STRENGTH OF MATERIALS - GATE

Kulasekaran

February 8, 2023

Contents

1 Composition, Resolution and Equilibrium of Forces			
	1.1	Force	2
	1.2	Force systems	2
		1.2.1 Collinear	2
		1.2.2 Concurrent	2
		1.2.3 Coplanar	2
		1.2.4 Coplanar Concurrent	3
		1.2.5 Non-Coplanar Concurrent	3
		1.2.6 Coplanar Non-Concurrent	3
		1.2.7 Non-Coplanar Non-Concurrent	$\ddot{3}$
	1.3	Triangular Law of forces	3
	1.4	Parallelogram Law of forces	3
	1.5	Polygon Law of forces	4
	1.6	Resolution of Forces	4
	1.7	Equilibrium state	4
	1.8	Lami's Theorem	4
2	Ana	alysis of Simple trusses	6
3	Fric	ction	7
4	Wor	rk and Energy	8
5	Vir	tual work	9
6	Cen	nter of Gravity and Moment of Inertia	10
7	Impulse and Momentum		11
8	Lag	rangian Equation	12

Composition, Resolution and Equilibrium of Forces

1.1 Force

- It is the action of one body on another that changes the state of being (rest/uniform motion) of the object on which it is being applied
- 3 things are needed to define a force: Magnitude, direction, Point of application
- According to Newton's first law: Force = Mass * Acceleration

1.2 Force systems

- Coplanar 2D system
- Non-Coplanar 3D system

1.2.1 Collinear

• Two are more forces whose line of action is same

1.2.2 Concurrent

• Two are more forces which meet at a common point

1.2.3 Coplanar

• Forces that are on the same plane

1.2.4 Coplanar Concurrent

• Forces that are on the same plane and meet at a common point as well

1.2.5 Non-Coplanar Concurrent

• Forces are not on the same plane but meet at a common point

1.2.6 Coplanar Non-Concurrent

• Forces are on the same plane but don't meet at a common point

1.2.7 Non-Coplanar Non-Concurrent

• Forces are neither on the same plane nor meet at a common point

1.3 Triangular Law of forces

• Two concurrent forces acting on a body is represented in magnitude and direction by two sides of a triangle taken in order, then their third side will represent the resultant of two forces in the direction and magnitude taken in opposite order

$$\boxed{R = \sqrt{F_1^2 + F_2^2}} \qquad \alpha = \cos^{-1}\left(\frac{F_1}{R}\right) = \sin^{-1}\left(\frac{F_2}{R}\right)$$

1.4 Parallelogram Law of forces

• If two concurrent forces are represented in magnitude as the two sides of a parallelogram, then the resultant of these two forces is the diagonal of the parallelogram

$$R = \sqrt{F_1^2 + 2F_1 F_2 \cos \theta + F_2^2}$$

3

1.5 Polygon Law of forces

• The triangular law can be extended to the polygon law. If a number of coplanar concurrent forces are represented in magnitude and direction by the sides of a polygon, taken in order, then their resultant can be represented by the closing side of the polygon

1.6 Resolution of Forces

• The concept of replacing a single force at some angle with two of its component in the vertical and horizontal direction is called Resolution of forces.

1.7 Equilibrium state

• A body is said to be in equilibrium if it is at rest or moving with uniform velocity. Under equilibrium state, the resultant of the force system will be zero.

1.8 Lami's Theorem

If 3 coplanar concurrent forces are in equilibrium, then each force is proportional to the sine of the angle between the other two sides $\frac{1}{2}$

$$\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$$

Analysis of Simple trusses

Friction

Work and Energy

7

Virtual work

Center of Gravity and Moment of Inertia

Impulse and Momentum

Lagrangian Equation