

Organizers

+ info: TelecomBCN.DeepLearning.Barcelona

[course site]

Day 3 Lecture 5

Parametric Speech Synthesis

Antonio Bonafonte

Main TTS Technologies

Concatenative speech synthesis + Unit Selection

Concatenate *best* prerecorded speech *units* Speech data: 2-10 hours, professional speaker, carefully segmenten and annotated.

Concatenative

H. Zen - RTTHSS 2015 http://rtthss2015.talp.cat/ Concatenation cost

Statistical Speech Synthesis

Main TTS Technologies

Concatenative speech synthesis + Unit Selection Concatenate *best* pre-recorded speech *units*

Statistical Parametric Speech Synthesis
Represent speech waveform using parameters (eg 5ms)
Use statistic generative model
Reconstruct waveform from generated parameters

Hybrid Systems

Concatenative speech synthesis

Select best units attending a statistical parametric system

Deep architectures ... but not deep (yet)

Text to Speech: Textual features → Spectrum of speech (many coefficients)

Textual features (x)

From text to phoneme (pronunciation)

Disambiguation, pronuntiation (e.g.: Jan. 26)

From phoneme to phoneme+ (with linguistic features)

Textual features (x)

- {preceding, succeeding} two phonemes
- Position of current phoneme in current syllable
- # of phonemes at {preceding, current, succeeding} syllable
- {accent, stress} of {preceding, current, succeeding} syllable
- Position of current syllable in current word
- # of {preceding, succeeding} {stressed, accented} syllables in phrase
- # of syllables {from previous, to next} {stressed, accented} syllable
- Guess at part of speech of {preceding, current, succeeding} word
- # of syllables in {preceding, current, succeeding} word
- Position of current word in current phrase
- # of {preceding, succeeding} content words in current phrase
- # of words {from previous, to next} content word
- # of syllables in {preceding, current, succeeding} phrase

H. Zen - RTTHSS 2015 http://rtthss2015.talp.cat/

Statistical Speech Synthesis

- Rate: ~ 5 ms. (200Hz)
- Spectral features (envelope)
- Excitation features (fundamental frequency, pitch)
- Representation that allows reconstruction: vocoders (Straight, Ahocoder, ...)

Regression

Phoneme rate vs. frame rate

Duration Modeling

Linguistic Structure

Acoustic Modeling

Linguistic Structure

Acoustic Modeling: DNN

Acoustic Modeling: DNN

Regression using DNN (problem)

Mixture density network (MDN)

1-dim, 2-mix MDN

Inputs of activation function

$$z_j = \sum_{i=1}^4 h_i w_{ij}$$

○ : Weights → Softmax activation function

$$w_1(\mathbf{x}) = \frac{\exp(z_1)}{\sum_{m=1}^2 \exp(z_m)}$$
 $w_2(\mathbf{x}) = \frac{\exp(z_2)}{\sum_{m=1}^2 \exp(z_m)}$

: Means → Linear activation function

$$\mu_1(\boldsymbol{x}) = z_3 \qquad \qquad \mu_1(\boldsymbol{x}) = z_4$$

○ : Variances → Exponential activation function

$$\sigma_1(\boldsymbol{x}) = \exp(z_5)$$
 $\sigma_2(\boldsymbol{x}) = \exp(z_6)$

Mixture density network (MDN)

Recurrent Networks: LSTM

Recurrent Networks: LSTM

Multi-speaker

Multi-speaker

Multi-speaker

Adaptation to new speaker

Speaker interpolation

References

Statistical parametric speech synthesis: from HMM to LSTM-RNN. Heiga Zen, Google http://rtthss2015.talp.cat/

Deep learning applied to Speech Synthesis, Msc Thesis Santiago Pascual, UPC