DLCV Homework 1

• R07944007 林良翰

1. Bayes Decision Rule

ullet Find Best T

$$egin{aligned} \min_{2 \leq T \leq 5} \int_{T}^{\infty} P\left(x|w_{1}
ight) P\left(w_{1}
ight) dx + \int_{-\infty}^{T} P\left(x|w_{2}
ight) P\left(w_{2}
ight) dx \\ &= \min_{2 \leq T \leq 5} rac{2}{9} \int_{T}^{\infty} P\left(x|w_{1}
ight) dx + rac{7}{9} \int_{-\infty}^{T} P\left(x|w_{2}
ight) dx \\ &= \min_{2 \leq T \leq 5} rac{2}{9} \left[rac{1}{5}(5-T)
ight] + rac{7}{9} \left[rac{1}{7}(T-2)
ight] \\ &= \min_{2 \leq T \leq 5} rac{T}{15} \ \Rightarrow T = 2, P_{e} = rac{2}{15} \end{aligned}$$

• Dicision Regions

 R_1 : x < 2

 R_2 : $x \geq 2$

2. PCA for Eigenfaces

2.1.

n=240

2.2. 2.3.

n=140 mse=19.10 n=229

mse=0.11 mse=0.00

2.4.

Accuracy	k=1	k=3	k=5
n=3	0.6792	0.5958	0.5208
n=45	0.9292	0.8333	0.7833
n=140	0.9333	0.8542	0.7583

• Best (n, k) = (140, 1)

2.5.

• Test accuracy = 93.75%

3.

3.1.

• I can't classify an image by seeing just a few patches, because there are some patches that are similar but with different classes.

3.2.

3.3.

3.4.

• Test accuracy = 53.8%

4. Image Filtering

4.1.

$$G\left(x
ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}e^{-rac{x^{2}}{2\sigma^{2}}}$$

$$G\left(y
ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}e^{-rac{y^{2}}{2\sigma^{2}}}$$

$$G\left(x
ight)G\left(y
ight)=rac{1}{\left(\sqrt{2\pi\sigma^{2}}
ight)^{2}}e^{-rac{x^{2}}{2\sigma^{2}}-rac{y^{2}}{2\sigma^{2}}}=rac{1}{2\pi\sigma^{2}}e^{-rac{x^{2}+y^{2}}{2\sigma^{2}}}=G\left(x,y
ight)$$

4.2.

• The filtered image is smoother.

4.3.

$$egin{aligned} ullet k_x &= rac{1}{2} egin{bmatrix} 0 & 0 & 0 \ -1 & 0 & +1 \ 0 & 0 & 0 \end{bmatrix} \ ullet k_y &= rac{1}{2} egin{bmatrix} 0 & -1 & 0 \ 0 & 0 & 0 \ 0 & +1 & 0 \end{bmatrix} \end{aligned}$$

$$ullet k_y = rac{1}{2} egin{bmatrix} 0 & -1 & 0 \ 0 & 0 & 0 \ 0 & +1 & 0 \end{bmatrix}$$

4.4.

• The Gaussian-blurred image has less gradient magnitude than original image.