

Scientific and Technical Computing

Hardware and Code Optimization

Lars Koesterke

UT Austin, 9/22/20 &

Our Computer: CPU, Cache, Memory, 'Connection'

CPU

1. Pipelined operation

System designed to get 1 opc

Memory

1. Data streams

System designed to support 1 wpc (for one row)

Caches

- 1. Managed by run-time
- 2. Cache size (for stencil update)

System designed for 'enough' bandwidth to support 2 rows Size: at least 3×n words

Our computer has been somewhat 'hypothetical' so far We have designed the specs so that we get 'optimal' performance for a stencil update

Concurrency!

1. Pipelined operation

System designed to get 1 opc

Memory

Data streams

System designed to support 1 wpc (for one row)

Caches

- 1. Managed by run-time
- 2. Cache size (for stencil update)

System designed for 'enough' bandwidth to support 2 rows

Size: at least 3×n words

Our computer has been somewhat 'hypothetical' so far We have designed the specs so that we get 'optimal' performance for a stencil update

Requirement: Size of the cache = $3 \times n$

n could be any number, any large number

Size of cache in hardware certainly not adjustable Also differences between chip generations

M

m

0

Outline

CPU & Memory, latency, bandwidth, wpc, opc ...

Data streaming, pipelining, caches (part 1)

Caches: software (short)

Caches (working principles)

There are at least 4 'working principles' that we have to cover

TACC

My 'big' plan

Cover many hardware fundamentals as they guide code design

loosely in decreasing order of importance

For each hardware feature:

Add details as necessary to describe a simplified, yet functional 'working model'

Example:

n=500, cache size=300 words

At what iteration 'i' do we (approximately) start to replace data in the cache?

'i' is inner loop


```
do j=1, n do i=1, n y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1)) enddo enddo
```


Example:

n=500, cache size=300 words

At what iteration 'i' do we (approximately) start to replace data in the cache? i~100

So what do we do when we reach 'i=100'

Hint: going further to the right is a 'dead end'


```
do j=1, n
  do i=1, n
    y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
  enddo
enddo
```


Example:

n=500, cache size=300 words

At what iteration 'i' do we (approximately) start to replace data in the cache? i~100

What do we do when we reach 'i=100'

- Hint: going further to the right is a 'dead end'
- So we go one row down
- The green area first, then the orange area

How do we do this in code?


```
do j=1, n
  do i=1, n
    y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
  enddo
enddo
```


Example:

n=500, cache size=300 words

So how do we do this in code?

- What is the width of a strip?
- How many strips?
- How many loops in the code?


```
do j=1, n
  do i=1, n
    y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
  enddo
enddo
```


Example:

n=500, cache size=300 words

So how do we do this in code?

- What is the width of a strip? 100
- How many strips?
- How many loops in the code? 3 (up from 2)


```
n = 500; ns = 100
do iout=1, ...
do j=1, n
   is = ...
   ie = ...
   do i=is, ie
      y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
   enddo
enddo
enddo
enddo
```

Example:

n=500, cache size=300 words

So how do we do this in code?

- What is the width of a strip? 100
- How many strips?
- How many loops in the code? 3 (up from 2)

Example:

n=500, cache size=300 words

So how do we do this in code?

- What is the width of a strip? 100
- How many strips? 5
- How many loops in the code? 3 (up from 2)

```
n = 500; ns = 100
do iout=1, ...
  do j=1, n
    is = ...
    ie = ...
    do i=is, ie
        y(i,j) = 0.25 *
    enddo
enddo
enddo
```


We go left to right fast (**x**-direction)
We go slowly in **y**-direction
Hence left to right is the inner loop. Loop index is 'i'

The 'fast' loop, i.e. the inner loop 'exceeds' to size of the cache We split up the inner loop in 2 loops. Indexes 'i' and 'iout'
The loop 'j' that re-uses the data of the inner loop is in the middle

Re-use data before it is evicted

Breaking a loop into 2 (or more) parts

(There can be cache blocking for multiple loops)

Note:

In our example we have been overly optimistic
Width of the strip stretched to the max
Real application: other data is also stored in cache
(there are also other processes)

Let's fill in the blanks

```
n = 500; ns = 100
do iout=1, ...
  do j=1, n
    is = ...
  ie = ...
    do i=is, ie
        y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
    enddo
enddo
enddo
```

Re-use data before it is evicted

Breaking a loop into 2 (or more) parts

There can be cache blocking for multiple loops

Note:

In our example we have been overly optimistic
Width of the strip stretched to the max
Real application: other data is also stored in cache
(there are also other processes)

Be aware that for arbitrary pairs (n,ns) the code will be more complicated

Consider:

N=495; ns=100

TACC

```
n = 495; ns = 100
do iout=1, ...
  do j=1, n
    is = ...
    ie = ...
    do i=is, ie
        y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
    enddo
enddo
enddo
```

Re-use data before it is evicted

Breaking a loop into 2 (or more) parts

There can be cache blocking for multiple loops

1. Be aware that for arbitrary pairs (n,ns) the code will be more complicated

2. Cache size=300 → ns=100 ns is way(!) too large (by 2×) Why?

Note:

In our example we have been overly optimistic
Width of the strip stretched to the max
Real application: other data is also stored in cache
(there are also other processes)

In our example, why should the width of the strip (ns) be smaller than 50?

```
n = 500; ns = 100
do iout=1, ...
do j=1, n
   is = ...
   ie = ...
   do i=is, ie
        y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
   enddo
enddo
enddo
```


Re-use data before it is evicted

Breaking a loop into 2 (or more) parts

There can be cache blocking for multiple loops

1. Be aware that for arbitrary pairs (n,ns) the code will be more complicated

2. Cache size=300 → ns=100 ns is way(!) too large (by 2×) Why?

Note:

In our example we have been overly optimistic
Width of the strip stretched to the max
Real application: other data is also stored in cache
(there are also other processes)

In our example, why should the width of the strip (ns) be smaller than 50?

Usually numerical tests (trials) are used to determine a suitable size for the cache blocking

Tests are repeated, if:

- Architecture changes (different machine)
- Implementation changes (more/less data in loop kernel)

```
n = 500; ns = 100
do iout=1, ...
do j=1, n
  is = ...
  ie = ...
  do i=is, ie
     y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
  enddo
enddo
enddo
```


Re-use data before it is evicted

Breaking a loop into 2 (or more) parts

There can be cache blocking for multiple loops

2. Cache size=300 → ns=100 ns is way(!) too large (by 2×) Why?

Everything moving between memory and CPU is cached:

Not just 'x' but also 'y'

Note:

In our example we have been overly optimistic
Width of the strip stretched to the max
Real application: other data is also stored in cache
(there are also other processes)

In our example, why should the width of the strip (ns) be smaller than 50?

```
n = 500; ns = 50
do iout=1, ...
do j=1, n
   is = ...
   ie = ...
   do i=is, ie
      y(i,j) = 0.25 * (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))
   enddo
enddo
enddo
```

