W02

Fekete Máté

2020 Április

Tartalom jegyzék

1	Többváltozós lineáris regresszió	2
2	Gradiant Descent több változóval	2
3	Normalizáció	3
4	Polinomiális regresszió	3
5	Normál egyenlet 5.1 Gradiens módszer vs normál egyenlet	4

1 Többváltozós lineáris regresszió

Jelölések:

 $\boldsymbol{x}_{j}^{(i)}$ - a jjellemző értéke az i-ediktanuló példában

 $x^{(i)}$ - az *i*-edik tanuló példa bemenete (jellemzők összessége)

m - a tanuló példák száma

n - a jellemzők száma

A hipotézis függvény többváltozós formája a következő:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Pl. θ_0 egy ház alap ára, θ_1 az ár négyzetméterenként, θ_2 az ár emeletenként, x_1 a ház mérete, x_2 az emeletek száma.

Ha a θ és x értékeket egy-egy vektorként tekintjük (x_0 -t mindig 1-nek nézzük, így nem változtat a fenti képleten), akkor vektorizálva a képlet:

 $\theta^T x$

2 Gradiant Descent több változóval

A képletünk ugyan az, csak el kell végeznünk minden jellemzőre.

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Amit ugyan úgy ismétlünk, ameddig nem találunk lokális minimumot.

3 Normalizáció

Gyorsíthatunk a Gradiens módszer konvergenciáján azzal, ha a bemeneti értékeinket egy kisebb intervallumra csökkentjük, mivel nagy intervallumokon és egyenletlen eloszlással sokkal lassabban érjük csak el a minimumot.

Legjobb esetben a célünk valami ilyesmi elérése:

$$-1 \le x_{(j)} \le 1$$

Ez nem egy konkrét érték, a célunk csak az, hogy csökkentsük az intervallum méretét.

Általában a következő függvényt használjuk:

$$x_j := \frac{x_j - \mu_j}{s_j}$$

Ahol μ_j a j jellemző összes értékének átlaga, s_j pedig az értékek intervallumának hossza (max-min).

4 Polinomiális regresszió

Az adatkörünkre sok esetben nem illeszkedik jól egy szimpla egyenes. Ilyen esetekben hozhatunk létre saját jellemzőket, amik a meglévők kombinációi.

Például ha a jelenlegi hipotézis függvényün a $h_{\theta}(x) = \theta_0 + \theta_1 x_1$, de egy négyzetes függvény görbéje jobban illeszkedne, vehetjük az x_1 változónk négyzetét, ezzel a hipotézist a következő formára módosítva:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

Ilyen esetben viszont fokozottan fontossá válik a normalizáció, hiszen ha az x_1 intervalluma [1-1000], a hozzáadott tagban már [1-1000000] lesz.

5 Normál egyenlet

Ugyan úgy a költség függvényt minimalizálja, viszont az iteratív megoldás helyett egyetlen lépésben.

$$\theta = (X^TX)^{-1}X^Ty$$

Nem kell normalizációt használni.

5.1 Gradiens módszer vs normál egyenlet

Gradiens módszer:

- \bullet Választanunk kell egy α értéket
- Iteratív
- \bullet $O(kn^2)$
- Jól működik sok jellemző esetén is

Normál egyenlet:

- Nincs α
- Invertálni kell X^TX -et, ami $O(n^3)$ műveletigényű és lehet hogy nem is invertálható
- Lassú, ha túl sok jellemzőnk van

Ha X^TX nem invertálható általában a következők okozhatják:

- Redundáns jellemzők, lineárisan összefüggnek
- Túl sok jellemző, regularizálni kell