

g(x,y) = h(x,y) * f(x,y)

$$f * h = \sum_{s=-a}^{a} \sum_{t=-b}^{b} h(s,t) f(x-s,y-t)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h ₄	h ₅	h ₆
h,	h ₂	h ₃

X-flip

\mathbf{h}_1	h ₂	h ₃
h ₄	h ₅	h ₆
h ₇	h ₈	h ₉

h

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

17		1	7 .
Y	_	T	111
-		J.	T

h ₉	h ₈	h ₇	1
h ₆	h ₅	h ₄	ŀ
h ₃	h ₂	h ₁	1

Sum of Product

$$f * h = f_1 h_9 + f_2 h_8 + f_3 h_7$$
$$+ f_4 h_6 + f_5 h_5 + f_6 h_4$$
$$+ f_7 h_3 + f_8 h_2 + f_9 h_1$$

Filtered image generation (Mean Filter Example)

(X)

$$h[.,.]$$
 $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[\cdot,\cdot]$$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Input image f(x,y)

Filtered output image g(x,y)

Spatial Filtering:

with coefficient mask

- Given the 3×3 mask with coefficients: $w_1, w_2, ..., w_9$
- The mask cover the pixels with gray levels: z₁, z₂,..., z₉

\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6
\mathbf{w}_7	\mathbf{w}_8	w ₉

\mathbf{z}_1	\mathbf{z}_2	\mathbf{z}_3
z_4	\mathbf{z}_5	z ₆
z ₇	z_8	Z 9

Sum of Product

$$z \leftarrow z_1 w_1 + z_2 w_2 + z_3 w_3 + \dots + z_9 w_9 = \sum_{i=1}^9 z_i w_i$$

 z gives the output intensity value for the processed image (to be stored in a new array) at the location of z₅ in the input image

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

0	0	0
0	0	1
0	0	0

Original

Shifted left By 1 pixel

Original

Sharpening filter
-emphasize differences with local average

Cross-correlation and template matching

Cross-correlation is useful for template matching (locating a given pattern in an image)

Filtering an impulse

Output is equal to filter kernel flipped horizontally & vertically

Filter Kernel

$$G = H \otimes F$$

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	i	h	g	0	0
0	0	f	е	d	0	0
0	0	С	b	а	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
					-	

G[x,y]

Flipping kernels

