On graphs having maximal independent sets of exactly t distinct cardinalities

¹Bert L. Hartnell and ²Douglas F. Rall*[†]

¹Department of Mathematics & Computing Science Saint Mary's University Halifax, Nova Scotia, Canada

²Department of Mathematics Furman University Greenville, SC 29613 USA

Abstract

For a given positive integer t we consider graphs having maximal independent sets of precisely t distinct cardinalities and restrict our attention to those that have no vertices of degree one. In the situation when t is four or larger and the length of the shortest cycle is at least 6t - 6, we completely characterize such graphs.

Keywords: maximal independent set, girth, cycle AMS subject classification: 05C69, 05C38

1 Introduction

A well-covered graph (Plummer [6]) is one in which every maximal independent set of vertices is of one cardinality and is hence a maximum independent set. Finbow, Hartnell and Whitehead [5] defined the class \mathcal{M}_t to consist of those graphs which have exactly t different sizes of maximal independent sets. Finbow, Hartnell and Nowakowski [4] proved that the well-covered graphs (the \mathcal{M}_1 collection) of girth (the length of a shortest cycle) 6 or more, with the exceptions of K_1 and C_7 , have the property that every vertex has degree one or has exactly one vertex of degree one in its neighborhood. Thus, C_7 is the unique graph in \mathcal{M}_1 with girth at least 6

^{*}Corresponding author: e-mail: doug.rall@furman.edu

[†]Research supported in part by the Wylie Enrichment Fund of Furman University.

that has minimum degree at least two. The graphs in \mathcal{M}_2 of girth 8 or more have also been characterized ([5]). There are precisely five graphs in \mathcal{M}_2 of girth at least 8 and minimum degree 2 or more, namely the cycles C_8 , C_9 , C_{10} , C_{11} and C_{13} . This implies there are no \mathcal{M}_1 graphs of girth at least 8 with minimum degree 2 or more and no \mathcal{M}_2 graphs of girth 14 or more and having minimum degree at least 2. For related work on the class \mathcal{M}_t see [1] and [2].

In this paper we investigate the graphs in \mathcal{M}_t that have minimum degree at least 2 and higher girth and establish that the characterization of these in \mathcal{M}_1 and \mathcal{M}_2 is part of a general pattern. In particular, for $t \geq 3$ we show that among graphs with minimum degree at least 2, \mathcal{M}_t does not contain a graph of girth at least 6t + 2 and that C_{6t-4} , C_{6t-3} , C_{6t-2} , C_{6t-1} and C_{6t+1} are the only exceptions for girth at least 6t - 4. Furthermore, if $t \geq 4$, then these cycles along with C_{6t-6} are the only graphs in \mathcal{M}_t that have minimum degree at least 2 and girth at least 6t - 6.

Let G be a finite simple graph. A vertex of degree 1 is called a *leaf* and any vertex that is adjacent to a leaf is called a *support vertex*. If G is a cycle in a graph G and G and G and G and G belong to G, we let G denote the shorter of the two G, G and G are part of G. For G is a vertex in G, G will denote the length of a shortest path in G from G to a vertex of G. We will use G be denote the collection of all maximal independent sets of G and we define the *independence spectrum* (*spectrum* for short) of G to be the set G and we define the *independence spectrum* (*spectrum* for short) of G to be the set G and we define the *independence spectrum* (*spectrum* for short) of G to be the set G and we define the *independence spectrum* (*spectrum* for short) of G to be the set G for which G is a spectrum is not necessarily a set of consecutive positive integers (e.g., G and G inclusive by G in G inclusive by G in G in G inclusive by G in G inclusive by G in G inclusive by G in G in G inclusive by G inclusive G inclusive

Proposition 1 For each positive integer n at least 3,

$$\mathcal{S}(C_n) = [\lceil n/3 \rceil, \lceil n/2 \rceil]$$
 and $\mathcal{S}(P_n) = [\lceil n/3 \rceil, \lceil n/2 \rceil]$.

Hence, $C_n \in \mathcal{M}_t$ and $P_n \in \mathcal{M}_s$ where $t = \lfloor n/2 \rfloor - \lceil n/3 \rceil + 1$ and $s = \lceil n/2 \rceil - \lceil n/3 \rceil + 1$.

The following lemma from [5] will be used throughout—often without mention.

Lemma 2 [5] If the graph G belongs to \mathcal{M}_t and I is an independent set of G, then for every component C of G-N[I] there exists $k \leq t$ such that $C \in \mathcal{M}_k$. In addition, $G-N[I] \in \mathcal{M}_r$ for some $r \leq t$.

Lemma 2 will most often be used in the following way. We will find an independent set I in a graph G and demonstrate that G - N[I] has a component that is in the class \mathcal{M}_s for some s > t and conclude that $G \notin \mathcal{M}_t$. The following lemma will be used in that context with Lemma 2.

Lemma 3 If a cycle C is in \mathcal{M}_t and a new vertex is added as a leaf adjacent to a single vertex of C, then the resulting graph belongs to \mathcal{M}_{t+1} .

Proof. Assume S(C) = [k, k+t-1]. Let H be the graph formed by adding a leaf x adjacent to y. Let u and v be the neighbors of y on C. Note that $\{I \in \mathcal{M}(H) : y \in I\} = \{J \in \mathcal{M}(C) : y \in J\}$, and because of the symmetry of the cycle, $S(C) = \{|J| : J \in \mathcal{M}(C), y \in J\}$. Also, $\{I \in \mathcal{M}(H) : u \in I\} = \{J \cup \{x\} : J \in \mathcal{M}(C), u \in J\}$. This shows that $[k, k+t] \subseteq S(H)$. If H has a maximal independent set A of size less than k, then $x \in A$ and neither u nor v is in A, for otherwise $A \cap C$ is a maximal independent set in C of cardinality less than k. But now $A' = (A - \{x\}) \cup \{y\} \in \mathcal{M}(C)$ and |A'| < k, a contradiction. Therefore, S(H) = [k, k+t]. We conclude that $H \in \mathcal{M}_{t+1}$.

In the class of graphs with leaves there is no connection between girth and the size of the spectrum. This can be seen by the following general construction. Let $t \geq 2$ and $g \geq 3$ be integers. Let H be the graph formed by adding a single leaf adjacent to each vertex of a cycle of order g. For a single vertex x on the cycle attach a path $v_1, v_2, \ldots, v_{2t-3}$ to H by making x and v_1 adjacent. Then add two leaves adjacent to v_i if i is odd, and add one leaf adjacent to v_j if j is even. The resulting graph of order 2g + 5t - 7 has girth g and belongs to the class \mathcal{M}_t . (The spectrum of this graph is [g + 2t - 3, g + 3t - 4].) For this reason we will henceforth consider only graphs having minimum degree at least 2. For ease of reference we denote the class of graphs that are in \mathcal{M}_t and have no leaves (i.e., minimum degree at least 2) by \mathcal{M}_t^2 . Note that $\mathcal{M}_t^2 \subseteq \mathcal{M}_t$. In the course of several of our proofs we will show that some given graph is not in \mathcal{M}_t^2 by demonstrating it does not belong to \mathcal{M}_t .

The remainder of this paper is devoted to verifying the entries in the following table.

	girth								
	6t - 6	6t - 5	6t - 4	6t - 3	6t - 2	6t - 1	6t	6t + 1	$\geq 6t + 2$
t = 1				Δ	Δ	Δ	Ø	C_7	Ø
t=2	Δ	Δ	C_8	C_9	C_{10}	C_{11}	Ø	C_{13}	Ø
t = 3	C_{12}	Δ	C_{14}	C_{15}	C_{16}	C_{17}	Ø	C_{19}	Ø
t = 4	C_{18}	Ø	C_{20}	C_{21}	C_{22}	C_{23}	Ø	C_{25}	Ø
$t \ge 5$	C_{6t-6}	Ø	C_{6t-4}	C_{6t-3}	C_{6t-2}	C_{6t-1}	Ø	C_{6t+1}	Ø

Table 1: Graphs of given girth in \mathcal{M}_t^2

The entry for a given girth (written as a function of t) and a given value of t should be interpreted as follows. If a specific graph is given, then this is the unique graph of that girth that belongs to \mathcal{M}_t^2 . For example, C_{15} is the only graph of girth 15 in \mathcal{M}_3^2 . If \emptyset appears, then there are no graphs of that girth in \mathcal{M}_t^2 . When the

entry is Δ , then it is known that \mathcal{M}_t^2 contains at least one graph of that girth (and it is not just a cycle). Some of these type of entries have been verified in previous papers. For example, see [4] and [5] for \mathcal{M}_1^2 and \mathcal{M}_2^2 , respectively.

2 Establishing Table Entries

We begin by showing that for a given positive integer t the only graphs in \mathcal{M}_t with large enough girth must have leaves. The next result was proved for well-covered graphs (t=1) in [3]. Proposition 1 shows it is sharp in terms of girth.

Theorem 4 Let t be a positive integer. If $g(G) \ge 6t + 2$ and $\delta(G) \ge 2$, then $G \in \mathcal{M}_r(G)$ for some r > t.

Proof. Assume $t \geq 2$. Let G have girth at least 6t + 2 and minimum degree at least two. We will show that G has maximal independent sets of at least t + 1 different sizes. Choose a cycle $C = v_1, v_2, \ldots, v_s$ of minimum length in G.

Assume first that $s \geq 6t + 4$ and let P denote the path $v_3, v_4, \ldots, v_{6t+1}$. Since $\delta(G) \geq 2$ and g(G) = s, each vertex $u \notin C$ that is adjacent to a vertex of P has another neighbor u' that does not belong to P and is not adjacent to any vertex of P. Choose one such neighbor u' for each u and let J denote the set of these neighbors. By the girth restriction it follows that the set $I = J \cup \{v_1, v_{6t+3}\}$ is independent. (If s = 6t + 2, then proceed as above except let $I = J \cup \{v_1\}$.) However, P is a component of G - N[I] and by Proposition 1, $P \in \mathcal{M}_{t+1}$. Similar to the proof of Lemma 2 this implies that G has maximal independent sets of at least t+1 different sizes.

If s = 6t+3, let P be the path $v_3, v_4, \ldots, v_{6t+2}$. The set J is chosen as before, and now $G - N[J \cup \{v_1\}]$ has the path P of order 6t as a component. By Proposition 1 it once again follows that G has at least t+1 distinct sizes of maximal independent sets.

For any positive integer t it follows from Proposition 1 that $C_{6t+1} \in \mathcal{M}_t$. In [4] it was shown that C_7 is the only well-covered graph of girth 7 and minimum degree 2 or more. The following theorem shows the similar result is true for larger values of t.

Theorem 5 Let $t \geq 2$ be an integer. The cycle C_{6t+1} is the only graph of girth 6t + 1 in \mathcal{M}_t^2 , and \mathcal{M}_t^2 contains no graphs of girth 6t.

Proof. By Proposition 1 the cycle of order 6t + 1 belongs to \mathcal{M}_t^2 . Suppose G is a graph not isomorphic to C_{6t+1} such that g(G) = 6t + 1 and $\delta(G) \geq 2$. Then G

has an induced cycle C of order 6t+1, and C has a vertex w of degree at least 3. Since g(G)=6t+1 and $\delta(G)\geq 2$ we can find an induced path w,a,b,c, such that none of a,b or c belongs to C. Let $X=\{u\in V(G):d(u,C)=2\}-N(a)$ and let $Y=\{u\in V(G):d(u,a)=2,d(u,w)=3\}$. For any two vertices on C there is a path using part of C of length at most 3t joining them. Since $g(G)\geq 13$ it follows that Y is independent. Suppose two vertices $x_1,x_2\in X$ are adjacent. Let x_1,v_1,w_1 and x_2,v_2,w_2 be paths in G with w_1 and w_2 on the cycle C. Then the cycle $x_1,v_1,w_1Cw_2,v_2,x_2,x_1$ has length at most 3t+5. But then $3t+5\geq 6t+1$, which implies that t=1, a contradiction. Finally, if a vertex in X is adjacent to a vertex in Y, then a similar argument shows that G has a cycle of length at most 3t+6 which also leads to a contradiction.

Therefore, $X \cup Y$ is an independent set. One of the components of the graph $G - N[X \cup Y]$ is the cycle C with a single leaf a attached at the support vertex w. By Lemma 3 this component is in \mathcal{M}_{t+1} . An application of Lemma 2 then shows that $G \notin \mathcal{M}_t^2$.

Now let G be a graph of girth 6t, and as above find an induced cycle C of length 6t. This time let $X = \{u \in V(G) : d(u,C) = 2\}$. This set is independent unless there is a cycle of the form $x_1, v_1, w_1 C w_2, v_2, x_2, x_1$ that has length at most 3t + 5. But this means $3t + 5 \ge 6t$ contradicting our assumption that $t \ge 2$. Hence X is independent. The cycle C is one of the components of G - N[X]. Since $C_{6t} \in \mathcal{M}_{t+1}$, Lemma 2 implies that $G \notin \mathcal{M}_t^2$.

By following a line of reasoning similar to the first part of the proof of Theorem 5 one can prove the following result. The proof is omitted. As noted earlier, Theorem 6 also holds for t = 2. See [5].

Theorem 6 Let $t \geq 3$ be a positive integer. For each integer n such that $6t - 4 \leq n \leq 6t - 1$, the cycle C_n is the unique graph of girth n that belongs to \mathcal{M}_t^2 .

We now establish the uniqueness (for $t \geq 3$) of the table entry corresponding to those graphs with no leaves whose shortest cycle has length 6t-6 and which have maximal independent sets of exactly t distinct cardinalities.

Theorem 7 For each integer $t \geq 3$, the cycle C_{6t-6} is the only graph of girth 6t-6 that belongs to \mathcal{M}_t^2 .

Proof. The cycle of order 6t - 6 is in \mathcal{M}_t^2 by Proposition 1. Suppose that G is a graph of girth 6t - 6 with no leaves. If G is not C_{6t-6} , then we can find an induced cycle C of length 6t - 6 in G with w, a, b, c, X and Y defined as in the proof of Theorem 5. The set Y is independent because $g(G) \geq 12$, and X is independent since $t \geq 3$. If some vertex of X is adjacent to a vertex of Y, then G contains a cycle

of length at most 3t - 3 + 6. It follows that $3t + 3 \ge g(G) = 6t - 6$, or equivalently $t \le 3$.

If the set $X \cup Y$ is independent, then $G - N[X \cup Y]$ has a component isomorphic to a cycle of length 6t - 6 with a single leaf attached at w. By Lemma 3 this component is in \mathcal{M}_{t+1} and so it follows from Lemma 2 that $G \notin \mathcal{M}_t$.

Figure 1: Part of G

Thus we may assume that t=3 and that $X \cup Y$ is not independent. Without loss of generality we may assume that c from Y is adjacent to x_1 such that $x_1 \in X$ and x_1, v_1, w_1 is a path where w_1 is on the cycle C. See Figure 1. By using the fact that C has length 12 and g(G)=12 we infer that the length of wCw_1 is 6. Let $X'=X-N(v_1)$ and let $Z=\{u: d(u,v_1)=2, d(u,w_1)=3, ux_1 \notin E(G)\}$. It is clear that Z is independent.

As above, if a vertex of Z is adjacent to a vertex h of X', then if d(h,w) > 2 a cycle of length at most 11 is present and if d(h,w) = 2 then G contains a cycle of length 10, contradicting g(G) = 12. Suppose $z_1 \in Y \cap Z$, say $z_1 = y$ as in Figure 1. Then $z_1 \neq c$, and $a, b, c, x_1, v_1, x_2, z_1, u, a$ is a cycle, contradicting the girth assumption. Similarly, since G has no cycles of length 9, it follows that $Z \cup Y$ is independent.

The set $X' \cup Y \cup Z$ is independent, and one of the components of the graph $G - N[X' \cup Y \cup Z]$ is the cycle C with a single leaf attached at vertices w and w_1 . But this component has spectrum $\{4, 5, 6, 7, 8\}$ from which it follows that $G \notin \mathcal{M}_3$.

We now show that when $t \geq 4$ there is a "gap" at girth 6t - 5 among the leafless graphs. That is, if G has minimum degree at least 2 and the shortest cycle of G has order 6t - 5, then G does not belong to \mathcal{M}_t .

Theorem 8 For each integer t at least 4, the class \mathcal{M}_t^2 contains no graphs of girth 6t-5.

Proof. First observe that $C_{6t-5} \in \mathcal{M}_{t-1}$. Our approach will be similar as that pursued in earlier proofs, except that we will be attempting to isolate a cycle of length 6t-5 with a path of order 5 attached as in Figure 2. It is easy to check, using either $\{a, c, e\}$ or $\{a, d\}$ together with all possible maximal independent sets of a path of order 6t-6, that this component has spectrum [2t, 3t] and hence belongs to \mathcal{M}_{t+1} . This in turn implies via Lemma 2 that $G \notin \mathcal{M}_t^2$.

Figure 2: The cycle C with attachments

Suppose that G has girth 6t-5 and has minimum degree at least 2. Let C be an induced cycle of length 6t-5 in G. There must exist a vertex w on C having degree at least 3. For any two vertices on C there is a path on C joining them whose length is at most 3t-3. Because of the girth and minimum degree assumptions on G we can find a path w, a, b, c, d, e as in Figure 2. Let $A = \{a, b, c, d, e\}$. Let $X = \{u : d(u, C) = 2\} - N(a)$ and let $Y = \{u : u \notin C, d(u, A) = 2, d(u, w) \ge 2\}$.

As in previous proofs it is straightforward to show that X is independent. Since $g(G) = 6t - 5 \ge 19$ no pair of vertices in Y can be adjacent. Suppose first that $X \cup Y$ is independent. The graph in Figure 2 is a component of $G - N[X \cup Y]$. As remarked at the outset, this shows that $G \notin \mathcal{M}_t^2$. We note that for $t \ge 5$, the girth restriction ensures that $X \cup Y$ is independent.

Now consider t=4. Thus C is of length 19. Let s_1 and s_2 be the adjacent vertices on C that are at distance 9 from w. If both s_1 and s_2 are of degree two, then $X \cup Y$ is independent or else a cycle of length 18 would exist in G. Assume then without loss of generality that s_1 has a neighbor r that is not on C. Let $U=N(r)-\{s_1\}$. For each $u_i \in U$ choose a vertex $v_i \in N(u_i)-\{r\}$, and set $V=\{v_i: u_i \in U\}$. Similarly, let $B=N(a)-\{w\}$. For each $b_i \in B$ choose a vertex $c_i \in N(b_i)-\{a\}$, and set $D=\{c_i: b_i \in B\}$. Since g(G)=19 the set $V \cup D \cup (X-U)$ is independent, and one of the components of $G-N[V \cup D \cup (X-U)]$ is a cycle of order 19 with a single leaf a adjacent to w and a single leaf r adjacent to s_1 . This component

belongs to \mathcal{M}_5 which proves that $G \notin \mathcal{M}_4^2$ and establishes the theorem.

3 Concluding Remarks

We have shown that for a positive integer $t \geq 4$ and for each possible value of girth at least 6t-6, the class \mathcal{M}_t^2 either contains exactly one graph of that girth (the cycle) or contains no graphs of that girth. It is interesting to note that as t grows there is an ever increasing gap—in terms of girth—between the unique graph of girth 6t-6 in \mathcal{M}_t^2 and ones of smaller girth. For instance, we can show that \mathcal{M}_{31}^2 contains no graphs of girth r for $131 \leq r \leq 179$. Hence the cycles $C_{180}, C_{182}, C_{183}, C_{184}, C_{185}$ and C_{187} are the only leafless members of \mathcal{M}_{31} that have girth at least 131. Thus the six cycles are quite special in \mathcal{M}_t^2 .

References

- [1] R. Barbosa and B. L. Hartnell: Some problems based on the relative sizes of the maximal independent sets in a graph. *Congr. Numer.* **131**, 115–121 (1998)
- [2] R. Barbosa and B. L. Hartnell: The effect of vertex and edge deletion on the number of sizes of maximal independent sets. *J. Combin. Math. Combin. Comput.* **70**, 111–116 (2009)
- [3] A. S. Finbow and B.L. Hartnell: A game related to covering by stars. *Ars Combin.* **16**, 189–198 (1983)
- [4] A. Finbow, B. Hartnell and R. J. Nowakowski: A characterization of well-covered graphs of girth 5 or greater. J. Combin. Theory Ser. B 57, 44–68 (1993)
- [5] A. Finbow, B. Hartnell and C. Whitehead: A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets. *Discrete Math.* **125**, 153–167 (1994)
- [6] M.D. Plummer: Well-covered graphs. J. Combin. Theory 8, 91–98 (1970)

8