Practico 6

1 Repaso teoria

Definition 1. Sea A un intervalo abierto que contiene al punto a. Se dice que la funcion $f: A \to \mathbb{R}$ es derivable en a si existe:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

El valor de este limite se denota como f'(a)

Definition 2. Si la funcion f es derivable en a, la recta tangente al grafico de f por el punto (a,f(a)) es la dada por la funcion: y(x)=f'(a)(x-a)+f(a)

Que determina la unica pendiente f'(a) que pasa por el punto (a,f(a)).

Definition 3. Si la funcion f es derivable en todo punto de A (Abierto) decimos que f es derivable en el intervalo. Podemos definir entonces f' como la derivada de f en A.

Theorem 4. Si f es derivable en a entonces f es continua en a. (La reciproca es falsa).

Theorem 5. Derivada de la suma: (f+g)'(a)=f'(a)+g'(a)

Theorem 6. Derivada del producto: f'(a)g(a)+f(a)g'(a)

Corollary 7. Derivada de funcion por constante: (cf)'(a)=cf'(a)

Proposition 8. Derivada (factor): Sea $f(x)=x^n \Rightarrow f'(x)=nx^{n-1}$

Theorem 9. Si g es derivable en a y $g(a)\neq 0$ entonces la funcion $\frac{1}{g}$ es derivable en a y $\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^2(a)}$

Faltan: Teorema derivada del cociente

Teorema derivada de la composicion: Chain rule.

Derivadas seno y cos

Teorema de la derivada de la inversa.

Teorema de la derivada de la raiz enesima.

2 Practico

- 1.
- 2.
- 3.

- 4. Calcular f' donde f(x) viene dada por cada una de las siguientes expresiones.
 - a)
 - b)
 - c)
 - d)
 - e)
 - f)
 - g)
 - h) $\cos\left(\sqrt{x^4+7}\right)$
 - La derivada es la correspondiente a una composicion de funciones. Use la regla de la cadena;
 - $\quad [f(g)]' = f'(g(x)) = -\mathrm{sen}\Big(\sqrt{x^4 + 7}\,\Big) \big(\tfrac{1}{2}(x^4 + 7)^{-1/2}4x^3\big)$
- 5.
- a) Sea h una funcion tal que $|h(x)| \leq x^2$ para todo x. Demostrar que h es derivable en 0 y calcular h'(0).
 - Recuerde el lema del Sanwich: Si $f(x) \leq g(x) \leq h(x)$ para todo x entonces si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l \Rightarrow \lim_{x \to a} g(x) = l$
 - En nuestro caso concreto: $-x^2 \le h(x) \le x^2 \Rightarrow \lim_{x \to 0} h(x) = 0$
 - Ademas: $-0 \le h(0) \le 0 \Rightarrow h(0) = 0$
 - Para demostrar que h es derivalbe en 0, tiene que existir este limite:

$$\lim_{k \to 0} \frac{h(0+k) - h(0)}{k} = \lim_{k \to 0} \frac{h(k)}{k}$$

- Por loa hipotesis de acotacion:

$$\lim_{k \to 0} -\frac{k^2}{k} \leqslant \lim_{k \to 0} \frac{h(k)}{k} \leqslant \lim_{k \to 0} \frac{k^2}{k}$$

- De manera que: $0 \leqslant \lim_{k \to 0} \frac{h(k)}{k} \leqslant 0 \Rightarrow \lim_{k \to 0} \frac{h(k)}{k} = 0$
- b) Considere la funcion $g(x) = \begin{cases} x^2 \operatorname{sen}(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ demostrar que es derivable en todo $\mathbb R$ pero que la derivada no es continua en 0.
 - Si $x \neq 0$ la funcion es derivable. No voy a verificar eso, es simplemente calcular la derivada que va a existir.
 - Calculamos la derivada en 0

$$\lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 \mathrm{sen}(1/h) - 0}{h} = \lim_{h \to 0} \frac{\mathrm{sen}(1/h)}{1/h}$$

- Normalmente uno llegaria hasta aca y no podria calcular (No puede utilizar limites notables)
- Es en este momento que se utiliza la hipotesis de a), tenga en cuenta que: Si $x \neq 0$ luego $|g(x)| \leqslant x^2$ de manera que $\lim_{h \to 0} h^2 \mathrm{sen}(1/h)/h = 0$
- g'(0) = 0
- Para el resto de los puntos: $g'(x) = 2x \operatorname{sen}(1/x) x^2 \operatorname{cos}(1/x)(-1/x^2)$ $g'(x) = 2x \operatorname{sen}(1/x) + \operatorname{cos}(1/x)$
- Cuando quiera tomar $x \to 0$ no podre calcular el limite de $\cos(1/x)$
- 6. Calcular $f^n(x)$ para todo $n \in \mathbb{N}$

a)
$$f(x) = x^{10}$$

- Empieze calculando algunas derivadas:

$$- f'(x) = 10x^9$$
, $f''(x) = 10.9 \cdot 10^8$

$$- f^n(x) = \frac{10!}{(10-n)!} x^{10-n}$$