

General Description

The MAX4380-MAX4384 family of op amps are unitygain-stable devices that combine high-speed performance, Rail-to-Rail® outputs, and high-impedance disable mode. These devices operate from a +4.5V to +11V single supply or from ±2.25V to ±5.5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).

The MAX4380-MAX4384 require only 5.5mA of quiescent supply current per op amp while achieving a 210MHz -3dB bandwidth, 55MHz 0.1dB gain flatness and a 485V/µs slew rate. These devices are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation.

The MAX4380 single with disable is available in an ultrasmall 6-pin SC70 package.

Applications

Set-Top Boxes Surveillance Video Systems Battery-Powered Instruments

Analog-to-Digital Converter Interface

CCD Imaging Systems

Video Routing and Switching Systems

Digital Cameras

Video-on-Demand

Video Line Driver

Typical Operating Circuit

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- **♦ Low Cost and High Speed:** 210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/µs Slew Rate
- ♦ Disable Mode Places Outputs in High-Impedance State
- ♦ Single +4.5V to +11V Operation
- ♦ Rail-to-Rail Outputs
- ♦ Input Common-Mode Range Extends Beyond VEE
- ♦ Low Differential Gain/Phase: 0.02%/0.08°
- ♦ Low Distortion at 5MHz
 - -65dBc SFDR
 - -63dB Total Harmonic Distortion
- ♦ Ultra-Small 6-Pin SC70, 6-Pin SOT23, 10-Pin µMAX, 14-Pin TSSOP, and 20-Pin TSSOP Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4380EXT-T	-40°C to +85°C	6 SC70-6	AAV
MAX4380EUT-T	-40°C to +85°C	6 SOT23-6	_
MAX4381EUB	-40°C to +85°C	10 μMAX	_
MAX4382EUD	-40°C to +85°C	14 TSSOP	_
MAX4382ESD	-40°C to +85°C	14 SO	_
MAX4382EEE	-40°C to +85°C	16 QSOP	_
MAX4383EUD	-40°C to +85°C	14 TSSOP	_
MAX4383ESD	-40°C to +85°C	14 SO	_
MAX4383ESE	-40°C to +85°C	16 SO	_
MAX4383EEE	-40°C to +85°C	16 QSOP	_
MAX4384EUP	-40°C to +85°C	20 TSSOP	_

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC} to V_{EE})
6-Pin SOT23 (derate 3.1mW/°C above +70°C)245mW 6-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW 10-Pin µMAX (derate 5.6mW/°C above +70°C)444mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)727mW

14-Pin SO (derate 8.3mW/°C above +70°C)	
16-Pin QSOP (derate 8.3mW/°C above +70	
16-Pin Narrow SO (derate 8.7mW/°C above	
20-Pin TSSOP (derate 10.9mW/°C above +	70°C)879mW
Operating Temperature Range	
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS-Single Supply

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \overline{DISABLE}_ = V_{CC} \text{ (MAX4380/MAX4381/MAX4382/MAX4384)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	С	CONDITIONS		TYP	MAX	UNITS
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by C	CMRR	V _{EE} - 0.2		V _{CC} - 2.25	V
Input Offset Voltage	Vos	T _A = +25°C			0.2	12	mV
input Onset Voltage	V 05	$T_A = -40^{\circ}C \text{ to } +8$	5°C			20	1110
Input Offset Voltage Matching		MAX4381-MAX4	384		1		mV
Input Offset Voltage Tempco	TC _{VOS}				8		μV/°C
Input Bias Current	ΙB				6.5	20	μΑ
Input Offset Current	los				0.5	7	μΑ
Innut Desistance	RIN	Differential mode	$(-1V \le V_{\text{IN}} \le +1V)$		70		kΩ
Input Resistance	TIIN	Common mode ($-0.2V \le V_{CM} \le +2.75V$)		3		МΩ
Common-Mode Rejection Ratio	CMRR	V _{EE} - 0.2V ≤ V _{CM} ≤ V _{CC} - 2.25V		70	95		dB
	Avol	$0.25V \le V_{OUT} \le 4.75V$, $R_L = 2k\Omega$		50	61		
Open-Loop Gain		$0.8V \le V_{OUT} \le 4.5V$, $R_L = 150\Omega$		48	63		dB
		$1V \le V_{OUT} \le 4V$,		58			
		$R_L = 2k\Omega$	V _{CC} - V _{OH}		0.05	0.2	
			V _{OL} - V _{EE}		0.05	0.15	
		D 4500	Vcc - Voh		0.3	0.5	
Output Voltage Swing	Vout	$R_L = 150\Omega$	V _{OL} - V _{EE}		0.25	0.8	<u> </u>
Output voltage Swing	VOU1	$R_{\rm I} = 75\Omega$	VCC - VOH		0.5	8.0	v
		HL = 7322	V _{OL} - V _{EE}		0.5	1.75	
	Ī	$R_L = 75\Omega$ to	Vcc - Voh		1	1.7	
		ground	V _{OL} - V _{EE}		0.025	0.125	
Outout Current	lour	Sinking from $R_L = 75\Omega$ to V_{CC}		40	55		m ^
Output Current	lout	Sourcing into $R_L = 75\Omega$ to V_{EE}		25	50		mA
Output Short-Circuit Current	Isc	Sinking or sourcing			±100		mA
Open-Loop Output Resistance	Rout				8		Ω
Power-Supply Rejection Ratio	PSRR	$V_S = +4.5V \text{ to } +5$.5V	50	62		dB
	1	l					

DC ELECTRICAL CHARACTERISTICS-Single Supply

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \overline{DISABLE}_ = V_{CC} \text{ (MAX4380/MAX4381/MAX4382/MAX4384)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	Vs	Guaranteed by PSRR (Note 2)	4.5		11	V
Disabled Output Resistance	ROUT(OFF)	DISABLE_ = 0, 0 ≤ V _{OUT} ≤ 5V	27	35		kΩ
DISABLE_ Logic-Low Threshold	VIL				V _{CC} -3	V
DISABLE_ Logic-High Threshold	V _{IH}		V _{CC} - 1.25			V
DISABLE_ Logic Input Low Current	IIL	DISABLE_ = 0		25	60	μA
DISABLE_ Logic Input High Current	lін	DISABLE_ = Vcc		10	40	μA
Quiescent Supply Current (Per	Is	DISABLE_ = V _{CC}		5.5	9	mA
Amplifier)	'3	DISABLE_ = 0		0.45	0.6	111/5

DC ELECTRICAL CHARACTERISTICS—Dual Supply

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0, V_{OUT} = 0, R_L = \infty \text{ to } 0, \overline{DISABLE}_ = V_{CC} \text{ (MAX4380/MAX4381/MAX4382/MAX4384)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMF	RR	VEE		V _{CC} - 2.25	V
Input Offset Voltage	Vos	T _A = +25°C			3	16	mV
input Onset voltage	VUS	$T_A = T_{MIN}$ to T_{MAX}				24	IIIV
Input Offset Voltage Matching		MAX4381-MAX4384	1		1		mV
Input Offset Voltage Tempco	TC _{VOS}				8		μV/°C
Input Bias Current	ΙB				8.5	25	μΑ
Input Offset Current	los				0.5	12	μA
Input Desistance	R _{IN}	Differential mode (-1		70		kΩ	
Input Resistance		Common mode (-5V		3		МΩ	
Common-Mode Rejection Ratio	CMRR	V _{EE} ≤ V _{CM} ≤ V _{CC} - 2.25V		70	95		dB
		$-4.5V \le V_{OUT} \le +4.5V$, $R_L = 2k\Omega$		50	62		
Open-Loop Gain	Avol	$-4.25V \le V_{OUT} \le +4.25V, R_L = 150\Omega$		48	65		dB
		-4V ≤ V _{OUT} ≤ +4V, F		60			
		$R_L = 2k\Omega$	VCC - VOH		0.175	0.375	
		nL = ∠ k22	V _{OL} - V _{EE}		0.075	0.225	
Output Voltage Swing	\/o.i.T	D: 1500	VCC - VOH		0.575	0.85	V
Output Voltage Swing	Vout	$R_L = 150\Omega$	V _{OL} - V _{EE}		0.4	0.775	1 V
		D: 750	Vcc - VoH		1.3	2.3	
		$R_L = 75\Omega$	V _{OL} - V _{EE}		1.3	2.45	

DC ELECTRICAL CHARACTERISTICS—Dual Supply (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0, V_{OUT} = 0, R_L = \infty \text{ to } 0, \overline{DISABLE}_ = V_{CC} \text{ (MAX4380/MAX4381/MAX4382/MAX4384)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Current	lour	Sinking from $R_L = 75\Omega$ to V_{CC}	50	75		mA
Output Current	lout	Sourcing into $R_L = 75\Omega$ to V_{EE}	50	75		mA
Output Short-Circuit Current	Isc	Sinking or sourcing		±100		mA
Open-Loop Output Resistance	Rout			8		Ω
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 V$ to $\pm 5.5 V$	48	62		dB
Operating Supply Voltage Range	Vs	Guaranteed by PSRR (Note 2)	±2.25		±5.5	V
Disabled Output Resistance	ROUT(OFF)	DISABLE_ = 0, -5V ≤ V _{OUT} ≤ 5V	27	35		kΩ
DISABLE_ Logic-Low Threshold	VIL				VCC - 3	V
DISABLE_ Logic-High Threshold	VIH		V _{CC} - 1.2	5		V
DISABLE_ Logic Input Low Current	lıL	DISABLE_ = 0		25		μА
DISABLE_ Logic Input High Current	IIН	DISABLE_ = VCC		10		μА
Quiescent Supply Current (Per	Is	DISABLE_ = V _{CC}		7.5	10	mA
Amplifier)	13	DISABLE_ = 0		0.45	0.8	111/1

AC ELECTRICAL CHARACTERISTICS—Single Supply

 $(V_{CC}=+5V,~V_{EE}=0,~V_{CM}=+1.5V,~R_L=100\Omega$ to $V_{CC}/2,~\overline{DISABLE}_=V_{CC}$ (MAX4380/MAX4381/MAX4382/MAX4384), $V_{OUT}=V_{CC}/2,~A_{VCL}=+1V/V,~T_A=+25^{\circ}C,~unless~otherwise~noted.)$

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS		
Small-Signal -3dB Bandwidth	BWss	Vout = 100mVp-	ρ		210		MHz		
Large-Signal -3dB Bandwidth	BW _{LS}	V _{OUT} = 2Vp-p			175		MHz		
Small-Signal 0.1dB Gain Flatness	BW _{0.1dBSS}	BW _{0.1dBSS} V _{OUT} = 100mVp-p			55		MHz		
Large-Signal 0.1dB Gain Flatness	BW _{0.1dBLS}	V _{OUT} = 2Vp-p		V _{OUT} = 2Vp-p			40		MHz
Slew Rate	SR	V _{OUT} = 2V step			485		V/µs		
Settling Time to 0.1%	ts	V _{OUT} = 2V step			16		ns		
Rise/Fall Time	t _R , t _F	V _{OUT} = 100mVp-	ρ		4		ns		
Spurious-Free Dynamic Range	SFDR	f _C = 5MHz, V _{OUT}	= 2Vp-p		-65		dBc		
			2nd harmonic		-65				
Harmonic Distortion	HD	$f_C = 5MHz$, $V_{OUT} = 2Vp-p$	3rd harmonic		-68		dBc		
		v001 = 2vp-p	Total harmonic		-63		1		
Two-Tone, Third-Order Intermodulation Distortion	IP3	f1 = 4.7MHz, f2 = 4.8MHz, V _{OUT} = 1Vp-p			-66		dBc		

AC ELECTRICAL CHARACTERISTICS—Single Supply (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, R_L = 100\Omega$ to $V_{CC}/2$, $\overline{DISABLE}_{-} = V_{CC}$ (MAX4380/MAX4381/MAX4382/MAX4384) $V_{OUT} = V_{CC}/2$, $A_{VCL} = +1V/V$, $A_{VCL} = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Channel-to-Channel Isolation	CH _{ISO}	Specified at DC	-102	dB
Input 1dB Compression Point		$f_C = 10MHz$, $A_{VCL} = +2V/V$	14	dBm
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	0.08	degrees
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	0.02	%
Input Noise-Voltage Density	en	f = 10kHz	10	nV/√Hz
Input Noise-Current Density	In	f = 10kHz	2	pA/√Hz
Input Capacitance	CIN		1	pF
Output Impedance	Z _{OUT}	f = 10MHz	1.5	Ω
Enable Time	ton	V _{IN} = 1V (MAX4380/MAX4381/ MAX4382/MAX4384)	100	ns
Disable Time	toff	V _{IN} = 1V (MAX4380/MAX4381/ MAX4382/MAX4384)	1	μs

Note 1: All devices are 100% production tested at T_A = +25°C. Specifications over temperature limits are guaranteed by design.
 Note 2: PSRR for single +5V supply tested with V_{EE} = 0, V_{CC} = +4.5V to +5.5V; PSRR for dual ±5V supply tested with V_{EE} = -4.5V to -5.5V, V_{CC} = +4.5V to +5.5V.

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, A_{VCL} = +1V/V, R_L = 100\Omega$ to $V_{CC}/2$, $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, A_{VCL} = +1, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25$ °C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, A_{VCL} = +1, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

$A_{VCL} = +1V/V$ INPUT

SMALL-SIGNAL PULSE RESPONSE

SMALL-SIGNAL PULSE RESPONSE

LARGE-SIGNAL PULSE RESPONSE

20ns/div

LARGE-SIGNAL PULSE RESPONSE

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, A_{VCL} = +1, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25$ °C, unless otherwise noted.)

TEMPERATURE (°C)

TEMPERATURE (°C)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.5V, A_{VCL} = +1, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

	PIN							
MAX4380	MAX4381	М	AX4382	MAX	4383	MAX4384	NAME	FUNCTION
SC70/SOT23	μМΑХ	QSOP	SO/TSSOP	SO/TSSOP	SO/QSOP	TSSOP		
6	10	4	4	4	4	5	Vcc	Positive Power Supply. Connect a 0.1µF capacitor to GND.
2	4	13	11	11	13	16	V _{EE}	Negative Power Supply. Connect a 0.1µF Capacitor to GND.
3		_	_	_		_	IN+	Noninverting Input
4	_	_	_	_	_	_	IN-	Inverting Input
1	_	_	_	_	_	_	OUT	Amplifier Output
5	_	_	_	_	_	_	DISABLE	Disable. Connect to V _{CC} to Enable.
_	3	5	5	3	3	4	INA+	Amplifier A Noninverting Input
_	2	6	6	2	2	3	INA-	Amplifier A Inverting Input
_	1	7	7	1	1	2	OUTA	Amplifier A Output
_	5	1	1	_	_	1	DISABLEA	Shutdown Amplifier A. Connect to V _{CC} to Enable.
_	7	12	10	5	5	6	INB+	Amplifier B Noninverting Input

Pin Description (continued)

MAX4380	MAX4381	M	AX4382	MAX	MAX4383		NAME	FUNCTION
SC70/SOT23	μMAX	QSOP	SO/TSSOP	SO/TSSOP	SO/QSOP	TSSOP		
_	8	11	9	6	6	7	INB-	Amplifier B Inverting Input
_	9	10	8	7	7	8	OUTB	Amplifier B Output
_	6	3	3	_	-	9	DISABLEB	Shutdown Amplifier B. Connect to V _{CC} to Enable.
_	_	14	12	10	12	15	INC+	Amplifier C Noninverting Input
_	_	15	13	9	11	14	INC-	Amplifier C Inverting Input
_	_	16	14	8	10	13	OUTC	Amplifier C Output
_	_	2	2	_	_	12	DISABLEC	Shutdown Amplifier C. Connect to V _{CC} to Enable.
_	_	_	_	12	14	17	IND+	Amplifier D Noninverting Input
_	_	_	_	13	15	18	IND-	Amplifier D Inverting Input
_	_	_		14	16	19	OUTD	Amplifier D Output
_	_	_	_	_	_	20	DISABLED	Shutdown Amplifier D. Connect to V _{CC} to Enable.
_	_	8, 9	_	_	8, 9	10, 11	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX4380–MAX4384 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

_Applications Information

The output voltage swings to within 50mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.

Choosing Resistor Values

Unity-Gain Configuration

The MAX4380–MAX4384 are internally compensated for unity gain. When configured for unity gain, a 24Ω resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Video Line Driver

The MAX4380–MAX4384 are low-power, voltage-feed-back amplifiers featuring bandwidths up to 210MHz, 0.1dB gain flatness to 55MHz. They are designed to minimize differential-gain error and differential-phase error to 0.02% and 0.08 degrees respectively. They

Figure 1a. Noninverting Gain Configuration

Figure 1b. Inverting Gain Configuration

have a 16ns settling time to 0.1%, 485V/µs slew rates, and output-current-drive capability of up to 75mA making them ideal for driving video loads.

Inverting and Noninverting Configurations

Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using $1k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor (Figures 1a and 1b).

Layout and Power-Supply Bypassing

These amplifiers operate from a single +4.5V to +11V power supply or from dual ±2.25V to ±5.5V supplies. For

single-supply operation, bypass VCC to ground with a $0.1\mu F$ capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a $0.1\mu F$ capacitor.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Rail-to-Rail Outputs, Ground-Sensing Inputs

For +5V single-supply operation, the input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.

For ±5V dual-supply operation, the common-mode range is from VEE to (VCC - 2.25V)

For +5V single-supply operation the output swings to within 50mV of either power-supply rail with a $2k\Omega$ load. The input ground sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p and the output can swing 4.9Vp-p with minimal distortion.

Low-Power Disable Mode

The disable feature (DISABLE_) allows the amplifier to be placed in a low-power, high-output-impedance state. When the disable pin (DISABLE_) is active, the amplifier's output impedance is $35k\Omega$. This high resistance and the low 2pF output capacitance make the MAX4380–MAX4382 and the MAX4384 ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading. Refer to the *Output Capacitive Loading and Stability* section.

Figure 2. Driving a Capacitive Load Through an Isolation Resistor

Figure 3. Isolation Resistance vs. Capacitive Load

Output Capacitive Loading and Stability

The MAX4380–MAX4384 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the Optimal Isolation Resistor (Rs) vs. Capacitive Load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 10Ω to 15Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 15Ω isolation resistor on closed-loop response.

Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor

Chip Information

MAX4380 TRANSISTOR COUNT: 66 MAX4381 TRANSISTOR COUNT: 132 MAX4382 TRANSISTOR COUNT: 196 MAX4383 TRANSISTOR COUNT: 264 MAX4384 TRANSISTOR COUNT: 264

Pin Configurations (continued)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-1737-7600