Ранжирование (Learning to Rank)

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- Постановка задачи
- 2 Формирование вектора признаков
- Поточечные (pointwise) методы
- 4 Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- Меры качества ранжирования

Примеры ранжирования

Ранжирование веб-страниц по запросу:

Примеры ранжирования

Ранжирование ответов на вопрос:

Примеры ранжирования

Ранжирование товаров по запросу:

Постановка задачи

- и пользователь
- q поисковый запрос
- d ранжируемая сущность (например документ поисковой выдачи)
 - др. примеры: веб-страницы, ответы на вопрос, товары, ...
- Изучаемый объект тройка:

$$x = (u, d, q)$$

- Задача: построить f(x), выдающий
 - большое значение для релевантных объектов
 - малое значение для нерелевантных

Содержание

- Постановка задачи
- Формирование вектора признаковPageRank
- Поточечные (pointwise) методы
- 4 Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- 6 Меры качества ранжирования

Формирование вектора признаков

• Формирование вектора признаков:

$$(u, q, d) \rightarrow (f_1(u), f_2(q), f_3(d), f_4(q, d))$$

Более сложный случай: рассмотреть взаимодействие пользователя с запросом и документом.

- Примеры пользовательских признаков:
 - пол, возраст
 - интересы, предыдущий запрос
 - вариативность кликов
 - средняя глубина просмотра результатов

Формирование вектора признаков

• Примеры запросных признаков:

- длина, счетчики слов, doc2vec
- популярность запроса
- тема запроса (среди заданных или определяемых тематич. моделированием)
- тип запроса:
 - навигационный (введен веб-адрес),
 - однозначный (например "википедия")
 - товарный ("купить беспроводные наушники")
 - вопросный ("курс доллара")
 - информационный ("группа Cranberries")
 - **.**..

Формирование вектора признаков

• Примеры документных признаков:

- время создания
- длина документа, заголовка, #изображений, #ссылок
- счетчики слов, doc2vec
- тема документа (среди заданных или определяемых тематич. моделированием)
- популярность документа (#кликов, #ссылок на него, PageRank)

Ранжирование - Виктор Китов Формирование вектора признаков PageRank

2 Формирование вектора признаков

PageRank

PageRank - идея

- PageRank расчет рейтинга веб-страниц.
- Идея: документ d важен, если на него ссылается много др. важных документов.
 - А важен, т.к. на него много ссылок
 - В важен, т.к. на него ссылается А

PageRank

- N=#документов
- ullet $D_{in}(d)$ -документы, ссылающиеся на d
- ullet $D_{out}(d')$ -документы, на которые ссылается d'
- Рассмотрим пользователя, который
 - с $p = \varepsilon$ (параметр=0.15) переходит на случайный документ
 - ullet с p=1-arepsilon переходит по ссылке в текущем документе
- π_d вероятность оказаться в d после бесконечно долгого блуждания.
- Наивный подход: стартуя с $\pi = [1/N, ...1/N]$, пересчитываем до сходимости

$$\pi_d := \sum_{d' \in D_{in}(d)} \frac{\pi_{d'}}{|D_{out}(d')|}$$

PageRank - важность случайного перехода¹

Чтобы не застревать в документе без ссылок, добавляем искусственные ссылки (пунктиром) во все документы. Чтобы не застревать в замкнутом сообществе: с $p=\varepsilon$ переходим в случайный документ:

$$\pi_d = \frac{\varepsilon}{N} + (1 - \varepsilon) \sum_{d' \in D_{in}(d)} \frac{\pi_{d'}}{|D_{out}(d')|}$$

PageRank - расчёт

- $e = [1, ...1] \in \mathbb{R}^N$
- ullet $P \in \mathbb{R}^{N \times N}$ вероятности переходов
 - для документов без внешних ссылок-равномерные ссылки на все документы

$$p_{ij} = rac{\mathbb{I}\left\{i \text{ ссылается на } j
ight\}}{\#$$
ссылок из i
Для $P^T: p_{ji}^T = rac{\mathbb{I}\left\{i \text{ ссылается на } j
ight\}}{\#$ ссылок из i

• Стартуя с $\pi = \frac{1}{N}$ е, пересчитываем до сходимости²:

$$\pi := \varepsilon \frac{1}{N} \mathbf{e} + (1 - \varepsilon) P^{\mathsf{T}} \pi$$

 $^{^{2}}$ Нужно ли перенормировать π после каждой итерации для $\sum_{d}\pi_{d}=1$?

Тематический PageRank

Тематический PageRank: насколько документ важен в теме?

- например, автомобили.
- англ. topic-sensitive, personalized PageRank
- lacktriangle Выделяем документы, релевантные теме t (N_t штук)
 - ullet обозначим $\mathbf{e_t} = [\mathbb{I}\{d_1 \in t\}, ... \mathbb{I}\{d_N \in t\}]$
- 2 Инициализируем $\pi = e_t$
- Пересчитываем до сходимости

$$\pi := \varepsilon \frac{1}{N} \mathbf{e_t} + (1 - \varepsilon) P^T \pi$$

Тематический PageRank

Комментарии:

- ullet Для каждой темы $t_1, t_2, ...$ свой расчёт
- для комбинации тем лин. комбинация тематических PageRank.
- ullet частный случай (personalized PageRank): ${
 m e}_{ti}=\mathbb{I}\left\{i=d
 ight\}$
 - \bullet посчитается близость документов к d на графе.
 - ullet полезно в рекомендательных системах (близость i к u)

Признаки взаимодействия для ранжирования

- Примеры признаков взаимодействия $f_4(d,q)$ (самый информативный тип признаков)
 - число общих слов, общих фраз
 - BM-25³ и др. вариации следующего признака:

$$f(q,d) = \sum_{w \in q} IDF(w|\{d_i\}_i) \cdot TF(w|d)$$

- cos-sim(embedding(d), embedding(q))
 - embedding(d) можно заранее посчитать
 - embedding можно обучить, используя triplet или contrastive loss => сиамская сеть
 - быстрый и достаточно точный для первичного отсева нерелевантных документов

 $^{{}^{3}\}overline{\rm https://en.wikipedia.org/wiki/Okapi_BM25}_{18/49}$

Ранжирование в реальных системах

- 1 Пользователь формирует запрос.
- $oldsymbol{2}$ Грубый отбор кандидатов ($\sim 10^3$)
 - например, cos-sim(embedding(d), embedding(q))≥ threshold
- Ранжирование
- Коррекция результатов
 - обеспечение разнообразия результатов
 - фильтрация спама
- Выдача

Сбор обучающей выборки

- Отклики $x \to y$ можем собирать:
 - из пользовательских данных
 - пользователь ввел запрос и кликнул/не кликнул
 - усредняя, получим вероятность клика при запросе
 - важно учитывать время на веб-странице, был ли впоследствии возобновлен поиск
 - из ручной разметки ассессорами по шкале
 - релевантен / не релевантен
 - степень релевантности (более информативно)
- Ручная разметка более точная, т.к. пользователь
 - при клике видит лишь сниппет
 - может увлечься документом, хотя он нерелевантный
 - не учитываются релевантные документы в конце выдачи

Содержание

- Постановка задачи
- 2 Формирование вектора признаков
- Поточечные (pointwise) методы
- 4 Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- Меры качества ранжирования

Поточечные (pointwise) методы

Поточечные (pointwise) методы ранжирования:

- $y \in \{1,0\}$ (релевантен/не релевантен)
 - бинарная классификация
 - ullet упорядочиваем выдачу по p(y=+1|x)
 - регрессия на +1, 0.
- ullet $y\in\mathbb{R}$ степень релевантности. Тогда методы:
 - многоклассовая классификация
 - не учитывается порядок классов (нерел. ≺рел. ≺сильно рел.)
 - регрессия
 - оценки релевантности субъективны и произвольны
 - пользователю важен лишь порядок $x_1 \succ x_2 \succ x_3 \succ ...$
 - ullet т.е. чтобы $f(x_1)>f(x_2)>f(x_3)>...$, сами значения f(x) не важны.

• Как по релевантностям предсказывать релевантности, учитывая упорядоченность классов?

- Как по релевантностям предсказывать релевантности, учитывая упорядоченность классов?
- Порядковая регрессия (ordinal regression) метод классификации для упорядоченных классов.
 - степень релевантности, оценка на экзамене, уровень удовлетворенности услугой, ...
 - $x \to z(x) \in \mathbb{R} \to y \in \{1,2,...K\}$, используя разбиение шкалы z на интервалы

Предполагаем соответствие между вещественной z(x) и порядковой y(x), а также вид зависимости z(x):

$$y = \begin{cases} 1 & z \le \theta_1 \\ 2 & \theta_1 < z \le \theta_2 \\ 3 & \theta_2 < z \le \theta_3 \\ \cdots & \cdots \\ K & \theta_{K-1} < z \end{cases}$$

$$z=w^Tx+arepsilon,\quad arepsilon\sim F(\cdot)$$
 ф-ция распределения $P(y=k|x)=P(heta_{k-1}< z\leq heta_k|x)=P(heta_{k-1}< w^Tx+arepsilon\leq heta_k) \ =F(heta_k-w^Tx)-F(heta_{k-1}-w^Tx) \ \prod_{w, heta}^N P(y_n|x_n) o \max_{w, heta}$ - находим веса и пороги

Популярные $F(\cdot)$:

$$F(u)=\sigma(u)=\frac{1}{1+e^{-u}} \text{ - ordinal logit model}$$

$$F(u)=P(\eta\leq u), \ \eta\sim\mathcal{N}(0,1) \text{ - ordinal probit model}$$

Logit и Probit функции распределения:

Обобщение порядковой регрессии через МЬ⁴

- Обобщение: $z = f_w(x)$, $y = k \Longleftrightarrow \theta_{k-1} < f_w(x) \le \theta_k$.
- Обучение по ближайшим порогам:

$$\sum_{n=1}^{N} S(\theta_{y_n} - f_w(x_n)) - S(\theta_{y_n-1} - f_w(x_n)) \to \max_{w,\theta}, S(\cdot) \uparrow$$

• Обучение по всем порогам:

$$\sum_{n=1}^{N} \sum_{k=1}^{K-1} S\left((\theta_k - f_w(x_n)) \operatorname{sign}(k - y_n) \right) \to \max_{w, \theta}, \quad S(\cdot) \uparrow$$

$$sign(u) = \begin{cases} +1 & u \ge 0 \\ -1 & u < 0 \end{cases}$$

• Можно с регуляризацией.

⁴Loss functions for preference levels.

Методы ранжирования

Методы ранжирования:

- поточечные
- попарные (самые популярные)
- списочные (в теории самые точные)

Содержание

- Постановка задачи
- 2 Формирование вектора признаков
- Поточечные (pointwise) методы
- 4 Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- Меры качества ранжирования

Попарные (pairwise) методы

- Поточечные методы прогнозируют $x \to y$.
 - неоднозначность назначения релевантностей
 - важен корректный порядок, а не точные прогнозы y $x_i \succ x_i \succ ...$ может достигаться разными $y_i \succ y_j \succ ...$
- Попарные (pairwise) методы решают напрямую задачу упорядочивания.

Попарные (pairwise) методы

$$j\succ i\iff f_w(x_i)< f_w(x_j),\quad f_w(x)=w^Tx=w^Tg\left(d,q
ight)$$
 (например)
$$\sum_{j\succ i}\mathbb{I}\left[f_w(x_i)\geq f_w(x_j)\right]\leq \sum_{j\succ i}\mathcal{L}\left(f_w(x_j)-f_w(x_i)
ight)\to \min_w$$
 Примеры $\mathcal{L}(u)=\mathcal{L}(f_w(x_j)-f_w(x_i)),\;\mathcal{L}\left(\cdot\right)\downarrow$:
$$\mathcal{L}(u)=e^{-u} \qquad \text{RankBoost}$$

RankNet

RankSVM

 $\mathcal{L}(u) = \log_2 \left(1 + e^{-u}\right)$

 $\mathcal{L}(u) = \max\{1 - u; 0\}$

RankSVM⁵

$$\frac{1}{2} \|w\|_2^2 + C \sum_{i \prec j} \max \left\{ 1 - \left(f_w(x_j) - f_w(x_i) \right); 0 \right\} \to \min_{w}$$

соответствует задаче квадратичной оптимизации для $f_w(x) = w^T x$:

$$\begin{cases} \frac{1}{2} \|w\|_2^2 + C \sum_{j \succ i} \xi_{ij} \to \min_{w, \xi} \\ w^T (x_j - x_i) \ge 1 - \xi_{ij} & i \prec j \\ \xi_{ij} \ge 0 & i \prec j \end{cases}$$

и допускает ядерное обобщение (kernel trick).

⁵Ching-Pei Lee and Chih-Jen Lin. Large-scale Linear RankSVM

RankNet

$$\sum_{i \succ i} \log_2 \left(1 + e^{-\alpha \left(w^T x_j - w^T x_i \right)} \right) \to \min_{w}$$

Шаг SGD по случайной паре $x_i \prec x_j$:

$$w := w - \varepsilon \frac{e^{-\alpha(w^T x_j - w^T x_i)}}{1 + e^{-\alpha(w^T x_j - w^T x_i)}} (-\alpha) (x_j - x_i)$$
$$w := w + \varepsilon \alpha \frac{1}{1 + e^{+\alpha(w^T x_j - w^T x_i)}} (x_j - x_i)$$

Интуиция: чем сильнее $w^T x_i > w^T x_j$, тем сильнее сдвигаем w в сторону x_j , чтобы $\uparrow w^T x_j$.

Напоминание AUC

Оптимизация AUC

• Эквив. определение - доля верно упорядоченных пар:

$$AUC = \frac{\sum_{(i,j):y_i = -1, y_j = 1} \mathbb{I} [f_w(x_j) > f_w(x_i)]}{\#[i: y_i = -1] \#[j: y_j = 1]}$$

• Как оптимизировать AUC напрямую?

Оптимизация AUC

• Эквив. определение - доля верно упорядоченных пар:

$$AUC = \frac{\sum_{(i,j):y_i = -1, y_j = 1} \mathbb{I}\left[f_w(x_j) > f_w(x_i)\right]}{\#[i:y_i = -1]\#[j:y_j = 1]}$$

 Как оптимизировать AUC напрямую? Сможем после сглаживания⁶:

$$AUC = rac{\sum_{(i,j): y_i = -1, y_j = 1} S\left(g(x_j) - g(x_i)
ight)}{\#[i: y_i = -1] \#[j: y_j = 1]}$$
 $orall$ дифф. $\uparrow S(\cdot)$

• Чаще всего используется

$$S(u) = \ln \sigma(u) = \ln \frac{1}{1 + e^{-u}} = -\ln (1 + e^{-u})$$

⁶https://www.erikdrysdale.com/auc_max/

Содержание

- Постановка задачи
- 2 Формирование вектора признаков
- ③ Поточечные (pointwise) методы
- Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- Меры качества ранжирования

Списочные (listwise) методы

- Списочные (listwise) методы пытаются оптимизировать весь список документов целиком.
 - самые точные, т.к. оптимизируют всю выдачу документов.
- Проблема: метрики качества зависят от порядка, который дискретен и недифференцируем.
- Подходы списочных методов:
 - ullet взвешивать пары (i,j) согласно списочной мере качества
 - LambdaRank, LambdaMART
 - оптимизация сглаженной меры качества списка
 - SoftRank оптимизирует SoftNDCG вместо NDCG.
 - дискретный список->непрерывное пространство распределений перестановок
 - ListNet
 - дискретный порядок->скрытая случ. величина со своим распределением
 - LambdaLoss

LambdaRank

- Пусть Q мера качества списка (в оригинале NDCG).
- Оценим ΔQ_{ij} при $x_i \leftrightarrow x_j$.
- RankNet->LambdaRank:

$$w := w + \frac{\varepsilon \alpha |\Delta Q_{ij}| (x_j - x_i)}{1 + e^{+\alpha (w^T x_j - w^T x_i)}}$$

- Изменение w выше для существенных изменений Q_{ii} .
 - на рисунке-черные: градиенты RankNet, красные: градиенты LambdaRank (начало списка для Q важнее)
- Приближенно оптимизирует Q.

Модель DSSM⁷

- Модель DSSM (Deep Structured Semantic Model) вычисляют соответствие
 - документа и запроса (ранжирование)
 - пользователя и товара (рек. система)
- Используется сиамская сеть, отображающее все в общее семантическое пространство.
 - cos-sim используется для оценки похожести

⁷A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems.

Модель DSSM

• Релевантность документа запросу:

$$R(Q, D) = \frac{\mathbf{y}_{Q}^{T} \mathbf{y}_{D}}{\|\mathbf{y}_{Q}\| \|\mathbf{y}_{D}\|}$$

• Вероятности клика на документы:

$$P(D_1, D_2, ... | Q) = \operatorname{softmax}_{\tau} (R(D_1, Q), R(D_2, Q), ...)$$

Оптимизация - максимизация вер-ти кликнутых док-тов⁸

$$\ln \prod_{(Q_i,D_i)} P\left(D_i|Q_i
ight)
ightarrow \max_{ heta}$$

- Представление документов через счётчик триграм:
 - "курс \$" -> #ку, кур, урс, рс_□, с_□\$, _□\$#
- работает с новыми словами!

⁸Это pointwise, pairwise или listwise подход?

Содержание

- 1 Постановка задачи
- 2 Формирование вектора признаков
- Поточечные (pointwise) методы
- 4 Попарные (pairwise) методы
- 5 Списочные (listwise) методы
- 6 Меры качества ранжирования
 - Меры качества для бинарной релевантности
 - Меры качества для градаций релевантности

- 6 Меры качества ранжирования
 - Меры качества для бинарной релевантности
 - Меры качества для градаций релевантности

- Рассмотрим бинарную разметку $y \in \{1,0\}$ (релевантен/не релевантен) и запрос q среди всех запросов Q.
- На практике важны лишь первые N документов выдачи
- Предполагаем, $y_1, y_2, ...$ упорядочены по $\downarrow f_w(x)$

- Рассмотрим бинарную разметку $y \in \{1,0\}$ (релевантен/не релевантен) и запрос q среди всех запросов Q.
- На практике важны лишь первые N документов выдачи
- Предполагаем, $y_1, y_2, ...$ упорядочены по ↓ $f_w(x)$
- ullet Доля корректных пар $= AUC(q) \ [i,j$ первые N док-тов]

$$ConcordantRatio(q) = \frac{|\{(i,j): j \succ i \text{ in } f_w(x_j) > f_w(x_i)\}|}{|\{(i,j): j \succ i\}|}$$

- Рассмотрим бинарную разметку $y \in \{1,0\}$ (релевантен/не релевантен) и запрос q среди всех запросов Q.
- На практике важны лишь первые N документов выдачи
- Предполагаем, $y_1, y_2, ...$ упорядочены по ↓ $f_w(x)$
- ullet Доля корректных пар $= AUC(q) \ [i,j$ первые N док-тов]

$$ConcordantRatio(q) = \frac{|\{(i,j): j \succ i \text{ in } f_w(x_j) > f_w(x_i)\}|}{|\{(i,j): j \succ i\}|}$$

$$Precision@N(q) = rac{\sum_{n=1}^{N} y_n}{N}$$
 - не учитывает порядок

- Рассмотрим бинарную разметку $y \in \{1,0\}$ (релевантен/не релевантен) и запрос q среди всех запросов Q.
- На практике важны лишь первые N документов выдачи
- Предполагаем, $y_1, y_2, ...$ упорядочены по $\downarrow f_w(x)$
- ullet Доля корректных пар $= AUC(q) \ [i,j$ первые N док-тов]

$$ConcordantRatio(q) = \frac{|\{(i,j): j \succ i \text{ in } f_w(x_j) > f_w(x_i)\}|}{|\{(i,j): j \succ i\}|}$$

$$Precision@N(q) = rac{\sum_{n=1}^{N} y_n}{N}$$
 - не учитывает порядок

$$RR(q) = rac{1}{\min_i y_i = 1}; \quad MRR = rac{1}{|Q|} \sum_{q \in Q} RR(q)$$
 - mean reciprocal rank

MRR на удивление хорошо ранжирует весь список на практике.

• Средняя точность=площадь под Precision(Recall) кривой (зависимых от n среди первых N документов):

$$AP@N(q) = \frac{1}{\sum_{k=1}^{N} y_k} \sum_{n=1}^{N} y_n Prec@n(q)$$

$$AP@N(q) = \sum_{n=1}^{N} (Recall@(n, N)(q) - Recall@(n-1, N)(q)) Prec@n(q)$$

Усредненная AP@n(q) по запросам - mean average precision:

$$MAP@N = rac{1}{|Q|} \sum_{q \in Q} AP@N(q)$$

Пример расчетов метрик качества

Результаты ранжирования:

n	$f_w(x)$	у	Prec@n
1	100	1	1
2	52	0	1/2
3	3	1	2/3
4	-200	1	3/4

•
$$RR = 1/1 = 1$$

•
$$Recall@(1,4) = 1/3$$

•
$$Recall@(3,4) = 2/3.$$

•
$$AP@4 = \frac{1}{3}(1 + 2/3 + 3/4)$$

- 6 Меры качества ранжирования
 - Меры качества для бинарной релевантности
 - Меры качества для градаций релевантности

Discounted Cumulative Gain

Discounted Cumulative Gain

$$DCG@N(q) = \sum_{n=1}^{N} g(y_n) d(n)$$

- ullet $g(y) \geq 0$ и \uparrow поощрение за релевантность
- ullet $d(n) \geq 0$ и \uparrow дисконт за низкую позицию
- Классический выбор:

$$g(y) = 2^{y} - 1, \quad d(n) = \frac{1}{\log(i+1)}$$

• $DCG@N(q) \ge 0$ неинтерпретируем и несравним для разных N, поэтому используют normalized DCG:

$$nDCG@N(q) = \frac{DCG@N(q)}{IdealDCG@N(q)} \in [0,1]$$

Пример расчетов метрик качества

Результаты ранжирования:

n	$f_w(x)$	у	$g(y) = y^2$	d(n) = 1/n
1	100	3	9	1
2	52	4	16	1/2
3	3	0	0	1/3
4	-200	6	36	1/4

•
$$DCG@4(q) = 9 \cdot 1 + 16 \cdot \frac{1}{2} + 36 \cdot \frac{1}{4} = 9 + 8 + 9 = 26$$

• IdealDCG@4(q) =
$$36 \cdot 1 + 16 \cdot \frac{1}{2} + 9 \cdot \frac{1}{3} = 36 + 8 + 3 = 47$$

•
$$nDCG@4(q) = 26/47$$

Ранжирование - Виктор Китов Меры качества ранжирования

Меры качества для градаций релевантности

pFound

- Мера качества pFound придумана в Яндексе.
- ullet $y \in [0,1]$ вероятность найти ответ в документе
- p_{out} вероятность прекратить поиск
- p_i вероятность, что пользователь дойдет до i-й позиции выдачи.

Меры качества для градаций релевантности

pFound

- Мера качества pFound придумана в Яндексе.
- ullet $y \in [0,1]$ вероятность найти ответ в документе
- p_{out}- вероятность прекратить поиск
- p_i вероятность, что пользователь дойдет до i-й позиции выдачи. Считается рекуррентно:

$$p_1 = 1$$
 $p_{i+1} = p_i(1 - y_i)(1 - p_{out})$

• Т.е. пользователь доходит до (i+1)-й позиции, если он дошел до i-й, не нашел ответ и не прекратил поиск.

$$pFound@N(q) = \sum_{n=1}^{N} p_n y_n$$

• В конце усредняем pFound по запросам.

Заключение

- Задача ранжирования упорядочивание объектов по их релевантности поисковому запросу.
 - веб-страницы, ответы на вопросы, товары в магазине
- Признаки сочетают информацию о пользователе, запросе и документе.
 - PageRank-популярный способ рейтингования веб-страниц
- Методы ранжирования:
 - поточечные
 - попарные (самые популярные)
 - списочные (в теории самые точные)
- Меры качества:
 - инвариантные к порядку среди первых N документов (precision, recall)
 - зависящие от порядка (nDCG)