

WHAT IS CLAIMED IS:

1 1. A media stream system which processes plural media streams, each media
2 stream comprising packets of media information, the system comprising:
3 plural processors, each of the plural processors executing at least one of plural
4 types of media stream processing functions;
5 a switch function which routes the packets of the plural media streams to a
6 sequence of the plural processors whereby the plural types of media stream processing
7 functions are sequentially performed relative to the packets;
8 wherein a packet size for the packets is chosen to minimize overhead load on at
9 least one of the plural processors without causing undue delay for a packet awaiting
10 processing by the at least one of the plural processors.

1 2. The system of claim 1, wherein the packet size for a packet of media
2 information is chosen to be 160 octets.

1 3. The system of claim 1, wherein consecutive packets of a same media stream
2 being separated by a packet repetition interval.

1 4. The system of claim 3, wherein the packet repetition interval between
2 consecutive packets of the same media stream is 20 milliseconds.

1 5. The system of claim 1, wherein the number of plural media streams is nine.

1 6. The system of claim 1, wherein the plural media streams are one of plural
2 voice channels and plural video channels.

1 7. The system of claim 1, wherein the switch asynchronously routes the packets
2 of the plural media streams to a sequence of the plural processors.

1 8. The system of claim 7, wherein for at least one of the plural processors there
2 is a queue for temporarily storing a packet received while the at least one of the plural
3 processors performs its media stream processing function relative to another packet.

1 9. The system of claim 1, wherein at least one of the plural processors is a
2 digital signal processor (DSP).

1 10. The system of claim 1, wherein the plural types of media stream processing
2 functions include at least one of the following: speech coding; speech decoding; echo
3 cancellation; tone sender; tone receiver; DTMF sender; DTMF receiver; conference call
4 device (CCD); announcement machine; FAX modem; voice recognition; and U-lag/A-
5 lag conversion; an interfacing functionality to an external network (such as TDM,
6 ATM, IP and Frame Relay networks); video codec, text processing, modem for either
7 circuit switched or packet switched data.

1 11. The system of claim 1, wherein the overhead load includes operations of
2 resuming and suspending execution of a media stream processing function for packets
3 of different media streams.

1 12. The system of claim 1, further comprising an interface device which
2 connects the system to a network wherein the packets of the plural media streams are
3 transmitted synchronously, wherein the interface device performs a synchronization
4 with respect to the packets which have been asynchronously routed through the system.

1 13. The system of claim 1, wherein the switch function comprises one of a
2 packet switch and a cell switch.

1 14. The system of claim 1, wherein the switch function comprises one of a
2 packet-based and a cell-based network.

1 15. A method of handling plural media streams, each media stream comprising
2 packets of media information, the method comprising:

3 executing plural types of media stream processing functions at plural processors;
4 routing the packets of the plural media streams to a sequence of the plural
5 processors whereby the plural types of media stream processing functions are
6 sequentially performed relative to the packets;
7 choosing a packet size for the packets to minimize overhead load on at least one
8 of the plural processors without causing undue delay for a packet awaiting processing
9 by the at least one of the plural processors.

1 16. The method of claim 15, further comprising choosing the packet size for a
2 packet of media information to be 160 octets.

1 17. The method of claim 15, further comprising separating consecutive packets
2 of a same media stream by a packet repetition interval.

1 18. The method of claim 15, further comprising choosing the packet repetition
2 interval between consecutive packets of the same media stream to be 20 milliseconds.

1 19. The method of claim 15, wherein the number of plural media streams is
2 nine.

1 20. The method of claim 15, wherein the plural media streams are one of plural
2 voice channels and plural video channels.

1 21. The method of claim 15, further comprising asynchronously routing the
2 packets of the plural media streams to a sequence of the plural processors.

1 22. The method of claim 21, further comprising, for the at least one of the plural
2 processors, providing a queue for temporarily storing a packet received while the at
3 least one of the plural processors performs its media stream processing function relative
4 to another packet.

1 23. The method of claim 15, further comprising including at least one of the
2 following as one of the plural types of media stream processing functions: speech
3 coding; speech decoding; echo cancellation; tone sender; tone receiver; DTMF sender;
4 DTMF receiver; conference call device (CCD); announcement machine; FAX modem;
5 voice recognition; and U-lag/A-lag conversion; an interfacing functionality to an external
6 network (such as TDM, ATM, IP and Frame Relay networks); video codec, text
7 processing, modem for either circuit switched or packet switched data.

1 24. The method of claim 15, wherein the overhead load includes operations of
2 resuming and suspending execution of a media stream processing function for packets
3 of different media streams.

1 25. The method of claim 15, further comprising providing an interface device to
2 connect the system to a network wherein the packets of the plural media streams are
3 transmitted synchronously, and using the interface device to perform a synchronization
4 with respect to the packets which have been asynchronously routed through the system.

1 26. The method of claim 15, wherein the step of routing the packets of the plural
2 media streams involves employing one of a packet switch and a cell switch to route the
3 packets.

1 27. The method of claim 15, wherein the step of routing the packets of the plural
2 media streams involves employing one of a packet based network and a cell based
3 network to route the packets.

1 ~~28.~~ A media stream system which processes plural media streams, each media
2 stream comprising packets of media information, the system comprising:

3 plural processors, each of the plural processors executing at least one of plural
4 types of media stream processing functions;

5 a switch function which asynchronously routes the packets of the plural media
6 streams to a sequence of the plural processors whereby the plural types of media stream
7 processing functions are sequentially performed relative to the packets;

8 wherein a packet size for the packets is chosen to be 160 octets.

1 29. The system of claim 28, wherein consecutive packets of a same media
2 stream are separated by a packet repetition interval .

1 30. The system of claim 29, wherein the packet repetition interval between
2 consecutive packets of the same media stream is 20 milliseconds.

1 31. The system of claim 28, wherein the number of plural media streams is nine.

1 32. The system of claim 28, wherein the plural media streams are one of plural
2 voice channels and plural video channels.

1 33. The system of claim 28, wherein for at least one of the plural processors
2 there is a queue for temporarily storing a packet received while the at least one of the

3 plural processors performs its media stream processing function relative to another
4 packet.

1 34. The system of claim 28, wherein at least one of the plural processors is a
2 digital signal processor (DSP).

1 35: The system of claim 28, wherein the plural types of media stream processing
2 functions include at least one of the following: speech coding; speech decoding; echo
3 cancellation; tone sender; tone receiver; DTMF sender; DTMF receiver; conference call
4 device (CCD); announcement machine; FAX modem; voice recognition; and U-lag/A-
5 lag conversion; an interfacing functionality to an external network (such as TDM,
6 ATM, IP and Frame Relay networks); video codec, text processing, modem for either
7 circuit switched or packet switched data.

1 36. The system of claim 28, further comprising an interface device which
2 connects the system to a network wherein the packets of the plural media streams are
3 transmitted synchronously, wherein the interface device performs a synchronization
4 with respect to the packets which have been asynchronously routed through the system.

1 37. The system of claim 28, wherein the switch function comprises one of a
2 packet switch and a cell switch.

1 38. The system of claim 28, wherein the switch function comprises one of a
2 packet-based and a cell-based network.

Add 7
A1