Technology Generations (or Nodes)

- We refer to the smallest feature size or Critical Dimension (CD).
- 10um 5um 2um 1um 0.8um 0.5um 0.35um
 0.25um 0.18um 0.13um 90nm 65nm 45nm 32nm
 22nm
- Possible through the magic of device scaling
- Desirable due to manufacturing economics (wafer and batch processing)
- Usually limited by lithography, implies new patterning technology, equipment for each node. \$\$\$\$\$\$

Critical Dimension

$$CD = P_{min} / 2$$
$$= k1 . \lambda / NA$$

- CD is the critical dimension
- Pmin/2 is the minimum half pitch
- k1 is a process factor
- λ is the wavelength of the exposure light
- NA is the numerical aperture of the projection optics.

Basic Structure of Computers: Technology Trends (cont.)

Advances in Integration - 2007

- Intel Teraflop Chip 2007
- An 80-core ManyCore processor.
- http://techresear ch.intel.com/articoles/Tera-Scale/1449.htm

Technology	65nm CMOS Process	
Interconnect	1 poly, 8 metal (Cu)	
Transistors	100 Million	
Die Area	275mm ²	
Tile area	3mm ²	
Package	1248 pin LGA, 14 layers, 343 signal pins	

Technology is constantly on the move!

- Num. of transistors is not limiting factor
 - Currently ~ 1 billion transistors/chip
 - Problems:
 - Too much Power, Heat, Latency
 - Not enough Parallelism
- 3-dimensional chip technology?
 - Sandwiches of silicon
 - "Through-Vias" for communication
- On-chip optical connections?
 - Power savings for large packets
- The Intel® Core™ i7 microprocessor ("Nehalem")
 - 4 cores/chip
 - 45 nm, Hafnium hi-k dielectric
 - 731M Transistors
 - Shared L3 Cache 8MB
 - L2 Cache 1MB (256K x 4)

Moore's Law over 10 years $2^{10/1.5} \approx 100$

Design Element Granularity			Methodology	Architecture	
2010	10 ⁸ X	Sub-system	Platform Based Design System Level Synthesis	Networks on a Chip CGRA	
			1 6		
2000	10 ⁶ X	IPs	IP Based Design High Level Synthesis.	System on a Chip	
1990	10 ⁴ X	Arithmetic Register	RTL / Logic Synthesis	Algorithm on a Chip	
1980	10 ² X	Std. Cells	Physical Synthesis	Controller on a Chip	
1970	X	Polygons	Manual Design	SSI / MSI	

The granularity of reusable objects increases by 100 X every decade -- Moore's EDA Law

Review: CMOS Inverter

- □ Full rail-to-rail swing ⇒ high noise margins
- Low output impedance
- High input impedance
- No direct path steady-state between power and ground ⇒ no static power dissipation
- Propagation delay a function of load capacitance and on resistance of transistors

CMOS Properties

- Full rail-to-rail swing ⇒ high noise margins
 - Logic levels not dependent upon the relative device sizes ⇒ transistors can be minimum size ⇒ ratioless
- Always a path to V_{dd} or GND in steady state \Rightarrow low output impedance (output resistance in $k\Omega$ range) \Rightarrow large fan-out (albeit with degraded performance)
- Extremely high input resistance (gate of MOS transistor is near perfect insulator) ⇒ nearly zero steady-state input current
- No direct path steady-state between power and ground ⇒ no static power dissipation
- Propagation delay function of load capacitance and resistance of transistors.

Inverter in CMOS Process

A Modern CMOS Process

Dual-Well Trench-Isolated CMOS

Review: CMOS Buffer

Its Layout View

Growing the Silicon Ingot

- Start with clean sand, melt into liquid
- Grown as a high purity crystal: "boule"
- Sliced into wafers which are polished
- Notch or flat indicates crystal orientation
- 200 mm \$30-\$100/wafer
- 300 mm \$50-\$300/wafer

From Smithsonian, 2000

Photolithographic Process

Patterning - Photolithography

- 1. Oxidation
- 2. Photoresist (PR) coating
- 3. Stepper exposure
- 4. Photoresist development SiO₂ and bake
- 5. Acid etching
 - Unexposed (negative PR)
 - Exposed (positive PR) –
- 6. Spin, rinse, and dry
- 7. Processing step
 - Ion implantation
 - Plasma etching
 - Metal deposition
- 8. Photoresist removal (ashing)

Example of Patterning of SiO2

Si-substrate

Silicon base material

1&2. After oxidation and deposition of negative photoresist

3. Stepper exposure

Chemical or plasma etch

Si-substrate

4. After development and etching of resist, chemical or plasma etch of SiO₂

5. After etching

8. Final result after Amr removal of resist

Diffusion and Ion Implantation

- 1. Area to be doped is exposed (photolithography)
- 2. Diffusionorlon implantation

Deposition and Etching

- Pattern masking (photolithography)
- Deposit material over entire wafer
 - CVD (Si₃N₄)
 - chemical deposition (polysilicon)
 - sputtering (AI)
- 3. Etch away unwanted material
 - wet etching
 - dry (plasma) etching

Planarization: Wafer Polishing

From Smithsonian, 2000

Self-Aligned Gates

1. Create thin oxide in the "active" regions, thick elsewhere

2. Deposit polysilicon

3. Etch thin oxide from active region (poly acts as a mask for the diffusion)

4. Implant dopant

Simplified CMOS Inverter Process

P-Well Mask

Active Mask

Poly Mask

P+ Select Mask

N+ Select Mask

Contact Mask

Metal Mask

Building a Tool

Videos 6

Mask Example (1)

N-well Process mask

CMOS Fabrication Sequence (2)

- Active area definition
 - active area is a planar section of the surface
 - defines transistors regions
 - defines the n+ and p+ regions
 - defines the gate region

CMOS Fabrication Sequence (3)

Channel-stop implant

Ion implantation

CMOS Fabrication Sequence (4)

LOCOS (Local oxidation of silicon)

Field oxide formation

CMOS Fabrication Sequence (5)

Thin Gate Oxide Growth

- The nitride and stress-relief oxide is removed.
- The threshold voltage is adjusted by ion implantation.

- Gate oxide growth, t_{ox} =50...2nm
- Thermal oxidation

CMOS Fabrication Sequence (6)

Polysilicon deposition and photolithography

All the gates are formed and doped (n+) by CVD technique in the single step.

CMOS Fabrication Sequence (7)

P-MOS Formation

Photolithography and boron ion implantation – Self aligned process

CMOS Fabrication Sequence (8)

N-MOS Formation

Photolithography and ion implantation – Self aligned process (n+doped gate)

Thermal annealing cycle is performed.

CMOS Fabrication Sequence (9)

Contact cut formation

- Oxide deposition by low temperature CVD process.
- Photolithography and SiO₂ etching.

CMOS Fabrication Sequence (10)

Contact formation

- Metal (Al or Cu) deposition and photolithography.
- Contacts and interconnects are formed.
- In just the same way the other metal layers are formed.
- After surface glass passivation and pad opening, the chips pass to the next step according to general IC fabrication flow.

Other CMOS Processes

Other CMOS Processes

- P-well
- Twin-well
- Silicon on insulator (SOI-SIMOX)
- Shallow trench isolation (STI)

Process enhancements

- Increase of metal levels
- Copper for interconnects and vias
- Very thin oxide layers(1,0...2nm), stacked contacts and vias
- Chemical and Mechanical Polishing (CMP)

Copper Metallization

Advanced Metallization

Advanced Metallization (cont.)

Advanced Metallization (cont.)

3D view of a modern

standard cell

Let's see that again

Video 6

