요구사항확인 part 2

요구사항 정의

학습목표

- 요구공학의 정의와 요구사항 개발 프로세스를 설명할 수 있다.
- 요구사항의 다양한 분석 기법을 수행할 수 있다.

- 요구공학
- 요구사항 분석 기법

요구공학

1 요구공학 정의

● ○ (1) 요구공학의 정의

요구 공학

시스템 요구사항 문서를 <mark>생성, 검증, 관리</mark>하기 위하여 수행되는 구조화된 활동의 집합

- 요구사항의 획득, 분석, 명세, 검증 및 변경관리 등에 대한 제반 활동과 원칙
 → 요구사항 생성 및 관리를 체계적, 반복적으로 수행하는 활동
- 요구사항 관리에 포함되는 모든 생명주기(SDLC)활동과 이를 지원하는 모든 프로세스를 포함하는 개념
- 최종 산출물 → 요구사항 명세서

● ○ (2) 요구공학 프로세스

프로젝트 내내 이를 참고하여 개발하고 최종 목적물과 비교해야 함!

2 요구공학 개발 프로세스

소프트웨어공학 지식체계(SWEBOK)에서의 프로세스 구분

요구사항 도출(Elicitation)

분석(Analysis)

명세(Specification)

확인(Validation)

- 소프트웨어공학 지식체계(SWEBOK: Software Engineering Body of Knowledge)
 - → 국제 표준화기구의 정보기술 분야인 ISO/IEC에서 의견을 모아 집필 발간하는 표준화 체계 문서

요구사항 개발 프로세스의 주요 이슈

요구사항 도출 (Elicitation)

• 요구사항 소스 • 도출기법

분석 (Analysis)

- 요구사항 분류 개념 모델링
- 기술구조 설계 및 요구사항 할당 요구사항 협상

명세 (Specification)

- 시스템 정의서 시스템 요구사항 명세서
- 요구사항 추적서 소프트웨어 요구사항 명세서

검토 확인 (Validation) • 모델 검증

- 프로토타이핑
- 인수 테스트

요구사항 관리 (Manage ment)

요구공학

2 요구공학 개발 프로세스

요구사항 도출

- 소프트웨어가 해결해야 할 문제를 이해하는 첫 번째 단계
- 요구사항이 어디에 있고, 어떻게 수집할 것인가를 찾는 행위

이해관계자(Stakeholder) 식별

개발팀과 고객 사이의 관계 형성

다양한 이해관계자와의 효율적인 의사소통이 중요!

요구사항 분석

- 요구사항들 간 상충되는 것을 해결
- 소프트웨어의 범위 파악
- 소프트웨어가 환경과 어떻게 상호작용하는지 이해

시스템 요구사항을 정제하여 소프트웨어 요구사항을 도출!

요구사항 명세

- 체계적으로 검토, 평가, 승인될 수 있는 문서를 작성하는 작업
- 시스템 정의, 시스템 요구사항, 소프트웨어 요구사항 작성

요구사항 확인

- 분석가가 요구사항을 이해했는지 확인(Validation) 필요
- 요구사항 문서를 <mark>검증(Verification)</mark> 하는 것이 중요
 - ✓ 회사의 표준에 적합한가?
 - ✓ 이해 가능한가?
 - ✓ 일관성이 있는가?
 - ✓ 완전한가?
- 이해관계자들이 문서를 검토해야 하고, 요구사항 정의 문서들에 대해 형상관리를 해야 함
 - → 일반적으로 요구사항 관리 툴 이용
- 리소스가 요구사항에 할당되기 전에 문제를 파악하기 위하여 검증을 수행

요구공학

2 요구공학 개발 프로세스

요구사항 관리

• 세부사항을 마련하여 체계적으로 관리하여야 함

세부사항	내용
요구사항 협상	가용한 자원과 수용 가능한 위험 수준에서 구현 가능한 기능 협상
요구사항 기준선	공식적으로 합의되고 검토된 요구사항 명세서 결정
요구사항 변경관리	요구사항 기준선을 기반으로 모든 변경을 공식적으로 통제
요구사항 확인	구축된 시스템이 이해관계자가 기대한 요구사항에 부합되는지 확인

1 / 요구사항 분류 및 개념 모델링

● ○ (1) 요구사항 분석 기법

요구사항 분석 시 고려사항

요구사항 분석을 통해 요구사항을 기술할 때에는 <mark>다음의 작업</mark>들이 가능하도록 충분하고 정확하게 기술하여야 함

요구사항 확인(Validation)

요구사항 구현의 검증(Verification)

요구사항 구현의 추정되는 비용

요구사항 분석 기법의 종류

다섯가지 기법이 대표적

요구사항 분류(Requirement Classification)

개념 모델링(Conceptual Modeling)

요구사항 할당(Requirement Allocation)

요구사항 협상(Requirement Negotiation)

정형 분석(Formal Analysis)

1 / 요구사항 분류 및 개념 모델링

● ○ (2) 요구사항 분류

개념 모델의 역할

기능적 요구사항

- 시스템이 어떤 기능을 갖추어야 하는지를 요구하는 사항
- 시스템 기능을 정의한 것
- 요건에 대한 시스템의 행동
- 요구사항 중 기능 측면에 대한 것
- 시스템이 동작하는 내용에 대해 정의한 것
- 시스템 일부의 각 동작이 명시 되거나, 수학함수로 표시되거나, 블랙박스 설명, 기능 모델로 설명됨

1 요구사항 분류 및 개념 모델링

● ○ (2) 요구사항 분류

비기능적 요구사항

- 기능적인 부분 이외의 요구사항
- 시스템 전체적인 특성
- 시스템이 동작하는 방법을 정의한 것
- 시스템 성능, 신뢰성, 확장성, 운영성, 보안 등과 관련된 요건
- 특정 상태의 시스템이 아니라 전체적인 특성을 '시스템이 요건을 충족해야 한다'의 형태로 기술

실제 프로젝트 완료 후 시스템 사용자의 만족도 측면에서 비기능적 요구조건도 매우 중요한 반영요소가 됨

1 / 요구사항 분류 및 개념 모델링

● ○ (3) 개념 모델링

개념 모델의 역할

- 세계 문제에 대한 모델링 → 소프트웨어 요구사항 분석의 핵심
- 모델은 문제가 발생하는 상황에 대한 이해를 증진시키고 해결책을 설명
 - → 개념 모델은 문제 도메인의 엔터티(Entity)들과 그들의 관계 및 종속성을 반영!

개념 모델의 종류와 표기법

- 유스케이스 다이어그램(Use Case Diagram)
- 데이터 흐름 모델(Data Flow Model)
- 상태 모델(State Model)
- 목표기반 모델(Goal-Based Model)
- 사용자 인터액션(User Interactions)
- 객체 모델(Object Model)
- 데이터 모델(Data Model)

대부분의 모델링 표기법은 UML(Unified Modeling Language)을 사용!

1 / 요구사항 분류 및 개념 모델링

● ○ (3) 개념 모델링

UML 다이어그램 • 업무의 흐름 등 프로세스의 진행 시나리오를 나타내기 위해 유스케이스 다이어그램을 많이 사용함

구조 다이어그램 (Structure Diagram) 행위 다이어그램 (Behavior Diagram)

시스템의 정적 구조(Static Structure) 와 다양한 추상화 및 구현 수준에서 시 스템의 구성 요소, 구성 요소의 관계를 보여 줌 시스템 내의 객체들의 동적 행위 (Dynamic Behavior)를 보여 주며, 시간의 변화에 따른 시스템의 연속된 변경을 설명함

2 요구사항 할당, 협상, 정형 분석

● ○ (1) 요구사항 할당 및 협상

요구사항 할당

 요구사항을 만족시키기 위한 아키텍처 구성 요소를 식별하는 것

다른 구성 요소와 어떻게 상호 작용하는지 분석을 통하여 추가적인 요구사항을 발견 할 수 있음!

요구사항 협상

 두명의 이해관계자가 서로 상충되는 내용을 요구하거나, 요구사항과 리소스, 기능과 비기능 요구사항들이 서로 상충되는 경우 어느 한 쪽을 지지하기보다는 적절한 트레이드오프 지점(절충점)에서 합의하는 것이 중요

요구사항에 우선순위를 부여하는 것

중요한 요구사항을 필터링

요구사항들 간 상충되는 문제를 해결

2 요구사항 할당, 협상, 정형 분석

● ○ (2) 정형분석

정형분석 (Formal Analysis)

요구사항을 기술하여 분석하는 방법을 <mark>수학과 논리학에 기반</mark>을 두어 자연언어가 내포하는 <mark>애매모호함이나 불확실성을 제거</mark>하는 분석 기법

- 정성적 요소보다는 정량적, 구체적으로 기술하여 명세화 함
- 추후 정확하게 측정 가능한 요소로 요구사항을 명세화 하지 않으면 시스템
 요청자와 구축 수행자 간의 최종 인도 시 분쟁의 소지가 많음
- 품질관리자, 시스템 감리의 기준 항목은 명세화임
 → 정형분석(명세)는 요구사항을 분석하는 중요한 방법!

일반적으로 요구사항 분석의 마지막 단계에서 수행

정형분석 수행 방법

- 서브 시스템 사이의 연결 인터페이스를 분석하는 방법으로 여러 정형화된 명세를 사용함
- 행위나 상태를 분석하는 방법으로도 여러 정형화된 명세를 사용함
- 시스템 모델의 대부분은 정형분석을 통한 명세화를 사용함

예시

UML, Petri-Net, 순서도, DFD와 같은 방법으로 요구사항을 표시하는 방법 모두 해당함

■ 일반적으로 요구사항을 분석 후 이를 정형화된 기호나 도표 등으로 명세화 함

핵심요약

요구공학

- 요구공학 정의
 - 문서 생성, 검증, 관리하기 위하여 수행되는 구조화된 활동의 집합
- 요구공학 프로세스(요구사항 개발 프로세스)
 - 요구사항을 명확히 분석하여 검증하는 진행 순서
 - 요구사항 도출, 분석, 명세, 확인 및 요구사항 관리

요구사항 도출 (Elicitation)

• 요구사항 소스 • 도출기법

분석 (Analysis)

- 요구사항 분류 개념 모델링
- 기술구조 설계 및 요구사항 할당 요구사항 협상

명세 (Specification)

- 시스템 정의서 시스템 요구사항 명세서
- 요구사항 추적서 소프트웨어 요구사항 명세서

확인 (Validation)

- 검토
- 프로토타이핑
- 모델 검증
- 인수 테스트

요구사항 관리 (Manage ment)

핵심요약

요구사항 분석 기법

- 요구사항 분석을 통해 요구사항을 기술할 때에는 다음 작업들이
 가능하도록 충분하고 정확하게 기술하여야 함
- 요구사항을 분석하는 기법
 - 요구사항 분류 : 요구사항을 일반적으로 기능, 비기능 요구사항으로 분류
 - 개념 모델링 : 문제에 대한 모델링이 소프트웨어 요구사항 분석의 핵심
 - 요구사항 할당 : 요구사항을 만족시키기 위한 아키텍처 구성 요소를 식별하는 것
 - 요구사항 협상 : 이해 관계가 상충할 때 트레이드 오프 지점 (절충점)에서 합의가 중요
 - 정형 분석 : 요구사항을 기술하여 분석하는 방법을 수학과 논리학에 기반을 두어 자연언어가 내포하는 애매모호함이나 불확실성을 제거하는 분석 기법