

IK2204

Layer 2 Issues

Bridges, Hubs, Switches, VLANs, Spanning Tree...

Contents

- Perlman, chapter 3 and 5
- Video lectures no. 2-11
- And then some.....

Different Link Types

Point-to-point

- A link that connects exactly two interfaces.
- Dial-up, V.35, etc.

Multicast (broadcast)

- a link that supports a native mechanism at the link layer for sending packets to all (i.e., broadcast) or a subset of all neighbors.
- Ethernet, FDDI, Wireless, etc.

Non-Broadcast Multiple Access

- More than two interfaces can attach, but no native form of multicast or broadcast.
- ATM, X.25, Frame Relay, etc.

Point-to-Point Links

- Point-to-point link connects exactly 2 interfaces
- Widespread point-to-point protocols:
 - SLIP (CSLIP) for transmission of IP datagrams over serial lines
 - PPP (Point-to-Point Protocol)

PPP (RFC 1331, 1332)

- Link Control Protocol (LCP) to establish, configure, and test data-links (includes option negotiation)
- Network Control Protocol (NCP) to carry data, e.g., IP (RFC 1332)
- CRC check on every frame
- Dynamic negotiation of IP address of each end

Ethernet LAN

- Ethernet LAN normally built with switches and hubs
- Nodes attached to a hub are on the same segment (L1)
 - No hubs shown in figure
- Ethernet is a broadcast link technology
- A LAN is a broadcast domain

Ethernet Frame (DIX)

DST	SRC	TYPE	DATA	CRC
6	6	2	46-1500	4

- DIX: Digital, Intel, Xerox
- DST: Destination Address, 48-bit MAC address
- SRC: Source Address, 48-bit MAC address
- Type: Type of data carried, e.g., IP packet
- Data: min size is 46 bytes, max size is 1500 bytes
- CRC: Cyclic Redundancy Check (or FCS Frame Check Sum)
- 48-bit MAC address is normally written 12:34:56:78:9a:bc
 - Multicast (8th bit is 1), unicast, or broadcast (all bits are 1)

Ethernet Encapsulation (RFC 894)

DST	SRC	TYPE	DATA		CRC	
6	6	2	46-1500			4
		TYPE 0800	IP Datagram			
		2	46-1500			
		TYPE 0806	ARP Request/Reply	PAD		
		2	28	18		
		TYPE 0835	RARP Request/Reply	PAD		
		2	28	18		1
			46-1500 bytes			

IEEE 802.3 MAC Frame Format

- 18 bytes of overhead at link layer (26 bytes on the wire)
- Length/PDU
 - Length if less than 1518
 - IEEE 802.3 format
 - Otherwise PDU type
 - RFC 894

IEEE 802.3 Encapsulation (RFC 1042)

Bridges

- A bridge operates on the link layer—buffers frames
- A bridge does not modify the structure or content of a frame
- A bridge is transparent, i.e., invisible to the clients
- A multiport bridge can connect many segments—a switch
- A bridge has a forwarding table—to map addresses to ports

Address	Port
А	1
Q	1
M	2

Standard Bridges

Standard bridge compared to a "no-frills" bridge:

- Learn which stations that belong to each port
 - Automatically
- Avoid loops
 - Automatically through the Spanning Tree Protocol

To conform to the 802.1D standard, a bridge must implement

- Learning
- Spanning tree

Learning Bridges

Strategy of a learning bridge:

- 1. Listen promiscously, receiving every packet
- 2. Store the source address of every packet in a forwarding table (or *learning table*)
- For each packet, check destination address with learning table
 - If not found, *flood*: forward on all (except receiving) ports
 - If addr found, forward only on port specified in learning table.
 If specified port == receiving port, drop packet
- 4. Bridge ages each entry in the learning table.
 - Deletes entry if no traffic is received from that source after a certain period of time

Learning Bridges Example

Address	Port

a. Original

Address	Port		
A	1		

b. After A sends a frame to D

Address	Port
Α	1
E	3

c. After E sends a frame to A

Address	Port
Α	1
Е	3
В	1

d. After B sends a frame to C

Learning Bridges—Observations

B1 cannot distinguish between Segment 2 and Segment 3 B2 cannot distinguish between Segment 1 and Segment 2 Bridges are not aware of the existence of other bridges However,

- Bridge concept works for any number of ports
- Bridge concept works for any tree (loop-free) topology

Learning Bridges—Loop Problem

Learning Bridges—Loop Problem

Learning Bridges—Loop Problem

Spanning Tree—Basic Idea

- Discover a subset of the topology that is loop-free (a tree)
- Just enough connectivity so that there is a path between every pair of segments where physically possible
 - The tree is spanning
- Disable (block) all other ports
- All bridges exchange configuration messages, called bridge protocol data units (BPDUs), allowing them to calculate a spanning tree

Spanning Tree Starting Point

- Each bridge has a unique ID
- Each port has a unique ID within the bridge
- A cost can be calculated for each path between two bridges
 - A default cost value is used for each port (can be configured)

Spanning Tree Process

- 1. The node with the smallest ID is selected the root bridge
- 2. On each bridge, select a root port
 - Port with the least cost path to the root bridge
- 3. On each LAN segment, select a designated bridge
 - Bridge with least cost path to root bridge
 - If two bridges have same cost, select the bridge with smallest ID
 - Mark the corresponding port as the designated port
- 4. Forward frames only on marked ports
 - Designated ports and root ports
 - Block on the others

Before Spanning Tree

©The McGraw-Hill Companies, Inc., 2000

- B1 has the smallest ID
 - then assume B4 < B2 < B3 < B5</p>

Applying Spanning Tree

©The McGraw-Hill Companies, Inc., 2000

- B1 has the smallest ID (then B4, B2, B3, B5)
- * * means designated bridge for a segment
- * means root port

Forwarding Ports and Blocking Ports

©The McGraw-Hill Companies, Inc., 2000

- Note that STP is not a routing protocol
 - It does not optimize routing
 - Traffic conectration towards the root

Spanning Tree Protocol

- Defined in IEEE 802.1D MAC Bridges standard
- Protocol to calculate a spanning tree
- Convergence
 - All bridges should reach a unified view of the spanning tree
- Special frames sent between neighbor switches
 - Bridge Protocol Data Units, BPDUs
 - Not forwarded!
- Based on bridge identifiers
 - Strict ordering
 - Based on MAC addresses

Bridge Protocol Data Unit (BPDU)

- Sent as an 802.1 frame
 - Destination MAC address 01-80-C2-00-00 (multicast)
 - BPDU Type 0
- Sent periodically (Hello Time) by root bridges
 - Triggers sending of BPDUs in designated bridges

Initial State

Root Bridge Recognized

Designated Bridge Recognized

Ports Disabled

Topology Changes and Learning Table

- Entries in learning table expires
 - Normally after 5 minutes
 - Incorrect forwarding
 - "Black hole"
- Solution:
 - Faster expiration time when network configuration has changed
 - Topology Change Notification PDU

Topology Change Notification

- Topology change at a bridge
 - Port failure
 - No periodic configuration
 BPDUs
 - Port status change

- Bridge sends spontaneous BPDU
 - Topology Change Notification
 BPDU
 - BPDU type 0x80

Topology Change

TCN BPDU: <Flags>

Configuration BPDU: <Root ID, Root Path Cost, Bridge ID,

Flags, Forward Delay>

Spanning Tree Protocol Timing

- Protocol is timer driven
- Too short timers can give loops and instabilities
- Too long timers can give long convergence times
 - Until network reaches a stable spanning tree configuration

Rapid Spanning Tree Protocol

- Ordinary STP takes 30 50 seconds to converge, with default settings
- Rapid Spanning Tree Protocol (RSTP)
 - First defined in IEEE 802.1w
 - Replaces STP after 2004 in 802.1D
 - Full-duplex mode
 - No shared links
 - Backwards compatible with STP
 - Converges in around one second

RSTP vs STP

- RSTP has two more port designations
 - Alternate Port—backup for Root Port
 - Backup port—backup for Designated Port on the segment
- In RSTP, all bridges send BPDUs automatically
 - While in STP, the root triggers BPDUs
- In RSTP, bridges act to bring the network to convergence
 - While in STP, bridges passively wait for time-outs before changing port states

Bridging Limitations

Can a bridged network be of an arbitrary size? No, it is not scaling because of:

- Addressing
 - No structure in the MAC addresses → no aggregation can be used
- Table sizes (size of the learning table)
- Traffic congestion
 - Broadcast and multicast spans the whole broadcast domain
 - Broadcast domains must be kept to a reasonable size

Virtual LAN (VLAN)

- A single bridge can act as multiple bridges by grouping the ports of the bridge into separate VLANs.
- Like a LAN, each VLAN is a layer 2 realm separated from other VLANs (separate broadcast domains) by separating ports on a bridge.
- Routing between VLANs requires a router (just like LANs)

VLAN Grouping and Frame Tagging

- VLAN membership determined through port number
 - Ports 1, 2: VLAN 1; Ports 3, 4: VLAN 2, etc
- Frames belonging to different VLANs can be sent on the same link by VLAN encapsulation using frame tagging
 - Interswitch ports belong to several VLANs

IEEE 802.1Q Frame Tagging

- Tag header added to Ethernet header
 - Ethertype 810016
- 12-bit VLAN ID allows for 4096 VLANs

VLAN Extensions

- Multiple spanning tree protocol
 - Original STP computes one spanning tree for all VLANs
 - Multiple STP computes one spanning tree per VLAN
- VLAN Stacking (Q-in-Q)
 - IEEE 802.1ad "Provider Bridge" standard
 - Extends tag space
 - Allows for providers to transport customer frames with tags
 - Outer tag: S-TAG or "provider tag" (IEEE 802.1ad)
 - Inner tag: C-TAG or "customer tag" (IEEE 802.1Q)

6 bytes	6 bytes	4 bytes	4 bytes	2 bytes	
DA	SA	S-TAG	C-TAG	Length/ Type	

Layer 2 Summary

- Point-to-point and Ethernet
- Bridging
 - Learning bridges
- Spanning Tree Protocol
- VLANs