

Webinar: Hardening básico de Linux

Material adicional

ÍNDICE

Ejercicio práctico Ejercicio de investigación INDICE DE CUADROS	

1. EJERCICIO PRÁCTICO

El objetivo del ejercicio es configurar el arranque y el firewall de un servidor con la instalación por defecto.

Para el arranque, la configuración que se exige es la siguiente:

- El servidor debe solicitar una contraseña para arrancar.

Y para el firewall:

- Denegar todo el tráfico entrante y saliente.
- Permitir el tráfico entrante a los servicios DNS, HTTP, HTTPS, SNMP y SSH.
- Permitir el tráfico saliente a los servicios DNS y SYSLOG.

Resolución del ejercicio:

Para la configuración del arranque primero se debe crear un *hash* de la contraseña con el comando:

grub-mkpasswd-pbkdf2

Solicita una contraseña, introducimos por ejemplo "iPSK=BZ]aav*El^N' y nos devuelve una cadena.

La salida del comando sería una cadena parecida a la siguiente:

Enter password:

Reenter password:

PBKDF2 hash of your password is grub.pbkdf2.sha512.10000.FB11E8E745C23174644A5A14726ABA1883A296AB181DEFA 33055AE739B44D91022D7EB5CDF4A2B5568EF0959220319C1BD2BB82E6D760BA84D55F95 CFDBCA86E.D23381F3EEB6E7B1F19230DFDBA2209EA0551365B13A36711CC1079E36A3D0 1494DC796BD5F6D94057E1A72FD629D5BA567A47343D985246667584BE45427FB3

Creamos y editamos el fichero /etc/grub.d/init-pwd y añadimos las siguientes líneas:

cat <<EOF

set superusers="root"

password_pbkdf2

root

grub.pbkdf2.sha512.10000.FB11E8E745C23174644A5A14726ABA1883A296AB181DEFA 33055AE739B44D91022D7EB5CDF4A2B5568EF0959220319C1BD2BB82E6D760BA84D55F95 CFDBCA86E.D23381F3EEB6E7B1F19230DFDBA2209EA0551365B13A36711CC1079E36A3D0 1494DC796BD5F6D94057E1A72FD629D5BA567A47343D985246667584BE45427FB3

EOF

Guarda y le damos permisos de ejecución:

chmod +x /etc/grub.d/init-pwd

Para la configuración del FW, para denegar todo el tráfico debemos ejecutar los siguientes comandos:

ufw default deny incoming

ufw default deny outgoing

ufw default deny routed

Para habilitar los servicios en el servidor: DNS, HTTP, HTTPS, SNMP y SSH

ufw allow in 53/tcp para DNS

ufw allow in 53/udp para DNS

ufw allow in 80/tcp para HTTP

ufw allow in 443/tcp para HTTPS

ufw allow in 161/udp para SNMP

ufw allow in 22/tcp para SSH

Y por último para habilitar el acceso a servicios DNS y SYSLOG:

ufw allow out to any port 53

ufw allow out to any port 514

2. EJERCICIO DE INVESTIGACIÓN

Dado el siguiente fichero de configuración de sudo, el usuario básico incibe tendría permisos de *root* para ejecutar solo el comando /usr/bin/vim ¿Podría el usuario incibe obtener una consola de comandos como *root* y ejecutar cualquier comando como tal? Si es posible, ¿Qué medidas hay que tomar para evitar este tipo de vulnerabilidades?

```
# User privilege specification
root ALL=(ALL:ALL) ALL
incibe ALL=(ALL:ALL) /usr/bin/vim

# Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

# Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL
```

Cuadro 1 Configuración de sudo

Pista: Revisar opciones del comando /usr/bin/vim

Resolución del ejercicio: el usuario incibe tiene permisos para ejecutar el binario /usr/bin/vim con elevación de privilegios. "Vim" es un editor de texto que permite la opción de ejecutar una consola de comandos desde el mismo. Para ello ejecuta el comando

■ sudo /usr/bin/vim prueba.txt

Una vez en el editor de texto ejecutamos

sh:

Y obtenemos una consola de comandos como root.

Otra opción es editar el fichero /etc/shadow

sudo /usr/bin/vim /etc/shadow

Y cambiar directamente la contraseña de *root*, elevar privilegios con "*su*" y obtener consola interactiva con el usuario *root*.

Para evitar este tipo de vulnerabilidades, siempre se debe asegurar que el comando o comandos que se le permite ejecutar a un usuario como *root*, no permita obtener *shells* dinámicas o un parámetro que permita ejecutar comandos, ni editar ficheros sensibles del sistema.