EE341: Project 4

Timothy Kopp & Mark McCurry

November 30, 2010

1 Problem 6.147

Figure 1: Large Signal Model

The problem is given as two of the amplifiers shown in Fig 1 connected with a load resistance R_L . The problem states $V_{CC}=9V$, $R_1=100k\Omega$, $R_2=47k\Omega$, $R_E=3.9k\Omega$, $R_C=6.8k\Omega$, $\beta=100$, $R_{sig}=5k\Omega$, and $R_L=2k\Omega$.

1.1 Hand Calculations

DC Bias: Part a asks for the DC collector current I_C and the DC collector voltage V_C of both transistors. For the first transistor, we replace R_1 and R_2 with their Thevinin equivalent resistance, $R_B = R_1 || R_2 = 32k\Omega$, and voltage $V_B = \frac{R_2}{R_1 + R_2} V_{BB} = 2.88V$. We then write the KVL using the large signal model, solve for I_B , and use β to find I_C .

$$V_{BB} = R_{B_1} I_{B_1} + 0.7V + R_{E_1} I_{B_1} (\beta + 1)$$
(1)

$$I_{B_1} = 5.12\mu A I_{C_1} = \beta I_{B_1} \tag{2}$$

$$I_{C_1} = 512\mu A \tag{3}$$

We then find V_{C_1} as follows. $V_{C_1} = V_{CC} - R_{C_1}I_{C_1} = 5.5V$. For the second transistor, we observe that the connecting signal is shunted out with a large capacitance. Since the second transistor has the same parameters and associated resistances and voltages as the first, we can conclude that $I_{C_1} = I_{C_2}$ and $V_{C_1} = V_{C_2}$.

Figure 2: Small Signal Model

Small Signal Equivalent Circuit: Part b asks for the small signal equivalent circuit. Fig. 2 shows the small signal model for the entire circuit. R_{sig} is given as $5k\Omega$, R_C as $6.8k\Omega$, R_L as $2k\Omega$. R_1 and R_2 are given, so $R_1||R_2$ is calculated as $32k\Omega$. $r_e=\frac{V_T\alpha}{I_C}=48\Omega$.

Input Resistances & Gains: Part c asks for the input resistance R_{in_1} and gain $\frac{v_{b_1}}{v_{sig}}$. R_{in_1} is the input resistance to the first stage, not including the signal resistance R_{sig} . The input resistance is calculated as follows.

$$R_{in_1} = (R_1||R_2)||((\beta+1)r_e) \tag{4}$$

$$R_{in_1} = 4.24k\Omega \tag{5}$$

The gain for the first stage can be calculated as follows using R_{in_1} .

$$\frac{v_{b_1}}{v_{sig}} = \frac{R_{in_1}}{R_{sig} + R_{in_1}}$$

$$\frac{v_{b_1}}{v_{sig}} = 459 \frac{mV}{V}$$
(6)

$$\frac{v_{b_1}}{v_{sig}} = 459 \frac{mV}{V} \tag{7}$$

Figure 3: Model

Part d asks for the input resistance R_{in_2} and gain from transistor one $\frac{v_{b_2}}{v_{b_1}}$. By inspection it is clear that $R_{in_2} = R_{in_1} = 4.24k\Omega$. To calculate the gain, the transistor model shown in Fig. 3 was used. To complete

the model, g_m is calculated. $g_m = \frac{\alpha}{r_e} = 20.6 \frac{mA}{V}$. R_o is simply R_C , as R_{in} of the following stage is not included. It is then simple to calculate the gain as $\frac{v_{b_2}}{v_{b_1}} = -g_m(R_{in_2}||R_{out_1}) = -51.9 \frac{V}{V}$.

Part e asks for the gain $\frac{v_o}{v_{b_2}}$. Using the model in Fig. 3, we find that $\frac{v_o}{v_i} = g_m(R_{out_2}||R_L) = -31.8\frac{V}{V}$.

Part f asks for the total gain $\frac{v_o}{v_{sig}}$. This value is calculated by simply multiplying the gains from parts c, d, and e. We find that $\frac{v_o}{v_{sig}} = 758 \frac{V}{V}$.

1.2 Spice Verification

DC Bias: It was observed that with the used model, spice produced a V_{BE} of 756.2mV. This was a source of error for the theoretical calculations, which were based off the assumed V_{BE} of 0.7V.

With this value across the transistor's pins, $V_C = 5.611V$ and $I_C = 498.38\mu A$. This was the same as theoretical calculations when the different V_{BE} was accounted for.

Figure 4: Input to First Stage with $v_{sig} = 100 \mu V$

Input & Output Resistances: R_{in} was found to be $4.2k\Omega$, where the input voltage halved in spice, as shown in Fig. 4. Rout was found to be $6.8k\Omega$, where the input voltage halved in spice, as shown in Fig. 5.

Figure 5: Output

Gains: The gains and the errors are shown in the below table. The low error indicates that a proper analysis was made.

Table 1: Gain and Error From Spice

Value	Error
472 mV/V	2.75%
-52.67V/V	1.46%
-29.15V/V	9.09%
$786.46\mathrm{V/V}$	3.618%
	472mV/V -52.67V/V -29.15V/V

2 SPICE Source Code Listings

Listing 1: Verification of Amplifier

```
* 2 Stage Common Emitter Amplifier
*Input
      10 0
            DC9
         0
             AC SIN(0 100u 10k 0 0 0)
vsig 1
rsig 1
         2
             5\,\mathrm{k}
             100 \mathrm{u}
      2
         3
*First Stage
      10 3
             100k
r2a
         0
             47k
```

```
4 3 5 ntran
Qa
rea \quad 5 \quad 0 \quad 3.9\,k
cea \quad 5 \quad 0 \quad 100u
rca \quad 4 \quad 10 \quad 6.8 \, k
cb 4 6 100u
*Second stage
r1b 106 100k
r2b
      6 \ 0 \ 47 \,\mathrm{k}
Qb
     7 6 8 ntran
reb 8 0 3.9k
ceb \quad 8 \quad 0 \quad 100u
rcb \quad 7 \quad 10 \quad 6.8 \, k
cc \qquad 7 \quad 9 \quad 100u
*Load
r\,l \qquad 9 \quad 0 \quad 2\,k
.model ntran npn (bf=100)
```