Advanced Data Visualization Lecture Notes (Lecture 1 - 2 Hours)

I. Introduction to Data Types (30 minutes)

A. Overview of Data Types

1. Binary Data

- Definition: Data with two possible values (e.g., Yes/No, True/False).
- Examples: Gender (Male/Female), Employment Status (Employed/Unemployed).

2. Categorical Data (Nominal)

- Definition: Data with distinct categories without a specific order.
- Examples: Blood Type (A, B, AB, O), Brand Names (Nike, Adidas).

3. Ordinal Data

- Definition: Categorical data with a meaningful order but without a consistent scale.
- Examples: Survey ratings (Poor, Fair, Good, Excellent), Education Levels (High School, Bachelor's, Master's).

4. Scale Data (Continuous)

- Encompasses Interval and Ratio data.
- Examples: Temperature, Age, Salary.

5. Interval Data

- Definition: Continuous data with equal intervals between values but no true zero point.
- Examples: Temperature in Celsius or Fahrenheit, Dates.

6. Ratio Data

- Definition: Continuous data with equal intervals and a true zero point.
- Examples: Height, Weight, Distance, Sales revenue.

B. Summary and Examples

- Discuss real-world datasets and identify the data types present.
- Group activity: Categorize data from a provided dataset.

II. Measures of Central Tendency and Dispersion (30 minutes)

A. Measures of Central Tendency

1. Mean (Average)

- Definition: Sum of all values divided by the number of values.
- Appropriate for: Interval and Ratio data.
- Example: Average income, average temperature.

2. Median

- Definition: Middle value when data is ordered.
- Appropriate for: Ordinal, Interval, and Ratio data.
- Example: Median household income, median age.

3. **Mode**

- Definition: Most frequently occurring value.
- Appropriate for: Nominal, Ordinal, Interval, and Ratio data.
- Example: Most common blood type, most frequent rating in a survey.

B. Measures of Dispersion

1. Range

- Definition: Difference between the highest and lowest values.
- Appropriate for: Interval and Ratio data.
- Example: Temperature range, range of ages in a class.

2. Variance

- Definition: Measure of how much values differ from the mean.
- Appropriate for: Interval and Ratio data.
- Example: Variance in test scores, variance in income.

3. Standard Deviation

- Definition: Square root of the variance.
- Appropriate for: Interval and Ratio data.
- Example: Standard deviation of heights, standard deviation of sales revenue.

C. Summary and Practical Examples

- Discuss the importance of understanding central tendency and dispersion.
- Group activity: Calculate these measures using sample data.

III. Appropriate Visualization Techniques for Each Data Type (60 minutes)

A. Visualizing Binary Data

1. Bar Chart

- Simple and effective for showing proportions of two categories.
- Example: Employment status, survey responses (Yes/No).

2. Pie Chart

- Useful for showing the composition of a binary dataset.
- Example: Market share of two competing products.

B. Visualizing Categorical Data (Nominal)

1. Bar Chart

Display frequency of each category.

Example: Distribution of blood types, number of students per major.

2. Pie Chart

- Show percentage of each category in the whole.
- Example: Market share distribution, customer preferences.

C. Visualizing Ordinal Data

1. Bar Chart

- Display ordered categories with the frequency of each.
- Example: Survey ratings, levels of education.

2. Box Plot

- Show distribution and identify outliers.
- Example: Student performance ratings, customer satisfaction levels.

D. Visualizing Scale Data (Interval and Ratio)

1. Histogram

- Show the distribution of continuous data.
- Example: Distribution of ages, distribution of income.

2. Box Plot

- Display distribution, median, quartiles, and outliers.
- Example: Salary distribution, test scores.

3. Scatter Plot

- Show relationship between two continuous variables.
- Example: Relationship between height and weight, age and income.

4. Line Chart

- Show trends over time.
- Example: Stock prices over time, temperature changes over a year.

E. Advanced Techniques

1. Heatmap

- Show the intensity of data at intersections of categories.
- Example: Correlation matrix, activity levels over time.

2. Bubble Chart

- Display three dimensions of data (x, y, size).
- Example: Sales data with region, product, and revenue.

3. Violin Plot

- Combine box plot and density plot for richer data visualization.
- Example: Distribution of exam scores across different classes.

F. Summary and Interactive Session

- Review the visualizations and their appropriate use cases.
- Hands-on activity: Create visualizations using sample datasets.

Measures of Central Tendency and Dispersion

I. Measures of Central Tendency

A. Mean (Average)

Definition: The mean is the sum of all values divided by the number of values. It provides a measure of the central value of a dataset.

Calculation:

$$ar{x} = rac{\sum_{i=1}^n x_i}{n}$$
 • x_i is each individual value in the dataset. • n is the number of values.

Example:

Dataset: 5, 8, 12, 20, 25

$$\bar{x} = \frac{5+8+12+20+25}{5} = \frac{70}{5} = 14$$

B. Median

Definition: The median is the middle value in an ordered dataset. If the dataset has an even number of observations, the median is the average of the two middle numbers.

Calculation:

- 1. Order the dataset from smallest to largest.
- 2. If the number of values (n) is odd, the median is the middle value.
- 3. If n is even, the median is the average of the two middle values.

Example:

Example (Odd number of values):

Dataset: 5, 8, 12, 20, 25

Median = 12

Example (Even number of values):

Dataset: 5, 8, 12, 20, 25, 30

Median = $\frac{12+20}{2}=16$

C. Mode

Definition: The mode is the value that appears most frequently in a dataset. A dataset can have more than one mode (bimodal, multimodal) or no mode if no number repeats.

Calculation: Identify the value(s) that occur most frequently in the dataset.

Example:

Example:

Dataset: 5, 8, 12, 12, 20, 25

Mode = 12

Dataset: 5, 8, 8, 12, 12, 20, 25

Modes = 8 and 12 (bimodal)

II. Measures of Dispersion

A. Range

Definition: The range is the difference between the highest and lowest values in a dataset. It provides a measure of how spread out the values are.

Calculation:

Range = Maximum Value - Minimum Value

Example: Dataset: 5, 8, 12, 20, 25 Range = 25 - 5 = 20

Definition: Variance measures the average squared deviation of each value from the mean. It indicates how spread out the values are around the mean.

Calculation:

 x_i is each individual value.

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n} \quad \stackrel{\bullet}{-} \quad \bar{x} \text{ is the mean.}$$

$$\quad \bullet \quad n \text{ is the number of values.}$$

Example:

Dataset: 5, 8, 12, 20, 25

Mean = 14

$$\sigma^2 = \frac{(5-14)^2 + (8-14)^2 + (12-14)^2 + (20-14)^2 + (25-14)^2}{5}$$

$$= \frac{81+36+4+36+121}{5} = \frac{278}{5} = 55.6$$

A. Standard Deviation

Definition: Standard deviation is the square root of the variance. It provides a measure of the average distance of each value from the mean.

Calculation:

$$\sigma = \sqrt{\text{Variance}}$$

Example:

Variance = 55.6

$$\sigma = \sqrt{55.6} \approx 7.45$$