

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Laplacian spectral characterization of some graphs obtained by product operation

Jiang Zhou*, Changjiang Bu

Department of Applied Mathematics, College of Science, Harbin Engineering University, Harbin 150001, PR China

ARTICLE INFO

Article history: Received 25 August 2011 Received in revised form 23 November 2011 Accepted 2 February 2012 Available online 25 February 2012

Keywords: Laplacian spectrum Cospectral graphs Cospectral mate Spectral characterization

ABSTRACT

A graph is said to be DLS, if there is no other non-isomorphic graph with the same Laplacian spectrum. Let G be a DLS graph. We show that $G \times K_r$ is DLS if G is disconnected. If G is connected, it is proved that $G \times K_r$ is DLS under certain conditions. Applying this result, we prove that $G \times K_r$ is DLS if G is a tree on n ($n \ge 5$) vertices or a unicyclic graph on n ($n \ge 6$) vertices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are simple and undirected. For a graph G, let A(G) be the adjacency matrix of G, let D(G) be the diagonal matrix of vertex degrees of G. The matrix L(G) = D(G) - A(G) is called the *Laplacian matrix* of G. The eigenvalues of G are called the *Laplacian eigenvalues* of G. Since G is real, symmetric and positive semidefinite, the Laplacian eigenvalues of G are all nonnegative real numbers. The largest eigenvalue of G is called the G is called the G is called the smallest Laplacian eigenvalue of G is always G. The multiset of the eigenvalues of G is called the *Laplacian spectrum* of G. Two graphs are said to be G is always G if they have the same Laplacian spectrum. A graph is said to be G is no other non-isomorphic graph with the same Laplacian spectrum. We shall use "DLS" as an abbreviation for "determined by the Laplacian spectrum" in this paper.

For two disjoint graphs G and H, let $G \cup H$ denote the *disjoint union* of G and G and G denote the disjoint union of G copies of G. Let G denote the complement of G. The *product* of G and G denoted by $G \times G$, is the graph obtained from $G \cup G$ by joining each vertex of G to each vertex of G. Clearly, $G \times G = G \cup G$. As usual, $G \cap G = G \cup G$ and $G \cap G = G \cap G$ and $G \cap G = G$ and $G \cap G$

Which graphs are determined by their spectra is a difficult problem in the theory of graph spectra. Only some graphs with special structures have been proved to be determined by their spectra [4,25,21,14,5]. Some DLS graphs can be obtained from the product of a DLS graph and an isolated vertex or a complete graph. Here we introduce some relevant results.

- (a) Paths and cycles are DLS. The disjoint union of paths is DLS, and the disjoint union of cycles is also DLS (see [19]).
- (b) The multi-fan graph $(P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_s}) \times K_1$ is DLS (see [12]).
- (c) The wheel graph $C_n \times K_1$ is DLS when $n \neq 6$ (see [24]).
- (d) The graph $C_n \times K_m$ is DLS when $n \neq 6$, and the graph $(P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_s}) \times K_m$ is DLS (see [10]).

E-mail addresses: zhoujiang04113112@163.com (J. Zhou), buchangjiang@hrbeu.edu.cn (C. Bu).

^{*} Corresponding author.

Let G be a DLS graph. We show that $G \times K_m$ is DLS when G is disconnected. If G is connected, it is proved that $G \times K_n$ is DLS under certain conditions. Applying this result, we prove that $G \times K_n$ is DLS if G is a tree on n ($n \ge 5$) vertices or a unicyclic graph on n ($n \ge 6$) vertices.

2. Preliminaries

In order to get our main results, some helpful lemmas are given in this section.

Lemma 2.1 ([12]). Let $\mu_1\geqslant \mu_2\geqslant \cdots\geqslant \mu_n=0$ and $\overline{\mu}_1\geqslant \overline{\mu}_2\geqslant \cdots\geqslant \overline{\mu}_n=0$ be the Laplacian spectra of G and \overline{G} , respectively. Then $\mu_i+\overline{\mu}_{n-i}=n$ for any $i\in\{1,2,\ldots,n-1\}$.

Lemma 2.2 ([6]). Let G be a connected graph on n vertices, the L-index of G is $\mu(G)$. Then $\mu(G) \leq n$, with equality if and only if \overline{G} is disconnected.

It is not difficult to obtain the following lemma from Lemma 2.1.

Lemma 2.3 ([24]). Let G_1 and G_2 be graphs with n_1 and n_2 vertices, respectively. Let $\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_{n_1} = 0$ and $\eta_1 \geqslant \eta_2 \geqslant \cdots \geqslant \eta_{n_2} = 0$ be the Laplacian spectra of G_1 and G_2 , respectively. Then $n_1 + n_2, \mu_1 + n_2, \mu_2 + n_2, \ldots, \mu_{n_1-1} + n_2, \eta_1 + n_1, \eta_2 + n_1, \ldots, \eta_{n_2-1} + n_1, 0$ are the Laplacian eigenvalues of graph $G_1 \times G_2$.

Lemma 2.4 ([20]). A graph G is DLS if and only if its complement \overline{G} is DLS.

Lemma 2.5 ([20]). Let G be a graph on n vertices with L-index n. If G is DLS, then $G \cup mK_1$ is DLS for any positive integer m.

The second smallest Laplacian eigenvalue of graph G is called the *algebraic connectivity* of G, denoted by a(G). It is well-known that G is connected if and only if a(G) > 0. Let $\kappa(G)$ denote the vertex connectivity of G.

Lemma 2.6 ([9]). Let G be a non-complete, connected graph on n vertices. Then $a(G) = \kappa(G) = 1$ if and only if $G = H \times K_1$, where H is a disconnected graph on n-1 vertices.

Lemma 2.7 ([23]). Let G be a connected graph with vertex set V(G), let $\mu(G)$ be the L-index of G. Then

$$\mu(G) \leqslant \max\{d(v) + \sqrt{d(v)m(v)} \mid v \in V(G)\},\$$

where d(v) is the degree of vertex v, m(v) is the average degree of all neighbours of vertex v.

Lemma 2.8 ([10]). Let G be a graph. For the Laplacian matrix, the following invariants of G can be obtained from the spectrum:

- (1) the number of vertices;
- (2) the number of edges;
- (3) the number of components.

Lemma 2.9. Let f be a positive integer such that $f = f_0 + f_1 + \cdots + f_r$, where r, f_0, f_1, \ldots, f_r are positive integers, and $\max\{f_0, f_1, \ldots, f_r\} \leqslant f - r - 2, f - r \geqslant 5$. Let $\Gamma = \sum_{i=0}^r \frac{f_i(f_i-1)}{2}$, then

$$\Gamma\leqslant\frac{(f-r-2)(f-r-3)}{2}+3,$$

with equality if and only if $\{f_0, f_1, \dots, f_r\} = \{f - r - 2, 3, 1, \dots, 1\}$.

Proof. It is easy to see that

$$\Gamma = \sum_{i=0}^{r} \frac{f_i(f_i - 1)}{2} = -\frac{1}{2}f + \frac{1}{2}\sum_{i=0}^{r} f_i^2.$$

Obviously Γ is maximal if and only if $\sum_{i=0}^r f_i^2$ is maximal. Without loss of generality, let $f_0 = \max\{f_0, f_1, \ldots, f_r\}$. First we will show that $\sum_{i=0}^r f_i^2$ is not maximal when $f_0 < f - r - 2$. If $f_0 < f - r - 2$, by $f_0 + f_1 + \cdots + f_r = f$, it is easy to see that there exists a positive integer $f_0 = f_0 = f_0$

Lemma 2.10. Let G be a star. Then $G \times K_r$ is DLS for any positive integer r.

Proof. Suppose that $G = K_{1,n-1}$. By Lemma 2.4 we know that $K_{1,n-1} \times K_r$ is DLS if and only if $K_{n-1} \cup (r+1)K_1$ is DLS. Since K_{n-1} is a DLS graph with L-index n-1, by Lemma 2.5, $K_{n-1} \cup (r+1)K_1$ is DLS. Hence $K_{1,n-1} \times K_r$ is DLS. \Box

Let $K_n - e$ denote the graph obtained from complete graph K_n by deleting one edge. Let G be a graph L-cospectral with $K_n - e$. Lemma 2.8 implies that G is a connected graph on n vertices and $\frac{n(n-1)}{2} - 1$ edges. Hence $G = K_n - e$, i.e., $K_n - e$ is DLS.

Lemma 2.11. Let $G = (K_2 \cup (n-3)K_1) \times K_1$ $(n \ge 6)$. Then $G \times K_r$ is DLS for any positive integer r.

Proof. By Lemma 2.4 we know that $G \times K_r$ is DLS if and only if $(K_{n-1} - e) \cup (r+1)K_1$ is DLS. The L-index of $K_{n-1} - e$ is n-1. Since $K_{n-1} - e$ is DLS, by Lemma 2.5, $(K_{n-1} - e) \cup (r+1)K_1$ is DLS, i.e., $G \times K_r$ is DLS. \Box

Lemma 2.12 ([10]). The graph $C_n \times K_m$ is DLS when $n \neq 6$.

Lemma 2.13 ([2]). The graph $K_a \cup K_b$ (b > 1) with $\frac{a}{b} > \frac{5}{3}$ is DLS.

Lemma 2.14 ([6]). Let G be a graph on n vertices, and the Laplacian eigenvalues of G are $\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_n = 0$. Then the number of spanning trees of G is $\frac{1}{n} \prod_{i=1}^{n-1} \mu_i$.

3. Main results

For a disconnected DLS graph G, it is known that the product $G \times K_1$ is DLS (cf. [20, Proposition 4]). This property also holds if K_1 is replaced by a complete graph.

Theorem 3.1. Let G be a disconnected DLS graph on n vertices, then $G \times K_m$ is DLS for any positive integer m.

Proof. By Lemma 2.4 we know that $G \times K_m$ is DLS if and only if $\overline{G} \cup mK_1$ is DLS. Since G is disconnected, its complement \overline{G} is connected. By Lemma 2.2, the L-index of \overline{G} is n. Since G is DLS, by Lemma 2.4 we know that \overline{G} is DLS. Lemma 2.5 implies that $\overline{G} \cup mK_1$ is DLS. Hence $G \times K_m$ is DLS. \square

Remark 3.1. Since the disjoint union of paths is DLS (see [19]), by Theorem 3.1, we know that graph $(P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_s}) \times K_m$ is DLS. In [10], this result is obtained by induction on m. Some disconnected DLS graphs can be found in [2,16,17,7,22].

For a connected graph G on n vertices and m edges, the quantity m-n+1 is called the *cyclomatic number* of G. G is called a *unicyclic graph* if its cyclomatic number is 1.

Theorem 3.2. Let G be a connected DLS graph on n vertices with cyclomatic number $c \le n-5$, and \overline{G} is connected. Let G be a graph that is G-cospectral with $G \times K_r$. Then one of the following holds:

- (a) *H* is isomorphic to $G \times K_r$;
- (b) $H = N \times 2K_1 \times K_{r-1}$, where N is a graph on n-1 vertices and c+1 edges. In this case, n-2 is a Laplacian eigenvalue of G, the algebraic connectivity of G is 1, and G has 1 as a Laplacian eigenvalue with multiplicity at least 2.

Proof. Lemma 2.1 implies that \overline{H} and $\overline{G} \cup rK_1$ are L-cospectral. Lemma 2.8 implies that \overline{H} has r+1 components. Suppose that $\overline{H} = H_0 \cup H_1 \cup \cdots \cup H_r$, where H_i is a connected graph on n_i vertices and m_i edges ($i=0,1,\ldots,r$). Without loss of generality, assume that $n_0 \geqslant n_1 \geqslant \cdots \geqslant n_r \geqslant 1$. Since the cyclomatic number of G is C, C has C vertices and C and C and C edges. So C has C vertices and C edges. By Lemma 2.8 we have

$$\sum_{i=0}^{r} n_i = n + r, \qquad \sum_{i=0}^{r} m_i = \frac{(n-1)(n-2)}{2} - c.$$

By $n_r \geqslant 1$, we have $n_0 \leqslant n$. So we can consider the following three cases.

Case 1. If $n_0 = n$, then $n_1 = n_2 = \cdots = n_{\underline{r}} = 1$. Hence $\overline{H} = H_0 \cup rK_1$. Since \overline{H} and $\overline{G} \cup rK_1$ are L-cospectral, \overline{G} and H_0 are L-cospectral. Since G is DLS, by Lemma 2.4, \overline{G} is also DLS. Hence $H_0 = \overline{G}$, $\overline{H} = \overline{G} \cup rK_1$. In this case, H is isomorphic to $G \times K_r$, i.e., part (a) holds.

Case 2. If $n_0 = n-1$, then $n_1 = 2$, $n_2 = n_3 = \cdots = n_r = 1$. Hence H_0 has n-1 vertices, $H_1 = K_2$, $H_2 = H_3 = \cdots = H_r = K_1$. Since $\overline{H} = H_0 \cup H_1 \cup \cdots \cup H_r$ and $\overline{G} \cup rK_1$ are L-cospectral, $H_0 \cup K_2$ and $\overline{G} \cup K_1$ are L-cospectral. By Lemma 2.8 we have $m_0 + 1 = \frac{(n-1)(n-2)}{2} - c$, $m_0 = \frac{(n-1)(n-2)}{2} - (c+1)$. Hence $\overline{H_0}$ has n-1 vertices and c+1 edges and $H = \overline{H_0} \times 2K_1 \times K_{r-1}$. Since $H_0 \cup K_2$ is L-cospectral with $\overline{G} \cup K_1$, H_0 and \overline{G} have the same L-index, and 2 is a Laplacian eigenvalue of \overline{G} (2 is a Laplacian eigenvalue of K_2). Lemma 2.1 implies that n-2 is a Laplacian eigenvalue of \overline{G} . Note that $\overline{H_0}$ has n-1 vertices and c+1 edges. Since $C \in \mathbb{N} = 0$, $\overline{H_0}$ has at least 3 components, i.e., $\overline{H_0}$ has 0 as a Laplacian eigenvalue with multiplicity at least 3. Lemma 2.1 implies that the L-index of H_0 is n-1, and its multiplicity is at least 2. Since $H_0 \cup K_2$ and $\overline{G} \cup K_1$ are L-cospectral, by Lemma 2.1, the algebraic connectivity of G is 1, and its multiplicity is at least 2. Hence part (b) holds.

Case 3. Suppose $n_0 \leqslant n-2$. Notice that $\frac{(n-1)(n-2)}{2}-c=\sum_{i=0}^r m_i \leqslant \sum_{i=0}^r \frac{n_i(n_i-1)}{2}$. By $0\leqslant c\leqslant n-5$, we have $n\geqslant 5$. Lemma 2.9 implies that

$$\frac{(n-1)(n-2)}{2} - c = \sum_{i=0}^{r} m_i \leqslant \sum_{i=0}^{r} \frac{n_i(n_i-1)}{2} \leqslant \frac{(n-2)(n-3)}{2} + 3.$$
 (1)

Since $c\leqslant n-5$, we have $\frac{(n-1)(n-2)}{2}-c\geqslant \frac{(n-2)(n-3)}{2}+3$. Inequality (1) implies that

$$\frac{(n-1)(n-2)}{2} - c = \frac{(n-2)(n-3)}{2} + 3, \quad c = n-5.$$
 (2)

By inequality (1) and Lemma 2.9, we have $n_0 = n - 2$, $n_1 = 3$, $n_2 = n_3 = \cdots = n_r = 1$, and H_0 and H_1 are complete graphs. Since $\overline{H} = H_0 \cup H_1 \cup \cdots \cup H_r$ and $\overline{G} \cup rK_1$ are L-cospectral, $K_{n-2} \cup K_3$ and $\overline{G} \cup K_1$ are isomorphic, a contradiction. So we have $1 \leq n \leq r$.

If n = 5, the Laplacian spectra of $K_{n-2} \cup K_3$ and $\overline{G} \cup K_1$ are both 3, 3, 3, 0, 0. Lemma 2.14 implies that the number of spanning trees of \overline{G} is $\frac{81}{5}$, a contradiction.

If n = 6, the Laplacian spectrum of \overline{G} is 4, 4, 4, 3, 3, 0. Lemma 2.1 implies that the Laplacian spectrum of G is 3, 3, 2, 2, 2, 0. By Lemma 2.14, the number of spanning trees of G is 12. From Eq. (2) we have C = n - 5 = 1. Hence G is a unicyclic graph on 6 vertices, the number of spanning trees of G is smaller than or equal to 6, a contradiction.

If n = 7, the Laplacian spectrum of \overline{G} is 5, 5, 5, 5, 3, 3, 0. Lemma 2.14 implies that the number of spanning trees of \overline{G} is $\frac{9 \times 5^4}{7}$, a contradiction. \Box

For a connected graph G on n vertices, Lemma 2.2 implies that \overline{G} is disconnected if and only if the L-index of G is n. Since the L-index of G is n if and only if G is the product of two graphs (cf. [24, Lemma 2.7]), \overline{G} is connected if and only if G is not the product of two graphs. Clearly a DLS tree T has cyclomatic number 0, and \overline{T} is connected if and only if T is not a star. A DLS unicyclic graph U has cyclomatic number 1, and \overline{U} is connected if and only if $U \neq C_4$ or $(K_2 \cup (n-3)K_1) \times K_1$ ($n \geq 3$). Note that almost all known connected DLS graphs are trees or unicyclic graphs (see [15,1,13,18,8,3,11]). So most known connected DLS graphs satisfy the conditions given in Theorem 3.2.

Let *G* and *H* be two *L*-cospectral graphs. We say that *H* is a *cospectral mate* of *G*, if *H* is not isomorphic to *G*. Obviously a graph *G* is DLS if and only if *G* has no cospectral mates.

Theorem 3.3. Let G be a connected DLS graph on n vertices with cyclomatic number $c \le n-5$, and \overline{G} is connected. If $G \times K_1$ is DLS, then $G \times K_r$ is DLS for any positive integer r.

Proof. Assume that $G \times K_r$ has a cospectral mate H. By Theorem 3.2 we have $H = N \times 2K_1 \times K_{r-1}$, where N is a graph on n-1 vertices. Lemma 2.3 implies that $G \times K_1$ and $N \times 2K_1$ are L-cospectral. Since $G \times K_1$ is DLS, we know that $N \times 2K_1$ is isomorphic to $G \times K_1$. So $\overline{N} \cup K_2$ is isomorphic to $\overline{G} \cup K_1$. By \overline{G} is connected we have $\overline{G} = K_2$, a contradiction to G is connected. Hence $G \times K_r$ has no cospectral mates, i.e., $G \times K_r$ is DLS. \square

Theorem 3.4. Let G be a connected DLS graph on n vertices with cyclomatic number $c \leq n-5$, \overline{G} is connected, the maximum degree of G is smaller than $\frac{n-2}{2}$. Then $G \times K_r$ is DLS for any positive integer r.

Proof. If $G \times K_r$ has a cospectral mate, by Theorem 3.2, we know that n-2 is a Laplacian eigenvalue of G. Let $\mu(G)$ be the L-index of G, then $\mu(G) \geqslant n-2$. Since the maximum degree of G is smaller than $\frac{n-2}{2}$, by Lemma 2.7, we have $\mu_1 < n-2$, a contradiction. Hence $G \times K_r$ has no cospectral mates, i.e., $G \times K_r$ is DLS. \square

Theorem 3.5. Let G be a connected DLS graph on n vertices with cyclomatic number $c \le n-5$, \overline{G} is connected, the vertex connectivity $\kappa(G)=1$. Then $G \times K_r$ is DLS for any positive integer r.

Proof. Since \overline{G} is connected, G is not a complete graph. Let a(G) be the algebraic connectivity of G. If $G \times K_r$ has a cospectral mate, by Theorem 3.2, we have a(G) = 1. Since $\kappa(G) = 1$, by Lemma 2.6, G has a vertex v such that v is adjacent to every other vertex of G. In this case, \overline{G} is disconnected, a contradiction to \overline{G} is connected. Hence $G \times K_r$ has no cospectral mates, i.e., $G \times K_r$ is DLS. \Box

An ∞ -graph, denoted by $G_{s,t}$, is a graph consisting of cycles C_s and C_t with just one vertex in common (see Fig. 1). Clearly an ∞ -graph has cyclomatic number 2. If $G_{s,t}$ has no triangles, then it has at least 7 vertices and its complement is connected. It is known that an ∞ -graph $G_{s,t}$ without triangles is DLS (cf. [21, Theorem 5.1]). Theorem 3.5 implies that $G_{s,t} \times K_r$ is DLS if $G_{s,t}$ has no triangles.

Corollary 3.6. Let G be a DLS tree on n vertices and $n \ge 5$. Then $G \times K_r$ is DLS for any positive integer r.

Proof. If \overline{G} is disconnected, then $G = K_{1,n-1}$. By Lemma 2.10, $G \times K_r$ is DLS. If \overline{G} is connected, by Theorem 3.5, $G \times K_r$ is DLS. \Box

Fig. 1. The ∞-graph $G_{s,t}$.

Some DLS trees are given in [15,1,13,18].

Corollary 3.7. Let G be a DLS unicyclic graph on n vertices and $n \ge 6$. Then $G \times K_r$ is DLS when G is not a cycle of order 6.

Proof. If \overline{G} is disconnected, by $n \ge 6$, we have $G = (K_2 \cup (n-3)K_1) \times K_1$. By Lemma 2.11, $G \times K_r$ is DLS. So we only need to consider the case that \overline{G} is connected. If G is a cycle, by Lemma 2.12, $G \times K_r$ is DLS. If G is not a cycle, then the vertex connectivity of G is 1. By Theorem 3.5, $G \times K_r$ is DLS. \Box

Some DLS unicyclic graphs can be found in [8,3,11].

4. Some observations

Let G be a connected DLS graph on n vertices, and G satisfies the conditions given in Theorem 3.2. If $G \times K_r$ has a cospectral mate, by Theorems 3.2 and 3.5, the following facts hold.

- (1) n-2 is a Laplacian eigenvalue of G.
- (2) The algebraic connectivity of *G* is 1, and its multiplicity is at least 2.
- (3) G is a 2-connected graph. (If G has a cut vertex, by Theorem 3.5, G is DLS.)
- (4) Let $\mu(G)$ be the *L*-index of *G*, then $n-2 \le \mu(G) < n$. (Since \overline{G} is connected, by Lemma 2.2, we have $\mu(G) < n$.)

Most known connected DLS graphs do not satisfy the above four facts simultaneously (most known connected DLS graphs have cut vertices). In [24], Zhang et al. showed that wheel graph $C_6 \times K_1$ has a cospectral mate $(2K_2 \cup K_1) \times 2K_1$. Cycle C_6 is a DLS graph satisfying the conditions of Theorem 3.2. Graph $2K_2 \cup K_1$ has 5 vertices and 2 edges. The Laplacian eigenvalues of C_6 are 4, 3, 3, 1, 1, 0. Clearly $C_6 \times K_r$ and $(2K_2 \cup K_1) \times 2K_1 \times K_{r-1}$ satisfy the conditions of part (b) of Theorem 3.2.

Acknowledgments

The authors would like to thank the Editor and two reviewers for their careful reading and valuable comments.

References

- [1] R. Boulet, The centipede is determined by its Laplacian spectrum, C. R. Acad. Sci. Paris, Ser. I 346 (2008) 711-716.
- 2] R. Boulet, Disjoint unions of complete graphs characterized by their Laplacian spectrum, Electron. J. Linear Algebra 18 (2009) 773–783.
- [3] R. Boulet, Spectral characterizations of sun graphs and broken sun graphs, Discrete Math. Theor. Comput. Sci. 11 (2009) 149–160.
- [4] R. Boulet, B. Jouve, The Iollipop graphs is determined by its spectrum, Electron. J. Combin. 15 (2008) #R74.
- [5] C. Bu, J. Zhou, Starlike trees whose maximum degree exceed 4 are determined by their Q-spectra, Linear Algebra Appl. 436 (2012) 143–151.
- [6] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
- [7] D. Cvetković, S. Simić, Z. Stanić, Spectral determination of graphs whose components are paths and cycles, Comput. Math. Appl. 59 (2010) 3849–3857.
- [8] W.H. Haemers, X. Liu, Y. Zhang, Spectral characterizations of lollipop graphs, Linear Algebra Appl. 428 (2008) 2415–2423.
- [9] S.J. Kirkland, J.J. Molitierno, M. Neumann, B. Shader, On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl. 341 (2002) 45–56.
- [10] Y. Lin, J. Shu, Y. Meng, Laplacian spectrum characterization of extensions of vertices of wheel graphs and multi-fan graphs, Comput. Math. Appl. 60 (2010) 2003–2008.
- [11] X. Liu, S. Wang, Y. Zhang, X. Yong, On the spectral characterization of some unicyclic graphs, Discrete Math. 311 (2011) 2317–2336.
- [12] X. Liu, Y. Zhang, X. Gui, The multi-fan graphs are determined by their Laplacian spectra, Discrete Math. 308 (2008) 4267–4271.
- [13] X. Liu, Y. Zhang, P. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett. 22 (2009) 435–438.
- [14] H. Ma, H. Ren, On the spectral characterization of the union of complete multipartite graph and some isolated vertices, Discrete Math. 310 (2010) 3648–3652.
- [15] G.R. Omidi, K. Tajbakhsh, Starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654-658.
- [16] X. Shen, Y. Hou, Y. Zhang, Graph Z_n and some graphs related to Z_n are determined by their spectrum, Linear Algebra Appl. 404 (2005) 58–68.
- [17] S. Simić, Z. Stanić, On some forests determined by their Laplacian or signless Laplacian spectrum, Comput. Math. Appl. 58 (2009) 171–178. [18] Z. Stanić, On determination of caterpillars with four terminal vertices by their Laplacian spectrum, Linear Algebra Appl. 431 (2009) 2035–2048.
- [16] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra? Linear Algebra Appl. 373 (2003) 241–272.
- [20] E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586.
- [21] J.F. Wang, Q.X. Huang, F. Belardo, E.M. Li Marzi, On the spectral characterizations of ∞-graphs, Discrete Math. 310 (2010) 1845–1855.
- [22] J.F. Wang, S. Simić, Q.X. Huang, F. Belardo, E.M. Li Marzi, Laplacian spectral characterization of disjoint union of paths and cycles, Linear Multilinear Algebra 59 (2011) 531–539.
- [23] X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004) 207-213.
- [24] Y. Zhang, X. Liu, X. Yong, Which wheel graphs are determined by their Laplacian spectra? Comput. Math. Appl. 58 (2009) 1887–1890.
- [25] Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math. 309 (2009) 3364–3369.