La série exceptionnelle de groupes de Lie

Pierre DELIGNE

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. e-mail: deligne@math.ias.edu

Résumé.

Numérologie des groupes exceptionnels et une interprétation conjecturale.

The exceptional series of Lie groups

Abstract.

Numerology of exceptional Lie groups and a conjectural explanation.

Soit G^0 le groupe déployé adjoint de l'un des types suivant : A_1 , A_2 , G_2 , D_4 , F_4 , E_6 , E_7 , E_8 . On fixe un épinglage de G^0 . On note G le groupe des automorphismes de G^0 . Pour Γ le groupe des automorphismes du diagramme de Dynkin, identifié au groupe des automorphismes de G^0 respectant l'épinglage, c'est un produit semi-direct $\Gamma \ltimes G^0$. Le groupe G est un groupe algébrique sur \mathbb{Q} . Considérer le groupe de Lie complexe $G(\mathbb{C})$, voire une forme compacte de $G(\mathbb{C})$, nous suffirait. La possibilité, pour notre propos, d'inclure D_4 dans la liste a été découverte par Cohen et de Man.

Soit T le tore maximal de G fourni par l'épinglage et Φ la forme bilinéaire canonique sur Lie $(T)^{\vee}$: la forme inverse de la restriction à Lie (T) de la forme de Killing $\operatorname{Tr}(adx \, ady)$. Soient α la plus grande racine et $k = \Phi(\alpha, \alpha)$. Valeurs de k: 1/2, 1/3, 1/4, 1/6, 1/9, 1/12, 1/18, 1/30. Soit enfin a égal soit à k, soit à -(1/6) - k. On pose $a^* = -(1/6) - a$. A cette liste, ajoutons enfin le groupe trivial, avec a = 5/6 ou a = -1.

Soit g l'algèbre de Lie de G, $\mathcal U$ son algèbre enveloppante et $C\in \mathcal U$ l'élément de Casimir correspondant à la forme de Killing. Pour V une représentation de G, nous appellerons endomorphisme de Casimir de V l'action de C. Pour V irréductible, c'est la multiplication par un scalaire, encore appelé Casimir de V. Rappelons que le Casimir de la représentation adjointe vaut 1.

Notre observation est que pour (G, a) comme ci-dessus, G admet des représentations virtuelles X_i $(0 \le i \le 4)$, Y_i $(0 \le i \le 3)$, Y_i^* $(0 \le i \le 3)$, A, C et C^* ayant les propriétés (A) à (G) suivantes.

(A) Chacune de ces représentations est soit irréductible, soit 0, soit l'opposée d'une représentation irréductible. On a $X_0 = Y_0 = Y_0^* = 1$, la représentation triviale, et $X_1 = Y_1 = Y_1^* = \mathfrak{g}$, la représentation adjointe.

Note présentée par Pierre Deligne.

P. Deligne

Pour chaque représentation R du groupe symétrique S_n , on dispose d'un foncteur $V\mapsto [R](V):= \operatorname{Hom}_{S_n}(R, \bigotimes V)$. Pour V une représentation d'un groupe, la classe de [R](V) dans le groupe de Grothendieck des représentations est un λ -polynôme (polynôme en les $\stackrel{i}{\wedge} V$) en la classe de V. Pour R irréductible correspondant à une partition p de n, on écrira [p]V pour la classe [R](V). Exemples: $[(n)]V = \operatorname{Sym}^n V$, $[(1, \ldots, 1)]V = \stackrel{n}{\wedge} V$, [(2, 1)]V = V. $\stackrel{2}{\wedge} V - \stackrel{3}{\wedge} V$, $[(3)]V = V^3 - 2V$. $\stackrel{2}{\wedge} V + \stackrel{3}{\wedge} V$.

(B) Dans le λ -anneau des représentations de G, on a

(B1)
$$[(2)]\mathfrak{g} = \operatorname{Sym}^2 \mathfrak{g} = 1 + Y_2 + Y_2^*$$

(B2)
$$[(1, 1)]\mathfrak{g} = \bigwedge^2 \mathfrak{g} = \mathfrak{g} + X_2$$

(B3)
$$[(3)]g = \text{Sym}^3 g = g + X_2 + A + Y_3 + Y_3^*$$

(B4)
$$[(2, 1)]\mathfrak{g} = 2\mathfrak{g} + X_2 + Y_2 + Y_2^* + A + C + C^*$$

(B5)
$$[(1, 1, 1)]\mathfrak{g} = \bigwedge^{3} \mathfrak{g} = 1 + X_2 + Y_2 + Y_2^* + X_3$$

(B6)
$$Y_2 \otimes \mathfrak{g} = \mathfrak{g} + X_2 + Y_2 + A + Y_3 + C$$

(B7)
$$Y_2^* \otimes \mathfrak{g} = \mathfrak{g} + X_2 + Y_2^* + A + Y_3^* + C^*$$

On notera que ces formules sont permutées par l'involution *, si l'on convient que A et les X_i (en particulier \mathfrak{g}) sont fixes par *.

(C) Comme conséquence de (B), on a dans le λ -anneau des représentations de G

$$(C1) X_2 = \bigwedge^2 \mathfrak{g} - \mathfrak{g}$$

$$(C2) X_3 = \bigwedge^3 \mathfrak{g} - \mathfrak{g}^2 + \mathfrak{g}.$$

De plus,

$$X_4 = \overset{4}{\wedge} \mathfrak{g} - \mathfrak{g}. \overset{2}{\wedge} \mathfrak{g} + \mathfrak{g}^2 + \overset{2}{\wedge} \mathfrak{g} - \mathfrak{g}.$$

(D) Le Casimir a sur ces représentations les valeurs suivantes

$$X_n$$
 Y_n Y_n^* A C C^* $n + (n^2 - n)a$ $n + (n^2 - n)a^*$ $8/3$ $3 + 3a$ $3 + 3a^*$

Lorsque la représentation considérée est 0, cet énoncé est à interpréter comme étant vide.

(E) Les dimensions de ces représentations sont données par les formules suivantes, où l'on a fait $\lambda := -6a$.

$$\dim X_1 = -2(\lambda + 5)(\lambda - 6)/\lambda(\lambda - 1)$$

$$\dim X_2 = 5(\lambda + 3)(\lambda + 5)(\lambda - 4)(\lambda - 6)/\lambda^2(\lambda - 1)^2$$

$$\dim X_3 = -10(\lambda + 2)(\lambda + 4)(\lambda + 5)(\lambda - 3)(\lambda - 5)(\lambda - 6)/\lambda^3(\lambda - 1)^3$$

$$\dim X_4 = 5(\lambda + 3)(\lambda + 4)(\lambda + 5)(\lambda + 3)(2\lambda - 4)(\lambda - 5)(\lambda - 6)(2\lambda - 5)/\lambda^4(\lambda - 1)^4$$

$$\dim Y_2 = -90(\lambda + 5)(\lambda - 4)/\lambda^2(\lambda - 1)(2\lambda - 1)$$

$$\dim Y_3 = -10(\lambda + 5)(5\lambda - 6)(\lambda - 4)(\lambda - 5)(\lambda - 6)/\lambda^3(\lambda - 1)^2(2\lambda - 1)(3\lambda - 1)$$

$$\dim A = -27(\lambda + 3)(\lambda + 4)(\lambda + 5)(\lambda - 4)(\lambda - 5)(\lambda - 6)/\lambda^2(\lambda - 1)^2(3\lambda - 1)(3\lambda - 2)$$

$$\dim C = 640(\lambda + 3)(\lambda + 5)(\lambda - 3)(\lambda - 5)/\lambda^3(\lambda - 1)(2\lambda - 1)(3\lambda - 2)$$

Pour Y_n^* et C^* , la dimension est donnée par la même formule que pour Y_n , C avec λ remplacé par $\lambda^* := 1 - \lambda = -6a^*$. Noter que les formules pour X_n et A sont invariantes par $\lambda \mapsto \lambda^*$.

(F) Pour chacune des égalités (B1) à (B7), (C1) à (C3), les formules (E) fournissent une expression de la dimension du premier (resp. second) membre comme étant la valeur en λ d'une fonction rationnelle R_1 (resp. R_2). On a $R_1 = R_2$ (égalité de fonctions rationnelles).

Pour R une représentation de S_n et V une représentation d'un groupe semi-simple, la trace de l'endomorphisme de Casimir de [R](V) est déduite de la trace de l'endomorphisme de Casimir de V par la formule suivante : si χ est le caractère de R, $n(\sigma)$ le nombre de cycle d'une permutation $\sigma \in S_n$ et $m(\sigma)$ la somme des carrés des longueurs des cycles de σ ,

(1)
$$\operatorname{Tr}(C, [R](V)) = \frac{1}{n!} \sum_{\sigma} \chi(\sigma) m(\sigma) \dim(V)^{n(\sigma)-1} . \operatorname{Tr}(C, V).$$

Pour deux représentations V et W,

(2)
$$\operatorname{Tr}(C, V \otimes W) = \operatorname{Tr}(C, V) \dim(W) + \dim(V) \operatorname{Tr}(C, W).$$

(G) Pour chacune des égalités (B1) à (B7), (C1) à (C3), les formules (D) (E) et (1) (2) fournissent une expression de la trace de Casimir sur le premier (resp. second) membre comme étant la valeur en λ d'une fonction rationnelle R_1 (resp. R_2). On a $R_1 = R_2$.

Je ne connais pas de preuve satisfaisante de ce qui précède. Les énoncés (B) (C) et (D) sont obtenus par la force brutale du programme LiE. Que les dimensions et Casimir de \mathfrak{g} , Y_2 et Y_2^* soient de la forme (D) (E) pour a convenable est déduit dans Vogel [2] 6.8, 6.9 du fait que les seuls éléments invariants de $\operatorname{Sym}^4(\mathfrak{g})$ sont les multiples du carré d'un élément invariant de $\operatorname{Sym}^2(\mathfrak{g})$. La dimension des X_i se déduit de celle de \mathfrak{g} par (C). Si a=k, Y_n est la représentation de poids dominant $n\alpha$, pour α la plus grande racine, et (D) pour Y_n peut s'en déduire. L'assertion (D) pour X_n peut se déduire de (C): au second membre, la trace de l'endomorphisme de Casimir se calcule par (1). Admettons (D), et les formules de dimension pour Y_2 , Y_2^* , et les X_i . Si l'on exprime l'égalité des dimensions et des traces de Casimir pour les deux membres de (B3), (B4), (B6), et (B7), on obtient un système d'équations linéaires en dim Y_3 , dim Y_3^* , dim A, dim C et dim C^* à coefficients et second membre fonctions rationnelles de λ . On en déduit une expression pour ces dimensions comme une fonction rationnelle de λ . Nous avons suivi cette méthode pour trouver un polynôme en λ multiple du dénominateur, et pour estimer le degré du numérateur, le numérateur étant ensuite obtenu par

interpolation à partir des valeurs connues correspondant aux (G, a). Que les fonctions rationnelles obtenues se factorisent comme en (E) est un miracle. Les identités $R_1 = R_2$ de (F) (G) résultent simplement de ce que pour un polynôme convenable P en λ , R_1P et R_2P sont deux polynômes en λ égaux en un nombre de valeurs de λ strictement plus grand que leur degré.

Je conjecture qu'il existe une catégorie abélienne semi-simple $\mathbb{Q}(t)$ -linéaire \mathcal{C}_t , munie d'un produit tensoriel \otimes et de contraintes d'associativité, de commutativité et d'unité (Saavedra [1], chap. I), ayant les propriétés suivantes.

- (i) Les groupes $\operatorname{Hom}(X, Y)$ sont de dimensions finie sur $\mathbb{Q}(t)$.
- (ii) Chaque objet admet un dual : C_t est rigide. Rappelons que ceci permet de définir pour tout objet X sa dimension $\dim(X) \in \operatorname{End}(1) = \mathbb{Q}(t)$: le composé $ev \circ \delta$ des morphismes d'évaluation : $X^{\vee} \otimes X \to 1$ et de coévaluation $1 \to X^{\vee} \otimes X$.
- (iii) La catégorie tensorielle \mathcal{C}_t est de type adjoint au sens suivant. Il existe un objet \mathfrak{g} , muni d'un crochet de Lie $[\ ,\]:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$, agissant fonctoriellement sur chaque objet X: action $\rho_X:\mathfrak{g}\otimes X\to X.$ L'action est compatible au produit tensoriel $:\rho_{X\otimes Y}=\rho_X\otimes 1+1\otimes\rho_Y.$ Pour $X=\mathfrak{g},\ \rho_X$ est $[\ ,\].$ L'action ρ_X se transpose en une coaction ${}^t\rho_X:X\to\mathfrak{g}^\vee\otimes X.$ Pour tout $X,\ X^\mathfrak{g}:=\mathrm{Ker}\,({}^t\rho_X)$ est le plus grand sous-objet de X somme de copies de 1. Enfin, tout objet est sous-quotient d'une somme de $\mathfrak{g}^{\otimes n}.$

Comme classiquement, le crochet de Lie permet de définir une forme de Killing $\mathfrak{g}\otimes\mathfrak{g}\to 1$ et, si celle-ci est non dégénérée, *i.e.* définit un isomorphisme de \mathfrak{g} avec son dual, l'action de \mathfrak{g} sur X fournit un endomorphisme de Casimir $C_X\in\mathrm{End}\,(X)$.

- (iv) g est un objet simple, et la forme de Killing est non dégénérée.
- (v) Il existe des objets simples $X_i(0 \le i \le 4)$, $Y_i(0 \le i \le 3)$, $Y_i^*(0 \le i \le 3)$, A, C et C^* vérifiant (A) à (E), avec a = t.
- (vi) Tout objet simple S est absolument simple, i.e. $\operatorname{End}(S) = \mathbb{Q}(t)$, et est isomorphe à son dual, plus précisément admet une forme bilinéaire symétrique non dégénérée $S \otimes S \to 1$. La dimension $\dim(S) \in \mathbb{Q}(t)$ d'un objet simple admet une factorisation en facteurs linéaires.
- (vii) La catégorie C_t admet une \otimes -autoéquivalence *, semi-linéaire relativement à $t \mapsto -(1/6) t$, envoyant A et les X_i sur eux-même, Y_i sur Y_i^* et C sur C^* ; le carré de * est isomorphe à l'identité.
- (viii) En un sens à préciser, la catégorie des représentations de G est une spécialisation de C_t en t=a.

Voici un modèle pour cette conjecture. Soit $\mathcal{B}_{\mathbf{Z}[t]}$ la catégorie tensorielle $\mathbb{Z}[t]$ -linéaire rigide suivante. Objets : ensembles finis.

 $\operatorname{Hom}(X,Y)$: soit C l'ensemble des classes d'isomorphie de variété compactes de dimension un à bord, de bord $X \coprod Y$ (bordismes de X à Y). Le $\mathbb{Z}[t]$ -module $\operatorname{Hom}(X,Y)$ est le quotient du $\mathbb{Z}[t]$ -module libre $\mathbb{Z}[t]^{(C)}$ de base [c] $(c \in C)$ par

 $[c \cup \text{un cercle}] = t \, [c].$

Composition: composition des bordismes.

⊗ : somme disjointe.

Pour $\lambda \in \mathbb{Q}$, soit \mathcal{B}_{λ} la catégorie tensorielle \mathbb{Q} -linéaire rigide déduite de $\mathcal{B}_{\mathbf{Z}[t]}$ par l'extension des scalaires $\mathbb{Z}[t] \to \mathbb{Q}$, $t \mapsto \lambda$. Disons qu'un morphisme $f: X \to Y$ de \mathcal{B}_{λ} est négligeable si pour tout $g: Y \to X$, $\mathrm{Tr}(gf) = 0$. Les morphismes négligeables forment un idéal I_{λ} et, si f est négligeable, $f \otimes g$ l'est aussi. La catégorie quotient $\mathcal{B}_{\lambda}/I_{\lambda}$ est donc encore tensorielle rigide. Soit $(\mathcal{B}_{\lambda}/I_{\lambda})^{\mathrm{kar}}$ son enveloppe karoubienne, obtenue en adjoignant formellement les facteurs directs correspondant aux endomorphismes idempotents.

Si λ est un entier $n \geq 0$, cette enveloppe karoubienne n'est autre que la catégorie $\operatorname{Rep}(O(n))$ des représentations du groupe orthogonal O(n). Plus précisément, soit V un espace vectoriel sur \mathbb{Q} muni d'une forme bilinéaire symétrique non dégénérée B. Il existe alors un \otimes -foncteur, unique à isomorphisme unique près, de \mathcal{B}_n dans $\operatorname{Rep}(O(V))$, envoyant l'objet $\{1\}$ sur V et le bordisme $\frac{1}{2}$ de $\{1,2\}$ à \emptyset sur $B:V\otimes V\to 1$. Ce \otimes -foncteur induit une équivalence de $(\mathcal{B}_n/I_n)^{\operatorname{kar}}$ avec $\operatorname{Rep}(O(V))$. C'est là une traduction de la théorie de Weyl des invariants de O(V) dans $V^{\otimes N}$ (cf. [3], chap. V, § 5).

Si λ est un entier pair $-2p \leq 0$, l'enveloppe karoubienne $(\mathcal{B}_{\lambda}/I_{\lambda})^{\mathrm{kar}}$ est une variante de la catégorie $\mathrm{Rep}\,(\mathrm{Sp}(2p))$ des représentations du groupe symplectique $\mathrm{Sp}(2p)$: l'élément central $-1 \in \mathrm{Sp}(2p)$ définit une $\mathbb{Z}/(2)$ -graduation de chaque représentation V de Sp(2p), et on définit la contrainte de commutativité par la règle de Koszul. En d'autres termes, dans la catégorie des super-représentations de $\mathrm{OSp}(0|2p)$, on considère la sous-catégorie des sous-quotients de sommes de $V^{\otimes N}$, pour V la super-représentation évidente.

Si on considère de même les ensembles S finis orientés, i.e. munis de $\varepsilon: S \to \{\pm 1\}$, et les bordismes orientés, on obtient une catégorie tensorielle $\mathbb{Z}[t]$ -linéaire rigide $\mathcal{A}_{\mathbf{Z}[t]}$. Pour $\lambda \in \mathbb{Q}$, soit \mathcal{A}_{λ} la catégorie \mathbb{Q} -linéaire rigide déduite de $\mathcal{A}_{\mathbf{Z}[t]}$ par l'extension des scalaires $\mathbb{Z}[t] \to \mathbb{Q}: \lambda \mapsto t$. On définit comme précédemment l'idéal I_{λ} des morphismes négligeables de \mathcal{A}_{λ} . Lorsque λ est un entier $n \geq 0$, $(\mathcal{A}_{\lambda}/I_{\lambda})^{\mathrm{kar}}$ n'est autre de $\mathrm{Rep}\,(GL(n))$. Si λ est un entier $-n \leq 0$, on obtient la variante de $\mathrm{Rep}\,(GL(n))$ définie par $-1 \in GL(n)$: dans la catégorie des super-représentations de GL(0|n), la sous-catégorie des sous-quotients de sommes de $V^{\otimes N} \otimes V^{\vee \otimes M}$, pour V la super-représentation évidente.

Dans ces deux cas, si on étend les scalaires de $\mathbb{Z}[t]$ à $\mathbb{Q}(t)$, l'enveloppe karoubienne de la catégorie \mathcal{A}_t ou \mathcal{B}_t obtenue est une catégorie tensorielle rigide semi-simple. Ses objets simples S sont absolument simples, de dimension $\dim(S) \in \mathbb{Q}(t)$ un polynôme en t produit de facteurs linéaires. Voici les formules.

Soient $V_{\mathbf{Z}[t]}$ l'objet « un point » de $\mathcal{B}_{\mathbf{Z}[t]}$ et V son image dans $\mathcal{B}_t^{\mathrm{kar}}$ (« représentation évidente »). Pour étudier la sous-catégorie de $\mathcal{B}_t^{\mathrm{kar}}$, formée par les sous-quotients de sommes de $V^{\otimes i}(i \leq N)$, une méthode est de procéder par « prolongement polynomial » à partir de la catégorie $\mathrm{Rep}(O(n))$, n grand. Les objets irréductibles de $\mathcal{B}_t^{\mathrm{kar}}$ correspondent ainsi aux suites décroissantes d'entiers $\ell_i \geq 0$, avec ℓ_i nul pour i assez grand. La représentation correspondante de O(n) (n grand) a pour poids dominant $\sum (\ell_i - \ell_{i+1})\omega_i$, dans la notation des tables de Bourbaki. La formule de dimension de Weyl fournit par prolongement la dimension de cet objet irréductible. Notons $h((\ell_i))$ ou simplement h l'entier tel que la représentation du groupe symétrique définie par la partition (ℓ_i) de $\sum \ell_i$ soit de dimension $(\sum \ell_i)!/h$. Si $\ell_i = 0$ pour i > a, on a

$$h = \prod_{i \le a} (a + \ell_i - i)! / \prod_{i < j \le a} ((\ell_i - i) - (\ell_j - j)).$$

Soit a(n) (resp. b(n)) le nombre de paires $i, j (1 \le i \le j)$) telles que $n = (\ell_i - i) + (\ell_j - j)$ (resp. n = -i - j). Avec ces notations,

dim
$$V((\ell_i)) = (1/h) \cdot \prod (t+n)^{a(n)-b(n)}$$
.

Formellement : (1/h). $\prod (t+\ell_i-i+m_j-j)/\prod (t-i-j)$. C'est un polynôme de degré $\sum \ell_i$.

L'objet $\mathfrak{g}:= \stackrel{2}{\wedge} V$ joue le rôle de la représentation adjointe : il est muni d'un crochet de Lie, et agit fonctoriellement et de façon compatible au produit tensoriel sur chaque objet. La forme bilinéaire

P. Deligne

 $\operatorname{Tr}(\rho(x)\rho(y),\ V)$ sur g est non dégénérée. Sur $V((\ell_i))$, le Casimir correspondant est

$$\frac{1}{2}\sum \ell_i(\ell_i-2i)+\frac{1}{2}\sum \ell_i.t,$$

ainsi qu'on le vérifie par prolongement à partir du cas de O(n) (n grand).

Soit $V_{\mathbf{Z}[t]}$ l'objet « un point positivement orienté » $(\varepsilon = 1)$ de $\mathcal{A}_{\mathbf{Z}[t]}$, et V son image dans \mathcal{A}_t (« représentation évidente »). Pour étudier la sous-catégorie de $\mathcal{A}_t^{\mathrm{kar}}$ formée des sous-quotients de sommes de $V^{\otimes i} \otimes V^{\vee \otimes j}(i, j \leq N)$, une méthode est de procéder par « prolongement polynomial » à partir de la catégorie $\mathrm{Rep}(GL(n))$, n grand. Les objets irréductibles de \mathcal{A}_t correspondent ainsi aux couples de suites décroissantes d'entiers positifs $((\ell_i), (m_i))$, avec ℓ_i et m_i nuls pour i assez grand. Si on identifie le groupe des caractères du tore maximal « matrices diagonales » de GL(n) à \mathbb{Z}^n de la façon usuelle, la représentation correspondante de GL(n) (n grand) a pour poids dominant

$$(\ell_1, \ell_2, \ldots, 0, \ldots, -m_2, -m_1).$$

L'objet $\mathfrak{g}:=V\otimes V^{\vee}$ joue le rôle de la représentation adjointe, et la forme bilinéaire $\operatorname{Tr}(\rho(x)\rho(y),V)$ est non dégénérée.

Soit c(n) (resp. d(n)) le nombre de paires $i, j(1 \le i, j)$ telles que $n = \ell_i - i + m_j - j + 1$ (resp. n = -i - j + 1). Par prolongement de la formule de Weyl.

dim
$$V((\ell_i), (m_i)) = (1/h((\ell_i))h((m_i))) \cdot \prod (t+n)^{c(n)-d(n)}$$

Formellement : $(1/h((\ell_i))h((m_i))) \cdot \prod (t+\ell_i-i+m_j-j+1)/\prod (t-i-j+1)$. C'est un polynôme en t de degré $\sum \ell_i + \sum m_i$. Le Casimir relatif à $\operatorname{Tr}(\rho(x)\rho(y); V)$ est

$$\sum \ell_i(\ell_i - 2i + 1) + \sum m_i(m_i - 2i + 1) + t(\sum \ell_i + \sum m_i).$$

Remerciements. Je remercie W. van der Kallen, R. de Man et A. M. Cohen de m'avoir fourni les tables qui ont servi de base à ce travail. Ces tables ont été produites par le programme LiE dû à A. M. Cohen, M. A. A. van Leeuwen et B. Lisser.

Ce travail a été inspiré par une conversation avec P. Vogel, où il m'a dit qu'il y avait trois groupes de Lie simples : linéaire, orthogonal et exceptionnel – dépendant de paramètres. Il exploite ce point de vue dans [2], dont les nos 6.8, 6.9 m'ont été particulièrement utiles.

Note remise le 11 décembre 1995, acceptée le 14 décembre 1995.

Références bibliographiques

- [1] Saavedra N., 1972. Catégories tannakiennes, Lecture Notes in Math., 265, Springer Verlag.
- [2] Vogel P., (august 1995). Algebraic structures on modules of diagrams, preprint.
- [3] Weyl H., 1946. Classical groups, Princeton Math. Ser. 1, Princeton University Press.