Analog Electronics

Fengchun Zhang

fz@es.aau.dk

Agenda

- Introduction to analog electronics
- Course overview
 - Contents
 - Exam
 - Course execution
- Semiconductor & PN junction
- Diode
 - Models
 - I-V, input-output characteristics

What is Analog electronics?

- Deal with continuous signals
 - Capture, process and transmit real-world information
- Basis of many digital components in modern system design

The two graphic processing unit (GPU) chips host 28.3 billion transistors each

Provisional course plan

- Module 1: semiconductor, PN junction and diode
 - 1.1 Course introduction, semiconductors, PN junction, diode models
 - 1.2 Diode circuit principle, practical diode circuits
 - 1.3 Practical diode circuits, small signal model
 - 1.4 Measurement 1
- Module 2: Bipolar Junction Transistor (BJT)
 - 2.1 Structure and operation, properties in various regions, bias, large-signal & small-signal model, early effect
 - 2.2 Common-emitter stage w/o and w/ degeneration, biassing techniques
 - 2.3 Common-base stage, emitter followers
 - 2.4 Hybrid pi model
 - 2.5 Measurement 2

Provisional course plan

- Module 3: Metal-Oxide-Semiconductor Field-Effect Transistor(MOSFET)
 - 3.1 Introduction to MOSFETs, biasing, transconductance
 - 3.2 Large-signal & small-signal operation, NMOS & PMOS
 - 3.3 Common-source stage w/o and w/ degeneration, biasing techniques
 - 3.4 Time harmonic distortion
 - 3.5 Measurement 3

Exam

- Assessment : 7-step scale
- Written exam in June
 - Based on assignments
 - 6 tasks, 2 for each module

Course execution

- Traditional lectures and assignments in groups:
 - Preferably calculate tasks together on the board, bring a notebook and pen.
 - Quizzes during the lecture.
 - It is not important that all assignments are calculated. BUT it is important that you understand the principles!
 - Simulations: LTspice
- Lab session:
 - Measurements
 - With simulations and measurements, you must always evaluate the results do they make sense in relation to characteristics of the circuit.

Agenda

- Introduction of analog eletronics
- Course overview
 - Contents
 - Exam
 - Course execution
- Semiconductor & PN junction
- Diode
 - Models
 - I-V and input-output characteristics

What is the raw material for the GPU chips?

Semiconductors devices

Semiconductor

Conductivity: ability to allow the flow of electric current

Semiconductor Intrinsic (Undoped)

Extrinsic (Doped)

Free electrons / holes : $10^{10} \sim 10^{12}$ /cm³ VS. $10^{15} \sim 10^{20}$ /cm³ in room temperature. Both n-type and p-type silicon are more electrically conductive than intrinsic silicon.

PN junction

Quiz

When the PN junction terminals are left open, what will \emph{V} be?

PN junction- reverse bias

- free electrons drawn to the positive potential → more ⊕ ions
- Holes drawn to the negative potential \rightarrow more \bigcirc ions
- → Wider depletion region

PN junction- reverse bias

Varactor: a capacitor whose capacitance can be controlled by a voltage Application: oscillators

PN junction- reverse breakdown

- When V becomes very negative, PN junction is broken down.
- Limit the reverse current to avoid damage
- Application: Zener diode

PN junction- forward bias

- Battery V pushes the free electrons (majority charge carrier) from N to P.
- As long as the battery can provide current, the current can flow from P to N.
- The current increases dramatically as V increases.
- A 'fully conducting' diode → voltage drop is 0.6 V ~0.8 V

PN junction- Shockley's equation

 I_s and V_T are temperature dependent.

 I_s doubles for every 5°C rise in temperature. $V_T \approx 26$ mV @ 27 °C

$$I = I_S \left(e^{\frac{V}{nV_T}} - 1 \right)$$
 For anything with PN junctions

 I_s : reverse saturation current, given in datasheet

V: voltage across the junction

n: ideal factor, depending on the construction of the

PN junction, 1 < n < 2, n = 1 for ideal PN junction

 V_T : thermal voltage

$$V_T = \frac{KT_K}{q}$$

K: Boltzmann's constant = 1.38×10^{-23} J/K

 T_K : the absolute temperature in kelvins = 273 + x °C

q: the magnitude of electronic charge = 1.6×10^{-19} C

PN junction-temperature coefficient

Temperature coefficient =
$$\frac{\Delta V}{\Delta T}\Big|_{I=I_o} = \frac{V_2 - V_1}{T_2 - T_1}\Big|_{I=I_o}$$

Agenda

- Introduction of analog eletronics
- Course overview
 - Contents
 - Exam
 - Course execution
- Semiconductor & PN junction
- Diode
 - models
 - I-V and input-output characteristics

Diode

- A 2-terminal device 'passes' positive voltage & 'blocks' negative voltage
- A PN junction is a fundamental example of a diode.

PN diode

$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

- I_s : reverse saturation current, given in datasheet
- V_D : voltage across the diode
- n: ideal factor, depending on the diode's construction, 1 < n < 2, n = 1 for ideal diode
- V_T : thermal voltage, $V_T \approx 26$ mV @ 27 °C

When a diode is forward-biased:

$$I_D \approx I_S e^{\frac{V_D}{V_T}}$$

- For $V_D \gg V_T$ ($V_D > 4V_T$ in practice), $e^4 \approx 54.5$
- n = 1

Quiz: PN diode

$$I_S = 10^{-16} \text{A}$$
, $V_T = 26 \text{ mV}$, and $I = 1 \text{ mA}$, $V_D = ?$

 $I_D \approx I_S e^{\frac{V_D}{V_T}}$ holds for both applying a voltage source or a current source.

PN diode

For
$$I = I_1$$
, we have $V_D = V_{D_1}$.

If we want to achieve
$$I=I_2=10I_1$$
,
$$V_{D_2}=V_{D_1}+\Delta V$$

$$\Delta V = ?$$

 $V_T \approx 26 \text{ mV} \otimes 27 ^{\circ}\text{C}$

Diode data sheet

- ratings: What the manufacturer guarantees that it can withstand
- Characteristics: Properties

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Repetitive peak reverse voltage		V _{RRM}	100	V		
Reverse voltage		V _R	75	V		
Peak forward surge current	t _p = 1 μs	I _{FSM}	2	Α		
Repetitive peak forward current		I _{FRM}	500	mA		
Forward continuous current		I _F	300	mA		
Average forward current	V _R = 0	I _{F(AV)}	150	mA		
Dower dissipation	I = 4 mm, T _L = 45 °C	P _{tot}	440	mW		
Power dissipation	I = 4 mm, T _L ≤ 25 °C	P _{tot}	500	mW		

 $I_D V_D$ < power dissipation

THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION SYMBOL		VALUE	UNIT		
Thermal resistance junction to ambient air	I = 4 mm, T _L = constant	R _{thJA}	350	K/W		
Junction temperature		Tj	175	°C		
Storage temperature range		T _{stg}	-65 to +150	°C		

Diode data sheet

• Characteristics: Properties

Fig. 1 - Forward Voltage vs. Junction Temperature

10	000 =						1
	F	1N41	48				1
(mA)	100			//			
I _F - Forward Current (mA)	F			$//_{sc}$	attering L	imit	1
Ö	10			/ · · ·			
ward	F		-//				1
ᅙ.	1						
<u> </u>	F		#				1
	0.1 L				_ T _J = 2	5 °C — 	•
	0	0.	.4 0	.8 1	1.2 1	.6 2	.0
94 91	94 9170 V _F - Forward Voltage (V)						

Fig. 2 - Forward Current vs. Forward Voltage

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT							
PARAMETER	TEST CONDITION		MIN.	TYP.	MAX.	UNIT	
Forward voltage	$I_F = 10 \text{ mA}$	V _F			1	V	
	V _R = 20 V	I _R			25	nA	
Reverse current	V _R = 20 V, T _j = 150 °C	I _R			50	μΑ	
	V _R = 75 V	I _R			5	μA	
Breakdown voltage	$I_R = 100 \mu A, t_p/T = 0.01,$ $t_p = 0.3 \text{ ms}$	V _(BR)	100			V	
Diode capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz,}$ $V_{HF} = 50 \text{ mV}$	C _D			4	pF	
Rectification efficiency	V _{HF} = 2 V, f = 100 MHz	η _r	45			%	
Davaraa raaayany tima	$I_F = I_R = 10 \text{ mA},$ $I_R = 1 \text{ mA}$	t _{rr}			8	ns	
Reverse recovery time	$I_F = 10 \text{ mA}, V_R = 6 \text{ V},$ $I_R = 0.1 \times I_R, R_L = 100 \Omega$	t _{rr}			4	ns	

Fig. 3 - Reverse Current vs. Reverse Voltage

LTspice simulation

- **Extract** of Spice parameters for diode
 - o Some parameters are disabled by default
 - o Default temperature 27°C= 300 K

Spice symbol	S & S symbol	Unit	Default value	1N4148 Motorola	Description
ICE	In _S	Α	1e-14	2.52 n	Saturation current
N	n	-	1	1,752	Emission coefficient
RS	R. _S	Ω	0	0.568	Ohmic resistance
VJ	V ₀	V	1		Built-in potential
СЈО	C _{j0}	F	0	4 p.m	Zero-bias depletion cap.
М	m	-	0.5	0.4	Grading coefficient
Π	τ _T	р	0	20 n	Transit time
BV	V _{ZK}	V	inf.		Breakdown voltage
IBV	In _{ZK}	А	reach		Reverse current @ V ZK

PN diode

Can we solve the circuit by hand?

PN diode models

Exponential model (usage rate =10-20%) I_D V_D

$$I_D \approx I_S e^{\frac{V_D}{V_T}}$$

Constant voltage drop model (usage rate = 70-80%)

The diode has two states:

- $V_D < V_{D,on} \rightarrow \text{diode is off } \rightarrow \text{open circuit}$

PN diode circuit

Assuming the constant voltage drop model, can we solve the circuit by hand?

$$I = \frac{V - V_{D,on}}{R}$$

Types of characteristics for circuits

- I-V characteristics
- Input-output characteristics
- Time response

Principle of diode circuit analysis

- Begin by assuming a certain state of diodes, i.e., on or off, check the final results against these assumptions.
- If a diode is about to turn on or off, it must sustain a voltage of $V_{D,on}$, but the current flowing through it is small, i.e., approximating 0 A
- If a diode is on and carries a current, the current must flow from the anode to the cathode, i.e., along the direction of the arrow.

PN diode circuit—I-V

Assuming the constant voltage drop model, plot the I-V curve for the diode in reverse and forward bias regions.

PN diode circuit — input-output

Assuming the constant voltage drop model, plot the V_D-V curve for the diode in reverse and forward bias regions.

Quiz: PN diode circuit – input - output

Assuming the constant voltage drop model and flip the diode upside down, plot the V_D-V curve for the diode in reverse and forward bias regions.

Example

Assuming the constant voltage drop model and the diode in reverse and forward bias regions, I_1 , I_{D1} , I_{D2} and $V_o = ?$

PN diode circuit

Assuming the constant voltage drop model and the diode in reverse and forward bias regions,

- plot the I-V curve
- Plot the V_{R1} -V curve
- Plot the V_D -V curve
- Plot the V_{R2} -V curve

Quiz: PN diode circuit

Assuming the constant voltage drop model and the diode in reverse and forward bias regions, the diode is on or off? $I=?V_{R1}=?$

$$V_D = ? V_{R2} = ?$$

- When V = 0.5 V
- When V = 0.7 V
- When V = 2 V

PN diode circuit--LTspice

Assuming the constant voltage drop model and the diode in reverse and forward bias regions,

- plot the I-V curve
- Plot the V_{R1} -V curve
- Plot the V_D -V curve
- Plot the V_{R2} -V curve

