Lab5. Linux Xilinx Video Pipeline

ZynqMP PL영역에 Xilinx mipi csi2, frame buffer writer IP를 사용하여 Video Pipeline을 구성하고 PCAM 5C Camera Module을 연결하여 Camera 영상을 획득하는 방법을 익힌다.

1. HW preparation

보드에 Usb-to-Uart, PCAM 5C Camera, Mini DP to HDMI Adapter를 연결한다. Usb-to-Uart를 host의 usb 포트에 연결한다. Mini DP to HDMI Adapter는 Monitor와 연결한다.

2. Export Vivado Project

Ultra96v1(hw4_v1.tcl) 또는 Ultra96v2(hw4_v2.tcl) Vivado Project를 만든다.

- \$ cd ~/work/zynqmp_linux/
- \$ vivado -nolog -nojournal -mode batch -source hw4_v1.tcl
- \$ cd hw4
- \$ vivado hw4.xpr

또는

- \$ cd ~/work/zyngmp linux/
- \$ vivado -nolog -nojournal -mode batch -source hw4 v2.tcl
- \$ cd hw4
- \$ vivado hw4.xpr

Bitstream을 생성하고 HW export를 한다.

3. Petalinux Project Update with new HW

다음의 명령을 사용하여 hw4/ 의 xsa파일을 기초로 하여 Petalinux Project(ultra96) 의 HW를 변경한다.

\$ cd ~/work/zynqmp_linux/petalinux/ultra96

\$ petalinux-config --silentconfig --get-hw-description=../../hw4/

4. New Device Tree Generation

다음의 명령으로 new HW에 기초한 Device Tree를 Generation 한다.

\$ cd ~/work/zynqmp_linux/petalinux/ultra96

\$ petalinux-build -c device-tree -x configure

Petalinux Project(ultra96) 폴더 아래의 components/plnx_workspace/device-tree/device-tree/pl.dtsi의 내용을 확인한다. pl.dtsi은 변경된 PL영역의 HW IP들에 대한 Device Tree 정보를 가지고 있다.

Device Tree Modification

다음 명령으로 Device Tree를 수정한다.

\$ cd ~/work/zynqmp_linux/petalinux/ultra96

\$ vi project-spec/meta-user/recipe-bsp/device-tree/files/system-user.dtsi

Video Pipeline을 구성한다.

Ultra96v1은 line5-54이 Ultra96v2는 line49-98이 변경된 부분이다.

```
nokim@envy:/media/hokim/data/work/zynqmp_linux/petalinux/ultra96
 5
6
7
8
9
    &amba pl {
          pcam_clk: pcam_clk {
                compatible = "fixed-clock";
#clock-cells = <0>;
                clock-frequency = <12000000>;
10
          };
11 };
12
13 &i
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    &i2csw_1 {
    ov5640: camera@3c {
        compatible = "ovti,ov5640";
}
                reg = <0x3c>;
                clock-names = "xclk";
                clocks = <&pcam clk>;
                powerdown-gpios = <&gpio 36 1>;
reset-gpios = <&gpio 39 1>;
                port {
                      ov5640_out: endpoint {
                            remote-endpoint = <&csiss_in>;
                            clock-lanes = <0>;
data-lanes = <1 2>;
                      };
                };
          };
                                                                                           29,1
                                                                                                                13%
```

그림 1 Device Tree Modification1(Ultra96v1)

```
🕽 🖨 🗊 hokim@envy: /media/hokim/data/work/zynqmp_linux/petalinux/ultra96
30 };
31
32 &mipi csi2_rx_subsyst_0 {
        compatible = "xlnx,mipi-csi2-rx-subsystem-4.0";
reset-gpios = <&gpio 78 1>;
33
35 };
36
37 &csiss_port0 {
        /delete-property/ xlnx,cfa-pattern;
xlnx,video-format = <0>;
38
39
40 };
41
42 &csiss port1 {
43
        /delete-property/ xlnx,cfa-pattern;
44
        xlnx,video-format = <0>;
45 };
46
47
   &csiss in {
48
        data-lanes = <1 2>;
        remote-endpoint = <&ov5640_out>;
49
50 };
51
52 &v frmbuf wr 0 {
53
        compatible = "xlnx,axi-frmbuf-wr-v2.1";
54 };
                                                                        30,1
                                                                                        96%
```

그림 2 Device Tree Modification2(Ultra96v1)

```
🔊 🖨 🗊 hokim@envy: /media/hokim/data/work/zynqmp_linux/petalinux/ultra96
49 &amba pl {
50
       pcam clk: pcam clk {
51
           compatible = "fixed-clock";
52
53
           #clock-cells = <0>;
           clock-frequency = <12000000>;
54
       };
55 };
56
  57
58
59
60
           clock-names = "xclk";
61
62
           clocks = <&pcam clk>;
63
64
           powerdown-gpios = <&gpio 36 1>;
           reset-gpios = <&gpio 39 1>;
65
66
           port {
67
               ov5640 out: endpoint {
68
                   remote-endpoint = <&csiss in>;
69
                   clock-lanes = <0>;
70
                   data-lanes = <1 2>;
71
               };
72
           };
73
       };
```

그림 3 Device Tree Modification1(Ultra96v2)

```
🕒 🗊 hokim@envy: /media/hokim/data/work/zynqmp_linux/petalinux/ultra96
74 };
75
76 &mipi_csi2_rx_subsyst_0 {
77    compatible = "xlnx,mip
78    reset-gpios = <&gpio 7
79 };
80
81 &csiss_port0 {
          compatible = "xlnx,mipi-csi2-rx-subsystem-4.0";
reset-gpios = <&gpio 78 1>;
81 &csiss_port0 {
82
83
84 };
          /delete-property/ xlnx,cfa-pattern;
xlnx,video-format = <0>;
85
86 &csiss_port1 {
87
           /delete-property/ xlnx,cfa-pattern;
88
          xlnx,video-format = <0>;
89 };
90
91 &csiss_in {
92 data-lar
          data-lanes = <1 2>;
93
           remote-endpoint = <&ov5640_out>;
94 };
95
96 &v frmbuf wr 0
97
          compatible = "xlnx,axi-frmbuf-wr-v2.1";
98 };
```

그림 4 Device Tree Modification2(Ultra96v2)

6. Update BOOT.BIN, image.ub

새로운 HW를 위한 BOOT.BIN과 image.ub를 다음과 같이 Update 한다.

```
$ cd ~/work/zynqmp_linux/petalinux/ultra96

$ petalinux-build -c virtual/boot-bin

$ petalinux-package --force -boot --fsbl images/linux/zynqmp_fsbl.elf --u-boot

images/linux/u-boot.elf --pmufw images/linux/pmufw.elf --fpga

images/linux/system.bit

$ scp images/linux/{BOOT.BIN,image.ub} root@172.30.1.39:/media/card
```

7. Test

보드를 다시 boot하고 다음을 Test한다. output.mp4 Camera 동영상파일이고, 마지막 gst-launch-1.0명령어는 Monitor에 Camera영상이 보여지게 한다.

ultra96\$ reboot ultra96\$ i2cdetect -l		
i2c-3 i2c	i2c-0-mux (chan_id 1)	I2C adapter
i2c-1 i2c	ZyngMP DP AUX	I2C adapter
i2c-8 i2c	i2c-0-mux (chan_id 6)	I2C adapter
i2c-6 i2c	i2c-0-mux (chan_id 4)	I2C adapter
i2c-4 i2c	i2c-0-mux (chan_id 2)	I2C adapter
i2c-2 i2c	i2c-0-mux (chan_id 0)	I2C adapter
i2c-0 i2c	Cadence I2C at ff030000	I2C adapter
i2c-9 i2c	i2c-0-mux (chan_id 7)	I2C adapter
i2c-7 i2c	i2c-0-mux (chan_id 5)	I2C adapter
i2c-5 i2c	i2c-0-mux (chan_id 3)	I2C adapter
ultra96\$ i2cdetect -y -r 3		
0 1 2 3	4 5 6 7 8 9 a b c d e	f
00:		
10:		
20:		
30: UU		

```
70: -- -- -- UU -- --
ultra96$ Is /dev/media*
/dev/media0
ultra96$ media-ctl -d /dev/media0 -p
Device topology
- entity 1: vcap_mipi output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video2
    pad0: Sink
         <- "80000000.mipi_csi2_rx_subsystem":0 [ENABLED]
- entity 5: ov5640 3-003c (1 pad, 1 link)
            type V4L2 subdev subtype Sensor flags 0
            device node name /dev/v4l-subdev0
    pad0: Source
        [fmt:JPEG_1X8/640x480@1/30 field:none colorspace:jpeg xfer:srgb
ycbcr:601 quantization:full-range]
        -> "80000000.mipi csi2 rx subsystem":1 [ENABLED]
- entity 7: 80000000.mipi_csi2_rx_subsystem (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev1
    pad0: Source
        [fmt:UYVY8_1X16/1920x1080 field:none colorspace:srgb]
        -> "vcap_mipi output 0":0 [ENABLED]
    pad1: Sink
[fmt:UYVY8_1X16/1920x1080 field:none colorspace:srgb]
```

```
$ scp root@172.30.1.39:/run/out.yuv .
$ ffmpeg -f rawvideo -vcodec rawvideo -s 1920x1080 -r 15 -pix_fmt yuyv422 -i
out.yuv -c:v libx264 -preset ultrafast -qp 0 output.mp4
```

caps='video/x-raw,width=1920,height=1080,format=YUY2'! fpsdisplaysink video-

```
Encoders:
id crtc type possible crtcs possible clones
38 37 TMDS 0x00000001 0x00000000
```

ultra96\$ modetest -D fd4a0000.zynqmp-display

sink='filesink location=/run/out.yuv'

Connectors:

id encoder status name size (mm) modes encoders 39 38 connected DP-1 510x290 27 38

```
modes:
    name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot)
  1920x1080 60 1920 2068 2112 2200 1080 1116 1121 1125 148500 flags:
phsync, pvsync; type: preferred, driver
CRTCs:
id fb pos size
37 71 (0,0) (1920x1080)
  1920x1080 60 1920 2068 2112 2200 1080 1116 1121 1125 148500 flags:
phsync, pvsync; type: preferred, driver
  props:
Planes:
id crtc
          fb CRTC x,y x,y gamma size possible crtcs
35 0
       0
          0,0 0,0 0
                                  0x0000001
 formats: VYUY UYVY YUYV YVYU YU16 YV16 YU24 YV24 NV16 NV61 GREY Y10
BG24 RG24 XB24 XR24 XB30 XR30 YU12 YV12 NV12 NV21 XV15 XV20
  props:
   7 type:
       flags: immutable enum
       enums: Overlay=0 Primary=1 Cursor=2
       value: 0
36 37 71 0,0 0,0 0 0x00000001
formats: AB24 AR24 RA24 BA24 BG24 RG24 RA15 BA15 RA12 BA12 RG16 BG16
  props:
   7 type:
flags: immutable enum
       enums: Overlay=0 Primary=1 Cursor=2
```

```
value: 1

28 alpha:
    flags: range
    values: 0 255
    value: 255

29 g_alpha_en:
    flags: range
    values: 0 1
    value: 1

ultra96$ modetest -D fd4a0000.zynqmp-display -w 36:g_alpha_en:0

ultra96$ gst-launch-1.0 -v v4l2src device=/dev/video2 io-mode=dmabuf!

capsfilter caps=video/x-raw,width=1920,height=1080,format=YUY2! fpsdisplaysink

fps-update-intervalvideo-sink=1000 signal-fps-measurements=true text-
overlay=false sync=false video-sink='kmssink bus-id=fd4a0000.zynqmp-display'
```