CS 3640: Introduction to Networks and Their Applications

Fall 2023, Lecture 9: Review of the link layer

Instructor: Rishab Nithyanand

Teaching Assistant: Manisha Keim

Announcements

- Assignment 2
 - Due 9/28
- Assignment 3
 - Will be released on 9/28; due on 10/12
- Mid-term on 10/17
 - Internet design principles
 - Link layer
 - Network layer

Today's class

1.

Wrapping up link layer

2.

Link layer fundamentals (quiz)

Spanning trees

- A subset of edges in a graph that:
 - Spans all nodes.
 - Does not create any cycles.

Why do spanning trees help?

• If bridges in our topology can collectively organize their forwarding tables to make the topology seem like a spanning tree, then all loops are removed.

Topology constructed from node

How do nodes construct a spanning tree from any network topology?

- All bridges randomly elect a single bridge as the "root" of the spanning tree.
 - Example (shortest straw): All bridges pick a random number. The bridge with the smallest random number is the root.
- Each bridge finds the shortest path to this root.
 - Problem: Need to know where the root is and the shortest way to get there.
 - Solution: Broadcast your best knowledge to all neighbors. Update your knowledge. Repeat until steady state is reached.
- The union of all these paths is a spanning tree.

How do nodes construct a spanning tree from any network topology?

Bridges vs. Switches

- Both make it possible to increase LAN capacity via the same approaches.
 - Automatically learn and maintain forwarding tables.
- A switch is a special case of a bridge.
 - Bridge: Each port can be connected to either another bridge, hub, or broadcast net.
 - Switch: Each port can only be connected to a single device (an end-host or another switch).
 - You don't need MAC protocols in switches! Why?

How does the link layer frame travel from source to destination within a LAN?

- We know how frames are forwarded within the LAN.
 - Switches and bridges. Both rely on knowing the destination MAC address.
- But how does the sender know the MAC address of the receiver?
 - The Address Resolution Protocol (ARP)
 - Each end-host maintains an ARP table.
 - This is a collection of <IP address, MAC address, TTL> tuples.
 - When a packet from the network layer arrives, the link layer looks at the destination IP address and fetches the corresponding record from the ARP table.
 - **Discuss:** What if there is no entry in the ARP table?
 - Broadcast an ARP request asking for a response from the end-host owning the destination IP address.
 - ARP response has MAC address.

Discussion

- Could the whole Internet be one big switching domain? What would this look like? What issues would appear?
 - Constant broadcasting to locate unknown hosts (billions of these!) would be a disaster!
 - Reaching a steady state with the spanning tree would be very improbable.
 - Each switch would need to know every MAC address on the Internet! Think of the memory that would require!
- We use IP addressing and network-layer routing to avoid these problems.
 - Topic for the next few weeks ©

Today's class

1.

Wrapping up link layer

2.

Link layer fundamentals (quiz)

Core functions of the link layer

 What job does the link layer do? What header fields does it use to help it do its job?

Error handling in the link layer

- What are the approaches for detecting errors in frames? What are the limitations of each approach?
- How does the sender of a frame know if a frame was received error free? How do we improve the efficiency of this protocol?

Medium access control

- Why do we need MAC protocols?
- What is key idea behind the ALOHA protocol? What improvement does the Slotted ALOHA make? Why does it work?
- How does the CSMA/CD protocol work? Why doesn't it apply to wireless networks? How does the CSMA/CA protocol work? Why do we need the RTS/CTS variant?
- What are the hidden terminal and exposed terminal problems? What errors do they introduce? How do we solve them?

Addressing and forwarding in the link layer

- How do we address devices on the link layer? Are these addresses unique to each device?
- What are the differences between hubs, switches, and bridges?
- What is a forwarding table? How do bridges and switches create/update their forwarding tables?
- Why are loops bad in our networks? How do we prevent them from causing problems?

