Homogeneous dynamics and its applications to number theory

Han Zhang

Soochow University

Based on joint work with Timothée Bénard and Weikun He

Seminar of Analysis and Probability at Wuhan University

Outline of the talk

- Introduction to Homogeneous dynamics.
 - (1) An motivating example on \mathbb{T}^2 .
 - (2) Ratner's uniform equidistribution theorem: qualitative and effective aspects.
- Some applications of effective aspects of homogeneous dynamics to number theory
 - (1) Oppenheim's conjecture on quadratic forms.
 - (2) Khintchine's theorem in Diophantine approximation.
- Some further questions.

A motivating example:

A **motivating** example:

Denote by $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ a 2-dimensional torus. For a vector $\mathbf{v} \in \mathbb{R}^2$, the orbit $\{t\mathbf{v} \bmod \mathbb{Z}^2 \in \mathbb{T}^2 : t \in \mathbb{R}\}$ is $\begin{cases} \text{periodic,} & \text{if the slope of } \mathbf{v} \text{ is } \mathbf{rational,} \\ \text{equidistributed,} & \text{if the slope of } \mathbf{v} \text{ is } \mathbf{irrational,} \end{cases}$

Figure: Equidistribution on \mathbb{T}^2

A **reinterpretation** using Lie group actions:

A **reinterpretation** using Lie group actions:

- $G = \mathbb{R}^2 = \text{a Lie group.}$ $\Gamma = \mathbb{Z}^2 = \text{a lattice of } \mathbb{R}^2$.
- $\mathbb{T}^2 = G/\Gamma = a$ homogeneous space of \mathbb{R}^2 .

A **reinterpretation** using Lie group actions:

- $G = \mathbb{R}^2 = \text{a Lie group.}$ $\Gamma = \mathbb{Z}^2 = \text{a lattice of } \mathbb{R}^2$.
- $\mathbb{T}^2 = G/\Gamma = a$ homogeneous space of \mathbb{R}^2 .
- $U = \{tv \in \mathbb{R}^2 : t \in \mathbb{R}\} = \text{a one-parameter unipotent subgroup in the Lie group } \mathbb{R}^2$.
- U/\mathbb{Z}^2 the *U*-orbit in G/Γ .

A **reinterpretation** using Lie group actions:

- $G = \mathbb{R}^2 = \text{a Lie group.}$ $\Gamma = \mathbb{Z}^2 = \text{a lattice of } \mathbb{R}^2$.
- $\mathbb{T}^2 = G/\Gamma = a$ homogeneous space of \mathbb{R}^2 .
- $U = \{tv \in \mathbb{R}^2 : t \in \mathbb{R}\}=$ a one-parameter **unipotent** subgroup in the Lie group \mathbb{R}^2 .
- U/\mathbb{Z}^2 = the *U*-orbit in G/Γ .

Then the *U*-orbit is either \cdot a subtorus in G/Γ or \cdot equidistributed in G/Γ .

A **reinterpretation** using Lie group actions:

- $G = \mathbb{R}^2 = \text{a Lie group.}$ $\Gamma = \mathbb{Z}^2 = \text{a lattice of } \mathbb{R}^2$.
- $\mathbb{T}^2 = G/\Gamma = a$ homogeneous space of \mathbb{R}^2 .
- $U = \{tv \in \mathbb{R}^2 : t \in \mathbb{R}\} = \text{a one-parameter unipotent subgroup in the Lie group } \mathbb{R}^2$.
- U/\mathbb{Z}^2 the *U*-orbit in G/Γ .

Then the *U*-orbit is either \cdot a subtorus in G/Γ or \cdot equidistributed in G/Γ .

Question: Let G be a Lie group, $\Gamma < G$ a lattice, U < G a unipotent subgroup and $x \in G/\Gamma$. Do we have a nice description of $Ux \subset G/\Gamma$?

Dani (1982): Let $G=\mathsf{SL}_2(\mathbb{R})$ and $\Gamma=\mathsf{SL}_2(\mathbb{Z}).$ Consider

$$U = \left\{ egin{pmatrix} 1 & s \ 0 & 1 \end{pmatrix} : s \in \mathbb{R}
ight\}.$$

Dani (1982): Let $G = SL_2(\mathbb{R})$ and $\Gamma = SL_2(\mathbb{Z})$. Consider

$$U = \left\{ egin{pmatrix} 1 & s \ 0 & 1 \end{pmatrix} : s \in \mathbb{R}
ight\}.$$

Then given any $x \in G/\Gamma$, Ux is either isomorphic to \mathbb{R}/\mathbb{Z} (periodic) or equidistributed in G/Γ .

Dani (1982): Let $G = SL_2(\mathbb{R})$ and $\Gamma = SL_2(\mathbb{Z})$. Consider

$$U = \left\{ egin{pmatrix} 1 & s \ 0 & 1 \end{pmatrix} : s \in \mathbb{R}
ight\}.$$

Then given any $x \in G/\Gamma$, Ux is either isomorphic to \mathbb{R}/\mathbb{Z} (periodic) or equidistributed in G/Γ .

Figure: Equidistribution of Ux in the upper half plane model of $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$

Raghunathan's conjecture (Mid-1970s): Let G be a Lie group, $\Gamma < G$ be a lattice and U < G be a one-parameter unipotent subgroup of G. Then for any $x \in G/\Gamma$, the orbit Ux is **equidistributed** in the smallest sub-homogeneous space in G/Γ containing Ux.

Raghunathan's conjecture (Mid-1970s): Let G be a Lie group, $\Gamma < G$ be a lattice and U < G be a one-parameter unipotent subgroup of G. Then for any $x \in G/\Gamma$, the orbit Ux is **equidistributed** in the smallest sub-homogeneous space in G/Γ containing Ux.

Many partial results (Dani, Margulis, Shah ...) until

Theorem (Ratner, 1990s)

Raghunathan's conjecture is true.

Raghunathan's conjecture (Mid-1970s): Let G be a Lie group, $\Gamma < G$ be a lattice and U < G be a one-parameter unipotent subgroup of G. Then for any $x \in G/\Gamma$, the orbit Ux is **equidistributed** in the smallest sub-homogeneous space in G/Γ containing Ux.

Many partial results (Dani, Margulis, Shah ...) until

Theorem (Ratner, 1990s)

Raghunathan's conjecture is true.

In applications to number theory: Shah's result on equidistribution of **expanding translates** of a unipotent orbit by a diagonal flow.

Theorem (Shah, 1996, special case 1)

Let $G = \mathsf{SL}_{d+1}(\mathbb{R})$, $\Gamma = \mathsf{SL}_{d+1}(\mathbb{Z})$. For $t > 0, \boldsymbol{s} \in \mathbb{R}^d$, let

Then for any $x \in G/\Gamma$, any $f \in C_c(G/\Gamma)$,

$$\lim_{t\to\infty}\int_{[0,1]^d}f(a(t)u(s)x)\mathrm{d}s=\int f\mathrm{d}m_{G/\Gamma}.$$

Remark: G/Γ = the space of all unimodular lattices in \mathbb{R}^{d+1} .

Theorem (Shah, 1996, special case 2)

Let $G = SL_2(\mathbb{R}) \ltimes \mathbb{R}^2$, $\Gamma = SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ and $H = SL_2(\mathbb{R}) \times \{\mathbf{0}\}$. For any t > 0 and $s \in \mathbb{R}$, let

$$a(t) = \left(\begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix}, \mathbf{0} \right), u(s) = \left(\begin{pmatrix} 1 & s \\ & 1 \end{pmatrix}, \mathbf{0} \right).$$

Then for any $y \in G/\Gamma$, either Hy is periodic or for any $f \in C_c(G/\Gamma)$,

$$\lim_{t\to\infty}\int_0^1 f(a(t)u(s)y)\mathrm{d}s=\int f\mathrm{d}m_{G/\Gamma}.$$

Example: For $y_{\xi} = (\mathrm{Id}, \xi) \Gamma / \Gamma$ where $\xi \in \mathbb{R}^2$, Hy is periodic if and only if $\xi \in \mathbb{Q}^2$.

Remark: G/Γ = the space of affine unimodular lattices in \mathbb{R}^2 .

Ratner's and Shah's uniform distribution theorem is qualitative.

Ratner's and Shah's uniform distribution theorem is qualitative.

Examine dynamics in \mathbb{T}^2 :

Theorem (Weyl's effective equidistribution theorem)

Given $\mathbf{v} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ with slope θ . Assume θ is Diophantine, then there exists $c = c(\theta) > 0$ such that for any $f \in C^{\infty}(\mathbb{T}^2)$,

$$\frac{1}{T}\int_0^T f(t\boldsymbol{v})\mathrm{d}t = \int f\mathrm{d}m_{\mathbb{T}^2} + O(T^{-c})\mathcal{S}(f).$$

Ratner's and Shah's uniform distribution theorem is qualitative.

Examine dynamics in \mathbb{T}^2 :

Theorem (Weyl's effective equidistribution theorem)

Given $\mathbf{v} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ with slope θ . Assume θ is Diophantine, then there exists $c = c(\theta) > 0$ such that for any $f \in C^{\infty}(\mathbb{T}^2)$,

$$\frac{1}{T}\int_0^T f(t\mathbf{v})\mathrm{d}t = \int f\mathrm{d}m_{\mathbb{T}^2} + O(T^{-c})\mathcal{S}(f).$$

In order to obtain more powerful results in number theory, an **effective** Ratner/Shah-type theorem is desired.

Theorem (Kleinbock-Margulis, 1996)

Let $G = \mathsf{SL}_{d+1}(\mathbb{R})$, $\Gamma = \mathsf{SL}_{d+1}(\mathbb{Z})$. For t > 0, $s \in \mathbb{R}^d$, let

Then there exists c>0 such that for any $x\in G/\Gamma$, t>0 and $f\in C_c^\infty(G/\Gamma)$,

$$\int_{[0,1]^d} f(a(t)u(s)x) ds = \int f dm_{G/\Gamma} + O(t^{-c} \operatorname{inj}(x)^{-1}) \mathcal{S}(f).$$

Theorem (Kleinbock-Margulis, 1996)

Let $G = \mathsf{SL}_{d+1}(\mathbb{R})$, $\Gamma = \mathsf{SL}_{d+1}(\mathbb{Z})$. For t > 0, $s \in \mathbb{R}^d$, let

$$a(t) = egin{pmatrix} t^{rac{1}{d+1}} & & & & & & \\ & \ddots & & & & & \\ & & t^{rac{1}{d+1}} & & & & \\ & & & t^{-rac{d}{d+1}} \end{pmatrix}, \quad u(oldsymbol{s}) = egin{pmatrix} 1 & & s_1 & & & & \\ & \ddots & & dots & & dots & \\ & & 1 & s_d & & \\ & & & 1 \end{pmatrix}.$$

Then there exists c>0 such that for any $x\in G/\Gamma$, t>0 and $f\in C_c^\infty(G/\Gamma)$,

$$\int_{[0,1]^d} f(a(t)u(s)x) \mathrm{d}s = \int f \mathrm{d}m_{G/\Gamma} + O(t^{-c} \operatorname{inj}(x)^{-1}) \mathcal{S}(f).$$

Proof: using exponential mixing of a(t) action+Margulis' thickening trick.

Theorem (Strömbergsson, 2015)

Let $G = SL_2(\mathbb{R}) \ltimes \mathbb{R}^2$, $\Gamma = SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ and $H = SL_2(\mathbb{R}) \times \{\mathbf{0}\}$. For any t > 0 and $s \in \mathbb{R}$, let

$$a(t) = \left(\begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix}, \mathbf{0} \right), u(s) = \left(\begin{pmatrix} 1 & s \\ & 1 \end{pmatrix}, \mathbf{0} \right).$$

Given $y_{\xi} = (\mathrm{Id}, \xi) \Gamma / \Gamma$ such that ξ is Diophantine. Then there exists $c = c(\xi) > 0$ such that for any $f \in C_c^{\infty}(G/\Gamma)$ and t > 0,

$$\int_0^1 f(a(t)u(s)y_{\xi})\mathrm{d}s = \int f\mathrm{d}m_{G/\Gamma} + O(t^{-c})\mathcal{S}(f).$$

Proof: using very delicate Fourier analysis on the torus fiber bundle \mathbb{T}^2 .

Effective equidistribution in homogeneous spaces:

Effective equidistribution in homogeneous spaces:

Green-Tao (2012): unipotent orbits in Nilmanifold.

Effective equidistribution in homogeneous spaces:

Green-Tao (2012): unipotent orbits in Nilmanifold.

Kim (2021): $SL_n(\mathbb{R}) \ltimes \mathbb{R}^n / SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$

Effective equidistribution in homogeneous spaces:

Green-Tao (2012): unipotent orbits in Nilmanifold.

Kim (2021):
$$SL_n(\mathbb{R}) \ltimes \mathbb{R}^n / SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$$

Lindenstrauss-Mohammadi-Wang (2023):

$$\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{R}) / \mathsf{SL}_2(\mathbb{Z}) \times \mathsf{SL}_2(\mathbb{Z}).$$

$$\mathbf{a}(t) = \left(\begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix}, \begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix} \right), \ \mathbf{u}(s) = \left(\begin{pmatrix} 1 & s \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & s \\ & 1 \end{pmatrix} \right)$$

Effective equidistribution in homogeneous spaces:

Green-Tao (2012): unipotent orbits in Nilmanifold.

Kim (2021):
$$SL_n(\mathbb{R}) \ltimes \mathbb{R}^n / SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$$

Lindenstrauss-Mohammadi-Wang (2023):

$$\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{R}) / \mathsf{SL}_2(\mathbb{Z}) \times \mathsf{SL}_2(\mathbb{Z}).$$

$$\mathbf{a}(t) = \left(\begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix}, \begin{pmatrix} t^{1/2} & \\ & t^{-1/2} \end{pmatrix} \right), \ \mathbf{u}(s) = \left(\begin{pmatrix} 1 & s \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & s \\ & 1 \end{pmatrix} \right)$$

Lei Yang (2025): $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$.

$$a(t) = egin{pmatrix} t^{1/2} & & & \ & t^{-1/2} & & \ & & 1 \end{pmatrix}, \quad u(s) = egin{pmatrix} 1 & s & 0 \ & 1 & 0 \ & & 1 \end{pmatrix}.$$

There are also **discretized** Ratner-type theorem.

There are also **discretized** Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple random walks on homogeneous spaces.

There are also **discretized** Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple random walks on homogeneous spaces.

Bourgain-Furman-Lindenstrauss-Mozes (2010): Effective distribution of random walks on \mathbb{T}^d by the action of $\mathsf{SL}_d(\mathbb{Z})$.

There are also **discretized** Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple random walks on homogeneous spaces.

Bourgain-Furman-Lindenstrauss-Mozes (2010): Effective distribution of random walks on \mathbb{T}^d by the action of $SL_d(\mathbb{Z})$.

Simmons-Weiss (2019), Prohaska-Sert-Shi (2023)

There are also **discretized** Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple random walks on homogeneous spaces.

Bourgain-Furman-Lindenstrauss-Mozes (2010): Effective distribution of random walks on \mathbb{T}^d by the action of $SL_d(\mathbb{Z})$.

Simmons-Weiss (2019), Prohaska-Sert-Shi (2023)

Bénard-He (2024): Effective Ratner-type theorem for semisimple random walks on $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$.

There are also **discretized** Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple random walks on homogeneous spaces.

Bourgain-Furman-Lindenstrauss-Mozes (2010): Effective distribution of random walks on \mathbb{T}^d by the action of $SL_d(\mathbb{Z})$.

Simmons-Weiss (2019), Prohaska-Sert-Shi (2023)

Bénard-He (2024): Effective Ratner-type theorem for semisimple random walks on $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$.

Bénard-He-Zhang (2024,2025): Effective Ratner-type theorem for some upper triangular random walks on $SL_{d+1}(\mathbb{R})/SL_{d+1}(\mathbb{Z})$.

Oppenheim's conjecture

There are deep connections between Homogeneous dynamics and number theory:

Oppenheim's conjecture

There are deep connections between Homogeneous dynamics and number theory:

Oppenheim's conjecture (1929): Let $Q(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ be any non-degenerated, indefinite and irrational quadratic form. Then $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

There are deep connections between Homogeneous dynamics and number theory:

Oppenheim's conjecture (1929): Let $Q(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ be any non-degenerated, indefinite and irrational quadratic form. Then $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Example: $Q(x, y, z) = x^2 + y^2 - \sqrt{2}z^2$, then it is conjectured that $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

There are deep connections between Homogeneous dynamics and number theory:

Oppenheim's conjecture (1929): Let $Q(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ be any non-degenerated, indefinite and irrational quadratic form. Then $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Example: $Q(x, y, z) = x^2 + y^2 - \sqrt{2}z^2$, then it is conjectured that $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Margulis' resolution using **qualitative** dynamics of unipotent orbits in $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$ (1980s): Oppenheim's conjecture holds true.

There are deep connections between Homogeneous dynamics and number theory:

Oppenheim's conjecture (1929): Let $Q(x,y,z): \mathbb{R}^3 \to \mathbb{R}$ be any non-degenerated, indefinite and irrational quadratic form. Then $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Example: $Q(x, y, z) = x^2 + y^2 - \sqrt{2}z^2$, then it is conjectured that $Q(\mathbb{Z}^3)$ is dense in \mathbb{R} .

Margulis' resolution using **qualitative** dynamics of unipotent orbits in $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$ (1980s): Oppenheim's conjecture holds true.

Remark: Only **a few** special cases of Oppenheim's conjecture were proved using analytic number theory method before Margulis.

Using effective Ratner's theorem in $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$:

Theorem (Lindenstrauss-Mohammadi-Wang-Yang, 2025)

Given a non-degenerated, indefinite and irrational quadratic form $Q: \mathbb{R}^3 \to \mathbb{R}$. Assume that Q is "badly approximable" by all rational quadratic forms. Then there exists $\kappa = \kappa(Q) > 0$, $c_Q > 0$ such that for any $(a,b) \subset \mathbb{R}$,

$$\#\{\mathbf{v}\in\mathbb{Z}^3:\|\mathbf{v}\|\leq T,Q(\mathbf{v})\in(a,b)\}=\underbrace{c_Q(b-a)T+\mathcal{R}(T)}_{\textit{main term}}+\underbrace{O_{a,b}(T^{1-\kappa})}_{\textit{error}}$$

Let $d \geq 1$ be an integer. Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a **non-increasing** function. A vector $\mathbf{x} = (x_1, \cdots, x_d) \in \mathbb{R}^d$ is called ψ -approximable if there exist **infinitely** many $(\mathbf{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ such that

$$\|q\mathbf{x}-\mathbf{p}\|_{\infty}<\psi(q).$$

Let $d \geq 1$ be an integer. Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a **non-increasing** function. A vector $\mathbf{x} = (x_1, \cdots, x_d) \in \mathbb{R}^d$ is called ψ -approximable if there exist **infinitely** many $(\mathbf{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ such that

$$\|q\mathbf{x}-\mathbf{p}\|_{\infty}<\psi(q).$$

Consider

$$W(\psi) = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{x} \text{ is } \psi\text{-approximable} \}.$$

Let $d \geq 1$ be an integer. Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a **non-increasing** function. A vector $\mathbf{x} = (x_1, \cdots, x_d) \in \mathbb{R}^d$ is called ψ -approximable if there exist **infinitely** many $(\mathbf{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ such that

$$\|q\mathbf{x}-\mathbf{p}\|_{\infty}<\psi(q).$$

Consider

$$W(\psi) = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{x} \text{ is } \psi\text{-approximable} \}.$$

Dirichlet's theorem: If $\psi(q) \geq q^{-1/d}$, then $W(\psi) = \mathbb{R}^d$.

Let $d \geq 1$ be an integer. Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a **non-increasing** function. A vector $\mathbf{x} = (x_1, \cdots, x_d) \in \mathbb{R}^d$ is called ψ -approximable if there exist **infinitely** many $(\mathbf{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ such that

$$\|q\mathbf{x}-\mathbf{p}\|_{\infty}<\psi(q).$$

Consider

$$W(\psi) = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{x} \text{ is } \psi\text{-approximable} \}.$$

Dirichlet's theorem: If $\psi(q) \ge q^{-1/d}$, then $W(\psi) = \mathbb{R}^d$.

A main goal: Study how the **size** of $W(\psi)$ depend on ψ .

Theorem (Khintchine, 1920s)

Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a non-increasing function. Denote by $\mathsf{Leb}_{[0,1]^d}$ the Lebesgue measure on $[0,1]^d$. Then

$$\mathsf{Leb}_{[0,1]^d}(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d = \infty. \end{cases}$$

Theorem (Khintchine, 1920s)

Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a non-increasing function. Denote by $\mathsf{Leb}_{[0,1]^d}$ the Lebesgue measure on $[0,1]^d$. Then

$$\mathsf{Leb}_{[0,1]^d}(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d = \infty. \end{cases}$$

Theorem (Schmidt, 1960)

For Leb-a.e. $\mathbf{s} \in \mathbb{R}^d$, as $n \to +\infty$:

$$\left|\{(\boldsymbol{p},q)\in\mathbb{Z}^d\times\mathbb{N}\,:\,\|q\boldsymbol{s}-\boldsymbol{p}\|_{\infty}<\psi(q),1\leq q\leq n\}\right|\sim_{\boldsymbol{s},\psi}2^d\sum_{q=0}^n\psi(q)^d.$$

Kleinbock-Margulis (1999): an alternative proof of the classical Khintchine's theorem using **effective** dynamics in $SL_{d+1}(\mathbb{R})/SL_{d+1}(\mathbb{Z})$: for all $f \in C_c^{\infty}(G/\Gamma)$, t > 0 and $x \in X$

$$\int_{[0,1]^d} f(a(t)u(s)x) ds = \int f dm_{G/\Gamma} + O(t^{-c} \operatorname{inj}(x)^{-1}) S(f),$$

where

$$a(t) = egin{pmatrix} t^{rac{1}{d+1}} & & & & & & \\ & \ddots & & & & & \\ & & t^{rac{1}{d+1}} & & & & \\ & & & t^{-rac{d}{d+1}} \end{pmatrix}, \quad u(m{s}) = egin{pmatrix} 1 & & & s_1 \\ & \ddots & & dots \\ & & 1 & s_d \\ & & & 1 \end{pmatrix}.$$

Theorem (BHZ, 2024,2025)

Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a non-increasing function. Let σ be a self-similar measure on \mathbb{R}^d . Then

$$\sigma(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d = \infty. \end{cases}$$

Moreover, for σ -a.e. $\mathbf{s} \in \mathbb{R}^d$, as $n \to +\infty$, we have

$$\left|\left\{(\boldsymbol{p},q)\in\mathbb{Z}^d\times\mathbb{N}\,:\,\|q\boldsymbol{s}-\boldsymbol{p}\|_{\infty}<\psi(q),1\leq q\leq n\right\}\right|\sim_{\boldsymbol{s},\psi}2^d\sum_{q=0}^n\psi(q)^d.$$

Theorem (BHZ, 2024,2025)

Let $\psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a non-increasing function. Let σ be a self-similar measure on \mathbb{R}^d . Then

$$\sigma(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q)^d = \infty. \end{cases}$$

Moreover, for σ -a.e. $\mathbf{s} \in \mathbb{R}^d$, as $n \to +\infty$, we have

$$\left|\{(\boldsymbol{p},q)\in\mathbb{Z}^d\times\mathbb{N}\,:\,\|q\boldsymbol{s}-\boldsymbol{p}\|_{\infty}<\psi(q),1\leq q\leq n\}\right|\sim_{\boldsymbol{s},\psi}2^d\sum_{q=0}^n\psi(q)^d.$$

Previous results on Khintchine's theorem for self-similar measures: Weiss (2000), Kleinbock-Lindenstrauss-Weiss (2004), Einsiedler-Fishman-Shapira (2011), Simmons-Weiss (2019), Yu (2021) Khalil-Luethi (2023), Datta-Jana (2024).

Approach to Khintchine's theorem for self-similar measures: an effective Kleinbock-Margulis equidistribution theorem for self-similar measures.

Approach to Khintchine's theorem for self-similar measures: an effective Kleinbock-Margulis equidistribution theorem for self-similar measures.

Let $G = \operatorname{SL}_{d+1}(\mathbb{R})$, $\Gamma = \operatorname{SL}_{d+1}(\mathbb{Z})$ and σ a self-similar measure on \mathbb{R}^d . Then there exists $c = c(\sigma) > 0$ such that for all $f \in C_c^{\infty}(G/\Gamma)$, t > 0 and $x \in X$

$$\int f(a(t)u(s)x)\mathrm{d}\sigma(s) = \int f\mathrm{d}m_{G/\Gamma} + O(t^{-c}\operatorname{inj}(x)^{-1})\mathcal{S}(f),$$

where
$$a(t)=egin{pmatrix} t^{rac{1}{d+1}} & & & & & \\ & \ddots & & & & \\ & & t^{rac{1}{d+1}} & & & \\ & & & t^{-rac{d}{d+1}} \end{pmatrix}, \quad u(oldsymbol{s})=egin{pmatrix} 1 & & s_1 \\ & \ddots & & \vdots \\ & & 1 & s_d \\ & & & 1 \end{pmatrix}.$$

• Beresnevich-Velani: Prove a Jarník-Besicovitch result for self-similar fractals: Given a non-increasing ψ and a self-similar $\mathcal{K} \subset \mathbb{R}^d$, compute

$$\operatorname{Hdim}(\mathcal{K} \cap W(\psi)).$$

Suxuan Chen (2025): Upper and lower bound estimate for one-dimensional self-similar fractals.

• Beresnevich-Velani: Prove a Jarník-Besicovitch result for self-similar fractals: Given a non-increasing ψ and a self-similar $\mathcal{K} \subset \mathbb{R}^d$, compute

$$\operatorname{Hdim}(\mathcal{K} \cap W(\psi)).$$

- Suxuan Chen (2025): Upper and lower bound estimate for one-dimensional self-similar fractals.
- Weighted Khintchine's theorem for self-similar measures: may require effective equidistribution theorem for self-similar measures given weighted diagonal flow.

• Beresnevich-Velani: Prove a Jarník-Besicovitch result for self-similar fractals: Given a non-increasing ψ and a self-similar $\mathcal{K} \subset \mathbb{R}^d$, compute

$$\operatorname{Hdim}(\mathcal{K} \cap W(\psi)).$$

- Suxuan Chen (2025): Upper and lower bound estimate for one-dimensional self-similar fractals.
- Weighted Khintchine's theorem for self-similar measures: may require effective equidistribution theorem for self-similar measures given weighted diagonal flow.
- Duffin-Schaffer type theorem on fractals: Remove the monotonicity assumption of ψ , then prove a Duffin-Schaffer theorem for fractals.

• Beresnevich-Velani: Prove a Jarník-Besicovitch result for self-similar fractals: Given a non-increasing ψ and a self-similar $\mathcal{K} \subset \mathbb{R}^d$, compute

$$\operatorname{Hdim}(\mathcal{K} \cap W(\psi)).$$

- Suxuan Chen (2025): Upper and lower bound estimate for one-dimensional self-similar fractals.
- Weighted Khintchine's theorem for self-similar measures: may require effective equidistribution theorem for self-similar measures given weighted diagonal flow.
- Duffin-Schaffer type theorem on fractals: Remove the monotonicity assumption of ψ , then prove a Duffin-Schaffer theorem for fractals.
- Khintchine's theorem for self-affine measures and self-conformal measures: may requires one to study the random walks induced by self-affine/conformal IFS on homogeneous spaces.

Thanks for your attention!

Any questions?