Presentation

Shukla, Mishra and Jain

November 7, 2021

Contents

- Introduction
- Theory
- Methodology
- Analysis of Numerical Results
- Summary

Likhna hai abhi

Theory

Finite Difference Methods(FDM) are used for solving differential equations by approximating dervatives at the grid points.

Figure: 1D mesh with 11 nodes and a meshsize h

The difference $h = x_5 - x_4$ is constant throughout the mesh and $x_4 \equiv x_0 + 4h$.

The approximation of first order derivative can be defined as,

$$U_x|_i=\lim_{h o 0}rac{U_{i+1}-U_i}{h}$$
 Forward difference or, $U_x|_i=\lim_{h o 0}rac{U_i-U_{i-1}}{h}$ Backward difference $U_x|_i=\lim_{h o 0}rac{U_{i+1}-U_{i-1}}{h}$ Central difference

So,in this project we are going to find the electrostatic potential of a capacitor using **Finite difference Method** and other **iterative schemes**¹ and also determining the most appropriate method on the basis of number of iterations.

¹SOR(succesive over relaxation) ,Jacobi, Guass-siedel → ⟨♂ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ⊘ へ ⊘