THE PARTY OF THE P

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

Subject Code:

17104

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
1		Attempt any <u>TEN</u> of the following:	20
	a)	Find x, if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & 2 & 7 \\ 1 & 4 & x \end{vmatrix} = 0$	02
	Ans	$\begin{vmatrix} 4 & 3 & 9 \\ 3 & 2 & 7 \\ 1 & 4 & x \end{vmatrix} = 0$ $\therefore 4(2x-28)-3(3x-7)+9(12-2)=0$	1
		$\therefore 8x - 112 - 9x + 21 + 90 = 0$ $\therefore -x - 1 = 0$ $\therefore -x = 1$ $\therefore x = -1$	½ ½
	b)	If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, find $2A + 3B - 5I$, where I is the unit matrix of order two.	02
	Ans	$2A + 3B - 5I = 2\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} + 3\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	

WINTER – 16 EXAMINATION

Model Answer

1 b) $ = \begin{bmatrix} 4 & 6 \\ 8 & 14 \end{bmatrix} + \begin{bmatrix} 3 & 9 \\ -6 & 15 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} $ $ = \begin{bmatrix} 2 & 15 \\ 2 & 24 \end{bmatrix} $	1
$=\begin{bmatrix} 2 & 15 \\ 2 & 24 \end{bmatrix}$	
$=\begin{bmatrix} 2 & 15 \\ 2 & 24 \end{bmatrix}$	1
Г2 4 Л	
c) If $A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$, show that A^2 is null matrix.	
	02
Ans $A^2 = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$	
	1
$\begin{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$	_ 1
d) Resolve into partial fraction : $\frac{1}{x(x+1)}$	02
Ans Let $\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$	1/2
$\therefore 1 = A(x+1) + Bx$	1/2
Put $x = 0$ $A = 1$, Put $x = -1$ $B = -1$	1/2
$\therefore \frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$	
x(x+1) x $x+1$	1/2
e) Prove that $\cos 2\theta = 2\cos^2 \theta - 1$	02
Ans $\cos 2\theta = \cos(\theta + \theta)$	1/2
$= \cos\theta\cos\theta - \sin\theta\sin\theta$	1/2
$=\cos^2\theta - \sin^2\theta$	1/2
$= \cos^2 \theta - (1 - \cos^2 \theta)$ $= \cos^2 \theta - 1 + \cos^2 \theta$	/2
$= \cos \theta - 1 + \cos \theta$ $= 2\cos^2 \theta - 1$	1/
	1/2
Page No.	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	f)	Find $\sin \alpha$, if $\tan \left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$	02
	Ans	$\tan\left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$ $\therefore \frac{\alpha}{2} = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$	
		$\therefore \frac{\alpha}{2} = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$	1/2
		$=30^{\circ} \text{ or } \frac{\pi}{6}$	1/2
		$\therefore \alpha = 60^{\circ} \text{ or } \frac{\pi}{3}$	
		$\sin \alpha = \sin 60^{\circ} \text{or } \sin \frac{\pi}{3}$	1/2
		$=\frac{\sqrt{3}}{2}$ or 0.8660	1/2
	g)	Without using calculator , find the value of $\sin\left(-765^{\circ}\right)$	02
	Ans	$\sin\left(-765^{\circ}\right) = -\sin 765^{\circ}$	02
	All3	$=-\sin(8\times90^{0}+45^{0}) \text{ or } -\sin(8\times\frac{\pi}{2}+45^{0})$	1/2
		$= -\sin(6 \times 50^{\circ} + 45^{\circ}) \text{ or } \sin(6 \times 2^{\circ} + 45^{\circ})$ $= -\sin 45^{\circ}$	1/2
		$=-\frac{1}{\sqrt{2}}$ or -0.7071	1/2
	h)	Find the principal value of $\sec \left[\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$.	
	Ans	$\sec\left[\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$	02
		$= \sec 30^{\circ} \text{or } \sec \frac{\pi}{6}$	1
		$= \sec 30^{\circ} \text{or } \sec \frac{\pi}{6}$ $= \frac{2}{\sqrt{3}} \text{or } 1.1547$	1
L	l	I .	<u> </u>

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	i) Ans	Define compound angle. If $A \& B$ are any two angles, then sum or difference i.e $A + B$ or $A - B$ is compound angle.	02 2
	j)	Prove that the lines $3x + 2y = 5$, and $2x - 3y = 6$ are perpendicular. slope of $3x + 2y = 5$ is	02
	Ans	$m_1 = -\frac{3}{2}$	1/2
		slope of $2x-3y=6$ is $m_2 = \frac{-2}{-3} = \frac{2}{3}$	1/2
		$m_1 m_2 = \left(-\frac{3}{2}\right) \left(\frac{2}{3}\right) = -1$	1
		∴ lines are perpendicular.	
	k)	Find the range & coefficient of range of the following data: 50, 90,120,40,180,200,80.	02
	Ans	Range = $L - S = 200 - 40 = 160$	1
		Coefficient of range $=\frac{L-S}{L+S} = \frac{200-40}{200+40} = 0.67$	1
	l)	Find AB if $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix}$	02
	Ans	$AB = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix}$	
		$= \begin{bmatrix} 1+0 & -5+2 \\ 2+0 & -10+3 \end{bmatrix}$	1
		$= \begin{bmatrix} 1 & -3 \\ 2 & -7 \end{bmatrix}$	1
2		Attempt any FOUR of the following	16
	a)	Solve the following equations using Cramer's rule $2x+3y=5$, $y-3z=-2$, $z+3x=4$	04

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
2	a)	2x+3y=5, $y-3z=-2$, $3x+z=4$	
		$D = \begin{vmatrix} 2 & 3 & 0 \\ 0 & 1 & -3 \\ 3 & 0 & 1 \end{vmatrix} = 2(1+0) - 3(0+9) = -25$	1
		$D_{x} = \begin{vmatrix} 5 & 3 & 0 \\ -2 & 1 & -3 \\ 4 & 0 & 1 \end{vmatrix} = 5(1+0) - 3(-2+12) = -25$	1/2
		$D_{y} = \begin{vmatrix} 2 & 5 & 0 \\ 0 & -2 & -3 \\ 3 & 4 & 1 \end{vmatrix} = 2(-2+12) - 5(0+9) = -25$	1/2
		$D_z = \begin{vmatrix} 2 & 3 & 5 \\ 0 & 1 & -2 \\ 3 & 0 & 4 \end{vmatrix} = 2(4+0)-3(0+6)+5(0-3) = -25$	1/2
		$\therefore x = \frac{D_x}{D} = \frac{-25}{-25} = 1$	1/2
		$\therefore y = \frac{D_y}{D} = \frac{-25}{-25} = 1$	Į.
		$\therefore y = \frac{1}{D} = \frac{1}{-25} = 1$	1/2
		$\therefore z = \frac{D_z}{D} = \frac{-25}{-25} = 1$	1/2
	b)	If $A + I = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix}$, obtain the matrix $(A + I)(A - I)$	04
	Ans	$A = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix} - I$	
		$ \begin{bmatrix} 1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 3 & 4 \end{bmatrix} $	1/2
		$= \begin{bmatrix} 0 & 3 & 4 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$	1

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	b)	$A - I = \begin{bmatrix} 0 & 3 & 4 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1 & 3 & 4 \\ -1 & -1 & 3 \\ -2 & -3 & -1 \end{bmatrix}$ $(A + I)(A - I) = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 4 \\ -1 & -1 & 3 \\ -2 & -3 & -1 \end{bmatrix}$	1
		$= \begin{bmatrix} -1-3-8 & 3-3-12 & 4+9-4 \\ 1-1-6 & -3-1-9 & -4+3-3 \\ 2+3-2 & -6+3-3 & -8-9-1 \end{bmatrix}$	1
		$= \begin{bmatrix} -12 & -12 & 9 \\ -6 & -13 & -4 \\ 3 & -6 & -18 \end{bmatrix}$	1/2
	c) Ans	Show that matrix $A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$ is an orthogonal matrix.	04
		$A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad \therefore A^{T} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$	1
		$A.A^{T} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}$ $\begin{bmatrix} \cos^{2}\theta + 0 + \sin^{2}\theta & 0 + 0 + 0 & -\cos\theta\sin\theta + \sin\theta\cos\theta \end{bmatrix}$	
		$= \begin{bmatrix} \cos \theta + 0 + \sin \theta & 0 + 0 + 0 & -\cos \theta \sin \theta + \sin \theta \cos \theta \\ 0 + 0 + 0 & 0 + 1 + 0 & 0 + 0 + 0 \\ -\sin \theta \cos \theta + 0 + \cos \theta \sin \theta & 0 + 0 + 0 & \sin^2 \theta + 0 + \cos^2 \theta \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	2
		$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$ $\therefore A \text{ is an orthogonal matrix.}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	d)	Find the inverse of the matrix; $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ by adjoint method.	04
	Ans	$\begin{vmatrix} A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{vmatrix} = 1(24 - 25) - 2(12 - 15) + 3(10 - 12)$	
		$= -1 + 6 - 6$ $ A = -1 \neq 0$ $\therefore A^{-1} \text{ exists}$ $\begin{bmatrix} 4 & 5 & 2 & 5 & 2 & 4 \end{bmatrix}$	<i>Y</i> ₂
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 4 & 5 \\ 5 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 4 \\ 3 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} -1 & -3 & -2 \\ -3 & -3 & -1 \\ -2 & -1 & 0 \end{bmatrix}$	1
		Matrix of cofactors = $\begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$ OR	1
		$\begin{vmatrix} C_{11} = + \begin{vmatrix} 4 & 5 \\ 5 & 6 \end{vmatrix} = 24 - 25 = -1, \ C_{12} = - \begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix} = -(12 - 15) = 3$	
		$\begin{vmatrix} C_{13} = + \begin{vmatrix} 2 & 4 \\ 3 & 5 \end{vmatrix} = 10 - 12 = -2, \ C_{21} = - \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -(12 - 15) = 3$	
		$\begin{vmatrix} C_{22} = + \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} = 6 - 9 = -3, \ C_{23} = - \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = -(5 - 6) = 1$	
		$\begin{vmatrix} C_{31} = + \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 10 - 12 = -2, \ C_{32} = - \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} = -(5 - 6) = 1$	1
		$\begin{vmatrix} C_{33} = + \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4 = 0,$ $\begin{bmatrix} -1 & 3 & -2 \end{bmatrix}$	
		Matrix of cofactors = $\begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$	1

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	d)	$Adj.A = \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } \text{Adj.} A$ $A^{-1} = \frac{1}{-1} \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$	1
	e)	Resolve into partial fraction $\frac{x^3 + x}{x^2 - 4}$	04
	Ans	$x^{2}-4)\overline{x^{3}+x}$ $x^{3}-4x$ $-\frac{+}{5x}$ $\therefore \frac{x^{3}+x}{x^{2}-4} = x + \frac{5x}{(x-2)(x+2)}$ $\therefore \frac{5x}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$ $\therefore 5x = (x+2)A + (x-2)B$ Put $x = 2$ $\therefore 5(2) = (2+2)A$	1
		$A = \frac{10}{4}$ $A = \frac{5}{2}$ Put $x = -2$ $\therefore 5(-2) = (-2 - 2)B$ $B = \frac{-10}{-4}$	1
		$B = \frac{5}{2}$	1
		$\therefore \frac{5x}{(x-2)(x+2)} = \frac{\frac{5}{2}}{x-2} + \frac{\frac{5}{2}}{x+2}$	1/2
			1

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	e)	$\therefore \frac{x^3 + x}{x^2 - 4} = x + \frac{\frac{5}{2}}{x - 2} + \frac{\frac{5}{2}}{x + 2} \text{ or } x + \frac{5}{2} \left(\frac{1}{x - 2} + \frac{1}{x + 2} \right)$	1/2
	f)	Resolve into partial fraction: $\frac{3x-1}{(x-4)(2x+1)(x-1)}$	04
	Ans	$\therefore \frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{A}{x-4} + \frac{B}{2x+1} + \frac{C}{x-1}$	1/2
		$\therefore 3x-1 = A(2x+1)(x-1) + B(x-4)(x-1) + C(x-4)(2x+1)$ Put $x = 4$ $3(4)-1 = A(2(4)+1)(4-1)$ $11 = A(9)(3)$	
		$11 = A(27)$ $\therefore A = \frac{11}{27}$	1
		Put $x = \frac{-1}{2}$	
		$3\left(\frac{-1}{2}\right) - 1 = B\left(\frac{-1}{2} - 4\right)\left(\frac{-1}{2} - 1\right)$ $\frac{-5}{2} = B\left(\frac{-9}{2}\right)\left(\frac{-3}{2}\right)$	
		$\frac{-5}{2} = B\left(\frac{27}{4}\right)$ $\therefore B = \frac{-10}{27}$	1
		Put $x = 1$ 3(1)-1 = C(1-4)(2(1)+1)	
		$2 = C(-3)(3)$ $\therefore C = \frac{-2}{9}$	1
		$\therefore \frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{\frac{11}{27}}{x-4} + \frac{\frac{-10}{27}}{2x+1} + \frac{\frac{-2}{9}}{x-1}$	1/2

WINTER – 16 EXAMINATION

Model Answer

		Model Answer	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3		Attempt any FOUR of the following:	16
	a)	Using matrix inversion method solve the system of equations:	04
		x + y + z = 3, $3x - 2y + 3z = 4$, $5x + 5y + z = 11$	
		[1 1 1]	
	Ans		
		1 1 1	
		$\begin{vmatrix} A = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{vmatrix} = 1(-2-15) - 1(3-15) + 1(15+10)$	
		=-17+12+25	1/2
		$\therefore A = 20 \neq 0$,,,
		$\therefore A^{-1}$ exists	
		Matrix of minors =	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -2 & 3 & 3 & 3 & 3 & -2 \\ 5 & 1 & 5 & 1 & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 1 & 5 & 1 & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -2 & 3 & 3 & 3 & 3 & -2 \end{vmatrix} \end{bmatrix}$	
		$\begin{bmatrix} -17 & -12 & 25 \\ -4 & -4 & 0 \end{bmatrix}$	
			1/2
		$\begin{bmatrix} 5 & 0 & -5 \end{bmatrix}$	
		$\begin{bmatrix} -17 & 12 & 25 \\ 4 & 4 & 0 \end{bmatrix}$	
		Matrix of cofactors = $\begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$	1/2
		OR	
		$\begin{vmatrix} C_{11} = + \begin{vmatrix} -2 & 3 \\ 5 & 1 \end{vmatrix} = -2 - 15 = -17, \ C_{12} = - \begin{vmatrix} 3 & 3 \\ 5 & 1 \end{vmatrix} = -(3 - 15) = 12$	
		$\begin{vmatrix} C_{13} = + \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = 15 + 10 = 25, \ C_{21} = - \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} = -(1 - 5) = 4$	
		$\begin{vmatrix} C_{22} = + \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} = 1 - 5 = -4, \ C_{23} = - \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} = -(5 - 5) = 0$	1
		$\begin{vmatrix} C_{31} = + \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} = 3 + 2 = 5, \ C_{32} = - \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} = -(3 - 3) = 0$	
		$\begin{vmatrix} c_{31} - 1 \\ -2 \end{vmatrix} = 2 \begin{vmatrix} -3 + 2 - 3 \\ -3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \\ -3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 + 2 - 3 \end{vmatrix} = -3 \begin{vmatrix} -3 $	
L	İ		j

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Answer</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3		$C_{33} = + \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = -2 - 3 = -5,$ $Matrix of cofactors = \begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$ $Adj.A = \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$ $A^{-1} = \frac{1}{ A } Adj.A$ $= \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1}B = \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$ $= \frac{1}{20} \begin{bmatrix} -51 + 16 + 55 \\ 36 - 16 + 0 \\ 75 + 0 - 55 \end{bmatrix}$ $= \frac{1}{20} \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1
		$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ $\therefore x = 1, y = 1, z = 1.$	1/2
	b) Ans	Resolve into partial fraction: $\frac{\tan \theta}{(\tan \theta + 2)(\tan \theta + 3)}$ Let $\tan \theta = t$	04
		$\therefore \frac{t}{(t+2)(t+3)} = \frac{A}{t+2} + \frac{B}{t+3}$ $\therefore t = (t+3)A + (t+2)B$	1

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	b)	put $t = -2$	
		-2 = (-2+3)A	1
		$\therefore A = -2$	_
		put $t = -3$	
		$-3 = \left(-3 + 2\right)B$	
		-3 = -B	1
		$\therefore B = 3$	
		$\therefore \frac{t}{(t+2)(t+3)} = \frac{-2}{t+2} + \frac{3}{t+3}$	
			1
		$\frac{\tan\theta}{(\tan\theta+2)(\tan\theta+3)} = \frac{-2}{\tan\theta+2} + \frac{3}{\tan\theta+3}$	1
	c)	Resolve into partial fractions: $\frac{x^2 + 23x}{(x+3)(x^2+1)}$	04
	Ans	$\therefore \frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1}$	1/2
		$\therefore x^2 + 23x = (x^2 + 1)A + (x + 3)(Bx + C)$	
		Put $x = -3$	
		$(-3)^2 + 23(-3) = ((-3)^2 + 1)A$	
		9-69=10A	
		$\therefore A = -6$	1
		Put $x = 0$, $A = -6$	
		0 = (0+1)(-6) + (0+3)(0+C)	
		0 = -6 + 3C	
		$\therefore C = 2$ Put $x = 1$, $A = -6$, $C = 2$	1
		$(1)^{2} + 23(1) = ((1)^{2} + 1)(-6) + (1+3)(B+2)$	
		24 = -12 + 4B + 8	
		$\therefore B = 7$ $x^2 + 22x \qquad 6 \qquad 7x + 2$	1
		$\therefore \frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{-6}{x+3} + \frac{7x+2}{x^2+1}$	1/2

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	d)	Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$	04
	Ans	$\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$	
		$\therefore \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right)$	2
		$= \tan^{-1} \left(\frac{\frac{5}{6}}{1 - \frac{1}{6}} \right)$	
		$= \tan^{-1} \left(\frac{\frac{5}{6}}{\frac{5}{6}} \right)$	
		$=\tan^{-1}\left(1\right)=\frac{\pi}{4}$	1+1
	e)	If $\tan A = \frac{1}{3}$, $\tan B = \frac{1}{4}$, Where $0 < A < \frac{\pi}{2}$, $\pi < B < \frac{3\pi}{2}$, find $\sin(A + B)$	04
	Ans	$\tan A = \frac{1}{3} , \qquad 1 \qquad	
		$0 < A < \frac{\pi}{2}$ (A lies in first quadrant) $\sin A = \frac{1}{\sqrt{10}}$, $\cos A = \frac{3}{\sqrt{10}}$	1
		$\tan B = \frac{1}{4} , \qquad 1$	
		$\pi < B < \frac{3\pi}{2} (B \text{ lies in third quadrant}) \sin B = \frac{-1}{\sqrt{17}}, \cos B = \frac{-4}{\sqrt{17}}$ $\sin (A+B) = \sin A \cos B + \cos A \sin B$	1
		Page No 13	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	e)	$= \left(\frac{1}{\sqrt{10}}\right) \left(\frac{-4}{\sqrt{17}}\right) + \left(\frac{3}{\sqrt{10}}\right) \left(\frac{-1}{\sqrt{17}}\right)$ $= -\frac{-7}{\sqrt{170}} \text{ or } -0.5369$	1
		$-\frac{170}{\sqrt{170}}$ or 0.3307	1
	f)	Without using calculator, find the value of : $\tan(585^\circ)$. $\cot(-495^\circ) - \cot(405^\circ)$. $\tan(-495^\circ)$	04
	Ans	$\tan\left(585^{\circ}\right) = \tan\left(6 \times 90^{\circ} + 45^{\circ}\right)$	
		$= \tan 45^{\circ}$ $= 1$ $\cot (-495^{\circ}) = -\cot (495^{\circ})$	1/2
		$= -\cot\left(5\times90^{0} + 45^{\circ}\right)$ $= \tan 45^{\circ}$	1/2
		= 1	1/2
		$\cot\left(405^{\circ}\right) = \cot\left(4\times90^{\circ} + 45^{\circ}\right)$ $= \cot45^{\circ}$,-
		=1	1/2
		$\tan(-495^{\circ}) = -\tan(495^{\circ})$ $= -\tan(5 \times 90^{\circ} + 45^{\circ})$	
		$= \cot 45^{\circ}$	1/2
		$= 1 \tan(585^{\circ}). \cot(-495^{\circ}) - \cot(405^{\circ}). \tan(-495^{\circ})$	1/2
			1
		Note: The above example may be proved in different ways by expressing the ratio in many ways e.g., instead of expressing $\tan(585^\circ) = \tan(6 \times 90^\circ + 45^\circ)$, one can express it as	
		$\tan(585^\circ) = \tan(7 \times 90^\circ - 45^\circ)$ and the get the desired value. Further here in	
		this example it is expected that it must be proved without using calculator. If directly calculator is used, no marks to be given.	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.		Answe	r		Marking Scheme
4		Attempt any <u>FOUR</u> of the f	following:			16
	a)	Prove that : $\sin(A-B) = \sin A$	$A\cos B - \cos A$	sin B		04
	Ans	O A-B	P A Q N N	→ ·		1
		Right Angled Triangle	Acute Angle	Trigonometr	ic Ratios	
		Δ ΟΜΡ	∠MOP = A	$\sin A = \frac{PM}{OP}, c$	$\cos A = \frac{OM}{OP}$	
		ΔOPQ	∠POQ = B	$\sin B = \frac{PQ}{OQ}, c$	$\cos B = \frac{OP}{OQ}$	
		ΔPRQ	∠QPR = A	$\sin A = \frac{RQ}{PQ}, c$	$\cos A = \frac{PR}{PQ}$	1
		ΔONQ	\(\text{NOQ} = A-B\)	$\sin(A - B) = \frac{QN}{OQ}, \text{co}$	$os(A-B) = \frac{ON}{OQ}$	
		$\therefore \sin(A - B) = \frac{QN}{OQ} = \frac{RM}{OQ}$ $= \frac{PM - PR}{OQ}$				1/2
		$= \frac{PM}{OQ} - \frac{PR}{OQ}$ $= \frac{PM}{OP} \times \frac{OP}{OQ} - \frac{PR}{PQ}$	$\times \frac{PQ}{QQ}$			1/2
		$OP OQ PQ$ $= \sin A \cos B - \cos$				1

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	a)	Consider a standard unit circle Let P,Q,R,S be points such that $\angle XOP = A$, $\angle XOQ = B$, $\angle XOR = A - B$ From fig.	1
		$\angle POQ = A - B$ $\therefore \angle POQ = \angle XOR$ $P(\cos A, \sin A) , Q(\cos B, \sin B)$ $R(\cos(A - B), \sin(A - B)) , S(1,0)$ $\therefore \text{Chord } PQ = \text{Chord RS}$	1/2
		$\sqrt{(\cos A - \cos B)^2 + (\sin A - \sin B)^2} = \sqrt{[\cos (A - B) - 1]^2 + [\sin (A - B) - 0]^2}$ $(\cos A - \cos B)^2 + (\sin A - \sin B)^2 = [\cos (A - B) - 1]^2 + [\sin (A - B) - 0]^2$ $\therefore \cos^2 A + \cos^2 B - 2\cos A\cos B + \sin^2 A + \sin^2 B - 2\sin A\sin B =$ $\cos^2 (A - B) + 1 - 2\cos (A - B) + \sin^2 (A - B)$	1
		$\therefore 1+1-2(\cos A\cos B+\sin A\sin B)=1+1-2\cos(A-B)$ $\therefore \cos A\cos B+\sin A\sin B=\cos(A-B)$ Replace B by -B in above equation	1/2
		$\therefore \cos A \cos B - \sin A \sin B = \cos(A + B)$ $\operatorname{Consider sin}(A - B) = \cos\left(\frac{\pi}{2} - (A - B)\right)$ $= \cos\left(\frac{\pi}{2} - A + B\right)$ $= \cos\left(\frac{\pi}{2} - A\right) \cos B - \sin\left(\frac{\pi}{2} - A\right) \sin B$	1/2
		$= \sin A \cos B - \cos A \sin B$	1/2

WINTER – 16 EXAMINATION

Model Answer

		Model Allower	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	b)	Prove that $\cos 2A = 2\cos^2 A - 1$	04
	Ans	$\cos 2A = \cos \left(A + A \right)$	1
		$=\cos A\cos A - \sin A\sin A$	1
		$=\cos^2 A - \sin^2 A$	1
		$=\cos^2 A - \left(1 - \cos^2 A\right)$	1
		$=\cos^2 A - 1 + \cos^2 A$	
		$=2\cos^2 A - 1$	1
	c)	If $\tan(x+y) = \frac{1}{2}$ and $\tan(x-y) = \frac{1}{3}$, find (i) $\tan 2x$, (ii) $\tan 2y$.	04
	Ans	$(i)\tan 2x = \tan[(x+y)+(x-y)]$	1/2
		$= \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y)\tan(x-y)}$	1/2
		$= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}}$ $= 1$	1/2
			1/2
		$(ii)\tan 2y = \tan[(x+y)-(x-y)]$ $\tan(x+y)-\tan(x-y)$	1/2
		$= \frac{\tan(x+y) - \tan(x-y)}{1 + \tan(x+y)\tan(x-y)}$	1/2
		$=\frac{\frac{1}{2} - \frac{1}{3}}{1 + \frac{1}{2} \times \frac{1}{3}}$	
		$=\frac{2}{1}\frac{3}{1}$	1/
		$1+\frac{1}{2}\times\frac{1}{3}$	1/2
		$=\frac{1}{7}$	1/2

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	d)	Prove that $\frac{\sin A + \sin 2A + \sin 3A + \sin 4A}{\cos A + \cos 2A + \cos 3A + \cos 4A} = \tan\left(\frac{5A}{2}\right)$	04
	Ans	L.H.S. = $\frac{\left(\sin A + \sin 4A\right) + \left(\sin 2A + \sin 3A\right)}{\left(\cos A + \cos 4A\right) + \left(\cos 2A + \cos 3A\right)}$ $= \frac{2\sin\left(\frac{5A}{2}\right)\cos\left(\frac{-3A}{2}\right) + 2\sin\left(\frac{5A}{2}\right)\cos\left(\frac{-A}{2}\right)}{2\cos\left(\frac{5A}{2}\right)\cos\left(\frac{-3A}{2}\right) + 2\cos\left(\frac{5A}{2}\right)\cos\left(\frac{-A}{2}\right)}$ $= \frac{2\sin\left(\frac{5A}{2}\right)\left[\cos\left(\frac{-3A}{2}\right) + \cos\left(\frac{-A}{2}\right)\right]}{2\cos\left(\frac{5A}{2}\right)\left[\cos\left(\frac{-3A}{2}\right) + \cos\left(\frac{-A}{2}\right)\right]}$	2
		$=\frac{\sin\left(\frac{5A}{2}\right)}{\cos\left(\frac{5A}{2}\right)}$	1
		$= \tan\left(\frac{5A}{2}\right) = \text{R.H.S.}$	1
	e)	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	04
	Ans	Let $\cos^{-1}\left(\frac{4}{5}\right) = A$ $\therefore \cos A = \frac{4}{5}$ $\therefore \sin^2 A = 1 - \cos^2 A$ $= 1 - \frac{16}{25}$ $= \frac{9}{25}$ $\therefore \sin A = \frac{3}{5}$ $\cos^{-1}\left(\frac{12}{13}\right) = B$ $\therefore \cos B = \frac{12}{13}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
4	e)	$\therefore \sin^2 B = 1 - \cos^2 B$	
	,		
		$=1-\frac{144}{169}$	
		$=\frac{25}{169}$	
		169	1
		$\therefore \sin B = \frac{5}{13}$	
		$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$	
		$=\frac{412}{513} - \frac{3}{513} = \frac{5}{13}$	1
		$=\frac{48}{65} - \frac{15}{65}$	
			1/2
		$\therefore \cos(A+B) = \frac{1}{65}$	1/2
		$\therefore \cos(A+B) = \frac{33}{65}$ $\therefore A+B = \cos^{-1}\left(\frac{33}{65}\right)$	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	
		OR	
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$ $\therefore \cos A = \frac{4}{5}$	
		$\therefore \cos A = \frac{4}{5}$	
		$\therefore \tan A = \frac{3}{4}$	
		$A = \tan^{-1}\left(\frac{3}{4}\right)$	1
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$ 12	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
	<u> </u>		<u> </u>

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	e)	$\therefore \tan B = \frac{5}{12}$ $B = \tan^{-1} \left(\frac{5}{12}\right)$ $\therefore \cos^{-1} \left(\frac{12}{13}\right) = \tan^{-1} \left(\frac{5}{12}\right)$ $L.H.S. = \tan^{-1} \left(\frac{3}{4}\right) + \tan^{-1} \left(\frac{5}{12}\right)$ $= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \frac{5}{12}}\right)$ $= \tan^{-1} \left(\frac{\frac{36 + 20}{48}}{1 - \frac{15}{48}}\right)$ $= \tan^{-1} \left(\frac{\frac{56}{48}}{\frac{48 - 15}{48}}\right)$	1 1/2
		$ \frac{48-15}{48} $ $ = \tan^{-1}\left(\frac{56}{33}\right) $ Let $\tan^{-1}\left(\frac{56}{33}\right) = C$ $ \therefore \tan C = \frac{56}{33} $ $ \therefore \cos C = \frac{33}{65} $ $ \therefore C = \cos^{-1}\left(\frac{33}{65}\right) $ 56 $ C$	1/2
	f) Ans	Prove that: $\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}$ $\therefore \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right)$	04

WINTER – 16 EXAMINATION

Model Answer

		<u> </u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	f)	$= \tan^{-1} \left[\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}} \right] + \tan^{-1} \left[\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{8}} \right]$	2
		$= \tan^{-1} \left[\frac{\frac{12}{35}}{1 - \frac{1}{35}} \right] + \tan^{-1} \left[\frac{\frac{11}{24}}{1 - \frac{1}{24}} \right]$	
		$= \tan^{-1}\left(\frac{12}{34}\right) + \tan^{-1}\left(\frac{11}{23}\right)$	
		$= \tan^{-1} \left[\frac{\frac{12}{34} + \frac{11}{23}}{1 - \frac{12}{34} \times \frac{11}{23}} \right]$	
		$= \tan^{-1} \left[\frac{276 + 374}{\frac{782}{1 - \frac{132}{782}}} \right]$	1
		$= \tan^{-1}(1)$	1/2
		$=\frac{\pi}{4}$	1/2
5		Attempt any FOUR of the following:	04
	a)	Prove $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left\lfloor \frac{x+y}{1-xy} \right\rfloor$,	
	Ans	$ \text{if } 1 - xy > 0 $ $ \text{put } \tan^{-1} x = A \text{ and } \tan^{-1} y = B : x = \tan A \text{ and } y = \tan B $	1
	Alls	$\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \qquad \text{OR} \text{RHS} = \tan^{-1} \left[\frac{x+y}{1-xy} \right]$	
		$= \frac{x+y}{1-xy} = \tan^{-1} \left[\frac{\tan A + \tan B}{1-\tan A \tan B} \right]$	1
		$\therefore A + B = \tan^{-1} \left[\frac{x + y}{1 - xy} \right] = \tan^{-1} \left(\tan \left(A + B \right) \right)$	1
		$= A + B$ $\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left[\frac{x + y}{1 - xy} \right]$ $= \tan^{-1} x + \tan^{-1} y = LHS$	1
		$\lfloor 1 - xy \rfloor$	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	b)	Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$	04
	Ans	$\sin 10^{0} \sin 30^{0} \sin 50^{0} \sin 70^{0}$	
		$= \sin 10^{\circ} \frac{1}{2} \sin 50^{\circ} \sin 70^{\circ}$	1/2
			/2
		$= \frac{1}{4} \Big[2\sin 10^{0} \sin 50^{0} \Big] \sin 70^{0}$	
		$= \frac{1}{4} \left[\cos \left(-40^{\circ} \right) - \cos 60^{\circ} \right] \sin 70^{\circ}$	1/2
		$= \frac{1}{4} \left[\cos 40^{0} - \frac{1}{2} \right] \sin 70^{0}$	1/2
		$= \frac{1}{4} \left[\cos 40^{0} \sin 70^{0} - \frac{1}{2} \sin 70^{0} \right]$	
		$= \frac{1}{4} \left[\frac{1}{2} 2 \cos 40^{\circ} \sin 70^{\circ} - \frac{1}{2} \sin 70^{\circ} \right]$	1/2
		$= \frac{1}{8} \left[\sin 110^{0} - \sin \left(-30 \right) - \sin 70^{0} \right]$	1/2
		$= \frac{1}{8} \left[\sin(2 \times 90^{0} - 70) + \frac{1}{2} - \sin 70^{0} \right]$	1/2
		$= \frac{1}{8} \left[\sin 70^{0} + \frac{1}{2} - \sin 70^{0} \right]$	1/2
		$=\frac{1}{16}$	1/2
	c)	Prove that $\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$	04
	Ans	We know that $\sin(A+B) - \sin(A-B) = 2\cos A \sin B$	
	Alls	Let $A + B = C$	1
		A-B=D	1
		$\therefore 2A = C + D$ $C + D$	
		$\therefore A = \frac{C+D}{2}$	
		$\therefore B = \frac{C - D}{2}$	1
		$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$	1

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	d)	Show that the distance between two parallel lines $ax + by + C_1 = 0$ &	04
	Ans	$ax + by + C_2 = 0 \text{ is given by } d = \left \frac{C_2 - C_1}{\sqrt{a^2 + b^2}} \right $ L_1 $L_1 : ax + by + C_1 = 0$ $L_2 : ax + by + C_2 = 0$ $Let P(x_1, y_1) \text{ be any point on the line } L_2$ $\therefore ax_1 + by_1 + C_2 = 0$	1
		$\therefore ax_1 + by_1 + C_2 = 0$ $\therefore ax_1 + by_1 = -C_2$	1
		PM is perpendicular on the line L_1	_
		$\therefore PM = \left \frac{ax_1 + by_1 + C_1}{\sqrt{a^2 + b^2}} \right $ $\therefore d = \left \frac{-C_2 + C_1}{\sqrt{a^2 + b^2}} \right $ $\therefore C_2 - C_1$	1
		or $d = \left \frac{C_2 - C_1}{\sqrt{a^2 + b^2}} \right $	1
	e)	Find the length of the perpendicular on the line $3x + 4y - 5 = 0$ from the point $(3,4)$.	04
	Ans	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $	
1		Page No 2	2/20

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	e)	$= \frac{\left \frac{3(3) + 4(4) - 5}{\sqrt{(3)^2 + (4)^2}} \right }{\sqrt{(3)^2 + (4)^2}}$ $= \frac{\left \frac{9 + 16 - 5}{\sqrt{9 + 16}} \right }{\sqrt{9 + 16}}$ $= \left \frac{20}{\sqrt{25}} \right $ $= \frac{20}{5}$ $p = 4 \text{ units}$	2
	f) Ans	Find the equation of the line passing through the point the intersection of lines $2x+3y=13$, $5x-y-7=0$ and perpendicular to the line $3x-2y+7=0$. $2x+3y=13$	04
		5x - y = 7 $2x + 3y = 13$	
		$\therefore 5(2) - y = 7$ $\therefore -y = -3$	1/2
		$\therefore y = 3$ $\therefore \text{ Point of intersection} = (2, 3)$	1/2
		Slope of the line $3x - 2y + 7 = 0$. is, $m_0 = -\frac{a}{b} = -\frac{3}{-2} = \frac{3}{2}$	1
		∴ Slope of the required line is, $m = -\frac{1}{m_0} = -\frac{1}{\frac{3}{2}} = -\frac{2}{3}$	1
		$\therefore equation is, y - y_1 = m(x - x_1)$	
		$\therefore y-3=-\frac{2}{3}(x-2)$	1/2
		$\therefore 2x + 3y - 13 = 0$	1/2

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer									
6	a) Ans	Attempt any <u>FOUR</u> of the following: Find the equation of line passing through the point of intersection of lines $x + y = 0$ and $2x - y = 9$ and a point $(2,5)$ x + y = 0 2x - y = 9									
		$\therefore 3x = 9$ $\therefore x = 3$ $y = -3$ $\therefore \text{ Point of intersection} = (3, -3)$									
		∴ equation is, $ \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} $ ∴ $ \frac{y - 5}{-3 - 5} = \frac{x - 2}{3 - 2} $									
		$\therefore 8x + y - 21 = 0$									
		OR									
		$\therefore \text{ Point of intersection} = (3, -3)$									
		$\therefore Slope m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{3 - 2} = -8$ $\therefore equation is,$ $y - y_1 = m(x - x_1)$ $\therefore y - 5 = -8(x - 2) \qquad \text{OR} y + 3 = -8(x - 3)$ $\therefore 8x + y - 21 = 0$									
	b)	Find the mean devia	tion fron	n median	of the fo	ollowing	distributio	on:		04	
		Weight (in gms) 10-15 15-20 20-25 25-30 30-35 35-40 40-45									
		No. of items 7 12 16 25 19 15 6									
	Ans										

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer									
6	b)										
		Class	xi	f_i	cf	$D_i = $	$x_i - Med$	f_iD_i			
		10-15	12.5	7	7	1	5.5	108.5	1		
		15-20	17.5	12	19		0.5	126	1		
		20-25	22.5		35		5.5	88	1		2
		25-30	27.5	25	60	().5	12.5	1		
		30-35	32.5	19	79	4	4.5	85.5			
		35-40	37.5	15	94	9	9.5	142.5			
		40-45	42.5	6	100	1	4.5	87			
				100				650			
	c)	Median = $L + \frac{N}{2} - cf$ $= 25 + \frac{50 - 35}{25} \times 5$ = 28 $M.D. = \frac{\sum f_i d_i}{N} = \frac{650}{100}$ = 6.5 Calculate: i) standard deviation ii) Co-efficient of variation from the following data:									
		Rainfall	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	
		No.of places	06	07	12	19	21	18	11	06	
	Ans									1	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer										
6	c)											
			Class	x_i	f_i	$d_i = \frac{x_i - a}{h}$	$f_i d_i$	d_i^2	$f_i d_i^2$			
			70-80	75	06	-3	-18	9	54			
			80-90	85	07	-2	-14	4	28		2	
			90-100	95	12	-1	-12	1	12			
			100-110	105	19	0	0	0	0			
			110-120	115	21	1	21	1	21			
			120-130	125	18	2	36	4	72			
			130-140	135	11	3	33	9	99			
			140-150	145	06	4	24	16	96			
					100		70		382			
		i) $S.D = \sigma$	·	_		×h						
		,	$\frac{382}{100} - \left(\frac{70}{100}\right)$) ×10							1	
		$= 18.25$ $ii) \text{ Mean} = \overline{x} = A + \frac{\sum f_i d_i}{N} \times h$ $= 105 + \frac{70}{100} \times 10$										
		= 112									1/2	
		$\therefore \text{Co-efficient of variation} = \frac{\sigma}{x} \times 100$										
		$=\frac{18.25}{112}\times100=16.29.$										
						<u>OR</u>						

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer									
6											
		Class	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$				
		70-80	75	06	450	5625	33750				
		80-90	85	07	595	7225	50575				
		90-100	95	12	1140	9025	108300				
		100-110	105	19	1995	11025	209475				
		110-120	115	21	2415	13225	277725				
		120-130	125	18	2250	15625	281250		2		
		130-140	135	11	1485	18225	200475				
		140-150	145	06	870	21025	126150				
				100	11200		1287700				
		Mean $\bar{x} = \frac{\sum f_i x_i}{N} = \frac{11200}{100} = 112$ i) S.D. $\sigma = \sqrt{\frac{\sum f_i x_i^2}{N} - (\bar{x})^2}$ $= \sqrt{\frac{1287700}{100} - (112)^2}$ $= \sqrt{12877 - 12544}$									
		$= \sqrt{333}$ $\sigma = 18.25$									
		ii) Co-efficient of variation = $\frac{\sigma}{x} \times 100$ = $\frac{18.25}{112} \times 100 = 16.29$.									
				112					1/2		

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer										Marking Scheme		
6	d)	The weig	The weights of 100 students are given by the following distribution:											
	,													
		N	o. of students		100	96	79	56	28	11	5	2		
			e: i) Mean,ii)Vari			data	using	step d	eviatio	n meth	nod		_	
	Ans	No stude	No student has weight above 75 kg.											
	Alls	Class	Class boundries	x_i	f_i		$d_i = \frac{x}{x}$	$\frac{-a}{h}$	$f_i d_i$	d_i^2	f_i	d_i^2		
		36-40	35.5-40.5	38	4		-4		-16	16	64	4		
		41-45	40.5-45.5	43	17		-3		-51	9	15	53		
		46-50	45.5-50.5-	48	23		-2		-46	4	92	2		2
		51-55	50.5-55.5-	53	28		-1		-28	1	28	8		
		56-60	55.5-60.5	58	17		0		0	0	0)		
		61-65	60.5-65.5	63	6		1		6	1	6	,		
		66-70	65.5-70.5	68	3		2		6	4	12	2		
		71-75	70.5-75.5	73	2		3		6	9	18	8		
					100				-123		37	' 3		
		i) Mean = $\bar{x} = A + \frac{\sum f_i d_i}{N} \times h$												
			$=58+\frac{(-123)}{100}\times$:5										
			= 51.85											1/2
		(ii) $S.D. = \sigma = \sqrt{\frac{\sum f_i d_i^2}{N}} - \left(\frac{\sum f_i d_i}{N}\right)^2 \times h$												
			$=\sqrt{\frac{373}{100} - \left(\frac{-123}{100}\right)^2} \times 5$											
			$\sigma = 7.44$	100	/									1
		Variance	$=\sigma^2=(7.44)^2=$	55.3	5									1/2

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer								
6	e)	In the two factories A & B engaged in the same industry, the average weekly wages & standard deviation are as follows:								
			Factories	Average Wages	Standard deviation					
			A	34.5	5.0					
			В	28.5	4.5					
	Ans	Which factor For factory $C.V = \frac{\sigma}{x} \times 10^{-3}$ $= \frac{5.0}{34.5} \times 10^{-3}$ = 14.499	00 <100	nsistent?			1½			
		For factory $C.V = \frac{\sigma}{x} \times 10^{3}$ $= \frac{4.5}{28.5} \times 10^{3}$ $= 15.799$ $C.V \text{ of } A < 10^{3}$	B 00 ×100 6 CV of B				1½			
	∴ Factory A is more consistent <u>Important Note</u>									
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.								
						Page No 30	/20			