Kubernetes Node Attacks

Attacking the Cluster from the Nodes
Handling the Compromised Node Scenario

Node Attacks

An attacker can gain access to a node through at least three different measures:

- Break out of a container via an exploit
- Phish an engineer that has login access to the node
- Use an authorization weakness in the Kubernetes cluster
- Compromise a container that has too much privilege

The last two of these look very much the same.

Overprivileged Containers

If a bad actor can find or create a container that has too much privilege, they can compromise the node or the cluster.

Here are three examples:

- "privileged" containers have no capability limits and mount the entire /dev tree.
- "hostNetwork" containers use the node's network namespace.
- Containers that mount the node's filesystem ... have access to the node's filesystem.

Privileged Containers

Privileged containers are particularly powerful.

Here are the salient points from an attacker's perspective.

- A privileged container mounts the entire /dev tree.
- It can insert a module into the running kernel.
- It has access to every root capability, rather than the reduced set afforded a container.

We'll use two of these in our node attacks exercise.

Privileged Container Device Directory

Standard Container's /dev Directory

```
root@ae8d2c3a5ed4:/# ls /dev
core fd full mqueue null ptmx pts random shm stderr stdin stdout tty urandom zero
```

Privileged Container's /dev Directory

root@b3a43968ece6:/# ls /dev														
autofs	fuse	mqueue	rfkill	tty1	tty19	tty28	tty37	tty46	tty55	tty7	vcs	vcsa3	vcsu6	vport1p1
btrfs-control	hidraw0	net	rtc0	tty10	tty2	tty29	tty38	tty47	tty56	tty8	vcs1	vcsa4	vda	vport1p2
bus	hpet	null	shm	tty11	tty20	tty3	tty39	tty48	tty57	tty9	vcs2	vcsa5	vda1	watchdog
core	hwrng	nvram	snapshot	tty12	tty21	tty30	tty4	tty49	tty58	ttyS0	vcs3	vcsa6	vda14	watchdog0
cpu_dma_latency	input	port	snd	tty13	tty22	tty31	tty40	tty5	tty59	ttyS1	vcs4	vcsu	vda15	zero
cuse	kmsg	ppp	stderr	tty14	tty23	tty32	tty41	tty50	tty6	ttyS2	vcs5	vcsu1	vfio	
dri	kvm	psaux	stdin	tty15	tty24	tty33	tty42	tty51	tty60	ttyS3	vcs6	vcsu2	vga_arbiter	
fb0	loop-control	ptmx	stdout	tty16	tty25	tty34	tty43	tty52	tty61	uhid	vcsa	vcsu3	vhci	
fd	mapper	pts	tty	tty17	tty26	tty35	tty44	tty53	tty62	uinput	vcsa1	vcsu4	vhost-net	
full	mem	random	tty0	tty18	tty27	tty36	tty45	tty54	tty63	urandom	vcsa2	vcsu5	vhost-vsock	

hostNetwork Pods

hostNetwork pods allow all containers within them to use the host's network namespace, rather than a separate one, the way normal containers do.

This allows the container to impersonate the node, from a network perspective.

If time permits, we'll demonstrate how this can defeat the Kube2IAM security control.

Exercise: Kubernetes Node Attacks

Please:

Open the Firefox browser on the class machine to:

http://localhost:10000/exercises/kubernetes-node-attacks