Übungsaufgaben 4: Kraft-Wärme-Kopplung (KWK)

1. Wärmebereitstellung mit Sattdampf oder Heizdampf

Ein Verbraucher benötigt einen Wärmestrom $\dot{Q} = 150$ MW mit einer Mindesttemperatur von $t_D = 200$ °C Dampf (entsprechend $p_D = 1,555$ MPa).

- a) Welcher Massenstrom Dampf muss zur Verfügung gestellt werden, wenn der Dampf mit Sattdampfparametern in einem Dampfkessel erzeugt wird?
- b) Welcher Brennstoffmassenstrom ($H_i = 18 \text{ MJ/kg}$) wird benötigt, wenn der Kessel mit einem Wirkungsgrad $\eta_K = 0.92$ arbeitet?
- c) Wie ändern sich Dampfstrom und Brennstoffaufwand, wenn der Verbraucher durch gedrosselten Frischdampf ($p_I = 10$ MPa und $t_I = 450$ °C) aus dem Dampferzeuger eines Kraftwerks mit gleichem Wirkungsgrad versorgt wird?

2. Kondensationskraftwerk

Ein Verbraucherschwerpunkt benötigt eine elektrische Leistung von P = 30 MW, die mit einem DKP bereitgestellt wird.

Der Dampfkessel hat einen Wirkungsgrad von $\eta_K = 0.92$, er Frischdampf für die Turbinen wird mit $p_I = 10$ MPa und $t_I = 450$ °C erzeugt. Die Turbine arbeitet mit einem Isentropenwirkngsgrad von $\eta_{is} = 0.88$. Der Kondensatordruck beträgt $p_K = 4$ kPa.

Als Brennstoff dient Biomasse mit einem Heizwert $H_U = 18$ MJ/kg. Bestimmen Sie die Enthalpien h_{1-3} , berechnen Sie den thermischen Wirkungsgrad und den benötigten Dampf- und Brennstoffmassenstrom.

3. Vergleich getrennte Erzeugung und KWK

Ein Verbraucherschwerpunkt benötigt eine elektrische Leistung von P = 30 MW und einen Wärmestrom $\dot{Q} = 150$ MW (Dampf mit $p_D = 1,55$ MPa, Mindesttemperatur t = 200 °C). Vergleichen Sie anhand des benötigten Dampf- und Brennstoffmassenstroms sowie der Brennstoffaufwandskennzahl

- a) getrennte Erzeugung in einem Heizwerk und einem Kondensationskraftwerk
- b) Bereitstellung in einer reinen Gegendruckanlage

Die Dampfkessel haben einen Wirkungsgrad von $\eta_K = 0.92$ und die Turbine eine Wirkungsgrad von $\eta_{is} = 0.88$. Als Brennstoff dient Biomasse mit einem Heizwert $H_U = 18$ MJ/kg Der Frischdampf für die Turbinen soll mit $p_I = 10$ MPa und $t_I = 450$ °C erzeugt werden. Der Kondensatordruck beträgt $p_K = 4$ kPa. Die Umgebungstemperatur betrage $t_U = 20$ °C. Als Nutzen des Heizdampfes wird seine Wärmeabgabe bei Abkühlung und Kondensation betrachtet. Die Speisepumpenarbeiten können vernachlässigt werden.

- 2.) Wie ändern sich die Verhältnisse, wenn der Wärmebedarf nur $\dot{Q}=60$ MW beträgt? Ermitteln sie die Kennzahlen jetzt auch für
- c) die verbundene Gegendruckturbine.

4. Elektroenergie- und Dampfversorgung eines chemischen Betriebes

Ein chemischer Betrieb ist mit einer elektrischen Leistung von P = 3,2 MW, einem Dampfstrom von $\dot{m}_{e1} = 1,1$ kg/s bei 1 MPa und einem Dampfstrom von $\dot{m}_{e2} = 1,25$ kg/s bei 0,3 MPa zu versorgen. Als Frischdampf steht Dampf mit $p_1 = 3,5$ MPa und $t_1 = 400$ °C zur Verfügung. Folgende Maschinensysteme sind hinsichtlich ihres Dampfverbrauches zu vergleichen:

- 1. Gegendruckturbine mit einer Entnahme bei 1 MPa und einem Gegendruck von 0,3 MPa.
- 2. Kondensationsturbine mit zwei Entnahmen bei 1 MPa und 0,3 MPa und mit einem Kondensatordruck von 8 kPa.

Vereinfachend sollen alle Turbinenwirkungsgrade mit $\eta_l = 0.88$ angenommen werden. Die Ergebnisse und die Auswahl der günstigsten Variante sind zu erläutern.