- 1. The position of a particle at any time $t \ge 0$ is given by $x = t t^2$ and $y = \frac{4}{3}t^{3/2}$. What is the total distance traveled by the particle from t=1 to t=3?
 - (A) 7.165
- (B) 8.268
- (C) 9.431
- (D) 10.346

- 2. The position of particle at any time $t \ge 0$ is given by $x(t) = a(\cos t + t \sin t)$ and $y(t) = a(\sin t t \cos t)$. What is the total distance traveled by the particle from t = 0 to $t = \pi$?
 - (A) $\frac{1}{2}\pi a$
- (B) πa^2
- (C) $\frac{1}{2}\pi^2 a$ (D) $\frac{1}{2}\pi^2 a^2$
- 3. The length of the path described by the parametric equations $x = \sin t + \ln(\cos t)$ and $y = \cos t$,

for
$$\frac{\pi}{6} \le t \le \frac{\pi}{3}$$
, is given by

(A)
$$\int_{\pi/6}^{\pi/3} \sqrt{\cos^2 t + 2\sin t + 2} dt$$

(B)
$$\int_{\pi/6}^{\pi/3} \sqrt{\sin^2 t + 2\cos t + 2} dt$$

(C)
$$\int_{\pi/6}^{\pi/3} \sqrt{\cot^2 t + 2\cos t} \ dt$$

(D)
$$\int_{\pi/6}^{\pi/3} \sqrt{\sec^2 t - 2\sin t} \ dt$$

- 1. If a particle moves in the *xy*-plane so that at time t > 0 its position vector is $(t^3 1, \ln \sqrt{t^2 + 1})$, then at time t=1, its velocity vector is

- (A) $(0,\frac{1}{2})$ (B) $(1,\frac{1}{2})$ (C) $(3,\frac{1}{2})$ (D) $(3,\frac{1}{4})$
- 2. A particle moves in the *xy*-plane so that at any time t its coordinates are $x = t^3 t^2$ and $y = t + \ln t$. At time t = 2, its acceleration vector is

- (A) $(4, \frac{1}{2})$ (B) $(6, \frac{1}{4})$ (C) $(8, \frac{3}{4})$ (D) $(10, -\frac{1}{4})$
- 3. A particle moves in the *xy*-plane so that its position at time t > 0 is given by $x(t) = e^t \cos t$ and $y(t) = e^t \sin t$. What is the speed of the particle when t = 2?
 - (A) $\sqrt{2}e$
- (B) $\sqrt{2}e^2$
- (C) 2e
- (D) $2e^2$
- 4. If f is a vector-valued function defined by $f(t) = (\ln(\sin t), t^2 + e^{-t})$, then the acceleration vector is
 - (A) $(-\csc^2 t, 2 + e^{-t})$
 - (B) $(\sec^2 t, 2 + e^{-t})$
 - (C) $(\csc^2 t, 2 e^{-t})$
 - (D) $(-\csc^2 t \cdot \cot t, \ 2 + e^{-t})$
- 5. A particle moves on the curve $y = x + \sqrt{x}$ so that the x-component has velocity $x'(t) = \cos t$ for $t \ge 0$. At time t = 0, the particle is at the point (1,0). At time $t = \frac{\pi}{2}$, the particle is at the point
 - (A) (0,0)
- (B) (1, 2)
- (C) $(\frac{\pi}{2}, \frac{\pi}{2} + \sqrt{\frac{\pi}{2}})$ (D) $(2, 2 + \sqrt{2})$
- A particle moving in the *xy*-plane has velocity vector given by $v(t) = \langle e^t t, t \sin t \rangle$ for time $t \ge 0$. What is the magnitude of the displacement of the particle between time t = 0 and t = 2?
 - (A) 4.722
- (B) 4.757
- (C) 4.933
- (D) 5.109

- 6. An object moving along a curve in the *xy*-plane has position (x(t), y(t)) at time $t \ge 0$, with $\frac{dx}{dt} = t \sin(e^t)$. The derivative $\frac{dy}{dt}$ is not explicitly given. At time t = 1, the value of $\frac{dy}{dt}$ is 3 and the object is at position (1, 4).
 - (a) Find the *x*-coordinate of the position of the object at time t = 5.
 - (b) Write an equation for the line tangent to the curve at the point (x(1), y(1)).
 - (c) Find the speed of the object at time t = 1.
 - (d) Suppose the line tangent to the curve at (x(t), y(t)) has a slope of (t-2) for $t \ge 0$. Find the acceleration vector of the object at time t=3.

- 7. The position of a particle moving in the *xy*-plane is given by the parametric equations $x(t) = t \sin(\pi t)$ and $y(t) = 1 \cos(\pi t)$ for $0 \le t \le 2$.
 - (a) On the axis provided below, sketch the graph of the path of the particle from t = 0 to t = 2. Indicate the direction of the particle along its path.

- (b) Find the position of the particle when t = 1.
- (c) Find the velocity vector for the particle at any time t.
- (d) Write and evaluate an integral expression, in terms of sine and cosine, that gives the distance traveled of the particle from t = 0 to t = 2.