Spreadsheet in Engineering

Session: Calculations Using Spreadsheet

Nov. 6, 2016

P. K. Yadav & C. Gupta chhavi.gupta@sharda.ac.in.

Department of Civil Engineering

Motivation I

Solving Engineering Problem with Spreadsheet

The data organization is one aspect of Spreadsheet.

The real power of the **Spreadsheet** is on solving **Engineering** Problems.

Problem solving involves: **Application of Formula** and very often also **Plotting**.

Plotting requires **Several Results**- and is time consuming process otherwise, e.g. using calculator.

Spreadsheet speeds-up generation of several results.

Let us get motivated from solving a simple problem using Spreadsheet.

The Spreadsheet Workshop

@ P. K. Yadav & C. Gupta, 2016

Motivation

Operators

Complex Calculations

Dept. of Civil Engage Sharda University

Motivation II

The Classical Physics Problem: F = ma

Assume that m is to be obtained from F = ma; and that your lab has device to measure F, d and t. How will we calculate m

We really need to set-up an experiment. Where we apply several forces F_i with $i = 1 \cdots 10$ and measure different d_i over a fixed t.

Once we get all the d_i , we set up the **Spreadsheet** to obtain v = d/t and then $a = v/t = d/t^2$.

We then plot a_i against F_i .

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

2) Motivation

Calculations in Spreadsheet Operators

Formula

Complex Calculations
Integration
Differential Equation

Dept. of Civil Engg Sharda University

Motivation III

The Classical Physics Problem: F = ma

Finally we fit the plot with the straight line equation y = mx + c with c = 0, to find m as a slope of the fit line.

$$R^2 = rac{\sum (\hat{a}_i - \bar{a})^2}{(a_i - \bar{a})^2}$$

111

for $i = 1 \cdots 10$, with \bar{a} = average a, and \hat{a} = a on the fit line corresponding to the observed a_i .

This all will require more time if done without **Spreadsheet**.

The Spreadsheet Workshop

P. K. Yadav & C. Gupta, 2016

3 Motivation

Calculations in Spreadsheet

> Functions Formula

Complex Calculations Integration Differential Equation

> Dept. of Civil Engg. Sharda University

Calculations in Spreadsheet I

Operators and computation

Calculation mode is activated on placing "=" in the cell.

Operator	Name
+	Addition
-	Subtraction
*	Multiplication
/	Division
^	Exponential
>	less/greater than
<= / >=	less/greater than or
	equal to

Spreadsheet uses conventional mathematical operators and operators precedence.

The operators can be used in a single cell, in a row or row-wise, in a column or column-wise or in any combination of all of them.

The Spreadsheet Workshop

P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in

Operators Functions

Complex Calculations

Integration
Differential Equation

Calculations in Spreadsheet II

Operators Precedence and Calculation

Calculations requiring several operators, the following **operator precedence** is followed in the **Spreadsheet** computation.

Symbol	Precedence
\wedge	1
/ or *	2
*	2
+ or -	3
&	4
< or >	5

Of course! the operators within brackets have higher precedence. The innermost bracket have the highest precedence.

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in

Operators Functions

Functions Formula

Complex Calculations
Integration

Calculations in Spreadsheet III

Functions

Ability to apply **Functions** is the most useful aspect of **Spread-sheet** for Engineers.

Function basically is relationship between an input providing an output.

The following are the most important functions:

- Algebraic Function (e.g. Polynomial, Square root, Rational, Constant function)
- 2. Elementary transcendenta Functions (e.g. Exponential, Logarithmic, Trignometric, Power)

Spreadsheet provide an easy method to use these function or set of functions. Ideally, it is like doing "NUMERICALS" in a computer.

The Spreadsheet Workshop

P. K. Yadav &
 C. Gupta, 2016

Motivation

Calculations in Spreadsheet

Functions

Complex Calculations

Differential Equation

Dept. of Civil Engg Sharda University

Calculations in Spreadsheet IV

Functions

In **Spreadsheet** the function can be used by:

= Function name(INPUT)

where,

The Function Name are single worded mathematical function names such as:

 \log , \sin , \exp , sum, average, and many hundreds of them.

INPUT can be a single value in a **cell** or the range of values row-wise or column-wise.

E.g., Placing = $\log(10)$ in any cell will provide an **output** 1 and PI() provides the value of π

Let us try these - Link to list of Spreadsheet functions

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in Spreadsheet

Functions

Complex Calculations

Integration

Differential Equation

Calculations in Spreadsheet V

A simple Engineering Formula

A **Formula** is a combination different variables using different operators and/or functions.

A simple example :

Volume of a Cylinder:

$$V = \frac{\pi D^2 h}{4}$$

We get the **output**, (V), with **inputs** D, π and h. The inputs are required to be multiplied, squared and then divided (**operations**). In short: V = f(D, h)

Let us try in **Spreadsheet** V = f(D, h).

The Spreadsheet Workshop

P. K. Yadav &
 C. Gupta, 2016

Motivation

Calculations in Spreadsheet Operators

Functions

Complex Calculations

Differential Equation

Calculations in Spreadsheet VI

A simple Engineering Formula

Let us now try the classical physics projectile formula.

At constant acceleration **a**, at any time (t):

Height,
$$h=rac{1}{2}at^2+v_0t+h_0$$

and Velocity, $extbf{\emph{V}}=at+v_0$

Let us try in **Spreadsheet** to obtain h and v.

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in Spreadsheet

Operators Functions Formula

Complex Calculations
Integration

Dept. of Civil Engo Sharda University

Complex Calculations I

Integration

Finding area under simple directly integrable curves are straightforward.

We find area under the curve that is not directly integrable .

$$I = \int_a^b f(x) dx$$
 = area under curve

$$I = \int_a^b (\exp(x^2) + \ln x) dx$$

The Spreadsheet Workshop

P. K. Yadav &
 C. Gupta, 2016

Motivation

Calculations in

Operators

ormula

Complex Calculations Integration

Differential Equation

Dept. of Civil Engg. Sharda University

Complex Calculations II

Integration

We divide the area under the curve with a increment Δx . Let us fix a = 1 and b = 2.

$$I = \int_1^2 f(x)dx \approx \Delta x \sum_{i=1}^2 f(x_i)$$
$$f(x) = (\exp(x^2) + \ln x)dx$$

Let us implement the scheme in Spreadsheet.

You may want to try the scheme using numerical integration methods: Trapezoidal rule, Simpson's method.

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in Spreadsheet

Operators Functions

ormula

Complex Calculations Integration

Differential Equation

Dept. of Civil Engg Sharda University

Complex Calculations III

Differential Equation

We now attempt to solve differential problem in **Spreadsheet**. Let us solve the classical Newton's falling apple problem.

$$egin{aligned} \mathit{ma} &= \mathit{F} \ \mathit{m} rac{\mathit{dv}}{\mathit{dt}} &= \mathit{F}_{\mathit{D}} - \mathit{F}_{\mathit{U}} \ &= \mathit{mg} - \mathit{cv} \end{aligned}$$
 Or $rac{\mathit{dv}}{\mathit{dt}} &= \mathit{g} - rac{\mathit{c}}{\mathit{m}}\mathit{v}$

We will try to implement the scheme in **Spreadsheet**.

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Notivation

Calculations in Spreadsheet

Operators Functions

Formula

Complex Calculations

Differential Equation

Complex Calculations IV

Differential Equation

or

The exact solution of the problem for v = 0 at t = 0 is:

$$v(t) = \frac{gm}{c} \Big[1 - e^{-(c/m)t} \Big]$$

The function v(t) can be approximated by difference, using:

$$\frac{dv}{dt} pprox \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

So, our equation becomes

$$\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} = g - \frac{c}{m} v$$

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c}{m} v(t_i) \right] (t_{i+1} - t_i)$$

The Spreadsheet Workshop

© P. K. Yadav & C. Gupta, 2016

Motivation

Calculations in

Operators

Functions

Complex Calculations

Differential Equation

Complex Calculations V

Differential Equation

The velocity equation can be interpreted as:

$$v(t_{i+1}) = v(t_i) + \begin{bmatrix} \frac{c}{g} - \frac{c}{m}v(t_i) \end{bmatrix} (t_{i+1} - t_i)$$
New value Old value Old value*Constant Time step-size

Let us implement the above scheme in **Spreadsheet** using:

- m = 0.15 Kg
- ▶ c = Drag Coeff. = 0.025 Kg/s
- $part q = 9.8 \text{ m/s}^2$
- $ightharpoonup t_i = 0$
- \wedge $\Lambda t = 2 s$

C. Gupta, 2016

Operators

Complex Calculations

Differential Equation

Dept. of Civil Engage

That was introduction to using **Spreadsheet**. Let us get advanced

and learn to visualize maths.

