Spring 2015 Statistics 151 (Linear Models): Lecture Thirteen

Aditya Guntuboyina

05 March 2015

1 Regression Diagnostics

For regression diagnostics, we need to know about the following quantities:

- 1. Leverage
- 2. Standardized Residuals
- 3. Predicted Residuals
- 4. Standardized Predicted Residuals
- 5. Cook's Distance

We looked at Leverages in the last class.

2 Standardized Residuals

The residuals \hat{e} satisfy $var(\hat{e}) = \sigma^2(I - H)$. In particular, it is important to know that the residuals are correlated and have different variances.

For diagnostics, it is useful to look at standardized residuals; defined as

$$r_i = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}.$$

Under the assumption of normality on e_1, \ldots, e_n , we know that the residuals $\hat{e} \sim N(0, \sigma^2(I - H))$. Does the standardized residual r_i have a t-distribution? NO! because \hat{e}_i and $\hat{\sigma}$ are not independent.

3 Predicted Residuals

How does one find outliers in the regression data? A first answer might be to look for subjects having large residuals. But the problem with this approach is that when the outlier also has a large leverage, then the residual will not be that large. Therefore, one needs to look at a combination of leverage and the value of the residual. It turns out that predicted residuals are a natural way of combining the residuals and the leverages.

The *i*th predicted residual is defined as follows. First throw away the *i*th subject and fit the linear model. Using that linear model, predict the value of y_i based on the explanatory variable values of the *i*th subject. The difference between y_i and this predicted value is called the *i*th predicted residual.

Let $X_{[i]}$ denote the X-matrix with the *i*th row deleted. Also, let $Y_{[i]}$ denote the Y-vector with the *i*th entry deleted and let x_i^T denote the *i*th row of the original X matrix.

The estimate of β after deleting the *i*th row is:

$$\hat{\beta}_{[i]} = \left(X_{[i]}^T X_{[i]}\right)^{-1} X_{[i]}^T Y_{[i]}.$$

The *i*th predicted residual is defined as

$$\hat{e}_{[i]} = y_i - x_i^T \hat{\beta}_{[i]}.$$

It might seem that to calculate $\hat{e}_{[i]}$ for different i, one would need to perform many regressions deleting each subject separately. Fortunately, one can calculate these in a simpler way using the Sherman-Morrison formula from matrix algebra. I will do this in the next class.