# МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ОПЕРАТИВНОГО ПРОГНОЗИРОВАНИЯ ПРОМЫСЛОВОЙ ОБСТАНОВКИ ПРИ ПОМОЩИ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА ПРИМЕРЕ ЧЕРНОМОРСКОГО ШПРОТА

# Д. О. Кривогуз<sup>1</sup>, М. М. Пятинский<sup>2</sup>\*

<sup>1</sup>Южный федеральный университет, Ростов-на-Дону, Россия

<sup>2</sup>Азово-Черноморский филиал ФГБНУ «ВНИРО», Ростов-на-Дону, Россия

\*Email: pyatinskiy\_m\_m@azniirkh.ru

Ключевые слова: искусственный интеллект, оперативный прогноз, промысел, Черное море, шпрот.

### Введение

Промысловая разведка и оперативное прогнозирование промысла для Черного моря впервые было осуществлено в 1936 г. [Фащук, Куманцов, 2017; Голубчик, Кондратюк, 2021]. При помощи высокотехнологичных средств (аэросъемка) была выполнена оперативная разведка новых промысловых объектов: пеламиды и дельфинов. В эти же годы были впервые обнаружены промысловые скопления хамсы и шпрота при помощи поисковых судов. В последующие годы в г. Керчь вплоть до распада СССР функционировала организация «Югрыбпромразведка», обеспечивающая оперативную координацию промысла на Черном и Азовском морях.

По мере перехода к рыночной экономике с 1990-х гг. задачи рыбопромысловой разведки и оперативного прогнозирования выполняются рыбопромышленными компаниями самостоятельно. Решение задачи разведки сводится к применению способов гидроакустического обнаружения скоплений непосредственно судном, следующим на промысел. Такой способ индивидуальной разведки предварительно не позволяет определить промысловый район, в результате чего на гидроакустический мониторинг затрачивается продолжительное количество времени, что в свою очередь снижает эффективность промысла.

В настоящее время, с учетом развития современных методов и обилия доступной информации, актуальной задачей является выполнение оперативного прогнозирования промысловой обстановки для цели оптимизации эффективности ведения промысла. Для решения задачи оперативного прогнозирования промысла авторы предлагают использовать методы искусственного интеллекта.

### Материалы и методы исследования

При подготовке массива входных данных использовались ежедневные ряды данных о суточном вылове и суточном треке каждого судна, осуществляющего промысел в Черном море по данным института «Центр системы мониторинга рыболовства и связи» (далее - ЦСМС) за период 2014–2021 гг. В качестве ежедневных характеристик показателей среды обитания использовались данные проекта «Коперник» о температуре воды, солености, скорости течений и содержании растворенного кислорода в воде.

Подготовленный датасет имел формат однородного массива, каждая строка которого содержала информацию о долготе и широте геоцентроида промысловых треков, величине улова шпрота, показателях температуры воды, солености, концентрации расстворенного кислорода в этой точке на вертикальных горизонтах глубин 2,5, 7,5, 12, 17, 22 м за одни сутки для одного судна.

Для обучения искусственного интеллекта задача была сформулирована следующим образом: необходимо предсказывать величину улова (предсказываемая переменная) на основе значений всех параметров среды и положения в пространстве (улов ~ параметры среды + широта + долгота). Прогнозирование предлагается выполнять на основе прогноза параметров среды, которые проект «Коперник» выполняет с 10-дневной заблаговременностью. Для решения поставленной задачи была испытана классическая реализация нейронной сети (далее – NN) [Günther, Fritsch, 2010] и способа машинного обучения – случайный лес (далее – RF) [Liaw, Wiener, 2002].

В качестве инструмента для обучения искусственного интеллекта использовалась среда R и набор пакетов, позволяющих упростить решение пространственной задачи обучения и прогнозирования: caret, CAST, raster, sf, rgdal.

## Результаты и обсуждение

В ходе предварительной диагностики выбора способа решения поставленной задачи была выявлена невозможность решения задачи регрессирования параметров среды для прогнозирования величины вылова. При попытках решения задачи регрессии методами RF и NN максимальный показатель коэффициента детерминации не превышал  $R^2=0.4$ .

Для упрощения решения поставленной задачи обучения показатели уловов в ретроспективных данных были классифицированы на 3-х категориальную шкалу: низкие уловы (до 20 т), средние уловы (от 20 до 40 т) и высокие уловы (более 40 т) на одно судно за сутки. В результате категоризации прогнозируемого параметра поставленная задача

превратилась в задачу классификации, результаты наиболее удачного выбора гиперпараметров для NN и RF представлены в таблице.

**Таблица.** Диагностика результатов обучения моделей NN, RF на ретроспективных суточных данных для черноморского шпрота

| Метод | Гиперпараметры | Точность | AUC  | Чувствительность | Валидация на тест. |
|-------|----------------|----------|------|------------------|--------------------|
|       |                |          |      |                  | выборке            |
| NN    | size = 15      | 0,83     | 0,72 | 0,38             | +                  |
|       | decay = 0.1    |          |      |                  |                    |
| RF    | ntree = 500    | 0,77     | 0,79 | 0,47             | +                  |
|       | mtry = 11      |          |      |                  |                    |

На основе прогноза параметров среды проектом «Коперник» и обученной модели NN выполняется регулярный посуточный прогноз промысловых классов для Российских вод Черного моря (Рис.).



**Рис.** Пример пространственного прогноза нейронной сетью промысловых районов для черноморского шпрота на 17 июля 2023 г., выполненный 14 июля 2023 г.

### Список литературы

- Фащук Д.Я., Куманцов М.И. 2017. Рыбный промысел советской России и СССР в Черном море в первой половине XX века // Известия Российской академии наук. Серия географическая. №. 1. С. 147–160.
- Голубчик В.В., Кондратюк Г.Н. 2021. Развитие рыбного промысла в Крымской АССР в 1920-1930-е гг // Научный вестник Крыма. №. 6 (35). С. 1–8.
- Günther F., Fritsch S. 2010. Neuralnet: training of neural networks // The R Journal. V. 2. Issue 1. P. 30–38.
- Liaw A., Wiener M. 2002. Classification and regression by randomForest // R news. V. 2. Issue 3. P. 18–22.