Pregunta 1. Funciones de costos

Encuentre las funciones de costo promedio y costo marginal de largo plazo de las siguientes funciones de producción e indique las economías a escala:

$$a. \quad Q = \prod_{i=1}^{n} z_{i}^{\alpha_{i}}, \sum_{i=1}^{n} \alpha_{i} = \frac{1}{2};$$

$$\frac{\alpha_{i}}{\alpha_{j}} \frac{z_{j}}{z_{i}} = \frac{w_{i}}{w_{j}}; \quad Q = \prod_{i=1}^{n} \left(\frac{\alpha_{i}}{\alpha_{j}} \frac{w_{j}}{w_{j}} z_{j}\right)^{\alpha_{i}} = \left(\frac{w_{j}}{\alpha_{j}} z_{j}\right)^{\frac{1}{2}} \prod_{i=1}^{n} \left(\frac{\alpha_{i}}{w_{i}}\right)^{\alpha_{i}} \rightarrow z_{j} = Q^{2} \frac{\alpha_{j}}{w_{j}} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}}$$

$$CT = \sum_{j=1}^{n} w_{j} z_{j} = \sum_{j=1}^{n} w_{j} Q^{2} \frac{\alpha_{j}}{w_{j}} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} = Q^{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} \sum_{j=1}^{n} \alpha_{j} = \frac{Q^{2}}{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}};$$

$$CM = Q \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}}; \quad CP = \frac{Q}{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}}; \quad \frac{\partial CP}{\partial Q} > 0$$

$$b. \quad Q = \prod_{i=1}^{n} (z_{i} - \varphi)^{\alpha_{i}}, \sum_{i=1}^{n} \alpha_{i} = \frac{1}{2}$$

$$\frac{\alpha_{i}}{\alpha_{j}} \left(z_{i} - \varphi\right) = \frac{w_{i}}{w_{j}}; \quad Q = \prod_{i=1}^{n} (z_{j} - \varphi)^{\alpha_{i}} \left(\frac{\alpha_{i}}{\alpha_{j}} \frac{w_{j}}{w_{j}}\right)^{\alpha_{i}} = \left(\frac{w_{j}}{\alpha_{j}} (z_{j} - \varphi)\right)^{\frac{1}{2}} \prod_{i=1}^{n} \left(\frac{\alpha_{i}}{w_{i}}\right)^{\alpha_{i}}$$

$$\rightarrow z_{j} = Q^{2} \frac{\alpha_{j}}{w_{j}} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} + \varphi$$

$$CT = \sum_{j=1}^{n} w_{j} z_{j} = \sum_{j=1}^{n} w_{j} \left[Q^{2} \frac{\alpha_{j}}{w_{j}} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} + \varphi\right] = \left[Q^{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} \sum_{j=1}^{n} \alpha_{j}\right] + \varphi \sum_{j=1}^{n} w_{j}$$

$$= \frac{Q^{2}}{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} + \varphi \sum_{j=1}^{n} w_{j}$$

$$CM = Q \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} \cdot CP = \frac{Q}{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} + \frac{\varphi \sum_{j=1}^{n} w_{j}}{Q};$$

$$\frac{\partial CP}{\partial Q} = \frac{1}{2} \prod_{i=1}^{n} \left(\frac{w_{i}}{\alpha_{i}}\right)^{2\alpha_{i}} - \frac{\varphi \sum_{j=1}^{n} w_{j}}{Q^{2}} ; RCE \text{ si } Q > \sqrt{2\varphi \left(\sum_{j=1}^{n} w_{j}\right) \left(\prod_{i=1}^{n} \left(\frac{\alpha_{i}}{w_{i}}\right)^{2\alpha_{i}}\right)}$$

$$c. \ Q = z_1 + \sum_{i=1}^n z_i^{1/2}$$

$$CT = \sum_{i=1}^{n} w_i z_i = w_1 z_1 + \sum_{i=2}^{n} w_i \left(\frac{w_j}{w_i}\right)^2 z_j = w_1 z_1 + w_j^2 z_j \sum_{i=2}^{n} \left(\frac{1}{w_i}\right)^2$$

$$= w_1 z_1 + w_j^2 \left(\frac{w_1}{w_j} \left(\frac{z_1^{\frac{1}{2}}}{2z_1^{\frac{1}{2}} + 1}\right)\right)^2 \sum_{i=2}^{n} \left(\frac{1}{w_i}\right)^2$$

$$= w_1 z_1 + w_1^2 \left(\frac{z_1^{\frac{1}{2}}}{2z_1^{\frac{1}{2}} + 1}\right)^2 \sum_{i=2}^{n} \left(\frac{1}{w_i}\right)^2$$

Hasta aquí se puede llegar, por lo que no se puede hallar la función de oferta de forma directa. Si llegaron hasta acá tienen el total del puntaje.

Pregunta 2. Demandas de insumos

Una empresa posee la siguiente función de producción:

$$Q(z_1, z_2, ..., z_n) = \sum_{i=1}^{n} z_i^{1/2}$$

a. Obtenga la demanda condicionada y no condicionada de cada insumo.

Encuentre:

b. Si el precio del insumo j cambia encuentre la proporción que el efecto escala y el efecto sustitución representan del efecto total sobre el uso del insumo x_j (calcule el efecto total como la suma del efecto escala y el efecto sustitución).

$$E.S. = -\frac{2Q^{2}}{\left(\sum_{i=1}^{n} \frac{w_{j}}{w_{i}}\right)^{3}} \left[\left(\sum_{i=1}^{n} \frac{1}{w_{i}}\right) - \frac{1}{w_{j}} \right]$$

$$\frac{\partial CM}{\partial w_{j}} = \frac{2Q}{\left(\sum_{i=1}^{n} \frac{w_{j}}{w_{i}}\right)^{2}}; \frac{\partial Q^{*}}{\partial w_{j}} = -\frac{P}{2} \frac{1}{w_{j}^{2}} = -\frac{Q}{\sum_{i=1}^{n} \frac{1}{w_{i}}} \frac{1}{w_{j}^{2}}$$

$$E.E. = \frac{-2Q^{2}}{\left(\sum_{i=1}^{n} \frac{w_{j}}{w_{i}}\right)^{3}} \left(\frac{1}{w_{j}}\right)$$

$$\frac{E.E.}{E.T.} = \frac{\left(\frac{1}{w_{j}}\right)}{\sum_{i=1}^{n} \frac{1}{w_{i}}}; \frac{E.S.}{E.T.} = \frac{\left(\sum_{i=1}^{n} \frac{1}{w_{i}} - \frac{1}{w_{j}}\right)}{\sum_{i=1}^{n} \frac{1}{w_{i}}}$$

c. Si el precio del insumo j cambia encuentre la proporción que el efecto escala y el efecto sustitución representan del efecto total sobre el uso del insumo x_k (calcule el efecto total como la suma del efecto escala y el efecto sustitución).

$$\begin{split} E.S. &= \frac{2Q^2}{w_j^2 \left(\sum_{i=1}^n \frac{1}{w_i}\right)^3} \left(\frac{1}{w_k^2}\right) \\ \frac{\partial CM}{\partial w_k} &= \frac{2Q}{\left(\sum_{i=1}^n \frac{1}{w_i}\right)^2} \left(\frac{1}{w_k^2}\right); \frac{\partial Q^*}{\partial w_k} = -\frac{P}{2} \frac{1}{w_k^2} = -\frac{Q}{\sum_{i=1}^n \frac{1}{w_i}} \frac{1}{w_k^2} \\ E.E. &= \frac{-2Q^2}{\left(\sum_{i=1}^n \frac{1}{w_i}\right)^3} \left(\frac{1}{w_k^4}\right) \\ \frac{E.E.}{E.T.} &= -\frac{\frac{1}{w_k^2}}{\frac{1}{w_i^2} - \frac{1}{w_k^2}}; \frac{E.S.}{E.T.} = \frac{\frac{1}{w_j^2}}{\frac{1}{w_i^2} - \frac{1}{w_k^2}} \end{split}$$

Pregunta 3. Monopolio y monopsonio

- a. Un monopsonista discriminador de precios se enfrenta a n tipos de vendedores, los cuales tienen una función de oferta igual a $P_i=ic+dq_i$. El monopsonista tiene una función de ingreso promedio (lo que sería la función de demanda en competencia) igual a P=a-bQ. Si el deseo del monopsonista es comprar a todos los vendedores y discriminar precios en tercer grado, encuentre:
 - i. El precio que le pagaría a cada vendedor.
 - ii. La cantidad que le compraría a cada vendedor.

$$GM_{i} = ic + 2dq_{i} = a - bQ \Rightarrow \sum_{i=1}^{n} (ic + 2dq_{i}) = \sum_{i=1}^{n} (a - bQ)$$

$$\frac{n(n+1)}{2}c + 2dQ = na - nbQ \Rightarrow Q = \frac{na - \frac{n(n+1)}{2}c}{2d + nb}$$

$$GM = a - bQ = a - b\left(\frac{na - \frac{n(n+1)}{2}c}{2d + nb}\right) = \frac{2ad + n(n+1)bc}{2d + nb}$$

$$GM_{i} = ic + 2dq_{i} = \frac{2ad + n(n+1)bc}{2d + nb} \Rightarrow q_{i} = \frac{2ad + n(n+1)bc}{2d(2d + nb)} - \frac{ic}{2d}$$

$$P_{i} = a - b\left[\frac{2ad + n(n+1)bc}{2d(2d + nb)} - \frac{ic}{2d}\right]$$

- b. Un monopolista enfrenta la función de demanda $P=\frac{A}{Q^{\alpha}}$, $\alpha<1$. Este monopolista tiene n plantas para producir el bien que vende en este mercado y el costo marginal de cada planta viene dado por $CM_i=iq_i$. Determine:
 - i. El precio que cobrará en este mercado.
 - ii. La cantidad que produciría en cada planta.

$$IM = \frac{(1-\alpha)A}{Q^{\alpha}}; CM_1 = IM \Rightarrow q_1 = \frac{(1-\alpha)A}{\left(\sum_{i=1}^n q_i\right)^{\alpha}}; \ q_1 = iq_i \Rightarrow q_i = \frac{q_1}{i}$$

$$q_1 = \frac{(1-\alpha)A}{\left(\sum_{i=1}^n \frac{q_1}{i}\right)^{\alpha}} \Rightarrow q_1^{1+\alpha} = \frac{(1-\alpha)A}{\left(\sum_{i=1}^n \frac{1}{i}\right)^{\alpha}} \Rightarrow q_1 = \left[\frac{(1-\alpha)A}{\left(\sum_{i=1}^n \frac{1}{i}\right)^{\alpha}}\right]^{\frac{1}{1+\alpha}} \Rightarrow q_j = \frac{1}{j} \left[\frac{(1-\alpha)A}{\left(\sum_{i=1}^n \frac{1}{i}\right)^{\alpha}}\right]^{\frac{1}{1+\alpha}}$$

$$CM_1 = IM \Rightarrow \left[\frac{(1-\alpha)A}{\left(\sum_{i=1}^n \frac{1}{i}\right)^{\alpha}}\right]^{\frac{1}{1+\alpha}} = \frac{(1-\alpha)A}{Q^{\alpha}} \Rightarrow Q^{\alpha} = \left[\frac{\left(\sum_{i=1}^n \frac{1}{i}\right)^{\alpha}}{(1-\alpha)A}\right]^{\frac{1}{1+\alpha}} (1-\alpha)A$$

$$Q = \left[\left(\sum_{i=1}^{n} \frac{1}{i} \right) (1 - \alpha) A \right]^{\frac{1}{1 + \alpha}}$$