MAT102 - College Algebra - Polynomial and Rational Functions

3.2 Introduction to Polynomial Functions [1]

Miraj Samarakkody

Tougaloo College

Updated - June 3, 2025

Determine the End Behavior of a Polynomial Function

Definition of a Polynomial Function

Let n be a natural number and $a_n, a_{n-1}, \ldots, a_1, a_0$ be real numbers, where $a_n \neq 0$. Then a function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is called a Polynomial function of degree n.

Determine the End Behavior of a Polynomial Function

Definition of a Polynomial Function

Let n be a natural number and $a_n, a_{n-1}, \ldots, a_1, a_0$ be real numbers, where $a_n \neq 0$. Then a function defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is called a **Polynomial function of degree** *n*.

Examples for non-polynomial functions.

Several Special Cases of Polynomial Functions

Let
$$a \neq 0$$
.
 $f(x) = c$ constant function degree 0
 $g(x) = ax + b$ linear function degree 1
 $h(x) = ax^2 + bx + c$ quadratic function degree 2
 $j(x) = ax^3 + bx^2 + cx + d$ cubic function degree 3
 $k(x) = ax^4 + bx^3 + cx^2 + dx + e$ quartic function degree 4

Smoothness and Continuity

References

Julie Miller and Donna Gerken.

College Algebra.

McGraw-Hill Education, New York, 2nd edition, 2016.