Chapter 4: Polynomials

Linear Algebra Done Right, by Sheldon Axler

Definition 1 (Re z, Im z). Suppose z = a + bi, where a and b are real numbers.

- The real part of z, denoted by Rez, is defined by Rez = a.
- The imaginary part of z, denoted by Imz, is defined by Imz = a.

Definition 2 (complex conjugate, \overline{z} , absolute value, |z|). Suppose $z \in \mathbb{C}$.

• The complex conjugate of $z \in \mathbb{C}$, denoted by \overline{z} , is defined by

$$\overline{z} = Rez - Imz$$

• The absolute value of a complex number z, denoted by |z|, is defined by

$$|z| = \sqrt{(Re(z))^2 + (Im(z))^2}$$

A function $p \colon \mathbb{F} \to \mathbb{F}$ is called a polynomial of degree m if there exists $a_0, \dots, a_m \in \mathbb{F}$ with $a_m \neq 0$ such that

$$p(z) = a_0 + a_1 z + \dots + a_m z^m$$

for all $z \in \mathbb{F}$.

Definition 3 (zero of a polynomial). A number $\lambda \in \mathbb{F}$ is called a **zero** (or **root**) of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if

$$p(\lambda) = 0.$$

Lemma 4 (each zero of a polynomial corresponds to a degree-one factor). Suppose m is a positive integer and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial of degree m. Suppose $\lambda \in \mathbb{F}$. Then $p(\lambda) = 0$ if and only if there exists a polynomial $q \in \mathcal{P}(\mathbb{F})$ of degree m-1 such that

$$p(z) = (z - \lambda)q(z)$$

for every $z \in \mathbb{F}$.

Theorem 5 (degree m implies at most m zeros). Suppose m is a positive integer and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial of degree m. Then p has at most m zeros in \mathbb{F} .

Theorem 6 (division algorithm for polynomials). Suppose that $p, s \in \mathcal{P}(\mathbb{F})$ with $s \neq 0$. Then there exist unique polynomials $q, r \in \mathcal{P}(\mathbb{F})$ such that

$$p = sq + r$$

and $\deg r < \deg s$.

Theorem 7 (fundamental theorem of algebra, first version). Every nonconstant polynomial with complex coefficients has a zero in \mathbb{C} .

Theorem 8 (fundamental theorem of algebra, second version). If $p \in \mathcal{P}(\mathbb{C})$ is a nonconstant polynomial, then p has a unique factorization (except for the order of the factors) of the form

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_m),$$

where $c, \lambda_1, \ldots, \lambda_m \in \mathbb{C}$.

Lemma 9 (polynomials with real coefficients have nonreal zeros in pairs). Suppose $p \in \mathcal{P}(\mathbb{C})$ is a polynomial with real coefficients. If $\lambda \in \mathbb{C}$ is a zero of p, then so is $\overline{\lambda}$.

Theorem 10 (factorization of a quadratic polynomial). Suppose $b, c \in \mathbb{R}$. Then there is a polynomial factorization of the form

$$x^2 + bx + c = (x - \lambda_1)(x - \lambda_2)$$

with $\lambda_1, \lambda_2 \in \mathbb{R}$ if and only if $b^2 \geq 4c$.

Theorem 11 (factorization of a polynomial over \mathbb{R}). Suppose $p \in \mathcal{P}(\mathbb{R})$ is a nonconstant polynomial. Then p has a unique factorization (except for the order of the factors) of the form

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M)$$

where $c, \lambda_1, \ldots, \lambda_m, c_1, \ldots, c_M \in \mathbb{R}$, with $b_k^2 < 4c_k$ for each k.

Problem 1

Suppose $w, z \in \mathbb{C}$. Verify the following equalities and inequalities.

- (a) $z + \overline{z} = 2\Re z$
- (b) $z \overline{z} = 2(\Im z)i$
- (c) $z\overline{z} = |z|^2$
- (d) $\overline{w+z} = \overline{w} + \overline{z}$ and $\overline{wz} = \overline{wz}$
- (e) $\overline{\overline{z}} = z$
- (f) $|\Re z| \le |z|$ and $|\Im z| = \le |z|$
- (g) $|\overline{z}| = |z|$
- (h) |wz| = |w||z|

Proof. Suppose z = a + bi, w = c + di. We verify these as follows:

- (a) $z + \overline{z} = (a + bi) + (a bi) = 2a = 2\Re z$
- (b) $z \overline{z} = (a + bi) (a bi) = 2bi = 2(\Im z)i$
- (c) $z\overline{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$
- $(\mathbf{d}) \ \overline{w+z} = \overline{(a+c)+(b+d)i} = (a+c)-(b+d)i = (a-bi)+(c-di) = \overline{z}+\overline{w}$
- (e) $\overline{\overline{z}} = \overline{a bi} = a + bi = z$
- (f) $|\Re z| = a^2 \le a^2 + b^2 = |z|^2$; $|\Im z| = b^2 \le a^2 + b^2 = |z|^2$
- (g) $|\overline{z}| = |a bi| = |a + bi| = |z|$
- (h) $|wz| = |(c+di)(a+bi)| = |(ca-db) + (cb+da)i| = (ca-db)^2 + (cd+ba)^2$ This further equals that $|wz| = c^2a^2 + d^2b^2 + c^2d^2 + b^2a^2$. At the same time $|w||z| = (c^2 + d^2)(a^2 + b^2) = c^2a^2 + c^2b^2 + d^2a^2 + d^2b^2$. Therefore they equal each other.

Problem 2

Prove the **reverse triangle inequality**: if $w, z \in \mathbb{C}$, then $||w| - |z|| \le |w - z|$.

Proof. Suppose z = a + bi, w = c + di. We have that

$$|w - z|^{2} = (w - z)(\overline{w} - \overline{z})$$

$$= w\overline{w} + z\overline{z} - w\overline{z} - z\overline{w}$$

$$= |w|^{2} + |z|^{2} - w\overline{z} - \overline{w}\overline{z}$$

$$= |w|^{2} + |z|^{2} - 2\Re(w\overline{z})$$

$$\leq |w|^{2} + |z|^{2} - 2|w\overline{z}|$$

$$= |w|^{2} + |z|^{2} - 2|w||z|$$

$$= (|w| - |z|)^{2}$$

Taking the square root gets the desired equality.

Problem 3

Suppose V is a complex vector space and $\varphi \in V'$. Define $\sigma \colon V \to \mathbb{R}$ by $\sigma(v) = \Re \varphi(v)$ for each $v \in V$. Show that

$$\varphi(v) = \sigma(v) - i\sigma(iv)$$

for all $v \in V$.

Proof.

$$\begin{split} \varphi(v) &= \Re \varphi(v) + \Im \varphi(v) \\ &= \sigma(v) + i \Re (-iiv) \\ &= \sigma(v) - i \sigma(iv) \end{split}$$

Problem 6

Suppose that m and n are positive integers wih $m \leq n$, and suppose $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$. Prove that there exists a polynomial $p \in \mathcal{P}(\mathbb{F})$ with $\deg p = n$ such that $0 = p(\lambda_1) = \cdots = p(\lambda_m)$ and such that p has no other zeros.

Proof. We can first construct $p(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_m)$ for $x \in \mathbb{F}$. This is a polynomial with degree m and has exactly m zeros. To increase the degree without introducing additional roots, we can make that $p(x) = (x - \lambda_1) \cdots (x - \lambda_m)^{n-m+1}$. This polynomial doesn't have additional roots, as the proof procedure follows from the second version of fundamental theorem of algebra.

Problem 7

Suppose that m is a nonnegative integer, z_1, \ldots, z_{m+1} are distinct elements of \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that

$$p(z_k) = w_k$$

for each k = 1, ..., m + 1.

Proof. Define a linear map $T: \mathcal{P}_m(\mathbb{F}) \to \mathbb{F}^{m+1}$ by

$$T(p) = (p(z_1), \dots, p(z_{m+1}))$$

We can tell that T is injective because if there exists nonzero $p \in \text{null } T$, then this means there are m+1 roots for the m-deg polynomial, forming a contradiction. Therefore, T is an isomorphism as the dimension matches.

This implies the existence of the unique solution as the question asks. \Box

Problem 9

Prove that every polynomial of odd degree with real coefficients has a real zero.

 ${\it Proof.}$ Suppose for the sake of contradiction that there is no real root. Then the factorization would become

$$p(x) = (x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M)$$

but this contradicts that the degree is odd.

Problem 11

Suppose $p \in \mathcal{P}(\mathbb{C})$. Define $q: \mathbb{C} \to \mathbb{C}$ by

$$q(z) = p(z)\overline{p(\overline{z})}$$

Prove that q is a polynomial with real coefficients.

Proof. Suppose $p(z) = \sum_{i=0}^{n} a_i z^i$ for $a_i \in \mathbb{C}, z \in \mathbb{C}$. Then we can find that

$$p(\overline{z}) = \sum_{i=0}^{n} a_i \overline{z}^i$$

and thus

$$\overline{p(\overline{z})} = \overline{\sum_{i=0}^{n} a_i \overline{z}^i} = \sum_{i=0}^{n} \overline{a}_i z^i$$

Finally we can get that

$$q(z) = p(z)\overline{p(\overline{z})} = (\sum_{i=0}^{n} a_i z^i)(\sum_{i=0}^{n} \overline{a}_i z^i)$$

We can consider the general form of a coefficient of z^k :

$$c_k = \sum_{i+j=k} a_i \overline{a}_j = \sum_{j+i=k} \overline{a}_j a_i = \overline{c_k}$$

Thus the coefficients are real.