Clipping Beck

P(1) =
$$(n, y_1)$$
 Possanderic equation of a line (n, y_1) (n, y_2) (n, y_2) (n, y_3) (n, y_4) (n, y_2) (n, y_3) (n, y_4) $(n,$

Ower Pock Algorithm

- D Calculate tualves of intersection points with
- 2) Classify intersection points whather it is PE/PL Select PE with highest It = and PL with lowest value of t/th

is $t_E > t_L$ line segment outside clip wholen $t_E \leq t_L$ this line is in olip intersection. $P(t) = (N_0, y_0) + t (P_1 - P_0)$ of $= (N_0, y_0) + t (P_1 - P_0)$

$$t = \frac{N_i}{N_i} \frac{\sum_{i=1}^{N_i} P_{ii} - P_{ii}}{\sum_{i=1}^{N_i} P_{ii}} \frac{1}{\sum_{i=1}^{N_i} P_{ii}} \frac{$$

	N Y(P.	- PE)N /6	1-69U; \	b
Bondory	(0,1)	30-9max	9,-90	9,-90
y Top	()	- (45 9 min)	- (y,-y ₀)	9min - 90
Bottom	(120)	No- now	C	7 max No
n Diger	(6,1-1)	(
1067			1 ,	γ $\gamma_1 - \gamma_0$

te=0.625 te2t1 tr=1 1+is dip intersection

 $P(E) = (N_0, Y_0) + t \times D$ P(0.625) = (-250, 200) + 0.625 (40, -10) = (0, 137.5)P(1) = (150, 100)

(0,137.5) and (150,100) are endpoints 18 cliptine

ANS