

Optimization

A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

On some consequences of Mazur-Orlicz theorem to Hahn-Banach-Lagrange theorem

Jerzy Grzybowski, Diethard Pallaschke, Hubert Przybycień & Ryszard Urbański

To cite this article: Jerzy Grzybowski, Diethard Pallaschke, Hubert Przybycień & Ryszard Urbański (2018) On some consequences of Mazur–Orlicz theorem to Hahn–Banach–Lagrange theorem, Optimization, 67:7, 1005-1015, DOI: 10.1080/02331934.2017.1295044

To link to this article: https://doi.org/10.1080/02331934.2017.1295044

	Published online: 23 Feb 2017.
	Submit your article to this journal $oldsymbol{arGamma}$
ılıl	Article views: 142
a a	View related articles 🗹
CrossMark	View Crossmark data ☑

On some consequences of Mazur-Orlicz theorem to Hahn-Banach-Lagrange theorem

Jerzy Grzybowski^a, Diethard Pallaschke^b, Hubert Przybycień^a and Ryszard Urbański^a

^aFaculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland; ^bInstitute of Operations Research, University of Karlsruhe, Karlsruhe, Germany

ABSTRACT

The paper examines different kinds of p-convexity of a function g which are sufficient for the existence of a linear functional $l\leqslant p$ such that $\inf_A[f+l\circ g]=\inf_A[f+p\circ g]$ in Theorem 1.13 of Simons in his monograph 'From Hahn–Banach to monotonicity', published in Springer lecture notes (2008). We replace sublinearity of p with convexity, the field $\mathbb R$ with Dedekind vector lattice and present p_f -convexity which is also necessary. In Theorem 4.7 we also generalize a result of MM. Neumann from 1991 published in Czech. Mathem. Journal Vol 41 on the Mazur–Orlicz theorem.

ARTICLE HISTORY

Received 7 September 2015 Accepted 5 February 2017

KEYWORDS

Hahn–Banach–Lagrange theorem; monotonicity; convex analysis

1. Introduction

Simons, using the concept of p-convexity, proved a version of the Hahn–Banach theorem (Theorem 1.13 in [1]), which is a generalization of Hahn–Banach–Lagrange theorem (Theorem 1.11 in [1]) and which finds applications in optimization theory, minimax theory and convex analysis (see [1–4]).

Throughout the paper by X we will denote a nontrivial vector space over the field of real numbers. By (F, \leq) we denote a Dedekind complete real vector lattice and for $w \in F$ we put $(\leftarrow, w] = \{t \in F | t \leq w\}$. Here *vector lattice* means that the partial order in F satisfies the following property: $x \leq y \Longrightarrow \lambda x + z \leq \lambda y + z$ for all $x, y, z \in F$ and $\lambda \in \mathbb{R}, \lambda \geqslant 0$ and that for every $x, y \in F$ there exists the infimum or the greatest lower bound $x \wedge y$. By *Dedekind complete* we mean that every nonempty bounded from below subset of F has its infimum. For the sake of convenience we write that the infimum of a nonempty unbounded from below subset of F is equal to $-\infty$.

We say that a function $p: X \longrightarrow F$ is *convex* if $p(\lambda x + (1 - \lambda)y) \le \lambda p(x) + (1 - \lambda)p(y)$ for all $x, y \in X$ and $\lambda \in [0, 1] \subset \mathbb{R}$. A function p is *positively homogenous* if $p(\lambda x) = \lambda p(x)$ for all $x \in X$ and $\lambda \in \mathbb{R}_+ = [0, \infty)$. A function p is *subadditive* if $p(x + y) \le p(x) + p(y)$ for all $x, y \in X$. We call p *sublinear* if it is positively homogenous and subadditive. Notice that p is sublinear if and only if it is positively homogenous and convex.

Throughout the paper we denote $F_+ = \{t \in F | t \ge 0\}$. For $A \subset X$ by convA we denote a convex hull of A and cone $A = \bigcup_{\lambda \in \mathbb{R}_+} \lambda A$.

2. Application of Mazur and Mazur-Orlicz theorems

The following lemma (cf. Lemma 1 in [5]) is essential in the proof of Theorem 2.2 and is also applied in the proof of Lemma 2.5.

Lemma 2.1: Let $p: X \to F$ be a convex function and $y \in X$. For all $x \in X$, let

$$p_{y}(x) := \inf_{\lambda > 0} \frac{p(y + \lambda x) - p(y)}{\lambda}, \quad p_{o}(x) := \inf_{\lambda > 0} \frac{p(\lambda x)}{\lambda}. \tag{1}$$

Then:

- (a) $p_y: X \to F$ is sublinear and $p(y) p(2y) \leq p_y(-y) \leq p(0) p(y)$.
- (b) If $p(0) \ge 0$ then $p_0: X \longrightarrow F$ is the greatest sublinear operator less than p.
- (c) If p is sublinear then $p_y \le p$ and $p_y(-y) = -p(y)$.

Lemma 2.1 is a generalization of Lemma 1 in [5] from the case of real valued functions to the case of Dedekind lattice. The proof of Lemma 2.1 is analogous. Lemma 2.1 enables us to give a short proof to the following version of Mazur theorem.

Theorem 2.2 (Mazur): Let $p: X \to F$ be a convex function, $p(0) \ge 0$. Then there exists a linear operator l on X such that $l \le p$.

Proof: Denote by $C_p(X)$ the set of all convex functions q on X such that $p \geqslant q$ and $q(0) \geqslant 0$. For every $q \in C_p(X)$ and $x \in X$, we have $q(x) \geqslant -q(-x) + 2q(0) \geqslant -p(-x)$. Then, by Kuratowski–Zorn's lemma, there exists a minimal element l, of $C_p(X)$. Now, by Lemma 2.1, l_0 is sublinear and $l_0 \leqslant l$. Hence $l_0 = l$ and l is sublinear. For a fixed y and any x, we have $l_y(x) := \inf_{\lambda>0} \frac{l(y+\lambda x)-l(y)}{\lambda} \leqslant l(y+x) - l(y) \leqslant l(x)$. Hence, by l_y being sublinear, we obtain $l_y = l$. Now, from Lemma 2.1 (c), we have $l(-y) = l_y(-y) = -l(y)$ for $y \in X$. Thus l is linear on X.

Classical Hahn–Banach theorem (see Lemma 1.2 in [1]) follows from Theorem 2.2. This theorem will be used in the proof of Lemma 2.5.

A convex subset *V* of a vector space *X* is called a *convex cone* if $\alpha V \subset V$ for all $\alpha \geq 0$.

Proposition 2.3: Let $p: X \to F$ be a convex function, V be a convex cone in X. Then $p \ge 0$ on V if and only if there exists a linear operator $l: X \to F$ such that $l \le p$ on X and $l \ge 0$ on V.

Proof: Suppose that $p \ge 0$ on V. We define $q(x) := \inf_{y \in V} p(x+y)$. Since $p \ge 0$ on $V, -p(-x) \le p(x+y)$ for $y \in V$. Hence $q(x) > -\infty$. Moreover, we have $q \le p$ and $q(0) \ge 0$. Since for every $x_1, x_2 \in X$, $\alpha, \beta \ge 0$, $\alpha + \beta = 1$ and $y_1, y_2 \in V$ we obtain

$$q(\alpha x_1 + \beta x_2) \leq p(\alpha(x_1 + y_1) + \beta(x_2 + y_2)) \leq \alpha p(x_1 + y_1) + \beta p(x_2 + y_2),$$

we deduce that $q(\alpha x_1 + \beta x_2) \le \alpha q(x_1) + \beta q(x_2)$ so the function q is convex. From Mazur theorem there exists a linear operator $l: X \to F$ such that $l \le q$ on X. From the definition of the function q we get $q(-y) \le p(0)$ for all $y \in V$. Hence, taking any $y \in V$ and a natural number n we obtain $l(-ny) \le q(-ny) \le p(0)$, and $l(y) \ge -\frac{1}{n}p(0)$. Thus $l \ge 0$ on V. Converse implication is obvious.

Proposition 2.3 will appear equivalent to Mazur-Orlicz theorem.

Remark 1: If $p: X \to F$ is sublinear, V is a convex subset of X. Then $p \ge 0$ on cone V if and only if $p \ge 0$ on V.

Mazur and Orlicz [6] gave certain generalization of the Hahn-Banach theorem. A short proof of the Mazur-Orlicz theorem for sublinear functionals is given by Pták [7]. We presented a version of the Mazur-Orlicz theorem [8] for convex functionals in [5]. Theorem 2.4 is a generalization of this version from the case of real valued functions to the case of Dedekind lattice. Here we provide a different proof based on Proposition 2.3.

Theorem 2.4 (Mazur-Orlicz): Let $p: X \to F$ be a convex function. Moreover textup, let $g: A \to X$ and $f: A \to F$ be functions defined on a nonempty subset A of X. Then the following statements are equivalent:

- There exists a linear operator $l: X \to F$ such that $l \leq p$ on X and $f \leq l \circ g$ on A.
- For every finite sequence $a_1, \ldots, a_n \in A$, and for arbitrary non-negative real numbers $\lambda_1, \ldots, \lambda_n$ the inequality

$$\sum_{i=1}^{n} \lambda_{i} f(a_{i}) \leqslant p\left(\sum_{i=1}^{n} \lambda_{i} g(a_{i})\right) \tag{*}$$

holds.

Proof: Assume that $p(0) \ge 0$. Let $\hat{X} := X \times F$, $\hat{p} : \hat{X} \to F$ be defined by $\hat{p}(x, \lambda) := p(x) - \lambda$. Then \hat{p} is convex on \hat{X} . Now let \hat{l} be a linear operator on \hat{X} and $\hat{l} \leq \hat{p}$. From the inequality $\hat{l}(0,\lambda) \leq p(0) - \lambda$ we get $\hat{l}(0,\lambda) = -\lambda$. Hence $l(x) = \hat{l}(x,0)$ is a linear operator on $X, l \leq p$ and $\hat{l}(x,\lambda) = l(x) - \lambda$. Conversely if l is a linear operator $l: X \to F$ and $l \le p$. Then $\hat{l}(x,\lambda) := l(x) - \lambda$ is linear on \hat{X} and $\hat{l} \leqslant \hat{p}$. Now we consider $\hat{A} := \{(g(a), f(a)) \mid a \in A\}$ and a convex cone $\hat{V} := \{\sum_{i=1}^n \lambda_i b_i \mid a \in A\}$ $b_i, \in \hat{A}, \lambda_i \geqslant 0; i = 1, ..., n; n \in \mathbb{N}$. Then the condition (a) is equivalent to $\hat{l} \leqslant \hat{p}$ and $\hat{l} \geqslant 0$ on \hat{V} . Moreover the condition (b) is equivalent $\hat{p} \ge 0$ on \hat{V} . Hence from Proposition 2.3 the condition (a) and (b) are equivalent.

If A = V is a convex cone, g(a) = a, f(a) = 0 for $a \in A$, then from Mazur-Orlicz theorem we get Proposition 2.3, hence Mazur-Orlicz theorem and Proposition 2.3 are equivalent.

Moreover from Theorem 2.4 follows also Simons' version of Mazur-Orlicz theorem (Lemma 1.6 in [1]), classical Mazur-Orlicz theorem [6] and Mazur theorem [8,9] which is a generalization of the Hahn-Banach theorem [10,11].

The following two lemmas, i.e. Lemmas 2.5 and 3.2, are essential in the proof of Theorem 4.2. They are also used in the proof of Theorem 4.7.

Lemma 2.5: Let $p: X \to F$ be a convex function and A be a nonempty subset of X. Then the following statements are equivalent:

- There exists a linear operator $l: X \to F$ such that $l \leq p$ and $\inf_A l = \inf_A p$.
- We have $p(0) \ge 0$ and $\inf_A p = \inf_{convA} p_o$.

Proof: From (a) and Lemma 2.1 we get $p(0) \ge 0$ and $l \le p_0$. Moreover

$$\inf_{\operatorname{conv} A} p_{\circ} \geqslant \inf_{\operatorname{conv} A} l = \inf_{A} l = \inf_{A} p \geqslant \inf_{\operatorname{conv} A} p_{\circ}.$$

Hence (a) implies (b). Now let $\varrho := \inf_A p$. If $\varrho = -\infty$, then by Mazur theorem (Theorem 2.2) there exists a linear operator $l: X \to F$ such that $l \le p$. Thus (a) holds. Now let $\varrho \in F$. From (b) it follows that for every finite sequence $a_1, \ldots, a_n \in A$ and for arbitrary non-negative real numbers $\lambda_1, \ldots, \lambda_n$, where $\lambda = \sum_{i=1}^{n} \lambda_i > 0$ the following inequality

$$\varrho \leqslant p_{\circ} \left(\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda} a_{i} \right)$$

holds. Then

$$\sum_{i=1}^n \lambda_i \varrho \leqslant \lambda p_\circ \left(\sum_{i=1}^n \frac{\lambda_i}{\lambda} a_i \right) = p_\circ \left(\sum_{i=1}^n \lambda_i a_i \right) \leqslant p \left(\sum_{i=1}^n \lambda_i a_i \right).$$

Hence for every finite sequence $a_1, \ldots, a_n \in A$ and for arbitrary non-negative real numbers $\lambda_1, \ldots, \lambda_n$ (possibly $\sum_{i=1}^n \lambda_i = 0$) the inequality

$$\sum_{i=1}^{n} \lambda_{i} \varrho \leqslant p \left(\sum_{i=1}^{n} \lambda_{i} a_{i} \right)$$

holds. Applying Mazur–Orlicz theorem (Theorem 2.4) to $f(a) = \varrho$ and g(a) = a we get (a).

3. Generalized set convexity

This section is dedicated to study and generalization of the following notion of p-convexity with respect to a function $f: A \longrightarrow \mathbb{R}$ of a function $g: A \longrightarrow X$, where X is a vector space, a function $p: X \longrightarrow \mathbb{R}$ is sublinear and A is a subset of X. The function g is p_f -convex if for every $a_1, a_2 \in A$ there exists $a \in A$ such that

$$p\left(g(a) - \left(\frac{1}{2}g(a_1) + \frac{1}{2}g(a_2)\right)\right) \le 0 \text{ and } f(a) - \left(\frac{1}{2}f(a_1) + \frac{1}{2}f(a_2)\right) \le 0.$$

This convexity is an assumption of Theorem 1.13 of Simons [1]. Our Theorem 4.2 is a generalization of Simons theorem.

In the following definition we introduce different kinds of set convexity dependent on convex function.

Definition 3.1: Let a function $p: X \to F$ be convex, a set A be a nonempty subset of X and $\alpha, \beta > 0$. The set A is $p^{\alpha,\beta}$ -convex if $p(0) \ge 0$, and there exists $v \in F_+$ such that for all $a_1, a_2 \in A$, $\epsilon > 0$ there exists $a \in A$ such that $p(a - \alpha a_1 - \beta a_2) \le \epsilon v$.

Let $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the set A is p^{α} -convex if A is $p^{\alpha,\beta}$ -convex.

The set A is *p-convex* if $p(0) \ge 0$ and there exists $v \in F_+$ such that for every $u = \sum_{i=1}^n \lambda_i a_i \in \text{conv} A$, $\epsilon > 0$ there exists $a \in A$ such that $p(a) \le p_{\circ}(u) + \epsilon v$.

Let us notice that the *p*-convexity of *g* with respect to *f*, which is mentioned in the first paragraph of this section is simply a $\hat{p}^{\frac{1}{2}}$ -convexity of a set \hat{A} , where $\nu=(0,0)$, $\hat{p}:X\times\mathbb{R}\longrightarrow\mathbb{R}\times\mathbb{R}$, $\hat{p}(x,t)=(p(x),t)$, $\hat{A}=\{(g(a),f(a))|a\in A\}$ and $\mathbb{R}\times\mathbb{R}$ is a Dedekind lattice with the ordering $(t_1,t_2)\leqslant (t_1',t_2')\Longleftrightarrow t_1\leqslant t_1',t_2\leqslant t_2'$.

If a set A is p-convex then $p(0) \ge 0$ and there exists $v \in F_+$ such that for every $u = \sum_{i=1}^n \lambda_i a_i \in \text{cone } A$, $\epsilon > 0$ there exists $a \in A$ such that $p(a) \le \frac{p(u)}{\sum_{i=1}^n \lambda_i} + \epsilon v$. The opposite statement holds true if $F = \mathbb{R}$.

Lemma 3.2: Let $p: X \to F$ be a convex function and A be a nonempty subset of X. If the set A is p-convex then $p(0) \ge 0$ and $\inf_A p = \inf_{convA} p_o$. Moreover, if $F = \mathbb{R}$, $p(0) \ge 0$ and $\inf_A p = \inf_{convA} p_o$ then the set A is p-convex.

Proof: If A is p-convex then, by definition, $p(0) \ge 0$ and for some $v \in F_+$ and for all $\varepsilon > 0$ the following statement holds true: for all $u \in \text{conv } A$ there exists $a \in A$ such that $p(a) \le p_\circ(u) + \varepsilon v$. Then for some $v \in F_+$ and for all $\varepsilon > 0$ we obtain $\inf_A p = \inf_{\text{convA}} p_\circ + \varepsilon v$. Hence $\inf_A p = \inf_{\text{convA}} p_\circ$

On the other hand, if $F = \mathbb{R}$, $p(0) \ge 0$ and $\inf_A p = \inf_{\text{conv}A} p_\circ$ then for all $u \in \text{conv } A$ we have $\inf_A p \le p_\circ(u)$. Hence for all $\varepsilon > 0$ there exists $a \in A$ such that $p(a) \le p_\circ(u) + \varepsilon$.

If $p: X \to F$ is sublinear then $p_{\circ} = p$.

Remark 2: Let us notice that if p is a linear function, $A = \{a_1, a_2\}$ and elements $p(a_1)$, $p(a_2)$ are not comparable in F_+ then $\inf_A p = p(a_1) \land p(a_2) = \inf_{A \in A} \operatorname{conv}(A) = \inf_{A \in A} \operatorname{c$

some functions p as simple as linear functions the equality $\inf_{\text{conv}A} p = \inf_{\text{conv}A} p_o$ does not imply the p-convexity of the set A.

Definition 3.3: We say that an interval $(\leftarrow, \nu], \nu \in F_+$ absorbs a subset G if $G \subset \bigcup_{n=1}^{\infty} n(\leftarrow, \nu]$.

Remark 3: If for some $w \in F_+$ the interval $(\leftarrow, w]$ absorbs F then in the definition of p-convexity we can replace ν with this w.

Let $\mathbb{D} := \{\frac{k}{2^n} \mid 0 \leqslant k \leqslant 2^n, n \in \mathbb{N} \cup \{0\}\}$ be the set of *dyadic numbers* of the interval [0, 1]. For $A \subset X$ we define a *dyadic convex hull* of A, d-conv $A := \{\sum_{i=1}^{n} \lambda_i a_i \mid a_i \in A, \lambda_i \in \mathbb{D}, \sum_{i=1}^{n} \lambda_i = 1\}$. For $p \colon X \to F$, $\epsilon > 0$ and $v \in F_+$ we define $V_{p,\epsilon v} := \{x \mid p(x) \leqslant \epsilon v\}$. If $p \colon X \to F$ is a convex

function, then $V_{p,\epsilon\nu}$ is a convex set. Moreover if $p(0) \geqslant 0$ then $V_{p_0,\epsilon\nu}$ is convex and $\lambda V_{p_0,\epsilon\nu} = V_{p_0,\lambda\epsilon\nu}$ for $\lambda > 0$.

Lemma 3.4: Let $p: X \to F$ be a convex function and A be a nonempty subset of X. Let $\alpha, \beta > 0$. Then the following statements are equivalent:

- (a) $A \text{ is } p^{\alpha,\beta}\text{-convex}.$
- (b) $\alpha A + \beta A \subset \bigcap_{\epsilon > 0} (A V_{b,\epsilon \nu})$ for some $\nu \in F_+$.

The proof of the lemma is straightforward and follows from the definitions.

Lemma 3.5: Let $p: X \to F$ be a sublinear function and A be a nonempty subset of X. Then the following statements are equivalent:

- (a) A is $p^{\frac{1}{2}}$ -convex.
- (b) There exists $v \in F_+$ such that for every $n \in \mathbb{N}$ we have

$$\underbrace{\frac{1}{2^n}A + \ldots + \frac{1}{2^n}A}_{2^n} \subset \bigcap_{\epsilon > 0} (A - V_{p,\epsilon \nu}).$$

There exists $v \in F_+$ such that for every $n \in \mathbb{N}$, $\sum_{i=1}^n \lambda_i = 1$, $\lambda_i \in \mathbb{D}$ we have

$$\sum_{i=1}^{n} \lambda_i A \subset \bigcap_{\epsilon>0} (A - V_{p,\epsilon \nu}).$$

Proof: By Lemma 3.4 the statement (a) is equivalent to the inclusion $\frac{1}{2}A + \frac{1}{2}A \subset \bigcap_{\epsilon>0} (A - V_{p,\epsilon \nu})$. Obviously (b) implies (a). Now let (a) hold true and let

$$\underbrace{\frac{1}{2^n}A + \ldots + \frac{1}{2^n}A}_{e \to 0} \subset \bigcap_{\epsilon > 0} (A - V_{p,\epsilon \nu})$$

for a fixed $n \ge 1$. Then from (a) we get

$$\begin{split} \sum_{i=1}^{2^{n+1}} \frac{1}{2^{n+1}} A &= \frac{1}{2} \left(\sum_{i=1}^{2^n} \frac{1}{2^n} A \right) + \frac{1}{2} \left(\sum_{i=1}^{2^n} \frac{1}{2^n} A \right) \\ &\subset \frac{1}{2} A - V_{p, \frac{\epsilon \nu}{3}} + \frac{1}{2} A - V_{p, \frac{\epsilon \nu}{3}} \subset A - 3V_{p, \frac{\epsilon \nu}{3}} = A - V_{p, \epsilon \nu}. \end{split}$$

Hence the conditions (a) and (b) are equivalent.

Now let $\sum_{i=1}^{n} \lambda_i = 1$, $\lambda_i \in \mathbb{D}$. We can assume that all λ_i are positive. Then there exists $m \in \mathbb{N}$ such that $\lambda_i = \frac{k_i}{2m}$. Hence from (b) we have

$$\sum_{i=1}^{n} \lambda_i A \subset \sum_{i=1}^{2^m} \frac{1}{2^m} A \subset A - V_{p,\epsilon\nu}.$$

Then the statements (b) and (c) are equivalent.

Lemma 3.6: Let $p: X \to F$ be a sublinear function and A be a nonempty subset of X. If A is $p^{\frac{1}{2}}$ -convex then

$$\inf_{A} p = \inf_{d - convA} p.$$

Proof: By Lemma 3.5 from $p^{\frac{1}{2}}$ -convexity of A there exists $v \in F_+$ such that for every $n \in \mathbb{N}$, $\sum_{i=1}^{n} \lambda_i = 1, \lambda_i \in \mathbb{D}$ we have

$$\sum_{i=1}^{n} \lambda_i A \subset \bigcap_{\epsilon>0} (A - V_{p,\epsilon \nu}).$$

Take any $x \in d$ -convA. Then for any $\epsilon > 0$ we have $a - x \in V_{p,\epsilon \nu}$ for some $a \in A$. Hence

$$\inf_{A} p \leqslant p(a) \leqslant p(a-x) + p(x) \leqslant p(x) + \epsilon v.$$

Since ϵ is arbitrary, we obtain $\inf_A p \leq p(x)$ for all $x \in d$ -convA.

Proposition 3.7: Let $p: X \to F$ be a sublinear function, A be a nonempty subset of X and an interval $(\leftarrow, v]$ absorbs the set p(A - A). If A is p^{α} -convex for some $\alpha \in (0, 1)$, then A is $p^{\frac{1}{2}}$ -convex.

Proof: Let $\beta = 1 - \alpha$. For $n \in \mathbb{N}$ denote

$$\gamma_n = \sum_{i=0}^{\left[\frac{n}{2}\right]} \binom{n}{2i} \alpha^{2i} \beta^{n-2i} \text{ and } \delta_n = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2i+1} \alpha^{2i+1} \beta^{n-2i-1}.$$

Since $\alpha \gamma_n + \beta \delta_n = \gamma_{n+1}$ and $\beta \gamma_n + \alpha \delta_n = \delta_{n+1}$, it is easy to observe that if $\alpha A + \beta A \subset A - V_{p,w}$ then $\gamma_n A + \delta_n A \subset A - V_{p,nw}$, $n \in \mathbb{N}$.

Hence by Lemma 3.4 there exists $w \in F_+$ such that for any $a_1, a_2 \in A$ and $\varepsilon > 0$ we find $a \in A$ satisfying the inclusion $\alpha A + \beta A \subset A - V_{p,w}$, and the following inequalities hold true:

$$p\left(a-\frac{1}{2}a_1-\frac{1}{2}a_2\right)\leqslant p(a-\gamma_na_1-\delta_na_2)+p\left(\left(\gamma_n-\frac{1}{2}\right)a_1+\left(\delta_n-\frac{1}{2}\right)a_2\right)$$

 $\leq n\varepsilon w + |\gamma_n - \frac{1}{2}| p(a_1 - a_2) \text{ for all } n \in \mathbb{N}.$

Since for fixed $a_1, a_2 \in A$ and ε' we have M > 0 such that $p(a_1 - a_2) \leq Mv$, we can choose $m \in \mathbb{N}$ such that $M|\gamma_m - \frac{1}{2}| < \frac{1}{2}\varepsilon'$ and then choose

$$\varepsilon = \min\left(\frac{\varepsilon'}{2m}, \frac{\varepsilon'}{2M|\gamma_m - \frac{1}{2}|}\right).$$

Then

$$p(a-\frac{1}{2}a_1-\frac{1}{2}a_2)\leqslant m\varepsilon w+|\gamma_m-\frac{1}{2}|\,p(a_1-a_2)\leqslant \varepsilon'\,\sup\,(w,v).$$

In order to prove the next proposition we need two lemmas.

OPTIMIZATION (1011

Lemma 3.8: Let $I = [x_0 - \eta, x_0 + \eta] \subset \mathbb{R}$ and $p: I \to F$ be a convex function. Denote v = 0 $\eta^{-1}[\sup\{p(x_0-\eta), p(x_0+\eta)\} - p(x_0)].$ Then

$$-|x - x_0|v \le p(x) - p(x_0) \le |x - x_0|v$$

for all $x \in I$.

The proof is analogous to the proof in the case of real valued function. This lemma can be extended to *n*-dimensional case.

Lemma 3.9: Let $\mathbb{B} = \mathbb{B}(x_0, \eta) \subset \mathbb{R}^n$ be a closed ball with center x_0 and radius η in the norm from ℓ_1 , and let $p \colon \mathbb{B} \to F$ be a convex function. Then for some $v \in F_+$ we have

$$-\|x - x_0\|_1 v \le p(x) - p(x_0) \le \|x - x_0\|_1 v$$

for all $x \in \mathbb{B}$.

Proof: Let w be the supremum of all values of p at 2n extreme points of the ball \mathbb{B} . Then w is the supremum of p on \mathbb{B} . Take $x \in \mathbb{B}$ and let k be the line passing through x_0 and x. Applying the last lemma to the function *p* restricted to $k \cap \mathbb{B}$ we obtain

$$-\|x-x_0\|_1\nu_x \leqslant p(x)-p(x_0) \leqslant \|x-x_0\|_1\nu_x,$$

where $v_x = \frac{\sup\{p(x_0 - \eta(x - x_0) \| x - x_0\|_1^{-1}), p(x_0 + \eta(x - x_0) \| x - x_0\|_1^{-1})\} - p(x_0)}{\eta}$. Notice that for $v = \frac{w - p(x_0)}{\eta}$ we obtain $v_x \le v$ for all x. Then

$$-\|x-x_0\|_{1}v \leqslant p(x)-p(x_0) \leqslant \|x-x_0\|_{1}v$$

for all $x \in \mathbb{B}$.

Proposition 3.10: Let $p: X \to F$ be a sublinear operator, the interval $(\leftarrow, v]$ absorbs F and A be a nonempty subset of X. If A is $p^{\frac{1}{2}}$ -convex, then A is p-convex.

Proof: Let us fix $b \in \text{conv}A$, $b = \sum_{i=1}^{n} \lambda_i a_i$, $\lambda_i \ge 0$, $\epsilon > 0$. Since p is sublinear, by the last lemma applied to some finite dimensional ball in a subspace spanned by a_1, \ldots, a_n we can find some dyadic numbers $\lambda_i' \ge 0, i = 1, ..., n$ which are sufficiently close to $\lambda_i, i = 1, ..., n, \sum_{i=1}^n \lambda_i' = 1$ such that $p(\sum_{i=1}^{n} \lambda_i' a_i) \le p(b) + \frac{\epsilon}{2} \nu$. Now from Lemma 3.5 (c) for $b' = \sum_{i=1}^{n} \lambda_i' a_i$ we can find $a \in A$ such that $p(a) \leqslant p(b') + \frac{\epsilon}{2} \nu$.

Proposition 3.11: Let $p: X \to F$ be a sublinear operator and A be a nonempty subset of X. If the subset A is $p^{\alpha,\beta}$ -convex for some $\alpha,\beta>0$, then $A_1=\bigcup_{n\in\mathbb{Z}}(\alpha+\beta)^nA$ is $p^{\frac{\alpha}{\alpha+\beta}}$ -convex.

Proof: At first we observe that $p^{\alpha,\beta}$ -convexity of the set A is equivalent to the following inclusion $\alpha A + \beta A \subset \bigcap_{\epsilon > 0} (A - V_{p,\epsilon \nu})$. Since $\lambda V_{p,\epsilon \nu} = V_{p,\lambda \epsilon \nu}$ for $\lambda > 0$, we have $(\alpha + \beta)^k A \subset \bigcap_{\epsilon > 0} (A - V_{p,\epsilon \nu})$ for $k \in \mathbb{N} \cup \{0\}$. Hence for $k, l \in \mathbb{Z}$ we get $\alpha(\alpha + \beta)^k A + \beta(\alpha + \beta)^l A \subset \bigcap_{\epsilon > 0} (A_1 - V_{p,\epsilon \nu})$. Since for $n \in \mathbb{Z}$, $(\alpha + \beta)^n A_1 = A_1$, we obtain $\frac{\alpha}{\alpha + \beta} A_1 + \frac{\beta}{\alpha + \beta} A_1 \subset \bigcap_{\epsilon > 0} (A_1 - V_{p,\epsilon \nu})$.

Remark 4:

(a) If $p: X \to F$ is a sublinear operator, $A \subset X$ and the set A is $p^{\alpha,\beta}$ -convex then $\alpha A + \beta A \subset X$ $\bigcap_{\epsilon>0} (A - V_{p,\epsilon \nu})$ and we have $\operatorname{conv}(\alpha A + \beta A) = \alpha \operatorname{conv} A + \beta \operatorname{conv} A = (\alpha + \beta) \operatorname{conv} A \subset$ $\bigcap_{\epsilon>0}$ (conv $A-V_{p,\epsilon\nu}$). Hence

$$\inf_{A} p \leqslant \inf_{\alpha A + \beta A} p \leqslant (\alpha + \beta) \inf_{A} p \quad \text{and} \quad \inf_{\text{conv} A} p \leqslant (\alpha + \beta) \inf_{\text{conv} A} p. \tag{2}$$

If $\alpha + \beta > 1$ and $\inf_{\text{conv} A} p \in F$, then from (2) we get $\inf_{\text{conv} A} p \geqslant 0$. Now from Lemma 2.5, there exists a linear functional l on X such that $l \leqslant p$ and $\inf_{\text{conv} A} l \geqslant 0$. Hence $l \geqslant 0$ on A. If $\alpha + \beta < 1$, then from (2) we get $\inf_{A} p \leqslant 0$.

(b) Let X be a normed vector space, p(x) = ||x||. Then $A \subset X$ is $p^{\alpha,\beta}$ -convex if and only if $\alpha A + \beta A \subset \bigcap_{\epsilon>0} (A + \epsilon \mathbb{B}) = \overline{A}$, where \mathbb{B} is the closed unit ball in X. Hence in the case of $A \neq \{0\}$ and $\alpha + \beta \neq 1$ the set A is infinite. Similarly if A has at least two elements. If $\alpha + \beta > 1$ the set A is unbounded and for $\alpha + \beta < 1$ we get $0 \in \overline{A}$.

4. Generalized function convexity. The generalization of Simons' result on the Hahn-Banach theorem

Definition 4.1: Let $p: X \to F$ be a convex operator, A be a nonempty subset of X and $f: A \to F$. A function $g: A \to X$ is said to be:

p-convex if *A* is convex, $p(0) \ge 0$ and for all $a_1, a_2 \in A$ and $\lambda_1, \lambda_2 > 0$ such that $\lambda_1 + \lambda_2 = 1$ we have $p(g(\lambda_1 a_1 + \lambda_2 a_2)) - \lambda_1 g(a_1) - \lambda_2 g(a_2)) \le 0$.

 $p_f^{\alpha,\beta}$ -convex, $\alpha,\beta>0$ if $p(0)\geqslant 0$ and for some $v\in F_+$ and all $a_1,a_2\in A,\varepsilon>0$ there exists $a\in A$ such that $p\left(g(a)-\alpha g(a_1)-\beta g(a_2)\right)+f(a)\leqslant \alpha f(a_1)+\beta f(a_2)+\varepsilon v$.

 p_f^{α} -convex if g is $p_f^{\alpha,\beta}$ -convex with $\alpha + \beta = 1$.

 p_f -convex if $p(0) \geqslant 0$ and for some $v \in F_+$ and for every $u = \sum_{i=1}^n \lambda_i g(a_i) \in \text{conv}(A), \epsilon > 0$ there exists $a \in A$ such that $(p \circ g)(a) + f(a) \leqslant p_\circ(u) + \sum_{i=1}^n \lambda_i f(a_i) + \epsilon v$.

Now we are ready to prove a generalization of Theorem 12 in [5], which is itself a generalization of Theorem 1.13 of Simons [1].

Theorem 4.2: Let $p: X \to F$ be a convex operator. Moreover textup, let $g: A \to X$ and $f: A \to F$ be functions defined on a nonempty subset A of X. Then for p_f -convexity of g it is necessary (and in the case of $F = \mathbb{R}$ it is also sufficient) that there exists a linear operator l on X such that $l \le p$ and $\inf_A [l \circ g + f] = \inf_A [p \circ g + f]$.

Proof: Let $\hat{X} := X \times F$, $\hat{p}(x, w) := p(x) + w$, $\hat{A} := \{(g(a), f(a)) \mid a \in A\}$. Then \hat{p} is a convex functional on \hat{X} and g is p_f convex if and only if $\hat{p}(0) \ge 0$ and for some $v \in F_+$ and for any $u = \sum_{i=1}^n \lambda_i b_i \in \text{conv} \hat{A}$, $\varepsilon > 0$ there exists $b \in \hat{A}$ such that $\hat{p}(b) \le \hat{p}_0(u) + \varepsilon v$. From Lemmas 2.5 and 3.2 it follows (in the case of $F = \mathbb{R}$ it is equivalent to) the existence of a linear functional \hat{l} on \hat{X} such that $\hat{l} \le \hat{p}$ and $\inf_{\hat{A}} \hat{l} = \inf_{\hat{A}} \hat{p}$. This, in turn, is equivalent to the fact that

$$\inf_{A}[p\circ g+f]\geqslant\inf_{A}[l\circ g+f]\geqslant\inf_{a\in A}[l(g(a))+\hat{l}(0,f(a))]=\inf_{A}[p\circ g+f],$$

where $l(x) := \hat{l}(x,0)$ and $\hat{l} \leq \hat{p}$ implies $\hat{l}(0,y) \leq p(0) + y$, and by F being Dedekind lattice $\hat{l}(0,y) \leq y$.

Theorem 4.2 is a generalization of Theorem 12 in [5]. The assumption of Theorem 12 in [5] is that $p: X \to \mathbb{R}$, A be a nonempty subset of X and $f: A \to \mathbb{R}$, for every $b \in \text{conv } g(A)$, $b = \sum_{i=1}^{n} \lambda_i g(a_i)$, $\epsilon > 0$ there exists $a \in A$ such that for every $\lambda \ge 0$

$$\lambda p \circ g(a) \leqslant p(\lambda b) + \epsilon$$
 and $f(a) \leqslant \sum_{i=1}^{n} \lambda_i f(a_i) + \epsilon$.

Theorem 4.2 shows that we can weaken the assumption and replace either \mathbb{R} with Dedekind lattice F or implication with equivalence leaving $F = \mathbb{R}$.

Applying in turn Theorem 4.2 to $g=\mathrm{id}_A$, $f\equiv 0$ and Lemma 2.5 we obtain Lemma 3.2.

Example 4.3: Let $X = F := \mathbb{R}$, p(x) := 2|x|, $A := \{0, 1\}$, g(x) := x and f(x) := sign x on A. Then for l(x) := x we get $\inf_A [l \circ g + f] = \inf_A [p \circ g + f] = 0$. Hence from Theorem 4.2, g is

 p_f -convex. In fact the function g also satisfies the stronger assumption of Theorem 12 in [5]. Now let $a_1 = 0, a_2 = 1, 0 < \epsilon < \frac{1}{2}$. Suppose that $p(g(a) - \frac{1}{2}) + \text{sign } a \leq \frac{1}{2} + \epsilon$ for a some $a \in A$. Then sign $a + \frac{1}{2} \le \epsilon$ and we have $\frac{1}{2} \le \epsilon$. Hence *g* is not $p_f^{\frac{1}{2}}$ -convex. This property of *g* is weaker than the assumption of Theorem 1.13 of Simons [1]. Since A is finite, g is not $p_f^{\alpha,\beta}$ -convex for all $\alpha,\beta>0$.

In order to show that the assumption of Theorem 12 in [5] is stronger than p_f -convexity of g we present the following examples.

Example 4.4: Let $X = \mathbb{R}^2$, $F = \mathbb{R}$, $p(x) := \sqrt{x_1^2 + x_2^2}$, $A := \{(0,0), (1,0), (0,1)\}$, g(x) := x and $f(0,0) := \frac{\sqrt{2}}{2}, f(1,0) = f(0,1) := 0$. Since $p(0) \ge 0$ and for every $u = \sum_{i=1}^{n} \lambda_i a_i \in \text{convA}$, we have $p(0,0)+f(0)=\frac{\sqrt{2}}{2} \le p(u)+\sum_{i=1}^n \lambda_i f(a_i)$, the function g is p_f -convex. However, the function g does not satisfy the assumption of Theorem 12 in [5] because the inequalities in the assumption cannot simultaneously hold true for $b = (\frac{1}{4}, \frac{1}{4})$, $\varepsilon = \frac{\sqrt{2}}{8v}$ and any $a \in A$.

Example 4.5: Let $X = F := \mathbb{R}$, p(x) := |x|, $A := \{-1, 1\}$, g(x) := x and f(x) := -1 on A. Let $\varrho := \inf_A [p \circ g + f]$. Then $\varrho = 0$. If $l \leq p$ on X then $l(x) := \lambda x$ for some $\lambda \in [-1, 1]$ and $\inf_{A}[l \circ g + f] = \inf_{A}[\lambda x - 1] = -1 - |\lambda| \le -1$. Hence there is no linear functional l on X such that $\inf_A[l \circ g + f] = \varrho$. Then from Theorem 4.2, g is not p_f -convex. However, if $\sigma := \inf_{\text{conv} A} [p \circ g + f] = \inf_{i=1}^n \lambda_i f(a_i) \mid u = \sum_{i=1}^n \lambda_i g(a_i) \in \text{conv} g(A) \}$ then for l(x) = 0, $\inf_{A} [l \circ g + f] = \sigma = -1$.

Proposition 4.6: Let F be absorbed by an interval $(\leftarrow, v]$ for some $v \in F_+, p: X \to F$ be a sublinear operator, A be a nonempty subset of X and $f: A \to F$. If a function $g: A \to X$ is $p_f^{\frac{1}{2}}$ -convex, then g is p_f -convex.

Proof: Let $\hat{X} := X \times F$, $\hat{p} : X \to F$ be defined by $\hat{p}(x, w) := p(x) + w$ and $\hat{A} := \{(g(a), f(a)) \mid a \in A\}$. Then \hat{p} is a sublinear on \hat{X} and \hat{A} is $\hat{p}^{\frac{1}{2}}$ -convex. From Proposition 3.10, \hat{A} is \hat{p} -convex. Hence g is p_f -convex.

Theorem 4.7: Let F be absorbed by an interval $(\leftarrow, v]$ for some $v \in F_+$ and $p: X \to F$ be a sublinear operator. Moreover textup, let $g: A \to X$ and $f: A \to F$ be functions defined on a nonempty subset A of X such that $p \circ g + f \geqslant 0$ on A and g be $p_f^{\alpha,\beta}$ -convex. Then there exists a linear operator l on X such that $l \leq p$ on X and $l \circ g + f \geqslant 0$ on A.

Proof: Let $\hat{X} := X \times F$, $\hat{p}(x, w) := p(x) + w$ and $\hat{A} := \{(g(a), f(a)) \mid a \in A\}$. Then \hat{p} is a sublinear operator on \hat{X} and \hat{A} is $\hat{p}^{\alpha,\beta}$ -convex. Now by Proposition 3.11, $\hat{A}_1 = \bigcup_{n \in \mathbb{Z}} (\alpha + \beta)^n \hat{A}$ is $\hat{p}^{\frac{\alpha}{\alpha + \beta}}$ convex. Hence by Proposition 3.7 the set \hat{A}_1 is $\hat{p}^{\frac{1}{2}}$ -convex, and by Proposition 3.10 the set \hat{A}_1 is \hat{p} -convex. Now, by Lemmas 2.5 and 3.2, there exists a linear operator \hat{l} on \hat{X} such that $\hat{l} \leqslant \hat{p}$ on \hat{X} and $\inf_{\hat{A}_1} \hat{l} = \inf_{\hat{A}_1} \hat{p}$. Since $\hat{p} \ge 0$ on \hat{A} , we have $\hat{p} \ge 0$ on \hat{A}_1 . Therefore $\hat{l} \ge 0$ on \hat{A} , but $\hat{l}(x, w) = l(x) + w$ for some linear operator l on X. Hence $l \le p$ on X and $l \circ g + f \ge 0$ on A.

If in Theorem 4.7 we take g(a) = a and -f instead of f, then we obtain Neumann theorem (main Theorem in [12]):

Theorem 4.8: Let $p: X \longrightarrow F$ be a sublinear operator, and consider an arbitrary mapping f: F $A \longrightarrow F$ on a nonempty subset A of X such that $f \leqslant p$ on A. Moreover, assume that for some pair of real numbers $\alpha, \beta > 0$ and some $u \in F_+$ the following condition is fulfilled:

For all $x, y \in A$ and all $\varepsilon > 0$ there exists some $z \in A$ such that $p(z - \alpha x - \beta y) \le f(z) - \alpha f(x)$ $\beta f(y) + \varepsilon u$.

Then there exists a linear operator $l: X \longrightarrow F$ such that $f \leqslant l$ on A and $l \leqslant p$ on X.

Let $f: A \to (-\infty, \infty]$. The set dom $f:=\{x \in A \mid f(x) \in \mathbb{R}\}$ is called the *effective domain* of f. We say that *f* is *proper* if dom $f \neq \emptyset$.

Figure 1. Sets from Example 4.10 which are $p^{1,1}$ -convex.

Corollary 4.9: Let $p: X \to \mathbb{R}$ be a sublinear functional and let A be a nonempty subset of X, $f: A \to (-\infty, \infty]$ be proper, $g: A \to X$ be $p_f^{\alpha, \beta}$ -convex and $\alpha + \beta \leq 1$. Then there exists a linear functional l on X such that $l \leq p$ on X and

$$\inf_{A}[l\circ g+f]=\inf_{A}[p\circ g+f].$$

Proof: Let $\varrho = \inf_A [p \circ g + f]$. If $\varrho = -\infty$ then every linear functional $l\colon X \to \mathbb{R}$ with $l \leqslant p$ on X has the desired property. Now let $\varrho \in \mathbb{R}$. If $\alpha + \beta < 1$ then from Remark 2 in section 3 we have $\varrho \leqslant 0$. Hence g is $p_{f-\varrho}^{\alpha,\beta}$ -convex for $\alpha + \beta \leqslant 1$ and $g \circ g + f - \varrho \geqslant 0$ on A. Hence by Theorem 4.7, there exists a linear functional l on X such that $l \leqslant p$ on X and $\inf_A [l \circ g + f] \geqslant \varrho$.

Remark 5: Let $(X, \|\cdot\|)$ be a normed space, $p(x) := \|x\|$ and $A + A \subset \bar{A}$. Then the set A is $p^{1,1}$ -convex. Moreover, A is $p^{\alpha,\beta}$ -convex, for all integer $\alpha,\beta \ge 1$. In particular, it happens when (A,+) is a semigroup.

Example 4.10: Let $X := \mathbb{R}^2$ and p be Euclidean norm $p(x) := ||x||_2$. Let $A := \mathbb{Z}_+ \times \mathbb{Z}_+ \setminus \{(0,0)\}$, $B := \{(x,y) \in \mathbb{R}^2 | x,y,x+y-1 \in \{0\} \cup [1,\infty)\}$ (for A,B,C and D, see Figure 1). The sets A,B,C,D are semigroups. Moreover, the sets B and C are $p^{\alpha,\beta}$ -convex, for all real $\alpha,\beta \geqslant 1$.

Notice that $\inf_A p = 1 > \inf_{\text{conv}A} p = \frac{\sqrt{2}}{2}$ for all four sets from Figure 1. By Lemma 2.5 there is no linear functional l on X such that, $l \le p$ and $\inf_A l = \inf_A p$. The set D is $p^{\alpha,\beta}$ -convex for some $\alpha, \beta < 1$ such that $\alpha + \beta > 1$. Hence Corollary 4.9 is not true for any $\alpha + \beta > 1$.

Remark 6: Though Corrolary 4.9 is not true for $\alpha+\beta>1$, in the case of $F=\mathbb{R}$ Theorem 4.7 follows from Corrolary 4.9. Suppose that assumptions of Theorem 4.7 are satisfied. Then $\hat{p}(x,\lambda):=p(x)+\lambda$ is a sublinear functional on $\hat{X}:=X\times\mathbb{R}$ and the set $\hat{A}_1=\bigcup_{n\in\mathbb{Z}}(\alpha+\beta)^n\hat{A}$ is $\hat{p}^{\frac{\alpha}{\alpha+\beta}}$ -convex. Hence by Corrolary 4.9 there exists a linear functional \hat{l} on \hat{X} such that $\hat{l}\leqslant\hat{p}$ and $\inf_{\hat{A}_1}\hat{l}=\inf_{\hat{A}_1}\hat{p}$. Since $p\circ g+f\geqslant 0$ on A, we have $\hat{p}\geqslant 0$ on \hat{A}_1 . But $\hat{l}(x,\lambda)=l(x)+\lambda$ for a some linear functional l on X. Therefore $l\leqslant p$ on X and $l\circ g+f\geqslant 0$ on A. Hence in the case of $F=\mathbb{R}$ Corrolary 4.9 and Theorem 4.7 are equivalent.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- [1] Simons S. From Hahn-Banach to monotonicity. Vol. 1693, Lecture notes in mathematics, Berlin: Springer; 2008.
- [2] Simons S. A new version of the Hahn–Banach theorem. Arch Math. 2003;80:630–646.
- [3] Simons S. Hahn-Banach theorem and maximal monotonicity. In: Giannesi F, Maugeri A, editors. Variational analysis and applications. Dotrecht: Kluwer Academic Publishers; 2014. p. 1049–1083.
- [4] Simons S. The Hahn-Banach-Lagrange theorem. Optimization. 2007;56:149-169.
- [5] Grzybowski J, Przybycień H, Urbański R. On Simons' version of Hahn-Banach-Lagrange theorem. Funct Spaces X Banach Center Publ. 2014;102:99–104.
- [6] Mazur S, Orlicz W. Sur les espaces métriques linéaires II [Metric linear spaces II]. Studia Math. 1953;13:137–179.

- [7] Pták V. On a theorem of Mazur and Orlicz. Studia Math. 1956;15:365-366.
- [8] Alexiewicz A. Functional analysis. Warszawa: Polish Scientific Publishers (PWN); 1969.
- [9] Mazur S. Über konvexe Mengen in linearen normierten Räumen [Convex sets in normed linear spaces]. Studia Math. 1933;4:70-84.
- [10] Banach S. Sur les fonctionnelles linéaires II [Linear functionals II]. Studia Math. 1929;1:223–239.
- [11] Rudin W. Functional analysis. New York (NY): McGraw-Hill Book Company; 1973.
- [12] Neumann MM. On the Mazur-Orlicz theorem. Czech Math J. 1991;41:104-109.