College of Industrial Technology King Mongkut's University of Technology North Bangkok

Final Examination of Semester 1

Subject: 341151 Electric Circuits I

Date: 11 December 2015

Year: 2015

Section: 5-6

Time: 10.00 - 12.00

Name:	ID:	Class:		
907 (

Instructions:

- 1. Cheating will result in failure of all classes registered for the current semester. Students who are caught on cheating will also be denied registering for the following semester.
- No documents are allowed to be taken out of the examination room.
 Text books and dictionaries are NOT allowed.
 A calculator is allowed.

- 5. Electronic communication devices are NOT allowed in the examination room
- 6. The examination has 11 pages (including this page), 3 parts (50 questions) and a total score of 90 points.
- 7. Write all your answer on this examination sheet.

Part 1 (20 points) True/False

Instruction: Mark "True" or "False" for the following questions in THE PROVIDED ANSWER SHEET (SEE LAST PAGE).

- 1. The bridge network is said to be balanced when the current in the middle of bridge is zero.
- 2. Capacitance is directly proportional to the distance between the plates and inversely proportional to the area of the plates.
- 3. The total capacitance of several capacitors connected in series equals the sum of the individual capacitances.
- 4. The unit of inductor is named after Michael Faraday.
- 5. An ideal inductor looks like a short circuit to dc current.
- 6. Direction of magnetic flux line around conductor with current flow can be determined by right hand rule.
- 7. The total inductance of several coils in parallel equals the sum of the individual inductances.
 8. A load will receive maximum power from a their bilateral dc network when its total
- 8. A load will receive maximum power from a linear bilateral dc network when its total resistive value is exactly equal to the Norton resistance of the network as "seen" by the load.
- 9. Variables in mesh analysis are in the form of voltage.
- 10. Supermesh is happened if there is current source in branch.
- 11. The variables for nodal analysis are in voltage form.
- 12. For nodal analysis, Kirchhoff's current law is used.
- 13. R_N from Norton theorem is not the same as R_{Th} from Thevenin theorem.
- 14. Norton's equivalent circuit has a current source connected in series with a resistor.
- 15. An ideal voltage source has infinite internal resistance.
- 16. The current supplied by an ideal current source is independent from the load.
- 17. An ideal current source has zero resistance in series with it.
- 18. Short circuit between terminals is equivalent to zero voltage.
- 19. When using the superposition theorem, each ideal current source must be replaced by a short circuit.
- 20. Thevenin's equivalent circuit is consisting of a voltage source and a series resistor.

Part 2 (50 points) Multiple choices

Instruction: Mark the correct answer for the following questions in THE PROVIDED ANSWER SHEET.

1. Convert the current source to a voltage source.

Figure 1.

(A) 12 V and 3 Ω

(C) 12 V and 4/3 Ω

(D) 4 V and 4/3 Ω

2. From below, what is the determinant?

(D) 64

Figure 2.

3. See Figure 2. Which of the following terms describes the voltage across the 4 Ω resistor when using the mesh analysis (general) approach?

- (A) $(4 \Omega) I_1$
- (B) $(4 \Omega) (I_2 I_1)$
- (C) $(4 \ \Omega) (I_1 I_2)$ (D) $(4 \ \Omega) (I_1 + I_2)$

- 4. See Figure 2. The equation obtained from performing mesh analysis on mesh #2 is:
 - (A) $6 I_2 4 (I_2 I_1) = 0$

(B) $6 + I_2 + 4 (I_2 - I_1) = 0$

(C) $6 + I_2 - 4 (I_2 - I_1) = 0$

(D) $6 - I_2 + 4 (I_2 - I_1) = 0$

Figure 340553

- 5. From Figure 3 below, what is the condition of balance bridge?
 - (A) $R_2 / R_1 = R_3 / R_4$
- (C) $R_1 / R_3 = R_2 / R_4$ (D) $R_1 R_3 = R_2 R_4$
- 6. What the following is correct when all three resistors in star network are equal?
 - (A) $R_{\Delta} = 3R_{Y}$
- (B) $R_{\Delta} = 3/R_{Y}$
- (C) $R_{\Delta} = R_{Y}$
- (D) $R_{\Delta} = 1/R_{Y}$

Figure 4.

- 7. See Figure 4. What is the Thevenin resistance at the terminal a-b?
 - (A) 2.22 Ω
- (B) 4 Ω
- (C) 5Ω
- (D) 9 Q
- 8. See Figure 4. What is the Thevenin voltage at the terminals?
 - (A) 0 V
- (B) 10 V
- (C) 40 V
- (D) 50 V

9.	Thevenin's theorem equivalent circuit cor (A) a voltage source (B) a current source a (C) a current source a (D) a voltage source	nsisting of and a series re and a series re and a parallel	esistor. esistor. resistor.	replace a	bilateral	dc network	with an
10.	I_N is the	current pa	ssing thro	ugh the two	o-terminal	network.	
	(A) short circuit	(B) load		(C) fully lo	aded	(D) open	circuit
	Thevenin's theorem (A) open circuit volta (B) short circuit volta (C) open circuit curre (D) short circuit curre	ige at the net ge at the net	work term work term	inals. inals. inals			
12.	(D) short circuit curre For loads connected delivered to the load of the source. (A) total resistance (C) load resistance	ed directly to	(B) Nor	oltage supp is e ton resistan	ice	num powei	will be
	E	+ 30 V -	I ()3 A	R_1	I_1	
			Figur	e 5.			
13.	See Figure 5. What is (A) 2 A	the current a (B) 3 A	at R ₁ ?	(C) 5 A		(D) 8 A	
14.	See Figure 5. What is	the current f	rom volta	ge source? (C) 5 A		(D) 8 A	

15.		pacitance of 1 farad if	of charge is deposited of the plates			
	(A) particle	(B) amp	(C) atom	(D) coulomb		
16.	What is the total capa	acitance for two parall	el capacitors of 2 Farac (C) 4 F	ds and 2 Farads ? (D) 6 F		
17.	What is correct for a (A) $Q = CV$		(C) Q = V/C	(D) $Q = V^2/C$		
18.	What is the unit of m	agnetic flux in SI unit? (B) Hertz	(C) Henry	(D) Webber		
19.	What is the symbol o	of air core inductor ลิยี	ত্পর ১৯৫১			
	~	ลัยเทคเลง				
	(A)	(B)	(C)	(D)		

20. What are the values of resistors after converting the delta to star?

Figure 6.

(A) all in 1 Ω

(B) all in 2 Ω

(C) all in 3 Ω

(D) all in 6 Ω

21. What is the correct property from the circuit below?

Figure 7.

(A)
$$Q_1 = Q_2 = Q_3$$
 (B) $V_1 = V_2 = V_3$ (C) $E = Q_1 / V_1$ (D) $E = Q_T C_T$

(B)
$$V_1 = V_2 = V_3$$

(C)
$$E = Q_1 / V_1$$

(D)
$$E = Q_T C_T$$

22. What is the type of capacitor below?

- (A) Polyester
- (B) Electrolytic
- (C) Tantalum
- (D) Surface mount
- 23. What is the result of x from following two equations?

$$-x + 2y = 3$$

$$3x - 2y = -2$$

$$(A) -2$$

(D) 2

24. What is the value of I_2 ?

$$I_2 = \frac{\begin{vmatrix} 6 & 2 \\ 4 & 6 \end{vmatrix}}{14}$$

(A) 0 A

(B) 0.5 A

(C) 1 A

(D) 2 A

25. Find the value of voltage $V_{\mbox{\tiny S}}$ from the figure below.

Part 3 (20 points) Calculation

Instruction: Show the mathematical expression and answers of following problems.

1. Using the mesh analysis approach, determine the electric current passing <u>each</u> resistor for the given network below.

วิทยาลัยเทคโนโลยีอุตสาหกรรม

2. Find the Thevenin equivalent circuit for the network below.

3. Use supernode approach to determine the nodal voltages V_1 and V_2 for the network below

4. Determine the electric current I by using star-delta transformation.

Answer Sheet

Name:					ID:				
Subject: 3	41151 E	lectric	Circuits	1					
Part 1				Part 2					
			- 1		CT-SN	_	-	-	
		True	False		1	А	В	С	D
	1.				1.				
	2.				2.		-		
	3.				3.				
	4.				4.				
	5.				5.	- 11			
	6.			d	19/19	1231			
Subject: 1 Part 1	7.			. କୁମ୍ବା ଅନ୍ତର୍ବାଦ	7.				
	8.		5918	าลัยเทคโนโลยีอุต <i>ส</i>	8.				
	9.		940						
	10.				10.				
	11.				11.				
	12.				12.				
	13.				13.				
	14.				14.				-
	15.				15.				
	16.				16.				
	17.				17.				
	18.				18.				
	19.				19.				
	20.				20.				
					21.				
					22.				
					23.				
					24.				
					25.				