PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-181136

(43)Date of publication of application: 30.06.2000

(51)Int.Cl.

G03G 9/087

G03G 9/097 G03G 9/113

(21)Application number: 10-362515

(71)Applicant: DAINIPPON INK & CHEM INC

(22)Date of filing:

21.12.1998

(72)Inventor: NAKAMURA MASANOBU

FURUKAWARA TOSHIRO KARIBAYASHI HIDEKI SHIMANE YOSHINORI

SUGAWARA RYOZO

(54) ELECTROSTATIC CHARGE IMAGE DEVELOPER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrostatic charge image developer having excellent fixing property and offset resistance in a heat roll fixing method, showing stable electrification behavior even for continuous printing, and having excellent durability with which good high-quality images can be obtd. SOLUTION: This developer contains as a binder resin, a polyester resin prepared by further polymerizing a polyester resin containing monovalent epoxy compds. and unsatd. dibasic acids as source monomers by heating or in the presence of a polymn. initiator. The developer has excellent offset resistance in a high temp. region as well as durability against friction with a carrier in a developing device, and therefore, high quality images of high density can be continuously printed without producing spent carrier.

LEGAL STATUS

[Date of request for examination]

06.12.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-181136 (P2000-181136A)

(43)公開日 平成12年6月30日(2000.6.30)

(51) Int.Cl.7		識別記号		FΙ				テーマコード(参考)
G 0 3 G	9/087			G 0	3 G 9/08		331	2H005
	9/097						321	
	9/113						351	
							384	
					9/10		351	
			審査請求	未請求	請求項の数4	OL	(全 12 頁)	最終頁に続く

(21)出願番号 特願平10-362515 (71)出願人 000002886

(22)出顧日 平成10年12月21日(1998, 12, 21)

大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58号

(72)発明者 中村 正延

埼玉県蕨市中央1-17-30 ルネ蕨1-

709

(72)発明者 古川原 俊郎

埼玉県岩槻市岩槻5085-1

(72)発明者 鳫林 秀樹

埼玉県上尾市本町3-5-11

(74)代理人 100088764

弁理士 高橋 勝利

最終頁に続く

(54) 【発明の名称】 静電荷像現像剤

(57)【要約】

【課題】 ヒートロール定着方式での定着性及び耐オフセット性に優れ、かつ、連続印刷においても安定な帯電挙動を示し、良好な高画質画像が得られる耐久性に優れた静電荷像現像剤を提供する。

【解決手段】前記バインダー樹脂として、1価のエポキシ化合物と不飽和2塩基酸とを原料モノマーとして含むポリエステル樹脂を加熱又は重合開始剤の存在下で更に重合せしめてなるポリエステル樹脂を含むことを特徴とする静電荷像現像剤。

【特許請求の範囲】

【請求項1】少なくとも、バインダー樹脂と着色剤と帯電制御剤とを含有してなる着色樹脂粒子及び磁性キャリアからなる静電荷像現像剤であって、前記バインダー樹脂として、1価のエポキシ化合物と不飽和2塩基酸とを原料として含むポリエステル樹脂を加熱又は重合開始剤の存在下で更に重合せしめてなるポリエステル樹脂を含むことを特徴とする静電荷像現像剤。

【請求項2】前記ポリエステル樹脂のガラス転移温度が は、ポリスチレン、スチレン-アクリル酸エステル共重 55℃~85℃で、かつ軟化点が90℃~180℃であ 10 合体、スチレン-ブタジエン共重合体、ポリエステル、ることを特徴とする請求項1記載の静電荷像現像剤。 エポキシ樹脂、ポリブチラール樹脂、キシレン樹脂、ク

【請求項3】帯電制御剤が、正帯電制御剤である請求項 1、または2記載の静電荷像現像剤。

【請求項4】磁性キャリアが、シリコーン樹脂、フッ素 樹脂、(メタ)アクリル樹脂から選ばれる1種以上の樹 脂で被覆された樹脂被覆磁性キャリアである請求項1、 2または3記載の静電荷像現像剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真法、静電 20 記録法、あるいは静電印刷法に用いる静電荷像現像剤に 関するものである。

[0002]

【従来の技術】電子写真法としては、米国特許第2,297,691号、特公昭42-23910号公報及び特公昭43-24748号公報などに各種の方法が記載されているが、通常は、光導電性感光体等の静電潜像担持体上に帯電、露光により静電潜像を形成し、次いでこの静電潜像を、バインダー樹脂中に着色剤を含有するトナー組成物によって現像し、得られたトナー像を転写紙などの支持体に転写、定着して可視画像を形成する方法が一般的である。

【0003】また、電子写真法における現像方法としては多くの方法が知られているが、大別すると、鉄粉、フェライト、ニッケル、ガラス等の微粒子($20\sim500$ μ m)からなるキャリアとトナーとの混合物を現像剤として用いる二成分現像法と、トナーのみからなる現像剤を用いる一成分現像法とがある。

【0004】二成分現像法の代表例としては、米国特許第2,618,552号記載のカスケード法、及び米国40特許2,874,063号記載の磁気ブラシ法がある。これらの方法はキャリアが現像剤の攪拌、搬送、帯電などの機能を分担しておりキャリアとトナーの機能分離が明確になっている。そのためトナーの帯電制御や現像剤層の形成が比較的容易で、高速化にも対応可能なことから現在広く用いられている。

【0005】ところで、近年における情報化社会の発展 に伴い、電子写真、静電記録、静電印刷の各分野におい ても印刷画像の高品質化、記録の高速化、高密度化、長 期保存安定性等の要求が高まり、静電潜像を非印刷媒体 50 上に記録するトナーの特性改善に寄せられる期待は多大なものとなっている。特に、高速印刷に適した二成分現像剤におけるトナーにおいては、キャリアとの摩擦に耐える強度、ヒートロール定着方式における広い温度領域での安定した定着挙動等が重要な特性であり、これらの特性はトナー組成物に用いられるバインダー樹脂の特性に負うところが非常に大きい。

【0006】これまでトナー用のバインダー樹脂としては、ポリスチレン、スチレンーアクリル酸エステル共重合体、スチレンーブタジエン共重合体、ポリエステル、エポキシ樹脂、ポリブチラール樹脂、キシレン樹脂、クマロンインデン樹脂等が研究使用され、これらの樹脂の設計においては、用途に応じて種々の提案が為されている。

【0007】一般的には、バインダー樹脂に求められる特性としては、帯電、定着特性等、種々の特性があるが、特に、ヒートロール定着用途のトナーに用いられるバインダー樹脂には、転写紙への定着性能と耐オフセット性能の向上が要求されている。ヒートロール定着では、転写紙上に静電的に付着したトナー粒子は、加圧、加熱された熱ロール間を通過することにより溶融して転写紙に定着する。ところが、その際にロールの表面温度が低すぎると、トナー粒子層全体が充分に加熱ロールに接触した面のみが軟化して加熱ロールに付着する。転写紙側のトナーは軟化していないため付着力が生じず、結局、転写紙上のトナー層は転写紙に定着することなく、ほとんどが定着ロール側に移行する。これをコールドオフセットと呼んでいる。

【0008】逆に、ロール表面の温度が高すぎると、溶融したトナーの粘度が低下する。それに伴い、溶融したトナー層の内部凝集力も急激に低下して加熱ロールへの付着力を下回る。その結果、溶融したトナー層は破断して転写紙、及び定着ロール双方に移行する。これをホットオフセットと呼び加熱ロールの汚染の原因となっている。ヒートロールに付着したトナーは転写紙に再転写して非画像部を汚し、印刷品質の低下をもたらす。

【0009】耐オフセット性能とは、トナーがある温度においてコールドオフセット、あるいはホットオフセットを生じない能力を有することを意味し、トナー用のバインダー樹脂には広い温度領域で耐オフセット性能を有し、なおかつ優れた定着特性を有することが求められている。

【0010】以上の目的を達成するため数多くの設計例が提唱されており、中でも加熱溶融時の粘弾性を維持する目的で、あるいは温度変動に対する粘度変化を抑える目的で、分子量分布の拡大、架橋構造の付与、ゴム弾性材料の適用等の手段が施された技術が検討されてきた。これまでの研究でポリエステル樹脂がヒートロール定着用樹脂として用い得ることは広く知られている。

【0011】たとえば、特公昭52-25420号、同

53-17496号、同55-49305号、特開昭5 5-38524号、同57-37353号、同58-1 1952号等の各公報がある。

【0012】しかしながら、従来提案されているこれら の発明では、現在求められている広い温度領域での耐オ フセット性能、定着性能を十分に満足し、さらには高速 印刷における現像装置内でのシェアに耐えるポリエステ ル樹脂は得られていない。

【0013】また、定着時におけるヒートロールからの ナー中に離型剤を含有させる技術も並行して研究されて きた。使用される離型剤としてはモンタンワックス、カ ルナバワックス、キャンデリラワックス、ライスワック ス等の天然ワックス、ポリプロピレンワックス、ポリエ チレンワックス等の合成ワックスが公知である。これら のワックスが離型効果を発揮するためにはポリエステル 樹脂中に微細、かつ均一に分散することが必要である。

【0014】しかしながら、ワックスは一般にポリエス テル樹脂との相溶性が悪く、通常の混練条件ではポリエ ステル樹脂中に大きなドメインとして存在することにな 20 る。このような状態で粉砕を行うと表面にワックスが大 きく露出した状態のトナー粒子が発生し、また、トナー 粒子中に遊離状態のワックス粒子が発生することにな る。このようなトナーを用いた二成分現像剤をマシンの 現像装置内で攪拌すると、ワックスがキャリアの表面に 付着して帯電性能の劣化したスペントキャリアが発生 し、現像剤の寿命は大変短いものとなる。これまで種々 検討されているが未だかつてワックスの分散性に優れた ポリエステル樹脂は見出されていない。

[0015]

【発明が解決しようとする課題】本発明は、定着性及び 耐オフセット性に優れ、かつ、連続印刷した際も安定な 帯電挙動を示し、良好な高画質画像が得られる耐久性に 優れた静電荷像現像剤を提供することを目的とする。

[0016]

【課題を解決するための手段】本発明者らは、上記課題 を解決すべく鋭意研究を重ねた結果、本発明に到達し た。

【0017】即ち、本発明は上記課題を解決するため とを含有してなる着色樹脂粒子及び磁性キャリアからな る静電荷像現像剤であって、前記バインダー樹脂とし て、1価のエポキシ化合物と不飽和2塩基酸とを原料と して含むポリエステル樹脂を加熱又は重合開始剤の存在 下で更に重合せしめてなるポリエステル樹脂を含むこと を特徴とする静電荷像現像剤を提供するものである。

【0018】本発明では、まず、少なくとも、バインダ 一樹脂と着色剤と帯電制御剤とを含有してなる着色樹脂 粒子を用いる。

【0019】本発明に用いられるモノエポキシ化合物 は、例えばフェニルグリシジルエーテル、アルキルフェ ニルグリシジルエーテル、アルキルグリシジルエーテ ル、アルキルグリシジルエステル、アルキルフェノール アルキレンオキサイド付加物のグリシジルエーテル、α - オレフィンオキサイド、モノエポキシ脂肪酸アルキル エステル等が挙げられる。

【0020】アルキルフェニルグリシジルエーテルとし ては、例えばクレジルグリシジルエーテル、ブチルグリ 剥離性を付与し、オフセットの発生を防止するためにト 10 シジルエーテル、ノニルグリシジルエーテル等が挙げら れる。アキルグリシジルエーテルとしては、例えばブチ ルグリシジルエーテル、2-エチルヘキシルグリシジル エーテルである。アルキルグリシジルエステルとして は、次の化学構造式のものが挙げられる。

【0022】(但し、Rはアルキル基で炭素数1~2 5)

【0023】アルキルフェノールアルキレンオキサイド 付加物のグリシジルエーテルとしては、例えばブチルフ ェノール等の低級アルキルフェノールにエチレンオキサ イド、プロピレンオキサイド等のアルキレンオキサイド の付加物のグリシジルエーテルであり、エチレングリコ ールモノフェニルエーテルのグリシジルエーテル、ポリ 30 エチレングリコールモノフェニルエーテルのグリシジル エーテル、プロピレングリコールモノフェニルエーテル のグリシジルエーテル、ポリプロピレングリコールモノ フェニルエーテルのグリシジルエーテル、エチレングリ コールモノ (p-t-ブチル) フェニルエーテルのグリシジ ルエーテル、エチレングリコールモノノニルフェニルエ ーテルのグリシジルエーテル等が挙げられる。

【0024】α-オレフィンオキサイドとしては、例え ばアルファオレフィンオキサイド-168 (アデカアー ガス化学(株)製品)、アルファオレフィンオキサイド に、少なくとも、バインダー樹脂と着色剤と帯電制御剤 40 -124 (アデカアーガス化学 (株) 製品) 等のオレフ ィン類をオキシ化した化合物が挙げられる。

> 【0025】モノエポキシ脂肪酸アルキルエステルとし ては、不飽和脂肪酸のアルコールエステルの不飽和基を エポキシ化した化合物で、例えば以下の式で表されるエ ポキシ化オレイン酸ブチルエステルや、エポキシ化オレ イン酸オクチルエステル等が挙げられる。

[0026] 【化2】

CH3 (CH2) 7CH-CH (CH2) 7COOC4H5

30

【0027】これらの中でも炭素数6以上のアリール 基、アルキル基、またはアルケニル基を含む1価のエポ キシ化合物を用いることが好ましい。炭素数6以上の置 換基を持つエポキシ化合物を用いることにより耐オフセ ット性能が向上し、スペントキャリアを発生することな く現像剤の長寿命化が図れる。詳しいメカニズムは不明 を用いることにより樹脂中にワックスが均一に微分散す ることが原因であると考えられる。

【0028】本発明では必要に応じ2価以上のエポキシ 化合物を併用して用いることが出来る。2価以上のエポ キシ化合物としては、例えば、ビスフェノールA型エポ キシ樹脂、クレゾールノボラック型エポキシ樹脂、フェ ノールノボラック型エポキシ樹脂、エチレングリコール ジグリシジルエーテル、グリセリントリグリシジルエー テル、トリメチロールプロパントリグリシジルエーテ ル、トリメチロールエタントリグリシジルエーテル、ペ 20 ングリコール、1,3ブチレングリコール、1,4ブチレング ンタエリスリトールテトラグリシジルエーテル、ハイド ロキノンジグリシジルエーテル、N, N-ジグリシジル アニリン、テトラキス1, 1, 2, 2 (p-ヒドロキシ フェニル) エタンテトラグリシジルエーテル、エポキシ 基を有するビニル化合物の重合体、あるいは共重合体、 エポキシ化レゾルシノールーアセトン縮合物、部分エポ キシ化ポリブタジエン、半乾性もしくは乾性脂肪酸エス テルエポキシ化合物の一種以上のものが挙げられる。

【0029】具体的には、ビスフェノールA型エポキシ 樹脂の例としては、例えば、大日本インキ化学工業

(株) 製エピクロン840,850,855,857,D-591,860,900,10 50, 1055, 2055, 3050, 4050, 4055, 7050, 7051, HM-091, HM-10 1などが挙げられる。オルソクレゾールノボラック型エ ポキシ樹脂の例としては、大日本インキ化学工業(株) 製エピクロンN-660, N-665, N-667, N-670, N-673, N-680, N -690, N-695等が挙げられる。フェノールノボラック型エ ポキシ樹脂の例としては、例えば大日本インキ化学工業 (株) 製エピクロンN-740, N-770, N-775, N-865等が挙げ られる。

【0030】本発明で用いるようなエポキシ化合物は1 ヶのエポキシ基がカルボキシル基あるいは水酸基と反応 することにより2級水酸基が発生し、この水酸基がさら に他のカルボキシル基と反応する。つまり1ヶのエポキ シ基は2価の基として作用する。したがって、上記のエ ポキシ化合物の中でも樹脂の架橋密度が高まることか ら、一分子中に3個以上のエポキシ基を有する多価エポ キシ化合物を1価のエポキシ化合物と併用することが好 ましい。

【0031】不飽和二塩基酸としては、付加重合性の炭 素一炭素二重結合を有するもので、例えばマレイン酸、

無水マレイン酸、フマール酸、テトラヒドロフタール 酸、無水テトラヒドロフタール酸、イタコン酸、メサコ ン酸、シトラコン酸等が挙げられる。

【0032】また、本発明におけるポリエステル樹脂 は、少なくとも1価のエポキシ基を有するモノエポキシ 化合物と二塩基酸とポリオールとを重縮合して得られる であるが炭素数6以上の置換基を有するエポキシ化合物 10 ポリエステル樹脂であって、かつ、二塩基酸の一部又は 全部に不飽和二塩基酸を含有するポリエステル樹脂であ

> 【0033】上記以外の二塩基酸成分の代表例として は、非付加重合性の二塩基酸があり、例えばオルソフタ ル酸、イソフタール酸、テレフタール酸、無水フタール 酸、コハク酸、アジピン酸、シュウ酸、マロン酸、セバ シン酸等が挙げられる。

> 【0034】二価のアルコールとしては、例えばエチレ ングリコール、1,2プロピレングリコール、1,3プロピレ リコール、1,6ヘキサンジオール、ネオペンチルグリコ ール、ジプロピレングリコール、ジエチレングリコー ル、水添ビスフェノールA、ビスフェノールAエチレン オキサイド付加物、ビスフェノールAプロピレンオキサ イド付加物等が挙げられる。

> 【0035】さらに、ポリエステル樹脂の原料として、 例えば無水トリメリット酸、グリセリン、トリメチロー ルエタン、トリメチロールプロパンなどの三官能化合物 やピロメリット酸、無水ピロメリット酸、ペンタエリス リトール、ソルビトール、フェノールノボラックのエチ レンオキサイド付加物、フェノールノボラックのプロピ レンオキサイド付加物等の4価以上の多官能化合物を併 用することもできる。

> 【0036】本発明におけるポリエステル樹脂は、1価 のエポキシ化合物と、不飽和二塩基酸と、二価のアルコ ールを、必要に応じて非付加重合性の二塩基酸を含ませ た上で反応させることにより得ることが出来る。通常 は、不飽和二塩基酸の不飽和二重結合が解裂しない様 に、分子内二重結合を含む前駆体のポリエステル樹脂を 製造してから、この分子内二重結合を解裂させるように して重合し架橋せしめることにより架橋ポリエステル樹 脂を得ることが出来る。

【0037】本発明における不飽和2塩基酸を原料とし て用いるポリエステル樹脂のポリエステル化の反応は、 従来公知の重縮合反応法により任意に製造されるもので ある。例えば、エステル化触媒(ジブチル錫オキサイ ド、テトラブチルチタネート、パラトルエンスルホン酸 等)の存在下やエステル交換触媒(鉛化合物、錫化合 物、テトラプロピルチタネート等)の存在下に、ジカル 50 ボン酸メチルエステル等の低級アルキルエステル使用の

エステル交換反応、常圧脱水反応、溶液重縮合法、固相 重縮合反応法等いずれの製造法にて実施しても良い。

【0038】このようにして得られたポリエステル樹脂は、更に、加熱又は重合開始剤の存在下に重合反応を進行させる。加熱の場合は $230\sim260$ $^{\circ}$ 0の温度で $3\sim15$ 時間位行い、重合開始剤の存在下では130 $^{\circ}$ $^{\circ}$ 0.5 $^{\circ}$ 15時間位反応させる。

【0039】上記重合開始剤としては、例えばターシャリーブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジターシャリーブチルパーオキサイド、ダーシャリーブチルパーオキサイド、ターシャリーブチルクミルパーオキサイド等が挙げられる。重合開始剤の量としては、ポリエステル樹脂の0.01~5重量%、好ましくは0.02~2重量%の範囲である。

【0040】本発明のポリエステル樹脂の酸価としては、20mgKOH/g以下であることが、トナーの耐湿性が良好となる点で好ましい。

【0041】本発明に用いられるポリエステル樹脂のガラス転移温度(Tg)は55℃以上のものが好ましいが、なかでも、そのTgが55~85℃のものが特に好ましい。また、本発明に使用されるポリエステル樹脂の軟化点としては、90℃以上、なかでも、90℃~180℃の範囲のものが好ましい、より好ましくは、110℃~150℃の範囲である。軟化点が90℃未満の場合は、トナーが凝集現象を生じやすく、保存時や印字の際にトラブルになりやすく、180℃を越える場合には定着性が悪くなることが多い。

【0042】従って、最も好ましいのは、 $Tgが55\sim85$ ℃で、かつ軟化点90℃ ~180 ℃の範囲のものである。

【0043】本発明で使用することのできる着色剤とし ては、周知のものがあげられる。黒の着色剤としては製 法により分類されるファーネスブラック、チャンネルブ ラック、アセチレンブラック、サーマルブラック、ラン プブラック、等のカーボンブラックが、青系の着色剤と してはフタロシアニン系のC. I. PigmentBl ue 15-3、インダンスロン系のC. I. Pigm ent Blue 60等が、赤系の着色剤としてはキナ クリドン系のC. I. Pigment Red 122、 アゾ系のC. I. Pigment Red 22、C. I. Pigment Red 48:1, C. I. Pig ment Red 48:3, C. I. Pigment Red 57:1等が、黄系の着色剤としてはアゾ系の C. I. Pigment Yellow 12, C. I. Pigment Yellow 13, C. I. Pigm ent Yellow 14, C. I. Pigment Yellow 17, C. I. Pigment Yell ow 97, C. I. Pigment Yellow 1 55、イソインドリノン系のC. I. Pigment

Yellow 110、ベンズイミダゾロン系のC.
I. Pigment Yellow 151、C. I. Pigment Yellow 154、C. I. Pigment Yellow 180、等がある。着色剤の含有量は、1重量部から20重量部の範囲内にある。これら

の着色剤は1種又は2種以上の組み合わせで使用することができる。

【0044】本発明に用いられる帯電制御剤としては、公知慣用の正負いずれの帯電制御剤を用いることも出来 10 るが、例えば正帯電制御剤としてニグロシン系染料、4 級アンモニウム塩、4級アンモニウム塩及び/又はアミノ基を含有する樹脂、負帯電制御剤としてトリメチルエタン系染料、サリチル酸の金属錯塩、ベンジル酸の金属錯塩、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、金属錯塩アゾ系染料、アゾクロムコンプレックス等の重金属含有酸性染料、カリックスアレン型のフェノール系縮合物、環状ポリサッカライド、カルボキシル基及び/又はスルホニル基を含有する樹脂、等が必要に応じて用いられる。

【0045】本発明の着色樹脂粒子では、正帯電制御剤を含めるのがよい。これらの帯電制御剤はバインダー樹脂100重量部当たり0.5~5重量部用いる事が望ましい。

【0046】本発明における着色樹脂粒子は、トナーとして機能し、上記の様なポリエステル樹脂からなるバインダー樹脂、着色剤、帯電制御剤を必須成分として構成されるが、着色樹脂粒子には、その他の添加剤を含める様にしても良い。

【0047】更にヒートロール定着用途では、トナーのヒートロール付着汚れ(オフセット)によるトラブル防止を目的として、離型効果を高める助剤として、種々のワックス類が必要に応じて使用され、例えばカルナバワックス、モンタンワックス、ライスワックスの如き天然ワックス、高圧法ポリエチレン、ポリプロピレンの如きポリオレフィン系ワックスが使用出来る。

【0048】滑剤としては、例えば金属石鹸、ステアリン酸亜鉛等が、研磨剤としては、例えば酸化セリウム、 炭化ケイ素等も使用できる。

【0049】本発明のトナーは、特定の製造方法によら 40 ず極めて一般的な製造方法に依って得る事ができるが、 例えば樹脂と着色剤と帯電制御剤とを、樹脂の融点(軟 化点)以上で溶融混練した後、粉砕し、分級することに より得ることが出来る。

【0050】具体的には例えば、上記の樹脂と着色剤と 帯電制御剤とを必須成分として、2本ロール、3本ロール、加圧ニーダー、又は2軸押し出し機等の混練手段に より混合する。この際、樹脂中に、着色剤等が均一に分 散すればよく、その溶融混練の条件は特に限定されるも のではないが、通常80~180℃で30秒~2時間で ある。着色剤は樹脂中に均一に分散するようにあらかじ めフラッシング処理、あるいは樹脂と高濃度で溶融混練 したマスターバッチを用いても良い。

【0051】次いで、それを冷却後、ジェットミル等の 粉砕機で微粉砕し、風力分級機等により分級するという 方法が挙げられる。

【0052】トナー母体を構成する粒子の平均粒径は、 特に制限されないが、通常5~15μmとなる様に調整 される。

【0053】通常、この様にして得られたトナー母体に 対しては、外添剤が、例えばヘンシェルミキサー等の混 10 脂、 (メタ) アクリル樹脂が帯電安定性、被覆強度等に 合機を用いて混合される。

【0054】外添剤は、例えばトナーの流動性向上、帯 電特性改良などトナー母体の表面改質のために用いられ るもので、二酸化珪素、酸化チタン、アルミナ等の無機 微粉体及びそれらをシリコーンオイルなどの疎水化処理 剤で表面処理したもの、樹脂微粉体等が用いられる。

【0055】シリカとしては、二酸化珪素のうちで疎水 性等を有するものが挙げられ、二酸化珪素を各種のポリ オルガノシロキサンやシランカップリング剤等で表面処 理したものが挙げられる。例えば、次のような商品名で 市販されているものがある。

[0056] AEROSIL R972, R974, R 202, R805, R812, RX200, RY20 0、 R809, RX50 [日本アエロジル(株)] WACKER HDK H2000, H2050EP 〔ワッカーケミカルズイーストアジア(株)〕

Nipsil SS-10, SS-15, SS-20, SS-50, SS-60, SS-100, SS-50B, SS-50F, SS-10F, SS-40, SS-70, SS-72F、[日本シリカ工業(株)]

【0057】このシリカは、異なる平均粒子径の2種以 上を併用するのが好ましい場合が多い。また、シリカの 使用割合はトナー母体に対して、通常0.05~5重量 %、好ましくは0.1~3重量%である。

【0058】本発明の静電荷像現像剤は、着色樹脂粒子 を含むトナーと、磁性キャリアとからなる。

【0059】本発明に用いられる磁性キャリアは通常の 二成分現像方式に用いられる鉄粉キャリア、マグネタイ トキャリア、フェライトキャリアが使用できるが、中で も真比重が低く、高抵抗であり、環境安定性に優れ、球 40 形にし易いため流動性が良好なフェライト、またはマグ ネタイトキャリアが好適に用いられる。キャリアの形状 は球形、不定形等、特に差し支えなく使用できる。平均 粒径は一般的には $10\sim500\mu$ であるが、高解像度画 像を印刷するためには30~80μが好ましい。

【0060】また、これらのキャリアを樹脂で被覆した コーティングキャリアも好適に使用でき、被覆樹脂とし ては、例えばポリエチレン、ポリプロピレン、ポリスチ レン、ポリアクリロニトリル、ポリビニルアセテート、 ポリビニルアルコール、ポリビニルブチラール、ポリ塩 50

化ビニル、ポリビニルカルバゾール、ポリビニルエーテ ルポリビニルケトン、塩化ビニル/酢酸ビニル共重合 体、スチレン/アクリル共重合体、オルガノシロキサン 結合からなるストレートシリコン樹脂あるいはその変性 品、フッ素樹脂、(メタ)アクリル樹脂、ポリエステ ル、ポリウレタン、ポリカーボネート、フェノール樹 脂、アミノ樹脂、メラミン樹脂、ベンゾグアナミン樹 脂、ユリア樹脂、アミド樹脂、エポキシ樹脂等が使用で きる。これらの中でも、特にシリコン樹脂、フッ素樹 優れ、より好適に使用し得る。つまり本発明では、磁性 キャリアが、シリコーン樹脂、フッ素樹脂、 (メタ) ア クリル樹脂から選ばれる1種以上の樹脂で被覆された樹 脂被覆磁性キャリアであることが好ましい。

【0061】キャリア芯材表面への樹脂の被覆方法は特 に手段を選ぶものではないが、被覆樹脂の溶液中に浸漬 する浸漬法、被覆樹脂溶液をキャリア芯材表面へ噴霧す るスプレー法、あるいはキャリアを流動エアーにより浮 遊させた状態で噴霧する流動床法、ニーダーコーター中 でキャリア芯材と被覆樹脂溶液を混合し、溶剤を除去す るニーダーコーター法などが挙げられる。

【0062】被覆樹脂溶液中に使用される溶剤は被覆樹 脂を溶解するものであれば特に限定されるものではない が、例えば、トルエン、キシレン、アセトン、メチルエ チルケトン、テトラヒドロフラン、ジオキサン等が使用 できる。キャリア表面への被覆層の厚さは、通常0.1 ~3. 0 μ である。

【0063】着色樹脂粒子を含むトナーと、樹脂被覆磁 性キャリアとの重量割合は特に制限されるものではない が、通常キャリア100重量部当たり、トナー0.5~ 5重量部である。

[0064]

【発明の実施形態】

【0065】1. 少なくとも、バインダー樹脂と着色 剤と帯電制御剤とを含有してなる着色樹脂粒子及び磁性 キャリアからなる静電荷像現像剤であって、前記バイン ダー樹脂として、1価のエポキシ化合物と不飽和2塩基 酸とを原料として含むポリエステル樹脂を加熱又は重合 開始剤の存在下で更に重合せしめてなるポリエステル樹 脂を含むことを特徴とする静電荷像現像剤。

【0066】2. 前記ポリエステル樹脂のガラス転移 温度が55℃~85℃で、かつ軟化点が90℃~180 ℃であることを特徴とする上記1記載の静電荷像現像

[0067]3.帯電制御剤が、正帯電制御剤である 上記1、または2記載の静電荷像現像剤。

[0068] 4. 磁性キャリアが、シリコーン樹脂、 フッ素樹脂、(メタ)アクリル樹脂から選ばれる1種以 上の樹脂で被覆された樹脂被覆磁性キャリアである上記 1、2または3記載の静電荷像現像剤。

[0069]

【実施例】以下、実施例及び比較例を用いて、本発明を更に詳細に説明する。なお、以下において、組成表内の数値は『重量部』を表わす。最初にトナーを調製するにあたって用いたバインダー樹脂の合成例を下記に示す。 【0070】(樹脂合成例1)ポリオキシプロピレン(2,2)-2,2-ビス(4-ヒドロキシフェニル)プロパン956重量部、カージュラE(シェルジャパン製品、アルキルグリシジルエステル)150重量部、デレフタル酸448重量部、無水マレイン酸29重量部、ジブチル錫オキサイド1.6重量部をガラス製2リットルの四ツロフラスコに入れ、窒素気流下にて徐々に昇温し、240℃で1の時間反応させた。このポリエステル樹脂は酸価10で数* * 平均分子量は4300であった。

【0071】更に、この樹脂を180℃に降温し、ジターシャリーブチルパーオキサイド5重量部を添加し30分攪拌後、温度を240℃に昇温し、3時間攪拌して更に重合せしめてトナー用樹脂を得た。得られた樹脂は、常温固体で、酸価4、DSC測定法ガラス転移温度64℃、軟化点(環球法)130℃であった。又、分子量分布を測定した結果は、Mw=123000、Mn=4400、Mw/Mn=28であった。

12

10 【0072】上記樹脂合成例1に準じた方法で、表1に示した配合により、バインダー樹脂を合成した。

[0073]

【表1】表1. 合成例一覧表

合成例	1	2	3	4	5
	カーシ [*] ュラ E 150 飯量			BGE 20 重量	BGE 39 蕉 畳
	部	部	部		部
				E-850	
				54 重量	
				部	
アルコール成	BPA-PO	BPA-EO	BPA-PO	EG	NPG
分	956 重量	829 重量	531 重量	56 重量	281 重量
	部	部	部	部	部
			BPA-EO	NPG	TMP
			488 重量	218 重量	
			部	部	部
酸成分					TPA
				349 重量	
	'		部		部
			MA		FA
				88 重量	
					部
	1			キュメンハイト゛	İ
剤	フ*チルハ*ーオ				<i>‡</i>
	1			ハ°ーオキサイ 1°	4 重重形
	(相重重 G	8 重量部		↑ 2重量部	
				2 里里前	
					L

【0074】表中の略号は次の通りである。

BPA-PO: ビスフェノールAプロピレンオキサイド2.2モル付加物。

BPA-EO: ビスフェノールAエチレンオキサイド2モル付加物。

E-850 : 大日本インキ化学工業(株) 製ビスフェノールA型エポキシ樹

脂

BGE : ブチルグリシジルエーテル

カージュラE:シェルジャパン(株)製のアルキルグリシジルエステル

*【表9】表1 (へべき)

:ネオペンチルグリコール

EG

: エチレングリコール

TPA

: テレフタル酸

IPA

:イソフタル酸

MA

:無水マレイン酸

FA

:フマール酸

TMP

: トリメチロールプロパン

[0075]

		×	* 【衣 2	衣工(1	つつさり	
合成例	1	2	3	4	5	
å° ў́⊥аў́́́́и М п	4300	5000	5200	4400	4150	
がインゲー樹脂軟化点	1 3 0°C	1 4	1 4	1 2	1 2	
Тg	6 4℃	0°C 66°C	7℃ 6 9℃	0 °C 5 8 °C	5 °C 6 3 °C	
Мw	123000	223600	280000	47200	71400	
Мn	4400	5200	5600	4600	4200	

43

【0076】 (比較合成例1) 無水マレイン酸のかわり に、それと同モルの無水フタール酸を使用した以外は合 成例1と全く同様にしてバインダー樹脂を合成した。得 られた樹脂は、酸価5、ガラス転移温度63℃、軟化点 1.13 °C °C, Mw = 1.3760, Mn = 4.300, Mw/Mn = 3. 2であった。

M w / M

28

【0077】(比較合成例2)カージュラEを使用せず に、それの当モル分だけポリオキシプロピレン(2, 2) -2, 2-ビス (4-ヒドロキシフェニル) プロパ 40 Mn=4300、Mw/Mn=12であった。 ンを増やした以外は合成例1と全く同様にしてバインダ※

※一樹脂を合成した。得られた樹脂は、酸価4、ガラス転 移温度65℃、軟化点132℃で、Mw=13760 $0 \, Mn = 4300 \, Mw/Mn = 32$ σ

1 7

【0078】 (比較合成例3) ブチルグリシジルエーテ ルを使用せずに、それの当モル分だけエチレングリコー ルを増やした以外は合成例4と全く同様にしてバインダ 一樹脂を合成した。得られた樹脂は、酸価6、ガラス転 移温度58℃、軟化点120℃で、Mw=52000、

[0079]

50

1 0

(実施例1)

<トナーの製造>

・合成例1の樹脂

91重量部

・カーボンブラック

ブラックパールズ460(キャボット・スペシャルティー・ケミカルズ・インク製) 5重量部

· 带電制御剤(正帯電制御剤)

ボントロン N-04 (オリエント化学工業 (株) 製)

2重量部

・ワックス

ビスコール550P (三洋化成工業 (株) 製)

2重量部

をヘンシェルミキサーで混合し、2軸混練機で混練す *原体A'を得た。 る。このようにして得た混練物を粉砕、分級してトナー* [0080]

・上記トナー原体A'

100重量部

シリカHDK3050EP (クラリアントジャパン (株))

をヘンシェルミキサーで混合の後、篩いかけをして、ト **※**【0081】 ナーA"得た。 *

<現像剤の調整>

・上記トナーA"

・キャリア (シリコン樹脂被覆フェライトキャリア)

5 重量部 9 5 重量部

1 重量部

を混合攪拌して現像剤Aを調整した。

【0082】 (実施例2) 実施例1における合成例1の 樹脂の代わりに、合成例2の樹脂を用いた以外は、実施 例1と同様にして現像剤Bを得た。

【0083】 (実施例3) 実施例1における合成例1の 樹脂の代わりに、合成例3の樹脂を用いた以外は、実施 例1と同様にして現像剤Cを得た。

【0084】 (実施例4) 実施例1における合成例1の 樹脂の代わりに、合成例4の樹脂を用いた以外は、実施 例1と同様にして現像剤Dを得た。

樹脂の代わりに、合成例5の樹脂を用いた以外は、実施 例1と同様にして現像剤Eを得た。

【0086】 (比較例1) 実施例1において、バインダ 一樹脂として合成例1の樹脂の代わりに、比較合成例1 の樹脂を用いた以外は、実施例1と同様にしてトナーを 製造し、比較用トナー1を得た。

【0087】(比較例2)実施例1において、バインダ ー樹脂として合成例1の樹脂の代わりに、比較合成例2 の樹脂を用いた以外は、実施例1と同様にしてトナーを 製造し、比較用トナー2を得た。

【0088】 (比較例3) 実施例1において、バインダ ー樹脂として合成例1の樹脂の代わりに、比較合成例3 の樹脂を用いた以外は、実施例1と同様にしてトナーを 製造し、比較用トナー3を得た。

【0089】上記実施例及び比較例で得られた現像剤に ついて、定着開始温度、ホットオフセット開始温度、印 刷テストを以下の通り行った。

【0090】(ヒートロール定着・オフセット性能評 価) 市販複写機改造機にてA-4紙サイズの未定着画像 サンプルを作成し、下記仕様のヒートロール定着ユニッ 40 トを用いて、定着開始温度、およびオフセット現象の有

10 無を確認した。

[0091]

ロール材質 上:四弗化エチレン

下: HTVシリコン 径:50mm

ロール形状 長さ:370mm

上ロール荷重 : 15kg 上/下ロールニップ幅: 8 mm

紙送り速度 : 300 mm/s ec

【0092】定着強度は次式で計算される画像濃度残存 【0085】(実施例3)実施例1における合成例1の 20 比率で判定した。画像濃度はマクベス画像濃度計RD-918にて測定した。

> 【0093】画像濃度残存比率=堅牢度試験後画像濃度 /同左試験前画像濃度

> ここで、堅牢度試験後画像濃度とは、学振型摩擦堅牢度 試験機(荷重:200g,擦り操作:5ストローク)を用い て測定した。

> 【0094】定着強度としては、残存比率80%以上で実 用上問題ないレベルとし、その最低温度を定着開始温度 とした。オフセット開始温度は定着画像サンプルを観察 し、目視にてオフセット現象が認められる温度とした。

> 【0095】(印刷テスト) 市販のレーザービームプリ ンター(セレン感光体搭載)を用いて連続プリントによる 印字品質を評価すると共に、現像剤の帯電量を測定し た。なお、帯電量はブローオフ帯電量測定機で測定し た。画像濃度はマクベス濃度計RD-918で測定、地 汚れは白地部濃度からプリント前白紙濃度を差し引いて 求めた。

【0096】以上の評価結果を表2に示す。

[0097]

【表3】表2.評価結果

実施例	開始	オフセット 開始 温度℃	印刷テスト	初期	10kP	20kP	30kP	40kP	50kP
			帯電量	17	18	17	17	16	17
1	125	230	画像濃度	1.4	1.5	1. 4	1. 4	1. 4	1.4
			地汚れ	0	0	0	0	0	0
			帯電量	17	18	17	16	17	17
2	130	235	画像濃度	1.4	1.5	1.4	1.4	1.4	1.4
			地汚れ	0	0	0	0	0	0

【表4】表2. 評価結果

実施例	開	着始度	r	開	セッ始度		印刷デス	初期	10kP	20kP	30kP	40kP	50kP
							帯電量	18	18	17	17	17	17
3	1	3	0	2	4	0	画像源度	1.5	1.4	1.5	1.4	1.4	1.4
							地汚れ	0	0	0	0	0	0
							帯電量	17	17	18	17	16	16
4	1	2	5	2	2	0	画像源度	1.4	1.5	1.5	1.4	1. 3	1.3
							地汚れ	0	0	0	0	0	0
							帯電量	17	17	16	17	16	16
5	1	3 (О	2	2	ı	画像源度	1.5	1.4	1.3	1.4	1.3	1.3
							地汚れ	0	0	0	0	0	0

[0098]

* *【表5】表2(つづき).評価結果

比	定着	Ī	オフ	セッ	ŀ	印	刷テスト	初期	10kP	20kP	30 k P	40kP	50kP
較	開女	á	閕	始							ļ		
例	温度	£°C	温	度	C								
								ļ		<u> </u>			
	ļ					帯	電量	17	16	15	14	10	10
1	1 2	5	1	9	0	画度	像 濃	1.4	1.4	1.2	1. 2	1. 1	1.1
						地	汚れ	0	0	Δ	×	×	×
						帯	電量	17	17	15	15	12	10
2	1 3	0	2	3		画度	像濃	1.4	1. 4	1.3	1. 2	1. 2	1. 1
						地	汚れ	0	0	0	Δ	×	×
						帯1	君量	17	16	16	15	12	11
3	1 3	0	2	2		画度	像 濃	1.5	1.4	1.4	1.3	1. 2	1.1
						地沒	汚れ	0	0	0	0	Δ	×

【0099】表中の表示は次の通り。

*「帯電量」; μC/g

*「地汚れ評価」○:0.01未満、△:0.01~0.03未満, ×:0.03以上

【0100】表2から明らかな通り、本発明によるポリ エステル樹脂を用いた現像剤では、不飽和二塩基酸を含 まない比較例1の現像剤と比較して高温での耐オフセッ ト性が優れている。また、比較例1、及びモノエポキシ 化合物を含まない比較例2、比較例3の現像剤と比較し て連続印刷テストにおける帯電性能に優れ、地汚れが無 く十分な画像濃度の印刷が可能であった。比較例1、及 40 え、スペントキャリアを発生することなく高濃度の高品 び比較例2の現像剤では50KP印刷後にスペントキャ リアの発生が認められた。特に比較例2及び比較例3の※

30※キャリア表面にはワックス成分の付着が多く認められ た。

[0101]

【発明の効果】本発明の静電荷像現像剤は、着色樹脂粒 子の前記バインダー樹脂として、1 価のエポキシ化合物 と不飽和2塩基酸とを原料として含むポリエステル樹脂 を加熱又は重合開始剤の存在下で更に重合せしめてなる ポリエステル樹脂を含むので、それと磁性キャリアとを 組み合わせた現像剤では、高温領域での耐オフセット性 に優れ、同時に現像装置内でのキャリアとの摩擦に耐 位画像の連続印刷が可能となる。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコート (参考)

(72)発明者 島根 義憲 千葉県市川市鬼高3-12-18-415(72)発明者 菅原 良三 千葉県袖ヶ浦市福王台2-16-7

F ターム(参考) 2H005 AA01 AA06 AB06 BA06 CA02 CA07 CA08 CA11 CA12 DA03 DA06 DA10 EA03 FA02 FB02