Calculus, Volume 1, 2nd Edition - Tom M. Apostal

Iain Wong

November 25th, 2021

Contents

1	Introduction			
	1.1	Some Basic Concepts of the Theory of Sets		
		1.1.1	Excercises	3

Chapter 1

Introduction

1.1 Some Basic Concepts of the Theory of Sets

1.1.1 Excercises

1. Use the roster notation to designate the following sets of real numbers.

Proposition 1. $A = \{x|x^2 - 1 = 0\}$ can be designated as $\{-1, 1\}$ in roster notation.

Proof.

$$A = \{x | x^2 - 1 = 0\}$$

$$= \{x | (x - 1)(x + 1) = 0\}$$

$$\therefore \{-1, 1\}$$
(1.1)

QED

Proposition 2. $B = \{x | (x-1)^2 = 0\}$ can be designated as $\{1\}$ in roster notation.

Proof.

$$B = \{x | (x - 1)^2 = 0\}$$

$$= \{x | x - 1 = \sqrt{0}\}$$

$$= \{x | x = 1\}$$

$$\therefore \{1\}$$
(1.2)

QED

Proposition 3. $C = \{x | x + 8 = 9\}$ can be designated as $\{TODO\}$ in roster notation.

Proof.

$$TODO = TODO$$

$$\therefore \{TODO\}$$
(1.3)

QED

Proposition 4. $D = \{x|x^3 - 2x^2 + x = 2\}$ can be designated as $\{TODO\}$ in roster notation.

Proof.

$$TODO = TODO$$

$$\therefore \{TODO\}$$
(1.4)

QED

Proposition 5. $E = \{x | (x+8)^2 = 9^2\}$ can be designated as $\{TODO\}$ in roster notation.

Proof.

$$TODO = TODO$$

$$\therefore \{TODO\}$$
(1.5)

QED

Proposition 6. $F = \{x | (x^2 + 16x)^2 = 17^2\}$ can be designated as $\{TODO\}$ in roster notation.

Proof.

$$TODO = TODO$$

$$\therefore \{TODO\}$$
(1.6)

QED