Hyperbolas

Identify the vertices, foci, and asymptotes of each. Then sketch the graph.

1)
$$\frac{x^2}{9} - \frac{y^2}{25} = 1$$

2)
$$(y+4)^2 - (x-3)^2 = 1$$

3)
$$\frac{y^2}{16} - (x+4)^2 = 1$$

4)
$$\frac{y^2}{10} - \frac{(x-1)^2}{10} = 1$$

5)
$$9x^2 - 4y^2 - 18x + 16y - 43 = 0$$

6)
$$-9x^2 - 32y = -16y^2 + 128$$

Identify the vertices, foci, asymptotes, direction of opening, length of the transverse axis, length of the conjugate axis, length of the latus rectum, and eccentricity of each.

7)
$$x^2 - y^2 - 6x + 16y - 119 = 0$$

8)
$$-4x^2 + y^2 + 8x - 20y - 4 = 0$$

Use the information provided to write the standard form equation of each hyperbola.

- 9) Vertices: $(1 + 3\sqrt{15}, -7), (1 3\sqrt{15}, -7)$ Endpoints of Conjugate Axis: $(1, -7 + 5\sqrt{5})$ $(1, -7 - 5\sqrt{5})$
- 10) Vertices: (19, 2), (1, 2)Foci: $(10 + \sqrt{130}, 2), (10 - \sqrt{130}, 2)$

- 11) Vertices: (-10, 1), (-10, -17)Perimeter of Central Rectangle = 76
- 12) Vertices: (7, -2), (5, -2)Asymptotes: y = 11x - 68y = -11x + 64
- 13) Center at (10, -4)
 Transverse axis is vertical and 18 units long
 Conjugate axis is 10 units long
- 14) Foci: $(6, 1 + 2\sqrt{58})$, $(6, 1 2\sqrt{58})$ Points on the hyperbola are 28 units closer to one focus than the other

16) Center at (-6, 9)Vertex at (-18, 9)Eccentricity = $\frac{5}{4}$

Hyperbolas

Date ______ Period____

Identify the vertices, foci, and asymptotes of each. Then sketch the graph.

1)
$$\frac{x^2}{9} - \frac{y^2}{25} = 1$$

2)
$$(y+4)^2 - (x-3)^2 = 1$$

3)
$$\frac{y^2}{16} - (x+4)^2 = 1$$

4)
$$\frac{y^2}{10} - \frac{(x-1)^2}{10} = 1$$

5)
$$9x^2 - 4y^2 - 18x + 16y - 43 = 0$$

Vertices:
$$(3, 2)$$

 $(-1, 2)$
Foci: $(1 + \sqrt{13}, 2)$
 $(1 - \sqrt{13}, 2)$
Asym.: $y = \frac{3}{2}x + \frac{1}{2}$

6) $-9x^2 - 32y = -16y^2 + 128$

$$y = -\frac{3}{4}x + 1$$

Identify the vertices, foci, asymptotes, direction of opening, length of the transverse axis, length of the conjugate axis, length of the latus rectum, and eccentricity of each.

7)
$$x^2 - y^2 - 6x + 16y - 119 = 0$$

Vertices: (11, 8), (-5, 8)

Foci: $(3 + 8\sqrt{2}, 8), (3 - 8\sqrt{2}, 8)$

Asym.: y = x + 5

y = -x + 11Opens left/right

Transverse Axis: 16 units Conjugate Axis: 16 units Latus Rectum: 16 units

Eccentricity: $\sqrt{2} \approx 1.414$

8)
$$-4x^2 + y^2 + 8x - 20y - 4 = 0$$

Vertices: (1, 20), (1, 0)

Foci: $(1, 10 + 5\sqrt{5}), (1, 10 - 5\sqrt{5})$

Asym.: y = 2x + 8

$$y = -2x + 12$$

Opens up/down

Transverse Axis: 20 units

Conjugate Axis: 10 units

Latus Rectum: 5 units

Eccentricity: $\frac{\sqrt{5}}{2} \approx 1.118$

Use the information provided to write the standard form equation of each hyperbola.

9) Vertices:
$$(1 + 3\sqrt{15}, -7), (1 - 3\sqrt{15}, -7)$$

Endpoints of Conjugate Axis: $(1, -7 + 5\sqrt{5})$
 $(1, -7 - 5\sqrt{5})$

$$\frac{(x-1)^2}{135} - \frac{(y+7)^2}{125} = 1$$

10) Vertices:
$$(19, 2), (1, 2)$$

Foci: $(10 + \sqrt{130}, 2), (10 - \sqrt{130}, 2)$

$$\frac{(x - 10)^2}{21} - \frac{(y - 2)^2}{40} = 1$$

11) Vertices:
$$(-10, 1), (-10, -17)$$

Perimeter of Central Rectangle = 76

$$\frac{(y+8)^2}{81} - \frac{(x+10)^2}{100} = 1$$

12) Vertices:
$$(7, -2), (5, -2)$$

Asymptotes: $y = 11x - 68$

$$y = -11x + 64$$

Points on the hyperbola are 28 units closer

$$(x-6)^2 - \frac{(y+2)^2}{121} = 1$$

14) Foci: $(6, 1 + 2\sqrt{58}), (6, 1 - 2\sqrt{58})$

to one focus than the other

 $\frac{(y-1)^2}{196} - \frac{(x-6)^2}{36} = 1$

Transverse axis is vertical and 18 units long Conjugate axis is 10 units long

$$\frac{(y+4)^2}{81} - \frac{(x-10)^2}{25} = 1$$

$$\frac{x^2}{25} - \frac{y^2}{4} = 1$$
 16) Center at (-6, 9)
Vertex at (-18, 9)

Eccentricity =
$$\frac{5}{4}$$

$$\frac{(x+6)^2}{144} - \frac{(y-9)^2}{81} = 1$$

