Obrada informacija Pregled tema

Marko Subašić

http://www.fer.hr/predmet/obrinf_a

Obrada informacija

- Vrlo širok pojam
- Postoji puno tipova informacija
- Postoji puno tehnika obrade informacija
- Cjeline su organizirane po uzlaznoj kompleksnosti informacija
 - Kompleksnost "mjerimo" brojem dimenzija

Obrada informacija

- Krećemo prvo sa 1D signalima
 - Vremenska mjerenja fizikalnih veličina
 - Genske sekvence
 - Govor
 - Financijki signali (višedimenzionalni signali)
- 2D signali slike
 - Analiza slika
 - Rekonstrukcija 3D prostora iz video snimke

Analiza mjerenja fizikalnih veličina

- Vremenski signali 1D signali
- Možemo li predvidjeti vodostaj Save?
- Koja je frekvencija pojave poplava?
- Kao pomoć u otkrivanju prirodnih pojava može poslužiti:
 - Fourierova transformacija
 - Fourierova transformacija na vremenskom otvoru
 - Valićna transformacija

$$\begin{split} x_1(t) &= 400 + 100 \cdot \cos(2\pi \cdot 1/T \cdot t) \\ &+ 150 \cdot \cos(2\pi \cdot 2/T \cdot t - T/6) \\ &+ 200 \cdot \cos(2\pi \cdot 12/T \cdot t) \text{, for } t \in \langle 0, 2T] \end{split}$$

$$x_2(t) = 400 + 100 \cdot \cos(2\pi \cdot 1/T \cdot t) + 150 \cdot \cos(2\pi \cdot 2/T \cdot t - T/6) + 200 \cdot \cos(2\pi \cdot 4/T \cdot t), \text{ for } t \in \langle 2T, 4T \rangle$$

Analiza mjerenja fizikalnih veličina

Bioinformatika

- Korištenje računala za analizu bioloških podataka, u užem smislu za alanizu DNK, RNK i proteina.
- Merriam Webster dictionary:
- "the collection, classification, storage, and analysis of biochemical and biological information using computers especially as applied to molecular genetics and genomics"
- Osnovni zadaci
 - Sastavljanje genoma
 - Određivanje varijacija u genomima
 - Ekspresija gena
 - Određivanje kompozicije uzoraka
- Primjena u medicini, farmaciji, biologiji, poljoprivredi ...

Bioinformatika

- Postupak sekvenciranja pokušava pročitati DNK molekulu. Očitanja i cijele DNK molekule pohranjuju se kao nizovi znakova ACTG.
- Današnje tehnologije ne mogu pročitati cijele DNK molekule već čitaju manje dijelove (očitanja) i to s određenom greškom. Duljina očitanja te učestalost i vrsta pogreške ovisi o korištenoj tehnologiji.

Bioinformatika

- Osnovni postupak pri svakoj bioinformatičkoj analizi:
 Poravnanje očitanja na referencu ili na druga očitanja
- Poravnanje je postupak kojim se određuju najsličniji djelovi dvaju nizova (npr. dio referentnog genoma koji je najsličniji pojedinom očitanju).
- Načini određivanja poravnanja:
 - Egzaktno pomoću dinamičkog programiranja
 - Približno pomoću abecedno minimalnih podnizova (engl. minimizer) i LCS algoritma (longest common subsequence)
 - Približno koristeći MAFFT algoritam poravanje više od dvije sekvence pomoću brze Fourierove transformacije – tema laboratorijskih vježbi

Govorni signali

- Svakodnevna primjena obrade informacija u automatiziranim sustavima za dijalog
 - Automatsko prepoznavanje govora (engl. Automatic Speech Recognition, ASR)
 - Automatska sinteza govora iz teksta (Text to Speech, TTS)
 - Obrada prirodnog jezika (engl. Natural Language Processing, NLP)
 - Osobni asistenti, Amazon Alexa, Apple Siri, Google Assistant, ... i mnogi drugi

Principi rada sustava za obradu govora

- Intenzivno korištenje najmodernijih postupaka strojnog učenja i umjetne inteligencije
- Najsloženiji i računski najzahtjevniji dio obrade se provodi "u oblaku".
- Danas su najpopularniji postupci temeljeni na dubokom učenju i konvolucijskim neuronskim mrežama.
- Sve su to postupci kojima se opisuju vremenski dinamička statistička svojstva nosioca informacije, koji je u ovom primjeru ljudski glas.
- Korištenjem takvih statističkih modela moguće je provoditi klasifikaciju, tj. prepoznavanje glasova, riječi, rečenica, čime govor pretvaramo u tekst
- Moguće je male razlike između značajki glasa iskoristiti i za biometrijske primjere u svrhu automatskog prepoznavanja govornika
- Moguće je automatski prepoznavati jezik ili narječje, temeljem svojstava govora
- Može se tvrditi da su postupci digitalne obrade govornog signala bili jedan od prvih i glavnih pokretača razvoja podatkovne znanosti, još u osamdesetim godinama prošlog stoljeća

Govorni signali

- HMM Skriveni Markovljevi modeli
 - Jedan od vrlo jednostavnih statističkih modela za opis ponašanja vremenskih serija s promjenjivim statističkim svojstvima su Skriveni Markovljevi modeli (engl. Hidden Markov Models, HMM).
 - Pokazali su se iznimno pogodnim za modeliranje govora na više razina: od pojedinačnih glasova, slogova, dijelova ili cijelih riječi i konačno cijelih rečenica.
 - Ovi modeli se grade automatiziranim nadziranim ili nenadziranim postupcima učenja iz uzoraka stvarnog govora, što je konceptualno jednako postupcima koji se koriste kod učenja neuronskih (ili dubokih) mreža.
 - HMM modeli će biti detaljnije predstavljeni u sklopu predmeta, te će se ilustrirati postupci njihove primjene za modeliranje raznovrsnih procesa. Opis signala pomoću vektora značajki

Financijski signali ili financijski vremenski nizovi

- Cijene financijskih instrumenata
 - cijene dionica (tržišta kapitala)
 - cijene obveznica (tržišta obveznica)
 - cijene opcija (tržišta izvedenica)
 - Itd.
- Makroekonomske varijable
 - kamatne stope
 - tečajne liste (valute)
 - bruto domaći proizvod (BDP)
 - itd.
- Fundamentalni podatci o kompanijama
 - zarada po dionici
 - knjigovodstvena vrijednost po dionici
 - dug po dionici

Primjer: CROBEX i SP&500

 Dionički indeks - prosjek vrijednosti kompanija kojima se trguje na nekom tržištu

Faktorska struktura

 Na sve dionice na zagrebačkoj burzi utječu kamatne stope, BDP, itd, ali na turistički sektor utječe npr. broj gostiju, dok na građevinski sektor utječu demografski podatci

 Za model: X = FB' + e, problem je:

odrediti B, ako su poznati
 X i F

odrediti F i B, ako je poznat samo X

Analiza slika

- Pronalazak bitne informacije u slici
- Nužno je eliminirati ili ignorirati nebitne informacije
 - Uklanjanje šuma iz slike
- Razni problemi
 - Klasifikacija slika
 - Detekcija objekata na slikama
 - Raspoznavanje objekata na slikama
 - •

Analiza slika

- Složenost zadatka može biti različita i ovisi o konkretnom problemu
- Složeni problemi analize slike uspješno se rješavaju dubokim neuronskim mrežama
- Neuronske mreže dolaze iz područja umjetne inteligencije, odnosno strojnog učenja
 - Duboke neuronske mreže predstavljaju nedavno ostvareni napredak u području

Neuronske mreže

Obrada video podataka

- Video signali kombiniraju vremenski i prostornu kodomenu
- Često je potrebna obrada u stvarnom vremenu
- Primjer analize snimke s projiciranim uzorkom strukturiranog svjetla za 3D rekonstrukciju

Obrada nestrukturiranih podataka

- Oblaci točaka dobiveni 3D skeniranjem
- Svaka točka uz koordinate (x,y,z) može sadržavati i dodatne podatke kao boja i normala

Problem spajanja više oblaka točaka u jedan (ICP

algoritam)

