

Machine Learning

Regression-Based Classification & Gaussian Discriminant Analysis

- Linear regression provides a nice representation and an efficient solution to a regression problem
 - Can we apply this representation to classification ?
 - Using linear regression directly leads to too many output values that do not match any class well
 - Logistic regression tries to address this by applying a logistic function in order to achieve outputs that are closer to class values $h(x) = O(h^{2}x)$

© Manfred Huber 2021

- For two classes we can map the class labels to 1 and 0, respectively
 - Using this we can interpret the output as the probability to belong to a given class $P_{\theta}(y=1|x) = h_{\theta}(x)$

$$P_{\theta}(y=0 \mid x) = 1 - h_{\theta}(x)$$

• Simplified this gives $p_{\theta}(y|x) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}$

This gives the likelihood of the parameters $a \mathcal{L}(\theta) = p(\theta \mid D) = \prod_{i=1}^{n} p_{\theta}(y^{(i)} \mid x^{(i)})$ $= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)})\right)^{1 - y^{(i)}}$

$$\quad \text{Cloby repted to } \left(\text{Ipp}_{i=1}^{n} \text{like like of } + h_{\theta}(\mathbf{x}^{(i)}) \right)^{1-\mathbf{y}^{(i)}} \right)$$

$$= \sum_{i=1}^{n} \log \left(h_{\theta}(\mathbf{x}^{(i)})^{\mathbf{y}^{(i)}} \left(1 - h_{\theta}(\mathbf{x}^{(i)}) \right)^{1 - \mathbf{y}^{(i)}} \right)$$

Solving for the maximum likelihood optimization using stochastic gradient

$$\frac{\text{descent}}{\partial \theta_{j}} \log L(\theta) = \frac{\partial}{\partial \theta_{j}} \log \left(h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y} \right)$$

$$= \left(y \frac{1}{h_{\theta}(x)} - (1 - y) \frac{1}{1 - h_{\theta}(x)} \right) \frac{\partial}{\partial \theta_{j}} h_{\theta}(x)$$

$$= \left(y \frac{1}{h_{\theta}(x)} - (1 - y) \frac{1}{1 - h_{\theta}(x)} \right) g(\theta^{T} x) (1 - g(\theta^{T} x)) \frac{\partial}{\partial \theta_{j}} \theta^{T} x$$

$$= \left(y (1 - g(\theta^{T} x)) - (1 - y) g(\theta^{T} x) \right) x_{j}$$
er
$$= \left(y - g(\theta^{T} x) \right) x_{j} = \left(y - h_{\theta}(x) \right) x_{j}$$

• Gives us a stochastic gradient descent learning method for $\log \frac{1}{2} + \log \frac{1}{2} + \log \frac{1}{2} = \log \frac{1}{2} + \log \frac{1}{2} + \log \frac{1}{2} + \log \frac{1}{2} = \log \frac{1}{2} + \log \frac$

 This allows us to use regression for classification problems

Softmax Regression

- Logistic regression allows us to address a classification problem with two classes
 - How can we address classification with more than 2 classes?
 - Multiclass classifier need to compute a probability for each of the classes
 - Corresponds to multinomial distribution $\mathbf{y} = \mathbf{e}^{\theta_k^T \mathbf{x}}$

Softmax Regression

• For each class we can interpret the output as the probability to belong to a given $c_{\theta}(x) = h_{\theta}(x)_{k}$

• Simply this gives
$$\delta_{k,y}$$

This gives the library of the parameters as

Softmax Regression

Converted to log likelihood

$$\log L(\theta) = \sum_{i=1}^{n} \log p_{\theta}(y^{(i)} | x^{(i)}) = \sum_{i=1}^{n} \log \prod_{k} h_{\theta}(x^{(i)})_{k}^{\delta_{k,y^{(i)}}}$$
$$= \sum_{i=1}^{n} \log \prod_{k} \left(\frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l} e^{\theta_{k}^{T} x^{(i)}}} \right)^{\delta_{k,y^{(i)}}}$$

- Derivative is slightly more complex
 - Can be maximized using gradient ascent

Generative Approaches

- Logistic and softmax regression are discriminative approaches to classification using a linear parameter representation
 - Can we build generative algorithms that provide similar classification?
 - To build a generative algorithms we need to be able to predict a probability density for the input for a class
 - Gaussian Naïve Bayes made the restrictive assumption that all dimensions are independent
 - We can relax this and assume a multivariate Gaussian to give us Gaussian Discriminant Analysis

- GDA assumes that the probability density function for the data in a class follows a multivariate Gaussian $p(x|y) = p_{\mu_y, \Sigma_y}(x|y) = N(x; \mu_y, \Sigma_y) = \frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma_y|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)}$
 - Prior is assumed to be from a Bernoulli distribution ϕ)^{1-y}
- Using Bayes law a log likelihood function for 2021

 Learning the parameter takes again the form of finding maximum likelihood parameters given the data

$$\phi = \frac{\#(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) : \mathbf{y}^{(i)} = 1}{\#(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})}$$

$$\mu_{y} = \frac{\sum_{i:y^{(i)}=y} x^{(i)}}{\#(x^{(i)}, y^{(i)}): y^{(i)} = y}$$

$$\Sigma_{y} = \frac{\sum_{i:y^{(i)}=y} (x^{(i)} - \mu_{y})(x^{(i)} - \mu_{y})^{T}}{\#(x^{(i)}, y^{(i)}) : y^{(i)} = y}$$

The log likelihood of a class can be weithen as $\log \left(\frac{p_{\mu_y, \Sigma_y}(x|y)p(y)}{\alpha_y} \right)$

$$= \log \left(\frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma_y|^{\frac{1}{2}}} e^{-\frac{1}{2}(x \mu_y)^T \sum_y^{-1} (x \mu_y)} \right) + \log (\phi^y (1 - \phi)^{1-y}) - \log (\alpha_y)$$

$$= -\frac{1}{2} (x - \mu_y)^T \sum_{y}^{-1} (x - \mu_y) - \log(2\pi)^{\frac{m}{2}} - \frac{1}{2} \log |\Sigma_y| + y \log \phi + (1 - y) \log(1 - \phi) - \log \alpha_y$$

■ Toblip, formsoaxdebiglip, n, støthøbky

$$\rightarrow (x - \mu_0)^T \Sigma_0^{-1} (x - \mu_0) + \log |\Sigma_0| - (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) - \log |\Sigma_1| > T$$

Linear Discriminant **Analysis**

If we make the homoscedastic assumption, i.e. if we assume that the (co)variances of the two classes are identical this results in linear discriminant analysis (LDA)

$$\log L(\phi, \mu_0, \mu_1, \Sigma) = \alpha + \log \prod_{i} p_{\mu_{x^{(i)}}, \Sigma}(x^{(i)} | y^{(i)}) p(y^{(i)})$$

Parameter maximization for the (co)variance is

$$\Sigma = \frac{\sum_{i} (\mathbf{x}^{(i)} - \mu_{\mathbf{y}^{(i)}}) (\mathbf{x}^{(i)} - \mu_{\mathbf{y}^{(i)}})^{T}}{\text{More stable (for small) amounts of data}}$$

 With equal (co)variances the discriminant surface becomes linear

In the decision boundary linearity arises

$$\begin{split} &\log(p_{\phi,\mu_{0},\Sigma}(y=0\mid x)) - \log(p_{\phi,\mu_{1},\Sigma}(y=1\mid x)) < 0 \\ &\rightarrow (x - \mu_{0})^{T} \Sigma^{-1}(x - \mu_{0}) + \log|\Sigma| - (x - \mu_{1})^{T} \Sigma^{-1}(x - \mu_{1}) - \log|\Sigma| > T \\ &\rightarrow (x - \mu_{0})^{T} \Sigma^{-1}(x - \mu_{0}) - (x - \mu_{1})^{T} \Sigma^{-1}(x - \mu_{1}) > T \\ &\rightarrow -2\mu_{0}^{T} \Sigma^{-1}x + 2\mu_{1}^{T} \Sigma^{-1}x > T - \mu_{0}^{T} \Sigma^{-1}\mu_{0} + \mu_{1}^{T} \Sigma^{-1}\mu_{1} \\ &\rightarrow (\mu_{1} - \mu_{0}) \Sigma^{-1}x > \frac{1}{2} (T - \mu_{0}^{T} \Sigma^{-1}\mu_{0} + \mu_{1}^{T} \Sigma^{-1}\mu_{1}) \end{split}$$

Linear Discriminant Analysis

In the case of linear discriminant analysis the class likelihood can be rewritten as

$$p_{\phi,\mu_0,\mu_1,\Sigma}(y=1 \mid x) = \frac{1}{1 + e^{-\theta(\phi,\mu_y,\Sigma)^T x}}$$

- Solution to linear discriminant analysis has similar form as the representation for logistic regression
 - LDA is more restrictive (only allows some types of θ)
 - If the distributions are Gaussian with same (co)variance then LDA will find the solution more efficiently and usually more precisely
 - Logistic regression is more robust (it covers more than just Gaussian distributions and less sensitive to modeling errors

Quadratic Discriminant Analysis

 If we do not make the homoscedastic assumption, the discrimination surface becomes quadratic resulting in Quadratic Discriminant Analysis (QDA)

$$\log(p_{\phi,\mu_{0},\Sigma_{0}}(y=0 \mid x)) - \log(p_{\phi,\mu_{1},\Sigma_{1}}(y=1 \mid x)) < 0$$

$$\rightarrow (x - \mu_{0})^{T} \Sigma_{0}^{-1} (x - \mu_{0}) + \log|\Sigma_{0}| - (x - \mu_{1})^{T} \Sigma_{1}^{-1} (x - \mu_{1}) - \log|\Sigma_{1}| > T$$

- QDA is more flexible but also more complex
 - Requires more data to train

Logistic Regression and Linear Discriminant Analysis

- Logistic regression and Linear discriminant analysis are frequently used for classification
 - Logistic regression provides an effective discriminative classification approach
 - Same learning rule as for linear regression
 - LDA provides generative classification that, if its assumptions are met, solves the same problem
 - Softmax regression generalizes logistic regression
 - Harder to train
 - QDA provides a more general generative classifier
 - Requires more data