P425/2
APPLIED MATHEMATICS
Paper 2
Nov. /Dec. 2022
3 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education APPLIED MATHEMATICS

Paper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and any five questions from section B. Any additional question(s) answered will not be marked.

All necessary working must be shown clearly.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take acceleration due to gravity g, to be 9.8 ms⁻².

SECTION A (40 MARKS)

Answer all the questions in this section.

- A rough plane is inclined at an angle of sin ⁻¹ (³/₅) to the horizontal. A car of 1. mass 1500 kg moves up the plane with a steady speed. The coefficient of friction between the car and the plane is 1/4. Calculate the driving force (05 marks) exerted by the engine of the car.
- The table below shows the number of people in each of the 100 cars that 2. passed through a check point on a certain day.

Number of people	AVINA	2	3	4	5
Number of cars	41	33	18	6	2

Find:

the mean number of people in each car. (a)

(02 marks)

the variance of the data. (b)

(03 marks)

Use the trapezium rule with seven (7) ordinates to estimate 3.

$$\int_0^2 \frac{1}{3+4x^2} \, dx$$

correct to three decimal places. (05 marks)

The diagram below shows a mass of 5 kg lying on a rough plane inclined at 4. 30° to the horizontal. From the 5 kg mass, a light inextensible string passes up the line of greatest slope and over a smooth fixed pulley carrying a mass of 3 kg hanging freely. The tension in the string is just sufficient to prevent the 5 kg mass from sliding down the slope.

Determine the coefficient of friction between the 5 kg mass and the rough plane. (05 marks)

- 5. Two events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(A' \cap B) = \frac{1}{2}$. Find $P(B' \cap A)$.
- 6. The table below shows the amount of Euros equivalent to US dollars.

US dollars	S dollars 79		105	
Euros	64	78	85	

Using linear interpolation/extrapolation, calculate the amount of:

(a) dollars equivalent to 92 Euros.

(03 marks)

(b) Euros equivalent to 85 dollars.

(02 marks)

- 7. A river which is 50 m wide flows with a speed of 3 ms⁻¹. A boat must be set to cross the river to a point directly opposite the starting point. The speed of the boat relative to the river is 4 ms⁻¹. Determine the;
 - (a) velocity with which the boat sets off to cross the river.

(03 marks)

(b) time taken by the boat to cross the river.

(02 marks)

- 8. Bag A contains 7 red balls and 4 blue balls. Bag B contains 5 red balls and 8 blue balls. A ball is randomly transferred from A to B. A ball is then randomly removed from bag B. Find the probability that:
 - (a) a red ball was removed from bag B.

(03 marks)

(b) the transferred ball is blue given that a red ball is removed from B.

(02 marks)

SECTION B (60 MARKS)

Answer any **five** questions from this section. **All** questions carry equal marks.

9. The table below shows the marks of eight students (A to H) in two tests.

Stu	dent	A	В	C	D	E	F	G	H
Tes	t 1	67	73	50	75	42	44	75	40
Tes	t 2	82	70	64	78	52	64	80	64

- (a) (i) Plot a scatter diagram for the given data.
 - (ii) Draw a line of best fit on the scatter diagram.
 - (iii) Use your scatter diagram to obtain a mark in **Test 2** which corresponds to a mark of 63 in **Test 1**. (06 marks)

- (b) (i) Calculate the rank correlation coefficient for the data.
 - (ii) Comment on your result in b (i). (06 marks
- 10. A particle of mass 4 kg is initially at rest at the point A(2, -2, 3) metres. The particle is acted upon by a force of $F = \begin{pmatrix} 4t \\ t^2 \\ 5 \end{pmatrix}$ Newtons, where t is time in

seconds. Find the;

- (a) acceleration at time t. (02 marks)
- (b) speed of the particle after 3 seconds. (05 marks)
- (c) displacement of the particle after 3 seconds. (05 marks)
- 11. (a) Two numbers x and y are approximated by X and Y with errors Δx and Δy respectively. Show that the relative error in approximating $\frac{x}{y} \text{ by } \frac{X}{Y} \text{ is } \left| \frac{\Delta x}{X} \right| + \left| \frac{\Delta y}{Y} \right| \qquad (06 \text{ marks})$
 - (b) The values in the expression $T = \frac{673.16}{40.345}$ are rounded off correct to the given decimal places. Determine the interval within which the exact value of T can be expected to lie. (06 marks)
- 12. A discrete random variable X has a probability distribution given by

$$f(x) = \begin{cases} k x^2, & x = 1, 2, 3 \\ k(7-x)^2, & x = 4, 5, 6 \\ 0, & elsewhere \end{cases}$$

Find the:

- (a) (i) value of the constant k.
 - (ii) mean of X.
 - (iii) variance of X. (09 marks)
- (b) (i) Determine the cumulative distribution function, F(x). (01 mark)
 - (ii) Sketch the graph of F(x). (02 marks)

- 13. Forces of magnitude 2N, 2N, 3N, 4N, $2\sqrt{2}$ N and $\sqrt{2}$ N act along sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{AD} , \overrightarrow{AC} and \overrightarrow{DB} respectively. Where \overrightarrow{ABCD} is a square of side 2 m. Find the:
 - (a) resultant force. (09 marks)
 - (b) equation of the line of action of the resultant force. (03 marks)
- 14. The taxation system in a company is such that the tax T based on the amount A earned falls in three categories as shown in the table below:

AMOUNT EARNED	TAX PAID
A (DOLLARS)	T (DOLLARS)
A < 2000	T=0
$2000 \le A \le 5000$	$T = \frac{2A}{100}$
A > 5000	$T = 60 + \frac{5}{100} (A-5000)$

Parts of a flow chart for computing the tax are given below.

(a) (i) Arrange the given parts to form a complete logical flow chart.

(08 marks)

(ii) State the purpose of the flow chart.

(01 mark)

(b) Perform a dry run for the flow chart and complete the table below:

(03 marks)

N	A	T
1	1500	_
2	3500	_
3	9000	-

- 15. The masses of packets of tea leaves are normally distributed with mean mass 600 g and standard deviation 20 g.
 - (a) If a packet of tea leaves is chosen at random, find the mass exceeded by 7% of the packets. (05 marks)
 - (b) If 1,000 packets of tea leaves were sold, find the number of packets that weighed less than 545 g. (07 marks)
- 16. Two points A and B are on the same horizontal ground. A particle P is projected from point A towards point B with an initial speed of 49 ms⁻¹ at an angle of 30° to the horizontal. Two seconds later, another particle Q is projected from point B towards A with the same speed and at the same angle of elevation as P.

If the particles collide at a height h m above the ground, determine the:

(a) value of h. (06 marks)

(b) distance between the points A and B. (06 marks)

6 END