Relatório Laboratório 05 - Estratégias Evolutivas

Instituto Tecnológico de Aeronáutica – ITA Inteligência Artificial para Robótica Móvel – CT-213

Nicholas Scharan Cysne Turma 22

1. Introdução

Tem-se como objetivo deste laboratório a implementação de uma estratégia evolutiva simples e sua comparação com o CMA-ES em funções usadas como benchmark para algoritmos de otimização, entre elas Translated Sphere, Ackley, Rastrigin e Schaffer 2D.

O problema passa a ser a otimização das seguintes funções:.

a) Translated Sphere (com centro (1, 2))

$$f(x_1,x_2) = (x_1 - 1)^2 + (x_2 - 2)^2$$

b) Ackley

$$f(x_1, x_2) = -20 \exp\left(-0.2\sqrt{0.5(x_1^2 + x_2^2)}\right) - \exp(0.5 \cos(2\pi x_1 + 2\pi x_2)) + \exp(1) + 20$$

c) Rastrigin

$$f(x_1, x_2) = 0.5 + \frac{\sin^2(x_1^2 - x_2^2) - 0.5}{(1 + 0.001(x_1^2 + x_2^2))^2}$$

d) Schaffer 2D

$$f(x_1, x_2) = 20 + \sum_{i=1}^{2} (x_i^2 - 10\cos(2\pi x_i))$$

2. Média e Covariância de uma Distribuição Gaussiana

A estratégia evolutiva simples, abreviada a partir de agora por SES (Simple Evolution Strategy), implementada evolui a cada iteração a média e matriz covariância da distribuição gaussiana de amostras. Esta evolução se dá através das seguintes funções.

$$m^{(g+1)} = \frac{1}{\mu} \sum_{i=1}^{\mu} s_{i:\lambda}^{(g+1)}$$

$$C^{(g+1)} = \frac{1}{\mu} \sum_{i=1}^{\mu} (s_{i:\lambda}^{(g+1)} - m^{(g)}) (s_{i:\lambda}^{(g+1)} - m^{(g)})^T$$

Em que $s_{i:\lambda}^{(g+1)}$ é o i-ésimo vetor de amostras, λ o número de amostras a cada geração e μ as melhores amostras desta geração.

3. Testes das Estratégias Evolutivas

Para testar a SES e o CMA-ES e verificar a convergência das duas otimizações, testa-se primeiramente estes dois em funções benchmark e, utilizando uma interface gráfica, verifica-se se um mínimo local é encontrado.

Para os testes utilizou-se o (12, 24) - SES e a estratégia padrão do CMA-ES de $\lambda = 6$ e $\mu = 3$.

a) Teste da Translated Sphere:

As duas otimizações encontraram mínimos locais próximos, porém distintos. A Figura 1 e Figura 2 apresentam, respectivamente, a convergência do CMA-ES e do SES.

Figura 1. Convergência do CMA-ES para Translated Sphere.

Figura 2. Convergência do SES para Translated Sphere.

b) Teste da Ackley

Ao testar na função de Ackley, os dois algoritmos convergem ao mínimo global da função, como mostram as Figuras 3 e 4.

Figura 3. Convergência do CMA-ES para Ackley.

Figura 4. Convergência do SES para Ackley.

Por ser uma função com diversos mínimos locais, apesar de majoritária parte das vezes os algoritmos encontrarem o mínimo global, algumas das vezes que o programa foi executado os algoritmos convergiram para mínimos locais ao redor do mínimo global.

c) Teste da Rastrigin

A execução do algoritmo de otimização na função de Rastrigin levou a diversos resultados diferentes a cada vez que era feita. A presença de inúmeros mínimos locais da função dificultou a convergência dos dois algoritmos a um mesmo ponto, nem mesmo a um mínimo global. Enquanto o algoritmo de CMA-ES obteve uma maior frequência de encontrar o mínimo global, apesar de não o encontrar na maioria das vezes, o SES teve um

desempenho ainda abaixo, em que poucas vezes encontrou o mínimo global, mantendo-se a mínimos locais ao redor do ponto central. As Figuras 5 e 6, respectivamente, apresentam os resultados final do CMA-ES e SES.

Figura 5. Convergência do CMA-ES para Rastrigin.

Figura 6. Convergência do SES para Rastrigin.

d) Teste da Schaffer 2D

A função de Schaffer 2D apresentou comportamento similar a de Rastrigin, dificultando a convergência dos algoritmos a um mínimo global. O CMA-ES obteve grande recorrência em encontrar o mínimo global da função, apesar de algumas vezes este ainda se manter em mínimos locais. Já o SES chegou a este resultado com menor frequência, ficando majoritariamente em regiões próximas. A Figura 7 e a Figura 8 apresentam respectivamente os resultados obtidos pelo CMA-ES e pelo SES.

Figura 7. Convergência do CMA-ES para Schaffer 2D.

Figura 8. Convergência do SES para Schaffer 2D.

4. Benchmark

Para uma análise de benchmark, realizamos simulações de Monte Carlo para comparar os dois algoritmos. As métricas utilizadas para esta comparação são:

1. Fitness Médio das Amostras por Geração:

$$f_{mean}^{(g)} = \sum_{k=1}^{M} \sum_{i=1}^{\lambda} f(s_i^{(g)})$$

2. Melhor Fitness por Geração:

$$f_{best}^{(g)} = \sum_{k=1}^{M} f(s_{i:\lambda}^{(g)})$$

Comparou-se três configurações do SES e a estratégia padrão do CMA-ES, de maneira que formou-se quatro possíveis estratégias evolutivas a serem testadas.

- (3,6)-SES: estratégia evolutiva simples com μ = 3 e λ = 6.
- (6,12)-SES: estratégia evolutiva simples com μ = 6 e λ = 12.
- (12,24)-SES: estratégia evolutiva simples com μ = 12 e λ = 24.
- CMA-ES: CMA-ES com estratégia padrão, que usa μ = 3 e λ = 6.

As funções a serem testadas são as mesmas do tópico anterior, Translated Sphere, Ackley, Rastrigin e Schaffer 2D.

a) Análise de Translated Sphere:

Através dos gráficos de Fitness Médio, Figura 9, e Melhor Fitness, Figura 10, observa-se que o algoritmo de CMA-ES apresentou melhor performance nas duas comparações quando aplicado na função Translated Sphere. O SES apresentou desempenho semelhante ao CMA-ES quando colocado μ = 12 e λ = 24, enquanto as outras duas configurações apresentaram performances inferiores, sendo a pior delas a configuração de μ = 3 e λ = 6.

O menor número de amostras leva o algoritmo a encontrar mínimos locais e permanecer nesses, enquanto um maior número de amostras apresenta maior variedade de resultados o que facilita encontrar um mínimo global.

Figura 9. Comparação de Melhor Fitness para Translated Sphere.

Figura 10. Comparação de Fitness Médio para Translated Sphere.

b) Análise de Ackley:

Observando os gráficos de comparação de Melhor Fitness, Figura 11, e Fitness Médio, Figura 12, quando aplicados à função Ackley, observa-se uma rápida convergência do SES a valores definidos, enquanto o CMA-ES explora melhor o local antes de convergir, encontrando assim um resultado melhor que os demais.

A média de amostras segue o mesmo comportamento, convergindo rápido para o algoritmo SES e demorando mais para CMA-ES, porém encontrando melhores resultados. O (12, 24) - SES apresentou performance semelhante mas converge mais rapidamente que o CMA-ES.

Figura 11. Comparação de Melhor Fitness para Ackley.

Figura 12. Comparação de Fitness Médio para Ackley.

c) Análise de Rastrigin:

Os gráficos da função de Rastrigin apresentaram a característica de uma performance inferior do CMA-ES em relação ao (12, 24) - SES, tal como uma convergência ruidosa dos valores de fitness, observado no gráfico de Melhor Fitness, Figura 13, e Fitness Médio, Figura 14, aproximando-se do (6, 12) - SES.

Estas caraterísticas são consequências do grande número de mínimos locais presentes na função, levando o algoritmo a cada momento convergir a um local diferente. A performance do CMA-ES ser pior que do SES indica que nesta execução ele encontrou convergiu a um mínimo local, enquanto o (12, 24) - SES aproximou-se do mínimo global.

Figura 13. Comparação de Melhor Fitness para Rastrigin.

Figura 14. Comparação de Fitness Médio para Rastrigin.

d) Análise de schaffer 2D:

A aplicação dos algoritmos de otimização na função de Schaffer 2D demonstrou um resultado oposto às demais funções. O algoritmo de CMA-ES apresentou a pior performance em relação a todas as configurações do SES. A convergência do fitness médio do SES mostrou-se bem rápida e quase idênticas, enquanto o CMA-ES demorou mais para convergir a um valor que, por motivos de a função de muitos mínimos locais ao redor do mínimo global, não era o melhor.

Neste caso, o (12, 24) - SES se mostrou o melhor algoritmo de otimização, seguido por suas outras configurações e, por fim, pelo CMA-ES.

Figura 12. Comparação de Fitness Médio para Ackley.

Figura 12. Comparação de Fitness Médio para Ackley.