

Information Technology, Mathematics & Mechanics (ITMM) institute Software & Supercomputing Technology department

CS255. Computer Graphics Introduction Course

Обработка изображений. Часть 1

Турлапов Вадим Евгеньевич проф. каф. МОСТ, ИТММ, ННГУ

Techniques & Applications

Some Techniques:

- •Image filtering: correction and adjusting, special effect creation
- •Image binarization (conversion to b & w)
- Image Segmentation
- Morphological processing of image

Emboss Transform

Matrix filters

Some Applications:

- Computer vision, video-surveillance
- Feature detection, face detection
- Noise reduction and removal
- Medical including microscope 3D image processing
- Hyperspectral 3D Images

Medical image processing: filtering; binarization; morphological processing.

Какие изображения мы обрабатываем: Изображения электронной микроскопии

ILASTIK (http://ilastik.org) - user-friendly tool for interactive image classification, segmentation and analysis. It has automated (supervised) pixel- and object-level classification, automated and semi-automated object tracking, semi-automated segmentation and object counting without detection. Most analysis operations are performed lazily.

ILASTIK was developed by Heidelberg Uni., Germany under support of <u>Heidelberg Collaboratory for Image Processing</u> (HCI); HHMI (Howard Hughes Medical Institute) Janelia Farm Research Campus (http://www.janelia.org/); CellNetworks Excellence Cluster (www.cellnetworks.uni-hd.de)

Какие изображения мы обрабатываем:

Изображения оптической микроскопии

Какие изображения мы обрабатываем: Гиперспектральные изображения (ГСИ)

Spectral Signature

https://en.wikipedia.org/wiki/Spectral signature

Введение

What are the multi- and hyper-spectral images (MSI,HSI)?

Проблема: комплексный анализ и мониторинг объектов окружающей среды на основе данных

MSI и, особенно, гиперспектральных изображений (HSI, ГСИ)

Основная область применения сегодня – ДЗ Земли.

Типичный диапазон спутниковых и авиационных спектрометров на примере AVIRIS: 360-2500нм (0.36-2.5мкм), 224 канала

Для сравнения: Основная часть собственного излучения кожи человека приходится на диапазон волн с длиной от 4 до 50 мкм.

Ближний ультрафиолет NUV: 350-400нм

Видимый диапазон: 400-700нм.

Инфракрасный (IR)

Near-infrared, NIR: 0,74-1,4 мкм

Short-wavelength infrared, **SWIR**: 1,4-3,0 мкм Mid-wavelength infrared, **MWIR**: 3-8 мкм Long-wavelength infrared, **LWIR**: 8-15 мкм Far-wavelength infrared, **FIR**: 8-15 мкм

СІЕ схема:

IR-A: 700 hm - 1400 hm (0,7 mkm - 1,4 mkm) **IR-B**: 1400 hm - 3000 hm (1,4 mkm - 3 mkm) **IR-C**: 3000 hm - 1 mm (3 mkm - 1000 mkm)

ISO 20473 cxema:

NIR 0,78-3 MKM; MIR 3-50 MKM;

FIR 50-1000 MKM

https://directory.eoportal.org/web/eoportal/airborne-sensors/aviris

Как получается цветное цифровое изображение в видео-регистрации

- Свет, падая на светочувствительный элемент матрицы ПЗС (прибор с зарядовой связью, CCD-Charge-Coupled Device), преобразуется в электрические сигналы, зависящие от интенсивности света → проблема воссоздания цвета!
- Сигналы оцифровываются, превращаются в массив чисел

Пример субпиксела
3 — R-красный светофильтр субпикселя, фрагмент фильтра Байера;

х – характеристика яркости светаv – яркость пиксела изображения

Обработка изображений (ІР)

Функция интенсивности (яркости) канала изображения:

$$I = g(x, y), \{x \in [x_0, x_1], y \in [y_0, y_1]\}$$

В компьютере используется ее дискретное представление:

$$I = g(i, j), \{i = \overline{1, n}, j \in \overline{1, m}\}$$

IP: Семейство методов и задач, где входной и выходной информацией являются изображения.

Примеры:

- Устранение шума в изображениях
- Улучшение качества изображения
- Усиления полезной и подавления нежелательной (в контексте конкретной задачи) информации
- Сегментация/Классификация? попытки распознавания фрагментов

Причины потери качества изображения

- Ограниченный диапазона чувствительности ПЗС-матрицы
- "Плохая" функция передачи ПЗС-матрицы
- "Плохая" освещенность

Что такое гистограмма

Гистограмма — это график распределения интенсивности в изображении. На горизонтальной оси - шкала яркостей тонов от белого до черного, на вертикальной оси - число пикселей заданной яркости.

Вопрос: Сколько бинов на горизонтальной оси гистограммы?

Точечные фильтры.

Коррекция яркости/контраста изображения.

Что может не устраивать в полученном изображении:

- Узкий или смещенный диапазон яркостей (узкий диапазон тусклое изображение, «пересвеченное» изображение)
- Концентрация яркостей вокруг определенных значений, неравномерное заполнение диапазона яркостей

Коррекция - к изображению применяется преобразование яркостей, компенсирующее нежелательный эффект:

Линейная коррекция

Компенсация узкого диапазона яркостей – линейное растяжение:

$$f^{-1}(y) = (y - y_{\min}) * \frac{(255 - 0)}{(y_{\max} - y_{\min})}$$

График функции $f^{-1}(y)$

Линейная коррекция. Результат

Компенсация узкого диапазона яркостей – линейное растяжение:

Линейная коррекция. Пример

Линейное растяжение – «как AutoContrast в Photoshop»

Линейная коррекция не всегда успешна

Линейная коррекция не помогает, если в изображении уже представлены все интенсивности!

Нелинейная коррекция

Нелинейная компенсация недостаточной контрастности

Часто применяемые функции:

- Гамма-коррекция
 - Изначальная цель коррекция для правильного отображения на мониторе.

$$y = c \cdot x^{\gamma}$$

- Логарифмическая
 - Цель сжатие динамического диапазона при визуализации данных (связано с отображением HDR на обычные диапазон)

$$y = c \cdot \log(1+x)$$

Гамма-коррекция

Гамма-коррекция (коррекция яркости монитора изменением напряжения).

Так называют преобразование вида: $y = c \cdot x^{\gamma}$

Возможный график функции $f^{-1}(y)$

γ<1

Графики функции $f^{-1}(y)$

 $\gamma > 1$

Нелинейная коррекция. Пример

График функции $f^{-1}(y)$ Растянуты вдвое низкие и сжаты высокие интенсивности

Разд. 2. "Цветовая коррекция изображений". План

Введение

- 1. Серый мир
- 2. Коррекция "autolevels"
- 3. Коррекция с опорным цветом
- 4. Идеальный отражатель
- 5. Статистическая цветокоррекция

- Изменение цветового баланса
 - Компенсация:
 - Неверного цветовосприятия камеры
 - Цветного освещения

Гипотеза «Серый мир»

- Предположение:
 - Сумма всех цветов на изображении естественной сцены дает серый цвет;
- Метод:
 - Посчитать средние яркости по всем каналам:

$$\overline{R} = \frac{1}{N} \sum R(x, y); \quad \overline{G} = \frac{1}{N} \sum G(x, y); \quad \overline{B} = \frac{1}{N} \sum B(x, y); \quad Avg = \frac{\overline{R} + \overline{G} + \overline{B}}{3};$$

Масштабировать яркости пикселей по следующим коэффициентам:

$$R' = R \cdot \frac{Avg}{\overline{R}}; \quad G' = G \cdot \frac{Avg}{\overline{G}}; \quad B' = B \cdot \frac{Avg}{\overline{B}};$$

«Серый мир» - пример 1

«Серый мир» - пример 2

«Серый мир» - пример 3

Цветовая коррекция изображений

- Растяжение контрастности ("autolevels")
 - Идея растянуть интенсивности по каждому из каналов на весь диапазон;
- Метод:
 - Найти минимум, максимум по каждому из каналов:

$$R_{\min}$$
, R_{\max} , G_{\min} , G_{\max} , B_{\min} , B_{\max}

Преобразовать интенсивности:

$$(R-R_{\min})*\frac{(255-0)}{(R_{\max}-R_{\min})}; \quad (G-G_{\min})*\frac{(255-0)}{(G_{\max}-G_{\min})};$$

$$(B-B_{\min})*\frac{(255-0)}{(B_{\max}-B_{\min})};$$

Растяжение контрастности ("autolevels")

Коррекция с опорным цветом

- Предположение
 - Пользователь указывает пиксел, цвет которого Rsrc, Gsrc, Bsrc, >0, но для которого известен правильный (целевой) цвет Rdst, Gdst, Bdst >0.
 - Пользователь указывает целевой цвет вручную;
- Источники для указания целевого цвета:
 - > Знание реального цвета
 - > Хорошая фотография этой же сцены
- Метод
 - Преобразовать по каждому из каналов цвета по формуле:

$$R*rac{R_{dst}}{R_{src}}; \qquad G*rac{G_{dst}}{G_{src}}; \qquad B*rac{B_{dst}}{B_{src}};$$

Pастяжение контрастности всех каналов ("autolevels")

Авто

По белому

Коррекция с опорным цветом. Примеры

Коррекция по серому

Гипотеза «Идеальный отражатель»

- Предположение:
 - Наиболее яркие области изображения относятся к бликам на поверхностях, модель отражения которых такова, что цвет блика = цвету освещения; (дихроматическая модель)
- Метод
 - Обнаружить максимумы по каждому из каналов:

$$R_{\max}$$
, G_{\max} , B_{\max}

Масштабировать яркости пикселей:

$$R*\frac{255}{R_{\text{max}}}; \quad B*\frac{255}{B_{\text{max}}}; \quad G*\frac{255}{G_{\text{max}}};$$

Статистическая цветокоррекция

Пример 1:

Пример 2:

Алгоритм состоит в том, что к каждому каналу каждого пиксела целевого изображения применяется следующее преобразование:

 $C_t^{new} = E_s + (C_t - E_t) \cdot \frac{\sigma_s}{\sigma_t}$

где E, σ – матожидание и среднеквадратическое отклонение исходного (s) и целевого (t) изображения; C_t – цвет целевого изображения. Лучше сделать в L*a*b*.

Устранение шума в бинарных изображениях.

Матричные фильтры.

Операции математической морфологии в подавлении шума

Разд.3. "Борьба с шумом"

- 1. Шум в бинарных изображениях
- Операции матморфологии. Расширение. Сужение.
- Операции закрытия и раскрытия.
- 4. Примеры

Шум в бинарных изображениях

Бинарное изображение – изображение, пиксели которого принимают всего два значения (0 и 1). Пример бинарного изображения с сильным шумом:

Подавление и устранение шума

Устранение шума в бинарных изображениях Широко известный способ - устранение шума с помощью операций математической морфологии:

- Расширение (dilation)
- Сужение (erosion)
- Закрытие (closing)
- Pacкрытие (opening)

Операции матморфологии. Расширение

Расширение (dilation)

$$A (+) B = \{t \in R^2: t = a + b, a \in A, b \in B\}$$

Множество A обычно является объектом обработки, а множество **В** (называемое структурным элементом) — инструментом.

Операции матморфологии. Сужение

Сужение (erosion)

A (-) B = (A^C (+) B)^C, где
$$A^{C}$$
 – дополнение A

$$B (-) A = (B^{C} (+) A)^{C}$$

Свойства операции Dilation

▶ Коммутативность (Commutativity):

$$A \oplus B = B \oplus A$$

 Означает, что изображение и инструмент могут поменяться ролями

Ассоциативность (Associativity):

$$I_1 \oplus (I_2 \oplus I_3) = (I_1 \oplus I_2) \oplus I_3$$

- Означает, что иногда мы можем разбить большой инструмент на совокупность маленьких:
- ▶ Если справедливо $I_1 \oplus (I_2 \oplus I_3) = (I_1 \oplus I_2) \oplus I_3$
- То, большой структурный элемент В

$$B=H_1\oplus H_2\oplus ...\oplus H_n$$
 может быть выполнен как: $A\oplus B=(...((A\oplus H_1)\oplus H_2)\oplus ...\oplus H_n)$

Свойства Erosion

Операция не коммутативна:

$$I(-)H \neq H(-)I$$

 Операция не ассоциативна, однако справедливо следующее равенство:

$$(I(-)H_1)(-)H_2 = I(-)(H_1 \oplus H_2)$$

которое позволяет заменить последовательность сужений несколькими инструментами на сужение одним интегральным (первым, расширенным всеми остальными).

Дискретные операции морфологии. Расширение

Дискретные операции морфологии. Сужение

Алгоритм морфологического расширения

```
void Dilation(BIT* source[], bool* mask[], BIT* result[])
    // Width, Height - размеры исходного и результирующего изображений
    // MW, MH - размеры структурного множества
    for (y = MH/2; y < Height - MH/2; y++)
        for (x = MW/2; x < Width - MW/2; x++)
            BIT max = 0;
            for (j = -MH/2; j \le MH/2; j++)
                for (i = -MW/2; i \le MW/2; i++)
                    if((mask[i][j]) && (source[x + i][y + j] > max))
                        max = source[x + i][y + j];
            result[x][y] = max;
```

result[x][y] = max из пикселей, покрываемых маской

Алгоритм морфологического сужения

```
void Erosion(BIT* source[], bool* mask[], BIT* result[])
    // Width, Height - размеры исходного и результирующего изображений
    // MW, MH - размеры структурного множества
    for (y = MH/2; y < Height - MH/2; y++)
        for (x = MW/2; x < Width - MW/2; x++)
            BIT min = MAXBIT;
            for (j = -MH/2; j \le MH/2; j++)
                for (i = -MW/2; i \le MW/2; i++)
                     if((mask[i][j]) && (source[x + i][y + j] < min))
                        min = source[x + i][y + j];
            result[x][y] = min;
              result[x][y] = min из пикселей, покрываемых маской
```

Операции открытия и закрытия

Морфологическое открытие (opening)

open(A, B) = (A (-) B) (+) B

Морфологическое закрытие (closing)

close(A, B) = (A (+) B) (-) B

Operations of opening and closing

Morphological closing

close (A, B) = (A (+) B) (-) B=A ● B

Closing Properties:

- •Closing is idempotent (при повторном применении операции тот же результат, что и при первом), that is, $(A \bullet B) \bullet B = A \bullet B$.
- •Closing is increasing, that is, if $A \subseteq C$, then $A \bullet B \subseteq C \bullet B$.
- •Closing is extensive, i.e., $A \subseteq A \bullet B$.
- Closing is translation invariant.

The closing of the dark-blue shape by a disk, resulting in the union of the dark-blue shape and the light-blue areas (Wikipedia)

Closing удаляет небольшие дыры на переднем плане (шум, потерянные или желаемые к заполнению) объекты с переднего плана (обычно это темные объекты или отдельные пиксели) изображения, помещая их из фона на передний план.

Operations of opening and closing

Morphological opening

open (A, B) = (A (-) B) (+) B

Opening Properties:

- •Opening is idempotent, that is, (A∘B)∘B=A∘B.
- •Opening is increasing, that is, if A⊆C, then A∘B⊆C∘B.
- •Opening is anti-extensive, i.e., A∘B⊆A.
- Opening is translation invariant.
- •Opening and closing satisfy the duality A•B= (A^C○B^C)^C, where denotes closing.

В заметает внутреннюю часть границы **A**, не выходя за границу **A**.

Opening удаляет мелкие (шумные, лишние или нежелательные) объекты с переднего плана (обычно это яркие объекты или отдельные пиксели) изображения, помещая их на задний план. **Opening** можно использовать для поиска вещей, в которые может/не может поместиться конкретный структурный элемент (края, углы, ...).

See also: https://en.wikipedia.org/wiki/Mathematical_morphology

Замечание

 Результат морфологических операций во многом определяется применяемым структурным элементом (множеством В). Выбирая различный структурный элемент можно решать разные задачи обработки

изображений:

Шумоподавление

• Выделение границ объекта

Выделение скелета объекта

 Выделение дефектов регулярных структур (напр., сломанных зубьев на изображении шестерни)

Применения сужения к бинарному изображению с сильным шумом

Сужение позволяет подавлять «белый» шум фона с потерями для площади объекта

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & [1] & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & [1] & 1 \\
1 & 1 & 1
\end{bmatrix}$$

Применения открытия (A(-)B)(+)В к бинарному изображению с сильным шумом

Открытие позволяет подавлять «белый» шум фона, если объекты без шума

$\lceil 0 \rceil$	1	0
1	1	1
0	1	0

Шум в бинарных изображениях с дефектами объектов. Пример.

Пример бинарного изображению с дефектами распознаваемых объектов

Применения закрытия (A(+)B)(-)В к бинарному изображению с дефектами объектов

Закрытие позволяет подавлять «черный» шум на объектах, если фон без шума

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Применение операции открытия (A(-)B)(+)В

Объекты полностью разрушены

$\lceil 0 \rceil$	1	0
$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	1	0 1 0
0	1	0

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

Свойства морфологических операций

образ

Erosion I(-)B

Dilatation I⊕B

Структурный элемент

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Opening $I \circ B = (I(-)B)(+)B$

Closing $I \cdot B = (I(+)B)(-)B$

Grad(I) = (I(+)B)-(I(-)B)

Top Hat $(I)=I-(I \cdot B)$

Black Hat $(I)=(I \circ B)-I$

Свойства операций открытия и закрытия

Примеры применения Opening и Closing в регистрации клеток мозга

Примеры определения границы клеток (слева направо): исходное изображение клеток; найденные границы; регион, заполненный по найденным границам; заполненный регион после применения операции морфологического открытия

Шум «соль и перец» - не лучший пример для морфологии

Не во всех случаях математическая морфология так легко убирает дефекты, как хотелось бы...

Шум «соль и перец»

Источники

- Gary Bradski and Adrian Kaehler. Learning OpenCV/ Published by O'Reilly Media, Inc., 2008. -577pp.
- Курсы и материалы лаборатории Graphics & Media Lab при ВМиК МГУ (http://graphics.cs.msu.ru)
- ▶ Ватолин Д.С. Сжатие изображений. :Изд. МГУ, 1999. -76с. (local)
- Open Source Computer Vision Library. *Reference Manual*. Copyright © 1999-2001 Intel Corporation. Issued in U.S.A. Order Number: 123456-001 (http://developer.intel.com)
- Рекомендации для начинающих пользователей: Programming with intel IPP (integrated performance primitives) and intel OpenCV (open computer vision) under gnu linux: a beginner's tutorial.(j.Landre@iutlecreusot.u-bourgogne.fr)
- Intel® OPEN SOURCE COMPUTER VISION LIBRARY
- Image Analysis Cookbook 6.0. http://www.reindeergraphics.com/foveaprotutorial.html

OpenCV

- Open Computer Vision (OpenCV) sources, download site http://sourceforge.net/projects/opencvlibrary
- Open Computer Vision (OpenCV) mailing list and group http://groups.yahoo.com/group/OpenCV