22)
$$y = \frac{1}{y} \operatorname{Tan} \left(x - \frac{\pi}{y} \right) e^{\frac{1}{y} \operatorname{Tan} x} y = \operatorname{Tan} \left(x - \frac{\pi}{y} \right) e^{\frac{1}{y} \operatorname{Tan} x}$$

$$\int x \mapsto x - \frac{\pi}{y}$$

$$y = \frac{1}{y} \operatorname{Tan} x \qquad (x - \frac{\pi}{y}) e^{\frac{1}{y} \operatorname{Tan} x}$$

$$y = \frac{1}{y} \operatorname{Tan} x \qquad (x - \frac{\pi}{y}) e^{\frac{1}{y} \operatorname{Tan} x}$$

$$\begin{cases} y = |\cos \pi x| & f(x) \mapsto |f(x)| \\ y = |\cos \pi x| & f(x) \mapsto |f(x)| \\ x \mapsto \pi x & y = |\cos x| & f(x) \mapsto |f(x)| \\ y = \cos x \end{cases}$$

(29) (a) Given the graph of y=f(x), the graph of y=f(1xi) is obtained by replacing the portion of y=f(x) in the left half plane (that is Portion over -ve x-axis) with the mirror image of the portion of y=f(x) in the right helf plane. The mirror image is taken by considering the y-axis as a mirror.

$$y = \sqrt{|x|}$$

$$y = \sqrt{|x|}$$

$$y = \sqrt{|x|}$$

$$y = \sqrt{|x|}$$

$$(42) \quad f(x) = \text{Tanx} \quad g \quad g(x) = \frac{x}{x-1}, \quad h(x) = \sqrt[3]{x}$$

$$(fo go h)(x) = fo g(h(x)) = fo g(\sqrt[3]{x})$$

$$= f(\sqrt[3]{x}) = f(\sqrt[3]{x})$$

$$= \text{Tan}\left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\right)$$

(18)
$$l(t) = \frac{\tan t}{1 + \tan t}$$
 \Rightarrow This is a rational function in Tant \Rightarrow we can take $g(t) = \tan t$

Then $f(x) = \frac{x}{1 + x}$

Check that
$$(f \circ g)(t) = f(g(t)) = \frac{g(t)}{1 + g(t)} = \frac{Tant}{1 + Tant} = u(t)$$

Thus, for
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = Tanx$
we have $u(t) = (f \circ g)(t)$

Section 1.4

(a)
$$m_{pq} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1}{1 - x} - (-1) = \frac{1}{1 - x} + 1$$

$$= \frac{1+1-x}{(1-x)(x-a)} = \frac{a-x}{(1-x)(x-a)}$$

X	1.5	1.9	1.99	1.999	2.5	2.1	2.01	2.001
MPQ	2	1-111111	1.010101	1.00/001	0-666667	0.909091	0.990099	0.999001

$$\frac{(2)}{x-2} = 1 \Rightarrow 9+1 = x-2 \Rightarrow x-9-3=0 \text{ is the eqn},$$
of the tangent line.

$$(5) \quad y(t) = 40t - 16t^{2}$$
At $t = 2 + 9 \quad y(2) = 40(2) - 16(2)^{2} = 80 - 64 = 16$ ft

t	2.5	2.1	d·05	೩.०\
y (f)	0	13.44	14.76	15.7584
Ay	-16	− 2.56	-1-24	-0.2416
٥t	0.5	0 • \	0.05	0.01
Van= Ay At	-32	-25•6	- 24.8	-24.16

Vinstantaneous =
$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = -24 \text{ ft/sec.}$$

Section 1.5

$$\textcircled{5} \quad \textcircled{1} \quad \lim_{x \to 1} f(x) = 2$$

$$\text{b} \quad \lim_{x \to 3^{-}} f(x) = 1$$

$$(2) \lim_{x \to 3^+} f(x) = 4$$

