IDSM2 Circuit Model

Boris Murmann bmurmann@hawaii.edu

IDSM1 Circuit Model

/foss/designs/tb_ideal_idsm1.sch

Fixing the IHP Standard Cell Symbols

Start the container as root

```
docker exec -u root -t -i iic-osic-tools_xserver_uid_1000 /bin/bash
```

Go to directory containing the IHP standard cell symbols

```
cd /foss/pdks/sg13g2/libs.tech/xschem/sg13g2_stdcells
```

Run this command to fix the symbols' pin order (courtesy Mitch Bailey)

```
sed -i \
-e 's/@VGND @VNB @VPB @VPWR/@VDD @VSS/' \
-e 's/VGND=VGND VNB=VNB VPB=VPB VPWR=VPWR/VDD=VDD VSS=VSS/' \
-e 's/VGND VNB VPB VPWR/VDD VSS/' \
-e 's/@VDD @VSS @@Q @@Q N/@@Q @@Q N @VDD @VSS/' *
```

■ This still doesn't completely fix the flipflop cell. Using a text editor, move "RESET_B" to the location shown below in in sg13g2_dfrbp_1.sym

```
format="@name @@CLK @@D @@Q @@Q N @@RESET B @VDD @VSS @prefix\\\\dfrbp 1"
```

First-Order Modulator with DFF Symbol

Next Steps

- Add second integrator (second-order modulator)
- Write some post-processing scripts
 - Detailed measurements
 - Emulate counters to create final digital output
- Increasingly "transistorize" the implementation
 - Shift voltages to practical levels (can't have negative voltages)
 - Comparator
 - Clock generator
 - MOSFET switches
 - Inverter-based amplifier
 - With correlated double-sampling to achieve high gain

Template Circuit

Y. Chae et al., "A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel ADC Architecture," in IEEE Journal of Solid-State Circuits, Jan. 2011. https://ieeexplore.ieee.org/document/5641589

Second-Order Modulator

Looks a little complicated; better to stick integrators into a subcircuit + symbol

Simulation Result

Close, but not the expected trajectory for int2 output. Why?

Postprocessing

```
# sample q and count number of ones
t = df['time']
ts = np.arange(1.5e-6, 1.5e-6+64*1e-6, 1e-6)
q = df['q']
interp_func = interpld(t, q)
qsamp = interp_func(ts)
qsamp[qsamp > 0.5] = 1
qsamp[qsamp < 0.5] = 0
csum = np.cumsum(qsamp)
dout = np.cumsum(csum)
vin = 0.075*64.0*65.0/2.0</pre>
```

```
plt.figure(2)
plt.clf()
plt.plot(ts, dout, label="dout")
plt.plot([0, 65e-6], [vin, vin], label="vin")
plt.xlabel("time")
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


dout[-1]

155.0

vin

156.0

Off by one quantization step after (64+1 us). Need one more clock cycle because of initial reset phase.

Probably OK, but best to do an input sweep to assess quantization error bounds (like we did in Simulink)

Voltage Range Considerations

Midpoint for all signals VMID = 0.6 V

Integrators will work for some fraction of the supply, say 0.7 V

VSS = 0 V

Modified Schematic

VL = 0 V, VH = VDD, $V_{in} = 7 mV$

VL = 0.25V, VH = VDD-0.25V, $V_{in} = 7 \text{ mV}$

Looks good!

Simulation Settings

- You may have already noticed that these idealized circuit simulations are relatively slow
- This is partly because the circuits contains very fast transients, high-gain elements, sharp nonlinearities, huge impedance changes (Ron/Roff)
- You may sometimes see convergence issues that can often be resolved making things slightly less ideal (e.g., roff = 10gig → 1 gig)

```
.param temp=27 vdd=1.2 per=1u
.model mysw SW vt={vdd/2} ron=10k roff=1gig
.option method=gear reltol=1e-4

.control
save all
tran 1n 65u
plot vo1 vo2 q
set wr_singlescale
set wr_vecnames
wrdata tb_ideal_idsm2.txt vo1 vo2 q p1 p2
.endc
```

Next Steps

- Add second integrator (second-order modulator)
- Write some post-processing scripts
 - Detailed measurements
 - Emulate counters to create final digital output
- Increasingly "transistorize" the implementation
 - Shift voltages to practical levels (can't have negative voltages)
 - Comparator
 - Inverter-based amplifier with CDS
 - MOSFET switches & clock generator