

데이터 기반 홍수 도달시간 및 수위예측 시뮬레이터 개발

2022. 05. 20. K-water 연구원 AI 연구센터 이호현, 이동훈, 홍성택, 김성훈 K water

1. 배경 및 목적

□ 배경 및 목적

- 임진강 수계는 미계측 영역 존재로 상류 급방류에 따른 사고위험성 높음
- 방류에 따른 하류 수위 시뮬레이션을 위한 데이터 기반 모델 개발 필요
- 모델 개발을 통한 합리적인 의사결정 지원

(a) 2017년 군남 홍수조절지 방류사진

[사진1-10] 파주시 두포천 합류부 제내지 침수('20. 08. 06.)

(b) 홍수피해(2020년)

1. 배경 및 목적

□ 임전강 수계

● 거리: 조절지-B지점(25km), 댐-B(24.8km), 조절지-C지점(56.7km)

● 예측: 도달시간, 최고수위 예측 필요

● 영향인자: 방류량, 강우량, 조위 등

□ 토탈씨간

● 방 류 량 : 최대 15655m3/s, 주요지점 : 비룡, 통일수위

● 도달시간: 방류량 大, 수위 高 ⇒> 도달시간 짧아짐 ⇒> 확인필요(다른변수)

	군남방류	한탄강방류	방류량합계	북삼수위	임진수위	삼화수위	비룡수위	통일수위	강화수위	사랑수위	전류리수위
MAX	13781.412	1959.375	15709.771	15.86	11.93	19.78	13.54	9.47	4.33	9.08	7.07
MIN	49.7	5.014	54.714	1.81	0.03	3.23	0.42	0.38	-3.2	0.56	0.94
DIFF	13731.712	1954.361	15655.057	14.05	11.9	16.55	13.12	9.09	7.53	8.52	6.13

방류량	북	살교	2	진교			<u> </u>
(m³/s)	수위	도달시간	수위	도달시간	방류량	도달시간	
	(m)	(분)	(m)	(분)	100	73.6	
250	1.6	69.3	1.1	234.1	250	69.3	방류량 vs 도달시간
500	2.5	62.7	1.5	211.9	500	62.7	90
750	3.2	56.8	1.9	191.7	750	56.8	80
1,040	3.9	56	2.6	194	1,040	56	70
1,910	4.1	32	2.7	109	1,910	32	50
3,000	4.5	23	2.8	73	3,000	23	40
3,730	4.8	19	3	61	3,730	19	30
4,520	5.2	17	3.1	53	4,520	17	20
6,030	6	15	3.6	44	6,030	15	30 20 10 0 -10 0 5000 10000 15000 20000 25000 30000
7,990	7.1	13	4.2	37	7,990	13	-10 0 5000 10000 15000 20000 25000 30000
8,380	7.3	13	4.3	36	8,380	13	
9,100	7.7	12	4.6	35	9,100	12	
10,320	8.3	12	5.1	33	10,320	12	
11,000	8.7	12	5.4	32	11,000	12	
13,050	9.7	11	6.2	30	13,050	11	
26,500	16.4	9	13	24	26,500	9	

□ 방류 vs 수위

- 2020년도 역대 최대 홍수량 유입 및 방류
- 조절지 최대 방류: 13,781 m³/s (댐 1,950 m³/s)
- 거리별 도달시간, 기울기 차이 영향, EL에 따른 조위 영향 상이

교차 상관관계

- 방류유량에 따른 체류시간 변화 고려(50-200분 이상)
- 급방류 도달시간(50-70분) 고려, 저수위/급방류시 도달시간 알고리즘 개발필요

30

25

- 2구가 Minimum Delay Time(= 7 0min), RMSE Value(= 0.4 m)

DelayTime(* 10min)

- 1구간

방류량과 해발수위(2020.08.01-08.14)

10000 8000

- 3구간

Minimum Delay Time(= 7 0min), RMSE Value(= 0.4 m)

https://www.hec.usace.army.mil/confluence/hmsdocs/hmsguides/applying-reach-routing-methods-within-hec-hms/applying-the-muskingum-routing-method
1) 최고치 to 최고치, 2) 중간값 to 중간값 ~~~

□ 필터링 기법

- 도달시간: 상승구간 50~70분 + alpha(20~60분)
- 보정 알고리즘: Smoothing+방류량 변화추가=>KF(f[수위, 방류량, 방류량변화]]

2. 데이터분석_실시간예측

실시간 수문자료

□ 까료수집

- 상관계수분석(도달시간 고려 전)
 - 대상
 - 1) 2020년 8.1~8.15 자료, 방류량(151~14,478)
 - 2) 2017년 8.20~8.25자료, 방류량(80~5,908)
 - 3) 2013년 7.11~7.26자료, 방류량(210~9,066)
 - 분석결과
 - 비룡대교 군남댐과 한탄강댐 방류량 합을 입력변수로 채택
 - 통일대교수위는 비룡대교에 비해서는 상관관계 낮음

	2020년 (0~15000)		2013년(0~9000)			2017년(0~6000)			
구분	군남댐	한탄강댐	군남댐+ 한탄강댐	군남댐	한탄강댐	군남댐+ 한탄강댐	군남댐	한탄강댐	군남댐+ 한탄강댐
비룡대교	0.907	0.851	0.951	0.877	0.848	0.937	0.912	0.872	0.932
통일대교	0.858	0.829	0.904	0.728	0.793	0.799	0.634	0.664	0.660

2. 데이터 분석_실시간예측

□ 상관관계

- 그림(a)에서 강우가 일정부분 수위 상승에 영향을 주는 것으로 보임
- 그림(b)에서 수위변화를 초래하는 것은 방류량변화(0.67), 강우(0.37) 영향

	임진교강우	방류량합계	방류량차	비룡수위차 (시간)	비룡수위차 (t-1)
임진교강우	1.00				
방류량합계	0.00	1.00			
방류량차	0.13	0.04	1.00		
비룡수위차 [시간]	0.34	0.15	0.67	1.00	0.90
비룡해발수위	-0.03	0.95	-0.09	0.02	

(a) 강우 vs 비룡 수위변화

(b) 상관관계

구분	임진교강우↔비룡대교수위차	임진교강우↔통일대교수위차
상관관계	0.341	0.059

통일대교에 수위가 영향 없어 보이는 이유? 조위변화에 따른 수위변화 잦음

2. 데이터 분석_실시간예측

□ 담기에측(결과)

- (알고리즘) 방류량, 초기수위, 조위 등을 고려한 모델 개발
 - : 1단계 예측오차 -> 2단계 보정 수위예측
- [비룡수위예측] 2020년 8월 자료 기준 평균 10cm 오차까지 예측 가능

Comparison between True and Predicted Value(RMSE = 0.1, 70 min)

Date(20/8/1-8/14)

Input : 방류량(t), 비룡대교수위(t), output : 비룡대교(t+70) 최대

2. 데이터 분석_조위고려

□조위영향

- 통일대교: EL. O 근처로, 상류 방류량과 하류 조위 충돌발생
- 조위추정방안 : 1) 강화대교 수위 통한 추정, 2) 통일대교 과거수위 활용 추정
- 수위에 따른 조위 영향 고려: 저수위 大, 고수위 小

2. 데이터 분석_조위고려

□ 통일대교 조위 고려 결과

- 통일대교 이전조위 vs 하류 강화대교 조위 ⇒ 이전조위
- 기본 수위예측 : 비룡 => 통일대교 예측
- 조위특성 반영: 수위별 선형 특성 고려

2. 데이터 분석_실시간예측

□ 알고리즘 비교

❖ 선형 및 비선형모델 통한 예측 결과 비교

구분	체류시간 미고려	체류시간 고려	초기수위 고려	오차 보정
선형모델	0.854	0.801	0.344	0.176
비선형모델	0.524	0.483	0.329	0.163

→ 최종 오차보정 모형으로 비교해 보면 비선형모델이 선형모델 보다 조금 더 MAE(Mean Absolute Error)가 개선된 것으로 나타났음

비선형 모델을 적용 필요성 ?

2. 데이터 분석_시뮬레이션

□ 시뮬레이션

- 입력 = [현재수위, 방류량(이전+미래1~3), 강우(이전+미래1~3)]
- 출력 = [미래1~3+도달시간 수위]
- 고려사항: Sparse Data, GA + 선형회귀(설명가능영역)

알고리즘	선형회귀	SVM Best	NN Best
절대오차(학습)	0.31m	0.17m	0.16m
절대오차(평가)	0.16m	0.34m	0.37m

알고리즘	GA 단독	GA + 퍼지		
절대오차(학습)	0.233	0.237		
절대오차(평가)	0.147	0.146		

2. 데이터 분석_시뮬레이션

□ 시뮬레이션

● 분석결과: 전반적으로 안정적으로 보이나 50cm 이상 오차 발생구간 있음

3. 프로그램 개발

- 모드: 자동 / 시뮬레이션 / 과거모의 모드 구성
- 애로사항: 자료 Update 20분 지연으로 홍수 시 의사결정 지연 초래

4. 결 론

□ 品 액

- 도달시간 : 유량 변화량 고려 ⇒> 교차상관관계 개념 이용 + alpha
- 실시간 예측 : 현재시점기준 오차계산 ⇒ 미래수위 예측 + 오차 추가
- 조위고려: 이전조위고려 ⇒ 수위별 조위 가중치 ⇒ 기본예측 + 조위반영
- 시뮬레이션: Sparse Data => 강우량, 방류량에 대한 설명가능 알고리즘(LR+GA)

- 물리 모델 VS 데이터 모델: 경제성, 신속성, 정확성
- 수위예측 알고리즘 수준 : 선형 vs 비선형
- 시뮬레이션 알고리즘: White Box vs Black Box

□ 상관관계 개선

- 상관계수 분석 (도달시간 고려 후)
 - 분석결과
 - 도달시간을 고려했을 때의 상관계수가 높음, 비룡대교 수위를 기준으로 방류량이 많아질수록 도달시간이 짧아짐

	2020년 (0~15000)		2013년(0~9000)				2017년(0~6000)					
구분		시간 고려	체류 고	시간 려	체류 미그	시간 고려		시간 려	체류 미그	시간 2려		시간 려
	체류 시간	상관 계수	체류 시간	상관 계수	체류 시간	상관 계수	체류 시간	상관 계수	체류 시간	상관 계수	체류 시간	상관 계수
비룡 대교	0	0.951	140분	0.961	0	0.937	150	0.954	0	0.932	170	0.981
통일 대교	0	0.905	280분	0.938	0	0.799	360	0.871	0	0.660	330	0.818

□ 조위영향

- 비룡 예측 후에도 양호한 예측
- 실시간 비룡 예측(2시간후) => 비룡 to 통일(4시간후)
 - : 고수위는 어차피 필요 없는데. 평상시는 도달시간 기준 처리 필요

	계수
Y 절편	0.008597
방류량 1시간차	0.000452
강우 1시간차	0.016252
수위 1시간차	1.383136
현재 수위	0.993431

비룡예측후 통일수위예측, 수위 가중치(0 7 1 0), MAE = 0.204m

