5 Частично упорядоченные множества

Опр. Множество E называется *частично упорядоченным*, если между некоторыми его элементами определено отношение \leq , обладающее следующими свойствами:

- 1) $a \leqslant b$, $b \leqslant c \Rightarrow a \leqslant c$;
- $2) \ a \leqslant a;$
- **3**) $a \le b$, $b \le a \Rightarrow a = b$.

Задать частичную упорядоченность можно заданием некоторого непустого множества $\Phi \in E \times E$. При этом запись $a \leq b$ означает, что $(a,b) \in \Phi$. Это множество должно удовлетворять следующим свойствам:

- 1) $(a,b) \in \Phi$, $(b,c) \in \Phi \Rightarrow (a,c) \in \Phi$;
- 2) $(a, a) \in \Phi \quad \forall a \in E;$
- 3) $(a,b) \in \Phi$, $(b,a) \in \Phi \Rightarrow a = b$.

"Пример 1. Простым примером частично упорядоченного множества является множество вещественных чисел \mathbb{R} .

Пример 2. Множество \mathbb{R}^2 можно сделать частично упорядоченным, определив операцию сравнения следующим образом:

 $(x_1,y_1)\leqslant (x_2,y_2)$ тогда и только тогда, когда $x_1\leqslant x_2$ и $y_1\leqslant y_2$. Обратим внимание на то, что не все пары $(x_1,y_1), (x_2,y_2)$ сравнимы.

Пример 3. В множестве функций, заданных на [a,b], можно ввести частичную упорядоченность, если считать, что $f\leqslant g$ тогда и только тогда, когда $f(x)\leqslant g(x)$ для всех $x\in [a,b].$

Опр. Подмножество A частично упорядоченного множества E называется линейно упорядоченным, если для любой пары $x,y\in A$ либо $x\leqslant y$ либо $y\leqslant x$. Линейно упорядоченное множество иначе называется цепью.

Пример 4. Ясно, что любое непустое подмножество $A \subset \mathbb{R}$ линейно упорядочено.

Пример 5. В \mathbb{R}^2 всякая прямая является линейно упорядоченным множеством.

Опр. Элемент $x \in E$ называется *максимальным*, если $y \leqslant x$ для всех $y \in E$, сравнимых с x, и называется *минимальным*, если $x \leqslant y$ для всех $y \in E$, сравнимых с x.

Другими словами, элемент $x \in E$ называется максимальным, если из $x \leqslant y$ следует, что x = y, и называется минимальным, если из $y \leqslant x$ следует, что x = y.

Пример 6. Рассмотрим на плоскости \mathbb{R}^2 замкнутый круг S радиуса 1 с центром в нуле. Если частичный порядок введен, как в примере 2, то всякая точка $(\cos \varphi, \sin \varphi)$ при $0 \leqslant \varphi \leqslant \pi/2$ является максимальной для S, а при $\pi \leqslant \varphi \leqslant 3\pi/2$ является минимальной для S.

Опр. Элемент $x \in E$ называется верхней гранью множества $A \subset E$, если $a \leqslant x \quad \forall \, a \in A$ и — нижней гранью множества A, если $x \leqslant a \quad \forall \, a \in A$.

Опр. Если в множестве верхних граней множества A существует минимальный элемент, то он называется *точной верхней гранью* множества A и обозначается через sup A.

Если в множестве нижних граней множества A существует максимальный элемент, то он называется точной ниженей гранью множества множества A и обозначается через $\inf A$.

Пример 7. Для круга S из примера 6 каждая точка (x,y) с $x\geqslant 1$ и $y\geqslant 1$ является верхней гранью. Точка (1,1) является точной верхней гранью.

Опр. Линейно упорядоченное множество E называется вполне упорядоченным, если каждое его непустое подмножество содержит минимальный элемент.

Пример 8. Множество целых чисел № вполне упорядочено.

Пример 9. Множество вещественных чисел \mathbb{R} не является вполне упорядоченным.

Опр. Линейно упорядоченное подмножество M частично упорядоченного множества E называется максимальным, если оно не содержится в качестве собственного подмножества ни в каком другом линейно упорядоченном множестве.

Пример 10. На плоскости \mathbb{R}^2 из примера 2 всякая прямая является максимальным линейно упорядоченным множеством.

В теории множеств фундаментальную роль играют следующие 4 утверждения.

Теорема Цермело. Каждое множество может быть вполне упорядочено.

Аксиома выбора. Пусть $\{M_{\alpha}, \alpha \in A\}$ – некоторое семейство множеств. Тогда существует функция φ , ставящая в соответствие каждому α некоторый элемент $m_{\alpha} \in M_{\alpha}$.

Другими словами, можно составить множество M, выбрав из каждого множества M_{α} по одному элементу.

Теорема Хаусдорфа. В частично упорядоченном множестве всякое линейно упорядоченное множество содержится в некотором максимальном линейно упорядоченном множестве.

Лемма Цорна. Если всякое линейно упорядоченное множество в частично упорядоченном множестве E имеет верхнюю грань, то всякий элемент из E подчинен некоторому максимальному элементу.

Все эти четыре утверждения эквивалентны.

В следующем параграфе лемма Цорна будет использована самым существенным образом.

Отметим, что существуют три эквивалентные формулировки леммы Цорна.

Лемма Цорна (первая формулировка). Частично упорядоченное множество E, в котором любая цепь имеет верхную грань, содержит максимальный элемент.

В приложениях наиболее удобна следующая формулировка, в которой утверждается существование максимального элемента, который не меньше заданного.

Лемма Цорна (вторая формулировка). Если всякая цепь в частично упорядоченном множестве E имеет верхнюю грань, то всякий элемент из E подчинен некоторому максимальному.

В оригинальной статье 1935 года Цорн сформулировал свое утверждение для множеств, частично упорядоченных по отношению включения.

Лемма Цорна (третья, оригинальная формулировка). Пусть семейство множеств \mathfrak{M} обладает тем свойством, что объединение любой цепи множеств из \mathfrak{M} есть снова множество из этого семейства. Тогда \mathfrak{M} содержит максимальное множество.