Medidas em Redes de Computadores Redes de Computadores

Charles Tim Batista Garrocho

Instituto Federal de Minas Gerais - IFMG Campus Ponte Nova

garrocho.github.io/RDC

charles.garrocho@ifmg.edu.br

Técnico em Informática

Introdução a bit e byte

Os computadores *entendem* impulsos elétricos, **positivos** ou **negativos**, que são representados por $\mathbf{1}$ e $\mathbf{0}$, respectivamente.

A cada impulso elétrico, damos o nome de **Bit** (**BI**nary digi**T**). Um conjunto de **8** bits reunidos como uma única unidade forma um **Byte**.

Dentro do computador existe apenas **eletricidade**, e esta pode assumir apenas dois estados: **ligado** e **desligado** (convencionou-se que 0 representa desligado e 1 representa ligado).

Caracteres, Sinais e a Tabela ASCII

Cada **caractere** tem um **código binário** associado a ele. E este código é formado pela união de 8 bits (*zeros* e *uns*), e esta união forma um **Byte**.

Um Byte consegue armazenar apenas um caractere (letras, números, símbolos, pontuação, espaço em branco e outros caracteres especiais).

Os computadores utilizam uma tabela que combina números binários com símbolos: a tabela **ASCII** (American Standard Code for Information Interchange). Nesta tabela, cada byte representa um caractere ou um sinal.

A Tabela ASCII possui 256 caracteres. Cada caractere é representado por 8 Bytes e cada bit representa dois valores (0 ou 1). Assim, 2 (do bit) elavado a 8 (do Byte) é igual a 256.

Tabela ASCII Completa

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	9	96	60		128	80	Ç	160	AO	á	192	CO	L	224	EO	O:
1	01	Start of heading	33	21	1	65	41	A	97	61	a	129	81	ü	161	A1	í	193	C1	1	225	E1	В
2	02	Start of text	34	22		66	42	В	98	62	b	130	82	é	162	A2	6	194	C2	т	226	E2	Г
3	03	End of text	35	23	#	67	43	С	99	63	С	131	83	å	163	A3	ú	195	C3	F	227	E3	п
4	04	End of transmit	36	24	ş	68	44	D	100	64	d	132	84	ä	164	A4	ñ	196	C4	-	228	E4	Σ
5	05	Enquiry	37	25	÷.	69	45	E	101	65	e	133	8.5	á	165	A5	Ñ	197	C5	+	229	E5	σ
6	0.6	Acknowledge	38	26	٤	70	46	F	102	66	£	134	8.6	å	166	A6		198	C6	F	230	E6	μ
7	07	Audible bell	39	27	1	71	47	G	103	67	g	135	87	ç	167	A7	۰	199	C7	F	231	E7	τ
8	08	Backspace	40	28	(72	48	H	104	68	h	136	88	ě	168	A8	i	200	C8	Ŀ	232	E8	Φ
9	09	Horizontal tab	41	29)	73	49	I	105	69	i	137	89	ë	169	A9	-	201	C9	F	233	E9	0
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j	138	8A	è	170	AA	7	202	CA	T	234	EA	Ω
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k	139	8 B	ï	171	AB	14	203	CB	Y	235	EB	δ
12	OC.	Form feed	44	2C	1	76	4C	L	108	6C	1	140	8 C	î	172	AC	l ₆	204	CC	ŀ	236	EC	00
13	OD	Carriage return	45	2 D		77	4D	M	109	6D	m	141	8 D	ì	173	AD	į.	205	CD	-	237	ED	Ø
14	0E	Shift out	46	2E		78	4E	N	110	6E	n	142	8 E	À	174	AE	**	206	CE	ė.	238	EE	ε
15	OF	Shift in	47	2F	/	79	4F	0	111	6F	0	143	8 F	Å	175	AF	>>	207	CF	1	239	EF	n
16	10	Data link escape	48	30	0	80	50	P	112	70	p	144	90	É	176	BO	33	208	DO	T	240	FO	=
17	11	Device control 1	49	31	1	81	51	Q	113	71	q	145	91	æ	177	B1	#	209	D1	T	241	F1	±
18	12	Device control 2	50	32	2	82	52	R	114	72	r	146	92	Æ	178	B2	₩	210	D2	Т	242	F2	2
19	13	Device control 3	51	33	3	83	53	S	115	73	3	147	93	ô	179	B3	II.	211	D3	L	243	F3	<u> </u>
20	14	Device control 4	52	34	4	84	54	T	116	74	t	148	94	ö	180	B4	4	212	D4	E	244	F4	Į.
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u	149	95	ò	181	B5	4	213	D.5	F	245	F5	J
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v	150	96	û	182	B6	1	214	D6	г	246	F6	÷
23	17	End trans, block	55	37	7	87	57	n	119	77	w	151	97	ù	183	B7	П	215	D7	†	247	F7	*
24	18	Cancel	56	38	8	88	58	x	120	78	×	152	98	Ÿ	184	B8	٦	216	D8	+	248	F8	
25	19	End of medium	57	39	9	89	59	Y	121	79	У	153	99	ö	185	B9	4	217	D9	7	249	F9	
26	1A	Substitution	58	3A		90	5A	Z	122	7A	z	154	9A	Ü	186	BA	ll.	218	DA	г	250	FA	
27	1B	Escape	59	3 B	;	91	5B	[123	7B	(155	9B	¢	187	BB	TI	219	DB		251	FB	Ą
28	1C	File separator	60	30	<	92	5C	1	124	7C	I	156	9C	£	188	BC	71	220	DC	-	252	FC	P
29	1D	Group separator	61	3 D	=:	93	5D	1	125	7D)	157	9D	¥	189	BD	ш	221	DD	l.	253	FD	Z
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~	158	9E	E.	190	BE	1	222	DE	I.	254	FE	•
31	1F	Unit separator	63	3F	2	95	5F		127	7F		159	9F	f	191	BF	1	223	DF	-	255	FF	

Técnico em Informática

Termos e Representações

Foram criados vários **termos** para facilitar a compreensão humana da capacidade de armazenamento, processamento e manipulação de dados nos computadores. No que se refere a bits e bytes, tem-se as **medidas**:

Termo	Representação	Valor	Valor em Bit					
Byte	В	1 B	8					
KiloByte	KB	1024 B	8192					
MegaByte	MB	1024 KB	8192000					
GigaByte	GB	1024 MB	8192000000					
TeraByte	TB	1024 GB	8192000000000					
PetaByte	PB	1024 TB	819200000000000					
ExaByte	EB	1024 PB	8192000000000000000					
ZettaByte	ZB	1024 EB	81920000000000000000000					

Medidas em Redes de Computadores

Em uma medida tradicional de **armazenamento**, a união de 8 bits formará 1 Byte. Já em uma medida de **tráfego de rede** é considerado apenas bits agregando suas abreviações à terminação *ps* (por segundo). Com isso, surgem as conhecidas medidas de transmissão: **Kbps** (Kilobits por segundo) e **Mbps** (Megabits por segundo).

Exemplo: Conexão de 800 Kbps com a internet:

- 1. Primeiramente, calculamos o valor em bits da conexão:
- $800 \text{ Kbps} = 800 \text{ Kbps} \times 1.000 = 800.000 \text{ bits}$
- 2. Em seguida, calculamos o valor em bits de 1 KB:
- $1 \text{ KB} = 1.024 \text{ Bytes} \times 8 = 8.192 \text{ bits}$
- 3. Dividimos o valor da conexão pelo valor do KB (em bits):

800.000 / 8.192 = 97,65 KBps

Conexão de 800 Kbps, o internauta pode realizar um download em uma velocidade máxima de 97,65 Kilobytes por segundo.

Calcule o Tempo Estimado de Seus Downloads

Supondo que queremos saber o **tempo estimado** para realizar o download de um arquivo de 50MB utilizando a mesma conexão do exemplo. Para isso, basta partirmos do valor encontrado nos cálculos anteriores:

Exemplo: Conexão de 800 Kbps com a internet:

1. Multiplicamos o tamanho do arquivo (50 MB) por 1.024, obtendo assim seu valor em KB:

 $50 \text{ MB} \times 1.024 = 51.200 \text{ KB}$

2. Agora, dividimos o tamanho em KB do arquivo pela velocidade real encontrada anteriormente, obtendo assim o total de tempo em segundos:

 $51.200 \; \text{KB} \; / \; 97,65 \; \text{KBps} = 524,32 \; \text{segundos}$

3. Por último, dividimos o total em segundos por 60, para obtermos o tempo estimado em minutos:

524,32 segundos / 60 = 8,73 minutos

Exercícios

- Quantos Kylobytes eu tenho em 11 GB?
- Quantos bytes eu tenho em 4 MB?
- Quantos Gigabytes eu tenho em 34 MB?
- Em quanto tempo eu baixo um arquivo de 200 MB com uma conexão de 2 Mbps?
- Em quanto tempo eu baixo um arquivo de 30 MB com uma conexão de 512Kbps?

