- Initialize $w^k \leftarrow 1$ for k = 1:K
- Execute K copies of program \mathcal{P} in parallel, call them \mathcal{P}^k
- While executing \mathcal{P}^k if a sample, observe, or predict is reached do:
 - sample: \mathcal{P}^k passes to us a continuation \mathbf{k}^k and a tuple (f^k, θ^k) consisting of a distribution f^k and a parameter vector θ^k . We sample a value $x^k \sim f^k(\cdot|\theta^k)$ then call $(\mathbf{k}^k \ \mathbf{x}^k)$ which continues execution of \mathcal{P}^k provided the value.
 - observe: wait for all $K \mathcal{P}^k$ to reach observe
 - * all \mathcal{P}^k pass us a continuation \mathbf{k}^k and a tuple (g^k, ϕ^k, y^k) consisting of a distribution g^k , a parameter vector ϕ^k , and a observed value y^k . We compute $w^k \leftarrow w^k g(y^k | \phi^k)$.
 - * subselect K continuations \mathbf{k}^j with probability $\frac{w^j}{\sum_k w^k}$, set each $w^j \leftarrow \frac{1}{K} \sum_k w^k$, and call all (\mathbf{k}^j) in parallel.
 - predict: \mathcal{P}^k passes us a continuation \mathbf{k}^k , a label ℓ^k , and a value z^k . We store (ℓ^k, z^k) and call (\mathbf{k}^k) .
- Once all K copies of \mathcal{P}^k reach the end of the program "output" $(\ell^1,z^1,w^1)\dots$ (ℓ^K,z^K,w^K)