

Introduction and NASA Electronic Parts and Packaging (NEPP) Program Overview

Kenneth A. LaBel

Michael J. Sampson

ken.label@nasa.gov

michael.j.sampson@nasa.gov

301-286-9936

301-614-6233

Co- Managers, NEPP Program
NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:

This work was sponsored by: NASA Office of Safety & Mission Assurance NASA Office of Chief Engineer

Unclassified

Acronyms

2D	Three Disconsissed		
3D	Three Dimensional		
ADC	Analog to Digital Converter		
Aero	Aerospace		
ARC	Ames Research Center		
ASIC	Application Specific Integrated Circuit		
CMOS	Complementary Metal Oxide Semiconductor		
COTS	Commercial Off The Shelf		
CSLI	CubeSat Launch initiative		
DIP	Dual Inline Package		
DNL	Differential Non-Linearity		
DSP	Digital Signal Processor		
EDAC	Error Detection and Correction		
EEE	Electrical, Electronic, and Electromechanical		
ENOB	Effective Number of Bits		
EPI	Epitaxial		
ESSP	Earth System Science Pathfinder		
FCBGA	Flip Chip Ball Grid Array		
FPGA	Field Programmable Gate Array		
GAS can	GetAway Special can		
Gb	Gigabit		
Gbps	Gigbits per Second		
GHz	Gigaherz		
GSFC	Goddard Space Flight Center		
HST	Hubble Space Telescope		
IC	Integrated Circuit		
INL	Integral Non-Linearity		
IO	Input Output		
ISS	International Space Station		
JIMO	Jupiter Icy Moons Orbiter		
JPL	Jet Propulsion Laboratories		
JWST	James Webb Space Telescope		
k	Kilo		
kb	Kilobit		
LCC	Leadless Chip Carrier		
M	·		
IVI	Meg		

MER	Mars Exploration Rover	
MHz	Megaherz	
MIDEX	Medium-Class Explorer	
MIL	Military	
MIPS	Millions of Instruction per Second	
MP3	Moving Picture Experts Group-I or II Audio Layer III	
MRO	Mars Reconnaissance Orbiter	
Msps	Megasamples per second	
NASA	National Aeronautics and Space Administration	
NEPP	NASA Electronic Parts and Packaging	
NID	NASA Interim Directive	
nm	nanometer	
NMOS	N-type Metal Oxide Semiconductor	
NPR	NASA Procedural Requirements	
NPSL	NASA Parts Selection List	
NRE	Non-Recurring Engineering	
PCB	Printed Circuit Board	
POF	Physics of Failure	
RF	Radio Frequency	
SAA	South Atlantic Anomaly	
SCD	Source Control Drawing	
SDRAM	Synchronous Dynamic Random Access Memory	
SEE	Single Event Effect	
SERDED	Serializer Deserializer	
SEU	Single Event Upset	
Si	Silicon	
SMA	Safety and Mission Assurance	
SME	Subject Matter Expert	
SMEX	Small Explorer	
SOC	Systems on a Chip	
SOI	Silicon on Insulator	
SWaP	Size, Weight, and Power	
TID	Total Ionizing Dose	
TMR	Triple Modular Redundancy	
um	micron	

Why are we here?

- As a follow-on to an internal NASA EEE parts workshop held in 2013, the NEPP Program will be hosting an open workshop entitled
 - "EEE Parts for Small Missions".
- Small Missions are loosely defined as those under 500 kg, but the emphasis here is on under 100 kg.
- The workshop focus will discuss tailoring EEE parts approaches based on mission risk and expectations.
- This includes "traditional" (science) and "non-traditional" (demonstration) missions with CubeSat electronics a prime discussion area.
- The real purpose is to aid the community in understanding risks with EEE parts and open a forum for discussion both now and in the future.

Agenda – Day 1

Session 8:00 AM Introduction and Government 9:00 AM Packaging Overview - Ken LaBel European Space Agency: CubeSat Overview - Roger Walker, ESA 10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA 11:00 AM NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the Enemy of Good Enough? - Henning Leidecker
8:00 AM Introduction and Government 9:00 AM Agency Presentations European Space Agency: CubeSat Overview - Roger Walker, ESA 10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA 11:00 AM NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Break (20 min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Introduction and Government 9:00 AM Agency Presentations European Space Agency: CubeSat Overview - Roger Walker, ESA 10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Basic Concepts Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
9:00 AM Agency Presentations Packaging Overview - Ken LaBel European Space Agency: CubeSat Overview - Roger Walker, ESA 10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
European Space Agency: CubeSat Overview - Roger Walker, ESA 10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
9:20 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
9:20 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
9:20 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
10:00 AM Break (20 min) Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Small Spacecraft Technology at NASA - Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
10:20 AM Andrew Petro, NASA NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL 12:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
11:00 AM NASA CubeSat Launch Initiative - Carol Galica or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
11:00 AM or Garrett Skrobot, NASA Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Small Satellite Parts On Orbit Now (SPOON) - Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
11:30 AM Charlene Jacka, AFRL Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
12:00 PM Lunch (60min) Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
1:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
1:00 PM Why Space is Unique? The Basic Environment Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
1:00 PM Basic Concepts Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
1:00 PM Basic Concepts Challenges for EEE Parts - Ken LaBel Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Traditional EEE Part Testing versus "Higher Assembly" Validation Tests - Is Better the
Assembly" Validation Tests - Is Better the
· · · · · · · · · · · · · · · · · · ·
1:30 PM Enemy of Good Enough? - Henning Leidecker
Panel: Fault Tolerance: Does It Cure All Ills? -
2:00 PM led by Jesse Leitner, NASA
2:30 PM Break (30 min)
Is It Wise to Fly Automotive Electronics -
3:00 PM COTS and Risk Michael Sampson, NASA
The Challenges of PEMs Packaging - S. Ali
Lilani, Integra Technologies
3:30 PM
Relative Radiation Risk Reduction for Small
Spacecraft and New Designers - Michael
3:50 PM Campola, NASA
Using Modeling to Provide Realistic Radiation
4:20 PM Requirements - Thomas Jordan, EMPC
4:45 PM End of Day 1

Agenda – Day 2

Session	
8:00 AM	Coffee and registration check-in
9:00 AM Approaches to Small Missions	Cygnss: Lessons Learned from a Class D Mission - Jessica Stack Tumlinson, SwRI
0.20 444	RadFx: Cube-Sat Based Payload to Study Radiation Effects in Advanced Electronics -
9:30 AM	Robert Reed, Vanderbilt
9:50 AM	Small Satellites Hardened by Design Using Non- space Qualified EEE Parts - Roberto Ciblis, INVAP
10:10 AM	Break (20 min)
10:30 AM <i>EEE Parts Qualification</i>	Tailoring Traditional Parts Qualification - Pat Dugan, NASA
11:00 AM	Tailoring TOR for Class D Missions - Charles Hymnowitz, AEi Systems
	Alternative Methods to Qualify EEE parts for
11:30 AM	Small Missions - Craig Hillman, DFR Solutions
12:00 PM	Lunch (60min)
1:00 PM Invited	The First 200 CubeSats - Prof. Michael Swartwout, Saint Louis University
1:30 PM NEPP Tasks	CubeSat Parts Database: NASA Usage and Kit Manufacturers - Doug Sheldon, JPL
1:50 PM	Candidate CubeSat Processors - Steve Guertin, JPL
2:10 PM	Candidate CubeSat Power Devices - Leif Scheick, JPL
2:30 PM	Arduino/Raspberry Pi: Hobbyist Hardware and Radiation Total Dose Degradation - Daniel Violette, Uconn/NASA
2:50 PM	Break (25 min) Burn-In of Complex Commercial Parts - Marti
3:15 PM	McCurdy - Silicon 360
A:00 DNA Broad and Consents	Panel: The "Right" Power Architecture for
4:00 PM Panel and Concepts 4:30 PM	CubeSats - led by John Shue, NASA Wrapup Discussion
4.30 FIVI	End of Day 2

NEPP Overview

NEPP provides the Agency infrastructure for assurance of EEE parts for space usage.

Qualification guidance

To flight projects on how to qualify

Standards

Ensures NASA needs are represented

Manufacturer Qualification

Support of audits and review of qualification plans/data

Information Sharing

Lessons learned, working groups, website, weekly telecons

Technology Evaluation

Determine new technology applicability and qualification guidance

Test/Qualification Methods

Evaluate improved or more cost-effective concepts

Risk Analysis

For all grades of EEE parts (commercial, automotive, military/aerospace, ...)

Subject Matter Expertise

SMEs for NASA programs, other agencies, industry

NEPP and its subset (NASA Electronic Parts Assurance Group – NEPAG) are the Agency's POCs for reliability and radiation tolerance of EEE parts and their packages.

Notional NEPP View of EEE Parts Needs Diversity

collaboration

FY14 NEPP Core -

Automotive/Commercial Electronics (Small Missions)

Core Areas are Bubbles Boxes underneath are variable tasks in each core

Legend

NEPP Ongoing Task

FY14 New Start

Coldfire™

FY14 NEPP Core - Complex Devices

Core Areas are Bubbles;
Boxes underneath are variable tasks in each core

Legend

NEPP Ongoing Task

FY14 New Start

FY14 NEPP Core - Power Devices

Core Areas are Bubbles;
Boxes underneath are variable tasks in each core

Legend

NEPP Ongoing Task

FY14 New Start

FY14 NEPP Core - Assurance

Core Areas are Bubbles;
Boxes underneath are variable tasks in each core

Legend

NEPP Ongoing Task

FY14 New Start

NASA Electronic Parts Assurance Group (NEPAG)

Core Areas are Bubbles Boxes underneath are elements in each core

Legend

NEPP Ongoing Task

FY14 New Start

Outline

- Assurance for Electronics
- Commercial Off The Shelf (COTS) Usage
- Testing at Board/Box Level?
- Summary and Discussion

Hubble Space Telescope courtesy NASA

Assurance for Electronic Devices

Assurance is

- Knowledge of
 - The supply chain and manufacturer of the product,
 - The manufacturing process and its controls, and,
 - The physics of failure (POF) related to the technology.
- Statistical process and inspection via
 - Testing, inspection, physical analyses and modeling.
- Understanding the application and environmental conditions for device usage.
 - This includes:
 - Radiation,
 - Lifetime,
 - Temperature,
 - Vacuum, etc., as well as,
 - Device application and appropriate derating criteria.

Reliability and Availability

Reliability (Wikipedia)

 The ability of a system or component to perform its required functions under stated conditions for a specified period of time.

Availability (Wikipedia)

The degree to which a system, subsystem, or equipment is in a specified operable and committable state at the start of a mission, when the mission is called for at an unknown, i.e., a random, time. Simply put, availability is the proportion of time a system is in a functioning condition. This is often described as a mission capable rate.

The question is:

- Does it HAVE to work? Or
- Do you just WANT it to work?

What does this mean for EEE parts?

- The more understanding you have of a device's failure modes and causes, the higher the confidence level that it will perform under mission environments and lifetime
 - High confidence = "have to work"
 - The key is operating without a problem when you need it to (appropriate availability over the mission lifetime)
 - Less confidence = "want to work"
 - This is not saying that it won't work, just that our confidence to be available isn't as high (or even unknown)
- Standard Way of Doing Business
 - Qualification processes are statistical beasts designed to understand/remove known reliability risks and uncover unknown risks inherent in a part.
 - Requires significant sample size and comprehensive suite of piecepart testing (insight) – high confidence method

Screening <> Qualification

- Electronic component screening uses environmental stressing and electrical testing to identify marginal and defective components within a "lot" of devices.
 - This is opposed to qualification which is usually a suite of harsher tests (and often destructive) intended to fully determine reliability characteristics of the device over a standard environment/application range
- Diatribe: what is a "lot"?
 - For the Mil/Aero system, it is devices that come from the same wafer diffusion (i.e., silicon lot from the same wafer)
 - For all others, it is usually the same "packaging" date
 - I.e., silicon may or may not be the same, but the devices were packaged at the same time. This raises a concern often known as "die traceability".
 - Device failure modes often have variance from silicon lot to silicon lot.

The Trade Space Involved With Part Selection

- Evolution of IC space procurement philosophy
 - OLD: Buy Mil/Aero Radiation Hardened Devices Only
 - NEW: Develop Fault /Radiation Tolerant Systems
- This is now systems design that involves a risk management approach that is often quite complex.
- For the purposes of this discussion, we shall define ICs into two basic categories
 - Space-qualified which may or may not be radiation hardened, and,
 - Commercial (includes automotive)
- Understanding Risk and the Trade Space involved with these devices is the new key to mission success
 - Think size, weight, and power (SWaP), for instance

Performance
Inside a Apple
iPhoneTM

Courtesy EE Times Magazine

The Challenge for Selecting ICs for Space

- Considerations since the "old days"
 - High reliability (and radiation tolerant) devices
 - Now a very small market percentage
 - Commercial "upscreening*"
 - Increasing in importance
 - Assesses reliability, does not enhance
 - System level performance and risk
 - Hardened or fault tolerant "systems" not devices

ADCs? SerDes?
SDRAM?
Processor? ASICs?
DSPs
Flash? FPGAs?

System Designer
Trying to meet high-resolution
instrument requirements AND long-life

*upscreening – performing tests/analysis on electronic parts for environments outside the intended/guaranteed range of a device

ADC: analog-to-digital converter

SDRAM: synchronous dynamic random access memory

SerDes: serializer-deserializer

ASIC: application-specific integrated circuit

DSP: digital signal processor

Understanding Risk

- The risk management requirements may be broken into three considerations
 - Technical/Design "The Good"
 - Relate to the circuit designs not being able to meet mission criteria such as jitter related to a long dwell time of a telescope on an object
 - Programmatic "The Bad"
 - Relate to a mission missing a launch window or exceeding a budgetary cost cap which can lead to mission cancellation
 - Radiation/Reliability "The Ugly"
 - Relate to mission meeting its lifetime and performance goals without premature failures or unexpected anomalies
- Each mission must determine its priorities among the three risk types

The Risk Trade Space -

Considerations for Device Selection (Incomplete)

- Cost and Schedule
 - Procurement
 - NRE
 - Maintenance
 - Qualification and test
- Performance
 - Bandwidth/density
 - SWaP
 - System function and criticality
 - Other mission constraints (e.g., reconfigurability)
- System Complexity
 - Secondary ICs (and all their associated challenges)
 - Software, etc...

- Design Environment and Tools
 - Existing infrastructure and heritage
 - Simulation tools
- System operating factors
 - Operate-through for single events
 - Survival-through for portions of the natural environment
 - Data operation (example, 95% data coverage)
- Radiation and Reliability
 - SEE rates
 - Lifetime (TID, thermal, reliability,...)
 - "Upscreening"
- System Validation and Verification

NRE: non-recurring engineering

IC: integrated circuit
SEE: single-event effect
TID: total ionizing dose

Systems Engineering and Risk

- The determination of acceptability for device usage is a complex trade space
 - Every engineer will "solve" a problem differently
 - Ex., approaches such as synchronous digital circuit design may be the same, but the implementations are not
- A more omnidirectional approach is taken weighing the various risks
 - Each of the three factors may be assigned weighted priorities
 - The systems engineer is often the "person in the middle" evaluating the technical/reliability risks and working with management to determine acceptable risk levels

Traditional Risk Matrix

NASA and **COTS**

- NASA has been a user of COTS electronics for decades, typically when
 - Mil/Aero alternatives are not available (performance or function or procurement schedule),
 - A system can assume possible unknown risks, and,
 - A mission has a relatively short lifetime or benign space environment exposure.
- In most cases, some form of "upscreening" has occurred.
 - A means of assessing a portion of the inherent reliability of a device.
 - Discovering that a COTS device fails during upscreening has occurred in almost every flight program.
- Note: CubeSats may NOT necessarily use this model.

Notional EEE Parts Usage Factors Environment/Lifetime

	Low	Medium	High
Low	COTS upscreening/ testing optional; do no harm (to others)	COTS upscreening/ testing recommended; fault-tolerance suggested; do no harm (to others)	Rad hard suggested. COTS upscreening/ testing recommended; fault tolerance recommended
Medium	COTS upscreening/ testing recommended; fault- tolerance suggested	COTS upscreening/ testing recommended; fault-tolerance recommended	Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.
High	Level 1 or 2 suggested. COTS upscreening/ testing recommended. Fault tolerant designs for COTS.	Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.	Level 1 or 2, rad hard recommended. Full upscreening for COTS. Fault tolerant designs for COTS.

Comments on the "Matrix" Wording

- "Optional" implies that you might get away without this, but there's risk involved.
- "Suggested" implies that it is good idea to do this.
- "Recommended" implies that this really should be done.
- Where just the item is listed (like "full upscreening on COTS") – this should be done to meet the criticality and environment/lifetime concerns.

Good mission planning identifies where on the matrix it lies.

"How to Save on EEE Parts for a Payload on a Budget and Be Reliable"

- First and foremost: SCROUNGE
 - Are there spare devices available at either your Center or elsewhere at the Agency?
 - NASA has already bought devices ranging from passives to FPGAs.
 - Some may be fully screened and even be radiation hardened/tested.
 - You may still have to perform some additional tests, but it's cheaper than doing them all!
- Engage parts/radiation engineers early to help find and evaluate designers "choices".
 - Use their added value to help with the choices and even on fault tolerance approaches – you'll need them to "sign off" eventually.
- If you can't find spares, try to use parts with a "history".
 - At a minimum, the hope is that your lot will perform similarly to the "history" lot – not guaranteed.
 - Even riskier, choose devices built on the same design rules by the same company (i.e., different part, but on the same process/design as a part with "history").
- If you absolutely need something new, you will pay for the qualification or take the risk.

Brief Diatribe:

Add Fault Tolerance or Radiation Hardening?

- Means of making a system more "reliable/available" can occur at many levels
 - Operational
 - Ex., no operation in the South Atlantic Anomaly (proton hazard)
 - System
 - Ex., redundant boxes/busses or swarms of nanosats
 - Circuit/software
 - Ex., error detection and correction (EDAC) scrubbing of memory devices by an external device or processor
 - Device (part)
 - Ex., triple-modular redundancy (TMR) of internal logic within the device
 - Transistor
 - Ex., use of annular transistors for TID improvement
 - Material
 - Ex., addition of an epi substrate to reduce SEE charge collection (or other substrate engineering)

Good engineers can invent infinite solutions, but the solution used must be adequately validated

Discussion: Is knowledge of EEE Parts Failure Modes Required To Build a Fault Tolerant System?

- This is NOT to say that the system won't work without the knowledge, but do we have adequate confidence in the system to work when we need it to?
 - What are the "unknown unknowns"? Can we account for them?
 - How do you calculate risk with unscreened/untested EEE parts?
 - Do you have common mode failure potential in your design? (i.e., a identical redundant string rather than having independent redundant strings)
 - How do you adequately validate a fault tolerant system for space?
- If we go back to the "Matrix", how critical is your function and harsh your environment/lifetime? This will likely drive your implementation "answers".

Example:

Is Radiation Testing Always Required for COTS?

- Exceptions for testing may include
 - Operational
 - Ex., The device is only powered on once per orbit and the sensitive time window for a single event effect is minimal
 - Acceptable data loss
 - Ex., System level error rate may be set such that data is gathered 95% of the time. This is data availability. Given physical device volume and assuming every ion causes an upset, this worst-case rate may be tractable.
 - Negligible effect
 - Ex., A 2 week mission on a shuttle may have a very low Total lonizing Dose (TID) requirement. TID testing could be waived.

Memory picture courtesy NASA, Code 561

A flash memory may be acceptable without testing if a low TID requirement exists or not powered on for the large majority of time.

Summary

- In this talk, we have presented:
 - An overview of NEPP as well as considerations for selection of ICs focusing on COTS for space systems.
 - Technical, programmatic, and risk-oriented
 - As noted, every mission may view the relative priorities between the considerations differently.
- As seen below, every decision type may have a process.
 - It's all in developing an appropriate one for your application and avoiding "buyer's remorse"!

Five stages of Consumer Behavior

http://www-rohan.sdsu.edu/~renglish/370/notes/chapt05/

Backup Slides

IC Selection Requirements

- To begin the discussion, we shall review IC selection from three distinct and often contrary perspectives
 - Performance,
 - Programmatic, and,
 - Reliability.

Graphic courtesy http://www.shareworld.co/

Performance Requirements

Rationale

- Trying to meet science, surveillance, or other performance requirements
- Personnel involved
 - Electrical designer, systems engineer, other engineers
- Usual method of requirements
 - Flowdown from science or similar requirements to implementation
 - i.e., ADC resolution or speed, data storage size, etc...

Buzzwords

- MIPS/watt, Gbytes/cm³, resolution,
 MHz/GHz, reprogrammable
- Limiting technical factors beyond electrical
 - Size, weight, and power (SWaP)

Race Car courtesy
http://wot.motortrend.com/

MIPS: millions of instructions per second

Programmatic Requirements and Considerations

Rationale

Trying to keep a program on schedule and within budget

Personnel involved

 Project manager, resource analyst, system scheduler

Usual method of requirements

- Flowdown from parent organization or mission goals for budget/schedule
 - · I.e., Launch date

Buzzwords

 Cost cap, schedule, critical path, risk matrix, contingency

Limiting factors

Parent organization makes final decision

Burroughs Accounting Machine courtesy http://www.piercefuller.com/collect/before.html

A numbers game

Risk Requirements

- Rationale
 - Trying to ensure mission parameters such as reliability, availability, operate-through, and lifetime are met
- Personnel involved
 - Radiation engineer, reliability engineer, parts engineer
- Usual method of requirements
 - Flowdown from mission requirements for parameter space
 - I.e., SEU rate for system derived from system availability specification
- Buzzwords
 - Lifetime, total dose, single events, device screening, "waivers"
- Limiting factors
 - Management normally makes "acceptable" risk decision

SOHO/SWAN Ultraviolet Image courtesy

http://sohowww.nascom.nasa.gov/gallery/Particle/swa008.html

An Example "Ad hoc" Battle

- Mission requirement: High resolution image
 - Flowdown requirement: 14-bit 100 Msps ADC
 - Usually more detailed requirements are used such as Effective Number of Bits (ENOB) or Integral Non-Linearity (INL) or Differential Non-Linearity (DNL) as well
 - Designer
 - Searches for available radiation hardened ADCs that meet the requirement
 - Searches for commercial alternatives that could be upscreened
 - Looks at fault tolerant architecture options
 - Manager
 - Trades the cost of buying Mil-Aero part requiring less aftermarket testing than a purely commercial IC
 - Worries over delivery and test schedule of the candidate devices
 - Radiation/Parts Engineer
 - Evaluates existing device data (if any) to determine reliability performance and additional test cost and schedule
- The best device? Depends on mission priorities

Why COTS? The Growth in Integrated Circuit Availability

- The semiconductor industry has seen an explosion in the types and complexity of devices that are available over the last several decades
 - The commercial market drives features
 - High density (memories)
 - High performance (processors)
 - Upgrade capability and time-to-market
 - Field Programmable Gate Arrays (FPGAs)
 - Wireless (Radio Frequency (RF) and mixed signal)
 - Long battery life (Low-power Complementary Metal Oxide Semiconductors (CMOS))

Integrated Cycling Bib and MP3

Zilog Z80 Processor circa 1978 8-bit processor

FPGA: field programmable gate array

RF: radio frequency

CMOS: complementary metal oxide semiconductor

Processor pictures courtesy

NASA, Code 561

Intel 65nm Dual Core Pentium D Processor circa 2007

Dual 64-bit processors

The Changes in Device Technology

- Besides increased availability, many changes have taken place in
 - Base technology,
 - Device features, and,
 - Packaging
- The table below highlights a few selected changes

<u>Feature</u>	<u>circa 1990</u>	circa 2007	
Base technology	bulk CMOS/NMOS	CMOS with strained Si or SOI	
Feature size	> 2.0 um	65 nm	
Memory size -			
volatile (device)	256 kb	1 Gb	
Processor speed	64 MHz	> 3 GHz	
FPGA Gates	2k	> 1 M	
Package	DIP or LCC - 40 pins	FCBGA - 1500 balls	
Advanced system		>Gbps Serial Link, Serdes,	
on a chip (SOC)		embedded processors,	
features	Cache memory	embedded memory	

Now commercial technology is pushing towards 14nm, 3D **transistors, and substrates, etc...**To be presented by Kenneth A. LaBel at the Electrical, Electronic, and Electromechanical (EEE) Parts for Small Missions,

Greenbelt, MD, September 10-11, 2014.

DIP: dual in-line package LCC: leaded chip carrier

SOI: silicon on insulator

FCBGA: flip chip ball grid array

Evaluation Method of Commercial Off-the-Shelf (COTS) Electronic Printed Circuit Boards (PCBs) or Assemblies

We can test devices, but how do we test systems?

Or better yet, systems of systems on a chip (SOC)?

Sample Challenges for the Use and Testing of COTS PCBs:

- Limited parts list information
 - Bill-of-materials often does NOT include lot date codes or manufacturer of device information
 - Die or in some cases lack of information on "datasheets"
 - Full PCB datasheet may not have sufficient information on individual device usage
 - The possibility of IC variances for "copies" of the "same" PCBs:
 - Form, fit, and function doesn't equal same device from same manufacturer
 - Lot-to-lot, device-to-device variance
- The limited testability of boards due to complex circuitry, limited IO, and packaging issues ("visibility" issues) as well as achieving full-range thermal/voltage acceleration. This includes "fault coverage".
- The issue of piecepart versus board level tests
 - Board performance being monitored, not device
 - Error/fault propagation often time and application dependent
- The inability to simulate the space radiation environment with a single particle test
 - Potential masking of faults during radiation exposure (too high a particle rate or too many devices being exposed simultaneously)
- Statistics are often limited due to sample size