Hashing with Worst Case Constant Search Time

Tanuj Agarwal, Harsh Baid, Ayush Group Number: 16

April 19, 2025

Outline

- Introduction
- 2 Universal Hashing
- 3 Hashing with O(1) Search Time
- Results and Analysis
- 6 Conclusion

Introduction

• Hashing is a widely used technique that allows storing and searching for elements in constant time on average. However, standard hash tables can suffer **from collisions**, which degrade performance—especially in the worst case.

Introduction

- Hashing is a widely used technique that allows storing and searching for elements in constant time on average. However, standard hash tables can suffer **from collisions**, which degrade performance—especially in the worst case.
- The only effective way to improve the situation is to choose the hash function **randomly**, independent of the keys to be stored.

Introduction

- Hashing is a widely used technique that allows storing and searching for elements in constant time on average. However, standard hash tables can suffer **from collisions**, which degrade performance—especially in the worst case.
- The only effective way to improve the situation is to choose the hash function **randomly**, independent of the keys to be stored.
- Our goal is to design hashing schemes that provide worst-case constant-time (O(1)) lookups, regardless of the dataset.

Problem Definition

- Given a universe $U = \{1, 2, ..., m\}$ and subset $S \subseteq U$ of size s.
- Construct a structure to answer: Does element i belong to S in O(1)?
- $s \ll m$, e.g., $m = 10^{18}$, $s = 10^3$

Problem Definition

- Given a universe $U = \{1, 2, ..., m\}$ and subset $S \subseteq U$ of size s.
- Construct a structure to answer: Does element i belong to S in O(1)?
- $s \ll m$, e.g., $m = 10^{18}$, $s = 10^3$

Challenges:

- Cannot use a giant array of size m memory is infeasible
- Binary search on a sorted array of S takes $O(\log s)$ time

Simple Hash Function: $i \mod n$

- \bullet Works well for uniformly random S.
- Low collision probability: $\mathbb{P}(h(i) = h(j)) \leq \frac{1}{n}$.
- Expected collisions: O(1) for n = O(s).

Simple Hash Function: $i \mod n$

- \bullet Works well for uniformly random S.
- Low collision probability: $\mathbb{P}(h(i) = h(j)) \leq \frac{1}{n}$.
- Expected collisions: O(1) for n = O(s).

Drawbacks: If a malicious adversary chooses the keys to be hashed by a fixed hash function like the one shown above, then the adversary can choose n keys that all hash to the same slot, yielding an average retrieval time of O(n).

• Fixed hash functions can be exploited by adversaries to cause many collisions, resulting in O(n) worst-case search time.

- Fixed hash functions can be exploited by adversaries to cause many collisions, resulting in O(n) worst-case search time.
- A collection **H** of hash functions is said to be **c-universal** if there exists a constant c such that for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{c}{n}$$

where h is chosen uniformly at random from \mathbf{H} .

- Fixed hash functions can be exploited by adversaries to cause many collisions, resulting in O(n) worst-case search time.
- A collection **H** of hash functions is said to be **c-universal** if there exists a constant c such that for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{c}{n}$$

where h is chosen uniformly at random from \mathbf{H} .

• Universal Hashing avoids O(n) worst-case search time by randomly selecting the hash function from a family of hash functions, making it resistant to adversarial inputs.

A collection **H** of hash functions is said to be 2-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{2}{n}$$

where h is selected uniformly at random from \mathbf{H} .

A collection **H** of hash functions is said to be 2-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{2}{n}$$

where h is selected uniformly at random from **H**.

• Let p be a prime number, $x \in \{1, 2, \dots, p-1\}$.

$$h_x(i) = (ix \bmod p) \bmod n$$

The family of hash functions:

$$\mathcal{H} = \{ h_x \mid x \in [1, p - 1] \}$$

 \mathcal{H} is a 2-universal hash function family.

A collection **H** of hash functions is said to be 2-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{2}{n}$$

where h is selected uniformly at random from \mathbf{H} .

• Let p be a prime number, $x \in \{1, 2, \dots, p-1\}$.

$$h_x(i) = (ix \bmod p) \bmod n$$

The family of hash functions:

$$\mathcal{H} = \{ h_x \mid x \in [1, p - 1] \}$$

 \mathcal{H} is a 2-universal hash function family.

• $\mathbb{P}(h(i) = h(j)) \leq \frac{2}{n}$

A collection **H** of hash functions is said to be 1-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{1}{n}$$

where h is selected uniformly at random from \mathbf{H} .

A collection **H** of hash functions is said to be 1-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{1}{n}$$

where h is selected uniformly at random from \mathbf{H} .

• Let p be a prime number, $x \in \{1, 2, \dots, p-1\}, y \in \{0, 1, \dots, p-1\}.$

$$h_{x,y}(i) = ((ix + y) \bmod p) \bmod n$$

The family of hash functions:

$$\mathcal{H} = \{h_{x,y} \mid x \in [1, p-1], y \in [0, p-1]\}$$

 \mathcal{H} is a 1-universal hash function family.

A collection **H** of hash functions is said to be 1-universal if for any $i, j \in U$,

$$\mathbb{P}(h(i) = h(j)) \le \frac{1}{n}$$

where h is selected uniformly at random from \mathbf{H} .

• Let p be a prime number, $x \in \{1, 2, \dots, p-1\}, y \in \{0, 1, \dots, p-1\}.$

$$h_{x,y}(i) = ((ix + y) \bmod p) \bmod n$$

The family of hash functions:

$$\mathcal{H} = \{h_{x,y} \mid x \in [1, p-1], y \in [0, p-1]\}$$

 \mathcal{H} is a 1-universal hash function family.

• $\mathbb{P}(h(i) = h(j)) \leq \frac{1}{n}$

Perfect Hashing in $O(s^2)$

```
Algorithm
 repeat
     Pick randomly a hash function h \in_r \mathcal{H}
     Set collision count t \leftarrow 0
     for all i \in S do
        compute h(i)
        if T[h(i)] \neq \text{empty then}
            t=1; break
        end if
     end for
 until t=0
 return the perfect hash table T
```

Perfect Hashing in $O(s^2)$

```
Algorithm
 repeat
     Pick randomly a hash function h \in_r \mathcal{H}
     Set collision count t \leftarrow 0
     for all i \in S do
         compute h(i)
         if T[h(i)] \neq \text{empty then}
            t=1; break
         end if
     end for
 until t=0
 return the perfect hash table T
```

Time complexity: The expected time taken by the algorithm is $O(s^2)$. Space complexity: The expected space required by the algorithm is $O(s^2)$. It performs search in O(1) worst case time.

Two-Level Hashing (O(s) Space)

Algorithm: Fix n = csrepeat Pick a random hash function $h \in_r \mathcal{H}$ Set collision count $t \leftarrow 0$ for all $i \in S$ do Compute h(i) $t \leftarrow t + \operatorname{length}(T[h(i)])$ Append i to list T[h(i)]end for until $t \leq s$ Primary hash table is complete for each $0 \le i \le n$ do if size of list T[i] > 1 then Build a perfect hash table for list T[i]Set T[i] to point to this hash table end if end for

Two-Level Hashing (O(s) Space)

```
Algorithm:
Fix n = cs
repeat
    Pick a random hash function h \in_r \mathcal{H}
    Set collision count t \leftarrow 0
    for all i \in S do
        Compute h(i)
        t \leftarrow t + \operatorname{length}(T[h(i)])
        Append i to list T[h(i)]
    end for
until t \leq s
Primary hash table is complete
for each 0 \le i \le n do
    if size of list T[i] > 1 then
        Build a perfect hash table for list T[i]
        Set T[i] to point to this hash table
    end if
end for
```

Analysis:

Time complexity: Expected $O(s^2)$

Space complexity: Expected O(s)

Search time: Worst-case O(1)

Experimental Setup

Datasets Used:

- Size Range: Varied from small to very large datasets, specifically from 10^1 (10 elements) up to 10^8 (100 million elements).
- **Purpose:** To evaluate the performance and scalability of hashing algorithms under different data volumes.

Experimental Setup

Datasets Used:

- Size Range: Varied from small to very large datasets, specifically from 10¹ (10 elements) up to 10⁸ (100 million elements).
- **Purpose:** To evaluate the performance and scalability of hashing algorithms under different data volumes.

Types of Input Distributions:

- Uniform Distribution: Keys are chosen randomly with equal probability simulates unpredictable real-world data.
- Arithmetic Progressions: Structured sequences (e.g., 2, 4, 6, ...) to test performance on predictable and non-random data.

• Simple Hashing: Fastest on uniform data, but fails catastrophically on structured data like AP distributions.

• Simple Hashing: Fastest on uniform data, but fails catastrophically on structured data like AP distributions.

- **Perfect Hashing**: Guaranteed constant-time lookups but memory overhead became unsustainable beyond moderate s.
- Memory usage increases with dataset size:

- **Perfect Hashing**: Guaranteed constant-time lookups but memory overhead became unsustainable beyond moderate s.
- Memory usage increases with dataset size:

• Two-Level Hashing: Achieved the best of both worlds – fast lookups with high probability and space close to optimal.

• Two-Level Hashing: Achieved the best of both worlds – fast lookups with high probability and space close to optimal.

AP Distribution

Uniform Distribution

Comparative Evaluation

• Compared performance of hashing with binary search and Binary Search Trees (BSTs). Performance grew with log s in the latter – it was consistent but slower than hashing on larger datasets.

Comparative Evaluation

• Compared performance of hashing with **binary search and**Binary Search Trees (BSTs). Performance grew with log s in the latter – it was consistent but slower than hashing on larger datasets.

Comparative Evaluation

• Compared performance of hashing with **binary search and**Binary Search Trees (BSTs). Performance grew with log s in the latter – it was consistent but slower than hashing on larger datasets.

• Two-level hashing outperformed others in large-scale tests.

• Empirical tests measured average query time (in μ s) across varying dataset sizes on uniformly distributed data.

- Empirical tests measured average query time (in μ s) across varying dataset sizes on uniformly distributed data.
- Perfect and two-level hashing consistently outperformed comparison-based methods.

- Empirical tests measured average query time (in μ s) across varying dataset sizes on uniformly distributed data.
- Perfect and two-level hashing consistently outperformed comparison-based methods.
- Perfect hashing is omitted beyond 10⁴ due to high memory overhead.

- Empirical tests measured average query time (in μ s) across varying dataset sizes on uniformly distributed data.
- Perfect and two-level hashing consistently outperformed comparison-based methods.
- Perfect hashing is omitted beyond 10⁴ due to high memory overhead.
- Two-level hashing remained efficient and scalable, even for large datasets.

- Empirical tests measured average query time (in μ s) across varying dataset sizes on uniformly distributed data.
- Perfect and two-level hashing consistently outperformed comparison-based methods.
- Perfect hashing is omitted beyond 10⁴ due to high memory overhead.
- Two-level hashing remained efficient and scalable, even for large datasets.

Dataset Size	Perfect Hashing	Two-Level Hashing	Binary Search	BST
10	0.77	0.79	0.84	0.65
100	0.46	0.35	0.75	0.96
1000	0.41	0.35	1.33	0.90
10000	0.51	0.40	2.25	1.47
100000	_	0.80	4.04	2.46
1000000	-	0.91	4.96	3.90

Table 1: Average Query Time (μ s) for Uniform Distribution

Conclusion

ullet Explored hashing techniques ensuring worst-case O(1) search

Conclusion

- Explored hashing techniques ensuring worst-case O(1) search
- Universal families reduce adversarial risk

Conclusion

- Explored hashing techniques ensuring worst-case O(1) search
- Universal families reduce adversarial risk
- Two-level hashing balances time and space efficiently

Q&A

We are open to questions now!!