Erinnerung Bezeichner von logischen Operatoren:

- \(\text{Konjunktion ("und")}, \)
- V Disjunktion ("oder"),
- \Rightarrow Implikation ("folgt"),
- \Leftrightarrow Äquivalenz ("genau dann wenn"),
- \neg Negation ("nicht").

Aufgabe 1

Zeichnen Sie eine Wahrheitstabelle für die folgenden Ausdrücke:

$$\neg a \lor b, \neg (a \land \neg b), a \Rightarrow b$$

Was fällt Ihnen auf?

Aufgabe 2

Erinnerung (vgl. Def 1.10 im Buch):

Ein Prädikat $\varphi(x)$ ist Komprehensionsformel einer Menge M, falls

$$x \in M$$
 gdw. $\varphi(x)$

für alle Objekte x gilt.

a) Finden Sie Komprehensionsformeln für die folgenden Mengen:

$$A \cup B$$
, $A \setminus B$, \emptyset (leere Menge)

b) Begründen Sie: Falls $\varphi(x)$ Komprehensionsformel von M ist, dann gilt:

$$M = \{x \mid \varphi(x)\}\$$

Aufgabe 3

Gegeben seien folgende drei Relationen:

- $R_1 = \{(1, a), (1, b), (1, b)\}$
- $R_2 = \{(2, c), (2, d)\}$
- $R_3 = \{(3, e, A), (3, f, B)\}$

Bestimmen Sie:

- a) $R_3 \times R_2$
- b) $(R_1 \times R_2) \times R_3$
- c) $R_1 \times (R_2 \times R_3)$
- d) $(R_2 \times R_3) \times R_1$

Aufgabe 4

Finden Sie zu den folgenden Aussagen jeweils ein Gegenbeispiel!

- a) Falls $A \cup B = A \cup C$, dann folgt B = C, für beliebige Mengen A, B und C
- b) $R \times P = P \times R$ für beliebige Relationen R und P