Does pre-training on brain-related tasks results in better deep-learning-based brain age biomarkers?

Bruno M. Pacheco, Victor H. R. de Oliveira, Augusto B. F. Antunes, Saulo D. S. Pedro, and Danilo Silva

Deep Learning & Brain Age

Aging patterns of the brain are associated with several pathologies.

Train a deep learning model to quantify these aging patterns (brain age) from MRIs.

Hypothesis: brain age (BA) of healthy subjects is equal to their chronological age (CA)

- Regression task with X=MRI and y=CA (healthy subjects only)
- 2. CNN quantifies aging patterns through BA

3.
$$\Delta_{BA} = BA - CA$$

 \circ Healthy $\Rightarrow \Delta_{BA} \approx 0$
 \circ Unhealthy $\Rightarrow \Delta_{BA} \gg 0$

Franke, K. et al. (2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage, 50(3), 883–892.

Cole, J. et al. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163, 115–124. Poloni, K., & Ferrari, R. (2022). A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer's diagnosis. Expert Systems with Applications, 195, 116622

Icons: Flaticon.com

Pre-training

Train the model on another task prior to the task of interest (transfer learning).

- Improves performance by exploiting the knowledge from the other task
- Common on image tasks (ImageNet's pre-trained models)
- Published results of pre-training for brain age (Bashyam et al., 2020)

If pre-training on natural imaging helps brain age prediction, what about pre-training on a brain-related tasks?

Vehicle? Animal? Human? Landscape?

. . .

Icons: Flaticon.com

In this paper...

- Evaluation of brain-related pretraining
 - BraTS x ImageNet
 - Our approach overcomes all results reported in the literature
- Fully reproducible experiments ⇒ enable direct comparisons
 - Publicly available data
 - Standard split
 - Code available
- Evaluation of the resulting biomarker
 - \circ Δ_{BA} as an indicator of cognitive impairment
 - Better brian age model ⇒ Better biomarker

Materials and Methods

Data

ADNI

Alzheimer's Disease Neuroimaging Initiative dataset contains MRIs of healthy patients and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD).

Training: ADNI-2 + ADNI-3 + ADNI-GO

Validation: ADNI-1 Standard Training set

Test: ADNI-1 Standard Test set

	CN	MCI	AD	Age Range (mean)	Sex
ADNI-1	229	401	188	55-91 (75.2)	342 F / 476 M
ADNI-GO	0	142	0	55-88 (71.25)	67 F / 75 M
ADNI-2	150	373	109	55-91 (72.61)	324 F / 307 M
ADNI-3	456	354	64	51-97 (72.78)	475 F / 399 M

Deep learning model

Deep learning model

Pre-training tasks

ImageNet

Natural image classification.

X = Photograph

y = Image label

BraTS'2020

Brain MRIs tumor segmentation.

X = Brain MRI

Y = Tumor segmentation

Pre-trained backbones

ImageNet

Deep Learning Model:

 ResNet (publicly available) ⇒ ResNet backbone

BraTS'2020

Deep Learning Model:

- U-Net ⇒ U-Net backbone
- ResU-Net ⇒ ResNet backbone

Pre-training

Model	Backbone	ImageNet Pre-training	BraTS Pre-training
1	U-Net		
2	U-Net		X
3	ResNet		
4	ResNet		X
5	ResNet	X	
6	ResNet	X	X

Experiments and Results

Model Training

- 1. Train on healthy subjects;
- 2. Hyperparameter tuning using the validation set;
- 3. Final models trained on training+validation sets;
- 4. Test set performance through the Mean Absolute Error (MAE) on healthy patients.

Backbone	BraTS Pre-training	Validation MAE	Test MAE	Test MAE (train+validation models)
II Not		$3.203 \ (\sigma = 0.042)$	$3.358 (\sigma = 0.099)$	$3.138 (\sigma = 0.069)$
U-Net	X	3.186 ($\sigma = 0.084$)	3.284 ($\sigma = 0.071$)	3.079 ($\sigma = 0.077$)
DogNot		$3.474 (\sigma = 0.117)$	$3.556 \ (\sigma = 0.258)$	$3.223 \ (\sigma = 0.071)$
ResNet	X	$3.361 (\sigma = 0.079)$	$3.413 \ (\sigma = 0.123)$	$3.141 (\sigma = 0.030)$
ResNet (ImageNet)		$3.509 (\sigma = 0.086)$	$3.638 (\sigma = 0.160)$	$3.210 \ (\sigma = 0.047)$
	X	$3.452 \ (\sigma = 0.086)$	$3.411 (\sigma = 0.066)$	$3.238 (\sigma = 0.022)$

Backbone	BraTS Pre-training	Validation MAE	Test MAE Reduced distribution	Test MAE (train+validation n shift models)
II Not		$3.203 \ (\sigma = 0.042)$	$3.358 (\sigma = 0.099)$	$3.138 (\sigma = 0.069)$
U-Net	X	3.186 ($\sigma = 0.084$)	3.284 ($\sigma = 0.071$)	3.079 ($\sigma = 0.077$)
ResNet		$3.474 (\sigma = 0.117)$	$3.556 (\sigma = 0.258)$	$3.223 \ (\sigma = 0.071)$
	X	$3.361 (\sigma = 0.079)$	$3.413 \ (\sigma = 0.123)$	$3.141 (\sigma = 0.030)$
ResNet (ImageNet)		$3.509 (\sigma = 0.086)$	$3.638 (\sigma = 0.160)$	$3.210 \ (\sigma = 0.047)$
	X	$3.452 (\sigma = 0.086)$	$3.411 (\sigma = 0.066)$	$3.238 (\sigma = 0.022)$

Backbone	BraTS Pre-training	Validation MAE	Test MAE	Test MAE (train+validation models)
U-Net		$3.203 \ (\sigma = 0.042)$	$3.358 (\sigma = 0.099)$	$3.138 (\sigma = 0.069)$
u-net	X	3.186 (σ : BraTS	3.284 ($\sigma = 0.071$)	3.079 ($\sigma = 0.077$)
ResNet		3.474 (σ: ImageNet	$3.556 (\sigma = 0.258)$	$3.223~(\sigma = 0.071)$
	X	$3.361 (\sigma = 0.079)$	$3.413 \ (\sigma = 0.123)$	$3.141 (\sigma = 0.030)$
ResNet (ImageNet)		$3.509 (\sigma = 0.086)$	$3.638 (\sigma = 0.160)$	$3.210 \ (\sigma = 0.047)$
	X	$3.452 \ (\sigma = 0.086)$	$3.411 (\sigma = 0.066)$	$3.238 (\sigma = 0.022)$

Backbone	BraTS	Validation	Test	Test MAE
	Pre-training	Brain Age Model	MAE	(train+validation models)
II Not		Lam et al. (2020)	3.96	3. Best results! 9)
U-Net	X	Ly et al. (2020)	3.70	3.079 ($\sigma = 0.077$)
ResNet		More et al. (2023)	6.56	$3.223 \ (\sigma = 0.071)$
Resnet	X	Lee et al. (2022)	3.10	$3.141 (\sigma = 0.030)$
ResNet		Poloni and Ferrari (2022)	3.66	$3.210 \ (\sigma = 0.047)$
(ImageNet)	X			$3.238 (\sigma = 0.022)$

Evaluation of Δ_{BA}

- Aging patterns correlate to cognitive impairment levels

$$\circ \Delta_{B\Delta}(AD) > \Delta_{B\Delta}(MCI) > \Delta_{B\Delta}(CN) \approx 0$$

$$\Delta_{BA}(MCI) > \Delta_{BA}(CN) \Rightarrow Easy$$

 $\Delta_{BA}(AD) > \Delta_{BA}(CN) \Rightarrow Easy$
 $\Delta_{BA}(AD) > \Delta_{BA}(MCI) \Rightarrow Hard$

Δ_{BA} between MCI and AD

Backbone	BraTS Pre-training	Validation p-value	Test p-value	Test p-value (train+validation models)
II NI at		0.011 (0.017)	0.025 (0.053)	0.091 (0.107)
U-Net	X	0.011 (0.035)	0.036 (0.049)	0.190 (0.213)
DogNot		0.051 (0.066)	0.046 (0.071)	0.192 (0.245)
ResNet	X	0.051 (0.064)	0.051 (0.089)	0.261 (0.298)
ResNet (ImageNet)		0.044 (0.055)	0.063 (0.112)	0.177 (0.230)
	X	0.095 (0.110)	0.171 (0.225)	0.345 (0.390)

Δ_{BA} between MCI and AD

Backbone	BraTS Pre-training	Validation p-value	Test p-value	Test p-value (train+validation
			Reduced distribution	on shift models)
U-Net		0.011 (0.017)	0.025 (0.053)	0.091 (0.107)
u-net	X	0.011 (0.035)	0.036 (0.049)	0.190 (0.213)
DogNot		0.051 (0.066)	0.046 (0.071)	0.192 (0.245)
ResNet	X	0.051 (0.064)	0.051 (0.089)	0.261 (0.298)
ResNet (ImageNet)		0.044 (0.055)	0.063 (0.112)	0.177 (0.230)
	X	0.095 (0.110)	0.171 (0.225)	0.345 (0.390)

Conclusions

Conclusions

- Brain-related pre-training was consistently a better option;
 - Brain-related pre-training led to overcoming the state-of-the-art
 - Fully-reproducible results, open to future comparisons
- Better brain age deep learning models do not imply in more reliable brain age biomarkers
 - Results for differentiating cognitive impairment levels
 - Training brain age models only on healthy subjects needs further research

Thank you!

gama-ufsc/brain-age

Bruno M. Pacheco UFSC

Victor H. R. de Oliveira UFSC

Augusto B. F. Antunes
Alliar-NEPIA

Saulo D. S. Pedro 3778 Healthcare

Danilo Silva UFSC