Задачи по Эконометрике-1

Н.В. Артамонов (МГИМО МИД России)

Содержание

1	Метод наименьших квадратов (теория)		
	1.1	Задача (прямая с константой)	
	1.2	Задача (прямая без константы)	
	1.3	Задача	
	1.4	Задача	
	1.5	Задача (квадратичный многочлен)	
2	Метод наименьших квадратов: Практика (Python)		
	2.1	Задача (sleep equation)	
	2.2	Задача (labour equation)	

Метод наименьших квадратов (теория)

Задача (прямая с константой)

Пусть задано n наблюдений (точек на плоскости) $\{x_i,y_i\}_{i=1}^n$. Линейная функция $y=\beta_0+\beta_1 x$ 'подгоняется' под наблюдения методом наименьших квадратов (OLS)

- выведите систему уравнений для нахождения параметров (оптимальной, 'подогнанной') прямой, наименее уклоняющейся от заданных наблюдений
- выведете формулы для оценок $\widehat{\beta_0}$ и $\widehat{\beta_1}$ коэффициентов оптимальной прямой покажите, что для оценок коэффициентов верно:

$$\widehat{\beta}_1 = \frac{s.cov(x,y)}{s.Var(x)} \qquad \widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \cdot \bar{x}$$

(Здесь s.cov(x,y) - выборочная ковариация, s.Var() - выборочная дисперсия)

Задача (прямая без константы)

Пусть задано n наблюдений (точек на плоскости) $\{x_i,y_i\}_{i=1}^n$. Линейная функция $y=\beta x$ 'подгоняется' под наблюдения методом наименьших квадратов (OLS)

- выведете уравнение для нахождения параметра (оптимальной) прямой, наименее уклоняющейся от заданных наблюдений (точек на плоскости);
- выведете формулы для оценки $\hat{\beta}$ коэффициента оптимальной прямой.

1.3 Задача

Пусть $\hat{\beta}$ есть OLS-оценка коэффициента наклона линейной функции y на x без константы, а $\hat{\gamma}$ – OLS-оценка коэффициента наклона в линейной функции x на y без константы. Верно ли для этих оценок равенство

$$\hat{\gamma} = \frac{1}{\hat{\beta}}?$$

1.4 Задача

Пусть $\hat{\beta}_1$ есть OLS-оценка коэффициента наклона линейной функции y на x с константой, а $\hat{\gamma}_1$ - OLS-оценка коэффициента наклона линейной функции x на y с константой. Верно ли равенство

$$\hat{\gamma}_1 = \frac{1}{\hat{\beta}_1}?$$

Ответ поясните.

1.5 Задача (квадратичный многочлен)

Пусть задано n наблюдений (точек на плоскости) $\{x_i,y_i\}_{i=1}^n$. Парабола $y=\beta_0+\beta_1x+\beta_2x^2$ 'подгоняется' под наблюдения методом наименьших квадратов (OLS). Выведете систему уравнения для нахождения параметрой 'оптимальной' параболы

2 Метод наименьших квадратов: Практика (Python)

Важно

- Во всех задачах логарифм натуральный!
- Во всех задачах численные ответы округлите до 2-х десятичных знаков
- Описание датасетов см. папке с ними
- По умолчанию константа включается

2.1 Задача (sleep equation)

Загрузите набор данных sleep 75.

2.1.1 Пример 1

- постройте диаграмму рассеяним sleep vs totwrk с 'подогнанной' прямой
- найти параметры оптимальной прямой sleep на totwrk

Ответ:

• найти параметры оптимальной прямой sleep на totwrk без константы

Ответ:

totwrk 1.26

2.1.2 Пример 2

- постройте диаграмму рассеяним sleep vs age с 'подогнанной' прямой
- найти параметры оптимальной прямой sleep на age

Ответ:

(Intercept)	age
3128 91	3 54

• найти параметры оптимальной прямой sleep на age без константы

Ответ:

age 77.82

2.1.3 Пример 3

- постройте диаграмму рассеяним sleep vs totwrk с 'подогнанной' параболой
- найти параметры оптимальной параболы sleep на totwrk, totwrk²

Ответ:

```
(Intercept) totwrk I(totwrk^2) 3523.59 -0.07 0.00
```

2.1.4 Пример 4

- постройте диаграмму рассеяним sleep vs age с 'подогнанной' параболой
- найти параметры оптимальной параболы sleep на age, age²

Ответ:

2.1.5 Пример 5

Найдите параметры оптимальной плоскости sleep на totwrk, age

Ответ:

2.2 Задача (labour equation)

Загрузите набор данных Labour. Постройте гистограммы для переменных output, log(output), capital, log(capital), labour, log(labour)

2.2.1 Пример 1

- постройте диаграмму рассеяним output vs capital с 'подогнанной' прямой
- найти параметры оптимальной прямой output на capital

Ответ:

• найти параметры оптимальной прямой output на capital без константы

Ответ:

- постройте диаграмму рассеяним log(output) vs log(capital) с 'подогнанной' прямой
- найти параметры оптимальной прямой log(output) на log(capital)

Ответ:

• найти параметры оптимальной прямой log(output) на log(capital) без константы

Ответ:

```
log(capital) 0.88
```

2.2.2 Пример 2

- постройте диаграмму рассеяним output vs labour с 'подогнанной' прямой
- найти параметры оптимальной прямой output на labour

Ответ:

• найти параметры оптимальной прямой output на labour без константы

Ответ:

labour 0.09

- постройте диаграмму рассеяним log(output) vs log(labour) с 'подогнанной' прямой
- найти параметры оптимальной прямой log(output) на log(labour)

Ответ:

• найти параметры оптимальной прямой log(output) на log(labour) без константы

Ответ:

2.2.3 Пример 3

- постройте диаграмму рассеяним log(output) vs log(capital) с 'подогнанной' параболой
- найти параметры оптимальной параболы log(output) vs log(capital), log²(capital)

Ответ:

2.2.4 Пример 4

- постройте диаграмму рассеяним log(output) vs log(labour) с 'подогнанной' параболой
- найти параметры оптимальной параболы log(output) vs log(labour), log²(labour)

Ответ: