Complex Numbers, Hyperbolic & logarithm of complex numbers

Module-3: Complex Numbers (Q.1 to Q.20)

		Module-1 - Complex Numbers (Q.01 to Q.20)
1.		$If(1+i)(1+2i)(1+3i)(1+Ni) = a+ib$, then $2 \times 5 \times 10 \times \times (1+N^2) = ?$
	Option A	$\sqrt{a^2+b^2}$
	Option B	$a^2 + b^2$
	Option C	$\sqrt{a^2-b^2}$
	Option D	a^2-b^2
2.		If $\sqrt{a+ib} = x+iy$, Then Possible Value of $\sqrt{a-ib} = ?$
۷.		
	Option A	$\sqrt{x^2 + y^2}$
	Option B	$x^2 + y^2$
	Option C	x-iy
	Option D	$\sqrt{x^2-y^2}$
3.		If $z=-1+i$, Then which statement is correct ?
	Option A	$ \mathbf{z} = \sqrt{2}$ and $arg(z) = \frac{-\pi}{4}$
	Option B	$ \mathbf{z} = \sqrt{2}$ and $arg(z) = \frac{5\pi}{4}$
	Option C	$ \mathbf{z} = \sqrt{2}$ and $arg(z) = \frac{\pi}{4}$
	Option D	$ \mathbf{z} = \sqrt{2}$ and $arg(\mathbf{z}) = \frac{3\pi}{4}$

Complex Numbers, Hyperbolic & logarithm of complex numbers

4.		If $z=cos\theta+isin\theta$, Then which statement is false ?
	Option A	$z^n - \frac{1}{z^n} = 2i\sin(n\theta)$
	Option B	$z^n + \frac{1}{z^n} = 2\cos(n\theta)$
	Option C	$z^n - \overline{z}^n = 2\sin(n\theta)$
	Option D	$iz^n - i\overline{\mathbf{z}}^n = -2\sin(n\theta)$
5.		If $z = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$, and \bar{z} is the conjugate of z , then $(z)^{10} + (\bar{z})^{10} =$
	Option A	0
	Option B	2 <i>i</i>
	Option C	-2i
	Option D	1
6.		If $z = \frac{1}{\sqrt{2}} + i \frac{1}{2}$, Then which statement is correct ?
	Option A	$ \mathbf{z} = 1$ and $arg(z) = \tan^{-1}(1)$
	Option B	$ \mathbf{z} = 1$ and $arg(z) = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
	Option C	$ \mathbf{z} = \frac{\sqrt{3}}{2}$ and $arg(z) = \tan^{-1}(\sqrt{3})$
	Option D	$ \mathbf{z} = \frac{\sqrt{3}}{2}$ and $arg(z) = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
. 7.		The Polar form of $z = (i^{25})^3$ is
		$z = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$
	Option B	$z = \cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$

Complex Numbers, Hyperbolic & logarithm of complex numbers

	Option C	$z = \cos(\pi) + i\sin(\pi)$
	Option D	$z = \cos(\pi) - i\sin(\pi)$
8.		If $i^2 = -1$, then $i + i^2 + i^3 + i^4 + i^5 + \dots + i^{1000} = ?$
	Option A	i
	Option B	-i
	Option C	0
	Option D	1
9.		The polar form of complex number $z = x + iy$ is
	Option A	$z = r(\sec\theta + i\csc\theta)$
	Option B	$z = r(\sin\theta + i\cos\theta)$
	Option C	$z = r(\cos\theta + i\sin\theta)$
	Option D	$z = r(\tan\theta + i\cot\theta)$
10.		The value of $(\cos \theta + i \sin \theta)^{100}$ is
	Option A	$\sin 100(\theta) + i \cos 100(\theta)$
	Option B	$\cos 100(\theta) + i \sin 100(\theta)$
	Option C	$\sin 100(\theta) - i \cos 100(\theta)$
	Option D	$\cos 100(\theta) - i \sin 100(\theta)$
11.		If $z = x + iy$, where $x < 0$, $y < 0$, Then the imaginary part of z is

Complex Numbers, Hyperbolic & logarithm of complex numbers

Option A 2 Option B $\frac{z+\bar{z}}{2i}$ Option C $z - \bar{z}$ Option D The value of $(1+i)^{100} + (1-i)^{100} = ?$ 12. $(2)^{51}$ Option A $(-2)^{51}$ Option B $(-2)^{50}$ Option C $(2)^{50}$ Option D If 'n' is positive integer, Then value of $\frac{1+7i}{\left(\frac{1+7i}{(2-i)^2}\right)^{4n}}=?$ 13. $(-4)^n$ Option A Option B $(-2)^n$ Option C $(-1)^n$ $(4)^{n}$ Option D The value of $(\sqrt{-2})(\sqrt{-3})$ is 14. Option A <mark>√</mark>6 $i\sqrt{6}$ Option B Option C $-\sqrt{6}$

Complex Numbers, Hyperbolic & logarithm of complex numbers

		.
	Option D	$-i\sqrt{6}$
15.		If $z=1+i$ and $ar{z}$ is the conjugate of z , then which statement is false ?
	Option A	$z \ \bar{z} = \bar{z} ^2$
	Option B	$ \bar{z} ^2 = z ^2$
	Option C	$arg(z \ \bar{z}) = 0$
	Option D	$arg\left(\frac{z}{\bar{z}}\right) = 0$
16.		If $x + iy = \sqrt[3]{a + ib}$, then $\frac{a}{x} + \frac{b}{y} = ?$
	Option A	$4(x^2-y^2)$
	Option B	$4(x^2+y^2)$
	Option C	$-4(x^2-y^2)$
	Option D	$-4(x^2+y^2)$
17.		If $\alpha - i\beta = \frac{1}{a - ib}$, then $(\alpha^2 + \beta^2)(a^2 + b^2) = ?$
	Option A	0
	Option B	-1
	Option C	1
	Option D	(a^2-b^2)
18.		The value of $\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1 = ?$
	Option A	2
	-	

Complex Numbers, Hyperbolic & logarithm of complex numbers

0 Option B Option C -1Option D -2If z=a+ib , Lies in Third Quadrant, then $\frac{\bar{z}}{z}$ Also Lies in Third Quadrant If 19. Option A a > b > 0b < a < 0Option B a < b < 0Option C Option D b > a > 020 If Z lies on |Z|=1 then $\frac{-}{Z}$ lies on Option A Circle Option B An ellipse Option C A parabola Option D A straight line The value of $\sum_{n=1}^{10} \left(sin\left(\frac{2\pi n}{11}\right) - icos\left(\frac{2\pi n}{11}\right) \right)$ is 21 Option A -1 Option B 0 Option C

Complex Numbers, Hyperbolic & logarithm of complex numbers

	Option D	
22		A root of $x^3 - 8x^2 + px + q = 0$ is $3 - \sqrt{3}$ where p and q are real numbers then
		the other root could be
	Ontion	
	Option A	9
	Option B	6
	Option C	2
	Option D	12
23		If ω is an imaginary cube root of unity then $(1 + \omega - \omega^2)^7$ is equal to
	Option A	128 ω
	Option B	$128 \omega^2$
	Option C	-128 ω
	Option D	$-128 \omega^2$
24		If ω is cube root of unity then the value of $\begin{vmatrix} 1 & \omega & 2\omega^2 \\ 2 & 2\omega^2 & 4\omega^3 \\ 3 & 3\omega^3 & 6\omega^4 \end{vmatrix}$
	Option A	1
	Option B	0
	Option C	-1
	Option D	4

Complex Numbers, Hyperbolic & logarithm of complex numbers

The number of roots of the expression $x^6 - i = 0$ is 25 Option A 7 Option B 6 Option C 8

	Option D	9
26		Which of the following is true?
	Option A	$\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$
	Option B	$\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin 7\theta)$
	Option C	$\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta - 10\sin 9\theta)$
	Option D	$\sin^5\theta = \frac{1}{16}(\sin 5\theta + 5\sin 3\theta + 10\sin 11\theta)$
27		Which of the following is true?
	Option A	Cos(iz)=icos(z)
	Option B	Cos(iz)=cos(z)
	Option C	Cos(iz)=cosh(z)
	Option D	Cos(iz)=isin(z)
28		Which of the following is true ?
	Option A	sin(iz)=sin(z)
	Option B	sin(iz)=-sin(z)

 $Complex\ Numbers, Hyperbolic\ \&\ logarithm\ of\ complex\ numbers$

	Τ_	
	Option C	sin(iz)=icos(z)
	Option D	Sin(iz)=isinh(z)
29		The formula for sinh3z is given by
	Option A	sinhz=3sinhz+4sinh ³ z
	Option B	sinhz=3sinhz-4sinh ³ z
	Option C	sinhz=3coshz+4sinh³z
	Option D	sinhz=3sinhz+4cosh ³ z
30		Which of the following is false ?
	Option A	$\sinh^{-1} x = \log\left(x + \sqrt{x^2 + 1}\right)$
	Option B	$\cosh^{-1} x = \log\left(x + \sqrt{x^2 - 1}\right)$
	Option C	$\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$
	Option D	$\coth^{-1} x = \frac{1}{4} \log \left(\frac{1-x}{1+x} \right)$
31		The value of $tanh(ln\sqrt{3})$ is
	Option A	1
	Option B	2
	Option C	0.8
	Option D	0.5
1		•

Complex Numbers, Hyperbolic & logarithm of complex numbers

32		The real part of cos(x+iy) is
	Option A	cosx sinhy
	Option B	cosx coshy
	Option C	cosxcosy
	Option D	cosx tany
33		The value of sinh(∞) is
	Option A	0
	Option B	-∞
	Option C	∞
	Option D	1
34		The value of $log_e i$
	Option A	1
	Option B	0
	Option C	$\frac{i\pi}{2}$
	Option D	$\frac{-i\pi}{2}$
35		The value of $log_e(i^{-i})$
	Option A	$\frac{i\pi}{2}$
	Option B	$\frac{-i\pi}{2}$

Complex Numbers, Hyperbolic & logarithm of complex numbers

		π
	Option C	$\frac{\kappa}{2}$
	Option D	$\frac{-\pi}{2}$
36		If $2 + i\sqrt{3}$ is a root of the quadratic equation $x^2 + ax + b = 0$ where a,b are real numbers then the value of a, b are
	Option A	4,7
	Option B	4,-7
	Option C	-4,-7
	Option D	-4,7
37		If tanhx=0.5 then cosh(2x) is
	Option A	2/3
	Option B	4/3
	Option C	1
	Option D	1/3
38		If x is complex numbers such that $x^2 + x + 1 = 0$ then x^{31} is equal to
	Option A	X
	Option B	1
	Option C	0
	Option D	χ^2

Complex Numbers, Hyperbolic & logarithm of complex numbers

39		Cosh ² x +sinh ² x
	Option A	Cosh(2x)
	Option B	1
	Option C	Sinh(2x)
	Option D	tanh(2x)
40		The derivative of $cosh(3x)$ with respect to x is
	Option A	cosh(3x)
	Option B	-3sinh(3x)
	Option C	3sinh(3x)
	Option D	coth(3x)
41		What is the exact value of cosh(ln2)
	Option A	3/4
	Option B	2/5
	Option C	7/3
	Option D	5/4
42		Find the value of log(-6)
	Option A	Log6+iπ
	Option B	Log6+i4π
	Option C	Log6+i3π

Complex Numbers, Hyperbolic & logarithm of complex numbers

	Option D	Log6+i2π
43		Representing i^i in terms of e we get
	Option A	$e^{\frac{i\pi}{2}}$
	Option B	$e^{\frac{\pi}{2}}$
	Option C	$e^{-\frac{\pi}{2}}$
	Option D	$e^{\frac{-i\pi}{2}}$
44		If x+iy=csin(u+iv) then u=constant represents family of
	Option A	Confocal ellipse
	Option B	Confocal circles
	Option C	Confocal hyperbolas
	Option D	Confocal parabolas
45		The triangle formed by the points $i, \frac{1+i}{\sqrt{2}}, 1$ as vertices in the Argand's diagram is
	Option A	Scalene
	Option B	Equilateral
	Option C	Isosceles
	Option D	Right angled
46		The smallest positive integer n for which $(1+i)^{2n} = (1-i)^{2n}$ is

Complex Numbers, Hyperbolic & logarithm of complex numbers

Option A
Option C 2 Option D 12 47 If sinhx=4/3 then coshx is Option A 7/3 Option B 5/3 Option C 8/3
Option D 12 47
47
Option A 7/3 Option B 5/3 Option C 8/3
Option A 7/3 Option B 5/3 Option C 8/3
Option B 5/3 Option C 8/3
Option C 8/3
Option D 11/3
48 If $(\sqrt{3} + i)^{100} = 2^{99}(a + ib)$ then $a^2 + b^2$ is
Option A 1
Option B 2
Option C 3
Option D 4
The number of common roots of $x^5 - 1 = 0$ and $x^4 + x^3 + x^2 + x + 1 = 0$ are
Option A 4
Option B 3
Option C 2
Option D 5

Complex Numbers, Hyperbolic & logarithm of complex numbers

50 The continued product of $i^{2/3}$ is

Option A 2i

Option B 0

Option C 1

Option D -1