Chapitre 5-2) (Dis)similarités, distances et inerties

Maxime El Masri

3 MIC / INSA Toulouse

2023-2024

Objectif

Données : On observe n individus décrits par p variables

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \text{ avec } x_i = (x_{i1}, \dots, x_{ip}) \in \mathcal{X}$$

• Objectif de la classification non supervisée :

trouver une organisation en classes homogènes de n individus telle que

- 2 individus d'une même classe se ressemblent plus que deux individus de classes différentes
- les classes soient bien séparées

⇒ besoin d'une notion de **(dis)similarité** entre individus et d'une mesure de séparabilité des classes.

- 1 (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

2 Inerties

- 1 (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

(Dis)similarité entre individus

Dissimilarité

Une **dissimilarité** est une fonction $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$ telle que

- $\forall (x_i, x_\ell) \in \mathcal{X} \times \mathcal{X}, \ d(x_i, x_\ell) = d(x_\ell, x_i)$ (symétrie)
- $d(x_i, x_\ell) = 0 \Leftrightarrow x_i = x_\ell$

Similarité

Une **similarité** (normée) est une fonction $s: \mathcal{X} \times \mathcal{X} \rightarrow [0,1]$ telle que

- $\forall (x_i, x_\ell) \in \mathcal{X} \times \mathcal{X}, \ s(x_i, x_\ell) = s(x_\ell, x_i)$ (symétrie)
- $s(x_i, x_\ell) = 1 \Leftrightarrow x_i = x_\ell$

Distances entre individus

Distance

Une **distance** est une dissimilarité d satisfaisant en plus l'inégalité triangulaire

$$\forall (x_i, x_\ell, x_m) \in \mathcal{X}^3, \ d(x_i, x_m) \leq d(x_i, x_\ell) + d(x_\ell, x_m)$$

La distance est dite euclidienne s'il existe une norme $\|.\|$ sur l'espace des variables telle que $d(x_i, x_\ell) = \|x_i - x_\ell\|$

- 1 (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

Distances issues de normes

- $x_i \in \mathcal{X} = \mathbb{R}^p$ pour tout $i = 1, \dots, n$
- Distance de Minkowski (norme L_q)

$$d(x_i, x_\ell) = \left(\sum_{j=1}^p |x_{ij} - x_{\ell j}|^q\right)^{\frac{1}{q}}$$

- Cas particuliers :
 - Distance euclidienne usuelle (q=2): $d(x_i,x_\ell) = \|x_i x_\ell\|_2 = \sqrt{\sum_{j=1}^p (x_{ij} x_{\ell j})^2}$
 - lacksquare Distance de Manhattan $(q=1): d(x_i,x_\ell) = \|x_i-x_\ell\|_1 = \sum\limits_{j=1}^p |x_{ij}-x_{\ell j}|$
- ullet Norme infinie $(q o +\infty)$: $d(x_i,x_\ell) = \max_{j=1,...,p} |x_{ij}-x_{\ell j}|$

8 / 24

Norme L_1 , L_2 et norme infinie

Boules unités

→ invariantes par translation mais sensibles à l'échelle des variables.

Définitions

• Moyennes de la variable $j \in \{1, ..., p\}$:

$$m_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

Déviation absolue moyenne :

$$s_j = \frac{1}{n} \sum_{i=1}^n |x_{ij} - m_j|$$

• (Variances -)Covariances entre deux variables j et k :

$$\Sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - m_j)(x_{ik} - m_k)$$

10 / 24

Distances issues de formes quadratiques

Distances définies comme des formes quadratiques

$$\forall (x_i, x_l) \in \mathcal{X}, \ d^2(x_i, x_\ell) = (x_i - x_\ell)' M(x_i - x_\ell)$$

- Norme euclidienne usuelle : $M = I_p$
- $M = \operatorname{diag}\left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_p^2}\right)$ où $\sigma_j^2 = \Sigma_{jj}$
- $M = \operatorname{diag}\left(\frac{1}{s_1^2}, \dots, \frac{1}{s_p^2}\right)$
- Distance de Mahalanobis : $M = \Sigma^{-1}$, (Σ , matrice de variance-covariance) \longrightarrow permet de réduire l'influence des données aberrantes

Exemples

Distance euclidienne ||.||2

X 0.00 8.74 11.31 Y 8.74 0.00 7.91 Z 11.31 7.91 0.00

■ Distance de Manhattan ||.||₁

X Y Z X 0.00 8.80 15.99 Y 8.80 0.00 8.46 Z 15.99 8.46 0.00

• Distance de Mahalanobis $\|.\|_{2,\Sigma}-1$

$$\Sigma = \left(\begin{array}{cc} 16.71 & -0.53 \\ -0.53 & 4.6 \end{array} \right)$$

X Y Z X 0.00 2.14 4.28 Y 2.14 0.00 3.68 Z 4.28 3.68 0.00

Dissimilarités basées sur le coefficient de corrélation

- Coefficient de corrélation $\rho(x_i, x_\ell) \in [-1, 1]$
- Exemples de dissimilarités basées sur la corrélation

$$d(x_i, x_\ell) = 1 - \rho(x_i, x_\ell)$$

$$d(x_i, x_\ell) = 1 - |\rho(x_i, x_\ell)|$$

$$d(x_i, x_\ell) = 1 - \rho(x_i, x_\ell)^2$$

	X_2	X_3	X_4
$1 - \rho(X_1, .)$	0	2	0.02
$1 - \rho(X_1, .) $	0	0	0.02
$1 - \rho(X_1, .)^2$	0	0	0.04
$ X_1 _2$	33.9	37.41	3.74

- 1 (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

Pour des variables binaires

• Table de contingence entre 2 individus x_i et $x_\ell \in \{0,1\}^p$:

$$\begin{array}{c|cccc} & 1 & 0 \\ \hline 1 & m_{11} & m_{10} \\ 0 & m_{01} & m_{00} \end{array}$$

- Variable binaire symétrique
 - = pas d'influence sur le choix du codage 0-1

Similarités :

Appariement simple
$$s(x_i, x_\ell) = \frac{m_{11} + m_{00}}{m_{11} + m_{00} + m_{10} + m_{01}}$$

Rogers et Tanimoto $s(x_i, x_\ell) = \frac{m_{11} + m_{00}}{m_{11} + m_{00} + 2(m_{10} + m_{01})}$
Sokal et Sneath $s(x_i, x_\ell) = \frac{2(m_{11} + m_{00})}{2(m_{11} + m_{00}) + m_{10} + m_{01}}$

- Variable binaire asymétrique
 - = les valeurs 0-1 n'ont pas la même importance

Jaccard
$$s(x_i, x_\ell) = \frac{m_{11}}{m_{11} + m_{10} + m_{01}}$$

Dice $s(x_i, x_\ell) = \frac{2m_{11}}{2m_{11} + m_{10} + m_{01}}$

Exemple

Nom	Sexe	Fièvre	Toux	Test1	Test2	Test3	Test4
Jules	М	Р	N	Р	N	N	N
Marie	F	Р	N	Р	N	Р	N
Pierre	M	Р	Р	N	N	N	N
Anna	F	N	Р	N	Р	N	N

Tableaux des similarités :

• Jaccard :

• Appariement simple :

	Jules	Marie	Pierre	Anna		Jules	Marie	Pierre	Anna
Jules	1.0	0.5	0.50	0.00	Jules	1.00	0.71	0.71	0.29
Marie	0.5	1.0	0.20	0.00	Marie	0.71	1.00	0.43	0.29
Pierre	0.5	0.2	1.00	0.25	Pierre	0.71	0.43	1.00	0.57
Anna	0.0	0.0	0.25	1.00	Anna	0.29	0.29	0.57	1.00

Pour des variables nominales

- Variables ayant plus de 2 modalités
 - ► Ex1 : couleur des yeux {bleu, marron, vert}
 - ► Ex2 : statut marital : {marié, célibataire, pacsé,divorcé, veuf}
- Coefficient d'appariement simple :

$$s(x_i,x_\ell)=\frac{u}{p}$$

où $u = \text{nombre de variables où } x_i \text{ et } x_\ell \text{ ont la même modalité}$

Pour des variables nominales

 Transformer la variable nominale en variables binaires (une par modalité)

Le tableau disjoint complet Z associé à $\underline{\mathbf{x}}$ de taille $n \times \tilde{p}$:

+ utiliser une distance/dissimilarité pour variables binaires

• Distance du χ^2 entre individus :

$$d^2(x_i,x_\ell) = \frac{n}{\rho} \sum_{j=1}^{\tilde{p}} \frac{(Z_{ij} - Z_{\ell j})^2}{Z_{\cdot j}} \text{ avec } Z_{\cdot j} = \frac{1}{n} \sum_{j=1}^n Z_{ij}$$

• (Distance pour données quantitatives sur les coordonnées de l'ACM (\simeq ACP pour variables quali/mixtes))

- 1 (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

Cas des variables mixtes

- 1ère stratégie : tout transformer en variables de même nature
- 2ème stratégie : métrique de Gower

$$d(x_i, x_{\ell}) = \sum_{j=1}^{p} \delta_{i\ell}^{(j)} d_{i\ell}^{(j)} / \sum_{j=1}^{p} \delta_{i\ell}^{(j)}$$

avec

$$\delta_{i\ell}^{(j)} = \left\{ \begin{array}{l} 0 \quad \text{si } \left\{ \begin{array}{l} x_{ij} \text{ ou } x_{\ell j} \text{ est manquante} \\ x_{ij} = x_{\ell j} = 0 \text{ et } j \text{ variable binaire asymétrique} \\ 1 \quad \text{sinon.} \end{array} \right.$$

et

$$d_{i\ell}^{(j)} = \left\{ \begin{array}{ll} \mathbbm{1}_{x_{ij} \neq x_{\ell j}} & \text{si } j \text{ variable binaire ou nominale} \\ \frac{|x_{ij} - x_{\ell j}|}{\max x_{hj} - \min x_{hj}} & \text{si } j \text{ est quantitative} \\ \frac{1 \leq h \leq n}{1 \leq h \leq n} & 1 \leq h \leq n \end{array} \right.$$

Conclusion

- Bien adapter le choix de la distance (dissimilarité) à
 - la nature des données étudiées
 - ▶ la définition de ressemblance entre individus dans le contexte
 - la méthode de clustering choisie
- Attention au comportement de la distance en grande dimension (beaucoup de variables)

- (Dis)similarités et distances
 - Définitions
 - Pour des variables quantitatives
 - Pour des variables qualitatives
 - Pour des variables mixtes

2 Inerties

Inerties intra- / inter- classes

Définitions

Soit d une distance euclidienne entre individus. Soit $\mathcal{P} = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ une partition des individus en K classes.

- Inertie totale : $I_T = \sum_{i=1}^n d(x_i, c)^2$ où $c = \frac{1}{n} \sum_{i=1}^n x_i$ est le centre de gravité du nuage de points
- Inertie interclasse : $I_{inter} = \sum_{k=1}^{K} |\mathcal{C}_k| \times d(m_k, c)^2$ où $m_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i$ est le centre de gravité de la classe \mathcal{C}_k \Rightarrow variance des centres des classes
- Inertie intra-classe : $I_{intra} = \sum_{k=1}^{K} \sum_{i \in C_k} d(x_i, m_k)^2$ \Rightarrow variance des points d'une même classe

Propriété de Huygens

Propriété de Huygens

Bisson (2001)

Objectif: minimiser l'inertie intra-classe (⇔ maximiser l'inertie inter-classe)

Maxime El Masri Distances/inerties 2023-2024 24 / 24