SUNCAST

Nowcast Solar Irradiance

Using Computer Vision and Deep Learning on Satellite Images

Dhileeban Kumaresan¹ | Richard Wang¹ | Ernesto Martinez¹ | Richard Cziva¹ Alberto Todeschini¹ | Colorado J Reed² | Hossein Vahabi¹

¹School of Information, University of California, Berkeley ²EECS / BAIR, University of California, Berkeley

Solar Energy

- Solar power generation account for almost 80% of the increase in renewable energy generation through 2050¹
- Solar power is required to reduce global greenhouse gas emissions that stem from the energy sector each year^{2,3}

¹ Bipartisan Policy Center. Annual energy outlook 2021. Energy Information Administration, Washington, DC, 2021.

² Phebe Asantewaa Owusu and Samuel Asumadu-Sarkodie. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1):1167990,2016

³ D Elzinga, S Bennett, D Best, K Burnard, P Cazzola, D D'Ambrosio, J Dulac, A Fernandez Pales, C Hood, M LaFrance, et al. Energy technology perspectives 2015: mobilising innovation toaccelerate climate action. Paris: International Energy Agency, 2015.

Solar Energy Prediction

Solar power is volatile and intermittent

Existing Solutions

Use ground-based images to predict production at a solar plant in Hangzhou, China 1.

Deep learning model on satellite images to predict total daily PV for the entire nation of Germany.

Numerical weather prediction(NWP) models

Keyong Hu, Shihua Cao, Lidong Wang, Wenjuan Li, and Mingqi Lv. A new ultra-short-termphotovoltaic power prediction model based on ground-based cloud images. Journal of Cleaner Production, 200:731–745, 2018

Nicolas Sebastien Jeremie Lequeux. Johan Mathe, Nina Miolane. Pvnet: A lrcn architecturefor spatio-temporal photovoltaic powerforecasting from numerical weather.arXiv preprintarXiv:1902.01453, 2019.

Hadrien Verbois, Robert Huva, Andrivo Rusydi, and Wilfred Walsh. Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning. Solar Energy, 162:265–277, 2018.

Factors that affect Solar Irradiation

NOAA GOES Satellite Images

True Color Image

DSR

Satellite images available on "Open Data on AWS" https://registry.opendata.aws/noaa-goes/
File Format: netCDF

Model Features & Label

Model Architecture

Pre-processed

ConvLSTM2D 128 (5,5) Kernels Same Padding ReLU

Batch Normalization

ConvLSTM2D 128 (5,5) Kernels Same Padding ReLU

Batch Normalization

ConvLSTM2D 64 (5,5) Kernels Same Padding ReLU

Conv3D 1 (3,3,1) Kernels Same Padding Sigmoid

Prediction

Cell Variation - ConvGRU

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Cell Variation - ConvLSTMPeepHole

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Model Root Mean-Squared Error by Hour

HRRR vs ConvLSTMPeephole Model

Group	HRRR RMSE	Model RMSE
Overall	124.9	108.6
Low DSR (0-300)	165.3	135.3
Medium DSR (300-600)	170.7	131.7
High DSR (600+)	103.5	98.3

ConvLSTM vs HRRR performance for predictions made for 22 locations between 10:00AM-3:00PM PST for four weeks of the test set (RMSE,W/m2)

Future Work

- Add more number of images to model input
- Add channels to each of these images (e.g. infrared, near-infrared and visible)
- Train for other regions around the world

Thank you!

Appendix

Detail Model Performance

First Hour Prediction				
Model	Overall	Low DSR (0-300)	Medium DSR (300-600)	High DSR (600+)
ConvLSTM	61.4	56.3	74.6	67.5
ConvLSTMPeephole	60.2	55.2	73.1	66.1
ConvGRU	97.2	77.3	152.1	107.1
Second Hour Prediction				
Model	Overall	Low DSR (0-300)	Medium DSR (300-600)	High DSR (600+)
ConvLSTM	85.7	76.3	117.8	88.1
ConvLSTMPeephole	86.5	77.9	119.1	86.3
ConvGRU	126.9	96.9	209.5	137.9
Third Hour Prediction				
Model	Overall	Low DSR (0-300)	Medium DSR (300-600)	High DSR (600+)
ConvLSTM	123.8	102.3	184.6	136.2
ConvLSTMPeephole	120.6	88.2	205.9	132.5
ConvGRU	159.2	93.5	267.7	223.9

Table 1: Model Performance on the 2-month test set(RMSE, W/m^2).