CE246: DATABASE MANAGEMENT SYSTEM

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit	
Hours/week	4	4	-	8	6	
Marks	100	100	-	200		

Pre-requisite courses:

• Data Structure

Outline of the Course:

Sr.	Title of the unit	Minimum number
No.		of hours
1.	Introductory concepts of DBMS	04
2.	Relational Model	06
3.	Entity-Relationship model	07
4.	Formal Relational Query Languages	06
5.	Relational Database Design	09
6.	Transaction & Recovery Management	07
7.	Advanced Transaction Processing	06
8.	Database Security	06
9.	Indexing and Hashing	07
10.	Query Processing & Query Optimization	02
	Total hours (Theory):	60
	Total hours (Lab):	60
	Total hours:	120

Detailed Syllabus:

1.	Introductory concepts of DBMS	04 Hours	06%
	Introduction and applications of DBMS, Purpose of		
	database, Data Independence, Database System		
	architecture- levels, Mappings, Database users and DBA		
2.	Relational Model	06 Hours	10%
	Structure of Relational Databases, Database Schema,		

	Schema Diagram, Domains, Relations, Relational Query		
	Languages, Relational Operations		
3.	Entity-Relationship model	07 Hours	12%
	Basic concepts, Design process, Constraints, Keys, Design		
	issues, E-R diagrams, Weak Entity Sets, Extended E-R		
	features- Generalization, Specialization, Aggregation,		
	Reduction to E-R database schema		
4.	Formal Relational Query Languages	06 Hours	10%
	The relational Algebra, The Tuple Relational Calculus,		
	The Domain Relational Calculus		
5.	Relational Database design	09 Hours	15%
	Functional Dependency-definition, Trivial and Non-Trivial		
	FD, Closure of FD set, Closure of attributes, Irreducible		
	set of FD, Normalization – 1NF, 2NF,3NF, Decomposition		
	using FD- Dependency Preservation		
6.	Transaction & Recovery Management	07 Hours	12%
	Transaction concepts, Properties of Transactions,		
	Serializability of transactions, Testing for Serializability,		
	System recovery, Two- Phase Commit protocol, Recovery		
	and Atomicity, Log-based recovery, Concurrent		
	executions of transactions and related problems, Locking		
	mechanism, Solution to Concurrency Related Problems,		
	Deadlock, Two-phase locking protocol, Intent locking		
7.	Advanced Transaction Processing	06 Hours	10%
	Transaction-Processing Monitors, Transactional		
	Workflows, Main-Memory Databases, Real-Time		
	Transaction Systems, Long-Duration Transactions		
8.	Database Security	06 Hours	10%
	Views - What are views for? View retrievals, View		
	updates, Snapshots (a digression), Materialized view,		
	Security - Security and Authentication, authorization in		
	SQL, Data encryption, Missing Information - An overview		
	of the 3VL approach		

9.	Indexing and Hashing	07 Hours	12%
	Basic Concepts, Ordered Indices, B+-Tree Index Files, B+-		
	Tree Extensions, Multiple-Key Access, Static Hashing,		
	Dynamic Hashing, Comparison of Ordered Indexing and		
	Hashing, Bitmap Indices, Index Definition in SQL		
10.	Query Processing & Query Optimization	02 Hours	03%
	Overview, Measures of Query Cost, Selection Operation,		
	Sorting, Join, Evaluation of Expressions, Transformation		
	of relational Expressions, Estimating Statistics of		
	expression results, Query Evaluation plans		

Course Outcomes (COs):

At the end of the course, students will be able to

CO1	Apply the concepts of engineering i.e collecting data, organize the data in the
	systematic form, and arrange the data in a computational way and applying
	mathematics formation.
CO2	Analyse how data are stored and maintained using data models. Ready to
	assimilate the concept of data abstraction and design queries using SQL. Identify
	how data is represented in the relational model and create relations using SQL
	language
CO3	Identify and evaluate the constructs in the E-R model and issues involved in
	developing an E-R diagram. Convert an E-R diagram into a relational database
	schema. Declare and enforce integrity constraints on database using a state-of-
	art RDBMS.
CO4	Produce aggregate operators to write SQL queries which are not expressible in
	relational algebra. "More mathematical" notation may apply and also used in
	research and other venues. Combining these concepts allows production of
	sophisticated queries.
CO5	Decompose un-normalized tables into normalized compliant tables. Design and
	implement a normalize database schema for a given problem-domain. Produce
	strategies to minimise risks of security breaches in a range of network
	environments and data storage systems. Compute retrieval time and concluding
	with suitable indexing technique.

CO6 Compare transactions and their properties with (ACID) and without ACID.

Apply locking protocol to ensure isolation. Develop logging technique to ensure atomicity and durability. Design a logical view which can be used for analytical tasks. Develop practical experience of the design and implement scalable, secure databases.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	2	1	1	-	-	-	1	2	-
CO2	3	3	3	2	3	1	2	-	-	-	-	3	2	1
CO3	3	3	3	3	2	2	1	3	2	1	-	2	3	2
CO4	3	3	1	3	1	1	-	2	2	-	-	2	2	2
CO5	3	3	3	2	3	1	-	2	2	1	-	3	2	2
CO6	3	3	2	2	ı	2	1	3	1	-	1	3	3	1

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

❖ Text book:

- Database System Concepts, Abraham Silberschatz, Henry F. Korth& S. Sudarshan, McGraw Hill.
- 2. An introduction to Database Systems, C J Date, Addition-Wesley

A Reference book:

- 1. "Fundamentals of Database Systems", R. Elmasri and S.B. Navathe, the Benjamin / Cumming Pub. Co
- SQL,PL/SQL the Programming Language of oracle, Ivan Bayross, BPB Publications
- 3. Oracle: The Complete Reference, George Koch, Kevin Loney, TMH /oracle press

❖ Web material:

- 1. http://www.sql.org
- 2. http://www.w3schools.com
- 3. http://www.sqlcourse.com

Software:

- 1. Oracle 10g
- 2. SQL Lite
- 3. Live SQL
- 4. Firebase
- 5. Squirrel SQL
- 6. Postgre SQL