Exploitation et traitement des données

COURSA

Rodolphe Priam, Ingénieur stat & Dr informatique

Partie Test Statistiques

- Rappels du modèle paramétrique
- Test sur un ou deux échantillons de loi de Gauss (normale/gaussienne)
- Test sur un ou deux échantillons de distribution de Bernoulli (binaire)
- Test pour la régressions

Cadre probabilistique: variables aléatoires

- Informellement, une variable aléatoire (v.a.) X dénote les possible résultats d'un événement tout en exprimant leur probabilités d'occurrence
 - Soit discréte (éventuellement nombreux résultats)
 Tel que $X \in \{0,1\}$ Tel que ou $X \in \{1,2,\ldots,6\}$ Tel que $X \in \{0,2,\ldots,N\}$ pour N un entier positif
 - Soit continue (infinite de résultats à valeurs réelles)
 Tel que $X \in \mathbb{R}$ Tel que X est défini sur un intervalle de \mathbb{R}

$$f(X=x)$$

Variable aléatoire discréte: définition

- Pour une v..a. X, p(x) denote p(X = x), la probabilité que X = x
- lacktriangle p(X) is est appellée la function de probabilité de masse de la v.a. X
 - p(x) ou p(X = x) est la valeur de la function pour x

$$p(x) \ge 0$$

$$p(x) \le 1$$

$$\sum_{x} p(x) = 1$$

Variable aléatoire discréte: examples

Les données pour les colonnes cyl, hp, vs, am, gear, carb sont les réalisations de variables aléatoires discrètes

Variable aléatoire discréte: loi de Bernoulli

Pour X discrète distribuée B(p)

$$p(X = 1) = p \text{ et } p(X = 0) = 1 - p$$

 $p(X = 1) + p(X = 0) = 1$

■ Par exemple, la colonne vs est à valeur 0/1

Pour ces seules données, $p = \frac{14}{32} = 0,4375$

Si on considére ces données comme la population!

En cas d'un échantillon, p est inconnu: $\hat{p}=0.4375$

rownames	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb	
Mazda RX4	21.0	6	160.0	110	3.9	2.62	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.9	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108.0	93	3.85	2.32	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.44	17.02	0	0	3	2	
Valiant	18.1	6	225.0	105	2.76	3.46	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.57	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.19	20.0	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.44	18.9	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.78	18.0	0	0	3	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.25	17.98	0	0	3	4	
Lincoln Continental	10.4	8	460.0	215	3.0	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.52	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.3	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.84	15.41	0	0	3	4	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.9	1	1	4	1	
Porsche 914-2	26.0	4	120.3	91	4.43	2.14	16.7	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.17	14.5	0	1	5	4	
Ferrari Dino	19.7	6	145.0	175	3.62	2.77	15.5	0	1	5	6	
Maserati Bora	15.0	8	301.0	335	3.54	3.57	14.6	0	1	5	8	
Volvo 142E	21.4	4	121.0	109	4.11	2.78	18.6	1	1	4	2	

Variable aléatoire continue: définition

- Pour une v.a. X continue, une probabilité p(X = x) = p(x) a pas de sens (=0)
- Pour une v.a..cont.., il intervient la prob dans un intervalle $X \in (x, x + \delta x)$
 - $f(x)\delta x$ est la proba que $X \in (x, x + \delta x)$ alors que $\delta x \to 0$
 - f(x) est la function de densité de probabilité à X = x

$$p(x) \ge 0$$

$$p(x) \le 1$$

$$\int p(x)dx = 1$$

Variable aléatoire continue: examples

Les données pour les colonnes mpg, disp, drat, wt, qsec sont les réalisations de variables aléatoires continues

Variable aléatoire continue: loi Gaussienne/Normale

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-0.5\left(\frac{x-m}{\sigma}\right)^2}$$
 symmétrique, de moyenne m et écart-type σ .

 Pour rappel, il y a une forte chance/probabilité que les observations se trouvent proches de m

- Exemple X~N(8,4)
 - On peut calculer $P(X \in [4,5]) = \int_4^5 f(x) dx$
 - Graphiquement comme une aire sous la fonction
 - Algébriquement car: $P(X \in [4,5]) = P(4 \le X \le 5) = P\left(\frac{4-8}{4} \le \frac{X-8}{4} \le \frac{5-8}{4}\right)$ = $P(-1 \le Z \le -0.75)$ avec Z^N(0,1) standard tabulée!

Variable aléatoire continue: autres lois

- Loi de Student symmétrique généralise la loi normale centrée réduite N(0,1)
 - Utile pour les intervalles de confiance et pour les tests de moyenne car:

$$T=rac{Z}{\sqrt{U/k}}$$

T loi de student à k degrés de liberté Z une variable aléatoire de loi normale centrée et réduite U une variable indépendante de Z et distribuée suivant la loi du χ^2 à k degrés de liberté

- Loi du Chi² asymétrique converge vers une loi normale
 - Utile pour les intervalle de confiance des variances et tests de distribution (hors sujet ici)

$$U=\sum_{i=1}^k X_i^2$$

U loi du χ^2 à k degrés de liberté X_i variables aléatoires réelles i.i.d. de loi N(0,1), normales centrées-réduites

Remarque sur la notation

- -p(X) denote généralement la distribution (PMF/PDF) d'une v.a. X
- f(.) est parfois noté p(.) également suivant le domaine (ex: machine learning)

$$x \sim p(X)$$
 $x \sim f(X)$

p(X = x) ou $p_X(x)$ ou p(x) dénote la <u>proba</u> ou <u>densité de proba</u> en x

- Lorsque p(.) prend une forme specifique les statistiques g() sont différentes
 - Cela explique pourquoi les intervalles de confiances et tests sont présenté pour des cas particuliers, puisque les distributions vont être modifies d'une cas à l'autre
 - Une fois compris l'approche générale, les tests se ressemblent, même si la loi change.

- Population inconnue dispose certaines caractéristiques modélisables
 - <u>Distribution connue</u> telle Gaussienne (moyenne, variance) ou Bernoulli (proportion)
 - Paramètres (inconnus) telles que moyenne=?, variance=? ou proportion=?
 - Formellement une variable aléatoire mène à la réalisation d'une observation

```
soit X_i \sim Gaussienne(moyenne, variance) x_i dans R
soit X_i \sim Bernoulli(proportion) x_i dans \{0,1\}
```

Echantillon connu

- ensemble des observations disponibles $S = (x_1, ..., x_n)$
- Les observations x₁, ..., x_n sont des réalisations i.i.d. des v.a. X₁, ..., X_n:

$$X_1 \longrightarrow X_1, X_2 \longrightarrow X_2, ..., X_n \longrightarrow X_n$$
.

- Contexte d'une expérience répétée qui génère chaque x_i de l'échantillon.
- Objectif: tirer de conclusions valides à partir de l'échantillon!

Population inconnue

- <u>Distribution connue</u> Les variables aléatoires X_i sont de loi connue/supposée
- Paramètres (inconnus) La loi des X_i est connue mais pas ses paramètres
- Exemple

soit $X_i \sim Gaussienne(moyenne, variance)$ avec moyenne=? variance=? soit $X_i \sim Bernoulli(proportion)$ avec proportion p=?

Echantillon connu

• Ce sont les données telles que chaque x_i est une réalisation d'une v.a. X_i

Conséquence

- La statistique g a une loi connue (parfois seulement approchée car nonlinéaire)
- $\theta_n = g(X_1, ..., X_n)$ est une variable aléatoire, $\hat{\theta}_n = g(x_1, ..., x_n)$ en est une réalisation

• Hypothèse: l'échantillon de données provient d'une population U

• L'échantillon est de taille finie n (petit ou large)

• La population est de taille infinie (ou très très large)

• Les échantillons sont des <u>échantillons aléatoires</u>, dans le sens que les individus sélectionnés dans U ont eu la même chance que tous les autres dans U.

• L'échantillon S est un <u>échantillon représentatif</u> il représente une image réaliste de la population.

• L'<u>inférence statistique</u> est le domaine des statistiques qui permet d'établir des faits concernant la population à partir des résultats obtenus en étudiant seulement l'échantillon $S = (x_1, ..., x_n)$

• Exemple: quelle est la moyenne ou la variance d'une caractéristique dans U ?

• Exemple: quelle est la proportion de succès d'un événement dans U ?

- Hypothèse: l'échantillon de données provient d'une population U
- Echantillon 1 observation x
- Population inconnue dispose certaines caractéristiques modélisables
- Echantillon connu ensemble des observations disponibles $S = (x_1, ..., x_n)$
- Exemple de question posée
 - Estimer une caractéristique de la pop. U
 - Quelle est la puissance moyenne des voitures dans l'ensemble de la population U (inconnue)
 - Quelle est la proportion de voit. ayant 5 vitesses dans l'ensemble de la population U (inconnue)
 - Tester une hypothèse sur la caractéristique
 - La puissance moyenne est-elle 120 chevaux ?
 - La proportion de 5 vitesses est-elle 70%?

		. •	_		1,	T,	,	, ,	n,			
rownames	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
Mazda RX4	21.0	6	160.0	110	3.9	2.62	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.9	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108.0	93	3.85	2.32	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.44	17.02	0	0	3	2	
Valiant	18.1	6	225.0	105	2.76	3.46	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.57	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.19	20.0	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.44	18.9	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.78	18.0	0	0	3	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.25	17.98	0	0	3	4	
Lincoln Continental	10.4	8	460.0	215	3.0	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.52	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.3	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.84	15.41	0	0	3	4	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.9	1	1	4	1	
Porsche 914-2	26.0	4	120.3	91	4.43	2.14	16.7	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.17	14.5	0	1	5	4	
Ferrari Dino	19.7	6	145.0	175	3.62	2.77	15.5	0	1	5	6	
Maserati Bora	15.0	8	301.0	335	3.54	3.57	14.6	0	1	5	8	
Volvo 142E	21.4	4	121.0	109	4.11	2.78	18.6	1	1	4	2	

- Hypothèse: l'échantillon de données provient d'une population U
- Population inconnue dispose certaines caractéristiques modélisables
- Echantillon connu ensemble des observations disponibles $S = (x_1, ..., x_n)$

• Solution:

- Calcul de la statistique $\hat{\theta}_n = g(x_1, ..., x_n)$
 - La moyenne inconnue de la population est remplacée par la moyenne de l'échantillon!
 - La variance inconnue de la population est remplacée par la variance de l'échantillon!
 - La proportion inconnue de la population est remplacée par la proportion de l'échantillon!
- Calcul d'un intervalle $I_n = [min, max]$ tel que θ est dans I_n
 - l'hypothèse sur la population U et la loi de X_i conduit à trouver la loi de $\theta_n = g(X_1, ..., X_n)$
 - Il est déduit un encadrement du <u>vrai paramètre</u> θ <u>inconnu</u> à partir d'hypothèses sur θ_n

Modèle : variables aléatoires X₁, ..., X_n i.i.d.

(distribution connue, paramètres inconnus)

• Une <u>statistique d'échantillonnage</u> ou <u>statistique</u> est quantité calculée à partir des variables aléatoires, il s'agit d'une fonction des X_i:

$$\theta_{\rm n} = g(X_1, ..., X_{\rm n})$$

Estimateur

• A cette statistique correspond la valeur correspondant à l'échantillon observée, pour l'ensemble des observations disponibles:

$$\hat{\theta}_n = g(x_1, ..., x_n)$$

Estimation

Données: observations x₁, ..., x_n

Echantillon 1 observation x

Modèle : variables aléatoires X₁, ..., X_n i.i.d.

(distribution connue, paramètres inconnus)

• Une <u>statistique d'échantillonnage</u> ou <u>statistique</u> est quantité calculée à partir des variables aléatoires, il s'agit d'une fonction des X_i:

$$\theta_{\rm n} = g(X_1, ..., X_{\rm n})$$

Estimateur de θ inconnu.

- Biais et variance de l'estimateur de heta sont des propriétés essentielles
 - Bais : $B(\theta_n) = E[\theta_n] \theta$
 - Variance : $V(\theta_n) = E(\theta_n^2) E(\theta_n)^2$

Modèle : variables aléatoires X₁, ..., X_n i.i.d.

(distribution connue, paramètres inconnus)

•
$$X_i \sim N(m, \sigma)$$
 donc $E[X_i] = m$ et $V[X_i] = \sigma^2$

• Estimateur \overline{X}_n de la moyenne m

$$\bullet \ \overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

(et estimation $\overline{\mathbf{x}}_n$).

•
$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 (et estimation \overline{x}_n).
• $\overline{X}_n \sim N(m, \frac{O}{\sqrt{n}})$ donc $E[\overline{X}_n] = m$ et $V[\overline{X}_n] = \frac{O^2}{n}$ (et \overline{x}_n réalisation de \overline{X}_n)

• Cette statistique est effectivement de loi connue dépendant de celle des X_i.

Modèle : variables aléatoires X₁, ..., X_n i.i.d.

(distribution connue, paramètres inconnus)

• Preuve que si
$$X_i \sim N(m, \sigma)$$
 alors $\overline{X}_n \sim N(m, \frac{\sigma}{\sqrt{n}})$

•
$$E[\overline{X}_n] = E\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right] = \frac{E[X_1] + E[X_2] + \dots + E[X_n]}{n} = \frac{n m}{n} = m$$

•
$$V[\overline{X}_n] = \frac{V[X_1] + V[X_2] + \dots + V[X_n]}{n^2} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

• Une combinaison de lois normales reste une loi normale (admis).

- Données: observations x₁, ..., x_n
 Modèle: v.a. X₁, ..., X_n i.i.d.
- Echantillon 1 observation 3
- Si $\mathrm{E}(\overline{X}_n) = \mu$ alors \overline{X}_n est non biaisé, $\mathrm{E}(\overline{X}_n) = \mu$, mais S_n avec $\frac{1}{n}$ est biaisé.

$$E[S^{2}] = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}\left((X_{i}-\mu)-(\overline{X}-\mu)\right)^{2}\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}\left((X_{i}-\mu)^{2}-2(\overline{X}-\mu)(X_{i}-\mu)+(\overline{X}-\mu)^{2}\right)\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}-\frac{2}{n}(\overline{X}-\mu)\sum_{i=1}^{n}(X_{i}-\mu)+\frac{1}{n}(\overline{X}-\mu)^{2}\sum_{i=1}^{n}1\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}-\frac{2}{n}(\overline{X}-\mu)\sum_{i=1}^{n}(X_{i}-\mu)+\frac{1}{n}(\overline{X}-\mu)^{2}\cdot n\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}-\frac{2}{n}(\overline{X}-\mu)\sum_{i=1}^{n}(X_{i}-\mu)+(\overline{X}-\mu)^{2}\right]$$

$$E[S^{2}] = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2} - \frac{2}{n}(\overline{X}-\mu)\sum_{i=1}^{n}(X_{i}-\mu) + (\overline{X}-\mu)^{2}\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2} - \frac{2}{n}(\overline{X}-\mu) \cdot n \cdot (\overline{X}-\mu) + (\overline{X}-\mu)^{2}\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2} - 2(\overline{X}-\mu)^{2} + (\overline{X}-\mu)^{2}\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2} - (\overline{X}-\mu)^{2}\right]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right] - E\left[(\overline{X}-\mu)^{2}\right]$$

$$= \sigma^{2} - E\left[(\overline{X}-\mu)^{2}\right] = \left(1 - \frac{1}{n}\right)\sigma^{2} < \sigma^{2}$$

Source: Wikipédia

$$\overline{Z} \overline{X} - \mu = \frac{1}{n} \sum_{i=1}^{n} X_i - \mu = \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu).$$

- Si $\mathrm{E}(\overline{X}_n) = \mu$ alors \overline{X}_n et S_n avec $\frac{1}{n-1}$ sont non biaisé.
- S_n avec $\frac{1}{n-1}$ est non biaisé (version préférée dans la suite)

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

• On vérifie facilement le non biais d'après le résultat précédent:

$$egin{align} \mathrm{E}[S^2] &= \mathrm{E}igg[rac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}
ight)^2igg] = rac{n}{n-1}\,\mathrm{E}igg[rac{1}{n}\sum_{i=1}^n \left(X_i - \overline{X}
ight)^2igg] \ &= rac{n}{n-1}\left(1 - rac{1}{n}
ight)\sigma^2 = \sigma^2, \end{split}$$

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

Echantillon

- Si $X_i \sim N(m, \sigma)$ alors $\overline{X}_n \sim N(m, \frac{\sigma}{\sqrt{n}})$.
- Graphiquement par exemple avec m=3 et σ =1.

Lorsque la taille de l'échantillon augmente les valeurs des moyennes des échantillons se concentrent autour de la vraie moyenne si bien que pour n très grand on obtient finalement \bar{x}_n =m.

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

(et estimation f_n).

- $X_i \sim B(p)$ donc $E[X_i] = p$ et $V[X_i] = p(1-p)$
- Estimateur F_n de la proportion p

$$\bullet \ F_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

•
$$F_n \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$
 asymptot. pour np, nq ≥ 5 et n >30 (et f_n réalisation de F_n).
• $E[F_n] = p$ et $V[F_n] = \frac{p(1-p)}{n}$

- Cette statistique est effectivement de loi connue dépendant de celle des X_i.

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

• Intervalle de confiance pour 1 moyenne obtenu car $\overline{X}_n \sim N$ $\left(m, \frac{\sigma}{\sqrt{n}}\right)$

$$\left[\overline{X} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}; \overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}\right]$$
 avec probabilité 1- α .

• Intervalle de confiance pour 1 proportion obtenue car $F_n \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$

$$\left[F-Z_{\alpha}\sqrt{\frac{pq}{n}};F+Z_{\alpha}\sqrt{\frac{pq}{n}}\right]$$
 avec probabilité 1- α .

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

- Justification des intervalles vu précédemment
- Justification de la standardisation pour $\overline{X}_n \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$:

$$Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}$$
 statistique **standardisée**.

$$E(Z) = E\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}\right) = \frac{1}{\sigma/\sqrt{n}} E(\overline{X}_n - \mu) = \frac{0}{\sigma/\sqrt{n}} = 0$$

$$V(Z) = V\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}\right) = \frac{1}{\sigma^2/n} V(\overline{X}_n - \mu) = \frac{1}{\sigma^2/n} V(\overline{X}_n) = \frac{\sigma^2/n}{\sigma^2/n} = 1$$

D'où,

 $Z \sim N(0,1)$, loi normale centré-réduite.

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

• Exemple d'intervalle pour p car $F_n \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$

$$\left[F - Z_{\alpha}\sqrt{\frac{pq}{n}}; F + Z_{\alpha}\sqrt{\frac{pq}{n}}\right]$$

Reprenons la colonne vs

0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,

0, 0, 0, 1, 0, 1, 0, 0, 0, 1

On calcule: $\hat{p} = f_n = 0.4375$ Donc la vraie proportion p est telle que p ϵ [I_{min}, I_{max}] avec proba 0.95:

$$I_{min} = f_n - 1.96 \sqrt{\frac{f_n(1-f_n)}{n}} = 0.27$$

$$I_{min} = f_n - 1.96 \sqrt{\frac{f_n(1 - f_n)}{n}} = 0.61$$

rownames	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
Mazda RX4	21.0	6	160.0	110	3.9	2.62	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.9	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108.0	93	3.85	2.32	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
Hornet												
Sportabout	18.7	8	360.0	175	3.15	3.44	17.02	0	0	3	2	
Valiant	18.1	6	225.0	105	2.76	3.46	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.57	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.19	20.0	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.44	18.9	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.78	18.0	0	0	3	3	
Cadillac												
Fleetwood	10.4	8	472.0	205	2.93	5.25	17.98	0	0	3	4	
Lincoln												
Continental	10.4	8	460.0	215	3.0	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.52	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.3	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.84	15.41	0	0	3	4	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.9	1	1	4	1	
Porsche 914-2	26.0	4	120.3	91	4.43	2.14	16.7	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.17	14.5	0	1	5	4 🚄	_
Ferrari Dino	19.7	6	145.0		3.62	2.77	15.5	0	1	5	6	
Maserati Bora	15.0	8	301.0	335	3 54	3 57	14 6	Ω	1	5	8	

4 121.0 109 4.11 2.78 18.6 1

Volvo 142E

- Données: observations x₁, ..., x_n (et y₁, ..., y_n)
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. (et Y₁, ..., Y_{n2} i.i.d.)
- Classiquement pour un ou deux échantillons
 - Cas 1 échantillon: Pour $X_i \sim N(m, \sigma)$ pour continu (sinon B(p) si proportion p)
 - on veut tester /décider si m=μ pour μ un nombre donné
 - Exemple:
 - Quid du test pour une proportion $p = \mu$?

- Cas 2 échantillon: Pour $X_i \sim N(m_x, \sigma_x)$ et $Y_i \sim N(m_y, \sigma_y)$ ou sinon $B(p_x)$, $B(p_y)$
 - on veut tester/décider si m_x=m_y pour μ un nombre donné
 - Exemple:
 - Quid du test pour deux proportions à comparer $p_x = p_y$?

- Données: observations x₁, ..., x_n (et y₁, ..., y_n)
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. (et Y₁, ..., Y_{n2} i.i.d.)
- On veut tester une hypothèse sur la population
 - Hypothèse H₀ contre hypothèse H₁
 - Exemple $m = \mu$ pour μ une valeur numérique (échantillon des x_i)
 - Exemple $p = \mu$ pour μ une valeur numérique (échantillon des x_i)
 - Exemple m₁ = m₂ (deux échantillons, celui des x_i et celui des y_i)
 - Exemple $p_1 = p_2$ (deux échantillons, celui des x_i et celui des y_i)
 - Comment décider quelle hypothèse choisir: Peut-on accepter H₀?
 - Comme le test est conservatif, on préfère dire, « ne pas rejeter H₀ »!
 - L'approche se base sur des intervalles pour des lois standardisées

- $_{0}$ suppose m= μ alors $\overline{\mathrm{X}}_{n}$ $^{\sim}$ N(μ , σ/\sqrt{n}) et $\overline{\mathrm{x}}_{n}$ réalisation de $\overline{\mathrm{X}}_{n}$
- Donc on vérifie que la valeur de $\overline{\mathbf{x}}_n$ est assez probable pour cette distribution.
- Si la movenne empirique se trouve dans l'intervalle en rejette nas H
- Douy situations soit a connu soit a inconnu estimé suivant le ca

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.
- Si $X_i \sim N(m, \sigma)$ alors $\overline{X}_n \sim N(m, \sigma/\sqrt{n})$.
- Si H_0 suppose m= μ alors $\overline{X}_n \sim N(\mu, \sigma/\sqrt{n})$ et \overline{x}_n réalisation de \overline{X}_n .
 - Donc on vérifie que la valeur de $\bar{\mathbf{x}}_n$ est assez probable pour cette distribution.
 - On calcule un intervalle I_{α} dans lequel \overline{x}_n a α =95% de chance de se trouver.
 - Si la moyenne empirique se trouve dans l'intervalle on rejette pas H₀.
- Deux situations, soit σ connu soit σ inconnu estimé suivant le cas

σ connu	σ inconnu estimé par S _n
$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$	$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$
loi normale standard N(0,1)	loi de Student à n-1 ddl

Données: observations x₁, ..., x_n

Modèle : variables aléatoires X₁, ..., X_n i.i.d.

σ connu donne une loi normale standard N(0,1)

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$$

- Calcul de $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$,
- Pour test à 1- α et α =95% si z $\epsilon[-z_{\alpha}$, $+z_{\alpha}]$, H_0 du t-test non rejeté

σ inconnu estimé par S_n donne une loi de Student à n-1 ddl

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$$

- Calcul de $t=rac{ar{x}-\mu}{s_n/\sqrt{n}}$
- Pour test à 1- α et α =95% si t $\epsilon[-t_{n-1,\alpha}, +t_{n-1,\alpha}]$, H_0 du t-test non rejeté

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

• Si
$$X_i \sim B(p)$$
 alors $F_n \sim N(p, \sqrt{p(1-p)}/n)$ asympotiquement.

- Si H_0 suppose $p = p_0$ alors $F_n \sim N(p_0, \sqrt{p_0(1-p_0)}/n)$ et f_n réalisation de F_n
 - Donc on vérifie que la valeur de f_n est assez probable pour cette distribution.
 - On calcule un intervalle I_{α} dans lequel f_n a α =95% de chance de se trouver.
 - Si la moyenne empirique se trouve dans l'intervalle on rejette pas H₀.
- Un seul cas pour une proportion (au contraire de la moyenne)

loi normale standard N(0,1) asymptotique pour np, n(1-p) ≥5 et n>30

$$Z = \frac{F_n - p_0}{\sqrt{p_0(1 - p_0)}/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

- Données: observations x₁, ..., x_n
- Modèle : variables aléatoires X₁, ..., X_n i.i.d.

$$Z = \frac{F_n - p_0}{\sqrt{p_0(1 - p_0)}/\sqrt{n}} \sim \mathcal{N}(0,1)$$

- Calcul de $z = \frac{f_n p_0}{\sqrt{p_0(1-p_0)}/\sqrt{n}}$
- Pour test à 1- α et α =95% si $z \in [-z_{\alpha}, +z_{\alpha}]$, H_0 non rejeté

Asymptotique, valide pour np, n(1-p) ≥5 et n>30

Données: observations x₁, ..., x_n et y₁, ..., y_n

- 0.8 0.6 0.4 0.2 0.0 - 1 0 1 2 3
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.
- Si $X_i \sim N(m_1, \sigma_1)$ alors $\overline{X}_n \sim N(m_1, \frac{\sigma_1}{\sqrt{n_1}})$.
- Si $Y_i \sim N(m_2, \sigma_2)$ alors $\overline{Y}_n \sim N(m_2, \frac{\sigma_2}{\sqrt{n_2}})$.
- Deux moyennes d'échantillons au lieu d'une seule moyenne ici!

- Assez proche du t-test précédent (calcul d'une stat), mais quatre cas !
 - variances connues et égales
 - variances connues et égales
 - variances inconnues et inégales
 - variances inconnues et inégales

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.

• On a $X_i \sim N(m_1, \sigma_1), \overline{X}_n \sim N(m_1, \frac{\sigma_1}{\sqrt{n_1}})$, et $Y_i \sim N(m_2, \sigma_2)$, $\overline{Y}_n \sim N(m_2, \frac{\sigma_2}{\sqrt{n_2}})$.

Variances connues et égales ($\sigma_1 = \sigma_2$)

$$Z = \frac{(\bar{X}_n - \bar{Y}_n) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim \mathcal{N}(0,1) \text{ avec } \mu_1 - \mu_2 = 0$$

Calcul de $z=\frac{\bar{x}_n-\bar{y}_n}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$, alors pour test à 1- α et α =95% si z $\epsilon[-z_{\alpha},+z_{\alpha}]$, H_0 non rejeté

Pour α =95%, on peut calculer z_{α} = 1,96

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.

• On a $X_i \sim N(m_1, \sigma_1), \overline{X}_n \sim N(m_1, \frac{\sigma_1}{\sqrt{n_1}})$, et $Y_i \sim N(m_2, \sigma_2), \overline{Y}_n \sim N(m_2, \frac{\sigma_2}{\sqrt{n_2}})$.

Variances connues et inégales $(\sigma_1 \neq \sigma_2)$

$$Z = \frac{(\overline{\mathbf{X}}_n - \overline{\mathbf{Y}}_n) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}(0,1) \text{ avec } \mu_1 - \mu_2 = 0$$
 Calcul de $z = \frac{\bar{x}_n - \bar{y}_n}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n_2}}}$ alors pour test à 1- α et α =95% si z ϵ [$-z_\alpha$, $+z_\alpha$], H_0 non rejeté

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.

• On a $X_i \sim N(m_1, \sigma_1), \overline{X}_n \sim N(m_1, \frac{\sigma_1}{\sqrt{n_1}})$, et $Y_i \sim N(m_2, \sigma_2)$, $\overline{Y}_n \sim N(m_2, \frac{\sigma_2}{\sqrt{n_2}})$.

Variances inconnues et égales ($\sigma_1 = \sigma_2$)

$$Z = \frac{(\overline{X}_n - \overline{Y}_n) - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim \mathcal{T}_{n_1 + n_2 - 2} \text{ avec } \mu_1 - \mu_2 = 0$$

Et
$$S^2 = \frac{(n_1 - 1)S_{n_1 + 1}^2 (n_2 - 1)S_{n_2}^2}{n_1 + n_2}$$

Calcul de $z=\frac{\bar{x}_n-\bar{y}_n}{s\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$, alors pour test à 1- α et α =95% si z $\epsilon[-t_{\alpha},+t_{\alpha}]$, H_0 non rejeté

Cas variances inconnues et inégales non présenté ici.

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.

• Si
$$X_i \sim B(p_1)$$
 alors $F_{n_1} \sim N(p_1, \sqrt{p_1(1-p_1)}/n_1)$

• Si
$$Y_i \sim B(p_2)$$
 alors $F_{n_2} \sim N(p_2, \sqrt{p_2(1-p_2)}/n_2)$

$$Z = \frac{F_{n_1} - F_{n_2}}{\sqrt{F(1 - F)(\frac{1}{n_1} + \frac{1}{n_2})}} \sim \mathcal{N}(0, 1) \text{ avec } F = \frac{n_1 F_{n_1} - n_2 F_{n_2}}{n_1 + n_2}$$

- Calcul de $z = \frac{f_{n_1} - f_{n_2}}{\sqrt{f(1-f)(\frac{1}{n_1} + \frac{1}{n_2})}}$

avec
$$f = \frac{n_1 f_{n_1} - n_2 f_{n_2}}{n_1 + n_2}$$

- Pour test à 1-α et α=95% si $z \in [-z_{\alpha}, +z_{\alpha}]$, H_0 non rejeté

Pour α =95%, on peut calculer z_{α} = 1,96

Données: observations x₁, ..., x_n (et y₁, ..., y_n)

Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. (et Y₁, ..., Y_{n2} i.i.d.)

• Erreur possible de décision

H0 est	Vraie	Fausse
Rejetée	Type l erreur Probabilité α	Décision correcte
Non rejetée	Décision correcte	Type II erreur Probabilité β

• La Puissance du test =1-β mesure la capacité à empêcher une décision fausse.

La *p* value est la probabilité que la donnée pourrait être observée sous l'hypothèse nulle H₀. Ici z est la statistique calculée sur l'échantillon.

Ici $z^*=z_{0.95}$ est choisi por un test avec le risque $\alpha=0,95$ par exemple.

u

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.
- Exemples de tests paramétriques
 - Tests pour décider si un moyenne est supérieur à une autre ou une valeur (nommés tests unilatéraux au lieu de bilatéraux considérés ici)
 - Test de normalité pour décider si l'échantillon est gaussien/normal
 - Test de nullité d'un paramètre en régression après estimation du modèle
 - Test d'égalité de variance, ou d'égalité de plus de deux moyennes (anova)
- Exemple de non paramétrique au lieu de paramétrique
 - Test non paramétrique de comparaison de moyenne
- Exemple utilisant une loi du chi2
 - Test d'indépendance dans un tableau croisé
 - Test d'adéquation à une loi

- Données: observations x₁, ..., x_n et y₁, ..., y_n
- Modèle : variables aléatoires X₁, ..., X_{n1} i.i.d. et Y₁, ..., Y_{n2} i.i.d.

Au tableau en cours et en td.

