Исследование ферментативных свойств амилазы

Мансурова Яна Ренатовна 10 класс, МАОУ Школа №94, Нижний Новгород Научный руководитель Гусева Елена Геннадьевна, учитель химии

В процессе работы была выполнена практическая часть, в которой была доказана белковая природа амилазы, была определена её активность в растворе слюны по Вольгемуту, сравнивала кислотный и ферментативный гидролиз крахмала, выясняла поведение амилазы с изменением температуры и влияние рН среды на активность амилазы.

Цель работы: исследовать наличие ферментативных свойств у амилазы и их влияние на организм человека во время пищеварения.

1. Определение активности амилазы в растворе слюны по Вольгемуту. Во время разведения слюны в 160 единиц амилаза начинает расщеплять крахмал, и было установлено, что во время увеличения разведения слюны происходит ступенчатое изменение цвета от желтого до темносинего.

Таблица 1. Зависимость гидролиза крахмала от степени разведения слюны

Номе	1	2	3	4	5	6	7	8	9	10
р пробирки										
Разве	1	1:	1:	1:1	1:3	1:6	1:	1:2	1:	1:1
дение	:20	40	80	60	20	40	1280	560	5120	0240
слюны										
Цвет	К	Ж	Ж	Си	Си	Св	C	Си	Я	Тем
раствора	елт	елты	елты	ренев	ренев	етло-	иний	ний	рко-	но-
I_2	ый	й	й	ый	ый	синий			сини	синий
									й	

Рис. 1. Полученные результаты.

- 2. Доказательство белковой природы фермента амилаза с помощью цветных реакций.
- 1) Реакция Фоля. Было обнаружено, что в белке есть аминокислоты цистин и цистеин, которые содержат серу, но при реакции с ацетатом свинца черный осадок не образуется, что показывает отсутствие ионов серы в растворе слюны.

$$HS-CH_2-CHNH_2-COOH+2NaOH \rightarrow HO-CH_2-CHNH_2-COOH+Na_2S+H_2O$$

- 2) Ксантопротеиновая реакция. Было обнаружено, что во время нитрования бензольных колец, которые находятся в составе аминокислотных остатков, образуется желтое окрашивание, подтверждающее белковую природу амилазы.
- 3) Биуретовая реакция. В результате исследования наблюдался синий раствор, показывающий наличие пептидных связей в небольшом количестве, что доказывает белковую природу фермента.

Рис. 2, 3, 4. Полученные результаты реакции Фоля, Ксантопртеиновой и Биуретовой реакции.

3. Сравнение кислотного и ферментативного гидролиза крахмала. При комнатной температуре скорость ферментативного гидролиза крахмала значительно больше, чем кислотного, но крахмал обнаруживается в обеих пробах. При кислотном гидролизе крахмала процесс идет до образования глюкозы, при ферментативном расщеплении конечным продуктом является дисахарид мальтозы.

Рис. 5. Результаты опыта.

Таблица 2. Полученные результаты

No	Время от начала гидролиза, мин	Крахмал + амилаза	Крахмал + HCl
1.	0	+	+
2.	2	-	+
3.	4	-	+

- «+» положительная проба крахмала на йод;
- «-»- отрицательная йодная проба на крахмал.
- 4. Термолабильность амилазы. При кипячении амилазы происходит утрата её естественной активности, гидролиз крахмала не происходит. Причина этого- денатурация белка фермента. При охлаждении активность фермента замедляется.

Таблица 3. Полученные результаты

таблица 5. полученные результаты					
Субстрат	Фермент	Температура	Реакция на йод		
1. Крахмал	Кипяченая амилаза	70°C	+		
2. Крахмал	Амилаза	37°C	-		
3. Крахмал	Амилаза	0 °C	+		

Рис. 6. Результаты опыта.

5. Влияние рН-среды на активность амилазы. Опыт показал, что в кислой среде процесс гидролиза крахмала проходит с большей скоростью, а в нейтральной и щелочной средах гидролиз крахмала неактивен.

Таблица 4. Полученные результаты

Субстрат	Среда	Фермент	Проба на йод

1. Крахмал	HC1	Амилаза	-
2. Крахмал	H_2O	Амилаза	+
3. Крахмал	NaOH	Амилаза	+

Рис. 7. Результаты опыта.

6. Влияние ингибиторов и активаторов на активность амилазы. Результат показал, что хлористый натрий и соляная кислота являются катализаторами амилазы, а сульфат меди II – ингибитором амилазы.

№ пробы	Субстрат	Фермент	Проба на йод
1	Крахмал	Амилаза + NaCl	-
2	Крахмал	A милаза + $CuSO_4$	+
3	Крахмал	A милаза + H_2SO_4	-

Таблица 5. Полученные результаты

Рис. 8. Полученные результаты.

7. Исследование ферментативного гидролиза крахмала под действием амилазы. Для проведения этого опыта была приготовлена 1 пробирка, содержавшая 5мл крахмала и раствор слюны. Через каждые 30 секунд снималась йодная проба. Опыт показал, что гидролиз амилазы происходит за 660 секунд и проходит ступенчато, поэтому мы можем наблюдать изменение окрашиваний: от темно-синего до желтого.

Рис. 9. Полученные результаты.

Выводы

Активность амилазы в растворе слюны по Вольгемуту составила 160 единиц, это свидетельствует о том, что 1 мл неразведенной слюны расщепляет за 30 мин при 38°С 160 мл раствора крахмала. Проведенные эксперименты показали, что активность слюны зависит от рН среды и температуры. Кислотная среда, температура 37°С и раствор хлорида натрия увеличивают активность амилазы. Высокая температура, кипячение, добавки растворов солей тяжелых металлов и растворы щелочей уменьшают активность амилазы, приводят к ее денатурации и утрате естественных ферментативных свойств. Скорость ферментативного гидролиза крахмала под действием амилазы намного больше скорости кислотного гидролиза крахмала при одинаковых условиях.

Список литературы

1. Шлейкин А.Г., Скворцова Н.Н., Бландов А.Н. «Прикладная энзимология» Учебное пособие. URL: https://books.ifmo.ru/file/pdf/2440.pdf

- 2. Аликберова Л.Ю. Занимательная химия: Книга для учащихся, учителей и родителей. М.: ACT ПРЕСС, 2002.-560 с.
- 3. Маршанова Г.Л. Техника безопасности в школьной химической лаборатории: Сборник инструкций и рекомендации. М.: Аркти, 2002.-80 с.