(12)

NEUE EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
 29.01.2003 Patentblatt 2003/05
- (51) Int Cl.7: C08L 23/12
- (45) Hinweis auf die Patenterteilung: 30.07.1997 Patentblatt 1997/31
- (21) Anmeldenummer: 94113857.0
- (22) Anmeldetag: 03.09.1994
- (54) Kälteschlagzähe Zusammensetzung aus semicrystallinen Propylen-Homopolymeren Low temperature impact-resistant composition of semicrystalline propylene homopolymers Composition des homopolymères de propylène semi-cristallins résistant à disques à basse température
- (84) Benannte Vertragsstaaten: BE DE ES FR GB IT NL
- (30) Priorität: 10.09.1993 DE 4330661
- (43) Veröffentlichungstag der Anmeldung: 15.03.1995 Patentblatt 1995/11
- (73) Patentinhaber: Basell Polyolefine GmbH 77694 Kehl (DE)
- (72) Erfinder:
 - Seelert, Stefan, Dr.
 D-67227 Frankenthal (DE)
 - Langhauser, Franz, Dr.
 D-67098 Bad Dürkheim (DE)

- Kerth, Jürgen, Dr. D-67316 Carlsberg (DE)
- Müller, Patrick, Dr.
 D-67661 Kaiserslautern (DE)
- Fischer, David, Dr.
 D-67161 Gönnheim (DE)
- Schweler, Günther, Dr. D-67159 Friedelsheim (DE)
- (74) Vertreter: Seelert, Stefan, Dr. et al Basell Polyolefine GmbH -F 206-67056 Ludwigshafen (DE)
- (56) Entgegenhaltungen:

EP-A- 0 537 686

EP-A- 0 550 214

DE-A- 3 827 565

DE-A- 4 130 429

Beschreibung

5

10

[0001] Die vorliegende Erfindung betrifft Propylenpolymerisate, enthaltend

A) ein teilkristallines Propylen-Homopolymerisat mit einem Schmelzpunkt im Bereich von 125°C bis 165°C und einer Glastemperatur, die größer als -10°C ist und

B) ein teilkristallines Propylen-Homopolymerisat mit einem Schmelzpunkt unter 130°C und einer Glastemperatur, die kleiner als oder gleich -10°C ist oder ein nicht kristallisierendes Propylen-Homopolymerisat mit einer Glastemperatur, die kleiner als oder gleich -10°C ist.

[0002] Weiterhin betrifft die Erfindung Verfahren zur Herstellung derartiger Propylenpolymerisate, deren Verwendung zur Herstellung von Fasern, Folien und Formkörpern sowie die hierbei erhältlichen Fasern, Folien und Formkörper aus den Propylenpolymerisaten.

[0003] In der DE-A 38 27 565 und der DE-A 40 01 157 sind kalteschlagzähe Propylenpolymerisate beschrieben, die aus einer steifen Homopolypropylenmatrix und einem Ethylen-Propylen-Elastomeren bestehen. Die Homopolypropylenmatrix und die Ethylen-Propylen-Elastomeren werden in verschiedenen Polymerisationseinheiten hergestellt und entweder anschließend im Extruder gemischt oder es wird eine Reaktorkaskade verwendet, wobei in der ersten Reaktionszone die Homopolypropylenmatrix erzeugt wird und anschließend in einer zweiten oder ggf. weiteren Reaktionszone ein Ethylen-Propylen-Elastomer hinzupolymerisiert wird. Diese Herstellverfahren sind in der EP-A 433 990 und der DE-A 41 30 429 beschrieben. Durch die Verwendung zweier unterschiedlicher Monomeren sind diese Verfahren jedoch technisch aufwendig, da die Reaktionsführung in den einzelnen Reaktionszonen aufeinander abgestimmt werden muß und auch die Überführung von einer Reaktionszone in eine andere mit regeltechnischen Schwierigkeiten verbunden ist.

[0004] Aufgabe der vorliegenden Erfindung war es daher, den geschilderten Nachteilen abzuhelfen und kälteschlagzähe Propylenpolymerisate ur Verfügung zur stellen, die mit geringerem verfahrenstechnischem Aufwand hergestellt werden können.

[0005] Demgernäß wurden die eingangs definierten Propylenpolymerisate gefunden. Außerdem wurden Verfahren zur Herstellung derartiger Propylenpolymerisate, deren Verwendung zur Herstellung von Fasern, Folien und Formkörpern sowie die hierbei erhältlichen Folien und Formkörper aus den Propylenpolymerisaten gefunden.

[0006] Die Herstellung der erfindungsgemäßen Propylenpolymerisate kann durch Mischen der Komponenten A) und B) in üblichen Vorrichtungen wie in Brabender-Mischern, Knetern oder Extrudern erfolgen. Bevorzugt jedoch ist die Herstellung der erfindungsgemäßen Propylenpolymerisate in einer einzigen Reaktionszone in Anwesenheit zweier unterschiedlicher Katalysatorsysteme. Dabei werden zwei unterschiedliche Propylen-Homopolymerisate A) und B) dadurch erhalten, daß Propylen an den beiden unterschiedlichen Katalysatorsystemen polymerisiert.

[0007] Geeignete Katalysatorsysteme zur Herstellung der teilkristallinen Propylen-Homopolymerisate A) sind beispielsweise Ziegler-Natta-Katalysatoren.

[0008] Diese enthalten u.a. neben einer titanhaltigen Feststoffkomponente noch einen Cokatalysator. Als Cokatalysator kommt dabei eine Aluminiumverbindung in Frage. Vorzugsweise wird neben dieser Aluminiumverbindung als weiterer Bestandteil des Cokatalysators noch eine Elektronendonorverbindung eingesetzt. Die Polymerisation erfolgt dabei in den, in der Technik üblicherweise für Polymerisationsreaktionen verwendeten Reaktoren, vorzugsweise in der Gasphase.

[0009] Zur Herstellung der titanhaltigen Feststoffkomponente werden als Titanverbindungen im allgemeinen Halogenide oder Alkoholate des drei- oder vierwertigen Titans verwendet, wobei die Chloride des Titans, insbesondere Titantetrachlorid, bevorzugt sind. Vorteilhaft enthält die titanhaltige Feststoffkomponente einen feinteiligen Träger, wofür sich Silicium- und Aluminiumoxide, sowie Aluminiumsilicate der Bruttoformel SiO₂ · aAl₂O₃, wobei a für einen Wert von 0,001 bis 2, insbesondere von 0,01 bis 0,5 steht, gut bewährt haben. Weitere Träger sind u.a. feinteilige Polyolefine, beispielsweise feinteiliges Polypropylen.

[0010] Weiter werden bei der Herstellung der titanhaltigen Feststoffkomponente u.a. Verbindungen des Magnesiums eingesetzt. Als solche kommen insbesondere Magnesiumhalogenide, Magnesiumalkyle und Magnesiumaryle, sowie Magnesiumalkoxy- und Magnesiumaryloxyverbindungen in Betracht, wobei bevorzugt Magnesiumdichlorid, Magnesiumdibromid und Magnesiumdi-(C₁-C₁₀-alkyl)-Verbindungen verwendet werden. Daneben kann die titanhaltige Feststoffkomponente noch Halogen, bevorzugt Chlor oder Brom, enthalten.

[0011] Ferner enthält die titanhaltige Feststoffkomponente noch Elektronendonorverbindungen, beispielsweise monooder polyfunktionelle Carbonsäuren, Carbonsäureanhydride und Carbonsäureester, ferner Ketone, Ether, Alkohole, Lactone, sowie phosphor- und siliciumorganische Verbindungen. Bevorzugt werden als Elektronendonorverbindungen innerhalb der titanhaltigen Feststoffkomponente Phthalsäurederivate der allgemeinen Formel III

verwendet, wobei X^1 und Y^1 jeweils für ein Chloratom oder einen C_1 - bis C_{10} -Alkoxyrest oder gemeinsam für Sauerstoff stehen. Besonders bevorzugte Elektronendonorverbindungen sind Phthalsäureester, wobei X^1 und Y^1 einen C_1 - C_8 -Alkoxyrest, beispielsweise einen Methoxy-, Ethoxy-, Propyloxy- oder einen Butoxyrest bedeuten.

[0012] Weiter bevorzugte Elektronendonorverbindungen innerhalb der titanhaltigen Feststoffkomponenten sind u.a. Diester von 3- oder 4-gliedrigen, gegebenenfalls substituierten Cycloalkyl-1,2-dicarbonsäuren, sowie Monoester von, gegebenenfalls substituierten Benzophenon-2-carbonsäuren.

[0013] Als Hydroxyverbindungen werden bei diesen Estern die bei Veresterungsreaktionen üblichen Alkohole verwendet, u.a. C₁- bis C₁₅-Alkanole, C₅- bis C₇-Cycloalkanole, die ihrerseits C₁- bis C₁₀-Alkylgruppen tragen können, ferner C₆-bis C₁₀-Phenole.

[0014] Die titanhaltige Feststoffkomponente kann nach an sich bekannten Methoden hergestellt werden. Beispiele dafür sind u.a. in der EP-A 45 975, der EP-A 45 977, der EP-A 86 473, der EP-A 171 200, der GB-A 2 111 066 und der US-A 4 857 613 beschrieben.

[0015] Die dadurch erhältliche titanhaltige Feststoffkomponente wird mit Cokatalysatoren als Ziegler-Natta-Katalysatorsystem verwendet. Als Cokatalysatoren kommen dabei Aluminiumverbindungen und weitere Elektronendonorverbindungen in Frage.

[0016] Als Cokatalysator geeignete Aluminiumverbindungen sind neben Trialkylaluminium auch solche Verbindungen, bei denen eine Alkylgruppe durch eine Alkoxygruppe oder durch ein Halogenatom, beispielsweise durch Chlor oder Brom, ersetzt ist. Bevorzugt werden Trialkylaluminiumverbindungen verwendet, deren Alkylgruppen jeweils 1 bis 8 C-Atome aufweisen, beispielsweise Trimethyl-, Triethyl- oder Methyldiethylaluminium.

[0017] Bevorzugt verwendet man neben der Aluminiumverbindung noch als weiteren Cokatalysator Elektronendonorverbindungen wie beispielsweise mono- oder polyfunktionelle Carbonsäuren, Carbonsäureanhydride und Carbonsäureester, femer Ketone, Ether, Alkohole, Lactone, sowie phosphor- und siliciumorganische Verbindungen. Bevorzugte Elektronendonorverbindungen sind dabei siliciumorganische Verbindungen der allgemeinen Formel IV

$$R^{14}_{p}Si(OR^{15})_{4p}$$
 IV

wobei

30

 R^{14} gleich oder verschieden ist und eine C_1 - bis C_{20} -Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits eine C_1 - bis C_{10} -Alkylgruppe tragen kann, oder eine C_6 - bis C_{20} -Aryl oder eine C_7 - bis C_{40} -Arylalkylgruppe bedeutet, R^{15} gleich oder verschieden ist und eine C_1 - bis C_{20} -Alkylgruppe bedeutet und p für die Zahlen 1, 2 oder 3 steht. Besonders bevorzugt werden dabei solche Verbindungen, in denen R^{14} eine C_1 - bis C_8 -Alkylgruppe oder eine 5- bis 7-gliedrige Cycloalkylgruppe, sowie R^{15} eine C_1 - bis C_4 -Alkylgruppe bedeutet und p für die Zahlen 1 oder 2 steht.

[0018] Unter diesen Verbindungen sind insbesondere Dimethoxydiisopropyl-Dimethoryisobutylisopropylsilan, Dimethoxydiisobutylsilan, Dimethoxydicyclopentylsilan, Diethoryisobutylisopropylsilan und Dimethoxyisopropylsek.butylsilan hervorzuheben.

[0019] Bevorzugt werden solche Katalysatorsysteme verwendet, bei denen das Atomverhältnis zwischen Aluminium aus der Aluminiumverbindung und Titan aus der titanhaltigen Feststoffkomponente 10:1 bis 800:1, insbesondere 20: 1 bis 200:1, und das Molverhältnis zwischen der Aluminiumverbindung und der als Cokatalysator eingesetzten Elektronendonorverbindung 1:1 bis 100:1, insbesondere 2:1 bis 80:1 beträgt. Die einzelnen Katalysatorbestandteile können in beliebiger Reihenfolge einzeln oder als Gemisch zweier Komponenten in das Polymerisationssystem eingebracht werden.

[0020] Weitere geeignete Katalysatorsysteme zur Herstellung der teilkristallinen Propylen-Homopolymerisate A) sind Katalysatorsysteme, die als aktive Bestandteile von der Formel I und II verschiedene Metallocenkomplexe von Metallen der IV. oder V. Nebengruppe des Periodensystems und oligomere Aluminiumoxidverbindung enthalten. Bevorzugt sind dabei Metallocenkomplexe von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal. Vorzugsweise werden dabei solche Komplexverbindungen verwendet, bei denen das Metallatom über π-Bindungen mit ungesättigten cyclischen Kohlenwasserstoffresten verbunden ist, beispielsweise Cyclopentadienyl-, Fluorenyl- oder Indenylgruppen. Weiterhin sind die bevorzugt eingesetzten Komplexverbindungen dadurch gekennzeichnet, daß das Metallatom noch mit weiteren Liganden, insbesondere mit Fluor, Chlor, Brom und lod oder einem C₁- bis C₁₀-Alkyl, beispielsweise einer Methyl-, Ethyl-, Propyl- oder Butylgruppe, verknüpft sein kann.

[0021] Besonders geeignete Metallocenkomplexe lassen sich durch folgende allgemeine Formel V kennzeichnen:

 R^{18} R^{16} R^{16} R^{19} R^{24} R^{21} R^{23} R^{22}

in der die Substituenten folgende Bedeutung haben:

5

10

15

30

35

40

50

M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal,

20
X
Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder -OR²⁰,

wobei R²⁰ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis

10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeutet,

R¹⁶ bis R¹⁹ und R²¹ bis R²⁴ Wasserstoff, C₁- bis C₁₀-Alkyl, 5-bis 7-gliedriges Cycloalkyl, das seinerseits C₁bis C₁₀-Alkyle als Substituenten tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische ge-

falls auch zwei benachbarte Heste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische ge sättigte, teilweise gesattigte oder ungesättigte Gruppen stehen können, oder Si(R²⁵)₃ mit

R²⁵ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

Y für R²⁶R²⁷Z√ oder

- C - C - |

steht,

wobei Z Silicium, Germanium, Zinn oder Kohlenstoff bedeutet,

R²⁶, R²⁷, R²⁸, R²⁹ Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Grup-

pen stehen können.

[0022] Von den Verbindungen der Formel V sind diejenigen besonders geeignet, in denen

R¹⁶ und 21 gleich sind und für Wasserstoff oder C₁- bis C₁₀-Alkylgruppen stehen,

gleich sind und für Wasserstoff, eine Methyl-, Ethyl-, iso-Propyl- oder tert.-Butylgruppe stehen,

 R^{17} , R^{18} , R^{22} und R^{23} die Bedeutung R^{18} und R^{23} C_1 - bis C_4 -Alkyl

R17 und R22 Wasserstoff

haben oder zwei benachbarte Reste R¹⁷ und R¹⁸ sowie R²² und R²³ gemeinsam für 4 bis 12

C-Atome aufweisende cyclische Gruppen stehen,

5 R26,R27,R28 und R29 für Wasserstoff oder C₁- bis C₈-Alkyl,

M für Zirkonium oder Hafnium und

χ für Chlor stehen.

[0023] Beispiele für besonders geeignete Komplexverbindungen sind u.a.

Dimethylsilandiylbis(cyclopentadienyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(indenyl)-zirkoniumdichlorid,

15 Dimethylsilandiylbis(tetrahydroindenyl)-zirkoniumdichlorid,

Ethylenbis(cyclopentadienyl)-zirkoniumdichlorid,

Ethylenbis (indenyl)-zirkonium dichlorid,

Ethylenbis(tetrahydroindenyl)-zirkoniumdichlorid,

Ethylenbis(-2-methylindenyl)-zirkoniumdichlorid,

Ethylenbis(-2-methylindenyl)-hafniumdichlorid,

Ethylenbis(-2-methylbenzindenyl)-zirkoniumdichlorid,

Ethylenbis(-2-methylbenzindenyl)-hafniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-methylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-ethylcyclopentadienyl)zirkoniumdichlorid,

25 Dimethylsilandiylbis(-3-tert.butyl-5-methylcyclopentadienyl)dimethylzirkonium,

Dimethylsilandiylbis(-2-methylindenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(-2-isopropylindenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(-2-tert.-butylindenyl)-zirkoniumdichlorid,

Diethylsilandiylbis(-2-methylindenyl)-zirkoniumdibromid,

30 Dimethylsilandiylbis(-2-methyl-5-methylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-2-ethyl-5-isopropylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-2-methylbenzindenyl)-zirkoniumdichlond,

Dimethylsilandiylbis(-2-methylindenyl)-hafniumdichlorid und Isopropylidencyclopentadienylfluorenylzirkoniumdichlorid.

35

10

20

[0024] Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal, bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u. a. im Journal of Organometallic Chemistry, 369 (1989), 359-370 beschrieben.

[0025] Die Metallocenkomplexe können auch in kationischer Form vorliegen, wie in der EP-A 277 003 und der EP-A 277 004 beschrieben wird. Weiterhin kann auch μ-Oxo-bis-(chlorobiscyclopentadienyl)zirkonium als Metallocenkomplex verwendet werden.

[0026] Neben den Metallocenkomplexen enthalten die eingesetzten Katalysatorsysteme noch oligomere Aluminiumoxidverbindungen. Geeignet sind beispielsweise offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formeln VI oder VII

50

wobel R^{30} eine C_1 - bis C_4 -Alkylgruppe, bevorzugt eine Methyl- oder Ethylgruppe bedeutet und q für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25, steht.

[0027] Die Herstellung dieser oligomeren Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u.a. in der EP-A 284 708 und der US-A 4 794 096 beschrieben.

[0028] In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß q als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen, vorliegen.

[0029] Es hat sich als vorteilhaft erwiesen, die Komplexverbindung von Metallen der IV. und V. Nebengruppe des Periodensystems und die oligomere Alumoxanverbindung in solchen Mengen zu verwenden, daß das atomare Verhältnis zwischen Aluminium aus der oligomeren Alumoxanverbindung und dem Übergangsmetall aus der Komplexverbindung von Metallen der IV. und V. Nebengruppe des Periodensystems im Bereich von 10:1 bis 10⁶:1, insbesondere im Bereich von 10:1 bis 10⁴:1, liegt.

[0030] Als Lösungsmittel für diese Katalysatorsysteme werden übliche aromatische Kohlenwasserstoffe eingesetzt, bevorzugt mit 6 bis 20 C-Atomen, insbesondere Xylole und Toluol sowie deren Mischungen.

[0031] Weiterhin können auch geträgerte Metallocenkomplexe verwendet werden. Geeignete Trägermaterialien sind beispielsweise Kieselgele, bevorzugt solche der Formel $SiO_2 \cdot a$ Al_2O_3 , worin a für eine Zahl im Bereich von 0 bis 2 steht, vorzugsweise 0 bis 0,5; also im wesentlichen Alumosilikate oder Siliciumdioxid. Vorzugsweise weisen die Träger einen Teilchendurchmesser im Bereich von 1 bis 200 μ m auf, insbesondere von 30 bis 80 μ m. Derartige Produkte sind im Handel erhältlich, z.B. als Silica Gel 332 der Firma Grace.

[0032] Als Katalysatorsysteme zur Herstellung von Propylen-Homopolymerisate B) eignen sich solche, die als aktive Bestandteile einen Metallocenkomplex der allgemeinen Formel I oder II

30

35

40

45

50

. 55

worin

30

M¹ ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystems ist,

35 R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Alkylgruppe, eine C₂-C₁₀-Alkylgruppe, eine C₂-C₁₀-Alkylgruppe, eine C₂-C₁₀-Alkylgruppe, eine C₂-C₁₀-Alkylgruppe, eine C₂-C₁₀-Arylalkenylgruppe oder ein Halogenatom bedeuten.

40 R³ und R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, die halogeniert sein kann, eine C₆-C₁₀-Arylgruppe, einen -NR₂¹⁰, -SR¹⁰, -OSiR₃¹⁰ -SiR₃¹⁰ oder -PR₂¹⁰-Rest bedeuten, worin R¹0 ein Halogenatom, eine C₁-C₁₀-Alkylgruppe oder eine C₆-C₁₀-Arylgruppe ist,

R⁵ und R⁶ gleich oder verschieden sind und die für R³ und R⁴ genannte Bedeutung haben, mit der Maßgabe, daß 45 R⁵ und R⁶ nicht Wasserstoff sind.

R⁷

55

=BR11, =AIR11, -Ge-, -Sn-, -O-, -S-, =SO, =SO2, -NR11, =CO, =PR11 oder =P(O)R11 ist,

wobei

10

15

20

R11, R12 und R13 gleid

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{10} -Alkylgruppe, C_1C_{10} -Fluoralkylgruppe, eine C_6C_{10} -Arylgruppe, eine C_6-C_{10} -Fluorarylgruppe, eine C_7-C_{10} -Alkoxygruppe, eine C_7-C_{10} -Alkoxygruppe, eine C_7-C_{10} -Alkoxygruppe, eine C_7-C_{10} -Alkylgruppe, eine C_7-C_{10} -Alkylgruppe bedeuten oder C_7 - C_7 -C

M²

Silizium, Germanium oder Zinn ist,

R⁸ und R⁹

gleich oder verschieden sind und die für R¹¹ genannte Bedeutung haben und

m und n

gleich oder verschieden sind und null, 1 oder 2 sind, wobei m plus n null, 1 oder 2 ist.

[0033] Alkyl steht für geradkettiges oder verzweigtes Alkyl. Halogen (halogeniert) bedeutet Fluor, Chlor, Brom oder Jod, bevorzugt Fluor oder Chlor.

[0034] Bevorzugte Verbindungen der allgemeinen Formel I und II sowie Verfahren zur ihrer Herstellung sind in der EP-A 537 686 beschrieben.

[0035] Neben den Metallocenkomplexen der allgemeinen Formel I oder II enthalten die eingesetzten Katalysatorsysteme noch oligomere Aluminiumoxidverbindungen der vorstehend genannten allgemeinen Formeln VI oder VII. Bezüglich der Mengenverhältnisse der aktiven Bestandteile gilt das bei der Herstellung der Propylen-Homopolymerisate A) Gesagte. Die Metallocenkomplexe der allgemeinen Formel I oder II können ebanfalls in geträgerter Form verwendet werden, wobei die gleichen oder selben Träger wie bei der Herstellung der Propylen-Homopolymerisate A) bevorzugt sind

[0036] Die Herstellung der erfindungsgemäßen Propylenpolymerisate kann in Suspension, in flüssigen Monomeren, in inerten Lösungsmitteln und insbesondere in der Gasphase erfolgen. Die Polymerisationsbedingungen sind an sich unkritisch, Drücke von 0,5 bis 3000 bar, bevorzugt 1 bis 80 bar und Temperaturen von -50 bis +300°C, bevorzugt -20 bis 100°C haben sich als geeignet erwiesen. Die mittlere Molmasse der gebildeten Polymerisate kann mit den in der Polymerisationstechnik üblichen Methoden gesteuert werden, beispielsweise durch Veranderung der Reaktionstemperaturen oder durch Zufuhr von Reglern wie wasserstoff oder C₂- bis C₈-Alk-1-enen, wodurch im erfindungsgemäßen Propylenpolymerisat geringe Mengen jedoch nicht mehr als 0,5 Gew.-%, insbesondere nicht mehr als 0,2 Gew.-%, an C₂- bis C₈-Alk-1-enen gefunden werden kann.

[0037] Nach dem zu den erfindungsgemäßen Propylenpolymerisaten führenden bevorzugten Verfahren werden die einzelnen Katalysatorsysteme entsprechend ihrer jeweiligen Polymerisationsaktivitaten in solchen Mengenverhältnissen eingesetzt, daß die gewünschte Polymerzusammensetzung gebildet wird.

[0038] Die erfindungsgemäßen Propylenpolymerisate enthalten die Komponente A) in einer Menge von 30 bis 95 Gew.-% und die Komponente B) in einer Menge von 5 bis 70 Gew.-%.

[0039] Bevorzugte Propylen-Homopolymerisate A) weisen einen Schmelzpunkt im Bereich von 135 bis 165°C auf und eine Glastemperatur, die größer als -5°C ist.

[0040] Bevorzugte Propylen-Homopolymerisate B) sind teilkristallin und weisen einen Schmelzpunkt unter 125 °C auf und eine Glastemperatur, die kleiner als -15°C ist.

[0041] Die erfindungsgemäßen Propylenpolymerisate zeichnen sich durch ein ausgewogenes Eigenschaftsprofil, insbesondere durch gute Kälteschlagzähigkeit aus. Durch den Einsatz eines Monomeren werden verfahrenstechnische Vorteile erzielt, ebenso dadurch, daß das Verfahren zur Herstellung der erfindungsgemäßen Propylenpolymerisate in einer Reaktionszone durchgeführt werden kann. Die erfindungsgemäßen Propylenpolymerisate lassen sich gut verarbeiten, sind in vielen Bereichen verwendbar und eignen sich insbesondere zur Herstellung von Fasern, Folien und Formkörpern.

Beispiele

Beispiel 1

1.1 Herstellung eines Trägermaterials

[0042] Zu einer Suspension von 20,2 g Kieselgel (Fa. Grace, SG 332, Teilchendurchmesser 20-45 µm) in 200 ml Heptan wurden bei Raumtemperatur während 30 min 56 ml einer Lösung von 6,4 g Triethylaluminium in 48 ml Heptan zugetropft. Dabei stieg die Temperatur auf 44°C an. Nach 18 h Rühren bei Raumtemperatur wurde abfiltriert, zweimal mit je 30 ml Heptan und zweimal mit je 30 ml Pentan gewaschen und anschließend am Ölpumpenvakuum getrocknet.

1.2 Trägerung der Katalysatorsysteme

[0043] Zu einer Lösung aus 30 ml Toluol, 40 µmol Dimethylsilandiyl-bis(2-methylbenzo[e]indenyl)zirkondichlorid(≙ 23 mg) und 25 µmol rac[1,2-Ethandiylbis{1-(4,7-dimethyl-4.5,6,7-tetrahydroindenyl)}]zirkondichlorid(≙ 12 mg) wurden 17 ml (≙ 26 mmol) einer Lösung von Methylalumoxan in Toluol (1,53 molar, Fa. Witco) gegeben und 15 Minuten gerührt. Anschließend wurden 5 g des in 1.1 hergestellten Trägermaterials zugegeben und weitere 30 Minuten gerührt. Zuletzt wurde das Lösungsmittel bei Raumtemperatur während 4 Stunden am Ölpumpenvakuum entfernt. Es entstand ein gut rieselfähiges Katalysatorpulver aus zwei Metallocen-Katalysatorsystemen.

1.3 Polymerisation

20

40

[0044] In einem trockenen, mit Stickstoff gespülten 10-Liter-Autoklaven wurden nacheinander 20 g Polypropylengrieß und 12 ml Triethylaluminium (1 molare Lösung in Heptan) gegeben und 15 min gerührt. Anschließend wurden 1,5 g des in 1.2 hergestellten Trägerkatalysators im Stickstoff-Gegenstrom in den Reaktor gefüllt und dieser verschlossen. Bei einer Rührerdrehzahl von 350 U/min wurde auf 70°C aufgeheizt und gleichzeitig der Innendruck stufenweise durch Propylenzufuhr bis zum Enddruck von 28 bar erhöht. Anschließend wurde 1,5 h polymerisiert, wobei durch die automatische Druckregelung Frischpropylen nachgeführt wurde. Nach beendeter Reaktion wurde während 10 min auf Atmosphärendruck entspannt und das entstandene Polymere, welches aus zwei unterschiedlichen Propylenhomopolymerisaten bestand, im Stickstoffstrom ausgetragen. Die entsprechenden Polymerisationsergebnisse sind in der Tabelle aufgelistet.

Beispiel 2

2.1 Metallocenhaltiges Katalysatorsystem der Formel (II)

[0045] Entsprechend dem im Beispiel 1.2 beschriebenen Verfahren wurden 60 µmol rac[1,2-Ethandiyl-bis[1-(4,7-di-methyl-4,5,6,7-tetrahydroindenyl))]zirkondichloric (29 mg) und 16 ml (24 mmol) einer 1,53 molaren Lösung von Methylalumoxan in Toluol eingesetzt.

2.2 Ziegler-Natta-Katalysatorsystem

[0046] 20 g SiO₂ ("SG 332" der Firma Grace mit einem Teilchendurchmesser von 20 bis 45 μm) wurden in 200 ml n-Heptan suspendiert und bei 20°C mit 25,33 ml n-Butyl-n-Octyl-Magnesium versetzt. Die Suspension wurde bis zum Rückfluß erhitzt und 30 Minuten lang auf Rückfluß gehalten. Nach anschließendem Abkühlen der Suspension auf Raumtemperatur wurde beginnend bei 60°C zwei Stunden lang mit überschüssigem HCl chloriert und danach wurden bei Raumtemperatur 19,41 ml Ethanol hinzugefügt. Das Gemisch wurde zunächst 30 Minuten am Rückfluß gehalten und nach erneutem Abkühlen auf 25°C mit 17,07 ml Titantetrachlorid versetzt, anschließend erneut auf 60°C erhitzt und bei dieser Temperatur mit 2,94 ml Di-n-butylphthalsäureester versetzt. Das Gemisch wurde eine Stunde lang am Rückfluß gehalten. Die daraus resultierende Suspension wurde filtriert und mit 160 ml Ethylbenzol gewaschen. Nach Trocknung erhielt man 29,2 g der Katalysatorvorstufe.

[0047] Die erhaltene Katalysatorvorstufe wurde in einer heizbaren Extraktionsfritte unter Rühren 60 Minuten lang mit einem Gemisch aus 450 ml Ethylbenzol und 50 ml Titantetrachlorid bei einer Manteltemperatur von 125°C extrahiert. Der Katalysator wurde anschließend dreimal mit jeweils 120 ml n-Hexan und einmal mit 120 ml n-Pentan gewaschen und im Stickstoffstrom getrocknet. Der Katalysator enthielt 2,0 Gew.-% Magnesium.

[0048] Die titanhaltige Feststoffkomponente wurde danach zunächst einer Vorpolymerisation unterworfen und anschließend inaktiviert. Dazu wurden in einem mit einem Rührer versehenen 1 I-Glasautoklaven 700 ml n-Heptan vorgelegt und das Reaktionsgefäß auf eine Innentemperatur von 5°C abgekühlt. Zu dem Lösungsmittel wurden 47,4 ml

Triethylaluminium (in Form einer 1,0-molaren Lösung in n-Heptan) und 6,26 ml Dimethoxyisobutylisopropylsilan (in Form einer 1,0-molaren Lösung in n-Heptan) zugegeben. Anschließend wurden 20 g der hergestellten titanhaltigen Feststoffkomponente zugegeben. Unter Rühren wurde dann kontinuierlich über ein Einleitungsrohr eine Stunde lang gasförmiges Propylen (Durchflüßmenge: 40 l/h) bei einem Druck von 1 bar eingeleitet. Während der Propylenzuführ wurde die Innentemperatur zwischen 5°C und 20°C gehalten. Nach erfolgter Propylenzufuhr wurde dann kontinuierlich unter Rühren über ein Einleitungsrohr 1 h lang gasförmiges, trockenes CO₂ (Durchflußmenge: 14,5 l/h bei einem Druck von 1 bar) in die Katalysatorsuspension eingeleitet. Dadurch wurde die polymerisationsaktive Katalysatorsuspension inaktiviert.

[0049] Man erhielt 90 g eines Feststoffes, der 3,1 Gewichtsteile Polypropylen auf ein Gewichtsteil Katalysatorfeststoff enthielt.

[0050] Der dabei resultierende Feststoff ist das Ziegler-Natta-Katalysatorsystem.

2.3 Polymerisation

[0051] Die Polymerisation des Propylens wurde analog dem Beispiel 1.3 in einer Reaktionszone in Anwesenheit von 1,3 g des nach dem Beispiel 2.2 hergestellten Ziegler-Natta-Katalysatorsystems und 0,5 g des im Beispiel 2.1 beschriebenen metallocenhaltigen Katalysatorsystems durchgeführt. Die entsprechenden Polymerisationsergebnisse sind in der Tabelle aufgeführt.

20 Beispiel 3

3.1 Trägerung der Katalysatorsysteme

[0052] Analog zu dem in 1.2 beschriebenen Verfahren wurden 25 μmol rac[1,2-Ethandiylbis[1-(4,7-dimethyl-4,5,6,7-tetrahydroindenyl)]]zirkondichlorid(\triangleq 12 mg) in 20 ml Toluol gelöst und zu 6,5 ml (\triangleq 10 mmol) einer Lösung von Methylalumoxan in Toluol (1,53 molar, Fa. Witco) gegeben und 15 Minuten gerührt. Anschließend wurden 5 g des in 2.2 hergestellten Ziegler-Natta-Katalysatorsystems zugegeben und weitere 30 Minuten gerührt. Zuletzt wurde das Lösungsmittel bei Raumtemperatur während 4 Stunden am Ölpumpenvakuum entfernt. Es entstand ein gut rieselfähiges Katalysatorpulver aus einem Ziegler-Natta- und einem Metallocen-Katalysatorsystem.

3.2 Polymerisation

[0053] Die Polymerisation wurde mit 1,5 g des in 3.1 hergestellten Trägerkatalysators analog zu dem in 1.3 beschriebenen Verfahren durchgeführt. Die entsprechenden Polymerisationsergebnisse sind in der Tabelle aufgeführt.

[0054] Die Schmelzpunkte und Glastemperaturen der erhaltenen Propylenpolymerisate wurden mittels DSC-Messungen (10°C/1 min Aufheizrate) bestimmt. Bei allen Proben wurden jeweils zwei Schmelzpunkte und zwei Glastemperaturen gefunden, die jeweils den beiden Komponenten A) und B) zugeordnet werden konnten.

[0055] Der G-Modul wurde nach DIN 53 445 und die Charpy-Schlagzähigkeiten an nach DIN 53 453 bestimmt.

[0056] Die Produktivitäten [g/g Kat-h] beziehen sich auf die Gesamtmenge des Katalysators, also auf die Summe der Menge der beiden unterschiedlichen Katalysatorsysteme.

[0057] Die Trennung nach TREF (Temperature Bising Elution Fractionation) diente dazu, die jeweiligen Anteile der Propylen-Homopolymerisate A) [gebildet am Ziegler-Natta-Katalysatorsystem oder am metallocenhaltigen Katalysatorsystem, das von dem der Formel (I) oder (II) verschieden ist] und der des Propylen-Homopolymerisats B) [gebildet am metallocenhaltigen Katalysatorsystem der Formel (I) oder (II)] zu ermitteln. Dazu wurden mit Hilfe von Xylol bei unterschiedlichen, steigenden Temperaturen Fraktionen aus dem gesamten Propylenpolymerisat herauseluiert. Die Fraktion, die man bei 80°C erhielt, entsprach dem Propylen-Homopolymerisat B), die gesammelte Fraktion, die man bei 100°C und 130°C eluierte, dem Propylen-Homopolymerisat A) (US-A 50 30 713; L. Wild "Advances in Polymer Science" 98, Seite 1-47, 1990).

50

30

EP 0 643 100 B2

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

55

Beispiel	Ausbeute	Produktivitat	Schmelz	Schmelzpunkte	Glastemp	Glastemperaturen	G-Modul
	(6)	[g/g Kat · h]	[°C]	.5	(o _c)	2)	[N/mm ²]
			¥	B)	(¥	B)	
-	1380	613	145	119	-2	-22	009
7	1160	430	163	120	п	-23	260
~	1430	635	162	121	0	-22	550

Tabelle

	Т				_
	130°C	7,0	29,3	24,6	
Trennung nach TREF [Gew%]	100°C	8 '69	46,7	49,3	
F	2°08	23,2	24.0	26, 1	
	bei -20°C	0.4	30	35	len
Schlagzáhigkeit an [kJ/m²]	bei 0°C	n.b.	n.b.	n.b.	nicht gebrochen
S	bei 23°C	n.b.	n.b.	n.b.	n.b.

Patentansprüche

45

worin

- 1. Propylenpolymerisate, enthaltend
- 5 A) von 30 bis 95 Gew.-% eines teilkristallinen Propylen-Homopolymerisats mit einem Schmelzpunkt im Bereich von 125°C bis 165°C und einer Glastemperatur, die größer als -10°C ist
- B) von 5 bis 70 Gew.-% eines teilkristallinen Propylen-Homopolymerisats mit einem Schmelzpunkt unter 130°C und einer Glastemperatur, die kleiner als oder gleich -10°C ist oder ein nicht kristallisierendes Propylen-Homopolymerisat mit einer Glastemperatur, die kleiner als oder gleich -10°C ist.
- Propylenpolymerisate nach Anspruch 1, dadurch erhältlich, daß das Propylen-Homopolymerisat B) unter Verwendung eines Katalysatorsystems, das als aktive Bestandteile einen Metallocenkomplex der allgemeinen Formel I oder II

 \mathbb{R}^5 R5 R4 R4 20 \mathbb{R}^3 25 (CR8R9)m (CR8R9)m \mathbb{R}^1 30 (I) (II) Ŕ7 Ŕ7 $\mathbb{R}^{2^{-}}$ (CR8R9)n (CR8R9)n 35 40 R5 R5 R4 \mathbb{R}^4

M1 ein Metall der Gruppe IVb, Vb oder VIb des Periodensystems ist,

50 R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Arylgruppe, eine C_2 - C_{10} -Arylgruppe, eine C_2 - C_{10} -Arylgruppe, eine C_3 - C_4 - C_4 -Arylgruppe, eine C_3 - C_4 - $C_$

55 R³ und R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Aikylgruppe, die halogeniert sein kann, eine C₂-C₁₀-Arylgruppe, einen -NR₂¹⁰, -SR¹⁰, -OSiR₃¹⁰ -SIR₃¹⁰ oder -PR₂¹⁰-Rest bedeuten, worin R¹⁰ ein Halogenatom, eine C₁-C₁₀-Alkylgruppe oder eine C₂-C₁₀-Arylgruppe ist,

R⁵ und R⁶ gleich oder verschieden sind und die für R³ und R⁴ genannte Bedeutung haben, mit der Maßgabe, daß R⁵ und R⁶ nicht Wasserstoff sind.

R7

15

20

30

35

40

5

10

 $=BR^{11}$, $=AIR^{11}$, $-Ge^{-}$, $-Sn^{-}$, $-O^{-}$, $-S^{-}$, =SO, $=SO_{2}$, $=NR^{11}$, =CO, $=PR^{11}$ oder $=P(O)R^{11}$ ist,

25 wobei

R¹¹, R¹² und R¹³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Al-kylgruppe, C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀ Arylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe, eine C₇-C₄₀-Alkylarylgruppe bedeuten oder R¹¹ und R¹² oder R¹¹ und R¹³ jeweils mit den sie verbindenden Atomen einen Ring bilden,

M² Silizium, Germanium oder Zinn ist,

R⁸ und R⁹ gleich oder verschieden sind und die für R¹¹ genannte Bedeutung haben und

m und n gleich oder verschieden sind und null, 1 oder 2 sind, wobei m plus n null, 1 oder 2 ist,

und eine oligomere Aluminiumoxidverbindung enthält, hergestellt wird.

- Propylenpolymerisate nach den Ansprüchen 1 bis 2, dadurch erhältlich, daß das Propylen-Homopolymerisat A) unter Verwendung eines Ziegler-Natta-Katalysatorsystems hergestellt wird.
- 45 4. Propylenpolymerisate nach den Ansprüchen 1 bis 2, dadurch erhältlich, daß das Propylen-Homopolymerisat A) unter Verwendung eines Katalysatorsystems, das als aktive Bestandteile von der Formel I und II verschiedene Metallocenkomplexe von Metallen der IV. oder V. Nebengruppe des Periodensystems und oligomere Aluminium-oxidverbindung enthält, hergestellt wird.
- 50. Verfahren zur Herstellung von Propylenpolymerisaten gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Herstellung der Komponenten A) und B) zusammen, in Anwesenheit zweier unterschiedlicher, in den Ansprüchen 2 bis 4 beschriebener Katalysatorsysteme, in einer Reaktionszone erfolgt.
- Verfahren zur Herstellung von Propylenpolymerisaten nach Anspruch 5, dadurch gekennzeichnet, daß man in der Gasphase arbeitet.
 - Verwendung von Propylenpolymerisaten gemäß den Ansprüchen 1 bis 6 zur Herstellung von Fasern, Folien und Formkörpern.

8. Fasern, Folien und Formkörper, erhältlich aus den Propylenpolymerisaten gemäß den Ansprüchen 1 bis 6 als wesentliche Komponente.

5 Claims

1. A propylene polymer containing

A) from 30 to 95% by weight of a semicrystalline propylene homopolymer having a melting point of 125 to 165°C and a glass transition temperature which is greater than -10°C

and

B) from 5 to 70% by weight of a semicrystalline propylene homopolymer having a melting point below 130°C and a glass transition temperature which is less than or equal to -10°C or a non-crystallizing propylene homopolymer having a glass transition temperature which is less than or equal to -10°C.

R5

MI

 \mathbb{R}^4

(CR8R9)m

(CRBR9)n

 \mathbb{R}^3

R4

Ŕ7

(II)

2. A propylene polymer as claimed in claim 1, obtainable by preparing the propylene homopolymer B) using a catalyst system which contains, as active components, a metallocene complex of the formula I or II

20

10

15

30

 \mathbb{R}^4

(CR8R9)n

R4

35

40

45

50

55

where

M¹

is a metal of group IVb, Vb or VIb of the Periodic Table,

R1 and R2

are identical or different and are each hydrogen, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_6 - C_{10} -aryl, C_6 - C_{10} -arylakenyl, C_7 - C_{40} -arylakyl, C_7 - C_{40} -arylakenyl, C_8 - C_{40} -arylakenyl or halogen,

R5

R3 and R4

are identical or different and are each hydrogen, halogen, C_1 - C_{10} -alkyl which may be halogenated, C_6 - C_{10} -aryl, -NR $_2$ ¹⁰, -SR $_3$ 10, -SiR $_3$ 10 or -PR $_2$ 10, where R10 is halogen,

C1-C10-alkyl or C6-C10-aryl,

R5 and R6

are identical or different and have the meaning stated for R³ and R⁴, with the proviso that R⁵ and R⁶ are not hydrogen,

R7

ie

10

5

15

20

25

$$=BR^{11}$$
, $=AIR^{11}$, $-Ge-$, $-Sn-$, $-O-$, $-S-$, $=SO$, $=SO_2$, $=NR^{11}$, $=CO$, $=PR^{11}$ or $=P(O)R^{11}$,

R11, R12 und R13

are identical or different and are each hydrogen, halogen, C_1 - C_{10} -alkyl, C_1 - C_{10} -fluoroalkyl, C_6 - C_{10} -aryl, C_6 - C_{10} -fluoroaryl, C_1 - C_{10} -alkoxy, C_2 - C_{10} -alkenyl, C_7 - C_{40} -arylalkyl, C_8 - C_{40} -arylalkyl or C_7 - C_{40} -alkylaryl or C_7 - $C_$

30

35

45

50

M² is silicon, germanium or tin,

R8 and R9

are identical or different and each have the meaning stated for R11 and

m and n

are identical or different and are each zero, 1 or 2, m plus n being zero, 1 or 2,

and an oligomeric alumina compound.

- A propylene polymer as claimed in claim 1 or 2, obtainable by preparing the propylene homopolymer A) using a Ziegler-Natta catalyst system.
 - 4. A propylene polymer as claimed in claim 1 or 2, obtainable by preparing the propylene homopolymer A) using a catalyst system which contains, as active components, metallocene complexes of metals of subgroup IV or V of the Periodic Table, which complexes differ from those of the formula I and II, and an oligomeric alumina compound.
 - 5. A process for the preparation of a propylene polymer as claimed in any of claims 1 to 4, wherein components A) and B) are prepared together in one reaction zone in the presence of two different catalyst systems described in any of claims 2 to 4.
 - 6. A process for the preparation of a propylene polymer as claimed in claim 5, which is carried out in the gas phase.
 - 7. The use of a propylene polymer as claimed in any of claims 1 to 6 for the production of fibers, films and moldings.
- A fiber, film or molding obtainable from a propylene polymer as claimed in any of claims 1 to 6 as the essential component.

Revendications

1. Polymères de propylène contenant

 A) de 30% à 95% en poids d'un homopolymère de propylène partiellement cristallin dont le point de fusion se situe dans la gamme de 125°C à 165°C et dont la température de transition vitreuse est supérieure à -10°C,

et

B) de 5% à 70% en poids d'un homopolymère de propylène partiellement cristallin dont le point de fusion est inférieur à 130°C et dont la température de transition vitreuse est inférieure ou égale à -10°C, ou un homopolymère de propylène qui ne cristallise pas, dont la température de transition vitreuse est inférieure ou égale à -10°C.

Polymères de propylène selon la revendication 1, que l'on obtient en préparant l'homopolymère de propylène B)
en utilisant un système de catalyseur contenant, en tant que constituants actifs, un complexe de métallocène
répondant à la formule générale I ou II

5

10

30

35

45

50

55

R⁵
R⁶
(CR⁸R⁹)_m
R⁷
(CR⁸R⁹)_n
R⁸
R⁸
R⁸
R⁹

R¹
R⁶

R4

(CR8R9) m

(CR8R9)n

R7

(II)

dans lesquelles

M¹ R¹ et R² représente un métal du groupe IVb, Vb ou Vlb de la Classification Périodique des Eléments, sont identiques ou différents et représentent un atome d'hydrogène, un groupe alkyle en C_1 à C_{10} , un groupe alcoxy en C_1 à C_{10} , un groupe aryle en C_6 à C_{10} , un groupe aryle en C_6 à C_{10} , un groupe alcényle en C_7 à C_{10} , un groupe arylakyle en C_7 à C_{40} , un groupe alkylaryle en C_7 à C_{40} , un groupe

arylalcényle en C₈ à C₄₀ ou un atome d'halogène,

R³ et R⁴

sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C_1 à C_{10} qui peut être halogéné, un groupe aryle en C_6 à C_{10} , un radical -NR $_2^{10}$, -SR $_2^{10}$, -OSiR $_3^{10}$, -SiR $_3^{10}$ ou -PR $_2^{10}$, où R $_2^{10}$ représente un atome d'halogène, un groupe alkyle en C_1 à C_{10} ou un groupe aryle en C_6 à C_{10} .

R⁵ et R⁶ sont identiques ou différents et possèdent la signification mentionnée pour R³ et R⁴, à condition que R⁵ et R⁶ ne représentent pas un atome d'hydrogène,

R⁷ représente :

5

10

15

20

30

35

45

50

=BR¹¹, =AIR¹¹, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹¹, -CO, =PR¹¹ ou =P(O)R¹¹,

25 où

R11, R12 et R13 sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C_1 à C_{10} , un groupe fluoroalkyle en C_1 à C_{10} , un groupe aryle en C_6 à C_{10} , un groupe alcoxy en C_1 à C_{10} , un groupe alcényle en C_2 à C_{10} , un groupe arylalkyle en C_7 à C_{40} , un groupe arylalcényle en C_8 à C_{40} , un groupe alkylaryle

 C_{10} , un groupe arylalkyle en C_7 à C_{40} , un groupe arylalcényle en C_8 à C_{40} , un groupe alkylaryle en C_7 à C_{40} , ou bien R^{11} et R^{12} ou R^{11} et R^{13} forment chacun un noyau avec les atomes qui les relient,

M² représente un atome de silicium, de germanium ou d'étain,

R⁸ et R⁹ sont identiques ou différents et possèdent la signification mentionnée pour R¹¹, et

m et n sont identiques ou différents et valent zéro, 1 ou 2, la somme de m et de n étant égale à zéro, 1 ou 2.

ainsi qu'un composé d'oxyde d'aluminium oligomère.

- Polymères de propylène selon les revendications 1 à 2, que l'on obtient en préparant l'hornopolymère de propylène
 A) en utilisant un système de catalyseur Ziegler-Natta.
 - 4. Polymères de propylène selon les revendications 1 à 2, que l'on obtient en préparant l'homopolymère de propylène A) en utilisant un système de catalyseur contenant, en tant que constituants actifs, des complexes de métallocènes à base de métaux du sous-groupe IV ou V de la Classification Périodique des Eléments, différents de ceux répondant aux formules I et II, et un composé d'oxyde d'aluminium oligomère.
 - 5. Procédé pour la préparation de polymères de propylène selon les revendications 1 à 4, caractérisé en ce que l'on réalise la préparation des composants A) et B) conjointement, en présence de deux systèmes de catalyseurs différents décrits dans les revendications 2 à 4, dans une seule zone de réaction.
 - 6. Procédé pour la préparation de polymères de propylène selon la revendication 5, caractérisé en ce que l'on travaille en phase gazeuse.
- Utilisation de polymères de propylène selon les revendications 1 à 6, pour la fabrication de fibres, de feuilles et de corps façonnés.
 - 8. Fibres, feuilles et corps façonnés que l'on obtient à partir des polymères de propylène selon les revendications 1

à 6, en tant que composants essentiels.

EP0643100 A1

Low temperature impact-resistant composition of semicrystalline propylene homopolymers BASF Aktiengesellschaft

Inventor(s): Seelert, Stefan, Dr.; Langhauser, Franz, Dr.; Kerth, Jürgen, Dr.; Müller, Patrick, Dr.; Fischer, David, Dr.; Schweier, Günther, Dr.

Application No. EP94113857 A1 EP, Filed 19940903, A1 Published 19950315

Abstract: Propylene polymers containing A) a partially crystalline propylene homopolymer having a melting point in the range from 125 to 165°C and a glass transition temperature above -10°C, and B) a partially crystalline propylene homopolymer having a melting point of below 130°C and a glass transition temperature of less than or equal to -10°C or a non-crystallising propylene homopolymer having a glass transition temperature less than or equal to -10°C.

Int'l Class: C08L02312;

Priority: DE 4330661 19930910

Designated States: BE DE ES FR GB IT NL

Patents Cited:

EP0550214 (X) [0]

DE3827565 (YD) [0]

DE4130429 (YD) [0]

EP0537686 (AD) [0]

Patents Citing This One (3):

EP0943631A1 19990922 BASF AKTIENGESELLSCHAFT

Propylene polymers

WO0146274A1 20010628 BASELL POLYOLEFINE GMBH

PARTLY CRYSTALLINE PROPYLENE POLYMERISATE COMPOSITION FOR

PRODUCTION OF BIAXIAL-STRETCHED POLYPROPYLENE FILMS

WO9623838A1 19960808 EXXON CHEMICAL PATENTS INC.

THERMOPLASTIC PROPYLENE ELASTOMERS AND ONE POT/TWO

CATALYSTS PROCESS TO PRODUCE THEM