Flight Delay Prediction

Team 10:

- YuLing Chen
- Lesley Matheson
- Mitchell Li
- Ernesto Oropeza

Agenda

- Problem Statement
- EDA
- Feature engineering
- Algorithm
- Implementation
- Conclusions

Problem Statement/Business Cases

- Impact of Predicting Flight Delays:
 - Airline industry financial incentives
 - \$250B domestic airline industry with upward \$8B annually
 - Customer financial impacts and inconvenience
 - Operational efficiency for airports
- Model objective:
 - Predict whether a given scheduled flight will be delayed by more than 15 minutes 2 hours in advance at a given departure time
 - Binary classification problem

EDA - Summary

- Temporal impact on departure delay
 - Airport and Airline impact on departure delay
- Weather impact on departure delay

EDA - DataSet

- 31,746,841 flights(rows)
- 109 flight features (columns)
- 371 airports
- 19 airlines

- 630,904,436 measurements (rows)
- 177 metrics per station(columns)
- 15,195 distinct stations

- 29,771 rows
- 11 columns
- 25,744 distinct stations

- Large dataset
- Should fully leverage Spark Parallel Processing Capabilities
 - Especially in joins
- For EDA scalability strategy:
 - Use sampling whenever it makes sense

Data Imbalance and Null handling

Data Imbalance

- Over sample the minority class (delays)
- Under sample the majority class (no delays)
- Class Weights

Null Handling

Used the
 HyperParameter
 "HandleInvalid" in the
 ML Pipeline Vector
 Assembler.

About 20% delays and 80% on schedule

Feature Engineering - Workflow

Engineered Features

Airline + Weather

Pre Train/Test Data Split:

- Scheduled Flights per Aircraft/Day
- Minimum Layover per Aircraft/Day
- Number of Departures per Airport/Day
- Hour of the Day
- Prior Departure delays (2 hours)
- Prior Arrival Delays

Airline + Weather Training

- Post Train/Test Data Split:
- Average Airport Delay
- Percentage of Flights Delayed per Airport
- Average Carrier Delay
- Percentage of Flights Delayed per Carrier

Complete Feature Set

Flight Airline Table Features

- DAY_OF_WEEK
- MONTH
- QUARTER

Weather Features

- TEMPERATURE_INTERP
- DVIS INTERP
- HVIS_INTERP
- WVEL_INTERP
- WDIR_INTERP
- DEWPOINT_INTERP

Engineered Features:

- AIRPORT_AVERAGE_DELAY_MINS
- AIRPORT_PERCENTAGE_DELAY
- CARRIER_AVERAGE_DELAY_MINS
- CARRIER_PERCENTAGE_DELAY
- TOTAL_FLY_DAY
- LAYOVER_MIN
- FLY_AIRPORT_DAY
- TOTAL_FLIGHTS
- HOUR_OF_DAY
- PRIOR_ARR_DEL
- PRIOR_DEP_DEL

Initial Performance of Engineered Features

Algorithms Tried and Lessons Learned

Models Tried

- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boost Tree

Lessons Learned

- A correctly engineered feature greatly boosts model performance.
- HyperParameter tuning using Cross
 Validation but challenged by resources.
- Tree type models are superior compared with Logistic Regression for nonlinear problems

Evaluation

Recall=
$$\frac{TP}{(TP+FN)}$$

Model Performance Evaluation Output

		precision	recall	f1-score	support
0	.0	0.88	0.96	0.91	5575213
1	.0	0.68	0.41	0.52	1292542
accura	су			0.85	6867755
macro a	vg	0.78	0.68	0.71	6867755
weighted a	vg	0.84	0.85	0.84	6867755

F1-Score =
$$\frac{TP}{(TP + \frac{1}{2}(FN + TP))}$$

Feature Correlation and Importance

Feature Correlation

Feature Importance

Performance and Scalability

- Table loins
 - Avoid looping table joins
 - Apply broadcast join to boost the performance
 - Write tables containing precomputable values and join incrementally
 - Utilize caching
- Model phase
 - Pyspark native ML models were used in training and testing the models

Conclusions and Future Work

- Tree type models are good fit in predicting flight delays
- Feature engineering is key to achieve good model performance
- Future efforts should be spent in the following areas:
 - Creative feature engineering
 - Data enrichment
 - Integrating better avionic radar based weather data, such as Storm Events DB by NOAA
 - Deep learning models including Neural Nets and LSTM

THANK YOU!

Any questions?

