Mopro: Make Client-side Proving on Mobile Easy

Vivian Jeng, Moven Tsai

Developer & Grantee, PSE

Goal

Facts

- Mobile users are growing in number compared to desktop users.
 - o Accessibility
 - o Portability
- Native mobile devices are more powerful than browsers.
 - Performance optimization
 - Access to device hardware (camera, GPS, biometrics,...)
 - Offline functionality
 - More security and privacy
 - Push notifications
- Mobile development lacks infrastructure for ZK applications.

Goal

- Improve developer experience
 - o FFI
 - o CLI
 - Templates/Documentation
- Improve performance
 - Native binaries
 - O GPU resources
- Build a mobile development ecosystem as complete as the web app ecosystem
 - Packages
 - Community

Roadmap

Roadmap

Adapters

Platforms

Structure

- Backend
 - Proving systems
 - o GPU acceleration
- Middleware
 - o FFI
 - o CLI
- Frontend
 - o SDKs for different protocols
 - Semaphore
 - Zk-email
 - Anon Aadhaar
 - TLSNotary

Usage

Command-line Interface

Initialize

\$ mopro init

Build

\$ mopro build

Create

\$ mopro create

Benchmark

Benchmark for Circom

	snarkjs (on MacOS)	Native app (on iPhone)	
Semaphore	902ms	257ms (~3.5x)	
Anon Aadhaar	26s	11s (~2.3x)	
Keccak256	8406ms	1247ms (~6.7x)	
SHA256	2537ms	572ms (~4.4x)	
ZK-Email	160s	Out of memory	

Details: https://zkmopro.org/docs/performance

GPU Acceleration on Client-Side Proving

GPU on client-side is a completely different story than server-side GPU

Client-side vs Server-side

	Apple A17	NVIDIA A100
Compute Power	~2.1 TFLOPS	~19.5 TFLOPS (~9x)
Memory Capacity	8 GB	80 GB (10x)
Scalability	Standalone	Clusterable
Shading Language	Metal	CUDA

Target on MSM for Proving Time Acceleration

Instance size	Arkworks 0.4 (CPU, M3)	Zprize 2023 Yrrid and Snarkify (CPU*, M2 Pro)	Zprize 2023 Tal and Koh's (GPU**, M2 MAX)
2^16	138 ms	134 ms	832 ms
2^18	491 ms	331 ms	1351 ms
2^20	1922 ms	1230 ms	3188 ms

^{*} WASM runs entirely on CPU

Benchmark on BLS12-377 curve

Details: zprize.io/blog/announcing-the-2023-zprize-winners

^{**} WebGPU runs most of the tasks

Takeaway

- Under exploration
 - Better elliptic curve library for Metal
 - Memory-efficient {storage format, algorithms}
 - Exhaust all computing resources
- CPU and GPU synchronization is the key to accelerate
- Client-side GPU is a different story. Let's explore more!

https://linktr.ee/zkmopro

Thank you!

Vivian Jeng

Software Engineer, PSE vivianjeng@pse.dev tg: @vivianjeng

Moven Tsai

Grantee, PSE moven0831@gmail.com tg: @moven0831