Too many cooks: Bayesian inference for coordinating multi-agent collaboration

Rose E. Wang* (MIT), Sarah A. Wu* (MIT), James A. Evans (UChicago), Joshua B. Tenenbaum (MIT), David C. Parkes (Harvard), Max Kleiman-Weiner (MIT & Harvard)

Code: https://github.com/rosewang2008/gym-cooking/ Paper: https://arxiv.org/abs/2003.11778

Introduction

- Many current deep learning system for multi-agent coordination are specialists (brittle with new team players) and sample-inefficient (take long to train).
- Humans, including children, have theory-of-mind, i.e. a commonsense ability to coordinate on the fly, even with complete strangers.
- There are at least three coordination challenges:

on separate tasks in parallel

2. **Cooperation**: work together if necessary or more efficient

3. Spatio-temporal movement: avoid collisions & other obstacles

How do we build this type of ad-hoc mental state inference into machines?

Formalism

- Our work is inspired by the complex multiplayer video game Overcooked.
- We formalize these settings as Multi-Agent Markov Decision Processes (MMDPs)²
 - Add on a set of partially ordered **sub-tasks**

$$\langle n, \mathcal{S}, \mathcal{A}_{1...n}, T, R, \gamma, \mathcal{T} \rangle$$

$$\begin{cases} g = \{g_0 \dots g_{|\mathcal{T}|} \} \end{cases}$$

- Compositional recipes (each arrow is a sub-task)

- Compositional kitchens (counters present navigation challenges & opportunities)

Bayesian Delegation

High-level planner (Bayesian inference)

- Uses actions to update beliefs over task allocations through inverse planning.
- Example of sub-tasks and task allocations:
 - Two sub-tasks $[\mathcal{T}_1, \mathcal{T}_2]$ and two agents [i, j]
 - Four possible task allocations:

ta =
$$[(i:\mathcal{T}_1, j:\mathcal{T}_2), (i:\mathcal{T}_2, j:\mathcal{T}_1), (i:\mathcal{T}_1, j:\mathcal{T}_1), (i:\mathcal{T}_2, j:\mathcal{T}_2)]$$

- Each agent selects *ta* with maximum likelihood posterior computed via Bayes inverse planning.

$$ta^* = rg \max_{ta} P(ta|H_{0:T})$$
 where $P(ta|H_{0:T}) \propto P(ta)P(H_{0:T}|ta)$
$$P(ta) \propto \frac{1}{ ext{expected time for } ta}$$

Low-level planner (BRTDP)

- Generates actions from task allocations using model-based reinforcement learning (Bounded Real-Time Dynamic Programming³ in our model).
- Handles low-level coordination problems for each agent *i*:
 - 1. Divides and conquers when $\mathcal{T}_i \neq \mathcal{T}_{-i}$ i.e. agent *i* has an individual task.
 - Agents best-respond to each other.
 - 2. Enables cooperation when $\mathcal{T}_i = \mathcal{T}_{-i}$, i.e. agent *i* has a joint task.
 - Agents each simulate an ideal joint planner.

Alternative model baselines

- 1. Uniform priors (UP): places uniform prior over all possible task allocations.
- 2. Fixed beliefs (FB): never updates beliefs about task allocations, i.e. keeps priors.
- 3. Divide & Conquer (D&C): no joint planning, i.e. only works on tasks in parallel.
- 4. Greedy: only considers tasks for itself, i.e. makes no inferences about others.

Experiments

1. How well does our model perform in self-play?

- Computationally simulated self-play with 2- and 3-agent teams of each model type on all 3 recipes x 3 levels.
- Found that BD agents were most successful at coordinating with each other.

		Time Steps	Completion	Shuffles
two agents	BD (ours)	35.29 ± 1.40	0.98 ± 0.06	1.01 ± 0.05
	UP	50.42 ± 2.04	0.94 ± 0.05	5.32 ± 0.03
	FB	37.58 ± 1.60	0.95 ± 0.04	2.64 ± 0.03
	D&C	71.57 ± 2.40	0.61 ± 0.07	13.08 ± 0.05
	Greedy	71.11 ± 2.41	0.57 ± 0.08	17.17 ± 0.06
three agents	BD (ours)	34.52 ± 1.66	0.96 ± 0.08	1.64 ± 0.05
	UP	56.84 ± 2.12	0.91 ± 0.22	5.02 ± 0.12
	FB	41.34 ± 2.27	0.92 ± 0.08	1.55 ± 0.05
	D&C	67.21 ± 2.31	0.67 ± 0.15	4.94 ± 0.09
	Greedy	75.87 ± 2.32	0.62 ± 0.22	12.04 ± 0.13

2. How well does our model perform in ad-hoc coordination?

- Computationally simulated ad-hoc play with 2-agent teams of all possible pairings among all five model types.
- Found that BD agents were most successful at coordinating ad-hoc with others.

3. How do our model predictions compare with human intuitions about coordination?

- Asked participants to make inferences about 2 agents interacting over time in a behavioral task.
- Found that BD model predictions align most closely with human judgements.

Judge the likelihood that: the blue chef is plating the tomato and the red chef is chopping the lettuce.

Discussion & Conclusion

Using theory-of-mind and building on decentralized planning, Bayesian Delegation:

- Allows agents to rapidly infer the sub-tasks of others in group environments.
- Enables agents to decide when to cooperate and when to divide & conquer. - Aligns with human intuitions about collaboration.

References:

- 1. Warneken, F., & Tomasello, M. (2006). Altruistic helping in human infants and young chimpanzees. Science (New York, N.Y.), 311(5765), 1301–1303.
- Boutilier, C. (1996). Sequential Optimality and Coordination in Multiagent Systems. Proceedings of TARK VI (pp. 195-210). McMahan, H. B., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic programming: RTDP with monotone upper bounds and
- performance guarantees. In Proceedings of ICML (pp. 569-576).

This project was supported by:

