

TEST REPORT

APPLICANT: Shenzhen Jimi IOT Co., Ltd

PRODUCT NAME : Container GPS Tracker

MODEL NAME : CT10

BRAND NAME : N/A

FCC ID : 2AMLFCT10

STANDARD(S) 47 CFR Part 22 Subpart H 47 CFR Part 24 Subpart E

TEST DATE : 2018-09-27 to 2018-10-17

ISSUE DATE : 2018-10-18

Tested by:

Gao Ming zhou

Gao Mingzhou (Test Engineer)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Technical Information	4
1.1. Applicant and Manufacturer Information	4
1.2. Equipment Under Test (EUT) Description	4
1.3. Test Standards and Results	6
1.4. Environmental Conditions	6
2. 47 CFR Part 2, Part 22H & 24E Requirements	7
2.1. Conducted RF Output Power	7
2.2. Peak to Average Radio	10
2.3. 99% Occupied Bandwidth	20
2.4. Frequency Stability	26
2.5. Conducted Out of Band Emissions	30
2.6. Band Edge	37
2.7. Transmitter Radiated Power (EIRP/ERP)	41
2.8. Radiated Out of Band Emissions	48
Annex A Test Uncertainty	69
Annex B Testing Laboratory Information	70

Change History				
Issue Date Reason for change				
1.0 2018-10-18		First edition		

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Jimi IOT Co., Ltd			
Applicant Address:	4/F, Building C, Gaoxinqi Industrial Park, Liuxian 1st Road, No.67			
	Xin'an Street, Bao'an District, Shenzhen, China			
Manufacturer:	Shenzhen Jimi IOT Co., Ltd			
Manufacturer Address:	4/F, Building C, Gaoxinqi Industrial Park, Liuxian 1st Road, No.67			
	Xin'an Street, Bao'an District, Shenzhen, China			

1.2. Equipment Under Test (EUT) Description

Product Name:	Container GPS Tracker	
Serial No:	(N/A, marked #1 by test site)	
Hardware Version:	V2.0	
Software Version:	NFC117_V0003_20180705	
	GPRS Mode with GMSK Modulation	
Modulation Type:	EDGE Mode with 8PSK Modulation	
	WCDMA Mode with QPSK Modulation	
	GSM 850MHz:	
	Tx: 824.20 - 848.80MHz (at intervals of 200kHz);	
	Rx: 869.20 - 893.80MHz (at intervals of 200kHz)	
	GSM 1900MHz:	
	Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);	
Operating Frequency Range:	Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)	
Operating Frequency Kange.	WCDMA 850MHz	
	Tx: 826.4 - 846.6MHz (at intervals of 200kHz);	
	Rx: 871.4 - 891.6MHz (at intervals of 200kHz)	
	WCDMA 1900MHz	
	Tx: 1852.4 - 1907.6MHz (at intervals of 200kHz);	
	Rx: 1932.4 - 1987.6MHz (at intervals of 200kHz)	
Multi-slot Class:	GPRS: Multislot Class12; EGPRS: Multislot Class12	
	GPRS 850:250KGXW, GPRS 1900:255KGXW	
Emission Designators:	EGPRS850:250KG7W, EGPRS1900:248KG7W,	
	WCDMA 850:4M11F9W, WCDMA1900:4M12F9W	

Antenna Type:	Monopole Antenna			
Antenna Gain:	GSM/WCDMA 850 0.6 dBi			
	GSM/WCDMA 1900 0 dBi			
	Normal(NV)	5.0V		
Operating voltage:	Lowest(LV)	4.8V		
	Highest(HV)	5.2V		

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- Note 3: The transmitter (Tx) frequency arrangement of the WCDMA 850MHz band used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4175(835MHz) and 4233 (846.6MHz).
- Note 4: The transmitter (Tx) frequency arrangement of the WCDMA 1900MHz band used by the EUT can be represented with the formula F(n)=1852.4+0.2*(n-9262), 9262<=n<=9538; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 9262 (1852.4MHz), 9400 (1880MHz) and 9538 (1907.6MHz).
- *Note 5:* For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22, Part 24 for the EUT FCC ID Certification:

No	Identity	Document Title
4	47 CED Dort 2 (40.4.42 Edition)	Frequency Allocations and Radio Treaty Matters;
1 47 CFR P	47 CFR Part 2 (10-1-12 Edition)	General Rules and Regulations
2	47 CFR Part 22 (10-1-12 Edition)	Public Mobile Services
3	47 CFR Part 24 (10-1-12 Edition)	Personal Communications Services

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result
1	2.1046	Conducted RF Output Power	Sep 27, 2018	Gao Mingzhou	PASS
2	24.232(d)	Peak - Average Radio	Sep 27, 2018	Gao Mingzhou	PASS
3	2.1049	99% Occupied Bandwidth	Sep 27, 2018	Gao Mingzhou	PASS
4	2.1055,22.355, 24.235	Frequency Stability	Oct 16, 2018	Gao Mingzhou	PASS
5	2.1051, 22.917(a), 24.238(a)	Conducted Out of Band Emissions	Sep 27, 2018 Oct 17, 2018	Gao Mingzhou	PASS
6	2.1051, 22.917(a), 24.238(a)	Band Edge	Sep 27, 2018 Oct 17, 2018	Gao Mingzhou	PASS
7	22.913(a), 24.232(a)	Transmitter Radiated Power (EIPR/ERP)	Sep 28, 2018 Oct 09, 2018	Zheng Fengjian	PASS
8	2.1051, 22.917(a), 24.238(a)	Radiated Out of Band Emissions	Oct 17, 2018	Zheng Fengjian	PASS

Note: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03 (Oct 27, 2017) and ANSI/TIA-603-E-2016.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 2, Part 22H & 24E Requirements

2.1. Conducted RF Output Power

2.1.1. Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.1.3. Test Results

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

GSM850	Av	Average Power (dBm)		
TX Channel	128	190	251	Verdict
Frequency (MHz)	824.2	836.6	848.8	
GPRS 1 Tx slot	31.86	31.92	31.98	PASS
GPRS 2 Tx slots	29.64	29.76	29.86	PASS
GPRS 3 Tx slots	27.54	27.72	27.86	PASS
GPRS 4 Tx slots	25.31	25.49	25.62	PASS
EDGE 1 Tx slot	25.43	25.66	25.81	PASS
EDGE 2 Tx slots	25.03	25.24	25.40	PASS
EDGE 3 Tx slots	23.46	23.41	23.53	PASS
EDGE 4 Tx slots	20.78	20.98	21.15	PASS

GSM1900	Av	Average Power (dBm)		
TX Channel	512	661	810	Verdict
Frequency (MHz)	1850.2	1880	1909.8	
GPRS 1 Tx slot	29.41	29.25	29.56	PASS
GPRS 2 Tx slots	27.39	27.18	26.93	PASS
GPRS 3 Tx slots	25.78	25.52	25.22	PASS
GPRS 4 Tx slots	23.66	23.41	23.17	PASS
EDGE 1 Tx slot	24.73	24.71	24.78	PASS
EDGE 2 Tx slots	24.39	24.41	24.51	PASS
EDGE 3 Tx slots	22.37	22.23	22.36	PASS
EDGE 4 Tx slots	19.47	19.37	19.57	PASS

WCDMA 850		Av	erage Power (dBı	Power (dBm)		
TX Ch	nannel	4132	4175	4233	Verdict	
Frequen	cy (MHz)	826.4 835.0 846.6				
3GPP Rel 99	RMC 2.2Kbps	21.56	21.59	21.53	PASS	

WCDMA 1900		Average Power (dBm)			
TX Ch	nannel	9262	9400	9538	Verdict
Frequen	cy (MHz)	1852.4 1880 1907.6			
3GPP Rel 99	RMC 2.2Kbps	21.67	21.66	21.73	PASS

Tel: 86-755-36698555

Http://www.morlab.cn

2.2. Peak to Average Radio

2.2.1. Requirement

According to FCC 24.232(d) the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.2.3. Test procedure

- 1 .For GSM/EGPRS operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- 2. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

2.2.4. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

Band	Channal	Frequency	Peak to Ave	rage radio	Limit	Verdict
Danu	Channel	(MHz)	dB	Refer to Plot	dB	verdict
GPRS	512	1850.2	0.05	Plot A1 to A3	13	PASS
1900MHz	661	1880.0	0.03			PASS
1900101112	810	1909.8	0.04			PASS
EGPRS	512	1850.2	0.01	Plot B1 to B3	to B3 13	PASS
1900MHz	661	1880.0	0.01			PASS
1900101112	810	1909.8	0.01			PASS
WCDMA 1900MHz	9262	1852.4	2.55			PASS
	9400	1880.0	3.01	Plot C1 to C3	13	PASS
I SOUMINZ	9538	1907.6	3.09			PASS

B. Test Plots:

(Plot A1, GSM 1900 MHz, Channel = 512)

(Plot A2, GSM 1900 MHz, Channel = 661)

(Plot A3, GSM 1900MHz, Channel = 810)

(Plot B1, EGPRS 1900 MHz, Channel = 512)

(Plot B2, EGPRS 1900 MHz, Channel = 661)

(Plot B3, EGPRS 1900MHz, Channel = 810)

Tel: 86-755-36698555

(Plot C1, WCDMA 1900MHz, Channel = 9262)

(Plot C2, WCDMA 1900MHz, Channel = 9400)

(Plot C3, WCDMA 1900MHz, Channel = 9538)

2.3.99% Occupied Bandwidth

2.3.1. Requirement

According to FCC section 2.1049 and FCC § 22.917 &24.238, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.3.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.3.3. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 99% occupied bandwidth.

GSM Test Verdict:

Band	Channel	Frequency	99% Occupied Bandwidth	26dB Bandwidth
Dallu	Channe	(MHz)	(kHz)	(kHz)
GPRS	128	824.2	242.82	317.2
850MHz	190	836.6	250.13	328.6
OSUMITZ	251	848.8	243.38	323.9
GPRS	512	1850.2	240.68	307.8
1900MHz	661	1880.0	255.49	327.1
I 900IVITZ	810	1909.8	246.37	323.6
ECDD6	128	824.2	247.17	318.8
EGPRS	190	836.6	249.90	320.4
850MHz	251	848.8	246.37	317.7
EODDC.	512	1850.2	243.32	319.3
EGPRS 1900MHz	661	1880.0	248.14	316.9
TOUNTIL	810	1909.8	242.66	317.9

Tel: 86-755-36698555

Http://www.morlab.cn

Test Plots:

WCDMA Test Verdict:

Band	Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)
WCDMA	4132	826.4	4.100	4.634
850MHz	4175	835.0	4.111	4.662
8501017	4233	846.6	4.105	4.668
MCDMA	9262	1852.4	4.088	4.676
WCDMA 1900MHz	9400	1880.0	4.123	4.652
	9538	1907.6	4.100	4.635

Test Plots:

WCDMA 850MHz CH4233 846.6MHz

2.4. Frequency Stability

2.4.1. Requirement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.4.2. Test Description

Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2.4.3. Test Result

The nominal, highest and lowest extreme voltages are separately 5.0V, 5.2V and 4.8V which is specified by the applicant; the normal temperature here used is 25°C.

GPRS 850MHz, Channel 190, Frequency 836.6MHz							
Limit =±2.5ppm							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	51	0.061			
100		-30	-28	-0.033			
100		-20	-37	-0.044			
100		-10	-43	-0.051			
100	F 0	0	-68	-0.081			
100	5.0	+10	33	0.039	PASS		
100		+20	29	0.035	PASS		
100		+30	27	0.032			
100		+40	26	0.031			
100		+50	51	0.061			
115	5.2	+20	-37	-0.044			
85	4.8	+20	-43	-0.051			

	GPRS 1900MHz, Channel 661, Frequency 1880.0MHz							
	Limit = Within Authorized Band							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result			
100		+20(Ref)	51	0.027				
100		-30	34	0.018				
100		-20	-73	-0.039				
100		-10	32	0.017				
100	F 0	0	41	0.022				
100	5.0	+10	-79	-0.042	PASS			
100		+20	-77	-0.041	PASS			
100		+30	-83	-0.044				
100		+40	31	0.016				
100		+50	35	0.019				
115	5.2	+20	-84	-0.045				
85	4.8	+20	35	0.019				

	EGP	•	Channel 190, Frequen	cy 836.6MHz	
Voltage (%)	Power (VDC)	Temp (°C)	Limit =±2.5ppm Fre. Dev. (Hz)	Deviation (ppm)	Result
100		+20(Ref)	19	0.023	
100		-30	-75	-0.090	
100		-20	-37	-0.044	
100		-10	-43	-0.051	
100	5 0	0	-68	-0.081	
100	5.0	+10	33	0.039	DACC
100		+20	29	0.035	PASS
100		+30	27	0.032	
100		+40	26	0.031	
100		+50	51	0.061	
115	5.2	+20	-23	-0.027	
85	4.8	+20	-43	-0.051	

EGPRS 1900MHz, Channel 661, Frequency 1880.0MHz							
Limit =Within Authorized Band							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	47	0.025			
100		-30	61	0.032			
100		-20	-65	-0.035			
100		-10	31	0.016			
100	5.0	0	41	0.022			
100	5.0	+10	-79	-0.042	PASS		
100		+20	-77	-0.041	PASS		
100		+30	-83	-0.044			
100		+40	31	0.016			
100		+50	35	0.019			
115	5.2	+20	-84	-0.045			
85	4.8	+20	27	0.014			

WCDMA 850MHz, Channel 4175, Frequency 835.0MHz Limit =±2.5ppm							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	18	0.022			
100		-30	-81	-0.097			
100		-20	-77	-0.092			
100		-10	-43	-0.051			
100	5 0	0	-68	-0.081			
100	5.0	+10	33	0.040	DACC		
100		+20	29	0.035	PASS		
100		+30	27	0.032			
100	5.2	+40	26	0.031			
100		+50	51	0.061			
115		+20	-33	-0.040			
85	4.8	+20	-53	-0.063			

WCDMA 1900MHz, Channel 9400, Frequency 1880.0MHz							
Limit =Within Authorized Band							
Voltage (%)	Power	Temp (°C)	Fre. Dev.	Deviation	Result		
	(VDC)		(Hz)	(ppm)			
100		+20(Ref)	61	0.032			
100		-30	55	0.029			
100		-20	-58	-0.031			
100		-10	29	0.015			
100	5.0	0	-79	-0.042			
100	5.0	+10	-79	-0.042	PASS		
100		+20	26	0.014	PASS		
100		+30	19	0.010			
100	5.2	+40	17	0.009			
100		+50	35	0.019			
115		+20	-87	-0.046			
85	4.8	+20	23	0.012			

Tel: 86-755-36698555

Http://www.morlab.cn

2.5. Conducted Out of Band Emissions

2.5.1. Requirement

According to FCC section 22.917(a) and FCC section 24.238(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.5.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

GPRS 850MHz CH128 824.2MHz

GPRS 850MHz CH190 836.6MHz

GPRS 850MHz CH251 848.8MHz

GPRS 1900MHz CH521 1850.2MHz

GPRS 1900MHz CH661 1880.0MHz

GPRS 1900MHz CH810 1909.8MHz

EGPRS 850MHz CH128 824.2MHz

EGPRS 850MHz CH190 836.6MHz

EGPRS 850MHz CH251 848.8MHz

EGPRS 1900MHz CH521 1850.2MHz

EGPRS 1900MHz CH661 1880.0MHz

EGPRS 1900MHz CH810 1909.8MHz

WCDMA 850MHz CH4132 826.4MHz

WCDMA 850MHz CH4175 835.0MHz

WCDMA 850MHz CH4233 846.6MHz

WCDMA 1900MHz CH9262 1852.4MHz

WCDMA 1900MHz CH9400 1880.0MHz

WCDMA 1900MHz CH9538 1907.6MHz

2.6. Band Edge

2.6.1. Requirement

According to FCC section 22.917(b) and FCC section 24.238(b) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.6.3. Test Result

The lowest and highest channels are tested to verify the band edge emissions.

Mkr-RefLy

GPRS 850MHz CH251 848.8MHz

GPRS 1900MHz CH521 1850.2MHz

16,360 dBm -20,277 dBm

2.7. Transmitter Radiated Power (EIRP/ERP)

2.7.1. Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts.

According to FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

According to FCC section 27.50, mobile, and portable (hand-held) stations is limited to 1 Watts e.i.r.p. peak power.

2.7.2. Test Description

Test Setup:

(For the test frequency from 30MHz to1GHz)

(For the test frequency above 1GHz)

The EUis located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

- Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

2.7.3. Test Result

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

G_{SUBST TX ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

GSM Test verdict:

Dond	Channal	Frequency	DCI		Measure	d ERP	Lim	it	Verdict
Band	Channel	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	verdict
GPRS	128	824.20	5	33.85	2.427				PASS
850MHz	190	836.60	5	32.75	1.884	Plot A	38.5	7	PASS
OSUMITIZ	251	848.80	5	32.28	1.690				PASS
EGPRS	128	824.20	5	27.69	0.587				PASS
850MHz	190	836.60	5	30.11	1.026	Plot B Note 1	38.5	7	PASS
OSUMITIZ	251	848.80	5	29.96	0.991				PASS
GPRS	512	1850.2	5	21.14	0.130				PASS
1900MHz	661	1880.0	5	25.38	0.345	Plot C	33	2	PASS
1900MHZ	810	1909.8	5	27.92	0.619				PASS
EGPRS 1900MHz	512	1850.2	0	21.32	0.136				PASS
	661	1880.0	0	25.51	0.356	Plot D Note 1	33	2	PASS
THOUNTZ	810	1909.8	0	28.10	0.646				PASS

Note 1: For the GPRS and EGPRS model, all the slots were tested and just the worst data were recorded in this report.

Note 2: Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.

Test Plots:

(Plot A, GPRS 850MHz, Channel = 128, 190, 251)

(Plot B, EGPRS 850MHz, Channel = 128, 190, 251)

(Plot C, GPRS 1900MHz, Channel = 512, 661, 810)

(Plot D, EGPRS 1900MHz, Channel = 512, 661, 810)

WCDMA Test verdict:

Band Channe		Frequency		Measured E	ERP	Lim	it	Verdict
Dallu	Chamer	(MHz)	dBm	W	Refer to Plot	dBm	W	verdict
WCDMA	4132	826.4	23.09	0.204				PASS
850MHz	4175	835.0	22.87	0.194	Plot E	38.5	7	PASS
850101112	4233	846.6	21.14	0.130				PASS
WCDMA	9262	1852.4	18.92	0.078				PASS
1900MHz	9400	1880.0	19.76	0.095	Plot F	33	2	PASS
TOUNITZ	9538	1907.6	22.09	0.162				PASS

Note 1: Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.

Test Plot

(Plot E, WCDMA 850 MHz, Channel = 4132, 4175, 4233)

(Plot F, WCDMA 1900 MHz, Channel = 9262, 9400, 9538)

2.8. Radiated Out of Band Emissions

2.8.1. Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.8.2. Test Description

Test Setup:

(For the test frequency from 30MHz to1GHz)

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

- Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) and a Horn one (used for above 3 GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions. The power of the EUT transmitting frequency should be ignored.

Note 1: All test mode and condition mentioned were considered and evaluated respectively by performing full test, only the worst data were recorded and reported.

Note 2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

A. Test Verdict:

			Measured M	ax. Spurious			
Band		nannel Frequency	Emissio	n (dBm)		Limit (dBm)	Verdict
	Channel		Test	Test	Refer to Plot		
		(MHz)	Antenna	Antenna		(ubiii)	
			Horizontal	Vertical			
GPRS	128	824.2	< -25	< -25	Plot A1/A2		PASS
850MHz	190	836.6	< -25	< -25	Plot A3/A4	-13	PASS
OJOIVII IZ	251	848.8	< -25	< -25	Plot A5/A6		PASS
GPRS	512	1850.2	< -25	< -25	Plot B1/B2		PASS
1900MHz	661	1880.0	< -25	< -25	Plot B3/B4	-13	PASS
T900MI	810	1909.8	< -25	< -25	Plot B5/B6		PASS
EGPRS	128	824.2	< -25	< -25	Plot C1/C2		PASS
850MHz	190	836.6	< -25	< -25	Plot C3/C4	-13	PASS
OSUMITZ	251	848.8	< -25	< -25	Plot C5/C6		PASS
FODDO	512	1850.2	< -25	< -25	Plot D1/D2		PASS
EGPRS	661	1880.0	< -25	< -25	Plot D3/D4	-13	PASS
1900MHz	810	1909.8	< -25	< -25	Plot D5/D6		PASS
\A/CD\A	4132	826.4	< -25	< -25	Plot E1/E2		PASS
WCDMA	4175	835.0	< -25	< -25	Plot E3/E4	-13	PASS
850MHz	4233	846.6	< -25	< -25	Plot E5/E6		PASS
\A/CDN4A	9262	1852.4	< -25	< -25	Plot F1/G2		PASS
WCDMA	9400	1880.0	< -25	< -25	Plot F3/G4	-13	PASS
1900MHz	9538	1907.6	< -25	< -25	Plot F5/G6		PASS

B. Test Plots

(Plot A1, GPRS 850MHz, Channel = 128, Horizontal)

(Plot A2, GPRS 850MHz, Channel = 128, Vertical)

(Plot A3, GPRS850MHz, Channel = 190, Horizontal)

(Plot A4, GPRS 850MHz, Channel = 190, Vertical)

(Plot A5, GPRS 850MHz, Channel = 251, Horizontal)

(Plot A6, GPRS 850MHz, Channel = 251, Vertical)

(Plot B1, GPRS 1900MHz, Channel = 512, Horizontal)

(Plot B2, GPRS 1900MHz, Channel = 512, Vertical)

(Plot B3, GPRS 1900MHz, Channel = 661, Horizontal)

(Plot B4, GPRS 1900MHz, Channel = 661, Vertical)

(Plot B5, GPRS 1900MHz, Channel = 810, Horizontal)

(Plot B6, GPRS 1900MHz, Channel = 810, Vertical)

(Plot C1, EGPRS 850MHz, Channel = 128, Horizontal)

(Plot C2, EGPRS 850MHz, Channel = 128, Vertical)

(Plot C3, EGPRS 850MHz, Channel = 190, Horizontal)

(Plot C4, EGPRS 850MHz, Channel = 190, Vertical)

(Plot C5, EGPRS 850MHz, Channel = 251, Horizontal)

(Plot C6, EGPRS 850MHz, Channel = 251, Vertical)

(Plot D1, EGPRS 1900MHz, Channel = 512, Horizontal)

(Plot D2, EGPRS 1900MHz, Channel = 512, Vertical)

(Plot D3, EGPRS 1900MHz, Channel = 661, Horizontal)

(Plot D4, EGPRS 1900MHz, Channel = 661, Vertical)

(Plot D5, EGPRS 1900MHz, Channel = 810, Horizontal)

(Plot D6, EGPRS 1900MHz, Channel = 810, Vertical)

(Plot E1, WCDMA 850MHz, Channel = 4132, Horizontal)

(Plot E2, WCDMA 850MHz, Channel = 4132, Vertical)

(Plot E3, WCDMA 850MHz, Channel = 4175, Horizontal)

(Plot E4, WCDMA 850MHz, Channel = 4175, Vertical)

(Plot E5, WCDMA 850MHz, Channel = 4233, Horizontal)

(Plot E6, WCDMA 850MHz, Channel = 4233, Vertical)

(Plot G1, WCDMA 1900MHz, Channel = 9262, Horizontal)

(Plot G2, WCDMA 1900MHz, Channel = 9262, Vertical)

(Plot G3, WCDMA 1900MHz, Channel = 9400, Horizontal)

(Plot G4, WCDMA 1900MHz, Channel = 9400, Vertical)

(Plot G5, WCDMA 1900MHz, Channel = 9538, Horizontal)

(Plot G6, WCDMA 1900MHz, Channel = 9538, Vertical)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Output Power	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.				
Department:	Morlab Laboratory				
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang				
	Road, Block 67, BaoAn District, ShenZhen, GuangDong				
	Province, P. R. China				
Responsible Test Lab	Mr. Cu Fono				
Manager:	Mr. Su Feng				
Telephone:	+86 755 36698555				
Facsimile:	+86 755 36698525				

2. Identification of the Responsible Testing Location

Namai	Shenzhen Morlab Communications Technology Co., Ltd.
Name:	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
Wireless synthesizer	MY48364176	8960 -E5515C	Agilent	2018.04.17	2019.04.16
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2018.04.17	2019.04.16

4.2 Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
System Simulator	152038	CMW500	R&S	2018.08.04	2019.08.03
Receiver	MY54130016	N9038A	Agilent	2018.05.18	2019.05.17
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2018.08.06	2019.08.05
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2018.08.02	2019.08.01
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

END OF REPORT	