MVP: Análise Exploratória e Pré-Processamento de Dados

Dados do Aluno

Nome: Denilson Santos

• Disciplina: Análise Exploratória e Pré-Processamento de Dados

• Pós-Graduação: Ciência de dados e Analytics

1. Origem dos Dados

O Dataset utilizado é referente aos Aluguéis de imóveis no Brasil. O dataset utilizado foi encontrado no site do kaggle, no seguinte endereço:

https://www.kaggle.com/datasets/rubenssjr/brasilian-houses-to-rent?resource=download

Dados Utilizados

• city: Cidade onde o imóvel está localizado

• area: Área total do imóvel

rooms: Quantidade de Quartos

• bathroom: Quantidade de Banheiros

• parking_spaces: Quantidade de Vagas de Estacionamento

• floor: Quantidade de pisos (andar) do imóvel

• animal: Se aceita pets ou não

• furniture: Se o imóvel está com móbilias ou não

 hoa_brl: é uma taxa que proprietários pagam para custear a manutenção de áreas comuns dos condomínios.

• rent_amount: Valor do Aluguel

• property_tax: Contribuição predial

• fire_insurance: Taxa de Incêndio

• total: Valor total do Aluguel

2. Definição do Problema

A diretoria da Imobiliária Luxor soliciotu que a equipe dados faça uma análise dos Alguéis no Brasil, com foco na cidade do Rio de Janeiro para futura expansão da empresa.

A equipe decidiu fazer uma análise exploratória dos dados e depois Utilizar alguns modelos de Machine Learning para avaliar qual seria melhor solução. Serão utilizados os seguintes modelos:

- Regresão Linear
- · Regressão Logística
- Árvore de Decisão
- · Redes Neurais

3. Preparação dos Dados

Nesta etapa, iremos importar as bibliotecas necessárias e importar o Dataset que será utilizado.

```
1 # Importando as bibliotecas necessárias
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 import numpy as np
 5 import seaborn as sns
 6 import io
7 import statsmodels.api as sm
9 from scipy import stats
10 from sklearn.preprocessing import StandardScaler, OneHotEncoder
11 from sklearn.compose import ColumnTransformer
12 from sklearn.pipeline import Pipeline
13 from sklearn.ensemble import RandomForestClassifier
14 from sklearn.metrics import classification_report
15 from sklearn.model_selection import GridSearchCV
16 from sklearn.model_selection import train_test_split
17 from sklearn.model_selection import cross_val_score
18 from sklearn.model_selection import KFold
19 from sklearn.metrics import mean_squared_error, r2_score
20
21 from tabulate import tabulate
22 from datetime import datetime
23 from csv import DictReader
25 from google.colab import data_table
26 data_table.enable_dataframe_formatter()
```

Importação dos Dados

```
1 # Dataset:
```

- 2 url = "https://raw.githubusercontent.com/CITMAX/data/main/houses_to_rent_complete.csv"
- 3 df = pd.read_csv(url, sep=',', on_bad_lines='warn')

Realizando a leitura e teste dos dados

1 df

1 to 25 of 10692 entries Filter

index	city	aroa	rooms	hathroom	parking spaces		animal		hoa (R\$)	ren
	São								, ,	1611
0	Paulo	70	2	1	1	7	acept	furnished	2065	
1	São Paulo	320	4	4	0	20	acept	not furnished	1200	
2	Porto Alegre	80	1	1	1	6	acept	not furnished	1000	
3	Porto Alegre	51	2	1	0	2	acept	not furnished	270	
4	São Paulo	25	1	1	0	1	not acept	not furnished	0	
5	São Paulo	376	3	3	7	-	acept	not furnished	0	
6	Rio de Janeiro	72	2	1	0	7	acept	not furnished	740	
7	São Paulo	213	4	4	4	4	acept	not furnished	2254	
8	São Paulo	152	2	2	1	3	acept	furnished	1000	
9	Rio de Janeiro	35	1	1	0	2	acept	furnished	590	
10	São Paulo	26	1	1	0	2	acept	furnished	470	
11	Campinas	46	1	1	1	10	acept	not furnished	550	
12	São Paulo	36	1	1	0	11	acept	not furnished	359	
13	São Paulo	55	1	1	1	2	acept	furnished	790	
14	São Paulo	100	2	2	2	24	acept	furnished	900	
15	Campinas	330	4	6	6	-	acept	furnished	680	
16	São	110	2	2	1	1	acept	not	700	

Next steps: Generate code df with

View recommended plots

New interactive sheet

4 - Análise Exploratória

Neste tópico, iremos explorar os dados, utilizando algumas análises.

```
1 # Filtrar apenas pela cidade do Rio de Janeiro
2 df = df[df['city'] == 'Rio de Janeiro']
```

4.1. Visualização da Distribuição dos Valores de Aluguel

Um histograma pode ajudar a visualizar a distribuição do valor do aluguel.

```
1 import matplotlib.pyplot as plt
2
3 # Histograma do valor do aluguel
4 plt.figure(figsize=(10, 6))
5 plt.hist(df['rent amount (R$)'], bins=30, color='blue', alpha=0.7)
6 plt.title('Distribuição do Valor do Aluguel')
7 plt.xlabel('Valor do Aluguel (R$)')
8 plt.ylabel('Frequência')
9 plt.grid(axis='y')
10 plt.show()
```


4.2. Gráfico de Boxplot para Analisar Outliers

Um boxplot pode ser utilizado para identificar outliers nos valores de aluguel.

```
1 import seaborn as sns
2
3 # Boxplot do valor do aluguel por número de quartos
4 plt.figure(figsize=(12, 6))
5 sns.boxplot(x='rooms', y='rent amount (R$)', data=df)
6 plt.title('Boxplot do Valor do Aluguel por Número de Quartos')
7 plt.xlabel('Número de Quartos')
8 plt.ylabel('Valor do Aluguel (R$)')
9 plt.grid(axis='y')
10 plt.show()
```


4.3. Matriz de Correlação

A matriz de correlação ajuda a entender como as variáveis estão relacionadas entre si.

```
1 # Matriz de correlação apenas com colunas numéricas
2 correlation_matrix = df.corr(numeric_only=True)
3
4 # Gráfico de calor da matriz de correlação
5 plt.figure(figsize=(12, 8))
6 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
7 plt.title('Matriz de Correlação')
```


4.4. Análise da Relação entre Área e Valor do Aluguel

Um gráfico de dispersão pode ser útil para visualizar a relação entre a área e o valor do aluguel.

```
1 # Gráfico de dispersão entre área e valor do aluguel
2 plt.figure(figsize=(10, 6))
3 sns.scatterplot(x='area', y='rent amount (R$)', data=df, alpha=0.6)
4 plt.title('Relação entre Área e Valor do Aluguel')
5 plt.xlabel('Área (m²)')
6 plt.ylabel('Valor do Aluguel (R$)')
7 plt.grid()
8 plt.show()
```


4.5. Análise da Taxa de Manutenção em Relação ao Valor do Aluguel

Verificar como a taxa de manutenção (hoa_brl) se relaciona com o valor do aluguel.

```
1 # Gráfico de dispersão entre hoa_brl e valor do aluguel
2 plt.figure(figsize=(10, 6))
3 sns.scatterplot(x='hoa (R$)', y='rent amount (R$)', data=df, alpha=0.6)
4 plt.title('Relação entre Taxa de Manutenção e Valor do Aluguel')
5 plt.xlabel('Taxa de Manutenção (R$)')
6 plt.ylabel('Valor do Aluguel (R$)')
7 plt.grid()
8 plt.show()
```


5. Modelos Supervisionados

5.1 Tratamento dos Dados

Nesta etapa, realizar o tratamento dos dados

```
1 # Filtrar apenas pela cidade do Rio de Janeiro
2 df = df[df['city'] == 'Rio de Janeiro']
```

```
1 # Verificar a distribuição de valores nulos
2 print(f"Valores Nulos: {df.isnull().sum()}")
    Valores Nulos: city
                                                  0
                                0
    area
     rooms
                                0
                                0
    bathroom
    parking spaces
    floor
    animal
    furniture
    hoa (R$)
     rent amount (R$)
    property tax (R$)
    fire insurance (R$)
                                0
    total (R$)
    dtype: int64
1 # Verificar a presença de valores duplicados
2 print(f"Valores Duplicados: {df.duplicated().sum()}")
→ Valores Duplicados: 70
1 # Remover duplicatas com base em colunas específicas
2 df = df.drop_duplicates(subset=['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'rent (
4 print(f"Valores Duplicados Após Remoção: {df.duplicated().sum()}")
6 print(f"Número de linhas antes da filtragem: {len(df)}")
7 df = df[df['hoa (R\$)'] <= 1.5 * df['rent amount (R\$)']]
8 print(f"Número de linhas após a filtragem: {len(df)}")
→ Valores Duplicados Após Remoção: 0
    Número de linhas antes da filtragem: 1424
    Número de linhas após a filtragem: 1419
1 # Remover linhas onde a coluna 'floor' contém "-"
2 df = df[df['floor'] != '-']
1 # Tratar a coluna 'floor' e converter para int
2 df.loc[:, 'floor'] = df['floor'].astype(int)
1 # Converter variáveis categóricas usando .loc
2 df.loc[:, 'animal'] = df['animal'].map({'acept': 1, 'not acept': 0})
3 df.loc[:, 'furniture'] = df['furniture'].map({'furnished': 1, 'not furnished': 0})
1 print(df.columns.tolist())
['city', 'area', 'rooms', 'bathroom', 'parking spaces', 'floor', 'animal',
```

```
1 Start coding or <u>generate</u> with AI.
```

```
1 # Remover a coluna 'city'
2 df = df.drop(columns=['city'])

1 # Atualizar a variável X com as características do imóvel
2 X = df[['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'property tax (R$)', 'fire insi
3 y = df['rent amount (R$)']
```

5.1 Modelos Supervisionados | Regressão Linear

O Objetivo do modelo de Regressão Linear é gerar uma ferramenta precisa e confiável para prever os preços dos alguéis com base nos dados dos imóveis.

Variáveis

Foram selecionadas as seguintes varáiveis:

- rooms
- bathroom
- furniture
- animal
- fire insurance
- · rent amount

As variáiveis foram escolhidas através da análise de correlação (Matriz de Correlação)

- 1 # Análise exploratória: matriz de correlação e gráfico de calor
- 2 plt.figure(figsize=(12, 8))
- 3 correlation_matrix = df.corr()
- 4 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
- 5 plt.title('Matriz de Correlação')
- 6 plt.show()

Tranformações Aplicadas

- Remoção de Outliers
- Retirada de dados Duplicados
- Valores nulos
- Conversão de variáveis Categóricas
- Conversão do campo floor para inteiro
- Filtrar apenas a Cidade do Rio de Janeiro

```
1 # Adicionar constante
2 X = sm.add_constant(X)
```

```
import pandas as pd

import pandas as pandas

import pandas as pandas

import pand
```

```
furniture_1 animal_1
0 1 0
1 2 1
```

```
1 # Convertendo colunas booleanas para inteiros
2 df['furniture_1'] = df['furniture_1'].astype(int)
3 df['animal_1'] = df['animal_1'].astype(int)
```

```
print(X.dtypes)
2
     print(y.dtypes)
                                  float64
     const
                                     int64
     area
     rooms
                                     int64
     bathroom
                                     int64
     parking spaces
                                     int64
     hoa (R$)
                                     int64
     property tax (R$)
                                     int64
     fire insurance (R$)
                                     int64
     furniture
                                    object
     animal
                                    object
     dtype: object
     int64
 1 # Exemplo de codificação one-hot
 2 X = pd.get_dummies(X, drop_first=True)
 1 X = X.apply(pd.to_numeric, errors='coerce')
2 y = pd.to_numeric(y, errors='coerce')
1 X = X.dropna()
2 y = y[X.index] # Certifique-se de que y corresponda às linhas de X
1 # Verificando os tipos de dados
2 print("Tipos de dados antes da conversão:")
3 print(X.dtypes)
4
5 # Convertendo as colunas booleanas para inteiros
6 X['furniture_1'] = X['furniture_1'].astype(int)
7 X['animal_1'] = X['animal_1'].astype(int)
9 # Verificando novamente os tipos de dados
10 print("Tipos de dados após a conversão:")
11 print(X.dtypes)
12
13 # Verificando valores nulos
14 print("Valores nulos em X:")
15 print(X.isnull().sum())
16 print("Valores nulos em y:")
17 print(y.isnull().sum())
18
19 # Removendo valores nulos (se houver)
20 X = X.dropna()
21 y = y[X.index] # Certifique-se de que y corresponda às linhas de X
22
23 # Convertendo todos os dados para numérico novamente
24 X = X.apply(pd.to_numeric, errors='coerce')
25 y = pd.to_numeric(y, errors='coerce')
26
27 # Verificando a dimensão dos dados
28 print("Dimensões após remoção de nulos:")
29 print(f"X shape: {X.shape}, y shape: {y.shape}")
30
21 # Niustando o modelo OIC novamento
```

```
rooms
                          int64
bathroom
                          int64
parking spaces
                          int64
hoa (R$)
                          int64
property tax (R$)
                          int64
fire insurance (R$)
                          int64
furniture_1
                          int64
animal 1
                          int64
dtype: object
Valores nulos em X:
                        0
const
area
                        0
rooms
bathroom
parking spaces
hoa (R$)
                        0
property tax (R$)
fire insurance (R$)
                        0
                        0
furniture_1
animal 1
dtype: int64
Valores nulos em y:
Dimensões após remoção de nulos:
X shape: (1327, 10), y shape: (1327,)
                             OLS Regression Results
Dep. Variable:
                                                                            0.
                     rent amount (R$)
                                          R-squared:
                                          Adj. R-squared:
Model:
                                                                            0.
                                   0LS
Method:
                                          F-statistic:
                                                                        1.439e
                         Least Squares
Date:
                      Fri, 20 Sep 2024
                                          Prob (F-statistic):
                              00:33:15
                                          Log-Likelihood:
                                                                          -931
Time:
No. Observations:
                                  1327
                                          AIC:
                                                                        1.865e
Df Residuals:
                                  1317
                                          BIC:
                                                                        1.870e
Df Model:
                                     9
Covariance Type:
                             nonrobust
                           coef
                                                     t
                                                            P>Itl
                                                                        [0.025
                                   std err
                       -20.8752
                                    26.283
                                                -0.794
                                                            0.427
                                                                       -72.436
const
                                    0.167
area
                        -0.2801
                                                -1.681
                                                            0.093
                                                                        -0.607
rooms
                        -1.7992
                                    12.075
                                                -0.149
                                                            0.882
                                                                       -25.487
                                                 1.617
bathroom
                        22.1945
                                    13.725
                                                            0.106
                                                                        -4.731
parking spaces
                        -2.5625
                                    12.652
                                                -0.203
                                                            0.840
                                                                       -27.382
                        0.0291
hoa (R$)
                                     0.014
                                                 2.052
                                                            0.040
                                                                         0.001
property tax (R$)
                        0.0028
                                     0.009
                                                 0.304
                                                            0.761
                                                                        -0.015
fire insurance (R$)
                        76.8220
                                    0.345
                                               222.726
                                                            0.000
                                                                        76.145
                        7.2596
                                                                       -27.203
furniture 1
                                    17.567
                                                 0.413
                                                            0.679
animal_1
                        -1.4409
                                    18.987
                                                                       -38.689
                                                -0.076
                                                            0.940
Omnibus:
                              2671.664
                                          Durbin-Watson:
                                                                            2.
Prob(Omnibus):
                                 0.000
                                          Jarque-Bera (JB):
                                                                      6224351.
Skew:
                                15.657
                                          Prob(JB):
Kurtosis:
                               337.055
                                         Cond. No.
                                                                         5.98e
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corr [2] The condition number is large, 5.98e+03. This might indicate that there

Treinamento do Modelo em Reegressão Linear

- 1 # Treinar o modelo com os dados atualizados
- 2 model_updated = sm.OLS(y, X).fit()
- 1 # Exibir o sumário do modelo treinado
- 2 print(model_updated.summary())

-		_
_	4	_
_	7	•

OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		0LS Juares	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC:	squared stic: -statis	tic):	0. 0. 1.439e 0 -931 1.865e 1.870e
	coef	std e	err	====== t	P> t	[0.025
const area rooms bathroom parking spaces hoa (R\$) property tax (R\$) fire insurance (R\$) furniture_1 animal_1	-20.8752 -0.2801 -1.7992 22.1945 -2.5625 0.0291 0.0028 76.8220 7.2596 -1.4409	26.2 0.1 12.0 13.7 12.6 0.0 0.0 0.3 17.5 18.9	.67 - .075 - .725 .552 - .014 .009 .345 22	0.794 1.681 0.149 1.617 0.203 2.052 0.304 2.726 0.413 0.076	0.427 0.093 0.882 0.106 0.840 0.040 0.761 0.000 0.679 0.940	-72.436 -0.607 -25.487 -4.731 -27.382 0.001 -0.015 76.145 -27.203 -38.689
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1	1.664 0.000 5.657 7.055	Durbin- Jarque- Prob(JB Cond. N	Bera (J):	B):	2. 6224351. 0 5.98e

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corr [2] The condition number is large, 5.98e+03. This might indicate that there strong multicollinearity or other numerical problems.

Dividir o modelo em 2: Treino e Teste

```
1 # Dividir os dados em conjunto de treino e teste (80% treino, 20% teste)
2 X_train, X_test, y_train, y_test_pred = train_test_split(X, y, test_size=0.2, random_state=42)
```

Treinamento do Modelo

➡ Métricas de Avaliação no Conjunto de Teste:

R²: 0.9964292251696865

RMSE (Root Mean Squared Error): 183.07036593310204

- 1 # Resumo do modelo treinado nos dados de treino
- 2 print("\nSumário do Modelo Treinado nos Dados de Treino:")
- 3 print(model_train.summary())

Sumário do Modelo Treinado nos Dados de Treino: OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	rent amount (R\$) R-squared: OLS Adj. R-squared: Least Squares F-statistic: Fri, 20 Sep 2024 Prob (F-statistic): 00:33:15 Log-Likelihood: 1061 AIC: 1051 BIC: 9 nonrobust			ic):	0. 0. 91 0 -752 1.507e 1.512e	
	coef	std	err	t	P>Itl	[0.025
const area rooms bathroom parking spaces hoa (R\$) property tax (R\$) fire insurance (R\$) furniture_1 animal_1	-32.9967 -0.4253 1.4794 23.7054 -4.2938 0.0373 0.0451 76.6091 12.6693 7.5659	0. 14. 16. 15. 0. 0. 21.	003 213 936 594 064 019 037 447 248 820	-1.031 -1.998 0.099 1.429 -0.285 2.015 1.225 171.423 0.596 0.332	0.303 0.046 0.921 0.153 0.776 0.044 0.221 0.000 0.551 0.740	-95.793 -0.843 -27.828 -8.856 -33.854 0.001 -0.027 75.732 -29.023 -37.211
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1	6.155 0.000 .5.452 .3.276	J <i>c</i> Pr	urbin-Watson: urque-Bera (JB) rob(JB): ond. No.): 	2. 4298222. 0 5.77e

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corr [2] The condition number is large, 5.77e+03. This might indicate that there strong multicollinearity or other numerical problems.

```
1 # Validação cruzada com 5 folds
 2 \text{ num\_folds} = 5
 3 kf = KFold(n_splits=num_folds, shuffle=True, random_state=42)
4 cv_scores = []
6 for train_index, test_index in kf.split(X):
 7
       X_train_cv, X_test_cv = X.iloc[train_index], X.iloc[test_index]
8
       y_train_cv, y_test_cv = y.iloc[train_index], y.iloc[test_index]
9
10
       # Treinar o modelo nos dados de treino do fold atual
       model_cv = sm.OLS(y_train_cv, X_train_cv).fit()
11
12
13
       # Prever nos dados de teste do fold atual
14
       y_pred_cv = model_cv.predict(X_test_cv)
15
       # Calcular R<sup>2</sup> e armazenar na lista de scores
16
17
       r2_cv = r2_score(y_test_cv, y_pred_cv)
18
       cv_scores.append(r2_cv)
```

```
1 # Média e desvio padrão dos scores de R²
2 mean_r2_cv = np.mean(cv_scores)
3 std_r2_cv = np.std(cv_scores)
4
5 print(f"Resultados da Validação Cruzada com {num_folds} folds:")
6 print("-----"")
7 print(f"R² Médio: {mean_r2_cv}")
8 print(f"Desvio Padrão de R²: {std_r2_cv}")
```

Resultados da Validação Cruzada com 5 folds:

R² Médio: 0.9885530610899419

Desvio Padrão de R²: 0.011854881427007795

```
1 # Visualizar dados reais vs preditivos
2 plt.figure(figsize=(10, 6))
3 plt.scatter(y_test_pred, y_pred_lin, alpha=0.5)
4 plt.plot([min(y_test_pred), max(y_test_pred)], [min(y_test_pred), max(y_test_pred)], color='red')
5 plt.xlabel('Valores Reais')
6 plt.ylabel('Valores Preditos')
7 plt.title('Valores Reais vs Preditos')
8 plt.show()
```



```
1 # Simulação de um novo imóvel
 2 \text{ new\_data} = \{
3
      'const': 1,
       'area': 200,
4
 5
       'rooms': 4,
 6
      'bathroom': 3,
 7
       'parking spaces': 3,
8
       'hoa (R$)': 2400,
9
       'property tax (R$)': 0,
10
       'fire insurance (R$)': 82,
       'furniture': 0,
11
       'animal': 0
12
13 }
```

```
1 # Criar um DataFrame com essas características
2 new_df = pd.DataFrame([new_data])
3
```

```
1 # Fazer a previsão usando o modelo treinado
2 predicted_total_rent = model_updated.predict(new_df)
3
4 # Exibir o valor previsto
5 print(f"Valor previsto do aluguel total: R$ {predicted_total_rent.values[0]:,.2f}")
```

→ Valor previsto do aluguel total: R\$ 6,343.94

Treinamento

- Modelo foi dividido em dois conjuntos, sendo um de 80% Treino e outro 20% Teste.
- Foi utilizado a função SKLEARN | train_test_split
- Foi utilizado a função OLS Stats Models para treinar o modelo
- Foi utilizado a validação cruzada com 5 folds para verificar a estabulidade do modelo
- Foi utilizado a Média do Coeficiente de Determinação (R2) para avaliar o desempenho

Na Validação Cruzada o resultado foi de 0.98 no conjunto de teste, representando 98,0% da variabilidade dos preços dos aluguéis.

Resultados da Validação Cruzada com 5 folds:

• R² Médio: 0.9885530610899419

• Desvio Padrão de R²: 0.011854881427007795

Resultado Final

O Modelo utilizado conseguiu interpretar e prever os dados. Sendo assim, os algorítmos de Regressão Linear são úteis para a previsão dos preços dos Alguéis.

5.2 Modelos Supervisionados | Regressão Logística

O Objetivo da Regressão Logística é prever se o Valor do Aluguel de um imóvel na Cidade do Rio de Janeiro é "*Caro*" ou "*Barato*" com base nos dados do Imóvel.

Variáveis

Foram selecionadas as seguintes varáiveis:

- Area
- Rooms
- Bathroom
- Parking Spaces
- HOA (R\$)
- Fire insurance
- Property Tax

Tranformações

- Inclusão de uma constante
- Criação de uma variável binária para classificar o Aluguel como Caro ou Barato
- Outliers já tratados e retirados

2 df = df[df['city'] == 'Rio de Janeiro']

Importando as Bibliotecas

```
1 import pandas as pd
2 import numpy as np
3 import seaborn as sns
4 import matplotlib.pyplot as plt
5 from sklearn.model_selection import train_test_split, GridSearchCV
6 from sklearn.linear_model import LogisticRegressionCV
7 from sklearn.metrics import confusion_matrix, classification_report
8 import statsmodels.api as sm

1 # Dataset:
2 url = "https://raw.githubusercontent.com/CITMAX/data/main/houses_to_rent_complete.csv"
3 df = pd.read_csv(url, sep=',', on_bad_lines='warn')

1 # Remover duplicatas com base em colunas específicas
2 df = df.drop_duplicates(subset=['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'rent of the filtrar apenas pela cidade do Rio de Janeiro
```

```
1 # Adicionar variável binária 'rent_category' com base na média do 'rent amount'
2 rent_mean = df['rent amount (R$)'].mean()
3 df['rent_category'] = np.where(df['rent amount (R$)'] >= rent_mean, 1, 0)

1 # Atualizar a variável X com as características do imóvel
2 X = df[['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'property tax (R$)', 'fire insi
3 y = df['rent_category']

1 # Adicionar constante
2 X = sm.add_constant(X)

1 # Dividir os dados em conjunto de treino e teste (80% treino, 20% teste)
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

1 # Treinar o modelo de regressão logística com validação cruzada
```

 $\overline{\Rightarrow}$

3 logistic_cv.fit(X_train, y_train)

LogisticRegressionCV

LogisticRegressionCV(cv=5, max_iter=10000, random_state=42)

2 logistic_cv = LogisticRegressionCV(cv=5, max_iter=10000, random_state=42)

```
1 # Avaliar o modelo nos dados de teste
2 y_pred = logistic_cv.predict(X_test)
3
```

```
1 # Exibir matriz de confusão
2 sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap='Blues', fmt='d', cbar=False)
3 plt.xlabel('Valor Previsto')
4 plt.ylabel('Valor Real')
5 plt.title('Matriz de Confusão - Regressão Logística')
6 plt.show()
```



```
1 print(f"Matriz de Confusão")
2 print(confusion_matrix(y_test, y_pred))
3
4 print("\nRelatório de Classificação:")
5 print(classification_report(y_test, y_pred))
```

Matriz de Confusão [[193 2] [3 87]]

 $\overline{\Rightarrow}$

Relatório de Classificação:

	precision		f1-score	support
0 1	0.98 0.98	0.99 0.97	0.99 0.97	195 90
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	285 285 285

```
2 y_pred_log = y_pred

1 # Exibir coeficientes do modelo
2 coefficients = pd.DataFrame(logistic_cv.coef_.T, index=X.columns, columns=['Coeficiente'])
3 coefficients.plot(kind='barh', legend=False)
4 plt.title('Coeficientes do Modelo de Regressão Logística')
5 plt.xlabel('Valor do Coeficiente')
6 plt.ylabel('Variável')
7 plt.show()
8
9 print("Coeficientes")
```


1 y_test_log = y_test

10 print(coefficients)

Coeficientes do Modelo de Regressão Logística

Coeficientes

	Coeficiente
const	-0.000394
area	-0.007112
rooms	-0.017228
bathroom	0.000550
parking spaces	-0.000940
hoa (R\$)	0.001048
property tax (R\$)	0.000920
fire insurance (R\$)	0.393810

```
1 # Simulação de um novo imóvel
2 \text{ new\_data} = \{
3
      'const': 1,
       'area': 200,
4
5
       'rooms': 4,
 6
      'bathroom': 3,
7
       'parking spaces': 3,
8
       'hoa (R$)': 2400,
9
       'property tax (R$)': 0,
10
       'fire insurance (R$)': 82
11 }
```

```
1 # Criar um DataFrame com essas características
2 new_df = pd.DataFrame([new_data])
```

```
1 # Fazer a previsão usando o modelo treinado
2 predicted_category = logistic_cv.predict(new_df)
3 predicted_category_label = 'Caro' if predicted_category[0] == 1 else 'Barato'
```

```
1 # Exibir a categoria prevista
2 print(f"Previsão da categoria de aluguel do novo imóvel: {predicted_category_label}")
```

Previsão da categoria de aluguel do novo imóvel: Caro

Treinamento

O modelo foi treinado utilizando LogisticRegressionCV com validação cruzada de 5 dobras. Os Hiperparâmetros foram ajustados automaticamente durante o treinamento.

Validação Cruzada

O modelo foi treinando 5 vezes (cv=5), cada vez utilizando 4 partes para treino e uma para validação, permitindo assim que o modelo seja avaliado em diferentes subconjuntos de dados.

Resultado

A Qualidade do Modelo foi avaliada utilizando a Matriz de Confusão e a classificação. Os Resultados indicaram uma grande precisão indicando que o modelo é capaz em prever corretamente se um aluguel é **caro** ou **barato**.

Previsão da categoria de aluguel do novo imóvel: Caro

- A acurácia geral de 98% sugere que o modelo é confiável e pode ser utilizado pela
 Diretoria no plano de expansão e tomada de decisão sobre os preços dos alguéis
- A alta precisão para as duas categorias (Barato ou Caro) significa que o modelo é equilibrado e eficaz e pode ser utilizado para auxiliar os Corretores.

5.2 Modelos Supervisionados | Árvore de Decisão

O objetivo do Modelo é Classificar os valores de alguéis em três categorias: **baixo**, **médio** e **alto**. Essas categorias são definidas com base nos percentuais do valor do Aluguel.

Essa solução é destinada para:

- Proprietários
- Corretores
- Investidores

Variáveis

As variáveis utilizadas foram:

- Area
- Rooms
- Bathrooms
- Parking Spaces
- HOA
- Property Tax
- Fire Insurance

Transformações

- Remoção de Duplicatas
- Filtro por Cidade (Rio de Janeiro)
- Criação de Variável categórica para classificação do valor do alguel

```
1 import pandas as pd
2 import numpy as np
3 import seaborn as sns
4 import matplotlib.pyplot as plt
5 from sklearn.model_selection import train_test_split, GridSearchCV
6 from sklearn.tree import DecisionTreeClassifier, plot_tree
7 from sklearn.metrics import confusion_matrix, classification_report
```

```
1 # Dataset:
2 url = "https://raw.githubusercontent.com/CITMAX/data/main/houses_to_rent_complete.csv"
3 df = pd.read_csv(url, sep=',', on_bad_lines='warn')
```

```
1 # Remover duplicatas com base em colunas específicas
2 df = df.drop_duplicates(subset=['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'rent of the column of the colu
```

```
1 # Filtrar apenas pela cidade do Rio de Janeiro
2 df = df[df['city'] == 'Rio de Janeiro']
1 # Adicionar variável categórica 'rent_category' com base nos percentis do 'rent amount'
2 percentile_33 = df['rent amount (R$)'].quantile(0.33)
3 percentile_66 = df['rent amount (R$)'].quantile(0.66)
5 def categorize_rent(rent):
      if rent <= percentile_33:</pre>
 7
          return 0 # baixo
8
      elif rent <= percentile_66:</pre>
9
          return 1 # médio
10
      else:
           return 2 # alto
11
12
13 df['rent_category'] = df['rent amount (R$)'].apply(categorize_rent)
1 # Atualizar a variável X com as características do imóvel
2 X = df[['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'property tax (R$)', 'fire insi
 3 y = df['rent_category']
1 # Dividir os dados em conjunto de treino e teste (80% treino, 20% teste)
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
1 # Definir a grade de parâmetros para busca
2 param_grid = {
3
      'criterion': ['gini', 'entropy'],
       'max_depth': [None, 10, 20, 30, 40, 50],
4
 5
       'min_samples_split': [2, 10, 20, 30],
 6
       'min_samples_leaf': [1, 5, 10, 15],
 7
       'max_features': [None, 'sqrt', 'log2']
 8 }
1 # Inicializar o modelo de árvore de decisão
 2 dt_clf = DecisionTreeClassifier(random_state=42)
1 # Aplicar o GridSearchCV
2 grid_search = GridSearchCV(estimator=dt_clf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
3 grid_search.fit(X_train, y_train)
     Fitting 5 folds for each of 576 candidates, totalling 2880 fits
                      GridSearchCV
       ▶ estimator: DecisionTreeClassifier
```

▶ DecisionTreeClassifier

```
1 # Extrair os melhores hiperparâmetros
2 best_params = grid_search.best_params_
3 print("Melhores hiperparâmetros:", best_params)

→ Melhores hiperparâmetros: {'criterion': 'gini', 'max_depth': None, 'max_fea

1 # Treinar o modelo de árvore de decisão com os melhores hiperparâmetros
2 best_dt_clf = grid_search.best_estimator_
```

```
1 # Avaliar o modelo nos dados de teste
2 y_pred = best_dt_clf.predict(X_test)

1 # Exibir matriz de confusão
2 sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap='Blues', fmt='d', cbar=False)
3 plt.xlabel('Valor Previsto')
4 plt.ylabel('Valor Real')
5 plt.title('Matriz de Confusão - Árvore de Decisão')
6 plt.show()
7
8 print(f"Matriz de Confusão")
9 print(confusion_matrix(y_test, y_pred))
10
11 y_test_tree = y_test
```

15 print(classification_report(y_test, y_pred, target_names=['Baixo', 'Médio', 'Alto']))

12 y_pred_tree = y_pred

14 print("\nRelatório de Classificação:")

13

Matriz de Confusão - Árvore de Decisão

Matriz de Confusão

[[98 2 0] [4 90 0] [0 1 90]]

Relatório de Classificação:

	precision	recall	f1-score	support
Baixo	0.96	0.98	0.97	100
Médio	0.97	0.96	0.96	94
Alto	1.00	0.99	0.99	91
accuracy			0.98	285
macro avg	0.98	0.98	0.98	285
weighted avg	0.98	0.98	0.98	285

```
1 # Visualizar a árvore de decisão
2 plt.figure(figsize=(20,10))
3 plot_tree(best_dt_clf, feature_names=X.columns, class_names=['Baixo', 'Médio', 'Alto'], filled=Tru4 plt.title('Árvore de Decisão - Classificação')
5 plt.show()
6
7 print("Coeficientes")
8 print(pd.Series(best_dt_clf.feature_importances_, index=X.columns))
```


Coeficientes

area	0.007440
rooms	0.00000
bathroom	0.00000
parking spaces	0.000000
hoa (R\$)	0.007056
property tax (R\$)	0.000675
fire insurance (R\$)	0.984829

dtype: float64

```
1 # Simulação de um novo imóvel
2 \text{ new\_data} = \{
3
       'area': 200,
4
       'rooms': 4,
5
       'bathroom': 3,
6
      'parking spaces': 3,
7
      'hoa (R$)': 2400,
8
       'property tax (R$)': 0,
9
       'fire insurance (R$)': 82
10 }
```

```
1 # Criar um DataFrame com essas características
2 new_df = pd.DataFrame([new_data])
```

```
1 # Fazer a previsão usando o modelo treinado
2 predicted_category = best_dt_clf.predict(new_df)
3 predicted_category_label = ['Baixo', 'Médio', 'Alto'][predicted_category[0]]
```

```
1 # Exibir a categoria prevista
2 print(f"Previsão da categoria de aluguel do novo Imóvel: {predicted_category_label}")
```

Previsão da categoria de aluguel do novo Imóvel: Alto

Treinamento

O modelo foi treinado utilizando GridSearchCV para encontrar os melhores hiperparâmetros.

Grade de Parâmetros

Foi definida uma grade de parâmetros com várias combinações

Validação Cruzada

O GridSearchCV utilizou validação cruazada (cv=5) para garantir a gereralização dos dados de teste.

Hiperparâmetros

Os melhores hiperparâmetros foram:

• criterion: gini

• max_depth: none

• max_features: nome

• min_samples_leaf: 5

min_samples_split: 2

Figura de Mérito da Árvore de Decisão

A Matriz de Confusão apresentou os valores Reais x Previstos para cada categoria:

• Baixo: 98 corretos, 2 incorretos (médio)

• **Médio**: 90 corretos, 4 incorretos (baixo)

• Alto: 90 corretos, 1 incorretos (médio)

Classificação da Árvore

• Precisão: Alta precisão em todas categorias

• Recall: Alta revocação em todas as categorias

• **F1-Score**: Valores de F1-Score indicando um equilíbrio

Relatório de Classificação:

macro avg 0.98 0.98 0.98 285 weighted avg 0.98 0.98 0.98 285

Resultado

A Árvore de decisão permite entender como as decisões são tomadas de acordo com as varáveis de entrada, facilitando os Investidores, Proprietários e corretores compreenderem o processo de classificação dos Aluguéis.

Durante a simulação de um novo imóvel, foi feita uma previsão onde o resultado foi: Previsão da categoria de aluguel do novo Imóvel: Alto

Transformações

5.2 Modelos Supervisionados | Redes Neurais

O objetivo da **Rede Neural** é prever o valor do aluguel de imóveis no Rio de Janeiro de acordo com cada imóvel, como por exemplo Área, Qtde. Quartos, Banheiros, etc.

Esta solução é destinada para os proprietários, Investidores e Corretores que desejam ter uma estimativa do valor do alguel para tomada de decisão.

Variáveis

As variáveis utilizadas são:

- Area
- Rooms
- Bathrooms
- Parking Spaces
- HOA
- Property Tax
- Fire insurance

Transformações

As variáveis foram normalizadas utilizando StandarScalar.

```
1 # Instalação do Graphviz
2 !apt-get install graphviz
```

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
graphviz is already the newest version (2.42.2-6ubuntu0.1).
0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.metrics import mean_squared_error, r2_score
8 import tensorflow as tf
9 from tensorflow.keras.models import Sequential
10 from tensorflow.keras.layers import Dense, Dropout
11 from tensorflow.keras.callbacks import EarlyStopping
12 from tensorflow.keras.utils import plot_model
13 from IPython.display import Image
```

```
1 # Dataset:
2 url = "https://raw.githubusercontent.com/CITMAX/data/main/houses_to_rent_complete.csv"
3 df = pd.read_csv(url, sep=',', on_bad_lines='warn')
1 # Remover duplicatas com base em colunas específicas
2 df = df.drop_duplicates(subset=['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'rent ‹
1 # Filtrar apenas pela cidade do Rio de Janeiro
2 df = df[df['city'] == 'Rio de Janeiro']
1 # Atualizar a variável X com as características do imóvel
2 X = df[['area', 'rooms', 'bathroom', 'parking spaces', 'hoa (R$)', 'property tax (R$)', 'fire insi
3 y = df['rent amount (R$)']
1 # Normalizar os dados para a rede neural
2 scaler = StandardScaler()
3 X = scaler.fit_transform(X)
1 # Dividir os dados em conjunto de treino e teste (80% treino, 20% teste)
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
1 # Construir o modelo de rede neural
2 model_neural = Sequential([
      Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
4
      Dropout(0.2),
5
      Dense(64, activation='relu'),
6
      Dropout(0.2),
7
      Dense(32, activation='relu'),
      Dense(1) # Camada de saída sem função de ativação para regressão
8
9])
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
1 # Compilar o modelo
2 model_neural.compile(optimizer='adam',
                loss='mean_squared_error', # Função de perda para regressão
4
                metrics=['mean_squared_error']) # Métrica para monitorar durante o treinamento
1 # Definir parada precoce para evitar overfitting
2 early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
```

```
1 # Treinar o modelo
2 history = model_neural.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y
```

```
Epoch 1/100
                       2s 8ms/step - loss: 20798970.0000 - mean_square
36/36 -
Epoch 2/100
                          - 0s 3ms/step - loss: 20355302.0000 - mean_square
36/36 -
Epoch 3/100
                         - 0s 3ms/step - loss: 17409318.0000 - mean_square
36/36 —
Epoch 4/100
                         - 0s 3ms/step - loss: 15282955.0000 - mean_square
36/36 -
Epoch 5/100
36/36 —
                         — 0s 3ms/step - loss: 10947021.0000 - mean_square
Epoch 6/100
36/36 -
                         - 0s 3ms/step - loss: 4812992.5000 - mean_squared
Epoch 7/100
                         - 0s 3ms/step - loss: 3660563.2500 - mean_squared
36/36 -
Epoch 8/100
                         Os 4ms/step - loss: 2912088.0000 - mean_squared
36/36 -
Epoch 9/100
                       — 0s 3ms/step - loss: 2763610.2500 - mean_squared.
36/36 —
Epoch 10/100
36/36 —
                         Os 3ms/step - loss: 1999819.3750 - mean_squared
Epoch 11/100

    Os 3ms/step - loss: 1743019.6250 - mean_squared

36/36 –
Epoch 12/100
                          - 0s 3ms/step - loss: 1530230.3750 - mean_squared
36/36 -
Epoch 13/100
36/36 -
                          - 0s 4ms/step - loss: 1222858.7500 - mean_squared
Epoch 14/100
36/36 -
                        — 0s 4ms/step - loss: 984625.3125 - mean_squared_
Epoch 15/100
36/36 -
                          - 0s 4ms/step - loss: 603204.6875 - mean_squared_
```

- 1 # Avaliar o modelo nos dados de teste
- 2 y_pred_neural = model_neural.predict(X_test)

- 1 # Avaliação do desempenho
- 2 mse_neural = mean_squared_error(y_test, y_pred_neural)
- 3 r2_neural = r2_score(y_test, y_pred_neural)
- 4 print(f'Mean Squared Error (MSE): {mse_neural}')
- 5 print(f'R2 Score: {r2_neural}')

Mean Squared Error (MSE): 6669326.560853519 R2 Score: 0.1614723921256549

```
1 # Visualizar a perda durante o treinamento
2 plt.plot(history.history['loss'], label='Training Loss')
3 plt.plot(history.history['val_loss'], label='Validation Loss')
4 plt.title('Loss over Epochs')
5 plt.xlabel('Epochs')
6 plt.ylabel('Loss')
7 plt.legend()
8 plt.show()
```


- 1 # Exibir o gráfico da rede neural
- 2 tf.keras.utils.plot_model(model_neural, show_shapes=True)

Input shape: (None, 128) Output shape: (None, 128) **Dense** Input shape: (None, 128) Output shape: (None, 64) **Dropout** Input shape: (None, 64) Output shape: (None, 64) **Dense** Input shape: (None, 64) Output shape: (None, 32) **Dense** Input shape: (None, 32) Output shape: (None, 1)

- 1 # Visualizar a arquitetura da rede neural
- 2 plot_model(model_neural, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

→

dense (Dense) Input shape: (None, 7) Output shape: (None, 128)

dropout (Dropout) Input shape: (None, 128) Output shape: (None, 128) dense_1 (Dense) Input shape: (None, 128) Output shape: (None, 64) dropout_1 (Dropout) Input shape: (None, 64) Output shape: (None, 64) dense_2 (Dense) Output shape: (None, 32) Input shape: (None, 64) dense_3 (Dense) Input shape: (None, 32) Output shape: (None, 1)

```
1 # Exibir o sumário do modelo treinado
2 model_neural.summary()
```

→ Model: "sequential"

Layer (type)	Output Shape	
dense (Dense)	(None, 128)	
dropout (Dropout)	(None, 128)	
dense_1 (Dense)	(None, 64)	
dropout_1 (Dropout)	(None, 64)	
dense_2 (Dense)	(None, 32)	
dense_3 (Dense)	(None, 1)	

Total params: 34,181 (133.52 KB)
Trainable params: 11,393 (44.50 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 22,788 (89.02 KB)

```
1 # Simulação de um novo imóvel
2 new_data = np.array([[200, 4, 3, 3, 2400, 0, 82]])
3 new_data = scaler.transform(new_data)
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:465: UserWarning: X warnings.warn(

- 1 # Fazer a previsão usando o modelo treinado
 2 predicted_rent = model_neural.predict(new_data)[0][0]
- 1 # Exibir o preço previsto de aluguel
 2 print(f"Previsão do preço de aluguel do novo imóvel: R\$ {predicted_rent:.2f}")
- → Previsão do preço de aluguel do novo imóvel: R\$ 4971.45

Treinamento

O modelo foi treinado utilizando divisão em treino e teste. Foi utilizado EarlyStopping para monitorar a perda de validação e evitar overftting.

Grade de Parâmetros

Foi definida uma grade de parâmetros com várias camadas e números de neurônios em cada camada, taxa de dropout e função de perda. Foi utilizado o otimizador ADAM.

Resultado

O Modelo é altamente preciso e confiável para prever o valor do aluguel de imóveis em São Paulo, ajudando na tomada de decisões informadas e na estimativa de preços competitivos de mercado.

6. Conclusão

• Regressão Linear:

- Excelente R² e RMSE, mas alta multicolinearidade pode ser uma preocupação.
- Boa escolha se simplificarmos a interpretação e lidarmos com a multicolinearidade.

• Regressão Logística:

- Altíssima precisão e recall, excelente generalização para classificação binária.
- Recomendada para categorizações simples de aluguel.

Árvore de Decisão:

- Excelente desempenho com alta precisão, recall e F1-score.
- Boa escolha para capturar interações complexas e não-linearidades nos dados.

• Rede Neural:

 Potencial de generalização conforme indicado pela perda decrescente, mas requer mais dados e monitoramento cuidadoso para evitar overfitting.

Consideração Final

Objetivo de categorização:

O resultado obtido na comparação entre os 2 modelos supervisionados categóricos nos levam a recomendar pela performance e qualidade dos indicadores o modelo árvore de decisão. O modelo de árvore apresenta mais categorias do que o modelo regressão logística.

Objetivo de precificação:

O resultado obtido na comparação entre os 2 modelos supervisionados preditivos nos levaram a recomendar pela performance e qualidade dos indicadores o modelo regressão Linear. O modelo de regressão linear apresenta uma performance maior do que a Redes Neurais, que teria uma mais eficiência em problemas maiores, pois usasse muito processamento onde o problema em questão, de predição de valores de imóveis não precisa de tanto recurso.