This Prospectus for a Dissertation

entitled

PLASMA FLOW CONTROL

FOR NOISE REDUCTION

ON AIRCRAFT LANDING GEAR

typeset with NDdiss 2ε v3.2013 (2013/04/16) on December 7, 2015 for Michael C. Wicks

This \LaTeX 2_{ε} classfile conforms to the University of Notre Dame style guidelines as of Fall 2012. However it is still possible to generate a non-conformant document if the instructions in the class file documentation are not followed!

Be sure to refer to the published Graduate School guidelines at http://graduateschool.nd.edu as well. Those guidelines override everything mentioned about formatting in the documentation for this $NDdiss2_{\varepsilon}$ class file.

It is YOUR responsibility to ensure that the Chapter titles and Table caption titles are put in CAPS LETTERS. This classfile does NOT do that!

This page can be disabled by specifying the "noinfo" option to the class invocation. (i.e.,\documentclass[...,noinfo] {nddiss2e})

This page is *NOT* part of the dissertation/thesis. It should be disabled before making final, formal submission, but should be included in the version submitted for format check.

NDdiss 2_{ε} documentation can be found at these locations:

http://www.gsu.nd.edu http://graduateschool.nd.edu

PLASMA FLOW CONTROL FOR NOISE REDUCTION ON AIRCRAFT LANDING GEAR

A Prospectus for a Dissertation

Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Michael C. Wicks

Flint O. Thomas, Director

Graduate Program in Aerospace and Mechanical Engineering

Notre Dame, Indiana

December 2015

© Copyright by
Michael C. Wicks
2015
All Rights Reserved

PLASMA FLOW CONTROL FOR NOISE REDUCTION ON AIRCRAFT LANDING GEAR

Abstract

by

Michael C. Wicks

Please note that the full LaTeX source code (and an associated Makefile) is available from the University of Notre Dame Graduate Student Union web site. The Information Technology Committee page¹ has all the necessary files in download-able form. This particular dissertation was developed under Unix, but is also be usable under Windows with the appropriate LaTeX setup and was modified on a Windows system in 2012-2013. It should also work with on Mac.

While the source code for this document provides an excellent example for how to use the NDdiss2 ε Lass to write a Notre Dame thesis, it is *not* a substitution for the documentation of the NDdiss2 ε Lass (also available on the ND GSU web site).

In this thesis, I will tell all that I know about Gnus. Gnus are wonderful little creatures that inhabit the center of the earth and give us wonderful and plentiful trees, dirt, and other earthly-things.

In short, we should love and cherish the Gnus. They can be very friendly, and are often mistaken for squirrels on the University of Notre Dame campus. Feed them

¹http://www.gsu.nd.edu/

whenever possible. If they get caught in trash cans, tip them over so that they can get out.

This abstract is going to continue on, including a few formulas, just for the sake of spilling over on to two pages so that we can see the author's name in the top right corner:

$$a^{2} + b^{2} = c^{2}$$

$$E = mc^{2}$$

$$\frac{e}{m} = c^{2}$$

$$a^{2} + b^{2} = \frac{e}{m}$$

These equations, by themselves mean nothing. But to the common Gnu, they define a whole way of living. While intricate mathematical implications certainly do not infiltrate the majority of humans' lives, every Gnu, from birth, is imbued with a sense of mathematical certainty and guidance. All Gnus, great and small, feel at one with mathematics. The cute furry bit is just a scam for their calculating minds.

To Laurimar

CONTENTS

FIGUR	ES	V
TABLE	S	V
CHAPT	TER 1: INTRODUCTION	1
1.1	Motivation	1
1.2	Theory of Aeroacoustics	1
1.3	Landing Gear	3
		3
	1.3.2 Noise Sources	3
1.4	Literature Review	3
	1.4.1 Single Cylinder Plasma Flow Control	3
	1.4.2 Tandem Cylinders Plasma Flow Control	3
	1.4.3 Shock Strut-Torque Arm Assembly Plasma Flow Control	3
CHAPT	TER 2: EXPERIMENTAL APPROACH	4
2.1		4
2.2	-	4
2.3		4
2.4		4
2.5		4
2.6		4
2.7	Data Acquisition	4
2.8		4
CHAPT	TER 3: OBJECTIVES AND FUTURE WORK	5
3.1		5
3.2	· ·	5
	•	5

FIGURES

TABLES

CHAPTER 1

INTRODUCTION

Airframe noise is significant

Landing gear is primary source of airframe noise

Health risks

1.1 Motivation

The present work is motivated to reduce noise by flow control via application of DBD plasma actuator technology.

1.2 Theory of Aeroacoustics

The modern theory of aeroacoustics, that is sound generated by aerodynamic means, is based on James Lighthill's so-called acoustic analogy. He states that sound generated in a fluid flow is only important in regions of turbulent fluctuations [?]. Based on this assumption, the Navier-Stokes Equation and isentropic equation of state are

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0 \tag{1.1}$$

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j + P_{ij})}{\partial x_i} = 0 \tag{1.2}$$

$$c_o^2 = \frac{\partial p}{\partial \rho}|_{s=const.} = \frac{p'}{\rho'}.$$
 (1.3)

$$\frac{\partial^2 \rho}{\partial t^2} - c_o^2 \nabla^2 \rho = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}.$$
 (1.4)

$$T_{ij} = \rho u_i u_j + P_{ij} - c_o^2 (\rho - \rho_0) \delta_{ij}, \tag{1.5}$$

where

$$\delta_{ij} = \left\{ \begin{array}{cc} 1 & \text{if} & i = j \\ 0 & \text{if} & i \neq j \end{array} \right\}$$
 (1.6)

$$T_{ij} \cong \rho_0 u_i u_j. \tag{1.7}$$

$$p' = c_o^2 \rho' = \frac{1}{4\pi} \frac{\partial^2}{\partial x_i \partial x_j} \int_V \frac{T_{ij}}{r} dV, \tag{1.8}$$

$$\int_{V} dV \propto D^{3} \tag{1.9}$$

$$T_{ij} \propto \rho_o U_o^2 \tag{1.10}$$

$$\frac{\partial}{\partial x_i} = \frac{\partial}{c_o \partial t} \propto \frac{f}{c_o} \propto \frac{U_o}{c_o D} \tag{1.11}$$

$$p' \propto \left(\frac{U_o}{c_o D}\right)^2 \left(D^3\right) \left(\frac{\rho_o U_o^2}{r}\right) \propto \frac{U_o^4}{r}$$
 (1.12)

$$W \propto p'^2 \propto \frac{U_o^8}{r^2} \tag{1.13}$$

$$p' = \underbrace{\frac{1}{4\pi} \frac{\partial^2}{\partial x_i \partial x_j} \int_{V} \left[\frac{T_{ij}}{r} \right] dV}_{I} - \underbrace{\frac{1}{4\pi} \frac{\partial}{\partial x_j} \int_{S} \left[\frac{P_{ij} + \rho v_i v_j}{r} \right] n_i dS}_{III} + \underbrace{\frac{1}{4\pi} \frac{\partial}{\partial t} \int_{S} \left[\frac{\rho v_i}{r} \right] n_i dS}_{III}, \tag{1.14}$$

$$II: \frac{1}{4\pi} \frac{\partial}{\partial x_j} \int_S \left[\frac{P_{ij} + \rho v_i v_j}{r} \right] n_i dS \propto \left(\frac{U_o}{c_o D} \right) \left(\frac{\rho_o U_o^2}{r} \right) \left(D^2 \right) \propto \frac{U_o^3}{r}$$
(1.15)

$$III: \frac{1}{4\pi} \frac{\partial}{\partial t} \int_{S} \left[\frac{\rho v_i}{r} \right] n_i dS \propto \left(\frac{U_o}{D} \right) \left(\frac{\rho_o U_o}{r} \right) \left(D^2 \right) \propto \frac{U_o^2}{r}. \tag{1.16}$$

$$II: W \propto p'^2 \propto \frac{U_o^6}{r^2},\tag{1.17}$$

$$III: W \propto p'^2 \propto \frac{U_o^4}{r^2}. \tag{1.18}$$

- 1.3 Landing Gear
- 1.3.1 Geometry
- 1.3.2 Noise Sources
- 1.4 Literature Review
- 1.4.1 Single Cylinder Plasma Flow Control
- 1.4.2 Tandem Cylinders Plasma Flow Control
- 1.4.3 Shock Strut-Torque Arm Assembly Plasma Flow Control

CHAPTER 2

EXPERIMENTAL APPROACH

- 2.1 Experimental Objective
- 2.2 Experimental Facility
- 2.3 Notre Dame G550 Nose Landing Gear Model
- 2.4 Flow Visualization
- 2.5 Pressure Measurements
- 2.6 Microphone Measurements
- 2.7 Data Acquisition
- 2.8 Current Results

CHAPTER 3

OBJECTIVES AND FUTURE WORK

- 3.1 Research Objectives
- 3.2 Proposed Future Work
- 3.3 Conclusion

This document was prepared & typeset with pdfIATEX, and formatted with NDdiss2 $_{\mathcal{E}}$ classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated by Megan Patnott.