Risc0 Segmentation Test Results

Reza Hasanzadeh

Wholesum Network rezahsnz@proton.me

July 9th, 2024

1 Introduction

Risc0 is a general-purpose zkVM that enables for arbitrary Rust programs to become verifiable. Given an input Rust program, Risc0 compiles it into a RISC-V binary ELF and feeds into its zk-STARK circuitry producing a verifiable execution trace represented by a guest program. This guest program, when run, produces proofs that can be used by third-parties to check if the execution was indeed honest. In order to have infinitely-sized programs, Risc0 divides a guest program into segments with segment size capped at 2^{24} cycles¹. If a zkVM program does not fit into ≈ 16 m cycles, it needs to be partitioned into segments and proved one by one. Segment size can be customized to lower limits too with the acceptable range starting at 2^{13} cycles. Along with execution steps, each segment size has particular memory requirements shown on Table 1(a comprehensive benchmarking is available here).

Segment size	Minimum required memory
cycles	$\approx amount$
$2^{13} \approx 8k$	64 MB
$2^{14} \approx 16k$	128 MB
$2^{15} \approx 32k$	256 MB
$2^{16} \approx 64k$	512 MB
$2^{17} \approx 128k$	1 GB
$2^{18} \approx 256k$	2 GB
$2^{19} \approx 512k$	4 GB
$2^{20} \approx 1M$	8 GB
$2^{21} \approx 2M$	16 GB
$2^{22} \approx 4M$	32 GB
$2^{23} \approx 8M$	64 GB
$2^{24} \approx 16M$	128 GB

Table 1: Memory requirements per segment size

Real-world zkVM programs are often big in size. Next section provides a detailed record of inflating and proving a typical guest program. It measures performance and storage requirements of various segment size limits.

 $^{^1\}mathrm{A}$ cycle is roughly equivalent to a RISC-V operation.

2 Segmentation test results

In order to emulate a big guest program, a large vector of random u32 numbers were written to the guest memory in each round. While there are more sophisticated inflation methods, this method is easy² and it can be used as a baseline for further experiments. To segment the guest program, we limited its po2-size-limit in each round resulting in multiple independent segments per limit size. These segments were then saved as binary blobs to disk for later individual proving. There are 8 rounds of segmentation and proving in total where each round limits the segment size from 2^{15} up to 2^{24} . To measure performance of individual segment proving, a subset of segment blobs were drawn at random(uniform distribution), proved, and the maximum values were recorded. The test computer is a Lenovo Thinkpad e450(Intel Core i7 5500U(2C 4T), 16GB RAM) laptop running an Ubuntu 18.04 dockerized-Risc0-1.0.1 environment.

Rounds

Round 1: up to 1m cycles

User cycles: 872,543

Inflation method: write 11k u32 numbers to the guest The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	$ 2^{23}$	$ 2^{24}$
# Segments	169	26	10	5	3	1	-	-	-	-
$Total\ cycles$	5.5M	1.7M	1.3M	1.2M	1.1M	$\approx 1M^a$	-	-	-	-
$Induced\ inflation$	5.281 x	1.625x	1.250x	1.125 x	1.063 x	1.000 <i>x</i>	-	-	-	-
$Prove\ time$	14s	28s	56s	120s	262s	541s	-	-	-	-
$Sample\ size$	25%	50%	70%	80%	100%	100%	-	-	-	-
$Blob\ size$	19kb	37kb	52kb	88kb	158kb	298kb	-	-	-	-

 $[^]a$ Exact value: 1,048,576

Table 2: Memory requirements per segment size for a 1M cycles guest

Round 2: up to 2.5m cycles

User cycles: 1,820,543

Inflation method: write 23k u32 numbers to the guest The results are displayed on the following table:

2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	$ 2^{22}$	$ 2^{23} $	2^{24}
333	53	20	9	5	3	1	-	-	-
11m	$3.5 \mathrm{m}$	$2.6 \mathrm{m}$	$2.4 \mathrm{m}$	$2.2 \mathrm{m}$	$2.2 \mathrm{m}$	$\approx 2.1m^a$	-	-	-
5.203 x	1.656 <i>x</i>	1.250 <i>x</i>	1.125 x	1.063 <i>x</i>	1.031x	1.000 <i>x</i>	-	-	-
14s	29s	58s	123s	262s	540s	-	-	-	-
15%	40%	50%	50%	70%	100%	-	-	-	-
19kb	$35 \mathrm{kb}$	52kb	88kb	158kb	299kb	581kb	-	-	-
	333 $11m$ $5.203x$ $14s$ $15%$	333 53 11m 3.5m 5.203x 1.656x 14s 29s 15% 40%	333 53 20 11m 3.5m 2.6m 5.203x 1.656x 1.250x 14s 29s 58s 15% 40% 50%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	333 53 20 9 5 11m 3.5m 2.6m 2.4m 2.2m 5.203x 1.656x 1.250x 1.125x 1.063x 14s 29s 58s 123s 262s 15% 40% 50% 50% 70%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $[^]a$ Exact value: 2,097,152

Table 3: Memory requirements per segment size for a 2.5M cycles guest

²RISC architecture tends to have lower number of instructions, so a cycle representing a load instruction, for example, is not inferior to the one representing a mathematical operation.

Round 3: up to 5m cycles

User cycles: 3,637,543

Inflation method: write 46k u32 numbers to the guest The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	$ 2^{23} $	2^{24}
# Segments	647	105	40	18	9	4	2	1	-	-
Total cycles	$21.2 \mathrm{m}$	$6.9 \mathrm{m}$	5.2m	$4.6 \mathrm{m}$	4.3m	$4.2 \mathrm{m}$	$4.2 \mathrm{m}$	$\approx 4.2m^a$	-	-
$Induced\ inflation$	5.055x	1.641 <i>x</i>	1.234 x	1.094 x	1.031 x	1.000x	1.000x	1.000 <i>x</i>	-	-
$Prove\ time$	13s	28s	57s	120s	249s	536s	-	-	-	-
$Sample\ size$	2.5%	15%	20%	25%	30%	75%	-	-	-	-
$Blob\ size$	19kb	35kb	52kb	88kb	158kb	$301 \mathrm{kb}$	$581 \mathrm{kb}$	1.1mb	-	-

 $[^]a\mathrm{Exact}$ value: 4,194,304

Table 4: Memory requirements per segment size for a 5M cycles guest

Round 4: up to 10m cycles

User cycles: 7,271,543

Inflation method: write 92k u32 numbers to the guest The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}
# Segments	1,278	209	78	35	17	8	4	2	1	-
Total cycles	41.9 m	13.7m	10.2m	$9.2 \mathrm{m}$	8.7m	8.4m	8.4m	8.4m	$\approx 8.4 m^a$	-
Induced inflation	4.992 x	1.633 <u>x</u>	1.219 x	1.094x	1.031 x	1.000 <i>x</i>	1.000 <i>x</i>	1.000 <i>x</i>	1.000 <i>x</i>	-
$Prove\ time$	14s	29s	57s	119s	248s	539s	-	-	-	-
$Sample\ size$	3%	10%	15%	15%	20%	30%	-	-	-	-
$Blob\ size$	19kb	37kb	52kb	88kb	158kb	299kb	581kb	1.2mb	$2.2 \mathrm{mb}$	-

 $[^]a$ Exact value: 8,388,608

Table 5: Memory requirements per segment size for a 10M cycles guest

Round 5: up to 20m cycles

User cycles: 15,013,543

Inflation method: write 190k u32 numbers to the guest The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}
# Segments	2,616	429	161	71	34	17	9	5	3	1
$Total\ cycles$	85.7m	28.1m	21m	18.6m	17.8m	17.3 m	17m	16.9m	$16.8 { m m}$	$\approx 16.8m^a$
Induced inflation	5.109 <i>x</i>	1.676 x	1.254 <i>x</i>	1.109 <i>x</i>	1.063 <i>x</i>	1.031x	1.016 <i>x</i>	1.008x	1.004x	1.000 <i>x</i>
$Prove\ time$	14s	29s	59s	121s	251s	539s	-	-	-	-
$Sample \ size$	1%	5%	10%	10%	10%	15%	-	-	-	-
$Blob\ size$	19kb	37kb	52kb	88kb	158kb	299kb	581kb	1.2mb	2.3mb	$4.5 \mathrm{m}$

 $[^]a$ Exact value: 16,777,216

Table 6: Memory requirements per segment size for a 20M cycles guest

Round 6: up to 45m cycles User cycles: 32,390,116

Inflation method: write 400k u32 numbers to the guest

The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}
# Segments	7,187	1,019	379	168	80	39	20	10	5	3
$Total\ cycles$	235.5m	66.8m	$49.7 \mathrm{m}$	44m	$41.7 \mathrm{m}$	$40.9 {\rm m}$	40.1m	$39.8 \mathrm{m}$	$41.9 \mathrm{m}$	$\approx 41.9m^a$
$Induced\ inflation$	5.615 x	1.592 x	1.184 <i>x</i>	1.050 <i>x</i>	0.994x	0.975x	0.956 x	0.950x	1.000x	1.000 <i>x</i>
$Prove\ time$	15s	30s	58s	119s	245s	541s	-	-	-	-
$Sample\ size$	0.1%	2.5%	5%	5%	5%	10%	-	-	-	-
$Blob\ size$	20kb	36kb	$67 \mathrm{kb}$	133kb	265 kb	528kb	1.1mb	$1.7 \mathrm{mb}$	$2.8 \mathrm{mb}$	5.2mb

^aExact value: 41,943,040

Table 7: Memory requirements per segment size for a 45M cycles guest

Round 7: up to 90m cycles

User cycles: 65,563,120

Inflation method: write 800k u32 numbers to the guest The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}
# Segments	16,808	2,174	801	355	168	82	41	20	10	5
$Total\ cycles$	551m	142.5 m	105m	$92.9 {\rm m}$	$87.8 \mathrm{m}$	85.5 m	84.4m	83.9m	83.9m	$\approx 83.9m^a$
Induced inflation	6.566x	1.698x	1.252 <i>x</i>	1.107x	1.047x	1.019x	1.006 <i>x</i>	1.000x	1.000x	1.000x
$Prove\ time$	14s	28s	58s	119s	249s	534s ^b	-	-	-	-
$Sample\ size$	0.1%	2.5%	5%	5%	5%	3%	-	-	-	-
$Blob\ size$	19kb	38kb	67kb	133kb	265 kb	529kb	1.1mb	2mb	4.1mb	$6.4 \mathrm{mb}$

^aExact value: 83,886,080

Table 8: Memory requirements per segment size for a 90M cycles guest

Round 8: up to 180m cycles User cycles: 131,908,988

Inflation method: write $1.6\mathrm{m}$ u32 numbers to the guest

The results are displayed on the following table:

$Segment\ size$	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}
# Segments	36,046	4,483	1,643	727	344	167	83	41	21	11
Total cycles	1.18b	293.8m	215.4m	190.6m	180.1m	175.1 m	$173 \mathrm{m}$	172m	172m	$\approx 172 m^a$
$Induced\ inflation$	6.869 <i>x</i>	1.708x	1.252 x	1.108 <i>x</i>	1.047 x	1.018x	1.006x	1.000 <i>x</i>	1.000 <i>x</i>	1.000x
$Prove\ time$	15s	29s	66s	124s	257s	544s	-	-	-	-
$Sample\ size$	0.1%	2.5%	5%	5%	5%	2%	-	-	-	-
$Blob\ size$	19kb	35kb	67kb	133kb	265kb	$529 \mathrm{kb}$	$1.1 \mathrm{mb}$	2mb	4.1mb	$7.4 \mathrm{mb}$

 $[^]a$ Exact value: 171,966,464

Table 9: Memory requirements per segment size for a 180M cycles guest

Conclusion

This note investigated a scenario where a Risc0 guest program gets inflated with random inputs. 8 rounds of tests were conduced on segmentation and individual segment proving with a focus on systems whose memory are capped at 8GB. The results point to sweet spots on 2¹⁸ and 2¹⁹ segment size limits where parallelized proving setups could be employed to prove prohibitively large programs quickly with acceptable overhead and inflation in total cycles.

^blow value is due to small sample size