Mathématiques Générales 1

Devoir maison 1

Institut Villebon-Charpak

Année 2017 - 2018

Soit A la matrice carrée d'ordre 3 à coefficients réels définie par

$$A = \frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix}$$

1 Méthode matricielle

- 1. Déterminer les valeurs prorpes de A. Ce résultat suffit-il à assurer que A est diagonalisable?
- 2. Pour chaque valeur propre de A, déterminer une base du sous-espace propre associé. Les vecteurs seront choisis de troisième composante égale à 1.
- 3. En déduire une matrice R réelle et inversible telle que

$$R^{-1}AR = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

4. Calculer R^{-1} (le détails des calculs figurera sur la copie).

2 Méthode vectorielle

Rappelons que $\mathbb{R}_2[X]$ désigne l'ensemble des fonctions polynomiales de degré inférieur ou égal à 2.

- 1. Montrer que $\mathbb{R}_2[X]$ est un sous-espace vectoriel de $(\mathbb{R}[X], +, .)$. Déterminer une base de $\mathbb{R}_2[X]$ et en déduire sa dimension.
- 2. P appartenant à $\mathbb{R}_2[X]$, nous lui associons la fonction P^* définie sur \mathbb{R} par :

$$\begin{cases} \forall x \in \mathbb{R}^*, \ P^*(x) = \frac{1}{x} \int_0^x P(t) \, dt \\ P^*(0) = P(0) \end{cases}$$

Démontrer que P^* est un polynôme de de degré inférieur ou égal à 2.

Nous définissons alors une application φ de $\mathbb{R}_2[X]$ dans lui-même en posant :

$$\varphi: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto P^*$$

- 3. Montrer que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 4. Calculer la matrice M de φ dans la base canonique \mathcal{B} de $\mathbb{R}_2[X]$ (les polynômes de \mathcal{B} seront rangés par ordre de degré croissant).
- 5. Notons

$$f_0: x \mapsto (x-1)^2$$
 $f_1: x \mapsto (x-1)(x+1)$ $f_2: x \mapsto (x+1)^2$

Montrer que $\mathcal{F} = (f_0, f_1, f_2)$ est une base de $\mathbb{R}_2[X]$.

Soit P appartenant à $\mathbb{R}_2[X]$, en notant (c_0, c_1, c_2) ses composantes dans la base \mathcal{F} , exprimer c_0 , c_1 et c_2 en fonction de P(-1), P(1) et P'(1), dérivée de P en 1.

6. Calculer $\varphi(f_0)$, $\varphi(f_1)$, $\varphi(f_2)$ et donner l'expression de ces fonctions polynômes dans la base \mathcal{B} .

Donner ensuite l'expression de

$$\varphi(f_0), \varphi(f_1), \varphi(f_2)$$

dans la base \mathcal{F} puis écrire la matrice M' de φ dans la base \mathcal{F} .

7. Ecrire la relation matricielle entre M' et M et retrouver le résultat de la question 3 de la partie 1.

3 Application à l'étude de trois suites numériques

Considérons trois suite réelles u, v, w définie sur \mathbb{N} qui vérifient les relations :

$$\begin{cases} u_{n+1} = \frac{7u_n - 2v_n + w_n}{12} \\ v_{n+1} = \frac{-u_n + 2v_n - w_n}{3} \\ w_{n+1} = \frac{u_n - 2v_n + 7w_n}{12} \end{cases}$$

- 1. Ecrire un algorithme qui calcule, pour un entier naturel n donné, les valeurs de u_n , v_n et w_n .
- 2. Montrer que pour tout entier naturel n:

$$\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = A^n \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$$

- 3. Déterminer pour tout entier naturel n, une expression de A^n (on pensera à utiliser la réduction de la matrice A).
 - En déduire pour tout entier naturel n, une expression de u_n , v_n et w_n en fonction de n et des réels u_0 , v_0 , w_0 .
- 4. Les suites u, v, w sont-elles convergentes? Si oui, préciser leur limite respective.