Queens' College Cambridge

Optimizing Compilers

Alistair O'Brien

Department of Computer Science

May 31, 2022

Contents

1	Ove	erview	4			
2	Hig	h-Level Optimizations	5			
	2.1	Abstract Interpretation	6			
		2.1.1 Strictness Analysis	7			
	2.2	Constraint-Based Analysis	9			
		2.2.1 Oth-order Control Flow Analysis	0			
		2.2.2 Andersen's Point-to Analysis	2			
	2.3	Inference-Based Analysis	3			
		2.3.1 Effect Systems	4			
3	Low	v-Level Optimizations	6			
	3.1	Intermediate Representations	6			
		3.1.1 Forms of Analysis	9			
		3.1.2 Static Single Assignment Form	0			
	3.2	Local Optimizations	0			
		3.2.1 Constant Folding	1			
	3.3 Control-Flow Analyses					
		3.3.1 Unreachability Analysis	2			
		3.3.2 Control-Flow Simplification	3			
	3.4	Data-Flow Analyses	5			
		3.4.1 Live Variable Analysis	5			
		3.4.2 Available Expression Analysis 2	7			
		3.4.3 Reachability Analysis	9			
		3.4.4 Data-Flow Transformations and Anomalies 3	0			
	3.5	Inlining				
4	Cod	le Generation 38	5			
	4.1	Register Allocation				
		4.1.1 Non-Orthogonal Instructions				

	4.2	4.1.2 Calling Conventions	38
5	5 Decompilation		
	5.1	Control-flow Reconstruction	41
	5.2	Type Reconstruction	41

1 Overview

• Compiler Pipeline:

- Optimization = Analysis + Transformation

 Analysis finds some property which justifies the safety of the transformation.
- Goal: Programmers write simple, maintainable, portable code. Compiler specializes code for machine, making it faster, etc.
- Phase Ordering: Determining order of optimization phases is difficult. Some optimizations work well with others (e.g. CSE + Copy Propagation), others don't (requiring multiple runs).

2 High-Level Optimizations

• High-level optimizations are performed on the *syntax tree* (often used in functional languages).

Definition 2.0.1. (STLC λ^{\rightarrow}) The syntax of the simply-typed lambda calculus λ^{\rightarrow} is given by:

$$e := x \mid e \mid e \mid \lambda x.e$$
 (Classical λ calculus)
 $\mid \rho \mid c$ (Primitives and constants)
 $\mid \text{let } x = e \text{ in } e$ (Let bindings)
 $\mid \text{if } e \text{ then } e \text{ else } e$ (Control flow)

- Many high-level optimizations are based on the analysis of the simply-typed lambda calculus.
- Peephole optimizations are simple syntactic rewriting rules e.g.

$$\begin{array}{l} e+0 \leadsto e \\ (e+m)+n \leadsto e+(m+n) \\ \text{let } x=e \text{ in if } e' \text{ then } C[x] \text{ else } e'' \\ \qquad \leadsto \text{if } e' \text{ then let } x=e \text{ in } C[x] \text{ else } e'' \quad \text{(for lazy/pure language)} \end{array}$$

Safety of these transformations is determined by contextual equivalence (See IB Semantics).

• Strength Reduction:

Idea: replace expensive operations with cheaper ones e.g.

$$x * 2 \leadsto x + x$$
$$x/2 \leadsto x \gg 1$$

This form of rewriting is very effective within *loops*.

Algorithm (for loops):

- 1. Find the induction variables i, j s.t $i := i \oplus e$ (updated by loop), where $i, j \notin \mathsf{fv}(e)$. Find j s.t $j := e_2 \oplus e_1 \otimes i$ (used within loop), $i, j \notin \mathsf{fv}(e_1, e_2)$.
- 2. Assuming distributivity between \oplus , \otimes : $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$. Move the assignment to the loop entry: $j := e_2 \oplus e_1 \otimes i$ and add end-of-loop assignment $j := j \oplus (e_2 \oplus e)$.

Distributivity ensures *safety* of the transformation.

For example:

```
int *v = ...;
for (i = 0; i < 100; i++)
  v[i] = 0; // *(v + i * sizeof(int)) = 0</pre>
```

The induction variable i is i and j is the expression v + i * sizeof(int). So it is rewritten to:

```
int *v = ...;
for (int *p = v; p < v + 100; p++)
 *p = 0;</pre>
```

Problem: Obfuscates the code (and it's intent) \implies decompilation is harder.

2.1 Abstract Interpretation

- **Problem**: Dynamic behavior is infeasible to determine statically (non-termination, etc).
- **Solution**: Execute a *simplified* version of the computation w/ safety property for P:

P holds in abstract domain $\implies P$ holds in concrete domain

Definition 2.1.1. (Abstract Interpretation) Let D, D^{\sharp} be two arbitrary domains, denoting the *concrete* and *abstract* domains respectively. Let abs: $D \to D^{\sharp}$ be the abstraction function.

For a syntax $M \in \mathbb{T}$, the concrete and abstract semantics are denoted $\llbracket \cdot \rrbracket$: $\mathbb{T} \to D$ and $\llbracket \cdot \rrbracket^{\sharp} : \mathbb{T} \to D^{\sharp}$. The abstract interpretation of a term $M \in \mathbb{T}$ is given by $\llbracket \cdot \rrbracket^{\sharp} \in D^{\sharp}$, with the safety property:

$$\mathsf{abs}(\llbracket M \rrbracket) \sqsubseteq \llbracket M \rrbracket^\sharp$$

- Intuitively, safety property implies abstract interpretation is an overapproximation of the concrete abstraction.
- Example: Addition on integers. $D = \mathbb{Z}$. $D^{\sharp} = \{(+), (-), (0), (?)\}$. Abstract interpretation:

Safety property requires that $d \in D^{\sharp}.d \sqsubseteq (?)$.

• Example: Liveness analysis. Live sets are abstract values. Control flow is overapproximated in abstract domain.

2.1.1 Strictness Analysis

- Idea : Have a call-by-name language, want to determine parameters that can be passed by value.
 - Call-by-value is **more efficient** (avoids constructing thunks, which are allocated on the heap).

Definition 2.1.2. (Strictness) A function $f: D_{\perp}^n \to D_{\perp}$ is *strict* in x_i (*i*th parameter) iff

$$\forall (d_j)_{1 \leq i \neq j \leq n} \in D_{\perp}.f(d_1,\ldots,d_{i-1},\perp,d_{i+1},\ldots,d_n) = \perp$$

• Language is defined by the grammar:

$$p ::= \overline{F(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau = e}$$
 (Program)

$$e ::= x_i \mid \rho(e_1, \dots, e_n) \mid F(e_1, \dots, e_n)$$
 (Expressions)

$$\tau ::= \dots$$
 (Types)

p is a program, a sequence of mutually-recursive first-order functions. Operationally, a function F is strict in x_i iff for all $e_1, \ldots, e_n \in \Lambda$

$$e_i$$
 diverges $\Longrightarrow F(e_1,\ldots,e_n)$ diverges

• Abstract Interpretation:

Domain $D \supseteq \{\bot\}$ (Domain must be flat). Abstract Domain $D^{\sharp} = \mathbf{2} = \{0, 1\}$. 0 = definitely diverges, 1 = may/-may not diverge (possible termination).

Abstract interpretation defines the interpretations for the primitives $\rho^{\sharp}: \mathbf{2}^n \to \mathbf{2}$ satisfying the property:

$$\rho^{\sharp}(x_1, \dots, x_n) = 0$$

$$\iff \forall (d_i)_{i>0} \in D. (\forall 1 \le i \le n. x_i = 0 \implies d_i = \bot) \implies \rho(d_1, \dots, d_n) = \bot$$

For example:

$$\mathsf{if}^{\sharp}(b, x, y) = b \land (x \lor y)$$
$$\mathsf{eq}^{\sharp}(x, y) = x \land y$$

Negation cannot occur in boolean expressions since it would equate to: $\neg x$ terminates $\iff x$ doesn't terminate (Halting problem).

• Interpretation of (user-defined) functions F is $F^{\sharp}: \mathbf{2}^{n} \to \mathbf{2}$ satisfying:

$$F^{\sharp}(x_1, \dots, x_n) = 0$$

$$\Longrightarrow \forall (d_i)_{i>0} \in D. (\forall 1 \le i \le n. x_i = 0 \implies d_i = \bot) \implies F(d_1, \dots, d_n) = \bot$$

Note difference between ρ (\iff) and weaker F (\implies).

• Solutions for abstract interpretations of a program p, written $[\![p]\!]$ or F^{\sharp} , computing using least fixed point:

```
(* Over-approximation, everything initially diverges *) for i = 1 to n do F^{\sharp}.(i) \leftarrow \lambda_{-}.0 done; while (F^{\sharp} changes) do for i = 1 to n do (* Update strictness function, substituting F^{\sharp}.(i) for F_{i} *) F^{\sharp}.(i) \leftarrow \lambda \mathbf{x}.e_{i}^{\sharp} done done
```

• Safety property:

$$F^{\sharp}(1,1,\ldots,1,\underbrace{0}_{i\text{th parameter}},1\ldots,1)=0 \implies F \text{ is strict in } x_i$$

2.2 Constraint-Based Analysis

- **Problem**: Constraint-based analysis is a framework for solving complex abstract interpretation problems often problems that often require some form of oracle to formalize (e.g. control-flow analysis).
- **Idea**: Define a mapping $[\cdot : \cdot]$: $e \times \alpha \mapsto C_{\tau}$, then solve the constraint C_{τ} to obtain the abstract value of type τ .

Abstract interpretation is given by: $\llbracket e \rrbracket^{\sharp} = \mathsf{solve}(\exists \alpha. \llbracket e : \alpha \rrbracket) \gg \mathsf{decode} \ \alpha).$

Definition 2.2.1. (Constraints with a Value) The syntax of constraints with a value (or τ -constraints) is defined as:

$$C ::= \top \mid \bot \mid C \land C \mid \exists \alpha. C$$
 (First-order Logic)
$$\mid \text{let } \overline{x = \lambda \overline{\alpha}. C} \text{ in } C \mid x \ \overline{\alpha}$$
 (Constraint Abstractions)
$$\mid A$$
 (Atomic Constraints)
$$\mid \text{map } C f \mid \text{decode } \alpha$$
 (Value operators)

We write C_{τ} for a constraint of type τ .

• An τ -constraint C evaluates to a value of type τ if C is satisfiable. See Dissertation for Semantics.

2.2.1 Oth-order Control Flow Analysis

- Idea: Each expression e is associated with a (flow) variable α, the set of values (λ-functions) that e could evaluate to (or "flow" from).
 Flow sets can be used to determine set of functions that could be applied ⇒ control flow analysis for first-class functions / virtual methods (dynamic dispatch).
- Atomic constraints $A := \alpha \subseteq \alpha \mid \alpha \subseteq \alpha \mapsto \alpha \mid \{\lambda x.e : \alpha \mapsto \alpha\} \in \alpha$.
- Constraint bindings are of the form (w/syntactic sugar def):

$$\operatorname{def} x : \alpha_x \text{ in } C \triangleq \operatorname{let} x = \lambda \alpha . \alpha_x \subseteq \alpha \text{ in } C$$

Semantically $x \alpha$ is equivalent to $\alpha_x \subseteq \alpha$.

Definition 2.2.2. (Constraint generation) We have the following constraint generation rules for 0th-order CFA (without value construction):

The constraint generation mapping is explained via notions of "information flow":

- Constraint solving is performed iteratively (solving the least fixed point):
 - 1. Solving $\alpha_1 \subseteq \alpha_2$: Add all values in α_1 to α_2 .
 - 2. Solving $\alpha_1 \subseteq \alpha_2 \mapsto \alpha_3$: For each value $\lambda x.e : \alpha_4 \mapsto \alpha_5 \in \alpha_1$, solve $\alpha_2 \subseteq \alpha_4$ and $\alpha_5 \subseteq \alpha_3$. (*Think subtyping*).
- Safety property:

 $\llbracket e \rrbracket^{\sharp} = \text{solved flowset } \alpha \supseteq \text{set of values } e \text{ could evaluate to} = \llbracket e \rrbracket$

- **Problem**: Analysis is imprecise. Function's flow variable are shared between all sites (*monovariant*):
- Solutions:
 - 1st-order CFA is *polyvariant* 1 variable per call site.
 - polymorphic analysis 1 flow variable per type.

2.2.2 Andersen's Point-to Analysis

- **Problem**: Find a more precise set of variables that a point could alias. Assumption: "all addresses are taken" with pointer in LVA and Avail is weak.
- Other uses:
 - Safe parallelization
 - Improvement of data-flow analysis (LVA, Avail)
- Solution: Define a *points to* relation for each variable the set of location/variables that each variable aliases.
- Andersen's Analysis:
 - Simplified/imprecise
 - Intra-procedural (1 pt relation per procedure, as opposed to per statement).
 - Control-flow insensitive
 - No pointer arithmetic / function pointers
 - Conflates struct fields e.g. x.f = e and x.g = e are treated the same, equivalent to x = e.
- Pointer operations are of the form:

$$x := \mathsf{new}_\ell$$
 (Malloc)
 $x := \mathsf{null}$ (Null)
 $x := \& y$ (Address of)
 $x := y$ (Alias)
 $x := *y$ (Field access)
 $*x := y$ (Field mutation)

• Abstract values: $V = \{x : x \in \mathsf{vars}\} \cup \{\mathsf{new}_\ell : \ell \in \mathsf{locs}\} \cup \{\mathsf{null}\}.$ Point-to relation is a function $pt : \mathsf{vars} \to V$.

• Atomic Constraints:

$$A ::= pt(x) \subseteq pt(x) \mid \{v\} \subseteq pt(x) \mid pt(x) \subseteq pt(*x) \mid pt(*x) \subseteq pt(x).$$

Interpretation of $pt(x) \subseteq pt(*y)$ is semantically equivalent to $\forall z \in pt(y).pt(x) \subseteq pt(z)$ (vice versa for $pt(*x) \subseteq pt(y)$)

Definition 2.2.3. (Constraint generation) We have the following constraint generation rules for Andersen's analysis:

- α is omitted from constraint gen. since existentials + binders are not required for the WHILE language.
- Constraint solving is performed in the same way as 0CFA.
- Time complexity: $O(n^3)$.
- Other Approaches:
 - Steengaard's Algorithm Merges the abstract values of a and b is any pointer can reference both. Less precise than Andersen's, but approximately linear time complexity!
 - Shape Analysis Models an abstract heap, with nodes and may / must point to edges between notes. Very precise! But abstract heap becomes very large in practice.

2.3 Inference-Based Analysis

• Idea: Define inductive judgements $\Gamma \vdash e : \phi$, read as: e has the property ϕ in the context Γ .

Definition 2.3.1. (Inference-Based Analysis) An inference-based analysis of a property Φ consists of an inductive relation $\Gamma \vdash e : \phi \in \Phi$, with a safety property:

$$\Gamma \vdash e : \phi \implies \llbracket e \rrbracket \in \llbracket \phi \rrbracket$$

where e is the value of e and $\llbracket \phi \rrbracket$ is the set of values with property $\phi \in \Phi$.

• For λ^{\rightarrow} , they often take the form:

$$\frac{x:\phi\in\Gamma}{\Gamma\vdash x:\phi}$$

$$\frac{\Gamma,x:\phi_1\vdash e:\phi_2}{\Gamma\vdash \lambda x.e:\phi_1\to\phi_2}$$

$$\frac{\Gamma \vdash e_1 : \phi_1 \to \phi_2 \qquad \Gamma \vdash e_2 : \phi_1}{\Gamma \vdash e_1 \ e_2 : \phi_2}$$

- Examples: Type systems, odd-even analysis, effect systems.
- They are another form of abstract interpretation (and can easily be related to constraint-based analysis using judgements of the form $C \vdash e : \phi$ read as: under satisfiable assumptions C, e has the property ϕ).

2.3.1 Effect Systems

• Idea: Tracking side-effects (e.g. mutable state, IO, etc) using inference-based analysis.

Definition 2.3.2. $(\lambda_{IO}^{\rightarrow})$ The simply typed lambda calculus with IO $\lambda_{IO}^{\rightarrow}$ extends λ^{\rightarrow} with following IO operations:

$$e ::= \dots \mid \text{with } x \leftarrow \xi \text{ in } e \mid e \rightarrow \xi; e$$

where:

- with $x \leftarrow \xi$ in e reads the contents of channel ξ into x, binding it in e.

- $-e_1 \rightarrow \xi; e_2$ writes the value of e_1 into channel ξ , then evaluating the expression e_2 , sequentially.
- Effects for an $\lambda_{\text{IO}}^{\rightarrow}$ expression are a set of read-write effects to various channels:

$$F \subseteq \{W_{\xi}, R_{\xi} : \xi \in \Xi\}$$

• Types for $\lambda_{IO}^{\rightarrow}$ are as usual, with the addition of *latent effects* to the function type:

$$\tau ::= \mathsf{int} \mid \tau \xrightarrow{F} \tau$$

• Inference rules, with *effect subtyping* (required for branches, etc):

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau\&\emptyset} \qquad \qquad \frac{\Gamma,x:\tau_1\vdash e:\tau_2\&F}{\Gamma\vdash \lambda x.e:\tau_1\xrightarrow{F}\tau_2}$$

$$\frac{\Gamma\vdash e_1:\tau_1\xrightarrow{F}\tau_2\&F_1}{\Gamma\vdash e_1\:e_2:\tau_2\&F_1} \qquad \Gamma\vdash e_2:\tau_1\&F_2$$

$$\frac{\Gamma\vdash e:\tau_1\xrightarrow{F_1}\tau_2\&F_0}{\Gamma\vdash e:\tau_1\xrightarrow{F_2}\tau_2\&F_0}$$

$$\frac{\Gamma\vdash e:\tau_1\xrightarrow{F_2}\tau_2\&F_0}{\Gamma\vdash e:\tau_1\xrightarrow{F_2}\tau_2\&F_0}$$

• Safety property:

$$\vdash e : \tau \& F \implies \exists v \in \llbracket \tau \rrbracket, f \subseteq F.(v, f) \in \llbracket e \rrbracket$$

- Additional structures may enrich the effect system:
 - Effects cannot be permuted (a list, instead of a set).
 - Additional combinators on effects for branching. e.g. $F_1 \& (F_2 \mid F_3) = \text{effects of } F_1 \text{ and the effects of } F_2 \text{ or } F_3.$ See IA semantics supervision work.

3 Low-Level Optimizations

3.1 Intermediate Representations

- Problem: Need a low-level IR representation of the program.
- Stack machines: Stack machine instructions are a poor representation:
 - Data flow is hard to analyze (as dependencies are implicit through the stack).
 - Rewriting is difficult to prove.
- **3-Address Code**: 3-address codes are much easier to reorder and perform analysis on them.
 - Instructions have explicit arguments, used to model data dependencies.
 - Not limited by hardware restrictions. e.g. unlimited registers.

Definition 3.1.1. (3-Address Code) The 3-address code consists of the following instructions $(i \in \mathcal{I})$:

Alistair O'Brien		Optimizing Compilers
Operator	RISC-V Instruction	Effect
Load	lt rd, x(rs1)	rf[rd] = data[rf[rs1] + x]
Store	st rs1, $x(rs2)$	data[rf[rs2] + x] = rf[rs1]
Load Reserved	$ m lr. \it t$ rd, rs1	<pre>rd[rd] = data[rf[rs1]] and places a "reservation" on address rf[rs1].</pre>
Store Conditional	sc.t rd, rs1, rs2	<pre>data[rf[rs2]] = rf[rs1]. rf[rd] = 1</pre>
Shift Left	sll, slli	<<
Shift Right	srl, srli	>>
Shift Right Arithmetic	sra, srai	>> but uses sign bit (instead of 0)
Bitwise-And	and, andi	&
Bitwise-Or	or, ori	
Bitwise-Xor	xor, xori	^
Add	add, addi	+
Subtract	sub, subi	-
Equal	beq rs1, rs2, o	if (rs1 == rs2) PC += o;
Not Equal	bne rs1, rs2, o	if (rs1 != rs2) PC += o;
Less Than	blt rs1, rs2, o	if (rs1 < rs2) PC += o;
Greater Than or Equal	bge rs1, rs2, o	if (rs1 >= rs2) PC += o;
Less Than (Unsigned)	bltu rs1, rs2, o	<pre>if ((unsigned)rs1 < (unsigned)rs2) PC += o;</pre>
Greater Than or Equal (Unsigned)	bgeu rs1, rs2, o	<pre>if ((unsigned)rs1 >= (unsigned)rs2 PC += o;</pre>
Jump to Register	jr rs1	jalr x0, 0(rs1)
Jump to Label	call .L1	jal ra, .L1
Return	ret	jalr x0, 0(ra)
No-op	nop	add x0, x0, x0
Move	mv rd, rs1	addi rd, rs1, 0
Branch if zero	beqz rs1, .L1	beq rs1, x0, .L1
Branch greater than	bgt rs1, rs2, .L1	blt rs2, rs1, .L1
Load immediate	li rd, x	Determined by assembler.
		Based on width of x

Definition 3.1.2. (flowgraph) A flowgraph G is a graph G = (V, E) where vertices are instructions $V \subseteq \mathcal{I}$ and edges $E = \{(i_1, i_2) : i_1 \text{ may branch to } i_2\}$.

Definition 3.1.3. (Basic Block) A basic block b is a maximal sequence of instructions i_1, \ldots, i_n with no internal control flow s.t:

$$\forall i \in \langle i_2, \dots, i_n \rangle . |\mathsf{pred}(i)| = 1$$

 $\forall i \in \langle i_1, \dots, i_{n-1} \rangle . |\mathsf{succ}(i)| = 1$

• Basic blocks reduce the space and time requirements for analysis algorithms by calculating and storing data-flow and control-flow information per-block, compared to per-instruction in flowgraphs.

- Algorithm for computing a basic blocks:
 - 1. Find all instructions i that are *leaders*. A leader is:
 - The first instruction of the procedure
 - The target of any branch / call
 - Any instruction immediately following a branch instruction
 - 2. For each leaders i, the basic block b is defined as the instructions from i to the next leader.

3.1.1 Forms of Analysis

• Types of analysis:

Local Local analysis within a basic block.

Intra-procedural Analysis between basic blocks (in isolation). Techniques vary, but optimizations are usually split into control flow analyses and data flow analyses.

Inter-procedural Analysis between procedures (the whole program). Examples include *inlining* or *unreachability analysis*. Very expensive in practice (many compilers do not perform WPO).

- Note: Many compilers only use a handful of optimizations:
 - Optimizations often have a low-payoff.
 - They are complex to implement (maintainability issues).
 - Their analyses too expensive during compilation (see Rust).
- Control flow analysis: Determine control flow by constructing flow-graph G.
- Data flow analysis: Determine the data flow dependencies (e.g. variable uses, expression evaluations, etc) using a flowgraph G.
- Sensitivity:
 - Flow sensitive: Considers the order or control flow of statements.
 - Path sensitive: Considers loop conditions in analysis e.g. if x > 0 then ... else ... assume x > 0 in then branch and $x \le 0$ in else branch. (Hoare Logic)

3.1.2 Static Single Assignment Form

Definition 3.1.4. (Static Single Assignment Form) An IR is said to be in static single assignment form (SSA) if each variable/register in the IR is assigned once (statically, dynamically a variable could be assignment multiple times e.g. a loop), and every variable is defined before its usage.

• Conversion to SSA:

- 1. Replace each assignment to t with a new variable t_i (ith version), and replacing each reference of the variable with the version that is live at that point.
- 2. Control-flow divergence and reconciliation requires notion of a superposition of versions (or a ϕ -function). The superposition $\{t_{i_1}, \ldots, t_{i_k}\}$ denotes the resultant variable is t_{i_k} if we arrive from predecessor k.

• Benefits of SSA:

- Reduces registers (reduces live ranges).
- Improves data-flow optimizations (e.g. liveness).

3.2 Local Optimizations

- Performed by traversing a section of a basic blocks (known as a peephole / window), where the window is optimized to an equivalent set of instructions w/ better performance.
- Algebraic Simplifications / Peephole optimizations:

```
addi xn, xn, 0 // addi xn, xn, 0 has no effect (x = x + 0) ... mv xm, xn mv xm, xm mv xn, xm // moving contents of xm to xn has no effect
```

Advantages	Disadvantages
Many applicable optimizations	Limited scope due to peephole. Cannot deal w/ optimizations based on control flow / inter-procedural optimizations
Simple implementation. Pattern matching optimizations w/in peephole optimization w/ traversal algorithm across AST / linearized code.	
Combined with inter-procedural optimizations (e.g. inlining) yields extremely effective optimizer.	

3.2.1 Constant Folding

Definition 3.2.1. (Constant Folding) Constant folding is an optimization where constant expressions are evaluated at compile time.

• Optimizes running time. Compile time \rightarrow Running time tradeoff.

Definition 3.2.2. (Constant Propagation) Constant propagation is the process of substituting the identifier x of a constant expressions e evaluated at compile time w/ it's value v.

```
int x = 5;
int y = x * 2; \leadsto int z = a[10];
int z = a[y];
```

• Implementing using reaching definition analysis (binder dependencies).

Advantages	Disadvantages
Increases runtime performance	Decreases compiler performance (massive slowdown for large programs)
Unsafe optimizations may be applied. e.g. $0 * x \neq 0$ (by IEEE)	
Simple implementation. Pattern matching on operators w/ operands tagged Const.	

3.3 Control-Flow Analyses

- Goal: determine certain control-flow properties using a CFG.
- Note: Analyses are often *conservative* (for safety reasons), since controlflow may be impossible to precisely determine in a static context (Halting problem).
- Control-flow analyses are often *not* structure-preserving, whereas Dataflow analyses are.

3.3.1 Unreachability Analysis

Definition 3.3.1. (Unreachable Code) An instruction i is said to be *unreachable* if it's node in the flowgraph G is unreachable from some root set R of entry nodes in G.

Definition 3.3.2. (**Dead Code**) An instruction i is said to be dead if it's computational effect is unused.

- Unreachability assumptions:
 - Assume *both* branches of a conditional branch are taken.
 - All loops eventually terminate.
 - Indirect jumps (jr) can go to any address that has previously been taken.

Unreachable Code	Dead Code
Control-flow property	Data-flow property
Wastes .text (program) space	Wastes CPU cycles at runtime
return x; 2 = x +7; - Unreachable	return xj

• Analysis: A simple DFS/BFS traversal from the root set R, marking visited nodes $n \in \mathsf{visited}(R)$, is sufficient to determine whether a node n is unreachable, as n is unreachable $\iff n \notin \mathsf{visited}(R)$.

• Transformations:

Unreachable Code Elimination (Intra-procedural) Delete basic blocks b if b is unreachable from root set R.

Optimizations / macro systems often introduce "obvious" unreachable code. For example: if (true) ... could result from constant folding.

Unreachable Procedure Elimination (Inter-procedural) Delete functions / procedures not reachable from the main function (using a call graph).

3.3.2 Control-Flow Simplification

• Control-flow simplification is a form of non-structure-preserving peephole optimizations.

• If Simplification:

```
Original
                                       Optimized
// f has no side-effects
                                       // if-statement had no
if f(x) then ();
                                       // semantic effect
C
                                       C
// else branch has no effect
if B then C else ()
                                       if B then C
// then branch has no effect
if B then () else {\cal C}
                                       if not B then C
// Constant condition
// (vice verse for false)
if true then C_1 else C_2
                                       C_1
// dual optimization for else
if \mathcal{C}_B[B]
                                       if \mathcal{C}_B[B]
  then \mathcal{C}_C [if B then C_1 else C_2]
                                         then \mathcal{C}_C[C_1]
  else C_3
                                         else C_3
```

• Loop Unrolling: With while and (especially) for loops with small number of iterations (determined by a constant), unroll the loop:

$$i := 0; \\ C; \\ i := i + 1; \\ C; \\ done \\ \\ i := i + 1; \\ C; \\ i := i + 1; \\ C; \\ i := i + 1; \\ C$$

3.4 Data-Flow Analyses

3.4.1 Live Variable Analysis

• Liveness $\approx x$ is used in the future.

Definition 3.4.1. (Liveness) A variable x is said to semantically live at instruction i iff

$$\exists \mathsf{environments} \rho_1, \rho_2. \rho_1 =_{\backslash x} \rho_2 \wedge \llbracket G \downharpoonright i \rrbracket_{\rho_1} \neq \llbracket G \downharpoonright i \rrbracket_{\rho_2}$$

where $G \mid i$ is the subgraph of G rooted at i.

• Intuitively, x is live if the execution sequence starting at i observably depends on x.

Definition 3.4.2. (Syntactic Liveness) A variable x is syntactically live at instruction i iff there exists a path $p = i = i_1 \rightarrow \cdots \rightarrow i_k = i'$ s.t

$$\forall 1 < l < k.x \notin \mathsf{def}(i_l) \land x \in \mathsf{ref}(i')$$

• Syntactic liveness is decidable and an **over-approximation** of semantic liveness:

$$\mathsf{sem\text{-}live}(i) \subseteq \mathsf{syn\text{-}live}(i)$$

• Analysis:

- Backwards analysis to propagate the uses/refs upwards to defs.
- Data-flow equations:

$$\begin{aligned} & \mathsf{in\text{-}live}(i) = (\mathsf{out\text{-}live}(i) \setminus \mathsf{def}(i)) \cup \mathsf{ref}(i) \\ & \mathsf{out\text{-}live}(i) = \bigcup_{i' \in \mathsf{succ}(i)} \mathsf{in\text{-}live}(i') \end{aligned}$$

(Re)-defining a variable "kills" it.

Referencing the variable makes it live.

Combined equation:

$$\mathsf{live}(i) = \mathsf{in\text{-}live}(i) = \left(\bigcup_{i' \in \mathsf{succ}(i)} \mathsf{live}(i') \setminus \mathsf{def}(i)\right) \cup \mathsf{ref}(i)$$

- Algorithm: Iteratively computes the least fixed point.

for
$$i$$
 = 1 to n do live. $(i) <- \emptyset$ done; while (live changes) do for i = 1 to n do live. $(i) <- \left(\bigcup_{i' \in \mathsf{succ}(i)} \mathsf{live.}(i') \setminus \mathsf{def}(i)\right) \cup \mathsf{ref}(i)$ done done

Termination is guaranteed since live sets are bounded.

Optimizations: Implement sets using bit vectors. live.(i) = b where b[x] = 1 iff $x \in live(i)$.

Compute liveness at the basic block level as opposed to instruction level:

$$\mathsf{live}(b) = \left(\cdots \left(\left(\bigcup_{s \in \mathsf{succ}(b)} \mathsf{live}(s) \setminus \mathsf{def}(b_n) \right) \cup \mathsf{ref}(b_n) \right) \cdots \setminus \mathsf{def}(b_1) \right) \cup \mathsf{ref}(b_1)$$

• Considerations for pointers (addresses):

$$\begin{array}{ll} *{\tt p} \; = \; {\tt e} & \begin{array}{l} {\tt def} = \emptyset \\ {\tt ref} = {\tt ref}(e) \cup \{p\} \end{array} \\ \\ {\tt x} \; = \; *{\tt p} & \begin{array}{l} {\tt def} = \{x\} \\ {\tt ref} = {\tt all} \;\; {\tt address} \;\; {\tt taken} \;\; {\tt variables} \cup \{p\} \end{array} \end{array}$$

3.4.2 Available Expression Analysis

• Available $e \approx$ already computed e and no changes in free variables in e

Definition 3.4.3. (Available) An expression e is said to be *semantically available* at instruction i iff:

- (i) e has previously been computed and not subsequently invalided (by changes in free variables of e),
- (ii) on all execution sequences to i.

ullet Property (i) is decidable, but (ii) is undecidable \Longrightarrow syntactic approximation

Definition 3.4.4. (Syntactically Available) An expression e is said to be syntactically available at instruction i iff:

- (i) e has previously been computed and not subsequently invalided (by changes in free variables of e),
- (ii) on all paths in the flowgraph G to i.

$$\forall$$
 path $p = i' \rightarrow^* i . \exists i_e \in p. i_e$ evaluates $e \land \forall i'' \in i_e \rightarrow i. \mathsf{fv}(e) \cap \mathsf{def}(i'') = \emptyset$

• Safety: underestimate availability:

$$syn-avail(i) \subseteq sem-avail(i)$$

- Analysis:
 - Forward analysis to propagate expressions to children with universe of expressions U (computable since finite # of expressions in program).
 - Intuitive data-flow equations:

$$\begin{aligned} &\mathsf{in}\text{-}\mathsf{avail}(i) = \begin{cases} \bigcap_{i' \in \mathsf{pred}(i)} \mathsf{out}\text{-}\mathsf{avail}(i') & \text{if } \mathsf{pred}(i) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases} \\ &\mathsf{out}\text{-}\mathsf{avail}(i) = (\mathsf{in}\text{-}\mathsf{avail}(i) \cup \mathsf{gen}(i)) \setminus \mathsf{pred}(i) \end{aligned}$$

where:

$$\begin{aligned} & \operatorname{gen}(x := e) = \{e\} \\ & \operatorname{kill}(x := e) = \{e \in U : \operatorname{fv}(x) \cap \operatorname{def}(e) \neq \emptyset\} \end{aligned}$$

- Data-flow equations:

$$\begin{split} \text{in-avail}(i) &= \begin{cases} \bigcap_{i' \in \mathsf{pred}(i)} \mathsf{out-avail}(i') & \text{if } \mathsf{pred}(i) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases} \\ \mathsf{out-avail}(i) &= (\mathsf{in-avail}(i) \setminus \mathsf{kill}(i)) \cup \mathsf{gen}(i) \end{split}$$

where:

- * $e \in \text{gen}(i)$ iff i computes e and does not invalidate it.
- * $e \in \mathsf{kill}(i)$ iff i may invalidate e ($\mathsf{fv}(e) \cap \mathsf{def}(i) \neq \emptyset$) and does not recompute it.

Differences for compatability w/LVA+re-ordering of instructions.

Combined equation:

$$\mathsf{avail}(i) = \mathsf{in-avail}(i) = \begin{cases} \bigcap_{p \in \mathsf{pred}(i)} (\mathsf{avail}(p) \setminus \mathsf{kill}(p)) \cup \mathsf{gen}(p) & \text{if } \mathsf{pred}(i) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$$

- Algorithm:

```
avail.(1) <- \emptyset (* entry/root has no available *) for i = 2 to n do avail.(i) <- U (* available expressions removed by \bigcap *) done; while (live changes) do for i = 1 to n do avail.(i) <- \bigcap_{p \in \mathsf{pred}(i)} (\mathsf{avail.}(p) \setminus \mathsf{kill}(p)) \cup \mathsf{gen}(p) done done
```

Optimizations:

- * Bit vector: Suppose we have n expressions. avail is an array of n-bit numbers, where the ith bit indicates the availability of the ith expression.
- * Basic blocks:

$$\mathsf{avail}(i) = \bigcap_{p \in \mathsf{pred}(i)} (\cdots (\mathsf{avail}(p) \setminus \mathsf{kill}(p_1)) \cup \mathsf{gen}(p_1) \cdots \setminus \mathsf{kill}(p_{k_p})) \cup \mathsf{gen}(p_{k_p})$$

• Considerations for pointers (addresses):

3.4.3 Reachability Analysis

Definition 3.4.5. (Reachable) A definition of i is said to semantically reach i' in flowgraph G if all variables $x \in \mathsf{def}(i)$ have the same value on entry to i'.

Definition 3.4.6. (Syntactic Reachability) A definition of i is said to syntactically reach i' in flowgraph G if there exists a path $p = i = i_1 \rightarrow \cdots \rightarrow i_k = i'$ s.t

$$\forall x \in \mathsf{def}(i). \forall 1 < i < k. x \notin \mathsf{def}(i_k)$$

• Safety:

$$syn-reach(i) \subseteq sem-reach(i)$$

- Analysis:
 - Forward analysis
 - Data-flow equation:

$$\mathsf{reach}(i) = \bigcup_{p \in \mathsf{pred}(i)} (\mathsf{reach}(p) \setminus \mathsf{kill}(p)) \cup \mathsf{gen}(p)$$

See supervision work for more details.

3.4.4 Data-Flow Transformations and Anomalies

- Dead Code Elimination:
 - Compute liveness live.
 - **Transformation**: Remove instruction i if $x \notin \mathsf{live}\text{-out}(n)$ and $x \in \mathsf{def}(i)$.
 - **Safety**: If x is dead after assignment \implies assignment was pointless (no observable side-effects).

• Uninitialized Variables:

- live(i_{entry}) contains the set of *undefined* variables used in the procedure w/ entry instruction i_{entry} .
- Compiler should emit a warning to the user
- **Problem**: Due to overapproximation of LVA \implies false positives.

• Write-write Anomalies:

- Problem: Variable written too by not read before previous write
 ⇒ previous write has no effect.
- Inverse LVA solution using a forward analysis w/ data-flow equation:

$$\mathsf{wnr}(i) = \bigcup_{p \in \mathsf{pred}(i)} \left(\mathsf{wnr}(p) \setminus \mathsf{ref}(p)\right) \cap \mathsf{def}(p)$$

Compiler should emit a warning to the user

• Common Subexpression Elimination:

- **Transformation**: If e is available at instruction i, replace e with temporary variable t and replace original evaluation of e (in context $x := \mathcal{C}[e]$) with:

$$t := e;$$

$$x := C[t]$$

- Warning: Optimization may be detrimental to later phases:
 - * Added temporary $t \implies$ higher register pressure
 - * Added copy instructions. Load from memory may be slower than a simple arithmetic expression.

• Copy Propagation:

- Perform reachability analysis.
- Transformation: Eliminate instructions of the form: mv rd, rs1 at i, replacing rd with rs1 at i' if rs1 is reachable at i' from i.

• Code Motion:

- Code Hoisting (Move up flowgraph) or Sinking (Move down flowgraph).
- **Analysis**: Compute very busy expressions. A very busy expression $e \approx e$ will definitely by evaluated later in the program (a backwards version of avail).
- **Transformation**: Replace later occurrences of e w/ temporary variable t and hoist e:

- Warning: May increase register pressure.
- **Loop invariant**: If ref(e) are reachable from *outside* the loop $\implies e$ doesn't dependent on loop state (e.g. counters), thus can be hoisted out of the loop.

• Partial redundancy:

- **Analysis**: Partially available expression analysis (change \bigcap to \bigcup in availability data-flow equations).
- An expression is partially redundant if it is computed more than once on some path p in flowgraph G.
- Same **transformation** as common subexpression elimination.
- Benefit: Combines common subexpression elimination and loopinvariant code motion into one optimization!

3.5 Inlining

Definition 3.5.1. (Inlining) Inline expression is an optimization technique by inlining the function body for a given call.

- Optimizes running time by eliminating overhead of call prologue and epilogue . Space \rightarrow Time tradeoff by duplicating function bodies.
- **Heuristics** for Inline expansion:
 - 1. Expand function-calls that are executed frequently. Determines by static-analysis of loop-nest depth (or at runtime w/ JIT)
 - 2. Expand functions w/ very small bodies. Minimizing code explosion from inline expansion.
 - 3. Expand functions that are only called once (and aren't exported), then apply unreachable procedure elimination (deleting original function definition).

Advantages	Disadvantages
Eliminates the instructions required by the calling convention: the prologue and epilogue (and the call/jump required).	Inlining duplicates function body, increase in code size \implies may result in a code explosion.
Reduces register spillage from arguments	Increases working set (the set of pages the program requires access to at a given time). Increases page faults \Longrightarrow thrashing (in serve cases)
Removes callee, caller boundary, allowing for more intra-procedural optimizations (e.g. peephole, etc)	Increases instruction cache miss rate (due to increased code size).
Eliminating function calls improves the temporal + spatial locality of instructions.	

4 Code Generation

4.1 Register Allocation

• **Problem**: Assigning virtual registers in an IR (e.g. normal form 3-address code, SSA) to a limited number of *physical* general purpose registers.

Definition 4.1.1. (Clash Graph) A clash graph C = (V, E) of flowgraph G where $V \subseteq$ virtual registers and

$$(r, s) \in E \iff \exists \text{instruction } i \in V(G).r \in \mathsf{live}(i) \land s \in \mathsf{live}(i)$$

• Clash graphs model dependencies between simultaneously live variables/registers.

Definition 4.1.2. (Coloring) A coloring of a graph G = (V, E) is a function $\chi: V \to \text{color}$ satisfying:

$$\forall (v_1, v_2) \in E.\chi(v_1) \neq \chi(v_2)$$

- Algorithm:
 - 1. Compute flowgraph G and perform liveness analysis.
 - 2. Construct the clash graph C.
 - 3. Color the clash graph C, where colors correspond to physical registers.
- **Problem**: Graph coloring is an NP-complete problem.
- Solution: Heuristic algorithm:
 - 1. Select virtual register t from C with fewest clashes (smallest degree).

2. If #clashes < #physical registers:

Then Push t onto stack.

Remove t from C.

Else Select a virtual register s to spill (using a heuristic). Remove s from C.

- 3. Repeat 1-2 until C is empty.
- 4. Pop each virtual register from stack. Assign a physical register (deterministically).
- Time Complexity: $O(V^2 + E)$.
- **Problem**: $O(V^2 + E)$ is slow (e.g for JIT).
- **Solution**: Use other algorithms. Example: *Linear scan* (see supervision work).

Definition 4.1.3. (**Spilling**) If all physical registers are in use, then register values are pushed (*spilled*) onto the stack, freeing the register.

- When spilling registers, must reserve registers for spilled values. If using n spilled values simultaneously $\implies n$ reserved registers.
- **Problem**: # of reserved registers (n) prior to allocation is unknown.
- Solution: If spillage detected, restart allocation algorithm w/ reserved registers.
- Problem: Determining optimal register to spill.
- Solution: Spilling allocation heuristic:
 - Compute # of times register is accessed (as a 'liveness factor'). Spill registers w/ fewest accesses.
 - Loop nesting \implies 'liveness factor' = # accesses \times loop depth.

4.1.1 Non-Orthogonal Instructions

Definition 4.1.4. (Non-Orthogonal Instruction Sets) A non-orthogonal instruction set consists of instructions where the addressing mode of instructions is dependent on the instruction type.

- For example: requiring ALU operations to use an accumulator register.
- To allocate registers for non-orthogonal instructions allocate virtual registers for the pre-allocated physical registers.
- When translating non-orthogonal instructions, add mv instructions to move register values into specific physical registers.
- Problem: Non-orthogonal instructions add many mv instructions.
- Solution: Preference graphs.

Definition 4.1.5. (Preference Graph) A preference graph P of flowgraph G is a graph P = (V, E) where $V \subseteq$ virtual registers and

$$(r,s) \in E \iff \mathtt{mv} \ \mathtt{s}, \ \mathtt{r} \in V(G)$$

- When allocating colors, we use a preference graph P to attempt that $\forall (r,s) \in V(P). \chi(r) = \chi(s).$
- If adjacent registers in P have the same color \implies the mv instruction becomes a nop.

4.1.2 Calling Conventions

Definition 4.1.6. (Calling Convention) A calling convention defines the architecture registers that are maintained by the *callee* and the *caller*.

- RISC-V: argument registers a0-a7, return address ra, result register a0.
- Registers may be maintained by allocating stack space to save registers.
- **Problem**: Some registers may be corrupted (caller saved) while executing a procedure

- Solution: Synthesize edges on clash graph between possibly corrupted registers and live registers at call instruction.
- Problem: Saving registers introduced many mv instructions.
- Solution: Preference graph.

4.2 Instruction Scheduling

- Motivation: Specific architectures may provide parallelism / speedup which the compiler should take advantage of.
- Architecture types:
 - Single cycle: Each instruction takes a single cycle to execute. No violations of the sequential programming model.
 - Pipelined: Instructions are pipelined (each stage taking a single cycle to execute). May introduce stalls (to deal w/ hazards).
 - Multi-instruction: MIMD, MISD, etc. (not covered in this course).
- Interlocked processors: Detect hazards and insert stalls.
- Non-interlocked processors: Compiler must insert nops to prevent data / control hazards.
- See IB computer design notes on forwarding and load hoisting. course covers compiler techniques for data hazards.
- read(i) = addresses/registers read by instruction i, write(i) = addresses/registers written to by instruction i.

Dependencies:

- Read-after-write (RAW): $\mathsf{write}(i_1) \cap \mathsf{read}(i_2) \neq \emptyset$. i_1 writes before i_2 reads.
- Write-after-read (WAR): $\operatorname{read}(i_1) \cap \operatorname{write}(i_2) \neq \emptyset$. i_1 reads before i_2 writes.
- Write-after-write (WAW): write $(i_1) \cap \text{write}(i_2) \neq \emptyset$. i_1 and i_2 write to the same address/register.

- **Idea**: Within basic blocks, re-order instructions to minimize stalls subject to data dependencies.
- Note: If load instruction w/ unknown address e.g. lw t2, 16(t0); sw t3, 4(t1), then add dependencies between loads and stores (since they may read/write to the same address. e.g. when t1 = t0 + 12).

Definition 4.2.1. (Data Dependence Graph) For the basic block b, the data dependence graph G is the directed graph G = (b, E) where

 $(i_1, i_2) \in E \iff i_2 \text{ depends on } i_1 \text{ according to above dependencies}$

- **Note**: Any topological sort of data dependence graph is a *valid* schedule.
- **Problem**: Choosing schedule which minimizes # of stalls is NP-complete.
- Solution: Scheduling Heuristics. Choose a next instruction s.t:
 - 1. Doesn't conflict with the previous instruction
 - 2. Is most likely to conflict if first of a pair (e.g. lw is better than add, since lw is more likely to cause a hazard). This heuristic adds load hoisting.
 - 3. Is as far as possible from the last instruction in the data dependency graph. *Keeps rough order of instructions*.

• Algorithm:

```
construct data dependence graph G of b;
candidates := sources(G); // instructions w/ no dependencies
while (not (Set.empty candidates)) do
  select i from candidates;
  if i satisfies 1-3 heuristics then
   emit i
else
   (if non-interlocked processor then
   emit nop
   else
   select i from candidates s.t 2-3 heuristics are satisfied;
```

emit i); remove emitted instruction from G; update candidates // sources(G) where G is updated done

• Time complexity: $O(|b|^2)$.

4.2.1 Antagonism with Register Allocation

- **Problem**: Maximizing register utilization creates additional dependencies, which limits instruction scheduling (resulting in more stalls).
- Example:

- Observation: Allocating too aggressively ⇒ limitations on instruction scheduling ∴ more stalls.
- This is an example of the *phase order problem*. It has no solution, as predicting interaction of register allocation and instruction scheduling is very dependent on architecture + code structure.
- Ad-hoc solution: Limitations on instruction scheduling occur due to eager reuse or registers. One solution is to allocate registers in a round robin fashion, but selecting a register distinct from all others in a basic block that satisfies coloring constraints.

5 Decompilation

- 5.1 Control-flow Reconstruction
- 5.2 Type Reconstruction