DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014

Solutions of Tutorial Sheet: LA - 4

1. For all invertible matrices A and B of the same size, show that adj(AB) = adj(B)adj(A). (The result is also true for non-invertible matrices, but the proof is beyond the present scope of this course.)

Solution: We have

$$(AB)\operatorname{adj}(AB) = \det(AB)I \Rightarrow \operatorname{adj}(AB) = \det(AB)(AB)^{-1}$$

$$= \det(A)\det(B)B^{-1}A^{-1}$$

$$= (\det(B)B^{-1})(\det(A)A^{-1})$$

$$= \operatorname{adj}(B)\operatorname{adj}(A).$$

2. If A is an $n \times n$ matrix then prove that $\det(\operatorname{adj}(A)) = (\det A)^{n-1}$.

Solution: We have

$$A \operatorname{adj}(A) = (\det A)I_n \Rightarrow (\det A)\det(\operatorname{adj}(A)) = (\det A)^n.$$

If det $A \neq 0$, then $(\det A)\det(\operatorname{adj}(A)) = (\det A)^n \Rightarrow \det(\operatorname{adj}(A)) = (\det A)^{n-1}$.

If det A = 0 then we must have $\det(\operatorname{adj}(A)) = 0$. Otherwise, if $\operatorname{adj}(A)$ is invertible, then $A \operatorname{adj}(A) = (\det A)I_n = \mathbf{O} \Rightarrow A \operatorname{adj}(A)\operatorname{adj}(A)^{-1} = \mathbf{O} \Rightarrow A = \mathbf{O} \Rightarrow \operatorname{adj}(A) = \mathbf{O}$, a contradiction to the assumption that $\operatorname{adj}(A)$ is invertible. Hence, if det A = 0 then $\det(\operatorname{adj}(A)) = 0 = (\det A)^{n-1}$.

Thus
$$\det(\operatorname{adj}(A)) = (\det A)^{n-1}$$
.

- 3. Let A and B be two matrices, where rank(A) = r. Show that
 - (a) if AB is defined then $rank(AB) \le min\{rank(A), rank(B)\};$
 - (b) there exist invertible matrices T, S such that

$$TAS = \left[\begin{array}{cc} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{array} \right];$$

- (c) there exist matrices $P_{m \times r}, Q_{r \times n}$ such that A = PQ; (this is known as Rank-Factorization Theorem)
- (d) A can be expressed as a sum of r rank one matrices;
- (e) r = 1 if and only if $A = \mathbf{u}\mathbf{v}^t$ for some $\mathbf{u}(\neq \mathbf{0}) \in \mathbb{R}^m$ and $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$;
- (f) if A + B is defined then $rank(A + B) \le rank(A) + rank(B)$.

Solution:

(a) Let A be an $m \times n$ matrix and let B be an $n \times k$ matrix.

Let P be an invertible matrix such that the last m-r rows of PA are all zero. Then in PAB also, the last m-r rows are all zero. Hence $\operatorname{rank}(AB) = \operatorname{rank}(PAB) \le r = \operatorname{rank}(A)$. Also $\operatorname{rank}(AB) = \operatorname{rank}(AB)^t = \operatorname{rank}(B^tA^t) \le \operatorname{rank}(B^tA^t) = \operatorname{rank}(B)$. Hence $\operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

(b) Let R = RREF(A). So, there exists an invertible matrix T such that $TA = R = \begin{bmatrix} \vdots \\ R_r \\ \hline \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$, where R_1, \dots, R_r

are the non-zero rows of R. Notice that $R^t = \begin{bmatrix} R_1^t & \dots & R_r^t \mid \mathbf{0} & \dots & \mathbf{0} \end{bmatrix}$ also has rank r. So, there exists an invertible matrix P such that PR^t is the RREF of R^t , that is, $PR^t = \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$. Taking transpose, we

find that $RP^t = \begin{bmatrix} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}^t = \begin{bmatrix} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}$. Finally, putting $S = P^t$, we have

$$TAS = RP^t = \left[\begin{array}{cc} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{array} \right].$$

1

(c) Note that

$$\left[\begin{array}{c|c} I_r & \mathbf{O} \\ \hline \mathbf{O} & \mathbf{O} \end{array} \right] = \left[\begin{array}{c|c} I_r \\ \hline \mathbf{O} \end{array} \right] [I_r \mid \mathbf{O}].$$

Therefore we have

$$TAS = \begin{bmatrix} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \Rightarrow A = T^{-1} \begin{bmatrix} I_r \\ \mathbf{O} \end{bmatrix} [I_r \mid \mathbf{O}] S^{-1} = PQ,$$

where $P = T^{-1} \begin{bmatrix} I_r \\ \overline{\mathbf{O}} \end{bmatrix}$ has r columns and $Q = [I_r \mid \mathbf{O}]S^{-1}$ has r rows.

(d) Let $T^{-1} = [\mathbf{t}_1 \quad \dots \quad \mathbf{t}_m]$ and $S^{-1} = \begin{bmatrix} \mathbf{s}_1^t \\ \vdots \\ \mathbf{s}_n^t \end{bmatrix}$, where $\mathbf{t}_1, \dots, \mathbf{t}_m$ are the columns of T^{-1} and $\mathbf{s}_1^t, \dots, \mathbf{s}_m^t$ are the rows of S^{-1} . Then we see that

$$P = T^{-1} \begin{bmatrix} I_r \\ \overline{\mathbf{O}} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_1 & \dots & \mathbf{t}_r \end{bmatrix} \text{ and } Q = \begin{bmatrix} I_r & \mathbf{O} \end{bmatrix} S^{-1} = \begin{bmatrix} \mathbf{s}_1^t \\ \vdots \\ \mathbf{s}_r^t \end{bmatrix}.$$

Therefore

$$A = PQ = [\mathbf{t}_1 \quad \dots \quad \mathbf{t}_r] \begin{bmatrix} \mathbf{s}_1^t \\ \vdots \\ \mathbf{s}_r^t \end{bmatrix} = \mathbf{t}_1 \mathbf{s}_1^t + \dots + \mathbf{t}_r \mathbf{s}_r^t.$$

Note that, being columns/rows of invertible matrices, $\mathbf{t}_1, \dots, \mathbf{t}_r, \mathbf{s}_1, \dots, \mathbf{s}_r$ are all non-zero. Further, $\text{row}(\mathbf{t}_i \mathbf{s}_i^t) = \text{span}(\mathbf{s}_i)$ and so $\text{rank}(\mathbf{t}_i \mathbf{s}_i^t) = 1$.

Thus $A = \mathbf{t}_1 \mathbf{s}_1^t + \ldots + \mathbf{t}_r \mathbf{s}_r^t$ is a sum of r rank one matrices.

- (e) Follows from part (d).
- (f) Let rank(B) = k. Then we have $A = \mathbf{t}_1 \mathbf{s}_1^t + \ldots + \mathbf{t}_r \mathbf{s}_r^t$ and $B = \mathbf{a}_1 \mathbf{b}_1^t + \ldots + \mathbf{a}_k \mathbf{b}_k^t$ for some $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{R}^m, \mathbf{b}_1, \ldots, \mathbf{b}_k \in \mathbb{R}^n$. We have

$$A + B = \mathbf{t}_1 \mathbf{s}_1^t + \ldots + \mathbf{t}_r \mathbf{s}_r^t + \mathbf{a}_1 \mathbf{b}_1^t + \ldots + \mathbf{a}_k \mathbf{b}_k^t = \begin{bmatrix} \mathbf{t}_1 & \ldots & \mathbf{t}_r & \mathbf{a}_1 & \ldots & \mathbf{a}_k \end{bmatrix} \begin{bmatrix} \mathbf{s}_1^t \\ \vdots \\ \mathbf{s}_r^t \\ \mathbf{b}_1^t \\ \vdots \\ \mathbf{b}_k^t \end{bmatrix}.$$

Now

$$\operatorname{rank}(A+B) = \operatorname{rank}([\mathbf{t}_1 \quad \dots \quad \mathbf{t}_r \quad \mathbf{a}_1 \quad \dots \quad \mathbf{a}_k] \begin{bmatrix} \mathbf{s}_1^t \\ \vdots \\ \mathbf{s}_r^t \\ \mathbf{b}_1^t \\ \vdots \\ \mathbf{b}_k^t \end{bmatrix}) \leq \operatorname{rank}([\mathbf{t}_1 \quad \dots \quad \mathbf{t}_r \quad \mathbf{a}_1 \quad \dots \quad \mathbf{a}_k])$$

$$\leq r + k$$

$$= \operatorname{rank}(A) + \operatorname{rank}(B).$$

4. Let $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 6 & 4 & 8 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$. Determine all $\mathbf{b} \in \mathbb{R}^3$ for which the system $A\mathbf{x} = \mathbf{b}$ is consistent.

Solution: We have, $\{\mathbf{b} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{b} \text{ is consistent}\} = \operatorname{col}(A)$. Thus for every $\mathbf{b} \in \operatorname{col}(A)$, the system $A\mathbf{x} = \mathbf{b}$ is consistent.

5. Let A be an $n \times n$ matrix. Find the eigenvalues of A - 3I in terms of the eigenvalues of A. Also, show that their corresponding eigenspaces are equal.

Solution: From $|A - \lambda I| = |(A - 3I) - (\lambda - 3)I|$, we find that λ is an eigenvalue of A iff $\lambda - 3$ is an eigenvalue of A - 3I.

Let x be an eigenvector of A with corresponding eigenvalue λ . Then we have

$$(A-3I)\mathbf{x} = A\mathbf{x} - 3\mathbf{x} = (\lambda - 3)\mathbf{x}.$$

Again if y is an eigenvector of A-3I with corresponding eigenvalue $\lambda-3$, then we have

$$A\mathbf{y} = (A - 3I)\mathbf{y} + 3\mathbf{y} = (\lambda - 3)\mathbf{y} + 3\mathbf{y} = \lambda\mathbf{y}.$$

From the above, we have seen that, if E_{λ} is the eigenspace of A corresponding to λ and if $E_{\lambda-3}$ is the eigenspace of A-3I corresponding to $\lambda-3$ then $E_{\lambda}=E_{\lambda-3}$.

6. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let $k \in \mathbb{R}$. Suppose that $\sum_{j=1}^{n} a_{ij} = k$ for i = 1, 2, ..., n. Prove that k is an eigenvalue of A. Also, find an eigenvector of A corresponding to the eigenvalue k.

Solution: Let $\mathbf{u} = [1, 1, 1, \dots, 1]^t \in \mathbb{R}^n$. Then it is easy to see that $A\mathbf{u} = k\mathbf{u}$. Hence k is an eigenvalue of A and \mathbf{u} is an eigenvector corresponding to k.

7. Find all real values of a,b,c,d,e,f for which the matrix $\begin{bmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is diagonalizable.

Solution: Let the given matrix be A. Since all the eigenvalues of A are 1, if A is diagonalizable then there exists an invertible matrix T such that $T^{-1}AT = I$, which gives that A = I. Hence we must have a = b = c = d = e = f = 0 for the diagonalizability of A.

- 8. Let A be a 6×6 matrix with characteristic polynomial $p(\lambda) = (1 + \lambda)(1 \lambda)^2(2 \lambda)^3$.
 - (a) Prove that it is not possible to find three linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^6 such that $A\mathbf{v}_1 = \mathbf{v}_1, A\mathbf{v}_2 = \mathbf{v}_2$ and $A\mathbf{v}_3 = \mathbf{v}_3$.
 - (b) If A is diagonalizable, find the dimensions of the eigenspaces E_{-1} , E_1 and E_2 ?

Solution:

- (a) Since the characteristic polynomial of A is $p(\lambda) = (1 + \lambda)(1 \lambda)^2(2 \lambda)^3$, 1 is an eigenvalue of A and the algebraic multiplicity of 1 is 2. Thus the geometric multiplicity of 1 (dimension of E_1) can be at most 2. Therefore there cannot be three linearly independent vectors in E_1 . Hence there do not exist three linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^6 such that $A\mathbf{v}_1 = \mathbf{v}_1, A\mathbf{v}_2 = \mathbf{v}_2$ and $A\mathbf{v}_3 = \mathbf{v}_3$.
- (b) If A is diagonalizable, then the geometric multiplicities of each eigenvalues of A will be equal to the corresponding algebraic multiplicities. Hence dim $E_{-1} = 1$, dim $E_1 = 2$ and dim $E_2 = 3$.
- 9. Let A and B be two $n \times n$ matrices satisfying AB = BA and let B have n distinct eigenvalues. Show that the matrix A is diagonalizable.

Solution: Since B is an $n \times n$ matrix with n distinct eigenvalues, B must be diagonalizable. Let Q be an invertible matrix such that $QBQ^{-1} = D$, where D is a diagonal matrix. Then using AB = BA, we have

$$(QAQ^{-1})(QBQ^{-1}) = (QBQ^{-1})(QAQ^{-1}) \Rightarrow YD = DY, \text{ where } Y = QAQ^{-1}.$$

Let $Y = [y_{ij}]$ and let the diagonal entries of D be d_1, d_2, \ldots, d_n . Since the diagonal entries of D are the n distinct eigenvalues of B, we find that $d_i \neq d_j$ for $i \neq j$. Now for $i \neq j$, we have

$$DY - YD = \mathbf{O} \Rightarrow (DY - YD)_{ij} = 0 \Rightarrow (d_i - d_j)y_{ij} = 0, 1 \le i, j \le n \Rightarrow y_{ij} = 0, \text{ since } i \ne j.$$

Thus Y is a diagonal matrix. Hence $Y = QAQ^{-1}$ implies that the matrix A is also diagonalizable.