

Exercise 10A

Question 15:

Given: A \triangle ABC in which AD is the median and P is a point on AD.

To Prove: (i)
$$\operatorname{ar}(\Delta \mathsf{BDP}) = \operatorname{ar}(\Delta \mathsf{CDP})$$

(ii) $\operatorname{ar}(\Delta \mathsf{ABP}) = \operatorname{ar}(\Delta \mathsf{APC})$
Proof: (i) In Δ BPC, PDis the median. Since median of a triangle divides the triangle into two triangles of equal areas So, $\operatorname{ar}(\Delta \mathsf{BPD}) = \operatorname{ar}(\Delta \mathsf{CDP}).....(1)$
(ii) In $\Delta \mathsf{ABC}$, AD is the median So, $\operatorname{ar}(\Delta \mathsf{ABD}) = \operatorname{ar}(\Delta \mathsf{ADC})$
But, $\operatorname{ar}(\Delta \mathsf{BPD}) = \operatorname{ar}(\Delta \mathsf{CDP})$ [from (1)] Subtracting $\operatorname{ar}(\Delta \mathsf{BPD})$ from both the sides of the equation, we have $\therefore \operatorname{ar}(\Delta \mathsf{ABD}) - \operatorname{ar}(\Delta \mathsf{BPD}) = \operatorname{ar}(\Delta \mathsf{ADC}) - \operatorname{ar}(\Delta \mathsf{BPD})$ $= \operatorname{ar}(\Delta \mathsf{ADC}) - \operatorname{ar}(\Delta \mathsf{CDP})$ from (1) $\Rightarrow \operatorname{ar}(\Delta \mathsf{ABP}) = \operatorname{ar}(\Delta \mathsf{ACP}).$

Question 16:

Given: A quadrilateral ABCD in which diagonals AC and BD intersect at O and BO = OD

To Prove : $ar(\Delta ABC) = ar(\Delta ADC)$

Proof: Since OB = OD [Given]

So, AO is the median of \triangle ABD

$$\therefore ar(\Delta AOD) = ar(\Delta AOB) \dots (i)$$

As OC is the median of △CBD

$$ar(\Delta DOC) = ar(\Delta BOC)$$
(ii)

Adding both sides of (i) and (ii), we get

$$ar(\Delta AOD) + ar(\Delta DOC) = ar(\Delta AOB) + ar(\Delta BOC)$$

$$\therefore$$
 ar(\triangle ADC) = ar(\triangle ABC)

********* END ********