A function f belongs to Barron space \mathcal{B} if it can be represented as:

$$f(x) = \int_{\Omega} a\sigma(w^T x) \rho(da, dw),$$

where σ is the activation function, w is a weight vector, a is a coefficient, and ρ is a probability distribution. The complexity of f is measured by the Barron norm $||f||_{\mathcal{B}}$:

$$||f||_{\mathcal{B}} = \inf_{\rho \in P_f} \left(\int_{\Omega} |a| ||w||_1 \rho(da, dw) \right),$$

where P_f is the set of distributions for which f can be represented. This framework provides a foundation for analyzing approximation errors in neural networks.

The following theorem (E et al., 2020) discusses the approximation capabilities of two-layer neural networks within this context, establishing a foundation for the subsequent analysis.

Theorem A.2 (Direct Approximation Theorem, L^2 -version). For any $f \in \mathcal{B}$ and $r \in \mathbb{N}$, there exists a two-layer neural network f_r with r neurons $\{(a_i, \mathbf{w}_i)\}$ such that

$$||f-f_r||_{\mu} \lesssim \frac{||f||_{\mathcal{B}}}{\sqrt{r}}.$$

This implies an approximation error decreasing at a rate of $O(1/\sqrt{r})$, where r is the number of neurons. In ResKoopNet, the dictionary $\Psi(x;\theta) = \{\psi_i(x;\theta)\}_{i=1}^{N_K}$ is parameterized by a neural network with parameters θ . Assuming the true dictionary functions $\psi_i \in \mathcal{B}$, Theorem A.2 ensures that $\Psi(x;\theta)$ can approximate the optimal dictionary spanning the Koopman invariant subspace $\mathcal{B}_{N_K} \subset \mathcal{F}$ with error $\epsilon > 0$, provided r is sufficiently large.

We want to show two convergence results here: (1) $\Psi(x;\theta)$ approaches the true invariant subspace of \mathcal{K} ; (2) The eigenpairs (λ_i,ϕ_i) and pseudospectrum approximate \mathcal{K} 's true spectrum as $J(\theta) \to 0$.

Assumption A.4. To formalize convergence, we make the following assumptions:

- (a) The optimal dictionary functions $\{\psi_i^*\}_{i=1}^{N_K}$ spanning \mathcal{K} 's invariant subspace lie in \mathcal{B} .
- (b) The loss $J(\theta)$ is Lipschitz continuous in θ , and the neural network $\Psi(x;\theta)$ has bounded gradients, facilitating gradient-based optimization.

Now, consider a Barron space \mathcal{B} which is dense in \mathcal{F} . Given N_K fixed, let $\mathcal{B}_{N_K} = \text{span}\{\psi_i^*\}_{i=1}^{N_K}$ be the true invariant subspace. By Theorem A.2, for each ψ_i^* , there exists a neural network approximation $\psi_i(x;\theta_r)$ with r neurons such that:

$$\|\psi_i^* - \psi_i(\cdot; \theta_r)\|_{\mu} \le \frac{\|\psi_i^*\|_{\mathcal{B}}}{\sqrt{r}}.$$

The total dictionary error is:

$$\|\Psi^* - \Psi(\cdot; \theta_r)\|_F^2 = \sum_{i=1}^{N_K} \|\psi_i^* - \psi_i(\cdot; \theta_r)\|_\mu^2 \le \frac{1}{r} \sum_{i=1}^{N_K} \|\psi_i^*\|_\mathcal{B}^2 = \frac{C_{N_K}}{r},$$

where $C_{N_K} = \sum_{i=1}^{N_K} \|\psi_i^*\|_{\mathcal{B}}^2$ is finite under Assumption A.4(a). As $r \to \infty$, $\Psi(x; \theta_r) \to \Psi^*$ in the Frobenius norm, which ensures the dictionary approximated by neural network can represent \mathcal{B}_{N_K} .

Algorithm 1 updates θ via stochastic gradient descent (SGD) with step size δ and computes $\tilde{K}(\theta_n)$ iteratively until $J(\theta_n) < \epsilon$ where θ_n represents n-th iteration of parameters θ . For a Lipschitz continuous $J(\theta)$ with constant L (by Assumption A.4(b)) and a strongly convex region near the optimum θ^* (assumed locally for simplicity), SGD converges at a rate of O(1/n) in expectation (Bottou et al., 2018):

$$\mathbb{E}[J(\theta_n) - J(\theta^*)] \le \frac{L}{2nn},$$

where η is the strong convexity constant and n is the iteration number. In practice, $J(\theta)$ is non-convex due to the neural network, and the alternating update with $\tilde{K}(\theta)$ stabilizes the process. As iteration step $n \to \infty$ and amount of data points $m \to \infty$, $J(\theta_n) \to 0$, which implies $\widehat{\text{res}}(\lambda_i, \phi_i) \to 0$ for all i.

With $J(\theta) \to 0$, we now assess the spectral error: if $\widehat{\text{res}}(\lambda_i, \phi_i) < \epsilon$, then $\|\mathcal{K}\phi_i - \lambda_i\phi_i\|_{\mu}/\|\phi_i\|_{\mu} < \sqrt{\epsilon}$, indicating λ_i and ϕ_i are approximate eigenpairs of \mathcal{K} converges to \mathcal{K} 's true spectrum as $N_K \to \infty$ and $\epsilon \to 0$, as pointed out in (Colbrook & Townsend, 2024, Theorem B.1). Uniform convergence on compact subsets of \mathbb{C} follows from the density of \mathcal{B}_{N_K} in \mathcal{F} and Dini's theorem, as pointed out in Colbrook & Townsend (2024, Lemma B.1).