Mètodes Numèrics i Probabilístics Grau de MatCAD

i Probabilístics
atCAD
-2022

Curs 2021-2022

Pràctica 3: Generació de variables aleatòries a \mathbb{S}^n

En aquesta pràctica seguirem treballant amb models de Montecarlo. En aquest cas voldrem generar variables aleatòries sobre una esfera de dimensió n (en particular per n=4, però el mètode és general). Per tal de fer-ho aprofitarem el generador de variables aleatòries amb el mètode polar de Marsaglia utilitzat en la pràctica anterior.

Exercici 1. Donat un polinomi de grau 4 amb coeficients reals $ax^4 + 4bx^3 + 6cx^2 + 4dx + e$ sabem que tenim sempre dues quatre arrels α_1 , α_2 , α_3 i α_4 , encara que no sempre necessàriament reals i no sempre necessàriament diferents. Recordeu que com que els coeficients són reals les arrels complexes sempre van per parelles conjugades. Ens interessa saber quina fracció de polinomis quadràtics tenen:

- Quatre arrels reals
- Quatre arrels complexes
- Dues arrels reals i dues de complexes

La manera de determinar-ho es basa en un seguit de discriminants, el valor dels quals ens indica en quina situació ens trobem:

$$P = ae - 4bd + 3c^2$$
 $Q = (b^2 - ac)e + ad^2 + (c^2 - 2bd)c$
 $D = 27Q^2 - P^3$ $R = b^2 - ac$
 $S = 12R^2 - a^2P$ $T = 3aQ - 2PR$
 $U = 2d^2 - 3ce$

Un cop calculats aquests discriminants, podem saber en quina situació ens trobem a partir d'aquestes taules

Cas $a \neq 0$	Nombre d'arrels reals diferents	Multiplicitats	Condicions
1	4	1-1-1-1	D < 0, R > 0, S > 0
2	3	1-1-2	D = 0, T < 0
3	2	1-1	D > 0
4	2	2-2	$D = T = 0, P \cdot R > 0$
5	2	1-3	$D = P = 0, R \neq 0$
6	1	4	D = P = R = 0
7	1	2	D = 0, T > 0
8	0	_	$D = T = 0, P \cdot R < 0$
9	0	_	$D < 0, R \le 0$
10	0	_	D < 0, S < 0

Cas a = 0	Nombre d'arrels reals diferents	Multiplicitats	Condicions
1	3	1-1-1	$D < 0, R \neq 0$
2	2	1-1	R = 0, P > 0, U > 0
3	2	1-2	$D = 0, P \cdot R \neq 0$
4	1	3	$D = P = 0, R \neq 0$
5	1	2	$R = U = 0, P \neq 0$
6	1	1	$D>0, R\neq 0$
7	1	1	$R=P=0, U\neq 0$
8	0	_	$R = 0, P \neq 0, U < 0$
9	0	_	$R = P = U = 0, e \neq 0$
10	∞	_	R = P = U = e = 0

Noteu que tenim un problema. a, b, c, d i e són nombres reals arbitraris, i per tant l'espai de possibles valors és \mathbb{R}^5 , que no és compacte. Conseqüentment, no podem generar variables aleatòries de manera que tinguem una mostra significativa de tots els polinomis. Per això hem de utilitzar una mica d'enginy matemàtic.

Observació. Observeu que si $a, b, c, d, e \neq 0$ els polinomis $ax^4 + 4bx^3 + 6cx^2 + 4dx + e$ i

$$\frac{ax^4 + 4bx^3 + 6cx^2 + 4dx + e}{\sqrt{a^2 + b^2 + c^2 + d^2 + e^2}} = a'x^4 + 4b'x^3 + 6c'x^2 + 4d'x + e'$$

tenen exactament les mateixes arrels. A més a més es compleix que $a'^2 + b'^2 + c'^2 + d'^2 + e'^2 = 1$, per tant podem entendre que a', b', c', d' i e' són les components d'un punt d' \mathbb{S}^4 , que és compacte.

Utilitzant aquesta observació ara la nostra feina s'ha simplificat. Comprovar les arrels de tots els polinomis quadràtics i comprovar només les arrels dels polinomis tals que $a^2+b^2+c^2+d^2+e^2=1$ resulta equivalent. Per tant, hem de trobar maneres de poder generar punts aleatoris uniformement distribuïts d' \mathbb{S}^4 , cosa que és possible perquè és compacte.

Per aquesta pràctica farem servir un mètode que es pot generalitzar per a \mathbb{S}^n amb $n \geq 2$ arbitrària: el mètode de Muller (el nostre amic Marsaglia també en te un que funciona per \mathbb{S}^3 , però no per altres n.)

Donades 5 variables $x_1, x_2, x_3, x_4, x_5 \sim \mathcal{N}(0, 1)$ i.i.d. tenim que la distribució dels vectors

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix} = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
(1)

és uniforme sobre \mathbb{S}^4 . Noteu que ja teniu codi que genera variables aleatòries $\mathcal{N}(0,1)$. Un cop hagueu generat les variables aleatòries, en quina situació de les taules de més amunt ens trobem i calcular la fracció amb arrels reals, arrels complexes o dues i dues.

Observació. Un parell de comentaris sobre la implementació:

- En les taules hi ha tots els casos possibles que es poden donar. Els necessiteu tots per la implementació? Per què? En cas negatiu, quins són supèrfluos?
- Què vol dir la fila 10 de la taula $Cas\ a=0$ quan diu que hi ha infinites arrels reals?
- Trobareu adjunt un document de word en rus, que és la font d'informació de les taules. Si trobeu alguna discrepància entre word rus i pràctica, guanya rus! (Ho he revisat tot tres vegades, però amb tantes coses mai se sap)

Utilitzeu $2 \cdot 10^7$ de punts per tal de calcular quina fracció de polinomis tenim de cada tipus. Assegureu-vos que el vostre generador de nombres aleatoris en pot generar prous de diferents per tal que no hi hagi repeticions forçades.

Entrega

- 1. Fitxers font dels programes realitzats en C:
 - Afegiu en el fitxer de la pràctica anterior aleatori.c la funció
 - muller, de tipus void, per generar les cinc components d'una varaible aleatoria sobre S⁴. Ha de tenir un vector punter double d'entrada on es guarden els valors calculats
 - Un fitxer arrels.c, amb el main del programa. Ha d'imprimir per l'stdout la probabilitat que un polinomi de grau quatre arbitrari tingui:
 - Quatre arrels reals
 - Quatre arrels complexes
 - Dues arrels reals i dues de complexes
- 2. Informe de pràctiques, on han d'aparèixer una descripció de les funcions del programa, la crida del compilador i exemples concrets per demostrar que les funcions efectivament funcionen (idealment, voleu que jo no tingui necessitat de fer córrer el vostre programa perquè amb l'explicació de l'informe en tinc prou! [Mentalitat empresarial, senyores i senyors!])
- 3. L'informe també hauria d'incloure les respostes a les preguntes plantejades al full de pràctiques.