05-tests

April 4, 2019

1 Les tests en python

(code sous licence creative commun CC BY-NC-SA BY Alexis Dendiével)

1.1 utilité des tests

Les tests constituent, avec les boucles, l'une des bases fondamentales de la programmation. Régulièrement en effet, nous devons faire des tests afin de dérouler l'algorythme.

- Si telle condition est vrai alors faire ceci
- · sinon faire cela

Un exemple d'algorythme:

Un exemple lié à la classification périodique des éléments: On se propose de savoir si l'élément, défini par son numéro atomique, apparient ou non aux trois premières linges de la classification

```
In [2]: # premier test

# demander le numéro atomique
Z = int(input("entrer le numéro atomique de l'élément: "))

# test vérifiant si l'élément fait partie des trois premières lignes
if Z<= 18:
        print("cet élément fait partie des trois premières lignes de la classification")
else:
        print("cet élément ne fait pas partie des trois premières lignes de la classificat
entrer le numéro atomique de l'élément: 20</pre>
```

1

cet élément ne fait pas partie des trois premières lignes de la classification

La syntaxe traduit l'algorythme en langage python:

prenons un exemple plus conséquent afin de voir l'utilité du test if en contexte. Il s'agit d'un programme calculant les forces électromagnétiques et gravitationnelles, et les comparant. A la lecture du programme, vous trouverez deux tests: - le premier donne le côté attractif ou répulsif de la force électromagnétique - le second compare les deux forces afin de définir la prédominance

```
In [9]: # comparaison des forces de gravitation et électromagnétique
        # entre deux masses m1 et m2 de charge q1 et q2 séparées d'une distance d
        # les constantes utilisées
        G = 6.67e - 11
        k = 9.0e9
        e = 1.6e-19
        # présentation du programme
        print ("nous nous proposons de comparer les valeurs des forces de gravitation et é
        # entrée des données
        m1 = float(input('Entrer la valeur de la masse m1 (en kg): '))
        e1 = float(input('Entrer la valeur la charge q1 en multiple de e, la charge élémentaire
        m2 = float(input('Entrer la valeur de la masse m2 (en kg): '))
        e2 = float(input('Entrer la valeur la charge q1 en multiple de e, la charge élémentaire
        d = float(input('Entrer la distance (en mètre) séparant m1 et m2 '))
        # caractère attractif ou répulsif
        if e1*e2 > 0:
            caractere = "répulsif"
        else:
            caractere = "attractif"
        # calcul des forces
        FG = G*m1*m2/d**2
        FE = abs(k*e*e1*e*e2/d**2)
        # comparaison des forces
        if FG > FE:
            preponderant = "force de gravitation"
            comparaison = FG/FE
        else:
            preponderant = "force électromagnétique"
            comparaison = FE/FG
        # impression des résultats
        print('{:50}'.format("la valeur de la force de gravitation est: "), "{0:.2e}".format(Format(Format()), "{0:.2e}".format()
        print("cette force est attractive")
        print('{:50}'.format("la valeur de la force électromagnétique est: "), "{0:.2e}".forma
        print("cette force est", caractere)
```

```
print("la", preponderant, "est prépondérante")
       print('{:50}'.format("le rapport de ces deux forces est: "),"{0:.2e}".format(comparais
nous nous proposons de comparer les valeurs des forces de gravitation et électromagnétique
Entrer la valeur de la masse m1 (en kg): 1
Entrer la valeur la charge q1 en multiple de e, la charge élémentaire :1
Entrer la valeur de la masse m2 (en kg): 1
Entrer la valeur la charge q1 en multiple de e, la charge élémentaire :1
Entrer la distance (en mètre) séparant m1 et m2 1
la valeur de la force de gravitation est:
                                                  6.67e-11 N
cette force est attractive
la valeur de la force électromagnétique est:
                                                  2.30e-28 N
cette force est répulsif
la force de gravitation est prépondérante
le rapport de ces deux forces est:
                                                   2.89e+17
```

Plusieurs points: - Dans ces exemples, le else n'est en rien obligatoire. - on souhaite parfois faire plusieurs tests imbriqués, on utilise pour cela l'instruction elif (else if)

```
In [13]: # test imbriqué

    # demander le numéro atomique
    Z = int(input("entrer le numéro atomique de l'élément: "))

# test vérifiant si l'élément fait partie des trois premières lignes
if Z<= 2:
    print("cet élément fait partie de la première ligne de la classification")
elif Z <=10:
    print("cet élément fait partie de la deuxième ligne de la classification")
elif Z <=18:
    print("cet élément fait partie de la troisième ligne de la classification")
else:
    print("cet élément ne fait partie des trois premières lignes de la classification")
else:
    print("cet élément ne fait pas partie des trois premières lignes de la classification")
entrer le numéro atomique de l'élément: 4
cet élément fait partie de la deuxième ligne de la classification</pre>
```

Quelques compléments: - le test égal se note == - pour des instructions simples, on peut utiliser la forme compacte

In []: