

Một số hệ mật mã đơn giản

Bởi:

Khoa CNTT ĐHSP KT Hưng Yên

Mã dịch chuyển (shift cipher)

Đặt $P=C=K=Z_{26}$. Với $0 \le K \le 25$, định nghĩa:

 $e_K(x) = x + K \mod 26$

và

 $d_K(y) = y - K \bmod 26$

 $(x, y Z_{26}).$

Trường hợp đặc biệt K=3 ứng với hệ mật mã Caesar.

Ví dụ:

Plain: meet me after the toga party

Cipher: PHHW PH DIWHU WKH WRJD SDUWB

Mã thay thế (substitution cipher)

Đặt $P=C=Z_{26}$. Với K gồm tất cả các hoán vị có thể của 26 ký hiệu 0, 1, ..., 25. Với mỗi K K định nghĩa:

$$e_K(x) = K(x) \mod 26$$

và

$$d_K(y) = K^{-1}(y) \mod 26$$

Trong đó K^{-1} là hoán vị ngược của K.

Ví dụ:

Khóa K:

а	ь	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	w	x	У	z
X	N	Y	A	Н	P	0	G	Z	Q	W	В	T	S	F	L	R	С	V	М	U	Е	K	J	D	I

Khóa K-1

A	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
d	1	r	У	v	0	h	e	z	x	w	p	t	ь	g	f	j	q	n	m	u	S	k	a	С	i

Cipher: MGZVYZLGHCMHJMXSSFMNHAHYCDLMHA

Hệ mật mã Affine

Đặt
$$P=C=Z_{26}$$
 và đặt

$$K=\{(a, b) Z_{26}X Z_{26}: gcd(a, 26)=1\}.$$

Với K=(a, b) K, định nghĩa:

$$e_K(x) = ax + b \mod 26$$

và

$$d_K(y) = a^{-1}(y - b) \mod 26$$

$$(x, y Z_{26}).$$

Trong đó
$$a^{-1}Z_{26}$$
, sao cho $aa^{-1} \equiv a^{-1}a \equiv 1 \pmod{26}$.

Ví dụ:

$$K=(7, 3)$$

Giải thuật Euclid mở rộng:

Tính phần tử nghịch đảo: a⁻¹

1.
$$n_0 = n$$

2.
$$a_0 = a$$

3.
$$t_0 = 0$$

Một số hệ mật mã đơn giản

4.
$$t = 1$$

$$5. q = \left| \frac{n_0}{a_0} \right|$$

6.
$$r = n_0 - q \times a_0$$

- 7. while r > 0 do
- 8. temp = $t_0 q x t$
- 9. If temp 0 then temp = temp mod n
- 10. If temp ≤ 0 then temp $= n ((-temp) \mod n)$

11.
$$t_0 = t$$

12.
$$t = temp$$

13.
$$n_0 = a_0$$

14.
$$a_0 = r$$

$$15. q = \left| \frac{n_0}{a_0} \right|$$

16.
$$r = n_0 - q \times a_0$$

17. if a₀ 1 then

a không có nghịch đảo

else

$$a^{-1} = t \mod n$$

Hệ mật mã Vigenere

Đặt m là một số nguyên dương. Định nghĩa $P=C=K=(Z_{26})^m$. Với một khóa $K=(k_1,k_2,...,k_m)$, chúng ta định nghĩa:

$$e_K(x_1,x_2,...,x_m) = (x_1 + k_1,x_2 + k_2,...,x_m + k_m)$$

Một số hệ mật mã đơn giản

và

$$d_K(y_1,y_2,...,y_m) = (y_1 - k_1,y_2 - k_2,...,y_m - k_m)$$

Trong đó các phép +, - được thực hiện trên trường Z_{26} .

Hệ mật mã Hill

Đặt m là một số nguyên dương. Đặt $P=C=(Z_{26})^{m}$ và đặt

 $K=\{m x m là ma trận khả nghịch trên <math>Z_{26}\}.$

Với K K, định nghĩa:

$$e_K(x) = xK \mod 26$$

và

$$d_K(y) = yK^{-1} \bmod 26$$

$$(x, y Z_{26}).$$

Trong đó: $KK^{-1} = I_m với I_m là ma trận đơn vị.$

Ví dụ: Với m=2; K=
$$\begin{pmatrix} 118 \\ 37 \end{pmatrix}$$
, K⁻¹= $\begin{pmatrix} 718 \\ 2311 \end{pmatrix}$

Mã hoán vị (permutation cipher)

Đặt m là một số nguyên dương. Đặt $P=C=(Z_{26})^m$ và đặt K là tập tất cả các hoán vị của tập $\{1, ..., m\}$. Với K K, định nghĩa:

$$e_K(x_1,...,x_m) = (x_{K(1)},...,x_{K(m)}) \mod 26$$

và

$$d_K(y_1,...,y_m) = (y_{K^{-1}(1)},...,y_{K^{-1}(m)}) \mod 26$$

Trong đó κ^{-1} là hoán vị ngược của κ .

Mã dòng (stream cipher)

Định nghĩa

Một hệ mã dòng là một bộ 7 (P, C, K, L, F, ε ,D), thỏa mãn các điều kiện sau đây:

- 1. P là tập hữu hạn các bản tin rõ
- 2. C là một tập hữu hạn các bản tin đã mã hóa
- 3. K là không gian khóa, là tập hữu hạn các khóa
- 4. *L* là tập các dòng khóa
- 5. F = (f 1, f 2,) là bộ sinh. Với $i \ge 1: f i: KxP i-1 -> L$
- 6. Với mỗi z <L, tồn tại một giải thuật mã hóa e₂ ∈ εvà một giải thuật giải mã d₂ ∈ D. Trong đó: e₂:P → C và d₂:C → P là các hàm sao cho d₂(e₂(x)) = x với mọi x P.</p>