Homework 3 – Deep Learning (CS/DS 541, Murai, Spring 2024)

You may complete this homework assignment either individually or in teams up to 2 people.

1. Derivation of softmax regression gradient updates [20 points]: As explained in class, let

$$\mathbf{W} = [\begin{array}{cccc} \mathbf{w}^{(1)} & \dots & \mathbf{w}^{(c)} \end{array}]$$

be an $m \times c$ matrix containing the weight vectors from the c different classes. The output of the softmax regression neural network is a vector with c dimensions such that:

$$\hat{y}_k = \frac{\exp z_k}{\sum_{k'=1}^c \exp z_{k'}}$$

$$z_k = \mathbf{x}^\top \mathbf{w}^{(k)} + b_k$$
(1)

for each k = 1, ..., c. Correspondingly, our cost function will sum over all c classes:

$$f_{\text{CE}}(\mathbf{W}, \mathbf{b}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} y_k^{(i)} \log \hat{y}_k^{(i)}$$

Important note: When deriving the gradient expression for each weight vector $\mathbf{w}^{(l)}$, it is crucial to keep in mind that the weight vector for each class $l \in \{1, \ldots, c\}$ affects the outputs of the network for every class, not just for class l. This is due to the normalization in Equation 1 – if changing the weight vector increases the value of \hat{y}_l , then it necessarily must decrease the values of the other $\hat{y}_{l'\neq l}$.

In this homework problem, please complete the following derivation that is outlined below:

Derivation: For each weight vector $\mathbf{w}^{(l)}$, we can derive the gradient expression as:

$$\nabla_{\mathbf{w}^{(l)}} f_{CE}(\mathbf{W}, \mathbf{b}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} y_k^{(i)} \nabla_{\mathbf{w}^{(l)}} \log \hat{y}_k^{(i)}$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} y_k^{(i)} \left(\frac{\nabla_{\mathbf{w}^{(l)}} \hat{y}_k^{(i)}}{\hat{y}_k^{(i)}} \right)$$

We handle the two cases l = k and $l \neq k$ separately. For l = k:

$$\begin{array}{rcl} \nabla_{\mathbf{w}^{(l)}} \hat{y}_k^{(i)} & = & \text{complete me...} \\ & = & \mathbf{x}^{(i)} \hat{y}_l^{(i)} (1 - \hat{y}_l^{(i)}) \end{array}$$

For $l \neq k$:

$$\nabla_{\mathbf{w}^{(l)}} \hat{y}_k^{(i)} = \text{complete me...}$$
$$= -\mathbf{x}^{(i)} \hat{y}_k^{(i)} \hat{y}_l^{(i)}$$

To compute the total gradient of f_{CE} w.r.t. each $\mathbf{w}^{(k)}$, we have to sum over all examples and over $l=1,\ldots,c$. (Hint: $\sum_k a_k = a_l + \sum_{k\neq l} a_k$. Also, $\sum_k y_k = 1$.)

$$\nabla_{\mathbf{w}^{(l)}} f_{\text{CE}}(\mathbf{W}, \mathbf{b}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} y_k^{(i)} \nabla_{\mathbf{w}^{(l)}} \log \hat{y}_k^{(i)}$$

$$= \text{complete me...}$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(y_l^{(i)} - \hat{y}_l^{(i)} \right)$$

Finally, show that

$$\nabla_{\mathbf{b}} f_{\text{CE}}(\mathbf{W}, \mathbf{b}) = -\frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right)$$

2. Derivation of Cross-Entropy as Negative Log-Likelihood [10 points]: A softmax regression network estimates the probability that the input \mathbf{x} belongs to class k for each $k = 1, \ldots, c$. In particular,

$$\hat{y}_k \doteq P(y_k = 1 \mid \mathbf{x}, \mathbf{W}, \mathbf{b}) \quad \forall k \in \{1, \dots, c\}$$

During training, we know for each training example \mathbf{x} its ground-truth label $\mathbf{y} = [y_1, \dots, y_c]^\top$, where \mathbf{y} is a one-hot vector. Suppose the index of the "1" in \mathbf{y} is k (i.e., the ground-truth class of the example is k). Then the *likelihood* of the training example, given fixed \mathbf{W} , \mathbf{b} , is $P(y_k = 1 \mid \mathbf{x}, \mathbf{W}, \mathbf{b})$ which, as stated above, is simply \hat{y}_k . More generally, we can represent the likelihood of the training example as

$$P(\mathbf{y} \mid \mathbf{x}, \mathbf{W}, \mathbf{b}) = P(y_1 = 1 \mid \mathbf{x}, \mathbf{W}, \mathbf{b})^{y_1} \times \ldots \times P(y_c = 1 \mid \mathbf{x}, \mathbf{W}, \mathbf{b})^{y_c}$$

The reason is that exactly one y_k will be 1, and all the other $y_{k'\neq k}$ will be 0; hence, only one factor in the equation above will equal something other than 1. The exponents in the equation above are handy to "pick out" the one term that is relevant. This representation is sometimes called the 1-of-c notation. Using the definition of \hat{y}_k , we can simplify the likelihood to:

$$P(\mathbf{y} \mid \mathbf{x}, \mathbf{W}, \mathbf{b}) = \prod_{k=1}^{c} \hat{y}_k^{y_k}$$

Your task: Derive the cross-entropy loss (see slide #49 of Class4.pdf) of a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$, under a softmax regression network with fixed weights \mathbf{W} and bias \mathbf{b} , as the negative log-likelihood, i.e., $-\log P(\mathcal{D} \mid \mathbf{W}, \mathbf{b})$. Like in the linear-Gaussian problem from homework 2, you can make use of conditional independence, i.e., given \mathbf{W}, \mathbf{b} , the likelihood of \mathcal{D} factorizes into the products of the likelihoods of all the individual training examples.

$$-\log P(\mathcal{D} \mid \mathbf{W}, \mathbf{b}) = \dots \tag{2}$$

$$\dots$$
 complete me... (3)

$$= -\sum_{i=1}^{n} \sum_{k=1}^{c} y_k^{(i)} \log \hat{y}_k^{(i)}$$
 (4)

$$= f_{\rm CE}(\mathcal{D}; \mathbf{W}, \mathbf{b}) \tag{5}$$

3. Implementation of softmax regression [20 points]:

Train a 2-layer softmax neural network to classify images of fashion items (10 different classes, such as shoes, t-shirts, dresses, etc.) from the Fashion MNIST dataset. The input to the network will be a 28×28 -pixel image (converted into a 784-dimensional vector); the output will be a vector of 10 probabilities (one for each class). The cross-entropy loss function that you minimize should be

$$f_{\text{CE}}(\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(10)}, b^{(1)}, \dots, b^{(10)}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{10} y_k^{(i)} \log \hat{y}_k^{(i)} + \frac{\alpha}{2} \sum_{k=1}^{c} \mathbf{w}^{(k)^{\top}} \mathbf{w}^{(k)}$$

where n is the number of examples and α is a regularization constant. Note that each \hat{y}_k implicitly depends on all the weights $\mathbf{W} = [\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(10)}]$ and biases $\mathbf{b} = [b^{(1)}, \dots, b^{(10)}]$.

To get started, first download the Fashion MNIST dataset from the following web links:

- https://s3.amazonaws.com/jrwprojects/fashion_mnist_train_images.npy
- https://s3.amazonaws.com/jrwprojects/fashion_mnist_train_labels.npy
- https://s3.amazonaws.com/jrwprojects/fashion_mnist_test_images.npy
- https://s3.amazonaws.com/jrwprojects/fashion_mnist_test_labels.npy

These files can be loaded into numpy using np.load. Each "labels" file consists of a 1-d array containing n labels (valued 0-9), and each "images" file contains a 2-d array of size $n \times 784$, where n is the number of images.

Next, implement stochastic gradient descent (SGD) to minimize the cross-entropy loss function on this dataset. Regularize the weights but *not* the biases. Optimize the same hyperparameters as in homework 2 problem 2 (age regression), **considering at least 20 combinations of hyperparameter values**. You should also use the same methodology as for the previous homework, including the splitting of the training files into validation and training portions.

Performance evaluation: Once you have tuned the hyperparameters and optimized the weights so as to maximize performance on the validation set, then: (1) **stop** training the network and (2) evaluate the network on the **test** set. Record the performance both in terms of (unregularized) cross-entropy loss (smaller is better) and percent correctly classified examples (larger is better); put this information into the PDF you submit.

4. Implementing gradient computation via the multivariate chain rule (linear case) [20 points]: Consider the two vector fields below taken from Class 5, slide 53:

$$f\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = [x_1 - 2x_2 + x_3/4] \quad g\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2\\x_2\\-x_1 + 3\end{bmatrix}.$$

Let the initial input to g be $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

- (a) Show how to represent each function as an affine transformation of the form $\mathbf{W}\mathbf{x}+\mathbf{b}$. For function g, denote the parameters by \mathbf{W}_1 and \mathbf{b}_1 , whereas for function f, denote the parameters by \mathbf{W}_2 and b_2 . [1 point]
- (b) Implement a python function AffineTransformation(W, b, x) that can be used to compute either function by taking as input two arrays of parameters W and b and a vector x. [1 point]
- (c) Building on the previous function, implement a new function Composition (L, x) that calculates the composition of affine transformations represented as a list of pairs $L = [(\mathbf{W}_1, \mathbf{b}_1), \dots, (\mathbf{W}_n, \mathbf{b}_n)]$ and an initial vector x. Use the following convention: the functions are applied from the smallest to the largest index. Return all the activation values (i.e., intermediate results) as a list variable $\mathbf{z} = (z_1, \dots, z_n)$. [2 points]
- (d) How would you call the previous function to compute $(f \circ g)(\mathbf{x})$, for $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$? Return ONLY the final output. [1 point]
- (e) Given an affine transformation $\mathbf{z}_2 = f(\mathbf{z}_1)$ parameterized by \mathbf{W}_2 and \mathbf{b}_2 , derive [2 points]:

$$\frac{\partial \mathbf{z}_2}{\partial vec[\mathbf{W}_2]}(\mathbf{z}_1)$$
 and $\frac{\partial \mathbf{z}_2}{\partial \mathbf{b}_2}(\mathbf{z}_1)$.

(f) Write equations for: [1 point]

$$\frac{\partial (f \circ g)}{\partial \mathbf{z}_1}(\mathbf{x})$$

(g) For some scalar function $y = (f \circ g)(\mathbf{x})$, where $\mathbf{z} = g(\mathbf{x})$ is an affine transformation parameterized by $\mathbf{W}_{n \times m}$ and $\mathbf{b}_{n \times 1}$, we know that

$$\nabla_{\mathbf{W}} y = unvec \left[\frac{\partial y}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial vec[\mathbf{W}]} \right]$$

Last, if $\frac{\partial y}{\partial \mathbf{z}} = \mathbf{p}^{\top}$, then

$$\nabla_{\mathbf{W}} y = \mathbf{p} \mathbf{x}^{\top}.$$

Using the multivariate chain rule, write equations for: [2 points]

$$\frac{\partial (f \circ g)}{\partial \mathbf{b}_1}$$
 and $\nabla_{\mathbf{W}_1} (f \circ g)(\mathbf{x})$

(h) Using the list of parameters L, the input vector \mathbf{x} and all the activation values \mathbf{z} obtained from the Composition, implement a function ComputeGradients($\mathbf{L}, \mathbf{x}, \mathbf{z}$) that returns the gradients of z_n (a scalar) for all the parameters in L, i.e., $\nabla_{b_i} z_n = (\partial z_n / \partial [\mathbf{b}_i])^{\top}$. and $\nabla_{\mathbf{W}_i} z_n$. To earn full marks, the solution should apply to any $n \geq 2$. [10 points]

Put your code in a Python file called homework3_WPIUSERNAME1.py (or homework3_WPIUSERNAME1_WPIUSERNAME3.py for teams). For the proof and derivation, as well as the cross-entropy values from the Fashion MNIST problem, please create a PDF called homework3_WPIUSERNAME1.pdf (or homework3_WPIUSERNAME1_WPIUSERNAME3.pdf for teams). Create a Zip file containing both your Python and PDF files, and then submit on Canvas.