Towards a Portable Model for All-scale **Predictions**

Accord All Staff Meeting

Loïc Maurin, Fabrice Voitus

Centre National de Recherche Météorologique

April 18th, 2024

Introduction

Towards a Demonstrator

Introduction

Towards a Demonstrator

A dynamical core for very-high resolution NWP applications

Objectives

A Improving stability over steep orography

Maintaining scalability over massively parallel HPC-clusters

Current status of AROME perfomances

AROME and FVM dynamical cores - Summary

	AROME	FVM	
Vertical coordinate	Mass-based	Height-based	
Discretization	Spectral Transform (ST)	Finite Volumes (FV)	
Linearization	Constant Coefficients	Non-constant Coef. (NC)	
Implicit solver	Direct	Krylov Methods	
Advection	Semi-Lagrangian (SL)	Eulerian (MPDATA)	

PMAP - FVM dynamical core

Finite Volume Module (FVM)

- Eulerian non-oscillatory flux-form advection : MPDATA
- 2 time levels semi-implicit integration (implicit treatment of acoustic, buoyant modes and metric terms for orography)
- Height-based terrain-following coordinate

MPDATA - Multi Dimensional Positive Definite Advection Transport Algorithm

- Conservative transport scheme
- Conditional stability with CFL < 0.5 (implies small time steps)

Vertical coordinate

Mass-based

- + Hydrostatic part of the flow given by the coordinate
- + Reduced need for a top absorbing layer $(z \to \infty)$
- Time dependency of metric terms $(\pi_s = \pi_s(x, y, t))$
- Integral vertical operators

Height-based

- + Metric terms (orography) independant for the time
- Top absorbing layer required
- Dependency to a prescribed hydrostatic ambient state

Solver: improving stability over steep orography

Inclusion of metric terms for orography in the implicit solver

AROME - Constant Coefficients

- Instabilities on steep slopes (> 60°)
 - Direct Spectral solver
 - + Exact solution in a single iteration
 - Non-constant coefficient computationnally intractable
 - Iterative solver
 - + Fixed number of iterations for the implicit solver
 - + Near-constant weak scalability while increasing the resolution

FVM - Non-constant Coefficients - Iterative solver

- + Stable on steep slopes (up to 85°)
- Convergence rate depends on the prescribed ambient state

Zängl experiment with FVM

Figure 1: Zängl experiment with FVM: prescription of an uniform horizontal wind speed $u=20~m.s^{-1}$ and isothermal conditions on a gaussian shape. The maximum slope is 75°. Results after 6 hours with a time step $\delta t_{run}=0.10~s.$

Solver: improving numerical efficiency

Direct spectral solver

- + Exact solver (no iterations)
- Global communications for Spectral Transform

Iterative Krylov solver

- Near constant weak scalability
- Convergence rate

Figure 2: Weak scalability experiments on : spectral solver (solid blue), GCR(k) (dashed green), Richardson (short-dashed red)

Degrauwe D, Voitus F, Termonia Piet. A non-spectral Helmholtz solver for numerical weather prediction models with a mass-based vertical coordinate. QJR Meteorol. Soc. 2020; 1-15.

Transport scheme: Semi-Lagrangian vs. Eulerian **MPDATA**

MPDATA

- Conservative scheme
- Non-oscillatory
- Conditionnally stable (CFL < 0.5)

Pointwise Semi-Lagrangian scheme

- + Unconditionnally stable
- + Performs well with CFL between 4 and 10
- Non conservative under strong deformations

Transport scheme : Semi-Lagrangian vs. Eulerian **MPDATA**

Semi-Lagrangian Advection

Figure 3: Durran and Blossey advection test with Semi-Lagrangian

Uniform flow over a steep orography on a vertical plane

Maximum slope	CFL _{max}	Lipschitz	Δt	Δz_{min}
15°	0.5		3	10
45°				10
75°				10

Lipschitz' condition for Semi-Lagrangian convergence $L = \max(\delta t | \frac{\partial u}{\partial x}|, \delta t | \frac{\partial v}{\partial y}|, \delta t | \frac{\partial w}{\partial z}|)$

Introduction

Towards a Demonstrator

Physical processes for PMAP-FVM

Coupling ICE3 Microphysics scheme to FVM

- Translation of ICE3 to GT4Py
- Coupling of ICE3 and FVM with respect to small time steps options (Méso-NH)

Building on GT4Py + DaCe

GT4Py: GridTools for Python

- Domain System Language (DSL) for HPC code generation
- Portable accross CPU and GPU architectures
- Python code: readability and Object Oriented Programming

DaCe: Data Centric Parallel Programming

- Optimizing memory allocation for stencils
- DaCeML: Merging AI and Physics based models
 - Model inference using ONNX and integration with Pytorch
 - Automatic differenciation engine

Introduction

Towards a Demonstrator

Building a demonstrator with PMAP

Development of a realistic model for Limited Area and LES

Physics packages on GT4Py

- Integration of GT4Py physics package to PMAP

 - ecRad (translated by ETHZ)
 - ₹ Turbulence scheme from COSMO
- Translation of packages
 - SURFEX
 - Shallow Convection