#### Master of Technology in Knowledge/Software Engineering

KE5107: Data Mining Methodology and Methods

## **Data Exploration and Visualisation**

Fan Zhenzhen Institute of Systems Science National University of Singapore E-mail: zhenzhen@nus.edu.sg

© 2016 NUS. The contents contained in this document may not be reproduced in any form or by any ms, without the written permission of ISS, NUS, other than for the purpose for which it has been supplied





#### **Module Objectives**

- To learn how to examine the underlying structure of the data.
- To learn how to examine data for any systematic relationship among the variables through workshops.
- To be familiar with some descriptive and graphic tools for exploring data visually in order to discover and confirm patterns and trends.

#### **Agenda**

- Data exploration goals
- Basic data visualisation methods
- Multi-dimensional visualisation
- Advanced visualisation techniques









## **Data Exploration Goals**

#### 1. Data Quality Assessment

Before attempting to build a prediction model or do any data mining it is good practice to explore and profile the data to become familiar with it, determine its quality, identify missing values, inconsistencies, outliers etc

 Data errors should be fixed in the data cleaning and preparation phase.

NUS | 255 | whenter the prince of the prince

Page 4 of 67

## **Goals for Exploratory Data Analysis**

#### 2. Knowledge Discovery

Visualisation provides a powerful means of finding patterns, trends, relationships, structure and exceptions in the data

- No specific goal is needed
- Very interactive and exploratory







### **Goals for Exploratory Data Analysis**

#### 3. Find ways to improve the data set for modeling

#### **Feature Selection**

- Look for variables related to the target (useful for prediction)
- Look for variables that are "duplicates" of others (can delete)

#### **Data Transformations**

- Look for patterns and correlations that may suggest valuable transformations, e.g.

> chemical\_ratio = Na/K weight\_ratio = brain weight/body weight





### **Goals for Exploratory Data Analysis**

#### 4. Data Profiling

Characterise a set of records in terms of their attributes. The characterisation will be a generalisation (i.e. need not be 100% correct)

Common task is customer profiling, e.g.

- Most people who buy sports cars are young, rich & single!
- diabetes type2 patients are typically older & overweight
- Bank Y's investment account holders are usually married with children and a well paid job





### **Data Exploration Principles**

- · Let the data speak for itself
  - Be open, make no prior assumptions
- Interpret what you see
  - Develop and explore hunches, then pursue this line of analysis until you confirm/disown it
  - Be interactive, pro-active



During data exploration you lead the way!





## Agenda

- Data Exploration Goals
- → Basic Data Visualisation methods
  - Advanced Visualisation Techniques



## **Data Exploration Basic Steps**

- 1. Discover the "shape" & quality of the data
- 2. Look for outliers, extreme & unusual values
- 3. Look for relationships between variables
- 4. Build profiles of important subsets of the data



Page 10 of 67













NUS SESSE

### **Data Summary**

• Summary of these simple statistical measures can be presented as numbers, which are not easy to interpret.

| MinTemp        | MaxTemp       | Rainfall       | Evaporation    |
|----------------|---------------|----------------|----------------|
| Min. :-5.300   | Min. : 8.40   | Min. : 0.000   | Min. : 0.600   |
| 1st Qu.: 1.925 | 1st Qu.:14.70 | 1st Qu.: 0.000 | 1st Qu.: 2.200 |
| Median : 7.100 | Median :19.20 | Median: 0.000  | Median : 4.000 |
| Mean : 7.011   | Mean :20.29   | Mean : 1.386   | Mean : 4.509   |
| 3rd Qu.:12.400 | 3rd Qu.:24.95 | 3rd Qu.: 0.200 | 3rd Qu.: 6.400 |
| Max. :20.900   | Max. :35.80   | Max. :25.800   | Max. :13.800   |

#### Skewness:

MinTemp MaxTemp Rainfall Evaporation 0.05347228 0.38465167 3.63725482 0.70497219

NUS Company State University Season Company Co

Page 17 of 67

## **Box Plots (Box & Whisker)**

- Show key statistical measures in a single picture!
  - Box shows the middle 50% of the data
  - The whiskers show the end points (excluding outliers)
  - Mild outliers lie between 1.5 to 3 times the box length on either side of the box, extreme outliers are beyond this







## **Box Plot Examples**

 $\bullet$  The notches around the median indicate an approximate 95% confidence level for the differences between the medians



#### **How Box-Plots Work**

- 1. Calculate the Median and "Hinges"
  - The median splits the data sample into two parts
  - The hinges are the middle values of each part
  - The Upper and lower Hinges form the sides of the box
  - The difference between the hinges called the H-spread
- 2. Define inner fences

NUS SISS

- Lower inner fence = lower hinge 1.5\* (H-spread)
- Upper inner fence = Upper hinge + 1.5\* (H-spread)
- The data values that are closest to, but still inside the inner fences are called adjacent values, these form the whiskers



age 22 of 67

Page 21 of 67

### **How Box-Plots Work** Define outer fences Lower outer fence = Lower hinge - 3\* (H-spread) Upper outer fence = Upper hinge + 3\* (H-spread) 5. Data values that are between the inner and outer fences are called *mild outliers* 6. Data values that are beyond the outer fence are called *extreme outliers* Adjacent value Lower hinge Median Upper hinge Adjacent value Mild outliers Extreme outliers NUS ZSS Page 23 of 67











### **Multi-Dimensional Visualisation**

How can we find relationships between 3+ variables?

#### **Basic**

#### - Scatter plots

- Overlays
- Co-Plots
- 3-D Graphics
- Many more....

#### More advanced

- Principle Component Analysis
- Multi-Dimensional Scaling
- Parallel Coordinates
- Star Plots
- Chernoff faces
- Many more....



20 of 6

# 













#### 3-D Data Visualisation

- 3-D offers more scope for viewing multiple dimensions
- Need interactivity (rotating and zooming) to make best use of 3D visualisation



Data Transformations for More Visible Patterns

- Can make patterns easier to see
- Examples
  - Rescaling
     Log() ~ reduce effects of large variables
     Square() ~ exaggerate effect of large variables
  - Derived variables
     profit = units sold \* unit cost
     int.call rate = number international calls/total calls
     activity rate = average monthly transactions/ avg. balance
     Odds of an event = p / (1-p)



Page 38 of 67



## **Derived Variable Example**

The following data describes the number of people who take psychotropic drugs from randomly taken samples classed by age and sex

| Sex    | age group | Mean age | Receiving drugs | Not receiving drugs |
|--------|-----------|----------|-----------------|---------------------|
| Male   | 16-29     | 23.2     | 21              | 683                 |
| Male   | 30-44     | 36.5     | 32              | 596                 |
| Male   | 45-64     | 54.3     | 70              | 705                 |
| Male   | 65-74     | 69.2     | 43              | 295                 |
| Male   | >74       | 79.5     | 19              | 99                  |
| Female | 16-29     | 23.2     | 46              | 738                 |
| Female | 30-44     | 36.5     | 89              | 700                 |
| Female | 45-64     | 54.3     | 169             | 847                 |
| Female | 65-74     | 69.2     | 98              | 336                 |
| Female | >74       | 79.5     | 51              | 196                 |

NUS Construction of the second of the second

Page 40 of 67



### **Derived Variable Example**

Use Log Odds transformation

- Log (odds) = Log(No. receive/No. not receiving)
[ Odds of an event = p / (1-p) ]

| Sex    | Age group | Mean age | Receiving drugs | Not receiving drugs | Odds   | Log(odds) |
|--------|-----------|----------|-----------------|---------------------|--------|-----------|
| Male   | 16-29     | 23.2     | 21              | 683                 | 0.0307 | -3.48197  |
| Male   | 30-44     | 36.5     | 32              | 596                 | 0.0537 | -2.9245   |
| Male   | 45-64     | 54.3     | 70              | 705                 | 0.0993 | -2.3097   |
| Male   | 65-74     | 69.2     | 43              | 295                 | 0.1458 | -1.92578  |
| Male   | >74       | 79.5     | 19              | 99                  | 0.1919 | -1.65068  |
| Female | 16-29     | 23.2     | 46              | 738                 | 0.0623 | -2.7753   |
| Female | 30-44     | 36.5     | 89              | 700                 | 0.1271 | -2.06244  |
| Female | 45-64     | 54.3     | 169             | 847                 | 0.1995 | -1.6118   |
| Female | 65-74     | 69.2     | 98              | 336                 | 0.2917 | -1.23214  |
| Female | >74       | 79.5     | 51              | 196                 | 0.2602 | -1.34629  |



Page 42 of 67



## Agenda

- Data Exploration Goals
- Basic Data Visualisation methods
- → Advanced Visualisation Techniques



Page 44 of 67

### **Visualisation for Multivariate Data**

- Visualising data with a large number of variables can be very challenging.
- One major approach is to simplify the problem by
  - Reducing the number of variables describing the data Principal Component Analysis
  - Reducing the number of dimensions of the problem Multidimensional Scaling
- Or find innovative ways to visualise many variables in one graph by
  - Showing links between many different categories Link Analysis
  - Using parallel vertical axes Parallel Coordinates
  - Using axes starting from one central point Radar Chart
  - Using icons e.g. Star Plot, Chernoff Faces



© 2016 NUS. All rights reserved.

Page 45 of 6

### **Principle Component Analysis**

- Used when some of the variables in a data set are correlated (there is some redundancy)
- We can find a smaller set of <u>uncorrelated</u> variables which are linear combinations of the original variables

$$Z_1 = a_{11} * X_1 + a_{12} * X_2 + \dots$$
  
 $Z_i = a_{i1} * X_1 + a_{i2} * X_2 + \dots$ 

- These are the Principle Components (sometimes called factors), derived in decreasing order of importance - the earlier ones account for greater variations in the data
- PCA is performed to help:
  - Visually analyse and explore the data
  - Identify natural groupings or summaries of data
  - Create a set of factors that can later be used to create predictive models

NUS Construction Control of Printed Notice C

Page 46 of 67

### **PCA Example**

- Data describing the % of people employed in nine different industries in countries in Europe:
- · Industries are
  - AGR (agriculture)
  - MIN (Mining)
  - MAN (Manufacture)
  - PS (Power Supplies)
  - CON (Construction)
  - SER (Service Industries)
  - FIN (Finance)
  - SPS (Social and Personal services)
  - TC (Transport & Communications)



age 47 of 67

## **PCA Example**

|                | AGR  | MIN | MAN  | PS  | CON  | SER  | FIN  | SPS  | TC  |
|----------------|------|-----|------|-----|------|------|------|------|-----|
| Be lg iu m     | 3.3  | 0.9 | 27.6 | 0.9 | 8.2  | 19.1 | 6.2  | 26.6 | 7.2 |
| Denmark        | 9.2  | 0.1 | 21.8 | 0.6 | 8.3  | 14.6 | 6.5  | 32.2 | 7.1 |
| Fra n c e      | 10.8 | 0.8 | 27.5 | 0.9 | 8.9  | 16.8 | 6    | 22.6 | 5.7 |
| W.G e rm a     | 6.7  | 1.3 | 35.8 | 0.9 | 7.3  | 14.4 | 5    | 22.3 | 6.1 |
| Ire la n d     | 23.2 | 1   | 20.7 | 1.3 | 7.5  | 16.8 | 2.8  | 20.8 | 6.1 |
| Ita ly         | 15.9 | 0.6 | 27.6 | 0.5 | 10   | 18.1 | 1.6  | 20.1 | 5.7 |
| Luxe mb ur     | 7.7  | 3.1 | 30.8 | 0.8 | 9.2  | 18.5 | 4.6  | 19.2 | 6.2 |
| Ne the rla n   | 6.3  | 0.1 | 22.5 | 1   | 9.9  | 18   | 6.8  | 28.5 | 6.8 |
| UK             | 2.7  | 1.4 | 30.2 | 1.4 | 6.9  | 16.9 | 5.7  | 28.3 | 6.4 |
| Austria        | 12.7 | 1.1 | 30.2 | 1.4 | 9    | 16.8 | 4.9  | 16.8 | 7   |
| Fin la n d     | 13   | 0.4 | 25.9 | 1.3 | 7.4  | 14.7 | 5.5  | 24.3 | 7.6 |
| Greece         | 41.4 | 0.6 | 17.6 | 0.6 | 8.1  | 11.5 | 2.4  | 11   | 6.7 |
| Norway         | 9    | 0.5 | 22.4 | 0.8 | 8.6  | 16.9 | 4.7  | 27.6 | 9.4 |
| Portuga1       | 27.8 | 0.3 | 24.5 | 0.6 | 8.4  | 13.3 | 2.7  | 16.7 | 5.7 |
| Sp a in        | 22.9 | 0.8 | 28.5 | 0.7 | 11.5 | 9.7  | 8.5  | 11.8 | 5.5 |
| Sweden         | 6.1  | 0.4 | 25.9 | 0.8 | 7.2  | 14.4 | 6    | 32.4 | 6.8 |
| Sw itze rla n  | 7.7  | 0.2 | 37.8 | 0.8 | 9.5  | 17.5 | 5.3  | 15.4 | 5.7 |
| Turke y        | 66.8 | 0.7 | 7.9  | 0.1 | 2.8  | 5.2  | 1.1  | 11.9 | 3.2 |
| Bu lg a ria    | 23.6 | 1.9 | 32.3 | 0.6 | 7.9  | 8    | 0.7  | 18.2 | 6.7 |
| C ze c h o slo | 16.5 | 2.9 | 35.5 | 1.2 | 8.7  | 9.2  | 0.9  | 17.9 | 7   |
| E.G e rm a n   |      | 2.9 | 41.2 | 1.3 | 7.6  | 11.2 | 1.2  | 22.1 | 8.4 |
| Hungary        | 21.7 | 3.1 | 29.6 | 1.9 | 8.2  | 9.4  | 0.9  | 17.2 | 8   |
| Poland         | 31.1 | 2.5 | 25.7 | 0.9 | 8.4  | 7.5  | 0.9  | 16.1 | 6.9 |
| Romania        | 34.7 | 2.1 | 30.1 | 0.6 | 8.7  | 5.9  | 1.3  | 11.7 | 5   |
| USSR           | 23.7 | 1.4 | 25.8 | 0.6 | 9.2  | 6.1  | 0.5  | 23.6 | 9.3 |
| Yugoslavia     | 48.7 | 1.5 | 16.8 | 1.1 | 4.9  | 6.4  | 11.3 | 5.3  | 4   |

NUS Separate laboration of the state of the

Page 48 of 67

## **PCA Example**

 Looking at the first two PC's can show groupings in the data

| Coeffic | Coefficients of Principal components: |               |  |  |  |  |
|---------|---------------------------------------|---------------|--|--|--|--|
|         | Princ.Comp.1                          | Princ.Comp. 2 |  |  |  |  |
| AGR     | -0.97812                              | 0.07822       |  |  |  |  |
| MIN     | -0.00247                              | 0.9017        |  |  |  |  |
| MAN     | 0.64891                               | 0.5182        |  |  |  |  |
| PS      | 0.47752                               | 0.38107       |  |  |  |  |
| CON     | 0.60724                               | 0.07486       |  |  |  |  |
| SER     | 0.70759                               | -0.51108      |  |  |  |  |
| FIN     | 0.13888                               | -0.66218      |  |  |  |  |
| SPS     | 0.72344                               | -0.32331      |  |  |  |  |
| TC      | 0.685                                 | 0.29569       |  |  |  |  |
|         |                                       |               |  |  |  |  |

But we must plot them in a scatter plot first!



Page 49 of 6



### **Bi-Plots**

- To allow display of both the observations and variables of a matrix of multivariate data on the same plot.
- Associated with PCA and MDS, or other dimension reduction techniques
- Observations represented as points
- Variables represented as vectors
- Interpretation:
  - Angle between vectors ~ correlation between fields
  - Cosine of the angle between a vector and an axis ∼ its importance contribution to the axis dimension
  - Points close to each other ~ observations with similar values



Page 51 of 67



### **Multi-Dimensional Scaling**

- Alternative to PCA
- Maps objects from N-dimensional space to Mdimensional space while preserving distances between them (M<N)
- Not an exact procedure moves objects around in the smaller M-dimensional space and checks how well the real distances between them are reproduced in the new configuration (maximizes the goodness-of-fit)
- Good when relationships between objects (variables) are not known but a distance matrix can be estimated from similarities / differences between objects (PCA relies on the correlation matrix to indicate distances between objects)







© 2016 NUS. All rights reserved.

### **Analysis of Breakfast Cereals (1)**

#### Consider twenty three breakfast cereals:

- All Bran (AllB)
- All Bran with extra fibre (AllF)
- AppleJacks(AppJ)
- Cornflakes(CorF)
  Corn Pops (CorP)
- Cracklin' Oat Bran (Crac)
- Crispix (Cris)
- Froot Loops (Froo)
- Frosted Flakes (FroF) Frosted Mini-Wheats (FrMW)
- Fruitful Bran (FruB)
- Just Right Crunch Nuggets (JRCN)
- Just Right Fruit & Nut (JRFN)
- Meusliz Crispy blend (MuCB)
- Nut & Honey Crunch (Nut&) Nutri Grain Almond Raisin (NGAR)
- Nutri Grain Wheat (NutW) Product 18 (prod)
- Raisin Bran (RaBr) Raisin Squares (RaiS)
- Rice Krispies (RiKr)
- Sugar Smacks (Smac)
- Special K (Spec)

**NUS** 



© 2016 NUS. All rights reserved.

#### Data collected:

- Number of calories
- Amount of protein (g)
- Amount of fat (g)
- Amount of sodium (mg)
- Amount of dietary fibre (g)
- Amount of complex carbohydrates (g)
- Amount of sugars (g)
- Display shelf position (shelf 1, 2, or 3)
- Vitamin & mineral content (0, 25 or 100)
- Type of cereal (Hot or cold)

## **Analysis of Breakfast Cereals (2)**

#### The raw data....

| AIIB | 0.1818 | 0.6 | 0.3333 | 0.8125  | 0.6429  | 0      | 0.3333 | 3 | 0.9677 | 0 |
|------|--------|-----|--------|---------|---------|--------|--------|---|--------|---|
| AllF | 0      | 0.6 | 0      | 0.4375  | 1       | 0.0667 | 0      | 3 | 1      | 0 |
| AppJ | 0.5455 | 0.2 | 0      | 0.3906  | 0.0714  | 0.2667 | 0.9333 | 2 | 0.0323 | 0 |
| CorF | 0.4545 | 0.2 | 0      | 0.9063  | 0.0714  | 0.9333 | 0.1333 | 1 | 0.0484 | 0 |
| CorP | 0.5455 | 0   | 0      | 0.2813  | 0.0714  | 0.4    | 0.8    | 2 | 0      | 0 |
| Crac | 0.5455 | 0.4 | 1      | 0.4375  | 0.2857  | 0.2    | 0.4667 | 3 | 0.4516 | 0 |
| Cris | 0.5455 | 0.2 | 0      | 0.6875  | 0.0714  | 0.9333 | 0.2    | 3 | 0.0323 | 0 |
| Froo | 0.5455 | 0.2 | 0.3333 | 0.3906  | 0.0714  | 0.2667 | 0.8667 | 2 | 0.0323 | 0 |
| FroF | 0.5455 | 0   | 0      | 0.625   | 0.0714  | 0.4667 | 0.7333 | 2 | 0.0161 | 0 |
| FrMW | 0.4545 | 0.4 | 0      | 0       | 0.2143  | 0.4667 | 0.4667 | 2 | 0.2581 | 0 |
| FruB | 0.6364 | 0.4 | 0      | 0.75    | 0.3571  | 0.4667 | 0.8    | 3 | 0.5484 | 0 |
| JRCN | 0.5455 | 0.2 | 0.3333 | 0.5313  | 0.0714  | 0.6667 | 0.4    | 3 | 0.129  | 1 |
| JRFN | 0.8182 | 0.4 | 0.3333 | 0.5313  | 0.1429  | 0.8667 | 0.6    | 3 | 0.2419 | 1 |
| MuCB | 1      | 0.4 | 0.6667 | 0.4688  | 0.2143  | 0.6667 | 0.8667 | 3 | 0.4516 | 0 |
| Nut& | 0.6364 | 0.2 | 0.3333 | 0.5938  | 0       | 0.5333 | 0.6    | 2 | 0.0645 | 0 |
| NGAR | 0.8182 | 0.4 | 0.6667 | 0.6875  | 0.2143  | 0.9333 | 0.4667 | 3 | 0.3548 | 0 |
| NutW | 0.3636 | 0.4 | 0      | 0.5313  | 0.2143  | 0.7333 | 0.1333 | 3 | 0.2258 | 0 |
| Prod | 0.4545 | 0.4 | 0      | 1       | 0.0714  | 0.8667 | 0.2    | 3 | 0.0806 | 1 |
| RaBr | 0.6364 | 0.4 | 0.3333 | 0.6563  | 0.3571  | 0.4667 | 0.8    | 2 | 0.7097 | 0 |
| Rais | 0.3636 | 0.2 | 0      | 0       | 0.1429  | 0.5333 | 0.4    | 3 | 0.2903 | 0 |
| RiKr | 0.5455 | 0.2 | 0      | 0.9063  | 0       | 1      | 0.2    | 1 | 0.0484 | 0 |
| Smac | 0.5455 | 0.2 | 0.3333 | 0.2188  | 0.0714  | 0.1333 | 1      | 2 | 0.0645 | 0 |
| Spec | 0.5455 | 1   | 0      | 0.7188  | 0.0714  | 0.6    | 0.2    | 1 | 0.1129 | 0 |
| Opec | 0.0400 | '   |        | 0.7 100 | 0.07 14 | 0.0    | 0.2    |   | 0.1123 |   |





## **Analysis of Breakfast Cereals (3)**

#### After MDS....

| Cereal | x        | <u>y</u> | Cereal | x       | <u>y</u> |
|--------|----------|----------|--------|---------|----------|
| AllB   | -1.94950 | .96880   | JRFN   | 09340   | -1.85250 |
| AllF   | -2.54750 | 1.89990  | MuCB   | 75230   | 57030    |
| AppJ   | .50930   | .52080   | Nut&   | .36060  | .00250   |
| CorF   | 1.74630  | 06280    | NGAR   | 49820   | 79920    |
| CorP   | .62080   | .43560   | NutW   | 26060   | 12870    |
| Crac   | -1.50940 | .26850   | Prod   | .29640  | -2.10090 |
| Cris   | .19300   | 76100    | RaBr   | 25810   | .52940   |
| Froo   | .36430   | .39810   | Rais   | 55240   | .15500   |
| FroF   | 1.48990  | .23990   | RiKr   | 1.83320 | 29600    |
| FrMW   | .06770   | .64070   | Smac   | .25140  | 1.04770  |
| FruB   | 65360    | .08110   | Spec   | 1.33440 | 1.00080  |
| JRCN   | .00790   | -1.61720 | 1      |         |          |



Source | Sou





### **Parallel Coordinates**

- 2-D Visualisation of multi-dimensional data, *Inselberg (IBM, early '80s)*
- Map N-dimensions to a series of parallel vertical axes, one per variable
- A line joining a point on each axis ~ a point in the Ndimensional space



Good for generally numerical datasets with a moderate number of dimensions and no more than a few thousand records.





© 2016 NUS. All rights reserve

Page 50 of 67

#### **Parallel Coordinates** Similar to profile TABLE 2: STANDARDIZED VALUES ID# ROR5 SALESGR5 EPS5 P/E plots -0.47 -0.58 -0.77 -0.55 1.79 3.00 2.91 1.39 2.77 0.67 2.54 1.23 1.36 1.04 2.22 2.42 1.81 1.81 -0.14 -1.99 -0.85 -0.84 0.67 1.07 0.27 0.76 0.37 0.93 0.74 0.00 -0.93 Can help identify similar records, -0.19 -0.23 useful variables Standardized Value Profile Plot 21 NUS SESSE © 2016 NUS. All rights reserved.



### **Radar Chart**

- Displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point
- Also known as spider chart, cobweb chart, etc.
- Used to discover similar observations and outliers in multivariate data.



#### **Icon-based Multi-Dimensional Visualization**

- Using icons like stars, stick figures, shape coding, color icons, etc. to discover similar or dissimilar observations.
- **Star Plot**: Each star represents a single observation.
- Helpful for small dataset



NUS ISS

#### **Icon-based Multi-Dimensional Visualization**

- Chernoff Faces: Each multi-dimensional observation is represented as a face with facial features determined by the component values. These features are
  - Upper hair
  - Chin curve
  - Lower hair
  - Eye size
  - Lip size
  - Eye space
  - Eye slant
  - Lip curve
  - Face size (eyes to mouth)





NUS SISS

## **Chernoff Faces Example**

• Data below gives the number of crimes per 100,000 population in several American cities

|             | Murder        | Rape | Robbery | Assault | Burglary | Largency | Auto  |
|-------------|---------------|------|---------|---------|----------|----------|-------|
|             | Man-slaughter |      |         |         |          |          | Theft |
| Atlanta     | 16.5          | 24.8 | 106     | 147     | 1112     | 905      | 494   |
| Boston      | 4.2           | 13.3 | 122     | 90      | 982      | 669      | 954   |
| Chicago     | 11.6          | 24.7 | 340     | 242     | 808      | 609      | 645   |
| Dallas      | 18.1          | 34.2 | 184     | 293     | 1668     | 901      | 602   |
| Denver      | 6.9           | 41.5 | 173     | 191     | 1534     | 1368     | 780   |
| Detroit     | 13            | 35.7 | 477     | 220     | 1566     | 1183     | 788   |
| Hartford    | 2.5           | 8.8  | 68      | 103     | 1017     | 724      | 468   |
| Honolulu    | 3.6           | 12.7 | 42      | 28      | 1457     | 1102     | 637   |
| Houston     | 16.8          | 26.6 | 289     | 186     | 1509     | 787      | 697   |
| Kansas City | 10.8          | 43.2 | 255     | 226     | 1494     | 955      | 765   |
| Los Angeles | 9.7           | 51.8 | 286     | 355     | 1902     | 1386     | 862   |
| New Orleans | 10.3          | 39.7 | 266     | 283     | 1056     | 1036     | 776   |



Page 65 of 67



## **Summary: Understanding your Data**

- Establish Data Quality
  - Rubbish in rubbish out!
- Knowledge Discovery
  - Look for useful patterns, relationships, trends
  - Be open, don't be limited by preconceived ideas!
- Identify Data Enhancements
  - Identify what has to be done in data preparation



age 67 of 67