INF-741: Embedded systems programming for IoT

Prof. Edson Borin

Timers and Counters

Agenda

Timers, Counters and Watchdog Timers

ATMega328 Timers

Course Work

Clock signal: periodic signal used to control the operation of digital circuits.

Periodic signal with period = T ==> x(t) = x(t + T)

Pulse length = Period

Usually a square wave generated by a **clock generator**.

* Typically a signal generated by a crystal oscillator

Clock signal: periodic signal used to control the operation of digital circuits.

Clock **Rate** or Clock **Frequency** = Number of pulses per second.

Measured in Hertz (Hz)

Clock **Frequency** =
$$1 / \text{Clock Period}$$
 or $f = 1/T$

Clock **period** of a 16 MHz signal = 1/16.000.000 s = 0.0625 microseconds

Timer

- Very common peripheral device that can measure time intervals.
- Measures time by counting pulses that occur on an input clock signal having a known period.
 - Ex: counting 2000 pulses of a 1MHz clock signal = 2 milliseconds
 - 1MHz => 1000000 pulses per second.
- May be used to:
 - generate events at specific timer;
 - determine the duration between two external events;
 - etc.

Timer

- A counter: register + control circuit to increment or decrement its value based on clock pulses (Clk).
- Reset: zeroes the counter.
- Top: output signal that indicates that the counter reached its maximum value:
 - 16-bits => 0xFFFF => 65535
 - Register value wraps around when top is reached

Timer

- Range: Maximum time interval the timer can measure
 - Range = 2^N 1 * Clock Period
 - where N = number of bits.
 - Ex: 16-bit counter and 1MHz Clk
 - 2^{16} -1 x 1/1.000.000 s = 65535 * 0.000001 = 0.065535s
- Resolution: minimum time interval the timer can measure
 - Resolution = Clock Period
 - Ex: 1 MHz Clk Resolution = 0.000001 second (1 microsecond)

Counter

- Similar to a timer, but counts pulses on a general input signal rather than clock.
 - e.g. count cars passing over a sensor
- Timer devices are usually flexible and can be configured to act as a counter (Mode).
- Mode: controls whether the counter is incremented based on clock pulses (Clk) or a general input signal (Cnt_in).

Interval Timer

- Indicates when desired time interval has passed.
- We set terminal count to desired interval
 Number of clock cycles = Desired time interval / Clock period
- Ex: obtain a duration of 3 microseconds from a clock cycle of 10 nanoseconds (100MHz).
 - Terminal count = $(3 \times 10^{-6} \text{s}) / (10 \times 10^{-9} \text{s}) = 300 \text{ cycles}$
- Top is asserted after 300 cycles (3 microseconds)

Cascaded counters

- Multiple timers can be combined to extend range.
 - Ex: The top output of the first 16-bit counter (Top1) can be used as the clock input of the second 16-bit counter.
 - The second counter is only incremented when the first one reaches the top value (carry-out).

Timer with a prescaler

- Prescaler: configurable clock-divider circuit
- clock
- May divide the input clock by 1, 2, 4, 8, etc...

 May be used to increase a timer's range, at the cost of decreasing resolution.

Watchdog Timers

- Output Top signal is connected to interrupt or reset pin.
 - Counter overflow resets the system
- User must restart the counter from time to time to prevent reset.
 - Failing to restart the counter in due time will cause the system to reset.
- May be used to recover from system failures:
 - Ex: Undesired infinite loops. Waiting for an input event that never arrives. Etc.

Agenda

Timers, Counters and Watchdog Timers

ATMega328 Timers

Lab Activities

3 timers:

- TIMER0 and TIMER2: 8 bits
- TIMER1: 16 bits

Used by Arduino runtime software to implement functionalities that require timing, such as the ones offered by the functions delay(), millis(), micros(), tone() and analogWrite();

TIMER0 - Registers:

- TCNT0: Timer/Counter Register. The actual timer value is stored here.
- TCCR0 A/B: Timer/Counter Control Registers. The pre-scaler can be configured here.
- OCR0 A/B: Output Compare Registers
- TIMSK0: Timer/Counter Interrupt Mask Register. To enable/disable timer interrupts.
- TIFR0: Timer/Counter Interrupt Flag Register. Indicates a pending timer interrupt.

TIMER0 – Counter Unit:

TIMER0 – Counter Unit:

- count: Increment or decrement TCNT0 by 1.
- direction: Select between increment and decrement.
- clear: Clear TCNT0 (set all bits to zero).
- clkTn: Timer/Counter clock
- top: Signalize that TCNT0 has reached maximum value.
- bottom: Signalize that TCNT0 has reached minimum value (zero).

TIMER0 – Input Clock Select

Name: TCCR0B Offset: 0x45 Reset: 0x00

Bit	7	6	5	4	3	2	1	0
	FOC0A	FOC0B			WGM02		CS0[2:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /1 (No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clkl/O/256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

TIMER0 – Prescaler Example

Name: TCCR0B Offset: 0x45 Reset: 0x00

	CS02	CS01	CS00	Description
ſ	0	1	0	clk _{l/O} /8 (From prescaler)

TIMER0 – Interrupt on Overflow

Interrupt generated when counter overflows (TOV0)

TIMER0 – Interrupt on Overflow

- Interrupt generated when counter overflows (TOV0)
- In case the TOIE0 bit (register TIMSK0) and the Global Interrupt Enable bit (register SREG) are set, the processing unit will handle the interrupt.
- A jump to the ISR must be registered on address 0x20.

A I Mega328 Interrupt Address Table									
Vector No	Program Address	Source	Interrupts definition						
			·						
•••									
15	0x001C	TIMER0_COMPA	Timer/Counter0 Compare Match A						
16	0x001E	TIMERO COMPB	Timer/Coutner0 Compare Match B						
17	0x0020	TIMER0_OVF	Timer/Counter0 Overflow						

- - - 000 lasts A status - - Talata

 Name:
 TIMSK0
 Bit
 7
 6
 5
 4
 3
 2
 1
 0

 Offset:
 0x6E
 Access
 Rw
 RW
 RW
 RW
 RW

 Reset:
 0x00
 Reset
 0
 0
 0
 0

DATA BUS

TCNTn

clear

direction

bottom

Control Logic

TIMER0 – Output Compare Unit

- Timer counter (TCNT0) continuously compared to registers OCR0A and OCR0B
- Whenever TCNT0 equals to OCR0A or OCR0B, the comparator signals a match
- If the corresponding interrupt bit (OCIEB or OCIEA of TIMSK0) and the Global Interrupt Enable bit (SREG register) are enable, then an interrupt is generated.

TIMER0: Overall structure

Other features:

Waveform generation (PWM)

TIMER0: Several modes

Normal mode:

Bit	7	6	5	4	3	2	1	0
	COM0A1	COM0A0	COM0B1	COM0B0			WGM01	WGM00
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0

TCCR0A

0x44

0x00

Name:

Offset:

Reset:

- Timer increments
- Wraps around at TOP = 0xFF
- Starts again at 0
- TOV0 interrupt flag set when TCNT0 reset to 0
- Useful for generating interrupts every N time units

Mode	WGM02	WGM01	WGM00	Timer/Counter Mode of Operation	TOP	Update of OCR0x at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	BOTTOM
2	0	1	0	СТС	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	воттом	MAX
4	1	0	0	Reserved	-	-	-
5	1	0	1	PWM, Phase Correct	OCRA	TOP	BOTTOM
6	1	1	0	Reserved	-	-	-
7	1	1	1	Fast PWM	OCRA	воттом	TOP

ATMega328 Timers - Example

```
/* Code to blink LED when the TIMERO counter overflows. */
#include <avr/io.h>
#include <stdbool.h>
#include <avr/interrupt.h>
ISR(TIMER0 OVF vect)
 PORTB=PORTB ^ 0xFF;// Toggle PORTB output pins
int main( void )
 DDRB = 0xFF; // Configure PORTB as output
 PORTB = 0xFF; // Set output pins as HIGH (LED ON)
 TIMSK0=(1<<TOIE0); // Enable the interrupt on overflow for Timer0
 TCNT0=0x00; // Set timer0 counter initial value to 0
 TCCROB = (1 < CSO2) \mid (1 < CSO0); // Set timer0 with /1024 prescaler
 sei(); // Set the Global Interrupt Enable bit
 while(true) { /* do nothing forever. */ }
```


Agenda

Timers, Counters and Watchdog Timers

ATMega328 Timers

Course Work

Course Work 1: Reaction Timer

INF-741: Embedded systems programming for IoT

Prof. Edson Borin

