Homework #10

Math 131 - Spring 2017

DUE on 5/5/17 at midnight (online submission through Catcourses).

NOTE: Your answers will be graded for correctness as well as comprehensiveness, completeness, and legibility of your solution.

- 1. For each of the following one-step time methods
 - (a) Euler's method
 - (b) Runge-Kutta method of order 2
 - (c) Runge-Kutta method of order 4

write a function that solves the IVP

$$y'(t) = f(t, y)$$
 for $a \le t \le b$, with $y(a) = \alpha$.

In each case, the function header should look something like

function w = method_name(f,a,b,alpha,N)

where N is the number of intervals used, so that $h = \frac{b-a}{N}$

- 2. Write a function that solves the IVP using a 2-step Adams-Bashforth method that computes w_1 using a second order Runge-Kutta method. The header should have the same format as the headers in problem 1.
- 3. Consider the IVP

$$y'(t) = \frac{\sin(2t) - 2ty}{t^2}$$
 for $1 \le t \le 2$, with $y(1) = 2$.

- (a) Use all 4 methods that you have developed in problems 1 and 2 to solve the IVP given with $N = 10; 10^2; 10^3; 10^4$.
- (b) Make a loglog plot of absolute error at t = 2 versus the number of intervals for all four methods on the same plot. Make sure to create a legend, showing which plot corresponds to which method. Comment on your results: which method works best, which method works the worst? Why?

Hint: To compute the absolute error, you need to find the exact/true/actual solution of this IVP. One can show that it is $y(t) = \frac{4+\cos(2)-\cos(2t)}{2t^2}$ (using the knowledge you learned from Math 24).