2 Announcements

Recitation session:

- Review of linear algebra
 - Location: Thursday, January 17, from 4:30-5:50 pm in Gates B01

Deadlines next Thu, 11:59 PM:

HW0, HW1, GHW1, GHW2

Theory of Locality Sensitive Hashing

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recap: Finding similar documents

 Task: Given a large number (N in the millions or billions) of documents, find "near duplicates"

Problem:

- Too many documents to compare all pairs
- Solution: Hash documents so that similar documents hash into the same bucket
 - Documents in the same bucket are then candidate pairs whose similarity is then evaluated

Recap: The Big Picture

Recap: Shingles

- A k-shingle (or k-gram) is a sequence of k
 tokens that appears in the document
 - Example: k=2; D_1 = abcab Set of 2-shingles: C_1 = $S(D_1)$ = {ab, bc, ca}
- Represent a doc by a set of hash values of its k-shingles
- A natural similarity measure is then the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

 Similarity of two documents is the Jaccard similarity of their shingles

Recap: Minhashing

• Min-Hashing: Convert large sets into short signatures, while preserving similarity: Pr[h(C₁) = h(C₂)] = sim(D₁, D₂)

Permutation π

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Input matrix (Shingles x Documents)

1	O Jure Leskoved	1 , Stanford CS2	O 246: Mining N
1	0	1	0
0	1	0	1
0	1	0	1
0	1	0	1
1	0	0	1
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities of columns and signatures (approx.) match!

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	Ο	0
Sig/Sig	0.67	1.00	0	0

Recap: LSH

- Hash columns of the signature matrix M:
 Similar columns likely hash to same bucket
 - Divide matrix M into b bands of r rows (M=b·r)
 - Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Today: Generalizing Min-hash

Design a locality sensitive hash function (for a given distance metric)

Apply the "Bands" technique

The S-Curve

The S-curve is where the "magic" happens

Probability=1
if t > sNo chance
if t < s

Similarity *t* of two sets

Similarity *t* of two sets

This is what 1 hash-code gives you

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$$

This is what we want!

How to get a step-function?

By choosing *r* and *b*!

How Do We Make the S-curve?

- Remember: b bands, r rows/band
- Let $sim(C_1, C_2) = s$

What's the prob. that at least 1 band is equal?

- Pick some band (r rows)
 - Prob. that elements in a single row of columns C₁ and C₂ are equal = s
 - Prob. that all rows in a band are equal = s^r
 - Prob. that some row in a band is not equal = 1 s^r
- Prob. that all bands are not equal $= (1 s^r)^b$
- Prob. that at least 1 band is equal = $1 (1 s^r)^b$ $P(C_1, C_2 \text{ is a candidate pair}) = 1 - (1 - s^r)^b$

Picking *r* and *b*: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

S-curves as a func. of b and r

Given a fixed threshold **s**.

We want choose r and b such that the P(Candidate pair) has a "step" right around s.

Theory of LSH

Theory of LSH

- We have used LSH to find similar documents
 - More generally, we found similar columns in large sparse matrices with high Jaccard similarity
- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let's generalize what we've learned!

Distance Measures

- d() is a distance measure if it is a function from pairs of points x,y to real numbers such that:
 - $d(x,y) \ge 0$
 - d(x,y) = 0 iff x = y
 - d(x,y) = d(y,x)
 - $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)
- Jaccard distance for sets = 1 Jaccard similarity
- Cosine distance for vectors = angle between the vectors
- Euclidean distances:
 - L_2 norm: d(x,y) = square root of the sum of the squares of the differences between x and y in each dimension
 - The most common notion of "distance"
 - L_1 norm: sum of absolute value of the differences in each dimension
 - Manhattan distance = distance if you travel along coordinates only

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that allows us to say whether two elements are "equal"
 - Shorthand: h(x) = h(y) means "h says x and y are equal"
- A family of hash functions is any set of hash functions from which we can pick one at random efficiently
 - Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

 Suppose we have a space S of points with a <u>distance</u> measure d(x,y)

Critical assumption

- A family H of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for any x and y in S:
 - 1. If $d(x, y) \le d_1$, then the probability over all $h \in H$, that h(x) = h(y) is at least p_1
 - 2. If $d(x, y) \ge d_2$, then the probability over all $h \in H$, that h(x) = h(y) is at most p_2

With a LS Family we can do LSH!

A (d_1, d_2, p_1, p_2) -sensitive function

Example of LS Family: Min-Hash

Let:

- S = space of all sets,
- d = Jaccard distance,
- H is family of Min-Hash functions for all permutations of rows
- Then for any hash function h∈ H:

$$Pr[h(x) = h(y)] = 1 - d(x, y)$$

 Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family – (2)

Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3) sensitive family for S and d.

If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that Min-Hash values agree is $\geq 2/3$

• For Jaccard similarity, Min-Hashing gives a $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any $d_1 < d_2$

Amplifying a LS-Family

Can we reproduce the "S-curve" effect we saw before for any LS family?

- The "bands" technique we learned for signature matrices carries over to this more general setting
- Can do LSH with any (d₁, d₂, p₁, p₂)-sensitive family!
- Two constructions:
 - AND construction like "rows in a band"
 - OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family H, construct family H' consisting of r functions from H
- For $h = [h_1,...,h_r]$ in H', we say h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for all i
 - Note this corresponds to creating a band of size r
- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive
- Proof: Use the fact that h_i 's are independent

Also lowers probability for small distances (Bad)

Lowers probability for large distances (Good)

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
 - But two particular hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of *H*, *H*' (i.e., average case and not the worst case)

OR of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h = [h_1,...,h_b]$ in H', h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for at least 1 i
- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive
- Proof: Use the fact $that h_i$'s are independent

Raises probability for small distances (Good)

Raises probability for large distances (Bad)

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r
 correctly, we can make the lower prob. approach 0
 while the higher does not
- OR makes all probs. grow, but by choosing b correctly, we can make the higher prob. approach 1 while the lower does not

Similarity of a pair of items

Combine AND and OR Constructions

- By choosing b and r correctly, we can make the lower probability approach 0 while the higher approaches 1
- As for the signature matrix, we can use the AND construction followed by the OR construction
 - Or vice-versa
 - Or any sequence of AND's and OR's alternating

Composing Constructions

- r-way AND followed by b-way OR construction
 - Exactly what we did with Min-Hashing
 - **AND:** If bands match in **all r** values hash to same bucket
 - OR: Cols that have ≥ 1 common bucket \rightarrow Candidate
- Take points x and y s.t. Pr[h(x) = h(y)] = s
 - H will make (x,y) a candidate pair with prob. s
- Construction makes (x,y) a candidate pair with probability $1-(1-s^r)^b$ The S-Curve!
 - Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H'' by the OR construction with b = 4

Table for Function 1-(1-s4)4

S	p=1-(1-s ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

r = **4**, **b** = **4** transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

How to choose *r* and *b*

Picking r and b: The S-curve

- Picking r and b to get desired performance
 - **50** hash-functions (*r* = 5, *b* = 10)

Blue area X: False Negative rate
These are pairs with sim > s but the X
fraction won't share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!

Green area Y: False Positive rate
These are pairs with sim < s but
we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.

Picking r and b: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions (r * b = 50)

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms similarity s (probability p) into (1-(1-s)^b)^r
 - The same S-curve, mirrored horizontally and vertically
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H' by the AND construction with r = 4

Table for Function (1-(1-s)4)4

S	p=(1-(1-s) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family
 - Note this family uses 256 (=4*4*4*4) of the original hash functions

General Use of S-Curves

- For each AND-OR S-curve 1-(1-s^r)^b, there is a threshold t, for which 1-(1-t^r)^b = t
- Above t, high probabilities are increased; below t, low probabilities are decreased
- You improve the sensitivity as long as the low probability is less than t, and the high probability is greater than t
 - Iterate as you like
- Similar observation for the OR-AND type of Scurve: (1-(1-s)^b)^r

Visualization of Threshold

Summary

- Pick any two distances d₁ < d₂
- Start with a $(d_1, d_2, (1-d_1), (1-d_2))$ -sensitive family
- Apply constructions to **amplify** (d_1, d_2, p_1, p_2) -sensitive family, where p_1 is almost 1 and p_2 is almost 0
- The closer to 0 and 1 we get, the more hash functions must be used!

LSH for other Distance Metrics

- LSH methods for other distance metrics:
 - Cosine distance: Random hyperplanes
 - Euclidean distance: Project on lines

Summary of what we will learn

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question $d(A, B) = \theta = \arccos(A \cdot B / \|A\| \cdot \|B\|)$
 - Has range $[0, \pi]$ (equivalently $[0,180^\circ]$)
 - Can divide θ by π to have distance in range [0,1]
- Cosine similarity = 1-d(A,B)
 - But often defined as **cosine sim:** $cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

 $A \cdot B$

 $\|\mathbf{B}\|$

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
 - Technique similar to Min-Hashing
- Random Hyperplanes method is a $(d_1, d_2, (1-d_1/\pi), (1-d_2/\pi))$ -sensitive family for any d_1 and d_2
- Reminder: (d_1, d_2, p_1, p_2) -sensitive
 - 1. If $d(x,y) \le d_1$, then prob. that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. that h(x) = h(y) is at most p_2

Random Hyperplanes

- Each vector \mathbf{v} determines a hash function $\mathbf{h}_{\mathbf{v}}$ with two buckets
- $h_v(x) = +1$ if $v \cdot x \ge 0$; = -1 if $v \cdot x < 0$
- LS-family H = set of all functions derived from any vector
- Claim: For points x and y, $Pr[h(x) = h(y)] = 1 - d(x,y) / \pi$

Proof of Claim

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of
 +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in *M* dimensions for large *M*
 - Would have to generate M random numbers
- A more efficient approach
 - It suffices to consider only vectors v
 consisting of +1 and -1 components
 - Why? Assuming data is random, then vectors of +/-1 cover the entire space evenly (and does not bias in any way)

LSH for Euclidean Distance

- Idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
 - An element of the "Signature" is a bucket id for that given projection line
- Nearby points are always close;
 distant points are rarely in same bucket

Projection of Points

Multiple Projections

Projection of Points

Points at distance d

If **d** << **a**, then the chance the points are in the same bucket is at least **1** – **d**/**a**.

Projection of Points

A LS-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob. they are in same bucket ≥ 1- d/a = ½
- If points are distance $d \ge 2a$ apart, then they can be in the same bucket only if $d \cos \theta \le a$
 - $-\cos\theta \leq \frac{1}{2}$
 - $60 \le \theta \le 90$, i.e., at most 1/3 probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Summary

Two Important Points

- Property P(h(C₁)=h(C₂))=sim(C₁,C₂) of hash function h is the essential part of LSH, without which we can't do anything
- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied