ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені І.І.МЕЧНИКОВА

Кваліфікаційна наукова праця на правах рукопису

СЕМЕНОВ АНДРІЙ КОСТЯНТИНОВИЧ

ДИСЕРТАЦІЯ

ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ БАГАТОФАЗНИХ ДИСПЕРСНИХ СИСТЕМ

01.04.02 — теоретична фізика Природничі науки

Подається на здобуття наукового ступеня кандидата фізико-математичних наук

Дисертація містить результати власних досліджень. Використання ідей, ре-

зультатів і текстів інших а	авторів мають	посилання	на відповідне	джерело
Науковий керівник:		Сушко	мирослав Я	рославович,
	кандида	т фізико-ма	тематичних н	аук, доцент

АНОТАЦІЯ

Семенов А.К. Електрофізичні властивості багатофазних **дисперсних систем.** – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.04.02 — теоретична фізика. Одеський національний університет імені І.І. Мечникова, МОН України, Одеса, 2020.

В роботі досліджуються ефективні квазістатичні провідність і проникність невпорядкованих тривимірних систем частинок з морфологією тверде ядропроникна оболонка в рамках моделі, побудованої на основі методу компактних груп. Останній дозволяє врахувати багаточастинкові поляризаційні і кореляційні ефекти без їх деталізації. Оболонки, в загальному випадку, електрично неоднорідні, при цьому їх різні частини ефективно можуть відображати вклади як міжфазних ефектів, так і змін властивостей самої матриці. Електродинамічна гомогенізація здійснювалася використовуючи граничні умови для нормальних компонент струму.

Результати протестовані на даних численних симуляцій, отриманих методом Random Resistor Network. Показано, що отримані співвідношення можуть
адекватно описувати широкі масиви даних для ефективної квазістатичної
провідності твердих композитних і полімерних композитних електролітів та
ефективні провідність і діелектричну проникність в околиці порога перколяції в системах типу діелектрик-провідник з міжфазним шаром. Так само,
показано непослідовність і обмеженість поширеною диференціальної схеми
дослідження гетерогенних систем.

Ключові слова: метод компактних груп, модель ядро-оболонка, електрична провідність, діелектрична проникність, дисперсна система, перколяція, композитні електроліти, нанокомпозити, диференціальний метод

ABSTRACT

Semenov A.K. Electrophysical properties of multiphase disperse systems. – Qualification scientific paper, manuscript.

Candidate degree (PhD) thesis in Physics and Mathematics Sciences. Speciality 01.04.02 – theoretical physics. Odesa I.I. Mechnikov National University, the MES of Ukraine, Odesa, 2020.

Practical application of composite materials becomes more widespread due to their unique physical properties, which natural substances can not demonstrate. As a result, both the need to solve the problems of creating composite materials with desired and controlled electrophysical properties (e.g. solid composite and polymer composite electrolytes), and the need to build and improve reliable theoretical models for quantitative description and analysis of their characteristics are increasing.

The most sparing and widespread, but the least theoretically researched type of such systems are three-dimensional disordered systems formed by dispersion of filler particles into a carrier matrix. Theoretical study of electrophysical properties of such systems is not a trivial and far from its accurate solution task, since their characteristics are usually the result of various structural and physico-chemical factors and mechanisms, the key of which are: various interphase effects (form irregularities of dispersed particles; contact resistance; oxide layers; formation of highly conductive regions with increased concentration of defects or ions; amorphization of a polymer matrix, etc.), and changes in properties of the matrix itself (as the result of uncontrolled doping, pollution, changes in internal structure, etc.). Moving towards the homogenization problem is further complicated by the need to take into account many-particle polarizations and correlations.

In this thesis a closed theoretical approach to description of the effective quasi-static electrical response of disordered systems of particles with a hardcore—penetrable-shell morphology, dispersed in a homogeneous matrix, was built. The shells are in general electrically inhomogeneous and obey certain overlapping rules. The properties of different parts of the shells are manifested in different concentration intervals, which allows to effectively reflect through them the contribution of corresponding mechanisms. The electrodynamic homogenization of the model was carried out using the boundary conditions for normal components of the electric field in terms of the compact groups of inhomogeneities approach, which was generalized to the case of conducting systems. The compact groups approach allows one to take into account many-particle polarization and correlation processes without their detailing, using the field propagator expansion into a singular and principal parts together with the symmetry properties of the considered model. This in fact suggests that the obtained theoretical relationships between the effective static electrical conductivity of the system and the electrical and geometric parameters of its components are rigorous, as evidenced by the results of their comparison with existing simulation data for the studied model systems obtained within a Random Resistor Network algorithm. It is also shown that these relationships are capable of adequately describing the broad arrays of experimental data for the effective quasi-static conductivity of solid composite and polymer composite electrolytes, effective electrical conductivity and dielectric constant around the percolation threshold in a dielectric-conductor system with interphase layer. The theory also allowed us to show the inconsistency and limitations of a widespread differential scheme for calculation the effective electrical parameters of heterogeneous systems.

The developed theory can be considered as a new flexible tool for analysis and diagnostics of both effective electrophysical parameters of disordered composite systems and existing methods of their study.

Key words: compact group approach, core-shell model, electric conductivity, dielectric permittivity, disperse system, percolation, composite electrolytes, nanocomposites, differential scheme

СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА

Публікації в наукових журналах:

- [1*] Sushko M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. 2013 Vol. 16 No. 1 13401 P. 1-10. (SJR Q3) doi: 10.5488/CMP.16.13401
- [2*] Semenov A. K. On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions / A. K. Semenov // J. Phys. Commun. 2018. Vol. 2. No. 3 035045. P. 1-8. doi: 10.1088/2399-6528/aab060
- [3*] Sushko M. Ya. A mesoscopic model for the effective electrical conductivity of composite polymeric electrolytes. / M. Ya. Sushko, A. K. Semenov // J. Mol. Liq. — 2019. — Vol. 279 — P. 677-686. (SJR Q1) doi: 10.1016/j.molliq.2019.02.009
- [4*] Sushko M. Ya. Rigorously solvable model for the electrical conductivity of dispersions of hard-core—penetrable-shell particles and its applications / M. Ya. Sushko, A. K. Semenov // Phys. Rev. E 2019. Vol. 100. 052601. P. 1-14. (SJR Q1) doi: 10.1103/PhysRevE.100.052601

Тези доповідей на наукових конференціях:

- Semenov A. Complex permittivity of disperse systems with penetrable particle-host interphase / A. Semenov, M. Sushko // 4-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2012. P. 175.
- 2. Семенов А.К. Роль межфазной границы в формировании проводимости и диэлектрической проницаемости мелкодисперсных систем / А.К. Семенов, М.Я. Сушко // 25-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2012. P. 221.

- 3. Sushko M. Ya. Finding the parameters of the interphase layers in fine dispersions with dielectric spectroscopy studies near the electrical percolation threshold / M.Ya. Sushko, A.K. Semenov // 5-th International Symposium: Methods and Applications of Computational Chemistry, abstract Kharkiv (Ukraine), 2013. P. 44.
- 4. Sushko M. Ya. Effect of interphase on the effective electrophysical parameters of fine dispersions and nanofluids / M.Ya. Sushko, A.K. Semenov // 6-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2014. P. 177.
- 5. Семенов А. К. Диэлектрическая проницаемость и проводимость дисперсных систем с неоднородной межфазной границей / А.К. Семенов, М.Я. Сушко // 26-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2014. P. 163.
- 6. Semenov A. K. A model for conductivity and permittivity of heterogeneous systems with complex microstructures / A.K. Semenov, M.Ya. Sushko // 2015 International Young Scientists Forum on Applied Physics, abstract – Dnipropetrovsk (Ukraine), 2015. – P. 1.
- 7. Бабий К. А Особенности электрической проводимости дисперсных систем на основе полимерных матриц / К.А. Бабий, А.К. Семенов, М.Я. Сушко // 27-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2016. Р. 28.
- 8. Семенов А. К. Роль міжфазних шарів у формуванні провідних та діелектричних властивостей дісперсноподібних систем: модель та застосування / А.К. Семенов, М.Я. Сушко // International conference: Development of innovation in the technical, physical and mathematical fields of sciences, abstract Mykolayiv (Ukraine), 2016. P. 21.
- 9. Sushko M. Ya. Effective electrical conductivity of composite polymer electrolytes / M.Ya. Sushko, A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 81.

- Semenov A. K. Is the classical differential scheme for permittivity of emulsions consistent? / A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 124.
- 11. Sushko M. Ya. Recent developments in the theory of electrodynamic homogenization of random particulate systems / M.Ya. Sushko, A.K. Semenov // 5-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2019. P. 160.
- 12. Semenov A. K. Hard-core—penetrable-shell model for effective electric parameters of random particulate systems / A.K. Semenov, M.Ya. Sushko // 7-th International Conference: Nanotechnologies and Nanomaterials, abstract Lviv (Ukraine), 2019. P. 257.
- 13. Семенов А. К. Моделювання електрофізичного відгуку дисперсних систем з твердим дисперсійним середовищем / А.К. Семенов, М.Я. Сушко // 28-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2019. Р. 90.

3MICT

Списон	к основних позначень, скорочень та термінів	10
Вступ		11
Розділ	1. Сучасний стан теоретичних досліджень	16
1.1.	Теорія перколяції	16
1.2.	Класичні підходи Максвелла-Гарнетта та Бругемана	17
	1.2.1. Теорія Накамури Нана Вічорека	20
1.3.	Диференціальний та поступовий ("інкрементний") підходи	22
1.4.	Теорія сильних флуктуацій	25
1.5.	Метод компактних груп неоднорідностей	29
1.6.	Межі Хашина-Штрікмана	35
1.7.	Висновки	36
Розділ	2. Досліджувана модель	38
2.1.	Узагальнення МКГ для провідних систем	38
2.2.	Вибір електродинамічної гомогенізації	43
2.3.	Модель тверде ядро-проникна оболонка	44
	2.3.1. Узагальнення на електрично неоднорідні оболонки	46
2.4.	Основні теоретичні результати	48
2.5.	Висновки	50
Розділ	3. Тестування моделі на існуючих числових результа-	
	тах симуляцій RRN з провідності	52
3.1.	Алгоритм Random Resistor Network (RRN)	52
	3.1.1. Зміна геометричних параметрів оболонок	54
	3.1.2. Зміна електричних параметрів неоднорідних оболонок	55
3.2.	Порівняння з числовими даними з провідності	56
	3.2.1. Знаходження положень максимумів провідності	58

3.3.	Тестування моделі у випадку неоднорідних оболонок	61
Розділ	4. Застосування моделі до аналізу ефективної провід-	
	ності композитних електролітів	63
4.1.	Процедура обробки експериментальних даних	63
4.2.	Тверді композитні електроліти	64
4.3.	Полімерні композитні електроліти	67
	4.3.1. Концентраційна залежність	68
	4.3.2. Температурна залежність	72
4.4.	Висновки	74
Розділ	5. Ефект електричної перколяції в рамках моделі	79
5.1.	Аналіз провідності моделі з електрично однорідною оболонкою.	79
	5.1.1. Поріг електричної перколяції	79
	5.1.2. Ефективні критичні індекси провідності	81
5.2.	Поведінка квазістатичної ефективної проникності	83
	5.2.1. Ефект подвійної перколяції	84
5.3.	Порівняння з експериментальними даними	86
5.4.	Висновки	88
Розділ	6. Аналіз диференціального підходу в рамках МКГ	89
6.1.	Формулювання МКГ для аналізу диференціальної схеми	89
6.2.	Розвинення АМБ в рамках МКГ для діелектричних систем	91
6.3.	Диференціальна схема в рамках МКГ та її аналіз	93
	6.3.1. Модифікації класичних підходів АМБ	94
6.4.	Висновки	97
Висно	вки	98
Списо	к використаних джерел	100
Додато	ок 1. Список публікацій здобувача та апробація резуль-	
	татів писертації	110

СПИСОК ОСНОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ ТА ТЕРМІНІВ

МКГ – метод компактних груп

ММГ – модель Максвела-Гарнетта

СМБ – симетрична модель Бругемана

АМБ – асиметрична модель Бругемана

УПЕС – узагальнений підхід ефективного середовища

ХШ – Хашин-Штрікман

ТСФ – теорія сильних флуктуацій

RRN – Random Resistor Network

 ε – дійсна частина квазістатичної діелектричної проникності

 σ – статична провідність

 ω – циклічна частота поля

 $\hat{arepsilon}$ – комплексна квазістатична діелектрична проникність

c – об'ємна концентрація твердих ядер частинок

 ϕ – об'ємна концентрація ядер разом з оболонками

 δ — відношення товщини оболонки до радіусу ядра

 $\delta \hat{arepsilon}(\mathbf{r})$ — локальні відхилення комплексної проникності за рахунок компактних груп

ВСТУП

Актуальність теми. Актуальність роботи визначається як нагальними практичними задачами створення та застосування нових композитних матеріалів з бажаними та контрольованими електрофізичними властивостями (наприклад, тверді композитні та полімерні композитні електроліти), суттєво відмінними від властивостей природних речовин, так і необхідністю побудови і вдосконалення надійних теоретичних моделей для кількісного опису та діагностики їх характеристик.

Робота присвячена побудові та аналізу теоретичної моделі для опису найменш дослідженого, але найбільш поширеного типу тривимірних невпорядкованих систем, утворених диспергуванням частинок наповнювача в несучу матрицю. Ключовими проблемами, далекими до свого розв'язання, при створенні послідовної теорії таких систем є врахування різного роду міжфазних ефектів (нерегулярність форми частинок; контактний опір; утворення оксидних шарів; формування високопровідних областей з підвищеною концентрацією дефектів чи іонів; аморфізація полімерної матриці тощо), змін властивостей самої матриці (внаслідок неконтрольованого легування, забруднення, змін внутрішньої структури тощо) та послідовний розрахунок багаточастинкових поляризаційних та кореляційних ефектів.

Побудована в дисертаційній роботі аналітична теорія ефективного квазістатичного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро-проникна оболонка є багаточастинковою та дозволяє враховувати вплив міжфазних та матричних ефектів через моделювання одночастинкового електричного профілю комплексної діелектричної проникності оболонок. Здобуті основні теоретичні співвідношення між ефективною статичною електричною провідністю системи та електричними і геометричними параметрами компонентів підтверджуються результатами їх порівняння

з існуючими даними симуляцій методом Random Resistor Network (RRN) та спроможністю адекватно описувати широкі масиви експериментальних даних для ефективної квазістатичної провідності твердих композитних і полімерних композитних електролітів, ефективних електричної провідності та діелектричної проникності в околі порогу електричної перколяції в системі діелектрик-провідник із міжфазним шаром. Теорія також дозволяє показати непослідовність та обмеженість поширеної диференціальної схеми для обчислення ефективних електричних параметрів гетерогенних систем.

Зв'язок з науковими програмами, планами, темами. Дисертаційна робота виконувалась на кафедрі теоретичної фізики і астрономії Одеського національного університету імені І. І. Мечникова, а також є складовою частиною досліджень, які проводились за держбюджетною темою "Дослідження термодинамічних, критичних та кінетичних властивостей рідких металів та їх сплавів" No 0118U000202, а також за держбюджетною темою "Рівняння стану, термодинамічні та кінетичні властивості нанофлюїдів. Дослідження структурування нанофлюїдів на основі кореляційної спектроскопії та спектроскопії діелектричної проникності" No 113U000374.

Мета, задачі, об'єкт, предмет та методи досліджень. *Метою* роботи є побудова теорії ефективних електричних властивостей невпорядкованих дисперсних систем частинок з морфологією тверде ядро-проникна оболонка. У зв'язку з цим були поставлені *задачі*:

- 1. Розробити теорію електродинамічної гомогенізації невпорядкованих систем провідних частинок у рамках методу компактних груп (МКГ) [1–4], для чого узагальнити та замкнути МКГ на випадок провідних частинок.
- 2. Проаналізувати в рамках цієї теорії ефективні електричні властивості невпорядкованих систем частинок з морфологією тверде ядропроникна оболонка та протестувати теорію шляхом порівняння отриманих результатів з даними числових симуляцій.

- 3. Дослідити застосовність теорії до опису електричних властивостей твердих та полімерних композитних електролітів.
- 4. Дослідити застосовність теорії до опису електричної перколяції в дисперсноподібних композитах.
- 5. Виконати критичний аналіз диференціальної схеми обчислення ефективних електрофізичних параметрів гетерогенних систем

Об'ект дослідження: невпорядковані дисперсні системи частинок з морфологією тверде ядро-проникна оболонка.

Предмет дослідження: ефективні електрична провідність та діелектрична проникність.

Методи дослідження. У роботі був використаний метод компактних груп неоднорідностей [1–4], який дозволяє врахувати багаточастинкові поляризаційні і кореляційні ефекти в довгохвильовому межі, уникаючи деталізації їх розрахунку.

Наукова новизна отриманих результатів. В роботі отримано наступні результати:

- В рамках методу компактних груп неоднорідностей побудовано внутрішньо замкнену статистичну модель квазістатичного електричного відгуку макроскопічно однорідних та ізотропних дисперсних систем частинок з морфологією типу тверде ядро—проникна оболонка.
- Показано адекватність моделі для опису концентраційних залежностей статичної провідності, отриманих методом числових симуляцій RRN для модельних систем з електрично однорідними та неоднорідними оболонками, та її суттєві переваги над моделям Максвелла-Гарнетта, Бруггемана та Накамури-Нана.
- Показано застосовність теорії до кількісного опису експериментальних даних з ефективної провідності твердих композитних та полімерних композитних електролітів та аналізу ролі різних фізико-хімічних механізмів у її формуванні. Внески останніх можна ефективно врахувати через профіль комплексної діелектричної проникності проникних

оболонок.

- Показано застосовність теорії до кількісного опису ефективних електричної провідності та діелектричної проникності твердих невпорядкованих композитів в околі порогу електричної перколяції. Встановлено залежність положення порогу перколяції від геометричних параметрів оболонки. Продемонстровано залежність ефективних критичних індексів для таких систем від геометричних та електричних параметрів компонентів та способу обробки експериментальних даних.
- Показано внутрішню непослідовність та загальну обмеженість диференціальної схеми для аналізу ефективних квазістатичних електричних параметрів диспесних систем.

Практичне значення отриманих результатів. Розвинута теорія може розглядатися як новий гнучкий інструмент для аналізу та діагностики як ефективних електрофізичних параметрів невпорядкованих композитних систем, так і існуючих методів їх вивчення.

Особистий внесок здобувача. Три статті [1*, 3*, 4*] виконані у співавторстві з науковим керівником. Загальна постановка задач статей [1*, 3*, 4*] належить доц. Сушку М.Я.. При роботі над цими статтями здобувач брав участь в пошуку та аналізі пов'язаних з ними теоретичних матеріалів та експериментальних даних, виконував з науковим керівником паралельні взаємо-контролюючі теоретичні розрахунки та обробки даних симуляцій та експерименту, брав участь в інтерпретації, аналізі результатів та підготовці їх до опублікування. Також здобувачем було виказано ідею про використання крайових умов для замикання процедури гомогенізації, проаналізовано проблему відображення результатів досліджуваної моделі на результати існуючих комп'ютерних симуляцій, розв'язано задачу відновлення провідності реальної матриці через параметри дальньої частини модельного профілю провідності оболонки.

Постановка задачі статті $[2^*]$ та її повне розв'язання належать здобувачу.

Апробація результатів дисертації. Результати дисертації доповідалися на семінарах кафедри теоретичної фізики, а також були представлені автором на наукових конференціях/школах/семінарах, з яких дванадцять міжнародних:

- 1. 4-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2012.
- 2. 25-th International Conference: Disperse Systems, Odesa, Ukraine, 2012.
- 3. 5-th International Symposium: Methods and Applications of Computational Chemistry, Kharkiv, Ukraine, 2013.
- 4. 6-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2014.
- 5. 26-th International Conference: Disperse Systems, Odesa, Ukraine, 2014.
- 6. 2015 International Young Scientists Forum on Applied Physics, Dnipropetrovsk Ukraine, 2015.
- 7. 27-th International Conference: Disperse Systems, Odesa, Ukraine, 2016.
- 8. International conference: Development of innovation in the technical, physical and mathematical fields of sciences, Mykolayiv, Ukraine, 2016.
- 9. 8-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2018.
- 10. 5-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2019.
- 11. 7-th International Conference: Nanotechnologies and Nanomaterials, Lviv, Ukraine, 2019.
- 12. 28-th International Conference: Disperse Systems, Odesa, Ukraine, 2019.

Структура та обсяг роботи. Дисертація складається зі вступу, п'яти розділів, висновків і списку використаних джерел, що містить 81 посилання. Загальний обсяг дисертації — 115 сторінок друкованого тексту.

РОЗДІЛ 1 СУЧАСНИЙ СТАН ТЕОРЕТИЧНИХ ДОСЛІДЖЕНЬ

В даному Розділі надається огляд деяких з основних результатів теоретичного дослідження електрофізичних властивостей (діелектричної проникності та електричної провідності) невпорядкованих дисперсних систем, що досі використовуються. Для простоти, частинки дисперсної фази будуть вважатися сферичними, якщо не буде зазначено інше. У даному Розділі й надалі буде використовуватись система СГС(Е).

1.1. Теорія перколяції

Термін "перколяція" (регсоlation – англ.), або "протікання" вперше з'явився у роботі Бродбента і Хаммерслі у 1957 році [5], де математично вивчалася загальна задача проходження "рідини" через "пористий матеріал". Суть цих термінів змінювалась в залежності від задачі [6]: аномальний ріст електричної провідності в дисперсних системах типу діелектрик-провідник [7, 8] та композитних електролітах [9–11], зміна модулю пружності в залежності від концентрації розколів [12], розкол гетерогенних структур [13], розповсюдження епідемій [14, 15], тощо. Через те, що такі процеси дуже розповсюджені не тільки в фізиці, теорія перколяції досить швидко отримала сильну математичну базу (див. [6, 16–21]). Далі перколяція буде розглянута с точки зору вивчення електричних характеристик дисперсних систем [22], тобто в якості "рідини" буде виступати електричний струм, в якості "пористого матеріалу" – дисперсна система, в якості самих "пор" – провідні частинки дисперсної фази.

Спочатку розглянемо випадок непровідного дисперсійного середовища.

Існує ймовірність P_{∞} того, що при деякій концентрації провідної частинок електричний струм буде проходити через систему за рахунок утворення неперервного провідного ланцюгу частинок.

1.2. Класичні підходи Максвелла-Гарнетта та Бругемана

Одним з перших спроб опису ефективних характеристик дисперсних систем був підхід Максвелла-Гарнетта (МГ) [23, 24], який базується на ідеї, що при низьких концентраціях у квазістатичному режимі кожну частинку системи можна розглядати в матриці окремо від інших (нехтуючи кореляційними та поляризаційними ефектами, викликаними наявністю інших частинок). Для того, щоб отримати формальний вигляд підходу МГ простіше всього скористатися підходом Клаузіуса-Массотті для розріджених газів в середовищі з проникністю ε_0 :

$$\frac{\varepsilon_{\text{eff}} - \varepsilon_0}{\varepsilon_{\text{eff}} + 2\varepsilon_0} = \frac{4\pi}{3} \sum_{j} N_j \alpha_i, \tag{1.1}$$

де підсумування ведеться по всім типам молекул газу j, що мають поляризовність α_i . В рамках методу МГ поляризованість молекул замінюється поляризованістю частинок дисперсної фази (див. [25]); для двофазної системи шарів отримаємо:

$$\frac{\varepsilon_{\text{eff}} - \varepsilon_0}{2\varepsilon_0 + \varepsilon_{\text{eff}}} = c \frac{\varepsilon_1 - \varepsilon_0}{2\varepsilon_0 + \varepsilon_1},\tag{1.2}$$

де ε_1 – проникність дисперсної фази, що має обємну концентрацію c. Аналогічний результат можна отримати й для провідності розглядаючи відповідну модифікацію підходу (1.1).

Судячи вже з визначення підходу МГ можна зробити висновок, що він є суттєво одночастинковим наближенням, та не може використовуватися на концентраціях при яких міжчастинковими ефектами не можна знехтувати. Саме через цей факт підхід МГ неспроможній дати ефект перколяції для двофазних систем з істотним контрастом провідностей ($\sigma_1/\sigma_0\gg 1$). Крім цього, підхід МГ для систем еліпсоїдальних частинок в межі великих концентрацій ($c\to 1$) дає нефізичні результати. Нарешті, якщо йде мова про багатофазні системи, підхід МГ також дає нефізичні результати: при концентраціях включень, що відповідають стану коли вся система повинна бути зайнята лише дисперсною фазою, ефективні характеристики, в рамках підходу МГ, будуть також залежати й від матриці. Різноманітні узагальнення та полі-

пшення цоього піходу можна знайти в [26]. Зокрема, узагальнення формули (1.2) на комплексні значення проникностей носить назву підходу Максвела-Вагнера [27].

Бругеману вдалося [28,29] обійти ряд недоліків підходу Максвелла-Гарнетта, розглядаючи дисперсну систему симетричним чином. Розглянемо ту ж саму двофазну систему діелектричних шарів. В рамках моделі Бругемана кожна з компонент системи (включаючи матрицю) розглядається окремо в ефективному середовищі, $\varepsilon_{\rm eff}$ якого формується всіма іншими компонентами; при цьому вважається, що середній за об'ємом стрибок значення потоку електричного поля крізь i-ті компоненти системи $\Delta \Phi_i$ дорівнює нулю:

$$(1-c)\Delta\Phi_0 + c\Delta\Phi_1 = 0. (1.3)$$

Для сферичних включень напруженості поля всередині \mathbf{E}_{in} та зовні \mathbf{E}_{out} *i*-ої компоненти мають вигляд (див. [30]):

$$\mathbf{E}_{\rm in} = \frac{3\varepsilon_{\rm eff}}{2\varepsilon_{\rm eff} + \varepsilon_i} E_0 \left(\cos\theta \,\mathbf{r} - \sin\theta \,\vartheta\right),\tag{1.4}$$

$$\mathbf{E}_{\text{out}} = \left(1 + 2\frac{\varepsilon_i - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_i} \frac{R^3}{r^3}\right) E_0 \cos\theta \,\mathbf{r} + \left(-1 + \frac{\varepsilon_i - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_i} \frac{R^3}{r^3}\right) E_0 \sin\theta \,\vartheta, \tag{1.5}$$

де ${\bf r}$ та ϑ – орти сферичної системи координат; ${\bf E}_0$ – прикладене однорідне поле. Тоді

$$\Delta\Phi_{i} = 2\pi \left[\int_{0}^{R} dr r \varepsilon_{i} E_{\text{in}} - \int_{0}^{R} dr r \varepsilon_{\text{eff}} E_{\text{out}} \right] = 2\pi R^{2} \varepsilon_{\text{eff}} \frac{\varepsilon_{i} - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_{i}} E_{0}.$$
 (1.6)

Підставляючи (1.6) до (1.3) отримуємо правило Бругемана для знаходження ε_{eff} двофазної дисперсної системи діелектричних шарів:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_1} = 0.$$
 (1.7)

Аналогічним чином, розглядаючи провідні та слабко-провідні системи, можна знайти рівняння для знаходження σ_{eff} та $\hat{\varepsilon}_{\text{eff}} = \varepsilon_{\text{eff}} + i4\pi\sigma_{\text{eff}}/\omega$, що матимуть таку ж саму структуру, що й (1.7) [31].

Через такий спосіб моделювання системи цей підхід отримав назву підходу ефективного середовища Бругемана; він легко узагальнюється на системи несферичних та анізотропних частинок, багатофазні та нелінійні системи, та став основою для цілого ряду теорій, що досі застосовуються та розвиваються (див. наприклад [25, 31, 32]).

Зазначимо, що у наближенні низьких концентрацій $(c \to 0)$ підхід Бругемана зводиться до підходу МГ, але невідмінну від останнього для провідних систем з $\sigma_1/\sigma_0 \gg 1$ він показує перколяційну поведінку провідності:

$$\sigma_{\text{eff}} \propto \begin{cases} (c_{\text{c}} - c)^{-s}, & c < c_{\text{c}}, \\ (c - c_{\text{c}})^{t}, & c > c_{\text{c}}, \end{cases}$$
 (1.8)

де c_c — поріг перколяції, що дорівнює 1/3 для сферичних частинок; s та t — критичні індекси перколяції, що в рамках теорії ефективного середовища дорівнюють одиниці. Виходячи зі стандартної теорії перколяції [6,16,18,20-22,33,34] такі значення c_c , s та t відповідають наближенню середнього поля. Це пов'язано з тим, що при усередненні стрибка потоку поля нехтують міжчастинковими ефектами, призводячи до того, що властивості ефективного середовища, в якому розглядається кожна з компонент системи, формуються всіма іншими компонентами еквівалентним чином незалежно від їх відстані до розглядуваного компонента.

Інший істотній недолік цього підходу проявляється при розгляданні системи еліпсоїдальних частинок [35]: крім того, що як і для моделі МГ, модель Бругемана дає нефізичні результати, він передбачає залежність порогу перколяції від форми самих частинок. Це суперечить результатам аналізу перколяційної поведінки таких систем [36], що свідчать про незалежність порогу перколяції від форми включень — концепція універсальності. Це, як і для підходу МГ, також є наслідком розглядання кожної частинки окремо від інших. Тут також треба зазначити, що для несферичних частинок компонента матриці, в рамках моделі Бругемана, має таку ж саму форму, що фізично невиправдано [37]. Ці та інші питання щодо недоліків та границь застосування підходу Бругемана можна знайти в [25].

1.2.1. Теорія Накамури Нана Вічорека

Спроба модифікувати підхід ефективного середовища Бругемана на випадок систем частинок, що мають проникні оболонки був вперше запропонований Наном для твердих двофазних композитних електролітів [9, 38, 39]. Цей підхід базується на емпіричному методі Накамури [40], що по суті є ще одною спробою модифікації підходу Бругемана задля поліпшення його перколяційної поведінки.

В рамках методу Накамури робиться припущення, що двофазна дисперсна система може бути розглянута за законом Бругемана, але для того, щоб у граничних випадках малих та високих концентрацій ефективна провідність задовільняла правилу Максвела-Гарнетта, провідність матриці замінювалась нижньою границею Хашіна-Штрікмана (6.23), а провідність частинок — верхньою (6.22). Якщо ж йде мова про частинки з проникною оболонкою, то такі системи, за припущенням Нана, можна розглядати в рамках методу Накамури в двох концентраційних областях, до та після максимуму провідності, наступним чином.

1. Трьохфазна система матриця-ядро-оболонка розглядається як квазідвофазна — матриця-дисперсна фаза, де провідність останньої дорівнює ефективній провідності σ_{cs} частинки (радіусом R та провідністю σ_1) з оболонкою (товщиною t та провідністю σ_2); ця провідність розраховується за правилом Максвела-Гарнетта [41, 42]:

$$\sigma_{cs} = \sigma_1 \frac{2\sigma_1 + \sigma_2 + 2\psi(\sigma_2 - \sigma_1)}{2\sigma_1 + \sigma_2 - \psi(\sigma_2 - \sigma_1)},$$
(1.9)

де
$$\psi = (1 + \delta)^{-3}$$
; $\delta = t/R$.

2. До максимуму провідності $(c \leqslant c^*)$ вважається, що частинки можуть перекриватися, тому поріг перколяції дорівнює $c_c \approx 0.28$ [9]. Ефективна провідність σ_{eff} системи знаходиться з рівняння:

$$(1 - \phi_t) \frac{\sigma_0^- - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c(\sigma_0^- - \sigma_{\text{eff}})} + \phi_t \frac{\sigma_1^- - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c(\sigma_1^- - \sigma_{\text{eff}})} = 0, \qquad (1.10)$$

де σ_0^- дорівнює нижній границі Хашіна-Штрікмана при нульовій провідності другої фази (σ_0 – провідність матриці):

$$\sigma_0^- = 2\sigma_0 \frac{1 - \phi_t}{2 + \phi_t}; \tag{1.11}$$

 σ_1^- розраховується за верхнею межею Хашіна-Штрікмана, де провідність матриці вважається нульовою:

$$\sigma_1^- = 2\sigma_{cs} \frac{\phi_t}{3 - \phi_t}.\tag{1.12}$$

3. Максимум провідності, в рамках підходу Накамури-Нана, досягається при $\phi_t = 1$, або $c^* = \psi$. Після максимуму провідності $(c > c^*)$ вважається, що весь матеріал початкової матриці був витіснений матеріалом оболонки частинок, тому в цій області, в рамках підходу Накамури-Нана, розглядається двофазна система твердих частинок у матриці, що має властивості поверхневих шарів, тому поріг перколяції тепер приймається за $c_c' = 0.15$ [9]; $\sigma_{\rm eff}$ знаходиться з рівняння:

$$(1-c)\frac{\sigma_0^+ - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c'(\sigma_0^+ - \sigma_{\text{eff}})} + (c-\psi)\frac{\sigma_1^+ - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c'(\sigma_1^+ - \sigma_{\text{eff}})} = 0.$$
 (1.13)

Тут σ_0^+ знаходиться як верхня границя Хашіна-Штрікмана для системи, що складається з матриці σ_c та включень з нульовою провідністю:

$$\sigma_0^+ = 2\sigma_c \frac{1 - c + \psi}{2(1 + c) - \psi}; \tag{1.14}$$

 σ_2^+ знаходиться як нижня межа Хашіна-Штрікмана для системи з нульовою матрицею та включеннями провідністю σ_1 :

$$\sigma_1^+ = 2\sigma_1 \frac{c - \psi}{3 - c + \psi}. (1.15)$$

Такий частково-гладкий підхід дозволяє отримати максимум провідності, але знову ж таки має ряд недоліків: 1) це емпіричний підхід, що має в якості бази дуже грубі фізичні міркування; 2) хоча й з міркувань слідує, що частинки перекриваються, формально вони є непроникними, а сама властивість проникності враховується за рахунок різних значень порогів перколяції

та використання границь Хашіна-Штрікмана для різних типів систем; 3) оболонки можуть бути лише електрично однорідними. Останній фактор дуже звужує клас систем, до яких можна застосувати це наближення.

Однією з вдалих спроб розширення цієї теорії на клас систем типу полімерних композитних електролітів був запропонований Вічореком та колегами [11,43,44]. Для того щоб взяти до уваги проникність оболонок було запропоновано ввести залежність відносної товщини оболонки δ від концентрації частинок c; електрична неоднорідність оболонки враховувалась за рахунок представлення у вигляді поліному другого ступеня за c параметра T_g , який пов'язаний з провідністю через емпіричний закон Фогеля-Таммана-Фульхера, що часто використовується для обробки температурної залежності полімерів:

$$\sigma = \frac{A}{\sqrt{T}} \exp\left[-\frac{B}{T - T_0}\right],\tag{1.16}$$

де $A,\ B$ та T_0 – підгінні параметри; T_0 зазвичай беруть на 30-50 градусів нижче ніж T_g [44].

1.3. Диференціальний та поступовий ("інкрементний") підходи

Підхід ефективного середовища Бругемана, що був розглянутий у попередньому Розділі, відноситься до класу так званих симетричних підходів моделювання мікроструктури гетерогенної системи, в рамках яких кожна з компонент системи (матриця та частинки дисперсної фази) розглядаються еквівалентним чином. Через це надалі, як прийнято, цей підхід будемо називати симетричною моделлю Бругемана (СМБ). Класичним прикладом асиметричного підходу є розглянутий підхід Максвела-Гарнетта, де при розгляданні системи робиться чітке розмежування між термінами "матриця" та "частинки". Диференціальний [28, 45, 46] та інкрементальний [47, 48] підходи по суті є розвинення ідеї Максвела-Гарнетта на клас підходів ефективного середовища.

Розглянемо найпростішу діелектричну систему невпорядкованих кульок з дійсною проникністю ε_1 розташованих в матриці з проникністю ε_0 , та при-

пустимо, що значення ефективної проникності відомо при деякій концентрації c включень та дорівнює ε (див. рис. 1.1(a)). В рамках диференціального підходу ставиться задача знайдення зміни ефективної проникності $\Delta \varepsilon$ цієї системи при збільшенні концентрації частинок на малу величину Δc . Одним з можливих варіантів вирішення цієї задачі є асиметрична модель Бругемана [28] (АМБ) (для комплексних проникностей – модель Бругемана-Ханая або Максвела-Вагнера-Ханая [45, 46]): вважається, що нова порція частинок (з концентрацією $\Delta c/(1-c)$ у вільній від інших частинок системи області) після її додавання без втрати загальності може розглядатися лише на фоні ефективної проникності ε . Іншими словами, робиться припущення, що взаємодія між старими частинками та новими може бути замінена взаємодією нових частинок з ефективним середовищем, сформованим старими частинками. Те ж саме стосуються, звичайно, й початкової концентрації c=0. Через те, що Δc вважається малою величиною, нову проникність $\varepsilon' \equiv \varepsilon + \Delta \varepsilon$ можна шукати за стандартним законом Максвела-Гарнетта (1.2) (нехтуючи поправками малих величин другого та старших порядків):

$$\frac{\Delta c}{1 - c} \frac{\varepsilon_1 - \varepsilon}{2\varepsilon + \varepsilon_1} = \frac{\varepsilon' - \varepsilon}{2\varepsilon + \varepsilon'} \approx \frac{\Delta \varepsilon}{3\varepsilon}.$$
 (1.17)

З цих припущень видно, що в рамках АМБ при будь-якій концентрації ефективна проникність формується рекурсивним ("інкрементним", поступовим) чином, крок за кроком по законом Максвела-Гарнетта (див. рис. 1.1(б)). Числові методи вирішення рівняння (1.17) носять назву поступового ("інкрементного") підходу Максвела-Гарнетта (incremental Maxwell-Garnett formalism) [47,48].

Переходячи до нескінченно малих в (1.17), отримуємо диференціальне рівняння:

$$\frac{dc}{1-c} = \frac{d\varepsilon}{3\varepsilon} \frac{(2\varepsilon + \varepsilon_1)}{(\varepsilon_1 - \varepsilon)},\tag{1.18}$$

що має особливість в точці c=1, а рішення в цій точці має задовольняти рівності $\varepsilon=\varepsilon_1$. Закон АМБ отримуємо інтегруючи ліву частину (1.18) в

Рис. 1.1: Схематичне представлення диференціального алгоритму АМБ: (а) додавання порції нових частинок з концентрацією $\Delta c/(1-c)$ у вільній від частинок області в дане ефективне середовище з проникністю ε (світліша область) призводить до (б) формування нового ефективного середовища з проникністю $\varepsilon + \Delta \varepsilon$, що грає роль матриці для наступної порції включень. Таким чином, попередні порції електрично взаємодіють з новими тільки за рахунок ефективного середовища (нові частинки зображені темнішим кольором).

межах від нуля до c та праву — від ε_0 до ε_{eff} :

$$1 - c = \frac{\varepsilon_{\text{eff}} - \varepsilon_1}{\varepsilon_0 - \varepsilon_1} \left(\frac{\varepsilon_0}{\varepsilon_{\text{eff}}}\right)^{1/3}.$$
 (1.19)

Аналогічним чином знаходиться рівняння АМБ для випадку високих концентрацій, вважаючи включеннями порції матеріалу матриці, що зменшують кількість частинок [46]:

$$c = \frac{\varepsilon_{\text{eff}} - \varepsilon_0}{\varepsilon_1 - \varepsilon_0} \left(\frac{\varepsilon_1}{\varepsilon_{\text{eff}}}\right)^{1/3}.$$
 (1.20)

ПРИМЕНЕНИЕ ДЛЯ ЄМУЛЬСИЙ, ГРАФИКИ, ГДЕ РАБО-ТАЕТ ГДЕ НЕТ

Підходи (1.19) та (1.20) дають непогані результати лише при, відповідно, малих та високих концентраціях включень або на частотах порядку гігагерц. У Розділі 6 буде доведено, що диференціальна та поступова схеми моделювання дисперсних систем у довгохвильовому наближенні не є повним, як вже частково зазначалося в літературі [37], та повинні використовуватись на практиці з обережністю.

1.4. Теорія сильних флуктуацій

Одними з перших засновників підходу теорії сильних флуктуацій (ТСФ) у 1960-их роках були Бюрре [49] та група радянських вчених – Рижов, Тамойкін та Татарський [50, 51], далі теорія розвивалася в роботах Тсанга [52] та ін., та отримала остаточну назву в роботах Маки, Лакхтакії та Вейглхофера [53, 54] у 2000-их роках. Останні автори в побудові теорії спиралися на результати Тсанга [52] розробивши схему вирішення загальної задачі про знаходження ефективних електромагнітних характеристик сприйнятливості в неоднорідних стахостичних середовищах, користуючись узагальненим розкладом Дайсона перенормованого на сингулярний вклад електричного поля [55]. При цьому задля найшвидшого збігання ряду та уникнення розбіжностей в теорії закладалась рівність нулю першого моменту стахостичної змінної, що задає локальні значення характеристик системи. Задля демонстрації загальної структури підходу розглянемо лише задачу розрахунку ефективної комплексної діелектричної проникності $\varepsilon_{\rm eff}(\omega)$ в макроскопічно однорідних та ізотропних непровідних та немагнітних середовищ у так званому білокальному наближенні [52] (наближенні Бюрре [49]): з точністю до другого порядку малості за відношенням лінійного розміру частинки a до довжини хвилі λ в середовищі. Ефективна проникність $\varepsilon_{\rm eff}$ моделюється як коефіцієнт пропорційності між середніми індукцією **D** та напруженістю **E** електричного поля у припущені, що ці поля залежать від часу як $\sim \exp{(i\omega t)^1}$:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \langle \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \varepsilon_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle,$$
 (1.21)

де $\varepsilon(\mathbf{r})$ – локальне значення діелектричної проникності в середовищі; кутові дужки позначають статистичне усереднення. Поле $\mathbf{E}(\mathbf{r})$ знаходиться, як рішення рівняння розповсюдження електромагнітної хвилі в середовищі (див. [50, 52]), вважаючи, що джерело випромінювання знаходиться досить

¹Можна розглянути й загальний випадок часової залежності, але він все одно зведеться до даного за рахунок взяття Фур'є образів за часом.

далеко від розглянутої області:

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \varepsilon_f \mathbf{E}(\mathbf{r}) = -k_0^2 [\varepsilon(\mathbf{r}) - \varepsilon_f] \mathbf{E}(\mathbf{r}), \tag{1.22}$$

де Δ – оператор Лапласу; k_0 – модуль хвильового вектора в вакуумі; $\varepsilon_{\rm f}$ – допоміжна проникність, що не залежить від координат (її величина та зміст, в рамках ТСФ, стане зрозумілим пізнише). Далі запишемо це рівняння в інтегральному вигляді

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \,\mathrm{T}(|\mathbf{r} - \mathbf{r}'|) [\varepsilon(\mathbf{r}') - \varepsilon_f] \,\mathbf{E}(\mathbf{r}'). \tag{1.23}$$

Тут $\mathbf{E}_0(\mathbf{r}) = \mathbf{E}_0 e^{i\mathbf{k}\mathbf{r}}$; \mathbf{E}_0 , $\mathbf{k} = \sqrt{\varepsilon_f} \, \mathbf{k}_0$ – відповідно, амплітуда та хвильовий вектор падаючої хвилі в середовищі з ε_f ; T – тензор Гріна (пропагатор) рівняння (1.22). Декартові компоненти тензора T, відносно фінітної обмеженої скалярної функції ψ у сенсі рівності

$$\int_{V} d\mathbf{r} \psi(\mathbf{r}) T(\mathbf{r}) = \int_{V} d\mathbf{r} \psi(\mathbf{r}) \widetilde{T}(\mathbf{r}),$$

можуть бути записані у наступному еквівалентному вигляді [56, 57]:

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = S_{\alpha\beta}\delta(\mathbf{r}) + \mathcal{P}\widetilde{T}_{\alpha\beta}(\mathbf{r}),$$
(1.24)

$$\mathcal{P}\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) \left(\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta} \right) e^{ikr} - \frac{1}{4\pi r} \left(\delta_{\alpha\beta} - e_{\alpha}e_{\beta} \right) e^{ikr},$$

де квазістатична частина (для сферичної виколотої області)

$$S_{\alpha\beta} = (3k_0^2 \varepsilon_{\rm f})^{-1} \delta_{\alpha\beta} e^{ikr};$$

символ \mathcal{P} позначає головну частину (principal value) в сенсі інтегрування; $e_{\alpha} = r_{\alpha}/r$ — нормовані компоненти радіус-вектору \mathbf{r} ; $k = \sqrt{\varepsilon_{\mathrm{f}}}k_0$ — модуль хвильового вектора в середовищі з проникністю ε_{f} ; $\delta_{\alpha\beta}$ — символ Кронекера; $\delta(\mathbf{r})$ — дельта-функція Дірака. Підставляючи (1.24) до (1.23) та користуючись явним виглядом сингулярної частини пропагатора, перенормуємо поле \mathbf{E} :

$$\mathbf{F}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - 3\varepsilon_f k_0^2 \int_V d\mathbf{r}' \, \mathcal{P}\widetilde{\mathbf{T}}(|\mathbf{r} - \mathbf{r}'|) \xi(\mathbf{r}') \, \mathbf{F}(\mathbf{r}'); \qquad (1.25)$$

$$\mathbf{F}(\mathbf{r}) = \frac{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})}{3\varepsilon_{\mathrm{f}}} \mathbf{E}(\mathbf{r}), \qquad \xi(\mathbf{r}) = \frac{\varepsilon(\mathbf{r}) - \varepsilon_{\mathrm{f}}}{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})}.$$

З фізичної точки зору, $\xi(\mathbf{r})$ спів-падає з поляризацією сфери проникністю $\varepsilon(\mathbf{r})$, що знаходиться в середовищі з проникністю ε_f . При цьому поля \mathbf{F} та \mathbf{E} грають роль зовнішнього та внутрішнього полів, відповідно. Ці вирази також можна знайти, якщо застосувати одразу ітераційну процедуру для сингулярних вкладів пропагатора [51].

Рівняння (1.25) вирішується методом ітерацій (також відомим як або розклад Борна, що базується на принципі стискуючого відображення), слідуючи за чим проходить усереднення кожного члена ряду окремо [55]. Задля найшвидшого збігання ряду та щоб позбавитись від секулярних (розбіжних) доданків, накладається наступна умова [50, 52]:

$$\langle \xi(\mathbf{r}) \rangle = 0. \tag{1.26}$$

З цього рівняння визначається значення ε_f , що виступає квазістатичної частини проникності. Крім цієї вимоги накладається умова на пропагатор: симетрія сингулярної (квазістатичної) частини $S_{\alpha\beta}$ пропагатора повинна збігатися з симетрією кореляційної функцій середовища [52]. Ми розглянемо лише сферично-симетричний випадок.

Після усереднення ітераційного ряду використовується метод підсумування Фейнманівських діаграм, що добре відомий з квантової теорії поля, остаточно ми отримаємо інтегральне рівняння Дайсоновського типу для середнього поля $\langle \mathbf{F} \rangle$:

$$\langle \mathbf{F}(\mathbf{r}) \rangle = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int d\mathbf{r}_1 d\mathbf{r}_2 \mathcal{P} \widetilde{\mathbf{T}}(\mathbf{r} - \mathbf{r}_1) \xi_{\text{eff}}(\mathbf{r}_1 - \mathbf{r}_2) \langle \mathbf{F}(\mathbf{r}_2) \rangle,$$
 (1.27)

де

$$\xi_{\text{eff}}(\mathbf{r}) = -\frac{1}{k_0^2} Q(\mathbf{r}), \qquad (1.28)$$

та Q — так званий масовий оператор, що складається з нескінченного ряду незвідних Фейнманівських діаграм. У випадку гаусового характеру стохастичної величини $\xi(\mathbf{r})$ (поле флуктуації вважається однорідним), масовий

оператор буде мати наступний вигляд [51]:

$$Q(\mathbf{r}_{1} - \mathbf{r}_{2}) = k_{0}^{4} \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{2}) \rangle \mathcal{P}\widetilde{T}(\mathbf{r}_{1} - \mathbf{r}_{2}) + k_{0}^{8} \int d\mathbf{r}_{3} d\mathbf{r}_{4} \mathcal{P}\widetilde{T}(\mathbf{r}_{1} - \mathbf{r}_{3}) \mathcal{P}\widetilde{T}(\mathbf{r}_{3} - \mathbf{r}_{4}) \mathcal{P}\widetilde{T} \times [\langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{2}) \rangle \langle \xi(\mathbf{r}_{3})\xi(\mathbf{r}_{4}) \rangle + \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{3}) \rangle \langle \xi(\mathbf{r}_{2})\xi(\mathbf{r}_{4}) + \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{4}) \rangle \langle \xi(\mathbf{r}_{2})\xi(\mathbf{r}_{3}) \rangle \rangle] + \dots$$

У білокальному наближенні у розрахунках обмежуються лише першим вкладом в масовий оператор. Строго кажучи, вкладами вищих порядків можна знехтувати за умовою:

$$\langle \xi^2 \rangle k_0 a \ll 1$$

для великомасштабних неоднорідностей ($k_0 a \gg 1$, де a – масштаб неоднорідностей $\xi(\mathbf{r})$), та

$$\langle \xi^2 \rangle k_0^2 a^2 \ll 1$$

для мало-масштабних неоднорідностей [51]. З останнього випадку видно, що граничний випадок малих неоднорідностей накладає дуже слабкі умови на величину флуктуацій ξ : остання нерівність дозволяє значення $\langle \xi^2 \rangle \gtrsim 1$ (сильні флуктуації).

Для розрахунку (1.36) в білокальному наближенні треба знайти наступний корелятор:

$$\langle \xi(\mathbf{r}_1)\xi(\mathbf{r}_2)\rangle = D_{\xi}R_{\xi}(|\mathbf{r}_1 - \mathbf{r}_2|), \tag{1.30}$$

де D_{ξ} – дисперсія $\xi(\mathbf{r})$, а $R_{\xi}(r)$ – нормована кореляційна функція ξ ($R_{\xi}(0)$ = 1). У низькочастотному наближенні ефективна проникність визначається як [52]:

$$\varepsilon_{\text{eff}} = \varepsilon_{\text{f}} + \frac{1}{4\pi} \xi_{\text{eff}}^{(0)},$$
(1.31)

де $\xi_{\mathrm{eff}}^{(0)}$ – Фур'є образ $\xi_{\mathrm{eff}}(\mathbf{r})$ в нулі:

$$\xi_{\text{eff}}^{(0)} = D_{\xi} k_0^2 \int d\mathbf{r} \mathcal{P} \widetilde{\mathbf{T}}(r) R_{\xi}(r). \tag{1.32}$$

Для простоти далі буде використана тривіальна кореляційна функція:

$$R_{\xi}(r) = \theta(a - r), \tag{1.33}$$

де $\theta(r)$ – функція Хевісайда. Підставляючи це до (1.32), отримаємо [52]:

$$\xi_{\text{eff}}^{(0)} = D_{\xi} k_0^2 \frac{2}{3} \left(\frac{a^2}{2} + \frac{i k_0 \sqrt{\varepsilon_f} a^3}{3} \right). \tag{1.34}$$

Таким чином рівняння для знаходження $\varepsilon_{\mathrm{eff}}$ прийме вигляд:

$$\varepsilon_{\text{eff}} = \varepsilon_{\text{f}} + D_{\xi} k_0^2 \frac{2}{3} \left(\frac{a^2}{2} + \frac{i k_0 \sqrt{\varepsilon_{\text{f}}} a^3}{3} \right), \tag{1.35}$$

де проникність $\hat{\varepsilon}_{\rm f}$ визначається з рівняння (1.26), тобто:

$$\left\langle \frac{\varepsilon(\mathbf{r}) - \varepsilon_{\mathrm{f}}}{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})} \right\rangle = 0. \tag{1.36}$$

Якщо ми маємо два значення випадкової величини $\varepsilon(\mathbf{r})$: ε_0 та ε_1 з ймовірностями (1-c) та c, відповідно, (випадок двофазної системи) рівняння для знаходження $\varepsilon_{\rm f}$ зведеться до рівняння Бругеманівського типу:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_f}{2\varepsilon_f + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_f}{2\varepsilon_f + \varepsilon_1} = 0, \tag{1.37}$$

тоді як дисперсія буде мати вигляд:

$$D_{\xi} = 9\varepsilon_{\rm f}^2 \left[(1 - c) \left(\frac{\varepsilon_0 - \varepsilon_{\rm f}}{2\varepsilon_{\rm f} + \varepsilon_0} \right)^2 + c \left(\frac{\varepsilon_1 - \varepsilon_{\rm f}}{2\varepsilon_{\rm f} + \varepsilon_1} \right)^2 \right]. \tag{1.38}$$

Як видно з (1.35), у квазістатичному наближенні ми отримаємо гомогенізацію теорії ефективного середовища, тож ефективна проникність буде знаходитися за (1.37).

В загальному випадку ТСФ можна розвинути для анізотропних середовищ, при цьому розраховуючи також й ефективну намагніченість системи [51,53].

1.5. Метод компактних груп неоднорідностей

Метод компактних груп неоднорідностей (МКГ) був розроблений М. Я. Сушко досить недавно [1, 4, 57], але він вже зарекомендував себе як ефективний підхід до опису довгохвильових діелектричних характеристик статистично однорідних та ізотропних гетерогенних систем різного типу: діелектричні властивості систем анізотропних частинок [3] та неоднорідних повністю

проникних частинок [4], нанофлюїдів [58], опис оптичних властивостей рідин поблизу критичної точки [59, 60]. Під терміном "компактна група" розуміється макроскопічна область неоднорідної системи, що має розміри набагато менші ніж довжина хвилі тестуючого поля. По відношенню до поля ці групи ведуть себе як точкові неоднорідності, що дозволяє звести задачу розрахунку напруженості електромагнітного поля у неоднорідному середовищі до підсумування ітераційних рядів лише від сингулярних вкладів. Таким чином у довгохвильовому наближенні вдається взяти до уваги всі багаточастинкові кореляційні та поляризаційні вклади, уникаючи прямого розрахунку пчастинкових вкладів.

Для того, щоб описати загальну суть МКГ обмежимося розгляданням статичного випадку макроскопічно однорідної та ізотропної системи \mathcal{D} однакових діелектричних шарів проникністю ε_1 , що знаходяться в однорідному середовищі (матриці) з проникністю ε_0 . Шукана ефективна діелектрична проникність ε_{eff} моделюється, як коефіцієнт пропорціональності між середніми напруженістю та індукцією електричного поля в середовищі:

$$\overline{\mathbf{D}(\mathbf{r})} = \overline{\varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r})} = \varepsilon_{\text{eff}}\overline{\mathbf{E}(\mathbf{r})},\tag{1.39}$$

де $\varepsilon(\mathbf{r})$ – локальне значення діелектричної проникності; риска зверху позначає усереднення за об'ємом 2 .

Для знаходження середніх $\overline{\mathbf{D}}$ та $\overline{\mathbf{E}}$ в рамках МКГ розглянемо допоміжну систему \mathcal{S} , що складається з реальної системи \mathcal{D} , розташованій у деякій однорідній матриці \mathcal{M} з поки невідомою проникністю ε_{f} . В рамках МКГ вважається, що у довгохвильовому наближенні відгук \mathcal{S} еквівалентний відгуку \mathcal{D} [2,4], тобто ε_{f} є параметром електродинамічної гомогенізації системи. Сама ж система \mathcal{S} розглядається як сукупність областей (компактних груп) з лінійними розмірами d, набагато меншими за довжину хвилі λ в системі, але досить великими, щоб мати властивості всієї \mathcal{S} . Тоді локальне значення

 $^{^2}$ Далі буде показано, що для даних систем згідно з ергодичною гіпотезою статистичне усереднення та усереднення за об'ємом еквівалентні (див. Розділ 2.1.)

проникності можна записати наступним чином:

$$\varepsilon(\mathbf{r}) = \varepsilon_{\rm f} + \delta \varepsilon(\mathbf{r}),$$
 (1.40)

де $\delta \varepsilon(\mathbf{r})$ — частково гладка функція локальних відхилень проникності, викликаних компактною групою в околі точки \mathbf{r} . Середні поля знаходяться як довгохвильове наближення ітераційного рішення рівняння розповсюдження електромагнітної хвилі (1.22) в \mathcal{S} , та може бути записано наступним чином [2]:

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \varepsilon_f \mathbf{E}(\mathbf{r}) = -k_0^2 \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}), \tag{1.41}$$

що в еквівалентній інтегральній формі має вигляд, схожий на (1.23) для $TC\Phi$:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \, \mathrm{T}(|\mathbf{r} - \mathbf{r}'|) \delta \varepsilon(\mathbf{r}') \, \mathbf{E}(\mathbf{r}'). \tag{1.42}$$

Пропагатор (1.24) надалі в даному Розділі будемо записувати у наступному вигляді [1,2]:

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}), \qquad (1.43)$$

$$\widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) = \frac{1}{3k^2} \delta_{\alpha\beta} \delta(\mathbf{r}) e^{ikr},$$

$$\widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) = \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) (\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}) e^{ikr},$$

$$\widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}) = -\frac{1}{4\pi r} (\delta_{\alpha\beta} - e_{\alpha}e_{\beta}) e^{ikr}.$$

Тут перший доданок описує ближні перевипромінювання всередині компактної групи, другий та третій доданки — дільні перевипромінювання між компактними групами.

Ітераційне рішення рівняння (1.22) має наступний вигляд:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) + \sum_{s=1}^{\infty} \mathbf{E}_s(\mathbf{r}), \tag{1.44}$$

$$\mathbf{E}_{s}(\mathbf{r}) = (-k_{0})^{2s} \int_{V} d\mathbf{r}_{1} \int_{V} d\mathbf{r}_{2} \dots \int_{V} d\mathbf{r}_{s} \mathrm{T}(|\mathbf{r} - \mathbf{r}_{1}|) \mathrm{T}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \dots \mathrm{T}(|\mathbf{r}_{s-1} - \mathbf{r}_{s}|) \delta \varepsilon(\mathbf{r}_{1}) \delta \varepsilon(\mathbf{r}_{2})$$

Підставляючи (2.13) в (2.12), *s*-ий вклад в ітераційного рішення (2.14) можна записати у наступному вигляді:

$$\mathbf{E}_s = \mathbf{E}_s^{(1)} + \mathbf{E}_s^{(1,2)} + \mathbf{E}_s^{(1,2,3)},\tag{1.45}$$

де перший доданок включає лише вклад $\widetilde{\mathbf{T}}^{(1)}$, другий — $\widetilde{\mathbf{T}}^{(1)}$ і $\widetilde{\mathbf{T}}^{(2)}$, третій — всі три вклади. Усереднюючи цей вираз за об'ємом системи, можна показати [1], що останній доданок в (2.15) дає вклад не більший ніж ($\varepsilon_{\mathbf{f}}k_{0}^{2}L^{3}/d$) s , де L — лінійний розмір системи та d — характерний лінійний розмір компактної групи. Цей вираз можна зробити скільки завгодно малим шляхом відповідного вибору ω , при умові скінчених розмірів L. Другий доданок $\overline{\mathbf{E}}_{\mathbf{s}}^{(1,2)}$ зануляється за рахунок особливості функціональної форми його кутової частини та макроскопічної однорідності та ізотропності досліджуваних систем [1,2]. Таким чином, переходячи до квазістатичного наближення $\omega \to 0$, розрахунок середнього електричного поля та індукції зводиться до усереднення за об'ємом ітераційного ряду, що складається лише з сингулярних доданків, після інтегрування яких вирази для полів можна записати наступним чином:

$$\overline{\mathbf{E}(\mathbf{r})} = \left[1 + \overline{Q(\mathbf{r})} \right] \mathbf{E}_0; \tag{1.46}$$

$$\overline{\mathbf{D}(\mathbf{r})} = \varepsilon_{\mathrm{f}} \left[1 - 2\overline{Q(\mathbf{r})} \right] \mathbf{E}_{0}, \tag{1.47}$$

де

$$Q(\mathbf{r}) \equiv \sum_{s=1}^{\infty} \left(-\frac{1}{3\varepsilon_{\rm f}} \right)^s (\delta \varepsilon(\mathbf{r}))^s. \tag{1.48}$$

Підставляючи ці вирази до (1.39) отримаємо:

$$\overline{Q(\mathbf{r})} = -\frac{\varepsilon_{\text{eff}} - \varepsilon_{\text{f}}}{2\varepsilon_{\text{f}} + \varepsilon_{\text{eff}}}.$$
(1.49)

Таким чином, щоб розрахувати середні поля та знайти ε_{eff} треба знати значення ε_{f} та явний вид $\delta \varepsilon(\mathbf{r})$.

У якості прикладу розглянемо просту двофазну систему N твердих (непроникних) частинок проникністю ε_1 розташованих в матриці з проникністю ε_0 . Для неї $\delta \varepsilon(\mathbf{r})$ матиме наступний вигляд:

$$\delta \varepsilon(\mathbf{r}) = [1 - \tilde{\chi}_1(\mathbf{r})] \ \Delta \varepsilon_0 + \tilde{\chi}_1(\mathbf{r}) \ \Delta \varepsilon_1, \tag{1.50}$$

де $\Delta \varepsilon_j = [\varepsilon_j - \varepsilon_{\text{eff}}] \ (j = \{0,1\}); \ \tilde{\chi}_1$ – характеристична функція області всіх N частинок. Явний вид $\tilde{\chi}_1$ можна записати через одночастинкові характеристичні функції $\chi_1^{(a)}$:

$$\tilde{\chi}_1(\mathbf{r}) = \sum_{a=1}^N \chi_1^{(a)}(\mathbf{r}), \tag{1.51}$$

користуючись властивістю їх непроникності:

$$\chi_1^{(a)}(\mathbf{r})\chi_1^{(b)}(\mathbf{r}) = \delta_{a,b},$$

де $\delta_{a,b}$ – символ Кронекера. Користуючись цими виразами, моменти розраховуються досить просто:

$$\overline{(\delta \varepsilon(\mathbf{r}))^s} = (1 - c)(\Delta \varepsilon_0)^s + c(\Delta \varepsilon_1)^s, \tag{1.52}$$

де $c\equiv \overline{\tilde{\chi}_1}$ – об'ємна концентрація частинок. Після підстановки цього виразу до (1.46) та (1.47) задача зводиться до розрахунку середніх від ряду (1.48), що за умови $|\Delta \varepsilon_j/3\varepsilon_{\rm eff}|<1$ збігаються, як сума геометричної прогресії:

$$\sum_{s=1}^{\infty} \left(-\frac{\Delta \varepsilon_j}{3\varepsilon_{\text{eff}}} \right)^s = -\frac{\varepsilon_j - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_j}.$$

Якщо зазначена нерівність не виконується, ліву частину наведеного виразу можна трактувати як асимптотичний розклад правої частини [4,51], як це буде показано далі. Таким чином вимогою $|\Delta\varepsilon_j/3\varepsilon_{\rm eff}|<1$ можна знехтувати, а остаточне рівняння для знаходження $\varepsilon_{\rm eff}$ матиме наступний вигляд:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_f}{2\varepsilon_f + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_f}{2\varepsilon_f + \varepsilon_1} = \frac{\varepsilon_{\text{eff}} - \varepsilon_f}{2\varepsilon_f + \varepsilon_{\text{eff}}}.$$
 (1.53)

Єдиним невідомим параметром залишається ε_f , що визначає електродинамічну гомогенізацію неоднорідного середовища. Наприклад, поклавши $\varepsilon_f = \varepsilon_0$ ми одразу отримаємо правило Максвела-Гарнета (1.2), а при $\varepsilon_f = \varepsilon_{\rm eff}$ – правило ефективного середовища СМБ (1.7). Насправді тільки останній вибір ε_f є сумісним з МКГ; це можна показати кількома способами: використовуючи варіаційний принцип Хашіна-Штрікмана [61] для енергії електричного поля

в системі [4], або з граничних умов для нормальних компонент електричного струму та індукції, як буде показано далі в Розділі 2.

В рамках МКГ за прийнятою гомогенізацією СМБ для низькоконцентрованих систем [30,62] також можуть бути отримані й інші класичні закони Луєнги [63] та Лихтенекера [64]:

$$\varepsilon_{\text{eff}}^{1/3} = (1 - c)\varepsilon_0^{1/3} + c\varepsilon_1^{1/3},$$
(1.54)

$$\log \varepsilon_{\text{eff}} = (1 - c) \log \varepsilon_0 + c \log \varepsilon_1, \tag{1.55}$$

використовуючи в якості $\delta \varepsilon$ формальний вираз

$$\delta \varepsilon(\mathbf{r}) = (f(\varepsilon_0) - f(\varepsilon_{\text{eff}}))(1 - \tilde{\chi}_1(\mathbf{r})) + (f(\varepsilon_1) - f(\varepsilon_{\text{eff}}))\tilde{\chi}_1(\mathbf{r}), \tag{1.56}$$

де $f(x) = \{x^{1/3}, \log x\}$, відповідно, та залишаючи тільки перші порядки за $|f(\varepsilon_i) - f(\varepsilon_{\text{eff}})| \ (i = 0, 1)$. Однак, ці $\delta \varepsilon$ навряд мають прозорий фізичний зміст.

Зазначимо, що формально отриманий результат співпадає з (1.7), а сам підхід дуже схожий на $TC\Phi$, але по суті МКГ якісно відрізняється. В рамках СМБ кожна з домішок (разом із матрицею) розглядаються окремо в ефективному середовищі з шуканою проникністю $\varepsilon_{\rm eff}$, тобто поляризація кожної частинки знаходиться індивідуально в ефективному середовищі, при цьому вважається, що матриця поляризується таким же чином, що й частинки [65]. Умова гомогенізації $\varepsilon_{\rm f} = \varepsilon_{\rm eff}$ є основним припущенням цієї моделі. Використання цих двох умов для систем несферичних частинок не є послідовним [37]. В рамках $TC\Phi$ система розглядається як сильно флуктуююче середовище на фоні середовища \mathcal{M}^3 , при цьому кількість значень амплітуд флуктуацій співпадають з кількістю компонент в системі, а їх геометрична структура задається однаковим чином. При цьому кожний кореляційний внесок повинен розраховуватись окремо. Зазначимо, що у одночастинковому наближенні $TC\Phi$ завжди зводиться до СМБ. В рамках МКГ розглядаються локальні

 $^{^3}$ Під слабкими флуктуаціями маються на увазі такі відхилення локальної проникності від $\varepsilon_{\rm f}$, що виконується нерівність $\langle \Delta \varepsilon^2 \rangle / \langle \varepsilon \rangle^2 \ll 1$ [51,52]. Для них розв'язок $\varepsilon_{\rm f} = 0$ може мати місце.

відхилення, що створені макроскопічними компактними групами на фоні \mathcal{M} , а остаточні результати, з точністю до вкладів $o(\omega^2)$ як буде показано далі, будуть збігатися тільки для випадку сферичних частинок; це не буде відбуватися вже при розгляданні, наприклад, макроскопічно-однорідних систем еліпсоїдальних частинок [3,52].

1.6. Межі Хашина-Штрікмана

Ефективні діелектрична проникність ε_{eff} та провідність σ_{eff} будь-якої дисперсної системи знаходяться у деяких межах $[a^-; a^+]$ (a^-) узагальнене позначення для ε та σ), при цьому чим більше інформації відомо про систему (мікроструктура системи, значення її макропараметрів, тощо) тим точнішими будуть границі. Історично перші границі для ε_{eff} та σ_{eff} були отримані Вінером [66], який розглянув два граничних випадки мікроструктури двофазної системи (див. рис. 1.2): (а) паралельно впорядковані пластини, що мають характеристики a_1 й a_2 та об'ємні долі c_1 та $c_2 = 1 - c_1$ (верхня границя); (б) ті ж самі пластини, але послідовно впорядковані (нижня границя).

Рис. 1.2: Фізична інтерпретація границь Вінера двофазної системи (номера областей позначають індекси фаз в тексті): (а) верхня границя — плоскопаралельні пластини по відношенню до поля; (б) нижня границя — послідовно впорядковані пластини по відношенню до поля.

Тоді, вирішуючи відповідні електростатичні задачі, можна легко показа-

ти, що a^- та a^+ будуть мати наступний вигляд:

$$a^{-} = \left(\frac{c_1}{a_1} + \frac{c_2}{a_2}\right)^{-1}$$

$$a^{+} = c_1 a_1 + c_2 a_2.$$
(1.57)

Більш строгий підхід знаходження границь ефективних характеристик дисперсних систем був запропонований Хашиним та Штрікманом в рамках варіаційного принципу [61]:

$$a^{-} = a_{1} + \frac{3c_{2}a_{1}(a_{2} - a_{1})}{3a_{1} + c_{2}(a_{2} - a_{1})}$$

$$a^{+} = a_{2} + \frac{3c_{1}a_{2}(a_{1} - a_{2})}{3a_{2} + c_{1}(a_{1} - a_{2})}.$$

$$(1.58)$$

Фізично ці границі відповідають ефективним значенням a системи, що складається з щільно упакованих взаємо-непроникних шарів різного діаметру, які мають структуру типу ядро—оболонка (див. рис. 1.3). Якщо фаза ядра "1" має більш високе значення a ніж фаза оболонки "2" ($a_1 > a_2$) досягається нижня границя значення $a_{\rm eff}$; якщо $a_2 > a_1$ отримуємо верхню границю. Не зважаючи на таку просту фізичну інтерпретацію, границі Хашина-Штрікмана (ГХШ) досі є одними з найбільш загальних результатів для ефективних параметрів дисперсних систем через те, що вони базуються на варіаційному принципі, який може бути сформульований для низки ефективних параметрів системи (коефіцієнт теплопровідності, намагніченість, стисливість, та ін.).

Більш докладна інформація щодо отримання границь дисперсних систем з урахуванням їх мікроструктури, внутрішньої симетрії, високочастотних ефектів та специфікацій процесів, що присутні в даному класі дисперсних систем, може бути знайдена в розділах математичної теорії гомогенізації [67,68].

1.7. Висновки

У даному Розділі розглянуті основні класичні та сучасні підходи до теоретичного вивчення ефективної комплексної проникності макроскопічно одно-

Рис. 1.3: Фізична інтерпретація границь Хашина-Штрікмана двофазної системи (номера областей позначають індекси фаз в тексті): дисперсна система, що складається зі сфер із зовнішньою непроникною оболонкою; верхня границя досягається при $a_2 > a_1$, а нижня – при $a_2 < a_1$.

рідних та ізотропних систем у квазістатичному наближенні. Зазначено, що класична теорія перколяції та чисельні методи хоч й дуже розвинуті, але потребують уточнень, введення допоміжних параметрів, та достатніх комп'ютерних потужностей для коректного аналізу реальних систем. Класичні підходи та їх різноманітні модифікації є насамперед одночастинковими підходами, та часто не беруть до уваги основні ефекти, що грають роль в тій чи іншій системі. Теорія сильних флуктуацій на даний момент є одним з найрозвинутіших підходів, але вона передбачає мікроскопічний підхід до задачі, тобто розрахунок багаточастинкових кореляційних вкладів (що будуть ускладнюватись в рамках моделі ядро-оболонка), та електродинамічна гомогенізація системи обґрунтована лише математично без фізичних підстав. Тому для подальшого аналізу був вибраний метод компактних груп неоднорідностей через те, що він ϵ 1) багаточастинковим у довгохвильовому наближенні, 2) дуже гнучким в сенсі моделювання системи, що дозволяє легко використати модель ядро-оболонка для взяття до уваги міжфазних ефектів, як вже було зазначено у Вступі, 3) дозволяє визначити електричну гомогенізацію спираючись на фізичні основи.

РОЗДІЛ 2 ДОСЛІДЖУВАНА МОДЕЛЬ

В даному Розділі описується застосування теорії МКГ до аналізу низькочастотної комплексної діелектричної проникності невпорядкованих дисперсних систем зі сферичними частинками типу ядро-оболонка. Зокрема, приводиться переформулювання МКГ у низькочастотному наближенні для провідних систем. Далі знаходиться тип електродинамічної гомогенізації згідно з
граничних умов на межі розділу гомогенізованої та негомогенізованої систем.
Після цього моделюється профіль провідності системи для моделі однорідної
оболонки, що потім узагальнюється на випадок радіально неоднорідного шару. Та нарешті ми отримаємо загальний результат для квазістатичних ефективних провідності та проникності системи.

2.1. Узагальнення МКГ для провідних систем

Розглянемо статистично однорідну та ізотропну дисперсну систему \mathcal{D} , з компонентами, що мають ненульову провідність, у квазістатичному наближенні 1 . У цьому наближенні комплексну діелектрична проникність записується у вигляді

$$\hat{\varepsilon} = \varepsilon + i \frac{4\pi\sigma}{\omega},\tag{2.1}$$

де ε , σ — відповідно, низькочастотні дійсна частина діелектричної проникності та провідність; символ "хатки" над символом позначає комплексність коефіцієнта. Щоб уникнути точок неаналітичності, пов'язаними з граничним переходом $\omega \to 0$ при аналізі квазістатичного лінійного відгуку системи, зручніше користуватися комплексною провідністю $\hat{\sigma}$, що пов'язана з $\hat{\varepsilon}$ наступним

 $^{^1}$ Розглядається частота тестуючого поля ω достатньо мала, щоб вкладами діелектричних втрат можна було знехтувати.

чином [69]:

$$\hat{\sigma} = -i\frac{\omega}{4\pi}\hat{\varepsilon} = \sigma - i\frac{\omega}{4\pi}\varepsilon. \tag{2.2}$$

Цей зв'язок знаходиться при розгляданні макроскопічних рівнянь Максвелла

$$\operatorname{div} \mathbf{D} = 4\pi \rho, \quad \operatorname{div} \mathbf{H} = 0, \tag{2.3}$$

$$\operatorname{rot} \mathbf{E} = i \frac{\omega}{c} \mathbf{H}, \quad \operatorname{rot} \mathbf{H} = \frac{4\pi}{c} \mathbf{J} - i \frac{\omega}{c} \mathbf{D}, \tag{2.4}$$

та рівняння неперервності

$$-i\omega\rho + \operatorname{div}\mathbf{j} = 0, \tag{2.5}$$

де всі рівняння записані в Фур'є-представленні за часом; ${\bf E}, {\bf D}, {\bf H}$ та ${\bf j}$ – вектори напруженості та індукції електричного поля, вектор індукції магнітного поля та вектор щільності струму в дисперсній системі; ρ – щільність вільних зарядів; с – швидкість світла в вакуумі. Розглядаючи лише лінійний відгук системи

$$\mathbf{D} = \varepsilon \, \mathbf{E}, \quad \mathbf{j} = \sigma \, \mathbf{E}, \tag{2.6}$$

де $\varepsilon = \varepsilon(\mathbf{r})$, $\sigma = \sigma(\mathbf{r})$ – локальні значення проникності та провідності, відповідно, та використовуючи (2.5) й перше рівняння в (2.3), знайдемо наступне співвідношення для щільності комплексного струму в системі **J**:

$$\operatorname{div} \mathbf{J} = 0, \qquad \mathbf{J} = \hat{\sigma} \mathbf{E} = -i \frac{\omega}{4\pi} \,\hat{\varepsilon} \mathbf{E}. \tag{2.7}$$

Співвідношення (2.7) можна також знайти використовуючи (2.6) та друге рівняння у (2.4).

Задача полягає в знаходженні ефективної квазістатичної комплексної провідності $\hat{\sigma}_{\text{eff}}$ (чи проникності $\hat{\varepsilon}_{\text{eff}}$, в рамках співвідношення (2.2)) системи \mathcal{D} . Будемо її шукати як коефіцієнт пропорційності між середніми щільністю комплексного струму $\langle \mathbf{J} \rangle$ та напруженістю електричного поля $\langle \mathbf{E} \rangle$:

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \langle \hat{\varepsilon}(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle,$$
 (2.8)

де $\mathbf{J}(\mathbf{r})$, $\mathbf{E}(\mathbf{r})$ та $\hat{\varepsilon}(\mathbf{r})$ є локальними значеннями, відповідно, щільності комплексного струму, напруженості електричного поля та комплексної діелектричної проникності в системі; кутові дужки відповідають за статистичне усереднення. Переходячи до границі $\omega \to 0$ (2.8) зводиться до класичного закону Ома для неоднорідних систем:

$$\langle \mathbf{j}(\mathbf{r}) \rangle = \langle \sigma(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \sigma_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle.$$
 (2.9)

Для знаходження середніх $\langle \mathbf{J} \rangle$ та $\langle \mathbf{E} \rangle$ у квазістатичному наближенні в рамках МКГ будемо розглядати допоміжну систему \mathcal{S} , що складається з реальної системи \mathcal{D} , яка розташована у деякій однорідній матриці \mathcal{M} з поки що невідомою проникністю $\hat{\varepsilon}_{\mathrm{f}}$. В рамках МКГ вважається, що у довгохвильовому наближенні відгук \mathcal{S} еквівалентний відгуку \mathcal{D} [4], тобто $\hat{\varepsilon}_{\mathrm{f}}$ є параметр електродинамічної гомогенізації системи. Сама ж система \mathcal{S} розглядається як сукупність областей (компактних груп) з лінійними розмірами d, набагато меньшими за довжину хвилі λ в системі, але досить великими, щоб мати властивості всієї \mathcal{S} . Тоді локальне значення комплексної проникності можна записати наступним чином:

$$\hat{\varepsilon}(\mathbf{r}) = \hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r}), \tag{2.10}$$

де $\delta \hat{\varepsilon}(\mathbf{r})$ – частково гладка функція локальних відхилень проникності, викликаних компактною групою у точці \mathbf{r} .

Середні поля знаходяться як довгохвильове наближення рішення рівняння розповсюдження електромагнитної хвилі в S [1]. Це рівняння формально співпадає з (1.22) та може бути отримано з (2.4), беручи ротор від першого рівняння та підставляючи до нього друге:

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \hat{\varepsilon}_f \mathbf{E}(\mathbf{r}) = -k_0^2 \delta \hat{\varepsilon}(\mathbf{r}) \mathbf{E}(\mathbf{r}), \tag{2.11}$$

що може бути записано в еквівалентній інтегральній формі:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \, \mathrm{T}(|\mathbf{r} - \mathbf{r}'|) \delta \hat{\varepsilon}(\mathbf{r}') \, \mathbf{E}(\mathbf{r}'). \tag{2.12}$$

Тут: $\mathbf{E}_0(\mathbf{r}) = \mathbf{E}_0 e^{i\mathbf{k}\mathbf{r}}$; \mathbf{E}_0 , $\mathbf{k} = \sqrt{\hat{\varepsilon}_f} \, \mathbf{k}_0 \, (\mathrm{Im}\sqrt{\hat{\varepsilon}_f} \geqslant 0)$ – відповідно, амплітуда та хвильовий вектор падуючої хвилі в \mathcal{M} ; Т – тензор Гріна (пропагатор) рівняння (2.11), що має вигляд (1.24). Далі буде зручно скористатися наступним записом (1.24):

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}) = \frac{1}{3k^2} \delta_{\alpha\beta} \delta(\mathbf{r}) e^{ikr} + \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2}\right) \left(\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}\right) e^{ikr} - \frac{1}{4\pi r} \left(\delta_{\alpha\beta} - e_{\alpha}e_{\beta}\right) e^{ikr}$$

де $e_{\alpha}=r_{\alpha}/r$ – нормовані компоненти радіус-вектору ${\bf r};\;\delta_{\alpha\beta}$ – символ Кронекера; $\delta({\bf r})$ – дельта-функція Дірака.

Ітераційне рішення цього рівняння має наступний вигляд:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) + \sum_{s=1}^{\infty} \mathbf{E}_s(\mathbf{r}), \tag{2.14}$$

де

$$\mathbf{E}_{s}(\mathbf{r}) = (-k_{0})^{2s} \int_{V} d\mathbf{r}_{1} \int_{V} d\mathbf{r}_{2} \dots \int_{V} d\mathbf{r}_{s} \mathrm{T}(|\mathbf{r} - \mathbf{r}_{1}|) \mathrm{T}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \dots \mathrm{T}(|\mathbf{r}_{s-1} - \mathbf{r}_{s}|) \delta \varepsilon(\mathbf{r}_{1}) \delta \varepsilon(\mathbf{r}_{2})$$

Підставляючи (1.24) в (2.12), s-ий вклад в ітераційного рішення (2.14) прийме вигляд

$$\mathbf{E}_s = \mathbf{E}_s^{(1)} + \mathbf{E}_s^{(1,2)} + \mathbf{E}_s^{(1,2,3)}, \tag{2.15}$$

де перший доданок включає лише $\widetilde{\mathbf{T}}^{(1)}$, другий — $\widetilde{\mathbf{T}}^{(1)}$ і $\widetilde{\mathbf{T}}^{(2)}$, третій — всі три вклади.

Статистичне середнє цього виразу зводиться до інтегрування за об'ємом всієї системи за рахунок ергодичної гіпотези [17,30] для макроскопічно однорідних та ізотропних дисперсних систем. Другий доданок $\langle \mathbf{E}_s^{(1,2)} \rangle$ зануляється за рахунок особливості функціональної форми його кутової частини та макроскопічної однорідності та ізотропності досліджуваних систем [1,4]. Останній доданок (2.15) дає вклад за модулем не більший ніж ($|\hat{\varepsilon}_f|k_0^2L^3/d$) s (за умовою, що вкладами діелектричних втрат можна знехтувати), де L – лінійний розмір системи та d – характерний розмір компактної групи. Цей вираз можна зробити скільки завгодно малим шляхом відповідного вибору ω , при

умові скінчених розмірів L. Такий вибір ω гарантує відсутність вкладів у $\langle \mathbf{E} \rangle$, що залежать від ω , що узгоджується з вибором форми запису (2.1) для комплексних проникностей. Таким чином, переходячи до квазістатичного наближення $\omega \to 0$, розрахунок середнього електричного поля та комплексного струму зводиться до усереднення за об'ємом ітераційного ряду, що складається лише з сингулярних доданків, після інтегрування яких вирази для полів можна записати наступним чином:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left[1 + \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_0;$$
 (2.16)

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega \hat{\varepsilon}_{f}}{4\pi} \left[1 - 2 \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_{0},$$
 (2.17)

де

$$\hat{Q}(\mathbf{r}) = \sum_{s=1}^{\infty} \left(-\frac{1}{3\hat{\varepsilon}_{f}} \right)^{s} (\delta \hat{\varepsilon}(\mathbf{r}))^{s}. \tag{2.18}$$

Можна показати, що цей ряд є асимптотичним у наступному плані.

Якщо одразу перейти до границі $\omega \to 0$, залишаючи лише перші порядки за ω , вираз для компонентів пропагатора (2.13) можна переписати:

$$\lim_{\omega \to 0} k_0^2 \hat{\varepsilon}_f \widetilde{T}_{\alpha\beta} = \tau_{\alpha\beta}^{(1)} + \tau_{\alpha\beta}^{(2)} = \frac{1}{3} \delta(\mathbf{r}) \delta_{\alpha\beta} + \frac{\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}}{4\pi r^3}.$$
 (2.19)

Підставляючи цей вираз до (2.12), роблячи прості алгебраїчні маніпуляції та статистично усереднюючи, з урахуванням $\omega \to 0$ отримаємо наступні вирази для середніх полів:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left\langle \frac{3\hat{\varepsilon}_{f}}{3\hat{\varepsilon}_{f} + \delta\hat{\varepsilon}(\mathbf{r})} \right\rangle \mathbf{E}_{0} - 3 \int_{V} d\mathbf{r}' \tau^{(2)} (|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\delta\hat{\varepsilon}(\mathbf{r}')}{3\hat{\varepsilon}_{f} + \delta\hat{\varepsilon}(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle, \quad (2.20)$$

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \hat{\varepsilon}_{f} \left[1 + 2 \left\langle \frac{\delta \hat{\varepsilon}(\mathbf{r})}{3\hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r})} \right\rangle \right] \mathbf{E}_{0} + i \frac{3}{4\pi} \int_{V} d\mathbf{r}' \tau^{(2)} (|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\omega \hat{\varepsilon}(\mathbf{r}) \delta \hat{\varepsilon}(\mathbf{r}')}{3\hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle.$$
(2.21)

Для макроскопічно однорідних та ізотропних систем статистичні середні залежать лише від $|\mathbf{r} - \mathbf{r}'|$. Тому, знову ж таки, зважаючи на форму кутової частини $\tau_{\alpha\beta}^{(2)}$, інтеграли в (2.20) та (2.21) зануляються. Використовуючи (2.20),

(2.21) разом з (2.8), отримуємо рівняння (2.16) та (2.17), де \hat{Q} визначається як:

$$\hat{Q}(\mathbf{r}) = -\frac{\delta \hat{\varepsilon}(\mathbf{r})}{3\varepsilon_{f} + \delta \hat{\varepsilon}(\mathbf{r})}.$$
(2.22)

Розклавши в ряд Маклорена праву частину цього рівняння за $\delta \hat{\varepsilon}$ отримаємо вираз (2.18).

Підставляючи вирази для середніх полів (2.16), (2.17) до (2.8) отримаємо наступне рівняння для ε_{eff} , що залежить лише від $\hat{\varepsilon}_{\text{f}}$ та $\delta\hat{\varepsilon}$:

$$\langle \hat{Q} \rangle = \frac{\hat{\varepsilon}_{f} - \hat{\varepsilon}_{eff}}{2\hat{\varepsilon}_{f} + \hat{\varepsilon}_{eff}}.$$
 (2.23)

2.2. Вибір електродинамічної гомогенізації

Можна показати, що за умовою, коли вкладами діелектричних втрат можна знехтувати, тобто з точністю до другого порядку за ω в розкладі комплексної провідності, сумісною з МКГ є гомогенізація типу Бруггемана $\hat{\varepsilon}_f = \hat{\varepsilon}_{\text{eff}}$. Дійсно, згадаємо граничні умови для нормальних компонент комплексних полів на границі розділу двох матеріалів [70], допоміжної матриці \mathcal{M} та гомогенізованим середовищем:

$$\hat{\varepsilon}_{\mathbf{f}} \mathbf{E}_{0} = \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle. \tag{2.24}$$

Користуючись цією рівністю та виразом (2.16), отримаємо

$$\langle \hat{Q} \rangle = \frac{\hat{\varepsilon}_{\rm f} - \hat{\varepsilon}_{\rm eff}}{\hat{\varepsilon}_{\rm eff}},$$
 (2.25)

що разом з (2.23) дає рівняння для заходження $\hat{\varepsilon}_f$ та $\hat{\varepsilon}_f$. Відкидаючи фізично непослідовний розв'язок $\hat{\varepsilon}_f = 0$, отримуємо

$$\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm eff}; \tag{2.26}$$

$$\langle \hat{Q}(\mathbf{r}) \rangle = 0. \tag{2.27}$$

Ця рівність, як вже було зазначено, може бути отримана окремо для дійсної та уявної частин використовуючи теорему Хашіна-Штрікмана [61] в рамках

МКГ, як було зроблено в роботі [4], розглядаючи крім чисто діелектричних систем провідні системи, будуючи функціонал $U_{\mathbf{T}}$ від $\mathbf{T} = \mathbf{j} - \sigma_{\mathrm{f}} \mathbf{E}$, та трактуючи його стаціонарне значення за Джоулеві втрати $U_{\mathbf{T}}^s = \langle \mathbf{E} \rangle \langle \mathbf{j} \rangle V / 8\pi$.

Рівняння (2.27) є точним у наближенні $\omega \to 0$. Моделюючи $\delta \hat{\varepsilon}(\mathbf{r})$ для відповідних мікроструктур, та підсумовуючи ряди (2.18) отримуємо явний вигляд рівняння для $\hat{\varepsilon}_{\text{eff}}$. Але функціональна форма $\delta \varepsilon(\mathbf{r})$ не фіксована; в залежності від її вигляду ми можемо отримати ту чи іншу модель (наприклад, СМБ або АМБ). Модель ядро-оболонка буде розвинена в рамках симетричного підходу через те, що він не робить додаткових припущень щодо моделювання компонентів, може бути застосований для всієї концентраційної області та, як буде показано у Розділі 6, є більш послідовним ніж асиметричний диференціальний підхід.

2.3. Модель тверде ядро-проникна оболонка

Розглянемо макроскопічно однорідну та ізотропну систему сферичних частинок, що знаходяться в однорідній матриці з проникністю $\hat{\varepsilon}_0$ (див. рис. 2.1). Кожна частинка складається з твердого (непроникного) ядра радіусом $R_1 = d/2$ та проникністю $\hat{\varepsilon}_1$, покритого електрично однорідною концентричною проникною оболонкою із зовнішнім радіусом $R_2 = R_1(1 + \delta)$ та проникністю $\hat{\varepsilon}_2$. Всі проникності комплексні та мають форму (2.1).

Локальне значення проникності $\hat{\varepsilon}(\mathbf{r})$ такої моделі можна подати у вигляді ступінчатої функції, що залежить від відстані $l=\min_{1\leqslant a\leqslant N}|\mathbf{r}-\mathbf{r}_a|$ від даної точки \mathbf{r} до найближчої частинки:

$$\hat{\varepsilon}(\mathbf{r}) = \begin{cases} \hat{\varepsilon}_0, & l > R_2 \\ \hat{\varepsilon}_1, & l < R_1 \\ \hat{\varepsilon}_2, & R_1 < l < R_2. \end{cases}$$
 (2.28)

Користуючись цим виразом, $\delta \hat{\varepsilon}$ можна записати в термінах характеристичних функцій відповідних областей:

$$\delta\hat{\varepsilon}(\mathbf{r}) = (1 - \tilde{\chi}_2(\mathbf{r}))\Delta\hat{\varepsilon}_0 + \tilde{\chi}_1(\mathbf{r})\Delta\hat{\varepsilon}_1 + (\tilde{\chi}_2(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r}))\Delta\hat{\varepsilon}_2, \tag{2.29}$$

Рис. 2.1: Схематичне зображення моделі ядро-оболонка: чорні області — непроникні ядра; сірі — проникна оболонка; біла область — матриця.

де $\Delta \hat{\varepsilon}_j = [\hat{\varepsilon}_j - \hat{\varepsilon}_f] \ (j = \{0, 1, 2\}); \ \tilde{\chi}_1$ та $\tilde{\chi}_2$ – характеристичні функції, відповідно, всіх ядер (всієї чорної області на рис. 2.1) та частинок разом з їх оболонками (всі чорні та сірі області). Зазначимо, що для цих функцій виконується рівність $\tilde{\chi}_1 \tilde{\chi}_2 = \tilde{\chi}_1$.

Явний вид $\tilde{\chi}_1$ для непроникних ядер має форму (1.51). Явний вигляд $\tilde{\chi}_2$ можна записати використовуючи одночастинкові характеристичні функції $\chi_2^{(a)}$ області a-ої частинки, що складається з області ядра та його оболонки [71]:

$$\tilde{\chi}_{2}(\mathbf{r}) = 1 - \prod_{a=1}^{N} \left(1 - \chi_{2}^{(a)}(\mathbf{r}) \right) = \sum_{a=1}^{N} \chi_{2}^{(a)}(\mathbf{r}) - \sum_{a < b} \chi_{2}^{(a)}(\mathbf{r}) \chi_{2}^{(b)}(\mathbf{r}) + \sum_{a < b < c} \chi_{2}^{(a)}(\mathbf{r}) \chi_{2}^{(c)}(\mathbf{r}) \chi_{2}^{(c)}(\mathbf{r}) - \dots$$
(2.30)

Використовуючи властивості цих характеристичних функцій, моменти $\delta \hat{\varepsilon}$ можна записати у наступному вигляді:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi)(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + (\phi - c)(\Delta \hat{\varepsilon}_2)^s, \tag{2.31}$$

де

$$\phi = \langle \tilde{\chi}_2(\mathbf{r}) \rangle = N \langle \chi_2^{(1)}(\mathbf{r}) \rangle - \frac{N(N-1)}{2} \langle \chi_2^{(1)}(\mathbf{r}) \chi_2^{(2)}(\mathbf{r}) \rangle + \dots$$
 (2.32)

є об'ємною концентрацією всіх частинок разом з їх оболонками. Задля розрахунку ϕ для обраної моделі потрібно знати багаточастинкові функції розподілу $F_n(\mathbf{r}; \mathbf{r}^n)$ ($\mathbf{r}^n \equiv \{\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n\}$) для відповідної мікроструктури.

Для обраної нами моделі системи сферичних частинок з вільно проникною оболонкою та твердими ядрами у статистичній рівновазі (див. рис. 2.1) треба брати функції розподілу, що відповідають системі твердих частинок з радіусом R_1 [72,73]. В роботі [74] приведено розрахунок ϕ з точністю до третього віріального коефіцієнту в рамках суперпозиційного наближення Кірквуда:

$$\phi(c,\delta) = 1 - (1-c) \exp\left[-\frac{(1-\psi)\phi_t}{1-c}\right] \times \exp\left[-\frac{3c\phi_t}{2(1-c)^3} \left(2 - 3\psi^{1/3} + \psi - c\left(3\psi^{1/3} - 6\psi^{2/3} + 3\psi\right)\right)\right],$$
(2.33)

де

$$\phi_t = c(1+\delta)^3 = c/\psi \tag{2.34}$$

є об'ємною концентрацією ядер з твердими оболонками ($\psi = (1+\delta)^{-3}$). Авторами стверджується, що цей результат є точним в даному наближенні. Крім цього, він добре узгоджується з розрахунками методами Монте-Карло [75], а для товщин $\delta < [(\cos \pi/6)^{-1} - 1] \approx 0.16$ стає строгим через те, що для них неможливі перекриття трьох та більше оболонок, тож незвідні кореляційні вклади порядків n > 2 зануляються.

2.3.1. Узагальнення на електрично неоднорідні оболонки

Розвинений підхід легко узагальнити на випадок електрично неоднорідних радіально-симетричних оболонок з кусково-гладким профілем $\hat{\varepsilon}_2(r)$. Розглянемо спершу випадок системи частинок типу ядро-оболонка, аналогічний розглянутому у попередньому підрозділі, але тепер ядро буде оточено M концентричними оболонками (див. рис. 2.2). Кожна m-а оболонка ($1 \le m \le M$) має зовнішній радіус $R_{2,m} = R_1(1 + \delta_m)$ ($R_{2,m-1} < R_{2,m}$) та проникність $\hat{\varepsilon}_{2,m}$. Правило перекриття оболонок таке ж саме, що й у попередньому випадку, тому локальне значення проникності можна записати у наступному вигляді,

Рис. 2.2: Схематичне зображення моделі M-оболонок. Білі області — матриця; темні — непроникні ядра; сірі концентричні області — M оболонок навколо кожного ядра.

використовуючи те ж саме означення l:

$$\hat{\varepsilon}(\mathbf{r}) = \begin{cases} \hat{\varepsilon}_{0}, & l > R_{2,M} \\ \hat{\varepsilon}_{1}, & l < R_{1} \\ \hat{\varepsilon}_{2,1}, & R_{1} < l < R_{2,1} \\ \hat{\varepsilon}_{2,m}, & R_{2,m-1} < l < R_{2,m}, & 2 \leq m \leq M \end{cases}$$
(2.35)

Нехай $\chi_{2,m}^{(a)}$ – характеристична функція області, що складається з області ядра a-ої частинки та всіх областей його перших m оболонок. Тоді характеристична функція всіх таких областей $\tilde{\chi}_{2,m}$ матиме вигляд аналогічний (2.30):

$$\tilde{\chi}_{2,m}(\mathbf{r}) = 1 - \prod_{a=1}^{N} \left(1 - \chi_{2,m}^{(a)}(\mathbf{r}) \right).$$
 (2.36)

Для цих функцій виконуються тотожності: (1) $\tilde{\chi}_{2,m}\tilde{\chi}_1=\tilde{\chi}_1$; (2) $\tilde{\chi}_{2,l}\tilde{\chi}_{2,m}=\tilde{\chi}_{2,\min(l,m)}$. Використовуючи функції (2.36), перепишемо вираз (2.35) в термінах $\delta\hat{\varepsilon}$:

$$\delta\hat{\varepsilon}(\mathbf{r}) = (1 - \tilde{\chi}_{2,M}(\mathbf{r}))\Delta\hat{\varepsilon}_0 + \tilde{\chi}_1(\mathbf{r})\Delta\hat{\varepsilon}_1 + (\tilde{\chi}_{2,1}(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r}))\Delta\hat{\varepsilon}_{2,1} + \sum_{m=2}^{M} (\tilde{\chi}_{2,m}(\mathbf{r}) - \tilde{\chi}_{2,m-1}(\mathbf{r}))\Delta\hat{\varepsilon}_{2,m},$$
(2.37)

де $\Delta \hat{\varepsilon}_{2,m} = [\hat{\varepsilon}_{2,m} - \hat{\varepsilon}_{\mathrm{f}}]$. Користуючись властивостями характеристичних функцій відповідних областей, моменти $\delta \hat{\varepsilon}$ можна записати у наступному вигляді:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi(c, \delta))(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + \sum_{m=1}^M (\phi(c, \delta_m) - \phi(c, \delta_{m-1}))(\Delta \hat{\varepsilon}_{2,m})^s,$$
(2.38)

де було введено позначення $\delta_0 = 0$ ($\phi(c, \delta_0) = c$), та $\phi(c, \delta_m) \equiv \langle \tilde{\chi}_{2,m}(\mathbf{r}) \rangle$ – об'ємна концентрація областей всіх ядер разом з їх першими m найближчими оболонками, що для сферичних частинок дається виразом (2.33) при $\delta = \delta_m$. Нарешті переходячи до границь $M \to \infty$, $|\delta_{2,m} - \delta_{2,m-1}| \to 0$, ($\delta_M = \text{const}$) та вимагаючи, щоб $\phi(c, \delta)$ була диференційована за δ , для систем частинок з кусково-гладкої функції профілю оболонки $\hat{\varepsilon}_2(r)$ отримуємо:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi(c, \delta))(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + \int_0^{\delta_m} \frac{\partial \phi(c, u)}{\partial u} (\Delta \hat{\varepsilon}_2(u))^s du, \qquad (2.39)$$

де $\Delta \hat{\varepsilon}_2(u)$ є функція $\hat{\varepsilon}_2(r) - \hat{\varepsilon}_f$, що виражена в термінах змінної $u = (r - R_1)/R_1$, а δ_M відповідає зовнішній границі оболонки. Для однорідної оболонки ($\Delta \hat{\varepsilon}_2(u) = \mathrm{const}$) вираз (2.39) одразу зводиться до (2.31) при $\delta = \delta_M = \delta_1$.

2.4. Основні теоретичні результати

Для знаходження остаточного рівняння для $\hat{\varepsilon}_{\text{eff}}$ потрібно підставити вираз для моментів $\delta\hat{\varepsilon}$ для відповідної моделі до (2.27) з урахуванням (2.26) та підсумувати отриманий ряд. Так для моделі з однорідними оболонками (2.31) отримаємо:

$$(1 - \phi)\frac{\hat{\varepsilon}_0 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_0} + c\frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_1} + (\phi - c)\frac{\hat{\varepsilon}_2 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_2} = 0; \tag{2.40}$$

для моделі з неоднорідними оболонками (2.39):

$$(1 - \phi)\frac{\hat{\varepsilon}_0 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_0} + c\frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\hat{\varepsilon}_2(u) - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_2(u)} du = 0.$$
 (2.41)

Зазначимо, що форма частинок грала роль лише на етапі вибору їх статистичного розподілу, тобто вибору функції ϕ ; в загальному випадку, результати

(2.40) та (2.41) можуть бути застосовані до будь-яких багатофазних макроскопічно однорідних та ізотропних систем у довгохвильовому наближенні, відповідним чином вибираючи функцію ϕ .

Через те, що, за визначенням моделі, $\hat{\varepsilon}_{\text{eff}}$ шукається у формі (2.1), ці рівняння можна спростити користуючись методами теорії збурень, а саме залишаючи лише перші порядки за ω . Таким чином, комплексні рівняння (2.40) та (2.41) зведуться до систем дійсних рівнянь для ефективних квазістатичних провідності σ_{eff} та діелектричної проникності ε_{eff} , відповідно:

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + (\phi - c)\frac{\sigma_2 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2} = 0, \tag{2.42a}$$

$$(1 - \phi)\frac{\varepsilon_0 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_0}{(2\sigma_{\text{eff}} + \sigma_0)^2} + c\frac{\varepsilon_1 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_1}{(2\sigma_{\text{eff}} + \sigma_1)^2} + (\phi - c)\frac{\varepsilon_2 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_2}{(2\sigma_{\text{eff}} + \sigma_2)^2} = 0. \quad (2.426)$$

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\sigma_2(u) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2(u)} du = 0, \quad (2.43a)$$

$$(1 - \phi)\frac{\varepsilon_0 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_0}{(2\sigma_{\text{eff}} + \sigma_0)^2} + c\frac{\varepsilon_1 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_1}{(2\sigma_{\text{eff}} + \sigma_1)^2} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\varepsilon_2(u)\sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_2(u)}{(2\sigma_{\text{eff}} + \sigma_2(u))^2} du = 0.$$
(2.436)

Такий розклад можливий лише за умов

$$|\sigma_i - \sigma_{\text{eff}}| \gg \epsilon_0 \omega(\varepsilon_i + 2\varepsilon_{\text{eff}})$$
 (2.44)

для всіх складових системи (i=0,1,2). За інших умов рівняння (2.42a) та (2.43a) треба трактувати як рівняння на знаходження ефективної статичної провідності системи, а рівняння (2.426) та (2.436) для квазістатичної проникності вже не є вірними. Для провідних систем на достатньо малих частотах, з якими ми будемо працювати, можна вважати, що (2.44) виконуються.

Загальний розв'язок рівняння (2.40) робиться за допомогою формул Кардано, а (2.41) – тільки використовуючи спеціальний вигляд $\hat{\varepsilon}_2(u)$, однак аналіз основних характеристик моделі більш практично робити для окремих класів систем.

Зазначимо, що якщо ми не будемо використовувати граничні умови (2.24), з'являється свобода у виборі значення $\hat{\varepsilon}_{\rm f}$. Його різні значення будуть давати різні співвідношення для $\hat{\varepsilon}_{\rm eff}$ згідно (2.23); так, наприклад, поклавши $\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm 0}$ (див. [1,2,4]) отримаємо співвідношення типу Максвелла-Гарнетта для систем частинок з морфологією тверде ядро–проникна оболонка:

$$\frac{\hat{\varepsilon}_{\text{eff}} - \hat{\varepsilon}_0}{2\hat{\varepsilon}_0 + \hat{\varepsilon}_{\text{eff}}} = c \frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_0}{2\hat{\varepsilon}_0 + \hat{\varepsilon}_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\hat{\varepsilon}_2(u) - \hat{\varepsilon}_0}{2\hat{\varepsilon}_0 + \hat{\varepsilon}_2(u)} du, \tag{2.45}$$

що у квазістатичному наближенні дає наступне співвідношення для $\sigma_{\rm eff}$:

$$\frac{\sigma_{\text{eff}} - \sigma_0}{2\sigma_0 + \sigma_{\text{eff}}} = c \frac{\sigma_1 - \sigma_0}{2\sigma_0 + \sigma_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\sigma_2(u) - \sigma_0}{2\sigma_0 + \sigma_2(u)} du. \tag{2.46}$$

2.5. Висновки

В даному Розділі МКГ був узагальнений на випадок провідних систем в квазістатичному наближенні, тобто на частотах коли можна знехтувати вкладами діелектричних втрат. МКГ було застосовано для розвинення теорії знаходження ефективної квазістатичної комплексної діелектричної проникності немагнітних макроскопічно однорідних та ізотропних систем сферичих частинок типу тверде-ядро-проникна-оболонка. Оболонка в загальному випадку має радіально-симетричний неоднорідний профіль електричної провідності. Запропоновано фізично обґрунтований метод знаходження типу електричної гомогенізації системи. В рамках цього методу показано, що єдиним сумісним типом гомогенізації в рамках МКГ є гомогенізація типу ефективного середовища Бругемана. На основі цих результатів отримані рівняння для знаходження ефективної комплексної проникності систем з електрично однорідними та неоднорідними оболонками. Ці результати зведені до систем дійсних рівнянь на ефективні квазістатичні провідності та проникності відповідних систем.

Показано, що в рамках МКГ тільки функція ϕ відповідає за форму частинок, тож загальний результат може бути застосовано для будь-яких макро-

скопічно однорідних та ізотропних систем у вибраному частотному діапазоні, вибираючи відповідним чином ϕ .

РОЗДІЛ 3

TECTУВАННЯ МОДЕЛІ НА ІСНУЮЧИХ ЧИСЛОВИХ РЕЗУЛЬТАТАХ СИМУЛЯЦІЙ RRN З ПРОВІДНОСТІ

Щоб протестувати строгість отриманого співвідношення між ефективною статичною провідністю та геометричними й електричними параметрами системи, уникаючи урахування неконтрольованих експериментальних похибок та різноманітних ефектів й механізмів, що можуть виникати у конкретній системі, використовувалися результати числових симуляцій для обраної моделі. Широкий масив даних для тривимірних систем був отриманий в літературі рамках алгоритму Random Resistor Network (RRN).

3.1. Алгоритм Random Resistor Network (RRN)

Алгоритм Random Resistor Network (RRN) [76–78] складається з трьох наступних кроків (див рис. 3.1):

а) Генерація досліджуваної тривимірної системи частинок з морфологією тверде ядро-проникна оболонка. Розглядається тривимірний замкнутий простір із заданими розмірами та періодичними гранични-

Рис. 3.1: Схематичне зображення алгоритму RRN: а) модельна система типу тверде ядро-проникна оболонка; б) її апроксимація системою кубів; в) отримана тривимірна кубічна ґратка резисторів. Рисунок взято з [76].

ми умовами. Центри ядер кожної частинки розташовуються по черзі наступним чином: координати центру поточного ядра генеруються за рівномірним розподілом; якщо ці координати належать області деякого попередньо доданого ядра, або ж передбачають перекриття двох ядер, то поточні координати відкидаються та генеруються нові. Цей процес повторюється доки не буде отримана бажана об'ємна концентрація ядер c. Далі вважається, що навколо кожного ядра існує проникна оболонка з деякою товщиною та розподілом провідності (у останньому випадку задаються також правила перекриття оболонок).

- б) Генерація системи кубічних комірок виходячи з попередньо згенерованої моделі. Для цього розглядається тривимірний простір з тими ж розмірами, розбитий на комірки із заданою довжиною ребра. Далі цей простір накладається на попередньо згенеровану модель. Якщо центр комірки попадає в область ядра, вважається, що він має ті ж самі електричні властивості що й ядро. Те ж саме для оболонки та матриці. При цьому алгоритм побудований так, що виконуються умова рівності отриманої об'ємної концентрації c' комірок, що відповідають ядрам, та c.
- в) Побудова ґратки резисторів на основі отриманої системи комірок за наступними правилами. Центр кожної комірки є вузлом вихідної ґратки. Кожні дві сусідні комірки розбиваються на дві рівні частини, з яких утворюється плоско-паралельний конденсатор, що має лінійні розміри однієї комірки. Далі такий конденсатор замінюється резистором між відповідними вузлами ґратки з імпедансом поточного конденсатора. Вважається, що ефективні електричні властивості отриманої ґратки еквівалентні властивостям вхідної моделі.

Щоб протестувати розвинуту теорію на результатах цих симуляцій треба спочатку врахувати особливості переходу від системи а) до системи б).

3.1.1. Зміна геометричних параметрів оболонок

Можна помітити, що в рамках алгоритму RRN при заданій абсолютній товщині оболонок t їх відносна товщина δ після переходу від а) до б) змінюється, за умови, що при цьому об'ємна концентрація ядер зберігається (c=c'). Дійсно, розглянемо N сферичних ядер з радіусом $R_1=a/2$ та товщиною оболонок t в об'ємі V; тоді $c=(\pi/6)a^3N/V$ та $\delta=2t/a$. Розглянемо тривіальний випадок, коли на одну кульку припадає одна комірка з довжиною ребра a'. Для того, щоб задовільнити вимозі c=c' ($c'=a'^3N/V$) потрібно, щоб $a'=(\pi/6)^{1/3}a$. Відповідно, відносна товщина після переходу $\delta'=2t/a'$ буде дорівнювати

$$\delta' = K^{-1}\delta,\tag{3.1}$$

де наразі $K = k \equiv (\pi/6)^{1/3} \approx 0.806$. Вважаючи параметр K підгінним, можна узагальнити (3.1) на випадок, коли на одну кульку припадає більше ніж одна комірка. Чим більша кількість цих комірок, тим ближче K до одиниці. Таким чином у загальному випадку виконується нерівність:

$$k \le K \le 1 \approx 1.241k$$
.

Відзначимо, що в числових експериментах [76–78], що розглядалися в даній роботі, лінійні розміри комірки a' були 0.5 мкм, а ядра $a\leqslant 11$ мкм, тож відхилення K від одиниці повинні бути помітними.

Щоб підтвердити необхідність використання параметру K, порівняємо теоретичні розрахунки ($\phi-c$) за (2.33) та відповідні дані симуляції в рамках алгоритму RRN [76] (див. рис. 3.2). Видно, що тільки за відповідним вибором K ми можемо кількісно описати дані симуляцій. Найбільша середньоквадратична похибка представлених найкращих обробок (неперервні лінії) дорівнює ≈ 0.014 (при d=7 мкм, K=1.13 $k\approx 0.91$). Також зазначимо, що знайдені значення K лежать близько до наведених вище оцінок.

Рис. 3.2: Дані [76] з об'ємної концентрації оболонок як функції концентрації ядер c та їх обробка за (2.33) для різних K в (3.1) при t=5 мкм та (a) d=7 (\blacktriangle), (б) d=3 (\spadesuit), 5 (\blacksquare), та 9 (\bullet) мкм; пусті точки (\circ) на рис. (a) – отримані після симуляції дані для c' (середньоквадратична похибка дорівнювала \approx 0.0024). Неперервні лінії – найкращі результати обробки.

3.1.2. Зміна електричних параметрів неоднорідних оболонок

У роботі [78] профіль провідності оболонок моделювався у вигляді гаусового сферично-симетричного розподілу, максимум σ_{max} якого знаходився на відстані t/2 від поверхні ядра, а на зовнішніх границях оболонки він приймав мінімального значення σ_{min} (див. Таблицю 3.1). Явний вигляд цієї функції та правило її апроксимації, за яким кожній комірці області оболонки ставилось у відповідність значення провідності, не були зазначені у роботі [78].

Базуючись на даному визначенні цієї функції, у найпростішій формі вона має наступний вигляд:

$$\sigma_2(u) = \sigma_{\text{max}} \exp \left[-\frac{4 \left(u - \delta/2 \right)^2}{\delta^2} \ln \left(\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \right) \right]. \tag{3.2}$$

Нехай n=t/a є середнє число комірок, що припадають на радіальну товщину оболонки, з центрами у точках $u_i=(2i-1)\delta'/2n, i=1..n$. Якщо провідність i-ої комірки визначалася як значення функції $\sigma_2(u)$ у точці u_i , тоді значення параметрів σ'_{\max} , σ'_{\min} в симуляціях [78] та σ_{\max} , σ_{\min} в рамках нашої моделі,

пов'язані наступним чином:

$$\sigma_{\max} = \sigma_2(u_{n/2}) = \sigma_2(u_{n/2+1}) = \sigma'_{\max} \left(\frac{\sigma'_{\max}}{\sigma'_{\min}}\right)^{-1/n^2},$$

$$\sigma_{\min} = \sigma_2(u_1) = \sigma_2(u_n) = \sigma'_{\max} \left(\frac{\sigma'_{\max}}{\sigma'_{\min}}\right)^{-(n-1)^2/n^2}.$$

У наближенні $n\to\infty$: $\sigma_{\max}=\sigma'_{\max}$ та $\sigma_{\min}=\sigma'_{\min}$; для скінченних n: $\sigma_{\max}<\sigma'_{\max},\ \sigma_{\min}>\sigma'_{\min},$ та

$$rac{\sigma_{ ext{max}}}{\sigma_{ ext{min}}} = \left(rac{\sigma'_{ ext{max}}}{\sigma'_{ ext{min}}}
ight)^{(n-2)/n}.$$

Тобто значення параметрів профілю (3.2) після апроксимації залежать від деталей самої апроксимації. У даному випадку ці деталі не були зазначені в роботі [78], тому для обробки даних використовуючи (3.2) один з параметрів можна вибрати підгінним, а інший — зафіксувати у значенні з Таблиці 3.1; наразі $\sigma_{\rm max}$ був вибраний у якості підгінного.

3.2. Порівняння з числовими даними з провідності

Спираючись на отриманий результат ми можемо приступити до тестування рівняння (2.42a) для провідності систем частинок з однорідними оболонками на даних симуляцій RRN [76]. При цьому результат (2.42a) можна використовувати, спираючись як на аналітичний вигляд (рівняння (2.33), (3.1)), так і на експериментальні дані залежності ($\phi - c$) від c.

В рамках алгоритму RRN вивчалися залежності провідності досліджуваних систем від об'ємної концентрації ядер при різних діаметрах ядер та товщинах оболонок для двох випадків: електрично однорідні оболонки [76,77] та електрично неоднорідними оболонками, де провідність залежить від відстані до поверхні ядра за Гаусовим законом [78], а локальне значення провідності при перекритті підкоряється тим самим правилам, що були описані в підрозділі 2.3.1. Використані параметри підсумовані в Таблиці 3.1.

Отримані таким чином результати, разом з результатами симуляцій [76] представлені на рис. 3.3. При $c \gtrsim 0.07$ дані дуже добре узгоджуються з

Таблиця 3.1 Значення провідності відповідних компонент системи в C/cm, що використовувались в числових експериментах RRN [76–78].

Експерименти	σ_0	σ_1	σ_2	σ'_{\min}	$\sigma'_{ m max}$
[76, 77]	1×10^{-8}	1×10^{-12}	1×10^{-4}		
[78]	1×10^{-8}	1×10^{-12}		1×10^{-6}	1×10^{-4}

теорією (максимальна середньоквадратична відносна похибка Δ_{σ} дорівнює ≈ 0.065). Нижче цієї концентрації наша теорія передбачає перколяційну поведінку провідності, поріг перколяції c_c якої може бути оцінений із співвідношення $\phi(c_c, \delta) = 1/3$ (див. Розділ 1.1). Для розглянутих даних, згідно з рівнянь (2.33) та (3.1), $c_c = 0.020$ (K/k = 1.04), 0.034 (K/k = 1.07) та 0.046 (K/k = 1.13). При цьому сама провідність, виходячи з даних симуляцій, швидко росте при концентраціях набагато нижчих ніж ці значення. Ця ситуація типова для симуляцій на обмежених системах, де поріг перколяції є випадковою негаусовою величиною [79].

Таблиця 3.2 Використані параметри для обробки даних симуляцій, зображених на рис. 3.4 за формулою (2.42a).

(a)	d, MKM	3	5	7	9	11
	K/k	1.0	1.05	1.05	1.07	1.10
(б)	t, mkm	3	5	7	9	11
	K/k	1.08	1.05	1.06	1.07	1.06

Використовуючи отриманий результат (3.1) та (2.42а), ми можемо також відновити дані всіх десятьох серій симуляцій [77] (див. рис. 3.4), що є дуже серйозним аргументом на користь розробленої моделі.

Рис. 3.3: Дані симуляцій [76] з провідності як функції концентрації ядер c та їх обробка за (2.42a) при t=5 мкм та (a) різних K (у відповідних позначеннях ліній з рис. 3.2(a); товста неперервна ліня – K=1.03k) й d=7 (\blacktriangle); (6) d=5 (\spadesuit), (4), and (4),

3.2.1. Знаходження положень максимумів провідності

За умовою $\sigma_1 \ll \sigma_0 \ll \sigma_2$, що типові для розглянутих симуляцій (та композитних електролітів в цілому), рівняння (2.42a) може бути спрощене переходячи до границі $\sigma_1 \to 0$:

$$4\sigma_{\text{eff}}^3 - 2\left[(2 - 3\phi)\sigma_0 - (1 + 3c - 3\phi)\sigma_2\right]\sigma_{\text{eff}}^2 - (2 - 3c)\sigma_0\sigma_2\sigma_{\text{eff}} = 0.$$
 (3.3)

Нетривіальне фізично обґрунтоване рішення цього рівняння є

$$\sigma_{\text{eff}} = \frac{3}{4} \left(A + \sqrt{B + A^2} \right), \tag{3.4}$$

де

$$A \equiv \left(\frac{2}{3} - \phi\right)\sigma_0 + \left(\phi - c - \frac{1}{3}\right)\sigma_2,\tag{3.5a}$$

$$B \equiv \frac{4}{3} \left(\frac{2}{3} - c \right) \sigma_0 \sigma_2. \tag{3.56}$$

Рис. 3.4: Дані симуляцій [76] з провідності як функції концентрації ядер c при (a) t=5 мкм та d=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\spadesuit) мкм; (б) d=5 мкм та t=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\spadesuit) мкм. Використані параметри наведені в Таблиці 3.2.

Для серій експериментів на рис. 3.4 графіки залежностей σ_{eff} від c за (2.42a) та (3.4) не відрізняються.

Положення максимумів провідності c_{max} знаходиться за співвідношенням $\partial \sigma_{\text{eff}}/\partial c = 0$ та $\partial^2 \sigma_{\text{eff}}/\partial c^2 < 0$. Через те, що біля цих максимумів виконується умова $\sigma_{\text{eff}} \gg \sigma_0$, з рівняння (3.3) дістаємо для першої умови:

$$\frac{\partial \phi(c,\delta)}{\partial c} \bigg|_{c=c_{\text{max}}} = 1, \tag{3.6}$$

а похідні $\partial^2 \sigma_{\rm eff}/\partial c^2$ та $\partial^2 \phi/\partial c^2$ мають однаковий знак у точці $c=c_{\rm max}$. Згідно з рівняння (2.33), $\partial^2 \sigma_{\rm eff}/\partial c^2 < 0$ для $\delta > 0$. Таким чином, у точці $c=c_{\rm max}$, що знаходиться з умови (3.6), провідність дійсно досягає свого максимального значення, яке можна знайти з (3.4).

Залежність c_{max} від c згідно (3.6) зображена на рис. 3.5(а). Вона дуже добре (**як? похибки?**) узгоджується з даними симуляцій [77]. Цей факт відображає внутрішню послідовність приведеної процедури обробки даних. Залежність σ_{max} від діаметру частинок d (тобто δ) зображена на рис. 3.5(б). Видно, що приведена теорія відновлює майже всі дані симуляцій, крім да-

Рис. 3.5: Результати симуляцій [77]: (а) положення максимумів провідності c_{max} як функція δ , взяті з даних рис. 3.4 (Δ – (а) та \blacktriangle – (б)), та побудовані згідно (3.6), (2.33) та (3.1) (неперервна лінія); (б) значення σ_{max} як функції діаметру d при фіксованих σ_2 та t=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм, оброблені (неперервні лінії) в рамках (3.4), (3.6) та (3.1) при K=k (точкові лінії – те ж саме для t=3 та 5 мкм при K/k=1.15 та 1.07, відповідно).

них з найменшими δ , тобто де похибка алгоритму апроксимації (а тому й результатів симуляцій) максимальна.

Треба зазначити, що за умовою $\sigma_1 \ll \sigma_0 \ll \sigma_2$, рівняння (3.6) та нерівність $\partial^2 \phi / \partial c^2 < 0$ можуть розглядатися як умови знаходження максимуму об'ємної концентрації оболонок $\phi - c$. Якщо частинки проникні, то показано, що цей максимум з'являється у точці $c = c_{\text{max}}$, на відміну від випадку твердих оболонок, для яких ϕ знаходиться з рівняння (??), а σ_{eff} немає локальних максимумів. Один із способів виходу із даної ситуації це робота рамках підходу Накамури-Нана-Сміта, що був розглянутий у першому Розділі, де частинка із оболонкою замінялися однорідною твердою частинкою, а положення максимума провідності визначалося як підгінний параметр з експерименту.

Рис. 3.6: Точки: результати симуляцій [78] концентраційної залежності провідності систем частинок з гаусовим профілем оболонок при (a) t = 5 мкм та d = 3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм; (б) d = 5 мкм та t = 3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм. Неперервні лінії: теоретичні результати (2.43а) в рамках профілю (3.2) з параметрами, що представлені у Таблиці 3.3.

3.3. Тестування моделі у випадку неоднорідних оболонок

Тестування результату (2.43а) проводиться на основі результатів симуляцій RRN [78]. На рис. 3.6 продемонстрована обробка даних симуляцій [78] використовуючи рівняння (2.43а), де $\phi(c,\delta)$, δ та $\sigma_2(u)$ представлені у виді, відповідно, (2.33), (3.1) та (3.2). Використані значення K та σ_{\max} подані у Таблиці 3.3. Як видно за рисунку та даних середньоквадратичної похибки, теорія спроможна відновити дані симуляції у досить доброму наближенні. Зазначимо, що згідно з наданими аргументами для даних значень $\sigma'_{\max}/\sigma'_{\min}$, $\log_{10}(\sigma'_{\max}/\sigma'_{\min}) = 2(n-2)/n$. У випадках t=9 мкм (n=18) та t=11 мкм (n=22), що дають найкращі результати, зазначене рівняння дає $\log_{10}(\sigma'_{\max}/\sigma'_{\min}) \approx 1.78$ та 1.82, відповідно. Ці дані відрізняються від отриманих з підгонки не більш ніж на 17 та 12%, відповідно.

Таблиця 3.3

Використані параметри для обробки даних симуляцій, зображених на рис. 3.6 за формулою (2.43а) з Гаусовим профілем (3.2) оболонок при $\sigma'_{\min} = \sigma_{\min}, \ \sigma_0 = 10^{-8} \ \mathrm{C/cm}, \ \sigma_1 = 10^{-12} \ \mathrm{C/cm}.$

	d, mkm	3	5	7	9	11
(a)	K/k	1.09	1.02	1.13	1.11	1.09
	$\log_{10}\left(\sigma_{ m max}/\sigma_{ m min} ight)$	1.83	1.89	1.82	1.88	1.98
(б)	t, MKM	3	5	7	9	11
	K/k	1.00	1.00	1.05	1.07	1.13
	$\log_{10}\left(\sigma_{ m max}/\sigma_{ m min} ight)$	1.90	1.89	1.85	1.85	1.87

РОЗДІЛ 4

ЗАСТОСУВАННЯ МОДЕЛІ ДО АНАЛІЗУ ЕФЕКТИВНОЇ ПРОВІДНОСТІ КОМПОЗИТНИХ ЕЛЕКТРОЛІТІВ

В даному розділі розроблена модель застосовується для обробки експериментальних даних для ефективної квазістатиної провідності як функції від концентрації для невпорядкованих ТКЕ на основі LiI з частинками Al_2O_3 [80], та функції концентрації й температури для невпорядкованих ПКЕ на основі поліетиленоксиду (РЕО) та оксіметилен-поліетиленоксиду (ОМРЕО) з частинками NASICON ("Na super ionic conductor" $Na_{3.2}Zr_2P_{0.8}Si_{2.2}O_{12}$) [11], θ — Al_2O_3 [44] та поліакріламіду (РААМ) [11, 44] з додаванням солей NaI або LiClO₄.

4.1. Процедура обробки експериментальних даних

Процедура обробки експериментів складається з наступних кроків:

- 1) (ДОПИСАТИ) Для обробки даних [80] використовувалось рівняння (2.43a) для випадку непровідних ядер $(x_1 \to 0)$ для наступних трьох типів профілів оболонок $x_2 = x_2(u) \ (u > 0)$:
 - а) однорідна оболонка з провідністю $x_{2,1} = \sigma_{2,1}/\sigma_0$ та товщиною δ_1 :

$$x_2(u) = x_{2,1} + (1 - x_{2,1})\theta(u - \delta_1); \tag{4.1}$$

б) подвійна оболонка:

$$x_2(u) = x_{2,1} + (x_{2,2} - x_{2,1})\theta(u - \delta_1) + (1 - x_{2,2})\theta(u - \delta_2); \tag{4.2}$$

в) потрійна оболонка:

$$x_2(u) = x_{2,1} + (x_{2,2} - x_{2,1})\theta(u - \delta_1) + (x_{2,3} - x_{2,2})\theta(u - \delta_2) + (1 - x_{2,3})\theta(u - \delta_3);$$
(4.3)

г) неперервна гладка оболонка типу сигмоїди:

$$x_{2}(u) = x_{2,1}^{*} + \frac{x_{2,2}^{*} - x_{2,1}^{*}}{1 + \exp\left(-\frac{u - \delta_{1}^{*}}{\alpha}\right)} + \frac{1 - x_{2,2}^{*}}{1 + \exp\left(-\frac{u - \delta_{2}^{*}}{\alpha}\right)}, \tag{4.4}$$

$$x_{2}(u) = x_{2,1}^{*} + \frac{x_{2,2}^{*} - x_{2,1}^{*}}{1 + \exp\left(-\frac{u - \delta_{1}^{*}}{\alpha}\right)} + \frac{1 - x_{2,3}^{*}}{1 + \exp\left(-\frac{u - \delta_{2}^{*}}{\alpha}\right)},$$

$$x_2(u) = x_{2,1}^* + \frac{x_{2,2}^* - x_{2,1}^*}{1 + \exp\left(-\frac{u - \delta_1^*}{\alpha}\right)} + \frac{x_{2,3}^* - x_{2,2}^*}{1 + \exp\left(-\frac{u - \delta_2^*}{\alpha}\right)} + \frac{1 - x_{2,3}^*}{1 + \exp\left(-\frac{u - \delta_3^*}{\alpha}\right)}.$$
(4.5)

Тут: $x_{2,i} = \sigma_{2,i}/\sigma_0$ – відносні провідності оболонок з відносними товщинами δ_i (відносні відстані зовнішнього радіусу i-ої оболонки до поверхні ядра); $x_{2,i}^*$, δ_i^* та α виступають в ролі параметрів функції профілю оболонки. У наближенні $\alpha \to 0$ параметри $x_{2,i}^*$, δ_i^* прямують до $x_{2,i}$ та δ_i , відповідно, а рівняння (4.4) приймає вигляд (4.2). Верхня межа інтегрування δ_M була зафіксована у значенні 5, що не вливало на остаточні результати розрахунку.

Для початку розглянемо застосування теорії до одних з перших експериментальних результатів з провідності композитних електролітів [80].

4.2. Тверді композитні електроліти

(описати експеримент)

Результати обробки представлені на рис. 4.1 та у Таблиці 4.1. Добрі результати досягаються при умові, що $\sigma_2(r)$ можна розділити на дві істотно різні частини, суть яких полягає у наступному. По-перше, зазначимо, що застосована модель проникних оболонок є зручним методом моделювання ефективної мікроструктури та провідності системи, та способом аналізу можливих механізмів формування провідності; реальна провідність навколо твердих оболонок може відрізнятися від $\sigma_2(r)$.

Розглянемо, наприклад, модель (4.2), що адекватно описує всю множину розглянутих даних. В рамках цієї моделі, рівняння (2.43а) може бути еквівалентно представлено у виді системи двох рівнянь:

$$[1 - \phi(c, \delta_1)] \frac{\sigma_0(c) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0(c)} + c \frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + [\phi(c, \delta_1) - c] \frac{\sigma_{2,1} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,1}} = 0, \quad (4.6)$$

Рис. 4.1: (а) Експериментальні дані [80] (\circ) з σ_{eff} для ТКЕ LiI/Al₂O₃ та їх обробка в рамках а) однорідної (4.1) (точкова лінія), б) подвійної (4.2) (штрихована лінія) та в) сигмойдної (4.4) (неперервна лінія) моделей профілів $\sigma_2(r)$. Використані параметри приведені в Таблиці 4.1. Відповідні профілі оболонок представлені на рис. (б).

$$(1 - \phi(c, \delta_1)) \frac{\sigma_0(c) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0(c)} = (1 - \phi(c, \delta_2)) \frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + (\phi(c, \delta_2) - \phi(c, \delta_1)) \frac{\sigma_{2,2} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,2}},$$
(4.7)

перше з яких можна вважати рівнянням для знаходження $\sigma_{\rm eff}$ в рамках моделі однорідної оболонки (4.1) для системи, де провідність матриці залежить від концентрації частинок за законом (4.7). При низьких концентраціях має місце $\sigma_{\rm eff} \approx \sigma_0(c)$, тобто $\sigma_{\rm eff}$ визначається через $\sigma_0(c)$, що в свою чергу залежить від параметрів зовнішньої частини профілю $\sigma_2(r)$.

Залежність $\sigma_0(c)$, знайдена з рівняння (4.7), для ТКЕ LiCl — $-{\rm Al_2O_3}$ [80] показана на рис. 4.2. Для $c\lesssim 0.1$ ця залежність дуже схожа на низькоконцентраційну область залежності $\sigma_{\rm eff}$ від c на рис. 4.1. Це означає, внутрішні оболонки $\sigma_2(r)$ не вносять свій вклад в $\sigma_{\rm eff}$ в цій області, не зважаючи на їх велике значення провідності. Ситуація змінюється поблизу порогу перколяції $c_{\rm c}\approx 0.126$ (що визначається за товщиною внутрішньої оболонки δ_1) — значну роль починає грати внутрішня частина $\sigma_2(r)$.

Таблиця 4.1

Параметри, що використовувались для обробки даних [80] з $\sigma_{\rm eff}$ для ТКЕ LiI/Al₂O₃ в рамках однорідної (4.1), подвійної (4.2), та сигмойдної (4.4) моделей профілів $\sigma_2(r)$; $\sigma_0 = 2.5 \times 10^{-7} \, {\rm S/cm}, \, x_1 = 0.$

a)	x_2	δ			
	150	0.5			
б)	$x_{2,1}$	$x_{2,2}$	δ_1	δ_2	
	185	14	0.40	1.50	
в)	$x_{2,1}^*$	$x_{2,2}^*$	δ_1^*	δ_2^*	α
	185	12	0.38	1.41	0.03

Інший результат цього аналізу полягає у вираженні якості самоподібності моделі. Дійсно, (**НУЖНО** Л**И**)

Процеси в матриці, що збільшують провідність, можуть включати: формування поблизу поверхні частинок області просторового заряду за рахунок високої концентрації дефектів в полікристалічній матриці [81]; розвинення високопровідної мережі зв'язаних дислокацій, що викликані механічним або термальним шляхом [82–84]; швидкий іонний транспорт уздовж поверхні розділу матриця-частинки та/або дислокацій [85, 86]; однорідне добування матриці за рахунок розчинення неоднорідностей та малих частинок [87–89].

Типовими прикладами міжфазних процесів, що призводять до високої провідності областей навколо частинок є: формування за рахунок адсорбції (десорбції) області просторового заряду — великої концентрації точкових дефектів [90]; швидкий іонний транспорт уздовж границі частинка-матриця за рахунок пошкодження структури матриці [85,91]; стабілізація провідних нерівноважних станів за рахунок прилеглих частинок [43,92]; формування нової "суперструктури" за рахунок хімічних реакцій у міжфазній області [93]. Для ТКЕ LiI — $-\text{Al}_2\text{O}_3$, внутрішня частина $\sigma_2(r)$ може бути асоційована з областю просторового заряду. Дійсно, наші значення $\delta_1 = 0.4$ та $x_{2,1} = 185$ добре корелюють з результатами Джіанга та Вагнера $\delta = 0.4$, $x_2 = 324$ [94, 95]

Рис. 4.2: Залежність провідності матриці від c (неперервна лінія), згідно рівняння (4.7) для подвійного профілю на рис. 4.1(б) (та його параметрів у стрічці б) Таблиці 4.1). Штрихована лінія: поріг перколяції $c_{\rm c}\approx 0.126$ у системі з внутрішньою оболонкою.

отриманих для області просторового заряду, моделюючи систему у вигляді кубічної гратки з ідеальним розподілом частинок; надані оцінки отримані в рамках комбінування методів теорії перколяції та моделі просторового заряду.

Для інших типів композитних електролітів, у формуванні провідності оболонки та матриці можуть грати й інші механізми.

4.3. Полімерні композитні електроліти

Експериментальні дані

(ОПИСАТЬ ЕКСП)

4.3.1. Концентраційна залежність

Експериментальні дані [11,44] для декількох типів ПКЕ на основі РЕО та ОМРЕО свідчать про немонотонну залежність $\sigma_{\rm eff}$ від c, з максимумом $\sigma_{\rm eff}$, що знаходиться у межах значень c від 0.05 до 0.1 для РЕО–NaI–NASICON та (PEO)₁₀–NaI– θ Al₂O₃ (див. рис. 4.3a), та від 0.2 до 0.3 для РЕО–LiClO₄– PAAM та ОМРЕО–LiClO₄–PAAM (рис. 4.4a), та з можливим мінімумом $\sigma_{\rm eff}$

Рис. 4.3: (а) Експериментальні дані з $\sigma_{\rm eff}$ як функції від c для ПКЕ РЕО-NaI-NASICON [11] (\circ) та (PEO)₁₀-NaI- θ -Al₂O₃ [44] (\bullet), та їх підгонки в рамках моделей однорідної, подвійної та неперервної оболонок. Позначення вказують на відповідні параметри, що приведені у Таблиці 4.2. (б) Відповідні одночастинкові профілі провідності, що були використані для моделювання мезоскопічної структури ПКЕ.

при значенні c близького до 0.1 для ОМРЕО–LiClO₄–PAAM. Результати наших підгонок (див. рис. 4.3а, 4.4а та Таблицю 4.2) для різних видів $\sigma(r)$ оболонки (рис. 4.3б та 4.4б, відповідно) дають явну якісну уяву про електричну структуру її неоднорідності: добре узгодження теорії з даними [11,44] (див. рис. 4.5 — відсоткове відхилення експериментальних даних від представлених підгонок за параметрами та відповідними значеннями R^2 з Таблиці 4.2) досягається в рамках моделі подвійної оболонки для ПКЕ з неорганічними провідними (NASICON) та непровідними (θ Al₂O₃) доданками, та моделі потрійної оболонки для ПКЕ з органічними (PAAM) доданками.

Використання моделі неперервної оболонки, що з фізичної точки зору здається більш адекватним, може істотно змінити форму профілів провідності оболонки, які стають дуже схожими на Гаусів профіль, що був розглянутий у Розділі 4.2. Однак, щонайменш для зазначених ПКЕ, такі профілі не

Рис. 4.4: (а) Експериментальні дані з $\sigma_{\rm eff}$ як функції від c для ПКЕ РЕО-LiClO₄–РААМ [11,44] (\circ) та ОМРЕО-LiClO₄–РААМ [44] (\bullet), та їх підгонки в рамках моделей подвійної, потрійної та неперервної оболонок. Позначення вказують на відповідні параметри, що приведені у Таблиці 4.2. (б) Відповідні одночастинкові профілі провідності, що були використані для моделювання мезоскопічної структури ПКЕ.

призводять до значного покращення результатів для $\sigma_{\rm eff}$ у порівнянні з дискретними профілями оболонки, але дещо покращують значення R^2 . Це дає підставу застосовувати модель дискретних профілів до аналізу температурної залежності $\sigma_{\rm eff}$ (див. наступний Розділ).

Базуючись на отриманих значеннях (Таблиця 4.2), можна зробити висновок, що $\sigma_{\rm eff}$ формується на основі декількох наступних механізмів:

1. Аморфізація полімерної матриці навколо частинок дисперсної фази, що суть формування аморфної високопровідної (за рахунок значної рухливості полімерних молекул та, як наслідок, підвищеної іонної провідності) полімерної фази у області границі полімер-доданок. Цей ефект поясняється уповільненням кристалізації полімеру поблизу поверхні частинок, що грають ролі як центрів зародження полімерної фази, так й механічних перешкод для росту полімерних кристалітів.

Рис. 4.5: Відносні відхилення експериментальних даних з залежностей $\sigma_{\rm eff}$ від c для ПКЕ РЕО–NaI–NASICON [11], (PEO)₁₀–NaI– θ -Al₂O₃ [44], PEO–LiClO₄– PAAM [11,44] та ОМРЕО–LiClO₄–PAAM [44] від підгінних кривих 1с (\square), 2с (\triangle), 3b (∇) та 4b (\Diamond), відповідно (див рис. 4.3 та 4.4). Замальовані точки: те ж саме для кривих 1d, 2d, 3c, and 4c, відповідно. Процентне відхилення $\approx 1040\,\%$ експериментальної точки $c\approx 0.18,\ x_{\rm eff}\approx 2.8$ для (PEO)₁₀–NaI– θ -Al₂O₃ (п'ята • на рис. 4.3) від кривої 2с не показана. Значення R^2 для вказаних підгонок приведені у Таблиці 4.2.

- 2. Вплив твердості дисперсної фази на аморфну фазу матриці, що проявляються у зниженні гнучкості сегментів полімерних ланок та, як наслідок, пониженні іонної рухливості в околі розділу дисперсної та полімерної фаз. Це призводить до зниження локального значення провідності $\sigma_{2,1}$ у порівнянні зі значеннями на більших відстанях від поверхні розділу. Вважається також, що найближча до поверхні розділу оболонка, з провідністю $\sigma_{2,1}$, бере до уваги ефекти, пов'язані з несферичною формою частинок (наприклад, для полімерних глобул РААМ).
- 3. Ефективне зниження (у порівнянні з чистим матеріалом) провідності високопровідних частинок в ПКЕ за рахунок формування низькопровідного шару на межі розділу дисперсної та полімерної фаз.

Також цікавий той факт, що КПЕ на основі ОМРЕО демонструють пік з

подальшою западиною у той час, як КПЕ на основі РЕО демонструють тільки пік (див. рис. 4.36 та 4.46) у поведінці профілів їх оболонок. Для того щоб це пояснити, повернемося до визначення проникних оболонок та зазначимо, що їх профілі провідності не еквівалентні реальному розподілу провідності навколо частинок, а представляють собою зручний спосіб моделювання ефективної мікроструктури реальних КПЕ. Електричні властивості зовнішніх частин оболонок визначають поведінку $\sigma_{\rm eff}$ при малих значеннях c, коли на $\sigma_{\rm eff}$ у значній мірі впливає матриця. Якщо чистий полімер, з якого складається матриця, має відносно високу провідність (наприклад, аморфний ОМРЕО по відношенню до напівкристалічного РЕО), тоді додавання низькопровідного полімеру (такого як РААМ) може істотно знизити його провідність (наприклад, за рахунок формування комплексів катіонів Li⁺ та PAAM). В рамках запропонованого підходу цей ефект можна взяти до уваги за рахунок мінімуму у дальній частині модельного профілю $\sigma_2(r)$. Зі зростанням c все більшу роль починають грати високопровідні аморфні області навколо частинок, що призводить до зростання $\sigma_{\rm eff}$.

На останок, порівняємо результати модифікованої для ПКЕ теорії Накамури-Нана та розвинутої теорії для двох систем з рис. 4.4 (див. рис. 4.6). З рисунку явно видно, що розвинута теорія більш гнучка при кількісному описі електричної провідності ПКЕ.

4.3.2. Температурна залежність

Результати застосування моделі потрійної оболонки до трьох изотерм концентраційних залежностей $\sigma_{\rm eff}$ [44] для ПКЕ ОМРЕО–LiClO₄–PAAM (з концентрацією LiClO₄ 10 mol %, після отжигу) представлені на рис. 4.7, 4.8 та у Таблиці 4.3; параметри $\delta_1=0.40,\,\delta_2=0.80$ та $\delta_3=1.40$ (див. Таблицю 4.2) вважалися не залежними від температури (що, в загальному випадку, не є вірним). Підгінні значення параметрів σ_0 та $\sigma_{2,i}$ були використані для оцінки параметрів рівняння ФТФ для відповідних компонент ПКЕ; вони представлені у Таблиці 4.4. Ці дані були використані для того, щоб відновити тем-

Рис. 4.6: Порівняння результатів потрійної моделі (неперервні лінії 3b та 4b, див. Таблицю 4.2) з модифікованою для ПКЕ теорією Накамури-Нана [44] (штрихована лінія, див. Таблицю 7 та рис. 10 у [44]), відносно обробки даних [44] для РЕО–LіСlO₄–РААМ (о) та ОМРЕО–LіСlO₄–РААМ (після отжигу) (•) при 25°С (концентрація LіСlO₄ дорівнювала 10 mol % по відношенню до концентрації ефіру кисню).

пературні залежності $\sigma_{\rm eff}$, що представлені в [44], використовуючи рівняння (1.16) у рамках моделі трьох оболонок; ці результати представлені на рис. 4.9 та 4.10.

Зважаючи на отримані результати, треба зробити декілька зауважень:

- 1. Наші оцінки $B=1270{
 m K}$ та $T_0=190{
 m K}$ для чистого ОМРЕО дуже близькі за значенням до оцінок, отриманих в [44]: $B=1200{
 m K}$ та $T_0=195{
 m K}$. Однак преекспоненцальний множник A, в рамках наших оцінок, істотно відрізняється від значень [44]: A=36.1 та $27.0{
 m \, Cm\cdot \, K^{1/2}/cm}$, відповідно. Ураховуючи той факт, що наші теоретичні криві краще відновлюють експериментальні дані, цей результат може свідчити про те, що ефективні електричні властивості полімерної матриці можуть змінюватися в процесі приготування ПКЕ, можливість чого вже була показана для ТКЕ.
- 2. Всі наші оцінки параметрів ФТФ для оболонок лягають у допустимі границі, вказані у [44] для всіх зразків ОМРЕО-LiClO₄-PAAM. З цієї

Рис. 4.7: Експериментальні дані [44] при $t=0^{\circ}\mathrm{C}$ (\circ), 25°C (\bullet) та 100°C (∇) ізотерм σ_{eff} для ПКЕ ОМРЕО–LіClO₄–PAAM як функції концентрації РААМ. Штриховані лінії: підгонки за законом ФТФ [44] за параметрами, що вказані у Таблиці 5 в [44]. Неперервні лінії: підгонки з використанням моделі потрійної оболонки; параметри вказані в Таблиці 4.3. Відносні відхилення цих даних та значення R^2 для підгонок в рамках запропонованої моделі представлені на рис. 4.8.

точки зору наші результати узгоджені.

3. Беручи до уваги початкові неточності в значеннях порвідності оболонок, що були отримані підгонкою ізотерм, можна зробити висновок, що експериментальні дані для зразків з 5, 25 та 40 % вмісту РААМ достатньо добре відновлюються нашою теорією. Дані зразків з 10 та 50 % вмісту РААМ відновлюються якісно; істотного покращення можна досягти за рахунок домноження теоретичних результатів на сталий множник. Цей факт можна пояснити зазначеними розбіжностями в значеннях A для провідності матриці.

4.4. Висновки

В даному Розділі модель ядро-оболонка в рамках МКГ була застосована до вивчення ефективної квазістатичної провідності композитних електролітів

Рис. 4.8: Відносні відхилення даних [44] експериментальних концентраційних залежностей $\sigma_{\rm eff}$ для трьох ізотерм ПКЕ ОМРЕО–LiClO₄–PAAM від підгонок за приведеною теорією, що представлені на рис. 4.7. Позначення \circ , \bullet та ∇ відповідають тим самим даним, що на рис. 4.7. Значення R^2 для цих підгонок 87.2, 91.4 та 94.5%, відповідно.

на основі неорганічних та органічних (полімерних) матриць. Спершу модель було протестовано на числових результатах симуляцій RRN для однорідного та неоднорідного шарів. Показано, що алгоритм RRN не є достатньо точним в сенсі апроксимації неперервної системи шарів системою кубів. Для уточнення опису реальної системи вводився параметр апроксимації, що дозволив з достатньою точністю відновити дані на всьому проміжку концентрацій. Значні похибки виникали лише в області перколяцій провідності через те, що поріг перколяції в обмежених системах не є точним, а носить складний негаусів характер. Далі модель

Рис. 4.9: Експериментальні дані [44] для температурної залежності $\sigma_{\rm eff}$ ПКЕ ОМРЕО–LiClO₄–PAAM (з молярною концентрацією LiClO₄ 10 %, після отжигу) з 5 (∇), 10 (\circ), 25 (\square), 40 (\blacktriangle) та 50 (\bullet) % об'ємної концентрації РААМ. Штриховані лінії, (b): підгонки за ФТФ, використовуючи параметри з Таблиці 5 в [44], що запропоновані відповідними авторами для цих ПКЕ при 10 та 50 % РААМ. Неперервні лінії: результати наших розрахунків в рамках моделі трьох оболонок, вважаючи, що провідності складових підкоряються закону ФТФ (1.16) з параметрами, представленими у Таблиці 4.4. Точкові лінії, (b): те ж саме, але з використанням сталого множнику для $\sigma_{\rm eff}$: 0.40 $\sigma_{\rm eff}$ та 0.75 $\sigma_{\rm eff}$ для ПКЕ з 10 та 50 % РААМ, відповідно. Відносні відхилення представлених даних від експериментальних та значення R^2 для розрахованих кривих представлені на рис. 4.9.

 $Tаблиця\ 4.2$: Параметри, що були використані для обробки даних [11,44] з концентраційних залежностей для ПКЕ при $t=25\,^{\rm o}{\rm C}$ в рамках моделей дискретних (рівняння (4.1)–(4.3)) та неперервних (рівняння (4.4), (4.5)) оболонок та значення R^2 для найкращих результатів.

	I			ı	ı	ı	ı		
Оболонка	La	x_1	$\delta_1{}^{ m b}$	$\delta_2{}^{ m b}$	$\delta_3{}^{ m b}$	$x_{21}^{\rm b}$	x_{22}^{b}	x_{23}^{b}	R^2 , %
Coosionika			$\delta_1^{*\mathrm{c}}$	$\delta_2^{*{ m c}}$	$\delta_3^{*{ m c}}$	x_{21}^{*c}	x_{22}^{*c}	x_{23}^{*c}	
PEO-NaI-NASICON ($\sigma_0 \approx 9.86 \times 10^{-9} \text{ S/cm}$)									
однорідна	1a	1.4×10^4	1.6	_	_	1000	_	_	_
однорідна	1b	1.4	1.6	_	_	1300	_	_	_
подвійна	1c	70	1.0	1.55	_	400	20000	_	99.4
неперервна,	1d	70	1.0	1.55	_	400	6000	_	95.5
$\alpha = 0.05$									
$(PEO)_{10}$ -NaI- θ -Al ₂ O ₃ $(\sigma_0 \approx 1.54 \times 10^{-8} \text{ S/cm})$									
однорідна	2a		2.1	_	_	230	_	_	_
подвійна	2b		0.7	2.1	_	0.12	435	_	92.8
подвійна	2c	6.5×10^{-13}	0.8	2.1	_	0.12	520	_	98.6
неперервна,	2d		0.9	2.1	_	0.12	560	_	95.0
$\alpha = 0.05$									
	PE	EO-LiClO ₄ -P.	AAM	$\sigma_0 \approx 1$	6.12 ×	10^{-7} S	S/cm)		
подвійна	3a	1.6×10^{-6}	0.15	0.60	_	5.0	800	_	88.7
потрійна	3b		0.16	0.50	0.80	5.0	1800	27	92.3
неперервна,	3c		0.32	0.45	0.48	2.0	9400	27	92.9
$\alpha = 0.03$									
OMPEO-LiClO ₄ -PAAM, після отжигу ($\sigma_0 \approx 1.61 \times 10^{-5} \; \mathrm{S/cm}$)									
подвійна	4a		0.36	0.75	_	0.60	75	_	46.3
потрійна	4b	C O 10-8	0.40	0.80	1.40	0.57	750	0.10	93.8
неперервна,	4c	6.2×10^{-8}	0.54	0.64	1.53	0.44	14200	0.10	81.7
$\alpha = 0.02$									

^а Використані позначення для підгонок на відповідних рисунках.

^b Параметри для моделей дискретних оболонок.

^с Параметри для моделей неперервних оболонок.

 $\it Tаблиця~4.3$: Значення провідності, в См/см, що були використані для підгонок ізотерм концентраційних залежностей $\sigma_{\rm eff}$ для ПКЕ ОМРЕО–LiClO₄–PAAM ^{a,b} (див. рис. 4.7).

Складова	t = 0 °C	$t = 25\mathrm{^oC}$	$t = 100\mathrm{^oC}$
Матриця, σ_0	4.64×10^{-7}	1.57×10^{-5}	1.78×10^{-3}
Перша оболонка, σ_{21}	5.75×10^{-7}	8.70×10^{-6}	4.21×10^{-4}
Друга оболонка, σ_{22}	1.025×10^{-3}	7.74×10^{-3}	1.00×10^{-1}
Третя оболонка, σ_{23}	1.07×10^{-7}	3.12×10^{-6}	1.36×10^{-4}

 $^{^{\}rm a}$ 3 молярною долею LiClO₄ 10 %.

 $\it Taблиця$ 4.4: Параметри ФТФ, що отримані для ПКЕ OMPEO–LiClO₄–PAAM ^a

Складова	$A, \operatorname{Cm} \cdot \operatorname{K}^{1/2}/\operatorname{cm}$	<i>B</i> , K	T_0 , K
Матриця, σ_0	36.1 ^a	1270	190
Перша оболонка, σ_{21}	4.33	1210	180
Друга оболонка, σ_{22}	71.1	634	197
Третя оболонка, σ_{23}	0.229	720	212

 $^{^{\}rm a}$ 3 молярною долею LiClO $_4$ 10 %.

^b За рахунок формування комплексів катіонів Li⁺ з ланцюгами РААМ, ядра РААМ–LiClO₄ непровідні, та мають при кімнатній температурі провідність $\sigma_1 \sim 1 \times 10^{-12}$ См/см [44]. Це значення й було використано в наших розрахунках. Зростання σ_1 на декілька порядків не вплинуло на отримані результати (у границях потрібної точності).

Рис. 4.10: Відносні відхилення температурних залежностей даних $\sigma_{\rm eff}$ [44] для ПКЕ ОМРЕО–LiClO₄–PAAM (з молярною концентрацією LiClO₄ 10 %, після отжигу) від розрахованих кривих, зображених на рис. 4.9. Відхилення розраховані для всіх зразків ПКЕ з 5 (∇), 10 (\circ), 25 (\square), 40 (\blacktriangle) та 50 (\bullet) % РААМ. Значення R^2 для зазначених кривих дорівнюють, відповідно, 94.8, 94.0, 83.4, 77.5 та 96.0 %.

РОЗДІЛ 5

ЕФЕКТ ЕЛЕКТРИЧНОЇ ПЕРКОЛЯЦІЇ В РАМКАХ МОДЕЛІ

В даному розділі аналізується класичний ефект електричної перколяції в рамках найпростішої системи непровідної матриці та провідних частинок з однорідною оболонкою за умови $\sigma_0 < \sigma_2 < \sigma_1$. Знаходиться залежність порогу перколяції від характеристик системи. Знаходяться критичні індекси системи та аналізується метод їх порівняння з експериментально знайденими (ефективними) критичними індексами. Проводиться порівняння результатів результатів з експериментаьними даними систем на основі КСІ з частинками Ад, покритими проникним оксидним шаром, та систем на основі парафіну с частинками термографіту, заліза, алюмінію, СиО та Fe2O3. Аналізується ефект подвійної перколяції.

5.1. Аналіз провідності моделі з електрично однорідною оболонкою

Загальний розв'язок рівняння (2.426) робиться за допомогою формул Кардано, однак аналіз основних характеристик моделі можна зробити виходячи з простіших міркувань. Для зручності в (2.42а) та (2.42б) перейдемо до обезрозмірених змінних $x = \sigma_{\rm eff}/\sigma_1, \ y = \varepsilon_{\rm eff}/\varepsilon_0$, та $x_i = \sigma_i/\sigma_1, \ y_i = \varepsilon_i/\varepsilon_0 \ (i=0,1,2)$. Будемо розглядати системи з $x_0 << 1$ та $y \geqslant 1$.

5.1.1. Поріг електричної перколяції

У наближені непровідної матриці $(x_0 \to 0)$ рівняння (2.42a) має три розв'язки: x=0 та

$$x = \frac{3}{4} \left[\left(c - \frac{1}{3} \right) + \left(\phi - c - \frac{1}{3} \right) \pm \sqrt{\frac{4}{3} \left(\phi - \frac{1}{3} \right) x_2 + \left[\left(c - \frac{1}{3} \right) + \left(\phi - c - \frac{1}{3} \right) x_2 \right]} \right]$$
(5.1)

Рис. 5.1: Ефекти перколяції (штрихована лінія, $\delta=0$) та "подвійної" перколяції (неперервна лінія, $\delta=0.05$); $x_0=1\times 10^{-10},\, x_2=5\times 10^{-5}.$

Через те, що $x_2 > 0$, фізично послідовний нетривіальний результат (зі знаком плюс перед коренем) з'являється тільки за умови, що

$$\phi(c_c, \delta) = \frac{1}{3} \tag{5.2}$$

та не залежить від x_2 .

Відношення (5.2) визначає поріг перколяції c_c ефективної провідності. Його значення визначається лише геометрією поверхневого шару та не залежить від його провідності або проникності. Переходячи до границі $x_2 \to 0$ або $\delta \to 0$, отримуємо відоме значення порогу перколяції для СМБ.

Наші розрахунки c_c як функції δ показані на рис. 5.2 для виду (2.33) функції ϕ . Аналіз показав, що для реалістичних значень концентрації $c \lesssim 0.5$, для знаходження порогу може бути використане співвідношення $c_c = \frac{1}{3}(1 + \delta)^{-3}$.

У околі порогу перколяції $c_c \ (c \to c_c + 0)$ для ненульових δ , формула (5.1) приймає форму

$$x \approx \frac{3}{4}x_2 \left[1 + \frac{\frac{1}{3} + c(1 - x_2)}{\frac{1}{3} - c(1 - x_2)} \right] \left(\phi - \frac{1}{3} \right).$$
 (5.3)

Відповідно, ефективна провідність $\sigma \propto (c-c_c)^t$, де критична експонента $t \approx 1$. Ефективна проникність, як це видно з рівняння (2.426) аномально росте при

Рис. 5.2: Ефекти перколяції (штрихована лінія, $\delta=0$) та "подвійної" перколяції (неперервна лінія, $\delta=0.05$); $x_0=1\times 10^{-10}, x_2=5\times 10^{-5}$.

 $x_0 \to 0$. Останній факт відповідає аргументам наведеним у [22].

5.1.2. Ефективні критичні індекси провідності

На практиці, як поріг перколяції c_c так і критичний індекс t знаходяться шляхом інтерполяції експериментальних даних з провідності $\sigma = \sigma(c)$, отриманих для деякого інтервалу концентрацій $c \in [c_1, c_2]$ поблизу c_c $(c_1 \to c_c + 0)$, за скейлінговим законом $\sigma = A(c - c_c)^t$, де A і t не залежать від c. Тоді,

$$t_{eff} = \lg \frac{\sigma(c_2)}{\sigma(c_1)} / \lg \frac{c_2 - c_c}{c_1 - c_c}, \tag{5.4}$$

та воно вважається не залежним від c, в той час як, згідно з асимптотикою (5.3), навіть малі відхилення c від c_c викликають значні зміни виразу в квадратних дужках, який в свою чергу пропорційний до A. Це значить, що пряме використання зазначеної процедури та формули (5.4) до системи з провідністю (5.1) призведе до залежності ефективного (вимірюваного на експерименті) критичного індексу t_{eff} до параметрів c_1 та c_2 (рис. 5.3). Зокрема, для даного $\delta \neq 0$, t_{eff} зростає зі змінами інтервалу $[c_1, c_2]$ ($c_2 < 1/3$): (а) зсув до більших значень c (при фіксованій ширині інтервалу); (б) розширення інтервалу з фіксованим значенням c_1 . Зазначимо, що поріг перколяцій, знайдений згідно цієї процедури, буде перевищувати c_c .

Рис. 5.3: Ефективний критичний індекс провідності як функція c_2 при фіксованому c_1 , $\delta=0.1$ ($c_c\approx0.251$) та $x_2=5\times10^{-5}$, розрахований за формулами (5.1) та (5.4). Знизу догори, $c_1=0.26,0.27,0.28$.

Різні тривимірні моделі перколяції [34] та розрахунки ренорм групи [96,97] дають оцінки для $t \approx 1.3 \div 1.7$ та $\approx 1.9, 2.14$, відповідно. Експериментальні значення t зазвичай лежать у проміжку $1.5 \div 2$ та іноді можуть бути навіть в два рази вище [9]. Як видно з рис. 5.3 наша теорія може відновити всі ці значення.

Для реальних систем $x_0 \neq 0$, хоча й може бути дуже малим. Взявши це до уваги перколяційна поведінка x в залежності від c змінюється на гладку функцію, з різко зростаючим кутом нахилу поблизу c_c . Водночас, максимальне значення y стає обмеженим зверху та спадає з ростом x_0 (рис. 5.4). Положення максимуму зсувається до менших концентрацій з ростом δ (рис. 5.5). Розрахунки показують, що воно практично не залежить від x_2 та насправді співпадає з c_c .

Нижче порогу перколяції ефективна провідність зазвичай апроксимується скейлінговим законом $\sigma = B(c_c-c)^{-s}$. За наявності експериментальних даних на деякому інтервалі $[c_1,c_2]$ $(c_2\to c_c-0)$ ефективні значення s_{eff} критичного індексу s знаходяться зі співвідношення:

$$s_{eff} = -\lg \frac{\sigma(c_2)}{\sigma(c_1)} / \lg \frac{c_c - c_2}{c_c - c_1}.$$
 (5.5)

Наші оцінки s_{eff} згідно з формулами (2.42a) та (5.5) показані на рисун-

Рис. 5.4: Вплив провідності матриці на ефективну провідність. Згори донизу, $x_0 = 1 \times 10^{-6}$, 1×10^{-5} , та 1×10^{-4} . Інші параметри: $y_1 = 1.5$, $y_2 = 1$, $x_2 = 0.05$, $\delta = 0.005$.

ку 5.6. Вони добре корелюють з типовими теоретичними [96, 97] та експериментальними значеннями [9] значеннями 0.75 та 0.7÷1.0, відповідно.

5.2. Поведінка квазістатичної ефективної проникності

Згідно з рівнянням (2.42б) ефективна проникність розраховується наступним чином:

$$\varepsilon = x \frac{(1-\phi)\varepsilon_0 + c\frac{(2x+x_0)^2}{(2x+1)^2}\varepsilon_1 + (\phi-c)\frac{(2x+x_0)^2}{(2x+x_2)^2}\varepsilon_2}{(1-\phi)x_0 + c\frac{(2x+x_0)^2}{(2x+1)^2} + (\phi-c)\frac{(2x+x_0)^2}{(2x+x_2)^2}x_2}.$$
 (5.6)

Для слабо провідних систем $(x_0 \to 0)$ та за умовою $x \ll 1$, зазначимо три наступних випадки.

- 1. Система знаходиться нижче порогу перколяції за умов $x \ll \sqrt{x_0}$, $x \ll \sqrt{x_0x_2}$, $x \ll x_2$ (тобто $\sigma_{\rm eff} \ll \sqrt{\sigma_0\sigma_1}$, $\sigma_{\rm eff} \ll \sqrt{\sigma_0\sigma_2}$ та $\sigma_{\rm eff} \ll \sigma_2$). Тоді основний вклад в чисельник та знаменник вносять перші доданки, тож очікується, що $\varepsilon_{\rm eff} \sim x \sim (c_c c)^{-s}$.
- 2. Система вище порогу перколяції та $x\gg\sqrt{x_0},\ x\gg\sqrt{x_2},\ x\gg x_2$

Рис. 5.5: Вплив товщини оболонки на ефективну провідність. З права наліво, $\delta = 0, 0.05$ та 0.10. Інші параметри: $y_1 = 1.5, y_2 = 1, x_0 = 1 \times 10^{-5}, x_2 = 0.05$.

 $(\sigma_{\rm eff}\gg\sqrt{\sigma_0\sigma_1},\ \sigma_{\rm eff}\gg\sqrt{\sigma_1\sigma_2}\ {
m Ta}\ \sigma_{\rm eff}\gg\sigma_2)$. Тепер основний вклад вносять перший та третій доданки в чисельнику (останній майже не залежить від x) та другий вклад у знаменнику. Відповідно, залежність $\varepsilon_{\rm eff}$ від c очікується близькою до $\varepsilon_{\rm eff}\sim x^{-1}\sim (c-c_c)^t$ з константою пропорціональності слабко залежною від c.

Критичні індекси у двох попередніх скейлінгових залежностях не залежать від проникностей ε_i компонент системи.

3. Система знаходиться близько до порогу перколяції, $x \gg \sqrt{x_0}$ та $x \gg x_2$ ($\sigma_{\rm eff} \gg \sqrt{\sigma_0 \sigma_1}$, $\sigma_{\rm eff} \gg \sigma_2$). Тоді чисельник майже не залежить від x, в той час як найголовнішими є другий та третій доданки у знаменнику. залежність $\varepsilon_{\rm eff}$ від x приймає вигляд $\varepsilon_{\rm eff} \sim ax/(1+bx^2)$ (коефіцієнти a та b легко відновити використовуючи (5.6)).

Якщо порогів перколяції декілька (див. далі), то така поведінка проникності виникає поблизу кожного з них в системах з великими різницями провідностей типу матриця «оболонка «ядро.

5.2.1. Ефект подвійної перколяції

Для проміжних значень x_2 ($x_0 \ll x_2 \ll x_1$) можливий ефект подвійної перколяції, що полягає у послідовному різкому зростанню x (рис. 5.1); така

Рис. 5.6: Ефективний критичний індекс провідності нижче c_c як функція x_0 для $\delta=0.1$ ($c_c\approx0.251$) та $x_2=5\times10^{-5}$, розрахована за формулами (2.42a) та (5.5) при $c_1=0.24$ та $c_2=0.25$.

поведінка супроводжується появою нового піку на концентраційній залежності ефективної проникності (рис. 5.7). Фізика цього феномену досить проста – у концентрованій системі тверді ядра частинок з проникними оболонками починають контактувати та утворюють перколяційний кластер, що дає свій внесок у поведінку провідності та проникності. Цей ефект може спостерігатися наприклад для систем багатостінних нанотрубок [98], або при використанні двокомпонентної матриці [99, 100].

Поріг подвійної перколяції c'_c близький до значення 1/3. В області $|c-1/3| \ll x_2 \ll 1$, залежність ефективної провідності (5.1) представлена кореневою залежністю:

$$x = \frac{1}{2} (3x_2)^{1/2} \left[\phi(c, \delta) - \frac{1}{3} \right]^{1/2} + O(x_2) = \frac{1}{2} \left[3x_2 \phi'(c_c, \delta) \right]^{1/2} (c - c_c)^{1/2} + O(x_2),$$
(5.7)

де ϕ' – похідна від ϕ за c. Для концентрацій, що задовільняють умові $c-1/3\gg x_2$, ця залежність стає лінійною:

$$x = \frac{3}{2} \left(c - \frac{1}{3} \right) + O(x_2), \tag{5.8}$$

з істотно більшою амплітудою ніж у (5.3) та (5.7). Тобто поріг перколяції дорівнює $c_c = 1/3$.

Рис. 5.7: Ефективна проникність при подвійній перколяції; $x_0 = 1 \times 10^{-8}$, $x_2 = 5 \times 10^{-4}$, $y_1 = 1.5$, $y_2 = 1$, $\delta = 0.05$.

Також можна показати, що спад x відбувається при $c \sim c'_c$ в системах з $x_2 \gg 1$. Цей ефект буде розглянуто далі для систем композитних електролітів з високопровідною оболонкою [9,11,76].

5.3. Порівняння з експериментальними даними

Рисунок 5.8 показує результат обробки за формулою (5.6) експериментальних даних [101] з ефективної проникності композитів, виготовлених шляхом додавання сферичних частинок Ag (маючих середній радіус ≈ 10 нм) у матрицю з KCl. Частинки були виготовлені шляхом випаровування Ag у присутності газів аргону та оксигену, щоб створити на них тонку (згідно з оцінками авторів 1 нм, $\delta \approx 0.1$) оболонку оксиду. Ця оболонка не давала частинкам злипатися, але була достатньо тонкою для того, щоб дозволити контакт метал-метал під великим тиском.

Як видно з рис. 5.8, формула (5.6) не тільки відновлює дані [101] на всьому розглянутому проміжку концентрацій Ag, але й дає оцінки $\delta \approx 0.14 \div 0.19$, дуже близьких до очікуваних значень.

Дані з провідності (опору ρ_{eff}) для декількох зразків композитів KCl-Ag, виготовлених згідно із зазначеним вище методом, подані у [7]. Вивчалася ду-

Рис. 5.8: Дані з ефективної проникності [101] для двох серій зразків композитів КСІ-Ад (кружки та трикутники) нижче порогу перколяції та їх обробка за формулою (5.6) при $\varepsilon_0 = 5$, $\delta = 0.186$ (чорна лінія, для кружків) та $\varepsilon_0 = 7.0$, $\delta = 0.145$ (сіра лінія, для трикутників). Точкові лінії – скейлінгові підгонки (при $c_c = 0.20$, $s_{eff} = 0.72$ та $c_c = 0.22$, $s_{eff} = 0.74$, відповідно) запропоновані в [101] для даних при c > 0.11.

же вузька область в околі порогу перколяції, де $\rho_{\rm eff}$ спадає на 7 порядків з ростом концентрації Ag лише на 1%; параметри матриці KCl не були визначені в роботі. Як показує рис. 5.9, формула (2.42а) може досить добре відновити дані роботи [7]. Кращі підгонки можуть бути отримані задаючи неоднорідність оболонки або залежність від c параметрів моделі. Ці факти можуть позначати, що крім експериментальних похибок різноманітні фактори та ефекти (неточність функції ϕ для несферичних частинок, розподіл частинок за розмірами, ефекти поляризації, локальні пробої матриці тощо) починають грати важливу роль при наближенні до c_c . Їх аналіз залежить від специфіки компонент та процесу виготовлення системи та виходить за рамки розглядуваної теми.

Рис. 5.9: Дані з ефективного опору [7] для зразків композитів КСІ-Ад (квадрати) нижче порогу перколяції та їх обробка за формулою (2.42а) при $\delta = 0.162$ ($c_c \approx 0.214$), $\sigma_1 = 6.3 \times 10^7$ См/м, $x_0 = 5 \times 10^{-16}$, $x_2 = 4 \times 10^{-6}$. Чорна лінія (з права) – модель з проникною оболонкою (2.33), сіра (зліва) – модель з твердою оболонкою (??).

5.4. Висновки

У даному Розділі виведена модель ядро-оболонка в рамках МКГ, та проаналізовані особливості її перколяційних характеристик. Показано, що положення порогу перколяції у такій моделі залежить лише від геометричних характеристик оболонки; критичні індекси провідності не носять універсальний характер, а залежать від області, на якій вони вимірюються. Модель передбачає виникнення ефекту подвійної перколяції, що має місце у системах нанотрубок. Зроблено узагальнення моделі на системи частинок з подвійну концентричною оболонкою.

Показано, що дана модель спроможна не тільки відновити експериментальні дані різних систем типу діелектрик-провідник краще ніж перколяційна модель та УПЕС, але й дозволяє робити деякі висновки про мікроструктуру досліджуваних систем.

РОЗДІЛ 6

АНАЛІЗ ДИФЕРЕНЦІАЛЬНОГО ПІДХОДУ В РАМКАХ МКГ

В даному розділі наведено доказ загальної непослідовності класичної диференціальної схеми опису електрофізичних характеристик дисперсних систем у низькочастотному наближенні. Доказ наведено на прикладі найпростішої діелектричної системи невпорядкованих куль. Задля доказу цього факту, МКГ було переформульовано у більш зручну, для подальшого аналізу, форму. У цій формі була розвинута та проаналізована класична диференціальна схема. В рамках цієї схеми отримані узагальнення класичного асиметричного підходу Бругемана, які тестувалися у порівнянні з границями Хашина-Штрікмана.

6.1. Формулювання МКГ для аналізу диференціальної схеми

Для випадку діелектричних систем компоненти пропогатора електричного поля (1.24) в системі у довгохвильовому наближенні $(|\mathbf{k}| \to 0)$ будуть мати наступний вигляд

$$k_0^2 \widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) = \frac{1}{3\varepsilon_f} \delta(\mathbf{r}) \delta_{\alpha\beta} + \frac{1}{4\pi\varepsilon_f r^3} \left(\delta_{\alpha\beta} - 3\frac{r_\alpha r_\beta}{r^2} \right). \tag{6.1}$$

Підставляючи цей вираз до інтегрального рівняння розподілу електричного поля (2.12)

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_f} \mathbf{E}(\mathbf{r}) - \int_V d\mathbf{r}' \widetilde{\mathbf{T}}^{(2)}(|\mathbf{r} - \mathbf{r}'|) \delta \varepsilon(\mathbf{r}') \mathbf{E}(\mathbf{r}'),$$

переносячи сингулярний вклад у ліву сторону, поділивши на $(1 + \delta \varepsilon/3\varepsilon_f)$ та усереднюючи, отримаємо наступне рівняння:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left\langle \frac{3\varepsilon_{\mathrm{f}}}{3\varepsilon_{\mathrm{f}} + \delta\varepsilon(\mathbf{r})} \right\rangle \mathbf{E}_{0} - 3\varepsilon_{\mathrm{f}} \int_{V} d\mathbf{r}' \widetilde{\mathbf{T}}^{(2)}(|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\delta\varepsilon(\mathbf{r}')}{3\varepsilon_{\mathrm{f}} + \delta\varepsilon(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle. \quad (6.2)$$

Для макроскопічно однорідних та ізотропних систем статистичне середнє під інтегралом залежить лише від $|\mathbf{r} - \mathbf{r}'|$, тож, зважаючи на специфіку кутової частини $\widetilde{\mathbf{T}}^{(2)}$, інтеграл зануляється, а рівняння (6.2) можна записати наступним чином:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \eta \mathbf{E}_0, \quad \eta = \left\langle \frac{3\varepsilon_{\rm f}}{3\varepsilon_{\rm f} + \delta\varepsilon(\mathbf{r})} \right\rangle.$$
 (6.3)

Ефективну діелектричну проникність $\varepsilon_{\rm eff}$ знаходимо як коефіцієнт пропорційності між середніми індукцією $\langle {\bf D}({\bf r}) \rangle$ та напруженістю $\langle {\bf E}({\bf r}) \rangle$ електричного поля:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \varepsilon_{\rm f} \eta \mathbf{E}_0 + \langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \varepsilon_{\rm eff} \langle \mathbf{E}(\mathbf{r}) \rangle.$$
 (6.4)

Записуючи $\langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle$ у явному вигляді

$$\langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = 3\varepsilon_{\rm f} \left\langle \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_{\rm f} + \delta \varepsilon(\mathbf{r})} \right\rangle \mathbf{E}_0 = 3\varepsilon_{\rm f} \xi \mathbf{E}_0$$

рівняння (6.4) можно переписати:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \varepsilon_{\rm f} (1 + 2\xi) \mathbf{E}_0 = \varepsilon_{\rm eff} \langle \mathbf{E}(\mathbf{r}) \rangle,$$
 (6.5)

де було взято до уваги, що

$$\xi + \eta = 1. \tag{6.6}$$

Зазначемо, що розкладуючи в ряд Маклорена ξ та η за параметром $(-\delta \varepsilon(\mathbf{r})/3\varepsilon_{\mathrm{f}})$ ми отримаємо ітараційні рішення МКГ (??) та (2.16) [1,2].

Підставляючи (6.3) у праву частину (6.5), беручи до уваги (6.6), отримаємо

$$\varepsilon_{\text{eff}} - \varepsilon_{\text{f}} = (\varepsilon_{\text{eff}} + 2\varepsilon_{\text{f}})\xi.$$
 (6.7)

Щоб знайти невідоме ε_f користуємося граничними рівняннями нормальної компоненти індукції на межі дотику гомогенізованого середовища та однорідної матриці з проникністю ε_f :

$$\varepsilon_{\rm f} \mathbf{E}_{0n} = \varepsilon_{\rm eff} \langle \mathbf{E} \rangle_n = \varepsilon_{\rm eff} \eta \mathbf{E}_{0n}.$$

Користуючись (6.6), знаходимо, що

$$\varepsilon_{\rm eff} - \varepsilon_{\rm f} = \varepsilon_{\rm eff} \xi.$$

тож, з урахуванням (6.7),

$$\xi = \frac{\varepsilon_{\text{eff}} - \varepsilon_{\text{f}}}{2\varepsilon_{\text{f}} + \varepsilon_{\text{eff}}} = \frac{\varepsilon_{\text{eff}} - \varepsilon_{\text{f}}}{\varepsilon_{\text{eff}}}.$$
 (6.8)

Це рівняння має два корені: 1) $\varepsilon_f = 0$; 2) $\varepsilon_f = \varepsilon_{\rm eff}$, що збігаються зі знайденими у Розділі 1. Тож беручи до уваги друге рішення отимуємо $\xi|_{\varepsilon_f=\varepsilon_{\rm eff}}=0$, тобто

$$\left\langle \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_{\text{eff}} + \delta \varepsilon(\mathbf{r})} \right\rangle = 0.$$
 (6.9)

Цей результат можна знайти використовуючи варіаційний принцип Хашина-Штрікмана [4], або стандартними методами теорії ефективного середовища [25] (але нагадаємо, що результати будуть формально співпадати лише у випадку невпорядкованої системи кульок).

Зазначимо, що аналогічний підхід був використаний у розглянутому в Розділі ?? підході сильних флуктуацій [50–53], але в рамках нього вибір електродинамічної гомогенізації був обумовлений вимогою найкращої збіжності ітераційного ряду. В рамках МКГ система розглядається з макроскопічної точки зору, а вибір гомогенизації є наслідком граничних умов накладених на систему.

6.2. Розвинення AMБ в рамках МКГ для діелектричних систем

Розглянемо систему, що розглядалася в Розділі 1.3 при отриманні АМБ, та знову ж припустимо, що значення ефективної проникності відомо при деякій кількості включень та дорівнює ε (див. рис. 1.1(a)). Дане ефективне середовище вважається матрицею для нових включень, та припускається, що воно не містить попередніх включень, тож її характеристична функція має вигляд $(1-\tilde{\chi}_1-\Delta\tilde{\chi}_1)$. Якщо додати малу порцію включень з характеристичною функцією $\Delta\tilde{\chi}_1(\mathbf{r})$ ($\tilde{\chi}_1\cdot\Delta\tilde{\chi}_1=0$) до системи (виділена область на рис. 1.1(a)) проникність системи зміниться на $\Delta\varepsilon$ (рис. 1.1(б)). В термінах $\delta\varepsilon$ це можна записати наступним чином:

$$\delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r}) = (\varepsilon - (\varepsilon + \Delta \varepsilon))[1 - \tilde{\chi}_1(\mathbf{r}) - \Delta \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - (\varepsilon + \Delta \varepsilon))\Delta \tilde{\chi}_1(\mathbf{r}) \approx$$

$$\approx -\Delta \varepsilon [1 - \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - \varepsilon) \Delta \tilde{\chi}_1(\mathbf{r}), \tag{6.10}$$

де були залишені тільки перші порядки малості за $\Delta \tilde{\chi}_1$ (у сенсі його середнього значення) та $\Delta \varepsilon$; ε в (6.9) також потрібно замінити на $\varepsilon + \Delta \varepsilon$, однак для даного випадку це не грає суттєвою ролі; верхній індекс l у (6.10) підкреслює, що ми працюємо в області малих концентрації. Підставляючи (6.10) до (6.9), беручи до уваги ергодичну гіпотезу та умову ортогональності $(1 - \tilde{\chi}_1 - \Delta \tilde{\chi}_1)\Delta \tilde{\chi}_1 = 0$ для характеристичних функцій, усереднення в (6.9) може бути розбито на усереднення по області, що займає матриця, та усереднення по області, що займають нові включення:

$$-\left\langle \frac{\Delta\varepsilon[1-\tilde{\chi}_{1}-\Delta\tilde{\chi}_{1}]}{3(\varepsilon+\Delta\varepsilon)+\Delta\varepsilon[1-\tilde{\chi}_{1}-\Delta\tilde{\chi}_{1}]}\right\rangle + \left\langle \frac{(\varepsilon_{1}-(\varepsilon+\Delta\varepsilon))\Delta\tilde{\chi}_{1}}{3(\varepsilon+\Delta\varepsilon)+(\varepsilon_{1}-(\varepsilon+\Delta\varepsilon))\Delta\tilde{\chi}_{1}}\right\rangle \approx -\frac{\Delta\varepsilon}{3\varepsilon}(1-c) + \frac{\varepsilon_{1}-\varepsilon}{2\varepsilon+\varepsilon_{1}}\Delta c = 0,$$

де знову були залишені перші порядки малості за тими ж самими змінними. Переходячи до інфінітезимальних змінних $d\varepsilon$ та dc отримуємо диференціальне рівняння (1.18).

За такою ж схемою можливо отримати правило для високих концентрацій. Тепер включення розглядаються в якості "матриці", а матриця — в якості "включень" з характеристичною функцією $\tilde{\chi}_0 = (1 - \tilde{\chi}_1)$. Порція включень з характеристичною функцією $\Delta \tilde{\chi}_0 = -\Delta \tilde{\chi}_1$ вводиться до "матриці" у вільну від "включень" область з характеристичною функцією $(1 - \tilde{\chi}_0 - \Delta \tilde{\chi}_0)$. Відповідно,

$$\delta \varepsilon_{\text{ABM}}^{(h)}(\mathbf{r}) \approx -[1 - \tilde{\chi}_0(\mathbf{r})] \Delta \varepsilon + (\varepsilon_0 - \varepsilon) \Delta \tilde{\chi}_0(\mathbf{r})$$

$$= -\tilde{\chi}_1(\mathbf{r}) \Delta \varepsilon - (\varepsilon_0 - \varepsilon) \Delta \tilde{\chi}_1(\mathbf{r}).$$
(6.11)

Підставляючи (6.11) до (6.9) та беручи відповідні інтеграли отримаємо правило (1.20).

Зауважемо, що c тут грає роль концентрації включень, як і у (1.19), навідміну від класичного підходу, де вона вважається концентрацією матриці ("включень" на великих концентраціях) [46].

В рамках такого переформування формалізму МКГ вдається побудувати загальну диференціальну схему, в рамках якої можливо отримати (1.19) та (1.20) припускаючи виконання відповідних умов. Також ця схема дозволяє знайти узагальнюючі модифікації цих підходів, та дослідити їх межі застосування.

6.3. Диференціальна схема в рамках МКГ та її аналіз

Припустимо, що інфінітизимальна зміна кількості включень в системі викликають малі зміни їх концентрації Δc та ефективної проникності $\Delta \varepsilon$, відповідно. Тоді, розподіл проникності в діелектричній системі, при даній ефективній проникності ε ,

$$\delta \varepsilon_{\text{CGA}}(\mathbf{r}) = (\varepsilon_0 - \varepsilon)[1 - \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - \varepsilon)\tilde{\chi}_1(\mathbf{r})$$
(6.12)

приймає вигляд

$$\widetilde{\delta\varepsilon}_{\text{CGA}}(\mathbf{r}) = (\varepsilon_0 - (\varepsilon + \Delta\varepsilon))[1 - (\tilde{\chi}_1(\mathbf{r}) + \Delta\tilde{\chi}_1(\mathbf{r}))] + (\varepsilon_1 - (\varepsilon + \Delta\varepsilon))[\tilde{\chi}_1(\mathbf{r}) + \Delta\tilde{\chi}_1(\mathbf{r})],$$
(6.13)

а ε в (6.9) змінюється на $\varepsilon + \Delta \varepsilon$. Легко довести, що наступний запис еквівалентний рівнянню (6.13):

$$\widetilde{\delta\varepsilon}_{CGA}(\mathbf{r}) = \delta\varepsilon_{ABM}^{(l)}(\mathbf{r}) + \delta\varepsilon_{ABM}^{(h)}(\mathbf{r}) + \delta\varepsilon_{CGA}(\mathbf{r}).$$
 (6.14)

Таким чином, в рамках МКГ, зміни ε , що викликані додаванням малої порції включень, не зводяться лише до вкладів, викликаних тільки цими включеннями (вклад $\delta \varepsilon_{ABM}^{(l)}$ (6.10), як в АМБ), але ще й обумовлені змінами в самій матриці (вклад $\delta \varepsilon_{ABM}^{(h)}$ (6.11)) та станом системи до додавання даної порції (вклад $\delta \varepsilon_{CGA}$ (6.12)). Виходячи є цього можна одразу зробити висновок, що класична диференціальна схема, що стоїть за підходом АМБ [45, 46, 102], не повна.

Підставляючи (6.14) до (6.9) та переходячи до інфінітизимальних змінних

отримуємо наступне диференціальне рівняння:

$$\left[dc \frac{\varepsilon_1 - \varepsilon}{2\varepsilon + \varepsilon_1} - (1 - c) d\varepsilon \frac{3\varepsilon_0}{(2\varepsilon + \varepsilon_0)^2} \right] + \left[-dc \frac{\varepsilon_0 - \varepsilon}{2\varepsilon + \varepsilon_0} - c d\varepsilon \frac{3\varepsilon_1}{(2\varepsilon + \varepsilon_1)^2} \right] = 0,$$
(6.15)

що насправді є диференціальною формою рівняння (1.7). Таку форму запису зручно використовувати для аналізу та отримання нових низько- та висококонцентраційних модифікацій класичних АМБ.

6.3.1. Модифікації класичних підходів АМБ

Спершу розглянемо низькоконцентраційних випадок, коли c та $(\varepsilon_0 - \varepsilon)$ можуть вважатися того ж порядку малості, що й Δc та $\Delta \varepsilon$. Тоді $\delta \varepsilon_{\rm ABM}^{(h)}$ та другий доданок у квадратних дужках у (6.15) будуть другого порядку малості, та ними можна знехтувати. Відповідно, $\widetilde{\delta \varepsilon}_{\rm CGA}$ визначається тільки першим та третім вкладами в (6.14):

$$\widetilde{\delta\varepsilon}_{\text{CGA}}^{(l)} \approx \delta\varepsilon_{\text{ABM}}^{(l)} + \delta\varepsilon_{\text{CGA}},$$
(6.16)

та першим вкладом у квадратних дужках у (6.15). Тож отримуємо наступне диференціальне рівняння:

$$\frac{dc}{1-c} = d\varepsilon \frac{3\varepsilon_0(2\varepsilon + \varepsilon_1)}{(\varepsilon_1 - \varepsilon)(2\varepsilon + \varepsilon_0)^2}.$$
 (6.17)

Це рівняння також може бути отримано прямою підстановкою (6.16) до (6.9), зберігаючи лише перші порядки малості та переходячи до інфінітизимальних змінних dc та $d\varepsilon$.

Аналогічна процедура для висококонцентраційного наближення дає

$$\widetilde{\delta\varepsilon}_{\text{CGA}}^{(h)} \approx \delta\varepsilon_{\text{ABM}}^{(h)} + \delta\varepsilon_{\text{CGA}},$$
(6.18)

$$\frac{dc}{c} = -d\varepsilon \frac{3\varepsilon_1(2\varepsilon + \varepsilon_0)}{(\varepsilon_0 - \varepsilon)(2\varepsilon + \varepsilon_1)^2}.$$
(6.19)

Вклад $\delta \varepsilon_{\text{CGA}}$ дуже відрізняє наближення (6.16) та (6.18) від відповідних для АМБ (6.10) та (6.11), але зводиться до них при наступних умовах: (1)

 $\varepsilon_0 \approx \varepsilon$ та $\varepsilon_1 \approx \varepsilon$, відповідно; (2) мала концентрація частинок; (3) вклад $|\varepsilon_1-\varepsilon_0|$ також малий. Тобто оригінальні правила АМБ, в загальному випадку, є фізично не послідовними. На практиці, у низькочастотному наближенні їх можна застосовувати лише для систем близькими значеннями проникностей їх складових.

Рівняння (6.17) та (6.19) покращенні диференціальні рівняння у тому сенсі, що вони частково беруть до уваги взаємодію між складовими системи, за рахунок вкладу $\delta \varepsilon_{\text{CGA}}$. Після їх інтегрування отримаємо наступні рівняння для низько- та високо- концентраційних наближень, відповідно:

$$\ln(1-c) = \frac{9\varepsilon_0\varepsilon_1}{(2\varepsilon_1 + \varepsilon_0)^2} \ln \frac{3\varepsilon_0(\varepsilon_{\text{eff}} - \varepsilon_1)}{(\varepsilon_0 - \varepsilon_1)(2\varepsilon_{\text{eff}} + \varepsilon_0)} - \frac{2(\varepsilon_0 - \varepsilon_1)(\varepsilon_0 - \varepsilon_{\text{eff}})}{(2\varepsilon_1 + \varepsilon_0)(2\varepsilon_{\text{eff}} + \varepsilon_0)}; \quad (6.20)$$

$$\ln c = \frac{9\varepsilon_0\varepsilon_1}{(2\varepsilon_0 + \varepsilon_1)^2} \ln \frac{3\varepsilon_1(\varepsilon_{\text{eff}} - \varepsilon_0)}{(\varepsilon_1 - \varepsilon_0)(2\varepsilon_{\text{eff}} + \varepsilon_1)} - \frac{2(\varepsilon_1 - \varepsilon_0)(\varepsilon_1 - \varepsilon_{\text{eff}})}{(2\varepsilon_0 + \varepsilon_1)(2\varepsilon_{\text{eff}} + \varepsilon_1)}. \tag{6.21}$$

В порівнянні з АМБ очікується, що ці рівняння є більш точними та придатні до більш широкої області концентрацій. Однак, беручи до уваги (6.16) та (6.18), вони досі є наближеними. Щоб довести цей факт, розглянемо верхню та нижню ГХШ (1.58) для діелектричної проникності

$$\varepsilon^{+} = \varepsilon_{1} + \frac{3(1-c)\varepsilon_{1}(\varepsilon_{0} - \varepsilon_{1})}{3\varepsilon_{1} + c(\varepsilon_{0} - \varepsilon_{1})},$$
(6.22)

$$\varepsilon^{-} = \varepsilon_0 + \frac{3c\varepsilon_0(\varepsilon_1 - \varepsilon_0)}{3\varepsilon_0 + (1 - c)(\varepsilon_1 - \varepsilon_0)}.$$
 (6.23)

Легко показати, що рівняння (6.20) та (6.21) не задовільняють цим границям (див. рис. 6.1). Дійсно, розглянемо (6.20) для випадку $\varepsilon_1 \gg \varepsilon_0$. Для $c > (1 - e^{-1/2}) \approx 0.393$, маємо $\varepsilon \to \varepsilon_1$, що що лежить вище ніж верхня ГХШ (6.22) для тих самих концентрацій. В області низьких концентрацій (6.20) ближче до (??) ніж до (1.19), та лежить між ГХШ. Так само для (6.21) та $c < e^{-2} \approx 0.135$: $\varepsilon \to \varepsilon_0$, що нижче ніж нижня ГХШ (6.23).

Для довільних значень ε_1 та ε_0 концентрації, для яких порушуються ГХШ, залежать від відношення $\varepsilon_1/\varepsilon_0$. Рисунок 6.1 демонструє випадок коли $\varepsilon_1/\varepsilon_0 = 10^2$. Помітимо, що оригінальні підходи АМБ (1.19) та (1.20) задовільняють ГХШ. Згідно з вище приведеними аргументами, цей факт ще не значить, що

Рис. 6.1: Концентраційні залежності $\varepsilon_{\rm eff}$ згідно з: новими низько- (6.20) та високо- (6.21) концентраційними законами (лінії 1 та 2, відповідно); нижня (6.23) та верхня (6.22) ГХШ (лінії 3, 4); МКГ (??) (штрихована лінія); оригінальні низько- (1.19) та високо- (1.20) концентраційні підходи АМБ (лінії 5, 6). Було використано єдиний параметр $\varepsilon_1/\varepsilon_0=10^2$.

вони кращі ніж їх модифікації (6.20) та (6.21), а відображає взаємозв'язок між $\delta \varepsilon_{ABM}^{(l)}(\mathbf{r})$, $\delta \varepsilon_{ABM}^{(h)}(\mathbf{r})$, та $\delta \varepsilon_{CGA}(\mathbf{r})$, що грає роль в формуванні ε_{eff} при зміні c. Іншими словами, проста екстраполяція поліпшеного підходу на вузькому концентраційному інтервалі не дозволяє взяти до уваги всі ефекти, що грають роль у формуванні ε_{eff} при інших концентраціях.

Зазначимо, що наведені результати кількісно підтверджують відомі якісні аргументи [37,103] про те, що на високих концентраціях підходи АМБ та Максвелла-Вагнера-Ханая не повністю беруть до уваги міжчастинкові поляризаційні ефекти. Вони також пояснюють чому часто потрібно модифікувати класичні диференційні підходи, або навіть вводити допоміжні підгонні параметри, щоб розширити область застосування моделей [104,105]. Також вони задовольняють результатам методу кінцевих елементів [106], що показує, що при малих концентраціях малі зміни ефективної проникності, викликані додаванням нових порцій частинок, більші ніж ті, що дають диференціальні методи.

6.4. Висновки

Аналіз класичної диференціальної схеми, реалізованої в рамках переформульованого МКГ для простих діелектричних макроскопічно однорідних та ізотропних систем в низькочастотному наближенні, показав:

- 1. Класичні диференціальні підходи АМБ можуть бути отримані в рамках МКГ тільки за умови, якщо електродинамічна взаємодія нової порції частинок з вже присутніми заміняється на взаємодію з даним ефективним середовищем. Таким чином, класичні підходи АМБ, в загальному випадку, фізично не послідовні та, строго кажучи, можуть використовуватися лише для розбавлених (відносно однієї з компонент) систем з близькими значеннями їх складових.
- Повна зміна ε_{eff}, викликана додаванням інфінітизимальних порцій наповнювача, викликана як обома компонентами та залежить від стану системи перед додаванням. Ігноруючи вклад одного з компонентів ми отримуємо узагальнені версії класичних законів АМБ.
- 3. Нові узагальнені закони, знову ж таки, можуть бути використані тільки на визначених концентраційних інтервалах, за межами яких порушуються границі Хашина-Штрікмана. Це значить, що за формування ε_{eff} відповідають різні механізми на різних концентраційних інтервалах. Просто екстраполяція результатів, отриманих на одному з інтервалів, не бере до уваги всіх механізмів необхідниих для формування ε_{eff} на всьому концентраційному інтервалі.

Отримані результати можуть бути узагальнені на випадок макроскопічно однорідних та ізотропних систем з комплексними проникностями компонент (беручи до уваги такі ефекти як поляризація Максвела-Вагера).

висновки

Основні висновки з результатів роботи наступні.

- Макроскопічні електричні властивості дисперсних систем суттєвим чином визначаються геометриними та електричними параметрами міжфазних шарів та можуть бути кількісно описані в рамках статистичної моделі ефективного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро—проникна оболонка, побудованої в роботі шляхом узагальнення методу компактних груп на такі модельні системи.
- Отримані рівняння для ефективної статичної провідності в достатній мірі точні для розглянутих модельних систем, що підтверджуються результатами порівняння їх розв'язків з даними симуляцій, отриманими методом Random Resistor Network.
- Отримані з кількісного опису експериментальних даних для квазістатичної провідності різних типів твердих композитних та полімерних композитних електролітів та провідності й проникності композитів типу діелектрик—провідник одночастинкові профілі провідності враховують вплив основних фізико-хімічних механізмів в системі та можуть бути використані для їх аналізу.
- Положення порогу електричної перколяції в моделі визначається відносною товщиною оболонки, а значення ефективних критичних індексів залежать як від геометричних та електричних параметрів компонентів, так і способу обробки експериментальних даних, а тому демонструють широкий спектр значень.
- Диференціальна схема аналізу ефективних квазістатичних електричних параметрів диспесних систем є внутрішньо непослідовою та застосовною лише для систем з малими різницями діелектричних прони-

кностей компонентів та вузьких концентраційних інтервалів диспергованих частинок.

Таким чином, розроблена модель є гнучким інструментом для обробки та електроспектроскопічного аналізу невпорядкованих дисперсних систем різного типу.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- [1] Сушко, М.Я. О диэлектрической проницаемости суспензий / М.Я. Сушко // ЖЭТФ. 2007. Т. 132. С. 478–484.
- [2] Сушко, М.Я. Метод компактных групп в теории диэлектрической проницаемости гетерогенных систем / М.Я. Сушко, С.К. Криськив // $\text{ЖТ\Phi}.-2009.-\text{T.}$ 79. С. 97–101.
- [3] Sushko, M.Ya. Effective permittivity of mixtures of anisotropic particles / M.Ya. Sushko // J. Phys. D: Appl. Phys. 2009. Vol. 42. P. 155410.
- [4] Sushko, M.Ya. Effective dielectric response of dispersions of graded particles / M.Ya. Sushko // Phys. Rev. E. 2017. Vol. 96. P. 062121, 8 p.
- [5] Broadbent, S. R. Percolation processes. I. Crystals and mazes. / S. R. Broadbent, J. M Hammersley // Proc. Cambridge Philos. Soc. — 1957. — Vol. 53. — P. 629.
- [6] Sahimi, M. Applications of percolation theory / M. Sahimi. CRC Press, 1994.
- [7] Chen, L. Materials for solid state batteries / L. Chen. World Scientific, Singapore, 1986.
- [8] Sotskov, V.A. Electrical Characteristics of Insulator-Conductor and Insulator-Semiconductor Macrosystems / V.A. Sotskov // Semiconductors. — 2005. — Vol. 39. — P. 254.
- [9] Nan, C.-W. Physics of inhomogeneous inorganic materials / C.-W. Nan // Prog. Mater. Sci. 1993. Vol. 37. P. 1–116.
- [10] Dudney, N. Composite electrolytes / N. Dudney // Annu. Rev. Mater. Sci. 1989. Vol. 19. P. 103.
- [11] Przyluski, J. Effective medium theory in studies of conductivity of composite polymeric electrolytes / J. Przyluski, M. Siekierski, W. Wiec-

- zorek // Electrichimica A. -1995. Vol. 40. P. 2101.
- [12] Davis, P. M. The elastic modulus, percolation, and disaggregation of strongly interacting, intersecting antiplane cracks / P. M. Davis, L. Knopoff // PNAS. — 2009. — Vol. 106. — P. 12634.
- [13] Chelidze, T.L. Percolation and fracture / T.L. Chelidze // Physics of the Earth and Planetary Interiors. 1982. Vol. 28. P. 93.
- [14] Cardy, J. L. Epidemic models and percolation / J. L. Cardy, P. Grassberger // J. Phys. A: Math. Gen. 1985. Vol. 18. P. L267.
- [15] Miller, J. C. Percolation and epidemics in random clustered networks / J. C. Miller // Phys. Rev. E. -2009.- Vol. 80.-P. 020901.
- [16] Introduction to percolation theory.—2nd edition.
- [17] Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Propertie / S. Torquato.—Springer, New York, 2002.
- [18] Sahimi, M. Heterogeneous materials I: Linear transport and optical properties / M. Sahimi. Springer-Verlag, 2003.
- [19] Bollobas, B. Random graphs / B. Bollobas. 2nd edition. Cambridge university press, 2001.
- [20] Meester, R. Continuum percolation / R. Meester, R. Roy. Cambridge university press, 1996.
- [21] Hunt, A. Percolation Theory for Flow in Porous Media / A. Hunt, R. Ewing. Springer-Verlag, 2009.
- [22] Efros, A. Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold / A. Efros, B. Shklovskii // Phys. Stat. Sol. B. 1976. Vol. 76. P. 475.
- [23] Maxwell-Garnett, J. Colours in metal glasses and metalic films / J. Maxwell-Garnett // Trans. R. Soc. Lond. 1904. Vol. 203. P. 385.
- [24] Landauer, R. Electrical Transport and Optical Properties of Inhomogeneous Media / R. Landauer / Ed. by J.C. Garland, D. B. Tanner. Woodbury, New York: American Institute of Physics, 1967. P. 2–43.

- [25] Choy, T. C. Effective medium theory. Principles and applications / T. C. Choy; Ed. by J. Birman, S.F. Edwards, R. Friend et al. 2 edition. Oxford University Press, 2016.
- [26] Sihvola, A. Mixing rules with complex dielectric coefficients / A. Sihvola // Subsurface Sensing Technologies and Applications. 2000. Vol. 1.—P. 393.
- [27] Wagner, K.W. / K.W. Wagner // Arch. Elektrotech. 1914. Vol. 2. P. 371.
- [28] Bruggeman, D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen / D. Bruggeman // Ann. Phys. 1935. Vol. 416. P. 636.
- [29] Landauer, R. The Electrical Resistance of Binary Metallic Mixtures / R. Landauer // J. Appl. Phys. -1952. Vol. 23. P. 779.
- [30] Ландау, Л.Д. Теоретическая физика / Л.Д. Ландау, Е.М. Лифшиц. ФИЗМАТЛИТ, 2005.
- [31] Stroud, D. The effective medium approximations: some recent developments / D. Stroud // Superlattices and Microstructures. 1998. Vol. 23. P. 567.
- [32] Milton, G. W. The theory of composites / G. W. Milton; Ed. by P.G. Ciarlet, A. Iserles, R.V. Kohn, M.H. Wright. Cambridge University Press, 2004.
- [33] Stauffer, D. Introduction to Percolation Theory (2nd revised ed) / D. Stauffer, A. Aharony. Taylor & Francis, 2003.
- [34] Kirkpatrick, S. Percolation and Conduction / S. Kirkpatrick // Rev. Mod. Phys. 1973. Vol. 45. P. 574.
- [35] Brouers, F. Percolation threshold and conductivity in metal-insulator composite mean-field theories / F. Brouers // J. Phys. C: Solid State Phys. 1986. Vol. 19. P. 7183–7193. http://iopscience.iop.org/0022-3719/19/36/010.

- [36] Kirkpatrick, S. Classical transport in disordered media: scaling and effective-medium theories / S. Kirkpatrick // Phys. Rev. Lett. 1971. Vol. 27. P. 1722.
- [37] Челидзе, Т. Л. Электрическая спектроскопия гетерогенных систем / Т. Л. Челидзе, А. И. Деревянко, О. Д. Куриленко. — Наукова думка, Київ, 1977.
- [38] Nan, C.-W. Conduction theory of ionic conductor containing dispersed second phase / C.-W. Nan // Acta Physica Sinica. — 1987. — Vol. 36. — P. 191.
- [39] Nan, C.-W. A.c. electrical properties of composite solid electrolytes / C.-W. Nan, D.M. Smith // Mat. Sci. Eng. B. 1991. Vol. 10. P. 99.
- [40] Nakamura, M. Conductivity for the site-percolation problem by an improved effective-medium theory / M. Nakamura // Phys. Rev. B. 1984. Vol. 29. P. 3691.
- [41] Brailsford, A. D. A phenomenological classification of the electrical conductivity of dispersed solid electrolyte systems / A. D. Brailsford // Solid State Ionics. 1986. Vol. 21. P. 159.
- [42] Chettiar, U. Internal homogenization: Effective permittivity of a coated sphere / U. Chettiar, N. Engheta // Optics Express. 2012. Vol. 20. P. 22976.
- [43] Wieczorek, W. / W. Wieczorek, et al. // Solid State Ionics. 1989. Vol. 36. P. 255.
- [44] Wieczorek, W. Polyether, Polyacrylamide, LiClO4 Composite Electrolytes with Enhanced Conductivity / W. Wieczorek, K. Such, Z. Florjanczyk, J.R. Stevens // J. Phys. Chem. 1994. Vol. 98. P. 6840.
- [45] Hanai, T. Theory of the Dielectric Dispersion due to the Interfacial Polarization and its Application to Emulsions / T. Hanai // Kolloid-Zeitschrift. 1960. Vol. 171. P. 23.
- [46] Sen, P. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads / P. Sen, C. Scala, M. Cohen //

- Geophysics. 1981. Vol. 46. P. 781.
- [47] Lakhtakia, A. Incremental Maxwell Garnett formalism for homogenizing particulate composite media / A. Lakhtakia // Microw. Opt. Technol. Lett. 1998. Vol. 17. P. 276.
- [48] Michel, B. Incremental and differential Maxwell Garnett formalisms for bi-anisotropic composites / B. Michel, A. Lakhtakia, W.S. Weiglhofer, T.G. Mackay // Composites Science and Technology. — 2001. — Vol. 61. — P. 13.
- [49] Bourret, R. C. Stochastically perturbed fields, with applications to wave propagation in random media / R. C. Bourret // Nuovo Cimento. 1962. Vol. 26. P. 1.
- [50] Ryzhov, Yu. A. Spacal dispersion of inhomogeneous media / Yu. A. Ryzhov, V. V. Tamoikin, V. I. Tatarskii // Sov. Phys. JETP.— 1965.—Vol. 21.—P. 433–438.
- [51] Ryzhov, Yu. A. Radiation and propagation of electromagnetic waves in randomly inhomogeneous media / Yu. A. Ryzhov, Tamoikin // Radiophys. Quantum Electron. 1970. Vol. 13. P. 273—300.
- [52] Tsang, L. Scattering of electromagnetic waves from random media with strong permittivity fluctuations / L. Tsang, J. A. Kong // Radio Sci. 1981. Vol. 16. P. 303.
- [53] Mackay, T. Strong-property-fluctuation theory for homogenization of bianisotropic composites: Formulation / T. Mackay, A. Lakhtakia, W. Weiglhofer // Phys. Rev. E. – 2000. — Vol. 65. — P. 6052.
- [54] Mackay, T. G. Third-order implementation and convergence of the strong-property-fluctuation theory in electromagnetic homogenization / T. G. Mackay, A. Lakhtakia, W. S. Weiglhofer // Phys. Rev. E. — 2001. — Vol. 64. — P. 066616.
- [55] Dence, D. Probabilistic methods in applied mathematics / D. Dence, J.E. Spence; Ed. by A.T. Bharucha-Reid. — Academic Press, 1973. — Vol. 2.

- [56] Weiglhofer, W. On Singularities of Dyadic Green Functions and Long Wavelength Scattering / W. Weiglhofer, A. Lakhtakia // Electromagnetics. 1995. Vol. 15. P. 209.
- [57] Сушко, М.Я. О молекулярном рассеянии света кратности 1.5 / М.Я. Сушко // ЖЭТФ. 2004. Т. 126. С. 1355—1361.
- [58] Sushko, M.Ya. Finding the effective structure parameters for suspensions of nano-sized insulating particles from low-frequency impedance measurements / M.Ya. Sushko, V.Ya. Gotsulskiy, M.V. Stiranets // Journal of Molecular Liquids. 2016. Vol. 222. P. 1051.
- [59] Sushko, M. Ya. Compact group approach to the analysis of dielectric and optical characteristics of finely dispersed systems and liquids / M. Ya. Sushko // Journal of Physical Studies. 2009. Vol. 13, no. 4. P. 4708. http://physics.lnu.edu.ua/jps/2009/4/abs/a4708-5.html.
- [60] Sushko, M. Ya. Experimental observation of triple correlations in fluids /
 M. Ya. Sushko // Cond. Matter Phys. 2013. Vol. 16. P. 13003.
- [61] Hashin, Z. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials / Z. Hashin, S. Shtrikman // J. Appl. Phys. 1962. Vol. 33. P. 3125.
- [62] Simpkin, R. Derivation of Lichtenecker's Logarithmic Mixture Formula From Maxwell's Equations / R. Simpkin // IEEE Transactions on Microwave Theory and Techniques. 2010. Vol. 58. P. 545.
- [63] Looyenga, H. / H. Looyenga // Physica. 1965. Vol. 31. P. 401.
- [64] Lichtenecker, K. Dielectric constant of natural and synthetic mixtures /
 K. Lichtenecker // Physik. Z. 1926. Vol. 27. P. 115.
- [65] Banhegyi, G. / G. Banhegyi // Colloid Polym. Sci. 1986. Vol. 264. P. 1030.
- [66] Wiener, O. Die Theorie des Mischkörpers für das Feld der Stationären Strömung / O. Wiener // Abh. Math. Phys. K1 Königl. Sächs. Ges. — 1912. — Vol. 32. — P. 509.

- [67] Cioranescu, D. Introduction to homogenization / D. Cioranescu, P. Donato. Oxford university press, 1999.
- [68] Jikov, V.V. Homogenization of differential operators and integral functionals / V.V. Jikov, S.M. Kozlov, O.A. Oleinik. — Springer-Verlag Berlin Heidelberg, 1994.
- [69] Broadband Dielectric Spectroscopy / Ed. by F. Kremer, A. Schönhals. Springer-Verlag Berlin Heidelberg GmbH, 2003.
- [70] Sillars, R.W. The properties of a dielectric containing semiconducting particles of various shapes / R.W. Sillars // J. Inst. El. Eng. 1937. Vol. 80. P. 378.
- [71] Torquato, S. Bulk properties of twophase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres / S. Torquato // J. Chem. Phys. 1984. Vol. 81. P. 5079.
- [72] Wertheim, M. S. Exact solution of the Percus-Yevick integral equation for hard spheres / M. S. Wertheim // Phys. Rev. Lett. — 1963. — Vol. 10. — P. 321.
- [73] Lebowitz, J. L. Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres / J. L. Lebowitz // Phys. Rev. — 1964. — Vol. 133. — P. A895.
- [74] Rikvold, P. D-dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatography / P. Rikvold, G. Stell // J. Coll. and Int. Sci. 1985. Vol. 108. P. 158.
- [75] Rottereau, M. 3d Monte Carlo simulation of site-bond continuum percolation of spheres / M. Rottereau, J. Gimel, T. Nicolai, D. Durand // Eur. Phys. J. E. 2003. Vol. 11. P. 61–64.
- [76] Siekierski, M. Mesoscale models of ac conductivity in composite polymeric electrolytes / M. Siekierski, K. Nadara // J. Pow. Sour. — 2007. — Vol. 173. — P. 748.
- [77] Siekierski, M. Modeling of conductivity in composites with random resistor networks / M. Siekierski, K. Nadara // Electrochimica Acta. —

- 2005. Vol. 50. P. 3796.
- [78] Siekierski, M. Conductivity simulation in composite polymeric electrolytes / M. Siekierski, K. Nadara, P. Rzeszotarski // J. New Mat. Electrochem. Systems. 2006. Vol. 9. P. 375.
- [79] Berlyand, L. Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System / L. Berlyand, J. Wehr // Commun. Math. Phys.—1997.—Vol. 185.—P. 73.
- [80] Liang, C. C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes / C. C. Liang // J. Electrochem. Soc. 1973. Vol. 120. —P. 1289.
- [81] Maier, J. On conductivity of polycrystalline materials / J. Maier // Ber. Bunsenges. Phys. Chem. 1986. Vol. 90. P. 26.
- [82] Dudney, N. J. Enhanced ionic conduction in $AgCl Al_2O_3$ composites induced by plastic deformation / N. J. Dudney // J. Am. Ceram. Soc. 1987. Vol. 70. P. 65.
- [83] Dudney, N. J. Enhanced ionic conductivity composite electrolytes / N. J. Dudney // Solid State Ionics. 1988. Vol. 28/30. P. 1065.
- [84] The Ionic Conductivity Profile of Thin Evaporated AgCI Films on a Planar Sapphire Substrate / S. M'uhlherr, K. L'auger, E. Schreck et al. // Solid State Ionics. 1988. Vol. 28/30. P. 1495.
- [85] Phipps, J.B. Effect of composition and imperfections on ion transport in lithium iodine / J.B. Phipps, D.L. Johnson, D.H. Whitmore // Solid State Ionics. — 1981. — Vol. 5. — P. 393.
- [86] Atkinson, A. Surface and Interface Mass Transport in Ionic Materials / A. Atkinson // Solid State Ionics. 1988. Vol. 28/30. P. 1377.
- [87] Wen, T. L. On the co-ionic conductivity in CaF_2 / T. L. Wen, R. A. Huggins, A. Rabenau, W. Weppner // Revue de Chimie Minerale. 1983. Vol. 20. P. 643.
- [88] Dupree, R. NMR Studies of Lithium Iodide Based Solid Electrolytes / R. Dupree, J. R. Howells, A. Hooper, F. W. Poulsen // Solid State Ion-

- ics. -1983. Vol. 9/10. P. 131.
- [89] Dudney, N. J. Effect of Interfacial Space-Charge Polarization on the Ionic Conductivity of Composite Electrolytes / N. J. Dudney // J. Am. Ceram. Soc. — 1985. — Vol. 68. — P. 538.
- [90] Jow, T. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride / T. Jow, J. B. Jr. Wagner // J. Electrochem. Soc. — 1979. — Vol. 126. — P. 1963.
- [91] Phipps, J. B. Ioin Transport in LiI SiO₂ Composites / J. B. Phipps,
 D. H. Whitmore // Solid State Ionics. 1983. Vol. 9/10. P. 123.
- [92] Plocharski, J. PEO Based Composite Solid Electrolyte Containing NASI-CON / J. Plocharski, W. Wieczorek // Solid State Ionics. — 1988. — Vol. 28-30. — P. 979.
- [93] Schmidt, J.A. Interaction of AgI with γ Al₂O₃ / J.A. Schmidt, J.C. Bazán, L. Vico // Solid State Ionics. 1988. Vol. 27. P. 1.
- [94] Jiang, Sh. A theoretical model for composite electrolytes I. Space charge layer as a cause for charge-carrier enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. 1995. Vol. 56. P. 1101.
- [95] Jiang, Sh. A theoretical model for composite electrolytes II. Percolation model for ionic conductivity enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. — 1995. — Vol. 56. — P. 1113.
- [96] Bernasconi, J. Real-space renormalization of bond-disordered conductance lattices / J. Bernasconi // Phys. Rev. B. 1978. Vol. 18. P. 2185.
- [97] Luck, J. M. A real-space renormalisation group approach to electrical and noise properties of percolation clusters / J. M. Luck // J. Phys. A: Math. Gen. — 1985. — Vol. 47. — P. 5371.
- [98] Tomylko, S. Two-step electrical percolation in nematic liquid crystal filled by multiwalled carbon nanotubes / S. Tomylko, O. Yaroshchuk, N. Lebovka // Phys. Rev. E. 2015. Vol. 92. P. 012502.

- [99] Al-Saleh, M. Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene-butadiene-styrene copolymer: Influence of morphology on electrical resistivity / M. Al-Saleh, U. Sundararaj // Eur. Pol. J. 2008. Vol. 44. P. 1931.
- [100] Konishi, Y. Nanoparticle induced network self-assembly in polymercarbon black composites / Y. Konishi, M. Cakmak // Polymer. — 2006. — Vol. 47. — P. 5371.
- [101] Grannan, D. Critical Behavior of the Dielectric Constant of a Random Composite near the Percolation Threshold / D. Grannan, J. Garland, D. Tanner // Phys. Rev. Lett. — 1981. — Vol. 46. — P. 375.
- [102] Asami, K. Dielectric Approach to Suspensions of Ellipsoidal Particles Covered with a Shell in Particular Reference to Biological Cells / K. Asami, T. Hanai, N. Koizumi // Jpn. J. Appl. Phys. 1980. Vol. 19.-P.~359.
- [103] Chelidze, T. Electrical spectroscopy of porous rocks: a review I. Theoretical models / T. Chelidze, Y. Gueguen // Geophys. J. Int. 1999. Vol. 137. P. 1.
- [104] Davis, B. W. Encyclopedia of Emulsion Technology: Basic Theory, Measurement, Applications / B. W. Davis; Ed. by P. Becher. Marcel Dekker Inc., 1987. Vol. 3.
- [105] Jylhä, L. Equation for the effective permittivity of particle-filled composites for material design applications / L. Jylhä, A. Sihvola // J. Phys. D: Appl. Phys. 2007. Vol. 40. P. 4966.
- [106] Mejdoubi, A. Controllable effective complex permittivity of functionally graded composite materials: A numerical investigation / A. Mejdoubi,
 C. Brosseau // J. Appl. Phys. 2007. Vol. 102. P. 094105.

Додаток 1

Список публікацій здобувача та апробація результатів дисертації

Публікації в наукових журналах:

- [1*] Sushko M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. 2013 Vol. 16 No. 1 13401 P. 1-10. (SJR Q3) doi: 10.5488/CMP.16.13401
- [2*] Semenov A. K. On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions / A. K. Semenov // J. Phys. Commun. 2018. Vol. 2. No. 3 035045. P. 1-8. doi: 10.1088/2399-6528/aab060
- [3*] Sushko M. Ya. A mesoscopic model for the effective electrical conductivity of composite polymeric electrolytes. / M. Ya. Sushko, A. K. Semenov // J. Mol. Liq. — 2019. — Vol. 279 — P. 677-686. (SJR Q1) doi: 10.1016/j.molliq.2019.02.009
- [4*] Sushko M. Ya. Rigorously solvable model for the electrical conductivity of dispersions of hard-core—penetrable-shell particles and its applications / M. Ya. Sushko, A. K. Semenov // Phys. Rev. E 2019. Vol. 100. 052601. P. 1-14. (SJR Q1) doi: 10.1103/PhysRevE.100.052601

·

Тези доповідей на наукових конференціях:

- Semenov A. Complex permittivity of disperse systems with penetrable particle-host interphase / A. Semenov, M. Sushko // 4-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2012. P. 175.
- 2. Семенов А.К. Роль межфазной границы в формировании проводимости

- и диэлектрической проницаемости мелкодисперсных систем / А.К. Семенов, М.Я. Сушко // 25-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2012. Р. 221.
- 3. Sushko M. Ya. Finding the parameters of the interphase layers in fine dispersions with dielectric spectroscopy studies near the electrical percolation threshold / M.Ya. Sushko, A.K. Semenov // 5-th International Symposium: Methods and Applications of Computational Chemistry, abstract Kharkiv (Ukraine), 2013. P. 44.
- 4. Sushko M. Ya. Effect of interphase on the effective electrophysical parameters of fine dispersions and nanofluids / M.Ya. Sushko, A.K. Semenov // 6-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2014. P. 177.
- 5. Семенов А. К. Диэлектрическая проницаемость и проводимость дисперсных систем с неоднородной межфазной границей / А.К. Семенов, М.Я. Сушко // 26-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2014. P. 163.
- 6. Semenov A. K. A model for conductivity and permittivity of heterogeneous systems with complex microstructures / A.K. Semenov, M.Ya. Sushko // 2015 International Young Scientists Forum on Applied Physics, abstract – Dnipropetrovsk (Ukraine), 2015. – P. 1.
- 7. Бабий К. А Особенности электрической проводимости дисперсных систем на основе полимерных матриц / К.А. Бабий, А.К. Семенов, М.Я. Сушко // 27-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2016. Р. 28.
- 8. Семенов А. К. Роль міжфазних шарів у формуванні провідних та дієлектричних властивостей дісперсноподібних систем: модель та застосування / А.К. Семенов, М.Я. Сушко // International conference: Development of innovation in the technical, physical and mathematical fields of sciences, abstract – Mykolayiv (Ukraine), 2016. – P. 21.
- 9. Sushko M. Ya. Effective electrical conductivity of composite polymer elec-

- trolytes / M.Ya. Sushko, A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract – Kyiv (Ukraine), 2018. – P. 81.
- Semenov A. K. Is the classical differential scheme for permittivity of emulsions consistent? / A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 124.
- 11. Sushko M. Ya. Recent developments in the theory of electrodynamic homogenization of random particulate systems / M.Ya. Sushko, A.K. Semenov // 5-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2019. P. 160.
- 12. Semenov A. K. Hard-core—penetrable-shell model for effective electric parameters of random particulate systems / A.K. Semenov, M.Ya. Sushko // 7-th International Conference: Nanotechnologies and Nanomaterials, abstract Lviv (Ukraine), 2019. P. 257.
- 13. Семенов А. К. Моделювання електрофізичного відгуку дисперсних систем з твердим дисперсійним середовищем / А.К. Семенов, М.Я. Сушко // 28-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2019. Р. 90.