 0 \Rightarrow F = G$

Théorème - $ROC: a, b \in \mathbb{R}$

- $\underline{Si} f$ est 1 fonction $\underline{continue}$ sur un intervalle I
- $\underline{Alors} f$ admet des primitives sur I

Preuve - ROC:

- on se limite à 1 fonction f continue sur un intervalle fermé [a,b] comprenons bien ici la difficulté : f n'est pas forcément positive
- f est continue sur 1 intervalle borné fermé $[a,b] \Rightarrow f$ admet 1 minimum m sur [a,b]
- $\bullet \text{ on d\'efinit } g: \begin{array}{ccc} \left[\begin{array}{ccc} a \ , b \end{array}\right] & \mapsto & \mathbb{R}_+ \\ x & \mapsto & f(x)-m \end{array} ; \Rightarrow \forall x \in [\mathbf{a},\mathbf{b}] \ , \boxed{g(x)=fx)-m \Leftrightarrow f(x)=g(x)+m}$
- g est 1 fonction <u>continue</u> (comme somme de fonction continue) positive sur le segment [a, b] (son minimum sur [a,b] vaut d'ailleurs [a,b]
- par théorème supra (applicable à g
 continue positive), $G: x \mapsto \int_a^x g(t) \, \mathrm{d}t$ est 1 primitive de g sur [a,b]
- ainsi : $F: \begin{bmatrix} a & , b \end{bmatrix} \mapsto \mathbb{R}_+$ est 1 primitive de F
- en effet, il suffit de remarquer que : F'(x) = G'(x) + m = g(x) m = f(x) + m m = f(x) c'est gagné!

10.2.3 Primitive Usuelle et Règle d'Intégration

Par lecture inverse du tableau des dérivées, on obtient (constante d'intégration k=0):

Fonction	Primitive	Intervalle
f(x) = a	F(x) = ax	\mathbb{R}
f(x) = x	$F(x) = \frac{x^2}{2}$	${\mathbb R}$
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1}$	${\mathbb R}$
$f(x) = \frac{1}{x}$	$F(x) = \ln x$]0;+∞[
$f(x) = \frac{1}{x^n} n \neq 1$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$] $-\infty$; 0[ou]0; $+\infty$ [
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	\mathbb{R}_+^*
$f(x) = \sin x$	$F(x) = -\cos x$	\mathbb{R}
$f(x) = \cos x$	$F(x) = \sin x$	\mathbb{R}
$f(x) = e^x$	$F(x) = e^x$	\mathbb{R}

D'après les règles de dérivation, on obtient (constante d'intégration k=0):

Primitive de la somme	$\int (u+v) = \int u + \int v$
Primitive du produit par un scalaire	$\int (au) = a \int u$
Primitive de $u'u^n$	$\int u'u^n = \frac{u^{n+1}}{n+1}$
Primitive de $\frac{u'}{u}$	$\int \frac{u'}{u} = \ln u $
Primitive de $\frac{u'}{u^n}$ $n \neq 1$	$\int \frac{u'}{u^n} = -\frac{1}{(n-1)u^{n-1}}$
Primitive de $\frac{u'}{\sqrt{u}}$	$\int \frac{u'}{\sqrt{u}} = 2\sqrt{u}$
Primitive de $u'e^u$	$\int u'e^u = e^u$
Primitive de $u(ax + b)$	$\int u(ax+b) = \frac{1}{a}U(ax+b)$

Exercice d'application : chercher les primitives des fonctions suivantes

- $\bullet \ln x$

- $x^3 2x^2 + 4x 1$ $\frac{2x+1}{(x^2+x+3)^3}$ $\frac{1}{x^2-1}$ $\frac{1}{x^2-x-2}$ $\frac{2}{2x-3}$ $\frac{1}{\sqrt{x+4}}$
- $\cos x \times e^x$

Intégrale d'1 fonction continue sur 1 segment 10.3

10.3.1 Lien entre Intégrale et Primitive

Théorème fondamental du calcul intégral :

- $\underline{Si}\ f$ est 1 fonction $\underline{continue}$ sur 1 intervalle I de $\mathbb R$ contenant a et b
- <u>Alors</u> $\int_a^b f(t) dt = [f(x)]_a^b = F(b) F(a)$ où F est 1 primitive <u>quelconque</u> de f sur I

Remarque, exemple:

- nous venons d'étendre la notion d'intégrale aux fonctions de signes quelconques
- la notion d'aire "sous la courbe" devient <u>algébrique</u> cad avec un signe :
 - + au-dessus de l'axe des abscisses
 - - en dessous

• Preuve :

ullet comprenons bien la difficulté : on veut montrer le résultat avec F 1 primitive quelconque et non pas forcément celle qui s'annule en a

- f étant continue sur I, elle admet $G: x \mapsto \int_a^x f(t) \, \mathrm{d}t$ comme primitive qui s'annule en $a \in I$
- ainsi $\forall a, b \in I$, $G(a) = \int_a^a f(t) dt = 0$ et $G(b) = \int_a^b f(t) dt$
- soit F 1 primitive quelconque de $f \Rightarrow \exists k \in \mathbb{R} \text{ tq } \forall x \in \mathbb{R} F(x) = G(x) + k$
- $\Rightarrow F(a) = G(a) + k = 0 + k = k$ et F(b) = G(b) + k = G(b) + F(a)
- ainsi $G(b) = \int_a^b f(t) dt = F(b) F(a)$ où F est une primitive quelconque de f
- <u>ex</u>: calculer $\int_{-1}^{2} -x^2 + 4x 3 dx$ puis $\int_{0}^{2} \frac{3x}{(x^2 + 1)^2} dx$

10.4 Intégrale d'1 fonction continue sur 1 segment

10.4.1 Aire entre 2 courbes

Propriété:

- \underline{Si} f est continue sur 1 intervalle [a,b] tq $f\leqslant 0$
- <u>Alors</u> l'aire "en-dessous" vaut : $\mathcal{A} = -\int_a^b f(t) \, \mathrm{d}t$
- \underline{Si} f, g continues sur 1 intervalle [a,b] tq $f \geqslant g$
- <u>Alors</u> l'aire "entre les courbes" vaut : $\mathcal{A} = \int^b (f-g)(t) dt$

Remarque, exemple:

- trouver l'aire coincée entre $y=x^2$ et y=x, de x=0 et x=1: $\mathcal{A}=\int_0^1 x-x^2\,\mathrm{d}x$ $\mathcal{A}=[\frac{1}{2}x^2-\frac{1}{3}x^3]_0^1=\frac{1}{2}-\frac{1}{3}-(0-0)$
 - $\mathcal{A} = \frac{1}{6}$

Propriété: f continue sur 1 intervalle I

•
$$\forall a \in I$$
, $\int_a^a f(u) du = 0$

•
$$\forall a, b \in I$$
, $\int_{b}^{a} f(u) du = -\int_{a}^{b} f(u) du$

• Relation de Chasles:
$$\forall a, b, c \in I$$
, $\int_a^c f(u) du = \int_a^b f(u) du + \int_b^c f(u) du$

• Géométrie :

•
$$\forall a \in I$$
, $\underline{Si} f$ est paire, $\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$

•
$$\forall a \in I$$
, $\underline{Si} f$ est impaire, $\int_{-a}^{a} f(u) du = 0$

•
$$\forall a \in I$$
, $\forall T \in \mathbb{R}$, \underline{Si} f est périodique de période T, $\int_a^{a+T} f(u) \, \mathrm{d}u = \int_0^T f(u) \, \mathrm{d}u$

• Linéarité:
$$\forall a, b \in I, \forall \lambda \in \mathbb{R}, \int_a^b f(u) + \lambda g(u) du = \int_a^b f(u) du + \lambda \int_a^b g(u) du$$

Remarque, exemple

 \bullet attention, contrairement à la linéarité, intégrale du produit \neq produit des intégrales :

$$\int_{a}^{b} f(u) \times g(u) \, \mathrm{d}u \neq \int_{a}^{b} f(u) \, \mathrm{d}u \times \int_{a}^{b} g(u) \, \mathrm{d}u$$

• calculer :
$$\int_0^{\frac{\pi}{2}} (4\cos 2x - 5\sin \frac{x}{2}) dx$$

$\boldsymbol{Propriét\'e}:f$ et g continues sur 1 intervalle [a,b]

• Positivité:
$$0 \le f \Rightarrow 0 \le \int_a^b f(u) du$$

• Inégalité 1 :
$$f \leqslant g \Rightarrow \int_a^b f(u) du \leqslant \int_a^b g(u) du$$

• Inégalité 2 :
$$\left| \int_a^b f(u) \, \mathrm{d}u \right| \leqslant \int_a^b |f(u)| \, \mathrm{d}u$$

• Inégalité de la moyenne :

$$\underline{Si} \, \forall \, a \leqslant x \leqslant b \, , \, m \leqslant f(x) \leqslant M \, \underline{Alors} \, \left| \, m(b-a) \leqslant \int_a^b f(u) \, \mathrm{d}u \leqslant M(b-a) \, \right|$$

• Valeur Moyenne de
$$f = \mu = \frac{1}{b-a} \int_a^b f(u) \, du \, du$$

Remarque, exemple:

• Valeur moyenne μ de f:

- Si f est une fonction continue positive
- <u>Alors</u> μ est précisément la valeur de f qui donne la hauteur du rectangle qui permet de calculer l'aire \mathcal{A} sous la courbe :

•
$$\mathcal{A} = \mu \times (b-a) = \int_a^b f(u) \, \mathrm{d}u \, \mathrm{d}u$$

• cette idée (importante) est le coeur des <u>méthodes Monte-Carlo</u> en probabilité, permettant d'estimer de façon probabiliste, la valeur d'intégrale ou de paramètre de loi de VA : DM Monte Carlo ou vidéo MC