A probabilistic framework to solve the classification problem

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$

Conditional Probability:

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

• Bayes Theorem:  $P(C|A) = \frac{P(A|C)P(C)}{P(A)}$ 

## Bayes Theorem: Example

- Given:
  - A doctor knows that meningitis causes stiff neck 50% of the time
  - Prior probability of any patient having meningitis is
     1 / 50,000
  - Prior probability of any patient having stiff neck is 1 / 20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

- Consider each attribute and class label as random variables
- Given a set of attributes  $(A_1, A_2, ..., A_n)$ 
  - Goal is to predict class C
  - Specifically, we want to find value of C that maximizes  $P(C \mid A_1, A_2, ..., A_n)$
- Can we estimate  $P(C | A_1, A_2, ..., A_n)$  directly from data?

- Approach:
  - Compute the posterior probability  $P(C \mid A_1, A_2, ..., A_n)$  for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 ... A_n) = \frac{P(A_1 A_2 ... A_n \mid C) P(C)}{P(A_1 A_2 ... A_n)}$$

- Choose value of C that maximizes

$$P(C \mid A_1, A_2, ..., A_n)$$

- Equivalent to choosing value of C that maximizes  $P(A_1, A_2, ..., A_n \mid C) P(C)$
- How to estimate  $P(A_1, A_2, ..., A_n \mid C)$ ?

# Naïve Bayes Classifier

- Assume independence among attributes  $A_i$  when class is given:
  - $P(A_1, A_2, ..., A_n \mid C_j) = P(A_1 \mid C_j) P(A_2 \mid C_j)...$   $P(A_n \mid C_j)$
  - Can estimate  $P(A_i | C_j)$  for all  $A_i$  and  $C_j$
  - New point is classified to  $C_j$  if  $P(C_j)$   $\Pi$   $P(A_i | C_j)$  is maximal

#### How to Estimate Probabilities from Data?

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Evade |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Singl e           | 90K               | Yes   |

- Class:  $P(C) = N_c/N$ 
  - e.g., P(No) = 7/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_c$$

- where  $|A_{ik}|$  is number of instances having attribute  $A_i$  and belongs to class  $C_k$
- Examples:

#### How to Estimate Probabilities from Data?

- For continuous attributes:
  - Discretize the range into bins
    - one ordinal attribute per bin
    - violates independence assumption
  - Two-way split: (A < v) or (A > v)
    - choose only one of the two splits as new attribute
  - Assume attribute obeys certain probability distribution
    - Typically, normal distribution is assumed
    - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
    - Once probability distribution is known, can use it to estimate the conditional probability  $P(A_i | C)$

#### How to Estimate Probabilities from Data?

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Evade |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Singl e           | 90K               | Yes   |

• Normal distribution:

$$P(A_i \mid C_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each  $(A_i, C_j)$  pair
- For (Income, Class=No):
  - If Class=No
    - sample mean = 110K
    - sample variance = 2975

$$P(Income = 120K \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

## Example of Naïve Bayes Classifier

#### Given a Test instance:

X = (Refund = No, Married, Income = 120K)

#### naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

#### For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
    P(X | Class=No) = P(Refund=No | Class=No)
    × P(Married | Class=No)
    × P(Income=120K | Class=No)
    = 4/7 × 4/7 × 0.0072 = 0.0024
```

```
Since P(X | No)P(No) > P(X | Yes)P(Yes)
Therefore P(No | X) > P(Yes | X)
=> Class = No
```

# Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
  - Independence ⇔ multiplication of probabilities
- Laplace correction (also known as m-estimate):

Original: 
$$P(A_i \mid C) = \frac{N_{ic}}{N_a}$$

Laplace: 
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_i + m}$$

- -p is the prior probability as specified by the user
- *m* is a parameter known as the equivalent sample size

#### Another Example of Naïve Bayes Classifier

| Name          | Give Birth | Can Fly | Live in Water | Have Legs | Class       |
|---------------|------------|---------|---------------|-----------|-------------|
| human         | yes        | no      | no            | yes       | mammals     |
| python        | no         | no      | no            | no        | non-mammals |
| salmon        | no         | no      | yes           | no        | non-mammals |
| whale         | yes        | no      | yes           | no        | mammals     |
| frog          | no         | no      | sometimes     | yes       | non-mammals |
| komodo        | no         | no      | no            | yes       | non-mammals |
| bat           | yes        | yes     | no            | yes       | mammals     |
| pigeon        | no         | yes     | no            | yes       | non-mammals |
| cat           | yes        | no      | no            | yes       | mammals     |
| leopard shark | yes        | no      | yes           | no        | non-mammals |
| turtle        | no         | no      | sometimes     | yes       | non-mammals |
| penguin       | no         | no      | sometimes     | yes       | non-mammals |
| porcupine     | yes        | no      | no            | yes       | mammals     |
| eel           | no         | no      | yes           | no        | non-mammals |
| salamander    | no         | no      | sometimes     | yes       | non-mammals |
| gila monster  | no         | no      | no            | yes       | non-mammals |
| platypus      | no         | no      | no            | yes       | mammals     |
| owl           | no         | yes     | no            | yes       | non-mammals |
| dolphin       | yes        | no      | yes           | no        | mammals     |
| eagle         | no         | yes     | no            | yes       | non-mammals |

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

 $P(A \mid M)P(M) > P(A \mid N)P(N)$ 

=> Mammals

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
  - Use other techniques such as Bayesian Belief Networks (BBN)

- Classification model can be regarded as a black box that reads input values for  $X_1$ ,  $X_2$ , and  $X_3$ , and sends out an output value  $f(X_1, X_2, X_3)$  that is consistent with the true output value Y
- Here,  $f(X_1, X_2, X_3) = 0.3X_1 + 0.3X_2 + 0.3X_3 0.4$



 Such a black box, which represents its target function using a set of nodes and weighted links, is known as Artificial Neural Network

- The study of artificial neural networks was inspired by attempts to model the way human brain works
- Human brain primarily consists of nerve cells called *neurons*, linked together with other neurons via strands of fiber called *axons*
- Neurologists have discovered that the human brain learns by changing the strength of the connection of neurons upon repeated stimulation by the same impulse

- Analogous to human brain structure, an ANN is composed of an inter connected assembly of nodes and directed links
- The nodes in an ANN are often called *neurons* or *units*
- Each link is associated with a real valued weight parameter to emulate the connection strength between neurons

- Neurons are organized in layers
- Input layer contains nodes that represent the input variables
- Output layer contains nodes that represent the target (output) variables
- Zero or more hidden layers may reside between the input and output layers



### Structure of a Neuron

- Weighted average of the inputs values (*I*) is calculated (*S*)
- Output (O) is generated by applying activation function (g) and threshold (t) to this weighted average



University of Florida CISE department Gator Engineering

# Types of activation functions



- Typical activation functions used for many neural networks applications include the *sign* function and *sigmoid* function.
- Both the functions have been displaced to the right by *t* showing the threshold for the output to become 1

Data Mining Sanjay Ranka Spring 2011

## Steps involved in designing ANN

- Determine the number of nodes in input layer
- Determine the number of nodes in output layer
- Select appropriate network topology (number of hidden layers and hidden nodes, feed-forward or recurrent architecture)
- Initialize the weights and thresholds
- Remove training examples with missing values or replace them with their most likely values
- Train the neural network by adjusting the weights of the links until the outputs produced are consistent with class labels of training data (using algorithms like back propagation)

### Characteristics of ANN

- Multi layered neural networks are universal approximators i.e. they can be used to approximate any target function
- Neural networks are robust to noise
- Training a neural network is computation intensive. However, classifying an unlabeled instance is very fast