

ECE/CS 252 Intro to Computer Engineering

Week 02 Discussion

Positional Notation

It works the same in all bases

$$\mathbf{D}_{N-1}...\mathbf{D}_{1}\mathbf{D}_{0} = \mathbf{D}_{N-1} \times \mathbf{r}^{N-1} + ... + \mathbf{D}_{1} \times \mathbf{r}^{1} + \mathbf{D}_{0} \times \mathbf{r}^{0}$$

- What about base -3?
 - Uses digits 0, 1, 2, but the radix is negative!
 - Let's consider a three-digit number
 - The weight of the least significant digit is $(-3)^0 = 1$
 - The weight of the middle digit is $(-3)^1 = -3$
 - The weight of the most significant digit is $(-3)^2 = 9$

 Relax – we won't be testing you on negative bases! The point is that ALL number bases work the SAME way

Remember...

 When converting between base 2, 8, and 16 (any combination, any direction)...

Do NOT convert to decimal!

 Converting between binary and any other base that is a power of 2 is <u>EASY</u>

5C₁₆

01001101110₂

26₈

Hexadecimal vs Octal

- Hexadecimal is pervasive throughout the computing fields
- Octal has fallen out of use generally, but there's one place it is used every day (but most people don't realize it)... in airplanes!

- The aircraft transponder setting (squawk code) is a 4digit octal number representing a 12-bit binary code
 - Aircraft are assigned a code by ATC, or squawk special codes for emergencies (e.g., Mayday = 7700)

Why Not Use Signed-Magnitude?

Signed-Magnitude Binary

Binary Representations

	•				
Unsigned	2's-comp	Unsigned	2's-comp		
1	1	111	.11		
11 10 01 00		11110 10001 10000 01111			
				011	.10
				00001	

Binary Numbers – 3 Bits

Quantity of unique values represented

Unsigned	2's-Complement	Signed-Magnitude

Range of representation

Unsigned	2's-Complement	Signed-Magnitude

Complement then +1 Negates

- "Complement then add 1" does NOT convert a number to 2's-complement – it <u>NEGATES</u>
- There are 3 reasons you would negate a number:
 - You have a negative 2's-complement number and want to know its value
 - You need to express a negative decimal number in 2's-complement format
 - You actually need to negate a number, e.g. for subtraction: A – B = A + (-B)
- Do not negate when converting a <u>positive</u> number to 2's-complement format!

Overflow

 Key idea: the correct result value <u>can not be</u> represented, so the result we see is <u>incorrect</u>

011 + 001	111 <u>+ 111</u>	100 <u>+ 100</u>
unsigned		
2's-comp		

Overflow Happens...

- A 32-bit signed integer would overflow if used to count # views for some YouTube videos...
- In 2004, Comair airlines had to ground over a thousand flights because flight crew scheduling software used a 16-bit integer to count crew changes
- Several flavors of Unix use 32-bit signed integers to count time (in seconds) since January 1, 1970, so times on/after Jan 19, 2038 cause overflow
- Boeing 787 electrical system could shut down power if left on for 248 days straight because generators enter failsafe mode due to a software counter overflowing
 - FAA told airlines they must turn the plane off every 120 days...

How Many Possibilities?

- If you have N locations, each of which has P possibilities, then the total number of unique sequences is: PN
 - Lights: 3 lights, 2 possibilities per light
 - $2^3 = 8$ different lighting options
 - Lights: 8 lights, 2 possibilities per light
 - **28** = 256 different lighting options
 - Braille: 6 locations, 2 possibilities per location
 - Up to $2^6 = 64$ different possibilities, but only 63 useful ones (because we have to subtract the one that is "all flat")
 - Decimal numbers: 6 digits, 10 possibilities per digit
 - $10^6 = 1,000,000$ unique numbers (0 through 999,999)

What's Next?

- Week 03:
 - Fixed-point and floating-point representations
 - Character representation (ASCII)
 - Assessment A1 on Wednesday
 - Covers content from weeks 1 and 2
 - Review the Educational Objectives!
 - Review Assessment Info & Procedures
 (link below assessment date table in Canvas)
- HW02 due tomorrow at 10pm
- Video Quiz 03 due tomorrow at 11:55pm
- Questions?