Metody Probabilistyczne i Statystyka - Wykład 3. Zmienne Iosowe jednowymiarowe

Ewa Frankiewicz

10 marca 2025

Przykład 1.

Rzucamy 2 razy symetryczną monetą. Niech X oznacza liczbę wyrzuconych reszek. Zapisać X jako funkcję zdarzenia elementarnego.

Przykład 2.

Czekamy na autobus mający przyjechać w ciągu godziny. Niech ${\cal T}$ oznacza czas oczekiwania. Zapisać ${\cal T}$ jako funkcję zdarzenia elementarnego.

Definicja

Jednowymiarową zmienną losową (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , nazywamy funkcję $X: \Omega \to \mathbb{R}$.

Zbiór wartości zmiennej losowej, które są przyjmowane z dodatnim prawdopodobieństwem oznaczamy symbolem S_X i nazywamy **nośnikiem**.

Przykład 2. - c.d.

Wyznaczyć prawdopodobieństwa, z jakimi X przyjmuje poszczególne wartości z nośnika, czyli $P(\{\omega \in \Omega : X(\omega) = x\})$ dla każdego $x \in S_X$.

Uwaga

Uwaga: Zamiast $P(\{\omega \in \Omega : X(\omega) = x\})$, będziemy pisać P(X = x).

Rozkład zmiennej losowej określa zbiór jej wartości oraz prawdopodobieństwa, z jakimi te wartości są przyjmowane.

Przykład 2. - c.d.

Dla każdego $t \in \mathbb{R}$ wyznaczyć $X^{-1}((-\infty;t])$. Wyznaczyć funkcję F_X określoną dla $t \in \mathbb{R}$ wzorem

$$F_X(t) = P\left(X^{-1}\left((-\infty;t]\right)\right) = P\left(\{\omega \in \Omega : X(\omega) \leqslant t\}\right).$$

Definicja

Dystrybuantą jednowymiarowej zmiennej losowej $X:\Omega\to\mathbb{R}$ nazywamy funkcję $F_X:\mathbb{R}\to[0;1]$, która dla każdego $t\in\mathbb{R}$ określona jest wzorem

$$F_X(t) = P(\{\omega \in \Omega : X(\omega) \leq t\}) = P(X^{-1}(-\infty; t]).$$

Uwaga

Uwaga: Zamiast $P(\{\omega \in \Omega : X(\omega) \le t\})$, będziemy pisać $P(X \le t)$.

Uwaga

Dystrybuanta jednoznacznie wyznacza rozkład zmiennej losowej: dwie zmienne losowe mają te same rozkłady wtedy i tylko wtedy, gdy mają takie same dystrybuanty.

Twierdzenie

Funkcja $F : \mathbb{R} \to \mathbb{R}$ jest dystrybuantą jednowymiarowej zmiennej losowej wtedy i tylko wtedy, gdy:

- F jest funkcją niemalejącą
- § F jest funkcją co najmniej prawostronnie ciągłą.

Obliczanie prawdopodobieństwa za pomocą dystrybuanty:

Niech $a, b \in \mathbb{R}$ i niech a < b. Wtedy:

•
$$P(X \le a) = F_X(a)$$

$$P(X = a) = F_X(a) - \lim_{t \to a^-} F_X(t)$$

$$P(X < a) = \lim_{t \to a^{-}} F_{X}(t)$$

Definicja

Punktem skokowym rozkładu zmiennej losowej X nazywamy każdą liczbę $a \in \mathbb{R}$ taką, że P(X = a) > 0.

Twierdzenie

Liczba a jest punktem skokowym rozkładu zmiennej losowej X wtedy i tylko wtedy, gdy funkcja F_X jest nieciągła w punkcie a.

Rozkład dyskretny

Definicja

Zmienna losowa X ma rozkład dyskretny (skokowy), jeśli jej nośnik jest przeliczalny (w szczególności może być skończony).

Uwaga

Nośnik rozkładu zmiennej losowej X typu dyskretnego ma następujące własności:

- P(X = x) > 0 dla każdego $x \in S_X$;

Rozkład dyskretny

Definicja

Funkcję p_X taką, że $p_X(x) = P(X = x)$, nazywamy funkcją prawdopodobieństwa rozkładu zmiennej losowej X typu dyskretnego.

Uwaga

Funkcja prawdopodobieństwa jednoznacznie wyznacza rozkład zmiennej losowej typu dyskretnego.

Twierdzenie

Jeśli X ma rozkład dyskretny, to

$$F_X(t) = \sum_{x \leqslant t} P(X = x)$$

dla każdego $t \in \mathbb{R}$.

Definicja

Zmienna losowa X o dystrybuancie F_X ma rozkład ciągły, jeżeli istnieje funkcja $f_X : \mathbb{R} \to \mathbb{R}$ taka, że dla każdego $t \in \mathbb{R}$

$$F_X(t) = \int_{-\infty}^t f_X(x) dx.$$

Funkcję f_X nazywamy wtedy **gęstością** rozkładu zmiennej losowej X.

Uwaga

Nośnikiem zmiennej losowej X o rozkładzie ciągłym jest zbiór S_X taki, że

$$S_X = \{x \in \mathbb{R} : f_X(x) > 0\}.$$

Twierdzenie

Funkcja $f: \mathbb{R} \to \mathbb{R}$ jest gęstością jednowymiarowej zmiennej losowej wtedy i tylko wtedy, gdy

- $f(x) \ge 0$ prawie wszędzie;
- $\int_{-\infty}^{+\infty} f(x) dx = 1.$

Uwaga

Gęstość jednoznacznie wyznacza rozkład zmiennej losowej typu ciągłego.

Twierdzenie

Jeśli X ma rozkład ciągły, to:

- **1** F_X jest funkcją ciągłą w zbiorze \mathbb{R} .
- $P'_X = f_X$ w każdym punkcie ciągłości x funkcji f_X .
- **1** Dla dowolnych $a, b \in \mathbb{R}$ takich, że a < b

$$P(a \le X < b) = P(a < X \le b) = P(a < X < b) =$$

$$= P(a \le X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx =$$

= pole pod wykresem gęstości pomiędzy punktami a i b.

Przykład 4.

Zmienna losowa X ma rozkład ciągły o gęstości

$$f_X(x) = \begin{cases} x, & x \in [0;1] \\ 2-x, & x \in (1;2] \\ 0, & \text{w p.p.} \end{cases}.$$

- Wyznaczyć dystrybuantę zmiennej losowej X;
- ② Obliczyć P(0.5 < X < 1.5).