

GCE

Edexcel GCE

Mathematics

Core Mathematics C3 (6665)

June 2006

advancing learning, changing lives

Mark Scheme (Results)

Mathematics

Question Number		Scheme	Marks
1.	(a)	$\frac{(3x+2)(x-1)}{(x+1)(x-1)}, = \frac{3x+2}{x+1}$	M1B1, A1 (3)
		Notes M1 attempt to factorise numerator, usual rules B1 factorising denominator seen anywhere in (a), A1 given answer If factorisation of denom. not seen, correct answer implies B1	
	(b)	Expressing over common denominator $\frac{3x+2}{x+1} - \frac{1}{x(x+1)} = \frac{x(3x+2)-1}{x(x+1)}$	M1
		[Or "Otherwise": $\frac{(3x^2 - x - 2)x - (x - 1)}{x(x^2 - 1)}$] Multiplying out numerator and attempt to factorise $[3x^2 + 2x - 1] = (3x - 1)(x + 1)$	M1
		Answer: $\frac{3x-1}{x}$	A1 (3)
2.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x} + \frac{1}{x}$	(6 marks) B1M1A1(3)
		Notes x	
		$B1 3e^{3x}$	
		$M1: \frac{a}{bx} \qquad A1: 3e^{3x} + \frac{1}{x}$	
	(b)	$ \frac{3}{2} (5 + x^2)^{\frac{1}{2}} $ $ \frac{3}{2} (5 + x^2)^{\frac{1}{2}} .2x = 3x (5 + x^2)^{\frac{1}{2}} $ M1 for $kx(5 + x^2)^m$	B1
		$\frac{3}{2} (5 + x^2)^{\frac{1}{2}} \cdot 2x = 3x (5 + x^2)^{\frac{1}{2}}$ M1 for $kx (5 + x^2)^m$	M1 A1 (3)
			(6 marks)

Question Number		Scheme		Mar	Marks	
3.	(a)	97	Mod graph, reflect for $y < 0$	M1		
		(0,2)	(0, 2), (3, 0) or marked on axes	A1		
		0 (3,0)	Correct shape, including cusp	A1	(3)	
	(<i>b</i>)	34	Attempt at reflection in $y = x$	M1		
		(0,3	Curvature correct	A1		
			(-2, 0), (0, 3) or equiv.	B1	(3)	
	(c)	*	Attempt at 'stretches'	M1		
		(0,-1) (1,0) ×	(0, -1) or equiv.	B1		
			(1, 0)	B1	(3)	
				(9 m	narks)	
4.	(a)	425 °C		B1	(1)	
	(<i>b</i>)	$300 = 400 e^{-0.05t} + 25 \implies 400 e^{-0.05t}$	$t^{t}=275$	3.61		
		sub. $T = 300$ and attempt to real	arrange to $e^{-0.05t} = a$, where $a \in \mathbf{Q}$	M1		
		$e^{-0.05t} = \frac{275}{400}$		A1		
		M1 correct application of logs		M1		
		t = 7.49		A1	(4)	
	(c)	$\frac{\mathrm{d}T}{\mathrm{d}t} = -20 \ \mathrm{e}^{-0.05 \ t}$	(M1 for $ke^{-0.05 t}$)	M1 A1		
		At $t = 50$, rate of decrease = $(\pm) 1.6$	4 °C/min	A1	(3)	
	(<i>d</i>)	$T > 25$, (since $e^{-0.05 t} \rightarrow 0$ as $t - 0.05 t$	→ ∞)	B1	(1)	
			(9 mark	s)		

Question Number	Scheme	Marks
5. (a)	Using product rule: $\frac{dy}{dx} = 2 \tan 2x + 2(2x - 1) \sec^2 2x$	M1 A1 A1
	Use of " $\tan 2x = \frac{\sin 2x}{\cos 2x}$ " and " $\sec 2x = \frac{1}{\cos 2x}$ " $ [= 2\frac{\sin 2x}{\cos 2x} + 2(2x - 1)\frac{1}{\cos^2 2x}] $	M1
	Setting $\frac{dy}{dx} = 0$ and multiplying through to eliminate fractions $[\Rightarrow 2\sin 2x\cos 2x + 2(2x - 1) = 0]$	M1
	Completion: producing $4k + \sin 4k - 2 = 0$ with no wrong working seen and at least previous line seen. AG	A1* (6)
(b)	$x_1 = 0.2670, x_2 = 0.2809, x_3 = 0.2746, x_4 = 0.2774,$	M1 A1 A1 (3)
	Note: M1 for first correct application, first A1 for two correct, second A1 for all four correct Max -1 deduction, if ALL correct to > 4 d.p. M1 A0 A1 SC: degree mode: M1 $x_1 = 0.4948$, A1 for $x_2 = 0.4914$, then A0; max 2	
(c)	Choose suitable interval for k : e.g. $[0.2765, 0.2775]$ and evaluate $f(x)$ at these values	M1
	Show that $4k + \sin 4k - 2$ changes sign and deduction	A1 (2)
	$[f(0.2765) = -0.000087, \ f(0.2775) = +0.0057]$	
	Note: Continued iteration: (no marks in degree mode) Some evidence of further iterations leading to 0.2765 or better M1; Deduction A1	
		(11 marks)

Question Number	Scheme	Marks	
6. (a)	Dividing $\sin^2 \theta + \cos^2 \theta = 1$ by $\sin^2 \theta$ to give $\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$	M1	
	Completion: $1 + \cot^2 \theta = \csc^2 \theta \Rightarrow \csc^2 \theta - \cot^2 \theta = 1$ AG	A1* (2)	
(b)	$\cos ec^4 \theta - \cot^4 \theta = (\cos ec^2 \theta - \cot^2 \theta)(\cos ec^2 \theta + \cot^2 \theta)$	M1	
	$\equiv \left(\cos \operatorname{ec}^2 \theta + \cot^2 \theta\right) \text{using (a)} AG$	A1* (2)	
	Notes: (i) Using LHS = $(1 + \cot^2 \theta)^2 - \cot^4 \theta$, using (a) & elim. $\cot^4 \theta$ M1, conclusion {using (a) again} A1* (ii) Conversion to sines and cosines: needs $\frac{(1-\cos^2 \theta)(1+\cos^2 \theta)}{\sin^4 \theta}$ for M1		
(c)	2 2	M1	
	Forming quadratic in $\cot \theta$	M1	
	$\Rightarrow 1 + \cot^2 \theta + \cot^2 \theta = 2 - \cot \theta \qquad \{\text{using (a)}\}\$		
	$2\cot^2\theta + \cot\theta - 1 = 0$	A1	
	Solving: $(2\cot\theta - 1)(\cot\theta + 1) = 0$ to $\cot\theta =$	M1	
	$\left(\cot\theta = \frac{1}{2}\right) \text{or} \cot\theta = -1$	A1	
	$\theta = 135^{\circ}$ (or correct value(s) for candidate dep. on 3Ms)	A1√ (6)	
	Note: Ignore solutions outside range Extra "solutions" in range loses A1√, but candidate may possibly have more than one "correct" solution.		
	more than one correct solution.	(10 marks)	

Question Number		Scheme		Marks	
7.	(a)	Log graph: Shape	B1		
		Intersection with $-ve x$ -axis	dB1		
		$(0, \ln k), (1-k, 0)$	B1		
		$(0, \ln k), (1 - k, 0)$ Mod graph :V shape, vertex on +ve	B1		
		x -axis $(0, k)$ and $\begin{pmatrix} k & 0 \end{pmatrix}$			
		$(0, k) \text{ and } \left(\frac{k}{2}, 0\right)$	B1	(5)	
	(b)	$f(x) \in R$, $-\infty < f(x) < \infty$, $-\infty < y < \infty$		(1)	
	(c)	$fg\left(\frac{k}{4}\right) = \ln\{k + \left \frac{2k}{4} - k\right \} \text{or} f\left(\left -\frac{k}{2}\right \right)$	M1		
		$= \ln\left(\frac{3k}{2}\right)$	A1	(2)	
	(<i>d</i>)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+k}$	B1		
		Equating (with $x = 3$) to grad. of line; $\frac{1}{3+k} = \frac{2}{9}$	M1; A1		
		$k = 1\frac{1}{2}$	A1√	(4)	
			(12 mai	rks)	

Question Number	Scheme	Marks		
8. (a)	Method for finding sin A	M1		
	$\sin A = -\frac{\sqrt{7}}{4}$	A1 A1		
	Note: First A1 for $\frac{\sqrt{7}}{4}$, exact.			
	Second A1 for sign (even if dec. answer given) Use of $\sin 2A = 2\sin A \cos A$	M1		
	$\sin 2A = -\frac{3\sqrt{7}}{8} \text{ or equivalent exact}$	A1√	(5)	
	Note: ± f.t. Requires exact value, dependent on 2nd M			
(<i>b</i>)(i)				
	$\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) \equiv \cos 2x \cos\frac{\pi}{3} - \sin 2x \sin\frac{\pi}{3} + \cos 2x \cos\frac{\pi}{3} + \sin 2x \sin\frac{\pi}{3}$	M1		
	$\equiv 2\cos 2x \cos \frac{\pi}{3}$	A1		
	[This can be just written down (using factor formulae) for M1A1]			
	$\equiv \cos 2x$ AG	A1*	(3)	
	Note:			
	M1A1 earned, if $\equiv 2\cos 2x\cos \frac{\pi}{3}$ just written down, using factor theorem			
(b)(ii)	Final A1* requires some working after first result.			
(<i>b</i>)(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\sin x \cos x - 2\sin 2x$	B1 B1		
	or $6\sin x \cos x - 2\sin\left(2x + \frac{\pi}{3}\right) - 2\sin\left(2x - \frac{\pi}{3}\right)$			
	$= 3\sin 2x - 2\sin 2x$	M1		
	$= \sin 2x$ AG	A1*	(4)	
	Note: First B1 for $6\sin x \cos x$; second B1 for remaining term(s)			
			(12 marks)	