Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2011 – Cálculo I – 1º sem. 2015 Professor: Dr. José Ricardo G. Mendonça

4ª Lista de Exercícios — 12 mai. 2015 Senos, Cossenos, Máximos e Mínimos, Teorema do Valor Médio

The Mean Value Theorem is the midwife of calculus – not very important or glamorous by itself, but often helping to deliver other theorems that are of major significance.

E. J. Purcell e D. E. Varberg, Calculus with Analytic Geometry (1987)

I. Senos e cossenos

1. Dada a tabela de valores das funções sin x e cos x para os seguintes "ângulos notáveis",

χ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π
$\sin x$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0	-1	0
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1	0	1

encontre os seguintes valores:

- (a) $\sin \frac{3\pi}{4}$;
- (b) $\sin \frac{7\pi}{12}$;
- (c) $\sin(\pi \frac{\pi}{6})$;
- (d) $\cos \frac{5\pi}{4}$;
- (e) $\cos(2\pi \frac{\pi}{6});$
- (f) $\tan \frac{\pi}{4}$;
- (g) $\tan \frac{7\pi}{8}$.
- 2. Dado $\alpha \in [0, 2\pi)$, encontre todos os $x \in \mathbb{R}$ tais que $\sin x = \sin \alpha$. *Dica*: estude os casos $\alpha = \pm \pi/2$ e $\alpha \neq \pm \pi/2$ separadamente.
- 3. Encontre a função derivada das seguintes funções:
 - (a) $\sin 3x$;
 - (b) $\cos 7x$;
 - (c) $\sin(4x^2 + x)$;
 - (d) $\cos \sqrt{x}$;

- (e) $\sin^2 \sqrt{x}$;
- (f) $\tan(2x^3 \pi)$;
- (g) tan(sin x);
- (h) $\sin(\tan x)$;
- (i) $\cos(\tan x)$.
- 4. Encontre a equação da reta tangente a cada uma das seguintes curvas nos pontos indicados:
 - (a) $y = \cos 3x$ no ponto $x = \pi/3$;
 - (b) $y = \sin x$ no ponto $x = \pi/6$;
 - (c) $y = \sin x + \cos x$ no ponto $x = 3\pi/4$;
 - (d) $y = \tan x$ no ponto $x = -\pi/4$;
 - (e) $y = \frac{1}{\sin x} = \csc x$ (a cossecante do ângulo x) no ponto $x = -\pi/6$.
- 5. Determine o valor dos seguintes limites:
 - (a) $\lim_{x\to 0} \frac{\sin 2x}{x}$ (*Dica*: considere a mudança de variáveis u=2x);
 - (b) $\lim_{x\to 0} \frac{\cos 3x}{x}$;
 - (c) $\lim_{x\to 0} \frac{\sin 2x^2}{3x};$
 - (d) $\lim_{x\to 0} \frac{\cos 2x}{1+\sin x}$

II. Máximos e mínimos

- 1. Encontre os pontos críticos das seguintes funções e intervalos:
 - (a) $f(x) = x^2 2x + 5$;
 - (b) $f(x) = -x^2 + 2x + 2$;
 - (c) $f(x) = x^3 + 2$;
 - (d) $f(x) = 3x^4 8x^3 30x^2 + 72x 17$:
 - (e) $f(x) = \sin x + \cos x$.
- 2. Uma caixa de base quadrada e aberta em cima deve ser confeccionada de tal forma que sua área externa total seja A. Determine o valor dos lados da base quadrada e a altura da caixa de tal forma que seu volume seja o maior possível.
- 3. Uma garrafa cilíndrica de base circular e aberta em cima deve ser confeccionada de tal forma que sua área externa total seja A. Determine o valor do raio da base circular e a altura da garrafa de tal forma que seu volume seja o maior possível.
- 4. Repita os exercícios anteriores para o caso em que a caixa e a garrafa são fechadas em cima.

III. Teorema do valor médio

1. Encontre o número $c \in [a,b]$ tal que $f'(c) = \frac{f(b) - f(a)}{b-a}$ para as seguintes funções:

(a)
$$f(x) = x^3, x \in [1,3];$$

(b)
$$f(x) = (x-1)^3, x \in [-1,2];$$

(c)
$$f(x) = x^3, x \in [-1,3];$$

(d)
$$f(x) = x^2 + 5x, x \in [0,2].$$

2. Determine os intervalos em que as seguintes funções são crescentes ou decrescentes:

(a)
$$f(x) = x^3 + 1$$
;

(b)
$$f(x) = (x-1)(x-2)(x-3)$$
;

(c)
$$f(x) = x^2 - x + 5$$
;

(d)
$$f(x) = -x^3 + 2x + 1$$
;

(e)
$$f(x) = \sin x + \cos x$$
.

3. Sejam $x \ge 0$ e as funções

$$\begin{split} f_1(x) = x - \sin x, \quad f_3(x) = -x + \frac{x^3}{3!} + \sin x, \quad f_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \sin x, \\ f_2(x) = -1 + \frac{x^2}{2!} + \cos x, \quad e \quad f_4(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cos x. \end{split}$$

- (a) Determine se $f_1(x)$ é crescente ou decrescente e usando o valor de $f_1(x)$ em x = 0 mostre que $\sin x \le x$.
- (b) Determine quais das funções f_2 , f_3 , f_4 e f_5 são crescentes ou decrescentes e usando seus valores em x = 0 mostre que

$$x - \frac{x^3}{3!} \leqslant \sin x \leqslant x - \frac{x^3}{3!} + \frac{x^5}{5!},$$

$$1 - \frac{x^2}{2!} \leqslant \cos x \leqslant 1 - \frac{x^2}{2!} + \frac{x^4}{4!}.$$

- (c) Considerando termos de maior ordem como $(-1)^6 x^6/6!$, $(-1)^7 x^7/7!$ etc. nos lugares apropriados, mostre que o procedimento acima pode ser estendido para obter desigualdades mais "finas" para $\sin x = \cos x$. O que você pode concluir dessas expressões?
- 4. Assuma que existe uma função $f : \mathbb{R} \to \mathbb{R}$ tal que $f(x) \neq 0 \ \forall x \in \mathbb{R}$ e f'(x) = f(x), e seja $g : \mathbb{R} \to \mathbb{R}$ uma função qualquer tal que $g'(x) = g(x) \ \forall x \in \mathbb{R}$. Mostre que existe uma constante real C tal que g(x) = Cf(x). *Dica*: considere a derivada do quociente g(x)/f(x).

3