Самостійна робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

25 листопада 2023 р.

Завдання

Умова. Нехай

$$X = \{A, B, C\}, \ \mathcal{P} = \{\emptyset, \{A\}, \{B\}\},\$$

 $\lambda : \mathcal{P} \to [0, +\infty), \ \lambda(\emptyset) = 0, \ \lambda(\{A\}) = 1, \ \lambda(\{B\}) = 1.$

- 1. Перевірити, що λ є мірою на півкільці \mathcal{P} .
- 2. Побудувати зовнішню міру λ^* на 2^X .
- 3. Знайти клас ${\mathcal S}$ вимірних за Каратеодорі відносно міри λ^* множин.

Розв'язок.

 $\Pi y n \kappa m$ 1. Згідно означенню Mipu, функція λ має бути невід'ємною σ адитивною функцією множин, заданих на півкільці.

Зрозуміло, що \mathcal{P} є півкільцем. λ також є невід'ємною, оскільки за умовою $\lambda(\{A\}) = \lambda(\{B\}) = 1 > 0$ і $\lambda(\emptyset) = 0$.

Залишилося перевірити σ -адитивність. За означенням λ є σ -адитивною,

ЯКЩО

$$\forall \{A_n\}_{n\in\mathbb{N}} \subset \mathcal{P}: \left\{ \{A_n\}_{n\in\mathbb{N}} \text{ неперетинні } \wedge \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{P} \right\}$$

$$\implies \lambda \left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \lambda(A_n)$$

Оскільки $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{P}$ і всі елементи є неперетинними, то $\{A_n\}_{n\in\mathbb{N}}$ складається з одного або жодного $\{A\}$, $\{B\}$ і нескінченної кількості \emptyset , тобто

$$\{A_n\}_{n\in\mathbb{N}} = \{\{A\}, \emptyset, \dots\} \text{ afo}$$
 (1)

$$\{A_n\}_{n\in\mathbb{N}} = \{\{B\}, \emptyset, \dots\} \text{ afo}$$
 (2)

$$A_n \equiv \emptyset \tag{3}$$

Випадок (3) тривільний, тому розглянемо випадок (1), що є аналогічним (2). В такому разі, $\bigcup_{n\in\mathbb{N}} A_n = \{A\}$, тому $\lambda(\bigcup_{n\in\mathbb{N}} A_n) = \lambda(\{A\})$. З іншого боку, $\sum_{n\in\mathbb{N}} \lambda(A_n) = \lambda(\{A\}) + \lambda(\emptyset) + \lambda(\emptyset) + \cdots = \lambda(\{A\})$. Отже, рівність виконується.

Пункт 2. Побудуємо зовнішню міру за допомогою продовження λ на 2^X . Маємо для $\forall H \in 2^X$:

$$\lambda^*(H) = \begin{cases} \inf\left\{\sum_{n \in \mathbb{N}} \lambda(A_n) : H \subset \bigcup_{n \in \mathbb{N}} A_n \wedge \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{P}\right\},\\ \text{якщо } \exists \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{P} : H \subset \bigcup_{n \in \mathbb{N}} A_n\\ +\infty, \text{ в іншому випадку} \end{cases}$$

Отже, почнемо розглядати усі елементи з 2^X . По-перше, $\lambda^*(\emptyset) = 0$ з означення зовнішньої міри.

Далі $\lambda(\{A\}) = \lambda(\{B\}) = 1$. Що стосується $\lambda(\{C\})$, то тут ми не можемо знайти $\{A_n\}_{n\in\mathbb{N}} \subset \mathcal{P}$ так, щоб $\{C\} \subset \bigcup_{n\in\mathbb{N}} A_n$, оскільки \mathcal{P} не містить $\{C\}$ або інші елементи, що мають в собі $\{C\}$. Тому $\lambda(\{C\}) = +\infty$.

Аналогічно для усіх множин з 2^X , що містять C. Тому залишилося розглянути $\lambda^*(\{A,B\})$. Беремо мінімально $\{A_n\}_{n\in\mathbb{N}}:=\{\{A\},\{B\},\emptyset,\dots\},$ тоді $\sum_{n\in\mathbb{N}}\lambda(A_n)=\lambda(\{A\})+\lambda(\{B\})=2.$

Отже,

$$\forall H \in 2^X : \lambda^*(H) = \begin{cases} |H|, & C \notin H \\ +\infty, & C \in H \end{cases}$$

 $\Pi y n \kappa m$ 3. Скориставшись означенням вимірності за Каратеодорі, нам потрібно знайти

$$S = \{ H \subset X : \forall E \subset X \ \lambda^*(E) = \lambda^*(E \cap H) + \lambda^*(E \cap \overline{H}) \}$$

По-перше, $\emptyset \in \mathcal{S}$, оскільки

$$\lambda^*(E) = \lambda^*(E \cap \emptyset) + \lambda^*(E \cap X) = \lambda^*(\emptyset) + \lambda^*(E) = \lambda^*(E)$$

Розглянемо $H \subset X : C \not\in H$. Тоді

$$\forall E \subset X : \lambda^*(E) = \lambda^*(E \cap H) + \lambda^*(E \cap \overline{H}) \iff \forall E : |E| = |E \cap H| + |E \cap \overline{H}|$$

Беремо $H = \{A\}$. Якщо перебрати усі варіанти, то властивість вище виконується. Так само для $H = \{B\}$ і $H = \{A, B\}$.

Тепер беремо ті множини $H \subset X : C \in H$. Можна переконатись, що тут результат буде такий самий. Отже, $\mathcal{S} = 2^X$.

Відповідь. 1. Див. розв'язок. 2.
$$\lambda^*(H) = \begin{cases} |H|, & C \not\in H \\ +\infty, & C \in H \end{cases}$$
. 3. $\mathcal{S} = 2^X$.