Performance using different clustering techniques on various parameters

	Parameters	No Data Processing			Using Normalization			Using Transform			Using PCA			J	Jsing T+1	N	T+N+PCA		
	1 arameters	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5
	Silhouette	0.5711	0.5578	0.5169	0.5479	0.5577	0.5489	0.5711	0.5587	0.5175	0.5711	0.5669	0.5640	0.5711	0.5573	0.5239	0.5711	0.5587	0.5489
	Calinski-Harabasz	561.81	704.92	710.01	498.86	702.20	787.04	561.81	702.67	686.93	561.81	696.83	703.27	561.81	595.80	689.79	561.81	702.67	787.04
	Davies-Bouldin	0.5342	0.5441	0.5542	0.5531	0.5453	0.5450	0.5342	0.5460	0.5306	0.5342	0.5486	0.4834	0.5342	0.5026	0.5174	0.5342	0.5460	0.5450

Table 1: Using K-Means Clustering

Parameters	No Data Processing			Using Normalization			Using Transform			Using PCA			J	Jsing T+1	N	T+N+PCA		
1 arameters	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5
Silhouette	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075
Calinski-Harabasz	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22
Davies-Bouldin	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513

Table 2: Using Agglomerative Clustering

Parameters	No D	ata Proce	essing	Using	Normalia	zation	Usin	Using Transform		Using PCA			Using T+N			T+N+PCA		
1 arameters	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5
Silhouette	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075	0.5645	0.5607	0.5075
Calinski-Harabasz	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22	552.85	670.63	684.22
Davies-Bouldin	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513	0.5357	0.5536	0.5513

Table 3: Using Birch Clustering

Parameters	No D	ata Proce	essing	Using	Normaliz	zation	Usii	ng Transf	orm	J	Jsing PC	A	U	sing T+1	N	T+N+PCA		
1 arameters	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5	c=3	c=4	c=5
Silhouette	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803	0.2803
Calinski-Harabasz	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.37
Davies-Bouldin	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477	0.4477

Table 4: Using Spectral Clustering

The reason why the values in BIRCH clustering and Agglomerative Clustering are the same because they both are hierarchical in nature. Some other reasons may include usage of same distance metrics, number of clusters and preprocessing techniques.

 $^{^0\}mathrm{T}$: Transformation N : Normalization PCA : Principal Component Analysis