C2-001_Practice 03

 □ Date	@2022년 8월 15일 오전 9:30
Lecture Note	C2-001_Lecture_03-linear transform.pdf
Practice (pdf)	
Solution (pdf)	
≡ Topics	Lecture 03: Linear Transformation II
# Week	3

- Please mark what you think is the correct answer (O or X) and show why you choose it.
 - 1. Show that $\langle\cdot,\cdot\rangle$ defined for all $\mathbf{x}=[x_1,x_2]^{\top}\in\mathbb{R}^2$ and $\mathbf{y}=[y_1,y_2]^{\top}\in\mathbb{R}^2$ by $\langle\mathbf{x},\mathbf{y}\rangle:=x_1y_1-(x_1y_2+x_2y_1)+2(x_2y_2)$ is an inner product.

2. Consider \mathbb{R}^2 with $\langle\cdot,\cdot\rangle$ defined for all ${\bf x}$ and ${\bf y}$ in \mathbb{R}^2 as

$$\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^{ op} \mathbf{A} \mathbf{y} = \mathbf{x}^{ op} egin{bmatrix} 2 & 0 \ 1 & 2 \end{bmatrix} \mathbf{y}.$$

Is $\langle \cdot, \cdot \rangle$ an inner product?

3. Compute the distance between
$$\mathbf{x}=\begin{bmatrix}1\\2\\3\end{bmatrix}$$
 and $\mathbf{y}=\begin{bmatrix}-1\\-1\\0\end{bmatrix}$ using

a.
$$\langle \mathbf{x}, \mathbf{y}
angle := \mathbf{x}^{ op} \mathbf{y}$$

b.
$$\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^{ op} \mathbf{A} \mathbf{y} = \mathbf{x}^{ op} egin{bmatrix} 2 & 1 & 0 \ 1 & 3 & -1 \ 0 & -1 & 2 \end{bmatrix} \mathbf{y}$$

4. Compute the angle between
$$\mathbf{x}=\begin{bmatrix}1\\2\end{bmatrix}$$
 and $\mathbf{y}=\begin{bmatrix}-1\\-1\end{bmatrix}$ using

a.
$$\langle \mathbf{x}, \mathbf{y}
angle := \mathbf{x}^{ op} \mathbf{y}$$

b.
$$\langle \mathbf{x}, \mathbf{y}
angle := \mathbf{x}^ op \mathbf{B} \mathbf{y} = \mathbf{x}^ op egin{bmatrix} 2 & 1 \ 1 & 3 \end{bmatrix} \mathbf{y}$$

5. Find the projection matrix P_{π} on to the line through the origin spanned by $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. \mathbf{b} is a direction and a basis of the one-dimensional subspace (i.e., line through origin).

6. rotate the vectors $\mathbf{x}=\begin{bmatrix}2\\3\end{bmatrix}$, $\mathbf{y}=\begin{bmatrix}0\\-1\end{bmatrix}$ by $30\degree$.