Recap

```
DMU
    - Probabilistic Models
- MDPs
- Reinforcement Learning
- POMDPs
- Games
```

Probabilistic Models

P(A) P(A,B) P(AIB)

3 Rules

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Independence

$$A \perp B \iff P(A,B) = P(A)P(B)$$

$$A \perp B \mid C \iff P(A,B \mid C) = P(A \mid C)P(B \mid C)$$

Bayesian Networks

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

Markov Decision Processes

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$V^{\pi}(5) = Q^{\pi}(5,\pi(5))$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

Bellman's Equation: Certificate of Optimality

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

Bellman's Operator

Offline MDP Algorithms

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Converges because policy always improves and there are a finite number of policies

Converges because B is a contraction mapping

Online MDP Planning

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Guarantees *independent* of |S|!!

LQR

$$s' = T_s s + T_a a + w$$

$$R(\mathbf{s}, \mathbf{a}) = \mathbf{s}^{\top} \mathbf{R}_{s} \mathbf{s} + \mathbf{a}^{\top} \mathbf{R}_{a} \mathbf{a}$$

$$\pi_h(\mathbf{s}) = -\left(\mathbf{T}_a^{\top}\mathbf{V}_{h-1}\mathbf{T}_a + \mathbf{R}_a\right)^{-1}\mathbf{T}_a^{\top}\mathbf{V}_{h-1}\mathbf{T}_s\mathbf{s}$$

$$\mathbf{V}_{h+1} = \mathbf{R}_s + \mathbf{T}_s^{\top} \mathbf{V}_h^{\top} \mathbf{T}_s - \left(\mathbf{T}_a^{\top} \mathbf{V}_h \mathbf{T}_s \right)^{\top} \left(\mathbf{R}_a + \mathbf{T}_a^{\top} \mathbf{V}_h \mathbf{T}_a \right)^{-1} \left(\mathbf{T}_a^{\top} \mathbf{V}_h \mathbf{T}_s \right)^{-1}$$

Reinforcement Learning

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment
- 3. Generalization

Exploration

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction
- Random network distillation

RL Algorithms

Policy Gradient

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

$$\nabla U(\mathbf{\theta}) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\mathbf{\theta}} \log \pi_{\mathbf{\theta}}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

• Natural Gradient

Q-Learning

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Double Q Learning

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

Backprop

Actor-Critic

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

POMDPs

 $(S, A, T, R, O, Z, \gamma)$

- Each alpha vector corresponds to a conditional plan
- You can prune alpha vectors by solving an LP

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

POMDP Approximations

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Simple Games

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

- Every finite game has at least 1 Nash Equilibrium
- Might be pure or mixed
- Algorithms like fictitious play converge in special cases

Turn Taking Games

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

Markov Games and POMGS

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Partially Observable Markov Games

- Each player receives a noisy observation at each step
- Beliefs not practical to compute
- Can be reduced to simple game with policies as actions

Fictitious Play in Markov Games

Recap

After DMU you have basic tools to deal with 4 Big Problems:

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability
- 4. Other Agents