Redes de Computadores

Codificação de dados

Aula 04

Introdução

- □ Informações digitais ou analógicas podem ser codificadas tanto em sinais analógicos como em sinais digitais.
 - ▶ Dados digitais, sinais digitais
 - ► Dados analógicos, sinais digitais
 - ▶ Dados digitais, sinais analógicos
 - ▶ Dados analógicos, sinais analógicos
 - ► Fora do contexto da disciplina
 - ▶ É o que acontece com estações de rádio e televisão

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Redes de Computadores

2

Dados digitais, sinais digitais: transmissão banda base

- Dados digitais são codificados em um sinal digital
 - ▶ Pulsos de tensão (discretos) durante um elemento de sinalização (baud)

- □ Tipo de esquema de codificação depende de vários fatores
 - ► Existência de componente DC no sinal
 - Sincronização
 - Adequação do sinal na banda passante
 - ► Capacidade de detectar erros na transmissão

Para iniciar a análise Bit 1: +V volts Bit 0: 0 volts

Componente DC

- □ Associada a frequência zero
- □ Deve ser evitada para permitir acoplamento indutivo do sinal via transformadores
 - ► Excursões positiva e negativas do sinal devem ser iguais

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Redes de Computadores

Sincronização de relógios

- □ Relógios do emissor e do receptor devem estar sincronizados para correta interpretação sinal
 - ► Amostragem no meio do tempo de bit
- □ Necessário manter a sincronização
 - ▶ Resincronização na presença de "bordas" do sinal

Soluções para sincronização

□ Empregar um fio a parte para enviar o sinal de relógio

- ► Custo: necessário dois fios (um para os dados, outro para o relógio)
- ► Sinal de relógio sofre atrasos, atenuações e interferências
- Usando em barramentos de computadores, não para comunicação de dados

□ Estratégias possíveis

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

- ► Assíncrona: usar uma marca de inicio de dados para sinalizar o receptor do "inicio do tempo" e transmitir um conjunto de bits
 - ▶ Em quantidade para que desvios de relógios não se acumulem
- ► Síncrono: "embutir" um sinal de relógio junto aos dados

■ Banda passante

- ▶ A banda passante do sinal deve ser adequada a banda do canal
 - ▶ Problema de "largura" da banda passante
- Uso eficiente:
 - ▶ NRZ-I: para taxa de b bits, se necessita uma largura de B/2 Hz (b = B $\log_2 2$)
 - ► Manchester: para taxa de *b* bits, se necessita uma largura de B Hz

□ Detecção de erros

- ▶ Possibilidade do receptor identificar um erro de transmissão e assim abortá-la ou descartá-la.
 - ▶ NRZ-I: não há (um bit invertido por erro fornece um bit válido)
 - ▶ Manchester: ausência de transição no meio do tempo de bit é um erro

Códigos pseudoternário e bipolar AMI

- □ Empregam 3 níveis (A, 0, -A)
 - ► Pseudoternário: bits em 0 corresponde a A e –A alternadamente, bit em 1 é 0
 - ► AMI: bits em 1 corresponde a A e -A alternadamente, bit em 0 é 0

Características

Redes de Computadores

- ► Para um canal de b bits precisam de uma banda de 1.6 Hz/bit (b = B log₂3)
- ► Introduzem transição em sequências de 1 (AMI) ou 0 (bipolar)
 - ► Auxilia a sincronização para longas sequencias de 1s (AMI) OU de 0s (pseudoternário)
- ▶ Detecção de erro: não pode haver dois pulsos em A ou –A consecutivos
- ► Sem componente DC

Banda passante e detecção de erro

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Redes de Computadores

Métodos de codificação banda base

Método	Regra de codificação	Prós e contras
NRZ-L	Bit 0: pulso positivo (+V) Bit 1: pulso negativo (-V)	• ver NRZ-I
NRZ-I	Bit 0: ausência de transição no início do tempo de bit Bit 1: presença de transição no início do tempo de bit Bit 1: presença de transição no início do tempo de bit	Simplicidade I bit por baud Perda de sincronismo (longas sequências) Presença de componente DC residual Sem detecção de erro
Manchester	Bit 0: transição nível alto ao nível baixo Bit 1: transição nível baixo ao nível alto Output Bit 1: transição nível baixo ao nível alto	Ausência de componente DC Oferece sincronização Permite detecção de erro I bit necessita dois elementos sinalização
AMI	Bit 0: ausência de sinal (0 V) Bit 1: Pulso positivo/negativo (alternado) Output Output Description:	◆Ver Pseudo-ternário
Pseudo-ternário Redes de Compi	Bit 0: Pulso positivo/negativo (alternado) Bit 1: ausência de sinal (0 V) Bit 1: ausência de sinal (0 V)	Ausência de componente DC Problema de sincronização para longas sequências de bits em um (ou zero se AMI) Permite detecção de erros Reconhecer 3 níveis (+V, 0, -V)

Em busca de algo mais....

- □ As codificações de banda base vistas ainda deixam a desejar em dois aspectos
 - ► Eficiência
 - ▶ Detecção de erros
- Novas técnicas

Instituto de Informática - UFRGS A. Carissimi -14-août-13

- ► Embaralhamento (scrambling) e codificação em bloco
- ► Tentam de forma diferente:
 - ▶ Produzir transições para permitir sincronização
 - ► Eliminar (reduzir) componente DC
 - ► Permitir algum nível de detecção de erro

Redes de Computadores 10

Scrambling e codificação em blocos

□ Scrambling

- ► Substituir a sequência original por uma outra que evite sequências longas de zeros (ou uns), permita sincronização, reduza DC e permita detecção de erro
- ▶ Não modificar o "tamanho" da sequência original
- ► Exemplos: B8ZS, HDB3
- □ Codificação em blocos
 - ➤ Substituir a sequência original por uma outra que evite sequências longas de zeros (ou uns), permita sincronização, reduza DC e permita detecção de erro
 - ▶ Modificar o "tamanho" da sequência original (n bits) para m bits (m > n)
 - ▶ Seleciona combinações de 2^m visando sincronização e detecção de erro
 - ► Emprega qualquer codificação de banda base

Exemplo de scrambling: B8ZS e HDB3

Redes de Computadores

12

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS

Exemplos de codificação em blocos: 4B/5B e 8B/6T

Dados digitais, sinais analógicos

- □ Transmissão de dados digitais através de sinais analógicos
- □ Modulação consiste em codificar os dados com base na portadora
 - conversão de um sinal analógico em outro sinal analógico de modo a transmiti-lo em um meio passa-faixa
 - ▶ Modulação em dados digitais se denomina *keying* (modulação digital)
 - Representar uma informação através de uma série de modificações em um sinal analógico (portadora)
 - ► Amplitude shift keying (n-ASK), Frequency shift keying (n-FSK), Phase shift keying (n-PSK), Quadrature Amplitude Modulation (QAM)

Redes de Computadores 14

Modulação

- □ Amplitude (n-ASK)
 - Dados são representados por diferentes amplitudes (n)
- □ Frequência (n-FSK)
 - Dados são representados por diferentes frequências (n)
- □ Fase (n-PSK)
 - Dados são representados por diferentes fases (n)

Bit 1 = Acos (2 π f₁t + π) Bit 0 = Acos (2 π f_ct)

15

Redes de Computadores

Quadratura de fase (QPSK)

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

- □ Cada elemento de sinalização é caracterizado por uma fase própria
 - ► Esquema genérico é denominado de *n*-PSK (*n* = número de fases)
 - ▶ Um elemento de sinalização representa *log₂n* bits
 - ▶ Limitação de hardware para detectar diferentes fases próximas
- □ Caso especial: *n*=4 (quadratura de fase)
 - ▶ 45, 135, 225 e 315 graus

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Redes de Computadores

Quadratura de Amplitude (QAM)

- □ Combinação de ASK e PSK
 - ► Variação em amplitude e em fase

- □ Possível definir várias amplitudes e fases (n-QAM)
 - ► Exemplos: 16-QAM, 64-QAM, 128-QAM e 256-QAM

Redes de Computadores

Dados analógicos, sinais digitais

- □ Digitalização do sinal, i.é., conversão do sinal analógico em digital
 - ▶ Dado pode ser transmitido usando um tipo qualquer de codificação digital
 - ► Conversão sinal analógico em seu equivalente digital (uma técnica de modulação)
- □ Codec (coder-decoder)
 - ► Conversão pode utilizar duas técnicas:
 - ► Pulse Code Modulation (PCM)
 - ▶ modulação delta
- □ Aplicação comum: rede de telefonia pública

Redes de Computadores 18

Pulse Amplitude Modulation (PAM) e Pulse Code Modulation (PCM)

Quantização do sinal

Redes de Computadores

- ► Inclui erro e/ou ruído
- Aproximação do sinal original, ou seja, é impossível de recuperar <u>exatamente</u> o sinal original

Teorema de amostragem de Nyquist

- Precisão de uma reprodução digital de um sinal analógico depende do número de amostras realizadas
- □ Teorema de Nyquist::
 - "Um sinal amostrado em intervalos regulares a uma taxa igual a duas vezes a da sua mais alta freqüência contém toda a informação do sinal original"
 - ► Exemplo: Sinal de voz ocupa banda de 4 KHz (0–4KHz), o que implica em uma freqüência de amostragem de 8 KHz
- □ Portanto, a taxa PAM deve ser duas vezes a frequência mais alta presente no sinal.
 - ▶ Um sinal com frequência x deve ser amostrado a cada 1/(2x) segundos.

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

17

19

Instituto de Informática - UFRGS A. Carissimi - 14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Redes de Computadores 20

Estudo de caso: Modem linha discada (*Mod*ulador-*dem*odulador)

- □ Converte dados binários em sinal analógico e vice-versa
 - ► Transmissão de dados através do laço local da rede de telefonia pública

DTE: Data Terminal Equipment DCE: Data Communication Equipment

Redes de Computadores

Banda passante da linha telefônica

- □ Passa-banda 300Hz a 3300 Hz (banda passante 3000 Hz)
 - ► Bordas são suscetíveis a distorções, tolerados na transmissão de voz mas não para a transmissão de dados
 - ► Solução: empregar uma faixa (banda) mais estreita

Redes de Computadores 22

Modem: diagramas de constelação

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Limitação de velocidade de transmissão

- □ Linha telefônica apresenta uma limitação na sua capacidade máxima de transmissão (Shanon)
 - ▶ Supondo S/N=30 dB e canal de 3 kHz

$$C = 3000 \times \log_2(1 + 1000)$$

$$C = 3000 \times (\frac{\log 1001}{\log 2})$$

$$C = 3000 \times \frac{3}{0.3} = 30000 \, bps$$

- □ Como então existem modems de capacidade superior a este limite?
 - ▶ Dados são compactados antes de transmitir
 - ► Sistemas assimétricos

Redes de Computadores 24

Instituto de Informática - UFRGS A. Carissimi - 14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Padrões de Modem: série V (standard ITU-T)

- □ Modem V32 (9600 bps)
 - ▶ 32-QAM, 2400 baud, código de trellis
- □ Modem V32bis (até 14400 bps)
 - ▶ 128-QAM, 2400 baud, inclusão de fall-back e fall-forward
- Modem V34 (até 28800 bps)
 - ▶ 12 bits dados /baud
- Modem V34bis (até 33600 bps)
 - ▶ 14 bits dados/baud
- □ Modem V90 e V92 (até 56000 bps para downloading)
 - ► Sistemas assimétricos (duas velocidades: uploading e downloading)
 - ▶ Uploading V90 é até 33.6 Kbps, uploading V92 é até 48 Kbps

Redes de Computadores 25

Modems tradicionais *versus* modems 56K

- □ Núcleo da rede de telefonia pública é digital, laço local é analógico
- Modems tradicionais:
 - ► Após modulação (emissor) há uma conversão analógico →digital (entrada)
 - ▶ O mesmo vale para a resposta enviada pelo destino
 - ► Conversões = ruído de quantização (afeta relação S/R de Shannon)
- □ Modems 56K (V90 e V92)
 - ► Comunicação é para a Internet com presença de um provedor de serviço
 - ▶ Provedor (de qualidade) possui uma linha digital com a companhia telefônica
 - ▶ Elimina a conversão na ponta do provedor (resposta) downloading
 - ▶ Assinante possui uma linha analógica (laço local) com a companhia telefônica
 - ▶ Ruído de quantização na ponta assinante (requisição) uploading
 - ▶ Velocidade de *dowloading* pode ser maior que a de *uploading*

Redes de Computadores 26

Leituras adicionais

Redes de Computadores

- □ Tanenbaum, A.; Wethreall, D. <u>Redes de Computadores</u> (5ª edição), Editora Pearson Education, 2011.
 - ► Capítulo 2 (2.5.1 e 2.5.2)
- □ Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>. Série Livros Didáticos. Bookman 2009.
 - ► Capítulo 3 (3.2.2 a 3.2.4)

Sincronização de relógio

- No receptor
 - O sinal é convertido para bits fazendo a amostragem do sinal em intervalos de tempos regulares

- □ Necessário "sincronizar" relógio do receptor com o do transmissor
 - ▶ Os relógios individuais de cada máquina defasam

Instituto de Informática - UFRGS A. Carissimi -14-août-13

27

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Instituto de Informática - UFRGS A. Carissimi -14-août-13

Outra visão da rede de telefonia pública

Visão simplificada da rede de telefonia pública

□ Sistema típico:

- ► Amostras em 8 bits (fornece 256 níveis discretizados diferentes)
- ▶ 8000 amostras por segundo o que gera 64kbps (8000 x 8 bits/amostra)

Redes de Computadores 30