UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPTO. DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

Trabalho de Conclusão de Curso

Implementação de um simulador Arduino baseado em Android

Autor: Kollins Gabriel Lima, n^o. USP 9012931

Orientador: Prof. Dr. Evandro Luis Linhari Rodrigues

São Carlos

2018

Resumo

Texto em <u>UM PARÁGRAFO</u> apenas - deve conter <u>tudo</u> resumidamente (introdução, método(s), resultados e conclusões), de tal forma que seja possível compreender a proposta e o que foi alcançado.

Palavras-Chave: palavra1, palavra2, palavra3, palavra4, palavra5.

Abstract

Abstract, abstra

Keywords: keyword1, keyword2, keyword3, keyword4, keyword5.

Lista de Figuras

(Se houver...)

Lista de Tabelas

(Se houver...)

$Siglas \ ({\tt Se \ houver...})$

MVC *Model-View-Controller* - Modelo-Visão-Controlador

POO Programação Orientada a Objetos

UI User Interface - Interface do Usuário

UML Unified Modeling Language - Linguagem de Modelagem Unificada

Sumário

1	Introdução						
	1.1	Motivação	17				
	1.2	Objetivo(s)	17				
	1.3	Justificativas/relevância	17				
	1.4	Organização do Trabalho	17				
2	Eml	pasamento Teórico ou Fundamentação Teórica	19				
3	Mat	erial e Métodos ou Desenvolvimento do Projeto	21				
	3.1	Material	21				
	3.2	Métodos	21				
4	Resi	ultados e Discussões	23				
5	5 Conclusão ou Conclusões						
Re	referências 25						

Introdução

Os dispositivos móveis vem ganhando cada vez mais espaço no cotidiano das pessoas por trazer funcionalidades diversas em um dispositivo cada vez mais barato e portátil. Seja para fazer uma simples operação matemática, ou para navegar na *web*, tirar fotos, telefonar, etc., os *smartphones* e *tablets* tem evoluído cada vez mais tanto em questões de *hardware* quanto em *software*.

Em se tratando de *hardware*, os dispositivos móveis hoje carregam um grande poder computacional. Segundo uma matéria do Olhar Digital [1], o *desktop* top de linha em 2001 possuía 80 GB de HD, 128 MB de memória primária e um processador single core de 1,53 GHz. Hoje, um *smartphone* top de linha possui 8 núcleos de processamento, com frequências de até 2,8 GHz, memória primária de 4 GB e armazenamento interno de 256 GB (com possibilidade de expansão) [2], tudo isso em um *design* compacto que cabe no bolso. Graças à essa evolução, é possível realizar tarefas cada vez mais complexas em um dispositivo móvel.

Quanto a *software*, hoje existe uma maior padronização dos sistemas mobile, o que facilita o desenvolvimento de aplicações. O sistema operacional líder de mercado é o Android [3]. Tendo sua primeira versão lançada em 2008, diversos foram os motivos pela sua grande popularidade, tais como o fato de ser gratuito, *open-source* (sob a licença Apache 2.0, principalmente [4]), desenvolvimento em conjunto com empresas interessadas (*Open Handset Alliance* - OHA) e o uso do Java para o desenvolvimento de aplicativos, uma vez que essa é a linguagem de programação mais utilizada mundialmente [5], além de entregar ao usuário um sistema moderno, elegante e cheio de recursos.

Devido a constante presença dos dispositivos móveis (com sistema Android) e sua crescente capacidade de *hardware*, esta plataforma tem sido cada vez mais explorada por desenvolvedores. Uma prova disso é a loja oficial de aplicativos do Android (*Google Play*), que oferece uma infinidade de aplicativos (de calculadoras a jogos com gráficos realistas), muitos deles disponibilizados gratuitamente. É por este motivo também que esta plataforma foi escolhida para a realização deste trabalho,

que visa desenvolver um simulador das funcionalidades de um Arduino UNO.

A utilização do poder computacional de *smartphones l tablets* em substituição à sistemas tradicionais não é uma ideia nova. Pode-se citar trabalhos como o de Junior [6], que utilizou um dispositivo Android para a implementação de um osciloscópio de baixo custo. Utilizando um microcontrolador ARM Cortex M4F para aquisição dos sinais e comunicação *Bluetooth* com o *smartphone*, foi possível construir um osciloscópio com um custo de projeto de US\$35, com erro médio de 0,2% no eixo do tempo, 0,02V no eixo da tensão e taxa máxima de aquisição de 150 mil amostras por segundos, o que, segundo o autor, torna este um sistema "aceitável para o uso do projeto no ambiente de aprendizado", considerando a diferença de preço com osciloscópios comerciais.

Em uma abordagem semelhante, Nwokorie [7] utiliza um *smartphone*, junto à uma placa de Arduino UNO, para a criação de um microscópio. O chamado *SmartScope* utiliza uma estrutura de suporte com uma lente plano-convexa para adaptar a câmera do *smartphone* a captura de imagens microscópicas. A placa de Arduino controla o LED que serve como fonte de luz e permite o ajuste de intensidade do brilho por meio de botões, mostrando em um display LCD a configuração atual. O sistema tem funções de captura de imagem ou vídeo e permite o armazenamento dos dados coletados em um banco de dados (Microsoft Access). Assim como o trabalho de Junior, o grande objetivo é criar um sistema de baixo custo como alternativa aos microscópios comerciais e ajudar alunos sem experiência a aprender a realizar leituras no equipamento.

Também é possível citar o trabalho de Lin [8] que vai além do nível de aplicativo, fazendo modificações no kernel Linux para leitura de dados em um barramento CAN. Lin e sua equipe desenvolveram drivers e bibliotecas para realizar a leitura de dados de sensores em um automóvel por meio do barramento CAN. Dados relativos à velocidade, faróis, temperatura, chaves e alarme foram lidos diretamente das unidades de controle do veículo e mostrados na tela do *smartphone* em um aplicativo de instrumentação próprio, simulando o painel do carro. Seu trabalho evidencia que as possibilidades de uso dos sistemas Android podem se estender também para o nível de sistema.

Procurando na *Google Play*, é possível encontrar diversos aplicativos relacionados com Arduino. Muitos deles se encontram na forma de "aplicativo-tutorial", mostrando exemplos de código e diagramas para o ensino da plataforma, mas também é possível encontrar ambientes de desenvolvimento integrado (IDE) com capacidade de gravação das placas físicas, geradores de código automático, módulos para serem utilizados em projetos de automação (como controles *Wireless* que se integram às *Shields* do Arduino), etc.

Na parte de simuladores, vários foram os aplicativos de simulação/emulação de processadores e microcontroladores encontrados. Um destaque fica para o aplicativo *MCU Prototype Board Simulator*, que simula um kit de desenvolvimento (com botões, leds, LCD, etc.) e permite a execução de códigos

assembly do microcontrolador 68705.

Quanto à simulação de placas de Arduino, apenas um aplicativo foi encontrado. O *CircSim Circuit Simulator* apresenta a interface de um simulador convencionar de circuitos eletrônicos para PC, entanto seu uso é praticamente impossibilitado dado que sua interface não se ajusta adequadamente em dispositivos móveis (fato que pode ser comprovado pelos comentários dos usuários na página do aplicativo).

Sendo assim, o presente trabalho surge também para preencher uma lacuna existente e oferecer mais uma possibilidade para explorar o Arduino, seja para estudantes, hobistas ou qualquer pessoa que se interesse pelo assunto.

1.1 Motivação

Falar do Arduino

1.2 Objetivo(s)

Somente o(s) Objetivo(s) do trabalho.

1.3 Justificativas/relevância

Falar do simulador

1.4 Organização do Trabalho

Este trabalho está distribuído em XXX capítulos, incluindo esta introdução, dispostos conforme a descrição que segue:

Capítulo 2: Descreve

Capítulo 3: Discorre sobre

Capítulo 4: Apresenta

Embasamento Teórico ou Fundamentação Teórica

Embasamento teórico para o desenvolvimento do trabalho.

Leia o texto que está na Introdução e as dicas mais à frente...

Material e Métodos ou Desenvolvimento do Projeto

3.1 Material

Material utilizado no projeto.

3.2 Métodos

Métodos utilizados no projeto.

Resultados e Discussões

Resultados e discussões sobre o trabalho.

Conclusão ou Conclusões

Conclusões do trabalho de conclusão de curso.

Trabalhos futuros

Isso é para a Monografia Final de defesa.....

Referências

- [1] Microsoft relembra produtos que eram sucesso na época do xp. https://olhardigital.com.br/noticia/microsoft-relembra-produtos-que-eram-sucesso-na-epoca-do-xp/40602, Acesso em: 11 de março de 2018.
- [2] Samsung galaxy s9. https://comparador.tecmundo.com.br/samsung-galaxy-s9/, Acesso em: 18 de março de 2018.
- [3] R.R. Lecheta. Google Android 4^a edição: Aprenda a criar aplicações para dispositivos móveis com o Android SDK. Novatec Editora, 2015.
- [4] Content license. https://source.android.com/setup/licenses, Acesso em: 18 de março de 2018.
- [5] Paul Deitel, Harvey Deitel, and Abbey Deitel. *Android for Programmers: An App-Driven Approach*. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition, 2012.
- [6] José Ernesto Almas de Jesus JUNIOR. Implementação de um osciloscópio de baixo custo com exibição gráfica em aplicativo para android, 2016.
- [7] A. C. Eberendu, B. O. Omaiye, and E. C. Nwokorie. Using android application to turn smart device into digital microscope on arduino and window platform. In 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), pages 508–513, Nov 2017.
- [8] H. F. Teng, M. J. Wang, and C. M. Lin. An implementation of android-based mobile virtual instrument for telematics applications. In 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, pages 306–308, Dec 2011.