Introduction to TensorFlow and PyTorch

Kendall Chuang and David Clark

February 16, 2017

Acknowledgements

Thank you to Tubular Labs for hosting this workshop!

Who We Are

- David Clark
 - Data Science Consultant
 - http://www.dmclark5.com/

- Kendall Chuang
 - Senior Python Engineer at Ayasdi

Objectives

Learn basic concepts of neural networks

Work through tutorial on Tensor Flow

Work through tutorial on PyTorch

Compare/contrast each deep learning framework

What is Tensor Flow?

- Developed by the Google Brain Team and open-sourced in November 2015
 - Graph based
 - Nodes are operations
 - Edges are multi-dimensional arrays called tensors
- All operations are done outside of Python
- Inputs are stored in a placeholder() or Variable()
 - placeholder(): fixed input
 - Variable(): variable input
- Inputs are populated during a Tensor Flow session

What is a tensor?

Vector: One-dimension

Matrix: Two-dimensions

• Tensor: n-dimensions

't'	
'e'	
'n'	
's'	
'o'	
'r'	

tensor of dimensions [6] (vector of dimension 6)

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

tensor of dimensions [6,4] (matrix 6 by 4)

tensor of dimensions [4,4,2]

Image from http://noaxiom.org/tensor.

Tensor Flow stores data in tensors

What is PyTorch?

- Python wrapper over Torch (C++ Library) released in Jan 2017
- Also stores data and variables as Tensors
- Developed by Facebook and other companies
 - Graph based
 - Nodes are operations
 - Edges are multi-dimensional arrays called tensors
- Deep Learning operations are done outside of Python
- Tensor and Variable objects
 - o Tensor(): inputs/outputs
 - Variable(): variable
- Does not have the concept of a session

What is a neural network?

- Machine learning based on how the brain works
- Input is passed through neurons.
- Weights and biases applied.
- Decisions made using activation function.

What is a neural network?

- Many inputs can pass through a single neuron
- Hidden layers
 - Layer of neurons between inputs and outputs
 - Increased modeling complexity
- Inputs, hidden layers, outputs => neural network
- Deep learning
 - Many hidden layers
 - Can make very complex decisions

Softmax Regression

- Regression for j = I,... K
- Algorithm for categorical data
- Evidence: Weighted sum of chemical properties.
 - Negative weight: is not of that quality.
 - Positive weight: is of that quality.

$$E_i = \sum_j W_{i,j} x_j + b_i$$

Convert evidence to predicted probabilities using softmax equation

$$\sigma(E)_j = \frac{e^{E_j}}{\sum_{j=i}^K} \quad for \ j = 1, ...K$$

Cost/Loss Function

- Model trained by minimizing the cost function
- Cross-entropy cost function:

$$H_{y'}(y) = -\sum_i y_i' log(y_i)$$

- y = softmax(E)
- y' = labels
- More Info: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

Back Propagation

 Backpropagation is used to evaluate how variables affect the minimization of the cost function

Training Loop

- I. Forward Propagation (feed in variables forward, calculate the results)
- 2. Calculate Loss at the Output
- 3. Back Propagation (propagate loss backwards, estimate error)
- 4. Optimization with Gradient Descent Algorithm
- 5. Repeat until done!