

Projekt 1 – Jacobi- und Gauß-Seidel-Verfahren

Sarah Lutteropp und Johannes Sailer

Gliederung

Aufgabenstellung

Mathematischer Hintergrund

Parallelisierung

Experimentelle Auswertung

Fazit

Aufgabenstellung

Approximation von Stoffkonzentrationen

$$u_{i,j+1}$$
 $u_{i,j+1}$
 $u_{i,j}$
 u_{i+1}

Löse Au = b

Herleitung der Verfahren

Unser Abbruchkriterium

$$rac{\sum_{i,j}|u_{i,j}^{(k)}-u_{i,j}^{(k-1)}|}{\mathit{size}*\mathit{size}} \leq \mathtt{TOL}$$

Vorteile

- Sprunglos
- Implementierung mit #pragma omp reduce

Nachteile

 Maximum der Differenzen wäre exakter

Unser Abbruchkriterium

Beide Verfahren konvergieren.

Parallele Ansätze – Jacobi-Verfahren

Keine Abhängigkeiten innerhalb einer Iteration

Parallele Ansätze – Jacobi-Verfahren

Zusätzliche Optimierung: SSE-Vektorinstruktionen

TODO: SSE-Bild

Parallele Ansätze – Gauß-Seidel-Wavefront

Abhängigkeiten innerhalb einer Iteration:

$$u_{i,j}^{k+1} = \frac{1}{4}u_{i,j-1}^{k+1} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k} + u_{i+1,j}^{k} + h^{2}f(x_{i}, y_{j})$$

1. Möglichkeit: Wavefront

Parallele Ansätze – Gauß-Seidel-Wavefront

Nachteile Wavefront

Schlecht f
ür Cache

0	1	2	3
4	5	6	- 7
8	9	10	11
12	13	14	15

_ 0			
4	1		
8	5	2	
12	9	6	3
13	10	7	
14	11		
15			

- Aufwändige Berechnung der Indizes
- Geringe Parallelität bei kleinen Diagonalen
- Allgemein großer Overhead

Parallele Ansätze – Gauß-Seidel-RotSchwarz

Auswertung ohne Abbruchkriterium

TODO

12

Auswertung mit Abbruchkriterium

Fazit

