K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS AC CIRCUITS

Numerical 1: A series RLC circuit containing a resistance of 25 Ω , an inductance of 0.1H and a capacitor of $80\mu\text{F}$ are connected in series across a 100V, 60Hz supply. Calculate:

- i) The total circuit current
- ii) V_R , $V_L \& V_C$
- iii) Power factor
- iv) Draw the voltage phasor diagram

Figure 1: Circuit 1

Solution:

Finding Reactance for L_1 ,

$$X_L = 2\pi f L_1 = 2\pi \times 60 \times 0.1$$

$$\mathbf{X}_L = 37.6991\Omega$$

Finding Reactance for C_1 ,

$$X_C = \frac{1}{2\pi f C_1} = \frac{1}{2\pi \times 60 \times 80 \times 10^{-6}}$$

$$X_C = 33.1572\Omega$$

Finding Total Impedance,

$$Z = \sqrt{R_1^2 + (X_L - X_C)^2} = \sqrt{25^2 + (37.6991 - 33.1572)^2}$$

$$\therefore Z = 25.409\Omega$$

Finding total current I,

$$I = \frac{V_{in}}{Z} = \frac{100}{25.409}$$

$$I = 3.9356A$$

$$V_R = I \times R_1 = 3.9356 \times 25$$

$$V_R = 98.39V$$

$$V_L = I \times X_L = 3.9356 \times 37.6991$$

$$V_L = 148.368V$$

$$V_C = I \times X_C = 3.9356 \times 33.1572$$

$$\therefore V_C = 130.4934V$$

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) = \tan^{-1} \left(\frac{37.6991 - 33.1572}{25} \right)$$

$$\phi = 10.269^{\circ}$$

Power factor = $\cos(\phi) = \cos(10.269)$

 \therefore Power factor= 0.9839

Voltage Phasor diagram,

Figure 2: Voltage Phasor diagram

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 3: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
V_R	98.39V	98.3857V
V_L	148.368V	148.362V
V_C	130.4934V	130.488V
I	3.9356A	3.93543A
φ	10.269°	10.2964°
Power Factor	0.9839	0.98389

Table 1: Numerical 1

Numerical 2: A 50 Hz sinusoidal voltage $V = 141 \sin \omega t$ is applied to a series R-L circuit. The values of the resistance and the inductance are 4Ω and 0.01 H respectively Calculate:

- a) The RMS value of the current in the circuit.
- b) The RMS value of the voltages appearing across the resistance and the inductance.
- c) Power factor of the circuit.

Figure 4: Circuit 2

Solution:

Finding Reactance for L_1 ,

$$X_L = 2\pi f L_1 = 2\pi \times 50 \times 0.01$$

$$X_L = 3.14159\Omega$$

Finding Total Impedance,

$$Z = \sqrt{R^2 + (X_L)^2} = \sqrt{4^2 + (3.14159)^2}$$

$$\therefore Z = 5.0862\Omega$$

Finding RMS current I_{rms} ,

$$I_{rms} = \frac{V_{rms}}{Z} = \frac{100}{5.0862}$$

$$I_{rms} = 19.661$$
A

$$V_R = I_{rms} \times R_1 = 19.661 \times 4$$

$$V_R = 78.644V$$

$$V_L = I_{rms} \times X_L = 19.661 \times 3.14159$$

$$V_L = 61.7668V$$

Power factor =
$$\frac{R}{Z} = \frac{4}{5.0862}$$

 \therefore Power factor = 0.7864
 $\phi = \cos^{-1}(0.7864)$
 $\therefore \phi = 38.1496^{\circ}$

The given circuit is simulated in LTspice and the results obtained are as follows:

A	C Analys	is		
frequency:	50	Hz		
V(n001):	mag:	100 phase:	0°	voltage
V(a):	mag:	61.75 <mark>7</mark> 2 phase:	51.8427°	voltage
I(L1):	mag:	19.6 <mark>5</mark> 79 phase:	-38.1391°	device current
I(R1):	mag:	19.6579 phase:	-38.1391°	device current
I(V1):	maq:	19.6579 phase:	141.861°	device current

Figure 5: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
Z	5.0862Ω	5.087Ω
V_R	78.644V	78.6318V
V_L	61.7668V	61.7572V
I	19.661A	19.6579A
φ	38.1496°	38.1391°
Power Factor	0.7864	0.7865

Table 2: Numerical 2

Numerical 3: A pure resistance of 55 ohms is in series with a pure capacitance of 100uF. The series combination is connected across 150V, 60 Hz supply.

Calculate:

- (a) Impedance
- (b) Current
- (c) Power factor
- (d) Phase angle
- (e) Voltage across resistor
- (f) Voltage across capacitor.

Figure 6: Circuit 3

Solution:

Finding Reactance for C_1 ,

$$\mathbf{X}_C = \frac{1}{2\pi f C_1} = \frac{1}{2\pi \times 60 \times 100 \times 10^{-6}}$$

 $\mathbf{X}_C = 26.5258\Omega$

Finding Total Impedance,

$$Z = \sqrt{R_1^2 + (X_C)^2} = \sqrt{55^2 + (26.5258)^2}$$

$$\therefore Z = 61.06\Omega$$

Finding total current I,

$$I = \frac{V_{in}}{Z} = \frac{150}{61.06}$$

$$I = 2.4566A$$

$$V_R = I \times R_1 = 2.4566 \times 55$$

$$\therefore V_R = 135.113V$$

$$V_C = I \times X_C = 2.4566 \times 26.5258$$

$$V_C = 65.1632V$$

Power factor =
$$\frac{R}{Z} = \frac{55}{61.06}$$

 \therefore Power factor= 0.9

$$\phi = \cos^{-1}(0.9)$$
$$\therefore \phi = 25.8419^{\circ}$$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 7: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
Z	61.06Ω	61.062Ω
V_R	135.113V	135.108V
V_C	65.1632V	65.1608V
I	2.4566A	2.4565A
ϕ	25.8419°	25.747°
Power Factor	0.9	0.9

Table 3: Numerical 3

Numerical 4: A circuit shown in Figure 8 consists of resistance of 35Ω , an inductance of 54mH and a capacitor of $100\mu F$ are connected in parallel across a 110V, 50Hz supply. Calculate:

- i) Individual currents drawn by each element
- ii) Total current drawn from the supply
- iii) Overall power factor of the circuit
- iv) Draw the phasor diagram

Figure 8: Circuit 4

Solution:

Finding Reactance for L,

$$X_L = 2\pi f L = 2\pi \times 50 \times 54 \times 10^{-3}$$

$$X_L = 16.9646\Omega$$

Finding Reactance for C,

$$X_C = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 50 \times 100 \times 10^{-6}}$$

$$X_C = 31.8309\Omega$$

Finding Total Impedance,

$$Z = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}} = \frac{1}{\sqrt{\frac{1}{35^2} + \left(\frac{1}{16.9646} - \frac{1}{31.8309}\right)^2}}$$

$$\therefore Z = 25.2 \angle 43.936^\circ \Omega$$

Finding total current I,

$$I = \frac{V_{in}}{Z} = \frac{110}{25.2}$$

$$\therefore \mathbf{I} = 4.365 \angle -43.936^{\circ} A$$

$$I_1 = \frac{V}{R} = \frac{110}{35}$$

$$I_1 = 3.14285 \angle 0^{\circ} A$$

$$I_2 = \frac{V}{X_L} = \frac{110}{16.9646}$$

∴
$$I_2 = 6.48409 \angle -90^{\circ} A$$

 $I_3 = \frac{V}{X_C} = \frac{110}{31.9309}$
∴ $I_3 = 3.45576 \angle 90^{\circ} A$

Power factor = $\cos(\phi) = \cos(-43.936)$

 \therefore Power factor = 0.72

Voltage Phasor diagram,

Figure 9: Phasor diagram

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 10: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I_1	3.14285A	3.14286A
I_2	6.4841A	6.48409A
I_3	3.45576A	3.45575A
I	4.365A	4.3647A
φ	-43.936°	-43°
Power Factor	0.72011	0.72015

Table 4: Numerical 4

Numerical 5: Find I, I_1 and I_2 in the Circuit 11, If $R_1 = 2\Omega$, $L_1 = j8\Omega$, $R_2 = 15\Omega$, $L_2 = j10\Omega$, $R_3 = 12\Omega$, $C_1 = -j2\Omega$, frequency = 50Hz

Figure 11: Circuit 5

Solution:

$$Z_{1} = 2 + j8\Omega, Z_{2} = 15 + j10\Omega, Z_{1} = 12 - j2\Omega$$

$$Z = Z_{1} + \frac{Z_{2} \times Z_{3}}{Z_{2} + Z_{3}} = 2 + j8 + \frac{(15 + j10) \times (12 - j2)}{15 + j10 + 12 - j2}$$

$$\therefore Z = 9.7175 + j9.0466 = 13.2767 \angle 42.9523^{\circ}$$

Finding total current I,

$$I = \frac{V}{Z} = \frac{100}{13.2767 \angle 42.9523^{\circ}}$$

$$I = 7.5319 \angle -42.9523^{\circ}A$$

$$I_{1} = I \times \frac{Z_{3}}{Z_{2} + Z_{3}}$$

$$\therefore I_{1} = 3.25386 \angle -68.9189^{\circ}A$$

$$I_{2} = I \times \frac{Z_{2}}{Z_{2} + Z_{3}}$$

$$\therefore I_{2} = 4.8218 \angle -25.76659^{\circ}A$$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 12: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I	$7.5319 \angle -42.9523^{\circ}A$	$7.53217\angle -42.944^{\circ}A$
I_1	$3.25386\angle -68.9189^{\circ}A$	$3.25388\angle -68.9095^{\circ}A$
I_2	$4.8218\angle -25.76659^{\circ}A$	$4.82201\angle -25.759^{\circ}A$

Table 5: Numerical 5

Numerical 6: A series resonance network consisting of a resistor of 25Ω , a capacitor of 2.5μ F and an inductor of 22mH is connected across a sinusoidal supply voltage which has a constant output of AC 9V at all frequencies. Calculate, the resonant frequency, the current at resonance, the voltage across the inductor and capacitor at resonance, the quality factor and the bandwidth of the circuit.

Plot the resonance curve, the current at resonance, the voltage across the inductor and capacitor at resonance in LTspice.

Figure 13: Circuit 6

Solution:

Finding Resonant Frequency,

$$f_r = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{22\times10^{-3}\times2.5\times10^{-6}}}$$

 $f_r = 678.6389 Hz$

Finding Reactance for L_1 ,

$$X_L = 2\pi f L = 2\pi \times 678.6389 \times 22 \times 10^{-3}$$

$$X_L = 93.8\Omega$$

Finding Reactance for C_1 ,

$$\mathbf{X}_C = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 678.6389 \times 2.5 \times 10^{-6}}$$

$$X_C = 93.8\Omega$$

At resonance,

$$Z = R = 25\Omega$$

Finding maximum current I_m ,

$$I = \frac{V}{Z} = \frac{9}{25}$$

$$I = 0.36A$$

$$I_m = 0.36 \times \sqrt{2}$$

$$I_m = 0.509A$$

$$V_L = I_m \times X_L = 0.509 \times 93.8$$

$$\therefore V_L = 47.755V$$

$$V_C = I_m \times X_C = 0.509 \times 93.8$$

$$\therefore V_C = 47.755V$$

Quality factor = Q =
$$\frac{X_L}{R} = \frac{93.8}{25}$$

$$\therefore Q = 3.752$$

$$BW = \frac{f_r}{Q} = \frac{678.6389}{3.752}$$

$$\therefore BW = 180.8739Hz$$

Figure 14: Resonance Curve

Figure 15: Current at Resonance

Figure 16: Voltage across Inductor and Resistor at Resonance

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 17: Circuit Schematic

Figure 18: Simulated results for Resonance Curve

Figure 19: Simulated results for current at Resonance

Figure 20: Simulated results for Voltage across Inductor and Resistor at Resonance

Quantity	Calculated Value	Simulated Value
I_m	0.509A	0.5067A
V_L	47.755V	47.63 6 V
V_C	47.755V	47.605V

Table 6: Numerical 6

Numerical 7: A 50Hz sinusoidal voltage $V = 141\sin(\omega t)$ is applied to a series R-L circuit given in Circuit 7. The values of the resistance and the inductance are 5.6Ω and 0.018H respectively. Determine the following:

- a. Calculate the peak voltage across resistor and inductor & also find the peak value of source current in LTspice
- b. Plot input source voltage V_S vs input source current I_S in LTspice
- c. Measure the phase delay/difference between V_S vs I_S in time & degrees
- d. Plot input source voltage V_S vs voltage across resistor V_R in LTspice
- e. Measure the phase delay/difference between V_S vs V_R in time & degrees
- f. Plot input source voltage V_S vs voltage across inductor V_L in LTspice
- g. Measure the phase delay/difference between V_S vs V_L in time & degrees
- h. Calculate the power factor of the circuit.

Figure 21: Circuit 7

Solution:

Finding Reactance for L_1 ,

$$X_L = 2\pi f L = 2\pi \times 50 \times 0.018$$

$$X_L = 5.6548\Omega$$

Finding Total Impedance,

$$Z = R + jX_L = 5.6 + j(5.6548)$$

$$\therefore Z = 7.9536 \angle (45.244^{\circ})\Omega$$

Finding current I,

$$I = \frac{V}{Z} = \frac{141}{7.9536 \angle (45.244^\circ)}$$

$$\therefore$$
I = 17.7278 \angle (-45.244°) A

$$V_R = I \times R = 17.7278 \angle (-45.244^\circ) \times 5.6$$

$$V_R = 100.247 \angle (-45.244^{\circ})V$$

$$V_L = I \times X_L = 17.7278 \angle (-45.244^{\circ}) \times 5.6548$$

$$V_L = 99.2757 \angle (-45.244^{\circ})V$$

Power factor =
$$\frac{V_R}{V} = \frac{100.247}{141}$$

 \therefore Power factor = 0.7109

Calculating Phase difference for $V_S \& V_L$,

$$\Delta\theta = 90 - 45.244 = 44.756^{\circ}$$

$$\Delta T = \frac{\Delta \theta \times (T_{Period})}{360^{\circ}} = \frac{44.756 \times \frac{1}{50}}{360}$$

$$\Delta T = 2.486ms$$

Figure 22: V_S & V_L

Calculating Phase difference for $V_S \& V_R$,

$$\Delta\theta = 45.244^{\circ}$$

$$\Delta T = \frac{45.244 \times \frac{1}{50}}{360}$$

$$\Delta T = 2.5135ms$$

Figure 23: V_S & V_R

Calculating Phase difference for \mathcal{V}_S & $I_S,$

$$\Delta\theta = 180 - 45.244 = 134.756^{\circ}$$

$$\Delta T = \frac{134.756 \times \frac{1}{50}}{360}$$

$$\Delta T = 7.4864ms$$

Figure 24: $V_S \& I_S$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 25: Circuit Schematic

Figure 26: Simulated results for Source Current

Figure 27: Simulated results for Voltage across Resistor

Figure 28: Simulated results for Voltage across Inductor

Figure 29: Simulated results for $\mathbf{V}_S~\&~I_S$

Figure 30: Simulated results for V $_S$ & V_R

Figure 31: Simulated results for $V_S \ \& \ V_L$

Quantity	Calculated Value	Simulated Value
V_R	78.644V	78.6318V
V_L	61.7668V	61.7572V
I_S	19.661A	19.6579A
$\Delta\theta \& \Delta T \text{ for } V_S \& I_S$	134.756° & 7.4864ms	132.588° & 7.366ms
$\Delta\theta \& \Delta T \text{ for } V_S \& V_R$	45.244° & 2.5135ms	46.1214° & 2.5623ms
$\Delta\theta \& \Delta T \text{ for } V_S \& V_L$	44.756° & 2.486ms	45.0792° & 2.5044ms

Table 7: Numerical 7

Numerical 8: A pure resistance of 56Ω is in series with a pure capacitance of $150\mu\text{F}$ shown in Circuit 8. The series combination is connected across 120V, 50 Hz supply. Determine the following:

- a. Calculate the peak voltage across resistor and capacitor & also find the peak value of source current in LTspice
- b. Plot input source voltage V_S vs input source current I_S in LTspice
- c. Measure the phase delay/difference between V_S vs I_S in time & degrees
- d. Plot input source voltage V_S vs voltage across resistor V_R in LTspice
- e. Measure the phase delay/difference between V_S vs V_R in time & degrees
- f. Plot input source voltage V_S vs voltage across capacitor V_C in LTspice
- g. Measure the phase delay/difference between V_S vs V_C in time & degrees
- h. Calculate the power factor of the circuit.

Figure 32: Circuit 8

Finding Reactance for C_1 ,

$$X_C = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 50 \times 150 \times 10^{-6}}$$

 $X_C = 21.22\Omega$

Finding Total Impedance,

$$Z = R + jX_C = 56 + j(21.22)$$

$$\therefore Z = 59.8856 \angle (20.7531^{\circ})\Omega$$

Finding current I,

$$I = \frac{V}{Z} = \frac{120}{59.8856 \angle (20.7531^\circ)}$$

$$I = 2.0038 \angle (-20.7531^{\circ})A$$

$$V_R = I \times R = 2.0038 \angle (-20.7531^\circ) \times 56$$

$$V_R = 112.2128 \angle (-20.7531^\circ)V$$

$$V_L = I \times X_L = 2.0038 \angle (-20.7531^{\circ}) \times 21.22$$

$$V_L = 42.5206 \angle (-20.7531^\circ)V$$

$$\text{Power factor} = \frac{V_R}{V} = \frac{112.2128}{120}$$

 \therefore Power factor = 0.9351

Calculating Phase difference for V $_{S}$ & $V_{C},$

$$\Delta\theta = 90 - 20.7531 = 69.2469^{\circ}$$

$$\Delta T = \frac{\Delta \theta \times (T_{Period})}{360^{\circ}} = \frac{69.2469 \times \frac{1}{50}}{360}$$
$$\Delta T = 3.847ms$$

$$\Delta T = 3.847ms$$

Figure 33: $V_S \& V_C$

Calculating Phase difference for $V_S \& V_R$,

$$\Delta\theta = 20.7531^{\circ}$$

$$\Delta T = \frac{20.7531 \times \frac{1}{50}}{360}$$

$$\Delta T = 1.1529 ms$$

Figure 34: $V_S \& V_R$

Calculating Phase difference for V_S & I_S ,

$$\Delta\theta = 180 - 20.7531 = 159.2469^\circ$$

$$\Delta T = \frac{159.2469 \times \frac{1}{50}}{360}$$

$$\Delta T = 8.847ms$$

Figure 35: $V_S \& I_S$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 36: Circuit Schematic

Figure 37: Simulated results for Source Current

Figure 38: Simulated results for Voltage across Resistor

Figure 39: Simulated results for Voltage across Capacitor

Figure 40: Simulated results for $V_S \ \& \ I_S$

Figure 41: Simulated results for $\mathbf{V}_S~\&~V_R$

Figure 42: Simulated results for $V_S \& V_C$

Verifying the Calculated Values with Simulated Values:

Quantity	Calculated Value	Simulated Value
V_R	112.2128V	111.9823V
V_C	42.5206V	42.6349V
I_S	2.0038A	2.004A
$\Delta\theta \& \Delta T \text{ for } V_S \& I_S$	159.2469° & 8.847ms	158.328° & 8.796ms
$\Delta\theta \& \Delta T \text{ for } V_S \& V_R$	20.7531° & 1.1529ms	21.6° & 1.2ms
$\Delta\theta \& \Delta T \text{ for } V_S \& V_C$	69.2469° & 3.847ms	70.083° & 3.8935ms

Table 8: Numerical 8
