3. Pre-Lab Exercises

1. Starting from equations (3) and (4) derive the transfer function (6).

2. By equating the transfer functions in equations (6) and (7), derive algebraic expressions for K and tau in terms of the individual motor parameters (K_t , R, B_v , J).

3. Suppose a motor has the following parameter values:

Kt	0.05 N·m
R	2 Ω
B_{V}	0.015 N·m/rad/s
J	0.001 N·m/rad/s ²

a. Use the parameter values in the table to compute the numerical values of K and tau for this motor.

k - 10 - 1 3	
K= Burt ken	(0.015 mms) (2.0) +0.05 mm = 1.538 52+4mm
+2 0.0	00l· >
T = Br K + FT (0.0	HE)(L) +0.052 = 0.0615

b. Use the tf() and step() commands in MATLAB to simulate the theoretical step response of this motor. Plot the voltage vs. time and velocity vs. time for a unit step of 1 Volt (d=1). Verify that the steady-state speed $\Omega_{ss} = K/d$.

c. Plot $\ln(1-\Omega(t)/\Omega_{ss})$ vs. time for t < 4tau and verify that the slope = -1/tau

slope = -16 = -1/tau

4. A PWM signal with a frequency of 20kHz is used to command a motor driver that is powered by a 9 Volt battery. The *setSpeed()* command in the motor driver library accepts a number from 0 to 400, where 400 represents a 100% duty cycle. If you send a *setSpeed()* command of 300, what duty cycle does this correspond to, and what will be average motor voltage? What is the corresponding pulse width (in seconds) of the PWM signal?

f = 20k	HZ									
v= 9 %H	ls									
ect spend = 3	100									
					30	0				
	9)	0.1.	4	ile :	46	0	× 100	γ. ₌	75),	
		رسي								
		j = x								
			1000	0 £ (0.75)	= 15	000 5	:70.	00006	sec

```
%Brandon Lim
clear, clc, close all
sys = tf(1.538, [0.0615, 1]);
figure
subplot(2,1,1)
step(sys)
title("Unit Step Response of Motor Transfer Function | Brandon Lim")
ylabel("Veloctiy")
xlabel("Time")
tau = 0.0615;
tauss = 4*tau;
omegass = 1.538;
subplot(2,1,2)
plot(linspace(0,tauss,10),ones(10))
ylabel("Voltage")
xlabel("Time")
t = linspace(0,tauss,100);
omega = omegass.*(1-exp(-t./tau));
figure
plot(t,log(1-(omega./omegass)))
xlabel("Time [s]");
ylabel("ln(1-(omega t/omega s s))")
title("Time vs ln(1-(omega_t/omega_s_s)) | Brandon Lim u1244501")
```