Contents

Database Systems	1
DBMS Architecture	1
Schemas	2
DBMS Architecture	2
DBMS Components	3
System Catalogue and Data Dictionary	4
Integrated	4
Independent	4
Data Dictionary Systems (DDS)	5

Database Systems

- Database Systems (DBS)
 - DBMS
 - DB
 - * application data
 - * associated metadata
 - Application programs
- Metadata and data are stored seperately

DBMS Architecture

- Database users are provided an abstract view of the data by hiding certain details of how it is physically stored
- DBMS describe Databases at three levels:
 - Internal (Physical) level
 - Conceptual (Logical) level
 - External (View) Level
- This is commonly referred to as the "three level DBMS architecture"

Schemas

- Each level of the architecture consists of one or more views of the underlying data
- Views are described as *schemas* (metadata)
- A DB consists of
 - physical data
 - an internal of physical schema
 - a conceptual or logical schema
 - several external schemas
- Schemas are stored in the system catalogue

DBMS Architecture

- Interal or Physical level
 - The lowest level of data abstraction
 - Internal Schema describes how the data is physically stored and organised on the storage medium
 - Various aspects are considered to achieve optimal runtime performance and storage space utilisation, including
 - * storage space allocation techniques
 - * access paths such as indexes
 - * data compression and encryption techniques
- Conceptual or Logical level
 - Deals with the logical structure of the entire database
 - Conceptual Schema describes what data is stored in the database and the relationships among the data without any concern for the physical implementation
 - This is the overall view of the database and includes all the information that is going to be represented in the database
- External of View level
 - The highest level of abstraction that deals with the user's view of the database
 - Most users and applications do not require access to the entire data stored in the database
 - External Schemas (or User Views) describe a part of the database for a particular group of users or applications
 - This is a powerful and flexible security mechanism, as part of the database are hidden from certain users

* the user is not aware of the existance of any attributes that are missing from the view

DBMS Components

- The physical Database is usually stored on the Hard Disk
 - The OS controls disk access
- The Stored Data manager (SDM) controls access to the DBMS information on disk
 - including buffer management
- DBMS Users
 - Casual Users
 - Application Programmers
 - Parametric Users
 - Database Administrator (DBA) Staff
- Different Interfaces are used by each type of user
- Data Definition Language (DDL) compiler processes schema definitions and stores them in a catalogue
- Catalogue contains information such as:
 - Names and Sizes of Files
 - Names and Data Type of Data Items
 - Storage Details
 - Mapping information among schemas
 - Constraints
 - ..
- "Casual Users" use an Interactive Query Interface
- The Query Compiler parses and validates the submitted query
- The internal query is then processed for **Query Optimisation**
 - Consults the DBMS Catalogue
 - Generates Executable Code
- Application Programmers write programs (Java, C++, etc) which need to access a DB
- The **Precompiler** extracts Data Manipulation Lanuage (DML) commands from the host language program
- The extracted commands are sent to the DML Compiler
- The rest of the program is sent to the Host Language Compiler
- Object code for DML commands and the rest of the program are linked forming a **canned transaction**

- The executable code of a canned transaction calls the run-time processor
- Canned transactions are used by parametric users
- Run-time Database Processor handles all Database access at run-time
 - Privileged Commands
 - Executable Queries
 - Canned Transactions
- Utilises and Updates the Catalogue
- May be responsible for Buffer Management
- Manages Concurrency Control and Backup and Recovery as part of Transaction Management

System Catalogue and Data Dictionary

- The DDL, and hence the system catalogue, are primarily concerned with *sytactic* definition of the data
- \bullet Data Dictionaries augment the internal DBMS catalogue with semantic support
 - Accessed directly by users (i.e. DBA)
 - Catalogue accessed by the DBMS
- There are two main ways of coupling Data Dictionaries and System Catalogues
 - Integrated Data Dictionary
 - Independent Data Dictionary

Integrated

- The majority of the DBMS have an integrated Data Dictionary
- Data Dictionary is an integral part of DBMS
 - Documents the computerised data that is managed by the DBMS
- It is generally fully active
 - accessed at run-time by DBMS software

Independent

- \bullet Independent, free-standing system performing its own data management functions
- Normally passive

- No run-time link between the Data Dictionary and the DBMS
- Hence DBMS has to have its own System Catalogue
- Often generates metadata automatically for a variety of DBMS is the form of DDL
 - Helps to ensure consistency of metadata between the Data Dictionary and the System Catalogue

Data Dictionary Systems (DDS)

A fully functional DDS should store and manage

- 1. Descriptions of the database schemas
- 2. Detailed information on physical database design
 - Storage structures
 - Access paths
 - File and record sizes
- 3. Descriptions of the types of database users, their responsibilities and their access rights
- 4. High-level descriptions of transactions, applications and the relationships of users to transactions
- 5. The relationship between database transactions and the data items referenced by them
- 6. Usage statistics such as frequencies of queries and transactions and access counts to different portions of the database
- 7. The history of any changes made to the database and applications, and documentation that describes the reasons for these changes