Theorem: A segment is Connected.

Proof: Suppose (a,b) is not connected. Then $(a,b)=H\cup K$ where H and K are non-empty disjoint mutually separated sets .

Consider (a,z) , where z is a variable. Consider $U=\{z \text{ in } (a,b): (a,z) \text{ subset } H\}$. Let W=l.u.b of U. We know that $W\leq b$.

- \hookrightarrow Case 1: W=b. If this happens K will be empty. This contradicts that K is non-empty.
- \hookrightarrow Case 2: W < b.
- ① Claim: W is a limit point of H. Assume it's not. Then $\exists \ \epsilon > 0$ s.t. $(W \epsilon, W + \epsilon) \cap H = \emptyset$. Then \exists smaller numbers than W that are also upper bounds of U.
- ② Claim: W is a limit point of K. Assume it's not. Then $\exists \ \epsilon > 0$ s.t. $(W \epsilon, W + \epsilon) \cap K = \emptyset$. Since everything between $(W, W + \epsilon)$ is in $H(\operatorname{Part} \text{ of } U)$, W itself would not be a l.u.b. or even upper bound. This is a contradiction.

WLOG, assume W is in H,

Since K is mutually separated from H and W is a limit point of K and H, this contradicts our first assumption that $(a,b)=H\cup K$.

 \therefore A segment is Connected