CS221: Digital Design

ASM/ FSMD/ RTL Design

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Drawbacks of state diagrams for real systems
- FSMD/ASM
- ASM Specification
- Comparison of FSM Vs ASM
 - Conversion of FSM to ASM, vice versa
- RTL Design

Reference Material for Lec 33, 34, 35

- Chapter 8 of Mano Book
 - Design at Register Transfer Level
 - -Classic Example: Booth Multiplication
- Chapter 15 of Kumar Book
 - Algorithmic State Machine

Drawbacks of FSM

- FSM for real systems:
 - Many inputs & many outputs -> awkward to list all of these as each transition arc.
 - On any given arc
 - Typically most inputs are don't care
 - Typically most outputs are unchanged from the settings in the previous state
 - Tedious & repetitive to list exhaustively

Drawbacks of FSM

- Not a clear structure for illustrating/designing control flow
- What about generic memory/data?
 - Do they really need to be part of the state?
 If we have many bits of data, this would lead to a huge state
 - E.g. state diagram for counter or shift register is pointless
 - 32 bit counter have 2³² states

Drawbacks of FSM

- Some problems analogous to before
- Combinational: Circuit Design Using truth tables (TT); ok/easy for Small Problem
- Adders, Muxes TT get out of hand
- Design 2 level circuit for a 32 bit Adder
 - 64 inputs and 33 outputs using TT method, worst case delay (2⁶³ OR gate)
 - Worst case OR gate size or # of Product term => $2^{N-1}-1$
 - CLA: prefix sum example, use different approach to get the circuit

Drawbacks of FSM: ASM Overview

- Some problems analogous to before
 - Sequential:
 - Small state diagrams easy
 - Real, Data state diagrams not helpful
 - E.g. state diagram for 32 bit counter or shift register is pointless
 - 32 bit counter have 2³² states
- Solution is
 - -ASM/FSMD/RTL Based Design

ASM/FSMD/RTL Based Design

- ASM/FSMD/RTL are similar terms
- ASM : Algorithmic State Machine
- FSMD : FSM with Data Path
- RTL Design : Register Transfer Level Design

Define what work to be at each clock cycle.

Algorithmic State Machine

Algorithmic State Machine –

- Another representation of a Finite State Machine
- Suitable for FSMs with
 - a larger number of inputs and outputs
- As compared to FSMs expressed using
 - state diagrams and
 - state tables.

ASM Overview

- We need to separate controller & data processor
 - Controller What actions need to be taken? What is fundamental operating mode?
 - Processor Undertake the action.
 Manipulate the data

The ultimate Goal of this course: Design using Control Path + Data Approach: RTL Design

ASM Overview

Control and data path interaction

Our circuit is now explicitly separated

Remember: Serial Addition

ASM Overview: High Level

- Ex. Serial Addition
- Control Part/Path

Serial Addition: Data Path

ASM Design: Data processing

- What sorts of manipulations of the input and output data are requested?
- How many/what sorts of things need to be stored?
- How to design
 - —Ad hoc/creative/by insight
 - List requested operations/manipulations
 - Include initialization controls
 - Include status lines

ASM Design: Control logic

- All of the commands to the data proc. logic need to be controlled,
- And the status lines need to be monitored and acted upon.
- ASM charts are like state diagrams, but without specific drawbacks.
 - Don't list all inputs for each transition don't care inputs
 - Don't list all outputs for each state not changed outputs

ASM Design

- How to design ASM chart/state diagram (for small problems)
 - -State assignment
 - -State table
 - Kmap-gates/FF/Reg Mux Dec/EPROM,
 or, creatively, a combination of them

ASM Design: ASM Chart

- ASM charts are like flowcharts, with a few crucial differences.
- Be careful, especially with timing.
- Three type components/Box
 - -State Box
 - Decision Box
 - Combinational Box/TransitionBox/Conditional Box

ASM charts: 3 Elements used

(c) Conditional output box

ASM Design: State Box

State Box – one box per system state

ASM Design: State Box

- Operation notation:
 - Sum <- 0 or Carry <- 0 or LOAD A</p>
 - Combinational variable: S=0, T=S+V
- Idea: keep operations abstract & high level.
 - Don't work in detailed language of processing logic (i.e. write Sum <- 0, not CLR_{Sum Reg}=1)
- Operations will take place at the end of the clock period

ASM: State Box

- State box represents a state.
- Equivalent to a node in a state diagram or a row in a state table.
- Contains register transfer actions or output signals
- Moore-type outputs are listed inside of the box.

ASM: State Box

- It is customary to write only the name of the signal that has to be asserted in the given state,
 - e.g., z instead of z<=1.
- Also, it might be useful to write an action to be taken,
 - e.g., count <= count + 1,</pre>
- And only later translate it to asserting a control signal that causes a given action to take place
 - (e.g., enable signal of a counter).

State name

Output signals or actions (Moore type)

ASM Design: Decision Box

- Decision Box Basic condition, i.e. logic flow control.
- Only the decision boxes depend on inputs.

ASM Design: Decision Box

- Decision box indicates that
 - a given condition is to be tested and
 - the exit path is to be chosen accordingly
- The condition expression may include
 - -One or more inputs to the FSM.

Vector Decision Box

- A hexagon with:
 - One Input Path (entry point).
 - A vector of input conditions, placed in the center of the box, that is tested.
 - Up to 2ⁿ output paths. The path taken has a binary vector value that matches the vector input condition

ASM Design

- Keep conditions as general as possible.
- Prefer: Carry high? Over Q_{FF#5}=1?

ASM Design: Conditional Box

- Conditional Box An action/operation
 - to be undertaken conditioned on some earlier decision box.

ASM Design Vs Flowchart

- Conditional boxes do not appear in normal flowcharts.
- The essential difference is timing:
 - Flowcharts are sequential
 - ASM charts are not. All of the operations associated with a given state take place simultaneously.

ASM Design: Conditional Output Box

- Conditional output box
- Denotes output signals that are of the Mealy type.
- The condition that determines whether such outputs are generated is specified in the decision box.

ASMs representing simple FSMs

- Algorithmic state machines can model both
 - Mealy FSM
 - Moore Finite State Machines
- They can also model machines that are of the mixed type