What can ranked abundance distributions (RADs) tell us about anthropogenic change in streams?

Francis J. Burdon

Swiss Federal Research Institute of Aquatic Science and Technology

Ecolmpact

Freshwater ecosystems face multiple threats

Vörösmarty et al. 2010 Nature

Ranked abundance distributions (RADs)

Whittaker 1960 in McGill et al. 2007 *Ecology Letters*

- Universal pattern explaining communities
- Rarely used in stream ecology
- Recent studies have shown useful applications

Journal of Animal Ecology

British Ecological Society

Journal of Animal Ecology 2014

doi: 10.1111/1365-2656.12278

Effects of land-use intensity on arthropod species abundance distributions in grasslands

Nadja K. Simons^{1*}, Martin M. Gossner¹, Thomas M. Lewinsohn², Markus Lange³, Manfred Türke¹ and Wolfgang W. Weisser¹

Abundance inequality has ecological origins

Environmental favorability

Passy 2016 The American Naturalist

Abundance inequality in response to disturbance/stress

log Abundance

Rank

What influences the size of the change?

Extent of change context Disturbance $\Delta Y_i = \begin{bmatrix} \frac{\partial Y_i}{\partial X} \\ \frac{\partial X}{\partial X} \end{bmatrix} \times \Delta X$

Ecology and Evolution

Open Access

Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams

Francis J. Burdon¹, Marta Reyes¹, Alfredo C. Alder¹, Adriano Joss¹, Christoph Ort¹, Katja Räsänen^{1,2}, Jukka Jokela^{1,2}, Rik I.L. Eggen^{1,2} & Christian Stamm¹

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ²ETH-Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland

Multi-pressure catchments

 ΔY_i

$$\frac{\partial Y_i}{\partial X}$$

X

X

Regional distributions and the 'core-satellite' hypothesis

Number of sites occupied

Hanski 1982 Oikos

Factors driving community assembly

Stress or disturbance

Exceptions: Mass effects (source-sink dynamics)

Heino 2013 Biological Reviews

Main hypotheses

H₁: Does RAD slope change and why?

Is ranked abundance steeper at more disturbed sites?

H_{1A}: Dominance

Does dominance increase?

H_{1B}: Rare taxa

Are rare taxa less frequent?

H₂: What drives the magnitude of change?

Is change in slope influenced by the context or disturbance?

H₃: Scaling from local impacts to regional effects

Are regionally rare taxa more likely to be lost?

Study design

Fitting ranked abundance curves

- Niche pre-emption model used for analyses
- Species divide single niche dimension in constant fractions
- radfit in 'BiodiversityR'
- 'Mandelbrot-Zipf' model fits data better

Increased dominance and less rare taxa cause steeper slope at sites impacted by wastewater

Size of change is context dependent

Changes in abundance-distribution relationship

GAM, $y = x \times Site + s(x, by = Site, k = 6)$

Changes in abundance-distribution relationship

GAM, $y = x \times Site + s(x, by = Site, k = 6)$

Pollution destabilises regional assembly patterns?

Winners

- r-selected
- Small-bodied
- Generalists

Losers

- K-selected
- Large-bodied
- Specialists

Summary

- RADs fitted to stream invertebrate data using niche pre-emption model
- Polluted sites showed steeper decay rate driven by increased dominance and fewer rare taxa
- Magnitude of change in RAD context dependent reflecting landuse pressures and catchment size
- Taxa distributions conform to 'core-satellite' but regionally rare taxa numbers unchanged
- Polluted sites showed greater variation in assembly patterns reflecting 'winners and losers'

RADs, mass-abundances, and 'core-satellite'?

Hanski 1982 Oikos

Acknowledgements

Drs. Katja Räsänen and Christian Stamm

Profs. Jukka Jokela and Rik Eggen

Prof. Florian Altermatt

Marta Reyes & wider Ecolmpact group

Aquabug and collaborators

www.ecoimpact.ch

www.francisburdon.com

Swiss Confederation

Increased abundances for common taxa

Increased abundances for taxa still present

