SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab Lecture (Week 9)

(Chapter 6.2.3- 6.3.3)

Revision

Key points — 6.1.3 Dot Product/Inner Product (2)

Properties of dot product

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ [Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ [Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ [Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

Transformation on dot product

$$\bigcirc A \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot A^T \boldsymbol{v} \\
\bigcirc \boldsymbol{u} \cdot A \boldsymbol{v} = A^T \boldsymbol{u} \cdot \boldsymbol{v} \\
\text{(Using } \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v}, \text{ and } (AB)^T = B^T A^T \text{to derive)}$$

Explanation to transformation on dot product:

- Let's write the dot product in matrix form: $A\mathbf{u} \cdot \mathbf{v} = (A\mathbf{u})^T \mathbf{v}$
- Using $(AB)^T = B^T A^T$ $(A\mathbf{u})^T \mathbf{v} = (\mathbf{u}^T A^T) \mathbf{v}$
- Using the distributive property of matrix $(\boldsymbol{u}^T A^T) \boldsymbol{v} = \boldsymbol{u}^T (A^T \boldsymbol{v})$
- Write back to dot product format $u^T(A^Tv) = u \cdot A^Tv$

So we get: $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$

Revision

Key points – 6.2.2 Orthogonal Projection

- Projection theorem (projection from one vector to another)
 - Project vector y on to u:

$$\widehat{y} = Proj_u \ y = \frac{y \cdot u}{u \cdot u} u$$

- \circ Residual: $z = y \widehat{y} = y \frac{y \cdot u}{u \cdot u} u$
- Explain
 - 1) Geometric approach:

 \hat{y} is on the line of u with the length of $\|\hat{y}\|$

$$\widehat{y} = \|\widehat{y}\|_{\|u\|}$$

From triangle (see figure on the right): $\|\hat{y}\| = \|y\| \cos\theta$

From
$$\mathbf{y} \cdot \mathbf{u} = \|\mathbf{y}\| \|\mathbf{u}\| \cos\theta$$
, we get: $\|\mathbf{y}\| \cos\theta = \frac{\mathbf{y} \cdot \mathbf{u}}{\|\mathbf{u}\|}$

So, we get
$$\widehat{y} = \|\widehat{y}\| \frac{u}{\|u\|} = \|y\| \cos\theta \frac{u}{\|u\|} = \frac{y \cdot u}{\|u\|} \frac{u}{\|u\|} = \frac{y \cdot u}{\|u\|^2} u = \frac{y \cdot u}{u \cdot u} u$$

2) Orthogonal approach:

As \hat{y} is on the line of u, so $\hat{y} = cu$ (c is a scalar to be found)

$$\widehat{\mathbf{y}} = \widehat{\mathbf{y}} - \widehat{\mathbf{z}} = c\mathbf{u}$$

Take the dot product with u on both sides: $(y - z) \cdot u = cu \cdot u$

We get:
$$cu \cdot u = y \cdot u - z \cdot u = y \cdot u$$
 (z is orthogonal to $u!$) $\Rightarrow c = \frac{y \cdot u}{u \cdot u}$

So we also get: $\hat{y} = cu = \frac{y \cdot u}{u \cdot u} u$

Project
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 onto vector $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and sketch \hat{y} .

$$L = Span(ka)$$

$$L = Span(ka)$$

$$L = Span(ka)$$

$$L_{X_{i}} = Span([o])$$

Example

Project
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 onto vector $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$y = Proj y = \frac{7}{3} \frac{1}{4} \frac{1}{4}$$

$$=\frac{(?6)[?]}{[?]}[?] = \frac{20[?]}{5[?]} = 4[?] - (8)$$

$$= \hat{y} - \hat{y} = [?] - (8) = [?]$$

Revision

Key points – 6.2.3 Orthogonal Decomposition

- Project a vector y on to subpace spanned by $\{u_1, u_2 \cdots u_n\}$ in \mathbb{R}^n
 - \circ Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be written **uniquely** in the form:

$$y = \hat{y} + z$$

where \hat{y} is in W and residual z is in W^{\perp} . If $\{u_1, u_2 \cdots u_p\}$ is any orthogonal basis of W, then

$$\widehat{\mathbf{y}} = Proj_{w}\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}$$

- Explain:
 - o Since \hat{y} is in the subspace W spanned by $\{u_1, u_2 \cdots u_p\}$, we can write

$$\widehat{\mathbf{y}} = \mathbf{y} - \mathbf{z} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$$

Take dot product with u_i on both sides:

$$(\mathbf{y} - \mathbf{z}) \cdot \mathbf{u}_i = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_i, i = 1, \dots, p$$

Since $\mathbf{u}_i \cdot \mathbf{u}_j = 0$, if $i \neq j$, and $\mathbf{z} \cdot \mathbf{u}_i = 0$, so we have

$$c_i \mathbf{u}_i \cdot \mathbf{u}_i = (\mathbf{y} - \mathbf{z}) \cdot \mathbf{u}_i = \mathbf{y} \cdot \mathbf{u}_i - \mathbf{z} \cdot \mathbf{u}_i = \mathbf{y} \cdot \mathbf{u}_i$$

$$c_i = \frac{y \cdot u_i}{u_i \cdot u_i}$$

Key points – 6.2.4 Orthonormal Sets

- Definition
 - o If $\{u_1, u_2 \cdots u_n\}$ is called an **orthonormal basis** for subspace W if the basis vectors are orthogonal with unit length $\{u_i \cdot u_i = 0\}$ $0, if i \neq j$, and ||u|| = 1)
 - \circ Let $U_{n\times p} = [\boldsymbol{u}_1 \ \boldsymbol{u}_2 \cdots \boldsymbol{u}_p], \ \boldsymbol{u}_i \in \mathbb{R}^n$ Then, $U^TU = I$ (*I* is a $p \times p$ identify matrix).

Explain:
$$U^T = \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_p^T \end{bmatrix}$$
 is a $p \times n$ matrix, So $U^T U = \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_p^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_p^T \mathbf{u}_1 \cdots \mathbf{u}_p^T \mathbf{u}_p \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = I$

Properties

a.
$$||Ux|| = ||x||$$
 (preserve the length of vector)
b. $-\frac{Ux \cdot Uy = x \cdot y}{C}$
c. $\frac{Ux \cdot Uy = 0}{C}$, if and only if $x \cdot y = 0$

b.
$$-Ux \cdot Uy = x \cdot y$$

c.
$$\forall x \cdot \forall y = 0$$
, if and only if $x \cdot y = 0$

$$\frac{|U_X|^2 = (U_X) \cdot (U_X)}{= |U_X|^2 \cdot (U_X)}$$

• Re-write projection equation using
$$U: \hat{y} = Proj_w y = UU^T y$$

Explain:
$$\hat{y} = Proj_w y = \underbrace{\begin{pmatrix} y \cdot u_1 \\ u_1 \cdot u_1 \end{pmatrix}}_{u_1 \cdot u_1} u_1 + \cdots + \underbrace{\begin{pmatrix} y \cdot u_p \\ u_p \cdot u_p \end{pmatrix}}_{u_p \cdot u_p} u_p = \underbrace{\begin{pmatrix} y \cdot u_1 \\ u_1 \cdot y \end{pmatrix}}_{u_1} u_1 + \cdots + \underbrace{\begin{pmatrix} y \cdot u_p \\ u_p \cdot y \end{pmatrix}}_{u_p} u_p = \underbrace{\begin{pmatrix} u_1^T y \\ u_p^T y \end{pmatrix}}_{u_p} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T y} = \underbrace{\begin{pmatrix} u_1^T y \\ u_1^T y \end{pmatrix}}_{u_1^T$$

Note: if U is a square, it is called "orthogonal matrix". In this case

Explain:
$$\hat{y} = Proj_w y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p = (y \cdot u_1) u_1 + \dots + (y \cdot u_p) u_p$$

$$= (u_1^T y) u_1 + \dots + (u_p^T y) u_p = [u_1 \ u_2 \cdots u_p] \begin{bmatrix} u_1^T y \\ \vdots \\ u_p^T y \end{bmatrix} = [u_1 \ u_2 \cdots u_p] \begin{bmatrix} u_1^T y \\ \vdots \\ u_p^T y \end{bmatrix} y = UU^T y$$

• Note: if U is a square, it is called "orthogonal matrix". In this case, $U^{-1} = U^T$

$$\frac{C_{1}U_{1}+C_{2}U_{2}+\cdots C_{p}U_{p}}{\left[U_{1}U_{2}\cdot U_{p}\right]\left[\frac{C_{1}}{C_{2}}\right]}$$

$$=\left[U_{1}\cdot U_{p}\right)\left[\frac{V_{1}}{N_{2}^{2}}\right]$$

$$=\left[U_{1}\cdot U_{p}\right)\left[\frac{V_{1}}{N_{2}^{2}}\right]$$

$$Ax = b$$

$$\begin{bmatrix} u_1 & u_2 & u_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_p \end{bmatrix} = b$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_2 & x_3 \\ x_4 & x_4 & x_4 \end{bmatrix} + x_p U_p$$

Key points – 6.2.5 Orthogonal Decomposition.

- Geometric interpretation of the orthogonal projection (see figure right-top)
- The best approximation theorem (see figure right-bottom)

$$\|y-\widehat{y}\|<\|y-v\|$$

 \hat{y} is the orthogonal projection of y onto W. v is any vector in W distinct from \hat{y} .

Explain:
$$y - v = (y - \hat{y}) + (\hat{y} - v)$$
,

So, according to Pythagorean theorem: $\|y-v\|^2 = \|y-\widehat{y}\|^2 + \|\widehat{y}-v\|^2 \Rightarrow \|y-\widehat{y}\|^2 = \|y-v\|^2 - \|\widehat{y}-v\|^2 = \|y-v\|^2 + \|\widehat{y}-v\|^2 +$

Therefore we have: $\|y - \widehat{y}\| < \|y - v\|$

• What if p = n? That is, when W is the full space, what will be $\hat{y} = Proj_w y$?

What if p = n? That is, when W is the full space, what will be

 $\widehat{y} = Proj_w y$?

$$\hat{y}_{2}$$

$$\hat{y} = \frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} = \hat{y}_{1} + \hat{y}_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8$$

Key points – 6.3.1 QR Factorization (why)

- Definition of QR factorization
 - \circ Given an $m \times n$ matrix A
 - \circ A can be factorized as A = QR,
 - o $Q(m \times n)$ has orthonormal columns (meaning $Q^TQ = I$)
 - o $R(n \times n)$ is an "up-triangle" square matrix
- Why QR factorization is useful
 - o After factorize A into Q and R, we can easily find the solution for system: Ax = b using back substitute only

Explain:
$$A\mathbf{x} = \mathbf{b} \Rightarrow QR\mathbf{x} = \mathbf{b} \Rightarrow Q^TQR\mathbf{x} = Q^T\mathbf{b} \Rightarrow R\mathbf{x} = Q^T\mathbf{b} = \mathbf{y}$$

$$R\mathbf{x} = \mathbf{y}: \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

$$r_{33} x_3 = y_3 \Rightarrow x_3 = y_3 / r_{33}$$

$$r_{22} x_2 + r_{23} x_3 = y_2 \Rightarrow x_2 = (y_2 - r_{23} x_3) / r_{22}$$

$$r_{11} x_1 + r_{12} x_2 + r_{13} x_3 = y_1 \Rightarrow x_1 = (y_1 - r_{12} x_2 - r_{13} x_3) / r_{11}$$

o QR factorization is an important tool for finding a Least Square solution ($\hat{x} = R^{-1}Q^Tb$, in week 10)

Key points – 6.3.2 QR Factorization (how)

- How do we find Q and R from A Gram—Schmidt Approach
 - o Given any set of p independent columns (basis of non-zero subspace W in R^n): $\{x_1, x_2 \cdots x_p\} \in R^n \ (A = [x_1 \ x_2 \cdots x_p])$
 - o Define the following orthogonal set $\{v_1, v_2 \cdots v_p\}$:

$$\begin{array}{l} \boldsymbol{v}_1 = \boldsymbol{x}_1 \\ \boldsymbol{v}_2 = \boldsymbol{x}_2 - \frac{\boldsymbol{x}_2 \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \, \boldsymbol{v}_1 \, \left(\text{so } \boldsymbol{v}_2 \text{is orthogonal to } \boldsymbol{v}_1 \right) \\ \boldsymbol{v}_3 = \boldsymbol{x}_3 - \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \, \boldsymbol{v}_1 - \, \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_2}{\boldsymbol{v}_2 \cdot \boldsymbol{v}_2} \, \boldsymbol{v}_2 \, \left(\text{so } \boldsymbol{v}_3 \text{is orthogonal to } \boldsymbol{v}_2, \boldsymbol{v}_1 \right) \\ \vdots \\ \boldsymbol{v}_p = \boldsymbol{x}_p - \sum_{i=1}^{p-1} \frac{\boldsymbol{x}_p \cdot \boldsymbol{v}_i}{\boldsymbol{v}_i \cdot \boldsymbol{v}_i} \, \boldsymbol{v}_i \, \left(\text{so } \boldsymbol{v}_3 \text{is orthogonal to } \boldsymbol{v}_{p-1}, \cdots, \boldsymbol{v}_2, \boldsymbol{v}_1 \right) \end{array}$$

 \circ Form a orthonormal basis from $\{oldsymbol{v}_1, oldsymbol{v}_2, \cdots, oldsymbol{v}_p\}$

$$\triangleright Q = [u_1 \ u_2 \cdots u_p] = [\frac{v_1}{\|v_1\|} \frac{v_2}{\|v_2\|} \cdots \frac{v_2}{\|v_2\|}]$$

- Finally, find R
 - > Since A = QR and $Q^TQ = I$, from $Q^TA = Q^TQR$, we find $R = Q^TA$

$$R = [\mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_p]^T [\mathbf{x}_1 \ \mathbf{x}_2 \cdots \mathbf{x}_p]$$

$$= \begin{bmatrix} \boldsymbol{u}_1^T \\ \vdots \\ \boldsymbol{u}_p^T \end{bmatrix} [\boldsymbol{x}_1 \cdots \boldsymbol{x}_p]$$

$$= \begin{bmatrix} \boldsymbol{u}_1^T \boldsymbol{x}_1 & \cdots & \boldsymbol{u}_1^T \boldsymbol{x}_p \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \boldsymbol{u}_p^T \boldsymbol{x}_p \end{bmatrix}$$

Key points – 6.3.2 QR Factorization (how)

• Example: $A = \begin{bmatrix} 3 & 8 \\ 0 & 5 \\ -1 & -6 \end{bmatrix}$ $x_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, x_2 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}, x_1 \text{ and } x_2 \text{ are independent}$

Find
$$v_i$$
: $v_1 = x_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$, $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix} - \frac{\begin{bmatrix} 8 & 5 & -6 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}}{\underbrace{9+1}} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$

Verify:
$$\mathbf{v}_1 \cdot \mathbf{v}_2 = \begin{bmatrix} 3 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} = 0$$

Normalize v_1 and v_2 : $||v_1|| = \sqrt{10}$, $||v_2|| = \sqrt{35}$

So we get
$$\mathbf{u}_1 = \frac{v_1}{\|v_1\|} = \begin{bmatrix} 3/\sqrt{10} \\ 0 \\ -1/\sqrt{10} \end{bmatrix}, \mathbf{u}_2 = \frac{v_2}{\|v_2\|} = \begin{bmatrix} -1/\sqrt{35} \\ 5/\sqrt{35} \\ -3/\sqrt{35} \end{bmatrix} \Rightarrow Q = \begin{bmatrix} 3/\sqrt{10} & -1/\sqrt{35} \\ 0 & 5/\sqrt{35} \\ -1/\sqrt{10} & -3/\sqrt{35} \end{bmatrix}$$

Finally, find
$$R: R = Q^T A = \begin{bmatrix} 3/\sqrt{10} & 0 & -1/\sqrt{10} \\ -1/\sqrt{35} & 5/\sqrt{35} & -3/\sqrt{35} \end{bmatrix} \begin{bmatrix} 3 & 8 \\ 0 & 5 \\ -1 & -6 \end{bmatrix} = \begin{bmatrix} 10/\sqrt{10} & 30/\sqrt{10} \\ 0 & 35/\sqrt{35} \end{bmatrix}$$
 $\Rightarrow R = \begin{bmatrix} \sqrt{10} & 3\sqrt{10} \\ 0 & \sqrt{35} \end{bmatrix}$

<u>Key points – 6.3.2 QR Factorization Properties</u>

- Properties of QR factorization
 - 1) $Q^TQ = I$
 - 2) Columns of Q is equivalent to columns of A
 - 1) $W = \operatorname{span} \{ \boldsymbol{u}_1, \boldsymbol{u}_2 \cdots \boldsymbol{u}_p \} = \operatorname{span} \{ \boldsymbol{x}_1, \boldsymbol{x}_2 \cdots \boldsymbol{x}_p \}$
 - 2) Q forms an orthonormal basis to span the same subspace W
 - 3) QQ^T is the projection matrix onto W (spanned by columns of A or Q)
 - 4) If *A* has independent columns, *R* is invertible, and all the values on the diagonal of *R* is positive
 - 5) If A has any dependent columns, simply skip it in Q

End