

BITS Pilani
Hyderabad Campus

Data Structures and Algorithms Design (DSECLZG519)

Febin.A.Vahab Asst.Professor(Offcampus) BITS Pilani,Bangalore

SESSION 3 -PLAN

Online Sessions(#)	List of Topic Title	Text/Ref Book/external resource
3	Big-Omega and Theta(Quick Review), Correctness Algorithms.	of T1: 1.2

•

• The function f(n) is said to be in $\Omega(g(n))$ iff there exists a positive constant c and a positive integer n0 such that

$$f(n) \ge c.g(n)$$
 for all $n \ge n0$.

- Asymptotic lower bound
- $n^3 \in \Omega(n^2)$
- $n^5+n+3 \in \Omega(n^4)$

Big-Omega Notation

- Big-Omega notation provides a lower bound on a function to within a constant factor.
- To prove big-Omega, find witnesses, specific values for C and n0, and prove n > n0 implies $f(n) \ge C * g(n)$.

Tricks for Proving Big-Omega

- Assume n > 1 if you chose n0 = 1 (or n > 10 if you chose n0 = 10).
- To prove $f(n) \ge C * g(n)$, you need to find expressions smaller than f(n) and larger than C * g(n).
- If the lowest-order term is positive, just eliminate it to obtain a larger expression.
- Repeatedly use -n0 > -n and -0.1n0 > -0.1n and so on to "convert" the lowest-order term into a higher-order term.
- Check that your expressions are greater than C * g(n) by using n = 100.

Tricks for Proving Big-Omega

- Generate a table for f(n) and g(n). using n = 1, n = 10 and n = 100.[Use values smaller than 10 and 100 if you wish.]
- Guess 1/C = [g(1)/f(1)] (or more likely 1/C = [g(10)/f(10)]).
- Check that $f(10) \ge C * g(10)$ and $f(100) \ge C * g(100)$.[If this is not true, f(n) might not be (g(n)).]
- Choose n0 = 1 (or n0 = 10).
- Prove that $\forall n(n > n0 \rightarrow f(n) \ge C * g(n))$.[It's ok if you end up with a smaller, but still positive, value for C.]

Big-Omega Example 1

- Show that $n^2 2n + 1$ is $\Omega(n^2)$.
- In this case, $f(n) = n^2 2n + 1$ and $g(n) = n^2$.

n	f(n)	g(n)	Ceil(g(n)/f(n))	C
1	0	1	-	-
10	81	100	2	1/2
100	9801	10000	2	1/2

• This table suggests trying n0 = 10 and C = 1/2.

Big-Omega Example 1

- Try n0 = 10 and C = 1/2.
 - Want to prove n > 10 implies $n^2 2n + 1 \ge n^2/2$.
 - Assume n > 10. Want to show $f(n) \ge n^2/2$.
 - The lowest-order term is positive, so eliminate.
 - $n^2 2n + 1 > n^2 2n$
 - n > 10 implies -10 > -n, implies -2 > -0.2n.
 - $-2n > -0.2n^2$ implies $n^2 2n > n^2 0.2n^2 = 0.8n^2$.
 - $n > 10 \text{ implies } 0.8n^2 > n^2/2.$
 - This finishes the proof.

Big-Omega More examples

- Show that 3n + 7 is $\Omega(n)$.
- Show that $n^3/8 n^2/12 n/6 1$ is $O(n^3)$.
- Discuss in Canvas and check the solutions
- Solution present in slides(https://bits-pilani.instructure.com/groups/4548/pages/lecture-2-session-on-02-slash-05-slash-2020)

Big-Theta Notation

• The function f(n) is said to be in $\Theta(g(n))$ iff there exists some positive constants c1 and c2 and a non negative integer n0 such that

$$c1.g(n) \le f(n) \le c2.g(n)$$
 for all $n \ge n0$

- Asymptotic tight bound
- $an^2+bn+c \in \Theta(n^2)$
- $n^2 \in \Theta(n^2)$

Examples Θ

• $f(n)=5n^2$. Prove that f(n) is $\Theta(n)$

- $-5n^2=c.n$
- c.n=5n²
- c=5n
- If n=1,c=5
- -5*1 <= 5*1 hence the proof.

Little-Oh and little omega Notation

- f(n) is o(g(n)) (or $f(n) \in o(g(n))$) if for any real constant c > 0, there exists an integer constant $n0 \ge 1$ such that
 - f(n) < c * g(n) for every integer $n \ge n0$.
- f(n) is $\omega(g(n))$ (or $f(n) \in \omega(g(n))$) if for any real constant c > 0, there exists an integer constant $n \ge 1$ such that
 - f(n) > c * g(n) for every integer $n \ge n0$.

Little-Oh and Little omega Notation

- $12n^2 + 6n \text{ is } o(n^3)$
- 4n+6 is $o(n^2)$
- 4n+6 is $\omega(1)$
- $2n^9 + 1$ is $o(n^{-10})$
- n^2 is $\omega(\log n)$

USING LIMITS

Little Oh- =
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathbf{0}$$

Little Omega = $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$

Correctness of algorithm

- An algorithm is said to be correct if, for every input instance, it halts with the correct output.
- When it can be incorrect?
 - Might not halt on all input instances
 - Might halt with an incorrect answer
- Does it makes sense to think of incorrect algorithm?
 - Might be useful if we can control the error rate and can be implemented very fast

THANK YOU!

BITS Pilani

Hyderabad Campus