18.745 Introduction to Lie Algebras

October 5, 2010

Lecture 8 — Cartan Subalgebra

Prof. Victor Kac Scribe: Alejandro O. Lopez

Definition 8.1. Let \mathfrak{h} be a subalgebra of a Lie algebra \mathfrak{g} . Then $N_{\mathfrak{g}}(\mathfrak{h}) = \{a \in \mathfrak{g} | [a, \mathfrak{h}] \subset \mathfrak{h}\}$ is a subalgebra of \mathfrak{g} , called the normalizer of \mathfrak{h} .

The fact that $N_{\mathfrak{g}}(\mathfrak{h})$ is a subalgebra follows directly from the Jacobi identity. Also note that $\mathfrak{h} \subset N_{\mathfrak{g}}(\mathfrak{h})$ and the normalizer of \mathfrak{h} is the maximal subalgebra containing \mathfrak{h} as an ideal.

Lemma 8.1. Let \mathfrak{g} be a nilpotent Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a subalgebra such that $\mathfrak{h} \neq \mathfrak{g}$. Then, $\mathfrak{h} \subsetneq N_{\mathfrak{g}}(\mathfrak{h})$.

Proof. Consider the central series: $\mathfrak{g} = \mathfrak{g}^1 \subset \mathfrak{g}^2 = [\mathfrak{g},\mathfrak{g}] \subset g^3 \subset ... \subset g^n = 0$ Note that the last equality is true for some $n \in \mathbb{N}$ because \mathfrak{g} is a nilpotent Lie algebra. Take j to be the maximal possible positive integer such that: $\mathfrak{g}^j \nsubseteq \mathfrak{h}$. Clearly we have that 1 < j < n; but then $[\mathfrak{g}^j,\mathfrak{h}] \subset \mathfrak{g}^{j+1} \subset \mathfrak{h}$ by the choice made on j. Hence $\mathfrak{g}^j \subset N_{\mathfrak{g}}(\mathfrak{h})$, which is not a subspace of \mathfrak{h} . Thus, we can conclude that $\mathfrak{h} \subsetneq N_{\mathfrak{g}}(\mathfrak{h})$

Definition 8.2. A Cartan subalgebra of a Lie algebra \mathfrak{g} is a subalgebra \mathfrak{h} , satisfying the following two conditions:

- i) h is a nilpotent Lie algebra
- ii) $N_{\mathfrak{q}}(\mathfrak{h}) = \mathfrak{h}$

Corollary 8.2. Any Cartan subalgebra of g is a maximal nilpotent subalgebra

Proof. This follows directly from Lemma 1 and the definition of Cartan subalgebras.

Exercise 8.1. Let $\mathfrak{g} = gl_n(\mathbb{F})$ with $char(\mathbb{F}) \neq 2$. Let $\mathfrak{h} = {\mathfrak{n}_n + \mathbb{F}I_n}$, where \mathfrak{n}_n is the subalgebra of strictly upper triangular matrices. Then this is a maximal nilpotent subalgebra but not a Cartan subalgebra.

Solution. First, we show that $\mathfrak{n}_n + \mathbb{F}I_n$ is not a Cartan subalgebra of \mathfrak{g} . \mathfrak{h} is not Cartan since, as was shown earlier, $[b_n, \mathfrak{n}_n] \subset \mathfrak{n}_n$ and thus $b_n \subset N_{\mathfrak{g}}(\mathfrak{n}_n) \subset N_{\mathfrak{g}}(\mathfrak{n}_n + \mathbb{F}I_n)$.

Now we show that $\mathfrak{n}_n + \mathbb{F}I_n$ is a maximal nilpotent subalgebra. Note that since I_n commutes with everything, then $\mathfrak{h} = \mathfrak{n}_n \bigoplus \mathbb{F}I_n$. Hence, it is nilpotent. Now, it suffices to show that \mathfrak{h} is maximal in gl_n . Suppose there exists some nilpotent subalgebra $\mathfrak{n}_n + \mathbb{F}I_n \subsetneq \mathfrak{h}'$. First note that in fact we have $b_n = N_{gl_n}(\mathfrak{n}_n + \mathbb{F}I_n)$, since if $b = \sum_{i,j} c_{ij} E_{ij} \in N_{\mathfrak{g}}(\mathfrak{n}_n + \mathbb{F}I_n)$ with $c_{i'j'} \neq 0$ for i' > j', then $E_{j'i'} \in \mathfrak{n}_n \subset \mathfrak{n}_n + \mathbb{F}I_n$ and $[b, E_{j'i'}] = \sum_i c_{ij'} E_{ii'} - \sum_j c_{i'j} E_{j'j}$. Note that the $(i', i')^{th}$ and the $(j', j')^{th}$ entries are $c_{i'j'}$ and $-c_{i'j'}$ respectively; both of which are nonzero. Thus, $[b, E_{j'i'}]\mathfrak{n}_n + \mathbb{F}I_n$, unless $char(\mathbb{F}) = 2$. Now, by the Lemma above, we must have that $\mathfrak{n}_n + \mathbb{F}I_n \subsetneq \mathfrak{h} \cap N_{gl_n}(\mathfrak{n}_n + \mathbb{F}I_n)$. Thus, \mathfrak{h}' contains some element of $b_n \setminus \mathfrak{n}_n + \mathbb{F}I_n$; but all elements of $b_n \setminus \mathfrak{n}_n + \mathbb{F}I_n$ have at least two distinct eigenvalues, and thus are not ad-nilpotent. Thus we find a contradiction to Engel's theorem and our assumption must be wrong. We find there is no proper set containing $\mathfrak{n}_n + \mathbb{F}I_n$; which implies that \mathfrak{h} is a maximal nilpotent subalgebra.

Proposition 8.3. Let $\mathfrak{g} \subset gl_n(\mathbb{F})$ be a subalgebra containing a diagonal matrix $a = diag(a_1, ..., a_n)$ with distinct a_i , and let \mathfrak{h} be the subspace of all diagonal matrices in \mathfrak{g} . Then \mathfrak{h} is a Cartan subalgebra.

Proof. We have to prove that \mathfrak{h} satisfies the two conditions necessary to be a Cartan subalgebra. i) We know that \mathfrak{h} is abelian; and thus, it is a nilpotent Lie algebra.

ii)Let $b = \sum_{i,j=1}^n b_{ij} e_{ij} \in \mathfrak{g}$ such that $[b,\mathfrak{h}] \subset \mathfrak{h}$ (i.e. $b \in N_{\mathfrak{g}}(\mathfrak{h})$). In particular, we have that $[a,b] \in \mathfrak{h}$ for all $a \in \mathfrak{h}$. But $[a,b] = [\sum_k a_k e_{kk}, \sum_{i,j} e_{ij} e_{ij}] = \sum_{ij} (a_i - a_j) b_{ij} e_{ij}$, which will be non-diagonal only if $b_{ij} \neq 0$ for some $i \neq j$. Thus, we can conclude that $b \in \mathfrak{h}$, and therefore $N_q(\mathfrak{h}) = \mathfrak{h}$.

Remark \mathfrak{g} is a Cartan subalgebra in itself if and only if \mathfrak{g} is a nilpotent Lie algebra.

Theorem 8.4. (E.Cartan) Let \mathfrak{g} be a finite dimensional Lie algebra over an algebraically closed field \mathbb{F} . Let $a \in \mathfrak{g}$ be a regular element (which exists since \mathbb{F} is infinite), and let $\mathfrak{g} = \bigoplus_{\lambda \in \mathbb{F}} \mathfrak{g}^a_{\lambda}$ be the generalized eigenspace decomposition of \mathfrak{g} with respect to ada. Then $\mathfrak{h} = \mathfrak{g}^a_0$ is a Cartan subalgebra.

Proof. The proof for this theorem uses the fact that Zariski Topology is highly non-Hausdorff, namely any two non-empty Zariski open sets have a non-empty intersection. We will also recall the fact that $[\mathfrak{g}^a_{\lambda},\mathfrak{g}^a_{\mu}]\subset\mathfrak{g}^a_{\lambda+\mu}$ and in particular, if $\lambda=0$ then $[\mathfrak{h},\mathfrak{g}^a_{\mu}]\subset\mathfrak{g}^a_{\mu}$.

Let $V = \bigoplus_{\lambda \neq 0} \mathfrak{g}^a_{\lambda}$. Then $\mathfrak{g} = \mathfrak{h} \bigoplus V$ and $[\mathfrak{h}, V] \subset V$.

Consider the following two subsets of \mathfrak{h} :

 $U = \{h \in \mathfrak{h} \text{ such that } adh|_{\mathfrak{h}} \text{ is not a nilpotent operator}\}$

 $R = \{h \in \mathfrak{h} \text{ such that } adh|_V \text{ is a non-singular operator } \}$

Both U and R are Zariski open subsets of \mathfrak{h} . Next we note that $a \in R$ since all zero eigenvalues of ada lie in \mathfrak{h} , hence R is non-empty.

Now, we shall prove by contradiction that \mathfrak{h} is a nilpotent subalgebra. Suppose the contrary is true. Then, by Engel's Theorem there exists $h \in \mathfrak{h}$ such that $adh|_{\mathfrak{h}}$ is not nilpotent. But in this case $h \in U$; and hence, $U \neq \emptyset$. Therefore $U \cap R \neq \emptyset$. We now take $b \in U \cap R$. Then $adh|_{\mathfrak{h}}$ is not nilpotent and $adb|_V$ is invertible. Hence $\mathfrak{g}_0^b \subsetneq \mathfrak{h}$, which contradicts the fact that a is a regular element. Thus, this contradicts the assumption made; and we find that \mathfrak{h} is a nilpotent Lie algebra. Finally, we need to proof that $N_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$. Now, if $b \in N_{\mathfrak{g}}(\mathfrak{h})$, so that $[b, \mathfrak{h}] \subset \mathfrak{h}$, then we have that, in particular, $[b, a] \in \mathfrak{h}$. But since $a \in \mathfrak{h}$ and \mathfrak{h} is a nilpotent Lie algera, then $ada|_{\mathfrak{h}}$ is a nilpotent operator. In particular, $0 = (ada)^N((ada)b) = (ada)^{N+1}(b)$. Hence $b \in \mathfrak{g}_0^a = \mathfrak{h}$, which completes the proof of the theorem.

Remark The dimension of the Cartan subalgebra constructed in Cartan's Theorem, Theorem 4, equals the rank of \mathfrak{g} .

Proposition 8.5. Let \mathfrak{g} be a finite dimensional Lie algebra over an algebraically closed field \mathbb{F} of characteristic zero and let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra. Consider the generalized weight space decomposition (called root space decomposition) with respect to \mathfrak{h} : $\mathfrak{g} = \bigoplus_{\lambda \in \mathfrak{h}^*} \mathfrak{g}_{\lambda}$. Then $\mathfrak{g}_0 = \mathfrak{h}$.

Proof. Since by Engel's Theorem $adh|_{\mathfrak{h}}$ is nilpotent for all $h \in \mathfrak{h}$, it follows that $\mathfrak{h} \subseteq \mathfrak{g}_0$. But by definition of \mathfrak{g} , for all elements $h \in \mathfrak{h}$, $adh|_{\mathfrak{g}_0}$ is a nilpotent operator. Hence $adh|_{\mathfrak{g}_0/\mathfrak{h}}$ is a nilpotent operator for all $h \in \mathfrak{h}$. Therefore, by Engle's Theorem, there exists a non-zero $barb \in \mathfrak{g}_0/\mathfrak{h}$ which is annihilated by all $adh|_{\mathfrak{g}_0/\mathfrak{h}}$. Taking a pre-image $b \in \mathfrak{g}$ of \bar{b} , this means that $[b,\mathfrak{h}] \subset \mathfrak{h}$ (i.e. $\mathfrak{h} \neq N_{\mathfrak{g}}(\mathfrak{h})$), which contradicts the fact that \mathfrak{h} is a Cartan subalgebra.

Remark $\mathfrak{g} = \mathfrak{h} \bigoplus (\bigoplus_{\lambda \in \mathfrak{h}^*, \lambda \neq 0} \mathfrak{g}_{\lambda})$ by the latter Proposition.

Next we will apply the last couple of theorems, lemmas and propositions in order to classify all 3-dimensional Lie algebras \mathfrak{g} over an algebraically closed field \mathbb{F} of characteristic zero.

We know that the $rank(\mathfrak{g})=3,2$ or 1; and $rank(\mathfrak{g})=3$ if and only if \mathfrak{g} is nilpotent.

 $Rank(\mathfrak{g}) = 3$:

We know by exercise 6.1, that any 3-dimensional nilpotent Lie algebra is either abelian or H_3 . So any 3-dimensional Lie algebra of $rank(\mathfrak{g}) = 3$ is either abelian or H_3 .

 $Rank(\mathfrak{g}) = 2$:

In this case $dim(\mathfrak{h})=2$. Since \mathfrak{h} must be a nilpotent Lie algebra, we can conclude that \mathfrak{h} is abelian (otherwise \mathfrak{h} would be a 2-dimensional solvable Lie algebra, which is not nilpotent). Hence the root space decomposition is $\mathfrak{g}=\mathfrak{h} \bigoplus \mathbb{F} b$, where $[\mathfrak{h},b] \subset \mathbb{F} b$. Since $\mathfrak{h}=N_{\mathfrak{g}}(\mathfrak{h})$ then $[\mathfrak{h},b] \neq 0$. Hence there exist $a \in \mathfrak{h}$ such that [a,b]=b. Also since \mathfrak{h} is 2-dimensional, then there exists $c \in \mathfrak{h}$ such that [c,b]=0. We also know that [a,c]=0. Thus, we can conclude that the only 3-dimensional Lie algebra of rank 2 is a direct sum of a 2-dimensional non-abelian algebra and one dimensional central subalgebra: $\mathfrak{g}=(\mathbb{F} a+\mathbb{F} b) \bigoplus \mathbb{F} c$.

 $Rank(\mathfrak{g}) = 1$:

Exercise 8.2. Any 3-dimensional Lie algebra \mathfrak{g} of rank 1 is isomorphic to one of the following Lie algebras with basis h, a, b:

- i) [h, a] = a, [h, b] = a + b, [a, b] = 0;
- ii) [h, a] = a, $[h, b] = \lambda b$, where $\lambda \in \mathbb{F}/\{0\}$ [a, b] = 0;
- iii) [h, a] = a, [h, b] = -b, [a, b] = h;

Solution. Let $\mathfrak{h} = \mathbb{F}h$, where $h \in \mathfrak{g}$, be a Cartan subalgebra; we have: $\mathfrak{g} = \mathfrak{h} \bigoplus V$, where $[h, V] \subset V$, dim(V) = 2, and adh is non-singular on V. We may assume one of the eigenvalues of $adh|_V$ is 1, if we scale h accordingly.

First, suppose $adh|_V$ is not semisimple. Thus, $adh|_V = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in some basis $\{a,b\}$. Thus, [h,a] = a and [h,b] = a+b. Also, by using Jacobian Identity, we have [h,[a,b]] = [[h,a],b] + [a,[h,b]] = [a,b] + [a,a+b] = 2[a,b]. But we know that the value 2 cannot be an eigenvalue of adh, thus [a,b] = 0. Thus, this Lie alebra corresponds to (i).

Now, assume $adh|_V$ is semisimple. Thus, we have that $adh|_V = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ in some basis $\{a,b\}$. We then have that [h,a] = a and $[h,b] = \lambda b$. By following the same procedure as above, we note that $[h,[a,b]] = [[h,a],b] + [a,[h,b]] = [a,b] + [a,\lambda b] = (1+\lambda)[a,b]$. Thus, we must have that either [a,b] = 0, which corresponds to (ii), or $(1+\lambda)$ is an eigenvalue of $adh|_V$, case (iii). Note that for the case of [a,b] = 0, then λ is arbitrary and uniquely defined by $\mathfrak g$ up to inverting it by swapping a and b and scaling b accordingly. In the case were b0 and that b1, we must have that b2 and that b3 be a multiple of b4. Thus b5 and scaling b5 accordingly, we may assume that b6 and Thus, we get option (iii) with the latter case.

Exercise 8.3. Show that all Lie algebras in exercise 8.2 are non-isomorphic. Those from (i) and (ii) are solvable, and the one from (iii) is isomorphic to $sl_2(\mathbb{F})$, which is not solvable.

Solution. We first show that the Lie algebra from (iii) is isomorphic to $sl_2(\mathbb{F})$. The standard basis for $sl_2(\mathbb{F})$ consist of $\{b'=\begin{pmatrix}1&0\\0&-1\end{pmatrix}, a'=\begin{pmatrix}0&1\\0&0\end{pmatrix}, b'=\begin{pmatrix}0&0\\1&0\end{pmatrix}\}$. Thus, we have

[h,a']=2a',[h,b']=-2b' and [a',b']=h. Now if we scale and set $h=\frac{h'}{2},\ a=\frac{a'}{\sqrt{2}}$ and $b=\frac{b'}{\sqrt{2}}$; then we get the Lie algebra of case (iii). Thus, Lie algebra (iii) is isomorphic to $sl_2(\mathbb{F})$, which is not solvable. In contrast, it is clear that the algebras (i) and (ii) are solvable by construction.

By conjugacy of Cartan subalgebras, the isomorphism class of $\mathfrak g$ needs to be independent of the choice of the Cartan subalgebra. It follows that the algebras of the three types are non-isomorphic to each other. It also follows that the algebras of type (ii), corresponding to parameters λ and λ' are isomorphic if and only if $\lambda\lambda'=1$