复分析第十四周作业

涂嘉乐 PB23151786

2025年5月30日

习题 6.1

T1

证明 设 $A = \{z \in D : z \not\in f \text{ 的极点}\}$,则 $\forall z \in A, z$ 为 $\frac{1}{f}$ 的零点,由零点的孤立性知 A 中的点均为孤立点,再设 $\overline{A} = \{\overline{z} : z \in A\}$, $D_1 = D \setminus (A \cup \overline{A})$,则 D_1 关于 x 轴对称,记函数 $g = f|_{D_1 \cap \{z : \text{Im} z > 0\}}$,则

- 1. g 在 $D_1 \cap \{z : \text{Im} z > 0\}$ 上全纯
- 2. $g \in D_1 \cap \{z : \text{Im} z \geq 0\}$ 上连续
- 3. $g(D_1 \cap \mathbb{R}) \subset \mathbb{R}$

由 Schwarz 对称原理知

$$G(z) = \begin{cases} g(z), & z \in D_1 \cap \{z : \operatorname{Im} z \ge 0\} \\ \overline{g(\overline{z})}, & z \in D_1 \cap \{z : \operatorname{Im} z < 0\} \end{cases}$$

是 g 在 D 上的全纯开拓,由唯一性定理知 $f \equiv G, \forall z \in D_1$,因此

$$f(z) = \overline{f(\overline{z})}, \quad \forall z \in D_1$$

设 $z_0 \in D$ 是 f 的 m 阶极点,由 f 在 D_1 上全纯知, $\exists \varepsilon > 0$, s.t. f(z) 在 $B(z_0, \varepsilon) \setminus \{\overline{z_0}\}$ 上全纯,设 f(z) 在 $B(z_0, \varepsilon) \setminus \{\overline{z_0}\}$ 上有 Laurent 展开

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \dots + \frac{a_{-1}}{(z - z_0)} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

由 $\overline{f(\overline{z})}=f(z)$ 知,在 $B(\overline{z}_0,\varepsilon)\backslash\{\overline{z}_0\}$ 上

$$f(z) = \overline{\frac{a_{-m}}{(\overline{z} - z_0)^m} + \dots + \frac{a_{-1}}{(\overline{z} - z_0)} + \sum_{n=0}^{\infty} a_n (\overline{z} - z_0)^n}$$
$$= \overline{\frac{\overline{a}_{-m}}{(z - \overline{z_0})^m} + \dots + \overline{\frac{\overline{a}_{-1}}{(z - \overline{z}_0)}} + \sum_{n=0}^{\infty} \overline{a}_n (z - \overline{z}_0)^n}$$

由 Laurent 展开的唯一性知,上式即为 f(z) 在 $B(\overline{z}_0,\varepsilon)\setminus\{\overline{z}_0\}$ 上的 Laurent 展开,由 $a_{-m}\neq 0$ 知, $\overline{a}_{-m}\neq 0$,故 \overline{z}_0 也是 f(z) 的 m 阶零点,且

$$\operatorname{Res}(f, \overline{z}_0) = \overline{a}_{-1} = \overline{\operatorname{Res}(f, z_0)}$$

T3

证明 记 $\gamma = \partial B(0,r), D_1 = \{z: \frac{r}{R^2} < |z| < R\}$,由于

- 1. f 在 $D \cap \mathbb{C}^+_{\infty}(\gamma) =$ 上全纯
- 2. f 在 $D \cap (\mathbb{C}^+_{\infty}(\gamma) \cup \gamma)$ 上连续
- 3. $f(D \cap \gamma) \subset \{z : \operatorname{Im}(z) = 0\}$

则 f 可以全纯开拓到 D_1 上,因为 f 在 $\gamma \subset D_1$ 上恒为零,由唯一性定理知 $f \equiv 0, \forall z \in D_1$,因此 f 在 $B(0,R) \setminus \overline{B(0,r)}$ 上也恒为零

习题 6.2

T3

证明 不妨假设 $z_0=1$,否则考虑 $f_1(z)=\sum\limits_{n=0}^{\infty}\frac{a_n}{z_0^n}z^n$,由 1 是 f(z) 的 1 阶极点知, $\exists \delta>0, \mathrm{s.t.}\ f(z)$ 在 $B(1,\delta)$ 上的 Laurent 展开为

$$f(z) = \frac{b_{-1}}{z-1} + \sum_{n=0}^{\infty} b_n (z-1)^n$$

如下图,设 $\gamma=\partial B(0,1)\backslash B(1,\delta)$,且由 f 只有一个奇点知,对 $\forall \xi\in\gamma,\exists B(\xi,r_\xi)$ 及 $B(\xi,r_\xi)$ 上的全 纯函数 f_ξ ,使得当 $z\in B(0,R)\cap B(\xi,r_\xi)$ 时, $f(z)=f_\xi(z)$,显然 $\{B(\xi,r_\xi)\}$ 为紧集 γ 的一个开覆盖,故它存在有限子覆盖

$$B(\xi_1, r_{\xi_1}), \cdots, B(\xi_m, r_{\xi_m})$$

因此一定存在 $\eta>1, \text{s.t.}$ f 在 $B(0,\eta)$ (虚线内部区域)上为只有一个一阶极点 z=1 的亚纯函数,考虑 $g(z)=f(z)-\frac{b-1}{z-1}$,则 g(z) 在 $B(0,\eta)$ 上全纯,在 z=0 处对 $\frac{b-1}{z-1}$ 做 Taylor 展开得

$$\frac{b_{-1}}{z-1} = \sum_{n=0}^{\infty} b_{-1} z^n$$

所以在 B(0,1) 上 g(z) 有表达式

$$g(z) = \sum_{n=0}^{\infty} (a_n + b_{-1})z^n$$

由 g(z) 在 $B(0,\eta)$ 上全纯知, $g(1) = \sum_{n=0}^{\infty} (a_n + b_{-1})$ 存在, 故

$$\lim_{n \to \infty} (a_n + b_{-1}) = 0 \Longrightarrow \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$$

(因为 1 为 1 阶极点, $b_{-1} \neq 0$)

T6

证明 因为 $a_n=\begin{cases} 1, & n=2^k\\ 0, & \text{else} \end{cases}$,所以 $R=\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}=1$,即收敛圆周为 $\partial B(0,1)$,考虑单位圆周上的 2^n 次单位根全体

$$E = \bigcup_{n=1}^{\infty} \{ e^{\frac{2\pi i k}{2^n}} : 0 \le k < 2^n \}$$

则它是 $\partial B(0,1)$ 上的一个稠密子集,对 $\forall e^{\frac{2\pi ik}{2^m}} \in E$,有

$$f(e^{\frac{2\pi ik}{2^n}}) = \sum_{n=0}^{\infty} e^{\frac{2\pi ik}{2^m} \cdot 2^n} = \sum_{n=0}^{m-1} e^{2\pi ik \cdot 2^{n-m}} + \sum_{n=m}^{+\infty} 1 = +\infty$$

所以对于 $\forall z \in E, f(z) = +\infty$,假设命题不成立,即存在 $\xi \in \partial B(0,1)$ 不是 f 的奇点,即存在圆盘 $B(\xi,r), \text{s.t. } f$ 能全纯开拓到 $B(\xi,r)$,所以 $\partial B(0,1) \cap B(\xi,r)$ 中的每个点都是 f 的正则点,但是 E 是 $\partial B(0,1)$ 的稠密子集, $\exists \eta \in E \cap (\partial B(0,1) \cap B(\xi,r))$,但是 $f(\eta) = +\infty$,矛盾!

T7

证明 假设存在 $\xi \in \partial B(0,1)$ 是 f 的正则点,则 $\exists B(\xi,r), \text{s.t.}$ f 能全纯开拓到 $B(\xi,r)$,由全纯开拓的唯一性知, $f(z) = \sum\limits_{n=1}^{\infty} \frac{z^{2^n}}{2^n}, \forall z \in B(\xi,r)$,因此

$$f'(z) = \sum_{n=0}^{\infty} z^{2^n}, \quad \forall z \in B(\xi, r)$$

即 f'(z) 在 $B(\xi,r)$ 上全纯, 这与 T6 矛盾!