Nom 1: /10

Nom 3:

MAT-NA2 Laboratoire 3

Une course de longueur d'arcs

Professeurs: Alexandre Desfossés Foucault et Maxime Fagnan

Consignes : Le but du laboratoire est de trouver une fonction définie sur l'intervalle [0,1] telle que :

1) Sa courbe passe par (0,0);

2) Elle se termine en (1,0);

3) L'aire sous la courbe est de 1.

De plus, votre fonction doit être telle que la longueur de sa courbe est **la plus petite possible.**L'équipe qui trouve la fonction satisfaisant les 3 conditions avec la plus petite longueur d'arc se méritera une palette de chocolat. Il y aura deux équipes gagnantes :

- L'équipe avec la plus petite longueur d'arc (n'importe quoi en bas de 3 est déjà spectaculaire).
- L'équipe avec la fonction la plus intéressante (tout en ayant une petite longueur d'arc).

Par exemple, la fonction f(x) = -6x(x-1) satisfait les 3 conditions et sa longueur d'arc (illustrée plus bas) est environ 3.249.

Figure 1:Exemple de courbe de fonction satisfaisant les conditions

Vous devez remettre le recto de cette page le **lundi 15 avril à minuit**.

Si vous utilisez un fichier python pour calculer une longueur d'arc, remettez aussi ce fichier.

Pour des trucs sur comment créer des solutions rapidement, consultez les pages 3 et 4 de ce document. Ce labo est tiré du Stewart(p.203). **Soyez créatif**, toute fonction est ok!

Rapport de laboratoire

Preuve que l'aire sous la courbe est de 1

Nous avons choisi la fonction f(x) =

1. (Calcul d'intégral	qui permet de montrer d	que l'aire sous	la courbe est de 1	I entre $x=0$	et $x=1$
------	-------------------	-------------------------	-----------------	--------------------	---------------	----------

2. Donnez la longueur d'arc de f entre x=0 et x=1. Notez que dans la grande majorité des cas, vous ne pourrez pas la calculer exactement. Vous pouvez l'approximer soit en utilisant votre code du laboratoire 1 ou en utilisant wolfram alpha.

Longueur d'arc :

Points		Critères à respecter
0-6	•	• Aire de 1, $f(0) = 0$, $f(1) = 0$
		Calcul d'aire sans erreur
		• Longueur d'arc < 4,2
7	•	• Longueur d'arc < 4
8	•	• Longueur d'arc < 3,5
9	•	• Longueur d'arc < 3,248
10	•	• Longueur d'arc < 3

^{*}Voici un barème provisoire. Il pourrait-être modifié, ce serait pour être plus généreux.

Des petites idées

Idées de solutions

Une idée générale de ce qui se passe.

Calculez la longueur d'arc d'une fonction

Approximation du calcul de la longueur d'arc avec la méthode des rectangles

Vous pouvez utiliser le laboratoire 1 avec la méthode des rectangles pour approximez la longueur d'arc. Calculez la dérivée f'(x) de votre fonction à la main et vous pouvez utiliser la méthode des rectangles

sur la fonction $g(x) = \sqrt{1 + (f'(x))^2}$ pour approximez la longueur d'arc précisément (200+ rectangles).

Syntaxe pour calculez une longueur d'arc dans Wolfram arclength f(x)=-6x*(x-1) from x=0 to x=1

Exemple:

Trucs pour créer une fonction

Normalisation d'aire

Ouvrez Geogebra, entrez-y une fonction que vous aimez et ajustez l'aire en normalisant :

On normalise une fonction en la multipliant par une constante pour que l'aire sous la courbe donne 1.

Dans notre cas, on peut multiplier par $\frac{1}{aire}$, donc on obtient:

$$\int_0^1 \frac{1}{aire} f(x) dx = \frac{1}{aire} \cdot aire = 1$$

Fonction définie par partie

Vous pouvez utiliser une fonction définie par partie, genre $f(x) = \begin{cases} 2x & \text{, si } x \leq 0.5 \\ -2(x-1) & \text{, si } x > 0.5 \end{cases}$

Voici la syntaxe sur GeoGebra

:::::

Voici la syntaxe dans Python

```
def f(x):
if x<0.5:
    return 2*x
else:
    return -2*(x-1)</pre>
```

Réflexion par rapport à un axe de symétrie

Si vous connaissez une fonction f(x) telle que f(0) = 0, vous pouvez obtenir une réflexion autour de l'axe x = 0.5 en calculant g(x) = f(-(x-1)).

Ensuite, en utilisant une fonction définie par partie avec un conditionnel, on a maintenant une belle fonction symétrique qui passe par (0,0) et (1,0).

