RESPOSTES

- 1 (a₁) Enuncieu el teorema de Bolzano.
 - (a₂) Demostreu que l'equació $3x 2 + \cos\left(\frac{\pi x}{2}\right) = 2$ té una solució. Doneu un interval de longitud 1 amb la solució.
 - (b₁) Enuncieu el teorema de Rolle.
 - (**b**₂) Demostreu que l'equació $3x 2 + \cos\left(\frac{\pi x}{2}\right) = 2$ té només una solució real.

Resolució: (0.25 + 1 + 0.25 + 1 = 2.5 punts)

- (a₁) Teorema de Bolzano. Siguin a < b nombres reals, $f : [a, b] \to \mathbb{R}$ contínua en [a, b] tal que $f(a) \cdot f(b) < 0$, aleshores existeix un nombre real ξ , amb $a < \xi < b$ tal que $f(\xi) = 0$.
- (a₂) Sigui $f_1(x) = 3x 2 + \cos\left(\frac{\pi x}{2}\right)$, l'equació s'escriu $f_1(x) = 2$ o $f_1(x) 2 = 0$. Una demostració vàlida s'obté fent servir del teorema de Bolzano i la funció $g(x) = f_1(x) 2$. Comprovació, $g(0) = -4 + \cos(0) = -3$, $g(2) = 6 4 + \cos(\pi) = 6 5 = 1$, i del fet que $\cos(t)$ és contínua a tot \mathbb{R} , podem concloure que g(x) és contínua en qualsevol interval que considerem. És a dir g(x) satisfà les hipotesis del teorema de Bolzano a l'interval [0,2], així hi ha una solució de l'equació demanada. Calculant, $g(1) = 3 4 + \cos(\pi/2) = -1$, i l'interval demanat és [1,2].
- (b₁) Teorema de Rolle. Siguin a < b nombres reals, $f : [a,b] \to \mathbb{R}$ contínua en [a,b] i derivable en (a,b), tal que f(a) = f(b), aleshores existeix un nombre real ξ , amb $a < \xi < b$ tal que $f'(\xi) = 0$.
- (b₂) Demostració per "reducció a l'absurd". La equació no pot tindre dues solucions, ja que de tenir-les la funció g de l'apartat (a₂) verificaria totes les hipotesis del teorema de Rolle amb g(a) = g(b) = 0, i existiria un nombre real ξ tal que $g'(\xi) = 0$ fet que no és cert. Comprovació, g és contínua i derivable per a qualsevol real, amb $g'(x) = 3 \frac{\pi}{2} \sin\left(\frac{\pi x}{2}\right)$, llavors $g'(x) = 0 \Leftrightarrow \sin\left(\frac{\pi x}{2}\right) = \frac{6}{\pi}$ i del fet que $\frac{6}{\pi} > 1$ resulta que no existeix arcsin $\left(\frac{6}{\pi}\right)$; llavors podem concloure que $g'(x) \neq 0$ per a qualsevol real x.

- **2** Considereu la paràbola d'equació $y = x^2$,
 - (a) Escriviu l'equació de la recta tangent a la paràbola en el punt $P\left(-1,\,1\right)$.
 - (b) Doneu l'equació de la recta tangent a la paràbola en el punt $Q\left(\frac{1}{2}, \frac{1}{4}\right)$.
 - (c) Representeu gràficament \mathcal{R} , el recinte del pla limitat per la paràbola i les dues rectes tangents anteriors.
 - (d) Calculeu l'àrea del recinte \mathcal{R} .

Resolució: (0.5 + 0.5 + 0.5 + 1 = 2.5 punts)

- (a) La recta tangent a la paràbola en el punt d'abscisa x=-1 és y=-2x-1.
- (b) La recta tangent a la paràbola en el punt d'abscisa $x = \frac{1}{2}$ és $y = x \frac{1}{4}$.
- (c) Una representació gràfica vàlida del recinte del pla limitat per la paràbola i les dues rectes tangents és:

(d) L'abscisa del punt d'intersecció de les dues rectes tangents és $x = -\frac{1}{4}$. L'àrea es pot calcular per

$$\int_{-1}^{-1/4} x^2 - (-2x - 1) \, dx + \int_{-1/4}^{1/2} x^2 - \left(x - \frac{1}{4}\right) \, dx = \frac{9}{32} u^2 = 0.28125 u^2 \, .$$

3 Es demana,

- (a) Escriviu l'equació del pla tangent a la superfície de \mathbb{R}^3 definida per l'equació: $z = \sqrt[3]{xy}$, en el punt P(1, 1, 1).
- (b) Calculeu aproximadament mitjançant un polinomi de primer grau la quantitat $\sqrt[3]{0.99 \cdot 1.01}$.
- (c) Feu servir la fórmula de propagació de l'error per calcular una cota superior de l'error comès a l'apartat (b).
- (d) Calculeu l'error en l'aproximació de l'apartat (b). Compareu-lo amb el resultat de l'apartat (c), feu-ne una anàlisi.

Resolució: (1+1+0.25+0.25=2.5 punts)

- (a) L'equació del pla tangent en el punt P(1, 1, 1) és $z = \frac{1}{3} + \frac{x}{3} + \frac{y}{3}$.
- (b) Substituint x = 0.99 i y = 1.01 a $\frac{1}{3} + \frac{x}{3} + \frac{y}{3}$ obtenim un valor aproximat de la quantitat $\sqrt[3]{0.99 \cdot 1.01}$ pel polinomi de Taylor de primer grau de la funció $f(x,y) = \sqrt[3]{xy}$ en (x,y) = (1,1). El valor resultant és 1, llavors $\sqrt[3]{0.99 \cdot 1.01} \approx 1$
- (c) La fórmula de propagació de l'error per al nostre cas és

$$\left| \frac{\partial z}{\partial x}(1,1) \right| \cdot 0.1 + \left| \frac{\partial z}{\partial y}(1,1) \right| \cdot 0.1 = \frac{2}{30} \approx 0.00667.$$

- (d) L'error en l'aproximació de l'apartat (b) és |1 .99996667| = .00003333. S'observa que l'error obtingut és molt inferior a la cota obtinguda amb la fórmula de propagació de l'error.
- **4** Sigui $f: \mathbb{R}^2 \to \mathbb{R}$ la funció definida per $f(x,y) = x^4 + y^2$,
 - (a) Calculeu i classifiqueu els extrems relatius de f en el seu domini.
 - (b) Justifiqueu l'existència d'extrems absoluts de f en el recinte

$$\mathcal{K} = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \quad y \ge \frac{1}{2} \right\}.$$

(c) Determineu el màxim absolut i el mínim absolut de f en el recinte \mathcal{K} .

Resolució: (1 + 0.5 + 1 = 2.5 punts)

(a) El domini de la funció és \mathbb{R}^2 . En aquest domini la funció presenta només un punt crític que és (0,0). S'observa que f(0,0)=0 i que en qualsevol altre punt la funció és positiva, llavors (0,0) és un mínim relatiu.

3

(b) Una representació gràfica d'una part del cercle $x^2 + y^2 = 1$ i de la recta $y = \frac{1}{2}$ ens permet visualtizar el recinte \mathcal{K} , que consta dels punts del pla de dins del cercle de radi 1 amb ordenada més gran que $\frac{1}{2}$.

 \mathcal{K} és un conjunt fitat. Comprovació, una bola tancada de centre (0,0) i radi 2 (conjunt fitat) conté al conjunt \mathcal{K} .

 \mathcal{K} és un conjunt tancat, els punts de la frontera són al conjunt. Els punts $(x,y) \in \mathbb{R}^2$ de la frontera satisfan $x^2 + y^2 = 1$ amb $\frac{1}{2} \le y \le 1$ o bé $y = \frac{1}{2}$ per a $\frac{\sqrt{3}}{2} \le x \le \frac{\sqrt{3}}{2}$.

La funció f és contínua en el conjunt K tancat i fitat, llavors la funció té màxim i mínim absoluts (T. de Weierstrass).

- (c) Els candidats a màxim i mínim absolut, per aquest cas són:
 - 1. Les punxes del recinte \mathcal{K} de coordenades $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ $\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$.
 - 2. Els extrems de f sobre la semirecta $\left\{(x,y) \in \mathbb{R}^2 : \frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}, \quad y = \frac{1}{2}\right\}$. S'obté el punt de coordenades $\left(0,\frac{1}{2}\right)$, optimitzant la funció $f(x,\frac{1}{2}) = x^4 + \frac{1}{4}$.
 - 3. Els extrems de f sobre l'arc de circumfència $\left\{(x,y)\in\mathbb{R}^2: \frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}, \quad x^2+y^2=1\right\}$. Fent ús del mètode dels multiplicadors de Lagrange s'obtenen tres punts, les coordenades dels quals són $(0\,,1)\,,\,\left(-\frac{\sqrt{2}}{2}\,,\frac{\sqrt{2}}{2}\right),\,\left(\frac{\sqrt{2}}{2}\,,\frac{\sqrt{2}}{2}\right)$.

Per a decidir, cal avaluar la funció en tots els candidats. Els valors són

$$\begin{split} f\left(0\,,\tfrac{1}{2}\right) &= \tfrac{1}{4} = 0.25\,,\\ f\left(-\tfrac{\sqrt{2}}{2}\,,\tfrac{\sqrt{2}}{2}\right) &= f\left(-\tfrac{\sqrt{2}}{2}\,,\tfrac{\sqrt{2}}{2}\right) = 0.75\,,\\ f\left(-\tfrac{\sqrt{3}}{2}\,,\tfrac{1}{2}\right) &= f\left(-\tfrac{\sqrt{3}}{2}\,,\tfrac{1}{2}\right) = 0.8125\,,\\ f\left(0\,,1\right) &= 1. \end{split}$$

El màxim absolut s'obté en el punt de coordenades (0,1) i val 1.

El mínim absolut s'obté en el punt de coordenades $\left(0,\frac{1}{2}\right)$ i val $\frac{1}{4}$.

4