Hierarchical Data Analysis Distance Metrics in Hierarchical Clustering

Objective

Apply methods of hierarchical data analysis

Single-link Clustering: Example

Determined by one pair of points, i.e., by one link in proximity graph

	I 1	I 2	I 3	14	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Single-Link Clustering Example

Nested Clusters

Dendrogram

Strengths of Single-Link Clustering

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of Single-Link Clustering

Original Points

Two Clusters

Sensitive to noise and outliers

It produces long, elongated clusters

Distance Between Two Clusters

Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j

The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Complete-link Clustering: Example

Distance between clusters is determined by two most distant points in different clusters

	I 1	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Single-Link Clustering Example

Nested Clusters

Dendrogram

Strengths of Complete-link Clustering

Original Points

Two Clusters

More balanced clusters (with equal diameter)

Less susceptible to noise

Limitations of Complete-Link Clustering

Original Points

Two Clusters

Tends to break large clusters

All clusters tend to have same diameter – small clusters are merged with larger ones

Distance Between Two Clusters

Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_j

$$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$

Average-link Clustering: Example

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	12	13	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Average-Link Clustering Example

Nested Clusters

Dendrogram

Average-Link Clustering: Discussion

Compromise between Single and Complete Link

Strengths

Less susceptible to noise and outliers

Limitations

Biased towards globular clusters

Distance Between Two Clusters

Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance Between Two Clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

r_i: centroid of C_i

r_i: centroid of C_i

r_{ij}: centroid of C_{ij}

Ward's Distance for Clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers

- Biased towards globular clusters
- Hierarchical analogue of k-means
- Can be used to initialize k-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space Requirements

- For a dataset X consisting of n points
- O(n²) **space**; it requires storing distance matrix

O(n³) time in most of the cases

- There are n steps and at each step the size n² distance matrix must be updated and searched
- Complexity can be reduced to
 O(n² log(n)) time for some approaches
 by using appropriate data structures

Hierarchical Clustering Issues

- Distinct clusters are not produced
- Methods for producing distinct clusters but involve specifying somewhat arbitrary cutoff values

- What if data doesn't have a hierarchical structure?
- Is HC appropriate?