Midterm: STAT 570

Philip Pham

November 14, 2018

1. Consider an situation in which we are interested in the risk of death in the first 5 years of life (the under-5 mortality mortality risk, or U5MR) in each of 2n areas in two consecutive time periods. Consider a hypothetical situation in which a malaria prevention intervention is randomized across the areas, immediately after the first time periods. Areas indexed by $i=1,\ldots,n$ are control areas, while areas $i=n+1,\ldots,2n$ receiving the intervention.

In each area and each time period alive/dead status of M_{it} children are recorded, call the number dead D_{it} for i = 1, ..., 2n, t = 0, 1. Let

$$Y_{it} = \log\left(\frac{D_{it}/M_{it}}{1 - D_{it}/M_{it}}\right),\tag{1}$$

denote the logit of the U5MR in area i in period t, i = 1, ..., n, t = 0, 1.

Suppose the true model is given by

$$Y_{it} = \beta_0 + \alpha_i + \beta_1 x_{it} + \epsilon_{it}, \tag{2}$$

where $\alpha_i \sim \mathcal{N}\left(0, \sigma_{\alpha}^2\right)$ are area-specific random effects and $\epsilon_{it} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$, represents measurement error, with α_i and ϵ_{it} independent, $i = 1, \ldots, 2n, t = 0, 1$. The covariate x_{it} is an indicator for the intervention so that $x_{i0} = 0$ for $i = 1, \ldots, 2n, x_{i1} = 0$ for $i = 1, \ldots, n$, and $x_{i1} = 1$ for $i = n + 1, \ldots, 2n$.

We will consider three models for the child mortality data:

Follow-up model: $Y_{i1} = \beta_0^{\dagger} + \beta_1^{\dagger} x_{i1} + \epsilon_{i1}^{\dagger}$, for $i = 1, \dots, 2n$.

Change model: $Z_i = Y_{i1} - Y_{i0} = \beta_0^* + \beta_1^* x_{i1} + \epsilon_i^*$, for i = 1, ..., 2n.

Analysis for Covariance (ANCOVA) model: $Y_{i1} = \beta_0^{\ddagger} + \gamma Y_{i0} + \beta_1^{\ddagger} x_{i1} + \epsilon_i^{\ddagger}$, for $i = 1, \dots, 2n$.

(a) Carefully interpret β_1^{\dagger} , β_1^{\star} and β_1^{\ddagger} in these models, and hence what each of $\mathbb{E}\left[\hat{\beta}_1^{\dagger}\right]$, $\mathbb{E}\left[\hat{\beta}_1^{\star}\right]$, and $\mathbb{E}\left[\hat{\beta}_1^{\dagger}\right]$ are unbiased estimators of.

Solution: Let's examine each case.

 β_1^{\dagger} : Let $Y_{:,1} = \begin{pmatrix} Y_{1,1} & \cdots & Y_{2n,1} \end{pmatrix}^{\mathsf{T}}$. Let $\beta = \begin{pmatrix} \beta_0 & \beta_1 \end{pmatrix}^{\mathsf{T}}$. Let X be the $2n \times 2$ matrix with 1s in the first column and $x_{1,1}, \ldots, x_{2n,1}$ in the second column. We can write $Y_{:,1} = X\beta + \alpha_i + \epsilon_{:,1}$.

We have that

$$\hat{\beta}^{\dagger} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}}Y_{:,1} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} (X\beta + \alpha + \epsilon_{:,1})$$

$$= \beta + (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} (\alpha + \epsilon_{:,1})$$

$$\sim \mathcal{N} \left(\beta, \left(\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right) (X^{\mathsf{T}}X)^{-1}\right), \tag{3}$$

so we'll obtain unbiased estimates of β with higher variance than if we had the correct model.

So, β_1^{\dagger} is the expected change in the logit of the U5MR after applying the treatment.

 β_1^* : We have that $Z_i = Y_{i1} - Y_{i0} = \beta_1 (x_{i1} - x_{i0}) + \epsilon_{i1} - \epsilon_{i0} = \beta_1 x_{i1} + (\epsilon_{i1} - \epsilon_{i0})$. Solving for $\hat{\beta}^*$, we find

$$\hat{\beta}^{\star} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} Z_{i} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} \left(X \begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix} + (\epsilon_{:,1} - \epsilon_{:,0}) \right)$$

$$= \begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix} + (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} (\epsilon_{:,1} - \epsilon_{:,0})$$

$$\sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix}, 2\sigma_{\epsilon}^{2} (X^{\mathsf{T}}X)^{-1} \right), \tag{4}$$

so $\hat{\beta}_1^{\star}$ is an unbiased estimate of β_1 .

Thus, β_1^{\star} is again the expected change in the logit of the U5MR after applying the treatment.

 β_1^{\ddagger} : Consider the different ways of writing Y_{i1} ,

$$Y_{i1} = \beta_0 + \alpha_i + \beta_1 x_{i1} + \epsilon_{i1}$$

$$= \beta_0^{\ddagger} + \gamma Y_{i0} + \beta_1^{\ddagger} x_{i1} + \epsilon_i^{\ddagger}$$

$$= \beta_0^{\ddagger} + \beta_1^{\ddagger} x_{i1} + \gamma (\beta_0 + \alpha_i + \epsilon_{i0}) + \epsilon_i^{\ddagger}$$
(5)

Define X^{\ddagger} to be the $2n \times 3$ matrix with the first two columns being X and third column being $Y_{:,0}$.

Then, we have that

$$\begin{pmatrix} \hat{\beta}_0^{\dagger} \\ \hat{\beta}_1^{\dagger} \\ \hat{\gamma} \end{pmatrix} = \left(\left(X^{\dagger} \right)^{\mathsf{T}} X^{\dagger} \right)^{-1} \left(X^{\dagger} \right)^{\mathsf{T}} Y_{:,1}. \tag{6}$$

From Equation 5, note that

$$Y_{i1} - \gamma Y_{i0} = (1 - \gamma) \beta_0 + \beta_1 x_{i1} + (1 - \gamma) \alpha_i - \gamma \epsilon_{i0} + \epsilon_{i1}$$
$$= \beta_0^{\ddagger} + \beta_1^{\ddagger} X_{i1} + \epsilon_i^{\ddagger}.$$

We can estimate γ with Equation 15. Given $\hat{\gamma}$, the least squares estimate

for β^{\ddagger} is

$$\begin{pmatrix}
\hat{\beta}_{0}^{\dagger} \\
\hat{\beta}_{1}^{\dagger}
\end{pmatrix} \mid \hat{\gamma} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} (Y_{:,1} - \hat{\gamma}Y_{:,0})
= \begin{pmatrix}
(1 - \hat{\gamma}) \beta_{0} \\
\beta_{1}
\end{pmatrix} + (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} ((1 - \hat{\gamma}) \alpha_{i} + \hat{\gamma}\epsilon_{i0} + \epsilon_{i1})
\sim \mathcal{N} \left(\begin{pmatrix}
(1 - \hat{\gamma}) \beta_{0} \\
\beta_{1}
\end{pmatrix}, \left((1 - \hat{\gamma})^{2} \sigma_{\alpha}^{2} + \hat{\gamma}^{2} \sigma_{\epsilon}^{2} + \sigma_{\epsilon}^{2} \right) (X^{\mathsf{T}}X)^{-1} \right).$$
(7)

Regardless of $\hat{\gamma}$, $\hat{\beta}_1^{\ddagger}$ is an unbiased estimate of β_1 , for

$$\mathbb{E}\left[\hat{\beta}_{1}^{\ddagger}\right] = \mathbb{E}_{\hat{\gamma}}\left[\mathbb{E}\left[\hat{\beta}_{1}^{\ddagger} \mid \hat{\gamma}\right]\right] \mathbb{E}_{\hat{\gamma}}\left[\beta_{1}\right] = \beta_{1}$$

by law of total expectation.

All in all, we have that the expected value of the estimates

$$\mathbb{E}\left[\hat{\beta}_{1}^{\dagger}\right] = \mathbb{E}\left[\hat{\beta}_{1}^{\star}\right] = \mathbb{E}\left[\hat{\beta}_{1}^{\dagger}\right] = \beta_{1},\tag{8}$$

so β_1^{\dagger} , β_1^{\star} , β_1^{\dagger} can all be interpreted as the expected change in U5MR after applying the treatment.

(b) Evaluate var $(\hat{\beta}_1^{\dagger})$, var $(\hat{\beta}_1^{\star})$, and var $(\hat{\beta}_1^{\dagger})$. Comment on the efficiency of the estimators arising from each of the three models.

Solution: While Equation 8 tells us that the expectation of our estimators is the same, the variances are different.

 $\hat{\beta}_1^{\dagger}$: We can compute the variance from Equation 3. First, we have that

$$X^{\mathsf{T}}X = \begin{pmatrix} 2n & \sum_{i=1}^{2n} x_{i1} \\ \sum_{i=1}^{2n} x_{i1} & \sum_{i=1}^{2n} x_{i1}^{2} \end{pmatrix} = \begin{pmatrix} 2n & n \\ n & n \end{pmatrix}$$

$$\implies (X^{\mathsf{T}}X)^{-1} = \frac{1}{n^{2}} \begin{pmatrix} n & -n \\ -n & 2n \end{pmatrix} = \frac{1}{n} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}. \tag{9}$$

Thus, we find that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\dagger}\right) = \frac{2}{n} \left(\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right). \tag{10}$$

 $\hat{\beta}_1^{\star}$: Using Equations 4 and 9, we compute that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\star}\right) = \frac{4}{n}\sigma_{\epsilon}^{2}.\tag{11}$$

 $\hat{\beta}_1^{\ddagger}$: We use Equation 7 to compute the variance conditional in terms of $\hat{\gamma}$. First, we note that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\ddagger}\right) = \left((1-\hat{\gamma})^{2} \sigma_{\alpha}^{2} + \hat{\gamma}^{2} \sigma_{\epsilon}^{2} + \sigma_{\epsilon}^{2}\right) (X^{\intercal} X)_{22}^{-1}$$

$$= \frac{2}{n} \left((1-\hat{\gamma})^{2} \sigma_{\alpha}^{2} + \hat{\gamma}^{2} \sigma_{\epsilon}^{2} + \sigma_{\epsilon}^{2}\right)$$

$$= \frac{2}{n} \left(\hat{\gamma}^{2} \left(\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right) - 2\hat{\gamma}\sigma_{\alpha}^{2} + \sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right). \tag{12}$$

From Equations 10 and 11, whether the follow-up model or change model estimates β_1 more efficiently depends on whether the variance of the random effect is larger than the random effect of the measurement error. When the variance of the random effect is larger $(\sigma_{\alpha}^2 > \sigma_{\epsilon}^2)$, var $(\hat{\beta}_1^{\dagger}) < \text{var}(\hat{\beta}_1^{\dagger})$, so the change model is more efficient. Otherwise if $\sigma_{\alpha}^2 < \sigma_{\epsilon}^2$, the follow-up model is more efficient.

The ANCOVA model is more interesting. From Equation 12, when $\hat{\gamma} = 0$, efficiency is the same as the follow-up model, and when $\hat{\gamma} = 1$, efficiency is the same as the change model. var $(\hat{\beta}_1^{\ddagger})$ is a strictly convex function of $\hat{\gamma}$ which is minimized at

$$\hat{\gamma}^* = \frac{\sigma_\alpha^2}{\sigma_\alpha^2 + \sigma_\epsilon^2}.\tag{13}$$

By the Gauss-Markov theorem that states that the ordinary least squares estimate gives the lowest variance estimate for unbiased estimators, we must have that $\hat{\gamma} = \hat{\gamma}^*$, so

$$\operatorname{var}\left(\hat{\beta}_{1}^{\ddagger}\right) = \frac{2}{n} \left((1 - \hat{\gamma}^{*})^{2} \sigma_{\alpha}^{2} + (\hat{\gamma}^{*})^{2} \sigma_{\epsilon}^{2} + \sigma_{\epsilon}^{2} \right)$$

$$= \frac{2}{n} \left(\frac{\sigma_{\alpha}^{2} \sigma_{\epsilon}^{2}}{\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}} + \sigma_{\epsilon}^{2} \right) \leq \frac{2}{n} \left(\max \left(\sigma_{\alpha}^{2}, \sigma_{\epsilon}^{2} \right) + \sigma_{\epsilon}^{2} \right), \quad (14)$$

which results in $\hat{\beta}_1^{\ddagger}$ being a more efficient estimator than both $\hat{\beta}_1^{\dagger}$ and $\hat{\beta}_1^{\star}$. The behavior of $\hat{\gamma}$ will be investigated more fully in the next two parts.

(c) Obtain an expression for $\hat{\gamma}$, in as simple a form as you can find.

Solution: From Equation 7, we have that

$$\hat{\gamma} = \left(\left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)^{-1} \left(X^{\ddagger} \right)^{\mathsf{T}} Y_{:,1} \right)_{3} \tag{15}$$

$$= \sum_{k=1}^{3} \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)_{3k}^{-1} \left(\left(X^{\ddagger} \right)^{\mathsf{T}} Y_{:,1} \right)_{k}$$

$$= -n \frac{\sum_{i=1}^{n} Y_{i0}}{\det \left((X^{\ddagger})^{\mathsf{T}} X^{\ddagger} \right)} \sum_{i=1}^{2n} Y_{i1} + n \frac{\sum_{i=1}^{n} Y_{i0} - \sum_{i=n+1}^{2n} Y_{i0}}{\det \left((X^{\ddagger})^{\mathsf{T}} X^{\ddagger} \right)} \sum_{i=n+1}^{2n} Y_{i1}$$

$$+ \frac{n^{2}}{\det \left((X^{\ddagger})^{\mathsf{T}} X^{\ddagger} \right)} \sum_{i=1}^{2n} Y_{i0} Y_{i1}$$

$$= \frac{n}{\det \left((X^{\ddagger})^{\mathsf{T}} X^{\ddagger} \right)} \left(n \sum_{i=1}^{2n} Y_{i0} Y_{i1} - \sum_{i=1}^{n} Y_{i0} \sum_{i=n+1}^{n} Y_{i0} \sum_{i=n+1}^{2n} Y_{i1} \right),$$

where $n/\det\left(\left(X^{\ddagger}\right)^{\mathsf{T}}X^{\ddagger}\right)$ can be obtained from Equation 16. One can also write Equation 15 in terms of empirical variance estimates as in Equation 19.

$$\frac{1}{n} \det\left(\left(X^{\dagger}\right)^{\mathsf{T}} X^{\dagger}\right) = n \sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=1}^{n} Y_{i0}\right)^{2} - \left(\sum_{i=1}^{n} Y_{i0}\right) \left(\sum_{i=n+1}^{2n} Y_{i0}\right) - \left(\sum_{i=n+1}^{2n} Y_{i0}\right) \left(2 \sum_{i=n+1}^{2n} Y_{i0} - \sum_{i=1}^{2n} Y_{i0}\right) \\
= n \sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=1}^{n} Y_{i0}\right)^{2} - \left(\sum_{i=n+1}^{2n} Y_{i0}\right)^{2}.$$
(16)

(d) On the basis of the previous question, or otherwise, give intuitive explanations for the efficiency results in Part 1b.

Solution: Denote the MLE estimates of the covariance between Y_{i0} and Y_{i1} without and with the intervention by

$$\hat{\operatorname{cov}}(Y_{i0}, Y_{i1} \mid x_{i1} = 0) = \frac{1}{n} \sum_{i=1}^{n} Y_{i0} Y_{i1} - \left(\frac{1}{n} \sum_{i=1}^{n} Y_{i0}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Y_{i1}\right)
\hat{\operatorname{cov}}(Y_{i0}, Y_{i1} \mid x_{i1} = 1) = \frac{1}{n} \sum_{i=n+1}^{2n} Y_{i0} Y_{i1} - \left(\frac{1}{n} \sum_{i=n+1}^{2n} Y_{i0}\right) \left(\frac{1}{n} \sum_{i=n+1}^{2n} Y_{i1}\right),$$
(17)

respectively. Similarly, we can denote the MLE of the variances of Y_{i0} without and with the intervention by

$$var(Y_{i0} \mid x_{i1} = 0) = \frac{1}{n} \sum_{i=1}^{n} Y_{i0}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} Y_{i0}\right)^{2}$$

$$var(Y_{i0} \mid x_{i1} = 1) = \frac{1}{n} \sum_{i=n+1}^{2n} Y_{i0}^{2} - \left(\frac{1}{n} \sum_{i=n+1}^{2n} Y_{i0}\right)^{2},$$
(18)

respectively. Substituting Equations 17 and 18 into the numerator and denominator of Equation 15, respectively, we can write

$$\hat{\gamma} = \frac{\hat{\text{cov}}(Y_{i0}, Y_{i1} \mid x_{i1} = 0) + \hat{\text{cov}}(Y_{i0}, Y_{i1} \mid x_{i1} = 1)}{\hat{\text{var}}(Y_{i0} \mid x_{i1} = 0) + \hat{\text{var}}(Y_{i0} \mid x_{i1} = 1)},$$
(19)

so we can interpret γ as the overall autocorrelation between Y_{i0} and Y_{i1} . Based on the true model, we can compute

$$\operatorname{var}(Y_{i0}) = \operatorname{var}(\epsilon_{i0}) + \operatorname{var}(\alpha_{i}) = \sigma_{\epsilon}^{2} + \sigma_{\alpha}^{2}$$

$$\operatorname{cov}(Y_{i0}, Y_{i1} \mid x_{i1} = 0) = \operatorname{cov}(Y_{i0}, Y_{i1} \mid x_{i1} = 1)$$

$$= \mathbb{E}[(\alpha_{i} + \epsilon_{i0})(\alpha_{i} + \epsilon_{i1})]$$

$$= \operatorname{var}(\alpha_{i}) = \sigma_{\alpha}^{2},$$

so the expected value of $\hat{\gamma}$ is

$$\mathbb{E}\left[\hat{\gamma}\right] \approx \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\epsilon}^2} \tag{20}$$

for large n by Stutsky's theorem, which is the value in Equation 13 that minimizes the variance.