Anneaux et Corps

I Anneaux

I. A Structure d'anneau

Définition 1.1

On appelle **anneau** un triplet $(A, +, \times)$ où A est un ensemble et $+, \times$ deux lois de composition interne dans A telles que :

- (A, +) est un groupe abélien, son élément neutre est noté 0_A ;
- × est associative;
- \times admet un élément neutre noté 1_A , distinct de 0_A , appelé élément unité de A;
- × est distributive par rapport à +.

Si de plus \times est commutative, l'anneau est dit commutatif.

Exemples 1.2: $(\mathbb{Z}, +, \times)$, $(\mathcal{F}(X, \mathbb{R}), +, \times)$, $(\mathbb{R}[X], +, \times)$, $(\mathcal{M}_n(\mathbb{K}), +, \times)$ et $(\mathcal{L}(E), +, \circ)$ sont des anneaux. Les trois premiers sont commutatifs, les autres non (si dim $(E) \neq 1$ et $n \geq 2$).

Notation : Pour $a, b \in A$, on note a - b = a + (-b). La loi \times est distributive par rapport à la loi - ainsi ainsi définie.

Proposition 1.3

Soit $(A, +, \times)$ un anneau.

- $\forall a \in A, a \times 0_A = 0_A \times a = 0_A$, on dit que 0_A est absorbant.
- pour $a, b \in A$ et $n \in \mathbb{N}$, si a et b commutent, alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \quad \text{(Formule du binôme)}$$

 $_{
m et}$

$$a^n - b^n = (a - b) \left(\sum_{k=0}^{n-1} a^{n-1-k} b^k \right)$$

$$= \left(\sum_{k=0}^{n-1} a^{n-1-k} b^k \right) (a - b) \quad \text{(4e identit\'e remarquable)}.$$

Définition 1.4

Soit $(A, +, \times)$ un anneau. On appelle **sous-anneau** de A une partie B de A stable par les lois + et \times et qui, munie des lois induites, est encore un anneau, avec le même élément unité 1_A .

Proposition 1.5

Soit $(A,+,\times)$ un anneau. Une partie B de A est un sous-anneau de A si et seulement si :

- $1_A \in B$;
- $\forall (x,y) \in B^2, x-y \in B$;
- $\forall (x,y) \in B^2, xy \in B$.

Exemple 1.6: \mathbb{Z} est un sous-anneau de \mathbb{R} .

(Définition 1.7

Soit A et B deux anneaux. On appelle **morphisme d'anneau** de A dans B une application f de A dans B telle que :

- $f(1_A) = 1_B$;
- $\forall (x,y) \in A^2, f(x+y) = f(x) + f(y);$
- $\forall (x,y) \in A^2, f(xy) = f(x)f(y).$

Remarque 1.8 : De même que pour les morphismes de groupes, un endomorphisme d'anneau de A est un morphisme de A dans A, un isomorphisme d'anneau est un morphisme bijectif et un automorphisme d'anneau est un endomorphisme bijectif.

$ig(ext{Proposition } 1.9 ig)$

L'image d'un morphisme d'anneau est un sous-anneau.

Remarque 1.10 : Le noyau d'un morphisme d'anneau f n'est jamais un sous-anneau! (car $f(1_A) = 1_B \neq 0_B$).

I. B Produit fini d'anneaux

(Définition 1.11)

Soit $(A_i)_{i\in \llbracket 1\,;n\rrbracket}$ une famille finie d'anneaux, alors $(A,+,\times)$ avec :

- $\bullet \ \ A = \prod_{i=1}^{n} A_i$
- $\forall x = (x_i)_{i \in [\![1\,;n]\!]}, y = (y_i)_{i \in [\![1\,;n]\!]} : x + y = (x_i + y_i)_{i \in [\![1\,;n]\!]};$
- $\forall x = (x_i)_{i \in [1, n]}, y = (y_i)_{i \in [1, n]} : x + y = (x_i \times y_i)_{i \in [1, n]};$

est un anneau, appelé anneau produit.

Remarque 1.12: On fait les opérations coefficient par coefficient.

I. C Diviseurs de zéro, anneau intègre

Attention: Dans un anneau, il peut exister des éléments non nuls dont le produit est nul.

Exemples 1.13 : • Dans $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \times)$: $f = 0_{\mathcal{F}}$ et $g = \emptyset_{\mathcal{F}}, f \times g = 0_{\mathcal{F}}.$

• Dans $\mathcal{M}_2(\mathbb{R})$, $M = \underline{\hspace{1cm}} \neq 0_2$, mais $M^2 = 0_2$.

(Définition 1.14)

Soit $(A, +, \times)$ un anneau et $a \in A$. On dit que a est un **diviseur de zéro** lorsque :

$$a \neq 0_A$$
 et $\exists b \in A \setminus \{0_A\} \mid a \times b = 0_A$.

Définition 1.15

Un anneau est dit **intègre** lorsqu'il est commutatif et sans diviseur de zéro.

Remarque 1.16 : Dans un anneau intègre, on peut donc simplifier par un élément non nul : si $a \neq 0_A$, alors : $ax = ay \Rightarrow x = y$.

Exemples 1.17 : • $(\mathbb{Z}, +, \times)$ et $(\mathbb{R}[X], +, \times)$ sont des anneaux intègres ;

• si $n \ge 2$, $(\mathcal{M}_n(\mathbb{R}), +, \times)$ n'est pas intègre.

I. D Groupe des inversibles d'un anneau

(Proposition 1.18)

Soit $(A,+,\times)$ un anneau. On note A^* l'ensemble des éléments inversibles (pour la loi $\times).$

Alors (A^*, \times) un un groupe.

Exemples 1.19: Donner le groupe des inversibles des anneaux : $(\mathbb{Z}, +, \times)$, $(\mathbb{R}, +, \times)$ et $(\mathcal{M}_n(\mathbb{R}), +, \times)$.

Remarque 1.20 : Les diviseurs de zéro et 0_A sont non-inversibles.

I. E Corps

(Définition 1.21)

On appelle **corps** un anneau commutatif dont tous les éléments non nuls sont inversibles.

Remarque 1.22 : Un corps est un anneau intègre.

Exemples 1.23: • \mathbb{R} et \mathbb{C} sont des corps.

• $\mathbb{R}(X)$ et $\mathbb{C}(X)$ sont des corps (des fractions rationnelles).

Définition 1.24

Soit $(K, +, \times)$ un corps. On appelle **sous-corps** de K une partie L de K stable par + et \times et qui, munie des lois induites, est un corps.

Remarque 1.25 : Pour un sous-corps, on n'a pas besoin de supposer que le neutre de L est le neutre de K, c'est une conséquence du fait que tout élément non nul de K est inversible.

Proposition 1.26

Soit $(K,+,\times)$ un corps et L. Une partie de K est un sous-corps de K si et seulement si :

- $1_K \in L$;
- $\bullet \ \ \forall x,y \in L, x-y \in L\,;$
- $\forall x, y \in L, xy \in L;$
- $\forall x \in L \setminus \{0_K\}, x^{-1} \in L$.

Remarque 1.27: Les trois premières conditions font de L un sous-anneau de K.

Exemples 1.28: • \mathbb{Q} est un sous-corps de \mathbb{R} ;

- \mathbb{R} est un sous-corps de \mathbb{C} ;
- $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}; \text{ avec } a, b \in \mathbb{Q}\}$ est un sous-corps de \mathbb{R} .

II Idéaux d'un anneau commutatif

II. A Idéaux d'un anneau commutatif

$(\overline{\text{D\'efinition } 2.1})$

Soit $(A, +, \times)$ un anneau commutatif. On dit que I est un idéal de A si :

- (I, +) est un sous-groupe de (A, +);
- $\forall x \in I, \forall a \in A, a \times x \in I$ (stabilité par la multiplication par un élément de A).

Exemples 2.2 : • Soit A un anneau commutatif, $\{0\}$ et A sont des idéaux de A. De plus si I est un idéal de A et $1_A \in A$, alors I = A.

- $2\mathbb{Z}$ est un idéal de l'anneau \mathbb{Z} .
- L'ensemble des suites réelles presque nulles est un idéal de l'anneau des suites réelles.

Proposition 2.3 (Noyau d'un morphisme d'anneaux commutatifs)

Soit A et B des anneaux commutatifs et f un morphisme de A dans B. Alors le noyau de f est un idéal de A.

Définition/Proposition 2.4

Soit $(A, +, \times)$ un anneau commutatif et $x \in A$. L'ensemble $xA = \{xa; \text{ avec } a \in A\}$ est un idéal appelé **idéal engendré par** x.

Proposition 2.5

Soit A un anneau commutatif et $(I_i)_{i\in \llbracket 1\,;n\rrbracket}$ une famille d'idéaux de A.

- L'intersection $\bigcap_{i \in [\![1 \,] n]\!]} I_i$ est un idéal de A.
- La somme $\sum_{i=1}^n I_i = \left\{\sum_{i=1}^n x_i; \text{ avec } \forall i \in \llbracket 1; n \rrbracket, x_i \in I_i \right\}$ est un idéal de A.

II. B Divisibilité dans un anneau intègre

Définition 2.6

Soit A un anneau intègre et $a,b\in A.$ On dit que

- a divise b lorsqu'il existe $c \in A$ tel que : b = ac;
- a et b sont **associés** lorsque : a divise b et b divise a.

Proposition 2.7

Soit A un anneau intègre et $a, b \in A$, alors :

a et b sont associés $\Leftrightarrow \exists x \in A^* \mid b = ax$

Exemple 2.8 : Dans l'anneau $\mathbb{K}[X]$, quels sont les polynômes de $\mathbb{K}[X]$ associés à un polynôme $P \in \mathbb{K}[X]$?

Proposition 2.9

Soit A un anneau intègre et $x, y \in A$. Alors :

- x divise y si et seulement si $yA \subset xA$;
- x et y sont associés si et seulement si xA = yA.

II. C Idéaux de $\mathbb Z$ et arithmétique dans $\mathbb Z$

Proposition 2.10

Les idéaux de \mathbb{Z} sont les $n\mathbb{Z}$ avec $n \in \mathbb{Z}$.

Définition/Proposition 2.11

Soit $a, b \in \mathbb{Z}$, alors il existe un unique $d \in \mathbb{N}$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$, on l'appelle **PGCD** de a et b et on note $d = a \wedge b$.

Soit $(a_i)_{i\in \llbracket 1\,;n\rrbracket}$ une famille d'entiers relatifs. Alors il existe un unique $d\in \mathbb{N}$ tel que $\sum_{i=1}^n a_i\mathbb{Z}=d\mathbb{Z}$, on l'appelle le **PGCD** de la famille $(a_i)_{i\in \llbracket 1\,;n\rrbracket}$.

- **Remarques 2.12 :** On vérifie que la définition est cohérente avec la définition vue en première année : $a, b \in a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$, donc d diviseur commun de a et b; et pour $c \in \mathbb{N}$, $(c \mid a \text{ et } c \mid b) \Leftrightarrow c \mid d$.
 - $0 \wedge 0 = 0$.
 - De même, si $m = a \vee b$, alors $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.

Théorème 2.13

Soit $a, b, d \in \mathbb{Z}$.

Identité de Bézout : si $a \wedge b = d$, alors il existe deux entiers relatifs x et y tels que : ax + by = d.

Théorème de Bézout : a et b sont premiers entre eux si et seulement s'il existe deux entiers relatifs x et y tels que : ax + by = 1.

III Anneaux $\mathbb{Z}/n\mathbb{Z}$

Dans cette partie on suppose $n \in \mathbb{N}$ avec $n \ge 2$.

III. A Structure d'anneau de $\mathbb{Z}/n\mathbb{Z}$

Proposition 3.1

La loi de composition interne \times sur $\mathbb{Z}/n\mathbb{Z}$:

$$(\dot{a}, \dot{b}) \mapsto (a \times b)$$

est bien définie.

Théorème 3.2

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif.

Exemples 3.3: Calculs dans $\mathbb{Z}/6\mathbb{Z}$ et inversibles de $\mathbb{Z}/6\mathbb{Z}$.

III. B Inversibles de $\mathbb{Z}/n\mathbb{Z}$

Théorème 3.4

Soit $\dot{m} \in \mathbb{Z}/n\mathbb{Z}$:

 \dot{m} est inversible dans $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow m \wedge n = 1$.

Remarque 3.5 : Les éléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$ sont les générateurs du groupe $\mathbb{Z}/n\mathbb{Z}$.

Théorème 3.6

Soit $p \in \mathbb{N}^*$, $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est un nombre premier. Dans ce cas on le note \mathbb{F}_p .

Exemple 3.7 : résolution de $x^2 = 1$ dans $\mathbb{Z}/p\mathbb{Z}$ avec p premier, puis dans $\mathbb{Z}/12\mathbb{Z}$.

III. C Théorème chinois

On note pour $a \in \mathbb{Z}$ et $n \in \mathbb{N}^*$: $\dot{a}^{[n]}$ la classe de a modulo n.

Théorème 3.8 (chinois (Qin Jiushao))

Soit m et n des entier naturels tels que $m \wedge n = 1$. L'application :

$$\Phi : \mathbb{Z}/mn\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

$$\operatorname{cl}_{mn}(a) \longmapsto (\operatorname{cl}_{m}(a), \operatorname{cl}_{n}(a))$$

où $\operatorname{cl}_k(a)$ désigne la classe de l'entier a dans $\mathbb{Z}/k\mathbb{Z}$, est un isomorphisme d'anneaux.

(Corollaire 3.9)

Soit m, n deux entiers naturels tels que $m \wedge n = 1$. $\forall (a, b) \in \mathbb{Z}^2, \exists c \in \mathbb{Z}$ tel que :

$$\begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases} \Leftrightarrow x \equiv c \ [mn]$$

Méthode 3.10

Pour résoudre un tel système, on cherche une solution "évidente" dans de la forme a + km ou de la forme b + k'n (existence assurée par le corollaire), puis :

$$\begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases} \Leftrightarrow \begin{cases} x \equiv c \ [m] \\ x \equiv c \ [n] \end{cases} \Leftrightarrow x \equiv c \ [mn]$$

Si on ne trouve pas de solution évidente (donc $b \neq a$),

$$\begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases} \Leftrightarrow \begin{cases} x = a + km; & \text{avec } k \in \mathbb{Z} \\ x = b + k'n; & \text{avec } k' \in \mathbb{Z} \\ b - a = km - k'n \end{cases}$$

on part d'une relation de Bézout : um+vn=1 que l'on multiplie par (b-a) pour trouver $k,k'\in\mathbb{Z}$ qui conviennent.

Le théorème chinois se généralise à plus de deux facteurs :

Théorème 3.11

Soit $(n_i)_{i \in [\![1\,;N]\!]}$ avec $N \geqslant 2$, tels que le PGCD de $(n_i)_{i \in [\![1\,;N]\!]}$ est 1. On pose $n = \prod_{i=1}^N n_i$. Alors $\mathbb{Z}/n\mathbb{Z}$ et $\prod_{i=1}^n (\mathbb{Z}/n_i\mathbb{Z})$ sont isomorphes.

Exemple 3.12: (Qin Jiushao 1247)

Le général Han Xin a entre 900 et 1000 soldats. Si on les range par 3, il en reste 2; si on les range par 5, il en reste 3 et si on les range par 7, il en reste 2. Combien sont-ils?

III. D Fonction indicatrice d'Euler

Définition 3.13

On appelle indicatrice d'Euler de l'entier $n \in \mathbb{N}^*$ le nombre $\varphi(n)$ d'entier de [0; n-1] premiers avec n.

Remarques 3.14: • $\varphi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$ et $\forall n \in \mathbb{N}^*$:

$$\varphi(n) = \text{Card} \{ k \in [0; n-1] \mid k \land n = 1 \}$$

- si $n \geqslant 2$, $\varphi(n)$ est donc le nombre d'éléments inversibles de l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\times)$;
- $\varphi(n)$ est le nombre d'éléments générateurs du groupe $(\mathbb{Z}/n\mathbb{Z},+)$.

Exemples 3.15: $\varphi(2) = _, \varphi(7) = _, \varphi(12) = _.$

Remarque 3.16: Si p est premier, alors $\varphi(p) =$

Proposition 3.17

Soit $m, n \in \mathbb{N}^*$, si $m \wedge n = 1$, alors $\varphi(m \times n) = \varphi(m) \times \varphi(n)$.

(Proposition 3.18)

Si p est premier et $\alpha \in \mathbb{N}^*$, alors $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

Théorème 3.19

Soit $n \ge 2$, si la décomposition en facteurs premiers de n est $n = \prod_{i=1}^r p_i^{\alpha_i}$, alors :

$$\varphi(n) = n \times \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right).$$

Théorème 3.20 (Euler)

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{Z}$ tels que $a \wedge n = 1$:

$$a^{\varphi(n)} \equiv 1 \ [n].$$

Théorème 3.21 (Petit théorème de Fermat)

Si p un un nombre premier alors pour tout entier a :

$$a^p \equiv a \ [p].$$

Exemple 3.22: Cryptage RSA

IV Anneaux $\mathbb{K}[X]$

Dans cette partie \mathbb{K} est un sous-corps de \mathbb{C} .

IV. A Rappels

Théorème 4.1

L'anneau ($\mathbb{K}[X], +, \times$) est intègre et muni d'une division euclidienne : $\forall A, B \in \mathbb{K}[X]$ avec $B \neq 0, \exists ! (Q, R) \in \mathbb{K}[X]^2$ tel que :

$$A = BQ + R$$
 et $\deg R < \deg B$.

Remarque 4.2 : Les éléments inversibles de l'anneau $(\mathbb{K}[X], +, \times)$ sont

IV. B Idéaux de $\mathbb{K}[X]$

(Théorème 4.3)

Tout idéal de $\mathbb{K}[X]$ est de la forme $P_0\mathbb{K}[X]$ avec $P_0 \in \mathbb{K}[X]$. De plus si l'idéal n'est pas $\{0\}$, alors on peut choisir P_0 unitaire, il est alors unique.

Définition/Proposition 4.4

• Soit P et Q des polynômes de $\mathbb{K}[X]$. Il existe un unique polynôme unitaire $D \in \mathbb{K}[X]$ tel que :

$$D\mathbb{K}[X] = P\mathbb{K}[X] + Q\mathbb{K}[X].$$

Ce polynôme D est appelé le **PGCD** de P et Q, on le note $P \wedge Q$.

• Soit $(P_i)_{i\in \llbracket 1\,;n\rrbracket}$ une famille de $n\geqslant 2$ polynômes de $\mathbb{K}[X]$. Il existe un unique polynôme unitaire $D\in \mathbb{K}[X]$ tel que :

$$D\mathbb{K}[X] = \sum_{i=1}^{n} (P_i \mathbb{K}[X]).$$

Ce polynôme D est appelé le **PGCD** des $(P_i)_{i \in [1, n]}$.

Remarques 4.5: • Si : $\forall i \in [1; n], B \mid P_i$, alors B divise le PGCD des $(P_i)_{i \in [1; n]}$.

• Si $B \mid D$ et $D \neq 0$, alors $\deg B \leqslant \deg D$.

Ainsi on retrouve que pour une famille de polynômes non tous nuls, le PGCD est le polynôme unitaire diviseur commun des $(P_i)_{i \in \llbracket 1 ; n \rrbracket}$ de degré maximal (plus grand pour le degré).

Théorème 4.6 (Bezout)

Soit $(P_i)_{i \in [\![1\,;n]\!]}$ une famille de $n \geqslant 2$ polynômes de $\mathbb{K}[X]$.

- Si D est le PGCD de $(P_i)_{i \in [\![1\,;n]\!]}$, alors il existe $(U_i)_{i \in [\![1\,;n]\!]} \in (\mathbb{K}[X])^n$ tel que : $D = \sum_{i=1}^n P_i U_i.$
- Les $(P_i)_{i \in [\![1\,;n]\!]}$ sont premiers entre eux (de PGCD égal à 1) si et seulement si il existe des polynômes $(U_i)_{i \in [\![1\,;n]\!]}$ tels que : $\sum_{i=1}^n \left(P_i U_i\right) = 1$.

Méthode 4.7

On obtient une relation de Bezout en appliquant l'algorithme d'Euclide.

Exemple 4.8: Montrer que les polynômes $A = X^3 + 1$ et $B = X^2 + 1$ sont premiers entre eux et donner les couples $(U, V) \in \mathbb{K}[X]$ tels que AU + BV = 1.

Théorème 4.9 (Gauss)

Soit $A, B, C \in \mathbb{K}[X]$:

$$(A \mid BC \text{ et } A \land B = 1) \Rightarrow A \mid C.$$

Corollaire 4.10

Soit $A, B, C \in \mathbb{K}[X]$:

$$(A \mid C, B \mid C \text{ et } A \land B = 1) \Rightarrow AB \mid C.$$

IV. C Irréductibles de $\mathbb{K}[X]$

Définition 4.11

Un polynôme de $\mathbb{K}[X]$ est dit **irréductible** lorsqu'il est non constant et qu'il n'a pas d'autre diviseur que les polynômes constants et les polynômes que lui sont associés.

Remarques 4.12 : • Les polynômes associés à $P \in \mathbb{K}[X]$ sont les λP avec $\lambda \in \mathbb{K}^*$.

• Un polynôme unitaire P est irréductible si et seulement si il est non constants et les seuls polynômes unitaires qui divisent P sont 1 et P.

Exemples 4.13: • $X^2 + 1$ est irréductible dans _____ mais pas dans _____

• $X^2 - 2$ est irréductible dans _____ mais pas dans _____.

Proposition 4.14

Tout polynôme non constant de $\mathbb{K}[X]$ a (au moins) un diviseur irréductible.

Théorème 4.15

Tout polynôme non constant de $\mathbb{K}[X]$ se décompose comme produit de son coefficient dominant et de polynômes irréductibles unitaires. Cette décomposition est unique à l'ordre des facteurs près.

IV. D irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$

Théorème 4.16 (d'Alembert-Gauss)

Tout polynôme non constant de $\mathbb{C}[X]$ a au moins une racine dans \mathbb{C} .

Théorème 4.17

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Théorème 4.18

Les polynômes irréductibles de $\mathbb{R}[X]$ sont :

- les polynômes de degré 1;
- $\bullet\,$ les polynômes de degré 2 de discriminant strictement négatif.

Remarque 4.19 : Pour tout $n \ge 2$, $X^n - 2$ est irréductibles : ses racines dans \mathbb{C} sont les $\sqrt[n]{2}\omega$ avec $\omega \in \mathbb{U}_n$ et $\sqrt[n]{2} \notin \mathbb{Q}$.

Il existe donc des polynômes irréductibles dans $\mathbb{Q}[X]$ de tout degré $n\geqslant 1.$

V Algèbre

V. A Structure d'algèbre

Définition 5.1

On appelle \mathbb{K} -algèbre ou algèbre sur le corps K un quadruplé $(\mathcal{A}, +, \times, \cdot)$ tel que :

- $(A, +, \times)$ est un anneau;
- $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel;
- $\forall x, y \in \mathcal{A}, \forall \lambda \in \mathbb{K} : \lambda \cdot (x \times y) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y).$

L'algèbre est dite commutative (respectivement intègre) si l'anneau est commutatif (resp. intègre).

Exemples 5.2: • Si K est un corps, alors \mathbb{K} est une algèbre $(\dim_{\mathbb{K}}(\mathbb{K}) = 1)$;

- \mathbb{C} est une \mathbb{R} -algèbre de dimension 2.
- $(\mathbb{K}[X], +, \times, \cdot)$, $(\mathcal{L}(E), +\circ, \cdot)$, $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ et $(\mathcal{F}(X, \mathbb{K}), +, \times, \cdot)$ sont des \mathbb{K} -algèbres.

V. B Sous-algèbres

(Définition 5.3)

Soit \mathcal{A} une algèbre, on dit que \mathcal{B} est une sous-algèbre de \mathcal{A} lorsque \mathcal{B} est un sous-espace vectoriel et un sous-anneau de \mathcal{A} .

Proposition 5.4

Soit \mathcal{A} une \mathbb{K} -algèbre, \mathcal{B} est une sous-algèbre de \mathcal{A} si et seulement si :

- $\mathcal{B} \subset \mathcal{A}$;
- $1_{\mathcal{A}} \in \mathcal{B}$;
- $\forall \lambda, \mu \in \mathbb{K}, \forall x, y \in \mathcal{B}, \lambda x + \mu y \in \mathcal{B};$
- $\forall x, y \in \mathcal{B}, x \times y \in \mathcal{B}.$

Exemples 5.5 : • L'ensemble des matrices diagonales d'ordre n est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$;

• L'ensemble des fonctions continues sur un intervalle I à valeurs dans \mathbb{K} : $\mathcal{C}(I,\mathbb{K})$ est une sous-algèbre de $\mathcal{F}(I,\mathbb{K})$.

V. C Morphismes d'algèbres

Définition 5.6

Soit \mathcal{A} et \mathcal{B} deux \mathbb{K} -algèbres, on dit que f est un morphisme d'algèbres de \mathcal{A} dans \mathcal{B} lorsque f est un morphisme d'anneau de \mathcal{A} dans \mathcal{B} et une application linéaire de \mathcal{A} dans \mathcal{B} (morphisme d'espace vectoriel).

Exemples 5.7 : • L'application $f \mapsto f(0)$ est un morphisme d'algèbre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ dans \mathbb{R} ;

• L'application $\varphi \mapsto \operatorname{Mat}_{\mathcal{B}_{\mathbb{E}}}(\varphi)$ est un morphisme d'algèbre de $\mathcal{L}(E)$ dans $\mathcal{M}_n(\mathbb{K})$ où E est un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B}_E .