Linear Algebra Primer

Another, very in-depth linear algebra review from CS229 is available here:

http://cs229.stanford.edu/section/cs229-linalg.pdf

And a video discussion of linear algebra from EE263 is here (lectures 3 and 4):

https://see.stanford.edu/Course/EE263

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus

Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightness, etc. We'll define some common uses and standard operations on them.

Vector

• A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

• A row vector $\mathbf{v}^T \in \mathbb{R}^{1 \times n}$ where

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$
 T denotes the transpose operation

Vector

We'll default to column vectors in this class

$$\mathbf{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

- You'll want to keep track of the orientation of your vectors when programming in python
- You can transpose a vector V in python by writing V.t. (But in class materials, we will typically use V^T to indicate transpose, and we will use V' to mean "V prime")

Vectors have two main uses

- Vectors can represent an **offset** in 2D or 3D space
- Points are just vectors from the origin

 Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector

 Such vectors don't have a geometric interpretation, but calculations like "distance" can still have value

Matrix

• A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an array of numbers with size by , i.e. m rows and n columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

• If m=n , we say that ${\bf A}$ is square.

Images

- We can (eg python) represent an image as a matrix of pixel brightnesses
- Note that the upper left corner is [y,x] = (0,0)

Color Images

- Grayscale images have one number per pixel, and are stored as an m × n matrix.
- Color images have 3 numbers per pixel red, green, and blue brightnesses (RGB)
- Stored as an m × n × 3 matrix tensor

Basic Matrix Operations

- We will discuss:
 - Addition
 - Scaling
 - Dot product
 - Multiplication
 - Transpose
 - Inverse / pseudoinverse
 - Determinant / trace

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+1 & b+2 \\ c+3 & d+4 \end{bmatrix}$$

 Can only add a matrix with matching dimensions, or a scalar.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 7 = \begin{bmatrix} a+7 & b+7 \\ c+7 & d+7 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times 3 = \begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}$$

Vector norm

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

- More formally, a norm is any function $f:\mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties:
- Non-negativity: For all $x \in \mathbb{R}^n, f(x) \ge 0$
- **Definiteness**: f(x) = 0 if and only if x = 0.
- Homogeneity: For all, $x \in \mathbb{R}^n, t \in \mathbb{R}, f(tx) = |t|f(x)$
- Triangle inequality: For all $x, y \in \mathbb{R}^n$, $f(x+y) \leq f(x) + f(y)$

Example Norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} = \max_{i} |x_{i}|.$$

• General ℓ_p norms:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Example Norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} = \max_{i} |x_{i}|.$$

• General ℓ_p norms:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Example Norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• General ℓ_p norms:

$$||\chi||_{2} = 5+7+3+49$$

$$||\chi||_{2} = \sqrt{5^{2}+7^{2}+3^{2}+4^{2}}$$

$$||\chi||_{p} = (5^{p}+7^{p}+3^{p}+4^{p})^{1/p}$$

$$||\chi||_{s} = |-7| = 7$$

$$||x||_{\infty} = \max_{i} |x_{i}|.$$

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Observe that as p gets larger, largest |x_i| values starts to dominate the summation.

- Inner product (dot product) of vectors
 - Multiply corresponding entries of two vectors and add up the result
 - $-x\cdot y = ||x||. ||y|| Cos(the angle between x and y)$
 - $-\langle x,y\rangle \rightarrow Alt.$ notation

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i \quad \text{(scalar)}$$

- Inner product (dot product) of vectors
 - If B is a unit vector, then A·B gives the length of A which lies in the direction of B

- Inner product (dot product) of vectors
 - If B is a unit vector, then A·B gives the length of A which lies in the direction of B

- Inner product (dot product) of vectors
 - If B is a unit vector, then A·B gives the length of A which lies in the direction of B

- Inner product (dot product) of vectors
 - If B is a unit vector, then A·B gives the length of A which lies in the direction of B

$$x^{T}y = ||x|| ||y||| \cos \theta$$
 $\Rightarrow ||x|| ||\cos \theta = x^{T} / \frac{y}{||x||} = 1 \text{ since } x \text{ fixed}$
 $\Rightarrow ||x|| ||\cos \theta = x^{T} / \frac{y}{||x||} = 1 \text{ since } x \text{ fixed}$
 $\Rightarrow ||x|| ||\cos \theta = x^{T} / \frac{y}{||x||} = 1 \text{ since } x \text{ fixed}$

The product of two matrices

$$A \in \mathbb{R}^{m \times n}$$

$$B \in \mathbb{R}^{n \times p}$$

$$C = AB \in \mathbb{R}^{m \times p}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} \mid & \mid & & \mid \\ b_1 & b_2 & \cdots & b_p \\ \mid & \mid & & \mid \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{bmatrix}.$$

The product of two matrices

$$A \in \mathbb{R}^{m \times n}$$

$$B \in \mathbb{R}^{n \times p}$$

$$C = AB \in \mathbb{R}^{m \times p}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{bmatrix}.$$

Multiplication

The product AB is:

- Each entry in the result is (that row of A) dot product with (that column of B)
- Many uses, which will be covered later

Multiplication example:

 Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

The product of two matrices

Matrix multiplication is associative: (AB)C = A(BC).

Matrix multiplication is distributive: A(B+C) = AB + AC.

Matrix multiplication is, in general, *not* commutative; that is, it can be the case that $AB \neq BA$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product BA does not even exist if m and q are not equal!)

Powers

- By convention, we can refer to the matrix product
 AA as A², and AAA as A³, etc.
- Obviously only square matrices can be multiplied that way

 Transpose – flip matrix, so row 1 becomes column 1

$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix}$$

A useful identity:

$$(ABC)^T = C^T B^T A^T$$

- Determinant
 - $-\det(\mathbf{A})$ returns a scalar
 - Represents area (or volume) of the parallelogram described by the vectors in the rows of a square matrix

- For
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\det(\mathbf{A}) = ad - bc$

- Properties:
$$det(\mathbf{AB}) = det(\mathbf{BA})$$

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$$

$$\det(\mathbf{A}^T) = \det(\mathbf{A})$$

 $\det(\mathbf{A})=0 \Leftrightarrow \mathbf{A} \ \ ext{is singular}$ Adapted from slides by Juan Carlos Niebles, and Raniav Krishna

Trace

 $\operatorname{tr}(\mathbf{A}) = \operatorname{sum of diagonal elements}$ $\operatorname{tr}(\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}) = 1 + 7 = 8$

- Invariant to a lot of transformations, so it's used sometimes in proofs. (Rarely in this class though.)
- Properties:

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$
$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$

Vector Norms (already discussed)

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_{\infty} = \max_i |x_i|$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$
 $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

 Matrix norms: Norms can also be defined for matrices, such as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^T A)}.$$

Special Matrices

- Identity matrix I
 - Square matrix, 1's along diagonal, 0's elsewhere
 - I · [another matrix] = [that matrix]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Diagonal matrix
 - Square matrix with numbers along diagonal, 0's elsewhere
 - A diagonal [another matrix]
 scales the rows of that matrix

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$

Special Matrices

Symmetric matrix

$$\mathbf{A}^T = \mathbf{A}$$

Skew-symmetric matrix

$$\mathbf{A}^T = -\mathbf{A}$$

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -2 & -5 \\ 2 & 0 & -7 \\ 5 & 7 & 0 \end{bmatrix}$$

Transformation

- Matrices can be used to transform vectors in useful ways, through multiplication: x'= Ax
- Simplest is scaling:

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

(Verify to yourself that the matrix multiplication works out this way)

Rotation

 How can you convert a vector represented in frame "0" to a new, rotated coordinate frame "1"?

Adapted from s

Rotation

- How can you convert a vector represented in frame "0" to a new, rotated coordinate frame "1"?
- Remember what a vector is:

[component in direction of the frame's x axis, component in direction of y axis]

Rotation

- So to rotate it we must produce this vector: [component in direction of new x axis, component in direction of new y axis]
- We can do this easily with dot products!
- New x coordinate is [original vector] dot [the new x axis]
- New y coordinate is [original vector] dot [the new y axis]

Rotation

- Insight: this is what happens in a matrix*vector multiplication
 - Result x coordinate is: [original vector] dot [matrix row 1]
 - So matrix multiplication can rotate a vector p:

Rotation

- Suppose we express a point in the new coordinate system which is rotated left
- If we plot the result in the **original** coordinate system, we have rotated the point right

Thus, rotation matrices
 can be used to rotate
 vectors. We'll usually
 think of them in that
 sense-- as operators to
 rotate vectors

2D Rotation Matrix Formula

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta x - \sin \theta y$$
$$y' = \cos \theta y + \sin \theta x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = R P$$

Transformation Matrices

- Multiple transformation matrices can be used to transform a point: p'=R₂ R₁ S p
- The effect of this is to apply their transformations one after the other, from right to left.
- In the example above, the result is (R₂ (R₁ (S p)))
- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix: $p'=(R_2 R_1 S) p$

 In general, a matrix multiplication lets us linearly combine components of a vector

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- This is sufficient for scale, rotate, skew transformations.
- But notice, we can't add a constant!
- Consider applying transform to a P=(2xN) matrix of points. You'd like to do all your transforms as A*P.

– The (somewhat hacky) solution? Stick a "1" at the end of every vector:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

- Now we can rotate, scale, and skew like before,
 AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

 In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

 Generally, a homogeneous transformation matrix will have a bottom row of [0 0 1], so that the result has a "1" at the bottom too.

- One more thing we might want: to divide the result by something
 - For example, we may want to divide by a coordinate, to make things scale down as they get farther away in a camera image
 - So, by convention, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication

$$\begin{bmatrix} x \\ y \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} x/7 \\ y/7 \\ 1 \end{bmatrix}$$

2D Translation

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$$

$$\mathbf{P'} \to \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$$

$$\mathbf{P'} \to \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$$

$$\mathbf{P'} \to \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$$

$$\mathbf{P'} \to \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ y & \\ 1 \end{bmatrix}$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$

$$\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$$
t

$$\mathbf{P'} \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{vmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{vmatrix} \cdot \mathbf{P} = \mathbf{T} \cdot \mathbf{P}$$

Scaling Equation

$$\mathbf{P} = (\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P'} = (\mathbf{s}_{\mathbf{x}} \mathbf{x}, \mathbf{s}_{\mathbf{y}} \mathbf{y})$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{P'} = (s_x x, s_y y) \to (s_x x, s_y y, 1)$$

$$\mathbf{P'} \rightarrow \begin{vmatrix} s_x x \\ s_y y \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling Equation

$$\mathbf{P} = (\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P'} = (\mathbf{s}_{\mathbf{x}} \mathbf{x}, \mathbf{s}_{\mathbf{y}} \mathbf{y})$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$
$$\mathbf{P'} = (s_x x, s_y y) \to (s_x x, s_y y, 1)$$

$$\mathbf{P'} \rightarrow \begin{bmatrix} s_x x \\ s_y y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S'} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \mathbf{P} = \mathbf{S} \cdot \mathbf{P}$$

Scaling & Translating

Scaling & Translating

$$\mathbf{P''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling & Translating

$$\mathbf{P''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translating & Scaling != Scaling & Translating

$$\mathbf{P'''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & t_{x} \\ 0 & s_{y} & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x}x + t_{x} \\ s_{y}y + t_{y} \\ 1 \end{bmatrix}$$

$$\mathbf{P'''} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \mathbf{t}_{x} \\ 0 & 1 & \mathbf{t}_{y} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{y} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{s}_{\mathbf{x}} & \mathbf{0} & \mathbf{s}_{\mathbf{x}} \mathbf{t}_{\mathbf{x}} \\ \mathbf{0} & \mathbf{s}_{\mathbf{y}} & \mathbf{s}_{\mathbf{y}} \mathbf{t}_{\mathbf{y}} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{\mathbf{x}} \mathbf{x} + \mathbf{s}_{\mathbf{x}} \mathbf{t}_{\mathbf{x}} \\ \mathbf{s}_{\mathbf{y}} \mathbf{y} + \mathbf{s}_{\mathbf{y}} \mathbf{t}_{\mathbf{y}} \\ \mathbf{1} \end{bmatrix}$$

Rotation Equations

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta x - \sin \theta y$$
$$y' = \cos \theta y + \sin \theta x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = R P$$

Rotation Matrix Properties

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

A 2D rotation matrix is 2x2

Note: R belongs to the category of *normal* matrices and satisfies many interesting properties:

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$
$$\det(\mathbf{R}) = 1$$

Rotation Matrix Properties

 Transpose of a rotation matrix produces a rotation in the opposite direction

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$
$$\det(\mathbf{R}) = 1$$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
 - (and so are its columns)

Scaling + Rotation + Translation

$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & s_y & s_y \\ s_y & s_y & s_y \\ s_y & s_y & s_y \end{bmatrix} = \mathbf{P'} = \mathbf{P'}$$

$$= \begin{bmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} R S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

This is the form of the general-purpose transformation matrix

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse ___
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The inverse of a transformation matrix reverses its effect

Inverse

• Given a matrix A, its inverse A^{-1} is a matrix such that $AA^{-1} = A^{-1}A = I$

• E.g.
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- Inverse does not always exist. If A⁻¹ exists, A is
 invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
 $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ $\mathbf{A}^{-T} \triangleq (\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$ Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

Matrix Operations

Pseudoinverse

- Say you have the matrix equation AX=B, where A and B are known, and you want to solve for X
- You could calculate the inverse and pre-multiply by it: $A^{-1}AX=A^{-1}B$ → $X=A^{-1}B$
- Python command would be np.linalg.inv(A)*B
- But calculating the inverse for large matrices often brings problems with computer floating-point resolution (because it involves working with very small and very large numbers together).
- Or, your matrix might not even have an inverse.

Matrix Operations

Pseudoinverse

- Fortunately, there are workarounds to solve AX=B in these situations. And python can do them!
- Instead of taking an inverse, directly ask python to solve for X in AX=B, by typing np.linalg.solve(A, B)
- Python will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist → min_X | |A*X-B||**2)
- Python will return the value of X which solves the equation
 - If there is no exact solution, it will return the closest one
 - If there are many solutions, it will return the smallest one

Matrix Operations

Python example:

$$AX = B$$

$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

```
>> import numpy as np
>> x = np.linalg.solve(A,B)
x =
    1.0000
    -0.5000
```

Singular value decomposition

Article Talk

From Wikipedia, the free encyclopedia

What to know more about pseudo-inverse?

In linear algebra, the **singular value decomposition** (**SVD**) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any $m \times n$ matrix. It is related to the polar decomposition.

Specifically, the singular value decomposition of an $m \times n$ complex matrix \mathbf{M} is a factorization of the form $\mathbf{M} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^*$, where \mathbf{U} is an $m \times m$ complex unitary matrix, $\boldsymbol{\Sigma}$ is an $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal, \mathbf{V} is an $n \times n$ complex unitary matrix, and \mathbf{V}^* is the conjugate transpose of \mathbf{V} . Such decomposition always exists for any complex matrix. If \mathbf{M} is real, then \mathbf{U} and \mathbf{V} can be guaranteed to be real orthogonal matrices; in such contexts, the SVD is often denoted $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$.

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The rank of a transformation matrix tells you how many dimensions it transforms a vector to.

Linear independence

- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express \mathbf{v}_1 as a linear combination of the other vectors $\mathbf{v}_2...\mathbf{v}_n$, then \mathbf{v}_1 is linearly dependent on the other vectors.
 - The direction \mathbf{v}_1 can be expressed as a combination of the directions $\mathbf{v}_2...\mathbf{v}_n$. (E.g. \mathbf{v}_1 = .7 \mathbf{v}_2 -.7 \mathbf{v}_4)
- If no vector is linearly dependent on the rest of the set, the set is linearly *independent*.
 - Common case: a set of vectors $\mathbf{v_1}, \dots, \mathbf{v_n}$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set

Not linearly independent

Matrix rank

- Column/row rank
 - Column rank always equals row rank

Matrix rank

$$rank(\mathbf{A}) \triangleq col\text{-}rank(\mathbf{A}) = row\text{-}rank(\mathbf{A})$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of A is 1, then the transformation

maps points onto a line.

Here's a matrix with rank 1:

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+2y \end{bmatrix} - \text{All points get mapped to the line y=2x}$$

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

Matrix rank

- If an m x m matrix is rank m, we say it's "full rank"
 - Maps an m x 1 vector uniquely to another m x 1 vector
 - An inverse matrix can be found
- If rank < m, we say it's "singular"
 - At least one dimension is getting collapsed. No way to look at the result and tell what the input was
 - Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Eigenvector and Eigenvalue

- An eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction of the eigenvector.
- Applying A to the eigenvector only scales the eigenvector by the scalar value λ , called an eigenvalue.

$$Ax = \lambda x, \quad x \neq 0.$$

Eigenvector and Eigenvalue

We want to find all the eigenvalues of A:

$$Ax = \lambda x, \quad x \neq 0.$$

Which can be written as:

$$Ax = (\lambda I)x \quad x \neq 0.$$

Therefore:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Eigenvector and Eigenvalue

We can solve for eigenvalues by solving:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Properties

 The trace of a A is equal to the sum of its eigenvalues:

$$\operatorname{tr} A = \sum_{i=1}^{n} \lambda_i.$$

The determinant of A is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^{n} \lambda_i.$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are just the diagonal entries d1, . . . dn

Spectral theory

- We call an eigenvalue λ and an associated eigenvector an eigenpair.
- The space of vectors where $(A \lambda I)x = 0$ is often called the **eigenspace** of A associated with the eigenvalue λ .
- The set of all eigenvalues of A is called its spectrum:

$$\sigma(A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is singular}\}.$$

Spectral theory

 The magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

$$ho(A) = \max\left\{|\lambda_1|, \ldots, |\lambda_n|
ight\}$$

- Where C is the space of all eigenvalues of A

Symmetric matrices

Properties:

- For a symmetric matrix A, all the eigenvalues are real.
- The eigenvectors of A are orthonormal.

$$A = VDV^T$$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$
- So, if we wanted to find the vector x that:

$$\max_{x \in \mathbb{R}^n} x^T A x$$
 subject to $||x||_2^2 = 1$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$
- So, if we wanted to find the vector x that:

$$\max_{x \in \mathbb{R}^n} x^T A x$$
 subject to $||x||_2^2 = 1$

 Is the same as finding the eigenvector that corresponds to the largest eigenvalue.

Some applications of Eigenvalues

- PageRank
- Schrodinger's equation
- PCA

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Matrix Calculus – The Gradient

- Let a function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ take as input a matrix A of size m × n and returns a real value.
- Then the gradient of f:

$$\nabla_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

Matrix Calculus – The Gradient

- Every entry in the matrix is: $\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$. the size of $\nabla_A f(A)$ is always the same as the
- size of A. So if A is just a vector x:

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• Find: $\frac{\partial f(x)}{\partial x} = ?$

$$\frac{\partial f(x)}{\partial x_k} = ?$$

$$\nabla_x f(x) = ?$$

Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \sum_{i=1}^{n} b_i x_i$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

• From this we can conclude that: $\nabla_x b^T x = b$.

Matrix Calculus – The Gradient

Properties

•
$$\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$$
.

• For
$$t \in \mathbb{R}$$
, $\nabla_x(t f(x)) = t\nabla_x f(x)$.

• The Hessian matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the n × n matrix of partial derivatives

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Each entry can be written as: $\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$

 Exercise: Why is the Hessian always symmetric?

• Each entry can be written as: $\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$

The Hessian is always symmetric, because

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}.$$

 This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is

Adapted Go Milts in LUO LUS ables, and Ranjay Krishna

 Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_1}$

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

Must-know Resource

The Matrix Cookbook

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Kaare Brandt Petersen Michael Syskind Pedersen

Version: November 15, 2012

Example:

consider the quadratic function $f(x) = x^T A x$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

Divide the summation into 3 parts depending on whether:

- i == k or
- j == k

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$= \sum_{i=1}^n A_{ik} x_i + \sum_{i=1}^n A_{kj} x_j = 2 \sum_{i=1}^n A_{ki} x_i,$$

$$f(x) = x^{T} A x$$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$

$$f(x) = x^{T} A x$$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$

$$=2A_{\ell k}=2A_{k\ell}.$$

$$f(x) = x^{T} A x$$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$

$$=2A_{\ell k}=2A_{k\ell}.$$

$$\nabla_x^2 f(x) = 2A$$

Numpy/PyTorch on ineks

```
After ssh: "source /opt/conda-2022/init_conda" (or write this into your .bashrc / .bash_profile), then you'll be in the right conda environment.
```

For the example, the following should print a random cuda tensor:

```
source /opt/conda-2022/init_conda
python -c "import torch;
print(torch.rand(5).to('cuda'))"
```

Please note that running multiple experiments on a single gpu is very inefficient and you're very likely to hit VRAM problems. Therefore,

- use "nvidia-smi" to check how the gpu is being used currently,
- do not leave any obsolete processes consuming GPU resources open.

Examples in numpy

See the course homepage:

Lecture

- NumPy review [notebook] [raw]
- Color

What we have learned

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculus