

An Information Interface for Disaster Management Professionals - DADm

Jason H. Haga, Richard Hsiao, Hironori Shigeta, Yoshiyuki Kido, Susumu Date, Shinji Shimojo

Cyber-physical Cloud Research Group

National Institute for Advanced Industrial Science and Technology (AIST)

Cybermedia Center, Osaka University

Disaster Management Cycle

- Mitigation Preemptive actions to reduce severity, consequences, and risks to people
- Preparedness range of critical tasks and activities necessary to build, sustain and to improve operational capability to prevent, protect against, respond to, and recover from disaster
- Response immediate/ongoing activities and systems to manage the effects of an incident and help reach a stable status for the entity
- Recovery programs designed to return conditions to a level that is acceptable to the entity. Assisting victims and restore institutions. Rebuilding.

Shonan Meeting 2014 - User Card Stories

- A method to help define what end users will/want to do with interface
- What do they look like?

As a [user] I want to [action] in order to [goal].

- Prioritize MoSCoW method
 - Must = Minimum features for product to be useful
 - Should = Not critical but high value and important
 - Could = Nice to have without incurring too much cost
 - Won't = Outside of scope, possible for the future

Key Points of User Card Stories

- Data/information is critical
 - Real-time
 - Updatable
 - Filtered
 - Sharable
 - Continuous
 - Accessible

User Interface Requirements

- Data-centric
 - Collect different data types, but basic information
 - Data is updated and always presents current status
 - Temporal and spatial referenced data
 - Simple, easy to access and interpret
 - User has limited IT experience
- Workspace application
 - Present different types of data (simulation/sensor/crowd)
 - Aggregate/filter data
 - Shareable data
 - Ability to view data individually or overlayed

Multisite Visualization Interface

Key Data Requirements Spatial/temporal or Where/when

- Infrastructure
 - Transportation
 - Roads/bridges intact, congested
 - Power
 - On or off, power station locations
 - Water
 - On or off
 - Gas
 - On or off, fires?
 - Communication
 - Landline and cellular

- Hazards
 - Structural
 - Buildings destroyed
 - Combustible
 - Ongoing fires
 - Water
 - Areas that are flooded and inaccessible
- Health/safety
 - Fire department
 - Police
 - Medical
 - Military

Workspace Concept

DADm - Research Objective

- Deployment of a multi-site visualization tool for disaster management
- Design Objectives
 - Being able to geographically visualize regions of interest
 - Being able to access multiple unique datasets to gauge disaster action choices
 - Selectively view and toggle relevant datasets
- The application needs to be streamlined, straightforward, and transparent to the user

Methods

 Development on a Shared Collaborative Environment (SAGE2)

- JavaScript
 - Leaflet Map, D3, and Heatmap Libraries
 - Data Broker (JSON datasets)
 - HTML Document Object Model (DOM)

Application Demo

- Created a working prototype SAGE2 application with a simple user interface
- Allows user to link JSON datasets and tag them with keywords through the data broker
- Users can see both static 2D data and 3D data with the heat map layers
- Show the feasibility of creating a data-intensive application on SAGE2

Figure 1: Early renditions of the application with a static UI and sample data

Figure 2: Current rendition of the application overlooking Chicago with Police & Fire Station Data

Figure 3: Current rendition overlooking the East Coast of Japan with earthquake disaster data

Conclusion

- SAGE2 is meant to be used as a shared multi-site collaborative environment for viewing and interacting with content.
- DADm is one application of SAGE2 that displays coordinate-specific JSON data based on the user's specifications
- Further development will display disaster-management data in both a more streamlined and effective manner
- No conclusive real-time application due to lack of an available dataset, but as a whole it is a step toward app development in the SAGE2 platform

Future Work

- Tuning the heat map feature and UI improvement
 - Working within SAGE2
- Integration of different types of datasets
 - Open vs. usable
- More advanced data broker
- More detail each data point
- Further testing with real-time data to mimic intended application

Acknowledgements

- University of California, San Diego
- Prime Alumna Haley Hunter-Zinck
- The Ledell Family URS
- National Institute of Information and Technology (NICT)
 - Dr. Masanori Goto
- Osaka University
 - Dr. S. Matsumoto
- SAGE2 Development Group and SAGE2 Google Groups
 - Dr. Andy Johnson
 - Dr. Luc Renambot

