第五节 灵敏度分析

- 5.1 资源数量变化分析
- 5.2 价值系数变化分析
- 5.3 技术系数变化分析

问题:当LP问题中系数 a_{ij} 、 b_i 、 c_j 有一个或几个发生变化时,已求得的最优解会有什么变化;或者这些系数在什么范围内变化时,最优解或最优基保持不变。

当系数发生变化后,原来已得结果一般会发生变化。可 用单纯形法从头计算,得到新最优解,但计算量大。

更好的做法:单纯形法迭代时,每次运算都和基变量系数矩阵B有关。可把发生变化的个别系数,经过一定计算后直接填入最终计算表中,并进行检查和分析。

当增广矩阵中的元素发生变化时,原问题和对偶问题会出现下述几种结果:

原问题	对偶问题	结论或继续计算的步骤
可行解	可行解	表中的解仍为最优解
可行解	非可行解	用单纯形法继续迭代求最优解
非可行解	可行解	用对偶单纯形法继续迭代求最优解
非可行解	非可行解	引进人工变量,编制新的单纯形表求解

以下均以最大化问题为例。

5.1 资源数量变化分析

设最优基的逆矩阵和最优解分别为

$$\mathbf{B}^{-1} = \{\bar{a}_{ij}\}_{m \times m}, \ \mathbf{B}^{-1}\mathbf{b} = (\bar{b}_1, ..., \bar{b}_r, ..., \bar{b}_m)^{\mathrm{T}}$$

若右端项系数 b_r 发生变化: $b'_r = b_r + \Delta b_r$,其它系数不变。则最终表中原问题的解相应变化为

$$\mathbf{x}'_{\mathbf{B}} = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}), \quad (\Delta \mathbf{b} = (0, ..., 0, \Delta b_r, 0, ..., 0)^{\mathrm{T}})$$

只要 $x'_B \geq 0$,因为最终表中检验数不变,则最优基就不变。但最优解发生了变化, x'_B 为新的最优解。

◆ 保证最优基不变的右端项可允许变化范围

$$\mathbf{x}_{\mathbf{B}}' = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) = \mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1}\Delta \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ \bar{b}_i \\ \vdots \\ \bar{b}_m \end{bmatrix} + \mathbf{B}^{-1}\begin{bmatrix} 0 \\ \vdots \\ \Delta b_r \\ \vdots \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \overline{b}_1 \\ \vdots \\ \overline{b}_i \\ \vdots \\ \overline{b}_m \end{bmatrix} + \begin{bmatrix} \overline{a}_{1r} \Delta b_r \\ \vdots \\ \overline{a}_{ir} \Delta b_r \end{bmatrix} = \begin{bmatrix} \overline{b}_1 + \overline{a}_{1r} \Delta b_r \\ \vdots \\ \overline{b}_i + \overline{a}_{ir} \Delta b_r \\ \vdots \\ \overline{b}_m + \overline{a}_{mr} \Delta b_r \end{bmatrix}$$

若最优基不变,则要求单纯形最终表中b列的所有元素 满足

$$\bar{b}_i + \bar{a}_{ir} \Delta b_r \ge 0 \to \bar{a}_{ir} \Delta b_r \ge -\bar{b}_i, i = 1, 2, \dots, m$$

由此可得:

if
$$\bar{a}_{ir} > 0$$
, then $\Delta b_r \ge -\bar{b}_i/\bar{a}_{ir}$
if $\bar{a}_{ir} < 0$, then $\Delta b_r \le -\bar{b}_i/\bar{a}_{ir}$

即,

$$\max_i \{-\frac{\overline{b}_i}{\overline{a}_{ir}} | \overline{a}_{ir} > 0\} \leq \Delta b_r \leq \min_i \{-\frac{\overline{b}_i}{\overline{a}_{ir}} | \overline{a}_{ir} < 0\}$$

例,为保证最优基不变,求第 1 章例 1 第 2 个约束条件 b_2 的变化范围 Δb_2 。

最终单纯形表中,
$$\mathbf{B}^{-1} = \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix}$$
,计算 ¹:

$$\mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1} \begin{bmatrix} 0 \\ \Delta b_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 1/4 \\ 1/2 \\ -1/8 \end{bmatrix} \Delta b_2 \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Delta b_2 \ge -4/(1/4) = -16$$

 $\Delta b_2 \ge -4/(1/2) = -8$
 $\Delta b_2 \le -2/(-1/8) = 16$

 Δb_2 的变化范围: [-8,16], b_2 的变化范围: [8,32]。

 $^{^{1}}$ **B**⁻¹所在单纯形表见教材第 41 页表 2-6.

思考,为保证最优基不变,求上例第 1 个右端项 b_1 和第 2 个右端项 b_2 的联合变化范围 Δb_1 、 Δb_2 。

最终单纯形表中,
$$\mathbf{B}^{-1} = \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix}$$
,有:

$$\mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1} \begin{bmatrix} \Delta b_1 \\ \Delta b_2 \\ 0 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

完成后续分析.....

例 8, 第 1 章例 1, 若该厂又从其他处抽调 4 台时用于生产产品 I、II, 求这时该厂的最优生产方案。

回顾原问题的最终单纯形表:

	$c_j \rightarrow$		2	3	0	0	0	Δ
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b'	x_1	x_2	x_3	x_4	x_5	U
2	x_1	4	1	0	0	0.25	0	
0	x_5	4	0	0	-2	0.5	1	
3	x_2	2	0	1	0.5	-0.125	0	
С	j-z	Z _j	0	0	-1.5	-0.125	0	

若资源变化,则在最终单纯形表中,新的右端项应是:

$$\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) = \mathbf{b}' + \mathbf{B}^{-1} \Delta \mathbf{b}.$$

解,先计算
$$\mathbf{B}^{-1}\Delta\mathbf{b} = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix}$$

将上述结果反映到最终表中:

	$c_j \rightarrow$			3	0	0	0
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4 + 0 = 4	1	0	0	0.25	0
0	x_5	4 - 8 = -4	0	0	[-2]	0.5	1
3	x_2	2 + 2 = 4	0	1	0.5	-0.125	0
		$c_j - z_j$	0	0	-1.5	-0.125	0

由于b列有负数,故用对偶单纯形法求新的最优解。

	$c_j \rightarrow$		2	3	0	0	0
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	0.25	0
0	x_3	2	0	0	1	-0.25	-0.5
3	x_2	3	0	1	0	0	0.25
	$c_j - z_j$		0	0	0	-0.5	-0.75

该厂最优生产方案应改为生产 4 件产品 I, 生产 3 件产品 II, 获利: $z^* = 4 \times 2 + 3 \times 3 = 17$ (元)。

 $x_3 = 2$ (松弛变量 > 0),即设备有 2 小时未被利用。

5.2 价值系数变化分析

(1) 若 c_i 是非基变量 x_i 的系数,对应的检验数是

$$\sigma_j = c_j - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{P}_j = c_j - \sum_{i=1}^m c_i y_i$$

若 c_j 变成 $c_j + \Delta c_j$ 之后,要保持最优基仍然不变,则要求最终表中检验数

$$\sigma_j' = c_j + \Delta c_j - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{P}_j \le 0$$

那么, $c_j + \Delta c_j \leq \mathbf{y} \mathbf{P}_j$ ($\mathbf{y} = \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1}$ 是 <u>单 纯 形 乘 子</u>),即 $\Delta c_j \leq \mathbf{y} \mathbf{P}_j - c_j$,才可保持原最优基不变(此时最优解也不变)。 这确定了 Δc_i 的范围。

(2) 若 c_r 是基变量 x_r 的系数, c_r 变化将引起 c_B 的变化。

$$(\mathbf{c}_{\mathbf{B}} + \Delta \mathbf{c}_{\mathbf{B}})\mathbf{B}^{-1}\mathbf{A} = \mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A} + (0, \dots, \Delta c_r, \dots, 0)\mathbf{B}^{-1}\mathbf{A}$$
$$= \mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A} + \Delta c_r(a'_{r1}, a'_{r2}, \dots, a'_{rn})$$

当 c_r 变化 Δc_r ,最终表中检验数是

$$\sigma'_{j} = c_{j} - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{P}_{j} - \Delta c_{r} a'_{rj} = \sigma_{j} - \Delta c_{r} a'_{rj}, j = 1, ..., n$$

若要求原最优解不变,则必须满足: $\sigma'_i \leq 0$,即

if
$$a'_{rj} < 0$$
 then $\Delta c_r \le \sigma_j/a'_{rj}$
if $a'_{rj} > 0$ then $\Delta c_r \ge \sigma_j/a'_{rj}$

保证原最优基不变时, Δc_r 可变化的范围:

$$\max_{j} \{ \sigma_{j} / a'_{rj} | a'_{rj} > 0 \} \le \Delta c_{r} \le \min_{j} \{ \sigma_{j} / a'_{rj} | a'_{rj} < 0 \}$$

例 9,第 1 章例 1,设基变量 x_2 系数 c_2 变化 Δc_2 ,若要保持原最优解不变,请确定 Δc_2 的变化范围。

c_j –	$c_j \rightarrow$			$3 + \Delta c_2$	0	0	0
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{c}_{\mathbf{B}}$ $\mathbf{x}_{\mathbf{B}}$ \mathbf{b} \mathbf{x}		x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	0.25	0
0	x_5	4	0	0	-2	0.5	1
$3 + \Delta c_2$	x_2	2	0	1	0.5	-0.125	0
c_j —	Z_j		0	0	$-1.5 - \frac{\Delta c_2}{2}$	$\frac{\Delta c_2}{8} - 0.125$	0

$$-1.5 - \frac{\Delta c_2}{2} \le 0, \quad \frac{\Delta c_2}{8} - 0.125 \le 0$$

得:

$$-3 \le \Delta c_2 \le 1$$

即 c_2 可在[0,4]之间变化而不影响原最优解。

5.3 技术系数变化分析

例 10,分析在原计划中是否应该安排一种新产品。设第 1 章 例 1 中除产品 I, II 外,还有一种新产品 III。已知产品 III 每件消耗两种原材料各为 6kg、3kg,设备 2 台时,获利 5 元。决策:是否应生产新产品 III,生产多少?

解, (1) 高斯消元与增广矩阵迭代

设产品 III 的产量为 x'_3 ,对应的技术系数向量为 $P'_3 = (2,6,3)^T$ 。

如果加入新产品,相当于原问题变成了:

$$\max z = 2x_1 + 3x_2 + 5x_3'$$

$$\begin{cases} x_1 + 2x_2 + x_3 & + 2x_3' = 8 \\ 4x_1 & + x_4 & + 6x_3' = 16 \\ 4x_2 & + x_5 & + 3x_3' = 12 \\ x_1, x_2, x_3, x_4, x_5, x_3' \ge 0 \end{cases}$$

单纯形法就是不断用高斯消元解方程组:就任何一个基 矩阵B而言,<u>当前单纯表系数矩阵的每一列都是原系数矩阵</u> <u>左乘B⁻¹的结果</u>。

产品 III 的决策变量 x_3 '在最终单纯形表中对应的列向量就应该是:

$$\mathbf{y}_{3}' = \mathbf{B}^{-1}\mathbf{P}_{3}' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2 \\ 0.25 \end{bmatrix}$$

若基矩阵不变,则最终表中x'3的检验数为:

$$\sigma_3' = c_3' - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{P}_3'$$

= 5 - (1.5,0.125,0)(2,6,3)^T = 1.25 > 0

将上述计算结果填入到例1的最终单纯形表中:

原问题最终表
$$\begin{cases} c_j \rightarrow & 2 & 3 & 0 & 0 & 0 \\ \hline c_B & x_B & b & x_1 & x_2 & x_3 & x_4 & x_5 \\ \hline 2 & x_1 & 4 & 1 & 0 & 0 & 0.25 & 0 \\ 0 & x_5 & 4 & 0 & 0 & -2 & 0.5 & 1 \\ 3 & x_2 & 2 & 0 & 1 & 0.5 & -0.125 & 0 \\ \hline c_j - z_j & 0 & 0 & -1.5 & -0.125 & 0 \end{cases}$$

	$C_j \rightarrow$		2	3	0	0	0	5
$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	χ_2	x_3	x_4	x_5	x_3'
2	x_1	4	1	0	0	0.25	0	1.5
0	x_5	4	0	O	-2	0.5	1	[2]
3	x_2	2	0	1	0.5	-0.125	0	0.25
C_j	$z - z_j$		0	0	-1.5	-0.125	0	1.25

(2) 可行基与检验数

由于b列仍然非负,因此当前基仍然是可行基。对于当前基而言,产品 III 的检验数为正,可入基。

计算知x₃作为换入变量, x₅为换出变量:

$c_j \rightarrow$		2	3	0	0	0	5	
$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	x_4	x_5	x_3'
2	x_1	1	1	0	1.5	-0.125	-0.75	О
5	x_3'	2	0	0	-1	0.25	0.5	1
3	x_2	1.5	0	1	0.75	-0.1875	-0.125	О
C_j	$-z_j$		0	0	-0.25	-0.4375	-0.625	0

最优解:

$$x_1 = 1, x_2 = 1, x_3' = 2$$
.

总利润为16.5元,比原计划增加了2.5元。

例 11,原产品的工艺结构发生变化。设原产品 I 的工艺结构有了改进,技术系数向量变为 $P'_1 = (2,5,2)^T$,每件利润 4 元。分析对原最优计划的影响。

解: 若产品 I 改进了工艺结构,那么原来的 LP 问题第一列(蓝色列)就应变成新的列(红色列):

$$\max z = 2x_1 \to 4x_1 + 3x_2$$

$$\begin{cases} x_1 \to 2x_1 + 2x_2 + x_3 &= 8\\ 4x_1 \to 5x_1 &+ x_4 &= 16\\ 0x_1 \to 2x_1 + 4x_2 &+ x_5 = 12\\ x_1, x_2, x_3, x_4, x_5, x_3' \ge 0 \end{cases}$$

原问题最终单纯形表的第一列,是原来的列 P_1 左乘 B^{-1}

的结果,即:
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \mathbf{B}^{-1}\mathbf{P}_1 = \begin{bmatrix} 0 & 0.25 & 0\\-2 & 0.5 & 1\\0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 1\\4\\0 \end{bmatrix}$$
:

原问题最终表

$$c_j \rightarrow c_j \rightarrow c_$$

但在新问题中,高斯消元应该针对新的列: $P'_1 = (2,5,2)^T$ 来进行。

而最终单纯形表,是其初始单纯形表的增广矩阵左乘

$$B^{-1} = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix}$$
的结果,因此新 LP 问题在最终表中

对应的第一列就应是: $y_1' = B^{-1}P_1'$, 即

$$\mathbf{y}_{1}' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.25 \\ 0.5 \\ 0.375 \end{bmatrix}$$

相应,新问题的当前"最终"单纯形表应该变成:

	$c_j \rightarrow$		$2 \rightarrow 4$	3	0	0	0
c_{B}	X _B	b	x_1	x_2	x_3	x_4	x_5
$2 \rightarrow 4$	x_1	4	$1 \rightarrow 1.25$	0	0	0.25	0
0	x_5	4	$0 \rightarrow 0.5$	0	-2	0.5	1
3	x_2	2	$0 \rightarrow 0.375$	1	0.5	-0.125	0

上表整理为:

	$c_j \rightarrow$			3	0	0	0
c_{B}	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
4	x_1	4	1.25	0	0	0.25	0
0	x_5	4	0.5	0	-2	0.5	1
3	x_2	2	0.375	1	0.5	-0.125	О
C	$z_j - z_j$						

显然, x_2 和 x_5 各自提供了单位矩阵的一部分,考虑在增广矩阵中运用高斯消元,尝试将 x_1 的列变成(1,0,0)^T,观察所得到的新的基(\mathbf{P}_1' , \mathbf{P}_5 , \mathbf{P}_2):

	$c_j \rightarrow$			3	0	0	0
$\mathbf{c}_{\mathbf{B}}$	c_B x_B b		x_1	x_2	x_3	x_4	x_5
4	x_1	3.2	1	0	0	0.2	0
0	x_5	2.4	0	0	-2	0.4	1
3	x_2	0.8	0	1	0.5	-0.2	0
C_j	$\overline{z_j} - \overline{z_j}$		0	0	-1.5	-0.2	0

很幸运:原问题及其对偶的解都是可行解,并且在此可行解下,二者目标函数值相等,因此都已是最优解。

所以,在新技术下,应生产产品 I 3.2 单位;生产产品 II 0.8 单位,可获利 15.2 元。

例 12, 假设例 10 中产品 I 的技术系数向量变为 $P'_1 = (4,5,2)^T$,利润仍为 4元,则原最优计划有何变动?

解,类似例 10,在新技术下,产品 x_1 在最终单纯形表中对应的列仍然是 B^{-1} 左乘的结果,即

$$\mathbf{B}^{-1}\mathbf{P}_{1}' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.25 \\ -3.5 \\ 1.375 \end{bmatrix}$$

因此, P_1' 伴随原增广矩阵左乘 B^{-1} 之后,新问题的当前"最终"单纯形表为

	$c_j \rightarrow$		4	3	0	0	0
c_{B}	$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
4	x_1	4	1.25	0	0	0.25	0
0	x_5	4	-3.5	0	-2	0.5	1
3	x_2	2	1.375	1	0.5	-0.125	0
C	$\overline{z_j-z_j}$						

同样的, x_2 和 x_5 的当前列各自提供了单位阵的一部分, 考虑在增广矩阵中运用高斯消元,尝试将 x_1 的列变成 $(1,0,0)^T$,观察所得到的新的基 $(\mathbf{P}_1',\mathbf{P}_5,\mathbf{P}_2)$:

	$c_j \rightarrow$			3	0	0	0
c_{B}	c _B x _B b		x_1	x_2	x_3	x_4	x_5
4	x_1	3.2	1	0	0	0.2	0
0	x_5	15.2	0	0	-2	1.2	1
3	x_2	-2.4	0	1	0.5	-0.4	0
	$c_i - z_i$		0	0	-1.5	0.4	0

很不幸: 若以(P_1' , P_5 , P_2)为新的基,则原问题不可行,对偶问题也不可行,单纯形法无法进行下去(对偶单纯形也无法进行)。

考虑: 单纯形表就是线性规划问题的等价表示,因此上述单纯形表等价于一个新的 LP 问题:

$$\max z = 4x_1 + 3x_2$$

$$\begin{cases} 1x_1 + 0x_2 + 0 & x_3 + 0.2x_4 + 0x_5 = 3.2\\ 0x_1 + 0x_2 - 2 & x_3 + 1.2x_4 + 1x_5 = 15.2\\ 0x_1 + 1x_2 + 0.5x_3 - 0.4x_4 + 0x_5 = -2.4\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

 $(\mathbf{P}_1', \mathbf{P}_5, \mathbf{P}_2)$ 为不可行基的原因在于 x_2 需要取-2.4 < 0,才能保证第三个约束成立。可将第三个约束等价变换为:

$$-x_2 - 0.5x_3 + 0.4x_4 = 2.4$$

进一步,在第三个约束中引入一个人工变量x6:

$$-x_2 - 0.5x_3 + 0.4x_4 + x_6 = 2.4$$

则 x_6 对应的列向量为:

$$\mathbf{P}_6 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

显然, (P_1', P_5, P_6) 就是一个可行基。

但 x_6 是人工变量,需要用大M法排除,由此应求解下述LP问题:

$$\max z = 4x_1 + 3x_2 - Mx_6$$

$$\begin{cases} 1x_1 + 0x_2 + 0 & x_3 + 0.2x_4 + 0x_5 + 0x_6 = 3.2\\ 0x_1 + 0x_2 - 2 & x_3 + 1.2x_4 + 1x_5 + 0x_6 = 15.2\\ 0x_1 - 1x_2 - 0.5x_3 + 0.4x_4 + 0x_5 + 1x_6 = 2.4\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

新的单纯形表为:

$c_j \rightarrow$			4	3	0 0		0	-M
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6
4	x_1	3.2	1	0	0	0.2	0	0
0	x_5	15.2	0	0	-2	1.2	1	0
-M	x_6	2.4	0	-1	-0.5	[0.4]	0	1
$c_j - z_j$			0	3 – M	-0.5M	-0.8 + 0.4M	0	0

 x_4 进基,人工变量 x_6 出基,继续迭代:

	c_{j}	\rightarrow	4	3	0	0	0	-M
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	χ_4	x_5	x_6
4	x_1	2	1	0.5	0.25	0	0	0.5
0	x_5	8	0	[3]	-2	0	1	-3
0	x_4	6	0	-2.5	-0.5	1	0	2.5
$c_j - z_j$			0	1	-1	0	0	-M + 2
$c_j \rightarrow$			4	3	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	X _B	b	x_1	x_2	x_3	χ_4	x_5	
4	x_1	2/3	1	0	0.33	0	-0.33	
3	x_2	8/3	0	1	-0.167	0	0.33	
0	x_4	38/3	0	0	1.667	1	0.83	
$c_j - z_j$			0	0	-0.83	0	-0.33	

最大利润32/3元。