Package 'ExaGeoStatCPP'

April 21, 2024

Type Package
Title R Package Demonstrates the R/C++ Language Interface for Exascale GeoStatistics software
Version 1.1.0
Date 2024-01-14
Author Mahmoud ElKarargy [aut, cph], Sameh Abdulah [cre, cph], KAUST King Abdullah University of Science and Technology [fnd, cph], Brightskies [cph]
Maintainer Sameh Abdulah <sameh.abdulah@kaust.edu.sa></sameh.abdulah@kaust.edu.sa>
Description An R-Interface for ExaGeoStatCPP: a parallel high performance unified framework for geostatistics on manycore systems. Its abbreviation stands for Exascale Geostatistics. The framework aims at optimizing the likelihood function for a given spatial data to provide an efficient way to predict missing observations. The framework targets many-core systems: clusters of CPUs and GPUs.
License GPL (>= 3)
Imports assertthat (>= 0.2.1), MASS, methods, Rcpp (>= 1.0.9)
Depends R (>= 3.5.0), assertthat (>= 0.2.1), MASS
RoxygenNote 7.2.3
SystemRequirements C++ (>= 11), lapacke (https://github.com/xianyi/OpenBLAS/releases)
NeedsCompilation yes
OS_type unix
<pre>URL https://www.github.com/ecrc/ExaGeoStatCPP</pre>
<pre>BugReports https://github.com/ecrc/ExaGeoStatCPP/issues</pre>
Encoding UTF-8
R topics documented:
ExaGeoStatData

2 ExaGeoStatData

Index		16
	simulate_data	14
	predict_data	
	model_data	
	mloe_mmom	9
	idw	8
	get_Z_measurement_vector	7
	get_locationsZ	
	get_locationsY	6
	get_locationsX	5

ExaGeoStatData

ExaGeoStatData Class

Description

The ExaGeoStatData class represents a data component in the ExaGeoStat system, that manages geo-statistical data with functions for location and descriptor manipulation. It is initialized with the size and dimension of the data.

Value

An object of class ExaGeoStatData representing a data component with the specified size and dimension.

Constructor

 ${\tt ExaGeoStatData}\ Creates\ a\ new\ instance\ of\ the\ {\tt ExaGeoStatData}\ class.\ {\tt ExaGeoStatData}(size, dimension)$

size An integer representing the size of the locations data.

dimension A string representing the dimensions of the data. - available dimension ("2D", "3D", "ST")

```
problem_size <- 4
dimension = "3D"
empty_data <- new(Data, problem_size, dimension)</pre>
```

ExaGeoStatHardware 3

ExaGeoStatHardware	ExaGeoStatHardware Class

Description

The ExaGeoStatHardware class represents a hardware component in the ExaGeoStat system. It is initialized with computation mode, and two integers representing number of CPU cores and number of GPU cores.

Value

An object of class ExaGeoStatHardware representing a hardware component with the specified component and number of CPU cores and GPU cores.

Constructor

ExaGeoStatHardware Creates a new instance of the ExaGeoStatHardware class. ExaGeoStatHardware(computation, num computation A string specifying the computation method, either "exact" or "dst" or "tlr".

num_of_cpus An integer representing number of CPU cores.

num_of_gpus An integer representing number of GPU cores.

Methods

finalize_hardware: finalize_hardware() Manually finalizes the hardware by resetting the context.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)
hardware$finalize_hardware()</pre>
```

fisher Compute the Fisher information matrix for a given data and theta vector

Description

This function computes the Fisher information matrix for a given dataset and theta vector, using a specified kernel and distance metric. It also allows for the inclusion of missing values and the specification of data dimensions.

4 fisher

Usage

fisher(kernel, distance_matrix = "euclidean", estimated_theta, dts, lts = 0, dimension = "2D", train_da

Arguments

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdnuNu", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate matern parsimonious", "bivariate spacetime matern stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddnu_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_dnu", "univariate_matern_dsigma_square" "univariate_matern_non_gaussian", "univariate_matern_nuggets_stationary", "univariate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean".

estimated theta

A list of estimated theta parameters.

dts A numeric value representing the time step size.

1ts A numeric value representing the length step size. Default is 0.

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D". train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

Value

A vector containing the Fisher information matrix elements.

```
dimension = "2D"
ncores <- 1
ngpus <- 0
dts <- 2
kernel <- "univariate_matern_stationary"
estimated_theta <- c(1,0.1,0.5)
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
```

get_locationsX 5

```
 \begin{aligned} & \text{z\_value} <- \text{c}(-1.272336140360187606, -2.590699695867695773, 0.512142584178685967, -0.163880452049749520)} \\ & \text{locations\_x} <- \text{c}(0.092042420080872822, 0.193041886015106440, 0.330556191348134576, 0.181612878614480805)} \\ & \text{locations\_y} <- \text{c}(0.928648813611047563, 0.103883421072709245, 0.135790035858701447, 0.434683756771190977)} \\ & \text{test\_x} <- \text{c}(0.347951, 0.62768) \\ & \text{test\_y} <- \text{c}(0.806332, 0.105196) \end{aligned}   \begin{aligned} & \text{fisher\_matrix} <- \text{fisher}(\text{train\_data=list}(\text{locations\_x, locations\_y, z\_value}), \text{ test\_data=list}(\text{test\_x, test\_y}), \text{ kerned} \end{aligned}
```

get_locationsX

Get X Locations

Description

Retrieves X coordinates of locations from ExaGeoStatData object.

Usage

```
get_locationsX(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

Value

A numeric vector of X locations.

```
ncores <- 1
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts,
x <- get_locationsX(data=exageostat_data)</pre>
```

6 get_locationsZ

get_locationsY

Get Y Locations

Description

This function retrieves the Y locations from the provided data.

Usage

```
get_locationsY(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

Value

A numeric vector of Y locations.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts,

y <- get_locationsY(data=exageostat_data)</pre>
```

get_locationsZ

Get Z Locations

Description

Retrieves Z coordinates of locations from ExaGeoStatData object.

Usage

```
get_locationsZ(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

Value

A numeric vector of Z locations.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "3D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts,
z <- get_locationsZ(data=exageostat_data)</pre>
```

```
get_Z_measurement_vector
```

Get descriptive Z values from ExaGeoStat data

Description

Retrieves descriptive Z values from ExaGeoStat data based on type.

Usage

```
get_Z_measurement_vector(data, type)
```

Arguments

data A list of ExaGeoStatData that contains the locations.

type A string specifying the type of descriptor value to retrieve (e.g., "Chameleon",

"HiCMA").

Value

A numeric vector of descriptive Z values.

8 idw

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "3D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts,

Z <- get_Z_measurement_vector(data=exageostat_data, type="chameleon")</pre>
```

idw

This function performs IDW interpolation for a given dataset and theta vector.

Description

This function performs Inverse Distance Weighting (IDW) interpolation for a given dataset and theta vector.

Usage

```
idw(kernel, distance_matrix = "euclidean", estimated_theta, dts, lts = 0, dimension = "2D", train_data,
```

Arguments

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdnuNu", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate_matern_parsimonious", "bivariate_spacetime_matern_stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddnu_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_dnu", "univariate_matern_dsigma_square" "univariate_matern_non_gaussian", "univariate_matern_nuggets_stationary", "univariate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary")

mloe_mmom 9

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". De-

fault is "euclidean"

estimated_theta

A list of estimated theta parameters

dts A numeric value representing the time step size

1ts A numeric value representing the length step size. Default is 0

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D" train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

test_measurements

A numeric vector contains the z measurements for testing.

Value

A vector containing the IDW error.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
problem_size <- 4</pre>
dimension = "2D"
dts <- 2
kernel <- "univariate_matern_stationary"</pre>
estimated_theta <- c(1,0.1,0.5)
z\_value <- c(-1.272336140360187606, -2.590699695867695773, 0.512142584178685967, -0.163880452049749520)
locations_x <- c(0.193041886015106440, 0.330556191348134576, 0.181612878614480805, 0.370473792629892440)
locations_y <- c(0.103883421072709245, 0.135790035858701447, 0.434683756771190977, 0.400778210116731537)
test_x \leftarrow c(0.347951, 0.62768)
test_y <- c(0.806332, 0.105196)
test_measurements = c(-1.05428, -1.47441)
idw_error = idw(kernel=kernel, estimated_theta=estimated_theta, dts=dts, train_data=list(locations_x, locations_
```

 $mloe_mmom$

Mean Misspecification of the Mean Square Error (MMOM) and Mean Loss of Efficiency (MLOE) using exact method.

Description

This function calculates Mean Misspecification of the Mean Square Error (MMOM) and Mean Loss of Efficiency (MLOE).

10 mloe_mmom

Usage

mloe_mmom(kernel, distance_matrix="euclidean", estimated_theta, true_theta, dts, lts=0, dimension="2D

Arguments

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdnuNu", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate_matern_parsimonious", "bivariate_spacetime_matern_stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddnu_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_dnu", "univariate_matern_dsigma_square" "univariate matern non gaussian", "univariate matern nuggets stationary", "univariate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary")

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean"

estimated_theta

A list of estimated theta parameters

true_theta A list of truth theta parameters

dts A numeric value representing the time step size

1ts A numeric value representing the length step size. Default is 0

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D" train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

Value

A vector of MLOE/MMOM values

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)
problem_size <- 4
dimension = "2D"</pre>
```

model_data 11

```
dts <- 2
kernel <- "univariate_matern_stationary"
estimated_theta <- c(1,0.1,0.5)
true_theta <- c(1.1,0.2,0.5)

z_value <- c(-1.272336140360187606, -2.590699695867695773, 0.512142584178685967, -0.163880452049749520)
locations_x <- c(0.092042420080872822, 0.193041886015106440, 0.330556191348134576, 0.181612878614480805)
locations_y <- c(0.928648813611047563, 0.103883421072709245, 0.135790035858701447, 0.434683756771190977)

test_x <- c(0.347951, 0.62768)
test_y <- c(0.806332, 0.105196)

result_mloe_mmom = mloe_mmom(train_data=list(locations_x, locations_y, z_value), test_data=list(test_x, test_y),</pre>
```

model_data

This function models data based on the provided computation method, kernel, distance matrix, and other parameters.

Description

This function models data based on the provided computation method, kernel, distance matrix, and other parameters.

Usage

```
model_data(computation = "exact", kernel, distance_matrix = "euclidean", lb, ub, tol = 4, mle_itr, dts,
```

Arguments

computation

A string specifying the computation method, either "exact" or "dst" or "tlr". Default is "exact".

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdnuNu", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate_matern_parsimonious", "bivariate_spacetime_matern_stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddnu_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_dnu", "univariate_matern_dsigma_square" "univariate_matern_non_gaussian", "univariate_matern_nuggets_stationary", "univariate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary")

12 model_data

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". De-

fault is "euclidean".

1b A numeric value representing the lower bound for the computation.

ub A numeric value representing the upper bound for the computation.

tol A numeric value specifying the tolerance for the computation. Default is 4.

mle_itr A numeric value specifying the maximum number of iterations for the compu-

tation.

dts A numeric value representing the time step size.

1ts A numeric value representing the length step size. Default is 0.

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D".

A numeric value Bandwidth for band matrices, applicable in certain computa-

tional kernels.. Default is 0.

max_rank A numeric value specifying the Maximum rank for low-rank approximations..

Default is 500.

data A list of data vectors. Default is 'R_NilValue'.

matrix A matrix object. Default is 'R_NilValue'.

x A numeric vector. Default is 'R_NilValue'.

y A numeric vector. Default is 'R_NilValue'.

z A numeric vector. Default is 'R_NilValue'.

Value

A vector containing the starting theta.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
lower_bound <- c(0.1,0.1,0.1)
upper_bound <- c(5,5,5)

z_value <- c( -1.272336140360187606, -2.590699695867695773, 0.512142584178685967, -0.163880452049749520)
locations_x <- c(0.193041886015106440, 0.330556191348134576, 0.181612878614480805, 0.370473792629892440)
locations_y <- c(0.103883421072709245, 0.135790035858701447, 0.434683756771190977, 0.400778210116731537)
```

theta <- model_data(kernel=kernel, lb=lower_bound, ub=upper_bound, mle_itr=10, dts=dts, matrix=z_value, x=location

predict_data 13

predict_data	This function predicts data based on the provided kernel, distance matrix, estimated theta, and other parameters.
	trix, estimated theta, and other parameters.

Description

This function predicts data based on the provided kernel, distance matrix, estimated theta, and other parameters.

Usage

```
predict_data(kernel, distance_matrix = "euclidean", estimated_theta, dts, lts = 0, dimension = "2D", tr
```

Arguments

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdnuNu", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate_matern_parsimonious", "bivariate_spacetime_matern_stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddnu_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_dnu", "univariate_matern_dsigma_square" "univariate_matern_non_gaussian", "univariate_matern_nuggets_stationary", "univariate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean"

estimated_theta

A list of estimated theta parameters

dts A numeric value representing the time step size

1ts A numeric value representing the length step size. Default is 0

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D" train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

Value

A vector of predicted z values

14 simulate_data

Examples

ncores <- 2

```
ngpus <- 0
problem_size <- 4
dts <- 2
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)
kernel <- "univariate_matern_stationary"
estimated_theta <- c(1,0.1,0.5)

z_value <- c( -1.272336140360187606, -2.590699695867695773, 0.512142584178685967, -0.163880452049749520)
locations_x <- c(0.193041886015106440, 0.330556191348134576, 0.181612878614480805, 0.370473792629892440)
locations_y <- c(0.103883421072709245, 0.135790035858701447, 0.434683756771190977, 0.400778210116731537)
test_x <- c(0.347951, 0.62768)
test_y <- c(0.806332, 0.105196)

predict_data(train_data=list(locations_x, locations_y, z_value), test_data=list(test_x, test_y), kernel=kernel,</pre>
```

simulate_data

This function simulates data based on the provided computation method, kernel, distance matrix, and other parameters.

Description

This function loads data into an ExaGeoStatData object using the provided configuration and computational settings.

Usage

```
simulate_data(kernel, initial_theta, distance_matrix = "euclidean", problem_size, seed = 0, dts, lts =
```

Arguments

kernel

A string specifying the kernel to use - available kernels ("BivariateMaternFlexible", "BivariateMaternParsimonious", "BivariateSpacetimeMaternStationary", "TrivariateMaternParsimonious", "UnivariateExpNonGaussian", "UnivariateMaternDbeta", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdbetaNu", "UnivariateMaternDdbetaBeta", "UnivariateMaternDdsigmaSquare", "UnivariateMaternDdsigmaSquareBeta", "UnivariateMaternDdsigmaSquareNu", "UnivariateMaternDnu", "UnivariateMaternDsigmaSquare", "UnivariateMaternNonGaussian", "UnivariateMaternNuggetsStationary", "UnivariateMaternStationary", "UnivariatePowExpStationary", "UnivariateSpacetimeMaternStationary", "bivariate_matern_flexible", "bivariate_matern_parsimonious", "bivariate_spacetime_matern_stationary", "trivariate_matern_parsimonious", "univariate_exp_non_gaussian", "univariate_matern_dbeta", "univariate_matern_ddbeta_beta", "univariate_matern_ddbeta_nu", "univariate_matern_ddsigma_square", "univariate_matern_ddsigma_square_beta", "univariate_matern_ddsigma_square_nu", "univariate_matern_ddnu", "univariate_matern_dsigma_square"

simulate_data 15

```
"univariate_matern_non_gaussian", "univariate_matern_nuggets_stationary", "uni-
                   variate_matern_stationary", "univariate_pow_exp_stationary", "univariate_spacetime_matern_stationary"
initial_theta
                  A list of initial theta parameters.
distance_matrix
                   A string specifying the distance metric, either "euclidean" or "great circle". De-
                   fault is "euclidean".
                   A numeric value representing the size of the problem to simulate.
problem_size
                   A numeric value specifying the seed for random number generation. Default is
seed
dts
                   A numeric value representing the time step size.
lts
                   A numeric value representing the length step size. Default is 0.
                   A string specifying the data dimension, either "2D" or "3D". Default is "2D".
dimension
                   A string specifying the path for logging. Default is "".
log_path
data_path
                   A string specifying the path for data storage. Default is "".
observations_file
                   A string specifying the file name for observations. Default is "".
recovery_file
                  A string specifying the file name for recovery. Default is "".
```

Value

A pointer to ExaGeoStatData object that contains the loaded data.

Examples

ncores <- 2 ngpus <- 0

```
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)

exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts,</pre>
```

Index

```
* S4 class
    ExaGeoStatData, 2
    ExaGeoStatHardware, 3

ExaGeoStatData, 2, 2
ExaGeoStatHardware, 3, 3

fisher, 3

get_locationsX, 5
get_locationsY, 6
get_locationsZ, 6
get_Z_measurement_vector, 7

idw, 8

mloe_mmom, 9
model_data, 11

predict_data, 13

simulate_data, 14
```