2 60005 0.50 0.84 42.50 45452.0 22056.0 0.49 3 60007 0.49 0.82 42.80 51689.0 18480.0 0.36 4 60008 0.48 37.20 32497.0 9484.0 0.29 0.71 1378 62996 0.50 0.79 53.20 684.0 66.0 0.10 1379 62997 0.42 0.99 38.90 638.0 10.0 0.02 62998 1.00 1380 0.53 59.10 473.0 12.0 0.03 1381 62999 0.51 0.99 37.70 2501.0 261.0 0.10 1382 63673 0.54 0.97 44.00 3251.0 236.0 0.07 1383 rows × 7 columns In [11]: age_sex_race_2019 = pd.read_csv("data/age_sex_race_ACS_2019_cleaned.csv") age_sex_race_2019 educ 2019 = pd.read csv("data/educational attainment ACS_2019_cleaned.csv", usecols=["zipcode", "total_pop_2019 educ 2019 data 2019 = pd.merge(age sex race 2019, educ 2019) data 2019 Out[11]: zipcode male_2019 white_2019 median_age_2019 total_pop_2019 college_pop_2019 college_percent_2019 0 60002 0.50 43.30 35142.0 11452.0 0.33 0.91 1 60004 0.48 0.84 43.00 75641.0 43973.0 0.58 2 60005 0.51 0.83 44.40 46307.0 23208.0 0.50 60007 18224.0 3 0.48 0.83 43.80 51855.0 0.35 4 60008 37.80 32249.0 11018.0

42.80

32.90

37.30

52.20

775.0

772.0

2488.0

2684.0

zipcode male_2015 white_2015 median_age_2015 total_pop_2015 college_pop_2015 college_percent_2015 male_2019

20688.0

2221.0

44023.0

5561.0

43061.0

The highest change in home prices is 43.95%, and this is in zipcode 60639. The lowest change (most negative) in home prices is

change_data[["male_change", "white_change", "median_age_change", "college_percent_change"]].describe()

54.000000

0.133410

0.145550

-0.176471

0.039044

0.103914

0.190616

0.666667

male_change white_change median_age_change college_percent_change

54.000000

0.033108

0.060753

-0.071823

0.000663

0.019554

0.038244

0.316602

X = np.array(train[["male change", "white change", "median age change", "college percent change"]])

y_hat = 10.035233582489628 + 13.81504412*train['male_change'] + -3.93741661*train["white_change"] + 1.56428335*

y_hat_test = 10.035233582489628 + 13.81504412*test['male_change'] + -3.93741661*test["white_change"] + 1.564283

36.2

25.9

32.7

31.5

30.3

156.0

52.0

208.0

282.0

15785.0

1504.0

30963.0

5107.0

29610.0

home_prices = pd.read_csv("data/home_price_change_between_2010_2020.csv", usecols=["RegionName", "home_price_change_between_2010_2020.csv", usecols=["RegionName", "home_price_change_between_2010_2020.csv"]

educ 2015 = pd.read csv("data/educational attainment ACS 2015 cleaned.csv", usecols=["zipcode", "total pop 2015

35087.0

75286.0

9861.0

40022.0

0.28

0.53

0.34

0.20

0.07

0.08

0.11

0.76

0.68

0.70

0.92

0.69

white_

0.47

0.56

0.45

0.51

0.50

zipcode male_2015 white_2015 median_age_2015 total_pop_2015 college_pop_2015 college_percent_2015

40.60

41.80

1381 0.99 63673 0.45 1382 rows × 7 columns In [19]: change_data = pd.merge(pd.merge(data_2015, data_2019), home_prices) change_data = change_data.astype('float64') change_data.dtypes new_cols = ["male","white","median_age","college_percent"] #change data["male change"] = change data.loc[:, "median age 2019"] - change data.loc[:, "median age 2015"] for i in new cols: change_data[i+"_change"] = (change_data.loc[:, i+"_2019"] - change_data.loc[:, i+"_2015"])/change_data.loc change data = change data.dropna()

change_data.head()

0.51

0.50

0.48

0.51

0.50

60601.0

60602.0

60605.0

60606.0

60607.0

6

Out[19]:

62996

62997

62999

1377

1378

1380

In [28]:

In [20]:

In [10]:

Out[10]:

import math import json

import pandas as pd import numpy as np

%matplotlib inline

age_sex_race_2015

60002

60004

educ 2015

data 2015

0

1

import matplotlib.pyplot as plt

from sklearn.linear model import LinearRegression

data 2015 = pd.merge(age sex race 2015, educ 2015)

0.93

0.85

0.52

0.48

0.50

0.48

0.51

0.49

0.74

0.74

1.00

0.97

0.71

0.85

0.60

0.77

0.60

home prices = home prices.rename(columns={"RegionName":"zipcode"})

age_sex_race_2015 = pd.read_csv("data/age_sex_race ACS 2015 cleaned.csv")

In [30]: change_data = change_data.sort_values("home_price_change_percent") #sort change in home prices in ascending ord fig, ax = plt.subplots() y_ax = np.array(change_data['home_price_change_percent']) x_ax = np.array(change_data["zipcode"]) #x_ax = range(len(change_data['home_price_change_percent'])) ax.bar(x_ax, y_ax) <BarContainer object of 54 artists> Out[30]: 40 20 0 -20-40 60600 60610 60620 60630 60640 60650 60660 In [25]: change_data['home_price_change_percent'].describe()

54.000000

11.038262

13.585594

-41.298622

5.893871 11.188944

17.899045 43.954938

-41.29%, and this is in zipcode 60621.

54.000000

0.003445

0.035975

-0.078431

-0.020306

0.000000

0.020408

0.120000

r_sq = model.score(X, y)

Print the Intercept:

print('slope:', model.coef_)

intercept: 10.035233582489628

Print the Slope:

102.03364106986339

510.4463699614198

train = change data.iloc[:40] test = change_data.iloc[40:]

model = LinearRegression().fit(X, y)

print('intercept:', model.intercept_)

Name: home price change percent, dtype: float64

54.000000

0.120296

0.353610

-0.247059

-0.025183

0.005618

0.116667

2.000000

y = np.array(train["home_price_change_percent"])

print('coefficient of determination:', r_sq)

coefficient of determination: 0.17158207068220865

from sklearn.metrics import mean squared error

slope: [13.81504412 -3.93741661 1.56428335 -29.70748188]

mean_squared_error(train["home_price_change_percent"], y_hat)

mean squared error(test["home price change percent"], y hat test)

count

mean

std

min 25%

50% 75%

max

count

mean

std

min

25%

50%

75%

max

Out[25]:

In [43]:

Out [43]:

In [35]:

In [44]:

In [48]:

In [51]:

In [52]:

Out[52]:

In [54]:

In [56]:

Out[56]: