Package 'DPBBM'

October 12, 2022

Type Package
Title Dirichlet Process Beta-Binomial Mixture
Version 0.2.5
Date 2016-09-21
Author Lin Zhang
Maintainer Lin Zhang lin.zhang@cumt.edu.cn>
Depends R (>= $3.1.0$)
Imports tmvtnorm, VGAM, gplots, CEoptim
Description Beta-binomial Mixture Model is used to infer the pattern from count data. It can be used for clustering of RNA methylation sequencing data.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-29 08:02:30
R topics documented:
DPBBM-package
Index
DPBBM-package DPBBM

Description

This package is developed for the beta-binomial mixture model based clustering

Details

2 bbm_data_generate

Package: DPBBM
Type: Package
Version: 1.0.1
Date: 2016-06-26
License: GPL-2

References

Coming soon!

Examples

```
# Please check the main function of the package
?dpbbm_mc_iterations
```

bbm_data_generate

bbm_data_generate

Description

This is to generate the simulation data based on Beta-bionomial mixture model

Usage

Number of samples in the simulated data

Arguments S

G	Number of sites in the simulated data
K	Number of clusters that exist in the simulated data
prob	the cluster weight for each cluster
alpha_band	the region used to generate the parameter of beta distribution alpha
beta_band	the region used to generate the parameter of beta distribution beta
nb_mu	alternative parametrization via mean for Negative Binomial distribution
nb_size	target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution) for Negative binomial distrition. Must be strictly positive, need not be integer.
plotf	option for whether plot the generated data according to clusters or not

max_cor The maximized correlation allowed for the simulated data, which used to guar-

antee the data is not highly correlated.

BCubed_metric 3

Details

The Dirichlet Process based beta-binomial mixture model clustering

Value

The function returns simulation data generated based on beta binomial mixture model

Author(s)

Lin Zhang, PhD <lin.zhang@cumt.edu.cn>

References

Reference coming soon!

Examples

```
set.seed(123455)
S <- 4
G <- 100
K <- 3
nb_mu <- 100
nb_size <- 0.8
prob <- c(1,1,1)
mat <- bbm_data_generate(S=S,G=G,K=K,prob=prob,alpha_band=c(2,6),beta_band=c(2,6),</pre>
                          nb_mu=nb_mu,nb_size=nb_size, plotf = TRUE, max_cor=0.5)
table(mat$gamma)
pie(mat$gamma)
id <- order(mat$gamma);</pre>
c <- mat$gamma[id]</pre>
mat_ratio <- (mat$k+1)/(mat$n+1);
heatmap(mat_ratio[id,], Rowv = NA, Colv = NA, scale="none", RowSideColors=as.character(c),
        xlab = "4 samples", ylab="100 RNA methylation sites")
```

BCubed_metric

BCubed_metric

Description

This is to evaluate the clustering method with Bcubed F sore.

Usage

```
BCubed_metric(L, C, alpha)
```

Arguments

```
L real label of classes
```

C classification label of classes drawn by clustering method alpha F metric parameter which used to average precision and recall

Details

The clustering evaluation method based on Bcubed F metric.

Value

The function returns Bcubed F score of the clustering method. The higher the value is, the better performance the clustering method can get.

Author(s)

Lin Zhang, PhD < lin.zhang@cumt.edu.cn>

References

Reference coming soon!

Examples

```
L <- c(1,1,2,1,1,2,2)
C <- c(2,2,1,2,2,1,1)
alpha <- 0.5
Bcubed_score <- BCubed_metric(L, C, alpha)
Bcubed_score</pre>
```

```
dpbbm_mc_iterations dpbbm_mc_iterations
```

Description

This is the Markov Chain Monte Carlo iterations for DPBBM

Usage

```
dpbbm_mc_iterations(x, size.x, m = 1, max_iter = 2000,
a = 0.1, b = 1, tau = 1,
sig_alpha = 25/9, sig_beta = 25/9,
tau.method = "auto", debug = FALSE)
```

Arguments

X	a matrix of k for clustering, referring to IP reads in m6A seq data
size.x	a matrix of n for clustering, referring to the summation of IP reads and input reads in m6A seq data $$
m	a value indicating the auxiliary clusters used in DPBBM
max_iter	maximized iterations in DPBBM
a	Hyperparameter a for tau

dpbbm_mc_iterations 5

b	Hyperparameter b for tau
tau	Prior for tau
sig_alpha	variation for parameter alpha of beta distribution
sig_beta	variation for parameter beta of beta distribution
tau.method	tau.method should be set to "auto" or "stable", refer to tau for detail description.
debug	whether DPBBM print the debug info or not. Default: FALSE

Details

The Dirichlet Process based beta-binomial mixture model clustering

Value

The function returns the cluster label withdrawn by DPBBM

Author(s)

Lin Zhang, PhD < lin.zhang@cumt.edu.cn>

References

Reference coming soon!

Examples

```
# generate a simulated dataset
set.seed(123455)
S <- 4
G <- 100
K <- 3
nb_mu <- 100
nb_size <- 0.8
prob <- c(1,1,1)
mat <- bbm_data_generate(S=S,G=G,K=K,prob=prob,alpha_band=c(2,6),beta_band=c(2,6),</pre>
                      nb_mu=nb_mu,nb_size=nb_size, plotf = FALSE, max_cor=0.5)
# check generated data
id <- order(mat$gamma);</pre>
c <- mat$gamma[id]</pre>
mat_ratio <- (mat$k+1)/(mat$n+1);</pre>
heatmap(mat_ratio[id,], Rowv = NA, Colv = NA, scale="none", RowSideColors=as.character(c),
        xlab = "4 samples", ylab="100 RNA methylation sites")
## Run the DPBBM result. This step takes a really long time.
## You are suggested to check the pre-prepared example for a quick start
F=system.file("extdata", "DPBBM_example.html", package="DPBBM")
browseURL(url=F)
## Alternatively
# cluster_label <- dpbbm_mc_iterations(mat$k, mat$n)</pre>
# # Show the clustering result.
```

dpbbm_mc_iterations

```
# table(cluster_label)
# pie(table(mat$gamma))
#
# # Compare the clustering result with the true clustering IDs.
# id <- order(mat$gamma);
# c <- cluster_label
# r <- rainbow(3, start = 0, end = 0.3)
# mat_ratio <- (mat$k+1)/(mat$n+1);
# heatmap(mat_ratio[id,], Rowv = NA, Colv = NA, scale="none",
# RowSideColors = as.character(cluster_label[id]),
# margins = c(3,25))</pre>
```

Index

* statistical Inference bbm_data_generate, 2 BCubed_metric, 3 dpbbm_mc_iterations, 4 bbm_data_generate, 2 BCubed_metric, 3 DPBBM (DPBBM-package), 1 DPBBM-package, 1 dpbbm_mc_iterations, 4