THE MONSTER IS THE 28917828424943086TH SMALLEST NON-ABELIAN SIMPLE GROUP

STEFAN KOHL

ABSTRACT. Using the CFSG, we determine the positions of the 26 sporadic simple groups in a list of non-abelian simple groups sorted by ascending order. In particular, we find that the largest of these groups, the Fischer-Griess monster, occurs at position 28917828424943086.

1. Introduction

Based on [1] (cf. in particular Table 6 on Page xvi), using GAP [2] and primecount [3] we work out the following:

Theorem 1.1. The positions of the 26 sporadic simple groups in a list of non-abelian simple groups sorted by ascending order are as follows:

Group	Position	Group	Position
M_{11}	15	ON	1334
M_{12}	31	Co_3	1364
J_1	36	Co_2	4771
M_{22}	46	Fi_{22}	5396
J_2	50	HN	8240
M_{23}	98	Ly	39569
HS	138	Th	46944
J_3	143	Fi_{23}	150537
M_{24}	203	Co_1	151306
McL	269	$ J_4 $	386553
Не	388	Fi_{24}'	7696143
Ru	976	В	8105003887
Suz	1325	M	28917828424943086

The positions of the groups M_{11} , M_{12} , J_1 , M_{22} and J_2 can be read off directly from [1], Page 238. The positions of these and the other

²⁰¹⁰ Mathematics Subject Classification. 20D06, 20E32, 20F28, 20-04.

 $[\]it Key\ words\ and\ phrases.$ finite simple group, sporadic group, Fischer-Griess monster.

groups of order less than 10^{18} are also readily available from GAP [2]. This further covers the groups M_{23} , HS, J_3 , M_{24} , McL, He, Ru, Suz, ON, Co₃, Co₂, Fi₂₂, HN, Ly and Th. Therefore we can restrict our considerations to the remaining 6 largest groups. Since the counting process in all of these cases is completely analogous, we discuss here only the case of the monster group M.

Also in a completely analogous manner, we obtain the following:

Theorem 1.2. The positions of the smallest members of 15 of the 16 series of simple groups of Lie type in a list of non-abelian simple groups sorted by ascending order are as follows (in the cases where a group belongs to more than one series, we count it as a member of the series which is mentioned earlier in the table):

Series	Smallest member	Position
$A_n(q)$	$A_1(5)$	1
$^{2}\mathrm{A}_{n}(q)$	${}^{2}A_{2}(3)$	12
$B_n(q)$	$B_2(4)$	56
$^{2}B_{2}(q)$	${}^{2}\mathrm{B}_{2}(8)$	23
$C_n(q)$	$C_3(3)$	403
$D_n(q)$	$D_4(2)$	185
$^{2}\mathrm{D}_{n}(q)$	$^{2}\mathrm{D}_{4}(2)$	191
$^{3}\mathrm{D}_{4}(q)$	$^{3}D_{4}(2)$	194
$G_2(q)$	$G_2(3)$	79
${}^{2}G_{2}(q)$	${}^{2}G_{2}(27)$	495
$F_4(q)$	$F_4(2)$	17283
${}^{2}\mathrm{F}_{4}(q)$	${}^{2}\mathrm{F}_{4}(8)$	4721721
$E_6(q)$	$E_{6}(2)$	4421593
$^{2}\mathrm{E}_{6}(q)$	${}^{2}\mathrm{E}_{6}(2)$	3199322
$E_7(q)$	$\mathrm{E}_{7}(2)$	844883561753
$E_8(q)$	$E_8(2)$?

The determination of the position of $E_8(2)$ would be possible as well, but take more resources. – The key step of this would be counting the prime numbers less than or equal to 8774692727285368158503849.

2. Counting the simple groups smaller than the monster

We count the groups by series, taking care to avoid counting any group twice. -

(1) First of all, we determine the number of simple groups of type A(1,q) = PSL(2,q) of order less than |M|. These make up by

far the majority of all non-abelian simple groups whose order lies in that range. We need to distinguish two cases:

(a) q is odd. The largest group of type PSL(2,q) of order less than $|\mathcal{M}|$ is the one for $q_{max} = 1173501297218634619$. Letting $\pi(n)$ denote the number of primes $\leq n$, the number of odd prime powers $q \leq q_{max}$ is equal to

$$\sum_{r=1}^{\log_3(q_{max})} \left(\pi(\sqrt[r]{q_{max}}) - 1\right).$$

- (b) q is even. Here, the 57 groups $PSL(2, 2^k)$ for $3 \le k \le 59$ have order less than |M|. Note that we have already counted the group $PSL(2, 4) \cong PSL(2, 5)$ above.
- (2) The series A of projective special linear groups PSL(n+1,q) contributes another 406149 groups of Lie rank ≥ 2 .
 - (a) A total of 405436 groups of Lie rank 2.
 - (i) 14 groups of type $PSL(3, 3^k)$ for $1 \le k \le 14$,
 - (ii) 215733 groups of type PSL(3, q) for the prime powers $q \equiv 1 \pmod{3}$ in the range $4 \leq q \leq 6281491$, and
 - (iii) 189689 groups of type PSL(3, q) for the prime powers $q \equiv 2 \pmod{3}$ in the range $5 \le q \le 5475539$.

Note that the group $PSL(3,2) \cong PSL(2,7)$ has already been counted above.

- (b) A total of 618 groups of Lie rank 3.
 - (i) 11 groups of type $PSL(4, 2^k)$ for $1 \le k \le 11$,
 - (ii) 314 groups of type PSL(4, q) for the prime powers $q \equiv 1 \pmod{4}$ in the range $5 \le q \le 4297$, and
 - (iii) 293 groups of type PSL(4, q) for the prime powers $q \equiv 3 \pmod{4}$ in the range $3 \le q \le 4099$.
- (c) A total of 55 groups of Lie rank 4.
 - (i) 3 groups of type $PSL(5, 5^k)$ for $1 \le k \le 3$,
 - (ii) 12 groups of type PSL(5, q) for the prime powers $q \equiv 1 \pmod{5}$ in the range $11 \leq q \leq 181$, and

- (iii) 40 groups of type PSL(5,q) for the prime powers $q \equiv 2, 3, 4 \pmod{5}$ in the range $2 \leq q \leq 173$.
- (d) 18 groups of Lie rank 5, namely the groups PSL(6,q) for the prime powers q in the range $2 \le q \le 32$.
- (e) 9 groups of Lie rank 6, namely the groups PSL(7, q) for the prime powers q in the range $2 \le q \le 13$.
- (f) 5 groups of Lie rank 7, namely the groups PSL(8,q) for $q \in \{2, 3, 4, 5, 7\}$.
- (g) 8 groups of Lie rank \geq 8, namely the groups PSL(9,2), PSL(9,3), PSL(9,4), PSL(10,2), PSL(10,3), PSL(11,2), PSL(12,2), and PSL(13,2).
- (3) The series 2 A of projective special unitary groups PSU(n+1,q) contributes a total of 406270 groups.
 - (a) A total of 405560 groups of Lie rank 2.
 - (i) 14 groups of type $PSU(3, 3^k)$ for $1 \le k \le 14$,
 - (ii) 189964 groups of type PSU(3, q) for the prime powers $q \equiv 1 \pmod{3}$ in the range $4 \leq q \leq 5475529$, and
 - (iii) 215582 groups of type PSU(3, q) for the prime powers $q \equiv 2 \pmod{3}$ in the range $5 \le q \le 6281537$.
 - (b) A total of 615 groups of Lie rank 3.
 - (i) 11 groups of type $PSU(4, 2^k)$ for $1 \le k \le 11$,
 - (ii) 300 groups of type PSU(4, q) for the prime powers $q \equiv 1 \pmod{4}$ in the range $5 \le q \le 4093$, and
 - (iii) 304 groups of type PSL(4, q) for the prime powers $q \equiv 3 \pmod{4}$ in the range $3 \le q \le 4283$.
 - (c) A total of 55 groups of Lie rank 4.
 - (i) 3 groups of type $PSU(5, 5^k)$ for $1 \le k \le 3$,
 - (ii) 14 groups of type PSU(5,q) for the prime powers $q \equiv 4 \pmod{5}$ in the range 4 < q < 179, and
 - (iii) 38 groups of type PSL(5,q) for the prime powers $q \equiv 1, 2, 3 \pmod{5}$ in the range $2 \leq q \leq 173$.
 - (d) 18 groups of Lie rank 5, namely the groups PSU(6, q) for the prime powers q in the range $2 \le q \le 32$.
 - (e) 9 groups of Lie rank 6, namely the groups PSU(7, q) for the prime powers q in the range $2 \le q \le 13$.
 - (f) 5 groups of Lie rank 7, namely the groups PSU(8,q) for $q \in \{2, 3, 4, 5, 7\}$.
 - (g) 8 groups of Lie rank \geq 8, namely the groups PSU(9, 2), PSU(9, 3), PSU(9, 4), PSU(10, 2), PSU(10, 3), PSU(11, 2), PSU(12, 2), and PSU(13, 2).
- (4) The series B of orthogonal groups of type O(2n + 1, q) contributes a total of 23385 groups. –

- (a) 23260 groups of type O(5, q) for the prime powers q in the range $4 \le q \le 263537$ and $q \ne 2^{18}$,
- (b) 94 groups of type O(7, q) for the prime powers q in the range $2 \le q \le 379$,
- (c) 17 groups of type O(9, q) for the prime powers q in the range $2 \le q \le 31$,
- (d) 7 groups O(11, q) for $q \in \{2, 3, 4, 5, 7, 8, 9\}$, and the
- (e) 7 groups O(13, 2), O(13, 3), O(13, 4), O(15, 2), O(15, 3), O(17, 2) and O(19, 2).
- (5) The series 2B_2 of Suzuki groups $Sz(2^{2m+1})$ contributes the 17 groups $Sz(2^3), Sz(2^5), \ldots, Sz(2^{35})$.
- (6) The series C of projective symplectic groups PSp(2n,q) contributes a total of 105 groups.
 - (a) 86 groups of type PSp(6, q) for the odd prime powers q in the range $3 \le q \le 379$,
 - (b) 13 groups of type PSp(8, q) for the odd prime powers q in the range $3 \le q \le 31$,
 - (c) 4 groups PSp(10, q) for $q \in \{3, 5, 7, 9\}$, and the
 - (d) 2 groups PSp(12,3) and PSp(14,3).
- (7) The series D of orthogonal groups of type $O^+(2n, q)$ contributes a total of 50 groups.
 - (a) 33 groups of type $O^+(8,q)$ for the prime powers q in the range $2 \le q \le 83$,
 - (b) 9 groups of type $O^+(10, q)$ for the prime powers q in the range $2 \le q \le 13$,
 - (c) 4 groups $O^+(12, q)$ for $q \in \{2, 3, 4, 5\}$, and the
 - (d) 4 groups $O^+(14, 2)$, $O^+(14, 3)$, $O^+(16, 2)$ and $O^+(18, 2)$.
- (8) The series 2 D of orthogonal groups of type $O^-(2n,q)$ contributes a total of 50 groups.
 - (a) 33 groups of type $O^-(8, q)$ for the prime powers q in the range $2 \le q \le 83$,
 - (b) 9 groups of type $O^-(10, q)$ for the prime powers q in the range $2 \le q \le 13$,
 - (c) 4 groups $O^{-}(12, q)$ for $q \in \{2, 3, 4, 5\}$, and the
 - (d) 4 groups $O^-(14, 2)$, $O^-(14, 3)$, $O^-(16, 2)$ and $O^-(18, 2)$.
- (9) The series 3D_4 of Steinberg triality groups contributes the 33 groups $^3D_4(q)$ for prime powers q satisfying $2 \le q \le 83$.
- (10) The series G_2 contributes the 956 groups $G_2(q)$ for prime powers q satisfying $3 \le q \le 7079$.
- (11) The series 2G_2 of Ree groups of type $\text{Ree}(3^{2m+1})$ contributes the 7 groups $\text{Ree}(3^3), \text{Ree}(3^5), \dots, \text{Ree}(3^{15}).$

- (12) The series F_4 contributes the 7 groups $F_4(2)$, $F_4(3)$, $F_4(4)$, $F_4(5)$, $F_4(7)$, $F_4(8)$ and $F_4(9)$.
- (13) The series ${}^{2}F_{4}$ of Ree groups of type $\operatorname{Ree}(2^{2m+1})$ contributes 3 groups the Tits group $\operatorname{Ree}(2)'$, $\operatorname{Ree}(2^{3})$ and $\operatorname{Ree}(2^{5})$.
- (14) The series E_6 contributes the 3 groups $E_6(2)$, $E_6(3)$ and $E_6(4)$.
- (15) The series 2E_6 contributes the 3 groups ${}^2E_6(2)$, ${}^2E_6(3)$ and ${}^2E_6(4)$.
- (16) The series E_7 contributes only one group, namely $E_7(2)$.
- (17) The series E_8 contributes no group, since already $E_8(2)$ is larger than M.
- (18) The largest alternating group whose order is less than |M| is A_{43} . Now we have already counted $A_5 \cong PSL(2,5)$, $A_6 \cong PSL(2,9)$ and $A_8 \cong PSL(4,2)$, so the series contributes 36 new groups.
- (19) Finally, we need to count the 25 sporadic simple groups other than the monster.

Adding all these numbers up, we find that there are 28917828424943085 non-abelian simple groups smaller than the monster – or in other words, that the monster is at position 28917828424943086 in the list, as claimed.

3. Acknowledgements

The author thanks Peter Müller for an independent verification of the counts.

References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With comput. assist. from J. G. Thackray., Oxford: Clarendon Press. XXXIII, 252 p. (1985)., 1985.
- 2. The GAP Group, GAP Groups, Algorithms, and Programming; Version 4.10.2, 2019, http://www.gap-system.org.
- 3. Kim Walisch, primecount; Version 5.3, 2020, https://github.com/kimwalisch/primecount.

E-mail address: sk239@st-andrews.ac.uk