Functions worksheet 2

1. Calculate w(x) = 10x - 3 at x = 0, 5, 9. Plot these points on a graph and sketch w(x) over $x \in [0, 9]$. Highlight $y(x) = \max\{0, w(x)\}$. Mark the value of x where w(x) = 0, and label it as x_0 . (Hint: Solve for $x_0 : w(x_0) = 0$.)

2. Suppose w(x)=10x-3. Plot w(x) over $x\in[0,9]$, and highlight $y(x)=\max\{c,w(x)\}$ where $c\in(0,3)$. Mark the value of x where w(x)=c, and label it as x_c . Is $x_c>x_0$? (Hint: Solve for $x_c:w(x_c)=0$, then check if $x_c>x_0$ is true.)

3. Suppose $p(x) = \frac{1}{3}$, and w(x) = 10x - 3. Calculate $Q_x = p(x)w(x) \ \forall x \in \{0, 5, 9\}$. What is $Q = Q_0 + Q_5 + Q_9$?

4. Calculate $y(x)=0.5x(1-\frac{x}{10})$ at x=0,2.5,5,7.5,10. Plot those points on a graph and sketch y(x) over $x\in[0,10]$.

5. Calculate $y = rx(1 - \frac{x}{K})$ at $x = 0, \frac{K}{4}, \frac{K}{2}, \frac{3K}{4}, K$, where r, K > 0. Plot those points on a graph and sketch the function over $x \in [0, K]$.

6. The **marginal cost** is the change in cost from producing (or consuming) one more unit. Formally, if the total cost of producing (or consuming) x units is C(x), the marginal cost of the xth unit is C'(x) = C(x+1) - C(x). Prove that if the total cost function is linear in x (i.e., of the form C(x) = ax + b), then the marginal cost function is constant over x (i.e., of the form C'(x) = a).

7. Prove that if the total cost function is quadratic in x (i.e., of the form $C(x) = ax^2 + bx + c$) then the marginal cost function is linear in x (i.e., of the form C'(x) = ax + b).

- 8. Consider the function $C(\alpha) = x + (1 x)\alpha$, where $x \in (0, 1)$.
- (a) Solve $C(\alpha) = t$ for α .
- (b) Use your solution to calculate α when x=0.55, t=0.82.
- (c) Using the α you found in (b), plot $(1-x)\alpha$ over $x \in [0,1]$.
- (d) Use your solution from (a) to give a necessary condition for $\alpha > 0$.