Modular specification of monads through higher-order presentations

Ambroise Lafont

joint work with Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Submitted to FSCD 2019

Overview

Topic: specification and construction of untyped syntaxes with variables and a well-behaved substitution (e.g. lambda calculus).

Our work:

- 1. general notion of *1-signature* based on *monads* and *modules*.
 - Caveat: Not all of them do generate a syntax
 - special case: classical *algebraic 1-signatures* generate a syntax
- 2. notion of **2-signature**: a pair of a 1-signature and a set of equations.
 - special case: *algebraic 2-signatures* generate a syntax

Operations covered by our result

Some examples:

Symmetric operations

$$m: T \times T \to T$$
 s.t. $m(t, u) = m(u, t)$

- Fixed point operation
- Syntactic closure operator with coherences
- λ-calculus modulo βη

What is a syntax?

generates a syntax = existence of the initial model

Table of contents

1. Review: Binding signatures and their models

2. 1-Signatures and models based on monads and modules

3. Equations

4. Recursion

Table of contents

1. Review: Binding signatures and their models

- Categorical formulation of term languages
- Initial semantics for binding signatures

- 2. 1-Signatures and models based on monads and modules
- 3. Equations
- 4. Recursion

Categorical formulation of a term language

Example: syntax with a binary operation \star , a constant 0, and variables

$$egin{array}{ll} \exp r ::= x & (variable) \ & |t_1 igstar t_2 & (binary operation) \ & |0 & (constant) \end{array}$$

The syntax can be considered as the endofunctor B (on Set):

$$B: X \mapsto \{\text{expressions over } X\}$$

For example:

$$B(\emptyset) = \{0, 0 \star 0, \dots\}$$

$$B(\{x, y\}) = \{0, 0 \star 0, \dots, x, y, x \star y, \dots\}$$

Categorical formulation of a term language

Then we have:

$$\bigstar: B \times B \stackrel{\centerdot}{\rightarrow} B$$

$$0: \quad 1 \quad \stackrel{\centerdot}{\rightarrow} B$$

$$\operatorname{var}: \operatorname{Id}_{\operatorname{Set}} \to B$$

Putting all together:

$$B \times B + 1 + \operatorname{Id}_{\operatorname{Set}} \to B$$

i.e. B is an algebra for the endofunctor $F\mapsto F imes F+1+\mathrm{Id}_{\mathrm{Set}}$ on the category $\mathrm{End}_{\mathrm{Set}}$.

Actually, B can be **characterized** as the initial algebra.

Binding Signatures

Definition

Binding signature = a family of lists of natural numbers.

Each list specifies one operation in the syntax:

- length of the list = number of arguments of the operation
- natural number in the list = number of bound variables in the corresponding argument

Syntax with 0, ★:

Initial semantics for binding signatures

Reminder

The syntax $(0, \star)$ is the initial algebra for the endofunctor:

$$F \mapsto F \times F + 1 + \operatorname{Id}_{\operatorname{Set}}$$

More generally, any binding signature gives rise to an endofunctor Σ .

Definition $\mathbf{Model} = (\Sigma + \mathbf{Id}_{Set}) \text{-algebra}$

Classical Theorem
The initial $(\Sigma + \mathrm{Id}_{\mathrm{Set}})$ -algebra of a binding signature Σ always exists.

Question: Does this initial algebra come with a well-behaved substitution?

Answer: Yes: see e.g. [Fiore, Plotkin, Turi 1999], [Ghani & Uustalu 2003]

Table of contents

1. Review: Binding signatures and their models

2. 1-Signatures and models based on monads and modules

- Our take on substitution
- Our take on 1-signatures, models and syntax
- Our take on binding 1-signatures
- 3. Equations
- 4. Recursion

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R \mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$
 module over R

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$
 module over R

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$
 module over R

A **model of** Σ is a pair:

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Substitution and monads

Reminder:

- B(X) = expressions built out of 0, \star and variables taken in X
- Variables induce a natural transformation $\mathrm{var}: \mathrm{Id}_{\mathrm{Set}} o B$

Substitution:

$$\mathrm{bind}: B(X) o (X o B(Y)) o B(Y)$$
 + laws

A triple (B, var, bind) is called a **monad**.

monad morphism = mapping preserving var and bind.

Monads

- 1. $B : Set \rightarrow Set$ $B(X) = expressions \ built \ out \ of \ 0, \ \star \ and \ variables \ taken \ in \ X$
- 2. A collection of functions $(\operatorname{var}_X:X\to B(X))_X$ Variables are expressions
- 3. For each function $u: X \to B(Y)$, a function $\operatorname{bind}_u: B(X) \to B(Y)$ Parallel substitution

Notation:
$$\operatorname{bind}_{\mathbf{u}}(\mathbf{t}) = \mathbf{t}[\mathbf{x} \mapsto \mathbf{u}(\mathbf{x})]$$

4. Monadic laws:

$$egin{aligned} & \mathrm{var}(\mathbf{y})[\mathbf{x}\mapsto\mathbf{u}(\mathbf{x})] = \mathbf{u}(\mathbf{y}) \\ & \mathbf{t}[\mathbf{x}\mapsto\mathbf{var}(\mathbf{x})] = \mathbf{t} \\ & \mathbf{t}[\mathbf{x}\mapsto\mathbf{f}(\mathbf{x})][\mathbf{y}\mapsto\mathbf{g}(\mathbf{y})] = \mathbf{t}[\mathbf{x}\mapsto\mathbf{f}(\mathbf{x})[\mathbf{y}\mapsto\mathbf{g}(\mathbf{y})] \] \end{aligned}$$

Preview: Operations are module morphisms

★ commutes with substitution

$$(t \star u)[x \mapsto v_x] = t[x \mapsto v_x] \star u[x \mapsto v_x]$$

Categorical formulation

 $B \times B$ supports B-substitution $\bigcirc \bigcirc \longrightarrow B \times B$ is a **module over** B

 \bigstar commutes with substitution \frown $\bigstar: B \times B \to B$ is a **module morphism**

	Monad B	Module M over a monad B
	$\mathrm{B}:\mathrm{Set} o\mathrm{Set}$	$\mathrm{M}:\mathrm{Set} o\mathrm{Set}$
Variables		
Substitution		
Substitution		
laws		

	Monad B	Module M over a monad B
	$\mathrm{B}:\mathrm{Set} o\mathrm{Set}$	$\mathbf{M}:\mathbf{Set}\to\mathbf{Set}$
Variables	$(\mathrm{var}_{\mathrm{X}}:X o B(X))_{X}$	
Substitution		
Substitution		
laws		

	Monad B	Module M over a monad B
	$\mathrm{B}:\mathrm{Set}\to\mathrm{Set}$	$\mathbf{M}:\mathbf{Set}\to\mathbf{Set}$
Variables	$(\mathrm{var}_{\mathrm{X}}:X o B(X))_X$	
	$orall \ \mathrm{u}:\mathrm{X} ightarrow \mathrm{B}(\mathrm{Y}),$	$orall \ \mathrm{u}:\mathrm{X} ightarrow \mathbf{B}(\mathrm{Y}),$
Substitution	$egin{aligned} \operatorname{bind}_{\mathrm{u}} : & \mathbf{B}(\mathrm{X}) ightarrow & \mathbf{B}(\mathrm{Y}) \\ & \mathrm{t} & \mapsto \mathrm{t}[\mathrm{x} \mapsto \mathrm{u}(\mathrm{x})]^{\mathbf{B}} \end{aligned}$	$egin{aligned} \operatorname{bind}_{\mathrm{u}} : & \mathbf{M}(\mathrm{X}) ightarrow & \mathbf{M}(\mathrm{Y}) \\ & \mathrm{t} & \mapsto \mathrm{t}[\mathrm{x} \mapsto \mathrm{u}(\mathrm{x})]^{\mathbf{M}} \end{aligned}$
Substitution		
laws		

	Monad B	Module M over a monad B
	$\mathrm{B}:\mathrm{Set}\to\mathrm{Set}$	$\mathrm{M}:\mathrm{Set} o\mathrm{Set}$
Variables	$(\mathrm{var}_{\mathrm{X}}:X o B(X))_X$	
Substitution	$egin{aligned} orall \ u: X & ightarrow B(Y), \ & ext{bind}_u: B(X) & ightarrow B(Y) \ & ext{t} & \mapsto ext{t} [ext{x} \mapsto ext{u}(ext{x})]^B \end{aligned}$	$egin{aligned} orall \ u: X & ightarrow B(Y), \ & ext{bind}_u: M(X) & ightarrow M(Y) \ & ext{t} & \mapsto ext{t} [ext{x} \mapsto ext{u}(ext{x})]^M \end{aligned}$
Substitution	$egin{aligned} & \mathrm{var}(\mathrm{y})[\mathrm{x} \mapsto \mathrm{u}(\mathrm{x})]^\mathrm{B} = \mathrm{u}(\mathrm{y}) \\ & \mathrm{t}[\mathrm{x} \mapsto \mathrm{var}(\mathrm{x})]^\mathrm{B} = \mathrm{t} \\ & \mathrm{t}[\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})]^\mathrm{B}[\mathrm{y} \mapsto \mathrm{g}(\mathrm{y})]^\mathrm{B} = \end{aligned}$	
	$t[x \mapsto f(x)[y \mapsto g(y)]^B]^B$	

	Monad B	Module M over a monad B
	$\mathrm{B}:\mathrm{Set}\to\mathrm{Set}$	$\mathbf{M}:\mathbf{Set}\to\mathbf{Set}$
Variables	$(\mathrm{var}_{\mathrm{X}}:X o B(X))_{X}$	
Substitution	$egin{aligned} &orall \ u: X ightarrow B(Y), \ & ext{bind}_u: B(X) ightarrow B(Y) \ & ext{t} \ \mapsto ext{t} [x \mapsto u(x)]^B \end{aligned}$	$egin{aligned} orall \ u: X & ightarrow B(Y), \ & ext{bind}_u: \mathbf{M}(X) ightarrow \mathbf{M}(Y) \ & ext{t} \ \mapsto ext{t} [ext{x} \mapsto ext{u}(ext{x})]^\mathbf{M} \end{aligned}$
	$ ext{var}(y)[x\mapsto u(x)]^B=u(y)$	
Substitution	$t[x \mapsto var(x)]^B = t$	$\mathrm{t}[\mathrm{x}\mapsto \mathrm{var}(\mathrm{x})]^{ extsf{M}}=\mathrm{t}$
laws	$egin{aligned} \mathbf{t}[\mathbf{x} \mapsto \mathbf{f}(\mathbf{x})]^{\mathbf{B}}[\mathbf{y} \mapsto \mathbf{g}(\mathbf{y})]^{\mathbf{B}} = \ & \mathbf{t}[\mathbf{x} \mapsto \mathbf{f}(\mathbf{x})[\mathbf{y} \mapsto \mathbf{g}(\mathbf{y})]^{\mathbf{B}}]^{\mathbf{B}} \end{aligned}$	$egin{aligned} t[x \mapsto f(x)]^{ extbf{M}}[y \mapsto g(y)]^{ extbf{M}} = \ t[x \mapsto f(x)[y \mapsto g(y)]^{ extbf{B}}]^{ extbf{M}} \end{aligned}$

Module morphism VS monad morphism

	Monad morphism $B \to C$	B-Module morphism M → N
	$(\mathrm{m}_{\mathrm{X}}:B(X) o C(X))_X$	$(\mathrm{m}_{\mathrm{X}}:M(X) o N(X))_X$
Variables	$\mathrm{m}(\mathrm{var}^{\mathrm{B}}(\mathrm{x})) = \mathrm{var}^{\mathrm{C}}(\mathrm{x})$	
	$orall \ f: X ightarrow B(Y),$	$orall \ \mathrm{f}:\mathrm{X} ightarrow\mathrm{B}(\mathrm{Y}),$
Substitution	$\mathrm{m}(\mathrm{t}[\mathrm{x}\mapsto\mathrm{f}(\mathrm{x})]^{\mathrm{B}})=$	$\mathrm{m}(\mathrm{t}[\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})]^{\mathrm{M}}) =$
	$\mathrm{m}(\mathrm{t})[\ \mathrm{x}\mapsto \mathrm{m}(\mathrm{f}(\mathrm{x}))\]^{\mathrm{C}}$	$m(t)[\ x \mapsto f(x)\]^N$

Building blocks for binding signatures

Essential constructions of **modules over a monad** R:

- R itself
- $M \times N$ for any modules M and N (in particular, $R \times R$)
- The **derivative of a module** M is the module M' defined by $M'(X) = M(X + \{ \diamond \}).$

The derivative is used to model an operation binding a variable (Cf next slide).

Syntactic operations are module morphisms

module morphism = maps commuting with substitution.

$$id_M:M o M$$

$$0:1\rightarrow B$$

$$\bigstar: B \times B \rightarrow B$$

$$app: \varLambda \times \varLambda \to \varLambda$$

$$abs: \varLambda^{\scriptscriptstyle\mathsf{I}} o \varLambda$$

The Big Picture again

A **1-signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

A **model morphism** $m:(R,\rho)\to (S,\sigma)$ is a monad morphism commuting with the module morphism: $\Sigma(R) \xrightarrow{\rho} R$

Syntax

Definition

Given a 1-signature Σ , its **syntax** is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: the 1-signature $R \mapsto \mathscr{P} \circ R$

powerset endofunctor on Set

Examples of 1-signatures generating syntax

• **(0,★) language**:

```
Signature: R \mapsto \mathbf{1} + R \times R
```

Model:
$$(R , 0: 1 \rightarrow R, \bigstar : R \times R \rightarrow R)$$

Syntax:
$$(B, 0: 1 \rightarrow B, \star : B \times B \rightarrow B)$$

lambda calculus:

Signature: $R \mapsto R' + R \times R$

Model: $(R \text{ , } abs: R^{\textbf{\tiny{I}}}
ightarrow R \text{ , } app: R imes R
ightarrow R)$

Syntax: (Λ , $abs: \Lambda' o \Lambda$, $app: \Lambda imes \Lambda o \Lambda$)

Can we generalize this pattern?

Initial semantics for algebraic 1-signatures

Syntax exists for any **algebraic 1-signature**, i.e. 1-signature built out of derivatives, products, coproducts, and the trivial 1-signature $R \mapsto R$.

Algebraic 1-signatures correspond to binding signatures through the embedding:

Binding signatures \hookrightarrow Our 1-signatures

Question: Can we enforce some equations in the syntax?

For example: lambda calculus modulo beta and eta.

Table of contents

- 1. Review: Binding 1-signatures and their models
- 2. 1-Signatures and models based on monads and modules

3. Equations

4. Recursion

Specification of a binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R , + : R \times R \rightarrow R)$

What is an appropriate notion of model for a commutative binary operation ?

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad with a binary commutative operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad with a binary commutative operation

Equation (1) states an equality between R-module morphisms:

Specification of a commutative binary operation

1-Signature: $R\mapsto R imes R$ and parallel morphisms

 $(R ext{ , } +: R imes R o R)$ s.t. t+u=u+t (1) Model:

What is an appropriate notion of model for a commutative binary operation?

Answer: a monad with a binary commutative operation

Equation (1) states an equality between R-module morphisms:

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

Our framework: alternative approach where monads and modules are the central notions.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

Our framework: alternative approach where monads and modules are the central notions.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

This work: more general equations (e.g. λ -calculus modulo $\beta\eta$).

Equations

Given a 1-signature Σ , a Σ -equation $A \Rightarrow B$ is a functorial assignment

$$R \mapsto \Big(\ A(R) \Longrightarrow B(R) \Big)$$
 model of Σ parallel pair of module morphisms over R

A 2-signature is a pair

model of a 2-signature (Σ, E) :

- a model R of Σ
- s.t. \forall (A \Rightarrow B) \in E, the two morphisms $A(R) \Rightarrow B(R)$ are equal

Algebraic 2-signatures

Given a 1-signature Σ , a Σ -equation $A \Rightarrow B$ is **elementary** if:

- 1. A "preserves pointwise epimorphisms"
 - (e.g., any "algebraic 1-signature")
- 2. B is of the form $R \mapsto R'^{...}$ (e.g. $R \mapsto R$)

Algebraic 2-signature: (Σ,E) set of elementary algebraic 1-signature $\Sigma\text{-equations}$

Syntax exists for any algebraic 2-signature

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathrm{LCBn}}\left(\mathrm{R}
ight) := \Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} imes \mathrm{R} + \mathrm{R}'$$

model of Σ_{1C} = monad R with module morphisms:

$$app: R \times R \to R$$
 $abs: R' \to R$

β-equation:
$$(\lambda x.t) u = \underline{t[x \mapsto u]}$$
 η-equation: $t = \lambda x.(t x)$ $\sigma_R(t,u)$

$$\mathbf{E}_{\mathbf{LC}\boldsymbol{\beta}\boldsymbol{\eta}} = \{ \beta \text{-equation}, \eta \text{-equation} \}$$

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathrm{LCBn}}\left(\mathrm{R}
ight) := \Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} imes \mathrm{R} + \mathrm{R'}$$

model of Σ_{1C} = monad R with module morphisms:

$$\mathrm{app}:\mathrm{R} imes\mathrm{R} o\mathrm{R}\qquad \mathrm{abs}:\mathrm{R}' o\mathrm{R}$$

$$\mathrm{abs}:\mathrm{R}^{\prime}
ightarrow\mathrm{R}$$

β-equation: (λx.t)
$$u = \underline{t[x \mapsto u]}$$

$$\sigma_R(t,u)$$

η-equation:
$$t = \lambda x.(t x)$$

$$\mathbf{E}_{\mathbf{LC}\boldsymbol{\beta}\boldsymbol{\eta}} = \{ \beta \text{-equation}, \eta \text{-equation} \}$$

Example: fixpoint operator

Example: fixpoint operator

The algebraic 2-signature (Σ_{fix}, E_{fix}) of a fixpoint operator:

$$\Sigma_{ ext{fix}}\left(ext{R}
ight) := ext{R'} \qquad \qquad ext{E}_{ ext{fix}} = \left\{ egin{array}{c} \left(1
ight)
ight.
ight.$$

Proposition [AHLM CSL 2018]

Fixpoint operators in $LC_{\beta\eta}$ are in one to one correspondance with fixpoint combinators (i.e. λ -terms Y s.t. t (Yt) = Yt for any t).

Combining algebraic 2-signatures

Algebraic 2-signatures can be combined:

 λ -calculus modulo $\beta \eta$ with an explicit fixpoint operator

Example: free monoid

An algebraic 2-signature (Σ , E) for the free monoid monad $X \mapsto \prod_n X^n$

$$\Sigma(R) := 1 + R \times R$$

model of Σ = monad R with module morphisms:

$$\epsilon: 1 \to R$$

$$\epsilon: 1 \to R$$
 $m: R \times R \to R$

3 elementary Σ-equations:

associativity

left unit

right unit

Table of contents

- 1. Review: Binding signatures and their models
- 2. 1-Signatures and models based on monads and modules
- 3. Equations

4. Recursion

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

1. Give a module morphism $s: \Sigma(S) \to S$

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

1. Give a module morphism $s : \Sigma(S) \to S$ \Rightarrow induces a Σ -model (S, s)

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s : \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in ${\bf E}$ are satisfied for this model
 - \Rightarrow induces a model of (Σ, E)

Recursion on the syntax \simeq Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s:\Sigma(S)\to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model \Rightarrow induces a model of (Σ, E)

Initiality of R \Rightarrow model morphism $R \to S \Rightarrow$ monad morphism $R \to S$

Example: Computing the set of free variables

LC = initial model of
$$(\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathbf{fv}: \mathrm{LC} \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t})) = \mathrm{fv}(\mathrm{t}) \setminus \{\diamond\}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathrm{fv}:\mathrm{LC}\to\mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t,u})) = \mathrm{fv}(\mathrm{t}) \cup \mathrm{fv}(\mathrm{u})$$

$$fv(abs(t)) = fv(t) \setminus \{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \{\, \diamond \, \}: \, \mathcal{P}^{\scriptscriptstyle \mathsf{I}} \, o \mathcal{P}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathbf{fv}: \mathbf{LC} \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t}))=\mathrm{fv}(\mathrm{t})\setminus\{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \set{\diamond}: \mathcal{P}^{\scriptscriptstyle\mathsf{I}} o \mathcal{P}$$

Initiality of $LC \Rightarrow fv : LC \rightarrow \mathcal{P}$ satisfying the above equations (as a model morphism).

Example: Translating λ-calculus with fixpoint

```
\begin{split} \mathsf{LC}_{\beta\eta\mathrm{fix}} &= \mathsf{initial\ model\ of\ }(\Sigma\,,E) = (\Sigma_{\mathrm{LC}\beta\eta} + \Sigma_{\mathrm{fix}}\,,E_{\mathrm{LC}\beta\eta} \cup E_{\mathrm{fix}}) \\ &\quad \lambda\text{-calculus\ modulo\ }\beta\eta\ \ with\ \ a\ fixpoint\ operator\ \mathrm{fix}:\mathrm{LC}_{\beta\eta\mathrm{fix}}{}^{\mathsf{l}} \to \mathrm{LC}_{\beta\eta\mathrm{fix}} \\ \mathsf{LC}_{\beta\eta} &= \mathsf{initial\ model\ of\ }(\Sigma_{\mathrm{LC}\beta\eta}\,\,,E_{\mathrm{LC}\beta\eta}\,) \\ &\quad \lambda\text{-calculus\ modulo\ }\beta\eta \\ &\quad \mathsf{monad\ morphism} \end{split}
```

 $f(u) = "u[fix(t) \mapsto app(Y, abs(t))]"$

a chosen fixpoint combinator

Example: Translating λ-calculus with fixpoint

$$\mathsf{LC}_{\mathsf{\beta\eta fix}} = \mathsf{initial} \; \mathsf{model} \; \mathsf{of} \; (\Sigma \, , E) = (\Sigma_{\mathsf{LC\beta\eta}} + \Sigma_{\mathsf{fix}} \, , E_{\mathsf{LC\beta\eta}} \cup E_{\mathsf{fix}})$$
 $\lambda\text{-calculus modulo } \beta \eta \; \mathsf{with} \; \mathsf{a} \; \mathsf{fixpoint} \; \mathsf{operator} \; \mathsf{fix} : \mathsf{LC}_{\beta\eta \mathsf{fix}} \ \to \mathsf{LC}_{\beta\eta \mathsf{fix}}$

$$LC_{\beta\eta}$$
 = initial model of $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$

λ-calculus modulo βη

monad morphism

Definition of a translation $f: LC_{\beta\eta fix} \to LC_{\beta\eta}$ s.t.

$$f(u) = "u[fix(t) \mapsto app(Y, abs(t))]"$$

a chosen fixpoint combinator

 \Rightarrow make LC_{$\beta\eta$} a model of (Σ, E) :

$$\begin{split} \operatorname{app} : \operatorname{LC}_{\beta\eta} \times \operatorname{LC}_{\beta\eta} \to \ \operatorname{LC}_{\beta\eta} & \qquad \qquad \hat{Y} : \operatorname{LC}_{\beta\eta}' \to \operatorname{LC}_{\beta\eta} \\ \operatorname{abs} : \operatorname{LC}_{\beta\eta}' \to \ \operatorname{LC}_{\beta\eta} & \qquad \qquad t \mapsto \operatorname{app}(Y, \operatorname{abs}(t)) \end{split}$$

Example: Translating λ-calculus with fixpoint

$$\mathsf{LC}_{\beta\eta\mathsf{fix}} = \mathsf{initial} \; \mathsf{model} \; \mathsf{of} \; (\Sigma \, , E) = (\Sigma_{\mathsf{LC}\beta\eta} + \Sigma_{\mathsf{fix}} \, , E_{\mathsf{LC}\beta\eta} \cup E_{\mathsf{fix}}) \\ \lambda \text{-calculus modulo } \beta\eta \; \mathsf{with} \; \mathsf{a} \; \mathsf{fixpoint} \; \mathsf{operator} \; \mathsf{fix} : \mathsf{LC}_{\beta\eta\mathsf{fix}} \ \to \mathsf{LC}_{\beta\eta\mathsf{fix}}$$

$$LC_{\beta\eta}$$
 = initial model of $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$

λ-calculus modulo βη

monad morphism

Definition of a translation $f: LC_{\beta\eta fix} \to LC_{\beta\eta}$ s.t.

$$f(u) = "u[fix(t) \mapsto app(Y, abs(t))]"$$

a chosen fixpoint combinator

 \Rightarrow make LC_{$\beta\eta$} a model of (Σ, E) :

$$\begin{split} \operatorname{app} : \operatorname{LC}_{\beta\eta} \times \operatorname{LC}_{\beta\eta} \to \ \operatorname{LC}_{\beta\eta} & \qquad \qquad \hat{Y} : \operatorname{LC}_{\beta\eta}' \to \operatorname{LC}_{\beta\eta} \\ \operatorname{abs} : \operatorname{LC}_{\beta\eta}' \to \ \operatorname{LC}_{\beta\eta} & \qquad \qquad \operatorname{t} \mapsto \operatorname{app}(Y, \operatorname{abs}(t)) \end{split}$$

Initiality of $LC_{\beta\eta fix} \Rightarrow f: LC_{\beta\eta fix} \rightarrow LC_{\beta\eta}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

Definition of a (monad) morphism $s : LC \rightarrow \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

Solution: replace $\mathbb N$ with the continuation monad $C(X) = \mathbb N^{(\mathbb N^{\mathbf A})}$

Then, give the relevant ([CSL AHLM 2010]) morphism $\Sigma_{\mathrm{LC}}(\mathrm{C}) o \mathrm{C}$

Initiality of LC \Rightarrow f:LC \rightarrow C

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

Solution: replace $\mathbb N$ with the continuation monad $C(X) = \mathbb N^{(\mathbb N^{\mathbf A})}$

Then, give the relevant ([CSL AHLM 2010]) morphism $\Sigma_{\mathrm{LC}}(\mathrm{C}) o \mathrm{C}$

Initiality of LC \Rightarrow f:LC \rightarrow C

affects an arbitrary size to each variable

 $\textbf{Intuition} \colon \text{uncurrying } f_X : LC(X) \to \mathbb{N}^{(\mathbb{N}^X)} \ \, \text{yields } g : LC(X) \times \overset{\checkmark}{\mathbb{N}^X} \to \mathbb{N}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{
m LC}({
m R})={
m R} imes{
m R}+{
m R}^{
m I}$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

\mathbb{N} is not a monad!

Solution: replace $\mathbb N$ with the continuation monad $C(X) = \mathbb N^{(\mathbb N^{\mathbf A})}$

Then, give the relevant ([CSL AHLM 2010]) morphism $\Sigma_{\mathrm{LC}}(\mathrm{C}) o \mathrm{C}$

Initiality of LC \Rightarrow f:LC \rightarrow C

affects an arbitrary size to each variable

Intuition: uncurrying $f_X : LC(X) \to \mathbb{N}^{(\mathbb{N}^X)}$ yields $g : LC(X) \times \mathbb{N}^X \to \mathbb{N}$

$$s(t) = g(t, (x \mapsto 0))$$

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our framework to simply typed syntaxes.

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our framework to simply typed syntaxes.

Thank you!