FEUILLE 1 : RAPPELS - LOIS USUELLES - PROPRIÉTÉS DE CALCULS D'ESPÉRANCES ET DE VARIANCES

Exercice 1. Pour chacune des variables aléatoires ci-dessous, vous donnerez le support (ensemble des valeurs prises), la nature de la loi (à savoir si elle est discrète ou continue à densité), la loi (valeurs de probabilités ou de densité), la fonction de répartition, l'espérance et la variance. Vous calculerez aussi pour les variables aléatoires dont la fonction de répartition F est strictement croissante la médiane Q_2 et les quartiles Q_1 et Q_3 . Ces paramètres satisfont $F(Q_1) = 0.25$, $F(Q_2) = 0.5$ et $F(Q_3) = 0.75$. Lorsque vous ne connaissez pas les réponses aux questions posées vous ferez les calculs nécessaires.

- Une variable de Bernouilli $B(p), p \in]0,1[$.
- Une variable binomiale $B(n, p), p \in]0, 1[, n \in \mathbb{N}^*.$
- Une variable de Poisson $P(\lambda)$, $\lambda \in \mathbb{R}^*$.
- Une variable exponentielle $E(\lambda)$, $\lambda > 0$.
- Une variable uniforme U sur [0,1].
- Une variable uniforme sur un intervalle [a, b].
- Une variable Gaussienne centrée réduite $\mathcal{N}(0,1)$.

Exercice 2. Soient X_1, \dots, X_n n variables aléatoires de même espérance m. On note $\overline{X_n}$ la moyenne empirique $\frac{\sum_{i=1}^n X_i}{n}$.

- (1) Calculer $E(\overline{X_n})$.
- (2) On suppose maintenant que les X_i sont indépendantes de même loi et quelles ont une variance σ^2 . On note $S_n^2 = \frac{\sum_{i=1}^n (X_i - \overline{X_n})^2}{n}$ la variance em-
 - (a) Vérifier que $E(S_n^2) = E((X_1 \overline{X_n})^2)$.
 - (b) Si X est une variable aléatoire d'espérance m et de variance σ^2 , exprimer $E(X^2)$ à l'aide de m et de σ^2 .
 - (c) Exprimer $E(S_n^2)$ en fonction de la variance de $X_1 \overline{X_n}$.

 - (d) Terminer le calcul de $E(S_n^2)$. (e) Montre que $S_n^2 = \frac{\sum_{i=1}^n X_i^2}{n} (\overline{X_n})^2$.
- (3) Calculer $V(\overline{X_n})$.

Exercice 3. (*) (On pensera à étudier des fonctions et à faire des tableaux de variations). Soit X une variable aléatoire continue à densité f continue. Soit Fsa fonction de répartition. On suppose dans tout l'exercice que X a une espérance, i.e. que $E(|X|) < +\infty$, que l'on notera m.

- (1) On suppose dans cette question que X a une variance (i.e. que X est de carré intégrable $E(X^2) < +\infty$). Trouver le réel a qui minimise $E((X-a)^2)$.
- (2) Trouver b qui minimise E(|X-b|). (On pensera à se débarrasser des valeurs absolues en premier lieu).

Les exercices marqués d'une étoile sont plus difficiles que les autres.

Date: Janvier 2018.