In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2003-03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.2
1	2003-03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.3
2	2003-03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.2
3	2003-03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.8
4	2003-03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.7
243979	2003-10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.3
243980	2003-10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.4
243981	2003-10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.8
243982	2003-10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.5
243983	2003-10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.3

243984 rows × 16 columns

```
In [3]:
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 243984 entries, 0 to 243983 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	243984 non-null	object
1	BEN	69745 non-null	float64
2	CO	225340 non-null	float64
3	EBE	61244 non-null	float64
4	MXY	42045 non-null	float64
5	NMHC	111951 non-null	float64
6	NO_2	242625 non-null	float64
7	NOx	242629 non-null	float64
8	OXY	42072 non-null	float64
9	0_3	234131 non-null	float64
10	PM10	240896 non-null	float64
11	PXY	42063 non-null	float64
12	S0_2	242729 non-null	float64
13	TCH	111991 non-null	float64
14	TOL	69439 non-null	float64
15	station	243984 non-null	int64
dtyp	es: float	64(14), int64(1),	object(1)

memory usage: 29.8+ MB

In [4]: b=a.fillna(value=126)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	
0	2003-03-01 01:00:00	126.00	1.72	126.00	126.00	126.00	73.900002	316.299988	126.00	10.5
1	2003-03-01 01:00:00	126.00	1.45	126.00	126.00	0.26	72.110001	250.000000	0.73	6.72
2	2003-03-01 01:00:00	126.00	1.57	126.00	126.00	126.00	80.559998	224.199997	126.00	21.04
3	2003-03-01 01:00:00	126.00	2.45	126.00	126.00	126.00	78.370003	450.399994	126.00	4.22
4	2003-03-01 01:00:00	126.00	3.26	126.00	126.00	126.00	96.250000	479.100006	126.00	8.46
243979	2003-10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.04
243980	2003-10-01 00:00:00	0.32	0.08	0.36	0.72	126.00	10.450000	14.760000	1.00	34.6
243981	2003-10-01 00:00:00	126.00	126.00	126.00	126.00	0.07	34.639999	50.810001	126.00	32.16
243982	2003-10-01 00:00:00	126.00	126.00	126.00	126.00	0.07	32.580002	41.020000	126.00	126.00
243983	2003-10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.48

243984 rows × 16 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_
0	2003-03-01 01:00:00	126.00	1.72	126.00	126.00	126.00	73.900002	316.299988	126.00	10.55000
1	2003-03-01 01:00:00	126.00	1.45	126.00	126.00	0.26	72.110001	250.000000	0.73	6.72000
2	2003-03-01 01:00:00	126.00	1.57	126.00	126.00	126.00	80.559998	224.199997	126.00	21.04999
3	2003-03-01 01:00:00	126.00	2.45	126.00	126.00	126.00	78.370003	450.399994	126.00	4.22000
4	2003-03-01 01:00:00	126.00	3.26	126.00	126.00	126.00	96.250000	479.100006	126.00	8.46000
5	2003-03-01 01:00:00	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.95000
6	2003-03-01 01:00:00	126.00	1.38	126.00	126.00	0.29	89.580002	230.000000	126.00	7.20000
7	2003-03-01 01:00:00	126.00	1.58	126.00	126.00	0.30	93.639999	334.600006	126.00	4.19000
8	2003-03-01 01:00:00	126.00	126.00	126.00	126.00	126.00	126.000000	126.000000	126.00	126.00000
9	2003-03-01 01:00:00	126.00	1.92	126.00	126.00	126.00	71.839996	181.399994	126.00	5.33000
10	2003-03-01 01:00:00	126.00	1.33	126.00	126.00	0.31	87.919998	273.399994	126.00	4.25000

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
0	126.00	1.72	126.00	126.00	126.00	73.900002	316.299988	126.00	10.550000
1	126.00	1.45	126.00	126.00	0.26	72.110001	250.000000	0.73	6.720000
2	126.00	1.57	126.00	126.00	126.00	80.559998	224.199997	126.00	21.049999
3	126.00	2.45	126.00	126.00	126.00	78.370003	450.399994	126.00	4.220000
4	126.00	3.26	126.00	126.00	126.00	96.250000	479.100006	126.00	8.460000
5	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.950000
6	126.00	1.38	126.00	126.00	0.29	89.580002	230.000000	126.00	7.200000
7	126.00	1.58	126.00	126.00	0.30	93.639999	334.600006	126.00	4.190000
8	126.00	126.00	126.00	126.00	126.00	126.000000	126.000000	126.00	126.000000
9	126.00	1.92	126.00	126.00	126.00	71.839996	181.399994	126.00	5.330000
10	126.00	1.33	126.00	126.00	0.31	87.919998	273.399994	126.00	4.250000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x1fdea615250>
          80 60
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         1.0231815394945443e-12
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
             BEN -1.695639e-16
             CO
                  1.653345e-14
             EBE -3.975580e-16
            MXY
                 4.284913e-16
           NMHC -4.011195e-15
            NO_2 -2.801221e-14
            NOx 1.000000e+00
            OXY 2.871689e-15
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x1fdef63b220>
           450
           400
           350
           300
           250
           200
                   200
                           250
                                   300
                                            350
                                                    400
                                                            450
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9998869821152107
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999989799894025
In [22]: a1=b.head(5000)
Out[22]:
                     date
                            BEN
                                  CO
                                        EBE
                                             MXY
                                                   NMHC
                                                             NO_2
                                                                        NOx
                                                                               OXY
                                                                                         O_3
                2003-03-01
                          126.00 1.72 126.00 126.0 126.00 73.900002 316.299988 126.00 10.550000
                  01:00:00
                2003-03-01
                          126.00 1.45 126.00 126.0
                                                    0.26 72.110001 250.000000
                                                                               0.73
                                                                                     6.720000
                  01:00:00
                2003-03-01
                          126.00 1.57 126.00 126.0 126.00 80.559998 224.199997 126.00 21.049999
                  01:00:00
                2003-03-01
                          01:00:00
                2003-03-01
                          126.00 3.26 126.00 126.0 126.00 96.250000 479.100006 126.00
                                                                                    8.460000
                  01:00:00
                2003-03-08
           4995
                          126.00 0.46 126.00 126.0 126.00 27.469999
                                                                    36.110001 126.00 43.799999
                  11:00:00
                2003-03-08
           4996
                          126.00 0.69 126.00 126.0
                                                     0.07 39.020000
                                                                    56.230000 126.00 39.720001
                  11:00:00
                2003-03-08
           4997
                          126.00 1.74 126.00 126.0 126.00 65.790001 148.500000 126.00 23.760000
                  11:00:00
                2003-03-08
           4998
                                                    0.13 52.610001
                            1.85 0.56
                                        1.62 126.0
                                                                    96.300003 126.00 28.770000
                  11:00:00
                2003-03-08
           4999
                          126.00 0.84 126.00 126.0 126.00 33.310001 41.720001 126.00 38.459999
                  11:00:00
          5000 rows × 16 columns
          e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
          f=e.iloc[:,0:14]
In [24]:
In [25]:
In [26]: logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
In [27]: from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
        [28079003]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
               28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
               28079038, 28079039, 28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 9.896956293105757e-13
In [32]:
Out[32]: 0.999999999683131
In [33]:
Out[33]: 0.594
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
                                         -0.
        [-0. -0.
                              -0.
                                                    -0.
                                                               -0.
          0.99990495 -0.
In [36]:
        0.029388644480661696
In [37]: prediction=en.predict(x_test)
        0.9999999898008636
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
                                grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                            param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                       'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                       'n_estimators': [10, 20, 30, 40, 50]},
                                                                            scoring='accuracy')
In [41]:
Out[41]: 0.5691428571428572
In [42]:
In [43]: from sklearn.tree import plot_tree
                                plt.figure(figsize=(80,50))
Out[43]: [Text(1900.2162162162163, 2491.5, 'X[0] <= -0.355\ngini = 0.964\nsamples = 22
                                24\nvalue = [126, 136, 138, 119, 113, 99, 117, 120, 124, 137\n106, 131, 127,
                                135, 114, 127, 146, 129, 108, 109\n127, 103, 129, 142, 147, 131, 123, 137]'),
                                   Text(573.081081081081, 2038.5, 'X[11] <= -0.864\ngini = 0.872\nsamples = 59
                                1\nvalue = [0, 0, 0, 119, 0, 0, 0, 0, 0, 106, 0, 0, 0\n0, 0, 137, 129, 10
                                8, 109, 0, 0, 75, 0, 0, 0, 0\n136]'),
                                   Text(241.2972972973, 1585.5, 'X[10] <= -2.287\ngini = 0.157\nsamples = 4
                                2\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 6, 64, 0, 0,
                                0, 0, 0, 0, 0, 0, 0]'),
                                   Text(120.64864864864865, 1132.5, 'gini = 0.0\nsamples = 37\nvalue = [0, 0,
                                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 62, 0, 0, 0, 0, 0, 0, 0, 0,
                                0]'),
                                   Text(361.94594594594594, 1132.5, 'gini = 0.375 \nsamples = 5 \nvalue = [0, 0, ]
                                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0,
                                0]'),
                                   Text(904.8648648648648, 1585.5, 'X[7] <= -0.661\ngini = 0.865\nsamples = 54
                                9\nvalue = [0, 0, 0, 119, 0, 0, 0, 0, 0, 106, 0, 0, 0\n0, 0, 137, 123, 44,
                                109, 0, 0, 75, 0, 0, 0, 0\n136]'),
                                   Text(603.2432432432432, 1132.5, X[4] <= -0.069 \setminus 0.777 \setminus
```

From this observation I had observe that the ELASTICNET highest accuracy of 0.999999898008636

```
In [ ]:
```