Лабораторная работа 4

Линейные модели, SVM и деревья решений.

Цель лабораторной работы: изучение линейных моделей, SVM и деревьев решений.

Выберите набор данных (датасет) для решения задачи классификации или регрессии. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую.

Обучите следующие модели:

- одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации);
- · SVM;
- дерево решений.

Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Постройте график, показывающий важность признаков в дереве решений.

Визуализируйте дерево решений или выведите правила дерева решений в текстовом виде.

Ввод [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import fl_score, precision_score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt

target_col='TargetClass'

%matplotlib inline
sns.set(style="ticks")
```

Ввод [2]:

```
data = pd.read_csv('./Star3642_balanced.csv')
data.head()
```

Out[2]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag	TargetClass
0	5.99	13.73	0.58	1.318	K5III	16.678352	0
1	8.70	2.31	1.29	-0.045	B1II	15.518060	0
2	5.77	5.50	1.03	0.855	G5III	14.471813	0
3	6.72	5.26	0.74	-0.015	B7V	15.324928	1
4	8.76	13.44	1.16	0.584	G0V	19.401997	1

Ввод [3]:

data.shape

Out[3]:

(3642, 7)

Удаляем пустые значения и кодируем категориальные признаки

Ввод [4]:

```
data = data.dropna(axis=1, how='any')
data.head()
```

Out[4]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag	TargetClass
0	5.99	13.73	0.58	1.318	K5III	16.678352	0
1	8.70	2.31	1.29	-0.045	B1II	15.518060	0
2	5.77	5.50	1.03	0.855	G5III	14.471813	0
3	6.72	5.26	0.74	-0.015	B7V	15.324928	1
4	8.76	13.44	1.16	0.584	G0V	19.401997	1

```
Ввод [5]:
```

```
for col in data.columns:
   null_count = data[data[col].isnull()].shape[0]
   if null_count == 0:
        column_type = data[col].dtype
        print('{} - {} - {}'.format(col, column_type, null_count))
```

```
Vmag - float64 - 0
Plx - float64 - 0
e_Plx - float64 - 0
B-V - float64 - 0
SpType - object - 0
Amag - float64 - 0
TargetClass - int64 - 0
```

Категориальные признаки

Ввод [6]:

```
le = LabelEncoder()
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        data[col] = le.fit_transform(data[col]);
        print(col)
```

SpType

Разделение выборки на обучающую и тестовую

```
Ввод [7]:
```

```
X = data.drop(target_col, axis=1)
Y = data[target_col]
```

Ввод [8]:

Х

Out[8]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag
0	5.99	13.73	0.58	1.318	522	16.678352
1	8.70	2.31	1.29	-0.045	99	15.518060
2	5.77	5.50	1.03	0.855	337	14.471813
3	6.72	5.26	0.74	-0.015	150	15.324928
4	8.76	13.44	1.16	0.584	293	19.401997
3637	7.29	3.26	0.95	1.786	515	14.856089
3638	8.29	6.38	1.00	0.408	208	17.314104
3639	6.11	2.42	0.79	1.664	539	13.029078
3640	7.94	4.94	2.90	0.210	53	16.408636
3641	8.81	1.87	1.23	1.176	454	15.169209

3642 rows × 6 columns

Ввод [9]:

```
У
```

Out[9]:

```
0
       0
1
2
       0
3
       1
       1
3637
       0
3638
       1
3639
3640
       1
3641
```

Name: TargetClass, Length: 3642, dtype: int64

Ввод [10]:

```
pd.DataFrame(X, columns=X.columns).describe()
```

Out[10]:

	Vmag	Plx	e_Plx	B-V	SpType	Amag
count	3642.000000	3642.000000	3642.000000	3642.000000	3642.000000	3642.000000
mean	8.120530	7.606153	1.176568	0.827077	345.969797	16.427388
std	1.338875	11.924052	0.919999	0.436699	141.225224	2.428144
min	0.450000	-6.820000	0.470000	-0.196000	0.000000	2.820000
25%	7.370000	2.740000	0.840000	0.487250	244.000000	15.150312
50%	8.390000	4.950000	1.040000	0.867000	375.000000	16.392485
75%	9.060000	8.670000	1.270000	1.136000	462.000000	18.029836
max	12.490000	280.270000	30.290000	2.530000	583.000000	29.249165

Разделим выборку на обучающую и тестовую:

Ввод [11]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state print('{}, {}'.format(X_train.shape, X_test.shape))
print('{}, {}'.format(Y_train.shape, Y_test.shape))

(2731, 6), (911, 6)
(2731,), (911,)
```

Обучение моделей

Линейная модель

```
Ввод [12]:
```

```
SGD = SGDClassifier(max_iter=10000)
SGD.fit(X_train, Y_train)
```

Out[12]:

SGDClassifier(max_iter=10000)

Ввод [13]:

```
f1_score(Y_test, SGD.predict(X_test), average='micro')
precision_score(Y_test, SGD.predict(X_test), average='micro')
```

Out[13]:

0.8913282107574094

```
O V IVI
```

```
Ввод [14]:
SVC = SVC(kernel='rbf')
SVC.fit(X_train, Y_train)
Out[14]:
SVC()
Ввод [15]:
f1 score(Y test, SVC.predict(X test), average='micro')
precision_score(Y_test, SVC.predict(X_test), average='micro')
Out[15]:
0.8529088913282108
Дерево решений
Ввод [16]:
DT = DecisionTreeClassifier(random state=1)
DT.fit(X_train, Y_train)
Out[16]:
DecisionTreeClassifier(random state=1)
Ввод [17]:
f1_score(Y_test, DT.predict(X_test), average='micro')
precision_score(Y_test, DT.predict(X_test), average='micro')
Out[17]:
```

0.9012074643249177

Можно сделать вывод, что дерево решений дает лучший результат

Ввод [18]:

D	 -
ВВОЛ	
р оод	