B. TECH/BT-MT 2nd SEMESTER MID **TERM EXAMINATION 2021 ENGINEERING** PHYSICS-II (UAD12B12/DTPH12B10)

* Required

Part - A

The Fermi energy of a system of particles depends on the concentration of fermions as

(a)
$$E_f \propto \left(\frac{N}{V}\right)^2$$

(b)
$$E_f \propto \left(\frac{N}{V}\right)^{\frac{3}{2}}$$

(c)
$$E_f \propto \left(\frac{N}{V}\right)^{\frac{2}{3}}$$

(a)
$$E_f \propto \left(\frac{N}{V}\right)^2$$
 (b) $E_f \propto \left(\frac{N}{V}\right)^{\frac{3}{2}}$ (c) $E_f \propto \left(\frac{N}{V}\right)^{\frac{2}{3}}$ (d) $E_f \propto \left(\frac{N}{V}\right)^{\frac{1}{3}}$

- Option (a) correct
- Option(b) correct
- Option (c) correct
- Option (d) correct

If v_p be the phase velocity of the de-Broglie wave and c be the velocity of light, then

(a)
$$v_p < c$$

(b)
$$v_p > a$$

(c)
$$v_p = c$$

(a)
$$v_p < c$$
 (b) $v_p > c$ (c) $v_p = c$ $v_p = v_g = c$

- Option (a) correct
- Option (b) correct
- Option (c) correct
- Option (d) correct

021	B. TECH/BT-MT ZING SEMESTER MID TERM E	AAPIIIVATION 2021 ENGIN	LEMMO THISICS II (OADIZBIZ/DITHI
	*		
	A photon has energy 85 eV. It's momentum (a) 4.5×10^{-25} kg-m/s (c) 45×10^{-26} kg-m/s	will be (b) 4.5×10 ⁻²⁴ kg-m/s (d) 45×10 ⁻²⁷ kg-m/s	
	Option (a) correct		
	Option(b) correct		
	Option (c) correct		
	Option (d) correct		
	*		
	The numbers of possible arrangements of 3	particles in 3 cells using	Bose-Einstein statistics is
	(a) 10 (b) 1	(c) 27	(d) 9
	Option (a) correct		
	Option(b) correct		
	Option (c) correct		
	Option (d) correct		

*			
The eigen values (a) Real	of Hermitian operator (b) imaginary	are always (c) complex	(d) zero
Option (a) corre	ct		
Option(b) corre	ct		
Option (c) corre	ct		
Option (d) corre	ect		
*			
In He-Ne gas laser, the	ratio of mixture of Ne ga	nses and He gases is	
(a) 1:10	b) 10:1 (c	2) 10:5	(d) 11:1
Option (a) corre	ct		
Option(b) corre	ct		
Option (c) corre	ct		
Option (d) corre	ect		

Consider wav	e function of a particle :	as $\psi(x) = A sin rac{n \pi x}{r}$ trappe	ed in a region of length L. The	
	alization constant is:	L		
(a) L	(b) L/2	(c) $\sqrt{(L/2)}$	(d) $\sqrt{2/L}$	
Option (a) o	correct			
Option(b) c	orrect			
Option (c) o	correct			
Option (d) o	correct			
*				
The temperate	ure at which the rates of	spontaneous and stimulate	d emission are equal is (Assum	ne l
= 5000Å)	ire at which the fates of	spontaneous and stimurate	a chission are equal is (2 issui	10 70
(a) 41,558 K	(b) 632 K	(c) 45001 K	(d) None of these	
Option (a) o	correct			
O Option (a) c	orrect			
Option(b) c	orrect			
Option (c) o	correct			
Option (d) o	correct			

*

17/06/2021

Which is the correct relation between Einstein's coefficient A_{21} and B_{21}

(a) $\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$

(b) $\frac{A_{21}}{B_{21}} = \frac{8\pi h v^4}{c^2}$

 $(c)\frac{A_{21}}{B_{21}} = \frac{8\pi h v^2}{c^4}$

(d) None of the above

- Option (a) correct
- Option(b) correct
- Option (c) correct
- Option (d) correct

*

If the systems exchange energy, but not matter in between each other, then the corresponding ensemble is

(a) Canonical

(b) Micro canonical

(c) Grand canonical

(d) all of these

- Option (a) correct
- Option(b) correct
- Option (c) correct
- Option (d) correct

*

The life time of an excited state of an atom is $10^{-8} s$. The minimum uncertainty of energy of the excited state is

(a) $6.58 \times 10^{-8} eV$

(b) $1.05 \times 10^{-26} eV$

(c) $1.05 \times 10^{-8} eV$

(d) $6.58 \times 10^{-26} eV$

- Option (a) correct
- Option(b) correct
- Option (c) correct
- Option (d) correct

*

The spin angular momentum of photon is

- (a) 0
- (b) $\frac{1}{2}\hbar$
- (c) ħ
- (d) $\frac{3}{2}\hbar$

- Option (a) correct
- Option(b) correct
- Option (c) correct
- Option (d) correct

(a) Integral spin	tzmann statistics have (b) half integral sp	in
(c) spinless	(d) up spin	ш
Option (a) correct		
Option(b) correct		
Option (c) correct		
Option (d) correct		
*		
A metastable state has life time of t	he order of	
A metastable state has the time of t		(4) 103 -
(a) 10 ⁻⁸ s (b) 10 ⁻³ s	(c) 10 ⁻¹⁰ s	(d) 10^3 s
(a) 10 ⁻⁸ s (b) 10 ⁻³ s	(c) 10 ⁻¹⁰ s	(d) 10° s
	(c) 10 ⁻¹⁰ s	(d) 10° s

*				
. The derivative $\frac{\partial \psi(x)}{\partial x}$ of a	wave function should be			
(a) zero (c) may be discontinuous	(b) always continuous(d) discontinuous at the boundary			
Option (a) correct				
Option(b) correct				
Option (c) correct				
Option (d) correct				
Back Submit				

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms