Θεωρία Υπολογισμού

Το Εργαλείο FLEX

Το Εργαλείο FLEX

- FLEX: Fast LEXical analyzer generator
- Εργαλείο για την αυτοματοποιημένη παραγωγή Σαρωτών Λεκτικών Αναλυτών
- Σαρωτής (Scanner) Λεκτικός Αναλυτής (Lexical Analyzer)
 - λογισμικό που εκτελεί λεκτική ανάλυση (lexical analysis) κειμένου (προγράμματος)
- Δέχεται ως είσοδο ένα αρχείο κειμένου (συνήθως, πηγαίος κώδικας) ως μια ακολουθία από χαρακτήρες και αναγνωρίζει Λεκτικές Μονάδες (tokens)
- Τρέχουσα έκδοση 2.6.4 (https://github.com/westes/flex)
- Ευκολία χρήσης, υψηλή απόδοση, ευελιξία και εκφραστικότητα
- Συνεργασία με Γεννήτριες Συντακτικών Αναλυτών (π.χ. bison)

Λειτουργία FLEX

Μορφή Αρχείου Εισόδου flex

Κάθε αρχείο flex αποτελείται από τρεις ενότητες χωρισμένες μεταξύ τους από μία γραμμή η οποία περιέχει μόνο το σύμβολο %% στην αρχή της:

definitions

응응

rules

응응

user code

Ενότητα Ορισμών (definitions)

- Περιέχει δηλώσεις
 - ο ονοματισμένων ορισμών (name definitions) και
 - αρχικές συνθήκες (start conditions)
- Οι ονοματισμένοι ορισμοί έχουν τη μορφή:
 - name definition
 - ο name: είναι μια λέξη η οποία ξεκινά με ένα γράμμα ή το χαρακτήρα κάτω παύλας (_) ακολουθούμενο από άλλα γράμματα, ψηφία, κάτω παύλες (_) ή παύλες (-)
 - o definition: κανονική έκφραση που εκτείνεται μέχρι το τέλος της γραμμής
 - Ακολούθως χρησιμοποιώντας το name μέσα σε αγκύλες {name} μπορούμε να αναφερόμαστε στο συγκεκριμένο ορισμό

Ενότητα Ορισμών (2/6)

Παραδείγματα Ορισμών

```
DIGIT [0-9]

ID [a-z][a-z0-9]*

{DIGIT}+"."{DIGIT}*
```

Ίδιο με την έκφραση:

```
([0-9])+"."([0-9])*
```

Ενότητα Ορισμών (3/6)

- Σχόλια
 - Ο flex υποστηρίζει σχόλια παρόμοια με τη γλώσσα C (C-style comments). Ο,
 τιδήποτε μεταξύ /* και */ θεωρείται σχόλιο. Ο flex μεταφέρει τα σχόλια αυτολεξεί στο παραγόμενο αρχείο κώδικα (lex.yy.c)
- Σύμβολα % { και % }
 - Ο,τιδήποτε περικλείεται μεταξύ των συμβόλων % { και % } επίσης αντιγράφεται αυτολεξεί στο παραγόμενο αρχείο κώδικα (lex.yy.c) χωρίς τα σύμβολα % { και % }
- Τα σύμβολα % { και % } πρέπει να εμφανίζονται μόνα τους σε ξεχωριστές γραμμές χωρίς ένθεση (unindented)

Ενότητα Ορισμών (4/6)

Παράδειγμα % { και % }

```
%{
    #define TK_ID 0
    #include <stdio.h>
    int lineCount = 0;
%}
```

Ενότητα Ορισμών (5/6)

- %top μπλοκ
 - Ένα %top μπλοκ είναι παρόμοιο με ένα % { ... % } μπλοκ με τη διαφορά ότι τα περιεχόμενα του %top μπλοκ μεταφέρονται στην αρχή του παραγόμενου αρχείου κώδικα πριν από οποιονδήποτε ονοματισμένο ορισμό.
 - Οι χαρακτήρες { και } χρησιμοποιούνται για την οριοθέτηση του %top μπλοκ.
 - Το %top μπλοκ χρησιμεύει για τον ορισμών οδηγιών προς τον προεπεξεργαστή (preprocessor) ή για τη συμπερίληψη αρχείων πριν από τον παραγόμενο κώδικα.

Ενότητα Ορισμών (6/6)

Παράδειγμα %top μπλόκ

```
%top{
    /*This code goes at the "top" of the generated file*/
    #include <stdio.h>
    #include <string.h>
}
```

Ενότητα Κανόνων (rules)

- Η ενότητα κανόνες περιέχει μια σειρά κανόνων της μορφής:
 - o pattern action
- πρότυπο (pattern): κάποιος ονοματισμένος ορισμός (definition) ή κάποια κανονική έκφραση
- ενέργεια (action): τοπικός κώδικας C/C++ ανάμεσα σε { και }
- Όταν η είσοδος ταιριάζει με κάποιο pattern, εκτελείται το action
- Σειρά εκτέλεσης κανόνων (προτεραιότητα): από πάνω προς τα κάτω

Κανόνες - Patterns (1/5)

Έκφραση	Ταιριάζει με (matches)
x	το χαρακτήρα 🗴
\x	αν x είναι ένας από τους χαρακτήρες a , b , f , n , r , t , v , την ANSI-C ερμηνεία του, αλλιώς τον ίδιο τον χαρακτήρα x (χρησιμοποιείται για τους ειδικούς χαρακτήρες - escape characters, όπως για παράδειγμα το '*')
•	οποιονδήποτε χαρακτήρα εκτός του newline
\x2a	το χαρακτήρα με δεκαεξαδική τιμή 2a
\123	το χαρακτήρα με οκταδική τιμή 123

Kανόνες - Patterns (2/5)

Έκφραση	Ταιριάζει με (matches)
[xyz]	έναν από τους χαρακτήρες x , y , z (κλάση χαρακτήρων)
[abj-oZ]	ένα a , ή ένα b , ή οποιονδήποτε χαρακτήρα από το j έως και το o ή το Z (κλάση χαρακτήρων με ένα εύρος (range))
[^A-Z]	οποιονδήποτε χαρακτήρα εκτός αυτών της κλάσης, σε αυτή την περίπτωση, οποιονδήποτε χαρακτήρα εκτός από τα κεφαλαία γράμματα
r*	καμιά ή περισσότερες εμφανίσεις της κανονικής έκφρασης r
r+ végine	μια ή περισσότερες εμφανίσεις της κανονικής έκφρασης r

Κανόνες - Patterns (3/5)

Έκφραση	Ταιριάζει με (matches)	

r? καμιά ή μία εμφάνιση της κανονικής έκφρασης r (προαιρετικά r)

 ${f r}$ { 2 , 5 } 2 μέχρι 5 εμφανίσεις της κανονικής έκφρασης ${f r}$

r{2,} 2 ή περισσότερες εμφανίσεις της κανονικής έκφρασης r

{name} την επέκταση του ονοματισμένου ορισμού name, όπως αυτός ορίζεται στην ενότητα των ορισμών (definitions)

"[xyz]\"foo" τη συμβολοσειρά [xyz] "foo

Κανόνες - Patterns (4/5)

Έκφραση Ταιριάζει με (matches)

r | s την κανονική έκφραση r ή την s (διάζευξη)

rs την κανονική έκφραση r ακολουθούμενη από την s (παράθεση)

r/s την κανονική έκφραση r αλλά μόνο όταν ακολουθείται από την κανονική έκφραση s (η οποία δε διαβάζεται στη yytext)

^r την κανονική έκφραση **r** αλλά μόνο στην αρχή μιας γραμμής

την κανονική έκφραση **r** αλλά μόνο στο τέλος μιας γραμμής

r\$

Kανόνες - Patterns (5/5)

Έκφραση	Ταιριάζει με (matches)
<s>r</s>	την κανονική έκφραση r αλλά μόνο με αρχική συνθήκη s
<s1,s2,s3>r</s1,s2,s3>	την κανονική έκφραση r αλλά μόνο με αρχική συνθήκη s1 ή s2 ή s3
<*>r	την κανονική έκφραση 🛨 με οποιαδήποτε αρχική συνθήκη
< <eof>></eof>	το τέλος του αρχείου
<s1,s2><<eof>></eof></s1,s2>	το τέλος του αρχείου αλλά μόνο με αρχική συνθήκη s1 ή s2

Ταίριασμα της Εισόδου (1/3)

- Όταν εκτελείται (run) ο Λεκτικός Αναλυτής, αναλύει την είσοδο για συμβολοσειρές (strings) οι οποίες ταιριάζουν με κάποια από τα δηλωθέντα patterns του
- Αν ταιριάζουν περισσότερα από ένα patterns επιλέγεται αυτό που ταιριάζει τους περισσότερους χαρακτήρες εισόδου (το μεγαλύτερο μήκος εισόδου)
- Αν ταιριάζουν περισσότερα από ένα patterns με το ίδιο μήκος εισόδου τότε επιλέγεται αυτό που έχει δηλωθεί πρώτο στο αρχείο flex

Ταίριασμα της Εισόδου (2/3)

- Όταν καθοριστεί το ταίριασμα (matching), το τμήμα της εισόδου που αντιστοιχεί στο ταίριασμα, ονομάζεται λεκτική μονάδα (token), είναι διαθέσιμο μέσω της καθολικής μεταβλητής char* yytext
 - Το μήκος της λεκτικής μονάδας, δηλαδή το πλήθος των χαρακτήρων της, είναι διαθέσιμο μέσω της καθολικής μεταβλητής int yyleng
- Εκτελείται η ενέργεια του pattern που ταίριαξε με τμήμα της εισόδου
- Συνεχίζεται το σάρωμα (scanning) της εναπομείνασας εισόδου για το επόμενο ταίριασμα

Ταίριασμα της Εισόδου (3/3)

- Αν δεν βρεθεί ταίριασμα, τότε εκτελείται ο προκαθορισμένος κανόνας (default rule):
 - Ο επόμενος χαρακτήρας της εισόδου δίνεται στην έξοδο (standard output)
- Παρατήρηση
 - Μόνο του το σύμβολο %% σε ένα αρχείο flex δημιουργεί έναν πολύ απλό Λεκτικό Αναλυτή ο οποίος απλά αντιγράφει στην έξοδο την είσοδό του, χαρακτήρα προς χαρακτήρα

Kανόνες - Actions (1/2)

- Σε ένα κανόνα, κάθε pattern έχει μια αντίστοιχη ενέργεια (action) η οποία μπορεί να είναι οποιαδήποτε εντολή (statement) της C
- Αν η ενέργεια περιλαμβάνει πολλές εντολές της C οι οποίες εκτείνονται σε πολλές γραμμές, περικλείονται σε άγκιστρα

```
o pattern {
...
}
```

- Η ενέργεια εκτελείται κάθε φορά που η είσοδος ταιριάζει (match) με το αντίστοιχο pattern
- Αν η ενέργεια είναι κενή, τότε η είσοδος που ταιριάζει, απλώς αγνοείται

Κανόνες - Actions (2/2)

- Ειδικές Οδηγίες (special directives)
 - o ECHO
 - Εκτυπώνει στην έξοδο το τμήμα της εισόδου που αντιστοιχεί στο ταίριασμα, δηλαδή το περιεχόμενο της yytext
 - O BEGIN
 - Ενεργοποιεί την αντίστοιχη αρχική συνθήκη (θα το δούμε στη συνέχεια)
 - REJECT
 - Απορρίπτει το ταίριασμα που έχει γίνει και προχωράει στο αμέσως
 επόμενο δυνατό ταίριασμα

Ενότητα Κώδικα (user code)

- Προαιρετική ενότητα
- Περιέχει βοηθητικό κώδικα C/C++
- Ενσωματώνεται ως έχει
- Ορισμός βοηθητικών συναρτήσεων
- Καλούνται από τις ενέργειες των κανόνων
- Περιέχει την main για αυτόνομο Λεκτικό Αναλυτή

Τυπική Μορφή Αρχείου Εισόδου

Συνήθως ένα αρχείο flex αποτελείται από τις τρεις προαναφερθείσες ενότητες χωρισμένες μεταξύ τους από μία γραμμή η οποία περιέχει μόνο το σύμβολο %% καθώς και από ένα μπλοκ % { και % } στην αρχή.

```
%{
    C inclusion
%}
definitions
%%
rules
%%
user code
```

Παράδειγμα (lexer-1.1)

```
응 {
   #include <stdio.h>
응 }
NUMBER [+|-]?([0-9]+\.?|[0-9]*\.[0-9]+)
         [a-zA-Z][0-9a-zA-Z]*
ID
응응
{NUMBER}
             { printf("Found the number %s\n", yytext); }
             { printf("Found the identifier %s\n", yytext); }
{ID}
             { printf("Error\n"); }
응응
int main() {
  yylex();
```

Δημιουργία Λεκτικού Αναλυτή

- Παραγωγή κώδικα
 - o flex lexer-1.1
- Μεταγλώττιση
 - o gcc lex.yy.c -lfl
- Εκτέλεση
 - o ./a.out < example-1 test-1.in</pre>

Αρχικές Συνθήκες (Start Conditions)

- Μηχανισμός για την υπό συνθήκη ενεργοποίηση κανόνων
 - Κάθε κανόνας του οποίου το pattern έχει πρόθεμα <sc>θα ενεργοποιηθεί μόνο εφόσον ο Λεκτικός Αναλυτής βρίσκεται στην αρχική συνθήκη με όνομα sc
 - Για παράδειγμα ο κανόνας

θα ενεργοποιηθεί μόνο εφόσον ο Λεκτικός Αναλυτής βρίσκεται στην αρχική συνθήκη **string**

Αρχικές Συνθήκες (2)

 Οι αρχικές συνθήκες δηλώνονται στην ενότητα των ορισμών χρησιμοποιώντας τις οδηγίες %s ή %x ακολουθούμενες από μια λίστα ονομάτων

```
/* inclusive start condition */
%s CONDITION

/* exclusive start condition */
%x CONDITION
```

Αρχικές Συνθήκες (3)

- εγκλειστική (inclusive) %s CONDITION
 - Ενεργοί οι κανόνες με συνθήκη **CONDITION** ή χωρίς συνθήκη
- Αποκλειστική (exclusive) %x CONDITION
 - Ενεργοί μόνο οι κανόνες με συνθήκη condition
- Οι αποκλειστικές αρχικές συνθήκες επιτρέπουν τον καθορισμό
 "mini-scanners" οι οποίοι σαρώνουν τμήματα της εισόδου τα οποία είναι συντακτικά διαφορετικά από την υπόλοιπη είσοδο (π.χ. σχόλια σε κώδικα)

Αρχικές Συνθήκες (4)

- Μια αρχική συνθήκη ενεργοποιείται (ή αλλάζει) με την ενέργεια BEGIN
 - O BEGIN (CONDITION)
- Μέχρι την εκτέλεση της επόμενης ενέργειας **BEGIN**, οι κανόνες με τη συγκεκριμένη αρχική συνθήκη θα είναι ενεργοί και οι κανόνες με άλλες αρχικές συνθήκες θα είναι ανενεργοί (αν είναι αποκλειστική)
- Με την **BEGIN (0)** ή την **BEGIN (INITIAL)** επιστρέφουμε στην αρχική κατάσταση, όπου μόνο κανόνες χωρίς αρχικές συνθήκες είναι ενεργοί
- Η τρέχουσα αρχική συνθήκη δίνεται μέσω του ΥΥ_START (ακέραια τιμή)

Αρχικές Συνθήκες (5)

Παράδειγμα Λεκτικού Αναλυτή (scanner) ο οποίος αναγνωρίζει C comments διατηρώντας παράλληλα κι ένα μετρητή για την τρέχουσα γραμμή εισόδου

```
%{
    int line_num = 1;
%}
/* definitions section */
%x comment
%%
"/*"

BEGIN(comment);

<comment>[^*\n]*
    /* eat anything that's not a '*' */
<comment>"*"+[^/\n]*
    /* eat up '*'s not followed by '/'s */
<comment>\n
    ++line_num;
<comment>"*"+"/"

BEGIN(INITIAL);
```

Μεταβλητές και Συναρτήσεις (1/4)

Σύμβολο Π

int yylex()

Περιγραφή

- Η κύρια συνάρτηση του Λεκτικού Αναλυτή η οποία σαρώνει το αρχείο εισόδου για την αναγνώριση Λεκτικών Μονάδων
- Η σάρωση συνεχίζεται έως το τέλους του αρχείου εισόδου είτε έως ότου κάποια ενέργεια εκτελέσει ένα return statement
- Επιστρέφει έναν ακέραιο αριθμό, που συνήθως αντιστοιχεί σε μια Λεκτική Μονάδα ή 0 για ΕΟΕ. Για συνεργασία με τον bison πρέπει να θέσει για κάθε Λεκτική Μονάδα την κατάλληλη τιμή στην καθολική μεταβλητή yylval του bison

char* yytext

Περιέχει το τμήμα της εισόδου που αντιστοιχεί στο ταίριασμα κατά την τελευταία κλήση της yylex()

int yyleng

Περιέχει το πλήθος των χαρακτήρων που περιέχονται στο **yytext**

Μεταβλητές και Συναρτήσεις (2/4)

Σύμβολο

Περιγραφή

void yymore()

Δηλώνει ότι στο επόμενο ταίριασμα η Λεκτική Μονάδα πρέπει να προσαρτηθεί στην τρέχουσα τιμή της yytext αντί να την αντικαταστήσει

Παράδειγμα (input: "meta-analysis" output: "meta-meta-analysis")

응응

Επιστρέφει τους χαρακτήρες της τρέχουσας Λεκτικής Μονάδας, εκτός από τους πρώτους η, πίσω στο ρεύμα εισόδου (input stream). Για παράδειγμα, ο ακόλουθος κώδικας για την είσοδο "foobar" θα εκτυπώσει "foobarbar":

void yyless(int n)

Μεταβλητές και Συναρτήσεις (3/4)

Σύμβολο	Περιγραφή
<pre>int input()</pre>	Διαβάζει τον επόμενο χαρακτήρα από το ρεύμα εισόδου
<pre>void unput(char c)</pre>	Τοποθετεί τον χαρακτήρα c πίσω στο τρέχον ρεύμα εισόδου (θα είναι ο επόμενος χαρακτήρας που θα σαρωθεί)
<pre>int yyterminate()</pre>	Τερματίζει τη λειτουργία της συνάρτησης yylex () επιστρέφοντας 0
<pre>int yywrap()</pre>	Καλείται κάθε φορά που συναντάται τέλος αρχείου. Αν επιστραφεί 1, η λεκτική ανάλυση τερματίζεται, ενώ αν επιστραφεί 0 συνεχίζει
FILE *yyin	Το αρχείο εισόδου το οποίο σαρώνει η yylex για την αναγνώριση Λεκτικών Μονάδων

Μεταβλητές και Συναρτήσεις (4/4)

Σύμβολο

Περιγραφή

void
yyrestart(FILE *f)

Παίρνει ως όρισμα ένα δείκτη σε αρχείο και αρχικοποιεί το **yyin** για σάρωση από αυτό

FILE* yyout

Το αρχείο εξόδου στο οποίο γράφεται η έξοδος του Λεκτικού Αναλυτή (**ECHO** output)

Αναφορές

- Εγχειρίδιο χρήσης (manual) του FLEX, έκδοση 2.6.4
- Διαφάνειες Φροντιστηρίου Θεωρίας Υπολογισμού 2014