

SEQUENCE LISTING

<10> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC SARCOMERIC CALCINEURIN-BINDING PROTEINS (CALSARCINS)

<130> UTSD:729US

<140> 10/045,594
<141> 2001-11-07

<150> 60/246,629
<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 2531
<212> DNA
<213> Homo sapiens

<400> 1

gtcccaggtt caaggataaa aaccatcagg cccaagtgcc atccatagtc catctccaga 60
gtttccctcc acaaaactggg attcatcccc gctaaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgttatca cataatacta tgatgaagca gagaaaaacag caagcaacag 180
ccatcatgaa ggaagtccat ggaaatgatg ttgatggcat ggacctggc aaaaaggtca 240
gcattccccag agacatcatg ttggaagaat tatccatct cagtaaccgt ggtgccaggc 300
tatttaagat gcgtcaaaga agatctgaca aatacacatt tggaaaatttc cagttatcaat 360
cttagagcaca aataaatcac agtattgcta tgcagaatgg gaaagtggat ggaagtaact 420
tggaaagggtgg ttgcagcaa gcccccttga ctccctccaa caccggat ccacgaagcc 480
ctccaaatcc agacaacatt gtcaggat attctggacc actgaaggaa attcctcctg 540
aaaaattcaa caccacagct gtccctaaatc actatcaatc tccctgggag caagccatta 600
gcaatgatcc ggagcttttta gaggctttat atcctaaact tttcaaggct gaaggaaagg 660
cagaactgccc tgattacagg agctttaaca gggttgccac accatttgg ggtttgaaa 720
aagcatcaag aatggtaaa tttaaagtgc cagattttga gctactattt ctaacagatc 780
ccaggatggat atctgagaat attcctatacg tgataacaac cgaacctaca gatgatacca 900
ctgttaccaga atcagaagac ctatgaaaag aaaggtttat gtgccacata aaactctgaa 960
tataaaagtgt gctttctac tattttaaact actggcaaaag cacttgcatt tttcattttt 1020
agcaacaata gcaattttgt gatttccctt ttctgcattt caatttcaat ctcatcaaa 1080
atactaataa acaatttagaa atcttacttt aaaaaactta taactcattt gtcttcattt 1140
ataattttgt tttcacctgg tttaaagaat ccagatattt tactgcaaaa gttcagatgg 1200
aaaagtaatt gacagctca cctttgtctc attttatattt atttattaca gtgttaattt 1260
ttcaagtggat atctagaatc aaaatacagg gagagatgt aagacattt cagatgtca 1320
tctggggatg aaagctatgg aagatgtatg acaaatttta ttgatggaga aatgggtgg 1380
tgtgtccctt ctgggtacca tgagaaaaata atatgtctt atgaagtctt ttcattttgtc 1440
actcttagaa ttctaaagtgc ttgcattt ttcaatattgt ttgtatcat tagtaattt 1500
attctggatg atattctcca aaattcaatt cagttattt attcattttt cattaaatgtca 1560
aggagactga gaatgactca agggacgtca tagtaccata gttttaagga ccaaggtgt 1620
cccagaattt aagtttcaca aatcccaatg ctgtgcattt attatgtca actttatgt 1680
tgcattcttta gaagagtaag aacaaataaa gtacaccgtta atatacatat aaatacattc 1740
atgtttgtga gagaaggaaa gagtaagtaa ttgtatgg cagctttctt tgcttaatct 1800
ttaaattctg ttaagatcct caagtaactg gggagtacat gctttaggac acaaacaaaa 1860

RECEIVED

MAY 29 2003

TECH CENTER 1600/2900

acaaaggcata gaaaagtcata tgacacata tctatcgtaa tataatgtat 1920
atattgacat aaaagacaca aactaatata aagttatagt tatatctaa aatataattg 1980
aagaagcata tgacatataa cttatagaaa tcagtatcaa ttccctcccat ttcaattcag 2040
ttaagactct gtgatagatg tttatagcag agaagaaaatg tctcatcaat agggaaaacta 2100
tcagataaaag ttttaggat aggaagaagg actgtgtgt aataatgaaaa taccaagttg 2160
caacattaca tgtttacaaa aaaaatctgt gttttagtg tggaaagtgg tgactgtttt 2220
aatcatcatc tagacttggtt aagtagaaaa attttaaaaaa tttgctttagt aaaaatataac 2280
ccccagaaaag taacaatgac aaagtattat atttatatat attattgttag agaatttgc 2340
tatttttaaa gatgtcttaa gatatcttaa ttttatttt aagttttggt gtttacctgt 2400
ttttaaaatga taatgttggc atctgtgata aactatcaat gaggctccca tcattgcatt 2460
ttttgttcat tttaatcttt aaaaaataaaa aattaggcat attaaaaaaaaaaaa 2520
aaaaaaaaaaa a 2531

<210> 2
<211> 264
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp

A
cont

195

200

205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3

<211> 1207

<212> DNA

<213> Mus musculus

<400> 3

gagagccgac caccactga gcagctggc agatccacct ccaccatgcc actctcagga 60
accccgcccc ctaacaagag gaggaagtca agcaaactga ttatggagct cactggaggt 120
ggccgggaga gctcaggcct gaacctgggc aagaagatca gtgtcccaag ggatgtgatg 180
ttggaggagc tgccttct taccaaccga ggctccaaga tggtcaagct acggcagatg 240
cgggtggaga aatttatcta tgagaatcac cccgatgtt tctctgacag ctcaatggat 300
cacttccaga agtttcttcc cacagtggga ggacagctgg agacagctgg tcagggcttc 360
tcatatggca agggcagcag tggaggccag gctggcagca gtggctctgc tggacagtat 420
ggctctgacc gtcatcagca gggctctggg tttggagctg ggggttcagg tggcctggg 480
ggccaggctg gtggaggagg agctcctgac acagtagggc ttggagagcc cgatcaggt 540
gaccaggcag gtggagatgg aaaacatgtc actgtgttca agacttatat ttccccatgg 600
gatcgcccca tgggggttga tcctcagcaa aaagtggAAC ttggcatgaa cctactggca 660
tacgggcca aagctgaact ccccaaataa aagtccctca acaggacagc aatggccctac 720
ggtgatatg agaaggcctc caaacgcattt accttccaga tgcccaagtt tgacctgggg 780
cctctgtca gtgaacccct ggtcccttac aaccagaacc tctccaaacag gccttcttc 840
aatcgaaacc ctattccctg gttgagctt ggggagcatg tagactacaa cgtggatgtt 900
ggtatccctt tggatggaga gacagaggag ctgtgaagtg ctcctctg tcatgtgcat 960
catttccctt ctctgggttcc aatttggagag tggatgctgg acaggatgcc ccaactgtta 1020
atccagtatt cttgtggcaa tggagggtaa agggtgggtt ccgttgcctt tccacccttc 1080
aagtccctgc tccgaagcat ccctccttac cagtcagag ctcccatctt gctgtaccat 1140
atggaatctg ctctttatg gaatttttcc tggccaccgg aacagtcaat aaacttcaag 1200
gaaatga 1207

<210> 4

<211> 296

<212> PRT

<213> Mus musculus

<400> 4

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu

35

40

45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110

Gly Gly Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125

Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Ser Gly Gly Pro
130 135 140

Gly Gly Gln Ala Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160

Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175

Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190

Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205

Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220

Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240

Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255

Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270

Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285

Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
<211> 1261
<212> DNA
<213> Homo sapiens

<220>

<221> modified_base
<222> (1221)
<223> n = a, c, g or t/u

<400> 5

cggcacagc agctcagtcc tccaaagctg ctggacccca gggagagctg accactgcc 60
gagcagccgg ctgaatccac ctccacaatg ccgcctctcg gaaccccgcc ccctaataag 120
aagaggaaat ccagcaagct gatcatggaa ctcaactggag gtggacagga gagctcaggc 180
ttgaacctgg gaaaaaagat cagtgtccca agggatgtga tgttggagga actgtcgctg 240
cttaccaacc ggggctccaa gatgttcaa ctgcggcaga tgagggtgga gaagtttatt 300
tatgagaacc accctgtatgt tttctctgac agctcaatgg atcaacttcca gaagttcctt 360
ccaacagtgg ggggacagct gggcacagct ggtcagggat tctcatacag caagagcaac 420
ggcagaggcg gcagccaggc agggggcaggt ggctctgccc gacagtatgg ctctgatcg 480
cagcaccatc tgggctctgg gtctggagct gggggtacag gtggtcccgcc gggccaggct 540
ggcaaaggag gagctgctgg cacaacaggg gtttgtgaga caggatcagg agaccaggca 600
ggcggagaag gaaaacatat cactgtgttc aagacctata tttccccatg ggagcgagcc 660
atgggggttg acccccagca aaaaatggaa cttgcattt acctgctggc ctatgggcc 720
aaagctgaac ttcccaaata taagtccttc aacaggacgg caatgcccta tggtgatata 780
gagaaggcct ccaaacgcatttccag atgccaatgt ttgacctggg gcccttgctg 840
agtgaacccc tggctctcta caacccaaac ctctccaaca ggccttcctt caatcgaacc 900
cctattccct ggctgagctc tggggagcct gttagactaca acgtggatata tggcatcccc 960
ttggatggag aaacagagga gctgtgaggt gtttccctt ctgatttgc tcattttccc 1020
tctctggctc caatttggag agggaatgtt gaggatag ccccccattgt taatccagta 1080
tccttatggg aatggaggaga aaaaggagag atctacctt ccatcctta ctccaagtcc 1140
ccactccacg catccttcct caccaactca gagctccct tctacttgct ccataatggaa 1200
cctgctcggt tatggaattt ntctgccacc agtaacagtc aataaaacttc aaggaaaatg 1260
a 1261

*A
cont*
<210> 6
<211> 299
<212> PRT
<213> Homo sapiens

<400> 6

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gln Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly
100 105 110

Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly

115

120

125

Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr
130 135 140

Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Gly Ala Ala Gly Thr Thr
145 150 155 160

Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys
165 170 175

His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met
180 185 190

Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala
195 200 205

Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr
210 215 220

Ala Met Pro Tyr Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe
225 230 235 240

Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val
245 250 255

Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro
260 265 270

Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile
275 280 285

Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu
290 295

*A
Cat*
<210> 7

<211> 982

<212> DNA

<213> Mus musculus

<400> 7

attcggcaca tggatcgag ggaccatgcc gttccagggtt caaggataaa acccattggg 60
ccatagtgcc gtcatttcc accttcagtg cttctccca caattggat tcacccctgc 120
tgaaaagcgc acgctgacag caagggaaaca aaaaactatg ctatcacata gtccatgggt 180
gaagcaaagg aaacagcaag catcagccat cacgaaggaa atccatggac atgatgtta 240
cggcatggac ctggcaaaa aagtttagcat cccagagac atcatgatag aagaattgtc 300
ccatttcagt aatcggtggg ccaggctgtt taagatgcgt caaagaagat ctgacaaata 360
cacctttgaa aattttcagt atgaatctag agcacaatt aatcacaata tcgccatgca 420
gaatggaga gttgatggaa gcaacctgaa aggtggctca cagcaaggcc cctcaactcc 480
gcccaacacc cccgatccac gaagcccccc aaatccagag aacatcgac caggatattc 540
tggaccactg aaggaaattc ctcctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggcttcca tggagcagg cgattggcag cgatccggag ctcctggagg ctttgtaccc 660
aaaacttttc aagcctgaaag gaaaagcaga actgcggat tacaggagct ttaacagggt 720
tgccactcca tttggaggtt tgaaaaaagc ataaaaatg gtcaattca aagttccaga 780
tttgaacta ctgctgctga cagatcccag gttcttggcc tttgccaatc ctcttcggg 840
cagacgatgc tttaacaggg cgccaaaggg gtggtatct gagaatatcc ccgtcgtat 900

cacaactgag cctacagaag acgccactgt accggaatca gatgacctgt gagagggaag 960
ctggggatgc cacaggaagt tc 982

<210> 8
<211> 264
<212> PRT
<213> Mus musculus

<400> 8
Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9
<211> 3330
<212> DNA
<213> Homo sapiens

<400> 9
gggacgccac gcaactctca gttcccgac agaggtgtta atcttgagg tctaagattc 60
cctcctgcct attgagggtcc catcctctca ggtatgtccc caaggagcag aaggggccag 120
tcatggctgc catggggac ctcactgaac cagtcctac gctggacctg ggcaagaagc 180
tgagcgtgcc ccaggacctg atgatggagg agctgtcact acgcaacaac agagggtccc 240
tcctcttcca gaagaggcag cgccgtgtc agaagttcac tttcgagttt gcagccagcc 300
agcgggcgat gctggccgga agcgcagga ggaaggtgac tggAACAGCG gagtcgggga 360
cggttgccaa tgccaatggc ctcgaggggc cgaactaccg ctcggagctc cacatcttcc 420
cgccctcacc cggggcctca ctgcggggc cggaggccgc ccaccctgca gccgcctg 480
ctgggtgcgt ccccccccccc agcgccttgg cgcaggcta tgcggagccg ctgaaggcg 540
tcccgcaga gaagtcaac cacaccgcca tccccaaagg ctaccgtgc cttggcagg 600
atgtcgtagc ctaccggac taccagagcg atggccgaag tcacaccccc agccccaaacg 660
actaccgaaa ttcaacaag acccccggtgc cattggagg accccctgtg gggggactt 720
ttcccaggcc aggcacccccc ttcatccccc agccctcag tggcttgaa ctccctcg 780
tcagacccag cttcaacaga gtggcccagg gctgggtccg taacctccca gagtccgagg 840
agctgttagcc ctagcctgaa tcttcagttc cccagtctcg ggggccttgtt aacatccgga 900
gccaagactt gtggacagca cttcacagtt gaagaaggc cttcacacac aaaacctgtat 960
tgcaaatggc ttccagaggc accaagttca gtcgtccaa aacatgggtg tgttcaaaa 1020
ttacctgggg atgttgttcc aatccagac aactggactg tcccagactt gcagcatcag 1080
agtctcctga gtcgaggaat ctgtattttt aatagcaacc agggccgggt gtcgtggctc 1140
acgcctgtca tcccagact ttgggaggcc gaggcaggag gatcacctga ggtcaggagt 1200
tttgagacca gtctggccaa aatagtggaa cccctcgct actaaaaata caaaaatgag 1260
tcggacatgg tggtgcatgc ctgtatccc agctactgg gaggctgaga caggagaatc 1320
acttgaacta ggaggcagag gttgcagtga gccgagattg cgccactgca ccccgctg 1380
gacaacagag tgagactcct tctcaaaaat aaataaataa atagcaacca gtactccagg 1440
tgattccagc ataacttatac catggtttg tgcatttaga gtccacatcc acacctctgc 1500
tcttcctgt tcctgttagt tacactccccc cggtgacagg gtgtcactg gcacccatc 1560
ttcctgtgaa taactcaaat aattagaaaa ttgttctttt actgagatgc agttggctt 1620
catctattca tgctctaaac agttctaaag cgctgactgt ggcctagaca ctgccaggcc 1680
cgggcctcgaa ggaggaaaag acagtaggaa agacattata gagcatgaag tcaccataat 1740
tttccctaaa gcatgcttat tgacaatttg ggaacaaagt gttgggagca gaagaaggag 1800
tccctcaccc taggtgtgag atgggattct ggaagcttcc tgaaggattt gagtgggacc 1860
ttgtgggagg cgtgagagtc catgaagggg gtgtgagggg gagggtattt ctgaaagtg 1920
gaccagcatg tgcaaaaata tggAACTGAG cacgggtca ggggtttctg cagaagggag 1980
aaggctgtgc tagaggagcc agtgaggccc agcatgggtt gggcttcaact aagaaatgg 2040
ggaaggttt agtgtgggt ttgtgggtt gctgtgtggg ggcacattt gagaaggta 2100
atgccagaag ccaggaagcc tgcaaggat gaggccatgg gaatggagag aaggggccac 2160
ccactggcaca cttacacagga caggtgcataa gtgggggtct tattaagatt cttctttcc 2220
actccattttt gagcaggctg cttaaagtgg tggtgatgt gatgtatgt atggcagctt 2280
tatatcgagt gcctcagtgc ttgggctggt agtagttct ctacatatct tatttctaat 2340
tctcagaaca accctgagag aaagatattt ttgtccccac tttacatgt tggatattt 2400
ggccaaaagg aggaagtgc tttccagggg cagacaccaa atggaaatct gattccagtg 2460
gatgtctctt ttcaatgcac tgggtggtca atgcccactc gctctgaaat catctgactg 2520
tgatgcctg cttggagtt tagaaggta gtgcaggctt gggagtcaga ctggatgggg 2580
taggttctaa ctctgccact gctagccgga tgaaccttgc caagtcattt cacatctccg 2640
agcctctgtt tctccaatgt taagatgggg acaagtataa aacccctttt atgggttgc 2700
tgtgaacaca gtgcaggcaca catttataat aagagctcag tcaatggtag gttcatgca 2760

actgctgctc taggctggaa aagttgttct tgcactggat gcagcatgag aagctggctg 2820
ctaagatgtc actgggggtc actaaagctg aagctgaag gaaaggctct cattgctgt 2880
gagctctccc tgccctcttc tctggggcg atggggagg tcaggagtcc agcccatcc 2940
cagggtgtgt gggatagcga ttgcatttc ctggctct ggagttcac tcccttctg 3000
ggtccccagg gcccaatggc ctgactttt gaattgctt caattgggt gtttcttga 3060
atttgggggc tgccatttaa agccaggtt ccatgagctg aagaccagcc attcaagaat 3120
ctgaaaagta gacaagagga ctccagttgc ctcaggttgg ttctgctgt ctctggaaag 3180
taactgcagc caccaggtat gaaaaggagc ctgggggga gaccactgca cccaaaacaa 3240
atcctttctt cttctgagaa tgtgacttt tctgggttg taaaaaaagaa aaaaaaaaaag 3300
aatgctcatt gtaaaaaaaaaaaaaaa 3330

<210> 10
<211> 251
<212> PRT
<213> Homo sapiens

<400> 10
Met Ile Pro Lys Glu Gln Lys Gly Pro Val Met Ala Ala Met Gly Asp
1 5 10 15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
145 150 155 160

Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
165 170 175

Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
180 185 190

Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
195 200 205

Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
210 215 220

Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
225 230 235 240

Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
245 250

<210> 11

<211> 913

<212> DNA

<213> Mus musculus

<400> 11

gtcggactgc aatagacaca caggccataa aactccagct tccccactga agtgttaatc 60
ttgggggtct gacatttctt cccatctact gtggcccac caggatgatc cccaaaggagc 120
agaaggagcc agtgatggct gtcccggggg accttgctga accagtccct tcgctggacc 180
tgggaaagaaa gctgagcgtg cctcaggacc taatgataga ggagctgtct ctacgaaaca 240
accgcggatc cctcctctt cagaagaggc agcggcggt gcagaagttt accttgagc 300
tatcagaaaat tttgcaggcc atcctggca gtagtgcccg agggaaagtg gctggcagag 360
cggcgcaggg aacggttccc aatggcttg aggaggaaaa ccaccactcc gagacgcacg 420
tgttccaggg gtcacctggg gacccggga tcaccatct gggagcagcg gggactgggt 480
cggccgtat tccaagcggcc ctggcaccag gctatgcaga gcccctgaag ggcgtccac 540
cggagaagtt caaccacact gccatcccc aaggctaccg gtgccttgg caggagttca 600
ccagctacca agactactcg agtggcagca gaagtcacac tcccatcccc cgagactatc 660
gcaacttcaa caagaccccc gtgccatttg gaggacccca cgtgagggag gccatttcc 720
acgcaggcac ccccttgctt ccggagtctt tcagtggctt ggaacttctc cgccctcagac 780
ccaaatttcaa cagggttgtc cagggctggg tccgaaagct cccggagctt gaggaaactgt 840
agcctcagcc tgaagctaca attccctggg ctcaagaaac atgcttgct tgaaaaaaaaa 900
aaaaaaaaaaa aaa 913

Q. Bent
<210> 12

<211> 245

<212> PRT

<213> Mus musculus

<400> 12

Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245

A
CMT