CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS UNIVERSIDAD DE GUADALAJARA

Actividad de Clase 2

VLSM ejemplo

Alumna:

Carbajal Armenta Yessenia Paola

Código:

220286482

Carrera:

Ingeniería en Computación

Profesora:

Alanís García Alma Yolanda

Materia:

Sistemas Operativos de Red

Sección:

D01

Fecha:

27 de enero del 2023

Índice

troducción 1
ontenido1
Red País 32
Red País 42
Red País 13
Red País 24
Red País 54
Enlace de subredes5
onclusión5
bliografía6

Introducción

El subneteo es una forma de dividir una gran red física de IP en varias redes lógicas más pequeñas, por lo que cada una de estas subredes actúa como una red individual en términos de consignación y captura de paquetes, aunque continúan perteneciendo a la misma red principal y la red principal y el mismo dominio.

Para la realización de esta técnica, se establece como dirección única al router que hace la conexión entre la red e internet. Sin embargo, pueden existir varios hosts ocultos, por lo que el número de hosts que quedan disponibles para el administrador aumentará de forma considerable. En este documento se llevará a cabo un ejemplo de Subneteo de una red donde se repartirán secciones de IP para 5 países.

Contenido

Ejercicio de Subneteo con VLSM de una Red Clase A

Subred	Rango IP		Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.255.255.255	15.777.216		/8

Red País 3: 4.000.000 direcciones

Red País 4: 3.000.000 direcciones

Red País 1: 2.000.000 direcciones

Red País 2: 1.000.000 direcciones

Red País 5: 500.000 direcciones

Con un total de 10.500.000 direcciones

Porción de red	Porción de host				
255	0	0	0		
11111111	00000000	00000000	00000000	= /8	
	24				

Red País 3

Porción d red	e	Porción de host				
255		192	0	0		
11111111	11	000000	00000000	00000000		= /10
			22 bits par	a host		

2 bit para subredes

255.192.0.0 = /10

 $2^2 = 4$ subredes

Obtener rango de IP... 256 – 192 = 64

Subred	Rango IP Direcc		Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.63.255.255	4.194.304	PAIS 3	/10
1	64.64.0.0	64.127.255.255	4.194.304		/10
2	64.128.0.0	64.191.255.255	4.194.304		/10
3	64.192.0.0	64.255.255.255	4.194.304		/10

Red País 4

Porción de red		Porción de host				
255		192	0	0		
11111111	11	000000	00000000	00000000	= /10	
22 bits para host						

Subred	Ra	ango IP Direcciones		Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.63.255.255	4.194.304	PAIS 3	/10
1	64.64.0.0	64.127.255.255	4.194.304	PAIS 4	/10
2	64.128.0.0	64.191.255.255	4.194.304		/10
3	64.192.0.0	64.255.255.255	4.194.304		/10

Red País 1

Obtener rango para su IP... 256 – 224 = 32

Porción de red	Porció	n de host		
255	224	0	0	
111111111 111	00000	00000000	00000000	= /11
		21 bits para host		

$$255.224.0.0 = /11$$
$$2^{1} = 2$$

Subred	Ro	ingo IP	Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.63.255.255	4.194.304	PAIS 3	/10
1	64.64.0.0	64.127.255.255	4.194.304	PAIS 4	/10
2A	64.128.0.0	64.159.255.255	2.097.152	PAIS 1	/11
2B	64.160.0.0	64.191.255.255	2.097.152		/11
3	64.192.0.0	64.255.255.255	4.194.304		/10

Red País 2

Obtener rango de IP... 256 – 240 = 16

Porción de red	Porción de host	
255	240 0 0	
11111111 1111	0000 00000000 00000000	= /12
	20 bits para host	

$$255.240.0.0 = /12$$
 $2^{1}=2$

Subred	Ro	ingo IP	Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.63.255.255	4.194.304	PAIS 3	/10
1	64.64.0.0	64.127.255.255	4.194.304	PAIS 4	/10
2A	64.128.0.0	64.159.255.255	2.097.152	PAIS 1	/11
2B	64.160.0.0	64.175.255.255	1.048.576	PAIS 2	/12
2C	64.176.0.0	64.191.255.255	1.048.576		/12
3	64.192.0.0	64.255.255.255	4.194.304		/10

Red País 5

Obtener rango para la IP... 256 – 248 = 8

Porción de red		Porc	ión de hos		
255	248		0	0	
11111111	11111	000	00000000	00000000	= /13
		19 bits para host			

$$2^{1}=2$$

Subred	Rango IP		Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	64.0.0.0	64.63.255.255	4.194.304	PAIS 3	/10
1	64.64.0.0	64.127.255.255	4.194.304	PAIS 4	/10
2A	64.128.0.0	64.159.255.255	2.097.152	PAIS 1	/11
2B	64.160.0.0	64.175.255.255	1.048.576	PAIS 2	/12
2C	64.176.0.0	64.183.255.255	524.288	PAIS 5	/13
2D	64.184.0.0	64.191.255.255	524.288		/13
3	64.192.0.0	64.255.255.255	4.194.304		/10

Enlace de subredes

Rango entre las subredes... 256 - 252 = 4

Porción de red			Porción de host		
255	255	255	252		
11111111	111111111	11111111	111111	00	= /30
17 bits para subredes			2 bits para hosts		

Subred	Rang	go IP	Direcciones	Asignada	
	Desde	Hasta	x Subred		
0	192.168.1.0	192.168.1.127	128	RED 2	/25
1	192.168.1.128	192.168.1.167	64	RED 3	/25
2	192.168.1.192	192.168.1.223	32	RED 1	/27
3	192.168.1.224	192.168.1.227	4	ENLACE A	/30
4	192.168.1.228	192.168.1.231	4	ENLACE B	/30
5	192.168.1.132	192.168.1.235	4	ENLACE C	/30

Conclusión

El subneteo es un tanto confuso al principio debido a todos los cálculos y conversiones que se deben realizar, además de que se necesita tener un conocimiento previo sobre redes para poder realizar este tipo de trabajos, sin embargo, con la práctica se va agilizando la realización.

Organizar una red de forma eficiente es importante para las grandes empresas, las direcciones IP pueden mantenerse geográficamente localizadas, lo que significa que una subred puede utilizarse para estructuras

de personal específicas para reducir el tráfico y mantener la eficiencia y el orden.

La división en subredes permite a los administradores de red reducir las amenazas en toda la red poniendo en cuarentena las secciones comprometidas de la red y dificultando a los intrusos moverse por la red de una organización.

Bibliografía

- Tanebaum Andrew. (1995). Sistemas Operativos Distribuidos. España. Prentice-Hall Hisp.
- 17034: Recursos de redes. (2015). Cucei.udg.mx. https://moodle2.cucei.udg.mx/mod/folder/view.php?id=100504
- Ferguson, K., & Slattery, T. (2021, septiembre 28). Subnet (subnetwork).
 Networking; TechTarget.
 https://www.techtarget.com/searchnetworking/definition/subnet
- ¿Qué es Subnetting? (2022, marzo 14). KeepCoding Tech School. https://keepcoding.io/blog/que-es-subnetting/
- Subnetting. (2002). En Securing and Controlling Cisco Routers. Auerbach Publications.