Álgebra III Semana 11

Alejandro García Montoro agarciamontoro@correo.ugr.es

26 de enero de 2016

Ejercicio 1. Prueba que la extensión $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ es cíclica de grado 4.

Solución. Sea $\beta = \sqrt{2}$. Manipulando esta expresión, llegamos a lo siguiente:

$$\beta^2 = 2$$
$$\beta^2 - 2 = 0$$

de donde deducimos que β es raíz del polinomio $P(X) = X^2 - 2 \in \mathbb{Q}[X]$.

Por el Teorema de Lagrange, sabemos que $\mathbb{Q}(\beta)/\mathbb{Q}$ es una extensión cíclica de grado 2.

Sea ahora $\beta = \sqrt{1+\beta}$. Manipulando de nuevo:

$$\alpha^2 = 1 + \beta$$
$$\alpha^2 - (1 + \beta) = 0$$

de donde deducimos que α es raíz del polinomio $Q(X)=X^2-a\in\mathbb{Q}(\beta)[X]$, donde $a=1+\sqrt{2}\in\mathbb{Q}(\beta)$.

Por el Teorema de Lagrange, sabemos que $\mathbb{Q}(\alpha)/\mathbb{Q}(\beta)$ es una extensión cíclica de grado 2.

Concluimos entonces que $\mathbb{Q}(\alpha)/\mathbb{Q}$ tiene grado 4, aunque quedaría por demostrar si es cíclica o tiene al grupo de Klein como grupo de Galois.

En general, que una extensión tenga subextensiones cíclicas no implica que la extensión sea cíclica. Hagámoslo de otra manera entonces:

Reescribiendo la relación anterior tenemos:

$$\alpha^{2} = 1 + \beta$$

$$\alpha^{2} - 1 = \beta$$

$$\alpha^{4} - 2\alpha^{2} + 1 = 2$$

$$\alpha^{4} - 2\alpha^{2} - 1 = 0$$

de donde deducimos que el polinomio irreducible —se ve claramente por Eisenstein— de α es $f(X)=X^4-2X^2-1$.

Las cuatro raíces de este polinomio son $\pm \alpha$ y $\pm \sqrt{2 - \sqrt{2}}$.

Si tomamos σ un elemento de $Aut(\mathbb{Q}(\alpha)/\mathbb{Q})$ tal que $\sigma(\alpha) = \sqrt{2 - \sqrt{2}}$, entonces $\sigma(\sqrt{2}) = -\sqrt{2}$, luego

$$\sigma(\sigma(\alpha)) = \sigma(\sqrt{2 - \sqrt{2}}) = \sigma\left(\frac{\sqrt{2}}{\alpha}\right) = \frac{\sigma(\sqrt{2})}{\sigma(\alpha)} = \frac{-\sqrt{2}}{\sqrt{2 - \sqrt{2}}} = -\sqrt{2 + \sqrt{2}}$$

Es decir, el orden de σ es mayor estricto que 2. Como este orden tiene que dividir al orden del grupo de Galois, que sabemos que es 4 por el estudio anterior, concluimos que el orden de σ es exactamente 4.

De entre los dos posibles grupos que teníamos, esta condición nos deja una sola posibilidad: el grupo cíclico.

Por tanto, la extensión $\mathbb{Q}(\alpha)/\mathbb{Q}$ es cíclica de grado 4.

Ejercicio 2. Se considera la sucesión $\{\alpha_n\}_n$, definida:

$$\alpha_0 = 0$$

$$\alpha_{n+1} = \sqrt{2 + \alpha_n} \qquad \forall n \in \mathbb{N}$$

Prueba que la extensión $\mathbb{Q}(\alpha_n)/\mathbb{Q}$ es cíclica de grado 2^n .

Solución. Podemos probar por inducción que $\alpha_n = 2Re(\xi_{2^{n+2}})$, donde ξ_k es la raíz k-ésima de la unidad.

En efecto, $\alpha_0 = 0$ y $\xi_{2^2} = \xi_4 = i$, luego $2Re(\xi_4) = 2 \cdot 0 = 0$ y, por tanto, $\alpha_0 = 2Re(\xi_4)$.

Supuesto cierto para n, probémoslo para n+1. Es decir, queremos probar que

$$\alpha_{n+1} = 2Re(\xi_{2^{n+3}})$$

dado que

$$\alpha_n = 2Re(\xi_{2n+2})$$

Pero esto es evidente, pues sabemos que $\xi_{2^n} = \xi_{2^{n+1}}^2$. En nuestro caso, para que salgan los índices que queremos, trabajaremos con la igualdad

$$\xi_{2^{n+2}}=\xi_{2^{n+3}}^2$$

Si llamamos $a+bi=\xi_{2^{n+2}}$ y $x+yi=\xi_{2^{n+3}}^2,$ tenemos que

$$a + bi = (x + yi)^2 = (x^2 - y^2) + 2xyi$$

De esta igualdad y del hecho de que las raíces de la unidad están en la circunferencia unidad, tenemos el siguiente sistema:

$$a = x^2 - y^2$$
$$1 = x^2 + y^2$$

de donde podemos obtener cuánto vale la parte real de $\xi_{2^{n+3}}^2$:

$$a+1 = 2x^2 \implies x = \sqrt{\frac{a+1}{2}}$$

Como sabemos que $a = Re(\xi_{2^{n+2}}) = \frac{\alpha_n}{2}$, tenemos que

$$x = \sqrt{\frac{\alpha_n}{2} + 1} = \sqrt{\frac{\alpha_n + 2}{4}} = \frac{\sqrt{2 + \alpha_n}}{2} = \frac{\alpha_{n+1}}{2}$$

Es decir, tenemos que $\alpha_{n+1}=2x=2Re(\xi_{2^{n+3}}),$ tal y como queríamos demostrar.

Una vez comprobada esta relación, podemos ver la relación de los cuerpos que se generan, y observamos la siguiente torre:

$$\mathbb{Q} \subset \mathbb{Q}(\alpha_n) \subset \mathbb{Q}(\xi_{2n+2}) = E$$

donde $\mathbb{Q}(\alpha_n) = E \cap \mathbb{R}$ es el cuerpo fijo para la conjugación compleja. Estudiando los grados, es claro lo siguiente:

- $[\mathbb{Q}(\xi_{2^{n+2}}):\mathbb{Q}] = \varphi(2^{n+2}) = 2^{n+1}$

Por tanto, tenemos que la extensión que nosotros buscamos, $\mathbb{Q}(\alpha_n)/\mathbb{Q}$ tiene grado $\frac{2^{n+1}}{2}=2^n$.

Por otro lado, sabemos que $Gal(\mathbb{Q}(\xi_{2^{n+2}})) = \mathbb{Z}_{2^{n+2}}^{\times}$, el grupo multiplicativo de los enteros módulo 2^{n+2} .

Además, es conocido que $\mathbb{Z}_{2^{n+2}}^{\times} = C_2 \times C_{2^n}$, producto de grupos cíclicos. Por tanto, para calcular el grupo de Galois de la extensión $\mathbb{Q}(\alpha_n)/\mathbb{Q}$, basta observar que es el cociente entre los grupos de Galois de las extensiones que acabamos de estudiar; es decir:

$$Gal(\mathbb{Q}(\alpha_n)/\mathbb{Q}) = \frac{Gal(\mathbb{Q}(\xi_{2^{n+2}})/\mathbb{Q})}{Gal(\mathbb{Q}(\xi_{2^{n+2}})/\mathbb{Q}(\alpha_n))} = \frac{C_2 \times C_{2^n}}{C_2} = C_{2^n}$$

Concluimos así que la extensión $\mathbb{Q}(\alpha_n)/\mathbb{Q}$ es cíclica de grado 2^n , tal y como queríamos demostrar.