Úlohy k procvičování textu o univerzální algebře

Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později.

Kontrolní otázky - zadání

Odpovězte, zda uvedené tvrzení je pravdivé.

- [K1-1] ano ne Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je každá Ω -algebra neprázdná.
- [K2-1] ano ne Obsahuje-li typ Ω alespoň jeden unární operační symbol, pak je každá Ω -algebra neprázdná.
- [K3-2] ano ne Množina všech podalgeber dané univerzální algebry A typu Ω uspořádaná inkluzí tvoří úplný svaz.
- [K4-2] ano ne Složením homomorfismů $\Omega\text{-algeber}$ je opět homomorfismus $\Omega\text{-algeber}.$
- [K5-3] ano ne Projekce ze součinu Ω-algeber je surjektivní homomorfismus Ω -algeber.
- $[{\bf K6\text{--}3}]$ ano ne Součin Ω-algeber přes prázdnou množinu indexů je prázdná $\Omega\text{--algebra}.$
- [K7-4] ano ne Jádro homomorfismu Ω-algeber $A \to B$ je podalgebra Ω-algebry A.
- [K8-4] ano ne Projekce z Ω -algebry na faktorovou algebru je surjektivní homomorfismus Ω -algeber.
- [K9-4] ano ne Každá kongruence na Ω -algebře A je jádrem vhodného homomorfismu Ω -algeber vycházejícího z Ω -algebry A.
- [K10-5] ano ne Jestliže typ Ω nebsahuje žádný nulární operační symbol, pak neexistuje žádný nulární term typu Ω .
- [K11-5] ano ne Jestliže typ Ω nebsahuje žádný unární operační symbol, pak neexistuje žádný unární term typu Ω .
- [K12-6] ano ne Každá varieta Ω -algeber je neprázdná. [Do každé variety Ω -algeber patří všechny jednoprvkové Ω -algebry.]
- [K13-6] ano ne Pro libovolný typ Ω tvoří třída všech Ω -algeber varietu Ω -algeber.
- [K14-6] ano ne Pro libovolný typ Ω tvoří třída všech jednoprvkových Ω -algeber varietu Ω -algeber.
- [K15-7] ano ne Pro každý typ Ω je volná Ω -algebra generovaná prázdnou množinou konečná Ω -algebra.

- ${\bf [K16\text{-}7]}$ ano ne Pro každý typ Ω je volná $\Omega\text{-algebra}$ generovaná prázdnou množinou nekonečná $\Omega\text{-algebra}.$
- [K17-8] ano ne Pro každou varietu V typu Ω platí: libovolná rovnost typu Ω platí ve volné algebře F(V) variety V právě tehdy, když tato rovnost platí v každé Ω -algebře variety V.

Úlohy - zadání

[Ú1-2] Je dán typ $\Omega = \{^*\}$, kde * je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace definována takto: pro libovolné $a \in \mathbb Z$ klademe

$$a^* = \begin{cases} a - 1 & \text{pro } a > 0, \\ 0 & \text{pro } a = 0, \\ a + 1 & \text{pro } a < 0. \end{cases}$$

- (a) Popište všechny podalgebry Ω -algebry \mathbb{Z} .
- (b) Rozhodněte, zda zobrazení $\varphi: \mathbb{Z} \to \mathbb{Z}$ určené předpisem $\varphi(a) = 1 a$ pro libovolné $a \in \mathbb{Z}$ je homomorfismus Ω -algeber.

Svá tvrzení zdůvodněte.

- [Ú2-3] Je dán typ $\Omega = \{ \bullet, \ ' \}$, kde \bullet je nulární a ' unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $\bullet_{\mathbb Z} = 0$ a pro libovolné $x \in \mathbb Z$ klademe x' = x + 1.
 - (a) Určete všechny podalgebry této Ω -algebry.
 - (b) Popište součin dvou kopií této Ω -algebry, tj. Ω -algebru $\mathbb{Z} \times \mathbb{Z}$.
 - (c) Popište všechny homomorfismy Ω -algeber $\mathbb{Z} \to \mathbb{Z}$.

Svá tvrzení zdůvodněte.

- [Ú3-4] Je dán typ $\Omega = \{f\}$, kde f je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace $f_{\mathbb Z}$ definována takto: pro libovolné $a \in \mathbb Z$ klademe $f_{\mathbb Z}(a) = |a| 10$, kde |a| značí obvyklou absolutní hodnotu celého čísla a.
 - (a) Popište podalgebru $\langle \{-53\} \rangle$ generovanou jednoprvkovou podmnožinou $\{-53\}$ v Ω -algebře $\mathbb Z$.
 - (b) Rozhodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x)=x+1$, kde + značí obvyklé sčítání celých čísel, je homomorfismem Ω -algeber.
 - (c) Definujme relaci \sim na $\mathbb Z$ takto: pro libovolné $a,b\in\mathbb Z$ klademe $a\sim b$, právě když rozdíl a-b je dělitelný deseti. Rozhodněte, zda \sim je kongruence na Ω -algebře $\mathbb Z$.

Svá tvrzení zdůvodněte.

- [Ú4-7] Je dán typ $\Omega=\{ullet,\ '\}$, kde ullet je nulární a 'unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $ullet_{\mathbb Z}=0$ a pro libovolné liché $x\in\mathbb Z$ klademe x'=1 a pro libovolné sudé $x\in\mathbb Z$ klademe x'=0.
 - (a) Rozhodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x)=x^2$ je homomorfismem Ω -algeber.
 - (b) Určete, pro které $M\subseteq\mathbb{Z}$ tvoří M podalgebru Ω -algebry \mathbb{Z} .
 - (c) Popište volnou Ω -algebru generovanou prázdnou množinou.

 $[\mathbf{\acute{U}5\text{-}7}]$ Je dán typ $\Omega=\{\text{*, '}\},$ kde * i ' jsou unární operační symboly. Uvažme $\Omega\text{-}algebru \ \mathbb{Z}$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: pro libovolné $a\in\mathbb{Z}$ klademe

$$a' = -a,$$
 $a^* = \begin{cases} a+1 & \text{pro } a > 0, \\ 0 & \text{pro } a = 0, \\ a-1 & \text{pro } a < 0. \end{cases}$

- (a) Popište všechny podalgebry Ω -algebry \mathbb{Z} .
- (b) Rozhodněte, zda zobrazení $\varphi: \mathbb{Z} \to \mathbb{Z}$ určené předpisem

$$\varphi(a) = \begin{cases} a-1 & \text{pro } a \in \mathbb{Z}, \ a > 0, \\ 0 & \text{pro } a = 0, \\ a+1 & \text{pro } a \in \mathbb{Z}, \ a < 0. \end{cases}$$

je homomorfismus Ω -algeber.

(c) Popište volnou Ω -algebru generovanou prázdnou množinou.

Svá tvrzení zdůvodněte.

[Ú6-7] Je dán typ $\Omega = \{^*\}$, kde * je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace definována takto: pro libovolné $a \in \mathbb Z$ klademe

$$a^* = a + (-1)^a$$
.

- (a) Rozhodněte, zda zobrazení $\varphi: \mathbb{Z} \to \mathbb{Z}$ určené předpisem $\varphi(a) = 1 a$ pro libovolné $a \in \mathbb{Z}$ je homomorfismus Ω -algeber.
- (b) Rozhodněte, zda Ω -algebra $\mathbb Z$ patří do variety V určené teorií $\{x_1^{\star\star}=x_1\}$.
- (c) Popište volnou Ω -algebru $F_3(V)$ variety V generovanou množinou $\{x_1,x_2,x_3\}.$

Svá tvrzení zdůvodněte.

[Ú7-7] Je dán typ $\Omega = \{ ullet, \ ' \}$, kde ullet je nulární a ' unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $ullet_{\mathbb Z} = 0$ a pro libovolné liché $x \in \mathbb Z$ klademe x' = 1 a pro libovolné sudé $x \in \mathbb Z$ klademe x' = 0.

- (a) Rozhodněte, zda $\Omega\text{-algebra}~\mathbb{Z}$ patří do variety Vtypu Ω určené teorií $\{x_1''=\bullet\}.$
- (b) Popište volnou algebru typu Ω generovanou množinou $\{x_1, x_2, x_3, x_4\}$.
- (c) Popište volnou algebru variety V generovanou množinou $\{x_1,\,x_2,\,x_3,\,x_4\}.$

[Ú8-7] Je dán typ $\Omega = \{*, '\}$, kde * i ' jsou unární operační symboly. Uvažme Ω -algebru \mathbb{Z} (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: pro libovolné $a \in \mathbb{Z}$ klademe

$$a' = |a|, \qquad a^* = (-1)^a \cdot a.$$

(a) Rozhodněte, zda zobrazení $\varphi:\,\mathbb{Z}\to\mathbb{Z}$ určené předpisem

$$\varphi(a) = -a$$

je homomorfismus Ω -algeber.

- (b) Rozhodněte, zda Ω -algebra \mathbb{Z} patří do variety V určené teorií $\{x_1^{\star\star} = x_1, x_1'' = x_1', x_1^{\star\prime} = x_1'\}$.
- (c) Určete počet prvků volné Ω -algebry $F_1(V)$ variety V generované množinou $\{x_1\}$.

Svá tvrzení zdůvodněte.

[Ú9-7] Je dán typ $\Omega = \{n, g\}$, kde n je nulární a g unární operační symbol. Označme množiny $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8\}$. Položme

$$n_A = g_A(1) = g_A(2) = 3, \ g_A(3) = g_A(4) = 5, \ g_A(5) = 4,$$

a

$$n_B = g_B(6) = 7, \ g_B(7) = g_B(8) = 8.$$

Tím jsme vytvořili Ω -algebry A, B. Uvažme teorii

$$T = \{g(g(g(x_1))) = g(n)\}\$$

a varietu V typu Ω určenou teorií T.

- (a) Rozhodněte, zda Ω -algebra A patří do V.
- (b) Rozhodněte, zda $\Omega\text{-algebra }B$ patří do V.
- (c) Popište volnou algebru $F_0(V)$ variety V generovanou prázdnou množinou.
- (d) Popište volnou algebru $F_1(V)$ variety V generovanou množinou $\{x_1\}$.

Svá tvrzení zdůvodněte.

[Ú10-7] Je dán typ $\Omega = \{n\}$, kde n je unární operační symbol. Je dána Ω -algebra \mathbb{Z} (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb{Z}}$ definována předpisem: $n_{\mathbb{Z}}(a) = a + 1$ pro libovolné $a \in \mathbb{Z}$ (kde + značí obvyklé sčítání). Dále je dána Ω -algebra $A = \{\Delta, \bigcirc\}$ s unární operací n_A definovanou takto: $n_A(\bigcirc) = \Delta$, $n_A(\Delta) = \bigcirc$. Uvažme teorii $T = \{n(n(n(n(x_1)))) = x_1\}$ a varietu V typu Ω určenou teorií T.

- (a) Rozhodněte, zda existuje homomorfismus $\Omega\text{-algebry }\mathbb Z$ do $\Omega\text{-algebry }A$
- (b) U obou Ω -algeber A a \mathbb{Z} rozhodněte, zda patří do V.
- (c) Popište volnou algebru $F_0(\Omega)$ typu Ω generovanou prázdnou množinou.
- (d) Popište volnou algebru $F_1(V)$ variety V generovanou množinou $\{x_1\}$. Svá tvrzení zdůvodněte.
- [Ú11-7] Je dán typ $\Omega = \{n\}$, kde n je unární operační symbol. Je dána Ω -algebra \mathbb{Z} (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb{Z}}$ definována předpisem: $n_{\mathbb{Z}}(a) = a 1$ pro libovolné $a \in \mathbb{Z}$ (kde značí obvyklé odčítání). Dále je dána Ω -algebra $A = \{\Delta, \bigcirc\}$ s unární operací n_A definovanou takto: $n_A(\bigcirc) = \Delta$, $n_A(\triangle) = \bigcirc$. Uvažme teorii $T = \{n(n(n(x_1))) = n(x_1)\}$ a varietu V typu Ω určenou teorií T.
 - (a) Rozhodněte, zda existuje homomorfismus $\Omega\text{-algebry }A$ do $\Omega\text{-algebry }\mathbb{Z}.$
 - (b) U obou Ω -algeber A a $\mathbb Z$ rozhodněte, zda patří do V.
 - (c) Popište volnou algebru $F_1(\Omega)$ typu Ω generovanou množinou $\{x_1\}$.
 - (d) Popište volnou algebru $F_2(V)$ variety V generovanou množinou $\{x_1, x_2\}$.

[Ú12-7] Je dán typ $\Omega=\{n\}$, kde n je unární operační symbol. Je dána Ω -algebra $\mathbb Z$ (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb Z}$ definována předpisem: pro libovolné $a\in\mathbb Z$ klademe

$$n_{\mathbb{Z}}(a) = \begin{cases} 1 & \text{pro } a > 1, \\ 0 & \text{pro } -1 \le a \le 1, \\ -1 & \text{pro } a < -1. \end{cases}$$

Dále jsou dána zobrazení $f: \mathbb{Z} \to \mathbb{Z}$ a $g: \mathbb{Z} \to \mathbb{Z}$ předpisy f(a) = 3a, $g(a) = a^2$ (kde užité operace ve výrazech značí obvyklé operace s celými čísly). Nechť varieta V_1 typu Ω je určená teorií $T_1 = \{n(n(n(x_1))) = n(n(x_1))\}$ a varieta V_2 typu Ω je určená teorií $T_2 = \{n(n(x_1))) = n(n(x_2))\}$ typu Ω .

- (a) Rozhodněte, zda zobrazení f je homomorfismem Ω -algeber.
- (b) Rozhodněte, zda zobrazení g je homomorfismem Ω -algeber.
- (c) Rozhodněte, zda Ω -algebra \mathbb{Z} patří do variety V_1 .
- (d) Rozhodněte, zda Ω -algebra \mathbb{Z} patří do variety V_2 .
- (e) Popište volnou algebru $F_1(V_1)$ variety V_1 generovanou množinou $\{x_1\}$.
- (f) Popište volnou algebru $F_1(V_2)$ variety V_2 generovanou množinou $\{x_1\}$.
- (g) Rozhodněte, zda variety V_1 a V_2 jsou stejné.

Svá tvrzení zdůvodněte.

Kontrolní otázky - řešení

- [K1-1] ano Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je každá Ω -algebra neprázdná. [Plyne přímo z definice.]
- [K2-1] ne Obsahuje-li typ Ω alespoň jeden unární operační symbol, pak je každá Ω -algebra neprázdná. [Pro každý typ, který neobsahuje žádný nulární operační symbol, existuje prázdná Ω -algebra.]
- [K3-2] ano Množina všech podalgeber dané univerzální algebry A typu Ω uspořádaná inkluzí tvoří úplný svaz. [Jde o jeden z důsledků věty 2.1.]
- [K4-2] ano Složením homomorfismů Ω-algeber je opět homomorfismus Ω-algeber. [Jde o větu 2.2.]
- [K5-3] ne Projekce ze součinu Ω -algeber je surjektivní homomorfismus Ω -algeber. [Protože Ω -algebry mohou být i prázdné, nemusí být obecně projekce ze součinu surjektivní, uvažte součin prázdné Ω -algebry s neprázdnou Ω -algebrou a projekci z tohoto součinu do oné neprázdné Ω -algebry.]
- [K6-3] ne Součin Ω-algeber přes prázdnou množinu indexů je prázdná Ω-algebra. [Součin Ω-algeber přes prázdnou množinu indexů je vždy jednoprvková Ω-algebra. Toto tvrzení nemohlo být pravdivé i proto, že v případě, kdy typ Ω obsahuje alespoň jeden nulární operační symbol, je každá Ω-algebra neprázdná.]
- [K7-4] ne Jádro homomorfismu Ω -algeber $A \to B$ je podalgebra Ω -algebry A. [Podle definice je jádrem homomorfismu Ω -algeber $A \to B$ kongruence na Ω -algebře A.]
- [K8-4] ano Projekce z Ω -algebry na faktorovou algebru je surjektivní homomorfismus Ω -algeber. [Plyne z věty 4.3 viz definici projekce.]
- [K9-4] ano Každá kongruence na Ω -algebře A je jádrem vhodného homomorfismu Ω -algeber vycházejícího z Ω -algebry A. [Jde o důsledek věty 4.3.]
- $[\mathbf{K10}\text{-}5]$ ano Jestliže typ Ω nebsahuje žádný nulární operační symbol, pak neexistuje žádný nulární term typu Ω . [Plyne přímo z definice termu.]
- [K11-5] ne Jestliže typ Ω nebsahuje žádný unární operační symbol, pak neexistuje žádný unární term typu Ω . [Pro libovolný typ je x_1 unární term.]
- [K12-6] ano Každá varieta Ω -algeber je neprázdná. [Do každé variety Ω -algeber patří všechny jednoprvkové Ω -algebry.]
- [K13-6] ano Pro libovolný typ Ω tvoří třída všech Ω -algeber varietu Ω -algeber.

 [Jde o varietu Ω -algeber určenou prázdnou teorií.]
- [K14-6] ne Pro libovolný typ Ω tvoří třída všech jednoprvkových Ω -algeber varietu Ω -algeber. [Nebsahuje-li typ Ω žádný nulární operační symbol, existuje i prázdná Ω -algebra, ve které platí všechny rovnosti typu Ω , a tedy patří do každé variety Ω -algeber.]

- [K15-7] ne Pro každý typ Ω je volná Ω -algebra generovaná prázdnou množinou konečná Ω -algebra. [Obsahuje-li například typ Ω nekonečně mnoho nulárních operačních symbolů, je volná Ω -algebra generovaná prázdnou množinou nekonečná.]
- [K16-7] ne Pro každý typ Ω je volná Ω -algebra generovaná prázdnou množinou nekonečná Ω -algebra. [Obsahuje-li typ Ω jen nulární operační symboly, je nosnou množinou volné Ω -algebry generované prázdnou množinou právě typ Ω .]
- [K17-8] ano Pro každou varietu V typu Ω platí: libovolná rovnost typu Ω platí ve volné algebře F(V) variety V právě tehdy, když tato rovnost platí v každé Ω -algebře variety V. $/Viz\ poznámku\ za\ větou\ 8.6\ (tj.\ na\ konci\ textu).]$

Úlohy - řešení

[Ú1-2] Je dán typ $\Omega = \{^*\}$, kde * je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace definována takto: pro libovolné $a \in \mathbb Z$ klademe

$$a^* = \begin{cases} a - 1 & \text{pro } a > 0, \\ 0 & \text{pro } a = 0, \\ a + 1 & \text{pro } a < 0. \end{cases}$$

- (a) Popište všechny podalgebry Ω -algebry \mathbb{Z} .
- (b) Rozhodněte, zda zobrazení $\varphi: \mathbb{Z} \to \mathbb{Z}$ určené předpisem $\varphi(a) = 1 a$ pro libovolné $a \in \mathbb{Z}$ je homomorfismus Ω -algeber.

Svá tvrzení zdůvodněte.

[Podalgebry jsou podmnožiny uzavřené na operaci *, je to tedy celé \mathbb{Z} , prázdná množina a pro každá dvě nezáporná celá čísla m, n množiny $\{a \in \mathbb{Z}; -m \leq a \leq n\}, \{a \in \mathbb{Z}; a \leq n\}, \{a \in \mathbb{Z}; -m \leq a\}.$ Platí $\varphi(1)^* = 0^* = 0$, kdežto $\varphi(1^*) = \varphi(0) = 1$, proto φ není homomorfismus Ω -algeber.]

- [Ú2-3] Je dán typ $\Omega = \{ ullet, ' \}$, kde ullet je nulární a ' unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $ullet \mathbb Z = 0$ a pro libovolné $x \in \mathbb Z$ klademe x' = x + 1.
 - (a) Určete všechny podalgebry této Ω -algebry.
 - (b) Popište součin dvou kopií této Ω -algebry, tj. Ω -algebru $\mathbb{Z} \times \mathbb{Z}$.
 - (c) Popište všechny homomorfismy $\Omega\text{-algeber }\mathbb{Z}\to\mathbb{Z}.$

Svá tvrzení zdůvodněte.

[Každá podalgebra musí obsahovat $\bullet_{\mathbb{Z}} = 0$ a s každým svým prvkem i číslo o jedna větší, tedy podalgebry jsou právě množiny $M_n = \{x \in \mathbb{Z}; x \geq n\}$, kde n probíhá množinu nekladných celých čísel (tj. $n \in \mathbb{Z}, n \leq 0$). Součin dvou kopií Ω -algebry \mathbb{Z} je Ω -algebra $\mathbb{Z} \times \mathbb{Z}$ (tj. na množině všech uspořádaných

dvojic celých čísel), kde jsou operace definovány takto: $\bullet_{\mathbb{Z}\times\mathbb{Z}}=(0,0)$ a pro každé $(x,y)\in\mathbb{Z}\times\mathbb{Z}$ je (x,y)'=(x+1,y+1). Homomorfismus $\mathbb{Z}\to\mathbb{Z}$ je zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ splňující $\varphi(\bullet_{\mathbb{Z}})=\bullet_{\mathbb{Z}}$, tedy $\varphi(0)=0$, a také pro každé $x\in\mathbb{Z}$ splňuje $\varphi(x')=\varphi(x)'$, tj. $\varphi(x+1)=\varphi(x)+1$. Snadno se dokáže indukcí, že pak $\varphi(x)=x$:

- 1. Dokazované platí pro x = 0.
- 2. Předpokládejme, že n je přirozené číslo takové, že dokazované platí pro n-1, tj. je $\varphi(n-1)=n-1$, a dokažme tvrzení pro n. Pak $\varphi(n)=\varphi((n-1)+1)=\varphi(n-1)+1=n-1+1=n$.
- 3. Předpokládejme, že n je přirozené číslo takové, že dokazované platí pro -(n-1), tj. je $\varphi(1-n)=1-n$, a dokažme tvrzení pro -n. Pak $1-n=\varphi(1-n)=\varphi(-n+1)=\varphi(-n)+1$. Odečtením 1 dostaneme potřebné.

Jediným homomorfismem Ω -algeber $\mathbb{Z} \to \mathbb{Z}$ je tedy identita.]

- [Ú3-4] Je dán typ $\Omega = \{f\}$, kde f je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace $f_{\mathbb Z}$ definována takto: pro libovolné $a \in \mathbb Z$ klademe $f_{\mathbb Z}(a) = |a| 10$, kde |a| značí obvyklou absolutní hodnotu celého čísla a.
 - (a) Popište podalgebru $\langle \{-53\} \rangle$ generovanou jednoprvkovou podmnožinou $\{-53\}$ v Ω -algebře \mathbb{Z} .
 - (b) Rozhodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x)=x+1$, kde + značí obvyklé sčítání celých čísel, je homomorfismem Ω -algeber.
 - (c) Definujme relaci \sim na $\mathbb Z$ takto: pro libovolné $a,b\in\mathbb Z$ klademe $a\sim b$, právě když rozdíl a-b je dělitelný deseti. Rozhodněte, zda \sim je kongruence na Ω -algebře $\mathbb Z$.

Svá tvrzení zdůvodněte.

 $\begin{array}{l} [\mathit{Plati}\ \langle \{-53\} \rangle = \{-53,43,33,23,13,3,-7,-3\}.\ \mathit{Zobrazeni}\ \varphi\ \mathit{neni}\ \mathit{homomorfismem}\ \Omega\text{-}\mathit{algeber},\ \mathit{nebof\ napřiklad}\ \varphi(f_{\mathbb{Z}}(-1)) = \varphi(-9) = -8 \neq -10 = f_{\mathbb{Z}}(0) = f_{\mathbb{Z}}(\varphi(-1)).\ \mathit{Relace}\ \sim\ \mathit{neni}\ \mathit{kongruence}\ \mathit{na}\ \Omega\text{-}\mathit{algebře}\ \mathbb{Z},\ \mathit{nebof\ napřiklad}\ 4 \sim -6,\ \mathit{avšak}\ f_{\mathbb{Z}}(4) = -6\not\sim -4 = f_{\mathbb{Z}}(-6).] \end{array}$

- [Ú4-7] Je dán typ $\Omega=\{ullet, '\}$, kde ullet je nulární a ' unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $ullet_{\mathbb Z}=0$ a pro libovolné liché $x\in\mathbb Z$ klademe x'=1 a pro libovolné sudé $x\in\mathbb Z$ klademe x'=0.
 - (a) Rozhodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x)=x^2$ je homomorfismem Ω -algeber.
 - (b) Určete, pro které $M \subset \mathbb{Z}$ tvoří M podalgebru Ω -algebry \mathbb{Z} .
 - (c) Popište volnou Ω -algebru generovanou prázdnou množinou.

Svá tvrzení zdůvodněte.

[Platí $\varphi(\bullet_{\mathbb{Z}}) = \varphi(0) = 0^2 = 0 = \bullet_{\mathbb{Z}}$, pro libovolné liché celé číslo a je i a^2 liché, tedy $\varphi(a') = \varphi(1) = 1^2 = 1 = (a^2)' = \varphi(a)'$, pro libovolné sudé a je i a^2 sudé, a proto $\varphi(a') = \varphi(0) = 0^2 = 0 = (a^2)' = \varphi(a)'$. Je tedy φ homomorfismus Ω -algeber. Podalgebra je libovolná podmnožina M množiny

 \mathbb{Z} , která obsahuje $\bullet_{\mathbb{Z}}$ a s každým $a \in M$ též je $a' \in M$. Podalgebrami jsou tedy právě všechny podmnožiny množiny všech sudých čísel obsahující 0 a všechny podmnožiny množiny všech celých čísel obsahující 0 i 1. Volná algebra typu Ω generovaná prázdnou množinou je podle definice algebra $F_0(\Omega)$ všech 0-árních termů typu Ω , tj.

$$F_0(\Omega) = \{ \bullet, \bullet', \bullet'', \bullet''', \dots \},$$

kde je unární operace ' definována takto: k libovolnému termu připíše apostrof.]

[Ú5-7] Je dán typ $\Omega = \{*, '\}$, kde * i ' jsou unární operační symboly. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: pro libovolné $a \in \mathbb Z$ klademe

$$a' = -a,$$
 $a^* = \begin{cases} a+1 & \text{pro } a > 0, \\ 0 & \text{pro } a = 0, \\ a-1 & \text{pro } a < 0. \end{cases}$

- (a) Popište všechny podalgebry Ω -algebry \mathbb{Z} .
- (b) Rozhodněte, zda zobrazení $\varphi:\,\mathbb{Z}\to\mathbb{Z}$ určené předpisem

$$\varphi(a) = \begin{cases} a - 1 & \text{pro } a \in \mathbb{Z}, a > 0, \\ 0 & \text{pro } a = 0, \\ a + 1 & \text{pro } a \in \mathbb{Z}, a < 0. \end{cases}$$

je homomorfismus Ω -algeber.

(c) Popište volnou Ω -algebru generovanou prázdnou množinou.

Svá tvrzení zdůvodněte.

[Podalgebry jsou podmnožiny uzavřené na obě operace, je to tedy prázdná množina, $\{0\}$, a pro každé přirozené číslo n množiny $\{a \in \mathbb{Z}; |a| \geq n\}$ a $\{a \in \mathbb{Z}; |a| \geq n\} \cup \{0\}$. Platí $\varphi(1)^* = 0^* = 0$, kdežto $\varphi(1^*) = \varphi(2) = 1$, proto φ není homomorfismus Ω -algeber. Protože typ Ω neobsahuje žádný nulární operační symbol, je volná Ω -algebra generovaná prázdnou množinou prázdná Ω -algebra.]

[Ú6-7] Je dán typ $\Omega = \{^*\}$, kde * je unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž je odpovídající operace definována takto: pro libovolné $a \in \mathbb Z$ klademe

$$a^{\star} = a + (-1)^a.$$

- (a) Rozhodněte, zda zobrazení $\varphi : \mathbb{Z} \to \mathbb{Z}$ určené předpisem $\varphi(a) = 1 a$ pro libovolné $a \in \mathbb{Z}$ je homomorfismus Ω -algeber.
- (b) Rozhodněte, zda Ω -algebra $\mathbb Z$ patří do variety Vurčené teorií $\{x_1^{\star\star}=x_1\}.$
- (c) Popište volnou Ω -algebru $F_3(V)$ variety V generovanou množinou $\{x_1, x_2, x_3\}.$

 $[Zobrazeni \ \varphi \ je \ homomorfismus \ \Omega$ -algeber, neboť pro libovolné $a \in \mathbb{Z}$ platí

$$\varphi(a^*) = 1 - a^* = 1 - (a + (-1)^a) = 1 - a - (-1)^a,$$

$$(\varphi(a))^* = (1 - a)^* = 1 - a + (-1)^{1-a} = 1 - a - (-1)^a.$$

 Ω -algebra $\mathbb Z$ patří do variety V, protože pro libovolné $a \in \mathbb Z$ platí

$$a^{\star\star} = (a + (-1)^a)^{\star} = a + (-1)^a + (-1)^{a+(-1)^a} = a + (-1)^a - (-1)^a = a.$$

Volná Ω -algebra $F_3(\Omega)$ generovaná množinou $\{x_1, x_2, x_3\}$ se skládá ze všech 3-árních termů typu Ω , tedy

$$F_3(\Omega) = \{x_1, x_1^{\star}, x_1^{\star \star}, \dots, x_2, x_2^{\star}, x_2^{\star \star}, \dots, x_3, x_3^{\star}, x_3^{\star \star}, \dots \}.$$

Pro každý term $t \in F_3(\Omega)$ platí, že term t^{**} určuje v každé Ω -algebře variety V stejnou operaci jako term t, proto

$$F_3(V) = \{ \{x_1, x_1^{\star\star}, \dots\}, \{x_1^{\star}, x_1^{\star\star\star}, \dots\}, \{x_2, x_2^{\star\star}, \dots\}, \{x_2^{\star}, x_2^{\star\star\star}, \dots\}, \{x_3, x_3^{\star\star}, \dots\}, \{x_3^{\star}, x_3^{\star\star\star}, \dots\} \},$$

kde operace * je definována takto: pro libovolné i = 1, 2, 3 platí

$$\{x_i, x_i^{\star\star}, \dots\}^{\star} = \{x_i^{\star}, x_i^{\star\star\star}, \dots\}, \qquad \{x_i^{\star}, x_i^{\star\star\star}, \dots\}^{\star} = \{x_i, x_i^{\star\star}, \dots\}.$$

- [Ú7-7] Je dán typ $\Omega = \{ ullet, ' \}$, kde ullet je nulární a ' unární operační symbol. Uvažme Ω -algebru $\mathbb Z$ (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: $ullet_{\mathbb Z} = 0$ a pro libovolné liché $x \in \mathbb Z$ klademe x' = 1 a pro libovolné sudé $x \in \mathbb Z$ klademe x' = 0.
 - (a) Rozhodněte, zda $\Omega\text{-algebra}~\mathbb{Z}$ patří do variety Vtypu Ω určené teorií $\{x_1''=\bullet\}.$
 - (b) Popište volnou algebru typu Ω generovanou množinou $\{x_1, x_2, x_3, x_4\}$.
 - (c) Popište volnou algebru variety V generovanou množinou $\{x_1, x_2, x_3, x_4\}$.

Svá tvrzení zdůvodněte.

 $[\Omega$ -algebra $\mathbb Z$ nepatří do variety V, neboť například platí $(x_1'')_{\mathbb Z}(1)=1''=1 \neq 0=\bullet_{\mathbb Z}(1)$. Volná algebra typu Ω generovaná množinou $\{x_1,x_2,x_3,x_4\}$ je podle definice algebra $F_4(\Omega)$ všech 4-árních termů typu Ω , tj.

$$F_4(\Omega) = \{ \bullet, \bullet' \bullet'', \dots, x_1, x_1', x_1'', \dots, x_2, x_2', x_2'', \dots, x_3, x_3', x_3'', \dots, x_4, x_4', x_4'', \dots \},$$

kde jsou operace definovány takto: unární operace ' k libovolnému termu připíše apostrof, výsledkem nulární operace \bullet je prvek \bullet . Hledaná volná algebra variety V je $F_4(V) = F_4(\Omega)/\sim_V$, kde pro $t_1,t_2 \in F_4(\Omega)$ platí $t_1 \sim_V t_2$, právě když pro každou Ω -algebru A variety V oba termy t_1,t_2

určují stejnou operaci, tj. platí $(t_1)_A = (t_2)_A$. Ovšem pro libovolný prvek $a \in A$ je $a'' = \bullet_A$, tedy pro každý term $t \in F_4(\Omega)$ je $t'' \sim_V \bullet$. Protože v Ω -algebře A platí $\bullet_A'' = \bullet_A$, plyne odtud aplikací operace ', že $\bullet_A''' = \bullet_A'$, ovšem také $\bullet_A''' = (\bullet_A')'' = \bullet_A$, proto $\bullet_A' = \bullet_A$. Je tedy

$$F_4(V) = \{\{x_1\}, \{x_1'\}, \{x_2\}, \{x_2'\}, \{x_3\}, \{x_3'\}, \{x_4\}, \{x_4'\}, T\},\$$

kde třída $T=F_4(\Omega)-\{x_1,x_1',x_2,x_2',x_3,x_3',x_4,x_4'\}$. Výsledkem nulární operace • je zde třída T, dále T'=T a pro libovolné i=1,2,3,4 platí

$$\{x_i\}' = \{x_i'\}, \qquad \{x_i'\}' = T.$$

[Ú8-7] Je dán typ $\Omega = \{*, '\}$, kde * i ' jsou unární operační symboly. Uvažme Ω -algebru \mathbb{Z} (tj. jejími prvky jsou právě všechna celá čísla), na níž jsou odpovídající operace definovány takto: pro libovolné $a \in \mathbb{Z}$ klademe

$$a' = |a|, \qquad a^* = (-1)^a \cdot a.$$

(a) Rozhodněte, zda zobrazení $\varphi:\,\mathbb{Z}\to\mathbb{Z}$ určené předpisem

$$\varphi(a) = -a$$

je homomorfismus Ω -algeber.

- (b) Rozhodněte, zda Ω -algebra $\mathbb Z$ patří do variety V určené teorií $\{x_1^{\star\star}=x_1,\ x_1''=x_1',\ x_1^{\star\prime}=x_1'\}$.
- (c) Určete počet prvků volné Ω -algebry $F_1(V)$ variety V generované množinou $\{x_1\}$.

Svá tvrzení zdůvodněte.

[Zobrazení φ není homomorfismus Ω -algeber, neboť například

$$\varphi((-1)') = \varphi(1) = -1,$$

 $kde\check{z}to$

$$(\varphi(-1))' = 1' = 1.$$

 $\Omega\text{-}algebra \ \mathbb{Z} \ patří do variety } V \,, \; protože \ pro \ libovolné \ a \in \mathbb{Z} \ platí$

$$a^{**} = ((-1)^a \cdot a)^* = (-1)^{(-1)^a \cdot a} \cdot (-1)^a \cdot a = a,$$

$$a'' = ||a|| = |a| = a',$$

$$a^{*'} = |(-1)^a \cdot a| = |a| = a'.$$

Volná Ω -algebra $F_1(\Omega)$ generovaná množinou $\{x_1\}$ se skládá ze všech unárních termů typu Ω , což jsou termy $x_1, x_1^\star, x_1^\prime, x_1^{\star\star}, x_1^{\star\prime}, x_1^{\star\prime}, x_1^{\prime\prime}, x_1^{\prime\prime}, atd.$ Vždy tedy jde o x_1 , na které jsou aplikovány v libovolném (konečném) počtu v libovolném pořadí oba operační symboly. Rovnosti $x_1^{\prime\prime} = x_1^\prime$ a $x_1^{\star\prime} = x_1^\prime$ způsobují, že každý term, na který je naposledy aplikován symbol ', určuje v každé Ω -algebře variety V stejnou operaci jako term x_1^\prime . Rovnost $x_1^{\star\star} = x_1$ způsobuje, že každý term, na který je naposledy aplikován dvakrát symbol * , určuje v každé Ω -algebře variety V stejnou operaci jako tento term bez oné aplikace. Proto každý unární term určuje stejnou operaci jako některý z termů $x_1, x_1^\star, x_1^\prime, x_1^{\prime\star}$. Žádné dva z těchto čtyř vyjmenovaných termů nemusejí určovat stejné operace, proto volná Ω -algebra $F_1(V)$ variety V generovaná množinou $\{x_1\}$ má čtyři prvky.]

[Ú9-7] Je dán typ $\Omega=\{n,g\}$, kde n je nulární a g unární operační symbol. Označme množiny $A=\{1,2,3,4,5\}$ and $B=\{6,7,8\}$. Položme

$$n_A = g_A(1) = g_A(2) = 3, \ g_A(3) = g_A(4) = 5, \ g_A(5) = 4,$$

a

$$n_B = g_B(6) = 7$$
, $g_B(7) = g_B(8) = 8$.

Tím jsme vytvořili Ω -algebry A, B. Uvažme teorii

$$T = \{g(g(g(x_1))) = g(n)\}\$$

a varietu V typu Ω určenou teorií T.

- (a) Rozhodněte, zda Ω -algebra A patří do V.
- (b) Rozhodněte, zda Ω -algebra B patří do V.
- (c) Popište volnou algebru $F_0(V)$ variety V generovanou prázdnou množinou.
- (d) Popište volnou algebru $F_1(V)$ variety V generovanou množinou $\{x_1\}$.

Svá tvrzení zdůvodněte.

$$\begin{split} & \left[\Omega\text{-algebra }A\text{ }nepatři\text{ }do\text{ }V\text{, }nebo\text{ }rinapřiklad\text{ }g_{A}(g_{A}(g_{A}(1)))=g_{A}(g_{A}(3))=g_{A}(5)=4\neq 5=g_{A}(3)=g_{A}(n_{A}).\text{ }Naproti\text{ }tomu\text{ }\Omega\text{-algebra }B\text{ }patři\text{ }do\text{ }V\text{, }nebo\text{ }rinaprillagebra \\ & g_{B}(g_{B}(g_{B}(6)))=g_{B}(g_{B}(g_{B}(7)))=g_{B}(g_{B}(g_{B}(8)))=g_{B}(n_{B})=8.\\ & Podle\text{ }definice\text{ }je\text{ }F_{0}(\Omega)\text{ }mno\text{ }zina\text{ }v\text{ }sech\text{ }nulárnich\text{ }term\text{ }^{u}\text{ }typu\text{ }\Omega\text{, }plat\text{ }tedy\\ & F_{0}(\Omega)=\{n,g(n),g(g(n)),g(g(g(n))),\dots\}.\text{ }Přitom\text{ }rovnost\text{ }g(g(g(x_{1})))=g(n)\text{ }zp\text{ }u\text{ }sob\text{ }i,\text{ }že\text{ }každ\text{ }y\text{ }z\text{ }uveden\text{ }ych\text{ }term\text{ }u\text{ },\text{ }v\text{ }něm\text{ }z\text{ }se\text{ }vyskytuj\text{ }i\text{ }alespo\text{ }nespo\text{ }tři\text{ }g\text{ },\text{ }je\text{ }kongruentn\text{ }i\text{ }s\text{ }g(n)\text{ }.\text{ }Ov\text{ }sem\text{ }aplikac\text{ }i\text{ }g\text{ }na\text{ }g(g(g(n)))\text{ }\sim g(n)\text{ }do\text{ }staneme\text{ }g(g(g(g(n))))\sim g(g(n)),\text{ }a\text{ }tedy\text{ }voln\text{ }a\text{ }algebra\text{ }C=F_{0}(V)\text{ }variety\text{ }V\text{ }generovan\text{ }a\text{ }pr\text{ }azdno\text{ }u\text{ }mno\text{ }zino\text{ }u\text{ }je\text{ }dvouprvkov\text{ }a\text{ }:\text{ }C=\{T_{1},T_{2}\},\text{ }kde\text{ }T_{1}=\{n\},\text{ }T_{2}=\{g(n),g(g(n)),g(g(g(n))),\dots\},\text{ }přičem\text{ }z\text{ }n_{C}=T_{1},\text{ }g_{C}(T_{1})=g_{C}(T_{2})=T_{2}.\text{ }Podobn\text{ }e\text{ }F_{1}(\Omega)\text{ }je\text{ }mno\text{ }zina\text{ }v\text{ }sech\text{ }u\text{ }n\text{ }arnich\text{ }term\text{ }u\text{ }typu\text{ }\Omega\text{ },\text{ }tedy\\ \end{split}{}$$

$$F_1(\Omega) = \{n, g(n), g(g(n)), g(g(g(n))), \dots, \\ x_1, g(x_1), g(g(x_1)), g(g(g(x_1))), \dots \}$$

a volná algebra $D = F_1(V)$ variety V generovaná množinou $\{x_1\}$ je pětiprvková: $D = \{T_1, T_2, T_3, T_4, T_5\}$, kde $T_1 = \{n\}$,

$$T_2 = \{g(n), g(g(n)), g(g(g(n))), \dots, g(g(g(x_1))), g(g(g(g(x_1)))), \dots \},$$

$$T_3=\{x_1\},\,T_4=\{g(x_1)\},\,T_5=\{g(g(x_1))\},\,p\check{r}i\check{c}em\check{z}\,\,n_D=T_1,\,g_D(T_1)=g_D(T_2)=T_2,\,g_D(T_3)=T_4,\,g_D(T_4)=T_5,\,g_D(T_5)=T_2.]$$

[Ű10-7] Je dán typ $\Omega=\{n\}$, kde n je unární operační symbol. Je dána Ω -algebra $\mathbb Z$ (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb Z}$ definována předpisem: $n_{\mathbb Z}(a)=a+1$ pro libovolné $a\in\mathbb Z$ (kde + značí obvyklé sčítání). Dále je dána Ω -algebra $A=\{\Delta,\bigcirc\}$ s unární operací n_A definovanou takto: $n_A(\bigcirc)=\Delta$, $n_A(\triangle)=\bigcirc$. Uvažme teorii $T=\{n(n(n(n(x_1))))=x_1\}$ a varietu V typu Ω určenou teorií T.

- (a) Rozhodněte, zda existuje homomorfismus Ω -algebry $\mathbb Z$ do Ω -algebry A.
- (b) U obou Ω -algeber A a \mathbb{Z} rozhodněte, zda patří do V.
- (c) Popište volnou algebru $F_0(\Omega)$ typu Ω generovanou prázdnou množinou.
- (d) Popište volnou algebru $F_1(V)$ variety V generovanou množinou $\{x_1\}$.

[Snadno se ověří, že zobrazení $\varphi: \mathbb{Z} \to A$, které lichá čísla zobrazí na Δ a sudá čísla na \bigcirc , je homomorfismus Ω -algeber. Dosazením obou prvků Ω -algebry A ověříme, že v ní je identita teorie T splněna, a tedy Ω -algebra A patří do variety V. Naproti tomu Ω -algebra \mathbb{Z} nepatří do variety V, neboť například $n_{\mathbb{Z}}(n_{\mathbb{Z}}(n_{\mathbb{Z}}(n_{\mathbb{Z}}(0)))) = 4 \neq 0$. Protože typ Ω nemá žádný nulární operační symbol, neexistuje žádný nulární term typu Ω , a tedy volná algebra $F_0(\Omega)$ typu Ω , generovaná prázdnou množinou, je prázdná Ω -algebra. Volnou algebrou $F_1(\Omega)$ typu Ω , generovanou množinou $\{x_1\}$, je množina všech unárních termů typu Ω , tedy

$$F_1(\Omega) = \{x_1, n(x_1), n(n(x_1)), n(n(n(x_1))), \dots\}.$$

Faktorizací dostaneme volnou algebru $B = F_1(V)$ variety V generovanou množinou $\{x_1\}$. Platí $B = \{M_1, M_2, M_3, M_4\}$, kde

```
M_{1} = \{x_{1}, n(n(n(n(x_{1})))), n(n(n(n(n(n(n(n(n(x_{1})))))))), \dots \},
M_{2} = \{n(x_{1}), n(n(n(n(n(x_{1}))))), \dots \},
M_{3} = \{n(n(x_{1})), n(n(n(n(n(n(x_{1})))))), \dots \},
M_{4} = \{n(n(n(x_{1}))), n(n(n(n(n(n(n(x_{1})))))), \dots \}.
```

$$P\check{r}itom\ n_B(M_1) = M_2,\ n_B(M_2) = M_3,\ n_B(M_3) = M_4,\ n_B(M_4) = M_1.$$

- [Ú11-7] Je dán typ $\Omega = \{n\}$, kde n je unární operační symbol. Je dána Ω -algebra \mathbb{Z} (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb{Z}}$ definována předpisem: $n_{\mathbb{Z}}(a) = a 1$ pro libovolné $a \in \mathbb{Z}$ (kde značí obvyklé odčítání). Dále je dána Ω -algebra $A = \{\Delta, \bigcirc\}$ s unární operací n_A definovanou takto: $n_A(\bigcirc) = \Delta$, $n_A(\triangle) = \bigcirc$. Uvažme teorii $T = \{n(n(n(x_1))) = n(x_1)\}$ a varietu V typu Ω určenou teorií T.
 - (a) Rozhodněte, zda existuje homomorfismus $\Omega\text{-algebry }A$ do $\Omega\text{-algebry }\mathbb{Z}$
 - (b) U obou Ω -algeber A a \mathbb{Z} rozhodněte, zda patří do V.
 - (c) Popište volnou algebru $F_1(\Omega)$ typu Ω generovanou množinou $\{x_1\}$.
 - (d) Popište volnou algebru $F_2(V)$ variety V generovanou množinou $\{x_1, x_2\}$.

Svá tvrzení zdůvodněte.

[Dokažme sporem, že žádný homomorfismus Ω -algeber $\varphi: A \to \mathbb{Z}$ neexistuje. Předpokládejme tedy jeho existenci. Pak $\Delta = n_A(\bigcirc) = n_A(n_A(\triangle))$ a tedy z toho, že φ je homomorfismus Ω -algeber, plyne

$$\varphi(\Delta) = \varphi(n_A(n_A(\Delta))) = n_{\mathbb{Z}}(n_{\mathbb{Z}}(\varphi(\Delta))) = \varphi(\Delta) - 2,$$

což nesplňuje žádné celé číslo $\varphi(\Delta)$, spor. Dosazením obou prvků Ω -algebry A ověříme, že v ní je identita teorie T splněna, a tedy Ω -algebra A patří do variety V. Naproti tomu Ω -algebra $\mathbb Z$ nepatří do variety V, neboť například $n_{\mathbb Z}(n_{\mathbb Z}(n_{\mathbb Z}(0))) = -3 \neq -1 = n_{\mathbb Z}(0)$. Volnou algebrou $F_1(\Omega)$ typu Ω , generovanou množinou $\{x_1\}$, je množina všech unárních termů typu Ω , tedy $F_1(\Omega) = \{x_1, n(x_1), n(n(x_1)), n(n(n(x_1))), \ldots\}$. Podobně volnou algebrou $F_2(\Omega)$ typu Ω , generovanou množinou $\{x_1, x_2\}$, je množina všech binárních termů typu Ω , tedy

$$F_2(\Omega) = \{x_1, n(x_1), n(n(x_1)), n(n(n(x_1))), \dots, x_2, n(x_2), n(n(x_2)), n(n(n(x_2))), \dots \}.$$

Faktorizací dostaneme volnou algebru $B = F_2(V)$ variety V generovanou množinou $\{x_1, x_2\}$. Platí $B = \{M_1, M_2, M_3, M_4, M_5, M_6\}$, kde

$$\begin{aligned} M_1 &= \{x_1\}, \\ M_2 &= \{n(x_1), n(n(n(x_1))), n(n(n(n(x_1))))), \dots\}, \\ M_3 &= \{n(n(x_1)), n(n(n(n(x_1)))), \dots\}, \\ M_4 &= \{x_2\}, \\ M_5 &= \{n(x_2), n(n(n(x_2))), n(n(n(n(x_2)))), \dots\}, \\ M_6 &= \{n(n(x_2)), n(n(n(n(x_2)))), \dots\}. \end{aligned}$$

$$P\check{r}itom\ n_B(M_1)=M_2,\ n_B(M_2)=M_3,\ n_B(M_3)=M_2,\ n_B(M_4)=M_5,\ n_B(M_5)=M_6,\ n_B(M_6)=M_5.$$

[Ú12-7] Je dán typ $\Omega = \{n\}$, kde n je unární operační symbol. Je dána Ω -algebra \mathbb{Z} (tj. jejími prvky jsou tedy právě všechna celá čísla), na níž je unární operace $n_{\mathbb{Z}}$ definována předpisem: pro libovolné $a \in \mathbb{Z}$ klademe

$$n_{\mathbb{Z}}(a) = \begin{cases} 1 & \text{pro } a > 1, \\ 0 & \text{pro } -1 \le a \le 1, \\ -1 & \text{pro } a < -1. \end{cases}$$

Dále jsou dána zobrazení $f: \mathbb{Z} \to \mathbb{Z}$ a $g: \mathbb{Z} \to \mathbb{Z}$ předpisy f(a) = 3a, $g(a) = a^2$ (kde užité operace ve výrazech značí obvyklé operace s celými čísly). Nechť varieta V_1 typu Ω je určená teorií $T_1 = \{n(n(n(x_1))) = n(n(x_1))\}$ a varieta V_2 typu Ω je určená teorií $T_2 = \{n(n(x_1))) = n(n(x_2))\}$ typu Ω .

- (a) Rozhodněte, zda zobrazení f je homomorfismem Ω -algeber.
- (b) Rozhodněte, zda zobrazení g je homomorfismem Ω -algeber.
- (c) Rozhodněte, zda Ω -algebra \mathbb{Z} patří do variety V_1 .
- (d) Rozhodněte, zda Ω -algebra \mathbb{Z} patří do variety V_2 .
- (e) Popište volnou algebru $F_1(V_1)$ variety V_1 generovanou množinou $\{x_1\}$.
- (f) Popište volnou algebru $F_1(V_2)$ variety V_2 generovanou množinou $\{x_1\}$.
- (g) Rozhodněte, zda variety V_1 a V_2 jsou stejné.

Svá tvrzení zdůvodněte.

[Zobrazení f není homomorfismem Ω -algeber, neboť například $n_{\mathbb{Z}}(f(1)) =$ $n_{\mathbb{Z}}(3) = 1$, avšak $f(n_{\mathbb{Z}}(1)) = f(0) = 0$. Dokažme, že zobrazení g je homomorfismem Ω -algeber. Pro libovolné $a \in \mathbb{Z}$ takové, že a > 1 platí také $a^2 > 1$, $a \ tedy \ n_{\mathbb{Z}}(g(a)) = n_{\mathbb{Z}}(a^2) = 1 = g(1) = g(n_{\mathbb{Z}}(a))$. Máme-li libo $voln\acute{e}\ a\in\mathbb{Z}\ takov\acute{e},\ \check{z}e\ a<-1,\ pak\ a^2>1,\ a\ tedy\ n_{\mathbb{Z}}(g(a))=n_{\mathbb{Z}}(a^2)=$ $1 = g(-1) = g(n_{\mathbb{Z}}(a))$. Konečně pro $a \in \{-1,0,1\}$ platí $n_{\mathbb{Z}}(g(a)) =$ $n_{\mathbb{Z}}(a^2) = 0 = g(0) = g(n_{\mathbb{Z}}(a))$. Dvojnásobnou aplikací $n_{\mathbb{Z}}$ na libovolný prvek Ω -algebry \mathbb{Z} dostaneme 0, proto jak varieta V_1 určená teorií T_1 $tak \ i \ varieta \ V_2 \ určená \ teorii \ T_2 \ obsahuji \ \Omega\text{-}algebru \ \mathbb{Z}. \ Volnou \ algebrou$ $F_1(\Omega)$ typu Ω , generovanou množinou $\{x_1\}$, je množina všech unárních $term \mathring{u} typu \Omega, tedy F_1(\Omega) = \{x_1, n(x_1), n(n(x_1)), \ldots\}.$ Protože rovnost $n(n(n(x_1))) = n(n(x_1))$ znamená, že trojnásobnou aplikací operace n na libovolný prvek dostaneme vždy totéž jako dvojnásobnou aplikací operace n na tento prvek, má volná algebra $A = F_1(V_1)$ variety V_1 generovaná mno- $\check{z}inou\ \{x_1\}\ \check{tri}\ prvky: A = \{M_1, M_2, M_3\},\ kde\ M_1 = \{x_1\},\ M_2 = \{n(x_1)\},\ M_3 = \{n(x_1)\},\ M_4 = \{n(x_1)\},\ M_5 = \{n(x_1)\},\$ $M_3 = \{n(n(x_1)), n(n(n(x_1))), n(n(n(n(x_1)))), \dots\}$. Přitom je operace na A definovaná takto: $n_A(M_1) = M_2$, $n_A(M_2) = M_3$, $n_A(M_3) = M_3$. Pro $to\check{z}e\ rovnost\ n(n(x_1)))=n(n(x_2))\ znamen\acute{a},\ \check{z}e\ dvojn\acute{a}sobnou\ aplikac\acute{a}\ ope$ race n na libovolný prvek dostaneme vždy tentýž prvek, je výše popsaná Ω -algebra A také volnou algebrou $F_1(V_2)$ variety V_2 generovanou množinou $\{x_1\}$. Variety V_1 a V_2 nejsou stejné, uvažte Ω -algebru $B=\{1,2\}$ s operací $n_B(1) = 1$, $n_B(2) = 2$. Tato Ω -algebra B patří do variety V_1 , ale $nepatří do variety V_2.$