Parshvanath Charltable Tracks

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Back Poopagation - Numerical Example Using back propagation network, find the new weights food the net as shown in below figure. It is precented with input pattern [0,1] and the target output is I. Use a leaning rate d=0.25 and binary Sigmoidal activation function.

sig. Netwook

- The new weights are calculated based on the back propagation toaining algorithm.

Prof. Shraddha Dalvi

Department of Computer Science & Engineering-(AI&ML) | APSIT

Parshvanath Charitable Brust's

A. P. SINI WEIGHTON OF THEOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Calculate input to neuron Z1

$$I2_1 = (0 * 0.6) + (1 * -0.1) + 0.3 = 0.2$$

Calculate input to neuron 22

Calculate output from neuron Zi

$$0z_1 = \frac{1}{1+e^{-1}z_1} = \frac{1}{1+e^{-0.2}} = 0.5498$$

Calculate output from neuron 22

Now calculate net input entering into output neuron Y.

A MAN ARTHUR D HUMBARY

Parshvanath Chartable Crustis

A P SIMI METHURE OF TESTIVOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbal)
(Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

$$IY = (0.4 * 021) + (0.1 * 022) + bias$$

$$= (0.4 * 0.5498) + (0.1 * 0.7109) + (-0.2)$$

$$= 0.09101$$

$$O_{Y} = \frac{1}{1+e^{-1}} = \frac{1}{1+e^{-0.09101}} = 0.5227$$

Calculate eonor:

Error =
$$target - 0y$$

= $1 - 0.5227$
= 0.4773

Backpropagate this error to update the weights to minimize the error.

Parsivanath Charlable Brasts

A D. SINI INSHHUMUND OF THEOLOGY

Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Backward Propagation:

For each unit k in the output layer, Error k = Ok (1-Ok) (target-Ok)

For each unit j in the hidden layer, Error = Oj (1-Oj) Zk Error & Wik

For output unit Y, calculate Errory

: Errory = OY (1-OY) (target-OY)

= 0.5227 * (1-0.5227)(1-0.5227)

 $= 0.5227 \times (0.4773) \times (0.4773)$

= 0.1191

update weights between hidden layer and output layer. (change in weight i.e. A value)

A WI = & EMORY OZI

= 0.25 * 0.1191 * 0.5498

= 0.0164

Parshvaneth Charteble Could

A R SING METHURING OF THESE MANUELY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

DW2 = X EDOORY OZZ

=0.25 × 0.1191 × 0.7109

= 0.02117

△Wo Chias) = < Errory

=0.25 *0.1191 = 0.02978

Now compute the error between input layer and the hidden layer.

E00002= Ozi (1-021) E00084*Klzy

= 0.5498*(1-0.5498) * 0.1191 * 0.4

= 0.5498 * 0.4502 * 0.1191 * 0.4

= 0.0118

E000022 = 022 (1-022) *E00004 * W224

= 0.7109 * (1-0.7109) * 0.1191 * 0.1

= 0.7109 x 0.2891 x 0.1191 x 0.1

= 0.00245

Parshvaneth Charleadle Tracks

VAIOLOVII DETI CO CHIUNHUEVII EVILLE L

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Now update the weights between input layer and output layer. (change in weight)

 $\Delta V_{11} = dx E = 2000 z_1 + 2_1$ = 0.25 + 0.0118 + 0 = 0

 $\Delta V_{21} = 0.25 \pm 0.0118 \pm 1 = 0.00295$

Δ Voi Cbias) = α * Emorz, =0.25 * 0.0118 = 0.00295

 $\Delta V_{12} = 2 \times E000022 \times 2_{1}$ = 0.25 \times 0.00245 \times 0 = 0

 $\Delta V_{22} = d \times E000022 \times 22$ = 0.25 \times 0.00245 \times 1 = 0.0006125

 ΔV_{02} (bias) = $\Delta \times E_{00022}$ = 0.25 \times 0.00245 = 0.0006125

Parshvanigh Charlable Brust's

CASOLICIENT CO CHUHHURIII ILAIE & A

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Compute final weights of the network:

YII (new) = VII (old) + A YII

= 0.6 + 0

= 0.6

V12 (new) = V12 (old) + A V12

= -0.3 + 0 = -0.3

V21 (new) = V21 (old) + AV21

= -0.1 + 0.00295

= -0.09705

V22 (new) = Y22 (old) + A Y22

= 0.4 + 0.0006125

= 0.4006125

Vol (new) = Vol Cold) + AVOI

= 0.3 + 0.00295

= 0.30295

Yoz (new) = Yoz (old) + AVOZ

= 0.5 + 0.0006125 = 0.5006125