# **Special Topic: Recommender Systems**

#### **Dong-Kyu Chae**

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University





# **Content-Based Approach**

- Recommend such items that have contents similar to the profile of the target user
  - Contents: characteristics of an item
    - Example : genre, actor, director in movies, etc...
  - □ Profile: the summarized item contents included in the target user's history

Target user's item usage history



Recommend an item

# **Content-Based Approach**

- Similarity
  - Cosine similarity, Pearson correlation, etc.
- How to define a user profile?
- Using a single, unified user profile select the best item
  - Define each purchased item as a profile, and then aggregate the similarity between the target item and each purchased item ুদ্র দে খটু নাটা
- Example of cosine similarity

- K: # of features
- $\vec{w}_u$ : user u's profile
- $\vec{w}_i$ : item *i*'s contents
- $w_{u,k}$ : user profile's k-th feature value
- $w_{i,k}$ : item content's k-th feature value



# Collaborative Filtering (CF), KNN-based Method

- Recommend such items rated high by k-nearest neighbors who have preferences similar to that of the target user
  - **Step 1**: *Finding a k-nearest neighbors* whose preferences are similar to that of an active user *u*

**Step 2**: Estimating  $r_{u,i}$ , the rating of item i for active user u, based on the ratings

given to item i by u's neighbors

Step 3: Recommending Top-N items with the ratings estimated high

prefer prefer ence ० | १ व व व व Alt of the pre for \$2000 All ruting & of the bord of ruting & neighbors of ruting & Souls Mr.A E-18141-1E. prefer recommendation users having similar preference recommended search items database search database

show Mr.A's preference to the system



- **Easy example:** A database of ratings of the current user, Bob, and some other users is given:
- □ Determine whether Bob will like or dislike Item 5











|       | Item1 | Item2 | Item3 | Item4 | Item5 |
|-------|-------|-------|-------|-------|-------|
| Bob   | 5     | 3     | 4     | 4     | ???   |
| User1 | 3     | 1     | 2     | 2     | 2     |
| User2 | 4     | 3     | 4     | 3     | 5     |
| User3 | 3     | 3     | 1     | 5     | 4     |
| User4 | 1     | 5     | 5     | 2     | 1     |



#### Step 1-1: Similarity function between users

Pearson correlation coefficient

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{x,s} - \overline{r_x}) (r_{y,s} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{x,s} - \overline{r_x})^2 \sum_{s \in S_{xy}} (r_{y,s} - \overline{r_y})^2}}$$

Cosine similarity

$$sim(x,y) = cos(\vec{x}, \vec{y}) = \frac{\vec{w}_x \cdot \vec{w}_y}{\|\vec{w}_x\|_2 \times \|\vec{w}_y\|_2} = \frac{\sum_{s \in S} r_{x,c} r_{y,s}}{\sqrt{\sum_{s \in S_{xy}} r_{x,s}^2} \sqrt{\sum_{s \in S_{xy}} r_{y,s}^2}}$$

|       | Item1    | Item2    | Item3    | Item4    | Item5    |
|-------|----------|----------|----------|----------|----------|
| Bob   | 5 (+1.0) | 3 (-1.0) | 4 (0.0)  | 4 (0.0)  | ???      |
| User1 | 3 (+1.0) | 1 (-1.0) | 2 (0.0)  | 2 (0.0)  | 2 (0.0)  |
| User2 | 4 (+0.2) | 3 (-0.8) | 4 (+0.2) | 3 (-0.8) | 5 (+1.2) |
| User3 | 3 (-0.2) | 3 (-0.2) | 1 (-2.2) | 5 (+1.8) | 4 (0.8)  |
| User4 | 1 (-1.8) | 5 (+2.2) | 5 (+2.2) | 2 (-0.8) | 1 (-1.8) |

| J            | correlationalza |
|--------------|-----------------|
| sim(Bob, U1) | 1.0             |
| sim(Bob, U2) | 0.60            |
| sim(Bob, U3) | 0.0             |
| sim(Bob, U4) | -0.77           |



□ Step 1-2: Selecting Neighborhood
□ Select k neighbors sorted by the similarity values

|       | Item1    | Item2    | Item3    | Item4    | Item5    |                |                 |
|-------|----------|----------|----------|----------|----------|----------------|-----------------|
| Bob   | 5 (+1.0) | 3 (-1.0) | 4 (0.0)  | 4 (0.0)  | ???      | Top- $2 = \{U$ | 11, <i>U2</i> } |
| User1 | 3 (+1.0) | 1 (-1.0) | 2 (0.0)  | 2 (0.0)  | 2 (0.0)  | sim(Bob, U1)   | 1.0             |
| User2 | 4 (+0.2) | 3 (-0.8) | 4 (+0.2) | 3 (-0.8) | 5 (+1.2) | sim(Bob, U2)   | 0.60            |
| User3 | 3 (-0.2) | 3 (-0.2) | 1 (-2.2) | 5 (+1.8) | 4 (0.8)  | sim(Bob, U3)   | 0.0             |
| User4 | 1 (-1.8) | 5 (+2.2) | 5 (+2.2) | 2 (-0.8) | 1 (-1.8) | sim(Bob, U4)   | -0.77           |

#### Step 2: Rating prediction

Predict the rating by aggregating the neighbors' ratings on the item

$$r_{u,i} = \underset{u' \in N}{\operatorname{aggr}} r_{u',i} \ell^{5}$$

- $r_{u,i}$ : Estimated rating on item i for user u
- N: Set of neighbors for user u≈√√√
- Different methods for aggregation

(a) 
$$r_{u,i} = \frac{1}{|N|} \sum_{u' \in N} r_{u',i}$$
  $2^{\frac{1}{2}} \sum_{u' \in N} r_{u',i}$  •  $sim(u,u')$ : similarity between user  $u$  and user  $u'$ 

$$(c) \ r_{u,i} = \overline{r_u} + \frac{1}{k} \sum_{u' \in N} sim(u, u') \times (r_{u',i} - \overline{r_{u'}}) \quad \overline{r_u}, \overline{r_u}$$
 •  $\overline{r_u}, \overline{r_u}$ : Average of ratings of user  $u$  and similar user  $u'$ 



#### Variation: Item-based CF

Search for KNN of an item i, rather than a user u

$$r_{u,i} = \underset{i' \in N}{\operatorname{aggr}} r_{u,i'}$$

- $r_{u,i}$ : Estimated rating on item i for user u
- N: Set of neighbors for item i

ofolesial are neigh bot

न्द्रिय भन्ने त्या ।

NSer base에서を

のえ を12171 そ151 (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (1117) (







#### **Contents**

- 1. Netflix Prize
- 2. Recommendation and Collaborative Filtering
- 3. KNN-based Methods
- 4. Matrix Factorization
- 5. Recent Recommenders
- 6. Case Study



#### **Latent Factor Models**

- □ So far...
  - We learned KNN-based methods for recommender systems
  - However, the methods are heuristic-based, using hand-crafted functions

#### Model-based methods

- Latent factor models
  - Linear models: matrix factorization, SVD, ...
  - Non-linear models: Autoencoder, deep neural networks, ...







## **Latent Factor Models**

#### ■ What is latent factor?

□ A feature that describe characteristics of users and items hidden in data





## **Latent Factor Models**

#### ■ What is latent factor?

□ A feature that describe characteristics of users and items hidden in data



# Thank You

