Solució al problema 63

• Sigui $e_n = x_n - \alpha$, per a tot $n \ge 0$. Cal veure que

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|}=C\neq 0$$

i trobar C.

Sabem que
$$e_{n+1}=e_n-rac{f(\mathsf{x}_n)}{f'(\mathsf{x}_n)}$$
.

Fem el desenvolupament de Taylor:

$$f(x_n) = f(\alpha) + f'(\alpha)(x_n - \alpha) + \frac{f''(\alpha)}{2!}(x_n - \alpha)^2 + \dots + \frac{f^{(p)}(\xi_n)}{p!}(x_n - \alpha)^p$$
$$= \frac{f^{(p)}(\xi_n)}{p!}e_n^p$$

amb $\xi_n \in \langle x_n, \alpha \rangle$

Anàlogament

$$f'(x_n) = \frac{f^{(p)}(\beta_n)}{(p-1)!}(x_n - \alpha)^{p-1} = \frac{f^{(p)}(\beta_n)}{(p-1)!}e_n^{p-1},$$

amb $\beta_n \in \langle x_n, \alpha \rangle$.

Per tant,

$$e_{n+1} = e_n - \frac{f(x_n)}{f'(x_n)} = e_n \left(1 - \frac{1}{p} \frac{f^{(p)}(\xi_n)}{f^{(p)}(\beta_n)} \right).$$

Quan $n \to \infty$, $\xi_n, \beta_n \to \alpha$, del que deduïm que

$$C = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|} = 1 - \frac{1}{p}.$$

Si afegim el factor p al mètode de Newton-Raphson, observem que en l'apartat anterior, obtindríem C=0. Això vol dir que l'ordre serà > 1.

Per a trobar-lo, usem un terme més del desenvolupament de Taylor

$$f(x_n) = \frac{f^{(p)}(\alpha)}{p!} e_n^p + \frac{f^{(p+1)}(\delta_n)}{(p+1)!} e_n^{p+1}$$

i
$$f'(x_n) = \frac{f^{(p)}(\alpha)}{(p-1)!}e_n^{p-1} + \frac{f^{(p+1)}(\gamma_n)}{p!}e_n^p,$$
 amb $\gamma_n, \delta_n \in < x_n, \alpha > .$

Llavors, per al mètode modificat (dividint numerador i denominador per $e_p^{p-1}/(p-1)!$):

$$e_{n+1} = e_n - \frac{f^{(p)}(\alpha)e_n + \frac{1}{p+1}f^{(p+1)}(\delta_n)e_n^2}{f^{(p)}(\alpha) + \frac{1}{p}f^{(p+1)}(\gamma_n)e_n}$$

$$= \frac{\left[\frac{1}{p}f^{(p+1)}(\gamma_n) - \frac{1}{p+1}f^{(p+1)}(\delta_n)\right]e_n^2}{f^{(p)}(\alpha) + \frac{1}{p}f^{(p+1)}(\gamma_n)e_n}.$$

Per tant,

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^2}=\left(\frac{1}{p}-\frac{1}{p+1}\right)\frac{|f^{(p+1)}(\alpha)|}{|f^{(p)}(\alpha)|}\neq 0.$$

Per tant, l'ordre és 2 i el coeficient asimptòtic de l'error és

$$\frac{1}{p(p+1)} \frac{|f^{(p+1)}(\alpha)|}{|f^{(p)}(\alpha)|}$$

3 Estem en el cas del primer apartat amb $\alpha = 0$ i $x_n = e_n$.

Per tant,

$$\frac{x_{n+1}}{x_n} \approx 1 - \frac{1}{p}$$

$$p \approx \frac{x_n}{x_n - x_{n+1}}.$$

0

$$p pprox rac{x_n}{x_n - x_{n+1}}.$$

Calculant aquesta darrera quantitat amb les dades donades, obtenim $p \approx 3$, amb el que deduim que p = 3.

i	x _i	$ \Delta x_i $
0	0.5	
1	0.333505	0.1664950
2	0.221832	0.1111673
3	0.147464	0.074368
4	0.0980568	0.0494072
5	0.0652386	0.0328182
6	0.0434272	0.0218114

