北京科技大学 2016-2017 学年第二学期

概率论与数理统计 试卷 (A卷)

注意事项:

(1)	本试卷共八道大题	, 井二面.	请认直核对
----	---	----------	--------	-------

- (2) 答案必须答在答题卡上, 答在试题纸上无效。

、处拜越(母小越	3分,共18分)		
1. 设对正态总体的数 么在显著性水平 0.01 (A) 必须接受 H_0	学期望μ进行假设检 下,下列结论成立的	上。	0.05 之下接受零假设 $H_0: \mu = \mu_0$,那 是也可能拒绝 H_0
(C) 必须拒绝 H_0		(D) 不接受也	
2. 设 <i>X</i> ₁ , <i>X</i> ₂ 是两个数且连续,则下列必须		$F_1(x), F_2(x)$ 是其分布的	函数, $f_1(x), f_2(x)$ 是其概率密度函
(A) $f_1(x)f_2(x)$	(B) $2f_1(x)F_2(x)$	(C) $F_2(x)f_1(x)$	(D) $f_1(x)F_2(x) + f_2(x)F_1(x)$
3. 设随机变量 $X \sim N$	$f(\mu, \sigma^2)(\sigma > 0), p =$	$= P(X \ge \mu + \sigma^2), 则_{\underline{\hspace{1cm}}}$	
(A) p 随着 σ 的增大了(C) p 随着 μ 的增大了		B) p 随着 σ 的增大而减D) p 随着 μ 的增大而减	
4. 设随机事件 A 在第	i次独立试验中发生的	为概率为 p_i ($i = 1, 2, \ldots, n$)), m表示事件 A 在 n 次试验中发生
的次数,则对于任意的	勺 $\epsilon > 0$,恒有 $\lim_{n \to \infty} P($	$\left \frac{m}{n} - \frac{1}{n} \sum_{i=1}^{n} p_{i} \right \ge \epsilon) = \underline{\hspace{1cm}}$	-
(A) 1	(B) 0	(C) $\frac{1}{2}$	(D)不可确定

5. 设 A, B, C 是三个相互独立的随机事件,且 0 < P(C) < 1.则下列给定事件中不相互独立的是

(A)
$$\overline{A \cup B} \perp_{j} \overline{C}$$
 (B) $\overline{A \cup B} \perp_{j} C$ (C) $\overline{AC} \perp_{j} C$ (D) $\overline{AB} \perp_{j} C$

6. 设 $X_1, X_2, \ldots, X_n, \ldots$ 为独立同分布的随机变量序列,且均服从期望为 $\theta(\theta > 0)$ 的指数分布, $\Phi(x)$ 为

(A)
$$\lim_{n \to +\infty} P\left\{\frac{\theta \sum_{j=1}^{n} X_{j} - n}{\sqrt{n}} \le x\right\} = \Phi(x)$$
 (B) $\lim_{n \to +\infty} P\left\{\frac{\theta \sum_{j=1}^{n} X_{j} - n}{\sqrt{n\theta}} \le x\right\} = \Phi(x)$ (C) $\lim_{n \to +\infty} P\left\{\frac{\theta \sum_{j=1}^{n} X_{j} - n}{\sqrt{n\theta}} \le x\right\} = \Phi(x)$ (D) $\lim_{n \to +\infty} P\left\{\frac{\sum_{j=1}^{n} X_{j} - n}{\sqrt{n\theta}} \le x\right\} = \Phi(x)$

二、填空题(每小题3分,共12分)

1. 己知 X,Y, XY 的分布律分别为

X	0	1	2
P	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

Y	0	penad	2
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

XY	0	1	2	4
P	$\frac{7}{12}$	$\frac{1}{3}$	0	1/12

则 P(X=2Y)=

- 2. 设 X_1, X_2, X_3, X_4 独立同分布,且方差存在,记 $M = X_1 + X_2, N = X_2 + X_3 + X_4$,则M与N的相关系数 $\rho =$ _____
- 3. 设随机变量 X 的分布律为 $P(X=-2)=\frac{1}{2}, P(X=1)=a, P(X=3)=b$,若 EX=0,则 DX=

三. (本题8分)

某射击队共有 10 名射手, 其中一级射手 2 人, 二级射手 4 人, 三级射手 4 人。一、二、三级射手能够 通过选拔进入比赛的概率分别为 0.9, 0.6, 0.2。

- (1) 求任选一名射手能够通过选拔进入比赛的概率;
- (2) 对于一名通过选拔进入比赛的射手,试判断这名射手是几级射手的概率最大。

四. (本题 16分)

设二维随机变量(X,Y)的联合概率密度为 $f(x,y) = \begin{cases} a, & x^2 \le y < 1, 0 < x < 1 \\ 0, & 其他 \end{cases}$

(1) 确 定 常 数 a 的 值; (2) 求 $P(0 \le X \le \frac{1}{2})$; (3) 求 边 缘 密 度 $f_X(x)$, $f_Y(y)$; (4) 求 条 件 密 度 $f_{X|Y}(x|y)$, $f_{Y|X}(y|x)$ 。

五. (本题 8 分)

设离散型随机变量 X 的分布律为 $\begin{pmatrix} 0 & 1 & 2 & 3 \\ \frac{2}{3}\theta & \frac{1}{3}\theta & \frac{2}{3}(1-\theta) & \frac{1}{3}(1-\theta) \end{pmatrix}$, 其中 $\theta \in [0,1]$ 为未知参数。现有

如下10个X的观测值: 3.0.2.1.3.2.1.0.2.1.

- (1)求 θ 的矩估计量和矩估计值;
- (2)判断上述矩估计量的无偏性和一致性(相合性)。

六. (本题 15分)

设随机变量 X,Y 相互独立,概率密度函数分别为 $f_x(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2 \\ 0, & 其他 \end{cases}$ 和 $f_y(y) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & 其他 \end{cases}$

- (1) 求(X,Y)的联合概率密度;
- (2) 求Z = X + 2Y的分布函数和概率密度;
- (3) 求Z = X + 2Y的期望和方差。

七. (本题 15分)

某罐头厂生产的水果罐头重量和维生素 C 的含量长期以来分别服从正态分布 $N(\mu_1,0.4),N(\mu_2,\sigma_2^2)$,根据生产要求每个水果罐头的维生素 C 含量不能小于 4。现从该厂生产的一批产品中抽取 9 个罐头测得重量的样本方差为 0.64;维生素 C 含量平均为 3.4,方差为 0.81。

- (1) 这批产品的重量的波动较以往是否有显著变化。(取显著性水平 $\alpha = 0.1$)
- (2) 是否可以认为这批产品的维生素 C 含量符合生产要求。(取显著性水平 $\alpha = 0.1$)
- (3) 求这批产品的平均维生素 C 含量的置信度为 0.9 的置信区间。

可能需要用到的数据: $\chi_{0.05}^2(9) = 14.684$, $\chi_{0.05}^2(9) = 16.919$, $\chi_{0.1}^2(8) = 13.362$, $\chi_{0.05}^2(8) = 15.507$,

$$\chi_{0.95}^2(9) = 3.325$$
, $\chi_{0.95}^2(8) = 2.733$, $t_{0.1}(9) = 1.3830$, $t_{0.1}(8) = 1.3968$, $t_{0.05}(9) = 1.8331$, $t_{0.05}(8) = 1.8595$, $t_{0.05} = 1.645$, $t_{0.1} = 1.28$

八. (本题 8 分)

为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的,设 n 次测量 结果 X_1, X_2, \ldots, X_n 相互 独立, 且均 服 从 正 态 分 布 $N(\mu, \sigma^2)$ 。 现 记录 n 次 测量 的 绝 对 误 差 $Y_1 = |X_1 - \mu|$ $(i = 1, 2, \ldots, n)$, 利用 Y_1, Y_2, \ldots, Y_n 估计 σ .

- (1) 求片的概率密度;
- (2) 求 σ 的极大似然估计量。