3.3 (3) Теорема Поста: критерий разрешимости в терминах перечислимости множества и его дополнения.

Теорема: A разрешимо $\Leftrightarrow A$ и \overline{A} перечислимы

- \blacktriangle \Rightarrow : A можно перечислить даже по возрастанию. Запустим цикл по $n=0,1,\ldots$ Если $n\in A$ (вычислимо по определению разрешимого множества), то выводим n. Дополнение разрешимого множества также разрешимо, поэтому оно тоже перечислимо
 - \Leftarrow : Покажем как построить характеристическую функцию для A. Запускаем цикл по $n=1,2,\ldots$
 - 1. Возвращаем 1, если x было перечислено в A на n-ом шаге
 - 2. Возвращаем 0, если x было перечислено в \overline{A} на n-ом шаге

Для любого x что-то будет выведено, так как оно лежит либо в A, либо в \overline{A} и в силу их перечислимости будет перечислено на каком-то шаге $\Rightarrow A$ - разрешимо \blacksquare

3.4 (3) Неразрешимость проблем самоприменимости и остановки.

Проблема самоприменимости: по входу p нужно понять, определено ли U(p,p). **Утверждение:** это неразрешимая проблема, т.е. множество $\{p|U(p,p)$ определено $\}$ неразрешимо.

▲ Предположим, что это множество разрешимо. Тогда вычислима функция

$$d'(x) = egin{cases} U(x,x) + 1 & U(x,x) \ 0 \end{cases}$$
 определено $U(x,x)$ не определено

Тогда так как d' вычислима $\exists p \forall x \ d'(x) = U(p,x)$. Рассмотрим U(p,p). Предположим, что она определена, тогда U(p,p) = d'(p) = U(p,p) + 1 - противоречие. Если предположим, что она не определена, получим U(p,p) = d'(p) = 1 - тоже противоречие \Rightarrow это множество неразрешимо \blacksquare

Лемма: Область определения вычислимой функции перечислима

▲ Построим полухарактеристическую функцию. Запустим f(x) и если оно остановится, вернем 1. Это и будет полухарактеристической функцией области определения (1 - если f(x) определена, \bot - если не определена) \Rightarrow область определения перечислима

Замечание: Множество из проблемы самоприменимости перечислимо, как область определения вычислимой функции d(x) = U(x,x)

Проблема остановки (останова): по входу (p,k) нужно понять, определено ли U(p,k).

Утверждение: эта проблема тоже неразрешима

▲ Пусть это не так и проблема разрешима. Тогда бы разрешима проблема самоприменимости, так как она является частным случаем проблемы остановки (при k=p). Получили противоречие \Rightarrow эта проблема неразрешима \blacksquare