Cours d'Eléments de Statistique

Jean Christophe Meunier

Module 3 Étude des séries statistiques : Caractérisation des données

1ère Bac, Commerce Extérieur Année académique 2015-2016

A. Indicateurs de position

I. Tendance centrale

- 1. Mode (x_0)
 - Valeur ou classe (x_i) de la série statistique dont l'effectif (n_i) est le plus élevé
 - Déterminé via table/graphe des effectifs
 - Repérer x_i dont n_i est le plus élevé
 - Données groupées : on parle de 'classe modale'
 - Un vs. Plusieurs modes
 - Unimodale : un seul 'pic' d'effectifs
 - Bimodale : deux 'pics' d'effectifs
 - Peut-être un indice que 2 populations ≠ sont considérées sur le même graphe (ex. taille homme et femme)

I. Tendance centrale

2. Médiane (\tilde{x})

- Valeur ou classe (x_i) qui 'coupe' l'échantillon en deux parties égales
 - Les effectifs des valeurs > et < à la valeur médiane sont égaux (à N/2 : 50%< et 50%>)
 - Si N est impair (2p + 1)
 - Une seule valeur se situe exactement à la moitié de l'échantillon : Médiane = $(p+1)^{em}$ valeur
 - Ex série statistique impaire (N=9):
 - » 1122 $\frac{2}{2}$ 3455 → Médiane = 2 ((p+1)ème valeur))
 - Si N est pair (2p)
 - Deux valeurs se situent 'à cheval' sur la moitié de l'échantillon : Médiane = moyenne de pème valeur et de (p+1)ème valeur
 - Ex série statistique paire (N=10) :

I. Tendance centrale

2. Médiane (\tilde{x})

- Comment retrouver la médiane :
 - Par série statistique brute et ordonnée (cf. supra)
 - Ex série statistique impaire (N=9): 1 1 2 2 2 3 4 5 5 → Médiane = 2 ((p+1)ème valeur))
 - Par table des effectifs cumulés
 - Repérer valeur ou classe (x_i) qui comprend la $(p+1)^{\grave{e}me}$ valeur (N impair) ou la $p^{\grave{e}me}$ et $(p+1)^{\grave{e}me}$ valeur (N pair)

Réponses x _i de la variable x	45	55	60	75	80	85	90
Effectifs n _i	1	2	3	5	2	1	1
Effectifs cumulés n _i	1	3	6	11	13	14	15

 Par graphe des effectifs cumulés

I. Tendance centrale

- 3. Moyenne (μ ou \bar{x}) *
 - Somme de toutes les observations divisée par nombre d'observations
 - Soit, $\bar{x} = \frac{1}{N} \sum_{i=1}^{i=n} x_i = \frac{1}{N} \sum_{i=1}^{i=c} n_i x_i$

Via données brutes

Via table effectif sein des classes

Si données groupées par classes, le centre de classe peut être considéré comme estimation de x_i

- Sous l'h° d'équirépartition au sein des classes

- Ex série (N=13): 1111122233333

$$\bar{x} = \frac{1+1+1+1+\dots+3+3+3}{13}$$

Via données brutes

$$\bar{x} = \frac{(5*1) + (4*2) + (4*3)}{13}$$

Via table effectif

* \bar{x} quand échantillon ; μ quand population

I. Tendance centrale

- 3. Moyenne (μ ou \bar{x}) : propriétés
 - Uniquement pour variables quantitatives
 - Unique : une seule moyenne pour toute série statistique
 - Somme des écarts entre x_i et la moyenne est nulle
 - Les différences positives et négatives s'annulent

$$\sum_{i=1}^{i=n} (x_i - \bar{x}) = 0$$

- Moyenne de deux séries statistiques (pour une même variable)
 - Ex moyenne taille homme (série a) et taille femme (série b)

$$\bar{x} = \frac{\sum_{i=0}^{i=n} x_i (\text{s\'erie } a) + \sum_{i=0}^{i=n} x_i (\text{s\'erie } b)}{N_a + N_b} = \frac{\sum_{i=1}^{i=c} n_i x_i (\text{s\'erie } a) + \sum_{i=1}^{i=c} n_i x_i (\text{s\'erie } b)}{N_a + N_b}$$

II. Autres indicateurs de position

1. Percentile

- Valeur des observations qui 'découpe' l'échantillon selon une proportion précise exprimé en pourcentage
 - Ex : percentile 12 \rightarrow 12% de l'échantillon inférieur à cette valeur et 88% supérieur

2. Décile

- Idem mais échantillon segmenté par tranche de 10%
 - Ex : décile 3 → 30% inférieur à cette valeur et 70% supérieur

3. Quartile

- Idem mais échantillon segmenté par tranche de 25%
 - $Q_1 \rightarrow 25\%$ de l'échantillon inférieur à cette valeur et 75% supérieur
 - Q₂ (= médiane) → 50% inférieur et 50% supérieur
 - $Q_3 \rightarrow 75\%$ de l'échantillon inférieur à cette valeur et 25% supérieur

B. Indicateurs de dispersion

I. Variance et écart-type

- Compléments aux indices de position
 - Indices de position ne disent rien sur la dispersion
 - Ex : pour une même moyenne (10), scores sur 20 de deux groupes A et B

Groupe A

Groupe B: 3 - 17 - 2 - 18 - 19

D is persion

D is persion

– Notion de 'Moment' : écart moyen des x_i à la moyenne

$$m = \frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})$$

- Donne une indication de la dispersion des valeurs autour de la moyenne mais 'pas utilisable' comme tel
 - Les différences positives et négatives s'annulent
 - Valeur absolue des différences ou les élever à la puissance 2 → moment d'ordre 2 = variance (cf. dia suivante)

I. Variance et écart-type

- 1. Variance $(\sigma^2 \text{ ou s}^2)^*$
 - Moyenne des carrés des écarts des valeurs x_i à la moyenne

Ecarts à la moyenne élevés au carré

$$\sigma^{2} = \frac{\left(X_{1} - \overline{X}\right)^{2} + \left(X_{2} - \overline{X}\right)^{2} + \left(X_{3} - \overline{X}\right)^{2} + \dots \left(X_{n} - \overline{X}\right)^{2}}{\left(X_{n} - \overline{X}\right)^{2} + \dots \left(X_{n} - \overline{X}\right)^{2}}$$

- ou, plus simplement

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})^2 = \frac{1}{N} \sum_{i=1}^{i=c} n_i (x_i - \bar{x})^2$$

Via données brutes

Si données groupées par classes, le centre de classe peut être considéré comme estimation de x_i

Via table effectif - Sous l'hypothèse d'équirépartition au sein des classes

* s^2 quand échantillon ; σ^2 quand population

I. Variance et écart-type

1. Variance (σ^2 ou s^2)

$$Variance = \frac{(8-10)^2 + (9-10)^2 + (10-10)^2 + (11-10)^2 + (12-10)^2}{5} = \frac{10}{5} = 2$$

17 18 19

$$Variance = \frac{(1-10)^2 + (2-10)^2 + (3-10)^2 + (17-10)^2 + (18-10)^2 + (19-10)^2}{6} = \frac{388}{6} = 64,66$$

I. Variance et écart-type

- 2. Ecart-type (σ ou s)*
 - Racine carrée de la variance

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{i=n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{i=c} n_i (x_i - \bar{x})^2}$$

- Indice similaire à la variance mais plus facilement interprétable
 - moyenne des écarts et non moyenne des carrés des écarts
 - La valeur d'écart-type peut s'exprimer selon la même métrique que la série statistique dont il est issu

* s quand échantillon ; σ quand population

15

I. Variance et écart-type

2. Ecart-type (σ ou s)

II. Autres indicateurs de dispersion

- 1. Ecart absolu moyen par rapport à la médiane
 - 1. Valeur absolue des écarts à la médiane
 - 2. Somme de toute ces valeurs
 - 3. Divisé par n, nombre d'observations
- 2. Ecart absolu moyen par rapport à la moyenne
 - Idem mais par rapport à la moyenne
- 3. Etendue
 - Différence entre la plus grande et la plus petite valeur
- 4. Espace inter-quartile $(Q_1 Q_3)$
 - Intervalle (entre Q₁ et Q₃) qui contient les 50% de la population se situant au centre de la distribution

C. Indicateurs de forme

I. Asymétrie

- Coefficient d'asymétrie : Skewness
 - Obtenu à partir du moment centré d'ordre 3

$$m_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3$$

– Formule Skweness (γ_1)

$$\gamma_1 = \frac{m_3}{s^3}$$

- 0 si parfaitement symétrique
- si asymétrique à droite
- + si asymétrique à gauche

II. Aplatissement

- Coefficient d'aplatissement : Kurtosis
 - Obtenu à partir du moment centré d'ordre 4

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4$$

– Formule Kurtosis (γ_2)

$$\gamma_2 = \frac{m_4}{s^4} - 3$$

- 0 si suit parfaitement la loi normale
- si plus aplatis
- + si plus pointus

D. Indicateurs de concentration

I. Courbe de Lorenz

- Variables
 - Ressources ou unités monétaires
 - Permet de voir la répartition équitable ou non des ressources au sein de l'échantillon
- Sur le graphe
 - Axe des X:
 - Fréquence cumulée : % age cumulé de l'échantillon/des effectifs
 - Axe des Y :
 - %^{age} cumulé par valeur de X de l'enveloppe totale

I. Courbe de Lorenz

- Questions : « Comment le montant total se répartit au sein de l'échantillon ? »
- Calcul

Réponses x _i de la variable	30	40	50	60	70	80	90	100
Effectifs (n _i)	2	5	4	9	12	4	5	1
Effectifs cumulés	2	7	11	20	32	36	41	42
Fréquences relatives (%)	4.7%	11.9%	9.5%	21.4%	28.6%	9.5%	11.9%	2.4%
Fréquences relatives cumulées (%) > Axe X de la courbe	4.7%	16.6%	26.2%	47.6%	76.2%	85.7%	97.6%	100%
Valeurs globales au sein de l'effectif (x _i X n _i)	60	200	200	540	840	320	450	100
Valeurs globales cumulées	60	260	460	1000	1840	2160	2610	2710
Proportions relatives cumulées (%) > Axe Y de la courbe	2.2%	9.6%	17.0%	36.9%	67.9%	79.7%	96.3%	100%

II. Indicateur de Gini

- Indicateur de Gini = (aire de concentration)/(aire sous la diagonale)
 - Si IG = 1 → répartition égale (équirépartition)
 - Si IG < 1 → répartition inégale (plus la valeur dévie de 1, plus inégalité est grande)

