問題10-1 P=17, 23,41について Ex=(a)をみたすae Ex を求めよ、 [

解答例 コンピュータを使ってもよいことにして、https://www.wolframalpha.com/を使ってみた、

まずは答えから:

$$\mathbb{F}_{17}^{X} = \langle 3 \rangle, \quad \mathbb{F}_{23}^{X} = \langle 5 \rangle,$$

$$\mathbb{F}_{41}^{\times} = \langle 6 \rangle.$$

2^k mod 17 for k=1 to 16

Input

Table $[2^k \mod 17, \{k, 1, 16\}]$

R	е	s	u	lt
	_	_		-

k																16
2 ^k mod 17	2	4	8	16	15	13	9	(1)	2	4	8	16	15	13	9	1

← 2k mod 17 の計覧

 $\mathbb{F}_{17}^{X} \neq \langle 2 \rangle = \{2,4,8,16,15,13,9,1\}$

↓ 上のりストにるかでいのでるを確認.

元の個数は16個

3^k mod 17 for k=1 to 16

Table $[3^k \mod 17, \{k, 1, 16\}]$

Result

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$3^k \mod 17$	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

L 3h mod 17の計製

$$\mathbb{F}_{17}^{\times} = \langle 3 \rangle$$

2^k mod 23 for k=1 to 22

Input

Table $[2^k \mod 23, \{k, 1, 22\}]$

Result

$$\{2, \underline{4}, 8, 16, 9, 18, 13, 3, 6, 12, \underline{1}, \underline{2}, 4, 8, 16, 9, 18, 13, \underline{3}, 6, 12, 1\}$$

$$2^{11} \mod 23 = 1$$

2,3,4を省いて 5を確認

5^k mod 23 for k=1 to 22

Input

Table $[5^k \mod 23, \{k, 1, 22\}]$

Result

{5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1}

$$\frac{5 \cdot \sharp \cdot \uparrow}{\omega^{3} + \omega + 1 = 0} \quad \mathbb{F}_{2}[x]/(x^{2} + x + 1) = \{0, 1, \omega, 1 + \omega\}$$

$$\omega^{3} + \omega + 1 = 0, \quad \exists \alpha \vee \xi, \quad \overline{x}$$

$$\mathbb{F}_{4}^{X} = \langle \omega \rangle = \{\omega, 1 + \omega, 1\} \quad \overline{\omega^{2} = 1 + \omega}$$

$$\omega + \omega^{2} = \omega + 1 + \omega = 1$$

以下より,
$$\mathbb{F}_{41}^{\mathsf{X}} = \langle 6 \rangle$$

2^k mod 41 for k=1 to 40

Input

Table $[2^k \mod 41, \{k, 1, 40\}]$

Result

{2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1, 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1}

$$2^{20} \mod 41 = 1$$

3^k mod 41 for k=1 to 40

Input

Table $[3^k \mod 41, \{k, 1, 40\}]$

Result

{3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1}

$$3^8 \mod 41 = 1$$

6^k mod 41 for k=1 to 40

Input

Table $[6^k \mod 41, \{k, 1, 40\}]$

Result

{6, 36, 11, 25, 27, 39, 29, 10, 19, 32, 28, 4, 24, 21, 3, 18, 26, 33, 34, 40, 35, 5, 30, 16, 14, 2, 12, 31, 22, 9, 13, 37, 17, 20, 38, 23, 15, 8, 7, 1}

|問題 10-2| Kは正褄数pの体で a,b∈Kであるとし, $x^{\mu} - \alpha \times x^{\mu} - \chi - b$ は K上 既的であると仮立し、 L, MをこれぞれのK上での最小分解体であるとする。 LとMが体K上で同型になることはあるか?

解答例 $f(x) = x^p - a, g(x) = x^p - x - b とかく、このとき、$

$$f'(x) = p x^{p-1} = 0,$$

=0 (正得数P)

$$f'(x) = p x^{p-1} = 0$$
, $g'(x) = p x^{p-1} - 1 = -1 + 0$, 加重报证捐了证义, $f(x) = p x^{p-1} - 1 = -1 + 0$, $f(x) > f(x) > f(x)$ 加学通

これより, f(x) は重根を持ち, g(x) は重根を持たない。 すなわち、于似は非分離的であり、多似は分離的である、

したかって、f(x)のK上での最小分解体はK上の非分离性拡大になり、 g(x)のK上での最小分解体はK上の分離拡大に公る

ゆえたしとMかド上で同型になることはなり、

一般に多項式haeKba 1 九(以)とか(以)が共通报走 ∖持つことは同値ではる.

問題10-3 有限体の有限次拡大が単拡大になることを示せ、 □

解答例 有限体 Kのれ次の有限次拡大しはK上のペクトル空間として Knに同型なので有限集合になる。

注意 一般に体の垂法群の有限部分群は巡回群になる、← これの証明法はたくさんある?

- · 有限(生成)Abel群の基本定理(大道具)を使う、使えば易しい、
- * 初等的な証明、色々あって面白11が少しテクニカルになる。

解答例 [1 [LiK]=p²を示くう、

Kを S^{μ} を素元に持ってFD $f(t)[S^{\mu}]$ の商体とみない Eisensteinの判定法を使うと、 S^{μ} 1、 S^{μ} 0、 S^{μ} 0、 S^{μ} 1、 S^{μ} 2、 S^{μ} 3、 S^{μ} 4、 S^{μ} 5、 S^{μ} 6、 S^{μ} 7、 S^{μ} 8、 S^{μ} 9、 S^{μ} 8、 S^{μ} 9、 $S^$

- ② 任意のdelについて $d^{p} \in K$ を示えう、 (L^p CK) $L = k(s,t) L^{y}, \quad d = \frac{\sum a_{\lambda j} s^{\lambda} t^{j}}{\sum b_{\lambda j} s^{\lambda} t^{j}}, \quad a_{\lambda j}, b_{\lambda j} \in k$ と書ける、
 - 揮数かかたなので、 $d^{\mu} = \frac{\left(\sum a_{ij} s^{i} t^{j}\right)^{\mu}}{\left(\sum b_{ij} s^{i} t^{j}\right)^{\mu}} = \frac{\sum a_{ij}^{\mu} (s^{\mu})^{\lambda} (t^{\mu})^{j}}{\sum b_{ij}^{\mu} (s^{\mu})^{\lambda} (t^{\mu})^{j}} \in k(s^{\mu}, t^{\mu}) = K.$
- ③ 任意の $d \in L$ について、 $[K(d): K] \leq p$ を示るう、 上で $d^p \in K$ となることを示したので d は $\chi^p - d^p \in K[\chi]$ の根になる ゆえに、 $[K(d): K] \leq deg(\chi^p - d^p) = p$.
- 4 任意のd \in L について, L \Rightarrow K(d) を示えか、 [L:K] = p^2 で [K(d):K] \leq p なので L \Rightarrow K(d), これで L か K の 単拡大にならないことが示された。