Algoritmi per la trasformata di Burrows-Wheeler posizionale con compressione run-length

Davide Cozzi

Relatore: Prof.ssa Raffaella Rizzi Correlatore: Dr. Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

26 Ottobre 2022

Algoritmi per la RLPBWT

Indice

- Introduzione e scopo della tesi
- Run-length encoded PBWT
- Risultati sperimentali
- Conclusioni e sviluppi futuri

Il pangenoma

Un cambio di paradigma

- singolo genoma ⇒ insieme di genomi
- studio delle varianti geniche tra genomi di diversi individui

Rappresentazioni del pangenoma

- grafo del pangenoma
- pannello di aplotipi

Aplotipo

Insieme di alleli, ovvero di varianti che un organismo eredita da ogni genitore, a meno di mutazioni.

Il pangenoma

Trasformata di Burrows-Wheeler posizionale - Durbin, Bioinformatics, 2014

		Prefix array		1													
i	d_5	a_5	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	05	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
01	00	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
02	01	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
03	04	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
04	02	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	00	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	00	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	00	07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	00	09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
09	00	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	00	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
11	05	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
12	00	11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
13	00	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	00	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
15	03	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
16	00	19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
17	04	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
18	00	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
19	00	03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1

Trasformata di Burrows-Wheeler posizionale - Durbin, Bioinformatics, 2014

Div	erge array																
i	d_5	a_5	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	05	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
01	00	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
02	01	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
03	04	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
04	02	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	00	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	00	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	00	07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	00	09	0_	1	0	1	0	0	0	0	1	0	0	0	0	1	1
09	00	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	00	16	0_	1	0	1	0	0	0	0	0	0	0	1	1	0	1
11	05	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
12	00	11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
13	00	12	0_	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	00	13	0_	1	0	0	1	0	0	0	1	0	1	1	0	0	1
15	03	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
16	00	19	0_	1	1	0	1	0	1	0	0	0	0	0	1	0	1
17	04	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
18	00	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
19	00	03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1

Trasformata di Burrows-Wheeler posizionale - Durbin, Bioinformatics, 2014

							ightharpoonup	run	\leftarrow								
i	d_5	a_5	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	05	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
01	00	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
02	01	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
03	04	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
04	02	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	00	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	00	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	00	07	0	1	0	1	0	$\lfloor 1 \rfloor$	0	0	0	0	0	0	1	0	1
08	00	09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
09	00	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	00	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
11	05	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
12	00	11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
13	00	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	00	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
15	03	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
16	00	19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
17	04	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
18	00	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
19	00	03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1

Scopo della tesi

Lo scopo di questa tesi è quello di creare una variante run-length encoded della PBWT (RLPBWT) che permetta il calcolo degli SMEM con aplotipo esterno, in modo efficiente dal punto di vista della memoria richiesta.

Calcolo degli SMEM naïve (N siti e M aplotipi): $\mathcal{O}(N^2M)$

Calcolo degli SMEM per Durbin (c numero SMEM):

- tempo: $\mathcal{O}(NM) + \text{Avg. } \mathcal{O}(N+c)$
- spazio: $\mathcal{O}(NM) \implies 13NM$ byte

Sottostrutture e strutture dati composte per la RLPBWT

Sottostrutture e strutture dati composte per la RLPBWT

Sottostrutture e strutture dati composte per la RLPBWT

Matching statistics e calcolo degli SMEM

Χ	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1	
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1	
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	,
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1	
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1	
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1	
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1	
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1	
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	_1	
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1	
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1	
															_	
\mathbf{z}	0	1	0	0	1	0]	1	0	0	0	1	[1]	1	0	1]	

 $MS \setminus k$ row len

26/10/2022

Struttura per le funzioni φ e φ^{-1}

Dati in input

Pannelli di varianti reali

- dati reali relativi alla phase 3 del 1000 Genome Project
- numero costante di aplotipi: 5008
- \blacksquare estrazione di 100 query \Longrightarrow pannelli con 4908 aplotipi
- numero variabile di siti

Chr	#Siti	Media run
chr22	1.055.454	14
chr20	1.739.315	11
chr18	2.171.378	11
chr16	2.596.072	12
chr1	6.196.151	11

Costo in memoria delle componenti

Performance del calcolo degli SMEM con 100 query

Considerazioni e sviluppi futuri

Considerazioni finali

- le strutture dati e gli algoritmi proposti hanno confermato le potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obiettivo della tesi, ovvero lo sviluppo di un algoritmo efficiente in spazio per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Sviluppi futuri

- gestione di pannelli di query
- SMFM internicon RIPBWT

- RLPBWT con dati mancanti
- RLPBWT multiallelica

Ulteriori dettagli

Bonizzoni, Boucher, Cozzi, Gagie, Kashgouli, Köppl e Rossi:

Compressed data structures for population-scale positional Burrows-Wheeler transforms bioRxiv, 2022

17th Workshop on Compression, Text and Algorithms (WCTA) - Concepción (Cile) 11 Novembre 2022

Grazie per l'attenzione

Bibliografia

- [1] Richard Durbin.
 - Efficient haplotype matching and storage using the positional BurrowsWheeler transform (PBWT).

Bioinformatics, 30(9):1266-1272, 01 2014.

- [2] Jasmijn A Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, and Jouni Sirén. Computational graph pangenomics: a tutorial on data structures and their applications. Natural Computing, pages 1–28, 2022.
- [3] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, Yoshimasa Takabatake, et al. Practical random access to SLP-compressed texts. In International Symposium on String Processing and Information Retrieval, pages 221–231. Springer, 2020.
- [4] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI: A pangenomic index for finding maximal exact matches. Journal of Computational Biology. 02 2022.
- [5] Christina Boucher, Travis Gagie, I Tomohiro, Dominik Köppl, Ben Langmead, Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano Rossi. PHONI: Streamed matching statistics with multi-genome references. In 2021 Data Compression Conference (DCC), pages 193-202. IEEE, 2021.
- [6] 1000 Genomes Project Consortium et al.
 A global reference for human genetic variation. Nature, 526(7571):68, 2015.

PBWT e RL-encoding

PBWT - Durbin, Bioinformatics, 2014

Dato pannello di M aplotipi, lunghi N siti (biallelici: $\Sigma = \{0,1\}$), si definisce PBWT del pannello una collezione di N+1 coppie di array (a_k,d_k) , $0 \le k \le N$, dove:

- a_k è il **prefix array** della colonna k
- d_k è il **divergence array** della colonna k
- la PBWT è basata sul riordinamento co-lessicografico a ogni colonna
- il pannello, riordinato in ogni colonna k con a_k , è detto matrice PBWT
- lacktriangle aplotipi simili, riordinati consecutivamente alla colonna k, è molto probabile presentino il medesimo carattere in colonna k+1

Run-length encoding

Il run-length encoding consiste nel memorizzare le run, ovvero sequenze massimali di caratteri uguali, come coppie:

```
(carattere, lunghezza della run)

000000 \implies (0.6)
```

Definizione MS e calcolo SMEM

Matching statistics per la PBWT

Dato un pannello $X = \{x_0, \dots, x_{M-1}\}, x_i = N$, e un aplotipo esterno z, tale che |z| = N, si definisce **matching statistics** di z su X un array MS di coppie (row, len), $|\mathsf{MS}| = N$, tale che:

- $x_{MS[i].row}[i MS[i].len + 1, i] = z[i MS[i].len + 1, i]$, ovvero si ha che l'aplotipo esterno ha un match, lungo MS[i].len e terminante in colonna i, con la riga MS[i].row-esima del pannello
- z[i-MS[i]].len, i] non è un suffisso, terminante in colonna i, di un qualsiasi sottoinsieme di righe di X

SMEM da MS

Dato un array di matching statistics MS si ha che z[i-l+1,i] presenta uno SMEM di lunghezza l con la riga MS[i].row-esima del pannello X sse: MS[i].len $= l \land (i = N-1 \lor MS[i]$.len $\geq MS[i+1]$.len)

Mapping e threshold

Colonna matrice PBWT

$$y^5 = 00101111000000000000$$

intvector compressi

$$ho_5 = [0, 2, 3, 4, 8]$$
 $uv_5 = [0, 2, 1, 3, 5], \quad c[5] = 15, \quad start_5 = \top$
 $t_5 = [0, 3, 3, 4, 11]$

bitvector sparsi

$$h_5=0111000100000000001$$
 $u_5=01100000000001, \quad v_5=10001, \quad c[5]=15, \quad \textit{start}_5=\top$ $t_5=1011100000010000000$

Bitvector vs Intvector, spazio

Performance costruzione strutture dati

Performance calcolo degli SMEM con 100 query

Performance calcolo degli SMEM per singole query

- PBWT MatchIndexed

 MAP-BV + THR-BV + RA-BV
- ♦ MAP-BV + THR-BV + RA-BV + PERM + PHI
- MAP-BV + THR-BV + RA-SLP + PERM + PHI
- MAP-BV + LCE + PERM + PHI
- Y MAP-INT + THR-INT + RA-BV + PERM + PHI
- $^{\perp}$ MAP-INT + THR-INT + RA-SLP + PERM + PHI
- → MAP-INT + LCE + PERM + PHI

Performance calcolo degli SMEM per singole query

Struttura per le funzioni φ e φ^{-1}

$$\Phi_j = [0, 0, 0, 1, 0, \ldots], \quad \Phi_m^{-1} = [0, 0, 0, 1, 0, \ldots], \quad \Phi_{supp} = [i, \ldots], \quad \Phi_{supp}^{-1} = [n, \ldots]$$

$$\varPhi_{supp}^{j}[{\rm rank}_{j}^{\varphi}(0)] = \varPhi_{supp}^{j}[0] = i, \quad \varPhi_{supp}^{-1}[{\rm rank}_{m}^{\varphi^{-1}}(0)] = \varPhi_{supp}^{-1}[0] = n$$