

SÍLABO ÁLGEBRA LINEAL

ÁREA CURRICULAR: MATEMÁTICA Y CIENCIAS BÁSICAS

CICLO: II SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09036602050

II. CRÉDITOS : 05

III. REQUISITO : Ninguno

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso corresponde al área curricular de Matemática y Ciencias Básicas; es de carácter obligatorio y de naturaleza teórico y práctico está orientada a promover en los estudiantes los conocimientos y técnicas del algebra lineal, pretende desarrollar habilidades y estrategias de razonamiento para resolver problemas de la vida real, aplicar los conceptos, Métodos y técnicas.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Ecuaciones lineales y matrices. II. Vectores en R², R³ y Rn III. Espacios vectoriales reales y IV. Transformaciones lineales y matrices. Aplicaciones del algebra lineal.

VI. FUENTES DE CONSULTA:

Bibliográficas:

- · Kolman, B. (2006). Álgebra Lineal. Octava edición. México: Pearson Educación
- · Grossman, S. (2007). Elementary Linear Algebra With Applications Quinta edición. China: Mc Graw-Hill Interamericana
- · Grossman, S. (2008) Álgebra Lineal. Sexta edición. China: Mc Graw-Hill Interamericana.
- Espinoza, E. (2006). Álgebra Lineal. 2da Edición Impreso en el Perú.
- · Piña, G. (2007) Manual universitario de Algebra lineal. Perú: USMP

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: ECUACIONES LINEALES Y MATRICES

OBJETIVOS DE APRENDIZAJE:

- Aplicar la teoría de matrices y determinantes para resolver sistemas de ecuaciones lineales.
- Resolver sistemas de ecuaciones lineales reconociendo su consistencia o inconsistencia y el número de soluciones posibles.
- Emplear eficientemente las propiedades en el desarrollo de un determinante
- Ordenar la información en términos matriciales
- Entender los diferentes métodos de obtención de una matriz inversa

PRIMERA SEMANA

Primera sesión:

Prueba de entrada. Sistemas de ecuaciones. Eliminación de Gauss Jordan.

Segunda sesión:

Matrices. Operaciones con matrices, Propiedades. Características.

SEGUNDA SEMANA

Primera sesión:

Producto punto de vectores". Multiplicación de matrices. Sistemas de ecuaciones lineales.

Segunda sesión:

Propiedades de las operaciones con matrices. . Propiedades

TERCERA SEMANA

Primera sesión:

Operaciones elementales por fila. Solución de ecuaciones lineales. Sistemas homogéneos.

Segunda sesión:

Inversa de una matriz cuadrada. Método de Gauss-Jordan para el cálculo de la inversa.

CUARTA SEMANA

Primera sesión:

Determinante. Propiedades de los determinantes. Definición de menor. Cofactor.

Segunda sesión:

Adjunta de una matriz. Inversa de una matriz por medio de la adjunta. Regla de Cramer

UNIDAD II: VECTORES EN R2, R3 y Rn

OBJETIVOS DE APRENDIZAJE:

- Reconocer un vector en el plano y en el espacio
- Realizar operaciones con vectores y representarlos gráficamente en el plano y en el espacio
- Explicar e interpretar un vector en el plano ,su magnitud y su dirección de un vector
- Definir e interpretar vectores paralelos ,producto escalar
- Interpretar el producto vectorial, para sus respectivas aplicaciones

QUINTA SEMANA

Primera sesión:

Vectores en R². Norma de un vector. Vector unitario.

Segunda sesión:

Operaciones con vectores. Propiedades. Área del paralelogramo y del triángulo.

SEXTA SEMANA

Primera sesión:

Vectores en R³. Operaciones con vectores. Introducción a las transformaciones lineales.

Segunda sesión:

Producto cruz de vectores. Área. Volumen. Rectas y planos.

UNIDAD III: ESPACIOS VECTORIALES REALES

OBJETIVOS DE APRENDIZAJE:

- Aplicar las propiedades de los espacios vectoriales en la resolución problemas de la geometría en R^n .
- Reconocer ,interpretar y aplicar correctamente espacios y subespacios vectoriales
- Analizar y utilizar los conceptos de generadores, Base y dimensión y los teoremas respectivos en solución de problemas
- Comprender el significado de espacios vectoriales reales de dimensión finita.

SÉPTIMA SEMANA

Primera sesión:

Introducción. Definición y propiedades básicas.

Segunda sesión:

Subespacios. Definición. Propiedades. Reglas de cerradura

OCTAVA SEMANA

Examen parcial

NOVENA SEMANA

Primera sesión:

Combinación lineal. Conjunto generador. Espacio generado por un conjunto de vectores.

Segunda sesión:

Dependencia e independencia lineal. Interpretación geométrica de dependencia lineal en R³.

DÉCIMA SEMANA

Primera sesión:

Bases, definición. Dimensión, definición.

Segunda sesión:

Sistemas homogéneos. Nulidad. Relación entre homogéneos y no homogéneos.

UNDÉCIMA SEMANA

Primera sesión:

Rango de una matriz. Rango y singularidad. Aplicaciones del rango a los sistemas lineales.

Segunda sesión:

Coordenadas y cambio de base. Ilustración de un espacio vectorial. Matriz de transición.

DUODÉCIMA SEMANA

Primera sesión:

Bases ortogonales en Rⁿ. Proceso de Gram-Schmidt.

Segunda sesión:

Matriz ortogonal. Proyección ortogonal. Complemento ortogonal. Cuarta práctica calificada.

DECIMOTERCERA SEMANA

Primera sesión:

Valores y vectores propios. Ecuación y polinomio característicos. Multiplicidad algebraica.

Segunda sesión:

Matrices similares. Matriz diagonalizable. Diagonalización de matrices simétricas.

UNIDAD IV: TRANSFORMACIONES LINEALES Y MATRICES. APLICACIONES DEL ALGEBRA LINEAL

OBJETIVOS DE APRENDIZAJE:

- Reconocer si una función dada entre dos espacios vectoriales constituye o no una transformación lineal e identificar el núcleo y la imagen de la transformación lineal
- Formular la Matriz asociada a una transformación lineal entre dos espacios vectoriales R^m a R^n
- Identificar la relación de las transformaciones lineales con las matrices

DECIMOCUARTA SEMANA

Primera sesión:

Transformaciones lineales. Reflexión respecto al eje X. transformaciones de rotación.

Segunda sesión:

Núcleo de una transformación. Imagen de una transformación lineal.

DECIMOQUINTA SEMANA

Primera sesión:

Representación matricial de una transformación lineal.

Segunda sesión:

Aplicaciones: Programación lineal, problemas económicos de la programación linal *Quinta práctica calificada*.

DECIMOSEXTA SEMANA

Examen final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Retroproyector, computadora, ecran, proyector de multimedia. **Materiales:** Separatas, transparencias, direcciones electrónicas, PowerPoint

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE + EF) / 3

PE= (P1+P2+P3+P4+P4-MN)/4

Donde:

PF : Promedio Final

PE : Promedio de evaluación

EF : Examen final

P1, ..., P4: Prácticas calificadas (escrito)

MN : Menor nota entre las prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

Siendo **K**=clave R=relacionado vacío= no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	K
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	K
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	·

Laboratorio

0

XIII. HORAS, SESIONES, DURACIÓN

Teoría Práctica a) Horas de clase: 4 2

b) Sesiones por semana: Dos sesiones.c) Duración: 6 horas académicas de 45 minutos

XIV. **JEFE DE CURSO**

Mg. Carmen Monzón Monzón.

XV. **FECHA**

La Molina, marzo de 2018.