# Predicting Genetic Intra-tumor Heterogeneity From Digital Histopathology Slides

Mustafa Umit Oner<sup>1,2</sup>, Jianbin Chen<sup>3</sup>, Weiwei Zhai<sup>7,8</sup>, Wing-Kin Sung<sup>1,3</sup>, Hwee Kuan Lee<sup>1,2,4,5,6</sup>

<sup>1</sup>School of Computing, National University of Singapore, Singapore. <sup>2</sup>A\*STAR Bioinformatics Institute, Singapore. <sup>3</sup>A\*STAR Genome Institute of Singapore, Singapore, Singapore. <sup>4</sup>Singapore Eye Research Institute (SERI), Singapore. <sup>5</sup>Image and Pervasive Access Lab (IPAL), Singapore. <sup>6</sup>Rehabilitation Research Institute of Singapore, Sin

#### Introduction

Genetic intra-tumor heterogeneity (ITH) results in therapeutic failure and drug resistance [1]



- Genetic ITH is quantified by genomic sequencing
  - **❖ Not applicable on small tissue samples**
  - ❖ Poor scalability: requires fresh/frozen tissue
  - **❖** Destructive: spatial information is lost
  - **\*** Expensive

# **Objective**

Developing a machine learning model predicting genetic ITH from hematoxylin and eosin (H&E) stained whole-slide images (WSIs) to provide clinicians with new tools to plan treatments and monitor therapeutic response.

- **❖ H&E stained WSI is a routine diagnostic tool** 
  - Widely applicable
  - Highly scalable
- It is cheaper than genomic sequencing
- It can enable us to infer spatial organization of subpopulations (SPs) in the tissue



**Input:** H&E stained WSI

Output: # of SPs and their spatial organization

## **Patient Cohort**

- The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) cohort
- Genetic ITH metric: # of SPs obtained from genomic sequencing data using EXPANDS [3]

|          | <b>Low ITH</b> (# SPs < 5) | High ITH (# SPs > 7) |
|----------|----------------------------|----------------------|
| Training | 34 patients                | 29 patients          |
| Test     | 11 patients                | 12 patients          |

## **Multiple Instance Learning Model**

- A sample is represented as a bag of patches cropped from the sample's slides and the sample's genetic ITH label, i.e., number of subpopulations, is used as the bag label.
- The model is trained on 63 patients in the training set and evaluated on 23 patients in the hold-out test set.



## Results

- For a sample, 100 predictions are obtained and mean value is used as the sample's prediction
- Evaluation metric: area under the receiver operating characteristic curve (AUC) (Fig. 1)
- 95% confidence interval (CI) is calculated using percentile bootstrap method [4]



**AUC = 0.727 CI: 0.485 - 0.938** 

Fig. 1: The receiver operating characteristic curve

- Prediction box plots for test set patients (Fig. 2)
  - ❖ The stars show mean values
  - Different colors represent different ITH groups



Fig. 2: The prediction box plots for test set patients

## **Conclusion**

Our model produces promising results to explore further genetic intra-tumor heterogeneity prediction from H&E stained WSIs as a new tool.

#### **Future Work**

Semantic segmentation of WSIs using the trained model to infer spatial organization of SPs

## References

[1] McGranahan, N. and Swanton, C., 2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. *Cancer cell*, *27*(1), pp.15-26. [2] Burrell, R.A. and Swanton, C., 2014. Tumour heterogeneity and the evolution of polyclonal drug resistance. *Molecular oncology*, *8*(6), pp.1095-1111. [3] Andor, N., Harness, J.V., Mueller, S., Mewes, H.W. and Petritsch, C., 2014. EXPANDS: expanding ploidy and allele frequency on nested subpopulations. *Bioinformatics*, *30*(1), pp.50-60.

[4] Efron, B., 1992. Bootstrap methods: another look at the jackknife. In *Breakthroughs in statistics* (pp. 569-593). Springer, New York, NY.