

Mark Scheme (Pre-Standardisation) Summer 2007

GCE

GCE Mathematics (6676/01)

June 2007 6676 Further Pure Mathematics FP3 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\frac{y_1 - 0.2}{0.1} \approx \left(\frac{dy}{dx}\right)_0 = 0.2 \times e^0 (=0.2)$ $y_1 \approx 0.22$	M1 A1 (2)
	(b) $\left(\frac{dy}{dx}\right)_1 \approx 0.22 \times e^{0.01} \approx 0.2222 \dots$ awrt 0.2222	B1
	$\frac{y_2 - 0.2}{0.2} \approx 0.2222\dots$	M1
	$y_2 \approx 0.2444$ cao	A1 (3) [5]
2.	(a) $ (1-x^2)\frac{d^3y}{dx^3} - 2x\frac{d^2y}{dx^2} - x\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2\frac{dy}{dx} = 0 $	M1
	At $x = 0$, $\frac{d^3 y}{dx^3} = -\frac{dy}{dx} = 1$	M1 A1 (3)
	(b) $\left(\frac{d^2y}{dx^2}\right)_0 = -4$ Allow anywhere $f''(0) \qquad f'''(0)$	B1
	$y = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + \dots$ $= 2 - x - 2x^2, +\frac{1}{6}x^3 + \dots$	M1 A1, A1(4) [7]
		[/]

Question Number		Scheme		Marks
3.	(a) Third row	$\begin{pmatrix} 3 & 4 & p \\ -1 & q & -4 \\ 1 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ $1 - 3 = -\lambda \implies \lambda = 2$		M1 A1 (2)
	(b) $\begin{pmatrix} 3 \\ - \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 & p \\ 1 & q & -4 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4-p \\ q+4 \\ -2 \end{pmatrix}$	$= 2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$	M1 A1
	First row	$4 - p = 0 \implies p = 4$	Method for either	M1
	Second row	$q+4=2 \implies q=-2$	Both correct	A1 (4)
	(c)	$\begin{pmatrix} 3 & 4 & 4 \\ -1 & -2 & -4 \\ 1 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} 10 \\ -4 \\ 3 \end{pmatrix}$		
		3l + 4m + 4n = 10 $-l - 2m - 4n = -4$ $l + m + 3n = 3$	Obtaining 3 linear equations	M1
			educing to a pair of equations and solving for one variable Solving for all three variables.	M1
		l = 2, m = 1, n = 0	solving for an timee variables.	M1 A1 (4) [10]
	Alternative to (c)			
		$\mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 8 & 8 \\ -1 & -5 & -8 \\ -1 & -1 & 2 \end{pmatrix}$		M1 M1
		$\frac{1}{6} \begin{pmatrix} 2 & 8 & 8 \\ -1 & -5 & -8 \\ -1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \\ 2 &$	2 1 0	M1 A1 (4)

$z^{n} = (\cos\theta + i\sin\theta)^{n} = \cos n\theta + i\sin n\theta$ $z^{-n} = (\cos\theta + i\sin\theta)^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta \qquad \text{both}$ $z^{n} + \frac{1}{z^{n}} = 2\cos n\theta + i\sin\theta \qquad \text{cso}$ $\left(z + \frac{1}{z}\right)^{6} = z^{6} + 6z^{4} + 15z^{2} + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$	M1 A1 (2)
$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta *$ $\left(z + \frac{1}{z}\right)^{6} = z^{6} + 6z^{4} + 15z^{2} + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$	A1 (2)
$\left(z + \frac{1}{z}\right)^6 = z^6 + 6z^4 + 15z^2 + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$	
	M1
$= z^{6} + z^{-6} + 6\left(z^{4} + z^{-4}\right) + 15\left(z^{2} + z^{-2}\right) + 20$	M1
$64\cos^{6}\theta = 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$	M1
$32\cos^6\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$ (p=1, q=6, r=15, s=10) A1 any two correct	A1, A1 (5)
$\int \cos^6 \theta d\theta = \left(\frac{1}{32}\right) \int \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right) d\theta$	
$= \left(\frac{1}{32}\right) \left[\frac{\sin 6\theta}{6} + \frac{6\sin 4\theta}{4} + \frac{15\sin 2\theta}{2} + 10\theta\right]$	M1 A1
$\left[\dots \right]_0^{\frac{\pi}{3}} = \frac{1}{32} \left[-\frac{3}{2} \times \frac{\sqrt{3}}{2} + \frac{15}{2} \times \frac{\sqrt{3}}{2} + \frac{10\pi}{3} \right] = \frac{5\pi}{48} + \frac{3\sqrt{3}}{32} \text{or exact equivalent}$	M1 A1 (4)
	[11]
	$\int \cos^6 \theta d\theta = \left(\frac{1}{32}\right) \int \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right) d\theta$ $= \left(\frac{1}{32}\right) \left[\frac{\sin 6\theta}{6} + \frac{6\sin 4\theta}{4} + \frac{15\sin 2\theta}{2} + 10\theta\right]$

Question Number	Scheme	Marks
5.	$n=1: 1^2 = \frac{1}{3} \times 1 \times 1 \times 3$	B1
	(Hence result is true for $n = 1$.) $\sum_{r=1}^{k+1} (2r-1)^2 = \sum_{r=1}^k (2r-1)^2 + (2k+1)^2$ $= \frac{1}{3}k(2k-1)(2k+1) + (2k+1)^2, \text{ by induction hypothesis}$ $= \frac{1}{3}(2k+1)(2k^2 - k + 6k + 3)$ $= \frac{1}{3}(2k+1)(2k^2 + 5k + 3)$ $= \frac{1}{3}(2k+1)(2k+3)(k+1)$ $= \frac{1}{3}(k+1)[2(k+1)k-1][2(k+1)+1]$	M1 M1 A1
	(Hence, if result is true for $n = k$, then it is true for $n = k + 1$.) By Mathematical Induction, above implies the result is true for all $n \in \square^+$. *	A1 (5) [5]
6.	(a) $f(k+1)-f(k) = 3^{4k+4} + 2^{4k+6} - 3^{4k} - 2^{4k+2}$	
	$= 3^{4k} (3^4 - 1) + 2^{4k+2} (2^4 - 1)$ $= 3^{4k} \times 80 + 2^{4k+2} \times 15$ can be implied $= 3^{4k-1} \times 240 + 2^{4k+2} \times 15 = 15 (16 \times 3^{4k-1} + 2^{4k+2})$	M1 A1 M1
	Hence $15 f(k+1)-f(k) $ cso Note: $f(k+1)-f(k)$ is divisible by 240 and other appropriate multiples of 15 lead to the required result.	A1 (4)
	(b) $n=1$: $f(1) = 3^4 + 2^6 = 145 = 5 \times 29 \implies 5 \mid f(1)$ (Hence result is true for $n=1$.) From (a) $f(k+1)-f(k)=15\lambda$, say. By induction hypothesis $f(k)=5\mu$, say.	B1
	$f(k+1) = f(k) + 15\lambda = 5(\mu + 3\lambda) \implies 5 f(k+1)$ (Hence, if result is true for $n = k$, then it is true for $n = k + 1$.) By Mathematical Induction, above implies the result is true for all $n \in \square^+$.	M1
	Accept equivalent arguments $n \in \mathbb{R}$ and $n \in \mathbb{R}$ $n \in \mathbb{R}$	A1 (3)
	 (c) f(1)=145=5×29 is not divisible by 15, so result is not true for all □⁺. Note: There is no integer for which f(n) is divisible by 15 and any specific example should be accepted. 	B1 (1) [8]

Question Number	Scheme	Marks
7.	(a) $\overrightarrow{AB} = -\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}, \overrightarrow{AC} = 4\mathbf{j} + 2\mathbf{k}$ both	B1
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 3 \\ 0 & 4 & 2 \end{vmatrix} = -6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$	M1 A1 A1
	Give A1 for any two components correct or the negative of the correct answer.	(4)
	(b) Cartesian equation has form $3x - y + 2z = p$	
	$(2,-1,0) \Rightarrow 6+1=p$ or use of another point	M1
	3x - y + 2z = 7 or any multiple	A1 (2)
	(c) Parametric form of line is $\mathbf{r} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ or equivalent form	M1 A1
	Substituting into equation of plane	
	$3(5+2\lambda)-(5-\lambda)+2(3-2\lambda)=7$	M1
	Leading to $\lambda = -3$	A1
	T:(-1,8,9)	A1 (5)
	(d) $\overrightarrow{AT} = -3\mathbf{i} + 9\mathbf{j} + 9\mathbf{k}, \overrightarrow{BT} = -2\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}$ both	M1
	These are parallel and hence A , B and T are collinear \bigstar (by the axiom of parallels)	M1 A1 (3) [14]
	Alternative to (d)	
	The equation of AB : $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mu(-\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})$ or equivalent	
	i: $-1 = 2 - \mu \implies \mu = 3$	M1
	$\mu = 3 \implies \overrightarrow{OT} = -\mathbf{i} + 8\mathbf{j} + 9\mathbf{k}$	M1
	Hence A , B and T are collinear \star cso	A1 (3)
	Note: Column vectors or bold-faced vectors may be used at any stage.	

Question	Scheme	Marks
Number		
8.	(a) Let $z = \lambda + \lambda i$; $w = \frac{\lambda + (\lambda + 1)i}{\lambda(1+i)}$	M1
	$=\frac{\lambda+(\lambda+1)i}{\lambda(1+i)}\times\frac{1-i}{1-i}$	M1
	$u + i v = \frac{(2\lambda + 1) + i}{2\lambda}$	A1
	$u = 1 + \frac{1}{2\lambda}, v = \frac{1}{2\lambda}$	M1
	Eliminating λ gives a line with equation $v = u - 1$ or equivalent	A1 (5)
	(b) Let $z = \lambda - (\lambda + 1)i$; $w = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$	M1
	$= \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i} \times \frac{\lambda + (\lambda + 1)i}{\lambda + (\lambda + 1)i}$	M1
	$u + iv = \frac{\lambda(2\lambda + 1) + \lambda i}{2\lambda^2 + 2\lambda + 1}$	A1
	$u = \frac{\lambda(2\lambda + 1)}{2\lambda^2 + 2\lambda + 1}, v = \frac{\lambda}{2\lambda^2 + 2\lambda + 1}$	M1
	$\frac{u}{v} = 2\lambda + 1$	
	$v = \frac{2\lambda}{4\lambda^2 + 4\lambda + 2} = \frac{(2\lambda + 1) - 1}{(2\lambda + 1)^2 + 1} = \frac{\frac{u}{v} - 1}{(\frac{u}{v})^2 + 1}$	M1
	Reducing to the circle with equation $u^2 + v^2 - u + v = 0$ * cso	M1 A1 (7)
	(c)	
	Circle through origin, centre in correct quadrant Intersections correctly placed	B1ft B1 B1 (3) [15]

Question Number	Scheme	Marks
8.	Alternative for (b) Let $z = \lambda - (\lambda + 1)i$; $w = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$	M1
	$= \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i} \times \frac{\lambda + (\lambda + 1)i}{\lambda + (\lambda + 1)i}$	M1
	$u + iv = \frac{\lambda(2\lambda + 1) + \lambda i}{2\lambda^2 + 2\lambda + 1}$	A1
	$u = \frac{\lambda(2\lambda + 1)}{2\lambda^2 + 2\lambda + 1}, v = \frac{\lambda}{2\lambda^2 + 2\lambda + 1}$	M1
	$u^{2} + v^{2} - u + v = \left(\frac{\lambda(2\lambda + 1)}{2\lambda^{2} + 2\lambda + 1}\right)^{2} + \left(\frac{\lambda}{2\lambda^{2} + 2\lambda + 1}\right)^{2} - \frac{\lambda(2\lambda + 1)}{2\lambda^{2} + 2\lambda + 1} + \frac{\lambda}{2\lambda^{2} + 2\lambda + 1}$	
	$=\frac{\left(4\lambda^4+4\lambda^3+\lambda^2\right)+\lambda^2-2\lambda^2\left(2\lambda^2+2\lambda+1\right)}{\left(2\lambda^2+2\lambda+1\right)^2}$	M1
	= 0 *	M1 A1 (7)
8.	Alternative for (b)	
	Let $z = \lambda - (\lambda + 1)i$; $u + iv = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$	M1
	$(u+iv)(\lambda-(\lambda+1)i) = \lambda - \lambda i$	M1
	$u\lambda + v(\lambda + 1) + [v\lambda - u(\lambda + 1)]i = \lambda - \lambda i$	A1
	Equating real & imaginary parts $u\lambda + v(\lambda + 1) = \lambda \qquad (i) \qquad v\lambda - \lambda u - u = -\lambda \qquad (ii)$	M1
	From (i) $\lambda = \frac{v}{1 - u - v}$ From (ii) $\lambda = \frac{u}{1 - u + v}$	1411
	$\frac{v}{} = \frac{u}{}$	M1
	$1-u-v 1-u+v$ Reducing to the circle with equation $u^2 + v^2 - u + v = 0 \bigstar$	M1 A1 (7)
	Reducing to the choic with equation $u + v - u + v = 0$	MIAI (1)