武汉大学 2014---2015 学年度第二学期 《大学物理 C》试卷(A)

			T = 7			
	班级	学号		_ 姓名	分数	
一、填	真空题(每空2分,	共 36 分)				
1.	一质点沿半径为 R=	= 0.2 m 的圆周运	E动,其角i	速度为 $\omega=2t$	$+2t^2$ (rad/s), \pm	Et = 2 秒时的角
加速度	$\alpha = \underline{\qquad} rad/s^2$, 线	速度 ν =	m/s ,切线	加速度 $a_t = _{-}$	m/s^2 .	
2.	质量为 $m=2$ kg的质	点,在 $F=6t$	(牛顿)的	力作用下沿x?	轴正方向运动, <i>t</i>	$=0 \bowtie x_0=0,$
$v_0 = 0$	。质点的速度v与时间	可 <i>t</i> 的关系为	_; 质点的	位移 x 与时间	<i>t</i> 的关系为。	
3.	一质点在沿 x 轴方向	的力 $F = 3 + 4t$	(N)的作用 ⁻	下由静止开始	运动, 在0→2₹	砂内,力的冲量
为	$N \cdot s$; 若受沿 x 轴方向	可的力为 $F=3+$	4x(N), 在	€0→2米内,	力作的功为	_ J.
4.	设有流量 $Q = 0.1 \mathrm{m}$	³ /s 的水流过截	面积不均匀	习的圆管, A	处压强为 3.5×10) ⁵ Pa,截面积为
100c	\mathbf{m} , \mathbf{B} 处截面积为:	50cm, A处日	と B 处低 2	m,则A处	, 的流速为,	B 处的压强为
	. (g=10m/s²) (医学	*药学专业学生做)				
	如图所示,薄圆盘单位				上挖了个圆形	d = R/2 R O $r = R/4$
孔洞,乘	剩下的圆盘绕与盘面垂	直且通过圆盘中	心 0 的转动	J惯量为 $I = I$	$_{1}-I_{2}$,其中 I_{1}	r = R/4
是完整	的大圆盘绕与盘面垂直	1且通过圆盘中心	心的转动惯力	量,其值为 I_1	=, <i>I</i> ₂ 是	圆形孔洞处被挖
掉部分	绕与盘面垂直且通过圆	日盘中心 0 的转动	力惯量,其何	直为 $I_2 =$	_。(理工专业学	生做)
5.	一列平面简谐波的波	动表达式为 <i>y= f</i>	Acos [1000a	$\tau(t - \frac{x}{1000}) + \frac{x}{4}$	$\begin{bmatrix} \frac{\pi}{4} \end{bmatrix}$, 该波的波长为	习,频率为
,	x轴上相距为 $8m$ 的两	丙点的振动相位差				
6.	双缝干涉装置中,两	缝之间的距离为	0.02cm,	缝到屏距离为	1 80cm ,入射光沥	皮长为600nm,
则屏上	零级明条纹两侧第3级	吸明条纹之间的 路	巨离是	_;若将此装置	量放入水中(n=4/≤	3), 相邻两明翁
纹的距	离是					
	一束自然光通过两个					
	;若要使透射光					
8.	边长为10m的集装箱	双置士停止的卡?	车上,一飞	艇以 $0.6c$ 的 i	速度沿公路向西飞	行,飞艇上的人

测到集装箱的体积为____;若卡车以0.6c的速度沿公路向东行驶,卡车上的人测得飞艇的速度为__

二、计算题(共64分)

10. **(10 分)**(**理工专业学生做**)如图所示,一根质量为M,长为L的 均匀细棒可绕通过其上端点O的光滑水平轴在竖直平面内转动。开始时,棒竖直下垂。现有一个质量为m 的弹性小球以速度 v_0 沿水平方向与棒发生完全弹性碰撞,碰撞点距O点的距离为2L/3.试求:

- (1) 碰撞后棒获得的瞬时角速度 ω ,及小球的运动速率v和运动方向;
- (2) 棒摆到最高点时, 细棒与竖直方向之间的夹角 θ . (假定棒获得的能量不足以使棒转过一整圈)。
- 10. **(10 分)(医学药学专业学生做)**玻璃球(n=1.5)半径为 10cm,一点光源放在球前 40cm 处。 求近轴光线通过玻璃球后所成的像的位置?
- 11. **(12 分)** 放在光滑水平面上的木块m与一轻弹簧相连,弹簧的另一端固定在墙上,在弹性力作用下木块沿x轴作简谐振动. 已知振幅A=0.12m,周期为T=0.1s,t=0时 $x_0=0.06$ m, $v_0<0$,求: (1) 振动的圆频率和初相位,并写出振动的表达式;
 - (2) 振动的速度表达式;
 - (3) 从x = 0.06m 位置运动到x = -0.06m 处所需的最短时间.
- 12. (14 分) 如图,半径为 R_1 的均匀带电导体球壳,总电量为 q_1 ,其外套有一个半径为 R_2 的均匀带电的同心薄球壳,电量为 q_2 .求:

- (2) $R_1 < r < R_2$ 区域任一点的电势.
- 13. (14分)如图,真空中一半径为R的无限长圆柱导体通有电流I,电流 在其横截面上均匀分布,在圆柱导体旁放置有一矩形导体框,矩形导体框与圆 柱体的轴线共面,求:

- (2) 穿过图中矩形框的磁通量;
- (3) 当电流按 $I = I_m e^{-\lambda t}$ 的规律变化时,求矩形导体框中的感应电动势.
- 14. (14分) 波长为 $\lambda = 600$ nm 的单色平行光垂直入射到光栅上,第 2 级明条纹的衍射角为 30°,第 3 级缺级,问:

- (2) 光栅上狭缝可能的最小宽度是多大?
- (3) 按上述选定的值, 屏幕上实际呈现的条纹有多少条?

