a) Aplique el algoritmo DFS, para encontrar todos los vértices conectados con el vértice 3

DFS			Postorden	2	0	1	4	5		
3										
	1									
		0								
		2	(0))_	,	(1)			. 2 . 1
	4		~		/	1			0	
	5			1	2	/			1	2 0
						/				H L L
	Visitado	Padre	(4)		1/				2	
0	Т	1	*		3				3	5 4 2 1
1	Т	3	\	/					_	$H \vDash U = U$
2	Т	1)	ዺ/					4	2
3	Т	N/A	(5)					5	4 3

b) Aplique el algoritmo BFS, para encontrar todos los vértices conectados con el vértice 3.

Т

Т

3

3

				••••						_
BFS		Postorden	0	5	4	2	1	3		
1		Cola	3	1	2	4	5	0	Num menor	
2		Cola	3	5	4	2	1	0	Num mayor	
4										
5			(0)			_	(1))	
	0			\checkmark				γ	0	
1										2 0
	Visitado	Padre				2)		1	
0	Т	1		4		1			2	
1	Т	3	'	\checkmark		لم	\prec		2	5 4 2 1
2	Т	1				ζ.	3)		3	
3	T	N/A				7			4	2
			1		\sim					— —
4	T	3		(!	5)				5	

Encuentre el orden topológico de los vértices en el grafo siguiente, iniciando vértice 3.

DFS			Orden	3	1	0	2	4	5
3			Postorden	2	0	1	4	5	3
	1		Orden topológico	3	5	4	1	0	2
		0							

	Visitado	Padre
0	Т	1
1	Т	3
2	Т	1
3	Т	N/A
4	Т	3

Ejercicio 3. Árboles de expansión mínima

Dado el siguiente grafo no dirigido

V → 7	
13 👉	Α
0-1	7
0-2	5
0-6	12
0-4	8
1-2	11
1-3	4
2-3	9
2-6	17
3-4	3
3-5	6
3-6	1
4-5	10
4-6	2

a) Dibuje su grafo asociado.

b) Encuentre el orden en que se agregan los vértices al árbol de expansión mínima usando el algoritmo de Kruskal.

C: 25

c) Encuentre el orden en que se agregan los vértices al árbol de expansión mínima usando el algoritmo de Prim.

C: 1 + 2 + 4 + 7 + 5 + 6

C: 25

Encuentre la ruta más corta desde el vértice 3 hacia cualquier otro vértice en el siguiente grafo.

Definiendo las posibles rutas de 3 a 1

Ruta más corta = [14,0]

Valor = 14

Recorrido = 3 -2 - 0 - 1

La ruta mas corta de 3 a 1 es:

