Universidad Nacional de Colombia Sede Bogotá

Departamento de Matemáticas **TALLER 8 - RELACIONES**

1 Considere cada una de las siguientes relaciones definidas en $A := \{1, 2, 3, 4\}$:

- a) $R_1 := \{(1,1), (2,2), (3,3), (2,1), (1,2)\}.$
- b) $R_2 := \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,3), (1,3)\}.$
- c) $R_3 := \emptyset$.
- d) $R_4 := A \times B$ como relación definida en un conjunto arbitrario B, y donde $A \subseteq B$.
- e) $R_5 := \{(a, b) \in A \times A : a + b = 6\}.$

Con estas relaciones defina

- a) $R_2 \circ R_1$ b) R_4^{-1} c) $R_4 \circ R_5$ d) $(R_3 \circ R_5)^{-1}$

2 Sean $D = \{x : x \text{ es un departamento de Colombia}\},$

 $C = \{y : y \text{ es una ciudad de Colombia}\}$ y

 $A = \{t : t \text{ es un alumno del curso de fundamentos}\}, considere las siguientes$ relaciones:

- a) $R_1 \subseteq D \times C$ definida como sigue: xR_1y si y sólo si y es la capital de x.
- b) $R_2 \subseteq A \times D$ definida como sigue: tR_2x si y sólo si t es oriundo de x.
- c) $R_3 \subseteq A \times D$ definida como sigue: tR_3x si y sólo si el nombre de t y x empiezan por la misma letra.

Definir comprensivamente $R_1 \cap R_2$, R_2^c , R_1^{-1} , $R_3 \cap R_2$, $R_1 \circ R_2$ y dar ejemplos de por lo menos dos parejas que estén y dos parejas que no estén en cada relacion.

- *** Recuerde que dada una relación $R \subseteq A \times B$ se define $R^c := (A \times B) R$
- 3 Considere las siguientes relaciones definidas en el conjunto de los números naturales:
- i) $m R_1 n$ si y sólo si m < n.
- ii) $m R_2 n$ si y sólo si m divide a n.
- iii) $m R_3 n$ si y sólo si n = 3m + 1.
- iv) $m R_4 n$ si y sólo si n y m tienen el mismo número de divisores.
- a) Encontrar, si es posible, por lo menos cinco parejas que pertenezcan a cada relación.
- b) Definir las relaciones $R_1 \cap R_2$, R_2^c , R_3^{-1} , $R_3 \cup R_2$, $R_1 \cap R_3$, $R_1 \circ R_2$, $R_3 \circ R_2$, $R_2 \circ R_3$ y dar, si es posible, por lo menos dos parejas que estén y dos parejas que no estén en cada relación.

- **4** Considere los conjuntos: $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \mathbb{N}$.
- Para cada una de las siguientes relaciones encuentre el dominio y el rango.
- i) $R_1 = \{(x, y) \in D \times D \mid x < y + 1\}$
- ii) $R_2 = \{(x, y) \in D \times D \mid y = x^2\}.$
- iii) $R_3 = \{(s,t) \in D \times D \mid s+t \text{ es par}\}.$
- iv) $R_2 \cap R_3$.
- v) $(R_1)^c$.
- vi) $R_4 \subseteq (D \times D) \times (D \times D)$, definida por $(a, b)R_4(c, d)$ si y sólo si a + c = b + d.
- vii) $R_5 \subseteq \mathbb{N} \times \mathbb{N}$, definida por: $x R_5 y$ si y sólo si x y y tienen el mismo residuo al dividirlos por 5.
- viii) $R_6 \subseteq \wp(D) \times \wp(D)$, definida por $X R_6 Y$ si y sólo si $X \subseteq Y$.
- 5 Teniendo en cuenta las relaciones dadas en el punto 4 decida cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas. Justifique su respuesta.
- a) Para todo elemento x de D existe y en D tal que (x,y) no está en R_1 .
- b) Si una pareja (x, y) está en R_1 , la pareja (y, x) no está en R_1 .
- c) Si una pareja (x, y) está en R_3 , la pareja (y, x) también está en R_3 .
- d) Si (x, y) y (x, z) están en R_5 entonces y = z.
- e) Para R_3 y R_5 se tiene que todo elemento está relacionado con sí mismo.
- f) Si (x,y) y (y,z) están en R_5 , entonces (x,z) también estará en R_5 .
- g) Existen parejas de elementos de $\wp(D)$ que no están relacionados según R_6
- h) Existe un elemento X en $\wp(D)$ tal que para todo elemento Y de $\wp(D)$ se tiene X R_6 Y
- **6** Si F es un clan familiar y en $F \times F$ se consideran las relaciones P, H y C definidas así:
- xPy si y sólo si y es padre de x.
- xHy si y sólo si y es hermano de x.
- xCy si y sólo si y es conyuge de x.

Determinar en términos de P, H y C, si es posible, las relaciones:

- i) Ser tío.
- ii) Ser cuñado.
- iii) Ser primo.
- iv) Ser nieto.
- v) Ser yerno.
- 7 Realice los ejercicios 5.1.1. y 5.1.2 pg. 175 Bloch segunda edición.
- 8 Realice los ejercicios sección 11.0 pg. 178 Hammack segunda edición.