Χ

harshaldharpure9922@gmail.com v

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction to Large Language Models (LLMs) (course)

Click to register for Certification exam

(https://examform.nptel.a

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online

course work?

()

Week 1 ()

Week 2 ()

Lec 03 :
Introduction to
Statistical

Week 2: Assignment 2

The due date for submitting this assignment has passed.

Due on 2025-02-05, 23:59 IST.

Assignment submitted on 2025-02-04, 20:13 IST

1) A 5-gram model is a order Markov Model.	1 point
○ Constant	
Five	
Six	
Four	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
Four	
2) For a given corpus, the count of occurrence of the unigram "stay" is 300. If the Maximum Likelihood Estimation (MLE) for the bigram "stay curious" is 0.4, what is the count of occurrence of the bigram "stay curious"?	1 point f
O 123	
○ 300	
○ 750	

Language	Yes, the answer is correct. Score: 1	
Models (unit? unit=23&lesson =25)	Accepted Answers: 120	
C Lec 04 : Statistical LM:	3) Which of the following are governing principles for Probabilistic Language Models?	1 point
Advanced	Chain Rule of Probability	
Smoothing and	Markov Assumption	
Evaluation (unit?	Fourier Transform	
unit=23&lesson	Gradient Descent	
=26)	Yes, the answer is correct. Score: 1	
Lecture Material (unit?	Accepted Answers:	
unit=23&lesson	Chain Rule of Probability	
=29)	Markov Assumption	
○ Feedback Form (unit?	For Question 4 to 5, consider the following corpus:	
unit=23&lesson	<s>the sunset is nice</s>	
=28)	<s>people watch the sunset</s>	
Quiz: Week 2 :	<s>they enjoy the beautiful sunset</s>	
Assignment 2 (assessment? name=24)	4) Assuming a bi-gram language model, calculate the probability of the sentence:	2 points
	<s>people watch the beautiful sunset</s>	
Week 3 ()	Ignore the unigram probability of P(<s>) in your calculation.</s>	
Week 4 ()	O 2/27	
	1/27	
Week 5 ()	○ 2/9	
	O 1/6	
Week 6 ()	No, the answer is incorrect. Score: 0	
Week 7 ()	Accepted Answers: 2/27	
Week 8 ()		
Week 9 ()	5) Assuming a bi-gram language model, calculate the perplexity of the sentence:	2 points
Week 10 ()	<s>people watch the beautiful sunset</s>	
week to ()	Do not consider <s>and </s> in the count of words of the sentence.	
Week 11 ()	O 27 ^{1/4}	
Mark 42 ()	27 ^{1/5}	
Week 12 ()	○ 9 ^{1/6}	
Year 2025	$(27/2)^{1/5}$	
Solutions ()	Yes, the answer is correct.	

Score: 2
Accepted Answers:
$(27/2)^{1/5}$
6) What is the main intuition behind Kneser-Ney smoothing? 1 point
Assign higher probability to frequent words.
Use continuation probability to better model words appearing in a novel context.
Normalize probabilities by word length.
Minimize perplexity for unseen words
Yes, the answer is correct. Score: 1
Accepted Answers:
Use continuation probability to better model words appearing in a novel context.
7) In perplexity-based evaluation of a language model, what does a lower perplexity score 1 point indicate?
○ Worse model performance
Better language model performance
○ Increased vocabulary size
O More sparse data
Yes, the answer is correct. Score: 1
Accepted Answers:
Better language model performance
8) Which of the following is a limitation of statistical language models like n-grams? 1 point
Fixed context size
High memory requirements for large vocabularies
O Difficulty in generalizing to unseen data
All of the above
Yes, the answer is correct. Score: 1
Accepted Answers:
All of the above