

EAE MAT 1 Repère à reporter sur la copie

SESSION 2010

AGREGATION CONCOURS EXTERNE

Section: MATHÉMATIQUES

COMPOSITION DE MATHÉMATIQUES GÉNÉRALES

Durée: 6 heures

Calculatrice électronique de poche – y compris calculatrice programmable, alphanumérique ou à écran graphique – à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n° 99-186 du 16 novembre 1999.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Dans le cas où un(e) candidat(e) repère ce qui lui semble être une erreur d'énoncé, il (elle) le signale très lisiblement sur sa copie, propose la correction et poursuit l'épreuve en conséquence.

De même, si cela vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner explicitement.

NB: Hormis l'en-tête détachable, la copie que vous rendrez ne devra, conformément au principe d'anonymat, comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé comporte notamment la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de signer ou de l'identifier.

Tournez la page S.V.P.

Préambule et notations

On note N l'ensemble des entiers naturels, Z l'ensemble des entiers relatifs, Q le corps des nombres rationnels, R le corps des nombres réels et C le corps des nombres complexes.

Soit K un sous-corps de C. Pour p entier ≥ 1 , on note $M_p(K)$ l'algèbre des matrices carrées à p lignes à coefficients dans K.

Pour $A \in M_p(K)$ et n entier ≥ 1 , on note S_A l'ensemble des matrices $X \in M_p(K)$ telles que $X^n = A$.

- On note 0_p la matrice nulle et I_p la matrice unité de $M_p(K)$. Le groupe des matrices inversibles de $M_p(K)$ est noté $GL_p(K)$.
- On note C(A) le sous-groupe de $GL_p(K)$ formé des matrices P qui commutent avec A, c'est-à-dire telles que AP = PA.
- On note K[x] l'algèbre des polynômes à coefficients dans K à une indéterminée x. Un élément non nul de K[x] est dit unitaire si son coefficient dominant est égal à 1.
- Le polynôme minimal de toute matrice A de $M_p(K)$ est noté m_A . C'est un polynôme unitaire de K[x].
- On note K^p l'espace vectoriel des matrices-colonnes à p lignes à coefficients dans K. L'image Im A, le noyau Ker A, les sous-espaces stables de A, le déterminant det A, sont ceux de l'endomorphisme $v \mapsto Av$ de K^p canoniquement associé à A.
- La matrice A de $M_p(K)$ est semblable sur K à une matrice A' de $M_p(K)$, s'il existe P ∈ $GL_p(K)$ telle que $A = PA'P^{-1}$. Cette relation d'équivalence est la similitude.
- Pour k entier ≥ 1 , on note $N_k \in M_k(K)$ la matrice triangulaire inférieure

$$N_k = \left(egin{array}{ccccc} 0 & \cdots & \cdots & 0 \ 1 & \ddots & & & dots \ 0 & \ddots & \ddots & & dots \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & 1 & 0 \end{array}
ight),$$

c'est-à-dire dont les coefficients sont

$$N_k(i,j) = \begin{cases} 1 & \text{si } i = j+1, \\ 0 & \text{sinon.} \end{cases}$$

Pour $a \in K$, on pose $J_k(a) = aI_k + N_k$. Pour k, ℓ entiers strictement positifs, on note $0_{k,\ell}$ la matrice nulle à k lignes et ℓ colonnes. On appelle matrice de Jordan une matrice J de la forme :

$$J = \begin{pmatrix} J_{k_1}(a_1) & 0_{k_1,k_2} & \cdots & 0_{k_1,k_r} \\ 0_{k_2,k_1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0_{k_{r-1},k_r} \\ 0_{k_r,k_1} & \cdots & 0_{k_r,k_{r-1}} & J_{k_r}(a_r) \end{pmatrix}$$

où $a_i \in K$ et k_i est entier ≥ 1 pour tout indice i de 1 à r.

- Lorsque le polynôme caractéristique de A est scindé sur K, le théorème de Jordan établit l'existence et l'unicité, à permutation près de l'ensemble des indices i de 1 à r, d'une matrice J de Jordan semblable sur K à A. Une telle matrice J est dite réduction de Jordan de A.
- On note $\binom{n}{p}$ le coefficient binomial $\frac{n!}{p!(n-p)!}$.

Partie I.

Dans cette partie, on fixe une matrice $A \in M_p(K)$.

- 1. Soit X un élément de S_A .
 - (a) Démontrer que X commute avec A.
 - (b) Montrer que le polynôme minimal m_X de X divise $m_A(x^n)$.
 - (c) On suppose que n et p sont ≥ 2 . Montrer que S_{0_p} est infini.
 - (d) On suppose que n et p sont premiers entre eux. Soit $\lambda \in K$. Montrer que $S_{\lambda I_p}$ est vide si et seulement si le polynôme $x^n \lambda^p$ n'a pas de racine dans K.
- 2. (a) Soit A' semblable sur K à A. Montrer qu'il existe $P \in GL_p(K)$ telle que

$$S_{A'} = \{PXP^{-1}, \quad X \in S_A\}$$

- (b) Soit P une matrice de $GL_p(K)$ et $X \in S_A$. Démontrer que PXP^{-1} est aussi dans S_A si et seulement si P commute avec A.
- 3. On considère une matrice A' de $M_p(K)$ semblable sur \mathbb{C} à A. Soit L le corps de décomposition de m_A , i.e. le plus petit sous-corps de \mathbb{C} contenant K et pour lequel m_A est scindé sur L.
 - (a) Montrer que le corps de décomposition d'un polynôme de K[x] de degré r est un K-espace vectoriel de dimension $d \leq r!$.
 - (b) Démontrer qu'une fonction polynôme à d variables, à coefficients dans \mathbb{C} , non nulle sur \mathbb{C}^d est non nulle sur \mathbb{K}^d .
 - (c) A l'aide du théorème de Jordan, démontrer que A' est semblable à A sur L.
 - (d) Prouver que A' est semblable à A sur K.
- 4. (a) Soit m un polynôme unitaire de K[x] de degré $\leq p$. Montrer que l'ensemble des matrices de $M_p(K)$ de polynôme minimal m est la réunion d'un ensemble fini de classes de similitude sur K de matrices de $M_p(K)$.
 - (b) En déduire que S_A est la réunion d'un ensemble fini d'orbites pour l'action de C(A) sur $M_p(K)$ par automorphisme intérieur.
- 5. (a) On suppose que C(Y) = C(A) pour toute solution Y dans S_A . Montrer que S_A est fini.
 - (b) On suppose qu'il existe $Y \in S_A$ pour laquelle $C(Y) \neq C(A)$. Montrer que S_A est infini.
- 6. (a) Montrer qu'il existe $q \in K[x]$ tel que $q(N_p)^n = I_p + N_p$.
 - (b) Si $K = \mathbb{C}$, montrer que si A est inversible, alors $S_A \neq \emptyset$.

Partie II.

1. Montrer qu'il existe une norme N sur le \mathbb{C} -espace vectoriel $M_p(\mathbb{C})$ vérifiant $N(BC) \leq N(B)N(C)$ pour toutes matrices B et C de $M_p(\mathbb{C})$.

Dans toute cette partie N est une telle norme et A est une matrice de $GL_p(K)$; une matrice X est dans S_A si et seulement si $X^{-n} - B = 0_p$ où $B = A^{-1}$. Ceci conduit à introduire la suite :

$$X_{k+1} = (1+1/n)X_k - (1/n)BX_k^{n+1}$$

de premier terme X_0 commutant avec A.

2. On suppose dans cette question que la suite $(X_k)_{k\in\mathbb{N}}$ converge vers une matrice Y de $\mathrm{GL}_p(\mathbb{C})$.

- (a) Démontrer que pour tous $k, k' \in \mathbb{N}$, les matrices $X_k, X_{k'}, Y$ et A commutent deux à deux.
- (b) Démontrer que $Y^n = A$.
- (c) On pose $U_k = X_k Y^{-1} I_p$. Démontrer que la suite $(U_k)_{k \in \mathbb{N}}$ vérifie la relation de récurrence :

$$nU_{k+1} + \sum_{2 \le j \le n+1} {n+1 \choose j} U_k^j = 0_p.$$

- 3. Soit R le corps des nombres réels.
 - (a) Démontrer qu'il existe un unique réel r > 0 tel que

$$nr = \sum_{2 \leqslant j \leqslant n+1} \binom{n+1}{j} r^j.$$

(b) Démontrer que la suite récurrente définie par $x_0 \in \mathbf{R}$, $0 \le x_0 < r$ et

$$x_{k+1} = (1/n) \sum_{2 \le j \le n+1} \binom{n+1}{j} x_k^j$$

converge en précisant sa limite.

4. Soit $Y \in M_p(\mathbb{C})$ une solution de $Y^n = A$. On suppose que X_0 est une matrice de $M_p(K)$ qui commute avec Y. Déterminer $\alpha > 0$ tel que $N(X_0 - Y) < \alpha$ entraı̂ne que la suite $(X_k)_{k \in \mathbb{N}}$ converge vers Y.

Partie III.

Dans cette partie A est une matrice de $M_p(K)$, telle qu'il existe un vecteur v de K^p tel que $(A^j v)_{0 \le j < p}$ est une base de K^p .

- 1. (a) Soit X un élément de S_A . Montrer qu'il existe $h \in K[x]$, de degré $\langle p, \text{ tel que } X = h(A)$.
 - (b) En déduire que S_A est en bijection avec l'ensemble des éléments z de $K[x]/(m_A)$ tels que $z^n = \overline{x}$, où \overline{x} est la classe de $x \mod m_A$.

On rappelle que (m_A) est l'idéal de K[x] engendré par m_A .

- (c) Montrer que, si m_A est irréductible dans K[x], S_A admet au plus n éléments. En déduire que, si m_A est un produit de s polynômes irréductibles distincts, S_A admet au plus n^s éléments.
- (d) Montrer que, si p et n sont ≥ 2 , et si $m_A = x^p$, alors S_A est vide.
- (e) Soient f et g deux éléments de K[x] premiers entre eux, et r un entier ≥ 1 . On suppose qu'il existe $y_1 \in K[x]$ tel que $y_1^n \equiv g \mod f^r$. Montrer qu'il existe un élément $y_2 \in K[x]$, unique modulo f^{r+1} , tel que

$$\begin{cases} y_2 \equiv y_1 \mod f^r \\ y_2^n \equiv g \mod f^{r+1} \end{cases}$$

(On pourra poser $y_2 = y_1 + f^r q$, et développer y_2^n .)

- (f) Soit s le nombre de facteurs irréductibles distincts de m_A . Montrer que S_A a au plus n^s éléments.
- 2. Montrer que, si $K = \mathbf{R}$ et si m_A n'a pas de racine réelle, S_A est non vide.
- 3. Soit r et s des rationnels tels que $cos(r\pi) = s$.

- (a) Pour tout $n \in \mathbb{N}$, on définit $a_n = 2\cos(2^n r\pi)$. Exprimer a_{n+1} en fonction de a_n . Montrer que $(a_n)_{n \in \mathbb{N}}$ est une suite de nombres rationnels, périodique à partir d'un certain rang.
- (b) Démontrer que si b_n est le dénominateur > 0 de la forme irréductible de a_n , alors b_n^2 est celui de a_{n+1} .
- (c) En déduire que $|s| \in \{0, 1/2, 1\}$.
- 4. Soit n un entier > 1 et

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

- (a) Déterminer S_A lorsque $K = \mathbf{R}$.
- (b) Déterminer S_A lorsque $K = \mathbf{Q}$.
- (c) Déterminer S_A lorsque $K = \mathbb{C}$.

Partie IV.

On note $d_1 = \dim \operatorname{Ker} A$, et pour tout $i \ge 2$, $d_i = \dim \operatorname{Ker} A^i - \dim \operatorname{Ker} A^{i-1}$.

- 1. On suppose dans cette question qu'il existe $k \ge 1$ tel que le polynôme minimal de A est x^k .
 - (a) Démontrer que pour tout X dans S_A , il existe un entier r tel que $m_X = x^r$ et

$$(k-1)n < r \leqslant kn.$$

- (b) En déduire que, si $(k-1)n \ge p$, alors $S_A = \emptyset$.
- 2. Soit X une matrice de $M_p(K)$ telle qu'il existe v dans $\operatorname{Ker} X^p$ pour lequel $(X^j v)_{0 \le j < p}$ est une base \mathcal{B} de K^p .
 - (a) Calculer la matrice de l'endomorphisme canoniquement associé à X^n dans la base \mathcal{B} .
 - (b) En déduire une réduction de Jordan de X^n .
 - (c) Soit $A = \begin{pmatrix} N_2 & 0 \\ 0 & N_2 \end{pmatrix}$. Quel est l'ensemble des valeurs de n pour lesquelles S_A est non vide?
- 3. On suppose dans cette question que

$$\left(\begin{array}{ccc} N_{k_1} & & \\ & \ddots & \\ & & N_{k_r} \end{array}\right)$$

est une réduction de Jordan de A.

- (a) Montrer que $d_i = \text{Card}\{j \leq r, k_j \geq i\}$.
- (b) On suppose que $S_A \neq \emptyset$. Montrer que pour tout entier $s \geq 0$, il existe au plus un indice i tel que $d_i \in]ns, n(s+1)[$.
- (c) Soit $J = \begin{pmatrix} N_3 & 0 & 0 \\ 0 & N_2 & 0 \\ 0 & 0 & N_2 \end{pmatrix}$. Pour quels n a-t-on $S_J = \emptyset$?
- (d) Etablir la réciproque de la question (b) (On pourra raisonner par récurrence.)
- 4. Montrer que A est semblable à une matrice de la forme $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$ où B et C sont des matrices carrées à coefficients dans K telles que $B^p = 0$ et $\det C \neq 0$, puis qu'il existe une application bijective $\varphi: S_B \times S_C \to S_A$.
- 5. On suppose ici que $K = \mathbb{C}$. Montrer que S_A est non vide si et seulement si, pour tout entier $s \ge 0$, il existe au plus un indice i tel que $d_i \in]ns, n(s+1)[$.