Banach Algebra

(1) Introduction:

Def: i) Algebra is a linear space with multiplication

ii) Banach Algebra is a Banach space equipped with multiplication. St. 11 ABII = 11 A II III III. for YA.B

& B.

kmk: A Banach algebra \widehat{B} can be embedded into a Banach algebra \widehat{B} containing an identity: $B \stackrel{i}{\hookrightarrow} \widehat{B} = B \times lk$ (suppose B is $b \mapsto cb.o$)

Define: $(a, \alpha)(b, \beta) = (ab + 4b + \beta a, 4\beta)$ $||(a, 4)||_{\hat{B}} = ||n||_{B} + |\alpha|$

=) B is Branch algebra with id=(0.1)

e.g. X is Barnet. L(X) is Barnet algebra.

prop. If A is a algebra. $a.b \in A$. Satisfies: ab=ba. Then: ab is invertible \Rightarrow so. a.b are.

If: $\exists 0. \text{ st. } nbc = cnb = e.$ $\Rightarrow bcn = bcn nbc = bnc = nbc = e.$

RMK: $Ab \neq ba$. Then it locsn't hold: L.J. $A: \mathcal{L}^2 \longrightarrow \mathcal{L}^2$. $A(X_n) = (X_2, X_3 - \cdots X_n - \cdots)$ $B: \mathcal{L}^2 \longrightarrow \mathcal{L}^2$. $B(X_n) = (0, X_1 - \cdots X_n - \cdots)$ $BA = i\lambda$. But A: B aren't inevitable.

(2) Spectral Theory:

1 Spectrum:

Lemma, For $n \in \mathcal{B}$. $\lambda \in \mathcal{C}(n) \Rightarrow \lambda^n \in \mathcal{C}(n^n)$ Pf: $\lambda^n - \lambda^n = (\lambda - n)(\lambda^n + \dots + \lambda^{n-1})$ =: AB = BAif $\lambda^n \in \mathcal{C}(n^n) \Rightarrow \lambda - n$ is inevitable

i.e. $\lambda \in \mathcal{C}(n)$. Contradiction!

Lemma. For a & B. P is poly nomint. Then:

P((a)) = (c) p(a)

Pf: Imppose $\lambda \in \delta(\lambda)$. if $\beta(\lambda) \in ecp(\lambda)$: $\Rightarrow \beta(\lambda) - \beta(\lambda) = 2(\lambda)(\lambda - \lambda) = (\lambda - \lambda)q(\lambda)$ i.e. Similarly $\lambda - \lambda$ is inevitable.

Next, we consider B is on C: $Prop. p(x) \in C(x)$. $A \in B$. Then P(G(A)) = G(P(A)) $Pf: If \lambda \in G(P(A))$. $P(X) - \lambda = C\widetilde{\Pi}(X - Zi)$ $Pf: If \lambda \in G(P(A))$. $P(X) = \lambda = C\widetilde{\Pi}(X - Zi)$ $Pf: If \lambda \in G(P(A))$. $Pf: I \in A \in A$ $Pf: If \lambda \in G(P(A))$ $Pf: If \lambda \in$

Lemma. Ha & B. OLA) = C is ept.

Pf: 1°) $\delta(n)$ is bhh: $\lambda - n = \lambda(1 - \frac{\pi}{\lambda})$. if $\|\frac{\alpha}{\lambda}\| < 1$.

then: $\lambda - n$ is inevitable by expansion.

2') $\ell(n) = \mathcal{O}/\delta(n)$ is open:

For $\|2\| < \|\lambda - n\|/2$: $(\lambda + 2 - n) = (\lambda - n)(1 + (2(\lambda - n)^{-1}))$ is inevitable.

Emk: In particularly. L'E) = LT & ScE) |

T is inevitable) is open set.

@ Molomorphic on B:

Defi i) $f: D(f) \subseteq C \longrightarrow B^{e}(Branch space)$ Strongly Analytic if $\forall x_0 \in D(f)$ $\exists B(x_0, r) \subset D(f) . St. \exists (x_0) \subseteq B.$ $f(z) = \sum_{0}^{\infty} A_{1}(Z-X_{0})^{n}. \forall z \in B(X_{0}, r)$ geni. $f: D(f) \subseteq C \longrightarrow B^{e}$ is weakly analytic

if $\forall C \in B^{e}$. $C \in B^{e}$ is holomorphic. $f(x) \in B^{e}$. $f(x) \in B^{e}$.

strongly analytic.

 $Pf: \text{ for } Z_{\bullet} \in \mathcal{E}(\Lambda). \quad \forall Z \in \mathcal{B}(Z_{\bullet}, Y)$ $(Z_{\bullet} - \Lambda)^{7} = (Z_{\bullet} - \Lambda + W)^{7} \cdot W \in \mathcal{B}(\Lambda, Y)$ $= (1 + W(Z_{\bullet} - \Lambda)^{7})^{7} (Z_{\bullet} - \Lambda)^{7}$ $= \sum_{i} \left[\sum_{j} W(Z_{\bullet} - \Lambda)^{7} \right]^{n} (Z_{\bullet} - \Lambda)^{7}$ $holds \quad \text{if} \quad Y_{\bullet} = \frac{1}{2} \| Z_{\bullet} - \Lambda \|.$

Lemma, If 121 > lim 11 nº 11" (exists by Frekete 7hm) Then (Z-w) = I Z-n, 17. set b= n/z. : 116"11 <1. (モーハ) = ヹ (1-6) = ヹ エ b : (Z-n) = IZ-n n is well-hof.

Cor. oral = [ZEC| |Z| & lim ||a" ||]

Lemma. an = i for gran de la contine 1f: = 1 for 5" (5- N) 19 = = 1 fin 5° E 5 k n 1 15 = n

Thm. max 121 = lim 11 n 11 ". for A & B. Atoin)

Pf: 1) ocn = &. for a is mentrivial. By contradiction: Y LE B* Locz-a) EOCC). But fez) = locz-N) is bla since for Z is large enough: 30>0. 102-N) 1 5 5 11 N11 /2" 5 C. \Rightarrow $f(z) \equiv const : (z-n)' \equiv const.$ 2') Prove: (LA) & Max () (Note: converse holds)

VERO, a" = Se = 12i /2; C= Bea. VEN)+1). VIN) = May 1/1. => 1 = 1/2 5, 22 (Y(N)+2) n+1 & i conti) a ((Y(N)+1) & - n) do Let n-100 = real = real +1. H1.0 PMK: 11 fenill = smp / 1. \(\frac{1}{12i}\) \(\int_{\text{2}}\) fesids! \(\frac{1}{22i}\) \(\int_{\text{2}}\) fesids! € \$= 111-211-1fesilas.

(3) Riesz Calculus:

Next, we consider Bannoh Algebra B is on C.

Det: Mole ocas) = Efl f is holomorphic in a open set up. ocn cus = sf: c -> c3.

RMK: For f & M. 105 cm). Det: fin): = is fissis-nils. I is union of Jordan curves contouring ren) with Winding number = 1. I = Uf for at B.

7hm. For a & B. Molcocass - B. Lefined by: Ract = fin). Then Ra is a homomorphism.

Pf: Chuk: Racff) = Racf Racq . cfqcs =: fcs, qui) RHS= (1) \$ \$ 1. 5-1 15 \$ 12 (5.26C)

> = 1 (5) 715) (5- N) 15 = f 7 (N) E. Z. I. Above) som = gfin).

PMK: i)
$$H_0(con)$$
, $\xrightarrow{R_n} B$. $R_n(z) = n$. $R_n(1) = 0$ is homomor.

ii) For $(f_n) \in B(U)$. $\sigma(n) \in U$. $f_n \xrightarrow{n \in U} f$. in U .

 $\Rightarrow f_n(n) \to f(n)$ as $n \to \infty$.

Characterization of Ra:

For map: l: Molcours -> B. st. i) e is algebra Nomomorphism. ii) e(1)=e. (12)=a. iii) \U = oca). open. (fa) = O(U). feocu). fa => f in $U \Rightarrow \ell(f_n) \rightarrow \ell(f)$. Then: $\ell = k_n$. Thm If f & Mole Gens). at B. Then: ferens = octions Then: 9'(2) + Nol(600)). But l= kncg'(2) 1(2)) = Rucgia) Rucgia) $\Rightarrow \ell = \frac{1}{f(2) - \lambda} (a) (f(a) - \lambda) \quad (outraliet!$ 2') Yn + f(o(m)). i.z. = x + 66(m). M = f(x). $h(z) = \frac{f(z) - f(\lambda)}{z - \lambda} \in Molc G(n)$

hizi = $z - \lambda$ Let from expanding by series. $\Rightarrow f(n) - f(\lambda) = h(n) (n - \lambda)$.

Note (n-1) isn't invertible. => 50 fcm - fcm

RMK: If f & Molcoins). J & Molcocfinsss

Them gof & Molcocns). Racgofs is well-kef.

(4) Commutative Branch Algebra:

Pef. B is commutative if Vr. b & B.

e.g. L'(X.A.M.) with multiplication is convolution t.

Rmk: It's a ring on G. I deal in B is defined.

Lemma. Every proper ideal I is contained in some maximal ideal.

Pt. Apply Zorn's Lemma.

Cor. Every element a which isn't inevitable is contained in some maximal ideal Pf: < NS is an ideal.

7hm. Any maximal i real in B is closed.

Pf. 1') \overline{I} is an ideal. for a $\epsilon \overline{I}$, \overline{I} an ϵI . $\rightarrow \lambda$. $\forall b \in \mathcal{B}$, And $\epsilon I \rightarrow \lambda b$. $\therefore \lambda b \in \overline{I}$

2') Since $I \subset B/B'(B')$ is set of inevitable element. Which is open) $\therefore \bar{I} \subset B/B'$. $\Rightarrow \bar{I} \subset \bar{I} \nsubseteq B \qquad \bar{I} = \bar{I}$.

7hm. Proper i Mal I is maximal = B = I + Ce.

- Pf: (=) if $I \subseteq J \in Ann(I)$. Then $\exists b \in I \cap J$. $b = A + \lambda c$. $A \notin I$. $\lambda \neq 0$. $\therefore \lambda c \notin J$. i.e. J = B.
 - (\Rightarrow) 1°) B/I is B_{nnmh} Algebra.

 Chark: EnJEbJ = EnbJ is well-haf HEnbJH = HEnJHHEbJHWhere HEXJH = L(X, I)
 - 2') B/I is a field.

 If $\exists \Gamma \cap J \text{ isn't invertible. } a \neq 0$.

 Then $\exists \text{ maximal invariable } J \notin B/I$. St. $\Gamma \cap J \subset J : (I + nB/I \subset J)$ But I + nB is a ideal contain I. $\therefore I + nB = B : \Rightarrow B/I \subset J : \text{ autialist!}$
 - 3') B/I = C. $\forall EnJ \neq EoJ$. $\sigma(EaJ) \neq \emptyset$. $\exists \lambda \in \sigma(EnJ)$ $EnJ - \lambda EeJ = Ea - \lambda eJ = EoJ$. $\therefore \exists b \in I$. $\exists b \in A \in A$. $\forall a \in B$.
- Def: LF m is multiplicative function on B if m = 0. $\forall A.b \in B$, meab) = mean meb). Perote the set of such functions by MeB)

Thm. MeB) \xrightarrow{d} I maximal ideal in B3. ϕ is bijection.

Pf: 1') For mt M(B). Check Kerem) is max ideal.

Vat Kerm. Vb & B., meab) = meno meb) = 0

in ab & Kerm. Ferm is an ideal.

Note that B/kerm = C. (m is LF).

Kerm Pee = B. Kerm is maximal.

2') For I is maximal ideal. I Dee = B.

Set mee) = 1. mea) = 0. Vat I.

Check me M(B).

PMK: $\forall m \in M(B)$. m is BLF and $||m|| \leq 1$. (No much unit)

Pf: $B\eta$ contradiction: $\exists a \in B$, ||a|| < 1. ||m(a)| = 1. $\Rightarrow ||=||m^*(a)||=||m(a^*)|| \cdot ||n^*|| \Rightarrow 0 \cdot \exists (n_k) \in (a^*) \cdot (\theta \in E) \\ m(E) = 1$ $m(n_k) \to \lambda (||x| = ||x| + m(a_k) \in b_k \to -\lambda \in N_m \text{ closed } :: \lambda = 0.$ Note that if e exists in B then ||m|| = 1. $\forall m \in M(B)$.

Since $||m(e)|| = ||m(e)||^2$. $B_{N} \neq m \neq 0$. So: ||m(e)|| = 1.

Thm, $\forall n \in \mathcal{B}$, $\lambda \in \sigma(n) = \exists m \in m(\mathcal{B})$. st. $m(n) = \lambda$.

Pf: $\lambda \in \sigma(n) = \neg \lambda \in isn't inevitable$.

(a) $\exists I \text{ is } mn \times imal i \lambda \in i.e. } kernul \cdot f \text{ in } m$.

for some $m \in M(\mathcal{B})$. (a) $m(n-\lambda e) = 0$ i.e. $m(n) = \lambda$.

RMK: (oca) = [min) | m & M(B) } Characterization

Pet: $(n_1 \cdots n_n) \in \mathcal{B}^n$. $(\lambda, \cdots, \lambda_n) \in \mathcal{C}^n$ belongs to $\ell(n_1, \cdots, n_n)$ if $\exists (b, \cdots, b_n) \in \mathcal{B}^n$. St. $\sum_{k=1}^n b_k (n_k - \lambda_k c) = e$.

Penote: $\delta(n_1, \cdots, n_n) = \int_{-\infty}^{\infty} |\ell(n_1, \cdots, n_n)|$

Prop. $\sigma(n_1 - n_1) = 1 (m(n_1) - m(n_1)) | m \in M(B) \}$.

Pf: $\vec{\lambda} \in \sigma(n_1 - n_1) \iff 1 \equiv b \in (\lambda k - n_k) | \vec{b} \in B^2 \} < B/B^2$ Note that $\vec{\lambda} \in (\lambda k - n_k) = 1 \pmod{n}$.

So it's contained in some maximal ideal. $\vec{b} = 1 \pmod{n}$. $\vec{b} = 1 \pmod{n}$.

i.e. ml I c/k-ak) bk) =0

(=) I (λκ-μιλκι) mobk) = 0. Y b ∈ B.

Which implies: munk) = λκ. Y 1 = k ≤ n.

RMK: It's generalization of 7hm. above in

n=1. case.

Prop. For $P(z_1...z_n)$ is polynomial. $(\lambda,...\lambda_n) \in \sigma(x_1...x_n)$ Then, $|P(\lambda,...\lambda_n)| \leq |P(x_1...x_n)|$ $pf: \exists m \in M(B). (\lambda_1...\lambda_n) = m(x_1...x_n)$ $p(\lambda,...\lambda_n) = pom(x_1...x_n) = moP(x_1...x_n)$ $\Rightarrow |P(\lambda_1...\lambda_n)| \leq |P(x_1...x_n)|$