

Semantic Web

- A brain for Human Kind
- From Information-based to Knowledge-Based
- Processable Knowledge means:
 - Better Retrieval
 - Reasoning
- Where can IE contribute?

Building the SW

- Document annotation
 - Manually associate documents (or parts) to ontological descriptions
 - Document classification for retrieval
 - Where can I buy an Hamster?
 - Pet shop web page -> pet shop concept -> hamster
 - Knowledge annotation
 - Where can I find a hotel in Berlin where single rooms cost less than 400€?
 - The Hotel is located in central $\underline{\text{Berlin}}$ and the cost for a single room is $\underline{300}\underline{\in}$
 - Editors are currently available for manual annotation of texts

IE for Annotating Documents

- Manual annotation is
 - Expensive
 - Error prone
- IE can be used for annotating documents
 - Automatically
 - Semi-Automatically
 - As user support
- Advantages
 - Speed
 - Low cost
 - Consistency
 - Can provide automatic annotation different from the one provided by the author(!)

Ciravegna & Kushmerick: ECML-2003 Tuto

SW for Knowledge Management

- SW is important for everyday Internet users
- SW is <u>necessary</u> for large companies
 - Millions of documents where knowledge is interspersed
 - Most documents are now
 - web-based
 - Available over an Intranet
 - Companies are valued for their
 - Tangible assets (e.g. plants)
 - Intangible assets (e.g. knowledge)
 - Knowledge is stored in
 - mind of employees
 - Documentation
 - Companies spend 7-10% of revenues for KM

More sophisticated wrappers

- LR & HLRT wrappers are extremely simple (though useful for ~ ²/₃ of real Web sites!)
- Recent wrapper induction research has explored...
 - more expressive wrapper classes

[Muslea et al, Agents-98; Hsu et al, JIS-98; Thomas et al, JIS-00, ...]

- Disjunctive delimiters
- Sequential/landmark-based delimiters
- Multiple attribute orderings
- Missing attributes
- Multiple-valued attributes
- · Hierarchically nested data
- Wrapper verification/maintenance

[Kushmerick, AAAI-1999; Kushmerick WWWJ-00; Cohen, AAAI-1999; Minton et al, AAAI-00]

Ciravegna & Kushmerick: ECML-2003 Tutoria

One of my favorites

Roadrunner

[Valter Crescenzi et al; Univ Roma 3]

- Unsupervised wrapper induction
 - They research databases, not machine learning, so they didn't realize training data was needed:-)
- Intuition:
 - Pose two different queries
 - The common bits of the documents come from the template and can be ignored
 - The bits that are different are the data that we're looking for

Ciravenna & Kushmerick: ECMI -2003 Tutorial

Boosted wrapper induction

[Freitag & Kushmerick, AAAI-00]

- Wrapper induction is suitable only for rigidly-structured machine-generated HTML...
- ... or is it?!
- Can we use simple patterns to extract from natural language documents?

... Name: Dr. Jeffrey D. Hermes
... Who: Professor Manfred Paul
... will be given by Dr. R. J. Pangborn

Ms. Scott will be speaking ... Karen Shriver, Dept. of ... Maria Klawe, University of ...

Ciravegna & Kushmerick: ECML-2003 Tutori

BWI: The basic idea

- Learn "wrapper-like" patterns for natural texts pattern = exact token sequence
- Learn many such "weak" patterns
- Combine with boosting to build "strong" ensemble pattern
- Of course, not all natural text is sufficiently regular!
- Demo: www.smi.ucd.ie/bwi

Ciravegna & Kushmerick: ECML-2003 Tutoria

Pick best prefix/suffix extension at each step Stop when no further extension improves accuracy $\frac{Weighting}{a_t} = \frac{1}{2} \ln[(W^+ + e) / (W^- + e)]$ [Cohe

[Cohen & Singer, 1999]

Hidden Markov models

- Previous discussion examine systems that use explicit extraction patterns/rules
- •HMMs are a powerful alternative based on statistical token models rather than explicit extraction patterns.

[Leek, UC San Diego, 1997; Bikel et al, ANLP-97, MLJ 99; Freitag & McCallum, AAAI-99 MLIE Workshop; Seymore, McCallum & Rosenfeld, AAAI-99 MLIE Workshop; Freitag & McCallum, AAAI-20001

Ciravegna & Kushmerick: ECML-2003 Tutor

Applying HMMs to IE

- Document ⇒ generated by a stochastic process modelled by an HMM
- Token ⇒ word
- **State** ⇒ "reason/explanation" for a given token
 - 'Background' state emits tokens like 'the', 'said', ...
 - 'Money' state emits tokens like 'million', 'euro', ...
 - 'Organization' state emits tokens like 'university', 'company',
- Extraction: The Viterbi algorithm is a dynamic programming technique for efficiently computing the most likely sequence of states that generated a document.

Ciravegna & Kushmerick: ECML-2003 Tutoria

 If training data tokens are tagged with their generating states, then simple frequency ratios are a maximum-likelihood estimate of transition/emission probabilities. (Use smoothing to avoid zero probs for emissions/transitions absent in the training data.)

Great news:

Baum-Welch algorithm trains HMM using <u>unlabelled</u> training data!

Bad news:

- How many states should the HMM contain?
- How are transitions constrained?
- Insufficiently expressive ⇒ Unable to model important distinctions
- $\, \blacksquare \,$ Overly-expressive \Rightarrow sparse training data, overfitting

Ciravegna & Kushmerick: FCMI -2003 Tutoria

Rule Generalisation

- Each instance is generalised by reducing its pattern in length
- Generalizations are tested on training corpus
- Best k rules generated from each instance reporting:
 - Smallest error rate (wrong/matches)
 - Greatest number of matches
 - Cover different examples
- Conditions on words are replaced by information from NLP modules
 - Capitalisation
 - Morphological analysis
 - Generalizes over gender/number
 - POS tagging
 - Generalizes over lexical categories
 - User-defined dictionary or gazetteer
 - Named Entity Recognizer

Ciravegna & Kushmerick: ECML-2003 Tutor

Implemented as a

general to specific

beam search with pruning (AQ-like)

Result Validation

Try to be accurate! OK. Please modify an

- How well does the system perform?
 - Solution:
 - Facilities for:
 - Inspecting tagged corpus
 - Showing details on correctness
 - Statistics on corpus
 - Details on errors (highlight correct/incorrect/missing) (e.g. MUC scorer is an excellent tool)
- Influencing system behavior
 - Solution
 - Interface for bridging the user's qualitative vision and the system's numerical vision

- Problem:
 - Incoming texts deviate from training data
 - Training corpus non representative
 - Document features change in time
- Solution:
 - Monitoring application.
 - Warn user if incoming texts' features are statistically different from training corpus:
 - Formal features: texts length, distribution of nouns
 - Semantic features: distribution of template fillers

Putting IE into Practice (2)

Some examples of Adaptive User-driven IE for real world applications

Learning Pinocchio

- Commercial tool for adaptive IE
 - Based on the (LP)² algorithm
 - Adaptable to new scenarios/applications by:
 - Corpus tagging via SGML
 - · A user with analyst's knowledge
- Applications
 - "Tombstone" data from Resumees (Canadian company) (E)
 - IE from financial news (Kataweb) (I)
 - IE from classified ads (Kataweb) (I)
 - Information highlighting (intelligence)
 (Many others I have lost track of...)
- A number of licenses released around the world for

application development

Ciravegna 2001 - IJCAI] http://tcc.itc.it/research/textec/tools-resources/learningpinocchio/

Application development time

Resumees:

Scenario definition: 10 person hours Tagging 250 texts: 14 person hours

Rule induction: 72 hours on 450MHz computer

Result validation: 4 hours

Contact:

Alberto Lavelli lavelli@itc.it

http://tcc.itc.it/research/textec/tools-resources/learningpinocchio/

Ciravegna & Kushmerick: ECML-2003 Tutori

Amilcare

active annotation for the Semantic Web

Tool for adaptive IE from Web-related texts

- Based on (LP)2
- Uses Gate and Annie for preprocessing
- Effective on different text types From free texts to rigid docs (XML.HTML, etc.)
 - Integrated with
- - MnM (Open University) Ontomat (University of Karlsruhe) Gate (U Sheffield)
- Adapting Amilcare:
 - Define a scenario (ontology) Define a Corpus of documents
 - Annotate texts
 - · Via MnM, Gate, Ontomat

[Ciravegna 2002 -SIGIR]

- Train the system
- Tune the application (*)
- Deliver the application

Ciravegna & Kushmerick: ECML-2003 Tutoria

Summary

- Information extraction:
 - core enable technology for variety of next-generation information services
 - Data integration agents

 - Semantic WebKnowledge Management
- Scalable IE systems must be <u>adaptive</u>
 - automatically learn extraction rules from examples
- $\underline{\text{Dozens of algorithms}}$ to choose from
- State of the art is 70-100% extraction accuracy (after hand-tuning!) across numerous domains.
 - Is this good enough? Depends your application.
- Yeah, but does it really work?!
 - Several companies sell IE products.
 - SW ontology editors start including IE

Open issues, Future directions

- Knob-tuning will continue to deliver substantial incremental performance increments
- Grand Unified Theory of text "structuredness", to automatically select optimal IE algorithm for a given task

Open Issues, Future directions

Resource Discovery

Cross-Document Extraction

Open issues, Future directions

- Adaptive only?
 - Mentioned systems are designed for non experts
 - E.g. do not require users to revise or contribute rules.
 - Is this a limitation? What about experts or even the whole spectrum of skills?
 - Future direction: making the best use of user's knowledge
- Expressive enough?
 - What about filling templates?

• Coreferences
(ACME is producing part for YMB Inc. The company will deliver...)

Reasoning
(if X retires then X leaves his/her company)