МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Лабораторная работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости.

Автор: Чикин Андрей Б05-304

1 Цель работы:

- 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

2 В работе используются:

Прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

3 Теоретическая часть:

Из-за поверхностного натяжения возникают разные давления с разных сторон искривленной поверхности жидкости:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$
 (формула Лапласа) (1)

 σ - коэффицент поверхностного натяжения, r - радиус кривизны поверхности.

4 Экспериментальная установка:

Рис. 1: Схема экспериментальной установки

Схема экспериментальной установки представлена на рисунке ??. Тестовая жидкость (этиловый спирт) наливается в сосуд, через пробку в него входит полая металлическа игла. При создании достаточно разреженного воздуха в колбе пузырьки воздуха начинают пробулькивать, поверхностное натяжение измеряется по величине разряжения. Разряжение создается с помощью аспиратора, разность давлений измеряется спиртовым микроманометром.

Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерениии кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho g h \tag{2}$$

 ρ - плотность жидкости, h - высота погружения иглы.

5 Измерения и обработка данных

Измерение радиуса иглы

Измерение радиусы иглы проводится двумя различными способами: с помощью коэффиента поверхностного натяжения спирта и непосредственно на микроскопе. При измерении давления нужно умножить показания прибора на $0.2 \cdot 9.80665$ Для спирта максимальное давление $\Delta P = 82.38$

Таблица 1: Радуис иглы, измеренный через эталонную жидкость (спирт)

$r, 10^{-3} M$	$\sigma_r, 10^{-3} \text{M}$	$\varepsilon, \%$
0.55	0.009	1.9

При измерении на микроскопе получается диаметр иглы, равный:

$$d = (1.10 \pm 0.05) \tag{3}$$

В дальнейшем примем d, равный измеренному микроскопом, так как рехультаты измерений близки друг к другу.

Измерения глубины погружения

При погружении получаем значение, измеренное линейкой, равное 2.1 см, а перепад давлений равен 93 пункта или 182.4 Па, что соответствует 1.9 см столба воды.

Коэффициент поверхностного натяжения от температуры

После обработки с известным радиусом иглы и перепадом высот, получим значения коэффицента поверхностного натяжения, представим в виде графика (??)

Рис. 2: Зависимость коэффицента поверхностного натяжения воды от температуры

Значения коэффицента натяжения при измерениях на глубине сосуда близки к табличным, их и будем учитывать при дальнейших расчетах. Несовпадение с результами измерений на поверхности жидкости объясняется теплопроводностью металла.

Из аппроксимации графика найдем $\frac{d\sigma}{dt}$, а также построим график теплоты образования единицы поверхности жидкости от температуры и график поверхностной энергии единицы площади.

Таблица 2: Зависимость коэффицента поверхностного натяжения воды от температуры

$\frac{d\sigma}{dt}$, 10^{-3} $\frac{MH}{M \cdot K}$	σ_{σ} , $10^{-3} \frac{\text{MH}}{\text{M} \cdot K}$	ε , %
-0.129	0.040	20

(??)

Рис. 3: Теплота образования единицы поверхности жидкости и поверхностная энергия единицы площади

(??)

Рис. 4: Зависимость теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади

6 Выводы

- 1. Измерены коэффциенты поверхностного натяжения при разных температур, пронаблюдалась близость полученных результатов к табличным значениям.
- 2. Получена температурная зависимость коэффициента поверхностного натяжения воды от температуры. $\frac{d\sigma}{dt}=-0.129\pm0.040,\ 10^{-3}\ \frac{\text{мH}}{\text{м}\cdot K}$ при теоретическом значении $\frac{d\sigma}{dt}=-0.15,\ 10^{-3}\ \frac{\text{мH}}{\text{м}\cdot K}$
- 3. Вычислены зависимости теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади, постоянство второй из них подтверждается теоретически.