

CECS 303: Networks and Network Security

Attack Vectors and Malicious Code

Chris Samayoa

Week $7 - 2^{nd}$ Lecture 3/3/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm (VEC-404)
- Other times by appointment only

Objectives

- Attack Vectors
- Malicious Code

Attack Vectors

- Trojan Horse
 - Extra code added manually to web page, program, plugin, etc.
- Viruses
 - Self-propagating (on execution)
 - Contains a malicious payload
- Worms
 - Self-propagating through process exploit.
 - Contains a malicious payload
- Penetration Tools (remote or local)
 - Exploits vulnerabilities to violate policy
 - Injection, Overrun, Logic, other
- Impersonation / Insider

General Actions - Payloads

- Modification of data
- Spying exfiltration
- Stepping off point for further attacks
- Advertising and tracking interests
- Self Preservation Rootkits
- Subversion

Malicious Actions

- Taken when attack vector is activated
- Malware propagation (Viruses and Worms)
- Subversion Back doors, changes to software base
 - Spyware Exfiltration of history, data, etc.
 - Zombies or bots or botnets Remote control of system
 - Extortion (Ransomware) Destroy system or encrypt data and ask for ransom
 - Cryptocurrency miners
- Malicious code may go undetected if effect is delayed until some external event
 - A particular time
 - Some occurrence
 - An unlikely event used to trigger the logic

Defenses to Malicious Code

- Detection
 - Virus scanning
 - Intrusion Detection
- Least Privilege
 - Don't run as root
 - Separate users ID's
- Isolation
 - Mandatory controls on information flow
- Sandboxing
 - Limit what the program can do
- Backup
 - Keep something stable to recover

Categorizing Malicious Code

- How does it propogate??
- Trojan Horses
 - Embedded in useful program that others will want to run.
 - Covert secondary effect
- Viruses (n specialization of a Trojan horse)
 - Tries to propagate itself when the program is started
- Worms
 - Exploits vulnerabilities (bugs) to infect running programs
 - Infection is immediate

Trojan Horses

- People use programs because of a desired and documented effect
- Malicious payload
 - An "undocumented" activity that might be counter to the interests of the user
- Examples: Some viruses; much spyware
- Issues: How do you get a user to run your program?
 - Software that doesn't come from a reputable source may embed trojans
 - Program with same name as one commonly used can be inserted in search path
 - Depending on settings, visiting a web site or reading an email may cause a program to execute

Computer Virus vs Real Virus

- Both self propagating
- Requires a host (program) to replicate
- Similar strategies
 - If deadly to start then it won't spread very far it kills the host.
 - If infects and propagates before causing damage can go unnoticed until it is too late to react

Viruses

- Resides within another program
 - Propagates itself to infect new programs (or new instances)
- May be an instance of Trojan Horse
 - Email requiring manual execution
 - Infected program becomes trojan
- Early viruses used boot sector
 - Instructions for booting system
 - Modified to start virus then system
 - Virus writes itself to boot sector of all media
 - Propagates by shared disks

Viruses (cont'd)

- Some viruses infect program
 - Same concept; on start, program jumps to code for the virus
 - Virus may propagate to other programs at this point
 - Virus may deliver payload
- Viruses via E-mail
 - Use mailbox and address book for likely targets
 - Mail program to targeted addresses
 - Forge sender to trick recipient to open program
 - Exploit bugs to cause auto execution on remote site
 - Trick users into opening attachments

Viruses (cont'd)

- How viruses hide
 - Encrypted in random key to hide signature
 - Polymorphic viruses changes the code on each infection
 - Some viruses cloak themselves by trapping system calls
- Macro viruses
 - Code is interpreted by common application such as word, excel, postscript interpreter, etc.
 - May be virulent across architectures

Zombies / Bots

- Machines controlled remotely
 - Infected by virus, worm, or trojan
 - Can be contacted by master / control server
 - May make calls out so control is possible even through firewall
 - Often uses IRC for control

Spyware

- Infected machines collect data
 - Keystroke monitoring
 - Screen scraping
 - History of URL's visited
 - Scans disk for credit cards and passwords
 - Allows remote access to data
 - Sends data to third party
- Spyware can be local
 - Targeted ads
 - Revenue for referring victim to merchant
 - Might rewrite URL's to steal commissions

Malicious Code - Issue

- Can not detect a virus by determining whether a program performs a particular activity
 - Reduction from the Halting Problem
 - Can use heuristics to fight this problem
- Defenses
 - Detection
 - Signature-based
 - Activity-based
 - Prevention
 - Prevent certain actions in an environment
 - > Take action based on detection

Malicious Code - Defenses

- Detection
 - Signature-based
 - Activity-based
- Prevention
 - Prevent certain actions in an environment
 - Take action based on detection
- Sandbox
 - Limits access of running program
 - Program doesn't have full access or even user-level access
- Detect Modifications
 - Signed executables
 - Tripwire or similar

Root Kits - Subversion

- Hide traces of infection or control
 - Intercept systems calls
 - Return false information that hides the malicious code
 - Return false information to hide effect of malicious code.
 - Some root kits have countermeasures to attempts to detect the root kits
 - "Blue Pill"

Malicious Code - Economics

- Botnets
 - Controlled machines for sale
- "Protection" or "recovery" for sale
- Attack software for sale
- Stolen data for sale
- Intermediaries used to convert online balances to cash
 - These are the pawns and the ones that are most easily caught

Summary

- Common attack vectors
 - Viruses
 - Worms
 - Vulnerabilities
 - Insider threat
- Knowing the "why" of the attack can help to define how to protect