(12pts) Problem 1

Evaluate the following limits

(a)
$$\lim_{x \to 0} \frac{\sqrt{9+x}-3}{x}$$
 (b) $\lim_{x \to 0^+} \frac{1-\cos x}{x^2}$

(b)
$$\lim_{x \to 0^+} \frac{1 - \cos x}{x^2}$$

(9pts) **Problem 2**

Consider the function

$$g(x) = \frac{x^2 - 1}{|x| - 1}.$$

Evaluate the following limits

- $(b) \lim_{x \to 1^+} g(x)$
- (a) $\lim_{x \to 1^{-}} g(x)$ (c) $\lim_{x \to 1} g(x)$

(9*pts*) **Problem 3**

For what value (s) of the constant a is the function f continuous at x = 0.

$$f(x) = \begin{cases} \frac{x^2 + 2}{x + 1}, & \text{if } x < 0\\ a - 1, & \text{if } x \ge 0 \end{cases}$$

(10pts)Problem 4

Determine whether or not $f(x) = \begin{cases} x^2, x < 1 \\ 3, x = 1 \end{cases}$ is continuous at x = 1. If not, determine whether the 2x + 1, x > 1

discontinuity is a removable discontinuity, a jump discontinuity, or neither.

(16pts) **Problem 5** Find $\frac{dy}{dx}$ for

(a)
$$y = (1 + 2x)(1 + \sin x)$$

$$(b) \ \ y = \ln\left(3x - 1\right)$$

(c)
$$y = e^{x^2 + 3x - \frac{1}{x}}$$

(d)
$$y = \frac{4x+3}{5x-1}$$

(12pts) Problem 6

Use the second derivative test to find the local extrema of

$$f(x) = 6x^5 + 33x^4 - 30x^3 + 100.$$

(6pts)Problem 7

If
$$G(x) = f(g(x))$$
 where $f(-1) = 4$, $f'(-1) = 3$, $f'(-2) = 3$, $g(2) = -2$, $g'(2) = \frac{1}{2}$. $G'(2)$

is equal to

- (a) 9
- (b) -6
- $(c) \qquad \frac{3}{2}$
- (d) -4
- $(e) \qquad \frac{-5}{2}$

(6pts)Problem 8

An equation of the tangent line to the graph of

$$y = \tan x + 2\sin x + 2$$

at x = 0 is equal to

$$(a) \qquad y = \frac{x}{3} + 2$$

$$(b) \qquad y = -x + 2$$

$$(c) \qquad y = 3x + 2$$

$$(d) \qquad y = 2x + 3$$

$$(e) \qquad y = 6x + 2$$

(5pts)Problem 9

The slope of the tangent line to the graph of

$$x^2 + y^2 = 9$$

at the point $(2, \sqrt{5})$ is equal to

- $(a) \quad \frac{-2\sqrt{5}}{5}$
- $(b) \quad \frac{-2\sqrt{5}}{9}$
- $(c) \qquad \frac{\sqrt{5}}{2}$
- (d) $2\sqrt{5}$
- (e) $9\sqrt{5}$

(5pts)Problem 10

A plane is flying directly away from you at 500 mph at an altitude of 3 miles. How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

- $(a) \quad s'(t) = 500mph$
- $(b) \quad s'(t) = 400mph$
- (c) s'(t) = 300mph
- $(d) \quad s'(t) = 100mph$
- (e) s'(t) = 200mph

(5pts) Problem 11

Suppose that the amount of money in a bank account after t years is given by

$$A(t) = 2000 - 10te^{5 - \frac{t^2}{8}}$$

The absolute minimum amount of money in the account during the first 10 years. (i.e. on the interval [0, 10]) is equal to:

- (a) 1999.94
- (b) 200
- (c) 199.66
- (d) 190.6
- (e) 1990

(5pts) Problem 12

We need to enclose a field with a fence. We have 500 feet of fencing material and a building is on one side of the field and so won't need any fencing.

The largest possible area is equal to

- (a) A = 2225
- $(b) \qquad A = 5503$
- (c) A = 42730
- $(d) \qquad A = 31250$
- $(e) \qquad A = 25000$