Propositional logic

Michael Franke

Syntax & semantics of propositional logic; truth-tables; tautologies vs. contraditions vs. contingencies; translations from natural language into propositional logic; argument schemas & logical validity.

1 The language of propositional logic

Propositional logic (PropLog) studies how propositions are combined by logical operators, which closely correspond to certain sentential connectives in natural language (such as *and*, *or*, *if*, or *not*). A *proposition* in the sense of PropLog is a minimal unit of thought which can be evaluated as true or false independently of other propositions. For example, the logical structure of the following sentence:

$$\underbrace{\text{The earth is round}}_{p} \underbrace{\text{and}}_{\wedge} \underbrace{\text{the moon is made of cheese.}}_{q}$$

could be analyzed as composed of two propositions, viz., the proposition denoted here with *proposition letter p* that the earth is round and the proposition denoted by q that the moon is made of cheese. These two propositions are connected by a logical operator "and", for which we write \land in PropLog. The logical structure of the complex sentence above can therefore be written as $p \land q$ in PropLog.

1.1 Proposition letters & sentential connectives

The language of PropLog is formed by:

- (i) a set of proposition letters $\mathfrak{P} = \{p, q, r, s, p_1, q_{27}, \dots\}$, and
- (ii) a set of sentential connectives $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}^2$

The sentential connectives have names and are intended to correspond (approximately) to natural language paraphrases:³

name	paraphrase	symbol
negation	"not"	
conjunction	"and"	\wedge
disjunction	"or"	V
implication	"if, then"	\rightarrow
equivalence	"if and only of"	\leftrightarrow

1.2 Formulas

The language \mathfrak{L} of PropLog is the set of all *formulas* which are recursively defined as follows:⁴

¹The notion of a proposition in this sense is not unproblematic. For example, a case like "This pixel is red." seems like a minimal unit of truth-evaluable information about the color of a particular pixel, but it is not independent of another statement like "This pixel is blue.". (Historically, this problem related to color was a problem brought up famously by Frank Ramsey in response to the early logical work of Ludwig Wittgenstein.)

²You will also find terminology like *logical connectives* or *logical operators*. There may be additional connectives used by some logicians or textbooks, and you might find slightly different symbols for the same notions in some places

³The names and the (approximate) correspondence are earned by the *semantics* which we will give to these symbols later

⁴We will make consistent use of Greek letters $\varphi, \psi, \chi, \dots$ as variables for formulas.

- (ii) If φ is a formula, so is $\neg \varphi$.
- (iii) If φ and ψ are formulas, so are:

a.
$$(\varphi \wedge \psi)$$

b.
$$(\varphi \lor \psi)$$

c.
$$(\varphi \to \psi)$$

b.
$$(\varphi \lor \psi)$$
 c. $(\varphi \to \psi)$ d. $(\varphi \leftrightarrow \psi)$

(iv) Anything that cannot be constructed by (i)–(iii) is not a formula.

Examples for formulas of PropLog are:5

$$pp \wedge p$$
$$p \to \neg q(p \lor q) \leftrightarrow r$$

Examples of strings made of proposition letters and logical connectives which are not formulas of PropLog are:

$$(p) \qquad \neg pq$$

$$p \neg \rightarrow \neg q \qquad p \lor q \leftrightarrow r$$

1.3 Syntactic trees

The recursive definition for formulas of PropLog gives an internal structure to each formula. Take the example $p \wedge \neg q$. There is only one way in which this formulas could have been generated by a constructive process that follows the recursive definition above. In the last step of that process, the two subformulas $\varphi = p$ and $\psi = \neg q$ have been combined to form an expression of the form $\varphi \wedge \psi$ using the rule (iii) part a. The first subformula $\varphi = p$ is constructed by rule (i). The second formula can only be constructed by first using rule (i) to introduce q and then using rule (ii) to introduce the negation sign.

A syntactic tree is a useful visual illustration of the internal structure of a formula. The syntactic tree of formula $p \land \neg q$ is this:

The construction of a complex formula, and therefore its syntactic tree, is always recoverable by following the introduction of the parentheses in step (iii). This is illustrated by the minimal pair in Figure 1.

⁵We conventionally omit the outermost parentheses of a formula.

Figure 1: Examples of syntactic trees

1.4 Atomic & complex formulas

A formula of PropLog which consist of a single proposition letter is also called atomic formula. Any formula of PropLog which is not atomic is also called a complex formula. Each complex formula has a main connective. The main connective is the last sentential connector introduced during the construction of the formula. A complex formula is also often called by the name of its main connective. For example, the formula $p \land \neg q$ has a conjunction as its main operator and could therefore be called a conjunction. The formula $(p \lor q) \to r$ from Figure 1(a) is an implication, while the formula $p \lor (q \to r)$ from Figure 1(b) is a disjunction.

Exercise 1. Determine which of the following strings are formulas of propositional logic. For any formula, determine its main operator.

a. q_{12}

d. $p \rightarrow (p \land p)$

b. $p, q \wedge r$

e. $(p \rightarrow)(p \land p)$

c. $(p) \land q$

f. $(p \lor \neg q) \leftrightarrow (r \to (\neg (p \lor \neg p)))$

Exercise 2. Draw the syntactic tree for each of the following formulas.

a. $p \leftrightarrow q$

c. $p \rightarrow \neg (q \land r)$

b. $\neg p \wedge p$

d. $(\neg p \lor \neg q) \land (r \to p)$