bbs.eins.mainz Berufsbildende Schule Technik	2. Klassenarbeit	Name:
	Mathematik	Datum:
HBF IT 18A - I	von Punkten erreicht:%	Note:

Allgemeines

- Bei der Bearbeitung ist ein nachvollziehbarer, vollständiger Rechenweg aufzuschreiben.
- Die Bewertung der Klassenarbeit ist nur bei gut lesbarer Schrift möglich.
- Die Lösungen müssen mit dokumentenechtem Stift (Kugelschreiber oder Fine-Liner keine rote Mine) erstellt werden.
- Runden Sie ihre Ergebnisse auf 2 Nachkommastellen. Wurzelausdrücke müssen nicht berechnet werden (z.B. $\sqrt{10}$).
- Zugelassene Hilfsmittel: Taschenrechner (nicht graphikfähig / programmierbar)
- Bearbeitungszeit: 90 Minuten

Aufgabe 1

$$/7 + 7.5 + 6.5 + 7.5 + 7.5 = 36$$
 Pkt.

Gegeben sind die nachfolgenden Funktionsgleichungen.

(a)
$$f(x) = x^2 \cdot (x-4)^2$$

(b)
$$f(x) = x^4 - 4x^2$$

(c)
$$f(x) = x^3 - 2x^2$$

(d)
$$f(x) = 2x^3 + 8x^2 + 8x$$
 (e) $f(x) = x^3 - 10x^2 + 25x$

(e)
$$f(x) = x^3 - 10x^2 + 25x$$

- (1) Bestimmen Sie jeweils die Nullstellen! Markieren Sie gegebenenfalls doppelte Nullstellen¹ entsprechend.
- (2) Geben Sie jeweils das Verhalten der Funktionswerte für große x-Beträge an. Nutzen Sie dabei die formale Schreibweise: $f(x) \xrightarrow{x \to -\infty}$? bzw. $f(x) \xrightarrow{x \to \infty}$?

Aufgabe 2

$$/6+4+6+2=18$$
 Pkt.

Über die Entwicklung der Anzahl von Touristenankünfte in Deutschland kennen wir die folgende Daten:

${f x}$ (eine Einheit $=$ 1 Jahr, 0 $=$	0	7
2010)		
y (in Millionen)	140	178

- (a) **Stellen** Sie die Funktionsgleichung einer quadratischen Funktion auf, die den Scheitelpunkt bei (7|178)hat und durch den Punkt (0|140) geht!
- (b) Beschreiben Sie die Bedeutung des Scheitelpunkts für diese Entwicklung!
- (c) Eine andere Entwicklung wird mit $g(x) = -\frac{3}{4}(x+8)(x-22)$ angegeben. **Bringen** Sie g(x) in Scheitelpunktform und **vergleichen** diese anschließend mit der Entwicklung aus (a).
- (d) Geben Sie die Funktionsgleichung aus (c) in allgemeiner Form an.

¹Kommt zweimal vor. Zum Beispiel: $x_{1/2} = 2$

Ergänzen Sie alle Eigenschaften, die Sie direkt aus der Funktionsgleichung ableiten können.

(a)
$$f(x) = -(x+4)^2 + 1$$

(c)
$$f(x) = -2x^2 + 8x - 20$$

(b)
$$f(x) = 4(x-6)(x+3)$$

(d)
$$f(x) = 0, 2(x-5)^2 + 7$$

Gleichung	Normalparabel/	Öffnungs-	Nullstellen	Scheitel-	y-AAS
	gestreckte P./	richtung	$x_1=\ldots,$	punkt	$y_s = \dots$
	gestauchte P.	(oben/unten)	$x_2 = \dots$	SP()	
(a)					
(b)					
(c)					
(d)					

Α	uıfgabe	4

/10 + 4 Pkt. = 14 Pkt.

 $\mathrm{Mit}\ \mathbf{f}(\mathbf{x}) = \mathbf{x^3} - \mathbf{5}\mathbf{x^2} - \mathbf{2}\mathbf{x} + \mathbf{24}\ \mathrm{ist\ eine\ ganzrationale\ Funktion\ gegeben}.$

(a) Berechnen Sie die einzelnen Faktoren der Funktion.

Hinweis: Es gibt **drei** Faktoren.

(b) **Geben** Sie die Funktion in **Linearfaktorform** an.

Markieren Sie in dieser jeweils die Nullstellen.