



Overview of Few shot learning

Techniques

Difference between supervised and one shot learning

N-way K-shot learning

Contributions

Matchingnets

Differentiable Nearest neighbour

- FCE
- Attention Kernel

Training strategy





Recognize a person/object given just few images of it.



**Inspired** from how a child able to distinguish a zebra and elephant by just looking at few images.

# TECHNIQUES(IN PAPER)

- One shot Learning with attention and memory.
- Uniform training and testing strategy.(training goals and testing goals are same)



# DIFFERENCE BETWEEN SUPERVISED AND ONE-SHOT LEARNING

### Supervised learning

 Train image in 'S' label space and try to match a new image to the same 'S' label space.

### One-shot learning

- Train image in 'S1' label space and match a new image to different 'S2' label space
- Idea: A single image of zebra is enough to distinguish with our objects for humans



### N-WAY K-SHOT LEARNING

- Model trained on different label space
- A subset of label set is taken and support set an batch set are created.
- K represents number of examples in support set per each class.
- N represents number of classes in support set.
- In given image it's 3-way 1 shot learning

# MATCHING NETS

Combine both embedding and classification to form an end to end differentiable nearset neighbour classifier.

Steps:

Embed a high dimensional sample into a low dimensional space(FCE)

Perform a generalised form of nearest neighbours classification(Similarity function)



Parametric models:

 Class props are slowly learnt by models into it's parameters.(Deep learning, traditional ml algo's)

Non
Parametric
models:

- Doesn't require any training
- Performance depends on the chosen metric.



## ARCHITECTURE

- All support set embedding are created.
- Query image embedding is formed.
- Calculates distance between them.
- Nearest class is outputed

### TERMINOLOGIES

Y^ - Prediction of the model

X^ - Query example

Y\_I - support set label - one hot encoded label vectors

X\_I – Support set example

A(X^,X\_i) - Pairwise similarity function between query example, support set examples – attention function.

**Embedding function used** - VGG/Inception

### **Attention function used**

- **C**: Cosine similarity
- F,g: embedding functions for the query and support samples.

FCE

G – embedding of support set, Encode each support sample in context of it's neighbours within support set(S).

F - Embedding of tragets, Encode targets in context of it's support

# ATTENTION KERNEL

 Softmax over cosine diatnce between f(x,S) and g(X\_i): distance between target embedding and support sample embedding.







# CROSS VALIDATION ON COVIDXCT

### ENSURED BELOW THINGS

01

No Data leakage

02

Ensure class ratio while splitting

03

Reduce the class imbalance





Confusion Matrix [[5 0 0] [0 5 0] [4 0 1]] Accuracy: 0.73 Micro Precision: 0.73 Micro Recall: 0.73 Micro F1-score: 0.73 Macro Precision: 0.85 Macro Recall: 0.73 Macro F1-score: 0.68 Weighted Precision: 0.85 Weighted Recall: 0.73 Weighted F1-score: 0.68 Classification Report precision recall f1-score support Class 1 0.56 1.00 0.71 Class 2 1.00 1.00 1.00 Class 3 5 1.00 0.20 0.33 0.73 15 accuracy 0.85 0.73 0.68 15 macro avg