- → △

第二节 向量组的线性相关性

● 定义及等价刻画

● 性质

行列式运算

矩阵运算

向量组运算

一、线性相关与线性无关的定义

1. 定义

定义 4 给定向量组A: α_1 , α_2 , …, α_m , 如果存在不全为零的实数 k_1 , k_2 , …, k_m , 使

$$k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m = \mathbf{0},$$

则称向量组A是<mark>线性相关</mark>的,否则称它<mark>线性无</mark> 关.

行列式运算

矩阵运算

向量组运算

2. 特殊向量组线性相关性

- (1) 向量 α 线性相关 $\Leftrightarrow \alpha = 0$.
- (2) 向量组 $A: \alpha_1 \neq 0, \alpha_2 \neq 0$ 线性相关 $\Leftrightarrow \alpha_1, \alpha_2$ 的分量对应成比例.
- (3) 含有零向量的向量组必线性相关.
- (4) n维单位坐标向量组 \mathbf{E} : e_1, e_2, \dots, e_n 线性无关.

行列式运算

例 已知

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix},$$

试讨论向量组 α_1 , α_2 , α_3 及 α_1 , α_2 的线性相关性.

二、向量组线性相关的充要条件

向量组 $A: \alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关

若 k_1 $\alpha_1 + k_2$ $\alpha_2 + \cdots + k_m$ $\alpha_m = 0$ 则 k_1 , k_2 , \cdots , k_m 不全为零

该向量组中 <mark>至少有一个</mark>向量 可由其余向量线性表示

齐次线性方程组

 $\mathbf{R}(A) < \mathbf{m}$,其中 $A = (\alpha_1, \alpha_2, \dots, \alpha_m)$

行列式运算

矩阵运算

向量组运算

向量组 $A: \alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关

该向量组中任意一个 都不能由其余向量 线性表示

齐次线性方程组

$$x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_m \alpha_m = 0$$

只有零解

 $\mathbf{R}(\mathbf{A})=\mathbf{m}$,其中 $\mathbf{A}=(\alpha_1,\alpha_2,\cdots,\alpha_m)$

行列式运算

矩阵运算

向量组运算

例1 已知

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix},$$

试讨论向量组 α_1 , α_2 , α_3 及 α_1 , α_2 的线性相关性.

解
$$(\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 1 & 5 & 7 \end{pmatrix}$$

可见 $R(\alpha_1,\alpha_2,\alpha_3)=2$,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关; $R(\alpha_1,\alpha_2)=2$,向量组 α_1,α_2 线性无关.

例 2 已知向量组 a_1, a_2, a_3 线性无关, b_1 =

 $a_1 + a_2$, $b_2 = a_2 + a_3$, $b_3 = a_3 + a_1$, 试证向量组 b_1 , b_2 , b_3 线性无关.

证法一 直接用定义 つ

证法二 利用方程组有解的条件 つ

证法三 利用矩阵秩的性质 つ

方法评注句

三、向量组的线性相关性的性质

定理 5 (1) 若向量组 A: α_1 , α_2 , …, α_m 线性相关,则向量组 B: α_1 , α_2 , …, α_m , α_{m+1} 也线性相关. 反之,若向量组 B 线性无关,则向量组 A 也线性无关.

行列式运算

矩阵运算

例1 已知

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix},$$

试讨论向量组 α_1 , α_2 , α_3 及 α_1 , α_2 的线性相关性.

三、向量组的线性相关性的性质

定理 5 (1) 若向量组 A: α_1 , α_2 , …, α_m 线性相关,则向量组 B: α_1 , α_2 , …, α_m , α_{m+1} 也线性相关. 反之,若向量组 B 线性无关,则向量组 A 也线性无关.

(2) $m \land n$ 维向量组,当维数 n 小于向量个数 m 时一定线性相关.

(3) 设向量组 $A: \alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关,而向量组 $B: \alpha_1, \alpha_2, \dots, \alpha_m$, β 线性相关,则向量 β 必能由向量组 A 线性表示,且表示式是唯一的.

证明 证明 证明

- 例 4 设向量组 α_1 , α_2 , α_3 线性相关,向量组 α_2 , α_3 , α_4 线性无关,证明:
 - (1) α_1 能由 α_2 , α_3 线性表示;
 - (2) α_4 不能由 α_1 , α_2 , α_3 线性表示.

证明令

四. 小结

线性相关性。齐次线性方程组的解

- (1) 向量 α 线性相关 $\Leftrightarrow \alpha = 0$.
- (2) 向量组 $A: \alpha_1 \neq 0, \alpha_2 \neq 0$ 线性相关 $\Leftrightarrow \alpha_1, \alpha_2$ 的分量对应成比例.
- (3) 含有零向量的向量组必线性相关.
- (4) n+1个n维向量必线性相关.
- (5) 小相关 \Rightarrow 大相关; 大无 \Rightarrow 小无.
- 五、作业 书 习题四 P109
 - 4, 5, 9, 10, 11

思考题 研究下列向量组的线性相关性

$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 2 \\ -5 \end{pmatrix}, \alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}.$$