HUMANOID ROBOTS

Massachusetts Institute of Technology

Marcelo Anjos presented

Marcelo dos Anjos

University National of Asuncion

About Me

- Maker for hobby
 - Electronic Engineer
 - Software and Computer Engineer
 - Finishing my PHD in Computer Sciences

Motivation

Humanoid?.

But it is also a robot made to resemble a human both in appearance and behavior

Why do we need a motion specification?

- Difficulties for researchers in robotics:
 - Industrial copyright
 - Programs are not re-usable in different robot families, even different versions of same robot families
 - Have to choose OS based on the drivers provided
 - Not easy to share a robot remotely with other collaborators in different locations

Project goals OpenSource OpenHardware

- Whatever: (cross-model)
 - Provide a network-enabled interface for independent of the controller libraries
 - Access to other robots & simulators.
- Whoever: (cross-platform)
 - User interface must be cross-platform: support Linux, Mac OS X and Windows.
- Wherever: (cross-network)
 - Good quality of service across the Internet.

Basic Components of Humanoid

Sensors

- Proprioceptive sensors
- Exteroceptive sensors
- Proximity sensors
- Tactile sensors
- Vision sensors
- Sound sensors

Planning and Control

Humanoid

Actuators

- Hydraulic and electric actuators
 - □ DC motor
 - Stepper motor
 - □ A Servo motor
- Piezoelectric actuators
- Ultrasonic actuators
- Pneumatic actuators

marcelu.phd@gmail.com

3D Choreography Programs

marcelu.phd@gmail.com

Locomotion - Walking Video

LEGGED LOCOMOTION

- Legged locomotion is much easier to accomplish (and much safer to develop and test) on smaller humanoids.
- The SDR-4X was recently developed by Sony as a domestic robot capable of handling uneven surfaces and stairs on the fly.
- Honda's P3 humanoid.
- Honda now has another smaller and lighter android known as P3.

Locomotion

Degree of Freedom (DOF)

- The degrees of freedom is the number of independent parameters that define its configuration.
- The term is widely used to define the motion capabilities of <u>robots</u>.
- Consider a robot arm built to work like a human arm.

Prices for Human Sizes Robots

- Poppy Child Kit
 - +- 9.000 u\$\$

- Big Size Servo Motor
- 20 x 2.000 U\$\$ = 40.000 u\$\$.

Parts

Parts

Aluminum

Parts

Servo Motor Servo Digital or Servo Board Analogic Servo Motors Servo M Servo M Servo M Servo Board Micro controlled Servo Motors

marcelu.phd@gmail.com

Micro controlled Servo Motor with PID

- PID is the most commonly used servo control algorithm:
 - <u>P</u>roportional
 - <u>I</u>ntegral
 - Derivative
- PID systems can be understood by way of analogous physical models.

Micro controlled Servo Motor with PID

Servo Motor - Video and Practical

Main Board Control

Main Board Control - Practical

3D Choreography - Practical

Sequencer - Practical

Dancing – Video and Practical

Borrowing characteristics from human intelligence, and applying them as algorithm a computer friendly way.

Recognition Technology

- 1. Recognition of moving objects
- 2. Posture/gesture recognition
- 3. Environment recognition
- 4. Sound recognition
- 5. Face recognition.

Sound Recognition

Many Robots can distinguish between voices other sounds.

He can respond to his name, face people when being spoken to, and recognize sudden, unusual sounds such as that of a falling object or a collision, and face in that direction.

Many Robots has the ability to recognize faces, or the human being is moving.

It can individually recognize faces. Once they are registered it can address them by name.

Architecture - Specification Standard

Architecture - System Overview

Architecture - CClientConnection

Priority Queues marcelu.phd@gmail.com

Architecture - CClient

Architecture - Communication Modes

Direct mode:

blocking & instantaneous, for debug purposes

Delay mode:

nonblocking, instantaneous or delay

Playback mode:

nonblocking, adaptive caching based on channel quality

Broadcast mode:

periodic query feedback

marcelu.phd@gmail.com

Conclusions

- Motivations
- System Structure
- Four Network Command Modes
- Future Extensions
 - Exclusive control
 - Data channels
 - Controlling multiple humanoid robots
 - Virtual humanoid robots

Virtual Humanoid

marcelu.phd@gmail.com

Conclusion

Conclusion

marcelu.phd@gmail.com

References

- == H. Kitano and H. Asada, "The RoboCup humanoid challenge as the millennium challenge for advanced robotics," <u>Advanced Robotics</u> 13(8) (2000) 723-736.
- == C. Zhou and Q. Meng, "Dynamic balance of a biped robot using fuzzy reinforcement learning agents," <u>Fuzzy Sets and Systems</u> 134(1) (2003) 169-187.
- == http://www.davidgeer.com/artificial-intelligence-humanoids-david-geer.pdf
- == http://plen.jp/playground/wiki/about
- == www.airspacedefense.org
- == All CODES in

https://github.com/splash2018

Thank you!

Contact

== All CODES in https://github.com/splash2018

marcelu.phd@gmail.com