Production Supporting Systems in Factories

ระบบสนับสนุนการผลิตในโรงงานอุตสาหกรรม

Topic

- อุปกรณ์ตรวจวัดอัจฉริยะ
- ระบบสารสนเทศ
- Industrial Control System (ICS)
 - SCADA (Supervisory control and data acquisition)
 - DCS (Distributed control systems)

SCADA

Supervisory control and data acquisition

SCADA

- A system of software and hardware elements that allows industrial organizations to:
 - Control industrial processes locally or at remote locations
 - Directly interact with devices such as sensors, valves, pumps, motors, and more through human-machine interface (HMI) software
 - Monitor, gather, and process real-time data
 - Record events into a permanent storage.

Architecture

- PLC (Programmable Logic Controller) and/or RTU (Remote Terminal Units)
- **HMI** (Human Machine Interface)
- Field devices sensors and actuators
- SCADA computer

We will come back to this topic later.

• Now, let's learn about a control system by making a DIY "SCADA".

Project Demo

https://prod-sup.herokuapp.com/ui

Diagram

Link

Components

- Node-Red App running on a cloud server (Heroku Cloud)
 - Collect sensor data
 - Displaying sensor data
 - Notifying operator of the incident through Line App (on a desktop computer)
 - Writing and reading from Database (on Google Firestore)

Components (cont)

- Node-Red App runnign on mobile
 - Receive command to toogle a flashlight
 - Process and send accelerometer data
- Mosquitto App running on a cloud server (Google VM)
 - Receiving and broadcasting data from and to both Node-Red App.

Protocol

- HTTP (Hypertext Transfer Protocol)
 - Basically the "internet" protocol
- MQTT (MQ Telemetry Transport)
 - Leading open source protocol for connecting internet of things (IoT) and industrial IoT (IIoT) devices.

Comparison to SCADA components

Component	Function	SCADA Equiv.
Node-Red (Heroku)	Collect data	PLC / RTU
	Display data	SCADA computer
	Notify to Line	SCADA computer
	Write to Database	SCADA computer

Comparison to SCADA components

Component	Function	SCADA Equiv.
Node-Red (Mobile)	Control sensors	PLC / RTU
Accelerometer	Measure acceleration	Sensor
Flashlight	Light	Actuator

Enough talk. Let's get started.

Module 1-1: Setting up Node-Red

- Install Node.js
- Install Visual Studio Code

- Change default terminal in VSCode (Windows only)
 - Open a window
 - O Select terminal -> New Terminal
 - press ctrl + p
 - Type Terminal: Select Default Profile and click
 - Select cmd

- Install Node-Red
 - Create a new folder
 - Drag a folder into VSCode
 - O Select terminal -> New Terminal
 - (Terminal) npm init -y
 - (Terminal) npm install node-red
 - Create a directory called local

- Configure Node-Red
 - Click at the file package.json to edit
 - Add this line "start": "npx node-red -u ./local -p 1880"

```
{
    // ...
    "scripts": {
        "test": "echo \"Error: no test specified\" && exit 1",
        // Add a new line here
        // Don't forget to add the extra "," above.
        "start": "npx node-red -u ./local -p 1880"
    }
    // ...
}
```

- Start Node-Red
 - (Terminal) npm start
- Visit the web browser at
 - http://127.0.0.1:1880 or
 - http://localhost:1880

Module 1-2: Navigating around Node-Red

Create flows to

- Show timestamp in the debug panel.
- Show date and time using function node. (See code on the other page.)
- Send continuous random numbers. (Use Math.random())
- Use switch and change.

```
const payload = msg.payload;
const date = new Date(payload);
const dateString = date.toLocaleDateString();
const timeString = date.toLocaleTimeString();
msg.payload = dateString;
// msg.payload = timeString
// msg.payload = dateString + " " + timeString;
return msg;
```

Module 1-3: HTTP Get Request

- Send a get request to http://google.com.
- Display a response to a debug panel.
- Write a response to index.html

Module 1-4: HTTP Server

- Create a server that responses to the GET request to /hello with a string message.
- Reponse to /home with an HTML document.

Module 1-5: Public server

- Create an account at https://ngrok.com/
- Download the program.
- Copy the authtoken
- Run ./ngrok authtoken <YOUR AUTHTOKEN>
- Run ./ngrok http 1880
- Copy the URLs to the web browser.

Module 1-6

- Create a server that receives POST requests.
- Send the transformed message back.
- Try sending the post requests to your friends public address.