# Worksheet-3b in R

#### **Instructions:**

- Use RStudio or the RStudio Cloud accomplish this worksheet.
- Save the R script as RWorksheet lastname#3b.R.
- On your own *GitHub repository*, push the R script, the Rmd file, as well as this pdf worksheet to the repo you have created before.
- Do not forget to comment your Git repo on our VLE
- Accomplish this worksheet by answering the questions being asked and writing the code manually.

### 1. Create a data frame using the table below.

Driver-2

| Respondents | Sex | Fathers Occupation | Persons at Home | Siblings at school | Types of houses |
|-------------|-----|--------------------|-----------------|--------------------|-----------------|
| 1           | 2   | 1                  | 5               | 6                  | 1               |
| 2           | 2   | 3                  | 7               | 4                  | 2               |
| 3           | 1   | 3                  | 3               | 4                  | 3               |
| 4           | 2   | 3                  | 8               | 1                  | 1               |
| 5           | 2   | 1                  | 5               | 2                  | 1               |
| 6           | 2   | 2                  | 9               | 1                  | 3               |
| 7           | 2   | 3                  | 6               | 5                  | 3               |
| 8           | 2   | 1                  | 7               | 3                  | 1               |
| 9           | 2   | 1                  | 8               | 1                  | 2               |
| 10          | 2   | 1                  | 4               | 2                  | 3               |
| 11          | 1   | 3                  | 7               | 3                  | 2               |
| 12          | 2   | 2                  | 5               | 2                  | 3               |
| 13          | 2   | 1                  | 4               | 5                  | 2               |
| 14          | 2   | 3                  | 7               | 5                  | 2               |
| 15          | 2   | 3                  | 8               | 2                  | 3               |
| 16          | 2   | 1                  | 8               | 1                  | 3               |
| 17          | 2   | 3                  | 3               | 2                  | 3               |
| 18          | 2   | 1                  | 11              | 5                  | 3               |
| 19          | 1   | 2                  | 7               | 3                  | 3               |
| 20          | 2   | 1                  | 6               | 2                  | 2               |

a. | Write the codes.

Male-1

Female-2

a. | Write the codes.

```
\begin{split} & \text{dframe} < \text{- data.frame}(\\ & \text{Respondents} = 1\text{:}20,\\ & \text{Sex} = c(2,2,1,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,1,2),\\ & \text{Fathers\_Occupation} = c(1,3,3,3,1,2,3,1,1,1,3,2,1,3,3,1,3,1,2,1),\\ & \text{Persons\_Home} = c(5,7,3,8,5,9,6,7,8,4,7,5,4,7,8,8,3,11,7,6),\\ & \text{Siblings\_school} = c(6,4,4,1,2,1,5,3,1,2,3,2,5,5,2,1,2,5,3,2),\\ & \text{Types\_houses} = c(1,2,3,1,1,3,3,1,2,3,2,3,2,2,3,3,3,3,3,2))\\ & \text{dframe} \end{split}
```

Wood-1

Concrete-3

Semi-Concrete-2

b. Describe the data. Get the structure or the summary of the data.

### > summary(dframe)

| Respondents    | Sex           | Fathers_Occupation | Persons_Home  | Siblings_school | Types_houses |
|----------------|---------------|--------------------|---------------|-----------------|--------------|
| Min. : 1.00    | Min. :1.00    | Min. :1.00         | Min. : 3.0    | Min. :1.00      | Min. :1.0    |
| 1st Qu. : 5.75 | 1st Qu. :2.00 | 1st Qu. :1.00      | 1st Qu. : 5.0 | 1st Qu. :2.00   | 1st Qu. :2.0 |
| Median :10.50  | Median :2.00  | Median :2.00       | Median : 7.0  | Median :2.50    | Median :2.5  |
| Mean :10.50    | Mean :1.85    | Mean :1.95         | Mean : 6.4    | Mean :2.95      | Mean :2.3    |
| 3rd Qu. :15.25 | 3rd Qu. :2.00 | 3rd Qu. :3.00      | 3rd Qu. : 8.0 | 3rd Qu. :4.25   | 3rd Qu. :3.0 |
| Max. :20.00    | Max. :2.00    | Max. :3.00         | Max. :11.0    | Max. :6.00      | Max. :3.0    |

c. Is the mean number of siblings attending is 5?

## > mean(dframe\$Siblings school)

[1] 2.95

No, the mean number of siblings attending is 2.95.

d. Extract the 1st two rows and then all the columns using the subsetting functions. Write the codes and its output.

```
> extract1 <- subset(dframe[c(1:2), ])
> extract1
```

|   | Respondents | Sex | Fathers_0 | Occupation | Persons_Home | Siblings_school | Types_houses |
|---|-------------|-----|-----------|------------|--------------|-----------------|--------------|
| 1 | 1           | 2   | 1         |            | 5            | 6               | 1            |
| 2 | 2           | 2   | 3         |            | 7            | 4               | 2            |

e. Extract 3<sup>rd</sup> and 5<sup>th</sup> row with 2<sup>nd</sup> and 4<sup>th</sup> column. Write the codes and its result.

```
> extract2 <- subset(dframe[c(3,5), c(2,4)])
> extract2
 Sex Persons Home
3 1
           3
5 2
```

f. Select the variable types of houses then store the vector as types houses. Write the codes.

```
> extract3 <- subset(dframe, select = Types houses)
```

12

3

```
> extract3
 Types_houses
1
         1
2
         2
         3
3
4
         1
5
         1
6
         3
7
         3
8
         1
9
         2
         3
10
11
         2
```

```
13
         2
         2
14
         3
15
         3
16
         3
17
         3
18
19
         3
20
```

+

+

g. Select only male respondent that their father occupation was farmer. Write the codes and its output.

```
> extract4 <- subset(dframe,
             Sex == 1 \& Fathers Occupation < 1,
             select = c(Sex, Fathers Occupation),
             drop = FALSE)
+
> extract4
                Fathers Occupation
[1] Sex
<0 rows> (or 0-length row.names)
```

h. Select only all female respondent that have greater than or equal to 5 number of siblings attending school. Write the codes and its outputs.

```
> extract5 <- subset(dframe,
            Sex == 2 \& Siblings school >= 5,
            select = c(Sex, Siblings school),
+
            drop = FALSE)
+
> extract5
  Sex Siblings school
1
       2
                      6
7
       2
                      5
       2
                      5
13
                      5
14
       2
18
                      5
```

2. Write a R program to create an empty data frame. Using the following codes:

```
df = data.frame(Ints=integer().
             Doubles=double(), Characters=character(),
             Logicals=logical(),
             Factors=factor(), stringsAsFactors=FALSE)
     print("Structure of the empty dataframe:")
     print(str(df))
> df = data.frame(Ints=integer(),
          Doubles=double(), Characters=character(),
          Logicals=logical(),
          Factors=factor(),
```

```
+
            stringsAsFactors=FALSE)
>
> print("Structure of the empty dataframe:")
[1] "Structure of the empty dataframe:"
> print(str(df))
'data.frame':
              0 obs. of 5 variables:
$ Ints
               : int
$ Doubles
              : num
$ Characters : chr
$ Logicals
              : logi
$ Factors
              : Factor w/ 0 levels:
NULL
```

a. Describe the results.

Based on the results of the program, since there are no inputted objects in each variable it resulted to a NULL.

## 3. Interpret the graph.



Figure 1: Sentiments of Tweets per day - Donald Trump

The sentiments of tweets per day were shown as a bar graph. According to the graph, negative tweets had the highest tweet counts, particularly on July 15, 2020, and July 21, 2020, when there were over 4,000 negative tweets each.