

FIG. 1a

BIO-B2.6.2

FIG. 1b

FIG. 2

FIG. 3a

FIG. 3b

FIG. 4

FIG. 5

FIG. 6

100 80 60 40 20 0

FIG. 7

FIG. 8

FIG. 9

VEGF ANTIBODY ($\mu\text{g}/\text{ml}$)

Sample Type	Sample #	Assay Date	Syn. Fluid	Syn. Fluid + mAB VEGF	% Suppression
Rheumatoid Syn. Fluid	318	5.7.92	5.2 ± 0.2	2.7 ± 0.3	48
	150	5.7.92	7.0 ± 0.3	2.8 ± 0.4	60
	312	5.7.92	6.7 ± 0.4	3.7 ± 0.3	45
	264	5.7.92	6.2 ± 0.4	3.1 ± 0.3	50
	267	5.7.92	5.7 ± 0.6	4.4 ± 0.3	23
	202	5.22.92	10.0 ± 0.5	3.4 ± 0.6	66
	314	5.22.92	7.5 ± 0.3	3.1 ± 0.6	59
	237	5.22.92	6.1 ± 0.5	2.2 ± 0.3	64
	206	5.22.92	6.7 ± 0.5	2.2 ± 0.3	67
	317	5.22.92	5.2 ± 0.3	2.5 ± 0.6	52
Osteoarthritis Syn. Fluid	165	6.2.92	4.0 ± 0.3	2.8 ± 0.4	30
	211	6.2.92	3.4 ± 0.5	3.0 ± 0.2	11.7
	195	6.2.92	3.5 ± 0.2	3.3 ± 0.3	5.7
	122	6.2.92	3.7 ± 0.3	3.2 ± 0.4	13.5
	16	6.2.92	4.1 ± 0.3	3.8 ± 0.5	7.3

Mean % Suppression for RA Fluids 53.4 4.2
 Mean % Suppression for OA Fluids 13.6 3.9
 Synovial fluids were diluted 1:50.

Controls:

6.2.92 PBS 3.3 0.30
 bFGF 1µg/ml 3.7 0.38

5.22.92 PBS 1.2 0.38
 bFGF 1µg/ml 7.8 0.31

5.2.92 PBS 1.3 0.18
 bFGF 1µg/ml 9.0 0.41

FIG. 10

FIG. 11

Scanning electron micrographs of the surface of a 100 nm thick film of polyisobutylene at 10³ Hz.

A

B

FIG. 12

.....

FIG. 13

█ = differences from F(ab)-12

F(ab)-12 DIQMTQSPSSLSASVGDRVTITCSASQDI₁₀
Y0243-1 DIQ~~MT~~QSPSSLSASVGDRVTITCRA~~NEG~~₂₀ S₃₀ NYLNWYQQ
Y0238-3 DIQ~~MT~~QSPSSLSASVGDRVTITCRA~~NEG~~₂₀ S₃₀ NYLNWYQQ
Y0313-1 DIQ~~MT~~QSPSSLSASVGDRVTITCRA~~NEG~~₂₀ S₃₀ NYLNWYQQ
Y0317 DIQ~~MT~~QSPSSLSASVGDRVTITCSASODI₂₀ S₃₀ NYLNWYQQ

CDR-L1

F(ab)-12 KPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDF₄₀ DFTLTIS
Y0243-1 KPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDF₄₀ DFTLTIS
Y0238-3 KPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDF₄₀ DFTLTIS
Y0313-1 KPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDF₄₀ DFTLTIS
Y0317 KPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDF₄₀ DFTLTIS

FIG. 14A

CDR-L2

F(ab)-12 SLQPEDFATYYCQQYSTVPWTFGQG₈₀ TKVEIKRTV
Y0243-1 SLQPEDFATYYCQQYSTVPWTFGQG₈₀ TKVEIKRTV
Y0238-3 SLQPEDFATYYCQQYSTVPWTFGQG₈₀ TKVEIKRTV
Y0313-1 SLQPEDFATYYCQQYSTVPWTFGQG₈₀ TKVEIKRTV
Y0317 SLQPEDFATYYCQQYSTVPWTFGQG₈₀ TKVEIKRTV

CDR-L3

F(ab)-12 EVQLVESGG₁₀ LVQPGGSLRLSCAASGYTFTNYGMNWVR
Y0243-1 EVQLVESGG₁₀ LVQPGGSLRLSCAASGY~~T~~₂₀ F~~T~~₃₀ HYGMNWVR
Y0238-3 EVQLVESGG₁₀ LVQPGGSLRLSCAASGYTFTNY~~G~~₂₀ HYGMNWVR
Y0313-1 EVQLVESGG₁₀ LVQPGGSLRLSCAASGY~~T~~₂₀ F~~T~~₃₀ HYGMNWVR
Y0317 EVQLVESGG₁₀ LVQPGGSLRLSCAASGY~~T~~₂₀ F~~T~~₃₀ HYGMNWVR

CDR-H1

F(ab)-12 QAPGKGLEWVG₄₀ WINTYTGEPTYAADF₅₀ KRRFTFS₆₀ LDTSKSTA
Y0243-1 QAPGKGLEWVG₄₀ WINTYTGEPTYAADF₅₀ KRRFTFS₆₀ LDTSKSTA
Y0238-3 QAPGKGLEWVG₄₀ WINTYTGEPTYAADF₅₀ KRRFTFS₆₀ LDTSKSTA
Y0313-1 QAPGKGLEWVG₄₀ WINTYTGEPTYAADF₅₀ KRRFTFS₆₀ LDTSKSTA
Y0317 QAPGKGLEWVG₄₀ WINTYTGEPTYAADF₅₀ KRRFTFS₆₀ LDTSKSTA

FIG. 14B

CDR-H2

CDR-7

F(ab)-12 YLQMNSLRAEDTAVYYCAKY₈₀ PHYYGSSH₉₀ HWYFDVWGQGTL
Y0243-1 YLQMNSLRAEDTAVYYCAKY₈₀ PHYYGSSH₉₀ HWYFDVWGQGTL
Y0238-3 YLQMNSLRAEDTAVYYCAKY₈₀ P~~Y~~₉₀ YYG~~T~~₁₀₀ SHWYFDVWGQGTL
Y0313-1 YLQMNSLRAEDTAVYYCAKY₈₀ P~~Y~~₉₀ YYG~~T~~₁₀₀ SHWYFDVWGQGTL
Y0317 YLQMNSLRAEDTAVYYCAKY₈₀ P~~Y~~₉₀ YYG~~T~~₁₀₀ SHWYFDVWGQGTL

CDR-H3

FIG. 15A

█ = differences from F(ab)-12

F (ab) -12 DIQMTQSPSSLSASVGDRV¹⁰TITCSASQDI²⁰SNYLNWYQQ
 Y0192 DIQETQSPSSLSASVGDRV¹⁰TITCRANEQ²⁰ESNYLNWYQQ

Y0238-3 DIQETQSPSSLSASVGDRV¹⁰TITCRANEQ²⁰ESNYLNWYQQ

Y0239-19 DIQETQSPSSLSASVGDRV¹⁰TITCRANEQ²⁰ESNYLNWYQQ

Y0313-2 DIQETQSPSSLSASVGDRV¹⁰TITCRANEQ²⁰ESNYLNWYQQ

CDR-L1

F (ab) -12 KPGKAPKVLIYFTSSLHSGVPSRF⁴⁰SGSGSGTDF⁵⁰TLTIS
 Y0192 KPGKAPKVLIYFTSSLHSGVPSRF⁴⁰SGSGSGTDF⁵⁰TLTIS

Y0238-3 KPGKAPKVLIYFTSSLHSGVPSRF⁴⁰SGSGSGTDF⁵⁰TLTIS

Y0239-19 KPGKAPKVLIYFTSSLHSGVPSRF⁴⁰SGSGSGTDF⁵⁰TLTIS

Y0313-2 KPGKAPKVLIYFTSSLHSGVPSRF⁴⁰SGSGSGTDF⁵⁰TLTIS

CDR-L2

F (ab) -12 SLQPEDFATYYCQQY⁸⁰STVPWTFG⁹⁰QGTKVEIKRTV¹⁰⁰

Y0192 SLQPEDFATYYCQQY⁸⁰STVPWTFG⁹⁰QGTKVEIKRTV

Y0238-3 SLQPEDFATYYCQQY⁸⁰STVPWTFG⁹⁰QGTKVEIKRTV

Y0239-19 SLQPEDFATYYCQQY⁸⁰STVPWTFG⁹⁰QGTKVEIKRTV

Y0313-2 SLQPEDFATYYCQQY⁸⁰STVPWTFG⁹⁰QGTKVEIKRTV

CDR-L3

FIG. 15B

F (ab) -12 EVQLVESGGGLVQPGGSLRLS¹⁰CAASGYTFTNYGMNWVR²⁰

Y0192 EVQLVESGGGLVQPGGSLRLS¹⁰CAASGYTFTNYGMNWVR²⁰

Y0238-3 EVQLVESGGGLVQPGGSLRLS¹⁰CAASGYDEFTHYGMNWVR²⁰

Y0239-19 EVQLVESGGGLVQPGGSLRLS¹⁰CAASGYTFTNYGMNWVR²⁰

Y0313-2 EVQLVESGGGLVQPGGSLRLS¹⁰CAASGYDEFTHYGMNWVR²⁰

CDR-H1

F (ab) -12 QAPGKGLEWVGW⁴⁰I⁵⁰NTYTGEPTYAADFKRRFT⁶⁰SLDTSKSTA⁷⁰

Y0192 QAPGKGLEWVGWINTYTGEPTYAADFKRRFT⁴⁰SLDTSKSTA⁵⁰

Y0238-3 QAPGKGLEWVGWINTYTGEPTYAADFKRRFT⁴⁰SLDTSKSTA⁵⁰

Y0239-19 QAPGKGLEWVGWINTYTGEPTYAADFKRRFT⁴⁰SLDTSKSTA⁵⁰

Y0313-2 QAPGKGLEWVGWINTYTGEPTYAADFKRRFT⁴⁰SLDTSKSTA⁵⁰

CDR-H2

F (ab) -12 YLQMNSLRAEDTAVYYCAKYPHYYG⁸⁰--SSHWF⁹⁰DVWGQGTL¹⁰⁰

Y0192 YLQMNSLRAEDTAVYYCAKYPHYYG⁸⁰--SSHWF⁹⁰DVWGQGTL¹⁰⁰

Y0238-3 YLQMNSLRAEDTAVYYCAKYPHYYG⁸⁰--SSHWF⁹⁰DVWGQGTL¹⁰⁰

Y0239-19 YLQMNSLRAEDTAVYYCAKYPHYYVNERKSHWF⁸⁰DVWGQGTL⁹⁰

Y0313-2 YLQMNSLRAEDTAVYYCAKYPHYYVNERKSHWF⁸⁰DVWGQGTL⁹⁰

CDR-H3