1 09-04-2018

We will learn about: Basics of functions of several variables. In this lecture:

1.1 A sequence in the Euclidean space and its application

Using these notation:

- \mathbb{N} : set of natural number ($\mathbb{N} = \{1, 2, 3, \dots\}$)
- \mathbb{Z} : set of integers $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$
- \mathbb{Q} : set of rational number $(\mathbb{Q} = \{0, \pm 1, \pm 2, \frac{2}{3}, \dots\})$
- \mathbb{R} : set of real number
- \mathbb{C} : set of complex number

Definition 1. A sequence $(x_n)_{n=1}^{\infty}$ is an assignment of (real) number $x_n \in \mathbb{R}$ to natural number $n \in \mathbb{N}$ $(x_n \in \mathbb{R})$. Example : $x_n = \frac{1}{n}$. $x_1 = 1, x_2 = \frac{1}{2}, \dots$

Definition 2. A subsequence of a sequence $(x_n)_{n=1}^{\infty}$ is a sequence $(y_j)_{j=1}^{\infty}$ defined by $y_j = x_{n_j}$ for some sequence $(n_j)_{j=1}^{\infty}$ in \mathbb{N} such that $n_j < n_{j+1}$ (j = 1, 2, ...).

 $(n_{j})_{j=1}^{\infty} \text{ in } \mathbb{N} \text{ such that } n_{j} < n_{j+1} \text{ } (j=1,2,\ldots).$ $Example : \text{ sequence } (x_{n})_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{100} \text{ , takes } n_{1} = 1, n_{2} = 3, n_{3} = 5, n_{4} = 100$ $\text{subsequence } (x_{n_{j}})_{j=1}^{\infty} = x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, x_{n_{4}} = 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{100}.$

Definition 3. Let $(x_n)_{n=1}^{\infty}$ be a sequence converges to $\alpha \in \mathbb{R}$ if for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that n > N, $|x_n - \alpha| < \epsilon$.

In the mathematical symbol $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n > N, \ |x_n - \alpha| < \epsilon \text{ for } n > N.$ In this case we write, $\lim_{n \to \infty} \text{ or } x_n \to \alpha \ (n \to \infty)$

Example 1.

Theorem 1. $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}$ is sequence. Suppose $x_n \to \alpha$ and $y_n \to \beta$ as $n \to \infty$.

- 1. $x_n \pm y_n \to \alpha \pm \beta$, $(n \to \infty)$
- 2. $x_n \cdot y_n \to \alpha \cdot \beta$, $(n \to \infty)$
- 3. if $\beta \neq 0$, $\frac{x_n}{y_n} \to \frac{\alpha}{\beta}$, $(n \to \infty)$

Remark 1. On 3, $\frac{x_n}{y_n}$ is not defined for all $n \in \mathbb{N}$ because $y_n = 0$ possibly for some $n \in \mathbb{N}$. But, since $y_n \to \beta \neq 0$, y_n eventually is not 0. Hence $\frac{x_n}{y_n}$ is defined eventually.

Theorem 2. $(x_n)_{n=1}^{\infty}$ a sequence. If $(x_n)_{n=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$, any subsequence of (x_n)

2 16-04-2018

2.1 n-dimensional space

 $\mathbb{R}^{\nvDash} = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \dots, x_n) | x_i \in \mathbb{R}\}.$ Takes n = 2, $\mathbb{R}^2 \Leftrightarrow \text{plane}$, we have P(a, b). For n = 3, we have P(a, b, c).

1

Definition 4. $P_m = (x_1^m, \dots, x_n^m) \in \mathbb{R}^n$. $\{P_m\}_{m=1}^{\infty} : a \text{ sequence in } \mathbb{R}^n$. $\{P_m\}$ converges to $A = (a_1, \dots, a_n) \in \mathbb{R}^n$ if $\forall k = 1, \dots, n, \ x_k^m \to a_k$ as $n \to \infty$

Definition 5. Inner product and norm.

$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$$

 $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n \; ; \; inner \; product$
 $||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}} \; ; \; norm$

Example 2. $\mathbf{x} \cdot \mathbf{y} = 0 \Leftrightarrow \mathbf{x}$ is perpendicular to \mathbf{y} Takes n = 0 then

$$x_1y_1 + x_2y_2 = 0$$
 $x_1y_1 = -x_2y_2$
 $\frac{y_1}{y_2} = -\frac{x_2}{x_1}$
 $then (x_1, x_2) = c \cdot (-y_2, y_1) give pict$

Example 3. $||\mathbf{x}|| = 0 \Leftrightarrow x = 0$

 (\Rightarrow)

$$0 = ||x||^2 = x_1^2 + \dots + x_n^2$$
 then $x_1^2 = 0 (\forall i = 1, \dots, n)$ and finally $x_1 = 0$.

Remark 2. ||x|| is the distance between $\mathbf{0} = (0, \dots, 0) \in \mathbb{R}^n$ and $\mathbf{x} = (x_1, \dots, x_n)$. For notation, we will use $P, Q \in \mathbb{R}^n$ as points and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ as vectors. We also use $||x-y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ as distance between \mathbf{x} and \mathbf{y} . ||P - Q|| is distance between P and Q.

$$\mathbf{x} \pm \mathbf{y} = (x_1 \pm y_1, \dots, x_n \pm y_n)$$

$$P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n) \text{ then } P + Q = (p_1 + q_1, \dots, p_n + q_n)$$

$$\alpha \in \mathbb{R}, \ \alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_n), \alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_n)$$

$$\{P_m\}_{m=1}^{\infty} : \text{a sequence } in\mathbb{R}^n, P_m \to A \Leftrightarrow ||P_m - A|| \to 0$$

Theorem 3. Cauchy-Schwarz inequality. For any $x, y \in \mathbb{R}$,

$$|\mathbf{x} \cdot \mathbf{y}| \le ||x||||y||$$

"=" $\Rightarrow a\mathbf{y} = b\mathbf{x}$ for some $a, b \in \mathbb{R}$. Conclusion. We may assume $\mathbf{x} \neq 0, \forall t \in \mathbb{R}$.

$$0 \le ||t\mathbf{x} + \mathbf{y} = t^2||\mathbf{x}||^2 + 2t(\mathbf{x} \cdot \mathbf{y}) + ||\mathbf{y}||^2$$
$$D/4 \le 0$$

Theorem 4. Bolzano=Weierstrass. Let $(P_m)_{m=1}^{\infty} \subset \mathbb{R}^n$ be a sequence. Suppose that $(P_m)_{m=1}^{\infty}$ is bounded. In the sense that $||P_m|| \leq M(m \in \mathbb{N})$ for some $M \geq 0$. Then $(P_m)_{m=1}^{\infty}$ contains a convergent subsequence.

Definition 6. Ball. $A \in \mathbb{R}^n, R > 0$

$$\mathbf{B}(A,R) = \{P \in \mathbb{R}^n | ||P - A|| < R\}; \ open \ ball \ of \ center \ A \ with \ radius \ R$$

$$\bar{\mathbf{B}}(A,R) = \{P \in \mathbb{R}^n | ||P - A|| \le R\}; \ closed \ ball$$

Definition 7. 1. $E \subset \mathbb{R}^n$ is said to be **an open set** if $E = \emptyset$ or $\forall A \in E, \exists R > 0$ such that $\mathbf{B}(A, R) \subset E$.

2. $E \subset \mathbb{R}^n$ is said to be **a closed set** if $E^c = \mathbb{R}^n$ E is an open set. E: open, then neighbor in any point

Definition 8. Accumulation point. $E \subset \mathbb{R}^n$; a set. $A \in \mathbb{R}^n$ is called an accumulation point of E if $\forall R > 0$, $(\mathbf{B}(A,R) - \{A\})$ irisan $E \neq \emptyset$.

Remark 3. ini notes. $E \subset \mathbb{R}^n$ is closed if and only id E contains any accumulation point of E. Homework report, prove this

Remark 4. note juga.

- 1. Both \emptyset and \mathbb{R}^n are open and closed
- 2. $\{E_{\lambda}\lambda \in A\}$; a collection of open sets \Rightarrow union $\lambda \in AE_{\lambda}$ is also open
- 3. $\{E_{\lambda}\}_{\lambda=1}^{N}$, a finite collection of open sets \Rightarrow irisan $_{lamda=1}^{N}E_{\lambda}$ is also open.
- 4. Rephrase of Bolzano Weierstrass theorem. $E \subset \mathbb{R}^n$; a ounded closed set $\Leftrightarrow E$ is a closed set such that $E \subset \mathbf{B}(\not\vdash, R)$ for some R > 0. E; a bounded closed set then any sequence of E contains a convergent subsequence whose limit is in E.

Definition 9. A bounded closed set in \mathbb{R}^n is called **compact**.

Example 4. $\bar{\mathbf{B}}(A,R)$ is compact. Report! prove this

2.2 Continuity and differentiability of a function

2.2.1 Continuity

E: a set in \mathbb{R}^n and f: is a function of E (real valued function). i.e. f is an assignment a (real) number to a point in E.

Definition 10. 1. f is continuous at $A \in E$ if $\forall (P_m)_{m=1}^{\infty} \subset E$: sequence with $P_m \to A$ $(m \to \infty)$

$$f(P_m) \to f(A) \ (m \to \infty)$$

2. f is continuous on E if f is continuous at any point of E.

2.2.2 Basic of continuous function on an interval in R

Theorem 5. Intermediate value theorem. f: function on a closed interval $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$. Suppose that $f(a) \le f(b)$. Then, $\forall \gamma$ with $f(a) \le \gamma \le f(b)$, $\exists c \in [a,b]$ with $f(c) = \gamma$.

Theorem 6. Extreme value theorem. f is a continuous function