Universidad Industrial de Santander



### Introducción a la Física (2014)

• Unidad: 02

• Clase: 01

Fecha: 20140529J

Contenido: Velocidad y Aceleración

Web: http://halley.uis.edu.co/fisica\_para\_todos/

Archivo: 20140529J-HA-velocidad.pdf



# En el episodio anterior



# En el episodio anterior: geometría





#### En el episodio anterior: geometría



# Nueva operación en un espacio vectorial

- Hasta aquí, trabajamos con operaciones que:
  - Suma → vector + vector = vector
  - Producto por un escalar → escalar vector = vector
- Podríamos imaginar una nueva operación que:
  - vector vector = escalar ← Producto escalar
- Producto escalar (prod. interior, prod. Punto)

Sean  $\vec{v} \in V$  y  $\vec{w} \in V$ :  $k = \vec{v} \cdot \vec{w}$   $k \in \mathbb{R}$ 

#### Producto Escalar



- Sea V un espacio vectorial, definimos una nueva operación sobre los vectores del espacio vectorial:
- Producto escalar (producto interior, producto punto)

Sean  $\vec{v} \in V$  y  $\vec{w} \in V$ :  $k = \vec{v} \cdot \vec{w}$   $k \in \mathbb{R}$ 

- Si el cuerpo es el de los reales,  $k \in \mathbb{R}$ , entonces: Sean  $\vec{v}$ ,  $\vec{w}$ ,  $\vec{u} \in V$ , y s,  $t \in \mathbb{R}$ :
  - Conmutatividad:  $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$
  - Linealidad:  $(s\vec{u}+t\vec{v})\cdot\vec{w}=s(\vec{u}\cdot\vec{w})+t(\vec{v}\cdot\vec{w})$
  - Positividad:  $\vec{v} \cdot \vec{v} \ge 0$ ,  $\vec{v} \cdot \vec{v} = 0 \Leftrightarrow \vec{v} = \vec{0}$

### Resumen hasta aquí



- Un espacio vectorial, un cuerpo y operaciones:
  - Suma: vector+vector = vector  $\vec{v} + \vec{w} = \vec{u}$
  - Prod. por escalar: escalar vector = vector  $\vec{q} \vec{p} = \vec{q}$
  - Prod. Escalar: vector · vector = escalar  $\vec{v} \cdot \vec{w} = b$
- El producto escalar induce una norma

$$||\vec{v}|| \equiv \sqrt{\vec{v} \cdot \vec{v}}$$

• La norma induce una distancia

$$d(\vec{\mathbf{v}},\vec{\mathbf{w}}) \equiv ||\vec{\mathbf{v}} - \vec{\mathbf{w}}|| = \sqrt{(\vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}})}$$

• La distancia induce el módulo o longitud de un vector

$$|\vec{v}| \equiv ||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$$



### Producto escalar en R<sup>2</sup> y R<sup>3</sup>

• Por ejemplo, en R³: (para R² tomar z=0)

Sean 
$$\vec{v} \in \mathbb{R}^{3}, \vec{v} = (v_1, v_2, v_3), y \ \vec{w} \in \mathbb{R}^{3}, \vec{w} = (w_1, w_2, w_3),$$

$$\Rightarrow \vec{v} \cdot \vec{w} \equiv \sum_{i=1}^{3} v_i w_i = (v_1 w_1 + v_2 w_2 + v_3 w_3)$$
Ejemplo:  $\vec{v} = (-1,5,6), y \ \vec{w} = (3,-2,2),$ 

$$\vec{v} \cdot \vec{w} = ((-1)(3) + (5)(-2) + (6)(2))$$

$$\vec{v} \cdot \vec{w} = -3 + (-10) + 12 = -1$$

### Resumen hasta aquí



• Un R³, un cuerpo R, y operaciones:

• Suma: 
$$\vec{u} = \vec{v} + \vec{w} = ((v_1 + w_1), (v_2 + w_2), (v_3 + w_3))$$

- Prod. por escalar  $\vec{p} = a \vec{v} = ((a v_1), (a v_2), (a v_3))$
- Prod. Escalar  $b = \vec{v} \cdot \vec{w} = (v_1 w_1 + v_2 w_2 + v_3 w_3)$
- El producto escalar induce una norma

$$\|\vec{v}\| = \sqrt{v_1 v_1 + v_2 v_2 + v_3 v_3} = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

La norma induce una distancia

$$d(\vec{v}, \vec{w}) = \sqrt{(\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w})} = \sqrt{(v_1 - w_1)^2 + (v_2 - w_2)^2 + (v_3 - w_3)^2}$$

· La distancia induce un módulo vectorial

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$



#### Interpretación geométrica



$$d(\vec{p},\vec{q}) = ||\vec{p} - \vec{q}|| = ||((3,4) - (4,0))|| = ||(-1,4)|| = \sqrt{(-1)^2 + 4^2} = \sqrt{17}$$







$$A=|\vec{p}|; B=|\vec{q}|; C=|\vec{p}-\vec{q}|$$

Ley de los cosenos: 
$$C^2 = A^2 + B^2 - 2AB\cos\theta$$
  
 $C = A = |\vec{p}|; B = |\vec{q}|; C = |\vec{p} - \vec{q}|$   
Ley de los cosenos:  $|\vec{p} - \vec{q}|^2 = |\vec{p}|^2 + |\vec{q}|^2 - 2|\vec{p}||\vec{q}|\cos\theta$ 

Entonces: 
$$|\vec{p}|^2 - 2\vec{p}\cdot\vec{q} + |\vec{q}|^2 = |\vec{p}|^2 + |\vec{q}|^2 - 2|\vec{p}||\vec{q}|\cos\theta$$



Luego:  $\vec{p} \cdot \vec{q} = |\vec{p}||\vec{q}|\cos\theta$ 







$$\vec{p} \cdot \vec{q} = |\vec{p}||\vec{q}|\cos\theta \Rightarrow \cos\theta = \frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|}$$

$$\vec{p} \cdot \vec{q} = 12; |p| = 5; |q| = 4 \Rightarrow \cos \theta = \frac{12}{5 \times 4} \Rightarrow \cos \theta = \frac{3}{5} \Rightarrow \theta = 53.13$$

Perpendiculares:  $\theta = \frac{\pi}{2} \Leftrightarrow \cos \theta = 0 \Leftrightarrow \vec{p} \cdot \vec{q} = 0$ 

Paralelos: 
$$(\theta = 0 \text{ ó } \theta = pi) \Leftrightarrow \cos \theta = \pm 1 \Leftrightarrow \vec{p} \cdot \vec{q} = \pm |\vec{p}||\vec{q}|$$



$$\theta = \pi$$



# Posición, velocidad, aceleración





# Posición, velocidad, aceleración

