

Drzewo

Rozważmy **drzewo** składające się z N **wierzchołków**, ponumerowanych od 0 do N-1. Wierzchołek 0 nazywamy **korzeniem**. Każdy wierzchołek, z wyjątkiem korzenia, ma jednego **rodzica**. Dla każdego i takiego, że $1 \le i < N$, rodzicem wierzchołka i jest wierzchołek P[i], gdzie P[i] < i. Przyjmujemy, że P[0] = -1.

Dla dowolnego wierzchołka i ($0 \le i < N$), **poddrzewo** i jest zbiorem następujących wierzchołków:

- *i*, oraz
- dowolny wierzchołek, którego rodzicem jest *i*, oraz
- dowolny wierzchołek, którego rodzicem jest wierzchołek, którego rodzicem jest i, oraz
- dowolny wierzchołek, którego rodzicem jest wierzchołek, którego rodzicem jest wierzchołek, którego rodzicem jest i, oraz
- itd.

Poniższy rysunek przedstawia przykładowe drzewo składające się z N=6 wierzchołków. Każda strzałka łączy wierzchołek z jego rodzicem, z wyjątkiem korzenia, który nie ma rodzica. Poddrzewo wierzchołka 2 zawiera wierzchołki 2, 3, 4 i 5. Poddrzewo wierzchołka 0 zawiera wszystkie 6 wierzchołków drzewa, a poddrzewo wierzchołka 4 zawiera tylko wierzchołek 4.

Każdemu wierzchołkowi przypisana jest nieujemna liczba całkowita: **waga**. Oznaczamy wagę wierzchołka i ($0 \le i < N$) przez W[i].

Twoim zadaniem jest napisanie programu, który odpowie na Q zapytań, z których każde jest opisane parą dodatnich liczb całkowitych (L,R). Odpowiedź na zapytanie należy obliczyć w następujący sposób.

Rozważmy przypisanie liczby całkowitej, nazywanej **współczynnikiem**, do każdego wierzchołka drzewa. Takie przypisanie jest opisane ciągiem $C[0],\ldots,C[N-1]$, gdzie C[i] ($0\leq i < N$) jest

współczynnikiem przypisanym wierzchołkowi i. Nazwijmy ten ciąg **ciągiem współczynników**. Należy pamiętać, że elementy ciągu współczynników mogą być ujemne, równe 0 lub dodatnie.

Dla zapytania (L,R), sekwencję współczynników nazywa się **prawidłową**, jeśli dla każdego wierzchołka i ($0 \le i < N$) spełniony jest następujący warunek: suma współczynników wierzchołków w poddrzewie wierzchołka i nie jest mniejsza niż L i nie jest większa niż R.

Dla danego ciągu współczynników $C[0],\ldots,C[N-1]$, **koszt** wierzchołka i wynosi $|C[i]|\cdot W[i]$, gdzie |C[i]| oznacza wartość bezwzględną C[i]. Wreszcie, **całkowity koszt** jest sumą kosztów wszystkich wierzchołków. Twoim zadaniem jest obliczenie, dla każdego zapytania, **minimalnego całkowitego kosztu**, który można osiągnąć przy zastosowaniu pewnej prawidłowej sekwencji współczynników.

Można wykazać, że dla dowolnego zapytania istnieje co najmniej jedna prawidłowa sekwencja współczynników.

Szczegóły implementacji

Należy zaimplementować następujące dwie funkcje:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: tablice liczb całkowitych o długości N określające rodziców i wagi.
- Ta procedura wywoływana jest dokładnie raz, na początku interakcji pomiędzy programem oceniającym a Twoim programem, dla każdego testu.

```
long long query(int L, int R)
```

- L, R: liczby całkowite opisujące zapytanie.
- Ta procedura jest wywoływana Q razy po wywołaniu init dla każdego testu.
- Ta procedura powinna zwrócić odpowiedź na podane zapytanie.

Ograniczenia

- $1 \le N \le 200\,000$
- 1 < Q < 100000
- P[0] = -1
- 0 < P[i] < i dla każdego i takiego, że 1 < i < N
- $0 \leq W[i] \leq 1\,000\,000$ dla każdego i takiego, że $0 \leq i < N$
- $1 \leq L \leq R \leq 1\,000\,000$ w każdym zapytaniu

Podzadania

Podzadanie	Punkty	Dodatkowe ograniczenia	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ dla każdego i takiego, że $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ dla każdego i takiego, że $0 \leq i < N$	
5	11	$W[i] \leq 1$ dla każdego i takiego, że $0 \leq i < N$	
6	22	L=1	
7	19	brak dodatkowych ograniczeń	

Przykłady

Rozważmy następujące wywołania:

Drzewo składa się z 3 wierzchołków: korzenia i jego 2 dzieci. Wszystkie wierzchołki mają wagi 1.

W tym zapytaniu L=R=1, czyli suma współczynników w każdym poddrzewie musi być równa 1. Rozważmy ciąg współczynników [-1,1,1]. Drzewo i współczynniki przypisane jego wierzchołkom (w szarych prostokątach) są przedstawione na poniższym rysunku.

Dla każdego wierzchołka i ($0 \le i < 3$) suma współczynników wszystkich wierzchołków w poddrzewie i jest równa 1. Zatem taka sekwencja współczynników jest prawidłowa. Całkowity koszt oblicza się następująco:

Wierzchołek	Waga	Współczynnik	Koszt
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$\mid 1 \mid \cdot 1 = 1$

Zatem całkowity koszt wynosi 3. Jest to jedyny prawidłowy ciąg współczynników, dlatego wywołanie powinno zwrócić 3.

```
query(1, 2)
```

Minimalny całkowity koszt dla tego zapytania wynosi 2 i jest osiągany dla ciągu współczynników [0,1,1].

Przykładowy program oceniający

Format wejścia:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

gdzie L[j] i R[j] (dla $0 \le j < Q$) są argumentami j-tego wywołania query. Należy zauważyć, że drugi wiersz danych wejściowych zawiera **tylko** N-1 **liczb całkowitych**, ponieważ przykładowa oceniarka nie wczytuje wartości P[0].

Format wyjścia:

```
A[0]
A[1]
...
A[Q-1]
```

gdzie A[j] (dla $0 \leq j < Q$) jest wartością zwróconą przez j-te wywołanie query.