딥러닝의 통계적이해

6강. 합성곱 신경망의 기초(1)

- 1. 컴퓨터 비전과 디지털 이미지
- 2. 합성곱 신경망의 역사
- 3. 합성곱 연산

한국방송통신대 이긍희 교수

답러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

오늘의 학습목표

- 1. 컴퓨터 비전을 이해한다.
- 2. 합성곱 신경망의 역사를 이해한다.
- 3. 합성곱 연산을 이해한다.

답러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

1. 컴퓨터 비전과 디지털 이미지

디지털 이미지

- ◆ 아날로그 데이터는 연속형 신호 → 일정 간격으로 샘플링(sampling)하여 측정
 - 이미지 샘플링을 많이 하면 화소가 높아지고, 샘플링을 적게 하면 화소가 낮아짐
 - 아날로그 데이터는 무한한 범위, 디지털 데이터는 2진수 즉 비트(bit)로 표현
 - 8비트는 $2^8 = 256$ 개 값으로 데이터 표현

디지털 이미지

- ◆ 이미지: *f*(*x*, *y*)형태의 2차원 함수
 - 흑백 이미지 : 1개의 행렬
 - 8x8의 흑백 이미지 : 4비트(2⁴ = 16) 색상 행렬 표현
 - 0: 검정색, 16: 흰색
 - 컬러 이미지 : 적색(Red), 녹색(Green), 청색(Blue) 3개 행렬 조합, 색상으로 표현

디지털이미지(흑백)

디지털이미지(컬러)

컴퓨터 비전

- ◆ 컴퓨터 저장 이미지 또는 동영상으로부터 유용한 정보 추출·분석·이해
 - 이미지 분류, 객체 탐색·검출, 객체 분할, 얼굴 인식, 이미지 합성 등

이미지 인식 데이터베이스

◆ 이미지 인식 경진대회 → 컴퓨터 비전 능력의 획기적 발전

출처: (a) http://imagenet.org (b) http://cocodataset.org

답러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

2. 합성곱 신경망의 역사

이미지 인식과 신경망

- ◆ 완전연결 신경망:이미지 작업 어렵고, 과대적합문제 발생
 - 이미지 데이터는 입력층에 수천만 개의 변수가 입력됨

뇌시각의 연구

- ◆ 1959년 허블(Hubel)과 비셀(Wiesel)의 고양이 실험
 - 시각 뉴런들이 뉴런마다 하는 일이 다르고, 그들이 결합하여 작용함
 - 영상 인식 시, 특정 영역의 뉴런이 활성화
 - 상위 뉴런이 더 추상적인 것 파악 : 계층적 특성
 - → 컴퓨터 비전 연구자들은 합성곱(convolution) 신 경망을 생각

합성곱 연산

◆ 가중치를 공유, 근처에 있는 뉴런들만 이동 연산 → 완전연결 신경망보다 희소한 연결

출처: Goodfellow et al.(2016)

네오코그니트론(Neocognitron)

- ◆ 1979년 후쿠시마의 합성곱 신경망과 유사한 신경망 제안
 - S-cell: 국부적 특징 파악, C-cell: 이를 결합
 - S-cell과 C-cell을 계층적 적용 → 이미지 식별

출처:: Fukushima(1980)

LeNet-5

- ◆ 1998년 얀 르쿤(Y. LeCun) 연구팀의 합성곱 신경망
 - 3개 합성곱(Convolution) 층에 완전연결 신경망을 추가

출처 : LeCun et al.(1998)

LeNet-5

출처 :http://yann.lecun.com/exdb/lenet/index.html

LeNet-5

출처 :http://yann.lecun.com/exdb/lenet/index.html

이미지 인식 경진대회(ILSVRC)

- ◆ 2012년 이미지넷(Imagenet)의 경진대회(ILSVRC)에서 층이 깊은 합성곱 신경망 AlexNet이 획기적인 성과를 보였음
 - 그 후 GoogLeNet, VGGNet, ResNet 등 층이 깊은 합성곱 신경망이 꾸준히 만들어짐

딥러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

3. 합성곱 연산

합성곱 연산

◆ 필터(filter, kernel)를 통해 입력 데이터에 원소 단위로 연산

	입력 데이터			터	합성곱 연산 결과			
а	b	С	w_{11}	w_{12}	$aw_{11} + bw_{12}$			
d	е	f	w_{21}	w_{22}	$+dw_{21}+ew_{22}$	$+ew_{21}+fw_{22}$		
g	h	k			$dw_{11} + ew_{12}$	$ew_{11}+fw_{12} + hw_{21}+kw_{22}$		
а	ь	С			$+gw_{21}+nw_{22}$	$+\mu w_{21} + \kappa w_{22}$		
d		t						
d	е	'						
g	h	k						

합성곱 연산의 예

0 1 2 3 4 5 6 7 0	입	력 데이	필	터	
	0	1	2	0	1
6 7 0	3	4	5	2	3
	6	7	0		

합성곱 연산

- ◆ 이미지 데이터 크기 $n \times n$, 필터의 크기 $f \times f \rightarrow$ 필터에 의해 생성된 결과 데이터의 크기 $(n-f+1) \times (n-f+1)$
 - 입력 이미지의 크기 3 × 3, 필터의 크기 2 × 2
 - → 출력 이미지의 크기 $(3-2+1) \times (3-2+1) = 2 \times 2$

합성곱 연산

- ◆ f는 입력 데이터, g는 필터, 합성곱 결과는 $f \circ g$
 - 연속형: $f \circ g(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx$
 - 이산형: $f \circ g(i) = \sum_{j=-\infty}^{\infty} f(j)g(i-j)$

출처: https://en.wikipedia.org/wiki/Convolution

한국방송통신대학교

패딩

- ◆ 합성곱 필터를 연속 적용 → 입력 데이터의 크기 점점 축소
- ◆ 입력 데이터 크기 = 출력 데이터 크기
 - → 입력 데이터값 주변에 데이터를 추가: 패딩(padding)

패딩

- ◆ 입력 데이터 값의 주변에 0을 추가 → 입력 데이터의 크기를 크게 함
 - → 가장자리 데이터의 정보 손실을 막을 수 있음
- ◆ 4×4 입력 데이터 + 패딩 → 6×6로 바꾼 후 3×3 필터 적용
 - → 입력 데이터와 같은 크기인 4 × 4 출력 데이터

합성곱필터와패딩

입력 데이터					필터			출	력 데0	터				
0	0	0	0	0	0	0								
0	1	1	2	2	0	0				4	5	4	2	1
0	2	2	1	1	0	0	1	1	1	2	5	7	8	5
0	0	0	1	1	2	0	0	0	0	6	7	5	4	3
0	1	1	0	0	2	0	1	1	1	4	5	4	5	4
0	2	2	0	0	1	0				2	2	1	2	2
0	0	0	0	0	0	0								

패딩

- \bullet $n \times n$ 입력 데이터 + p개 패딩 : $(n + 2p) \times (n + 2p)$
 - $\rightarrow f \times f$ 필터 적용
 - \rightarrow 출력 데이터 : $(n + 2p f + 1) \times (n + 2p f + 1)$
 - 입·출력층이 같은 크기 : (n + 2p f + 1) = n
 - \rightarrow 패딩크기: $p = \frac{(f-1)}{2}$
 - (예) 3×3 필터 적용시 패딩 크기 (3-1)/2 = 1

스트라이드

- ◆ 스트라이드(stride): 필터 이동 칸 수
 - 스트라이드 2로 지정 : 두 칸씩 옮겨가며 합성곱 연산
 - 스트라이드 값 $S \rightarrow$ 출력 데이터 크기는 $\frac{(n+2p-f)}{S}+1$
 - 스트라이드 값이 크면 출력 데이터의 크기는 축소
- ◆ 스트라이드 $2 \rightarrow (5+2-3)/2+1=3$,
 - 출력 데이터의 크기: 3 × 3

스트라이드

0 0 0 0 0 0 0 1 1 2 2 0 0 0 2 2 1 1 0 0 1 1 1	2 4 1
	2 4 1
0 2 2 1 1 0 0 1 1 1	2 4 1
	2 7 1
0 0 0 1 1 2 0 0 0 0	6 5 3
0 1 1 0 0 2 0 1 1 1	2 1 2
0 2 2 0 0 1 0	
0 0 0 0 0 0	

컬러 이미지에 대한 합성곱 연산

- ◆ 컬러 이미지 데이터는 R, G, B 3개의 행렬
 - 필터도 R, G, B별로 다르게 적용: 필터의 수가 3개

컬러 이미지에 대한 합성곱 연산

		입	력 데0	l터	필터 출력 데이터										
0	0	0	0	0	0	0									
0	1	1	2	3	0	0					5	6	4	2	1
0	3	2	1	1	0	0		1	1	1	2	5	8	9	6
0	0	0	1	1	2	0		0	0	0	7	8	5	5	4
0	1	1	0	0	3	0		1	1	1	5	6	5	5	4
0	2	3	0	0	1	0					2	2	1	3	3
0	0	0	0	0	0	0									

컬러 이미지에 대한 합성곱 연산

\circ	12:		\square	
\sim	렫		0	
		_	II ~	_

0	0	0	0	0	0	0
0	1	2	3	4	0	0
0	0	4	3	2	1	0
0	1	2	3	4	0	0
0	2	3	3	4	0	0
0	0	4	3	2	1	0
0	0	0	0	0	0	0

필터

31
- 1

출력 데이터

6	7	12	7	6
8	11	18	10	10
9	12	19	10	10
9	12	19	10	10
7	8	13	7	6

입력 데이터

0	0	0	0	0	0	0
0	2	3	4	3	2	0
0	4	3	2	0	1	0
0	1	3	5	7	9	0
0	2	3	5	6	7	0
0	1	0	2	1	0	0
0	0	0	0	0	0	0

필터

출력 데이터

5	12	9	9	3
9	18	19	23	10
9	19	22	29	13
6	16	20	28	14
3	10	10	14	7

최종 출력 데이터

	70 2 7 3 7 7								
16	25	25	18	10					
19	34	45	42	26					
25	39	46	44	27					
20	34	44	43	28					
12	20	24	24	16					

컬러 이미지에 대한 합성곱 연산

- ◆ 컬러 이미지 데이터의 합성곱 연산을 통해 결과물의 크기를 계산
 - 32 × 32 × 3의 컬러 이미지 → 5 × 5 필터 3개 적용, 스트라이드 1, 패딩 없음
 - \rightarrow (32 5 + 1) × (32 5 + 1) × 3 = 28 × 28 × 3

컬러 이미지에 대한 합성곱 연산

- ◆ $32 \times 32 \times 3$ 입력이미지 $\rightarrow 5 \times 5 \times 3$ 12개 합성곱 필터
 - \rightarrow 28 \times 28 \times 12 \rightarrow ReLU 함수
 - \rightarrow 5 \times 5 \times 12의 6개 합성곱 필터 \rightarrow 24 \times 24 \times 6의 출력
 - → ReLU 함수 적용

1X1 합성곱 연산

- ◆ 1×1 합성곱 연산: 채널을 묶어주는 효과
 - 32 × 32 × 12 입력 이미지
 - $\rightarrow 1 \times 1 \times 12$ 필터 16개로 합성곱 연산
 - \rightarrow 32 × 32 × 16 0 \square \square
 - 합성곱 연산의 계산량을 줄이는데 유용

풀링

- ◆ 풀링(pooling): 이미지 크기 줄이는 연산 → 합성곱 연산 뒤 이루어짐
- ◆ 4 × 4 입력 이미지를 2 × 2 크기로 4개로 나누고 2 × 2 풀링 적용
 - 최대 풀링(max pooling): 4개 구역에서 뽑은 최댓값으로
 2 × 2 이미지 → 합성곱 신경망에서 주로 이용
 - 평균 풀링(average pooling): 구역별 평균

최대풀링

				_		
2	3	4	3			
4	3	2	0		4	4
1	0	5	7	-	3	7
2	3	5	6]		

풀링

- ◆ 풀링의 장점
 - 이미지 이동, 왜곡에도 그 값이 크게 변하지 않음
 - 학습 없이 이루어져 계산량이 적음
 - 이미지의 크기를 작게 하여 과대적합을 막을 수 있음

합성곱 연산의 특성

- 회소성: 뉴런을 전부 연결하지 않고, 이웃 뉴런들끼리 연결하고 가중치를 공유하는 희소한 연결 → 모형의 복잡도를 낮추어 과대적합 문제 해소
- ◆ 이동 등변성 : 입력 데이터의 이동만큼 이동
- ◆ 국지 연결성 : 이미지 데이터의 한 영역에서 보면 각 필터를 적용한 값들은 각각 달라져도 그 위치는 같음

딥러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

학습정리

- ✓ 컴퓨터 비전은 디지털 이미지에서 유용한 정보를 자동 추출, 분석, 이해하는 것이다.
- ✓ 디지털 이미지는 고차원 입력벡터로, 완전연결 신경망 모형을 이용할 때 과적합 문제가 발생한다.

답러닝의 통계적이해 6강. 합성곱 신경망의 기초(1)

학습정리

- ✓ 대표적 초기 합성곱 신경망으로는 LeNet-5가 있으며, 이후 AlexNet 등은 딥러닝 시대를 열었다.

[[대당의 통계적이해] 다음시간안내

7강. 합성곱신경망의 기초(2)