Vehicle image classification using CNN to determine vehicle make & model

Saiful Hasan

Problem Statement

Vehicle image classification using CNN to determine vehicle make & model

- Aims to develop an effective and precise VMMR model
- Existing Challenges
 - Outdoor Environment
 - Shadow and Reflections
 - Visual similarities between model of same manufacturer
 - Visual similarities between model of different manufacturer
- Modeling and Metric

Workflow

- → Image Collection
 - Toyota Camry 2007 base model (1174)
 - Random Car models (906)
- **→** Exploratory Data Analysis
- → Model preparation
- → Modeling
 - Baseline model
 - ◆ CNN model 1 (Original images)
 - CNN model 2 (Augmented images)

- → Model selection
 - Accuracy
- → Model Evaluation
 - Misclassification
 - Visual Activation layers
- → Conclusion
- **→** Recommendation
- → Prediction

Glimpse of Images

Car images with challenges

Glimpse of Images

Rotation and Flipping

Modeling

- 1. Baseline Model
- 2. Convolutional Neural Network (CNN) Model 1: with original images
- 3. Convolutional Neural Network (CNN) Model 2: With augmented images
 - Our CNN models have all together 20 layers including convolutional layers, pooling layers, dropouts, flatten layers and dense layers
 - Our CNN model uses over 130,000 parameters. Most of the parameters come from the second convolutional layer.

Accuracy Graphs

Training and Testing Accuracy by Epoch

CNN Model 1 (original images)

Training and Testing Accuracy by Epoch

CNN Model 2 (Augmented images)

CNN Model with Augmented Images

Model Selection

Model	Accuracy on train set	Accuracy on test set
Baseline Model	60.5%	55.5%
CNN Model 1	89.2%	87.1%
CNN Model 2	60.8%	50.6%

Model Evaluation

Investigating misclassified images:

False Positive:

False Negative:

CNN Activation Visualization

Convolutional Layer #1

CNN Activation Visualization

Convolutional Layer #3

Conclusion and Recommendation

- **★** Best model : CNN Model with original images
- **★** Future Steps
 - Multi Classifications
 - Improve accuracy
 - What we need to achieve that?
 - More Images
 - More Images
 - More Images
 - High resolution images
 - Images with different surroundings

Predictions

Predicted Class [1]

Predicted Class [0]

Predicted Class [0]

Thank you

