SICO7O SISTEMAS INTELIGENTES 2

Aula 00 - Plano da disciplina

Prof. Rafael G. Mantovani

Quais os diferentes paradigmas da Inteligência Artificial?

IA Simbólica

IA Conexionista

IA Evolutiva

IA Distribuída

IA Simbólica

IA Conexionista

IA Evolutiva

IA Distribuída

Paradigma Conexionista

(cérebro)

Paradigma Conexionista

(cérebro)

Algumas características (cérebro)

- * A computação (cálculos) é realizada diferentemente de um computador
- * é uma estrutura altamente complexa, não-linear e paralela
- * Muito eficiente para tarefas de reconhecimento de padrão, percepção, e controle motor (locomoção)

Muito interessante, mas quais **tipos de tarefas** o cérebro nos ajuda a realizar?

Visão humana

Visão humana

Visão humana

interação com o ambiente

Os olhos captam os estímulos visuais, isso é percebido e transmitido para o cérebro: que processa informação e dispara uma ação (movimento, etc). Isso se repete, a todo momento, num ciclo de **percepção-(re)ação**.

interação com o ambiente

Outro exemplo: sonar morcego

Sonar morcego

Como o cérebro faz tudo isso?

- Inteligência Artificial
- Automatiza a construção de modelos para solucionar problemas!

Roteiro

- 1 Ementa
- **2** Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

Roteiro

- 1 Ementa
- 2 Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

- > 1. Redes Neurais Artificiais (RNAs)
- > 2. Deep Learning (DL)
- > 3. Ensembles
- > 4. Meta-heurísticas

> 2. Deep Learning (DL)

> 3. Ensembles

> 4. Meta-heurísticas

Nível de dificuldade

> 3. Ensembles

> 4. Meta-heurísticas

> 5. Projeto

Nível de dificuldade

Roteiro

- 1 Ementa
- 2 Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

Cronograma

Agosto

RNAs

Setembro

RNAs, DL

Outubro

DL, SVMs

Novembro

Ensembles, Meta-heurísticas **Dezembro**

Projeto

Cronograma

Roteiro

- 1 Ementa
- **2** Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

Atividades/Codificação em sala de Aula

Atividades/Codificação em sala de Aula

Atividades Práticas com uso algoritmos para resolução de problemas (+ relatórios, + códigos)

Atividades/Codificação em sala de Aula

Atividades Práticas com uso algoritmos para resolução de problemas (+ relatórios, + códigos)

Projeto da disciplina

Atividades/Codificação em sala de Aula

Atividades Práticas com uso algoritmos para resolução de problemas (+ relatórios, + códigos)

Projeto da disciplina

Avaliações

Atividades práticas

Implementação/uso de algoritmos de IA para solução de problemas reais:

```
ATO1: Redes Neurais (MLPs, RBFs, ...)
```

- ATO2: Auto-Encoders (AEs)
- AT03: CNNs (imagens)
- ATO4: LSTM (sinais, ...)
- ATO5: Ensembles
- AT06: Meta-heurísticas [SE PRECISAR]

Atividades práticas

- Prazos: 1-2 semanas para desenvolvimento e entrega
- Dupla (evitar o plágio)
- Nota avaliada:

Projeto

- Planejamento/Execução dos Projetos
 - checkpoint 1: 12/09/23
 - checkpoint 2: 16/10/23
 - apresentações: 11 e 12/12/23
 - □ Exame: 18/12 → Todo conteúdo da disciplina

Projeto

- Planejamento/Execução dos Projetos
 - checkpoint 1: 12/09/23 [Apresentação das Propostas]
 - checkpoint 2: 16/10/23
 - apresentações: 11 e 12/12/23
 - □ Exame: 18/12 → Todo conteúdo da disciplina

Aulas/Atividades

Linguagem/IDEs:

Aulas/Atividades

Linguagem/IDEs:

Escolha sabiamente!

Média Final

Média Final

Média Final && Exame

Roteiro

- 1 Ementa
- **2** Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

Páginas com material

Disciplina: Sistemas Inteligentes 2

Professor: Dr. Rafael Gomes Mantovani

E-mail: rafaelmantovani@utfpr.edu.br / rgmantovani@gmail.com. Colocar no Assunto do email: SICO7O

Obs: Imagem gerada por IA (DALL-E): https://labs.openai.com/e/7Ci3vewjps4qZybJUNMy5X9X/96JeKPr83EYWw267

ais: conceitos e fundamentos; *Perceptron*; *Adaline*; *Perceptron* multicamadas (MLP); Algoritmo *Backpropagation*; Máqu /Ms). Modelos de Aprendizagem Profunda: Deep Learning e Rede neural Convolucional, AutoEncoders, LSTMs. Técnica pting, Boosting, Bagging, Florestas aleatórias (Random Forest). Meta-heurísticas: computação evolutiva; Inteligência de

Páginas com material

Disciplina: Sistemas Inteligentes 2

Professor: Dr. Rafael Gomes Mantovani

Senha: si2-2023

E-mail: rafaelmantovani@utfpr.edu.br / rgmantovani@gmail.com. Colocar no Assunto do email: SICO7O

Obs: Imagem gerada por IA (DALL-E): https://labs.openai.com/e/7Ci3vewjps4qZybJUNMy5X9X/96JeKPr83EYWw267

ais: conceitos e fundamentos; *Perceptron*; *Adaline*; *Perceptron* multicamadas (MLP); Algoritmo *Backpropagation*; Máqu (Ms). Modelos de Aprendizagem Profunda: Deep Learning e Rede neural Convolucional, AutoEncoders, LSTMs. Técnica sting, Boosting, Bagging, Florestas aleatórias (Random Forest). Meta-heurísticas: computação evolutiva; Inteligência de

Páginas com material (Mirror)

https://github.com/rgmantovani/intelligentSystems2

Telegram

https://t.me/+Cn6XEEMpALY5YTFh

Roteiro

- 1 Ementa
- **2** Cronograma
- 3 Avaliações
- 4 Páginas com material da disciplina
- 5 Referências

Referências sugeridas

[Haykin, 2000]

[Luger, 2013]

Referências sugeridas

[Russel & Nerving, 2013]

[Luke, 2016]

Referências sugeridas

(Freeman & Skapura, 1991)

Informações Gerais

P-Aluno:

- **Terças** (T2-T4): 13:50 15:20
- **Sextas** (T2-T4): 13:50 15:20

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br

Links Interessantes:)

- R for Data Science: https://r4ds.had.co.nz
- Tidyverse: https://www.tidyverse.org
- mlr: https://mlr.mlr-org.com
- mlr3: https://mlr3.mlr-org.com
- Skicit learn: https://www.tidyverse.org
- matplotlib: https://matplotlib.org
- OpenML: https://www.openml.org
- UCI: https://archive.ics.uci.edu/ml/index.php
- RStudio: https://rstudio.com
- Spyder: https://www.spyder-ide.org