Algebra 2R

a voyage into the unknown

koteczek

 \sim

Pomoce dydaktyczne: playlista z losowymi wykladami

SYLABUS:

I. Podstawy teorii równań algebraicznych

- 1. Rozszerzenia ciał. Rozszerzenia o pierwiastek wielomianu nierozkładalnego. Ciało rozkładu wielomianu: istnieje, jedyność.
- 2. Ciało algebraicznie domknięte: definicja. Każde ciało zawiera się w ciele algebraicznie domkniętym (konstrukcja). Podciało proste: istnienie, jedyność. Ciała proste.
- 3. Pierwiastki z jedności, pierwiastki pierwotne. Grupa pierwiastków z jedności w ciele: każda jej skończona podgrupa jest cykliczna. Wielomiany podziału koła. Funkcja Frobeniusa. Ciała skończone: własności.

II. Teoria Galois

- 1. Rozszerzenia [elementy] algebraiczne, przestępne: definicja. Stopień rozszerzenia. Warunki równoważne algebraiczności. Wielomian minimalny elementu ciała nad podciałem, własności.
- 2. Algebraiczne domknięcie ciała: definicja, istnienie, jedyność, własności (jednorodność). Istnienie rzeczywistych liczb przestępnych, liczby Liouville'a.
- 3. Rozszerzenia normalne: definicja, własności. Rozszerzenia [elementy, wielomiany] rozdzielcze. Twierdzenie Abela o elemencie pierwotnym. Rozszerzenia czysto nierozdzielcze (radykalne): definicja, własności. Stopień rozdzielczy [radykalny] rozszerzenia: definicja, własności.

Spis rzeczy niezbyt mądrych

1	Teoria równań algebraicznych	3
	1.1 Układy równań	3
	1.2 Ciała	4
2	Równania w pierścieniach	6
	Równania w pierścieniach 2.1 Układy równań	6

1. Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z $1 \neq 0$, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1. Układy równań

Rozważmy funkcje $f_1,...,f_m \in R[X_1,...,X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1,...,X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód:

 \iff Implikacja jest dość trywialna, jeśli każdy wielomian z ($f_1,...,f_m$), czyli wytworzony za pomocą sumy i produktu wielomianów $f_1,...,f_m$ zeruje się na \bar{a} , to musi zerować się też na każdym z tych wielomianów

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1,...,f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1,...,f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1,...,f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2.
$$(f_1, ..., f_m) \cap R = \{0\}$$
. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R $[S \supseteq R]$ oraz rozwiązanie $\overline{a} \subseteq S$ spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1,...,f_m)$ i rozważmy

$$j:R[\overline{X}]\to S=R[\overline{X}]/(f_1,...,f_m)$$

nazywane przekształceniem ilorazowym. Po pierwsze, zauważmy, że j $\$ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subseteq S,$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\hat{f_i}\in (f_1,...,f_m)$ mamy

$$\hat{f}_i(\bar{a}) = \hat{f}_i(j(X_1), ..., j(X_m)) = j(\hat{f}_i(X_1, ..., X_m)) = j(f_i) = 0.$$

TUTAJ TRZEBA POUZASADNIAĆ KILKA RÓWNOŚCI, ALE MOŻE NIE BĘDĘ TEGO ROBIŁA NA AISD

Uwaga 1.1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(\clubsuit) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1,...,a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h: R[\overline{a}] \rightarrow R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj R[\overline{a}] \subseteq S jest podpierścieniem generowanym przez R \cup { \overline{a} }, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód: Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I $\triangleleft R[\overline{X}]$, czyli

$$(f_1,...,f_m)\subseteq I$$
.

Z twierdzenia o faktoryzacji wielomianów w pierścieniu od razu dostajemy od razu

1.2. Ciała

Dla K \subseteq L ciał i a₁,..., a_n = $\overline{a} \in$ L definiujemy ideał I(\overline{a} /L) w K[X₁,..., X_n] jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},\$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli podpierścień L generowany przez K \cup { \overline{a} } oraz K(\overline{a}), czyli podciało L generowane przez K \cup { \overline{a} }:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1,...,X_n)$ to *ciało ułamków pierścienia* $K[\overline{X}]$ (czyli najmniejsze ciało, że pierścień może być w nim zanurzony).

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} zachodzi:

$$K[\sqrt{2}] = \mathbb{Q}[\sqrt{2}] = \{q + p\sqrt{2} : q, p \in \mathbb{Q}\}$$
$$K[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$
$$K(\sqrt{2}) = \mathbb{Q}[\sqrt{2}]$$

to ostatnie to usuwanie niewymierności z mianownika.

Twierdzenie: Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\{a_1, ..., a_n\} \in L_1$ i $\{b_1, ..., b_n\} \in L_2$. Wtedy następujące warunki są równoważne:

- \hookrightarrow istnieje izomorfizm ϕ : $K[a_1,...,a_n] \to K[b_1,...,b_n]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(a_i) = b_i$.
- $\hookrightarrow I(\overline{a}/K) = I(\overline{b}/K)$.

Dowodzik:

$$K[\overline{a}] \cong K[\overline{b}] \implies I(\overline{a}/K) = I(\overline{b}/K)$$

Niech $\omega \in K[\overline{X}]$. Wtedy $\omega \in I(\overline{a}/K)$ wtedy i tylko wtedy, gdy $\omega(\overline{a}) = 0$, to mamy z definicji $I(\overline{a}/K)$. Wiemy też, że $\phi(a) \in K[\overline{X}]$ wtedy, gdy $\omega(\phi(\overline{a})) = 0$, a ponieważ $\phi(\overline{a}) = \overline{b}$, to również $\omega(\overline{b}) = 0$ i mamy, że $\omega \in I(\overline{b}/K)$. Czyli izomorfizm między $K[\overline{a}] = K[\overline{b}]$ implikuje, że $I(\overline{a}/K) = I(\overline{b}/K)$.

$$K[\overline{a}] \cong K[\overline{b}] \iff I(\overline{a}/K) = I(\overline{b}/K)$$

Spróbujmy zdefiniować izomorfizm ϕ tak, że dla $\omega \in K[\overline{X}]$ mamy $\phi(\omega(\overline{a})) = \omega(\overline{b})$

1. ϕ jest homomorfizmem:

$$\phi(\omega(\overline{a}) \cdot v(\overline{a})) = f((\omega \cdot v)(\overline{a})) = (\omega \cdot v)(\overline{b}) = \omega(\overline{b}) \cdot v(\overline{b}) = \phi(\omega(\overline{a})) \cdot \phi(v(\overline{a}))$$

2. ϕ jest różnowartościowe:

$$\phi(\omega(\overline{a})) = \phi(v(\overline{a})) \iff \omega(\overline{b}) = v(\overline{b}) \iff (\omega - v)(\overline{b}) = 0 \iff \omega - v \in I(\overline{b}/K) = I(\overline{a}/K) \iff (\omega - v)(\overline{a}) = 0 \iff \omega(\overline{a})$$

3. ϕ jest dobrze zdefiniowane (czyli przyjmuje tylko jedną wartość dla jednego argumentu):

$$\omega(\overline{a}) - v(\overline{a}) = 0 \iff (\omega - v)(\overline{a}) = 0 \iff \omega - v \in I(\overline{a}/K) \iff \omega - v \in I(\overline{b}/K) \iff (\omega - v)(\overline{b}) = 0 \iff \omega(\overline{b}) - v(\overline{b}) = 0$$

Możemy teraz zapytać, czy każdy ideał w pierścieniu wielomianów K[X] jest postaci I(\overline{a} /K) dla pewnego $\overline{a} \in L \supset K$? Albo ogólniej, czy dla pierścienia przemiennego R z $1_R \neq 0_R$ oraz ideału I = $(f_1,...,f_m)$ = I(\overline{a} /R) \triangleleft R[X], czy istnieje nadpierścień S taki, że $1_S = 1_R$ i $0_S = 0_R$ oraz układ

$$f_1(\bar{x}) = ... = f_m(\bar{m}) = 0$$

ma rozwiązanie w S? Takie rozwiązanie spełniałoby $\overline{a} \in S \iff (\forall g \in (f_1, ..., f_m)) g(\overline{a}) = 0.$

2. Równania w pierścieniach

2.1. Układy równań

Notacja: przez R, S oznaczamy pierścienie przemienne z 1 ≠ 0. Przez K, L oznaczamy ciała.

Niech $f_1, ..., f_n \in R[X_1, ..., X_n] = R[\overline{X}].$

Problem: Czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

 \overline{a} = $(a_1,...,a_n)\subseteq S\supseteq R$ jest rozwiązaniem układu równań U \iff g(\overline{a}) = 0 dla każdego wielomianu g \in ($f_1,...,f_m$) \triangleleft R[X].

Dowód: Rozważmy przypadki:

- 1. $(f_1,...,f_m) \ni b \neq 0$ i $b \in R$. Wtedy układ U jest sprzeczny i nie ma rozwiązania w żadnym pierścieniu rozszerzającym R, więc możemy ten przypadek odrzucić.
- 2. $(f_1,...,f_m) \cap R = \{0\}$, czyli negacja pierwszego przypadku. Teraz układ U jest niesprzeczny i skonstruujemy pierścień $S \supseteq R$ z jednością (czyli rozszerzenie pierścienia S) i rozwiązanie $\overline{a} \subseteq S$.

Niech S = $R[\overline{X}]/(f_1,...,f_m)$ i rozważmy $jR[\overline{X}] \to S$ ilorazowe. Po pierwsze zauważmy, że $j \upharpoonright R$ jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\sim} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm utożsamiamy R z j[R] i S jest więc rozszerzeniem pierścienia R.

Niech $\overline{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_m))$, czyli zbiór obrazów wielomianów stopnia 1 z peirścienia S. Wtedy \overline{a} jest rozwiązaniem układu U w pierścieniu S. Oznaczmy funkcję wielomianową przez

$$\hat{f_i}(\overline{a}) = \hat{f_i}(j(X_1), ..., j(X_m)) = j(\hat{f_i}(X_1, ..., X_m)) = j(f_i) = 0$$

powyższe równości należy sprawdzić w ramach ćwiczenia.

Uwaga: Skonstruowane powyżej rozwiązanie \overline{a} układu U ma następującą własność uniwersalności. Jeśli $S'\supseteq R$ jest rozszerzeniem pierścieni z 1 i $\overline{a}'=(a'_1,...,a'_n)\subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm $h:R[\overline{a}]\to R[\overline{a}']$ taki, że $h\upharpoonright R$ jest identycznością na R i $h(\overline{a})=\overline{a}'$. Wszystkie rozwiązania układów sa homomorficzne.

 $R[\overline{a}] \subseteq S$ to podpierścień generowany przez $R \cup {\overline{a}}$, czyli

$$R[\overline{a}] = \{f(\overline{a}) \ : \ f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód: Niech I = $\{g \in R\overline{X} : g(\overline{a}') = 0\}$ w S'. Oczywiście I $\triangleleft R[\overline{X}]$. Znaczy to, że

$$(f_1,...,f_m)\subseteq I$$

z twierdzenia o faktoryzacji wielomianów w pierściueniu (????) dostajemy od razu

$$R[X] \xrightarrow{j} S = R[\overline{X}]/(f_1, ..., f_m)$$

i R[\overline{a}'] \subseteq S'. Widzimy, że I = ker $\phi \subseteq$ kerj = (f₁,..., f_m). Z twierdzenia o homomorfizmie peirścieni dostajemy jedyne h : R[X]/(f₁,..., f_m) \rightarrow R[\overline{a}'] taki, że h(\overline{a}) = \overline{a}' .

Uwaga: Jeśli I = $(f_1, ..., f_m)$ to h : R[\overline{a}] $\xrightarrow{\cong}$ R[\overline{a} ']

Definicja: Załóżmy, że $S \supset R$ jest rozszerzeniem pierścienia oraz $\bar{a} \in S^n$. Wtedy

I.
$$I(\overline{a}/R) = \{g \in R[\overline{X}] : g(\overline{a}) = 0\}$$

II. \overline{a} : rozwiązanie ogólne układu U gdy ideał I(\overline{a}/R) = ($f_1,...,f_m$).

Uwaga: W sytuacji z definicji powyżej, gdy U jest niesprzeczne, wtedy ā jest rozwiązaniem ogólnym układu U ⇔ zachodzi warunek z gwizdką.

Dowód: ćwiczenia.

2.2. Ciała

 $K \subseteq L$ i $\overline{a} \subseteq L$. Definiujemy ideał \overline{a} nad K jako

$$I(\overline{a}/K) = \{q \in K[\overline{X}] : q(\overline{a}) = 0\}$$

Wtedy $K[\overline{a}]$ = podpierścień ciała L generowany przez $K \cup \{a_1,...,a_m\}$ = $\{g(\overline{a}): g \in K[\overline{X}].$

 $K(\overline{a})$ to podciało ciała L generowane przez $K \cup \{a_1,...,a_m\}$. Czyli jest to ciało ułamków pierścienia $K[\overline{a}]$ w ciele L. Inaczej piszemy $K[\overline{a}]_0$

$$K(\overline{a}) = \{g(\overline{a} : g \in K(\overline{X}) | g(\overline{a}) \text{ jest dobrze określone})\}$$

Uwaga: Załóżmy, że K \subseteq L₁, K \subseteq L₂ są to rozszerzenia ciał i $\overline{a}_1 \subseteq L_1$, $\overline{a}_2 \in L_2$ i $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

1.
$$(\exists f : K[\overline{a}_1] \xrightarrow{\cong} K[\overline{a}_2]) f(\overline{a}_1) = \overline{a}_2 i f \upharpoonright K = id_k$$

2.
$$I(\overline{a}_1/K) = I(\overline{A}_2/K)$$

Dowód:

 $1 \implies 2$ jest jasne, bo dla $g(\overline{x}) \in K[\overline{x}]$ takie, że $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$ dla w $K[\overline{a}_2]$.

 $\begin{tabular}{l} \longleftarrow \ Zwróćmy uwagę na odwzorowanie ewaluacji <math>\overline{a}_1$

$$\phi_{\overline{a}_1}: K[\overline{X}] \xrightarrow{\operatorname{epi}} K[\overline{a}_1]$$

mamy $\phi_{\overline{a}_1}(w(\overline{x})) = w(\overline{a}_1)$, czyli do wielomianu ϕ podstawia \overline{a}_1 . Oczywiście,

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K) = I(\overline{a}_2/K) = \ker\phi_{\overline{a}_2}$$

Uwaga: Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. I niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$: rozwiązanie ogólne układu $f_1(\overline{X}) = ..., ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$

Dowód: Patrz na poprzednie uwagi, których było już dość dużo.

Twierdzenie: Niech I \triangleleft K[\overline{X}]. Wtedy istnieje ciało L \supseteq K oraz \overline{a} = $(a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a})$ = 0 dla każdego $f \in I$.

Dowód: Niech $I \subseteq M \triangleleft K[X]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$, $j : K[\overline{X}] \rightarrow L$ ilorazowe, $M \cap K = \{0\}$, więc $j \upharpoonright K : K \rightarrow L$ jest 1 - 1, a więc

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Utożsamiamy K z j[K], to znaczy K \subseteq L. Niech \overline{a} = $(a_1,...,a_n)$, a_i = $j(X_i)$ \in L. $g(\overline{a})$ = 0 dla każdego $g(\overline{X}) \in M \subseteq I$.

Wniosek: Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K taki, że f ma pierwiastek w ciele L.

Przykład:

1. Popatrzmy na ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwsz (czyli w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{Q}[X]/I \cong \mathbb{Q}$$

2.
$$\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$$
 dla każdej $z \in \mathbb{C} \setminus \mathbb{R}$.

Załóżmy, że $k \subseteq L_1$, $K \subseteq L_2$ to rozszerzenia ciała. Wtedy mówimy, że L_1 jest izomorficzne z L_2 nad K $[L_1 \cong_K L_2] \iff$ gdy istnieje izomorfizm $f: L_1 \to L_2$ taki, że $f \upharpoonright K = id_k$.

Fakt:

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogólnie: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X]$, $f_2 \in K_2[X]$ i $\phi(f_1) = f_2$, f_i jest nierozkładalne. Dodatkowo załóżmy, że L_1 jest rozszerzeniem ciała K_1 o element a_1 i $L_2 = K(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Podpunkt pierwszy jest szczególnym przypadkiem podpunktu 2, gdy ϕ = id.

Dowód:

- 1. $T(a_1/K) = (f) = I(a_2/K)$, stąd na mocy faktu 1.5 mamy $K(a_1) \cong_K K(a_2)$.
- 2. Popatrzmy najpierw na izomomfizm $K_1[X]$ xrightarrow $[\phi] \cong K_2[X]$ Wtedy ten ϕ indukuje $K_1[X]/(f_1 \xrightarrow{\cong}_{\phi} K_2[X]/(f_2)$, bo $\phi(f_1) = f_2$. Zatem

$$I(\overline{a}_i/K_i) = (f_i) \triangleleft K_i[X]$$

$$L_i = K_i(a_i) = K_i[a_i] \cong K_i[\overline{X}]/I(a_i/K_i)$$

Ciało L \supseteq K jest **ciałem rozkładu** [decomposition field] nad K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe stopnia 1
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Nie są warunkami równoważnymi, bo 1 może być spełnione przez coś większego niż 2, a my chcemy najmniejsze takie ciało.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek: Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. ciało to jest jedyne z dokładnością do izomorfizmu nad K.

Dowód:

1. Dowód przez indukcję względem stopnia f.

$$deg(f) = 1 \implies L = K i jest OK$$

Załóżmy, że stopień f > 1 i teza zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z wniosku 1.7. wiemy, że istnieje rozszerzenie ciała K, w którym wielomian K mapierwiastek, powiedzmy K0 to ten pierwastek:

$$K' = K(a_0)$$

w K'[X] ma pierwastek a_0 , więc dzieli się przez (x – a_0), więc

$$f = (x - a_0)f_1$$

gdzie $f_1 \in K'[X]$, $0 < deg(f_1) < deg(f)$. Z założenia indukcyjnego dla f_1 istnieje $L' = K'(a_1, ..., a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy $L = K(a_0, ..., a_r)$ jest ciałek rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą: Jeśli $\phi: K_1 \to K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \to L_2$ izoorfizm nad ciałami rozkładu tych K_i .