Relacije

DISKRETNE STRUKTURE S TEORIJOM GRAFOVA

Damir Horvat

FOI, Varaždin

- a) Ispišite elemente relacije \mathcal{R} .
- b) Odredite matricu incidencije relacije $\mathcal R$ i nacrtajte graf relacije $\mathcal R$.
- c) Ispitajte je li relacija \mathcal{R} refleksivna, simetrična, antisimetrična i tranzitivna.

Rješenje

$$(a,b) \in \mathcal{R} \iff a \mathcal{R} b$$

2 / 45

Zadatak 1

Neka je $A = \{U, W, X, Y, Z\}$ skup od pet knjiga koje se prodaju na fakultetu. Pretpostavimo da knjige imaju sljedeća svojstva:

_	knjiga	cijena	debljina
U		70 kn	100 stranica
	W	175 kn	125 stranica
	X	140 kn	150 stranica
	Y	70 kn	200 stranica
	Z	35 kn	100 stranica

Na skupu ${\mathcal A}$ definiramo relaciju ${\mathcal R}$ na sljedeći način:

$$(a,b) \in \mathcal{R} \iff (c(a) \geqslant c(b)) \land (d(a) \geqslant d(b))$$

pri čemu je c(K) cijena knjige K, a d(K) debljina knjige K.

Matrica incidencije

ab	U	W01000	Χ	Υ	Ζ
U	1	0	0	0	1
W	1	1	0	0	1
Χ	1	0	1	0	1
Y	1	0	0	1	1
Z	0	0	0	0	1

Graf

Elementi relacije

$$\mathcal{R} = \{(U, U), (U, Z), (W, U), (W, W), (W, Z), (X, U), (X, X), (X, Z), (Y, U), (Y, Y), (Y, Z), (Z, Z)\}$$

$$(a,b) \in \mathcal{R} \iff ig(c(a) \geqslant c(b)ig) \land ig(d(a) \geqslant d(b)ig)$$

Refleksivnost

 $(\forall x \in \mathcal{A})(x \mathcal{R} x)$

• Pomoću matrice incidencije

Na glavnoj dijagonali se nalaze jedinice.

• Pomoću grafa relacije

Kod svakog vrha u grafu se nalazi petlja.

• Pomoću definicije

Za svaki $x \in \mathcal{A}$ je $c(x) \ge c(x)$ i $d(x) \ge d(x)$ pa vrijedi $x \mathcal{R} x$.

Relacija \mathcal{R} je refleksivna relacija na skupu \mathcal{A} .

Općenito je \mathcal{R} refleksivna relacija na bilo kojem skupu knjiga.

$$(a,b) \in \mathcal{R} \stackrel{\mathrm{def}}{\Longleftrightarrow} (c(a) \geqslant c(b)) \wedge (d(a) \geqslant d(b))$$

4 / 45

Antisimetričnost

 $(\forall x, y \in \mathcal{A})((x \mathcal{R} y) \land (y \mathcal{R} x) \Rightarrow x = y)$

Pretpostavimo da je $x \mathcal{R} y$ i $y \mathcal{R} x$.

$$x \mathcal{R} y \implies \begin{bmatrix} c(x) \geqslant c(y), \\ c(y) \geqslant c(x), \end{bmatrix} \begin{bmatrix} d(x) \geqslant d(y) \\ d(y) \geqslant d(x) \end{bmatrix}$$

$$\downarrow c(x) = c(y) \quad d(x) = d(y)$$

- Dakle, knjige x i y imaju jednaku cijenu i jednaki broj stranica.
- U našem slučaju slijedi da je x = y pa je \mathcal{R} antisimetrična relacija.
- Općenito to ne mora biti antisimetrična relacija jer dvije različite knjige mogu imati jednaku cijenu i jednaki broj stranica.

$$(a,b) \in \mathcal{R} \iff (c(a) \geqslant c(b)) \land (d(a) \geqslant d(b))$$

6 / 45

Simetričnost)

 $(\forall x, y \in \mathcal{A})(x \mathcal{R} y \Rightarrow y \mathcal{R} x)$

• Pomoću matrice incidencije

Matrica incidencije nije simetrična matrica. Na primjer,

W R U, U R W

• Pomoću grafa relacije

Na primjer, postoji luk (W, U), ali ne postoji luk (U, W).

Relacija \mathcal{R} nije simetrična relacija na skupu \mathcal{A} .

$$(a,b) \in \mathcal{R} \stackrel{\mathrm{def}}{\Longleftrightarrow} (c(a) \geqslant c(b)) \wedge (d(a) \geqslant d(b))$$

Tranzitivnost

 $(\forall x, y, z \in \mathcal{A})((x \mathcal{R} y) \land (y \mathcal{R} z) \Rightarrow x \mathcal{R} z)$

Pretpostavimo da je $x \mathcal{R} y$ i $y \mathcal{R} z$.

$$x \mathcal{R} y \implies c(x) \geqslant c(y),$$
 $y \mathcal{R} z \implies c(y) \geqslant c(z),$

$$c(x) \geqslant c(z),$$

$$d(x) \geqslant d(y)$$

$$d(y) \geqslant d(z)$$

$$c(x) \geqslant c(z),$$

$$d(x) \geqslant d(z)$$

- Iz $c(x) \geqslant c(z)$ i $d(x) \geqslant d(z)$ slijedi $x \mathcal{R} z$. Stoga je \mathcal{R} tranzitivna relacija.
- ullet Općenito, relacija ${\cal R}$ je tranzitivna relacija na proizvoljnom skupu knjiga.

$$(a,b) \in \mathcal{R} \iff ig(c(a) \geqslant c(b) ig) \land ig(d(a) \geqslant d(b) ig)$$

Matrica incidencije

ab	U	0 1 0 0 0	X	Y	Ζ
U	1	0	0	0	1
W	1	1	0	0	1
Χ	1	0	1	0	1
Y	1	0	0	1	1
Ζ	0	0	0	0	1

Najmanji element ne postoji

Minimalni elementi X, Y, W

Najveći element Z

Maksimalni elementi Z

Matrica incidencije

 $\mathcal{P} = \{\{1,4,5\}, \{2,3,8\}, \{6,7\}\}$

10 / 45

Zadatak 2

Zadana je particija

$$\mathcal{P} = \{\{1,4,5\}, \{2,3,8\}, \{6,7\}\}$$

skupa $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Napišite matricu incidencije i nacrtajte graf relacije ekvivalencije ρ na skupu A koju prirodno definira zadana particija \mathcal{P} .

Rješenje

 $x \
ho \ y \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ x \ \mathrm{i} \ y$ pripadaju istom elementu particije $\mathcal P$

Definicija kongruencije modulo *n*

Neka su $a, b \in \mathbb{Z}$ i $n \in \mathbb{N}, n > 1$.

$$a \equiv b \pmod{n} \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \exists k \in \mathbb{Z}, \ a - b = nk$$

 $a \equiv b \pmod{n} \iff a \text{ i } b \text{ daju isti ostatak pri dijeljenju s } n$

- $10 \equiv 1 \pmod{3}$ jer $3 \mid 10 1$
- $-15 \equiv 13 \pmod{7}$ jer $7 \mid -15 13$
- $2 \not\equiv 7 \pmod{11}$ jer $11 \nmid 2 7$
- $-15 \not\equiv -13 \pmod{7}$ jer $7 \nmid -15 (-13)$

Zadatak 3

Na skupu $B = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ zadana je relacija $\sim s$ $m \sim n \iff m^2 \equiv n^2 \pmod{5}$.

- a) Dokažite da je \sim relacija ekvivalencije na skupu B.
- b) Odredite sve elemente kvocijentnog skupa B/\sim .

 $m \sim n \iff m^2 \equiv n^2 \pmod{5}$

Tranzitivnost

$$(\forall a, b, c \in B)((a \sim b) \land (b \sim c) \Rightarrow a \sim c)$$

 $(a \sim b) \land (b \sim c) \Rightarrow a^2 \equiv b^2 \pmod{5} \land b^2 \equiv c^2 \pmod{5} \Rightarrow$ $\Rightarrow \exists u, v \in \mathbb{Z}, \ \underbrace{a^2 - b^2 = 5u, \ b^2 - c^2 = 5v} \ \Rightarrow$

 \Rightarrow $(a^2 - b^2) + (b^2 - c^2) = 5u + 5v \Rightarrow a^2 - c^2 = 5(u + v) \Rightarrow$

 $\Rightarrow a^2 \equiv c^2 \pmod{5} \Rightarrow a \sim c$

12 / 45

 $m \sim n \iff m^2 \equiv n^2 \pmod{5}$

Rješenje

1. način

Refleksivnost

$$(\forall a \in B) (a \sim a)$$

 $a \sim a \Leftrightarrow a^2 \equiv a^2 \pmod{5}$

Simetričnost
$$(\forall a, b \in B) (a \sim b \Rightarrow b \sim a)$$

 $a \sim b \implies a^2 \equiv b^2 \pmod{5} \implies b^2 \equiv a^2 \pmod{5} \implies b \sim a$

 $B = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

 $m \sim n \iff m^2 \equiv n^2 \pmod{5}$

2. način

 $[a]_{\sim} = \{x \in B : x \sim a\}$

Odredimo klase svih elemenata.

$$[-4]_{\sim} = \{-4, -1, 1, 4\}$$

$$[-3] - \{-3 - 2 2 3\}$$

$$[-2]_{\sim} = \{-3, -2, 2, 3\}$$
 $[3]_{\sim} = \{-3, -2, 2, 3\}$

$$[-1]_{\sim} = \{-4, -1, 1, 4\}$$

Dobili smo particiju skupa B koja prirodno definira relaciju ~. Stoga je \sim relacija ekvivalencije na skupu В.

$$[0]_{\sim} = \{0\}$$

$$[1]_{\sim} = \{-4, -1, 1, 4\}$$

$$[-3]_{\sim} = \{-3, -2, 2, 3\}$$
 $[2]_{\sim} = \{-3, -2, 2, 3\}$

$$[3]_{\sim} = \{-3, -2, 2, 3\}$$

$$[4]_{\sim} = \{-4, -1, 1, 4\}$$

13 / 45

 $B = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

 $m \sim n \iff m^2 \equiv n^2 \pmod{5}$

 $[a]_{\sim} = \{x \in B : x \sim a\}$

b)

 $[0]_{\sim} = \{0\}$

 $[1]_{\sim} = \{-4, -1, 1, 4\}$

 $[2]_{\sim} = \{-3, -2, 2, 3\}$

 $B/\sim = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}\}$

 $k(B/\sim)=3$

16 / 45

Relacija ρ na skupu $A = \{a, b, c\}$

(Lijeve) klase elemenata

 $[a]_
ho=\{b,c\}$

 $[b]_{\rho} = \{a\}$

 $[c]_{\rho} = \{a\}$

- Klase čine particiju $\mathcal{P} = \{\{b, c\}, \{a\}\}$ skupa $A = \{a, b, c\}$.
- ullet Particija ${\mathcal P}$ ne definira relaciju ho, nego relaciju ekvivalencije au.

Relacija τ na skupu $A = \{a, b, c\}$

 τ

Klase elemenata

 $[a]_{ au}=\{a\}$

 $[b]_{\tau} = \{b, c\}$

 $[c]_{\tau} = \{b, c\}$

18 / 45

Napomena

- U slučaju da relacija ρ nije relacija ekvivalencije na skupu A, također možemo govoriti o "klasi" pojedinog elementa.
- "Klase" u tom slučaju ne moraju dati particiju skupa A. Štoviše, moguće je da "klasa" nekog elementa bude prazan skup.
- ullet Ako ho nije simetrična relacija, tada su skupovi

$$[a]_{\rho}^{(left)} = \{x \in A : x \rho a\}, \qquad [a]_{\rho}^{(right)} = \{x \in A : a \rho x\}$$

općenito različiti. U tom slučaju govorimo o lijevoj i desnoj klasi pojedinog elementa $a \in A$.

Neka je ρ refleksivna relacija na skupu Akoja zadovoljava sljedeći uvjet:

(♣) Lijeve klase svaka dva elementa iz skupa A su međusobno jednake ili disjunktne.

Tada je ρ relacija ekvivalencije na skupu A.

Domaća zadaća.

Dokažite navedenu simpatičnu tvrdnju.

$a \sim b \iff 3 \mid a^2 - b^2$

Zadatak 4

Na skupu $\mathbb Z$ definirana je relacija \sim s

$$a \sim b \iff a^2 - b^2$$
 je djeljiv s 3.

- a) Dokažite da je \sim relacija ekvivalencije na skupu \mathbb{Z} .
- Odredite klasu elementa 0 i klasu elementa 1.
- Odredite kvocijentni skup \mathbb{Z}/\sim .

 $(\forall a, b, c \in \mathbb{Z})((a \sim b) \land (b \sim c) \Rightarrow a \sim c)$ Tranzitivnost

$$(a \sim b) \wedge (b \sim c) \Rightarrow 3 \mid a^2 - b^2 \wedge 3 \mid b^2 - c^2 \Rightarrow$$

$$\Rightarrow \exists k_1, k_2 \in \mathbb{Z}, \ \underbrace{a^2 - b^2 = 3k_1, \ b^2 - c^2 = 3k_2}_{+} \Rightarrow$$

$$\Rightarrow (a^2 - b^2) + (b^2 - c^2) = 3k_1 + 3k_2 \Rightarrow$$

$$\Rightarrow a^2 - c^2 = 3(\underbrace{k_1 + k_2}) \Rightarrow 3 \mid a^2 - c^2 \Rightarrow a \sim c$$

20 / 45

 $|a \sim b \iff 3 | a^2 - b^2$

Rješenje

a) Treba provjeriti da je \sim refleksivna, simetrična i tranzitivna relacija.

Refleksivnost $(\forall a \in \mathbb{Z})(a \sim a)$

$$a \sim a \Leftrightarrow 3 \mid a^2 - a^2 \Leftrightarrow 3 \mid 0$$

Simetričnost $(\forall a, b \in \mathbb{Z})(a \sim b \Rightarrow b \sim a)$

$$a \sim b \implies 3 \mid a^2 - b^2 \implies \exists k \in \mathbb{Z}, \ a^2 - b^2 = 3k \implies$$

 $\Rightarrow b^2 - a^2 = 3 \cdot (-k) \implies 3 \mid b^2 - a^2 \implies b \sim a$

$$\in \mathbb{Z}$$

 $\boxed{[a]_{\sim} = \{x \in \mathbb{Z} : x \sim a\}} \quad |a \sim b \iff 3 \mid a^2 - b^2$

22 / 45

b) $[0]_{\sim} = \{x \in \mathbb{Z} : x \sim 0\} = \{x \in \mathbb{Z} : 3 \mid x^2 - 0^2\} = 0$ $= \{x \in \mathbb{Z} : 3 \mid x^2\} = \{x \in \mathbb{Z} : 3 \mid x\} = 3\mathbb{Z}$

Cijeli broj x je djeljiv s 3 ako i samo ako je x^2 djeljiv s 3.

- Tvrdnju smo dokazali ranije za prirodne brojeve.
- Svi ponuđeni dokazi od ranije potpuno analogno prolaze i u slučaju cijelih brojeva.

$$|[a]_{\sim} = \{x \in \mathbb{Z} : x \sim a\}$$

 $\boxed{[a]_{\sim} = \{x \in \mathbb{Z} : x \sim a\}} \quad |a \sim b \iff 3 \mid a^2 - b^2$

$$[1]_{\sim} = \{x \in \mathbb{Z} : x \sim 1\} =$$

$$= \{x \in \mathbb{Z} : 3 \mid x^2 - 1^2\} = \{x \in \mathbb{Z} : 3 \mid x^2 - 1\} =$$

$$= \{x \in \mathbb{Z} : \exists k \in \mathbb{Z}, x^2 = 3k + 1\} = \{x \in \mathbb{Z} : 3 \nmid x\} =$$

$$= (3\mathbb{Z} + 1) \cup (3\mathbb{Z} + 2) = \mathbb{Z} \setminus 3\mathbb{Z}$$

Cijeli broj x nije djeljiv s 3 ako i samo ako x^2 pri dijeljenju s 3 daje ostatak 1.

• Dokažimo još navedenu tvrdnju koju smo ovdje koristili.

24 / 45

$x \in \mathbb{Z}, 3 \nmid x \Leftrightarrow x^2$ pri dijeljenju s 3 daje ostatak 1

 $(3 \nmid x \Rightarrow x^2 \text{ pri dijeljenju s 3 daje ostatak 1})$

Pretpostavimo da $x \in \mathbb{Z}$ nije djeljiv s 3. Razlikujemo dva slučaja.

- x = 3k + 1 za neki $k \in \mathbb{Z}$ $x = 3k + 1 \implies x^2 = 9k^2 + 6k + 1 = 3 \cdot (3k^2 + 2k) + 1 \implies$ $\Rightarrow x^2$ pri dijeljenju s 3 daje ostatak 1
- x = 3k + 2 za neki $k \in \mathbb{Z}$ $x = 3k + 2 \implies x^2 = 9k^2 + 12k + (4) = 3 \cdot (3k^2 + 4k + 1) + 1 \implies$ $\Rightarrow x^2$ pri dijeljenju s 3 daje ostatak 1

 $(x^2 \text{ pri dijeljenju s 3 daje ostatak } 1 \Rightarrow 3 \nmid x)$

Dokazujemo kontrapoziciju:

 $3 \mid x \Rightarrow x^2$ pri dijeljenju s 3 ne daje ostatak 1

Pretpostavimo da je $x \in \mathbb{Z}$ djeljiv s 3. Tada je x = 3k za neki $k \in \mathbb{Z}$.

$$x = 3k \Rightarrow x^2 = 9k^2 \Rightarrow x^2 = 3 \cdot \underbrace{(3k^2)}_{\in \mathbb{Z}}$$

Dakle, x^2 je djeljiv s 3. Stoga x^2 pri dijeljenju s 3 ne daje ostatak 1.

26 / 45

27 / 45

c) Odredili smo ranije klase elemenata 0 i 1.

$$[0]_{\sim}=3\mathbb{Z}$$

$$[1]_{\sim}=\mathbb{Z}\setminus3\mathbb{Z}$$

Kako je \sim relacija ekvivalencije na skupu $\mathbb Z$ i

$$[0]_{\sim} \cup [1]_{\sim} = \mathbb{Z},$$

zaključujemo da se kvocijentni skup sastoji od samo dvije klase, tj.

$$\mathbb{Z}/\sim = \{3\mathbb{Z}, \, \mathbb{Z} \setminus 3\mathbb{Z}\}.$$

Algoritam za ručno crtanje Hasseovih dijagrama

- 1) Pronadi matricu incidencije zadanog parcijalnog uređaja.
- 2) Dvostruko zaokruži sve jedinice na glavnoj dijagonali.
- 3) Ponavljaj redom sljedeće korake tako dugo dok sve jedinice u matrici incidencije ne budu dvostruko zaokružene.
 - 3.1 Traži stupce u matrici incidencije čije su sve jedinice jednostruko ili dvostruko zaokružene i ubaci pripadne elemente na sljedeći nivo u Hasseovom dijagramu.
 - 3.2 Jednostruko zaokruži sve nezaokružene jedinice u svim retcima od elemenata koji su upravo ubačeni u Hasseov dijagram.
 - 3.3 Provjeri sve jednostruko zaokružene jedinice koje se nalaze u retcima i stupcima do sada ubačenih elemenata u Hasseov dijagram i po potrebi dodaj odgovarajuće bridove u Hasseov dijagram, a nakon provjere sve takve jedinice dvostruko zaokruži.

28 / 45

Rješenje

ab	2	3	4	8	9	16	32	64	81
2	1	0	1	1	0	1	1	1	0
3	0	1	0	0	1	0	0	0	1
4	0	0	1	0	0	1	0	1	0
8	0	0	0	1	0	0	0	1	0
9	0	0	0	0	1	0	0	0	1
16	0	0	0	0	0	1	0	0	0
32	0	0	0	0	0	0	1	0	0
64	0	0	0	0	0	0	0	1	0
81	0	0	0	0	0	0	0	0	1

Hasseov dijagram

 $a \preccurlyeq b \stackrel{\text{def}}{\Longleftrightarrow} b = a^r \text{ za neki } r \in \mathbb{N}$

30 / 45

Zadatak 5

Na skupu $T = \{2, 3, 4, 8, 9, 16, 32, 64, 81\}$ definirana je relacija parcijalnog uređaja \leq na sljedeći način:

$$a \preccurlyeq b \iff b = a^r \ za \ neki \ r \in \mathbb{N}.$$

- a) Odredite matricu incidencije zadanog parcijalnog uređaja.
- b) Odredite najveći, najmanji, minimalne i maksimalne elemente u parcijalno uređenom skupu T.
- c) Nacrtajte Hasseov dijagram parcijalno uređenog skupa T.
- d) Odredite supremum i infimum podskupova {4,8} i {4,8,32}.
- e) Je li parcijalno uređen skup T mreža? Objasnite.

Najmanji element ne postoji

Minimalni elementi 2,3

Najveći element ne postoji

Maksimalni elementi 16, 64, 81, 32

Parcijalno uređen skup T nije mreža jer npr. dvočlani podskup $\{2,3\}$ nema infimum (niti supremum).

• Podskup {4,8}

Donje međe 2

Gornje međe 64

$$\inf \{4,8\} = 2$$

$$\sup \{4, 8\} = 64$$

• Podskup {4, 8, 32}

Donje međe 2

Gornje međe ne postoje

$$\inf \{4, 8, 32\} = 2$$

 $\sup \{4, 8, 32\}$ ne postoji

Zadatak 6

Na skupu $B = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ definirana je relacija parcijalnog uređaja \leq na sljedeći način:

$$x \preccurlyeq y \stackrel{\text{def}}{\Longleftrightarrow} (x \mid y) \lor (x \text{ je prost } \land (x < y))$$

- a) Odredite matricu incidencije zadanog parcijalnog uređaja.
- b) Odredite najveći, najmanji, minimalne i maksimalne elemente u parcijalno uređenom skupu B.
- c) Nacrtajte Hasseov dijagram parcijalno uređenog skupa B.
- d) Odredite supremum, infimum, maksimum i minimum podskupa {4, 5, 6}.
- e) Napišite nekoliko lanaca u parcijalno uređenom skupu B.

32 / 45

33 / 45

 $x \leq y \stackrel{\text{def}}{\iff} (x \mid y) \lor (x \text{ je prost } \land (x < y))$

$$\mathcal{L}_1 = \{2,3,5,7,8\}, \quad \mathcal{L}_2 = \{3,4,8\}, \quad \mathcal{L}_3 = \{5,6\}$$

34 / 45

Zadatak 7

Neka je $A = \{1, 2, 3\}$. Na skupu $\mathcal{P}(A)$ definirana je relacija parcijalnog uređaja \leq na sljedeći način:

$$X \preccurlyeq Y \stackrel{\text{def}}{\Longleftrightarrow} (X = Y) \lor (k(X) < k(Y))$$

pri čemu su k(X) i k(Y) kardinalni brojevi skupova X i Y.

- a) Odredite matricu incidencije zadanog parcijalnog uređaja.
- b) Odredite najveći, najmanji, minimalne i maksimalne elemente u parcijalno uređenom skupu $\mathcal{P}(A)$.
- c) Nacrtajte Hasseov dijagram parcijalno uređenog skupa $\mathcal{P}(A)$.
- d) Odredite supremum, infimum, maksimum i minimum podskupa $C = \{\{1,2\},\{1,3\}\}.$
- e) Je li $\mathcal{P}(A)$ linearno uređen skup? Je li $\mathcal{P}(A)$ mreža? Obrazložite svoje odgovore.

Hasseov dijagram

$$X \preccurlyeq Y \stackrel{\text{def}}{\Longleftrightarrow} (X = Y) \lor (k(X) < k(Y))$$

36 / 45

Zadatak 8

Na skupu $\mathbb N$ definirana je relacija $\preccurlyeq s$

$$a \preccurlyeq b \iff b = a^r \text{ za neki } r \in \mathbb{N}.$$

- a) Dokažite da je $(\mathbb{N}, \preccurlyeq)$ parcijalno uređen skup.
- b) Odredite najveći, najmanji, minimalne i maksimalne elemente u parcijalno uređenom skupu \mathbb{N} .
- c) Odredite maksimalne elemente $u (\mathbb{N} \setminus \{1\}, \preccurlyeq)$.

38 / 45

Najmanji element Ø

Minimalni elementi Ø

Najveći element $\{1, 2, 3\}$

Maksimalni elementi {1, 2, 3}

$$C = \{\{1,2\},\{1,3\}\}$$

Donje međe $\{1\}, \{2\}, \{3\}, \emptyset$

Gornje međe $\{1,2,3\}$

inf *C* ne postoji

 $\sup C = \{1, 2, 3\}$

min C ne postoji max (

max C ne postoji

- $(\mathcal{P}(A), \preceq)$ nije linearno uređen skup jer npr. elementi $\{1\}$ i $\{2\}$ nisu usporedivi.
- $(\mathcal{P}(A), \preceq)$ nije mreža jer podskup C nema infimum.

Rješenje

 $a \preccurlyeq b \stackrel{\mathrm{def}}{\Longleftrightarrow} b = a^r \ \mathsf{za} \ \mathsf{neki} \ r \in \mathbb{N}$

a) Refleksivnost $(\forall a \in \mathbb{N})(a \preccurlyeq a)$

$$a = a^1 \Rightarrow a \preccurlyeq a$$
 $r = 1$

$$(a \leq b) \wedge (b \leq a) \Rightarrow \exists r_1, r_2 \in \mathbb{N}, \ b = \exists r_1, \ a = b \Rightarrow a = b \Rightarrow a = b \Rightarrow \exists r_1, r_2 \in \mathbb{N}, \ b = \exists r_1, \ a = b \Rightarrow a = b \Rightarrow a = b \Rightarrow a = b \Rightarrow a = b$$

39 / 45

$$a \preccurlyeq b \iff b = a^r$$
 za neki $r \in \mathbb{N}$

Tranzitivnost $(\forall a, b, c \in \mathbb{N}) ((a \leq b) \land (b \leq c) \Rightarrow a \leq c)$ $(a \leq b) \land (b \leq c) \Rightarrow \exists r_1, r_2 \in \mathbb{N}, \ b = \boxed{a^{r_1}}, \ c = \boxed{b^{r_2}} \Rightarrow$ $\Rightarrow c = (a^{r_1})^{r_2} \Rightarrow c = a^{r_1 r_2} \Rightarrow a \leq c$ $|er|_{b} = r_1 r_2 \in \mathbb{N}$

40 / 45

$$a \preccurlyeq b \stackrel{\mathrm{def}}{\Longleftrightarrow} b = a^r$$
 za neki $r \in \mathbb{N}$

b) Najmanji element

Pretpostavimo da je m najmanji element u parcijalno uređenom skupu (\mathbb{N}, \preceq) .

$$(\exists m \in \mathbb{N})(\forall a \in \mathbb{N})(m \preccurlyeq a)$$
$$(\exists m \in \mathbb{N})(\forall a \in \mathbb{N})(\exists r \in \mathbb{N})(a = m^r)$$

Dakle, svaki prirodni broj se može napisati kao prirodna potencija broja m. To je kontradikcija pa najmanji element u $(\mathbb{N}, \preccurlyeq)$ ne postoji.

$$a \preccurlyeq b \stackrel{\text{def}}{\Longleftrightarrow} b = a^r \text{ za neki } r \in \mathbb{N}$$

Najveći element

Pretpostavimo da je M najveći element u parcijalno uređenom skupu (\mathbb{N}, \preceq) .

$$(\exists M \in \mathbb{N})(\forall a \in \mathbb{N})(a \leq M)$$
$$(\exists M \in \mathbb{N})(\forall a \in \mathbb{N})(\exists r \in \mathbb{N})(M = a^r)$$

Dakle, M se može napisati kao prirodna potencija svakog prirodnog broja. To je kontradikcija pa najveći element u $(\mathbb{N}, \preccurlyeq)$ ne postoji.

42 / 45

$a \preccurlyeq b \stackrel{\mathrm{def}}{\Longleftrightarrow} b = a^r$ za neki $r \in \mathbb{N}$

Maksimalni elementi

Pretpostavimo da je M maksimalni element u parcijalno uređenom skupu (\mathbb{N}, \preceq) .

$$(\exists M \in \mathbb{N})(\forall a \in \mathbb{N})(M \preccurlyeq a \Rightarrow a = M)$$

$$(\exists M \in \mathbb{N})(\forall a \in \mathbb{N})((\exists r \in \mathbb{N})(a = M^r) \Rightarrow a = M)$$

Ako je $M \neq 1$, tada je $M \neq M^2$ i $M \leq M^2$. Stoga je broj 1 jedini maksimalni element u parcijalno uređenom skupu (\mathbb{N}, \leq) .

$$a \preccurlyeq b \stackrel{\text{def}}{\Longleftrightarrow} b = a^r \text{ za neki } r \in \mathbb{N}$$

Minimalni elementi

Pretpostavimo da je m minimalni element u parcijalno uređenom skupu $(\mathbb{N}, \preccurlyeq)$.

$$(\exists m \in \mathbb{N})(\forall a \in \mathbb{N})\big(a \preccurlyeq m \Rightarrow a = m\big)$$
$$(\exists m \in \mathbb{N})(\forall a \in \mathbb{N})\big((\exists r \in \mathbb{N})(m = a^r) \Rightarrow a = m\big)$$

Dakle, m se ne može napisati kao prirodna potencija prirodnog broja $(r \neq 1)$. Minimalni elementi su prirodni brojevi koji nisu potencije prirodnog broja. Na primjer: $6, 15, 17, 34, \ldots$

Specijalno, prosti brojevi su minimalni elementi.

Broj 1 je jedini element koji je minimalni i maksimalni.

44 / 45

$$a \preccurlyeq b \stackrel{\text{def}}{\Longleftrightarrow} b = a^r \text{ za neki } r \in \mathbb{N}$$

c) Broj 1 je jedini maksimalni element u parcijalno uređenom skupu $(\mathbb{N}, \preccurlyeq)$.

Stoga parcijalno uređeni skup $\left(\mathbb{N}\setminus\{1\},\preccurlyeq\right)$ nema niti jedan maksimalni element.

Zornova lema

Svaki neprazni parcijalno uređeni skup u kojemu svaki lanac ima gornju među, sadrži barem jedan maksimalni element.

- Obrat Zornove leme ne vrijedi. Jedan protuprimjer je upravo (\mathbb{N}, \preceq) .
- Na konačnim skupovima Zornova lema je trivijalna činjenica.