PRACTICA Nº 3

CIRCUITOS TRIFASICOS DESEQUILIBRADOS CON FUENTE ESTRELLA Y CARGA ESTRELLA

OBJETIVOS.-

- Determinar la secuencia de la fuente trifásica y observar cómo afecta en un circuito desequilibrado.
- Verificar el comportamiento de la relación de tensiones y corrientes de fase y de línea cuando la carga es desequilibrada.
- Verificar la variación de tensiones y corrientes en sistemas desequilibrados estrella con neutro físico y sin neutro físico.
- Verificar el voltaje entre neutros por el teorema de Millmann en circuitos desequilibrados.
- Verificar la circulación de corriente por el conductor neutro en sistemas desequilibrados.

FUNDAMENTO TEORICO.-

Cuando el sistema es desequilibrado y la carga es estrella, se tiene una diferencia de potencial entre el neutro de la carga y el neutro del generador dada por el teorema de Millman:

$$\overline{U}_{N} = \overline{U}_{0} = \frac{\overline{\overline{U}}_{a}}{\overline{\overline{Z}}_{1}} + \frac{\overline{\overline{U}}_{b}}{\overline{\overline{Z}}_{2}} + \frac{\overline{\overline{U}}_{c}}{\overline{\overline{Z}}_{3}}$$
$$\frac{1}{\overline{\overline{Z}}_{1}} + \frac{1}{\overline{\overline{Z}}_{2}} + \frac{1}{\overline{\overline{Z}}_{3}}$$

Existen dos tipos de secuencia de fases en generadores trifásicos que son las secuencias positiva ABC y secuencia negativa ACB cuyos diagramas fasoriales se muestran a continuación:

Secuencia positiva ABC

Secuencia negativa ACB

Dichas secuencias afectarán en el cálculo del voltaje de neutro y corrientes de línea cosa que no sucedía en los circuitos trifásicos equilibrados.

Nótese que en los generadores trifásicos de laboratorio se tiene la notación:

$$\overline{U}_{a} = \overline{U}_{L1-N}$$

$$\overline{U}_{b} = \overline{U}_{L2-N}$$

$$\overline{U}_{c} = \overline{U}_{L3-N}$$

Cuando se conecta el neutro (CN), el voltaje de neutro será cero y se tendrá una corriente de neutro dada por:

$$\bar{I}_0 = \bar{I}_{L1} + \bar{I}_{L2} + \bar{I}_{L3}$$

ARMADO DEL CIRCUITO.-

- Caso 1.- Secuencia positiva (Con neutro y sin neutro conectado).
- Caso 2.- Secuencia negativa (Con neutro y sin neutro conectado).

EQUIPOS Y/O ELEMENTOS A UTILIZAR:

- Fuente de tensión trifásica 380 V rms línea sistema estrella
- Multímetros
- Resistencias de valores 250 Ω , 500 Ω y 1k Ω
- Inductor de 1 H
- Capacitor de 10 μF
- Conectores requeridos

PROCEDIMIENTO.-

- 1. Realizar los respectivos cálculos en especial determine el voltaje de neutro para ambas secuencias
- Determinar las secuencias de los generadores trifásicos midiendo el voltaje de neutro, comparando con el voltaje de neutro que han calculado
- 3. Armar el circuito de la figura y realizar las mediciones respectivas para llenar las tablas para cada caso.

SECU EN CIA POSIT IVA	SN				
	CN				
SECU EN CIA NEGA TIV A					
	CN				

SECUENCIA		Z_1	Z_2	Z_3
POSITIVA	U _{fase} (SN)			
	U _{FASE} (CN)			
NEGATIVA	U _{fase} (SN)			
	U _{FASE} (CN)			

CUESTIONARIO.-

- 1. ¿Existe variación en los valores medidos al cambiar la secuencia del generador? Qué sucedería en caso de que el sistema fuera equilibrado habría también variación? Justifique su respuesta.
- 2. Demostrar el teorema de Millman y verifique el valor calculado con el valor medido en laboratorio. Explique el por qué de las variaciones si existe.
- 3. Verificar la ley de corrientes de Kirchhoff sin neutro conectado con los valores teóricos calculados, cuánto debería ser y cuánto es lo que se obtiene?.
- 4. Con los datos tomados en el circuito con neutro conectado. ¿El valor medido de I_0 concuerda con lo aprendido en la teoría?
- 5. Con los datos de laboratorio, ¿existen diferencias de tensiones y corrientes tanto de fase como de línea, sin neutro y con neutro? Justifique su respuesta.

CONCLUSIONES Y RECOMENDACIONES.-