

Linear Response for J mat
In general:
0
i (+x) Depends on the past values of the
j (t,x) Depends on the past values of the fields in a linear approximation
The most general linear form involving no spatial
The most general linear form involving no spatial derivatives that is allowed by parity
3 / 3
j(t) = (dt o(t-t') É(t').
response function
Clearly for a causal system i(+) depends on E(+')
Clearly for a causal system $j(t)$ depends on $E(t')$ for $t' < t$. Thus we have
$\sigma(t) = 0$ for $t < 0$ (i.e. $t' > t$)
Then in frequency space
Janes Space
$\vec{J}(\omega) = \sigma(\omega) \vec{E}(\omega)$
3
Frequency dependent conductivity
1. 29 DESCRIPTION COVINGE, INTEG

.

Linear Response pg. 2 Can continue and add the first derivatives: j(w) = -iwx(w) \(\varepsilon\) + cx \(\varepsilon\) \(\varepsilon\) \(\varepsilon\) Then from current conservation $\partial_t \rho + \nabla \cdot \dot{j} = 0$ \Leftrightarrow $\rho(\omega) = \nabla \cdot \dot{j}(\omega) / (-i\omega)$ we have since V. (TxB(w) =0 P(W) = - xe(W) V.E Thus the only difference from before is now $\chi_{e}(\omega)$ and $\chi_{e}^{B}(\omega)$ are functions of ω . Always complex functions E(W) V.E =0 $\nabla \times B = \varepsilon(\omega)\mu(\omega)$ (-iwE) $\nabla \cdot B = 0$ $\nabla x E = +i\omega B$ where (as before) E(w) = 1 + 76(w) and m(w) = 1

Maxwell Egs W Dispersion · Now we can continue and add the first derivative J(w) = -iw & (w) E(w) + cxB(w) VxB(w,x) · From the continuity equation, we have $-i\omega\rho(\omega) = -\nabla \cdot \vec{j}$ = -iw x (w) (- V.E) + V. Px or, P(w) = 2 (w) (-P.E) · Thus the only difference between this and before is that now x (w) and x (w) are functions of frequency hot constants E(w) V.E = 0 $\nabla \times B = \mathcal{E}(\omega) \mathcal{N}(\omega) \quad (-i\omega E)$ V·B = 0 V×E =+ 1 w B

Look for plane wave solutions	
Ē(x) = Ē eikx	
E(x) = E e	
Them:	
ε(ω) k·Ē =0 €	E is transverse
	unless. E(w(k))=0
ik ×B = Em (-iw E)	(com happen)
: K · B = 0	
ikx E = w B	
¢ ~	
We will ignore longitudinal only transverse modes E. F	nodes and consider
KX(KXE) = W KXB	
$\vec{k} (\vec{k}, \vec{E}) - \vec{k}^2 \vec{E} = -\omega^2 \mathcal{E}(\omega)$	μ(W) E
	7 1191-111-11-11-11-11-11-11-11-11-11-11-1
O for transverse modes	Complexiday
	Complex index of refraction
$-k^2 + \omega^2 \overline{\varepsilon(\omega)} \mu(\omega) = 0$	$n^2(\omega) = \varepsilon(\omega)\mu(\omega)$
This determines w(k)	

