

Summary

```
int i; // variable declaration
int i = 0; // declaration and initialization
int a[5]; // 1-d array declaration
int b[5][5]; // 2-d array declaration
int c[5][5][5]; // 3-d array declaration

a[1] = 20;
b[1][2] = a[1];
c[1][2][3] = b[1][2];
Library functions: printf, scanf (stdio.h)
```

```
for (i = 0; i < 20; i++) {
    // body
}
while (i < 10) {
    // body
}
if (i < 10) {
    // if-body
}
int foo(int arg1[], char arg2, float arg3);
// function declaration

int foo(int arg1[], char arg2, float arg3) {
// function body
}</pre>
```

Example

What is this program doing?

C doesn't track the size of the array. You can read/write an element that is outside the bounds of the array. The behavior of the program is undefined in this scenario.

```
#include <stdio.h>
int sum(int arr[], int_n) {
   int i, s = 0; *
                                 size for 1st
   for (i = 0; i < n; i++) {
                                dimension
      s = s + arr[i];
                                 is optional
   }
   return s;
}
int main() {
   int arr[5];
   int i, s;
   printf("Enter five numbers\n");
 _for (i = 0; i < 5; i++) {
      scanf("%d", &arr[i]);
   s = sum(arr, 5);
   printf("s=%d\n", s);
   return 0;
}
```

Example

What is this program doing?

- main takes five integer inputs from the user in an array using a loop
- Pass the array and the number of elements to routine sum
- sum adds all the elements in the array using a loop and variable s
- sum returns the final summation to the main
- main prints the return value of sum

C doesn't track the size of the array. You can read/write an element that is outside the bounds of the array. The behavior of the program is undefined in this scenario.

```
#include <stdio.h>
int sum(int arr[], int n) {
   int i, s = 0; *
                                  size for 1st
   for (i = 0; i < n; i++) {
                                 dimension
                                  is optional
      s = s + arr[i];
   }
   return s;
}
int main() {
   int arr[5];
   int i, s;
   printf("Enter five numbers\n");
   for (i = 0; i < 5; i++) {
      scanf("%d", &arr[i]);
   }
   s = sum(arr, 5);
   printf("s=%d\n", s);
   return 0;
}
```

```
Example
 #include <stdio.h>
     9 3
                                 void print_2d_array(int a[][3]) {
                                 _ printf("%d %d %d\n", a[0][0], a[0][1], a[0][2]);
                                  printf("%d %d %d\n", a[1][0], a[1][1], a[1][2]);
 विश्वि विश्वा विश्वार
 X+12 X+16 X+20
                                 int main() {
                                   int a[2][3];_
                                   a[0][0] = 1; a[0][1] = 2; a[0][2] = 3;
                                   a[1][0] = 4; a[1][1] = 5; a[1][2] = 6;
                                   print_2d_array(a);
                                   return 0;
What will be the output of
this program?
```

The address of an element "a[i][j]" in a 2D array of integers "a" is calculated as X + (i * Number of columns * 4) + (4 * j), where X is the starting address of the array.

```
#include <stdio.h>

void print_2d_array(int a[][]) {
    printf("%d %d %d\n", a[0][0], a[0][1], a[0][2]);
    printf("%d %d %d\n", a[1][0], a[1][1], a[1][2]);
}

int main() {
    int a[2][3];
    a[0][0] = 1; a[0][1] = 2; a[0][2] = 3;
    a[1][0] = 4; a[1][1] = 5; a[1][2] = 6;
    print_2d_array(a);
    return 0;
}

Can you point out the issue with this code?

}
```

In this case, in the print_2d_array function, we can't compute the address a[i][j] because the number of columns is missing in the prototype.

Example #include <stdio.h> void print_2d_array(int_a[][1]) { printf("%d %d %d\n", a[0][0], a[0][1], a[0][2]); $printf("%d %d %d\n", a[1][0], a[1][1], a[1][2]);\\$ abje int main() { int a[2][3]; a[0][0] = 1; a[0][1] = 2; a[0][2] = 3;a[1][0] = 4; a[1][1] = 5; a[1][2] = 6;a til [o] print_2d_array(a); return 0; Can you point out the issue with this code? What will be the output?

In this case, because of the wrong number of columns in the declaration of print_2d_array, the address of a[1][0] will be computed as X + 4. Therefore, the second line will print 2 3 4.

```
#include <stdio.h>

/ 2 3

/ 2 3

/ 5 6

#include <stdio.h>

void print_2d_array(int a[][3]) {
    printf("%d %d %d\n", a[0][0], a[0][1], a[0][2]);
    printf("%d %d %d\n", a[1][0], a[1][1], a[1][2]);
}

int main() {
    int a[2][3];
    a[0][0] = 1; a[0][1] = 2; a[0][2] = 3;
    a[1][0] = 4; a[1][1] = 5; a[1][2] = 6;
    print_2d_array(a);
    return 0;
}
```

The number of rows is not really needed for computing the address of a[i][j]. Therefore, this program is legal. The output is as expected in this case.

C languages

- You will learn more about C in the labs and tutorials
- In the class, we will discuss some more topics when they are needed

Algorithm

- Algorithm is a well-defined finite sequence of unambiguous operations that work on a given input to derive the desired output
 - i.e., an algorithm must terminate

Algorithm

- An algorithm is correct, if for all possible inputs
 - It halts
 - Finishes its computing in finite time
 - Outputs the correct solution
- All algorithms that we will discuss in this course are correct
- Some incorrect algorithms may also be helpful if you can control the error rate
 - E.g., a faster algorithm that may sometime not terminate can be used instead of a slower algorithm that always terminates

Why study algorithms and data structures

- Algorithm and data structures are important because we want to run our application faster using reasonable resources
 - An algorithm that takes an hour to search a webpage is not very useful
 - An application that takes 10 GB RAM might not work on many machines
- Widely used platforms like Google, Facebook, Amazon, IRCTC, etc., use very efficient data structures to give timely responses to our queries despite a huge volume of requests and data

Why study algorithms and data structures

- Algorithm design is not trivial, and a single algorithm will not work in all the scenarios
- In this course, we will discuss some algorithms that may work in some common scenarios; however, finding the most efficient algorithm for a given problem is very tricky
- We will also discuss the strategy to estimate the resources and time taken by the application
- Developing the skill to design good algorithms would require a lot of practice and knowledge of existing algorithms

What kind of problems can algorithms solve?

- The real-life examples are:
 - Search engines: answers your query from the millions of pages instantly
 - E-commerce: enable online purchases in a safe and secure manner
 - Social media: your updates are immediately visible to people in the same order they are made
 - Maps: instantly gives you the shortest path given the current traffic
 - Tools for compressing large files
 - IRCTC: can handle millions of requests simultaneously
 - Many applications in medical science, e.g., Genome Sequencing
 - etc.

What is data structure?

- Data structure is a way of storing and organizing data, e.g.,
 - data can be stored in consecutive addresses, or non-consecutive addresses
 - data can be stored in linear sequence or non-linear sequence
- Array, list, stack, queue, tree, graph, etc. are a few examples of data structure

Ticket counter

To implement a ticket booking application, we need a data-structure that is efficient for implementing first-in-first-out behavior.

For the dictionary, we need to store data in sorted order.

For the excel sheet, we need to store data in a way that allows us to efficiently perform various reordering operations supported by Excel.

For maps, we need to store the locations and paths in a way that makes it efficient to compute the shortest distance between the two points.

We need an efficient data structure to locate a file or directory, or sub-directories quickly.

For the printer queue, we need a data structure to efficiently implement first-in-first-out behavior.

Plates

To organize a deck of plates, we need a data structure that efficiently implements last-in-first-out behavior.

Why do we need different data structures?

- A single data structure may not suffice for all purposes
- Efficiency of an algorithm depends on the underline data structures

Storing words Т В Α \0 D Ε S Κ \0 В Α \0 Α \0 char dict[12][8]; С 0 L \0 Μ \0 Α С 0 D L L \0 What are the intermediate steps S during a search operation for a word, e.g., DOG? D 0 G \0 Α \0 Α Т \0

To search for a word W, we can iterate all rows and check if the rows indeed contain W. Checking if a row contains W would require comparing the elements of a given row and the individual character of W until '\0' is encountered in both.

search unsorted array of words Search *#include <string.h> int search(char dict[][8], int n_words, char word[]) { int i; for (i = 0; i < n_words; i++) { if (strcmp(dict[i], word) == 0) { return 1; } return 0; }</pre>

Search

Can we do the search operation faster when the array of words is already sorted?

Storing sorted words

char dict[12][8];

What are the intermediate steps during a search operation for a word, e.g., DOG?

Α	В	0	V	Е	\0	
Α	1	M	\0			
Α	Р	Р	L	Е	\0	
Α	S	K	\0			
В	Α	L	L	\0		
В	Α	T	\0			
С	Α	L	М	\0		
С	Α	Т	\0			
С	0	L	D	\0		
D	Е	S	K	\0		
D	0	G	\0			
D	0	L	L	\0		

We can pre-compute the indices of the first word that starts with 'a' in $idx_of[0]$, 'b' in $idx_of[1]$, 'c' in $idx_of[2]$, and so on. Now, if the word we are searching starts with a 'c', we need to search the words stored at indices $idx_of[2]$ to $idx_of[3]-1$.

Search #include <string.h> // idx_of[26] contains total number of words int search(char dic \underline{t} [][8], char word[], sorted unsigned int idx_of[27]) array of 1 or 0 { words unsigned int idx = word[0] - 'a'; int i; assert(idx < 26);</pre> for (i = idx_of[idx]; i < idx_of[idx+1]; i++) { if (strcmp(dict[i], word) == 0) {</pre> PRE-COMPUTE idx_of[0] -> index of first word that starts with 'a'. return 1; idx_of[1] -> index of first word that starts with 'b'. idx_of[2] -> index of first word that starts with 'c'. return 0; $idx_of[25] \rightarrow index of first word that start with 'z'.$ idx_of[26] -> Total number of words.

Abstraction #include <stdio.h> int main() { int num; printf("Enter a Number\n"); scanf("%d", &num); printf("You Entered: %d\n", num); return 0; }

Abstraction

- Abstraction hides the unnecessary implementation details from the users
- ullet For example, a header file in $\Bbb C$ provides a list of function declarations that users can directly use in their program without worrying about the underline implementation
 - e.g., printf, scanf, etc., in stdio.h

Abstract data type (ADT)

- ADT specifies the user's point of view of a data structure
 - i.e., the supported operations and their semantics, the possible values
- ADT hides the implementation details from the user
- ADT can be defined using a header file in C/C++ or an interface in Java

Abstract (or user's) view

- Power On/Off
- Select a program
 Start/Pause/Resume

Implementation view

This Photo by Unknown Author is licensed under CC BY-N

Abstract data type (ADT)

- Dictionary ADT
 - insert => insert a word
 - delete => delete a word
 - search => search a word

Example

- Train ticket booking platform
- Suppose there are thousands of requests, and you can process only one request at a time
 - In which order will you process the requests?
 - In which order will you store the requests?

Queue

- Follow first-in, first-out (FIFO) policy
- Queue ADT:
 - QUEUE-EMPTY => returns true if the queue is empty
 - ENQUEUE => insert an item at the end of the queue
 - DEQUEUE => remove an item from the top of the queue

Example

- Undo (ctrl+z) operation in power-point
- How do you store the words to perform undo efficiently?

Stack

- Follow last-in, first-out (LIFO) policy
- Stack ADT:
 - STACK-EMPTY => returns true if the stack is empty
 - PUSH => insert an item on the top of the stack
 - POP => remove an item from the top of the stack

Example

- Files and directories structure in an OS
 - How can we efficiently store the relationship between the directory and subdirectories or files?

Tree

- The root node has no parent
- The other nodes have exactly one parent
- A node in the tree can have zero or more children
- Tree ADT:
 - root
 - insert
 - delete
 - children
 - parent

Example

• How can we store the list of cities and the distance between neighboring cities?

Graph

- A set of vertices and edges
- Edges may have weights
- Graph ADT:
 - vertices
 - edges
 - addVertex
 - removeVertex
 - addEdge
 - removeEdge
 - incomingEdges
 - outgoingEdges

Data structures

• We will discuss the data structures presented in previous slides in detail in the upcoming classes

References

- Section-2.3 from the CORMEN et al.
- Chapter-2 from Narasimha Karumanchi

Recursion

• A function calling itself is called recursion

0] = 1 1] = 1 2] = 1×2 3] = $1 \times 2 \times 3$ 4] = $1 \times 2 \times 3 \times 4$

Factorial:

Factorial

• Recursive definition of factorial

$$n! = \frac{1}{n*(n-1)!} \frac{n=0}{n>0}$$

```
- int factorial(int n) {
    if (n == 0)
        return 1;
    return n * factorial(n-1);
}
```

Recursion

- Divide and conquer approach
 - **Divide** the problem into sub-problems of a similar type
 - Conquer the subproblem by solving them recursively
 - **Combine** the results of the subproblems to compute the result
- Structure of a recursive solution
 - One or more base cases
 - returns a value without making a recursive call
 - e.g., n=0 case in the factorial solution
 - One or more recursive steps
 - make recursive calls corresponding to the sub-problems
 - e.g., n*(n-1)! step in the factorial solution

int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } factorial(5) factorial(5) factorial(5) factorial(6) factorial(7) factorial(8) factorial(1) factorial(1) factorial(1) factorial(1) factorial(1) factorial(2) factorial(3) factorial(1) factorial(2) factorial(3) factorial(1) factorial(1)

Factorial

```
int factorial(int n) {
   if (n == 0)
       return 1;
   return n * factorial(n-1);
}
```

int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } factorial(5) calls factorial(4)

int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } factorial(5) calls factorial(4) factorial(3)

int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } factorial(5) calls factorial(4) factorial(2)

int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } factorial(5) calls factorial(2) calls factorial(1)

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) calls factorial(3) calls factorial(2) calls factorial(1) factorial(0)

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) calls factorial(3) calls factorial(2) calls factorial(1) factorial(0) returns 1

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) calls factorial(3) calls factorial(2) calls factorial(1) returns 1 * 1 = 1 factorial(0) returns 1

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) calls factorial(3) calls factorial(2) returns 2 * 1 = 2 calls factorial(1) returns 1 * 1 = 1 factorial(0) returns 1

Factorial int factorial(int n) { if (n == 0) return´1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) calls factorial(3) returns 3 * 2 = 6 calls factorial(2) returns 2 * 1 = 2 calls factorial(1) returns 1 * 1 = 1 factorial(0) returns 1

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) returns 4 * 6 = 24 calls factorial(3) returns 3 * 2 = 6 calls factorial(2) returns 2 * 1 = 2 calls factorial(1) returns 1 * 1 = 1 factorial(0) returns 1

Factorial int factorial(int n) { if (n == 0) return 1; return n * factorial(n-1); } calls factorial(5) calls factorial(4) returns 4 * 6 = 24 calls factorial(3) returns 3 * 2 = 6 calls factorial(2) returns 2 * 1 = 2 calls factorial(1) returns 5 * 24 = 120 returns 1 * 1 = 1 factorial(0) returns 1

power :: x^n	

```
 \chi^{n} 
 1 \qquad n=0 
 x*x^{n-1} \quad n>0 
 \inf_{\substack{\text{if (n==0)}\\ \text{return 1;}\\ \text{return x* power(x, n-1);}} }
```



```
int power(int x, int n) {
   if (n == 0)
      return 1;
   return x * power(x, n-1);
}

power(3,5)
```

```
int power(int x, int n) {
    if (n == 0)
        return 1;
    return x * power(x, n-1);
}

power(3,5)

calls
    power(3,4)
```

```
int power(int x, int n) {
    if (n == 0)
        return 1;
    return x * power(x, n-1);
}

power(3, 5)

calls
    power(3, 4)

power(3, 3)
```

```
int power(int x, int n) {
    if (n == 0)
        return 1;
    return x * power(x, n-1);
}

power(3, 5)

calls

power(3, 4)

calls

power(3, 2)
```

```
int power(int x, int n) {
    if (n == 0)
        return 1;
    return x * power(x, n-1);
}

power(3, 5)

calls

power(3, 3)

calls

power(3, 2)

power(3, 1)
```

```
x^n
int power(int x, int n) {
   if (n == 0)
      return 1;
   return x * power(x, n-1);
}
                 calls
   power(3, 5)
                                 calls
                  power(3, 4)
                                                 calls
                                    power(3, 3)
                                                                    calls
                                                    power(3, 2)
                                                                                     calls
                                                                      power(3, 1)
                                                                                       power(3, 0)
```

```
x^n
int power(int x, int n) {
   if (n == 0)
      return 1;
   return x * power(x, n-1);
}
                 calls
   power(3, 5)
                                 calls
                   power(3, 4)
                                                  calls
                                    power(3, 3)
                                                                     calls
                                                     power(3, 2)
                                                                                      calls
                                                                        power(3, 1)
                                                                                         power(3, 0)
                                                                             returns 1
```

```
x^n
int power(int x, int n) {
   if (n == 0)
      return 1;
   return x * power(x, n-1);
}
                  calls
   power(3, 5)
                                  calls
                   power(3, 4)
                                                   calls
                                     power(3, 3)
                                                                       calls
                                                       power(3, 2)
                                                                                        calls
                                                                         power(3, 1)
                                                         returns 3 * 1 = 3
                                                                                          power(3, 0)
                                                                               returns 1
```

```
x^n
int power(int x, int n) {
   if (n == 0)
       return 1;
   return x * power(x, n-1);
}
                  calls
   power(3, 5)
                                   calls
                   power(3, 4)
                                                    calls
                                      power(3, 3)
                                                                        calls
                                                        power(3, 2)
                                       returns 3 * 3 = 9
                                                                                          calls
                                                                          power(3, 1)
                                                          returns 3 * 1 = 3
                                                                                            power(3, 0)
                                                                                returns 1
```

```
x^n
int power(int x, int n) {
   if (n == 0)
       return 1;
   return x * power(x, n-1);
}
                  calls
   power(3, 5)
                                   calls
                    power(3, 4)
                                                     calls
                                       power(3, 3)
                     returns 3 * 9 = 27
                                                                         calls
                                                         power(3, 2)
                                        returns 3 * 3 = 9
                                                                                           calls
                                                                            power(3, 1)
                                                           returns 3 * 1 = 3
                                                                                             power(3, 0)
                                                                                 returns 1
```

```
x^n
int power(int x, int n) {
   if (n == 0)
       return 1;
   return x * power(x, n-1);
}
                  calls
   power(3, 5)
                                    calls
                    power(3, 4)
 returns 3 * 27 = 81
                                                     calls
                                       power(3, 3)
                     returns 3 * 9 = 27
                                                                          calls
                                                         power(3, 2)
                                        returns 3 * 3 = 9
                                                                                            calls
                                                                             power(3, 1)
                                                            returns 3 * 1 = 3
                                                                                               power(3, 0)
                                                                                  returns 1
```

```
x^n
   int power(int x, int n) {
       if (n == 0)
          return 1;
       return x * power(x, n-1);
   }
                      calls
       power(3, 5)
                                       calls
                        power(3, 4)
     returns 3 * 27 = 81
                                                         calls
                                           power(3, 3)
                         returns 3 * 9 = 27
                                                                              calls
                                                             power(3, 2)
                                            returns 3 * 3 = 9
                                                                                                 calls
                                                                                 power(3, 1)
                                                                returns 3 * 1 = 3
returns 3 * 81 = 243
                                                                                                   power(3, 0)
                                                                                       returns 1
```


• Can we reduce computation?

• Properties of power

$$\begin{array}{l} x^{100} = x^{50} * x^{50} \\ x^{101} = x^{50} * x^{50} * x \end{array}$$

```
int power(int x, int n) {
    int pow_h;
    if (n == 0)
        return 1;
    if ((n % 2) == 0) {
        pow_h = power(x, n/2);
        return pow_h * pow_h;
    }
    else {
        pow_h = power(x, (n-1)/2);
        return x * pow_h * pow_h;
    }
}
```

```
int power(int x, int n) {
Faster algorithm for x^n
                                                          int pow_h;
if (n == 0) -
                                                             return 1;
                                                          if ((n % 2) == 0) {
                                                             pow_h = power(x, n/2);
                                                             return pow_h * pow_h;
                                                          }
                                                          else {
                                                             pow_h = power(x, (n-1)/2);
                                                             return x * pow_h * pow_h;
                                                       }
   power(2, 30)
                BW(3, 15)
                            (FLF) 000 P
      2/123/128
                                          1PON (9,3)
                     27878
                                                         ban (5, 1)
                       2 128
                                               return
                                                                       1 Pow (2,0)
                                                              Letun 1
```

Faster algorithm for x^n int power(int x, int n) { int pow_h; if (n = 0) return 1; if ((n % 2) == 0) { pow_h = power(x, n/2); return pow_h * pow_h; } else { pow_h = power(x, (n-1)/2); return x * pow_h * pow_h; } } power(2, 30)

```
Faster algorithm for x^n

int power(int x, int n) {
    int pow_h;
    if (n = 0)
        return 1;
    if ((n % 2) == 0) {
        pow_h = power(x, n/2);
        return pow_h * pow_h;
    }
    else {
        pow_h = power(x, (n-1)/2);
        return x * pow_h * pow_h;
    }
}

power(2, 30)

calls
}
```

int power(int x, int n) { Faster algorithm for x^n int pow_h; if (n == 0) return 1; if ((n % 2) == 0) { $pow_h = power(x, n/2);$ return pow_h * pow_h; } else { $pow_h = power(x, (n-1)/2);$ return x * pow_h * pow_h; } calls power(2, 30) calls power(2, 7)

```
int power(int x, int n) {
Faster algorithm for x^n
                                                       int pow_h;
                                                       if (n == 0)
                                                           return 1;
                                                       if ((n % 2) == 0) {
                                                          pow_h = power(x, n/2);
                                                           return pow_h * pow_h;
                                                       }
                                                       else {
                                                           pow_h = power(x, (n-1)/2);
                                                          return x * pow_h * pow_h;
                                                     }
               calls
  power(2, 30)
                             calls
                                           calls
                               power(2, 7)
                                              power(2, 3)
```

```
int power(int x, int n) {
Faster algorithm for x^n
                                                         int pow_h;
                                                         if (n == 0)
                                                            return 1;
                                                         if ((n % 2) == 0) {
                                                           pow_h = power(x, n/2);
                                                            return pow_h * pow_h;
                                                         }
                                                         else {
                                                            pow_h = power(x, (n-1)/2);
                                                           return x * pow_h * pow_h;
                                                      }
               calls
  power(2, 30)
                             calls
                                            calls
                                power(2, 7)
                                                              calls
                                               power(2, 3)
                                                                power(2, 1)
```


Fibonacci numbers

• Fibonacci numbers are a sequence of numbers in which each number is the sum of the two preceding numbers

Fibonacci spiral

Galaxy

Sea shell

Golden ratio

2 / 1	2
3 / 2	1.5
5 / 3	1.666
8 / 5	1.6
13 / 8	1.625
21 / 13	1.615
34 / 21	1.619
55 / 34	1.617
89 / 55	1.618
144 / 89	1.617
233 / 144	1.618
377 / 233	1.618

Golden ratio

- The golden ratio (ϕ) is 1.618033988749 ...
- Many patterns based on the golden ratio exist in the nature

Golden ratio

Ancient temple in Greece almost fits into a golden rectangle. We don't know for sure if the temple was designed that way.

Fibonacci numbers

• Recursive definition of Fibonacci numbers

$$f(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

Fibonacci numbers

int fib(int n) {

}

if (n == 0 || n == 1) return n;

return fib(n-1) + fib(n-2);

• Recursive definition of Fibonacci numbers

```
f(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}
```

DR


```
Fibonacci numbers

int fib(int n) {
    if (n == 0 || n == 1)
        return n;
    return fib(n-1) + fib(n-2);
}

fib(4)
```

```
Fibonacci numbers

int fib(int n) {
    if (n == 0 || n == 1)
        return n;
    return fib(n-1) + fib(n-2);
}

fib(4)

calls
```

```
Fibonacci numbers

int fib(int n) {
    if (n == 0 || n == 1)
        return n;
    return fib(n-1) + fib(n-2);
}

fib(4)

calls

fib(2)
```

```
Fibonacci numbers

int fib(int n) {
    if (n == 0 || n == 1)
        return n;
    return fib(n-1) + fib(n-2);
}

fib(4)

calls

fib(2)
```


