Math 110 HW12

Neo Lee

11/25/2023

Problem 1.

Let $T \in \mathcal{L}(V, W)$. Prove

- (a) T is injective if and only if T^* is surjective;
- (b) T^* is injective if and only if T is surjective.

Proof.

(a)

$$\operatorname{null} T = \{0\} \iff (\operatorname{range} T^*)^{\perp} = \{0\}$$
$$\iff \operatorname{range} T^* = V.$$

(b)

$$\operatorname{null} T^* = \{0\} \iff (\operatorname{range} T)^{\perp} = \{0\}$$
$$\iff \operatorname{range} T = W.$$

Problem 2.

Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Proof. We will prove both direction in one go. Let $v, w \in V$,

$$ST = TS \iff \overline{\langle w, STv \rangle} = \overline{\langle w, TSv \rangle}$$
 (1)

$$\iff \langle STv, w \rangle = \langle TSv, w \rangle \tag{2}$$

$$\iff \langle v, (ST)^* w \rangle = \langle Sv, T^* w \rangle \tag{3}$$

$$\iff \langle v, (ST)^* w \rangle = \langle v, S^* T^* w \rangle \tag{4}$$

$$\iff \langle v, (ST)^* w \rangle = \langle v, STw \rangle \tag{5}$$

$$\iff (ST)^* = ST. \tag{6}$$

(1) is by the uniqueness of complex conjugate and the Riesz representation theorem. (6) is by the uniqueness of the Riesz representation theorem. \Box

Problem 3.

Let $P \in \mathcal{L}(V)$ be such that $P^2 = P$. Prove that there is a subspace U of V such that $P_U = P$ if and only if P is self-adjoint.

Proof. Forward direction: Let W = null P, then $U \oplus W = V$ because P is an orthogonal projection. Now, let $x, y \in V$,

$$\langle x, P^*y \rangle = \langle Px, y \rangle = \langle P(x_u + x_w), y_u + y_w \rangle$$

$$= \langle x_w, y_u + y_w \rangle$$

$$= \langle x_u, y_u \rangle + \langle x_u, y_w \rangle$$

$$= \langle x_u, y_u \rangle$$

$$= \langle x_u + x_w, y_u \rangle$$

$$= \langle x, Py \rangle.$$

Hence, by the uniqueness of the Riesz representation theorem, $P^* = P$.

Backward direction: P is self-adjoint and hence normal. Then by either the complex or the real spectral theorem, V can be decomposed into a direct sum of eigenspaces of P where all the eigenvectors are orthonormal. Since P is self-adjoint, all its eigenvalues are real. Also, $P^2 = P$ means the only eigenvalues can only be 0 or 1. Now, let U be the eigenspace of P with eigenvalue 1 and W be the eigenspace of P with eigenvalue 0. We know $U \perp W$ since P has orthonormal eigenvectors. Then for any $v \in V$,

$$Pv = P(\underbrace{u+w}_{u \in U, w \in W}) = u.$$

Hence, by definition of orthogonal projection, $P_U = P$.

Problem 4.

Let $n \in \mathbb{N}$ be fixed. Consider the real space $V := \operatorname{span}(1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx)$ with inner product

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Show that the differentiation operator $D \in \mathcal{L}(V)$ is anti-Hermitian, i.e., satisfies $D^* = -D$.

Proof. Let $f, g \in V$, then

$$\langle Df, g \rangle = \int_{-\pi}^{\pi} Df(x)g(x)dx$$

$$= \int_{-\pi}^{\pi} f'(x)g(x)dx$$

$$= f(x)g(x)|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} f(x)g'(x)dx$$

$$= -\int_{-\pi}^{\pi} f(x)g'(x)dx$$

$$= -\langle f, Dg \rangle.$$

Hence, by the uniqueness of the Riesz representation theorem, $D^* = -D$.

$$f(x)g(x)|_{-\pi}^{\pi} = 0$$

is true because f and g can be written as

$$\alpha + \sum_{k=1}^{n} a_k \sin(kx) + b_k \cos(kx)$$

but with different coefficients. Either way, $f(\pi) = f(-\pi)$ and $g(\pi) = g(-\pi)$ because all the sin functions evaluated at π , $-\pi$ are 0 and all the cos functions are even functions. Therefore,

$$f(\pi)g(\pi) = f(-\pi)g(-\pi) \iff f(\pi)g(\pi) - f(-\pi)g(-\pi) = 0.$$

Problem 5.

Suppose T is normal. Prove that, for any $\lambda \in \mathbb{F}$ and any $k \in \mathbb{N}$,

$$\operatorname{null}(T - \lambda I)^k = \operatorname{null}(T - \lambda I).$$

Lemma: Let S be a self-adjoint operator, then for any $k \in \mathbb{N}$,

$$\operatorname{null} S^k = \operatorname{null} S.$$

Proof of Lemma. Assume this is not true, then we take the minimal counterexample. Let $n \geq 2$ be the minimal counterexample.

Clearly, null $S \subseteq \text{null } S^n$. Let $v \in \text{null } S^n$, then

$$\begin{split} \langle S^n v, S^{n-2} v \rangle &= 0 \iff \langle S^{n-1} v, S^{n-1} v \rangle = 0 \\ &\iff \|S^{n-1} v\|^2 = 0 \\ &\iff S^{n-1} v = 0 \\ &\iff v \in \operatorname{null} S^{n-1} \\ &\iff v \in \operatorname{null} S \qquad (\because S^n \text{ is the minimal counterexample}), \end{split}$$

which is a contradiction to the minimality of n. Hence, null $S^k = \text{null } S$.

Proof of Problem 5. Clearly, null $(T - \lambda I) \subseteq \text{null } (T - \lambda I)^k$. Let $v \in \text{null } (T - \lambda I)^k$, then let

$$S = (T - \lambda I)^* (T - \lambda I),$$

where S is self-adjoint because

$$S^* = [(T - \lambda I)^* (T - \lambda I)]^* = (T - \lambda I)^* (T - \lambda I) = S.$$

Also,

$$S^{k} = (T - \lambda I)^{*}(T - \lambda I) \cdots (T - \lambda I)^{*}(T - \lambda I)$$
$$= [(T - \lambda I)^{*}]^{k} (T - \lambda I)^{k},$$

by repeatedly swapping the positions of $(T - \lambda I)^*$ and $(T - \lambda I)$ because $(T - \lambda I)$ is normal. Now, let v in null $(T - \lambda I)^k$, clearly $v \in \text{null } S^k$. Then by the lemma, $v \in \text{null } S$. Hence,

$$\begin{split} \langle (T-\lambda I)^*(T-\lambda I)v,v\rangle &= 0 \iff \langle (T-\lambda I)v,(T-\lambda I)v\rangle = 0 \\ \iff &\|(T-\lambda I)v\|^2 = 0 \\ \iff &(T-\lambda I)v = 0 \\ \iff &v \in \text{null}\,(T-\lambda I). \end{split}$$

Thus we proved the inclusion of null $(T - \lambda I)^k \subseteq \text{null } (T - \lambda I)$.