(19)日本国特許庁(JP)

F 0 4 B 35/00

(12)公開特許公報 (A) (11)特許出願公開番号

特開2001-140757 (P2001-140757A) (43)公開日 平成13年5月22日(2001.5.22)

(51) Int. C1.7

識別記号

FΙ F 0 4 B テーロート*(参考)

A 3H076

2 .

審査請求 未請求 請求項の数5

0L

(全6頁)

(21)出願番号

特願平11-321912

(22)出願日

平成11年11月12日(1999.11.12)

(71)出願人 500309126

35/00

株式会社ゼクセルヴァレオクライメートコ

ントロール

埼玉県大里郡江南町大字千代字東原39番地

(72)発明者 入江 一博

埼玉県大里郡江南町大字千代字東原39番地

株式会社ゼクセル江南工場内

(72)発明者 築貝 雅彦

埼玉県大里郡江南町大字千代字東原39番地

株式会社ゼクセル江南工場内

(74)代理人 100069073

弁理士 大貫 和保

Fターム(参考) 3H076 AA18 BB28 BB32 BB38 BB41

BB43 CC07 CC12 CC18 CC17

(54)【発明の名称】ハイブリッドコンプレッサ

(57)【要約】

【課題】 モータによる駆動軸の回転が圧縮部にできる 限り近い部分で伝達されると共に、駆動部分の小型化を 図る。

【解決手段】 圧縮機構を駆動する駆動軸に固着される 第2の可動部にモータを構成するロータを前記駆動部の 軸方向ブロック側に延出して形成し、このロータと対峙 する径方向内方のブロック延出部にモータを構成するス テータを設けるので、通常第1の可動部と連結手段を介 して連結される第2の可動部を、走行用エンジン又はモ ータによって同様に回転させることができる。

1

【特許請求の範囲】

【請求項1】 圧縮機構と、該圧縮機構を駆動する駆動 軸と、走行用エンジンの駆動力が伝達されて回転するプ ーリと、該プーリと前記駆動軸とをオンオフ可能に連結 する連結手段と、バッテリによって前記駆動軸を回転さ せるモータと、前記圧縮機構が収納されると共に前記プ ーリ及び前記駆動軸を回転自在に保持するブロックとを 具備するハイブリッドコンプレッサにおいて、

前記連結手段は、前記プーリに固着され該プーリと共に 回転する第1の可動部と、前記駆動軸に固着される第2 10 の可動部と、前配第1の可動部及び前配第2の可動部を オンオフ可能に連結する連結機構とによって構成され、 前記モータは、前記第2の可動部から前記駆動軸の軸方 向ブロック側に延出するロータと、前記ブロックから前 記駆動軸の軸方向でロータ内部に延出する延出部と、該 延出部に固着され、前記ロータと対峙する位置に配され るステータとによって構成されることを特徴とするハイ ブリッドコンプレッサ。

【請求項2】 前記連結手段の連結機構は、前記第1の 可動部に設けられた電磁吸着部と、前記第2の可動部と 20 してのアーマチュアからなる電磁クラッチ機構であるこ とを特徴とする請求項1記載のハイブリッドコンプレッ

【請求項3】 前記連結手段の連結機構は、前記第1の 可動部及び第2の稼動部の一方に設けられた爪部と、前 記第1の可動部及び前記第2の稼動部の他方に設けら れ、前記第1の可動部の回転が前記第2の可動部の回転 に勝る場合に前記爪部が噛合する噛合部からなるワンウ エイ機構であることを特徴とする請求項1記載のハイブ リッドコンプレッサ。

【請求項4】 前記第1の可動部において、前記プーリ が固着されるプーリ固着部は、前記ロータが設けられる ロータ部よりも前記駆動軸の軸方向外方に延出して設け られ、該ブーリ固着部の径は前記ロータ部の径よりも小 さいこと特徴とする請求項3記載のハイブリッドコンプ

【請求項5】 前記圧縮機構は、容量可変機構を具備す ることを特徴とする請求項1~4のいずれか一つに記載 のハイブリッドコンプレッサ。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】この発明は、ハイブリッド 車、電気自動車若しくはアイドルストップ車等に搭載さ れる單両用空調装置の冷凍サイクルに用いられ、少なく とも2つの駆動源によって駆動されるハイブリッドコン プレッサに関する。

[0002]

【従来の技術】実開平6-87678号公報に開示され るハイブリッドコンプレッサは、圧縮部の回転軸にモー

されるプーリと前記回転軸又はモータシャフトとの間に プーリの回転を選択的に回転軸に三遺する登磁クラッチ を設け、この電磁クラッチをオンすることによってエン ジンからの動力によってモータ部のロータを回転させて 圧縮部の回転軸を駆動すると共にコッテジを充電し、オ フすることによってモータ部によって三紀司の河転軸を 駆動するようにしたものである。

[0003]

【発明が解決しようとする課題】」かしなづら、この従 来のハイブリッドコンプレッサにおいては、圧縮部を駆 動する駆動軸にモータのモータシャフトを退結する構造 であることから、駆動軸を介して三転される圧縮部と、 駆動軸を回転させる駆動部との距離が大きくなることか ら駆動軸に、大きなねじれモーメントだかつるという不 具合が生じる。また、独立したモータ至と電磁クラッチ 部とを一体に形成していることから、コンプレッサの駆 動部分が大きくなるという不具合を有する。

【0004】したがって、この発耳は、モータによる駆 動軸の回転が圧縮部にできる限り近い部分で伝達される と共に、駆動部分の小型化を図ったハイ ブリッドコンプ レッサを提供することにある。

[0005]

30

【課題を解決するために手段】よって、 こつ発明は、圧 縮機構と、該圧縮機構を駆動する駆動軸と、走行用エン ジンの駆動力が伝達されて回転するアーリと、該アーリ と前記駆動軸とをオンオフ可能に連結する連結手段と、 バッテリによって前記駆動軸を回転させるモータと、前 記圧縮機構が収納されると共に前記プー リュび前記駆動 軸を回転自在の保持するプロックこを異端するハイブリ ッドコンプレッサにおいて、前記選結手表は、前記プー リに固着され該プーリと共に回転する第1つ可動部と、 前記駆動軸に固着される第2の可動部と、前記第1の可 動部及び前記第2の可動部をオンポフ 可能に連結する連 **結機構とによって構成され、前記モータは、前記第2の** 可動部から前記駆動軸の軸方向ブニック型に延出するロ ータと、前記プロックから前記駆動軸の 駐方向でロータ 内部に延出する延出部と、該延出部に宣着され、前記ロ ータと対峙する位置に配されるステーテとこよって構成 されることにある。

40 【0006】したがって、この発明によれば、王縮機構 を駆動する駆動軸に固着される第二の可動部にモータを 構成するロータを前記駆動部の軸下市プロック側に延出 して形成し、このロータと対峙する各方向内方のプロッ ク延出部にモータを構成するステータを設けるので、通 常第1の可動部と連結手段を介して選続される第2の可 動部を、走行用エンジン又はモーテによって同様に回転 させることができるので、上記課題を選載できる。

【0007】また、この発明において、前距連結手段の 連結機構は、前記第1の可動部に受けられて電磁吸着部 **夕部のモータシャフトを連結し、エンジンの動力が伝達 50 と、前記第2の可動部としてのアーマチェアからなる電** 磁クラッチ機構であっても良い。これによって、前配第2の可動部のアーマチュアに、該アーマチュアから駆動軸の軸方向ブロック側に延出するロータを形成するようにしたので、走行用エンジン及びモータの駆動力を第2の可動部に伝達できるので、上記課題を達成できるものである。

【0008】さらに、前記連結手段の連結機構は、前記第1の可動部及び第2の稼動部の一方に設けられた爪部と、前記第1の可動部及び前記第2の稼動部の他方に設けられ、前記第1の可動部の回転が前記第2の可動部の10回転に勝る場合に前記爪部が噛合する噛合部からなるワンウェイ機構であっても良いものである。尚、前記連結手段としては、ワンウェイクラッチ等の一方の回転数が他方の回転数よりも上回った場合にのみ、両者が結合状態となるような機構であれば良いものである。

【0009】これによって、走行用エンジンの回転力がモータによる回転力よりも勝る場合には、ワンウェイ機構によって第2の可動部が回転され、モータの回転力が勝る場合には、ワンウェイ機構によって第2の可動部が第1の可動部に対して空回りするので、第1の可動部が20停止若しくは回転数が低くなった場合には、モータによって第2の可動部を回転可能なるものである。

【0010】また、上記ワンウェイ機構を有するハイブリッドコンプレッサにおいては、電磁クラッチによる励磁コイルが不用であることから、前記第1の可動部において、前記プーリが固着されるプーリ固着部は、前記ロータが設けられるロータ部よりも前記駆動軸の軸方向外方に延出して設けられ、該プーリ固着部の径は前記ロータ部の径よりも小さくするように形成できるので、プーリの径に自由度を持たせることが可能となる。

【0011】さらに、前記圧縮機構は、容量可変機構を 具備するものであることが望ましい。特に、ワンウェイ 機構等の採用した場合には走行用エンジンが回転してい る場合には、コンプレッサは常に回転しているので、コ ンプレッサの吐出量を0%とすることが可能な容量可変 機構であることが望ましい。

[0012]

【発明の実施の形態】以下、この発明の実施の形態について図面により説明する。

【0013】図1において示されるハイブリッドコンプ 40 レッサ1は、ロータリベーン型のコンプレッサであり、フロントプロック2と、リアブロック3の間に圧縮室5 が画成されたシリンダブロック4が設けられているものである。前記シリンダブロック4には、複数のベーン6 が設けられたロータ7が押着され、前記ロータ7の回転に伴って前記ベーンがシリンダブロック4の内周面の沿って回動し、前記圧縮室5の容積を変化させるようになっているものである。

【0014】前記ロータ7を回転させる駆動軸8は、前記フロントブロック2を質通して、一端が外部に延出

し、前記フロントブロック2内に配されて前記シリンダブロック4のフロント側を閉塞するフロントサイドブロック9及び前記リアブロック3内に配されて前記シリンダブロック4のリア側を閉塞するリアサイドブロック10に、ペアリング11,12を介して回動自在に保持されているものである。

【0015】前記リアサイドブロック10には、前記シリンダブロック4内に形成された圧縮室5の吸入口13の位置を移動させて吐出容量を可変する容量可変機構14が設けられる。そして、前記リアブロック3の内部には吸入空間15が形成され、また前記フロントブロック2の内部には吐出空間16が形成される。尚、図中、17は、駆動軸8の周囲において前記吐出空間16と外気との間をシールするシール機構である。

【0016】これによって、駆動軸8の回転によって、ロータ7が回転し、容量可変機構14によって設定された吸入口13を介して吸入空間15から冷媒が吸引されて圧縮され、図示しない吐出口から吐出空間16に吐出され、次なる行程に送出されるものである。

【0017】前記駆動軸8を回転させる駆動部20は、図1及び図2に示すように、図示しない走行用エンジンとベルトを介して連結させるブーリ21と、このブーリ21に固着され、ブーリ21と共に回転する第1の可動部22と、前記駆動軸8に固着され、連結手段によって前記第1の可動部22と連結される第2の可動部40と、該第2の可動部40に設けられるモータ部50とによって構成される。

【0018】前記第1の回動部22は、前記フロントプロック2の軸方向に延出した第1の延出部23にベアリング24を介して回動自在に保持される。また、第2の可動部40は前記駆動軸8にポルト41を介して固着されると共に、前記駆動軸8の軸方向フロントブロック2側に延出するロータ部42を有し、このロータ部42の内周面には交互に極性の異なる複数の永久磁石43が配される。また、このロータ部42と、前記フロントプロック2から駆動軸8の軸方向に前記ロータ部42の内部に延出する第2の延出部44に固着されるステータ45とによって前記モータ50が構成される。尚、前記ステータ45には、励磁コイルが巻回され、前記ロータ部42に対して回転磁界を発生するようになっている。

【0019】前記連結手段として、図1及び図2に示される実施の形態においては、電磁クラッチ30が設けられる。この電磁クラッチ30は、第1の可動部22に設けられ、電磁力を発生される励磁コイル31が設けられた電磁吸着部32と、前記第2の可動部40に設けられ、前記電磁吸着部32に吸着されるアーマチュア46及びこのアーマチュア46と前記第2の可動部40を連結する連結部46とによって構成される。

【0020】以上の構成により、走行用エンジンを駆動 50 源とする場合には、前記電磁クラッチ30をオンするこ

とによって、第1の可動部22と第2の可動部40とを 連結し、前記プーリ21の回転を駆動軸8に伝えて駆動 軸8を回転させるものである。また、ハイブリッド車又 はアイドルストップ車等のように、走行用エンジンが必 要に応じて停止する場合には、電磁クラッチ30をオフ すると共にモータ50の励磁コイル42に通電し、前記 モータ50によって第2の可動部40を回転させるもの である。

【0021】これによって、電磁クラッチ30をオンオ **はを制御することによってことによって、適宜選択して** 適切な駆動源によってハイブリッドコンプレッサ1を駆 動できると共に、前記駆動軸8は、常に駆動軸8の一端 に固着された第2の可動部40によって回転されるた め、駆動軸8にかかるねじりモーメントを低くできるも のである。

【0022】以下、本発明の他の実施の形態について説 明するが、同一の箇所又は同一の効果を奏する箇所には 同一の符号を付してその説明を省略する。

【0023】図3に示す第2の実施の形態に係るハイブ 20 リッドコンプレッサ1Aは、プーリ21と固定された第 1の可動部22と、駆動軸8と固着される第2の可動部 40とはペアリング60を介して回動自在に接続される と共に、第1の可動部22と第2の可動部40との間に はワンウェイ機構30Aが配される。このワンウェイ機 構30Aは、第1及び第2の可動部22,40の一方の 設けられる爪部と、第1及び第2の可動部22,40の 他方に設けられ、前記第1の可動部22の回転速度が前 記第2の可動部40の回転速度よりも速い場合に前記爪 部が噛合する係止部とによって構成されるそれ自体公知 30 のものである。

【0024】これによって、走行用エンジンを駆動源と する場合には、前記ステータ45に巻回される励磁コイ ルへの通電を停止することによって、第1の可動部22 の回転速度が第2の可動部40の回転速度に勝ることか ら、ワンウェイ機構36Aが噛合するので、駆動軸8は 前記第2の可動部40、前記第1の可動部22及び前記 プーリ21を介して走行用エンジンによって駆動され る。また、走行用エンジンが停止し、前記励磁コイルへ の通電が開始されると、第2の可動部40の回転速度が 40 前記第1の可動部22の回転速度に勝ることから、ワン ウェイ機構30Aは噛合しないため、駆動軸8は前記第 2の可動部40に設けられたモータ50のロータ42に よって駆動されるので、上述した実施の形態と同様の効 果を奏すると共に、電磁クラッチがないため小型、軽量 化することができるものである。

【0025】また、図4に示す第3の実施の形態に係る ハイブリッドコンプレッサ1Bは、前記第1の可動部2 2が、前記第2の可動部40とベアリング60及びワン ウェイ機構30Aを介して連結される大径部22Aと、

前記プーリ21が国着される小径部22Bとによって構 成されるもので、上述した第2の実施の形態と比べて、 走行用エンジンと連結されるプーリ21の径を自由に設一 針できるという利点を有する。

【0026】さらに、図5で示す第4の実施の形態にハ イブリッドコンプレッサ1 Cは、前記第2の可動部40 を、小径の前記駆動監8と国着される固着部40Aと、 大径の前記ロータ部42とを有するように形成すると共 に、前配小径の固着記40Aの外周にベアリング60を フ制御するとともに、ステータ45の励磁コイルへの通 10 介して第1の可動部22を受け、この第1の可動部22 の外周に前記プーリ21を宣着するようにしたものであ る。この実施の形態も、前述した第3の実施の形態と同 様の効果を奏するものである。

> 【0027】また、上述したハイブリッドコンプレッサ において、連結機構としてフンウェイ機構、ワンウェイ クラッチ等を用いた場合には、走行用エンジンが稼動し ている場合には、常に回転車8が回転していることとな るため、コンプレップの稼動停止に代わる0%容量を実 行できる容量可変受賞を使用する必要がある。

> 【0028】さらに、走行用エンジンによる駆動時に は、ロータがステータに対して常時回転するようになる ことから、ステータの励磁ニイルに生じる起電力をパッ テリに蓄電するようにしても良いものである。

[0029]

【発明の効果】以上証明したように、この発明によれ は、走行用エンジンによって駆動される場合には、駆動 軸に固着された第2の可動画が、第1の可動部と連結手 段を介して接続されて回転し、また走行用エンジンが停 止した場合には、モータのコータと一体に成形された第 2の可動部が回転するので、同一の箇所にて駆動軸を回 転できるので、駆動盹にかかるねじれモーメントを低減 できる。

【0030】また、上述した構成により、部品点数を低 減することができるので、ニンプレッサを駆動する部分 の小型化及び軽量化を達式できる。

【図面の簡単な説明】

【図1】本願発明の第1の実施の形態に係るハイブリッ ドコンプレッサの概略断置図である。

【図2】 本願発明の第1の実施の形態に係るハイブリッ ドコンプレッサの一部拡大街面図である。

【図3】本願発明の第2の実施の形態に係るハイブリッ ドコンプレッサの一記拡大断面図である。

【図4】本願発明の第3の実施の形態に係るハイブリッ ドコンプレッサの一部拡大断面図である。

【図5】本願発明の勇士の冥戒の形態に係るハイブリッ ドコンプレッサの一面拡大新面図である。

【石号の説明】

- 1、1A, 1B, 1C ハイブリッドコンプレッサ
- 2 フロントプロック
- 50 3 リアブロック

7

- 4 シリンダブロック
- 8 駆動軸
- 20 駆動部
- 21 プーリ
- 22 第1の可動部
- 30 電磁クラッチ (連結機構)

30A ワンウェイ機構(連結機構)

- 40 第2の可動部
- 42 ロータ
- 43 永久磁石
- 45 ステータ
- 50 モータ

【図1】

【図3】

【図2】

【図5】

