

Lab 1 – Camera geometry with Eigen

25.01.2018

Part 1: Introduction to Eigen

Eigen 3

- C++ library for linear algebra
 - http://eigen.tuxfamily.org/
- "Template library" "Header only"
 - Multi platform, no linking!
- Good documentation!
 - https://eigen.tuxfamily.org/dox/
 - https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
 - https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

Create a few vectors and matrices

$$- \quad \boldsymbol{t} = \begin{bmatrix} 1.0 \\ 0.0 \\ 3.0 \end{bmatrix}$$

$$- A = \begin{bmatrix} 1.0 & 0.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0 \end{bmatrix}$$

$$- I = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$$- T = \begin{bmatrix} A & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$

$$-B=A^T$$

Play with coefficients

$$- t = \begin{bmatrix} 1.0 \\ 0.0 \\ 3.0 \end{bmatrix}$$
 Set to 2.0
$$- A = \begin{bmatrix} 1.0 & 0.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0 \end{bmatrix}$$

Block operations

- Create a vector from a row in
$$A = \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0 \end{bmatrix}$$

- Create a vector from a column in
$$A = \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0 \end{bmatrix}$$

- Create a matrix from the middle 2x2 sum matrix in T
- What happens with A and T if these vectors/matrices are altered?

- Matrix and vector arithmetic
 - Add two vectors/matrices
 - Multiply to matrices
 - Take the dot product between two vectors
 - Take elementwise multiplication between two matrices
- Homogenous representation
 - Try homogenous() and hnormalize()

- Reductions
 - Take the sum of all elements in a matrix
 - Compute the minimum value in a matrix
 - Find its position
 - Create a vector that is the minimum of each column in a matrix
 - Find the L1- and L2 norm of a vector
 - Find the number of elements that is greater than a given value

Part 2 – Camera geometry

Holmenkollen dataset

- 110 images taken from helicopter
- For each image
 - Intrinsic calibration
 - Helicopter pose in geographical coordinates
 - Camera pose relative to helicopter

Coordinate systems

Coordinate systems

We represent the orientation using euler angles as $R = R_z(z_rot)R_y(y_rot)R_x(x_rot)$

Problem

Project (real geographical) world points into the images

Solution

- Download lab_1_2
- Follow the steps in lab_1_2.cpp

Extra

- Project other points into the images
 - http://www.norgeskart.no
- Create a virtual camera
 - Project points
 - Visualize in 3D

