

Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

Xue Yang^{1,2}, Liping Hou⁴, Yue Zhou³, Wentao Wang¹, Junchi Yan^{1,2} ¹Department of CSE, SJTU ²MoE Key Lab of Artificial Intelligence, Al Institute, SJTU ³Department of EE, SJTU ⁴University of Chinese Academy of Sciences

Introduction:

- > Task: Design a novel boundary discontinuity free rotation detector based on angle classification.
- Challenges:
 - Thick prediction layer: From the perspective of Gflops, and Param, detectors based on CSL have increased by about 82.96% and 45.63%.
 - Unfriendliness to small aspect ratio objects: long-side definition method is not suitable for square-like box and will suffer a special problem.
- > Our main contributions:
 - To improve the robustness especially for objects with small aspect ratio, we propose Angle Distance and Aspect Ratio Sensitive Weighting (ADARSW), which further improves accuracy by making our proposed DCL-based detector sensitive to angular distance and object's aspect ratio. In contrast, the existing CSL-based detector suffers from its longside definition for detecting square-like objects.
 - We compare the impact of two classic Densely Coded Labels (DCL) by introducing them to the angle classification task for potential speedup, namely Binary Coded Label (BCL) and Gray Coded Label (GCL), which are more compact than existing CSL. We empirically show that DCL, especially BCL can lead to notable training speed boost (about three times) as well as detection accuracy.
 - Extensive experiments and visual analysis on different datasets and detectors prove the efficacy of our techniques.
- > Codes:
 - https://github.com/yangxue0827/RotationDetection
 - https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow

Proposed Approach

- Densely Coded Label: Binary Coded Label and Gray Coded Label are two Densely Coded Label methods commonly used in the field of electronic communication. Their advantage is that they can represent a larger range of values with less coding length. Thus, they can effectively solve the problem of excessively long coding length in CSL and One-Hot based methods, as shown in Figure 1.
- > ADARSW: We add a periodic trigonometric function to make the model sensitive to the distance of the angle and aspect ratio.

$$W^*(\Delta\theta) = |\sin(\alpha(\Delta\theta))| = |\sin(\alpha(\theta_{gt} - \theta_{pred}))|$$

$$\alpha = \begin{cases} 1, & (h_{gt}/w_{gt}) > r \\ 2, & otherwise \end{cases}$$

Experiments:

Comparison of GFlops and Param over rotation detectors, under the same setting and hyperparameters.

Base Model	ω	GFlops	ΔGFlops	Params (M)	Δ Params	Training Time
RetinaNet-Reg	_	139.35	-	36.97	u	-
RetinaNet-CSL	1	254.96	+82.96%	45.63	+23.42%	$\sim 3x$
RetinaNet-BCL	1	143.87	+3.24%	37.31	+0.92%	$\sim 1 x$
RetinaNet-GCL	1	143.87	+3.24%	37.31	+0.92%	$\sim 1 x$

> Ablation study of four orientation detectors on DOTA test dataset. 5mAP means the performance of the five categories listed.

Method	BR	SV	LV	SH	HA	5-mAP ₅₀	mAP_{50}
RetinaNet-Reg	38.31	60.48	49.77	68.29	51.28	53.63	64.17
RetinaNet-CSL	40.55	66.77	51.50	73.60	53.76	57.24 (+3.61)	65.69 (+1.52)
RetinaNet-BCL	41.58	67.98	57.34	74.66	54.28	59.17 (+5.54)	66.53 (+2.36)
RetinaNet-GCL	42.55	68.38	56.40	73.53	54.36	59.04 (+5.41)	66.27 (2.10)

> ADARSW on small aspect ratio objects in DOTA.

Method	ADARSW	PL	BD	GTF	TC	BC	ST	SBF	RA	SP	HC	10-mAP ₅₀	mAP_{50}
BCL		88.63	71.62	65.18	90.70	76.32	78.47	52.26	60.25	66.61	49.15	69.92	66.53
BCL	✓	88.92	72.11	66.32	90.79	79.86	79.03	54.11	63.18	67.86	60.04	72.22	67.39
GCL		88.52	73.58	64.38	90.80	77.66	76.38	50.84	59.46	65.83	48.42	69.59	66.27
GCL	✓	88.96	75.20	65.24	90.78	79.13	77.95	55.60	61.90	66.18	56.27	71.72	67.02

(b) SCL: One-Hot Label

(c) SCL: Circular Smooth Label

Figure 1: Examples of encoding and decoding process of One-Hot, CSL-Gaussian and BCL for angle prediction.

Comparison of detection results under different angle discretization granularities denoted by ω .

Method	ω	BR	SV	LV	SH	HA	5-mAP ₅₀	mAP_{50}	mAP_{75}	$mAP_{50:95}$
Reg	-	34.52	51.42	50.32	73.37	55.93	53.12	62.21	26.07	31.49
CSL	180/180	35.94	53.42	61.06	81.81	62.14	58.87	64.40	32.58	35.04
	180/4	30.74	40.54	50.98	72.07	59.54	50.77	62.38	24.88	31.01
	180/8	36.65	52.58	60.46	82.24	61.60	58.71	66.17	33.14	35.77
	180/32	39.83	54.41	60.62	80.81	60.32	59.20	65.93	35.66	36.71
BCL	180/64	38.22	54.70	60.16	80.75	60.11	58.79	65.00	34.31	36.00
BCL	180/128	36.76	53.73	61.35	82.52	58.42	58.56	65.14	34.28	35.69
	180/180	37.42	53.72	58.70	80.73	63.31	58.78	65.83	33.94	36.35
	180/256	37.66	53.83	60.66	80.43	60.74	58.66	64.97	33.52	35.21
	180/512	37.93	53.85	58.52	80.04	60.87	58.24	64.88	33.09	34.99
	180/4	30.90	41.20	48.30	72.93	60.16	50.70	62.98	23.83	30.81
	180/8	36.88	51.10	59.81	82.40	61.57	58.35	65.23	33.92	35.29
	180/32	38.04	54.77	60.88	82.75	61.24	59.54	65.11	34.67	36.15
GCL	180/64	38.05	54.36	60.59	81.84	60.39	59.05	64.78	33.23	35.67
	180/128	37.74	54.36	59.43	81.15	60.51	58.64	66.13	33.65	36.34
	180/256	35.81	53.78	58.35	81.45	59.84	57.85	64.87	33.77	35.97
	180/512	37.99	54.23	61.61	80.84	62.13	59.36	64.34	34.08	35.92

More results of classification and regression-based methods.

Method	ICDAR2015	3	MLT				
Wicthou	ICDAR2013	car(07/12)	plane(07/12)	mAP ₅₀ (07/12)	WILI		
Reg.	82.38	87.28/90.79	90.42/97.52	88.85/94.16	64.01		
CSL	83.81	88.09/ 92.93	90.38/97.22	89.23 /95.07	65.08		
BCL	83.17	88.15 /92.35	90.57/97.86	89.36/95.10	65.26		

Detection accuracy on DOTA.

	Method	Backbone	MS	PL	BD	BR	GTF	SV	LV	SH	TC	BC	ST	SBF	RA	НА	SP	HC	mAP ₅₀
	ICN [2]	ResNet101	✓	81.40	74.30	47.70	70.30	64.90	67.80	70.00	90.80	79.10	78.20	53.60	62.90	67.00	64.20	50.20	68.20
×	RoI-Transformer [6]	ResNet101	✓	88.64	78.52	43.44	75.92	68.81	73.68	83.59	90.74	77.27	81.46	58.39	53.54	62.83	58.93	47.67	69.56
ethods	CAD-Net [54]	ResNet101		87.8	82.4	49.4	73.5	71.1	63.5	76.7	90.9	79.2	73.3	48.4	60.9	62.0	67.0	62.2	69.9
eth	SCRDet [51]	ResNet101	✓	89.98	80.65	52.09	68.36	68.36	60.32	72.41	90.85	87.94	86.86	65.02	66.68	66.25	68.24	65.21	72.61
e u	Gliding Vertex [44]	ResNet101		89.64	85.00	52.26	77.34	73.01	73.14	86.82	90.74	79.02	86.81	59.55	70.91	72.94	70.86	57.32	75.02
tag	Mask OBB [38]	ResNeXt101 [43]	✓	89.56	85.95	54.21	72.90	76.52	74.16	85.63	89.85	83.81	86.48	54.89	69.64	73.94	69.06	63.32	75.33
1s-0	FFA [9]	ResNet101	✓	90.1	82.7	54.2	75.2	71.0	79.9	83.5	90.7	83.9	84.6	61.2	68.0	70.7	76.0	63.7	75.7
I.	APE [59]	ResNeXt101		89.96	83.62	53.42	76.03	74.01	77.16	79.45	90.83	87.15	84.51	67.72	60.33	74.61	71.84	65.55	75.75
	CenterMap OBB [39]	ResNet101	✓	89.83	84.41	54.60	70.25	77.66	78.32	87.19	90.66	84.89	85.27	56.46	69.23	74.13	71.56	66.06	76.03
	FPN-CSL [48]	ResNet152	✓	90.25	85.53	54.64	75.31	70.44	73.51	77.62	90.84	86.15	86.69	69.60	68.04	73.83	71.10	68.93	76.17
	PIoU [4]	DLA-34 [53]		80.9	69.7	24.1	60.2	38.3	64.4	64.8	90.9	77.2	70.4	46.5	37.1	57.1	61.9	64.0	60.5
ds	O^2 -DNet [40]	Hourglass104 [28]	✓	89.31	82.14	47.33	61.21	71.32	74.03	78.62	90.76	82.23	81.36	60.93	60.17	58.21	66.98	61.03	71.04
methods	BBAVectors [52]	ResNet101	✓	88.35	79.96	50.69	62.18	78.43	78.98	87.94	90.85	83.58	84.35	54.13	60.24	65.22	64.28	55.70	72.32
mel	DRN [29]	Hourglass104	✓	89.71	82.34	47.22	64.10	76.22	74.43	85.84	90.57	86.18	84.89	57.65	61.93	69.30	69.63	58.48	73.23
ge 1	R ³ Det [45]	ResNet152		89.49	81.17	50.53	66.10	70.92	78.66	78.21	90.81	85.26	84.23	61.81	63.77	68.16	69.83	67.17	73.74
sta	RSDet [30]	ResNet152		90.1	82.0	53.8	68.5	70.2	78.7	73.6	91.2	87.1	84.7	64.3	68.2	66.1	69.3	63.7	74.1
-je	RetinaNet-DCL (Ours)	ResNet152	√	89.10	84.13	50.15	73.57	71.48	58.13	78.00	90.89	86.64	86.78	67.97	67.25	65.63	74.06	67.05	74.06
Single	R ³ Det-DCL (Ours)	ResNet152		89.78	83.95	52.63	69.70	76.84	81.26	87.30	90.81	84.67	85.27	63.50	64.16	68.96	68.79	65.45	75.54
S	R ³ Det-DCL (Ours)	ResNet101	✓	89.14	83.93	53.05	72.55	78.13	81.97	86.94	90.36	85.98	86.94	66.19	65.66	73.72	71.53	68.69	76.97
	R ³ Det-DCL (Ours)	ResNet152	\checkmark	89.26	83.60	53.54	72.76	79.04	82.56	87.31	90.67	86.59	86.98	67.49	66.88	73.29	70.56	69.99	77.37

Visualization

(a) $\omega = 180/4$ (b) $\omega = 180/32$

(c) $\omega = 180/128$

(d) $\omega = 180/256$