151: Have you looked at all the resources on Querous? · Group work advice & resources · Academic Integrity reminder (in the announcement) TTI: details page coming soon (this week) Last time...
Prove: $\forall x \in \mathbb{Z}$, $\chi \mid x + 5 \Rightarrow \chi \mid 5$ Proof header Let $\kappa \in \mathbb{Z}$. Assume $\kappa \mid \chi + 5$, in other wads: (3k) EZ, x+5=k,·x Note: from this point on, we can use k, in the proof.

WTS: x/5, i.e., $\exists k \in \mathbb{Z}$, $5 = k_2 \cdot \chi$ constant or expression using constants or variables already introduced) Let $k_2 = k_1 - l$ Then, $x+5=k_i\cdot x$ \Rightarrow 5= $k_1 \times - \times$ $\Rightarrow \frac{5=k_2\cdot \gamma}{2}$ part of proof ROUGH WORK __NOT KNOW WANT $k_2 = ?$ x E # 3 KIEZ, X+5=K1.X 5= k2·x

In general, proof = sequence of (deduction, justification) pairs. Every step should be justified, except simple algebra Justifications will be one at the following: D- definitions
2 external facts } external 3- assumptions } internal 4- previous deductions } Note: proof above goes through (it is correct)
with any integer d in place of 5

—) proof of $\forall x, d \in \mathbb{Z}, \ x \mid x \nmid d \Rightarrow x \mid d \ (*)$ Consider(1) $\forall x, p \in \mathbb{Z}^{+}$ Prime(p) $\wedge x | x + p \Rightarrow x = 1 \vee x = p$ Recall: Prime(p): $p > 1 \wedge \forall d \in \mathbb{Z}^{+}, d | p \Rightarrow d = 1 \vee d = p$ Proof of (1):

Let $x, p \in \mathbb{Z}$. Assume Prime(p) and x(x+p).

Then, by (x), x(p).

Then, by def. of Prime(p), 1

since x(p), x=l or x=p. \square

EX: Prove:

\[
\text{VelN, (\text{Va,b}\in \mathbb{Z}, \text{Vand\text{b}}\in \text{d\text{ab}})} \\
\text{Idea 1; direct prof} \\
\text{Let delN. Asrume \text{Va,b}\in \mathbb{Z}, d\text{and fb}\in d\text{b}} \\
\text{WTS: d\le 1 v Prime(d) difficult, maybe even impossible...}} \\
\text{Idea 2: indirect proof} \\
\text{("proof by contrapositive")} \\
\text{instead of proving } \text{P} \text{Q} \\
\text{prime} \text{7Q} \Rightarrow \text{7P}

HdelN, /2Q(d) → 2P(d) HdelN, P(d) => Q(d) Hdell, d>In rPrime(d) ⇒
Ja, b ∈ Z, dfandtbndlab Let delN. Assume d>1 and Prime(d) with Fa, b eZ, Standtb n d/ab WANT KNOW $a = \frac{?}{}$ dell b= ?
dfa dfb 7 Prime (d) dab