实验 A1 基本物理量测量及不确定度分析

[实验前思考题]

- 1. 列举测量的几种类型?
- 2. 误差的分类方法有几种?
- 3. 简述直接测量量和间接测量量的平均值及其实验标准差的计算方法,以本实验 金属杯密度的测量为例加以说明。
- 4. 测量仪器导致的不确定度如何确定?在假设自由度为无穷大的情况下,直接测量量的扩展不确定度如何计算?请写出计算步骤。
- 1. 单次测量和多次测量, 直接测量和调播测量
- 2. 伦对误差与相对误差, 底统误差, 随机误差.
- 3. 直接测量 $\frac{1}{\sqrt{2}} = \frac{1}{12} \times 1$, 实验标程系 $S = \sqrt{\frac{1}{12}(x_1 \overline{x})^2}$ 间接测量: $U = f(\overline{x}, \overline{y})$, 实验标准系 $S_{\overline{y}} = \sqrt{\frac{1}{12}(x_1 \overline{x})^2} + (\frac{1}{12}(x_1 \overline{x})^2)^2}$
- eg. 金属杯. 引起 D. 内征 d. 高店 H. 保证 H. 以 D为例. 均作 $\overline{D} = \frac{1}{5} \frac{5}{2} D$. \overline{D} $\overline{$

中山大学物理学院物理实验教学中心编制、仅用于教学。未经允许,请不要擅貴推网络上传播。

实验标准系
$$S = \sqrt{\left(\frac{\partial P}{\partial D}\right)^2 S_D^2} + \left(\frac{\partial P}{\partial A}\right)^2 S_D^2 + \left($$

4年1、例量以器不确理医可以由13美不确理的确理。

(2)、在假治自由度先男大时,直接侧量的不确定性件,

- ① 或年物性 不 = 六景对
- ②斯A其不確應
 - 実験次動い=1 は Sa=0
 - (D N32 Ht SA = \(\frac{1}{N(N-1)} \frac{M}{2} (x-\hat{x})^1
- ③或日其不确定在

SB:青、其中山村以器最小行居

④或合成不确定

① 或扩展不确定医

AN = 好 S. 好 为某笔信巨间内,自由陪职无穷大时七值

| 实验目的 |

- 1. 学习游标卡尺、螺旋测微计、读数显微镜、电子天平的使用方法。
- 2. 学习长度、重量、密度等基本物理量的测量方法。
- 3、学习测量误差和不确定度的概念和计算方法。

| 仪器用具 |

编号	仪器名称	数量	主要参数(型号,测量范围,测量精度)
1	游标卡尺	1	1509001 (0-150)mm Daylor
2	螺旋测微计	T	1509001 (0-150)mm 0.02mm 2509001 (0-25)mm 0.01mm
3	读数显微镜	1	JXD-Bb
4	钢尺	1	(0~15,0)cm 0.1 cm
5	电子密度天平	, 1 €.	MP5002J
6	量杯	1	
7	待测薄板	1	
8	待测金属丝	1	
9	待测金属杯	1	
		i, e, .	

[原理概述]

1. 机械式游标卡尺

查阅教材和说明书, 写出游标卡尺 各部分的名称:

- A. 目所测量面 B. 1分测量面、
- C. 游杨. 紧固始产 主尺

 - E. 1则深尺 F. 油油流环谓动艇
 - G. 浴锅. H. 别门里面

中山大学物理学院物理实验教学中心编制,仅用于教学。未经允许,请不要擅自在网络上传播。

图 2 游标卡尺读数

5.064 cm.

2. 机械式螺旋测微计

图 3 螺旋测微计结构

查阅教材和说明书,写出螺旋测微计 各部分的名称:

- A. 「智」&石台(マプホ平)B. 出界才干(2971年平).
- c. 螺母套 D. 松尺套筒.
- E. 刻度鱼 F. 尺架
- G. 锁把 H. 蜗旋柄(纷分筒)
- 1. 旅轮.

图 4 螺旋测微计读数

假设螺旋测微计的单位

为 mm, 按左图, 读数为:

13.197

注意:(1)转动微分筒之前需逆时针扳动锁把,使微分筒可自由转动。(2)为保证测量时测杆 与被测物表面的接触力恒定,测杆上安装有棘轮装置,使用时应通过旋转棘轮使测杆与工件接触, 直至棘轮发出"咔咔"的声音。这点对测量橡胶等较软的物体特别重要,同时还可起到保护螺纹的 作用。(3)使用螺旋测微计之前需校准零刻度。(4)使用完毕,需使对杆和测杆离开一段距离,避 免存放过程中因热胀冷缩损坏螺纹。

3. 读数显微镜测量原理

图 5 读数显微镜结构

查阅教材和说明书,写出读数显微镜各部分 的名称:

- A. 目號筒 B. 目號
- c. 侧微鼓轮 D. 物镜筒
- E. 量做镜间悠耀年. 物镜
- G. 载物台 H. 反射镜间节旋钮
- 1. 底座 1. 立座锁紧按蚊钉
- K. 立性 L. 星份镜果锁紧烙钉

注意: 为了消除螺纹间隙引起的测量误差(俗称空转),测量时要使螺杆始终沿同一方向转动。

4. 密度天平安装方法

A. 测试架(A1 用于密度小于水的物体, A2 用于密度大于水的物体) B. C型支架 C. 量杯 D. 搁台 E.电子天平主体 F. 水平调节螺钉

- (1) 调节天平的两只水平调节螺钉,将水平尺的气泡调节至中央。
- (2) 将 C 型支架装在天平的秤盘芯上,用手轻轻旋转能灵活转动。
- (3) 将搁台放在工作面板上,搁台的限位柱卡在固定圈边上,水平转动使搁台不碰到 C 型支架。
- (4) 将量杯放在搁台上, 根据需要选择 A1 或 A2 测试架并安装在 C 型支架上, 特别注 意测试架的限位柱需完全放置在 C 型支架顶部的圆孔中。
- (5) 天平开机后需先进行"校准"、"清零", 然后再进行测量。

1 实验内容及步骤 1

- 1. 选择合适的量具,测量金属或有机玻璃薄板的厚度。要求测量误差小于 0.5%。
- 2、 选择合适的量具, 测量金属丝的直径。要求测量误差小于 0.5%
- 3. 选择合适的量具,测量钢制毫米刻线尺的不均匀度。要求测量至少10个刻度。
- 4. 测量金属杯的密度并评估其不确定度。
- 1) 方法一。用游标卡尺和天平直接测量铜杯的体积和质量,计算密度及不确定度。
- 2) 方法二—排水法。根据阿基米德原理用排水法测金属杯的密度。
- 3) 方法三--直读法。用密度天平直接测量金属杯的密度。
- 4) 比较三种方法的测量结果。

问题: 请写出实验内容 4 的实验步骤:

方法一:①闲游杨乐尺测量铜杯的引起D.内径d.高度H.深度的各5次,通过V=型力-型对于等得V.

包用天平侧得质量加

③计算 P= ₩

方法二:① 用天平川得杯·3恢姜 W.

- ②将杯3完全寝海在此中,不与器壁触碰、侧待质量的
- ③计算密度 P= m-m, Pus,

方法三、①将天子肉里农皮模介、

- ② 先将金属标放在空气中测得读数 1.
- ②将金品标设入的中间的传送数2.
- ④ 避時 法 點 即为全居标 安店 版 依

1数据记录及处理 1

- 1、 选择合适量具, 测量薄板的厚度
 - (1) 问题:测量薄板的厚度和金属丝的直径时如何选取测量点,画图说明。

诸极:玉兰取住.

金属性:等测距取电

4_									
1	1	4	4	5	6	7	8	9	10

(2) 实验数据

使用仪器: 紫花沙似器.

次数 i	1	2	3	4	5	平均值 ā/mm	实验标准差 Sā/ mm	
厚度 d/mm	3.639	3.638	3.641	3.641	3.637	3.6392	0.0003577709	

(3) 计算薄板厚度的平均值及其实验标准差:

0.000343938

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = 3.6392 \text{ mm}$$

$$S_{\overline{d}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (d_i - \overline{d})^2} = 0.0008 \text{mm}$$

(3.6592 ±0.00 $^{\circ}$ 8) $_{mm}$ 故薄板的厚度为: $d=\overline{d}\pm S_{\overline{d}}=\left(\frac{3.6392\pm0.0004}{5.6392\pm0.0004}\right)$ mm

相对实验标准差为: $\eta = S_{\bar{a}}/\bar{d} = 9.8310 \times 10^{-5}$ 2.1985×10-4

- 2. 选择合适量具,测量金属丝的直径
 - (1) 问题:请按照测量误差要求推算出所需仪器精度。

误差应小子0工%

估计金属丝重经约为 1mm.

lmm × 0.5% = 0.005mm.

二精度应小于 0.005 mm.

(2) 实验数据

使用仪器: 虫乳龙江 代数 篇

次数 i	1	2	3	4	5	平均值 D/mm	实验标准差 S _ō / mm	
直径 D/mm	1.458	1.452	1.461	1.472	1.492		0.002006129 .	
次数 i	6	7	8	9	10	1.4677		
直径 D/mm	1.459	1.442	1.466	1.511	1.464		0.006343938	

(3) 计算金属丝直径的平均值及其实验标准差:

$$\overline{D} = \frac{1}{10} \sum_{i=1}^{10} D_i = 1.467) mm$$

$$S\overline{D} = \sqrt{\frac{1}{10 \times 9}} \sum_{i=1}^{10} (D_i - \overline{D})^2 = 0.006343938.$$
0.0063

3. 测量钢尺的不均匀度

使用仪器: _ 读数差微镜

			. /									
	刻线序号i	1	2	1 3 A	4	5	6	7	8	9	10	.11
,	刻线位置 a _i / mm	10.362	11.360	12.367	13.361	14.359	15.371	16.366	17373	18.379	19.375	20.374
•	刻线间距 <i>l_i</i> / mm		0.998	1.007	0.994	0.998	1.012	0.995	1.007	0.997	1.005	0.999

*数字式读数显微镜可清零,故可直接测出两刻度线之间的距离 l;;如果采用机械式读数显微镜,则需测出连续 11 个刻度线的位置 a;,再计算出 l;。

计算不均匀度:

$$\frac{l_{morx} - l_{min}}{l_{sd}} = \frac{1.017 - 0.994}{l} = 0.018.$$

测量金属杯的密度和不确定度(设自由度为无穷大)

(1) 方法一

铜杯质量 m= 53.469

次数 i	1	2	3	4	5	平均值	实验标准差	
外径 D/cm	3.300	3.290	3.286	3.290	3.294	3.292	0.0010 \$83010.01	02366452.
内径 d /cm	2.376	2.380	2.386	2.384	2 388	2.3828	0.00096>3276	05124066
高度 H/cm	4.372	4.368	4.370	4.368	4.374	4.3704		20116619
深度 h /cm	3.952	3.942	3.982	3-952	3.972	3.9600	0-002784435 0.0	07548469

计算金属杯的密度及其不确定度:

$$S_{A} = \sqrt{\left(\frac{\partial \rho}{\partial D} S_{\overline{\rho}}\right)^{2} + \left(\frac{\partial \rho}{\partial \overline{\partial}} S_{\overline{\rho}}\right)^{2} + \left(\frac{\partial \rho}{\partial H} S_{\overline{\rho}}\right)^{2} + \left(\frac{\partial \rho}{\partial h} S_{\overline{\rho}}\right)^{2}} = 200101$$

$$S_{B5} = S_{BA} = S_{BA} = S_{BA} = \frac{0.002}{13}$$

$$S_{B} = P \cdot \sqrt{\left(\frac{\partial P}{\partial \overline{D}} S_{B\overline{D}}\right)^{2} + \left(\frac{\partial P}{\partial \overline{A}} S_{B\overline{A}}\right)^{2} + \left(\frac{\partial P}{\partial \overline{H}} S_{B\overline{H}}\right)^{2} + \left(\frac{\partial P}{\partial \overline{B}} S_{B\overline{D}}\right)^{2}}$$

= 0.000470586

(2) 实验数据

使用仪器: 生素,适识的代数器

次数 i	1.0+0.0	2	3	4	5	平均值 Ē/mm	实验标准差 S _ō / mm
直径 D/mm	1.458	1.452	1.461	1.472	1.492		
次数 i	6	7	8	9	10	1.4677	0.002006129
直径 D/mm	1.459	1.442	1.466	1.511	1.464		0.006343938

(3) 计算金属丝直径的平均值及其实验标准差:

$$\overline{D} = \frac{1}{10} \sum_{i=1}^{10} D_i = 1.467 \text{ mm}$$

$$S\overline{D} = \sqrt{\frac{1}{10 \times 9}} \sum_{i=1}^{10} (D_i - \overline{D})^2 = 0.006343938.$$
0.0063

3. 测量钢尺的不均匀度

使用仪器: _ | 漢粉並微镜

			. /			2 -	Carlot P.					
	刻线序号i	1	2	3	4	5	6	7	8	9	10	11
•	刻线位置	10.367	11 26	17.217	12 744	11 259	1 (37)	16266	17272	118 370	19375	20:374.
	a_i / mm	(0.702	11.20	12.70/	12.20	14,577	13.771	10.200	17.010	10.57	1 150 12	
	刻线间距				. 00.	0000	1 012	0 995	ו הח	0 907	1005	0.999
	l_i / mm		0.998	1.00/	0-794	0.998	1.012	0.7 13	1.007	0.117	[,007	0.117

*数字式读数显微镜可清零,故可直接测出两刻度线之间的距离 l_i 如果采用机械式读数显微镜,一则需测出连续 11 个刻度线的位置 a_i ,再计算出 l_i 。

计算不均匀度:

$$\frac{L_{morx} - L_{min}}{L_{5d}} = \frac{1.017 - 0.994}{1} = 0.018.$$

(2) 方法二 (排水法)

T=27.7°C P+3 =0.99623 g/cm3

在空气中测得金属杯的质量: m₁= 53.46 g

在水中测得金属杯的质量: $m_2 = 34.27 g$

计算金属杯的密度和不确定度:

A美不确定的力。

(3) 方法三

被测金属杯的密度为: 2.56 g/cm3

被测金属杯的不确定度为: $S = \frac{0.01}{13} = 0.005774$ $\Delta N = tp S = 0.0018g/cm$

(4) 比较三种密度测量方法

操作上法一最多张、法三最方便

溪差上: 这一略大, 由于其间指测量345物理量、

法二曲误差由仪器产生, 可多以则量降低误差.

泫 三 漠麓大, 田仪器产生.

| 实验后思考题 |

- 1. 若机械式游标卡尺的测量精度为 0.01mm,请问游标的刻度如何划分?
- 2. 如何测量石蜡块的密度? 石蜡块的形状不规则, 且密度小于水的密度。
- 1. 游杨100个分波与主尺上99个分段后店相等即可。
- 2. 将介度挨成酒精、由于石蜡密度大于酒精、破可以 特石蜡全部没入酒精中测试。