7

分享

Bag of Tricks for Convolutional Neural Networks

mileistone 🗘 深度学习(Deep Learning)话题下的优秀答主 Pascal、陈天奇、林天威、花花等 735 人赞同了该文章

+ 关注他

刚刚看了Bag of Tricks for Image Classification with Convolutional Neural Networks,一篇干货 满满的文章,同时也可以认为是GluonCV 0.3: 超越经典的说明书,通过这个说明书,我们也拥有 了超越经典的工具箱。

我们都知道trick在CNNs中的重要性,但是很少有文章详细讲解他们使用的trick,更少有文章对 比各个trick对最后效果影响,这篇文章把CNNs里几种重要的trick做了详细对比,可以认为是一 篇在CNNs中使用trick的cookbook。

这篇文章虽然题目是"for Image Classification",但是这里面提到的trick和结论,我认为也适用 于其他计算机视觉任务, 比如目标检测、语义分割、实例分割等等, 特别地, 我专门看了 GluonCV里Yolov3的实现,里面有使用label smoothing和mixup。

这篇文章的trick有五个方面: model architecture, data augmentation, loss function, learning rate schedule, optimization。总结一句话就是,网络input stem和downsample模块、mixup、 label smoothing、cosine learning rate decay、Ir warmup、zero γ对网络影响都不小。

model architecture

这一部分主要讨论ResNet-50结构的一些微调,包括input stem和downsample module的细微改 变。ResNet-50原始结构,和基于原始结构的一些微调如下图所示。

kernel size, output channel size and stride size (default is 1) 知乎 @mileistone are illustrated, similar for pooling layers. 原始ResNet-50

Output Output Output MaxPool (3x3, s=2)Conv Conv Conv (1x1)(1x1) Conv (3x3)(1x1)Conv Conv Conv (3x3, s=2)(1x1, s=2)Conv (3x3, s=2)AvgPool (3x3)(2x2, s=2) Conv Conv (1x1)(1x1) Conv (3x3, s=2) Input Input Input (c) ResNet-D (a) ResNet-B (b) ResNet-C Figure 2: Three ResNet tweaks. ResNet-B modifies the downsampling block of Resnet. ResNet-C further modifies the input stem. On top of that, ResNet-D again modifies the

downsampling block. ResNet-50网络结构的几个变体 结果对比如下:

Top-1 **FLOPs** #params 3.8 G 25 M 76.21

知乎 @mileistone

Top-5

92.97

Model

ResNet-50

	ResNet-50-B	25 M	4.1 G	76.66	93.28		
	ResNet-50-C	25 M	4.3 G	76.87	93.48		
	ResNet-50-D	25 M	4.3 G	77116@	m 93:52 ie		
网络结构微调的对比							
可以看出,这些小修改对计算量的影响很小,但是对最后的accuracy提升效果不小。我在设计目							

大,不过根据我的经验,对速度的影响应该会比较大。 data augmentation

ResNet-50-D

标检测网络的时候,也有类似的结论。多说一句,ResNet-50-C这种修改,虽然对计算量影响不

Refinements

Table 6: The validation obtained from Section 3.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 77.16 | 93.52 | 77.50 | 93.60 | 71.90 | 90.53 Efficient

mixup对模型提升较大,具体对比如下。

+ cosine decay	77.91	93.81	78.19	94.06	72.83	91.00
+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14
+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89
+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30
+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02
*						E
accuracies on Image	eNet for	stacking	training	refineme	nts one b	y file The baselite inchels is
		_ 1 1 ++				
	mixu	p对模型	效果影	. [0]		

Inception-V3

MobileNet

MobileNet

Top-1 Top-5

90.53

91.00

71.90

72.83

BS=1024

92.96

MobileNet

Top-5

Top-1

76.37

Inception-V3

Top-1

Top-5

data augmentation对模型效果影响蛮大的,不说mixup,单说resize的范围就能对模型效果有着 不小的影响,有时候好好调调data augmentation里的参数,带来的效果提升比对网络结构的改

进要还要大。数据和模型是一个硬币的两面,虽然改进数据没有改进模型听起来高大上,而且也

更脏,但是我认为对数据的理解才是一个算法工程师的核心竞争力。 loss function

ResNet-50-D

Top-1 Top-5

77.16

77.91

93.52

93.81

Efficient + cosine decay

Refinements

+ Zero γ

Refinements

MobileNet [11]

label smoothing对模型效果影响如下。

	+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14		
	+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89		
	+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30		
	+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02		
Table 6: The validation obtained from Section 3.	_	Net for	stacking	training 1	refinemer	nts one b	ý, she Fr	@pspile	જુલુંહા \$.સe
	labe	el smoo	thing对	模型效果	具的影响				

Inception-V3

Top-5

93.60

94.06

Top-1

77.50

78.19

optimization

optimization涉及到Ir warmup、zero γ、no bias decay、cosine decay。前三者对效果影响如下

图所示,可以看出Ir warmup和zero γ比较重要。

Heuristic Top-1 Top-5 Top-1 Top-5 92.70 92.54 Linear scaling 75.87 75.17 76.03 92.81 75.93 92.84 + LR warmup

93.03

76.19

cosine learning rate decay中对模型效果影响见下图,对比的是step learning rate decay。

ResNet-50-D

Top-1

BS=256

+ No bias decay + FP16	76.16	92.97	76.03	92.86
+ FP16	76.15	93.09	76.21	92.97
Table 4: The breakd heuristic on ResNet-5		ct for ea	ch effecti 知乎	ive training @mileistone
Ir warmup、zero	γ、no bi	as decay	对模型效果	果的影响

Efficient 77.16 93.52 77.50 93.60 71.90 90.53 77.91 93.81 78.19 94.06 72.83 91.00 + cosine decay + label smoothing 78.31 94.09 78.40 94.13 72.93 91.14 + distill w/o mixup 78.67 94.36 78.26 94.01 71.97 90.89 79.15 94.58 78.77 94.39 73.28 91.30 + mixup w/o distill

+ distill w/ mixup | **79.29** | **94.63** | 78.34 | 94.16 | 72.51 | 91.02

Table 6: The validation accuracies on ImageNet for stacking training refinements one by The The protection of the protec

Top-5

obtained from Section 3.	
	cosine learning rate decay对模型效果影响
一个有意思的细节	

文章对比了自己复现的baseline和reference模型效果,具体如下。可以看出复现的basline和

reference在三个模型结构下各有优劣,差距在0.5%到1%之间。我最近在用Yolov2和Yolov3,也

有类似的经历,各个深度学习框架之间本身会有一些细微的差别,自己实现的代码,也可能带来

一些细微差别,这些差别可能都细小到我们注意不到,然而最后却能对模型效果带来一个点左右

的影响。 Baseline Reference Model Top-5 Top-1 Top-5 Top-1 ResNet-50 [9] 75.87 92.70 75.3 92.2 77.32 Inception-V3 [26] 93.43 78.8 94.4

88.71

70.6

69.03

Table 2: Validation accuracy of reference implementations and our baseline. Note that the numbers for Inception V3 are obtained with 299-by-299 input images. leistone

PyTorch党的福利

卷积神经网络(CNN)

MaxPool (3x3, s=2)

Conv (3x3)

Conv (3x3)

Conv (3x3)

12 个常见 CNN 模型论文集锦

发表于AI有道

与 PyTorch 实现

红色石头

藏经阁

编辑于 2018-12-11

深度学习(Deep Learning)

文章被以下专栏收录

对一些有意思论文的理解

这个链接里有支持pytorch的预训练模型权重。

推荐阅读

《Bag of Tricks for Image

千佛山彭于... 发表于机器学习、...

Classification with CNN》

这篇文章是在ResNet基础上的工 作,融合了GoogleNet的Multipath和SENet、SKNet中的

Networks

dilligencer

2019-06-17

ResNeSt: Split-Attention

attention思想,将ResNeSt用作分

类、分割、目标检测的backbone,

大大提升了任务的性能。...

关注专栏

mage Classification with Convolutional

Amazon Web Services

ng, zhiz, hzaws, zhongyue, junyuanx, mli}@amazon

深度学习 cnn trick合集

sticky

Hang Zhang Zhongyue Zhang Juny

(2018-12-09

作者试过mixup对faster rcnn的效果吗,貌似掉点还掉不少

我试过在one-stage, 也是不涨反跌

炒 赞

▲ 已赞同 735

Maka 回复 zzzz

步 赞