Data Mining, Spring 2018

Problem Set #2: Supervised Learning II

(Due date to be announced)

Submission Instructions

These questions require thought but do not require long answers. Please be as concise as possible. You should submit your answers as a write-up in PDF format to DataMining 2018@126.com. The email title is formatted as "hwk2 学号 姓名".

Questions

1. 模型的性能度量

我们需要比较两个分类模型 M_1 和 M_2 。他们在 **10** 个二类(+或-)样本所组成的测试集上的分类结果如下表格中所示。假设我们更关心正样本是否能被正确检测。

Instance	True Class	Scores from M_1	Scores from M_2
1	+	0.73	0.61
2	+	0.69	0.03
3	-	0.44	0.68
4	-	0.55	0.31
5	-	0.67	0.45
6	+	0.47	0.09
7	-	0.08	0.38
8	-	0.15	0.05
9	+	0.45	0.01
10	-	0.35	0.04

- (1) 对于分类模型*M*₁,取阈值为 0.5,分别计算分类准确率(accuracy)、查准率(precision)、 查全率(recall,又称真正例率,true positive rate,TPR)、假正例率(false positive rate, FPR)和 F-measure;
- (2) 对于分类模型 M_2 ,取阈值为 0.5,分别计算分类准确率(accuracy)、查准率(precision)、查全率(recall,又称真正例率,true positive rate,TPR)、假正例率(false positive rate,FPR)和 F-measure; 并与分类模型 M_1 比较,分析哪个分类模型在这个测试集上表现更好;
- (3) 对于分类模型 M_1 ,取阈值为 0.2,分别计算分类准确率(accuracy)、查准率(precision)、查全率(recall,又称真正例率,true positive rate,TPR)、假正例率(false positive rate,FPR)和 F-measure; 并讨论当阈值为 0.2 或 0.5 时,哪个分类模型 M_1 的分类结果哪个更好;
- (4) 试讨论是否存在更好的阈值; 若存在,请求出最优阈值并说明原因。

2. 神经网络

考虑以下的二类训练样本集

Instance	Feature vector \boldsymbol{x}	Output label y
1	(0, 0)	+
2	(1, 0)	+
3	(0, 1)	-
4	(-1, 0)	-
5	(1, -1)	-

对此训练样本集,我们需要训练一个三层神经网络(输入层、单隐层、输出层),其中单隐层的单元(神经元)数目设为 2,激活函数(activation function)为 Sigmoid 函数:

- (1) 在二维坐标系中画出这 5 个训练样本点,并讨论此训练样本集是否线性可分;
- (2) 试分析将 Sigmoid 激活函数换成线性函数的缺陷;
- (3) 令初始化参数全部为 0, 试运用前馈(feedforward)算法计算在初始化参数下此三层神经 网络的输出;然后运用反向传播(backpropagation)算法,计算代价函数对所有参数的偏导数,并讨论将初始化参数全部设为 0 所带来的问题;
- (4) 试给出一个神经网络(画出架构图,并写出激活函数及其对应的参数),使此训练样本集的5个训练样本点都可以被正确分类。

3. 决策树

考虑以下的二类训练样本集

Instance	A	В	Class Label
1	T	F	+
2	T	T	+
3	T	T	+
4	T	F	-
5	T	T	+
6	F	F	-
7	F	F	-
8	F	F	-
9	T	T	-
10	T	F	-

- (1) 计算以属性 A 或 B 为划分的信息熵(Entropy)增益,并说明决策树学习算法选择哪个属性进行划分;
- (2) 计算以属性 A 或 B 为划分的 Gini 增益, 并说明决策树学习算法选择哪个属性进行划分;
- (3) 计算以属性 A 或 B 为划分的分类误差(Classification Error)增益,并说明决策树学习算法选择哪个属性进行划分;
- (4) 说明信息熵增益、Gini 增益和分类误差增益对属性选择有不一样的偏好。

4. 集成学习