Independent Events

Definition:

Two events A and B are **independent** if the probability of each event remains the same whether or not the other occurs.

In symbols: If $P(A) \neq 0$ and $P(B) \neq 0$, then A and B are independent if

$$P(B|A) = P(B)$$
 or, equivalently, $P(A|B) = P(A)$

If either P(A) = 0 or P(B) = 0, then A and B are independent.

Note: If *A* and *B* are independent, then the following pairs of events are also independent:

The concept of independence can be extended to more than two events:

A and B^{C} , A^{C} and B, and A^{C} and B^{C} .

Definition:

Events $A_1, A_2, ..., A_n$ are independent if the probability of each remains the same no matter which of the others occur.

In symbols: Events $A_1, A_2, ..., A_n$ are independent if for each A_i , and each $A_{j1}, ..., A_{jm}$ of events with $P(A_{j1} \cap ... \cap A_{jm}) \neq 0$,

$$P(A_i \mid A_{j1} \cap \cdots \cap A_{jm}) = P(A_i)$$