Math 243: Mid-term examination 2009/2010

- This exam is 1.5 hours long.
- To get full points for each question, please show your work as much as possible.

1. Consider a random variable X having a density defined by

$$f_X(x) = \frac{1}{2} e^{-|x|}, \text{ for } x \in (-\infty, \infty),$$

and $f_X(x) = 0$ otherwise.

- (a) (3 marks) Find the moment generating function of X.
- (b) (1 marks) Let $Y = \frac{1}{\sigma}(X \mu)$, where $\mu \in (-\infty, \infty)$ and $\sigma^2 \in (0, \infty)$. Find the moment generating function of Y.
- (c) (2 marks) What are the mean and variance of Y?
- 2. (6 marks) Suppose that $\{X_1, \ldots, X_n\}$ is a random sample of size n from a uniform distribution $U[0, \theta]$ with a density

$$f_X(x|\theta) = \frac{1}{\theta}$$
, if $x \in [0, \theta]$ and $\theta \in (0, \infty)$,

and $f_X(x|\theta) = 0$ otherwise.

Among all order statistics $X_{(1)}, \ldots, X_{(n)}$, find the one with minimum variance.

3. Consider a random sample $\{X_1,\ldots,X_n\}$ from a density

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1,$$

and $f(x|\theta) = 0$ otherwise, where $\theta > 0$. Let $g(\theta) = 1/\theta$.

- (a) (2 marks) Show that the MLE for $g(\theta)$ is $-\frac{1}{n} \sum_{i=1}^{n} \ln X_i$.
- (b) (3 marks) Is it unbiased for $g(\theta)$? If yes, prove it; if not, why? Given that the regularity conditions are satisfied, then
- (c) (3 marks) find the C-R inequality for $g(\theta)$.
- (d) (2 marks) show that the MLE is the UMVUE for $g(\theta)$.
- 4. Let X_1, \ldots, X_n be i.i.d. discrete random variables with $P(X_i = 0) = 1 P(X_i = 1) = \frac{\theta}{2} + \frac{1}{4}$, for $i = 1, \ldots, n$, where $\theta \in [0, 1]$ is an unknown parameter.
 - (a) (5 marks) Find the maximum likelihood estimator $\hat{\theta}$ for θ .
 - (b) (3 marks) For $\bar{X} \in [1/4, 3/4]$, show that

$$\sqrt{n}(\hat{\theta}-\theta) \to N(0,\frac{(3-2\theta)(1+2\theta)}{4}),$$

as $n \to \infty$.

5. Consider a random sample $\{X_1, X_2\}$ from density

$$f_X(x|\theta) = \frac{3x^2}{\theta^3} I_{(0 < x < \theta)},$$

where $\theta > 0$.

- (a) (2 marks) Are $\hat{\theta}_1 = \frac{2}{3}(X_1 + X_2)$ and $\hat{\theta}_2 = \frac{7}{6} \max(X_1, X_2)$ unbiased for θ ?
- (b) (4 marks) Find the mean squared errors (MSEs) of $\hat{\theta}_1$ and $\hat{\theta}_2$, and compare those estimators.
- (c) (4 marks) Prove that in the sense of MSE, $T_{8/7}$ is the best among the estimators in form of $T_c = c \max(X_1, X_2)$.

Please put this paper inside your answer book at the end of the examination.

Solutions to Midnexamination

la: fx(x)===e^{+x1}, Vxe(-os, os) and =0 otherwise Mx(t) = E(etx) = \(\frac{7}{5} \cdot e^{+x} \) dx = 1. [_ ete x dx + [ete-x dx] = 1. [] = (t1)x dx + [e(t1)x dx] = 1 [/ (t+1)x/o + / (t-1)x/o) for t+ -1 and 1 " Ct+1)x | ~ Wists when t+170 and et-1<0 in Mx(t)-2[-1-1-1-1-t] f-1<t<1 b) Let = = (X-M) ie. My(t) = E(ett) = E(e\$(x-p)) = e\$t E(e\$x) $-e^{\frac{-t}{6}t}\frac{1}{1-(\frac{t}{4})^2}, if |t|<1$ c). · Congider Mx(t) 2 - AM(x(t)= -(1-t')^2(2t)=(1-t')^2 and $\frac{d^2 1/4(t)}{dt^2} = 2(1-t^2)^2 - 2(2t)(1-t^2)^3(2t) = \frac{2}{(1+t^2)^2} + \frac{8t^2}{(1+t^2)^3}$:, E(X)= &Mx(t)/t=0 = 0 and Var(X)=E(X2)=dMx(t)/t=0=2 > E(1)= = [E(N-1)= = and Var(1)= = Var(x) = = = #

2) 1/ X= rid Uro, 07 he get of Kair is $f_{X(x)}(x) = \frac{n!}{G_{X}(x)[n-i]} \left[P(X < x) \right]^{i-1} f_{X}(x) \left[P(X > x) \right]^{n-i} f_{X(x)}(x) = \frac{n!}{G_{X}(x)} \left[P(X > x) \right]^{n-i} f_{X(x)}(x) = \frac{n!}{$ $=\frac{N!}{(i-1)!(n-i)!}\left(\frac{\pi}{A}\right)^{i-1}\frac{1}{A}\left(1-\frac{\pi}{A}\right)^{n-i}$ Note that 1= (- (i-1)! (Ai)! O (0) (1-2) ds => (x)i/2 x ni = (i-1)!(n-i)! g (x) Thus, (x) = x fx (x) dx $=\frac{N!}{(J+1)!(n-j)!}\begin{pmatrix} 0 & (\chi)(j+1)-1 & \chi(\chi+1)-(j+1) \\ \chi(\chi+1)-1 & \chi(\chi+1)-(j+1) \end{pmatrix}$ -1! (i+1-1)! (n-i)! 0 by (x)
-(i-1)!(n-i)! (n+1)! Similarly, $\frac{|anly,}{E(\chi_{(\tau)})} = \int_{0}^{0} \frac{\chi^{2} f_{\chi_{(\tau)}}(x) dx}{f_{\chi_{(\tau)}}(x) dx} = \frac{N! 0}{(\tau - 1)! (n-1)! (n-1)!$ $=\frac{n!\theta}{(i-1)!(n-i)!}\frac{(i+2-1)!(n-i)!}{(n+2)!}\theta dn dy$

T	γ = $\overline{z(\overline{c}+1)}$ ρ^2 $(\overline{z}$ ρ^2 = $\overline{z(\overline{c}+1)(n+1)}$ = $\overline{z(n+2)}$ ρ^2
Yacl	$X_{(2)} = \frac{\bar{z}(\bar{c}+1)}{(n+2)(n+1)} \theta^2 - \left(\frac{\bar{z}}{n+1}\theta\right)^2 = \frac{\bar{c}(\bar{c}+1)(n+1) - \bar{c}(n+2)}{(n+2)(n+1)^2} \theta^2$
	$= \frac{(N+1)\bar{i} - \bar{i}^2}{(N+1)^2} g^2, \text{ for } \bar{i} = 1, 2,, N$
) oter	
Let	ali) = (n+1) \(\bar{\circ} - \bar{\circ}^2\), for \(\bar{\circ} = 1\), \(\delta\), \(\delta\),
7	$a(i) < a(i+1) \Leftrightarrow (n+1)(i-i^2 < (n+1)(i+1)-(i+1)^2$
	$\Theta (n+1)\bar{c} - \bar{c}^2 < (n+1)\bar{c} + (n+1) - \bar{c}^2 - 2\bar{c} - 1$
	€ 2ī <n< td=""></n<>
ani	
A Locality for	$a(i) > a(i+1) \Leftrightarrow 2i > n$
	Var (XII) increases when i is from 1 to 2 (if n is even)
	r 1-1 (if n is odd) and decreases when is
	om of lifnis even) or of lifnis odd)
/)	\((X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-H150	$\sqrt{\alpha_r(\chi_{(1)})} = \frac{n}{(n+2)(n+1)^2} \theta^2 = Var(\chi_{(n)})$
M [e, K(1) and K(n) have minimum vacionices
ę	
annor	ng norder elathetise x
Porno	$k = \alpha(n-\overline{t}+1) = (n+1)(n-\overline{t}+1) - (n-\overline{t}+1)^{2}$
10/11/19-4	= (n-it)(n+l-n+i-1)
	$= (n+1)\overline{c} - \overline{c}^2 = a(\overline{c})$
	S., a(1) is symmetric

ę;

 $\frac{30}{2}$ $f(x|0) = \begin{cases} g(0)^{-1}, & \text{if } 0 < x < 1 \end{cases}$ 1 L(0) = //f(x:10) for a r.s. {X1,..., Xn} = 0 /1/Xi) 0-1 => l(0)=ln2(0)= nln0+(0-1) = ln X; $\Rightarrow 0 = \frac{d}{d\theta} l(\theta) |_{\theta=0} = \frac{d}{d\theta} + \frac{1}{2} ln \mathcal{X}_i \Rightarrow \hat{\theta} = \frac{1}{2} ln \mathcal{X}_i$, where we have one critical point i, -ln/1 70 for all i=1, ..., n Ø=1/20 rie. Ø∈ Ø $\frac{\partial^2 d^2 l(0)}{\partial A^2 l(0)} \Big|_{A=\hat{A}} = \frac{-n}{A^2} < 0$ By the mariance property of MLE, we have a went that the MLE for glo)= of is g(0)= of = -h shit # b). Consider Y = -ln X For y > 0, P(Y≤y)=P(-ln X≤y)=P(X≥e-y)= Je-y Ox dx = 1-e-0y is fig) = De-oy if yoo, which is the density of Exp(0) = - ln K: ~ Exp(0) for [-1,2,..., n

Note that E(YE) = for E>1, 2,..., n i, $E(g(\hat{\theta})) = E[f(\hat{\xi}(-f(\hat{x})))] = E(f(\hat{x})) = f(g(\hat{\theta}))$ => 9(0) is unbiased # Given that the regularity conditions are satisfied I he CR lover bound for q(0) is $\frac{(g(0))^2}{I_{X_1,\dots,X_n}(0)} = \frac{(g(0))^2}{E[g(0)]^2} = \frac{(g(0))^2}{-E[g(0)]^2} = \frac{g(0)}{g(0)} = \frac{g(0)}{g(0)}$ 3 for any unbiased estimator T=T(kn, Xn) of 9(0)=0, Var(T) > 1 d) from (a), we have that lnd(0) = ln fx x(0) = 1 ln 0 + (0+1) = ln/1. in Lohntx (0) = + 2 lnx = -n[15 lnx - +] i.e. $\hat{\theta} = \frac{1}{4} \hat{\Sigma} h \hat{\chi}_i$, the MIE for $g(\theta)$, is the UMVUE of $g(\theta) = \hat{\phi}_{\#}$

2.

46). For $\overline{X} \in [4, \frac{2}{3}]$, i.e. $\hat{\theta} = \hat{\theta} = \frac{2}{3} - 2\overline{X}$
$\frac{1}{2} X_{i} \stackrel{\text{id}}{=} Bin(1, p) \text{ with } E(X_{i}) = p = \frac{2}{4} - \frac{1}{2} < \infty \text{ and } $ $Va_{i}(X_{i}) = p(1-p) = (\frac{2}{4} - \frac{1}{2})(\frac{2}{2} + \frac{1}{4}) < \infty$
$V_{a_{\ell}}(K_{\ell}) = p(1-p) = (\frac{2}{4} - \frac{1}{2})(\frac{2}{2} + \frac{1}{4}) < \infty$
· P cit
$-\frac{1}{2}$ by $(L_1, \frac{1}{2})$
$\frac{-1}{\sqrt{h}} \frac{h}{\sqrt{h}(X-P)} = \sqrt{h(0)}, \text{ as } n \to \infty$ $\sqrt{h}(X-P) = \sqrt{h(0)}, \text{ as } n \to \infty$ $\sqrt{h}(X-P) = \sqrt{h(0)}$ $\sqrt{h}(X-P) = \sqrt{h(0)}$ $\sqrt{h}(X-P) = \sqrt{h(0)}$ $\sqrt{h}(X-P) = \sqrt{h(0)}$
(Method 1)
Since $E(\hat{\theta}) = \frac{3}{2} - 2E(\bar{x}) = \frac{3}{2} - 2p = 0$ and $V_{av}(\hat{\theta}) = 4V_{av}(\bar{x}) = \frac{4}{\pi}(\frac{3}{2} - \frac{9}{2})(\frac{9}{2} + \frac{4}{\pi}) = \frac{7}{4\pi}(3 - 20)(20 + 1),$
$V_{\alpha_{1}}(\hat{\theta}) = 4V_{\alpha_{1}}(\bar{\chi}) = \frac{1}{2}(\frac{2}{4}-\frac{2}{5})(\frac{2}{5}+\frac{1}{4}) = \frac{1}{4\pi}(3-2\theta)(2\theta+1),$
by the property of normal distribution, we have
$\hat{O} = \frac{3}{2} - 2\hat{X} \rightarrow N(E(\hat{\theta}), Var(\hat{\theta}))$ as $n \rightarrow \infty$
i.e. $\theta \rightarrow N(\theta, \frac{1}{4n}(3-2\theta)(2\theta+1))$ $\sim \sqrt{n}(\hat{\theta}-\theta) \rightarrow N(\theta, \frac{1}{4}(3-2\theta)(2\theta+1)) \frac{1}{4}$
$ \sqrt{n(\delta-\theta)} \rightarrow N(0, \frac{1}{2}(3-20)(2\theta+1)) \frac{1}{4} $
(Method 2)
Let $q(t) = \frac{2}{5} - 2t$, $q(t) = -2$, by Delta method, we have
$Vn(g(\bar{x})-g(p)) \rightarrow N(0,(g'(p)\sqrt{p(p)})^2)$
$\sqrt{n}(\hat{\theta}-\theta) \rightarrow N(0, 4(\frac{2}{4}-\frac{\theta}{2})(\frac{\theta}{2}+4)=\pm(3-20)(20+1))$, as $n \rightarrow \infty$
(Method 3)
$\frac{(\text{Method 3})}{(\text{C}) \int_{X_{\text{max}}} \chi_{n}(\theta) = -E\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathcal{L}(\theta)\right) = -E\left(\frac{1}{4} \ln \frac{1}{2} + \frac{1}{4} \ln \frac{1}{2}\right)}{\left(\frac{1}{4} + \frac{1}{2}\right)^{2} - \left(\frac{1}{4} + \frac{1}{4}\right)^{2}}$
$= \frac{4^{E(x)}}{(4^{2}-9)^{2}} \cdot \frac{4(1-E(x))}{(2^{2}+4)^{2}} \cdot \frac{4}{(2^{2}-9)^{2}} \cdot \frac{(2^{2}+4)}{(2^{2}+4)}$
(学-5)* (学+4) (学+4)

b) for i=1,2,
$E(X_1^2) = \sqrt{\frac{3}{6}} \chi^4 d\chi = \frac{3}{5} \partial^2, \omega_0$
Var(X=)====02-(30)==002
Thus, $MSE(\theta_i) = Var(\theta_i) (! \theta_i)$ is unbiased for θ)
MSE(O1) = Var(O1) (" O1 IS unbiased for O)
= Var (\$\frac{4}{3}\times), where \times = \frac{1}{2}(X_1 + X_2)
$=\frac{16}{9}\frac{\text{Var}(\mathcal{K}_{I})}{2}$
$= \frac{8}{9} \times \frac{3}{80} \theta^{2} = \frac{1}{30} \theta^{2}$
9 70 -30
$\mathcal{F}_{or} \theta_{2}^{2} = \frac{1}{2} \max(X_{1}, X_{2}),$
$\frac{1}{2}E(Y^{2}) = \frac{6}{06} \left(\frac{y^{2}}{y^{2}} dy = \frac{3}{4} O^{2} \right)$
3 Var(Y)= 202- (=0)====002
- 7 Var(1)=40-170
=> MSE(P2) = Var(D2) (" D2 is unbiased for O)
= Var(27)
= 49 Vary
= 36 Vail)
$\frac{49}{36} \cdot \frac{3}{196} \cdot \frac{0^{2}}{12(4)} = \frac{0^{2}}{48}$
· SO 176 /2(4) 48
Thue, & has a smaller MSE than Oi H

c). 7 76 = c7 2, Var(Te)= c2/a,(4)= c2(==02) and E(Tc) = cE(4) = c(50) a. MSE(Te) = Va(Te) + /E(Te)-OT = c2/6-(Y)+[CEY)-0]2 = 02 /a, (Y)+[c2(E(Y))2-200E(Y)+02] = C2 [Var(Y)+(E(Y))2]-2c0E(Y)+02 0= druse(Te) = 200 hair + (24) - 2004) $\Rightarrow C' = \frac{OE(1)}{Val(Y) + (E(Y))^2} = \frac{5}{5}\frac{6}{10} + \frac{3}{45}\frac{6}{10} = \frac{3}{1}$ and d' MSE([) = 2[Var() + E()) > 0 in form of Te = c marx (X1.X2), ie, it is the best of