Név, Neptun-kód:

Összpontszám	Érdemjegy

Minden egyes kérdés megválaszolására maximum 5 pont adható.

I. Definíciók

1. Mit értünk azon, hogy az $(x_n)_{n\in\mathbb{N}}$ sorozat Cauchy-sorozat?

Megoldás. Azt mondjuk, hogy az $(x_n)_{n\in\mathbb{N}}$ valós számsorozat **Cauchy-sorozat**, ha tetszőleges $\varepsilon > 0$ szám esetén van olyan N > 0 szám, hogy ha $n, m \in \mathbb{N}, n, m > N(\varepsilon)$, akkor

$$|x_n-x_m|<\varepsilon$$

2. Mely esetben nevezzük a $\sum_{n=1}^{\infty} x_n$ sort feltételesen konvergensnek?

Megoldás. Ha a $\sum_{n=1}^{\infty} x_n$ sor konvergens, de nem abszolút konvergens, akkor a szóban forgó sort **feltétele**sen konvergensnak hívjuk.

3. Definiálja az exponenciális függvényt.

Megoldás. Az

teljesül.

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad (x \in \mathbb{R})$$

módon megadott exp: $\mathbb{R} \to \mathbb{R}$ függvényt **exponenciális függvény**nek hívjuk.

4. Mikor nevezzük az $f: [a, b] \to \mathbb{R}$ függvényt konkávnak?

Megoldás. Legyen $]a,b[\subset \mathbb{R}$ nemüres intervallum. Azt mondjuk, hogy az $f:]a,b[\to \mathbb{R}$ függvény kon**káv**, ha minden $x, y \in]a, b[$ és minden $\lambda \in [0, 1]$ esetén

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

5. Mit értünk egy $f:]a, b[\rightarrow \mathbb{R}$ függvény primitív függvénye alatt?

Legyen $]a,b[\subset \mathbb{R}$ nemüres, nyílt intervallum, $f:]a,b[\to \mathbb{R}$ függvény. Az $F:]a,b[\to \mathbb{R}$ függvényt az f függvény **primitív függvény**ének vagy **határozatlan integrál**jának nevezzük, ha az F függvény differenciálható az]a, b[intervallumon és

$$F'(x) = f(x)$$

teljesül minden $x \in]a, b[$ esetén. Az F függvényre a továbbiakban az $\int f$ vagy az $\int f(x)dx$ jelölést használjuk.

II. Tételek

1. Ismertesse a sorokra vonatkozó Cauchy-féle konvergenciakritériumot.

Megoldás. A $\sum_{n=1}^{\infty} x_n$ valós sor akkor és csakis akkor konvergens, ha bármely $\varepsilon > 0$ esetén van olyan N > 0 szám, hogy

$$\left|\sum_{k=n+1}^m x_k\right| < \varepsilon$$

teljesül, amennyiben n, m > N.

2. Fogalmazza meg az Átviteli elvet.

Megoldás. Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$. Az f függvény akkor és csakis akkor folytonos az $x_0 \in D$ pontban, ha tetszőleges $(x_n)_{n \in \mathbb{N}}$ D halmazbeli elemekből álló, x_0 -hoz konvergáló sorozat esetén az $(f(x_n))_{n \in \mathbb{N}}$ sorozat $f(x_0)$ -hoz konvergál.

3. Ismertessen egy tetszőleges differenciálási szabályt.

Megoldás. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f, g: I \to \mathbb{R}$ olyan függvények, melyek differenciálhatóak az x_0 pontban. Ekkor az f + g függvény is differenciálható az x_0 pontban és

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

4. Ismertesse a L'Hospital-szabályt.

Megoldás. Legyenek $f, g:]a, b] \to \mathbb{R}$ olyan folytonos függvények, melyek differenciálhatóak az]a, b[intervallumon és tegyük fel, hogy

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$$

Ha $g'(x) \neq 0$ minden $x \in]a, b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]a,b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

5. Fogalmazza meg a határozatlan integrálra vonatkozó parciális integrálás tételét.

Megoldás. Ha az $f,g:]a,b[\to \mathbb{R}$ függvények differenciálhatóak]a,b[-n, és létezik $\int f'\cdot g$, akkor létezik $\int f\cdot g'$ is, és létezik olyan $C\in \mathbb{R}$ konstans, hogy

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx + C \qquad (x \in]a, b[).$$

III. Feladatok

1. Adjon példát olyan $(x_n)_{n\in\mathbb{N}}$ és $(y_n)_{n\in\mathbb{N}}$ sorozatokra, melyekre az alábbiak egyidejűleg teljesülnek.

$$\lim_{n\to\infty} x_n = 0 \quad \lim_{n\to\infty} y_n = 0 \quad \lim_{n\to\infty} \frac{x_n}{y_n} = -\infty.$$

Megoldás. Legyenek

$$x_n = \frac{1}{n}$$
 és $y_n = -\frac{1}{n^2}$ $(n \in \mathbb{N})$.

Ekkor

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{1}{n} = 0 \qquad \text{és} \qquad \lim_{n\to\infty} y_n = \lim_{n\to\infty} -\frac{1}{n^2} = 0,$$

valamint

$$\frac{x_n}{y_n} = \frac{\frac{1}{n}}{-\frac{1}{n^2}} = \frac{1}{n} \cdot \left(-n^2\right) = -n \xrightarrow{n \to \infty} -\infty.$$

2. Vizsgálja meg, hogy konvergens-e a

$$\sum_{n=1}^{\infty} \frac{\pi^n}{n^3}$$

sor.

Megoldás. Legyen

$$x_n = \frac{\pi^n}{n^3} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\sqrt[n]{|x_n|} = \sqrt[n]{\left|\frac{\pi^n}{n^3}\right|} = \sqrt[n]{\frac{\pi^n}{n^3}} = \frac{\pi}{\sqrt[n]{n^3}} = \frac{\pi}{\sqrt[n]{n^3}} \xrightarrow{n \to \infty} \pi > 1.$$

Mivel $\lim_{n\to\infty} \sqrt[n]{|x_n|} > 1$, ezért a $\sum_{n=1}^{\infty} \frac{\pi^n}{n^3}$ sor divergens.

3. Számítsa ki a

$$\lim_{x \to +\infty} \frac{6x^5 + 8x^4 - 3x^3 + 10x^2 + 2x - 15}{x^3 + 16x^2 + 49x - 270}$$

határértéket.

Megoldás.

$$\frac{6x^5 + 8x^4 - 3x^3 + 10x^2 + 2x - 15}{x^3 + 16x^2 + 49x - 270} = \frac{x^3}{x^3} \cdot \frac{6x^2 + 8x - 3 + 10\frac{1}{x} + 2\frac{1}{x^2} - 15\frac{1}{x^3}}{1 + 16\frac{1}{x} + 49\frac{1}{x^2} - 270\frac{1}{x^3}} \xrightarrow{x \to +\infty} +\infty,$$

hiszen

$$\frac{1}{x} \xrightarrow{x \to +\infty} 0 \qquad \frac{1}{x^2} \xrightarrow{x \to +\infty} 0 \qquad \frac{1}{x^3} \xrightarrow{x \to +\infty} 0 \qquad \text{és} \qquad 6x^2 + 8x - 3 \xrightarrow{x \to +\infty} +\infty.$$

4. Készítsen olyan valós függvényt, mely a {0, 1, 2, 3} halmaz pontjaitól eltekintve mindenhol folytonos.

Megoldás. Legyen

$$f(x) = \begin{cases} 0, & \text{ha } x \in \mathbb{R} \setminus \{0, 1, 2, 3\} \\ 1, & \text{ha } x \in \{0, 1, 2, 3\} \end{cases}$$

Megmutatjuk, hogy a fent megadott $f: \mathbb{R} \to \mathbb{R}$ függvény nem folytonos a $\{0, 1, 2, 3\}$ halmaz pontjaiban, minden más pontban azonban folytonos. Legyen

$$x_n = -\frac{1}{n} \qquad (n \in \mathbb{N}).$$

Ekkor $\lim_{n\to\infty} x_n = 0$, azonban

$$f(x_n) = f\left(-\frac{1}{n}\right) = 0 \xrightarrow{n \to \infty} 0 \neq 1 = f(0).$$

Mivel létezik egy olyan $(x_n)_{n\in\mathbb{N}}$ valós számsorozat (a fent megadott $\left(-\frac{1}{n}\right)_{n\in\mathbb{N}}$ sorozat ilyen), amely 0-hoz tart, de a függvényértékekből álló $(f(x_n))_{n\in\mathbb{N}}$ sorozat **nem** f(0)-hoz tart, ezért a fent megadott $f:\mathbb{R}\to\mathbb{R}$ függvény nem folytonos a 0-ban. Hasonlóan mutatható meg, hogy az f függvény nem folytonos az 1, a 2 és a 3 pontban sem.

Végül megmutatjuk, hogy az f függvény folytonos az $\mathbb{R}\setminus\{0,1,2,3\}$ halmazon. Legyen $x_0\in\mathbb{R}\setminus\{0,1,2,3\}$ tetszőleges. Legyen továbbá $(x_n)_{n\in\mathbb{N}}$ egy tetszőleges olyan valós számsorozat, melyre $\lim_{n\to\infty}x_n=x_0$ teljesül. Ekkor legfelejebb véges sok $n\in\mathbb{N}$ kivételével $x_n\notin\{0,1,2,3\}$, ezért

$$f(x_n) = 0 \xrightarrow{n \to \infty} 0 = f(x_0).$$

Így az Átviteli elv miatt az f függvény folytonos az x_0 pontban. Mivel az $x_0 \in \mathbb{R} \setminus \{0, 1, 2, 3\}$ pont tetszőleges volt, ezért az f függvény az $\mathbb{R} \setminus \{0, 1, 2, 3\}$ halmaz minden pontjában folytonos.

5. Legyen

$$f(x) = x \ln(x).$$

Határozza meg $f^{""}$ -at.

Megoldás. Legyen

$$f(x) = x \ln(x) \qquad (x \in]0, +\infty[).$$

Ekkor

$$f'(x) = [x \ln(x)]' = [x]' \ln(x) + x \cdot [\ln(x)]' = 1 \cdot \ln(x) + x \cdot \frac{1}{x} = \ln(x) + 1$$

$$f''(x) = [\ln(x) + 1]' = [\ln(x)]' + [1]' = \frac{1}{x} = x^{-1}$$

$$f'''(x) = (-1) \cdot x^{-2} = -\frac{1}{x^2}.$$