What do good Yelp reviews look like?

Yelp Review Votes Prediction

Project Workflow Define Problem Data cleaning &Transformation Exploratory Analysis Insights Communication Modeling & Testing

Background & Goal

Yelp is using 3 community-powered metrics to track the review quality: Useful, Cool, and Funny.

The goal here is to understand what the highquality Yelp reviews look like and make predictions on the good reviews in the future.

Why is this important?

- Always push the most recent and good-quality reviews in the "Review Highlight"
- Get insights for developing better content advertising

- Business name
- Business category
- Geo location
- Status: Open/Closed
- Business star: 1 to 5
- Review count

- Review date
- Review text
- Review Votes (3 Categories: Useful, Cool and Funny)
- Business id
- Check-in time
- # Check-ins
- User name
- User Average Stars
- # User reviews
- # Review Votes

Data Tranformation for Modeling

- Mutually exclusive review groupings: Useful vs Not useful, Cool vs Not cool, Funny vs Not funny
- Total Review Votes = Funny + Cool + Useful votes
- Groupings based on vote count: Below average votes Vs. Above average votes

Exploratory Analysis

- 11,537 business
- 99% located in Arizona
- Most of the business (80%) located in Phoenix, Scottsdale, Tempe, Mesa and Chandler.
- 90% Open businesses
 60% of the businesses are restaurants.
- 200,471 reviews and 43,873 Users
- 94 check-ins on average

Number of business By city (the first 6 cities) 4000 3500 3000 2500 2000 1500 1000 500 Scottsdale Tempe Glendale Chandler

Number of business by categories

ta Dictionary	Dat Variable	enshot of the	Scre Variable
Overall 6281 business in the dataset	text string	unique identifier for the business.	business_id
Overall 1667 business categories. Example value ("Dels", "Restaurants")	categorical	Categories of the business	business categories
68 unque dities. Example value: Youngtown	categorical	The dry where the business is located	business city
	cantinuaus	latitude of the business	latitude
	cantinuous	longitude of the business	longitude
Overall 5497 unique business names, business name to business id is one to many relationship	categorical	Name of the business	business name
two unique values: Thus/False	categorical	whether the business is open or closed	coen
	cantinuaus	f of reviews a business has got so far	business review_count
1 ~ 5	categorical	fistars a business has got	business stars
	care	the date when the review was posted	review date
Overal 200471 unique reviews	text string	the id of the reviews	review_id
Overall 200297 unique review texts	text string	text of the reviews	2002
Overall 41005 users	text string	Userid	user_id
0 - 5	categorical	the Average Star user has got	user average sters
	continuous	# of reviews user has posted on Yelp	user review_count

#3 Exploratory Analysis

36% of Reviews has no vote.

- 200,471 votes in total
- 30% useful vs 70% not useful
- 30% funny votes vs 70% not funny
- 37% cool votes vs 63% not cool
- Most reviews have up to 5 votes

Most Frequently-used words in reviews

Any relationship in the data?

- Useful, funny and cool votes for the reviews are closely related.
- The count of the user reviews is related to the total number of review votes

#4 Modeling & Testing

Step 1: Transform all the review texts into 31,193 sets of keywords using count vectorizer and tfidf vectorizer

```
## Use the tfidf transformer to convert the review text to the vectors:
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_transformer = TfidfVectorizer(ngram_range =(1,3), stop_words='english', lowercase=True, min_df=50)
X_text_train_tfidf = tfidf_transformer.fit_transform(X_text_train)
X_text_train_tfidf.shape #(200471, 31193) # 200471 samples with 31193 features

(200471, 31193)
```

Step 2: Classify reviews into categories using Naive Bayes, Random Forest and Logistic Regression

Useful vs Not Useful Cool vs Not Cool Funny vs Not Funny

Review Votes: Above Average vs Below Average

Step 3: Identify the right metric and evaluate the success of the model

using cross validation

 Use ROC AUC score: Precision & Recall are both important in this case

 ROC AUC Score: Around 60 - 70% for each of the model

Step 4: Find out the keywords with positive and negative impact on the classfications

```
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("good"), 'review_good_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("time"), 'review_time_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("really"), 'review_really_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("just"), 'review_just_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("love"), 'review_love_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("like"), 'review_like_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("service"), 'review_service_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("place"), 'review_place_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("food"), 'review_food_dummy']=1
yelp_data_final_update.loc[yelp_data_final_update['text'].str.contains("great"), 'review_great_dummy']=1
```

Step 5: Utilize the high-impact keywords for building regression model to predict total number of review votes and leverage MSE, P value, R squared to evaluate model

	OLS Regressio	n Results						
					0.366			
Dep. Variable:	total_review_votes_count	OLS Adj. R-squared: res F-statistic: Ols Prob (F-statistic): 112 Log-Likelihood: 171 AIC:			0.366			
Model:								
Method:	Least Squares							
Date:	Sun, 28 Jan 2018			Sun, 28 Jan 2018 Prob (F-statistic):	0.00			
Time:	15:04:12			-6.0957e+05				
No. Observations:	200471			200471 AIC:		1.21	9e+06	
Df Residuals:	200447			1.219e+06				
Df Model:	24							
Covariance Type:	nonrobust							
	coef	std err	t	P> t	10.025	0.975		
business_category_	dummy_shopping -0.1624	0.050	-3.249	0.001	-0.260	-0.064		
user review_count_	sqrt 0.2286	0.002	133.723	0.000	0.225	0.23		
text_string_length	0.0025	2.638-05	94.700	0.000	0.002	0.003		
review_good_dummy	-0.5031	0.024	-20.771	0.000	-0.551	-0.45		
review time dummy	-0.1449	0.025	-5.683	0.000	-0.195	-0.095		
review_really_dumm	y -0.1480	0.029	-5.157	0.000	-0.204	-0.092		
review just dummy	0.0134	0.027	0.495	0.620	-0.040	0.067		

Positive/Negative keywords to group reviews into "Useful" vs "Not Useful"

- (+) delicious, staff, new, come, friendly, salad, fresh, came, say, right, want, better, did, went, going, night, lunch, cheese, way, didnt, make, pizza, ordered, order, think, restaurant, try, menu, pretty, chicken, know, best, bar, got, people, nice, ive, little, love, service, im, dont, time, really, great, just, food, like, good, place
- (-) food great ambiance, good seating, hour sushi, happy hour sushi, best indian food, wife chicken, great pho, good ribs, great bartender,toppings want, staff best, like spicy food, planning going, overall good place, tried, yummy service, place yummy, service staff friendly, time lot, phoenix week, places nearby, appetizer delicious, good wait staff, hampton, rice nice, chicken entree, location north, food old, just moved area, spinach pizza, crusted chicken, great wife, great food atmosphere, wasnt huge fan, beef little, pork burrito, fontina burger, expect lot, good wine selection, area lot, great going, service good atmosphere, right price

Positive/Negative keywords to group reviews into "Cool" vs "Not Cool"

- (+) eat, new, staff, come, salad, did, say, delicious, right, want, fresh, better, going, went, friendly, didnt, night, ordered, order, cheese, way, make, restaurant, think, lunch, pizza, know, menu, try, chicken, pretty, people, got, bar, best, ive, nice, little, service, im, dont, love, time, really, just, great, food, like, good, place
- (-) did apologize, brought attention, gratuity, spoke manager, meals great, rudest, half appetizers, restaurant closed, food old, inconveniencing, food needs, disappointing meal, disrespectful, server went, good seating, bad pizza, valley location, awful food, definitely fresh, great food atmosphere, hostess said, ordered entrees, items order, manager didnt, lost business, waitress finally, little smaller, location north, lousy service, waiting 30 minutes,

Positive/Negative keywords to group reviews into "Funny" vs "Not Funny"

(+) delicious, staff, new, come, friendly, salad, fresh, came, say, right, want, better, did, went, going, night, lunch, cheese, way, didnt, make, pizza, ordered, order, think, restaurant, try, menu, pretty, chicken, know, best, bar, got, people, nice, ive, little, love, service, time, really, great, just, food, like, good, place

(-)wife chicken, said manager, wife ate, did apologize, brought attention, recommend hotel, got orders, spoke manager, meals great, rudest, half appetizers, restaurant closed, food old, inconveniencing, disappointing meal, disrespectful, server went, prices great food, good seating, bad pizza, valley location, awful food, hostess said, helpful service, ordered entrees, items order, manager didnt, lost business, waitress finally, little smaller, location north, lousy service, food visit, spice flavor, received good, waiting 30 minutes, like canned, manager stopped, restaurant industry

Top positive/Negative keywords to group reviews into "Above Average Votes" vs "Below Average Votes"

- (+) try, dont, little, chicken, ive, staff, friendly, pizza, nice, best, time, really, just, love, like, service, place, food, good, great
- (-) beautiful carin, carin, uye, bec, certainly dont, really dont think, server comes, rand, cane sugar, giggling, robyn, inevitable, wasi, forgiven, goats, translate, bottle champagne, todayi, bastards, ridden

Next Step

- Clean up the text using more advanced techniques like stemming the word
- Acquire more reivew data from other state for further analysis.

Relevant Variables identified within the regression model:

- Outcome Variable: Total Review Votes Count
- Predictor Variables:
 - · Length of the reviews
 - Age of the reviews
 - User review count
 - Dummy variables created based on some important keywords identified from the classification model
- Result: R squared 36% with low p value. MAE: 2.6 votes

Next Step

- Develop more features (number of paragraphs in the review text, number of punctuation marks, number of business categories, number of insult words)
- Acquire more data (such as daily visits to the business page)

THANK YOU