wherein Q is $(CH_2)_u$, Q^i is $(CH_2)_v$, Q^{ii} is $(CH_2)_w$, Q^{iii} is $(CH_2)_x$, and Q^{iv} is $(CH_2)_y$, where u, v, w and x are individually 0, 1, 2, 3 or 4 and y is 1 or 2; wherein u, v, w and x are selected such that the ring is a diazabicyclononane; Z is a substituent species G; j is from 0 to 10; R is hydrogen or C_{1-8} alkyl; and Cy is

where each of X, X' and X" are individually nitrogen, nitrogen bonded to oxygen or carbon bonded to a substituent species G; A is O or C=O; D is a substituent species G; k is 0, 1 or 2; and Cx is selected from a group consisting of aryl, substituted aryl, heteroaryl, substituted heteroaryl, non-aromatic heterocyclyl, substituted non- aromatic heterocyclylalkyl and substituted non-aromatic heterocyclylalkyl,

wherein G is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, -F, -Cl, -Br, -I, -OR', -NR'R -CF₃, -CN, -N₃, -NO₂, -C₂ R', -SR', -SOR', -SO₂ CH₃, -SO₂ NR'R -C(=O)NR'R", -NR'C(=O)R -NR'SO₂ R -C(=O)R', -C(=O)OR', -(CH₂)qOR', -OC(=O)R', -(CR'R)_qOCH₂C₂ R', -(CR'R)qC(=O)R', -O(CR'R)_qC(=O)R', -C₂(CR'R')_qOR', -(CR'R)_qNR'R -OC(=O)NR'R and -NR'C(=O)OR' where R' and R are individually hydrogen, C₁₋₈ alkyl, an aromatic group-containing species or a substituted aromatic group-containing species, wherein the substituent is G and the aromatic group containing species is phenyl, biphenyl, naphthyl, pyridinyl, pyrimidinyl, quinolinyl, or indolyl, and

q is an integer from 1 to 6.

7. (Amended) The compound of Claim 6, wherein Y, Y', Y" and Y" all are carbon bonded to a substituent species G.

2

RTP 65047v2

8. (Amended) The compound of Claim 6, wherein one or two of Y, Y', Y" and Y" are nitrogen and the remaining are carbon bonded to a substituent species G.

- 9. (Amended) The compound of Claim 6, wherein E', E and E' all are carbon bonded to substituent species G.
- 10. (Amended) The compound of Claim 6, wherein one or two of E', E" and E" are nitrogen and the remaining are carbon bonded to substituent species G.

B3

12. (Amended) A compound of the formula:

$$\begin{matrix}Q^{i}&&&H\\Q^{iv}&&&\\Q^{iv}&&\\Q^{iii}&&\\Z_{j}&&\end{matrix}$$

wherein Q is $(CH_2)_u$, Q^i is $(CH_2)_v$, Q^{ii} is $(CH_2)_w$, Q^{iii} is $(CH_2)_x$, and Q^{iv} is $(CH_2)_y$, where u, v, w and x are individually 0, 1, 2, 3 or 4 and y is 1 or 2; Z is a substituent species G; j is from 0 to 10; R is hydrogen or C_{1-8} alkyl; and Cy is

where each of X, X' and X" are individually nitrogen, nitrogen bonded to oxygen or carbon bonded to a substituent species G; A is a covalent bond; D is a substituent species G; k is 0, 1 or 2; Cx is selected from a group consisting of aryl, substituted aryl, heteroaryl, substituted

heteroaryl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclylalkyl and substituted non-aromatic heterocyclylalkyl, with the proviso that Cx is not phenyl or substituted phenyl;

B

G is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, -F, -Cl, -Br, -I, -OR', -NR'R -CF₃, -CN, -N₃, -NO₂, -C₂ R', -SR', -SOR', -SO₂ CH₃, -SO₂ NR'R -C(=O)NR'R", -NR'C(=O)R -NR'SO₂ R -C(=O)R', -C(=O)OR', -(CH₂)qOR', -OC(=O)R', -(CR'R)_qOCH₂C₂ R', -(CR'R)_qC(=O)R', -O(CR'R)_qC(=O)R', -C₂(CR'R')_qOR', -(CR'R)_qNR'R -OC(=O)NR'R and -NR'C(=O)OR' where R' and R are individually hydrogen, C₁₋₈ alkyl, an aromatic group-containing species or a substituted aromatic group-containing species, wherein the substituent is G and the aromatic group containing species is phenyl, biphenyl, naphthyl, pyridinyl, pyrimidinyl, quinolinyl, or indolyl,

and q is an integer from 1 to 6.

BY

22. (Amended) A pharmaceutical composition useful for treatment of central nervous system disorders comprising a therapeutically effective amount of a compound of the formula:

$$\begin{matrix} Q^i & & H \\ Q^{iv} & & \\ Q^{iv} & & \\ Q^{iii} & & \\ Q^{iiii} & & \end{matrix}$$

wherein Q is $(CH_2)_u$, Q^i is $(CH_2)_v$, Q^{ii} is $(CH_2)_w$, Q^{iii} is $(CH_2)_x$, and Q^{iv} is $(CH_2)_y$, where u, v, w and x are individually 0, 1, 2, 3 or 4 and y is 1 or 2; wherein u, v, w and x are selected such that the ring is a diazabicyclononane; Z is a substituent species G; j is from 0 to 10; R is hydrogen or C_{1-8} alkyl; and Cy is

 $\mathcal{B}^{\mathcal{G}}$

where each of X, X' and X" are individually nitrogen, nitrogen bonded to oxygen or carbon bonded to a substituent species G; A is O or C=O; D is a substituent species G; k is 0, 1 or 2; and Cx is selected from a group consisting of aryl, substituted aryl, heteroaryl, substituted heteroaryl, non-aromatic heterocyclyl, substituted non- aromatic heterocyclylalkyl and substituted non-aromatic heterocyclylalkyl,

wherein G is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, -F, -Cl, -Br, -I, -OR', -NR'R -CF₃, -CN, -N₃, -NO₂, -C₂ R', -SR', -SOR', -SO₂ CH₃, -SO₂ NR'R -C(=O)NR'R", -NR'C(=O)R -NR'SO₂ R -C(=O)R', -C(=O)OR', -(CH₂)qOR', -OC(=O)R', -(CR'R)qOCH₂C₂ R', -(CR'R)qC(=O)R', -O(CR'R)qC(=O)R', -C₂(CR'R')_qOR', -(CR'R)_qNR'R -OC(=O)NR'R and -NR'C(=O)OR' where R' and R are individually hydrogen, C_{1-8} alkyl, an aromatic group-containing species or a substituted aromatic group-containing species, wherein the substituent is G and the aromatic group containing species is phenyl, biphenyl, naphthyl, pyridinyl, pyrimidinyl, quinolinyl, or indolyl, and

q is an integer from 1 to 6.

- 28. (Amended) The pharmaceutical composition of Claim 27, wherein Y, Y', Y" and Y" all are carbon bonded to a substituent species G.
- 29. (Amended) The pharmaceutical composition of Claim 27, wherein one or two of Y, Y', Y" and Y" are nitrogen and the remaining are carbon bonded to a substituent species G.

35

- 30. (Amended) The pharmaceutical composition of Claim 27, wherein E', E" and E" all are carbon bonded to substituent species G.
- 31. (Amended) The pharmaceutical composition of Claim 27, wherein one or two of E', E" and E" are nitrogen and the remaining are carbon bonded to substituent species G.

36

33. (Amended) A pharmaceutical composition useful for treatment of central nervous system disorders comprising a therapeutically effective amount of a compound of the formula:

$$Q \qquad Q^{i} \qquad M \qquad M$$

$$Q^{iv} \qquad Q^{iv} \qquad Q^{iii} \qquad Q^{iii} \qquad Q^{iii}$$

$$Q^{ii} \qquad Q^{ii} \qquad Q^{iii} \qquad Q^{ii} \qquad Q$$

wherein Q is $(CH_2)_u$, Q^i is $(CH_2)_v$, Q^{ii} is $(CH_2)_w$, Q^{iii} is $(CH_2)_x$, and Q^{iv} is $(CH_2)_y$, where u, v, w and x are individually 0, 1, 2, 3 or 4 and y is 1 or 2; Z is a substituent species G; j is from 0 to 10; R is hydrogen or C_{1-8} alkyl; and Cy is

where each of X, X' and X" are individually nitrogen, nitrogen bonded to oxygen or carbon bonded to a substituent species G; A is a covalent bond; D is a substituent species G; k is 0, 1 or 2; Cx is selected from a group consisting of aryl, substituted aryl, heteroaryl, substituted heteroaryl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclyl, non-aromatic

86

heterocyclylalkyl and substituted non-aromatic heterocyclylalkyl, with the proviso that Cx is not phenyl or substituted phenyl;

G is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, non-aromatic heterocyclyl, substituted non-aromatic heterocyclyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, -F, -Cl, -Br, -I, -OR', -NR'R -CF₃, -CN, -N₃, -NO₂, -C₂ R', -SR', -SOR', -SO₂ CH₃, -SO₂ NR'R - C(=O)NR'R", -NR'C(=O)R -NR'SO₂ R -C(=O)R', -C(=O)OR', -(CH₂)qOR', -OC(=O)R', -(CR'R)_qOCH₂C₂ R', -(CR'R)_qC(=O)R', -O(CR'R)_qC(=O)R', -C₂(CR'R')_qOR', -(CR'R)_qNR'R - OC(=O)NR'R and -NR'C(=O)OR' where R' and R are individually hydrogen, C₁₋₈ alkyl, an aromatic group-containing species or a substituted aromatic group-containing species, wherein the substituent is G and the aromatic group containing species is phenyl, biphenyl, naphthyl, pyridinyl, pyrimidinyl, quinolinyl, or indolyl,

and q is an integer from 1 to 6.

- 39. (Amended) The pharmaceutical composition of Claim 38, wherein Y, Y', Y" and Y" all are carbon bonded to a substituent species G.
- 40. (Amended) The pharmaceutical composition of Claim 38, wherein one or two of Y, Y', Y" and Y" are nitrogen and the remaining are carbon bonded to a substituent species G.
- 41. (Amended) The pharmaceutical composition of Claim 38, wherein E', E" and E" all are carbon bonded to substituent species G.
- 42. (Amended) The pharmaceutical composition of Claim 38, wherein one or two of E', E" and E" are nitrogen and the remaining are carbon bonded to substituent species G.