THỰC HÀNH NHẬP MÔN MẠCH SỐ - LỚP PH002.N14 BÀI THỰC HÀNH 3: PHÂN TÍCH VÀ THIẾT KẾ MẠCH SỐ

Giảng viên hướng dẫn	Đỗ Trí Nhựt	ÐIỂM	
Sinh viên thực hiện	Lại Quan Thiên	22521385	
Sinh viên thực hiện			

1. Mục tiêu

- Phân tích, thiết kế, đánh giá mạch số từ đặc tả kỹ thuật
- Làm quen với IC7447 để hiện thị giá trị của một số BCD
- 2. Nội dung
- c. Vận dụng ở nhà

Câu 1: Thiết kế bộ báo động (A=1) cho lái xe với các tình huống: Bugi bật (B=1) và Cửa mở (C=0), hoặc chưa Cài dây an toàn (D=0) và Bugi bật (B=1)

- Xác định các ngõ vào và ngõ ra của mạch:
 - + Ngõ vào: Bugi, cửa, dây an toàn.
 - + Ngõ ra: Bộ báo động.
- Hoàn thành bảng chân trị bên dưới:

В	С	D	A
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Viết biểu thức dạng SOP (không rút gọn):	Viết biểu thức dạng POS (không rút gọn):
FA(B, C, D)=BC'D+BCD'+BC'D'	FA(B, C, D)=
	(B+C+D)(B+C+D')(B+C'+D)(B+C'+D')(B'+C'
	+D')

Tính chi phí biểu thức ở trên theo dạng SOP: C(FA)=3+3+3+3=12	Tính chi phí biểu thức ở trên theo dạng POS: C(FA)=5+3+3+3+3+3=20
Rút gọn luận lý biểu thức ở trên bằng phương pháp K-map: A BC D 00 01 11 10 0 1 11	Rút gọn luận lý biểu thức ở trên bằng phương pháp K-map: A BC D 00 01 11 10 0 0 0 1 0 0
FA(B, C, D)=BD'+BC'	FA(B, C, D)=B(C'+D')
Tính chi phí biểu thức sau khi đã rút gọn: $O(FA)=2+2+2=6$	Tính chi phí biểu thức sau khi đã rút gọn: $O(FA)=2+0+2=4$
Nhận xét chi phí khi chưa rút gọn và sau khi rút gọn: Chi phí giảm	Nhận xét chi phí khi chưa rút gọn và sau khi rút gọn: Chi phí giảm đáng kể sau khi rút gọn.

Câu 2: Thiết kế Bộ giải mã BCD_2_7SEGMENT

- Đầu vào là số BCD 4bits: {BCD3, BCD2, BCD1, BCD0}
- Đầu ra là 1 tổ hợp 7 tín hiệu đèn, được sắp xếp để biểu diễn số BCD: A, B, C, D, E, F, G
- Khi Đầu vào từ 0000 đến 1001 thì, tổ hợp 7 tín hiệu sẽ biểu diễn từ số 0 đến số 9 tương ứng như hình bên dưới. Nếu đầu vào là 1111 thì không tín hiệu nào sáng. Còn lại thì 7 tín hiệu đầu ra nhận giá trị tùy định (X), chú ý: đèn LED sáng khi giá trị của nó là 0:

- Hoàn thảnh bảng chân trị bên dưới (Chú ý, I viết thay cho BCD):

I 3	I2	I1	10	A	В	C	D	E	F	G
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0

13	12	I1	10	A	В	C	D	E	F	G
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	1	1	1	1	1	1	1

- Rút gọn luận lý các hàm luận lý trên bằng phương pháp K-map:

- Vẽ và đóng gói riêng rẽ 7 mạch trên Quartus II. Sau đó đóng gói 7 module này thành một module mới để hoàn thiện yêu cầu thiết kế BCD_2_7SEGMENT:

Trong đường dẫn tải về có một thư mục là BCD_2_7SEG, khi đó sẽ có một symbol là BCD_2_7SEG trong thư viện, đây là mạch số giống với yêu cầu của đề bài. Ngoài ra, trong đường dẫn tải về có một thư mục là cmp_1bit, sao chép các tệp tin trong thư mục vào project vừa thực hiện, khi đó sẽ có một symbol là cmp_1bit trong thư viện, đây là mạch số có chức năng so sánh 2 bits có bằng nhau hay không, nếu bằng nhau thì kết quả là 1. Sử dụng BCD_2_7SEG và cmp_1bit để kiểm tra tính đúng đắn của mạch vừa đóng gói (16 trường hợp cần kiểm tra):