Partiel S2 Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (5 points)

Répondre aux questions présentes sur le document réponse.

Exercice 3 (5 points)

- 1. Câblez la figure 1 afin de réaliser un compteur asynchrone modulo 14.
- 2. Câblez la <u>figure 2</u> afin de réaliser un **décompteur asynchrone modulo 14**.
- 3. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour le montage ci-dessous.

Exercice 4 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées *J* et *K* de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, K1 = Q2).

Partiel S2 1/6

Partiel S2 2/6

110111	rieliolii	Clusse
Nom:	Prénom ·	Classe ·

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	M
217,25			
0,21875			

2.

Représentation IEEE 754	Représentation associée
423E 0000 0000 0000 ₁₆	
8003 8000 0000 0000 ₁₆	
7FF0 0000 0000 0000 ₁₆	

Exercice 2

Question	Réponse
Combien de fils d'adresse possède une mémoire d'une profondeur de 64 Ki mots ?	
Un mémoire possède un bus de donnée de 8 fils et un bus d'adresse de 16 fils. En puissance de deux, quelle est la capacité en bits de cette mémoire ?	
Une mémoire M1 possède un bus de donnée de 16 fils et un bus d'adresse de 32 fils. On assemble deux mémoires M1 en série pour former une mémoire M2 . Quelle est la taille du bus d'adresse de la mémoire M2 ?	
Un microprocesseur possède un bus d'adresse de 20 fils. Trois fils d'adresse sont utilisés pour la sélection des composants. À l'aide du décodage linéaire, quel est le nombre maximum de fils d'adresse que peut posséder un composant connecté à ce microprocesseur?	
Un microprocesseur possède un bus d'adresse de 24 fils. Il est connecté en mode linéaire aux composants suivants : une ROM (20 fils d'adresse); une RAM (15 fils d'adresse); un périphérique quelconque (10 fils d'adresse). Combien de fils d'adresse sont inutilisés dans le cas de la mémoire RAM?	

Partiel S2 3/6

Exercice 3

Figure 1

Figure 2

Partiel S2 4/6

Exercice 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	1	1						
1	0	0						
1	0	1						
1	1	0						
0	1	0						
0	0	1						
0	0	0						

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

$$J2 =$$

$$K0 =$$

$$K1 =$$

			Q1	Q0	
	K2	00	01	11	10
02	0				
Q2	1				

5/6

$$K2 =$$

Partiel S2

Partiel S2 6/6