Capacité et inductance

- Capacité
- Capacités en série et en parallèle
- Inductance
- Inductances en série et en parallèle

Chap 3

Capacité

$$q = Cv$$

$$i = \frac{dq}{dt} = C\frac{dv}{dt}$$

$$q(t) = \int_{t_0}^{t} i(t)dt + q(t_0)$$

$$v(t) = \frac{1}{C}\int_{t_0}^{t} i(t)dt + v(t_0)$$

$$w(t) = \frac{1}{2}Cv^2(t)$$

Farad = Coulomb/Volt

• Exemple

Capacités en série et en parallèle

Caractéristiques physiques d'une capacité

$$C = \frac{\epsilon A}{d}$$

$$\epsilon_0 \cong 8.85 \times 10^{-12} F/M$$

Inductance

$$v(t) = L \frac{di}{dt}$$

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v(t) dt + i(t_0)$$

$$w(t) = \frac{1}{2} L i^2(t)$$

Henry = Volt . Sec / A

Inductance physique

• Exemple

Inductances en série et en parallèle

