Geometria e Algebra - MIS-Z

Quarto appello - Ottobre - Soluzioni 14/10/2022

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

- (a) Il vettore $(1,2,3) \in \mathbb{R}^3$ è combinazione lineare dei vettori (1,-2,1) e (-2,4,-2).
 - \square VERO
 - **FALSO**

Giustificazione

Notiamo che (-2, 4, -2) = -2(1, -2, 1). Se il vettore (1, 2, 3) fosse combinazione lineare dei vettori (1, -2, 1) e (-2, 4, -2) allora esisterebbero $a, b \in \mathbb{R}$ tali che

$$(1,2,3) = a(1,-2,1) + b(-2,4,-2) = a(1,-2,1) - 2b(1,-2,1) = (a-2b)(1,-2,1),$$

ovvero (1,2,3) sarebbe collineare al (multiplo del) vettore (1,-2,1). Ma questo è chiaramente falso, quindi (1,2,3) non è combinazione lineare di (1,-2,1) e (-2,4,-2).

(b) La funzione

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to (x^2, y^2)$$

è un'applicazione lineare.

- \square VERO
- FALSO

Giustificazione

Si considerino in \mathbb{R}^2 i vettori v=(1,0) e w=(1,1). Allora si ha:

$$f(v+w) = f(2,1) = (4,1)$$

$$f(v) + f(w) = (1,0) + (1,1) = (2,1).$$

Poiché $f(v+w) \neq f(v) + f(w)$, l'applicazione f non è lineare.

(c) Sia $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$ un'applicazione lineare suriettiva. Allora dim $(\ker(f)) = 3$.

VERO

 \square FALSO

Giustificazione

Per il teorema del rango abbiamo:

$$\dim(\ker(f)) = \dim(\mathcal{M}_2(\mathbb{R})) - \operatorname{rg}(f).$$

Essendo f suriettiva, allora $\operatorname{rg}(f)=\dim(\mathbb{R})=1$. Inoltre $\dim(\mathcal{M}_2(\mathbb{R}))=4$. Quindi $\dim(\ker(f))=4-1=3$.

(d) Siano $A, B \in \mathcal{M}_2(\mathbb{R})$ e sia O_2 la matrice nulla di $\mathcal{M}_2(\mathbb{R})$. Se $AB = O_2$, allora $A = O_2$ o $B = O_2$.

\square VERO

FALSO

Giustificazione

Si considerino le matrici

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Allora $AB = O_2$, ma sia A che B sono diverse dalla matrice nulla.

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X + kY + Z = k \\ X + Y + Z = 2 \\ kX + Y + kZ = 2 \\ X + kY + (k-2)Z = 3 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
$k \in \mathbb{R} \setminus \{0\}$	NO	0	_
k = 0	SI	1	{(1,2,-1)}

Svolgimento

Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & k & 1 & k \\ 1 & 1 & 1 & 2 \\ k & 1 & k & 2 \\ 1 & k & k-2 & 3 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 R_1$, 2. $R_3 \leftarrow R_3 kR_1$,
- 3. $R_4 \leftarrow R_4 R_1$, 4. $R_3 \leftarrow R_3 (1+k)R_2$, 5. $R_3 \leftrightarrow R_4$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & k & 1 & k \\ 0 & 1-k & 0 & 2-k \\ 0 & 0 & k-3 & 3-k \\ 0 & 0 & 0 & -k \end{pmatrix}.$$

Notiamo subito che se $k \neq 0$ il sistema non è compatibile, poiché l'ultima riga corrisponde all'equazione 0 = k (si può anche facilmente notare che in tal caso la matrice dei coefficienti ha rango diverso dalla matrice orlata). Vediamo pertanto cosa succede per k=0. Se k=0 allora la matrice a scalini è

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

In questo caso il rango della matrice dei coefficienti e il rango della matrice orlata coincidono e sono uguali a 3. Quindi, per il teorema di Rouché–Capelli, il sistema è compatibile ed ammette l'unica soluzione (1,2,-1).

ESERCIZIO 3 [8 punti]. Sottospazi vettoriali.

(a) Enunciare il lemma di Steinitz.

Lemma

Sia V uno spazio vettoriale con base $\{v_1, \ldots, v_n\}$ e siano $w_1, \ldots, w_m \in V$. Se w_1, \ldots, w_m sono linearmente indipendenti, allora $m \leq n$.

(b) Dimostrare che se $\{v_1, \ldots, v_n\}$ e $\{w_1, \ldots, w_m\}$ sono due basi di uno spazio vettoriale V allora n=m.

Dimostrazione

Applichiamo il lemma di Steinitz da due punti di vista diversi:

- Poiché $\{v_1, \ldots, v_n\}$ è una base e w_1, \ldots, w_m sono linearmente indipendenti, allora, applicando il lemma di Steinitz, otteniamo che $m \leq n$;
- Poiché $\{w_1, \ldots, w_m\}$ è una base e v_1, \ldots, v_n sono linearmente indipendenti, allora, applicando il lemma di Steinitz, otteniamo che $n \leq m$.

Quindi $m \le n$ e $n \le m$, da cui m = n.

(c) In \mathbb{R}^4 si consideri il sottospazio vettoriale

$$U = Span\{(0, 1, -1, 4), (-1, 0, 2, -2), (-1, 1, 1, 2), (2, -3, -1, -8)\}.$$

Si determini una base e la dimensione di U.

Svolgimento

Per determinare una base e la dimensione di U ci basterà ridurre a gradini la matrice che ha per righe i quattro vettori che generano U:

$$\begin{pmatrix} 0 & 1 & -1 & 4 \\ -1 & 0 & 2 & -2 \\ -1 & 1 & 1 & 2 \\ 2 & -3 & -1 & -8 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_1 \leftrightarrow R_2$,
- 2. $R_3 \leftarrow R_3 R_1$,
- 3. $R_4 \leftarrow R_4 + 2R_1$,
- 4. $R_3 \leftarrow R_3 R_2$,
- 5. $R_4 \leftarrow R_4 + 3R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi la dimensione di U è 2 (numero di righe non nulle) e una base è $\{(-1,0,2,-2),(0,1,-1,4)\}$ (le righe non nulle della matrice ridotta a scalini).

(d) Al variare di k in \mathbb{R} , si consideri il sottospazio vettoriale di \mathbb{R}^4

$$V_k = Span\{(1, k, 0, -6), (-4, 2, 6, k + 2)\}.$$

Determinare, se esistono, i valori di k per cui $V_k = U$.

Svolgimento

Notiamo innanzitutto che, per ogni $k \in \mathbb{R}$, $\dim(V_k) = 2$. Pertanto $V_k = U$ se e solo se $V_k \subseteq U$ o, equivalentemente, se e solo se $U + V_k = U$. Poiché $U \subseteq U + V_k$ e $\dim(U) = 2$, basterà allora determinare i valori di k per cui $\dim(U + V_k) = 2$.

Ora il sottopazio $U + V_k$ è generato dall'unione delle basi di U e di V_k , ovvero

$$U + V_k = Span\{(0, 1, -1, 4), (-1, 0, 2, -2), (1, k, 0, -6), (-4, 2, 6, k + 2)\}.$$

Per calcolare la dimensione di $U + V_k$ basterà calcolare il rango della matrice

$$M_k = \begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & 1 & -1 & 4 \\ 1 & k & 0 & -6 \\ -4 & 2 & 6 & k+2 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_3 \leftarrow R_3 + R_1$,
- 2. $R_3 \leftarrow R_4 4R_1$
- 3. $R_3 \leftarrow R_3 kR_2$, 4. $R_4 \leftarrow R_4 2R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 2+k & -4k-8 \\ 0 & 0 & 0 & k+2 \end{pmatrix}.$$

Quindi il rango di M_k è 2 se e solo se k=-2. Ne segue che l'unico valore di k per cui $U = V_k$ è k = -2.

(e) Si completi la base di U trovata al punto (c) a una base di \mathbb{R}^4 .

Svolgimento

Sappiamo che dim $(\mathbb{R}^4)=4$. Quindi per completare $\{(-1,0,2,-2),(0,1,-1,4)\}$ a una base di \mathbb{R}^4 è sufficiente determinare due vettori di \mathbb{R}^4 che formino con (-1,0,2,-2)e (0,1,-1,4) un insieme di vettori linearmente indipendenti. In particolare basterà scegliere i vettori della base canonica (0,0,1,0) e (0,0,0,1). Infatti in tal caso la matrice

$$\begin{pmatrix}
-1 & 0 & 2 & -2 \\
0 & 1 & -1 & 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

è già a scalini ed ha rango 4. Pertanto i vettori (-1,0,2,-2), (0,1,-1,4), (0,0,1,0)e (0,0,0,1) sono linearmente indipendenti e costituiscono quindi una base di \mathbb{R}^4 che contiene $\{(-1,0,2,-2),(0,1,-1,4)\}.$

ESERCIZIO 4 [7 punti]. Un endomorfismo di \mathbb{R}^3 .

Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (3x + y, 2kx - y, 4x + 8y + kz).$

(a) Si determini, se esiste, un valore di k tale che $(3, -9, -40) \in \ker(f_k)$.

Svolgimento

Il vettore (3, -9, -40) appartiene a $ker(f_k)$ se e solo se

$$f_k(3, -9, -40) = (0, 0, 0) \Leftrightarrow (0, 6k + 9, -60 - 40k) = (0, 0, 0) \Leftrightarrow k = -\frac{3}{2}.$$

(b) Si determini, se esiste, un valore di k tale che $(-1,1,12) \notin \text{Im}(f_k)$.

Svolgimento

Sia A_k la matrice associata a f_k rispetto alla base canonica di \mathbb{R}^3 :

$$A_k = \begin{pmatrix} 3 & 1 & 0 \\ 2k & -1 & 0 \\ 4 & 8 & k \end{pmatrix}.$$

Se il vettore (-1, 1, 12) non appartiene a $\text{Im}(f_k)$, allora $\text{Im}(f_k) \neq \mathbb{R}^3$, ovvero f_k non è suriettivo. Ciò avviene se e solo se $\text{rg}(A_k) < 3$, ovvero se e solo se $\det(A_k) = 0$. Abbiamo

$$\det(A_k) = -2k^2 - 3k = -k(2k+3),$$

quindi f_k non è suriettivo se e solo se k=0 o $k=-\frac{3}{2}$.

Se k = 0 allora $Im(f_k) = Span\{(3,0,4), (1,-1,8)\}$. Allora (-1,1,12) non appartiene a $Im(f_k)$ se e solo se i vettori (3,0,4), (1,-1,8) e (-1,1,12) sono linearmente indipendenti. Consideriamo la matrice

$$M = \begin{pmatrix} 3 & 0 & 4 \\ 1 & -1 & 8 \\ -1 & 1 & 12 \end{pmatrix}.$$

Si può facilmente verificare che $det(M) \neq 0$, per cui i vettori (3,0,4), (1,-1,8) e (-1,1,12) sono linearmente indipendenti. Ne segue che per k=0 il vettore (-1,1,12) non appartiene a $Im(f_k)$.

(c) Per k = -2, si determini se f_{-2} è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

Svolgimento

Per k = -2 abbiamo

$$f_{-2}: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (3x + y, -4x - y, 4x + 8y - 2z).$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 . La matrice associata a f_{-2} rispetto a \mathcal{B} è

$$A_{-2} = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & -2 \end{pmatrix}.$$

Per studiare la diagonalizzabilità di f_{-2} cominciamo con il determinare gli autovalori di f_{-2} , trovando le radici del polinomio caratteristico:

$$P_{f_{-2}}(T) = \begin{vmatrix} 3 - T & 1 & 0 \\ -4 & -1 - T & 0 \\ 4 & 8 & -2 - T \end{vmatrix} = -T^3 + 3T - 2 = -(T - 1)^2(T + 2).$$

Pertanto gli autovalori di f sono -2 con molteplicità algebrica 1 e 1 con molteplicità algebrica 2. Determiniamo innanzitutto l'autospazio relativo a 1:

$$V_1(f_{-2}) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 2 & 1 & 0 \\ -4 & -2 & 0 \\ 4 & 8 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(-1, 2, 4)\}.$$

Poiché $V_1(f_{-2})$ ha dimensione 1, segue che la molteplicità geometrica dell'autovalore 1 non coincide con quella algebrica. Pertanto l'endomorfismo f_{-2} non è diagonalizzabile.

(d) Un endomorfismo di uno spazio vettoriale V si dice triangolabile se esiste una base di V rispetto alla quale la matrice rappresentativa dell'endomorfismo è triangolare superiore. Si mostri che f_{-2} è triangolabile.

Svolgimento

Nel punto precedente abbiamo visto che $\{(-1,2,4)\}$ è una base dell'autospazio $V_1(f_{-2})$. Determiniamo una base dell'autospazio $V_{-2}(f_{-2})$:

$$V_{-2}(f_{-2}) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 5 & 1 & 0 \\ -4 & 1 & 0 \\ 4 & 8 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(0, 0, 1)\}.$$

Basterà allora scegliere un qualsiasi vettore v tale che (-1,2,4),(0,0,1) e v sono linearmente indipendenti e la base $\mathcal{B}' = \{(-1,2,4),(0,0,1),v\}$ è tale che $M_{\mathcal{B}'}(f_{-2})$ è triangolare superiore.

Ad esempio, scegliendo v=(1,0,0), è facile verificare che $\mathcal{B}'=\{(-1,2,4),(0,0,1),(1,0,0)\}$ è una base di \mathbb{R}^3 . Inoltre abbiamo:

$$f_{-2}(1,0,0) = (3,-4,4) = -2 \cdot (-1,2,4) + 12 \cdot (0,0,1) + 1 \cdot (1,0,0).$$

Si ottiene che

$$M_{\mathcal{B}'}(f_{-2}) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 12 \\ 0 & 0 & 1 \end{pmatrix}$$

è una matrice triangolare superiore e quindi f_{-2} è triangolabile.

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche della retta r_1 di \mathbb{E}^3 passante per i punti A(1,1,0) e B(3,0,-1).

Svolgimento

Per scrivere le equazioni parametriche di r_1 abbiamo bisogno di un punto della retta e di un vettore direttore. Scegliamo:

• Punto: A(1,1,0);

• Vettore directore: $\overrightarrow{AB} = (2, -1, -1)$.

Quindi le equazioni parametriche di r_1 sono

$$r_1: \left\{ \begin{array}{l} x=2t+1\\ y=-t+1\\ z=-t \end{array} \right., \qquad t\in \mathbb{R}.$$

(b) Si consideri la retta r_2 descritta dalle equazioni cartesiane

$$r_2: \left\{ \begin{array}{l} X + Y - 1 = 0 \\ Y + Z - 3 = 0. \end{array} \right.$$

Determinare la posizione reciproca di r_1 e r_2 e, se possibile, determinare il piano π che le contiene entrambe.

Svolgimento

Innanzitutto determiniamo le equazioni cartesiane di r_1 , ricavando t dall'ultima equazione e sostituendola nelle prime due:

$$\begin{cases} t = -z \\ x = -2z + 1 \\ y = z + 1 \end{cases} \Rightarrow \begin{cases} t = -z \\ x + 2z - 1 = 0 \\ y - z - 1 = 0. \end{cases}$$

Le equazioni cartesiane di r_1 sono quindi:

$$r_1: \left\{ \begin{array}{l} X + 2Z - 1 = 0 \\ Y - Z - 1 = 0. \end{array} \right.$$

Sia dunque

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & -3 \end{pmatrix}$$

la matrice dei coefficienti delle equazioni cartesiane di r_1 e r_2 . Si può calcolare facilmente che det(A) = 0, per cui r_1 e r_2 sono complanari.

Inoltre, sistema

$$\begin{cases} X + 2Z - 1 = 0 \\ Y - Z - 1 = 0 \\ X + Y - 1 = 0 \\ Y + Z - 3 = 0, \end{cases}$$

possiede l'unica soluzione (-1,2,1). Quindi r_1 e r_2 sono incidenti e si intersecano nel punto P(-1,2,1).

Per determinare il piano π che contiene sia r_1 che r_2 consideriamo il punto di intersezione P(-1,2,1), il punto $A(1,1,0) \in r_1$ e un punto qualsiasi di r_2 diverso da P, ad esempio C(0,1,2). Baserà allora determinare il piano passante per i punti $A, P \in C$. Abbiamo $\overrightarrow{PA} = (2,-1,-1)$ e $\overrightarrow{PC} = (1,-1,1)$, quindi le equazioni parametriche di π sono:

$$\pi:\left\{\begin{array}{l} x=2s+t-1\\ y=-s-t+2\\ z=-s+t+1 \end{array}\right., \qquad s,t\in\mathbb{R}.$$

(c) Sia $k \in \mathbb{R}$. Si consideri il piano π_k definito dall'equazione cartesiana

$$\pi_k : k^2 X + (k+4)Y + kZ + k - 1 = 0.$$

Si determinino il/i valore/i di k tali che π_k sia parallelo al piano π trovato al punto (b) e per tale/i valore/i si calcoli la distanza tra i due piani.

Svolgimento

Innanzitutto determiniamo un'equazione cartesiana di π . Calcoliamo un vettore normale a π facendo il prodotto vettoriale di $\overrightarrow{PA} = (2, -1, -1)$ per $\overrightarrow{PC} = (1, -1, 1)$:

$$v = (2, -1, -1) \times (1, -1, 1) = (-2, -3, -1).$$

Un'equazione cartesiana di π è dunque della forma -2X-3Y-Z+d=0. Imponendo il passaggio per P otteniamo d=5, e quindi

$$\pi: 2X - 3Y - Z + 5 = 0.$$

Dall'equazione cartesiana di π_k vediamo facilmente che un vettore normale è dato da $w_k = (k^2, k+4, k)$.

Ora i piani π_k e π sono paralleli se e solo se v e w_k sono collineari, ovvero, se e solo se esiste $\lambda \in \mathbb{R}$ tale che $w_k = \lambda v$. Abbiamo

$$w_k = \lambda v \Leftrightarrow (k^2, k+4, k) = \lambda(-2, -3, -1) \Leftrightarrow \begin{cases} k^2 = -2\lambda \\ k+4 = -3\lambda \\ k = -\lambda \end{cases} \Leftrightarrow \begin{cases} k^2 = 2k \\ k+4 = 3k \\ k = -\lambda \end{cases} \Leftrightarrow k = 2.$$

Quindi π_k è parallelo a π se e solo se k=2, per cui si ottiene:

$$\pi_2: 4X + 6Y + 2Z + 1 = 0.$$

Sia $P(-1,2,1) \in \pi$. La distanza tra π e π_2 è data dalla distanza di P da π_2 :

$$d(\pi, \pi_2) = d(P, \pi_2) = \frac{-4 + 12 + 2 + 1}{\sqrt{4^2 + 6^2 + 2^2}} = \frac{11}{\sqrt{56}} = \frac{11\sqrt{14}}{28}.$$