Medium Access with Fixed Assignment

Medium Access

- How can we reduce interferences between senders?
- Only allow one sender at a time?
 - Yes, that's possible but only for a small number of senders
- We need to control medium access, but allow concurrent medium usage → Multiplexing
- We will see now different solutions that do fixed assignments of resources to the senders

Space Division Multiple Access (SDMA)

- As name suggests, the idea is to divide space so that devices do not interfere
- Basis of cellular networks (mobile phone networks)

- Simple to implement. But:
 - Pure SDMA would require huge a secure distance between stations
 - You need one base station for each end device!
- Only practicable when combined with other multiplex methods

Frequency Division Multiple Access (FDMA)

- Frequencies permanently assigned to transmission channels
- Example: broadcast radio

Frequency Division Multiple Access (FDMA)

- Would require one frequency per station! Not feasible if number of stations is large.
- Requires exact frequency filtering with "guard-bands" between adjacent channels to be more robust against interferences

Time Division Multiple Access (TDMA)

Time is divided into slots and only one station per slot can access medium

Time Division Multiple Access (TDMA)

- Simple hardware!
 - All stations send on same frequency
 - Time division can be done in software
- Requires synchronisation between stations
 - Exact timing with "guard-times" (extra-time) between slots to be more tolerant against timing variations

Practical Considerations

- SDMA not useful alone
- TDMA requires precise timing and all devices must use the same clock
- FDMA requires precise frequency filters
- TDMA and FDMA are sensitive to external interferences
- TDMA and FDMA require coordination: Who assigns the frequencies and timeslots to the senders?
- These and other considerations make Code Division Multiple Access (CDMA) interesting
- Here, we will only explain the <u>basic</u> idea behind CDMA.

Code Division Multiple Access (CDMA)

- CDMA allows all stations to send at the same time on the same frequency band
- Idea:
 - Each sender uses a different code that is applied to the data stream
 - If the receiver knows the code it can decode the data
 - It's like two persons, one speaking French, one speaking English, in the same room, talking at the same time.
- Typically implemented in hardware

CDMA Example

- Sender A wants to send source bit X = "1"
 - Code used by A: Y = 010011
 - Output signal X*Y = (-1 +1 -1 -1 +1 +1)
 (a zero-bit in the data or the code is represented as -1)
- Sender B wants to send bit "0"
 - Code used by B: 110101
 - Output signal: (-1 -1 +1 -1 +1 -1)
- "In the air", both signals are superimposed:

$$(-2\ 0\ 0\ -2\ +2\ 0) = (-1\ +1\ -1\ -1\ +1\ +1) + (-1\ -1\ +1\ -1\ +1\ -1)$$

- The receiver can extract the data from sender A from the superimposed signal, provided it knows A's code:
 (-2 0 0 -2 +2 0) * 010011 = 2 + 0 + 0 + 2 + 2 + 0 = 6
 - (-2 0 0 -2 +2 0) * 010011 = 2 + 0 + 0 + 2 + 2 + 0 = 6 (inner product, again using -1 for "0" in the code)
- Result is (much) greater than $0 \rightarrow \text{Original bit sent by A was "1"}$

Spreading in CDMA

- The "-1" and "+1" are called *chips* (to avoid confusion with the data bits "0" and "1").
- In our example, one data bit is represented by a sequence of six chips
 - \rightarrow spreading factor = 6
- The resulting signal needs six times more bandwidth than the original signal "1" and "0" from sender A and B. The original spectrum is *spread*.

Code Orthogonality

- The codes of the stations must be chosen carefully
- Bad example:
 - Station A uses code "1000"
 - Station B uses code "0100"
 - Station C uses code "1100"
 - → Code of station C is linear combination of code of A and B
 - → When A and B send a "1" data bit at the same time, it looks like C
- (In practice, a little bit more complicated because we have three possibilities for each station: -1, +1 and 0)

Practical Considerations on CDMA

- Real systems use much longer codes, resulting in larger distances between code words
 - → Decoding of signal is more robust. Signals with small errors can be still decoded correctly.
- CDMA still needs coordination between stations:
 - The used codes must be sufficiently apart from each other.
 Alternative: Stations choose codes randomly.
 - Receiver needs to know codes.
- Senders have to adapt their transmission power, so that all signals have more or less the same strength at a receiver.
 - Implemented by letting the receiver send strength measurement information back to the senders