Más bases de Gröbner

Ejercicio 1. Consideremos el ideal

$$I = (x^3y - z, y^2 - z - 1, x^2 + 1) \subset k[x, y, z].$$

- 1) Usando la computadora, encuentre una base de Gröbner para I respecto al orden lexicográfico. Encuentre la base monomial correspondiente para k[x, y, z]/I como un espacio vectorial sobre k.
- 2) La misma pregunta para el orden graduado lexicográfico.
- 3) Compile las tablas de multiplicación en k[x, y, z]/I respecto a estas dos bases.

Ejercicio 2. Demuestre que las siguientes condiciones son equivalentes:

- a) $\dim_k(k[x_1,\ldots,x_n]/I) < \infty$;
- b) $\#\{x^{\alpha} \mid x^{\alpha} \notin (LT(I))\} < \infty$;
- c) para todo i = 1,...,n existe $\alpha_i \ge 0$ tal que $x_i^{\alpha_i} \in (LT(I))$;
- d) si G es una base de Gröbner para I, entonces para todo $i=1,\ldots,n$ existe $\alpha_i\geq 0$ tal que $x_i^{\alpha_i}=LM(g)$ para algún $g\in G$.

Ejercicio 3. Demuestre que $\dim_k(k[x_1,...,x_n]/I) < \infty$ si y solamente si $I \cap k[x_i] \neq 0$ para todo i = 1,...,n. Sugerencia: use el ejercicio anterior y el orden lexicográfico con $x_i > x_i$ para todo $j \neq i$.

Ejercicio 4. Consideremos el ideal

$$I = (x^3 y - z, y^2 - z - 1, x^2 + 1) \subset k[x, y, z].$$

Usando Macaulay2, encuentre generadores de los ideales principales

$$I \cap k[x]$$
, $I \cap k[y]$, $I \cap k[z]$.

Ejercicio 5. Demuestre que en $k[x_1,...,x_n]$ se cumple

$$(f) \cap (g) = (\operatorname{mcm}(f, g)).$$

El orden lexicográfico que hemos usado en el teorema de eliminación no es muy bueno en práctica. En los siguientes ejercicios vamos a investigar otro orden que también funciona y suele ser mejor en los cálculos.

Ejercicio 6. Para $1 \le \ell \le n$ consideremos la relación sobre los monomios en $k[x_1, ..., x_n]$

$$x^{\alpha} <_{\ell} x^{\beta} \iff \left\{ \begin{array}{c} \alpha_{1} + \dots + \alpha_{\ell} < \beta_{1} + \dots + \beta_{\ell} \\ \text{o bien} \\ \alpha_{1} + \dots + \alpha_{\ell} = \beta_{1} + \dots + \beta_{\ell} \text{ y } \alpha <_{grevlex} \beta \end{array} \right\}$$

1) Demuestre que $<_{\ell}$ es un orden monomial.

2) Demuestre que para un ideal $I \subseteq k[x_1,...,x_n]$, si G es una base de Gröbner respecto al orden $<_{\ell}$, entonces, $G \cap k[x_{\ell+1},...,x_n]$ es una base de Gröbner para $I \cap k[x_{\ell+1},...,x_n]$ respecto al orden grevlex.

Este orden monomial puede ser especificado en Macaulay2 como

MonomialOrder=>Eliminate
$$\ell$$

Ejercicio 7. Consideremos el ideal

$$I = (t^2 + x^2 + y^2 + z^2, t^2 + 2x^2 - xy - z^2, t + y^3 - z^3) \subset \mathbb{Q}[t, x, y, z].$$

- 1) Calcule en Macaulay2 la base de Gröbner reducida de I respecto al orden lexicográfico. Encuentre la base de Gröbner correspondiente para $I \cap \mathbb{Q}[x, y, z]$.
- 2) Haga el mismo cálculo para el orden $<_1$ del ejercicio anterior (es decir, $<_\ell$ con $\ell=1$). Encuentre la base de Gröbner correspondiente para $I \cap \mathbb{Q}[x,y,z]$.

Conjuntos algebraicos

Ejercicio 8. Describa la unión de los n ejes de coordenadas en $\mathbb{A}^n(k)$ como un conjunto algebraico.

Ejercicio 9. Demuestre que si k es un cuerpo infinito, entonces la topología de Zariski sobre $\mathbb{A}^2(k)$ es más fina que la topología producto sobre $\mathbb{A}^1(k) \times \mathbb{A}^1(k)$.

Ejercicio 10. Demuestre que si k es un cuerpo infinito, entonces $I(\mathbb{A}^n(k)) = 0$. ¿Por qué esto es falso para cuerpos finitos?

Ejercicio 11. Sea *k* un cuerpo algebraicamente cerrado.

a) Para char $k \neq 2$ consideremos los siguientes conjuntos algebraicos en $\mathbb{A}^2(k)$:

$$Z_1 := \mathbf{V}(u(t-1)-1), \quad Z_2 := \mathbf{V}(v^2 - x^2(x+1)).$$

Demuestre que el morfismo

$$Z_1 \to Z_2$$
, $(t, u) \mapsto (t^2 - 1, t(t^2 - 1))$

es biyectivo, pero no es un isomorfismo. Demuestre que en general, $Z_1 \not\cong Z_2$.

b) Demuestre que el morfismo

$$\mathbb{A}^1(k) \to \mathbf{V}(v^2 - x^3) \subset \mathbb{A}^2(k), \quad t \mapsto (t^2, t^3)$$

es biyectivo, pero no es un isomorfismo. Demuestre que en general, $\mathbb{A}^1(k) \not\cong \mathbf{V}(y^2 - x^3)$.

Sugerencia: demuestre que $\Gamma(Z_1) \not\cong \Gamma(Z_2)$ y $\Gamma(\mathbf{V}(y^2 - x^3)) \not\cong k[t]$.

Ejercicio 12. Demuestre que X es un espacio Hausdorff noetheriano si y solo si X es finito con la topología discreta.

Ejercicio 13. Encuentre las componentes irreducibles de los siguientes conjuntos algebraicos (k es un cuerpo algebraicamente cerrado):

- 1) $V(x(x+1), y) \subset \mathbb{A}^2(k)$;
- 2) $\mathbf{V}(xz, yz) \subset \mathbb{A}^3(k)$;
- 3) $\mathbf{V}(xy^2 x^2(x^2 1)) \subset \mathbb{A}^2(k)$.