Examen de Teoría de Percepción - Segundo Parcial ETSINF, Universitat Politècnica de València, 5 de junio de 2020

Apellidos: Díaz-Alejo León Nombre: Stéphane
Profesor: □ Jorge Civera □ Carlos Martínez
Cuestiones (2 puntos, 30 minutos)
D Es necesario para definir correctamente una distribución Bernoulli que los valores de su vector de probabilidades
 A) sumen uno B) pertenezcan al intervalo [0, 1] y sumen uno C) sean valores positivos y distintos entre sí D) pertenezcan al intervalo [0, 1]
B Es necesario para definir correctamente una distribución multinomial que los valores de su vector de probabilidades
 A) sumen uno B) pertenezcan al intervalo [0, 1] y sumen uno C) sean valores positivos y distintos entre sí D) pertenezcan al intervalo [0, 1]
D ¿Cuál de las siguientes afirmaciones no es un objetivo del suavizado de la matriz de covarianzas en un clasificador Gaussiano?
 A) Aliviar el problema de una mala estimación de la matriz por una cantidad insuficiente de datos B) Evitar la singularidad de la matriz C) Evitar que tenga valores propios negativos o cero D) Conseguir valores de la matriz en el intervalo [0, 1]
$\boxed{\mathbf{A}}$ En el suavizado de gaussianas por umbralizado de covarianza con un parámetro $\epsilon \geq 0$
A) La diagonal de la matriz de covarianzas no se altera B) Se ponen a cero los valores de la matriz de covarianzas que cumplen $ \sigma_{ij} < 1 - \epsilon$

C) La diagonal de la matriz de covarianzas se vuelve unitaria

D) Se suma el valor ϵ a cada componente de la matriz de covarianzas

 $\boxed{\mathbb{C}}$ La función $K(\mathbf{x}, \mathbf{y}) = \frac{1}{\exp((\mathbf{x} - \mathbf{y})^t(\mathbf{x} - \mathbf{y}))}$, con $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D \times 1}$

- A) No es un kernel
- B) Es un kernel polinomial
- C) Es un kernel gaussiano
- D) Es un kernel generalizado

A ¿Cuál de las siguientes descripciones se ajusta a lo que realiza la técnica LDA?

- A) Se maximiza el cociente entre las trazas de las matrices S_b y S_w en el espacio proyectado
- B) Se minimiza la distancia entre las medias de las clases y se maximiza la cohesión en cada clase
- C) Se maximiza la covarianza interna de una clase y se minimiza la covarianza entre las medias de clase
- D) Se maximiza el valor de la matriz S_b y se minimiza el de S_w en el espacio original

 $\overline{\mathbf{B}}$ Sea $W \in \mathbb{R}^{D \times C - 1}$ el conjunto de vectores propios generalizados calculados en el algoritmo LDA. ¿Qué propiedad se cumple siempre?

- A) $W^t \cdot W = A$ $a_{ij} = 0 \text{ si } i \neq j \text{ y } a_{ii} = 1$
- B) $W^t \cdot W = A$ $a_{ij} = 0$ si $i \neq j$ y $a_{ii} > 0$ C) $W^t \cdot W = A$ $a_{ij} = 0$ si $i \neq j$ y $a_{ii} < 0$ D) $W^t \cdot W = A$ $a_{ij} \neq 0$

C Dado los clasificadores estudiados en la asignatura: k-NN, Bernoulli y Gaussiano, ¿cómo los ordenarías respecto a su bias (sesgo)?

- A) Bernoulli > k-NN > Gaussiano
- B) Gaussiano > Bernoulli > k-NN
- C) Bernoulli > Gaussiano > k-NN
- D) k-NN > Gaussiano > Bernoulli