

Б. М. ВЕРЕТЕННИКОВ М. М. МИХАЛЕВА

АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ

Часть І

Учебное пособие

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

Б. М. Веретенников, М. М. Михалева

АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ

Часть І

Рекомендовано методическим советом УрФУ в качестве **учебного пособия** для студентов, обучающихся по направлению подготовки 010500.68 – Теоретические основы информатики

Екатеринбург Издательство Уральского университета 2014 УДК 511+512(075.8) ББК 22.13я73+22.14я73 В31

Рецензенты:

кафедра Прикладной математики Уральского государственного экономического университета; протокол №1 от 29.08.2013 г. (завкафедрой, канд. физ.-мат. наук, доц. Ю. Б. Мельников);

И. Н. Белоусов, канд. физ.-мат. наук (Институт математики и механики УрО РАН)

Научный редактор – канд. физ.-мат. наук, доц. Н. В. Чуксина

Веретенников, Б. М.

В31 Алгебра и теория чисел: учебное пособие / Б. М. Веретенников, М. М. Михалева. – Екатеринбург: Изд-во Урал. ун-та, 2014. – Ч. 1. – 52 с.

ISBN 978-5-7996-1193-4 (ч. 1) ISBN 978-5-7996-1166-8

Учебное пособие включает в себя такие разделы курса «Алгебра и теория чисел», как элементарная теория чисел, теория сравнений, цепные и непрерывные дроби, p-адические числа. Предназначено для студентов института радиоэлектроники и информационных технологий — $PT\Phi$.

Библиогр.: 8 назв.

УДК 511+512(075.8) ББК 22.13я73+22.14я73

ISBN 978-5-7996-1193-4 (ч. 1) ISBN 978-5-7996-1166-8 © Уральский федеральный университет, 2014

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ГЛАВА І. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ЧИСЕЛ	5
§ 1. Основные теоремы	5
§ 2. Наибольший общий делитель целых чисел (НОД)	6
§ 3. Взаимно простые числа	8
ГЛАВА II. ТЕОРИЯ СРАВНЕНИЙ	
§ 4. Основные понятия	9
§ 5. Алгебраические действия с классами вычетов	10
\S 6. Обратимые элементы в $\mathbb{Z}/n\mathbb{Z}$	12
§ 7. Функция Эйлера и ее свойства	15
§ 8. Решение линейных сравнений с помощью функции Эйлера	18
§ 9. Китайская теорема об остатках	18
§ 10. Обобщение китайской теоремы об остатках	21
§ 11. Примеры решения задач по теории сравнений	21
ГЛАВА III. ЦЕПНЫЕ И НЕПРЕРЫВНЫЕ ДРОБИ	28
§ 12. Разложение рационального числа в цепную дробь	28
§ 13. Подходящие дроби	29
§ 14. Применение цепных дробей к решению линейных	
сравнений	
§ 15. Непрерывные дроби	
§ 16. Разложение по степеням двучлена по схеме Горнера	37
§ 17. Применение цепных дробей к приближенному решению уравнений	38
ГЛАВА IV. СРАВНЕНИЯ ПО МОДУЛЮ p^k И p -АДИЧЕСКИЕ	
ЧИСЛА	
\S 18. Решение сравнений по модулю p^k	
§ 19. <i>p</i> -адические числа	44
CHIACOK HATEDATVOLI	10

ВВЕДЕНИЕ

Данное пособие базируется на лекциях, которые читались первым автором на радиотехническом факультете, сейчас ИРИТ-РтФ, студентам специальности МОАИС (математическое обеспечение и администрирование информационных систем) в течение ряда лет. В предлагаемой читателям первой части этого пособия рассматриваются элементарная теория чисел, теория сравнений, цепные и непрерывные дроби и немного теории р-адических чисел. Почти все теоремы приведены с доказательствами, разобрано много примеров вычислительного характера и приведено достаточно задач для самостоятельного решения. Мы надеемся, что усвоив методы, изложенные в пособии, читатель сможет применять их в различных областях математики и информатики, а также будет готов к изучению следующих разделов теории чисел: квадратичные вычеты, первообразные корни, алгебраическая теория чисел и т. д. Пособие может быть использовано в учебном процессе студентами и преподавателями Уральского федерального университета.

ГЛАВА І. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ЧИСЕЛ

§ 1. Основные теоремы

Рациональное число – отношение целых чисел, обозначение:

$$Q = \left\{ \frac{p}{q} \middle| p, \ q \in \mathbb{Z}, \ q \neq 0 \right\}.$$

Определение 1. Натуральное число, отличное от единицы, называется простым числом, если его натуральными делителями являются только единица и оно само.

Теорема Евклида. Ряд простых чисел бесконечен.

Доказательство.

Предположим, что p — самое большое простое число. Рассмотрим число $n = (1 \cdot 2 \cdot 3 \dots p) + 1$, где первое слагаемое — произведение всех простых чисел. Число n должно делиться на какое-то простое число $q \le p$. Тогда из определения n следует, что $q \mid 1$. Получили противоречие, которое доказывает теорему.

Определение 2. Если натуральное число не простое и не равно единице, то оно называется составным.

Теорема 1 (о делении с остатком). Для любых целых чисел a и b при $b \neq 0$ существует единственная пара целых чисел q и r таких, что a = bq + r, где $0 \le r < |b|$ (a — делимое, b — делитель, q — частное, r — остаток).

Доказательство вытекает из процесса деления уголком или проводится методом индукции.

Теорема 2 (о факторизации натуральных чисел). Любое натуральное число n ($n \ge 2$) представимо в виде $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots p_s^{\alpha_s}$, где все p_i — простые, α_i — натуральные числа. Данное представление однозначно с точностью до порядка сомножителей. Доказательство проводится индукцией по n.

Пример. Разложить на множители число 12.

 $12 = 2^2 \cdot 3 = 3 \cdot 2^2$ (сомножители называются факторами).

Задачи для самостоятельного решения

- 1) Найти частное и остаток от деления: а) 1207 на 151; б) –425 на 3.
- 2) Найти наибольшее целое число, дающее при делении на 13 частное 17.
 - 3) Разложить на множители числа 39 660 и 75 600.
- 4) Доказать, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов (т. е. тройкой простых чисел, составляющих арифметическую прогрессию с разностью 2).
- 5) Найти такое простое число p, чтобы числа $4p^2 + 1$ и $6p^2 + 1$ были простыми.

Ответы:

- 1а) 7 и 150; б) –142 и 1.
- 2) 233.
- 3) $39660 = 2^3 \cdot 3^2 \cdot 5 \cdot 11$, $75600 = 2^4 \cdot 3^3 \cdot 5^2 \cdot 7$.
- 4) рассмотрим числа p, p+2 и p+4 (p>3). Положим p=3q+1 ($q=2,4,\ldots$), тогда p+2- число составное (кратное 3). Если p=3 q+2 ($q=1,3,\ldots$), то составным является число p+4.
 - 5) p = 5 (рассмотреть случаи $p = \pm 1 + 5k$, $p = \pm 2 + 5k$, $k \in \mathbb{Z}$).

§ 2. Наибольший общий делитель целых чисел (НОД)

Определение 3. Пусть a и b — целые числа. Тогда натуральное число d называется наибольшим общим делителем этих чисел (d = HOД(a, b)), если

- 1) d делитель и a и b;
- 2) если d' другой делитель a и b, то d' делит d (d'|d).

НОД находится с помощью алгоритма Евклида.

Если b=0, то НОД (a,0)=a, где $a\in\mathbb{N}$, НОД (0,0) не определен. Пусть $a,b\in\mathbb{Z}$ $(a,b\neq 0)$.

$$\begin{split} &a\!=\!b\,q_1\!+\!r_1,\; 0\!\leq\! r_1\!<\!\!|b|,\\ &b\!=\!r_1\,q_2\!+\!r_2,\; 0\!\leq\! r_2\!<\!r_1,\\ &r_1\!=\!r_2\,q_3\!+\!r_3,\; 0\!\leq\! r_3\!<\!r_2,\\ &\dots\\ &r_{s-2}\!=\!r_{s-1}\,q_s\!+\!r_s,\; 0\!\leq\! r_s\!<\!r_{s-1},\\ &r_{s-1}\!=\!r_s\,q_{s+1}\!+\!r_{s+1},\; 0\!\leq\! r_{s+1}\!<\!r_s,\\ \end{split}$$

 $|b| > r_1 > r_2 > r_3 > \dots$ Так как r_i — натуральные числа, то процесс конечен и на некотором шаге получим $r_s = r_{s+1} q_{s+2}$.

Теорема 3.
$$r_{s+1} = \text{НОД}(a,b)$$
.

Доказательство.

То, что r_{s+1} делит a и b, устанавливается из данной цепочки равенств рассуждением снизу вверх: $r_{s+1}|r_s$, откуда из второго равенства снизу вытекает, что $r_{s+1}|r_{s-1}$, далее, поднимаясь выше, получим $r_{s+1}|r_{s-2}$ и т. д. В конце этого подъема получим $r_{s+1}|b$, затем $-r_{s+1}|a$. Пусть теперь k|a,k|b. Тогда, рассуждая по цепочке сверху вниз, имеем $k|r_1$, из второго равенства $k|r_2$ и т. д. В итоге получим $k|r_{s+1}$.

Теорема доказана.

Пример. Найти НОД чисел a = 2151, b = 1935.

Применяем алгоритм Евклида:

$$2151 = 1935 \cdot 1 + 216,$$

 $1935 = 216 \cdot 8 + 207,$
 $216 = 207 \cdot 1 + 9,$
 $207 = 9 \cdot 23,$
 $HOJ(2151, 1935) = 9.$

Теорема 4. Пусть d = HOД(a, b). Тогда существуют такие целые числа u и v, что au + bv = d.

Доказательство.

Используем снова равенства в алгоритме Евклида сверху вниз: $r_1 = a - b \, q_1 = a u_1 + b v_1$, где $u_1 = 1, v_1 = -q_1$. Из второго равенства вытекает, что $r_2 = b - r_1 \, q_2 = b - (a u_1 + b v_1) q_2 = a u_2 + b v_2$ для некоторых целых u_2, v_2 . Продолжая этот процесс, доходим до предпоследнего равенства в данном алгоритме: $r_{s+1} = (a u_{s-1} + b v_{s-1}) - (a u_s + b v_s) q_s = a u_{s+1} + b v_{s+1}$ для некоторых целых u_{s+1}, v_{s+1} .

Теорема доказана.

Задачи для самостоятельного решения

- 1) Найти НОД чисел 420, 126, 525.
- 2) Доказать, что НОД двух последовательных четных чисел равен 2, а нечетных 1.
 - 3) Найти НОД (10*n*+9, *n*+1).

Ответы:

- 1) НОД (420, 126, 525) = 3 (по рекуррентной формуле НОД (a_1, a_2, a_3) = НОД (НОД $(a_1, a_2), a_3$).
- 2) НОД (2n,2n+2)=2НОД (n,n+1)=2; НОД (2n+1,2n+3)=1 (доказывается с помощью алгоритма Евклида). 3) 1.

§ 3. Взаимно простые числа

Определение 4. Два целых ненулевых числа называются взаимно простыми, если их наибольший общий делитель равен единице.

Теорема 5. Пусть a и b целые ненулевые числа. Тогда

- 1) a и b взаимно простые тогда и только тогда, когда существуют целые u и v такие, что au+bv=1;
 - 2) если ab делится на c и a и c взаимно простые, то b делится на c;
- 3) если a делится на b, a делится на c и b и c взаимно просты, то a делится на bc.

Доказательство.

- 1) Необходимость, очевидно, вытекает из предыдущей теоремы. Пусть теперь au+bv=1 и $d\in\mathbb{N}, d|a,d|b$. Тогда d|(au+bv)=1, т. е. d=1.
- 2) По пункту 1 найдутся целые u, v такие, что au+cv=1. Умножив это равенство на b, получим abu+cbv=b, откуда имеем c|b, т. к. c|(abu) по условию и c|(cbv) очевидным образом.
 - 3) Можно считать, что $a, b, c \in \mathbb{N}$.

$$b = p_1^{\beta_1} \cdot p_2^{\beta_2} \dots p_s^{\beta_s}$$
, $c = q_1^{\gamma_1} \cdot q_2^{\gamma_2} \dots q_r^{\gamma_r}$; p_i, q_j – простые, $p_i \neq q_j \ \forall i, j$.

По условию и ввиду теоремы 2 $a = M \cdot p_1^{\beta_1'} \cdot p_2^{\beta_2'} \dots p_s^{\beta_s'} \cdot q_1^{\gamma_1'} \cdot q_2^{\gamma_2'} \dots q_r^{\gamma_r'}$, где $M \in \mathbb{N}$ и $\beta_i' \geq \beta_i$, $\gamma_i' \geq \gamma_i$, откуда a делится на bc.

Теорема доказана.

Задачи для самостоятельного решения

- 1) Найти НОД чисел a + b и ab, если НОД (a, b) = 1.
- 2) Доказать, что если НОД (a, b) = 1, то НОД (a + b, a b) = 1 или НОД (a + b, a b) = 2.

Ответы:

- 1) НОД (a + b, ab) = 1.
- 2) пусть НОД (a+b, a-b) = d, тогда a+b=dx и a-b=dy, откуда 2a=d(x+y) и 2b=d(x-y). Следовательно, d|(2a), d|(2b). Но (2a, 2b) = 2, поэтому d|2 и либо d=1, либо d=2.

ГЛАВА II. ТЕОРИЯ СРАВНЕНИЙ

§ 4. Основные понятия

Определение 5. Пусть n — фиксированное натуральное число, a и b — целые числа. Тогда a сравнимо с b по модулю n, если a — b делится на n (a \equiv b mod n).

Теорема 6.

- 1) $a \equiv a \mod n \ \forall a$;
- 2) $a \equiv b \mod n \Rightarrow b \equiv a \mod n$;
- 3) $a \equiv b \mod n$, $b \equiv c \mod n \Rightarrow a \equiv c \mod n$.

Доказательство.

- 1) Очевидно.
- 2) Следует из того, что если (a-b) делится на n, то и (b-a) делится на n.
- 3) Следует из того, что если (a-b) и (b-c) делятся на n, то и (a-c)=(a-b)+(b-c) делится n.

Определение 6. Класс вычетов по модулю n с представителем a равен $\{b \in \mathbb{Z} | b \equiv a \bmod n\}$.

Обозначается этот класс как \overline{a} .

 $b \equiv a \mod n \Rightarrow b - a = nz \Rightarrow b = a + nz$.

Поэтому $\overline{a} = a + n\mathbb{Z}$.

Теорема 7 (о классах вычетов).

- 1) $a \in \overline{a} = a + n\mathbb{Z} \ \forall a$;
- 2) $b \in \overline{a} \Rightarrow \overline{b} = \overline{a}$;
- 3) разные классы вычетов по модулю n не пересекаются;

4) для любого класса \overline{a} по модулю n $\overline{a} = \overline{r}$, где r – остаток от деления a на n.

Доказательство.

- 1) Очевидно.
- 2) $b \in \overline{a} \Rightarrow b = a + nz$ для некоторого целого $z \Rightarrow \overline{b} = a + nz + n\mathbb{Z} = a + n\mathbb{Z} = \overline{a}$.
 - 3) $\overline{a} \cap \overline{b} \neq \emptyset \Rightarrow \exists c \in \overline{a} \cap \overline{b} \Rightarrow \overline{a} = \overline{c} = \overline{b} \Rightarrow \overline{a} = \overline{b}$.
 - 4) $a = nq + r \Rightarrow a \in \overline{r} \Rightarrow \overline{a} = \overline{r}$ по пункту 2.

Теорема доказана.

Следствие. Множество всех классов вычетов по модулю n равно $\{\overline{0},\overline{1},...,\overline{n-1}\}$ (состоит из n различных классов).

Множество всех классов вычетов по модулю n обозначается $\mathbb{Z}/n\mathbb{Z}$.

Определение 7. Каноническими представителями своих классов называются 0,1,...,n-1.

Пример. В $\mathbb{Z}/7\mathbb{Z}$ $\overline{5} = \overline{12} = \overline{-2} = \overline{40} = ...$, но каноническим представителем в $\overline{5}$ является 5.

Задачи для самостоятельного решения

- 1) Какие из следующих сравнений являются верными:
- a) $1 \equiv -5 \mod 6$; 6) $546 \equiv 0 \mod 13$; B) $2^3 \equiv 1 \mod 4$; Γ) $3m \equiv -1 \mod m$?
 - 2) Найти значения m, удовлетворяющие условию:
- а) $20 \equiv 8 \mod m$; б) $3p+1 \equiv p+1 \mod m$ (p- простое число).
 - 3) Доказать, что если $3^n \equiv -1 \mod 10$, то $3^{n+4} \equiv -1 \mod 10$ ($n \in \mathbb{N}$). Ответы:
 - (1) a) и б) верные, в) и г) нет.
 - (2) a) m = 1, 2, 3, 4, 6, 12; 6) <math>m = 1, 2, p, 2p.
 - 3) для доказательства использовать сравнение $3^4 \equiv 1 \mod 10$.

§ 5. Алгебраические действия с классами вычетов

Определение 8. Определим операции сложения и умножения в $\mathbb{Z}/n\mathbb{Z}$ следующим образом: $\overline{a}+\overline{b}=\overline{a+b}$, $\overline{a}\cdot\overline{b}=\overline{a\cdot b}$ для любых \overline{a} , $\overline{b}\in\mathbb{Z}/n\mathbb{Z}$.

Докажем прежде всего корректность этого определения.

Пусть $\overline{c} = \overline{a}$, $\overline{d} = \overline{b}$. Надо доказать, что $\overline{c+d} = \overline{a+b}$, $\overline{c\cdot d} = \overline{a\cdot b}$.

Имеем c=a+nz, d=b+nw для некоторых $z,w\in\mathbb{N}$. Тогда $c+d=(a+b)+n(z+w)\in\overline{a+b}$, откуда, по второму свойству теоремы 7 $\overline{c+d}=\overline{a+b}$. Далее, $c\cdot d=(a\cdot b)+n(z+w)+n^2zw\in\overline{a\cdot b}$, откуда $\overline{c\cdot d}=\overline{a\cdot b}$.

Корректность определения доказана.

Пример. В
$$\mathbb{Z}/13\mathbb{Z}$$
: $\overline{7} \cdot \overline{11} = \overline{77} = \overline{12} = \overline{-1}$ (77=13·5+12); $\overline{5^6} = \left(\overline{5^2}\right)^3 = \left(\overline{-1}\right)^3 = \overline{-1} = \overline{12}$.

Теорема 8. $\mathbb{Z}/n\mathbb{Z}$ относительно операций сложения и умножения – коммутативное, ассоциативное кольцо с единицей (роль единицы играет $\overline{1}$, а роль нуля играет $\overline{0}$).

Доказательство.

Поскольку сложение и умножение классов вычетов сводится к сложению и умножению их представителей — целых чисел, а множество $\mathbb Z$ относительно обычного сложения и умножения чисел — ассоциативное коммутативное кольцо с единицей, где роль единицы играет 1, а роль кольцевого нуля играет 0, то справедливость теоремы для $\mathbb Z/n\mathbb Z$ становится ясной.

Теорема доказана.

Теорема 9. Пусть n > 1. Тогда $\mathbb{Z}/n\mathbb{Z}$ — поле $\Leftrightarrow n$ — простое число.

Доказательство.

Необходимость. Предположим противное: n = pq, 1 , <math>1 < q < n. Тогда $\overline{pq} = \overline{n} = \overline{0}$, причем $\overline{p} \neq \overline{0}$, $\overline{q} \neq \overline{0}$, т. е. \overline{p} и \overline{q} — делители нуля в $\mathbb{Z}/n\mathbb{Z}$. Но в поле не может быть делителей нуля. Полученное противоречие доказывает требуемое.

Достаточность.

Пусть n — простое число, $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$, $\overline{a} \neq \overline{0}$. Тогда $\overline{a} = \overline{j}$, где $1 \leq j \leq n-1$, и т. к. n — простое, то j взаимно просто с n. По пункту 1 теоремы 5 найдутся целые x и y такие, что jx+ny=1. Тогда в $\mathbb{Z}/n\mathbb{Z}$ имеем: $\overline{j} \, \overline{x} + \overline{n} \, \overline{y} = \overline{1}$ и, т. к. $\overline{n} = \overline{0}$, то $\overline{j} \, \overline{x} = \overline{1}$. Этим мы доказали, что в $\mathbb{Z}/n\mathbb{Z}$ любой не нулевой класс имеет обратный. Следовательно, $\mathbb{Z}/n\mathbb{Z}$ — поле.

Теорема доказана.

$$\mathbb{Z}/2\mathbb{Z} = \left\{\overline{0}, \overline{1}\right\};$$
$$\mathbb{Z}/3\mathbb{Z} = \left\{\overline{0}, \overline{1}, \overline{2}\right\};$$

. . .

$$\mathbb{Z}/p\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{p-1}\}.$$

 $\mathbb{Z}/p\mathbb{Z}$ = GF(p) = F_p называется полем Галуа порядка p.

Пример.

 $\mathbb{Z}/3\mathbb{Z}$ имеет следующие таблицы Кэли для сложения и умножения:

 $\overline{1}+\overline{2}=\overline{3}=\overline{0}$, $\overline{2}+\overline{2}=\overline{4}=\overline{1}$, $\overline{2}\cdot\overline{2}=\overline{4}=\overline{1}$. Заметим, что в вычислениях в $\mathbb{Z}/3\mathbb{Z}$ черточки над представителями классов можно не писать и считать, что $\mathbb{Z}/3\mathbb{Z}=\!\{0,1,2\}$ или $\mathbb{Z}/3\mathbb{Z}=\!\{0,1,-1\}$.

Аналогично, $\mathbb{Z}/2\mathbb{Z} = \{0,1\}$. Так что $\mathbb{Z}/2\mathbb{Z}$ имеет следующие таблицы Кэли:

Задачи для самостоятельного решения

- 1) Указать все классы вычетов: а) взаимно простых с модулем 10; б) имеющих с модулем 10 НОД, равный 2; в) имеющих с модулем 10 НОД, равный 5; г) имеющих с модулем 10 НОД, равный 10.
 - 2) Составить таблицы Кэли для $\mathbb{Z}/4\mathbb{Z}$.

Ответы к задаче 1a) $\overline{1}$, $\overline{3}$, $\overline{7}$, $\overline{9}$; 16) $\overline{2}$, $\overline{4}$, $\overline{6}$, $\overline{8}$; 1в) $\overline{5}$; 1г) $\overline{10}$.

\S 6. Обратимые элементы в $\mathbb{Z}/n\mathbb{Z}$

Определение 9. Пусть $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Тогда \overline{b} обратный к \overline{a} , если $\overline{a} \cdot \overline{b} = \overline{1}$.

Определение 10. \overline{a} обратим, если \overline{a} имеет обратный класс.

Множество всех обратимых классов в $\mathbb{Z}/n\mathbb{Z}$ обозначается $\left(\mathbb{Z}/n\mathbb{Z}\right)^*$.

Теорема 10.

- 1) Если \overline{a} обратим в $\mathbb{Z}/n\mathbb{Z}$, то обратный к \overline{a} определяется однозначно;
- 2) \overline{a} обратим в $\mathbb{Z}/n\mathbb{Z}$ тогда и только тогда, когда a взаимно просто с n;
 - 3) $(\mathbb{Z}/n\mathbb{Z})^*$ группа относительно умножения классов. Доказательство.
- 1) Пусть \overline{b} , \overline{c} обратные к \overline{a} в $\mathbb{Z}/n\mathbb{Z}$, тогда $\overline{a}\cdot\overline{b}=\overline{a}\cdot\overline{c}=\overline{1}\Rightarrow$ $\overline{c}=(\overline{b}\cdot\overline{a})\overline{c}=\overline{b}(\overline{a}\cdot\overline{c})=\overline{b}$. Пункт 1 доказан. В дальнейшем обратный класс к \overline{a} будем обозначать \overline{a}^{-1} .
- $\underline{2.1}$) Пусть \overline{a} обратим. Тогда существует \overline{b} такой, что $\overline{a} \cdot \overline{b} = \overline{1}$, т. е. $\overline{a \cdot b} = \overline{1}$, значит $a \cdot b \equiv 1 \mod n$ или $a \cdot b = 1 + n \cdot z$ для некоторого $z \in \mathbb{Z}$. Пусть $d \mid a$ и $d \mid n$. Тогда $d \mid 1 \Rightarrow d = 1 \Rightarrow a$ и n взаимно просты.
- 2.2) Пусть a взаимно просто с n. Тогда существуют целые u и v такие, что au+nv=1. Следовательно, $\overline{au+nv}=\overline{1}$ в $\mathbb{Z}/n\mathbb{Z}$; $\overline{a}\,\overline{u}+\overline{n}\,\overline{v}=\overline{1}$, откуда $\overline{a}\,\overline{u}=\overline{1}$, т. е. \overline{a} обратим в $\mathbb{Z}/n\mathbb{Z}$.
- 3) Пусть $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\overline{b} \in (\mathbb{Z}/n\mathbb{Z})^*$. Требуется доказать, что $\overline{a} \cdot \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\overline{1} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\overline{a}^{-1} \in (\mathbb{Z}/n\mathbb{Z})^*$.

Так как $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\overline{b} \in (\mathbb{Z}/n\mathbb{Z})^*$, то a и b взаимно просты с n, а значит, и ab взаимно просто с n, откуда $\overline{a} \cdot \overline{b} = \overline{a \cdot b} \in (\mathbb{Z}/n\mathbb{Z})^*$.

$$\overline{1} \in (\mathbb{Z}/n\mathbb{Z})^*$$
, т. к. $\overline{1}^{-1} = \overline{1}$.

 $\bar{a}\cdot\bar{a}^{-1}=\bar{1}$, следовательно, \bar{a} обратный к \bar{a}^{-1} , т. е. $\bar{a}^{-1}\in\left(\mathbb{Z}/n\mathbb{Z}\right)^*$. Теорема доказана.

Определение 11. $\left(\mathbb{Z}/n\mathbb{Z}\right)^*$ называется мультипликативной группой кольца вычетов $\mathbb{Z}/n\mathbb{Z}$.

Если
$$p$$
 простое, то $\left(\mathbb{Z}/p\mathbb{Z}\right)^* = \left\{\overline{1},\overline{2}, ..., \overline{p-1}\right\}$ и $\left|\left(\mathbb{Z}/n\mathbb{Z}\right)^*\right| = p-1$.

Теорема 11.

- 1) Если a взаимно просто с n, то в $\mathbb{Z}/n\mathbb{Z}$ $\overline{a}\cdot\overline{x}=\overline{a}\cdot\overline{y} \Rightarrow \overline{x}=\overline{y}$.
- 2) Уравнение $\overline{a} \cdot \overline{x} = \overline{b}$ при a и n взаимно простых в $\mathbb{Z}/n\mathbb{Z}$ всегда имеет единственное решение (\overline{x} неизвестное).

Доказательство.

1) По теореме 10 существует \bar{a}^{-1} , умножив обе части исходного равенства на \bar{a}^{-1} , получим

$$\bar{a}^{-1}(\bar{a}\cdot\bar{x}) = \bar{a}^{-1}(\bar{a}\cdot\bar{y}) \Longrightarrow (\bar{a}^{-1}\cdot\bar{a})\bar{x} = (\bar{a}^{-1}\cdot\bar{a})\bar{y} \Longrightarrow \bar{1}\cdot\bar{x} = \bar{1}\cdot\bar{y} \Longrightarrow \bar{x} = \bar{y}.$$

2) Очевидно, что $\bar{a}^{-1}\cdot\bar{b}$ решение уравнения $\bar{a}\cdot\bar{x}=\bar{b}$:

$$\bar{a}\left(\bar{a}^{-1}\cdot\bar{b}\right) = \left(\bar{a}\cdot\bar{a}^{-1}\right)\bar{b} = \bar{1}\cdot\bar{b} = \bar{b}$$
.

Единственность $\begin{cases} \bar{a}\cdot\bar{x}_1=\bar{b},\\ \bar{a}\cdot\bar{x}_2=\bar{b}, \end{cases} \Rightarrow \bar{x}_1=\bar{x}_2$ в силу пункта 1.

Теорема доказана.

Теорема 11 используется для решения линейного диофантова уравнения ax+by=1, где x,y — неизвестные (a,b,x,y — целые числа).

Пример. 13x+17y=3 – линейное диофантово уравнение.

Перейдем к классам вычетов по модулю 13: $\overline{13x+17y}=\overline{3}$ в $\mathbb{Z}/13\mathbb{Z}$; $\overline{13}\overline{x}+\overline{17}\overline{y}=\overline{3} \Rightarrow \overline{17}\overline{y}=\overline{3} \Rightarrow \overline{4}\overline{y}=\overline{3}$.

 $\overline{y} = \overline{4}$ (решение находим подбором) $\Rightarrow y = 4 + 13k, k \in \mathbb{Z}$;

13x+17(4+13k)=3; $13x=3-68-17\cdot13k$; x=-5-17k.

Ответ:

$$\begin{cases} x = -5 - 17k, \\ y = 4 + 13k, \quad k \in \mathbb{Z}. \end{cases}$$

Задачи для самостоятельного решения

Решить уравнения в целых числах 1) 9x-23y=10; 2) 13x-19y=9; 3) 9x+13y=-5.

Ответ:

1)
$$\begin{cases} x = -4 + 23k, \\ y = -2 + 9k, \quad k \in \mathbb{Z}. \end{cases}$$

2)
$$\begin{cases} x=8+19k; \\ y=5+13k; \end{cases} k \in \mathbb{Z}.$$
3)
$$\begin{cases} x=-2-13k; \\ y=1+9k; \end{cases} k \in \mathbb{Z}.$$

3)
$$\begin{cases} x = -2 - 13k; \\ y = 1 + 9k; \end{cases} \quad k \in \mathbb{Z}.$$

§ 7. Функция Эйлера и ее свойства

Определение 12. Пусть n — натуральное число. Тогда $\varphi(n)$ число натуральных чисел k таких, что $1 \le k \le n$ и k взаимно просто с n.

 $\varphi(n)$ – называется функцией Эйлера.

$$\varphi(1)=1$$
, $\varphi(2)=1$, $\varphi(3)=2$, $\varphi(4)=2$.

Лемма 1. Пусть p — простое, k — натуральное число.

Тогда 1) $\varphi(p)=p-1$; 2) $\varphi(p^k)=p^{k-1}(p-1)$.

Доказательство.

- 1) Очевидно.
- 2) Посчитаем, сколько в $[1, p^k]$ целых чисел, не взаимно простых с p^k , т. е. делящихся на p: $p, 2p, 3p, ..., p^{k-1}p = p^k$. В результате получим p^{k-1} чисел, не взаимно простых с p^k . Тогда $\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1).$

Лемма доказана.

Примеры.
$$\varphi(27) = \varphi(3^3) = 3^2(3-1) = 18$$
; $\varphi(2^k) = 2^{k-1}(2-1) = 2^{k-1}$.

Определение 13. Класс \overline{a} в $\mathbb{Z}/n\mathbb{Z}$ называется примитивным, если a взаимно просто с n (т. е. \overline{a} – обратимый).

Лемма 2. $\varphi(n)$ — число примитивных классов в $\mathbb{Z}/n\mathbb{Z}$, т. е. $\varphi(n) = \left| \left(\mathbb{Z}/n\mathbb{Z} \right)^* \right|.$

Доказательство. $\varphi(n)$ – число натуральных чисел в 1, 2, ..., n, взаимно простых с n. $\mathbb{Z}/n\mathbb{Z} = \left\{\overline{0},\overline{1},...,\overline{n-1},\overline{n}\right\} \Rightarrow \phi(n)$ — число примитивных классов в $\mathbb{Z}/n\mathbb{Z}$.

Лемма доказана.

Теорема 12 (о мультипликативности функции Эйлера). Если a и b взаимно просты, то $\varphi(a \cdot b) = \varphi(a)\varphi(b)$.

Доказательство. Выпишем представителей всех классов $\mathbb{Z}/a \cdot b \mathbb{Z}$ в прямоугольную таблицу:

0	1	 j	 <i>a</i> –1
A	1+ <i>a</i>	 j+a	 (a-1)+a=2a-1
•••		 	 •••
(b-1) a	1+(b-1) a	 j+(b-1) a	 (a-1)+(b-1) a = ab-1

Необходимо выяснить, сколько в таблице чисел, взаимно простых с ab, т. е. и с a, и с b одновременно.

Выясним, сколько взаимно простых чисел с a. Числа в j-столбце взаимно просты с a тогда и только тогда, когда j взаимно просто с a. Таких столбцов $\varphi(a)$ штук, т. е. чисел, взаимно простых с a, в таблице $\varphi(a)b$ штук.

Рассмотрим любой столбец, где j взаимно просто с a, перейдем в нем к классам вычетов по модулю b. Докажем, что все классы вычетов в этом столбце разные. Предположим, что $\overline{j+ka}=\overline{j+la}$, $0\le k,l\le b-1$ в $\mathbb{Z}/b\mathbb{Z}$. Тогда $\overline{j}+\overline{ka}=\overline{j+la}$ и, следовательно, $\overline{ka}=\overline{la}$. Так как a взаимно просто с b, то в $\mathbb{Z}/b\mathbb{Z}$ существует \overline{a}^{-1} . Преобразуем полученное равенство: $(\overline{ka})\overline{a}^{-1}=(\overline{la})\overline{a}^{-1} \Rightarrow \overline{k}=\overline{l}$, причем $0\le k,l\le b-1$, следовательно, k=l.

Доказали, что в столбце все классы по модулю b разные. Поэтому, по определению функции Эйлера, среди чисел j, j+a, ..., j+(b-1)a ровно $\varphi(b)$ чисел, взаимно простых с b.

В итоге получаем $\varphi(a)$ столбцов, в которых все числа взаимно просты с a и в каждом $\varphi(b)$ чисел, взаимно простых с b. Общее количество чисел, взаимно простых и с a, и с b равно $\varphi(a)\varphi(b)$.

Теорема доказана.

Пример.
$$\phi(24) = \phi(2^3)\phi(3) = 4.2 = 8;$$

 $\phi(35) = \phi(5)\phi(7) = 4.6 = 24.$

Теорема 13 (Эйлера). Пусть a взаимно просто с n. Тогда $a^{\phi(n)} \equiv 1 \bmod n$.

Доказательство. Выпишем все примитивные классы по модулю n в $\mathbb{Z}/n\mathbb{Z}$: $\bar{x}_1,\bar{x}_2,...,\bar{x}_{\phi(n)}$ и умножим каждый на \bar{a} . Так как x_i и a взачимно просты с n, то класс $\bar{a}\bar{x}_i=\bar{a}\bar{x}_i$ примитивен для любого i.

$$\{ar{a}ar{x}_1,ar{a}ar{x}_2,\,...,ar{a}ar{x}_{_{m{O}(n)}}\}$$
 обозначим M .

Предположим, что $\overline{ax_k} = \overline{ax_l}$; a взаимно просто с $n \Rightarrow \bar{a}^{-1}(\bar{a}\bar{x}_k) = \bar{a}^{-1}(\bar{a}\bar{x}_l) \Rightarrow \overline{x_k} = \overline{x_l}$. Доказали, что все классы в M попарно различны, т. е. множество M — это полный набор примитивных классов по модулю n. Следовательно,

$$\bar{x}_1 \cdot \bar{x}_2 \dots \bar{x}_{\varphi(n)} = \bar{a} \bar{x}_1 \cdot \bar{a} \bar{x}_2 \dots \bar{a} \bar{x}_{\varphi(n)} \implies \\
\bar{x}_1 x_2 \dots x_{\varphi(n)} = \bar{a}^{\varphi(n)} \bar{x}_1 x_2 \dots x_{\varphi(n)} \implies \bar{1} = \bar{a}^{\varphi(n)} \implies 1 \equiv a^{\varphi(n)} \mod n.$$

Теорема доказана.

Следствие (малая теорема Ферма). Если p – простое число, a не делится на p, то $a^{p-1} \equiv 1 \mod p$.

Доказательство. Следует из теоремы Эйлера, так как $\varphi(p) = p - 1$.

Пример.

Какой остаток имеет 1380¹⁹⁴⁵ при делении на 19?

Деля уголком 1380 на 19, получаем остаток 12, т. е. $\overline{1380} = \overline{12}$ в $\mathbb{Z}/19\mathbb{Z}$. Число 1945 делим с остатком на $\phi(19) = 18$: $1945 = 18 \cdot 108 + 1$. Следовательно, в $\mathbb{Z}/19\mathbb{Z}$ имеем $\overline{1380^{1945}} = \overline{12}^{18 \cdot 108 + 1} = \overline{12}^{1}$, так как по теореме Ферма $\overline{12}^{18} = \overline{1}$ в $\mathbb{Z}/19\mathbb{Z}$.

Ответ: 12.

Задачи для самостоятельного решения

1) Показать, что число 13176-1 делится на $89;\ 2)$ показать, что $(73^{12}-1)$ делится на 105.

§ 8. Решение линейных сравнений с помощью функции Эйлера

Пусть дано сравнение $a x \equiv b \mod n$ при a и n взаимно простых (x - неизвестное целое). Тогда $\overline{a} \, \overline{x} = \overline{b}$ в $\mathbb{Z}/n\mathbb{Z}$.

$$\begin{split} & \bar{a}^{-1}\bar{a}\;\bar{x} = \bar{a}^{-1}\bar{b}\;;\\ & \bar{x} = \bar{a}^{-1}\bar{b}\;;\\ & \bar{a}^{\,\phi(n)} = \bar{1} \Rightarrow \bar{a}\cdot\bar{a}^{\,\phi(n)-1} = \bar{1} \Rightarrow \;\bar{a}^{\,-1} = \bar{a}^{\,\phi(n)-1}\;. \end{split}$$

Пример. $17x \equiv 38 \mod 71$ равносильно $\overline{17}\overline{x} = \overline{38}$ в $\mathbb{Z}/71\mathbb{Z}$. Тогда $\overline{x} = \overline{17}^{-1}\overline{38}$; $\varphi(71) = 70$. По формуле выше

$$\overline{17}^{-1} = \overline{17}^{69} = \overline{17}^{64} \cdot \overline{17}^{4} \cdot \overline{17} = \overline{25} \cdot \overline{25} \cdot \overline{17} = \overline{-14} \cdot \overline{17} = \overline{-238} = \overline{-25}$$
.

Комментарии:

$$69 = 2^{6} + 2^{2} + 2^{0}; \overline{17}^{2} = \overline{289} = \overline{5}; 289 = 71 \cdot 4 + 5; 625 = 71 \cdot 8 + 57;$$

$$\overline{17}^{4} = \overline{5}^{2} = \overline{25}; \overline{17}^{8} = \overline{25}^{2} = \overline{625} = \overline{57} = \overline{-14}; \overline{17}^{16} = \overline{-14}^{2} = \overline{196} = \overline{54} = \overline{-17};$$

$$\overline{17}^{32} = \overline{289} = \overline{5}; \overline{17}^{64} = \overline{5}^{2} = \overline{25}; \overline{17}^{-1} = \overline{-25}.$$

$$\overline{x} = \overline{-25} \cdot \overline{38} = \overline{-950} = \overline{-27} = \overline{44}.$$

Ответ: $x = 44 + 71k, k \in \mathbb{Z}$.

Задачи для самостоятельного решения

Решить сравнения: a) $29x \equiv 1 \mod 17$;

б) $21x+5\equiv 0 \mod 29$; в) $19x\equiv 28 \mod 53$.

Ответ: a) $x=10+17k, k \in \mathbb{Z}$; б) $x=-3+29k, k \in \mathbb{Z}$;

в) $x=11+53k, k \in \mathbb{Z}$.

§ 9. Китайская теорема об остатках

Рассмотрим систему сравнений
$$\begin{cases} x \equiv x_1 \bmod n_1; \\ x \equiv x_2 \bmod n_2; \\ \dots \\ x \equiv x_k \bmod n_k, \end{cases}$$
 (1)

где x — неизвестное целое, числа n_i попарно взаимно простые.

Аналогично систему можно рассмотреть для многочленов над полем F:

$$\begin{cases} f(x) \equiv \varphi_1(x) \mod \psi_1(x); \\ f(x) \equiv \varphi_2(x) \mod \psi_2(x); \\ \dots \\ f(x) \equiv \varphi_k(x) \mod \psi_k(x). \end{cases}$$

 $(\psi_i(x), \psi_i(x)$ — взаимно простые при $i \neq j$ над полем F).

По аналогии с теорией чисел $f(x) \equiv \varphi(x) \mod \psi(x)$ тогда и только тогда, когда $f(x) - \varphi(x)$ делится на $\psi(x)$.

Пусть
$$N = n_1 \cdot n_2 \dots n_k$$
, $m_j = \frac{N}{n_j} = n_1 \dots n_{j-1} \cdot n_{j+1} \dots n_k$.

Например, $n_1=2, n_2=3, n_3=5$. Тогда $N{=}30, m_1=15, m_2=10, m_3=6$.

Теорема 14. Пусть x_0 — любое частное решение системы (1). Тогда все числа из $x_0 + N\mathbb{Z}$ также частные решения системы (1).

Доказательство. $\hat{x} \in x_0 + N\mathbb{Z} \implies \hat{x} \equiv x_0 \operatorname{mod} N \implies \hat{x} \equiv x_0 \operatorname{mod} n_j$ $\forall j = \overline{1,k}$, т. к. $N = n_1 \cdot n_2 \dots n_k$. Учитывая, что $x_0 \equiv x_j \operatorname{mod} n_j$, в силу (1) имеем $\hat{x} \equiv x_j \operatorname{mod} n_j \ \forall j = \overline{1,k}$. Значит, \hat{x} — частное решение.

Теорема доказана.

Теорема 15. Пусть \hat{x} и \tilde{x} — частные решения системы (1). Тогда $\hat{x} \equiv \tilde{x} \mod N$.

Доказательство.

 $\forall j=\overline{1,k} \ \hat{x}\equiv x_j \, \mathrm{mod} \, n_j, \ \tilde{x}\equiv x_j \, \mathrm{mod} \, n_j \Rightarrow \hat{x}\equiv \tilde{x} \, \mathrm{mod} \, n_j,$ т. е. $\hat{x}-\tilde{x}$ делится на n_j . Так как n_j попарно взаимно простые, то по 3-му свойству взаимно простых чисел $\hat{x}-\tilde{x}$ делится на $n_1 \cdot n_2 \dots n_k = N$, откуда $\hat{x}\equiv \tilde{x} \, \mathrm{mod} \, N$.

Теорема доказана.

Следствие. Множество всех решений системы (1), если она совместна, представляет собой класс вычетов по модулю N, причем единственный.

Теорема 16. Обозначим y_j как любое целое число, удовлетворяющее сравнению $m_j y_j \equiv x_j \bmod n_j$ ($j = \overline{1,k}$); y_j существует, так как m_j взаимно просто с n_j . Тогда $x_0 = m_1 y_1 + m_2 y_2 + ... + m_k y_k$ — частное решение системы (1).

Доказательство.

Фиксируем j от 1 до k. Требуется доказать, что $x_0 \equiv x_j \bmod n_j$, т. е. $\bar{x}_0 = \bar{x}_j$ в $\mathbb{Z}/n_j\mathbb{Z}$. $\bar{x}_0 = \overline{m_1y_1} + ... + \overline{m_jy_j} + ... + \overline{m_ky_k} = \overline{x_j}$, так как в каждом $m_s y_s$ при $s \neq j$ присутствует n_j .

Теорема доказана.

Совокупность теорем 14–16 называется Китайской теоремой об остатках.

Пример. Решить систему сравнений
$$\begin{cases} x\equiv 3 \bmod 9; \\ x\equiv 6 \bmod 13; \\ x\equiv 1000 \bmod 17. \end{cases}$$
 $N=9\cdot13\cdot17=1989; \ m_1=13\cdot17=221; \ m_2=9\cdot17=153; \ m_3=9\cdot13=117.$ $221y_1\equiv 3 \bmod 9;$ $221=9\cdot24+5;$ $5y_1\equiv 3 \bmod 9;$ $\overline{y_1}=\overline{6}=\overline{-3}.$ $153y_2\equiv 6 \bmod 13;$ $153=13\cdot11+10;$ $10y_1\equiv 6 \bmod 13;$ $\overline{y_2}=\overline{-2}.$ $117y_3\equiv 1000 \bmod 17;$ $117=17\cdot6-15;$ $-2y_3\equiv 14 \bmod 17;$ $\overline{y_3}=\overline{-7}.$ $x_0=221(-3)+153(-2)+117(-7)=-663-306-819=-1788;$ $-1788\equiv 3 \bmod 9;$ $-1788\equiv 6 \bmod 13;$ $-1788\equiv 1000 \bmod 17.$ $x=-1788+1989k=201+1989k,$ $k\in \mathbb{Z}.$ Other: $x=201+1989k,$ $k\in \mathbb{Z}.$

Задачи для самостоятельного решения

- 1) Решить систему сравнений $\begin{cases} x \equiv 3 \mod 7; \\ x \equiv 2 \mod 11; \\ x \equiv 5 \mod 13. \end{cases}$
- 2) Найти числа, которые при делении на 7, 13, 17 дают в остатке соответственно 4, 9 и 1.

Ответы:

1)
$$x=486+1001k$$
, $k\in\mathbb{Z}$; 2) $x=256+1547k$, $k\in\mathbb{Z}$.

§ 10. Обобщение китайской теоремы об остатках

Теорема 17.

Система
$$\begin{cases} x \equiv x_1 \bmod n_1; \\ x \equiv x_2 \bmod n_2; \\ \dots \\ x \equiv x_k \bmod n_k \end{cases}$$

совместна тогда и только тогда, когда $\forall i, j \ x_i \equiv x_j \mod HOД(n_i, n_j)$.

Теорема 18.

Если система
$$\begin{cases} x \equiv x_1 \bmod n_1; \\ x \equiv x_2 \bmod n_2; \\ \dots \\ x \equiv x_k \bmod n_k \end{cases}$$

совместна, то при любом частном решении x_0 ее общее решение имеет вид $x=x_0+N\mathbb{Z}$, где $N=\mathrm{HOK}(n_1,n_2,...,n_k)$.

Пример. Решить систему сравнений
$$\begin{cases} x \equiv 1 \mod 6; \\ x \equiv 4 \mod 21; \\ x \equiv 7 \mod 9. \end{cases}$$

Из первого сравнения получаем x=1+6k, $k\in\mathbb{Z}$; из второго сравнения имеем $1+6k\equiv 4\bmod 21$, т. е. $6k\equiv 3\bmod 21$, откуда $2k\equiv 1\bmod 7$ и, следовательно, k=4+7m, $m\in\mathbb{Z}$. Тогда x=1+6(4+7m)=25+42m. Подставим полученное выражение в последнее сравнение: $25+42m\equiv 7\bmod 9$. Получим $-2+42m\equiv -2\bmod 9$, откуда $-2-3m\equiv -2\bmod 9$, т. е. $-3m\equiv 0\bmod 9$, $m\equiv 0\bmod 3$ и m=3l, $l\in\mathbb{Z}$.

$$6=2\cdot3, 21=3\cdot7, 9=3\cdot3 \Rightarrow HOK(6,21,9)=2\cdot3^2\cdot7=126.$$

Ответ: $x=25+126l, l \in \mathbb{Z}$.

§ 11. Примеры решения задач по теории сравнений

Пример 1. Решить уравнение 17x-28y=1 в целых числах.

Решение.

$$\overline{17x-28y} = \overline{1}_{B} \mathbb{Z}/17\mathbb{Z}$$
.
 $-\overline{28y} = \overline{1}_{;} \overline{28y} = -\overline{1}_{;} 11\overline{y} = -\overline{1}_{;} \overline{y} = \overline{3} \Rightarrow y = 3+17k$.

$$17x-28(3+17k)=1$$
; $17x=85+28\cdot17k$; $x=5+28k$.

Ответ:
$$\begin{cases} x = 5 + 28k; \\ y = 3 + 17k; \end{cases}$$
 $k \in \mathbb{Z}$.

Пример 2. Решить уравнение 13x+21y=10 в целых числах.

Решение.

$$\overline{13x+21y}=\overline{10}$$
 в $\mathbb{Z}/13\mathbb{Z}$.

$$\overline{21y} = \overline{10}$$
; $\overline{8y} = \overline{10}$; $\overline{y} = -\overline{2} \implies y = -2 + 13k$.

$$x=4-21k$$
.

Ответ:
$$\begin{cases} x = 4 - 21k; \\ y = -2 + 13k; \end{cases} k \in \mathbb{Z}.$$

Пример 3. Решить уравнение 17x+13y+19z=1 в целых числах.

Решение.

$$\overline{17x+13y+19z}=\overline{1} \text{ B } \mathbb{Z}/13\mathbb{Z}.$$

$$\overline{17x+19z}=\overline{1}$$
; $\overline{4x}=\overline{1-6z}$.

$$\overline{4x} = \overline{1-6z} \implies x = \overline{4^{-1}} \overline{1-6z} = \overline{-31-6z} = \overline{-3+18z}$$
.

$$\overline{4} \, \overline{4^{-1}} = \overline{1} : \overline{4^{-1}} = \overline{-3}$$
.

$$x=18z-3+3k, k \in \mathbb{Z}$$
.

$$17(18z-3+13k)+13y+19z=1$$
.

$$13y = -19z - 17 \cdot 18z + 52 - 17 \cdot 13k$$
.

$$13y = -325z + 52 - 17 \cdot 13k$$

Ответ:
$$\begin{cases} x = 18z - 3 + 13k; \\ y = -25z + 4 - 17k; \end{cases} k, z \in \mathbb{Z}.$$

Пример 4. Решить уравнение 11x-17y+15z=7 в целых числах.

Решение.

$$\overline{11x-17y+15z}=\overline{7}$$
 в $\mathbb{Z}/11\mathbb{Z}$.

$$\overline{5y+4z} = \overline{7}$$
; $\overline{6y} = \overline{4z+4}$; $\overline{y} = (\overline{6})^{-1} \overline{4z+4}$.

$$\overline{6} \Big(\overline{6} \Big)^{-1} = \overline{1} \ {\scriptscriptstyle B} \ \mathbb{Z} / 11 \mathbb{Z} \ \Longrightarrow \left(\overline{6} \right)^{-1} = \overline{2} \, .$$

$$y=8z+8+11k$$
.

$$11x-17(8z+8+11k)+15z=7$$
;

$$11x = 143 + 121z + 17 \cdot 11k;$$

$$x=13+11z+17k.$$
Ответ:
$$\begin{cases} x=13+11z+17k; \\ y=8z+8+11k; \end{cases} k, z \in \mathbb{Z}.$$

Пример 5. Найти остаток при делении 1825²¹⁹⁹ на 23.

Решение.

1825 = 23.79 + 8.

В
$$\mathbb{Z}/23\mathbb{Z}$$
 $\overline{1825^{2199}} = (\overline{8})^{\overline{2199}}$; $\phi(23) = 22$, так как 23 — простое число, $(\overline{8})^{22} = \overline{1}$; $2199 = 22.99 + 21$.

Тогда
$$(\bar{8})^{\overline{2199}} = (\bar{8})^{22\cdot99+21} = (\bar{1})^{99} \cdot (\bar{8})^{21} = (\bar{8})^{21} = (\bar{8})^{-1} = \bar{3}.$$
 $(\bar{8}^{21} \cdot \bar{8} = \bar{1} \Rightarrow \bar{8}^{21} = (\bar{8})^{-1}$ в $\mathbb{Z}/23\mathbb{Z}$).

Ответ: остаток равен 3.

Пример 6. Найти остаток при делении 2102³⁰⁷⁶ на 27. Решение.

$$27=3^3$$
, $\phi(27)=3^2(3-1)=18$, $2102=27\cdot77+23$, $3076=18\cdot170+16$.

$$\overline{2102^{3076}} = (\overline{23})^{\overline{3076}} = \overline{23^{16}} = \overline{-4^{16}} = \overline{7^2} = \overline{49} = \overline{22}$$

$$(\overline{-4^2} = \overline{16}; \ \overline{-4^4} = \overline{256} = \overline{-14}; \ \overline{-4^8} = \overline{196} = \overline{7}).$$

Ответ: остаток равен 22.

Пример 7. Решить линейное сравнение с помощью функции Эйлера: $27x \equiv 32 \mod 56$.

Решение.

27 и 56 – взаимно простые, следовательно, решение есть.

$$\overline{27x} = \overline{32} \text{ B } \mathbb{Z}/56\mathbb{Z}; \ \overline{x} = \left(\overline{27}\right)^{-1}\overline{32}.$$

$$\left(\overline{27}\right)^{-1} = \left(\overline{27}\right)^{\phi(56)-1} = \left(\overline{27}\right)^{23} = \left(\overline{27}\right)^{16+4+2+1} = \overline{27};$$

$$(\phi(56) = \phi(7)\phi(8) = 6 \cdot 4 = 24, \ \left(\overline{27}\right)^2 = \overline{729} = \overline{1}, \left(\overline{27}\right)^4 = \left(\overline{27}\right)^{16} = \overline{1}).$$

$$\bar{x} = \overline{27.32} = \overline{864} = \overline{24}$$

Ответ: x = 24 + 56k, $k \in \mathbb{Z}$.

Пример 8. Решить линейное сравнение с помощью функции Эйлера: $41x \equiv 29 \mod 63$.

Решение.

41 и 63 – взаимно простые, следовательно, решение есть.

$$\overline{41x} = \overline{29} \text{ B } \mathbb{Z}/63\mathbb{Z}; \ \overline{x} = \left(\overline{41}\right)^{-1} \overline{29};$$

$$\left(\overline{41}\right)^{-1} = \left(\overline{41}\right)^{\varphi(63)-1} = \left(\overline{41}\right)^{35} = \left(\overline{41}\right)^{32+2+1};$$

$$(\varphi(63) = \varphi(7)\varphi(9) = 6 \cdot 6 = 36);$$

$$\left(\overline{41}\right)^{2} = \overline{1681} = \overline{43} = \overline{-20}, \ \left(\overline{41}\right)^{4} = \left(\overline{-20}\right)^{2} = \overline{400} = \overline{22};$$

$$\left(\overline{41}\right)^{8} = \left(\overline{22}\right)^{2} = \overline{484} = \overline{43} = \overline{-20};$$

$$\left(\overline{41}\right)^{16} = \left(\overline{-20}\right)^{2} = \overline{22};$$

$$\left(\overline{41}\right)^{32} = \left(\overline{22}\right)^{2} = \overline{-20};$$

$$\left(\overline{41}\right)^{32} = \left(\overline{22}\right)^{2} = \overline{-20};$$

$$\left(\overline{41}\right)^{32+2+1} = \overline{-20} \cdot \overline{-20} \cdot \overline{41} = \overline{400} \cdot \overline{41} = \overline{22} \cdot \overline{41} = \overline{902} = \overline{20};$$

$$\overline{x} = \overline{20} \cdot \overline{29} = \overline{580} = \overline{13}.$$
Other: $x = 13 + 63k, \ k \in \mathbb{Z}.$

Пример 9. Решить систему сравнений:

$$\begin{cases} 7x + 9y \equiv 1 \mod 13 \\ 5x - 7y \equiv 2 \mod 11. \end{cases}$$

Решение.

$$5x-7y \equiv 2 \mod 11 \Leftrightarrow \overline{5x-7y} = \overline{2} \text{ B } \mathbb{Z}/11 \mathbb{Z} \Leftrightarrow \overline{5x} = \overline{2+7y} \Leftrightarrow \overline{x} = \overline{-4-14y} \Leftrightarrow \overline{x} = \overline{-4-3y} \Leftrightarrow x = -4-3y+11k, k \in \mathbb{Z}.$$

Подставим полученное выражение для x в первое сравнение системы: $7(-4-3y+11k)+9y\equiv 1 \mod 13 \Leftrightarrow$

 \Leftrightarrow -28– $12y+77k\equiv 1 \mod 13 \Leftrightarrow -2+y-k\equiv 1 \mod 13 \Leftrightarrow k$ имеет вид $-3+y+13m, m\in \mathbb{Z}$. Тогда

$$x=-4-3y+11(-3+y+13m)=-37+8y+143m, m\in\mathbb{Z}$$
.

Ответ: x = -37 + 8y + 143m, $y, m \in \mathbb{Z}$.

Пример 10. Решить систему уравнений в целых числах $\begin{cases} 23x+17y+13z=27; \\ 15x-11y-9z=13. \end{cases}$

Решение.

Подбором находим частное решение (1, 1, -1). Далее находим направляющий вектор прямой, заданной данной системой уравнений:

$$\overline{q} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 23 & 17 & 13 \\ 15 & -11 & -9 \end{vmatrix} = (10; 402; -508).$$
 Тогда параметрические уравнения

прямой имеют вид: x=1-5t, y=1+201t, z=-1-254t. Если $t=\frac{p}{q}$, q>0 и

дробь $\frac{p}{q}$ несократима, то q|5, q|201, q|(-254), откуда $q{=}1$, т. е. $t{\in}\mathbb{Z}$.

Ответ: x=1-5t, y=1+201t, z=-1-254t, $t\in\mathbb{Z}$.

Пример 11. Какие остатки может иметь выражение $2013n^{2012}-2012n^{2013}$ при делении на 7 ($n\in\mathbb{Z}$)?

Решение.

Пусть $f(n) = 2013n^{2012} - 2012n^{2013}$. Тогда в $\mathbb{Z}/7\mathbb{Z}$ $\overline{f(n)} = \overline{4}\overline{n}^2 - \overline{3}\overline{n}^3$ при n взаимно простом с $\overline{f(1)} = \overline{1}$, $\overline{f(2)} = \overline{6}$, $\overline{f(3)} = \overline{4}$, $\overline{f(-3)} = \overline{5}$, $\overline{f(-2)} = \overline{5}$, $\overline{f(-1)} = \overline{0}$. При n кратном $\overline{7}$ $\overline{f(n)} = \overline{0}$.

Ответ: остатки могут быть 0, 1, 3, 4, 5, 6.

Пример 12. Найти остаток при делении 1404²⁰¹² на 23. Решение.

$$\overline{1404^{2012}} = (\overline{1})^{2012} = \overline{1}$$

Ответ: остаток равен 1.

Пример 13. Найти остаток при делении 2012¹⁴⁰⁴ на 15. Решение.

$$\varphi(15)=\varphi(3)\varphi(5)=2\cdot 4=8$$
, $1404=8\cdot 175+4$.

$$\overline{2012^{1404}} = (\overline{2})^{\overline{1404}} = \overline{2^4} = \overline{16} = \overline{1}.$$

Ответ: остаток равен 1.

Теорема 19 (делимость на 11 и на 9).

 $\overline{r} = \frac{\Pi \text{усть } A = a_n \, a_{n-1} \, \dots \, a_0. \, \text{ Если } r - \text{ остаток от деления } A \, \text{ на } 11, \, \text{то}}{\overline{t} = \overline{a_0 + a_1 + a_2 + \dots + a_n}} \, \text{ в } \mathbb{Z}/11\mathbb{Z}. \, \text{Если } t \, \text{остаток от деления на } 9, \, \text{то}}$ $\overline{t} = \overline{a_0 + a_1 + a_2 + \dots + a_n}} \, \text{ в } \mathbb{Z}/9\mathbb{Z}.$

Доказательство.

$$B \ \mathbb{Z}/11\mathbb{Z} \begin{cases} \overline{10} = \overline{-1}; \\ \overline{10} = \overline{-1}; \\ \overline{10}^2 = \overline{1}; \\ \dots \\ \overline{10}^k = \overline{(-1)}^k. \end{cases}$$

$$A = a_0 + 10 \ a_1 + 10^2 \ a_2 + \dots + 10^n \ a_n.$$

$$\overline{r} = \overline{A} = \overline{a_0} + \overline{10}\overline{a_1} + \overline{10}^2 \overline{a_2} + \dots + \overline{10}^n \overline{a_n} =$$

$$= a_0 - \overline{a_1} + \overline{a_2} - \dots + \overline{(-1)^n a_n} = \overline{a_0 - a_1 + a_2 - \dots + (-1)^n a_n}.$$

Первая часть теоремы доказана. Вторая часть теоремы доказывается аналогично.

Пример 14. Найти остатки при делении числа 2856897 на 11 и на 9.

Решение.

 $7+9+8+6+5+8+2\equiv 36 \mod 9$, т. е. данное число делится на 9 без остатка. $7-9+8-6+5-8+2=-1\equiv 10 \mod 11$, т. е. остаток при делении на 11 равен 10.

Пример 15. Решить систему сравнений
$$\begin{cases} x \equiv 3000 \, \text{mod} \, 11; \\ x \equiv 22 \, \text{mod} \, 29; \\ x \equiv 7 \, \text{mod} \, 9. \end{cases}$$

Решение.

$$N=11\cdot 29\cdot 9=2871$$
; $m_1=29\cdot 9=261$; $m_2=11\cdot 9=99$; $m_3=11\cdot 29=319$. $261=11\cdot 23+6$; $8y_1\equiv 8\bmod 11$; $y_1=1$. $99y_2\equiv 22\bmod 29$; $99=29\cdot 3+12$; $12y_1\equiv 22\bmod 29$; $y_2=-3$.

$$319y_3 \equiv 7 \mod 9;$$
 $319=9\cdot 35+4;$ $4y_3 \equiv 7 \mod 9;$ $y_3 = 4.$ $m_1y_1 + m_2y_2 + m_3y_3 = 261\cdot 1 + 99(-3) + 319\cdot 4 = 261 - 297 + 1276 = 1240.$ Other: $x = 1240 + 2871k, k \in \mathbb{Z}$.

Пример 16. Решить систему сравнений $\begin{cases} x \equiv 3 \mod 6; \\ x \equiv 15 \mod 21; \\ x \equiv 1 \mod 35. \end{cases}$

Решение.

 $x=3+6k\equiv 15\bmod 21; \quad 1+2k\equiv 5\bmod 7; \quad 2k\equiv 4\bmod 7; \quad \overline{2k}=\overline{4}$ B $\mathbb{Z}/7\mathbb{Z}$. $\overline{k}=\overline{2} \Rightarrow k=2+7m$.

 $x = 3 + 6(2 + 7m) = 15 + 42m \equiv 1 \mod 35; \quad 42m \equiv -14 \mod 35; \quad 6m \equiv -2 \mod 5.$

$$m=-2$$
 в $\mathbb{Z}/5\mathbb{Z}$; $m=-2+5l$.
 $x=15+42(-2+5l)=-69+210l$, $l\in\mathbb{Z}$.
Ответ: $x=-69+210l$, $l\in\mathbb{Z}$.

Задачи для самостоятельного решения

- 1) Решить уравнения в целых числах: a) 17x+23y=1; б) 118x-37y=2; в) 13x+16y+19z=1; г) 23x-11y+15z=2.
- 2) Найти остатки при делении указанных чисел x на указанные числа y: а) $x=1941^{1945}$; y=17; б) $x=1380^{1917}$; y=23.
- 3) Решить сравнение с помощью функции Эйлера: a) $37x \equiv 24 \mod 61$; б) $34x \equiv 13 \mod 59$.
 - 4) Решить системы сравнений:

a) 5)
$$\begin{cases} x \equiv 100 \mod 13; \\ x \equiv 200 \mod 17; \\ x \equiv 300 \mod 19. \end{cases} \begin{cases} x \equiv -8 \mod 15; \\ x \equiv 13 \mod 23; \\ x \equiv 11 \mod 17; \\ x \equiv 2 \mod 9. \end{cases}$$

5) Решить системы сравнений:

a) 6)
$$5x-8y\equiv 3 \mod 17$$
; $\begin{cases} 12x+1000y\equiv 13 \mod 21; \\ 6x+19y\equiv 13 \mod 23. \end{cases}$ $\begin{cases} 17x-9y\equiv 5 \mod 13. \end{cases}$

ГЛАВА III. ЦЕПНЫЕ И НЕПРЕРЫВНЫЕ ДРОБИ

§ 12. Разложение рационального числа в цепную дробь

Определение 13. Цепная дробь – это дробь вида

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}},$$
 \vdots

$$a_{s-1} + \frac{1}{a_s}$$

где $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{N}$ при $1 \le i \le s-1$, $a_s \in \mathbb{N}$ и $a_s \ge 2$.

Данное выражение без ограничений — обобщенная цепная дробь. Краткая запись — $[a_0, a_1, \dots, a_s]$.

Теорема 20. Любое рациональное число $\frac{P}{Q}$ (Q > 0) представимо в виде цепной дроби ($P, Q \in \mathbb{Z}$).

Доказательство.

Применим алгоритм Евклида к паре (P, Q).

$$\begin{split} P &= Q a_0 + r_1, \ 0 \leq r_1 < Q \Rightarrow \frac{P}{Q} = a_0 + \frac{1}{Q/r_1}; \\ Q &= r_1 a_1 + r_2, \ 0 \leq r_2 < r_1; \\ r_1 &= r_2 a_2 + r_3, \ 0 \leq r_3 < r_2 \text{ и т. д. Получим} \\ \frac{P}{Q} &= a_0 + \frac{1}{a_1 + \frac{r_2}{r_1}} = a_0 + \frac{1}{a_1 + \frac{1}{r_1/r_2}} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + r_3/r_2}} = \\ &= a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{r_2/r_3}}} = \dots = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{$$

где $r_{s-1}=r_s a_s$.

Теорема доказана.

§ 13. Подходящие дроби

Определение 14. Пусть $P/Q=[a_0,\ a_1,\ \dots,\ a_s]$. Тогда n-я подходящая дробь $A_n=a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+}}$,

$$\frac{1}{a_{n-1} + \frac{1}{a_n}}$$

где $0 \le n \le s$.

Определим две последовательности P_n и Q_n рекуррентным образом по данной цепной дроби:

$$P_0 = a_0;$$
 $Q_0 = 1;$ $Q_1 = a_1;$ $Q_1 = a_1;$ $Q_2 = a_2 P_1 + P_0;$ $Q_2 = a_2 Q_1 + Q_0;$... $Q_n = a_n Q_{n-1} + Q_{n-2}.$

Теорема 21. Для любого $n\ (0 \le n \le s)\ n$ -я подходящая дробь $A_n = P_n/Q_n$.

Доказательство.

Используем принцип математической индукции.

База индукции:

$$\begin{split} n &= 0 \Longrightarrow A_0 = a_0 = \frac{a_0}{1} = \frac{P_0}{Q_0}; \\ n &= 1 \Longrightarrow A_1 = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1} = \frac{P_1}{Q_1}. \end{split}$$

Шаг индукции: предположим, что формула верна для A_n $(A_n = P_n/Q_n)$, и докажем, что формула верна для A_{n+1} .

Доказательство индукции:

$$A_{n+1} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}},$$

$$\vdots$$

$$\frac{1}{a_n + \frac{1}{a_{n+1}}}$$

рассмотрим $a_n + \frac{1}{a_{n+1}}$ как единое целое, тогда длина дроби равна n и можно применить формулу для A_n .

$$\begin{split} A_{n+1} &= \frac{P_{n}'}{Q_{n}'} = \frac{P'_{n-2} + \left(a_{n} + \frac{1}{a_{n+1}}\right) P'_{n-1}}{Q'_{n-2} + \left(a_{n} + \frac{1}{a_{n+1}}\right) Q'_{n-1}} = \frac{P_{n-2} + \left(a_{n} + \frac{1}{a_{n+1}}\right) P_{n-1}}{Q_{n-2} + \left(a_{n} + \frac{1}{a_{n+1}}\right) Q_{n-1}} = \\ &= \frac{P_{n-2} + a_{n} P_{n-1} + \frac{P_{n-1}}{a_{n+1}}}{Q_{n-1} + \frac{Q_{n-1}}{a_{n+1}}} = \frac{P_{n} + \frac{P_{n-1}}{a_{n+1}}}{Q_{n} + \frac{Q_{n-1}}{a_{n+1}}} = \frac{P_{n+1}}{Q_{n+1}}. \end{split}$$

Заключение индукции: формула верна для любого числа $n \ (0 \le n \le s)$: $A_n = P_n/Q_n$.

Теорема доказана.

Теорема 22. $P_n Q_{n-1} - P_{n-1} Q_n = (-1)^{n-1}$ для любого n = 1, 2, ..., s. Доказательство (по принципу математической индукции). База индукции:

$$n=1 \Rightarrow P_1Q_0 - P_0Q_1 = (a_0a_1 + 1)1 - (a_0a_1) = 1 = (-1)^{1-1}$$
.

Шаг индукции: предположим, что формула верна для некоторого n, и докажем, что формула верна для n+1.

Доказательство индукции:

$$P_{n+1}Q_n - P_nQ_{n+1} = (P_{n-1} + P_n a_{n+1}) Q_n - P_n (Q_{n-1} + Q_n a_{n+1}) =$$

$$= P_{n-1}Q_n - P_nQ_{n-1} = (-1) (P_n Q_{n-1} - P_{n-1}Q_n) = (-1) (-1)^{n-1} = (-1)^n.$$

Заключение индукции: формула верна для любого числа $n \ (0 \le n \le s)$.

Теорема доказана.

Теорема 23. Дробь P_n / Q_n всегда несократима.

Доказательство. Пусть $d \mid P_n$, $d \mid Q_n (d - \text{общий делитель } P_n \text{ и } Q_n)$. Тогда из предыдущей теоремы получаем $d \mid (-1)^{n-1}$, откуда следует, что d = 1.

Теорема доказана.

§ 14. Применение цепных дробей к решению линейных сравнений

Рассмотрим сравнение a x $\equiv 1 mod n$, где a и n взаимно простые. $a/n = [a_0, a_1, \ldots, a_s]$. Тогда $a/n = P_s/Q_s$ (причем, $a = P_s, n = Q_s$). Имеем P_s $Q_{s-1} - P_{s-1}$ $Q_s = (-1)^{s-1}$, T. е. a $Q_{s-1} - P_{s-1}$ $n = (-1)^{s-1}$. Тогда в $\mathbb{Z}/n\mathbb{Z}$ выполняется \overline{a} $\overline{Q_{s-1}} = (-1)^{s-1}$, откуда $\overline{x} = \overline{a}^{-1} = \overline{Q_{s-1}}(-1)^{s-1}$.

Пример 1. Решить сравнение с помощью цепных дробей: $1973x \equiv 1 \mod 2579$.

Напомним, что решение сравнения $ax \equiv b \mod n$ находят по формуле $\overline{x} = (\overline{a})^{-1} \overline{b}$.

Рассмотрим дробь 1973/2579.

Рассмотрим дробь 1973/2379.

$$1973 = 0.2579 + 1973$$
 $a_0 = 0$
 $2579 = 1.1973 + 606$ $a_1 = 1$
 $1973 = 3.606 + 155$ $a_2 = 3$
 $606 = 3.155 + 141$ $a_3 = 3$
 $155 = 1.141 + 14$ $a_4 = 1$
 $141 = 10.14 + 1$ $a_5 = 10$
 $14 = 14.1 + 0$ $a_6 = 14$
 $1973/2579 = [0, 1, 3, 3, 1, 10, 14].$

Вычисляем P_n и Q_n , используя рекуррентные формулы $P_n=a_n\; P_{n-1}+P_{n-2},\; Q_n=a_n\; Q_{n-1}+Q_{n-2}$:

n	0	1	2	3	4	5	6
a_n	0	1	3	3	1	10	14
P_n	0	1	3	10	13	140	1973
Q_n	1	1	4	13	17	183	2579

По формуле перед примером в $\mathbb{Z}/2579\mathbb{Z}$ $\overline{1973}^{-1} = \overline{183(-1)}^5 = -\overline{183}$.

Otbet: x = -183 + 2579z, $z \in \mathbb{Z}$.

Пример 2. Решить сравнение $612x \equiv 1 \mod 343$.

Рассмотрим дробь 612/343.

$$612 = 1.343 + 269$$
 $a_0 = 1$
 $343 = 1.269 + 74$ $a_1 = 1$

$$269 = 3 \cdot 74 + 47$$

$$74 = 1 \cdot 47 + 27$$

$$47 = 1 \cdot 27 + 20$$

$$27 = 1 \cdot 20 + 7$$

$$20 = 2 \cdot 7 + 6$$

$$7 = 1 \cdot 6 + 1$$

$$6 = 6 \cdot 1 + 0$$

$$612/343 = [1, 1, 3, 1, 1, 1, 2, 1, 6].$$

Вычисляем P_n и Q_n :

n	0	1	2	3	4	5	6	7	8
a_n	1	1	3	1	1	1	2	1	6
P_n	1	2	7	9	16	25	66	91	612
Q_n	1	1	4	5	9	74	37	51	343

Таким образом, в $\mathbb{Z}/343\mathbb{Z}$ $\overline{612}^{-1} = \overline{51}\overline{(-1)}^7 = -\overline{51}$.

Otbet: x = -51 + 343z, $z \in \mathbb{Z}$.

Пример 3. Решить сравнение $1124x \equiv 1 \mod 1029$.

Рассмотрим дробь 1124/1029.

$$1124 = 1 \cdot 1029 + 95
1029 = 10 \cdot 95 + 79
95 = 1 \cdot 79 + 16
79 = 4 \cdot 16 + 15
16 = 1 \cdot 15 + 1
15 = 15 \cdot 1 + 0
1124/1029 = [1, 10, 1, 4, 1, 15].$$

$$a_0 = 1
a_1 = 10
a_2 = 1
a_3 = 4
a_4 = 1
a_5 = 15$$

Вычисляем P_n и Q_n :

N	0	1	2	3	4	5
a_n	1	10	1	4	1	15
P_n	1	11	12	59	71	1124
Q_n	1	10	11	54	65	1029

B $\mathbb{Z}/1029\mathbb{Z} \overline{1124}^{-1} = \overline{65}(-1)^4 = \overline{65}$.

Otbet: $x = 65 + 1029z, z \in \mathbb{Z}$.

Задачи для самостоятельного решения

Решить сравнения: a) $613x \equiv 1 \mod 1024$; б) $523x \equiv 1 \mod 729$, в) $707x \equiv 1 \mod 1681$. Ответ: a) x = -147 + 1024z, $z \in \mathbb{Z}$; б) x = 46 + 729z, $z \in \mathbb{Z}$; в) x = 447 + 1681z, $z \in \mathbb{Z}$.

§ 15. Непрерывные дроби

Определение 15. Непрерывная дробь – бесконечная цепная дробь $a_0 + \frac{1}{a_1 + \frac{1}{a_2 +}},$

где $a_0 \in \mathbb{Z}$, $a_i \ge 1$, $a_i \in \mathbb{Z}$ при $i \ge 1$. Обозначение как и для цепных дробей: $[a_0, a_1, \ldots, a_n, \ldots] = \alpha$.

бей:
$$[a_0, a_1, \dots, a_n, \dots] = \alpha$$
.
$$A_n = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} - n$$
-я подходящая дробь. \vdots

 $\frac{1}{a_{n-1} + \frac{1}{a_n}}$

Значение цепной дроби $\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$

равно пределу A_n при $n \to \infty$: $\lim_{n \to \infty} A_n = \alpha, \alpha \in \mathbb{R}$.

Определение 16. Непрерывная дробь называется периодической, если, начиная с некоторого номера, повторяется элемент a_n или некоторая группа элементов a_n , a_{n+1} , a_{n+k-1} (при этом k – период).

Пример 1. Найдем значение следующей периодической дроби: $\alpha = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}} = [1, 2, 2, \dots].$

Рассмотрим
$$\beta = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + 1}}} = [2, 2, 2, ...], \beta = 2 + \frac{1}{\beta} \Rightarrow \beta^2 - 2\beta - 1 = 0 \Rightarrow$$

$$\Rightarrow \beta = \frac{2 + \sqrt{8}}{2} = 1 + \sqrt{2}.$$

$$\alpha = 1 + \frac{1}{\beta} = 1 + \frac{1}{1 + \sqrt{2}} = 1 + \frac{\sqrt{2} - 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \sqrt{2}.$$

Пример 2. Найти значение $\alpha = [0, 1, 2, 3, 3, 3, ...].$

Пример 2. Найти значение
$$\alpha = [0, 1, 2, 3, 3, 3, ...].$$
 Рассмотрим $\beta = [3, 3, ..., 3, ...] = 3 + $\frac{1}{3 + \frac{1}{3 + 1}}$.$

$$\beta = 3 + \frac{1}{\beta} \Rightarrow \beta^2 - 3\beta - 1 = 0 \Rightarrow \beta = \frac{3 + \sqrt{13}}{2} \Rightarrow \beta = \frac{3 + \sqrt{13}}{2} (\beta > 0).$$

По условию
$$\alpha = \frac{1}{1 + \frac{1}{2 + \frac{1}{\alpha}}} = [0, 1, 2, \beta].$$

Чтобы найти α, применяем табличную форму, которую мы использовали в предыдущем параграфе:

n	0	1	2	3
a_n	0	1	2	β
P_n	0	1	2	2β+1
Q_n	1	1	3	3β+1

$$\alpha = \frac{1+2\beta}{1+3\beta} = \frac{1+3+\sqrt{13}}{1+3\frac{3+\sqrt{13}}{2}} = \frac{8+2\sqrt{13}}{11+3\sqrt{13}}.$$

Вычисление периодической дроби с периодом больше 1.

Пример 3. Пусть
$$\alpha = [1, 2, \underline{3, 1, 1}, \underline{3, 1, 1}, \ldots],$$
 $\beta = [3, 1, 1, 3, 1, 1, \ldots].$

Тогда $\beta = [3, 1, 1, \beta], \alpha = [1, 2, \beta] - обобщенные цепные конеч$ ные дроби;

n	0	1	2		
a_n	1	2	β	\rightarrow	$\alpha = \frac{1+3\beta}{}$
P_n	1	3	3β+1	\rightarrow	$1+2\beta$
O_n	1	2	2β+1		•

$$\Rightarrow \beta = \frac{4+7\beta}{1+2\beta}$$

$$2\beta^2 + \beta - 4 - 7\beta = 0 \Rightarrow \beta^2 - 3\beta - 2 = 0 \Rightarrow \beta = \frac{3 + \sqrt{17}}{2}.$$

$$\alpha = \frac{1 + \frac{9 + 3\sqrt{17}}{2}}{1 + \frac{6 + 2\sqrt{17}}{2}} = \frac{11 + 3\sqrt{17}}{8 + 2\sqrt{17}} = \frac{(11 + 3\sqrt{17})(2\sqrt{17} - 8)}{(8 + 2\sqrt{17})(2\sqrt{17} - 8)} = \frac{7 - \sqrt{17}}{2}.$$

Обзор основных результатов по непрерывным дробям

Теорема 23. Любая бесконечная непрерывная дробь сходится.

Теорема 24. Любое вещественное число α однозначно представляется в виде непрерывной дроби: рациональные – конечными, иррациональные – бесконечными дробями.

Определение 17. Назовем квадратичной иррациональностью число вида $\frac{a+b\sqrt{c}}{d}$, где $\sqrt{c} \notin \mathbb{Q}$; $a,b,c,d \in \mathbb{Z},d \neq 0$.

Теорема 25. Любая периодическая непрерывная дробь сходится к квадратичной иррациональности.

Теорема Лагранжа. Любую квадратичную иррациональность можно представить в виде периодической непрерывной дроби.

Пример. Представить $\sqrt{6}$ в виде периодической дроби. $\alpha = \sqrt{6} = 2, \dots$

$$\alpha = 2 + \frac{1}{y_1}, y_1 > 1; \ \frac{1}{y_1} = \sqrt{6} - 2 \Rightarrow$$

$$\Rightarrow y_1 = \frac{1}{\sqrt{6} - 2} = \frac{\sqrt{6} + 2}{2} = \frac{4, \dots}{2} = 2, \dots$$

$$y_1 = 2 + \frac{1}{y_2}; \ \frac{1}{y_2} = \frac{\sqrt{6} + 2}{2} - 2 = \frac{\sqrt{6} - 2}{2} \Rightarrow$$

$$\Rightarrow y_2 = \frac{2}{\sqrt{6} - 2} = \sqrt{6} + 2 = 4 + \frac{1}{y_3};$$

$$\frac{1}{y_3} = \sqrt{6} - 2 \Rightarrow y_3 = \frac{1}{\sqrt{6} - 2} = \frac{\sqrt{6} + 2}{2} = y_1. \text{ Следовательно, } \alpha = [2, \underline{2}, \underline{4}, \underline{2}, \underline{4}]$$

4, ...] – периодическая непрерывная дробь.

Пример. Представить $\sqrt{7}$ в виде периодической дроби.

$$\alpha = \sqrt{7} = 2, \dots$$

$$\alpha = 2 + \frac{1}{y_1}, y_1 > 1;$$

$$\frac{1}{y_1} = \sqrt{7} - 2 \Rightarrow y_1 = \frac{1}{\sqrt{7} - 2} = \frac{\sqrt{7} + 2}{3} = \frac{4}{3} = 1, \dots$$

$$y_1 = 1 + \frac{1}{y_2}; \quad \frac{1}{y_2} = \frac{\sqrt{7} - 1}{3} \Rightarrow$$

$$\Rightarrow y_2 = \frac{3}{\sqrt{7} - 1} = \frac{3\sqrt{7} + 3}{6} = \frac{\sqrt{7} + 1}{2} = 1, \dots = 1 + \frac{1}{y_3};$$

$$\frac{1}{y_3} = \frac{\sqrt{7} + 1 - 2}{2} = \frac{\sqrt{7} - 1}{2} \Rightarrow$$

$$\Rightarrow y_3 = \frac{2}{\sqrt{7} - 1} = \frac{2(\sqrt{7} + 1)}{6} = \frac{\sqrt{7} + 1}{3} = 1, \dots = 1 + \frac{1}{y^4};$$

$$\frac{1}{y_4} = \frac{\sqrt{7} + 1 - 3}{3} = \frac{\sqrt{7} - 2}{3} \Rightarrow$$

$$\Rightarrow y_4 = \frac{3}{\sqrt{7} - 2} = \frac{3(\sqrt{7} + 2)}{3} = \sqrt{7} + 2 = 4, \dots = 4 + \frac{1}{y_5};$$

$$\frac{1}{y_5} = \sqrt{7} - 2 \Rightarrow y_5 = \frac{1}{\sqrt{7} - 2} = \frac{\sqrt{7} + 2}{3} = 1, \dots \quad \text{Tak Kak} \quad y_5 = y_1, \quad \text{To}$$

 $\alpha = [2, 1, 1, 1, 4, 1, 1, 1, 4, \dots]$ — периодическая непрерывная дробь.

§ 16. Разложение по степеням двучлена по схеме Горнера

Пусть $f(x) = a_n x^n + ... + a_1 x + a_0$. Найдем $f(\gamma)$, где γ — некоторое число. Ясно, что

 $a_n x^n + \ldots + a_1 x + a_0 = (x - \gamma) (b_{n-1} x^{n-1} + \ldots + b_1 x + b_0) + f(\gamma)$ для некоторых b_i . Приравниваем коэффициенты при одинаковых степенях x в левой и правой части:

$$\begin{cases} a_{n} = b_{n-1}; \\ a_{n-1} = b_{n-2} - \gamma b_{n-1}; \\ \dots \\ a_{2} = b_{1} - \gamma b_{2}; \\ a_{1} = b_{0} - \gamma b_{1}; \\ a_{0} = f(\gamma) - \gamma b_{0}; \end{cases} \Rightarrow \begin{cases} b_{n-1} = a_{n}; \\ b_{n-2} = \gamma b_{n-1} + a_{n-1}; \\ \dots \\ b_{1} = \gamma b_{2} + a_{2}; \\ b_{0} = \gamma b_{1} + a_{1}; \\ f(\gamma) = \gamma b_{0} + a_{0}. \end{cases}$$

Вычисление коэффициентов b_i и $f(\gamma)$ можно организовать в следующем виде:

_	a_n	a_{n-1}	a_{n-2}	•••	a_2	a_1	a_0
γ	b_{n-1}	b_{n-2}	b_{n-3}	•••	b_1	b_0	f(\gamma)

Пример.
$$f(x) = 13x^4 + 9x^3 + 7x^2 + 5x + 2$$
, $y = 3$.

_	13	9	7	5	2
3	13	48	151	458	1376

Получили $f(x) = (x - 3)(13x^3 + 48x^2 + 151x + 458) + 1376$, откуда f(3) = 1376.

Теперь займемся разложением f(x) по степеням $(x - \gamma)$.

Пусть снова $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ — многочлен степени n. Обозначим $f(x) = f_n(x)$.

$$f(x) = (x - \gamma) (b_{n-1} x^{n-1} + ... + b_1 x + b_0) + f(\gamma).$$

Применяем схему Горнера для $f_{n-1}(x) = b_{n-1}x^{n-1} + ... + b_1x + b_0$ с тем же γ :

$$f(x) = (x - \gamma) ((x - \gamma) (c_{n-2} x^{n-2} + ... + c_1 x + c_0) + f_{n-1}(\gamma)) + f(\gamma) =$$

$$= (x - \gamma)^2 f_{n-2}(x) + f_{n-1}(\gamma) (x - \gamma) + f(\gamma).$$

Продолжая указанный процесс, в итоге получим разложение f(x) по степеням $(x - \gamma)$.

Пример 1. Разложить $f(x) = 3x^4 + 2x^3 - 9x^2 + 7x - 5$ по степеням (x-2), используя схему Горнера:

_	3	2	-9	7	-5
2	3	8	7	21	37
2	3	14	35	91	
2	3	20	75		
2	3	26		•	
2	3		•		

Получили
$$f(x) = 3(x-2)^4 + 26(x-2)^3 + 75(x-2)^2 + 91(x-2) + 37$$
.

Пример 2. Разложить $f(x) = 3x^4 + 2x^3 - 9x^2 + 7x - 5$ по степеням (x+3), используя схему Горнера:

_	3	2	-9	7	-5
-3	3	-7	12	-29	82
-3	3	-16	60	-209	
-3	3	-25	135		•
-3	3	-34		•	
-3	3		•		

Получили
$$f(x) = 3(x+3)^4 - 34(x+3)^3 + 135(x+3)^2 - 209(x+3) + 82.$$

§ 17. Применение цепных дробей к приближенному решению уравнений

Рассмотрим данный метод на примере. Пусть требуется решить уравнение $x^3 + 2x - 4 = 0$.

Обозначим $f(x) = x^3 + 2x - 4$. Тогда $f'(x) = 3x^2 + 2 > 0 \Rightarrow f(x)$ имеет единственный корень. Так как f(1) = -1, а f(2) = 8, то этот корень α лежит на интервале (1, 2). Стало быть, $\alpha = 1 + \frac{1}{y_1}, y_1 > 1$..

Раскладываем f(x) по степеням (x - 1) по схеме Горнера:

_	1	0	2	-4
1	1	1	3	-1
1	1	2	5	
1	1	3		
1	1		_	

Получили
$$f(x) = (x-1)^3 + 3(x-1)^2 + 5(x-1) - 1$$
.

$$f(\alpha) = \frac{1}{y_1^3} + \frac{3}{y_1^2} + \frac{5}{y_3} - 1 = \frac{-y_1^3 + 5y_1^2 + 3y_1 + 1}{y_1^3} = 0.$$

Поэтому y_1 – единственный корень многочлена $g(y)=y^3-5y^2-3y-1$ на $(1,+\infty)$, так как иначе f(x) имел бы два корня на (1,2). Из того, что g(5)<0, g(6)>0, следует $5< y_1<6$, т. е. $y_1=5+\frac{1}{y_2},y_2>1$.

Раскладываем g(y) по степеням (y-5).

_	1	-5	-3	-1
5	1	0	-3	-16
5	1	5	22	
5	1	10		-
5	1			

Таким образом,
$$g(y) = (y-5)^3 + 10(y-5)^2 + 22(y-5) - 16$$
.
$$g(y_1) = \frac{1}{y_2^3} + \frac{10}{y_2^2} + \frac{22}{y_2} - 16 = \frac{-16y_2^3 + 22y_2^2 + 10y_2 + 1}{y_2^3} = 0 \Rightarrow$$

 y_2 – единственный корень многочлена $h(y)=16y^3-22y^2-10y-1$ на $(1, +\infty)$. Из того h(1)<0, h(2)>0, следует, что $y_2\in(1,2)$, т. е. $y_2=1+\frac{1}{y_2},y_3>1$.

Раскладываем h(y) по степеням (y-1):

_	16	-22	-10	-1
1	16	-6	-16	-17
1	16	10	-6	
1	16	26		•
1	16		•	

$$h(y) = 16(y-1)^3 + 26(y-1)^2 - 6(y-5) - 17.$$

$$h(y_2) = \frac{16}{y_3^3} + \frac{26}{y_3^2} - \frac{6}{y_3} - 17 = \frac{-17y_3^3 - 6y_3^2 + 26y_3 + 16}{y_3^3} = 0 \implies$$

 y_3 – единственный корень многочлена $\varphi(y) = 17y_3^3 + 6y_3^2 - 26y_3 - 16$ на $(1, +\infty)$. Так как $\varphi(1) < 0$, $\varphi(2) > 0$, то $1 < y_3 < 2$.

Здесь мы остановим процесс вычисления, хотя его можно продолжать бесконечно.

Имеем по построению

$$\alpha = [1, 5, 1, y_3] = 1 + \frac{1}{5 + \frac{1}{1 + \frac{1}{y_3}}},$$

где $y_3 \in (1, 2)$.

Посчитаем α с помощью известной нам табличной формы:

n	0	1	2	3
a_n	1	5	1	\mathcal{Y}_3
P_n	1	6	7	$7y_3 + 6$
Q_n	1	5	6	$6y_3 + 5$

Таким образом,
$$\alpha = \frac{7y_3 + 6}{6y_3 + 5}$$
.

При
$$y_3 = 1$$
 $\alpha = \frac{13}{11}$, при $y_3 = 2$ $\alpha = \frac{20}{17}$

Следовательно,
$$\frac{20}{17} < \alpha < \frac{13}{11}, \frac{13}{11} - \frac{20}{17} = \frac{1}{187}$$
.

Ответ:
$$\alpha \approx \frac{20}{17}$$
 с погрешностью $<\frac{1}{187}$.

Задачи для самостоятельного решения

- 1) Разложить многочлены f(x) и g(x) по указанным степеням: a) $f(x)=4x^3+7x^2+5x+3$ по степеням (x+4); б) $g(x)=x^4-5x^2-x-2$ по степеням (x-5).
- 2) Найти все вещественные корни многочленов f(x), g(x) с точностью до 0,001, пользуясь цепными дробями: $f(x)=x^3-2x^2+2x-3$, $g(x)=x^3+3x^2-3$.

ГЛАВА IV. СРАВНЕНИЯ ПО МОДУЛЮ p^k И p-АДИЧЕСКИЕ ЧИСЛА

§ 18. Решение сравнений по модулю p^k

Рассмотрим сравнение

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \bmod p^k$, $k \ge 1$, p – простое число. Обозначим $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.

Лемма 3. 1. $f(a) \equiv 0 \mod p^k \Leftrightarrow f(\bar{a}) = \bar{0}$ в $\mathbb{Z}/p^k\mathbb{Z}$;

2. если a удовлетворяет сравнению $f(a) \equiv 0 \mod p^k$, то все числа из класса $\bar{a} = a + p^k \mathbb{Z}$ также удовлетворяют этому сравнению $(a \in \mathbb{Z})$.

Доказательство.

$$1. \ f(a) \equiv 0 \bmod p^k \Leftrightarrow \overline{a_n a^n + a_{n-1} a^{n-1} + \ldots + a_1 a + a_0} = \overline{0} \Leftrightarrow \Leftrightarrow \overline{a_n} \overline{a}^n + \overline{a}_{n-1} \overline{a}^{n-1} + \ldots + \overline{a}_1 \overline{a} + \overline{a}_0 = \overline{0},$$
где $\overline{a}_i \in \mathbb{Z} / p^k \mathbb{Z}, \Leftrightarrow f(\overline{a}) = \overline{0}.$

 $2. \ f(a) \equiv 0 \ \mathrm{mod} \ p^k \Rightarrow \bar{a}_n \, \bar{a}^n + \bar{a}_{n-1} \, \bar{a}^{n-1} + \ldots + \bar{a}_1 \, \bar{a} + \bar{a}_0 = \bar{0} \ , \ \mathrm{следователь-}$ но, все числа из $\bar{a} = a + p^k \mathbb{Z}$ удовлетворяют сравнению $f(x) \equiv 0 \ \mathrm{mod} \ p^k$.

Лемма доказана.

Теорема (аналог леммы Гензеля в алгебраической теории чисел). Пусть $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \in \mathbb{Z}[x], \ f(a) \equiv 0 \operatorname{mod} p^k,$ $k \in \mathbb{N}, \ f'(a) \not\equiv 0 \operatorname{mod} p^k.$ Тогда среди чисел класса вычетов $a + p^k \mathbb{Z}$ сравнению $f(x) \equiv 0 \operatorname{mod} p^{k+1}$ удовлетворяют все числа некоторого единственного класса вычетов по модулю p^{k+1} .

Доказательство.

 $a+p^k\mathbb{Z}$ разбивается на p классов вычетов по модулю p^{k+1} :

$$(a+0\cdot p^k+p^{k+1}\mathbb{Z})\cup (a+1\cdot p^k+p^{k+1}\mathbb{Z})\cup (a+2p^k+p^{k+1}\mathbb{Z})\cup \cup ...\cup (a+(p-1)p^k+p^{k+1}\mathbb{Z}).$$

Все указанные классы различны, так как их представители не сравнимы с нулем по модулю p^{k+1} . Требуется доказать, что из этих p классов только один удовлетворяет сравнению $f(x) \equiv 0 \mod p^k$.

Рассмотрим число $a + p^k t$ и используем формулу Тейлора:

$$f(a+p^kt) = f(a) + \frac{f'(a)}{1!}(p^kt) + \frac{f''(a)}{2!}(p^kt)^2 + \dots + \frac{f^{(n)}(a)}{n!}(p^kt)^n.$$

Все члены справа, начиная с третьего, делятся на p^{k+1} . Тогда $f(a+p^kt)\equiv 0 \bmod p^{k+1} \Leftrightarrow f(a)+f'(a)p^kt\equiv 0 \bmod p^{k+1}$. Так как $f(a)\equiv 0 \bmod p^k$, то $\frac{f(a)}{p^k}$ — целое число, следовательно, имеем сравнение $f'(a)t+\frac{f(a)}{p^k}\equiv 0 \bmod p$. Так как $f'(a)\not\equiv 0 \bmod p$, то t определяется однозначно по модулю p.

Теорема доказана.

Следствие. Пусть $f(a) \equiv 0 \mod p$, $f'(a) \not\equiv 0 \mod p$. Тогда существует единственная бесконечная последовательность классов вычетов по модулю $p, p^2, \ldots, p^k, \ldots$: $\bar{x}_1 = \bar{a} \ \mathbb{Z} / p \mathbb{Z}, \quad \bar{x}_2 \ \mathbb{Z} / p^2 \mathbb{Z}, \ldots$ $\bar{x}_k \ \mathbb{Z} / p^k \mathbb{Z}, \ldots$, для которой $x_{k+1} \equiv x_k \mod p^k$ для любого $k \geq 1$, и x_k удовлетворяет сравнению $f(x) \equiv 0 \mod p^k$.

Доказательство.

Пусть $\bar{a} = \bar{x}_1$. Из теоремы следует, что в $\mathbb{Z}/p^2\mathbb{Z}$ существует \bar{x}_2 , удовлетворяющий сравнению $f(x) \equiv 0 \bmod p^2$, $x_2 \equiv x_1 \bmod p$. Для \bar{x}_2 находим \bar{x}_3 в $\mathbb{Z}/p^3\mathbb{Z}$, удовлетворяющий сравнению $f(x) \equiv 0 \bmod p^3$, $x_3 \equiv x_2 \bmod p^2$ и т. д.

Следствие доказано.

Пример 1. Решить сравнение $x^2 + 2x + 4 \equiv 0 \mod 7^4$.

Рассмотрим сравнение $x^2 + 2x + 4 \equiv 0 \mod 7$ в $\mathbb{Z}/7\mathbb{Z}$. Подбором находим числа $x_1 = 1$, $x_2 = 4$, удовлетворяющие этому сравнению.

$$f'(x)=2x+2$$
, $f'(x_1)=4\neq 0$ B $\mathbb{Z}/7\mathbb{Z}$, $f'(x_2)=3\neq 0$ B $\mathbb{Z}/7\mathbb{Z}$.

1) Поднимаем x_1 на высоту 2, т. е. находим решение x_2' сравнения $f(x) \equiv 0 \mod 7^2$ такое, что $x_2' \equiv x_1 \mod 7$.

$$f'(1)t + \frac{f(1)}{7} \equiv 0 \mod 7$$
; $4t + 1 \equiv 0 \mod 7$; $t = -2$ по модулю 7.

Тогда $1+7(-2)=-13=a+p^{1}t$ – решение сравнения $f(x)\equiv 0 \mod 7^{2}$.

2) Поднимаем (-13) на высоту 3, т. е. находим решение x_3 сравнения $f(x) \equiv 0 \mod 7^3$ такое, при котором $x_3 \equiv x_2 \mod 49$.

f(-13)=147 (должно делиться на 7^2).

$$f'(1)t + \frac{f(-13)}{49} \equiv 0 \mod 7; \ 4t + 3 \equiv 0 \mod 7; \ t = 1$$
 по модулю 7.

Тогда $a+p^2t=-13+49\cdot 1=36$ – решение сравнения $f(x)\equiv 0 \bmod 7^3$.

$$f(36)=1296+72+4=1372=343\cdot4$$
.

3) Поднимаем 36 на высоту 4:

$$f'(1)t + \frac{f(36)}{343} \equiv 0 \mod 7; \ 4t + 4 \equiv 0 \mod 7; \ t = -1$$
 по модулю 7.

Тогда $a+p^3t=36+343\cdot(-1)=-307$ — решение сравнения $f(x)\equiv 0\bmod 7^4$.

$$x_1 = -307 + 2401z, z \in \mathbb{Z}$$
.

Аналогично для $x_2 = 4$.

4)
$$f'(4)t + \frac{f(4)}{7} \equiv 0 \mod 7$$
; $3t + 4 \equiv 0 \mod 7$;

t=1 по модулю 7.

 $a+pt=4+7\cdot 1=11-$ решение сравнения $f(x)\equiv 0 \mod 7^2$.

$$f(11)=121+22+4=147.$$

5)
$$f'(4)t + \frac{f(11)}{49} \equiv 0 \mod 7$$
; $3t + 3 \equiv 0 \mod 7$;

t = -1 по модулю 7.

 $a+p^2t=11+49(-1)=-38$ – решение сравнения $f(x)\equiv 0 \mod 7^3$.

$$f(-38)=1444-76+4=1372=343\cdot4$$
.

6)
$$f'(4)t + \frac{f(-38)}{343} \equiv 0 \mod 7$$
; $3t + 4 \equiv 0 \mod 7$;

t = 1 по модулю 7.

 $a+p^3t=-38+343\cdot 1=305$ – решение сравнения $f(x)\equiv 0 \mod 7^4$.

$$x_2 = 305 + 2401z, z \in \mathbb{Z}$$
.

Ответ: $x_1 = -307 + 2401z$, $x_2 = 305 + 2401z$, $z \in \mathbb{Z}$.

Пример 2. Извлечь корни 4-й степени из (-1) в $\mathbb{Z}/289\mathbb{Z}$.

Решение. Заметим сначала, что $289 = 17^2$, и обозначим $f(x) = x^4 + 1$. Тогда $f'(x) = 4x^3$.

Подбором находим два решения сравнения $x^4+1\equiv 0 \mod 17$: $x_{1,2}=\pm 2$. Чтобы найти остальные решения, поделим x^4+1 уголком на $(x-x_1)(x-x_2)=x^2-4$ в $\mathbb{Z}/17\mathbb{Z}$. Получим $x^4+1=(x^2-4)(x^2+4)$. Также подбором находим два решения сравнения $x^2+4\equiv 0 \mod 17$: $x_{1,2}=\pm 8$.

Поднимаем решение $x_1 = 2$ исходного сравнения на высоту 2 т. е. найдем решение x_2' сравнения $x^4 + 1 \equiv 0 \mod 289$ такое что $x_2' \equiv x_1 \mod 17$. Для этого решим сравнение $f'(2)t + \frac{f(2)}{17} \equiv 0 \mod 17$, т. е. $-2t + 1 \equiv 0 \mod 17$. Находим подбором t = 9. Поэтому $2 + 17 \cdot 9 = 155 -$ решение сравнения $x^4 + 1 \equiv 0 \mod 289$. Тогда ясно, что (-155) – также решение этого сравнения.

Поднимем теперь решение $x_3 = 8$ исходного сравнения на высоту 2. Для этого решаем сравнение $f'(8)t + \frac{f(8)}{17} \equiv 0 \mod 17$, т. е. $8t + 241 \equiv 0 \mod 17$ или $8t + 3 \equiv 0 \mod 17$. Находим подбором t = 6. Следовательно, $8 + 17 \cdot 6 = 110$ — решение сравнения $x^4 + 1 \equiv 0 \mod 289$. Тогда и (-110) — тоже решение этого сравнения.

Ответ: ± 155 , ± 110 – корни 4-й степени из (–1) в $\mathbb{Z}/289\mathbb{Z}$.

Задачи для самостоятельного решения

Решить сравнения:

1)
$$3x^2+4x+3\equiv 0 \mod 7^4$$
; 2) $2x^2+3x+1\equiv 0 \mod 5^4$;

3)
$$x^2 + 3x + 3 \equiv 0 \mod 7^4$$
.

Ответы: 1)
$$x_1 = 2068 + 7^4 z$$
, $x_2 = 1132 + 7^4 z$, $z \in \mathbb{Z}$;

2)
$$x_1 = -1 + 5^4 z$$
, $x_2 = 312 + 5^4 z$, $z \in \mathbb{Z}$;

3)
$$x_1 = 1352 + 7^4 z$$
, $x_2 = 1046 + 7^4 z$, $z \in \mathbb{Z}$.

§ 19. р-адические числа

Определение 18. Целым *p*-адическим числом называется бесконечная последовательность ... $\bar{\alpha}_n$, $\bar{\alpha}_{n-1}$, ..., $\bar{\alpha}_1$, где $\forall n \ \bar{\alpha}_n \in \mathbb{Z}/p^n\mathbb{Z}$, причем $\forall n \geq 2 \ \alpha_n \equiv \alpha_{n-1} \mod p^{n-1}$, т. е. $\alpha_n + p^{n-1}\mathbb{Z} = \alpha_{n-1} + p^{n-1}\mathbb{Z}$.

Примеры.

1) ...,
$$65+7^3\mathbb{Z}$$
, $16+7^2\mathbb{Z}$, $2+7\mathbb{Z}$.

2) ...,
$$43+2^5\mathbb{Z}$$
, $11+2^4\mathbb{Z}$, $11+2^3\mathbb{Z}$, $3+2^2\mathbb{Z}$, $1+2\mathbb{Z}$.

Множество всех целых p-адических чисел обозначается как Z_p .

Если все α_n — канонические представители соответствующих классов вычетов, т. е. $0 \le \alpha_n < p^n \ \forall n \in \mathbb{N}$, то из определения 18 следует,

что $0 \le \alpha_1 < p$, $\alpha_2 = \alpha_1 + \gamma_2 p$, где $0 \le \gamma_2 < p$; $\alpha_3 = \alpha_2 + \gamma_3 p^2$, где $0 \le \gamma_3 < p^2$ и т. д. Следовательно, p-адическое число ... $\bar{\alpha}_n$, $\bar{\alpha}_{n-1}$, ..., $\bar{\alpha}_1$ можно записать в позиционной записи ... γ_n , γ_{n-1} , ..., γ_1 , где $\forall n \in \mathbb{N}$ $0 \le \gamma_n < p^n$, или более наглядно в виде ... $+ \gamma_n p^{n-1} + ... + \gamma_2 p + \gamma_1$, где $\gamma_1 = \alpha_1$.

Определение 19.

Если $\alpha = ... \bar{\alpha}_n$, $\bar{\alpha}_{n-1}$, ... $\bar{\alpha}_1$ и $\beta = ... \bar{\beta}_n$, $\bar{\beta}_{n-1}$, ... $\bar{\beta}_1$ — два p-адических числа, то $\alpha + \beta = ... \bar{\alpha}_n + \bar{\beta}_n$, $\bar{\alpha}_{n-1} + \bar{\beta}_{n-1}$, ..., $\bar{\alpha}_1 + \bar{\beta}_1$; $\alpha \cdot \beta = ... \overline{\alpha_n \beta_n}$, $\overline{\alpha_{n-1} \beta_{n-1}}$, ..., $\overline{\alpha_1 \beta_1}$.

Теорема 26.

- 1) \mathbb{Z}_p является коммутативным ассоциативным кольцом относительно вышеопределенных операций сложения и умножения с кольцевой единицей в позиционной записи ...0...01 и кольцевым нулем ...00...0.
- 2) Мультипликативная группа \mathbb{Z}_p^* данного кольца состоит из всех p-адических чисел ... $\bar{\alpha}_n \bar{\alpha}_{n-1}$... $\bar{\alpha}_1$, где $\alpha_1 \not\equiv 1 \bmod p$.

Доказательство следует из покомпонентности сложения и умножения *p*-адических чисел.

Если ... $\gamma_n, \gamma_{n-1}, ..., \gamma_1$ позиционная запись p-адического числа α , то $\alpha = ... \overline{\gamma_n p^{n-1} + \gamma_{n-1} p^{n-2} + ... + \gamma_1}, \overline{\gamma_{n-1} p^{n-2} + ... + \gamma_1}, ..., \overline{\gamma_1}$, откуда следует, что в позиционной записи p-адические числа складываются и перемножаются столбиком (по обычным школьным правилам), однако действия над числами в отдельных позициях производятся по модулю p.

Здесь при сложении чисел в четвертой позиции получилось число 9 = 1.7 + 2, поэтому в этой позиции в сумме пишем 2, а единицу, стоящую перед 7, переносим налево, т. е. при сложении чисел в пятой позиции имеем 5 + 6 = 11 = 1.7 + 4, но в сумме вместо 4 пишем в пятой позиции 5, учитывая единицу переноса из 4-й позиции.

Далее ясно, что отображение $\phi: \mathbb{Z} \to \mathbb{Z}_p$ такое, при котором $\forall z \in \mathbb{Z} \ \phi(z) = ..., \overline{z}, ..., \overline{z}$, где справа в каждой позиции стоит \overline{z} , является изоморфным вложением \mathbb{Z} в \mathbb{Z}_p , так что можно считать $\mathbb{Z} \subset \mathbb{Z}_p$.

Однако заметим, что если позиционная запись натурального числа имеет конечный вид $\gamma_n \gamma_{n-1} ..., \gamma_1$, то позиционная запись отрицательного целого числа имеет бесконечный вид, например, -1 в \mathbb{Z}_7 равен ...6...666 (6 в периоде).

На языке p-адических чисел рассмотренная нами теория в предыдущем параграфе говорит о том, что если a — решение уравнения f(x) = 0 в $\mathbb{Z}/p\mathbb{Z}$, где f(x) — многочлен с целыми коэффициентами, причем $f'(a) \not\equiv 0 \mod p$, то решение \overline{a} поднимается до решения ... $\overline{a}_n,...,\overline{a}_2,\overline{a}_1$, где $a_1 = a_2$, уравнения f(x) = 0 в \mathbb{Z}_p .

Закончим этот параграф формулировкой знаменитой теоремы Хассе-Минковского.

Определение 20. Поле дробей кольца \mathbb{Z}_p называется полем p-адических чисел. Оно обозначается \mathbb{Q}_p . Из теоремы 26 следует, что каждое ненулевое число из \mathbb{Q}_p имеет вид xp^m , где $m \in \mathbb{Z}$, $x \in \mathbb{Z}_p^*$.

Теорема Хассе–Минковского. Невырожденная квадратичная форма с рациональными коэффициентами представляет 0 в \mathbb{Q} (т. е. обращается в ноль при некоторых значениях переменных, причем не все эти значения равны 0) тогда и только тогда, когда эта форма представляет 0 в \mathbb{Q}_p для любого простого p.

Очень нетривиально здесь доказательство достаточности, которое можно найти, например в книге [4].

Пример 1. Решить сравнение $221x \equiv 289 \mod 7^3$.

Представляем числа 221 и 289 как 7-адические числа в позиционной записи:

$$289 = 5.49 + 6.7 + 2.7^{0} = ...00562, 221 = 4.49 + 3.7 + 4.7^{0} = ...00434.$$

В
$$\mathbb{Z}_7$$
 равенство $x = \frac{562}{434}$ эквивалентно равенству $562 = 434 \cdot x$.

Чтобы найти нужное число первых цифр в позиционной записи x для решения данного сравнения, воспользуемся правилом умножения p-адических чисел столбиком:

$$\begin{array}{r}
 434 \\
 ...354 \\
\hline
 2402 \\
 3136 \\
 \underline{1635} \\
 00562
\end{array}$$

Здесь x=...354 находится по первому множителю 434 и по результату 562 умножения 434 на x. Для решения сравнения по модулю 7^3 достаточно найти первые три цифры в позиционной записи x в \mathbb{Z}_7 . И, наконец, переводим 7-адическое число 354 в десятичную запись: 354 = 3.49 + 5.7 + 4 = 147 + 39 = 186.

Ответ: $x=186+343\mathbb{Z}$.

Пример 2. Решить сравнения $991x \equiv 878 \mod 7^4$, $991x \equiv 878 \mod 7^5$, $991x \equiv 878 \mod 7^6$:

878 =
$$2 \cdot 343 + 3 \cdot 49 + 6 \cdot 7 + 3 \cdot 7^0 = 2363_7$$
, 991 = $2 \cdot 343 + 6 \cdot 49 + 1 \cdot 7 + 4 \cdot 7^0 = 2614_7$. $x = \frac{2363}{2614}$; 2363=2614· x .
$$\frac{2614}{40016}$$
$$\frac{40016}{23223}$$
$$\frac{2614}{000}$$
00
14362
$$\frac{0}{02363}$$
016₇ = $7 + 6 = 13_{10}$, тогда $x = 13 + 7^4 \mathbb{Z}$. $40016 = 4 \cdot 2401 + 7 + 6 = 9617$, $x = 9617 + 7^5 \mathbb{Z}$, $x = 9617 + 7^5 \mathbb{Z}$. Ответ: $x = 13 + 7^4 \mathbb{Z}$, $x = 9617 + 7^5 \mathbb{Z}$, $x = 9617 + 7^5 \mathbb{Z}$.

Задачи для самостоятельного решения

Решить сравнения:

- 1) $57x \equiv 119 \mod 2^7$; 2) $1278x \equiv 2279 \mod 5^4$;
- 3) $1278x \equiv 2279 \mod 5^6$; 4) $1278x \equiv 2279 \mod 7^4$;
- 5) $1278x \equiv 2279 \mod 7^6$.

Ответы: 1) $x=47+2^7 z, z \in \mathbb{Z}$; 2) $x=193+5^4 z, z \in \mathbb{Z}$;

- 3) $x=2086+5^6z$, $z \in \mathbb{Z}$; 4) $x=680+7^4z$, $z \in \mathbb{Z}$;
- 5) $x = 48700 + 7^6 z$, $z \in \mathbb{Z}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бухштаб А. А. Теория чисел / А. А. Бухштаб. М.: Просвещение, 1966.
- 2. Виноградов И. М. Основы теории чисел / И. М. Виноградов. М.: Наука, 1972.
- 3. Дэвенпорт Г. Высшая арифметика / Г. Дэвенпорт. М.: Наука, 1965.
- 4. Cepp Ж.-П. Курс арифметики / Ж.-П. Cepp. M. : Mup, 1972.
- 5. Кострикин А. И. Введение в алгебру / А. И. Кострикин. М.: Наука, 1977.
- 6. Боревич 3. И. Теория чисел / 3. И. Боревич, И. Р. Шафаревич. М.: Наука, 1972.
- 7. Кудреватов Г. А. Сборник задач по теории чисел / Г. А. Кудреватов. М.: Просвещение, 1970.
- 8. Александров В. А. Задачник-практикум по теории чисел / В. А. Александров, С. М. Горшенин. М.: Просвещение, 1972.

Учебное пособие

Веретенников Борис Михайлович **Михалева** Марина Михайловна

Алгебра и теория чисел Часть I

Редактор *О. С. Смирнова* Компьютерный набор *М. М. Михалевой* Компьютерная верстка *Т. С. Кринициной*

Подписано в печать 30.05.2014. Формат 60×90 1/16. Бумага писчая. Плоская печать. Усл. печ. л. 3,25. Уч.-изд. л. 3,1. Тираж 100 экз. Заказ № 1164.

Издательство Уральского университета Редакционно-издательский отдел ИПЦ УрФУ 620049, Екатеринбург, ул. С. Ковалевской, 5 Тел.: 8 (343) 375-48-25, 375-46-85, 374-19-41 E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ 620075, Екатеринбург, ул. Тургенева, 4 Тел.: 8 (343) 350-56-64, 350-90-13 Факс: 8 (343) 358-93-06

E-mail: press-urfu@mail.ru

Для заметок

Для заметок

