

Laboratorio Software 2008-2009 C. Brandolese

Election

Il problema noto come election consiste nell'individuare un coordinatore in un gruppo di processi simili

Assunzioni

- □ Ogni processo ha un identificatore id unico (PID, IP, ...)
- Ogni processo conosce gli identificatori degli altri processi
- Ogni processo non conosce lo stato degli altri processi
 - In esecuzione, terminato per errori, ...

Election

□ Assicurare che il meccanismo di elezione raggiunga un accordo tra tutti I processi su chi deve diventare il nuovo coordinatore

Bully algorithm

Un processo P che rileva o sospetta l'assenza di un coordinatore

□ Inizia il processo di elezione

Regole

- □ P invia un messaggio ELECTION a tutti i processi con ID maggiore
 - Se nessuno risponde, P ha vinto e diviene coordinatore
 - Se un processo Q con ID maggiore risponde, P perde
- □ Se P riceve un messaggio da un processo con ID minore, risponde per segnalare al sender che ha perso l'elezione
- □ Alla fine un solo processo non riceverà risposte e sarà eletto come nuovo coordinatore

Bully algorithm

- □ II processo 4 indice un'elezione
- □ I processi 5 e 6 rispondono
- □ Il processo 7 è terminato o in uno stato non consistente
- □ I processi 5 e 6 segnalano la loro presenza al 4, bloccandolo

Bully algorithm

- □ I processi 5 e 6 indicono una nuova elezione
- □ II processo 6 risponde e blocca 5
- □ Il prcesso 6 non riceve risposte e vince l'elezione

Ring algorithm

Assunzioni

- □ I processi sono ordinati da punto di vista logico o fisico
- □ Ogni processo conosce tutti i processi successivi

Un processo P che sospetta la mancanza di un coordinatore

☐ Inizia il processo di elezione

Regole

- □ P invia un messaggio ELECTION al processo successivo
 - Il corpo del messaggio è il proprio ID
 - Se il successivo non è attivo, manda il messaggio a quello seguente
- □ Ogni processo riceve e propaga un messaggio
 - Al processo successivo
 - Aggiunge il proprio PID al corpo del messaggio
- □ Quando il messaggio ritorna a P (che lo aveva inviato)
 - Viene trasformato in un messaggio COORDINATOR che indica il nuovo coordinatore (il PID più alto della lista) e i processi ancora attivi

Ring algorithm

- □ II processo 5 indice un processo di elezione
- □ Un messaggio di elezione inizia a circolare

Ring algorithm

- □ II processo 5 riceve il messaggio che ritorna
- □ Calcola il vincitore e invia un nuovo messaggio COORDINATOR

