Методы оптимизации Лекция 4: Условия оптимальности. Введение в теорию двойственности

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

4 октября 2021 г.

На прошлой лекции

- ▶ Постановки задач выпуклой оптимизации
- ▶ LP, SOCP, SDP
- Примеры приложений

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

$$f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$$

$$\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* - \mathbf{y}\|_2} = 0 \text{ (*)}$$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Доказательство

$$f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$$

$$\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* - \mathbf{y}\|_2} = 0 \ (*)$$

▶ Если $f'(\mathbf{x}^*) \neq 0$, рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* - \tau f'(\mathbf{x}^*)$, $\tau > 0$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- lacktriangle Если $f'(\mathbf{x}^*)
 eq 0$, рассмотрим $\mathbf{y}(au) = \mathbf{x}^* au f'(\mathbf{x}^*)$, au > 0
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau ||f'(\mathbf{x}^*)||_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- ▶ В силу (*) найдётся $\bar{\tau}$ такое что для всех $\tau \in (0,\bar{\tau})$ выполнено $\frac{r(\mathbf{x}^*,\mathbf{y})}{\|\mathbf{x}^*-\mathbf{y}\|_2} \leq \frac{1}{2}\|f'(\mathbf{x}^*)\|_2$ или $r(\mathbf{x}^*,\mathbf{y}) \leq \frac{\tau}{2}\|f'(\mathbf{x}^*)\|_2^2$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- ▶ В силу (*) найдётся $\bar{\tau}$ такое что для всех $\tau \in (0, \bar{\tau})$ выполнено $\frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \leq \frac{1}{2} \|f'(\mathbf{x}^*)\|_2$ или $r(\mathbf{x}^*, \mathbf{y}) \leq \frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2$
- ▶ Откуда получим $f(\mathbf{y}(\tau)) f(\mathbf{x}^*) \le -\frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2 < 0$ Значит \mathbf{x}^* не минимум, противоречие.

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Доказательство

lacktriangle Если \mathbf{x}^* глобальный минимум, то \mathbf{x}^* локальный минимум

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если \mathbf{x}^* глобальный минимум, то \mathbf{x}^* локальный минимум
- lacktriangle Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- ▶ Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Доказательство

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Значит x* – глобальный минимум.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

Доказательство

ightharpoonup Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*$, $t \in [0,1]$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*$, $t \in [0,1]$
- ▶ Тогда в силу $\frac{d}{dt}f(\mathbf{z}(t))\big|_{t=0} = \langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^* \rangle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*, t \in [0,1]$
- ▶ Тогда в силу $\frac{d}{dt}f(\mathbf{z}(t))\big|_{t=0} = \langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^* \rangle < 0$
- lacktriangle Значит для малого t выполнено $f(\mathbf{z}(t)) < f(\mathbf{x}^*)$. Противоречие.

Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
 s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$ $h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, p$

dom $f_0 = \mathcal{D} \subseteq \mathbb{R}^n$, $f_0(\mathbf{x}^*) = p^*$

Q: как сформулировать условия оптимальности для задачи в таком виде?

Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
 s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$
$$h_j(\mathbf{x}) \le 0, \ j = 1, \dots, p$$

 $\mathsf{dom}\ f_0 = \mathcal{D} \subseteq \mathbb{R}^n,\ f_0(\mathbf{x}^*) = p^*$

Q: как сформулировать условия оптимальности для задачи в таком виде?

Лагранжиан
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x})$$

- λ_i множители Лагранжа для ограничений $g_i(\mathbf{x})=0,\ i=1,\ldots,m$
- $m{\mu}_j$ множители Лагранжа для ограничений $h_j(\mathbf{x}) \leq 0, \ j=1,\ldots,p$

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\lambda, \mu) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\lambda, \mu) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

Свойства

- Всегда вогнута
- lacktriangle Может равняться $-\infty$ для некоторых $(oldsymbol{\lambda},oldsymbol{\mu})$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ iny}$ Если $\hat{\mathbf{x}} \in \mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu} \geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ ilde{x}}$ Если $\hat{\mathbf{x}}\in\mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu}\geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

lacktriangle Минимизируя обе части по всем допустимым $\hat{\mathbf{x}}$, получим

$$p^* \ge g(\lambda, \mu)$$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ iny}$ Если $\hat{\mathbf{x}} \in \mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu} \geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

lacktriangle Минимизируя обе части по всем допустимым $\hat{\mathbf{x}}$, получим

$$p^* \ge g(\lambda, \mu)$$

Q: что теперь надо сделать с двойственной функцией, чтобы получить наилучшее приближение к p^* ?

Определение

Двойственной задачей называется следующая задача

$$\max g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

$$\text{s.t. } \pmb{\mu} \geq 0$$

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

Всегда выпуклая задача

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- Всегда выпуклая задача
- lacktriangle Обозначим $d^*=g(oldsymbol{\lambda}^*,oldsymbol{\mu}^*)$

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- Всегда выпуклая задача
- ▶ Обозначим $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция

Двойственная задача

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- Всегда выпуклая задача
- ▶ Обозначим $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция
- ightharpoonup Вектора $(m{\lambda},m{\mu})$ называются допустимыми для двойственной задачи, если $m{\mu} \geq 0$ и $(m{\lambda},m{\mu}) \in {\sf dom}\ g$

Слабая двойственность: $d^* \leq p^*$

Слабая двойственность: $d^* \leq p^*$

▶ Всегда выполняется по построению двойственной задачи

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ► Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

В общем случае НЕ выполняется

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач

Слабая двойственность: $d^* \le p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- ▶ Решение двойственной задачи даёт решение прямой задачи

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- ▶ В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- ▶ Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

lacktriangle Оценка точности решения: $f_0(\mathbf{x}) - p^* \leq f_0(\mathbf{x}) - g(oldsymbol{\lambda}, oldsymbol{\mu})$

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- ▶ В общем случае НЕ выполняется
- ▶ Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- ▶ Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- lacktriangle Оценка точности решения: $f_0(\mathbf{x}) p^* \leq f_0(\mathbf{x}) g(oldsymbol{\lambda}, oldsymbol{\mu})$
- ▶ Доказательство корректности и сходимости алгоритма

Геометрическая интерпретация

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) & g(\lambda) &= \inf_{(t,u) \in \mathcal{G}} (t + \lambda u) \\ \text{s.t. } f_1(\mathbf{x}) &\leq 0 & \mathcal{G} &= \{ (f_0(\mathbf{x}), f_1(\mathbf{x})) \mid \mathbf{x} \in \mathcal{D} \} \end{aligned}$$

Условие Слейтера и сильная двойственность

Условие Слейтера

Говорят, что выполнено условие Слейтера, если

$$\exists \bar{\mathbf{x}} \in \text{int } \mathcal{D}: \ f_i(\bar{\mathbf{x}}) < 0, \ \mathbf{A}\bar{\mathbf{x}} = \mathbf{b}$$

Теорема

Сильная двойственность выполняется для выпуклой задачи

$$\min f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{p \times n}$

если выполнено условие Слейтера.

Предположения

- ightharpoonup int $\mathcal{D} \neq \emptyset$
- ightharpoonup rank $\mathbf{A} = p$

Этапы доказательства

$$\mathcal{A} = \{ (\mathbf{u}, \mathbf{v}, t) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid \exists \mathbf{x} \in \mathcal{D} : f_i(\mathbf{x}) \leq u_i, \ \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{v}, \ f_0(\mathbf{x}) \leq t \} \ \mathbf{u}$$

$$\mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^* \}$$

Предположения

- ightharpoonup int $\mathcal{D} \neq \emptyset$
- ightharpoonup rank $\mathbf{A} = p$

Этапы доказательства

1. Введём два множества

$$\mathcal{A} = \{ (\mathbf{u}, \mathbf{v}, t) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid \exists \mathbf{x} \in \mathcal{D} : f_i(\mathbf{x}) \leq u_i, \ \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{v}, \ f_0(\mathbf{x}) \leq t \} \ \mathbf{u}$$

$$\mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^* \}$$

2. Наблюдение: $p^* = \inf\{t \mid (0,0,t) \in \mathcal{A}\}$

Предположения

- ightharpoonup int $\mathcal{D} \neq \varnothing$
- ightharpoonup rank $\mathbf{A} = p$

Этапы доказательства

$$\mathcal{A} = \{ (\mathbf{u}, \mathbf{v}, t) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid \exists \mathbf{x} \in \mathcal{D} : f_i(\mathbf{x}) \leq u_i, \ \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{v}, \ f_0(\mathbf{x}) \leq t \} \ \mathbf{u} \\ \mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^* \}$$

- 2. Наблюдение: $p^* = \inf\{t \mid (0,0,t) \in \mathcal{A}\}$
- 3. Множества ${\mathcal A}$ и ${\mathcal B}$ выпуклы, как декартово произведение выпуклых множеств

Предположения

- ightharpoonup int $\mathcal{D} \neq \emptyset$
- ightharpoonup rank $\mathbf{A} = p$

Этапы доказательства

$$\mathcal{A} = \{ (\mathbf{u}, \mathbf{v}, t) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid \exists \mathbf{x} \in \mathcal{D} : f_i(\mathbf{x}) \leq u_i, \ \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{v}, \ f_0(\mathbf{x}) \leq t \} \ \mathbf{u}$$

$$\mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^* \}$$

- 2. Наблюдение: $p^* = \inf\{t \mid (0,0,t) \in \mathcal{A}\}$
- 3. Множества $\mathcal A$ и $\mathcal B$ выпуклы, как декартово произведение выпуклых множеств
- 4. $\mathcal{A} \cap \mathcal{B} = \varnothing$ иначе противоречие с тем, что p^* минимальное значение f_0

Предположения

- ightharpoonup int $\mathcal{D} \neq \emptyset$
- ightharpoonup rank $\mathbf{A} = p$

Этапы доказательства

$$\mathcal{A} = \{ (\mathbf{u}, \mathbf{v}, t) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid \exists \mathbf{x} \in \mathcal{D} : f_i(\mathbf{x}) \leq u_i, \ \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{v}, \ f_0(\mathbf{x}) \leq t \} \ \mathbf{u}$$

$$\mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^* \}$$

- 2. Наблюдение: $p^* = \inf\{t \mid (0,0,t) \in \mathcal{A}\}$
- 3. Множества $\mathcal A$ и $\mathcal B$ выпуклы, как декартово произведение выпуклых множеств
- 4. $\mathcal{A} \cap \mathcal{B} = \emptyset$ иначе противоречие с тем, что p^* минимальное значение f_0
- 5. По теореме об отделимости существует разделяющая гиперплоскость

6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$

- 6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$
- 7. Так как (ii) выполнено для $t < p^*$, то $\mu p^* \leq \alpha$

- 6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$
- 7. Так как (ii) выполнено для $t < p^*$, то $\mu p^* \leq \alpha$
- 8. Из (i) следует, что $\tilde{\pmb{\lambda}} \geq 0$ и $\mu \geq 0$, иначе выражение слева будет неограничено снизу

- 6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$
- 7. Так как (ii) выполнено для $t < p^*$, то $\mu p^* \leq \alpha$
- 8. Из (i) следует, что $\tilde{\pmb{\lambda}} \geq 0$ и $\mu \geq 0$, иначе выражение слева будет неограничено снизу
- 9. Перейдём в (i) от записи через ${\cal A}$ к записи через ${\bf x}$ и ограничения

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \mu f_0(\mathbf{x}) \ge \alpha \ge \mu p^*$$

- 6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$
- 7. Так как (ii) выполнено для $t < p^*$, то $\mu p^* \leq \alpha$
- 8. Из (i) следует, что $\tilde{\pmb{\lambda}} \geq 0$ и $\mu \geq 0$, иначе выражение слева будет неограничено снизу
- 9. Перейдём в (i) от записи через ${\cal A}$ к записи через ${\bf x}$ и ограничения

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \mu f_0(\mathbf{x}) \ge \alpha \ge \mu p^*$$

$$L(\mathbf{x}, \tilde{\boldsymbol{\lambda}}/\mu, \tilde{\boldsymbol{\nu}}/\mu) \ge p^*, \ \mathbf{x} \in \mathcal{D} \to \min_{\mathbf{x} \in \mathcal{D}} L = g(\boldsymbol{\lambda}, \boldsymbol{\mu}) \ge p^*$$

- 6. $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{A} \to \tilde{\boldsymbol{\lambda}}^{\top} \mathbf{u} + \tilde{\boldsymbol{\nu}}^{\top} \mathbf{v} + \mu t \ge \alpha \ (i)$ $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{B} \to \mu t \le \alpha \ (ii)$
- 7. Так как (ii) выполнено для $t < p^*$, то $\mu p^* \leq \alpha$
- 8. Из (i) следует, что $\tilde{\pmb{\lambda}} \geq 0$ и $\mu \geq 0$, иначе выражение слева будет неограничено снизу
- 9. Перейдём в (i) от записи через ${\cal A}$ к записи через ${\bf x}$ и ограничения

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \mu f_0(\mathbf{x}) \ge \alpha \ge \mu p^*$$

$$L(\mathbf{x}, \tilde{\boldsymbol{\lambda}}/\mu, \tilde{\boldsymbol{\nu}}/\mu) \ge p^*, \ \mathbf{x} \in \mathcal{D} \to \min_{\mathbf{x} \in \mathcal{D}} L = g(\boldsymbol{\lambda}, \boldsymbol{\mu}) \ge p^*$$

11. Но в силу слабой двойственности $g(\pmb{\lambda}, \pmb{\mu}) \leq p^*$, значит $g(\pmb{\lambda}, \pmb{\mu}) = p^*$ и выполнена сильная двойственность.

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) \ge 0$$
 (3)

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) \ge 0$$
 (3)

для всех $\mathbf{x} \in \mathcal{D}$

13. Возьмём $\tilde{\mathbf{x}}\in \mathrm{int}~\mathcal{D}$, для которого выполнено условие Слейтера, тогда $\sum\limits_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}})\geq 0$, но $f_i(\tilde{\mathbf{x}})<0$ и $\tilde{\lambda}_i>0 \to \tilde{\pmb{\lambda}}=0$

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) \ge 0$$
 (3)

- 13. Возьмём $\tilde{\mathbf{x}}\in \mathrm{int}\ \mathcal{D}$, для которого выполнено условие Слейтера, тогда $\sum\limits_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}})\geq 0$, но $f_i(\tilde{\mathbf{x}})<0$ и $\tilde{\lambda}_i>0 o \tilde{\pmb{\lambda}}=0$
- 14. Из (3) и предыдущего пункта следует, что $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\mathbf{x} \mathbf{b}) \geq 0$ для всех $\mathbf{x} \in \mathcal{D}$, но $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\tilde{\mathbf{x}} \mathbf{b}) = (\mathbf{A}^{\top}\tilde{\boldsymbol{\nu}})^{\top}\tilde{\mathbf{x}} \tilde{\boldsymbol{\nu}}^{\top}\mathbf{b} = 0$

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) \ge 0$$
 (3)

- 13. Возьмём $ilde{\mathbf{x}}\in \mathrm{int}\ \mathcal{D}$, для которого выполнено условие Слейтера, тогда $\sum\limits_{i=1}^m ilde{\lambda}_i f_i(ilde{\mathbf{x}})\geq 0$, но $f_i(ilde{\mathbf{x}})<0$ и $ilde{\lambda}_i>0 o ilde{\lambda}=0$
- 14. Из (3) и предыдущего пункта следует, что $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\mathbf{x} \mathbf{b}) \geq 0$ для всех $\mathbf{x} \in \mathcal{D}$, но $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\tilde{\mathbf{x}} \mathbf{b}) = (\mathbf{A}^{\top}\tilde{\boldsymbol{\nu}})^{\top}\tilde{\mathbf{x}} \tilde{\boldsymbol{\nu}}^{\top}\mathbf{b} = 0$
- 15. Значит если ${\bf A}^{\top} \tilde{m{\nu}} \neq 0$, то найдётся точка $\bar{{\bf x}}$, в которой $\tilde{m{
 u}}^{\top} ({\bf A} \bar{{\bf x}} {\bf b}) < 0$, противоречие

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\mathbf{x}) + \tilde{\boldsymbol{\nu}}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) \ge 0$$
 (3)

- 13. Возьмём $ilde{\mathbf{x}}\in \mathrm{int}\ \mathcal{D}$, для которого выполнено условие Слейтера, тогда $\sum\limits_{i=1}^m ilde{\lambda}_i f_i(ilde{\mathbf{x}})\geq 0$, но $f_i(ilde{\mathbf{x}})<0$ и $ilde{\lambda}_i>0 o ilde{\lambda}=0$
- 14. Из (3) и предыдущего пункта следует, что $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\mathbf{x} \mathbf{b}) \geq 0$ для всех $\mathbf{x} \in \mathcal{D}$, но $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\tilde{\mathbf{x}} \mathbf{b}) = (\mathbf{A}^{\top}\tilde{\boldsymbol{\nu}})^{\top}\tilde{\mathbf{x}} \tilde{\boldsymbol{\nu}}^{\top}\mathbf{b} = 0$
- 15. Значит если $\mathbf{A}^{\top}\tilde{\boldsymbol{\nu}}\neq 0$, то найдётся точка $\bar{\mathbf{x}}$, в которой $\tilde{\boldsymbol{\nu}}^{\top}(\mathbf{A}\bar{\mathbf{x}}-\mathbf{b})<0$, противоречие
- 16. Если ${\bf A}^{\top} \tilde{{m \nu}} = 0$ и $\tilde{{m \nu}} \neq 0$, то rank ${\bf A} < p$, противоречие. Значит $\mu \neq 0$.

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

ightharpoonup \mathbf{x}^* минимизирует $L(\mathbf{x}, oldsymbol{\lambda}^*, oldsymbol{\mu}^*)$

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

- ightharpoonup \mathbf{x}^* минимизирует $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$
- ▶ Условие дополняющей нежёсткости $\mu_i^* h_j(\mathbf{x}^*) = 0, \ j = 1, \dots, p$

$$\mu_j^* > 0 \Rightarrow h_j(\mathbf{x}^*) = 0, \quad h_j(\mathbf{x}^*) < 0 \Rightarrow \mu_j^* = 0$$

Условия Каруша-Куна-Таккера (KKT): невыпуклые задачи

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

1.
$$h_j(\mathbf{x}^*) \le 0$$

- 1. $h_j(\mathbf{x}^*) \leq 0$
- $2. g_i(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \le 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

Последнее равенство выполнено в силу

$$\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

и необходимого условия минимума.

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(\mathbf{x}^*) \le 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq 0$
- 4. $\mu_{i}^{*}h_{j}(\mathbf{x}^{*})=0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Последнее равенство выполнено в силу

$$\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

и необходимого условия минимума.

Замечание

Сначала эти условия были известны как условия Куна-Таккера (работа 1951 г.). Потом обнаружили, что Вильям Каруш вывел их в своей дипломной работе 1939 г.

Утверждение 1

- выполнена сильная двойственность
- $lackbrack (\hat{f x},\hat{m \lambda},\hat{m \mu})$ решения прямой и двойственной задач

Утверждение 1

- выполнена сильная двойственность
- $lackbox{}(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач Доказательство

Утверждение 1

- выполнена сильная двойственность
- $lackbox{}(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$

Утверждение 1

- выполнена сильная двойственность
- $\mathbf{\hat{x}},\hat{m{\lambda}},\hat{m{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $oldsymbol{\hat{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{oldsymbol{\lambda}}, \hat{oldsymbol{\mu}})$ выпуклый по \mathbf{x}

Утверждение 1

- выполнена сильная двойственность
- $\mathbf{\hat{x}},\hat{m{\lambda}},\hat{m{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $oldsymbol{\hat{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{oldsymbol{\lambda}}, \hat{oldsymbol{\mu}})$ выпуклый по \mathbf{x}
 - ▶ Последнее условие $\rightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$

Утверждение 1

- выполнена сильная двойственность
- $lackbox{}(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $oldsymbol{\hat{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{oldsymbol{\lambda}}, \hat{oldsymbol{\mu}})$ выпуклый по \mathbf{x}
 - ▶ Последнее условие $\rightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - lacktriangle Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}}) = f_0(\hat{\mathbf{x}})$

Утверждение 1

- выполнена сильная двойственность
- $lackbox{}(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $oldsymbol{\hat{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{oldsymbol{\lambda}}, \hat{oldsymbol{\mu}})$ выпуклый по \mathbf{x}
 - ▶ Последнее условие $\rightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - lacktriangle Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}}) = f_0(\hat{\mathbf{x}})$
 - Выполнена сильная двойственность

Утверждение 1

- выполнена сильная двойственность
- $\mathbf{\hat{x}},\hat{m{\lambda}},\hat{m{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $oldsymbol{\hat{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{oldsymbol{\lambda}}, \hat{oldsymbol{\mu}})$ выпуклый по \mathbf{x}
 - ▶ Последнее условие $\rightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - ▶ Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) = f_0(\hat{\mathbf{x}})$
 - Выполнена сильная двойственность
 - $lackbrack (\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

• Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

- Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- Необходимость выполнения ККТ следует из утверждения для общего случая

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

- Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- Необходимость выполнения ККТ следует из утверждения для общего случая
- Достаточность следует из утверждения 1

 Условие оптимальности для задачи безусловной оптимизации

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- ▶ Двойственная функция и двойственная задача

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- Двойственная функция и двойственная задача
- Сильная двойственность и условие Слейтера

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- Двойственная функция и двойственная задача
- Сильная двойственность и условие Слейтера
- Условия Каруша-Куна-Таккера