

Modeling

September 9, 2014

Tim Bergsma

1 Purpose

This script runs NONMEM models and diagnostics for sample phase1 data.

2 Model Development

2.1 Set up for NONMEM run.

Listing 1:

```
> #Be sure to set directory to the script directory that contains this file.
> library(metrumrg)
> command <- '/opt/NONMEM/nm73/nmqual/autolog.pl'
> cat.cov='SEX'
> cont.cov=c('HEIGHT','WEIGHT','AGE')
> par.list=c('CL','Q','KA','V','V2','V3')
> eta.list=paste('ETA',1:10,sep='')
```

2.2 Run NONMEM.

Listing 2:

```
> NONR (
      run=1001:1005,
                                            # 5 models, ctl pre-written
      command=command,
                                           # this version will search for NONMEM
     project='../nonmem',
                                            # must specify, unless ctl in getwd()
      grid=TRUE,
                                           # set to FALSE for better error
   messaging (but slower)
     nice=TRUE,
                                            # don't delete subversioned
   directories
      checkrunno=FALSE,
                                            # TRUE auto-replaces conflicting run
   numbers
                                            # see help for following
      cont.cov=cont.cov,
      cat.cov=cat.cov,
     par.list=par.list,
      eta.list=eta.list,
      grp='SEX',
                                            # separate diagnostic plots for each
   level of SEX
      grpnames=c('female','male'),
                                            # use these instead of 0, 1, when
   plotting by SEX
      include.all=TRUE,
                                            # also show diagnostics with groups
      plotfile='../nonmem/*/*.pdf',
                                            # use the run dir and run name for the
    plot file
      streams='../nonmem/ctl'
                                            # expect the control streams here, not
    locally
```


Installing SIGCHLD signal handler...Done.

Listing 3:

<pre>> progress(1001:1005,project='/nonmem')</pre>		
queued compiled running	done	indeterminate

Listing 4:

> follow(1001:1005,project='../nonmem')

queued	compiled	running	done	indeterminate
5	0	0	0	0
queued	compiled	running	done	indeterminate
0	5	0	0	0
queued	compiled	running	done	indeterminate
0	0	5	0	0
queued	compiled	running	done	indeterminate
0	0	3	2	0
queued	compiled	running	done	indeterminate
0	0	0	5	0

Listing 5:

```
> Sys.sleep(10) #wait briefly to ensure all processes complete
```

Covariance succeeded on model 1005. We confirm that we can get similar results with different initial estimates.

Listing 6:

> getwd()

[1] "/data/metrumrg/inst/example/project/script"

Listing 7:

```
> ctl <- read.nmctl('../nonmem/1005/1005.ctl',parse=TRUE)
> names(ctl)
```

```
[1] "prob" "input" "data" "subroutine" "pk"
[6] "error" "theta" "omega" "sigma" "estimation"
[11] "cov" "table"
```

Listing 8:

```
> ctl$theta[] <- lapply(ctl$theta,`comment<-`,value=NULL)
> writeLines(format(ctl$theta))
```



```
(0, 10, 50)
(0, 10, 100)
(0,0.2,5)
(0, 10, 50)
(0,100,1000)
(0,1,2)
(0, 0.75, 3)
                                         Listing 9:
> set.seed(0)
> ctl$theta <- tweak(ctl$theta)</pre>
> writeLines(format(ctl$theta))
(0, 11.6, 50)
(0, 9.58, 100)
(0, 0.235, 5)
(0, 11.7, 50)
(0, 105, 1000)
(0, 0.8, 2)
(0, 0.659, 3)
                                        Listing 10:
> ctl$prob
[1] "1005 phase1 2 CMT like 1004 but diff. initial on V3"
                                        Listing 11:
> ctl$prob <- '1006 like 1005 with tweaked initial estimates'
We request some variants of PRED and CWRES if running under NONMEM 7.3.
                                        Listing 12:
> ctl[[12]]
[1] "NOPRINT FILE=./1005.tab ONEHEADER ID AMT TIME EVID PRED IPRE CWRES"
                                        Listing 13:
> preds <- c('NPRED','CPRED','CPREDI','EPRED')</pre>
> res <- c('RES','NRES','NWRES','CRES','RESI','WRESI','CRESI','CWRESI','CIWRES','
    CIWRESI', 'ERES', 'EWRES', 'ECWRES')
> ctl[[12]] <- c(ctl[[12]],preds, res)
                                        Listing 14:
> write.nmctl(ctl,file='../nonmem/ctl/1006.ctl')
> NONR (
```



```
run=1006,
    command=command,
    project='../nonmem',
    grid=TRUE,
    nice=TRUE,
    mode='para',
                                    # For illustrative purposes, we
  parallelize this run.
     pe='orte 16',
                                     # orte is the parallelization
  environment; we use 16 cores.
    checkrunno=TRUE,
                                     # default
     diag=TRUE,
                                     # default
     streams='../nonmem/ctl',
                                    # software will look for 1006.pmn or
  template.pmn
    plotfile='../nonmem/*/*.pdf',
     epilog='../../misc/epilog.R',
     eta.list='ETA1'
+ )
> Sys.sleep(5)
> qstat()
> follow(1006,project='../nonmem')
                                        done indeterminate
                           running
               compiled
     gueued
      0
               1
                           0
                                           0 0
              compiled
     queued
                          running
                                         done indeterminate
               0
      0
                            1
                                          0 0
     queued
               compiled running
                                         done indeterminate
```

Listing 15:

0 0

done indeterminate

1

1

running

0

> Sys.sleep(20)

0

queued

0

We can make a quick run log using some simple tools. Table 1.

0

compiled

0

Listing 16:

```
> # intentionally including a bogus run, to test effect
> # don't want the 'wide' file, just the 'long' R object
> log <- rlog(1001:1007,'../nonmem',file=NULL)
> head(log)

tool run parameter moment value
1 nm7 1001 ofv minimum 2526.39867049215
2 nm7 1001 THETA1 estimate 11.7167
3 nm7 1001 THETA1 prse 8.67
4 nm7 1001 THETA1 se 1.0163
5 nm7 1001 THETA2 estimate 14.5657
6 nm7 1001 THETA2 prse 8.67
```


157 1004

194 1004

195 1004

ofv minimum

cov status

prob text

Listing 17:

> tail(log) tool run parameter moment value 299 nm7 1006 SIGMA2.2 se 0.0675535 300 nm7 1006 cov status 301 nm7 1006 prob text 1006 like 1005 with tweaked initial estimates 302 nm7 1006 min status 303 nm7 1006 ../../data/derived/phase1.csv data filename 304 nm7 1007 min status Listing 18: > sapply(log,class) tool run parameter moment "character" "integer" "character" "character" "character" Listing 19: > log\$tool <- NULL > log <- log[log\$run!=1007,]</pre> > unique(log\$parameter) [1] "ofv" "THETA1" "THETA2" "THETA3" "OMEGA1.1" "OMEGA2.1" [7] "OMEGA2.2" "OMEGA3.1" "OMEGA3.2" "OMEGA3.3" "SIGMA1.1" "SIGMA2.1" [13] "SIGMA2.2" "cov" "prob" "min" "data" "THETA4" [19] "THETA5" "OMEGA4.1" "OMEGA4.2" "OMEGA4.3" "OMEGA4.4" "OMEGA5.1" [25] "OMEGA5.2" "OMEGA5.3" "OMEGA5.4" "OMEGA5.5" "THETA6" "THETA7" Listing 20: > log <- log[log\$parameter %in% c('ofv','prob','cov','min'),]</pre> > log run parameter moment 1 1001 ofv minimum cov status 38 1001 39 1001 prob text 40 1001 min status 42 1002 ofv minimum 112 1002 cov status prob 113 1002 text min status 114 1002 ofv minimum 116 1003 153 1003 cov status 154 1003 prob text 155 1003 min status


```
196 1004
            min status
198 1005
            ofv minimum
247 1005
             cov status
248 1005
            prob text
249 1005
             min status
251 1006
             ofv minimum
300 1006
             cov status
301 1006
            prob
                   text
302 1006
            min status
                                                        value
                                             2526.39867049215
38
39
                                             1001 phasel 1CMT
40
42
                                             2525.96554218893
112
113
                                            1002 phase1 2 CMT
114
                                                         134
116
                                             2570.47417267741
153
154 1003 phase1 2 CMT like 1002 but no eta on Q/v3 and no + err
155
157
                                             2570.45022474012
194
195
                 1004 phase1 2 CMT like 1003 but better bounds
196
198
                                             2405.91626140177
247
          1005 phase1 2 CMT like 1004 but diff. initial on V3
248
249
251
                                             2405.91625717115
300
                                                           0
301
                 1006 like 1005 with tweaked initial estimates
302
```

Listing 21:

```
> with(log, constant(moment,within=parameter))#i.e., moment is non-informative
here.
```

[1] TRUE

Listing 22:

```
> log <- data.frame(cast(log,run ~ parameter))
> log <- shuffle(log,'prob','run')
> log$ofv <- signif(digits=6,as.numeric(as.character(log$ofv)))</pre>
```

read control

Table 1: Run Log

run	prob	cov	min	ofv
1001	1001 phase1 1CMT	0	0	2526.40
1002	1002 phase1 2 CMT	1	134	2525.97
1003	1003 phase1 2 CMT like 1002 but no eta on Q/v3 and no + err	1	136	2570.47
1004	1004 phase1 2 CMT like 1003 but better bounds	1	0	2570.45
1005	1005 phase1 2 CMT like 1004 but diff. initial on V3	0	0	2405.92
1006	1006 like 1005 with tweaked initial estimates	0	0	2405.92

3 Predictive Check

3.1 Create a simulation control stream.

> ctl[] <- lapply(ctl,function(rec)sub(' *;.*','',rec))</pre>

Convert control stream to R object.

Listing 23:

```
> ctl <- read.nmctl('../nonmem/ctl/1005.ctl')</pre>
```

Strip comments and view.

[19] "(0,10,100)"

stream into a list

Listing 24:

```
> ctl
                                                                   # print it like
   text
[1] "$PROB 1005 phase1 2 CMT like 1004 but diff. initial on V3"
 [2] "$INPUT C ID TIME SEQ=DROP EVID AMT DV SUBJ HOUR HEIGHT WT SEX AGE DOSE FED"
 [3] "$DATA ../../data/derived/phase1.csv IGNORE=C"
[4] "$SUBROUTINE ADVAN4 TRANS4"
 [5] "$PK"
 [6] " CL=THETA(1) *EXP(ETA(1)) * THETA(6) **SEX * (WT/70) **THETA(7)"
 [7] " V2 =THETA(2) *EXP(ETA(2))"
 [8] " KA=THETA(3) *EXP(ETA(3))"
 [9] " Q =THETA(4)"
[10] " V3=THETA(5)"
[11] " S2=V2"
[12] " "
[13] "$ERROR"
[14] " Y=F*(1+ERR(1)) + ERR(2)"
[15] " IPRE=F"
[16] ""
[17] "$THETA"
[18] "(0,10,50)"
```



```
[20] "(0,0.2, 5)"
[21] "(0,10,50)"
[22] "(0,100,1000)"
[23] "(0,1,2)"
[24] "(0,0.75,3)"
[25] ""
[26] "$OMEGA BLOCK(3)"
[27] ".1"
[28] ".01 .1"
[29] ".01 .01 .1"
[30] ""
[31] ""
[32] ""
[33] ""
[34] ""
[35] ""
[36] ""
[37] ""
[38] "$SIGMA 0.1 0.1"
[39] ""
[40] ""
[41] ""
[42] ""
[43] "$ESTIMATION MAXEVAL=9999 PRINT=5 NOABORT METHOD=1 INTER MSFO=./1005.msf"
[44] "$COV PRINT=E"
[45] "$TABLE NOPRINT FILE=./1005.tab ONEHEADER ID AMT TIME EVID PRED IPRE CWRES"
[46] "$TABLE NOPRINT FILE=./1005par.tab ONEHEADER ID TIME CL Q V2 V3 KA ETA1 ETA2
   ETA3"
[47] ""
[48] ""
[49] ""
[50] ""
[51] ""
[52] ""
[53] ""
[54] ""
[55] ""
[56] ""
[57] ""
[58] ""
[59] ""
[60] ""
[61] ""
[62] ""
[63] ""
```

Fix records of interest.

Listing 25:

```
> ctl$prob
                                                                    # problem
   statement
[1] "1005 phase1 2 CMT like 1004 but diff. initial on V3"
                                      Listing 26:
> ctl$prob <- sub('1005','1105',ctl$prob)
                                                                    # substitute new
   run number
> names(ctl)
[1] "prob"
                                "data"
                                              "subroutine" "pk"
                  "input"
 [6] "error"
                  "theta"
                                                         "estimation"
                               "omega"
                                              "sigma"
[11] "cov"
                  "table"
                                "table"
                                      Listing 27:
> names(ctl)[names(ctl)=='theta'] <- 'msfi'</pre>
                                                                    # replace theta
   with final msfi
> ctl$msfi <- '=../1005/1005.msf'</pre>
> ctl$omega <- NULL
                                                                    # drop omega,
   sigma
> ctl$sigma <- NULL
> names(ctl)[names(ctl)=='estimation'] <- 'simulation'</pre>
                                                                    # simulate
   instead of estimate
> ctl$simulation <- 'ONLYSIM (1968) SUBPROBLEMS=500'
> ctl$cov <- NULL
                                                                    # drop covariance
   step
> ctl$table <- NULL
                                                                    # replace
  multiple tables with one
> ctl$table <- NULL
> ctl$table <- 'DV NOHEADER NOPRINT FILE=./1105.tab FORWARD NOAPPEND' # only
   really need DV, save file space
> write.nmctl(ctl,'../nonmem/ctl/1105.ctl')
```

3.2 Run the simulation.

This run makes the predictions (simulations).

Listing 28:

```
> NONR(
+ run=1105,
+ command=command,
+ project='../nonmem',
+ grid=TRUE,
+ nice=TRUE,
+ diag=FALSE,
```


3.3 Combine the original data and the simulation data.

Now we fetch the results and integrate them with the other data.

Listing 30:

```
> x <- superset(
+ run=1105,
+ project='../nonmem',
+ read.output=list(read.table, header=FALSE)
+ )
> x <- x[,c('SUBJ','TIME','DV','V1','1105')]
> read.nmctl('../nonmem/1105/1105.ctl')$simulation
```

[1] "ONLYSIM (1968) SUBPROBLEMS=500"

Listing 31:

```
> x$SIM <- rep(1:500,each=nrow(x)/500)
> colname(x) <- c(V1='PRED')
> x <- x[x$`1105`==1,]
> x$`1105` <- NULL
> head(x)
```

```
SUBJ TIME DV PRED SIM
2 1 0.00 . 0.00000 1
3 1 0.25 0.363 0.72576 1
4 1 0.50 0.914 1.38380 1
5 1 1.00 1.12 2.06800 1
6 1 2.00 2.28 3.48710 1
7 1 3.00 1.63 5.44790 1
```

Listing 32:

```
> nrow(x)
```

[1] 275000

Listing 33:

```
> str(x)

'data.frame': 275000 obs. of 5 variables:
$ SUBJ: int 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
$ TIME: num 0 0.25 0.5 1 2 3 4 6 8 12 ...
$ DV : chr "." "0.363" "0.914" "1.12" ...
$ PRED: num 0 0.726 1.384 2.068 3.487 ...
$ SIM : int 1 1 1 1 1 1 1 1 1 1 1 ...

Listing 34:
> x <- x[x$DV != '.',]
> x$DV <- as.numeric(x$DV)</pre>
```

3.4 Plot predictive checks.

1 2.00

1 3.00

1 4.00

1

1

1

DV 2.280

DV 1.630

DV 2.040

3.4.1 Aggregate data within subject.

Since subjects may contribute differing numbers of observations, it may be useful to look at predictions from a subject-centric perspective. Therefore, we wish to calculate summary statistics for each subject, (observed and predicted) and then make obspred comparisons therewith.

Listing 35:

```
> head(x)
  SUBJ TIME
              DV
                    PRED SIM
  1 0.25 0.363 0.72576 1
    1 0.50 0.914 1.38380
    1 1.00 1.120 2.06800
    1 2.00 2.280 3.48710
    1 3.00 1.630 5.44790
    1 4.00 2.040 2.99230
                                    Listing 36:
> subject <- melt(x,measure.var=c('DV','PRED'))</pre>
> head(subject)
  SUBJ TIME SIM variable value
                    DV 0.363
    1 0.25 1
2
    1 0.50
                     DV 0.914
            1
                     DV 1.120
    1 1.00
            1
```

We are going to aggregate each subject's DV and PRED values using cast(). cast() likes an aggregation function that returns a list. We write one that grabs min med max for each subject, sim, and variable.

Listing 37:

```
> metrics <- function(x)list(min=min(x), med=median(x), max=max(x))</pre>
```

Now we cast, ignoring time.

Listing 38:

```
> subject <- data.frame(cast(subject, SUBJ + SIM + variable ~ .,fun=metrics))
> head(subject)
 SUBJ SIM variable
                       min
                             med
                                     max
          DV 0.363000 1.6100
                                 3.0900
            PRED 0.725760 3.4805 5.4479
       1
      2
3
    1
             DV 0.363000 1.6100 3.0900
4
            PRED -0.085183 2.2938 4.6454
    1 2
5
   1
      3
             DV 0.363000 1.6100 3.0900
6
    1
       3
            PRED -0.022076 4.8891 12.3770
```

Note that regardless of SIM, DV (observed) is constant.

Now we melt the metrics.

Listing 39:

```
> metr <- melt(subject, measure.var=c('min', 'med', 'max'), variable_name='metric')</pre>
> head(metr)
 SUBJ SIM variable metric
                           value
      1 DV min 0.363000
  1
                  min 0.725760
    1
       1
            PRED
                  min 0.363000
    1
       2
            DV
   1
       2
            PRED
                  min -0.085183
    1
       3
             DV
                   min 0.363000
      3
             PRED
                  min -0.022076
```

Listing 40:

Listing 41:

```
> nrow(metr)
```

[1] 60000

Listing 42:

```
> metr <- metr[!is.na(metr$DV),]#maybe no NA
> nrow(metr)
```

[1] 60000

We plot using lattice.

Listing 43:

For detail, we show one endpoint, tossing the outer 5 percent of values, and indicating quartiles. Technically, though, one may want to calculate quartiles befor trimming the data.

Listing 44:

```
> med <- metr[metr$metric=='med',]
> med$metric <- NULL
> head(med)

SUBJ SIM DV PRED
2 1 1 1.025 1.25850
```


xyplot(

PRED ~ DV,
trim,
groups=SIM,
type='1',

```
5
    1 2 1.025 1.20924
8
    1 3 1.025 1.57950
11 1 4 1.025 0.88477
14 1 5 1.025 1.65875
17
    1 6 1.025 0.95005
                                   Listing 45:
> trim <- inner(med, id.var=c('SIM'), measure.var=c('PRED','DV'))</pre>
> head(trim)
 SIM DV PRED
1 1 NA NA
  2 NA
          NA
   3 NA
          NA
  4 NA
          NA
  5 NA NA
  6 NA
         NA
                                    Listing 46:
> nrow(trim)
[1] 20000
                                   Listing 47:
> trim <- trim[!is.na(trim$DV),]</pre>
> nrow(trim)
[1] 19000
                                    Listing 48:
> head(trim)
   SIM DV
                PRED
501 1 1.13 2.058700
502 2 1.13 2.005300
503 3 1.13 1.654800
504 4 1.13 1.069000
505 5 1.13 2.059750
506 6 1.13 0.985885
                                    Listing 49:
> print(
```


We also show densityplots of predictions at those quartiles.

Listing 50:

> head(trim)

	SIM	DV	PRED
501	1	1.13	2.058700
502	2	1.13	2.005300
503	3	1.13	1.654800
504	4	1.13	1.069000


```
505 5 1.13 2.059750
506 6 1.13 0.985885
```

Listing 51:

> quantile(trim\$DV)

```
0% 25% 50% 75% 100%
1.13 7.69 20.25 104.00 332.00
```

Listing 52:

```
> molt <- melt(trim, id.var='SIM')
> head(molt)
```

Listing 53:

```
> quart <- data.frame(cast(molt,SIM+variable ~ .,fun=quantile,probs=c
          (0.25,0.5,0.75)))
> head(quart)
```

```
SIM variable X25. X50. X75.

1 1 DV 7.950000 20.25000 100.10000
2 1 PRED 11.929000 22.16550 103.96000
3 2 DV 7.950000 20.25000 100.10000
4 2 PRED 7.234725 20.27300 105.19700
5 3 DV 7.950000 20.25000 100.10000
6 3 PRED 7.826900 14.50475 98.27925
```

Listing 54:

```
> molt <- melt(quart,id.var='variable',measure.var=c('X25.','X50.','X75.'),
    variable_name='quartile')
> head(molt)
```

```
variable quartile
                    value
          X25. 7.950000
     DV
1
             X25. 11.929000
2
    PRED
3
            X25. 7.950000
     DV
            x25. 7.234725
4
    PRED
5
     DV
            x25. 7.950000
            X25. 7.826900
    PRED
```


Listing 55:

```
> levels(molt$quartile)
[1] "X25." "X50." "X75."
                                     Listing 56:
> levels(molt$quartile) <- c('first quartile','second quartile','third quartile')</pre>
> head(molt)
  variable
                 quartile
                              value
1
      DV first quartile 7.950000
     PRED first quartile 11.929000
3
       DV first quartile 7.950000
     PRED first quartile 7.234725
       DV first quartile 7.950000
5
     PRED first quartile 7.826900
                                     Listing 57:
> levels(molt$variable)
```

[1] "DV" "PRED"

Listing 58:

```
> molt$variable <- factor(molt$variable,levels=c('PRED','DV'))</pre>
> print(
        densityplot(
                 ~ value | quartile,
                molt,
                groups=variable,
                layout=c(3,1),
                scales=list(relation='free'),
                aspect=1,
                panel=panel.superpose,
                panel.groups=function(x,...,group.number){
                         if (group.number==1) panel.densityplot(x,...)
                         if (group.number==2) panel.abline (v=unique(x),...)
                 },
                 auto.key=TRUE
```


4 Bootstrap Estimates of Parameter Uncertainty

4.1 Create directories.

Listing 59:

> getwd()

[1] "/data/metrumrg/inst/example/project/script"

Listing 60:

```
> dir.create('../nonmem/1005boot')
> dir.create('../nonmem/1005bootdata')
> dir.create('../nonmem/1005bootctl')
```

4.2 Create replicate control streams.

Listing 61:

```
> ctl <- clear(readLines('../nonmem/ctl/1005.ctl'),';.+',fixed=FALSE)
> #ctl <- read.nmctl('../nonmem/1005/1005.ctl')
> ctl <- as.nmctl(ctl)
> names(ctl)
```

```
[1] "prob" "input" "data" "subroutine" "pk"
[6] "error" "theta" "omega" "sigma" "estimation"
[11] "cov" "table" "table"
```

Listing 62:

```
> ctl$cov <- NULL
> ctl$table <- NULL
> ctl$table <- NULL
> ctl$prob
```

[1] "1005 phase1 2 CMT like 1004 but diff. initial on V3" $\,$

Listing 63:

> ctl\$data

[1] "../../data/derived/phase1.csv IGNORE=C"

Listing 64:

```
> #makes nice padded run directories like 001 instead of 1 (better directory sorting) to be used below
> RUN <- padded(1:300)
> invisible(
+ lapply(
+ RUN,
+ function(i,ctl){
+ ctl$prob <- sub('1005',i,ctl$prob)
+ ctl$data <- sub(
+ '../../data/derived/phase1.csv',
+ sub('\\*',i,'.../../1005bootdata/*.csv'),
+ ctl$data
+ )
+ write.nmctl(ctl,file=glue('.../nonmem/1005bootctl/',i,'.ctl'))</pre>
```



```
+ },
+ ctl=ctl
+ )
+ )
```

4.3 Create replicate data sets by resampling original.

Listing 65:

```
> bootset <- read.csv('../data/derived/phase1.csv')
> r <- resample(
+ bootset,
+ names=RUN,
+ key='ID',
+ rekey=TRUE,
+ out='../nonmem/1005bootdata',
+ stratify='SEX'
+ )</pre>
```

4.4 Run bootstrap models.

Listing 66:

```
> #intentionally trying a non-existent run ... 1 should be 001 per above.
> #Parentheses force display of invisible NONR result.
> (NONR(
+ run=1,
+ wait=FALSE,
+ grid=TRUE,
+ project='../nonmem/1005boot',
+ streams='../nonmem/1005bootctl',
+ command=command
+ ))
```

[[11]

[1] "../nonmem/1005bootctl/1.ctl not found"

Listing 67:

```
> NONR(
+ run=RUN,
+ wait=FALSE,
+ grid=TRUE,
+ project='../nonmem/1005boot',
+ streams='../nonmem/1005bootctl',
+ command=command
+ )
> qstat()
> follow(RUN,project='../nonmem/1005boot')
```


queued	compiled	running		indeterminate
134	69	10	87	0
queued	compiled	running	done	indeterminate
129	62	15	94	0
queued	compiled	running	done	indeterminate
120	44	30	106	0
queued	compiled	running	done	indeterminate
104	31	37	128	0
queued	compiled	running	done	indeterminate
82	36	27	155	0
queued	compiled	running	done	indeterminate
48	65	7	180	0
queued	compiled	running	done	indeterminate
35	62	17	186	0
queued	compiled	running	done	indeterminate
27	55	14	204	0
queued	compiled	running	done	indeterminate
14	44	31	210	1
queued	compiled	running	done	indeterminate
0	31	37	232	0
queued	compiled	running	done	indeterminate
0	13	23	264	0
queued	compiled	running	done	indeterminate
0	3	11	286	0
queued	compiled	running	done	indeterminate
0	0	1	299	0
queued	compiled	running	done	indeterminate
0	0	0	300	0

Listing 68:

5 File Disposition

Predictive checks and bootstraps make huge files that need not be retained.

Listing 69:

```
> unlink('../nonmem/1105',recursive=TRUE)
> unlink('../nonmem/1005boot',recursive=TRUE)
```



```
> unlink('../nonmem/1005bootdata',recursive=TRUE)
```

> unlink('../nonmem/1005bootctl',recursive=TRUE)