Miejsce na naklejkę z kodem szkoły

dys	lel	ks	ja

MIN-R2A1P-062

EGZAMIN MATURALNY Z INFORMATYKI

Arkusz II

POZIOM ROZSZERZONY

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 6 ponumerowanych stron i dołączone są do niego dwa nośniki danych podpisane *DANE* oraz *WYNIKI*. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 3. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL oraz na nośniku *WYNIKI* wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 4. Przed upływem czasu przeznaczonego na egzamin zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL oraz na nośniku *WYNIKI* ostateczną wersję plików stanowiących rozwiązania zadań.
- 5. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 6. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.

Życzymy powodzenia!

ARKUSZ II

MAJ ROK 2006

WYBRANE:

Windows XP (środowisko)

Free Pascal 2.0 (kompilator)

MS Office 2003 (program użytkowy)

Za rozwiązanie wszystkich zadań można otrzymać łącznie

60 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJĄCEGO										

Zadanie 5. Figura (20 pkt)

Niech C będzie liczbą naturalną większą od 0.

Przez F(C) oznaczamy figurę narysowaną w kartezjańskim układzie współrzędnych, która jest ograniczona przez:

- oś OY z lewej strony,
- prostą o równaniu x = C z prawej strony,
- krzywa o równaniu $f(x) = -x^2/50$ od dołu,
- krzywa o równaniu g(x)= $1+x^2/100-x/200$ od góry.

Poniżej przedstawiony jest przybliżony rysunek figury F(10).

Odpowiedzi do poniższych podpunktów umieść w pliku tekstowym figura.txt. Odpowiedź do każdego podpunktu poprzedź literą oznaczającą ten podpunkt.

- a) Wyznacz przybliżone pole figury F(10) z dokładnością do 0,01. W pliku tekstowym figura.txt opisz zastosowaną przez Ciebie metodę i zapisz wyznaczone pole.
- b) Wyznacz taką najmniejszą liczbę naturalną C, żeby we wnętrzu figury F(C) (brzeg zaliczamy do wnętrza figury) można było umieścić prostokąt o wymiarach 100 x 26 w taki sposób, aby współrzędne wierzchołków były liczbami całkowitymi, a boki prostokąta były równoległe do osi OX i OY, przy czym dłuższe boki powinny być równoległe do osi OX. W pliku figura.txt opisz położenie prostokąta dla wyznaczonej przez Ciebie wartości C, tzn. zapisz współrzędne jego wierzchołków.

Do oceny oddajesz plik(i) o nazwie

zawierający(e)

komputerowe realizacje Twoich obliczeń do podpunktów 5a i 5b oraz plik tekstowy – figura.txt – zawierający odpowiedzi do podpunktów 5a, 5b.

Punktacja:

Części zadania	Maks.
a	12
b	8
Razem	20

Zadanie 6. Słowa (20 pkt)

W pliku dane.txt w oddzielnych wierszach znajdują się słowa o długościach od 2 do 20 znaków, składające się z wielkich liter A, B, C, D, E, F. Odpowiedzi do poniższych podpunktów umieść w pliku tekstowym wyniki.txt. Odpowiedź do każdego podpunktu poprzedź literą oznaczającą ten podpunkt.

- a) W pliku wyniki.txt podaj w osobnych wierszach:
 - ile jest słów w pliku dane. txt występujących więcej niż jeden raz,
 - słowo o największej liczbie wystapień,
 - liczbę jego wystąpień.
- b) Załóżmy, że słowa z pliku dane.txt traktujemy jako liczby zapisane w systemie szesnastkowym każda liczba w osobnym wierszu. W pliku wyniki.txt podaj, ile jest liczb parzystych w pliku dane.txt.
- c) Palindromem nazywamy słowo, które czytane od lewej i od prawej daje to samo słowo. Na przykład słowa ABCDCBA i AEEFFEEA są palindromami. Napisz program, który policzy, ile jest palindromów w pliku dane.txt. Ocenie będzie podlegać poprawność Twojego programu i metoda sprawdzania, czy dane słowo jest palindromem. Liczbę palindromów zapisz w pliku wyniki.txt.

Do oceny oddajesz plik(i) o nazwie

slowa.pas

tu wpisz nazwę pliku(ów)

zawierający(e) komputerowe realizacje Twoich obliczeń oraz plik wyniki. txt zawierający odpowiedzi do podpunktów 6a, 6b, 6c.

Punktacja:

Części zadania	Maks.
a	6
b	4
c	10
Razem	20

Zadanie 7. Finanse (20 pkt)

Na podstawie (fikcyjnych) kursów euro z 2005 roku oraz informacji o oprocentowaniu lokat terminowych dokonaj analizy dotyczącej zmian kursów euro oraz lokowania oszczędności. Odpowiedzi do poniższych podpunktów umieść w pliku tekstowym odpfinanse.txt. Odpowiedź do każdego podpunktu poprzedź literą oznaczającą ten podpunkt.

a) Klienci MatBanku umieścili na początku roku swoje oszczędności na rocznych lokatach terminowych. W pliku lokaty.txt znajduje się lista kwot złożonych przez poszczególnych klientów, po jednej w wierszu. Oprocentowanie lokat w skali roku uzależnione jest od ich wysokości, zgodnie z poniższą tabelką:

Wysokość lokaty	Oprocentowanie	
poniżej 10 000,00 zł	6,0%	
od 10 000,00 zł do 19 999,99 zł	7,0%	
od 20 000,00 zł do 29 999,99 zł	8,0%	
od 30 000,00 zł do 39 999,99 zł	9,0%	
od 40 000,00 zł do 49 999,99 zł	10,0%	
50 000,00 zł i więcej	11,0%	

Przykład:

Jeśli wysokość lokaty wynosi 5 000,10 zł, to oprocentowanie wyniesie 6,0% i na koniec roku jej wartość wyniesie 5 300,11 zł.

Dla lokaty o wysokości 45 000,00 zł oprocentowanie wynosi 10,0% i na koniec roku jej wartość wyniesie 49 500,00 zł.

Podaj sumaryczne wartości wszystkich lokat z pliku lokaty.txt na początku i na końcu roku oraz wartość największej lokaty na końcu roku.

b) 1 stycznia 2005 roku dysponujemy oszczędnościami w wysokości 20 000,00 zł. Każdego dnia możemy wymienić całe oszczędności ze złotych na euro bądź z euro na złote. Wymiana następuje zawsze wg kursu średniego z danego dnia. Po każdej wymianie kwota oszczędności jest zaokrąglana do dwóch miejsc po przecinku. Kursy średnie euro w kolejnych 365 dniach roku podane są w pliku kursy.txt, po jednym w wierszu.

Przykład:

Załóżmy, że 1 marca dysponujemy kwotą 5 000,00 zł i wymienimy ją na euro, kiedy to kurs euro wynosi 4,3518 zł. Wówczas będziemy dysponować kwotą 5 000,00/4,3518 = 1 148,95 euro. Jeśli przechowamy euro do dnia 6 marca, kiedy to kurs euro wynosi 4,4518 zł i wtedy dokonamy wymiany na złote, to w efekcie uzyskamy 1 148,95*4,4518 = 5 114,90 zł.

Korzystając z informacji o kursach euro z pliku kursy. txt wyznacz wartość oszczędności na koniec roku dla każdego z poniższych sposobów lokowania pieniędzy.

- 1 stycznia wymieniamy całe oszczędności na euro. Pierwszego dnia każdego z następnych miesięcy zmieniamy walutę, w której oszczędzamy – 1 lutego wymieniamy całą kwotę na złote, 1 marca na euro, itd.
- II) 1 stycznia wymieniamy całe oszczędności na euro. Każdego kolejnego dnia postępujemy w następujący sposób: jeśli oszczędności mamy aktualnie ulokowane w euro, to zmieniamy walutę na złote tylko wtedy, gdy kurs euro w danym dniu uległ obniżeniu w stosunku do dnia poprzedniego. Jeśli oszczędności mamy aktualnie ulokowane w złotych, to **bezwarunkowo** wymieniamy je na euro.

Przykład:

Załóżmy, że kurs euro 1 marca wynosił 4,3518 zł.

- Jeśli 1 marca oszczędności były ulokowane w euro i kurs euro 2 marca jest niższy niż 4,3518 zł, to 2 marca dokonujemy wymiany na złote. W przeciwnym razie 2 marca oszczędności pozostają ulokowane w euro.
- Jeśli 1 marca oszczędności były ulokowane w złotych, to 2 marca bezwarunkowo dokonujemy wymiany ich na euro.

W pliku odpfinanse.txt umieść w kolejnych wierszach kwoty oszczędności uzyskane na koniec roku dla obu sposobów oszczędzania. Zadbaj o czytelność wyników (poprzedzając każdy z wierszy oznaczeniem sposobu oszczędzania). Pamiętaj również, że jeśli na koniec roku oszczędności będą ulokowane w euro, to musisz podać ich wartość w złotych według kursu z 31 grudnia.

c) Średnie kursy euro w kolejnych dniach roku podane są w pliku kursy.txt, po jednym w wierszu. Policz, w ilu dniach począwszy od 2 stycznia kurs euro wzrósł w porównaniu z kursem z dnia poprzedniego.

Do oddajesz oceny plik(i) o nazwie

zadanie7.xls

tu wpisz nazwę pliku(ów)

zawierający(e) komputerowe realizacje Twoich obliczeń oraz plik odpfinanse.txt zawierający odpowiedzi do podpunktów 7a, 7b, 7c.

Punktacja:

Części zadania	Maks.
a	7
b	10
c	3
Razem	20

BRUDNOPIS