

SAFE DESIGN OF SHIPS & OTHER MARINE STRUCTURES

using environmental contours and response-based methods

Contents

- Background
- Methodology
- Application

BACKGROUND

Environmental Contours for SAfe DEsign of Ships and other marine structures (ECSADES)

- ECSADES is a research project funded by Forskningsrådet and Innovate UK through the ERA-NET call.
- It is a collaboration between DNV GL (project manager), University of Oslo, Shell UK, and HR Wallingford.
- The project focuses on how to account for extreme environmental conditions in the safe design of ships and other marine structures.

Project outcomes

A review of environmental contours and response based methods for designing marine structures.

Ole Christian Astrup^a, Nigel Bunn^b, Graham Feld^c, Ben Gouldby^b, Arne Huseby^d, Ye Liu^b, David Randell^e, Emma Ross^e, Erik Vanem^a, Philip Jonathan^{f,*}

^aDNV-GL, 1363 Hovik, Norway.
^bHR Wallingford, Wallingford OX10 8BA, United Kingdom.
^cShell Projects & Technology, Aberdeen AB12 3FY, United Kingdom.
^dDepartment of Mathematics, University of Oslo, 0316 Oslo, Norway.
^eShell Projects & Technology, 1031 HW Amsterdam, The Netherlands.
^fShell Projects & Technology, London SE1 7NA, United Kingdom.

Research papers (in preparation)

Software packages https://github.com/ecsades (to be released)

METHODOLOGY

Challenges

Dealing with unobserved events

 Estimating the probability of rare or unobserved events

- Based on the Heffernan-Tawn model (or alternative models)
- Flexible for all types of extremal dependences (unlike most copula based models)

Heffernan-Tawn (2004) for multivariate tail distribution

Dealing with design events

A collection of popular contours included in the package

- Based on the simulated events or fitted distribution
- Draw the contours using the preferred method
- Select "design events" on the contours for the desired return periods

Accounting for covariate effects

Software package content at release

Joint exceedance contours

Iso-density contours

IFORM contours

Directsampling contours

- A collection of contours
- State-of-the-art multivariate statistical models
- Extreme value analysis with covariate effects
- User guide and plenty of examples
- ... and more to come

Possible approaches

Unknown Response

- The mathematical form of the response is unknown or costly to calculate
- Use Heffernan-Tawn or alternative
- Application of contours to fitted statistical distribution

Approximate Response

- The response can be approximated
- Heffernan-Tawn with the approximate response as the condition
- Application of the contours to the simulated data

Accurate Response

- The response is mathematically known or can be estimated accurately
- Construct response surface or use response-based analysis

APPLICATION

Example A – statistical model

- An offshore structure with the key response approximated
- Driving variables are wave height (Hs) and period (Tp)
- Input data cover 2,000 storms over 15 years
- Need distribution for Hs/Tp when the response is above 10- and 100-year level

Example A – response analysis

Peaks-over-threshold model

Example A – conditional simulation

Example B – contours

Erik Vanem (2017) A comparison study on the estimation of extreme structural response from different environmental contour methods, Marine Structures, 56 (2017), 137-162.

Example B – sample outcome

Thanks. Questions?

www.hrwallingford.com

www.hrwallingford.com.cn

