Fundamentals of optimization

Mini-project: **CBUS**

Table of contents

01	Introduction Brief introduction about the problem	02	Modelling Modelling the problem
03	Proposed approaches Proposed approaches for solving the problem	04	Experimental results Data analysis and conclusions

01

Introduction

Introduction

- Problem: **CBUS**
 - Design a route for a bus that must **pick up and drop off** a set of passengers
 - The bus must start and end its route from a depot
 - The bus has a **maximum capacity** that cannot be exceeded
 - Objective: minimizing the total distance traveled

Introduction

■ Some application: transportation of the disabled and elderly, food delivery, etc.

02

Modelling

Modelling

- n: number of passengers/pickup delivery pairs \rightarrow number of nodes/locations: 2n + 1
- *k*: capacity/max. load of the bus/vehicle
- $P = \{1, ..., n\}$ and $D = \{n + 1, ..., 2n\}$: pickup and delivery nodes/locations, respectively
 - 0: origin/depot/start location of the bus
 - \circ 2*n* + 1: destination/end location of the bus (same geographical location as the depot)
 - Each pair (i, i + n), $i = \overline{1, n}$ represents a passenger request
 - \circ $V = P \cup D$: set of possible locations (except the depot)
 - E: set of possible trips/edges; $(i, j) \in E$ means the bus travels from i to j
- c: 2-D array; $c_{i,j}$ is the travel cost/distance from node i to node j
- $x_{i,j}$: binary flow variable, $\begin{cases} x_{i,j} = 1 \text{: the bus travels on edge } (i,j) \in E \\ x_{i,j} = 0 \text{: otherwise} \end{cases}$

$$\Rightarrow$$
 Objective: min $\sum_{(i,j)\in E} c_{i,j} * x_{i,j}$

The terms above may be used interchangeably throughout the presentation

03

Proposed approaches

Proposed approaches

Constraints programming (CP)

- Two additional variables are introduced for the CP problem:
 - \circ For the capacity constraint: l_i the load of the bus after leaving node i
 - Denote: l_i ++ after leaving a node $i \in P$, l_i -- after leaving a node $i \in D$
 - \circ For the precedence constraint: t_i the time of arrival of the bus at node i
- With that, we have a CP model as below:

minimize
$$\sum_{(i,j)\in E} c_{i,j} * x_{i,j}$$
 subject to
$$\sum_{j\in V\cup\{2n+1\}} x_{k,j} = \sum_{i\in\{0\}\cup V} x_{i,k} = 1, \quad \forall \ k\in V \qquad \text{(each node is visited exactly once)}$$

$$\sum_{j\in V} x_{0,j} = \sum_{i\in V} x_{i,2n+1} = 1 \qquad \qquad \text{(the bus must go to a pickup node after leaving start node; the same idea for the end node)}$$

$$x_{i,j} \in \{0,1\} \qquad \qquad \text{(binary variable)}$$

Constraints programming (CP)

$$t_0 = 0 \qquad \qquad \text{(time at start node)}$$

$$t_{2n+1} = 2n+1 \qquad \qquad \text{(time at end node)}$$

$$t_i < t_{i+n}, \qquad \forall i \in P \quad \text{(precedence constraint)}$$

$$x_{i,j} \big(t_i + 1 - t_j \big) = 0, \qquad \forall (i,j) \in E \quad \text{(change in time after going through a node)}$$

$$0 \le t_i \le 2n+1, \qquad \qquad t_i \in \mathbb{N} \quad \text{(time range)}$$

$$l_0 = l_{2n+1} = 0 \qquad \qquad \text{(load at depot)}$$

$$0 \le l_i \le k, \qquad \qquad l_i \in \mathbb{N} \quad \text{(load range)}$$

$$x_{i,j} \big(l_i + d_j - l_j \big) = 0, \qquad \qquad \text{(change in load after going through a node)}$$
 in which
$$d_i = \begin{cases} 0, \text{ if } i = 0 \text{ or } i = 2n+1 \\ 1, \text{ if } i \in P \\ -1, \text{ if } i \in D \end{cases}$$

Greedy

- Main idea: starting from the depot, the bus iteratively choose the nearest node that does not violate constraints to travel to
- Update load variable (current load of the bus) accordingly

Algorithm 1 Greedy Algorithm

```
1: function Greedy()
        load \leftarrow 0
 2:
       unvisited \leftarrow [1, 2, \dots, 2n]
       \pi \leftarrow [0]
                                                                                             \triangleright \pi is a route (solution)
 4:
        while unvisited is not empty do
 5:
            candidates \leftarrow FilterCandidates(unvisited, \pi, load)
 6:
            nearestLoc \leftarrow GetNearestLocation(\pi[-1], candidates)
 7:
            append nearestLoc to \pi
 8:
            remove nearestLoc from unvisited
 9:
            if nearestLoc \leq n then
10:
                load \leftarrow load + 1
11:
            else
12:
                load \leftarrow load - 1
13:
        append 0 to \pi
14:
        return \pi
15:
```

Greedy

- Candidates for the next location are chosen bases on the value of the load variable:
 - o If the max capacity is reached (load = k), only chooses delivery nodes that has their pickup node visited
 - Otherwise, chooses the unvisited pickup nodes too
- Time complexity: $O(n^2)$

```
16: function FILTERCANDIDATES(list unvisited, list \pi, int load)
17:
       candidates \leftarrow \text{empty list}
       if load < k then
18:
           for nextLoc \in unvisited do
19:
               if nextLoc \leq n or (nextLoc - n) \in \pi then
20:
                  append nextLoc to candidates
21:
       else
22:
           for nextLoc \in unvisited do
23:
               if (nextLoc - n) \in \pi then
24:
                  append nextLoc to candidates
25:
       return candidates
26:
27: function GetNearestLocation(int currentLoc, list candidates)
       nearestLoc \leftarrow -1
28:
       minDist \leftarrow \infty
29:
       for nextLoc \in candidates do
30:
           if c_{currentLoc.nextLoc} < minDist then
31:
               nearestLoc \leftarrow nextLoc
32:
               minDist \leftarrow c_{currentLoc,nextLoc}
33:
       return nearestLoc
34:
```

Neighborhood search

- Starts with a feasible solution, and iteratively improves it until local optimum is reached
 - Neighborhood is built on a *move* operator, which depends on the algorithm
 - Iteratively explores the neighborhood to find an improved one
 - Replaces current solution with this solution
 - Repeats the process until no further improvement exists
- Strategy: first find a starting solution by using greedy algorithm, then continue improving the solution using local search

■ Idea: iteratively move a pickup/delivery node to a appropriate location by **swapping** with another node in the route

Move a delivery node

- Idea: iteratively move a pickup/delivery node to a appropriate location by swapping with another node in the route
- Create separate lists to store frequently accessed data (routeIndex, loadList)
- Time complexity: $O(n^2)$

Algorithm 2 Node relocation

```
1: function NodeRelocation()
           \pi \leftarrow \text{Greedy}()
           initialize routeIndex and loadList
           repeat
                 for pickup \leftarrow 1 to n do
 5:
                       i_{\text{pickup}} \leftarrow \text{routeIndex[pickup]}
                       i_{\text{delivery}} \leftarrow \text{routeIndex[pickup} + \text{n}]
 7:
 8:
                       \Delta_{\text{best}} \leftarrow 0
                       i_{\text{swap}} \leftarrow -1
10:
                       for i_{\text{cand}} \leftarrow 1 to i_{\text{delivery}} do
                             if i_{\text{pickup}} \neq i_{\text{cand}} then
11:
                                   \Delta \leftarrow \text{DeltaObjective}(i_{\text{cand}}, i_{\text{pickup}}, \pi, \text{ routeIndex}, \text{ loadList})
12:
                                   if \Delta < \Delta_{\text{best}} then
13:
                                         \Delta_{\text{best}} \leftarrow \Delta
14:
                                         i_{\text{swap}} \leftarrow i_{\text{cand}}
15:
                       if i_{\text{swap}} \neq -1 then
16:
17:
                             SWAP(i_{cand}, i_{pickup})
                             update routeIndex and loadList
18:
                 for delivery \leftarrow n+1 to 2n do
19:
                       i_{\text{delivery}} \leftarrow \text{routeIndex[delivery]}
20:
                       i_{\text{pickup}} \leftarrow \text{routeIndex[delivery} - n]
21:
                       \Delta_{\text{best}} \leftarrow 0
                       i_{\text{swap}} \leftarrow -1
23:
                       for i_{\text{cand}} \leftarrow i_{\text{pickup}} to 2n do
24:
                             if i_{\text{delivery}} \neq i_{\text{cand}} then
                                   \Delta \leftarrow \text{DeltaObjective}(i_{\text{cand}}, i_{\text{delivery}}, \pi, \text{ routeIndex}, \text{ loadList})
                                   if \Delta < \Delta_{\rm best} then
                                         \Delta_{\text{best}} \leftarrow \Delta
28:
                                         i_{\text{swap}} \leftarrow i_{\text{cand}}
29:
                       if i_{\text{swap}} \neq -1 then
30:
31:
                             SWAP(i_{cand}, i_{delivery})
                             update routeIndex and loadList
32:
           until no more improvement found
            return \pi
```

• Calculate change of objective value (route cost) if i and i_c are swapped

```
35: function DeltaObjective(int i_c, int i, list \pi, list routeIndex, list loadList)
36: if PrecedenceViolateD(i_c, i, routeIndex) or CapacityViolateD(i_c, i, loadList) then
37: return \infty
38: if |i_c - i| = 1 then \Rightarrow check if i_c and i are next to each other
39: i_c, i \leftarrow \text{SORTED}(i_c, i)
40: return c_{\pi[i_c-1],\pi[i]} + c_{\pi[i_c],\pi[i+1]} - c_{\pi[i_c-1],\pi[i_c]} - c_{\pi[i],\pi[i+1]}
41: return c_{\pi[i_c-1],\pi[i]} + c_{\pi[i],\pi[i_c+1]} + c_{\pi[i-1],\pi[i]} + c_{\pi[i_c],\pi[i+1]}
-c_{\pi[i_c-1],\pi[i]} - c_{\pi[i_c],\pi[i_c+1]} - c_{\pi[i-1],\pi[i]} - c_{\pi[i],\pi[i+1]}
```

Precedence violation:

```
42: function PrecedenceViolateD(int i_c, int i, list \pi, list routeIndex)
43: if \pi[i_c] \leq n then \Rightarrow check if node at i_c is a pickup node or not
44: return i > \text{routeIndex}[\pi[i_c] + n]
45: return i < \text{routeIndex}[\pi[i_c] - n]
```

Capacity violation:

```
46: function Capacity Violated (int i, int j, list \pi, list loadList)
        i, j \leftarrow \text{SORTED}(i, j)
47:
48:
        x_i, x_j \leftarrow \pi[i], \pi[j]
        if (x_i \le n \text{ and } x_j \le n) or (x_i > n \text{ and } x_j > n) then
49:
             return False
50:
        if x_i \leq n then
51:
             for loc \leftarrow i \text{ to } j - 1 \text{ do}
52:
                 if loadList[loc] - 2 < 0 then
53:
                      return True
54:
         else
55:
             for loc \leftarrow i \text{ to } j - 1 \text{ do}
56:
                  if loadList[loc] + 2 > k then
57:
                      return True
58:
         return False
59:
```

- Capacity violation:
 - If node at i and j are both pickup (delivery) node, then swapping them will not change the load of the route

```
46: function Capacity Violated (int i, int j, list \pi, list loadList)
  47:
           i, j \leftarrow \text{SORTED}(i, j)
          x_i, x_j \leftarrow \pi[i], \pi[j]
  48:
           if (x_i \le n \text{ and } x_i \le n) or (x_i > n \text{ and } x_i > n) then
▶ 49:
               return False
  50:
           if x_i \leq n then
  51:
               for loc \leftarrow i \text{ to } j - 1 \text{ do}
  52:
                   if loadList[loc] - 2 < 0 then
  53:
                        return True
  54:
  55:
           else
               for loc \leftarrow i to j - 1 do
  56:
                   if loadList[loc] + 2 > k then
  57:
                        return True
  58:
           return False
  59:
```


- Capacity violation:
 - Else, if node at i is a pickup node, swapping i with j will **decrease** load of nodes from i to j-1 by 2

```
46: function Capacity Violated (int i, int j, list \pi, list loadList)
  47:
          i, j \leftarrow \text{SORTED}(i, j)
          x_i, x_j \leftarrow \pi[i], \pi[j]
  48:
          if (x_i \le n \text{ and } x_i \le n) or (x_i > n \text{ and } x_i > n) then
  49:
               return False
  50:
          if x_i \leq n then
▶ 51:
               for loc \leftarrow i to j - 1 do
  52:
                   if loadList[loc] - 2 < 0 then
  53:
                       return True
  54:
  55:
          else
               for loc \leftarrow i to j - 1 do
  56:
                   if loadList[loc] + 2 > k then
  57:
                       return True
  58:
          return False
  59:
```

$$n = 3, k = 2:$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\alpha \quad 0 \quad 1 \quad 4 \quad 3 \quad 2 \quad 5 \quad 6 \quad 0$$

$$l \quad 0 \quad 1 \quad 0 \quad 1 \quad 2 \quad 1 \quad 0 \quad 0$$

- Capacity violation:
 - Else, swapping i with j will **increase** load of nodes from i to j-1 by 2

```
46: function Capacity Violated (int i, int j, list \pi, list loadList)
  47:
           i, j \leftarrow \text{SORTED}(i, j)
           x_i, x_j \leftarrow \pi[i], \pi[j]
  48:
           if (x_i \le n \text{ and } x_i \le n) or (x_i > n \text{ and } x_i > n) then
  49:
               return False
  50:
           if x_i \leq n then
  51:
               for loc \leftarrow i \text{ to } j - 1 \text{ do}
  52:
                    if loadList[loc] - 2 < 0 then
  53:
                        return True
  54:
▶ 55:
           else
               for loc \leftarrow i to j - 1 do
  56:
                    if loadList[loc] + 2 > k then
  57:
                        return True
  58:
           return False
  59:
```

$$n = 3, k = 2:$$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$
 $\alpha \quad 0 \quad 1 \quad 4 \quad 3 \quad 2 \quad 5 \quad 6 \quad 0$
 $l \quad 0 \quad 1 \quad 0 \quad 1 \quad 2 \quad 1 \quad 0 \quad 0$

- Proposed by Ilhan Or (1976)
- A **restricted** version of 3-opt
- **Segment/block of nodes** in a route is relocated to a different position
- Modified to include precedence and capacity constraints

```
Algorithm 3 Or-opt algorithm
```

```
1: function OR-OPT(int k_{Or})
                                                                                                     \triangleright k_{\text{Or}} is maximum block length
         \pi \leftarrow \text{Greedy}()
         initialize routeIndex and loadList
         cands = [1, ..., 2n]
         repeat
              Shuffle(cands)
              for cand \in cands do
                   move \leftarrow empty tuple
                   s \leftarrow \text{routeIndex[cand]}
                   for e \leftarrow s to \min(2n, s + k_{\text{Or}} - 1) do
                        \Delta_{\text{remove}} \leftarrow c_{\pi[s-1],\pi[e+1]} - c_{\pi[s-1],\pi[s]} - c_{\pi[e],\pi[e+1]}
11:
                        \Delta_{\min Insert} \leftarrow -\Delta_{remove}
12:
                        for i \leftarrow s - 1 to 1 do
13:
                            if \pi[i] \le n and s \le \text{routeIndex}[\pi[i] + n] \le e then
                                  break
15:
                            if Capacity Violated (s, e, i, \pi) then
                                  continue
                             \Delta_{\text{insert}} \leftarrow \text{DeltaInsertion}(s, e, i, \pi)
                            if \Delta_{\min Insert} > \Delta_{insert} then
19:
                                  \Delta_{\text{minInsert}} \leftarrow \Delta_{\text{insert}}
                                  move \leftarrow (s, e, i)
21:
                        for i \leftarrow e + 2 to 2n + 1 do
                            if \pi[i-1] > n and s \leq \text{routeIndex}[\pi[i-1] - n] \leq e then
23:
                                  break
                            if Capacity Violated (s, e, i, \pi) then
                                  continue
                             \Delta_{\text{insert}} \leftarrow \text{DeltaInsertion}(s, e, i, \pi)
27:
                            if \Delta_{\text{minInsert}} > \Delta_{\text{insert}} then
                                  \Delta_{\text{minInsert}} \leftarrow \Delta_{\text{insert}}
                                  move \leftarrow (s, e, i)
30:
                        if \Delta_{minInsert} < 0 then break
31:
                   if move is not empty then update \pi, routeIndex, loadList based on move
32:
         until no more improvement found
33:
34:
         return \pi
```

- s, e: start and end index of the block
- i: insert the block before index i in the old route
- k_{Or} : maximum block length
- Time complexity: $O(k_{Or} * n^2)$

Insert **before** the old location (move backward):

```
for i \leftarrow s-1 to 1 do
13:
                              if \pi[i] \leq n and s \leq \text{routeIndex}[\pi[i] + n] \leq e then
14:
                                  break
15:
                              if Capacity Violated (s, e, i, \pi) then
16:
                                  continue
17:
                              \Delta_{\text{insert}} \leftarrow \text{DeltaInsertion}(s, e, i, \pi)
18:
                              if \Delta_{minInsert} > \Delta_{insert} then
19:
                                   \Delta_{\min Insert} \leftarrow \Delta_{insert}
20:
                                  move \leftarrow (s, e, i)
21:
```


- After the move, node at *i* got moved **after** the block
 - \Rightarrow have to check precedence violation for node at i

• Insert after the old location (move forward):

```
for i \leftarrow e+2 to 2n+1 do
22:
                           if \pi[i-1] > n and s \le \text{routeIndex}[\pi[i-1] - n] \le e then
23:
                                break
24:
                            if CapacityViolated(s,e,i,\pi) then
25:
                                continue
26:
                            \Delta_{\text{insert}} \leftarrow \text{DeltaInsertion}(s, e, i, \pi)
27:
                            if \Delta_{minInsert} > \Delta_{insert} then
                                 \Delta_{\min Insert} \leftarrow \Delta_{insert}
                                move \leftarrow (s, e, i)
30:
```


- After the move, node at i-1 got moved **before** the block
 - \Rightarrow have to check precedence violation for node at i-1

Calculating insertion cost:

```
35: function DeltaInsertion(int s, int e, int i, list \pi)
```

36: **return**
$$c_{\pi[i-1],\pi[s]} + c_{\pi[e],\pi[i]} - c_{\pi[i-1],\pi[i]}$$

- Capacity constraints move evaluation:
 - Every move operation that move the block forward is **equivalent** to a backward move:

$$(s, e, i) \equiv (e + 1, i - 1, s), \text{ if } i > e$$

```
37: function CapacityViolated(int s, int e, int i, list \pi)
          if i > e then
38:
               return CapacityViolated(e+1, i-1, s, \pi)
39:
          \Delta_{\text{loadInside}} \leftarrow \text{loadList}[i-1] - \text{loadList}[s-1]
40:
          \Delta_{\text{loadOutside}} \leftarrow 0
41:
          for i_{\text{inside}} \leftarrow s \text{ to } e \text{ do}
42:
                if loadList[i_{\text{inside}}] + \Delta_{\text{loadInside}} > k then
43:
                    return True
44:
               if \pi[i_{\text{inside}}] > n then
45:
                     \Delta_{\text{loadOutside}} \leftarrow \Delta_{\text{loadOutside}} - 1
46:
               else
47:
48:
                     \Delta_{\text{loadOutside}} \leftarrow \Delta_{\text{loadOutside}} + 1
          if \max(\text{loadList}[i, ..., s-1]) + \Delta_{\text{loadOutside}} > k then
49:
               return True
50:
          return False
51:
```


	0	1	2	3	4	5	6	7	8	9	10	11	
α	0	1	2	6	7	5	10	3	4	8	9	0	
l	0	1	2	1	0	1	0	1	2	1	0	0	
					4								
	0	1	2	5	6	7	3	4	8	9	10	11	
α	0	1	2	5	10	3	6	7	4	8	9	0	
l	0	1	2	3	2	3	2	1	2	1	0	0	
	unchanged				changed					unchanged			

```
37: function CapacityViolated(int s, int e, int i, list \pi)
          if i > e then
38:
               return CapacityViolated(e+1, i-1, s, \pi)
39:
          \Delta_{\text{loadInside}} \leftarrow \text{loadList}[i-1] - \text{loadList}[s-1]
40:
41:
          \Delta_{\text{loadOutside}} \leftarrow 0
          for i_{\text{inside}} \leftarrow s to e do
42:
               if loadList[i_{\text{inside}}] + \Delta_{\text{loadInside}} > k then
43:
                    return True
44:
               if \pi[i_{\text{inside}}] > n then
45:
                    \Delta_{\text{loadOutside}} \leftarrow \Delta_{\text{loadOutside}} - 1
46:
               else
47:
                    \Delta_{\text{loadOutside}} \leftarrow \Delta_{\text{loadOutside}} + 1
48:
          if \max(\text{loadList}[i,...,s-1]) + \Delta_{\text{loadOutside}} > k then
49:
               return True
50:
          return False
51:
```

Explanation:

$$n = 5$$

move = $(s, e, i) = (5, 7, 3)$
 $\Delta_{loadInside} = loadList[2] - loadList[4]$
 $= 2 - 0 = 2$

Because the block has 2 node smaller than n, and 1 node greater than n

$$\Rightarrow \Delta_{loadOutside} = 2 - 1 = 1$$

Pair relocation

- Idea: relocating a pickup and delivery pair (x, x + n) from its current positions (i, j)to new positions (i', j'), such that i' < j'
- Time complexity: $O(n^2)$

Algorithm 4 Pair relocation

```
1: function PairRelocation()
          \beta \leftarrow \text{Greedy}()
          repeat
               cands = Shuffle([1,...,n])
               for x \in cands do
 5:
                     \Delta_{\text{remove}} \leftarrow \text{CalculateRemovalCost}(\beta, x)
                     \Delta_{\text{minInsert}} \leftarrow -\Delta_{\text{remove}}
                     i, j \leftarrow \text{index of } x, x + n \text{ in } \beta
 8:
                     \alpha \leftarrow \beta after removing x and x + n
                     action \leftarrow (i-1, j-2)
                                                                                                          > action if no improvement found
10:
                     \max CapIdx, curMaxCap \leftarrow CalculateCapacity(\alpha)
11:
                     \Delta_{\text{consec}}, a_{\text{consec}} \leftarrow \text{ConsecutiveInsertion}(\alpha, x, \text{maxCapIdx}, \text{curMaxCap})
12:
                     if \Delta_{\rm consec} < \Delta_{\rm minInsert} then
13:
                          \Delta_{\min Insert} \leftarrow \Delta_{consec}
14:
15:
                          action \leftarrow a_{consec}
                     \Delta_{\text{nonConsec}}, a_{\text{nonConsec}} \leftarrow \text{NonConsecutiveInsertion}(\alpha, x, \text{maxCapIdx}, \text{curMaxCap})
16:
                     if \Delta_{\text{nonConsec}} < \Delta_{\text{minInsert}} then
17:
                          \Delta_{\min Insert} \leftarrow \Delta_{nonConsec}
18:
                          action \leftarrow a_{nonConsec}
19:
                     \beta \leftarrow \text{APPLYINSERTION}(\alpha, \text{ action})
20:
21:
          until no more improvement found
          return \beta
22:
```

Pair relocation - constraints

Constraints:

- O Due to how the pairs are getting relocated \Rightarrow precedence constraints never get violated
- Capacity constraints: make a list to store nodes that has highest load, then choose insertion locations based on the information

```
23: function CALCULATECAPACITY(list \alpha)
         curCap \leftarrow 0
24:
25:
         \max \operatorname{Cap} \leftarrow 0
         for i \leftarrow 1 to len(\alpha) - 1 do
26:
              if \alpha[i] \leq n then
27:
                   \operatorname{curCap} \leftarrow \operatorname{curCap} + 1
28:
                   if curCap > maxCap then
29:
                        ids \leftarrow [i]
30:
                        \max Cap \leftarrow curCap
31:
                   else if curCap = maxCap then
                        append i to ids
33:
              else
34:
                   \operatorname{curCap} \leftarrow \operatorname{curCap} - 1
35:
         append \infty to ids
36:
         return (maxCap, ids)
37:
```

▶ for boundary cases

 α : the route **after** remove (x, x + n)

Pair relocation - constraints

Example: n = 5, k = 3, (x, x + n) = (4, 9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

$$\Rightarrow$$
 maxCap = 3, ids = [3, 5, ∞]

Pair relocation – removal cost

- Calculate removal cost two cases:
- o i is next to j

o *i* and *j* are not next to each other


```
38: function CALCULATEREMOVALCOST(list \beta, int x)
39: if j-i=1 then
40: \Delta_{\text{remove}} \leftarrow c_{\beta[i-1],\beta[j+1]} - c_{\beta[i-1],\beta[i]} - c_{\beta[i],\beta[j]} - c_{\beta[j],\beta[j+1]}
41: else
42: \Delta_{\text{remove}} \leftarrow c_{\beta[i-1],\beta[i+1]} - c_{\beta[i-1],\beta[i]} - c_{\beta[i],\beta[i+1]} + c_{\beta[j-1],\beta[j+1]} - c_{\beta[j-1],\beta[j]} - c_{\beta[j],\beta[j+1]}
43: return \Delta_{\text{remove}}
```

 β : the route **before** remove (x, x + n)

Pair relocation – consecutive insertion

$$n = 5, k = 3, (x, x + n) = (4,9)$$

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

Pair relocation – consecutive insertion

n = 5, k = 3, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

$$maxCap = 3$$
$$maxCapIds = [3, 5, \infty]$$

- Observations:
 - We only care about the load of (x, x + n), since the load at other nodes are unchanged.

Pair relocation - consecutive insertion

n = 5, k = 3, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

$$maxCap = 3$$
$$maxCapIds = [3, 5, \infty]$$

- Observations:
 - o Cannot insert the pair **immediately** after index 3 or 5 (indices in maxCapIds):

n = 5, k = 3, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

maxCap = 3 $maxCapIds = [3, 5, \infty]$

- Observations:
 - Any other locations are fine:

	0	1	2	3	4			5	6	7	8	9
α	0	1	2	5	10	4	9	3	6	7	8	0
l	0	1	2	3	2	3	2	3	2	1	0	0

n = 5, k = 3, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	5	10	3	6	7	8	0
l	0	1	2	3	2	3	2	1	0	0

$$maxCap = 3$$
$$maxCapIds = [3, 5, \infty]$$

- Observations:
 - o If the maximum capacity is not reached, the pair can be freely inserted.

Find the best insertion location in O(n) time


```
44: function ConsecutiveInsertion(list \alpha, int x, list maxCapIdx, int curMaxCap)
45:
           p \leftarrow 0
           \Delta_{\text{minInsert}} \leftarrow \infty
46:
           action \leftarrow None
47:
           for i' \leftarrow 0 to 2n - 2 do
48:
                if i' = \max \operatorname{CapIdx}[p] and \operatorname{curMaxCap} \geq k then
49:
                      p \leftarrow p + 1
50:
                      continue
51:
                 \Delta_{\text{insert}} \leftarrow c_{\alpha[i'],x} + c_{x,x+n} + c_{x+n,\alpha[i'+1]} - c_{\alpha[i'],\alpha[i'+1]}
52:
                 if \Delta_{\text{insert}} < \Delta_{\text{minInsert}} then
53:
                      \Delta_{\text{minInsert}} \leftarrow \Delta_{\text{insert}}
54:
                      action \leftarrow (i', i')
55:
           return \Delta_{\min Insert}, action
56:
```

$$n = 5, k = 2, (x, x + n) = (4,9)$$

	0	1	2	3	4	5	6	7	8	9	
α	0	1	2	6	7	5	3	8	10	0	
l	0	1	2	1	0	1	2	1	0	0	

n = 5, k = 2, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	6	7	5	3	8	10	0
l	0	1	2	1	0	1	2	1	0	0

$$maxCap = 2$$

$$maxCapIds = [2,6,\infty]$$

- Observations:
 - Non-consecutive insertion has some similarities with consecutive insertion:
 - If the max capacity is not reached, the pair can be freely inserted.
 - Pickup node cannot be immediately inserted after a index in maxCapIds (2, 6 in this case)

n = 5, k = 2, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	6	7	5	3	8	10	0
l	0	1	2	1	0	1	2	1	0	0

$$maxCap = 2$$

$$maxCapIds = [2,6,\infty]$$

- Observations:
 - The load of nodes between x and x + n are **increased by 1**.
 - ⇒ the pair must be inserted inside between **two consecutive indices** in maxCapIds:

n = 5, k = 2, (x, x + n) = (4,9)

	0	1	2	3	4	5	6	7	8	9
α	0	1	2	6	7	5	3	8	10	0
l	0	1	2	1	0	1	2	1	0	0

$$maxCap = 2$$

$$maxCapIds = [2,6,\infty]$$

- Observations:
 - The load of nodes between x and x + n are **increased by 1**.
 - ⇒ the pair must be inserted inside between **two consecutive indices** in maxCapIds:

	0	1	2	3		4	5		6	7	8	9
α	0	1	2	6	4	7	5	9	3	8	10	0
l	0	1	2	1	2	1	2	1	2	1	0	0

Find the best insertion location in $O(n^2)$ time


```
57: function NonConsecutiveInsertion(list \alpha, int x, list maxCapIdx, int curMaxCap)
           p \leftarrow 0
58:
           \Delta_{\text{minInsert}} \leftarrow \infty
59:
           action \leftarrow None
           for i' \leftarrow 0 to 2n - 1 do
61:
                if curMaxCap < k then
                                                                                                      ▶ If the bus does not reach max capacity
62:
                      for j' \leftarrow i' + 1 to 2n - 2 do
63:
                            \Delta_{\text{insert}} \leftarrow c_{\alpha[i'],x} + c_{x,\alpha[i'+1]} - c_{\alpha[i'],\alpha[i'+1]} + c_{\alpha[j'],x} + c_{x,\alpha[j'+1]} - c_{\alpha[j'],\alpha[j'+1]}
64:
                            if \Delta_{\text{insert}} < \Delta_{\text{minInsert}} then
65:
                                  \Delta_{\text{minInsert}} \leftarrow \Delta_{\text{insert}}
66:
                                  action \leftarrow (i', j')
67:
                else
68:
                      if i' = \max \operatorname{CapIdx}[p] then
69:
                            p \leftarrow p + 1
70:
                            continue
71:
                      for j' \leftarrow i' + 1 to \min(2n - 2, \max \text{CapIdx}[p] - 1) do
72:
73:
                            \Delta_{\text{insert}} \leftarrow c_{\alpha[i'],x} + c_{x,\alpha[i'+1]} - c_{\alpha[i'],\alpha[i'+1]} + c_{\alpha[j'],x} + c_{x,\alpha[j'+1]} - c_{\alpha[j'],\alpha[j'+1]}
                            if \Delta_{\rm insert} < \Delta_{\rm minInsert} then
74:
                                  \Delta_{\text{minInsert}} \leftarrow \Delta_{\text{insert}}
75:
                                  action \leftarrow (i', j')
76:
           return \Delta_{\min Insert}, action
77:
```

04

Experimental result

Experimental results

- The experiments were conducted on a 2.30 GHz Intel i7-12700H CPU with 16 GB RAM, and were implemented in Python 3.11
- Two types of instances: instances from online submission platform, and randomly generated data

Insta	nce		С	P			Gre	edy	
n	k	min_c	max_c	avg_c	avg_t (s)	min_c	max_c	avg_c	avg_t (s)
5	3	37	37	37	0.0539	49	49	49	1.62×10^{-5}
10	6	38	38	38	1.45	41	41	41	3.52×10^{-5}
100	40				> 300	144	144	144	0.00602
500	40				> 300	6552	6552	6552	0.593
1000	40				> 300	12176	12176	12176	5.11

Insta	ance		Node sv	vapping			Or-opt (iter	$= 5, k_{Or} = 5)$			Pair rel	ocation	
n	k	min_c	max_c	avg_c	avg_t (s)	min_c	max_c	avg_c	avg_t (s)	min_c	max_c	avg_c	avg_t (s)
5	3	44	44	44	7.69×10^{-5}	37	41	38.96	0.000439	39	43	40.568	8.67×10^{-5}
10	6	40	40	40	0.000275	38	38	38	0.00224	38	38	38	0.000349
100	40	140	140	140	0.0331	125	130	127.32	0.465	123	131	127.45	0.216
500	40	6363	6363	6363	1.27	5528	5664	5595.05	11.2	5135	5563	5387.3	7.99
1000	40	11732	11732	11732	7.42	10306	10486	10417.1	52.6	9335	10059	9680.4	36.4

Comparison of the approaches on instances from online submission platform

Experimental results

- Random instances generation:
 - $c_{i,i} = 0$
 - o $c_{i,j}$ is a random integer in [1, 3n]
 - \circ $c_{i,j} = c_{j,i}$
- lacktriangleright Two cases: big and small value of k (corresponding to more constrainted or more relaxed capacity constraints)

T					k = i	n/50			
Insta	ince	Gre	edy	Node sv	vapping	Or-opt (iter	$= 5, k_{Or} = 5)$	Pair rel	ocation
n	k	avg_c	avg_t	avg_c	avg_t	avg_c	avg_t	avg_c	avg_t
50	1	100	1	100	2.13	97.2	78.1	99.5	1.99
100	2	100	1	98.8	2.55	85.7	272	86.7	2.19
200	4	100	1	98.6	1.99	84.9	183	91.9	1.79
500	10	100	1	98.4	1.53	90.9	10.5	95.3	1.77
1000	20	100	1	97.9	1.41	95.2	7.12	96.9	1.50

In at					k =	n/5			
Inst	ance	Gre	edy	Node sv	vapping	Or-opt (iter	$= 5, k_{Or} = 5)$	Pair rel	ocation
n	k	avg_c	avg_t	avg_c	avg_t	avg_c	avg_t	avg_c	avg_t
50	10	100	1	80.1	9.58	73.4	53.4	85.5	13.1
100	20	100	1	87.9	4.44	82.4	44.1	90.5	11.3
200	40	100	1	100	2.09	85.6	37.5	96.9	16.2
500	100	100	1	97.6	2.47	89.3	35.6	95.8	15.0
1000	200	100	1	93.5	2.56	85.2	30.7	94.6	17.3

Comparison of the approaches on randomly generated instances (relative to greedy method)

Experimental results

Conclusion:

- **Constraints programming**: gives optimal results, but has a very long run time, and fails to solve when n > 25
- **Greedy**: provides fast results with acceptable route cost, suitable for generating first feasible solution for neighborhood search algorithms
- Node swapping: fast solving time, but do not have much improvement over greedy method
- Or-opt: gives the best results among the heuristic methods (especially when *k* is large), but has long run time
- **Pair relocation**: good balance between speed and efficiency; fast solving time *k* is small

Thanks!

Do you have any questions?

For more information, please visit https://github.com/thanh309/Mini_Project_CBUS