# Doing reproducible science: from your hard-won data to a publishable manuscript without going mad

Francisco Rodriguez-Sanchez

http://bit.ly/frod\_san

### A typical research workflow

### 1. Prepare data (EXCEL)

| 4     | Α                  | В          |
|-------|--------------------|------------|
| 1     | happiness_index    | sunshine_h |
| 2     | 10.5               | 978.4      |
| 3     | 6.6                | 660.9      |
| 4     | 11.3               | 1093.5     |
| 5     | 9.6                | 978.9      |
| 6     | 10.9               | 1135.5     |
| 7     | 9.1                | 907.0      |
| 8     | 10.6               | 990.4      |
| 9     | 12.4               | 1172.9     |
| 10    | 9.6                | 1025.6     |
| 11    | 10.1               | 1055.0     |
| 12    | 10.9               | 1093.7     |
| 13    | 8.9                | 863.8      |
| 14    | 12.5               | 1196.6     |
| 15    | 10.0               | 995.8      |
| 16    | 11.0               | 1120.2     |
| 17    | 10.3               | 988.0      |
| 18    | 9.7                | 987.0      |
| 19    | 9.3                | 970.4      |
| 20    | 10.9               | 1076.6     |
| 21    | 9.0                | 909.8      |
| 22    | 7.7                | 733.4      |
| 23    | 9.0                | 985.2      |
| 24    | 10.4               | 1084.0     |
| 25    | 10.0               | 1066.7     |
| 4 4   | □ → → □ data / 😕 / |            |
| Ready |                    |            |

## A typical research workflow

- 1. Prepare data (EXCEL)
- 2. Analyse data (R)



### A typical research workflow

- 1. Prepare data (EXCEL)
- 2. Analyse data (R)
- 3. Write report/paper (WORD)



### This workflow is broken



#### Problems of a broken workflow

► How did you do this? What analysis is behind this figure? Did you account for ...?

#### Problems of a broken workflow

- ► How did you do this? What analysis is behind this figure? Did you account for ...?
- ► What dataset was used? Which individuals were left out? Where is the clean dataset?

#### Problems of a broken workflow

- ▶ How did you do this? What analysis is behind this figure? Did you account for . . . ?
- What dataset was used? Which individuals were left out? Where is the clean dataset?
- ▶ Oops, there is an error in the data. Can you repeat the analysis? And update figures/tables in Word!

Every analysis you do on a dataset will have to be redone 10–15 times before publication. Plan accordingly. Trevor A. Branch

# WHAT is Reproducible Science?

A scientific article is **reproducible** if there is computer **code** that can **regenerate** all results and figures from the original data.

- ▶ Transparent
- ▶ Traceable
- Comprehensive
- Useful

### Most science is not reproducible



Peng (2011) Science

Even **you** will struggle to reproduce **your own results** from a few weeks/months ago.

You can't reproduce if you don't understand where a number came from.

You can't reproduce what you don't remember. And trust me: you won't.

You can't reproduce what you've lost. What if you need access to a file as it existed 1, 10, 100, or 1000 days ago?

Ben Bond-Lamberty

# WHY Reproducible Science?

▶ Fundamental pillar of scientific method

- ▶ Fundamental pillar of scientific method
- ► Much less prone to errors

- ▶ Fundamental pillar of scientific method
- ▶ Much less prone to errors
- ► Automatically regenerate results

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- ► Code reuse & sharing accelerates scientific progress

- Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- ► Code reuse & sharing accelerates scientific progress
- Increasingly required by journals

- ▶ Fundamental pillar of scientific method
- Much less prone to errors
- Automatically regenerate results
- ► Code reuse & sharing accelerates scientific progress
- Increasingly required by journals
- ▶ Higher publication impact (citations, future collaborations, etc)

# HOW TO DO Reproducible Science?

- 1. File organisation.
- 2. Data management. Spreadsheet good practices.
- 3. Code-based data analysis. Rmarkdown
- 4. Software dependencies.
- 5. Version control & collaborative writing.

▶ All files in same directory (Rstudio project).

- ▶ All files in same directory (Rstudio project).
- ▶ Raw data untouched in independent folder.

- ▶ All files in same directory (Rstudio project).
- ▶ Raw data untouched in independent folder.
- ▶ Derived, clean data in another folder.

- ▶ All files in same directory (Rstudio project).
- Raw data untouched in independent folder.
- ▶ Derived, clean data in another folder.
- Figures, code, etc also have their own folder.

### File organisation example

```
myproject
I - README
             # general info about the project
|- data-raw/
             # original raw data
|- data/
             # clean data (produced w/ script)
|- R/
             # functions definitions
|- doc/
             # manuscript files
|- figs/
             # final figures
|- output/
             # other code output
```

# Data management

### Data management

- 1. Planification (e.g. DMPTool)
- 2. Collection
- 3. Metadata description (EML, Morpho)
- 4. Quality control
- 5. Storage

### Storage

Use the cloud: safe, persistent, easy to share

- Dropbox
- OSF
- ► Figshare, etc
- ► See all data repositories in www.re3data.org

► Put **variables** in **columns** (things you are measuring: height, weight, sex)

- ► Put **variables** in **columns** (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- ▶ Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- ▶ Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- ▶ Use blank/empty cells, or NA, for missing data.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- ▶ Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- ▶ Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- ▶ Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- ▶ Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- ▶ Don't combine multiple pieces of information in one cell.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- ▶ Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- ▶ Don't combine multiple pieces of information in one cell.
- ▶ Don't touch raw data. Do all data manipulation with R code.

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- ▶ Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- Don't combine multiple pieces of information in one cell.
- ▶ Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)

- ▶ Put variables in columns (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- ▶ Don't combine multiple pieces of information in one cell.
- ▶ Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)
- http: //www.datacarpentry.org/spreadsheet-ecology-lesson/

- ▶ Put **variables** in **columns** (things you are measuring: height, weight, sex)
- ► Each **observation** in one **row** (e.g. individuals).
- Avoid spaces, numbers, and special characters in column names.
- ▶ Always write zero values, to distinguish from blank/missing data.
- ▶ Use blank/empty cells, or NA, for missing data.
- Input dates as year, month, day in separate columns. Or YYYY-MM-DD as text.
- Use 'Data validation' in Excel to constrain data entry to accepted values.
- ▶ Don't combine multiple pieces of information in one cell.
- ▶ Don't touch raw data. Do all data manipulation with R code.
- Export data as plain text (txt, csv)
- http: //www.datacarpentry.org/spreadsheet-ecology-lesson/
- http://kbroman.org/dataorg/



# Common spreadsheet errors

# More than one variable per column

| Date collected | Plot | Species-Sex | Weight |
|----------------|------|-------------|--------|
| 1/9/78         | 1    | DM-M        | 40     |
| 1/9/78         | 1    | DM-F        | 36     |
| 1/9/78         | 1    | DS-F        | 135    |
| 1/20/78        | 1    | DM-F        | 39     |
| 1/20/78        | 2    | DM-M        | 43     |
| 1/20/78        | 2    | DS-F        | 144    |
| 3/13/78        | 2    | DM-F        | 51     |
| 3/13/78        | 2    | DM-F        | 44     |
| 3/13/78        | 2    | DS-F        | 146    |
|                |      |             |        |

Source: Data Carpentry

| Date collected | Plot | Species | Sex | Weight |
|----------------|------|---------|-----|--------|
| 1/9/78         | 1    | DM      | M   | 40     |
| 1/9/78         | 1    | DM      | F   | 36     |
| 1/9/78         | 1    | DS      | F   | 135    |
| 1/20/78        | 1    | DM      | F   | 39     |
| 1/20/78        | 2    | DM      | M   | 43     |
| 1/20/78        | 2    | DS      | F   | 144    |
| 3/13/78        | 2    | DM      | F   | 51     |
| 3/13/78        | 2    | DM      | F   | 44     |
| 3/13/78        | 2    | DS      | F   | 146    |
|                |      |         |     |        |

# Multiple tables



# Multiple tabs

Could you avoid new tab by adding a column to original spreadsheet?

# Using formatting, comments, etc to convey information

| Plot: 2       |          |         |            |           |
|---------------|----------|---------|------------|-----------|
| Date collecte | Species  | Sex     | Weight     |           |
| 1/8/14        | NA       |         |            |           |
| 1/8/14        | DM       | M       | 44         |           |
| 1/8/14        | DM       | M       | 38         |           |
| 1/8/14        | OL       |         |            |           |
| 1/8/14        | PE       | M       | 22         |           |
| 1/8/14        | DM       | M       | 38         |           |
| 1/8/14        | DM       | M       | 48         |           |
| 1/8/14        | DM       | M       | 43         |           |
| 1/8/14        | DM       | F       | 35         |           |
| 1/8/14        |          | M       | 43         |           |
| 1/8/14        |          | F       | 37         |           |
| 1/8/14        |          | F       | 7          |           |
| 1/8/14        |          | M       | 45         |           |
| 1/8/14        |          |         |            |           |
| 1/8/14        |          | M       | 157        |           |
| 1/8/14        | OX       |         |            |           |
|               |          |         |            |           |
| 2/18/14       |          | M       | 218        |           |
| 2/18/14       |          | F       | 7          |           |
| 2/18/14       | DM       | M       | 52         |           |
|               |          |         |            |           |
|               | measurem | ent dev | vice not o | alibrated |
|               |          |         |            |           |

| Plot: 2       |         |     |        |            |
|---------------|---------|-----|--------|------------|
| Date collecte | Species | Sex | Weight | Calibrated |
| 1/8/14        | NA      |     |        |            |
| 1/8/14        | DM      | M   | 44     |            |
| 1/8/14        | DM      | M   | 38     | Υ          |
| 1/8/14        | OL      |     |        |            |
| 1/8/14        | PE      | M   | 22     | Υ          |
| 1/8/14        | DM      | M   | 38     | Υ          |
| 1/8/14        | DM      | M   | 48     | Υ          |
| 1/8/14        | DM      | M   | 43     | Υ          |
| 1/8/14        | DM      | F   | 35     |            |
| 1/8/14        | DM      | M   | 43     | ~          |
| 1/8/14        | DM      | F   | 37     |            |
| 1/8/14        | PF      | F   | 7      | Υ          |
| 1/8/14        | DM      | M   | 45     | Υ          |
| 1/8/14        | OT      |     |        |            |
| 1/8/14        | DS      | M   | 157    | N          |
| 1/8/14        | OX      |     |        |            |
| 2/18/14       | NA      | М   | 218    | N          |
| 2/18/14       | PF      | F   | 7      | Υ          |
| 2/18/14       | DM      | M   | 52     | Υ          |
|               |         |     |        |            |

Your turn: tidy up this messy dataset https://ndownloader.figshare.com/files/2252083

# Data analysis

# Always use code

- ► Reproducible
- ► Reusable

# Dynamic reports



### Rmarkdown documents

- ► Fully reproducible (trace all results inc. tables and plots)
- ▶ Dynamic (regenerate with 1 click)
- ► Suitable for
  - documents (Word, PDF, etc)
  - presentations
  - books
  - websites

## Let's see Rmarkdown in action

In Rstudio, create new Rmarkdown document and click on Knit HTML.

# Example: Does sunshine influence happiness?

See myproject.Rmd



# HTML output

### Does sunshine make people happy?

F. Rodriguez-Sanchez

Tuesday, November 25, 2014 Introduction

It is well known that individual well-being can be influenced by climatic conditions. However, ...

### Methods

We collected data on 100 individuals and fitted a linear model.

### Results

We found that...

|             | Estimate   | Std. Error | t value    | Pr(> t )  |
|-------------|------------|------------|------------|-----------|
| (Intercept) | -0.0651657 | 0.4264970  | -0.1527928 | 0.8788758 |
| sunshine    | 0.0100228  | 0.0004232  | 23.6833264 | 0.0000000 |



### Discussion

These results confirm that sunshine is good for happiness (slope = 0.0100228)

### Acknowledgements

Y. Xie. J. MacFarlane. Rstudio...

# Spotted error in the data? No problem!

Make changes in Rmarkdown document, click knit and report will update automatically!

# Other formats: PDF, Word

# Does sunshine make people happy? F. Rodriguez-Sanchez Tuesdav, November 25, 2011

### Introduction

It is well known that individual well-being can be influenced by climatic conditions. However, . . .

### Mothode

We collected data on 100 individuals and fitted a linear model.

#### Results

We found that...

|             | Estimate   | Std. Error | t value    | Pr(> t   |
|-------------|------------|------------|------------|----------|
| (Intercept) | -0.0651657 | 0.4264970  | -0.1527928 | 0.878878 |
| sunshino    | 0.0100228  | 0.0004232  | 23,6833264 | 0.000000 |



### Does sunshine make people happy?

F. Rodriguez-Sanchez

Tuesday, November 25, 2014

### Introduction

It is well known that individual well-being can be influenced by climatic conditions. However,  $\dots$ 

### Methods

We collected data on 100 individuals and fitted a linear model.

Results

We found that...

|             | Estimate   | Std. Error | t value    | Pr(> t )  |
|-------------|------------|------------|------------|-----------|
| (Intercept) | -0.0651657 | 0.4264970  | -0.1527928 | 0.8788758 |
| cunchine    | 0.0100228  | 0.0004737  | 73 6833764 | 0.0000000 |



# Adding citations

# bibliography: references.bib """{r cftations\_setup, include=FALSE} library(knitcitations) cfte\_options(cftation\_format = "pandoc") ... Introduction

It is well known that individual well-being can be influenced by climatic conditions `r citep("10.1016/j.ecolecon.2004.06.015")`. However, ...

### See output

### References

Rehdanz, Katrin, and David Maddison. 2005. "Climate and Happiness." Ecological Economics 52 (1). Elsevier BV: 111–25. doi:10.1016/j.ecolecon.2004.06.015.

# Can write full thesis in Rmarkdown!

See thesis.Rmd. See thesis.pdf.

### Your turn:

- Download http://bit.ly/DEAD\_datasets
- ▶ With dataset trees.txt, analyse relationship between DBH and height.

# Steps

- Create Rstudio project (in Dropbox folder)
- ► Create folder structure
- Save original data in data-raw folder.
- Set up OSF
- Data quality control in R
- Write report in rmarkdown.

# Managing software dependencies

# Managing package dependencies in R

- sessionInfo (or session\_info)
- switchr
- rctrack
- checkpoint
- packrat
- docker

# Version control

# Dropbox

Dropbox keeps record of deleted/edited files for 30 days

# Open Science Framework

Automatic version control, no time limit.



### Git & GitHub



R. Fitzjohn (https://github.com/richfitz/reproducibility-2014)

# Collaborative writing

# Many alternatives

- ► Rmarkdown + GitHub
- ightharpoonup Word + Dropbox
- ▶ Google Docs
- Overleaf
- Authorea

 ${\sf Happy\ writing!}$