IMAGE PROCESSING USING CNN CLASSIFIERS

Table of Contents

AUTHOR	1
Load and explore the data	1
Display images of datastore	1
Calculate the number of images in each category	
Specify the image sizes	. 3
Dive the datset into Training and Validation	3
Define the CNN architecture	
Specify Training options	3
Train the network	
Classify Validated Images	4
Calculate the Accuracy	4

AUTHOR

S Sai Suryateja, Vellore Institute of Technology, Vellore

Load and explore the data

Display images of datastore

```
figure(1),perm = randperm(10000,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end
```


Calculate the number of images in each category

labelCount = countEachLabel(imds)

labelCount =

10×2 table

Label	Count
0	1000
1	1000
2	1000
3	1000
4	1000
5	1000
6	1000
7	1000
8	1000
9	1000

Specify the image sizes

```
img = readimage(imds,1);
size(img)
ans =
28 28
```

Dive the datset into Training and Validation

```
numTrainFiles = 750;
[imdsTrain,imdsValidation] =
  splitEachLabel(imds,numTrainFiles,'randomize');
```

Define the CNN architecture

```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
   batchNormalizationLayer
   reluLayer
   maxPooling2dLayer(2,'Stride',2)
   convolution2dLayer(3,16,'Padding','same')
   batchNormalizationLayer
   reluLayer
   maxPooling2dLayer(2,'Stride',2)
   convolution2dLayer(3,32,'Padding','same')
   batchNormalizationLayer
   reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
   classificationLayer];
```

Specify Training options

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

Train the network

```
net = trainNetwork(imdsTrain,layers,options);
```

IMAGE PROCESSING USING CNN CLASSIFIERS

Classify Validated Images

YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

Calculate the Accuracy

```
accuracy = sum(YPred == YValidation)/numel(YValidation)
accuracy =
    0.9900
```

Published with MATLAB® R2019a