

Universidade Estadual de Campinas IFGW – Física Estatística Computacional

Solução Lista 2

Problema (2.6)

Utilizando o algoritmo em anexo $direct_disks_box$, $para quatro discos rígidos sem condições periódicas de contorno com uma rotina de <math>10^6$ obtivemos os seguintes gráficos:

Figura 1 - Histograma da densidade em uma caixa quadrada em função da posição x

Figura 2 - Histograma da densidade em uma caixa quadrada em função da posição x

Figura 3 - Histograma da densidade em uma caixa quadrada em função da posição x

Ao compararmos com a Fig. 2.9 do livro Statistical Mechanics Algorithms and Computations Observamos uma grande semelhança entre o histograma para a posição no eixo X e a posição no eixo Y, além de podermos observar o padrão em que com o aumento da densidade temos os movimentos restringidos mais próximos as bordas da caixa.

Problema (2.10)

Utilizando o algoritmo em anexo $markov_disks_box_boundry_condition$, e o algoritmo do problema anterior, podemos comparar ambos algoritmos para o problema de quatro discos rígidos, variando o número de rotinas para o algoritmo markoviano e rotina fixa de 10^6 para o algoritmo direto, após realizar os procedimentos obtivemos os seguintes gráficos:

Figura 4 - Em azul algoritmo markoviano, em verde algoritmo direto. Com rotina de 10^6 e δ = 0.15

Figura 5 - Em azul algoritmo markoviano, em verde algoritmo direto. Rotina 10^4 e δ = 0.15

Figura 6 - Em azul algoritmo markoviano, em verde algoritmo direto. Rotina 10^2 e δ = 0.15

Observando o comportamento dos gráficos acima podemos concluir que o algoritmo markoviano concorda com o algoritmo direto para grandes períodos de simulação, porem o algoritmo markoviano possui um custo computacional menor. Também podemos observar o comportamento dos histogramas ao implementarmos condições periódicas de contorno, onde os movimentos para todas posições possuem probabilidades iguais, para diferentes valores de δ obtivemos gráficos semelhantes.

Problema (2.11)

Utilizando o algoritmo em anexo $markov_disks_box_boundry_condition_many_disks$, para uma caixa com condições periódicas de contorno e dimensões de $Lx/Ly = \sqrt{3}/2$ contendo 64 esferas rígidas inicialmente distribuídas em um arranjo hexagonal, aplicamos uma rotina de 10^6 e um δ = 0.1 e obtivemos os gráficos listados abaixo:

Figura 7 – Representação do estado solido 64 discos

Figura 8 - Representação do estado liquido 64 discos

Figura 9 - Representação do estado gasoso 64 discos

Pelo comportamento dos gráficos podemos analisar uma clara transição de faze ao variarmos o valor da densidade, na *figura 7* com densidade alta podemos ver que a configuração inicial e a final são bem semelhantes, além de que o histograma das posições x e y nos fornecem informações de pouco movimento, e quando este acontece tem grande frequência no mesmo local. Já a *figura 8* com densidade intermediaria podemos ver que a configuração inicial não é conservada, e ao analisar seu histograma podemos ver que não há uma preferência de movimento, todas as partículas podem se mexer em todas as direções. E na *figura 9* também observamos a não conservação do estado inicial, além da grande liberdade de movimento tanto no eixo x quando no y.

Também está em anexo initial_conditions, um algoritmo que gera a configuração inicial hexagonal, que foi inserido no algoritmo para resolução deste problema.

Figure 10 – Configuração Inicial para 64 discos

Figura 11 - Configuração Inicial para 264 discos

Problema (2.12)

Utilizando o algoritmo em anexo gama_function, podemos observar o comportamento da distribuição $\Gamma_N(x) = x^N - e^{-x}/N!$, representado na figura 12.

Figura 12 - Distribuição $\Gamma_N(x)$, distribuição da soma de N+1 números aleatórios distribuídos exponencialmente

Então utilizamos o algoritmo $gama_cut$, para ver o comportamento desta função junto com seu histograma de x, onde variamos o número de bins, como podemos ver nas figuras~13 e 14

Figura 13 – Gráfico Distribuição $\Gamma_N(x)$, com número de bins = 15 para a montagem do histograma

Figura 14 - Gráfico Distribuição $\Gamma_N(x)$, com número de bins = 350 para a montagem do histograma

É fácil notar que ao aumentarmos o número de bins melhoramos a continuidade da área abaixo ou seja teríamos um valor mais preciso da área abaixo da curva, ou seja quanto maior fosse nosso bin melhor seria nossa aproximação para o valor da integral, além de diminuirmos a perda de informação. Apesar do problema de normalização do histograma de x_{cut} podemos ver o comportamento semelhante ao da curva de $\Gamma_N(x,x_{cut})$ onde a função só começa a valer após o valor de x_{cut} .

Implementando o algoritmo qama cut, temos o algoritmo qama function sorting, que nos fornece o gráfico a seguir:

Figura 15

Problema (2.16)

Utilizando o algoritmo em anexo *state_equation*, onde pegamos mais algumas partes de outros algoritmos para implementá-lo com condições iniciais de arranjo hexagonal do *problema 2.11*, e a função *gama_cu*t do *problema 2.12*, então executamos o algoritmo para pressões altas e obtemos o seguinte gráfico da equação de estado para uma caixa de proporção $Lx/Ly = \sqrt{3}/2$:

Figura 16 - Equação de Estado

Plotando somente os pontos temos outra visualização da equação de estado.

Figura 17 - Equação de Estado

Levando em consideração que usei uma estatística pequena rodando apensa 100 vezes para cada valor de βP então não temos um valor tão próximo da equação de estado da *figura 2.46* do livro texto, porem podemos ver seu comportamento sendo respeitado.

Figure 18 – Equação de Estado