AMENDMENTS

In the Claims:

Please amend claims 15, 19, 24, 26, and 44 as follows:

15. A method of synthesizing a compound of the formula

$$\begin{array}{c|c}
 & O \\
 & M & N & A_1 \\
 & N & Y \\
 & N & A_2 \\
 & N & Y \\
 & Y & Y
\end{array}$$

wherein A₁, each A₂ (if present), and A₃ are independently selected from C₁-C₈ alkyl;

wherein each Y is independently selected from H or C₁-C₄ alkyl;

wherein M is selected from C₁-C₄ alkyl;

wherein k is 0, 2, or 3;

and wherein R is selected from C_1 - C_{32} alkyl;

comprising the steps of:

reacting an ω -halo alkyl alkanoate with an aldehyde or ketone-containing compound to give an alkene-containing alkanoate compound;

reacting the alkene-containing alkanoate compound with a compound containing two primary amino groups and optionally containing secondary amino groups to effect addition of one of the amino groups across the double bond;

cyclizing the other amino group with the alkanoate group to form an amide bond; and optionally alkylating the secondary amino groups if present.

A

19. The method of claim 16, wherein the compound containing two primary amino groups is selected from the group consisting of H₂N-A₁-(NH-A₂)_k-NH-A₃-NH₂

wherein A_1 , each A_2 (if present), and A_3 are independently selected from C_1 - C_8 alkyl and k is 0, 2, or 3.

24. A method of synthesizing a compound of the formula

$$\begin{array}{c|c}
 & O \\
 & M \\
 & N \\
 & Y \\
 & N \\
 & Y \\
 & Y \\
 & Y
\end{array}$$

$$\begin{array}{c}
 & A_1 \\
 & N_1 \\
 & N_2 \\
 & N_1 \\
 & N_2 \\
 & N_2 \\
 & N_2 \\
 & N_3 \\
 & N_4 \\$$

wherein A_1 is C_3 alkyl, and each A_2 (if present) and A_3 are independently selected from C_1 - C_8 alkyl;

wherein each Y is independently selected from H or C₁-C₄ alkyl;

wherein M is selected from C₁-C₄ alkyl;

wherein k is 0, 2, or 3;

and wherein R is selected from C_1 - C_{32} alkyl;

comprising the steps of:

condensing a compound comprising a primary amino group and a hexahydropyrimidine moiety with an α , β -unsaturated ester compound such that the primary amino group adds at the β -position of the unsaturated ester compound, whereby the primary amino group is converted to a secondary amino group;

cleaving the methylene bridge of the hexahydropyrimidine moiety to generate a secondary amino group and a newly-generated primary amino group; and

condensing the newly-generated primary amino group with the ester group to form an amide group.

26. The method of claim 24, wherein the compound comprising a primary amino group and a hexahydropyrimidine moiety is of the formula

$$H_2N-A_3$$
— $(NY-A_2)_j$ — N

wherein each A_2 (if present) and A_3 are independently selected from C_1 - C_8 alkyl; wherein each Y is independently selected from H or C_1 - C_4 alkyl; and wherein j is 0, 2, or 3.

44. A method of synthesizing a compound of claim 37, wherein A_4 is C_3 alkyl and X is -NH₂, comprising reducing the nitrile group of a compound of the formula

A5

$$\begin{array}{c|c}
CN \\
(CH_2)_2 \\
\hline
 & A_1 \\
N \\
N \\
Y \\
N
\end{array}$$

to an amino group.