STA- 6707

Multivariate Methods Final SAS Project

Spring 2025

Instructor: Dr. Amin Raid Author: Murpys Duran Mendez

Introduction

Homelessness and housing instability remain pressing social issues in the United States. The dataset provided for this project includes eviction rates and homelessness counts across the country.

In this project, we apply descriptive statistics, correlation analysis, Principal Components Analysis (PCA), and Factor Analysis to explore patterns and underlying connections in the data. This allows us to demonstrate the use of multivariate statistical techniques while examining the relationships among homelessness, evictions, and related socioeconomic factors.

The data

The dataset used in this project contains information collected from multiple states, providing a basis for the analyses that follow. The study is focused on some of the variables presented below.

- county
- totalhomeless
- county_population
- eviction_filings
- renting_household_population
- z_med_rent

- z_med_inc
- pct_white
- pct_african_american
- pct_latinx
- pct_smokers
- pct_obese

- pct_unemployed
- pct_high_school_graduation
- violent_crime_rate
- pct_poverty
- pop_per_sq_mile

The complete dataset was imported into SAS from a CSV file, and a smaller version was sampled for the states of Oklahoma, Arkansas, Georgia, Ohio, Texas, and Montana. Figure 1 displays a sample portion of the dataset as it appears in SAS.

	fips	state	county	year	totalhomeless	county_population	eviction_filings	ı
1	48427	Texas	Starr County	2017	43	60968	16	
2	48323	Texas	Maverick County	2017	37	54258	94	
3	48479	Texas	Webb County	2017	65	250304	712	
4	48505	Texas	Zapata County	2017	12	14018	7	
5	46113	South Dakota	Shannon County	2017	7	13586	1	
6	48507	Texas	Zavala County	2017	8	11677	15	
7	48047	Texas	Brooks County	2017	7	7223	8	
8	48215	Texas	Hidalgo County	2017	427	774769	2095	
9	48247	Texas	Jim Hogg County	2017	4	5300	7	
10	46121	South Dakota	Todd County	2017	7	9612	1	
11	35031	New Mexico	McKinley County	2017	15	71492	92	
12	48131	Texas	Duval County	2017	6	11782	9	
13	48061	Texas	Cameron County	2017	277	406220	1005	
14	36005	New York	Bronx County	2017	16136	1385108	86888	
15	48127	Texas	Dimmit County	2017	7	9996	12	
16	55078	Wisconsin	Menominee County	2017	7	4232	0	
17	13063	Georgia	Clayton County	2017	406	259424	17695	

Figure 1

Table 1 presents the frequency distribution of observations across the selected states in the dataset.

The FREQ Procedure							
state	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
Arkansas	75	10.58	75	10.58			
Georgia	159	22.43	234	33.00			
Montana	56	7.90	290	40.90			
Ohio	88	12.41	378	53.31			
Oklahoma	77	10.86	455	64.17			
Texas	254	35.83	709	100.00			

Table 1.

The table shows that Texas accounts for almost a third of the work data, followed by Georgia with 22.43 percent. While the rest of the states contribute modestly to the numbers.

Basic Statistics

To better understand the dataset, we computed basic descriptive statistics for all variables. These summaries provide an overview of central tendencies, variability, and overall data distribution and range.

Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximur		
fips	709	32353	16273	22938627	5001	4850		
year	709	2017	0	1430053	2017	201		
totalhomeless	709	66.61495	203.71454	47230	0	245		
county_population	709	76201	237490	54026402	82.00000	409245		
eviction_filings	709	958.27362	4385	679416	0	5904		
renting_household_population	709	11502	42708	8154952	15.00000	73921		
z_med_rent	709	0.22000	0.08405	155.98043	0.01196	0.5869		
z_med_inc	709	0.24480	0.10095	173.56551	0.04145	0.7247		
pct_white	709	0.67699	0.21157	479.98643	0.00728	0.9982		
pct_african_american	709	0.11134	0.14925	78.93765	0	0.7229		
pct_latinx	709	0.15815	0.20173	112.12900	0	0.9920		
primary_care_physician_rate	709	0.09751	0.05630	69.13735	0	0.2843		
pct_single_parent_households	709	0.34076	0.10393	241.59755	0	1.0000		
pct_smokers	709	0.18017	0.02948	127.74307	0.11764	0.3220		
pct_obese	709	0.31083	0.03873	220.37700	0.15500	0.4550		
pct_unemployed	709	0.05352	0.01665	37.94857	0.02081	0.1359		
pct_high_school_graduation	709	0.88185	0.07524	625.23515	0.32556	1.0000		
violent_crime_rate	709	0.15271	0.11403	108.27000	0	1.0000		
z_air_rseihazard	709	0.01031	0.06043	7.30744	0	1.0000		
z_land_rseihazard	709	0.0000471	0.0005506	0.03340	0	0.0127		
z_water_rseihazard	709	0.00172	0.03767	1.21696	0	1.0000		
republican_voting_pct	709	0.71134	0.15003	504.33741	0.13916	0.9675		
pct_poverty	709	0.97843	0.09410	693.70796	0.65354	1.6341		
pop_per_sq_mile	709	0.0003747	0.0009376	0.26564	0	0.0080		
Ing	709	-93.37170	8.51049	-66201	-115.40512	-80.7486		
lat	709	34.96246	4.72419	24788	26.13427	48.7837		

Descriptive statistics of the $\underline{\text{count of homeless population}}$ (totalhomelss):

Basic Statistical Measures							
Loc	ation	Variability					
Mean	66.61495	Std Deviation	203.71454				
Median	17.00000	Variance	41500				
Mode	5.00000	Range	2451				
		Interquartile Range	31.00000				

Tests for Location: Mu0=0							
Test	:	Statistic	p Val	lue			
Student's t	t 8.707085		Pr > t	<.0001			
Sign	М	352	Pr >= M	<.0001			
Signed Rank	S	124080	Pr >= S	<.0001			

Quantiles (Definition 5)				
Level	Quantile			
100% Max	2451			
99%	1162			
95%	270			
90%	128			
75% Q3	38			
50% Median	17			
25% Q1	7			
10%	3			
5%	2			
1%	1			
0% Min	0			

Extreme Observations							
Low	est	High	est				
Value	Obs	Value	Obs				
0	677	1411	512				
0	606	1484	682				
0	590	1727	308				
0	586	2155	470				
0	391	2451	556				

Descriptive statistics of the <u>count of eviction notices filed</u> (eviction_filings):

Quantiles (Definition 5)					
Level	Quantile				
100% Max	59046				
99%	22681				
95%	3295				
90%	1409				
75% Q3	302				
50% Median	75				
25% Q1	18				
10%	6				
5%	3				
1%	0				
0% Min	0				

Extreme Observations						
Lowest Highest						
Value	Obs	Value	Obs			
0	677	26033	675			
0	672	37430	118			
0	671	37445	512			
0	652	57103	135			
0	635	59046	556			

The data shows a high contrast in the distribution of both homelessness and evictions. For homelessness, the 0th percentile is 0, indicating no homelessness at the lower end, while the 100th percentile reaches 2,451, showing a significant upper range. This demonstrates a large disparity between the lowest and highest values in the homelessness data. Similarly, for evictions, the 0th percentile is 0, but the maximum value soars to 59,046, further highlighting the stark contrast between the low and high values in this variable. These large differences in the extremes suggest a high level of variability in both homelessness and evictions across the dataset.

Testing Normality

The normality test for the variable totalhomeless indicates that the data is not normally distributed across the states. The Shapiro-Wilk test produced a *p-value* less than 0.0001 in all cases, strongly rejecting the null hypothesis of normality. Additionally, the QQ plots further support this conclusion, as the points deviate significantly from the expected straight line, suggesting a non-normal distribution.

Montana	Ohio

The normality test for the variable eviction_filings also indicates that the data is not normally distributed. The Shapiro-Wilk tests resulted in a p-value less than 0.0001 for all states, rejecting the null hypothesis of normality. The QQ plots show a clear deviation from the expected straight line, suggesting that the data does not follow a normal distribution. Additionally, the histograms are visibly skewed, further

supporting the conclusion that the distribution of evictions is not normal. We present two states below as examples.

After applying Box-Cox and other transformations, we obtained an approximation to the normal distribution, though the Shapiro-Wilks test still indicates non-normality for some states. This is likely caused by the presence of high values that skew the data.

We conducted a **one-way ANOVA** to examine whether average homelessness levels differ significantly across U.S. states. The analysis revealed a statistically significant difference in mean totalhomeless values between states, F(49, 698) = 10.09, p < .0001, indicating that homelessness varies meaningfully by state. A post hoc Tukey test ($\alpha = 0.05$) identified **Ohio** as significantly different from multiple states. Specifically, Ohio had significantly different mean homelessness levels compared to Montana, Oklahoma, Texas, Georgia, and Arkansas, as all these comparisons had 95% confidence intervals that excluded zero. This suggests Ohio's homelessness profile is notably distinct from those of several other states.

Distribution of Homelessness

We used a MANOVA test to see if homelessness and evictions differ by **state**, **education level**, and their **interaction**. The results showed that both outcomes vary significantly between states (Wilks' Lambda = 0.693, F = 27.08, p < .0001). Education level also had a significant effect (Wilks' Lambda = 0.969, F = 5.37, p = 0.0003), meaning it's related to homelessness and evictions. Finally, the interaction between state and education level was also significant (Wilks' Lambda = 0.961, F = 1.70, p = 0.0412), showing that the effect of education level changes depending on the state.

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall grad_level Effect H = Type III SSCP Matrix for grad_level E = Error SSCP Matrix

S=2	M=-0	151	N=335

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.96881369	5.37	4	1344	0.0003
Pillai's Trace	0.03130690	5.35	4	1346	0.0003
Hotelling-Lawley Trace	0.03206574	5.38	4	805.36	0.0003
Roy's Greatest Root	0.02754748	9.27	2	673	0.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall state Effect H = Type III SSCP Matrix for state E = Error SSCP Matrix

S=2 M=1 N=335

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.69276666	27.08	10	1344	<.0001
Pillai's Trace	0.32169940	25.80	10	1346	<.0001
Hotelling-Lawley Trace	0.42260590	28.37	10	1005.3	<.0001
Roy's Greatest Root	0.36546962	49.19	5	673	<.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall state*grad_level Effect H = Type III SSCP Matrix for state*grad_level E = Error SSCP Matrix

S=2 M=2.5 N=335

	3-2 WI-2	.5 N-555			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.96077961	1.70	16	1344	0.0412
Pillai's Trace	0.03944281	1.69	16	1346	0.0421
Hotelling-Lawley Trace	0.04058993	1.70	16	1096.1	0.0406
Roy's Greatest Root	0.03372584	2.84	8	673	0.0042

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

Interpretation of the Interaction Plots

In most states, medium education levels are linked to the highest homelessness rates, while high education is associated with medium homelessness, and low education tends to show the lowest homelessness rates. For evictions, a similar pattern is observed, with medium education showing higher evictions compared to high and low education. However, Montana stands out, as it follows a different trend, where high education is linked to lower evictions rates.

Correlation Matrix

We calculated the correlation matrix to examine how the variables in the dataset relate to one another. The matrix shows the strength and direction of linear associations between each pair of variables. Identifying strong or weak correlations helps determine which variables may provide similar information and which contribute distinct variation—useful when preparing for Principal Component Analysis (PCA).

Fragment of the Correlation Matrix

	fips	year	totalhomeless	county_population	eviction_filings	renting_household_population	z_med_rent	z_med_inc	pct_white	pct_african_americar
fips	1.00000	:	0.09442 0.0119	0.08689 0.0207	-0.01671 0.6569	0.07437 0.0478	0.17069 <.0001	0.29731 <.0001	-0.13718 0.0002	-0.52190 <.0001
year	:	:	:	:	:	:	:			
totalhomeless	0.09442 0.0119	:	1.00000	0.90623 <.0001	0.72184 <.0001	0.89855 <.0001	0.39302 <.0001	0.23931 <.0001	-0.17450 <.0001	0.08347 0.0262
county_population	0.08689 0.0207	:	0.90623 <.0001	1.00000	0.84775 <.0001	0.98934 <.0001	0.37774 <.0001	0.23003 <.0001	-0.17406 <.0001	0.08333 0.0268
eviction_filings	-0.01671 0.6569		0.72184 <.0001	0.84775 <.0001	1.00000	0.86568 <.0001	0.35650 <.0001	0.18260 <.0001	-0.19416 <.0001	0.19926 <.000°
renting_household_population	0.07437 0.0478	:	0.89855 <.0001	0.98934 <.0001	0.86568 <.0001	1.00000	0.34154 <.0001	0.18866 <.0001	-0.17297 <.0001	0.09870 0.0088
z_med_rent	0.17069 <.0001	:	0.39302 <.0001	0.37774 <.0001	0.35650 <.0001	0.34154 <.0001	1.00000	0.74217 <.0001	-0.07513 0.0455	-0.02867 0.4459
z_med_inc	0.29731 <.0001	:	0.23931 <.0001	0.23003 <.0001	0.18260 <.0001	0.18866 <.0001	0.74217 <.0001	1.00000	0.18732 <.0001	-0.30501 <.0001
pct_white	-0.13718 0.0002	:	-0.17450 <.0001	-0.17408 <.0001	-0.19416 <.0001	-0.17297 <.0001	-0.07513 0.0455	0.18732 <.0001	1.00000	-0.4113° <.000°
pct_african_american	-0.52190 <.0001		0.08347 0.0262	0.08333 0.0265	0.19926 <.0001	0.09870 0.0085	-0.02867 0.4459	-0.30501 <.0001	-0.41131 <.0001	1.00000
pct_latinx	0.50097 <.0001	:	0.09362 0.0126	0.09441 0.0119	0.03193 0.3960	0.08348 0.0262	0.10096 0.0071	0.02496 0.5069	-0.71607 <.0001	-0.24872 <.000°
primary_care_physician_rate	-0.08555 0.0227	:	0.28976 <.0001	0.24169 <.0001	0.22840 <.0001	0.24060 <.0001	0.26590 <.0001	0.15333 <.0001	0.03034 0.4198	0.08300 0.0271
pct_single_parent_households	-0.28585 <.0001		0.03082 0.4126	0.02436 0.5172	0.07496 0.0460	0.04452 0.2364	-0.23226 <.0001	-0.48897 <.0001	-0.38335 <.0001	0.59554 <.0001
pct_smokers	-0.39195 <.0001	:	-0.14416 0.0001	-0.13309 0.0004	-0.10361 0.0058	-0.11533 0.0021	-0.48119 <.0001	-0.56160 <.0001	-0.02154 0.5669	0.29595 <.0001
pct_obese	-0.37797 <.0001	:	-0.13016 0.0005	-0.11387 0.0024	-0.11700 0.0018	-0.11936 0.0015	-0.28316 <.0001	-0.29738 <.0001	0.02731 0.4678	0.27677 <.000°
pct_unemployed	-0.41152 <.0001	:	-0.11122 0.0030	-0.08415 0.0250	-0.03002 0.4248	-0.08108 0.0309	-0.32135 <.0001	-0.55525 <.0001	-0.25713 <.0001	0.49522 <.000°
pct_high_school_graduation	0.37277 <.0001	:	-0.13816 0.0002	-0.12292 0.0010	-0.19669 <.0001	-0.13473 0.0003	0.01428 0.7042	0.18073 <.0001	0.09856 0.0086	-0.3253- <.000

Principal Component Analysis

We ran a Principal Component Analysis (PCA) using six variables: total homeless population, county population, population per square mile, percent in poverty, Zillow median rent, and percent unemployed. These variables were chosen because they might be related and reflect conditions linked to homelessness. The aim was to reduce the number of variables while keeping most of the information, and to see if a few components could summarize the main patterns in the data.

				ACTOR Proon Method: \							
			Orthogona	l Transform	ation Matri	x					
			1	2 :	3	4	5				
	1	0.827	11 0.3221	5 -0.16116	0.3893	9 0.1857	8				
	2	0.4775	-0.5147	2 0.59520	-0.3818	8 0.0833	7				
	3	-0.1997	79 0.4917	5 0.78366	0.3191	8 0.0476	1				
	4	0.1422	0.6207	4 -0.03684	4 -0.7522	3 -0.1650	3				
	5	0.1665	-0.0644	2 0.06543	0.1865	9 -0.9638	8				
			Rotat	ted Factor P	attern						
			Factor1	Factor2	Factor3	Factor4	Factor5				
totalh	omele	255	0.96194	0.10684	-0.05203	0.13826	-0.00555				
count	y_pop	oulation	0.96041	0.09285	-0.02732	0.12218	0.05691				
pop_p	er_so	_mile	0.79508	0.10999	0.01299	0.24750	0.54186				
pct_p	overty	/	0.13573	0.94368	-0.14241	0.26368	0.03505				
z_me	d_ren	t	0.23799	0.30371	-0.16257	0.90491	0.07598				
pct_u	nemp	loyed	-0.03047	-0.12790	0.98306	-0.12765	0.00124				
	Variance Explained by Each Factor										
	Fa	ctor1	Factor2	Factor3	Factor	r4 Fact	tor5				
	2.555	58473	1.0312713	1.0167426	0.999984	8 0.3038	881				

The first factor has high loadings on homelessness, county_population, and population per square mile. This factor could indicate population density. The second factor reflects, significantly, only the "poverty" variable, without an important contribution from the rest of the variables. This variable would possibly be better situated in another variable set.

Principal Component 2.

We ran a second Principal Component Analysis using a new set of variables: percent smokers, percent single-parent households, primary care physician rate, percent obese, percent unemployed, violent crime rate, percent in poverty, and percent voting Republican. The first component showed strong loadings for percent voting Republican (-0.80) and percent unemployed (0.80), indicating these variables contribute most to

this dimension. Additionally, *percent single-parent households* had a moderate loading (0.59), suggesting it also plays a meaningful, though smaller, role in shaping the component. This PC could be cataloged as "**Economic Hardship**".

			R	otatio	n Met	hod: V	arima	ЭX				
	Orthogonal Transformation Matrix											
				2			4		5			
	1	0.639	71 0.	6082	1 0.	36542	-0.	29467	0.	02234		
	2	0.299	77 -0.	3956	9 0.	44589	0.	43295	0.	80808		
	3	-0.597	90 0.	6123	4 0.	14168	0.	17682	0.	46498		
	4	-0.144	47 0.	.0759	3 0.	56253	0.	49186	-0.	84420		
	5	0.350	08 0.	3046	1 -0.	57545	0.	67270	-0.	03147		
			ı	Rotat	ted Fac	tor Pa	ttern	1				
				Factor1		Factor2		Factor3		Factor4		Factor5
pct_smoker	s			0.30813		0.80588 0		0.114	0.11421		12	0.00500
pct_single_	paren	t_house	holds	0.58668		0.28702		0.469	19	-0.191	89	0.01223
primary_car	e_phy	/sician_	rate	0.05223 -0		-0.02	525	0.069	56	0.057	01	0.97892
pct_obese				0.05143		0.93	0.93053		43	-0.049	25	-0.03838
pct_unempl	oyed			0.79973		0.29523 -0		-0.02958		58 -0.19409		-0.17174
violent_crin	ne_rat	е		0.1	4516	0.09628		0.94899		9 0.02877		0.07838
pct_poverty				-0.0	8943	-0.17488		-0.00189		9 0.96559		0.06278
republican_	voting	_pct		-0.8	0482	0.01	058	-0.216	50	-0.090	45	-0.25639
			Varian	ce Ex	kplaine	d by E	ach	Factor				
	Fa	ctor1	Fact	or2	Fa	ctor3	F	actor4		Factors	5	
	1.760	8922	618	1.193	1518	1.07	749479	1.0	1.0652583			

Factor Analysis

We conducted a factor analysis using the following variables: fips, total homeless population, county population, eviction filings, renting household population, percent

white, percent African American, and percent Latinx. Based on the analysis, four factors were extracted. The first factor explains the largest share of the variance (3.63), followed by the second (1.72), and the third (1.31). The fourth factor accounts for a very small portion of the variance (0.08), suggesting it may not provide meaningful insight. Most of the structure in the data appears to be captured by the first three factors.

		ı	The FA				t			
		1				3		4		
	1	0.9778	84 -0.	.20713	0.	03036	-0.	00232		
	2	-0.1563	32 -0.	.81879	-0.	55227	-0.	01209		
	3	0.1392	25 0.	.53541	-0.	83295	-0.	01217		
	4	0.0020	07 -0.	.00387	-0.	01674	0.99985			
			Rotate	ed Fac	tor P	attern				
				Fac	tor1	Fact	or2	Factor3		Factor4
fips				0.05	455	-0.259	-0.25916 -0.		52	-0.02726
totalhomeles	5			0.89	543	-0.07144		-0.02692		-0.18623
county_popu	ulatio	n		0.99	230	-0.06152		-0.02762		-0.02898
eviction_filin	igs			0.85	389	-0.07048		0.11983		0.19766
renting_hou	seho	d_popu	lation	0.99	.99514 -0.057		737	37 -0.00944		0.02392
pct_white				-0.12	356	0.931	148 -0.199		18	0.01116
pct_african_	amer	ican		0.09	646	-0.204	0.88		03	-0.01693
pct_latinx				0.03	024	-0.83	118	18 -0.45297		0.01301
,										
		Varia	nce Ex	plaine	d by	Each F	acto	r		
	F	actor1	Fac	tor2	Fa	ctor3	ı	Factor4		
	3.53	43329	1.6846	399	1.43	96112 0.0		0.0764864		

The Scree Plot of the Eigenvalues shows the "elbow" forming after the first three factors.

Factor 1: Population and Housing Density

Strong loadings:

- county_population (0.99)
- renting_household_population (0.99)
- totalhomeless (0.90)
- eviction_filings (0.85)

Interpretation: This factor explains variance related to **population size and housing issues** — it reflects counties with large populations, high numbers of renters, homelessness, and evictions.

Factor 2: Racial Composition (White vs. Latinx)

Strong loadings:

- pct_white (0.93)
- pct_latinx (-0.83)

Interpretation: This factor distinguishes areas by **racial/ethnic composition**, especially contrasting percent white and percent Latinx populations. A higher factor score may indicate a higher proportion of white residents and lower Latinx presence.

Factor 3: African American Population

Strong loading:

• pct_african_american(0.89)

Moderate negative:

• pct_latinx (-0.45)

Interpretation: This factor seems to capture variation in the **African American population**, distinct from the Latinx proportion. Since no other variables load highly here, this may be a more isolated demographic dimension.

Conlusion

Throughout this project, we explored different statistical methods to better understand the patterns and differences across U.S. counties in terms of social, economic, and demographic characteristics. Each technique added a layer of insight: we examined group differences, relationships among variables, and underlying structures that aren't immediately visible in raw data. Taken together, the analyses helped highlight how certain counties and states stand out, how variables cluster or relate, and which dimensions matter most in shaping local conditions.