# **Expanding Neighborhood GRASP for the Traveling Salesman Problem**

YANNIS MARINAKIS marinakis@ergasya.tuc.gr ATHANASIOS MIGDALAS sakis@verenike.ergasya.tuc.gr Decision Support Systems Laboratory, Department of Production Engineering and Management, Technical University of Crete, 73100 Chania, Greece

PANOS M. PARDALOS pardalos@cao.ise.ufl.edu

Department of Industrial and Systems Engineering, University of Florida, USA

Received June 17, 2003; Revised May 28, 2004; Accepted October 11, 2004

**Abstract.** In this paper, we present the application of a modified version of the well known Greedy Randomized Adaptive Search Procedure (GRASP) to the TSP. The proposed GRASP algorithm has two phases: In the first phase the algorithm finds an initial solution of the problem and in the second phase a local search procedure is utilized for the improvement of the initial solution. The local search procedure employs two different local search strategies based on 2-opt and 3-opt methods. The algorithm was tested on numerous benchmark problems from TSPLIB. The results were very satisfactory and for the majority of the instances the results were equal to the best known solution. The algorithm is also compared to the algorithms presented and tested in the *DIMACS Implementation Challenge* that was organized by David Johnson [18].

**Keywords:** Traveling Salesman Problem, Greedy Randomized Adaptive Search Procedure, local search, Meta-Heuristics

### 1. Introduction

Consider a salesman who has to visit n cities. The Traveling Salesman Problem (TSP) asks for the shortest tour through all the cities such that no city is visited twice and the salesman returns at the end of the tour back to the starting city. We speak of a symmetric TSP, if for all pairs i, j the distance  $c_{ij}$  is equal to the distance  $c_{ji}$ . Otherwise, we speak of the asymetric traveling salesman problem. If the cities can be represented as points in the plain such that  $c_{ij}$  is the Euclidean distance between point i and point j, then the corresponding TSP is called the Euclidean TSP. Euclidean TSP obeys in particular the triangle inequality  $c_{ij} \leq c_{ik} + c_{kj}$  for all i, j, k.

The Traveling Salesman Problem (TSP) is one of the most famous hard combinatorial optimization problems. Since 1950s many algorithms have been proposed, developed and tested for the solution of the problem. The TSP belongs to the class of NP-hard optimization problems [19]. This means that no polynomial time algorithm is known for its solution. Algorithms for solving the TSP may be divided into two classes, *exact algorithms* and *heuristic algorithms*.

The exact algorithms are guaranteed to find the optimal solution in exponential number of steps. The most effective exact algorithms are branch and cut algorithms [21] with which large TSP instances have been solved [2]. The problem with these algorithms is that they are quite complex and are very demanding of computer power [14]. For this reason it is very difficult to find optimal solution for the TSP, especially for problems with very large number of cities. Therefore, there is a great need for powerful heuristics that find good suboptimal solutions in reasonable amounts of computing time. These algorithms are usually very simple and have short running times. In the 1960s, 1970s and 1980s the attempts to solve the traveling salesman problem focused on tour construction methods and tour improvement methods. The proposed modified GRASP essentially combines these two approaches into a new algorithm. Construction methods build up a tour step by step. One of the simplest methods is the nearest neighbor in which, a salesman starts from an arbitrary city and goes to its nearest neighbor. Then, he proceeds from there in the same manner. There has been proposed a number of construction algorithms for the solution of the traveling salesman problem, including insertion heuristics, the Christofides algorithm, which is based on spanning trees in the underlying graph, and cost saving algorithms. The problem with construction heuristics is that although they are usually fast, they do not, in general, produce very good solutions. The improvement methods start with a tour and try to transform it into a shorter tour. The most known of these algorithms is the 2-opt heuristic, in which two edges are deleted and the open ends are connected in a different way in order to obtain another tour. In the general case, r edges in a feasible tour are exchanged for r edges not in that solution as long as the result remains a tour and the length of that tour is less than the length of the previous tour. The most powerful, and for many years the algorithm which performed best among all heuristic, is the Lin-Kernighan algorithm [24]. It decides dynamically at each iteration what the value of r (the number of edges to exchange) should be [14, 27].

In the last fifteen years, metaheuristics [1], such as simulated annealing, tabu search, genetic algorithms and neural networks, were introduced. These algorithms have the ability to find their way out of local optima. In simulated annealing [31], this is achieved by allowing the length of the tour even to increase with a certain probability. Gradually the probability allowing the objective function value to increase is lowered until no more transformations are possible. Tabu search [31] uses a different technique to get out of local optima. The algorithm keeps a list of forbidden transformations. In this way, it may be necessary to use a transformation that deteriorates the objective function value in the next step. Genetic algorithms [4, 31] mimic the evolution process in nature. Their basic operation is the mating of two tours in order to form a new tour. Moreover, they use algorithmic analogs to mutation and selection. Although there are few papers applying neural networks [26] algorithms to the TSP, the results obtained are not competitive with the mentioned heuristics [17].

In this paper, we use a modified version of the well known Greedy Randomized Adaptive Search Procedure (GRASP) for the solution of the TSP. It should be noted that in the *DIMACS Implementation Challenge* [12] which was organized by David Johnson, Fred Glover and Cesar Rego and presented in [18], no GRASP algorithm for the solution of the TSP is mentioned.

GRASP [7, 15, 16, 32] is an iterative two phase search which has gained considerable popularity in combinatorial optimization. Each iteration consists of two phases, a construction phase and a local search procedure. In the construction phase, a randomized greedy function is used to build up an initial solution. This randomized technique provides a feasible solution within each iteration. This solution is then exposed for improvement attempts in the local search phase. The final result is simply the best solution found over all iterations.

That is, in the first phase, a randomized greedy technique provides feasible solutions incorporating both greedy and random characteristics. This phase can be described as stepwise, adding one element at a time to the partial (incomplete) solution. The choice of the next element to be added is determined by ordering all elements in a candidate list with respect to a greedy function. The heuristic is adaptive because the benefits associated with every element are updated at each iteration of the construction phase to reflect the changes brought on by the selection of the previous element. The probabilistic component of a GRASP is characterized by randomly choosing one of the best candidate in the list but not necessary the top candidate. The greedy algorithm is a simple one pass procedure for solving the traveling salesman problem. In the second phase, a local search is initialized from these points, and the final result is simply the best solution found over all searches (multi-start local search). Typically, the sequential approach is thought of as an iterative process. That is, in each iteration, phase one is used to generate a starting point, then the local search of phase two is applied, before proceeding to the next iteration. The GRASP algorithm may be described by the pseudo code below:

```
algorithm GRASP
do while stopping criteria not satisfied
    call GREEDY_RANDOM_SOLUTION(Solution)
    call LOCAL_SEARCH(Solution)
    if Solution is better than Best_Solution_Found then
        Best_Solution_Found ← Solution
    endif
enddo
return Best_Solution_Found
```

The neighborhood mapping used in the local search phase of the GRASP must also be defined. Of course, different problems require different construction and local search strategies. The advantage of the GRASP compared to other heuristics is that there are only two parameters to tune (the size of the candidate list and the number of GRASP iterations). Compared to tabu search, simulated annealing and genetic algorithms, GRASP appears to be competitive with respect to the quality of the produced solutions, the efficiency, and the fact that is easier to implement and tune. GRASP has been used extensively to solve difficult combinatorial optimization problems, including problems in scheduling, logic, location, assignment, transportation [7, 8, 16, 32] but also global optimization problems with combinatorial neighborhoods, such as the Capacitated Network Flow Problem (NCFP) [15, 16] and the Quadratic Assignment Problem (QAP) [28, 29]. Resende and Ribeiro [32]

present a recent survey of GRASP and Festa and Resende [8] present an extensive annotated bibliography on GRASP.

The new modified version of GRASP, implemented in this paper for the solution of the Traveling Salesman Problem (TSP), has a few differences from the original algorithm. The most significant of them concern the way the restricted candidate list (RCL) is constructed in the first phase and the strategy used for exploiting the neighborhood during the local search in the second phase. In most of the implementations of GRASP, some type of value based RCL construction scheme has been used. In such a scheme, an RCL parameter,  $\alpha$ , determines the level of greediness or randomness in the construction. In our implementation the parameter  $\alpha$  was not used and the best promising candidate edges are selected to create the RCL. Subsequently, one of them is chosen randomly to be the next candidate for inclusion to the tour. This type of RCL is called a cardinality based RCL construction scheme, and has not frequently used in the literature. In most algorithms for the solution of the Traveling Salesman Problem, as well as other difficult problems, a single local search algorithm has been used for the improvement of the initial solution. Here, it is proposed the use of a combination of two well known local search methods instead of a single local search. First, a restricted 2-opt method is applied to improve the solution of the first phase and, subsequently a restricted 3-opt method is tried in order to improve the 2-opt solution.

The structure of the paper is as follows. In the Section 2, an analytical description of the proposed modified Greedy Randomized Adaptive Search Procedure heuristic is presented. In the Section 3, the computational results are presented and, finally, concluding remarks and extensions are given in the last section.

# 2. Expanding neighborhood GRASP

In the previous section, the Greedy Randomized Adaptive Search Procedure was examined and its generic framework was presented. In this section, first a more detailed pseudocode of the proposed algorithm is presented and, then, the algorithm is explained step by step.

```
algorithm GRASP do while stopping criteria not satisfied S = \emptyset ! S is the current solution !E = \text{number of arcs} call Make_Queue(E) call Init_Set(parent, number of nodes) k = 0 do while k < D ! D is the size of the RCL call Select_Min_From_List((i,j), E) call Delete_Min_From_List((i,j), E) Add l = (i, j) to RCL k = k + 1 enddo m = 0
```

```
do while m < n - 1! where n is the number of nodes
     Select l = (i, j) randomly from RCL
     root1 = Collapsing_Find_Set(i,parent)
     root2 = Collapsing_Find_Set(j,parent)
     if root1 \neq root2 then
          m = m + 1
          call Merge\_Subtours((i, j), S)
          call Union(root1,root2,parent)
          Add the (D + m)_{ith} edge to the RCL
     endif
enddo
call Calc_Cost(S, cost_S)
! 2-opt
Given S! where S is the current solution
!E_1 = number of arcs of the initial solution
call Make_Queue(E_1)
for i = 1 to n
     call Select_Max_From_List((i, j), E_1)
     !let (l, k) an edge of the current tour
     do for all possible (l, k)
     S' = S \setminus (i, j) \setminus (l, k) \cup (i, l) \cup (j, k)
     call Calc\_Cost(S', cost_{S'})
     if (cost_{S'} < cost_S) then
          Update the solution S \leftarrow S'
          cost_S = cost_{S'}
          call Delete_from_List(i, j)
          call Delete_from_List(l, k)
          call Add_to_List(i, l)
          call Add_to_List(j, k)
     endif
     enddo
endfor
! 3-opt
Given S! where S is the current solution
!E_1 = number of arcs of the initial solution
call Make_Queue(E_1)
for i = 1 to n
     call Select_Max_From_List((i, j), E_1)
     !let (l,k) and (m,n) two edges of the current tour
     do for all possible (l, k)
     S' = S \setminus (i, j) \setminus (l, k) \setminus (m, n) \cup (i, l) \cup (j, m) \cup (n, k)
     \mathbf{call} \ \mathtt{Calc\_Cost}(S', cost_{S'})
     if (cost_{S'} < cost_S) then
          Update the solution S \leftarrow S'
```

```
cost_S = cost_{S'}
call Delete_from_List(i, j)
call Delete_from_List(l, k)
call Delete_from_List(m, n)
call Add_to_List(i, l)
call Add_to_List(i, l)
call Add_to_List(i, k)
endif
enddo
endfor
if Solution S is better than Best_Solution_Found then
Best_Solution_Found \leftarrow Solution S
endif
enddo ! GRASP iteration completed
return Best_Solution_Found
```

In each iteration of GRASP a data structure for tour representation is needed. The choice of the data structure is a very significant part of the algorithm as it plays a critical role for the efficiency of the algorithm. We use the heap and the disjoint set data structures [33] in the construction phase. The heap is implemented as an integer array of pointers to an array of items. That is, we do not move items, we rather permute the pointers. It also uses an integer to keep the heap size. The heap is a complete binary tree represented as an array. The root is in position 1 of the binary tree. Any element I has its left child in position 2I, and its right child in position 2I + 1. Finally, parent is in the position INT(I/2). Of course, the root has no parent. With the function  $Make\_Queue$  an array is converted into a heap. The siftup/siftdown operations are used in adjusting the heap. The assumption is that the children of the root are already roots of subtrees that are in heap order. The functions  $Select\_Min\_From\_List$  and  $Delete\_Min\_From\_List$  are used for removing the root of the heap and in adjusting it.

The disjoint sets data structure implements tree representation of pairwise disjoint sets. The elements of the sets are integers. The representation of the sets is done using an integer array parent, where parent(I) is the parent of the element I in the tree where it belongs. If I is the root of the tree, then parent(I) is less or equal to 0. The function  $Init\_Set$  initializes disjoint sets, where each set has one element (node), and the total number of sets is equal to number of nodes. The function  $Collapsing\_Find\_Set$  returns the root of the set in which the element belongs. At the same time, this function collapses the tree in order to reduce the longest path in the tree, giving, thus, a better complexity for a sequence of searches. Finally, the function Union joins two disjoint sets with root1 and root2, where root1 and root2 are values returned by function  $Collapsing\_Find\_Set$ , by making the smallest set a subtree of the other set.

The algorithmic representation of the complete graph was achieved by a list of arcs. In this data structure, it used 2 vectors for the arcs, one for the starting nodes and another for the ending nodes. It, also, used a third vector for the cost of each arc. This vector contains the Euclidean distances of all nodes.

In stage one of the construction phase it is created a list called Restricted Candidate List (RCL) that contains the best candidate edges for inclusion in the tour. Initially, a list of all the edges of a given graph G = (V,E) is created by ordering all the edges from the smallest to the largest cost using a heap data structure, as it was presented above. From this list, the first D, where D can vary from 30 to 150, are selected in order to form the Restricted Candidate List. This type of RCL is called cardinality based RCL. The candidate edge for inclusion in the tour is selected randomly from the RCL using a random number generator. Finally, the RCL is readjusted in every iteration by replacing the edge which has been included in the tour by another edge that does not belong to the RCL, namely the  $(D + m)_{ith}$  edge where m is the number of the current iteration.

In the *stage two of the construction phase*, after the choice of an element for inclusion in the tour, it is used a modified version of Kruskal's algorithm, the nearest merger algorithm [22], for its insertion in partial tour. Kruskal's algorithm, when applied to a TSP of n nodes, constructs a sequence  $S_1, \ldots, S_n$  such that each  $S_i$  is a set of n-i+1 disjoint subtours covering all the nodes. It starts with n partial tours, each consisting of a single city, and successively merges the tours until a single tour containing all the cities is obtained. The procedure of merging is achieved with the function  $Merge\_Subtours$ . If the current number of tours exceeds one, the tours S, S' that should next be merged are chosen so that  $min\{c_{ij}: i \in S \text{ and } j \in S'\}$  is as small as possible. The merging procedure have three possible alternatives (figure 1):

- If both S and S' consist of a single node then these two single node tours are merged in a tour.
- If S consists of a single city k, the merged tour is TOUR(S', k). If {i, j} is an edge of S' then c<sub>ik</sub> + c<sub>kj</sub> c<sub>ij</sub> is minimized. The merged tour is then obtained by deleting {i, j} and replacing them with {i, k} and {j, k}. If S' consists of a single city k' then the merged tour is TOUR(S, k'). If {i, j} is an edge of S then c<sub>ik'</sub> + c<sub>k'j</sub> c<sub>ij</sub> is minimized. The merged tour is then obtained by deleting {i, j} and replacing them with {i, k'} and {j, k'}.
- If both S and S' contain at least two cities, let i, j, k and l be cities such that  $\{i, j\}$  is an edge of S and  $\{k, l\}$  is an edge of S' and  $c_{ik} + c_{jl} c_{ij} c_{kl}$  is minimized. The merged tour is then obtained by deleting  $\{i, j\}$  and  $\{k, l\}$  and replacing them with  $\{i, k\}$  and  $\{j, l\}$ .

After the completion of the construction phase, the initial solution of the algorithm is exposed for improvement. The improvement is achieved with the implementation of two different local search algorithms, namely 2-opt and 3-opt. A local search algorithm [25] is built around a neighborhood search procedure. A neighborhood N for the problem instance (S, g) can be defined as a mapping from S to its powerset:  $N: S \rightarrow 2^S$ . N(s) is called the *neighborhood* of S. A solution S is called a local minimum of S with respect to the neighborhood S if S if S is called a local minimum of S with respect to the neighborhood S if S is called a local minimum of S with respect to the neighborhood S if S is called a local minimum of S with respect to the neighborhood S if S is called a local minimum of S with respect to the neighborhood S if S is called a local minimum of S with respect to the neighborhood S if S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S with respect to the neighborhood S is called a local minimum of S in the local minimum of S is called a local minimum of S is called a local minimum of S is called a local minimum of S is

Given a feasible solution, the algorithm examines all the solutions that are closely related to this solution and finds a neighboring solution of lower cost, if one exists. Local search for the TSP is synonymous to k-opt moves. Using k-opt moves, neighboring solutions can be obtained by deleting k edges from the current tour and reconnected the resulting paths using k new edges. In the proposed algorithm, a combined neighborhood search is used.



Figure 1. Example of modified Kruskall.

The idea of using a larger neighborhood to escape from a local minimum in a smaller one had been proposed initially by Garfinkel and Nemhauser [9] and recently by Hansen and Mladenovic [13]. First, the neighborhood function is defined as exchanging two edges of the current solution with two other edges. This procedure is known as 2-opt procedure and was introduced by Lin (1965) for the TSP [23]. Note that there is only one way to reconnect the paths. This algorithm does not use the classical approach of 2-opt but a restricted one. Initially the edges in the current tour are ordered from largest to smallest costs, using a heap data structure, and from this order, the edge with the largest cost is selected. The neighborhood to be examined is constructed from the end-nodes of this edge, but in a more sophisticated way than the one used in the classical 2-opt. Let i and j be the end-nodes of the edge and let l and k be the end-nodes of another candidate edge for deletion of the tour. The constructed neighborhood is then  $S' = S \setminus (i, j) \setminus (l, k) \cup (i, l) \cup (j, k)$ , where S is the initial solution, (i, j) and (l, k) are the candidate for deletion edges and (i, l) and (j, k) are the candidate for inclusion edges (figure 2). The cost of the candidate tour is, then, compared with the cost of the current tour and the first best tour found is used in order to replace the incumbent tour. The heap is then updated with the deletion of the edges (i, j) and (l, k) and the addition of the edges (i, l) and (j, k). The process is



Figure 2. Examples of 2- and 3-opt.

repeated with the new tour using the edge with the largest cost from the updated heap. This procedure does not exclude a node of the current candidate for deletion edge to be the same as in a previous iteration. The process terminates when a number of candidate for deletion edges is examined. This number was selected to be equal to the number of nodes.

In the worst case, it can only be guaranteed that an improving move decreases the tour length by at least one unit. No polynomial worst case bound on the number of iterations to reach a local optimum can be given. Checking whether an improving 2–opt move exists takes  $O(n^2)$  time.

Subsequently, the algorithm tries to improve the solution by expanding the neighborhood using a restricted 3-opt procedure. The 3-opt heuristic (figure 2) is quite similar the 2-opt. However, because it uses a larger neighborhood, it introduces more flexibility in modifying the current tour. The tour breaks into three parts instead of only two. There are eight ways to connect the resulting three paths in order to form a tour. There are  $\binom{n}{3}$  ways to remove three edges from a tour. The overall best solution is kept. Thus, if 2-opt has been trapped in a local optimum, the algorithm has now the possibility to escape from it and find a better solution. Initially the edges in the current tour are ordered from largest to smallest costs, using a heap data structure, and from this order, the edge with the largest cost is selected. The neighborhood to be examined is constructed from the end-nodes of this edge, but in a more sophisticated way than the one used in the classical 3-opt. Let i and j be the end-nodes of the edge and let l, k and m, n be the end-nodes of two other candidate edges for deletion of the tour. The constructed neighborhood is then  $S' = S \setminus (i, j) \setminus (l, k) \setminus (m, n) \cup (i, l) \cup (j, m) \cup (n, k)$ , where S is the initial solution, (i, j), (l,k) and (m,n) are the candidate for deletion edges and (i,l), (j,m) and (n,k) are the candidate for inclusion edges (figure 2). The cost of the candidate tour is, then, compared with the cost of the current tour and the first best tour found is used in order to replace the incumbent tour. The heap is then updated with the deletion of the edges (i, j), (l, k) and

*Table 1.* Comparison between the solution of the modified GRASP and the best known solution.

| Instance | Nodes | Best solution with GRASP | Best known solution | Quality (%) |
|----------|-------|--------------------------|---------------------|-------------|
| Eil51    | 51    | 426                      | 426                 | 0           |
| Berlin52 | 52    | 7542                     | 7542                | 0           |
| Eil76    | 76    | 538                      | 538                 | 0           |
| Pr76     | 76    | 108159                   | 108159              | 0           |
| Rat99    | 99    | 1211                     | 1211                | 0           |
| KroA100  | 100   | 21282                    | 21282               | 0           |
| KroB100  | 100   | 22141                    | 22141               | 0           |
| KroC100  | 100   | 20749                    | 20749               | 0           |
| KroD100  | 100   | 21294                    | 21294               | 0           |
| KroE100  | 100   | 22068                    | 22068               | 0           |
| Rd100    | 100   | 7910                     | 7910                | 0           |
| Eil101   | 101   | 629                      | 629                 | 0           |
| Lin105   | 105   | 14379                    | 14379               | 0           |
| Pr107    | 107   | 44303                    | 44303               | 0           |
| Pr124    | 124   | 59030                    | 59030               | 0           |
| Bier127  | 127   | 118326                   | 118282              | 0.03        |
| Ch130    | 130   | 6110                     | 6110                | 0           |
| Pr136    | 136   | 96772                    | 96772               | 0           |
| Pr144    | 144   | 58537                    | 58537               | 0           |
| Ch150    | 150   | 6528                     | 6528                | 0           |
| KroA150  | 150   | 26524                    | 26524               | 0           |
| Pr152    | 152   | 73682                    | 73682               | 0           |
|          |       |                          |                     |             |
| Rat195   | 195   | 2331                     | 2323                | 0.34        |
| D198     | 198   | 15788                    | 15780               | 0.05        |
| KroA200  | 200   | 29380                    | 29368               | 0.04        |
| KroB200  | 200   | 29482                    | 29437               | 0.15        |
| Ts225    | 225   | 126643                   | 126643              | 0           |
| Pr226    | 226   | 80414                    | 80369               | 0.05        |
| Gil262   | 262   | 2385                     | 2378                | 0.29        |
| Pr264    | 264   | 49135                    | 49135               | 0           |
| A280     | 280   | 2589                     | 2579                | 0.38        |
| Pr299    | 299   | 48235                    | 48191               | 0.09        |
| Rd400    | 400   | 15385                    | 15281               | 0.68        |
| Fl417    | 417   | 11895                    | 11861               | 0.28        |
| Pr439    | 439   | 107401                   | 107217              | 0.17        |
| Pcb442   | 442   | 50946                    | 50778               | 0.33        |
| D493     | 493   | 35253                    | 35002               | 0.71        |
| Rat575   | 575   | 6863                     | 6773                | 1.32        |
| P654     | 654   | 34707                    | 34643               | 0.18        |
| D657     | 657   | 49531                    | 48912               | 1.26        |
| Rat783   | 783   | 8897                     | 8806                | 1.03        |
| Pr1002   | 1002  | 262060                   | 259045              | 1.16        |
| Pcb1173  | 1173  | 57676                    | 56892               | 1.37        |
| D1291    | 1291  | 51616                    | 50801               | 1.60        |
| R11304   | 1304  | 255185                   | 252948              | 0.88        |
| R11323   | 1323  | 273115                   | 270199              | 1.07        |
| F11400   | 1400  | 20310                    | 20127               | 0.90        |
| F11577   | 1577  | 22427                    | 22249               | 0.80        |
| R11889   | 1889  | 319250                   | 316536              | 0.85        |
| D2103    | 2103  | 81312                    | 80450               | 1.07        |
| Pr2392   | 2392  | 386017                   | 378032              | 2.11        |

*Table 2.* Improvement of the solution from the first phase by the 2-opt and 3-opt algorithms in the second phase.

| Instance | Nodes | Kruskall | 2-opt  | 3-opt  | Average improvement<br>Kruskall vs 2-opt (%) | Average improvement<br>2-opt vs 3-opt (%) |
|----------|-------|----------|--------|--------|----------------------------------------------|-------------------------------------------|
| Eil51    | 51    | 469      | 438    | 426    | 6.60                                         | 2.73                                      |
| Berlin52 | 52    | 11007    | 8545   | 7542   | 22.36                                        | 11.73                                     |
| Eil76    | 76    | 770      | 582    | 538    | 24.41                                        | 7.56                                      |
| Pr76     | 76    | 151873   | 119622 | 108159 | 21.23                                        | 9.58                                      |
| Rat99    | 99    | 1728     | 1262   | 1211   | 26.96                                        | 4.04                                      |
| KroA100  | 100   | 29764    | 23235  | 21282  | 21.93                                        | 8.40                                      |
| KroB100  | 100   | 30287    | 24516  | 22141  | 19.05                                        | 9.68                                      |
| KroC100  | 100   | 30770    | 23094  | 20749  | 24.95                                        | 10.15                                     |
| KroD100  | 100   | 29764    | 22965  | 21294  | 23.08                                        | 7.27                                      |
| KroE100  | 100   | 30369    | 24337  | 22068  | 19.86                                        | 9.32                                      |
| Rd100    | 100   | 10912    | 8508   | 7910   | 22.03                                        | 7.02                                      |
| Eil101   | 101   | 884      | 671    | 629    | 24.09                                        | 6.25                                      |
| Lin105   | 105   | 21112    | 15764  | 14379  | 25.33                                        | 8.78                                      |
| Pr107    | 107   | 56587    | 49836  | 44303  | 11.93                                        | 11.10                                     |
| Pr124    | 124   | 84078    | 65369  | 59030  | 22.25                                        | 9.69                                      |
| Bier127  | 127   | 154734   | 132037 | 118326 | 14.65                                        | 10.38                                     |
| Ch130    | 130   | 8545     | 6852   | 6110   | 19.81                                        | 10.82                                     |
| Pr136    | 136   | 143527   | 102003 | 96772  | 28.93                                        | 5.12                                      |
| Pr144    | 144   | 87281    | 61162  | 58537  | 29.92                                        | 4.29                                      |
| Ch150    | 150   | 9320     | 7045   | 6528   | 24.4                                         | 7.33                                      |
| KroA150  | 150   | 37786    | 29397  | 26524  | 22.20                                        | 9.77                                      |
| Pr152    | 152   | 97398    | 84183  | 73682  | 12.13                                        | 12.47                                     |
| Rat195   | 195   | 3498     | 2546   | 2331   | 27.20                                        | 8.44                                      |
| D198     | 193   | 19700    | 16383  | 15788  | 16.83                                        | 3.63                                      |
| KroA200  | 200   |          | 32315  | 29380  | 19.54                                        | 9.08                                      |
|          |       | 40165    | 32622  |        |                                              |                                           |
| KroB200  | 200   | 41667    |        | 29482  | 21.70                                        | 9.62                                      |
| Ts225    | 225   | 202356   | 140775 | 126643 | 30.43                                        | 10.03                                     |
| Pr226    | 226   | 112729   | 94360  | 80414  | 16.29                                        | 14.77                                     |
| Gil262   | 262   | 3308     | 2616   | 2385   | 20.91                                        | 8.83                                      |
| Pr264    | 264   | 71794    | 55517  | 49135  | 22.67                                        | 11.49                                     |
| A280     | 280   | 3811     | 2807   | 2589   | 26.34                                        | 7.76                                      |
| Pr299    | 299   | 68071    | 54251  | 48235  | 20.30                                        | 11.08                                     |
| Rd400    | 400   | 21378    | 16618  | 15385  | 22.26                                        | 7.41                                      |
| FI417    | 417   | 15598    | 13172  | 11895  | 15.55                                        | 9.69                                      |
| Pr439    | 439   | 153667   | 123147 | 107401 | 19.86                                        | 12.78                                     |
| Pcb442   | 442   | 74886    | 56921  | 50941  | 23.98                                        | 10.50                                     |
| D493     | 493   | 46089    | 38196  | 35253  | 17.12                                        | 7.70                                      |
| Rat575   | 575   | 9587     | 7500   | 6863   | 21.76                                        | 8.49                                      |
| P654     | 654   | 45809    | 38908  | 34707  | 15.06                                        | 9.39                                      |
| D657     | 657   | 67962    | 55180  | 49531  | 18.80                                        | 10.23                                     |
| Rat783   | 783   | 12623    | 9890   | 8897   | 21.65                                        | 10.04                                     |
| Pr1002   | 1002  | 357617   | 287881 | 262060 | 19.50                                        | 8.96                                      |
| Pcb1173  | 1173  | 85155    | 64569  | 57676  | 24.17                                        | 10.67                                     |
| D1291    | 1291  | 78895    | 58253  | 51616  | 26.16                                        | 11.39                                     |
| R11304   | 1304  | 388155   | 305154 | 255185 | 21.38                                        | 16.37                                     |
| R11323   | 1323  | 418267   | 319161 | 273115 | 23.69                                        | 14.42                                     |
| Fl1400   | 1400  | 26468    | 22320  | 20310  | 15.67                                        | 9.00                                      |
| Fl1577   | 1577  | 33000    | 26508  | 22427  | 19.6                                         | 15.39                                     |
| R11889   | 1889  | 478565   | 378945 | 319250 | 20.81                                        | 15.75                                     |
| D2103    | 2103  | 142727   | 87563  | 81312  | 38.65                                        | 7.13                                      |
| Pr2392   | 2392  | 552671   | 438540 | 386017 | 20.65                                        | 11.97                                     |

| Table 3. Analytical presentation of solutions for four instance | Table 3. | Analytical | presentation | of solutions | for four instances |
|-----------------------------------------------------------------|----------|------------|--------------|--------------|--------------------|
|-----------------------------------------------------------------|----------|------------|--------------|--------------|--------------------|

| Instance | Phase    | 30    | 50    | 80    | 100   | 150   | Optimum |
|----------|----------|-------|-------|-------|-------|-------|---------|
| KroD100  |          |       |       |       |       |       | 21294   |
|          | Kruskall | 29764 | 30330 | 29364 | 31355 | 30311 |         |
|          | 2-opt    | 22965 | 23187 | 22937 | 24341 | 22834 |         |
|          | 3-opt    | 21294 | 21484 | 21294 | 21362 | 21309 |         |
| Lin105   |          |       |       |       |       |       | 14379   |
|          | Kruskall | 21341 | 21112 | 21841 | 20950 | 22285 |         |
|          | 2-opt    | 15361 | 15764 | 15561 | 15706 | 15949 |         |
|          | 3-opt    | 14379 | 14379 | 14379 | 14379 | 14379 |         |
| Pr124    |          |       |       |       |       |       | 59030   |
|          | Kruskall | 84895 | 83279 | 84942 | 85851 | 90729 |         |
|          | 2-opt    | 64804 | 64064 | 64061 | 65020 | 65407 |         |
|          | 3-opt    | 59385 | 59076 | 59076 | 59030 | 59076 |         |
| Fl417    |          |       |       |       |       |       | 11861   |
|          | Kruskall | 15408 | 15366 | 15598 | 15466 | 15611 |         |
|          | 2-opt    | 13049 | 13206 | 13129 | 12833 | 12762 |         |
|          | 3-opt    | 11902 | 11918 | 11895 | 11908 | 11907 |         |

(m, n) and the addition of the edges (i, l), (j, m) and (n, k). The process is repeated with the new tour using the edge with the largest cost from the updated heap. This procedure does not exclude a node of the current candidate for deletion edge to be the same as in a previous iteration. As before, the process terminates when a number of candidate for deletion edges is examined and this number was selected, again, to be equal with the number of nodes.

Each GRASP iteration concludes in a tour, resulting from the 3-opt procedure. The final result of the algorithm is simply the best solution over all iterations.

# 3. Computational results

The modified GRASP was implemented in Fortran 90 and was compiled using the Linux VAST/f90 compiler (f902f77 translator) on a Pentium III at 667 MHz, running Suse Linux 6.3. The test instances were taken from the TSPLIB (http://www.iwr.uni-heidelberg.de/groups/compt/software/TSPLIB95). The algorithm was tested on a set of 51 Euclidean sample problems with sizes ranging from 51 to 2392 nodes. Each instance is described by its TSPLIB name and size, e.g. the number 4 instance in Table 1 is named Pr76 with size equal to 76 nodes. In all tables, the first column shows the name of the instance while the second one shows the number of nodes. The length of RCL varies from 30 to 150. The number of iterations is between 10 and 100 depending on the number of nodes of each instance. For instances with a number of nodes over 1173 the algorithm was tested only for



Figure 3. Improvement of the solutions from the phases of the algorithm for different sizes of the RCL



Figure 4. Improvement of the solutions inside the phases of the algorithm

*Table 4.* Comparison of results for different sizes of the RCL.

| Instance | Nodes | 30     | 50     | 80     | 100    | 150    | Best known<br>solution (TSPLIB) |
|----------|-------|--------|--------|--------|--------|--------|---------------------------------|
| Eil51    | 51    | 426    | 426    | 426    | 428    | 426    | 426                             |
| Berlin52 | 52    | 7542   | 7542   | 7542   | 7542   | 7542   | 7542                            |
| Eil76    | 76    | 543    | 543    | 540    | 542    | 538    | 538                             |
| Pr76     | 76    | 108159 | 108159 | 108159 | 108159 | 108159 | 108159                          |
| Rat99    | 99    | 1219   | 1227   | 1211   | 1218   | 1211   | 1211                            |
| KroA100  | 100   | 21282  | 21282  | 21282  | 21282  | 21282  | 21282                           |
| KroB100  | 100   | 22141  | 22141  | 22141  | 22141  | 22141  | 22141                           |
| KroC100  | 100   | 20749  | 20852  | 20749  | 20749  | 20769  | 20749                           |
| KroD100  | 100   | 21294  | 21484  | 21294  | 21362  | 21309  | 21294                           |
| KroE100  | 100   | 22068  | 22068  | 22068  | 22068  | 22068  | 22068                           |
| Rd100    | 100   | 7910   | 7911   | 7911   | 7910   | 7911   | 7910                            |
| Eil101   | 101   | 634    | 632    | 637    | 629    | 631    | 629                             |
| Lin105   | 105   | 14379  | 14379  | 14379  | 14379  | 14379  | 14379                           |
| Pr107    | 107   | 44303  | 44347  | 44303  | 44303  | 44303  | 44303                           |
| Pr124    | 124   | 59385  | 59076  | 59076  | 59076  | 59030  | 59030                           |
| Bier127  | 127   | 120459 | 120162 | 118326 | 120338 | 119821 | 118282                          |
| Ch130    | 130   | 6172   | 6174   | 6170   | 6110   | 6131   | 6110                            |
| Pr136    | 136   | 98004  | 96772  | 97089  | 97537  | 97914  | 96772                           |
| Pr144    | 144   | 58537  | 58537  | 58537  | 58537  | 58537  | 58537                           |
| Ch150    | 150   | 6528   | 6555   | 6565   | 6570   | 6565   | 6528                            |
| KroA150  | 150   | 26704  | 26693  | 26618  | 26524  | 26585  | 26524                           |
| Pr152    | 152   | 73818  | 73662  | 73818  | 73818  | 73818  | 73682                           |
| Rat195   | 195   | 2359   | 2357   | 2363   | 2331   | 2351   | 2323                            |
| D198     | 198   | 15868  | 15883  | 15866  | 15788  | 15880  | 15780                           |
| KroA200  | 200   | 29798  | 29708  | 29637  | 29855  | 29380  | 29368                           |
| KroB200  | 200   | 29482  | 29654  | 29732  | 29878  | 29789  | 29437                           |
| Ts225    | 225   | 126643 | 126962 | 126643 | 126643 | 126643 | 126643                          |
| Pr226    | 226   | 81062  | 81000  | 80414  | 81005  | 81289  | 80369                           |
| Gil262   | 262   | 2424   | 2440   | 2385   | 2448   | 2429   | 2378                            |
| Pr264    | 264   | 49811  | 50124  | 49135  | 49923  | 49948  | 49135                           |
| A280     | 280   | 2649   | 2640   | 2632   | 2589   | 2645   | 2579                            |
| Pr299    | 299   | 49073  | 49016  | 48235  | 48911  | 48954  | 48191                           |
| Rd400    | 400   | 15613  | 15579  | 15385  | 15701  | 15559  | 15281                           |
| Fl417    | 417   | 11902  | 11918  | 11895  | 11908  | 11907  | 11861                           |
| Pr439    | 439   | 111606 | 111398 | 107401 | 109800 | 111300 | 107217                          |
| Pcb442   | 442   | 51490  | 51833  | 51815  | 50946  | 51497  | 50778                           |
| D493     | 493   | 36214  | 36166  | 36137  | 36481  | 35253  | 35002                           |

10 iterations, except for the instances d1291 and fl1577 where the algorithm runs for 20 iterations.

In Table 1, the third column shows the best solution found by the modified GRASP, the fourth column shows the best solution taken from the TSPLIB, and the fifth column shows the quality of the solution produced by GRASP. The quality of the produced GRASP solutions is given in terms of the relative deviation from the best known solution, that is  $p = \frac{100(c_{\rm grasp} - c_{\rm opt})}{c_{\rm opt}}, \text{ where } c_{\rm grasp} \text{ denotes the cost of the best solution found by GRASP, and } c_{\rm opt} \text{ is the cost of the best known solution.}$ 

It can be seen from Table 1 that the algorithm, in most instances with the number of nodes up to 264, has reached the best known solution. For the instances with the number of nodes between 280 and 2392 the quality of the solution is between 0.09 and 1.60%, except for the instance pr2392 where the quality is 2.11%. For the 51 instances for which the algorithm was tested, the best solution was found for twenty three of them, i.e. in 45% of all cases, for nineteen of them a solution was found with quality between 0.03 and 0.90%, i.e. 37.3%, for eight of them a solution was found with quality between 1.03 and 1.60%, i.e. 15.8%, and only one of them the quality of the produced solution is larger than 2.00%.

In Table 2, the third column shows the solution produced by Kruskall's algorithm, the fourth the solution by the 2-opt, the fifth the solution by the 3-opt, the sixth column indicates the average improvement obtained by the use of the 2-opt, while the last column shows the average improvement obtained by the use of the 3-opt. These results are from the GRASP iteration that gives the best solution for each instance. From Table 2, it is noted that in almost all instances the improvement obtained by applying 2-opt to the solution produced by Kruskall is about 20%. More precisely, the improvement varies from 6.60% in Eil51 to 38.65% in D2103. This difference is due to the quality of the initial solution, which for the Eil51 is 10.09%, while for the D2103 is 77.4%. The quality of the initial solution is computed as  $p = \frac{100(c_{\text{Kruskall}} - c_{\text{opt}})}{c_{\text{cost}}}$ , where  $c_{\text{Kruskall}}$  denotes the cost of the solution found by the first phase of the algorithm. For the instances where the improvement is about 20%, the quality of the initial solution varies between 30 and 40%. The improvement of the solution obtained by using 3-opt is about 10%. This improvement varies from 2.73% in Eil51 to 16.37% in R11304. Again, the improvement is based on the quality of the solution obtained by the 2-opt algorithm which is computed as  $p = \frac{100(c_{2\text{opt}} - c_{\text{opt}})}{c_{\text{opt}}}$ . The sequence of improvements can be seen from figure 4. The instances for which these results are given are presented in Table 3. The four chosen instances have different features with respect to their solutions. In the first, namely kroD100, the cost of the optimum solution is 21294 and the algorithm were able to find it for two different RCL sizes, namely 30 and 80. For the second instance, lin105, the algorithm were able to find the optimum for all five RCLs. In the third instance, pr124, the same local optimum was found for all the RCLs, except for the RCL with size equal to 30. The quality of this local optimum is 0.07%. For the fourth instance, fl417, the algorithm didn't find the optimum and produced different local optima for each size of the RCL. The quality of these local optima varies from 0.28%, for a list with size equal to 80, to 0.47% for a list with size equal to 50.

Table 4 presents the best results for different sizes of the RCL, for all instances. From this table, it is observed that, in most cases, a better solution was found when the size of RCL was 80. For all other RCL sizes the results are quite similar to each other and

*Table 5.* Relative running times of the phases of the GRASP.

| Instance         | Nodes | Kruskall (%) | 2-opt (%)    | 3-opt (%)      |
|------------------|-------|--------------|--------------|----------------|
| Eil51            | 51    | 5            | 5            | 90             |
| Berlin52         | 52    | 5            | 5            | 90             |
| Eil76            | 76    | 4.9          | 1.6          | 93.5           |
| Pr76             | 76    | 4.3          | 2.9          | 92.8           |
| Rat99            | 99    | 3.6          | 2.2          | 94.2           |
| KroA100          | 100   | 4.2          | 2.1          | 93.7           |
| KroB100          | 100   | 3.4          | 1.4          | 95.2           |
| KroC100          | 100   | 4.8          | 1.4          | 93.8           |
| KroD100          | 100   | 4.7          | 1.3          | 94             |
| KroE100          | 100   | 4.1          | 2.1          | 93.8           |
| Rd100            | 100   | 4            | 1.3          | 94.7           |
| Eil101           | 101   | 4.8          | 1.4          | 93.8           |
| Lin105           | 105   | 4.8          | 1.8          | 93.4           |
| Pr107            | 107   | 4.9          | 1.6          | 93.5           |
| Pr124            | 124   | 4.4          | 1.5          | 94.1           |
| Bier127          | 127   | 5.3          | 1.7          | 93             |
| Ch130            | 130   | 3.1          | 1.6          | 95.3           |
| Pr136            | 136   | 3.6          | 1.4          | 95             |
| Pr144            | 144   | 3.2          | 1.4          | 95.4           |
| Ch150            | 150   | 3.4          | 1.5          | 95.1           |
| KroA150          | 150   | 3.2          | 1.6          | 95.2           |
| Pr152            | 152   | 3.7          | 1.2          | 95.1           |
| Rat195           | 195   | 2.5          | 1.2          | 96.3           |
| D198             | 198   | 3.6          | 1.1          | 95.3           |
| KroA200          | 200   | 2.3          | 1.2          | 96.5           |
| KroB200          | 200   | 2.6          | 1.1          | 96.3           |
| Ts225            | 225   | 2.4          | 1            | 96.6           |
| Pr226            | 226   | 2.5          | 1.1          | 96.4           |
| Gil262           | 262   | 1.8          | 0.9          | 97.3           |
| Pr264            | 264   | 2.5          | 0.9          | 96.6           |
| A280             | 280   | 3.3          | 0.8          | 95.9           |
| Pr299            | 299   | 1.8          | 1            | 97.2           |
| Rd400            | 400   | 2.1          | 0.6          | 97.3           |
| Fl417            | 417   | 0.4          | 0.6          | 99             |
| Pr439            | 439   | 1.2          | 0.6          | 98.2           |
| Pcb442           | 442   | 1.4          | 0.5          | 98.1           |
| D493             | 493   | 1.2          | 0.4          | 98.4           |
| Rat575           | 575   | 1            | 0.4          | 98.6           |
| P654             | 654   | 0.7          | 0.3          | 99             |
| D657             | 657   | 0.3          | 0.4          | 99.3           |
| Rat783           | 783   | 0.8          | 0.3          | 98.9           |
| Pr1002           | 1002  | 0.8          | 0.3          | 99.5           |
| Pcb1173          | 1173  | 0.4          | 0.3          | 99.4           |
| D1291            | 1291  | 0.2          | 0.16         | 99.64          |
| R11304           | 1304  | 0.17         | 0.10         | 99.63          |
| R11304<br>R11323 | 1304  | 0.17         | 0.2          | 99.63          |
|                  | 1323  |              |              | 99.03<br>99.74 |
| F11400<br>F11577 | 1577  | 0.14<br>0.15 | 0.12<br>0.13 | 99.74<br>99.72 |
|                  |       | 0.13         | 0.13         | 99.72<br>99.64 |
| R11889<br>D2103  | 1889  |              |              |                |
|                  | 2103  | 0.23         | 0.12         | 99.65<br>99.8  |
| Pr2392           | 2392  | 0.10         | 0.10         | 99.8           |

quite close to the best solution. In figure 4 the improvement of the solution in each of the seven first iteration of the GRASP for two instances, Lin105 and Pr107, is presented. The *x*-axis shows the number of inner iterations that is, 0 corresponds to the first phase (Kruskall's algorithm) of GRASP, 1 - 99 correspond to the iterations of the 2-opt algorithm, while 101 - 200 correspond to the iterations of the 3-opt algorithm. For both instances the optimum solution was found after the fortieth iteration of the 3-opt algorithm.

In Table 5, the third, fourth and fifth columns show the relative times of the three phases with respect to the total time. From this table, it can be observed that when the numbers of nodes is less than 127 the relative time for Kruskall is around 4.5%, for 2-opt is around 2.2% and for 3-opt is around 93.3%. As the number of nodes increased the relative time for 3-opt is increasing, reaching 99.8% when the number of nodes is 2392. This is due to the fact that the full 3-opt version is used.

The results obtained by GRASP are also compared with two different set of results; those presented in [20], and those presented in the DIMACS Implementation Challenge which occurred in 2000/2001. The first one considers only instances with a number of nodes less than 1000. Table 6 compares the proposed GRASP to the results of this first set. In

Table 6. Comparison between GRASP and the approaches by Junger et al.

| Instance | Nodes | Junger<br>2-opt | Junger<br>3-opt | Junger<br>LK1 | Junger<br>LK2 | Junger<br>ILK | GRASP |
|----------|-------|-----------------|-----------------|---------------|---------------|---------------|-------|
| Lin105   | 105   | 8.42            | 0.00            | 0.77          | 0.00          | 0.00          | 0.00  |
| Pr107    | 107   | 3.74            | 2.05            | 1.53          | 0.81          | 0.00          | 0.00  |
| Pr124    | 124   | 2.58            | 1.15            | 2.54          | 0.39          | 0.00          | 0.00  |
| Pr136    | 136   | 10.71           | 6.14            | 0.55          | 0.72          | 0.38          | 0.00  |
| Pr144    | 144   | 3.79            | 0.39            | 0.56          | 0.06          | 0.00          | 0.00  |
| Pr152    | 152   | 2.93            | 1.85            | 0.00          | 0.19          | 0.00          | 0.00  |
| Rat195   | 195   | 6.46            | 3.01            | 1.55          | 1.55          | 0.47          | 0.34  |
| D198     | 198   | 3.85            | 6.12            | 0.63          | 1.51          | 0.16          | 0.05  |
| Pr226    | 226   | 13.17           | 1.72            | 0.72          | 0.49          | 0.00          | 0.05  |
| Gil262   | 262   | 10.62           | 3.07            | 1.18          | 2.44          | 0.55          | 0.29  |
| Pr264    | 264   | 4.39            | 6.04            | 0.12          | 0.01          | 0.49          | 0.00  |
| Pr299    | 299   | 10.46           | 4.37            | 1.55          | 1.36          | 0.15          | 0.09  |
| Rd400    | 400   | 5.01            | 3.42            | 2.34          | 1.41          | 0.75          | 0.68  |
| Pr439    | 439   | 6.52            | 3.61            | 2.73          | 2.68          | 0.38          | 0.17  |
| Pcb442   | 442   | 8.74            | 3.01            | 1.41          | 1.94          | 0.90          | 0.33  |
| D493     | 493   | 9.37            | 3.32            | 2.23          | 1.47          | 0.84          | 0.71  |
| Rat575   | 575   | 7.93            | 4.46            | 2.48          | 1.68          | 1.03          | 1.32  |
| P654     | 654   | 14.89           | 0.62            | 4.14          | 2.95          | 0.03          | 0.18  |
| D657     | 657   | 7.57            | 3.52            | 3.10          | 1.65          | 0.74          | 1.26  |
| Rat783   | 783   | 9.07            | 4.22            | 1.94          | 1.77          | 0.91          | 1.03  |

Table 7. Solution from all the algorithms used from the comparisons in the ten chosen instances.

| Method    | Pr1002 | Pcb1173 | d1291     | rl1304     | rl1323      | fl1400     | fl1577     | rl1889 | d2103 | pr2392 |
|-----------|--------|---------|-----------|------------|-------------|------------|------------|--------|-------|--------|
| Optimal   | 259045 | 56892   | 50801     | 252948     | 270199      | 20127      | 22249      | 316536 | 80450 | 378032 |
| GRASP     | 262060 | 57676   | 51616     | 255185     | 273115      | 20310      | 22427      | 319250 | 81312 | 386017 |
|           |        |         | Tot       | ır Constru | ction Algo  | rithms     |            |        |       |        |
| Strip     | 394289 | 73779   |           | 553358     | 546842      |            |            | 643133 |       | 556394 |
| BW-Strip  | 394289 | 73779   |           | 395731     | 397495      |            |            | 518485 |       | 556394 |
| Spacefil  | 364559 | 80189   |           | 413582     | 438287      |            |            | 517608 |       | 545731 |
| FRP       | 425046 | 91670   |           | 480826     | 496323      |            |            | 589213 |       | 608752 |
|           |        |         | Classic   | Tour Con   | struction A | Algorithm  | ıs         |        |       |        |
| B-Greedy  | 311124 | 67220   | 61979     | 301783     | 309811      | 24847      | 26327      | 371663 | 91290 | 454371 |
| C-Greedy  | 309389 | 68135   | 61356     | 306481     | 313306      | 24175      | 25522      | 378846 | 88915 | 454439 |
| Boruvka   | 302666 | 68350   | 61517     | 294245     | 315845      | 24617      | 26235      | 360741 | 91238 | 449044 |
| Q-Boruvka | 311188 | 65321   | 57697     | 300826     | 327940      | 26527      | 27598      | 383198 | 88187 | 456121 |
| NN        | 312691 | 72969   | 63753     | 325331     | 345973      | 26771      | 27445      | 385967 | 92399 | 469774 |
| CHCI      | 295940 | 67059   |           | 302853     | 323994      |            |            | 375611 |       | 443643 |
| RI        | 293925 | 66310   |           | 302295     | 325854      |            |            | 374435 |       | 440108 |
| FI        | 286683 | 65501   |           | 310246     | 326644      |            |            | 371709 |       | 427610 |
| CW        | 288356 | 63404   |           | 280769     | 297899      |            |            | 352748 |       | 423945 |
| CCA       | 284609 | 63668   |           | 273796     | 294950      |            |            | 354690 |       | 421011 |
| HKChrist  | 276255 | 59901   | 53780     | 271186     | 287734      | 22223      | 23607      | 339415 | 83307 | 401404 |
|           |        | Simp    | le Local  | Search Alg | gorithms (2 | 2-Opt, 3-0 | Opt, etc.) |        |       |        |
| 2opt-J    | 273632 | 60438   | 55604     | 266203     | 280892      | 20904      | 24631      | 333680 | 83563 | 403579 |
| 2opt-B    | 274280 | 60422   |           | 270501     | 285347      |            |            | 343755 |       | 407396 |
| 2opt-C    | 299708 | 66338   | 57114     | 292767     | 311702      | 23326      | 25216      | 359136 | 88150 | 444207 |
| 2.5opt-B  | 273782 | 59492   |           | 267903     | 286058      |            |            | 336762 |       | 405106 |
| 3opt-J    | 267444 | 58650   | 52957     | 261382     | 275426      | 20795      | 23507      | 329249 | 82738 | 390673 |
| 3opt-B    | 269682 | 59176   |           | 262126     | 276243      |            |            | 330682 |       | 390709 |
| H2        | 273280 | 59451   | 54310     | 269231     | 281864      | 21925      | 24260      | 341443 | 82601 | 400727 |
| H3        | 269039 | 58824   | 53611     | 265604     | 279034      | 20830      | 24055      | 334823 | 81755 | 398906 |
| H4        | 267594 | 59011   | 53328     | 266921     | 276877      | 20555      | 23983      | 330116 | 82088 | 394614 |
| GENI      | 284517 | 61673   |           | 277605     | 286638      |            |            | 333759 |       | 411325 |
| GENIUS    | 271919 | 58407   |           | 273138     | 282055      |            |            | 328470 |       | 394431 |
|           |        | L       | in-Kernig | ghan Imple | mentation   | s and Var  | iants      |        |       |        |
| CLK       | 266313 | 58110   | 53418     | 263065     | 284992      | 20974      | 24254      | 322868 | 81314 | 390510 |
| ACRLK     | 265552 | 59781   | 52787     | 264124     | 279139      | 20755      | 24899      | 329179 | 81871 | 389600 |
| LKHKCh    | 262323 | 57657   | 51708     | 256305     | 272701      | 20503      | 22400      | 319873 | 80835 | 382869 |
| LK-J      | 263615 | 57758   | 52051     | 256116     | 273245      | 20362      | 22457      | 320364 | 81819 | 384124 |

Table 7. (Continued).

| `         |        |         |            |            |            |           |        |        |       |        |
|-----------|--------|---------|------------|------------|------------|-----------|--------|--------|-------|--------|
| Method    | Pr1002 | Pcb1173 | d1291      | rl1304     | rl1323     | fl1400    | fl1577 | rl1889 | d2103 | pr2392 |
| LK-N      | 262468 | 58012   | 52175      | 256613     | 273768     | 20367     | 22879  | 320359 | 82215 | 385073 |
| LK-NYYY   | 263396 | 57504   | 53092      | 255987     | 272753     | 20307     | 22972  | 321149 | 81245 | 382005 |
| SCE       | 262288 | 57700   | 51604      | 258038     | 274580     | 20382     | 22746  | 324059 | 81885 | 383622 |
| ALK       | 259045 | 56893   | 50861      | 256202     | 271346     | 20262     |        | 317578 |       | 380051 |
| H-LK      | 259441 | 56995   | 51267      | 254415     | 270513     | 20347     | 23487  | 318556 | 80620 | 378923 |
|           |        |         | Repea      | ited Local | Search Alg | gorithms  |        |        |       |        |
| CCLK      | 259952 | 57198   | 51828      | 255270     | 271074     | 20260     | 22873  | 318094 | 80610 | 379917 |
| ACRCLK    | 259657 | 56968   | 51118      | 253361     | 270763     | 20129     | 22854  | 318296 | 80665 | 380878 |
| ILK-J     | 259045 | 56897   | 50868      | 252948     | 270226     | 20127     | 22254  | 317134 | 80450 | 378226 |
| I3opt     | 261298 | 57032   | 50912      | 252948     | 270484     | 20169     | 22274  | 318719 | 80944 | 382058 |
| ILK-N     | 261014 | 57637   | 51009      | 254557     | 270774     | 20279     | 22266  | 317712 | 81347 | 380956 |
| ILK-NYYY  | 259045 | 56892   | 50801      | 252948     | 270226     | 20127     | 22249  | 316562 | 80495 | 378051 |
| M-LK      | 259734 | 57126   | 51295      | 255390     | 271468     | 20376     | 22327  | 320948 | 81253 | 379376 |
| K-MLK     | 259045 | 56992   | 50886      | 252948     | 270199     | 20164     | 22263  | 316540 | 80487 | 378032 |
| VNS-2H    | 261758 | 57961   | 51429      | 254159     | 272383     | 20404     | 23197  | 327304 | 81642 | 392948 |
| VNS-3H    | 261913 | 57535   | 51812      | 256010     | 271736     | 20175     | 22494  | 323158 | 81419 | 386662 |
|           |        | Alg     | orithms tl | hat Use Cl | nained LK  | as a Subr | outine |        |       |        |
| BSDP      | 260293 | 57054   | 51072      | 255370     | 271636     | 20260     | 23817  | 318032 | 81737 | 379987 |
| TourMerge | 259045 | 56892   | 50801      | 252948     | 270226     | 20127     | 22249  | 316562 | 80466 | 378032 |
|           |        |         |            | Metah      | euristics  |           |        |        |       |        |
| TS22      | 269765 | 59942   | 53196      | 271259     | 281905     | 21600     | 23096  | 332538 | 81657 | 143688 |
| TS2DB     | 268743 | 59187   | 52782      | 264218     | 278973     | 20379     | 22848  | 326583 | 81360 | 391195 |
| TSLKLK    | 261323 | 57290   | 51764      | 254542     | 272387     | 21416     | 24205  | 318265 | 81007 | 380486 |
| TSLKDB    | 261469 | 57627   | 51149      | 255890     | 273018     | 20296     | 23226  | 317666 | 81034 | 381715 |
| TSSCSC    | 260683 | 57546   | 50956      | 254698     | 272195     | 20720     | 24864  | 319959 | 80849 | 380066 |
| TSSCDB    | 261277 | 57527   | 50983      | 256020     | 270877     | 20185     | 23285  | 318805 | 80665 | 380309 |
|           |        |         |            |            |            |           |        |        |       |        |

the third and fourth columns of this table the quality of the results of the 2-opt and the 3-opt algorithm are presented, respectively. The fifth and sixth column of the table present the results obtained by two versions of the Lin Kernighan heuristic as they are described in [20], while in the seventh column the results obtained by the Iterated Lin Kernighan are presented [20]. The Iterated Lin Kernighan is considered as the most cost effective adaptation for the solution of the Traveling Salesman Problem according to Johnson in [17]. The final column shows the quality of the results obtained by the proposed GRASP algorithm. For all instances the results from the proposed GRASP are better than those from the first four methods (including the two versions of the Lin Kernighan). As for the fifth method (ILK), the GRASP results are better in all cases except for five instances where the differences in the quality of the solutions are between 0.05 to 0.62%.

 $Table\ 8$ . Quality of each of the solutions and average quality from all the algorithms used from the comparisons in the ten chosen instances.

| Method    | Pr1002 | Pcb1173 | d1291    | rl1304    | rl1323    | fl1400    | fl1577   | rl1889   | d2103 | pr2392 | Average |
|-----------|--------|---------|----------|-----------|-----------|-----------|----------|----------|-------|--------|---------|
| GRASP     | 1.16   | 1.37    | 1.60     | 0.88      | 1.07      | 0.90      | 0.80     | 0.85     | 1.07  | 2.11   | 1.181   |
|           |        |         |          | Tour Cor  | struction | Algoritl  | nms      |          |       |        |         |
| Strip     | 52.21  | 29.68   |          | 118.76    | 102.38    |           |          | 103.18   |       | 47.18  | 75.565  |
| BW-Strip  | 52.21  | 29.68   |          | 56.45     | 47.11     |           |          | 63.80    |       | 47.18  | 49.405  |
| Spacefil  | 40.73  | 40.95   |          | 63.50     | 62.21     |           |          | 63.52    |       | 44.36  | 47.545  |
| FRP       | 64.08  | 61.13   |          | 90.09     | 83.69     |           |          | 86.14    |       | 61.03  | 74.36   |
|           |        |         | Clas     | ssic Tour | Construc  | tion Alg  | orithms  |          |       |        |         |
| B-Greedy  | 20.10  | 18.15   | 22.00    | 19.31     | 14.66     | 23.45     | 18.33    | 17.42    | 13.47 | 20.19  | 18.708  |
| C-Greedy  | 19.43  | 19.76   | 20.78    | 21.16     | 15.95     | 20.11     | 14.71    | 19.68    | 10.52 | 20.21  | 18.23   |
| Boruvka   | 16.84  | 20.14   | 21.09    | 16.33     | 16.89     | 22.31     | 17.92    | 13.97    | 13.41 | 18.78  | 17.76   |
| Q-Boruvka | 20.13  | 14.82   | 13.57    | 18.93     | 21.37     | 31.80     | 24.04    | 21.06    | 9.62  | 20.66  | 19.6    |
| NN        | 20.71  | 28.26   | 25.50    | 28.62     | 28.04     | 33.01     | 23.35    | 21.93    | 14.85 | 24.27  | 24.85   |
| CHCI      | 14.24  | 17.87   |          | 19.73     | 19.91     |           |          | 18.66    |       | 17.36  | 17.96   |
| RI        | 13.46  | 16.55   |          | 19.51     | 20.60     |           |          | 18.29    |       | 16.42  | 17.47   |
| FI        | 10.67  | 15.13   |          | 22.65     | 20.89     |           |          | 17.43    |       | 13.11  | 16.64   |
| CW        | 11.32  | 11.45   |          | 11.00     | 10.25     |           |          | 11.44    |       | 12.15  | 11.26   |
| CCA       | 9.87   | 11.91   |          | 8.24      | 9.16      |           |          | 12.05    |       | 11.37  | 10.43   |
| HKChrist  | 6.64   | 5.29    | 5.86     | 7.21      | 6.49      | 10.41     | 6.10     | 7.23     | 3.55  | 6.18   | 6.496   |
|           |        | Sir     | nple Loc | al Search | Algorith  | nms (2-C  | pt, 3-Op | t, etc.) |       |        |         |
| 2opt-J    | 5.63   | 6.23    | 9.45     | 5.24      | 3.96      | 3.86      | 10.71    | 5.42     | 3.87  | 6.76   | 6.113   |
| 2opt-B    | 5.88   | 6.20    |          | 6.94      | 5.61      |           |          | 8.60     |       | 7.77   | 6.83    |
| 2opt-C    | 15.70  | 16.60   | 12.43    | 15.74     | 15.36     | 15.89     | 13.34    | 13.46    | 9.57  | 17.51  | 14.56   |
| 2.5opt-B  | 5.69   | 4.57    |          | 5.91      | 5.87      |           |          | 6.39     |       | 7.16   | 5.93    |
| 3opt-J    | 3.24   | 3.09    | 4.24     | 3.33      | 1.93      | 3.32      | 5.65     | 4.02     | 2.84  | 3.34   | 3.5     |
| 3opt-B    | 4.11   | 4.01    |          | 3.63      | 2.24      |           |          | 4.47     |       | 3.35   | 3.635   |
| H2        | 5.50   | 4.50    | 6.91     | 6.44      | 4.32      | 8.93      | 9.04     | 7.87     | 2.67  | 6.00   | 6.218   |
| Н3        | 3.86   | 3.40    | 5.53     | 5.00      | 3.27      | 3.49      | 8.12     | 5.78     | 1.62  | 5.52   | 4.559   |
| H4        | 3.30   | 3.72    | 4.97     | 5.52      | 2.47      | 2.13      | 7.79     | 4.29     | 2.04  | 4.39   | 4.062   |
| GENI      | 9.83   | 8.40    |          | 9.75      | 6.08      |           |          | 5.44     |       | 8.81   | 8.05    |
| GENIUS    | 4.97   | 2.66    |          | 7.98      | 4.39      |           |          | 3.77     |       | 4.34   | 4.685   |
|           |        |         | Lin-Ke   | rnighan I | mplemen   | tations a | nd Varia | nts      |       |        |         |
| CLK       | 2.81   | 2.14    | 5.15     | 4.00      | 5.47      | 4.21      | 9.01     | 2.00     | 1.07  | 3.30   | 3.916   |
| ACRLK     | 2.51   | 5.08    | 3.91     | 4.42      | 3.31      | 3.12      | 11.91    | 3.99     | 1.77  | 3.06   | 4.308   |
| LKHKCh    | 1.27   | 1.34    | 1.79     | 1.33      | 0.93      | 1.87      | 0.68     | 1.05     | 0.48  | 1.28   | 1.202   |
| LK-J      | 1.76   | 1.52    | 2.46     | 1.25      | 1.13      | 1.17      | 0.93     | 1.21     | 1.70  | 1.61   | 1.41    |
| LK-N      | 1.32   | 1.97    | 2.70     | 1.45      | 1.32      | 1.19      | 2.83     | 1.21     | 2.19  | 1.86   | 1.804   |

Table 8. (Continued).

| Method    | Pr1002 | Pcb1173 | d1291    | rl1304    | rl1323     | fl1400   | fl1577   | rl1889 | d2103 | pr2392 | Average |
|-----------|--------|---------|----------|-----------|------------|----------|----------|--------|-------|--------|---------|
| LK-NYYY   | 1.68   | 1.08    | 4.51     | 1.20      | 0.95       | 0.89     | 3.25     | 1.46   | 0.99  | 1.05   | 1.706   |
| SCE       | 1.25   | 1.42    | 1.58     | 2.01      | 1.62       | 1.27     | 2.23     | 2.38   | 1.78  | 1.48   | 1.702   |
| ALK       | 0.00   | 0.00    | 0.12     | 1.29      | 0.42       | 0.67     |          | 0.33   |       | 0.53   | 0.42    |
| H-LK      | 0.15   | 0.18    | 0.92     | 0.58      | 0.12       | 1.09     | 5.56     | 0.64   | 0.21  | 0.24   | 0.969   |
|           |        |         | Re       | peated Lo | ocal Sear  | ch Algor | rithms   |        |       |        |         |
| CCLK      | 0.35   | 0.54    | 2.02     | 0.92      | 0.32       | 0.66     | 2.80     | 0.49   | 0.20  | 0.50   | 0.88    |
| ACRCLK    | 0.24   | 0.13    | 0.62     | 0.16      | 0.21       | 0.01     | 2.72     | 0.56   | 0.27  | 0.75   | 0.567   |
| ILK-J     | 0.00   | 0.01    | 0.13     | 0.00      | 0.01       | 0.00     | 0.02     | 0.19   | 0.00  | 0.05   | 0.041   |
| I3opt     | 0.87   | 0.25    | 0.22     | 0.00      | 0.11       | 0.21     | 0.11     | 0.69   | 0.61  | 1.06   | 0.413   |
| ILK-N     | 0.76   | 1.31    | 0.41     | 0.64      | 0.21       | 0.76     | 0.08     | 0.37   | 1.11  | 0.77   | 0.642   |
| ILK-NYYY  | 0.00   | 0.00    | 0.00     | 0.00      | 0.01       | 0.00     | 0.00     | 0.01   | 0.06  | 0.01   | 0.009   |
| M-LK      | 0.27   | 0.41    | 0.97     | 0.97      | 0.47       | 1.24     | 0.35     | 1.39   | 1.00  | 0.36   | 0.743   |
| K-MLK     | 0.00   | 0.18    | 0.17     | 0.00      | 0.00       | 0.18     | 0.06     | 0.00   | 0.05  | 0.00   | 0.064   |
| VNS-2H    | 1.05   | 1.88    | 1.24     | 0.48      | 0.81       | 1.38     | 4.26     | 3.40   | 1.48  | 3.95   | 1.993   |
| VNS-3H    | 1.11   | 1.13    | 1.99     | 1.21      | 0.57       | 0.24     | 1.10     | 2.09   | 1.20  | 2.28   | 1.292   |
|           |        | A       | lgorithm | s that Us | e Chaine   | d LK as  | a Subrou | ıtine  |       |        |         |
| BSDP      | 0.48   | 0.28    | 0.53     | 0.96      | 0.53       | 0.66     | 7.05     | 0.47   | 1.60  | 0.52   | 1.308   |
| TourMerge | 0.00   | 0.00    | 0.00     | 0.00      | 0.01       | 0.00     | 0.00     | 0.01   | 0.02  | 0.00   | 0.004   |
|           |        |         |          | M         | letaheuris | stics    |          |        |       |        |         |
| TS22      | 4.14   | 5.36    | 4.71     | 7.24      | 4.33       | 7.32     | 3.81     | 5.06   | 1.50  | 4.35   | 4.83    |
| TS2DB     | 3.74   | 4.03    | 3.90     | 4.46      | 3.25       | 1.25     | 2.69     | 3.17   | 1.13  | 3.48   | 3.11    |
| TSLKLK    | 0.88   | 0.70    | 1.90     | 0.63      | 0.81       | 6.40     | 8.79     | 0.55   | 0.69  | 0.65   | 2.2     |
| TSLKDB    | 0.94   | 1.29    | 0.69     | 1.16      | 1.04       | 0.84     | 4.39     | 0.36   | 0.73  | 0.97   | 1.241   |
| TSSCSC    | 0.63   | 1.15    | 0.31     | 0.69      | 0.74       | 2.95     | 11.75    | 1.08   | 0.50  | 0.54   | 2.034   |
| TSSCDB    | 0.86   | 1.12    | 0.36     | 1.21      | 0.25       | 0.29     | 4.66     | 0.72   | 0.27  | 0.60   | 1.034   |

The proposed GRASP results are also compared with the results presented in the DI-MACS Implementation Challenge (http://www.research. att.com/ dsj/chtsp/). This challenge is probably the most extensive examination made to date of heuristic algorithms in the field of TSP. Computational results for approximately 40 tour construction heuristics (divided in three categories, namely, Tour Construction Algorithms that Emphasize Speed over Quality, Classic Tour Construction Algorithms with quality >15% above the Held and Karp Bound and Classic Tour Construction Algorithms with quality <15% of the Held and Karp Bound) and for approximately 80 tour construction heuristics divided into 5 categories (namely, Simple Local Search Algorithms (2-Opt, 3-Opt, etc.), Lin-Kernighan Implementations and Variants, Repeated Local Search Algorithms, algorithms that Use Chained LK as a Subroutine and Metaheuristics (Tabu Search, Etc.)). In Tables 7 and 8, the results for ten instances, with number of nodes between 1002 and 2392, are presented.

Table 9. Ranking of the algorithms based on the average quality.

| Rank | Method                                               | Average |
|------|------------------------------------------------------|---------|
| 1    | Tour Merging                                         | 0.004   |
| 2    | ILK-NYYY                                             | 0.009   |
| 3    | Iterated Lin - Kernighan by Johnson                  | 0.041   |
| 4    | Keld Helsgaun's Multi-Trial Variant on Lin-Kernighan | 0.064   |
| 5    | Iterated-3-Opt by Johnson                            | 0.413   |
| 6    | Augmented-LK                                         | 0.42    |
| 7    | Applegate-Cook-Rohe Chained Lin-Kernighan            | 0.567   |
| 8    | Iterated Lin-Kernighan by Neto                       | 0.642   |
| 9    | Multi-Level Lin-Kernighan Implementations            | 0.743   |
| 10   | Concorde Chain Lin-Kernighan                         | 0.88    |
| 11   | Helsgaun Lin-Kernighan                               | 0.969   |
| 12   | Tabu-search-SC-DB                                    | 1.034   |
| 13   | Expanding Neighborhood Search GRASP                  | 1.181   |
| 14   | Lin-Kernighan-with-HK-Christo-starts                 | 1.202   |
| 15   | Tabu-search-LK-DB                                    | 1.241   |
| 16   | Variable-Neighborhood-Search-Using-3-Hyperopt        | 1.292   |
| 17   | Balas-Simonetti-Dynamic-Programming-Heuristic        | 1.308   |
| 18   | Johnson Lin-Kernighan                                | 1.41    |
| 19   | Stem-Cycle Ejection Chain                            | 1.702   |
| 20   | LK-NYYY                                              | 1.706   |
| 21   | Neto Lin-Kernighan                                   | 1.804   |
| 22   | Variable-Neighborhood-Search-Using-2-Hyperopt        | 1.993   |
| 23   | Tabu-search-Stem - Cycle -SC                         | 2.034   |
| 24   | Tabu-search-LK-LK                                    | 2.2     |
| 25   | Tabu-search-2opt-Double Bridge                       | 3.11    |
| 26   | 3opt-J                                               | 3.5     |
| 27   | 3opt-B                                               | 3.635   |
| 28   | Concorde-Lin-Kernighan                               | 3.916   |
| 29   | 4-Hyperopt                                           | 4.062   |
| 30   | Applegate Lin Kernighan                              | 4.308   |
| 31   | 3-Hyperopt                                           | 4.559   |
| 32   | GENIUS                                               | 4.685   |
| 33   | Tabu-search-2opt-2opt                                | 4.83    |
| 34   | 2.5opt-B                                             | 5.93    |
| 35   | 2opt-J                                               | 6.113   |
| 36   | 2-Hyperopt                                           | 6.218   |
| 37   | Held Karp Christofides                               | 6.496   |

Table 9. (Continued.)

| Rank | Method         | Average |
|------|----------------|---------|
| 38   | 2opt-B         | 6.83    |
| 39   | GENI           | 8.05    |
| 40   | CCA            | 10.43   |
| 41   | Clarke-Wright  | 11.26   |
| 42   | 2opt-C         | 14.56   |
| 43   | FI             | 16.64   |
| 44   | RI             | 17.47   |
| 45   | Boruvka        | 17.76   |
| 46   | CHCI           | 17.96   |
| 47   | C-Greedy       | 18.23   |
| 48   | B-Greedy       | 18.708  |
| 49   | Q-Boruvka      | 19.6    |
| 50   | NN             | 24.85   |
| 51   | Spacefilling   | 47.545  |
| 52   | Best-Way Strip | 49.405  |
| 53   | FRP            | 74.36   |
| 54   | Strip          | 75.565  |

The results are taken from the web page of the DIMACS Implementation Challenge (http://www.research.att.com/ dsj/ chtsp/). For the cases where the results are not given in the web page, the fields are left empty. In both tables, the first column gives abbreviated names for the algorithm. In Table 10 those abbreviations are explained and references to the literature are given. For completeness, we have included results for tour construction algorithms although these approaches are not competitive with methods which use a single or a more complicated local search phase. Since different runs of some algorithms may result in different solutions, the best results for each such approach are presented in Tables 7 and 8. On the other hand, the final column in Table 8 shows the average quality (over different runs) for these algorithms. This is used in order to rank the approaches in increasing order of average quality in Table 10, where the proposed GRASP is ranked thirteen among 54 algorithms.

As expected, the proposed GRASP ranks better than all tour construction heuristics. It also ranks better than all simple local search algorithms with exception of two Lin–Kernighan Implementations. It ranks better than all Variable Neighborhood Search implementations and it also ranks better than all metaheuristics but one Tabu implementation. The proposed GRASP gives slightly inferior results when compared to algorithms based on Iterated or Chained Lin Kernighan. It is known [18] that all metaheuristic–codes for STSP are dominated by 3-opt, Lin-Kernighan and Iterated Lin–Kernighan. However, as we mention in Section 4, it is possible to modify GRASP in order to take advantage of this fact.

Table 10. Abbrevated names used in the tables and explanation of them.

| Abbrev    | Short Description of heuristic and Reference Paper                                           |  |
|-----------|----------------------------------------------------------------------------------------------|--|
| Strip     | Strip algorithm with initial sorting in <i>x</i> direction [18]                              |  |
| BW-Strip  | Best-Way Strip algorithm, best of <i>x</i> - and <i>y</i> -direction strips, radix sort [18] |  |
| Spacefil  | Spacefilling-Curve algorithm of Bartholdi and Platzman [18]                                  |  |
| FRP       | Fast-Recursive-Partitioning-Jon Bentley's kd-tree based implementation [5]                   |  |
| B-Greedy  | Benchmark Greedy [18]                                                                        |  |
| C-Greedy  | Greedy:Concorde implementation [3]                                                           |  |
| Boruvka   | Boruvka: Concorde's implementation [3]                                                       |  |
| Q-Boruvka | Quick-Boruvka—Concorde's implementation [3]                                                  |  |
| NN        | Nearest-Neighbor—Concorde's implementation [3]                                               |  |
| CHCI      | Convex-Hull-Cheapest-Insertion (kd-tree based implementation) [5]                            |  |
| RI        | Random-Insertion—Jon Bentley's kd-tree based implementation [5]                              |  |
| FI        | Farthest-Insertion—Jon Bentley's kd-tree based implementation [5]                            |  |
| CW        | Clarke-Wright-Savings Algorithm [6]                                                          |  |
| CCA       | Golden-Stewart Convex Hull, Cheapest Insertion,                                              |  |
|           | Angle Selection Algorithm [18]                                                               |  |
| HKChrist  | HeldKarp-Based-Christofides with Greedy Shortcuts [18]                                       |  |
| 2opt-J    | 2opt-JM-40-quadrant-neighbors with don't-look bits by Johnson [17]                           |  |
| 2opt-B    | 2-Opt:Bentley kd-tree based implementation [5]                                               |  |
| 2opt-C    | Concorde-2opt [3]                                                                            |  |
| 2.5opt-B  | 2.5-Opt:Bentley kd-tree based implementation [5]                                             |  |
| 3opt-J    | 3opt-JM-20-quadrant-neighbors[MIPS] with don't-look bits by Johnson [17]                     |  |
| 3opt-B    | 3-Opt:Bentley kd-tree based implementation [5]                                               |  |
| H2        | 2-Hyperopt [17]                                                                              |  |
| Н3        | 3-Hyperopt [17]                                                                              |  |
| H4        | 4-Hyperopt [17]                                                                              |  |
| GENI      | GENI(p=10) [10]                                                                              |  |
| GENIUS    | GENIUS(p = 10) [10]                                                                          |  |
| CLK       | Concorde-Lin-Kernighan [3]                                                                   |  |
| ACRLK     | Applegate—Cook—Rohe Lin-Kernighan with 12 quadrant neighbors, don't-look bits [3]            |  |

Table 10. (Continued.)

| 411       |                                                                                   |  |
|-----------|-----------------------------------------------------------------------------------|--|
| Abbrev    | Short Description of heuristic and Reference Paper                                |  |
| LKHKCh    | Lin-Kernighan-with-HK-Christofides-starts [18]                                    |  |
| LK-J      | Lin-Kernighan-JM-40-quadrant-neighbors with don't-look bits by Johnson [17]       |  |
| LK-N      | Lin-Kernighan-Neto-20-quadrant-neighbors [27]                                     |  |
| LK-NYYY   | Nguyen-Yoshihara-Yamamori-Yasunaga Lin-Kernighan<br>Variant [18]                  |  |
| SCE       | Stem and Cycle Ejection Chain Algorithm [18]                                      |  |
| ALK       | Augmented LK [18]                                                                 |  |
| H-LK      | Helsgaun's Implementation of a powerful Lin-Kernighan<br>Variant [14]             |  |
| CCLK      | Concorde-Chain Lin Kernighan [3]                                                  |  |
| ACRCLK    | Applegate-Cook-Rohe Chained Lin-Kernighan [3]                                     |  |
| ILK-J     | Iterated Lin-Kernighan by Johnson [17]                                            |  |
| I3opt     | Iterated-3-Opt by Johnson [17]                                                    |  |
| ILK-N     | ILK-Neto-(N/10)-iterations with cluster compensation, 40 quadrant neighbors [27]  |  |
| ILK-NYYY  | Nguyen-Yoshihara-Yamamori-Yasunaga Lin-Kernighan [18]                             |  |
| M-LK      | Chris Walshaw's Multi-Level Lin-Kernighan<br>Implementations [34]                 |  |
| K-MLK     | Keld Helsgaun's Multi-Trial Variant on Lin-Kernighan [14]                         |  |
| VNS-2H    | Variable-Neighborhood-Search-Using-2-Hyperopt [18]                                |  |
| VNS-3H    | Variable-Neighborhood-Search-Using-3-Hyperopt [18]                                |  |
| BSDP      | Balas-Simonetti-Dynamic-Programming-Heuristic [18]                                |  |
| TourMerge | Tour-merging (using a branch decomposition) of 10 Chained Lin-Kernighan tours [3] |  |
| TS22      | Tabu-search-2opt-2opt [35]                                                        |  |
| TS2DB     | Tabu-search-2opt-Double Bridge [35]                                               |  |
| TSLKLK    | Tabu-search-LK-LK [35]                                                            |  |
| TSLKDB    | Tabu-search-LK-DB [35]                                                            |  |
| TSSCSC    | Tabu-search-Stem - Cycle -SC [35]                                                 |  |
| TSSCDB    | Tabu-search-SC-DB [35]                                                            |  |

## 4. Conclusions

In this paper, a new algorithm for the solution of the traveling salesman problem was presented. The algorithm is a modification of the well known Greedy Randomized Adaptive Search Procedure. The results obtained using this algorithm were very satisfactory and in many cases (45% of the tested instances) equal to the best known solutions. For instances where the solution obtained is not equal to the optimal one, it was very close to it. Further improvement of the GRASP approach both with respect to solution quality and running times, would be possible to achieve by employing a different algorithm in the construction

phase, for instance one based on Prim's algorithm, and by better utilizing the concept of expanding neighborhood local search in the second phase. As it was shown in the comparisons of Table 9 the algorithm was ranked in the thirteen place between all the algorithms used in the DIMACS Implementation Challenge. The only approaches that show better performance than the proposed GRASP are those based on Iterated or Chained Lin Kernighan. However, GRASP is flexible enough to either incorporate the Iterated Lin Kernighan in its second phase or replace the 2- and 3- opt methods by such an approach. The investigation has also obviated the need for the development of satisfactory termination criteria for the GRASP approach. Work on these issues is under development.

#### References

- 1. E. Aarts and J.K. Lenstra, Local Search in Combinatorial Optimization, Wiley and Sons, 1997.
- 2. D. Applegate, R. Bixby, V. Chvatal, and W. Cook, "On the solution of traveling salesman problem," Documenta Mathematica: Proc. Int. Cogr. Mathematica, vol. 3, pp. 645–656, 1998.
- 3. D. Applegate, R. Bixby, V. Chvatal, and W. Cook, "Chained Lin-Kernighan for large traveling salesman problems," Informs Journal on Computing, (to appear).
- 4. R. Baralia, J.I. Hildago, and R. Perego, "A hybrid heuristic for the traveling salesman problem," IEEE Transactions on Evolutionary Computation, vol. 5, no. 6, pp. 1–41, 2001.
- J.L. Bentley, "Fast algorithms for geometric traveling salesman problems," ORSA J. Computing, vol. 4, pp. 387–411, 1992.
- G. Clarke and J.W. Wright, "Scheduling of vehicles from a central depot to a number of delivery points", Operations Research, vol. 12, pp. 568–581, 1964.
- T.A. Feo and M.G.C. Resende, "Greedy randomized adaptive search procedure," Journal of Global Optimization, vol. 6, pp. 109–133, 1995.
- 8. P. Festa and M.G.C. Resende, "GRASP: An annotated bibliography," in Essays and Surveys on Metaheuristics, C.C. Ribeiro and P. Hansen (Eds.), Kluwer Academic Publishers: Norwell, MA, 2001.
- 9. R. Garfinkel and G. Nemhauser, Integer Programming, Wiley and Sons, 1972.
- M. Gendreau, A. Hertz, and G. Laporte, "New insertion and postoptimization procedures for the traveling salesman problem," Operations Research, vol. 40, pp. 1086–1094, 1992.
- B.L. Golden and W.R. Stewart, "Empirical analysis of heuristics," in the Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E.L. Lawer, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys (Eds.), Wiley and Sons, 1985, pp. 207–249.
- 12. G. Gutin and A. Punnen, The Traveling Salesman Problem and Its Variations, Kluwer Academic Publishers Dordrecht, 2002.
- 13. P. Hansen and N. Mladenovic, "Variable neighborhood search: Principles and applications," European Journal of Operational Research, vol. 130, pp. 449–467, 2001.
- 14. K. Helsgaun, "An effective implementation of the lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, vol. 126, pp. 106–130, 2000.
- K. Holmqvist, A. Migdalas, and P.M. Pardalos, "Parallel continuous non-convex optimization," in Parallel Computing in Optimization, A. Migdalas, P.M. Pardalos, and S. Storøy (Eds.), Kluwer Academic Publishers, 1997, pp. 471–528.
- K. Holmqvist, A. Migdalas, and P.M. Pardalos, "Parallelized heuristics for combinatorial search," in Parallel Computing in Optimization, A. Migdalas, P.M. Pardalos, and S. Storøy (Eds.), Kluwer Academic Publishers, 1997, pp. 269–294.
- D.S. Johnson and L.A. McGeoch, "The traveling salesman problem: A case study," in Local Search in Combinatorial Optimization, E. Aarts and J.K. Lenstra (Eds.), Wiley and Sons, 1997, pp. 215–310.
- D.S. Johnson and L.A. McGeoch, "Experimental Analysis of the STSP," in the Traveling Salesman Problem and Its Variations, G. Gutin and A. Punnen (Eds.), Kluwer Academic Publishers Dordrecht, 2002, pp. 369– 444.

- D.S. Johnson and C.H. Papadimitriou, "Computational complexity," in the Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E.L. Lawer, J.K. Lenstra, A.H.D. Rinnoy Kan and D.B. Shmoys (Eds.), Wiley and Sons, 1985, pp. 37–85.
- M. Junger, G. Reinhelt, and G. Rinaldi, "The traveling salesman problem," in Networks Models, Handbooks in OR and MS, M. Ball et al. (Eds.), Elsevier Science B.V, 1995, vol. 7, pp. 225–330.
- 21. G. Laporte, "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, vol. 59, pp. 231–247, 1992.
- E.L. Lawer, J.K. Lenstra, A.H.G. Rinnoy Kan, and D.B. Shmoys, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley and Sons, 1985.
- S. Lin, "Computer solutions of the traveling salesman problem," Bell System Technical Journal, vol. 44, pp. 2245–2269, 1965.
- S. Lin and B.W. Kernighan, "An effective heuristic algorithm for the traveling salesman problem," Operation Research, vol. 21, pp. 498–516, 1973.
- Y. Marinakis and A. Migdalas, "Heuristic solutions of vehicle routing problems in supply chain management," in Combinatorial and Global Optimization, P.M. Pardalos, A. Migdalas, and R. Burkard (Eds.), World Scientific Publishing Co, 2002, pp. 205–236.
- A. Modares, S. Somhom, and T. Enwaka, "A self organizing neural network approach for multiple traveling salesman and vehicle routing problems," International Transactions in Operational Research, vol. 6, 1999, pp. 591–606.
- D. Neto, "Efficient cluster compensation for Lin-Kernighan heuristics," PhD Thesis, Computer Science University of Toronto, 1999.
- P.M. Pardalos, L. Pitsoulis, and M.G.C. Resende, "A parallel GRASP implementation for the quadratic assignment problem," in Solving Irregular Problems in Parallel—State of the Art, A. Ferreira and J. Rolim (Eds.), Kluwer Academic Publishers Dordrecht, 1995.
- P.M. Pardalos, L. Pitsoulis, T. Mavridou, and M.G.C. Resende, "Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and GRASP," in Solving Irregular Problems in Parallel State of the Art, A. Ferreira and J. Rolim (Eds.), Kluwer Academic Publishers Dordrecht, 1995, pp. 317–331.
- G. Reinhelt, The Traveling Salesman Problem, Computational solutions for TSP Applications, Springer-Verlag, 1994.
- 31. C. Rego and F. Glover, "Local search and metaheuristics," in the Traveling Salesman Problem and Its Variations, G. Gutin and A. Punnen (Eds.), Kluwer Academic Publishers Dordrecht, 2002, pp. 309–367.
- M.G.C. Resende and C.C. Ribeiro, "Greedy randomized adaptive search procedures," in Handbooks of Metaheuristics, F. Glover and G.A. Kochenberger (Eds.), Kluwer Academic Publishers Dordrecht, 2003, pp. 219– 249
- R. Tarjan, "Data structures and network algorithms," Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1983.
- 34. C. Walshaw, "A multilevel approach to the traveling salesman problem," Operations Research, (to appear).
- M. Zachariasen and M. Dam, "Tabu search on the geometric traveling salesman problem," in Meta-heuristics: Theory and Applications, I.H. Osman and J.P. Kelly (Eds.), Kluwer Academic Publishers: Boston, 1996, pp. 571–587.