Predicción jerárquica y codificación adaptativa al contexto para compresión de imagen en color sin pérdidas

Jpeg

Decorrelación

Descomposición y predicción de pixels

Descomposición jerárquica

Predictores horizontal y vertical

$$\hat{x_h}(i, j) = x_o(i, j - 1)$$

$$\hat{x_v}(i, j) = round\left(\frac{x_e(i, j) + x_e(i + 1, j)}{2}\right)$$

Descomposición y predicción de pixels

Dirección

```
if |x_o(i,j) - \hat{x_h}(i,j)| + T_1 < |x_o(i,j) - \hat{x_v}(i,j)| then
   dir(i, j) \leftarrow H
else
   dir(i, j) \leftarrow V
end if
                 Algoritmo de predicción
if dir(i-1,j) = H or dir(i,j-1) = H then
     Calculate dir(i, j) by Algorithm 1
     Encode dir(i, j)
     if dir(i, j) = H then
         \hat{x_o}(i,j) \leftarrow \hat{x_h}(i,j)
     else
         \hat{x_o}(i,j) \leftarrow \hat{x_v}(i,j)
     end if
else
     \hat{x_o}(i,j) \leftarrow \hat{x_v}(i,j)
     Calculate dir(i, j) by Algorithm 1
end if
```

Esquema de codificación propuesto

Nivel de pasos de cuantización

Resultados

TABLE II
COMPRESSED BIT RATES (bpp) FOR THE MEDICAL IMAGES

	Size	JPEG2000	JPEG-XR	Proposed
PET1	256×256	6.7390	8.0839	5.6453
PET2	256×256	7.3403	8.5533	6.1598
PET3	256×256	7.0232	8.4425	5.8768
Eye1	3216×2136	5.7498	7.4635	4.6208
Eye2	3216×2136	5.4467	7.3490	4.3350
Eyeground	1600×1216	3.2763	5.6944	2.9656
Endoscope1	603×552	7.3532	8.6395	7.0451
Endoscope2	568×506	5.1304	7.2928	4.8968
Avg.		6.0074	7.6899	5.1932

TABLE III

COMPRESSED BIT RATES (bpp) FOR THE COMMERCIAL

DIGITAL CAMERA IMAGES

	Size	JPEG2000	JPEG-XR	Proposed
Ceiling	4288×2848	7.5571	8.8331	7.2080
Locks	4288×2848	7.4574	8.8296	7.1623
Flamingo	4288×2848	7.0366	8.2698	6.6371
Berry	4288×2848	7.2468	8.6646	6.8917
Sunset	4288×2848	6.3586	7.9263	5.9700
Flower	4032×3024	6.4141	8.1298	6.0655
Park	4032×3024	5.8977	7.6534	5.5622
Fireworks	4032×3024	5.7797	7.4469	5.2855
Avg.		6.7185	8.2192	6.3478

Super-Spatial Structure Prediction

Características

- La predicción super-espacial toma la idea de predicción de movimiento de la codificación de vídeo, que predice un bloque actual utilizando las anteriores.
- -Muy eficaz en la compresión de imágenes sin pérdida, especialmente para imágenes con muchos componentes de la estructura significativos.
- -Gran sobrecarga y alta complejidad computacional, su eficiencia se degradará en regiones no estructurados o imagen suave.

Regiones estructurados

Bloques

- □Para mejorar en imágenes no estructurado o imagen suave. Se divide el imagen en bloques estructurados y bloques no estructurados.
- En bloques estructurados se codifica con predicción super-espacial.
- En bloques no estructurados se codifica con formatos sin pérdida convencional de compresión de imágenes como Calic.
- □Para clasificar se utiliza comparación de bloques con otros método Método A, y un Método B que usa error de GAP

Descomposición

Fig. 5. (a) Original *Barbara* image. (b) Nonstructure regions. (c) Structure regions.

Resultados

El Método B, aunque tiene una baja computacional complejidad, su pérdida de rendimiento es muy pequeña comparando con Método A.

Image	Method_A	Method_B	Percentage of
			Bit Increase
Lena	4.086	4.086	0%
Barbara	4.471	4.463	-0.18%
Baboon	5.71	5.706	-0.07%
kodim01	4.998	5.011	0.26%
kodim08	5.008	5.033	0.50%
kodim13	5.638	5.671	0.59%
USC1.2.01	6.603	6.612	0.14%
USC1.2.03	6.382	6.387	0.08%
Floor	3.4	3.546	4.29%

Simple fast and adaptive lossless image compression algorithm (SFALIC)

Características

- Velocidad alta compresión
- Predicción lineal, familia código Golomb-Rice modificado, y un modelado de error de predicción muy rápido
- Imágenes en escala de grises de profundidades de hasta 16 bits
- Buenos resultados para imágenes de gran tamaño y las imágenes ruidosas

Velocidad de compresión (MB/s)

Image group	CALIC-A	CALIC-H	JPEG-LS	CCSDS SZIP	SFALIC
natural	2.6	7.2	15.0	40.3	43.3
big	3.4	9.7	18.1	56.0	61.8
medium	2.8	8.0	16.5	44.8	48.1
small	1.7	3.7	10.3	20.0	20.1
16bpp	1.9	6.9	15.9	40.0	41.3
12bpp	3.0	7.5	17.8	48.4	47.9
8bpp	3.0	7.0	11.1	32.4	40.7
medical	3.6	9.6	20.7	50.6	50.1
cr	4.9	11.5	24.8	73.5	70.5
ct	3.4	9.1	21.6	50.1	49.1
mr	2.7	8.4	20.9	41.6	39.9
us	3.7	9.3	15.4	37.1	40.8
normal	3.2	8.5	18.2	46.1	47.2

Tasa de compresión

Image group	CALIC-A	CALIC-H	JPEG-LS	CCSDS SZIP	SFALIC
natural	7.617	7.661	7.687	8.432	7.953
big	6.962	7.059	7.083	7.773	7.274
medium	7.623	7.699	7.710	8.403	8.009
small	8.267	8.227	8.269	9.121	8.576
16bpp	11.748	11.622	11.776	12.458	11.867
12bpp	7.491	7.565	7.571	8.407	7.869
8bpp	3.613	3.797	3.715	4.431	4.123
medical	6.651	6.761	6.734	7.396	7.165
cr	6.229	6.324	6.343	6.883	6.662
ct	7.759	7.840	7.838	8.806	8.266
mr	9.975	9.895	10.009	10.599	10.235
us	2.641	2.985	2.748	3.298	3.497
normal	7.065	7.147	7.143	7.840	7.503

Diseñando un sistema de encriptado y compresión via predicción de error de clustering y permutación aleatoria

Diseñando un sistema de encriptado y compresión via predicción de error de clustering y permutación aleatoria

Sistema ETC propuesto

Sistema ETC propuesto (2)

$$e_{i,j} = I_{i,j} - \bar{I}_{i,j}$$

$$\Delta_{i,j} = d_h + d_v + 2|e_i - 1, j|$$

$$\sum = H(\bar{e}|q_i \le \Delta < q_{i+1})p(q_i \le \Delta < q_{i+1}) \qquad k = \{k|_{qk} \le \Delta_{i,j} < q_{k+1}\}$$

Sistema ETC propuesto

- El ensamblador concatena los clusters permutados y genera una imagen encriptada.
- Se pasan los datos a Charlie.

Compresión sin perdidas por AC adaptativo

$$L_c = |B| + (L-1)[log_2|B|]$$

Desencriptado y descompresión secuencial

$$\hat{I}_{i,j} = \bar{I}_{i,j} + e_{i,j}$$

Resultados

Image	Proposed	CALIC	[13]	S_C	$S_{[13]}$
Lena	134267 B (4.096 bpp)	134232 B (4.096 bpp)	4.918 bpp	-0.03%	16.7%
Peppers	143998 B (4.394 bpp)	143974 B(4.394 bpp)	5.271 bpp	-0.02%	16.6%
Goldhill	150879 B(4.604 bpp)	150850 B(4.604 bpp)	5.453 bpp	-0.02%	15.6%
Boat	134732 B (4.112 bpp)	134651 B (4.109 bpp)	5.374 bpp	-0.06%	23.5%
Man	142404 B (4.346 bpp)	142361 B(4.345 bpp)	5.424 bpp	-0.03%	24.8%
Harbor	160552 B (4.900 bpp)	160487 B (4.898 bpp)	6.206 bpp	-0.04%	26.7%
Airplane	121261 B (3.701 bpp)	121172 B (3.698 bpp)	5.045 bpp	-0.07%	36.3%
Barbara	150352 B (4.588 bpp)	150223 B (4.584 bpp)	6.124 bpp	-0.09%	33.5%
Bridge	177311 B (5.411 bpp)	177252 B (5.409 bpp)	6.303 bpp	-0.03%	16.5%
Tank	154301 B (4.709 bpp)	154264 B (4.708 bpp)	5.370 bpp	-0.02%	14.0%
Averaged	4.452 bpp	4.449 bpp	5.575 bpp	-0.07%	25.3%

Compresión sin pérdidas de video. Formato DIRAC

Formato de video DIRAC

- AVI
- MATROSKA
- •MP4
- •MPEG-2