Dasar K3 Kebakaran

Dasar Hukum Pengawasan & Penanggulangan Kebakaran

- Undang-Undang No.1 tahun 1970 Keselamatan Kerja
- Permenakertrans No.04/Men/1980 Syarat-syarat pemasangan dan pemeliharaan APAR
- Permenakertrans No.02/Men/1983 Instalasi Kebakaran Alaram Automatik
- Kepmenaker No.186/Men/1999 Unit penanggulangan kebakaran di tempat kerja
- Instruksi Menaker No.11/M/BW/1997 Pengawasan K3 penanggulanagan kebakaran

Syarat-syarat K3 Penanggulangan Kebakaran

- UU. No.1 Tahun 1970 Pasal 3 Ayat 1:
 - Mencegah, mengurangi dan memadamkan kebakaran
 - Memberikan kesempatan jalan untuk menyelamatkan diri pada waktu kebakaran
 - Mengendalikan penyebaran panas, asap dan gas
- UU. No.1 Tahun 1970 Pasal 9 ayat 3: mengatur kewajiban pengurus menyelenggarakan latihan penanggulangan kebakaran

Tolak ukur yang harus dilaksanakan ketika terjadi kebakaran

Setiap tahun Wajib melakukan pelatihan kesiapsiagaan terhadap bahaya kebakaran

Apa itu Api?

 Api adalah suatu reaksi rantai kimia yang dikenal sebagai pembakaran.

I.F.S.T.A - Essentials of Fire Fighting (hal.3)

Api/pembakaran adalah suatu
 proses oksidasi cepat yang
 umumnya menghasilkan panas dan
 nyala.
 David T.Gold - Fire Bridge Training Manual (Hal.11)

(lanjutan) Apa itu Api?

David T.Gold - Fire Bridge Training Manual (Hal.11)

(lanjutan) Flash Point (Titik Nyala)

 Flash point (titik nyala) adalah kondisi, dimana bahan bakar (fuel) pada suhu terendahnya mulai membentuk uap dan selanjutnya dalam jumlah yang cukup untuk siap terbakar

(lanjutan) Titik Nyala Beberapa Bahan

Bahan	Titik Nyala
Bensin	-38 ⁰ C
parafin	38°C
Crude Oil	7°C
ADO	38°C
Buthane	-60°C
Spiritus	13°C

Bahan	Titik Nyala
Kerosin	40-70°C
Jet Fuel	38°C
Prophane	-104°C
Asetelin	-18 ⁰ C
Belerang	307°C

(lanjutan) Batasan Bisa Terbakar

Adalah tingkat/ batasan dari konsentrasi campuran uap dengan udara

yang akan terbakar

Contoh:
bahan bakar
bensin

(lanjutan) Batas Bawah Daerah kebakaran

- Batas bawah daerah kebakaran (Lower Explosive Limit) adalah prosentase minimum dari konsentrasi / campuran uap mudah terbakar dengan udara.
- Di bawah limit ini oksigen dikatakan terlalu miskin dan tidak cukup bercampur untuk terbakar.

(lanjutan) Batas Atas Daerah kebakaran

- Batas atas daerah kebakaran (Upper Explosive Limit)
 adalah prosentase maksimum dari konsentrasi /
 campuran uap mudah terbakar dengan udara.
- Di atas limit ini oksigen dikatakan terlalu kaya dan tidak dapat terbakar.

(lanjutan) Contoh Batas Atas dan Bawah

GAS	LEL (% vol)	UEL (% vol)
Methane	5.0	15.0
Propane	2.1	9.5
Pentane	1.4	7.8
Butane	1.9	8.5
Hexane	1.2	7.5
Methanol	6.0	36.0
Hydrogen	4.0	75.0
Acetylene	2.5	100.0

Unsur Terjadinya Api (Segitiga Api)

Oxygen (Oksigen)

> Heat (Panas)

Fuel (Bahan bakar)

- Teori tetrahedron api atau segitiga api: sebuah uraian rantai kejadian hingga terciptanya pembakaran atau oksidasi yang menghasilkan api.
- Manfaat Teori ini: bisa mengerti bagaimana cara api bekerja, bagaimana cara memadamkannya, dan bagaimana cara mencegahnya.

Segitiga Api

(lanjutan) Segitiga Api: Reaksi Rantai Kimia

- 1. Vaporization: diperlukan energi awal untuk merubah bahan bakar ke dalam bentuk uap. Suhu yang dibutuhkan disebut "Flash Point"
- 2. Flammeable Range: Kadar uap bahan bakar di udara harus dalam campuran yang seimbang
- 3. Fire Point: Reaksi nyala akan kontinyu apabila ada siklus panas yang sanggup menghasilkan uap terus menerus
- 4. Reaksi berantai : Dalam siklus nyala api adalah reaksi kimia oksidasi eksotermal secara berantai

(lanjutan) Segitiga Api: Oksidasi

di dalam udara ada bermacam-macam unsur antara lain oksigen. Pembakaran dapat terjadi bila kadar oksigen dalam udara minimum 16%

(lanjutan) Segitiga Api: Bahan Bakar (Fuel)

Padat

- Kayu
- Kertas
- Kapas

Cair

- Minyak tanah
- Bensin
- Solar
- Spirtus

Gas

- Karbit
- LPG
- LNG

Perilaku sengaja membakar untuk mendapat keuntungan (sabotase, menghilangkan jejak, klaim asuransi, dll)

Arson

Energi Panas Listrik

Energi Panas Mekanis

Energi Panas Nuklir dan Matahari

Energi Panas Kimia

Pemindahan panas radiasi

Pemindahan panas konduksi

Pemindahan panas konveksi (Kontak nyala api langsung)

Manajemen Penaggulangan Kebakaran

Jenis-Jenis Kebakaran

 Pemahaman jenis-jenis api kebakaran sangat diperlukan untuk membantu dalam memilih jenis media pemadaman yang sesuai dengan jenis api yang akan dipadamkan.

Kebakaran kelas A Kebakaran Kelas B

Kebakaran Kelas C Kebakaran Kelas D

Peraturan Menteri Tenaga Kerja dan Transmigrasi: PER-04/MEN/1980

Kebakaran Kelas A

Api berasal dari kebakaran benda padat (kayu, kertas, karet, plastik) kecuali <u>logam</u>, yang bila terbakar meninggalkan arang dan abu

Kebakaran Kelas B

Api berasal dari cairan dan gas mudah menyala / terbakar seperti minyak, gas, pelumas

Kebakaran Kelas C

Api berasal dari peralatan listrik yang masih berenergi

Kebakaran Kelas D

Api berasal dari bahan logam yang dapat menyala

Alat-Alat Pemadam Api Ringan

- APAR (Alat Pemadam Api Ringan atau fire extinguisher) adalah alat yang digunakan untuk memadamkan api atau mengendalikan kebakaran kecil.
- Alat Pemadam Api Ringan (APAR) pada umumnya berbentuk tabung yang diisikan dengan bahan pemadam api yang bertekanan tinggi.

Jenis-Jenis APAR

- Cair: Air, foam (busa kimia, busa mekanik)
- Padat: Powder (Dry Powder, Dry Chemical)
- Gas dan Cairan Mudah Menguap: CO2, BCF/Halon

(lanjutan) Jenis-Jenis APAR

(lanjutan) Jenis APAR Water (Cairan)

- Alat pemadam api cairan ini berisi air bertekanan tinggi.
- APAR jenis ini merupakan jenis apar yang paling ekonomis
- Fungsi: cocok untuk memadamkan api yang terjadi disebabkan oleh bahan-bahan padat non logam seperti kain, kertas, plastik, karet dan yang lainnya.

(lanjutan) Jenis APAR Foam (Busa)

- APAR jenis foam atau busa berisi bahan kimia yang dapat membentuk suatu busa.
- Busa yang disembur keluar akan menutupi bahan yang terbakar sehingga oksigen tidak dapat masuk dan tidak menyebabkan api semakin parah.
- Fungsi: cocok untuk memadamkan api:
 - Kebakaran kelas A yang timbul karena bahan-bahan padat non logam seperti kain, kertas, atau pun karet.
 - Kebakaran kelas B seperti minyak, solvent, dan alcohol juga dapat dipadamkan dengan jenis apar busa atau foam.

(lanjutan) Jenis APAR Powder (Bubuk Kimia)

- Apar jenis powder berisi serbuk kering kimia yang terbuat dari kombinasi bahan mono ammonium dan ammonium sulfat.
- Serbuk kering kimia berfungsi menyelimuti bahan yang terbakar sehingga oksigen yang notabennya merupakan suatu unsur penting terjadinya kebakaran dapat dipisahkan.
- <u>Fungsi</u>: sangat efektif dalam memadamkan api untuk kebakaran kelas A, kelas B dan kebakaran kelas C.
- Apar jenis powder <u>tidak dianjurkan</u> dalam dunia industri karena dapat merusak dan berpotensi mengotori alat produksi.

(lanjutan) Jenis APAR CO₂

- APAR CO₂ berisi Karbondioksida (CO₂)
- <u>Fungsi</u>: sangat cocok digunakan untuk mengatasi masalah kebakaran kelas B dan kelas C.

Class	Symbol	Type of Fire	Examples	ABC DRY CHEMICAL	BC DRY CHEMICAL	DRY POWDER	WATER	FOAM	HALOGENATED	CARBON DIOXIDE
A	T.	Common combustibles	Wood, p aper, cloth etc.							
В		Flammable liquids and gases	Gasoline, prop ane and solvent s							
C		Live electrical equipment	Computers, fax machines (see note)							
D		Combustib l e metals	Magnesium, lithium, tit anium							

Bagian-Bagian APAR

(lanjutan) Bagian-Bagian APAR

(lanjutan) Bagian-Bagian APAR

FOAM TYPE CONSTRUCTION

Menggunakan APAR dengan Benar

1. Tarik Kunci Pengaman

2. Pegang Ujung Selang

3. Arahkan Selang Pada Sumber Api

4. Tekan tuas atau katup bagian atas sepenuhnya

(lanjutan) Video Menggunakan APAR

Link: https://youtu.be/qS1IfnVLNJ8

Kelebihan dan Kekurangan APAR

Kelebihan	Kekurangan					
 Cepat dan sederhana penggunaannya Mudah dibawa-bawa Dapat dioperasikan oleh perorangan Mudah mendekati daerah berbahaya 	 Waktu pemakaian terbatas Daya tembus/ jangkauan pendek Keandalannya terbatas 					

Manjemen APAR

Prinsip Dasar Pemadaman Api

- Dari teori segitiga api diketahui bahwa pembakaran timbul dan berkelanjutan bila ada panas (*heat*), oksigen (*oxygen*) dan bahan (*fuel*) yang terbakar serta rantai reaksi kimia.
- Prinsip pemadaman api adalah dengan cara menyingkirkan salah satu unsur-unsur dari segitiga api

Metode Pemadaman Api

(lanjutan) Metode Pemadaman Api

Metode Pendinginan (Cooling)

Metode Cooling:

Suatu kebakaran dapat dipadamkan dengan mendinginkan permukaan dari bahan yang terbakar dengan menggunakan **semprotan air** sampai suhu dibawah titik nyala

Metode Isolasi (Smothering)

Metode Smothering:

Suatu kebakaran dibatasi dengan memutus hubungan bahan bakar dengan oksigen atau udara yang diperlukan bagi terjadinya proses pembakaran.

Memadamkan dengan Fire Blanket

Metode Memisahkan (Starving)

Metode Starving:

Memisahkan bahan yang dapat terbakar dengan jalan menutup aliran bahan bakar yang menuju tempat kebakaran atau menghentikan supply bahan bakar

Menutup kran pada tangki yang terbakar

Metode Memutus Rantai (Inhibition)

- Proses pembakaran menghasilkan gas-gas seperti H₂S, NH₃,
 HCN (sesuai dengan benda yang terbakar).
- Hasil reaksi yang penting adalah atom bebas O dan H yang dikenal sebagai atom-atom radikal yang membentuk OH dan pecah menjadi H₂ dan O.
- Dengan memutus rantai reaksi kimia pembakaran sehingga tidak ada lagi radikal bebas bahan bakar yang bereaksi.
- Caranya: menebas api (mekanis) atau menambahkan bahan kimia ke reaksi pembakaran (Dry chemical)

Metode Melemahkan (Dilution)

- Metode dilution mirip dengan smothering.
- Metide dilution mengurangi kadar oksigen di udara sampai batas minimum sehingga pembakaran tidak dapat berlangsung.
- Caranya: Meniupkan gas inert untuk menghalangi unsur O2 menyalakan api atau menggunakan media gas CO2.

TUGAS

1. Jelaskan bagian-bagian dari alat pemadam api ringan (APAR) di bawah ini

- 2. Setiap jenis APAR memiliki karakteristik tersendiri, sehingga tidak bisa sembarangan digunakan untuk memadamkan kebakaran. Pertanyaannya:
 - a) Mengapa jenis APAR BC Dry Chemical dan CO2 tidak dianjurkan untuk memadamkan kebakaran kelas A dan D?
 - b) Mengapa untuk kebakaran kelas D hanya bisa dipadamkan oleh jenis APAR Dry powder?
 - c) Mengapa jenis APAR water hanya cocok untuk memadamkan kebakaran kelas A?
 - d) Mengapa jenis APAR foam tidak dianjurkan untuk memadamkan kebakaran kelas C dan D?