Building a Prediction Model for Left-Ventricular Ejection Fraction

Jacob Albers | Shashin Chokshi

Inspiration

Eric Topol ♥ @EricTopol · 3m

The FDA approvals for #AI in medicine are accelerating.

@US_FDA @aidocmed @ZebraMedVision @baylabsinc @NeuralAnalytics @icometrix @Viz_Al @ArterysInc @maximumqai @AliveCor imagen.ai eyediagnosis.net

now ≥ 1/month; 10/13 scans, 1 eye disease, 1 neuro,1 heart

Company	FDA Approval	Indication
Aidoc	August 2018	CT Brain bleed diagnosis
iCAD	August 2018	Breast density via mammography
Zebra Medical	July 2018	Coronary calcium scoring
Bay Labs	June 2018	Echocardiogram EF determination
Neural Analytics	May 2018	Device for paramedic stroke diagnosis
IDx	April 2018	Diabetic retinopathy diagnosis
Icometrix	April 2018	MRI brain interpretation
Imagen	March 2018	X-ray wrist fracture diagnosis
Viz.ai	February 2018	CT Stroke diagnosis
Arterys	February 2018	Liver and lung cancer (MRI,CT) diagnosis
MaxQ-Al	January 2018	CT Brain bleed diagnosis
Alivecor	November 2017	Atrial fibrillation detection via Apple Watch
Arterys	January 2017	MRI heart interpretation

Eric Topol ♥ @EricTopol · Aug 12

Here's the list of peer-reviewed AI medical publications for image recognition so far, which bears little resemblance to the FDA approval list (and not using the company algorithms).

+ some major papers are due out soon.

Specialty	Images	Publication
Radiology	CT head for brain hemorrhage	Arbabshirani, NPJ (Nature) Digital Medicine, 2018
Pathology	Breast cancer	Bejnordi, JAMA, 2017
	Brain tumors (+ methylation)	Capper, Nature, 2018
Dermatology	Skin cancers	Esteva, Nature, 2017
	Melanoma	Haenssle, Annals of Oncology, 2018
Ophthalmology	Diabetic retinopathy	Gulshan, JAMA, 2016
	Congenital cataracts	Long, Nature Biomedical Engineering, 2017
	Macular degeneration	Burlina, JAMA Ophthalmology, 2018
	Retinopathy of Prematurity	Brown, JAMA Ophthalmology, 2018
	AMD and diabetic retinopathy	Kermany, Cell, 2018
Cardiology	Echocardiography	Madani, NPJ (Nature) Digital Medicine, 2018

LEFT VENTRICULAR EJECTION FRACTION (LVEF)

Amount of blood pumped out of the ventricle

Total amount of blood in the ventricle

ventricle al amount ood in the

Dilated cardiomyopathy

Arrhythmias

Pericardial diseases

Valvular diseases

Cardiac infections

Coronary artery disease Heavy alcohol or illicit drug use

Chemotherapy

Endocrine diseases

Systemic

Raw Cardiac MRIs (DICOM)

Image size: 256 x 256 Ndsb_22(118y, -View size: 1194 x 1194 Unnamed WL: 249 WW: 563 ARS TE: 1.16 TR: 42.15 Zoom: 466% Angle: 0 lm: 1/30 Uncompressed 1/1/01, 12:00:00 AM Thickness: 6.00 mm Location: -35.36 mm IR Made In Horos

Patient 1 | Slice 5

Patient 2 | Slice 10

Table 1 Summary

	level	Overal1	
n		500	
patient_id (mean (sd))		250.50	(144.48)
rows (mean (sd))		299.24	(107.76)
columns (mean (sd))		253.92	(88.94)
spacing (mean (sd))		1.26	(0.34)
<pre>slice_thickness (mean (sd))</pre>		7.75	(0.70)
plane (%)	COL	98	(19.6)
	ROW	402	(80.4)
<pre>slice_count (mean (sd))</pre>		10.80	(1.82)
up_down_agg (mean (sd))		9.18	(1.41)
age_years (mean (sd))		42.78	(20.40)
sex (%)	F	208	(41.6)
	M	292	(58.4)
<pre>small_slice_count (mean (sd))</pre>		0.37	(1.33)
normal_slice_count (mean (sd))		10.43	(1.19)
angle (mean (sd))		56.25	(10.02)
Systole (mean (sd))		71.96	(43.29)
Diastole (mean (sd))		165.87	(59.34)
<pre>ejection_fraction (mean (sd))</pre>		58.45	(10.91)

Table 1 Summary

	level	Overal1	L
n		500	
<pre>patient_id (mean (sd))</pre>		250.50	(144.48)
rows (mean (sd))		299.24	(107.76)
columns (mean (sd))		253.92	(88.94)
spacing (mean (sd))		1.26	(0.34)
slice_thickness (mean (sd))		7.75	(0.70)
plane (%)	COL	98	(19.6)
	ROW	402	(80.4)
slice_count (mean (sd))		10.80	(1.82)
up_down_agg (mean (sd))		9.18	(1.41)
age_years (mean (sd))		42.78	(20.40)
sex (%)	F	208	(41.6)
	M	292	(58.4)
<pre>small_slice_count (mean (sd))</pre>		0.37	(1.33)
normal_slice_count (mean (sd))		10.43	(1.19)
angle (mean (sd))		56.25	(10.02)
Systole (mean (sd))		71.96	(43.29)
Diastole (mean (sd))		165.87	(59.34)
ejection_fraction (mean (sd))		58.45	(10.91)

Results of Linear Regression using DICOM Metadata

Correlation = .5797133 **RMSE** = 654.8027

Correlation = 0.7052103 **RMSE** = 881.9993

Correlation = 0.2996 **RMSE** = 194.6957

Since ROC curves are designed point estimates - and we are trying to estimate a distribution - we need a different accuracy metric

CONTINUOUS RANKED PROBABILITY SCORE

$$C = \frac{1}{600N} \sum_{m=1}^{N} \sum_{n=0}^{599} (P(y \le n) - H(n - V_m))^2,$$

- Steps through the predicted and aggregates an average distance from real volumes
- *P* is the predicted distribution
- N is the number of rows in the test set
- V is the actual volume
- H(x) is the heaviside function: H(x) = 1 for $x \ge 0$, H(x) = 0

First option: our old friend, the Multilayer Perceptron

- Convert image to a 64x64 matrix (csv) of calculated distances
- Input is a 3-dimensional data shape (height, width, and frame numbers)
- Run separate networks to estimate both systolic and diastolic volumes
- Utilizing the mxnet python library package!

Resulting CRPS score: 0.2415 (not very good)

Other option, particularly good for image data: a convolutional neural network

- The dense connections between MLP layers makes this solution difficult to scale to image analysis
- CNNs provide a more effective way of pinpointing specific feature in an image

Main differences between MLP & CNN:

- CNNs have 3 dimensional layers (height, width and depth) that enable weights to be distributed along a depth parameter
- Each neuron in a CNN will only be connected to a small number of neurons on the preceding layer (not the fully connected layers of an MLP)

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Data

Kernel (Filter)

Each convolution layer utilizes a filter to calculate the dot product of adjacent cells (across all channels) and aggregate the results into a convolved feature matrix.

Since convolution layers will still create relatively large resulting matrices, a "pooling layer" downsamples the amount of data reduces the chance of overfitting the model

Our Scores:

Neural Network	Systole CRPS	Diastole CRPS
MLP	0.237614	0.238631
LeNet	0.038950	0.056660
AlexNet	0.034336	0.054229
GoogLeNet	0.115578	0.145879

Top Kaggle Scores: (We would rank 180/773)

