Java lists, maps and not only...

Paweł Jaworski

Luxoft Poland Sp. z o.o.

2019-10-22

- Lists
- 2 Algorithmics
 - Complexity calculation and nomenclature
- 3 List
 - ArrayList
 - LinkedList
- 4 Maps
 - HashMap
- 5 Excercises
 - Laboratory excercises descriptions

Introduction

Lists

- We're going to have some fun with lists and maps
- Lists and maps are **basic** data structures, and in this context "Basic" means being a base of everything else

Lists

$$\sum_{n=1}^{n=1}$$

$$0 < \left| \lim_{x \to \infty} \frac{f(x)}{g(x)} \right| < \infty$$

Algorithm analysis

The Big O, Ω , Θ notation

When there exists $n_0 > 0$ and c > 0 for which we can say that:

$$\forall n > n_0 \ f(n) \leq c \cdot g(n)$$

we say that f is big-O g and write f(x) = O(g(x))When there exists $n_0 > 0$ and c > 0 for which we can say that:

$$\forall n > n_0 \ f(n) \geq c \cdot g(n)$$

we say that f is big- Ω g and write $f(x) = \Omega(g(x))$

The Big Θ notation

When we can say that $f(x) = O(g(x)) \wedge f(x) = \Omega(g(x))$ we say that f is Big Θ g and write:

$$f(x) = \Theta(g(x))$$

Examples

- Given $g(x) = x^2$ and $f(x) = 3x^2 + 4$ we can say that f(x) = O(g(x))...
- Given $g(x) = x^3$ and $f(x) = 100x^2 + 4x^3$ we can say that f(x) = O(g(x))...
- Given $g(x) = 2^x$ and $f(x) = 2^x + x^{64}$ we can say that f(x) = O(g(x))...

We can also easily say that $x^2 = O(2^x)$, and $x^2 = \Omega(1)$ but it is not very interesting. This observation is very weak. We are rather interested in finding the closest matches.

Complexity calculation and nomenclature

Θ sufficient condition

The most interesting is finding the simple in form, but exact, match of the function. This match is symbolised by Θ .

$$f(x) = O(g(x)) \land f(x) = o(g(x)) \Longrightarrow f(x) = \Theta(g(x))$$

If $f(x) = \Theta(g(x))$, it means that f is grows asymptotically as fast as g.

Sufficient condition for $f(x) = \Theta(g(x))$ is:

$$0 < \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$$

Some things that programmers usually know

We use given notation extensively to describe algorithm time of execution (and memory consumption). Hence for us (generally):

- x^2 is worse than x
- x is worse than log x
- 2^x is worse than x^{16} and it's bad
- x! it's so much, we don't distinguish between x! and 2^x . Those are equally BAD.
- We often don't distinguish between logarithm and exponential bases

Maps Excercises

Complexity calculation and nomenclature

Examples

Complexity calculation and nomenclature

Examples

Examples

Worst case scenario

Programmers also consider worst case (pessimistic) scenarios of algorithms and their complexity. Some algorithms work very slow on some special cases of input data. E.g. **quicksort**, despite of being $O(n \cdot \log n)$ runs at n^2 time, when in every partitioning selected pivot divides data to lengths: 1 and rest. Having that in mind, we can select, for example, **heapsort**, which has worst case running time still $n \cdot \log n$

Need to know by heart

• All arrays and lists in Java are indexed from 0!!!

ArravList

ArrayList

- Allocated as a one block in memory (more "array-ish" than "list-ish")
- Quick "please get me an element at position n" (further referred to as **get**): $\Theta(1)$
- Slow "please insert element at position n, moving all following elements to the right" (further referred to as **insert**): O(n)
- Slow "please delete element at position n, moving all following elements to the left" (further referred to as **delete**): O(n)

ArrayList

- Quick **append** a special-case of the insert at the last place, i.e. when for n equal number of elements: $\Theta(1)$, but only when the underlying array size is N > n+1
- When ArrayList is full, to perform insert we need to expand underlying array. We do it by increasing size by twice the current size.
- Is really the **append** operation $\Theta(1)$???

ArrayList pros and cons

• Insert at an arbitrary place costs n operations for n = s - i where s is number of items and i is the position we insert at.

Amortised cost. Amortised analysis

- We analyse amortised cost of operations amortised by their number.
- Amortised cost for given f(n) is F(n) that:

$$F(n) = \frac{T(n)}{n}$$

where

$$T(n) = \sum_{x=0}^{n} f(x)$$

List

ArrayList

Amortised cost. Amortised analysis

• For array initialised to 2, in the **append** operation we have cost:

$$1, 1, n_1 = 2, 1, 1, n_2 = 4, 1, 1, 1, 1, n_3 = 8$$

where n_x is n-th resize cost equals array's size at the moment of resize.

• If we use an accounting method to tell that every operation, we put additional 2 operations' time on a special account, for a later use, we can reuse that time at critical sections of resizing. Our account state is then:

Amortised cost. Amortised analysis

Operation	Account state	
+2	2	
+2	4	
-2	2	
+2	4	
+2	6	
-4	2	
+2	4	
+2	6	
+2	8	
+2	10	
-8	2	

Table 1: Amortised analysis using accounting method

Amortised cost. Amortised analysis

SVG Animation for the amortised cost accounting method

Amortised cost. Amortised analysis

• In this case we say that operation **append** on ArrayList is O(1) and keep in mind that sometimes it can stop our system for a very long time. So if we want to get overall computation time fit, we can allow us to expand a very large ArrayList, but when we are low-latency needers, we might need to search for a better solution.

LinkedList

- Allocated as linked list of many objects
- Every inserted object needs a wrapper object, so the number of objects in memory are at least twice the number of elements in list.
- Fast append: $\Theta(1)$
- Fast insert but only when given a preceeding node in the list.
- Fast delete but under the same conditions as insert
- Slow **get**: *O*(*n*)
- Does not need to grow **append** is not lagging from time to time.

LinkedList - pros

• LinkedList implements Deque which gives us nice stack and fifo methods: pollFirst, pollLast, peekFirst, peekLast

Maps 00000

LinkedList

LinkedList - cons

• Every item in LinkedList is of a class LinkedList.Item which has much overhead.

mark hash gcAge tLock tld	klassPtr ref to class	length	padding
4-8 bytes	4-8 bytes	4 bytes	up to mod arch

How much do the object weight in Java

```
class A { }
class B extends A { }
class C {
    boolean a;
```

How much do the object weight in Java - compressed pointers

```
java -XX:+UseCompressedOops
sizeof A = 16
sizeof B = 16
sizeof C = 16
sizeof Boolean = 16
sizeof Char = 16
sizeof Integer = 16
sizeof Long = 24
sizeof class java.util.LinkedList$Node = 24
```

How much do the object weight in Java - not compressed pointers

```
java -XX:-UseCompressedOops
sizeof A = 16
sizeof B = 16
sizeof C = 24
sizeof Boolean = 24
sizeof Char = 24
sizeof Integer = 24
sizeof Long = 24
sizeof class java.util.LinkedList$Node = 40
```

- Fast finding element by the key (further referred to as: lookup): O(1).¹
- Fast putting a key-value pair (further referred to as: **insert**): (O(1), pessimitically n = size, when map needs to grow.
- Fast remove: O(1) (HashMap does not shrink).
- Values with the same hash stored in *LinkedList*, collisions may occur.

 $^{^{1}}$ When time is longer, in properly setup map (i.e. number of buckets > size), it means that collisions occur. This can be the sign of incorrect hash function.

HashMap

 $x.equals(y) \implies x.hashCode() == y.hashCode()$

 $x.hashCode() == y.hashCode() \implies x.equals(y)$

TreeMap

- Implemented by Red-Black tree.
- Keys are sorted.
- Quite good lookup: $O(\log n)$
- Quite good insert: $O(\log n)$
- Quite good delete: $O(\log n)$
- Memory consumption: O(n).

Red-black tree

For each path count of black nodes ("black length") is constant

Algorithms visualised

https://www.cs.usfca.edu/~galles/visualization/java/ visualization.html

- Open the project, and enter the t1 package
- in src/main/java/t1 we have code that we need to fix
- in src/test/java/t1 we have tests that need to pass
- Please implement FIFOQueue using appropriate Java's list implementation
- Please implement LIFOQueue using appropriate Java's list implementation
- What happens when we change the selected implementation of list to another? Does the test still pass? What is the difference

- see src/main/java/t2 and src/test/java/t2
- First ocus on first_exercise_testGBPtoPLN
- why there is no such currency conversion, providing that we have added it in the map in initStatic() method?
- Next focus on second excercise testPLNtoGBP
- Why the test is failing? What is the printed result?

- see src/main/java/t3 and src/test/java/t3
- List must not grow, must throw proper exceptions.
- List must contain the java's Array as as storage for the items
- How to initialize the storing array for any T? Why new T[] is not working?

Laboratory excercises descriptions

- see src/main/java/t4 and src/test/java/t4
- Why the assertNull does not work?

Laboratory excercises descriptions

- see src/main/java/t5 and src/test/java/t5
- Uncomment code in the test
- Why the code does not compile? How can we fix it?

- see src/main/java/t6 and src/test/java/t6
- testRunningTimeEasy focus on time of execution, why it is so slow
- testMemEfficiencyEasy focus on time of execution, why it is so slow