Redshift Evolution of the Underlying Type Ia Supernova Stretch Distribution

N. Nicolas *1, M. Rigault **1 D,

Y. Copin¹ D, R. Graziani², G. Aldering³, M. Briday¹, Y.-L. Kim¹ D, J. Nordin⁴, Saul Perlmutter³, and M. Smith^{1,5}

- ¹ Université de Lyon, F-69622, Lyon, France; Université de Lyon 1, Villeurbanne; CNRS/IN2P3, Institut de Physique des Deux Infinis, Lyon
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France.
- ³ Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720
- ⁴ Institut fur Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin
- ⁵ University of Southampton: Southampton, GB

Submitted to A&A the 19th of May 2020

ABSTRACT

The true nature of type Ia supernovae (SNe Ia) remains largely unknown, and as survey statistics increase, the question of astrophysical systematic uncertainties rises, notably that of the SN Ia population evolution. In this paper, we study the dependence with redshift of the SN Ia SALT2.4 lightcurve stretch, a purely intrinsic SN property, to probe its potential redshift drift. The SN stretch has been shown to strongly correlate with the SN environment, notably with stellar age tracers. We model the underlying stretch distribution as a function of redshift, using the evolution of the fraction of young and old SNe Ia as predicted by Rigault et al. (2018), and assuming constant underlying stretch distribution for each age population made of Gaussian mixtures. We test our prediction against published samples **cut** to have marginal magnitude selection effects, so that any observed change is indeed of astrophysical and not observational origin. **In this first study, there are indications** that the underlying SN Ia stretch distribution is evolving as a function of redshift, and that the young/old drifting model is a better description of the data than any time-constant model, including the sample-based asymmetric distributions usually used to correct Malmquist bias. The favored underlying stretch model is the bimodal one derived from Rigault et al. (2018): a high-stretch mode shared by both young and old environments, and a low-stretch mode exclusive to old environments. The precise impact of the redshift evolution of the SN Ia population intrinsic properties on cosmology remains to be studied. Yet, the astrophysical drift of the SN stretch distribution does affect current Malmquist bias corrections and thereby distances derived from SN affected by selection effects. We highlight that such a bias will increase with surveys covering increasingly larger redshift ranges, which is particularly important for LSST.

Key words. Cosmology – Type Ia Supernova – Systematic uncertainties

1. Introduction

Type Ia supernovae (SNe Ia) are powerful cosmological distance indicators that have enabled the discovery of the acceleration of the Universe's expansion (Riess et al. 1998; Perlmutter et al. 1999). They remain today a key cosmological probe to understand the properties of dark energy (DE) as it is the only tool able to precisely map the recent expansion rate (z < 0.5), when DE is driving it (e.g. Scolnic et al. 2019). They also are key to directly measure the Hubble Constant (H_0) , provided one can calibrate their absolute magnitude (Riess et al. 2016; Freedman et al. 2019). Interestingly, the value of H_0 derived when the SNe Ia are anchored on Cepheids (the SH0ES project, Riess et al. 2009, 2016) is $\sim 5\sigma$ higher than what is predicted from cosmic microwave background (CMB) data measured by Planck assuming the standard ACDM (Planck Collaboration et al. 2020; Riess et al. 2019; Reid et al. 2019), or when the SN luminosity is anchored at intermediate redshift by the baryon acoustic oscillation (BAO) scale (Feeney et al. 2019). While using the tip of the red giant branch technique in place of the Cepheids seem to favor an intermediate value of H_0 (Freedman et al. 2019, 2020), time delay measurements from strong lensing seem to also favor high H_0 values (Wong et al. 2020).

The H_0 tension has received a lot of attention, as it could be a sign of new fundamental physics. Yet, no simple solution is able to accommodate this H_0 tension when accounting for all other probes (Knox & Millea 2020), but see e.g. Poulin et al. (2019). Alternatively, systematic effects affecting one or several of the aforementioned analyses could also explain the tension. Rigault et al. (2015) suggested that SNe Ia from the Cepheid calibrator sample differ by construction from the Hubble flow sample ones as the former strongly favors young stellar populations, while the latter not. This selection effect would impact the derivation of H_0 if SNe Ia from young and older environments differ in average standardized magnitudes.

For the last decades, numerous analyses have studied the relation between SNe Ia and host properties, finding first that the standardized SNe Ia magnitude significantly depends on the host stellar mass, SNe Ia from high-mass host being brighter on average (e.g. Kelly et al. 2010; Sullivan et al. 2010; Childress et al. 2013; Betoule et al. 2014; Rigault et al. 2018; Kim et al. 2019). This mass-step correction is currently used in cosmological anal-

^{*} n.nicolas@ip2i.in2p3.fr, equal contribution

^{**} m.rigault@ip2i.in2p3.fr, equal contribution

yses (e.g. Betoule et al. 2014; Scolnic et al. 2018), including for deriving H_0 (Riess et al. 2016, 2019). Yet, the underlying connection between the SNe and their host remains unclear when using global properties such as the host stellar mass, which raises the question of the accuracy of the correction. More recently, studies have used the local SN environment to probe more direct connections between the SN and its environments (Rigault et al. 2013), showing that local age tracers such as the Local specific Star Formation Rate (LsSFR) or the local color are more strongly correlated with the standardized SN magnitude (Rigault et al. 2018; Roman et al. 2018; Kim et al. 2018), suggesting age as the driving parameter underlying the mass-step. If true, this would have a significant impact for cosmology, since the environmental correction to apply to SN standardization could strongly vary with redshift. (Rigault et al. 2013; Childress et al. 2014; Scolnic et al. 2018). Yet, the importance of local SN environmental studies remains highly debated (e.g. Jones et al. 2015, 2019) and especially the impact of such an astrophysical bias has on the derivation of H_0 (Jones et al. 2015; Riess et al. 2016, 2018; Rose et al. 2019).

The concept of the SN Ia age dichotomy arose with the study of the SN Ia rate. Mannucci et al. (2005); Scannapieco & Bildsten (2005); Sullivan et al. (2006); Aubourg et al. (2008) have shown that the relative SNe Ia rate in galaxies could be explained if two populations existed, one young, following the host star formation activity, and one old following the host stellar mass (the so called "prompt and delayed" or "A+B" model). In Rigault et al. (2018) we used the LsSFR to classify which are the younger (those with a high LsSFR) and which are the older (those with low LsSFR). Furthermore, since the first SNe Ia host analyses, the SN stretch has been known to be strongly correlated with the SN host properties (Hamuy et al. 1996, 2000), correlation that has been extensively confirmed since (e.g. Neill et al. 2009; Sullivan et al. 2010; Lampeitl et al. 2010; Kelly et al. 2010; Gupta et al. 2011; D'Andrea et al. 2011; Childress et al. 2013; Rigault et al. 2013; Pan et al. 2014; Kim et al. 2019). Following the "A+B" model and the connection between SN stretch and host properties, Howell et al. (2007) first discussed the potential redshift drift of the SN stretch distribution. In this paper we revisit this analysis with the most recent SNe Ia dataset.

In this paper, we take a step aside to probe the validity of our modeling of the SN population, which we claim to be constituted of two age-populations (Rigault et al. 2013; Rigault et al. 2015, 2018): one old and one younger, the former having on average lower lightcurve stretches and being brighter after standardization. We use the correlation between the SN age, as probed by the LsSFR, and the SN stretch to model the expected evolution of the underlying SN stretch distribution as a function of redshift. This modeling relies on three assumptions: (1) there are two distinct populations of SNe Ia; (2) the relative fraction of each of these populations as a function of redshift follows the model presented in Rigault et al. (2018) and (3) the underlying distribution of stretch for each age sample is constant. This paper aims at testing this specific model with datasets from the literature. Note that the progenitor age as traced by the LsSFR seems to capture physical feature intrinsic to the progenitor and/or explosion mechanism that the stretch alone is not capturing (Nordin et al.

We present in Section 2 the sample we are using for this analysis, derived from the Pantheon catalog (Scolnic et al. 2018). We discuss the importance of obtaining a "complete" sample, i.e. representative of the true underlying SNe Ia distribution, and how we build one from the Pantheon sample. We then present in Section 3 our modeling of the distribution of stretch and our

results are presented in Section 4. In this section we test whether the SN stretch distribution evolves as a function of redshift and if the aforementioned age model is in good agreement with this evolution. We briefly discuss these results in the context of SN cosmology in Section 5 and we conclude in Section 6.

2. Complete Sample Construction

2.1. Applying redshift cuts

We base our analysis on the most recent comprehensive SNe Ia compilation, the Pantheon catalog from Scolnic et al. (2018). A naive approach to test the SN stretch redshift drift would be to simply compare the observed SN stretch distributions in a few bins of redshift. In practice, however, differential selection effects are affecting the observed SN stretch distributions. Indeed, because the observed SN Ia magnitude correlates with the lightcurve stretch (and color), the first SNe Ia that a magnitude-limited survey will miss are the lowest-stretch (and reddest) ones. Consequently, if magnitude-related selection effects are not accounted for, one might confuse true population drift with survey properties, and conversely.

Assuming sufficient (and unbiased) spectroscopic follow-up for acquiring typing and host redshift, the selection effects of magnitude-limited surveys should be negligible below a given redshift at which even the faintest SNe Ia can be observed. In practice such spectroscopic following has not always been the norm as discussed below. In contrast, targeted surveys have highly complex selection functions and will be discarded from our analysis. Modern SN cosmology samples such as the Pantheon one are now dominated by magnitude-limited surveys which have easier to model selection functions.

We present in Fig. 1 the lightcurve stretch and color of SNe Ia from the following surveys: PanStarrs (PS1 Rest et al. 2014), the Sloan Digital Sky Survey (SDSS Frieman et al. 2008) and the SuperNovae Legacy Survey (SNLS Astier et al. 2006). An ellipse in the SALT2.4 (x_1, c) plane with $x_1 = \pm 3$ and $c = \pm 0.3$ encapsulates the full distribution (Guy et al. 2007; Betoule et al. 2014); see also Bazin et al. (2011) and Campbell et al. (2013) for similar contours, the second using a more conservative $|c| \le 0.2$ cut. Assuming the SN absolute magnitude with $x_1 = 0$ and c = 0is $M_0 = -19.36$ (Kessler et al. 2009; Scolnic et al. 2014), we can derive the absolute standardized magnitude at maximum of light $M = M_0 - \alpha x_1 + \beta c$ along the aforementioned ellipse given the standardization coefficient $\alpha = 0.156$ and $\beta = 3.14$ from Scolnic et al. (2018): the faintest SN Ia is that with $(x_1 = -1.65, c =$ 0.25) and an absolute standardized magnitude at peak in Bessel *B* band of $M_{\min}^{t_0} = -18.31$ mag. Since one ought to detect this object typically 5 days before and a week after peak to build a suitable lightcurve, the effective limiting standardized absolute magnitude is approximately $M_{\rm lim} = -18.00$ mag. Hence, given the magnitude limit $m_{\rm lim}$ of a magnitude limited survey, one can derive the maximum redshift z_{lim} above which the faintest SNe Ia will be missed using the relation between apparent magnitude, redshift and absolute magnitude $\mu(z_{\text{lim}}) = m_{\text{lim}} - M_{\text{lim}}$.

We will thus consider a set of cuts that will define a first fiducial sample, taking the farthest limits possible. But as this solution might be over simplistic to create a complete sample, e.g., for it ignores follow-up efficiency, we also consider another set of cuts to define a conservative sample. This latter is smaller and therefore less statistically constraining, but also inherently less prone to selection effects. If the redshift drift is still significant in the conservative sample, it would be even more significant in a carefully-tailored selection-free

Fig. 1. SALT2.4 stretch (x_1) and color (c) lightcurve parameters of SNe Ia from the SDSS, PS1 and SNLS samples of the Pantheon catalog. The individual SNe are shown as blue dots. The ellipse $(x_1 = \pm 3, c = \pm 0.3)$ is displayed, colored by the corresponding standardized absolute magnitude using the α and β coefficients from Scolnic et al. (2018). The grey diagonal lines represent the (x_1, c) evolution for $m = m_{\text{lim}}$, for z between 0.50 and z = 1.70 using SNLS's m_{lim} of 24.8 mag.

sample. The goal of this study is to build the first implementation of a SN Ia properties drift modeling before refining it on a more complex, yet more accurate, follow-up analysis accounting at the same time for precise selection modeling using, e.g., the SNANA package (Kessler et al. 2009).

SNLS typically acquired SNe Ia in the redshift range 0.4 < z < 0.8; at these redshifts, the rest-frame Bessel B band roughly corresponds to the SNLS i filter, that has a 5σ depth of 24.8 mag¹. This converts to a $z_{\rm lim}=0.60$, in agreement with Neill et al. (2006), Perrett et al. (2010) and Bazin et al. (2011). Fig. 14 of Perrett et al. (2010, see their Section 5) suggests however a lower limit of $z_{\rm lim}=0.55$. We will therefore use z=0.60 and z=0.55 as redshift limits for the fiducial and conservative cuts, respectively.

Similarly, PS1 observed SNe Ia in the range 0.2 < z < 0.4, their g-band 5σ depth is 23.1 mag (Rest et al. 2014), which yields $z_{\rm lim} = 0.31$, in agreement with, e.g., Fig. 6 of Scolnic et al. (2018). If we were to be conservative, this figure would also suggest of a more stringent $z_{\rm lim} = 0.27$ cut; hence, we will use 0.31 and 0.27 for our fiducial and conservative cuts, respectively.

In a similar redshift range, SDSS has a limiting magnitude of 22.5 (Dilday et al. 2008; Sako et al. 2008), which would lead to $z_{\rm lim}=0.24$. However, the SDSS surveys had to contend with limited spectroscopic resources. As discussed in Kessler et al. (2009, Section 2), during the first year of SDSS, SNe Ia with r<20.5 mag were favored for spectroscopic follow-up, corresponding to a redshift cut at 0.15. For the rest of the SDSS survey, additional spectroscopic resources were available, and Kessler et al. (2009) and Dilday et al. (2008) show a reasonable completeness up to $z_{\rm lim}=0.2$. Following these analyses, we will use $z_{\rm lim}=0.20$ and $z_{\rm lim}=0.15$ for our fiducial and conservative cuts, respectively.

The sample selection is summarized in Table 1, and the redshift distribution of these three surveys is shown in Fig. 2. As expected, the selected redshift limits are roughly located slightly before the peak of these histograms. In Section 2.2 we validate that these redshift limits are effective for constructing nearly volume-limited subsamples from samples that were

Table 1. Composition of the SNe Ia dataset used in this analysis. Conservative cuts are indicated in parentheses. The SNf limit is set by Rigault et al. (2018), see text.

Survey	$z_{ m lim}$	$N_{ m SN}$
SNf	0.08	114
SDSS	0.20(0.15)	167 (82)
PS1	0.31 (0.27)	160 (122)
SNLS	0.60(0.55)	102 (78)
HST	_	26
Total	_	569 (422)

Fig. 2. From top to bottom: Redshift histograms of SNe Ia from the SDSS, PS1 and SNLS dataset respectively (data from Pantheon, Scolnic et al. 2018). The colored parts represent the distribution of SNe Ia kept in our analysis for they are supposedly free from selection bias (see Section 2). The darker (resp. lighter) color responds to the conservative (resp. fiducial) selection cut.

initially more-closely magnitude limited in their search or spectroscopic follow-up.

In addition, we use the SNe Ia from the Nearby Supernova Factory (SNfactory, Aldering et al. 2002) published in Rigault et al. (2018) and that have been discovered from non-targeted searches (114 SNe Ia, see their sections 3 and 4.2.2; SNe Ia time series are published in Saunders et al. 2020, see also Aldering et al. 2020). For this dataset, spectroscopic screening was done for candidates with $r \leq 19.5$. Then, redshift cuts were applied when selecting which SN Ia to follow, giving a redshift range of 0.02 < z < 0.09; further reduced to < 0.08 in Rigault et al. (2018) for extracting local host properties. These 114 SNfactory SNe Ia are thus in the volume-limited part of the survey (Aldering et al., in prep.), and are therefore assumed to be a random sampling of the underlying SN population. The SNfactory sample is particularly useful for studying SN property drift, as it enables us to have a large complete SN Ia sample at z < 0.1.

Finally, we include the HST sample from Pantheon, that similarly have a search deeper than the follow-up and that we therefore kept entirely (Strolger et al. 2004). At these redshift, the supernovae typing is challenging but the target classification were robust enough to include them within the cosmological

¹ CFHT final release website.

Fig. 3. *Bottom:* SALT2.4 lightcurve stretch as a function of redshift for each survey considered in this analysis (see legend). Solid (resp. open) markers correspond to the conservative (resp. fiducial) redshift cuts. *Top:* stacked redshift histograms in dark (resp. light) colors for the conservative (resp. fiducial) redshift cuts.

analysis (Scolnic et al. 2018); we do not add further quality cuts.

We present the stretch distribution and redshift histogram of these five surveys up to their respective $z_{\rm lim}$ in Fig. 3. We observe that the apparent fraction of low-stretch SNe (typically $x_1 < -1$) seems to decrease as a function of redshift. The evolution of the mean stretch is also shown in Fig. 6, where the data are split in redshift bins of regular sample size. We see that SNe Ia at higher redshift have on average larger stretch $(0.34\pm0.10$ at $z\sim0.65$) than those at lower redshift $(-0.17\pm0.10$ at $z\sim0.05$), suggesting that the underlying stretch distribution is **evolving with redshift**.

2.2. Testing the construction of a volume-limited sample

In section 2.1, we have built a volume-limited sample from a set of magnitude-limited ones, using a simple redshift limit. This simplistic approach is statistically sub-optimal, but is enough to demonstrate our key finding: a redshift evolution of stretch compatible with the Rigault et al. (2018) model. However, there remains the possibility that complex selection function related to follow-up efficiencies below our fiducial (or even conservative cuts) might significantly affect our sample, making it not fully volume-limited, which could, in turn, bias our conclusion on the astrophysical drift of the SNe Ia population.

To test for the existence of potentially significant leftover selection biases in our sample, we compare the stretch and color distributions of the SNe Ia in our sample between datasets of overlapping redshifts. If indeed we have built a volume-limited sample, the distributions of any SNe Ia parameter at a given redshift should not depend on their survey of origin. When considering a redshift range, this has to be narrow enough such that any drift would be negligible.

The two samples that overlap the most in redshift are PS1 and SDSS in the redshift range 0.10 < z < 0.20 (see Fig 3). This corresponds to the 146 SNe Ia from SDSS at the highest redshift end and thus the most likely to be affected by selec-

Fig. 4. x_1 (left) and c (right) distribution histograms of different surveys overlapping in redshift. Facing up: SDSS and PS1 within the redshift range 0.10 < z < 0.20; facing down: PS1 and SNLS within the redshift range 0.20 < z < 0.31. Error bars show the Poisson noise. Our stretch "Base" model is illustrated in orange at the mean redshift of the redshift ranges, 0.15 and 0.25, respectively. Kolmogorov-Smirnov test p-values are indicated on the top (resp. bottom) of each panel showing no sign that the SDSS and PS1 (resp. PS1 and SNLS) x_1 and c distributions are not drawn from the same underlying distributions.

tion effects not eliminated by our redshift cut (see the corresponding discussion in section 2.1). In that same redshift range, PS1 has 52 SNe Ia, which are in the lowest redshift bins and thus unlikely to have any selection issue. To identify potential inconsistency between PS1 and SDSS, Fig. 4 presents the stretch and color distribution of both these surveys, together with p-values of Kolmogorov-Smirnov (KS) tests. These p-values are too high (> 10%) and do not indicate that these subsamples are inconsistent, in agreement with the visual impression from Fig. 4.

We perform a similar analysis for PS1 and SNLS in the redshift range 0.20 < z < 0.31 where the same conclusion can be drawn, i.e., there is no sign of discrepancy in the stretch and color distributions between the low- and high-end of the SNLS and PS1 datasets, respectively. Nonetheless, the small size of the SNLS dataset at z < 0.31 (12 SNe Ia vs. 90 for PS1) limits the sensitivity of the test, as only strong deviation would be noticeable. Extending the redshift range to 0.20 < z < 0.40 (though we have no PS1 data above 0.3) enables to get 31 SNe Ia from SNLS in total, yet the stretch p-values remains high at 34% showing no sign of inconsistency

We highlight that the SNe Ia color is more prone to selection effects than stretch as illustrated in Fig. 1; see also e.g., Fig. 3 of Kessler & Scolnic (2017). Hence, since the color distribution shows no significant hint of leftover selection effect, it further supports our claim that our simple redshift-based selection criteria is sufficient to build the SNe Ia sample required to test the redshift evolution of the stretch distribution.

3. Modeling the redshift drift

Rigault et al. (2018) presented a model for the evolution of the fraction of younger and older SNe Ia as a function of redshift following former work on rates and delay time distributions (e.g., Mannucci et al. 2005; Scannapieco & Bildsten 2005; Sullivan et al. 2006; Aubourg et al. 2008; Childress et al. 2014; Maoz et al. 2014). In short, it was assumed that the number of "young" SNe Ia follows the star formation rate (SFR) in the Universe, while the number of "old" SNe Ia follows the number of Gyrold stars in the Universe, i.e. the stellar mass (M*). Hence, if we denote $\delta(z)$ (resp. $\psi(z) = 1 - \delta(z)$) the fraction of young (resp. old) SNe Ia in the Universe as a function of redshift, then the ratio δ/ψ is expected to follow the evolution of the specific star

formation rate (SFR/M*), which goes as $(1+z)^{2.8}$ until $z \sim 2$ (e.g., Tasca et al. 2015). Since $\delta(0.05) \sim \psi(0.05)$ (Rigault et al. 2013; Rigault et al. 2018; Wiseman et al. 2020), in agreement with rate expectations (Mannucci et al. 2006; Rodney et al. 2014), Rigault et al. (2018) concluded that

$$\delta(z) = \left(K^{-1} \times (1+z)^{-2.8} + 1\right)^{-1} \tag{1}$$

with K = 0.87. This model is comparable to the evolution subsequently predicted by Childress et al. (2014) based on SN rates in galaxies depending on their quenching time as a function of their stellar mass.

3.1. "Base" underlying stretch distribution

To model the evolution of the full SN stretch distribution as a function of redshift, given our aforementioned model of the evolution of the fraction of younger and older SNe Ia with cosmic time, we need to model the SN stretch distribution for each age subsample.

Rigault et al. (2018) presented the relation between SN stretch and LsSFR measurement, a progenitor age tracer, using the SNfactory sample. This relation is shown in Fig. 5 for the SNfactory SNe used in the current analysis. Given the structure of the stretch-LsSFR scatter plot, our model of the underlying SN Ia stretch distribution is defined as follows:

- for the younger population (i.e., $log(LsSFR) \ge -10.82$), the stretch distribution is modeled as a single normal distribution $\mathcal{N}(\mu_1, \sigma_1^2)$;
- the older population (i.e., log(LsSFR) < -10.82) stretch distribution is modeled as a bimodal Gaussian mixture $a \times \mathcal{N}(\mu_1, \sigma_1^2) + (1 a) \times \mathcal{N}(\mu_2, \sigma_2^2)$, where one mode is the same as for the young population, a representing the relative influence of the two modes.

The stretch probability distribution function (pdf) of a given SN will be the linear combination of the stretch distributions of these two population weighted by its probability y^i to be young (see Section 3.2). But generally, the fraction of young SNe Ia as a function of redshift is given by $\delta(z)$ (see Eq. 1) and therefore, our redshift drift model of the underlying distribution of SNe Ia as a function of redshift $X_1(z)$ is given by:

$$X_1(z) = \delta(z) \times \mathcal{N}(\mu_1, \sigma_1^2) +$$

$$(1 - \delta(z)) \times \left[a \times \mathcal{N}(\mu_1, \sigma_1^2) + (1 - a) \times \mathcal{N}(\mu_2, \sigma_2^2) \right]$$
(2)

This is our Base model.

3.2. Base model applied to data

Given the probability y^i that a given SN is young, and assuming our Base model (see Section 3.1), the probability to measure a SALT2.4 stretch x_1^i with an error $\mathrm{d}x_1^i$ is given by:

$$\mathcal{P}\left(x_{1}^{i} \mid \boldsymbol{\theta}; dx_{1}^{i}, y^{i}\right) = y^{i} \times \mathcal{N}\left(x_{1}^{i} \mid \mu_{1}, \sigma_{1}^{2} + dx_{1}^{i2}\right) + (1 - y^{i}) \times \left[a \times \mathcal{N}\left(x_{1}^{i} \mid \mu_{1}, \sigma_{1}^{2} + dx_{1}^{i2}\right) + (1 - a) \times \mathcal{N}\left(x_{1}^{i} \mid \mu_{2}, \sigma_{2}^{2} + dx_{1}^{i2}\right)\right]$$
(3)

The maximum-likelihood estimate of the 5 free parameters $\theta = (\mu_1, \mu_2, \sigma_1, \sigma_2, a)$ of the model is obtained by minimizing the following:

$$-2\ln(L) = -2\sum_{i} \ln \mathcal{P}\left(x_1^i \mid \boldsymbol{\theta}; \mathrm{d}x_1^i, y^i\right). \tag{4}$$

Depending on whether y^i can be estimated directly from LsSFR measurements or not, there are two ways to proceed, which we now discuss.

3.2.1. With LsSFR measurements

For the SNfactory sample, we can readily set $y^i = p_y^i$, the probability to have $\log(\text{LsSFR}) \ge -10.82$ (see Fig. 5), to minimize Eq. 4 with respect to θ . Results on fitting the SNf SNe with this model are shown Table 2 and illustrated in Fig. 6.

3.2.2. Without LsSFR measurements

When lacking direct LsSFR measurements (i.e. p_y^i), we can extend the analysis to non-SNfactory samples by using the redshift-evolution of the fraction $\delta(z)$ of young SNe Ia (Eq. 1) as a proxy for the probability of a SN to be young. This still corresponds to minimizing Eq. 4 with respect to the parameters $\theta = (\mu_1, \mu_2, \sigma_1, \sigma_2, a)$ of the stretch distribution X_1 (Eq. 2), but this time assuming $y^i = \delta(z^i)$ for any given SN i.

For the rest of the analysis, we will therefore minimize Eq. 4 using p_y^i – the probability for the SN i to be young – when available (i.e. for SNfactory dataset), and $\delta(z^i)$ – the expected fraction of young SNe Ia at the SN redshift z^i – otherwise.

Results of fitting this model to all the 569 (resp. 422) SNe from the fiducial (resp. conservative) sample are given Table 2, and the predicted redshift evolution of mean stretch (expected x_1 given the distribution of Eq. 2) illustrated as a blue band in Fig. 6 accounting for parameters errors and their covariances. We see in this figure that the measured mean SN Ia stretch per redshift bins of equal sample size closely follows our redshift drift modeling. This is indeed what is expected if old environments favor low SN stretches (e.g. Howell et al. 2007) and if the fraction of old SNe Ia declines as a function of redshift. See Section 4 for a more quantitative discussion.

3.3. Alternative models

In Section 3.1, we have modeled the underlying stretch distribution following Rigault et al. (2018), i.e. as a single Gaussian for the "young" SNe Ia and a mixture of two Gaussians for the "old" SNe Ia population, one being the same as for the young population, plus another one for the fast-declining SNe Ia that seem to only exist in old local environments. This is our so-called "Base" model. However, to test different modeling choices, we have implemented a suite of alternative parametrizations that we also adjust to the data following the procedure described in Section 3.2.2.

Howell et al. (2007) used a simpler unimodal model per age category, assuming a single normal distribution for each of the young and old populations. We thus consider a "Howell+drift" model, with one single Gaussian per age group and the $\delta(z)$ drift from Eq. 1.

Alternatively, since we aim at probing the existence of an evolution with redshift, we also test constant models by restricting the "Base" and "Howell" models to use a supposedly redshift-independent fraction $\delta(z) \equiv f$ of young SNe;

Fig. 5. Main: SALT2.4 lightcurve stretch (x_1) as a function of the local specific star formation rate (LsSFR) for SNfactory SNe used in this analysis. The color corresponds to the probability, p_y , for the SNe Ia to be young, i.e. to have log LsSFR ≥ -10.82 (see Rigault et al. 2018). Right: p_y -weighted histogram of the SN stretches, as well as the adjusted Base model; the younger and older population contributions are shown in purple and yellow, respectively.

Table 2. Best fit values of the parameters for the Base stretch distribution model when applied to the SNfactory dataset only (114 SNe Ia), the fiducial 569 SN Ia sample or the conservative one (422).

Sample	μ_1	σ_1	μ_2	σ_2	а
SNfactory	0.41 ± 0.08	0.55 ± 0.06	-1.38 ± 0.10	0.44 ± 0.08	0.48 ± 0.08
Fiducial	0.37 ± 0.05	0.61 ± 0.04	-1.22 ± 0.16	0.56 ± 0.10	0.51 ± 0.09
Conservative	0.38 ± 0.05	0.60 ± 0.04	-1.26 ± 0.13	0.53 ± 0.08	0.47 ± 0.09

Fig. 6. Evolution of the mean SN SALT2.4 stretch (x_1) as a function of redshift. Markers show the mean stretch measured in redshift bins of equal sample size, indicated in light gray at the bottom of each redshift bin. Individual x_1 errors, subdominant cause of the total scatter, have not been accounted for when measuring the x_1 means. Full and light markers are used when considering the fiducial or the conservative samples, respectively. The orange horizontal line represents the mean stretch of the fiducial sample, illustrating the expectation if the SN stretch distribution is not evolving with redshift. Best fits of our Base drifting model are shown as blue, dashed-blue and gray, when fitted on the fiducial sample, the conservative one or the SN factory dataset only, respectively; all are compatible. The light-blue band illustrates the amplitude of the error (incl. covariance) of the best fit model when considering the fiducial dataset.

Fig. 7. Δ AIC between "Base" model (reference) and other models (see Table 3). Full and open blue markers correspond to models with and without redshift drift, respectively. Light markers show the results when the analysis is performed on the conservative sample rather than the fiducial one. Color-bands illustrate the validity of the models, from Acceptable (Δ AIC > -5) to Excluded (Δ AIC < -20), see text. According to the AIC, all non-drifting models (open symbols) are excluded to be as good a representation of the data as the Base (drifting) model.

these models are hereafter labeled "Base+constant" and "Howell+constant".

We also consider another intrinsically non-drifting model, the functional form developed for Beams with Bias Correction (BBC, Scolnic & Kessler 2016; Kessler & Scolnic 2017), used in recent SN cosmological analyses (e.g. Scolnic et al. 2018; Abbott et al. 2019; Riess et al. 2016, 2019) to account for Malmquist biases. The BBC formalism assumes sample-based (hence intrinsically non-drifting) asymmetric Gaussian stretch distributions: $\mathcal{N}\left(\mu,\sigma_{-}^{2} \text{ if } x_{1} < \mu, \text{ else } \sigma_{+}^{2}\right)$. The idea behind this sample-based approach is twofold: (1) Malmquist biases are driven by survey properties and (2) since current surveys cover limited redshift ranges, having a sample-based approach covers some potential redshift evolution information (Scolnic & Kessler 2016; Scolnic et al. 2018). See further discussion concerning BBC in Section 5.

Finally, for the sake of completeness, we also consider redshift-independent pure and asymmetric Gaussian models.

4. Results

We adjusted each of the models described above on both the fiducial and conservative samples (cf. Section 2); results are gathered in Table 3, and illustrated in Fig. 7.

Since the various models have different degrees of freedom, we use the Akaike Information Criterion (AIC, e.g. Burnham & Anderson 2004) to compare their ability to properly describe the observations. This estimator penalizes extra degrees of freedom to avoid over-fitting the data, and is defined as follow:

$$AIC = -2\ln(L) + 2k \tag{5}$$

where $-2 \ln(L)$ is derived by minimizing Eq. (4), and k is the number of free parameters to be adjusted. The reference model is the one with the smallest AIC; in comparison to this model, the models with Δ AIC < 5 are coined acceptable, the ones with Δ AIC < 20 are unfavored, and those with Δ AIC > 20

are deemed excluded. This roughly corresponds to 2, 3 and 5 σ limits for a Gaussian probability distribution.

The best model (with smallest AIC) is the so-called Base model and thus is our reference model; this is true both on the fiducial and conservative samples. The Base model also has the smallest $-2 \ln(L)$, making it the most likely model even ignoring the over-fitting issue accounted for by the AIC formalism.

Furthermore, we find that redshift-independent stretch distributions are all excluded as suitable descriptions of the data relative to the Base model. In fact, the best non-drifting model (the Asymmetric one) has a very marginal chance ($p \equiv \exp(\Delta \text{AIC}/2) = 5 \times 10^{-6}$) to describe the data as well as the Base model. This result is just a quantitative assessment of qualitative facts clearly visible in Fig. 6: the mean SN stretch per bin of redshift strongly suggests a significant redshift evolution rather than a constant value, and this evolution is well described by Eq. 1.

Surprisingly, the sample-based Gaussian asymmetric modeling used by current implementations of the BBC technique (Scolnic & Kessler 2016; Kessler & Scolnic 2017) has one of the highest AIC value in our analysis (see Section 4). While its $-2\ln(L)$ is the smallest of all redshift-independent models (but still -11.5 worse than the reference Base model), it is strongly penalized for requiring 15 free parameters (μ_0 , σ_\pm for each of the 5 samples of the analysis). Hence, its Δ AIC < -20, which could be interpreted as a probability $p=2\times 10^{-7}$ of being as good a representation of the data as the Base model.

Note that, when comparing models adjusted on individual subsamples rather than globally, the Bayesian Information Criterion (BIC = $-2 \ln(L) + k \ln(n)$, with n the number of data points) might be better suited than AIC, since it explicitly accounts for the fact that each subsample is fitted separately: the sample-based model BIC is rightfully the sum of the BIC for each sample. We find Δ BIC = -48, again refuting the sample-based asymmetric Gaussian model as being as pertinent as the Base model.

We report in Table 4 our determination of the samples' μ_0 and σ_{\pm} when implementing an asymmetric Gaussian model, adjusted on the nominally selection-free samples using our fiducial cuts (see Section 2). We find our results in close agreement with Scolnic & Kessler (2016) for SNLS and SDSS and with Scolnic et al. (2018) for PS1, who derived these model parameters using the full BBC formalism, using numerous simulations to model the selection effects (see details e.g., Section 3 of Kessler & Scolnic 2017). The agreement between our fit of the asymmetric Gaussians on the supposedly selection-free part of the samples and the results derived using the BBC formalism supports our approach to construct a sample with negligible selection effects. If we were to use Scolnic & Kessler (2016) and Scolnic et al. (2018) best fit values of the μ_0 , σ_{\pm} asymmetric parameters for SNLS, SDSS and PS1, respectively, the Δ AIC between our Base drifting model and the BBC modeling would go even deeper from -32 to -47. We further discuss the consequence of this result for cosmology in Section 5.

We also performed tests allowing the high-stretch mode of the old population to differ from the young population mode, hence adding two degrees of freedom. The corresponding fit is not significantly better, with a ΔAIC of -0.4. This reinforces our assumption that the young and old populations indeed appear to share the same underlying high-stretch mode. Furthermore, one might wonder whether a low-stretch mode might also exist in the young-population, see Fig. 5. We test for this by allowing this population to also be bi-modal, finding the amplitude of such a low-stretch mode to be compatible with 0 in this young popu-

Table 3. Comparison of the relative ability of each model to describe the data. For each considered model, we report if the model is drifting or not, its number of free parameters and, for both the fiducial and the conservative cuts, $-2 \ln(L)$ (see Eq. 4), the AIC and the AIC difference (Δ AIC) between this model and the Base model used as reference for it has the lowest AIC.

			Fiducial sample (569 SNe)		Conservative sample (422 SNe)			
Name	drift	k	$-2\ln(L)$	AIC	Δ AIC	$-2\ln(L)$	AIC	Δ AIC
Base	$\delta(z)$	5	1456.7	1466.7	_	1079.5	1089.5	_
Howell+drift	$\delta(z)$	4	1463.3	1471.3	-4.6	1088.2	1096.2	-6.7
Asymmetric	_	3	1485.2	1491.2	-24.5	1101.3	1107.3	-17.8
Howell+const	f	5	1484.2	1494.2	-27.5	1101.2	1111.2	-21.7
Base+const	f	6	1484.2	1496.2	-29.5	1101.2	1113.2	-23.7
Per sample Asym.	per sample	3×5	1468.2	1498.2	-31.5	1083.6	1113.6	-24.1
Gaussian	_	2	1521.8	1525.8	-59.1	1142.6	1146.6	-57.1

Table 4. Best-fit parameters for our sample-based asymmetric modeling of the underlying stretch distribution.

Asymmetric	σ_{-}	σ_{+}	μ_0
SNfactory	1.34 ± 0.13	0.41 ± 0.10	0.68 ± 0.15
SDSS	1.31 ± 0.13	0.41 ± 0.10 0.42 ± 0.09	0.72 ± 0.13
PS1		0.42 ± 0.09 0.52 ± 0.12	
101	1.01 ± 0.11		0.38 ± 0.16
SNLS	1.41 ± 0.13	0.15 ± 0.13	1.22 ± 0.15
HST	0.76 ± 0.36	0.79 ± 0.35	0.11 ± 0.44

lation (< 2%). More generally, this raises the question of how well a given environmental tracer (here LsSFR) traces the age. A dedicated analysis will be presented in Briday et al. in prep.

Finally, ignoring the LsSFR measurements – available only for the SNfactory dataset, see Section 3 – reduces the significance of the results presented in this section, as expected. Yet, non-drifting models remain strongly disfavored, and for instance, the best fitted sample-based Gaussian asymmetric modeling still is $\Delta AIC < -10$ less representative of the data than our Base drifting modeling.

5. Discussion

To the best of our knowledge, a SN Ia stretch redshift drift modeling has never been explicitly used in cosmological analyses, though Bayesian hierarchy formalism such as UNITY (Rubin et al. 2015), BAHAMAS (Shariff et al. 2016) or Steve (Hinton et al. 2019) can easily allow it; see e.g., section 1.3 and 2.5 of Rubin et al. (2015). Not doing so is a second order issue for SN cosmology, as it only affects the way one accounts for Malmquist bias. Indeed, as long as the Phillips relation (Phillips 1993) standardization parameter α is not redshift dependent (a study beyond the scope of this paper, but see e.g. Scolnic et al. 2018), the stretchcorrected SNe Ia magnitudes used for cosmology are blind to the underlying stretch distribution for complete samples. However, surveys usually do have significant Malmquist bias for the upper half of their SN redshift distribution. As a consequence, an illmodeling of the underlying stretch distribution will bias the SN magnitudes derived from such surveys.

Commonly used Malmquist bias correction techniques, such as the BBC-formalism, assume per sample asymmetric Gaussian functions for modeling the underlying stretch and color distributions. Yet, as shown in Section 4, such a sample-based distribution is excluded as being as good as our drifting model. Then, unlike what Scolnic & Kessler (2016, Section 2) and Scolnic et al. (2018, Section 5.4) suggested, i.e. that traditional surveys span limited redshift ranges and that therefore the per-sample approach accounts for implicit redshift drifts, a direct modeling of the redshift drift is more appropriate than a sample-based ap-

proach. We add here that, as measurements of modern surveys try to cover increasingly larger redshift ranges in order to reduce calibration systematic uncertainties, this sample-based approach becomes less valid, notably for PS1, DES and, soon, LSST.

We illustrate in Fig. 8 the prediction difference in the underlying stretch distribution between the per-sample asymmetric modeling and our Base drifting model for the PS1 sample. Our model is bimodal and the relative amplitude of each mode depends on the redshift-dependent fraction of old and young SNe Ia in the sample: the higher the fraction of old SNe Ia (at lower redshift), the higher the amplitude of the old-specific low-stretch mode. This redshift dependency is shown as blue to red underlying distributions in Fig. 8 for redshift ranges covered by PS1. The observed x_1 histogram follows the model we defined using the sum of individual underlying SN-redshift distributions. As expected, the two modeling approaches differ mostly in the negative part of the SN stretch distribution. The asymmetric Gaussian distribution goes through the middle of the bimodal distribution, over-estimating the number of SNe Ia at $x_1 \sim -0.7$ and under-estimating it at $x_1 \sim -1.7$ in comparison to our Base drifting model for typical PS1 SN redshifts. This means that the SN bias-corrected standardized magnitude estimated at a redshift affected by selection effects would be biased by an ill-modeling of the true underlying stretch distribution.

Assessing the amplitude of this magnitude bias for cosmology is beyond the scope of this paper given the complexity of the BBC analysis. It would require a full study using our Base model (Eq. 2) in place of the sample-based asymmetric modeling as part of the BBC simulations. However, we already highlight that even if a non-drifting sample-based model could provide comparable result in the volume-limited part of the various samples, these models would differ when extrapolating to higher redshifts, precisely where the underlying distribution will matter for correcting Malmquist biases.

In the era of modern cosmology, where we aim to measure w_0 at a sub-percent level and w_a with ten-percent precision (e.g., Ivezić et al. 2019), we stress that correct modeling of potential SN redshift drift should be further studied and care should be taken when using samples affected by selection effects.

6. Conclusion

We have presented an initial study of the drift of the underlying SNe Ia stretch distribution as a function of redshift. We built a magnitude-limited SN Ia sample from the Pantheon dataset (Scolnic et al. 2018, SDSS, PS1 and SNLS), to which we added HST and SNfactory data from Rigault et al. (2018) for the high-and low-redshift bins. We only considered the SNe that have been discovered in the redshift range of each survey where selec-

Fig. 8. Distribution of the PS1 SN Ia SALT2.4 stretch (x_1) after the fiducial redshift limit cut (grey histogram). This distribution is supposed to be a random draw from the underlying stretch distribution. The green lines show the BBC model of this underlying distribution (asymmetric Gaussian). The full line (band) is our best fit (its error); the dashed line shows the Scolnic et al. (2018) result. The black line (band) shows our best fitted Base-modeling (its error, see Table 2) that includes redshift drift. For illustration, we show as colored (from blue to red with increasing redshifts) the evolution of the underlying stretch distribution as a function of redshift for the redshift range covered by PS1 data.

tion effects are negligible, so that the observed SNe Ia stretches are a random sampling of the true underlying distribution. This resulted in a 569 SN Ia fiducial sample (422 SNe when more conservative cuts were considered).

Following predictions made in Rigault et al. (2018), we introduced a redshift drift model which depends on the expected fraction of "young" and "old" SNe Ia as a function of redshift, with each age population having its own underlying stretch distribution.

In addition to this "base" modeling, we have studied various distributions, including redshift independent models; we also studied the prediction from a per-sample asymmetric Gaussian stretch distribution used, for instance, by the Beams with Bias Correction Malmquist bias correction algorithm (Scolnic & Kessler 2016; Kessler & Scolnic 2017).

Our conclusions are the following:

- The underlying SN Ia stretch distribution is significantly redshift dependent, as previously suggested by e.g. Howell et al. (2007), in a way that selection effects alone cannot explain. This result is largely independent of details on each age-population model.
- 2. Redshift-independent models are quantitatively excluded as suitable descriptions of the data relative to our Base model. This model assumes that: (1) the younger population has a unimodal Gaussian stretch distribution, while the older population stretch distribution is bimodal, one mode being the same as the young one; (2) the evolution of the relative fraction of younger and older SNe Ia follows the prediction made in Rigault et al. (2018). This second result strongly supports the existence of both young and old SN Ia populations, in agreement with rate studies Mannucci et al. (2005); Scannapieco & Bildsten (2005); Sullivan et al. (2006); Aubourg et al. (2008).
- 3. Models using survey-based asymmetric Gaussian distributions, as done, e.g., in the current implementation of BBC, are excluded as a good description of the data relative to our

drifting model. Hence, the sample-based approach does not accurately account for redshift drift and even less so as survey span increasingly larger redshift ranges. As a result, if extra degrees of freedom might be acceptable given the large number of SNe Ia in cosmological studies, extrapolating the SN property distributions from the volume-limited part of a survey to its Malmquist-biased magnitude-limited one would still be inaccurate because of the redshift evolution.

4. Given the current dataset, we suggest the use of the following stretch population model as a function of redshift:

$$X_{1}(z) = \delta(z) \times \mathcal{N}(\mu_{1}, \sigma_{1}^{2}) + (1 - \delta(z)) \times \left[a \times \mathcal{N}(\mu_{1}, \sigma_{1}^{2}) + (1 - a) \times \mathcal{N}(\mu_{2}, \sigma_{2}^{2}) \right]$$
(2)

with a = 0.51, $\mu_1 = 0.37$, $\mu_2 = -1.22$, $\sigma_1 = 0.61$, $\sigma_2 = 0.56$ (see Table 2), and using the age-population drift model

$$\delta(z) = \left(K^{-1} \times (1+z)^{-2.8} + 1\right)^{-1} \tag{1}$$

with K = 0.87.

In this paper, we considered a simple **two-population** Gaussian mixture modeling, but additional data free from significant Malmquist bias would enable us to refine it as necessary. We note that samples at the low- and high-redshift ends of the Hubble diagram would be particularly helpful for this drifting analysis; fortunately this will soon be provided by the Zwicky Transient Facility (low-*z*, Bellm et al. 2019; Graham et al. 2019), and Subaru and SeeChange SNe Ia programs (high-*z*), respectively.

The next step of the analysis will be to incorporate our modeling within the SNANA framework (Kessler et al. 2009) both to more accurately account for selection functions and to test the impact of our modeling on the derivation of cosmological parameters; this study is underway.

Acknowledgements. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation program (grant agreement no 759194 - USNAC). This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC025CH11231. This project is partly financially supported by Région Rhône-Alpes-Auvergne.

Abbott, T. M. C., Allam, S., Andersen, P., et al. 2019, ApJ, 872, L30 Aldering, G., Adam, G., Antilogus, P., et al. 2002, Proc. SPIE, 61

References

Aldering, G., Antilogus, P., Aragon, C., et al. 2020, Research Notes of the American Astronomical Society, 4, 63 Astier, P., Guy, J., Regnault, N., et al. 2006, A&A, 447, 31 Aubourg, É., Tojeiro, R., Jimenez, R., et al. 2008, A&A, 492, 631 Bazin, G., Ruhlmann-Kleider, V., Palanque-Delabrouille, N., et al. 2011, A&A, Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002 Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, A22 Brout, D., Scolnic, D., Kessler, R., et al. 2019, ApJ, 874, 150 Burnham, K., Anderson, D., 2004, Sociological Methods & Research, 33, 2 Campbell, H., D'Andrea, C. B., Nichol, R. C., et al. 2013, ApJ, 763, 88 Childress, M., Aldering, G., Antilogus, P., et al. 2013, ApJ, 770, 108 Childress, M. J., Wolf, C., & Zahid, H. J. 2014, MNRAS, 445, 1898 D'Andrea, C. B., Gupta, R. R., Sako, M., et al. 2011, ApJ, 743, 172 Dilday, B., Kessler, R., Frieman, J. A., et al. 2008, ApJ, 682, 262 Feeney, S. M., Peiris, H. V., Williamson, A. R., et al. 2019, Phys. Rev. Lett., 122, 061105 Freedman, W. L., Madore, B. F., Hatt, D., et al. 2019, ApJ, 882, 34 Freedman, W. L., Madore, B. F., Hoyt, T., et al. 2020, ApJ, 891, 57. doi:10.3847/1538-4357/ab7339

Frieman, J. A., Bassett, B., Becker, A., et al. 2008, AJ, 135, 338 Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, PASP, 131, 078001 Gupta, R. R., D'Andrea, C. B., Sako, M., et al. 2011, ApJ, 740, 92 Guy, J., Astier, P., Baumont, S., et al. 2007, A&A, 466, 11

Hamuy, M., Phillips, M. M., Suntzeff, N. B., et al. 1996, AJ, 112, 2391 Hamuy, M., Trager, S. C., Pinto, P. A., et al. 2000, AJ, 120, 1479 Hinton, S. R., Davis, T. M., Kim, A. G., et al. 2019, ApJ, 876, 15 Howell, D. A., Sullivan, M., Conley, A., et al. 2007, ApJ, 667, L37 Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 Jones, D. O., Riess, A. G., & Scolnic, D. M. 2015, ApJ, 812, 3 1 Jones, D. O., Riess, A. G., Scolnic, D. M., et al. 2018, ApJ, 867, 108 Jones, D. O., Scolnic, D. M., Riess, A. G., et al. 2018, ApJ, 857, 51 Jones, D. O., Scolnic, D. M., Foley, R. J., et al. 2019, ApJ, 881, 19 Kelly, P. L., Hicken, M., Burke, D. L., et al. 2010, ApJ, 715, 743 Kessler, R., Becker, A. C., Cinabro, D., et al. 2009, ApJS, 185, 32 Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009, PASP, 121, 1028 Kessler, R., & Scolnic, D. 2017, ApJ, 836, 56 Kim, Y.-L., Smith, M., Sullivan, M., et al. 2018, ApJ, 854, 24 Kim, Y.-L., Kang, Y., & Lee, Y.-W. 2019, Journal of Korean Astronomical Society, 52, 181 Knox, L. & Millea, M. 2020, Phys. Rev. D, 101, 043533. doi:10.1103/PhysRevD.101.043533 Lampeitl, H., Smith, M., Nichol, R. C., et al. 2010, ApJ, 722, 566 Mannucci, F., Della Valle, M., Panagia, N., et al. 2005, A&A, 433, 807 Mannucci, F., Della Valle, M., & Panagia, N. 2006, MNRAS, 370, 773 Maoz, D., Mannucci, F., & Nelemans, G. 2014, ARA&A, 52, 107 Neill, J. D., Sullivan, M., Balam, D., et al. 2006, AJ, 132, 1126 Neill, J. D., Sullivan, M., Howell, D. A., et al. 2009, ApJ, 707, 1449 Nordin, J., Aldering, G., Antilogus, P., et al. 2018, A&A, 614, A71 Pan, Y.-C., Sullivan, M., Maguire, K., et al. 2014, MNRAS, 438, 1391 Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565 Perrett, K., Balam, D., Sullivan, M., et al. 2010, AJ, 140, 518 Phillips, M. M. 1993, ApJ, 413, L105 Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A6. doi:10.1051/0004-6361/201833910 Poulin, V., Smith, T. L., Karwal, T., et al. 2019, Phys. Rev. Lett., 122, 221301 Reid, M. J., Pesce, D. W., & Riess, A. G. 2019, ApJ, 886, L27. doi:10.3847/2041-8213/ab552d Rest, A., Scolnic, D., Foley, R. J., et al. 2014, ApJ, 795, 44 Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009 Riess, A. G., Macri, L., Casertano, S., et al. 2009, ApJ, 699, 539 Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, ApJ, 826, 56 Riess, A. G., Casertano, S., Yuan, W., et al. 2018, ApJ, 861, 126 Riess, A. G., Casertano, S., Yuan, W., et al. 2019, ApJ, 876, 85 Rigault, M., Copin, Y., Aldering, G., et al. 2013, A&A, 560, A66 Rigault, M., Aldering, G., Kowalski, M., et al. 2015, ApJ, 802, 20 Rigault, M., Brinnel, V., Aldering, G., et al. 2018, arXiv:1806.03849 Rodney, S. A., Riess, A. G., Strolger, L.-G., et al. 2014, AJ, 148, 13 Roman, M., Hardin, D., Betoule, M., et al. 2018, A&A, 615, A68 Rose, B. M., Garnavich, P. M., & Berg, M. A. 2019, ApJ, 874, 32 Rubin, D., Aldering, G., Barbary, K., et al. 2015, ApJ, 813, 137 Rubin, D., & Hayden, B. 2016, ApJ, 833, L30 Sako, M., Bassett, B., Becker, A., et al. 2008, AJ, 135, 348 Saunders, C., Aldering, G., Antilogus, P., et al. 2020, VizieR Online Data Catalog, J/ApJ/869/167 Scannapieco, E., & Bildsten, L. 2005, ApJ, 629, L85 Scolnic, D., Rest, A., Riess, A., et al. 2014, ApJ, 795, 45 Scolnic, D., & Kessler, R. 2016, ApJ, 822, L35

Scolnic, D., Perlmutter, S., Aldering, G., et al. 2019, Astro2020: Decadal Survey

Scolnic, D. M., Jones, D. O., Rest, A., et al. 2018a, ApJ, 859, 101