Quantum++ v1.2

Generated by Doxygen 1.8.14

Contents

1	Qua	ntum++																1
2	Nam	nespace	Index															3
	2.1	Names	space List					 	 	 		 		 				 3
3	Hier	archica	l Index															5
	3.1	Class I	Hierarchy					 	 	 		 	 	 				 5
4	Clas	s Index																9
	4.1	Class I	List					 	 	 		 		 				 9
5	File	Index																13
	5.1	File Lis	st					 	 	 		 		 				 13
6	Nam	nespace	Docume	ntat	tion													15
	6.1	qpp Na	amespace	Ref	ferer	тсе		 	 	 		 		 				 15
		6.1.1	Detailed	Des	scrip	tion		 	 	 		 		 				 28
		6.1.2	Typedef	Doc	cume	entat	ion	 	 	 		 		 				 28
			6.1.2.1	bi	gint			 	 			 		 				 28
			6.1.2.2	br	a.			 	 	 		 		 				 29
			6.1.2.3	cr	nat			 	 	 		 	 	 				 29
			6.1.2.4	cp	olx .			 	 			 		 				 29
			6.1.2.5	dr	mat			 	 	 		 		 				 29
			6.1.2.6	dy	yn_c	ol_ve	ect	 	 		 -	 		 				 29
			6.1.2.7	dy	yn_m	nat		 	 			 		 				 30
			6.1.2.8	dy	yn_rc	ow_v	/ect		 	 		 		 				 30

ii CONTENTS

	6.1.2.9	idx	30
	6.1.2.10	ket	30
	6.1.2.11	to_void	31
6.1.3	Function	Documentation	31
	6.1.3.1	absm()	31
	6.1.3.2	abssq() [1/3]	31
	6.1.3.3	abssq() [2/3]	32
	6.1.3.4	abssq() [3/3]	32
	6.1.3.5	adjoint()	32
	6.1.3.6	anticomm()	33
	6.1.3.7	apply() [1/5]	33
	6.1.3.8	apply() [2/5]	34
	6.1.3.9	apply() [3/5]	34
	6.1.3.10	apply() [4/5]	35
	6.1.3.11	apply() [5/5]	35
	6.1.3.12	applyCTRL() [1/2]	36
	6.1.3.13	applyCTRL() [2/2]	37
	6.1.3.14	applyQFT()	37
	6.1.3.15	applyTFQ()	38
	6.1.3.16	avg()	38
	6.1.3.17	bloch2rho()	39
	6.1.3.18	choi2kraus()	39
	6.1.3.19	choi2super()	40
	6.1.3.20	comm()	40
	6.1.3.21	complement()	41
	6.1.3.22	compperm()	41
	6.1.3.23	concurrence()	41
	6.1.3.24	conjugate()	42
	6.1.3.25	contfrac2x()	42
	6.1.3.26	convergents() [1/2]	43

6.1.3.27	convergents() [2/2]	43
6.1.3.28	cor()	44
6.1.3.29	cosm()	44
6.1.3.30	cov()	44
6.1.3.31	cwise()	45
6.1.3.32	det()	45
6.1.3.33	dirsum() [1/4]	46
6.1.3.34	dirsum() [2/4]	46
6.1.3.35	dirsum() [3/4]	47
6.1.3.36	dirsum() [4/4]	47
6.1.3.37	dirsumpow()	47
6.1.3.38	disp() [1/5]	48
6.1.3.39	disp() [2/5]	48
6.1.3.40	disp() [3/5]	49
6.1.3.41	disp() [4/5]	49
6.1.3.42	disp() [5/5]	50
6.1.3.43	egcd()	50
6.1.3.44	eig()	51
6.1.3.45	entanglement() [1/2]	51
6.1.3.46	entanglement() [2/2]	52
6.1.3.47	entropy() [1/2]	52
6.1.3.48	entropy() [2/2]	53
6.1.3.49	evals()	53
6.1.3.50	evects()	53
6.1.3.51	expm()	54
6.1.3.52	factors()	54
6.1.3.53	funm()	55
6.1.3.54	gcd() [1/2]	55
6.1.3.55	gcd() [2/2]	56
6.1.3.56	gconcurrence()	56

iv CONTENTS

6.1.3.57	grams() [1/3]	57
6.1.3.58	grams() [2/3]	57
6.1.3.59	grams() [3/3]	57
6.1.3.60	hash_eigen()	58
6.1.3.61	heig()	58
6.1.3.62	hevals()	59
6.1.3.63	hevects()	59
6.1.3.64	inverse()	60
6.1.3.65	invperm()	60
6.1.3.66	ip() [1/2]	60
6.1.3.67	ip() [2/2]	61
6.1.3.68	isprime()	61
6.1.3.69	kraus2choi()	62
6.1.3.70	kraus2super()	62
6.1.3.71	kron() [1/4]	63
6.1.3.72	kron() [2/4]	63
6.1.3.73	kron() [3/4]	64
6.1.3.74	kron() [4/4]	64
6.1.3.75	kronpow()	64
6.1.3.76	lcm() [1/2]	65
6.1.3.77	lcm() [2/2]	65
6.1.3.78	load()	66
6.1.3.79	loadMATLAB() [1/2]	66
6.1.3.80	loadMATLAB() [2/2]	67
6.1.3.81	logdet()	68
6.1.3.82	logm()	68
6.1.3.83	lognegativity() [1/2]	69
6.1.3.84	lognegativity() [2/2]	69
6.1.3.85	marginalX()	69
6.1.3.86	marginalY()	71

6.1.3.87 measure() [1/9]
6.1.3.88 measure() [2/9]
6.1.3.89 measure() [3/9]
6.1.3.90 measure() [4/9]
6.1.3.91 measure() [5/9]
6.1.3.92 measure() [6/9]
6.1.3.93 measure() [7/9]
6.1.3.94 measure() [8/9]
6.1.3.95 measure() [9/9]
6.1.3.96 measure_seq() [1/2]
6.1.3.97 measure_seq() [2/2]
6.1.3.98 mket() [1/2]
6.1.3.99 mket() [2/2]
6.1.3.100 modinv()
6.1.3.101 modmul()
6.1.3.102 modpow()
6.1.3.103 mprj() [1/2]
6.1.3.104 mprj() [2/2]
6.1.3.105 multiidx2n()
6.1.3.106 n2multiidx()
6.1.3.107 negativity() [1/2]
6.1.3.108 negativity() [2/2]
6.1.3.109 norm()
6.1.3.110 normalize()
6.1.3.111 omega()
6.1.3.112 operator""""i()
6.1.3.113 powm()
6.1.3.114 prj()
6.1.3.115 prod() [1/3]
6.1.3.116 prod() [2/3]

vi

6.1.3.117 prod() [3/3]	36
6.1.3.118 ptrace() [1/2] 8	36
6.1.3.119 ptrace() [2/2] 8	37
6.1.3.120 ptrace1() [1/2] 8	37
6.1.3.121 ptrace1() [2/2]	38
6.1.3.122 ptrace2() [1/2] 8	38
6.1.3.123 ptrace2() [2/2] 8	39
6.1.3.124 ptranspose() [1/2] 8	39
6.1.3.125 ptranspose() [2/2]	90
6.1.3.126 QFT()	90
6.1.3.127 qmutualinfo() [1/2] 9	91
6.1.3.128 qmutualinfo() [2/2]	91
6.1.3.129 rand() [1/5]	92
6.1.3.130 rand() [2/5] 9	92
6.1.3.131 rand() [3/5]	93
6.1.3.132 rand() [4/5]	93
6.1.3.133 rand() [5/5]	94
6.1.3.134 randH()	94
6.1.3.135 randidx()	95
6.1.3.136 randket()	95
6.1.3.137 randkraus()	95
6.1.3.138 randn() [1/4] 9	96
6.1.3.139 randn() [2/4] 9	96
6.1.3.140 randn() [3/4] 9	97
6.1.3.141 randn() [4/4] S	97
6.1.3.142 randperm()	98
6.1.3.143 randprime()	98
6.1.3.144 randprob()	99
6.1.3.145 randrho()	99
6.1.3.146 randU()	99

CONTENTS vii

6.1.3.147 randV()
6.1.3.148 renyi() [1/2]
6.1.3.149 renyi() [2/2]
6.1.3.150 reshape()
6.1.3.151 rho2bloch()
6.1.3.152 rho2pure()
6.1.3.153 save()
6.1.3.154 saveMATLAB() [1/2]
6.1.3.155 saveMATLAB() [2/2]
6.1.3.156 schatten()
6.1.3.157 schmidtA() [1/2]
6.1.3.158 schmidtA() [2/2]
6.1.3.159 schmidtB() [1/2]
6.1.3.160 schmidtB() [2/2]
6.1.3.161 schmidtcoeffs() [1/2]
6.1.3.162 schmidtcoeffs() [2/2] 107
6.1.3.163 schmidtprobs() [1/2]
6.1.3.164 schmidtprobs() [2/2]
6.1.3.165 sigma()
6.1.3.166 sinm()
6.1.3.167 spectralpowm()
6.1.3.168 sqrtm()
6.1.3.169 sum() [1/3]
6.1.3.170 sum() [2/3]
6.1.3.171 sum() [3/3]
6.1.3.172 super2choi()
6.1.3.173 svals()
6.1.3.174 svd()
6.1.3.175 svdU()
6.1.3.176 svdV()

viii CONTENTS

		6.1.3.177	syspermute() [1/2]		 	 	 	 	113
		6.1.3.178	syspermute() [2/2]		 	 	 	 	114
		6.1.3.179	TFQ()		 	 	 	 	114
		6.1.3.180	trace()		 	 	 	 	115
		6.1.3.181	transpose()		 	 	 	 	115
		6.1.3.182	tsallis() [1/2]		 	 	 	 	115
		6.1.3.183	tsallis() [2/2]		 	 	 	 	116
		6.1.3.184	uniform()		 	 	 	 	116
		6.1.3.185	var()		 	 	 	 	117
		6.1.3.186	x2contfrac()		 	 	 	 	117
	6.1.4	Variable	Occumentation		 	 	 	 	118
		6.1.4.1	chop		 	 	 	 	118
		6.1.4.2	ee		 	 	 	 	118
		6.1.4.3	infty		 	 	 	 	118
		6.1.4.4	maxn		 	 	 	 	118
		6.1.4.5	pi		 	 	 	 	118
6.2	qpp::ex	ception N	mespace Reference		 	 	 	 	118
	6.2.1	Detailed	Description		 	 	 	 	120
6.3	qpp::ex	perimenta	Namespace Reference		 	 	 	 	120
	6.3.1	Detailed	Description		 	 	 	 	120
6.4	qpp::int	ternal Nan	espace Reference		 	 	 	 	120
	6.4.1	Detailed	Description		 	 	 	 	122
	6.4.2	Function	Documentation		 	 	 	 	122
		6.4.2.1	check_cvector()		 	 	 	 	122
		6.4.2.2	check_dims()		 	 	 	 	122
		6.4.2.3	check_dims_match_cve	ct()	 	 	 	 	122
		6.4.2.4	check_dims_match_mat	:()	 	 	 	 	122
		6.4.2.5	check_dims_match_rved	ct()	 	 	 	 	123
		6.4.2.6	check_eq_dims()		 	 	 	 	123
		6.4.2.7	check_matching_sizes()		 	 	 	 	123

		6.4.2.8	check_no_duplicates()	23
		6.4.2.9	check_nonzero_size()	23
		6.4.2.10	check_perm()	23
		6.4.2.11	check_qubit_cvector()	24
		6.4.2.12	check_qubit_matrix()	24
		6.4.2.13	check_qubit_rvector()	24
		6.4.2.14	check_qubit_vector()	24
		6.4.2.15	check_rvector()	24
		6.4.2.16	check_square_mat()	24
		6.4.2.17	check_subsys_match_dims()	25
		6.4.2.18	check_vector()	25
		6.4.2.19	dirsum2()	25
		6.4.2.20	get_dim_subsys()	25
		6.4.2.21	get_num_subsys()	25
		6.4.2.22	hash_combine()	25
		6.4.2.23	kron2()	26
		6.4.2.24	multiidx2n()	26
		6.4.2.25	n2multiidx()	26
		6.4.2.26	variadic_vector_emplace() [1/2]	26
		6.4.2.27	variadic_vector_emplace() [2/2]	26
6.5	qpp::lit	erals Nam	espace Reference	27
	6.5.1	Function	Documentation	27
		6.5.1.1	operator""""_bra()	27
		6.5.1.2	operator""""_i()	27
		6.5.1.3	operator"""" _ket()	28
		6.5.1.4	operator"""" _prj()	28

7	Clas	s Docu	mentation	131
	7.1	qpp::Bi	t_circuit Class Reference	131
		7.1.1	Detailed Description	133
		7.1.2	Constructor & Destructor Documentation	133
			7.1.2.1 Bit_circuit()	133
		7.1.3	Member Function Documentation	133
			7.1.3.1 CNOT()	133
			7.1.3.2 Dynamic_bitset()	134
			7.1.3.3 FRED()	134
			7.1.3.4 NOT()	134
			7.1.3.5 reset()	135
			7.1.3.6 SWAP()	135
			7.1.3.7 TOF()	135
			7.1.3.8 X()	136
		7.1.4	Member Data Documentation	136
			7.1.4.1 gate_count	136
	7.2	qpp::C	odes Class Reference	136
		7.2.1	Detailed Description	137
		7.2.2	Member Enumeration Documentation	137
			7.2.2.1 Type	138
		7.2.3	Constructor & Destructor Documentation	138
			7.2.3.1 Codes()	138
			7.2.3.2 ~Codes()	138
		7.2.4	Member Function Documentation	138
			7.2.4.1 codeword()	138
		7.2.5	Friends And Related Function Documentation	139
			7.2.5.1 internal::Singleton < const Codes >	139
	7.3	qpp::ex	cception::CustomException Class Reference	139
		7.3.1	Detailed Description	140
		7.3.2	Constructor & Destructor Documentation	140

CONTENTS xi

		7.3.2.1	CustomException()	 141
	7.3.3	Member F	Function Documentation	 141
		7.3.3.1	type_description()	 141
	7.3.4	Member [Data Documentation	 141
		7.3.4.1	what	 141
7.4	qpp::ex	xception::Di	imsInvalid Class Reference	 142
	7.4.1	Detailed [Description	 143
	7.4.2	Member F	Function Documentation	 143
		7.4.2.1	Exception()	 143
		7.4.2.2	type_description()	 143
7.5	qpp::ex	xception::Di	imsMismatchCvector Class Reference	 144
	7.5.1	Detailed [Description	 145
	7.5.2	Member F	Function Documentation	 145
		7.5.2.1	Exception()	 145
		7.5.2.2	type_description()	 145
7.6	qpp::ex	xception::Di	imsMismatchMatrix Class Reference	 146
	7.6.1	Detailed [Description	 147
	7.6.2	Member F	Function Documentation	 147
		7.6.2.1	Exception()	 147
		7.6.2.2	type_description()	 147
7.7	qpp::ex	xception::Di	imsMismatchRvector Class Reference	 148
	7.7.1	Detailed [Description	 149
	7.7.2	Member F	Function Documentation	 149
		7.7.2.1	Exception()	 149
		7.7.2.2	type_description()	 149
7.8	qpp::ex	xception::Di	imsMismatchVector Class Reference	 150
	7.8.1	Detailed [Description	 151
	7.8.2	Member F	Function Documentation	 151
		7.8.2.1	Exception()	 151
		7.8.2.2	type_description()	 151

xii CONTENTS

7.9	qpp::ex	xception::DimsNotEqual Class Reference	52
	7.9.1	Detailed Description	3
	7.9.2	Member Function Documentation	53
		7.9.2.1 Exception()	53
		7.9.2.2 type_description()	53
7.10	qpp::in	ternal::Display_Impl_ Struct Reference	54
	7.10.1	Member Function Documentation	54
		7.10.1.1 display_impl_()	54
7.11	qpp::ex	xception::Duplicates Class Reference	55
	7.11.1	Detailed Description	6
	7.11.2	Member Function Documentation	6
		7.11.2.1 Exception()	6
		7.11.2.2 type_description()	6
7.12	qpp::D	ynamic_bitset Class Reference	57
	7.12.1	Detailed Description	59
	7.12.2	Member Typedef Documentation	59
		7.12.2.1 storage_type	59
		7.12.2.2 value_type	59
	7.12.3	Constructor & Destructor Documentation	59
		7.12.3.1 Dynamic_bitset()	59
		7.12.3.2 ~Dynamic_bitset()	60
	7.12.4	Member Function Documentation	60
		7.12.4.1 all()	60
		7.12.4.2 any()	0
		7.12.4.3 count()	0
		7.12.4.4 data()	31
		7.12.4.5 display()	31
		7.12.4.6 flip() [1/2]	31
		7.12.4.7 flip() [2/2]	32
		7.12.4.8 get()	32

CONTENTS xiii

		7.12.4.9 index_()	62
		7.12.4.10 none()	63
		7.12.4.11 offset_()	63
		7.12.4.12 operator"!=()	63
		7.12.4.13 operator-()	64
		7.12.4.14 operator==()	64
		7.12.4.15 rand() [1/2]	64
		7.12.4.16 rand() [2/2]	65
		7.12.4.17 reset() [1/2]	65
		7.12.4.18 reset() [2/2]	65
		7.12.4.19 set() [1/2]	66
		7.12.4.20 set() [2/2]	66
		7.12.4.21 size()	66
		7.12.4.22 storage_size()	66
		7.12.4.23 to_string()	67
	7.12.5	Member Data Documentation	67
		7.12.5.1 N	67
		7.12.5.2 storage_size	67
		7.12.5.3 v	68
7.13	qpp::int	ternal::EqualEigen Class Reference	68
	7.13.1	Detailed Description	68
	7.13.2	Member Function Documentation	68
		7.13.2.1 operator()()	68
7.14	qpp::ex	cception::Exception Class Reference	69
	7.14.1	Detailed Description	70
	7.14.2	Constructor & Destructor Documentation	71
		7.14.2.1 Exception()	71
	7.14.3	Member Function Documentation	71
		7.14.3.1 type_description()	71
		7.14.3.2 what()	72

xiv CONTENTS

	7.14.4	Member Data Documentation	 172
		7.14.4.1 msg	 172
		7.14.4.2 where	 172
7.15	qpp::Bi	_circuit::Gate_count Struct Reference	 172
	7.15.1	Member Data Documentation	 172
		7.15.1.1 CNOT	 173
		7.15.1.2 FRED	 173
		7.15.1.3 NOT	 173
		7.15.1.4 SWAP	 173
		7.15.1.5 TOF	 173
		7.15.1.6 X	 173
7.16	qpp::Ga	tes Class Reference	 174
	7.16.1	Detailed Description	 176
	7.16.2	Constructor & Destructor Documentation	 176
		7.16.2.1 Gates()	 176
		7.16.2.2 ~Gates()	 176
	7.16.3	Member Function Documentation	 177
		7.16.3.1 CTRL()	 177
		7.16.3.2 expandout() [1/3]	 177
		7.16.3.3 expandout() [2/3]	 178
		7.16.3.4 expandout() [3/3]	 179
		7.16.3.5 Fd()	 179
		7.16.3.6 get_name()	 180
		7.16.3.7 ld()	 180
		7.16.3.8 MODMUL()	 180
		7.16.3.9 Rn()	 181
		7.16.3.10 RX()	 181
		7.16.3.11 RY()	 182
		7.16.3.12 RZ()	 182
		7.16.3.13 SWAPd()	 182

CONTENTS xv

	7.16.3.14 Xd()	184
	7.16.3.15 Zd()	184
7.16.4	Friends And Related Function Documentation	185
	7.16.4.1 internal::Singleton < const Gates >	185
7.16.5	Member Data Documentation	185
	7.16.5.1 CNOT	185
	7.16.5.2 CNOTba	185
	7.16.5.3 CZ	185
	7.16.5.4 FRED	185
	7.16.5.5 H	186
	7.16.5.6 ld2	186
	7.16.5.7 S	186
	7.16.5.8 SWAP	186
	7.16.5.9 T	186
	7.16.5.10 TOF	186
	7.16.5.11 X	187
	7.16.5.12 Y	187
	7.16.5.13 Z	187
7.17 qpp::Q	Circuit::GateStep Struct Reference	187
7.17.1	Detailed Description	188
7.17.2	Constructor & Destructor Documentation	188
	7.17.2.1 GateStep() [1/2]	188
	7.17.2.2 GateStep() [2/2]	188
7.17.3	Member Data Documentation	189
	7.17.3.1 ctrl	189
	7.17.3.2 gate_hash	189
	7.17.3.3 gate_type	189
	7.17.3.4 name	189
	7.17.3.5 target	190
7.18 qpp::in	ternal::HashEigen Class Reference	190

xvi CONTENTS

	7.18.1	Detailed Description	190
	7.18.2	Member Function Documentation	190
		7.18.2.1 operator()()	190
7.19	qpp::ID	isplay Class Reference	191
	7.19.1	Detailed Description	192
	7.19.2	Constructor & Destructor Documentation	192
		7.19.2.1 IDisplay() [1/3]	192
		7.19.2.2 IDisplay() [2/3]	192
		7.19.2.3 IDisplay() [3/3]	192
		7.19.2.4 ~IDisplay()	192
	7.19.3	Member Function Documentation	193
		7.19.3.1 display()	193
		7.19.3.2 operator=() [1/2]	193
		7.19.3.3 operator=() [2/2]	193
	7.19.4	Friends And Related Function Documentation	193
		7.19.4.1 operator<<	193
7.20	qpp::IJS	SON Class Reference	194
	7.20.1	Detailed Description	194
	7.20.2	Constructor & Destructor Documentation	195
		7.20.2.1 IJSON() [1/3]	195
		7.20.2.2 IJSON() [2/3]	195
		7.20.2.3 IJSON() [3/3]	195
		7.20.2.4 ~IJSON()	195
	7.20.3	Member Function Documentation	195
		7.20.3.1 operator=() [1/2]	195
		7.20.3.2 operator=() [2/2]	196
		7.20.3.3 to_JSON()	196
7.21	qpp::Ini	t Class Reference	196
	7.21.1	Detailed Description	197
	7.21.2	Constructor & Destructor Documentation	197

CONTENTS xvii

		7.21.2.1 Init()
		7.21.2.2 ~Init()
	7.21.3	Friends And Related Function Documentation
		7.21.3.1 internal::Singleton < const Init >
7.22	qpp::ex	cception::InvalidIterator Class Reference
	7.22.1	Detailed Description
	7.22.2	Member Function Documentation
		7.22.2.1 Exception()
		7.22.2.2 type_description()
7.23	qpp::int	ternal::IOManipEigen Class Reference
	7.23.1	Constructor & Destructor Documentation
		7.23.1.1 IOManipEigen() [1/2]
		7.23.1.2 IOManipEigen() [2/2]
	7.23.2	Member Function Documentation
		7.23.2.1 display()
	7.23.3	Member Data Documentation
		7.23.3.1 A
		7.23.3.2 chop
7.24	qpp::int	ternal::IOManipPointer< PointerType > Class Template Reference
	7.24.1	Constructor & Destructor Documentation
		7.24.1.1 IOManipPointer() [1/2]
		7.24.1.2 IOManipPointer() [2/2]
	7.24.2	Member Function Documentation
		7.24.2.1 display()
		7.24.2.2 operator=()
	7.24.3	Member Data Documentation
		7.24.3.1 end
		7.24.3.2 N __
		7.24.3.3 p
		7.24.3.4 separator

xviii CONTENTS

		7.24.3.5	S	start																			 		 		. 2	205
7.25	qpp::in	ternal::ION	Ma	nipl	Ranç	ge<	(In	ıpu	ıtlte	erat	tor	> 0	Clas	ss 7	Геm	pla	te F	Refe	erei	nce			 		 		. 2	206
	7.25.1	Construc	cto	r &	Dest	truct	tor	Do	ocu	ıme	enta	atio	n .										 		 		. 2	207
		7.25.1.1	I	ОМ	anip	Ran	nge	∍()	[1/	/2]													 		 		. 2	207
		7.25.1.2	I	ОМ	anip	Ran	nge	∍()	[2/	/2]													 		 		. 2	207
	7.25.2	Member	Fu	ınct	ion [Docu	um	ıen	ıtati	ion	١.												 		 		. 2	207
		7.25.2.1	d	qsit	lay()																		 		 		. 2	207
		7.25.2.2	O	per	ator	=()																	 		 		. 2	208
	7.25.3	Member	Da	ata I	Docı	ume	enta	atic	on .														 		 		. 2	208
		7.25.3.1	е	end_	_ •																		 		 		. 2	208
		7.25.3.2	fi	irst_	_ •																		 		 		. 2	208
		7.25.3.3	la	ast_	_ •																		 		 		. 2	208
		7.25.3.4	S	epa	arato	r_																	 		 		. 2	208
		7.25.3.5	S	start	<u>.</u>																		 		 		. 2	208
7.26	qpp::is_	_complex<	< -	T >	Stru	uct 1	Ten	mpl	late	∍ R	efe	ren	се										 		 		. 2	209
	7.26.1	Detailed	De	escr	iptio	'n																	 		 		. 2	209
7.27	qpp::is_	_complex<	< 5	std:	:com	nplex	x <	(T	> 7	>	Str	uct	Ter	npl	ate	Re	fere	enc	Э				 		 		. 2	210
	7.27.1	Detailed	De	escr	iptio	'n																	 		 		. 2	210
7.28	qpp::is_	_iterable<	< T ,	, typ	ena	ıme	>	St	ruc	t Te	em	plat	e F	Refe	erer	ice							 		 		. 2	211
	7.28.1	Detailed	De	escr	iptio	'n																	 		 		. 2	211
7.29		_iterable< d()), decIty																_				_						212
		Detailed																										
7.30		matrix ex																										
7.00		Detailed																										
7.31		Circuit::ite																										
7.01		Detailed																										
		Member																										
	7.01.2	7.31.2.1			renc																							
		7.31.2.2																										
		7.31.2.3																										
			۲	,0111	.01					•	٠.	•			•				•		٠.	•	 	•	 	•		

CONTENTS xix

		7.31.2.4 reference	16
		7.31.2.5 value_type	16
	7.31.3	Constructor & Destructor Documentation	16
		7.31.3.1 iterator() [1/2]	16
		7.31.3.2 iterator() [2/2]	16
	7.31.4	Member Function Documentation	16
		7.31.4.1 operator"!=()	16
		7.31.4.2 operator*()	17
		7.31.4.3 operator++() [1/2]	17
		7.31.4.4 operator++() [2/2]	17
		7.31.4.5 operator=()	18
		7.31.4.6 operator==()	18
		7.31.4.7 set_begin_()	18
		7.31.4.8 set_end_()	18
	7.31.5	Member Data Documentation	19
		7.31.5.1 elem	19
		7.31.5.2 qc	19
7.32	qpp::ma	ake_void < Ts > Struct Template Reference	19
	7.32.1	Detailed Description	19
	7.32.2	Member Typedef Documentation	20
		7.32.2.1 type	20
7.33	qpp::ex	ception::MatrixMismatchSubsys Class Reference	20
	7.33.1	Detailed Description	21
	7.33.2	Member Function Documentation	21
		7.33.2.1 Exception()	21
		7.33.2.2 type_description()	22
7.34	qpp::ex	ception::MatrixNotCvector Class Reference	22
	7.34.1	Detailed Description	23
	7.34.2	Member Function Documentation	23
		7.34.2.1 Exception()	23

		7.34.2.2 type_description()	224
7.35	qpp::ex	cception::MatrixNotRvector Class Reference	224
	7.35.1	Detailed Description	225
	7.35.2	Member Function Documentation	225
		7.35.2.1 Exception()	225
		7.35.2.2 type_description()	226
7.36	qpp::ex	cception::MatrixNotSquare Class Reference	226
	7.36.1	Detailed Description	227
	7.36.2	Member Function Documentation	227
		7.36.2.1 Exception()	227
		7.36.2.2 type_description()	228
7.37	qpp::ex	cception::MatrixNotSquareNorCvector Class Reference	228
	7.37.1	Detailed Description	229
	7.37.2	Member Function Documentation	229
		7.37.2.1 Exception()	229
		7.37.2.2 type_description()	230
7.38	qpp::ex	cception::MatrixNotSquareNorRvector Class Reference	230
	7.38.1	Detailed Description	231
	7.38.2	Member Function Documentation	231
		7.38.2.1 Exception()	231
		7.38.2.2 type_description()	232
7.39	qpp::ex	cception::MatrixNotSquareNorVector Class Reference	232
	7.39.1	Detailed Description	233
	7.39.2	Member Function Documentation	233
		7.39.2.1 Exception()	233
		7.39.2.2 type_description()	234
7.40	qpp::ex	cception::MatrixNotVector Class Reference	234
	7.40.1	Detailed Description	235
	7.40.2	Member Function Documentation	235
		7.40.2.1 Exception()	235

CONTENTS xxi

		7.40.2.2 type_description()
7.41	qpp::Q	Circuit::MeasureStep Struct Reference
	7.41.1	Detailed Description
	7.41.2	Constructor & Destructor Documentation
		7.41.2.1 MeasureStep() [1/2]
		7.41.2.2 MeasureStep() [2/2]
	7.41.3	Member Data Documentation
		7.41.3.1 c_reg
		7.41.3.2 mats_hash
		7.41.3.3 measurement_type
		7.41.3.4 name
		7.41.3.5 target
7.42	qpp::ex	cception::NoCodeword Class Reference
	7.42.1	Detailed Description
	7.42.2	Member Function Documentation
		7.42.2.1 Exception()
		7.42.2.2 type_description()
7.43	qpp::No	oiseBase < T > Class Template Reference
	7.43.1	Detailed Description
	7.43.2	Member Typedef Documentation
		7.43.2.1 noise_type
	7.43.3	Constructor & Destructor Documentation
		7.43.3.1 NoiseBase() [1/2]
		7.43.3.2 NoiseBase() [2/2]
		7.43.3.3 ~NoiseBase()
	7.43.4	Member Function Documentation
		7.43.4.1 compute_probs_()
		7.43.4.2 compute_state_()
		7.43.4.3 get_d()
		7.43.4.4 get_Ks()

xxii CONTENTS

		7.43.4.5 get_last_idx()	15
		7.43.4.6 get_last_K()	1 5
		7.43.4.7 get_last_p()	1 6
		7.43.4.8 get_probs()	1 6
		7.43.4.9 operator()() [1/3]	16
		7.43.4.10 operator()() [2/3]	1 6
		7.43.4.11 operator()() [3/3]	17
	7.43.5	Member Data Documentation	17
		7.43.5.1 d	17
		7.43.5.2 generated	18
		7.43.5.3 i	18
		7.43.5.4 Ks	18
		7.43.5.5 probs	18
7.44	qpp::No	oiseType Class Reference	18
	7.44.1	Detailed Description	19
7.45	qpp::ex	xception::NotBipartite Class Reference	19
	7.45.1	Detailed Description	50
	7.45.2	Member Function Documentation	50
		7.45.2.1 Exception()	50
		7.45.2.2 type_description()	51
7.46	qpp::ex	xception::NotImplemented Class Reference	51
	7.46.1	Detailed Description	52
	7.46.2	Member Function Documentation	52
		7.46.2.1 Exception()	52
		7.46.2.2 type_description()	53
7.47	qpp::ex	xception::NotQubitCvector Class Reference	53
	7.47.1	Detailed Description	54
	7.47.2	Member Function Documentation	54
		7.47.2.1 Exception()	54
		7.47.2.2 type_description()	55

CONTENTS xxiii

7.48	qpp::ex	cception::NotQubitMatrix Class Reference	55
	7.48.1	Detailed Description	56
	7.48.2	Member Function Documentation	56
		7.48.2.1 Exception()	56
		7.48.2.2 type_description()	57
7.49	qpp::ex	cception::NotQubitRvector Class Reference	57
	7.49.1	Detailed Description	58
	7.49.2	Member Function Documentation	58
		7.49.2.1 Exception()	58
		7.49.2.2 type_description()	59
7.50	qpp::ex	cception::NotQubitSubsys Class Reference	59
	7.50.1	Detailed Description	60
	7.50.2	Member Function Documentation	60
		7.50.2.1 Exception()	60
		7.50.2.2 type_description()	61
7.51	qpp::ex	cception::NotQubitVector Class Reference	61
	7.51.1	Detailed Description	62
	7.51.2	Member Function Documentation	62
		7.51.2.1 Exception()	62
		7.51.2.2 type_description()	63
7.52	qpp::ex	cception::OutOfRange Class Reference	63
	7.52.1	Detailed Description	64
	7.52.2	Member Function Documentation	64
		7.52.2.1 Exception()	64
		7.52.2.2 type_description()	65
7.53	qpp::ex	cception::PermInvalid Class Reference	65
	7.53.1	Detailed Description	66
	7.53.2	Member Function Documentation	66
		7.53.2.1 Exception()	66
		7.53.2.2 type_description()	67

xxiv CONTENTS

7.54 qpp	::exception::PermMismatchDims Class Reference
7.54	I.1 Detailed Description
7.54	1.2 Member Function Documentation
	7.54.2.1 Exception()
	7.54.2.2 type_description()
7.55 qpp	::QCircuit Class Reference
7.55	5.1 Detailed Description
7.55	5.2 Member Typedef Documentation
	7.55.2.1 const_iterator
7.55	5.3 Member Enumeration Documentation
	7.55.3.1 GateType
	7.55.3.2 MeasureType
	7.55.3.3 StepType
7.55	5.4 Constructor & Destructor Documentation
	7.55.4.1 QCircuit()
	7.55.4.2 ~QCircuit()
7.55	5.5 Member Function Documentation
	7.55.5.1 add_hash_()
	7.55.5.2 begin() [1/2]
	7.55.5.3 begin() [2/2]
	7.55.5.4 cbegin()
	7.55.5.5 cCTRL() [1/4]
	7.55.5.6 cCTRL() [2/4]
	7.55.5.7 cCTRL() [3/4]
	7.55.5.8 cCTRL() [4/4]
	7.55.5.9 cCTRL_custom()
	7.55.5.10 cend()
	7.55.5.11 CTRL() [1/4]
	7.55.5.12 CTRL() [2/4]
	7.55.5.13 CTRL() [3/4]

CONTENTS xxv

7.55.5.14 CTRL() [4/4]
7.55.5.15 CTRL_custom()
7.55.5.16 display()
7.55.5.17 end() [1/2]
7.55.5.18 end() [2/2]
7.55.5.19 gate() [1/3]
7.55.5.20 gate() [2/3]
7.55.5.21 gate() [3/3]
7.55.5.22 gate_custom()
7.55.5.23 gate_fan() [1/3]
7.55.5.24 gate_fan() [2/3]
7.55.5.25 gate_fan() [3/3]
7.55.5.26 get_cmat_hash_tbl_()
7.55.5.27 get_d()
7.55.5.28 get_gate_count() [1/2]
7.55.5.29 get_gate_count() [2/2]
7.55.5.30 get_gate_depth()
7.55.5.31 get_gates_()
7.55.5.32 get_measured() [1/2]
7.55.5.33 get_measured() [2/2]
7.55.5.34 get_measurement_count() [1/2]
7.55.5.35 get_measurement_count() [2/2]
7.55.5.36 get_measurements_()
7.55.5.37 get_name()
7.55.5.38 get_nc()
7.55.5.39 get_non_measured()
7.55.5.40 get_nop_count()
7.55.5.41 get_nq()
7.55.5.42 get_step_count()
7.55.5.43 measureV() [1/2]

xxvi CONTENTS

		7.55.5.44 measureV() [2/2]	291
		7.55.5.45 measureZ()	291
		7.55.5.46 nop()	292
		7.55.5.47 QFT() [1/3]	292
		7.55.5.48 QFT() [2/3]	292
		7.55.5.49 QFT() [3/3]	293
		7.55.5.50 TFQ() [1/3]	293
		7.55.5.51 TFQ() [2/3]	294
		7.55.5.52 TFQ() [3/3]	294
		7.55.5.53 to_JSON()	294
	7.55.6	Friends And Related Function Documentation	295
		7.55.6.1 operator << [1/4]	295
		7.55.6.2 operator << [2/4]	295
		7.55.6.3 operator << [3/4]	296
		7.55.6.4 operator<< [4/4]	296
		7.55.6.5 QEngine	296
	7.55.7	Member Data Documentation	296
		7.55.7.1 cmat_hash_tbl	297
		7.55.7.2 count	297
		7.55.7.3 d	297
		7.55.7.4 gates	297
		7.55.7.5 measured	297
		7.55.7.6 measurement_count	297
		7.55.7.7 measurements	298
		7.55.7.8 name	298
		7.55.7.9 nc	298
		7.55.7.10 nq	298
		7.55.7.11 step_types	298
7.56	qpp::Ql	Engine Class Reference	299
	7.56.1	Detailed Description	301

CONTENTS xxvii

7.56.2	Constructor & Destructor Documentation
	7.56.2.1 QEngine() [1/3]
	7.56.2.2 QEngine() [2/3]
	7.56.2.3 QEngine() [3/3]
	7.56.2.4 ~QEngine()
7.56.3	Member Function Documentation
	7.56.3.1 display()
	7.56.3.2 execute() [1/2]
	7.56.3.3 execute() [2/2]
	7.56.3.4 get_circuit()
	7.56.3.5 get_dit()
	7.56.3.6 get_dits()
	7.56.3.7 get_measured() [1/2]
	7.56.3.8 get_measured() [2/2]
	7.56.3.9 get_non_measured()
	7.56.3.10 get_probs()
	7.56.3.11 get_psi()
	7.56.3.12 get_relative_pos_()
	7.56.3.13 operator=()
	7.56.3.14 reset()
	7.56.3.15 set_dit()
	7.56.3.16 set_measured_()
	7.56.3.17 set_psi()
	7.56.3.18 to_JSON()
7.56.4	Member Data Documentation
	7.56.4.1 dits
	7.56.4.2 probs
	7.56.4.3 psi
	7.56.4.4 qc
	7.56.4.5 subsys

xxviii CONTENTS

7.57	qpp::Q	NoisyEngine < NoiseModel > Class Template Reference	09
	7.57.1	Detailed Description	10
	7.57.2	Constructor & Destructor Documentation	10
		7.57.2.1 QNoisyEngine()	10
	7.57.3	Member Function Documentation	11
		7.57.3.1 execute() [1/2]	11
		7.57.3.2 execute() [2/2]	11
		7.57.3.3 get_noise_results()	12
	7.57.4	Member Data Documentation	12
		7.57.4.1 noise	12
		7.57.4.2 noise_results	12
7.58	qpp::Q	ubitAmplitudeDampingNoise Class Reference	13
	7.58.1	Detailed Description	14
	7.58.2	Constructor & Destructor Documentation	14
		7.58.2.1 QubitAmplitudeDampingNoise()	14
7.59	qpp::Q	ubitBitFlipNoise Class Reference	14
	7.59.1	Detailed Description	15
	7.59.2	Constructor & Destructor Documentation	15
		7.59.2.1 QubitBitFlipNoise()	15
7.60	qpp::Q	ubitBitPhaseFlipNoise Class Reference	16
	7.60.1	Detailed Description	17
	7.60.2	Constructor & Destructor Documentation	17
		7.60.2.1 QubitBitPhaseFlipNoise()	17
7.61	qpp::Q	ubitDepolarizingNoise Class Reference	17
	7.61.1	Detailed Description	18
	7.61.2	Constructor & Destructor Documentation	18
		7.61.2.1 QubitDepolarizingNoise()	18
7.62	qpp::Q	ubitPhaseDampingNoise Class Reference	19
	7.62.1	Detailed Description	20
	7.62.2	Constructor & Destructor Documentation	20

CONTENTS xxix

		7.62.2.1 QubitPhaseDampingNoise()	20
7.63	qpp::Qı	ubitPhaseFlipNoise Class Reference	20
	7.63.1	Detailed Description	21
	7.63.2	Constructor & Destructor Documentation	21
		7.63.2.1 QubitPhaseFlipNoise()	21
7.64	qpp::ex	cception::QuditAlreadyMeasured Class Reference	22
	7.64.1	Detailed Description	23
	7.64.2	Member Function Documentation	23
		7.64.2.1 Exception()	23
		7.64.2.2 type_description()	24
7.65	qpp::Qı	uditDepolarizingNoise Class Reference	24
	7.65.1	Detailed Description	25
	7.65.2	Constructor & Destructor Documentation	25
		7.65.2.1 QuditDepolarizingNoise()	25
	7.65.3	Member Function Documentation	26
		7.65.3.1 fill_Ks_()	26
		7.65.3.2 fill_probs_()	26
7.66	qpp::Ra	andomDevices Class Reference	27
	7.66.1	Detailed Description	28
	7.66.2	Constructor & Destructor Documentation	28
		7.66.2.1 RandomDevices()	28
		7.66.2.2 ~RandomDevices()	29
	7.66.3	Member Function Documentation	29
		7.66.3.1 get_prng()	29
		7.66.3.2 load()	29
		7.66.3.3 save()	29
	7.66.4	Friends And Related Function Documentation	30
		7.66.4.1 internal::Singleton < RandomDevices >	30
	7.66.5	Member Data Documentation	30
		7.66.5.1 prng	30

		7.66.5.2 rd	30
7.67	qpp::in	ternal::Singleton < T > Class Template Reference	30
	7.67.1	Detailed Description	31
	7.67.2	Constructor & Destructor Documentation	31
		7.67.2.1 Singleton() [1/2]	32
		7.67.2.2 Singleton() [2/2]	32
		7.67.2.3 ~Singleton()	32
	7.67.3	Member Function Documentation	32
		7.67.3.1 get_instance()	32
		7.67.3.2 get_thread_local_instance()	32
		7.67.3.3 operator=()	32
7.68	qpp::ex	cception::SizeMismatch Class Reference	33
	7.68.1	Detailed Description	34
	7.68.2	Member Function Documentation	34
		7.68.2.1 Exception()	34
		7.68.2.2 type_description()	34
7.69	qpp::No	piseType::StateDependent Class Reference	35
	7.69.1	Detailed Description	35
7.70	qpp::No	piseType::StateIndependent Class Reference	35
	7.70.1	Detailed Description	35
7.71	qpp::St	rates Class Reference	35
	7.71.1	Detailed Description	37
	7.71.2	Constructor & Destructor Documentation	38
		7.71.2.1 States()	38
		7.71.2.2 ~States()	38
	7.71.3	Member Function Documentation	38
		7.71.3.1 jn()	38
		7.71.3.2 mes()	38
		7.71.3.3 minus()	39
		7.71.3.4 one()	39

CONTENTS xxxi

	7.71.3.5 plus()	40
	7.71.3.6 zero()	40
7.71.4	Friends And Related Function Documentation	40
	7.71.4.1 internal::Singleton < const States >	40
7.71.5	Member Data Documentation	40
	7.71.5.1 b00	41
	7.71.5.2 b01	41
	7.71.5.3 b10	41
	7.71.5.4 b11	41
	7.71.5.5 GHZ	41
	7.71.5.6 pb00	41
	7.71.5.7 pb01	42
	7.71.5.8 pb10	42
	7.71.5.9 pb11	42
	7.71.5.10 pGHZ	42
	7.71.5.11 pW	42
	7.71.5.12 px0	42
	7.71.5.13 px1	43
	7.71.5.14 py0	43
	7.71.5.15 py1	43
	7.71.5.16 pz0	43
	7.71.5.17 pz1	43
	7.71.5.18 W	43
	7.71.5.19 x0	44
	7.71.5.20 x1	44
	7.71.5.21 y0	44
	7.71.5.22 y1	44
	7.71.5.23 z0	44
	7.71.5.24 z1	44
7.72 qpp::ex	cception::SubsysMismatchDims Class Reference	45

xxxii CONTENTS

	7.72.1	Detailed Description	346
	7.72.2	Member Function Documentation	346
		7.72.2.1 Exception()	346
		7.72.2.2 type_description()	346
7.73	qpp::Tiı	mer< T, CLOCK_T > Class Template Reference	347
	7.73.1	Detailed Description	348
	7.73.2	Constructor & Destructor Documentation	348
		7.73.2.1 Timer() [1/3]	348
		7.73.2.2 Timer() [2/3]	349
		7.73.2.3 Timer() [3/3]	349
		7.73.2.4 ~Timer()	349
	7.73.3	Member Function Documentation	349
		7.73.3.1 display()	349
		7.73.3.2 get_duration()	350
		7.73.3.3 operator=() [1/2]	350
		7.73.3.4 operator=() [2/2]	350
		7.73.3.5 tic()	351
		7.73.3.6 tics()	351
		7.73.3.7 toc()	351
	7.73.4	Member Data Documentation	351
		7.73.4.1 end	351
		7.73.4.2 start	352
7.74	qpp::ex	ception::TypeMismatch Class Reference	352
	7.74.1	Detailed Description	353
	7.74.2	Member Function Documentation	353
		7.74.2.1 Exception()	353
		7.74.2.2 type_description()	354
7.75	qpp::ex	ception::UndefinedType Class Reference	354
	7.75.1	Detailed Description	355
	7.75.2	Member Function Documentation	355

CONTENTS xxxiii

		.75.2.1 Exception()	55
		.75.2.2 type_description()	56
7.76	qpp::ex	eption::Unknown Class Reference	56
	7.76.1	Detailed Description	57
	7.76.2	Member Function Documentation	57
		.76.2.1 Exception()	57
		.76.2.2 type_description()	58
7.77	qpp::Q	rcuit::iterator::value_type_ Class Reference	58
	7.77.1	Detailed Description	59
	7.77.2	Constructor & Destructor Documentation	59
		7.77.2.1 value_type_() [1/2]	59
		7.77.2.2 value_type_() [2/2]	60
	7.77.3	Member Function Documentation	60
		.77.3.1 display()	60
		.77.3.2 operator=()	60
	7.77.4	Member Data Documentation	60
		.77.4.1 gates_ip	61
		.77.4.2 ip	61
		.77.4.3 measurements_ip	61
		.77.4.4 type	61
		.77.4.5 value_type_qc	61
7.78	qpp::ex	eption::ZeroSize Class Reference	62
	7.78.1	Detailed Description	63
	7.78.2	Member Function Documentation	63
		.78.2.1 Exception()	63
		.78.2.2 type_description()	63

8	File I	Documentation	365
	8.1	classes/circuits/circuits.h File Reference	365
		8.1.1 Detailed Description	366
	8.2	classes/circuits/engines.h File Reference	366
		8.2.1 Detailed Description	366
	8.3	classes/codes.h File Reference	367
		8.3.1 Detailed Description	367
	8.4	classes/exception.h File Reference	367
		8.4.1 Detailed Description	369
	8.5	classes/gates.h File Reference	369
		8.5.1 Detailed Description	370
	8.6	classes/idisplay.h File Reference	370
		8.6.1 Detailed Description	371
	8.7	classes/init.h File Reference	371
		8.7.1 Detailed Description	371
	8.8	classes/noise.h File Reference	372
		8.8.1 Detailed Description	372
	8.9	classes/random_devices.h File Reference	373
		8.9.1 Detailed Description	373
	8.10	classes/reversible.h File Reference	373
		8.10.1 Detailed Description	374
	8.11	classes/states.h File Reference	374
		8.11.1 Detailed Description	375
	8.12	classes/timer.h File Reference	375
		8.12.1 Detailed Description	375
	8.13	constants.h File Reference	376
		8.13.1 Detailed Description	377
	8.14	entanglement.h File Reference	377
		8.14.1 Detailed Description	378
	8.15	entropies.h File Reference	378

CONTENTS XXXV

	8.15.1 Detailed Description	379
8.16	experimental/experimental.h File Reference	380
	8.16.1 Detailed Description	380
8.17	functions.h File Reference	380
	8.17.1 Detailed Description	385
8.18	input_output.h File Reference	385
	8.18.1 Detailed Description	386
8.19	instruments.h File Reference	386
	8.19.1 Detailed Description	387
8.20	internal/classes/iomanip.h File Reference	387
	8.20.1 Detailed Description	388
8.21	internal/classes/singleton.h File Reference	388
	8.21.1 Detailed Description	389
8.22	internal/util.h File Reference	389
	8.22.1 Detailed Description	390
8.23	MATLAB/matlab.h File Reference	391
	8.23.1 Detailed Description	391
8.24	number_theory.h File Reference	391
	8.24.1 Detailed Description	393
8.25	operations.h File Reference	393
	8.25.1 Detailed Description	395
8.26	qpp.h File Reference	395
	8.26.1 Detailed Description	397
	8.26.2 Macro Definition Documentation	397
	8.26.2.1 QPP_UNUSED	397
8.27	random.h File Reference	397
	8.27.1 Detailed Description	399
8.28	statistics.h File Reference	399
	8.28.1 Detailed Description	400
8.29	traits.h File Reference	400
	8.29.1 Detailed Description	401
8.30	types.h File Reference	401
	8.30.1 Detailed Description	402
8.31	/Users/vlad/qpp/README.md File Reference	402
Index		403

Chapter 1

Quantum++

Version 1.2 - 10 February 2019

Build status:

Chat (questions/issues)

About

Quantum++ is a modern C++11 general purpose quantum computing library, composed solely of template header files. Quantum++ is written in standard C++11 and has very low external dependencies, using only the Eigen 3 linear algebra header-only template library and, if available, the OpenMP multi-processing library.

Quantum++ is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were the ease of use, high portability, and high performance. The library's simulation capabilities are only restricted by the amount of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.

To report any bugs or ask for additional features/enhancements, please submit an issue with an appropriate label.

If you are interesting in contributing to this project, feel free to contact me. Alternatively, create a custom branch, add your contribution, then finally create a pull request. If I accept the pull request, I will merge your custom branch with the latest development branch. The latter will eventually be merged into a future release version. To contribute, you need to have a solid knowledge of C++ (preferably C++11), including templates and the standard library, a basic knowledge of quantum computing and linear algebra, and working experience with Eigen 3.

For additional Eigen 3 documentation see http://eigen.tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII reference see http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

Copyright (c) 2013 - 2019 Vlad Gheorghiu, vgheorgh AT gmail DOT com.

License

Quantum++ is distributed under the MIT license. Please see the LICENSE file for more details.

Installation instructions and further documentation

Please see the installation guide https://github.com/vsoftco/qpp/blob/master/INSTALL.md "`INSTALL.md`" and the comprehensive Wiki for further documentation and detailed examples.

The official API documentation is available in PDF and HTML formats in the doc folder.

2 Quantum++

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp
Quantum++ main namespace
qpp::exception
Quantum++ exception hierarchy namespace
qpp::experimental
Experimental/test functions/classes, do not use or modify
qpp::internal
Internal utility functions, do not use them directly or modify them
qpp::literals

4 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

qpp::internal::Display_Impl
qpp::internal::IOManipEigen
qpp::internal::EqualEigen
std::exception
qpp::exception::Exception
qpp::exception::CustomException
qpp::exception::DimsInvalid
qpp::exception::DimsMismatchCvector
qpp::exception::DimsMismatchMatrix
qpp::exception::DimsMismatchRvector
qpp::exception::DimsMismatchVector
qpp::exception::DimsNotEqual
qpp::exception::Duplicates
qpp::exception::InvalidIterator
qpp::exception::MatrixMismatchSubsys
qpp::exception::MatrixNotCvector
qpp::exception::MatrixNotRvector
qpp::exception::MatrixNotSquare
qpp::exception::MatrixNotSquareNorCvector
qpp::exception::MatrixNotSquareNorRvector
qpp::exception::MatrixNotSquareNorVector
app::exception::MatrixNotVector
qpp::exception::NoCodeword
qpp::exception::NotBipartite
qpp::exception::NotImplemented
qpp::exception::NotQubitCvector
qpp::exception::NotQubitMatrix
qpp::exception::NotQubitRvector
app::exception::NotQubitSubsys
qpp::exception::NotQubitVector
qpp::exception::OutOfRange
qpp::exception::PermInvalid
qpp::exception::PermMismatchDims
qpp::exception::QuditAlreadyMeasured
gp::exception::SizeMismatch

6 Hierarchical Index

qpp::exception::SubsysMismatchDims	
qpp::exception::TypeMismatch	
qpp::exception::UndefinedType	
qpp::exception::Unknown	
qpp::exception::ZeroSize	362
false_type	000
qpp::is_complex < T >	
<pre>qpp::is_iterable < T, typename ></pre>	
qpp::QCircuit::GateStep	
qpp::internal::HashEigen	
qpp::IDisplay	
gpp::Dynamic bitset	
qpp::Bit circuit	
qpp::internal::IOManipEigen	
qpp::internal::IOManipPointer< PointerType >	
qpp::internal::IOManipRange< InputIterator >	
qpp::QCircuit	269
qpp::QCircuit::iterator::value_type	358
qpp::QEngine	299
qpp::QNoisyEngine < NoiseModel >	309
$qpp::Timer < T, CLOCK_T > \dots $	347
qpp::IJSON	194
qpp::QCircuit	269
qpp::QEngine	
is base of	
qpp::is_matrix_expression< Derived >	213
qpp::QCircuit::iterator	214
$qpp::make_void < Ts > \ \ldots \$	219
qpp::QCircuit::MeasureStep	
qpp::NoiseBase< T >	
qpp::NoiseBase< NoiseType::StateDependent >	
qpp::QubitAmplitudeDampingNoise	
qpp::QubitPhaseDampingNoise	
${\tt qpp::NoiseBase} < {\tt NoiseType::StateIndependent} > \dots $	241
qpp::QubitBitFlipNoise	
qpp::QubitBitPhaseFlipNoise	
qpp::QubitDepolarizingNoise	
qpp::QubitPhaseFlipNoise	
qpp::QuditDepolarizingNoise	
qpp::NoiseType	
<pre>app::internal::Singleton < T ></pre>	
qpp::Codes	
" ·	
qpp::internal::Singleton < const Gates >	
qpp::Gates	
qpp::internal::Singleton< const Init >	
qpp::Init	
qpp::internal::Singleton < const States >	330
qpp::States	335
qpp::internal::Singleton< RandomDevices >	330
qpp::RandomDevices	327
qpp::NoiseType::StateDependent	
qpp::NoiseType::StateIndependent	
true_type	

3.1 Class Hierarchy 7

qpp::is_complex< std::complex< T >>	. 210
$qpp::is_iterable < T$, $to_void < decltype(std::declval < T > ().begin())$, $decltype(std::declval < T)$	•
>().end()), decltype(*(std::declval< T $>$ ().begin()))>>	. 212

8 Hierarchical Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::Bit circuit
Classical reversible circuit simulator
qpp::Codes
Const Singleton class that defines quantum error correcting codes
qpp::exception::CustomException
Custom exception
qpp::exception::DimsInvalid
Invalid dimension(s) exception
qpp::exception::DimsMismatchCvector
Dimension(s) mismatch column vector size exception
qpp::exception::DimsMismatchMatrix
Dimension(s) mismatch matrix size exception
qpp::exception::DimsMismatchRvector
Dimension(s) mismatch row vector size exception
qpp::exception::DimsMismatchVector
Dimension(s) mismatch vector size exception
qpp::exception::DimsNotEqual
Dimensions not equal exception
qpp::internal::Display_Impl
qpp::exception::Duplicates
System (e.g. std::vector) has duplicates exception
qpp::Dynamic_bitset
Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std↔
::bitset <n>)</n>
qpp::internal::EqualEigen
Functor for comparing Eigen expressions for equality
qpp::exception::Exception
Base class for generating Quantum++ custom exceptions
qpp::Bit_circuit::Gate_count
qpp::Gates
Const Singleton class that implements most commonly used gates
qpp::QCircuit::GateStep
One step consisting only of gates/operators in the circuit
qpp::internal::HashEigen
Functor for hashing Figen expressions 19

10 Class Index

qpp::IDisplay	
Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream 191	& os) const
qpp::IJSON	
Abstract class (interface) that mandates the definition of very basic JSON serialization support	194
qpp::Init	
Const Singleton class that performs additional initializations/cleanups	196
qpp::exception::InvalidIterator	
Invalid iterator	198
qpp::internal::IOManipEigen	
qpp::internal::IOManipPointer< PointerType >	203
qpp::internal::IOManipRange< InputIterator >	206
qpp::is_complex< T >	
Checks whether the type is a complex type	209
qpp::is_complex< std::complex< T >>	
Checks whether the type is a complex number type, specialization for complex types	210
qpp::is_iterable < T, typename >	
Checks whether T is compatible with an STL-like iterable container \dots	211
$qpp::is_iterable < T, to_void < decltype(std::declval < T > ().begin()), \ decltype(std::declval < T > ().end()), \ d$	ecltype(*(std::declval<
Checks whether T is compatible with an STL-like iterable container, specialization for STL-like	
iterable containers	212
qpp::is_matrix_expression< Derived >	
Checks whether the type is an Eigen matrix expression	213
qpp::QCircuit::iterator	
Quantum circuit bound-checking (safe) iterator	214
qpp::make_void < Ts >	
Helper for qpp::to_void<> alias template	219
qpp::exception::MatrixMismatchSubsys	
Matrix mismatch subsystems exception	220
qpp::exception::MatrixNotCvector	
Matrix is not a column vector exception	222
qpp::exception::MatrixNotRvector	
Matrix is not a row vector exception	224
qpp::exception::MatrixNotSquare	
Matrix is not square exception	226
qpp::exception::MatrixNotSquareNorCvector	
Matrix is not square nor column vector exception	228
qpp::exception::MatrixNotSquareNorRvector	
Matrix is not square nor row vector exception	230
qpp::exception::MatrixNotSquareNorVector	
Matrix is not square nor vector exception	232
qpp::exception::MatrixNotVector	
Matrix is not a vector exception	234
qpp::QCircuit::MeasureStep	
One step consisting only of measurements in the circuit	236
qpp::exception::NoCodeword	
Codeword does not exist exception	239
qpp::NoiseBase< T >	
Base class for all noise models, derive your particular noise model	241
qpp::NoiseType	
Contains template tags used to specify the noise type	248
qpp::exception::NotBipartite	
Not bi-partite exception	249
qpp::exception::NotImplemented	
Code not yet implemented	251
qpp::exception::NotQubitCvector	
Column vector is not 2 x 1 exception	253

4.1 Class List

qpp::exception::NotQubitMatrix	
Matrix is not 2 x 2 exception	255
qpp::exception::NotQubitRvector	
Row vector is not 1 x 2 exception	257
qpp::exception::NotQubitSubsys	
Subsystems are not qubits exception	259
qpp::exception::NotQubitVector	
Vector is not 2 x 1 nor 1 x 2 exception	261
qpp::exception::OutOfRange	201
Argument out of range exception	263
qp::exception::PermInvalid	200
	005
Invalid permutation exception	265
qpp::exception::PermMismatchDims	
Permutation mismatch dimensions exception	267
qpp::QCircuit	
Quantum circuit class	269
qpp::QEngine	
Quantum circuit engine, executes qpp::QCircuit	299
qpp::QNoisyEngine < NoiseModel >	
Noisy quantum circuit engine, executes qpp::QCircuit	309
qpp::QubitAmplitudeDampingNoise	
Qubit amplitude damping noise, as described in Nielsen and Chuang	313
qpp::QubitBitFlipNoise	
Qubit bit flip noise	314
qpp::QubitBitPhaseFlipNoise	
Qubit bit-phase flip (dephasing) noise	316
qpp::QubitDepolarizingNoise	
Qubit depolarizing noise	317
qpp::QubitPhaseDampingNoise	017
Qubit phase damping noise, as described in Nielsen and Chuang	319
qpp::Qubit Phase FlipNoise	313
	200
Qubit phase flip (dephasing) noise	320
qpp::exception::QuditAlreadyMeasured	000
Qudit was already measured exception	322
qpp::QuditDepolarizingNoise	
Qudit depolarizing noise	324
qpp::RandomDevices	
Singleton class that manages the source of randomness in the library	327
qpp::internal::Singleton< T >	
Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously	
recurring template pattern)	330
qpp::exception::SizeMismatch	
Size mismatch exception	333
qpp::NoiseType::StateDependent	
Template tag, used whenever the noise is state-dependent	335
qpp::NoiseType::StateIndependent	
Template tag, used whenever the noise is state-independent	335
qpp::States	
Const Singleton class that implements most commonly used states	335
qpp::exception::SubsysMismatchDims	
Subsystems mismatch dimensions exception	345
qpp::Timer< T, CLOCK_T >	040
Chronometer	347
	J 4 /
qpp::exception::TypeMismatch	050
Type mismatch exception	352
qpp::exception::UndefinedType	<u> </u>
Not defined for this type exception	354

12 Class Index

qpp::exception::Unknown	
Unknown exception	356
qpp::QCircuit::iterator::value_type_	
Value type class for qpp::QCircuit::iterator	358
qpp::exception::ZeroSize	
Object has zero size exception	362

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

constants.h
Constants
entanglement.h
Entanglement functions
entropies.h
Entropy functions
functions.h
Generic quantum computing functions
input_output.h
Input/output functions
instruments.h
Measurement functions
number_theory.h
Number theory functions
operations.h
Quantum operation functions
qpp.h
Quantum++ main header file, includes all other necessary headers
random.h Randomness-related functions
statistics.h
Statistics functions
traits.h
Type traits
types.h
Type aliases
classes/codes.h
Quantum error correcting codes
classes/exception.h
Exceptions
classes/gates.h
Quantum gates
classes/idisplay.h
Display interface via the non-virtual interface (NVI) and very basic JSON serialization support
interface

14 File Index

classes/init.h	
Initialization	371
classes/noise.h	
Noise models	372
classes/random_devices.h	
Random devices	373
classes/reversible.h	
Support for classical reversible circuits	373
classes/states.h	
Quantum states	374
classes/timer.h	
Timing	375
classes/circuits/circuits.h	
Qudit quantum circuits	365
classes/circuits/engines.h	
Qudit quantum engines	366
experimental/experimental.h	
Experimental/test functions/classes	380
internal/util.h	
Internal utility functions	389
internal/classes/iomanip.h	
Input/output manipulators	387
internal/classes/singleton.h	
Singleton pattern via CRTP	388
MATLAB/matlab.h	
Input/output interfacing with MATLAR	391

Chapter 6

Namespace Documentation

6.1 qpp Namespace Reference

Quantum++ main namespace.

Namespaces

· exception

Quantum++ exception hierarchy namespace.

· experimental

Experimental/test functions/classes, do not use or modify.

internal

Internal utility functions, do not use them directly or modify them.

literals

Classes

· class Bit_circuit

Classical reversible circuit simulator.

• class Codes

const Singleton class that defines quantum error correcting codes

· class Dynamic_bitset

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

· class Gates

const Singleton class that implements most commonly used gates

class IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

class IJSON

Abstract class (interface) that mandates the definition of very basic JSON serialization support.

class Init

const Singleton class that performs additional initializations/cleanups

· struct is complex

Checks whether the type is a complex type.

• struct is_complex< std::complex< T > >

Checks whether the type is a complex number type, specialization for complex types.

· struct is_iterable

Checks whether T is compatible with an STL-like iterable container.

 $\bullet \ \ struct\ is_iterable < T,\ to_void < \ decltype(std::declval < T>().begin()),\ decltype(std::declval < T>().end()),\ decltype(*(std::declval < T>().end())),\ decltype(*(std::declval < T>().end()$

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

• struct is_matrix_expression

Checks whether the type is an Eigen matrix expression.

· struct make void

Helper for qpp::to_void<> alias template.

· class NoiseBase

Base class for all noise models, derive your particular noise model.

class NoiseType

Contains template tags used to specify the noise type.

class QCircuit

Quantum circuit class.

· class QEngine

Quantum circuit engine, executes qpp::QCircuit.

class QNoisyEngine

Noisy quantum circuit engine, executes qpp::QCircuit.

· class QubitAmplitudeDampingNoise

Qubit amplitude damping noise, as described in Nielsen and Chuang.

• class QubitBitFlipNoise

Qubit bit flip noise.

· class QubitBitPhaseFlipNoise

Qubit bit-phase flip (dephasing) noise.

· class QubitDepolarizingNoise

Qubit depolarizing noise.

• class QubitPhaseDampingNoise

Qubit phase damping noise, as described in Nielsen and Chuang.

· class QubitPhaseFlipNoise

Qubit phase flip (dephasing) noise.

· class QuditDepolarizingNoise

Qudit depolarizing noise.

· class RandomDevices

Singleton class that manages the source of randomness in the library.

· class States

const Singleton class that implements most commonly used states

class Timer

Chronometer.

Typedefs

```
    template<typename... Ts>
    using to void = typename make void< Ts... >::type
```

Alias template that implements the proposal for void_t.

using idx = std::size_t

Non-negative integer index, make sure you use an unsigned type.

• using bigint = long long int

Big integer.

• using cplx = std::complex< double >

Complex number in double precision.

• using ket = Eigen::VectorXcd

Complex (double precision) dynamic Eigen column vector.

• using bra = Eigen::RowVectorXcd

Complex (double precision) dynamic Eigen row vector.

using cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

using dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

template<typename Scalar >

```
using dyn_mat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

template<typename Scalar >

```
using dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

template<typename Scalar >

```
using dyn_row_vect = Eigen::Matrix < Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

Functions

constexpr cplx operator" i (long double x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

cplx omega (idx D)

D-th root of unity.

template<typename Derived >

dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
&dims)

Schmidt coefficients of the bi-partite pure state A.

• template<typename Derived >

```
dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Schmidt coefficients of the bi-partite pure state A.

• template<typename Derived >

```
cmat schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
```

Schmidt basis on Alice side.

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

```
cmat schmidtA (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Schmidt basis on Alice side.

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

```
cmat schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
```

Schmidt basis on Bob side.

template<typename Derived >

```
cmat schmidtB (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Schmidt basis on Bob side.

template<typename Derived >

std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Schmidt probabilities of the bi-partite pure state A.

• template<typename Derived >

```
std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Schmidt probabilities of the bi-partite pure state A.

```
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Entanglement of the bi-partite pure state A.

    template<typename Derived >

  double entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Entanglement of the bi-partite pure state A.

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)
     G-concurrence of the bi-partite pure state A.
• template<typename Derived >
  double negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Negativity of the bi-partite mixed state A.

    template<typename Derived >

  double negativity (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Negativity of the bi-partite mixed state A.
• template<typename Derived >
  double lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Logarithmic negativity of the bi-partite mixed state A.
• template<typename Derived >
  double lognegativity (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Logarithmic negativity of the bi-partite mixed state A.
• template<typename Derived >
  double concurrence (const Eigen::MatrixBase< Derived > &A)
      Wootters concurrence of the bi-partite qubit mixed state A.

    template<typename Derived >

  double entropy (const Eigen::MatrixBase< Derived > &A)
      von-Neumann entropy of the density matrix A

    double entropy (const std::vector< double > &prob)

     Shannon entropy of the probability distribution prob.

    template<typename Derived >

  double renyi (const Eigen::MatrixBase< Derived > &A, double alpha)
      Renyi-\alpha entropy of the density matrix A, for \alpha > 0.

    double renyi (const std::vector< double > &prob, double alpha)

     Renyi- \alpha entropy of the probability distribution prob, for \alpha > 0.
• template<typename Derived >
  double tsallis (const Eigen::MatrixBase< Derived > &A, double q)
      Tsallis- q entropy of the density matrix A, for q > 0.

    double tsallis (const std::vector< double > &prob, double q)

      Tsallis- q entropy of the probability distribution prob, for q \geq 0.
• template<typename Derived >
  double gmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector< idx > \&subsysB, const std::vector<math>< idx > \&dims)
      Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector< idx > &subsysB, idx d=2)
      Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.
template<typename Derived >
  dyn mat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
     Complex conjugate.
```

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)
     Inverse.

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
     Trace.

    template<typename Derived >

  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)
     Determinant.

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.
• template<typename Derived >
  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum of A.

    template<typename Derived >

  Derived::Scalar prod (const Eigen::MatrixBase< Derived > &A)
     Element-wise product of A.

    template<typename Derived >

  double norm (const Eigen::MatrixBase< Derived > &A)
     Frobenius norm.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > normalize (const Eigen::MatrixBase< Derived > &A)
     Normalizes state vector (column or row vector) or density matrix.

    template<typename Derived >

  std::pair< dyn col vect< cplx >, cmat > eig (const Eigen::MatrixBase< Derived > &A)
     Full eigen decomposition.

    template<typename Derived >

  dyn_col_vect< cplx > evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.

    template<typename Derived >

  std::pair< dyn_col_vect< double >, cmat > heig (const Eigen::MatrixBase< Derived > &A)
     Full eigen decomposition of Hermitian expression.

    template<typename Derived >

  dyn_col_vect< double > hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat hevects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors of Hermitian matrix.

    template<typename Derived >

  std::tuple< cmat, dyn_col_vect< double >, cmat > svd (const Eigen::MatrixBase< Derived > &A)
     Full singular value decomposition.
• template<typename Derived >
  dyn_col_vect< double > svals (const Eigen::MatrixBase< Derived > &A)
     Singular values.

    template<typename Derived >

  cmat svdU (const Eigen::MatrixBase< Derived > &A)
```

Kronecker power.

```
Left singular vectors.
• template<typename Derived >
  cmat svdV (const Eigen::MatrixBase< Derived > &A)
     Right singular vectors.
• template<typename Derived >
  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)
• template<typename Derived >
  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolute value.

    template < typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.
template<typename Derived >
  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat cosm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
     Matrix power.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, idx n)
     Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.
• template<typename Derived >
  double schatten (const Eigen::MatrixBase< Derived > &A, double p)
      Schatten matrix norm.
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{OutputScalar} \ \mathsf{,} \ \mathsf{typename} \ \mathsf{Derived} >
  dyn_mat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const type-
  name Derived::Scalar &))
     Functor.
• template<typename T >
  dyn_mat< typename T::Scalar > kron (const T &head)
     Kronecker product.
• template<typename T , typename... Args>
  dyn mat< typename T::Scalar > kron (const T &head, const Args &... tail)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > kron (const std::vector< Derived > &As)
     Kronecker product.
template<typename Derived >
  dyn_mat< typename Derived::Scalar > kron (const std::initializer_list< Derived > &As)
     Kronecker product.
template<typename Derived >
  dyn mat< typename Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, idx n)
```

```
• template<typename T >
  dyn_mat< typename T::Scalar > dirsum (const T &head)
• template<typename T , typename... Args>
  dyn mat< typename T::Scalar > dirsum (const T &head, const Args &... tail)
     Direct sum.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > dirsum (const std::vector< Derived > &As)
     Direct sum.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > dirsum (const std::initializer_list< Derived > &As)
     Direct sum.
• template<typename Derived >
  dyn mat< typename Derived::Scalar > dirsumpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Direct sum power.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, idx rows, idx
  cols)
     Reshape.
 template<typename Derived1 , typename Derived2 >
  dyn mat< typename Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::↔
  MatrixBase< Derived2 > &B)
     Commutator.
ullet template<typename Derived1 , typename Derived2 >
  dyn_mat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
     Anti-commutator.
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &A)
     Projector.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > grams (const std::vector< Derived > &As)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &As)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)
     Gram-Schmidt orthogonalization.

    std::vector< idx > n2multiidx (idx n, const std::vector< idx > &dims)

     Non-negative integer index to multi-index.
• idx multiidx2n (const std::vector< idx > &midx, const std::vector< idx > &dims)
     Multi-index to non-negative integer index.

    ket mket (const std::vector < idx > &mask, const std::vector < idx > &dims)

     Multi-partite qudit ket.

    ket mket (const std::vector< idx > &mask, idx d=2)

     Multi-partite qudit ket.

    cmat mprj (const std::vector < idx > &mask, const std::vector < idx > &dims)

     Projector onto multi-partite qudit ket.

    cmat mprj (const std::vector < idx > &mask, idx d=2)

     Projector onto multi-partite qudit ket.
• template<typename InputIterator >
```

std::vector< double > abssq (InputIterator first, InputIterator last)

Computes the absolute values squared of an STL-like range of complex numbers.

• template<typename Container >

std::vector< double > abssq (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Computes the absolute values squared of an STL-like container.

template<typename Derived >

std::vector< double > abssq (const Eigen::MatrixBase< Derived > &A)

Computes the absolute values squared of an Eigen expression.

• template<typename InputIterator >

std::iterator_traits< InputIterator >::value_type sum (InputIterator first, InputIterator last)

Element-wise sum of an STL-like range.

• template<typename Container >

Container::value_type sum (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Element-wise sum of the elements of an STL-like container.

template<typename InputIterator >

std::iterator_traits< InputIterator >::value_type prod (InputIterator first, InputIterator last)

Element-wise product of an STL-like range.

• template<typename Container >

Container::value_type prod (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Element-wise product of the elements of an STL-like container.

template<typename Derived >

dyn col vect< typename Derived::Scalar > rho2pure (const Eigen::MatrixBase< Derived > &A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

std::vector< idx > complement (std::vector< idx > subsys, idx n)

Constructs the complement of a subsystem vector.

template<typename Derived >

std::vector< double > rho2bloch (const Eigen::MatrixBase< Derived > &A)

Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A.

cmat bloch2rho (const std::vector< double > &r)

Computes the density matrix corresponding to the 3-dimensional real Bloch vector r.

template<typename Derived >

```
std::size_t hash_eigen (const Eigen::MatrixBase< Derived > &A, std::size_t seed=0)
```

Computes the hash of en Eigen matrix/vector/expression.

template<typename Derived >

internal::IOManipEigen disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)

Eigen expression ostream manipulator.

• internal::IOManipEigen disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

• template<typename InputIterator >

internal::IOManipRange< InputIterator > disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

 $\bullet \ \ \text{template}{<} \text{typename Container} >$

internal::IOManipRange< typename Container::const_iterator > disp (const Container &c, const std::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

template<typename PointerType >

internal::IOManipPointer< PointerType > disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template < typename Derived > void save (const Eigen::MatrixBase < Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::← MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Generalized inner product.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::

MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2)

Generalized inner product.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state vector or density operator A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state vector or density matrix A in the orthonormal basis specified by the unitary matrix U.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part target of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 projectors specified by the columns of the matrix V.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 projectors specified by the columns of the matrix V.

• template<typename Derived >

std::tuple < std::vector < idx >, double, cmat > measure_seq (const Eigen::MatrixBase < Derived > &A, std::vector < idx > target, std::vector < idx > dims)

Sequentially measures the part target of the multi-partite state vector or density matrix A in the computational basis.

• template<typename Derived >

std::tuple< std::vector< idx >, double, cmat > measure_seq (const Eigen::MatrixBase< Derived > &A, std::vector< idx > target, idx d=2)

Sequentially measures the part target of the multi-partite state vector or density matrix A in the computational basis.

template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< cplx > >::type loadMATLAB (const std::string &mat file, const std::string &var name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

template<typename Derived >

std::enable_if< !std::is_same< typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

std::vector< int > x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

double contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

• bigint gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

• bigint lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

std::vector< idx > invperm (const std::vector< idx > &perm)

Inverse permutation.

std::vector< idx > compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

std::vector< bigint > factors (bigint a)

Prime factor decomposition.

bigint modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

• bigint modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

std::tuple < bigint, bigint, bigint > egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

• bigint modiny (bigint a, bigint p)

Modular inverse of a mod p.

• bool isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

bigint randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

std::vector< std::pair< int, int > > convergents (const std::vector< int > &cf)

Convergents.

std::vector< std::pair< int, int > > convergents (double x, idx N)

Convergents.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const
Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &target, const
std::vector< idx > &dims)

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const
Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &target, idx
d=2)

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >

```
dyn_mat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen ← ::MatrixBase< Derived2 > &A, const std::vector< idx > &target, const std::vector< idx > &dims)
```

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >

```
dyn_mat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen ↔ ::MatrixBase< Derived2 > &A, const std::vector< idx > &target, idx d=2)
```

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)
```

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &target, const std::vector< idx > &dims)
```

Applies the channel specified by the set of Kraus operators Ks to the part target of the multi-partite density matrix A.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &target, idx d=2)
```

Applies the channel specified by the set of Kraus operators Ks to the part target of the multi-partite density matrix A.

cmat kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat kraus2choi (const std::vector< cmat > &Ks)

Choi matrix.

std::vector< cmat > choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

cmat choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

template<typename Derived >

```
\frac{dyn\_mat}{<} typename \ Derived::Scalar > ptrace1 \ (const \ Eigen::MatrixBase < Derived > \&A, \ const \ std \hookleftarrow ::vector < idx > \&dims)
```

Partial trace.

template<typename Derived >

```
dyn_mat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Partial trace.

• template<typename Derived >

 dyn_mat < typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std \leftarrow ::vector< idx > &dims)

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector<
idx > &target, const std::vector< idx > &dims)

Partial trace.

template<typename Derived >

 $\label{localized_dyn_mat} $$ \down_mat< typename\ Derived::Scalar>ptrace\ (const\ Eigen::MatrixBase< Derived> &A,\ const\ std::vector< idx> &target,\ idx\ d=2) $$$

Partial trace.

template<typename Derived >

Partial transpose.

ullet template<typename Derived >

dyn_mat< typename Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &target, idx d=2)

Partial transpose.

template<typename Derived >

Subsystem permutation.

template<typename Derived >

dyn_mat< typename Derived::Scalar > syspermute (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &perm, idx d=2)

Subsystem permutation.

template<typename Derived >

dyn_mat< typename Derived::Scalar > applyQFT (const Eigen::MatrixBase< Derived > &A, const std↔ ::vector< idx > &target, idx d=2, bool swap=true)

Applies the qudit quantum Fourier transform to the part target of the multi-partite state vector or density matrix A.

ullet template<typename Derived >

dyn_mat< typename Derived::Scalar > applyTFQ (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &target, idx d=2, bool swap=true)

Applies the inverse (adjoint) qudit quantum Fourier transform to the part target of the multi-partite state vector or density matrix A.

template<typename Derived >

dyn_col_vect< typename Derived::Scalar > TFQ (const Eigen::MatrixBase< Derived > &A, idx d=2, bool swap=true)

Inverse (adjoint) qudit quantum Fourier transform.

template<typename Derived >

dyn_col_vect< typename Derived::Scalar > QFT (const Eigen::MatrixBase< Derived > &A, idx d=2, bool swap=true)

Qudit quantum Fourier transform.

• double rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

• bigint rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

• idx randidx (idx a=std::numeric_limits < idx >::min(), idx b=std::numeric_limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived rand (idx rows QPP_UNUSED_, idx cols QPP_UNUSED_, double a QPP_UNUSED_=0, double b QPP_UNUSED_=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

• template<>

```
dmat rand (idx rows, idx cols, double a, double b)
```

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

```
cmat rand (idx rows, idx cols, double a, double b)
```

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

template<typename Derived >

Derived randn (idx rows QPP_UNUSED_, idx cols QPP_UNUSED_, double mean QPP_UNUSED_=0, double sigma QPP_UNUSED_=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

```
dmat randn (idx rows, idx cols, double mean, double sigma)
```

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

```
cmat randn (idx rows, idx cols, double mean, double sigma)
```

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

double randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat randU (idx D=2)

Generates a random unitary matrix.

• cmat randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector < cmat > randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat randH (idx D=2)

Generates a random Hermitian matrix.

ket randket (idx D=2)

Generates a random normalized ket (pure state vector)

• cmat randrho (idx D=2)

Generates a random density matrix.

• std::vector < idx > randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

std::vector< double > uniform (idx N)

Uniform probability distribution vector.

std::vector< double > marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > marginalY (const dmat &probXY)

Marginal distribution.

• template<typename Container >

double avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Average.

template<typename Container >
 double cov (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if<
 is_iterable< Container >::value >::type *=nullptr)

Covariance.

• template<typename Container >

double var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Variance.

• template<typename Container >

double sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Standard deviation.

• template<typename Container >

double cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Correlation.

Variables

constexpr double chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr idx maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

constexpr double pi = 3.141592653589793238462643383279502884

 π

• constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr double infty = std::numeric_limits<double>::max()

Used to denote infinity in double precision.

6.1.1 Detailed Description

Quantum++ main namespace.

6.1.2 Typedef Documentation

6.1.2.1 bigint

```
using qpp::bigint = typedef long long int
```

Big integer.

```
6.1.2.2 bra
```

```
using qpp::bra = typedef Eigen::RowVectorXcd
```

Complex (double precision) dynamic Eigen row vector.

6.1.2.3 cmat

```
using qpp::cmat = typedef Eigen::MatrixXcd
```

Complex (double precision) dynamic Eigen matrix.

6.1.2.4 cplx

```
using qpp::cplx = typedef std::complex<double>
```

Complex number in double precision.

6.1.2.5 dmat

```
using qpp::dmat = typedef Eigen::MatrixXd
```

Real (double precision) dynamic Eigen matrix.

6.1.2.6 dyn_col_vect

```
template<typename Scalar >
using qpp::dyn_col_vect = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1>
```

Dynamic Eigen column vector over the field specified by Scalar.

Example:

```
// type of colvect is Eigen::Matrix<float, Eigen::Dynamic, 1>
dyn_col_vect<float> colvect(2);
```

6.1.2.7 dyn_mat

```
template<typename Scalar >
using qpp::dyn_mat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
```

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
// type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
dyn_mat<float> mat(2, 3);
```

6.1.2.8 dyn_row_vect

```
template<typename Scalar >
using qpp::dyn_row_vect = typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic>
```

Dynamic Eigen row vector over the field specified by Scalar.

Example:

```
// type of rowvect is Eigen::Matrix<float, 1, Eigen::Dynamic>
dyn_row_vect<float> rowvect(3);
```

6.1.2.9 idx

```
using qpp::idx = typedef std::size_t
```

Non-negative integer index, make sure you use an unsigned type.

6.1.2.10 ket

```
using qpp::ket = typedef Eigen::VectorXcd
```

Complex (double precision) dynamic Eigen column vector.

6.1.2.11 to_void

```
template<typename... Ts>
using qpp::to_void = typedef typename make_void<Ts...>::type
```

Alias template that implements the proposal for void_t.

See also

```
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911
```

6.1.3 Function Documentation

6.1.3.1 absm()

Matrix absolute value.

Parameters

```
A Eigen expression
```

Returns

Matrix absolute value of A

6.1.3.2 abssq() [1/3]

Computes the absolute values squared of an STL-like range of complex numbers.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Real vector consisting of the range absolute values squared

Computes the absolute values squared of an STL-like container.

Parameters

```
c STL-like container
```

Returns

Real vector consisting of the container's absolute values squared

Computes the absolute values squared of an Eigen expression.

Parameters

```
A Eigen expression
```

Returns

Real vector consisting of the absolute values squared

6.1.3.5 adjoint()

Adjoint.

Parameters

```
A Eigen expression
```

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field as A

6.1.3.6 anticomm()

Anti-commutator.

See also

qpp::comm()

Anti-commutator $\{A,B\} = AB + BA$. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field as A

6.1.3.7 apply() [1/5]

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of target

Parameters

state	Eigen expression
Α	Eigen expression
target	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

Gate A applied to the part target of state

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of target

Parameters

state	Eigen expression
Α	Eigen expression
target	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

Gate A applied to the part target of state

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Output density matrix after the action of the channel

Applies the channel specified by the set of Kraus operators *Ks* to the part *target* of the multi-partite density matrix *A*.

Parameters

Α	Eigen expression	
Ks	Set of Kraus operators	
target	target Subsystem indexes where the Kraus operators Ks are applied	
dims	Dimensions of the multi-partite system	

Returns

Output density matrix after the action of the channel

Applies the channel specified by the set of Kraus operators *Ks* to the part *target* of the multi-partite density matrix *A*.

Α	Eigen expression	
Ks	Set of Kraus operators	
target	Subsystem indexes where the Kraus operators Ks are applied	
d	Subsystem dimensions	

Returns

Output density matrix after the action of the channel

6.1.3.12 applyCTRL() [1/2]

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate *A* must match the dimension of *target*. Also, all control subsystems in *ctrl* must have the same dimension.

Parameters

state	Eigen expression	
Α	Eigen expression	
ctrl	Control subsystem indexes	
target	Subsystem indexes where the gate A is applied	
dims	Dimensions of the multi-partite system	

Returns

CTRL-A gate applied to the part target of state

6.1.3.13 applyCTRL() [2/2]

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate A must match the dimension of target

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
target	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

CTRL-A gate applied to the part target of state

6.1.3.14 applyQFT()

Applies the qudit quantum Fourier transform to the part target of the multi-partite state vector or density matrix A.

Parameters

Α		Eigen expression
tar	get	Subsystem indexes where the QFT is applied
d		Subsystem dimensions
SW	ар	Swaps the qubits/qudits at the end (true by default)

Qudit Quantum Fourier transform applied to the part target of A

6.1.3.15 applyTFQ()

Applies the inverse (adjoint) qudit quantum Fourier transform to the part *target* of the multi-partite state vector or density matrix *A*.

Parameters

Α	Eigen expression	
target	Subsystem indexes where the TFQ is applied	
d	Subsystem dimensions	
swap	Swaps the qubits/qudits at the end (true by default)	

Returns

Inverse (adjoint) qudit Quantum Fourier transform applied to the part target of A

6.1.3.16 avg()

Average.

Parameters

prob	Real probability vector representing the probability distribution of X
X	Real random variable values represented by an STL-like container

Returns

Average of X

6.1.3.17 bloch2rho()

Computes the density matrix corresponding to the 3-dimensional real Bloch vector *r*.

See also

qpp::rho2bloch()

Parameters

r 3-dimensional real vector

Returns

Qubit density matrix

6.1.3.18 choi2kraus()

Orthogonal Kraus operators from Choi matrix.

See also

qpp::kraus2choi()

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi matrix A

Note

The Kraus operators satisfy $Tr(K_i^{\dagger}K_j) = \delta_{ij}$ for all $i \neq j$

Parameters

A Choi matrix

Returns

Set of orthogonal Kraus operators

6.1.3.19 choi2super()

Converts Choi matrix to superoperator matrix.

See also

qpp::super2choi()

Parameters

```
A Choi matrix
```

Returns

Superoperator matrix

6.1.3.20 comm()

Commutator.

See also

qpp::anticomm()

Commutator [A, B] = AB - BA. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Commutator AB-BA, as a dynamic matrix over the same scalar field as ${\it A}$

6.1.3.21 complement()

```
std::vector<idx> qpp::complement (
    std::vector< idx > subsys,
    idx n ) [inline]
```

Constructs the complement of a subsystem vector.

Parameters

subsys	Subsystem vector
n	Total number of systems

Returns

Complement of *subsys* with respect to the set $\{0, 1, \dots, n-1\}$

6.1.3.22 compperm()

Compose permutations.

Parameters

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations *perm* o *sigma* = perm(sigma)

6.1.3.23 concurrence()

Wootters concurrence of the bi-partite qubit mixed state A.

Parameters

```
A Eigen expression
```

Wootters concurrence

6.1.3.24 conjugate()

Complex conjugate.

Parameters

```
A Eigen expression
```

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field as A

6.1.3.25 contfrac2x()

```
double qpp::contfrac2x ( const std::vector< int > & cf, idx N = idx(-1) ) [inline]
```

Real representation of a simple continued fraction.

See also

```
qpp::x2contfrac()
```

Note

If N is greater than the size of cf (by default it is), then all terms in cf are considered.

Parameters

Ci	•	Integer vector containing the simple continued fraction expansion
Ν		Number of terms considered in the continued fraction expansion.

Returns

Real representation of the simple continued fraction

```
6.1.3.26 convergents() [1/2]
```

```
std::vector<std::pair<int, int> > qpp::convergents ( const std::vector< int > & cf ) [inline]
```

Convergents.

See also

qpp::contfrac2x() and qpp::x2contfrac()

Parameters

```
cf Continued fraction
```

Returns

Vector of convergents pairs (a_k, b_k) that approximate the number represented by the continued fraction

6.1.3.27 convergents() [2/2]

Convergents.

See also

qpp::contfrac2x() and qpp::x2contfrac()

Note

In the continued fraction expansion of x has less terms than N, then the series of convergents is truncated to the number of terms in the continued fraction expansion of x.

Parameters

X	Real number
Ν	Number of convergents.

Returns

Vector of convergents pairs (a_k,b_k) that approximate the number x

6.1.3.28 cor()

Correlation.

Parameters

probXY	Real matrix representing the joint probability distribution of <i>X</i> and <i>Y</i> in lexicographical order (<i>X</i> labels the rows, <i>Y</i> labels the columns)	
Χ	Real random variable values represented by an STL-like container	
Y	Real random variable values represented by an STL-like container	

Returns

Correlation of X and Y

6.1.3.29 cosm()

Matrix cos.

Parameters

```
A Eigen expression
```

Returns

Matrix cosine of A

6.1.3.30 cov()

Covariance.

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X label the rows, Y labels the columns)	
X	Real random variable values represented by an STL-like container	
Y	Real random variable values represented by an STL-like container	

Returns

Covariance of X and Y

6.1.3.31 cwise()

Functor.

Parameters

Α	Eigen expression	
f	Pointer-to-function from scalars of A to OutputScalar	

Returns

Component-wise f(A), as a dynamic matrix over the ${\it OutputScalar}$ scalar field

6.1.3.32 det()

Determinant.

Parameters

```
A Eigen expression
```

Returns

Determinant of A, as a scalar over the same scalar field as A. Returns $\pm \infty$ when the determinant overflows/underflows.

Direct sum.

See also

qpp::dirsumpow()

Used to stop the recursion for the variadic template version of qpp::dirsum()

Parameters

head Eigen expression

Returns

Its argument head

6.1.3.34 dirsum() [2/4]

Direct sum.

See also

qpp::dirsumpow()

Parameters

head	Eigen expression	
tail	Variadic Eigen expression (zero or more parameters)]

Returns

Direct sum of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Direct sum of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

See also

qpp::dirsumpow()

Parameters

As std::initializer_list of Eigen expressions, such as {A1, A2, ..., Ak}

Returns

Direct sum of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.37 dirsumpow()

```
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::dirsumpow (
```

```
const Eigen::MatrixBase< Derived > & A, idx n)
```

Direct sum power.

See also

qpp::dirsum()

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Direct sum of A with itself n times $A^{\oplus n}$, as a dynamic matrix over the same scalar field as A

Eigen expression ostream manipulator.

Parameters

Α	Eigen expression	
chop	Set to zero the elements smaller in absolute value than <i>chop</i>	

Returns

Instance of qpp::internal::IOManipEigen

Complex number ostream manipulator.

Z	Complex number (or any other type implicitly cast-able to std::complex <double>)</double>
chop Set to zero the elements smaller in absolute value than chop	

Returns

Instance of qpp::internal::IOManipEigen

Range ostream manipulator.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

```
6.1.3.41 disp() [4/5]
```

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

С	Container
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

const std::string & end = "]")

C-style pointer ostream manipulator.

Parameters

р	Pointer to the first element
N	Number of elements to be displayed
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipPointer

6.1.3.43 egcd()

Extended greatest common divisor of two integers.

See also

qpp::gcd()

а	Integer
b	Integer

Returns

Tuple of: 1. Integer m, 2. Integer n, and 3. Non-negative integer gcd(a,b) such that ma + nb = gcd(a,b)

6.1.3.44 eig()

Full eigen decomposition.

See also

qpp::heig()

Parameters

Returns

Pair of: 1. Eigenvalues of A, as a complex dynamic column vector, and 2. Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.45 entanglement() [1/2]

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

qpp::entropy()

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Entanglement, with the logarithm in base 2

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

qpp::entropy()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Entanglement, with the logarithm in base 2

6.1.3.47 entropy() [1/2]

von-Neumann entropy of the density matrix A

Parameters

A Eigen expression

von-Neumann entropy, with the logarithm in base 2

Shannon entropy of the probability distribution prob.

Parameters

```
prob Real probability vector
```

Returns

Shannon entropy, with the logarithm in base 2

6.1.3.49 evals()

Eigenvalues.

See also

qpp::hevals()

Parameters

```
A Eigen expression
```

Returns

Eigenvalues of A, as a complex dynamic column vector

6.1.3.50 evects()

Eigenvectors.

See also

qpp::hevects()

Parameters

```
A Eigen expression
```

Returns

Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.51 expm()

Matrix exponential.

Parameters

```
A Eigen expression
```

Returns

Matrix exponential of A

6.1.3.52 factors()

Prime factor decomposition.

Note

Runs in $\mathcal{O}(\sqrt{n})$ time complexity

Parameters

a Integer different from 0, 1 or -1

Integer vector containing the factors

6.1.3.53 funm()

Functional calculus f(A)

Parameters

Α	Eigen expression
f	Pointer-to-function from complex to complex

Returns

f(A)

Greatest common divisor of two integers.

See also

qpp::lcm()

Parameters

а	Integer
b	Integer

Returns

Greatest common divisor of a and b

```
6.1.3.55 gcd() [2/2]
bigint qpp::gcd (
              const std::vector< bigint > \& as ) [inline]
Greatest common divisor of a list of integers.
See also
     qpp::lcm()
Parameters
 as List of integers
Returns
     Greatest common divisor of all numbers in as
6.1.3.56 gconcurrence()
template<typename Derived >
double qpp::gconcurrence (
              const Eigen::MatrixBase< Derived > & A )
G-concurrence of the bi-partite pure state A.
Note
     Both local dimensions must be equal
Uses qpp::logdet() to avoid overflows
See also
     qpp::logdet()
Parameters
     Eigen expression
```

G-concurrence

Gram-Schmidt orthogonalization.

Parameters

As std::vector of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of As as columns of a dynamic matrix over the same scalar field as its arguments

Gram-Schmidt orthogonalization.

Parameters

```
As std::initializer_list of Eigen expressions as column vectors
```

Returns

Gram-Schmidt vectors of As as columns of a dynamic matrix over the same scalar field as its arguments

Gram-Schmidt orthogonalization.

Parameters

A Eigen expression, the input vectors are the columns of A

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field as A

6.1.3.60 hash_eigen()

Computes the hash of en Eigen matrix/vector/expression.

Note

Code taken from boost::hash_combine(), see https://www.boost.org/doc/libs/1_69_← 0/doc/html/hash/reference.html#boost.hash_combine

Parameters

Α	Eigen expression
seed	Seed, 0 by default

Returns

Hash of its argument

6.1.3.61 heig()

Full eigen decomposition of Hermitian expression.

See also

qpp::eig()

Parameters

A Eigen expression

Pair of: 1. Eigenvalues of A, as a real dynamic column vector, and 2. Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.62 hevals()

Hermitian eigenvalues.

See also

qpp::evals()

Parameters

A Eigen expression

Returns

Eigenvalues of Hermitian A, as a real dynamic column vector

6.1.3.63 hevects()

Eigenvectors of Hermitian matrix.

See also

qpp::evects()

Parameters

A Eigen expression

Returns

Eigenvectors of Hermitian matrix A, as columns of a complex matrix

6.1.3.64 inverse()

Inverse.

Parameters

```
A Eigen expression
```

Returns

Inverse of A, as a dynamic matrix over the same scalar field as A

6.1.3.65 invperm()

```
\label{eq:std:vector} $$ std::vector < idx > & perm ) $$ [inline] $$
```

Inverse permutation.

Parameters

perm	Permutation
------	-------------

Returns

Inverse of the permutation perm

6.1.3.66 ip() [1/2]

Generalized inner product.

Parameters

phi	Column vector Eigen expression
psi	Column vector Eigen expression
subsys	Subsystem indexes over which phi is defined
dims	Dimensions of the multi-partite system

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

Generalized inner product.

Parameters

phi	Column vector Eigen expression
psi	Column vector Eigen expression
subsys	Subsystem indexes over which phi is defined
d	Subsystem dimensions

Returns

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

6.1.3.68 isprime()

Primality test based on the Miller-Rabin's algorithm.

Parameters

р	Integer different from 0, 1 or -1
k	Number of iterations. The probability of a false positive is 2^{-k} .

Returns

True if the number is (most-likely) prime, false otherwise

6.1.3.69 kraus2choi()

Choi matrix.

See also

qpp::choi2kraus()

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|,\,|0\rangle\langle 1|$ etc.

Note

The superoperator matrix S and the Choi matrix C are related by $S_{ab,mn}=C_{ma,nb}$

Parameters

Ks | Set of Kraus operators

Returns

Choi matrix

6.1.3.70 kraus2super()

Superoperator matrix.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

Ks Set of Kraus operators

Returns

Superoperator matrix

Kronecker product.

See also

qpp::kronpow()

Used to stop the recursion for the variadic template version of app::kron()

Parameters

head	Eigen expression
------	------------------

Returns

Its argument head

```
6.1.3.72 kron() [2/4]
```

Kronecker product.

See also

qpp::kronpow()

Parameters

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

As std::vector of Eigen expressions

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Kronecker product.

See also

qpp::kronpow()

Parameters

As std::initializer_list of Eigen expressions, such as {A1, A2, ..., Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.75 kronpow()

```
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::kronpow (
```

```
const Eigen::MatrixBase< Derived > & A, idx n)
```

Kronecker power.

See also

qpp::kron()

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field as A

Least common multiple of two integers.

See also

qpp::gcd()

Parameters

а	Integer
b	Integer

Returns

Least common multiple of a and b

Least common multiple of a list of integers.

See also

```
qpp::gcd()
```

Parameters

```
as List of integers
```

Returns

Least common multiple of all numbers in as

6.1.3.78 load()

Loads Eigen matrix from a binary file (internal format) in double precision.

See also

qpp::save()

The template parameter cannot be automatically deduced and must be explicitly provided, depending on the scalar field of the matrix that is being loaded.

Example:

```
// loads a previously saved Eigen dynamic complex matrix from "input.bin" cmat mat = load<cmat>("input.bin");
```

Parameters

```
fname Output file name
```

6.1.3.79 loadMATLAB() [1/2]

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

```
qpp::saveMATLAB()
```

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen ket
// from the MATLAB file "input.mat"
ket psi = loadMATLABket>("input.mat");
```

Template Parameters

Derived	Complex Eigen type
---------	--------------------

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.80 loadMATLAB() [2/2]

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

```
qpp::saveMATLAB()
```

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic double matrix
// from the MATLAB file "input.mat"
dmat mat = loadMATLAB<dmat>("input.mat");
```

Template Parameters

Derived	Non-complex Eigen type
---------	------------------------

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.81 logdet()

Logarithm of the determinant.

Useful when the determinant overflows/underflows

Parameters

```
A Eigen expression
```

Returns

Logarithm of the determinant of A, as a scalar over the same scalar field as A

6.1.3.82 logm()

Matrix logarithm.

Parameters

A Eigen expression

Matrix logarithm of A

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.84 lognegativity() [2/2]

```
template<typename Derived >
double qpp::lognegativity (
          const Eigen::MatrixBase< Derived > & A,
          idx d = 2 )
```

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.85 marginalX()

Marginal distribution.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels	
	the rows, Y labels the columns)	

Returns

Real vector consisting of the marginal distribution of X

6.1.3.86 marginalY()

Marginal distribution.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels	l
	the rows, Y labels the columns)	l

Returns

Real vector consisting of the marginal distribution of Y

6.1.3.87 measure() [1/9]

Measures the state vector or density operator A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.88 measure() [2/9]

Measures the state vector or density matrix A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.89 measure() [3/9]

Measures the state vector or density matrix A in the orthonormal basis specified by the unitary matrix U.

Parameters

	Α	Eigen expression
ſ	U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.90 measure() [4/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
target	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.91 measure() [5/9]

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all *Ks* must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Α	Eigen expression
Ks	Set of Kraus operators
target	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all *Ks* must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
target	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.93 measure() [7/9]

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
target	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.94 measure() [8/9]

Measures the part *target* of the multi-partite state vector or density matrix *A* in the orthonormal basis or rank-1 projectors specified by the columns of the matrix *V*.

See also

```
qpp::measure_seq()
```

Note

The dimension of V must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Α	Eigen expression
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 projectors
target Subsystem indexes that are measured	
dims	Dimensions of the multi-partite system

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Measures the part target of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 projectors specified by the columns of the matrix V.

See also

```
qpp::measure_seq()
```

Note

The dimension of *V* must match the dimension of *target*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression	
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 projectors	
target	Subsystem indexes that are measured	
d	Subsystem dimensions	

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Sequentially measures the part *target* of the multi-partite state vector or density matrix A in the computational basis.

See also

qpp::measure()

Parameters

Α	Eigen expression
target	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *target*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

Sequentially measures the part *target* of the multi-partite state vector or density matrix A in the computational basis.

See also

qpp::measure()

Parameters

Α	Eigen expression
target	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *target*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

Multi-partite qudit ket.

See also

```
qpp::operator "" _ket()
```

Constructs the multi-partite qudit ket $|\text{mask}\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

Multi-partite qudit ket.

See also

```
qpp::operator "" _ket()
```

Constructs the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension d. mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.3.100 modinv()

Modular inverse of a mod p.

See also

```
qpp::egcd()
```

Note

a and p must be co-prime

Parameters

а	Non-negative integer
р	Non-negative integer

Returns

```
Modular inverse a^{-1} \mod p
```

6.1.3.101 modmul()

Modular multiplication without overflow.

Computes $ab \bmod p$ without overflow

Parameters

а	Integer
b	Integer
р	Positive integer

Returns

 $ab \bmod p$ avoiding overflow

6.1.3.102 modpow()

```
bigint qpp::modpow (
          bigint a,
```

```
bigint n,
bigint p ) [inline]
```

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

Note

Uses qpp::modmul() that avoids overflows

Computes $a^n \bmod p$

Parameters

а	Non-negative integer
n	Non-negative integer
р	Strictly positive integer

Returns

```
a^n \bmod p
```

```
6.1.3.103 mprj() [1/2]
```

Projector onto multi-partite qudit ket.

See also

```
qpp::operator "" _prj()
```

Constructs the projector onto the multi-partite qudit ket $|{\rm mask}\rangle$, where ${\it mask}$ is a std::vector of non-negative integers. Each element in ${\it mask}$ has to be smaller than the corresponding element in ${\it dims.}$

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

Projector onto multi-partite qudit ket.

See also

```
qpp::operator "" _prj()
```

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension d. mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.3.105 multiidx2n()

Multi-index to non-negative integer index.

See also

```
qpp::n2multiidx()
```

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

6.1.3.106 n2multiidx()

```
\label{eq:std::vector} $$ std::vector < idx > qpp::n2multiidx ($$ idx n,$$ const std::vector < idx > & dims ) [inline]
```

Non-negative integer index to multi-index.

See also

```
qpp::multiidx2n()
```

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Returns

Multi-index of the same size as dims

6.1.3.107 negativity() [1/2]

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Negativity

6.1.3.108 negativity() [2/2]

```
template<typename Derived >
double qpp::negativity (
```

```
const Eigen::MatrixBase< Derived > & A, idx d = 2)
```

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Negativity

6.1.3.109 norm()

Frobenius norm.

Parameters

```
A Eigen expression
```

Returns

Frobenius norm of A

6.1.3.110 normalize()

Normalizes state vector (column or row vector) or density matrix.

```
A Eigen expression
```

Normalized state vector or density matrix

D-th root of unity.

Parameters

D Non-negative integer

Returns

D-th root of unity $\exp(2\pi i/D)$

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

Example:

```
cplx z = 4.5_i; // type of z is std::complex<double>
```

6.1.3.113 powm()

Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.

See also

```
qpp::spectralpowm()
```

Explicitly multiplies the matrix A with itself n times. By convention $A^0 = I$.

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field as A

6.1.3.114 prj()

Projector.

Normalized projector onto state vector

Parameters

```
A Eigen expression
```

Returns

Projector onto the state vector A, or the matrix Zero if A has norm zero, as a dynamic matrix over the same scalar field as A

6.1.3.115 prod() [1/3]

Element-wise product of A.

Parameters

```
A Eigen expression
```

Returns

Element-wise product of A, as a scalar over the same scalar field as A

Element-wise product of an STL-like range.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise product of the range, as a scalar over the same scalar field as the range

Element-wise product of the elements of an STL-like container.

Parameters

```
c STL-like container
```

Returns

Element-wise product of the elements of the container, as a scalar over the same scalar field as the container

Partial trace.

See also

```
qpp::ptrace1(), qpp::ptrace2()
```

Partial trace of the multi-partite state vector or density matrix over the list target of subsystems

Parameters

Α	Eigen expression
target	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsystems *target* in a multi-partite system, as a dynamic matrix over the same scalar field as A

Partial trace.

See also

```
qpp::ptrace1(), qpp::ptrace2()
```

Partial trace of the multi-partite state vector or density matrix over the list target of subsystems

Parameters

Α	Eigen expression
target	Subsystem indexes
d	Subsystem dimensions

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *target* in a multi-partite system, as a dynamic matrix over the same scalar field as A

```
6.1.3.120 ptrace1() [1/2]
```

Partial trace.

See also

qpp::ptrace2()

Partial trace over the first subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.121 ptrace1() [2/2]

Partial trace.

See also

qpp::ptrace2()

Partial trace over the first subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_A(\cdot)$ over the first subsystem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.122 ptrace2() [1/2]

Partial trace.

See also

```
qpp::ptrace1()
```

Partial trace over the second subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.123 ptrace2() [2/2]

Partial trace.

See also

qpp::ptrace1()

Partial trace over the second subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.124 ptranspose() [1/2]

```
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::ptranspose (
```

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & target,
const std::vector< idx > & dims )
```

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over the list target of subsystems

Parameters

Α	Eigen expression
target	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *target* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.125 ptranspose() [2/2]

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over the list target of subsystems

Parameters

Α	Eigen expression
target	Subsystem indexes
d	Subsystem dimensions

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *target* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.126 QFT()

```
template<typename Derived >
dyn_col_vect<typename Derived::Scalar> qpp::QFT (
```

```
const Eigen::MatrixBase< Derived > & A, idx d = 2, bool swap = true)
```

Qudit quantum Fourier transform.

Parameters

Α	Eigen expression	
d	Subsystem dimensions	
swap	Swaps the qubits/qudits at the end (true by default)	

Returns

Qudit quantum Fourier transform applied on A

6.1.3.127 qmutualinfo() [1/2]

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
dims	Dimensions of the multi-partite system

Returns

Mutual information between the 2 subsystems

6.1.3.128 qmutualinfo() [2/2]

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
d	Subsystem dimensions

Returns

Mutual information between the 2 subsystems

Generates a random real number uniformly distributed in the interval [a, b)

Parameters

a	ì	Beginning of the interval, belongs to it
b)	End of the interval, does not belong to it

Returns

Random real number (double) uniformly distributed in the interval [a, b)

Generates a random big integer uniformly distributed in the interval [a, b].

Note

To avoid ambiguity with double qpp::rand(double, double) cast at least one of the arguments to qpp::bigint

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Random big integer uniformly distributed in the interval [a, b]

Generates a random matrix with entries uniformly distributed in the interval [a, b)

If complex, then both real and imaginary parts are uniformly distributed in [a, b)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

```
6.1.3.132 rand() [4/5]

template<>>
dmat qpp::rand (
        idx rows ,
        idx cols ,
        double a ,
        double b ) [inline]
```

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries uniformly distributed in [-1,1)
dmat mat = rand<dmat>(3, 3, -1, 1);
```

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Random real matrix

```
6.1.3.133 rand() [5/5]

template<>
cmat qpp::rand (
        idx rows ,
        idx cols ,
        double a ,
        double b ) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd,
// with entries (both real and imaginary) uniformly distributed in [-1,1)
cmat mat = rand<cmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random complex matrix

6.1.3.134 randH()

```
cmat qpp::randH (
    idx D = 2) [inline]
```

Generates a random Hermitian matrix.

Parameters

D Dimension of the Hilbert space

Random Hermitian matrix

6.1.3.135 randidx()

```
idx qpp::randidx (
        idx a = std::numeric_limits<idx>::min(),
        idx b = std::numeric_limits<idx>::max() ) [inline]
```

Generates a random index (idx) uniformly distributed in the interval [a, b].

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Returns

Random index (idx) uniformly distributed in the interval [a, b]

6.1.3.136 randket()

```
ket qpp::randket (
idx D = 2) [inline]
```

Generates a random normalized ket (pure state vector)

Parameters

```
D Dimension of the Hilbert space
```

Returns

Random normalized ket

6.1.3.137 randkraus()

```
std::vector<cmat> qpp::randkraus (
    idx N,
    idx D = 2 ) [inline]
```

Generates a set of random Kraus operators.

Note

The set of Kraus operators satisfy the closure condition $\sum_i K_i^\dagger K_i = I$

Parameters

Ν	Number of Kraus operators
D	Dimension of the Hilbert space

Returns

Set of N Kraus operators satisfying the closure condition

Generates a random matrix with entries normally distributed in N(mean, sigma)

If complex, then both real and imaginary parts are normally distributed in N(mean, sigma)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries normally distributed in N(0,2)
dmat mat = randn<dmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random real matrix

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, 
// with entries (both real and imaginary) normally distributed in N(0,2) cmat mat = randn<cmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random complex matrix

Generates a random real number (double) normally distributed in N(mean, sigma)

Parameters

mean	Mean
sigma	Standard deviation

Returns

Random real number normally distributed in N(mean, sigma)

6.1.3.142 randperm()

```
std::vector<idx> qpp::randperm (
    idx N ) [inline]
```

Generates a random uniformly distributed permutation.

Uses Knuth shuffle method (as implemented by std::shuffle), so that all permutations are equally probable

Parameters

```
N Size of the permutation
```

Returns

Random permutation of size N

6.1.3.143 randprime()

```
bigint qpp::randprime (
          bigint a,
          bigint b,
          idx N = 1000 ) [inline]
```

Generates a random big prime uniformly distributed in the interval [a, b].

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it
N	Maximum number of candidates

Random big integer uniformly distributed in the interval [a, b]

6.1.3.144 randprob()

```
\label{eq:continuous_double} $$\operatorname{double} : \operatorname{qpp}::\operatorname{randprob} ($$\operatorname{idx} N$) [inline]
```

Generates a random probability vector uniformly distributed over the probability simplex.

Parameters

N Size of the probability vector

Returns

Random probability vector

6.1.3.145 randrho()

```
cmat qpp::randrho (
    idx D = 2 ) [inline]
```

Generates a random density matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random density matrix

6.1.3.146 randU()

```
cmat qpp::randU (
    idx D = 2) [inline]
```

Generates a random unitary matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random unitary

6.1.3.147 randV()

Generates a random isometry matrix.

Parameters

Din	Size of the input Hilbert space
Dout	Size of the output Hilbert space

Returns

Random isometry matrix

```
6.1.3.148 renyi() [1/2]
```

Renyi- α entropy of the density matrix A, for $\alpha \geq 0.$

Note

When $\alpha \to 1$ the Renyi entropy converges to the von-Neumann entropy, with the logarithm in base 2

Α	Eigen expression
alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$

Renyi- α entropy, with the logarithm in base 2

Renyi- α entropy of the probability distribution *prob*, for $\alpha \geq 0$.

Note

When $\alpha \to 1$ the Renyi entropy converges to the Shannon entropy, with the logarithm in base 2

Parameters

prob	Real probability vector
alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.3.150 reshape()

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field as A

6.1.3.151 rho2bloch()

Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A.

See also

qpp::bloch2rho()

Note

It is implicitly assumed that the density matrix is Hermitian

Parameters

A Eigen expression

Returns

3-dimensional Bloch vector

6.1.3.152 rho2pure()

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

Note

No purity check is done, the input state A must have rank one, otherwise the function returns the first non-zero eigenvector of A

Parameters

A Eigen expression, assumed to be proportional to a projector onto a pure state, i.e. A is assumed to have rank one

The unique non-zero eigenvector of A (up to a phase), as a dynamic column vector over the same scalar field as A

6.1.3.153 save()

Saves Eigen expression to a binary file (internal format) in double precision.

See also

qpp::load()

Parameters

Α	Eigen expression
fname	Output file name

6.1.3.154 saveMATLAB() [1/2]

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

Complex Eigen type

Α	Eigen expression over the complex field
---	---

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.155 saveMATLAB() [2/2]

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

igen type

Parameters

Α	Non-complex Eigen expression
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.156 schatten()

Schatten matrix norm.

	Α	Eigen expression	
ſ	р	Real number, greater or equal to 1, use app::infty for $p = \infty$	

Schatten-p matrix norm of A

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix \boldsymbol{U} whose columns represent the Schmidt basis vectors on Alice side.

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix U whose columns represent the Schmidt basis vectors on Alice side.

6.1.3.159 schmidtB() [1/2] template<typename Derived > cmat qpp::schmidtB (

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & dims )
```

Schmidt basis on Bob side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

Schmidt basis on Bob side.

idx d = 2)

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.162 schmidtcoeffs() [2/2]

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.163 schmidtprobs() [1/2]

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.164 schmidtprobs() [2/2]

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

,	Α	Eigen expression
(d	Subsystem dimensions

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.165 sigma()

Standard deviation.

Parameters

prob	Real probability vector representing the probability distribution of X
X	Real random variable values represented by an STL-like container

Returns

Standard deviation of X

6.1.3.166 sinm()

Matrix sin.

Parameters

A Eigen expression

Returns

Matrix sine of A

6.1.3.167 spectralpowm()

Matrix power.

See also

qpp::powm()

Uses the spectral decomposition of \emph{A} to compute the matrix power. By convention $\emph{A}^0 = \emph{I}$.

Parameters

Α	Eigen expression
Z	Complex number

Returns

Matrix power A^z

6.1.3.168 sqrtm()

Matrix square root.

Parameters

```
A Eigen expression
```

Returns

Matrix square root of A

```
6.1.3.169 sum() [1/3]
```

Element-wise sum of A.

Parameters

```
A Eigen expression
```

Returns

Element-wise sum of A, as a scalar over the same scalar field as A

```
6.1.3.170 sum() [2/3]
```

Element-wise sum of an STL-like range.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise sum of the range, as a scalar over the same scalar field as the range

Element-wise sum of the elements of an STL-like container.

Parameters

```
c STL-like container
```

Returns

Element-wise sum of the elements of the container, as a scalar over the same scalar field as the container

6.1.3.172 super2choi()

Converts superoperator matrix to Choi matrix.

See also

qpp::choi2super()

Parameters

A Superoperator matrix

Returns

Choi matrix

6.1.3.173 svals()

Singular values.

Parameters

A Eigen expression

Returns

Singular values of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.174 svd()

Full singular value decomposition.

Parameters

A Eigen expression

Returns

Tuple of: 1. Left sigular vectors of A, as columns of a complex dynamic matrix, 2. Singular values of A, ordered in decreasing order, as a real dynamic column vector, and 3. Right singular vectors of A, as columns of a complex dynamic matrix

6.1.3.175 svdU()

Left singular vectors.

Parameters

```
A Eigen expression
```

Returns

Complex dynamic matrix, whose columns are the left singular vectors of A

6.1.3.176 svdV()

Right singular vectors.

Parameters

```
A Eigen expression
```

Returns

Complex dynamic matrix, whose columns are the right singular vectors of A

6.1.3.177 syspermute() [1/2]

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit *perm[i]* is permuted to the location *i*.

Parameters

Α	Eigen expression
perm	Permutation
dims	Dimensions of the multi-partite system

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit perm[i] is permuted to the location i.

Parameters

Α	Eigen expression
perm	Permutation
d	Subsystem dimensions

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

6.1.3.179 TFQ()

Inverse (adjoint) qudit quantum Fourier transform.

Parameters

Α	Eigen expression
d	Subsystem dimensions
swap	Swaps the qubits/qudits at the end (true by default)

Returns

Inverse (adjoint) qudit quantum Fourier transform applied on A

6.1.3.180 trace()

Trace.

Parameters

```
A Eigen expression
```

Returns

Trace of A, as a scalar over the same scalar field as A

6.1.3.181 transpose()

Transpose.

Parameters

```
A Eigen expression
```

Returns

Transpose of A, as a dynamic matrix over the same scalar field as A

```
6.1.3.182 tsallis() [1/2] template<typename Derived > double qpp::tsallis ( const Eigen::MatrixBase< Derived > & A, double q)
```

Tsallis- q entropy of the density matrix A, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the von-Neumann entropy, with the logarithm in base e

Parameters

Α	Eigen expression
q	Non-negative real number

Returns

Tsallis- q entropy

Tsallis- q entropy of the probability distribution prob, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the Shannon entropy, with the logarithm in base e

Parameters

prob	Real probability vector
q	Non-negative real number

Returns

Tsallis- q entropy

6.1.3.184 uniform()

```
std::vector<double> qpp::uniform (
    idx N ) [inline]
```

Uniform probability distribution vector.

Parameters

N Size of the alphabet

Returns

Real vector consisting of a uniform distribution of size N

6.1.3.185 var()

Variance.

Parameters

prob	Real probability vector representing the probability distribution of X
Χ	Real random variable values represented by an STL-like container

Returns

Variance of X

6.1.3.186 x2contfrac()

Simple continued fraction expansion.

See also

```
qpp::contfrac2x()
```

Parameters

X	Real number	
Ν	Maximum number of terms in the expansion	
cut Stop the expansion when the next term is greater than		

Returns

Integer vector containing the simple continued fraction expansion of x. If there are M less than N terms in the expansion, a shorter vector with M components is returned.

6.1.4 Variable Documentation

6.1.4.1 chop

```
constexpr double qpp::chop = 1e-10
```

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

6.1.4.2 ee

```
constexpr double qpp::ee = 2.718281828459045235360287471352662497
```

Base of natural logarithm, e.

6.1.4.3 infty

```
constexpr double qpp::infty = std::numeric_limits<double>::max()
```

Used to denote infinity in double precision.

6.1.4.4 maxn

```
constexpr idx qpp::maxn = 64
```

Maximum number of allowed qubits/qudits (subsystems)

Used internally to allocate arrays on the stack (for performance reasons):

6.1.4.5 pi

```
constexpr double qpp::pi = 3.141592653589793238462643383279502884 \pi
```

6.2 qpp::exception Namespace Reference

Quantum++ exception hierarchy namespace.

Classes

class CustomException

Custom exception.

· class DimsInvalid

Invalid dimension(s) exception.

· class DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

· class DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

· class DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

· class DimsMismatchVector

Dimension(s) mismatch vector size exception.

· class DimsNotEqual

Dimensions not equal exception.

class Duplicates

System (e.g. std::vector) has duplicates exception.

class Exception

Base class for generating Quantum++ custom exceptions.

· class InvalidIterator

Invalid iterator.

class MatrixMismatchSubsys

Matrix mismatch subsystems exception.

class MatrixNotCvector

Matrix is not a column vector exception.

· class MatrixNotRvector

Matrix is not a row vector exception.

class MatrixNotSquare

Matrix is not square exception.

class MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

class MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

class MatrixNotSquareNorVector

Matrix is not square nor vector exception.

class MatrixNotVector

Matrix is not a vector exception.

class NoCodeword

Codeword does not exist exception.

· class NotBipartite

Not bi-partite exception.

class NotImplemented

Code not yet implemented.

class NotQubitCvector

Column vector is not 2 x 1 exception.

class NotQubitMatrix

Matrix is not 2 x 2 exception.

class NotQubitRvector

Row vector is not 1 x 2 exception.

class NotQubitSubsys

Subsystems are not qubits exception.

· class NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

class OutOfRange

Argument out of range exception.

class PermInvalid

Invalid permutation exception.

• class PermMismatchDims

Permutation mismatch dimensions exception.

· class QuditAlreadyMeasured

Qudit was already measured exception.

· class SizeMismatch

Size mismatch exception.

· class SubsysMismatchDims

Subsystems mismatch dimensions exception.

class TypeMismatch

Type mismatch exception.

class UndefinedType

Not defined for this type exception.

· class Unknown

Unknown exception.

· class ZeroSize

Object has zero size exception.

6.2.1 Detailed Description

Quantum++ exception hierarchy namespace.

6.3 qpp::experimental Namespace Reference

Experimental/test functions/classes, do not use or modify.

6.3.1 Detailed Description

Experimental/test functions/classes, do not use or modify.

6.4 qpp::internal Namespace Reference

Internal utility functions, do not use them directly or modify them.

Classes

- struct Display_Impl_
- · class EqualEigen

Functor for comparing Eigen expressions for equality.

· class HashEigen

Functor for hashing Eigen expressions.

- class IOManipEigen
- class IOManipPointer
- · class IOManipRange
- · class Singleton

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Functions

- template < class T >
 void hash combine (std::size t &seed, const T &v)
- void n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- template<typename Derived >

bool check square mat (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool check vector (const Eigen::MatrixBase< Derived > &A)

ullet template<typename Derived >

bool check_rvector (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

bool check_cvector (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool check_nonzero_size (const T &x) noexcept

• template<typename T1 , typename T2 >

bool check_matching_sizes (const T1 &lhs, const T2 &rhs) noexcept

- bool check_dims (const std::vector < idx > &dims)
- $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

bool check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}>$

bool check_dims_match_cvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived}>$

bool check_dims_match_rvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

- bool check_eq_dims (const std::vector< idx > &dims, idx dim) noexcept
- bool check_no_duplicates (std::vector < idx > v)
- bool check_subsys_match_dims (const std::vector< idx > &subsys, const std::vector< idx > &dims)
- template<typename Derived >

bool check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept

• template<typename Derived >

 $bool\ check_qubit_cvector\ (const\ Eigen::MatrixBase < Derived > \&A)\ no except$

template<typename Derived >

bool check_qubit_rvector (const Eigen::MatrixBase< Derived > &A) noexcept

• template<typename Derived >

 $bool\ check_qubit_vector\ (const\ Eigen::MatrixBase < Derived > \&A)\ no except$

- bool check_perm (const std::vector< idx > &perm)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::
 MatrixBase< Derived2 > &B)

```
    template<typename Derived1 , typename Derived2 > dyn_mat< typename Derived1::Scalar > dirsum2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen → ::MatrixBase< Derived2 > &B)
    template<typename T > void variadic_vector_emplace (std::vector< T > &)
    template<typename T , typename First , typename... Args> void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)
    idx get_num_subsys (idx D, idx d)
    idx get_dim_subsys (idx sz, idx N)
```

6.4.1 Detailed Description

Internal utility functions, do not use them directly or modify them.

6.4.2 Function Documentation

6.4.2.1 check_cvector()

6.4.2.2 check_dims()

```
bool qpp::internal::check_dims (  \mbox{const std::vector} < \mbox{idx} > \& \mbox{dims} \mbox{)} \mbox{ [inline]}
```

6.4.2.3 check_dims_match_cvect()

6.4.2.4 check_dims_match_mat()

```
6.4.2.5 check_dims_match_rvect()
```

```
template<typename Derived >
bool qpp::internal::check_dims_match_rvect (
             const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.6 check_eq_dims()
bool qpp::internal::check_eq_dims (
            const std::vector< idx > & dims,
             idx dim ) [inline], [noexcept]
6.4.2.7 check_matching_sizes()
template<typename T1 , typename T2 >
bool qpp::internal::check_matching_sizes (
            const T1 & lhs,
            const T2 & rhs ) [noexcept]
6.4.2.8 check_no_duplicates()
bool qpp::internal::check_no_duplicates (
             std::vector < idx > v) [inline]
6.4.2.9 check_nonzero_size()
template<typename T >
bool qpp::internal::check_nonzero_size (
            const T & x ) [noexcept]
6.4.2.10 check_perm()
```

bool qpp::internal::check_perm (

const std::vector< idx > & perm) [inline]

6.4.2.11 check_qubit_cvector()

```
template<typename Derived >
bool qpp::internal::check_qubit_cvector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.12 check_qubit_matrix()
template<typename Derived >
bool qpp::internal::check_qubit_matrix (
            const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.13 check_qubit_rvector()
template<typename Derived >
bool qpp::internal::check_qubit_rvector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.14 check_qubit_vector()
template < typename Derived >
bool qpp::internal::check_qubit_vector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.15 check_rvector()
template<typename Derived >
bool qpp::internal::check_rvector (
             const Eigen::MatrixBase< Derived > & A )
6.4.2.16 check_square_mat()
template < typename Derived >
bool qpp::internal::check_square_mat (
            const Eigen::MatrixBase< Derived > & A )
```

```
6.4.2.17 check_subsys_match_dims()
```

```
bool qpp::internal::check_subsys_match_dims (
            const std::vector< idx > & subsys,
            const std::vector< idx > & dims ) [inline]
6.4.2.18 check_vector()
template<typename Derived >
bool qpp::internal::check_vector (
            const Eigen::MatrixBase< Derived > & A )
6.4.2.19 dirsum2()
template<typename Derived1 , typename Derived2 >
dyn_mat<typename Derived1::Scalar> qpp::internal::dirsum2 (
            const Eigen::MatrixBase< Derived1 > & A,
            const Eigen::MatrixBase< Derived2 > & B )
6.4.2.20 get_dim_subsys()
idx qpp::internal::get_dim_subsys (
            idx sz,
            idx N ) [inline]
6.4.2.21 get_num_subsys()
idx qpp::internal::get_num_subsys (
            idx D,
            idx d ) [inline]
6.4.2.22 hash_combine()
template<class T >
void qpp::internal::hash_combine (
```

std::size_t & seed,
const T & v)

6.4.2.23 kron2()

```
template<typename Derived1 , typename Derived2 >
dyn_mat<typename Derived1::Scalar> qpp::internal::kron2 (
             const Eigen::MatrixBase< Derived1 > & A,
             const Eigen::MatrixBase< Derived2 > & B )
6.4.2.24 multiidx2n()
idx qpp::internal::multiidx2n (
             const idx *const midx,
             idx numdims,
             const idx *const dims ) [inline], [noexcept]
6.4.2.25 n2multiidx()
void qpp::internal::n2multiidx (
             idx n,
             idx numdims,
             const idx *const dims,
             idx * result ) [inline], [noexcept]
6.4.2.26 variadic_vector_emplace() [1/2]
template<typename T >
void qpp::internal::variadic_vector_emplace (
            std::vector< T > & )
6.4.2.27 variadic_vector_emplace() [2/2]
template<typename T , typename First , typename... Args>
void qpp::internal::variadic_vector_emplace (
             std::vector< T > & v,
             First && first,
             Args &&... args )
```

6.5 qpp::literals Namespace Reference

Functions

```
• constexpr cplx operator"" _i (unsigned long long int x) noexcept \textit{User-defined literal for complex } i = \sqrt{-1} \textit{ (integer overload)}
```

```
template<char... Bits>
ket operator"" _ket ()
```

Multi-partite qubit ket user-defined literal.

template<char... Bits> bra operator"" _bra ()

Multi-partite qubit bra user-defined literal.

template<char... Bits> cmat operator"" _prj ()

Multi-partite qubit projector user-defined literal.

6.5.1 Function Documentation

```
6.5.1.1 operator"""_bra()

template<char... Bits>
bra qpp::literals::operator"" _bra ( )
```

Multi-partite qubit bra user-defined literal.

See also

```
qpp::mket() and qpp::adjoint()
```

Constructs the multi-partite qubit bra $\langle \mathrm{Bits}|$

Template Parameters

```
Bits String of binary numbers representing the qubit bra
```

Returns

Multi-partite qubit bra, as a complex dynamic row vector

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
cplx z = 4_i; // type of z is std::complex<double>
```

6.5.1.3 operator""" _ket()

```
template<char... Bits>
ket qpp::literals::operator"" _ket ( )
```

Multi-partite qubit ket user-defined literal.

See also

qpp::mket()

Constructs the multi-partite qubit ket |Bits>

Template Parameters

Returns

Multi-partite qubit ket, as a complex dynamic column vector

6.5.1.4 operator""" _prj()

```
template<char... Bits>
cmat qpp::literals::operator"" _prj ( )
```

Multi-partite qubit projector user-defined literal.

See also

qpp::mprj()

Constructs the multi-partite qubit projector $|\mathrm{Bits}\rangle\langle\mathrm{Bits}|$ (in the computational basis)

Template Parameters

Bits String of binary numbers representing the qubit state to project on

\mathbf{L}	ΔT	 rn	c

Multi-partite qubit projector, as a complex dynamic matrix

Chapter 7

Class Documentation

7.1 qpp::Bit_circuit Class Reference

Classical reversible circuit simulator.

#include <classes/reversible.h>

Inheritance diagram for qpp::Bit_circuit:

132 Class Documentation

Collaboration diagram for qpp::Bit_circuit:

Classes

struct Gate_count

Public Member Functions

Bit_circuit (const Dynamic_bitset &dynamic_bitset)

Conversion constructor, used to initialize a qpp::Bit_circuit with a qpp::Dynamic_bitset.

Bit_circuit & X (idx pos)

Bit flip.

Bit_circuit & NOT (idx pos)

Bit flip

• Bit_circuit & CNOT (const std::vector < idx > &pos)

Controlled-NOT.

• Bit_circuit & TOF (const std::vector< idx > &pos)

Toffoli gate.

Bit_circuit & SWAP (const std::vector < idx > &pos)

Swap bits.

• Bit_circuit & FRED (const std::vector< idx > &pos)

Fredkin gate (Controlled-SWAP)

• Bit_circuit & reset () noexcept

Reset the circuit all zero, clear all gates.

• Dynamic_bitset (idx N)

Inherited constructor.

Public Attributes

struct qpp::Bit_circuit::Gate_count gate_count
 Gate counters.

Additional Inherited Members

7.1.1 Detailed Description

Classical reversible circuit simulator.

7.1.2 Constructor & Destructor Documentation

7.1.2.1 Bit_circuit()

Conversion constructor, used to initialize a qpp::Bit_circuit with a qpp::Dynamic_bitset.

Parameters

7.1.3 Member Function Documentation

7.1.3.1 CNOT()

Controlled-NOT.

Parameters

```
pos Bit position in the circuit
```

Returns

Reference to the current instance

134 Class Documentation

7.1.3.2 Dynamic_bitset()

```
qpp::Dynamic_bitset::Dynamic_bitset [inline], [explicit]
```

Inherited constructor.

7.1.3.3 FRED()

Fredkin gate (Controlled-SWAP)

Parameters

pos Bit positions in the circuit, in the order control-target-target

Returns

Reference to the current instance

7.1.3.4 NOT()

```
Bit_circuit& qpp::Bit_circuit::NOT (
        idx pos ) [inline]
```

Bit flip.

See also

qpp::Bit_circuit::X()

Parameters

pos Bit position in the circuit

Returns

Reference to the current instance

7.1.3.5 reset()

```
Bit_circuit& qpp::Bit_circuit::reset ( ) [inline], [noexcept]
```

Reset the circuit all zero, clear all gates.

Returns

Reference to the current instance

7.1.3.6 SWAP()

Swap bits.

Parameters

pos Bit positions in the circuit

Returns

Reference to the current instance

7.1.3.7 TOF()

Toffoli gate.

Parameters

pos | Bit positions in the circuit, in the order control-control-target

Returns

Reference to the current instance

136 Class Documentation

7.1.3.8 X()

```
Bit_circuit& qpp::Bit_circuit::X (
        idx pos ) [inline]
```

Bit flip.

See also

qpp::Bit_circuit::NOT()

Parameters

pos Bit position in the circuit

Returns

Reference to the current instance

7.1.4 Member Data Documentation

7.1.4.1 gate_count

```
struct qpp::Bit_circuit::Gate_count qpp::Bit_circuit::gate_count
```

Gate counters.

The documentation for this class was generated from the following file:

• classes/reversible.h

7.2 qpp::Codes Class Reference

const Singleton class that defines quantum error correcting codes

```
#include <classes/codes.h>
```

Inheritance diagram for qpp::Codes:

Collaboration diagram for qpp::Codes:

Public Types

• enum Type { Type::FIVE_QUBIT = 1, Type::SEVEN_QUBIT_STEANE, Type::NINE_QUBIT_SHOR }

Code types, add more codes here if needed.

Public Member Functions

ket codeword (Type type, idx i) const
 Returns the codeword of the specified code type.

Private Member Functions

• Codes ()

Default constructor.

∼Codes ()=default

Default destructor.

Friends

class internal::Singleton < const Codes >

Additional Inherited Members

7.2.1 Detailed Description

const Singleton class that defines quantum error correcting codes

7.2.2 Member Enumeration Documentation

138 Class Documentation

7.2.2.1 Type

```
enum qpp::Codes::Type [strong]
```

Code types, add more codes here if needed.

See also

```
qpp::Codes::codeword()
```

Enumerator

FIVE_QUBIT	[[5,1,3]] qubit code
SEVEN_QUBIT_STEANE	[[7,1,3]] Steane qubit code
NINE_QUBIT_SHOR	[[9,1,3]] Shor qubit code

7.2.3 Constructor & Destructor Documentation

7.2.3.1 Codes()

```
qpp::Codes::Codes ( ) [inline], [private]
```

Default constructor.

7.2.3.2 ∼Codes()

```
qpp::Codes::~Codes ( ) [private], [default]
```

Default destructor.

7.2.4 Member Function Documentation

7.2.4.1 codeword()

Returns the codeword of the specified code type.

See also

qpp::Codes::Type

Parameters

type	Code type	
i	Codeword index	

Returns

i-th codeword of the code type

7.2.5 Friends And Related Function Documentation

7.2.5.1 internal::Singleton < const Codes >

```
friend class internal::Singleton< const Codes > [friend]
```

The documentation for this class was generated from the following file:

classes/codes.h

7.3 qpp::exception::CustomException Class Reference

Custom exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::CustomException:

140 Class Documentation

Collaboration diagram for qpp::exception::CustomException:

Public Member Functions

· CustomException (const std::string &where, const std::string &what)

Private Member Functions

std::string type_description () const override
 Exception type description.

Private Attributes

std::string what_{{}}

7.3.1 Detailed Description

Custom exception.

Custom exception, the user must provide a custom message

7.3.2 Constructor & Destructor Documentation

7.3.2.1 CustomException()

7.3.3 Member Function Documentation

7.3.3.1 type_description()

```
std::string qpp::exception::CustomException::type_description ( ) const [inline], [override],
[private], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

7.3.4 Member Data Documentation

7.3.4.1 what_

```
std::string qpp::exception::CustomException::what_ {} [private]
```

The documentation for this class was generated from the following file:

classes/exception.h

142 Class Documentation

7.4 qpp::exception::DimsInvalid Class Reference

Invalid dimension(s) exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsInvalid:

Collaboration diagram for qpp::exception::DimsInvalid:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.4.1 Detailed Description

Invalid dimension(s) exception.

std::vector<idx> of dimensions has zero size or contains zeros

7.4.2 Member Function Documentation

7.4.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where Text representing where the exception occurred

7.4.2.2 type_description()

std::string qpp::exception::DimsInvalid::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.5 qpp::exception::DimsMismatchCvector Class Reference

Dimension(s) mismatch column vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchCvector:

Collaboration diagram for qpp::exception::DimsMismatchCvector:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.5.1 Detailed Description

Dimension(s) mismatch column vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a column vector)

7.5.2 Member Function Documentation

7.5.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where	Text representing where the exception occurred

7.5.2.2 type_description()

std::string qpp::exception::DimsMismatchCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.6 qpp::exception::DimsMismatchMatrix Class Reference

Dimension(s) mismatch matrix size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchMatrix:

Collaboration diagram for qpp::exception::DimsMismatchMatrix:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.6.1 Detailed Description

Dimension(s) mismatch matrix size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of rows of the Eigen::Matrix (assumed to be a square matrix)

7.6.2 Member Function Documentation

7.6.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where	Text representing where the exception occurred
******	Toxt representing where the exception eccurred

7.6.2.2 type_description()

```
std::string qpp::exception::DimsMismatchMatrix::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.7 qpp::exception::DimsMismatchRvector Class Reference

Dimension(s) mismatch row vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchRvector:

Collaboration diagram for qpp::exception::DimsMismatchRvector:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.7.1 Detailed Description

Dimension(s) mismatch row vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row vector)

7.7.2 Member Function Documentation

7.7.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where	Text representing where the exception occurred
wnere	lext representing where the exception occurre

7.7.2.2 type_description()

std::string qpp::exception::DimsMismatchRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.8 qpp::exception::DimsMismatchVector Class Reference

Dimension(s) mismatch vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchVector:

Collaboration diagram for qpp::exception::DimsMismatchVector:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.8.1 Detailed Description

Dimension(s) mismatch vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row/column vector)

7.8.2 Member Function Documentation

7.8.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where Text representing where the exception occurred
--

7.8.2.2 type_description()

```
std::string qpp::exception::DimsMismatchVector::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.9 qpp::exception::DimsNotEqual Class Reference

Dimensions not equal exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsNotEqual:

Collaboration diagram for qpp::exception::DimsNotEqual:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.9.1 Detailed Description

Dimensions not equal exception.

Local/global dimensions are not equal

7.9.2 Member Function Documentation

7.9.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where Text representing where the exception occurred

7.9.2.2 type_description()

```
std::string qpp::exception::DimsNotEqual::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.10 qpp::internal::Display_Impl_ Struct Reference

```
#include <internal/util.h>
```

Inheritance diagram for qpp::internal::Display_Impl_:

Public Member Functions

template<typename T >
 std::ostream & display_impl_ (const T &A, std::ostream &os, double chop=qpp::chop) const

7.10.1 Member Function Documentation

7.10.1.1 display_impl_()

The documentation for this struct was generated from the following file:

• internal/util.h

7.11 qpp::exception::Duplicates Class Reference

System (e.g. std::vector) has duplicates exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Duplicates:

Collaboration diagram for qpp::exception::Duplicates:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.11.1 Detailed Description

System (e.g. std::vector) has duplicates exception.

7.11.2 Member Function Documentation

7.11.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where Text representing where the exception occurred

7.11.2.2 type_description()

```
std::string qpp::exception::Duplicates::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

7.12 qpp::Dynamic_bitset Class Reference

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std:bitset < N >)

#include <classes/reversible.h>

Inheritance diagram for qpp::Dynamic_bitset:

Collaboration diagram for qpp::Dynamic_bitset:

Public Types

- using value_type = unsigned int
 Type of the storage elements.
- using storage_type = std::vector< value_type >
 Type of the storage.

Public Member Functions

• Dynamic bitset (idx N)

Constructor, initializes all bits to false (zero)

virtual ~Dynamic bitset ()=default

Default virtual destructor.

const storage_type & data () const

Raw storage space of the bitset.

• idx size () const noexcept

Number of bits stored in the bitset.

• idx storage_size () const noexcept

Size of the underlying storage space (in units of value_type, unsigned int by default)

· idx count () const noexcept

Number of bits set to one in the bitset (Hamming weight)

bool get (idx pos) const noexcept

The value of the bit at position pos.

· bool none () const noexcept

Checks whether none of the bits are set.

• bool all () const noexcept

Checks whether all bits are set.

• bool any () const noexcept

Checks whether any bit is set.

Dynamic_bitset & set (idx pos, bool value=true)

Sets the bit at position pos.

Dynamic_bitset & set () noexcept

Set all bits to true.

• Dynamic bitset & rand (idx pos, double p=0.5)

Sets the bit at position pos according to a Bernoulli(p) distribution.

• Dynamic_bitset & rand (double p=0.5)

Sets all bits according to a Bernoulli(p) distribution.

Dynamic_bitset & reset (idx pos)

Sets the bit at position pos to false.

Dynamic_bitset & reset () noexcept

Sets all bits to false.

Dynamic_bitset & flip (idx pos)

Flips the bit at position pos.

· Dynamic bitset & flip () noexcept

Flips all bits.

• bool operator== (const Dynamic_bitset &rhs) const noexcept

Equality operator.

• bool operator!= (const Dynamic_bitset &rhs) const noexcept

Inequality operator.

• idx operator- (const Dynamic_bitset &rhs) const noexcept

Number of places the two bitsets differ (Hamming distance)

template < class CharT = char, class Traits = std::char_traits < CharT>, class Allocator = std::allocator < CharT>> std::basic_string < CharT, Traits, Allocator > to_string (CharT zero=CharT('0'), CharT one=CharT('1')) const String representation.

Protected Member Functions

- idx index_ (idx pos) const
 Index of the pos bit in the storage space.
- idx offset_ (idx pos) const

Offset of the pos bit in the storage space relative to its index.

Protected Attributes

```
• idx storage_size_
Storage size.
```

idx N

Number of bits.

std::vector< value_type > v_

Storage space.

Private Member Functions

 std::ostream & display (std::ostream &os) const override *qpp::IDisplay::display()* override, displays the bitset bit by bit

7.12.1 Detailed Description

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

7.12.2 Member Typedef Documentation

```
7.12.2.1 storage_type
```

```
using qpp::Dynamic_bitset::storage_type = std::vector<value_type>
```

Type of the storage.

7.12.2.2 value_type

```
using qpp::Dynamic_bitset::value_type = unsigned int
```

Type of the storage elements.

7.12.3 Constructor & Destructor Documentation

7.12.3.1 Dynamic_bitset()

Constructor, initializes all bits to false (zero)

Parameters

N Number of bits in the bitset

```
7.12.3.2 ~Dynamic_bitset()
```

```
virtual qpp::Dynamic_bitset::~Dynamic_bitset ( ) [virtual], [default]
```

Default virtual destructor.

7.12.4 Member Function Documentation

```
7.12.4.1 all()
```

```
bool qpp::Dynamic_bitset::all ( ) const [inline], [noexcept]
```

Checks whether all bits are set.

Returns

True if all of the bits are set

```
7.12.4.2 any()
```

```
bool qpp::Dynamic_bitset::any ( ) const [inline], [noexcept]
```

Checks whether any bit is set.

Returns

True if any of the bits is set

```
7.12.4.3 count()
```

```
idx qpp::Dynamic_bitset::count ( ) const [inline], [noexcept]
```

Number of bits set to one in the bitset (Hamming weight)

Returns

Hamming weight

7.12.4.4 data()

```
const storage_type& qpp::Dynamic_bitset::data ( ) const [inline]
```

Raw storage space of the bitset.

Returns

Const reference to the underlying storage space

7.12.4.5 display()

qpp::IDisplay::display() override, displays the bitset bit by bit

Parameters

os Output stream passed by reference

Returns

Reference to the output stream

Implements qpp::IDisplay.

```
7.12.4.6 flip() [1/2]
```

```
Dynamic_bitset& qpp::Dynamic_bitset::flip (
        idx pos ) [inline]
```

Flips the bit at position pos.

Parameters

pos Position in the bitset

Returns

Reference to the current instance

```
7.12.4.7 flip() [2/2]
```

```
Dynamic_bitset& qpp::Dynamic_bitset::flip ( ) [inline], [noexcept]
```

Flips all bits.

Returns

Reference to the current instance

7.12.4.8 get()

```
bool qpp::Dynamic_bitset::get (
          idx pos ) const [inline], [noexcept]
```

The value of the bit at position pos.

Parameters

pos	Position in the bitset
-----	------------------------

Returns

The value of the bit at position pos

7.12.4.9 index_()

Index of the pos bit in the storage space.

Parameters

```
pos Bit location
```

Returns

Index of the pos bit in the storage space

7.12.4.10 none()

```
bool qpp::Dynamic_bitset::none ( ) const [inline], [noexcept]
```

Checks whether none of the bits are set.

Returns

True if none of the bits are set

7.12.4.11 offset_()

Offset of the *pos* bit in the storage space relative to its index.

Parameters

```
pos Bit location
```

Returns

Offset of the pos bit in the storage space relative to its index

7.12.4.12 operator"!=()

Inequality operator.

Parameters

```
rhs Dynamic_bitset against which the inequality is being tested
```

Returns

True if the bitsets are not equal (bit by bit), false otherwise

7.12.4.13 operator-()

Number of places the two bitsets differ (Hamming distance)

Parameters

```
rhs Dynamic_bitset against which the Hamming distance is computed
```

Returns

Hamming distance

7.12.4.14 operator==()

Equality operator.

Parameters

```
rhs Dynamic_bitset against which the equality is being tested
```

Returns

True if the bitsets are equal (bit by bit), false otherwise

```
7.12.4.15 rand() [1/2]
```

```
Dynamic_bitset& qpp::Dynamic_bitset::rand (
    idx pos,
    double p = 0.5 ) [inline]
```

Sets the bit at position *pos* according to a Bernoulli(p) distribution.

Parameters

pos	Position in the bitset
р	Probability

Returns

Reference to the current instance

Sets all bits according to a Bernoulli(p) distribution.

Parameters

```
p Probability
```

Returns

Reference to the current instance

Sets the bit at position pos to false.

Parameters

```
pos Position in the bitset
```

Returns

Reference to the current instance

```
7.12.4.18 reset() [2/2]
Dynamic_bitset& qpp::Dynamic_bitset::reset ( ) [inline], [noexcept]
Sets all bits to false.
```

Returns

Reference to the current instance

```
7.12.4.19 set() [1/2]
```

Sets the bit at position pos.

Parameters

pos	Position in the bitset
value	Bit value

Returns

Reference to the current instance

```
7.12.4.20 set() [2/2]

Dynamic_bitset& qpp::Dynamic_bitset::set ( ) [inline], [noexcept]
```

Set all bits to true.

Returns

Reference to the current instance

```
7.12.4.21 size()
```

```
idx qpp::Dynamic_bitset::size ( ) const [inline], [noexcept]
```

Number of bits stored in the bitset.

Returns

Number of bits stored in the bitset

```
7.12.4.22 storage_size()
```

```
idx qpp::Dynamic_bitset::storage_size ( ) const [inline], [noexcept]
```

Size of the underlying storage space (in units of value_type, unsigned int by default)

Returns

Size of the underlying storage space

7.12.4.23 to_string()

String representation.

Template Parameters

CharT	String character type
Traits	String traits
Allocator	String Allocator

Parameters

zero	Character representing the zero
one	Character representing the one

Returns

The bitset as a string

7.12.5 Member Data Documentation

```
7.12.5.1 N_
```

```
idx qpp::Dynamic_bitset::N_ [protected]
```

Number of bits.

7.12.5.2 storage_size_

```
idx qpp::Dynamic_bitset::storage_size_ [protected]
```

Storage size.

```
7.12.5.3 v_
```

```
std::vector<value_type> qpp::Dynamic_bitset::v_ [protected]
```

Storage space.

The documentation for this class was generated from the following file:

· classes/reversible.h

7.13 qpp::internal::EqualEigen Class Reference

Functor for comparing Eigen expressions for equality.

```
#include <functions.h>
```

Public Member Functions

template<typename Derived >
 bool operator() (const Eigen::MatrixBase< Derived > &A, const Eigen::MatrixBase< Derived > &B) const

7.13.1 Detailed Description

Functor for comparing Eigen expressions for equality.

Note

Works without assertion fails even if the dimensions of the arguments are different (in which case simply returns false

7.13.2 Member Function Documentation

7.13.2.1 operator()()

The documentation for this class was generated from the following file:

· functions.h

7.14 qpp::exception::Exception Class Reference

Base class for generating Quantum++ custom exceptions.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Exception:

Collaboration diagram for qpp::exception::Exception:

Public Member Functions

• Exception (const std::string &where)

Constructs an exception.

• virtual const char * what () const noexcept override

Overrides std::exception::what()

• virtual std::string type_description () const =0

Exception type description.

Private Attributes

- std::string where_
- std::string msg_

7.14.1 Detailed Description

Base class for generating Quantum++ custom exceptions.

Derive from this class if more exceptions are needed, making sure to override qpp::exception::Exception::type_description() in the derived class and to inherit the constructor qpp::exception::Exception::Exception(). Preferably keep your newly defined exception classes in the namespace qpp::exception.

Example:

7.14.2 Constructor & Destructor Documentation

7.14.2.1 Exception()

Constructs an exception.

Parameters

where Text representing where the exception occurred

7.14.3 Member Function Documentation

7.14.3.1 type_description()

```
std::string qpp::exception::Exception::type_description ( ) const [inline], [pure virtual]
```

Exception type description.

Returns

Exception type description

Implemented in qpp::exception::InvalidIterator, qpp::exception::NotImplemented, qpp::exception::CustomException, qpp::exception::Duplicates, qpp::exception::QuditAlreadyMeasured, qpp::exception::UndefinedType, qpp::exception::SizeMismatch, qpp::exception::TypeMismatch, qpp::exception::OutOfRange, qpp::exception::NotOdeword, qpp::exception::NotBipartite, qpp::exception::NotQubitSubsys, qpp::exception::NotQubitVector, qpp::exception::NotQubitRvector, qpp::exception::NotQubitCvector qpp::exception::NotQubitMatrix, qpp::exception::PermMismatchDims, qpp::exception::PermInvalid, qpp::exception::SubsysMismatchEqpp::exception::DimsMismatchVector, qpp::exception::DimsMismatchCvector, qpp::exception::DimsMismatchMatrix, qpp::exception::DimsNotEqual, qpp::exception::DimsInvalid, qpp::exception::MatrixMismatchSu qpp::exception::MatrixNotSquareNorVector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::MatrixNotSquareNorCvector, qpp::exception::Unknown.

7.14.3.2 what()

virtual const char* qpp::exception::Exception::what () const [inline], [override], [virtual],
[noexcept]

Overrides std::exception::what()

Returns

Exception description

7.14.4 Member Data Documentation

```
7.14.4.1 msg_
```

```
std::string qpp::exception::Exception::msg_ [mutable], [private]
```

7.14.4.2 where_

```
std::string qpp::exception::Exception::where_ [private]
```

The documentation for this class was generated from the following file:

· classes/exception.h

7.15 qpp::Bit_circuit::Gate_count Struct Reference

```
#include <classes/reversible.h>
```

Public Attributes

- idx NOT = 0
- idx & X = NOT
- idx CNOT = 0
- idx SWAP = 0
- idx FRED = 0
- idx TOF = 0

7.15.1 Member Data Documentation

7.15.1.1 CNOT

```
idx qpp::Bit_circuit::Gate_count::CNOT = 0
```

7.15.1.2 FRED

```
idx qpp::Bit_circuit::Gate_count::FRED = 0
```

7.15.1.3 NOT

```
idx qpp::Bit_circuit::Gate_count::NOT = 0
```

7.15.1.4 SWAP

```
idx qpp::Bit_circuit::Gate_count::SWAP = 0
```

7.15.1.5 TOF

```
idx qpp::Bit_circuit::Gate_count::TOF = 0
```

7.15.1.6 X

```
idx& qpp::Bit_circuit::Gate_count::X = NOT
```

The documentation for this struct was generated from the following file:

• classes/reversible.h

7.16 qpp::Gates Class Reference

const Singleton class that implements most commonly used gates

#include <classes/gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

- cmat Rn (double theta, const std::vector< double > &n) const
 Qubit rotation of theta about the 3-dimensional real (unit) vector n.
- cmat RX (double theta) const

Qubit rotation of theta about the X axis.

• cmat RY (double theta) const

Qubit rotation of theta about the Y axis.

cmat RZ (double theta) const

Qubit rotation of theta about the Z axis.

• cmat Zd (idx D=2) const

Generalized Z gate for qudits.

```
• cmat SWAPd (idx D=2) const
          SWAP gate for qudits.
    • cmat Fd (idx D=2) const
          Quantum Fourier transform gate for qudits.

    cmat MODMUL (idx a, idx N, idx n) const

          Modular multiplication gate for qubits Implements |x\rangle \longrightarrow |ax \bmod N\rangle.

    cmat Xd (idx D=2) const

          Generalized X gate for qudits.
    • template<typename Derived = Eigen::MatrixXcd>
      Derived Id (idx D=2) const
          Identity gate.

    template<typename Derived >

      dyn mat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector<
      idx > &ctrl, const std::vector < idx > &target, idx n, idx d=2) const
          Generates the multi-partite multiple-controlled-A gate in matrix form.

    template<typename Derived >

      dyn mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
      std::vector < idx > &dims) const
          Expands out.

    template<typename Derived >

      dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
      std::initializer list< idx > &dims) const
          Expands out.

    template<typename Derived >

      dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, idx n,
      idx d=2) const
          Expands out.
    • std::string get_name (const cmat &U) const
          Get the name of the most common qubit gates.
Public Attributes
    cmat Id2 {cmat::Identity(2, 2)}
          Identity gate.

    cmat H {cmat::Zero(2, 2)}

          Hadamard gate.
    cmat X {cmat::Zero(2, 2)}
          Pauli Sigma-X gate.

    cmat Y {cmat::Zero(2, 2)}

          Pauli Sigma-Y gate.

    cmat Z {cmat::Zero(2, 2)}

          Pauli Sigma-Z gate.

    cmat S {cmat::Zero(2, 2)}

          S gate.

    cmat T {cmat::Zero(2, 2)}

          T gate.

    cmat CNOT {cmat::Identity(4, 4)}

          Controlled-NOT control target gate.

    cmat CZ {cmat::Identity(4, 4)}

          Controlled-Phase gate.

    cmat CNOTba {cmat::Zero(4, 4)}
```

```
Controlled-NOT target->control gate.
```

• cmat SWAP {cmat::Identity(4, 4)}

SWAP gate.

• cmat TOF {cmat::ldentity(8, 8)}

Toffoli gate.

• cmat FRED {cmat::ldentity(8, 8)}

Fredkin gate.

Private Member Functions

• Gates ()

Initializes the gates.

∼Gates ()=default

Default destructor.

Friends

class internal::Singleton < const Gates >

Additional Inherited Members

7.16.1 Detailed Description

const Singleton class that implements most commonly used gates

7.16.2 Constructor & Destructor Documentation

```
7.16.2.1 Gates()
```

```
qpp::Gates::Gates ( ) [inline], [private]
```

Initializes the gates.

7.16.2.2 \sim Gates()

```
qpp::Gates::\sim Gates () [private], [default]
```

Default destructor.

7.16.3 Member Function Documentation

7.16.3.1 CTRL()

Generates the multi-partite multiple-controlled-A gate in matrix form.

See also

```
qpp::applyCTRL()
```

Note

The dimension of the gate A must match the dimension of target

Parameters

Α	Eigen expression
ctrl	Control subsystem indexes
target	Subsystem indexes where the gate A is applied
n	Total number of subsystems
d	Subsystem dimensions

Returns

CTRL-A gate, as a matrix over the same scalar field as A

7.16.3.2 expandout() [1/3]

Expands out.

See also

```
qpp::kron()
```

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

```
7.16.3.3 expandout() [2/3]
```

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Note

The std::initializer_list overload exists because otherwise, in the degenerate case when *dims* has only one element, the one element list is implicitly converted to the element's underlying type, i.e. qpp::idx, which has the net effect of picking the wrong (non-vector) qpp::expandout() overload

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.16.3.4 expandout() [3/3]

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
n	Number of subsystems
d	Subsystem dimensions

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.16.3.5 Fd()

```
cmat qpp::Gates::Fd (
    idx D = 2 ) const [inline]
```

Quantum Fourier transform gate for qudits.

Note

Defined as
$$F = \sum_{j,k=0}^{D-1} \exp(2\pi \mathrm{i} jk/D) |j\rangle\langle k|$$

Parameters

D Dimension of the Hilbert space

Returns

Fourier transform gate for qudits

7.16.3.6 get_name()

Get the name of the most common qubit gates.

Note

Assumes that the gate U is represented by a square matrix. If not, returns the empty string

Parameters

U | Complex matrix representing the quantum gate

Returns

The name of the gate (if any), otherwise the empty string

7.16.3.7 ld()

```
template<typename Derived = Eigen::MatrixXcd>
Derived qpp::Gates::Id (
    idx D = 2 ) const [inline]
```

Identity gate.

Note

Can change the return type from complex matrix (default) by explicitly specifying the template parameter

Parameters

D Dimension of the Hilbert space

Returns

Identity gate on a Hilbert space of dimension D

7.16.3.8 MODMUL()

```
cmat qpp::Gates::MODMUL (
    idx a,
```

```
idx N, idx n) const [inline]
```

Modular multiplication gate for qubits Implements $|x\rangle \longrightarrow |ax \bmod N\rangle$.

Note

For the gate to be unitary, *a* and *N* should be co-prime. The function does not check co-primality in release versions!

The number of qubits required to implement the gate should satisfy $n \geq \lceil \log_2(N) \rceil$

Parameters

а	Positive integer less than N
Ν	Positive integer
n	Number of qubits required for implementing the gate

Returns

Modular multiplication gate

7.16.3.9 Rn()

Qubit rotation of *theta* about the 3-dimensional real (unit) vector *n*.

Parameters

theta	Rotation angle
n	3-dimensional real (unit) vector

Returns

Rotation gate

7.16.3.10 RX()

Qubit rotation of theta about the X axis.

Parameters

theta	Rotation angle
ıneıa	Rotation angle

Returns

Rotation gate

7.16.3.11 RY()

Qubit rotation of theta about the Y axis.

Parameters

theta Rotation an	gle
-------------------	-----

Returns

Rotation gate

7.16.3.12 RZ()

Qubit rotation of theta about the Z axis.

Parameters

```
theta Rotation angle
```

Returns

Rotation gate

7.16.3.13 SWAPd()

```
cmat qpp::Gates::SWAPd (
        idx D = 2 ) const [inline]
```

SWAP gate for qudits.

Parameters

D Dimension of the Hilbert space

Returns

SWAP gate for qudits

7.16.3.14 Xd()

```
cmat qpp::Gates::Xd (
    idx D = 2 ) const [inline]
```

Generalized X gate for qudits.

Note

```
Defined as X=\sum_{j=0}^{D-1}|j\oplus 1\rangle\langle j|, i.e. raising operator X|j\rangle=|j\oplus 1\rangle
```

Parameters

D Dimension of the Hilbert space

Returns

Generalized X gate for qudits

7.16.3.15 Zd()

```
cmat qpp::Gates::Zd (
    idx D = 2 ) const [inline]
```

Generalized Z gate for qudits.

Note

Defined as
$$Z = \sum_{j=0}^{D-1} \exp(2\pi \mathrm{i} j/D) |j\rangle\langle j|$$

Parameters

D Dimension of the Hilbert space

Returns

Generalized Z gate for qudits

7.16.4 Friends And Related Function Documentation

```
7.16.4.1 internal::Singleton < const Gates >
friend class internal::Singleton < const Gates > [friend]
```

7.16.5 Member Data Documentation

```
7.16.5.1 CNOT
```

```
cmat qpp::Gates::CNOT {cmat::Identity(4, 4)}
```

Controlled-NOT control target gate.

7.16.5.2 CNOTba

```
cmat qpp::Gates::CNOTba {cmat::Zero(4, 4)}
```

Controlled-NOT target->control gate.

7.16.5.3 CZ

```
cmat qpp::Gates::CZ {cmat::Identity(4, 4)}
```

Controlled-Phase gate.

7.16.5.4 FRED

```
cmat qpp::Gates::FRED {cmat::Identity(8, 8)}
```

Fredkin gate.

```
7.16.5.5 H
cmat qpp::Gates::H {cmat::Zero(2, 2)}
Hadamard gate.
7.16.5.6 ld2
cmat qpp::Gates::Id2 {cmat::Identity(2, 2)}
Identity gate.
7.16.5.7 S
cmat qpp::Gates::S {cmat::Zero(2, 2)}
S gate.
7.16.5.8 SWAP
cmat qpp::Gates::SWAP {cmat::Identity(4, 4)}
SWAP gate.
7.16.5.9 T
cmat qpp::Gates::T {cmat::Zero(2, 2)}
T gate.
7.16.5.10 TOF
cmat qpp::Gates::TOF {cmat::Identity(8, 8)}
Toffoli gate.
```

7.16.5.11 X

```
cmat qpp::Gates::X {cmat::Zero(2, 2)}
```

Pauli Sigma-X gate.

7.16.5.12 Y

```
cmat qpp::Gates::Y {cmat::Zero(2, 2)}
```

Pauli Sigma-Y gate.

7.16.5.13 Z

```
cmat qpp::Gates::Z {cmat::Zero(2, 2)}
```

Pauli Sigma-Z gate.

The documentation for this class was generated from the following file:

· classes/gates.h

7.17 qpp::QCircuit::GateStep Struct Reference

One step consisting only of gates/operators in the circuit.

```
#include <classes/circuits/circuits.h>
```

Collaboration diagram for qpp::QCircuit::GateStep:

Public Member Functions

• GateStep ()=default

Default constructor.

GateStep (GateType gate_type, std::size_t gate_hash, const std::vector < idx > &ctrl, const std::vector < idx > &trl, const std::vector < idx > &target, std::string name="")

Constructs a gate step instance.

Public Attributes

```
    GateType gate_type_ = GateType::NONE
        gate type
    std::size_t gate_hash_
        gate hash
    std::vector< idx > ctrl_
        control
    std::vector< idx > target_
        target where the gate is applied
    std::string name_
        custom name of the step
```

7.17.1 Detailed Description

7.17.2.1 GateStep() [1/2]

Constructs a gate step instance.

One step consisting only of gates/operators in the circuit.

7.17.2 Constructor & Destructor Documentation

Parameters

gate_type	Gate type
gate_hash	Hash of the quantum gate
ctrl	Control qudit indexes
target	Target qudit indexes
name	Optional gate name

7.17.3 Member Data Documentation

```
7.17.3.1 ctrl_
std::vector<idx> qpp::QCircuit::GateStep::ctrl_
control
7.17.3.2 gate_hash_
std::size_t qpp::QCircuit::GateStep::gate_hash_
gate hash
7.17.3.3 gate_type_
GateType qpp::QCircuit::GateStep::gate_type_ = GateType::NONE
gate type
7.17.3.4 name_
std::string qpp::QCircuit::GateStep::name_
```

custom name of the step

7.17.3.5 target_

```
std::vector<idx> qpp::QCircuit::GateStep::target_
```

target where the gate is applied

The documentation for this struct was generated from the following file:

· classes/circuits/circuits.h

7.18 qpp::internal::HashEigen Class Reference

Functor for hashing Eigen expressions.

```
#include <functions.h>
```

Public Member Functions

```
    template<typename Derived >
        std::size_t operator() (const Eigen::MatrixBase< Derived > &A) const
```

7.18.1 Detailed Description

Functor for hashing Eigen expressions.

7.18.2 Member Function Documentation

7.18.2.1 operator()()

The documentation for this class was generated from the following file:

· functions.h

7.19 qpp::IDisplay Class Reference

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

#include <classes/idisplay.h>

Inheritance diagram for qpp::IDisplay:

Public Member Functions

• IDisplay ()=default

Default constructor.

• IDisplay (const IDisplay &)=default

Default copy constructor.

• IDisplay (IDisplay &&)=default

Default move constructor.

• IDisplay & operator= (const IDisplay &)=default

Default copy assignment operator.

IDisplay & operator= (IDisplay &&)=default

Default move assignment operator.

virtual ∼IDisplay ()=default

Default virtual destructor.

Private Member Functions

virtual std::ostream & display (std::ostream &os) const =0
 Must be overridden by all derived classes.

Friends

std::ostream & operator<< (std::ostream &os, const IDisplay &rhs)
 Overloads the extraction operator.

7.19.1 Detailed Description

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

This class defines friend inline std::ostream& operator<< (std::ostream& os, const qpp::IDisplay& rhs). The latter delegates the work to the pure private virtual function qpp::IDisplay::display() which has to be overridden by all derived classes.

7.19.2 Constructor & Destructor Documentation

```
7.19.2.1 | Display() [1/3]

qpp::IDisplay::IDisplay ( ) [default]
```

Default constructor.

Default copy constructor.

Default move constructor.

Default virtual destructor.

```
7.19.2.4 ~IDisplay()
virtual qpp::IDisplay::~IDisplay ( ) [virtual], [default]
```

7.19.3 Member Function Documentation

7.19.3.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implemented in qpp::QCircuit, qpp::QEngine, qpp::QCircuit::iterator::value_type_, qpp::Dynamic_bitset, qpp::internal::IOManipEigen, qpp::Timer< T, CLOCK_T >, qpp::internal::IOManipPointer< PointerType >, and qpp::internal::IOManipRange< InputIterator >.

```
7.19.3.2 operator=() [1/2]
```

Default copy assignment operator.

```
7.19.3.3 operator=() [2/2]
```

Default move assignment operator.

7.19.4 Friends And Related Function Documentation

7.19.4.1 operator <<

Overloads the extraction operator.

Delegates the work to the virtual function qpp::IDisplay::display()

The documentation for this class was generated from the following file:

classes/idisplay.h

7.20 qpp::IJSON Class Reference

Abstract class (interface) that mandates the definition of very basic JSON serialization support.

#include <classes/idisplay.h>

Inheritance diagram for qpp::IJSON:

Public Member Functions

• IJSON ()=default

Default constructor.

• IJSON (const IJSON &)=default

Default copy constructor.

• IJSON (IJSON &&)=default

Default move constructor.

IJSON & operator= (const IJSON &)=default

Default copy assignment operator.

IJSON & operator= (IJSON &&)=default

Default move assignment operator.

virtual ∼IJSON ()=default

Default virtual destructor.

virtual std::string to_JSON (bool enclosed_in_curly_brackets=true) const =0

JSON representation of the derived instance, must be overridden by all derived classes.

7.20.1 Detailed Description

Abstract class (interface) that mandates the definition of very basic JSON serialization support.

7.20.2 Constructor & Destructor Documentation

Default copy constructor.

Default move constructor.

Default virtual destructor.

```
7.20.2.4 \simIJSON() virtual qpp::IJSON::\simIJSON ( ) [virtual], [default]
```

7.20.3 Member Function Documentation

Default copy assignment operator.

```
7.20.3.2 operator=() [2/2]
```

Default move assignment operator.

7.20.3.3 to_JSON()

JSON representation of the derived instance, must be overridden by all derived classes.

Parameters

enclosed_in_curly_brackets	If true, encloses the result in curly brackets
----------------------------	--

Implemented in qpp::QCircuit, and qpp::QEngine.

The documentation for this class was generated from the following file:

· classes/idisplay.h

7.21 qpp::Init Class Reference

const Singleton class that performs additional initializations/cleanups

```
#include <classes/init.h>
```

Inheritance diagram for qpp::Init:

Collaboration diagram for qpp::Init:

Private Member Functions

- Init ()
 - Additional initializations.
- ∼Init ()

Cleanups.

Friends

- class internal::Singleton < const Init >

Additional Inherited Members

7.21.1 Detailed Description

const Singleton class that performs additional initializations/cleanups

7.21.2 Constructor & Destructor Documentation

7.21.2.1 Init()

```
qpp::Init::Init ( ) [inline], [private]
```

Additional initializations.

7.21.2.2 ∼Init()

```
qpp::Init::~Init ( ) [inline], [private]
```

Cleanups.

7.21.3 Friends And Related Function Documentation

7.21.3.1 internal::Singleton < const Init >

```
friend class internal::Singleton< const Init > [friend]
```

The documentation for this class was generated from the following file:

· classes/init.h

7.22 qpp::exception::InvalidIterator Class Reference

Invalid iterator.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::InvalidIterator:

Collaboration diagram for qpp::exception::InvalidIterator:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.22.1 Detailed Description

Invalid iterator.

7.22.2 Member Function Documentation

7.22.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where	Text representing where the exception occurred
-------	--

7.22.2.2 type_description()

std::string qpp::exception::InvalidIterator::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.23 qpp::internal::IOManipEigen Class Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipEigen:

Collaboration diagram for qpp::internal::IOManipEigen:

Public Member Functions

- template<typename Derived > IOManipEigen (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
- IOManipEigen (const cplx z, double chop=qpp::chop)

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- cmat A_
- double chop_

7.23.1 Constructor & Destructor Documentation

7.23.1.1 IOManipEigen() [1/2]

7.23.1.2 IOManipEigen() [2/2]

7.23.2 Member Function Documentation

7.23.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.23.3 Member Data Documentation

7.23.3.1 A_

```
cmat qpp::internal::IOManipEigen::A_ [private]
```

7.23.3.2 chop_

```
double qpp::internal::IOManipEigen::chop_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.24 qpp::internal::IOManipPointer< PointerType > Class Template Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipPointer< PointerType >:

 $Collaboration\ diagram\ for\ qpp::internal::IOManipPointer<\ PointerType>:$

Public Member Functions

- IOManipPointer (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipPointer (const IOManipPointer &)=default
- IOManipPointer & operator= (const IOManipPointer &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

```
const PointerType * p_
idx N_
std::string separator_
std::string start_
std::string end_
```

7.24.1 Constructor & Destructor Documentation

7.24.2 Member Function Documentation

```
7.24.2.1 display()
```

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.24.2.2 operator=()

7.24.3 Member Data Documentation

```
7.24.3.1 end_

template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::end_ [private]

7.24.3.2 N_

template<typename PointerType>
```

```
idx qpp::internal::IOManipPointer< PointerType >::N_ [private]
```

7.24.3.3 p_

```
template<typename PointerType>
const PointerType* qpp::internal::IOManipPointer< PointerType >::p_ [private]
```

7.24.3.4 separator_

```
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::separator_ [private]
```

7.24.3.5 start_

```
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::start_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.25 qpp::internal::IOManipRange < InputIterator > Class Template Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipRange< InputIterator >:

Collaboration diagram for qpp::internal::IOManipRange< InputIterator >:

Public Member Functions

- IOManipRange (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipRange (const IOManipRange &)=default
- IOManipRange & operator= (const IOManipRange &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- InputIterator first_
- InputIterator last
- std::string separator
- · std::string start_
- std::string end_

7.25.1 Constructor & Destructor Documentation

```
7.25.1.1 IOManipRange() [1/2]
```

7.25.1.2 IOManipRange() [2/2]

7.25.2 Member Function Documentation

7.25.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.25.2.2 operator=()

7.25.3 Member Data Documentation

```
7.25.3.1 end
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::end_ [private]
7.25.3.2 first_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::first_ [private]
7.25.3.3 last_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::last_ [private]
7.25.3.4 separator_
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::separator_ [private]
7.25.3.5 start_
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::start_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.26 qpp::is_complex< T > Struct Template Reference

Checks whether the type is a complex type.

#include <traits.h>

Inheritance diagram for qpp::is_complex< T >:

Collaboration diagram for qpp::is_complex< T >:

7.26.1 Detailed Description

template<typename T> struct qpp::is_complex< T>

Checks whether the type is a complex type.

Provides the constant member *value* which is equal to *true*, if the type is a complex type, i.e. *std::complex<T>*

The documentation for this struct was generated from the following file:

· traits.h

7.27 qpp::is_complex < std::complex < T > > Struct Template Reference

Checks whether the type is a complex number type, specialization for complex types.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_complex < std::complex < T > :

Collaboration diagram for qpp::is_complex< std::complex< T >>:

7.27.1 Detailed Description

```
template<typename T> struct qpp::is_complex< std::complex< T > >
```

Checks whether the type is a complex number type, specialization for complex types.

The documentation for this struct was generated from the following file:

· traits.h

7.28 qpp::is_iterable < T, typename > Struct Template Reference

Checks whether T is compatible with an STL-like iterable container.

#include <traits.h>

Inheritance diagram for qpp::is_iterable < T, typename >:

Collaboration diagram for qpp::is_iterable < T, typename >:

7.28.1 Detailed Description

template<typename T, typename = void> struct qpp::is_iterable< T, typename >

Checks whether T is compatible with an STL-like iterable container.

Provides the constant member *value* which is equal to *true*, if *T* is compatible with an iterable container, i.e. provides at least *begin()* and *end()* member functions and allows de-referencing. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

· traits.h

7.29 qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std::declval < T >().begin())) > Struct Template Reference

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std::declval < T >().end()), decltype(*(std::declval < T >().begin())) > :

 $\label{top:condition} \begin{tabular}{ll} Collaboration diagram for qpp::is_iterable< T, to_void< decltype(std::declval< T>().begin()), decltype(std::declval< T>().begin()))>>: \\ \begin{tabular}{ll} T>().begin())>>: \\ \begin{tabular}{ll} T>().begin()>>: \\ \begin{tabular}{ll} T>().begin()>: \\ \begin{tabular}{ll}$

7.29.1 Detailed Description

 $template < typename \ T > \\ struct \ qpp::is_iterable < T, \ to_void < decltype(std::declval < T > ().begin()), \ decltype(std::declval < T > ().end()), \ decltype(*(std::declval < T > ().begin())) > \\ ::declval < T > ().begin())) > \\$

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

The documentation for this struct was generated from the following file:

· traits.h

7.30 qpp::is_matrix_expression < Derived > Struct Template Reference

Checks whether the type is an Eigen matrix expression.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_matrix_expression< Derived >:

Collaboration diagram for qpp::is_matrix_expression< Derived >:

7.30.1 Detailed Description

template < typename Derived > struct qpp::is_matrix_expression < Derived >

Checks whether the type is an Eigen matrix expression.

Provides the constant member *value* which is equal to *true*, if the type is an Eigen matrix expression of type *Eigen* :: *MatrixBase* < *Derived* >. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

traits.h

7.31 qpp::QCircuit::iterator Class Reference

Quantum circuit bound-checking (safe) iterator.

#include <classes/circuits/circuits.h>

Collaboration diagram for qpp::QCircuit::iterator:

Classes

· class value_type_

Value type class for qpp::QCircuit::iterator.

Public Types

• using difference_type = long long

iterator trait

• using value_type = value_type_

iterator trait

using pointer = const value_type *

iterator trait

• using reference = const value_type &

iterator trait

using iterator_category = std::forward_iterator_tag

iterator trait

Public Member Functions

• iterator ()=default

Default constructor.

• iterator (const iterator &)=default

Default copy constructor.

• iterator & operator= (const iterator &)=default

Default copy assignment operator.

iterator & operator++ ()

Prefix increment operator.

• iterator operator++ (int)

Postfix increment operator.

- bool operator== (const iterator &rhs) const Equality operator.
- bool operator!= (iterator rhs) const Inequality operator.
- const value_type_ & operator* () const

Safe de-referencing operator.

void set_begin_ (const QCircuit *qc)

Sets the iterator to std::begin(this)

void set_end_ (const QCircuit *qc)

Sets the iterator to std::begin(this)

Private Attributes

```
const QCircuit * qc_ {nullptr}
```

< non-owning pointer to the parent const quantum circuit

value_type_ elem_ {nullptr}

7.31.1 Detailed Description

Quantum circuit bound-checking (safe) iterator.

Note

The iterator is a const_iterator by default

7.31.2 Member Typedef Documentation

7.31.2.1 difference_type

```
using qpp::QCircuit::iterator::difference_type = long long
```

iterator trait

7.31.2.2 iterator_category

```
using qpp::QCircuit::iterator::iterator_category = std::forward_iterator_tag
```

iterator trait

```
7.31.2.3 pointer
```

```
using qpp::QCircuit::iterator::pointer = const value_type*
```

iterator trait

7.31.2.4 reference

```
using qpp::QCircuit::iterator::reference = const value_type&
```

iterator trait

7.31.2.5 value_type

```
using qpp::QCircuit::iterator::value_type = value_type_
```

iterator trait

7.31.3 Constructor & Destructor Documentation

```
7.31.3.1 iterator() [1/2]

qpp::QCircuit::iterator::iterator ( ) [default]
```

Default constructor.

```
7.31.3.2 iterator() [2/2]
```

Default copy constructor.

7.31.4 Member Function Documentation

7.31.4.1 operator"!=()

Inequality operator.

Parameters

rhs | Iterator against which the inequality is being tested

Returns

True if the iterators are not equal (bit by bit), false otherwise

7.31.4.2 operator*()

```
const value_type_& qpp::QCircuit::iterator::operator* ( ) const [inline]
```

Safe de-referencing operator.

Returns

Constant reference to the iterator element

7.31.4.3 operator++() [1/2]

```
iterator& qpp::QCircuit::iterator::operator++ ( ) [inline]
```

Prefix increment operator.

Returns

Reference to the current instance

7.31.4.4 operator++() [2/2]

Postfix increment operator.

Returns

Copy of the current instance before the increment

```
7.31.4.5 operator=()
```

Default copy assignment operator.

Returns

Reference to the current instance

```
7.31.4.6 operator==()
```

Equality operator.

Parameters

rhs | Iterator against which the equality is being tested

Returns

True if the iterators are equal, false otherwise

```
7.31.4.7 set_begin_()
```

Sets the iterator to std::begin(this)

Parameters

qc | Pointer to constant quantum circuit

```
7.31.4.8 set_end_()
```

Sets the iterator to std::begin(this)

Parameters

qc Pointer to constant quantum circuit

7.31.5 Member Data Documentation

```
7.31.5.1 elem_
value_type_ qpp::QCircuit::iterator::elem_ {nullptr} [private]

7.31.5.2 qc_
const QCircuit* qpp::QCircuit::iterator::qc_ {nullptr} [private]
```

< non-owning pointer to the parent const quantum circuit

The documentation for this class was generated from the following file:

· classes/circuits/circuits.h

7.32 qpp::make_void < Ts > Struct Template Reference

Helper for qpp::to_void<> alias template.

```
#include <traits.h>
```

Public Types

• typedef void type

7.32.1 Detailed Description

```
template<typename... Ts>
struct qpp::make_void< Ts>
```

Helper for qpp::to_void<>> alias template.

See also

qpp::to_void<>

7.32.2 Member Typedef Documentation

7.32.2.1 type

```
template<typename... Ts>
typedef void qpp::make_void< Ts >::type
```

The documentation for this struct was generated from the following file:

· traits.h

7.33 qpp::exception::MatrixMismatchSubsys Class Reference

Matrix mismatch subsystems exception.

```
#include <classes/exception.h>
```

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Mismatch Subsys:$

Collaboration diagram for qpp::exception::MatrixMismatchSubsys:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.33.1 Detailed Description

Matrix mismatch subsystems exception.

Matrix size mismatch subsystem sizes (e.g. in qpp::apply())

7.33.2 Member Function Documentation

7.33.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred
-------	--

7.33.2.2 type_description()

std::string qpp::exception::MatrixMismatchSubsys::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.34 qpp::exception::MatrixNotCvector Class Reference

Matrix is not a column vector exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Not Cvector:$

Collaboration diagram for qpp::exception::MatrixNotCvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.34.1 Detailed Description

Matrix is not a column vector exception.

Eigen::Matrix is not a column vector

7.34.2 Member Function Documentation

7.34.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.34.2.2 type_description()

std::string qpp::exception::MatrixNotCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.35 qpp::exception::MatrixNotRvector Class Reference

Matrix is not a row vector exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Not Rvector:$

Collaboration diagram for qpp::exception::MatrixNotRvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.35.1 Detailed Description

Matrix is not a row vector exception.

Eigen::Matrix is not a row vector

7.35.2 Member Function Documentation

7.35.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.35.2.2 type_description()

std::string qpp::exception::MatrixNotRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.36 qpp::exception::MatrixNotSquare Class Reference

Matrix is not square exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::MatrixNotSquare:$

Collaboration diagram for qpp::exception::MatrixNotSquare:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.36.1 Detailed Description

Matrix is not square exception.

Eigen::Matrix is not a square matrix

7.36.2 Member Function Documentation

7.36.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.36.2.2 type_description()

std::string qpp::exception::MatrixNotSquare::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.37 qpp::exception::MatrixNotSquareNorCvector Class Reference

Matrix is not square nor column vector exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Not Square Nor Cvector:$

Collaboration diagram for qpp::exception::MatrixNotSquareNorCvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.37.1 Detailed Description

Matrix is not square nor column vector exception.

Eigen::Matrix is not a square matrix nor a column vector

7.37.2 Member Function Documentation

7.37.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred
	Toxi representing where the exception eccurred

7.37.2.2 type_description()

std::string qpp::exception::MatrixNotSquareNorCvector::type_description () const [inline],
[override], [virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.38 qpp::exception::MatrixNotSquareNorRvector Class Reference

Matrix is not square nor row vector exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Not Square Nor Rvector:$

Collaboration diagram for qpp::exception::MatrixNotSquareNorRvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.38.1 Detailed Description

Matrix is not square nor row vector exception.

Eigen::Matrix is not a square matrix nor a row vector

7.38.2 Member Function Documentation

7.38.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where Text representing where the exception occ

7.38.2.2 type_description()

```
std::string qpp::exception::MatrixNotSquareNorRvector::type_description ( ) const [inline],
[override], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.39 qpp::exception::MatrixNotSquareNorVector Class Reference

Matrix is not square nor vector exception.

```
#include <classes/exception.h>
```

 $Inheritance\ diagram\ for\ qpp::exception:: Matrix Not Square Nor Vector:$

Collaboration diagram for qpp::exception::MatrixNotSquareNorVector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.39.1 Detailed Description

Matrix is not square nor vector exception.

Eigen::Matrix is not a square matrix nor a row/column vector

7.39.2 Member Function Documentation

7.39.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred
-------	--

7.39.2.2 type_description()

```
std::string qpp::exception::MatrixNotSquareNorVector::type_description ( ) const [inline],
[override], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.40 qpp::exception::MatrixNotVector Class Reference

Matrix is not a vector exception.

```
#include <classes/exception.h>
```

 $Inheritance\ diagram\ for\ qpp::exception::MatrixNotVector:$

Collaboration diagram for qpp::exception::MatrixNotVector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.40.1 Detailed Description

Matrix is not a vector exception.

Eigen::Matrix is not a row or column vector

7.40.2 Member Function Documentation

7.40.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Parameters

where	Text representing where the exception occurred
	Toxi representing where the exception eccurred

7.40.2.2 type_description()

std::string qpp::exception::MatrixNotVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.41 qpp::QCircuit::MeasureStep Struct Reference

One step consisting only of measurements in the circuit.

#include <classes/circuits/circuits.h>

 $Collaboration\ diagram\ for\ qpp:: QCircuit:: Measure Step:$

Public Member Functions

• MeasureStep ()=default

Default constructor.

MeasureStep (MeasureType measurement_type, const std::vector< std::size_t > &mats_hash, const std
 ::vector< idx > &target, idx c_reg, std::string name="")

Constructs a measurement step instance.

Public Attributes

MeasureType measurement_type_ = MeasureType::NONE

measurement type

- std::vector< std::size t > mats hash
- std::vector< idx > target_

target where the measurement is applied

- idx c_reg_ {}
- · std::string name_

custom name of the step

7.41.1 Detailed Description

One step consisting only of measurements in the circuit.

7.41.2 Constructor & Destructor Documentation

```
7.41.2.1 MeasureStep() [1/2]

qpp::QCircuit::MeasureStep::MeasureStep ( ) [default]
```

Default constructor.

7.41.2.2 MeasureStep() [2/2]

Constructs a measurement step instance.

Parameters

measurement_type	Measurement type
mats_hash	Vector of hashes of the measurement matrix/matrices
target	Target qudit indexes
c_reg	Classical register where the value of the measurement is stored
name	Optional gate name

7.41.3 Member Data Documentation

```
7.41.3.1 c_reg_
idx qpp::QCircuit::MeasureStep::c_reg_ {}
index of the classical register where the measurement result is being stored
7.41.3.2 mats_hash_
std::vector<std::size_t> qpp::QCircuit::MeasureStep::mats_hash_
hashes of measurement matrix/matrices
7.41.3.3 measurement_type_
MeasureType qpp::QCircuit::MeasureStep::measurement_type_ = MeasureType::NONE
measurement type
7.41.3.4 name_
std::string qpp::QCircuit::MeasureStep::name_
custom name of the step
7.41.3.5 target_
```

target where the measurement is applied

The documentation for this struct was generated from the following file:

std::vector<idx> qpp::QCircuit::MeasureStep::target_

• classes/circuits/circuits.h

7.42 qpp::exception::NoCodeword Class Reference

Codeword does not exist exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NoCodeword:

Collaboration diagram for qpp::exception::NoCodeword:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.42.1 Detailed Description

Codeword does not exist exception.

Codeword does not exist, thrown when calling qpp::Codes::codeword() with an invalid index

7.42.2 Member Function Documentation

7.42.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where	Text representing where the exception occurred
-------	--

7.42.2.2 type_description()

```
std::string qpp::exception::NoCodeword::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.43 qpp::NoiseBase < T > Class Template Reference

Base class for all noise models, derive your particular noise model.

#include <classes/noise.h>

Collaboration diagram for gpp::NoiseBase< T >:

Public Types

• using noise_type = T

Public Member Functions

template<typename U = noise_type>
 NoiseBase (const std::vector< cmat > &Ks, typename std::enable_if< std::is_same< NoiseType::StateDependent,
 U >::value >::type *=nullptr)

Constructs a noise instance for StateDependent noise type.

• template<typename U = noise_type>

 $\label{local_NoiseBase} NoiseBase \ (const \ std::vector < cmat > \&Ks, \ const \ std::vector < double > \&probs, \ typename \ std::enable_if < std::is_same < NoiseType::StateIndependent, \ U >::value >::type *=nullptr)$

Constructs a noise instance for StateIndependent noise type.

virtual ∼NoiseBase ()=default

Default virtual destructor.

• idx get_d () const noexcept

Qudit dimension.

std::vector< cmat > get_Ks () const

Vector of noise operators.

• std::vector< double > get_probs () const

Vector of probabilities corresponding to each noise operator.

• idx get_last_idx () const

Index of the last occurring noise element.

double get_last_p () const

Probability of the last occurring noise element.

cmat get_last_K () const

Last occurring noise element.

· virtual cmat operator() (const cmat &state) const

Function invocation operator, applies the underlying noise model on the state vector or density matrix state.

virtual cmat operator() (const cmat &state, idx target) const

Function invocation operator, applies the underlying noise model on qudit target of the multi-partite state vector or density matrix state.

• virtual cmat operator() (const cmat &state, const std::vector< idx > &target) const

Function invocation operator, applies the underlying correlated noise model on qudits specified by target of the multipartite state vector or density matrix state.

Protected Member Functions

- void compute_probs_ (const cmat &state, const std::vector < idx > &target) const
 Compute probability outcomes for StateDependent noise type, otherwise returns without performing any operation (no-op)
- cmat compute_state_ (const cmat &state, const std::vector < idx > &target) const
 Compute the resulting state after the noise was applied.

Protected Attributes

```
    const std::vector < cmat > Ks_
```

Kraus operators.

std::vector< double > probs_

probabilities

idx d_ {}

qudit dimension

idx i_{}

index of the last occurring noise element

bool generated_ {false}

invoked, or if the noise is state-independent

7.43.1 Detailed Description

```
template < class T> class qpp::NoiseBase < T >
```

Base class for all noise models, derive your particular noise model.

7.43.2 Member Typedef Documentation

7.43.2.1 noise_type

```
template<class T>
using qpp::NoiseBase< T >::noise_type = T
```

7.43.3 Constructor & Destructor Documentation

7.43.3.1 NoiseBase() [1/2]

Constructs a noise instance for StateDependent noise type.

Note

SFINAEd-out for StateIndependent noise

Parameters

Ks | Vector of noise (Kraus) operators that specify the noise

7.43.3.2 NoiseBase() [2/2]

Constructs a noise instance for StateIndependent noise type.

Note

SFINAEd-out for StateDependent noise

Parameters

Ks	Vector of noise (Kraus) operators that specify the noise
probs	Vector of probabilities corresponding to each Kraus operator

7.43.3.3 ~NoiseBase()

```
template<class T>
virtual qpp::NoiseBase< T >::~NoiseBase ( ) [virtual], [default]
```

Default virtual destructor.

7.43.4 Member Function Documentation

7.43.4.1 compute_probs_()

Compute probability outcomes for StateDependent noise type, otherwise returns without performing any operation (no-op)

Parameters

state	State vector or density matrix
target	Qudit indexes where the noise is applied

7.43.4.2 compute_state_()

Compute the resulting state after the noise was applied.

Parameters

state	State vector or density matrix
target	Qudit indexes where the noise is applied

Returns

Resulting state after the noise was applied

```
7.43.4.3 get_d()
```

```
template<class T>
idx qpp::NoiseBase< T >::get_d ( ) const [inline], [noexcept]
```

Qudit dimension.

Returns

Qudit dimension

```
7.43.4.4 get_Ks()
```

```
template<class T>
std::vector<cmat> qpp::NoiseBase< T >::get_Ks () const [inline]
```

Vector of noise operators.

Returns

Vector of noise operators

7.43.4.5 get_last_idx()

```
template<class T>
idx qpp::NoiseBase< T >::get_last_idx ( ) const [inline]
```

Index of the last occurring noise element.

Returns

Index of the last occurring noise element

7.43.4.6 get_last_K()

```
template<class T>
cmat qpp::NoiseBase< T >::get_last_K ( ) const [inline]
```

Last occurring noise element.

Returns

Last occurring noise element

7.43.4.7 get_last_p()

```
template<class T>
double qpp::NoiseBase< T >::get_last_p ( ) const [inline]
```

Probability of the last occurring noise element.

Returns

Probability of the last occurring noise element

7.43.4.8 get_probs()

```
template<class T>
std::vector<double> qpp::NoiseBase< T >::get_probs ( ) const [inline]
```

Vector of probabilities corresponding to each noise operator.

Returns

Probability vector

7.43.4.9 operator()() [1/3]

Function invocation operator, applies the underlying noise model on the state vector or density matrix state.

Parameters

```
state State vector or density matrix
```

Returns

Resulting state vector or density matrix

7.43.4.10 operator()() [2/3]

```
template < class T >
virtual cmat qpp::NoiseBase < T >::operator() (
```

```
const cmat & state,
idx target ) const [inline], [virtual]
```

Function invocation operator, applies the underlying noise model on qudit *target* of the multi-partite state vector or density matrix *state*.

Parameters

state	Multi-partite state vector or density matrix
target	Qudit index where the noise is applied

Returns

Resulting state vector or density matrix

7.43.4.11 operator()() [3/3]

Function invocation operator, applies the underlying correlated noise model on qudits specified by *target* of the multi-partite state vector or density matrix *state*.

Parameters

state	Multi-partite state vector or density matrix
target	Qudit indexes where the correlated noise is applied

Returns

Resulting state vector or density matrix

7.43.5 Member Data Documentation

7.43.5.1 d_

```
template<class T>
idx qpp::NoiseBase< T >::d_ {} [mutable], [protected]
```

qudit dimension

7.43.5.2 generated_

template<class T>

```
template < class T >
bool qpp::NoiseBase < T >::generated_ {false} [mutable], [protected]
invoked, or if the noise is state-independent
set to true after compute_state_() is
7.43.5.3 i_
```

index of the last occurring noise element

```
7.43.5.4 Ks_
```

```
template<class T>
const std::vector<cmat> qpp::NoiseBase< T >::Ks_ [protected]
```

idx qpp::NoiseBase< T >::i_ {} [mutable], [protected]

Kraus operators.

7.43.5.5 probs_

```
template<class T>
std::vector<double> qpp::NoiseBase< T >::probs_ [mutable], [protected]
```

probabilities

The documentation for this class was generated from the following file:

· classes/noise.h

7.44 qpp::NoiseType Class Reference

Contains template tags used to specify the noise type.

```
#include <classes/noise.h>
```

Classes

· class StateDependent

Template tag, used whenever the noise is state-dependent.

• class StateIndependent

Template tag, used whenever the noise is state-independent.

7.44.1 Detailed Description

Contains template tags used to specify the noise type.

The documentation for this class was generated from the following file:

· classes/noise.h

7.45 qpp::exception::NotBipartite Class Reference

Not bi-partite exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotBipartite:

Collaboration diagram for qpp::exception::NotBipartite:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.45.1 Detailed Description

Not bi-partite exception.

std::vector<idx> of dimensions has size different from 2

7.45.2 Member Function Documentation

7.45.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred	1
-------	--	---

7.45.2.2 type_description()

std::string qpp::exception::NotBipartite::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.46 qpp::exception::NotImplemented Class Reference

Code not yet implemented.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotImplemented:

Collaboration diagram for qpp::exception::NotImplemented:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.46.1 Detailed Description

Code not yet implemented.

7.46.2 Member Function Documentation

7.46.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred
-------	--

7.46.2.2 type_description()

std::string qpp::exception::NotImplemented::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.47 qpp::exception::NotQubitCvector Class Reference

Column vector is not 2 x 1 exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::NotQubitCvector:$

Collaboration diagram for qpp::exception::NotQubitCvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.47.1 Detailed Description

Column vector is not 2 x 1 exception.

Eigen::Matrix is not 2 x 1

7.47.2 Member Function Documentation

7.47.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred	1
-------	--	---

7.47.2.2 type_description()

std::string qpp::exception::NotQubitCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.48 qpp::exception::NotQubitMatrix Class Reference

Matrix is not 2 x 2 exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::NotQubit Matrix:$

Collaboration diagram for qpp::exception::NotQubitMatrix:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.48.1 Detailed Description

Matrix is not 2 x 2 exception.

Eigen::Matrix is not 2 x 2

7.48.2 Member Function Documentation

7.48.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred
-------	--

7.48.2.2 type_description()

std::string qpp::exception::NotQubitMatrix::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.49 qpp::exception::NotQubitRvector Class Reference

Row vector is not 1 x 2 exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::NotQubitRvector:$

Collaboration diagram for qpp::exception::NotQubitRvector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.49.1 Detailed Description

Row vector is not 1 x 2 exception.

Eigen::Matrix is not 1 x 2

7.49.2 Member Function Documentation

7.49.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred
-------	--

7.49.2.2 type_description()

std::string qpp::exception::NotQubitRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.50 qpp::exception::NotQubitSubsys Class Reference

Subsystems are not qubits exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::NotQubitSubsys:$

Collaboration diagram for qpp::exception::NotQubitSubsys:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.50.1 Detailed Description

Subsystems are not qubits exception.

Subsystems are not 2-dimensional (qubits)

7.50.2 Member Function Documentation

7.50.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred
-------	--

7.50.2.2 type_description()

std::string qpp::exception::NotQubitSubsys::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.51 qpp::exception::NotQubitVector Class Reference

Vector is not 2 x 1 nor 1 x 2 exception.

#include <classes/exception.h>

 $Inheritance\ diagram\ for\ qpp::exception::NotQubitVector:$

Collaboration diagram for qpp::exception::NotQubitVector:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.51.1 Detailed Description

Vector is not 2 x 1 nor 1 x 2 exception.

Eigen::Matrix is not 2 x 1 nor 1 x 2

7.51.2 Member Function Documentation

7.51.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where Text representing where the exception occurred	
--	--

7.51.2.2 type_description()

std::string qpp::exception::NotQubitVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.52 qpp::exception::OutOfRange Class Reference

Argument out of range exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::OutOfRange:

Collaboration diagram for qpp::exception::OutOfRange:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.52.1 Detailed Description

Argument out of range exception.

Argument out of range

7.52.2 Member Function Documentation

7.52.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred	1
-------	--	---

7.52.2.2 type_description()

```
std::string qpp::exception::OutOfRange::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.53 qpp::exception::PermInvalid Class Reference

Invalid permutation exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::PermInvalid:

Collaboration diagram for qpp::exception::PermInvalid:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.53.1 Detailed Description

Invalid permutation exception.

std::vector<idx> does note represent a valid permutation

7.53.2 Member Function Documentation

7.53.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred	1
-------	--	---

7.53.2.2 type_description()

std::string qpp::exception::PermInvalid::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.54 qpp::exception::PermMismatchDims Class Reference

Permutation mismatch dimensions exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::PermMismatchDims:

Collaboration diagram for qpp::exception::PermMismatchDims:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.54.1 Detailed Description

Permutation mismatch dimensions exception.

Size of the std::vector<idx> representing the permutation is different from the size of the std::vector<idx> of dimensions

7.54.2 Member Function Documentation

7.54.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

where	Text representing where the exception occurred	
-------	--	--

7.54.2.2 type_description()

std::string qpp::exception::PermMismatchDims::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.55 qpp::QCircuit Class Reference

Quantum circuit class.

#include <classes/circuits/circuits.h>

Inheritance diagram for qpp::QCircuit:

Collaboration diagram for qpp::QCircuit:

Classes

struct GateStep

One step consisting only of gates/operators in the circuit.

· class iterator

Quantum circuit bound-checking (safe) iterator.

struct MeasureStep

One step consisting only of measurements in the circuit.

Public Types

enum GateType {

GateType::NONE, GateType::SINGLE, GateType::TWO, GateType::THREE,
GateType::CUSTOM, GateType::FAN, GateType::SINGLE_CTRL_SINGLE_TARGET, GateType::SINGLE_CTRL_MULTIPLE_
GateType::MULTIPLE_CTRL_SINGLE_TARGET, GateType::MULTIPLE_CTRL_MULTIPLE_TARGET,
GateType::CUSTOM_CTRL, GateType::SINGLE_cCTRL_SINGLE_TARGET,
GateType::SINGLE_cCTRL_MULTIPLE_TARGET, GateType::MULTIPLE_cCTRL_SINGLE_TARGET,
GateType::MULTIPLE_cCTRL_MULTIPLE_TARGET, GateType::CUSTOM_cCTRL}

Type of gate being executed in a gate step.

 enum MeasureType { MeasureType::NONE, MeasureType::MEASURE_Z, MeasureType::MEASURE_V, MeasureType::MEASURE V MANY }

Type of measurement being executed in a measurement step.

enum StepType { StepType::NONE, StepType::GATE, StepType::MEASUREMENT, StepType::NOP }

Types of each step in the quantum circuit.

• using const iterator = iterator

both iterators are const_iterators

Public Member Functions

• iterator begin ()

Iterator to the first element.

· const iterator begin () const noexcept

Constant iterator to the first element.

const_iterator cbegin () const noexcept

Constant iterator to the first element.

• iterator end ()

Iterator to the next to the last element.

· const iterator end () const noexcept

Constant iterator to the next to the last element.

· const iterator cend () const noexcept

Constant iterator to the next to the last element.

QCircuit (idx nq, idx nc=0, idx d=2, std::string name="")

Constructs a quantum circuit.

virtual ~QCircuit ()=default

Default virtual destructor.

• idx get_nq () const noexcept

Total number of qudits in the circuit.

• idx get_nc () const noexcept

Total number of classical dits in the circuit.

• idx get d () const noexcept

Dimension of the comprising qudits.

• std::string get_name () const

Quantum circuit name.

· idx get measured (idx i) const

Check whether gudit i was already measured.

std::vector< idx > get_measured () const

Vector of already measured gudit indexes.

std::vector< idx > get_non_measured () const

Vector of non-measured qudit indexes.

• idx get_gate_count () const noexcept

Quantum circuit total gate count.

idx get_gate_count (const std::string &name) const

Quantum circuit gate count.

idx get gate depth (const std::string &name="") const

Quantum circuit gate depth.

idx get_measurement_count () const noexcept

Quantum circuit total measurement count.

• idx get_measurement_count (const std::string &name) const

Quantum circuit measurement count.

idx get_step_count () const noexcept

Quantum circuit total steps count, i.e. the sum of gate count and measurement count.

• idx get_nop_count () const

No-op count.

QCircuit & gate (const cmat &U, idx i, std::string name="")

Applies the single qudit gate U on single qudit i.

• QCircuit & gate (const cmat &U, idx i, idx j, std::string name="")

Applies the two qudit gate U on qudits i and j.

QCircuit & gate (const cmat &U, idx i, idx j, idx k, std::string name="")

Applies the three qudit gate U on qudits i, j and k.

QCircuit & gate_fan (const cmat &U, const std::vector < idx > &target, std::string name="")

Applies the single qudit gate U on every qudit listed in target.

QCircuit & gate_fan (const cmat &U, const std::initializer_list< idx > &target, std::string name="")

Applies the single qudit gate U on every qudit listed in target.

QCircuit & gate_fan (const cmat &U, std::string name="")

Applies the single qudit gate U on every remaining non-measured qudit.

QCircuit & gate_custom (const cmat &U, const std::vector< idx > &target, std::string name="")

Jointly applies the custom multiple gudit gate U on the gudit indexes specified by target.

QCircuit & QFT (const std::vector < idx > &target, bool swap=true)

Applies the quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

QCircuit & QFT (const std::initializer_list< idx > &target, bool swap=true)

Applies the quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

QCircuit & QFT (bool swap=true)

Applies the quantum Fourier transform (as a series of gates) on all of remaining non-measured qudits.

QCircuit & TFQ (const std::vector < idx > &target, bool swap QPP_UNUSED_=true)

Applies the inverse quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

QCircuit & TFQ (const std::initializer_list< idx > &target, bool swap=true)

Applies the inverse quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

QCircuit & TFQ (bool swap=true)

Applies the inverse quantum Fourier transform (as a series of gates) on all of remaining non-measured qudits.

QCircuit & CTRL (const cmat &U, idx ctrl, idx target, std::string name="")

Applies the single qudit controlled gate U with control qudit ctrl and target qudit target.

QCircuit & CTRL (const cmat &U, idx ctrl, const std::vector< idx > &target, std::string name="")

Applies the single qudit controlled gate U with control qudit ctrl on every qudit listed in target.

QCircuit & CTRL (const cmat &U, const std::vector< idx > &ctrl, idx target, std::string name="")

Applies the single qudit controlled gate U with multiple control qudits listed in ctrl on the target qudit target.

QCircuit & CTRL (const cmat &U, const std::vector < idx > &ctrl, const std::vector < idx > &target, std::string name="")

Applies the single qudit controlled gate U with multiple control qudits listed in ctrl on every qudit listed in target.

QCircuit & CTRL_custom (const cmat &U, const std::vector< idx > &ctrl, const std::vector< idx > &target, std::string name="")

Jointly applies the custom multiple-qudit controlled gate U with multiple control qudits listed in ctrl on the qudit indexes specified by target.

• QCircuit & cCTRL (const cmat &U, idx ctrl_dit, idx target, std::string name="")

Applies the single qubit controlled gate U with classical control dit ctrl and target qudit target.

QCircuit & cCTRL (const cmat &U, idx ctrl_dit, const std::vector < idx > &target, std::string name="")

Applies the single qudit controlled gate U with classical control dit ctrl on every qudit listed in target.

QCircuit & cCTRL (const cmat &U, const std::vector< idx > &ctrl_dits, idx target, std::string name="")

Applies the single qudit controlled gate U with multiple classical control dits listed in ctrl on the target qudit target.

QCircuit & cCTRL (const cmat &U, const std::vector< idx > &ctrl_dits, const std::vector< idx > &target, std::string name="")

Applies the single qudit controlled gate U with multiple classical control dits listed in ctrl on every qudit listed in target.

QCircuit & cCTRL_custom (const cmat &U, const std::vector< idx > &ctrl_dits, const std::vector< idx > &target, std::string name="")

Jointly applies the custom multiple-qudit controlled gate U with multiple classical control dits listed in ctrl on the qudit indexes specified by target.

QCircuit & measureZ (idx target, idx c reg, std::string name="")

Measurement of single qudit in the computational basis (Z-basis)

QCircuit & measureV (const cmat &V, idx target, idx c_reg, std::string name="")

Measurement of single qudit in the orthonormal basis or rank-1 projectors specified by the columns of matrix V.

QCircuit & measureV (const cmat &V, const std::vector< idx > &target, idx c reg, std::string name="")

Joint measurement of multiple qudits in the orthonormal basis or rank-1 projectors specified by the columns of matrix ν

• QCircuit & nop ()

No operation (no-op)

std::string to_JSON (bool enclosed_in_curly_brackets=true) const override

qpp::IJOSN::to_JSON() override

qpp::IDisplay::display() override

Private Member Functions

```
    void add_hash_ (const cmat &U, std::size_t hashU)
        Adds matrix to the hash table.
    const std::vector< MeasureStep > & get_measurements_ () const noexcept
        Vector of qpp::QCircuit::MeasureStep.
    const std::vector< GateStep > & get_gates_ () const noexcept
        Vector of qpp::QCircuit::GateStep.
    const std::unordered_map< std::size_t, cmat > & get_cmat_hash_tbl_ () const noexcept
        Hash table with the matrices used in the circuit.
    std::ostream & display (std::ostream &os) const override
```

Private Attributes

```
    const idx nq

     number of qudits

    const idx nc_

     number of classical "dits"

    const idx d

     qudit dimension
· std::string name_
     optional circuit name

    std::vector< bool > measured

     keeps track of the measured qudits
• std::unordered map< std::size t, cmat > cmat hash tbl {}

    std::unordered_map< std::string, idx > count_{}{}

     keeps track of the gate counts
std::unordered_map< std::string, idx > measurement_count_{}{}
     keeps track of the measurement counts
std::vector< GateStep > gates_{}{}
     gates
std::vector< MeasureStep > measurements_{}{}
     measurements
std::vector< StepType > step_types_{{}}
     type of each step
```

Friends

```
    class QEngine
    std::ostream & operator << (std::ostream &os, const GateType &gate_type)
        Extraction operator overload for qpp::QCircuit::GateType enum class.</li>
    std::ostream & operator << (std::ostream &os, const GateStep &gate_step)
        Extraction operator overload for qpp::QCircuit::GateStep class.</li>
    std::ostream & operator << (std::ostream &os, const MeasureType &measure_type)
        Extraction operator overload for qpp::QCircuit::MeasureType enum class.</li>
    std::ostream & operator << (std::ostream &os, const MeasureStep &measure_step)
        Extraction operator overload for qpp::QCircuit::MeasureStep class.</li>
```

7.55.1 Detailed Description

Quantum circuit class.

See also

qpp::QEngine

7.55.2 Member Typedef Documentation

7.55.2.1 const_iterator

using qpp::QCircuit::const_iterator = iterator

both iterators are const_iterators

7.55.3 Member Enumeration Documentation

7.55.3.1 GateType

enum qpp::QCircuit::GateType [strong]

Type of gate being executed in a gate step.

Enumerator

NONE	represents no gate
SINGLE	unitary gate on a single qudit
TWO	unitary gate on 2 qudits
THREE	unitary gate on 3 qudits
CUSTOM	custom gate on multiple qudits
FAN	same unitary gate on multiple qudits
SINGLE_CTRL_SINGLE_TARGET	controlled 1 qudit unitary gate with one control and one target
SINGLE_CTRL_MULTIPLE_TARGET	controlled 1 qudit unitary gate with one control and multiple targets
MULTIPLE_CTRL_SINGLE_TARGET	controlled 1 qudit unitary gate with multiple controls and single target
MULTIPLE_CTRL_MULTIPLE_TARGET	controlled 1 qudit unitary gate with multiple controls and multiple targets
CUSTOM_CTRL	custom controlled gate with multiple controls and multiple targets
SINGLE_cCTRL_SINGLE_TARGET	controlled 1 qudit unitary gate with one classical control and one target
SINGLE_cCTRL_MULTIPLE_TARGET	controlled 1 qudit unitary gate with one classical control and multiple targets
MULTIPLE_cCTRL_SINGLE_TARGET	controlled 1 qudit unitary gate with multiple classieal ഫ്ലൂറ്റ് ഉക്കുട്ട single target
MULTIPLE_cCTRL_MULTIPLE_TARGET	controlled 1 qudit unitary gate with multiple classical controls and multiple targets
CUICTOM CTDI	

7.55.3.2 MeasureType

```
enum qpp::QCircuit::MeasureType [strong]
```

Type of measurement being executed in a measurement step.

Enumerator

NONE	represents no measurement
MEASURE_Z Z measurement of single qudit.	
MEASURE_V	measurement of single qudit in the orthonormal basis or rank-1 projectors specified by the columns of matrix ${\it V}$
MEASURE_V_MANY	measurement of multiple qudits in the orthonormal basis or rank-1 projectors specified by the columns of matrix $\it V$

7.55.3.3 StepType

```
enum qpp::QCircuit::StepType [strong]
```

Types of each step in the quantum circuit.

Enumerator

NONE	represents no step
GATE	quantum gate(s)
MEASUREMENT	measurement
NOP	no-op

7.55.4 Constructor & Destructor Documentation

7.55.4.1 QCircuit()

```
qpp::QCircuit::QCircuit (
    idx nq,
    idx nc = 0,
    idx d = 2,
    std::string name = "" ) [inline], [explicit]
```

Constructs a quantum circuit.

Note

The measurement results can only be stored in the classical dits of which number is specified by *nc*

Parameters

nq	Number of qbits	
nc	Number of classical dits (optional)	
d	Subsystem dimensions (optional, default is qubit, i.e. $d = 2$)	
name Circuit name (optional)		

7.55.4.2 ~QCircuit()

```
virtual qpp::QCircuit::~QCircuit ( ) [virtual], [default]
```

Default virtual destructor.

7.55.5 Member Function Documentation

7.55.5.1 add_hash_()

Adds matrix to the hash table.

Note

Throws if a hash collision is detected., i.e., if two different matrices have the same hash

Parameters

U	Complex matrix
hashU	Hash value of U

```
7.55.5.2 begin() [1/2]
```

```
iterator qpp::QCircuit::begin ( ) [inline]
```

Iterator to the first element.

Returns

Iterator to the first element

```
7.55.5.3 begin() [2/2]
```

```
const_iterator qpp::QCircuit::begin ( ) const [inline], [noexcept]
```

Constant iterator to the first element.

Returns

Constant iterator to the first element

7.55.5.4 cbegin()

```
const_iterator qpp::QCircuit::cbegin ( ) const [inline], [noexcept]
```

Constant iterator to the first element.

Returns

Constant iterator to the first element

7.55.5.5 cCTRL() [1/4]

Applies the single qubit controlled gate *U* with classical control dit *ctrl* and target qudit *target*.

Parameters

U	Single qudit quantum gate
ctrl_dit	Classical control dit index
target	Target qudit index
name	Optional gate name

Returns

Reference to the current instance

```
7.55.5.6 cCTRL() [2/4]
```

Applies the single qudit controlled gate *U* with classical control dit *ctrl* on every qudit listed in *target*.

Parameters

U	Single qudit quantum gate	
ctrl_dit	Classical control dit index	
target	Target qudit indexes; the gate <i>U</i> is applied on every one of them depending on the values of the	
	classical control dits	
name	Optional gate name	

Returns

Reference to the current instance

std::string name = "") [inline]

Applies the single qudit controlled gate *U* with multiple classical control dits listed in *ctrl* on the target qudit *target*.

Parameters

U	Single qudit quantum gate
ctrl_dits	Classical control dits indexes
target	Target qudit index
name	Optional gate name

Returns

Reference to the current instance

```
const std::vector< idx > & ctrl_dits,
const std::vector< idx > & target,
std::string name = "" ) [inline]
```

Applies the single qudit controlled gate *U* with multiple classical control dits listed in *ctrl* on every qudit listed in *target*.

Parameters

U	Single qudit quantum gate	
ctrl_dits	Classical control dits indexes	
target	Target qudit indexes; the gate U is applied on every one of them depending on the values of the	
	classical control dits	
name	Optional gate name	

Returns

Reference to the current instance

7.55.5.9 cCTRL_custom()

Jointly applies the custom multiple-qudit controlled gate *U* with multiple classical control dits listed in *ctrl* on the qudit indexes specified by *target*.

Parameters

U	Multiple-qudit quantum gate	
ctrl_dits	Classical control dits indexes	
target	arget Target qudit indexes where the gate <i>U</i> is applied depending on the values of the classical control d	
name	Optional gate name	

Returns

Reference to the current instance

7.55.5.10 cend()

```
const_iterator qpp::QCircuit::cend ( ) const [inline], [noexcept]
```

Constant iterator to the next to the last element.

Returns

Constant iterator to the next to the last element

Applies the single qudit controlled gate *U* with control qudit *ctrl* and target qudit *target*.

Parameters

U	Single qudit quantum gate
ctrl	Control qudit index
target	Target qudit index
name	Optional gate name

Returns

Reference to the current instance

```
7.55.5.12 CTRL() [2/4]
```

Applies the single qudit controlled gate *U* with control qudit *ctrl* on every qudit listed in *target*.

Parameters

U	Single qudit quantum gate
ctrl	Control qudit index
target	Target qudit indexes; the gate <i>U</i> is applied on every one of them depending on the values of the control qudits
name	Optional gate name

Returns

Reference to the current instance

Applies the single qudit controlled gate *U* with multiple control qudits listed in *ctrl* on the target qudit *target*.

Parameters

U	Single qudit quantum gate
ctrl	Control qudit indexes
target	Target qudit index
name	Optional gate name

Returns

Reference to the current instance

```
7.55.5.14 CTRL() [4/4]
```

Applies the single qudit controlled gate *U* with multiple control qudits listed in *ctrl* on every qudit listed in *target*.

Parameters

U	Single qudit quantum gate
ctrl	Control qudit indexes
target	Target qudit indexes; the gate U is applied on every one of them depending on the values of the control qudits
name	Optional gate name

Returns

Reference to the current instance

7.55.5.15 CTRL_custom()

Jointly applies the custom multiple-qudit controlled gate *U* with multiple control qudits listed in *ctrl* on the qudit indexes specified by *target*.

Parameters

U	Multiple-qudit quantum gate
ctrl	Control qudit indexes
target	Target qudit indexes where the gate U is applied depending on the values of the control qudits
name	Optional gate name

Returns

Reference to the current instance

7.55.5.16 display()

qpp::IDisplay::display() override

Writes to the output stream a textual representation of the quantum circuit

Parameters

os	Output stream passed by reference
----	-----------------------------------

Returns

Reference to the output stream

Implements qpp::IDisplay.

```
7.55.5.17 end() [1/2]
iterator qpp::QCircuit::end ( ) [inline]
```

Iterator to the next to the last element.

Returns

Iterator to the next to the last element

```
7.55.5.18 end() [2/2]
const_iterator qpp::QCircuit::end ( ) const [inline], [noexcept]
```

Constant iterator to the next to the last element.

Returns

Constant iterator to the next to the last element

Applies the single qudit gate *U* on single qudit *i*.

Parameters

U	Single qudit quantum gate
i	Qudit index
name	Optional gate name

Returns

Reference to the current instance

```
idx i,
idx j,
std::string name = "" ) [inline]
```

Applies the two qudit gate U on qudits i and j.

Parameters

U	Two qudit quantum gate
i	Qudit index
j	Qudit index
name	Optional gate name

Returns

Reference to the current instance

std::string name = "") [inline]

Applies the three qudit gate U on qudits i, j and k.

Parameters

U	Three qudit quantum gate
i	Qudit index
j	Qudit index
k	Qudit index
name	Optional gate name

Returns

Reference to the current instance

7.55.5.22 gate_custom()

Jointly applies the custom multiple qudit gate *U* on the qudit indexes specified by *target*.

U	Multiple qudit quantum gate
target	Subsystem indexes where the gate U is applied
name	Optional gate name

Returns

Reference to the current instance

Applies the single qudit gate *U* on every qudit listed in *target*.

Parameters

U	Single qudit quantum gate
target	Target qudit indexes; the gate <i>U</i> is applied on every one of them
name	Optional gate name

Returns

Reference to the current instance

Applies the single qudit gate U on every qudit listed in target.

Parameters

U	Single qudit quantum gate
target	Target qudit indexes; the gate U is applied on every one of them
name	Optional gate name

Returns

Reference to the current instance

Applies the single qudit gate U on every remaining non-measured qudit.

Parameters

U	Single qudit quantum gate
name	Optional gate name

Returns

Reference to the current instance

```
7.55.5.26 get_cmat_hash_tbl_()
```

```
const std::unordered_map<std::size_t, cmat>& qpp::QCircuit::get_cmat_hash_tbl_ ( ) const
[inline], [private], [noexcept]
```

Hash table with the matrices used in the circuit.

Returns

Hash table with the matrices used in the circuit

```
7.55.5.27 get_d()
```

```
idx qpp::QCircuit::get_d ( ) const [inline], [noexcept]
```

Dimension of the comprising qudits.

Returns

Qudit dimension

```
7.55.5.28 get_gate_count() [1/2]
idx qpp::QCircuit::get_gate_count ( ) const [inline], [noexcept]
```

Quantum circuit total gate count.

Returns

Total gate count

Quantum circuit gate count.

Parameters

```
name Gate name
```

Returns

Gate count

```
7.55.5.30 get_gate_depth()
```

Quantum circuit gate depth.

Note

If name is empty (default), returns the total gate depth of the circuit

Parameters

name	Gate name (optional)
------	----------------------

Returns

Gate depth

```
7.55.5.31 get_gates_()
```

```
const std::vector<GateStep>& qpp::QCircuit::get_gates_ ( ) const [inline], [private], [noexcept]
```

Vector of qpp::QCircuit::GateStep.

Returns

Vector of qpp::QCircuit::GateStep

```
7.55.5.32 get_measured() [1/2] idx qpp::QCircuit::get_measured ( idx i ) const [inline]
```

Check whether qudit i was already measured.

Parameters

```
i Qudit index
```

Returns

True if qudit i was already measured, false othwewise

```
7.55.5.33 get_measured() [2/2]
std::vector<idx> qpp::QCircuit::get_measured ( ) const [inline]
```

Vector of already measured qudit indexes.

Returns

Vector of already measured qudit indexes

```
7.55.5.34 get_measurement_count() [1/2]
idx qpp::QCircuit::get_measurement_count ( ) const [inline], [noexcept]
```

Quantum circuit total measurement count.

Returns

Total measurement count

```
7.55.5.35 get_measurement_count() [2/2]
```

Quantum circuit measurement count.

Parameters

```
name Measurement name
```

Returns

Measurement count

7.55.5.36 get_measurements_()

```
const std::vector<MeasureStep>& qpp::QCircuit::get_measurements_ ( ) const [inline], [private],
[noexcept]
```

Vector of qpp::QCircuit::MeasureStep.

Returns

Vector of qpp::QCircuit::MeasureStep

```
7.55.5.37 get_name()
```

```
std::string qpp::QCircuit::get_name ( ) const [inline]
```

Quantum circuit name.

Returns

Quantum circuit name

```
7.55.5.38 get_nc()
```

```
idx qpp::QCircuit::get_nc ( ) const [inline], [noexcept]
```

Total number of classical dits in the circuit.

Returns

Total number of classical dits

```
7.55.5.39 get_non_measured()
std::vector<idx> qpp::QCircuit::get_non_measured ( ) const [inline]
Vector of non-measured qudit indexes.
Returns
     Vector of non-measured qudit indexes
7.55.5.40 get_nop_count()
idx qpp::QCircuit::get_nop_count ( ) const [inline]
No-op count.
Returns
     No-op count
7.55.5.41 get_nq()
idx qpp::QCircuit::get_nq ( ) const [inline], [noexcept]
Total number of qudits in the circuit.
Returns
     Total number of qudits
7.55.5.42 get_step_count()
idx qpp::QCircuit::get_step_count ( ) const [inline], [noexcept]
Quantum circuit total steps count, i.e. the sum of gate count and measurement count.
Returns
     Total (gates + measurements) count
7.55.5.43 measureV() [1/2]
QCircuit& qpp::QCircuit::measureV (
```

Measurement of single qudit in the orthonormal basis or rank-1 projectors specified by the columns of matrix V.

const cmat & V,
idx target,
idx c_reg,

std::string name = "") [inline]

Parameters

V	Orthonormal basis or rank-1 projectors specified by the columns of matrix V	
target	Qudit index	
c_reg	Classical register where the value of the measurement is stored	
name	Optional measurement name	

Returns

Reference to the current instance

7.55.5.44 measureV() [2/2]

Joint measurement of multiple qudits in the orthonormal basis or rank-1 projectors specified by the columns of matrix V.

Parameters

V	Orthonormal basis or rank-1 projectors specified by the columns of matrix V	
target	Target qudit indexes that are jointly measured	
c_reg	c_reg Classical register where the value of the measurement is stored	
name	Optional measurement name	

Returns

Reference to the current instance

7.55.5.45 measureZ()

Measurement of single qudit in the computational basis (Z-basis)

Parameters

target	Qudit index
c_reg	Classical register where the value of the measurement is being stored
Generated b	y ெழர்மா al measurement name, default is "Measure Z"

Returns

Reference to the current instance

```
7.55.5.46 nop()

QCircuit& qpp::QCircuit::nop ( ) [inline]
```

Note

No operation (no-op)

If the underlying step is executed on a noisy engine, then noise acts before it

Returns

Reference to the current instance

Applies the quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

Parameters

target	Subsystem indexes where the quantum Fourier transform is applied	
swap	swap Swaps the qubits at the end (true by default)	

Returns

Reference to the current instance

Applies the quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

Parameters

target	t Subsystem indexes where the quantum Fourier transform is applie	
swap Swaps the qubits at the end (true by default)		

Returns

Reference to the current instance

Applies the quantum Fourier transform (as a series of gates) on all of remaining non-measured qudits.

Parameters

swap	Swaps the qubits at the end (true by default)
------	---

Returns

Reference to the current instance

Applies the inverse quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

Parameters

target	Subsystem indexes where the inverse quantum Fourier transform is applied	
swap	wap Swaps the qubits at the end (true by default)	

Returns

Reference to the current instance

```
7.55.5.51 TFQ() [2/3]
```

Applies the inverse quantum Fourier transform (as a series of gates) on the qudit indexes specified by target.

Parameters

target	Subsystem indexes where the inverse quantum Fourier transform is applied	
swap	vap Swaps the qubits at the end (true by default)	

Returns

Reference to the current instance

Applies the inverse quantum Fourier transform (as a series of gates) on all of remaining non-measured qudits.

Parameters

swap	Swaps the qubits at the end (true by default)
------	---

Returns

Reference to the current instance

```
7.55.5.53 to_JSON()
```

qpp::IJOSN::to_JSON() override

Displays the quantum circuit in JSON format

Parameters

enclosed in curly brackets If tru	e, encloses the result in curly brackets
-----------------------------------	--

Returns

String containing the JSON representation of the quantum circuit

Implements qpp::IJSON.

7.55.6 Friends And Related Function Documentation

Extraction operator overload for qpp::QCircuit::GateType enum class.

Parameters

os	Output stream	
gate_type	qpp::QCircuit::GateType enum class	

Returns

Output stream

```
7.55.6.2 operator << [2/4]
```

Extraction operator overload for qpp::QCircuit::GateStep class.

Parameters

os	Output stream
gate_step	qpp::QCircuit::GateStep class

Returns

Output stream

```
7.55.6.3 operator << [3/4]
```

Extraction operator overload for qpp::QCircuit::MeasureType enum class.

Parameters

os	Output stream
measure_type	qpp::QCircuit::MeasureType enum class

Returns

Output stream

```
7.55.6.4 operator << [4/4]
```

Extraction operator overload for qpp::QCircuit::MeasureStep class.

Parameters

os	Output stream
measure_step	qpp::QCircuit::MeasureStep enum class

Returns

Output stream

7.55.6.5 QEngine

```
friend class QEngine [friend]
```

7.55.7 Member Data Documentation

```
7.55.7.1 cmat_hash_tbl_
std::unordered_map<std::size_t, cmat> qpp::QCircuit::cmat_hash_tbl_ {} [private]
hash table with the matrices used in the circuit, with [Key = idx, Value = cmat]
7.55.7.2 count_
std::unordered_map<std::string, idx> qpp::QCircuit::count_ {} [private]
keeps track of the gate counts
7.55.7.3 d_
const idx qpp::QCircuit::d_ [private]
qudit dimension
7.55.7.4 gates_
std::vector<GateStep> qpp::QCircuit::gates_ {} [private]
gates
7.55.7.5 measured_
std::vector<bool> qpp::QCircuit::measured_ [private]
keeps track of the measured qudits
7.55.7.6 measurement_count_
std::unordered_map<std::string, idx> qpp::QCircuit::measurement_count_ {} [private]
keeps track of the measurement counts
```

```
7.55.7.7 measurements_
std::vector<MeasureStep> qpp::QCircuit::measurements_ {} [private]
measurements
7.55.7.8 name_
std::string qpp::QCircuit::name_ [private]
optional circuit name
7.55.7.9 nc_
const idx qpp::QCircuit::nc_ [private]
number of classical "dits"
7.55.7.10 nq_
const idx qpp::QCircuit::nq_ [private]
number of qudits
7.55.7.11 step_types_
std::vector<StepType> qpp::QCircuit::step_types_ {} [private]
type of each step
The documentation for this class was generated from the following file:
```

• classes/circuits/circuits.h

7.56 qpp::QEngine Class Reference

Quantum circuit engine, executes qpp::QCircuit.

#include <classes/circuits/engines.h>

Inheritance diagram for qpp::QEngine:

Collaboration diagram for qpp::QEngine:

Public Member Functions

- QEngine (const QCircuit &qc)
 - Constructs a quantum engine out of a quantum circuit.
- QEngine (const QEngine &)=default
 - Default copy constructor.
- QEngine & operator= (const QEngine &)=default
 - Default copy assignment operator.
- QEngine (QCircuit &&)=delete

Disables rvalue QCircuit.

virtual ~QEngine ()=default

Default virtual destructor.

· ket get psi () const

Underlying quantum state.

std::vector< idx > get_dits () const

Vector with the values of the underlying classical dits.

• idx get_dit (idx i) const

Value of the classical dit at position i.

std::vector< double > get_probs () const

Vector of underlying measurement outcome probabilities.

bool get measured (idx i) const

Check whether qudit i was already measured.

std::vector< idx > get_measured () const

Vector of already measured qudit indexes.

std::vector< idx > get non measured () const

Vector of non-measured gudit indexes.

· const QCircuit & get_circuit () const noexcept

Quantum circuit.

QEngine & set_dit (idx i, idx value)

Sets the classical dit at position i.

QEngine & set_psi (const ket &psi)

Sets the underlying quantum state to psi.

• void reset ()

Resets the engine.

virtual void execute (const QCircuit::iterator::value type &elem)

Executes one step in the quantum circuit.

virtual void execute (const QCircuit::iterator &it)

Executes one step in the quantum circuit.

std::string to_JSON (bool enclosed_in_curly_brackets=true) const override

qpp::IJOSN::to_JSON() override

Protected Member Functions

· void set measured (idx i)

Marks qudit i as measured then re-label accordingly the remaining non-measured qudits.

std::vector< idx > get_relative_pos_ (std::vector< idx > v)

Giving a vector V of non-measured qudits, get their relative position with respect to the measured qudits.

Protected Attributes

const QCircuit * qc

pointer to constant quantum circuit

ket psi_

state vector

std::vector< idx > dits

classical dits

std::vector< double > probs_

measurement probabilities

std::vector< idx > subsys_

relabel them after measurements

Private Member Functions

7.56.1 Detailed Description

Quantum circuit engine, executes qpp::QCircuit.

See also

qpp::QCircuit

7.56.2 Constructor & Destructor Documentation

Constructs a quantum engine out of a quantum circuit.

Note

The quantum circuit must be an Ivalue

See also

```
qpp::QEngine(QCircuit&&)
```

Note

The initial underlying quantum state is set to $|0\rangle^{\otimes n}$

Parameters

```
qc Quantum circuit
```

7.56.2.2 QEngine() [2/3]

Default copy constructor.

Disables rvalue QCircuit.

```
7.56.2.4 ~QEngine()
```

```
virtual qpp::QEngine::~QEngine ( ) [virtual], [default]
```

Default virtual destructor.

7.56.3 Member Function Documentation

```
7.56.3.1 display()
```

qpp::IDisplay::display() override

Writes to the output stream a textual representation of the state of the engine

Parameters

```
os Output stream passed by reference
```

Returns

Reference to the output stream

Implements qpp::IDisplay.

Executes one step in the quantum circuit.

Parameters

```
elem Step to be executed
```

Reimplemented in qpp::QNoisyEngine < NoiseModel >.

Executes one step in the quantum circuit.

Parameters

```
it Iterator to the step to be executed
```

Reimplemented in qpp::QNoisyEngine < NoiseModel >.

7.56.3.4 get_circuit()

```
const QCircuit& qpp::QEngine::get_circuit ( ) const [inline], [noexcept]
```

Quantum circuit.

Returns

Underlying quantum circuit

```
7.56.3.5 get_dit()
```

```
idx qpp::QEngine::get_dit (
        idx i ) const [inline]
```

Value of the classical dit at position i.

Parameters

i Classical dit index

Returns

Value of the classical dit at position i

```
7.56.3.6 get_dits()
```

```
std::vector<idx> qpp::QEngine::get_dits ( ) const [inline]
```

Vector with the values of the underlying classical dits.

Returns

Vector of underlying classical dits

```
7.56.3.7 get_measured() [1/2]
```

Check whether qudit *i* was already measured.

Parameters

```
i Qudit index
```

Returns

True if qudit i was already measured, false othwewise

```
7.56.3.8 get_measured() [2/2]
```

```
std::vector<idx> qpp::QEngine::get_measured ( ) const [inline]
```

Vector of already measured qudit indexes.

Returns

Vector of already measured qudit indexes

7.56.3.9 get_non_measured()

```
std::vector<idx> qpp::QEngine::get_non_measured ( ) const [inline]
```

Vector of non-measured qudit indexes.

Returns

Vector of non-measured gudit indexes

7.56.3.10 get_probs()

```
std::vector<double> qpp::QEngine::get_probs ( ) const [inline]
```

Vector of underlying measurement outcome probabilities.

Those should be interpreted as conditional probabilities based on the temporal order of the measurements, i.e. if we measure qubit 0, then measure qubit 1, and finally qubit 2, the resulting vector of outcome probabilities probs[2] should be interpreted as the conditional probability of qubit 2 having the outcome it had given that qubit 1 and qubit 0 had their given outcomes, respectively. As an example, if we measure the qubit 0 followed by the qubit 1 of a maximally entangled state $(|00\rangle + |11\rangle)/\sqrt{2}$, then the vector of outcome probabilities will be [0.5, 1].

Note

The probability vector has the same length as the vector of classical dits. If the measurement result is stored at the index c_reg , then the outcome probability is automatically stored at the same index c_reg in the probability vector.

Returns

Vector of underlying measurement outcome probabilities

```
7.56.3.11 get_psi()
```

```
ket qpp::QEngine::get_psi ( ) const [inline]
```

Underlying quantum state.

Returns

Underlying quantum state

7.56.3.12 get_relative_pos_()

Giving a vector V of non-measured qudits, get their relative position with respect to the measured qudits.

Parameters

Returns

Vector of qudit indexes

7.56.3.13 operator=()

Default copy assignment operator.

Returns

Reference to the current instance

7.56.3.14 reset()

```
void qpp::QEngine::reset ( ) [inline]
```

Resets the engine.

Re-initializes everything to zero and sets the initial state to $|0\rangle^{\otimes n}$

7.56.3.15 set_dit()

Sets the classical dit at position i.

Parameters

i	Classical dit index
value	Classical dit value

Returns

Reference to the current instance

7.56.3.16 set_measured_()

```
void qpp::QEngine::set_measured_ (
          idx i ) [inline], [protected]
```

Marks qudit *i* as measured then re-label accordingly the remaining non-measured qudits.

Parameters

i Qudit index

7.56.3.17 set_psi()

Sets the underlying quantum state to psi.

Note

The order is lexicographical with respect to the remaining non-measured qudits

Parameters

psi State vector

Returns

Reference to the current instance

7.56.3.18 to_JSON()

qpp::IJOSN::to_JSON() override

Displays the state of the engine in JSON format

Parameters

Returns

String containing the JSON representation of the state of the engine

Implements qpp::IJSON.

```
7.56.4 Member Data Documentation
```

```
7.56.4.1 dits
std::vector<idx> qpp::QEngine::dits_ [protected]
classical dits
7.56.4.2 probs_
std::vector<double> qpp::QEngine::probs_ [protected]
measurement probabilities
7.56.4.3 psi_
ket qpp::QEngine::psi_ [protected]
state vector
7.56.4.4 qc_
const QCircuit* qpp::QEngine::qc_ [protected]
```

pointer to constant quantum circuit

7.56.4.5 subsys_

std::vector<idx> qpp::QEngine::subsys_ [protected]

relabel them after measurements

keeps track of the measured subsystems,

The documentation for this class was generated from the following file:

· classes/circuits/engines.h

7.57 qpp::QNoisyEngine < NoiseModel > Class Template Reference

Noisy quantum circuit engine, executes qpp::QCircuit.

#include <classes/circuits/engines.h>

Inheritance diagram for qpp::QNoisyEngine < NoiseModel >:

 $\label{local_continuous_continu$

Public Member Functions

QNoisyEngine (const QCircuit &qc, const NoiseModel &noise)

Constructs a noisy quantum engine out of a quantum circuit.

void execute (const QCircuit::iterator::value_type &elem) override

Executes one step in the quantum circuit.

• void execute (const QCircuit::iterator &it) override

Executes one step in the noisy quantum circuit.

• std::vector< std::vector< idx > > get_noise_results () const

Vector of noise results obtained before every step in the circuit.

Private Attributes

• const NoiseModel noise_

quantum noise model

std::vector< std::vector< idx >> noise_results_

noise results

Additional Inherited Members

7.57.1 Detailed Description

```
template<typename NoiseModel> class qpp::QNoisyEngine< NoiseModel>
```

Noisy quantum circuit engine, executes qpp::QCircuit.

See also

```
qpp::QCircuit, qpp::NoiseBase
```

Assumes an uncorrelated noise model that is applied to each non-measured qubit before every step in the logical circuit

Template Parameters

```
NoiseModel | Quantum noise model, should be derived from qpp::NoiseBase
```

7.57.2 Constructor & Destructor Documentation

7.57.2.1 QNoisyEngine()

```
template<trypename NoiseModel >
qpp::QNoisyEngine< NoiseModel >::QNoisyEngine (
```

```
const QCircuit & qc,
const NoiseModel & noise ) [inline], [explicit]
```

Constructs a noisy quantum engine out of a quantum circuit.

Parameters

qc	Quantum circuit
noise	Quantum noise model

7.57.3 Member Function Documentation

```
7.57.3.1 execute() [1/2]
```

Executes one step in the quantum circuit.

Parameters

```
elem Step to be executed
```

Reimplemented from qpp::QEngine.

```
7.57.3.2 execute() [2/2]
```

Executes one step in the noisy quantum circuit.

Parameters

```
it Iterator to the step to be executed
```

Reimplemented from qpp::QEngine.

7.57.3.3 get_noise_results()

```
template<typename NoiseModel >
std::vector<std::vector<idx> > qpp::QNoisyEngine< NoiseModel >::get_noise_results ( ) const
[inline]
```

Vector of noise results obtained before every step in the circuit.

The first vector contains the noise measurement results obtained before applying the first step in the circuit, and so on, ordered by non-measured qudits. That is, the first element in the vector corresponding to noise obtained before a given step in the circuit represents the noise result obtained on the first non-measured qudit etc.

Returns

Vector of noise results

7.57.4 Member Data Documentation

```
7.57.4.1 noise_
```

```
template<typename NoiseModel >
const NoiseModel qpp::QNoisyEngine< NoiseModel >::noise_ [private]
```

quantum noise model

7.57.4.2 noise_results_

```
template<typename NoiseModel >
std::vector<std::vector<idx> > qpp::QNoisyEngine< NoiseModel >::noise_results_ [private]
```

noise results

The documentation for this class was generated from the following file:

classes/circuits/engines.h

7.58 qpp::QubitAmplitudeDampingNoise Class Reference

Qubit amplitude damping noise, as described in Nielsen and Chuang.

#include <classes/noise.h>

Inheritance diagram for qpp::QubitAmplitudeDampingNoise:

Collaboration diagram for qpp::QubitAmplitudeDampingNoise:

Public Member Functions

• QubitAmplitudeDampingNoise (double gamma)

Qubit amplitude damping noise constructor.

Additional Inherited Members

7.58.1 Detailed Description

Qubit amplitude damping noise, as described in Nielsen and Chuang.

7.58.2 Constructor & Destructor Documentation

7.58.2.1 QubitAmplitudeDampingNoise()

Qubit amplitude damping noise constructor.

Parameters

gan	пта	Amplitude damping coefficient
-----	-----	-------------------------------

The documentation for this class was generated from the following file:

· classes/noise.h

7.59 qpp::QubitBitFlipNoise Class Reference

Qubit bit flip noise.

```
#include <classes/noise.h>
```

 $Inheritance\ diagram\ for\ qpp::Qubit Bit Flip Noise:$

Collaboration diagram for qpp::QubitBitFlipNoise:

Public Member Functions

QubitBitFlipNoise (double p)
 Qubit bit flip noise constructor.

Additional Inherited Members

7.59.1 Detailed Description

Qubit bit flip noise.

7.59.2 Constructor & Destructor Documentation

7.59.2.1 QubitBitFlipNoise()

```
\label{eq:qpp::QubitBitFlipNoise} $$ \operatorname{qpp}::\operatorname{QubitBitFlipNoise} ($$ \operatorname{double} p ) [inline], [explicit] $$
```

Qubit bit flip noise constructor.

Parameters

p Noise probability

The documentation for this class was generated from the following file:

· classes/noise.h

7.60 qpp::QubitBitPhaseFlipNoise Class Reference

Qubit bit-phase flip (dephasing) noise.

#include <classes/noise.h>

Inheritance diagram for qpp::QubitBitPhaseFlipNoise:

Collaboration diagram for qpp::QubitBitPhaseFlipNoise:

Public Member Functions

QubitBitPhaseFlipNoise (double p)
 Qubit bit-phase flip noise constructor.

Additional Inherited Members

7.60.1 Detailed Description

Qubit bit-phase flip (dephasing) noise.

7.60.2 Constructor & Destructor Documentation

7.60.2.1 QubitBitPhaseFlipNoise()

```
\label{eq:qpp::QubitBitPhaseFlipNoise::QubitBitPhaseFlipNoise (} \\ \text{double } p \text{ ) } \quad \text{[inline], [explicit]}
```

Qubit bit-phase flip noise constructor.

Parameters

p Noise probability

The documentation for this class was generated from the following file:

classes/noise.h

7.61 qpp::QubitDepolarizingNoise Class Reference

Qubit depolarizing noise.

```
#include <classes/noise.h>
```

Inheritance diagram for qpp::QubitDepolarizingNoise:

Collaboration diagram for qpp::QubitDepolarizingNoise:

Public Member Functions

QubitDepolarizingNoise (double p)
 Qubit depolarizing noise constructor.

Additional Inherited Members

7.61.1 Detailed Description

Qubit depolarizing noise.

7.61.2 Constructor & Destructor Documentation

7.61.2.1 QubitDepolarizingNoise()

```
\label{eq:qpp::QubitDepolarizingNoise::QubitDepolarizingNoise (} $$ double $p$ ) [inline], [explicit]
```

Qubit depolarizing noise constructor.

Parameters

p Noise probability

The documentation for this class was generated from the following file:

· classes/noise.h

7.62 qpp::QubitPhaseDampingNoise Class Reference

Qubit phase damping noise, as described in Nielsen and Chuang.

#include <classes/noise.h>

Inheritance diagram for qpp::QubitPhaseDampingNoise:

Collaboration diagram for qpp::QubitPhaseDampingNoise:

Public Member Functions

QubitPhaseDampingNoise (double lambda)
 Qubit phase damping noise constructor.

Additional Inherited Members

7.62.1 Detailed Description

Qubit phase damping noise, as described in Nielsen and Chuang.

7.62.2 Constructor & Destructor Documentation

7.62.2.1 QubitPhaseDampingNoise()

Qubit phase damping noise constructor.

Parameters

lambda	Phase damping coefficient	
--------	---------------------------	--

The documentation for this class was generated from the following file:

classes/noise.h

7.63 qpp::QubitPhaseFlipNoise Class Reference

Qubit phase flip (dephasing) noise.

```
#include <classes/noise.h>
```

Inheritance diagram for qpp::QubitPhaseFlipNoise:

Collaboration diagram for qpp::QubitPhaseFlipNoise:

Public Member Functions

• QubitPhaseFlipNoise (double p)

Qubit phase flip (dephasing) noise constructor.

Additional Inherited Members

7.63.1 Detailed Description

Qubit phase flip (dephasing) noise.

7.63.2 Constructor & Destructor Documentation

7.63.2.1 QubitPhaseFlipNoise()

Qubit phase flip (dephasing) noise constructor.

Parameters

p Noise probability

The documentation for this class was generated from the following file:

• classes/noise.h

7.64 qpp::exception::QuditAlreadyMeasured Class Reference

Qudit was already measured exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::QuditAlreadyMeasured:

Collaboration diagram for qpp::exception::QuditAlreadyMeasured:

Public Member Functions

- std::string type_description () const override
 - Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.64.1 Detailed Description

Qudit was already measured exception.

The qudit was already measured and cannot be measured again

7.64.2 Member Function Documentation

7.64.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.64.2.2 type_description()

```
std::string qpp::exception::QuditAlreadyMeasured::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.65 qpp::QuditDepolarizingNoise Class Reference

Qudit depolarizing noise.

```
#include <classes/noise.h>
```

Inheritance diagram for qpp::QuditDepolarizingNoise:

Collaboration diagram for qpp::QuditDepolarizingNoise:

Public Member Functions

QuditDepolarizingNoise (double p, idx d)
 Qudit depolarizing noise constructor.

Private Member Functions

• std::vector< cmat > fill_Ks_ (idx d) const

Fills the Kraus operator vector.

std::vector< double > fill_probs_ (double p, idx d) const
 Fills the probability vector.

Additional Inherited Members

7.65.1 Detailed Description

Qudit depolarizing noise.

7.65.2 Constructor & Destructor Documentation

7.65.2.1 QuditDepolarizingNoise()

```
qpp::QuditDepolarizingNoise::QuditDepolarizingNoise ( double p,  idx \ d \ ) \ \ [inline], \ [explicit]
```

Qudit depolarizing noise constructor.

Parameters

р	Noise probability
d	Qudit dimension

7.65.3 Member Function Documentation

Fills the Kraus operator vector.

Parameters

```
d Qudit dimension
```

Returns

Vector of Kraus operators representing the depolarizing noise

```
7.65.3.2 fill_probs_()
```

```
\label{eq:continuous} $$ std::vector<double> qpp::QuditDepolarizingNoise::fill_probs_ ($ double p, $ idx d ) const [inline], [private] $$
```

Fills the probability vector.

Parameters

р	Probability
d	Qudit dimension

Returns

Probability vector

The documentation for this class was generated from the following file:

• classes/noise.h

7.66 qpp::RandomDevices Class Reference

Singleton class that manages the source of randomness in the library.

#include <classes/random_devices.h>

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Member Functions

• std::mt19937 & get_prng ()

Returns a reference to the internal PRNG object.

std::istream & load (std::istream &is)

Loads the state of the PRNG from an input stream.

• std::ostream & save (std::ostream &os) const

Saves the state of the PRNG to an output stream.

Private Member Functions

• RandomDevices ()

Initializes and seeds the random number generators.

∼RandomDevices ()=default

Default destructor.

Private Attributes

 std::random_device rd_ used to seed std::mt19937 prng_

std::mt19937 prng_

Mersenne twister random number generator.

Friends

class internal::Singleton < RandomDevices >

Additional Inherited Members

7.66.1 Detailed Description

Singleton class that manages the source of randomness in the library.

Warning

This class DOES NOT seed the standard C number generator used by Eigen::Matrix::Random(), since it is not thread safe. Do not use Eigen::Matrix::Random() or functions that depend on the C style random number engine, but use qpp::rand() instead!

7.66.2 Constructor & Destructor Documentation

7.66.2.1 RandomDevices()

```
qpp::RandomDevices::RandomDevices ( ) [inline], [private]
```

Initializes and seeds the random number generators.

```
7.66.2.2 ~RandomDevices()
```

```
\verb"qpp::RandomDevices::$\sim$RandomDevices ( ) [private], [default]
```

Default destructor.

7.66.3 Member Function Documentation

```
7.66.3.1 get_prng()
```

```
std::mt19937& qpp::RandomDevices::get_prng ( ) [inline]
```

Returns a reference to the internal PRNG object.

Returns

Reference to the internal PRNG object

7.66.3.2 load()

```
std::istream& qpp::RandomDevices::load (  \texttt{std::istream \& } is \ ) \quad [inline]
```

Loads the state of the PRNG from an input stream.

Parameters

```
is Input stream
```

Returns

The input stream

7.66.3.3 save()

Saves the state of the PRNG to an output stream.

Parameters

os Output stream

Returns

The output stream

7.66.4 Friends And Related Function Documentation

```
7.66.4.1 internal::Singleton < Random Devices >
```

```
friend class internal::Singleton< RandomDevices > [friend]
```

7.66.5 Member Data Documentation

```
7.66.5.1 prng_
```

```
std::mt19937 qpp::RandomDevices::prng_ [private]
```

Mersenne twister random number generator.

```
7.66.5.2 rd_
```

```
std::random_device qpp::RandomDevices::rd_ [private]
```

used to seed std::mt19937 prng_

The documentation for this class was generated from the following file:

• classes/random_devices.h

7.67 qpp::internal::Singleton < T > Class Template Reference

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

```
#include <internal/classes/singleton.h>
```

Static Public Member Functions

- static T & get_instance () noexcept(std::is_nothrow_constructible < T >::value)
- static T & get thread local instance () noexcept(std::is nothrow constructible < T >::value)

Protected Member Functions

- Singleton () noexcept=default
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete
- virtual ∼Singleton ()=default

7.67.1 Detailed Description

```
template<typename T> class qpp::internal::Singleton< T>
```

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

To implement a singleton, derive your class from qpp::internal::Singleton, make qpp::internal::Singleton a friend of your class, then declare the constructor and destructor of your class as private. To get an instance, use the static member function qpp::internal::Singleton::get_instance() (qpp::internal::Singleton::get_thread_local_instance()), which returns a reference (thread_local_reference) to your newly created singleton (thread-safe in C++11).

Example:

See also

Code of qpp::Codes, qpp::Gates, qpp::Init, qpp::RandomDevices, qpp::States or qpp.h for real world examples of usage.

7.67.2 Constructor & Destructor Documentation

```
7.67.2.1 Singleton() [1/2]
template<typename T>
qpp::internal::Singleton < T >::Singleton ( ) [protected], [default], [noexcept]
7.67.2.2 Singleton() [2/2]
template<typename T>
qpp::internal::Singleton < T >::Singleton (
            const Singleton< T > \& ) [protected], [delete]
7.67.2.3 ∼Singleton()
template<typename T>
virtual qpp::internal::Singleton < T >::~Singleton ( ) [protected], [virtual], [default]
7.67.3 Member Function Documentation
7.67.3.1 get_instance()
template<typename T>
static T& qpp::internal::Singleton< T >::get_instance ( ) [inline], [static], [noexcept]
7.67.3.2 get_thread_local_instance()
template<typename T>
static T& qpp::internal::Singleton< T >::get_thread_local_instance ( ) [inline], [static],
[noexcept]
7.67.3.3 operator=()
template<typename T>
Singleton& qpp::internal::Singleton< T >::operator= (
             const Singleton< T > \& ) [protected], [delete]
```

The documentation for this class was generated from the following file:

• internal/classes/singleton.h

7.68 qpp::exception::SizeMismatch Class Reference

Size mismatch exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::SizeMismatch:

Collaboration diagram for qpp::exception::SizeMismatch:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.68.1 Detailed Description

Size mismatch exception.

Sizes do not match

7.68.2 Member Function Documentation

7.68.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where	Text representing where the exception occurred
-------	--

7.68.2.2 type_description()

```
std::string qpp::exception::SizeMismatch::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.69 qpp::NoiseType::StateDependent Class Reference

Template tag, used whenever the noise is state-dependent.

#include <classes/noise.h>

7.69.1 Detailed Description

Template tag, used whenever the noise is state-dependent.

The documentation for this class was generated from the following file:

· classes/noise.h

7.70 qpp::NoiseType::StateIndependent Class Reference

Template tag, used whenever the noise is state-independent.

#include <classes/noise.h>

7.70.1 Detailed Description

Template tag, used whenever the noise is state-independent.

The documentation for this class was generated from the following file:

classes/noise.h

7.71 qpp::States Class Reference

const Singleton class that implements most commonly used states

#include <classes/states.h>

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Member Functions

• ket mes (idx d=2) const

Maximally entangled state of 2 qudits.

• ket zero (idx n, idx d=2) const

Zero state of n qudits.

• ket one (idx n, idx d=2) const

One state of n qudits.

• ket jn (idx j, idx n, idx d=2) const

 $|j\rangle^{\otimes n}$ state of n qudits

• ket plus (idx n) const

Plus state of n qubits.

• ket minus (idx n) const

Minus state of n qubits.

Public Attributes

```
    ket x0 {ket::Zero(2)}
```

Pauli Sigma-X 0-eigenstate |+>

ket x1 {ket::Zero(2)}

Pauli Sigma-X 1-eigenstate |->

ket y0 {ket::Zero(2)}

Pauli Sigma-Y 0-eigenstate |y+>

ket y1 {ket::Zero(2)}

Pauli Sigma-Y 1-eigenstate | y->

ket z0 {ket::Zero(2)}

Pauli Sigma-Z 0-eigenstate | 0>

ket z1 {ket::Zero(2)}

Pauli Sigma-Z 1-eigenstate | 1>

• cmat px0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.

• cmat px1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.

```
    cmat py0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 0-eigenstate |y+\rangle < y+|.

    cmat py1 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.

    cmat pz0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.
• cmat pz1 {cmat::Zero(2, 2)}
      Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.

    ket b00 {ket::Zero(4)}

      Bell-00 state, as described in Nielsen and Chuang.

    ket b01 {ket::Zero(4)}

      Bell-01 state, as described in Nielsen and Chuang.

    ket b10 {ket::Zero(4)}

      Bell-10 state, as described in Nielsen and Chuang.
ket b11 {ket::Zero(4)}
      Bell-11 state, as described in Nielsen and Chuang.

    cmat pb00 {cmat::Zero(4, 4)}

      Projector onto the Bell-00 state.

    cmat pb01 {cmat::Zero(4, 4)}

      Projector onto the Bell-01 state.

    cmat pb10 {cmat::Zero(4, 4)}

      Projector onto the Bell-10 state.

    cmat pb11 {cmat::Zero(4, 4)}

      Projector onto the Bell-11 state.
ket GHZ {ket::Zero(8)}
      GHZ state.

    ket W {ket::Zero(8)}

      W state.
cmat pGHZ {cmat::Zero(8, 8)}
      Projector onto the GHZ state.
cmat pW {cmat::Zero(8, 8)}
      Projector onto the W state.
```

Private Member Functions

- States ()
- ∼States ()=default

Default destructor.

Friends

class internal::Singleton < const States >

Additional Inherited Members

7.71.1 Detailed Description

const Singleton class that implements most commonly used states

7.71.2 Constructor & Destructor Documentation

7.71.2.1 States()

```
qpp::States::States ( ) [inline], [private]
```

Initialize the states

7.71.2.2 ∼States()

```
qpp::States::~States ( ) [private], [default]
```

Default destructor.

7.71.3 Member Function Documentation

7.71.3.1 jn()

 $|j\rangle^{\otimes n}$ state of *n* qudits

Parameters

j	Non-negative integer
n	Non-negative integer
d	Subsystem dimensions

Returns

 $|j\rangle^{\otimes n}$ state of *n* qudits

7.71.3.2 mes()

```
ket qpp::States::mes (
idx d = 2 ) const [inline]
```

Maximally entangled state of 2 qudits.

Parameters

d Subsystem dimensions

Returns

Maximally entangled state $\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} |jj\rangle$ of 2 qudits

7.71.3.3 minus()

```
ket qpp::States::minus (
          idx n ) const [inline]
```

Minus state of *n* qubits.

Parameters

n Non-negative integer

Returns

Minus state $|-\rangle^{\otimes n}$ of n qubits

7.71.3.4 one()

```
ket qpp::States::one (
        idx n,
        idx d = 2 ) const [inline]
```

One state of *n* qudits.

Parameters

n	Non-negative integer
d	Subsystem dimensions

Returns

One state $|1\rangle^{\otimes n}$ of n qudits

7.71.3.5 plus()

```
ket qpp::States::plus (
         idx n ) const [inline]
```

Plus state of *n* qubits.

Parameters

```
n Non-negative integer
```

Returns

```
Plus state |+\rangle^{\otimes n} of n qubits
```

7.71.3.6 zero()

```
ket qpp::States::zero (
         idx n,
         idx d = 2 ) const [inline]
```

Zero state of *n* qudits.

Parameters

n	Non-negative integer
d	Subsystem dimensions

Returns

```
Zero state |0\rangle^{\otimes n} of n qudits
```

7.71.4 Friends And Related Function Documentation

```
7.71.4.1 internal::Singleton < const States >
```

friend class internal::Singleton< const States > [friend]

7.71.5 Member Data Documentation

```
7.71.5.1 b00
```

```
ket qpp::States::b00 {ket::Zero(4)}
```

Bell-00 state, as described in Nielsen and Chuang.

7.71.5.2 b01

```
ket qpp::States::b01 {ket::Zero(4)}
```

Bell-01 state, as described in Nielsen and Chuang.

7.71.5.3 b10

```
ket qpp::States::b10 {ket::Zero(4)}
```

Bell-10 state, as described in Nielsen and Chuang.

7.71.5.4 b11

```
ket qpp::States::b11 {ket::Zero(4)}
```

Bell-11 state, as described in Nielsen and Chuang.

7.71.5.5 GHZ

```
ket qpp::States::GHZ {ket::Zero(8)}
```

GHZ state.

7.71.5.6 pb00

```
cmat qpp::States::pb00 {cmat::Zero(4, 4)}
```

Projector onto the Bell-00 state.

```
7.71.5.7 pb01
cmat qpp::States::pb01 {cmat::Zero(4, 4)}
Projector onto the Bell-01 state.
7.71.5.8 pb10
cmat qpp::States::pb10 {cmat::Zero(4, 4)}
Projector onto the Bell-10 state.
7.71.5.9 pb11
cmat qpp::States::pb11 {cmat::Zero(4, 4)}
Projector onto the Bell-11 state.
7.71.5.10 pGHZ
cmat qpp::States::pGHZ {cmat::Zero(8, 8)}
Projector onto the GHZ state.
7.71.5.11 pW
cmat qpp::States::pW {cmat::Zero(8, 8)}
Projector onto the W state.
7.71.5.12 px0
```

cmat qpp::States::px0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.

```
7.71.5.13 px1
cmat qpp::States::px1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.
7.71.5.14 py0
cmat qpp::States::py0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 0-eigenstate |y+>< y+|.
7.71.5.15 py1
cmat qpp::States::py1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.
7.71.5.16 pz0
cmat qpp::States::pz0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.
7.71.5.17 pz1
cmat qpp::States::pz1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.
7.71.5.18 W
ket qpp::States::W {ket::Zero(8)}
W state.
```

```
7.71.5.19 x0
ket qpp::States::x0 {ket::Zero(2)}
Pauli Sigma-X 0-eigenstate |+>
7.71.5.20 x1
ket qpp::States::x1 {ket::Zero(2)}
Pauli Sigma-X 1-eigenstate |->
7.71.5.21 y0
ket qpp::States::y0 {ket::Zero(2)}
Pauli Sigma-Y 0-eigenstate |y+>
7.71.5.22 y1
ket qpp::States::y1 {ket::Zero(2)}
Pauli Sigma-Y 1-eigenstate |y->
7.71.5.23 z0
ket qpp::States::z0 {ket::Zero(2)}
Pauli Sigma-Z 0-eigenstate |0>
7.71.5.24 z1
ket qpp::States::z1 {ket::Zero(2)}
Pauli Sigma-Z 1-eigenstate |1>
The documentation for this class was generated from the following file:
```

classes/states.h

7.72 qpp::exception::SubsysMismatchDims Class Reference

Subsystems mismatch dimensions exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::SubsysMismatchDims:

Collaboration diagram for qpp::exception::SubsysMismatchDims:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.72.1 Detailed Description

Subsystems mismatch dimensions exception.

std::vector<idx> of subsystem labels has duplicates, or has entries that are larger than the size of the std ::vector<idx> of dimensions

7.72.2 Member Function Documentation

7.72.2.1 Exception()

```
qpp::exception::Exception [inline], [explicit]
```

Constructs an exception.

Parameters

where Text representing where the exception

7.72.2.2 type_description()

```
std::string qpp::exception::SubsysMismatchDims::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.73 qpp::Timer < T, CLOCK_T > Class Template Reference

Chronometer.

#include <classes/timer.h>

Inheritance diagram for qpp::Timer < T, CLOCK_T >:

Collaboration diagram for qpp::Timer < T, CLOCK_T >:

Public Member Functions

· Timer () noexcept

Constructs an instance with the current time as the starting point.

· void tic () noexcept

Resets the chronometer.

• const Timer & toc () noexcept

 ${\it Stops the chronometer.}$

· double tics () const noexcept

Time passed in the duration specified by T.

• template<typename U = T>

U get_duration () const noexcept

Duration specified by U.

• Timer (const Timer &)=default

Default copy constructor.

• Timer (Timer &&)=default

Default move constructor.

• Timer & operator= (const Timer &)=default

Default copy assignment operator.

• Timer & operator= (Timer &&)=default

Default move assignment operator.

virtual ∼Timer ()=default

Default virtual destructor.

Protected Attributes

- CLOCK_T::time_point start_
- CLOCK_T::time_point end

Private Member Functions

 std::ostream & display (std::ostream &os) const override *qpp::IDisplay::display() override*

7.73.1 Detailed Description

```
template < typename\ T = std::chrono::duration < double >, typename\ CLOCK\_T = std::chrono::steady\_clock > class\ qpp::Timer < T,\ CLOCK\_T >
```

Chronometer.

Template Parameters

T	Tics duration, default is std::chrono::duration <double, 1="">, i.e. seconds in double precision</double,>
CLOCK← T	Clock's type, default is std::chrono::steady_clock, not affected by wall clock changes during runtime

7.73.2 Constructor & Destructor Documentation

```
7.73.2.1 Timer() [1/3]
```

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady←
   _clock>
   qpp::Timer< T, CLOCK_T >::Timer ( ) [inline], [noexcept]
```

Constructs an instance with the current time as the starting point.

7.73.2.2 Timer() [2/3]

Default copy constructor.

7.73.2.3 Timer() [3/3]

Default move constructor.

7.73.2.4 \sim Timer()

```
\label{template} $$ \ensuremath{\sf template}$ $$ \ensurem
```

Default virtual destructor.

7.73.3 Member Function Documentation

7.73.3.1 display()

qpp::IDisplay::display() override

Writes to the output stream the number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc().

Parameters

```
os Output stream passed by reference
```

Returns

Reference to the output stream

Implements qpp::IDisplay.

7.73.3.2 get_duration()

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
template<typename U = T>
U qpp::Timer< T, CLOCK_T >::get_duration ( ) const [inline], [noexcept]
```

Duration specified by U.

Template Parameters

U Duration, default is T, which defaults to std::chrono::duration<double, 1>, i.e. seconds in double precision

Returns

Duration that passed between the instantiation/reset and invocation of qpp::Timer::toc()

```
7.73.3.3 operator=() [1/2]
```

Default copy assignment operator.

```
7.73.3.4 operator=() [2/2]
```

Default move assignment operator.

7.73.3.5 tic()

Resets the chronometer.

Resets the starting/ending point to the current time

7.73.3.6 tics()

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
double qpp::Timer< T, CLOCK_T >::tics ( ) const [inline], [noexcept]
```

Time passed in the duration specified by T.

Returns

Number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc()

7.73.3.7 toc()

```
\label{lock-type-ame} $$ $$ template<typename T = std::chrono::steady \leftarrow \_clock> $$ const Timer& qpp::Timer< T, CLOCK_T >::toc ( ) [inline], [noexcept] $$
```

Stops the chronometer.

Set the current time as the ending point

Returns

Reference to the current instance

7.73.4 Member Data Documentation

7.73.4.1 end

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::end_ [protected]
```

7.73.4.2 start_

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::start_ [protected]
```

The documentation for this class was generated from the following file:

· classes/timer.h

7.74 qpp::exception::TypeMismatch Class Reference

Type mismatch exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::TypeMismatch:

Collaboration diagram for qpp::exception::TypeMismatch:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.74.1 Detailed Description

Type mismatch exception.

Scalar types do not match

7.74.2 Member Function Documentation

7.74.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.74.2.2 type_description()

std::string qpp::exception::TypeMismatch::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.75 qpp::exception::UndefinedType Class Reference

Not defined for this type exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::UndefinedType:

Collaboration diagram for qpp::exception::UndefinedType:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.75.1 Detailed Description

Not defined for this type exception.

Templated specialization is not defined for this type

7.75.2 Member Function Documentation

7.75.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where	Text representing where the exception occurred	1
-------	--	---

7.75.2.2 type_description()

std::string qpp::exception::UndefinedType::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.76 qpp::exception::Unknown Class Reference

Unknown exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Unknown:

Collaboration diagram for qpp::exception::Unknown:

Public Member Functions

- std::string type_description () const override Exception type description.
- Exception (const std::string &where)

Constructs an exception.

7.76.1 Detailed Description

Unknown exception.

Thrown when no other exception is suitable (not recommended, it is better to define another suitable exception type)

7.76.2 Member Function Documentation

7.76.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where	Text representing where the exception occurred
-------	--

7.76.2.2 type_description()

std::string qpp::exception::Unknown::type_description () const [inline], [override], [virtual]
Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.77 qpp::QCircuit::iterator::value_type_ Class Reference

Value type class for qpp::QCircuit::iterator.

Inheritance diagram for qpp::QCircuit::iterator::value_type_:

Collaboration diagram for qpp::QCircuit::iterator::value_type_:

Public Member Functions

```
    value_type_ (const QCircuit *value_type_qc)
        Default value_type_ constructor.
    value_type_ (const value_type_ &)=default
        Default copy constructor.
    value_type_ & operator= (const value_type_ &)=default
        Default copy assignment operator.
```

Public Attributes

```
    const QCircuit * value_type_qc_
        < non-owning pointer to the grand-parent const quantum circuit</li>
    StepType type_{StepType::NONE}
        step type
    idx ip_{static_cast<idx>(-1)}
        instruction pointer
    std::vector< GateStep >::const_iterator gates_ip_{gates instruction pointer}
    std::vector< MeasureStep >::const_iterator measurements_ip_{measurements instruction pointer}
```

Private Member Functions

7.77.1 Detailed Description

Value type class for qpp::QCircuit::iterator.

7.77.2 Constructor & Destructor Documentation

Parameters

```
value_type_qc | Pointer to constant quantum circuit
```

360 Class Documentation

Default copy constructor.

7.77.3 Member Function Documentation

7.77.3.1 display()

qpp::IDisplay::display() override

Writes to the output stream the textual representation of the iterator de-referenced element

Parameters

```
os Output stream passed by reference
```

Returns

Reference to the output stream

Implements qpp::IDisplay.

7.77.3.2 operator=()

Default copy assignment operator.

Returns

Reference to the current instance

7.77.4 Member Data Documentation

```
7.77.4.1 gates_ip_
std::vector<GateStep>::const_iterator qpp::QCircuit::iterator::value_type_::gates_ip_ {}
gates instruction pointer
7.77.4.2 ip_
idx qpp::QCircuit::iterator::value_type_::ip_ {static_cast<idx>(-1)}
instruction pointer
7.77.4.3 measurements_ip_
\verb|std::vector<| \texttt{MeasureStep}>::const_iterator | qpp::QCircuit::iterator::value_type_::measurements\_{\leftarrow}| to the const_iterator | to the const_itera
measurements instruction pointer
7.77.4.4 type_
StepType qpp::QCircuit::iterator::value_type_::type_ {StepType::NONE}
step type
7.77.4.5 value_type_qc_
const QCircuit* qpp::QCircuit::iterator::value_type_::value_type_qc_
 < non-owning pointer to the grand-parent const quantum circuit
The documentation for this class was generated from the following file:
```

• classes/circuits/circuits.h

362 Class Documentation

7.78 qpp::exception::ZeroSize Class Reference

Object has zero size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::ZeroSize:

Collaboration diagram for qpp::exception::ZeroSize:

Public Member Functions

• std::string type_description () const override

Exception type description.

• Exception (const std::string &where)

Constructs an exception.

7.78.1 Detailed Description

Object has zero size exception.

Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

7.78.2 Member Function Documentation

7.78.2.1 Exception()

qpp::exception::Exception [inline], [explicit]

Constructs an exception.

Parameters

where Text representing where the exception occurred

7.78.2.2 type_description()

std::string qpp::exception::ZeroSize::type_description () const [inline], [override], [virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

364 Class Documentation

Chapter 8

File Documentation

8.1 classes/circuits/circuits.h File Reference

Qudit quantum circuits.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::QCircuit

Quantum circuit class.

• struct qpp::QCircuit::GateStep

One step consisting only of gates/operators in the circuit.

• struct qpp::QCircuit::MeasureStep

One step consisting only of measurements in the circuit.

· class qpp::QCircuit::iterator

Quantum circuit bound-checking (safe) iterator.

• class qpp::QCircuit::iterator::value_type_

Value type class for qpp::QCircuit::iterator.

Namespaces

• qpp

Quantum++ main namespace.

8.1.1 Detailed Description

Qudit quantum circuits.

8.2 classes/circuits/engines.h File Reference

Qudit quantum engines.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::QEngine

Quantum circuit engine, executes qpp::QCircuit.

class qpp::QNoisyEngine < NoiseModel >

Noisy quantum circuit engine, executes qpp::QCircuit.

Namespaces

• qpp

Quantum++ main namespace.

8.2.1 Detailed Description

Qudit quantum engines.

8.3 classes/codes.h File Reference

Quantum error correcting codes.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Codes

const Singleton class that defines quantum error correcting codes

Namespaces

qpp

Quantum++ main namespace.

8.3.1 Detailed Description

Quantum error correcting codes.

8.4 classes/exception.h File Reference

Exceptions.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::exception::Exception

Base class for generating Quantum++ custom exceptions.

· class qpp::exception::Unknown

Unknown exception.

class qpp::exception::ZeroSize

Object has zero size exception.

class gpp::exception::MatrixNotSquare

Matrix is not square exception.

· class qpp::exception::MatrixNotCvector

Matrix is not a column vector exception.

class qpp::exception::MatrixNotRvector

Matrix is not a row vector exception.

class qpp::exception::MatrixNotVector

Matrix is not a vector exception.

class qpp::exception::MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

• class qpp::exception::MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

class qpp::exception::MatrixNotSquareNorVector

Matrix is not square nor vector exception.

• class qpp::exception::MatrixMismatchSubsys

Matrix mismatch subsystems exception.

· class qpp::exception::DimsInvalid

Invalid dimension(s) exception.

· class qpp::exception::DimsNotEqual

Dimensions not equal exception.

class qpp::exception::DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

class qpp::exception::DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

class qpp::exception::DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

class qpp::exception::DimsMismatchVector

Dimension(s) mismatch vector size exception.

class qpp::exception::SubsysMismatchDims

Subsystems mismatch dimensions exception.

class qpp::exception::PermInvalid

Invalid permutation exception.

· class qpp::exception::PermMismatchDims

Permutation mismatch dimensions exception.

class qpp::exception::NotQubitMatrix

Matrix is not 2 x 2 exception.

· class qpp::exception::NotQubitCvector

Column vector is not 2 x 1 exception.

class qpp::exception::NotQubitRvector

Row vector is not 1 x 2 exception.

class qpp::exception::NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

class qpp::exception::NotQubitSubsys

Subsystems are not qubits exception.

· class qpp::exception::NotBipartite

Not bi-partite exception.

· class qpp::exception::NoCodeword

Codeword does not exist exception.

class qpp::exception::OutOfRange

Argument out of range exception.

class qpp::exception::TypeMismatch

Type mismatch exception.

· class qpp::exception::SizeMismatch

Size mismatch exception.

class qpp::exception::UndefinedType

Not defined for this type exception.

• class qpp::exception::QuditAlreadyMeasured

Qudit was already measured exception.

class qpp::exception::Duplicates

System (e.g. std::vector) has duplicates exception.

class qpp::exception::CustomException

Custom exception.

· class qpp::exception::NotImplemented

Code not yet implemented.

· class qpp::exception::InvalidIterator

Invalid iterator.

Namespaces

• qpp

Quantum++ main namespace.

• qpp::exception

Quantum++ exception hierarchy namespace.

8.4.1 Detailed Description

Exceptions.

8.5 classes/gates.h File Reference

Quantum gates.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Gates

const Singleton class that implements most commonly used gates

Namespaces

• qpp

Quantum++ main namespace.

8.5.1 Detailed Description

Quantum gates.

8.6 classes/idisplay.h File Reference

Display interface via the non-virtual interface (NVI) and very basic JSON serialization support interface.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

· class qpp::IJSON

Abstract class (interface) that mandates the definition of very basic JSON serialization support.

Namespaces

• qpp

Quantum++ main namespace.

8.6.1 Detailed Description

Display interface via the non-virtual interface (NVI) and very basic JSON serialization support interface.

8.7 classes/init.h File Reference

Initialization.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Init

const Singleton class that performs additional initializations/cleanups

Namespaces

• qpp

Quantum++ main namespace.

8.7.1 Detailed Description

Initialization.

8.8 classes/noise.h File Reference

Noise models.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::NoiseType

Contains template tags used to specify the noise type.

class qpp::NoiseBase< T >

Base class for all noise models, derive your particular noise model.

• class qpp::QubitDepolarizingNoise

Qubit depolarizing noise.

• class qpp::QubitPhaseFlipNoise

Qubit phase flip (dephasing) noise.

• class qpp::QubitBitFlipNoise

Qubit bit flip noise.

· class qpp::QubitBitPhaseFlipNoise

Qubit bit-phase flip (dephasing) noise.

• class qpp::QubitAmplitudeDampingNoise

Qubit amplitude damping noise, as described in Nielsen and Chuang.

• class qpp::QubitPhaseDampingNoise

Qubit phase damping noise, as described in Nielsen and Chuang.

· class qpp::QuditDepolarizingNoise

Qudit depolarizing noise.

Namespaces

• qpp

Quantum++ main namespace.

8.8.1 Detailed Description

Noise models.

8.9 classes/random_devices.h File Reference

Random devices.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Singleton class that manages the source of randomness in the library.

Namespaces

qpp

Quantum++ main namespace.

8.9.1 Detailed Description

Random devices.

8.10 classes/reversible.h File Reference

Support for classical reversible circuits.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Dynamic_bitset

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

class qpp::Bit_circuit

Classical reversible circuit simulator.

• struct qpp::Bit_circuit::Gate_count

Namespaces

• qpp

Quantum++ main namespace.

8.10.1 Detailed Description

Support for classical reversible circuits.

8.11 classes/states.h File Reference

Quantum states.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::States

const Singleton class that implements most commonly used states

Namespaces

• qpp

Quantum++ main namespace.

8.11.1 Detailed Description

Quantum states.

8.12 classes/timer.h File Reference

Timing.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Timer < T, CLOCK_T >
 Chronometer.

Namespaces

• qpp

Quantum++ main namespace.

8.12.1 Detailed Description

Timing.

8.13 constants.h File Reference

Constants.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

• qpp::literals

Functions

- constexpr cplx qpp::literals::operator"" _i (unsigned long long int x) noexcept
 - User-defined literal for complex $i = \sqrt{-1}$ (integer overload)
- constexpr cplx qpp::operator"" _i (long double x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

• cplx qpp::omega (idx D)

D-th root of unity.

Variables

• constexpr double qpp::chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr idx qpp::maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

• constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr double qpp::infty = std::numeric_limits<double>::max()

Used to denote infinity in double precision.

8.13.1 Detailed Description

Constants.

8.14 entanglement.h File Reference

Entanglement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Schmidt basis on Alice side.

Functions

```
    template<typename Derived >
        dyn_col_vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector<
        idx > &dims)
```

Schmidt coefficients of the bi-partite pure state A.

```
    template<typename Derived >
        dyn_col_vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2)

    Schmidt coefficients of the bi-partite pure state A.
```

template<typename Derived >
 cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
 Schmidt basis on Alice side.

template<typename Derived > cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, idx d=2)

template < typename Derived >
 cmat qpp::schmidtB (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &dims)
 Schmidt basis on Bob side.

template < typename Derived >
 cmat qpp::schmidtB (const Eigen::MatrixBase < Derived > &A, idx d=2)

Schmidt basis on Bob side.

template<typename Derived >
 std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx
 > &dims)

Schmidt probabilities of the bi-partite pure state A.

template<typename Derived >

std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2)

Schmidt probabilities of the bi-partite pure state A.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Entanglement of the bi-partite pure state A.

template<typename Derived >

double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2)

Entanglement of the bi-partite pure state A.

• template<typename Derived >

double qpp::gconcurrence (const Eigen::MatrixBase Derived > &A)

G-concurrence of the bi-partite pure state A.

• template<typename Derived >

double qpp::negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Negativity of the bi-partite mixed state A.

template < typename Derived >

double qpp::negativity (const Eigen::MatrixBase< Derived > &A, idx d=2)

Negativity of the bi-partite mixed state A.

ullet template<typename Derived >

double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Logarithmic negativity of the bi-partite mixed state A.

• template<typename Derived >

double qpp::lognegativity (const Eigen::MatrixBase Derived > &A, idx d=2)

Logarithmic negativity of the bi-partite mixed state A.

• template<typename Derived >

double qpp::concurrence (const Eigen::MatrixBase Derived > &A)

Wootters concurrence of the bi-partite qubit mixed state A.

8.14.1 Detailed Description

Entanglement functions.

8.15 entropies.h File Reference

Entropy functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 double qpp::entropy (const Eigen::MatrixBase< Derived > &A)
 von-Neumann entropy of the density matrix A

double qpp::entropy (const std::vector< double > &prob)

Shannon entropy of the probability distribution prob.

• template<typename Derived >

double qpp::renyi (const Eigen::MatrixBase Derived > &A, double alpha)

Renyi- α entropy of the density matrix A, for $\alpha \geq 0$.

double qpp::renyi (const std::vector< double > &prob, double alpha)

Renyi- α entropy of the probability distribution prob, for $\alpha \geq 0$.

• template<typename Derived >

double qpp::tsallis (const Eigen::MatrixBase< Derived > &A, double q)

Tsallis- q entropy of the density matrix A, for $q \ge 0$.

double qpp::tsallis (const std::vector< double > &prob, double q)

Tsallis- q entropy of the probability distribution prob, for $q \geq 0$.

• template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, const std::vector< idx > &dims)

Quantum mutual information between 2 subsystems of a composite system.

template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, idx d=2)

Quantum mutual information between 2 subsystems of a composite system.

8.15.1 Detailed Description

Entropy functions.

8.16 experimental/experimental.h File Reference

Experimental/test functions/classes.

Namespaces

• qpp

Quantum++ main namespace.

· qpp::experimental

Experimental/test functions/classes, do not use or modify.

8.16.1 Detailed Description

Experimental/test functions/classes.

8.17 functions.h File Reference

Generic quantum computing functions.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::internal::HashEigen

Functor for hashing Eigen expressions.

• class qpp::internal::EqualEigen

Functor for comparing Eigen expressions for equality.

Namespaces

• qpp

Quantum++ main namespace.

- · qpp::literals
- · qpp::internal

Internal utility functions, do not use them directly or modify them.

Functions

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  dyn mat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
      Adjoint.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > &A)
• template<typename Derived >
  Derived::Scalar <a href="mailto:qpp::det">qpp::det</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::sum">qpp::sum</a> (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum of A.
template<typename Derived >
  Derived::Scalar <a href="mailto:open:prod">open:prod</a> (const Eigen::MatrixBase</a> Derived > &A)
      Element-wise product of A.

    template<typename Derived >

  double <a href="mailto:qpp::norm">qpp::norm</a> (const Eigen::MatrixBase< Derived > &A)
      Frobenius norm.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::normalize (const Eigen::MatrixBase< Derived > &A)
      Normalizes state vector (column or row vector) or density matrix.
• template<typename Derived >
  std::pair< dyn_col_vect< cplx >, cmat > qpp::eig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition.
• template<typename Derived >
  dyn_col_vect< cplx > qpp::evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors.

    template<typename Derived >

  std::pair< dyn_col_vect< double >, cmat > qpp::heig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition of Hermitian expression.

    template<typename Derived >

  dyn_col_vect< double > qpp::hevals (const Eigen::MatrixBase< Derived > &A)
      Hermitian eigenvalues.
• template<typename Derived >
  cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors of Hermitian matrix.
```

```
• template<typename Derived >
    std::tuple< cmat, dyn_col_vect< double >, cmat > qpp::svd (const Eigen::MatrixBase< Derived > &A)
            Full singular value decomposition.

    template<typename Derived >

    dyn_col_vect< double > qpp::svals (const Eigen::MatrixBase< Derived > &A)
            Singular values.
• template<typename Derived >
    cmat qpp::svdU (const Eigen::MatrixBase< Derived > &A)
            Left singular vectors.

    template<typename Derived >

    cmat qpp::svdV (const Eigen::MatrixBase< Derived > &A)
            Right singular vectors.

    template<typename Derived >

    cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
            Functional calculus f(A)

    template<typename Derived >

    cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
            Matrix square root.
• template<typename Derived >
    cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
            Matrix absolute value.
template<typename Derived >
    cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
            Matrix exponential.

    template<typename Derived >

    cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)
            Matrix logarithm.

    template<typename Derived >

    cmat <a href="mailto:qpp::sinm">qpp::sinm</a> (const Eigen::MatrixBase</a> Derived > &A)
            Matrix sin.
• template<typename Derived >
    cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)
            Matrix cos.
• template<typename Derived >
    cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
            Matrix power.

    template<typename Derived >

    dyn mat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, idx n)
            Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.

    template<typename Derived >

    double qpp::schatten (const Eigen::MatrixBase< Derived > &A, double p)
            Schatten matrix norm.
• template<typename OutputScalar , typename Derived >
    \label{lem:dyn_mat} \textit{dyn\_mat} < \textit{OutputScalar} > \textit{qpp::cwise} \; (\textit{const Eigen::MatrixBase} < \textit{Derived} > \&A, \; \textit{OutputScalar}(*f)(\textit{const Eigen::MatrixBase} < \textit{Derived} > \&A, \; \textit{OutputScalar}(*f)(\textit{co
    typename Derived::Scalar &))
            Functor.
• template<typename T >
    dyn mat< typename T::Scalar > qpp::kron (const T &head)
            Kronecker product.
template<typename T, typename... Args>
    dyn_mat< typename T::Scalar > qpp::kron (const T &head, const Args &... tail)
            Kronecker product.
```

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::kron (const std::initializer_list< Derived > &As)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, idx n)
      Kronecker power.

    template<typename T >

  dyn_mat< typename T::Scalar > qpp::dirsum (const T &head)
      Direct sum.
• template<typename T , typename... Args>
  dyn mat< typename T::Scalar > qpp::dirsum (const T &head, const Args &... tail)
      Direct sum.
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::dirsum (const std::vector< Derived > &As)
     Direct sum.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::dirsum (const std::initializer_list< Derived > &As)
     Direct sum.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::dirsumpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Direct sum power.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, idx rows,
  idx cols)
     Reshape.

    template < typename Derived1 , typename Derived2 >

  dyn_mat< typename Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
      Commutator.

    template<typename Derived1 , typename Derived2 >

  dyn_mat< typename Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
     Anti-commutator.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &A)
     Projector.

    template<typename Derived >

  \label{lem:dyn_mat} \textit{dyn\_mat} < \textit{typename Derived::} \textit{Scalar} > \textit{qpp::} \textit{grams} \; (\textit{const std::} \textit{vector} < \textit{Derived} > \& \textit{As})
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::grams (const std::initializer list< Derived > &As)
      Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A)
     Gram-Schmidt orthogonalization.

    std::vector< idx > qpp::n2multiidx (idx n, const std::vector< idx > &dims)

     Non-negative integer index to multi-index.

    idx qpp::multiidx2n (const std::vector< idx > &midx, const std::vector< idx > &dims)

     Multi-index to non-negative integer index.

    ket qpp::mket (const std::vector< idx > &mask, const std::vector< idx > &dims)
```

Multi-partite qudit ket.

ket qpp::mket (const std::vector< idx > &mask, idx d=2)

Multi-partite qudit ket. cmat qpp::mprj (const std::vector < idx > &mask, const std::vector < idx > &dims) Projector onto multi-partite qudit ket. cmat qpp::mprj (const std::vector< idx > &mask, idx d=2) Projector onto multi-partite qudit ket. • template<typename InputIterator > std::vector< double > qpp::abssq (InputIterator first, InputIterator last) Computes the absolute values squared of an STL-like range of complex numbers. template<typename Container > std::vector< double > qpp::abssq (const Container &c, typename std::enable if< is iterable< Container >::value >::type *=nullptr) Computes the absolute values squared of an STL-like container. template<typename Derived > std::vector< double > qpp::abssq (const Eigen::MatrixBase< Derived > &A) Computes the absolute values squared of an Eigen expression. • template<typename InputIterator > std::iterator_traits < InputIterator >::value_type qpp::sum (InputIterator first, InputIterator last) Element-wise sum of an STL-like range. template<typename Container > Container::value_type qpp::sum (const Container &c, typename std::enable_if< is_iterable< Container >← ::value >::type *=nullptr) Element-wise sum of the elements of an STL-like container. template<typename InputIterator > std::iterator_traits< InputIterator >::value_type qpp::prod (InputIterator first, InputIterator last) Element-wise product of an STL-like range. template<typename Container > Container::value type qpp::prod (const Container &c, typename std::enable if < is iterable < Container >← ::value >::type *=nullptr) Element-wise product of the elements of an STL-like container. template<typename Derived > dyn_col_vect< typename Derived::Scalar > qpp::rho2pure (const Eigen::MatrixBase< Derived > &A) Finds the pure state representation of a matrix proportional to a projector onto a pure state. std::vector< idx > qpp::complement (std::vector< idx > subsys, idx n) Constructs the complement of a subsystem vector. template<typename Derived > std::vector< double > qpp::rho2bloch (const Eigen::MatrixBase< Derived > &A) Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A. cmat qpp::bloch2rho (const std::vector< double > &r) Computes the density matrix corresponding to the 3-dimensional real Bloch vector r. • template<char... Bits> ket qpp::literals::operator"" _ket () Multi-partite qubit ket user-defined literal. • template<char... Bits> bra qpp::literals::operator"" _bra () Multi-partite qubit bra user-defined literal. • template<char... Bits> cmat qpp::literals::operator"" _prj () Multi-partite qubit projector user-defined literal. template < class T > void qpp::internal::hash combine (std::size t &seed, const T &v) template<typename Derived > std::size_t qpp::hash_eigen (const Eigen::MatrixBase< Derived > &A, std::size_t seed=0) Computes the hash of en Eigen matrix/vector/expression.

8.17.1 Detailed Description

Generic quantum computing functions.

8.18 input output.h File Reference

Input/output functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 internal::IOManipEigen qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
 Eigen expression ostream manipulator.

internal::IOManipEigen qpp::disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

 $\bullet \ \ \text{template}{<} \text{typename InputIterator} >$

internal::IOManipRange< InputIterator > qpp::disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

• template<typename Container >

internal::IOManipRange< typename Container::const_iterator > qpp::disp (const Container &c, const std ::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

• template<typename PointerType >

internal::IOManipPointer< PointerType > qpp::disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

• template<typename Derived >

void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

8.18.1 Detailed Description

Input/output functions.

8.19 instruments.h File Reference

Measurement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)
 Generalized inner product.

template<typename Derived >

 $\label{lem:dyn_col_vect} $$ dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2) $$$

Generalized inner product.

ullet template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state vector or density operator A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase
 Derived > &A, const cmat &U)

Measures the state vector or density matrix A in the orthonormal basis specified by the unitary matrix U.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template < typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &target, const std::vector< idx > &dims)

Measures the part target of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 projectors specified by the columns of the matrix V.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &target, idx d=2)

Measures the part target of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 projectors specified by the columns of the matrix V.

• template<typename Derived >

std::tuple < std::vector < idx >, double, cmat > qpp::measure_seq (const Eigen::MatrixBase < Derived > &A, std::vector < idx > target, std::vector < idx > dims)

Sequentially measures the part target of the multi-partite state vector or density matrix A in the computational basis.

• template<typename Derived >

 $std::tuple < std::vector < idx >, double, cmat > qpp::measure_seq (const Eigen::MatrixBase < Derived > \&A, std::vector < idx > target, idx d=2)$

Sequentially measures the part target of the multi-partite state vector or density matrix A in the computational basis.

8.19.1 Detailed Description

Measurement functions.

8.20 internal/classes/iomanip.h File Reference

Input/output manipulators.

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::internal::IOManipRange< InputIterator >
- class qpp::internal::IOManipPointer< PointerType >
- class qpp::internal::IOManipEigen

Namespaces

• qpp

Quantum++ main namespace.

• qpp::internal

Internal utility functions, do not use them directly or modify them.

8.20.1 Detailed Description

Input/output manipulators.

8.21 internal/classes/singleton.h File Reference

Singleton pattern via CRTP.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::internal::Singleton< T >

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Namespaces

• qpp

Quantum++ main namespace.

• qpp::internal

Internal utility functions, do not use them directly or modify them.

8.21.1 Detailed Description

Singleton pattern via CRTP.

8.22 internal/util.h File Reference

Internal utility functions.

This graph shows which files directly or indirectly include this file:

Classes

struct qpp::internal::Display_Impl_

Namespaces

qpp

Quantum++ main namespace.

· qpp::internal

Internal utility functions, do not use them directly or modify them.

Functions

- void qpp::internal::n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx qpp::internal::multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- $\bullet \ \ {\it template}{<} {\it typename Derived} >$

bool qpp::internal::check square mat (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

bool qpp::internal::check_vector (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >

bool qpp::internal::check_rvector (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >

bool qpp::internal::check_cvector (const Eigen::MatrixBase< Derived > &A)

template<typename T >

bool qpp::internal::check_nonzero_size (const T &x) noexcept

• template<typename T1 , typename T2 >

bool gpp::internal::check matching sizes (const T1 &lhs, const T2 &rhs) noexcept

- bool qpp::internal::check dims (const std::vector < idx > &dims)
- ullet template<typename Derived >

bool qpp::internal::check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

template<typename Derived >

bool qpp::internal::check_dims_match_cvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

template<typename Derived >

bool qpp::internal::check_dims_match_rvect (const std::vector < idx > &dims, const Eigen::MatrixBase < Derived > &A)

- bool qpp::internal::check eq dims (const std::vector < idx > &dims, idx dim) noexcept
- bool app::internal::check no duplicates (std::vector< idx > v)
- bool qpp::internal::check_subsys_match_dims (const std::vector< idx > &subsys, const std::vector< idx > &dims)
- $\bullet \ \ {\it template}{<} {\it typename Derived} >$

bool qpp::internal::check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept

• template<typename Derived >

bool qpp::internal::check_qubit_cvector (const Eigen::MatrixBase< Derived > &A) noexcept

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

 $bool\ qpp::internal::check_qubit_rvector\ (const\ Eigen::MatrixBase < Derived > \&A)\ noexcept$

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

bool qpp::internal::check_qubit_vector (const Eigen::MatrixBase< Derived > &A) noexcept

- bool qpp::internal::check_perm (const std::vector< idx > &perm)
- template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > qpp::internal::kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)

ullet template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > qpp::internal::dirsum2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)

• template<typename T >

void qpp::internal::variadic_vector_emplace (std::vector< T > &)

• template<typename T , typename First , typename... Args>

void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)

- idx qpp::internal::get_num_subsys (idx D, idx d)
- idx qpp::internal::get_dim_subsys (idx sz, idx N)

8.22.1 Detailed Description

Internal utility functions.

8.23 MATLAB/matlab.h File Reference

Input/output interfacing with MATLAB.

```
#include "mat.h"
#include "mex.h"
```

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< cplx > ::type
 qpp::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type qpp::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >
 std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

• template<typename Derived >

&mode)

std::enable_if< !std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

8.23.1 Detailed Description

Input/output interfacing with MATLAB.

8.24 number_theory.h File Reference

Number theory functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

std::vector< int > qpp::x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

• double qpp::contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

• bigint qpp::gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint qpp::gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

• bigint qpp::lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint qpp::lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

• std::vector< idx > qpp::invperm (const std::vector< idx > &perm)

Inverse permutation.

• std::vector< idx > qpp::compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

std::vector< bigint > qpp::factors (bigint a)

Prime factor decomposition.

• bigint qpp::modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

• bigint qpp::modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

• std::tuple< bigint, bigint, bigint > qpp::egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

bigint qpp::modinv (bigint a, bigint p)

Modular inverse of a mod p.

bool qpp::isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

• bigint qpp::randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

- std::vector< std::pair< int, int > > qpp::convergents (const std::vector< int > &cf)
 Convergents.
- std::vector< std::pair< int, int > > qpp::convergents (double x, idx N)
 Convergents.

8.24.1 Detailed Description

Number theory functions.

8.25 operations.h File Reference

Quantum operation functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

Functions

template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &target,
 const std::vector< idx > &dims)

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &target,
 idx d=2)

Applies the controlled-gate A to the part target of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &target, const std::vector< idx > &dims)

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &target, idx d=2)

Applies the gate A to the part target of the multi-partite state vector or density matrix state.

• template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

template < typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std \leftrightarrow ::vector< idx > &target, const std::vector< idx > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part target of the multi-partite density matrix A.

template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std ::vector< idx > &target, idx d=2)

Applies the channel specified by the set of Kraus operators Ks to the part target of the multi-partite density matrix A.

cmat qpp::kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat qpp::kraus2choi (const std::vector < cmat > &Ks)

Choi matrix.

std::vector< cmat > qpp::choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

cmat qpp::choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat qpp::super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

template<typename Derived >

 $\label{lem:dyn_mat} $$ dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std $$::vector < idx > &dims)$$

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

• template<typename Derived >

 $dyn_mat < typename Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase < Derived > &A, const std <math>\leftarrow$::vector < idx > &dims)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

• template<typename Derived >

Partial trace.

 $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}>$

dyn_mat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &target, idx d=2)

Partial trace.

• template<typename Derived >

 $dyn_mat < typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &target, const std::vector < idx > &dims)$

Partial transpose.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &target, idx d=2)

Partial transpose.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &perm, const std::vector< idx > &dims)

Subsystem permutation.

• template<typename Derived >

 $dyn_mat < typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &perm, idx d=2)$

Subsystem permutation.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::applyQFT (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &target, idx d=2, bool swap=true)

Applies the qudit quantum Fourier transform to the part target of the multi-partite state vector or density matrix A.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::applyTFQ (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &target, idx d=2, bool swap=true)

Applies the inverse (adjoint) qudit quantum Fourier transform to the part target of the multi-partite state vector or density matrix A.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > qpp::TFQ (const Eigen::MatrixBase< Derived > &A, idx d=2, bool swap=true)

Inverse (adjoint) qudit quantum Fourier transform.

• template<typename Derived >

 $\label{local_vect} $$ dyn_col_vect< typename \ Derived::Scalar > qpp::QFT \ (const \ Eigen::MatrixBase< \ Derived > \&A, \ idx \ d=2, \ bool \ swap=true) $$$

Qudit quantum Fourier transform.

8.25.1 Detailed Description

Quantum operation functions.

8.26 qpp.h File Reference

Quantum++ main header file, includes all other necessary headers.

```
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <fstream>
```

396 File Documentation

```
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iterator>
#include <limits>
#include <memory>
#include <numeric>
#include <ostream>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "types.h"
#include "classes/exception.h"
#include "constants.h"
#include "traits.h"
#include "classes/idisplay.h"
#include "internal/util.h"
#include "internal/classes/iomanip.h"
#include "input_output.h"
#include "internal/classes/singleton.h"
#include "classes/random_devices.h"
#include "random.h"
#include "number_theory.h"
#include "functions.h"
#include "classes/init.h"
#include "classes/codes.h"
#include "classes/gates.h"
#include "classes/states.h"
#include "statistics.h"
#include "operations.h"
#include "entropies.h"
#include "entanglement.h"
#include "classes/timer.h"
#include "instruments.h"
#include "classes/reversible.h"
#include "classes/noise.h"
#include "classes/circuits/circuits.h"
#include "classes/circuits/engines.h"
```

Namespaces

• qpp

Quantum++ main namespace.

Macros

• #define QPP_UNUSED_

8.26.1 Detailed Description

Quantum++ main header file, includes all other necessary headers.

8.26.2 Macro Definition Documentation

8.26.2.1 QPP_UNUSED_

#define QPP_UNUSED_

8.27 random.h File Reference

Randomness-related functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

398 File Documentation

Functions

double qpp::rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

• bigint qpp::rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

idx qpp::randidx (idx a=std::numeric_limits< idx >::min(), idx b=std::numeric_limits< idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

template<typename Derived >

Derived qpp::rand (idx rows QPP_UNUSED_, idx cols QPP_UNUSED_, double a QPP_UNUSED_=0, double b QPP_UNUSED_=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

template<typename Derived >

Derived qpp::randn (idx rows QPP_UNUSED_, idx cols QPP_UNUSED_, double mean QPP_UNUSED_=0, double sigma QPP_UNUSED_=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double qpp::randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat qpp::randU (idx D=2)

Generates a random unitary matrix.

• cmat qpp::randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector< cmat > qpp::randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat qpp::randH (idx D=2)

Generates a random Hermitian matrix.

ket qpp::randket (idx D=2)

Generates a random normalized ket (pure state vector)

• cmat qpp::randrho (idx D=2)

Generates a random density matrix.

std::vector< idx > qpp::randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > qpp::randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

8.27.1 Detailed Description

Randomness-related functions.

8.28 statistics.h File Reference

Statistics functions.

This graph shows which files directly or indirectly include this file:

Namespaces

dbb

Quantum++ main namespace.

Functions

std::vector< double > qpp::uniform (idx N)

Uniform probability distribution vector.

std::vector< double > qpp::marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > qpp::marginalY (const dmat &probXY)

Marginal distribution.

template<typename Container >
 double qpp::avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_←
 iterable< Container >::value >::type *=nullptr)

Average.

• template<typename Container >

 $\label{local-continuous} \begin{tabular}{ll} double & qpp::cov & (const & probXY, const & Container & X, const & Container & Y, typename & std::enable_if < is_iterable < Container >::value >::type *=nullptr) \\ \end{tabular}$

Covariance.

 $\bullet \ \ \text{template}{<} \text{typename Container} >$

double qpp::var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Variance.

400 File Documentation

template<typename Container >
 double qpp::sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_←
 iterable< Container >::value >::type *=nullptr)

Standard deviation.

template<typename Container >
 double qpp::cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if<
 is_iterable< Container >::value >::type *=nullptr)
 Correlation.

8.28.1 Detailed Description

Statistics functions.

8.29 traits.h File Reference

Type traits.

This graph shows which files directly or indirectly include this file:

Classes

struct qpp::make_void < Ts >

Helper for qpp::to_void<>> alias template.

struct qpp::is_iterable < T, typename >

Checks whether T is compatible with an STL-like iterable container.

• struct qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().end()), decltype(*(std::declval< T >().end()), decltype(*(std::declval< T >().end()))

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

struct qpp::is_matrix_expression< Derived >

Checks whether the type is an Eigen matrix expression.

struct qpp::is_complex< T >

Checks whether the type is a complex type.

struct qpp::is_complex< std::complex< T >>

Checks whether the type is a complex number type, specialization for complex types.

Namespaces

• qpp

Quantum++ main namespace.

Typedefs

template < typename... Ts>
 using qpp::to_void = typename make_void < Ts... > ::type
 Alias template that implements the proposal for void_t.

8.29.1 Detailed Description

Type traits.

8.30 types.h File Reference

Type aliases.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

402 File Documentation

Typedefs

```
• using qpp::idx = std::size_t
     Non-negative integer index, make sure you use an unsigned type.
• using qpp::bigint = long long int
     Big integer.
using qpp::cplx = std::complex < double >
      Complex number in double precision.
• using qpp::ket = Eigen::VectorXcd
      Complex (double precision) dynamic Eigen column vector.
• using qpp::bra = Eigen::RowVectorXcd
      Complex (double precision) dynamic Eigen row vector.
• using qpp::cmat = Eigen::MatrixXcd
      Complex (double precision) dynamic Eigen matrix.
• using qpp::dmat = Eigen::MatrixXd
      Real (double precision) dynamic Eigen matrix.
• template<typename Scalar >
  using <a href="mailto:qpp::dyn_mat">qpp::dyn_mat</a> = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >
      Dynamic Eigen matrix over the field specified by Scalar.
• template<typename Scalar >
  using qpp::dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
      Dynamic Eigen column vector over the field specified by Scalar.
• template<typename Scalar >
  using qpp::dyn row vect = Eigen::Matrix < Scalar, 1, Eigen::Dynamic >
     Dynamic Eigen row vector over the field specified by Scalar.
```

8.30.1 Detailed Description

Type aliases.

8.31 /Users/vlad/qpp/README.md File Reference

Index

/Users/vlad/qpp/README.md, 402	applyTFQ
~Codes	qpp, 38
qpp::Codes, 138	avg
~Dynamic_bitset	qpp, 38
qpp::Dynamic_bitset, 160	4PP; 00
~Gates	b00
	qpp::States, 340
qpp::Gates, 176	b01
~IDisplay	
qpp::IDisplay, 192	qpp::States, 341
∼IJSON	b10
qpp::IJSON, 195	qpp::States, 341
\sim Init	b11
qpp::Init, 197	qpp::States, 341
~NoiseBase	begin
qpp::NoiseBase, 243	qpp::QCircuit, 276
~QCircuit	bigint
	qpp, 28
qpp::QCircuit, 276	
~QEngine	Bit_circuit
qpp::QEngine, 302	qpp::Bit_circuit, 133
\sim RandomDevices	bloch2rho
qpp::RandomDevices, 328	qpp, 38
\sim Singleton	bra
qpp::internal::Singleton, 332	qpp, 28
~States	
qpp::States, 338	c_reg_
~Timer	qpp::QCircuit::MeasureStep, 238
	cCTRL_custom
qpp::Timer, 349	qpp::QCircuit, 279
^	cCTRL
A	
qpp::internal::IOManipEigen, 202	qpp::QCircuit, 277, 278
absm	CNOTba
qpp, 31	qpp::Gates, 185
abssq	CNOT
qpp, 31, 32	qpp::Bit_circuit, 133
add_hash_	qpp::Bit_circuit::Gate_count, 172
qpp::QCircuit, 276	qpp::Gates, 185
adjoint	CTRL_custom
qpp, 32	qpp::QCircuit, 282
all	CTRL CTRL
	gpp::Gates, 177
qpp::Dynamic_bitset, 160	
anticomm	qpp::QCircuit, 280, 281
qpp, 33	cbegin
any	qpp::QCircuit, 277
qpp::Dynamic_bitset, 160	cend
apply	qpp::QCircuit, 279
qpp, 33–35	check_cvector
applyCTRL	qpp::internal, 122
qpp, 36	check_dims
applyQFT	qpp::internal, 122
app. 37	check dims match evect

qpp::internal, 122	qpp::Codes, 138
check_dims_match_mat	comm
qpp::internal, 122	qpp, 40
check_dims_match_rvect	complement
qpp::internal, 122	qpp, 40
check_eq_dims	compperm
qpp::internal, 123	qpp, 41
check_matching_sizes	compute_probs_
qpp::internal, 123	qpp::NoiseBase, 244
check_no_duplicates	compute_state_
qpp::internal, 123	qpp::NoiseBase, 244
check_nonzero_size	concurrence qpp, 41
qpp::internal, 123	conjugate
check_perm	qpp, 42
qpp::internal, 123	const_iterator
check_qubit_cvector	qpp::QCircuit, 274
qpp::internal, 123	constants.h, 376
check_qubit_matrix	contfrac2x
qpp::internal, 124	qpp, 42
check_qubit_rvector	convergents
qpp::internal, 124	qpp, 42, 43
check_qubit_vector	cor
qpp::internal, 124	qpp, 43
check_rvector	cosm
qpp::internal, 124	qpp, 44
check_square_mat	count
qpp::internal, 124	qpp::Dynamic_bitset, 160
check_subsys_match_dims	count
qpp::internal, 124	qpp::QCircuit, 297
check_vector	COV
qpp::internal, 125	qpp, 44
choi2kraus	cplx
qpp, 39	qpp, 29
choi2super	ctrl
qpp, 39	qpp::QCircuit::GateStep, 189
chop	CustomException
qpp, 118	qpp::exception::CustomException, 140
chop_	cwise
qpp::internal::IOManipEigen, 202	qpp, 45
classes/circuits/circuits.h, 365	CZ
classes/circuits/engines.h, 366	qpp::Gates, 185
classes/codes.h, 367	11 7
classes/exception.h, 367	d_
classes/gates.h, 369	qpp::NoiseBase, 247
classes/idisplay.h, 370	qpp::QCircuit, 297
classes/init.h, 371	data
classes/noise.h, 372	qpp::Dynamic_bitset, 160
classes/random_devices.h, 373	det
classes/reversible.h, 373	qpp, 45
classes/states.h, 374	difference_type
classes/timer.h, 375	qpp::QCircuit::iterator, 215
cmat	dirsum
qpp, 29	qpp, 46, 47
cmat_hash_tbl_	dirsum2
qpp::QCircuit, 296	qpp::internal, 125
Codes	dirsumpow
qpp::Codes, 138	qpp, 47
codeword	disp

qpp, 48–50	qpp::exception::Exception, 171
display	qpp::exception::InvalidIterator, 199
qpp::Dynamic_bitset, 161	qpp::exception::MatrixMismatchSubsys, 221
qpp::IDisplay, 193	qpp::exception::MatrixNotCvector, 223
qpp::QCircuit, 282	qpp::exception::MatrixNotRvector, 225
qpp::QCircuit::iterator::value_type_, 360	qpp::exception::MatrixNotSquare, 227
qpp::QEngine, 302	qpp::exception::MatrixNotSquareNorCvector, 229
qpp::Timer, 349	qpp::exception::MatrixNotSquareNorRvector, 231
qpp::internal::IOManipEigen, 202	qpp::exception::MatrixNotSquareNorVector, 233
qpp::internal::IOManipPointer, 204	qpp::exception::MatrixNotVector, 235
qpp::internal::IOManipRange, 207	qpp::exception::NoCodeword, 240
display_impl_	qpp::exception::NotBipartite, 250
qpp::internal::Display_Impl_, 154	qpp::exception::NotImplemented, 252
dits_	qpp::exception::NotQubitCvector, 254
qpp::QEngine, 308	qpp::exception::NotQubitMatrix, 256
dmat	qpp::exception::NotQubitRvector, 258
qpp, 29	qpp::exception::NotQubitSubsys, 260
dyn_col_vect	qpp::exception::NotQubitVector, 262
qpp, 29	qpp::exception::OutOfRange, 264
dyn_mat	qpp::exception::PermInvalid, 266
qpp, 29	qpp::exception::PermMismatchDims, 268
dyn_row_vect	qpp::exception::QuditAlreadyMeasured, 323
qpp, 30	qpp::exception::SizeMismatch, 334
Dynamic_bitset	qpp::exception::SubsysMismatchDims, 346
qpp::Bit_circuit, 134	qpp::exception::TypeMismatch, 353
qpp::Dynamic_bitset, 159	qpp::exception::UndefinedType, 355
	qpp::exception::Unknown, 357
ee	qpp::exception::ZeroSize, 363
qpp, 118	execute
egcd	qpp::QEngine, 302, 303
qpp, 50	qpp::QNoisyEngine, 311
eig	expandout
qpp, 51	qpp::Gates, 177, 178
elem_	experimental/experimental.h, 380
qpp::QCircuit::iterator, 219	expm
end	qpp, 54
qpp::QCircuit, 282, 283	
end_	FRED
qpp::Timer, 351	qpp::Bit_circuit, 134
qpp::internal::IOManipPointer, 205	qpp::Bit_circuit::Gate_count, 173
qpp::internal::IOManipRange, 208	qpp::Gates, 185
entanglement	factors
qpp, 51, 52	qpp, 54
entanglement.h, 377	Fd
entropies.h, 378	qpp::Gates, 179
entropy	fill_Ks_
qpp, 52, 53	qpp::QuditDepolarizingNoise, 326
evals	fill_probs_
qpp, 53	qpp::QuditDepolarizingNoise, 326
evects	first_
qpp, 53	qpp::internal::IOManipRange, 208
Exception	flip
qpp::exception::DimsInvalid, 143	qpp::Dynamic_bitset, 161
qpp::exception::DimsMismatchCvector, 145	functions.h, 380
qpp::exception::DimsMismatchMatrix, 147	funm
qpp::exception::DimsMismatchRvector, 149	qpp, 55
qpp::exception::DimsMismatchVector, 151	
qpp::exception::DimsNotEqual, 153	GHZ
qpp::exception::Duplicates, 156	qpp::States, 341

gate	qpp::NoiseBase, 245
qpp::QCircuit, 283, 284	get_last_p
gate_count	qpp::NoiseBase, 245
qpp::Bit_circuit, 136	get_measured
gate_custom	qpp::QCircuit, 288
qpp::QCircuit, 284	qpp::QEngine, 304
gate_fan	get_measurement_count
qpp::QCircuit, 285, 286	qpp::QCircuit, 288
gate_hash_	get_measurements_
qpp::QCircuit::GateStep, 189	qpp::QCircuit, 289
gate_type_	get_name
qpp::QCircuit::GateStep, 189	qpp::Gates, 180
GateStep	qpp::QCircuit, 289
qpp::QCircuit::GateStep, 188	get_nc
GateType	qpp::QCircuit, 289
qpp::QCircuit, 274	get_noise_results
Gates	qpp::QNoisyEngine, 311
qpp::Gates, 176	get_non_measured
gates	qpp::QCircuit, 289
qpp::QCircuit, 297	qpp::QEngine, 304
gates_ip_	get_nop_count
qpp::QCircuit::iterator::value_type_, 360	qpp::QCircuit, 290
gcd	get_nq
qpp, 55	qpp::QCircuit, 290
gconcurrence	get_num_subsys
qpp, 56	qpp::internal, 125
generated_	get_prng
qpp::NoiseBase, 247	qpp::RandomDevices, 329
get	get_probs
qpp::Dynamic_bitset, 162	qpp::NoiseBase, 246
get_Ks	qpp::QEngine, 305
qpp::NoiseBase, 245	get_psi
get_circuit	qpp::QEngine, 305
qpp::QEngine, 303	get_relative_pos_
get_cmat_hash_tbl_	qpp::QEngine, 305
qpp::QCircuit, 286	get_step_count
get d	qpp::QCircuit, 290
qpp::NoiseBase, 244	get_thread_local_instance
qpp::QCircuit, 286	qpp::internal::Singleton, 332
get dim subsys	grams
•	qpp, 56, 57
qpp::internal, 125 get dit	
-	Н
qpp::QEngine, 303	qpp::Gates, 185
get_dits	hash_combine
qpp::QEngine, 304	qpp::internal, 125
get_duration	hash_eigen
qpp::Timer, 350	qpp, <mark>58</mark>
get_gate_count	heig
qpp::QCircuit, 286, 287	qpp, 58
get_gate_depth	hevals
qpp::QCircuit, 287	qpp, 59
get_gates_	hevects
qpp::QCircuit, 287	qpp, 59
get_instance	
qpp::internal::Singleton, 332	i_
get_last_idx	qpp::NoiseBase, 248
qpp::NoiseBase, 245	IDisplay
get_last_K	qpp::IDisplay, 192

IJSON	kron
qpp::IJSON, 195	qpp, 62–64
IOManipEigen	kron2
qpp::internal::IOManipEigen, 201	qpp::internal, 125
IOManipPointer	kronpow
qpp::internal::IOManipPointer, 204	qpp, 64
IOManipRange	Ks_
qpp::internal::IOManipRange, 207	qpp::NoiseBase, 248
Id	last
qpp::Gates, 180	qpp::internal::IOManipRange, 208
qpp::Gates, 186	lcm
idx	qpp, 65
qpp, 30	load
index	qpp, 66
qpp::Dynamic_bitset, 162	qpp::RandomDevices, 329
infty	loadMATLAB
qpp, 118	qpp, 66, 67
Init	logdet
qpp::Init, 197	qpp, 68
input_output.h, 385	logm
instruments.h, 386	qpp, 68
internal/classes/iomanip.h, 387	lognegativity
internal/classes/singleton.h, 388	qpp, 69
internal/util.h, 389	MATLAB/matlab.h, 391
internal::Singleton < const Codes >	MODMUL
qpp::Codes, 139	qpp::Gates, 180
internal::Singleton < const Gates >	marginalX
qpp::Gates, 185	qpp, 69
internal::Singleton < const Init >	marginalY
qpp::Init, 198	qpp, 71
internal::Singleton< const States > qpp::States, 340	mats hash
internal::Singleton < RandomDevices >	qpp::QCircuit::MeasureStep, 238
qpp::RandomDevices, 330	maxn
inverse	qpp, 118
qpp, 59	measure
invperm	qpp, 71–76
qpp, 60	measure_seq
ip	qpp, 76, 77
qpp, 60, 61	MeasureStep
ip_	qpp::QCircuit::MeasureStep, 237
qpp::QCircuit::iterator::value_type_, 361	MeasureType
isprime	qpp::QCircuit, 275
qpp, 61	measured_
iterator	qpp::QCircuit, 297
qpp::QCircuit::iterator, 216	measurement_count_ qpp::QCircuit, 297
iterator_category	measurement type
qpp::QCircuit::iterator, 215	qpp::QCircuit::MeasureStep, 238
tim.	measurements
jn gnn::Statos 229	qpp::QCircuit, 297
qpp::States, 338	measurements ip
ket	qpp::QCircuit::iterator::value_type_, 361
qpp, 30	measureV
kraus2choi	qpp::QCircuit, 290, 291
qpp, 61	measureZ
kraus2super	qpp::QCircuit, 291
qpp, 62	mes

qpp::States, 338	qpp, 84
minus	one
qpp::States, 339	qpp::States, 339
mket	operations.h, 393
qpp, 77, 78	operator!=
modinv	qpp::Dynamic_bitset, 163
qpp, 78	qpp::QCircuit::iterator, 216
modmul	operator<<
qpp, 79	qpp::IDisplay, 193
modpow	qpp::QCircuit, 295, 296
qpp, 79	operator*
mprj	qpp::QCircuit::iterator, 217
qpp, 80	operator()
msg_	qpp::NoiseBase, 246, 247
qpp::exception::Exception, 172 multiidx2n	qpp::internal::EqualEigen, 168
	qpp::internal::HashEigen, 190
qpp, 81	operator++
qpp::internal, 126	qpp::QCircuit::iterator, 217
n2multiidx	operator-
qpp, 81	qpp::Dynamic_bitset, 163
qpp::internal, 126	operator= qpp::IDisplay, 193
N_	qpp::IJSON, 195
qpp::Dynamic_bitset, 167	qpp::QCircuit::iterator, 217
qpp::internal::IOManipPointer, 205	qpp::QCircuit::iterator::value_type_, 360
NOT	qpp::QEngine, 306
qpp::Bit_circuit, 134	qpp::Timer, 350
qpp::Bit_circuit::Gate_count, 173	qpp::internal::IOManipPointer, 204
name	qpp::internal::IOManipRange, 207
qpp::QCircuit, 298	qpp::internal::Singleton, 332
qpp::QCircuit::GateStep, 189	operator==
qpp::QCircuit::MeasureStep, 238	qpp::Dynamic_bitset, 164
nc_	qpp::QCircuit::iterator, 218
qpp::QCircuit, 298	operator"" _bra
negativity	qpp::literals, 127
qpp, 82	operator"" _i
noise	qpp, 84
qpp::QNoisyEngine, 312	qpp::literals, 127
noise_results_	operator"" _ket
qpp::QNoisyEngine, 312	qpp::literals, 128
noise_type	operator"" _prj
gpp::NoiseBase, 242	qpp::literals, 128
NoiseBase	
qpp::NoiseBase, 243	p_
none	qpp::internal::IOManipPointer, 205
qpp::Dynamic_bitset, 162	pGHZ
nop	qpp::States, 342
qpp::QCircuit, 292	pb00
norm	qpp::States, 341
qpp, 83	pb01
normalize	qpp::States, 341
qpp, 83	pb10
nq_	qpp::States, 342
qpp::QCircuit, 298	pb11
number_theory.h, 391	qpp::States, 342
	pi
offset_	qpp, 118
qpp::Dynamic_bitset, 163	plus
omega	qpp::States, 339

pointer	anticomm, 33
qpp::QCircuit::iterator, 215	apply, 33–35
powm	applyCTRL, 36
qpp, 84	applyQFT, 37
prj	applyTFQ, 38
qpp, 85	avg, 38
prng_	bigint, 28
qpp::RandomDevices, 330	bloch2rho, 38
probs_	bra, 28
qpp::NoiseBase, 248	choi2kraus, 39
qpp::QEngine, 308	choi2super, 39
prod	chop, 118
qpp, 85, 86	cmat, 29
psi_	comm, 40
qpp::QEngine, 308	complement, 40
ptrace	compperm, 41
qpp, 86, 87	concurrence, 41
ptrace1	conjugate, 42
qpp, 87, 88	contfrac2x, 42
ptrace2	convergents, 42, 43
qpp, 88, 89	cor, 43
ptranspose	cosm, 44
qpp, 89, 90	cov, 44
pW	cplx, 29
qpp::States, 342	cwise, 45
px0	det, 45
qpp::States, 342	dirsum, 46, 47
px1	dirsumpow, 47
qpp::States, 342	disp, 48–50
py0	dmat, 29
qpp::States, 343	dyn_col_vect, 29
py1	dyn_mat, 29
qpp::States, 343	dyn_row_vect, 30
pz0	ee, 118
qpp::States, 343	egcd, 50
pz1	eig, 51
qpp::States, 343	entanglement, 51, 52
00: "	entropy, 52, 53
QCircuit QCi it 077	evals, 53
qpp::QCircuit, 275	evects, 53
QEngine QCinxiit 800	expm, 54
qpp::QCircuit, 296	factors, 54
qpp::QEngine, 301, 302	funm, 55
QFT	gcd, 55
qpp, 90	gconcurrence, 56
qpp::QCircuit, 292, 293	grams, 56, 57
QNoisyEngine	hash_eigen, 58
qpp::QNoisyEngine, 310	heig, 58
QPP_UNUSED_	hevals, 59
qpp.h, 397	hevects, 59
qc_ app.://Circuit::itaratar_210	idx, 30
qpp::QCircuit::iterator, 219	infty, 118
qpp::QEngine, 308	inverse, 59
qmutualinfo	
qpp, 91	invperm, 60
qpp, 15	ip, 60, 61
absm, 31	isprime, 61
abssq, 31, 32	ket, 30
adjoint, 32	kraus2choi, 61

kraus2super, 62	schmidtprobs, 107, 108
kron, 62–64	sigma, 108
kronpow, 64	sinm, 109
lcm, 65	spectralpowm, 109
load, 66	sqrtm, 110
loadMATLAB, 66, 67	sum, 110, 111
logdet, 68	super2choi, 111
logm, 68	svals, 112
lognegativity, 69	svd, 112
marginalX, 69	svdU, 112
marginalY, 71	svdV, 113
maxn, 118	syspermute, 113, 114
measure, 71–76	TFQ, 114
measure_seq, 76, 77	to_void, 30
mket, 77, 78	trace, 114
modinv, 78	transpose, 115
modmul, 79	tsallis, 115, 116
modpow, 79	uniform, 116
mprj, 80	var, 117
multiidx2n, 81	x2contfrac, 117
n2multiidx, 81	qpp.h, 395
negativity, 82	QPP_UNUSED_, 397
norm, 83	qpp::Bit_circuit, 131
normalize, 83	Bit_circuit, 133
omega, 84	CNOT, 133
operator"" _i, 84	Dynamic_bitset, 134
pi, 118	FRED, 134
powm, 84	gate_count, 136
prj, 85	NOT, 134
prod, 85, 86	reset, 134
ptrace, 86, 87	SWAP, 135
ptrace1, 87, 88	TOF, 135
ptrace2, 88, 89	X, 135
ptranspose, 89, 90	qpp::Bit_circuit::Gate_count, 172
QFT, 90	CNOT, 172
qmutualinfo, 91	FRED, 173
rand, 92–94	NOT, 173
randH, 94	SWAP, 173
randidx, 95	TOF, 173
randket, 95	X, 173
randkraus, 95	qpp::Codes, 136
randn, 96, 97	\sim Codes, 138
randperm, 98	Codes, 138
randprime, 98	codeword, 138
randprob, 99	internal::Singleton< const Codes >, 139
randrho, 99	Type, 137
randU, 99	qpp::Dynamic_bitset, 157
randV, 100	∼Dynamic_bitset, 160
renyi, 100, 101	all, 160
reshape, 101	any, 160
rho2bloch, 102	count, 160
rho2pure, 102	data, 160
save, 103	display, 161
saveMATLAB, 103, 104	Dynamic_bitset, 159
schatten, 104	flip, 161
schmidtA, 105	get, 162
schmidtB, 105, 106	index_, 162
schmidtcoeffs, 106, 107	N_, 167

none, 162	Init, 197
offset_, 163	internal::Singleton< const Init >, 198
operator!=, 163	qpp::NoiseBase
operator-, 163	\sim NoiseBase, 243
operator==, 164	compute_probs_, 244
rand, 164, 165	compute_state_, 244
reset, 165	d_, 247
set, 165, 166	generated_, 247
size, 166	get_Ks, 245
storage_size, 166	get_d, 244
storage size , 167	get_last_idx, 245
storage_type, 159	get_last_K, 245
to_string, 166	get_last_p, 245
v_, 167	get_probs, 246
value_type, 159	i_, 248
qpp::Gates, 174	_, Ks , 248
∼Gates, 176	noise_type, 242
CNOTba, 185	NoiseBase, 243
CNOT, 185	operator(), 246, 247
CTRL, 177	probs_, 248
CZ, 185	qpp::NoiseBase< T >, 241
expandout, 177, 178	qpp::NoiseType, 248
FRED, 185	qpp::NoiseType::StateDependent, 335
Fd, 179	qpp::NoiseType::StateIndependent, 335
Gates, 176	qpp::QCircuit, 269
get_name, 180	~QCircuit, 276
H, 185	add_hash_, 276
ld, 180	begin, 276
ld2, 186	cCTRL_custom, 279
	cCTRL, 277, 278
internal::Singleton< const Gates >, 185	
MODMUL, 180	CTRL_custom, 282 CTRL, 280, 281
Rn, 181	
RX, 181	cbegin, 277
RY, 182	cend, 279
RZ, 182	cmat_hash_tbl_, 296
S, 186	const_iterator, 274
SWAPd, 182	count_, 297
SWAP, 186	d_, 297
T, 186	display, 282
TOF, 186	end, 282, 283
X, 186	gate, 283, 284
Xd, 184	gate_custom, 284
Y, 187	gate_fan, 285, 286
Z, 187	GateType, 274
Zd, 184	gates_, 297
qpp::IDisplay, 191	get_cmat_hash_tbl_, 286
\sim IDisplay, 192	get_d, 286
display, 193	get_gate_count, 286, 287
IDisplay, 192	get_gate_depth, 287
operator<<, 193	get_gates_, 287
operator=, 193	get_measured, 288
qpp::IJSON, 194	get_measurement_count, 288
∼IJSON, 195	get_measurements_, 289
IJSON, 195	get_name, 289
operator=, 195	get_nc, 289
to_JSON, 196	get_non_measured, 289
qpp::Init, 196	get_nop_count, 290
\sim Init, 197	get_nq, 290

_	est stem securit 000	annuOFasina 000
_	get_step_count, 290	qpp::QEngine, 299
	MeasureType, 275	~QEngine, 302
	neasured_, 297	display, 302
	neasurement_count_, 297	dits_, 308
	neasurements_, 297	execute, 302, 303
	neasureV, 290, 291	get_circuit, 303
	neasureZ, 291	get_dit, 303
	name_, 298	get_dits, 304
	nc_, 298	get_measured, 304
	op, 292	get_non_measured, 304
	nq_, 298	get_probs, 305
О	perator<<, 295, 296	get_psi, 305
	QCircuit, 275	get_relative_pos_, 305
C	QEngine, 296	operator=, 306
C	QFT, 292, 293	probs_, 308
s	tep_types_, 298	psi_, 308
S	StepType, 275	QEngine, 301, 302
Т	FQ, 293, 294	qc_, 308
te	o_JSON, 294	reset, 306
qpp::C	QCircuit::GateStep, 187	set_dit, 306
С	strl_, 189	set_measured_, 306
g	pate hash , 189	set_psi, 307
9	pate_type_, 189	subsys_, 308
	GateStep, 188	to_JSON, 307
	name_, 189	qpp::QNoisyEngine
	arget_, 189	execute, 311
	QCircuit::MeasureStep, 236	get_noise_results, 311
	:_reg_, 238	noise_, 312
	69_, 200 nats_hash_, 238	noise_results_, 312
	MeasureStep, 237	QNoisyEngine, 310
	neasurement_type_, 238	qpp::QNoisyEngine< NoiseModel >, 309
	name , 238	qpp::QubitAmplitudeDampingNoise, 313
	arget_, 238	QubitAmplitudeDampingNoise, 314
	QCircuit::iterator, 214	qpp::QubitBitFlipNoise, 314
	lifference type, 215	QubitBitFlipNoise, 315
	elem_, 219	qpp::QubitBitPhaseFlipNoise, 316
	terator, 216	QubitBitPhaseFlipNoise, 317
	terator_category, 215	qpp::QubitDepolarizingNoise, 317
	pperator!=, 216	QubitDepolarizingNoise, 318
	operator*, 217	qpp::QubitPhaseDampingNoise, 319
	pperator++, 217	QubitPhaseDampingNoise, 320
	operator=, 217	qpp::QubitPhaseFlipNoise, 320
	operator==, 218	QubitPhaseFlipNoise, 321
•	pointer, 215	qpp::QuditDepolarizingNoise, 324
	{[C,} 219	fill_Ks_, 326
	eference, 216	fill_probs_, 326
	et_begin_, 218	QuditDepolarizingNoise, 325
	et_end_, 218	qpp::RandomDevices, 327
	ralue_type, 216	\sim RandomDevices, 328
	QCircuit::iterator::value_type_, 358	get_prng, 329
d	lisplay, 360	internal::Singleton< RandomDevices >, 330
	pates_ip_, 360	load, 329
iţ	o_, 361	prng_, 330
n	neasurements_ip_, 361	RandomDevices, 328
O	pperator=, 360	rd_, 330
t	ype_, 361	save, 329
٧	ralue_type_, 359, 360	qpp::States, 335
٧	ralue_type_qc_, 361	∼States, 338

L00 040	
b00, 340	qpp::exception::DimsMismatchRvector, 148
b01, 341	Exception, 149
b10, 341	type_description, 149
b11, 341	qpp::exception::DimsMismatchVector, 150
GHZ, 341	Exception, 151
internal::Singleton < const States >, 340	type_description, 151
jn, 338	qpp::exception::DimsNotEqual, 152
mes, 338	Exception, 153
minus, 339	type_description, 153
one, 339	qpp::exception::Duplicates, 155
pGHZ, 342	Exception, 156
•	•
pb00, 341	type_description, 156
pb01, 341	qpp::exception::Exception, 169
pb10, 342	Exception, 171
pb11, 342	msg_, 172
plus, 339	type_description, 171
pW, 342	what, 171
px0, 342	where_, 172
px1, 342	qpp::exception::InvalidIterator, 198
py0, 343	Exception, 199
py1, 343	type description, 200
pz0, 343	qpp::exception::MatrixMismatchSubsys, 220
•	Exception, 221
pz1, 343	•
States, 338	type_description, 222
W, 343	qpp::exception::MatrixNotCvector, 222
x0, 343	Exception, 223
x1, 344	type_description, 224
y0, 344	qpp::exception::MatrixNotRvector, 224
y1, 344	Exception, 225
z0, 344	type_description, 226
z1, 344	qpp::exception::MatrixNotSquare, 226
zero, 340	Exception, 227
qpp::Timer	type_description, 228
~Timer, 349	qpp::exception::MatrixNotSquareNorCvector, 228
display, 349	Exception, 229
end_, 351	type_description, 230
get_duration, 350	qpp::exception::MatrixNotSquareNorRvector, 230
operator=, 350	Exception, 231
start_, 351	type_description, 232
tic, 350	qpp::exception::MatrixNotSquareNorVector, 232
tics, 351	Exception, 233
Timer, 348, 349	type description, 234
toc, 351	qpp::exception::MatrixNotVector, 234
qpp::Timer< T, CLOCK_T >, 347	Exception, 235
qpp::exception, 118	type_description, 236
qpp::exception::CustomException, 139	qpp::exception::NoCodeword, 239
CustomException, 140	Exception, 240
type_description, 141	type_description, 240
what_, 141	qpp::exception::NotBipartite, 249
qpp::exception::DimsInvalid, 142	Exception, 250
Exception, 143	type_description, 251
type_description, 143	qpp::exception::NotImplemented, 251
qpp::exception::DimsMismatchCvector, 144	Exception, 252
Exception, 145	type_description, 253
type_description, 145	qpp::exception::NotQubitCvector, 253
qpp::exception::DimsMismatchMatrix, 146	Exception, 254
	•
Exception, 147	type_description, 255
type_description, 147	qpp::exception::NotQubitMatrix, 255

Exception, 256	check_square_mat, 124
type_description, 257	check_subsys_match_dims, 124
qpp::exception::NotQubitRvector, 257	check_vector, 125
Exception, 258	dirsum2, 125
type_description, 259	get_dim_subsys, 125
qpp::exception::NotQubitSubsys, 259	get_num_subsys, 125
Exception, 260	hash_combine, 125
type_description, 261	kron2, 125
qpp::exception::NotQubitVector, 261	multiidx2n, 126
Exception, 262	n2multiidx, 126
type_description, 263	variadic_vector_emplace, 126
qpp::exception::OutOfRange, 263	qpp::internal::Display_Impl_, 154
Exception, 264	display_impl_, 154
type_description, 265	qpp::internal::EqualEigen, 168
qpp::exception::PermInvalid, 265	operator(), 168
Exception, 266	qpp::internal::HashEigen, 190
type_description, 267	operator(), 190
qpp::exception::PermMismatchDims, 267	qpp::internal::IOManipEigen, 200
Exception, 268	A_, 202
type_description, 269	chop_, 202
qpp::exception::QuditAlreadyMeasured, 322	display, 202
Exception, 323	IOManipEigen, 201
type_description, 324	qpp::internal::IOManipPointer
qpp::exception::SizeMismatch, 333	display, 204
Exception, 334	end_, 205
type_description, 334	IOManipPointer, 204
qpp::exception::SubsysMismatchDims, 345	N_, 205
Exception, 346	operator=, 204
type_description, 346	p_, 205
qpp::exception::TypeMismatch, 352	separator_, 205
Exception, 353	start_, 205
type_description, 354	qpp::internal::IOManipPointer< PointerType >, 203
qpp::exception::UndefinedType, 354	qpp::internal::IOManipRange
Exception, 355	display, 207
type_description, 356	end_, 208
qpp::exception::Unknown, 356	first_, 208
Exception, 357	IOManipRange, 207
type_description, 358	last_, 208
qpp::exception::ZeroSize, 362	operator=, 207
Exception, 363	separator_, 208
type_description, 363	start_, 208
qpp::experimental, 120	qpp::internal::IOManipRange< InputIterator >, 206
qpp::internal, 120	qpp::internal::Singleton
check_cvector, 122	\sim Singleton, 332
check_dims, 122	get_instance, 332
check_dims_match_cvect, 122	get_thread_local_instance, 332
check_dims_match_mat, 122	operator=, 332
check_dims_match_rvect, 122	Singleton, 331, 332
check_eq_dims, 123	qpp::internal::Singleton $<$ T $>$, 330
check_matching_sizes, 123	qpp::is_complex < std::complex < T > >, 210
check_no_duplicates, 123	qpp::is_complex< T >, 209
check_nonzero_size, 123	qpp::is_iterable < T, to_void < decltype(std::declval < T
check_perm, 123	$>$ ().begin()), decltype(std::declval< T $>$ (). \leftarrow
check_qubit_cvector, 123	end()), $decltype(*(std::declval < T > (). \leftarrow$
check_qubit_matrix, 124	begin()))> >, 212
check_qubit_rvector, 124	qpp::is_iterable < T, typename >, 211
check_qubit_vector, 124	qpp::is_matrix_expression< Derived >, 213
check_rvector, 124	qpp::literals, 127

operator"" _bra, 127	qpp::QEngine, 306
operator"" _i, 127	reshape
operator"" _ket, 128	qpp, 101
operator"" _prj, 128	rho2bloch
qpp::make_void	qpp, 102
type, 220	rho2pure
qpp::make_void< Ts >, 219	qpp, 102
QubitAmplitudeDampingNoise	Rn
qpp::QubitAmplitudeDampingNoise, 314	qpp::Gates, 181
QubitBitFlipNoise	RX
qpp::QubitBitFlipNoise, 315	qpp::Gates, 181
QubitBitPhaseFlipNoise	RY
qpp::QubitBitPhaseFlipNoise, 317	qpp::Gates, 182
QubitDepolarizingNoise	RZ
qpp::QubitDepolarizingNoise, 318	qpp::Gates, 182
QubitPhaseDampingNoise	_
qpp::QubitPhaseDampingNoise, 320	S
QubitPhaseFlipNoise	qpp::Gates, 186
qpp::QubitPhaseFlipNoise, 321	SWAPd
QuditDepolarizingNoise	qpp::Gates, 182
qpp::QuditDepolarizingNoise, 325	SWAP
	qpp::Bit_circuit, 135
rand	qpp::Bit_circuit::Gate_count, 173
qpp, 92–94	qpp::Gates, 186
qpp::Dynamic_bitset, 164, 165	save
randH	qpp, 103
qpp, 94	qpp::RandomDevices, 329
randidx	saveMATLAB
qpp, 95	qpp, 103, 104
randket	schatten
qpp, 95	qpp, 104
randkraus	schmidtA
qpp, 95	qpp, 105
randn	schmidtB
qpp, 96, 97	qpp, 105, 106
random.h, 397	schmidtcoeffs
RandomDevices	qpp, 106, 107
qpp::RandomDevices, 328	schmidtprobs
randperm	qpp, 107, 108
qpp, 98	separator_
randprime	qpp::internal::IOManipPointer, 205
qpp, 98	qpp::internal::IOManipRange, 208
randprob	set
qpp, 99	qpp::Dynamic_bitset, 165, 166
randrho	set_begin_
qpp, 99	qpp::QCircuit::iterator, 218
randU	set_dit
qpp, 99	qpp::QEngine, 306
randV	set_end_
qpp, 100	qpp::QCircuit::iterator, 218
rd_	set_measured_
qpp::RandomDevices, 330	qpp::QEngine, 306
reference	set_psi
qpp::QCircuit::iterator, 216	qpp::QEngine, 307
renyi	sigma
qpp, 100, 101	qpp, 108
reset	Singleton
qpp::Bit_circuit, 134	qpp::internal::Singleton, 331, 332
qpp::Dynamic_bitset, 165	sinm

qpp, 109	to_JSON
size	qpp::IJSON, 196
qpp::Dynamic_bitset, 166	qpp::QCircuit, 294
spectralpowm	qpp::QEngine, 307
qpp, 109	to_string
sqrtm	qpp::Dynamic_bitset, 166
qpp, 110	to_void
start_	
qpp::Timer, 351	toc
qpp::internal::IOManipPointer, 205	qpp::Timer, 351
qpp::internal::IOManipRange, 208	trace
States	qpp, 114
qpp::States, 338	traits.h, 400
statistics.h, 399	transpose
step_types_	qpp, 115
qpp::QCircuit, 298	tsallis
StepType	qpp, 115, 116
qpp::QCircuit, 275	Туре
storage_size	qpp::Codes, 137
qpp::Dynamic_bitset, 166	type
storage_size_	qpp::make_void, 220
qpp::Dynamic_bitset, 167 storage type	type_
qpp::Dynamic_bitset, 159	qpp::QCircuit::iterator::value_type_, 361
subsys	type_description
qpp::QEngine, 308	qpp::exception::CustomException, 141
sum	qpp::exception::DimsInvalid, 143
gpp, 110, 111	qpp::exception::DimsMismatchCvector, 145
super2choi	qpp::exception::DimsMismatchMatrix, 147
qpp, 111	qpp::exception::DimsMismatchRvector, 149
svals	qpp::exception::DimsMismatchVector, 151
qpp, 112	qpp::exception::DimsNotEqual, 153
svd	qpp::exception::Duplicates, 156
qpp, 112	qpp::exception::Exception, 171 qpp::exception::InvalidIterator, 200
svdU	qpp::exception::MatrixMismatchSubsys, 222
qpp, 112	qpp::exception::MatrixNotCvector, 224
svdV	qpp::exception::MatrixNotRvector, 226
qpp, 113	qpp::exception::MatrixNotSquare, 228
syspermute	qpp::exception::MatrixNotSquareNorCvector, 230
qpp, 113, 114	qpp::exception::MatrixNotSquareNorRvector, 232
Т	qpp::exception::MatrixNotSquareNorVector, 234
qpp::Gates, 186	qpp::exception::MatrixNotVector, 236
TFQ	qpp::exception::NoCodeword, 240
qpp, 114	qpp::exception::NotBipartite, 251
qpp::QCircuit, 293, 294	qpp::exception::NotImplemented, 253
TOF	qpp::exception::NotQubitCvector, 255
qpp::Bit_circuit, 135	qpp::exception::NotQubitMatrix, 257
qpp::Bit_circuit::Gate_count, 173	qpp::exception::NotQubitRvector, 259
qpp::Gates, 186	qpp::exception::NotQubitSubsys, 261
target_	qpp::exception::NotQubitVector, 263
qpp::QCircuit::GateStep, 189	qpp::exception::OutOfRange, 265
qpp::QCircuit::MeasureStep, 238	qpp::exception::PermInvalid, 267
tic	qpp::exception::PermMismatchDims, 269
qpp::Timer, 350	qpp::exception::QuditAlreadyMeasured, 324
tics	qpp::exception::SizeMismatch, 334
qpp::Timer, 351	qpp::exception::SubsysMismatchDims, 346
Timer	qpp::exception::TypeMismatch, 354
qpp::Timer, 348, 349	qpp::exception::UndefinedType, 356

```
qpp::exception::Unknown, 358
    qpp::exception::ZeroSize, 363
types.h, 401
uniform
    qpp, 116
    qpp::Dynamic_bitset, 167
value_type
    qpp::Dynamic_bitset, 159
    qpp::QCircuit::iterator, 216
value_type_
    qpp::QCircuit::iterator::value_type_, 359, 360
value_type_qc_
    qpp::QCircuit::iterator::value_type_, 361
var
    qpp, 117
variadic_vector_emplace
    qpp::internal, 126
W
     qpp::States, 343
what
     qpp::exception::Exception, 171
what
    qpp::exception::CustomException, 141
where
    qpp::exception::Exception, 172
Χ
    qpp::Bit_circuit, 135
    qpp::Bit_circuit::Gate_count, 173
     qpp::Gates, 186
x0
    qpp::States, 343
х1
    qpp::States, 344
x2contfrac
    qpp, 117
Xd
    qpp::Gates, 184
Υ
     qpp::Gates, 187
y0
    qpp::States, 344
у1
    qpp::States, 344
Ζ
     qpp::Gates, 187
z0
    qpp::States, 344
z1
     qpp::States, 344
Zd
    qpp::Gates, 184
zero
     qpp::States, 340
```