线性代数 中国科学技术大学 2023 春 线性空间

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

寻找极大无关组的理论工具

原理: 初等行变换不改变列向量的线性相关性.

定理

设 \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_m 为一组列向量. 对矩阵

$$A = (\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m) \in \mathbb{F}^{n \times m}$$

做一系列行初等变换得到

$$B = (\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_m) \in \mathbb{F}^{n \times m}.$$

则对于任意 $i_1, i_2, \cdots, i_r \in \{1, 2, \cdots, m\}$,

- ① $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r}$ 线性相关 (无关) $\Leftrightarrow \vec{b}_{i_1}, \vec{b}_{i_2}, \cdots, \vec{b}_{i_r}$ 线性相关 (无关):
- ② $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r}$ 极大无关 $\Leftrightarrow \vec{b}_{i_1}, \vec{b}_{i_2}, \cdots, \vec{b}_{i_r}$ 极大无关:

等价向量组

定义(等价)

称两向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 和 $\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_\ell$ 等价, 若

- ① 任意 $i \in \{1, \dots, m\}$, $\vec{a_i}$ 可由 $\vec{b_1}, \vec{b_2}, \dots, \vec{b_\ell}$ 线性表示;
- ② 任意 $i \in \{1, \dots, \ell\}$, \vec{b}_i 可由 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性表示; 此时记为 $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m\} \sim \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_\ell\}$.

定理(通过生成子空间来判定是否等价)

$$\{\vec{a}_1,\cdots,\vec{a}_m\}\sim\{\vec{b}_1,\cdots,\vec{b}_\ell\}\quad\Leftrightarrow\quad \langle\vec{a}_1,\cdots,\vec{a}_m\rangle=\langle\vec{b}_1,\cdots,\vec{b}_\ell\rangle.$$

注: ~ 为等价关系.

推论

- 一个向量组与它的任一极大无关组等价;
- ② 任两极大无关组等价.

极大无关组的基本性质

定理

设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_r$ 和 $\vec{b}_1, \vec{b}_2, \dots, \vec{b}_s$ 为两线性无关的向量组. 若它们相互等价, 则 r = s.

推论

向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的任两个极大无关组中的向量个数相同. 这个数称为向量组的秩. 记为 $\operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m)$ 或者 $r(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m)$.

性质 (用秩判定相关性)

- ① $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性无关 $\Leftrightarrow \operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m) = m;$
- ② $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关 $\Leftrightarrow \operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m) < m$;

秩与线性相关性

定理

若 $\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_s$ 可由 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r$ 线性表示, 则 $\operatorname{rank}(\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_s) \leq \operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r).$

推论

- ① \mathbb{P}^n 中任意 n+1 个向量一定线性相关.
- $\{\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r\} \sim \{\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_s\} \Leftrightarrow \operatorname{rank}(\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_s) = \operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r);$

推论(用秩来判定线性方程组是否有解)

 \vec{b} 为 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r$ 的线性组合 \Leftrightarrow rank $(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r) = \operatorname{rank}(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_r, \vec{b})$.

向量组的秩与矩阵的秩

$$A = (a_{ij})_{n \times n} = \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_m \end{pmatrix} = \begin{pmatrix} \vec{b}_1 & \cdots & \vec{b}_n \end{pmatrix}$$

我们有如下三种秩:

□ rank(A) 矩阵 A 的秩;

② $rank(\vec{a}_1, \dots, \vec{a}_m)$ 矩阵 A 的行秩;

③ $rank(\vec{b}_1, \dots, \vec{b}_n)$ 矩阵 A 的列秩;

定理

推论

设 A 为 n 阶方阵. 则

- ① A 可逆 \Leftrightarrow rank(A) = n \Leftrightarrow 行 (列) 向量线性无关.
- ② $rank(A) = r \Rightarrow \pi \gg r \text{ and } r \text{ both } r \text{ both$

子空间的基与维数

定理

向量空间 [[7] 的任意子空间都可以由有限个向量生成.

证明思路: 反证. 假若子空间 V 不能由有限个向量生成. 则存在一 列向量

$$a_1, a_2, a_3, \cdots$$

使得 $a_i \in V \setminus \langle a_1, \cdots, a_{i-1} \rangle$. 特别地, (由习题 15 知)

$$a_1, \cdots, a_{n+1}$$

线性无关. 矛盾!

推论

对于任意 \mathbb{F}^n 的子空间 V, 存在一组线性无关的向量 $\vec{a}_1, \cdots, \vec{a}_r$ 使

$$V = \langle \vec{a}_1, \cdots, \vec{a}_r \rangle.$$

子空间的基与维数

定义(基)

设V为 \mathbb{F}^n 的子空间. 若向量组 $\vec{a}_1, \cdots, \vec{a}_r$

- 线性无关, 且
- 生成子空间 V,

则称 $\vec{a}_1, \dots, \vec{a}_r$ 为 V 的一组基. 称基中向量的个数 r 为子空间 V 的维数.

性质 (坐标)

设向量组 $\vec{a}_1,\cdots,\vec{a}_r$ 为 V 的一组基. 则任意 $\vec{a}\in V$ 可唯一地表示为 $\vec{a}_1,\cdots,\vec{a}_r$ 的线性组合. 即, 存在唯一的一组数 $\lambda_1,\cdots,\lambda_r\in\mathbb{F}$ 使得

$$\vec{a} = \sum_{i=1}^r \lambda_i \vec{a}_i =: (\vec{a}_1, \cdots, \vec{a}_r) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix}.$$

称 $(\lambda_1, \dots, \lambda_r)$ 为 \vec{a} 在基 $\{\vec{a}_1, \dots, \vec{a}_r\}$ 下的坐标.

基与坐标

例(自然基)

设 $\vec{e}_1, \cdots, \vec{e}_n$ 为 \mathbb{F}^n 的一组基. 任意向量在自然基下的向量为自身,即

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = (\vec{e}_1, \cdots, \vec{e}_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

空间
$$\xrightarrow{\text{ $\underline{\Psi}$} \text{ \mathbb{R}} 3}$$
 点 \longrightarrow 点在坐标系下的坐标

推广

$$\mathbb{F}^n$$
 的 r 维子空间 $\longrightarrow \frac{\mathbb{E}}{1:1}$ $\longrightarrow \mathbb{F}^r$ 向量 $\longleftarrow \longrightarrow$ 向量 在基下的坐标

坐标变换

设 $\vec{a}_1, \dots, \vec{a}_r$ 和 $\vec{b}_1, \dots, \vec{b}_r$ 为 V 的两组基. 设向量 $v \in V$ 在两组基 下的坐标分别为 $X = \begin{pmatrix} x_1 \\ \vdots \end{pmatrix}$ 和 $Y = \begin{pmatrix} y_1 \\ \vdots \end{pmatrix}$. 即,

$$v = (\vec{a}_1, \cdots, \vec{a}_r)X = (\vec{b}_1, \cdots, \vec{b}_r)Y.$$

问题: 如何确定 X 和 Y 之间的关系?

坐标变换

性质

设 $\vec{a}_1, \dots, \vec{a}_r$ 和 $\vec{b}_1, \dots, \vec{b}_r$ 为V的两组基.则

● 存在唯一r阶方阵T使得

$$(\vec{b}_1,\cdots,\vec{b}_r)=(\vec{a}_1,\cdots,\vec{a}_r)T.$$

矩阵 T 称为从基 $\vec{a}_1, \dots, \vec{a}_r$ 到基 $\vec{b}_1, \dots, \vec{b}_r$ 的过渡矩阵.

② 设向量 $v \in V$ 在两组基下的坐标分别为 $X = \begin{pmatrix} x_1, & \cdots, & x_r \end{pmatrix}^T$ 和 $Y = \begin{pmatrix} y_1, & \cdots, & y_r \end{pmatrix}^T$. 则

$$X = TY$$
. (坐标变换公式)

注: 过渡矩阵 T 总是可逆的.

坐标变换例子

例

逆时针旋转平面直角坐标系 θ 角.

$$\Rightarrow (e'_1, e'_2) = (e_1, e_2) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

$$\Rightarrow \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

扩充基

定理(扩充基)

设 V 为 \mathbb{P}^n 的 r 维子空间. 设 $\vec{a}_1,\cdots,\vec{a}_s$ 为 V 中一组线性无关向量. 则 $s \leq r$ 且存在 $\vec{a}_{s+1},\cdots,\vec{a}_r \in V$ 使得 $\vec{a}_1,\cdots,\vec{a}_r$ 构成 V 的一组基. 称 $\vec{a}_1,\cdots,\vec{a}_r$ 为 $\vec{a}_1,\cdots,\vec{a}_s$ 的一组扩充基.

性质

设U和V为 \mathbb{F}^n 的两个子空间.

- ① 若 $\dim(V) = r$, 则 V 中的任意 r+1 个向量线性相关;
- ② 若 $\dim(V) = r$ 且 $\vec{a}_1, \dots, \vec{a}_r \in V$ 线性无关,则 $\{\vec{a}_1, \dots, \vec{a}_r\}$ 为 V 的一组基.
- **③** 若 $U \subseteq V$, 则 dim $U \le$ dim V.
- \bullet 若 $U \subseteq V$ 且 dim $U = \dim V$, 则 U = V.

解空间

例

证明 $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ 为 \mathbb{R}^3 的子空间. 求 V的维数并找出其一组基.

通解:
$$X = t_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
.

例

证明 $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0, 2x_1 - x_2 + x_3 = 3\}$ 不是 \mathbb{R}^3 的子空间.

设 $A \in \mathbb{F}^{m \times n}$. $b \in \mathbb{F}^m$ 为非零向量. 则

- ① $V := \{X \in \mathbb{F}^n \mid AX = 0\}$ 为子空间;
- ② $W := \{X \in \mathbb{F}^n \mid AX = b\}$ 不是子空间.

接下来学习 V和 W 更进一步地性质.

有(唯一)解的判定

定理

设 $A \in \mathbb{F}^{m \times n}$, $b \in \mathbb{F}^m$. 则

- **①** AX = b 有解 ⇔ rank(A) = rank(A, b).
- ② AX = b 有唯一解 $\Leftrightarrow \operatorname{rank}(A) = \operatorname{rank}(A, b) = n$.

例

设 $A \in \mathbb{F}^{m \times n}$. 则

- ① AX = 0 一定有解:
- ② AX = 0 有非零解 $\Leftrightarrow \operatorname{rank}(A) < n \stackrel{\stackrel{\textstyle \times}{\longleftarrow} A}{\longleftarrow} \det(A) = 0$.

齐次线性方程组的解空间

定义(基础解系)

设 $A \in \mathbb{F}^{m \times n}$. 称解空间

$$V = \{ X \in \mathbb{F}^n \mid AX = 0 \}$$

的一组基为齐次线性方程组AX = 0的一个基础解系.

定理(解空间大小)

$$\dim(V) = n - \operatorname{rank}(A).$$