Mateusz Stawicki, 333274, grupa 2c, środa 16:15, projekt 2, zadanie 30

Treść zadania:

Metoda Adamsa-Bashfortha rzędu 3-go dla liniowych równań różniczkowych pierwszego i drugiego rzędu. Wartości początkowe y_1,y_2 należy obliczyć metodą Rungego-Kutty rzędu 3-go $(\alpha=\frac{1}{3},\beta=\frac{2}{3}).$

Metoda Rungego-Kutty

Ogólna postać:

$$Y_0$$
 - dane,
$$Y_{i+1} = Y_i + \sum_{j=1}^r c_j K_j, \quad i = 0, 1, \dots, n-1,$$

gdzie

$$K_1 = hF_i,$$

$$K_j = hF\left(x_i + h\sum_{s=1}^{j-1} b_{js}, Y_i + \sum_{s=1}^{j-1} b_{js}K_s\right), \quad j = 2, 3, \dots, r.$$

Parametry:

 c_j , b_{js} są pewnymi stałymi, gdzie $j=1,2,\ldots,r$.

Współczynniki cj., bjs

$$\begin{bmatrix} b_{21} \\ b_{31} & b_{32} \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ 0 & \frac{2}{3} \\ \frac{1}{4} & 0 & \frac{3}{4} \end{bmatrix}.$$

Metoda Adamsa-Bashfortha

$$Y_{k+1} = Y_k + h \sum_{i=0}^{s} \alpha_i F_{k-i},$$
 (1)

 $gdzie F_{k-i} \equiv F(Y_{k-i}).$

Z równania różniczkowego Y' = F(Y) wynika:

$$\int_{x_k}^{x_{k+1}} Y'(x) dx = \int_{x_k}^{x_{k+1}} F(Y(x)) dx,$$

co prowadzi do:

$$Y(x_{k+1}) = Y(x_k) + \int_{x_k}^{x_{k+1}} F(Y(x)) dx.$$
 (2)

Aby poprawić przybliżenie całki w (2), należy dobrać parametry α_i w (1), aby uzyskać możliwie najlepszą dokładność.

Wyznaczanie współczynników α_i

Wzór kwadratury dla metod Adamsa-Bashfortha:

$$h\sum_{i=0}^{s} \alpha_i F_{k-i} \approx \int_{x_k}^{x_{k+1}} F(Y(x)) dx, \tag{3}$$

jest dokładny dla wszystkich wielomianów stopnia do s. Zakładając, że węzły x_{k-i} $(i=0,1,\ldots,s)$ są równoodległe,

współczynniki α_i ($0 \le i \le s$) można obliczyć, rozwiązując układ równań liniowych.

W wyniku obliczeń wyznaczyłem następujące wartości współczynników dla metody rzędu tzeciego:

$$\alpha_0 = \frac{23}{12}, \quad \alpha_1 = -\frac{16}{12}, \quad \alpha_2 = \frac{5}{12}.$$

Błąd globalny

$$\text{blad globalny} = \max_{0 \le k \le n} |y_k - y(x_k)|,$$

 $y(x_k)$ – dokładna wartość rozwiązania, y_k – wartość obliczona numerycznie.

Sposób testowania implementacji

Testowanie implementacji polega na wyznaczaniu błędu globalnego, oraz sprawdzania czy stosunek błędów jest bliski stosunkowi kroków całkowania do sześcianu.

- **Równanie 1:** $5 \cdot y' = e^x$ Rozwiązanie analityczne: $\frac{1}{5} \exp(x) + \frac{4}{5}$
- **Pownanie 2:** $y'' 2 \cdot y' + y = x^3$ Rozwiązanie analityczne: $-23 \cdot \exp(x) + 6 \cdot x \cdot \exp(x) + x^3 + 6 \cdot x^2 + 18 \cdot x + 24$
- **Równanie 3**: $-5 \cdot y' + 6 \cdot y = 0$ Rozwiązanie analityczne: $2 \cdot \exp(2 \cdot x) - \exp(3 \cdot x)$
- **Równanie 4:** $y' = x^2$ Rozwiązanie analityczne: $\frac{1}{3} \cdot x^3 + 1$

Równanie różniczkowe: $5 \cdot y' = e^x$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	1.585e-06	-	-
1.000e-02	1.590e-09	1.003e-03	1.000e-03
5.000e-03	1.988e-10	1.250e-01	1.250e-01
2.500e-03	2.486e-11	1.250e-01	1.250e-01
1.000e-03	1.593e-12	6.409e-02	6.400e-02

Równanie różniczkowe: $y'' - 2 \cdot y' + y = x^3$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	3.521e-04	-	-
1.000e-02	3.984e-07	1.132e-03	1.000e-03
5.000e-03	5.015e-08	1.259e-01	1.250e-01
2.500e-03	6.290e-09	1.254e-01	1.250e-01
1.000e-04	4.179e-13	6.644e-05	6.400e-05

Równanie różniczkowe: $y'' - 5 \cdot y' + 6 \cdot y = 0$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	4.493e-02	-	-
1.000e-02	5.649e-05	1.257e-03	1.000e-03
5.000e-03	7.151e-06	1.266e-01	1.250e-01
2.500e-03	8.995e-07	1.258e-01	1.250e-01
1.000e-04	5.782e-11	6.428e-05	6.400e-05

Równanie różniczkowe: $y' = x^2$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	4.441e-16	-	-
1.000e-02	8.882e-16	2.000e+00	1.000e-03
5.000e-03	6.661e-16	7.500e-01	1.250e-01
2.500e-03	2.220e-15	3.333e+00	1.250e-01
1.000e-04	9.104e-15	4.100e+00	6.400e-05

Równanie różniczkowe: $5 \cdot y' = e^x$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	1.011e-04	-	-
1.000e-02	1.260e-07	1.246e-03	1.000e-03
5.000e-03	1.593e-08	1.264e-01	1.250e-01
2.500e-03	2.002e-09	1.257e-01	1.250e-01
1.000e-03	1.286e-10	6.422e-02	6.400e-02

Równanie różniczkowe: $y'' - 2 \cdot y' + y = x^3$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	4.664e-03	-	-
1.000e-02	6.859e-06	1.471e-03	1.000e-03
5.000e-03	8.745e-07	1.275e-01	1.250e-01
2.500e-03	1.104e-07	1.262e-01	1.250e-01
1.000e-04	7.125e-12	6.453e-05	6.400e-05

Równanie różniczkowe: $y'' - 5 \cdot y' + 6 \cdot y = 0$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	2.955e-01	-	-
1.000e-02	4.951e-04	1.675e-03	1.000e-03
5.000e-03	6.351e-05	1.283e-01	1.250e-01
2.500e-03	8.043e-06	1.266e-01	1.250e-01
1.000e-04	5.211e-10	6.480e-05	6.400e-05

Równanie różniczkowe: $y' = x^2$

h	Błąd globalny	Stosunek błędów	Stosunek $(h_2/h_1)^3$
1.000e-01	2.220e-16	-	-
1.000e-02	1.110e-15	5.000e+00	1.000e-03
5.000e-03	6.661e-16	6.000e-01	1.250e-01
2.500e-03	1.998e-15	3.000e+00	1.250e-01
1.000e-04	9.770e-15	4.889e+00	6.400e-05

Równanie różniczkowe: $5 \cdot y' = e^x$

h	BG_AB	BG_RK
2.000e-01	5.992e-04	1.263e-05
1.000e-01	1.011e-04	1.585e-06
1.000e-02	1.260e-07	1.590e-09
5.000e-03	1.593e-08	1.988e-10
2.500e-03	2.002e-09	2.486e-11
1.429e-03	3.745e-10	4.638e-12
1.000e-03	1.286e-10	1.593e-12
5.000e-04	1.609e-11	1.950e-13

Tabela: Porównanie błędów globalnych metod AB3 i RK3.

Równanie różniczkowe: $y'' - 2 \cdot y' + y = x^3$

h	BG_AB	BG_RK
2.000e-01	2.197e-02	2.456e-03
1.000e-01	4.664e-03	3.521e-04
1.000e-02	6.859e-06	3.984e-07
5.000e-03	8.745e-07	5.015e-08
2.500e-03	1.104e-07	6.290e-09
1.429e-03	2.069e-08	1.175e-09
1.000e-03	7.125e-12	4.179e-13
5.000e-05	8.811e-13	5.551e-14

Tabela: Porównanie błędów globalnych metod AB3 i RK3.

Równanie różniczkowe: $y'' - 5 \cdot y' + 6 \cdot y = 0$

h	BG_AB	BG_RK
2.000e-01	1.171e+00	2.777e-01
1.000e-01	2.955e-01	4.493e-02
1.000e-02	4.951e-04	5.649e-05
5.000e-03	6.351e-05	7.151e-06
2.500e-03	8.043e-06	8.995e-07
1.429e-03	1.509e-06	1.683e-07
1.000e-03	5.211e-10	7.176e-12
5.000e-05	6.514e-11	7.176e-12

Tabela: Porównanie błędów globalnych metod AB3 i RK3.

Równanie różniczkowe: $y' = x^2$

h	Błąd globalny
2.000e-01	2.220e-16
1.000e-01	2.220e-16
1.000e-02	1.110e-15
5.000e-03	6.661e-16
2.500e-03	1.998e-15
1.250e-03	1.554e-15
1.000e-03	1.776e-15
5.000e-04	3.553e-15

Równanie różniczkowe: $y' = x^3$

h	Błąd globalny
2.000e-01	1.089e-02
1.000e-01	1.806e-03
1.000e-02	2.206e-06
5.000e-03	2.785e-07
2.500e-03	3.498e-08
1.250e-03	4.384e-09
1.000e-03	2.246e-09
5.000e-04	2.810e-10

Równanie różniczkowe: $y' = x^4$

h	Błąd globalny
2.000e-01	2.106e-02
1.000e-01	3.551e-03
1.000e-02	4.404e-06
5.000e-03	5.565e-07
2.500e-03	6.994e-08
1.250e-03	8.766e-09
1.000e-03	4.490e-09
5.000e-04	5.619e-10

Bibliografia

- Notatki do wykładu Metody Numeryczne 2 Paweł Keller, Iwona Wróbel
- Metody numeryczne Zenon Fortuna, Bohdan Macukow, Janusz Wąsowski