

File Management

Suresh Jamadagni

Department of Computer Science

File System

Suresh Jamadagni

Department of Computer Science

Slides Credits for all the PPTs of this course

- The slides/diagrams in this course are an **adaptation**, **combination**, and **enhancement** of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Directory Structure

? A collection of nodes containing information about all files

Both the directory structure and the files reside on disk

Disk Structure

- ? Disk can be subdivided into partitions
- ? Disks or partitions can be **RAID** protected against failure
- Poisk or partition can be used raw without a file system, or formatted with a file system
- ? Partitions also known as minidisks, slices
- Entity containing file system known as a volume
- ? Each volume containing file system also tracks that file system's info in device directory or volume table of contents
- ? As well as general-purpose file systems there are many special-purpose file systems, frequently all within the same operating system or computer

A Typical File-system Organization

Types of File Systems

- ? We mostly talk of general-purpose file systems
- Put systems frequently have may file systems, some general- and some special- purpose
- Consider Solaris has
 - ! tmpfs memory-based volatile FS for fast, temporary I/O
 - Objfs interface into kernel memory to get kernel symbols for debugging
 - ? ctfs contract file system for managing daemons
 - Plofs loopback file system allows one FS to be accessed in place of another
 - Procfs kernel interface to process structures

Operations Performed on Directory

PES UNIVERSITY ONLINE

- ? Search for a file
- ? Create a file
- ? Delete a file
- ? List a directory
- ? Rename a file
- ? Traverse the file system

Directory Organization

The directory is organized logically to obtain

- ? Efficiency locating a file quickly
- ? Naming convenient to users
 - ? Two users can have same name for different files
 - ? The same file can have several different names
- ? Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Single-Level Directory

? A single directory for all users

- ? Naming problem
- ? Grouping problem

Two-Level Directory

? Separate directory for each user

- ? Path name
- ? Can have the same file name for different user
- ? Efficient searching
- ? No grouping capability

Tree-Structured Directories

- A tree structure is the most common directory structure.
- The tree has a root directory, and every file in the system have a unique path.

Tree-Structured Directories (Cont.)

PES UNIVERSITY ONLINE

- ? Efficient searching
- ? Grouping Capability
- ? Current directory (working directory)
 - ?cd /spell/mail/prog
 - ? type list
- ? We cannot share files

Tree-Structured Directories (Cont.)

- ? Absolute or relative path name
- ? Creating a new file is done in current directory
- ? Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

- ? An acyclic graph is a graph with no cycle and allows to share subdirectories and files.
- ? The same file or subdirectories may be in two different directories
- ? It is used in a situation like when two programmers are working on a joint project and they need to access files.

Acyclic-Graph Directories (Cont.)

PES UNIVERSITY ONLINE

- ? Two different names (aliasing)
- ? If *dict* deletes *list* \Rightarrow dangling pointer

Solutions:

- Packpointers, so we can delete all pointers Variable size records a problem
- Packpointers using a daisy chain organization
- Entry-hold-count solution
- ? New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file

General Graph Directory

Advantages:

It allows cycles within a dir structure.

Multiple directories can be derived from more than one parent dir.

Disadvantages:

It is more costly than others.

It needs garbage collection (traversing the entire file system, marking everything that can be accessed)

General Graph Directory (Contd.)

PES UNIVERSITY

- ? How do we guarantee no cycles?
 - ? Allow only links to file not subdirectories
 - **?** Garbage collection
 - ? Every time a new link is added use a cycle detection algorithm to determine whether it is OK

THANK YOU

Suresh Jamadagni
Department of Computer Science Engineering
sureshjamadagni@pes.edu