PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-109955

(43) Date of publication of application: 12.04.2002

(51)Int.Cl.

C03C 10/02 // H01M 10/40

(21)Application number: 2000-301759

(71)Applicant: OSAKA PREFECTURE

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

(22)Date of filing:

02.10.2000

(72)Inventor: TATSUMISUNA MASAHIRO

MINAMI TSUTOMU MORIMOTO HIDEYUKI HAYASHI AKITOSHI

(54) SULFIDE CRYSTALLIZED GLASS, SOLID ELECTROLYTE, AND FULLY SOLID SECONDARY CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sulfide crystallized glass having very high lithium ion conductivity at room temperature.

SOLUTION: The lithium ion conductive sulfide crystallized glass has a composition of Li2S 50-92.5 mol%, and P2S5 7.5-50 mol%, and a crystallization rate of 30-99%, and the crystallized glass consists of a glass phase part containing Li2S and P2S5 as a main component, and a crystal phase part containing at least one compound selected from a group of Li7PS6, Li4P2S6, and Li3PS4.

LEGAL STATUS

[Date of request for examination]

02.10.2000

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 3433173

23.05.2003

ده .

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-109955 (P2002-109955A)

(43)公開日 平成14年4月12日(2002.4.12)

(51) Int.Cl.		識別記号	FΙ		· .	7]}*(参考)
H01B	1/06		H01B	1/06	Α	4G062
C03C	10/02		C03C	10/02		5G301
// H01M	10/40		H01M	10/40	В	5H029

審査請求 有 請求項の数4 OL (全 7 頁)

(21)出願番号	特願2000-301759(P2000-301759)	(71)出題人 000205627
(00) (1)		大阪府
(22)出顧日	平成12年10月 2 日(2000.10.2)	大阪府大阪市中央区大手前2丁目1番22号
		(71)出題人 597154117
	·	日本学術振興会
		東京都千代田区麹町5丁目3番1号
		(72)発明者 辰巳砂 昌弘
		大阪府堺市大美野128-16
	·	(72)発明者 南 努
		大阪府大阪狭山市大野台2-7-1
		(74)代理人 100072051
		弁理士 杉村 興作 (外1名)
		最終頁に続く

(54) 【発明の名称】 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池

(57)【要約】

【課題】 室温でも極めて高いリチウムイオン伝導性を示す、硫化物系結晶化ガラスを提供する。

【解決手段】 リチウムイオン伝導性の硫化物系結晶化ガラスであって、Li₂S50~92.5モル%及びP₂S₆7.5~50モル%の組成を有しており、30~99%の結晶化率を有しており、Li₂SとP₂S₆とを主成分とするガラス相と、Li₇PS₆、Li₄P₂S₆及びLi₃PS₄からなる群より選ばれる少なくとも1種の化合物を含有する結晶相とが存在している。

【特許請求の範囲】

【請求項1】 リチウムイオン伝導性の硫化物系結晶化 ガラスであって、

Li₂S50~92.5モル%及びP₂S₆7.5~5 0モル%の組成を有しており、30~99%の結晶化率 を有しており、Li2 SとP2 S。とを主成分とするガ ラス相と、Li, PS。、Li, P2 S。及びLi, P S. からなる群より選ばれる少なくとも1種の化合物を 含有する結晶相とが存在していることを特徴とする、硫 化物系結晶化ガラス。

【請求項2】 リチウムイオン伝導性の硫化物系結晶化 ガラスであって、

Li₂S50~90モル%、P₂S₅1~50モル%及 びSiS21~50モル%の組成を有しており、30~ 99%の結晶化率を有しており、Li2 SとP2 S。と SiSzとを主成分とするガラス相と、LirPS。、 Li, P2 Se及びLi, PS, からなる群より選ばれ る少なくとも1種の化合物からなる結晶母体とLi.S iS.及びLigSiS。からなる群より選ばれる少な くとも1種の化合物との固溶体からなる結晶性化合物を 20 含有する結晶相とが存在していることを特徴とする、硫 化物系結晶化ガラス。

【請求項3】 リチウムイオン伝導性の固体型電解質で あって、

前記固体型電解質が、請求項1又は2記載の硫化物系結 晶化ガラスから形成されていることを特徴とする、固体 型電解質。

【請求項4】 正極と負極との間に固体型電解質を備え ている全固体二次電池であって、

るととを特徴とする、全固体二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リチウムイオン伝 導性の硫化物系結晶化ガラス、これを用いる固体型電解 質及び全固体二次電池に関する。

[0002]

【従来の技術】従来、室温で髙いリチウムイオン伝導性 を示す電解質は、ほとんど液体に限られていた。例え ば、室温で高リチウムイオン伝導性を示す材料として、 有機系電解液がある。

【0003】また、室温で10- * Scm- | 以上の高 い伝導度を示す、LisN をベースとするリチウムイ オン伝導性セラミックスが知られている。

[0004]

【発明が解決しようとする課題】しかし、従来の有機系 電解液は、有機溶媒を含むために、可燃性である。した がって、有機溶媒を含むイオン伝導性材料を電池の電解 質として実際に用いる際には、液漏れの心配や発火の危 険性がある。

【0005】また、かかる電解液は、液体であるため、 リチウムイオンが伝導するだけでなく、対アニオンが伝 導するために、リチウムイオン輸率が1でない。

【0006】従来のLi、Nをベースとするリチウムイ オン伝導性セラミックスは、分解電圧が低いために、3 V以上で作動する全固体電池を構成することが困難であ った。

【0007】本発明は、室温でも極めて高いリチウムイ オン伝導性を示す、硫化物系結晶化ガラスを提供すると 10 とを課題とする。また、本発明は、かかる硫化物系結晶 化ガラスを固体電解質に用いた全固体二次電池を提供す ることを課題とする。

[0008]

ものである。

【課題を解決するための手段】本発明は、リチウムイオ ン伝導性の硫化物系結晶化ガラスであって、Li2S5 0~92.5モル%及びP₂S₅7.5~50モル%の 組成を有しており、30~99%の結晶化率を有してお り、LigSとPgS。とを主成分とするガラス相と、 Li, PS。、Li, P2 S。及びLi, PS。からな る群より選ばれる少なくとも1種の化合物を含有する結 晶相とが存在している、硫化物系結晶化ガラスに係るも のである。

【0009】また、本発明は、リチウムイオン伝導性の 硫化物系結晶化ガラスであって、Li2 S50~90モ ル%、P2 S5 1~50モル%及びSiS2 1~50モ ル%の組成を有しており、30~99%の結晶化率を有 しており、Li2SとP2S。とSiS2とを主成分と するガラス相と、Li, PS。、Li, P2 S。及びL i, PS. からなる群より選ばれる少なくとも1種の化 前記固体型電解質が、請求項3記載の固体型電解質であ 30 合物からなる結晶母体とLi4 SiS4及びLi2 Si S。からなる群より選ばれる少なくとも1種の化合物と の固溶体からなる結晶性化合物を含有する結晶相とが存 在している、硫化物系結晶化ガラスに係るものである。 【0010】さらに、本発明は、かかる硫化物系結晶化 ガラスを用いる固体型電解質及び全固体二次電池に係る

> 【0011】本発明者は、意外にも、Li2SとP2S 。とを主成分とする硫化物系ガラスの結晶化によって、 極めて優れたリチウムイオン伝導性を示す硫化物系結晶 40 化ガラスが生成することを見出し、本発明に至った。

【0012】本発明者は、Li2SとP2S。とを主成 分とする硫化物系ガラスを加熱し結晶化すると、Li, PS。、Li4 P2 S。及びLi3 PS4 からなる群よ り選ばれる少なくとも1種の化合物を含有する結晶相が 形成されることを見出した。

【0013】本発明者の研究によれば、かかる結晶相 は、硫化物系ガラスのリチウムイオン伝導性を著しく向 上させるととが分かった。

【0014】本発明は、リチウムイオン伝導性の硫化物 50 系ガラスが、結晶化によって、リチウムイオン伝導性を

著しく向上させることに基づくものである。

【0015】また、本発明者は、前述した硫化物系結晶 化ガラスの組成中に、硫化物としてSiSzを用いる場 合、結晶相中に、Li, PS。、Li, P2 S。及びL i。PS₄からなる群より選ばれる少なくとも1種の化 合物からなる結晶母体とLi.SiS.及びLi.Si S。からなる群より選ばれる少なくとも1種の化合物と の固溶体からなる結晶性化合物が生成することを突き止 め、本発明に至った。

【0016】本発明は、かかるリチウムイオン伝導性の 10 硫化物系ガラスが、リチウムイオン伝導性をより一層向 上させることに基づくものである。

【0017】本発明では、結晶化ガラスとは、ガラスを 加熱して結晶化させて得られるものをいい、ガラス中の 化合物が結晶化して成長したものをいう。かかる結晶化 ガラスは、固相反応で得られる多結晶体とは異なり、結 晶化ガラスの形成時に混入する気泡以外、気孔が実質的 に形成されない。

【0018】本発明の硫化物系結晶化ガラスによれば、 Li, PS。、Li, P2 S。及びLi。PS、からな 20 きる。 る群より選ばれる少なくとも 1 種の化合物を含有する結 晶相によって、リチウムイオン伝導性が著しく高められ る。

【0019】また、本発明の硫化物系結晶化ガラスによ れば、結晶相中の、Li, PS。、Li, P2 S。及び Li、PS、からなる群より選ばれる少なくとも1種の 化合物からなる結晶母体とLi.SiS.及びLi.S i S 。からなる群より選ばれる少なくとも 1 種の化合物 との固溶体からなる結晶性化合物によって、リチウムイ オン伝導性がより一層高められる。

【0020】さらに、本発明の硫化物系結晶化ガラスに よれば、リチウムイオン伝導性に優れた硫化物系の固体 型電解質が形成され、かかる固体型電解質により、リチ ウムイオン伝導性に優れた硫化物系の全固体二次電池が 形成される。

[0021]

【発明の実施の形態】本発明の硫化物系結晶化ガラス は、Li₂S50~92.5モル%及びP₂S₅7.5 ~50モル%の組成を有しており、30~99%の結晶 化率を有している。

【0022】かかる硫化物系結晶化ガラスには、Li2 SとP₂S₅とを主成分とするガラス相と、Li,PS e、Li , P2 Se 及びLi s PS , からなる群より選 ばれる少なくとも1種の化合物を含有する結晶相とが存 在している。

【0023】また、本発明の硫化物系結晶化ガラスは、 Li2 S50~90モル%、P2 S1~50モル%及 びSiS₂1~50モル%の組成を有し、30~99% の結晶化率を有することができる。

【0024】かかる硫化物系結晶化ガラスには、Li2

SとP。S。とSiS。とを主成分とするガラス相と、 Li, PS。、Li, P2 S。及びLi, PS。からな る群より選ばれる少なくとも1種の化合物からなる結晶 母体とLia SiSa及びLia SiSaからなる群よ り選ばれる少なくとも 1 種の化合物との固溶体からなる 結晶性化合物を含有する結晶相とが存在している。

【0025】本発明では、硫化物系結晶化ガラスの組成 中に、Li₂ S及びP₂ S₅、又はLi₂ S、P₂ S₅ 及びSiSzに加え、AlzSs、BzSs及びGeS 2 からなる群より選ばれる少なくとも1種の硫化物を含 ませることができる。

【0026】かかる硫化物を加えると、硫化物系ガラス を形成する際に、より安定なガラスを生成させることが

【0027】また、本発明では、硫化物系結晶化ガラス の組成中に、Li₂ S及びP₂ S₅、又はLi₂ S、P 2 S。及びSiS2 に加え、Li。PO4、Li4 Si O. 及びLi. GeO. からなる群より選ばれる少なく とも1種のオルトオキソ酸リチウムを含ませることがで

【0028】かかるオルトオキソ酸リチウムを含ませる と、結晶化ガラス中のガラスを安定化させることができ

【0029】さらに、本発明では、硫化物系結晶化ガラ スの組成中に、LizS及びPzS₅ 、又はLizS、 P₂ S₅ 及びS i S₂ に加え、上述した硫化物を少なく とも一種類以上含ませ、更に、上述したオルトオキソ酸 リチウムを少なくとも一種類以上含ませることができ る。

【0030】本発明の硫化物系結晶化ガラスでは、Li 2 S及びP2 S6 に加え、前述した硫化物としてしSi S₂を用いるか、前述したオルトオキソ酸リチウムとし てLi、SiO、を用いる場合、結晶相中に、Li,P S。、Li, P2 S。及びLi。PS、からなる群より 選ばれる少なくとも 1 種の化合物からなる結晶母体とし i SiS 及びLi SiS からなる群より選ばれ る少なくとも1種の化合物との固溶体からなる結晶性化 合物を生成させることができる。

【0031】本発明にかかる硫化物系結晶化ガラスは、 40 固体でありながら、室温で極めて高いリチウムイオン伝 導性を示す。

【0032】また、かかる硫化物系結晶化ガラスは、有 機電解液よりも分解電圧が高く、少なくとも5V以上の 分解電圧を持ち、5 V以上で充放電可能に作動する全固 体電池の固体型電解質として使用可能であり、電池の高 エネルギー密度化を可能とする。

【0033】さらに、かかる硫化物系結晶化ガラスは、 不燃性の無機固体であり、リチウム二次電池の安全性の 問題も同時に解決できる。

50 【0034】また、かかる硫化物系結晶化ガラスは、リ

チウムイオン輸率が1であるために、副反応にともなう 電池のサイクル特性の劣化を低減できる。

【0035】本発明の硫化物系結晶化ガラス中に、Linps。、Linps。及びLinps。からなる群より選ばれる少なくとも1種の化合物からなる結晶母体とLinsis。及びLinsis。からなる群より選ばれる少なくとも1種の化合物との固溶体からなる結晶性化合物を含有する結晶相が存在する場合、リチウムイオン伝導性がより一層高まる。

【0036】本発明では、Li2S50~92.5モル 10%及びP2S。7.5~50モル%の仕込み組成や、Li2S50~90モル%、P2S。1~50モル%及びSiS21~50モル%の仕込み組成等の混合物から硫化物系ガラスを形成し、この硫化物系ガラスを加熱して、結晶化させ、硫化物系結晶化ガラスを製造することができる。

【0037】かかる硫化物系結晶化ガラスは、所定の仕込み組成の高リチウムイオン伝導性の硫化物系ガラスを結晶化させることで、一層の伝導度増大が可能となり、固体でありながらも、室温で極めて高いリチウムイオン 20 伝導性を示す。

【0038】また、本発明では、かかる硫化物系結晶化ガラスから、硫化物系の固体型電解質を形成し、これを用いることで、安全で高性能な全固体リチウム二次電池を作製することができる。

【0039】本発明では、所定の仕込み組成の混合物から硫化物系ガラスを形成する際、メカニカルミリング (MM)処理又は融液急冷法を用いることができる。

【0040】MM処理を用いて硫化物系ガラスを形成するのが好ましい。MM処理では、ガラス生成域が拡大するからである。また、溶融急冷法で用いる加熱処理が不要となり、室温で行えるので、製造工程の簡略化が可能となる。

【0041】溶融急冷法やMM処理により硫化物系ガラスを形成する際、窒素等の不活性ガスの雰囲気を用いるのが好ましい。水蒸気や酸素等は、出発物質と反応し易いからである。

【0042】MM処理では、ボールミルを使用するのが好ましい。大きな機械的エネルギーが得られるからである。

【0043】ボールミルとしては、遊星型ボールミル機 を使用するのが好ましい。非常に大きな機械的エネルギ ーが得られるからである。

【0044】本発明では、このようにして形成される硫化物系ガラスの $30\sim99\%$ は結晶化され、 Li_7PS 。、 Li_4P_2S 。及び Li_7PS 4からなる群より選ばれる少なくとも1種の化合物を含有する結晶相が形成される。

【0045】また、本発明では、かかる硫化物系ガラス に、前述したSiS₂か、前述したLi₄SiO₄を添 加する場合、結晶相中に、Li, PS。、Li, P2S。及びLi, PS。からなる群より選ばれる少なくとも1種の化合物からなる結晶母体とLi, SiS。及びLi, SiS。及びLi, SiS。からなる群より選ばれる少なくとも1種の化合物との固溶体からなる結晶性化合物が生成する。

【0046】かかる結晶化では、MM処理して形成された硫化物系ガラス微粒子、特化、0.1~5μmの平均粒径の硫化物系ガラス微粒子を加熱して、結晶化させるのが好ましい。

【0047】本発明者の研究によれば、かかる微粒子は、硫化物系ガラスが軟化し、ガラス相と結晶相との界面の接触性に優れ、リチウムイオンの伝導性に優れると考えられるからである。

【0048】また、かかる結晶化では、加熱処理又はM M処理を用いることができる。

【0049】結晶化のための加熱処理は、かかる硫化物系ガラスのガラス転移温度が150℃であるから、150℃以上の温度にして行う。

[0050]

【実施例】図面を参照して、本発明を実施例及び比較例 に基づいて説明する。図 1 は、硫化物系結晶化ガラス 〔仕込組成:x L i_2 S・(100-x) P $_2$ S $_5$ (x = $50\sim8$ 7. 5)〕のX 線回折パターンを示すグラフ である。図 2 は、硫化物系結晶化ガラス〔仕込組成:x L i_2 S・(100-x) P $_2$ S $_5$ (x = 80)〕の伝 導度の温度依存性を示すグラフである。

【0051】図3は、3成分系硫化物ガラス(所定の組成、68時間MM処理にて作製)の示差熱分析(DTA)曲線を示す。図4は、3成分系硫化物ガラス(所定の組成、68時間MM処理にて作製)の加熱時及び結晶化後冷却時の伝導度の温度依存性を示す。図5は、3成分系硫化物ガラス(a)、このガラスの伝導度測定後(b)、DTA測定後(c)及び比較のためのLi,P

S。結晶(d)のX繰回折バターンを示す。

【0052】実施例1~6

出発原料に金属硫化物結晶LigSとPgS。とを用いた。これらを所定のモル比に秤量し、遊星型ボールミルを用いて、窒素中、室温で20時間MM処理して、微粉末の非晶質体〔仕込組成:xLigS・(100-x)

40 P₂ S₅ (x=50~87.5)、実施例1:x=5 0、実施例2:x=60、実施例3:x=70、実施例 4:x=75、実施例5:x=80及び実施例6:x= 87.5〕を合成した。

【0053】とれら非晶質体に対して、窒素中で室温から550℃までの温度範囲で示差熱分析を行なった。その結果、どの仕込み組成の試料に対しても、200℃前後に発熱ピークが観察された。

【0054】測定後の試料に対して、粉末X線回折測定を行った。その結果、図1に示すように、すべての組成 50 の試料に対して、結晶が存在することが分かった。

【0055】示差熱分析における発熱ピークは、非晶質 体の結晶化に伴うものである。すなわち、Li2 SとP 。S。を主成分とする結晶化ガラスが、200℃程度の 低温で合成できることが分かった。

【0056】次に、x=80の非晶質体の粉体をペレッ ト状に成形し、電極としてカーボンペーストを塗布し、 交流二端子法により、伝導度を測定した。測定は、室温 から開始し、一度250°C付近まで昇温し、その後降温 した。結果を図2に示す。

【0057】図2に示すように、昇温時に対して降温時 には、伝導度の増大が見られ、加熱後の室温における伝 導度が、10⁻³ Scm⁻¹ 付近の極めて高い値を示す ことが分かった。

【0058】その後、昇降温させながら伝導度測定を繰 り返し行っても、伝導度は高い値を維持していた。

【0059】これらの結果より、合成した結晶化ガラス が、高リチウムイオン伝導性を示し、かつ熱的に安定で あることが分かった。

【0060】続いて、上述の結晶化ガラスを固体電解質 に用い、正極にコバルト酸リチウム、負極には金属イン 20 ジウムを使用して、全固体電池を構成した。

【0061】その結果、高電流密度域で、極めて良好な 充放電特性を示した。また、優れたサイクル特性を示 し、高温時の電池の安全性が、飛躍的に向上した。

【0062】実施例7

出発原料には、金属硫化物結晶、LizS、PzSs及 びSiSzを用いた。これらを70.83LizS・1 2. 5P₂ O₅ · 16. 67S i S₂ のモル比に秤量 し、遊星型ボールミルを用いて、窒素中、室温で68時 間MM処理して、徴粉末の非晶質体を合成した。

【0063】この非晶質体に対して、窒素中、室温から 550℃までの温度範囲で示差熱分析(DTA)を行っ た。その結果、図3に示すように、240℃と360℃ 付近に発熱ピークが観察された。

【0064】一方、得られた非晶質体の粉体をペレット 状に成形し、電極としてカーボンペーストを塗布し、交 流二端子法により伝導度を測定した。測定条件として は、室温から240℃付近まで昇温し、その後降温し た。結果を図4に示す。

【0065】図4に示すように、3成分系でも、昇温時 40 られる。 に対して降温時には、伝導度の増大が見られ、加熱後の 伝導度が、10-8 Scm1 付近の極めて高い値を示す てと (前: $\sigma_{2.5} = 1.29 \times 10^{-4} \text{ Scm}^{1}$ 、E. = 34.8 k J / モル、後: σ_{2 δ} = 7.63×10 - ⁴ Scm¹、E₄ = 26.6kJ/モル)が分かっ た。その後、昇降温させながら伝導度測定を繰り返して も、伝導度は高い値を維持していた。

【0066】図5より、MM処理によって得られた3成 分系硫化物ガラス(70.83Li₂S・12.5P₂ Os · 16.67SiS2組成、68時間MM)を24 ○℃付近まで加熱して得られる3成分系結晶化ガラス中 の結晶相は、Li,PS。結晶とは異なる固溶体相であ ることが分かった。

【0067】 これらの結果より、固溶体結晶相が析出し た3成分系結晶化ガラスが、高いリチウムイオン伝導性 を示し、熱的にも安定であることが分かった。

【0068】上述の3成分系結晶化ガラスを固体電解質 に用い、正極にコパルト酸リチウム、負極には金属イン ジウムを使用して、全固体電池を構成した。その結果、 高電流密度域で良好な充放電特性を示した。この電池は また、サイクル特性にも優れ、安全性も飛躍的に向上し

【0069】比較例1~6

実施例1~6と同様に、出発原料に金属硫化物結晶L i 2 SとP2 S2 を用いて、所定のモル比に秤量し、遊星 型ボールミルを用いて窒素中、室温で20時間MM処理 し、微粉末の非晶質体〔仕込組成: x L i 2 S・(10 0-x) P₂S₅ (x=50~87.5)、比較例1: x=50、比較例2:x=60、比較例3:x=70、 比較例4:x=75、比較例5:x=80、比較例6: x=87.5〕を合成した。

【0070】これらを窒素中で室温から結晶化温度より 低い温度範囲で伝導度測定を繰り返したところ、昇降温 時の測定値は同じであった。すなわち、熱処理により非 晶質材料を結晶化させない際には、伝導度の増大が起と らないことが分かった。

【0071】続いて、上述の非晶質体を固体電解質に用 い、正極にコバルト酸リチウム、負極には金属インジウ ムを使用して、全固体電池を構成した。

【0072】その結果、実施例と比較して、高電流密度 域での放電容量が、若干低下する傾向にあった。とれ は、非晶質体の伝導度が、結晶化ガラスのそれより一桁 程度小さいために、正極材料の利用率が若干低下したた めである。

[0073]

【発明の効果】本発明の硫化物系結晶化ガラスによれ ば、Li, PS。、Li, P2 S。及びLi, PS, か らなる群より選ばれる少なくとも1種の化合物を含有す る結晶相によって、リチウムイオン伝導性が著しく高め

【0074】また、本発明の硫化物系結晶化ガラスによ れば、結晶相中の、Li, PS。、Li, P, S。及び Li, PS. からなる群より選ばれる少なくとも1種の 化合物からなる結晶母体とLi SiS 及びLi2S iS,からなる群より選ばれる少なくとも1種の化合物 との固溶体からなる結晶性化合物によって、リチウムイ オン伝導性がより一層高められる。

【0075】さらに、本発明の硫化物系結晶化ガラスに よれば、リチウムイオン伝導性に優れた硫化物系の固体 50 型電解質が形成され、かかる固体型電解質により、リチ

ウムイオン伝導性に優れた硫化物系の全固体二次電池が 形成される。

【図面の簡単な説明】

【図1】 硫化物系結晶化ガラス〔仕込組成: x L i 2 S・(100-x) P₂ S₅ (x=50~87.5)〕 のX線回折パターンを示すグラフである。

【図2】 硫化物系結晶化ガラス〔仕込組成: x L i ₂ S · (100-x) P₂ S 。 (x=80)〕の伝導度の 温度依存性を示すグラフである。

【図3】 3成分系硫化物ガラス(所定の組成、68時*10

*間MM処理にて作製)の示差熱分析(DTA)曲線を示すグラフである。

【図4】 3成分系硫化物ガラス(所定の組成、68時間MM処理にて作製)の加熱時及び結晶化後冷却時の伝導度の温度依存性を示すグラフである。

【図5】 3成分系硫化物ガラス(a)、Cのガラスの 伝導度測定後(b)、DTA測定後(c)及び比較のためのLi, PS。結晶(d)のX繰回折パターンを示すグラフである。

【図1】

【図2】

[図4]

フロントページの続き

(72)発明者 森本 英行

兵庫県尼崎市潮江 1-13-1

(72)発明者 林 晃敏

大阪府藤井寺市小山7-12-4

Fターム(参考) 4G062 AA01 AA11 BB18 CC10 DA03

DA04 DA05 DB01 DC01 DD03

DD04 DD05 DE01 DF01 EA06

EA07 EA08 EB01 EC01 ED01

EE01 EF01 EG01 FA01 FA10

FB01 FC01 FD01 FE01 FF01

FG01 FH01 FJ01 FK01 FL01

GA01 GB02 GC01 GD01 GE01

HH01 HH03 HH05 HH07 HH09

HH11 HH13 HH15 HH17 HH20

3301 3303 3305 3307 3310

KK01 KK03 KK05 KK07 KK10

MM23 NN25 QQ20

5G301 CA05 CA16 CA19 CA30 CD01

5H029 AJ05 AJ12 AK03 AL12 AM12

DJ17 HJ01 HJ02 HJ13