LA PREDICCIÓN DEL TIEMPO

APLICACIÓN DE METODOS NUMERICOS Trabajo realizado por: Rubén Nogueras, Paula Naranjo, Ignacio Pedrero y Juan Navarro

PROCESO

- INTRODUCCION AL PRONOSTICO DEL TIEMPO
- RECOPILACION DE DATOS METEOROLOGICOS
- PROCESAMIENTO DE DATOS
- METODOS NUMERICOS UTILIZADOS
 - 1) METODOS DE DIFERENCIAS FINITAS
 - 2) METODOS DE INTEGRACION NUMERICA
 - 3) METODOS DE INTERPOLACION

PROCESO

- COSAS A DESTACAR
- CONCLUSIONES
- EJEMPLO SPINES CÚBICOS

INTRODUCCION AL PRONOSTICO DEL TIEMPO

 Planteamos los datos a utilizar y empezamos con el proceso de aplicar los métodos numéricos para predecir el tiempo y los pronósticos meteorológicos.

RECOPILACION DE DATOS METEOROLOGICOS

- Recopilamos los datos mediante:
 - 1) Estaciones meteorológicas
 - 2) Radares
 - 3) Satélites
 - 4) Otros dispositivos

Dichos datos son recopilados en intervalos regulares y diferentes ubicaciones.

PROCESAMIENTO DE DATOS

- Tomamos los datos recopilados y los preparamos para su posterior uso.
- Realizamos diversas tareas, donde destacan las siguientes:
 - 1) Calidad y consistencia de datos
 - 2) Filtrados de valores atípicos
 - 3) Interpolación de datos faltantes.

¿CÓMO ASEGURAMOS LA CALIDAD DE LOS DATOS?

- Utilizamos técnicas de control de calidad para identificar y corregir errores o anomalías en los datos obtenidos.
- Dichos datos pueden provenir de diversas fuentes, por lo que es necesario asegurarse de que estén en el mismo formato y unidad para una correcta interpretación.

¿QUÉ HACEMOS SI FALTAN DATOS?

- Hacemos uso de métodos de interpolación para estimar los valores en los puntos donde no hay datos.
- Dichos métodos utilizan técnicas matemáticas para inferir valores desconocidos basándose en los datos circundantes
- Ejemplo:
 - 1) El método de interpolación lineal asume una relación lineal entre los puntos conocidos para estimar los valores intermedios.

METODOS NUMERICOS UTILIZADOS

 Estos métodos desempeñan un papel fundamental en la resolución de las ecuaciones matemáticas que describen la atmosfera y en la simulación de su comportamiento futuro

■ Los métodos numéricos utilizados en el pronóstico del tiempo son los analizados en las siguientes diapositivas.

METODOS DE DIFERENCIAS FINITAS

■ Estos métodos discretizan las ecuaciones diferenciales que describen la dinámica atmosférica en una cuadricula tridimensional.

■ Los cambios en los valores de temperatura, presión, velocidad del viento, entre otros, se calculan en función de las diferencias entre los puntos de la cuadricula adyacentes en el espacio y en el tiempo

METODOS DE INTEGRACION NUMERICA

■ Estos métodos se utilizan para resolver las ecuaciones diferenciales que modelan el comportamiento atmosférico a lo largo del tiempo.

Uno de los métodos más utilizados es el de Runge-Kutta.

■ Este método divide el intervalo de tiempo en pasos más pequeños y calcula los cambios en las variables atmosféricas en cada paso.

METODO DE INTERPOLACION

- Estos métodos se utilizan para estimar los datos que faltan o para representar los valores en puntos que no están directamente observados.
- Es beneficioso al recopilar datos de estaciones meteorológicas dispersas y es necesario una representación continua del estado atmosférico.
- Representar los valores en puntos que no están directamente observados es útil cuando se recopilan datos de estaciones meteorológicas dispersas y se necesita una representación continua del estado atmosférico.

COSAS A DESTACAR

- Los modelos meteorológicos emplean una combinación de métodos numéricos para tener en cuenta múltiples factores y fenómenos atmosféricos como:
 - 1) Radiación solar
 - 2) Convección e interacción terrestre y del océano
 - 3) Otros

CONCLUSIONES

Estos métodos se aplican en supercomputadoras de alto rendimiento para realizar los cálculos requeridos en un tiempo razonable, puesto que los modelos meteorológicos implican grandes cantidades de datos y complejas operaciones matemáticas.

EJEMPLO SPLINES CÚBICOS:

Hemos recogido diferentes datos de la previsión del tiempo meteorológico en Madrid, del 21 de mayo de 2023. Los datos son los siguientes:

Tiempo(horas)	Temperatura(°C)
2	13
8	12
14	20
20	20

■ Ejercicio:

En cada intervalo de tiempo, construimos un polinomio de grado 3, de forma:

Tiempo(horas)	Temperatura(°C)
2	13
8	12
14	20
20	20

$$\begin{aligned} P_3^{2,8}(t) &= a + b \cdot (t - 2) + c \cdot (t - 2)^2 + d \cdot (t - 2)^3 \\ P_3^{8,14}(t) &= e + f \cdot (t - 8) + g \cdot (t - 8)^2 + h \cdot (t - 8)^3 \\ P_3^{14,20}(t) &= i + j \cdot (t - 14) + k \cdot (t - 14)^2 + l \cdot (t - 14)^3 \end{aligned} \qquad 2 < t < 8$$

- Para determinar los coeficientes de cada spline, dichos polinomios de grado 3, han de cumplir unas condiciones:
- 1. En cada punto del soporte cada spline cúbico reproduce el valor de la función interpolada.
- 2. En los empalmes el polinomio global debe ser continuo y derivable
- 3. Vamos a usar un spline cúbico natural, por lo tanto, en los límites superiores e inferiores del intervalo de interpolación el polinomio global cumple con la siguiente condición de contorno:

$$P''(Xo)=P''(Xn)=0$$

Del primer punto obtenemos las siguientes ecuaciones:

$$P_3^{2,8}(2)$$
; a = 13
 $P_3^{2,8}(8)$; a + 6b + 36c + 216d = 12
 $P_3^{8,14}(8)$; e = 12
 $P_3^{8,14}(14)$; e + 6f + 36g + 216h = 20
 $P_3^{14,20}(8)$; i = 20
 $P_3^{14,20}(8)$; i + 6j + 36k + 216l = 20

Con la segunda condición obtenemos:

En el empalme del polinomio global (t1 = 8):

$$P_3^{2,8'}(8)$$
; b + 12 c + 106 d = f
 $P_3^{2,8''}(8) = P_3^{8,14''}(8)$ \longrightarrow 2c + 36 d = g
 $P_3^{8,14'}(14) = P_3^{14,20'}(14)$ \longrightarrow f + 12g + 108h = j
 $P_3^{8,14''}(14) = P_3^{14,20''}(14)$ \longrightarrow 2g + 36h = 2k

Con la condición del spline cúbico natural obtenemos las dos ecuaciones restantes:

$$P_3^{2,8}(2) = 2c = 0$$

 $P_3^{14,20}(20) = 2k + 36L = 0$

Resolviendo el sistema compuesto por las 12 ecuaciones obtenemos los coeficientes:

A = 13	G = 0.2444
/\	α $0,2777$

Entonces los polinomios de tercer grado son :

$$P_3^{2,8}(t) = 13 - 0.6556(t-2) + 0.0136(t-2)^3$$

$$P_3^{8,14}(t)=12 + 0.8111(t-8) + 0.2444(t-8)^2 - 0.0262(t-8)^3$$

$$P_3^{14,20}(t) = 20 + 0.9111(t-14) - 0.2278(t-14)^2 + 0.0127(t-14)^3$$

Finalmente vamos a pronosticar la temperatura a las 11:

$$P_3^{8,14}(11)=12 + 0.8111(11-8) + 0.2444(11-8)^2 - 0.0262(11-8)^3 = 15.9255°C$$

■ Podemos concluir que la temperatura a las 11 de la mañana del 21 de Mayo de 2023 es de aproximadamente 16 °C, como podemos verificar consultando la temperatura en cualquier fuente..

■ Para resolver el sistema, hemos hecho uso de un código en python:

https://github.com/juaannavarro/Metodos