

Assignment: SQL Notebook for Peer Assignment

Estimated time needed: 60 minutes.

Introduction

Using this Python notebook you will:

- 1. Understand the Spacex DataSet
- 2. Load the dataset into the corresponding table in a Db2 database
- 3. Execute SQL queries to answer assignment questions

Overview of the DataSet

SpaceX has gained worldwide attention for a series of historic milestones.

It is the only private company ever to return a spacecraft from low-earth orbit, which it first accomplished in December 2010. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars wheras other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.

Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

This dataset includes a record for each payload carried during a SpaceX mission into outer space.

Download the datasets

This assignment requires you to load the spacex dataset.

In many cases the dataset to be analyzed is available as a .CSV (comma separated values) file, perhaps on the internet. Click on the link below to download and save the dataset (.CSV file):

Spacex DataSet

```
In [ ]: !pip install sqlalchemy==1.3.9
!pip install ibm_db_sa
!pip install ipython-sql
```

Connect to the database

```
Let us first load the SQL extension and establish a connection with the database
 In [ ]: #Please uncomment and execute the code below if you are working locally.
In [46]:
In [47]:
In [48]:
In [49]:
In [50]:
Out[50]: 101
          Note: This below code is added to remove blank rows from table
In [51]:
          * sqlite:///my_data1.db
Out[51]:
```

Tasks

Now write and execute SQL queries to solve the assignment tasks.

Note: If the column names are in mixed case enclose it in double quotes For Example "Landing_Outcome"

Task 1

Display the names of the unique launch sites in the space mission

In [52]: % SELECT DISTINCT(LAUNCH_SITE) from SPACEXTBL;

* sqlite://my_data1.db
Done.

Out[52]: Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Task 2

Display 5 records where launch sites begin with the string 'CCA'

```
In [53]: %-q1 SELECT LAUNCH_SITE from SPACEXTBL WHERE (LAUNCH_SITE) LIKE 'CCA%' LIMIT 5;

* sqlite://my_data1.db
Done.

Out[53]: Launch_Site

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40
```

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

Task 4

Display average payload mass carried by booster version F9 v1.1

In [55]: %5ql SELECT avg(PAYLOAD_MASS__KG_) as PAYLOADMASS from SPACEXTBL;

* sqlite:///my_data1.db

Out[55]: PAYLOADMASS

6138.287128712871

Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

In [56]: %sql SELECT min(DATE) from SPACEXTBL;

* sqlite:///my_data1.db

Out[56]: min(DATE)

2010-06-04

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

In [64]: % rel select Booster_Version from SPACEXTBL where Landing_Outcome='Success (drone
ship)' and PAYLOAD_MASS__KG__ BETWEEN 4000 and 6000;

* sqlite:///my_data1.db

Out[64]: Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

In [72]: %sql SELECT * from SPACEXTBL LIMIT 1;

* sqlite:///my_data1.db Done

Out[72]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Cı
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	

Task 7

List the total number of successful and failure mission outcomes

In [74]: %sql SELECT COUNT(Mission_Outcome) as 'Mission Outcome Count', Mission_Outcome
from SPACEXTBL GROUP BY Mission_Outcome;

* sqlite://my_datal.db
Done.

Out[74]: Mission Outcome Count Mission Outcome

⊦]:	Mission Outcome Count	Mission_Outcome
	1	Failure (in flight)
	98	Success
	1	Success
	1	Success (payload status unclear)

Task 8

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

In [76]: %sql select Booster_version as 'Booster Version' from SPACEXTBL where
 PAYLOAD_MASS__KG_=(select max(PAYLOAD_MASS__KG_) from SPACEXTBL);

* sqlite:///my_data1.db

6]:	Booster Version
	F9 B5 B1048.4
	F9 B5 B1049.4
	F9 B5 B1051.3
	F9 B5 B1056.4
	F9 B5 B1048.5
	F9 B5 B1051.4
	F9 B5 B1049.5
	F9 B5 B1060.2
	F9 B5 B1058.3
	F9 B5 B1051.6
	F9 B5 B1060.3
	F9 B5 B1049.7

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 6,2) as month to get the months and substr(Date,0,5)='2015' for year.

In [79]: % *** SELECT substr(Date, 6,2) as 'Month', Mission_Outcome, Booster_Version,
Launch Site FROM SPACEXTBL where substr(Date, 0,5)='2015';

* sqlite:///my_data1.db Done.

Out[79]:	Month	Mission_Outcome	Booster_Version	Launch_Site
	01	Success	F9 v1.1 B1012	CCAFS LC-40
	02	Success	F9 v1.1 B1013	CCAFS LC-40
	03	Success	F9 v1.1 B1014	CCAFS LC-40
	04	Success	F9 v1.1 B1015	CCAFS LC-40
	04	Success	F9 v1.1 B1016	CCAFS LC-40
	06	Failure (in flight)	F9 v1.1 B1018	CCAFS LC-40
	12	Success	F9 FT B1019	CCAFS LC-40

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

In [82]:

Out[82]:	Landing Outcomes Count	Landing_Outcome	
	5	Success (drone ship)	

1	Precluded (drone ship)
5	Failure (drone ship)
3	Controlled (ocean)

Success (ground pad)

Uncontrolled (ocean) 10 No attempt

2 Failure (parachute)

Reference Links

• Hands-on Lab: String Patterns, Sorting and Grouping

2

- Hands-on Lab: Built-in functions
- Hands-on Lab : Sub-queries and Nested SELECT Statements
- Hands-on Tutorial: Accessing Databases with SQL magic
- Hands-on Lab: Analyzing a real World Data Set

Author(s)

Lakshmi Holla

Other Contributors

Rav Ahuja

Change log

Date	Version	Changed by	Change Description
2021-07-09	0.2	Lakshmi Holla	Changes made in magic sql
2021-05-20	0.1	Lakshmi Holla	Created Initial Version

© IBM Corporation 2021. All rights reserved.