Bitcoin Consensus

Enze "Alex" Liu

a.k.a. TA #2

e7liu@ucsd.edu

Slides Partially from Dan Boneh

Recap of the Last Lecture

- Wallet
 - Cloud vs Self-hosted
 - Custodial vs Non-custodial
 - Hardware vs Software
- Signing a transaction
 - Sign_prviatekey(transaction)
- How do I tell others about my transaction?
- How to reach consensus?

- How do I find others (a.k.a. nodes)?
 - Option 1: centralized, global database of nodes

Node 1 North America

Node 2 South America

Node 3 Africa

Node 4 Asia

- How do I find others (a.k.a. nodes)?
 - Option 1: centralized, global database of nodes

Node 1 North America

Node 2 South America

Node 3 Africa

Node 4 Asia

Node 5 Australia

- How do I find others (a.k.a. nodes)?
 - Bitcoin Solution: decentralized, peer-2-peer (P2P) network

- How do I find others (a.k.a. nodes)?
 - Bitcoin Solution: decentralized, peer-2-peer (P2P) network

How do I find the

first set of peers?

- How do I find others (a.k.a. nodes)?
 - Bitcoin Solution: decentralized, peer-2-peer (P2P) network
 - Scales
 - No global state
 - No single trusted party
 - Join and leave anytime
 - Problems?

- How do I tell others about my transaction?
 - The flooding protocol

- How do I tell others about my transaction?
 - The flooding protocol

Recap

- Discover nodes in a peer-2-peer network
- Broadcast transaction through flooding

- Consensus -- Agreement on transactions that happened
 - How to store transactions?
 - Consensus mechanism

- How to store transactions?
 - Transactions are organized into blocks

Block 1 Block 2 Block 3 Block 4

- How to store transactions?
 - Transactions are organized into blocks
 - Each node stores a copy of all the blocks

- Consensus Mechanism
 - Producing a new block
 - Reaching agreement on the order of blocks

Background: The Byzantine Fault Tolerance Problem

- Background: The Byzantine Fault Tolerance Problem
 - There are *n* generals (where *n* is fixed), one of which is the *commander*.
 - Some generals are *loyal*, and some of them can be *traitors* (including the commander).
 - The commander sends out an order that is either *attack* or *retreat* to each general.
 - If the commander is loyal, it sends the same order to all generals.
 - All generals take an action after some time.

Byzantine Generals Problem

Goal:

- Agreement: No two loyal generals take different actions.
- Validity: If the commander is loyal, then all loyal generals must take the action suggested by the commander.
- Termination: All loyal generals must eventually take some action.

Byzantine Generals Problem

Bitcoin Consensus Goal:

- Agreement: No two loyal nodes take different actions.
- Validity: If the commander node is loyal, then all loyal nodes must take the action suggested by the commander.
- Termination: All loyal nodes must eventually take some action.

- Consensus mechanism: strawman solution
 - Assume: all nodes have reached agreement on the current state
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, a randomly-selected node proposes its block
 - Other nodes accept the block only if all transactions in it are valid (unspent & valid signatures)
 - Nodes express their acceptance of the block by including its hash in the next block they create

Nodes broadcast new transactions

A randomly-selected node creates and proposes its block

 Nodes validate the block and include its hash in the next block they create

- Consensus mechanism: strawman solution
 - Assume: all nodes have reached agreement on the current state
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, a randomly-selected node proposes its block
 - Other nodes accept the block only if all transactions in it are valid (unspent & valid signatures)
 - Nodes express their acceptance of the block by including its hash in the next block they create

Issues with this solution?

• One Issue - Sybil attack

- Bitcoin Solution Proof of Work (PoW)
 - Core idea: each node solves a hash puzzle (aka mining)
 - Puzzle:
 - Hash(BlockData | | nonce) == 0x000000a2fb...

Difficulty
Hard to solve

Requirements (formally)

- Hard to compute
- Easy to verify
- Parameterizable

Difficulty adjusted every 2016 blocks (roughly 2 weeks) to ensure that a block is produced roughly every 10 minutes

- Bitcoin Solution Proof of Work (PoW)
 - Core idea: each node solves a hash puzzle (aka mining)
 - Puzzle:
 - Hash(BlockData | | nonce) == 0x000000a2fb...

- Your control of the network:
 - # of nodes → amount of compute power

- Consensus mechanism: revised solution #1
 - Assume: all nodes have reached agreement on the current state
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures)
 - Nodes express their acceptance of the block by including its hash in the next block they create

- What if two nodes solve the puzzle at the same time?
 - Conflict resolves until the next block is produced

- What if different nodes have different chains of blocks?
 - The longest chain wins (Formally: the chain with the most difficulty)

- Consensus mechanism: revised solution #2
 - Assume: all nodes have reached agreement on the current state
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest
 - Nodes express their acceptance of the block by including its hash in the next block they create

- Consensus mechanism: revised solution #2
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

- What's the incentive to solve the puzzle?
 - The proposing node gets some reward
 - Special TX in each block, named "coinbase", that rewards the node that solves the puzzle

Additional: transaction fee

- Consensus mechanism: revised solution #3
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes and gets some reward
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

- Consensus mechanism: revised solution #3
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes and gets some reward
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

Exercise: Agreement? Validity? Termination?

- Consensus mechanism: revised solution #3
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes and gets some reward
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

Q1: Can a malicious node forge a transaction?

- Consensus mechanism: revised solution #3
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes and gets some reward
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

Q2: Can a malicious node deny a transaction?

- Consensus mechanism: revised solution #3
 - Nodes broadcast new transactions
 - Each node organizes new transactions into a block
 - In each round, the node that solves the puzzle proposes and gets some reward
 - Other nodes accept the block only if all transactions and nonce in it are valid (unspent & valid signatures), and it is the longest chain
 - Nodes express their acceptance of the block by including its hash in the next block they create

Q3: Can a malicious node double spend?

Double-spending

Possible Solutions:

- Confirm when TX first broadcasted
- Confirm when TX confirmed by a blocks
- Confirm when TX is confirmed by N blocks

ex -> Stefan TX TX
TX TX

New Block by Charlie

Likely the longest

51% attack

Imagine:

N = 3 (typically 6)

TX

Bob can produce a block much faster than Charlie

(> 50% of the global computation)

TX

New Block by Charlie

What can a 51% attacker do?

Does 51% attack happen in practice?

Ghash.IO had >50% in 2014

• Gave up mining power

Recap

- Consensus Mechanism
 - Producing a new block --- the node that solves the puzzle first
 - Reaching agreement on the order of blocks --- longest chain

END OF LECTURE

Next lecture: Ethereum