Lecture 2 CS5487 Lecture Notes (2022B) Prof. Antoni B. Chan	data LL
Parameter Estimation Dept of Computer Science City University of Hong Kong	2(0) = log P(D D)] independence assurption
How do we find a prob. List for a r.v. X?	= 03 p (x; \text{\tin}\exititt{\text{\tin}\til\text{\tex{\tex
Three Stops:	D(0) = 2100 p(x:10)
0 = parametris.	To get the MCE solution
2) collect samples from r.v. X: D: \(\frac{2}{3} \), \(\text{N} \) \(\frac{3}{3} \) We assume \(\text{Xi} \) are independent; \(\text{X} \) are independent \(\text{S} \)	is θ is a scalar, at local optimum: 1) $\frac{\partial}{\partial \theta} \log \rho(0 \theta) = 0$ at $\theta^{\#}$
2) Martine likelihood grincole:	2) $\frac{J^2}{J^2}$ (og $\rho(0 0) < 0$ at $0^{\frac{1}{4}}$ (local maximum; concave)
the officent parameter O* is that which making data. the probability (likelihood) of the training data.	3) check the boundary conditions of 0 (if necessary)
O" = argmax P(D O) Clikelihood of Lata with porom O. Tlikelihood function"	if Oris a vector:
= acomax log p(D(D)	$\int_{0}^{0} d\theta $
= argmin - log p(DIO) negative LL function (loss)	2) $\sqrt{\frac{2}{9}} l(\theta) = \begin{bmatrix} \frac{3^2}{20_1^2} & \cdots & \frac{3^2}{20_130p} \\ \vdots & \ddots & \vdots \\ \frac{3^2}{20p^2} \end{bmatrix} l(\theta)$ (regording definite) [1] $\frac{3^2}{14\sqrt{9}} l(\theta) = \begin{bmatrix} \frac{3^2}{20_1^2} & \cdots & \frac{3^2}{20p^2} \\ \vdots & \ddots & \vdots \\ \frac{3^2}{20p^2} & \frac{3^2}{20p^2} \end{bmatrix} l(\theta)$
<u>lide</u> : D is known, so $\rho(D \Theta)$ is a function of Θ . It is not a probability w.r.b. Θ .	on concern
log = natural log (log base e)	H>0: positive defn: 07H0>0, HO "bowl"-convex in all directions.

$$\frac{\text{Example: Bernaulli}}{\Theta = \pi}, \quad 0 \le \pi \le 1, \quad \chi = \underbrace{\frac{2}{5}}, 0, 13$$

$$L(\theta) = \underbrace{\frac{2}{5}} \log_{9} p(x; 10^{9})$$

$$= \underbrace{\frac{2}} \log_{9} p(x; 10^{9})$$

3) boundary condition: 0 sm sN 0 sm s1

1) 0= M (62 Known) 1(0) = 2 log p(x:10) $= \sum_{i} \left[-\frac{1}{2} \log 2\pi - \frac{1}{2} \log 6^2 - \frac{1}{262} (\chi_i - \mu)^2 \right]$ = $-\frac{N}{2}\log 2\pi - \frac{N}{2}\log 6^2 - \frac{1}{26^2} \sum_{i=1}^{\infty} (x_i - \mu)^2$ what are the sufficient statistics? $\frac{200}{20} = \frac{1}{262} \stackrel{?}{\sim} 2(x_i - x_i) (-1) = 0$ $\frac{7}{2}(x_i-x_i)=0\Rightarrow \frac{7}{2}(x_i-N_{i})=0\Rightarrow \hat{N}=\frac{1}{N}\sum_{i=1}^{N}\hat{N}_{i}$ D 0=62 (px is known) $\frac{200}{262} = -\frac{N}{2} \frac{1}{62} - \frac{1}{264} (-1) \sum_{i} (\chi_{i} - M)^{2} = 0 \times 64$

 $\sum_{i=1}^{\infty} \frac{1}{N} \sum_{i=1}^{\infty} (x_i - \lambda)(x_i - \lambda)^T$

= -N 62 + 1 2 (x; -m)2 =0 $\int_{0}^{\infty} \hat{G}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - x_{i})^{2}$ "Sample variance"

See next

Estimators	Example: Gaussian
the Estimate (e.g. 12) is a number	Estample: Galissian Estample: Galissian [Stample:
the Estimator is a r.v. (over possible Latarets)	Men of \hat{L} : $E_{X_1X_N}[\hat{N} \geq \hat{X}_i] = \hat{N} \geq E_{X_i}[\hat{X}_i] = \hat{N} \cdot N_N$
estimator $f(X_1,,X_N) = \frac{1}{N} \sum_{i=1}^{N} X_i$	Bias of A = O
The estimate is the value of the estimator	$\frac{1}{\sqrt{2}} = \frac{1}{2} \left[\left(\frac{1}{2} + \frac{1}{2} \frac{1}{2}$
Coc a given correct D.	(1) {(k; r))2
M= ζ(X, ,, XN) :	$= \frac{1}{N^{2}} E((\underbrace{2}_{i}(x_{i}-n)^{2}))$ $= \frac{1}{N^{2}} E(\underbrace{2}_{i}(x_{i}-n)^{2})$ $= \frac{1}{N^{2}} E(\underbrace{2}_{i}(x_{i}-n)^{2})$ $= \frac{1}{N^{2}} E(\underbrace{2}_{i}(x_{i}-n)^{2})$ $= \frac{1}{N^{2}} E(\underbrace{2}_{i}(x_{i}-n)^{2})$
Kingle Sample	= 12 E (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Since the estimator is a riv., we can derive the mean	(=j =) E[(x; -w)2] = 62
a variance to grankly the "goodness"	(4: -x)(x; -x)] = 0
Bias o Variance Q = S(X1,, XN)	$= \frac{1}{N^2} \left(N 6^2 \right) = \frac{6^2}{N} = var \left(\hat{\Lambda} \right)$
i) will it converge to the true value of Θ ?	
Bias $(\hat{\Theta}) = E_{X_1 \dots X_M} [\Theta - \Theta] = E_{X} [\hat{\Theta}] - \Theta$ true also we want of the estimator.	variance converges to 0 as N→∞.
if the bias is non-zero, then we can never get the	M TILLIAN
true value (even it intinite Samples).	 ,
2) How long will it take to converge? (How many samples do we need?)	N
$A_{N}(\hat{\theta}) = E^{X_1 \dots X_N} [(\hat{\theta} - E\hat{\theta})^2]$	
VW CO) X ₁ ····X _N ··	

 $E(\hat{g}^2) = \frac{N-1}{N} \hat{g}^2 \qquad \Rightarrow \text{Bias}(\hat{g}^2) = \frac{-1}{N} \hat{g}^2 \neq 0$ yer output consider a polynamial function (kfm order) to make it unbiased: $\hat{\delta}^{2} = \frac{N}{N-1} \quad \hat{\delta}^{2} = \frac{N}{N-1} \quad \frac{1}{N} \stackrel{?}{>} (x_{i} - x_{i})^{2} = \frac{1}{N-1} \stackrel{?}{>} (x_{i} - x_{i})^{2}$ $f(x,\theta) = \sum_{d=0}^{K} x^{d} \theta_{d} = \begin{bmatrix} 1 \\ x \\ x^{d} \end{bmatrix}^{T} \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{K} \end{bmatrix} = \phi(x)^{T} \theta$ linear function in θ . Important Asymptotic Properties of MLE 1) consistent - As N > 00, the estimate converges to observe a noisy output: The true value. Asymptotically unbiased. y= f(x,0)+ & conse env(0,62), id. equivalently, (y is a riv.) 2) efficient - achieves the Cramer-Rao Lower Bound (CRLB) $P(y \mid x, \theta) = N(y \mid f(x, \theta), \theta^2)$ · CRLB is a sheprefical bound on the variance of any unbiased estimator for a given p(x10). Given dataset { (xi,yi)}, estimate & using MLE: · i.e. no unbiased estimator can got lower variance. ê = agmax ? log p(y: |xi, 0) = argmin $2(y_i - f(x_{i,0}))^2$ = argmin $2(y_i - f(x_{i,0}))^2$ = argmin $\|y - \overline{D}^T O\|^2$, $\overline{\Phi} = \left[\phi(x_1) - ... \phi(x_N)\right], y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$ $\hat{Q} = (\hat{Q}\hat{Q}^T)^T\hat{Q}Q$

MLE for Regression

XER mput

Gaussian variance (PS 2-12)

```
Notes:
  1) MLE 15 more gameal than LS.
  2) Assumptions are explicit
      i) faussian noise
      ii) 11=0, 62 variance (fixed)
      (ii) noise is itel.
 3) MLE can describe other LS formulations:
    i) weighted LS (PS2.8)
                    (ledure 3)
    ii) regularized LS
    (PS 2.9)
               generalized lower models (GLM)
```