Eksamen på Økonomistudiet. Vinteren 2011 - 2012

MATEMATIK B

1. årsprøve

Mandag den 9. januar 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 V-1B ex

EKSAMEN I MATEMATIK B

Mandag den 9. januar 2012

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} s & 2s & 1\\ 2s & 1 & 0\\ 1 & 0 & 2 \end{pmatrix}.$$

- (1) Bestem determinanten $\det(A(s))$ for matricen A(s) for et vilkårligt $s \in \mathbb{R}$, og bestem dernæst de tal $s \in \mathbb{R}$, for hvilke matricen A(s) er regulær.
- (2) Vis, at matricen A(s) hverken er positiv definit eller negativ definit for nogen værdi af $s \in \mathbf{R}$.
- (3) Bestem 3×3 matricen $B = A(0)^2 = A(0)A(0)$, og vis, at B er positiv definit.
- (4) Bestem en forskrift for den til matricen B hørende kvadratiske form $K: \mathbf{R}^3 \to \mathbf{R}$, og godtgør, at K er en strengt konveks funktion på mængden \mathbf{R}^3 .
- (5) Vis, at funktionen $f: \mathbf{R}^3 \to \mathbf{R}$, som er givet ved

$$\forall (x_1, x_2, x_3) \in \mathbf{R}^3 : f(x_1, x_2, x_3) = \exp(K(x_1, x_2, x_3)),$$

er kvasikonveks, og afgør derefter, om f er konveks.

Opgave 2. Vi betragter funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + x^4 + 3y^2 - y^6.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Bestem de stationære punkter for funktionen f.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$, og afgør dernæst for ethvert af de stationære punkter, om det er et maksimums-, et minimums- eller et sadelpunkt for funktionen f.
- (4) Bestem værdimængden R(f) for funktionen f.
- (5) Bestem mængden

$$P = \{(x, y) \in \mathbf{R}^2 \mid \text{Hessematricen } H(x, y) \text{ er positiv definit}\}.$$

(6) Betragt funktionen $g:P\to\mathbf{R},$ som er defineret ved

$$\forall (x,y) \in P : g(x,y) = f(x,y).$$

Vis, at funktionen g er strengt konveks.

(7) For ethvert v > 0 betragter vi mængden

$$A(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \land 0 \le y \le v\}.$$

Bestem for ethvert v > 0 integralet

$$I(v) = \int_{A(v)} f(x, y) d(x, y).$$

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} = e^t + 2t.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0) = 15$ er opfyldt.

(3) Vis, at enhver maksimal løsning x=x(t) til differentialligningen (*) er en strengt konveks funktion på hele **R**.

Opgave 4. Lad $n \in \mathbb{N}$ være givet, og antag, at $n \geq 3$. Betragt mængden

$$U = \{1, 2, 3, \dots, n\}$$

og funktionen $P:U\to {\bf R},$ som er givet ved

$$\forall i \in \{1, 2, 3, \dots, n\} : P(i) = a(2^i + 3^i),$$

hvor a > 0.

- (1) Bestem a>0, så funktionen P er en sandsynlighedsfunktion på mængden U.
- (2) Bestem sandsynligheden $P(\{1,2\})$ for vilkårligt $n \geq 3$.
- (3) Bestem sandsynligheden $P(\{1,2\})$ for n=3.