INFORMATIONSTHEORIE

Part 1. Kompression

1. Elemente im Übertragungssystem

- Quelle/Senke
- Quellencodierung
- Chiffrierung
- Kanalcodierung
- Modulation

 digitale Quelle Encoder
 A/D-Umsetzung Datenkompression Verschlüsselung Fehlerschutz

 andere Benutzer
 (Multiple Access)

 Interferenz
 Rauschen

 Analoger
 Kanal-Encoder
 Tx

 analoger
 Kanal-Encoder
 Tx

 Analoger
 Kanal

Dechiffriere

Quellen-

Decoder

Part 2. Entropie

digitale

Senke

2. Diskrete Informationsquellen

Rx

Demodul.

Kanal-

Decoder

Symboldauer	T
Symbolrate	R = 1/T
Quellensymbol (Zufallsvariable)	X[n]
Alphabet	$A = \{x_1, x_2, \dots, x_M\}$
Wahrscheinlichkeit	$P(X = x_m) = P_X(x_m), m = 1, \dots, M$
Wahrscheinlichkeitsverteilung von X	$\sum_{m=1}^{M} P_X(x_m) = 1$

2.0.1. gedächtnislose Quellen.

- $\bullet\,$ DMS (Discrete Memoryless Source), Die Symbole X[n] sind unabhängig und haben identische Wahrscheinlichkeitsverteilung.
- BMS (Binary Memoryless Source), Die unabhängigen Symbole X[n] sind 2-wertig, d.h. $P_X(x_1) = p$ und $P_X(x_2) = 1 p$.
- BSS (Binary Symmetric Source), Die unabhängigen Symbole X[n] sind 2-wertig und es gilt: $P_X(x_1) = 0.5$ und $P_X(x_2) = 0.5$.

1

2

3. Informationsgehalt

Der Informationsgehalt eines Ereignisses $X=x_m$ ist wie folgt definiert:

$$I_x(x_m) = \log_2\left(\frac{1}{P_X(x_m)}\right)$$
 [bit]

Für Ereignisse von 2 (oder mehreren) Zufallsvariablen X und Y gilt sinngemäss:

$$I_x(x_m) = \log_2\left(\frac{1}{P_{XY}(x_i, y_k)}\right) [\text{bit}]$$

Für 2 unabhängige Symbole X und Y gilt:

$$I_{XY}(x_i, y_k) = I_X(x_i) + I_Y(y_k)$$

4. Redundanz

Differenz zwischen maximaler und mittlerer Entropie. Redundanz (M ist die Anzahl Symbole des Alphabets) Entropie ist maximal $log_2(M)$, wenn X-Werte gleichverteilt. Möglichst wenig Redundanz am Ausgang des Quellencoders.

$$R = log_2(M) - H(x)$$

5. Entropie

Datenübertragung: die maximale (verlustlose) Kompression = Entropie

$$H_x(x_m) = \sum \log_2 P_x(x_i) \cdot \left(\frac{1}{P_X(x_i)}\right) [\text{bit}]$$

5.1. Binäre Entropiekurve.

Part 3. Kompression

Huffman Code

Abhängig von der Quellenstatistik

Algorithmus.

- (1) Symbole nach Wahrscheinlichkeiten ordnen und Knoten eines Baums zuweisen
- (2) Zwei Symbole mit kleinster Wahrscheinlichkeit in neuem Symbol zusammenfassen, neuer Knoten hat Summe der Wahrscheinlichkeiten
- (3) Erneutes Reduzieren des Wahrscheinlichkeitsfeldes gem. Schritt 1
- (4) Schritte 2 und 3 wiederholen bis 2 Symbole bzw. Knoten übrig
- (5) Von der Wurzel aus bei jeder Verzweigung nach oben eine "0" und nach unten eine "1" eintragen (auch umgekehrt möglich) //Konstruktion Codebuch

Codewort	X	P_{X}	
0	Α	1/2	0
100	В	1/8	Wurzel
101	C	1/8	1/4 1
110	D	1/8	1/2
111	Е	1/8	1/4 1

R = Warscheinlichkeit * Codelänge (bsp. 1 * 1/8 + (3 * 1/8) * 4 = 2)

Lempel-Ziv-Codierung

Unabhänging von der Quellenstatistik

Algorithmus.

- (1) Eindeutige Unterteilung der Symbolfolge Strings variabler Länge, Unterscheidung nur in 1 Bit
- (2) Encoding eines Strings: [Position des Präfix, neues Bit]

LZ77

- (1) Erstes Symbol des Vorschau-Buffers im Such-Buffer suchen
 - (a) rückwärts von rechts nach links
- (2) Token der längsten (letzten) Übereinstimmung ausgeben
 - (a) Token = (Offset, Länge, nächstes Symbol)
 - (b) Token-Länge: log2(S+1) + log2(L+1) + 8 typisch: 11 + 5 + 8 = 24 Bit
 - (c) wenn keine Übereinstimmung: (0,0, nächstes Symbol)
- (3) 3. Schiebefenster um Länge +1 nach rechts verschieben

LZ78

LZW

- Initialisierung I=[]
 - (1) neues Symbol x zu String I hinzufügen => I = Ix setzen
 - (a) Ix im Wörterbuch verzeichnet? Wenn ja, dann zu step 1. sonst zu step 3.
 - (2) -
 - (a) Output = Wörterbuch-Pointer von I
 - (b) Neuer Wörterbucheintrag mit Phrase Ix

(c) I = "x" setzen

5.2. Beispiel Encoding. Text: ABBABABAC

Anfangswörterbuch: 1: A, 2: B, 3: C

Momentane Buchstaben	String I	verzeichnet	WB-Eintrag	Output
A	A	✓		
A	AB	×	4 : AB	1
В	В	✓		
В	BB	×	5 : BB	2
В	В	✓		
В	BA	×	6 : BA	2
A	A	✓		
AB	AB	✓		
AB	ABA	×	7 : ABA	4
A	A	✓		
AB	AB	✓		
ABA	ABA	✓		
ABA	ABAC	×	8 : ABAC	7
С	С	✓		
C	C,eof			3

C						C			✓
С						C,ϵ			
Bsp Decoding (Lösung ist in String J)									
68	68	82	99	77	65	82	256	82	2
D	Е	R		M	A	R		R	,
Inp	ut	t String I		String J			WB		
68	8 D								
69		D		Е		25	256: DE		
82	2	Е		R		25	257: ER		
95	5	R		_		25	258: R_		
77	7 _			M		25	259: _M		
65		M		A		26	260: MA		
82		A		R		26	261: AR		
25	6	6 R		DE		26	262: RD		
82	2	DE		R		26	263: DER		

JPG

statt Redundanzreduktion vorallem Irrelevanzreduktion (Qualitätsverlust, häufig jedoch nicht bemerkbar)

RLE.

PN-Sequenzen. Pseude Noise Sequenzen

LSFR. Für Randomgenerator

$$a_0 = (a_{18} + a_5 + a_2 + a_1) modulo 2$$