IP CORE MANUAL

AXI4-Stream Packet to Contiguous Stream 512-Bit IP

px_axis_pkt2contigstream_512

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818–5900
http://www.pentek.com/

Copyright © 2019

Rev: 1.0 – October 14, 2019

Manual Revision History

<u>Date</u>	Version		Comments
10/14/19	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/ contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2019, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

		Page
	IP Facts	
		_
	Description	
	Features	
	Table 1–1: IP Facts Table	5
	Chapter 1: Overview	
1.1	Functional Description	7
	Figure 1–1: AXI4–Stream Packet to Contiguous Stream 512–Bit Core Block Diagram	
1.2	Applications	
1.3	System Requirements	
1.4	Licensing and Ordering Information	
1.5	Contacting Technical Support	
1.6	Documentation	
	Chapter 2: General Product Specifications	
2.1	Standards	11
2.2	Performance	11
	2.2.1 Maximum Frequencies	11
2.3	Resource Utilization	11
	Table 2-1: Resource Usage and Availability	11
2.4	Limitations and Unsupported Features	
2.5	Generic Parameters	12
	Chapter 3: Port Descriptions	
3.1	AXI4-Lite Core Interfaces	
	3.1.1 Control/Status Register (CSR) Interface	
	Table 3-1: Control/Status Register (CSR) Interface Port Descriptions	13
3.2	AXI4-Stream Core Interfaces	
	3.2.1 AXI4-Stream Input Data Bus	
	Table 3-2: AXI4-Stream Input Data Bus Interface Port Descriptions	
	3.2.2 AXI4–Stream Output Data Bus	
	Table 3-3: AXI4-Stream Output Data Bus Interface Port Descriptions	17

Table of Contents

		Page
	Chapter 4: Register Space	
	Table 4–1: Register Space Memory Map	19
4.1	Control Register	
	Figure 4–1: Control Register	
	Table 4–2: Control Register (Base Address + 0x00)	19
	Chapter 5: Designing with the Core	
5.1	General Design Guidelines	21
5.2	Clocking	21
5.3	Resets	21
5.4	Interrupts	21
5.5	Interface Operation	22
5.6	Programming Sequence	22
5.7	Timing Diagrams	22
	Chapter 6: Design Flow Steps	
6.1	Pentek IP Catalog	23
	Figure 6-1: AXI4-Stream Packet to Contiguous Stream 512-Bit Core	
	in Pentek IP Catalog	23
	Figure 6-2: AXI4-Stream Packet to Contiguous Stream 512-Bit Core IP Symbol	24
6.2	User Parameters	24
6.3	Generating Output	24
6.4	Constraining the Core	
6.5	Simulation	26
	Figure 6-3: AXI4-Stream Packet to Contiguous Stream 512-Bit Core	
	Simulation Waveform	
6.6	Synthesis and Implementation	26

IP Facts

Description

Pentek's Navigator™ AXI4–Stream Packet to Contiguous Stream 512–Bit Core repacks data from 512–bit AXI4–Stream packets containing a "**tkeep**" field into a contiguous stream of full 64–byte words containing only valid data.

This core complies with the ARM® AMBA® AXI4 Specification. This user manual defines the hardware interface, software interface, and parameterization options for the AXI4–Stream Packet to Contiguous Stream 512–Bit Core.

Features

- Fully AXI4–compliant interfaces
- User accessible reset and packet builder flush
- Control access through AXI4–Lite interface
- The core assumes 32–bit granularity for the data.

Table 1-1: IP Facts Table				
Core Specifics				
Supported Design Family ^a	Kintex [®] Ultrascale and Ultrascale+			
Supported User Interfaces	AXI4-Lite and AXI4- Stream			
Resources	See Table 2-1			
Provided with the Core				
Design Files	VHDL			
Example Design	Not Provided			
Test Bench	VHDL			
Constraints File	Not Provided ^b			
Simulation Model	VHDL			
Supported S/W Driver	N/A			
Tested Design Flows				
Design Entry	Vivado [®] Design Suite 2019.1 or later			
Simulation	Vivado VSim			
Synthesis	Vivado Synthesis			
Support				
Provided by Pentek fpgasupport@pentek.com				

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

Page 6

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core takes an incoming packetized AXI4–Stream, possibly containing some invalid data, and converts it to a contiguous AXI4–Stream of valid 64–byte words.

Incoming data is received in the form of 512-bit wide AXI4-stream packets by the AXI4-Stream Slave interface. This AXI4-Stream contains a 64-bit "**tkeep**" field, wherein each bit represents an 8-bit byte of the data bus. When asserted, each bit in this field indicates that its corresponding byte in the data bus is valid.

Note, however, that to save significant FPGA resources, the AXI4–Stream Packet to Contiguous Stream, 512–Bit Core will only look at every 4th bit of the "**tkeep**" field to determine which data words are to be stripped–out. This results in a granularity of 32 bits.

The AXI4–Stream Packet to Contiguous Stream, 512–Bit Core takes the incoming packets and discards the 32–bit data words that are not to be passed (as described above), and continues to accumulate valid data until it can build a full 64–byte packet. The core then passes the packet via the Master AXI4–Stream interface to the downstream device.

Figure 1–1 is a top–level block diagram of the PentekAXI4–Stream Packet to Contiguous Stream 512–Bit Core. The modules within the block diagram are explained in the later sections of this manual.

Figure 1–1: AXI4–Stream Packet to Contiguous Stream 512–Bit Core Block Diagram

1.1 Functional Description (continued)

	AXI4–Lite Interface: This module implements a 32–bit AXI4–Lite Slave Interface to access the Register Space. For additional details about the AXI4–Lite Interface, refer to Section 3.1 AXI4–Lite Core Interfaces.
_	Register Space: This module contains the control register. The register is accessed through the AXI4–Lite interface.
	AXI4–Stream Interfaces: The AXI4–Stream Packet to Contiguous Stream, 512–Bit Core has two AXI4–Stream Interfaces. At the input, a 512–bit AXI4–Stream Slave Interface is used to receive AXI4–Streams, and at the output a 512–bit AXI4–Stream Master Interface is used to transfer contiguous, packed AXI4–Streams through the output ports. For more details about the AXI4–Stream Interfaces refer to Section 3.2 AXI4–Stream Core Interfaces.
_	Address FIFO: This module contains the FIFO which captures the addresses from the burst as well as the packet length.
	Data Stripper: This module implements the logic to remove data flagged as invalid by the " tkeep " field.
_	Packet Builder: This module contains the logic to build complete 64–byte packets from the data provided by the Data Stripper.

1.2 Applications

The AXI4–Stream Packet to Contiguous Stream, 512–Bit Core can be incorporated into an Ultrascale or Ultrascale+ FPGA to repack data from incoming 512–bit AXI4–Stream packets containing a "**tkeep**" field into a contiguous output AXI4–Stream of fully valid 64–byte words.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201–818–5900 ext. 238, 9 am to 5 pm EST).

1.6 Documentation

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) ARM AMBA AXI4 Protocol Version 2.0 Specification http://www.arm.com/products/system-ip/amba-specifications.php
- 4) Pentek IP Core Conventions Guide and Example Labs Guide (807.48111)

AXI4-Stream	Packet to	Contiouous	Stream	512-Bit 1	H
MATE DITORII	I HUNCI IU	Comisuons	, Dilleniii	OIL DIII	LL

Page 10

This page is intentionally blank

Chapter 2: General Product Specifications

2.1 Standards

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core has interfaces that comply with the *ARM AMBA AXI4–Lite Protocol Specification* and the *ARM AMBA AXI4–Stream Protocol Specification*.

2.2 Performance

The performance of the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is limited only by the FPGA logic speed. The values presented in this section should be used as an estimation guideline. Actual performance can vary.

2.2.1 Maximum Frequencies

The AXI4-Stream Packet to Contiguous Stream 512-Bit Core has two incoming clock signals. The AXI4-Stream clock (<code>s_axis_aclk</code>) has a maximum frequency of 400 MHz while the CSR clock for the AXI4-Lite interface (<code>s_axi_csr_aclk</code>) has a maximum frequency of 250 MHz on a Kintex Ultrascale -2 speed grade FPGA. Note that 250 MHz is typically the PCI Express (PCIe®) AXI bus clock frequency.

2.3 Resource Utilization

The resource utilization of the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is shown in Table 2–1. Resources have been estimated for the Kintex Ultrascale XCKU060 –2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2–1: Resource Usage and Availability				
Resource	# Used			
LUTs	1,839			
Flip-Flops	2,221			

NOTE: Actual utilization may vary based on the user design in which the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is incorporated.

2.4 Limitations and Unsupported Features

- To keep the resource utilization of the core at a reasonable level, only bits 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4 and 0 (i.e. every 4th bit) of the "**tkeep**" field are evaluated by the data stripper module. This means the granularity of the data stripper module is fixed at 32-bits.
- Input and output data busses are fixed at 512-bits.

2.5 Generic Parameters

This section is not applicable to this IP core.

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

- AXI4-Lite Core Interfaces
- AXI4–Stream Core Interfaces
- AXI4–Stream Output Data Bus

3.1 **AXI4–Lite Core Interfaces**

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core uses the Control/Status Register (CSR) interface to control the reset and flush functions from the user design.

3.1.1 Control/Status Register (CSR) Interface

The CSR interface is an AXI4–Lite Slave Interface that can be used to access the control register in the AXI4–Stream Packet to Contiguous Stream 512–Bit Core. Table 3–1 defines the ports in the CSR interface. See Table 4 for a Control Register memory map and bit definitions. See the *AMBA AXI4–Lite Specification* for more details on operation of the AXI4–Lite interfaces.

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions				
Port	Direction	Width	Description	
s_axi_csr_aclk	Input	1	Clock	
s_axi_csr_aresetn	Input	1	Reset: Active LOW reset. This signal is associated with aclk. It will reset the control register to its initial state.	
s_axi_csr_awaddr	Input	7	Write Address: Address used for write operations. It must be valid when s_axi_csr_awvalid is asserted and must be held until s_axi_csr_awready is asserted by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core.	
s_axi_csr_awprot	Input	3	Protection: The AXI4–Stream Packet to Contiguous Stream 512–Bit Core ignores these bits.	
s_axi_csr_awvalid	Input	1	Write Address Valid: This input must be asserted to indicate that a valid write address is available on s_axi_csr_awaddr. The AXI4–Stream Packet to Contiguous Stream 512–Bit Core asserts s_axi_csr_awready when it is ready to accept the address. The s_axi_csr_awvalid must remain asserted until the rising clock edge after the assertion of s_axi_csr_awready.	

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)				
Port	Direction	Width	Description	
s_axi_csr_awready	Output	1	Write Address Ready: This output is asserted by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core when it is ready to accept the write address. The address is latched when s_axi_csr_awvalid and s_axi_csr_awready are high on the same cycle.	
s_axi_csr_wdata	Input	32	Write Data: This data will be written to the address specified by s_axi_csr_awaddr when s_axi_csr_wvalid and s_axi_csr_wready are both asserted. The value must be valid when s_axi_csr_wvalid is asserted and held until s_axi_csr_wready is also asserted.	
s_axi_csr_wstrb	Input	4	Write Strobes: This signal, when asserted, indicates the number of bytes of valid data on the s_axi_csr_wdata signal. Each of these bits, when asserted, indicate that the corresponding byte of s_axi_csr_wdata contains valid data. Bit 0 corresponds to the least significant byte, and bit 3 to the most significant.	
s_axi_csr_wvalid	Input	1	Write Valid: This signal must be asserted to indicate that the write data is valid for a write operation. The value on s_axi_csr_wdata is written into the register at address s_axi_csr_awaddr when s_axi_csr_wready and s_axi_csr_wvalid are high on the same cycle.	
s_axi_csr_wready	Output	1	Write Ready: This signal is asserted by the AXI4– Stream Packet to Contiguous Stream 512–Bit Core when it is ready to accept data. The value on s_axi_csr_wdata is written into the register at address s_axi_csr_awaddr when s_axi_csr_wready and s_axi_csr_wvalid are high on the same cycle, assuming that the address has already or simultaneously been submitted.	
s_axi_csr_bresp	Output	2	Write Response: The AXI4–Stream Packet to Contiguous Stream 512–Bit Core indicates success or failure of a write transaction through this signal, which is valid when s_axi_csr_bvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.	
s_axi_csr_bready	Input	1	Write Response Ready: This signal must be asserted by the user logic when it is ready to accept the Write Response.	

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)				
Port	Direction	Width	Description	
s_axi_csr_bvalid	Output	1	Write Response Valid: This signal is asserted by the AXI4-Stream Packet to Contiguous Stream 512-Bit Core when the write operation is complete and the Write Response is valid. It is held until s_axi_csr_bready is asserted by the user logic.	
s_axi_csr_araddr	Input	7	Read Address: Address used for read operations. It must be valid when s_axi_csr_arvalid is asserted and must be held until s_axi_csr_arready is asserted by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core.	
s_axi_csr_arprot	Input	3	Protection: These bits are ignored by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core	
s_axi_csr_arvalid	Input	1	Read Address Valid: This input must be asserted to indicate that a valid read address is available on the s_axi_csr_araddr. The AXI4-Stream Packet to Contiguous Stream 512-Bit Core asserts s_axi_csr_arready when it ready to accept the Read Address. This input must remain asserted until the rising clock edge after the assertion of s_axi_csr_arready.	
s_axi_csr_arready	Output	1	Read Address Ready: This output is asserted by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core when it is ready to accept the read address. The address is latched when s_axi_csr_arvalid and s_axi_csr_arready are high on the same cycle.	
s_axi_csr_rdata	Output	32	Read Data: This value is the data read from the address specified by the s_axi_csr_araddr when s_axi_csr_arvalid and s_axi_csr_arready are high on the same cycle.	
s_axi_csr_rresp	Output	2	Read Response: The AXI4–Stream Packet to Contiguous Stream 512–Bit Core indicates success or failure of a read transaction through this signal, which is valid when s_axi_csr_rvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.	

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)					
Port	Direction	Width	Description		
s_axi_csr_rvalid	Output	1	Read Data Valid: This signal is asserted by the AXI4– Stream Packet to Contiguous Stream 512–Bit Core when the read is complete and the read data is available on s_axi_csr_rdata. It is held until s_axi_csr_rready is asserted by the user logic.		
s_axi_csr_rready	Input	1	Read Data Ready: This signal is asserted by the user logic when it is ready to accept the Read Data.		

3.2 **AXI4-Stream Core Interfaces**

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core has the following AXI4–Stream Interface, which is used to transfer data streams.

- At the input, a 512-bit AXI4-Stream Slave Interface is used to receive a packetized AXI4-Stream.
- At the output a 512-bit AXI4-Stream Master Interface is used to transfer a contiguous, packed AXI4-Stream with all bits carrying valid data.

3.2.1 AXI4-Stream Input Data Bus

Table 3–2 defines the ports in the AXI4–Stream Input Data Bus Interface. This interface is an AXI4–Stream Slave Interface that is associated with <code>s_axis_aclk</code>. See the *AMBA AXI4 Specification* for more details on operation of the AXI4–Stream interfaces.

Table 3-2: AXI4-Stream Input Data Bus Interface Port Descriptions					
Port Direction Width Description					
s_axis_aclk	Input	1	Clock: This is the clock for both the input and the output AXI4–Stream interfaces.		
s_axis_aresetn	Input	1	Reset: Active LOW reset for both the input and the output AXI4-Stream interfaces.		
s_axis_tvalid	Input	1	Data Valid: The user design asserts this signal whenever there is valid data on s_axis_ tdata.		
s_axis_tready	Output	1	Ready for Data: This signal is asserted by the AXI4– Stream Packet to Contiguous Stream 512–Bit Core to indicate that it is ready to accept data.		

Table 3-2: AXI4-Stream Input Data Bus Interface Port Descriptions (Continued)					
Port	Direction	Width	Description		
s_axis_tdata	Input	512	AXI4-Stream Input Data Bus: This is the input data bus for the core.		
s_axis_tkeep	Input	64	TKEEP Indication for the AXI4–Stream Input Data: The assertion of bit i of this bus during a transfer indicates that dword i (in this case a dword is 8 bits) of the s_axis_tdata bus contains valid data. NOTE: While each of the 64 bits of this input represent 8 of the 512 bits of the incoming data bus, only every 4th bit is actually evaluated by the core. See Section 2.4 for more details.		
s_axis_tlast	Input	1	TLAST Indication AXI4–Stream Input Data: The user design asserts this signal in the last cycle of a data transfer to indicate the end of the packet.		

3.2.2 AXI4-Stream Output Data Bus

Table 3–3 defines the ports in the AXI4–Stream Output Data Bus Interface. This interface is an AXI4–Stream Master Interface that is associated with <code>s_axis_aclk</code>. See the *AMBA AXI4 Specification* for more details on operation of the AXI4–Stream interfaces.

Table 3-3: /	AXI4-Stream Ou	ıtput Data I	Bus Interface Port Descriptions
Port	Direction	Width	Description
m_axis_tvalid	Output	1	Data Valid: The AXI4-Stream Packet to Contiguous Stream 512-Bit Core asserts this signal whenever there is valid data on m_axis_tdata.
m_axis_tdata	Output	512	AXI4-Stream Output Data Bus: This is the output data bus for the AXI4-Stream Packet to Contiguous Stream 512-Bit Core.

AXI4-Stream	Packet	to	Contiguous	Stream	512-Bit IP
112111 Dillum	Inchei	ı	Comiguous	Direnni	DIZ DILII

Page 18

This page is intentionally blank

Chapter 4: Register Space

This chapter provides the memory map and register descriptions for the AXI4–Stream Packet to Contiguous Stream 512–Bit Core.

Table 4-1: Register Space Memory Map					
Register Name	Base Address (Base Address +)	Access	Description		
Control Register	0x00	R/W	Control Register: Controls the Data Stripper Reset and the Packet Builder Flush functions of the core.		

4.1 Control Register

This register controls the reset for the data stripper and the flush control for the data packet builder. The Control Register is illustrated in Figure 4–1 and described in Table 4–2.

Figure 4–1: Control Register

	Table 4-2: Control Register (Base Address + 0x00)						
Bits	Bits Field Name Default Value Access Type Description						
31:2	Reserved	-	-	Reserved			
1	Reset	0	R/W	Reset: Active HIGH reset will reset the Data Stripper.			
0	Flush	0	R/W	Flush: Active HIGH – when asserted, any left–over partial data in the data packet builder will be flushed–out as valid data.			

AVIA Chuagan	Daakatta	Cantianana	Chuagan	512	Dil	ΤD
AXI4–Stream	Pucket to	Contiguous	Streum	012-1	コロ	II

This page is intentionally blank

Page 20

Chapter 5: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the AXI4–Stream Packet to Contiguous Stream 512–Bit Core.

5.1 General Design Guidelines

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core provides the required logic to repack data from the incoming 512–bit AXI4–Stream packets containing a "**tkeep**" field into a contiguous stream of fully–valid 64–byte words.

5.2 Clocking

Main Clock: s axis aclk

This clock is used to clock all the ports and logic in the AXI4–Stream Packet to Contiguous Stream 512–Bit Core except the CSR interface and its associated logic.

CSR Clock: s axi csr aclk

This clock is used to clock the CSR interface and its associated logic.

5.3 Resets

Main reset: s axis aresetn

This is an active low synchronous reset associated with **s_axis_aclk**. When this reset is asserted, all logic in the s_axis_aclk clock domain of the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is reset.

CSR reset: s axi csr aresetn

This is an active low synchronous reset associated with <code>s_axi_csr_aclk</code>. When this reset is asserted, all logic in the <code>s_axi_csr_aclk</code> clock domain of the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is reset.

5.4 Interrupts

This core does not have interrupts.

5.5 Interface Operation

CSR Interface: This is the Control/Status Register Interface and is associated with
s_axi_csr_aclk. It is a standard AXI4-Lite Slave Interface. See Chapter 4 for the
control register memory map, which provides more details on the register that can be
accessed through this interface.

- ☐ Input Data Bus: This is the AXI4–Stream Slave Interface which is associated with s_axis_aclk. Data from this interface is in the form of packets which may contain invalid data, as defined by the "tkeep" field. This incoming data is repacked by the AXI4–Stream Packet to Contiguous Stream 512–Bit Core into a contiguous stream of fully valid 64–byte words. For more details about this interface, refer to Section 3.2.1.
- ☐ Output Data Bus: This is the AXI4–Stream Master Interface which is associated with s_axis_aclk. Data for this interface is in the form a contiguous stream of fully valid 64–byte words. For more details about this interface, refer to Section 3.2.2.

5.6 Programming Sequence

This section briefly describes the programming sequence for the AXI4–Stream Packet to Contiguous Stream, 512–Bit Core.

- 1) Set the Control Register with the desired values.
- 1) Look for a contiguous stream of fully valid 64–byte data on the AXI4–Stream Master output bus as data enters the core on the AXI4–Stream Slave input bus.

5.7 Timing Diagrams

The timing diagram for the AXI4–Stream Packet to Contiguous Stream 512–Bit Core is shown in Section 6–3. This timing diagram is obtained by running the simulation of the test bench for the core in Vivado's VSim environment. For more details about the simulation, refer to Section 6.5.

Chapter 6: Design Flow Steps

6.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek AXI4–Stream Packet to Contiguous Stream 512–Bit Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as px_axis_pkt2contigstream_512_v1_0 as shown in Figure 6–1.

Figure 6-1: AXI4-Stream Packet to Contiguous Stream 512-Bit Core in Pentek IP Catalog

6.1 Pentek IP Catalog (continued)

When you select the px_axis_pkt2contigstream_512_v1_0 core, a screen appears that shows the core's symbol and the core's parameters (see Figure 6–2). The core's symbol is the box on the left side.

Figure 6–2: AXI4–Stream Packet to Contiguous Stream 512–Bit

6.2 User Parameters

This section is not applicable to this IP core.

6.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide – Designing with IP*.

6.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite.

Required Constraints

The XDC constraints are not provided with this core. The necessary constraints can be applied in the top level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Ultrascale and Ultrascale+ families of FPGAs.

Clock Frequencies

The AXI4-Stream input clock (**s_axis_aclk**) of the AXI4-Stream Packet to Contiguous Stream 512-Bit Core can take clock frequencies up to 400MHz.

The AXI4-Lite input clock (**s_axi_csr_aclk**) of the AXI4-Stream Packet to Contiguous Stream 512-Bit Core can take clock frequencies up to 250MHz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

6.5 Simulation

The AXI4–Stream Packet to Contiguous Stream 512–Bit Core has a test bench which generates output waveforms using the Vivado VSim environment. This test bench is designed to with a 250MHz clock for the AXI4–Lite clock (s_axi_csr_aclk), and a 312.5MHz clock for the AXI4–Stream clock (s axis aclk).

The test bench generates packets for the input of the core in groups of five data words. For four of the words, all of the bits in the "tkeep" field are set HIGH (set to keep all bits), however for the last word the "tkeep" field has some bits that are set LOW (indicating invalid data).

The data stripper state machine and the data fragment flush (in the packet builder) are also tested in the simulation. The resulting waveforms can be seen in Figure 6–3 below.

s axis tvalid & s_axis_tready ₩ s_axis_tdata[511:0] ₩ s_axis_tkeep[63:0] s axis tlast om axis tvalid ₩ m axis tdata[511:0] ₩ cntr[31:0] ₩ t1_cntr[31:0] 🌡 pkt_state s_axi_csr_aclk las axi csr aresetn ₩ s axi csr awaddr(6:0) ₩ s axi csr awprot(2:0) s_axi_csr_awvalid & s_axi_csr_awready s_axi_csr_wready ₩ s_axi_csr_bresp[1:0] s_axi_csr_bvalid s axi csr bready ₩ s axi csr araddr[6:0] ₩ s axi csr arprot[2:0] s_axi_csr_arvalid s_axi_csr_arready ♥ s_axi_csr_rdata[31:0] UUUUUU s_axi_csr_rvalid las_axi_csr_rready stop_output

Figure 6–3: AXI4–Stream Packet to Contiguous Stream 512–Bit Core Simulation Waveform

6.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide – Designing with IP*.