Estimação é a obtenção de resultados populacionais baseado em estatísticas amostrais. Ou seja, se *estima* um determinado parâmetro populacional (idade média das mulheres brasileiras; altura média dos homens brasileiros; etc.) a partir de uma amostra – aleatória – desta população.

- Estimação pontual
- Estimação intervalar

2)

Probabilidade da afirmação estar correta: 68%

Probabilidade da afirmação estar equivocada: 1-0,68 = 32%

Dp -> P:

1,65 -> 90%

1,96 -> 95%

2,33 -> 98,02%

2,58 -> 99%

3)

Quando se faz uma estimação não há meios de garantir que ela é perfeitamente igual àquela populacional. Portanto, sempre haverá uma variação, que deverá ser captada pela ferramenta do Intervalo de Confiança. No IC haverá uma determinada amplitude, que garantirá, com uma precisão variável (90%, 95%, 99% são as mais comuns) que o valor estimado estará dentro deste intervalo específico.

Sua forma geral será:

```
[Xbarra - z.dp(Xbarra); Xbarra + z.dp(Xbarra)
```

Onde z é o grau de precisão, ou grau de confiança desejado (exposto na tabela normal padronizada), Xbarra é a média amostral e dp(Xbarra) é o desvio padrão da média amostral.

4)

Média amostral = uma entre todas as possíveis médias de todas as possíveis amostras, i.e., uma média para uma determinada amostra.

Média da distribuição amostral = representa a população de todas as médias oriundas de uma amostra de tamanho n de variável aleatória

Pela Lei dos Grandes Números e pelo Teorema do Limite Central sim, há relação entre o tamanho da amostra, seu desvio padrão e sua distribuição, se aproximando da normal tanto quanto n → ao infinito.

DP = raiz{(somatório[xi - Xbarra]^2)/n}

6)

Estimativa pontual de μx : \overline{X}

Estimativa intervalar de $\mu x: \overline{X} - z.dp.\overline{X}; \overline{X} + z.dp.\overline{X}$

7)

Fatores que interferem na amplitude do intervalo de confiança:

- Coeficiente de confiança (z)
- Tamanho da amostra
- Dispersão da população (dp)

8)

É uma possibilidade de se estimar incorretamente, sendo a diferença máxima entre o parâmetro amostral e o parâmetro populacional, definido como se segue:

$$erro = z \frac{\sigma_x}{\sqrt{n}}$$

a)
$$\overline{\chi} = 30$$
 $| \overline{\nabla x} = \overline{\nabla x} |$
 $M = 50$ $| \overline{\nabla x} = 5 |$
 $M = 50$ $| \overline{\nabla x} = 5 |$
 $| \overline{\nabla x}$

	confiança			m á dia	DP Populaçã				
	desejada	0/		média	0		VC: (: :		
N	%	α %	Z	amostral	(σx)	erro	vc interio	v C superi	Amplitude
36	68,26	31,74	1	60,00	5,3	0,88	59,12	60,88	1,77
36	90	10,00	1,65	60,00	5,3	1,46	58,54	61,46	2,92
36	95	5	1,96	60,00	5,3	1,73	58,27	61,73	3,46
36	99	1,00	2,58	60,00	5,3	2,28	57,72	62,28	4,56
43	68,26	31,74	1	100,20	12,3	1,88	98,32	102,08	3,75
43	80	20	1,29	100,2	12,3	2,42	97,78	102,62	4,84
43	90	10,00	1,65	100,2	12,3	3,09	97,11	103,29	6,19
43	95	5,00	1,96	100,2	12,3	3,68	96,52	103,88	7,35
43	99	1,00	2,58	100,2	12,3	4,84	95,36	105,04	9,68

$$m = \begin{pmatrix} 1.96 & \frac{11}{1.5} \end{pmatrix} \approx 207$$

A distribuição t é mais utilizada quando o tamanho da amostra é pequena – n < 30. Para amostras maiores, a utilização da Normal é mais frequente, já que, à medida que o tamanho da amostra cresce, mais a distribuição se parecerá com a Normal (Lei dos Grandes Números e TLM).

A distr. t tem o pico e as extremidades menos achatadas que a Normal, e se adequa melhor a amostras pequenas.

n	Graus de Liberdade	X% de Confiança	nível de significância (α)	valor de t (bicaudal)
8	7	95	5	2,365
13	12	95	5	2,179
13	12	90	10	1,782
17	16	99	1	2,921
27	26	90	10	1,706
30	29	95	5	2,045
29	28	99	1	2,763

15) n = 30 x = 30 5x = 3.5 5x[30 - 1,306; 30 + 1,306] [28,69; 31,306]

								VC	VC
n	Graus de Liberdade	Confiança	(α)	valor de t (bicaudal)	media amostral	Sx	erro	inferior	superior
30) 29	90	10	1,699	60	5,3	1,64	58,36	61,64
3) 29	95	5	2,045	60	5,3	1,98	58,02	61,98
3) 29	99	1	2,756	60	5,3	2,67	57,33	62,67
2	5 25	90	10	1,708	100	12,3	4,12	95,88	104,12
2	5 24	95	5	2,064	100	12,3	5,08	94,92	105,08
2	3 22	99	1	2,819	100	12,3	7,23	92,77	107,23

				!	1			VC	VC
n	Graus de Liberdade	Confiança	(a)	valor de t (bicaudal)	media amostral	Sx	erro	inferior	superior
30	29	90	10	1,699	80	7	2,17	77,83	82,17
23	22	95	5	2,074	90	12	5,19	84,81	95,19
18	17	99	1	2,898	120	18,519	12,65	107,35	132,65
10	9	95	10	1,833	200	21,00	12,17	187,83	212,17
21	20	95	5	2,086	321,00	32	14,53	306,47	335,52
29	28	99	1	2,763	68,00	11	5,64	62,36	73,64