金沢大学大学		%科学研 学 試 験	究科		問	題
科		各			対	•*
数 学			参り【工学専攻、機械科学専攻 環境基盤工学専攻、電子情報システム専攻			

2003年8月26日(火) 10:45-11:45

[注意] 1. 問題 [1], [2], [3], [4] のうち、2頭を選択して解答すること、 2. 解答は各題ごとに分けて、1題を1枚の答案用紙に書くこと。

٥	[]] ø/	微分方程式	$x\frac{d^2y}{dx^2} + \frac{d}{d}$	$\frac{y}{x} = 0$	_ を解け.	A)	rβ° + ° / -γ &
Х	(2)/微分力	\overline{f} 程式 $\left \frac{d^2y}{dx^2} \right $	$+y = \cos \alpha$	ıx (a k	は定数) る	を解け	X.	

(3) 微分方程式 $(2y-\sin x)\varphi(x)\,dx+x\varphi(x)\,dy=0$ が完全微分形になるように関数 $\varphi(x)$ を定め、 x(15-5(nx) \$68) dx + x d'a = 0

2 (x) ベクトル場 u=(z-y)i+(x-z)j+(y-x)k に対して, rotu を求めよ.

- (2) 領域 $x^2+y^2+z^2\leq \frac{1}{4}$ の境界上の点 (x,y,z) での外向き単位法線ベクトルを n とする. n および $n\times u$ を x,y,z を用いて表せ、
- (3) ベクトル場 $v = (y^2 + z^2 xy zx)i + (z^2 + x^2 yz xy)j + (x^2 + y^2 zx yz)k$ に対し、

一 3 複素関数 $f(z) = \left(\frac{z}{z^2+1}\right)^2$ について、次の間に答えよ.

- (1) 上半平面にある f(z) の極について、その留数を求めよ。
- (2) 中心が原点にあり半径 R(>1) の円周の上半部分を C_R とする、 $z=Re^{i\theta}$ $(0 \le \theta \le \pi)$ とおいて、 $\int_{C_R} f(z) \, dz \approx \theta \, \, \text{の積分で表し、} \lim_{R \to \infty} \int_{C_R} f(z) \, dz = 0 \, \, \text{を示せ.}$
- (3) 以上を利用して、広義積分 $\int_0^{+\infty} \left(\frac{x}{x^2+1}\right)^2 dx$ を計算せよ、

| 4 | 区間 $[0,\infty)$ で定義された関数 f(t), g(t) に対して、

$$h(t) = \int_0^t f(t-u)g(u) \, du /$$

で定義される関数 h(t) を f(t) と g(t) の合成積といい、h=f*g で表す。

 $(\mathfrak{A})f(t)=g(t)=\sin t$ のとき、h=f*g を求めよ。

(2) 一般の f(t), g(t) に対し (それらのラブラス変換が絶対収束するとき) , ラブラス変換 \pounds について次の公式 $\mathcal{L}(f*g) = \mathcal{L}(f)\mathcal{L}(g).$

が成り立つことを示せ、

(3)有理関数 $\frac{2}{(s^2+1)^2}$ のラブラス逆変換 $\mathcal{L}^{-1}\Big(\frac{2}{(s^2+1)^2}\Big)$ を求めよ.