MATHEMATICS METHODS

(4 bns Semester 2 (Units 3 and 4) 8 AWAM Semester 2 AWAM

Calculator-Assumed

Marking Key

810S, AWAM ⊚

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

The items that are contained in this examination are to be used solely in the school for which they are

purchased.

They are not to be shared in any manner with a school which has not purchased their own licence.

The release date for this exam and marking scheme is

The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
them how the work is marked but students are not to retain a copy of the paper or marking guide until the
agreed release date sipulated in the purchasing agreement/licence.

the end of week 1 of term 4, 2016

Page 1

Section Two: Calculator-assumed

(104 Marks)

Question 11

Page 2 © MAWA 2016

MARKING KEY CALCULATOR-ASSUMED

Marks

SEMESTER 1 (UNITS 3 AND 4) EXAMINATION MATHEMATICS METHODS

Seven 10 c coins, therefore P(10 c) = $\frac{7}{11+\frac{1}{\lambda}}$ as required

 states correct probability states correct total

Marking key/mathematical behaviours

 λ + 11 si siono fo redmun latoT

MARKING KEY CALCULATOR-ASSUMED

SEMESTER 1 (UNITS 3 AND 4) EXAMINATION MATHEMATICS METHODS

Acknowledgements

Question 12(a)(ii)

Solution Question 12(a)(i)

l	 calculates the value of k
l 'l	 states correct equation and equates equal to 10
Marks	Marking key/mathematical behaviours
	$180 + 24 \Leftarrow 101 + 104 \Rightarrow 4 \Rightarrow 100$
	$0I = \frac{\lambda + II}{\lambda + II} + \frac{\lambda + II}{\lambda + II} + \frac{\lambda + II}{\lambda + II}$
	$\frac{\partial I}{\partial S} = \frac{\partial I}{\partial S} + $
	Solution

Question 12(b)(i)

l	 correctly states minimum trials is 10
ļ	- correctly uses complementary events and solves for n
l	 states first inequality
Marks	Marking key/mathematical behaviours
	Therefore, minimum number of trials is 10
	$10.9 \le n \in 10.0 \ge ^{n} 0.0 .9.i$
	ro.o≥ (noitingi on)9 ∴
$0.99 \le 0.99$	
	Solution

Question 12(b)(ii)

	/u)/a)zı u	Ancons
	U	Solution
	Fruses last of fuel on 11th trial) = ${}^{10}{ m C}_8(0.4)^8(0.6)^2 imes0.4=0.0042$	P(lighte
Marks	g key/mathematical behaviours	Marking
l	correctly calculates probability of igniting 8 times in 10 trials	•
l	(Isint #11 no noitingi) 4.0 yd eailditlum	•
l	calculates correct probability	•

Page 3 910S AWAM ◎

pəseq	ı
The items that are contained in this examination are to be used solely in the school for which they are	. •
nination is Copyright but may be freely used within the school that purchases this licence.	This exan
5016	, AWAM @

marking guide until the agreed release date stipulated in the purchasing agreement/licence. showing them how the work is marked but students are not to retain a copy of the paper or the to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of The items and the solutions/marking keys are to be kept confidentially and not copied or made available
 The items and the solutions/marking keys are to be kept confidentially and not copied or made available

12 Cobbler Place, MIRRABOOKA 6061 Published by The Mathematical Association of WA

Question 13(a)	
Solution	
$\frac{dI}{dt} = rI$	
dt	
$I = I_0 e^{rt}$ $2 = e^{12r}$	
$2 = e^{12r}$	
$r = \frac{\ln 2}{12} or \frac{100 \ln 2}{12} \%$	
Marking key/mathagastical bahayiaya	Moules

Marking key/mathematical behaviours	Marks
writes correct exponential equation for anti-derivative	1
• states $I = 2I_0$ or establishes this relationship in terms of money	1
gives exact value of r	1

Question 13(b)

Solution
$\frac{dS}{dx} = \frac{b}{5x+2} = \frac{b}{5} \times \frac{5}{5x+2}$
_
$S = \frac{b}{5}\ln(5x+2) + c$
$x = 0, S = 65 \Rightarrow 65 = \frac{b}{5}\ln(2) + c \Rightarrow c = 65 - \frac{b}{5}\ln(2)$
$S = \frac{b}{5}\ln(5x+2) + 65 - \frac{b}{5}\ln(2)$
$= \frac{b}{5} \Big[\ln (5x+2) - \ln (2) \Big] + 65$
$= \frac{b}{5} \left[\ln \left(\frac{5x+2}{2} \right) \right] + 65$

Marking key/mathematical behaviours		
 determines correct anti-derivative of function plus c 	1	
calculates value of constant term	1	
writes expression for S	1	
factorises correctly	1	
correctly uses log law and deduces correct expression for S	1	

Page **4** © MAWA 2016 Page **17** © MAWA 2016

Question 23(d)			
Solution			
$\frac{d^2y}{dx^2} = -e^{-y} < 0 \;\forall \; y : \text{all stationary points are maxima}$			
dx^2			
dx^2 Marking key/mathematical behaviours	Marks		
	Marks 1		

MATHEMATICS METHODS

SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

Question 23(a)

S	Marks	Marking key/mathematical behaviours
	<i>b</i> =	$(x)f \text{ bne } \frac{d}{dx}(hf(x)) = \frac{d}{dx} \frac{d}{dx} \int_{0}^{1} \frac{dy}{dx} \int_{0}^{1} dy$

simplifies correctly

gives reasons for simplification

correctly differentiates numerator and denominator

Solution Question 23(b)

Marks	Marking key/mathematical behaviours
	$\mathfrak{D}=rac{x}{n}\chi \lambda (1-n)\chi \lambda \mathfrak{D}=\left(rac{p}{p} ight)\left(rac{ph}{xb} ight)$ gnisU

ļ	simplifies correctly	•
l	correctly differentiates using $\left(\frac{ab}{x}\right)\left(\frac{bb}{x}\right)$	•

Question 23(c)

$\frac{z(x \operatorname{nis} + 1)}{\left(\frac{x \operatorname{nis} + 1}{z(x \operatorname{nis} + 1)}\right) - =$
$\frac{x^{2} \cos - (x \operatorname{miz} -)(x \operatorname{miz} + 1)}{(x^{2} \sin + x \operatorname{miz}) - x \operatorname{miz} - } = " \sqrt{x}$
$(x \operatorname{mis} + 1) \operatorname{m} = \emptyset$ $x \operatorname{mis} + 1$ $x \operatorname{mis} + 1$ $x \operatorname{mis} + 1$
(2)2=

l	determines first and second derivative
Marks	Marking key/mathematical behaviours
	$0 = \sqrt{\frac{1}{x^2}} + \sqrt{\frac{x}{x^2}} \leftarrow \sqrt{\frac{1}{x}} = \frac{x \sin x + 1}{1} - =$

•	couclndes proof	l
•	$^{V}9 = x \text{ mis} + 1 \text{ setuits}$	l
•	simplifies correctly	l
•	determines first and second derivative	L
Narkiı	ng key/mathematical behaviours	Marks
	·	

Question 14(a)

l l l	.n gnivlo	 determines equation for g(x) invo states equation (1) states equation (2) solves for a and b.
Marks		Marking key/mathematical behaviours
	$d = (n) \ \theta \text{ soniz}$ $d = (n) \ \theta \text{ sos} (2) \dots (n) (n) \ \theta \text{ soniz} = d$ $d = (n) \ \theta \text{ sonix} \text{ solid}$ $(S) \dots \dots (n) \ \theta \text{ solid}$ $S = (n) \ \theta \text{ solid} \text{ solid}$ $(S) \text{ solid}$	Solution Let point P have coords: (a,b) $2(x) = mx + cx$ $3(x) = -6\cos(3a)x + c$ Since $8(0) = 0$: Since $8(0) = 0$: $c = 0$ $c = 0$

Question 14(b)

l	• writes equation	
l	the same of the state of the s	
Marks	ırking key/mathematical behaviours	вM
	$\mathcal{E}.I = \frac{29.1}{2.1} = m$ $x\mathcal{E}.I = (x)$ $x\mathcal{E}.I = (x)$ $x\mathcal{E}.I = (x)$	
	noitul	9
	4.4	

Question 14(c)

l	calculates area
l	writes an appropriate integral representing the required area
l	3.1 bns 0 to seinsbnuod sezu •
Marks	Marking key/mathematical behaviours
	≈ 2.27 square units
	$xb\left\{((x\xi)\text{mis }2-)-x\xi.I\right\}\int_{0}^{\xi.I}=$
	$xp\{(x)f - (x)\delta\} \int_{\varsigma_1}^0 = v \partial u V$
	Solution
	(a)+i uoneana

ı	calculates area	•
l	writes an appropriate integral representing the required area	•
l	2.1 bns 0 to seirsbnuod sesu	•
Marks	g key/mathematical behaviours	larking

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Question 15(a)

Solution	
	$f(x) = x \ln x - x + 3$
j	$f'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1$
	$= \ln x + 1 - 1$
	$= \ln x$

Marking key/mathematical behaviours	Marks
shows process to determine correct expression	1

Question 15(b)

44000001110(8)	
Solution	
$\int \ln x dx = x \ln x - x + c$	
Marking key/mathematical behaviours	Marks
ullet recognises the integral is $f(x)$ from part (i) but with an unknown constant	1

Question 15(c)

Solution	
$g(x) = \int \ln(x^2) dx = \int 2\ln x dx = 2\int \ln x dx = 2(x \ln x - x + c) = 2x \ln x - 2x + k$	
Marking key/mathematical behaviours	Marks
• uses relationship $\ln(x^n) = n \ln x$	1
substitutes correct expression for the integral and simplifies correctly	1

Page **6** © MAWA 2016

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Question 22 (a)

Solution	
$P(X > 6.54) = \frac{1}{15} = 0.0667$	
$P\left(Z > \frac{6.54 - 6.50}{\sigma}\right) = 0.0667 \implies \frac{0.04}{\sigma} = 1.501 : \sigma = 0.266 \text{ using } CAS$	
Marking key/mathematical behaviours	Marks
Marking key/mathematical behaviours • uses correct probability	Marks 1
	Marks 1 1

Question 22(b)

Solution
$P(X > 6.54) = \frac{1}{20} = 0.05$
$P\left(Z > \frac{6.54 - 6.50}{\sigma_1}\right) = 0.05 \implies \frac{0.04}{\sigma_1} = 1.645 \div \sigma_1 = 0.0243 \text{ using } CAS (\sigma_1 \text{ is the original standard deviation})$
Let the new mean be μ
$P(Z > \frac{6.54 - \mu}{2}) = 0.0667 \implies \frac{6.54 - \mu}{2} = 1.501 \implies \mu = 6.504 \text{ cm}$

$P(Z > \frac{1}{0.0243}) = 0.0667 \implies \frac{1}{0.0243} = 1.301 \implies \mu = 6.304 \text{ cm}$	
Marking key/mathematical behaviours	Marks
uses correct probability to calculate original std deviation	1
 determines standard deviation using CAS 	1
Uses correct probability to calculate new mean	1

uses correct probability to calculate original std deviation	'
 determines standard deviation using CAS 	1
 uses correct probability to calculate new mean 	1
 determines new mean using CAS 	1

Question 22(c)

Solution	
$P(6.48 < X < 6.53) = 0.6442 \text{ (where } X \sim N(6.50, 0.0266^2))$	
Therefore, would expect 0.6442(1000) = 644 to have lengths in the required range	
Marking key/mathematical behaviours	Marks
calculates probability and correct number of components	1

 $3 + t\xi + zt\xi - \frac{9}{9} = (t)x$

Marks

Marks

Marking key/mathematical behaviours Sample 3. The largest sample size is likely to give the best estimate. Solution Question 21 (a)

identifies correct sample with reason

Question 21 (b)

Solution

reliable estimates.

No allowance is made for the sample size. The larger sample sizes are likely to give more ε 14120.0 $\approx d$

Marking key/mathematical behaviours

 discusses sample size as a factor in reliability states the approximation of p

Question 21 (c)

Solution

very large sample size and hence gives the best estimate. sum of all the sample sizes to determine the proportion estimate. This effectively makes a Best method would be to calculate the total defective items from all the samples and use the

									$\mathcal{E}220.0 = \frac{9\mathcal{E}}{7471} \approx q$
39	L	9	2	L	₽	10	ı	3	Number of Defective components
7471	310	202	120	280	128	420	72	122	Number in sample
total	8	L	9	g	Þ	3	7	ı	Sample

$$\xi 220.0 = \frac{6\xi}{4\pi} \approx d$$

istes reason for better estimate teason tor better estimate fermines number of defective components in each sample f	
t etemitse retroit not no seen setet	Marking

Question 16 Solution

$tp\left(\xi + i9 - \frac{\zeta}{z^{1/4}}\right) \int = (i)x$	$\mathcal{E} + t\mathbf{a} - 2t\mathbf{E} = t\mathbf{b}$ $\mathbf{v}(t) = 3t\mathbf{E} + t\mathbf{a} - 5t\mathbf{E} = 0$ $\mathbf{v}(t) = 0$ $\mathbf{v}(t) = 0$ $\mathbf{v}(t) = 0$ $\mathbf{v}(t) = 0$
$hb(\partial - \lambda I) = (1)v$ $2 + i\partial - \frac{\lambda I^2}{2} = 0$ Since $v(0) = 3$, $k = 0$ $\Rightarrow v(t) = \frac{\lambda I^2}{2} - 6t + 3$	(1) $3 + 3 - \frac{38}{6} = 61 = (2)x$ (2) $3 + 81 - \frac{36}{2} = 65 = 60$ (2) $3 + 81 - \frac{36}{2} = 60$ (3) and (1) and (2) gives: 5 + 60 = 60
uoilnios	

3522-62+3d£

1	calculates distance travelled.	•
ľ	writes integral to calculate distance travelled	•
ľ	solves for c and k	•
ľ	writes equations 1 and 2	•
i.	integrates to determine $x(t)$ with constant	•
i	integrates to determine $v(t)$	
Marks	ng key/mathematical behaviours	Markir

Solution Question 17(a)

 $27.0 = \frac{024}{220} = \hat{q}$

	l	Calculates proportion	•
ςγ.	Mar	g key/mathematical behaviours	Markin

Hence $0.674 \le p \le 0.766$

We can be 99% confident that that between 67.4% and 76.6% of ABC customers used online banking to pay their bills.

Marking key/mathematical behaviours	Marks
correctly calculates lower value of confidence interval	1
 correctly calculates upper value of confidence interval 	1
interprets answer correctly	1

Question 17(c)

Marking key/mathematical behaviours	Marks
states standard error	1
 writes an equation to evaluate n 	1
 solves correctly for n 	1
 rounds n up to the nearest integer. 	1

Question 19(d)

MATHEMATICS METHODS

SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

Solution
$$\int_{1}^{m} \frac{3x^{2}}{7} dx = 0.5 \implies m = \sqrt[3]{\frac{9}{2}} = 1.65$$
Marking key/mathematical behaviours Marks

• states correct integral
• calculates the value of m

1

Question 20(a)	
Solution	
$Yr7 = \frac{305}{1032} \times 75 \approx 22$	
$Yr8 = \frac{381}{1032} \times 75 \approx 28$	
$Yr7 = \frac{346}{1032} \times 75 \approx 25$	
Marking key/mathematical behaviours	Marks
determines proportions	1
dives integer values for each year group	1

Question 20(b)(i)(ii)

Solution				
(i)	Uniform Distribution	n (ii)	$nean = E(X)$ $= \frac{6+1}{2}$ $= 3.5$	
Marking	key/mathematical behaviours			Marks
• ;	states distribution			1
• ;	states mean			1

Question 20(b)(iii)

Solution		
The bars would be higher but have much less variation in height		
Marking key/mathematical behaviours		
states reasons	1	

calculates the Standard deviation

Question 17(d)

calculates the mean

calculates probability

determines the value of k equates integral equal to one Marking key/mathematical behaviours Marks $\frac{\varepsilon}{L} = \lambda : I = \frac{\lambda \Gamma}{\varepsilon} \iff \frac{1}{\varepsilon} \left[\varepsilon_X \right] \frac{\lambda}{\varepsilon} \iff I = xb^2 x \int_{-1}^{2} \lambda dx$ Solution Question 19(a)

Question 19(b)

ı	 correctly calculates Var(X), hence standard deviation 	
ı	 correctly calculates E(X²) 	
l	 correctly calculates E(X) 	
Marks	ағкілд кеу/mathematical behaviours	;M
	$ \zeta \zeta \zeta C = 0 \iff \frac{16\zeta}{16\zeta} = \frac{\zeta}{\zeta} \frac{16\zeta}{5t} - \frac{\zeta}{\xi} \frac{1}{\xi} = (\chi) \eta D \Lambda $	
	$\mathcal{E}(X_{\zeta}) = \int_{\zeta} \frac{1}{x^{2}} \frac{1}{x^{2}} \int_{\zeta} \frac{1}{x^{2}} \int_$	
	$\frac{87}{5t} = xp \frac{L}{z^{x}\xi} x^{1} \int_{0}^{1} = (X)\pi$	
	uoilulio	วร

Question 19(c)

l	uses correct boundaries
l	 correctly writes F(x) as a piecewise function
l	 correctly sets up integral for F(x)
Marks	Marking key/mathematical behaviours
	Z < x []
	$2 \ge x \ge 1 \frac{\varepsilon_x}{7 - \frac{\varepsilon_x}{7}} = (x)H :$
	I > x 0
	$\frac{1}{L} - \frac{\varepsilon^{\lambda}}{L} = \int_{A}^{A} \left[\frac{\varepsilon^{\lambda}}{L} \right] = xb \frac{x \varepsilon^{\lambda}}{L} \int_{A}^{A} = (x)A$
	Solution
	/-/

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Question 18(a)(i)

Solution

Intensity of the sound of a vacuum cleaner, I_{ν}

$$70 = 10\log\left(\frac{I_V}{I_0}\right) \Rightarrow 7 = \log\left(\frac{I_V}{I_0}\right) \Rightarrow 10^7 = \frac{I_V}{I_0} \Rightarrow 10^7 \times I_0 = I_V$$

Marking key/mathematical behaviours	
$ullet$ arrives at correct expression for $I_{\scriptscriptstyle V}$	1

Question 18(a)(ii)

Solution

Intensity of the sound of an electric drill, $I_D = 10^{9.8} \times I_0$

$$\frac{I_D}{I_V} = \frac{10^{9.8} \times I_0}{10^7 \times I_0} = 10^{2.8} = 631$$

So the intensity of the sound of an electric drill is 631 times greater than the intensity for the sound of a vacuum cleaner.

Marking key/mathematical behaviours	Marks
compares intensities of the 2 sounds	1
states correct relationship	1

Question 18(a)(iii)

Solution

$$L = 10\log\left(\frac{10^{9.8} \times I_0}{I_0}\right) = 10\log 10^{9.8} = 10 \times 9.8\log 10 = 98 \text{ decibels}$$

20	
Marking key/mathematical behaviours	Marks
calculates correct value	1

Question 18(b)(i)

Solution	
acceleration = $\frac{dv}{dt} = -2\sin 2t$	
Marking key/mathematical behaviours	Marks
differentiates correctly	1

Question 18(b)(ii)

Solution

When $t = \pi, v = \cos 2\pi = 1$

and
$$\frac{dv}{dt} = -2\sin 2\pi = 0$$

Marking key/mathematical behaviours	Marks	
• determines correct value for v and for $\frac{dv}{dt}$	1, 1	

Question 18(b)(iii)

Solution

 $\frac{dv}{dt}=0$ indicates that $t=\pi$ gives a local maximum or minimum value for v .The maximum

value of function v = cos2t is 1, so the particle is travelling at its maximum velocity at $t = \pi$.

Marking key/mathematical behaviours	
identifies significance of rate of change = 0	1

Question 18(b)(iv)

Solution

The graph shows $v=\cos 2t$. It can be seen that the gradient (which is acceleration) is negative before the minimum and positive after the minimum. This can also be seen from the table.

During this particular second, the velocity is decreasing until it reaches its minimum value and then the velocity increases.

Marl	king key/mathematical behaviours	Mark
•	gives a correct interpretation of the given facts	1