FR801xH OTA 升级流程

前提: 蓝牙连接上

注: 1、X 为任意值

- 2、image_size 为 FR801xH 软件大小,可在软件中设置,如 0x19000 为 100K
- 3、packet_len 为传升级数据每一包的长度,包长根据交互 MTU 的长度来定
- 4、通讯 UUID:

Service UUID:

5、通讯命令格式:

APP->DEV

cm	操作内容	
Opcode(1 字节)	len(2 字节)	根据实际命令定义
命令字,对应不同的指令	命令字,对应不同的指令 操作内容中所有数据的长度	

DEV->APP

Rsp head			操作内容
结果(1 字节)	opcode(1 字节)	len(2 字节)	根据实际命令来定义
0: ok; 1: fail	对应 app 下发的命令	操作内容中所有数据 的长度	

6、命令字定义(下面没有写出来的命令定义可以不用关注):

0x01: 获取设备当前升级程序的 flash 起始地址,App 需要记录下来,ota 升级是 A/B 乒乓式升级,A 区域是从 0 地址起始的区域,B 区域是从 image_size 起始的区域 (image_size 是设备端软件根据实际需要大小设定,比如实际软件大小是 90K,预留 10K 空间,所以设置 iamge size 大小为 100K,则 B 区域是从 100K-200K 的 flash 空间);

0x02: 获取设备当前的软件版本号,升级前可以读取,设备端软件可以将该版本号配置成发布的软件版本号,便于 APP 获取对比;

0x03:擦除命令,每次擦除 4K(0x1000)空间,app 根据实际软件大小,依次累加地址擦除,直至需要升级的 bin 文件大小的空间被擦除完;

0x05: 写数据命令,该命令即用于 bin 文件数据传输,每次传输的长度由 APP 根据实际连接交互的 mtu 长度来定。每传输一包数据地址偏移累加上传输的数据长度,用于下一次写命令传输,直至升级的 bin 文件完全传输完成;

0x09: 重启指令, bin 文件传输完成之后,发送该命令通知设备升级完成并重启,命令附带 bin 文件去掉开始的 256 字节头数据之后的 CRC 校验值,设备收到该命令之后先会做 CRC 校验,之后再重启;

步骤 1: 手机 APP 获取设备软件版本号,按需要选择是否发送该命令

App 发送指令至设备,命令 0x02

cmd head		操作内容	
opcode(1 字节) len(2 字节)		无实际意义(4 字节)	
0x02	0x0004	x(任意值)	

设备回复指令至 App

Rsp head			操作内容
结果(1 字节)	结果(1 字节) opcode(1 字节) len(2 字节)		
0: ok; 1: fail	0: ok; 1: fail 0x02		如 0x0000001

步骤 2: 手机 APP 获取设备当前升级程序的存储起始地址

App 发送指令至设备,命令 0x01

cmd head		操作内容	
opcode(1 字节)	len(2 字节)	无实际意义(4 字节)	
0x01	0x0004	x(任意值)	

设备回复指令至 App

	操作内容		
结果(1 字节)	结果(1 字节) opcode(1 字节) len(2 字节)		
0: ok; 1: fail 0x01		0x0004	0 或 image_size, 升级文件写入 flash 的 起始地址

步骤 3: APP 发命令让设备擦除升级所需要的地址空间

App 发送指令至设备,命令 0x03

cmd head		操作内容
opcode(1 字节)	len(2 字节)	base_addr(4 字节)
0x03	0x0004	从起始地址开始(0 或者 image_size),每次地址都加 4096,直到 bin 文件所需的空间都被擦除。

设备回复指令至 App

	操作内容			
结果(1 字节)	结果(1 字节) opcode(1 字节) len(2 字节)			
0: ok; 1: fail	0x03	0x0004	APP 命令里的擦除地址	

注意: 循环擦除步骤, 直到要烧录文件所需的空间地址全部被擦除

步骤 4: 传升级数据

App 发送指令至设备,命令 0x05

cmd	head		操作内容	
opcode(1 字	len(2 字节)	base_addr(4 字节)	len(2 字节)	data
节)				
0x05	操作内容里面	填写入的地址,从 0x0	packet_len	packet_len
	数据的总长度	或 image_size 开始,每	由 app 根据实际	个长度的升
	packet_len+6	次写 packet_len 个字	连接交互的 mtu	级文件的数
		节,注意地址每次加	大小来定	据
		packet_len		

设备回复指令至 App

Rsp head		操作内容		
结果(1字节)	opcode(1 字 节)	len(2 字节)	base_addr(4 字节)	len(2 字节)
0: ok; 1: fail	0x05	0x0006	APP 命令里的写数据 的地址	APP 命令里写入数据 的长度(packet_len)

注意: 循环写数据步骤, 直到要烧录文件的数据全部被写入

步骤 5: 升级结束, 重启

App 发送指令至设备,命令 0x09

cmd head		操作内容		
opcode(1 字节)	len(2 字节)	bin_length(4 字节)	CRC(4 字节)	
0x09	0x0008	升级文件的实际长度	升级文件去掉头部的	
			256bytes 之后的 CRC 校	
			验值	

设备收到指令后做 CRC 校验并重启!

说明:

- 1: 擦除命令 0x03, ble 的回复包里, "收到 cmd 里的擦除地址", 指的是 app 传过来的擦除地址, 这里原样返回;
- 2: 擦除命令 0x03 的结束条件是 app 端去判断升级文件的大小, 然后以这个文件大小作为阈值判断什么时候结束;
- 3: bin 文件的 0x58 字节开始, 4 个字节是{0x51, 0x52, 0x52, 0x51}, 可用于判断升级文件是有效的, 升级之前 app 可以检查一下;
 - 4: 2 字节和 4 字节均为小端模式, 注意字节顺序;
 - 5: 以上升级步骤适合上海富芮坤蓝牙;