Analisi di dati ambientali tramite risorse open source per la Data Science

Introduzione alla Statistica Descrittiva con R

Roberto Ascari – roberto.ascari@unimib.it

DA AGGIUNGERE

- Matrice dei dati
- Tipologia di variabili
- Valori mancanti
- Condizioni logiche

Notazione

- Unità statistica
- Variabile
- Modalità

Matrice dei dati

• I dati possono essere raccolti in una matrice avente le unità statistiche sulle righe e le variabili sulle colonne.

	Variabile 1 X	Variabile 2 Y		Variabile K Z
Unità 1	x_1	y_1	•••	Z_1
Unità 2	x_2	y_2	•••	Z_2
•••			•••	•••
•••	•••		•••	•••
Unità N	x_N	${\cal Y}_N$	•••	z_N

Tipologia di variabili

Le variabili possono essere suddivise sulla base delle modalità che possono assumere:

- Quantitative discrete
- Quantitative continue

- Qualitative ordinabili
- Qualitative sconnesse

Indici di posizione (1)

Media aritmetica

$$\mu_X = \frac{1}{N}(x_1 + x_2 + \dots + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Tipologia	Interrogazione	Verifica	Interrogazione	Lavoro di gruppo	Interrogazione	Verifica
Voto	2	8	7	8.5	7	6.5

$$\mu = \frac{1}{6}(2 + 8 + 7 + 8.5 + 7 + 6.5) = \frac{39}{6} = 6.5$$

Indici di posizione (2)

• Media aritmetica pesata (o ponderata). Anziché trattare tutti i valori equamente, diamo più importanza ad alcuni tramite un sistema di pesi **non negativi** $w_1, w_2, ..., w_N$.

$$\mu_X^W = \frac{w_1 x_1 + w_2 x_2 + \dots + w_N x_N}{w_1 + w_2 + \dots w_N} = \sum_{i=1}^N w_i^* x_i,$$

dove
$$w_i^* = \frac{w_i}{w_1 + w_2 + \dots + w_N}$$
.

Dato che $w_i \ge 0$, si ha che $w_i^* \ge 0$ e $\sum_{i=1}^N w_i^* = 1$.

Indici di posizione (2)

Ad esempio, supponiamo che il peso delle interrogazioni sia una volta e mezza quello delle verifiche e che il lavoro di gruppo abbia un peso doppio rispetto ad una verifica:

Tipologia	Interrogazione	Verifica	Interrogazione	Lavoro di gruppo	Interrogazione	Verifica
Peso	1.5	1	1.5	2	1.5	1
Voto	2	8	7	8.5	7	6.5

$$\mu^{W} = \frac{((1.5*2) + (1*8) + (1.5*7) + (2*8.5) + (1.5*7) + (1*6.5))}{(1.5+1+2+1.5+2+1)}$$

$$= \frac{1.5}{8.5} * 2 + \frac{1}{8.5} * 8 + \frac{1.5}{8.5} * 7 + \frac{2}{8.5} * 8.5 + \frac{1.5}{8.5} * 7 + \frac{1}{8.5} * 6.5 = 6.529$$

Indici di posizione (3)

- Quantili. Il quantile di ordine p è quel valore che, nella successione ordinata dei dati, lascia a sinistra il p% dei dati. In altre parole, è quel valore che è più grande o uguale del p% dei dati.
- Se $p \in \{0.25, 0.5, 0.75\}$, i quantili prendono il nome di **quartili**, dato che suddividono la variabile in 4 parti, ciascuna contenente il 25% dei dati.

Indici di posizione (3)

- Se $p \in \{0.1, 0.2, 0.3, ..., 0.8, 0.9\}$, i quantili prendono il nome di **decili**.
- Se $p \in \{0.01, 0.02, ..., 0.98, 0.99\}$, i quantili prendono il nome di **percentili**.
- Il quantile di ordine p=0.5 viene chiamato **mediana**, la quale rappresenta il valore che, nella successione ordinata dei dati, occupa la posizione centrale.

$$Me(X) = \begin{cases} x_{\left(\frac{N+1}{2}\right)} & se \ N \ e \ dispari \\ \frac{1}{2} \left(x_{\left(\frac{N}{2}\right)} + x_{\left(\frac{N}{2}+1\right)}\right) & se \ N \ e \ pari \end{cases}$$

dove $x_{(k)}$ rappresenta l'elemento in posizione k nella successione ordinata dei dati.

Indici di posizione (3)

Tipologia	Interrogazione	Verifica	Interrogazione	Lavoro di gruppo	Interrogazione	Verifica
Voto	2	8	7	8.5	7	6.5

Tipologia	Interrogazione	Verifica	Interrogazione	Interrogazione	Verifica	Lavoro di gruppo
Voto	2	6.5	7	7	8	8,5
	$x_{(1)}$	$x_{(2)}$	$\chi_{(3)}$	$x_{(4)}$	$x_{(5)}$	$x_{(6)}$

•
$$\mu = 6.5$$

•
$$\mu^W = 6.529$$

•
$$Me(X) = x_{\left(\frac{6}{2}\right)} + x_{\left(\frac{6}{2}+1\right)} = \frac{x_{(3)} + x_{(4)}}{2} = \frac{7+7}{2} = 7$$

Indici di variabilità (1)

• Range (campo di variazione). Differenza tra la modalità massima osservata e quella minima:

$$R_X = \max(X) - \min(X)$$
.

Si tratta di un indice molto sensibile a valori anomali.

• Range inter-quartilico (IQR). Differenza tra il terzo ed il primo quartile:

$$IQR_X = Q_3(X) - Q_1(X).$$

Indici di variabilità (2)

• Varianza. La varianza è la media del quadrato degli scarti di ogni x_i dalla media di X.

$$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)^2$$

- ➤ La varianza è sempre non-negativa.
- ➤ Assume valore 0 quando non c'è variabilità.
- ➤ Valori maggiori indicano una maggiore variabilità.
- >L'unità di misura della varianza è il quadrato dell'unità di misura dei dati.

Indici di variabilità (3)

• Deviazione standard. È la radice quadrata della varianza:

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \mu_X)^2}$$

Continuano a valere le prime tre osservazioni viste per la varianza, ma l'unità di misura della deviazione standard coincide con quella dei dati.

$$\sigma^2 = \frac{1}{6}[(2 - 6.5)^2 + \dots + (6.5 - 6.5)^2] = 27/6 = 4.5$$

$$\sigma = \sqrt{4.5} = 2.121$$

I voti ottenuti si scostano dalla propria media di circa 2.121 punti.

Rappresentazioni grafiche

Rappresentazioni grafiche

Boxplot

Tipologia punti

Point shapes available in R

Tipologia linee

```
6.'twodash'
5.'longdash'
4.'dotdash'
 3.'dotted'
 2.'dashed'
  1.'solid'
```

0.'blank'