HANDOUT 15

JIASU WANG

Orthogonal projection. The orthogonal decomposition theorem. Least-squares problem.

Exercise 1: Find the orthogonal projection of $\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ to the two dimensional subspace

 $W \subset \mathbb{R}^3$ spanned by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. (It is denoted as $\operatorname{proj}_W \mathbf{x}$.)

Exercise 2: Find the best approximation to **x** by vectors of the form c_1 **v**₁ + c_2 **v**₂.

$$\mathbf{v}_1 = \left[egin{array}{c} 3 \\ -7 \\ 2 \\ 3 \end{array}
ight], \mathbf{v}_2 = \left[egin{array}{c} 2 \\ -1 \\ -3 \\ 1 \end{array}
ight], \mathbf{x} = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ -1 \end{array}
ight]$$

Exercise 3: Find the distance of the point $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ to the two dimensional subspace $W \subset \mathbb{R}^3$

spanned by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

Exercise 4: Construct the normal equations for the following least-square problems $A\mathbf{x}=b$, and find a least-square solution \mathbf{x} .

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right], \quad b = \left[\begin{array}{c} 2 \\ 3 \\ 3 \end{array} \right]$$

Exercise 5: Describe all least-squares solutions to the equation $A\mathbf{x} = b$.

$$A = \left[\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 3 & 0 & 6 \\ 4 & 0 & 8 \end{array} \right], \quad b = \left[\begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \end{array} \right]$$