von JD., Seite 1 von 4 standardabweichung R:sd(x)1 BeschreibendeStatistik $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit 1.1 Begriffe wie beobachteten Daten $x_i.\bar{x}$ minimiert 1.8.3 Regressionsgerade y 1.1.1 Beschreibende/Deskriptive die "quadratische Verlustfunktionöder Statistik

Hilfszettel zur Klausur

schaulich gemacht.

theorie bewertet.

1.2 Lagemaße

malen)

R:mean(x)

Schwerpunkt

R:median(x)

1.1.3 Grundgesamtheit

1.2.1 Modalwerte x_{mod}

1.3 Median, quantitativ

1.4 Streuungsmaße

1.4.1 Spannweite

Verschiebungssatz:

 $\max x_i$ - $\min x_i$

Beobachtete Daten werden durch geeig-

nete statistische Kennzahlen charakteri-

siert und durch geeignete Grafiken an-

bener Modelle der Wahrscheinlichkeits-

gen), univariat(p=1), mulivariat(p>1)

Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merk-

ten.**Empfindlich**gegemüber Ausreißern.

Liegt in der Mitt der sortierten Daten x_i .

Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

1.4.2 Stichprobenvarianz s^2

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2)$

schen Abweichung vom Mittelwert

 $n\bar{x}^2$) Gemittelte Summe der quadrati-

1.2.2 Mittelwert, quantitativ

ten x_i ca. im Verhältnis p: (1-p) d.h. $\hat{F}(x_n) \approx p$; $\hat{F} = \text{kummul. rel. Häufigkeit}$; 1.1.2 Schließende/Induktive Sta- 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Quartil; Aus beobachtete Daten werden Schlüsse $x_p \begin{cases} x_{floor(np)+1}, np \in \mathbb{N} \\ \frac{1}{2}(x_{np} + x_{np+1}, np \notin \mathbb{N}) \end{cases}$ gezogen und diese im Rahmen vorgege-

die Varianz gibt das Minimum der Feh-

R:quantile(x, p). Teilt die sortierten Da

1.4.3 Stichproben-

lerquadrate an.

1.5 p-Quantile

1.6 Interquartilsabstand I
$$I = x_{0.75} - x_{0.25}$$
. Ist ein weiterer Streuungsparameter. **1.7** Chebyshev

 Ω : Grundgesamtheit ω :Element oder Ob- $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der jekt der Grundgesamtheit diskret(<30 Ausprägungen), stetig(≥30 Ausprägun-Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungswerten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl

> $\overline{E_1 \cup E_2} = \overline{E}_1 \cap \overline{E}_2$ zent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als 75% der Daten im 2s-Bereich um \bar{x} . Für k=3 liegen mehr als 89% der Daten im 3s-Bereich um \bar{x} . **Komplement Formulie**rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr gro-

 $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro-

von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$. 1.8 Korrelation Grafische Zusammenhang zwischen multivariaten Daten x und y durch ein Streudiagramm. Kennzahlén zur Unter-

be Abschätzung, ist aber unabhängig

1.8.1 Empirische Kovarianz R:cov(x, y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

suchung des Zusammenhangs:

 $\ddot{S}_{xv} < 0$ fallend; 1.8.2 Empir. Korrelk.koeff. r

 $\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i)-n\overline{xy}); S_{xy}>0$ steigend;

R:cor(x, y); $r = \frac{s_{xy}}{s_x s_y}$; Näherungsweise lin.

Zusammenhang zw. x und y, falls $|r| \approx 1$; 2.5.1 Satz 2.2

sehen (Anscombe-Quartett).

 $y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_x} \text{ und } t = \overline{y} - m \cdot \overline{x};$ Für den Bereich $|\pm 0.7|$ $\hat{b}is$ bis $\pm 1 \Rightarrow$ linearer Zusammenhang.

-Den Korrelationskoeffizient immer im

Zusammenhang mit den Streudiagramm

2 Wahrscheinlichkeitsrechnung 2.1 Begriffe **Ergebnisraum** Ω : Menge aller möglichen

Ergebnisse eines Experiments **Elementarereignis** $\omega \in \Omega$: einzelnes Ele-**Ereignis** $E \subseteq \Omega$: beliebige Teilmenge des

Ø heißt unmögliches Ereignis

nicht ein (Komplement von E)

2.2 De Morgan'schen Regeln

2.3.1 Satz 2.1

 $P(\overline{E}) = 1 - P(E)$

Disjunkte EreignisseE und F: $E \cap F = \emptyset$

Vereinigung $E \cup F$: Ereignis E oder Ereignis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein Ereignis E_i tritt ein. **Schnitt** $E \cap F$: Ereignis E und Ereignis F treten ein. $\bigcap_{i=1}^n E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $\overline{E} = \Omega / E$: Ereignis E tritt

 $\overline{E_1 \cap E_2} = \overline{E_1} \cup \overline{E_2}$ 2.3 Wahrscheinlichkeit $0 \le P(E) \le 1$; $P(\Omega) = 1$; $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$

2.4 Laplace-Experiment Zufallsexperimente mit n gleich wahr-Elementarereignissen. scheinlichen

(Übungsaufgabe!!! Ergänzen)

Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus: $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der für E günstigen Ereignisse}}$ Anzahl der möglichen Ereignisse

$\frac{\text{Mächtigkeit von E}}{\text{Mächtigkeit von }\Omega} = \frac{|E|}{n}$

2.5 Bedingte Wahrscheinlichkeit

 $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

Uebung Die Ereignisse E und F heißen $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$

 $\sum -1$ 2.5.2 Satz der totalen Wahrscheinlichkeit

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So-

Ergebnisraums Ω heißt sicheres Ereignis, $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$. Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

1 - P(F|E)

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ Hilfreich, wenn man man $P(F|E_i)$ kennt,

2.5.3 Vierfeldertafel $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$ EĒ

 $P(F|E_k)\cdot P(E_k)$

 $P(F|E_i) \cdot P(E_i)$

2.5.4 Formel von Bayes

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

Nur Nenner!P(F) aus dem Satz der totalen Wahrscheinlichkeit.

2.5.5 Stochastische Unabhängig-

(stochastisch) unabhängig, wenn die Information über das Eintreten des einen Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert, d.h. falls

deutet nicht notwendigerweise eine kausale Abhängigkeit · Veranschaulichung mit Venn Dia- $P(E) = \frac{4}{2} = P(E(F))$ gramm stock unabhanging P(E) = 1 < P(EIF)

gig sind, dann sind auch:

 $P(E \cap F)$

 \overline{E} , F

• $A, B \neq \emptyset$ und $A \cap B = \emptyset$ $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$ $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und

Es gilt Falls die Ereignisse E, F unabhän-

E, F unabhängig Bemerkung

Stochastische Unabhängigkeit be-

=> A, B stochastisch abhängig 3 Zufallsvariable Abbildung des abstrakte Ergebnisraums Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

 $\omega \mapsto X(\omega) = \text{heißt Zufalls variable (ZV). x}$ ∈ R. heißt Realisation der ZV X.

> • Diskrete ZV: $X(\Omega) = x_1, ..., x_2 (n \in$ \mathbb{N}); z.B. X = "Augensumme beim"• Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körpergröße eines Menschen"

3.1 Verteilungsfunktion-allg. Die Wahrscheinlichkeit P(B) für ein Er-

eignis B in R wird zurückgefürht auf die Wahrscheinlichkeit der entsprechenden Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die Verteilungsfunktion F: $\mathbb{R} \rightarrow [0,1]$ einer ZV X definiert durch:

 $F(x) = P(X \le x)$ • $0 \le F(x) \le 1$ • $\lim F(X) = 0 \lim F(x) = 1$

 monoton wachsend • P(X > x) = 1 - F(x)

• $P(a < X \le b) = F(b) - F(a)$ 3.2 Diskrete ZVs Für eine diskrete ZV X mit $X(\Omega) =$

 $x_1,...,x_n$ (n endlich oder abzählbar unendlich) ist die Wahrscheinlichkeitsfunktion definiert durch:

 $\int P(X = x_i)$, falls $x_i \in X(\Omega)$

Es gilt: • $F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$

• F(x) ist eine rechtseitig stetige Treppenfunktion mit Sprüngen

bei der Realisation von x_i .

Bemerkung: -Der Korrelationskoeffizient kann nur einen statistischen Zusam- $P(E \cap F) = P(E|F) \cdot P(F)$ menhang beschreiben, keinen Kausalen; $P(E \cap F) = P(F|E) \cdot P(E)$

Hilfszettel zur Klausur von JD., Seite 2 von 4 Sei Y = g(X) eine Funktion der ZV X. 3.11.1 E[X]Dann gilt: 3.3 Stegite ZVs Stetige ZV X ist die Wahrscheinlichkeits-

$P(a < X < b) = \int_a^b f(x) dx$

• $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und F'(x) = f(x)• F(x) ist stetig & $P(a < X \le b) =$

 $P(a \le X \le b)$ wegen P(X = a) = 03.4 Verteilungsfunktion $\int_{\mathbf{Untergrenze}}^{x}$ Es wird normal mit - Inte-

3.5 Zusammenfassung

dichte f $f: \mathbb{R} \to [0, \infty[$ definiert durch

3.5.1 Diskrete ZV Wahrscheinlichkeitsverteilung $p(x) \sum_{i=1}^{n} p(x_i) = 1x_i$ ist Realisation der ZV. • Verteilungsfunktion F(x) ist rechts-

seitig stetige Treppenfunktion. **Sprunghöhen:** $P(X = x_i) = F(x_i) \lim \neq 0$ • $P(a < X \le b) = F(b) - F(a) \ne P(a \le b)$ $X \leq b$ 3.5.2 Stetige ZV

• Dichtefunktion fx $\int_{-\infty}^{\infty} f(x)dx = 1$ • Verteilungsfunktion F(x) ist stetig mit F'(x) = f(x); $P(X = x_i) = 0$

• $P(a < X \le b) = F(b) - F(a) = P(a \le b)$ $X \le b$) = $F(a \le X < b)$ = P(a < X < b)3.6 Erwartungswert Der Erwartungswert E[X] = einer ZV

X ist der **Schwerpunkt** ihrer Verteilung or der durchschnittliche zu erwartende Wert der ZV. • diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$

• stetige ZV: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$ ZV ist konstant. E[X] verhält sich linear.

Eigenschaften von E[X]: • E[b] = b• E[aX + b] = aE[X] + b

• $E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]$

• für diskrete ZV:E[g(X)] = $\sum_{i=1}^{n} g(x) \cdot p(x_i)$ • für stetige ZV: $E[g(X)] = \int_{-\infty}^{\infty} g(x)$. f(x)dx. Das vertauschen von E und

 $m\ddot{o}glich. \Rightarrow g(E[X])$

g nur bei linearen Funktionen

3.6.1 Satz 3.1

3.7 Varianz

• Var[b] = 0

3.7.1 Satz 3.2

Die Varianz einer ZV X mit μ ist ein quadratisches Streungsmaß. $\sigma^2 = Var[X] =$ $E[(X-)^2]$ falls x stetig $\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x)$ $Var[aX + b] = a^2 Var[X]$ Falls X_i, X_i parweise unabhängig: Die Standardabweichung $\sigma = \sqrt{Var[X]}$ hat im Gegensatz zur Varianz die gleiche Dimension von die ZV X.

 $Var[X] = E[X^2] - (E[X])^2$ Beim Minuend wird beim Erwartungswert nur das einfach stehende x quadriert nicht f(x)!!! 3.8 Z-Transformation, Standardisie-Sei X eine ZV mit μ und σ . Dann ist

• $Var[aX + b] = a^2 Var[X]$

 $Z = \frac{X - \mu}{\sigma} = \frac{x}{\sigma} - \frac{\mu(konstant)}{\sigma}$ 3.9 Kovarianz Eigenschaften: • Cov[X, Y] = Cov[Y, X]

• Cov[X, X] = Var[X]• Cov[aX, Y] = aCov[X, Y]Die Kovarianz zweier ZV (X, Y) ist definiert durch Cov[X,Y]E[(X - E[X])(Y - E[Y]) Die Kovarianz beschreibt die Abhängigkeit zweier ZV X und Y. Je stärker diese Korrelieren, desto (betragsmäßig) größer ist die Kovarianz.

Falls X, Ystochastisch unabhängig \Rightarrow

3.10 Satz 3.3 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

Cov[X, Y] = 0

3.10.1 Varianz einer Summe von • $Var[X_i + ... + X_n] = np(1 - p)$; **R:** dbinom(k,n,p)=P(X=k) $\sum_{i=1}^{n} \sum_{i=1}^{n} Cov[X_i, X_i]; \quad Var[X_1 +$

• Falls X_i, X_i paarweise unabhängig !!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$

 $E[aX + b] = AE[X] + b; EX_1 + ... + E_n =$ $\sum_{i=1}^{n} E[X_i];$ Falls X_1, X_2 unabhängig: $E[X_i] = \mu => E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$ $\frac{1}{n}\sum_{i=1}^{n}E[x_i] = \frac{1}{n}\cdot n\cdot \mu = \mu$ 3.11.2 Varianz

3.11 Overview $\mu \sigma$

 $Var[X_1 + ... + X_n] = \sum_{i=1}^{n} Var[X_i]$ $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$ $|x_n| = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$ 3.12 Quantile Sei X eine ZV mit Verteilungsfunktion

F(x) und 0 . Dann ist das p-

4 Spezielle Verteilung

4.1 Diskrete Verteilung

 $p - p^2 = p(1 - p);$

≜Wahrscheinlichkeits-

≜Verteilungsfunktion;

fallszahlen;

qbinom(q,n,p)=q-Quantil;

Quantil definiert als der Wert $x_p \in \mathbb{R}$ für Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $F(x_n) \geq p$. p-Quantil einer stetigen $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ ZV mit streng monoton wachsenden k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $F(x:)x_p = F^{-1}(p)d$. h. umkehrbar.

4.1.1 Bernouilliverteilung $Var[X] = \lambda \mathbf{R} : dpois(k, \lambda) = P(X = k);$ $ppois(k, \lambda) = F(k);$ Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg; Wahrschein**lichkeit:**P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahr-

4.1.2 Binominal verteilung

Anzahl der Erfolge beim n-maligen Ziehen**mit Zurücklegen**;

scheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$.

p(1); $Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$

scheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$ $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung $X \sim B_{n,p}$; E[X] = np; Var[X] =/Dichtefunktion; pbinom(k,n,p)=F(k)

Zufallszahlen aus einem Intervall [a, b]; **Dichte:** $f(x) = \frac{1}{h-a}$ für $x \in [a,b]$; **Verteilung:** $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$; $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : dunif(x, a, b) = f(x);$ puni f(x, a, b) = F(x); runi f(n) = n Zufallsrbinom(k,n,p)\hat{\text{\hat{a}}}kbinomialverteilte Zuzahlen zwischen 0 und 1; runi f(n, a, b) $\hat{=}$

4.2 Gleichverteilung

stelle von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =aE[X] + b; $Var[aX + b] = a^2 Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und $\frac{X-\mu}{\sigma}$ ~ $N_{0,1}$; X_1 ~ N_{μ_1,σ_1^2} und X_2 ~ $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2};$ X_1, X_2 stochastisch unabhängig 4.2.3 Standardnormalverteilung

Beschreibt viele reale Situationen,

ist insbesondere Grenzverteilung

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)};$ Verteilung:

 $X \sim N_{\mu,\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**:

 $dnorm(x, \mu, \sigma) = f(x); pnorm(x, \mu, \sigma) =$

F(x); $qnorm(q, \mu, \sigma) : q - Quantil$; **Maxi**-

malstelle von f(x) bei $x = \mu$; Wende-

unabhängiger Summen;

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

4.1.3 Hypergeometrische Vertei- 4.2.2 Normalverteilung

Anzahl der Erfolge beim n-maligen

Ziehen ohne Zurücklegen aus einer

Menge mit M Elementen, die Erfolg be-

deuten, und N Elementen, die Misserfolg

bedeuten. Gesamtumfang = M + N;

Wahrscheinlichkeit P(X = k) = k

 $\frac{\binom{M}{k} \cdot \binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0,1,...,min\{n,M\}\};$ Ver-

teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$;

 $Var[X] = n \frac{M}{M+N} (1 - \frac{M}{M+N}) \frac{M+N-n}{M+N-1};$ $\rightarrow 1$ falls n klein im Verhältnis zu

M+N; **R**: dhyper(k, M, N, n) = P(X = k);

Verteilung der seltenen Ereignisse Häu-

figkeit punktförmiger Ereignisse in ei-

nem Kontinuum. Die durchschnittlich

zu erwartende Anzahl der Erfolge λ pro

 $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$

Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**-

keit $P(X = x_k) = \frac{1}{n}$; Verteilung

 $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$

 $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R**: $sample(1:N,n) \triangleq$ n Zufallszahlen zwischen 1 und

n Zufallszahlen zwischen a und b;

4.1.5 Gleichverteilung

 $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit;

phyper(k, M, N, n) = F(k);

4.1.4 Poisson-Verteilung

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$ $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$

$e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$ werte: $Z = \frac{x-\mu}{\sigma} \sim N_{0.1}$

4.2.4 Exponential verteilung

Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t]

von t Zeiteinheiten, dann beschreibt die Exponentialverteilung die Wartezeit X bis zum Eintreten eines Ereignisses; Dichte- und Verteilungsfunktion: $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 -

tion; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$;

 $pexp(x, \lambda) = F(x)$; **Eigenschaft:** Eine exponentialverteile ZV X ist gedächtnis-

los, d.h. P(X > s + t)|X > t = P(X > s);

Schätz-

 $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] = $\frac{1}{\lambda} \Rightarrow$ Berechnung mit partieller Integra-

4.2.1 Stetige Gleichverteilung

Hilfszettel zur Klausur von JD., Seite 3 von 4

4.2.5 Chiquadrat-Verteilung

 $Z_1,...,Z_n$ seien unabhängige, standardnormalverteilte $ZV \Rightarrow X = Z_1^2 + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Summen unabhängiger, standardnormalverteilter ZV; **Verteilung:** $X \sim \chi_n^2$; E[X] =n; Var[X] = 2n; R: dchisq(x,n) = f(x);ppchisq(x,n) = F(x); Eigenschaft: $X_1 \sim$ $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

4.2.6 t-Verteilung

verteilt mit n Freiheitsgraden; Anwendungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ für n > 2; **R**: $\frac{d}{dt}(y, n) = f(x)$; pt(y, n) = F(x); $qt(y,n) = F^{-1}(x)$; Eigenschaften: Für $n \to \infty$ ∞ : $t_n \rightarrow N_{0,1}$; Achsensymmetrie

Abbildung Dichtefunktion 5 Zentraler Grenzwertsatz

$\mu\sigma^2$ bekannt aber nicht die Verteilung

Seien X_i (i = 1,...,n) unabhängige identische verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hinreichend große n (>30) und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$

näherungsweise:
$$\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2} \& \sum_{X_i-n\mu} N_{\mu,n\sigma^2} \&$$

 $\frac{\sum X_i - n\mu}{\sqrt{n} \cdot \sigma} \sim N_{0,1}$ $\sum X_i$ bezieht sich auf Y; $\sum X_i - n\mu$ bezieht

Der Satz gilt sogar allgemeiner, wenn die X_i abhängig und nicht identisch ver-

teilt sind, vorausgesetzt kein X_i ist deut- 5.4.2 Stichprobenvarianz lich dominanter?! als die anderen.Für

die Voraussetzung des ZGW ist, dass die Xi nicht normalverteilt sein müssen., damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend** großem n normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i desto größer muss n sein: n>30: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); **n>15:** falls die unbekannte Verteilung annähernd symmetrisch ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd normalverteilt ist; 5.2 ϕ

Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$ näherungsweise standardnormalverteilt.

 μ und σ^2 , aber unbekannter Verteilung.

- Es lassen sich Wahrscheinlichkeiten für $\sum X_i, X, Z_1$ oder Z_2 berech-
- Es lässt sich n bestimmen, so dass, zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i > i)$ $k \ge p$ or $P(-k \le Z_i \le k) \ge p$

5.4 Stichprobenverteilungen für normalverteilte Grundgesamtheiten 5.4.1 Stichprobenmittel

sich auf X_i ; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{m}}$ & $\frac{X-\mu}{\sigma} \sim N_{0,1}$; Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$

Stichprobenfunktion *S*² $\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2 - \sum_{i=1}^{n}X_i^2)$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2$; $E[\overline{X}] = E[\frac{1}{n}\sum X_i] =$

i-
$$\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu;$$
h $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] =$
e $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n};$ Seien $X_i(i = 1,...,n)$ unabhängige normalverteilte ZV mit Erwartungswert μ und Varianz σ^2 . Dann

gilt: bei unbekannter Varianz: $\frac{X-\mu}{\sigma}\sqrt{n} \sim$ $N_{0,1}$; $\frac{(n-1)S^2 = \sum (x-\overline{x})^2}{\sigma^2 \Rightarrow \text{Standardisierung}} \sim \chi_{n-1}^2$; **Bei** unbekannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$;

Konfidenzintervall 6.1 Begriffe

Irrtumswahrscheinlichkeit = α ; Konfidenzniveau = $1 - \alpha$ = ; Konfidenzintervall

6.2 Punkschätzer

E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$; Varianz: Stichprobenvarianz: $s^2 =$ $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$; Schätzwert für wahren Parameter, aber keine Aussage über Unsicherheit der Schätzung, Geringe Sicherheit für wahren Parameter;

mit vorgegebener Sicherheit; Vor-

gabe (95% or 99%); Dichtefunkti-

6.3 Intervallschätzer

 $I =]\overline{X} - \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}},$ $qnorm(1-\frac{\alpha}{2})$

×/ φ⁻¹(1-ξ) 5% φ-1/0,95)≈ 1,64S 95% 2,5% \$\phi^{-1}(0,975) \approx 1,96

 $\overline{X} + \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{r}$; 99% 0,5% $\phi^{-1}(0,995) \approx 2,576$ Die Wahrscheinlichkeit, dass H_0 nicht

6.5 $\mu \& \sigma^2$, unbekannt $I = \overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}} [$

6.6 Zusammenfassung

Wie verändert sich das $(1 - \alpha)$ -Konfidenzintervall, n-größer ⇒ kürzer; $1-\alpha$ größer \Rightarrow I länger; Für $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}\frac{1}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{4n}}$ 6.7 Aufgabentypen **Geg:** n, 1- α ; **Ges:** I s.o. **Geg:** \overline{X} , σ , $1 - \alpha$, L;

$L = 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$; Ges: n; $\sqrt{n} > 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$ $\frac{\alpha}{2}$) $\frac{\sigma}{L}$ Geg: n, I, L; Ges: 1- α ; 1 - $\frac{\alpha}{2}$ =

7 Hypothesentests größe TG* gilt: $P(TG \in C) \le \alpha \Leftrightarrow TG^* \in$ Basierend auf n unabhängig und iden- $]-\infty; \phi^{-1}(1-\frac{\alpha}{2})[\cup]\phi^{-1}(1-\frac{\alpha}{2}); \infty[; P(TG \in$ tisch Verteilte (i.i.d) Zufallsvariablen

se für einen unbekannten Erwartungs-

wert μ gültig ist or nicht. 7.1 Def α = Signifikanzniveau/ Fehlerwahrscheinlichkeit TG = Prüfgröße; TG* = standardisierte Prüfgröße; siginifikante Schlussfolgerung = H_0 verworfen \rightarrow klas-

folgerung = H_0 wird nicht verworfen \rightarrow klassischer Parametertest. p-Wert = beobachtetes Signifikanzniveau 7.2 Null- und Gegenhypothese

sischer Parametertest; schwache Schluss-

Intervall für wahren Parameter, Modell: Verteilung der Grundgesamtheit

or Testgröße **TG** (häufig \bar{x}) ist bekannt falls $|TG| > \phi^{-1}(1-\frac{\alpha}{2})$; H_0 wird angenombis auf einen Parameter, z.B. μ , für den eine Hypothese aufgestellt wird. TG ~ N_{μ,σ^2} ; Nullhypothese: H_0 : Angezweifelte Aussage, der widersprochen werden kann, wenn die Stichprobe einen Gegenbeweis liefert. $H_0: \mu = \mu_0$; Gegenhypo**these** H_1 : Gegenteil von H_0 z.B. $H_1 \neq \mu_0$; 7.3 Ablehnungsbereich, Fehler 1. & 2.

Treffen der Testentscheidung, basie-

rend auf einer konkreten Stichprobe

 $\{x_1,...,x_n\}$; Berechnung der Realisation

 $tg = TG(x_1,...,x_n)$ der Prüfgröße TG; **Ab**-

lehnungsbereich / Kritischer Bereich C:

Werte der Testgröße, die für H1, sprechen

lichkeit $\leq \alpha$ (meist 0.1, 0.05, or 0.01)

auftreten. Fehler 1. Art:α ist die Wahr-

scheinlichkeit, dass H_0 verworfen wird,

6.4 μ , unbekannt, σ^2 , bekannt

obwohl sie richtig ist. **Annahmebereich**: Komplement \overline{C} des Ablehnungsbereichs. H_0 kann nicht abgeleht werden, falls $tg \in \overline{C}(P(tg \in \overline{C}) \ge 1 - \alpha)$. Fehler 2. Art:

Ho ist falsch. falsch (Wsk: Fehler 2. Art)

H₀ wird nicht abgelehnt)

abgelehnt wird, obwohl sie falsch ist.

7.4 Klassischer Parametertest H_0 wird abgelehnt, falls tg =

 $H_1: \mu \neq \mu_0;$

 $TG(x_1,...,x_n) \in C$; H_0 wird angenommen falls $tg = TG(x_1,...,x_n) \in C$; Der kritische Bereich ergibt sich analog zu

den Konfidenzintervallen durch die

Vorgabe eines kleinen Signifikanzniveau

α d.h. max. Wahrscheinlichkeit für Fehler 1. Art, mit standardisierter Prüf-

 \overline{C}) $\geq 1 - \alpha \Leftrightarrow TG^* \in [\phi^{-1}(\frac{\alpha}{2}), \phi^{-1}(1 - \frac{\alpha}{2})];$ $X_1,...,X_n$ (Messungen) soll eine Entschei-Wird dann H_0 verworfen, spricht man dung getroffen werden, ob eine Hypothevon einer signifikanten Schlussfolgerung. Kann H_0 nicht verworfen werden, dann

> lässt sich keine Aussage über den Fehler 2. Art treffen & man spricht von einer schwachen Schlussfolgerung.

7.5 Zweiseitiger Gauß Test

 $H_0: \mu = \mu_0 \text{ gegen } H_1: \mu \neq \mu_0; X \sim$ $N_{\mu_0,\sigma_0^2/n} \Rightarrow \frac{\overline{X}-\mu_0}{\sigma_0} \sqrt{n} \sim N_{0,1}; P_{\mu 0}(\overline{X} \in$ $C) \leq \alpha \Leftrightarrow |TG| = \frac{|\overline{X} - \mu_0|}{\sigma_0} \sqrt{n} > \phi^{-1}(1 - \frac{\alpha}{2});$ **Testentscheidung:** H_0 wird abgelehnt,

men, falls $|TG| \le \phi^{-1}(1-\frac{\alpha}{2})$ 7.6 Einseitiger Gauß Test

7.6.1 linksseitig

 $H_0: \mu \ge \mu_0 \text{ gegen } H_1: \mu < \mu_0$

7.6.2 rechtsseitig

 $H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$

& bei Gültigkeit von H_0 mit Wahrschein- $P_{\mu 0}(\overline{X} \in C) \leq \alpha \Leftrightarrow TG = \frac{X - \mu_0}{\sigma_0} \sqrt{n} < \sigma$ $\phi^{-1}(\alpha)$; Testentscheidung: H_0 wird abgelehnt falls, $TG < \phi^{-1}(\alpha)$; H_0 wird angenommen, falls $TG \ge \phi^{-1}(\alpha)$;

Hilfszettel zur Klausur	7.12 Test mittels p-Wert
von JD ., Seite 4 von 4	lpha wird vorgegeben. Berechnung des p-Werts anhand der kon-
	berechnung des p-werts annand der kon-

7.7 Varianten Gauß Test, σ^2 bekannt, μ unbekannt

Prüfgröße $tg = \frac{X - \mu_0}{\sigma_0} \sqrt{n}$;

 $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$

7.8 t-Test, μ , σ^2 unbekannt

 $H_0 \mid H_1 \mid H_0$ ablehnen, falls

 $\mu \le \mu_0 \mid \mu > \mu_0 \mid tg > t_{n-1}^{-1} (1 - \alpha)$

 $\mu \ge \mu_0 \mid \mu < \mu_0 \mid tg < t_{n-1}^{-1}(\alpha)$

7.9 p-Wert

Prüfgröße $tg = \frac{X - \mu_0}{S} \sqrt{n}$

 $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \mid 2(1 - t_{n-1}(|tg|))$

Wahrscheinlichkeit, bei Zutreffen von H_0

den beobachteten Wert tg der Prüfgröße

or einen noch stärker von μ_0 abweichen-

den Wert zu bekommen. Der p-Wert

zu einer Hypothese H_0 ist der kleinste

Wert von α , für den H_0 noch abgelehnt

werden kann. Je kleiner der Wert, desto

kleiner ist der Fehler 1. Art & umso

signifikanter ist die Testentscheidung.

Nice to know Anhand des p-Werts kann

man für beliebige Werte von α eine

Falls p - Wert < 1%: sehr hohe Signifi-

Falls $1\% \le p - Wert < 5\%$: hohe Signifi-

Falls $5\% \le p - Wert \le 10\%$: Signifikanz

Falls p - Wert > 10%: keine Signifikanz

7.10 Zusammenhang I & Hypothesen-

zum Konfidenzniveau 1 – α ; H_0 wird ab-

gelehnt, falls $\mu_0 \notin I$; H_0 wird angenom-

men, falls $\mu_0 \in I$; Das Konfidenzniveau

ist der Annahmebereich von H_0 zum Si-

7.11 Zusammenfassung klass. Hy-

Signifikanzniveau α wird vorgegeben;

 α & Verteilung der Testgröße unter H_0

wir der Ablehnungsbereich ermittelt. **Je**

kleiner (größer) $\,lpha$, desto kleiner (größ-

 $!: \alpha \& C$ hängen **nicht von** der konkreten

 H_0 wird abgelehnt, falls der ermittelte

Wert der Testgröße (beobachteter Wert)

in C liegt. !: Die tg hängt von der konkre-

ter) ist der Ablehnungsbereich;

ten Stichprobe ab. Sie ist eine ZV.

Testentscheidung treffen;

tests zweiseitig

gnifikanzniveau α ;

po.test

Stichprobe ab;

 $\mu \ge \mu_0 \mid \mu < \mu_0 \mid$

kreten Stichprobe mit der Verteilung der Tg unter H_0 ; !:Der p-Wert hängt von der konkreten Stichprobe ab, ist eine ZV.

 H_0 wird abgelehnt, falls $p - Wert \le \alpha$.; zweiseitiger 8 Fehleranalyse Derzeit ausgeklammert rechtsselige 9 Interpolation

Zu gegebenen Punkten (x_i, y_i) , i = 0, ..., nlinksschiger mit $x_i \neq x_j$ für $i \neq j$ eine Funktion G (dies ist nicht eindeutig! Abhängig von der

Funktionsklasse), so dass $G(x_i) = y_i$, i =0, ..., n (Interpolations bedingung). Interpolation ist ungeeignet für verauschte Daten. Lösung: Approximation der kleinsten Quadrate. 9.1 Begriffe Extrapolation \(\hat{=}\) N\(\alpha\)herungwerte f\(\bar{u}\)r x-

Dividierende Differenzen

Koeffizien-

derholte Bildung von "Differenzquotienten"berechnen 9.2 Vandermonde/klassisch

Werte außerhalb der Stützstellen:

Unterschiedliche Darstellungen für ein Interpolationspolynom $G(x) = p_n(x)$ vom Grad n haben unterschiedliche Eigenschaften bei der nume-Berechnung. **Monombasis**: $x^0, x^1, x^2, x^3, ...; p_n(x) = a_n x^n + ... +$ $a_1x^1 + a_0x^0$; **Ziel:** Bestimmung d.

Koeffizienten $a_0, a_1, ..., a_n$ sodass

 $p_n(x_i) = y_i = a_n x_i^n + ... + a_1 x_i^1 + a_0 x^0$ für i = 0, ..., n; Für die eindeutige Lösung n+1 Gleichungen: Interpolationsbedingun-

Die Koeffizientenmatrix ist die sog. Vandermonde Matrix; Eigenschaften: Die Vandermonde Matrix ist nicht singulär falls alle x_i verschieden); Rechenaufwand: $\mathcal{O}(n^3)$; Für große n sehr schlecht konditioniert & als Allgemeiner Ansatz ungeeignet.

9.3 Lagrange

2 Formeln; $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... +$ $y_n L_n(x)$; $L_k(x) \prod_{j=0; j \neq k}^n \frac{x - x_j}{x_k - y_j}$; Jede Basis-

funktion $L_k(x)$ ist ein Polynom vom Grad $\leq n$; **Bemerkung:** Findet Anwendung bei Numerischer Integration; Wenn Stützstellen x_i gleich bleiben & nur y_i ändern \Rightarrow keine Neuberechnung; Rechenaufwand $\mathcal{O}((n+1)^2)$; Kommen neue Stützpunkte hinzu ⇒ Neuberechnung!; Die Interpola-

polation (Näherungwerte für x-Werte außerhalb der Stützstellen) kann zu großen Abweichungen führen. 9.4 Newton Darstellung des Interpolanten, die auf

tionspolynome liefern nur sinnvolle Nä-

ein gestaffeltes LGS führt & einfache Hinzunahme weiterer Punkte erlaubt. $p_n(x) = c_0 + c_1(x - x_0) + ... +$ $c_n(x-x_0)(x-x_1)...(x-x_{n-1})$ Polynom vom Grad n

Das Resultierende LGS für die Koeffizienten c_i hat gestaffelte Form. **Interpola**tionsbedingungen? **Vorteile:** Rechenaufwand $\mathcal{O}(n^2)$ Gleitpunktoperationen; Hinzufügen weiterer Stützstellen ohne großen Aufwand. Andere Koeffizienten bleiben unverändert.

9.5 Dividierende Differenzen

 $\begin{vmatrix} -15 & -5 & -(-15) \\ -5 & 3 & -(-2) \end{vmatrix} = 2 \cdot \begin{pmatrix} -4 & 2 \\ -(-2) & -2 & 2 \end{pmatrix} = 2 = C_2$ ten ci lassen sich rekursiv durch wie-Jede Funktion S_i ist ein Polynom vom 9.6 Effizienz ferenzierbar, d.h. für alle x_i (i = 1, ..., n-1) 9.6.1 klasisch $p_n(x) = a_n x^n + ... + a_0$; Aufwand: 2n-1

9.6.2 Horner Schema

 $p_3(x) = a_3 x^3 + a_2 x^2 + a_1 + a_0 = ((a_3 + a_2)x + a_1 + a_0) = (a_3 + a_2)x + a_1 + a_0 = (a_3 + a_2)x + a_1 + a_1 + a_2 + a_2 + a_2 + a_2 + a_2 + a_2 + a_3 + a_2 + a_3 + a_3$ a_1) $x + a_0$; Allg.: $p_n(x) = (...(a_n x + a_{n-1})x +$... + a_1)x + a_0 ; **Aufwand:** n Mult.

9.7 Interpolationsfehler Falls f hinreichend glatt ist & das eindeutige Interpolationspolynom von Gradn *n*, dann gilt fürn den Interpolationsfehler:

 $mit \ \theta \in [x_0; x_n]$ Vergleichbar zum Restglied bei der Taylorreihenentwicklung; Bemerkung: θ unbekannt, daher nur Fehlerabschätzung; Fehler ist Abhängig von der Verteilung der Stützstellen; Der Fehler ist bei großen n an den Intervallrändern deutlich größer, als in der Intervallmitte

9.7.1 Wahl der Stüztstellen

Runge Funktion $(f) = \frac{1}{1+25x^2}$ äquidistante Stützstellen das Interpolationspolynom nicht immer gegen die zugrundelie- turformel; K\u00e1 Fehlerkonstante des Verdie Anzahl der Stützstellen & damit der ungewöhnliches Verhalten zeigt;

den gegebenen Stützstellen liegen; Extrastellen, dichter an den Intervallgrenzen

der Grad des Polynoms wächst. Lösung:

haben die Eigenschaft; senkrechte Pro-

9.7.2 Chebyshev-Punkte

herungswerte für x-Werte, die zwischen Nicht-aquidistante Verteilung der Stütz-

jektion von gleichverteilten Punkten auf dem Einheitskreis. $t_k = cos \frac{(2k-1)\pi}{2n}, k =$ [1,...,n,auf]-1,1[; Invtervall: $[a,b[:x_k=$

 $\frac{a+b}{2} + \frac{b-a}{2}t_k$. \Rightarrow Fehler wird gleichmäßiger verteiltund Konvergenz erreicht. 9.8 Schwächen der Polynominterpola-

Hoher Rechenaufwand bei meist keiner

hoher Differenzierbarkeitsgrad benötigt wird; RB kann Interpolationsfehler sehr groß sein; Bei wachsenden n ist es unmöglich eine Konvergenz gegen die zu interpolierenden Funktion sicherzustellen; $\hat{\mathbf{R}}$: approx $\hat{=}$ lin Interpolation; Spline ≜ Spline interpolation; Bibliotheken für Polynominterpolation; 9.9 Spline $S_1: \int_0^1 f(t)dt \approx \frac{1}{6}(f(0) + 4f(0.5) + f(1));$

gilt: $S_{i-1}(x_i) = S_i(x_i)$;

Grad $n \le k$; S(x) ist (k-1) - mal stetig dif-

9.9.1 Kubisch **Ansatz:** $S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + c_i(x - x_i)^2$

 $d_i(x-x_i)^3$; Gleichungssystem: 4n Parameter $a_i, b_i, c_i, d_i (i = 0, ..., n - 1)$; 2n Interpolationsbedingungen: am Rand je nur eine. $S_i x_i = y_i$; $S_i(x_{i+1}) = y_{i+1}$ für $(i = 0, 1, ..., n - 1) \Rightarrow$ Stetigkeit; **Stetigkeit der 1. Abl:** $S_{i}(x_{i+1}) = S_{i+1}(x_{i+1}); \Leftrightarrow$ $S_{i}'(x_{i+1}) - S_{i+1}'(x_{i+1}) = 0$; für i = 0, 1, ..., n -2; Stetigkeit der 2. Abl.: $S_i''(x_{i+1}) =$ $f(x) - p_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - x_0)...(x - x_n)$ $S_{i+1}^{"}(x_{i+1}); S_{i}^{"}(x_{i+1}) - S_{i+1}^{"}(x_{i}+1) = 0;$ für i = 0, 1, ..., n - 2); natürlicher Rand-

bedingungen: $S_0''(x_0) = 0$; $S_{n-1}''(x_n) = 0$;

nach geschickter Umformung der Glei-

chungen hat das LGS Tridiagonalform.

Rechenaufwand $\mathcal{O}(n)$ Gleitpunktopera-

tionen. 10 NumInt

Verbesserung der Näherung: Aufteilung in kleine Teilintervalle & Summe von polynoms); Beweis der Ordnung: 1 = Rechtecksflächen bilden; Interpolations $\int_0^1 x^0 dx \stackrel{!}{=} ; \frac{1}{2} = \int_0^1 x dx \stackrel{!}{=} ; \frac{1}{3} = \int_0^1 x^2 \stackrel{!}{=} ;$ mit Polynom höheren Gredes durch diskrete Punkte.

 $p_k = \text{Interpolationspolynom}; I_n = \text{Quadra-}$ gende stetige Funktion konvergiert, wenn fahrens.; Singularität $\hat{=}$ isolierter Punkt,

10.2.1 Trapezregel $T_1: \int_0^1 f(t)dt \approx \frac{1}{2}(f(0)+f(1)); \int_a^b f(x)dx \approx$

 $\sum f(t_i) \int_0^1 L_i(t) dt$

10.2 Newton-Cotes

Das Intergral des p_k diens al Appr. für

das Int. von f(x); $\int_0^1 f(t)dt \approx \int_0^1 p_k(t)dt =$

 $\sum_{i=0}^{k} \alpha_i f(t_i)$ Das Interpolationspolynom

muss nicht explizit aufgestellt werden,

es dient vorab der Bestimmung der Ge-

wichte α_i ; $\int_0^1 p_k(t) = \int_0^1 \sum f(t_i) L_i(t) dt =$

 $\frac{(b-a)}{2}(f(a)+f(b));$ T_n : Für Teilintervalle mit gleicher Länge: $h = \frac{b-a}{n}$; $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1}) +$

10.2.2 SimpsonRegel

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b));$ Für n = 1: $\frac{(b-a)}{2\cdot 1} \frac{1}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b));$ Für n allg.: $\frac{(b-a)}{2n} \frac{1}{3} (f(a) + 4(a+h) + 4(a+h));$... + 4f(b-h) + f(b) S_n : Beachte gerade Anzahl an Teilinvervallen!; Für 2n Teilintervalle, 2n+1 Knoten mit gleicher Länge $h = \frac{b-a}{2n}$; $S_2 =$ $\frac{h}{3}(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4));$

 $k \le 7 \& k = 9 \Rightarrow$ positive Gewichte; Bei halbierung der Intervalle Nachfrage vervierfacht or versechszehnfacht sich der Fehler?

3/Rule

Falls α_i positiv. Integrations regel stabil;

10.3 Ordnung Integrationsregel Eine Integrationsregel hat Ordnung p,

 $\frac{7}{90}$ $\frac{32}{90}$ $\frac{12}{90}$ $\frac{32}{90}$ $\frac{7}{90}$ Milne

wenn sie für Polynome vom Grad ≤ p-1 exakte Werte liefert; T_1 Ordnung 2 nung k+1 (k: GRad des Interpolations-

\Rightarrow exakt für Polynome Grad \leq 1; Ordnung Newton-Cotes Regeln: mind. Ord-

 $x = \int_0^1 x^3 \stackrel{!}{=};$ 10.4 Fehler Quadratur

Für (globalen) Fehler $e_{In} = \int_{a}^{b} f(x) dx - I_{n}$ einer Quadraturformel I_n der Ordnung p Hilfszettel zur Klausur von **JD**., Seite 5 von 4

auf [a, b] gilt: $|e_{In}| = (b-a)h^p K|f^{(p)}(\xi)|.\xi \in$ $|a,b|, h = \frac{b-a}{n} \& |e_{In}| \le (b-a)h^p K$ $\max_{a \le x \le b} |f^{(p)}(x)|;$

10.5 Fehler T_n

Der Fehler ist proportional zu h^2 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{4}$; Ein Integral kann beliebig genau approx. werden, falls h entsprechend klein gewählt $x^{-n} = \frac{1}{n}$ wird. Aber Rundungsfehler bei vielen Rechenoperationen, verschlechtert wieder das Ergebnis. Vorteil von Verfahren höherer Ordnung: Weniger Teilintervalle nötig. $|e_{T_n}| \le \frac{h^2}{12}(b-a)max_{a \le x \le b}|f''(x)|, K = \frac{1}{12}, h = \frac{b-a}{n}$

12,
$$n - n$$
10.6 Fehler S_n

Der Fehler ist proportional zu h^4 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{16}$; $|e_{Sn}| \leq$ $\frac{h^4}{180}(b-a)max_{a \le x \le b}|f^4(x)|, h = \frac{(b-a)}{2n}, K =$

10.7 Grenzen NeCo

viele äquidistante Knoten → Gewichte negativ → Verfahren instabil; geschlossene NeCoRe → Funktionsauswertung an RB → Problem mit Singularitäten. größtmögliche Ordnung unerreichbar wegen äquidistanten Knoten; Lösung:

10.8 GauQua

11 Allgemein

11.1 Symbole

Stichprobenstandardabweichung $\hat{}$ s; Stanđardabweichung $\hat{=}\sigma$

11.2 Abl.

$$sinx \triangleq cosx; cosx \triangleq -sinx; tanx \triangleq \frac{1}{cos^2x} = 1 + tan^2x; cotx \triangleq -\frac{1}{sin^2x} = -1 - cot^2x;$$

$$e^x \triangleq e^x; a^x \triangleq (\ln a) \cdot a^x;$$

$$\frac{1}{\ln x = \frac{1}{x}; \log_a x = \frac{1}{(\ln a) \cdot x};}$$

11.3 Abl.Regeln

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$; Summerregel $y = f_1(x) + f_2(x) + \dots +$

 $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Produktregel** $y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u$; $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$ Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2};$

Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$:

Ableitung der Äußeren Funktion; u'(x): Ableitung der Inneren Funktion

11.4 Integralregel, elementar

Faktorregel $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$; Summenregel $\int_a^b [f_1(x) + ... + f_n(x)] dx =$

$$\int_{a}^{b} f_{1}(x)dx + \dots + \int_{a}^{b} f_{n}(x)dx; \quad \text{Vertauschungsregel} \int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx;$$

$$\int_{a}^{a} f(x)dx = 0; \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \text{ für } (a \le c \le b);$$

11.5 Berechnung best. Integr.

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Potenzen

$$x^{-n} = \frac{1}{n}$$

$$a^{0} = 1, a^{-n} = \frac{1}{a^{n}}$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} text f r a \neq 0$$

$$!(a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$

$$a^{n} \cdot b^{n} = (a \cdot b)^{n}$$

$$\frac{a^{n}}{b^{n}} = (\frac{a}{b})^{n} \text{ für } b \neq 0$$

$$m, n \in \mathbb{N}^{*};$$

$$a, b \in \mathbb{R}$$

$$a > 0, b > 0:$$
beliebig reele
Exponenten
$$a > 0: a^{b}$$

$$= e^{b \ln a}$$

$$\sqrt{a^2} = |a|; b = a^n \Leftrightarrow a = \sqrt[n]{b}; \sqrt[n]{a} = a^{\frac{1}{n}};$$

 $\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$

$$\sqrt[n]{a^{m}} = (a^{m})^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^{m} = (\sqrt[n]{a})^{m}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = {}^{m}\sqrt[n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = (\frac{a}{b})^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ für } b > 0$$

$$\Rightarrow m, n \in \mathbb{N}^{*}; a \ge 0, b \ge 0$$

11.8 Abc-Formel

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
; $x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}$

11.9 Bin.Formel

$$(a+b)^2 = a^2 + 2ab + b^2$$
 1. Binom; $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$; $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
 $(a-b)^2 = a^2 - 2ab + b^2$; 2. Binom; $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$; $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$
 $(a+b)(a-b) = a^2 - b^2$ 3. Binom;

11.10 Einigungen

· Beim Runden mind. eine Nachkommastelle.