

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Machine Problem No. 3					
Topic:	Topic 3: Unsupervised Learning Techniques	Week No.	4		
Course Code:	CSST102	Term:	1st Semester		
Course Title:	Basic Machine Learning	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Machine Problem No. 4: K-Means Clustering on a Customer Segmentation Dataset

Objective:

The goal of this task is to assess your ability to apply the K-Means clustering algorithm to perform customer segmentation. You will preprocess the dataset, apply the K-Means algorithm, and evaluate the results. Additionally, you are required to visualize the clusters formed and discuss the characteristics of each group.

Dataset:

The provided **Customer Segmentation Dataset** includes customer demographic and purchasing behavior characteristics (e.g., age, income, spending score). The dataset contains no target labels.

Task Instructions:

1. Data Exploration and Preprocessing:

- Load the dataset and perform exploratory data analysis (EDA) to understand the distribution of features.
- Handle any missing values.
- Normalize or scale the data if necessary.
- Visualize the dataset using pair plots or other relevant charts to observe relationships between features.

2. Model Development:

- o Implement the **K-Means Clustering** algorithm to segment the customers into different groups. Start with **k=3** clusters.
- Try different values of k (e.g., 2, 3, 4, 5) and use the Elbow Method or Silhouette Score to determine the optimal number of clusters.

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

3. Model Evaluation:

- Evaluate the model using metrics such as inertia (sum of squared distances to centroids)
 and silhouette score to assess the quality of clusters.
- Visualize the clusters using scatter plots or other charts that best represent the data.
- o Identify the characteristics of each cluster based on the input features (e.g., which customers belong to each group and why).

4. Report and Visualizations:

- o Provide a detailed report that includes:
 - The steps taken for preprocessing, model implementation, and evaluation.
 - Discussion on the chosen value of k and why it was selected.
 - Interpretation of the clustering results (i.e., the distinct customer segments and their characteristics).
 - Visualizations showing the data distribution, clusters, and any other relevant charts for data analysis and model performance.

Key Grading Areas:

- **Data Preprocessing** (20%): Proper cleaning, handling of missing values, normalization, and visualization of data.
- **Model Implementation** (40%): Correct implementation of K-Means algorithm, determination of optimal **k**, and clustering analysis.
- **Model Evaluation** (20%): Use of appropriate metrics like inertia and silhouette score, clear visualization of clusters.
- Critical Thinking (10%): Interpretation of results and understanding of customer segments.
- **Report Quality and Visualizations** (10%): Well-organized report with clear documentation and supporting visualizations.

Inability to follow this instruction will be deducted 5 points each for filename format and late submission per day. Also, cheating and plagiarism will be penalized.

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Rubric for K-Means Clustering Assessment Task:

Criteria	Excellent (90-100%)	Good (75-89%)	Satisfactory (60-74%)	Needs Improvement (0-59%)
Data Preprocessing	Data is thoroughly cleaned, normalized, and visualized; no missing values; all EDA	Most preprocessing steps correctly implemented; minor issues in EDA or missing value handling.	Basic preprocessing with some steps missed; minor errors in EDA.	Poor or missing preprocessing; significant issues in data cleaning or visualization.
Model Implementation	implemented accurately with	Model implemented with minor errors or lack of optimization; code generally organized.	Basic model implementation; errors in code; limited optimization.	Poor or incorrect model implementation; models do not run or produce meaningful results.
Model Evaluation	visualizations; insightful	Good evaluation: metrics calculated correctly but minor issues in interpretation.	Basic evaluation with limited analysis and missing metrics.	Minimal or missing evaluation; metrics not calculated or interpreted.
Critical Thinking	Deep analysis of clusters; insightful discussion of characteristics and realworld applicability.	Good analysis with some insights but lacking depth.	Basic analysis with limited insights; superficial discussion of clusters.	Minimal or no critical thinking; poor or no interpretation of clusters.
Report and Visualizations	Well-organized, clear report with effective visualizations	Report is organized with minor issues; visualizations present but may not fully support the analysis.	Basic report with limited visualizations; minimal documentation.	Unclear, disorganized, or incomplete report; missing visualizations.