Алгоритми та структури даних. Основи алгоритмізації

Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені
Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>25</u>

Виконав студент	Павленко Микита Андрійович
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 25 Завдання

Задане дійсне число х. Послідовність a1, a2, ..., a_n утворена за законом

$$a_n = \frac{x^{2n} \sin x^n}{n^2}, \ n = 1, 2, \dots$$

Отримати суму а $1+a2+...+a_k$, де $x\in (-2,2)$, k - найменше ціле число, що задовольняє двом умовам: k>10, $|a_k|<10^{-4}$.

1) Постановка задачі

За допомогою заданого закону послідовності знайти суму елементів послідовності із заданою умовою виходу з циклу.

2) Побудова математичної моделі

Таблиця імен змінних:

Змінна	Тип	Ім'я	Призначення
Вхідне число	Дійсний	X	Вхідні дані
Сума елементів	Дійсний	S	Вихідні дані
послідовності			
Лічильник ітерацій	Натуральний	n	Проміжні дані
Зведення значення до	_	pow(b,c)	Піднесення значення
степеню			до степеню
Модуль	_	abs(b)	Повертає модуль
			виразу
Ітераційний вираз	Дійсний	a	Проміжні дані

Отже, математичне формулювання задачі зводиться до знаходження значення **s** у циклі шляхом додавання елементів послідовності та збільшення значення ітераційного лічильника допоки не будуть виконані умови виходу із циклу.

3) Псевдокод алгоритму

Крок 1:

початок

Введення х

Обчислення початкових значень n, s, a

Обчислення ѕ

Виведення результату

кінець

Крок 2:

початок

Введення х

n := 1

s := 0

 $\mathbf{a} := (\mathbf{x}^{2n} * \mathbf{Sin}(\mathbf{x}^n)) / \mathbf{n}^2$

Обчислення в

Виведення результату

кінець

Крок 3:

початок

```
Введення \mathbf{x} \mathbf{n} := \mathbf{1} \mathbf{s} := \mathbf{0} \mathbf{a} := (\mathbf{x}^{2n} * \mathbf{Sin}(\mathbf{x}^n)) \, / \, \mathbf{n}^2 Якщо (\mathbf{n} < 10) && (\mathbf{abs}(\mathbf{a}) > 10^{-4}) \mathbf{To} \mathbf{a} := (\mathbf{x}^{2n} * \mathbf{Sin}(\mathbf{x}^n)) \, / \, \mathbf{n}^2 \mathbf{s} += \mathbf{a} \mathbf{n} += 1 інакше все якщо Виведення результату
```

кінець

4) Блок-схема алгоритму

5) Випробування алгоритму

Блок	Дія
	Початок
1	Введення $\mathbf{x} = 1 \ \mathbf{s} = 0 \ \mathbf{n} = 1$
2	Виведення: 7, 57323886327107
	Кінець

Блок	Дія
	Початок
1	Введення $\mathbf{x} = 1 \ \mathbf{s} = 0 \ \mathbf{n} = 1$
2	Виведення: -20,199273478732106
	Кінець

Блок	Дія
	Початок
1	Введення $\mathbf{x} = 0.5 \mathbf{s} = 0 \mathbf{n} = 1$
2	Виведення: 1,0787074618594568
	Кінець

Блок	Дія
	Початок
1	Введення $\mathbf{x} = -0.7 \mathbf{s} = 0 \mathbf{n} = 1$
2	Виведення: -2,841000000718217
	Кінець

Алгоритми та структури даних. Основи алгоритмізації

6) Висновки

Я дослідиd подання операторів повторення дій та набутd практичних навичок їх використання під час складання циклічних програмних специфікацій та виконання поставленої задачі.