

Description

The VSM0104AN uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS}=100V,I_D=4A
 - $R_{DS(ON)}\!<\!100m\Omega$ @ $V_{GS}\!=\!10V$ (Typ.84m Ω)
 - $R_{DS(ON)}$ <118m Ω @ V_{GS} =4.5V (Typ.94m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM0104AN-S6	VSM0104AN	SOT-23-6	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	4	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	2.8	Α	
Pulsed Drain Current	I _{DM}	20	Α	
Maximum Power Dissipation	P _D	2	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	62.5	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.5	2.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =2A	-	84	100	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =2A	-	94	118	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =2A	11	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	882	-	PF
Output Capacitance	Coss	$V_{DS}=50V, V_{GS}=0V,$ $F=1.0MHz$	-	54.6	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0Winz	-	36.1	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, R_L =25 Ω V_{GS} =10V, R_G =3 Ω	-	8	-	nS
Turn-on Rise Time	t _r		-	3	-	nS
Turn-Off Delay Time	t _{d(off)}		-	24	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =2A,	-	24.1		nC
Gate-Source Charge	Q _{gs}		-	3.1		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	5.5		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =2A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	4	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance