Отчет о выполнении лабораторной работы 3.2.1 Изучение плазмы газового разряда в неоне

Исламов Сардор, группа Б02-111

15 октября 2022 г.

Аннотация. В ходе работы снята вольт-амперная характеристика тлеющего разряда и зондовые характеристики при разных токах разряда. По результатам измерений рассчитаны концентрация и температура электронов в плазме, плазменная частота, поляризационная длина, дебаевский радиус экранирования и степень ионизации.

Теоретическое введение

Плазма. В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi n e^2}}$ – радиус Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. \tag{4}$$

Теперь выделим параллелепипед с плотностью n электронов (рис. 1), сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

(5) Рис. 1: Параллелепипед с плотностью n

Одиночный зонд. При внесении в плазму уединённого проводника – зонда – с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS, \quad I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
 (6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{\rm eh}$ – электронный ток насыщения, а минимальное $I_{\rm ih}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Рис. 2: Вольт-амперная характеристика одиночного зонда

Двойной зонд. Двойной зонд — система из двух одинаковых зондов, расположенных на неболь-

шом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right).$$
(8)

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} \tanh \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

Рис. 3: Вольт-амперная характеристика двойного зонда

$$I = I_{iH} \tanh \frac{eU}{2kT_e} + AU. \tag{11}$$

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом $\tan \alpha \approx \alpha$ при малых α и $A\to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

Экспериментальная установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 1. Стеклянная газоразрядная трубка имеет холодный (ненагреваемый) полый катод, три анода и геттерный узел - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор $R_{\sigma}(\sim 450 \, \mathrm{kOm})$ к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5 кВ.

Рис. 4: Схема установки для исследования газового разряда

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке - цифровым вольтметром V_1 (мультиметром GDM), подключённым к трубке через высоко-омный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром $V_2(\text{GDM})$. Для измерения зондового тока используется мультиметр $A_2(\text{GDM})$. Анод-III в нашей работе не используется.

Результаты измерений и обработка данных

Для начала, плавно увеличивая напряжение на ВИП определим напряжение зажигания разряда $U_{\text{заж}}=228\mathrm{B}.$

Теперь снимем зависимость напряжения разряда U_p от его тока I_p как при его увеличении, так и при убывании (табл. 1).

I_p , дел	125	115	105	95	85	75	65	55	45	35	25	14
$U_p \downarrow$, B	24.34	24.47	24.85	25.49	26.54	27.45	26.70	28.48	30.49	32.95	33.80	34.85
$U_p \uparrow$, B	24.27	24.42	24.78	25.42	26.46	27.40	26.66	28.40	30.69	32.96	33.83	34.84

Таблица 1: Вольт-амперная характеристика разряда

Изобразим полученные данные на графике (рис. 5)

Рис. 5: ВАХ рязряда

Максималльное дифференциальное сопротивлние заряда $R_{\text{диф}}=(5.9\pm0.2)\cdot10^3~\text{Ом}$ 4) $GPS:U_2=25,GDM:U=24.98$

Проведем серию измерений для вольт-амперной характеристики двойного зонда при различных разрядных токах (табл. 2).

$I_p = 5 \text{ MA}$											
U_3 , B,	24.958	22.011	19.046	15.860	13.170	10.000	8.088	5.962	3.9183	2.1389	0.6032
I_3 , MKA	107.91	104.46	101.80	98.96	94.37	85.33	76.10	64.40	49.85	35.11	21.29
$-U_3$, B,	0.5530	2.0379	4.0678	6.091	8.044	9.971	13.028	16.000	19.148	22.083	24.964
$-I_3$, мкА	9.01	33.30	51.12	65.72	77.45	87.38	98.40	105.13	109.91	113.03	115.68
$I_p = 3 \text{ MA}$											
U_3 , B,	25.045	22.088	19.035	16.232	13.060	10.138	8.112	5.965	3.9684	2.0783	0.6441
I_3 , мк A	58.00	56.39	54.73	53.11	50.58	46.46	41.64	34.58	25.83	15.91	6.96
$-U_3$, B,	0.6429	2.0515	4.0726	6.000	8.005	9.999	13.047	16.156	18.909	22.112	24.988
$-I_3$, мкА	5.03	14.23	25.45	34.30	41.69	47.12	52.38	55.17	56.92	58.73	60.37
$I_p=1.5~\mathrm{mA}$											
U_3 , B,	24.991	21.953	19.000	16.032	13.161	10.042	7.944	5.955	3.9200	1.9521	0.5289
I_3 , MKA	27.61	26.64	25.73	24.79	23.63	21.52	19.13	15.97	11.71	6.39	2.18
$-U_3$, B,	0.5345	2.0794	4.1773	6.079	7.989	10.249	13.350	16.303	18.987	22.242	24.967
$-I_3$, мкА	1.81	6.29	12.01	16.23	19.60	22.46	24.75	26.07	26.96	28.01	28.90

Таблица 2: Зондовые характеристики при разных токах

08.10.22. Preusel

Теперь отобразим данные на графиках и определим $I_{i \text{H}}$ и производную в нуле.

Рис. 6: ВАХ двойного зонда при $I_p=5~\mathrm{mA}$

- (а) ВАХ двойного зонда при $I_p=3$ мА
- (b) ВАХ двойного зонда при $I_p=1.5~\mathrm{mA}$

Также изобразим все ВАХ на одном графике (рис. 7)

Рис. 7: ВАХ двойного зонда при различных токах

Как видно из графиков, ионный ток насыщения различен для половин графиков выше и ниже нуля, поэтому будем брать его усредненное значение.

 $I_{i\mathrm{h}}(5\mathrm{mA})=88.0\pm4.7~\mathrm{mkA},\ I_{i\mathrm{h}}(3\mathrm{mA})=45.1\pm1.0~\mathrm{mkA},\ I_{i\mathrm{h}}(1.5\mathrm{mA})=20.3\pm0.5~\mathrm{mkA}$

Теперь из (12) можем вычислить температуру электронов T_e .

Также из (7) расчитаем концентрацию ионов n_i , полагая ее равной концентрации электронов n_e .

Из (5) получим плазменную частоту колебаний электронов ω_p

Расчитаем электронную поляризационную длину r_{D_e} , радиус Дебая r_D и по формуле (4) вычислим среднее число ионов в сфере такого радиуса $\langle N_D \rangle$. Степень ионизации α получим по соотношению $\alpha = n_i/n$, где n – общее число частиц в единице объема (давление $P = nkT_i \approx 1$ мбар). Все результаты занесем в таблицу 3.

I_p , мА	$T_e, 10^4, \mathrm{K}$	$n_e, 10^{13} \text{M}^{-3}$	$\omega_p, 10^3 \frac{\mathrm{pag}}{\mathrm{cek}}$	$r_{D_e}, 10^{-4} \text{M}$	$r_D, 10^{-4}$	$< N_D > 10^3$	$\alpha, 10^{-6}$
5	1.7 ± 0.1	6.0 ± 0.5	4.6 ± 0.2	3.4 ± 0.2	1.5 ± 0.1	0.85 ± 0.24	14 ± 2
3	2.4 ± 0.5	2.6 ± 0.3	3.0 ± 0.2	6.2 ± 0.5	2.2 ± 0.1	1.2 ± 0.3	8.6 ± 0.7
1.5	3.9 ± 0.1	0.91 ± 0.03	1.8 ± 0.1	13.5 ± 0.4	3.8 ± 0.1	2.1 ± 0.3	4.9 ± 0.3

Таблица 3: Вычисленные характеристики

Подведение итогов

В ходе работы снята вольт-амперная характеристика тлеющего разряда и зондовые характеристики при разных токах разряда. По результатам измерений рассчитаны концентрация и температура электронов в плазме, плазменная частота, поляризационная длина, дебаевский радиус экранирования и степень ионизации.

По полученным значениям характеристик можно заключить, что плазма не является квазинейтральной, т.к. электронная поляризационная длина не сильно превосходит дебаевский радиус. При этом плазму можно считать идеальным газом, в связи с тем, что число Дебая сильно превосходит единицу.