Úvod

Poznámka (Organizační úvod)

Dnes česky, ale pravděpodobně časem přepneme do angličtiny.

Na webu přednášejícího jsou zápisky, česko-anglická skripta.

Taková bible pro lidi studující PDR je Evans (... PDE ...).

Zápočet bude za 2 velké domácí úkoly. Zkouška je písemná (požadavky jsou na stránkách): 3 části: A – nutné, B – teorie, C – praxe?

Poznámka (Konvence pro PDR)

 $\Omega \subseteq \mathbb{R}^d$ je otevřená. Měřitelná = lebesgueovsky měřitelná.

$$\partial_t u := \frac{\partial u}{\partial t}$$

Poznámka

Dále se ukazovali konkrétní parciální rovnice.

Poznámka (Je potřeba znát)

• Prostory funkcí a Lebesgueův integrál: $L^p(\Omega)$, $L^p_{loc}(\Omega)$, $||u||_p$, $C^k(\overline{\Omega})$,

$$C^{0,\alpha}(\overline{\Omega}) = \left\{u \in C(\Omega) |\sup_{x \neq y} \frac{u(x) - u(y)}{|x - y|^{\alpha}} < \infty \right\}, ||u||_{C^{0,\alpha}} = \sup_{x \neq y} \frac{u(x) - u(y)}{|x - y|^{\alpha}}.$$

- $\int_{\Omega} \frac{\partial u}{\partial x_i} dx = \int_{\partial \Omega} u n_i dS, \ \vec{n} = (n_1, \dots, n_d).$
- Funkcionální analýza 1: Banachův prostor, $u^n \to u$ silná konvergence, $u^n \to u$ slabá konvergence, Hilbertův prostor, Věta o reprezentaci (duálů), spektrální analýza operátorů, reflexivita (+ existence slabě konvergentní podposloupnosti v omezené podmnožině reflexivního prostoru).
- Separabilita (L^p jsou separabilní až na $p = \infty$, $C^k(\overline{\Omega})$ je separabilní, $C^{0,\alpha}$ není separabilní pro $\alpha \in (0,1]$).

Poznámka (Motivace k pojmu slabé řešení (weak solution))

$$-\Delta = f, f \notin C(\overline{\Omega})$$

1

TODO?

1 Sobolevovy prostory

Definice 1.1 (Multiindex)

 α je multiindex $\equiv d = (\alpha_1, \dots, \alpha_d), \ \alpha_i \in \mathbb{N}_0$. Délka α je $|\alpha| := \overline{\alpha_1 + \dots + \alpha_d}$. Pro $u \in C^k(\Omega)$ definujeme $D^{\alpha}u = \frac{\partial^{|d|}u}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$.

Definice 1.2 (Slabá derivace)

Buď $u, v_{\alpha} \in L^1_{loc}(\Omega)$. Řekneme, že v_{α} je α -tá slabá derivace $u \equiv$

$$\equiv \int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int_{\Omega} v_{\alpha} \varphi \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$

Příklad

 $u = \operatorname{sign} x$ nemá slabou derivaci.

Lemma 1.1 (O smysluplnosti)

Slabá derivace je nejvýše 1. Pokud existuje klasická derivace, tak obě splývají.

 $D\mathring{u}kaz$

 v_{α}^{1} , v_{α}^{2} dvě α -té derivace u.

$$(-1)^{|\alpha|} \int v_{\alpha}^{1} \varphi = \int_{\Omega} u D^{\alpha} \varphi \forall \qquad \varphi \in C_{0}^{\infty}(\Omega)$$

$$(-1)^{|\alpha|} \int v_{\alpha}^{2} \varphi = \int_{\Omega} u D^{\alpha} \varphi \forall \qquad \varphi \in C_{0}^{\infty}(\Omega)$$

$$\int_{\Omega} (v_{\alpha}^{1} - v_{\alpha}^{2})\varphi = 0 \qquad \forall \varphi \in C_{0}^{\infty}(\Omega)$$

 $\implies v_{\alpha}^1 = v_{\alpha}^2$ skoro všude v Ω .

Klasická derivace je zřejmě zároveň slabá, tedy z první části splývají.

Definice 1.3 (Sobolevův prostor)

 $\omega\subseteq\mathbb{R}^d$ otevřená, $k\in\mathbb{N}_0,\,p\in[1,\infty].$

$$W^{k,p}(\Omega):=\left\{u\in L^p(\Omega)|\forall\alpha,|\alpha|\leqslant k:D^\alpha u\in L^p(\Omega)\right\}.$$

$$||u||_{W^{k,p}(\Omega)}||u||_{k,p} := \begin{cases} \left(\sum_{|\alpha| \leqslant k} ||D^{\alpha}u||_p^p\right)^{\frac{1}{p}}, & p < \infty, \\ \max_{|\alpha| \leqslant k} ||D^{\alpha}u||_{\infty}, & p = \infty. \end{cases}$$

Poznámka

Od teď D^{α} nebo $\frac{\partial}{\partial x_1}$ nebo ∂_i značí slabou derivaci.

Lemma 1.2 (Základní vlastnosti slabých derivací a Sobolevových prostorů)

Necht $u, v \in W^{k,p}(\Omega), k \in \mathbb{N}, \ a \ \alpha \ multiindex \ s \ d\'elkou \leqslant k.$

- $D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$ a $D^{\alpha}(D^{\beta}u) = D^{\beta}(D^{\alpha}u) = D^{\alpha+\beta}u$, pro $|\alpha| + |\beta| \leq k$.
- $\lambda, \mu \in \mathbb{R}, \lambda u + \mu v \in W^{k,p}(\Omega) \ a \ D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v.$
- $\forall \tilde{\Omega} \subseteq \Omega \ otev \check{r}en \acute{a}$

$$u \in W^{k,p}(\Omega) \implies u \in W^{k,p}(\tilde{\Omega})$$

• $\forall \eta \in C^{\infty}(\Omega) : \eta u \in W^{k,p}(\Omega) \ a \ D^{\alpha}(\eta u) = \sum_{\beta_i \leqslant \alpha_i} D^{\beta} \eta D^{\alpha-\beta} u\binom{\alpha}{\beta}, \ kde \ \binom{\alpha}{\beta} = \prod_{i=1}^d \binom{\alpha_i}{\beta_i}.$

 $D\mathring{u}kaz$

Cvičení na doma.