

# Measuring *Differences* in Momentum Scale as a Function of Track Parameters

Jim Pivarski

Texas A&M University

? March, 2010

#### Motivation

Jim Pivarski 2/14





- ▶ Alignment optimizes tracks very well locally, but less so globally
  - any two regions that are rarely crossed by the same track can develop different momentum scales through weak modes
- ▶ Masses of  $J/\psi$ ,  $\Upsilon$ , and Z set the momentum scale, but with some complications
  - each daughter samples a different region of the tracker: needs to be untangled
  - shape is not symmetric due to final state radiation
  - backgrounds must be part of the fit
- ▶ In this talk, I'll present a procedure that can equalize momentum scales in all regions of the tracker, but not set the absolute scale
- ▶ How it fits into a complete track-correction program:
  - $\mathsf{alignment} \to \mathsf{this} \ \mathsf{correction} \to \mathsf{absolute} \ \mathsf{scale} \ \mathsf{correction}$
- Also provides uncertainties and correlations in the remaining bias, which are important for setting systematic errors on physics quantities



- Alignment makes module positions and track parameters mutually consistent (optimizes track shapes)
- Overall momentum scale correction adjusts observed resonance peaks to externally known values
- ▶ Another physics constraint: momentum direction of daughters of a decay-in-flight must be consistent with the flight direction



- sensitive to different momentum scales in different regions of the detector, but not absolute scale
- symmetric in the case of no misalignment (unlike mass peak)
- $K_S \to \pi^+\pi^-$  for low momenta, perhaps  $B \to$  "all charged" for higher?
  - $\triangleright$  boosted  $K_S$  are not sufficient because we need the daughters to sample different parts of the detector: need high mass

# Untangling daughters (1/2)

Jim Pivarski 4/14





Same formalism as alignment (HIP for a single alignable):

(
$$N$$
 track residuals) =  $(6 \times N \text{ matrix}) \cdot (6 - DOF \text{ parameters})$ 

 $\triangleright$  N decays with angle difference  $\Delta \vec{\phi}$ , track-parameter corrections described by M parameters  $\vec{p}$  ( $N \gg M$ ):

$$\left(\begin{array}{c} \Delta\phi_1\\ \vdots\\ \Delta\phi_N \end{array}\right) = A \cdot \left(\begin{array}{c} \rho_1\\ \vdots\\ \rho_M \end{array}\right)$$

- ightharpoonup A is the transformation from parameters  $\vec{p}$  to observables  $\Delta \vec{\phi}$  and is therefore the derivative  $\frac{\partial(\Delta\phi_i)}{\partial p_i}$ , which can be computed numerically:
  - 1. for each decay i, compute nominal  $\Delta \phi_i$
  - 2. for each parameter j, apply  $\epsilon p_i$  to all tracks for  $\Delta \phi_i(\epsilon p_i)$

3. 
$$A_{ij} = \frac{\Delta \phi_i - \Delta \phi_i (\epsilon p_j)}{\epsilon}$$



▶ The values of  $\vec{p}$  which minimize quadratic  $\chi^2$  (assumes Gaussian  $\Delta \vec{\phi}$ )

$$\chi^2 = \left(\Delta \vec{\phi} - A \cdot \vec{p}\right)^T \left(\sigma_{\Delta \phi}^{\ 2}\right)^{-1} \left(\Delta \vec{\phi} - A \cdot \vec{p}\right)$$

$$\text{are } \vec{p} = \left(A^T \left(\sigma_{\Delta \phi}^{\ 2}\right)^{-1} A\right)^{-1} \left(A^T \left(\sigma_{\Delta \phi}^{\ 2}\right)^{-1} \Delta \vec{\phi}\right) \qquad \sim \frac{\sum_{w_i x_i} w_i}{\sum_{w_i} w_i}$$

with uncertainty/covariance 
$$\left(A^T \left(\sigma_{\Delta\phi}^2\right)^{-1} A\right)^{-1} \sim \frac{1}{\sum w_i}$$

- "convert  $\Delta \vec{\phi}$  into  $\vec{p}$  space and compute weighted mean"
- the  $\sigma_{\Delta\phi}^2$  weights are propagated uncertainties in  $\Delta\vec{\phi}$
- $\triangleright$  The final  $\vec{p}$  correct biases in tracking, but perhaps more importantly, the covariance provides a rigorous systematic error in tracking
- $\triangleright$  Potential early application:  $\Xi^{\pm}$  mass measurement; tracking bias is the only systematic error

# Parameterization of $\vec{p}$

Jim Pivarski 6/14



- ▶ Biases are small and slowly varying (largest alignment weak modes are global distortions)
- lacktriangle Expand general  $ec{p}(\phi,\kappa,\cot\theta,d_{\mathsf{x}\mathsf{y}},d_{\mathsf{z}})$  function and keep low-order
  - ▶ Fourier-expand in  $\phi$ :  $\sin \phi$ ,  $\cos \phi$ ,  $\sin 2\phi$ ,  $\cos 2\phi$
  - ▶ Taylor-expand in other parameters:  $\kappa$ ,  $\kappa \cot \theta$ ,  $(\cot \theta)^2$
  - $\kappa$  and  $d_{xy}$  are not sampled near zero due to physics signature: exclude  $\kappa^2$  and  $d_{xy}^2$  terms
- ▶ 33 terms for  $\delta \kappa$

$$\delta\kappa = p_1 + p_2 \sin(\phi) + p_3 \cos(\phi) + p_4 \sin(2\phi) + p_5 \cos(2\phi) + p_6 \kappa + p_7 \cot \theta + p_8 d_{xy} + p_9 d_z + p_{10} \sin(\phi) \kappa + p_{11} \sin(\phi) \cot \theta + p_{12} \sin(\phi) d_{xy} + p_{13} \sin(\phi) d_z + p_{14} \cos(\phi) \kappa + p_{15} \cos(\phi) \cot \theta + p_{16} \cos(\phi) d_{xy} + p_{17} \cos(\phi) d_z + p_{18} \sin(2\phi) \kappa + p_{19} \sin(2\phi) \cot \theta + p_{20} \sin(2\phi) d_{xy} + p_{21} \sin(2\phi) d_z + p_{22} \cos(2\phi) \kappa + p_{23} \cos(2\phi) \cot \theta + p_{24} \cos(2\phi) d_{xy} + p_{25} \cos(2\phi) d_z + p_{26} \kappa \cot \theta + p_{27} \kappa d_{xy} + p_{28} \kappa d_z + p_{29} \cot \theta \cot \theta + p_{23} \cot \theta d_{xy} + p_{31} \cot \theta d_z + p_{32} d_{xy} d_z + p_{33} d_z d_z$$

- ▶ Same for  $\delta\phi$  and  $\delta d_{xy}$ : 99 parameters, 99 × 99 matrix inversion
- lacksquare  $\delta\cot heta$  and  $\delta d_{
  m z}$  cannot be optimized; used to select primary vertex



- ▶ Identify  $K_S \to \pi^+\pi^-$  by  $\pi^+\pi^-$  invariant mass (it therefore cannot be used in the optimization)
- Use sideband for a background control sample; sideband events enter the minimization with negative weight, cancelling the effect of backgrounds under mass peak
- $\triangleright$  Identify the correct primary vertex by propagating  $K_S$  to beamline in r-z plane ( $\delta \cot \theta$  and  $\delta d_z$  cannot be optimized)



- $\triangleright$  Require exactly one primary vertex in the road from  $K_S$
- ▶ Require  $K_S$  vertex to be within  $1.5 < |v_{xy}| < 3$  cm; away from beamspot and within first pixel layer
- From  $K_S \to \pi^+\pi^-$ , typical curvatures are  $0.5 \le |\kappa| \le 5$  GeV<sup>-1</sup>

## Feasibility study (1/6)

Jim Pivarski

8/14



- Quick check to make sure that there aren't any show-stoppers
- ▶ MC and 1<sup>st</sup> RECO data (non-optimal tracking: large APEs)



Upper sideband only: there can be signal events below peak due to final state radiation

# Feasibility study (2/6)

Jim Pivarski





- ► All plots from this point onward are background-subtracted and normalized within cut windows
- "MC truth" is matched to true  $K_S$  in MC (no sideband subtraction)



- ightharpoonup Could loosen track flight significance and lower  $|v_{xy}|$  boundary
- ▶ Upper  $|v_{xy}|$  boundary must be within first pixel layer so that resolution is smooth as a function of track  $d_{xy}$

# Feasibility study (3/6)

Jim Pivarski 10/14





 $\triangleright$  Propagation of  $K_S$  to beamline in two cases: when there is only one primary vertex (left), and when there is also a second (right)





- ▶ In MC, 3.4% of events have a second primary vertex, in data, several do, but well beyond 5 cm (negligible pile-up plus beam-gas?)
- Efficiency of "only one vertex" requirement is dependent on luminosity

## Feasibility study (4/6)

Jim Pivarski 11/14





▶ Distribution of all  $\Delta \phi$  is not Gaussian: is quadratic  $\chi^2$  the right estimator? Does the minimization need to be made non-linear (replace 99 × 99 matrix inversion with Minuit)?



 $\blacktriangleright$  Some indication of  $\Delta\phi$  variation in data? Remember, these are unrealistic APEs



▶ Calculation of  $\sigma_{\Delta\phi}^2$  weights must include all correlations between two-track intersection and momentum sum, starting from  $5\times 5$  track parameter covariances



Uncertainty is slightly underestimated in MC, larger in data

Jim Pivarski



•  $\Delta\phi$  histogram weighted by  $1/\sigma_{\Delta\phi}{}^2$ 



- Much narrower, indicating that the largest outliers have the largest uncertainties
- ▶ Data are still broader than MC (and distribution still not Gaussian)

#### Conclusions

Jim Pivarski 14/14





- Proposal: multi-step track corrections
  - 1. alignment corrects track shapes, but can allow relative biases in regions of the tracker that are not connected by cosmic rays or collisions (assuming no resonance constraints)
  - 2. parameterize track parameter space and apply regional corrections to make momentum scale uniform, and also acquire matrix of uncertainties
  - 3. apply overall correction to set momentum scale with resonance masses, also with uncertainties
- ▶ Even if no track parameter biases are observed, uncertainty in bias is an important systematic for physics analyses
  - $\blacktriangleright$  early analysis: CMS can improve  $\Xi^{\pm}$  mass measurement in an analysis with only one systematic uncertainty— tracking
- ▶ Demonstrated selection and  $\Delta \phi$ ,  $\sigma_{\Delta \phi}^2$  calculation with  $K_S \to \pi^+ \pi^-$ 
  - next steps would be to calculate  $\vec{p}$  and its correlations; is it consistent with zero in MC? How much uncertainty per  $\sqrt{N}$ ?
- ▶ For most analyses, a higher-mass metastable particle would be more relevant:  $B \rightarrow \text{all charged hadrons}$ ?