河北工程大学

二〇一八年硕士研究生入学考试试题

考试科目代码___806_____ 考试科目名称_____ 传热学】

所有答案必须写在答题纸上,做在试题纸或草稿纸上无效。

- 一、简答题(共60分,每题6分)
- 1. 用水壶烧水时,火焰温度很高,水壶不会被烧坏,而当水烧干后,水壶很快就会被烧坏,解释该现象。
- 2. 什么是膜状凝结和珠状凝结。二者有何差异?影响膜状凝结换热的主要因素是什么?
- 3. 为什么在寒冷的冬季人的耳朵和手指容易冻伤,利用传热学的相关原理解释之。
- 4. 何谓灰体、发射率及有效辐射?
- 5. 何谓集总参数法?应用这种方法的条件是什么?应怎样选择特征尺寸?
- 6. 相似理论在指导对流换热实验安排及数据整理中的作用是什么?
- 7. 解释雷诺数、普朗特数和格拉晓夫数的物理意义并写出数学表达式。
- 8. 一截面为矩形的均质长条的断面图如右图所示。底部绝热,两侧面对流换热系数为 h_1 ,顶面为 h_2 ,物体的导热系数为 λ 。内部具有均匀内热源 $\dot{\phi}$ W/m³。设过程是稳态的。试写出该物体内温度场的数学描述(包括微分方程和单值性条件)。

试卷 A

- 9. 物体的加热过程可分为几个阶段? 各阶段分别有什么特征?
- 10.简述增强传热的基本思想。
- 二、计算题(共90分,各题分数见每题标注)
- 1. (10 分)蒸汽管道的内外直径分别是 d_0 =180mm 和 d_1 =196mm,管壁导热系数 λ =58W/ (m·K),管外覆盖两层保温材料:第一层厚度为 δ_2 =40mm,导热系数 λ_2 =0.067W/(m·K),第二层厚度为 δ_3 =45mm,导热系数 λ_3 =0.19W/(m·K),蒸汽管的内表面温度为 t_{w1} =350 ℃,保温层外表面温度为 t_{w4} =30℃。
- 要求:(1)画出传热模拟电路图,计算各层热阻,并比较其大小;
 - (2) 计算每米长蒸汽管的热损失;
 - (3) 计算各层之间的接触面温度 t_{w2} , t_{w3} 。

2. (15 分)一支汞温度计(如右图所示),被用来测量压缩空气储罐里的空气温度。已知温度计读数为 $t_{\rm H}$ =100 $^{\circ}$ C,套管根部温度为 $t_{\rm 0}$ =50 $^{\circ}$ C,套管长度为 H=140mm,套管壁厚 δ =1mm,壁的导热系数为 λ =50W/ (m·K),套管外表面的表面传热系数为 h=30 W/ (m²·K)。试确定测温误差有多大?如果改用不锈钢制成的套管,不锈钢的导热系数为 λ =15W/ (m·K),测温误差又有多大?

mH	0	0.5	1	1.5	2	3	4	5	6	6.26
ch(mH)	1	1.1276	1.543	2.352	3.762	10.07	27.31	74.21	201.7	263

- 3. (15 分) 在晴朗的夜晚,天空有效辐射温度为-70℃,假定室外空气与聚集在草上的露水间的表面传热系数为 25W/(m²·K),露水的发射率为 1.0,不考虑露水的蒸发及导热作用。为了防止霜冻试计算室外气温至少须高于多少度?
- 4. (15 分)已知锅炉省煤器管壁平均温度为 250℃,水的进出口温度分别是 160℃和 240℃,平均流速要求为 1.0m/s,热流量为 ϕ =3.84×10 5 W,试求所需管内径、表面传热系数及管长度。

附 1: 管内流动准则方程: $Nu_{\rm f}=0.023Re_{\rm f}^{0.8}Pr_{\rm f}^{0.4}$

(湍流)

 $Nu_{\rm f}=1.86(Re_{\rm f}\cdot Pr_{\rm f}\cdot d/l)^{(1/3)}(\mu_{\rm f}/\mu_{\rm w})^{0.14}$

(层流)

附 2: 水的物性表

t °C	λ W/ (m·K)	$ ho$ kg/m 3	$c_{\rm p}{\rm kJ/}({\rm kg\cdot K})$	$v \times 10^6 \text{ m}^2/\text{s}$	μ×10 ⁶ Pa·s	Pr
160	0.683	907.0	4.346	0.191	173.6	1.10
200	0.663	863.0	4.505	0.158	136.4	0.93
240	0.628	813.6	4.756	0.141	114.8	0.87
280	0.574	750.7	5.230	0.131	98.1	0.90

- 5. (15 分)一台管壳式冷油器,油走壳侧,冷却水进入冷油器的管内。要使 50m³/h 的 润滑油从 t_1 ′ =80 ℃冷却到 t_1 ′'=45 ℃。冷却水的进口温度为 t_2 ′ =32 ℃,出口温度为 t_2 ′'=36 ℃。若已知油侧和水侧的表面传热系数各为 h_1 =400W/(m^2 ·K) 和 h_2 =5000W/(m^2 ·K),试计算所需换热面积是多少?(注:润滑油 ρ_1 =880kg/ m^3 , $c_{p,1}$ =1.95 kJ/(kg·K),水 $c_{p,2}$ =4.187kJ/(kg·K),对数平均温差修正系数为 $\varepsilon_{\Delta t}$ =0.97,水侧污垢热阻为 0.0002(m^2 ·K)/W,油侧污垢热阻为 0.0002(m^2 ·K)/W)。
- 6. (20 分)0.5m×1m 的两块平行平板,相距 0.5m, t_1 =300℃, t_2 =500℃; ε_1 =0.2, ε_2 =0.8,周围室内壁面的表面温度为 t_3 =25℃。平板背面不参与换热。试求每块平板的辐射传热量及室内壁面得到的辐射热量。(已知 $X_{1,2}$ = $X_{2,1}$ = 0.285)