

WHAT IS CLAIMED IS:

2

microstructure.

1	1. An alloy carbon steel comprising iron and a maximum of 0.35% by		
2	weight of carbon, said alloy carbon steel having a triple-phase microstructure comprising		
3	ferrite crystals fused with martensite-austenite crystals, said martensite-austenite crystals		
4	comprising laths of martensite alternating with thin films of austenite.		
1	2. An alloy carbon steel in accordance with claim 1 in which said		
2	martensite-austenite crystals are devoid of carbide precipitates at interfaces between		
3	phases.		
1	3. An alloy carbon steel in accordance with claim 1 in which		
2	martensite-austenite crystals constitute from about 5% to about 95% by weight of said		
3	triple-phase microstructure.		
1/	4. An alloy carbon steel in accordance with claim 1 in which said		
2	martensite-austenite crystals constitute from about 15% to about 60% by weight of said		
3	triple-phase microstructure.		
1	5. An'alloy carbon steel in accordance with claim 1 in which said		
2	martensite-austenite crystals constitute from about 20% to about 40% by weight of said		
3	triple-phase microstructure.		
1	6. An alloy carbon steel in accordance with claim 1 in which said		
2	carbon constitutes from about 0.01% to about 0.35% by weight of said triple-phase		
3	microstructure.		
1	7. An alloy carbon steel in accordance with claim 1 in which said		
2	carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase		
3	microstructure.		
1	8. An alloy carbon steel in accordance with claim 1 in which said		

carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase

1	9.	An alloy carbon steel in accordance with claim 1 further		
2	comprising silicon at a concentration of from about 0.1% to about 3% by weight of said			
3	alloy composition.			
á				
1	10.	An alloy carbon steel in accordance with claim 1 further		
2		t a concentration of from about 1% to about 2.5% by weight of said		
3	alloy composition.			
1	11.	An alloy carbon steel in accordance with claim 1 in which said		
2	/			
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of			
4	y y was a first and the first and the concentration of			
•	110111 110011 0.170 10 1	dout 370 by weight of said andy composition.		
1	12.	An allow carbon steel in accordance with claim 1 in which said		
2	carbon constitutes fro	om about 0.05% to about 0.2% by weight of said triple-phase		
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of			
4	from about 1% to about 2.5% by weight of said alloy composition, and containing			
5	_			
- ! ! 1				
	13.	A process for manufacturing a high-strength, corrosion-resistant		
2		eel, said process comprising:		
ıh 3	(a)	forming an alloy composition comprising iron and at least one		
4		alloying element comprising a maximum of about 0.35% by weight		
5		of carbon in proportions selected to provide said alloy composition		
6		with a martensite transition range having a martensite start		
7		temperature of at least about 300°C;		
8	(b)	heating said alloy composition to a temperature sufficiently high to		
9		cause austenitization thereof, under conditions causing said alloy		
10		composition to assume a homogeneous austenite phase with all		
11		alloying elements in solution;		
12	(c)	cooling said homogeneous austenite phase sufficiently to transform		
13		a portion of said austenite phase to ferrite crystals, thereby forming		
14		a two-phase microstructure comprising ferrite crystals fused with		
15		austenite crystals; and		

16	(d)	cooling said two-phase microstructure through said martensite
17		transition range under conditions causing conversion of said
18		austenite crystals to a microstructure containing laths of martensite
19		alternating with films of retained austenite.
1	14.	A process in accordance with claim 13 in which step (d) comprises
2	cooling said two-pha	ase microstructure at a rate sufficiently fast to avoid the occurrence of
3	autotempering.	
1	15.	A process in accordance with claim 13 in which step (d) comprises
2	cooling said two-pha	ase microstructure by contact of said two-phase crystal structure with
3	water.	
1	16.	A process in accordance with claim 13 in which step (c) comprises
2	cooling said homoge	eneous austenite phase to a temperature of from about 750°C to about
3	950°C.	
1	17.	A process in accordance with claim 13 in which step (c) comprises
2	cooling said homoge	eneous austenite phase to a temperature of from about 775°C to about
3	900°C.	
1	18.	A process in accordance with claim 13 in which said carbon
2	constitutes from about	ut 0.01% to about 0.35% by weight of said alloy composition.
1	19.	A process in accordance with claim 13 in which said carbon
2	constitutes from abou	ut 0.03% to about 0.3% by weight of said alloy composition.
1	20.	A process in accordance with claim 13 in which said carbon
2	constitutes from abou	ut 0.05% to about 0.2% by weight of said alloy composition.
1	21.	A process in accordance with claim 13 in which said alloy
2		comprises silicon at a concentration of from about 0.1% to about 3%
3	by weight.	
1	22.	A process in accordance with claim 13 in which said alloy
2		comprises silicon at a concentration of from about 1% to about 2.5%
3	by weight.	comprises sincon at a concentration of from about 176 to about 2.5%
5	by weight.	