Calcolo Numerico - die Beziehung

Saftoiu Vlad Alexandru 10 giugno 2018

Indice

1	Cap	itolo 4																	2
	1.1	Esercizio	4.1																2
	1.2	Esercizio	4.2																:
	1.3	Esercizio	4.3																:
	1.4	Esercizio	4.4																4
	1.5	Esercizio	4.5																4
	1.6	Esercizio	4.6																4
	1.7	Esercizio	4.7																4
	1.8	Esercizio	4.8																4
	1.9	Esercizio	4.9																4
	1.10	Esercizio	4.10)															_

1 Capitolo 4

1.1 Esercizio 4.1

Scrivere una function Matlab che implementi il calcolo del polinomio interpolante di grado n in forma di Lagrange. La forma della function deve essere del tipo y = lagrange(xi, fi, x).

La base di Lagrange è così definita:

$$L_{kn} := \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j} \tag{1}$$

La forma di Lagrange del polinomio interpolante è:

$$\sum_{k=0}^{n} f(x_k) L_{kn}(x) \tag{2}$$

La function Matlab che implementa la 2 è:

```
function [y] = lagrange( xi, fi, x )
%LAGRANGE calcola il polinomio interpolante in forma di Lagrange
   xi: vettore delle ascisse
   fi: vettore delle ordinate
   x: punto da calcolare
   y = zeros(1, length(x));
   for k = 1 : size(x)
       1 = lagrange_c( xi, x(k));
       y(k) = sum(fi.*1);
   end
end
function [y] = lagrange_c( xi, x )
%LAGRANGE_C calcola i coefficienti Lkn di lagrange
% xi: vettore delle ascisse
  x: punto da calcolare
   n = length(xi);
   y = ones(1, n);
   for k = 1 : n
       for j = 1 : n
          if (k~=j)
             y(k) = y(k) * (x-xi(j))/(xi(k)-xi(j));
       end
   end
end
```

1.2 Esercizio 4.2

Scrivere una function Matlab che implementi il calcolo del polinomio interpolante di grado n in forma di Newton. La forma della function deve essere del tipo y = newton(xi, fi, x)

La base di Newton è così definita:

$$(\omega_0(x) := 1 \tag{3}$$

$$\begin{cases} \omega_0(x) := 1 & (3) \\ \omega_1(x) := x - x_0 & (4) \\ \dots & (5) \\ \omega_{i+1}(x) := (x - x_i)\omega_i(x) & (6) \end{cases}$$

$$\dots$$
 (5)

$$\bigcup \omega_{i+1}(x) := (x - x_i)\omega_i(x) \tag{6}$$

La forma di Newton del polinomio interpolante rispetto alla base di Newton è:

$$\sum_{k=0}^{n} f[x_0, ..., x_k] \omega_k(x)$$
 (7)

La function matlab che implementa 7 è:

```
function [y] = newton( xi, fi, x)
%NEWTON calcola il polinomio interpolante di grado n in forma di newton
   xi: vettore delle ascisse
   fi: vettore delle ordinate
   x: vettore dei punti dove calcolare il valore del poli interpolante
   n = length(xi) -1; % grado del polinomio interpolante
   %calcolo le differenze divise
   for j = 1 : n
       for i = n+1 : -1 : j+1
          fi(i) = (fi(i)-fi(i-1)) / xi(i) - xi(i-j);
       end
   end
   y = fi(n+1) * ones(size(x));
   for i = n : -1 : 1
       y = y.*(x-xi(i)) + fi(i);
   end
end
```

Esercizio 4.3 1.3

Scrivere una function Matlab che implementi il calcolo del polinomio interpolante di Hermite. La forma della function deve essere del tipo y = newton(xi, fi, f1i, x)

1.4 Esercizio 4.4

Utilizzare le functions degli esercizi precedenti per disegnare l'approssimazione della funzione sin(x) nell'intervallo $[0,2\pi]$, utilizzando le ascisse di interpolazione $x_i=i\pi, i=0,1,2$.

1.5 Esercizio 4.5

Scrivere una function Matlab che implementi la spline cubica interpolante (naturale o not-a-knot, come specificato in ingresso) delle coppie di dati assegnate. La forma della function deve essere del tipo: y = spline3(xi, fi, x, tipo).

1.6 Esercizio 4.6

Scrivere una function Matlab che implementi il calcolo delle ascisse di Chebyshev per il polinomio interpolante di grado n, su un generico intervallo [a,b]. La function deve essere del tipo: xi = ceby(n, a, b).

1.7 Esercizio 4.7

Utilizzare le function degli Esercizi 4.1 e 4.6 per graficare l'approssimazione della funzione di Runge sull'intervallo [-6,6] per n=2,4,...,40. Stimare, numericamente, l'errore commesso in funzione del grado n del polinomio interpolante.

1.8 Esercizio 4.8

Relativamente al precedente esercizio, stimare numericamente, la crescita della costante di Lebesgue.

1.9 Esercizio 4.9

Utilizzare la function dell'esercizio 4.1 per approssimare la funzione di Runge sull'intervallo [-6,6], su una partizione uniforme di n+1 ascisse, n=2,4,...,40. Stimare le corrispondenti costanti di Lebesgue.

1.10 Esercizio 4.10

Stimare, nel senso dei minimi quadrati, posizione, velocità iniziale ed accelerazione relative a un moto rettilineao uniformemente accelerato per cui sono note le seguenti misurazioni delle coppie (tempo, spazio): (1, 2.9), (1, 3.1), (2, 6.9), (2, 7.1), (3, 12.9), (3, 13.1), (4, 20.9), (4, 21.1), (5, 30.9), (5, 31.1).