PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-120508

(43)Date of publication of application: 23.04.2002

(51)Int.CI.

F16C 33/62 F16C 33/64

(21)Application number: 2000-316517

(71)Applicant: NSK LTD

(22)Date of filing:

(72)Inventor: OKUMA TAKEO

17.10.2000

(54) HUB UNIT FOR AUTOMOBILE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve durability while suppressing cost increase and enlargement.

SOLUTION: A hub body 2a and an outer wheel 4 are made of medium carbon steel, and an oblique lattice part is hardened with quenching. An inner wheel 3a is made of carburized steel, and an oblique lattice part is hardened with carburization quenching. The inner wheel 3a having a second inner wheel raceway track 12 having the severest condition in the rolling fatigue life is made of carburized steel having high durability.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-120508 (P2002-120508A)

(43)公開日 平成14年4月23日(2002.4.23)

(51)Int.Cl.'

B 6 0 B 35/14

F 1 6 C 33/62

33/64

FI B60B 35/14 F16C 33/62 テマコート"(参考) 3 J I O I

審査時求 未朗求 頭求項の数1 OL (全 7 頁)

(21)出頭番号

特版2000-316517(P2000-316517)

(22)出顧日

平成12年10月17日(2000.10.17)

證別記号

(71)出頭人 000004204

33/64

日本精工株式会社

東京都品川区大崎1丁目6番3号

(72) 発明者 大館 健夫

神奈川県藤沢市協招神明一丁目5番50号

日本精工株式会社内

(74)代理人 100087457

弁理士 小山 武男 (外1名)

Fターム(参考) 3J101 AA18 AA25 AA32 AA43 AA54

AA62 AA72 BA53 BA70 DA03

EA02 FA31 FA44 GA03

(54) 【発明の名称】 自動車用ハブユニット

(57) 【要約】

【課題】 コスト上昇や大型化を抑えつつ、耐久性向上を図る。

【解決手段】 ハブ本体2a及び外輪4を中炭素鋼で造り、斜格子部分を焼き入れ硬化する。内輪3aを浸炭鋼で造り、斜格子部分を浸炭焼き入れにより硬化する。 転がり疲れ寿命の点で最も条件が厳しい第二の内輪軌道12を設けた上記内輪3aを、優れた耐久性を有する没炭鋼により造る事で、上記課題を解決できる。

【特許請求の範囲】

【請求項1】 ハブ本体と、このハブ本体に外供固定し た内輪と、これらハブ本体及び内輪の周囲に配置した外 **輸と、これらハブ本体及び内輪の外周面と外輪の内周面** との間に設けた複数個の円すいころとを備え、このうち のハブ本体は、外端部外周面に車輪を支持する為の第一 のフランジを設けると共に、中間部外周面に第一列の円 すいころ軸受を構成する為の、円すい凸面状の第一の内 **輪軌道を直接形成し、内端部外周面に小径段部を設けた** ものであり、上記内輪は、第二列の円すいころ軸受を構 成する為の、円すい凸面状の第二の内輪軌道を外周面に 形成し、上記ハブ本体の小径段部に外依固定したもので あり、上配外輪は、内周面に上配第一列、第二列の円す いころ軸受を構成する為の、それぞれが円すい凹面状の 第一、第二の外輪軌道を、外周面に上配外輪を懸架装置 .に支持固定する為の第二のフランジを、それぞれ形成し たものである自動車用ハブユニットに於いて、上記ハブ・ 本体は中炭素鋼製であり、上記内輪は浸炭網製である事 を特徴とする自動車用ハブユニット。

【発明の詳細な説明】・

[0001]

【発明の属する技術分野】この発明は、自動車の車輪を 歴架装置に対して回転自在に支持する為の自動車用ハブ ユニットの改良に関し、複列に設けた円すいころ軸受同 士の間で寿命の差が大きくなる事を防止して、コスト上 昇を抑えつつ、全体としての寿命延長を図るものであ る。

[0002]

【従来の技術】自動車の車輪は懸架装置に対して、転がり軸受により回転自在に支持する。又、重量の高む自動車の車輪は、複列円すいころ軸受を組み込んだ自動車用ハブユニットにより、懸架装置に対して回転自在に支持する。図3は、この様な場合に使用する自動車用ハブユニットの1例として、特開平11-51064号公報に記載されたものを示している。先ず、この公報に記載された自動車用ハブユニット1に就いて、説明する。

【0003】この自動車用ハブユニット1は、ハブ本体2と、このハブ本体2に外嵌固定した内輪3と、これらハブ本体2及び内輪3の周囲に配配した外輪4と、これらハブ本体2及び内輪3の外周面と外輪4の内周面との間に設けた複数個の円すいころ5a、5bとを備える。このうちのハブ本体2の外端部(軸方向に関して「外」とは、自動車への組み付け状態で幅方向外側となる。例1、3の左側。反対に、軸方向に関しては、自動車への組み付け状態で幅方向中央側となる、図1、3の右側部分を「内」と含う。本明細審全体で同じ。)で上記外輪4から露出した部分の外周面には、車輪を支持する為の第一のフランジ6を形成している。又、上記ハブ本体2の中間部外周面には、第一列の円すいころ軸受7を構成する為の、円すい凸面状の第一の内輪軌道8を、

直接形成している。更に、上記ハブ本体2の内端部外周 面には、小径段部9を設けている。この小径段部9の外 周面は、上記ハブ本体2と同心の円筒面としている。 又、図示の例は、駆動輪を支持する為の自動車用ハブユ ニット1を示しており、この為に上配ハブ本体2の中心 部にスプライン孔10を設けて、図示しない等速ジョイ ントに付属の駆動軸をスプライン係合自在としている。 【0004】又、上記内翰3は、第二列の円すいころ軸 受11を構成する為の、円すい凸面状の第二の内輪軌道 12を外周面に形成しており、上記ハブ本体2の小径段 部9に外嵌固定している。この第二の内輪軌道12の傾 斜方向と上記第一の内輪軌道8の傾斜方向とは、互いに 逆にしている。又、上記内輪3の内端部は、この内輪3 の外端面を上配小径段部9の段差面13に突き当てた状 旗で、上記ハブ本体2の内端面よりも少しだけ突出す る。自動車への組み付け状態で、この様にハブ本体2か **ら突出した、上記内輪3の内端面には、上記等速ジョイ** ントの外端面等が突き当たり、上配内輪3が上配小径段 部9から抜け出る事を防止する。

【0005】又、上記外翰4の内周面には、上記第一列、第二列の円すいころ軸受7、11を構成する為の、それぞれが円すい凹面状の第一、第二の外翰軌道14、15を形成している。これら第一、第二の外翰軌道14、15の傾斜方向は、上記第一、第二の内翰軌道8、12に合わせて、互いに逆としている。又、上記外翰4の外周面の軸方向中間部には、この外翰4を図示しない 懸架装置に対し固定する為の第二のフランジ16を設けている。

【0006】又、上記複数の円すいころ5a、5bのうちの一部(図3の左側半分)の円すいころ5a、5aは、第一の保持器17により転動自在に保持した状態で、上記第一の内輪軌道8と上記第一の外輪軌道14との間に配置している。これに対して、上記複数の円すいころ5a、5bのうちの残部(図3の右側半分)の円すいころ5b、5bは、第二の保持器18により転動自在に保持した状態で、上記第二の内輪軌道12と上記第二の外輪軌道15との間に配置している。

【0007】更に、上記外輪4の両端部内周面と前記ハプ本体2の中間部外周面及び前記内輪3の内端部外周面との間にはシールリング19a、19bを設けて、前記第一列、第二列の円すいころ軸受7、11を設置した空間と外部とを遮断している。そして、この空間内に封入したグリースが外部に潮波する事を防止すると共に、この空間内に異物が侵入する事を防止している。

【0008】上述の様な基本構成を有する自動車用ハブユニット1を構成する為に、前配特開平11-51064号公報に記載された発明の場合には、上配ハブ本体2を軸受解により造っている。そして、図3に斜格子で示した、このハブ本体2の中間部外周面で前配第一のフランジ6の基端部分からこのハブ本体2の内端面にかけて

の部分を、高周波熱処理により焼き入れ硬化している。 そして、上配第一のフランジ6の基端部分の強度を、こ の部分の肉厚を増加させる事なく高くすると共に、上記 ハブ本体2と上記内輸3との嵌合面でフレッチング摩耗 が発生する事を防止している。尚、上記公報には記載さ れていないが、上記ハブ本体2をS50C~S60C程 度の中炭素鋼(炭素の含有量が0.3~0.7重量%程 度の普通鋼)で造る事も行なわれている。又、やはり上 記公報には記載されていないが、従来は上記内輸3を、 軸受鋼により造り、ずぶ焼き入れにより全体を焼き入れ 硬化する事により、外周面に形成した第二の内輪軌道1 2部分の硬度を確保している。

[0009]

【発明が解決しようとする課題】図3に示した従来の自動車用ハプユニット1の場合、外側の第一列の円すいころ軸受7の寿命に比べて、内側の第二列の円すいころ軸受11が短くなる傾向があり、低コストでしかも優れた耐久性を有する自動車用ハプユニット1を実現する事が難しかった。この理由は、自動車の旋回時に加わるモーメントにより、上記第二列の円すいころ軸受11に加わる荷重が、上記第一列の円すいころ軸受7に加わる荷重に比べて大きくなる為である。

【0010】 更に詳しく説明すると、自動車の旋回時に上記自動車用ハブユニット1を構成するハブ本体2及びこのハブ本体2に外嵌固定した内輪3には、重力並びに遠心力に基づいて、ラジアル方向及びスラスト方向に大きな力が、路面からの反力として加わる。特に急旋回時には、遠心力に基づく荷重移動により、旋回中心に対して外側の車輪を支持した自動車用ハブユニット1に関する力が、同じく内側の車輪を支持した自動車用ハブユニット1に関する力よりも相当に大きくなる。

【0011】この様に、路面からの反力として加わる力が大きくなる、旋回中心に対し外側に位置する自動車用ハブユニット1で、上記第一列、第二列の円すいころ軸受7、11に加わる荷重を考える。旋回時に上記ハブ本体2及び内輪3に加わる荷重は、ラジアル荷重とスラスト荷重とになるが、このうちのスラスト荷重は、上記ハブ本体2に固定した車輪を構成するタイヤの外周面と路面との摩擦に伴って、このタイヤの設置面を軸方向内向に押圧する方向に加わる。そして、この力によって上記ハブ本体2及び内輪3に、モーメント荷重が加わる。例えば、図3の下側に設置面が存在すると仮定した場合には、上記ハブ本体2及び内輪3をこの図3で反時計方向に回転させようとするモーメント荷重が加わる。

【0012】上記第一列、第二列の円すいころ軸受7、11に加わる荷重のうち、外側の第一列の円すいころ軸受7には、主として重力により加わるラジアル荷重から上記モーメント荷重が引かれたものが加わる。これに対して内側の第二列の円すいころ軸受11には、上記モーメント荷重が上記ラジアル荷重に足し合わさた状態で加

わる。この為、急旋回時に旋回中心に対して外側の車輪を支持した自動車用ハブユニット1に加わる荷重のうちの多くの部分を、内側の第二列の円すいころ軸受11が支承する事になる。この際、この第二列の円すいころ軸受11に関する各円すいころちb、5bの転動面と第二の内輪軌道2及び第二の外輪軌道15との転がり接触部の面圧が高くなる為、上配第二列の円すいころ軸受11の転がり疲れ寿命が低くなる。

【0013】一方、旋回中心に対し内側に位置する自動 車用ハブユニット1の場合には、上記モーメント荷重の 作用方向が逆になるので、上記外側に位置する自動車用 ハブユニット1とは逆に、第一列の円すいころ軸受7に 加わる荷重の方が、第二列の円すいころ軸受11に加わ る荷重よりも大きくなる。但し、旋回中心に対し内側に 位置する自動車用ハプユニット1全体に加わる荷重が比 較的小さい為、第一列、第二列の円すいころ軸受7、1 1の寿命に及ぼす影響は、上記自動車用ハブユニットが 旋回中心に対し外側に存在する状態での挙動が支配的に なる。従って、上記第一列、第二列の円すいころ軸受 7、11に関して、材料、熟処理、円すいころ5a、5 b の大きさ及び数、接触角等の锗元が同じである場合に は、内側に存在する第二列の円すいころ軸受11の寿命 が、外側に存在する第一列の円すいころ軸受7の寿命よ りも短くなる。

【0014】図4は、上記第一列、第二列の円寸いころ軸受7、11の賭元が同じと仮定した場合に於ける、これら両円すいころ軸受7、11の計算寿命と、これら両円すいころ軸受7、11の内部除間との関係を示している。この様な図4に記載した2本の曲線のうち、実線 a は第二列の円すいころ軸受11の計算寿命と内部除間との関係を、破線bは第一列の円すいころ軸受7の計算寿命と内部除間との関係を、それぞれ表している。この様な図4から明らかな通り、内部除間の大きさ(正負)に拘らず、内側に存在する第二列の円すいころ軸受11の寿命が、外側に存在する第一列の円すいころ軸受7の寿命よりも短くなる。

【0015】この様な事情に拘らず従来は、上記第一列、第二列の円すいころ軸受7、11の諸元を、自動車用ハブユニット1全体としての寿命延長を目的として異ならせる事を意図してはいなかった。例えば、ハブ本体2をS50C~S60C程度の中炭素鋼により造って第一の内輪軌道8部分を焼き入れ硬化すると共に、内輪3を軸受鋼により造ってずぶ焼き入れする事を考えた場合でも、これら両材料(中炭素鋼と軸受鋼)の転がり疲れ寿命に及ぼす影響は、ほぼ同程度である事が知られている。そして、自動車用ハブユニット1全体としての寿命延長を図る為には、上記第一列、第二列の円すいころ軸受7、11の寿命を何れも向上させる様にしていた。従って、上記自動車用ハブユニット1全体としての寿命延長を図ると、上記第一列の円すいころ軸受7の寿命が必

į,

要以上に長くなっていた。 含い換えれば、この第一列の円すいころ軸受7に関しては過剰品質になっていた。 【0016】この様に、自動車用ハブユニット1の一部とは含え過剰品質になる事は、この自動車用ハブユニット1のコストを無駄に上昇させる事に繋がる。 本発明は、この様な事情に鑑みて、コスト上昇を抑えつつ、自動車用ハブユニット1全体としての寿命延長を図るべく発明したものである。

[0017]

【課題を解決するための手段】本発明の自動車用ハブユ ニットは、前述した従来から知られている自動車用ハブ ユニットの場合と同様に、ハブ本体と、このハブ本体に 外嵌固定した内輪と、これらハブ本体及び内輪の周囲に 配置した外輪と、これらハブ本体及び内輪の外周面と外 輪の内周面との間に設けた複数個の円すいころとを備え る。このうちのハブ本体は、外端部外周面に車輪を支持 する為の第一のフランジを設けると共に、中間部外周面 に第一列の円すいころ軸受を構成する為の、円すい凸面 状の第一の内輪軌道を直接形成し、内端部外周面に小径 段部を設けたものである。又、上記内輪は、第二列の円 すいころ軸受を構成する為の、円すい凸面状の第二の内 輪軌道を外周面に形成し、上記ハブ本体の小径段部に外 **嵌固定したものである。更に、上配外輪は、内周面に上** 記第一列、第二列の円すいころ軸受を構成する為の、そ れぞれが円すい凹面状の第一、第二の外輪軌道を、外周 面に上記外輪を懸架装置に支持固定する為の第二のフラ ンジを、それぞれ形成したものである。特に、本発明の 自動車用ハブユニットに於いては、上記ハブ本体は中炭 紫剱製であり、上記内輪は浸炭鋼製である。

[0018]

【作用】上述の様に構成する本発明によれば、第一列、第二列の円すいころ軸受の容命に大きな達が生じる事をなくして、部分的に過剰品質になる事を防止しつつ、自動車用ハブユニット全体としての耐久性向上を図れる。即ち、全体として大きな荷重を受ける傾向にある第二列の円すいころ軸受を構成する内輪は、中炭素鋼や軸受網に比べて転がり疲れ奔命を長くできる浸炭鋼製としている為、上配第二列の円すいころ軸受の耐久性の向上を図れる。この場合でも、第一列の円すいころ軸受を構成する第一の内輪軌道をその外周面に設けたハブ本体は中炭素鋼である為、上配第一列の円すいころ軸受の耐久性が必要以上に高くなる事はない。これらにより、上配部分的な過剰品質の発生を防止して、自動車用ハブユニット全体としての耐久性向上を、低コストで実現できる。

[0019]

【発明の実施の形態】図1は、本発明の実施の形態の1 例を示している。尚、本発明の特徴は、ハブ本体2aを 構成する材料と内輪3aを構成する材料との組み合わせ を工夫する事により、部分的な過剰品質の発生を防止し つつ、自動車用ハブユニット1a全体としての耐久性向 上を図る点にある。図面に現れる、自動車用ハブユニット1aの基本構造に関しては、前途の図3に示した従来構造と同様であるから、同等部分に就いては同一符号を付して重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。尚、図示の例では、上記ハブ本体2aに車輪を支持固定する為の第一のフランジ6aに、軽量化の為の肉抜き孔20を形成している。

【0020】上記ハブ本体2aは、全体を中炭素網によ り造り、図1に斜格子で示した、このハブ本体2 a の中 間部外周面で上配第一のフランジ6 a の基端部分からこ のハブ本体2 a の内端面にかけての部分を、高周波熱処 理により焼き入れ硬化して、この部分の表面の硬度をH。 C 60~64程度としている。又、外輪4に就いても、 全体を中炭素鋼により造り、図1に斜格子で示した、こ の外輪4の内周面で第一、第二の外輪軌道14、15を 形成した部分を高周波熱処理により焼き入れ硬化して、 この部分の表面の硬度をHgC 60~64程度としてい る。又、上記内輪3aは、SCr420等の浸炭網により 造り、図1に斜格子で示した表面層部分を焼き入れし に、各円すいころ5 a 、5 b に就いては、全体を軸受鋼 により造り、ずぶ焼きにより表面から心部までほぼ同じ 硬さに硬化しているが、表面の硬度は、HgC 61~65 程度としている。

【0021】上述の様に構成する本発明によれば、前記自動車用ハブユニット1aを構成する第一列、第二列の円すいころ軸受7、11の寿命に大きな差が生じる事をなくして、部分的に過剰品質になる事を防止しつつ、上記自動車用ハブユニット1a全体としての耐久性向上を図れる。即ち、前述した様に、全体として大きな荷重を受ける傾向にある第二列の円すいころ軸受11を構成する内輪3aは、中炭素鋼や軸受鋼に比べて転がり疲れ寿命を長くできる浸炭鋼製としている為、上記第二列の円すいころ軸受11の耐久性の向上を図れる。

【0022】この点に就いて、図2を参照しつつ説明する。この図2は、異物の侵入のない清浄な密封空間内で大荷重を繰り返し与えた場合に於ける剝離寿命に、材料及び残留オーステナイト量が及ぼす影響を知る為に、本発明者等が行なった実験の結果を示している。この様な実験の結果を示す図2に記載した符号のうち、①は軸受鋼のL10寿命(複数の試料中の10%が寿命に達するまでのサイクル)を、②~④は浸炭網のL10寿命を、それぞれ表している。又、①~④の上方に記載した黒丸印は、各試料のL50寿命(複数の試料中の50%が寿命に達するまでのサイクル)を、それぞれ表している。この様な図2から明らかな通り、没炭網の剝離寿命は22~45容量%、より好ましくは20~35容量%)にコントロールする事により、軸受網の剝離寿命よりも長

くできる。 【0023】この様に本発明の自動車用ハブユニット1

aに組み込む内輪3aを構成する浸炭網は、中炭素鋼や 軸受鋼に比べて剝離券命を長くできる為、上配内輪3a の外周面に設けた第二の内輪軌道12の転がり疲れ寿命 を長くできる。この様に第二の内輪軌道12の転がり疲 れ奔命を長くした場合でも、前記第一列の円すいころ軸 受7を構成する第一の内輪軌道8をその外周面に設けた ハブ本体2aは中炭索鋼である為、上配第一列の円すい ころ軸受7の耐久性が必要以上に高くなる事はない。 【0024】尚、第一列、第二列の円すいころ軸受7、 11を構成する第一、第二の外輪軌道14、15は、何 れも中炭素鋼製の外輪4の内周面に形成している為、こ れら両外輪軌道14、15の耐久性のみを考慮すれば、 第二の外輪軌道15の転がり疲れ寿命が第一の外輪軌道 14の転がり疲れ寿命よりも短くなる。 但し、円すいこ ろ軸受の場合、各円すいころの転動面と内輪軌道及び外 輪軌道との接触面積を比較すると、内輪軌道に関する接 触面積が外輪軌道に関する接触面積よりも狭くなる。こ の理由は、外輪軌道の形状が円周方向に関して凹である のに対して、内輪軌道の形状が円周方向に関して凸であ **る為である。従って、円すいころの寿命に関しては、内** 輪軌道の転がり疲れ寿命が支配的になり、外輪軌道の転 がり疲れ寿命が円すいころの寿命に影響する事は少な い。従って、上記第二の内輪軌道12の転がり疲れ寿命 を長くする事により、上配自動車用ハブユニット1a全 体としての寿命を長くできる。

【0025】又、上述した例では、上記第二列の円すいころ軸受11を構成する内輪3aのみを浸炭網製としたが、それでもこの第二列の円すいころ軸受11の寿命が第一列の円すいころ軸受7の寿命よりも短かくなる様な場合には、この第二列の円すいころ軸受11を構成する円すいころ5b、5b及び第二の外輪軌道15部分も浸炭網製とする事が可能である。上記第二列の円すいころ軸受11の外輪軌道15部分を浸炭網製とする場合には、内周面に第一の外輪軌道14を、外周面に懸架装置に支持固定する為の第二のフランジ16を、それぞれ形成した外輪4と、上記第二の外輪軌道15をその内周面に形成した外輪4と、上記第二の外輪軌道15をその内周面に形成した外輪条子とを別体構造とし、この外輪案子を、上記外輪4の内半部に内嵌固定する構造にすれば良い

【0026】更に、上述した例では、クラウニングに就

いての説明は省略したが、耐久寿命の長いハブユニットにする為には、第一、第二の内輪軌道8、12、第一、第二の外輪軌道14、15、各円すいころ5a、5bの全部又は一部に、それぞれ最適なクラウニングを施し、各軌道面と各円すいころ5a、5bの転動面との当接部にエッジロードが発生しない様にする事が重要である。

[0027]

【発明の効果】本発明は、上述の様に構成され作用するので、十分な耐久性を有する自動車用ハブユニットを、低コストで実現できる。又、耐久性を向上させる為に構成各部材を大型化する必要がないので、従来と同様の限られた設置空間に納める事ができて、自動車の設計の自由度を確保できる。

【図面の簡単な説明】

【図1】本発明の実施の形態の1例を示す断面図。

【図2】材料の種類及び残留オーステナイト量が寿命に 及ぼす影響を知る為の行なった実験の結果を示すグラ

【図3】従来構造の1例を示す断面図。

【図4】ハブユニットに設けた第一列、第二列の円すい ころ軸受の計算寿命と内部隙間との関係を示す線図。

【符号の説明】

- 1、1a 自動車用ハブユニット
- 2、2 a ハブ本体
- 3、3 a 内翰
- 4 外輪
- 5 a、5 b 円すいころ
- 6、6 a 第一のフランジ
- 7 第一列の円すいころ軸受 .
- 8 第一の内輪軌道
- 9 小径段部
- 10 スプライン孔
- 11 第二列の円すいころ軸受
- 12 第二の内輪軌道
- 13 段差面
- 14 第一の外輪軌道
- 15 第二の外輪軌道
- 16 第二のフランジ
- 17 第一の保持器
- 18 第二の保持器
- 19a、19b シールリング
- 20 肉抜き孔

