```
pip install researchpy
     Requirement already satisfied: researchpy in /usr/local/lib/python3.10/dist-packages (0.3.5)
     Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from researchpy) (1.11.3)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from researchpy) (1.23.5)
     Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from researchpy) (1.5.3)
     Requirement already satisfied: statsmodels in /usr/local/lib/python3.10/dist-packages (from researchpy) (0.14.0)
     Requirement already satisfied: patsy in /usr/local/lib/python3.10/dist-packages (from researchpy) (0.5.3)
     Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->researchpy) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->researchpy) (2023.3.post1)
     Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy->researchpy) (1.16.0)
     Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels->researchpy) (23.2)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import researchpy as rp
import statistics as stat
#!pip install researchpy
data = pd.read_excel("demographics_MENA.xlsx")
#data
data.head()
#data.shape
#data.tail()
```

#data.dtypes

	Time	Time Code	Country Name	Country Code	Age dependency ratio (% of working-age population) [SP.POP.DPND]	Age dependency ratio, old [SP.POP.DPND.OL]	Age dependency ratio, young [SP.POP.DPND.YG]	Birth rate, crude (per 1,000 people) [SP.DYN.CBRT.IN]	Death rate, crude (per 1,000 people) [SP.DYN.CDRT.IN]	Ferti tot [SP.DY	
0	2013	YR2013	Morocco	MAR	51.115023	8.348314	42.766709	21.141000	5.796000		
1	2013	YR2013	Algeria	DZA	49.534709	7.428022	42.106687	25.236000	4.673000		

#data.info()

iviiaaie

#Some columns or variables can be dropped if they do not add value to our analysis.
data_EDA = data.drop(['Country Name','Time Code'],axis=1)

Middle east north africa is not a country !!!!!!!!
data_EDA.rename(columns={'Country Code': 'Region'}, inplace=True)

```
#abbreviations of column names
data EDA.rename(columns={
                         "Age dependency ratio (% of working-age population) [SP.POP.DPND]":"ADR"
                         ,"Age dependency ratio, old [SP.POP.DPND.OL]":"ADR old"
                         , "Age dependency ratio, young [SP.POP.DPND.YG]": "ADR young"
                         ,"Birth rate, crude (per 1,000 people) [SP.DYN.CBRT.IN]":"BRC"
                         ,"Death rate, crude (per 1,000 people) [SP.DYN.CDRT.IN]":"DRC"
                         , "Fertility rate, total (births per woman) [SP.DYN.TFRT.IN]": "FRT"
                         ,"Life expectancy at birth, female (years) [SP.DYN.LE00.FE.IN]":"LEB F"
                         ,"Life expectancy at birth, male (years) [SP.DYN.LE00.MA.IN]":"LEB M"
                         ,"Life expectancy at birth, total (years) [SP.DYN.LE00.IN]":"LEB"
                         ,"Mortality rate, adult, female (per 1,000 female adults) [SP.DYN.AMRT.FE]":"MR A F"
                         ,"Mortality rate, adult, male (per 1,000 male adults) [SP.DYN.AMRT.MA]":"MR A M"
                         ,"Mortality rate, infant (per 1,000 live births) [SP.DYN.IMRT.IN]":"MR I"
                         ,"Mortality rate, infant, female (per 1,000 live births) [SP.DYN.IMRT.FE.IN]":"MR I F"
                         ,"Mortality rate, infant, male (per 1,000 live births) [SP.DYN.IMRT.MA.IN]":"MR I M"
                         ,"Mortality rate, neonatal (per 1,000 live births) [SH.DYN.NMRT]":"MR n"
                         ,"Net migration [SM.POP.NETM]":"NM"
                         ,"Number of infant deaths [SH.DTH.IMRT]":"NID"
                         ,"Number of infant deaths, female [SH.DTH.IMRT.FE]":"NID F"
                         ,"Number of infant deaths, male [SH.DTH.IMRT.MA]":"NID M"
                         ,"Population growth (annual %) [SP.POP.GROW]":"PG_a"
                         ,"Population, female [SP.POP.TOTL.FE.IN]":"PF"
                         ,"Population, male [SP.POP.TOTL.MA.IN]":"PM"
                         ,"Population, total [SP.POP.TOTL]":"PT"
                         ,"Rural population [SP.RUR.TOTL]":"RP"
                         ,"Rural population growth (annual %) [SP.RUR.TOTL.ZG]":"RPG a"
                         ,"Urban population [SP.URB.TOTL]":"UP"
                         "Urban population growth (annual %) [SP.URB.GROW]": "UPG a"
                         ,"Population ages 65 and above, total [SP.POP.65UP.TO]":"PA>=65"
                         ,"Population ages 15-64, total [SP.POP.1564.TO]":"15<PA<64"
                         , "Population ages 0-14, total [SP.POP.0014.TO]": "0<PA<14"
                        }, inplace=True)
#data EDA.info()
#data EDA.describe().T
```

data_EDA

	Time	Region	ADR	ADR_old	ADR_young	BRC	DRC	FRT	LEB_F	LEB_M	• • •	PF	РМ	À
0	2013	MAR	51.115023	8.348314	42.766709	21.141000	5.796000	2.594000	73.976000	70.371000		16812735	16990792	
1	2013	DZA	49.534709	7.428022	42.106687	25.236000	4.673000	2.957000	75.840000	73.430000		18629532	19371095	
2	2013	LBY	57.857339	7.191778	50.665561	21.886000	5.056000	2.716000	74.999000	69.983000		2939742	3045479	
3	2013	MEA	54.832405	6.678890	46.627576	24.785522	5.057609	2.970728	74.689240	70.216334		203833535	218956876	
4	2014	MAR	51.105229	8.583568	42.521660	20.617000	5.741000	2.548000	74.390000	70.788000		17027786	17220817	
5	2014	DZA	50.679694	7.629553	43.050141	25.404000	4.555000	3.004000	76.467000	73.803000		19004433	19755734	
6	2014	LBY	57.198571	7.207130	49.991441	21.908000	5.430000	2.754000	75.301000	68.237000		2997221	3100543	
7	2014	MEA	55.305743	6.833397	46.954245	24.538066	5.007248	2.974571	74.936272	70.517108		208078483	223586099	
8	2015	MAR	51.189767	8.871757	42.318009	20.307000	5.705000	2.531000	74.777000	71.166000		17235856	17444602	
9	2015	DZA	51.961774	7.887966	44.073808	25.405000	4.437000	3.041000	76.824000	74.456000		19390923	20152232	
10	2015	LBY	56.752268	7.291311	49.460957	21.214000	5.427000	2.711000	75.369000	68.500000		3046854	3145381	
11	2015	MEA	55.717843	7.000901	47.244190	24.015800	4.956075	2.951749	75.142270	70.832811		212191189	228315279	
12	2016	MAR	51.295387	9.207596	42.087792	19.483000	5.674000	2.451000	75.176000	71.502000		17442227	17665036	
13	2016	DZA	53.315437	8.186477	45.128959	25.166000	4.472000	3.051000	76.803000	74.693000		19783015	20556314	
14	2016	LBY	56.204445	7.368905	48.835540	20.576000	5.480000	2.673000	75.474000	68.501000		3094517	3187679	
15	2016	MEA	55.906616	7.176701	47.335708	23.045558	4.898086	2.871159	75.562196	70.966163		216061701	232855706	
16	2017	MAR	51.453494	9.588176	41.865318	19.298000	5.642000	2.451000	75.664000	71.783000		17646668	17881446	
17	2017	DZA	54.679122	8.506600	46.172523	24.755000	4.542000	3.050000	76.821000	74.700000		20175233	20961313	
18	2017	LBY	55.390651	7.399805	47.990846	19.898000	5.284000	2.626000	75.674000	69.630000		3143706	3234556	
19	2017	MEA	55.970221	7.369804	47.295638	22.555495	4.778578	2.838007	76.086039	71.368280		219860378	237025104	
20	2018	MAR	51.686189	10.003394	41.682795	18.813000	5.637000	2.415000	76.086000	72.028000		17840191	18087320	
21	2018	DZA	55.953864	8.843219	47.110645	24.074000	4.482000	3.023000	77.205000	74.966000		20564404	21362603	
22	2018	LBY	54.322404	7.375025	46.947378	19.282000	5.245000	2.581000	75.877000	70.017000		3193468	3284325	
23	2018	MEA	55.964417	7.576137	47.181817	21.887915	4.773046	2.783049	76.194284	71.642446		223852488	241221003	
24	2019	MAR	51.919106	10.443099	41.476007	18.337000	5.658000	2.382000	76.448000	72.245000		18022621	18281786	
25	2019	DZA	57.053988	9.195569	47.858419	23.298000	4.392000	2.988000	77.760000	75.238000		20948465	21756903	

29	2020	DZA	57.889467	9.500951	48.388515	22.431000	5.398000	2.942000	75.912000	73.082000	 21318767	22132899	r
00	0000	D74	F7 000 407	0.500054	40.000545	00.404000	F 000000	0.040000	75.040000	70 000000	04040707	0040000	
28	2020	MAR	52.074887	10.875293	41.199593	17.889000	6.073000	2.353000	76.308000	71.757000	 18213816	18474956	
27	2019	MEA	55.858771	7.789915	46.963652	21.058566	4.793649	2.700352	76.246402	71.862269	 227893479	245308297	
26	2019	LBY	53.163332	7.332296	45.831036	18.732000	5.454000	2.539000	75.766000	69.496000	 3240076	3329012	

```
#data_EDA.columns
data_EDA.dtypes
```

Time

```
Region
                  object
                  float64
     ADR
                 float64
     ADR old
     ADR_young
                 float64
     BRC
                  float64
                 float64
     DRC
                 float64
     FRT
     LEB_F
                 float64
     LEB M
                 float64
                 float64
     LEB
     MR_A_F
                  float64
                 float64
     MR_A_M
     MR_I
                  float64
                 float64
     MR_I_F
     MR_I_M
                  float64
                 float64
     MR_n
                   int64
     NM
     NID
                 float64
     NID_F
                 float64
     NID_M
                 float64
     PG_a
                  float64
     PF
                    int64
     PΜ
                    int64
     РΤ
                    int64
     RP
                    int64
     RPG_a
                  float64
     UP
                   int64
                 float64
     UPG_a
     PA>=65
                    int64
     15<PA<64
                    int64
     0<PA<14
                   int64
     dtype: object
data_MAR=data_EDA.iloc[:36:4, :]
data_DZA=data_EDA.iloc[1:36:4, :]
data_LBY=data_EDA.iloc[2:36:4, :]
data_MEA=data_EDA.iloc[3:36:4, :]
#data_MAR
#data_DZA
#data_LBY
#data_MEA
```

int64

	Time	Region	ADR	ADR_old	ADR_young	BRC	DRC	FRT	LEB_F	LEB_M	• • •	PF	PM	
3	2013	MEA	54.832405	6.678890	46.627576	24.785522	5.057609	2.970728	74.689240	70.216334		203833535	218956876	42
7	2014	MEA	55.305743	6.833397	46.954245	24.538066	5.007248	2.974571	74.936272	70.517108		208078483	223586099	43
11	2015	MEA	55.717843	7.000901	47.244190	24.015800	4.956075	2.951749	75.142270	70.832811		212191189	228315279	44
15	2016	MEA	55.906616	7.176701	47.335708	23.045558	4.898086	2.871159	75.562196	70.966163		216061701	232855706	44
19	2017	MEA	55.970221	7.369804	47.295638	22.555495	4.778578	2.838007	76.086039	71.368280		219860378	237025104	45
23	2018	MEA	55.964417	7.576137	47.181817	21.887915	4.773046	2.783049	76.194284	71.642446		223852488	241221003	46
27	2019	MEA	55.858771	7.789915	46.963652	21.058566	4.793649	2.700352	76.246402	71.862269		227893479	245308297	47
31	2020	MEA	55.800832	8.016920	46.782678	20.599688	5.285240	2.660517	75.321682	70.812576		231463027	248503623	47
35	2021	MEA	55.667365	8.224893	46.528262	20.142055	5.545467	2.629065	75.084944	70.640202		234775082	251392983	48

9 rows × 32 columns

#data_MAR.describe().T

#data_DZA.describe().T

#data_LBY.describe().T

#data_MEA.describe().T

```
data MAR POP=data MAR[['Time', 'Region','ADR', 'ADR old', 'ADR young','NM', 'PG a', 'PF', 'PM', 'PT', 'RP','RPG a', 'UP', 'UPG a', 'PA>=65', '15<PA<64', '0<
data DZA POP=data DZA[['Time', 'Region','ADR', 'ADR old', 'ADR young','NM', 'PG a', 'PF', 'PM', 'PT', 'RP','RPG a', 'UP', 'UPG a', 'PA>=65', '15<PA<64', '0<
data LBY POP=data LBY[['Time', 'Region','ADR', 'ADR old', 'ADR young','NM', 'PG a', 'PF', 'PM', 'PT', 'RP','RPG a', 'UP', 'UPG a', 'PA>=65', '15<PA<64', '0<
data MEA POP=data MEA[['Time', 'Region','ADR', 'ADR old', 'ADR young','NM', 'PG a', 'PF', 'PM', 'PT', 'RP','RPG a', 'UP', 'UPG a', 'PA>=65', '15<PA<64', '0<
data_MAR_MOR=data_MAR[['Time', 'Region', 'DRC', 'MR_A_F', 'MR_A_M', 'MR_I', 'MR_I_F', 'MR_I_M', 'MR_n', 'NID_F', 'NID_M']]
data_DZA_MOR=data_DZA[['Time', 'Region', 'DRC', 'MR_A_F', 'MR_A_M', 'MR_I', 'MR_I_F', 'MR_I_M', 'MR_n', 'NID_F', 'NID_M']]
data LBY MOR=data LBY[['Time', 'Region', 'DRC', 'MR A F', 'MR A M', 'MR I', 'MR I F', 'MR I M', 'MR n', 'NID', 'NID F', 'NID M']]
data MEA MOR=data MEA[['Time', 'Region', 'DRC', 'MR A F', 'MR A M', 'MR I', 'MR I F', 'MR I M', 'MR n', 'NID', 'NID F', 'NID M']]
data_MAR_BIR=data_MAR[['Time', 'Region', 'BRC', 'FRT','LEB_F', 'LEB_M', 'LEB']]
data_DZA_BIR=data_DZA[['Time', 'Region', 'BRC', 'FRT', 'LEB_F', 'LEB_M', 'LEB']]
data LBY BIR=data LBY[['Time', 'Region', 'BRC', 'FRT', 'LEB F', 'LEB M', 'LEB']]
data MEA BIR=data MEA[['Time', 'Region', 'BRC', 'FRT', 'LEB F', 'LEB M', 'LEB']]
print("Médiane : ",stat.median(data MAR['FRT']))
print("Mean : ",stat.mean(data MAR['FRT']))
print("Mode : ",stat.mode(data MAR['FRT']))
print("Quantiles : ",stat.quantiles(data MAR['FRT']))
print("Variance : ",stat.pvariance(data MAR BIR['FRT']))
print("Standar Deviation: ",stat.stdev(data MAR BIR['FRT']))
print("Variation Coefficient: ",stats.variation(data MAR BIR['FRT']))
print("interquartile range : ",stats.iqr(data MAR BIR['FRT']))
print("Etendue : ",max(data MAR BIR['FRT'])-min(data MAR BIR['FRT']))
     Médiane : 2.451
     Mean: 2.4503333333333333
     Mode: 2.451
     Quantiles: [2.3675, 2.451, 2.53950000000000003]
     Variance: 0.00744933333333333
     Standar Deviation: 0.09154507086675938
     Variation Coefficient: 0.035223583400401916
     interquartile range : 0.14900000000000002
```

Etendue: 0.266

Visualization

- In this part, we are going to answer 6 questions:
 - 1. How does the Age Dependency Ratio vary across different countries?
 - 2. What is the trend in Crude Birth Rate and Crude Death Rate over time?
 - 3. Is there a correlation between Fertility Rate and Life Expectancy?
 - 4. How does the Mortality Rate vary between male and female infants?
 - 5. Explore the Net Migration patterns over time.
 - 6. What is the distribution of Population Growth across urban and rural areas?
- ✓ 1. How does the Age Dependency Ratio vary across different countries?

To answer this questions, we will use a **barplot**: What is a barplot, and where is it used?

- A bar plot represents an aggregate or statistical estimate for a numeric variable with the height of each rectangle and indicates the uncertainty around that estimate using an error bar. Bar plots include 0 in the axis range, and they are a good choice when 0 is a meaningful value for the variable to take.
- Used for categorical data.

We used it in our case for:

• Its simplicity and ease of interpretation make bar plots particularly suitable for displaying comparisons between different groups or categories

```
plt.figure(figsize=(12, 6))
sns.barplot(x='Region', y='ADR', data=data_EDA, order=region_order)
plt.xlabel('Region')
plt.ylabel('Age Dependency Ratio')
plt.title('Age Dependency Ratio Across Different Regions')
plt.show()
```


Interpretation:

the Age Dependency Ratio across regions suggests that **DZA** has the highest demographic burden, followed by the **MEA**, **LBY**, and **MAR**, indicating **potential variations in population age structures** and associated economic implications.

2. What is the trend in Crude Birth Rate and Crude Death Rate over time?

To answer this questions, we will use a lineplot: What is a lineplot, and where is it used?

• A lineplot is graphical representation that displays data points at specific time intervals, connecting them with lines to illustrate the trend or pattern of a numerical variable over time.

A line plot visually represents the temporal trends in Crude Birth Rate and Crude Death Rate over time, **offering insights into the changing patterns** of these demographic indicators.

```
plt.figure(figsize=(12, 6))
sns.lineplot(x='Time', y='BRC', data=data_EDA, label='Crude Birth Rate')
sns.lineplot(x='Time', y='DRC', data=data_EDA, label='Crude Death Rate')

plt.xlabel('Time')
plt.ylabel('Rate per 1,000 people')
plt.title('Trend in Crude Birth Rate and Crude Death Rate Over Time')
plt.legend()
plt.show()
```

Trend in Crude Birth Rate and Crude Death Rate Over Time

Interpretation:

Crude Birth Rate line's suggests a gradual reduction in the number of births per 1,000 people over time, potentially indicating changes in fertility patterns or family planning measures.

Crude Death Rate line's consistently low values reflect a relatively stable and low mortality rate per 1,000 people, implying sustained overall health and longevity in the population.

The pic was in 2020 due to COVID 19.

3. Is there a correlation between Fertility Rate and Life Expectancy?

To answer this questions, we will use a **scatterplot**: What is a scatterplot, and where is it used?

• A scatterplot is

```
plt.figure(figsize=(10, 8))
sns.scatterplot(x='FRT', y='LEB', data=data_EDA, hue='Time', palette='viridis')
plt.xlabel('Fertility Rate (births per woman)')
plt.ylabel('Life Expectancy at Birth (years)')
plt.title('Correlation between Fertility Rate and Life Expectancy')
plt.show()
```

Correlation between Fertility Rate and Life Expectancy


```
from scipy.stats import pearsonr
plt.figure(figsize=(10, 8))

sns.regplot(x='FRT', y='LEB', data=data_EDA, scatter_kws={'s': 50}, line_kws={'color': 'red'})

plt.xlabel('Fertility Rate (births per woman)')
plt.ylabel('Life Expectancy at Birth (years)')
plt.title('Correlation between Fertility Rate and Life Expectancy')

plt.show()
correlation_coefficient, _ = pearsonr(data_EDA['FRT'].dropna(), data_EDA['LEB'].dropna())
print(correlation_coefficient)
```

Correlation between Fertility Rate and Life Expectancy

Interpretation:

The correlation coefficient of 0.2692 suggests a modest **positive relationship** between Fertility Rate and Life Expectancy. This means that, on average, as the number of births per woman increases, there is a slight tendency for life expectancy to also increase, but the connection is not very strong.

4. How does the Mortality Rate vary between male and female infants?

č |

To answer this questions, we will use a **boxplot**: What is a boxplot, and where is it used?

- A boxplot is used to compare and contrast many groups.
- It highlights the median, and the outliers.
- It includes the interquartile range.
- the solid line in my boxplot refers to the median.

Mortality Rate Variation Between Male and Female Infants

25.0

Interpretation:

The boxplots reveal that the median Mortality Rates **differ among the age and gender groups**, with female infants having a slightly lower median rate (17.5) compared to all infants (19), while male infants show a slightly higher median rate (21). Additionally, the absence of outliers suggests a **consistent distribution of Mortality** Rates within these specified age and gender ranges.

0

5. Explore the Net Migration patterns over time.

To answer this questions, we will use a lineplot: What is a lineplot, and where is it used?

• A lineplot is employed to illustrate the temporal trends in Net Migration, to show thr representation of how this demographic indicator changes over time.

Đ I

```
plt.figure(figsize=(12, 6))
sns.lineplot(x='Time', y='NM', data=data_EDA)

plt.xlabel('Time')
plt.ylabel('Net Migration')
plt.title('Net Migration Patterns Over Time')
plt.show()
```

 \square