SQL-Mongo Project – Spatial Data of US Wildfires

BUAN 6320

Anu Jose Shylaja Vijayaraghavan Geetika Yalamanchili Anne Emmanuel

Activity	Member 1	Member 2	Member 3	Member 4
Prepared Data Model and Created Physical DB	X	X	X	X
Loaded Data into Database	X	X	X	X
Wrote SQL Queries	X	X	X	X
Prepared Mongo Database	X	X	X	X
Loaded data into Mongo DB	X	X	X	X
Wrote Mongo Queries	X	X	X	X
Prepared Report	X	X	X	X
Reviewed Report	X	X	X	X

Contents

Data Model	5
Assumptions/Notes About Data Entities and Relationships	5
Entity-Relationship Diagram	7
Physical Database	8
Assumptions/Notes About Data Set	6
Screen shot of Physical Database objects	8
Data in the Database	6
SQL Queries	18
Query 1	18
Question	18
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	18
Translation	18
Screen Shot of SQL Query and Results	18
Query 2	20
Question	20
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	20
Translation	20
Screen Shot of SQL Query and Results	20
Query 3	21
Question	21
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	21
Translation	21
Screen Shot of SQL Query and Results	21
Query 4	22
Question	22
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	22
Translation	22
Screen Shot of SQL Query and Results	22
Query 5	23
Question	23
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	23
Translation	23

Screen Shot of SQL Query and Results	23
Query 6	24
Question	24
Notes/Comments About SQL Query and Results (Include # of Rows in Result)	24
Translation	24
Screen Shot of SQL Query and Results	24
Data Review for MongoDB	25
Assumptions/Notes About Data Collections, Attributes and Relationships between Collections	13
Physical Mongo Database	25
Assumptions/Notes About Data Set	14
Screen shot of Physical Database objects (Database, Collections and Attributes)	25
Data in the Database	25
MongoDB Queries/Code	27
Query 1	27
Question	15
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Resul	t) 27
Translation	27
Screen Shot of MongoDB Query/Code and Results	27
Query 2	28
Question	28
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Resul	t) 28
Translation	28
Screen Shot of MongoDB Query/Code and Results	28
Query 3	29
Question	29
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Resul	t) 29
Translation	29
Screen Shot of MongoDB Query/Code and Results	29
Query 4	30
Question	30
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Resul	t) 30
Translation	30
Screen Shot of MongoDB Query/Code and Results	30

Query 5	31
Question	31
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)	31
Translation	31
Screen Shot of MongoDB Query/Code and Results	31
Query 6	32
Question	32
Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)	32
Translation	32
Screen Shot of MongoDB Query/Code and Results	32

Data Model

Assumptions

No assumptions are made while making the model. All the records on the data set are kept intact. Some data has been mis-recorded which has affected the normalization.

Following fields were excluded since they presented Functional dependency in the tables:

- Cont_DOY (Calculated Field Can be obtained from Contained Date)
- Discovery_DOY (Calculated Field Can be obtained from Discovery Date)
- Fire_Year (Calculated Field Can be obtained from Discovery Date)

Notes About Data Entities and Relationships

Following are the Table descriptions and relationships:

- Fires This is the main data table that includes the fire details. The Fire location, Fire Discovery
 details, Fire Contained details, Fire Size details, Fire Name, Statistical Cause of the fire, Local
 incident and report details, NWCG_Source details, ICS_209 and MTBS report details can be
 joined to this table to get all information about the fire
- Owner Describes the owner details of the location where fire occurred
- Location Describes the details of the location of fire including the latitude, longitude. State, Country and Owner details can be joined from the respective linked tables.
- 4. **State_Country** The details of the state and country where the fire occurred can be obtained from this table
- 5. **Location_Complex** The details of the location of fire including the complex name can be obtained here
- 6. Fire_Size The size of the fire along with the classification of the fire size is included
- 7. Stat_Cause The statistical cause of the fire is described in this table
- 8. **Source_System** Includes the Source system from which the fire record is drawn and also identifies the type of source system (Fed, Non Fed and Interagency)
- 9. Source_System_Reporting Details of the Source Reporting unit
- Source_NWCG_Link Linking table of the Source database of fire with NWCG reporting database of fire
- 11. ICS_209 Details of the incident from ICS 209 report
- 12. MTBS Details of the incident from the MTBS perimeter dataset
- 13. NWCG_Active_Units Details of the active NWCG units present in the database
- 14. NWCG_Unit Details of the NWCG unit including the WildLand role of the unit in the fire community along with the details of the unit mapped from the NWCG_Unit_Detail table

- 15. NWCG_Unit_Detail Describes the name, agency and unit type of the NWCG_Unit
- 16. **NWCG_Agency** Agency details and the Agency Sub group details are included in the table
- 17. NWCG_State_Country State, Geographic are, GACC and department details are included
- 18. **NWCG_State** NWCG unit location State and country included in the table

Reasons for the Model to be in 3NF

The model presented in the 3NF form. It is said to be in 3NF since it satisfies the following conditions:

- Each table contains only a single value
- Each record is unique
- Primary key is defined for each table that is Unique and Not Null
- No transitive and functional dependencies

Entity-Relationship Diagram

Physical Database

Screen shot of Physical Database objects

1. Owner

```
2 • ⊝ CREATE TABLE IF NOT EXISTS `Owner_details` (
 3
         `Owner_Code` FLOAT NOT NULL,
        'Owner Descr' TEXT(100) NULL,
 4
       PRIMARY KEY (`Owner_Code`))
 6
      ENGINE = InnoDB;
 8 • insert into Owner_details
        select distinct owner_code, owner_descr from fires_raw;
 9
 10
       select count(*) from Owner_details;
11 •
                                    | Export: | Wrap Cell Content: IA
count(*)
 16
```

2. Fire_Size

```
2 • ⊖ CREATE TABLE IF NOT EXISTS 'Fire_Size' (
        'Fire_Size' DOUBLE NOT NULL,
3
        `Fire_Size_Class` TEXT(1) NULL,
       PRIMARY KEY ('Fire_Size'))
5
6
       ENGINE = InnoDB;
8 .
      insert into fire_size
9
       select distinct fire_size, fire_size_class from fires_raw;
10
select count(*) from fire_size;
esult Grid | 🕕  Filter Rows: [
                                    Export: Wrap Cell Content: IA
 count(*)
13605
```

3. Stat_Cause

4. State_County

```
2 ● ♀ CREATE TABLE IF NOT EXISTS `State_County` (
         `State_County_ID` INT AUTO_INCREMENT,
  3
         'State' TEXT(255) NULL,
  4
         'County' TEXT(255) NULL,
  6
         `Fips_Code` TEXT(255) NULL,
         `Fips_Name` TEXT(255) NULL,
  7
        PRIMARY KEY (`State_County_ID`))
  8
  9
       ENGINE = InnoDB;
 10
 11 •
          insert into State_County(State, County, Fips_Code, Fips_Name)
 12
        select distinct state, county, fips_code, fips_name from fires_raw;
 13
 14 • select count(*) from State_County;
c
| Export: | Wrap Cell Content: 1A
   count(*)
4943
```

5. Source_System

```
🚞 🖫 | 🗲 😿 👰 🔘 | 😥 | 🥥 ⊗ 📳 | Limit to 1000 rows 🕝 埃 | 🥩 🔍 🗻 []
        CREATE TABLE IF NOT EXISTS 'Source_System' (
  2 • ⊖
  3
         `Source_System_ID` INT Auto_increment,
          `Source_System` TEXT(30) NULL,
  4
          `Source_System_Type` TEXT(255) NULL,
  5
  6
        PRIMARY KEY (`Source_System_ID`))
  7
        ENGINE = InnoDB;
  8
  9 •
           insert into Source_System (Source_System_Type)
 10
         select distinct source_system, source_system_type from fires_raw;
 11
 12 •
        select count(*) from Source_System;
Export: Wrap Cell Content: 1A
  count(*)
▶ 39
```

6. Source_System_Reporting

```
2 • O CREATE TABLE IF NOT EXISTS 'Source_System_Reporting' (
              'Source ID' INT Auto increment,
              Source_System_ID' INT NULL,
              'Source_Reporting_Unit' TEXT(30) NULL,
'Source_Reporting_Unit_Name' TEXT(255) NULL,
             PRIMARY KEY ('Source_ID'),
             CONSTRAINT 'Source_System_ID'
FOREIGN KEY ('Source_System_ID')
REFERENCES 'Source_System' ('Source_System_ID')
ON DELETE NO ACTION
  11
                ON UPDATE NO ACTION)
           ENGINE = InnoDB;
  13
 15 insert into source_system_reporting (Source_System_ID, Source_Reporting_Unit, Source_Reporting_Unit_Name )
SELECT DISTINCT source_system_id, SOURCE_REPORTING_UNIT, SOURCE_REPORTING_UNIT_NAME FROM fires_raw F
           LEFT JOIN source_system S ON F.SOURCE_SYSTEM=S.SOURCE_SYSTEM AND F.SOURCE_SYSTEM_TYPE = S.SOURCE_SYSTEM_TYPE;
 19 • select count(*) from source_system_reporting;
Result Grid | 11 😝 Filter Rows:
                                                    | Export: | Wrap Cell Content: IA
    count(*)
▶ 6898
```

7. Source_NWCG_Link

```
1 • ⊝
                CREATE TABLE IF NOT EXISTS 'Source_NWCG_Link' (
          `NWCG_Source_Link_ID` int Auto_increment,
          `Source_ID` INT NOT NULL,
                  int,
         PRIMARY KEY (`NWCG_Source_Link_ID`),
         CONSTRAINT 'NU ID'
           FOREIGN KEY ('NU_ID')
           REFERENCES `NWCG_Active_Units` (`NU_ID`)
           ON DELETE NO ACTION
           ON UPDATE NO ACTION);
11
12 • insert into Source_NWCG_Link(Source_ID, NU_ID)
        select distinct SOURCE_ID, nwcg.NU_ID fr
14
        SELECT DISTINCT SOURCE_ID, NWCG_REPORTING_UNIT_ID
       FROM (select distinct SOURCE_REPORTING_UNIT, SOURCE_REPORTING_UNIT_NAME, NMCG_REPORTING_UNIT_ID from fires_raw ) F
LEFT JOIN SOURCE_SYSTEM_REPORTING S ON F.SOURCE_REPORTING_UNIT = S.SOURCE_REPORTING_UNIT
          AND F.SOURCE_REPORTING_UNIT_NAME = S.SOURCE_REPORTING_UNIT_NAME
19
       left join NWCG_Active_Units nwcg on nwcg.NWCG_REPORTING_UNIT_ID=a.NWCG_REPORTING_UNIT_ID ;
22 • select count(*) from Source_NWCG_Link;
                                       Export: Wrap Cell Content: IA
count(*)
1645
```

8. Location

```
1 ● ⊖ CREATE TABLE IF NOT EXISTS `Location` ('Owner_Code' FLOAT NULL, 'State_County_ID' INT NULL, 'Latitude' DOUBLE NOT NULL,
       'Longitude' DOUBLE NOT NULL,
       PRIMARY KEY ('Latitude', 'Longitude'), CONSTRAINT 'Owner_Code'
3
4
         FOREIGN KEY ('Owner_Code')
         REFERENCES 'Owner_details' ('Owner_Code')
5
         ON DELETE NO ACTION
6
         ON UPDATE NO ACTION,
      CONSTRAINT `State_County_ID`
9
        FOREIGN KEY ('State_County_ID')
10
         REFERENCES `State_County` (`State_County_ID`)
11
          ON DELETE NO ACTION
         ON UPDATE NO ACTION)
12
13 • ENGINE = InnoDB; INSERT INTO location SELECT DISTINCT od.OWNER_CODE, STATE_COUNTY_ID, F.latitude, F.longitude FROM T F
      LEFT JOIN STATE_COUNTY S ON F.STATE=S.STATE AND F.COUNTY = S.COUNTY
       LEFT JOIN owner details od ON od.owner code = f.owner code AND od.owner descr=f.owner descr: SELECT count(*) from location
Export: Wrap Cell Content: IA
 count(*)
 1594603
```

9. Location_Complex

```
1 ● ⊖ CREATE TABLE IF NOT EXISTS `Location_Complex` (
         `Location_ID` INT AUTO_INCREMENT, `Latitude` DOUBLE, `Longitude` DOUBLE,
2
         'Complex_Name' TEXT(255) NULL,
3
          PRIMARY KEY ('Location_ID'),
4
          CONSTRAINT `Latitude`
5
          FOREIGN KEY ('Latitude')
6
          REFERENCES 'Location' ('Latitude')
8
           ON DELETE NO ACTION
9
           ON UPDATE NO ACTION);
10 •
           INSERT INTO location_complex
           SELECT DISTINCT latitude, longitude, complex_name from
11
12
           (SELECT DISTINCT LATITUDE, LONGITUDE, COMPLEX_NAME FROM fires_raw) F
           LEFT JOIN location L ON F.LATITUDE=L.LATITUDE AND F.LONGITUDE = L.LONGITUDE;
13
           SELECT count(*) from location_complex
14 •
Export: Wrap Cell Content: IA
  count(*)
  1569862
```

10. ICS_209

```
Limit to 1000 rows

CREATE TABLE IF NOT EXISTS 'ICS_209' (

'ICS_ID' INT auto_increment,

'ICS_209_Name' VARCHAR(255) NULL,

'ICS_209_Incident_Number' VARCHAR(255) NULL,

PRIMARY KEY ('ICS_ID'));

select DISTINCT ICS_209_Name, ICS_209_Incident_Number)

SELECT DISTINCT ICS_209_INCIDENT_NUMBER, ICS_209_NAME FROM fires_raw;

select count(*) from ICS_209;

CRESUIT Grid  Filter Rows:

Export: Wrap Cell Content: IA
```

11. MTBS

12. NWCG_State_Country

13. NWCG_State

14. NWCG_Agency

```
2 • \ominus CREATE TABLE IF NOT EXISTS 'NWCG_Agency' (
3
        'Agency' VARCHAR(255) NOT NULL,
        'Parent' VARCHAR(255) NULL,
4
5
       PRIMARY KEY ('Agency'));
 6
7 • insert into NWCG_Agency
8
       SELECT DISTINCT AGENCY, PARENT FROM project_wildfires.nwcg
        where AGENCY is not null;
9
10
select count(*) from NWCG_Agency;
                                  | Export: | Wrap Cell Content: IA
count(*)
51
```

15. NWCG_Unit_Detail

```
2 ● ⊖ CREATE TABLE IF NOT EXISTS `NWCG_Unit_Detail` (
         `NWCG_Unit_Detail_ID` INT Auto_Increment,
          `Name` VARCHAR(255) NULL,
         `Agency` VARCHAR(255) NULL,
         `UnitType` VARCHAR(255) NULL,
         PRIMARY KEY (`NWCG_Unit_Detail_ID`),
         CONSTRAINT `Agency`
          FOREIGN KEY ('Agency')
          REFERENCES `NWCG_Agency` (`Agency`)
10
          ON DELETE NO ACTION
11
          ON UPDATE NO ACTION);
13
14 • CREATE TABLE A AS SELECT DISTINCT UNITID, NAME FROM project_wildfires.nwcg;
      CREATE TABLE B AS SELECT DISTINCT NWCG_REPORTING_UNIT_ID , NWCG_REPORTING_UNIT_NAME FROM fires_raw;
15 •
16 • CREATE TABLE C AS SELECT * FROM A UNION SELECT * FROM B;
17
18 • insert into NWCG_Unit_Detail (Name, Agency, UnitType)
19
       SELECT DISTINCT C.NAME, AGENCY, UNITTYPE FROM C
       LEFT JOIN
21
       project_wildfires.nwcg N ON C.Name=N.NAME;
22
23 • select count(*) from NWCG_Unit_Detail;
| Export: | Wrap Cell Content: IA
 count(*)
5802
```

16. NWCG_Unit

```
CREATE TABLE IF NOT EXISTS 'NNCG_Unit' (
                `NU_ID` int auto_increment,
             'Unit_ID' varchar(255), 'State_Code' INT NULL,
'WildLandRole' VARCHAR(255) NULL,
             `NWCG_Unit_Detail_ID` int,
            PRIMARY KEY ('NU_ID'),
            CONSTRAINT 'State_Code
              FOREIGN KEY ('State_Code')
REFERENCES 'NWCG_State' ('State_Code')
  10
              ON DELETE NO ACTION
  11
              ON UPDATE NO ACTION,
              CONSTRAINT 'NWCG_Unit_Detail_ID'
FOREIGN KEY ('NWCG_Unit_Detail_ID')
  12
  13
              REFERENCES 'NWCG_Unit_Detail' ('NWCG_Unit_Detail_ID')
ON DELETE NO ACTION
  15
  17 • CREATE TABLE A AS SELECT DISTINCT UNITID, NAME FROM project_wildfires.nwcg;
         CREATE TABLE 8 AS SELECT DISTINCT NACG_REPORTING_UNIT_ID , NACG_REPORTING_UNIT_NAME FROM fires_raw;
CREATE TABLE C AS SELECT * FROM A UNION SELECT * FROM B;
  19 •
        CREATE TABLE D AS SELECT DISTINCT C.UNITID, NWCG_UNIT_DETAIL_ID, WILDLANDROLE, STATE, CODE FROM C
  21
          LEFT JOIN project_wildfires.nwcg N ON C.UNITID = N.UNITID
          LEFT JOIN NWCG UNIT DETAIL NN ON c.NAME = NN.NAME;
  22
  24 •
         insert into NWCG_Unit (Unit_ID, State_Code, WildLandRole, NWCG_Unit_Detail_ID)
SELECT DISTINCT D.UNITID, STATE_CODE, WILDLANDROLE, NWCG_UNIT_DETAIL_ID FROM D
          LEFT JOIN NWCG STATE N ON D.STATE = N.STATE AND D.CODE = N.CODE;
  27 •
          select count(*) from NWCG_Unit;
Export: Wrap Cell Content: IA
count(*)
```

17. NWCG_Active_Unit

```
1 • ⊖
            CREATE TABLE IF NOT EXISTS 'NWCG Active Units' (
            `NU_ID` int,
        `NWCG_Reporting_Unit_ID` varchar(255),
         `NWCG_Reporting_Agency` VARCHAR(255) NULL,
        PRIMARY KEY ('NU_ID'),
        CONSTRAINT 'Added NU ID'
6
          FOREIGN KEY ('NU_ID')
         REFERENCES 'NWCG_Unit' ('NU_ID')
          ON DELETE NO ACTION
         ON UPDATE NO ACTION);
2 • insert into NWCG_Active_Units
      select NU_ID, NWCG_REPORTING_UNIT_ID, b.NWCG_REPORTING_AGENCY from NWCG_Unit a
      join (select distinct NWCG_REPORTING_UNIT_ID, NWCG_REPORTING_AGENCY FROM fires_raw)b
      on a.unit_id=b.NWCG_REPORTING_UNIT_ID;
7 • select count(*) from NWCG_Active_Units;
sult Grid | 🔢 💎 Filter Rows:
                                     Export: Wrap Cell Content: IA
 count(*)
1645
```

18. Fires

Data in Database

Table Name	Primary Key	Foreign Key	# of Rows in Table(mysql)
Fire Details	FOD_ID	Location_ID; Fire Size; Stat_Cause_Code; NWCG_Source_Linking _ID; MTBS_ID; ICS_ID	1880645
Owner	Owner Code	NA	16
Location	Latitude; Longitude	Owner_Code; State_County_ID	15,94,382
State_County	State_County_ID	NA	4,943
Location_Complex	Location_ID	Latitude & Longitude	15,69,862
Fire_Size	Fire_Size	NA	13,605
Stat_Cause	Stat_Cause_ID	NA	13
Source_System	Source_System_ID	NA	39
Source_System_Re porting	Source_ID	Source_System_ID	6646
Source_NWCG_Li nk	NWCG_Source_Li nk_ID	Source_ID; NWCG_Reporting_Unit_ ID	7135
ICS_209	ICS_ID	NA	23,314
MTBS	MTBS_ID	NA	10,482
NWCG_Unit	NWCG_Unit_ID	NWCG_Unit_Detail_ID; State_Code	6,039
NWCG_Unit_Detai	NWCG_Unit_Detai	Agency	5,802
NWCG_State	State_Code	State	5,867
NWCG_Agency	Agency	NA	51
NWCG_State_Country	State	NA	68
NWCG_Active_Un its	NWCG_Reporting_ Unit_ID		1,640

SQL Queries

Assumptions:

- 1. "Source_Reporting_Unit_Name" is considered as forests with the assumption that each forest has one and only one agency to report the fires occurring the respective forest
- 2. "FOD_ID" is considered as the fires under the assumption that each fire is reported only by one reporting unit

Query 1

Question 1

A leading beverage company has announced a billion-dollar fund for removing debris from forests, rivers and mountains in the US. All states are interested. Which state has the best chance to win a share of the fund?

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

The state with maximum number of fires is expected to have maximum debris and thereby have higher chances of receiving the funds for enabling them to ensure debris removal. The state with more debris must have more funds to clean up, hence better chance of the state to win the share. # of Rows in Result: 1

Translation

-- select state which has max no. of fires from fire table left joined with location complex table on location id of both fire and location complex tables and

left join on latitude and longitude from location and location complex table and left join on state county id from statecounty and location tables that is

grouped by state.

Clean-Up

-- cleanup: select state from max no. of fires from fire left join location_complex table on location id of fire and location complex,

left join on latitude and longitude from location and location complex and left join on state county id from state county and location, grouped by

state

(Screenshot next page)

```
#######Q1: A leading beverage company has announced a billion-dollar fund for removing debris from
  2
        #######forests, rivers and mountains in the US. All states are interested. Which state has the best
        ########chance to win a share of the fund?
  4 • ⊖ select state from(
        select max(a), state from
  5
  6
     (select state, count(fod_id) as a from
        fire f
        left join location_complex lc on f.location_id =lc.location_id
  8
        left join location 1 on lc.latitude = l.latitude and lc.longitude = l.longitude
  9
 10
        left join State_county s on 1.state_county_id =s.state_county_id
        group by state))
 11
 12
Export: Wrap Cell Content: IA
   state
▶ CA
```

Question 2

One of the reporting agencies has suggested that children be banned from its forests unless there is one adult for every 3 children in a group visiting a forest. Name 3 forests where this would be the most appropriate.

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

Georgia Forestry Commission, Red Lake Agency and New Jersey Forest Fire Service Division C are the three forests where the mentioned suggestion seems appropriate. These three forests have the maximum fires caused by the children. Since children have been the statistical cause for the fire, it is ideal to implement regulations on the visit of children into the forests under the supervision of the adults.

of Rows in Result: 3

Translation

-- select source reporting unit name as forest from fire table left joined with source nwcg link table on NWCG source link id from both the tables, left

join on source id from source nwcg link and source system reporting tables and left join on stat cause code from fire and stat cause details tables grouped by

source reporting unit name, ordered by count of fires(count of fod_id) and limit by 3.

Clean-Up

-- cleanup: select source reporting unit name as forest from fire left join with source nwcg link on NWCG_source_link_id from fire and source nwcg link, left

join on source_id from source nwcg link and source system reporting, left join on stat_cause_code from fire and stat_cause_details, grouped by

source reporting unit name, order by count of fod id, limit by 3.

Question 3

One advocacy group says Nature and not human actions is to blame for most wildfires. Write a query that supports this statement.

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

Fires Due to Natural Cause: 768996; Fires Due to Manmade Causes: 1111469. We do not have enough evidence to prove that nature and not human actions is to blame for most wildfires. The statistical cause of Nature caused fires were considered as Lightening, Miscellaneous and Missing/Unidentified while the rest causes were categorized as Human caused fires. Data clearly depicts that the statement cannot be supported unless any other Human caused fires is erroneously bucketed under Nature caused fires.

of Rows in Result: 1

Translation

-- select the count of fires caused by natural causes as count_natural from fire table left joined with stat cause details table on stat_cause_code

where stat_cause_code is either 1,9 or 13, select the count of fires caused by mannmade causes as count_manmade from fire table left joined with stat cause detals table on stat_cause_code where

stat_cause_code is neiter 1,9 or 13 and display count_natural and count_manmade.

Clean-Up

-- cleanup: select count(FOD_ID) as count_natural from fire left join with stat_cause_details on stat_cause_code

where stat_cause_code is (1,9 or 13), select count(FOD_ID) as count_manmade from fire left join with stat_cause_details on stat_cause_code where

stat cause code is not (1,9 or 13), display count natural and count manmade.

```
#Q3: One advocacy group says Nature and not human actions is to blame for most wildfires. Write a query that supports this statement.
 2 • select count_natural, count_manmade from
 3 ⊖ (
          (select count(FOD_id) as count_natural from
 5
          fire f
 6
      left join stat_cause s on f.stat_cause_code = s.stat_cause_code
          where f.stat_cause_code = 1 or f.stat_cause_code =9 or f.stat_cause_code = 13) ,
 8
          (select count(fod_id) as count_manmade from
10
          left join stat cause s on f.stat cause code = s.stat cause code
          where f.stat_cause_code not in (1,9,13))
12
Export: Wrap Cell Content: IA
 count natural count manmade
             1111469
```

Question 5

How many wildfires were reported by more than one unit/agency?

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

0 records returned. Since FOD ID is assumed to be the wildfire, the FOD ID is unique across the database and hence there is no chance for the one fire to be reported by multiple unit/agency. Hence result is 0.

of Rows in Result: 0

Translation

-- select FOD_ID and count of distinct source_reporting_unit_name as no_of_units from fire table left joined with source nwcg link table on nwcg_sourcr_link_id

from both tables, left join on source_id from source nwcg link and source system reporting tables grouped by FOD_ID that have count of

distinct source_reporting_unit_name greater than 1

Clean-Up

-- cleanup: select FOD_ID and count(distinct source_reporting_unit_name) as no_of_units from fire left joined with source_nwcg_link on nwcg_sourcr_link_id

from fire and source_nwcg_link, left join on source_id from source nwcg link and source_system_reporting, group by FOD_ID, having count(distinct source_reporting_unit_name) >1

Question 6

What were the forests that had more than one fire that lasted more than two days?

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

778 Forests had more than one fire that lasted for more than 2 days

Translation

-- select the no of rows from the result set obtained by selecting count of FOD_ID as no_of_fires and source_reporting_unit_name as forest

from another result set obtained by selecting FOD_ID, source_reporting_unit_name, difference between cont_date and discovery_date from fire table

left joined with source nwcg link on NWCG_source_link_id from both tables, left joined on source_id from source system reporting and

source nwcg link tables where difference between cont_date and discovery_date is greater than 2, grouped by source_reporting_unit_name

and having count of FOD_ID greater than 1

Clean-Up

-- cleanup: select the no of rows from the result set obtained by selecting count of FOD_ID as no_of_fires and source_reporting_unit_name as forest

from another result set obtained by selecting FOD_ID, source_reporting_unit_name, cont_date - discovery_date from fire

left joined with source nwcg link on NWCG_source_link_id, left joined on source_id from source system reporting and

source_nwcg_link where (cont_date - discovery_date)> 2, group by source_reporting_unit_name having count(FOD_ID)> 1

Question 8

Which forest had the most number of fires?

Notes/Comments About SQL Query and Results (Include # of Rows in Result)

Georgia Forestry Commission has the maximum number of fires

Translation

--select the source_reporting_unit_name as forest and the corresponding count of fod_id as no_of_fires from fire table left joined with source nwcg link table on NWCG_source_link_id

left joined with source system reporting table on source_id, grouped by source reporting unit_name and ordered by the count of fod id and limit by 1

Clean-Up

-- cleanup: select source_reporting_unit_name as forest and count(fod_id) as no_of_fires from fire left joined with source_nwcg_link on NWCG_source_link_id

left joined with source_system_reporting table on source_id, group by source_reporting_unit_name, order count(fod_id), limit by 1

Data Review for MongoDB

Assumptions for Querying:

- 1. "Source_Reporting_Unit_Name" is considered as forests with the assumption that each forest has one and only one agency to report the fires occurring the respective forest
- "FOD_ID" is considered as the fires under the assumption that each fire is reported only by one reporting unit

Notes About Data Collections

The un-normalized data of the Fires database and NWCG database is loaded.

Physical Mongo Database

Screen shot of Physical Database objects (Database, Collections and Attributes)

1. Fires Collection


```
> db.fires_updated.count()
1880466
>
```

Fires Database is uploaded with 1.88million documents

2. NWCG Collection


```
> db.nwcg.count()
5868
>
```

NWCG database is uploaded with 5868 documents

Data in the Database

Collection Name	Relationshps With Other Collections (if any)	# of Documents in Collection
Fires_Updated	NA	1880466
NWCG	NA	5868

Comment: While uploading the databases, a null record was automatically uploaded for each of the databases. Hence the increment of the total documents by 1 for each.

MongoDB Queries/Code

Query 1

Question 1:

A leading beverage company has announced a billion-dollar fund for removing debris from forests, rivers and mountains in the US. All states are interested. Which state has the best chance to win a share of the fund?

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)

Result: California is the state that has the best chance to win a share of the fund.

Result Transalation: The result depicts the state with maximum fires which would ideally have the maximum debris and hence they should stand the best chance to win the fund (to have the positive impact on the state through cleaning up utilizing these funds)

Translation - Query

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Group the fires using "State" using \$group
- Order the result using sort in descending order using \$sort
- Display the State with maximum fires using \$project and limit the result to 1 using \$limit

Question 2:

One of the reporting agencies has suggested that children be banned from its forests unless there is one adult for every 3 children in a group visiting a forest. Name 3 forests where this would be the most appropriate.

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)

Result: Georgia Forestry Commission, Red Lake Agency and New Jersey Forest Fire Service Division C are the three forests where the mentioned suggestion seems appropriate.

Result Translation: These three forests have the maximum fires caused by the children. Since children have been the statistical cause for the fire, it is ideal to implement regulations on the visit of children into the forests under the supervision of the adults.

Translation - Query

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Filter Statistical Cause as Children
- Group the Source Reporting Unit Name of the resultant data using \$group
- Order the result using sort in descending order using \$sort
- Display the Source Reporting Unit Name using \$project and limit the result to 1 using \$limit

Question 3:

One advocacy group says Nature and not human actions is to blame for most wildfires. Write a query that supports this statement.

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)

Result: Fires Due to Natural Cause: 768996; Percent of Nature caused Fires: 40.89%. We do not have enough evidence to prove that nature and not human actions is to blame for most wildfires.

Result Translation: The statistical cause of Nature caused fires were considered as Lightening, Miscellaneous and Missing/Unidentified while the rest causes were categorized as Human caused fires. Data clearly depicts that the statement cannot be supported unless any other Human caused fires is erroneously bucketed under Nature caused fires.

Translation

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Statistical Code 1,9,13 which correspond to "Lightening", "Miscellaneous" & "Missing/Unidentified" are filtered using \$match
- Group the resultant data using \$group
- Display the resultant data using \$project along with the calculated field Percentage of the Nature caused fires

Question 5

How many wildfires were reported by more than one unit/agency?

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)
Result: 0

Result Translation: Since FOD ID is assumed to be the wildfire, the FOD ID is unique across the database and hence there is no chance for the one fire to be reported by multiple unit/agency. Hence result is 0.

Translation

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Group the data by FOD_ID and sum the Source Reporting Unit Name using \$group
- Filter the Source Reporting unit greater than 1 using \$match
- The length of the resultant data is returned

```
> db.Fires.aggregate([
... {$group:{_id:"$FOD_ID",No_of_units_reported: {$sum:"$SOURCE_REPORTING_UNIT_NAME"}}},
... {$match:{No_of_units_reported:{$gt:1}}},
... ],{allowDiskUse: true}).toArray().length
0
```

Question 6

What were the forests that had more than one fire that lasted more than two days?

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result) 778 Forests had more than one fire that lasted for more than 2 days

Translation

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Calculated Field FireDays created using \$addFields (Subtract Discovery Date from Controlled Date)
- Filter the data set with FireDays > 2 using \$match
- Group the data by fires on Source Reporting Unit Name using \$group
- The length of the resultant data is returned

```
> db.Fires.aggregate([
... {$addFields: {FireDays : {$subtract: ["$CONT_DATE","$DISCOVERY_DATE"]}}},
... {$match : {"FireDays" : {$gt:2}}},
... {$group: {_id:"SOURCE_REPORTING_UNIT_NAME", count:{$sum:1}}},
... {$project:{_id:1, count:1}}
... ]);
```

Question 8:

Which forest had the most number of fires?

Notes/Comments About MongoDB Query/Code and Results (Include # of Documents in Result)

Result: Georgia Forestry Commission has the maximum number of fires

Translation

- DBProject Database selected to Db variable
- Fires Collection used
- Aggeregate Pipeline
- Group the resultant data on Source Reporting Unit Name using \$group
- Order the result data using \$sort in the descending order
- Display the resultant data "Source Reporting Unit Name" field using \$project limiting the result table to 1 record using \$limit