

Calcolo integrale — Scheda di esercizi n. 3 14 Marzo 2023 — Compito n. 00053

Istruzioni: le prime due caselle $(\mathbf{V} \ / \mathbf{F})$ permettono di selezionare la risposta vero/falso. La casella " \mathbf{C} " serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:				
Cognome:				
cognome.				
Matricola:				

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1 A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D
\mathbf{V}																
\mathbf{F}																
\mathbf{C}																

- 1) Si dica se le seguenti affermazioni sono vere o false.
- 1A) Si ha

$$e^{-4x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^k x^k}{k!}.$$

1B) Si ha

$$\cos(3x) = \sum_{k=0}^{+\infty} \frac{(-1)^k \, 3^{2k+1} \, x^{2k+1}}{(2k1)!} \, .$$

1C) Si ha

$$x e^{7x} = \sum_{k=0}^{+\infty} \frac{7^x x^k}{k!}.$$

1D) Si ha

$$\frac{1}{1+6x} = \sum_{k=0}^{+\infty} 6^k x^k.$$

2) Sia

$$f(x) = x^7 \sin(3x),$$

e sia $T_n(x;0)$ il polinomio di Taylor di ordine n di f(x) nell'origine.

- **2A)** Si ha $T_1(x;0) = 0$.
- **2B)** Si ha $T_7(x,0) = 0$.
- **2C)** Si ha $f^{(8)}(0) = 3$.
- **2D)** Si ha $f^{(8)}(0) = 3 \cdot 9!$.

3) Si consideri la serie di potenze

$$f(x) = \sum_{k=0}^{+\infty} a_k (x-4)^k$$
.

- **3A)** Il centro della serie è $x_0 = 4$.
- **3B)** Se L in $(0, +\infty)$, $L \neq 1$, è il limite di $\sqrt[k]{|a_k|}$, il raggio di convergenza della serie è R = L.
- **3C)** Se il raggio di convergenza della serie è R=5, la serie non converge per x=14.
- **3D)** Se $a_5 \neq 0$, si ha $f^{(5)}(4) = a_5$.
- 4) Si consideri la serie di potenze

$$\sum_{k=0}^{+\infty} \frac{(2x-15)^k}{(k+1)\,3^k} \,.$$

- **4A)** Il centro della serie è $x_0 = 15$.
- **4B)** Il raggio di convergenza della serie è $R = \frac{3}{2}$.
- **4C)** La serie converge per $x = \frac{21}{2}$.
- **4D)** La serie converge per x = 6.

-			
	Docente:		
	JOCETHE:		

Cognome Nome Matricola ${\bf Compito}~00053$

5) Sia

$$f(x) = x^6 \cos(7x^2)$$
.

- a) Si scriva la serie di Taylor di f(x).
 b) Si scriva il polinomio di Taylor di ordine 9 di f(x).
 c) Si calcoli f⁽⁶⁾(0).
 d) Si calcoli f⁽⁸⁾(0).

$$f(x) = \sum_{k=1}^{+\infty} \frac{(x-6)^k}{k \cdot 11^k}$$
.

- a) Si determini il centro della serie di potenze.
- b) Si determini il raggio di convergenza della serie di potenze.c) Si determini l'insieme di convergenza della serie di potenze.
- **d)** Si calcoli f'(x).

Soluzioni del compito 00053

1) Si dica se le seguenti affermazioni sono vere o false.

1A) Si ha

$$e^{-4x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^k x^k}{k!}.$$

Vero: Ricordando che

$$e^y = \sum_{k=0}^{+\infty} \frac{y^k}{k!} \,,$$

sostituendo y = -4x si ha

$$e^{-4x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^k x^k}{k!}.$$

1B) Si ha

$$\cos(3x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 3^{2k+1} x^{2k+1}}{(2k1)!}.$$

Falso: Ricordando che

$$\cos(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!},$$

con la sostituzione y = 3x si ha

$$\cos(3x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 3^{2k} x^{2k}}{(2k)!}.$$

La risposta proposta, invece, è lo sviluppo di Taylor di $\sin(3x)$.

1C) Si ha

$$x e^{7x} = \sum_{k=0}^{+\infty} \frac{7^x x^k}{k!}.$$

Falso: Ricordando che

$$e^y = \sum_{k=0}^{+\infty} \frac{y^k}{k!},$$

sostituendo y = 7x si ha

$$e^{7x} = \sum_{k=0}^{+\infty} \frac{7^k x^k}{k!},$$

da cui segue che

$$x e^{7x} = \sum_{k=0}^{+\infty} \frac{7^k x^{k+1}}{k!} \neq \sum_{k=0}^{+\infty} \frac{7^x x^k}{k!}.$$

1D) Si ha

$$\frac{1}{1+6x} = \sum_{k=0}^{+\infty} 6^k x^k.$$

Falso: Ricordando che

$$\frac{1}{1-y} = \sum_{k=0}^{+\infty} y^k,$$

con la sostituzione $y=-6\,x$ si ha

$$\frac{1}{1+6x} = \sum_{k=0}^{+\infty} (-1)^k 6^k x^k \neq \sum_{k=0}^{+\infty} 6^k x^k.$$

2) Sia

$$f(x) = x^7 \sin(3x),$$

e sia $T_n(x;0)$ il polinomio di Taylor di ordine n di f(x) nell'origine.

Ricordando che

$$\sin(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!},$$

con la sostituzione y = 3x si ha

$$\sin(3x) = \sum_{k=0}^{+\infty} \frac{(-1)^k \, 3^{2k+1} \, x^{2k+1}}{(2k+1)!} \,,$$

e quindi

(1)
$$x^7 \sin(3x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 3^{2k+1} x^{2k+8}}{(2k+1)!} = 3x^8 - \frac{9}{2}x^{10} + \text{ termini di grado maggiore di 10.}$$

2A) Si ha $T_1(x;0) = 0$.

Vero: Dalla (1) si vede che lo sviluppo di Taylor di f(x) non ha termini di grado minore o uguale a 1. Ne segue che $T_1(x;0) = 0$.

2B) Si ha $T_7(x,0) = 0$.

Vero: Dalla (1) si vede che lo sviluppo di Taylor di f(x) non ha termini di grado minore o uguale a 7. Ne segue che $T_7(x;0) = 0$.

2C) Si ha $f^{(8)}(0) = 3$.

Falso: Dalla (1) si ha che

$$T_8(x;0) = 3 x^8.$$

Dato che il termine di grado 8 nel polinomio di Taylor di f(x) è $\frac{f^{(8)}(0)}{8!} x^8$, si ha

$$\frac{f^{(8)}(0)}{8!} = 3 \qquad \iff \qquad f^{(8)}(0) = 3 \cdot 8! \neq 3.$$

2D) Si ha $f^{(8)}(0) = 3 \cdot 9!$.

Falso: Dalla (1) si vede che non ci sono termini di grado 9 nel polinomio di Taylor di f(x). Ne segue che $f^{(9)}(0) = 0 \neq 3 \cdot 9!$.

$$f(x) = \sum_{k=0}^{+\infty} a_k (x-4)^k$$
.

Ricordiamo che in una serie di potenze

(1)
$$\sum_{k=0}^{+\infty} a_k (x - x_0)^k,$$

il punto x_0 si dice **centro** della serie, mentre la successione $\{a_k\}$ è la **successione dei coefficienti** della serie.

3A) Il centro della serie è $x_0 = 4$.

Vero: Dalla (1) segue che il centro della serie è $x_0 = 4$.

3B) Se L in $(0, +\infty)$, $L \neq 1$, è il limite di $\sqrt[k]{|a_k|}$, il raggio di convergenza della serie è R = L.

Falso: Se L è come nella domanda, il raggio di convergenza della serie è $R = \frac{1}{L} \neq L$.

3C) Se il raggio di convergenza della serie è R=5, la serie non converge per x=14.

Vero: Dato che il raggio di convergenza è R=5, e il centro è $x_0=4$, la serie non converge se |x-4|>5. Dato che |14-4|=10>5, la serie non converge per x=14.

3D) Se $a_5 \neq 0$, si ha $f^{(5)}(4) = a_5$.

Falso: Confrontando la serie di potenze con il polinomio di Taylor di ordine 5 di f(x), che è

$$T_5(x;4) = \sum_{k=0}^{5} \frac{f^{(k)}(4)}{k!} (x-4)^k,$$

si ha che i termini di grado 5 sono

$$a_5 (x-4)^5$$
 e $\frac{f^{(5)}(4)}{5!} (x-4)^5$,

da cui si deduce che

$$f^{(5)}(4) = a_5 \cdot 5! \neq a_5 \,,$$

dato che $a_5 \neq 0$.

$$\sum_{k=0}^{+\infty} \frac{(2x-15)^k}{(k+1)3^k}.$$

Mettendo in evidenza 2 al numeratore, si ha

(1)
$$f(x) = \sum_{k=0}^{+\infty} \frac{(2x-15)^k}{(k+1)3^k} = \sum_{k=0}^{+\infty} \frac{2^k}{(k+1)3^k} \left(x - \frac{15}{2}\right)^k,$$

che è una serie di potenze di centro $x_0 = \frac{15}{2}$ e di coefficienti

$$a_k = \frac{2^k}{(k+1)\,3^k} \,.$$

Siccome

$$L = \lim_{k \to +\infty} \sqrt[k]{\frac{2^k}{(k+1)\,3^k}} = \lim_{k \to +\infty} \frac{2}{3} \, \frac{1}{\sqrt[k]{k+1}} = \frac{2}{3} \,,$$

si ha che il raggio di convergenza della serie è

$$(2) R = \frac{1}{L} = \frac{3}{2},$$

e quindi la serie converge se $|x - \frac{15}{2}| < \frac{3}{2}$, e non converge se $|x - \frac{15}{2}| > \frac{3}{2}$.

4A) Il centro della serie è $x_0 = 15$.

Falso: Per la (1) il centro della serie è $x_0 = \frac{15}{2} \neq 15$.

4B) Il raggio di convergenza della serie è $R = \frac{3}{2}$.

Vero: Per la (2) il raggio di convergenza della serie è $R = \frac{3}{2}$.

4C) La serie converge per $x = \frac{21}{2}$.

Falso: Dato che $|\frac{21}{2} - \frac{15}{2}| = 3 > \frac{3}{2} = R$, la serie non converge per $x = \frac{21}{2}$. Dato che per tale valore di x la serie è a termini positivi, la serie diverge.

4D) La serie converge per x = 6.

Vero: Per x = 6 la serie diventa

$$\sum_{k=0}^{+\infty} \frac{2^k}{(k+1) \, 3^k} \left(6 - \frac{15}{2} \right)^k = \sum_{k=0}^{+\infty} \frac{2^k}{(k+1) \, 3^k} \left(-\frac{3}{2} \right)^k = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1} \, ,$$

che è una serie convergente per il criterio di Leibniz, dato che la successione $b_k = \frac{1}{k+1}$ è positiva, decrescente e infinitesima.

5) Sia

$$f(x) = x^6 \cos(7x^2).$$

- a) Si scriva la serie di Taylor di f(x).
- b) Si scriva il polinomio di Taylor di ordine 9 di f(x).
- **c)** Si calcoli $f^{(6)}(0)$.
- **d)** Si calcoli $f^{(8)}(0)$.

Soluzione:

a) Ricordando che

$$\cos(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!},$$

con la sostituzione $y = 7 x^2$ si ha

$$\cos(7x^2) = \sum_{k=0}^{+\infty} \frac{(-1)^k 7^{2k} x^{4k}}{(2k)!},$$

e quindi

(1)
$$x^6 \cos(7x^2) = \sum_{k=0}^{+\infty} \frac{(-1)^k 7^{2k} x^{4k+6}}{(2k)!}.$$

b) Dalla (1), scrivendo i termini corrispondenti a k = 0 e k = 1 si ha

$$f(x) = x^6 - \frac{49}{2}x^{10} + \text{ termini di grado maggiore di } 10,$$

da cui segue che

$$T_9(x;0) = x^6.$$

c) Sempre dalla (1), si ha

$$f(x) = x^6 + \text{ termini di grado maggiore di 6},$$

da cui segue (per confronto con i coefficienti del polinomio di Taylor di ordine 6 di f(x)) che

$$\frac{f^{(6)}(0)}{6!} x^6 = x^6 \,,$$

e quindi che

$$f^{(6)}(0) = 6!$$
.

d) Nello sviluppo di Taylor di f(x) non compaiono termini di grado 8, dato che $4k+6\neq 8$ per ogni k naturale. Ne segue che si ha

$$f^{(8)}(0) = 0.$$

$$f(x) = \sum_{k=1}^{+\infty} \frac{(x-6)^k}{k \cdot 11^k}$$
.

- a) Si determini il centro della serie di potenze.
- b) Si determini il raggio di convergenza della serie di potenze.
- c) Si determini l'insieme di convergenza della serie di potenze.
- **d)** Si calcoli f'(x).

Soluzione:

- a) Il centro della serie di potenze è $x_0 = 6$.
- **b)** Dato che $a_k = \frac{1}{k \cdot 11^k}$, e che

$$L = \lim_{k \to +\infty} \sqrt[k]{\frac{1}{k \cdot 11^k}} = \frac{1}{11} \,,$$

il raggio di convergenza della serie di potenze è $R = \frac{1}{L} = 11$.

c) Dato che il raggio di convergenza della serie di potenze è R=11, e che il centro è $x_0=6$, la serie converge se |x-6|<11, ovvero se x appartiene a (-5,17), e non converge se |x-6|>11, ovvero se x non appartiene a [-5,17]. Rimane da studiare la convergenza per x=-5 e per x=17. Per x=-5 si ha x-6=-11 e la serie diventa

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} \,,$$

che convege per il criterio di Leibniz. Per x=17 si ha x-6=11, e la serie diventa

$$\sum_{k=1}^{+\infty} \frac{1}{k},$$

che diverge essendo la serie armonica. In definitiva, l'insieme di convergenza della serie è

$$E = [-5, 17)$$
.

d) Derivando termine a termine si ha

$$f'(x) = \sum_{k=1}^{+\infty} \frac{k (x-6)^{k-1}}{k \cdot 11^k} = \sum_{k=1}^{+\infty} \frac{(x-6)^{k-1}}{11 \cdot 11^{k-1}} = \frac{1}{11} \sum_{k=1}^{+\infty} \left(\frac{x-6}{11}\right)^{k-1} = \frac{1}{11} \sum_{k=0}^{+\infty} \left(\frac{x-6}{11}\right)^k.$$

Ricordando la formula per la somma di una serie geometrica, si ha

$$f'(x) = \frac{1}{11} \sum_{h=0}^{+\infty} \left(\frac{x-6}{11}\right)^h = \frac{1}{11} \frac{1}{1 - \frac{x-6}{11}} = \frac{1}{17 - x}.$$