Discrete Mathematics

Exercises

Marcelo Fiore Ohad Kammar Dima Szamozvancev

Contents

1.	On proofs		
	1.1.	Basic exercises	1
	1.2.	Core exercises	1
	1.3.	Optional exercises	2
2.	On nu	mbers	3
	2.1.	Basic exercises	3
	2.2.	Core exercises	3
	2.3.	Optional exercises	4
3.	More on numbers		4
	3.1.	Basic exercises	4
	3.2.	Core exercises	5
	3.3.	Optional exercises	5
4.	On induction		6
	4.1.	Basic exercises	6
	4.2.	Core exercises	6
	4.3.	Optional exercises	7

1. On proofs

1.1. Basic exercises

The main aim is to practice the analysis and understanding of mathematical statements (e.g. by isolating the different components of composite statements), and exercise the art of presenting a logical argument in the form of a clear proof (e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

- 1. Suppose n is a natural number larger than 2, and n is not a prime number. Then $2 \cdot n + 13$ is not a prime number.
- 2. If $x^2 + y = 13$ and $y \neq 4$ then $x \neq 3$.
- 3. For an integer n, n^2 is even if and only if n is even.
- 4. For all real numbers x and y there is a real number z such that x + z = y z.
- 5. For all integers x and y there is an integer z such that x + z = y z.
- 6. The addition of two rational numbers is a rational number.
- 7. For every real number x, if $x \neq 2$ then there is a unique real number y such that $2 \cdot y / (y+1) = x$.
- 8. For all integers m and n, if $m \cdot n$ is even, then either m is even or n is even.

1.2. Core exercises

Having practised how to analyse and understand basic mathematical statements and clearly present their proofs, the aim is to get familiar with the basics of divisibility.

- 1. Characterise those integers *d* and *n* such that:
 - a) 0 | n
 - b) $d \mid 0$
- 2. Let *k*, *m*, *n* be integers with *k* positive. Show that:

$$(k \cdot m) \mid (k \cdot n) \iff m \mid n$$

- 3. Prove or disprove that: For all natural numbers $n, 2 \mid 2^n$.
- 4. Show that for all integers l, m, n,

$$l \mid m \land m \mid n \Longrightarrow l \mid n$$

5. Find a counterexample to the statement: For all positive integers k, m, n,

$$(m \mid k \land n \mid k) \Longrightarrow (m \cdot n) \mid k$$

- 6. Prove that for all integers d, k, l, m, n,
 - a) $d \mid m \land d \mid n \Longrightarrow d \mid (m+n)$

- b) $d \mid m \Longrightarrow d \mid k \cdot m$
- c) $d \mid m \land d \mid n \Longrightarrow d \mid (k \cdot m + l \cdot n)$

7. Prove that for all integers n,

$$30 \mid n \iff (2 \mid n \land 3 \mid n \land 5 \mid n)$$

8. Show that for all integers m and n,

$$(m \mid n \land n \mid m) \Longrightarrow (m = n \lor m = -n)$$

9. Prove or disprove that: For all positive integers k, m, n,

$$k \mid (m \cdot n) \Longrightarrow k \mid m \vee k \mid n$$

10. Let P(m) be a statement for m ranging over the natural numbers, and consider the following derived statement (with n also ranging over the natural numbers):

$$P^{\#}(n) \triangleq \forall k \in \mathbb{N}. \ 0 \le k \le n \Longrightarrow P(k)$$

- a) Show that, for all natural numbers ℓ , $P^{\#}(\ell) \Longrightarrow P(\ell)$.
- b) Exhibit a concrete statement P(m) and a specific natural number n for which the following statement *does not* hold:

$$P(n) \Longrightarrow P^{\#}(n)$$

- c) Prove the following:
 - $P^{\#}(0) \iff P(0)$
 - $\forall n \in \mathbb{N}. (P^{\#}(n) \Longrightarrow P^{\#}(n+1)) \Longleftrightarrow (P^{\#}(n) \Longrightarrow P(n+1))$
 - $(\forall m \in \mathbb{N}. P^{\#}(m)) \iff (\forall m \in \mathbb{N}. P(m))$

1.3. Optional exercises

- 1. A series of questions about the properties and relationship of triangular and square numbers (adapted from David Burton).
 - a) A natural number is said to be *triangular* if it is of the form $\sum_{i=0}^{k} i = 0 + 1 + \dots + k$, for some natural k. For example, the first three triangular numbers are $t_0 = 0$, $t_1 = 1$ and $t_2 = 3$.

Find the next tree triangular numbers t_3 , t_4 and t_5 .

- b) Find a formula for the k^{th} triangular number t_k .
- c) A natural number is said to be *square* if it is of the form k^2 for some natural number k. Show that n is triangular iff $8 \cdot n + 1$ is a square. (Plutarch, circ. 100BC)
- d) Show that the sum of every two consecutive triangular numbers is square. (Nicomachus, circ. 100BC)

- e) Show that, for all natural numbers n, if n is triangular, then so are $9 \cdot n + 1$, $25 \cdot n + 3$, $49 \cdot n + 6$ and $81 \cdot n + 10$. (Euler, 1775)
- f) Prove the generalisation: For all n and k natural numbers, there exists a natural number q such that $(2n+1)^2 \cdot t_k + t_n = t_q$. (Jordan, 1991, attributed to Euler)

2. Let P(x) be a predicate on a variable x and let Q be a statement not mentioning x. Show that the following equivalence holds:

$$((\exists x. P(x)) \Longrightarrow Q) \Longleftrightarrow (\forall x. (P(x) \Longrightarrow Q))$$

2. On numbers

2.1. Basic exercises

- 1. Let i, j be integers and let m, n be positive integers. Show that:
 - a) $i \equiv i \pmod{m}$
 - b) $i \equiv j \pmod{m} \Longrightarrow j \equiv i \pmod{m}$
 - c) $i \equiv j \pmod{m} \land j \equiv k \pmod{m} \Longrightarrow i \equiv k \pmod{m}$
- 2. Prove that for all integers i, j, k, l, m, n with m positive and n nonnegative,
 - a) $i \equiv j \pmod{m} \land k \equiv l \pmod{m} \Longrightarrow i + k \equiv j + l \pmod{m}$
 - b) $i \equiv j \pmod{m} \land k \equiv l \pmod{m} \Longrightarrow i \cdot k \equiv j \cdot l \pmod{m}$
 - c) $i \equiv j \pmod{m} \Longrightarrow i^n \equiv j^n \pmod{m}$
- 3. Prove that for all natural numbers k, l and positive integers m,
 - a) $\operatorname{rem}(k \cdot m + l, m) = \operatorname{rem}(l, m)$
 - b) $\operatorname{rem}(k+l,m) = \operatorname{rem}(\operatorname{rem}(k,m) + l,m)$
 - c) $\operatorname{rem}(k \cdot l, m) = \operatorname{rem}(k \cdot \operatorname{rem}(l, m), m)$
- 4. Let *m* be a positive integer.
 - a) Prove the associativity of the addition and multiplication operations in \mathbb{Z}_m ; that is:

$$\forall i, j, k \in \mathbb{Z}_m. \ (i +_m j) +_m k = i +_m (j +_m k) \quad \text{and} \quad (i \cdot_m j) \cdot_m k = i \cdot_m (j \cdot_m k)$$

b) Prove that the additive inverse of k in \mathbb{Z}_m is $[-k]_m$.

2.2. Core exercises

- 1. Find an integer i, natural numbers k, l and a positive integer m for which $k \equiv l \pmod m$ holds while $i^k \equiv i^l \pmod m$ does not.
- 2. Formalise and prove the following statement: A natural number is a multiple of 3 iff so is the number obtained by summing its digits. Do the same for the analogous criterion for multiples of 9 and a similar condition for multiples of 11.

- 3. Show that for every integer n, the remainder when n^2 is divided by 4 is either 0 or 1.
- 4. What are $rem(55^2, 79)$, $rem(23^2, 79)$, $rem(23 \cdot 55, 79)$ and $rem(55^{78}, 79)$?
- 5. Calculate that $2^{153} \equiv 53 \pmod{153}$. At first sight this seems to contradict Fermat's Little Theorem, why isn't this the case though? *Hint*: Simplify the problem by applying known congruences to subexpressions using the properties in §2.1.2.
- 6. Calculate the addition and multiplication tables, and the additive and multiplicative inverses tables for \mathbb{Z}_3 , \mathbb{Z}_6 and \mathbb{Z}_7 .
- 7. Let i and n be positive integers and let p be a prime. Show that if $n \equiv 1 \pmod{p-1}$ then $i^n \equiv i \pmod{p}$ for all i not multiple of p.
- 8. Prove that $n^3 \equiv n \pmod{6}$ for all integers n.
- 9. Prove that $n^7 \equiv n \pmod{42}$ for all integers n.

2.3. Optional exercises

- 1. Prove that for all integers n, there exist natural numbers i and j such that $n = i^2 j^2$ iff either $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$ or $n \equiv 3 \pmod{4}$.
- 2. A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary) representation consists solely of 1's.
 - a) What are the first three decimal repunits? And the first three binary ones?
 - b) Show that no decimal repunit strictly greater than 1 is a square, and that the same holds for binary repunits. Is this the case for every base? *Hint*: Use Lemma 26 of the notes.

3. More on numbers

3.1. Basic exercises

- 1. Calculate the set CD(666, 330) of common divisors of 666 and 330.
- 2. Find the gcd of 21212121 and 12121212.
- 3. Prove that for all positive integers m and n, and integers k and l,

$$gcd(m, n) | (k \cdot m + l \cdot n)$$

- 4. Find integers x and y such that $x \cdot 30 + y \cdot 22 = \gcd(30, 22)$. Now find integers x' and y' with $0 \le y' < 30$ such that $x' \cdot 30 + y' \cdot 22 = \gcd(30, 22)$.
- 5. Prove that for all positive integers m and n, there exists integers k and l such that $k \cdot m + l \cdot n = 1$ iff gcd(m, n) = 1.
- 6. Prove that for all integers n and primes p, if $n^2 \equiv 1 \pmod{p}$ then either $n \equiv 1 \pmod{p}$ or $n \equiv -1 \pmod{p}$.

3.2. Core exercises

- 1. Prove that for all positive integers m and n, gcd(m,n) = m iff $m \mid n$.
- 2. Let m and n be positive integers with gcd(m, n) = 1. Prove that for every natural number k,

$$m \mid k \land n \mid k \iff m \cdot n \mid k$$

- 3. Prove that for all positive integers a, b, c, if gcd(a, c) = 1 then $gcd(a \cdot b, c) = gcd(b, c)$.
- 4. Prove that for all positive integers m and n, and integers i and j:

$$n \cdot i \equiv n \cdot j \pmod{m} \iff i \equiv j \pmod{\frac{m}{\gcd(m,n)}}$$

- 5. Prove that for all positive integers m, n, p, q such that gcd(m, n) = gcd(p, q) = 1, if $q \cdot m = p \cdot n$ then m = p and n = q.
- 6. Prove that for all positive integers a and b, $gcd(13 \cdot a + 8 \cdot b, 5 \cdot a + 3 \cdot b) = gcd(a, b)$.
- 7. Let n be an integer.
 - a) Prove that if n is not divisible by 3, then $n^2 \equiv 1 \pmod{3}$.
 - b) Show that if *n* is odd, then $n^2 \equiv 1 \pmod{8}$.
 - c) Conclude that if p is a prime number greater than 3, then $p^2 1$ is divisible by 24.
- 8. Prove that $n^{13} \equiv n \pmod{10}$ for all integers n.
- 9. Prove that for all positive integers l, m and n, if $gcd(l, m \cdot n) = 1$ then gcd(l, m) = 1 and gcd(l, n) = 1.
- 10. Solve the following congruences:
 - a) $77 \cdot x \equiv 11 \pmod{40}$
 - b) $12 \cdot y \equiv 30 \pmod{54}$

c)
$$\begin{cases} 13 \equiv z \pmod{21} \\ 3 \cdot z \equiv 2 \pmod{17} \end{cases}$$

- 11. What is the multiplicative inverse of: (a) 2 in \mathbb{Z}_7 , (b) 7 in \mathbb{Z}_{40} , and (c) 13 in \mathbb{Z}_{23} ?
- 12. Prove that $\left[22^{12001}\right]_{175}$ has a multiplicative inverse in \mathbb{Z}_{175} .

3.3. Optional exercises

- 1. Let a and b be natural numbers such that $a^2 \mid b \cdot (b+a)$. Prove that $a \mid b$.
 - *Hint:* For positive a and b, consider $a_0 = \frac{a}{\gcd(a,b)}$ and $b_0 = \frac{b}{\gcd(a,b)}$ so that $\gcd(a_0,b_0) = 1$, and show that $a^2 \mid b(b+a)$ implies $a_0 = 1$.
- 2. Prove the converse of §1.3.1(f): For all natural numbers n and s, if there exists a natural number q such that $(2n+1)^2 \cdot s + t_n = t_q$, then s is a triangular number. (49th Putnam, 1988)

Hint: Recall that if q=2nk+n+k then $(2n+1)^2t_k+t_n=t_q$. Solving for k in , we get that $k=\frac{q-n}{2n+1}$; so it would be enough to show that the fraction $\frac{q-n}{2n+1}$ is a natural number.

3. Informally justify the correctness of the following alternative algorithm for computing the gcd of two positive integers:

4. On induction

4.1. Basic exercises

- 1. Prove that for all natural numbers $n \ge 3$, if n distinct points on a circle are joined in consecutive order by straight lines, then the interior angles of the resulting polygon add up to $180 \cdot (n-2)$ degrees.
- 2. Prove that, for any positive integer n, a $2^n \times 2^n$ square grid with any one square removed can be tiled with L-shaped pieces consisting of 3 squares.

4.2. Core exercises

- 1. Establish the following:
 - (a) For all positive integers m and n,

$$(2^{n}-1)\cdot\sum_{i=0}^{m-1}2^{i\cdot n}=2^{m\cdot n}-1$$

- (b) Suppose k is a positive integer that is not prime. Then $2^k 1$ is not prime.
- 2. Prove that

$$\forall n \in \mathbb{N}. \ \forall x \in \mathbb{R}. \ x \ge -1 \implies (1+x)^n \ge 1+n \cdot x$$

- 3. Recall that the Fibonacci numbers F_n for $n \in \mathbb{N}$ are defined recursively by $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_n + F_{n+1}$ for $n \in \mathbb{N}$.
 - a) Prove Cassini's Identity: For all $n \in \mathbb{N}$,

$$F_n \cdot F_{n+2} = F_{n+1}^2 + (-1)^{n+1}$$

b) Prove that for all natural numbers k and n,

$$F_{n+k+1} = F_{n+1} \cdot F_{k+1} + F_n \cdot F_k$$

c) Deduce that $F_n \mid F_{l \cdot n}$ for all natural numbers n and l.

- d) Prove that $gcd(F_{n+2}, F_{n+1})$ terminates with output 1 in n steps for all positive integers n.
- e) Deduce also that:
 - (i) for all positive integers n < m, $gcd(F_m, F_n) = gcd(F_{m-n}, F_n)$,

and hence that:

- (ii) for all positive integers m and n, $gcd(F_m, F_n) = F_{gcd(m,n)}$.
- f) Show that for all positive integers m and n, $(F_m \cdot F_n) \mid F_{m \cdot n}$ if gcd(m, n) = 1.
- g) Conjecture and prove theorems concerning the following sums for any natural number n:
 - (i) $\sum_{i=0}^{n} F_{2\cdot i}$
 - (ii) $\sum_{i=0}^{n} F_{2\cdot i+1}$
 - (iii) $\sum_{i=0}^{n} F_i$

4.3. Optional exercises

1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2 to formally establish the following correctness property of the algorithm:

For all natural numbers $l \ge 2$, we have that for all positive integers m, n, if $m + n \le l$ then gcdO(m, n) terminates.

- 2. The set of *univariate polynomials* (over the rationals) on a variable x is defined as that of arithmetic expressions equal to those of the form $\sum_{i=0}^n a_i \cdot x^i$, for some $n \in \mathbb{N}$ and some coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.
 - (a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and $p(x) \cdot q(x)$.
 - (b) Deduce as a corollary that, for all $a, b \in \mathbb{Q}$, the linear combination $a \cdot p(x) + b \cdot q(x)$ of two polynomials p(x) and q(x) is a polynomial.
 - (c) Show that there exists a polynomial $p_2(x)$ such that $p_2(n) = \sum_{i=0}^n i^2 = 0^2 + 1^2 + \dots + n^2$ for every $n \in \mathbb{N}$.

Hint: Note that for every $n \in \mathbb{N}$,

$$(n+1)^3 = \sum_{i=0}^n (i+1)^3 - \sum_{i=0}^n i^3$$

(d) Show that, for every $k \in \mathbb{N}$, there exists a polynomial $p_k(x)$ such that, for all $n \in \mathbb{N}$, $p_k(n) = \sum_{i=0}^n i^k = 0^k + 1^k + \dots + n^k$.

Hint: Generalise the hint above, and the similar identity

$$(n+1)^2 = \sum_{i=0}^{n} (i+1)^2 - \sum_{i=0}^{n} i^2$$

¹Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.