

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 4(c)

Electric Fields in Material Space: Current, Conductors, Dielectrics

Current & Current Density

current (in amperes), *I*

- -- electric charge passing a point per unit of time
- -- # of Coulombs per second (1 C/s = 1 A)

$$I = \frac{dQ}{dt}$$

current density (in amperes per square meter), J

- -- electric charge passing a point per time
- -- # of Coulombs per second (1 C/s = 1 A)

$$\mathbf{J} = \frac{dI}{dS}\hat{\mathbf{n}} \implies I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

conduction current

-- requires a conductor for charge to be carried

E is applied to the conductor

 σ = the **conductivity** of the charges within the conductor

 $J = \sigma E$

Current & Current Density

current (in amperes), *I*

- -- electric charge passing a point per unit of time
- -- # of Coulombs per second (1 C/s = 1 A)

$$I = \frac{dQ}{dt}$$

current density (in amperes per square meter), J

- -- electric charge passing a point per time
- -- # of Coulombs per second (1 C/s = 1 A)

$$\mathbf{J} = \frac{dI}{dS}\hat{\mathbf{n}} \implies I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

convection current

-- does not require a conductor for charge to be carried

(volume containing a charge density ρ_{v})

$$\mathbf{J} = \rho_{v} \cdot \mathbf{u}$$

where **u** is the velocity of a collection of charges

Example: Current & Current Density

If $\mathbf{J} = 3xz \, \mathbf{y} + 2xy \, \mathbf{z} \, (A/m^2)$, find the current *I* flowing through a square with corners at (0, 0, 0), (2, 0, 0), (2, 0, 2), (0, 0, 2).

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

Conductors & Static E Field

conductor

- -- a material that contains charge that is free to move upon application of an electric field
- -- upon applying $\mathbf{E}_{\text{external}}$, charges move to the surface (ρ_s) which set up an induced $\mathbf{E}_{\text{internal}}$, which is equal and opposite to $\mathbf{E}_{\text{external}}$ for a *perfect* conductor (under *static* conditions)

 $\mathbf{E} = 0$ inside a perfect conductor

Material	Conductivity, σ (S/m)
Conductors	
Silver	6.2×10^7
Copper	5.8×10^{7}
Gold	4.1×10^{7}
Aluminum	3.5×10^{7}
Iron	10^{7}
Mercury	10 ⁶
Carbon	3×10^{4}
Semiconductors	
Pure germanium	2.2
Pure silicon	4.4×10^{-4}
Insulators	
Glass	10^{-12}
Paraffin	10^{-15}
Mica	10 ⁻¹⁵
Fused quartz	10^{-17}

Conductors & Resistance

conductor

-- a material that contains charge that is free to move upon application of an electric field

$$\mathbf{J} = \sigma \mathbf{E}$$

E is applied to the conductor, **J** is the resulting current density σ = the conductivity of the charges within the conductor

resistance (in ohms, Ω)

- -- a measure of the tendency of a material to *resist* the flow of free charge (i.e. the *inverse* of conductance)
- -- may be calculated for an arbitrary geometry:

$$R = \frac{V}{I} = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}}$$

$$\rho_{\rm c} = 1/\sigma = {\bf resistivity} \ (\Omega - {\rm m})$$

Material	Conductivity, σ (S/m)
Conductors	
Silver	6.2×10^{7}
Copper	5.8×10^{7}
Gold	4.1×10^{7}
Aluminum	3.5×10^{7}
Iron	10^{7}
Mercury	10^{6}
Carbon	3×10^{4}
Semiconductors	
Pure germanium	2.2
Pure silicon	4.4×10^{-4}
Insulators	
Glass	10^{-12}
Paraffin	10^{-15}
Mica	10^{-15}
Fused quartz	10 ⁻¹⁷

Example: Resistance, Uniform CS

Consider a hollow cylinder of length L, inner radius a and outer radius b, with conductivity σ .

Determine the electrical resistance between the ends of the cylinder.

$$R = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}}$$

Example: Resistance, Non-Uniform CS

Consider a material of conductivity σ , in the shape of a truncated cone of height h, and radii a and b at the ends.

Determine the electrical resistance from one end to the other.

$$R = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}}$$

Dielectrics & Polarization

dielectric / insulator

-- a material that contains charge that is bound, but may be *displaced* by an applied **E** field

dielectric constant, $\varepsilon_r = \varepsilon / \varepsilon_0$ (in F/m)

- -- ratio of permittivity of a material (ε) to the permittivity of free space (ε_0)
- -- a measure of how *polarizable* a material is
- -- for a more polarizable material (higher ε), the flux density for a given **E** increases:

$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$
 where **P** is the **polarization** field

Material	Relative Permittivity, ϵ_r
Air (at sea level)	1.0006
Petroleum oil	2.1
Polystyrene	2.6
Glass	4.5–10
Quartz	3.8-5
Bakelite	5
Mica	5.4–6

$$\varepsilon = \varepsilon_{\rm r} \varepsilon_{\rm 0}$$
 and $\varepsilon_{\rm 0} = 8.854 \times 10^{-12}$ F/m.

Polarization & Flux Density

$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$
 where \mathbf{P} is the **polarization** field

$$\varepsilon = \varepsilon_r \varepsilon_0 \implies \mathbf{D} = \varepsilon_r \varepsilon_0 \mathbf{E}$$

higher permittivity → more polarized → higher flux density, **D**

Material	Relative Permittivity, ϵ_{r}
Air (at sea level)	1.0006
Petroleum oil	2.1
Polystyrene	2.6
Glass	4.5-10
Quartz	3.8–5
Bakelite	5
Mica	5.4-6

$$\varepsilon = \varepsilon_{\rm r} \varepsilon_{\rm 0}$$
 and $\varepsilon_{\rm 0} = 8.854 \times 10^{-12}$ F/m.

To be studied outside of class

- Joule's Law
- electric susceptibility
- dielectric strength
- linear / isotropic / homogenous dielectrics