

BY KEDAR WAGHOLIKAR

Roadmap

- Introduction
- Objective
- Steps for forecasting
- Result
- Key Takeaways
- Managerial Insights

Introduction

- **Data**: Demand for bikes for bike sharing problem
- Two types of customer segments:
 - Casual Customers : Not registered but avail bike ride on spot payment basis
 - Registered Customers: Registered and already paid in advance for membership subscription
- Variables used: Month, Day, Season, Holiday, Temperature, Humidity, Wind speed, Total demand on the same day, Casual and Registered users demand

Objective

- To enhance **customer experience** and **improve the service**
- Optimize the number of bikes available at a given point of time
- Satisfy customer needs when required and maintain profitability
- Predict bike demand using machine learning algorithms based on past data
- Compared the aggregated and disaggregated demand for the bikes

Steps for forecasting- Visualization

Overall trend for Demand

Seasonal Variations

Total Demand

Seasonal Variations

Casual Customer Demand

Seasonal Variations

Registered Customers demand

Visualization for meanatemp, meanhumidity, and maxwindspeed variables

Total Demand

Casual Customers

Registered Customers

Detrended Data- after removal of seasonal variation

Casual Customers

Registered customers

Trend of RMSPE with increasing lambda(penalizing factor)

Predicted Total Demand Plot after LASSO

Total Demand

Predicted Causal Demand Plot after LASSO

Casual Demand

Predicted Registered customers Demand Plot after LASSO

Registered Customers

Steps for forecasting

Variable Selection: Least Absolute Shrinkage and Selection Operator (LASSSO)

- Regression method for variable selection through penalization for high values of regression coefficients
- R package glmnet() is used for estimation of optimal value of lambda
- The non-zero values of beta parameters in the estimated model indicate the selected variables

Variables not selected:

Total: Month and working day

Casual: month, season, maxatemp, maxhumidity, minhumidity, minwindspeed,

swindspeed

Registered: maxhumidity, minhumidity, minwindspeed

Steps for forecasting Continued ...

- Two Forecasting Approaches (3 models)
 - Aggregated (Total Customer Demand)
 - Disaggregated (Casual + Registered Customer Demand)
- Machine Learning Models
 - Generalised Linear
 - Gaussian Distribution
 - Poisson Distribution
 - Negative Binomial Distribution
 - Stepwise Regression (Forward Approach)
 - Random Forest
 - Support Vector Machine (SVM)
- Train(80%) and Test(20%) the models for 1000 randomly selected samples.
- Calculate Mean RMSPE from the RMSPE per model per algorithm per sample.

Results - Aggregated Method

Results - Disaggregated Method

Key Takeaways

Aggregated vs Disaggregated approach

RMSPE = 624.98

More accurate results

Scope for aggregation bias

Key Takeaways

Managerial Insights

Supply Regulatory

Capacity and Collaboration service

Effective transportation and logistics

Less investment in the Inventory

Cost effectiveness

Minimizing Safety stocks level

Form better forecast overtime

Optimal production processes

Customer Profitability

Effective customer

Customer Satisfaction

THANK YOU

Sources

https://www.spensatech.com/ap/