# Regression Diagnostics (SW 9.2 and 8.2)

Dragos Ailoae

dailoae@gradcenter.cuny.edu

Advanced Economics and Business Statistics ECON-4400w

Brooklyn College

### Regression User's Guide (1 of 2)

| What Can Go<br>Wrong?                                                                | What Are the Consequences?                                                                                        | How Can It Be<br>Detected?                                                                                                     | How Can It Be<br>Corrected?                                                    |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Omitted Variable The omission of a relevant indepen- dent variable                   | Bias in the coefficient estimates (the β̂s) of the included Xs.                                                   | Theory, significant unexpected signs, or surprisingly poor fits.                                                               | Include the omitted variable or a proxy.                                       |
| Irrelevant Variable The inclusion of a variable that does not belong in the equation | Decreased precision in the form of higher standard errors, lower <i>t</i> -scores and wider confidence intervals. | <ol> <li>Theory</li> <li>t-test on β</li> <li>R̄<sup>2</sup></li> <li>Impact on other coefficients if X is dropped.</li> </ol> | Delete the variable if its inclusion is not required by the underlying theory. |
| Incorrect Functional The functional form is inappropriate                            | Biased estimates,<br>poor fit, and difficult<br>interpretation.                                                   | Examine the theory carefully; think about the relationship between X and Y.                                                    | Transform the variable or the equation to a different functional form.         |

### Regression User's Guide (2 of 2)

| What Can Go<br>Wrong?                                                                                             | What Are the Consequences?                                                                                                  | How Can It Be<br>Detected?            | How Can It Be<br>Corrected?                                                                       |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|
| Multicollinearity Some of the independent variables are (imperfectly) correlated                                  | No biased βs, but estimates of the separate effects of the Xs are not reliable, i.e., high SE(β)s and low <i>t</i> -scores. | Pairwise correlations or scatterplots | Drop redundant variables, but to drop others might introduce bias. Often doing noth- ing is best. |
| Serial Correlation Observations of the error term are correlated, as in: $\epsilon_t = \rho \epsilon_{t-1} + u_t$ | No biased β̂s, but OLS no longer is minimum variance, and hypothesis testing and confidence intervals are unreliable.       | Use residual plots                    | If impure, fix the specification.                                                                 |
| Heteroskedasticity                                                                                                |                                                                                                                             |                                       |                                                                                                   |
| The variance of the error term is not constant for all observations, as in: $VAR(\epsilon_i) = \sigma^2 Z_i$      | Same as for serial correlation.                                                                                             | Use residual plots                    | If impure, fix the specification. Otherwise, use robust std. errors or reformulate the variables. |

### Functional form (SW 8.2) Logarithms refresher

| er<br>er |               |
|----------|---------------|
| Larger   | <u>al</u> ler |
| 10×      | Sm            |
|          | 1<br>X<br>X   |
|          | Y             |

| Number | How Many 10s     | Base-10 Loga              | arithm |
|--------|------------------|---------------------------|--------|
| etc    |                  |                           |        |
| 1000   | 1 × 10 × 10 × 10 | log <sub>10</sub> (1000)  | = 3    |
| 100    | 1 × 10 × 10      | log <sub>10</sub> (100)   | = 2    |
| 10     | 1 × 10           | log <sub>10</sub> (10)    | = 1    |
| 1      | 1                | log <sub>10</sub> (1)     | = 0    |
| 0.1    | 1 ÷ 10           | $\log_{10}(0.1)$          | = -1   |
| 0.01   | 1 ÷ 10 ÷ 10      | log <sub>10</sub> (0.01)  | = -2   |
| 0.001  | 1 ÷ 10 ÷ 10 ÷ 10 | log <sub>10</sub> (0.001) | = -3   |
| etc    |                  |                           |        |

### Functional form (SW 8.2) Converting between log bases

$$\log_{5}(12) = \frac{\log_{10}(12)}{\log_{10}(5)}$$

$$= \frac{\log(12)}{\log(5)}$$

$$= \frac{1.079181246...}{0.6989700043...}$$

$$\log_{5}(12) \approx 1.544$$

### Functional form (SW 8.2) Natural logs (ln)

If e (a constant equal to 2.71828) to the "bth power" produces x, then b is the log of x:

b is the log of x to the base e if: 
$$e^{b} = x$$

Thus, a log (or logarithm) is the exponent to which a given base must be taken in order to produce a specific number. While logs come in more than one variety, we'll use only natural logs (logs to the base e) in this text.

The symbol for a natural log is "ln," so ln(x) = b means that  $(2.71828)^b = x$  or, more simply,

$$ln(x) = b$$
 means that  $e^b = x$ 

For example, since  $e^2 = (2.71828)^2 = 7.389$ , we can state that:

$$ln(7.389) = 2$$

Thus, the natural log of 7.389 is 2! Two is the power of e that produces 7.389. Let's look at some other natural log calculations:

$$ln(100) = 4.605 
ln(1000) = 6.908$$

### Functional form (SW 8.2) Logarithmic functions of Y and/or X

- ln(X) = the natural logarithm of X
- Logarithmic transforms permit modeling relations in "percentage" terms (like elasticities), rather than linearly.

Here's why: 
$$\ln(x + \Delta x) - \ln(x) = \ln\left(1 + \frac{\Delta x}{x}\right) \cong \frac{\Delta x}{x}$$
  
(calculus:  $\frac{d\ln(x)}{dx} = \frac{1}{x}$ )

Numerically:

$$ln(1.01) = .00995 \cong .01;$$
  
 $ln(1.10) = .0953 \cong .10 \text{ (sort of )}$ 

### Functional form (SW 8.2) Interpreting coefficients

The best way to choose a functional form for a regression model is to select the specification that best matches the underlying theory of the equation. In a majority of cases, the linear form will be adequate, and for most of the rest, common sense will point out a fairly easy choice from the following alternatives:

| <b>Functional Form</b> | Equation (one X only)                                         | The Change in Y when X Changes                                                                                                |
|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Linear                 | $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$                 | If X increases by one unit, Y will change by $\beta_1$ units.                                                                 |
| Double-log             | $InY_i = \beta_0 + \beta_1 InX_i + \varepsilon_i$             | If X increases by one percent, Y will change by $\beta_1$ percent. (Thus $\beta_1$ is the elasticity of Y with respect to X.) |
| Semilog (lnX)          | $Y_i = \beta_0 + \beta_1 In X_i + \varepsilon_i$              | If X increases by one percent, Y will change by $\beta_1/100$ units.                                                          |
| Semilog (lnY)          | $InY_i = \beta_0 + \beta_1 X_i + \varepsilon_i$               | If X increases by one unit, Y will change by roughly 100β <sub>1</sub> percent.                                               |
| Polynomial             | $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$ | If X increases by one unit, Y will change by $(\beta_1 + 2\beta_2 X)$ units.                                                  |

# Functional form (SW 8.2) Example: ln(TestScore) vs. ln(Income)

- First defining a new dependent variable, ln(TestScore), and the new regressor, ln(Income)
- The model is now a linear regression of ln(*TestScore*) against ln(*Income*), which can be estimated by OLS:

$$ln(TestScore) = 6.336 + 0.0554 \times ln(Income_i)$$
(0.006) (0.0021)

An 1% increase in *Income* is associated with an increase of .0554% in *TestScore* (*Income* up by a factor of 1.01, *TestScore* up by a factor of 1.000554)

# Functional form (SW 8.2) Example: ln(TestScore) vs. ln(Income)

$$ln(TestScore) = 6.336 + 0.0554 \times ln(Income_i)$$
  
(0.006) (0.0021)

- For example, suppose income increases from \$10,000 to \$11,000, or by 10%. Then *TestScore* increases by approximately .0554 × 10% = .554%. If *TestScore* = 650, this corresponds to an increase of .00554 × 650 = 3.6 points.
- How does this compare to the log-linear model?

# Functional form (SW 8.2) Example: ln(TestScore) vs. ln(Income)



- Note vertical axis
- The log-linear model doesn't seem to fit as well as the log-log model, based on visual inspection.

#### **Multicollinearity**

Check pairwise correlations and scatterplots of the suspected independent variables



#### **Serial correlation**

A residuals vs. order plot that exhibits (positive) trend suggests that some of the variation in the response is due to time



A residuals vs. order plot that suggests that there is "positive serial correlation" among the error terms. The plot suggests that the assumption of independent error terms is violated.



#### Heteroskedasticity

#### A Good Residual Plot

### 

### Indications that Assumption of Constant Variance is Not Valid

