Differenzierbarkeit Abgabe: 17.12.21

- 1. (3 Punkte) Beweisen Sie, dass folgende Funktionen auf ihrem Definitionsbereich differenzierbar sind, und bestimmen Sie jeweils ihre Ableitung:
 - a) $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto 7x \exp(x^2)$
 - b) $\cot \colon \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{R}; \ x \mapsto \frac{\cos(x)}{\sin(x)}$
 - c) $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto (\sin(x^2))^2$.
- **2.** (2 Punkte) Für $k \in \mathbb{N}$ sei $f_k : \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_k(x) := \begin{cases} x^k \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0. \end{cases}$$

- a) Für welche $k \in \mathbb{N}$ ist f_k in 0 differenzierbar?
- b) Ist für solche $k \in \mathbb{N}$ die Ableitung f'_k in 0 stetig?
- 3. (3 Punkte) Berechnen Sie die Ableitungen und bestimmen Sie alle globalen und lokalen Extrema folgender Funktionen:
 - a) $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto 2x^3 + 3x^2 12x 8$
 - b) $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto 2\cos(x) + \sin^2(x)$
 - c) $f: [-1, 2] \to \mathbb{R}; \ x \mapsto 4x\sqrt{4 x^2}.$
- 4. (2 Punkte) Beweisen Sie:
 - a) Ist $f: \mathbb{R} \supseteq (a,b) \to \mathbb{R}$ differenzierbar, dann gilt

$$f \text{ konstant} \iff f' = 0.$$

Hinweis: Verwenden Sie den Mittelwertsatz.

- b) Sind $f:(a,b)\to\mathbb{R}$ und $g:(a,b)\to\mathbb{R}$ differenzierbar mit f'=g', dann existiert ein $r\in\mathbb{R}$, sodass f=g+r.
- 5. (2 Bonuspunkte) Beweisen Sie das Folgenkriterium für Grenzwerte:

Sei $\langle A, d_A \rangle$, $\langle B, d_B \rangle$ metrische Räume, $f: A \supseteq D_f \to B$ eine Funktion und $a \in A$ ein Häufungspunkt von D_f . Dann gilt $\lim_{x \to a} f(x) = b$ genau dann, wenn für jede Folge $(a_k)_{k \in \mathbb{N}}$ in D_f mit $a_k \neq a$ für jedes $k \in \mathbb{N}$ gilt

$$\lim_{k \to \infty} a_k = a \implies \lim_{k \to \infty} f(a_k) = b.$$