TRANSLATOR'S DECLARATION

I, John F. Moloney, Bsc., MIL., CChem., MRSC., translator to Taylor and Meyer of 20 Kingsmead Road, London, SW2 3JD, Great Britain, verify that I know well both the German and the English language, that I have prepared the attached English translation of 12 pages of a German Patent application in the German language with the title:

Verwendung der Acetylaminosäureracemase aus Amycolatopsis orientalis zur Racemisierung von Carbamoylaminosäuren

identified by the code number 000337 AM at the upper left of each page and of the law firm of corresponding to client/matter number

and that the attached English translation of this document is a true and correct translation of the document attached thereto to the best of my knowledge and belief.

I further declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that wilful false statements and the like are punishable by fine or imprisonment, or both, under 18 USC 1001, and that such false statements may jeopardize the validity of this document.

By: J. F. Mee Con Date: 31st July 2003

10

Use of acetylamino acid racemase from Amycolatopsis orientalis for racemisation of carbamoylamino acids

The present invention relates to the use of an N-acetylamino acid racemase (AAR) in a process for the racemisation of N-carbamoylamino acids.

Optically pure amino acids are important starting materials for chemical synthesis and for parenteral nutrition. Many possibilities of preparing optically pure amino acids are known to the skilled person. Enzymatic processes, i.a. are suitable in this respect since, on the one hand, they operate catalytically and on the other hand permit the preparation of the amino acids with very high enantiomer enrichment.

A known enzymatic process starts from racemic hydantoins
which are transformed to N-carbamoyl-protected amino acids
by means of hydantoinases. These are then converted by
carbamoylases to the amino acids.

The separation of the racemates occurring in this reaction sequence takes place preferably on the basis of the N- $\,$

- carbamoyl-protected amino acids because both L and D-selective carbamoylases are available (Park et al., Biotechnol. Prog. 2000, 16, 564-570; May et al., Nat Biotechnol. 2000, 18, 317-20; Pietzsch et al., J. Chromatogr. B Blomed. Sci. Appl. 2000, 737, 179-86; Chao et
- 25 al., Biotechnol. Prog. 1999, 15, 603-7; Wilms et al., J. Biotechnol. 1999, 63, 101-13; Batisse et al., Appl. Environ. Microbiol. 1997, 63, 763-6; Buson et al., FEMS Microbiol. Lett. 1996, 145, 55-62).

In order to guarantee complete conversion of the hydantoins used to optically pure amino acids, the necessary racemisation has taken place hitherto on the basis of hydantoins by chemical or enzymatic means (EP 745678; EP 542098; scheme 1).

Scheme 1:

N-acetylamino acid racemases (AARs) from Streptomyces

atratus Y-53 (Tokuyama et al., Appl. Microbiol. Biotechnol.
1994, 40, 835-840) and Amycolatopis sp. TS-1-60 (Tokuyama
et al., Appl. Microbiol. Biotechnol. 1995a, 42, 853-859)
and Amycolatopsis orientalis sp. lurida (DE19935268) are
known. TS-1-60, however, is found to have a very low

activity in the case of N-carbamcyl-protected amino acids.
Moreover, this enzyme has the disadvantage of a very high
metal ion dependence, which appears to be a drawback for
the use of this enzyme in an industrial-scale process.

The object of the present invention was, therefore, to show the use of an N-acetylamino acid racemase for the improved racemisation of N-carbamoylamino acids compared with the prior art. The intention was that this racemase might be used advantageously on an industrial scale in a process for the preparation of optically pure amino acid starting from racemic hydantoins.

The object is achieved by the use of the AAR according to claim 1. Claims 2 and 3 relate to preferred embodiments of the racemisation process according to the invention.

Due to the fact that an N-acetylamino acid racemase (AAR) from Amycolatopsis orientalis subspecies lurida (seq. 2) is used in a process for the racemisation of N-carbamoylamino acids, and in view of the surprisingly high activity of the AAR used according to the invention compared with TS-1-60 in terms of the racemisation of N-carbamoylamino acids, it is possible to achieve an equilibrium of enanticmers of N-carbamoyl-protected amino acids in an improved process.

This is particularly advantageous in that it is thus possible to establish a further enzymatic step in a process for the preparation of optically pure amino acids which is based on hydantoins (scheme 2).

Scheme 2:

In contrast to the enzymatic processes known from the literature and which proceed by way of enzymatic or optionally stressing chemical racemisation of hydantoins (scheme 1), a further advantageous possibility of generating optically pure amino acids from racemic hydantoins has thus been created.

The variant of AAR from Amycolatopsis o. sp. lurida prepared by recombinant technology according to DE19935268 is preferably used for the racemisation process. It is

known from DE19935268 that this exhibits relatively little heavy metal ion dependence (particularly with regard to pobalt ions) and has low amino acid inhibition. The generation thereof as a recombinant enzyme is also explained therein.

The process according to the invention, as has been mentioned, is used advantageously in an overall process for the preparation of enantiomerically enriched amino acids or derivatives thereof starting from hydantoins or N-10 carbamoylamino acids. In the case of hydantoins, it is preferable to proceed in such a manner that racemic hydantoins are cleaved by hydantoinases into the corresponding racemic N-carbamoylamino acids and these are then converted by L- or D-specific carbamoylases into the 15 optically active L- or D-amino acids. To ensure that no enrichment of the unconverted enantiomer of an Ncarbamoylamino acid takes place in the reaction mixture, the enantiomers of the N-carbamoylamino acids are brought into equilibrium by the addition of the AAR according to the invention and it is thus likewise possible to convert 20 the racemic hydantoin wholly to optically pure amino acids.

This process takes place preferably in an enzyme-membrane reactor (DE 199 10 691.6).

The enzymes mentioned may be used together or successively in the free form as homogeneously purified compounds or as enzymes prepared by recombinant technology. Moreover, the enzymes may also be used as a constituent of a guest organism (whole-cell catalyst as in US09/407062) or in conjunction with the digested cell mass of the host organism. It is also possible to use the enzymes in the immobilised form (Bhavender P. Sharma, Lorraine F. Bailey and Ralph A. Messing, "Immobilisierte Biomaterialiern - Techniken und Anwendungen", Angew. Chem. 1982, 94, 836-852). Immobilisation takes place advantageously by freeze-

drying (Dordick et al. J. Am. Chem. Soc. 194, 116, 5009-5010; Okahata et al. Tetrahedron Lett. 1997, 38, 1971-1974; Adlercreutz et al. Biocatalysis 1992, 6, 291-305). Freezedrying in the presence of surfactant substances such as Aerosol OT or polyvinylpyrrolidone or polyethylene glycol (PEG) or Brij 52 (diethylene glycol monocetyl ether) (Goto et al. Biotechnol. Techniques 1997, 11, 375-378) is more particularly preferred.

The microorganism Amycolatopsis orientalis subsp. lurida is deposited with the German Collection for Microorganisms under number DSM43134.

The term AAR within the context of the invention means both the native enzyme and the enzyme prepared by recombinant technology.

The term enantiomerically enriched denotes the presence of one enantiomer in the mixture with the other in a proportion of >50%.

The term amino acid within the context of the invention means a natural or non-naturally occurring α-amino acid,

i.e., the radical situated on the α-C-atom of the α-amino acid may be derived from a natural amino acid as described in Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 22nd edition, 1991, p.822f. or also from corresponding α-radicals of non-naturally occurring amino acids which are listed, e.g. in DE19903268.8.

SEQUENCE PROTOCOL

<110> Degussa-Hüls AG

5 <120> Use of an acetylamino acid racemase for the racemisation of carbamoylamino acids

<130> 000337 AM

10 <140>

<160> 2

<141>

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 1107

<212> DNA

20 <213> Amycolatopsis orientalis

<220>

<221> CDS

<222> (1)..(1107)

25

30

50

<400> 1

gtg aaa ctc agc ggt gtg gaa ctg cgc cgg gtc cgg atg ccg ctc gtg 48
Val Lys Leu Ser Gly Val Glu Leu Arg Arg Val Arg Met Pro Leu Val
1 5 10 15

gcc ccg ttc cgg acg tcg ttc ggg acg cag tcc gag cgg gaa ttg ctg 90 Ala Pro Phe Arg Thr Ser Phe Gly Thr Gln Ser Glu Arg Glu Leu Leu

35 ctg gtc cgc gcg gtg acc ccg gcg ggc gag ggc tgg ggc gaa tgt gtc 144
Leu Val Arg Ala Val Thr Pro Ala Gly Glu Gly Trp Gly Glu Cys Val

gcg atg gag gcg ccg ctc tac tcg tcg gag tac aac gac gcc gcc gag 192
40 Ala Met Glu Ala Pro Leu Tyr Ser Ser Glu Tyr Asn Asp Ala Ala Glu
50

cac gtg ctg cgg aac cat ctg atc ccc gca ctg ctg gcg gcc gag gac 240
His Val Leu Arg Asn His Leu Ile Pro Ala Leu Leu Ala Ala Glu Asp
45 65 70 75 80

gtg acc gcg cac aag gtg acg ccg ttg ctg gcg aag ttc aag ggc cac Val Thr Ala His Lys Val Thr Pro Leu Leu Ala Lys Phe Lys Gly His 85 90 95

cgg atg gcg aag ggc gcg ctg gag atg gcg gtc ctc gac gcc gaa ctc 336 Arg Met Ala Lys Gly Ala Leu Glu Met Ala Val Leu Asp Ala Glu Leu 100 105 110

55 cgc gcg cat gac cgg tcc ttc gcg gcc gag ctg ggg tcc act cgc gac 384 Arg Ala His Asp Arg Ser Phe Ala Ala Glu Leu Gly Ser Thr Arg Asp 115 120 125

tcc gtg gcc tgc ggg gtc tcg gtc ggg atc atg gac tcg atc ccg cac 43

	Ser	∵al 130	Ala	Cys	gly	Val	Ser 135	Val	ЗŀУ	Ile	Met	Asp 140	Ser	Ile	Pro	His	
5								tac Tyr									480
10								tgg Trp									528
15								gtg Val									576
10								ccc Pro 200									624
20								ccg Pro									672
25								atc Ile									720
30	tcg Ser	atc Ile	gtc Val	tcg Ser	gcc Ala 245	aag Lys	gcc Ala	gcc Ala	gcg Ala	gac Asp 250	gcg Ala	atc Ile	aag Lys	ctc Leu	ggc Gly 255	gcc Ala	768
35	tgc Cys	cag Gln	atc Ile	gtc Val 260	aac Asn	atc Ile	aaa Lys	ccg Pro	ggc Gly 265	cgg Arg	gtc Val	ggc Gly	gga Gly	tac Tyr 270	ctc Leu	gaa Glu	816
	gcc Ala	ege Arg	cgg Arg 275	gtg Val	cac His	gac Asp	gtc Val	tgc Cys 280	gcg Ala	gca Ala	cac His	ggg Gly	atc Ile 285	gcg Ala	gtg Val	tgg Trp	864
40	tgc Cys	ggc Gly 290	ggg Gly	atg Met	atc Ile	gag Glu	acc Thr 295	999 31y	ctc Leu	ggc	cgg Arg	gcg Ala 300	gcc Ala	aac Asn	gtc Val	gca Ala	912
45	atg Leu 305	gcc Ala	tcg Ser	ctg Leu	ccc Pro	ggc Gly 310	ttc Phe	acg Thr	ctg Leu	ccg Pro	ggg Gly 315	gac Asp	acc Thr	tcg Ser	gcg Ala	tcc Ser 320	960
5.0	ggc	cgg Arg	ttc Phe	tat Tyr	cgc Arg 325	acc Thr	gac Asp	atc Ile	acc Thr	gag Glu 330	ccg Pro	ttc Phe	gtg Val	ctg Leu	gac Asp 335	gcc Ala	1008
5.5	Gly 999	cat His	ctg Leu	ccg Pro 340	gtg Val	ccg Pro	acc Thr	ggg Gly	ccg Pro 345	ggc Gly	ctc Leu	999 Gly	gtg Val	act Thr 350	ccg Pro	att Ile	1056
	ccg Pro	gat Asp	ctt Leu 355	ctg Leu	gac Asp	gag Glu	gtc Val	acc Thr 360	acg Thr	gag Glu	aaa Lys	gcg Ala	tgg Trp 365	atc Ile	ggt Gly	tcg Ser	1104

tag 1107

5	< 2 :	10 > 1 11 > 1 12 > 1	368	olato	neie		iont	-1:-								
10	< 4 (00> 2	2													
	-				=)				1 ()				7 (ı Val
15				20	l .				25	,				3.0	١	ı Leu
13			35)				4.0					1 E			Val
		ى ر	,				55)				60)			a Glu
20	0.5					/ U					7 5					Asp 80
					00					90					0.5	80 His
25				100					7.05					110		Leu
20			410					120					125			Asp
		700					135					140				His
30	- 1 -					150					155					Ile 160
					T 6 2			Trp		170					175	
35				100				Val	185					100		
			エンコ					Pro 200					205			
		210					215	Pro				220				
40	223					∠30		Ile Ala			235					240
					445			Pro		250					2	
45				200				Cys	265					270		
			2/5					280 Gly					200			
		200					295	Thr				200				
50	5 0 5					2 T O		Ile			315					220
					325			Gly		ススハ					225	
55				240				Thr	345					3 = 0		
			355		•		_	360		J1 U	-y 5		365	тте	GΙΆ	ser

Examples:

Detection of racemase activity of the recombinant $\ensuremath{\mathsf{AAR}}$ enzyme

The substrate spectrum of the N-acetylamino acid racemase from Amycolatopsis orientalis subsp. lurida was tested using the enzyme assay described below.

The assay was composed of the following:

Tris/HCl buffer 50 mM (pH 8.0)

10 Substrate 25 mM Cobalt chloride 6 mM

AAR approx 150 µg purified protein

Final volume 1 ml

Enantiomerically pure amino acid derivatives were used in the test and the formation of the corresponding racemate was monitored in the polarimeter (Perkin-Elmer 241). Incubation took place at 30°C (heated cell) for 3 to 12 hours. The measurements were taken at a wavelength λ = 365 nm.

Table 1: List of the substrates tested and of the corresponding specific activity of the AAR.

Substrate	Specific activity
Barana .	
<i>N</i> -Carbamoyl-D-Met <i>N</i> -Carbamoyl-D-Phe	155 mU/mg 20 mU/mg
N-Carbamoyl-L-Abs N-Carbamoyl-L-Leu N-Carbamoyl-L-Met N-Carbamoyl-L-Tyr N-Carbamoyl-L-Val	15 mU/mg 20 mU/mg 118 mU/mg €2 mU/mg 20 mU/mg

5

The N-acyl amino acid racemase from A. TS-1-60 with N-carbamoyl-D-Met as substrate has an activity of 100 mU/mg. This specific activity is thus 35% lower than that of the racemase from A. orientalis subsp. lurida.

5

Patent claims:

- 1. Use of N-acetylamino acid racemases (AAR) from Amycolatopsis orientalis subspecies lurida in a process for the racemisation of N-carbamoylamino acids.
- 2. The use as claimed in claim 1 in a process for the preparation of enantiomerically enriched amino acids or derivatives thereof starting from hydantoins or Ncarbamoylamino acids.
- 10 3. The use as claimed in one of the preceding claims, wherein the process is carried out in an enzyme-membrane reactor.

Abstract:

The invention relates to the use of the N-acetylamino acid racemase from Amycolatopsis orientalis subspecies lurida for the racemisation of N-carbamoylamino acids.

5 This use permits the 100% preparation of optically pure amino acids starting from racemic hydantoins in an enzymatic overall process.