

$2.\underline{^a}$ Prova de Álgebra Linear e Geometria Analítica

16/01/2012

Duração: 2h00 min

Nome:												N. <u>0</u>	Folhas	s Supl.:
Nº Mec.				Decla	ro que	e desis	to			_	\mathbf{C}	lassific	cação:	
Classifica	ções P	arciais	:											
	1	2a)	2b)	2c)	2d)	3a)	3b)	3c)	4	5a)	5b)	5c)	5d)	

[30] 1. Mostre que o sistema de equações

$$\begin{cases} 2x + y = 8 \\ -x + 2y + 4z = 7 \\ -x + z = 1, \end{cases}$$

é um sistema de Cramer, ou seja, um sistema possível e determinado, e utilize a Regra de Cramer para o resolver.

2. Considere a aplicação linear $f: \mathbb{R}^s \longrightarrow \mathbb{R}_2[X]$ definida por:
$f(a, b, c) = (a - c) + (b + c)X + aX^{2}.$
[10] a) Determine para que valor de $a \in \mathbb{R}$, $f(a, a, a) = 4X + 2X^2$.
[15] b) Determine a matriz da aplicação linear f relativamente às bases canónicas de \mathbb{R}^3 e de $\mathbb{R}_2[X]$.
[20] c) Utilize matrizes de mudança de bases para determinar a matriz da aplicação linear f relativamente à base canónica de \mathbb{R}^3 e à base $\mathcal{D} = (1 + X, X, 1 + X^2)$ de $\mathbb{R}_2[X]$.

[10] d) Seja $g: \mathbb{R}_2[X] \longrightarrow \mathbb{R}^3$ uma aplicação linear cuja matriz, em relação às bases $\mathcal{B}:=(1,X,X^2)$ e $\mathcal{A}:=((1,1,1),(1,1,0),(1,0,0))$ é $2I_3$ onde I_3 designa a matriz identidade de ordem 3.

Suponha que a matriz de f em relação às bases \mathcal{A} de \mathbb{R}^3 e \mathcal{B} de $\mathbb{R}_2[x]$ é $3I_3$. Determine a matriz de $g \circ f$ em relação à base \mathcal{A} de \mathbb{R}^3 .

- - 3. Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ -1 & 1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}.$$

- [5] a) Calcule os produtos de matrizes $AB \in BA$.
- - [18] b) Mostre que a matriz BA é invertível e calcule a sua inversa.

[12] c) Recorra às propriedades da função determinante, |*|, para determinar para que valores do parâmetro real λ , se tem $|(\lambda BA)^T| = 24$.

[30] 4. Considere o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que tem como representação matricial em ralação à base canónica de \mathbb{R}^2 a matriz $\begin{bmatrix} -2 & -3 \\ 2 & 5 \end{bmatrix}$.

Averigúe se o operador T é diagonalizável e em caso afirmativo apresente uma base de \mathbb{R}^2 em relação à qual a matriz de T é diagonal.

5. Considere no espaço vectorial real \mathbb{R}^3 , a função <*/*> definida por: $<(x_1,y_1,z_1)/(x_2,y_2,z_2)>=2x_1x_2+x_1y_2+y_1x_2+y_1y_2+z_1z_2.$

[10] a) Mostre que a função <*/*> define um produto interno em \mathbb{R}^3 .

Nota: Nas alíneas que se seguem considere o espaço vectorial E munido do produto interno acima definido.

[15] b) Encontre uma base ortonormada para o subespaço vectorial E = <(1,0,0), (0,1,0)>.

[10] c) Determine uma base para E^{\perp} , o complemento ortogonal de E .
[15] d) Indique qual o vector de E mais próximo de $(0,0,1)$.
$[{f 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1)$.
$[{f 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1)$.
$[{f 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1).$
$[{\bf 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1)$.
$[{\bf 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1).$
$[{\bf 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1).$
$[{\bf 15}]$ d) Indique qual o vector de E mais próximo de $(0,0,1).$

Bom trabalho

... Não esqueça que...
... Tudo o que vale a pena ser feito
merece e exige ser bem feito
Philip Chesterfield