A Tutorial on Physics-Informed Neural Networks (PINNs)

From 1D ODEs to 2D PDEs, and the Black-Scholes Equation

Simon Scheidegger

Department of Economics, University of Lausanne; Grantham Research Institute, LSE

Wednesday, August 27th, 2025

Table of Contents

- Introduction to PINNs
- 2 1D ODE: Zero Boundary Conditions
- 3 1D ODE: Non-Zero Boundary Conditions
- The Black-Scholes PDE
- Conclusion

What Are Physics-Informed Neural Networks (PINNs)?

- PINNs incorporate physical laws (ODEs, PDEs, etc.) into the training of neural networks.
- Instead of (or in addition to) fitting standard labeled data, we penalize the network if it violates the governing equations.
- Use automatic differentiation (AD) to compute derivatives for the PDE or ODE residual.
- Boundary/initial conditions are enforced as part of the loss function.
- We effectively transform solving differential equations into a data-driven, neural-network-based learning problem.

General PINN Strategy

- **1** Define a neural network $u_{\theta}(x)$ (or $u_{\theta}(x, y)$, etc. for PDEs).
- Use automatic differentiation to compute partial derivatives needed for the PDE/ODE.
- **3** Define the **residual** for the equation, e.g. $F(u_{\theta}, x)$.
- Incorporate boundary or initial conditions by adding penalty terms to the loss.
- 5 Train (optimize) to minimize:

$$\mathcal{L}(\theta) = \underbrace{\mathsf{MSE}(F(u_{\theta}, x))}_{\mathsf{Equation} \ \mathsf{Residual}} \ + \ \underbrace{\mathsf{MSE}(u_{\theta}(\mathsf{boundary}) - \mathsf{BC})}_{\mathsf{Boundary} \ \mathsf{Loss}} \ + \ \cdots$$

o After training, u_{θ} approximates the solution.

1D ODE with Zero Boundary Conditions

Example ODE:

$$\frac{d^2y}{dx^2} = -1, \quad x \in (0,1),$$

with boundary conditions

$$y(0) = 0, \quad y(1) = 0.$$

Analytical solution:

$$y(x)=-\frac{x^2}{2}+\frac{x}{2}.$$

PINN Setup:

- Define $y_{\theta}(x)$ as a neural net.
- PDE residual: $r(x) = y_{\theta}''(x) + 1$.
- Enforce boundary conditions $y_{\theta}(0) = 0$ and $y_{\theta}(1) = 0$.

Pointers to Code

Code Reference:

- day3/Scheidegger_Yang/code/01_ODE_ZBC.ipynb demonstrates the full PyTorch implementation.
- It constructs a small network, sets up the ODE residual, and enforces boundary conditions within the loss.
- Training is run via Adam, and a final plot compares the learned solution to the analytical solution.

1D ODE with Non-Zero Boundary Conditions

Example ODE (same interior PDE, different BCs):

$$y''(x) = -1, \quad x \in (0,1),$$

$$y(0) = 1, \quad y(1) = 2.$$

Analytical solution:

$$y(x) = -\frac{x^2}{2} + \frac{x}{2} + 1.$$

Pointers to Code

Main Difference:

- The boundary conditions now are y(0) = 1 and y(1) = 2.
- Only the boundary part of the loss changes.

Code Reference:

 day3/Scheidegger_Yang/code/02_ODE_NZB.ipynb shows the minor modifications in the boundary loss terms.

Hard vs. Soft Enforcement of Boundary/Initial Conditions

Hard (exact) enforcement

BCs satisfied by construction via ansatz:

$$u_{\theta}^{\mathrm{hard}}(x) = g(x) + B(x)N_{\theta}(x), \quad B|_{\partial\Omega} = 0, \ g|_{\partial\Omega} = u_{\mathrm{BC}}.$$

Example (1D, v(0) = a, v(1) = b):

$$y_{\theta}^{\mathrm{hard}}(x) = a(1-x) + bx + x(1-x)N_{\theta}(x).$$

- Pros: zero BC error: often better conditioning near $\partial \Omega$.
- Cons: need B, g design; awkward for complex/Neumann BCs; may limit expressivity. Soft (penalty) enforcement
 - Add BC penalties to loss:

$$\mathcal{L} = \mathrm{MSE}\big(F(u_{\theta})\big) + \lambda_{\mathrm{BC}} \mathrm{MSE}\big(u_{\theta}|_{\partial\Omega} - u_{\mathrm{BC}}\big) + \lambda_{\mathrm{IC}} \mathrm{MSE}(\cdot).$$

- Pros: simple; works for varied BCs and irregular domains.
- Cons: only approximate; depends on λ and boundary sampling.

Tips: Oversample boundaries, normalize/weight losses, use augmented Lagrangian or λ -annealing for better BC accuracy.

Black-Scholes Recap

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Terminal: $V(S, T) = \max(S - K, 0)$.

Boundaries: V(0, t) = 0, $V(S_{\text{max}}, t) \approx S_{\text{max}} - Ke^{-r(T-t)}$.

Pointers to Code

Key Steps in the PINN Setup:

• PDE residual:

$$V_t + 0.5 \sigma^2 S^2 V_{SS} + rS V_S - r V.$$

- Boundary conditions at S = 0 and $S = S_{max}$.
- Terminal condition at t = T.

Code Reference:

 day3/Scheidegger_Yang/code/03_Black_Scholes_PINNs.ipynb contains the full implementation.

Summary & Next Steps

- We introduced PINNs: enforcing PDE/ODE constraints by building them into the loss function.
- Showed ODEs, PDEs, boundary conditions, and terminal conditions.
- Demonstrated examples: 1D boundary value problems, 2D Black–Scholes.
- In practice, you can adapt these templates to more complex PDEs, domains, or multi-dimensional states.

Some References

- M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-Informed Neural Networks: A Deep Learning Framework (2019).
- J. Berg and K. Nystroem, A Unified Deep Artificial Neural Network Approach to PDEs in Complex Geometries (2017).
- For HJB PDE references in reinforcement-learning contexts, see: D. Jiang, F. Meng, Q. Sun, X. Xue, and Y. Zou. DeepRitz Method (2019).

Thank You!

Questions?