Medical Image Processing for Interventional Applications

Super-Resolution: Introduction

Online Course – Unit 20 Andreas Maier, Thomas Köhler, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

What is Image Super-Resolution?

Cameras and Sampling

The Sampling Theorem Sampling of Real Cameras Quantization and Image Noise

Summary

Take Home Messages Further Readings

Digital imaging systems perform a non-ideal mapping of a scene to the image plane of a camera:

- (Down-)sampling: continuous real world scene ↔ discrete representation with finite resolution
- Blur/diffraction: non-ideal mapping of points and edges
- Noise: induced by camera sensors

Digital imaging systems perform a non-ideal mapping of a scene to the image plane of a camera:

- (Down-)sampling: continuous real world scene ↔ discrete representation with finite resolution
- Blur/diffraction: non-ideal mapping of points and edges
- Noise: induced by camera sensors
- \rightarrow Small details in the scene get lost in a 2-D image.

Digital imaging systems perform a non-ideal mapping of a scene to the image plane of a camera:

- (Down-)sampling: continuous real world scene ↔ discrete representation with finite resolution
- Blur/diffraction: non-ideal mapping of points and edges
- Noise: induced by camera sensors
- → Small details in the scene get lost in a 2-D image.

Definition

Super-resolution is the process of obtaining high-resolution images from observed low-resolution images.

Basic approaches to image super-resolution:

- Instrumental super-resolution (hardware-based):
 - Engineering of the characteristics of the imaging system
 - Widely used in microscopy (STED, RESOLFT)

Basic approaches to image super-resolution:

- Instrumental super-resolution (hardware-based):
 - Engineering of the characteristics of the imaging system
 - Widely used in microscopy (STED, RESOLFT)
- In this course: computational super-resolution (software-based):
 - Retrospective approach to image super-resolution (reconstruction algorithms)
 - Aims at overcoming limitations related to digital sampling and/or diffraction
 - ullet No modifications of the underlying camera hardware (sensor and optics) o low-cost solution

Super-Resolution Applications

Various applications for image superresolution algorithms:

- Consumer electronics
- Surveillance cameras
- Remote sensing
- Medical imaging:
 - Ophthalmic imaging
 - Image-guided surgery
 - Radiology
- and more ...

Figure 1: Super-resolving car license plates

Figure 2: Super-resolving text document images

Topics

What is Image Super-Resolution?

Cameras and Sampling

The Sampling Theorem Sampling of Real Cameras Quantization and Image Noise

Summary

Take Home Messages Further Readings

Sampling in 2-D

Definitions:

- f(x, y) is a continuous, real-valued signal.
- If f(x,y) is sampled in x- and y-direction, it can be represented by discrete values $f_{m,n}$ where:
 - $f_{m,n} = f(m \cdot \Delta x, n \cdot \Delta y) \in \mathbb{R}$,
 - Δx and Δy denote the sample spacing (sample pitch) on a regular grid,
 - for a finite regular grid f(x, y) is limited to a range $x_0 \le x \le x_1$ and $y_0 \le y \le y_1$.

Figure 3: Example of a function sampling

Is it possible to reconstruct f(x,y) from samples $f_{m,n}$ without loss of information? \to Sampling theorem

Sampling in 2-D

Mathematical modeling of the sampling process:

Ideal sampling is modeled by a sequence of Dirac delta functions:

$$\Delta(x,y) = \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y),$$

where a single Dirac delta is given by

$$\delta(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ and } y = 0, \\ 0, & \text{otherwise.} \end{cases}$$

The discrete samples are determined by

$$f_{m,n} = \Delta(x,y)f(x,y).$$

Sampling Theorem

Band-limited signals:

• Let F(u, v) be the Fourier transform of the continuous signal f(x, y):

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{-2\pi i(ux+vy)} dx dy$$

• For the formulation of the sampling theorem we consider **band-limited** signals f(x,y):

$$F(u, v) = 0$$
 for $|u| > u_0$ or $|v| > v_0$.

Sampling Theorem

Sampling theorem according to Shannon and Nyquist (for low-pass signals):

The continuous signal f(x,y) is completely determined by its discrete samples:

$$f_{m,n} = f(m \cdot \Delta x, n \cdot \Delta y) \in \mathbb{R}$$
 for $m, n = 0, 1, 2, ...$

without loss of information if and only if

$$\Delta x \leq \frac{1}{2u_0}$$
 and $\Delta y \leq \frac{1}{2v_0}$.

Sampling Theorem

Sampling theorem according to Shannon and Nyquist (for low-pass signals):

The continuous signal f(x,y) is completely determined by its discrete samples:

$$f_{m,n} = f(m \cdot \Delta x, n \cdot \Delta y) \in \mathbb{R}$$
 for $m, n = 0, 1, 2, ...$

without loss of information if and only if

$$\Delta x \leq \frac{1}{2u_0}$$
 and $\Delta y \leq \frac{1}{2v_0}$.

In other words: We can reconstruct f(x,y) from $f_{m,n}$ if the sampling rates $1/\Delta x$ and $1/\Delta y$ are high enough.

Aliasing

Violation of the sampling theorem:

- If the sampling theorem is not fulfilled, aliasing is induced.
- Aliasing: High frequencies in the original signal are mapped to low frequencies in the sampled signal.

Figure 4: Original checkerboard pattern (left), resampled pattern with aliasing artifacts (right)

Sampling of Real Cameras

Generalization of the sampling process:

- A real camera cannot sample with ideal Dirac functions since the sensor array consists of pixels of finite size.
- The signal has to pass the **point spread function** (PSF) h(x,y).
- For a space-invariant PSF, one discrete sample $f_{m,n}$ is given by

$$f_{m,n} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)h(x-m\Delta x,y-n\Delta y) dx dy,$$

i. e., $f_{m,n}$ is a weighted sum of the surrounding intensities f(x,y) collected at the sensor array (convolution of f(x,y) with the PSF).

Sampling of Real Cameras

Ideal sampling: If we could sample with an ideal Dirac sequence, ideal edges from the real world would be mapped onto ideal edges in an image.

Figure 5: Ideal Dirac sequence in 1-D (left), ideal sampling (right)

Sampling of Real Cameras

Sampling under real-world conditions: If we sample with a real camera, ideal edges get blurred in the observed images.

Figure 6: Gaussian PSF kernel in 1-D (left), real sampling (right)

Quantization and Image Noise

Consider noise in the image formation process:

- Discrete samples cannot be obtained and stored with infinite accuracy:
 - 8-bit quantization for grayscale images,
 - 24-bit quantization for RGB color images.
- Furthermore, noise is induced in the sensor array.

Quantization and Image Noise

Consider noise in the image formation process:

- Discrete samples cannot be obtained and stored with infinite accuracy:
 - 8-bit quantization for grayscale images,
 - 24-bit quantization for RGB color images.
- Furthermore, noise is induced in the sensor array.

Total observation model: The sampled signal is disturbed by additive noise $\varepsilon_{m,n}$:

$$f_{m,n} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)h(x-m\Delta x,y-n\Delta y)dxdy + \varepsilon_{m,n}.$$

We assume $\varepsilon_{m,n}$ to be the interference of different noise sources and therefore to be spatially invariant Gaussian noise (\rightarrow central limit theorem).

Topics

What is Image Super-Resolution?

Cameras and Sampling

The Sampling Theorem Sampling of Real Cameras Quantization and Image Noise

Summary

Take Home Messages Further Readings

Take Home Messages

- Super-resolution algorithms enhance the resolution of an image which makes them highly interesting not only for medical applications.
- The sampling theorem allows us to determine a discrete sampling pattern which perfectly samples a given signal.
- A real camera has a limited sampling capability and we have to deal with noise as well.

Further Readings

Theory of image super-resolution (books and review articles):

- Hayit Greenspan. "Super-Resolution in Medical Imaging". In: The Computer Journal 52.1 (Feb. 2008), pp. 43-63. DOI: 10.1093/comjnl/bxm075
- Peyman Milanfar, ed. Super-Resolution Imaging. Digital Imaging and Computer Vision. CRC Press, 2011
- Sina Farsiu et al. "Advances and Challenges in Super-Resolution". In: International Journal of Imaging Systems and Technology 14.2 (Aug. 2004), pp. 47–57. DOI: 10.1002/ima.20007
- Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. "Super-Resolution Image Reconstruction: A Technical Overview". In: *IEEE Signal Processing Magazine* 20.3 (May 2003), pp. 21–36. DOI: 10.1109/MSP.2003.1203207