SPEC

Spec No.	TQ3C-8EAF0-E1TAD02-01
Date	December 17, 2014

TYPE: T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)

< 12.1 inch SVGA transmissive color TFT

with LED backlight and constant current circuit for LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Lot number identification
- 10. Warranty
- 11. Precautions for use
- 12. Reliability test data
- 13. Outline drawing

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice. $\$

Consult Kyocera display before ordering.

Original	Designed by:	Engineering de	pt.	Confirmed by	Approved	
Issue Date	Prepared Checked Appr	Approved	Checked	Approved		
November 26, 2013	M. Koyama	y. Yamazaki	W. Yano	O. Sato	1. Hamais	

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN	
1000 01111 0 11111111111111111111111111	(TCG121SVLQ*PNN-AN*48)	

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN	_
	(TCG121SVLQ*PNN-AN*48)	

Revision record

		1		vision 1		ı	
	Date	Design	ed by:	Engineering of	lept.	Confirmed by	∵ QA dept.
	Date	Prep	ared	Checked	Approved	Checked	Approved
December 17, 2014			yama	y. Yamazaki	W. Yano	O. Sato	1-Hamars
Rev.No.	Date	Page			Descripti	ons	
01	Dec 17, 2014	1	~Fill "	hanical specific Mass"			
		7	6.Opti ~Fill	cal characteris	tics		

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	1

1. Application

This document defines the specification of T-55788GD121J-LW-AHN. (TCG121SVLQ*PNN-AN*48) (RoHS Compliant)

2. Construction and outline

LCD : Transmissive color dot matrix type TFT

Backlight system : LED

Polarizer : Anti-Glare treatment

Interface : LVDS

Additional circuit : Timing controller, Power supply (3.3V input)

With Constant current circuit for LED Backlight(12V input)

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	260.5(W)×203.3(H)×(10.6)(D)	mm
Active area	246(W)×184.5(H) (30.8cm/12.1 inch(Diagonal))	mm
Dot format	800×(R,G,B)(W)×600(H)	dot
Dot pitch	0.1025(W)×0.3075(H)	mm
Base color 2)	Normally Black	-
Mass	585	g

- 1) Projection not included. Please refer to outline for details.
- 2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

	Item	Symbol	Min.	Max.	Unit
Supply voltag	ge(+3.3V)	$V_{ m DD}$	-0.3	4.0	V
Supply voltage(+12V)		$V_{\rm IN}$	-0.3	14.0	V
	RxINi+, RxINi- 1)	V_{I1}	-0.3	2.8	V
Input signal	CK IN+, CK IN-	V_{12}	-0.3	2.8	V
voltagee 2)	SELLVDS	V_{I3}	-0.3	V _{DD} +0.5	V
	BLBRT, BLEN	V_{I4}	-0.3	$V_{\rm IN}$	V

- 1) i=0,1,2,3
- 2) V_{DD} must be supplied correctly within the range described in 5-1.

4-2. Environmental absolute maximum ratings

Item	Symbol	Min.	Max.	Unit
Operating temperature(Ambient) 1)	Top(Ambient)	-30	80	$^{\circ}\mathrm{C}$
Operating temperature(Panel) 2)	Top(Panel)	-30	80	$^{\circ}\mathrm{C}$
Storage temperature 3)	T_{STO}	-30	80	$^{\circ}\mathrm{C}$
Operating humidity 4)	Нор	10	5)	%RH
Storage humidity 4)	Нѕто	10	5)	%RH
Vibration	-	6)	6)	-
Shock	-	7)	7)	-

- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Panel surface temperature (all the surface)
- 3) Temp. = -30° C < 48h, Temp. = 80° C < 168h

Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for Use" for details.)

- 3) Non-condensing
- 4) Temp. ≤40°C, 85%RH Max.

Temp. \geq 40°C, Absolute humidity shall be less than 85%RH at 40°C.

5)

Frequency	$10{\sim}55\mathrm{Hz}$	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

 $2\ hours\ in\ each\ direction\ X,\ Y,\ Z\ (6\ hours\ total)$

EIAJ ED-2531

6) Acceleration: 490 m/s², Pulse width: 11 ms

3 times in each direction: $\pm X$, $\pm Y$, $\pm Z$

 $EIAJ\ ED\text{-}2531$

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	3

5. Electrical characteristics

5-1. LCD

Temp. = $-30 \sim 80$ °C

						romp.	
Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage	1)	$V_{ m DD}$	-	3.0	3.3	3.6	V
Current consumption		I_{DD}	2)		290	350	mA
Permissive input ripple volta	ıge	V_{RP}	V _{DD} =3.3V		-	100	mVp-p
T , ' 1 1,	0)	V_{IL}	"Low" level	0	-	0.8	V
Input signal voltage	3)	V_{IH}	"High" level	2.0	-	$V_{ m DD}$	V
I		I_{OL}	V ₁₃ =0V	-10	-	10	μ A
Input leak current		I_{OH}	$V_{I3} = 3.3V$	-	-	400	μ A
LVDS Input voltage	4)	$V_{\rm L}$	-	0	-	1.9	V
Differential input voltage	4)	V_{ID}	-	250	350	450	mV
Differential input	4) 5)	V_{TL}	"Low" level	V _{CM} -100	-	-	mV
threshold voltage	4) 3)	V_{TH}	"High" level	-	-	V _{CM} +100	mV
Terminator		R_1	-	-	100	-	Ω
		t1	-	0.1	-	10	ms
		t2	-	0	-	-	ms
77	1) ()	t3	-	0	-	-	ms
V _{DD} -turn-on conditions	1) 6)	t4	-	1.0	-	-	s
		t5	-	200	-	-	ms
		t6	-	200	-	-	ms

1) V_{DD}-turn-on conditions

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	4

2) Display pattern:

$$V_{DD} = 3.3V$$
, Temp. = 25°C

3) Input signal: SELLVDS

4) Input signal : RxIN3+, RxIN3-, RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-CK IN+, CK IN-

5) V_{CM}: LVDS Common mode voltage (V_{CM}=1.25V)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	5

5-2. Constant current circuit for LED Backlight

Temp. = $-30 \sim 80$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage 1)	$V_{\rm IN}$	-	10.8	12.0	13.2	V
Current consumption	$I_{\rm IN}$	2)	-	(1280)	(1665)	mA
Permissive input ripple voltage	$V_{\mathrm{RP_BL}}$	$V_{IN}=12.0V$	-	-	100	mVp-p
DI DDT In most of our of well-one	V _{IL_BLBRT}	"Low" level	0	-	0.8	V
BLBRT Input signal voltage	V _{IH_BLBRT}	"High" level	2.3	-	$V_{\rm IN}$	V
BLBRT Input pull-down resistance	R _{IN_BLBRT}	-	(50)	(150)	(250)	kΩ
DI EN Issued signal solds as	V _{IL_BLEN}	"Low" level	0	-	0.8	V
BLEN Input signal voltage	V _{IH_BLEN}	"High" level	2.3	-	$V_{\rm IN}$	V
BLEN Input pull-down resistance	R _{IN_BLEN}	-	(50)	(150)	(250)	kΩ
PWM Frequency 3)	f_{PWM}	-	200	-	10k	Hz
		f _{PWM} =200Hz	1	-	100	%
PWM Duty ratio	$\mathrm{D}_{\mathrm{PWM}}$	f _{PWM} =2kHz	10	-	100	%
		f _{PWM} =10kHz	50	-	100	%
Operating life time 4), 5)	Т	Temp.=25°C	-	(70,000)	-	h

【LED Circuit 】

1) V_{IN}-turn-on conditions

- 2) $V_{IN} = 12V$, Temp. = 25°C, $D_{PWM} = 100\%$
- 3) PWM Timing Diagram

ton, toff $\geq 50 \,\mu$ s.

In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.

- 4) When brightness decrease 50% of minimum brightness.

 The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 5) Life time is estimated data. (Condition : IF=100mA, Ta=25 $^{\circ}$ C in chamber).

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	7

6. Optical characteristics

Measuring spot = ϕ 6.0mm, Temp. = 25°C

Item		Symbol	Condition	Min.	Typ.	Max.	Unit
D 4:	Rise	Τr	$\theta = \phi = 0$ °	-	18	-	ms
Response time	Down	τd	$\theta = \phi = 0$ °	-	12	-	ms
		θ upper		-	85	-	1
77 1		θ lower	CD > 10	-	85	-	deg.
Viewing angle	range	ф сегт	CR≧10	-	85	-	1
		φ right		-	85	-	deg.
Contrast ratio		CR	$\theta = \phi = 0$ °	500	750	-	-
Brightness		L	IF=100mA/Line	-	1200	-	cd/m²
		x	$\theta = \phi = 0^{\circ}$	0.550	0.600	0.650	
	Red	y y	$\theta - \phi = 0$	0.300	0.350	0.400	
	C	x	0 - 1 -00	0.285	0.335	0.385	
Chromaticity	Green	У	$\theta = \phi = 0^{\circ}$	0.520	0.570	0.620	
coordinates		X	$\theta = \phi = 0^{\circ}$	0.100	0.150	0.200	-
	Blue	У	$\theta - \phi = 0$	0.070	0.120	0.170	
	3371 ₂ * 4 -	X	$\theta = \phi = 0^{\circ}$	0.270	0.320	0.370	
	White	У	$\theta - \phi - \theta^{-1}$	0.295	0.345	0.395	

6-1. Definition of contrast ratio

 $CR(Contrast\ ratio) = \frac{Brightness\ with\ all\ pixels\ "White"}{Brightness\ with\ all\ pixels\ "Black"}$

6-2. Definition of response time

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	8

6-3. Definition of viewing angle

6-4. Brightness measuring points

- 1) Rating is defined as the white brightness at center of display screen(3).
- 2) 5 minutes after LED is turned on. (Ambient Temp.=25°C)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	9

7. Interface signals

7-1. Interface signals

No.	Symbol	Description	Note
1	GND	GND	
2	SELLVDS	Mode select signal(LVDS Data mapping)	
3	GND	GND	
4	GND	GND	
5	RxIN3+	LVDS receiver signal CH3(+)	LVDS
6	RxIN3-	LVDS receiver signal CH3(-)	LVDS
7	GND	GND	
8	CK IN+	LVDS receiver signal CK(+)	LVDS
9	CK IN-	LVDS receiver signal CK(-)	LVDS
10	GND	GND	
11	RxIN2+	LVDS receiver signal CH2(+)	LVDS
12	RxIN2-	LVDS receiver signal CH2(-)	LVDS
13	GND	GND	
14	RxIN1+	LVDS receiver signal CH1(+)	LVDS
15	RxIN1-	LVDS receiver signal CH1(-)	LVDS
16	GND	GND	
17	RxIN0+	LVDS receiver signal CH0(+)	LVDS
18	RxIN0-	LVDS receiver signal CH0(-)	LVDS
19	GND	GND	
20	GND	GND	
21	$V_{ m DD}$	+3.3V power supply	
22	$V_{ m DD}$	+3.3V power supply	
23	GND	GND	
24	BLBRT	PWM signal(Brightness adjustment)	
25	BLEN	ON/OFF terminal voltage	
26	GND	GND	
27	$V_{\rm IN}$	+12V power supply	
28	$V_{\rm IN}$	+12V power supply	
29	$V_{\rm IN}$	+12V power supply	
30	GND	GND	

LCD connector : FI-X30SSLA-HF (JAE) Matching connector : FI-X30HL (JAE)

: FI-X30HL-T (JAE) : FI-X30C2L-NPB (JAE) : FI-X30C2L-T-NPB (JAE)

LVDS receiver : Embedded in ASIC

 $Matching\ LVDS\ transmitter\ :\ THC63LVDM83R (THine\ Electronics)\ or\ compatible$

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	10

7-2. Data mapping(6bit RGB input)

1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

Trans	mitter	2Pin SI	ELLVDS
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)
51	TA0	_	R0(LSB)
52	TA1	_	R1
54	TA2	_	R2
55	TA3	_	R3
56	TA4	_	R4
3	TA5	_	R5(MSB)
4	TA6	_	G0(LSB)
6	TB0	_	G1
7	TB1	_	G2
11	TB2	_	G3
12	TB3	_	G4
14	TB4		G5(MSB)
15	TB5		B0(LSB)
19	TB6		B1
20	TC0		B2
22	TC1	_	В3
23	TC2		B4
24	TC3		B5(MSB)
27	TC4	_	(HS)
28	TC5	_	(VS)
30	TC6	_	DE
50	TD0		GND
2	TD1	_	GND
8	TD2	_	GND
10	TD3	_	GND
16	TD4	_	GND
18	TD5	_	GND
25	TD6		GND

SELLVDS=H(3.3V)

DE : DATA ENABLE

 $\begin{array}{l} HS: H_{SYNC} \\ VS: V_{SYNC} \end{array}$

2) Block Diagram

SELLVDS=H(3.3V)

When using "6-bit Transmitter", please connect the unused channel of the control IC receiver as described in the diagram below.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	12

7-3. Data mapping(8bit RGB input)

1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

	mitter		ELLVDS
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	В3
20	TC0	B2	B4
22	TC1	В3	B5
23	TC2	B4	В6
24	TC3	B5	B7(MSB)
27	TC4	(HS)	(HS)
28	TC5	(VS)	(VS)
30	TC6	DE	DE
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	В6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	(NA)	(NA)

SELLVDS=L(GND) or OPEN

DE: DATA ENABLE

 $HS: H_{SYNC}$ $VS: V_{SYNC}$

SELLVDS=H(3.3V)

DE: DATA ENABLE

 $\begin{aligned} HS &: H_{SYNC} \\ VS &: V_{SYNC} \end{aligned}$

2) Block Diagram

SELLVDS=L(GND) or OPEN

SELLVDS=H(3.3V)

Spec No.

8. Input timing characteristics

8-1. Timing characteristics

Item		Symbol	Min.	Typ.	Max.	Unit	Note
Clock (CK)	(CK) Frequency		30	40	48	MHz	
Horizontal Period		ml-	860	1056	1395	Тс	
		Th	24.0	26.4	-	μ s	1)
Enable signal (DE)	Horizontal display period	Thd		800		Тс	
(DL)	Vertical Period	Tv	610	628	1024	Th	
	Vertical display period	Tvd		600		Th	
Refresh rate		fv	50	60	70	Hz	2)

- 1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
- 2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur.(fv=1/Tv)

Vertical Timing Diagram

8-2. Input Data Signals and Display position on the screen

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	16

9. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

Year	2013	2014	2015	2016	2017	2018
Code	3	4	5	6	7	8
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6
Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
~ -	_	_	<u> </u>			_

10. Warranty

10-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

10-2. Production warranty

Kyocera display warrants its LCD's for a period of 12 months from the ship date. Kyocera display shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera display's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	17

11. Precautions for use

11-1. Installation of the LCD

- 1) Please ground either of the mounting (screw) holes of LCD, in order to stabilize brightness and display quality.
- 2) A transparent protection plate shall be added to protect the LCD and its polarizer.
- 3) The LCD shall be installed so that there is no pressure on the LSI chips.
- 4) Since this product is wide viewing product, occurrence level of in-plane unevenness by the external stress is different compared to current normal viewing product. So there is a possibility that in-plane unevenness will be occurred by over twist, strain giving by attaching to LCD, and over pressure to touch panel. Please be careful of stress when designing the housing.
- 5) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

11-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

11-3. LCD operation

- 1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) Please select the best display pattern based on your evaluation because flicker, lines or nonuniformity or unevenness can be visible depending on display patterns.

11-4. Storage

- The LCD shall be stored within the temperature and humidity limits specified.
 Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

11-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera display LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1TAD02-01	T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)	18

12. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	80°C	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	(10cycles)	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	80°C	(500h)	Display function Display quality Current consumption	: No defect : No defect : No defect

- 1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- 2) The LCD is tested in circumstances in which there is no condensation.
- 3) The reliability test is not an out-going inspection.
- 4) The result of the reliability test is for your reference purpose only.

 The reliability test is conducted only to examine the LCD's capability.

Projected part is 10.6mm thickness. ##10.6mm

Notes 1.The dimensions with the mark (\bullet) are controlled as a particular characteristic.

1. The dimensions with the mark (e) are controlled as a particular characteristic.

- PastUtz-Eineth, *Nobelenkhone: Rehn

2. There is a possibility that in-plane unevenness will be occurred by over twist, stress giving by attaching to LCD, and over pressure to touch panel. Please be careful of stress when designing the housing.

And *Nobelenkhone: *Nobelenkhone:

TCG1215VLQ+PNN-AN+48

DIG NAMER
121AB071400

| FINISH:

| MATERIAL: | FINISH: | FINISH: | PARTICULAR | PARTICULAR

	Spec No.	TQ3C-8EAF0-E2TAD02-00
ı	Date	November 26, 2013

KYOCERA INSPECTION STANDARD

TYPE: T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48)

KYOCERA DISPLAY CORPORATION

Original	Designed by:	Engineering dept.		Confirmed by : QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
November 26, 2013	7. Condeta	Y. Yamazaki	M.FyiTani	O. Soto	1-Hamars

Spec No.
TQ3C-8EAF0-E2TAD02-00

Part No. T-55788GD121J-LW-AHN (TCG121SVLQ*PNN-AN*48) Page

Revision record

Rev.No. Date Page Descriptions Rev.No. Date Page Descriptions Descriptio	Data		Designe	d by:	y: Engineering dept. Confirmed by: QA dept.			: QA dept.
Rev.No. Date Page Descriptions		Date	Prepar	red	Checked	Approved		
Rev.No. Date Page Descriptions								
Rev.No. Date Page Descriptions	D. M.	Data	D			D		
	Rev.No.	Date	Page			Description	ons	

Spec No.	Part No.	Page
TQ3C-8EAF0-E2TAD02-00	T-55788GD121J-LW-AHN	1
	(TCG121SVLQ*PNN-AN*48)	1

Visuals specification 1) Note

			Note
General	reviewe consent 2. This instance the action 3. Inspects Lumina	d by Kyocera display, spection standard about we area and shall not little ion conditions ance ion distance rature	es not defined within this inspection standard shall be and an additional standard shall be determined by mutual at the image quality shall be applied to any defect within be applicable to outside of the area. : 300 ~ 500 Lux min. : 350 mm. : Approximate 25°C : Normal to the LCD panel ± 10° horizontal and vertical
Definition of inspection item	Dot defect	Bright dot defect Black dot defect Adjacent dot	The dot is constantly "on" when power applied to the LCD, even when all "Black" data sent to the screen. Inspection tool: 5% Transparency neutral density filter. Count dot: If the dot is visible through the filter. Don't count dot: If the dot is not visible through the filter. RGBRGBRGB RGBRGB RGBRGB RGBRGB RGBRGB RGBRGB RGBRGB Adjacent dot defect is defined as two or more bright dot defects or black dot defects. RGBRGBRGB RGBRGB RGBRGB RGBRGBRGB RGBRGB RGBRGBRGB RGBRGBRGB RGBRGBRGB RGBRGBRGB RGBRGBRGB
	External inspection Definition of size	Bubble, Scratch, Foreign particle (Polarizer, Cell, Backlight) Appearance inspection Definition o	

Spec No.	Part No.	Page
TQ3C-8EAF0-E2TAD02-00	T-55788GD121J-LW-AHN	2
	(TCG121SVLQ*PNN-AN*48)	_

2) Standard

Defect Type]	Limit	
Visual defect	Scratch	$0.01 \text{ mm} < W \leq 0.05 \text{ mm}$	N ≦ 4	
		$L \leq 10 \text{ mm}$		
		0.01 mm < W	N = 0	
		10mm < L		
		0.05 mm < W	N = 0	
	Dent	$0.2 \text{ mm} < \Phi \leq 0.4 \text{ mm}$	$N \leq 4$	
		0.4 mm < Φ	N = 0	
	Black spot	$0.2 \text{ mm} < \Phi \leq 0.4 \text{ mm}$	$N \leq 5$	
	Bubble	0.4 mm < Φ	N = 0	
	Lint	$L \leq 3 \text{ mm}$	N ≦ 4	
		$W \leq 0.1 \text{ mm}$		
		$3 \text{ mm } \leq \text{ L}$	N = 0	
		$W \leq 0.1 \text{ mm}$		
		0.1 mm < W	According to Black spot	
Electrical defect	Bright dot	$N \leq 5$		
	Dark dot	N ≦ 5		
	Total dot	N ≦ 8		
	Two adjacent dot			
	Bright dot	$\leq 2 ext{ pairs}$		
	Dark dot	$\leq 2 ext{ pairs}$		
	Three or more	Not allowed		
	adjacent dot			
	Line defect	Not allowed		

