The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

$$\begin{cases} S_{y_0} = 100 \text{kN} \\ M_{x_0} = -400 \text{ kN. m} \\ T_0 = -40 \text{ kN. m} \end{cases}$$

Passo 1: Diagrama de Corpo Livre

The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Passo 2: Análise da Seção

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

$$\begin{cases} S_{y_0} = 100 \text{kN} \\ M_{x_0} = -400 \text{ kN. m} \\ T_0 = -40 \text{ kN. m} \end{cases}$$

$$\begin{cases} S_y(z) = 100 \\ T(z) = -40 \\ M_x(z) = -400 + 100 \times z \end{cases} \rightarrow \begin{cases} S_y = 100 \text{ kN} \\ T = -40 \text{ kN. m} \\ M_x = -200 \text{ kN. m} \end{cases}$$

The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

$$\begin{cases} S_y = 100 \text{ kN} \\ T = -40 \text{ kN. m} \\ M_x = -200 \text{ kN. m} \end{cases}$$

Passo 3: Análise das Cargas (Seção z = 2m)

Passo 3.1: Cálculo das tensões axiais

$$\sigma = \frac{M_{y}.I_{xx} - M_{x}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}}.x + \frac{M_{x}.I_{yy} - M_{y}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}}.y = \frac{M_{x}}{I_{xx}}.y$$

a. Cálculo das Propriedades Geométricas

$$I_{xx} = \sum B_i y_i^2 = 4 \times 900 \times 0.3^2 + 2 \times 1200 \times 0.3^2$$

$$I_{xx} = 540 \times 10^6 \text{ mm}^4$$

The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

$$\begin{cases} S_y = 100 \text{ kN} \\ T = -40 \text{ kN. m} \\ M_x = -200 \text{ kN. m} \end{cases}$$

b. Cálculo das Tensões nos Booms

$y_i(\mathbf{m})$	$\sigma_i(MPa)$	$P_{z,i}$ (kN)
0.3	-111.1	-100
0.3	-111.1	-133.33
0.3	-111.1	-100
-0.3	111.1	100
-0.3	111.1	133.33
-0.3	111.1	100

$$\sigma = \frac{-200 \text{ kN. m}}{540 \text{ e6 mm}^4}.y = \frac{-200 \text{ N. mm}}{540 \text{ mm}^4}.y$$

Conforme observado, $P_{\rm Z}$ é apenas uma componente do carregamento atuante sobre o Boom, sendo necessário o cálculo das demais componentes

b. Cálculo das Tensões nos Booms

$y_i(m)$	$\sigma_i(MPa)$	$P_{z,i}$ (kN)	δ_x/δ_z	δ_y/δ_z	$P_{x,i}$ (kN)	$P_{y,i}$ (kN)	$P_i(kN)$	$\sigma_{t,i}(MPa)$	ξ (m)	η (m)	$T_x(kN.m)$	$T_y(kN.m)$
0.3	-111.1	-100	0.1	-0.05	-10	5	-100.62	-111.8	0.3	-0.6	-3	-3
0.3	-111.1	-133.33	0	-0.05	0	6.66	-133.5	-111.25	0.3	0	0	0
0.3	-111.1	-100	-0.1	-0.05	10	5	-100.62	-111.8	0.3	0.6	3	3
-0.3	111.1	100	-0.1	0.05	-10	5	100.62	111.8	-0.3	0.6	3	3
-0.3	111.1	133.33	0	0.05	0	6.66	133.5	111.25	-0.3	0	0	0
-0.3	111.1	100	0.1	0.05	10	5	100.62	111.25	-0.3	-0.6	-3	-3
	Total			0	33.32					0	0	

Passo 3.2: Cálculo dos Fluxos de Cisalhamento

a. Recalculo das cargas de cisalhamento atuantes apenas nas cascas

The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end.

booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

Passo 3.2: Cálculo dos Fluxos de Cisalhamento

a. Recalculo das cargas de cisalhamento atuantes apenas nas cascas

$$\begin{cases} S_{x_{cis}} = 0 \text{ kN} \\ S_{y_{cis}} = 66.68 \text{ kN} \\ T_{cis} = -40 \text{ kN. m} \end{cases}$$

b. Fluxo devido a torção em uma seção fechada

$$q_{0,t} = \frac{T_{cis}}{2A} = -\frac{40}{2 \times 0.6 \times 1.2} = -27,78 \text{ N/mm}$$

c. Fluxo devido ao cisalhamento

$$q_{s} = -\frac{S_{x_{cis}}.I_{xx} - S_{y_{cis}}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}}.\left(\int_{0}^{s}t_{d}xds + \sum_{r=1}^{n}B_{r}x_{r}\right) - \frac{S_{y_{cis}}.I_{yy} - S_{x_{cis}}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}}.\left(\int_{0}^{s}t_{d}yds + \sum_{r=1}^{n}B_{r}y_{r}\right) + q_{s,0}$$

c. Fluxo devido ao cisalhamento

Segmento	$q_b = -\frac{66.68}{540e6} \cdot \left(\sum_{r=1}^n B_r y_r\right)$	$q_{s,0}$
0 - 1	0	
1 – 2	-33.34 N/mm	
2 - 3	-77.82 N/mm	
3 - 4	-111.15 N/mm	
4 - 5	-77.82 N/mm	
5 – 6	-33.34 N/mm	
6 – 0	0	

c. Fluxo devido ao cisalhamento

$$q_s = -\frac{S_{y_{cis}}}{I_{xx}} \cdot \left(\sum_{r=1}^n B_r y_r\right) + q_{s,0}$$

Segmento	$q_b = -\frac{66.68}{540e6} \cdot \left(\sum_{r=1}^n B_r y_r\right)$	$q_{s,0}$
0 - 1	0	
1 – 2	33.34 N/mm	
2 - 3	77.82 N/mm	
3 - 4	111.15 N/mm	
4 – 5	77.82 N/mm	
5 – 6	33.34 N/mm	
6 - 0	0	

$$\begin{cases} S_{x_{cis}} = 0 \text{ kN} \\ S_{y_{cis}} = 66.68 \text{ kN} \\ T_{cis} = -40 \text{ kN. m} \end{cases}$$

Cálculo do $q_{s,0}$ (Boom 5)

$$M_{S_{x_{cis}}} + M_{S_{y_{cis}}} = \oint pq_b ds + 2Aq_{s,0} \rightarrow$$

$$0 = 111.15 \times 600 \times 600 + (33.34 + 77.82) \times 600 \times 600 + 2Aq_{s,0} \rightarrow$$

$$0 = 80e4 + 2Aq_{s,0} \rightarrow$$

$$q_{s,0} = -\frac{80e6}{2 \times 600 \times 1200} = -55.6 \text{ N/mm}$$

c. Fluxo devido ao cisalhamento

$$q_s = -\frac{S_{y_{cis}}}{I_{xx}} \cdot \left(\sum_{r=1}^n B_r y_r\right) + q_{s,0}$$

$$\begin{cases} S_{x_{cis}} = 0 \text{ kN} \\ S_{y_{cis}} = 66.68 \text{ kN} \\ T_{cis} = -40 \text{ kN. m} \end{cases}$$

Segmento	$q_b = -\frac{66.68}{540e6} \cdot \left(\sum_{r=1}^n B_r y_r\right)$	$q_{s,0}$	q_s
1 – 2	33.34 N/mm	-55.6 N/mm	-22.26 N/mm
2 - 3	77.82 N/mm	-55.6 N/mm	22.22 N/mm
3 - 4	111.15 N/mm	-55.6 N/mm	55.6 N/mm
4 - 5	77.82 N/mm	-55.6 N/mm	22.22 N/mm
5 – 6	33.34 N/mm	-55.6 N/mm	-22.26 N/mm
6 - 1	0	-55.6 N/mm	-55.6 N/mm

Passo 4: Resumo de Resultados

$y_i(\mathbf{m})$	$\sigma_i(MPa)$	$P_{z,i}$ (kN)	δ_{χ}/δ_{z}	δ_y/δ_z	$P_{x,i}$ (kN)	$P_{y,i}$ (kN)	$P_i(kN)$	$\sigma_{t,i}(MPa)$
0.3	-111.1	-100	0.1	-0.05	-10	5	-100.62	-111.8
0.3	-111.1	-133.33	0	-0.05	0	6.66	-133.5	-111.25
0.3	-111.1	-100	-0.1	-0.05	10	5	-100.62	-111.8
-0.3	111.1	100	-0.1	0.05	-10	5	100.62	111.8
-0.3	111.1	133.33	0	0.05	0	6.66	133.5	111.25
-0.3	111.1	100	0.1	0.05	10	5	100.62	111.25

Segmento	$q_b = -\frac{66.68}{540e6} \cdot \left(\sum_{r=1}^n B_r y_r\right)$	$q_{s,0}(N/mm)$	$q_{t,0}({ m N/mm})$	q_{final} (N/mm)
1 - 2	33.34 N/mm	-55.6	-27,78	-50.04
2 - 3	77.82 N/mm	-55.6	-27,78	-5.56
3 - 4	111.15 N/mm	-55.6	-27,78	27.82
4 - 5	77.82 N/mm	-55.6	-27,78	-5.56
5 – 6	33.34 N/mm	-55.6	-27,78	-50.04
6 – 1	0	-55.6	-27,78	-83.38