

চক্ৰবৃদ্ধি সুদ (Compount Interest)

১. চক্রবৃদ্ধি সুদের মূল সূত্র (Basic Formulas)

- সমূল চক্রবৃদ্ধি (Amount) নির্ণয়:
- চক্রবৃদ্ধি সুদ (CI) নির্ণয়:

২. বিভিন্ন সুদের পর্ব (Different Compounding Periods)

- ষাণ্মাসিক (Half-yearly): বছরে 2 বার সুদ গণনা করা হয়।
- ত্রৈমাসিক (Quarterly): বছরে 4 বার সুদ গণনা করা হয়।

৩. শর্টকাট পদ্ধতি (Shortcut Methods)

- ক. সাকসেসিভ পার্সেন্টেজ (Successive Percentage)
- খ. অনুপাত বা ফ্র্যাকশন (Ratio/Fraction) পদ্ধতি

8. চক্রবৃদ্ধি ও সরল সুদের পার্থক্য (CI vs SI Difference)

- 2 বছরের পার্থক্য (Difference):
- 3 বছরের পার্থক্য (Difference):

৫. অন্যান্য গুরুত্বপূর্ণ নিয়ম (Other Important Rules)

- ক. ভগ্নাংশ সময়ের সুদ (CI for Fractional Time)
- খ. বিভিন্ন বছরে বিভিন্ন সুদের হার (Different Rates)
- গ. টাকা "গুণ" হওয়ার অঙ্ক (Multiplying Money)

৬. বিশেষ প্রয়োগ (Special Applications)

- ক. জনসংখ্যা বৃদ্ধি (Population Growth)
- খ. মূল্য হ্রাস (Depreciation)
- গ. কিন্তি (Installment)

১. চক্রবৃদ্ধি সুদের মূল সূত্র (Basic Formulas)

এগুলি হলো চক্রবৃদ্ধি সুদের অঙ্ক কষার প্রধান ভিত্তি।

সমূল চক্রবৃদ্ধি (Amount) নির্ণয়:

$$A = P \left(1 + \frac{r}{100}\right)^t$$

- 。 A = সমূল চক্রবৃদ্ধি (সুদ + আসল)
- o P = আসল (Principal)
- o r = বার্ষিক সুদের হার (Rate of Interest)
- o t = সময় (বছর)
- চক্রবৃদ্ধি সুদ (CI) নির্ণয়:

$$CI = A - P$$

অথবা,
$$CI = P\left[\left(1 + \frac{r}{100}\right)^t - 1\right]$$

২. বিভিন্ন সুদের পর্ব (Different Compounding Periods)

যখন সুদ বছরে একবারের বেশি গণনা করা হয় (যেমন, প্রতি 6 মাস বা 3 মাস অন্তর)।

- ষাণ্মাসিক (Half-yearly): বছরে 2 বার সুদ গণনা করা হয়।
 - \circ নতুন সুদের হার = $\frac{\mathbf{r}}{2}\%$
 - 。 নতুন সময় (পর্ব) = 2t
 - $_{\circ}$ সূত্র: $A = P\left(1 + \frac{r}{200}\right)^{2t}$
- ত্রৈমাসিক (Quarterly): বছরে 4 বার সুদ গণনা করা হয়।

- $_{\circ}$ নতুন সুদের হার = $\frac{r}{4}\%$
- o নতুন সময় (পর্ব) = 4t
- \circ সূত্ৰ: $A = P\left(1 + \frac{r}{400}\right)^{4t}$

৩. শর্টকাট পদ্ধতি (Shortcut Methods)

দ্রুত অঙ্ক কষার জন্য এই পদ্ধতিগুলি খুবই কার্যকরী।

ক. সাকসেসিভ পার্সেন্টেজ (Successive Percentage)

এই পদ্ধতিটি 2 বা 3 বছরের সুদ নির্ণয়ের জন্য খুব দ্রুত।

- ullet 2 বছরের জন্য মোট সুদ: $\left(r+r+rac{r*r}{100}
 ight)\%$
 - ্ উদাহরণ: সুদের হার 10% হলে, 2 বছরের মোট সুদ

$$= \left(10 + 10 + \frac{10*10}{100}\right)\% = (20 + 1)\% = 21\%$$

খ. অনুপাত বা ফ্র্যাকশন (Ratio/Fraction) পদ্ধতি

এই পদ্ধতিটি যেকোনো বছরের জন্য ব্যবহার করা যায়।

- 1. প্রথমে সুদের হারকে (r%) ভগ্নাংশে পরিণত করুন।
 - $_{\circ}$ উদাহরণ: $10\% = \frac{10}{100} = \frac{1}{10}$
- 2. আসল (P) এবং সুদ-আসল (A) -এর অনুপাত লিখুন।
 - o P: A = 10:(10+1) = 10:11
- 3. যত বছরের জন্য সুদ বের করতে হবে, অনুপাতটিকে ততবার গুণ করুন (power করুন) ।
 - $_{\circ}$ 2 বছরের জন্য: $P:A=10^2:11^2=100:121$

(এখানে, আসল 100 ইউনিট হলে, সুদ = 121 - 100 = 21 ইউনিট)

 $_{\circ}$ 3 বছরের জন্য: $P:A=10^3:11^3=1000:1331$

(এখানে, আসল 1000 ইউনিট হলে, সুদ = 1331 - 1000 = 331 ইউনিট)

8. চক্রবৃদ্ধি ও সরল সুদের পার্থক্য (CI vs SI Difference)

পরীক্ষায় এই টপিকটি থেকে প্রচুর প্রশ্ন আসে।

- 2 বছরের পার্থক্য (Difference): $Difference = P\left(\frac{r}{100}\right)^2$
- 3 বছরের পার্থক্য (Difference): $Difference = P\left(\frac{r}{100}\right)^2\left(3 + \frac{r}{100}\right)$

৫. অন্যান্য গুরুত্বপূর্ণ নিয়ম (Other Important Rules)

ক. ভগ্নাংশ সময়ের সুদ (CI for Fractional Time)

যখন সময় ভগ্নাংশে থাকে, যেমন $2\frac{1}{2}$ বছর

• সূত্র:
$$A = P\left(1 + \frac{r}{100}\right)^2 \left(1 + \frac{\left(\frac{1}{4}\right) r}{100}\right)$$

• ধারণা: প্রথমে পূর্ণ বছরের (2 বছর) জন্য চক্রবৃদ্ধি সুদ এবং তারপর ওই সুদ-আসলের ওপর পরবর্তী $\frac{1}{4}$ বছরের জন্য সরল সুদ গণনা করা হয়।

খ. বিভিন্ন বছরে বিভিন্ন সুদের হার (Different Rates)

যদি প্রথম, দ্বিতীয় ও তৃতীয় বছরে সুদের হার যথাক্রমে $r_1, r_2 \otimes r_3$ হয়।

• সূত্র:
$$A = P\left(1 + \frac{r_1}{100}\right)\left(1 + \frac{r_2}{100}\right)\left(1 + \frac{r_3}{100}\right)$$

গ. টাকা "গুণ" হওয়ার অঙ্ক (Multiplying Money)

- নিয়ম: যদি কোনো টাকা চক্রবৃদ্ধি সুদে t বছরে n গুণ হয়, তবে ওই টাকা n^x গুণ হবে (t*x) বছরে।
- উদাহরণ:
 - ০ যদি টাকা 5 বছরে 2 গুণ (দিগুণ) হয়,
 - $_{\circ}$ তবে 4 গুণ 2^2 হবে = 5 * 2 = 10 বছরে।
 - $_{\circ}$ তবে 8 গুণ 2^3 হবে = 5 * 3 = 15 বছরে।
- Rule of 72 (শর্টকাট): টাকা দ্বিগুণ (Double) হতে আনুমানিক সময় লাগে $\left(\frac{72}{r}\right)$ বছর।
 - $_{\circ}$ উদাহরণ: ৪% হারে টাকা দ্বিগুণ হতে $rac{72}{8}=~9$ বছর সময় লাগবে।

৬. বিশেষ প্রয়োগ (Special Applications)

এই অঙ্কগুলি চক্রবৃদ্ধি সুদের সূত্র দিয়েই সমাধান করা হয়।

ক. জনসংখ্যা বৃদ্ধি (Population Growth)

• সূত্র:
$$P_n = P_0 \left(1 + \frac{r}{100}\right)^t$$

- $_{\circ}$ $P_{n}=t$ বছর পরের জনসংখ্যা
- $_{\circ}$ $P_{0}=$ বর্তমান জনসংখ্যা

খ. মূল্য হ্রাস (Depreciation)

(যেমন: কোনো মেশিন বা গাড়ির দাম প্রতি বছর কমে যাওয়া)

• সূত্র:
$$V_n = V_0 \left(1 - \frac{r}{100}\right)^t$$

$$_{\circ}$$
 V_{n} = t বছর পরের মূল্য

$$_{\circ}$$
 $V_0=$ বর্তমান মূল্য

গ. কিন্তি (Installment)

ধার নেওয়া টাকা (P) সমান বার্ষিক কিন্তিতে (x) শোধ করার অঙ্ক।

• 2 বছরের জন্য সূত্র:
$$P = \frac{x}{1 + \frac{r}{100}} + \frac{x}{\left(1 + \frac{r}{100}\right)^2}$$