TC358746AXBG/TC358748XBG

Functional Specification

TOSHIBA

1 2 3 4 5 6 7 8 9	NOTICE OF DISCLAIMER The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence.
10 11 12 13 14	All materials contained herein are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its express prior written permission.
15 16 17 18 19 20 21 22 23 24 25	ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
26 27 28 29 30 31 32 33 34	Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document; and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance with the contents of this Document. The use or implementation of the contents of this Document may involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents, patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as respects the contents of this Document or otherwise.
35	Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:
36 37	MIPI Alliance, Inc.

445 Hoes Lane Piscataway, NJ 08854

Attn: Board Secretary

38

39 40

HISTORY

Revision	Date	Note
Rev 0.1	11/02/2012	Copy from tc358746 Rev 034 Spec 1. Change I2C slave address from 0x0000_111x to 0x0001_110x 2. Modify bit 0x0004[6] to turn on/off Parallel port properly with register 0x0032[15:14] 3. Remove PClk toggle requirement when RefClk is used 4. No need to toggle RefClk to get out of reset. 5. Update Revision ID to 0x01
Rev 0.2	03/18/2013	Add TC358748XBG for new package (section3.3,3.4.3.6) Add Package (80 ball, 7.0 x 7.0 mm, 0.65 mm pitch) section7.2
Rev 0.3	04/21/2013	Corrected TC358748XBG ball assign
Rev 0.4	05/08/2013	Typo Correction
Rev 0.5	05/29/2013	Update Footer page
Rev 0.6	07/19/2013	Correct typo in Parallel In max PClk Freq to be 166 MHz Add "Note" after Table 4-3 for packing muti-pixel/PClk possibility
Rev 0.7	08/13/2013	Remove 748 PinOut description, which should the same as those of 746A
Rev 0.8	11/18/2013	Update Fig 5-2 to indicate RefClk is required
Rev 0.9	03/28/2014	 Remove Fail safe I2C pad operation MClk can be output from GPIO0 in either mode RefClk is not necessary, if not present/toggle, PClk/4 will be used to dirve PLL Change HSync/VSync to HValid/VValid Update Fig. 5-2 and adding Fig 5-3 to indicate RefClk is Not required in CSI-2 Tx mode

REFERENCES

- 1. MIPI D-PHY, "MIPI_D-PHY_specification_v01-00-00, May 14, 2009"
- 2. MIPI CSI-2, "MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.01 Revision Nov 2010"
- 3. I2C bus specification, version 2.1, January 2000, Philips Semiconductor

Table of content

1	Overview	. 13
2	Features	15
_	2.1 Typical Power Consumption	
_	,	
3	External Pins	
	3.1 TC358746A pinout desctription	
	3.2 TC358746AXBG BGA72 pin Count Summary	
	3.3 TC358748 BGA80 Pin Count Summary	
	3.4 TC358746A Pin Layout	
	3.5 TC358748 Pin Layout	
	3.6 System Overview	
	3.6.1 CSI-2 RX to Parallel Port Operation	
	3.6.2 Parallel Port to CSI-2 TX Operation	. 22
4	Function of Major Blocks	23
•	4.1 CSI-2 TX/RX Protocol	
	4.2 CSI-2 RX Interface Block	
	4.3 CSI-2 TX Interface Block	
	4.4 CSI-2 Packet Format	
	4.5 Checksum Generation	
	4.6 CSI-2 TX One Frame Operation	
	4.6.1 Enable and Disable Parallel Input (Video)	
	4.8 Parallel Output mode	
	4.8.2 24-bit Un-Packed Data Format	
	4.8.3 Timing Diagrams for Video signals (Vvalid and Hvalid)	
	4.9 Parallel Input mode	
	4.9.1 Overview	
	4.9.2 Timing Diagrams for Video signals (Vvalid and Hvalid)	
	4.10 I2C	
	4.10.1 Overview	
	4.10.2 I2C Write Access	
	4.10.3 I2C Read Access	
	4.11 SPI Slave Interface	
	4.11.1 Clocking Modes	
	4.11.1.1 Timing Diagram	
	4.11.1.2 Providing Register Address over SPI Interface	
	4.11.1.3 SPI Write Access Translation	. 43
	4.11.1.4 SPI Read Access Translation	. 43
	4.11.2 Full Duplex	. 44
	4.11.2.1 Back-2-back writes	. 45
	4.11.2.2 Back-2-back reads	
	4.11.2.3 Write-after-Read	_
	4.11.2.4 Read-after-Write	
	4.11.2.5 NOP-after-Read	. 47
5	Clock and System	48
	5.1 CG Block diagram	
		_

	5.2 Ex	ample of PLL Generated Clock Frequency	10
	5.2 LX	utput Clocks Generation	1 3
		358746AXBG/TC358748XBG Power Up Procedure	
		C358746AXBG/TC358746XBG Power Op Procedure	
	5.5	530/40AABG/TC330/40ABG POWEL DOWN Plocedule	52
6	RegFil	e Block (Reg)	53
	6.1 Re	egister Map	53
		obal Registers	
	6.2.1	Chip and Revision ID (ChipID: 0x0000)	
	6.2.1	System Control Register (SysCtl: 0x0002)	
	6.2.2	Configuration Control Register (ConfCtl: 0x0004)	
	6.2.3	FiFo Control Register (FiFoCtl: 0x0006)	
	6.2.4	Data Format Control Register (DataFmt: 0x0008)	57
	6.2.5	MCLK Control Register (MclkCtl: 0x000C)	
	6.2.6	GPIO Enable	58
	6.2.7	Register (GPIOEn: 0x000E)	
	6.2.8	GPIO Direction Register (GPIODir: 0x0010)	59
		GPIO Pin Value Register (GPIOPin: 0x0012)	
		GPIO Output Value Register (GPIOOut: 0x0014)	
	6.2.11	PLL Control Register 0 (PLLCtl0: 0x0016)	59
		PLL Control Register 1 (PLLCtl1: 0x0018)	
		CLK Control Register (ClkCtl: 0x0020)	
		Word Count Register (WordCnt: 0x0022)	
		Parallel In Miscellaneous Register (PP_MISC)	
		User Data Type Register (CSITX_DT: 0x0050)	
	6.3 Rx	Control Registers	
	6.3.1	MIPI PHYClock Lane Control Register (PHYClkCtl: 0x0056)	63
		MIPI PHY Data Lane 0 Control Register (PHYData0Ctl: 0x0058)	63
	6.3.3	MIPI PHY Data Lane 1 Control Register (PHYData1Ctl: 0x005A)	
	6.3.4	MIPI PHY Data Lane 2 Control Register (PHYData2Ctl: 0x005C)	
	6.3.5	MIPI PHY Data Lane 3 Control Register (PHYData3Ctl: 0x005E)	64
	6.3.6	MIPI PHY Time Delay Register (PHYTimDly: 0x0060)	
	6.3.7	MIPI PHY Status Register (PHYSta: 0x0062)	
	6.3.8	CSI-2 Error Status Register (CSIStatus: 0x0064)	
		CSI-2 Error Enable Register (CSIErrEn: 0x0066)	
		CSI-2 Multi-Data Lane SyncByte Error Register (MDLSynErr: 0x0068)	
	6.3.11	CSI-2 Data Type ID Register (CSIDID: 0x006A)	70
		CSI-2Data Type ID Error Register (CSIDIDErr: 0x006C)	
	6.3.13	CSI-2 Data Length Register (CSIPktLen: 0x006E)	/1
	6.3.14	CSI-2 DPhy Control Register (CSIRX_DPCtl: 0x0070)	/ 1
	6.4 KX	StatusRegistersFrame Error Counter (FrmErrCnt: 0x0080)	12
	6.4.1	Frame Error Counter (FrmErrCht: 0x0080)	72
	6.4.2	CRC Error Counter (CRCErrCnt: 0x0082)	/2
	6.4.3	Recoverable Packet Header Error Counter (CorErrCnt: 0x0084)	/ 3
	6.4.4	Un-recoverable Packet Header Error Counter (HdrErrCnt: 0x0086)	
	6.4.5	Un-supported Packet ID Error Counter (EIDErrCnt: 0x0088)	
	6.4.6	ControlError Counter (CtlErrCnt: 0x008A)	
	6.4.7	Recoverable SyncByte Error Counter (SoTErrCnt: 0x008C)	
	6.4.8	Un-recoverable SyncByte Error Counter (SynErrCnt: 0x008E)	
	6.4.9	IVIUILI-DALA LATIE SYTICDYLE ETTUI COUFILET (IVIDLETTOTIL UXUU9U)	/ ఏ

	6.4.10 FIFO Status Register(FIFOSTATUS: 0x00F8)	
	6.5 Tx D-PHY Registers	76
	6.5.1 Clock Lane DPHY TX Control register (CLW_DPHYCONTTX: 0x0100)	
	6.5.2 Data Lane 0 DPHY TX Control register (D0W_DPHYCONTTX:0x0104)	
	6.5.3 Data Lane 1 DPHY TX Control Register (D1W_DPHYCONTTX: 0x0108)	78
	6.5.4 Data Lane 2 DPHY TX Control Register (D2W_DPHYCONTTX: 0x010C)	
	6.5.5 Data Lane 3 DPHY TX Control Register (D3W_DPHYCONTTX: 0x0110)	80
	6.5.6 Clock Lane DPHY Control Register (CLW_CNTRL: 0x0140)	
	6.5.7 Data Lane 0 DPHY Control Register (D0W_CNTRL: 0x0144)	
	6.5.8 Data Lane 1 DPHY Control Register (D1W_CNTRL: 0x0148)	
	6.5.9 Data Lane 2 DPHY Control Register (D2W_CNTRL: 0x014C)	
	6.5.10 Data Lane 3 DPHY Control Register (D3W_CNTRL: 0x0150)	83
	6.6 Tx PPI Registers	84
	6.6.1 PPI STARTCNTRL (STARTCNTRL: 0x0204)	84
	6.6.2 PPI STATUS (PPISTATUS: 0x0208)	84
	6.6.3 LINEINITCNT (LINEINITCNT: 0x0210)	
	6.6.4 LPTXTIMECNT (LPTXTIMECNT: 0x0214)	
	6.6.5 TCLK_HEADERCNT (TCLK_HEADERCNT: 0x0218)	86
	6.6.6 TCLK_TRAILCNT (TCLK_TRAILCNT: 0x021C)	
	6.6.7 THS_HEADERCNT (THS_HEADERCNT: 0x0220)	87
	6.6.8 TWAKEUP (TWAKEUP: 0x0224)	88
	6.6.9 TCLK_POSTCNT (TCLK_POSTCNT: 0x0228)	89
	6.6.10 THS_TRAILCNT (THS_TRAILCNT: 0x022C)	89
	6.6.11 HSTXVREGCNT (HSTXVREGCNT: 0x0230)	90
	6.6.12 HSTXVREGEN (HSTXVREGEN: 0x0234)	
	6.6.13 TXOPTIONCNTRL (TXOPTIONCNTRL: 0x0238)	
	6.7 Tx Control Register	
	6.7.1 CSI Configuration Read Register(CSI_CONTROL: 0x040C)	92
	6.7.2 CSI STATUS Register (CSI_STATUS: 0x0410)	93
	6.7.3 CSI INT Register (CSI INT: 0x0414)	94
	6.7.4 CSI_INT_ENA Register (CSI_INT_ENA: 0x0418)	94
	6.7.5 CSI ERR Register (CSI ERR: 0x044C)	95
	6.7.6 CSI_ERR_INTENA (CSI_ERR_INTENÁ: 0x0450)	96
	6.7.7 CSI_ERR_HALT Register(CSI_ERR_HALT: 0x0454)	97
	6.7.8 CSI Configuration Register (CSI_CONFW: 0x0500)	97
	6.7.9 CSI LP Command (CSI_LPCMD: 0x0500)	98
	6.7.10 CSI_RESET Register (CSI_RESET: 0x0504)	99
	6.7.11 CSI_INT_CLR Register(CSI_INT_CLR: 0x050C)	99
	6.7.12 CSI_START (CSI_START: 0x0518)	100
	6.8 TxDebug Register	101
	6.8.1 Debug Active Line Count Register (DBG_LCNT: 0x00E0)	101
	6.8.2 Debug Line Width Register (DBG_Width: 0x00E2)	
	6.8.3 Debug Vertical Blank Line Count Register (DBG_VBlank: 0x00E4)	101
	6.8.4 Debug Video Data Register (DBG_Data: 0x00E8)	
7	Package	104
-	7.1 TC358746A Package	
	7.2 TC358748 Package	
	<u> </u>	
8	Electrical Characteristics	
	8.1 Absolute Maximum Ratings	107

TC358746A/748XBG Functional Spec

Page 7 of 118

TOSHIBA

	8.2	Recommended Operating Condition	107
		DC Electrical Specification	
9	Tin	ning Definitions	109
	9.1	MIPI CSI – 2 Timings	109
		I2C Timings	
		Parallel Port Output Timings	
		Parallel Port Input Timings	
		SPI Input/Output Timings	
		ESTRICTIONS ON PRODUCT USE	

ıb	of Figures	
	Figure 1-1 System Overview with TC358746AXBG/TC358748XBG in CSI-2 RX to Parallel	
	Configuration	13
	Figure 1-2 System Overview with TC358746AXBG/TC358748XBG in Parallel Port to CSI-2	: IX
	Configuration	14
	Figure 3-1 TC358746AXBG BGA72-Pin Layout	19
	Figure 3-2 TC358746AXBG/TC358748XBGData/Control Flow in CSI-2 RX to Parallel Port	
	configuration	
	Figure 3-3 TC358746AXBG/TC358748XBGData/Controls Flow in Parallel Port to CSI-2 TX	
	configurationFigure 4-1 Block Diagram of TC358746AXBG/TC358748XBG	ZZ
	Figure 4-2 Multiple Packet Examle	
	Figure 4-3 Line and Frame Blanking Definitions	25
	Figure 4-4 RAW8 Data Transmission	
	Figure 4-5 RAW10 Data Transmission	
	Figure 4-6 RAW12 Data Transmission	
	Figure 4-7 RAW14 Data Transmission	
	Figure 4-8 RGB888 Data Transmission	
	Figure 4-9 RGB666 Data Transmission	
	Figure 4-10 RGB565 Data Transmission	
	Figure 4-11 User Defined 8-bit Data Transmission	29
	Figure 4-12 YUV422 8-bit Data Transmission	
	Figure 4-13 YUV422 10-bit Data Transmission	
	Figure 4-14 Frame Format	
	Figure 4-15 Checksum Transmission	
	Figure 4-16 Checksum Generation for Packet Data	
	Figure 4-17 vb_top Block Diagram	
	Figure 4-18 Block Diagram of Parallel portcontroller	
	Figure 4-19 VVALID/HVALID Timing Diagram for Parallel Output mode	<i>വ</i>
	Figure 4-20 VVALID/HVALID Timing Diagram (for Parallel Input mode)	
	Figure 4-21 32-bit Write Transfers Byte Order	
	Figure 4-22 I2C Read Transfers over I2C Bus	
	Figure 4-23 I2C 32-bit Read Transfers Byte Order	
	Figure 4-24 SPI basic operation	
	Figure 4-25 SPI Transfer	
	Figure 4-26 Register Write Transfer over SPI (transfer size=32 bits)	4Z
	Figure 4-27 Register Write Transfer over SPI (transfer size=32 bits)	
	Figure 4-29 Back-2-Back Write Transfers over SPI	
	Figure 4-30 Back-2-Back Read Transfers over SPI	40
	Figure 4-31 Write-after-Read Transfer over SPI	40
	Figure 4-33 NOP-after-Read Transfer over SPI Figure 5-1 CG Block diagram	
	Figure 5-1 CG Block diagram	40
	Figure 5-2 Power On Sequence (When PClk is available to Drive PLL)	
	Figure 5-4 Power Down Sequence	51 52
		/

	Figure 7-1 P-VFBGA72-0404-0.40A3 package	104
	Figure 9-1 Signaling and voltage levels	
	Figure 9-2 Input Glitch Rejection	
	Figure 9-3 Data to clock timing reference	113
	Figure 9-4 Parallel Output timing (ConfCtl.PLCKP = 0)	115
	Figure 9-5 Parallel Output timing (ConfCtl.PLCKP = 1)	
	Figure 9-6 Parallel Input timing	
	Figure 9-7 SPI timing (data valid on second active clock edge)	117
l is	t of Tables	
	Table 3-1 TC358746A/748XBG Functional Signal List	17
	Table 3-2 BGA 72Pin Count Summary	
	Table 3-3 TC358748 BGA 80 Pin Count Summary	
	Table 4-1 Supports Data Types	
	Table 4-2 Data Packing in Video Line Buffer	
	Table 4-3 24-bit Unpacked Data bus	
	Table 4-4 24-bit Unpacked Data bus	
	Table 4-5 SPI Clocking modes	
	Table 5-1 Possible PLL parameters	
	Table 5-1 Possible PLE parameters Table 5-2 Controllers' Operating Frequency	
	Table 5-3 Power On Sequence Timing	
	Table 5-3 Power On Sequence Timing	
	Table 6-1 Register Map	
	Table 6-2 Chip and Revision ID	
	Table 6-3 System Control Register	
	Table 6-4 Configuration Control Register	
	Table 6-5 FiFo Control Register	
	Table 6-6 Data FormatControl Register	
	Table 6-7 MCLK Control Register	
	The state of the s	
	Table 6-8 GPIO Direction Register	
	Table 6-9 GPIO Direction Register Table 6-10 GPIO Pin Value Register	
	Table 6-10 GPIO Pili Value Register	
	Table 6-12 PLL Control Register 0	
	Table 6-13 PLL Control Register 1	
	Table 6-14 CLK Control Register 1	
	Table 6-15 Word Count Register	
	Table 6-16 CSI TX Data Type Register	0Z
	Table 6-17 User Defined CSITX Data Type Register	
	Table 6-18 MIPI PHY Clock Control Register	
	Table 6-19 MIPI PHY Data Lane 0 Control Register	
	Table 6-20 MIPI PHY Data Lane 1 Control Register	
	Table 6-21 MIPI PHY Data Lane 2 Control Register	
	Table 6-22 MIPI PHY Data Lane 3 Control Register	
	Table 6-23 MIPI PHY Time Delay Register	
	Table 6-24 MIPI PHY Error Status Register	00

Table 6-25 CSI-2 Error Status Register	67
Table 6-26 CSI-2 Error Enable Register	68
Table 6-27 CSI-2 Multi-Data Lane Sync Byte Error Register	69
Table 6-28 CSI-2 Data Type ID Register	70
Table 6-29 CSI-2 Data Type ID Error Register	71
Table 6-30 CSI-2 Data Length Register	
Table 6-31 CSI-2 Data Length Register	
Table 6-32 Frame Error Counter	
Table 6-33 CRC Error Counter	72
Table 6-34 Recoverable Packet Header Error Counter	73
Table 6-35 Un-recoverable Packet Header Error Counter	73
Table 6-36 Un-supported Packet ID Error Counter	74
Table 6-37 Escape Mode Error Counter	74
Table 6-38 Recoverable Sync Byte Error Counter	75
Table 6-39 Un-recoverable Sync Byte Error Counter	75
Table 6-40 Multi-Data Lane Sync Byte Error Counter	
Table 6-41 FIFO Status Register	
Table 6-42 Clock Lane DPHY TX Control register	
Table 6-43 Data Lane 0 DPHY TX Control register	
Table 6-44 Data Lane 1 DPHY TX Control Register	
Table 6-45 Data Lane 2 DPHY TX Control Register	
Table 6-46 Data Lane 3 DPHY TX Control Register	80
Table 6-47 Clock Lane DPHY Control Register	
Table 6-48 Data Lane 0 DPHY Control Register	82
Table 6-49D ata Lane 1 DPHY Control Register	
Table 6-50 Data Lane 2 DPHY Control Register	
Table 6-51 Data Lane 3 DPHY Control Register	
Table 6-52 STARTCNTRL	
Table 6-53 PPI STATUS	84
Table 6-54 LINEINITCNT	85
Table 6-55 LPTXTIMECNT	
Table 6-56 TCLK HEADERCNT	86
Table 6-57 TCLK TRAILCNT	87
Table 6-58 THS HEADERCNT	
Table 6-59 TWAKEUP	88
Table 6-60 TCLK POSTCNT	89
Table 6-61 THS_TRAILCNT	
Table 6-62 HSTXVREGCNT	
Table 6-63 HSTXVREGEN	
Table 6-64 TXOPTIONCNTRL	
Table 6-65 CSI Control Register	
Table 6-66 CSI STATUS Register	
Table 6-67 CSI_INT Register	
Table 6-68 CSI_INT_ENA Register	
Table 6-69 CSI_ERR_INTENA Register	
Table 6-70 CSI_ERR_HALT Register	
Table 6-71 CSI Configuration Write Register	
Table 6-72 CSI Configuration Write Register	as

Table 6-73 CSI_RESET Register	99
Table 6-74 CSI_INT_CLR Register	
Table 6-75 CSI2_START	
Table 7-1P-VFBGA72-0404-0.40A3 Mechanical Dimension	105
Table 7-2 P-VFBGA80-0707-0.65 Mechanical Dimension	106
Table 9-1 MIPI TX DC specifications	109
Table 9-2 MIPI Rx DC specifications	110
Table 9-3 MIPI High Speed Tx AC specifications	110
Table 9-4 MIPI Low Power Tx AC characteristics	111
Table 9-5 MIPI High Speed Rx AC specifications	111
Table 9-6 MIPI Low Power Rx AC characteristics	112
Table 9-7 Data-Clock timing specification	113
Table 9-8 I2C Timing	114
Table 9-9 Parallel Output timing	115
Table 9-10 Parallel Input timing	116
Table 9-11 SPI timing	116

1 Overview

The MIPI CSI-2 to Parallel port and Parallel port to CSI-2 (TC358746AXBG/TC358748XBG) is a bridge device that converts MIPI data transfers from devices such as a camera to an application processor over a Parallel port interface. All internal registers can be access through I2C or SPI (in CSI out case only).

There are several system configurations where TC358746AXBG/TC358748XBG are typically be used

- CSI-2 TX with Parallel Input mode for Analog TV, Tele-presence Type, and Specialty/Older Cameras application. In this mode, TC358746AXBG/TC358748XBG (Parallel to CSI-2 converter) is a bridge device that converts parallel data transfers to an application over a MIPI CSI-2 interface. Toshiba Bridge Chip provides a low power bridge solution to efficiently translate parallel transfers to serial transfers.
- CSI-2 RX with Parallel output mode for scanner application. In this mode, TC358746AXBG/TC358748XBG (CSI-2 to Parallel converter) is a bridge device that converts serial data transfers from devices such as a camera to an application processor over a parallel interface. Toshiba Bridge Chip provides a low power bridge solution to efficiently translate serial transfers to parallel transfers.

Figure 1-1 System Overview with TC358746AXBG/TC358748XBG in CSI-2 RX to Parallel Port Configuration

Figure 1-2 System Overview with TC358746AXBG/TC358748XBG in Parallel Port to CSI-2 TX Configuration

2 Features

Below are the main features supported by TC358746AXBG/TC358748XBG.

CSI-2 TX/RX Interface

- ♦ MIPI CSI-2 compliant (Version 1.01 Revision 0.04 2 April 2009)
- ♦ Configurable to TX or RX controller
- ♦ Supports up to 1Gbps per data lane
- ♦ Supports up to 4 data lanes
- → Supports video data formats
 - RX: RAW8/10/12/14, YUV422 (CCIR/ITU 8/10-bit), RGB888/666/565 and User-Defined 8-bit
 - TX: YUV422 (CCIR/ITU 8/10-bit), YUV444, RGB888/666/565 and RAW8/10/12/14

Parallel Port Interface

- Supports data formats
 - > 24-bit bus un-packed format (Both Input and Output mode)
 - ♦ RGB888/666/565, RAW8/10/12/14 and YUV422 8-bit (on 8/16-bit data bus) and 10-bit data formats.
 - ♦ YUV444 (Parallel Input mode only)
 - YUV422 8-bit ITU BT.656 and ITU BT.601 (Parallel input mode only)
- ♦ Up to 100 MHz PCLK frequency for Output mode, and 166 MHz for Input mode.

I2C Slave Interface (CS = L)

- Support for normal (100KHz), fast mode (400 KHz) and special mode (1 MHz)
- ♦ Configure all TC358746AXBG/TC358748XBG internal registers

SPI Slave Interface (Only applicable in CSIOut configuration, MSEL = H, and CS = H)

- ♦ SPI interface support for up to 25 MHz operation.
- ♦ Configure all TC358746AXBG/TC358748XBG internal registers

GPIO signals

- ♦ 3 GPIO signals
 - Three GPIO signals can be configured as control signals (MCLK, CXRST, XShutdown) for CSI-2 RX device.
 - Or one GPIO signal can be configured as INT signal for Parallel interface.

System

Confidential

Clock and power management support to achieve low power states.

Power supply inputs

♦ Core and MIPI D-PHY: 1.2V

I/O: 1.8V - 3.3V

2.1 **Typical Power Consumption**

Parallel_In → CSI_Out, 500MHz CSICLk, 1080P @60fps						
VDDIO (3.3V) VDDC (1.2V) VDD_MIPI (1.2V) Total Pow						
Current (mA)	0.44	40.4	24.5			
Power (mW)	1.452	48.48	29.4	79.33		

CSI_In → Parallel_Out, 500MHz CSICLk, 114MHz PClk ColorBar @60fps							
	VDDIO (3.3V) VDDC (1.2V) VDD_MIPI (1.2V) Total Power						
Current (mA)	18.9	13.9	12.3				
Power (mW)	62.37	16.68	14.76	93.81			

3 **External Pins**

3.1 TC358746A pinout desctription

TC358746AXBG/TC358748XBG resides in BGA pin packages. The following table gives the signals of TC358746AXBG/TC358748XBG and their function.

Table 3-1 TC358746A/748XBG Functional Signal List

(2) I2C_SDA OD Sch I2C serial data or SPI_MOSI 4r Parallel Port Port Port (27) PD[23:0] I/O N Parallel Port Data - PD[23:12] can configs to be GPIO[15:4] 4r VVALID I/O N Parallel port VVALID signal 4r HVALID I/O N Parallel port HVALID signal 4r	Note
MSEL	
System: Reset & Clock (4) CS I N - 1'b0: CSI-2 RX in -> Par_out 1'b1: Par_in -> CSI-2 TX	
MSEL= 0 (CSI-2 RX in -> Par_out)	
MIPI_CN	
MIPI_DOP	
MIPI-CSI MIPI_D0N	
MIPI_CSI	
MIPI_D1N	
MIPI_D1N	
MIPI_D2P	
MIPI_D2N	
MIPI_D3N	
I2C	
(2) I2C_SDA OD Sch I2C serial data or SPI_MOSI 4r Parallel Port Ort (27) PD[23:0] I/O N Parallel Port Data - PD[23:12] can configs to be GPIO[15:4] 4r VVALID I/O N Parallel port VVALID signal 4r HVALID I/O N Parallel port HVALID signal 4r	
Parallel Port (27) PD[23:0] I/O N Parallel Port Data - PD[23:12] can configs to be GPIO[15:4] 4r VVALID I/O N Parallel port VVALID signal 4r HVALID I/O N Parallel port HVALID signal 4r	4mA
Parallel Port (27) PD[23:0] I/O N - PD[23:12] can configs to be GPIO[15:4] 4r VVALID VVALI	4mA
Port VVALID I/O N Parallel port VVALID signal 4r (27) HVALID I/O N Parallel port HVALID signal 4r	4mA
	4mA
	4mA
PCLK I/O N Parallel Port Clock signal 4r	4mA
GPIOx (3) GPIO[2:0] signals CSI-2 RX in -> Par_out - (GPIO[0] option to become MCLK signal) - (GPIO[1] option to become CXRST or INT) - (GPIO[2] option to become XShutdown) Par_in -> CSI-2 TX - (GPIO[0] option to become MCLK signal) - (GPIO[1] option to become MCLK signal) - (GPIO[1] option to become SPI_SS or INT) - (GPIO[2] option to become SPI_MISO)	4mA
POWER VDDC (1.2V) NA VDD for Internal Core (2)	

Group	Pin Name	I/O	Туре	Initial	Function	Note
(9)	VDDIO (1.8V – 3.3V)	NA		VDDIO is for IO power supply (3)		
	VDD_MIPI (1.2V)	NA			VDD for the MIPI CSI2 (2)	
Ground (17)	VSS	NA		Ground		

3.2 TC358746AXBG BGA72 pin Count Summary

Table 3-2 BGA 72Pin Count Summary

Group Name	Pin Count	Notes
SYSTEM	4	
CSI2 IF	10	
I2C	2	
GPIOx	3	
Parallel Port IF	27	
POWER	9	IO, MIPI and Core Power
GROUND	17	
TOTAL	72	

TC358748 BGA80 Pin Count Summary

Table 3-3 TC358748 BGA 80 Pin Count Summary

Group Name	Pin Count	Notes
SYSTEM	4	
CSI IF	10	
I2C	2	
GPIOx	3	
Parallel Port IF	27	
POWER	9	IO, MIPI and Core Power
GROUND	25	
TOTAL	80	

3.4 TC358746A Pin Layout

A1	A2	А3	A4	A 5	A6	A7	A8	A9
VSS	PD17	PD19	PD21	PD23	GPIO2	I2C_SCL	MSEL	VSS
B1	B2	В3	B4	B5	В6	B7	B8	В9
VDDC	PD16	PD18	PD20	PD22	GPIO1	I2C_SDA	RESX	VDDIO
C1	C2	C3	C4	C5	C6	C 7	C8	C9
PD15	PD14	VSS	VSS	VSS	VSS	VDD_MIPI	MIPI_D3P	MIPI_D3N
D1	D2	D3				D7	D8	D9
PD13	PD12	VSS				VSS	MIPI_D2P	MIPI_D2N
E1	E2	E3				E7	E8	E9
VSS	VSS	VDDC				VDD_MIPI	MIPI_CP	MIPI_CN
F1	F2	F3				F7	F8	F9
VSS	VSS	VSS				VSS	MIPI_D1P	MIPI_D1N
G1	G2	G3	G4	G5	G6	G7	G8	G9
PD11	PD10	VDDIO	VSS	VSS	VDDIO	VDDIO	MIPI_D0P	MIPI_D0N
H1	H2	НЗ	H4	H5	Н6	H7	Н8	Н9
VDDC	PD8	PD6	PD4	PD2	PD0	PCLK	HVALID	CS
J1	J2	J3	J4	J5	J6	J7	J8	J 9
VSS	PD9	PD7	PD5	PD3	PD1	REFCLK	VVALID	GPIO0

Figure 3-1 TC358746AXBG BGA72-Pin Layout

3.5 TC358748 Pin Layout

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
VSS	PD17	PD19	PD21	PD23	GPIO2	VDDC	I2C_SCL	MSEL	VSS
B1	B2	В3	В4	B 5	В6	B7	B8	В9	B10
VDDC	PD16	PD18	PD20	PD22	GPIO1	VSS	I2C_SDA	RESX	VDDIO
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
PD15	PD14							MIPI_D3F	MIPI_D3N
D1	D2	D3	D4	D 5	D6	D7	D8	D9	D10
PD13	PD12		VSS	VSS	VSS	NC		MIPI_D2F	MIPI_D2N
E1	E2	E 3	E4	E 5	E6	E7	E8	E9	E10
PD11	PD10		VSS	VSS	VSS	NC		VSS	VDD_MIPI
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
PD9	PD8		VSS	VSS	NC	NC		MIPI_CP	MIPI_CN
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
PD7	PD6		NC	NC	NC	NC		MIPI_D1F	MIPI_D1N
H1	H2	Н3	Н4	H5	Н6	H7	Н8	Н9	H10
VDDIO	VSS							VSS	VDD_MIP
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10
PD4	PD2	PD0	VSS	VSS	PCLK	HVALID	CS	MIPI_D0P	MIPI_D0N
K1	K2	K3	K4	K 5	K6	K7	K8	K9	K10
PD5	PD3	PD1	VDDC	VDDIO	REFCLK	VVALID	GPIO0	VDDIO	VSS

Figure 3-2 TC358748XBG 80-Pin Layout (Top View)

3.6 System Overview

The TC358746AXBG/TC358748XBG has two major modes of operation that determine how data and control may be passed from the application processor to peripheral devices. The sections below describe each mode of operation.

3.6.1 CSI-2 RX to Parallel Port Operation

In this mode, TC358746AXBG/TC358748XBG received the data/controls from CSI-2 RX then transmits them out to Parallel port interface. Host uses I2C interface to configure all TC358746AXBG/TC358748XBG internal registers. TC358746AXBG/TC358748XBG has option to generate XShutdown/CXRST/MCLK signals for camera device through GPIO[2:0] signals.

Figure 3-2 TC358746AXBG/TC358748XBGData/Control Flow in CSI-2 RX to Parallel Port configuration

3.6.2 Parallel Port to CSI-2 TX Operation

In this mode, TC358746AXBG/TC358748XBG received the data/controls from Parallel port then transmits them out to MIPI CSI-2/CSI2 TX. Host uses I2C/SPI interface to configure all TC358746AXBG/TC358748XBG internal registers.

Figure 3-3 TC358746AXBG/TC358748XBGData/Controls Flow in Parallel Port to CSI-2 TX configuration

4 Function of Major Blocks

TC358746AXBG/TC358748XBG consists of the following major blocks: Rx/TxD-PHY, CSI-2 Rx/Tx Controller, Parallel port i/f and I2C i/f. Certain blocks are enabled and certain blocks are disabled depends on mode of operation.

Below are more information of which block is enabled or disabled based on the mode of operation.

- 1) CSI-2 RX with Parallel Output: CSI-2RX and Parallel port output blocks are enabled. Parallel input and CSI-2 TX block are disabled.
- 2) CSI-2 TX with Parallel Input: CSI-2 TX and Parallel port input blocks are enabled. And CSI-2 RX and Parallel port output blocks are disabled.

I2C slave block is always enabled which is required for configure the TC358746AXBG/TC358748XBG registers.

The following sections describe each block in detail. Addition, there is a section describes Clock generation block.

Figure 4-1 Block Diagram of TC358746AXBG/TC358748XBG

4.1 CSI-2 TX/RX Protocol

Table below shows all the data types that supported in TC358746AXBG/TC358748XBG.

Data Type	Description
0x00	Frame Start Code
0x01	Frame End Code
0x22	RGB565 Data Type
0x23	RGB666 Data Type
0x24	RGB888 Data Type
0x1E	YUV422 8-bit Data Type
0x1F	YUV422 10-bit Data Type
0x2A	RAW8 Data Type
0x2B	RAW10 Data Type
0x2C	RAW12 Data Type
0x2D	RAW14 Data Type

Table 4-1 Supports Data Types

VVALID, HVALID and Line# signals in figure below shows conceptual how frame start/end and line start/end related to HVALID, VVALID and Line#.

Figure 4-2 Multiple Packet Examle

Figure 4-3 Line and Frame Blanking Definitions

CSI-2 terminology:

- Line Blanking Period is the period between the Packet Footer of one long packet and the Packet Header.
- Frame Blanking Period is the period between the Frame End packet in frame N and the Frame Start packet in frame N+1.

The Line Blanking Period is not fixed and may vary in length.

4.2 CSI-2 RX Interface Block

TheCSI2RX consists of CSI2 D-PHY and Receive Serial Protocol Layer blocks. CSI2 RX supports one clock lane and up to four data lanes which interface with a quad lane Serial Interface.

CSI2 Rx supports the following video data format

- YUV422 (CCIR/ITU 8/10-bit)
- RGB888/666/565
- RAW8/10/12/14 and
- User-Defined 8-bit

A lane merger block in Serial Protocol layer is for merging the two to four data lanes from Serial Rx PHY.

In Serial link, video data is transferred in byte oriented with LSB shifted out first for transmission. The data transmission format of each of video formats in Serial link are shown in Figures below.

Figure 4-4 RAW8 Data Transmission

Figure 4-5 RAW10 Data Transmission

Figure 4-6 RAW12 Data Transmission

Figure 4-7 RAW14 Data Transmission

Figure 4-8 RGB888 Data Transmission

Figure 4-9 RGB666 Data Transmission

Figure 4-10 RGB565 Data Transmission

Figure 4-11 User Defined 8-bit Data Transmission

Figure 4-12 YUV422 8-bit Data Transmission

Figure 4-13 YUV422 10-bit Data Transmission

All serial byte data will be pack into 32-bit word data before write into the line buffer.

4.3 CSI-2 TX Interface Block

TheCSI-2TX consists of CSI-2 D-PHY and Transmit Serial Protocol Layer blocks. The CSI-2 TXsupports one clock lane and up to four data lanes which interface with a quad lane Serial Interface.

CSI-2 Tx supports the following video data format

- RAW8, RAW10, RAW12, RAW14, YUV422 8-bit, RGB888, RGB666, RGB565 and 8-bit User-Defined

A lane merger block in Serial Protocol layer is fetching the 32-bit data from VB module and splitting data to two to four data lanes - CSI-2 D- PHY.

The CSI-2 TX serial video data format is transferred in byte oriented with LSB shifted out first for transmission. These data transmission formats (RAW8/10/12/14, YUV422 8-bit, RGB888/666/565 and 8-bit User-Defined) are same as described in section 4.1.

4.4 CSI-2 Packet Format

The CSI-2 packet data formats are showed in Figure 4-2 and Figure 4-3. The Frame format is showed in below Figure

Figure 4-14 Frame Format

FS – Frame Start FE – Frame End The CSI-2 TX transmits data based on these data formats and Frame format.

4.5 Checksum Generation

Checksum is calculated over each data packet. The checksum is realized as 16-bit CRC. The generator polynomial is $x^{16} + x^{12} + x^5 + x^0$.

The transmission of the checksum is showed in below Figure.

Figure 4-15 Checksum Transmission

Figure 4-16 Checksum Generation for Packet Data

The 16-bit checksum sequence is transmitted as part of the Packet Footer. When Word Count is zero, the CRC shall be 0xFFFF.

4.6 CSI-2 TX One Frame Operation

Below describes the TC358746AXBG/TC358748XBG sequence for transmit out the video data onto CSI-2 TX.

- Enable CSI-2 TX and Parallel Input port.
- 2) TC358746AXBG/TC358748XBG wait for assertion of VVALID (indicates beginning of frame)
- 3) TC358746AXBG/TC358748XBG wait for the Line buffer reaches the programmable "FIFO Level".

Confidential

- 4) Then transmit "FS" packet for 1st line only
- 5) Transmit "PH" packet follow by Line Data until "pixel count" reached
- 6) Transmit "PF" packet then
 - a. If Vvalid is not active, go to step "7"
 - b. Otherwise, wait Line buffer reaches the programmable FIFO level then loop back to step "5"
- 7) Transmit "FE" packet, then loop back to step "3"

4.6.1 Enable and Disable Parallel Input (Video)

While TC358746A is running, the following procedures need to perform in order to stop and restart video operation without reset. Otherwise, TC358746A might be hung, which needs to be reset.

Three registers bits, 0x0032[15] (FrmStop), 0x0032[14] (RstPtr) and 0x0004[6] (PP_En) needs to be programmed sequentially.

To stop TC358746A (video):

- 1 Set FrmStop to 1'b1, wait for at least one frame time for TC358746A to stop properly
- 2 Clear PP_En to 1'b0
- 3 Set RstPtr to 1'b1
- 4 Stop Video to TC358746A (optional)

To re-start TC358746A (video):

- 1 Start Video to TC358746A
- 2 Clear RstPtr and FrmStop to 1'b0
- 3 Set PP_En to 1'b1

4.7 **Video Buffer Controller**

TC358746AXBG/TC358748XBG contains integrate avideo buffer. Depends on mode of operation, input video data can be from either Serial RX controller or Parallel Input Port controller. Output video data (vb_out[31:0] connects to Parallel Output Port controller. Below is vb_top block diagram.

Figure 4-17 vb top Block Diagram

Video data are always stored in the video line buffer as 32 bits data. Below table shows how the video data of each format map into the video line buffer.

Table 4-2 Data I	Packing in V	video i	Line Buffer
------------------	--------------	---------	-------------

Format	Data Packing in Video Line Buffer: vd[31:0]
RAW8	{P4[7:0], P3[7:0], P2[7:0], P1[7:0]}
RAW10	{P4[9:2], P3[9:2], P2[9:2], P1[9:2]} {P7[9:2], P6[9:2], P5[9:2], P4[1:0], P3[1:0], P2[1:0], P1[1:0]} {P10[9:2], P9[9:2], P8[1:0], P7[1:0], P6[1:0], P5[1:0], P8[9:2]} {P13[9:2], P12[1:0], P11[1:0], P10[1:0], P9[1:0], P12[9:2], P11[9:2]} {P16[1:0], P15[1:0], P14[1:0], P13[1:0], P16[9:2], P15[9:2], P14[9:2]}
RAW12	{P3[11:4], P2[3:0], P1[3:0], P2[11:4], P1[11:4]} {P6[11:4], P5[11:4], P4[3:0], P3[3:0], P4[11:4]} {P8[3:0], P7[3:0], P8[11:4], P7[11:4], P6[3:0], P5[3:0]}
RAW14	{ P4[13:6], P3[13:6], P2[13:6], P1[13:6] } { P5[13:6], (P4[5:0],P3[5:0],P2[5:0],P1[5:0]) } { (P6[1:0],P5[5:0]), P8[13:6], P7[13:6], P6[13:6] } { P10[13:6], P9[13:6], (P8(5:0],P7[5:0],P6[5:2]) } { (P11[3:0],P10[5:0],P9[5:0]), P12[13:6],P11[13:6] }
	{ P15[13:6], P14[13:6], P13[13:6], (P12(5:0],P11[5:4]) }

	{ (P16[5:0],P15[5:0],P14[5:0],P13[5:0]),P16[13:6]}
DODGG	{B2[7:0], R1[7:0], G1[7:0], B1[7:0]}
RGB888	{G3[7:0], B3[7:0], R2[7:0], G2[7:0]} {R4[7:0], G4[7:0], B4[7:0], R3[7:0]}
	{R2[1:0], G2[5:0], B2[5:0], R1[5:0], G1[5:0], B1[5:0]} {G4[3:0], B4[5:0], R3[5:0], G3[5:0], B3[5:0], R2[5:2]} {B6[5:0], R5[5:0], G5[5:0], B5[5:0], R4[5:0], G4[5:4]}
RGB666	{B8[1:0], R7[5:0], G7[5:0], B7[5:0], R6[5:0], G6[5:0]} {R9[3:0], G9[5:0], B9[5:0], R8[5:0], G8[5:0], B8[5:2]} {G11[5:0], B11[5:0], R10[5:0], G10[5:0], B10[5:0], R9[5:4]}
	{G13[1:0], B13[5:0], R12[5:0], G12[5:0], B12[5:0], R11[5:0]} {B15[3:0], R14[5:0], G14[5:0], B14[5:0], R13[5:0], G13[5:2]} {R16[5:0], G16[5:0], B16[5:0], R15[5:0], G15[5:0], B15[5:4]}
RGB565	{R2[4:0], G2[5:0], B2[4:0], R1[4:0], G1[5:0], B1[4:0]}
YUV422 8-bit	{Y2, V1, Y1, U1} {Y4, V3, Y3, U3}
YUV422 10-bit	{ Y2[9:2], V1[9:2], Y1[9:2], U1[9:2] } {V3[9:2], Y3[9:2], U3[9:2], (Y2[1:0],V1[1:0],Y1[1:0],U1[1:0]) } { Y5[9:2], U5[9:2], (Y4[1:0],V3[1:0],Y3[1:0],U3[1:0]) Y4[9:2] } { U7[9:2], (Y4[1:0],V3[1:0],Y3[1:0],U3[1:0]), Y6[9:2], V5[9:2] } { (Y4[1:0],V3[1:0],Y3[1:0],U3[1:0]), Y8[9:2], V7[9:2], Y7[9:2] }
YUV444	{V2[7:0],Y1[7:0], U1[7:0], V1[7:0]} {U3[7:0], V3[7:0], Y2[7:0], U2[7:0]} {Y4[7:0], U4[7:0], V4[7:0], Y3[7:0]}
User Defined	{B4[7:0], B3[7:0], B2[7:0], B1[7:0]}

4.8 Parallel Output mode

4.8.1 Overview

TC358746AXBG/TC358748XBG supports 8-bit data bus (PD[7:0]) or 24-bit data bus (PD[23:0]).

Figure 4-18 Block Diagram of Parallel portcontroller

4.8.2 24-bit Un-Packed Data Format

24-bit parallel output interface is capable to transfer various types of data formats (RAW8/10/12/14, RGB888/666/565, YUV422 8-bit on 8/16-bit bus and YUV422 10-bit). The signal connections for these types are shown in below Table.

Data Type		Pin Usage					
	Mode	PD[23:0]	Comment				
RAW8	Х	{16'b0, P[7:0]}	1 pixel/ PClk				
RAW10	Х	{14'b0, P[9:0]}	1 pixel/ PClk				
RAW12	Х	{12'b0, P[11:0]}	1 pixel/PClk				
RAW14	Х	{10'b0, P[13:0]}	1 pixel/PClk				
RGB888	Х	{R[7:0],G[7:0],B[7:0]}	1 pixel/PClk				
RGB666	0	{2'b0,R[5:0],2'b0,G[5:0],2'b0,B[5:0]}	1 pixel/PClk				
RGB666	1	{6'b0,R[5:0],G[5:0],B[5:0]}	1 pixel/PClk				
RGB565	0	{2'b0,R[4:0],3'b0,G[5:0],2'b0,B[4:0],1'b0}	1 pixel/PClk				
RGB565	1	{3'b0,R[4:0],2'b0,G[5:0],3'b0,B[4:0]}	1 pixel/PClk				

Table 4-3 24-bit Unpacked Data bus

RGB565	2	{8'b0,R[4:0],G[5:0],B[4:0]}	1 pixel/PClk
YUV422 8-bit (8bit bus)	0	{16'b0,P[7:0]}	U1, Y1, V1, Y2, U3, Y3, V3, Y4
YUV422 8-bit (16bit bus)	1	{8'b0,P[15:0]}	{U1,Y1}, {V1,Y2}, {U3,Y3}, {V3,Y4},
YUV422 8-bit (16bit bus)	2	{8'b0,P[15:0]} (Internal swap byte order)	{Y1,U1}, {Y2,V1}, {Y3,U3}, {Y4,V3},
YUV422 10-bit	X	{14'b0, P9:0]}	U1, Y1, V1, Y2, U3, Y3, V3, Y4

Note: Pixel packed might be possible in certain conditions. Please contact Toshiba for details

4.8.3 Timing Diagrams for Video signals (Vvalid and Hvalid)

Parallel output signals are generated based on the CSI-2 packets received.

- 1. The receiving of FS, Frame Start, packet triggers the assertion of Vvalid. (1)
- 2. The payload of a Data packet is streamed into the video buffer (FiFo).
- 3. When the video buffer reached the user-defined level, programmed in register 0x0006, Hvalid is asserted and data starts outputting. (2)
- 4. Hvalid de-asserts when all the data within one Data packet has been output as shown in 3
- 5. Repeating steps 2 to 4 until FE, Frame End, packets arrived. Vvalid is de-asserted. 4
- 6. Loop back to step one.

Figure 4-19 VVALID/HVALID Timing Diagram for Parallel Output mode

4.9 Parallel Input mode

4.9.1 Overview

24-bit parallel input interface is capable to transfer various types of data formats (RAW8/10/12/14, RGB888/666/565, YUV422 8-bit on 8/16-bit bus and YUV422 10-bit). The signal connections for these types are shown in below Table.

Pin Usage **Data Type** Mode Comment PD[23:0] RAW8 Χ {16'b0, P[7:0]} 1 pixel/ PClk RAW10 Χ {14'b0, P[9:0]} 1 pixel/ PClk RAW12 Χ {12'b0, P[11:0]} 1 pixel/PClk RAW14 Χ {10'b0, P[13:0]} 1 pixel/PClk **RGB888** 0 {R[7:0],G[7:0],B[7:0]} 1 pixel/PClk **RGB888** 1 ${R[1:0]G[1:0],B[1:0],R[7:2],G[7:2],B[7:2]}$ 1 pixel/PClk {2'b0,R[5:0],2'b0,G[5:0],2'b0,B[5:0]} RGB666 0 1 pixel/PClk **RGB666** 1 {6'b0,R[5:0],G[5:0],B[5:0]} 1 pixel/PClk {2'b0,R[4:0],3'b0,G[5:0],2'b0,B[4:0],1'b0} **RGB565** 0 1 pixel/PClk RGB565 1 {3'b0,R[4:0],2'b0,G[5:0],3'b0,B[4:0]} 1 pixel/PClk **RGB565** 2 {8'b0,R[4:0],G[5:0],B[4:0]} 1 pixel/PClk YUV422 8-bit U1, Y1, V1, Y2, U3, Y3, V3, 0 {16'b0,P[7:0]} (8-bit)^{note} YUV422 8-bit {U1,Y1}, {V1,Y2}, {U3,Y3}, 1 {8'b0,P[15:0]} {V3,Y4}, (16-bit) YUV422 8-bit {8'b0,P[15:0]} {Y1,U1}, {Y2,V1}, {Y3,U3}, 2 {Y4,V3}, (16-bit) (internal swap byte order) U1, Y1, V1, Y2, U3, Y3, V3, YUV422 10-bit Χ {14'b0, P9:0]} 1 pixel/PCLK Χ **YUV444** {Y[7:0],U[7:0],V[7:0]} (Y=G, U=B, V=R)

Table 4-4 24-bit Unpacked Data bus

Note: When input is BT656 format, as enabled in register bit 0x0004[12], bit[9:2] should be used as per Rec. ITU-R BT656-4.

The Parallel Input controller received the video data from external. It then packed these into 32-bit data format then transfers the packed data into the Line buffer. The 32-bit data format is showed in Table 4-3.

Parallel Input controller is operated with PCLK only. All asynchronous logic is handled inside Video buffer Controller

4.9.2 Timing Diagrams for Video signals (Vvalid and Hvalid)

Below Figures show the timing relationship between HVALID, VVALID and DP/DN.

Figure 4-20 VVALID/HVALID Timing Diagram (for Parallel Input mode)

4.10 I2C

4.10.1 Overview

TC358746AXBG/TC358748XBG supports an I2C slave function. The I2C module supports the following features:

- Fail safe I2C pad operation
- Up to 1MHz mode operation (1MHz: Special mode, 400KHz: fast mode, 100KHz: normal mode)
- Supports 7 bit slave addresses recognition (slave address=8'b0001 110X)
- No support for general call address
- Supports 16 bit index value for TC358746AXBG/TC358748XBG I2C slave access

The I2C slave function supports a fixed slave address only and does not support general call address. The I2C slave function does not require any programmable configuration parameters.

4.10.2 I2C Write Access

Registers in TC358746AXBG/TC358748XBG are 16-bit aligned. This implies that I2C accesses to registers are recommended to be done on 16-bit boundaries. Note that data transferred on the I2C bus is sent MSB first. For 32-bit addressable registers listed in Table 6-1, two back-to-back 16-bit write operations (lower address one first) are necessary in order to update the 32-bit registers.

Alternatively, for 32-bit registers can be written in 32-bit in one access with byte order shown below.

Figure 4-21 32-bit Write Transfers Byte Order

4.10.3 I2C Read Access

Registers in TC358746AXBG/TC358748XBG are 16-bit aligned. This implies that I2C accesses to registers should always be done on 16 bit boundaries, Figure 4-22. Note that data transferred on the I2C bus is sent MSB first. For continuously reading, a 32-bit register data byte order is shown in Figure 4-23 below.

Figure 4-22 I2C Read Transfers over I2C Bus

. Note that data transferred on the I2C bus is sent MSB first. For continuously reading, a 32-bit register data byte order is shown below.

Figure 4-23 I2C 32-bit Read Transfers Byte Order

4.11 SPI Slave Interface

The TC358746AXBG/TC358748XBG Bridge Chip incorporates a SPI Slave Interface port which Host can drive to configure registers in the chip if Par_In → CSIOut configuration is select by driving MSEL = H.

The following features are supported:

- Slave select pin supported
- Clock Polarity and Phase selectable
- Transfer Frame size of 32 bits
- Slave speed is up to 25 MHz
- Supports 16 bit index value for TC358746AXBG/TC358748XBG SPI slave access

The basic operation of SPI interface is shown below where the standard 4-wire interface is used for transactions between the Host (SPI Master) and TC358746AXBG/TC358748XBG (SPI Slave).

The Host asserts (active low) the Slave Select signal (SPI_SS) when it wants to initiate a read or write transaction. This is followed by the Host sending 32 pulses on the SPI Clock signal (SPI_SCK). In this spec., the bit slots are assumed numbered 31 to 0 from left to right. Once the intended 16 bits (for TC358746AXBG/TC358748XBG register address and command) and the additional data bits have been transferred, the Host de-asserts the Slave Select signal (SPI_SS) to indicate end of frame transfer.

This is shown in a simplistic way in the figure below (16bits transfer size shown in the figure).

Figure 4-24 SPI basic operation

4.11.1 Clocking Modes

The SPI slave function supports one clocking mode which shown below.

Table 4-5 SPI Clocking modes

Confidential

Page 41 of 118

Mode	SPOL	SPHA	Drive Edge	Sample Edge	Comments
3	1	1	negedge	posedge	Master/Slave drive first data on first active clock edge

4.11.1.1 Timing Diagram

In this transfer format, the first bit value is captured on the second clock edge. This will be on a rising edge. The levels on the MOSI and MISO signals always change with the inactive clock edges on SCLK. The inactive clock edge will be the falling edge. It will idle high.

Figure 4-25 SPI Transfer

4.11.1.2 Providing Register Address over SPI Interface

The SPI transactions are performed in 32 bits wide frames. The SPI master drives the command and address of the TC358746AXBG/TC358748XBG register to be accessed. The first 15 bits provide the register address bits 15 to 1. The 16th bit of a frame is the command: 0=Write / 1=Read. Meaning of rest of the bits is based on transaction type. This frame structure is shown in the figure below for a write transaction.

Figure 4-26 Register Write Transfer over SPI (transfer size=32 bits)

CMD = Command: 1=Read / 0=Write

SPI slave function supports random write and read accesses.

Confidential

Page 42 of 118

4.11.1.3 SPI Write Access Translation

Registers in TC358746AXBG/TC358748XBG are 16 bit aligned. This implies that SPI accesses to registers should always be done on 16 bit boundaries. The SPI slave will update an internal 16-bit write data register indexed by the address in the SPI frame. The data in bit slots 15 to 0 (after the first 16 bits of address and command) on MOSI line is used as the write data for these writes. Write access to TC358746AXBG/TC358748XBG registers over the register interface is performed when a frame transfer is completed with command bit set to 0. During the write transaction, the data on the MISO line is not related to the write transaction. How to handle the data on MISO line during write transactions is discussed more in section on full-duplex mode.

Figure 4-27 Register Write Transfer over SPI (transfer size=32 bits)

4.11.1.4 SPI Read Access Translation

Registers in TC358746AXBG/TC358748XBG are 16 bit aligned. This implies that SPI accesses to registers should always be done on 16 bit boundaries. The SPI slave will access an internal 16-bit data register indexed by the address in the SPI frame.

Read access to TC358746AXBG/TC358748XBG registers is completed in two frames. The first frame is similar to a write frame (as shown above) but with the 16 bits of data on MOSI line ignored by TC358746AXBG/TC358748XBG. This step provides the 15 bits index address of the TC358746AXBG/TC358748XBG register to be accessed. The only difference in this step from Write frame is that the command bit is set to 1 (Read command). During the second frame period, the TC358746AXBG/TC358748XBG stuffs the read data into the bit slots 15 to 0 based on the data from the TC358746AXBG/TC358748XBG register indexed by the read command address in the first frame as shown below. Handling of MISO line during first frame period and MOSI line during the second frame period is discussed further in full-duplex mode section.

Figure 4-28 Register Read (Normal) Transfer over SPI (transfer size=32 bits)

4.11.2 Full Duplex

All above transactions are considered as full duplex by TC358746AXBG/TC358748XBG by default. During any frame, TC358746AXBG/TC358748XBG inserts the data from the TC358746AXBG/TC358748XBG register that was last addressed by the read command from the SPI master into the bit slots 15 to 0 of the frame on MISO line. During any frame, the bits on the MOSI line bit slots 31 to 17 are considered as the address with the bit slot 16 providing the command. Data on MOSI line during bit slots 15 to 0 are used as write data.

The data on MISO line during bit slots 15 to 0 always corresponds to the previous frame's read command and can be ignored by the SPI Master if the previous frame command was a read command.

The data on MOSI line during bit slots 31 to 17 always provides the address for the TC358746AXBG/TC358748XBG register for the current frame command.

The data on MOSI line during bit slots 15 to 0 will always be written into the

TC358746AXBG/TC358748XBG register addressed by current frame's address bits (bit slots 31 to 17) if the command in the current frame is a write command.

Four scenarios are possible for back to back transactions as explained below.

4.11.2.1 Back-2-back writes

In this case, the data on the MOSI line is always valid during both back-2-back frames and used for TC358746AXBG/TC358748XBG register writes. The data on the MISO line in first frame might correspond to a read command issued in the previous frame. Data on the MISO line in 2nd frame is redundant (corresponds to the TC358746AXBG/TC358748XBG register addressed by the last read command some frames ago).

Figure 4-29 Back-2-Back Write Transfers over SPI

4.11.2.2 Back-2-back reads

In this case, the data on the MOSI line is always valid only during first 16 bits (bit slots 31 to 16) in both back-2-back frames and used for TC358746AXBG/TC358748XBG register reads. The data on the MISO line in first frame might correspond to a read command issued in the previous frame. Data on the MISO line in 2nd frame corresponds to the TC358746AXBG/TC358748XBG register addressed by the read command in 1st frame. The read data corresponding to the register addressed by the read command in 2nd frame shall be available in the next (3rd) frame on MISO line.

Figure 4-30 Back-2-Back Read Transfers over SPI

4.11.2.3 Write-after-Read

In this case, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back reads" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame provides the address and command for the write (write-after-read). Data on the MOSI line during bit slots 15 to 0 in 2nd frame provides the write data for the write command. Data on the MISO line in 2nd frame corresponds to the TC358746AXBG/TC358748XBG register addressed by the read command in 1st frame.

Figure 4-31 Write-after-Read Transfer over SPI

4.11.2.4 Read-after-Write

In this case, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back writes" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame provides the address and command for the read (read-after-write). Data on the MOSI line during bit slots 15 to 0 in 2nd frame is redundant. Data on the MISO line in 2nd frame is redundant. The read data corresponding to the register addressed by the read command in 2nd frame shall be available in the next (3rd) frame on MISO line.

Figure 4-32 Read-after-Write Transfer over SPI

4.11.2.5 NOP-after-Read

In this case, where there is a read alone followed by no more immediate request, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back reads" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame should contain all 1's to point to a dummy address for SPI and command for the write. Data on the MOSI line during bit slots 15 to 0 in 2nd frame is redundant. Data on the MISO line in 2nd frame corresponds to the TC358746AXBG/TC358748XBG register addressed by the read command in 1st frame. The write on MOSI line in 2nd frame points to a dummy address (all 1's) and so is redundant.

Figure 4-33 NOP-after-Read Transfer over SPI

5 Clock and System

The clock generation unit (CG) makes use of a single PLL and the clock extracted from the camera interface as the source for all other clocks used in TC358746AXBG/TC358748XBG. CG supports threepowers states RESET, FULLY ACTIVE and SLEEP where clocks are disabled or PLL is disabled to reduce power consumption. SLEEP state is controlled by register bit (reg_sleep).

In RESET: PLL is disabled and no clocks are output. During this state, TC358746AXBG/TC358748XBG will not be able to function.

In FULLY ACTIVE: PLL and TC358746AXBG/TC358748XBG system clock are enabled. Depending on the configuration, CSI-2 RX, and Parallel port clocks may also be enabled.

In SLEEP: PLL is disabled and no clocks are output. During this state,

- I2C slave interface is enabled. Application processor can wake up TC358746AXBG/TC358748XBG by program "0" to SLEEP bit (reg_sleep).
- This state may be used by TC358746AXBG/TC358748XBG to safely update PLL parameters when required by the application processor.

5.1 CG Block diagram

The block diagram of CG is shown below. The divisors for each block is controlled by registers ClkCtl and MClkCtl as described in register section.

Figure 5-1 CG Block diagram

CG uses an external input clock REFCLK (6MHz to 40 MHz) to generate clocks required by internal controllers and output externally.

5.2 Example of PLL Generated Clock Frequency

The possible clock frequencies generated from the PLL are achieved by varying the values in registers PLLCtl0 and PLLCtl1.

$$PII_clk = RefClk^* [(FBD + 1)/ (PRD + 1)] * [1 / (2^FRS)]$$

Table 5-1 provides possible frequencies that may be used in TC358746AXBG/TC358748XBG.

Table 5-1 Possible PLL parameters

Reference clock (MHz)	FBD	PRD	FRS	pll_clk (MHz)
	255	7	1	265.60
16.6	319	5	2	221.33
16.6	319	6	2	189.71
	319	7	2	166.00

5.3 Output Clocks Generation

PPIRxCIk

PPIRxClk is used in CSIRx for detecting CSI Link LP ←→HS transition.

PCIk (Parallel Output Clock):

PClk is generated from either pll_clk divides by 2, 4 or 8 options.

Its maximum frequency is 100MHz

CSITxCIk

CSITxClk is obtained by dividing pll_clk by 2.

MCIk(Reference Clock to Senser):

MClk is generated in two steps.

- 1) Its source is divided down from PII_CIk either by 2, 4 or 8 as specified in CIkCtl[McIkRefDiv].
- 2) The MClkCtl specifies the MClk high and low time counted by the divided down pll_Clk. There are two parameters in register MClkCtl:
 - a) reg_mclkh[7:0] contains the mclk HIGH time count (counts with MCLKS). HIGH time has range of 1 to 256 MclkRefclock.
 - b) reg_mclkl[7:0] contains the mclk LOW time count (counts with MCLKS). LOW time has range of 1 to 256 MclkRefclock .

Notes: See Registers ClkCtl and MClkCtl for more description

Controllers **Operating Frequency** Source min (MHz) max (MHz) CSI2 RX controller CSI2 RX Byte clock 10 125 CSI2 RX Byte clock or VB controller (Write port) 10 166 Input PCLK CSI2RX Byte clock or VB controller (Read port) ---125 PLL clock source PLL Parallel Output controller 100 Parallel Input controller Input PCLK ---166 I2C controller 40 Input REFCLK 6 Register module 6 40 Input REFCLK

Table 5-2 Controllers' Operating Frequency

5.4 TC358746AXBG/TC358748XBG Power Up Procedure

The following sequence should happen before TC358746AXBG/TC358748XBG is able to operate properly:

- 1. Provide voltage and clock sources to TC358746AXBG/TC358748XBG.
 - Please keep all the input signals at either "Hi-z" or "logic low" state before powering on TC358746AXBG/TC358748XBG.
- For voltage source, it is desired to turn on core power (1.2) source first, then Analog PHY
 and IO power as shown in Figure 5-2 Power On Sequence. RefClk can be provided either
 before or after the de-assertion of RESX as indicated by the dash line.
- 3. In CSI-2 Tx mode, RefClk can be tie to ground. In this case, PClk/4 will be used to drive PLL, Figure 5-3.
- 4. The timing parameters for Figure 5-2 and Figure 5-3 are tabulated in Table 5-3.

Figure 5-2 Power On Sequence (When RefClk is Available to Drive PLL)

Figure 5-3 Power On Sequence (When PCIk is used to Drive PLL in Parallel In Mode)

Table 5-3 Power On Sequence Timing

Parameters	Description	Min.	Typ.	Max.	Units
RefClk	Reference clock frequency	6		40	MHz

TC358746A/748XBG Functional Spec

Page 51 of 118

t ₁	VDD_MIPI on delay from VDDC.	0	 10	msec
t ₂	VDDIOon delay from VDDC	0	 10	msec
t _{RSTON}	RESET width period	200	 	nsec
t _{CORERDY}	Period after reset de-assertion when TC358746AXBG/TC358748XBG clocks are stable (Dependent on REFCLK frequency)	.7	 1	msec

5.5 TC358746AXBG/TC358748XBG Power Down Procedure

Figure 5-4 Power Down Sequence

Table 5-4 Power Down Sequence Timing

P	arameters	Description	Min.	Тур.	Max.	Units
t,	1	VDD_MIPI off delay from VDDIOoff	0		10	msec
t_2	2	VDDC off delay from VDD_MIPI off	0		10	msec

RegFile Block (Reg)

The application processor (ISP) accesses TC358746AXBG/TC358748XBG RegFile block to read status and/or write control registers through the I2C/SPI slave interface.

6.1 **Register Map**

The control and status registers in TC358746AXBG/TC358748XBG is provided in Table 6-1.

Table 6-1 Register Map

Group	Address	Register	Description
	0x0000	ChipID	TC358746AXBG/TC358748XBG Chip and Revision ID
	0x0002	SysCtl	System Control Register
	0x0004	ConfCtl	Configuration Control Register
	0x0006	FiFoCtl	FiFo Control Register
	0x0008	DataFmt	Data Format Control Register
	0x000C	MclkCtl	Mclk control register
	0x000E	GPIOEn	GPIO Enable Control Register
	0x0010	GPIODir	GPIO Pin Direction Control Register
	0x0012	GPIOIn	GPIO Input Pin Value
	0x0014	GPIOOut	GPIO Output Pin Value
	0x0016	PLLCtI0	PLL control Register 0
	0x0018	PLLCtl1	PLL control Register 1
	0x0020	CLKCtrl	Clock Control Register
Clabal	0x0022	WordCnt	Word Count Register
Global (16-bit	0x0032	PP_MISC	Parallel Input Port Miscellaneous Register
Address)	0x0050	CSITX_DT	User Defined CSI Tx Data Type
Address)	0x0056	PHYCIkCtl	CSI2RX PHY clock control Register
	0x0058	PHYData0Ctl	CSI2RX PHY data 0 control Register
	0x005A	PHYData1Ctl	CSI2RX PHY data 1 control Register
	0x005C	PHYData2Ctl	CSI2RX PHY data 2 control Register
	0x005E	PHYData3Ctl	CSI2RX PHY data 3 control Register
	0x0060	PHYTimDly	CSI2RXPHY Time delay Register
	0x0062	PHYSta	CSI2RX PHY status Register
	0x0064	CSIStatus	CSI2RX Error status Register
	0x0066	CSIErrEn	CSI2RX Error Enable Register
	0x0068	MDLSynErr	CSI2RX Multi-Data Lane Sync Byte Detected Error Register
	0x006A	CSIDID	CSI2RX data Type ID Register
	0x006C	CSIDIDErr	CSI2RX Data Type ID Error Register
	0x006E	CSIPktLen	CSI2RX data length Register
	0x0070	CSIRX_DPCtl	CSI2RX Dphy control Register
	0x0080	FrmErrCnt	CSI2RX Frame error counter
	0x0082	CRCErrCnt	CSI2RX CRC error counter
CCIO DY	0x0084	CorErrCnt	CSI2RX Recoverable Packet Header error counter
CSI2-RX	0x0086	HdrErrCnt	CSI2RX Unrecoverable Packet Header error counter
Status Counters	0x0088	EIDErrCnt	CSI2RX Unsupported Packet ID error counter
(16-bit	0x008A	CtlErrCnt	CSI2RX Escape Mode error counter
Address)	0x008C	SotErrCnt	CSI2RX Recoverable Sync Byte error counter
Auuicss)	0x008E	SynErrCnt	CSI2RX unrecoverable Sync Byte error counter
	0x0090	MDLErrCnt	CSI2RX Multi-Data Lane Sync Byte error counter
	0x00F8	FIFOStatus	FiFo Underflow/Overflow Status Register
TX	0x0100	CLW_DPHYCONTTX	Clock Lane DPHY Tx Control Register

PHY	0x0104	D0W_DPHYCONTTX	Data Lane0 DPHY Tx Control Register
(32-bit	0x0108	D1W_DPHYCONTTX	Data Lane1 DPHY Tx Control Register
Address)	0x010C	D2W_DPHYCONTTX	Data Lane2 DPHY Tx Control Register
	0x0110	D3W_DPHYCONTTX	Data Lane3 DPHY Tx Control Register
	0x0140	CLW_CNTRL	Clock Lane DPHY Control Register
	0x0144	D0W_CNTRL	Data Lane 0 DPHY Control Register
	0x0148	D1W_CNTRL	Data Lane 1 DPHY Control Register
	0x014C	D2W_CNTRL	Data Lane 2 DPHY Control Register
	0x0150	D3W_CNTRL	Data Lane 3 DPHY Control Register
	0x0204	STARTCNTRL	CSI2-TX Start Control Register
	0x0208	STATUS	CSI2-TX Status Register
	0x0210	LINEINITCNT	CSI2-TX Line Initialization Control Register
	0x0214	LPTXTIMECNT	SYSLPTX Timing Generation Counter
	0x0218	TCLK HEADERCNT	TCLK_ZERO and TCLK_PREPARE Counter
	0x021C	TCLK TRAILCNT	TCLK_TRAIL Counter
	0x0220	THS HEADERCNT	THS_ZERO and THS_PREPARE Counter
	0x0224	TWAKEUP	TWAKEUP Counter
	0x0228	TCLK_POSTCNT	TCLK POST Counter
	0x022C	THS_TRAILCNT	THS TRAIL Counter
	0x0230	HSTXVREGCNT	TX Voltage Regulator setup Wait Counter
	0x0234	HSTXVREGEN	Voltage regulator enable for HSTX Data Lanes
	0x040C	CSI_CONTROL	CSI2TXControl Register
	0x0410	CSI_STATUS	CSI2TXStatus Register
	0x0414	CSI_INT	CSI2TX – Presents interrupts currently being held
TX	0x0418	CSI_INT_ENA	CSI2TX – Enables CSI_INT interrupt source
CTRL	0x044C	CSI_ERR	CSI2TX – transfer general errors
(32-bit	0x0450	CSI_ERR_INTENA	CSI2TX – interrupt enable bits of the CSI_ERR register
Address)	0x0454	CSI_ERR_HALT	CSI2TX – stop on error bit set in the CSI_ERR register
Address)	0x0500	CSI_CONFW	CSI TX Configure Write Register
	0x0504	CSI_RESET	CSI2TX – reset he module and the Receive FIFO content
	0x050C	CSI_INT_CLR	CSI2TX – Clears particular bits of the CSI_INT register
	0x0518	CSI_START	CSI2-TX – Starts CSI2-TX operation
Debug Tx	0x00e0	DBG_LCNT	Color Bar Generation Setting for Line Count
(Color Bar,	0x00e2	DBG_WIDTH	Color Bar Generation Setting for Line Width
16-bit	0x00e4	DBG_VBlank	Color Bar Generation Setting for Vertical Blank lines
Address))	0x00e8	DBG_Data	Color Bar Generation Setting for Data Written into FIFO

6.2 **Global Registers**

6.2.1 Chip and Revision ID (ChipID: 0x0000)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		ChipID						
Туре		RO						
Default				0x44	4			
Bit	B7	B6	B5	B4	В3	B2	B1	B0
Name		RevID						
Туре				RO)			
Default				0x1				

Table 6-2 Chip and Revision ID

Register Field	Bit	Default	Description			
ChipID	[15:8]	0x44	Chip ID Chip ID assigned for this device by Toshiba.			
RevID	[7:0]	0x1	Revision ID Revision ID for this device assigned by Toshiba.			

System Control Register (SysCtl: 0x0002)

o.z.i Oyo		oi itegistei	(Oysoti. c	, XOOO				
Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Reserved						
Туре				R	.0			
Default		0x0						
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		Reserved SLEEP Sreset						Sreset
Type		RO R/W R/W						
Default			0)	x0			0x1	0x0

Table 6-3 System Control Register

		Table 0-3 Oystelli Collifor Register
Register Field	Bit	Description
Reserved	[15:2]	
SLEEP	1	SLEEP control 0: Normal operation 1: Sleep mode Note: This bit is applicable only in CSI-In → Parallel-Out mode
Sreset	0	Software Reset (Active high) This bit is set to force TC358746AXBG/TC358748XBG logic to reset state except all configuration registers content (regFile) and I2C slave module. 0: Normal operation 1: Reset operation Software needs to clear Sreset when set.

6.2.2 Configuration Control Register (ConfCtl: 0x0004)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name	TriEn	Reserved	INTE2n	Bt656En	Rese	erved	Pda	ıtaF	
Туре	R/W	RO	R/W	R/W	R	RO		R/W	
Default	0x1	0x0	0x0	0x0	0>	0x0		< 0	
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name	Reserved	PPEn	VvalidP	HvalidP	PCLKP	Auto	Data	Lane	

TC358746A/748XBG Functional Spec

Page 55 of 118

Туре	RO	R/W	R/W	R/W	R/W	R/W	R/W
Default	0x0	0x0	0x0	0x0	0x0	0x1	0x0

Table 6-4 Configuration Control Register

		Table 6-4 Configuration Control Register
Register Field	Bit	Description
		Parallel Out (MSEL = 0) and CS = 1, Tri-State Enable
TriEn	[15]	0: Disable, parallel port H/Vvalid and PClk are driven
111111	[13]	1: Enable, parallel ports, including data, H/Vvalid and PClk are tri-state
		Note: CS needed to be asserted (CS = 0) before programming
Reserved	[14]	Reserved, please set both bits to "0"
		INT Output Enable 2
INTE2n	[13]	0: Normal (Default to GPIO1 function)
		1: Enable (output INT to GPIO1)
		Parallel Input Port BT656 Enable
		0: Disable
		1: Enable
Bt656En	[12]	Note:
		Only valid when Parallel Input port data format is YUV422
		2) Please use PD[9:2] for 8-bit data bus
		3) Please make sure bit[5:4] below is set to '0'
Reserved	[11:10]	Reserved
		Parallel Data Format Option
		2'b00: Mode 0
PdataF	[9:8]	2'b01: Mode 1
	[5.0]	2'b10: Mode 2
		2'b11: Reserved
		Note: See Table 4-3 and Table 4-4 for more information
Reserved	[7]	Reserved
		Parallel Port Enable
PPEn	[6]	0: Parallel Port Disable
		1: Parallel Port Enable
		Vvalid Polarity Control
VvalidP	[5]	0: Vvalid active high
		1: Vvalid active low
		Hvalid Polarity Control
HvalidP	[4]	0: Hvalid active high
		1: Hvalid active low
		Parallel Clock (PCLK) Polarity Select
		0: Normal
PCLKP	[3]	1: Inverted
		Note: See Parallel Port Output Timing section for more information. Valid
		for Parallel port output mode only.
		I2C slave index increment
Auto	[2]	0: I2C address index does not increment on every data byte transfer
		1: I2C address index increments on every data byte transfer
		CSI-2 Data Lane Select (CSI2 Rx Only)
		Selects the number data lane activated during data transfer
DataLane	[1:0]	2'b00:1 data lane
_ 4.4.24.10	[2'b01:2 data lanes
		2'b10:3 data lanes
		2'b11:4 data lanes

6.2.3 FiFo Control Register (FiFoCtl: 0x0006)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		Reserved							
Туре		RO R/W							
Default	0x0							0x0	
Bit	B7	B6	B5	B4	B3	B2	B1	В0	
Name		FiFoLevel[7:0]							
Туре		RW							
Default				0x	:1				

Table 6-5 FiFo Control Register

Register Field	Bit	Description
Reserved	[15:9]	Reserved
FiFo_Level	[8:0]	FiFo Level This field determines the FiFo write data level, when reaches to this level FiFo controller asserts FiFoRdy for Parallel portto startoutput data

6.2.4 Data Format Control Register (DataFmt: 0x0008)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		Reserved							
Туре		RO							
Default		0x0							
Bit	B7	B6	B5	B4	B3	B2	B1	В0	
Name		PDF	ormat		Reserved UDT_en				
Туре		R	R/W		RO R/W				
Default		C)x0		0x0 0x0				

Table 6-6 Data FormatControl Register

		Table 6-6 Data FormatControl Register
Register Field	Bit	Description
Resserved	[15:8]	Reserved
PDFormat	[7:4]	Peripheral Data Format 0000: RAW8 0001: RAW10 0010: RAW12 0011: RGB888 0100: RGB666 0101: RGB565 0110: YUV422 8-bit 0111: Reserved 1000: RAW14 1001: YUV422 10-bit 1010: YUV444 (Parallel input mode only – CSITX Data Type ID defined in CSITX_DT register) 1011 – 1111: Reserved Notes: For CSIRX: This field used only when Udt_en = 1 For CSITX: This field used for parallel input port
Resserved	[3:1]	Reserved
UDT_en	[0]	User Data Type ID enable 0: CSIRX: use Data Type ID detected from CSI Bus

TC358746A/748XBG Functional Spec

Page 57 of 118

Register Field	Bit	Description
		CSITX: use Data Type ID defined in PDFormat register bits
		1: CSIRX: Use Data Type ID defined PDFormat register bits
		CSITX: Use Data Type ID defined in CSITX_DT register

6.2.5 MCLK Control Register (MclkCtl: 0x000C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		mclk_high							
Туре		R/W							
Default		0x0							
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name				mclk	low				
Туре		RW							
Default				0)	(0				

Table 6-7 MCLK Control Register

Register Field	Bit	Description
mclk_high	[15:8]	Mclk HIGH time count Counts with MclkRef clock (from Register ClkCtl) mclk_high, mclk_low> 0: Mclk logic enable, GPIO[0] outputs MCLK
mclk_low	[7:0]	Mclk LOW time count Counter counts from 0, i.e. 0→ low count = 1 MclkRef Count, 1→ low count = 2 MclkRef Counts, N→ low count = N+1MclkRef Counts, 255 → low count = 256 MclkRef Counts Total MClk divider = (mclk_high + 1) + (mclk_low + 1)

6.2.6 GPIO Enable

6.2.7 Register (GPIOEn: 0x000E)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name		GPIOEn[15:8]								
type		RW								
Default		0x0								
Bit	B7	B6	B5	B4	В3	B2	B1	B0		
Name		GPIO	En[7:4]		Reserved					
type		R	W		RO					
					0x0					

Table 6-8 GPIO Direction Register

Register Field	Bit	Description
GPIOEn	[15:4]	GPIO Enable 0:Disable (GPIOx function depend on mode of operation) 1: Enable (GPIOx function depend on GPIODir)
Resserved	[3:0]	Reserved

6.2.8 GPIO Direction Register (GPIODir: 0x0010)

Bit	B15	B15 B14 B13 B12 B11 B10 B9 B8								
Name		GPIODir[15:8]								
type				R/	W					
Default				0xl	FF					
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				GPIOD	0ir[7:0]					
type		R/W								
Default				0xl	FF					

Table 6-9 GPIO Direction Register

Register Field	Bit	Description
GPIODir	[15:0]	GPIO Pin Direction 0:GPIO Pin is set to Output Mode 1: GPIO Pin is set to Input Mode

6.2.9 GPIO Pin Value Register (GPIOPin: 0x0012)

Bit	B15	B15 B14 B13 B12 B11 B10 B9 B8									
Name		GPIOIn[15:8]									
type				RO)						
Default				0x	0						
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name				GPIOIn	[11:8]						
type		RO									
Default				0x	0						

Table 6-10 GPIO Pin Value Register

Register Field	Bit	Default	Description
GPIOPin	[15:0]	0xX	GPIO Pin Value

6.2.10 GPIO Output Value Register (GPIOOut: 0x0014)

Bit	B15	B15 B14 B13 B12 B11 B10 B9 B8								
Name		GPIOOut[15:8]								
type				R/\	V					
Default				0x	0					
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				GPIOO	ut[7:0]					
type		R/W								
Default				0x	0					

Table 6-11 GPIO Output Value Register

Register Field	Bit	Default	Description
GPIOOut	[15:0]	0xX	GPIO Output Register Value

6.2.11 PLL Control Register 0 (PLLCtl0: 0x0016)

Bit	B15	B14	B13	B12	B11	B10	B9	B8

TC358746A/748XBG Functional Spec

Page 59 of 118

Name		Р	LL_PRD		Reserved			PLL_FBD[8]	
Type			R/W		RO R/W				
Default			0x4		0x00 0x0				
Bit	B7	B6	B5	B4	B3	B0			
Name				PLL	_FBD[7:0]				
Type		R/W							
Default		0x63							

Table 6-12 PLL Control Register 0

Register Field	Bit	Description
PLL PRD	[15:12	Input divider setting
PLL_PRD]	Division ratio = (PRD30) + 1
Reserved	[11:9]	
PLL FBD	[8:0]	Feedback divider setting
FLL_FDD	[0.0]	Division ratio = (FBD80) + 1

6.2.12 PLL Control Register 1 (PLLCtl1: 0x0018)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		Res	served		PLL_	PLL_FRS PLL_LB\			
Туре			RO		RΛ	٧	R	W	
Default		(0x0		0x	1	0x2		
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name	Revsd	LFBREN	BYPCKEN	CKEN	Rese	rved	RESETB	PLL_EN	
Туре	RO	R/W	R/W	R/W	RO)	R/W	R/W	
Default	0x0	0x0	0x0	0x0	0x	0	0x0	0x0	

Table 6-13 PLL Control Register 1

		Table 6-13 FLL Control Register 1
Register Field	Bit	Description
Reserved	[15:12]	
PLL_FRS	[11:10]	Frequency range setting (post divider) for HSCK frequency 2'b00: 500MHz – 1GHz HSCK frequency 2'b01: 250MHz – 500MHz HSCK frequency 2'b10: 125 MHz – 250MHz HSCK frequency 2'b11: 62.5MHz – 125MHz HSCK frequency
PLL_LBWS	[9:8]	Loop bandwidth setting 2'b00: 25% of maximum loop bandwidth 2'b01: 33% of maximum loop bandwidth 2'b10: 50% of maximum loop bandwidth (default) 2'b11: maximum loop bandwidth
Reserved	[7]	
PLL_LFBREN	[6]	Lower Frequency Bound Removal Enable 1'b0: REFCLK toggling -> normal operation, REFCLK stops -> no oscillation 1'b1: REFCLK toggling -> normal operation, REFLCK stops -> free running PLL
PLL_BYPCKEN	[5]	Bypass clock enable 1'b0: Normal operation 1'b1: bypass mode, REFCLK is used instead of PLL_VCO output
PLL_CKEN	[4]	Clock enable 1'b0: clocks switched off (output LOW) 1'b1: clocks switched on

TC358746A/748XBG Functional Spec

Page 60 of 118

Reserved	[3:2]	
PLL_RESETB	[1]	PLL Reset 1'b0: Reset 1'b1: Normal operation
PLL_EN	[0]	PLL Enable 1'b0: PLL off 1'b1: PLL on

6.2.13 CLK Control Register (ClkCtl: 0x0020)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name		Reserved									
Type		RO									
Default		0x0									
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name	Rese	rved	PPIc	lkDiv	Mclk	RefDiv	SclkDiv				
Type	RO		R/W		R/W		R/W				
Default	0x	0	0x	(2	0	x0	0:	κ0			

Table 6-14 CLK Control Register 1

Register Field	Bit	Description
Reserved	[15:6]	
PPIcIkDiv	[5:4]	PPI Output Divider Selection 2'b00: ppi_clk = PLL_CLK DIV 8 2'b01: ppi_clk = PLL_CLK DIV 4 2'b10: ppi_clk = PLL_CLK DIV 2 2'b11: Reserved Note: ppi_clk clock frequency range must be between 66 – 125MHz
MclkRefDiv	[3:2]	MclkRef Output Divider Selection 2'b00: MclkRef = PLL_CLK DIV 8 2'b01: MclkRef = PLL_CLK DIV 4 2'b10: MclkRef = PLL_CLK DIV 2 2'b11: Reserved Note: MclkRef clock frequency can not be greater than 125 MHz
SclkDiv	[1:0]	Sys_clk Output Divider Selection (same as parallel output clock, PClk) 2'b00: sys_clk = PLL_CLK DIV 8 2'b01: sys_clk = PLL_CLK DIV 4 2'b10: sys_clk = PLL_CLK DIV 2 2'b11: Reserved Note: sys_clk clock frequency cannot be greater than 100 MHz

Please refer to Figure 5-1 for clarification.

6.2.14 Word Count Register (WordCnt: 0x0022)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	WordCnt[15:8]									
Туре	R/W									
Default				0x0)1					
Bit	B7	B6	B5	B4	В3	B2	B1	В0		
Name	WordCnt[7:0]									

TC358746A/748XBG Functional Spec

Page 61 of 118

Туре	R/W
Default	0x00

Table 6-15 Word Count Register

Register Field	Bit	Description
WordCnt	[15:0]	Word Count Defined total number of byte for each line.

6.2.15 Parallel In Miscellaneous Register (PP_MISC)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name	FrmStop	RstPtr	Reserved						
Type	R/W	R/W		RO					
Default	0x0	0x0	0x00						
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name				Rese	erved				
Type		RO							
Default				0x	00				

Table 6-16 CSI TX Data Type Register

Register Field	Bit	Description
FrmStop	15	Frame Stop When this bit is asserted, TC358746A will stop outputting at the next Vvalid
RstPtr	14	Reset Pointers When this bit is asserted, TC358746A resets its write/read pointers to Video Buffer
Reserved	[13:0]	

Please refer to section 4.6.1 for the usage of bits [15:14].

6.2.16 User Data Type Register (CSITX_DT: 0x0050)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Reserved									
Туре		RO								
Default	0x0									
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				CSITX	_DT[7:0]					
Туре		R/W								
Default	0x30									

Table 6-17 User Defined CSITX Data Type Register

Register Field	Bit	Default	Description
CSITX_DT	[7:0]	0x30	CSITX Data Type ID, from CSI-2 Spec. This field is used for CSITX Data Type ID when DataFmt[UDT_en] = 1;

6.3 **Rx Control Registers**

6.3.1 MIPI PHYClock Lane Control Register (PHYClkCtl: 0x0056)

Bit	B7	B6	B5	B4	В3	B2	B1	B0	
Name	Ca	ар	Hsl	RxRs	ClkDly				
Туре	R/	W	R	:/W	R/W				
Default	0>	(0	C)x2	0x0				

Table 6-18 MIPI PHYClock Control Register

Register Field	Bit	Description
Reserved	[15:8]	Reserved
Сар	[7:6]	Selection of Capacitance 00: no additional capacitance 01: 2.4pF additional capacitance 10: 2.6pF additional capacitance 11: 2.8pF additional capacitance
HsRxRs	[5:4]	Selection of HSRX bias resistance 2'b00: 1.5k 2'b01: 1.75k 2'b10: 2.00k 2'b11: 2.25 k
ClkDly	[3:0]	Clock skew control This field may be used to control data lane 0 skew in Rx. Skew delay = ClkDlyx 25ps

6.3.2 MIPI PHY Data Lane 0 Control Register (PHYData0Ctl: 0x0058)

Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name	Ca	Cap HsRxRs			DataDly					
Туре	R/	R/W R/W		R/W						
Default	0×	(О	0x2		0x0					

Table 6-19 MIPI PHY Data Lane 0 Control Register

Table 6-19 MIPI PHT Data Lane 0 Control Register					
Register Field	Bit	Description			
Reserved	[15:8]	Reserved			
		Selection of Capacitance 00: no additional capacitance			
Сар	[7:6]	01: 2.4pF additional capacitance			
		10: 2.6pF additional capacitance			
		11: 2.8pF additional capacitance			
		Selection of HSRX bias resistance			
		2'b00: 1.5k			
HsRxRs	[5:4]	2'b01: 1.75k			
		2'b10: 2.00k			
		2'b11: 2.25 k			
		Data skew control			
DataDly	[3:0]	This field may be used to control data lane 0 skew in Rx.			
		Skew delay = DataDlyx 25ps			

6.3.3 MIPI PHY Data Lane 1 Control Register (PHYData1Ctl: 0x005A)

Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name	Ca	ар	HsRxRs		DataDly				
Туре	R/	W	R/W			R/W			
Default	0x	κ0	C)x2		0x0			

Table 6-20 MIPI PHY Data Lane 1 Control Register

Table 6-20 MIFI FITI Data Latte 1 Control Register						
Register Field	Bit	Description				
Reserved	[15:8]	Reserved				
Сар	[7:6]	Selection of Capacitance 00: no additional capacitance 01: 2.4pF additional capacitance 10: 2.6pF additional capacitance 11: 2.8pF additional capacitance				
HsRxRs	[5:4]	Selection of HSRX bias resistance 2'b00: 1.5k 2'b01: 1.75k 2'b10: 2.00k 2'b11: 2.25 k				
DataDly	[3:0]	Data skew control This field may be used to control data lane 1 skew in Rx. Skew delay = DataDlyx 25ps				

6.3.4 MIPI PHY Data Lane 2 Control Register (PHYData2Ctl: 0x005C)

Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name	Ca	ар	HsRxRs		DataDly				
Type	R/	W	R	/W		R/W			
Default	0>	(0	0x2		0x0				

	Table 6-21 MIPI PHY Data Lane 2Control Register						
Register Field	Bit	Description					
Reserved	[15:8]	Reserved					
		Selection of Capacitance					
		00: no additional capacitance					
Сар	[7:6]	01: 2.4pF additional capacitance					
		10: 2.6pF additional capacitance					
		11: 2.8pF additional capacitance					
		Selection of HSRX bias resistance					
		2'b00: 1.5k					
HsRxRs	[5:4]	2'b01: 1.75k					
		2'b10: 2.00k					
		2'b11: 2.25 k					
		Data skew control					
DataDly	[3:0]	This field may be used to control data lane 2 skew in Rx.					
		Skew delay = DataDlyx 25ps					

6.3.5 MIPI PHY Data Lane 3 Control Register (PHYData3Ctl: 0x005E)

Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	Ca	ıp	Hsf	RxRs		DataD	Oly	

TC358746A/748XBG Functional Spec

Page 64 of 118

Туре	R/W	R/W	R/W
Defaul	0x0	0x2	0x0

Table 6-22 MIPI PHY Data Lane 3 Control Register

Table 6 22 Mill 11 111 Data Laile 6 Control Register							
Register Field	Bit	Description					
Reserved	[15:8]	Reserved					
Сар	[7:6]	Selection of Capacitance 00: no additional capacitance 01: 2.4pF additional capacitance 10: 2.6pF additional capacitance 11: 2.8pF additional capacitance					
HsRxRs	[5:4]	Selection of HSRX bias resistance 2'b00: 1.5k 2'b01: 1.75k 2'b10: 2.00k 2'b11: 2.25 k					
DataDly	[3:0]	Data skew control This field may be used to control data lane 3 skew in Rx. Skew delay = DataDlyx 25ps					

6.3.6 MIPI PHY Time Delay Register (PHYTimDly: 0x0060)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Tc_term_sel		Reserved							
Type	R/W				R/W					
Default	0x0				0xXX					
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name	Td_term_sel				DSettle					
Туре	R/W		R/W							
Default	0x0				0x05					

Table 6-23 MIPI PHY Time Delay Register

Register Field	Bit	Description
Tc term sel	15	TC TERM selection
10_tellil_sel	13	Please set this bit to '1'
Reserved	[14:8]	
		TD TERM selection
Td_term_sel	7	0: Data HS termination after (2, 3)*PPIRxClk when LP to HS transition
		1: Data HS termination set immediately when LP to HS transition (preferred)
		THS-SETTLE timer
DSettle	[6:0]	This field may be used to control the delay between LP to HS transition
Doeille	[6:0]	0x00-0x7f: valid
		Delay = (dsettle+1) x PPIRXCLK

6.3.7 MIPI PHY Status Register (PHYSta: 0x0062)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name		Reserved									
type		RO									
Default											
Bit	B7	B6	B5	B4	B3	B2	B1	B0			

TC358746A/748XBG Functional Spec

Page 65 of 118

Copyright © 2005-2010 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Name	SoTErr3	SynErr3	SoTErr2	SynErr2	SoTErr1	SynErr1	SoTErr0	SynErr0
type	RO							
Default	0x0							

Table 6-24 MIPI PHY Error Status Register							
Register Field	Bit	Description					
Reserved	[15:8]	Reserved					
SoTErr3	[7]	Recoverable SyncByte error data lane 3 This bit is set to indicate that a SyncByte was received with correctable errors during HS transmission. This bit is set by Rx PPI data lane 3. 0: no error reported 1: error occurred This bit is cleared when software clears SotErr.					
SynErr3	[6]	Un-recoverable SyncByte Error data lane 3 This bit is set to indicate that a SyncByte was received with uncorrectable errors. This bit is set by Rx PPI data lane 3. 0: no error reported 1: error occurred This bit is cleared when software clears SynErr.					
SoTErr2	[5]	Recoverable SyncByte error data lane 2 This bit is set to indicate that a SyncByte was received with correctable errors during HS transmission. This bit is set by Rx PPI data lane 2. 0: no error reported 1: error occurred This bit is cleared when software clears SotErr.					
SynErr2	[4]	Un-recoverable SyncByte Error data lane 2 This bit is set to indicate that a SyncByte was received with uncorrectable errors. This bit is set by Rx PPI data lane 2. 0: no error reported 1: error occurred This bit is cleared when software clears SynErr.					
SoTErr1	[3]	Recoverable SyncByte error data lane 1 This bit is set to indicate that a SyncByte was received with correctable errors during HS transmission. This bit is set by Rx PPI data lane 1. 0: no error reported 1: error occurred This bit is cleared when software clears SotErr.					
SynErr1	[2]	Un-recoverable SyncByte Error data lane 1 This bit is set to indicate that a SyncByte was received with uncorrectable errors. This bit is set by Rx PPI data lane 1. 0: no error reported 1: error occurred This bit is cleared when software clears SynErr.					
SoTErr0	[1]	Recoverable SyncByte error data lane 0 This bit is set to indicate that a SyncByte was received with correctable errors during HS transmission. This bit is set by Rx PPI data lane 0. 0: no error reported 1: error occurred This bit is cleared when software clears SotErr.					
SynErr0	[0]	Un-recoverable SyncByte Error data lane 0 This bit is set to indicate that a SyncByte was received with uncorrectable errors. This bit is set by Rx PPI data lane 0.					

TC358746A/748XBG Functional Spec

Page 66 of 118

Register Field	Bit	Description					
		0: no error reported					
		1: error occurred					
		This bit is cleared when software clears SynErr.					

6.3.8 CSI-2 Error Status Register (CSIStatus: 0x0064)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	Reserved							MDLErr
Type	RO							R/W1C
Default	0x0							0x0
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	FrmErr	CRCErr	CorErr	HdrErr	EIDErr	CtlErr	SoTErr	SynErr
Type	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C
Default	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0

Table 6-25 CSI-2 Error Status Register

Register Field	Bit	Description
Reserved	[15:9]	Reserved
MDLErr	8	Multi-Data Lane Sync Byte Error This bit is set when Sync Bytes are Not received in the same ByteClk cycle for all the active data lanes. 0: no error occurred 1: error occurred Software may clear this bit by writing 1 to this field
FrmErr	7	Frame Error This bit is set when an un-expected Frame start or Frame end short packet is received. This bit is set by CSI-2 Low Level Protocol (LLP). 0: no error occurred 1: error occurred Software may clear this bit by writing 1 to this field
CRCErr	6	CRC Error This bit is set for crc error detected when receiving data packets. This bit is set by LLP. 0: no error occurred 1: error occurred Software may clear this bit by writing 1 to this field
CorErr	5	Recoverable Packet header Error This bit is set when a packet header is received with errors that cannot be corrected by the transmitted ECC. This bit is set by LLP. 0: no error occurred 1: error occurred Software may clear this bit by writing 1 to this field
HdrErr	4	Un-recoverable Packet header Error This bit is set when a packet header is received with errors that can be corrected by the transmitted ECC. This bit is set by LLP. 0: no error occurred 1: error occurred Software may clear this bit by writing 1 to this field
EIDErr	3	Un-supported Packet ID Error This bit is set when an unsupported Data type ID (i.e. the Data type ID is neither a supported CSI Data ID, nor specified in EB0Typ, EB1Typ or

Register Field	Bit	Description
		EB2Typ) is received. This bit is set by LLP.
		0: no error occurred
		1: error occurred
		Software may clear this bit by writing 1 to this field
		Control Error
		This signal is asserted when an incorrect line state sequence is detected.
CtlErr	2	This bit is set by Rx PPI.
CULII	2	0: no error reported
		1: error occurred
		Software may clear this bit by writing 1 to this field
		Recoverable SyncByte error
		This bit is set when either SoTErr3/2/1/0 is set.
SoTErr	1	0: no error reported
		1: error occurred
		Software may clear this bit by writing 1 to this field.
		Un-recoverable SyncByte Error
		This bit is set when either SynErr3/2/1/0 is set.
SynErr	0	0: no error reported
		1: error occurred
		Software may clear this bit by writing 1 to this field.

6.3.9 CSI-2 Error Enable Register (CSIErrEn: 0x0066)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	Reserved							MDLEn
Type	RO							R/W
Default	0x0							0x0
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	FrmEn	CRCEn	CorEn	HdrEn	EIDEn	CtlEn	SoTEn	SynEn
type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0

Table 6-26 CSI-2 Error Enable Register

Deviates Field	Table 0-20 CSI-2 Error Errable register								
Register Field	Bit	Description							
Reserved	[15:9]	Reserved							
MDLEn	8	MDL Error Enable Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when MDLErr occurs. 0: do not assert CSIErr if MDLErr occurs 1:assert CSIErr if MDLErr occurs							
FrmEn	7	Frame Error Enable Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when FrmErr occurs. 0: do not assert CSIErr if FrmErr occurs 1:assert CSIErr if FrmErr occurs							
CRCEn	6	CRC Error Enable Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when CRCErr occurs. 0: do not assert CSIErr if CRCErr occurs 1:assert CSIErr if CRCErr occurs							
CorEn	5	Recoverable Packet header Error Enable							

Bit	Description
	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when CorErr occurs.
	0: do not assert CSIErr if CorErr occurs
	1:assert CSIErr if CorErr occurs
	Un-recoverable Packet header Error Enable
	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when
4	HdrErr occurs.
	0: do not assert CSIErr if HdrErr occurs
	1:assert CSIErr if HdrErr occurs
	Un-supported Packet ID Error Enable
	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when
3	EIDErr occurs.
	0: do not assert CSIErr if EIDErr occurs
	1:assert CSIErr if EIDErr occurs
	Control Error Enable
_	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when
2	CtlErr occurs.
	0: do not assert CSIErr if CtIErr occurs
	1:assert CSIErr if CtIErr occurs
	Recoverable SyncByte error Enable
4	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when SoTErr occurs.
I	0: do not assert CSIErr if SoTErr occurs
	1:assert CSIErr if SoTErr occurs
	Un-recoverable SyncByte Error Enable
	Setting this bit enables CSI-2 Rx block to assert CSIErr (to ISP) when
0	SynErr occurs.
	0: do not assert CSIErr if SynErr occurs
	1:assert CSIErr if SynErr occurs
	4

6.3.10 CSI-2 Multi-Data Lane SyncByte Error Register (MDLSynErr: 0x0068)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name		Reserved									
Туре		RO									
Default		0x0									
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name		Rese	erved		Sync3	Sync2	Sync1	Sync0			
Type		R	0		R/W	R/W	R/W	R/W			
Default		0	x0		0x0	0x0	0x0	0x0			

Table 6-27 CSI-2 Multi-Data Lane Sync Byte Error Register

Register Field	Bit	Description
Reserved	[15:4]	Reserved
Sync3	3	Data Lane 3 Sync Byte Detected Data lane 3 Sync byte detected status. CSIStatus[MDLErr] is asserted when this bit is set. SW needs to clear this bit by writing '0'. 0: Data lane not active or No Sync Byte detected 1: Sync Byte Detected

TC358746A/748XBG Functional Spec

Page 69 of 118

Register Field	Bit	Description
Sync2	2	Data Lane 2 Sync Byte Detected Data lane 2 Sync byte detected status. CSIStatus[MDLErr] is asserted when this bit is set. SW needs to clear this bit by writing '0'. 0: Data lane not active or No Sync Byte detected 1: Sync Byte Detected
Sync1	1	Data Lane 1 Sync Byte Detected Data lane 1 Sync byte detected status. CSIStatus[MDLErr] is asserted when this bit is set. SW needs to clear this bit by writing '0'. 0: Data lane not active or No Sync Byte detected 1: Sync Byte Detected
Sync0	0	Data Lane 0 Sync Byte Detected Data lane 0 Sync byte detected status. CSIStatus[MDLErr] is asserted when this bit is set. SW needs to clear this bit by writing '0'. 0: Data lane not active or No Sync Byte detected 1: Sync Byte Detected

6.3.11 CSI-2 Data Type ID Register (CSIDID: 0x006A)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name		Reserved									
type		RO									
Default	0x0										
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name		DataType									
type	RO										
Default				0x)	X						

Table 6-28 CSI-2 Data Type ID Register

Reserved [15:8] Reserved Data Type ID	
Data Type ID	
This field indicates the type of HS packet that was received by Rx. List below is the CSI-2 Spec. defined data type ID supported by TC358746AXBG/TC358748XBG 0x00 Frame Start Code 0x01 Frame End Code 0x02 - 0x11 Reserved 0x12 Embedded 8-bit non-Image Data 0x13 - 0x1D Reserved 0x1E YUV422 8-bit DataType [7:0] [7:0] [7:0] DataType [7:0] [7:0] This field indicates the type of HS packet that was received by Rx. List below is the CSI-2 Spec. defined at type ID supported by TC358746XBG 0x01 Frame End Code 0x02 Embedded 8-bit non-Image Data 0x12	ted

Register Field	Bit		Description
		0x31	User Defined 8-bit Data Type 2
		0x32	User Defined 8-bit Data Type 3
		0x33	User Defined 8-bit Data Type 4
		0x34	User Defined 8-bit Data Type 5
		0x35	User Defined 8-bit Data Type 6
		0x36	User Defined 8-bit Data Type 7
		0x37	User Defined 8-bit Data Type 8

6.3.12 CSI-2Data Type ID Error Register (CSIDIDErr: 0x006C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Reserved									
type		RO								
Default		0x0								
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				ErrT	ype					
type		RÓ								
Default				0x0	00					

Table 6-29 CSI-2 Data Type ID Error Register

Register Field	Bit	Description
Reserved	[15:8]	Reserved
ErrType	[7:0]	Error Data Type This field copies/latches the value of CSIDatTyp[DataType] when error bit CSIStatus[EIDErr] is asserted. SW needs to clear this field by writing "0x00" to it.

6.3.13 CSI-2 Data Length Register (CSIPktLen: 0x006E)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name		PktLen									
type		RO									
Default		0xX									
Bit	B7	B6	B5	B4	В3	B2	B1	B0			
Name				PkL	en						
type		RO									
Default		0xX									

Table 6-30 CSI-2 Data Length Register

Register Field	Bit	Description
PktLen	[15:0]	Data length This field contains the data length including 4 crc bytes that was received by CSI-2 Rx. This field is set by LLP when CRC error is received.

6.3.14 CSI-2 DPhy Control Register (CSIRX_DPCtl: 0x0070)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		rxck_cntrl						
type				R/W				
Default				0x0				
Bit	B7	B6	B5	B4	B3	B2	B1	B0

TC358746A/748XBG Functional Spec

Page 71 of 118

Copyright © 2005-2010 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Name	rxch3_cntrl	rxch2_cntrl	rxch1_cntrl	rxch0_cntrl
type	R/W	R/W	R/W	R/W
Default	0x0	0x0	0x0	0x0

Table 6-31 CSI-2 Data Length Register

Register Field	Bit	Description
Reserved	[15:10]	Reserved
rxck_cntrl	[9:8]	Clock Dphy Control parameters
rxch3_cntrl	[7:6]	Data Lane 3Dphy Control parameters
rxch2_cntrl	[5:4]	Data Lane 2Dphy Control parameters
rxch1_cntrl	[3:2]	Data Lane 1Dphy Control parameters
rxch0_cntrl	[1:0]	Data Lane 0Dphy Control parameters

Rx StatusRegisters

6.4.1 Frame Error Counter (FrmErrCnt: 0x0080)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Reserved									
type		RO								
Default		0x0								
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				FrmEı	rCnt					
Туре		R/W								
Default				0x	0					

Table 6-32 Frame Error Counter

Register Field	Bit	Description
Reserved	[15:8]	Reserved
FrmErrCnt	[7:0]	Frame Error counter This field is incremented when an un-expected Frame start or Frame end short packet is received. This field is incremented by LLP. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.2 CRC Error Counter (CRCErrCnt: 0x0082)

Bit	B15	B14	B13	B12	B11	B10	B9	B8								
Name	Reserved															
type		RO														
Default	0x0															
Bit	B7	B6	B5	B4	В3	B2	B1	B0								
Name				CRCE	rrCnt											
Туре		RW														
Default				0x	0			0x0								

Table 6-33 CRC Error Counter

Register Field	Bit	Description
----------------	-----	-------------

TC358746A/748XBG Functional Spec

Page 72 of 118

Register Field	Bit	Description
Reserved	[15:8]	Reserved
CRCErrCnt	[7:0]	CRC Error Counter This counter is incremented by LLP when a HS packet is received with crc errors. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.3 Recoverable Packet Header Error Counter (CorErrCnt: 0x0084)

Bit	B15	B14	B13	B12	B11	B10	B9	B8				
Name	Reserved											
Туре				RO)							
Default				0x	0							
Bit	B7	B6	B5	B4	В3	B2	B1	B0				
Name				CorEr	rCnt							
Туре	RW											
Default				0x	0							

Table 6-34 Recoverable Packet Header Error Counter

Register Field	Bit	Description
Reserved	[15:8]	Reserved
CorErrCnt	[7:0]	Recoverable Packet Header Error Counter This counter is incremented by LLP when a HS packet header is received with errors that are correctable by ECC. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.4 Un-recoverable Packet Header Error Counter (HdrErrCnt: 0x0086)

Bit	B15	B14	B13	B12	B11	B10	B9	B8				
Name	Reserved											
type		RO										
Default				0x	0							
Bit	B7	B6	B5	B4	B3	B2	B1	B0				
Name				HdrEı	rCnt							
Туре	RW											
Default				0x	0							

Table 6-35 Un-recoverable Packet Header Error Counter

Register Field	Bit	Description
Reserved	[15:8]	Reserved
HdrErrCnt	[7:0]	Un-recoverable Packet Header Error Counter This counter is incremented by LLP when a HS packet header is received with errors that are not correctable by ECC. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until

TC358746A/748XBG Functional Spec

Page 73 of 118

Register Field	Bit	Description
		cleared by software.

6.4.5 Un-supported Packet ID Error Counter (EIDErrCnt: 0x0088)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name	Reserved										
type	RO										
Default	0x0										
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name				EIDEr	rCnt			•			
Type		RW									
Default				0x	0						

Table 6-36 Un-supported Packet ID Error Counter

Register Field	Bit	Description
Reserved	[15:8]	Reserved
EIDErrCnt	[7:0]	Un-supported Packet ID Error Counter This counter is incremented by LLP when a HS packet that is not supported by CSI-2 Rx is received. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.6 ControlError Counter (CtlErrCnt: 0x008A)

Bit	B15	B14	B13	B12	B11	B10	B9	B8				
Name	Reserved											
type	RO											
Default				0x	0							
Bit	B7	B6	B5	B4	B3	B2	B1	B0				
Name				CtlEr	rCnt							
Туре	RW											
Default				0x	0							

Table 6-37 Escape Mode Error Counter

Register Field	Bit	Description
Reserved	[15:8]	Reserved
CtlErrCnt	[7:0]	Control Error Counter This counter is incremented when escape mode is exited using the wrong sequence. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.7 Recoverable SyncByte Error Counter (SoTErrCnt: 0x008C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8				
Name		Reserved										
Туре				R								

TC358746A/748XBG Functional Spec

Page 74 of 118

Default	0x0									
Bit	B7 B6 B5 B4 B3 B2 B1 B0									
Name				SotE	rrCnt					
type		R/W								
Default				0:	(0					

Table 6-38 Recoverable Sync Byte Error Counter

Register Field	Bit	Description						
Reserved	[15:8]	Reserved						
SotErrCnt	[7:0]	Recoverable Sync Byte Error Counter This counter is incremented when a HS Sync Byte was received by Rx PPI with correctable errors. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.						

6.4.8 Un-recoverable SyncByte Error Counter (SynErrCnt: 0x008E)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name		Reserved								
type		RO								
Default		0x0								
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name		SynErrCnt								
type		RW								
Default		0x0								

Table 6-39 Un-recoverable Sync Byte Error Counter

rable coo on receiverable symbol 2 to 2 miles							
Register Field	Bit	Description					
Reserved	[15:8]	Reserved					
SynErrCnt	[7:0]	Un-recoverable Sync Byte Error Counter This counter is incremented when a HS Sync Byte was received by Rx PPI with uncorrectable errors. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.					

6.4.9 Multi-Data Lane SyncByte Error Counter (MDLErrCnt: 0x0090)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		Reserved							
type		RO							
Default	0x0								
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name		MDLErrCnt							
type		R/W							
Default		0x0							

Table 6-40 Multi-Data Lane Sync Byte Error Counter

Register Field Description

TC358746A/748XBG Functional Spec

Page 75 of 118

Register Field	Bit	Description
Reserved	[15:8]	Reserved
MDLErrCnt	[7:0]	Multi-Data Lane Sync Byte Error Counter This counter is incremented when HS Sync Bytes were not received at the same clock cycle by CSI2 Rx PPI. 0: no errors 0x1-0xFF: error count The counter does not wrap around and retains the maximum value until cleared by software.

6.4.10 FIFO Status Register(FIFOSTATUS: 0x00F8)

Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name		Reserved							
Type		RO							
Default		0x00							
Bit	B7	B6	B5	B4	B3	B2	B1	В0	
Name		Reserved Vb_uflow Vb_oflow							
Туре		RO RO RO							
Default		0x00							

Table 6-41 FIFO Status Register

Register Field	egister Field Bit Default Description				
Reserved	[15:2]				
vb_uflow	1	0	VB Under Flow Status 0: Normal 1: Under flow Read this register will clear the status		
vb_oflow	0	0	VB Over Flow Status 0: Normal 1: Over flow Read this register will clear the status		

6.5 Tx D-PHY Registers

6.5.1 Clock Lane DPHY TX Control register (CLW_DPHYCONTTX: 0x0100)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			CLW_CAP1	CLW_CAP0				
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0
Bit	B7	B6	B5	B4	В3	B2	B1	В0
Name	DLYCNT RL3	DLYCNT RL2	DLYCNTR L1	DLYCNT RL0	Rese	rved	CLW_LPTXC URR1EN	CLW_LPTX CURR0EN
Туре	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 6-42 Clock Lane DPHY TX Control register

Register Field	Bit	Description

TC358746A/748XBG Functional Spec

Page 76 of 118

Register Field	Bit	Description
Reserved	[31:10]	
CLW_CAP1	[9]	Selection bit 1 of different HSTX output capacitors for Clock Lane
CLW_CAP0	[8]	Selection bit 0 of different HSTX output capacitors for Clock Lane (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	
CLW_LPTXCURR1E N	[1]	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for clock Lane
CLW_LPTXCURR0E [0]		Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for clock Lane 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

6.5.2 Data Lane 0 DPHY TX Control register (D0W_DPHYCONTTX:0x0104)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			Reserv	D0W_CAP1	D0W_CAP0			
Type	RO	RO	RO	RO	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNT	DLYCNT	DLYCNT	Reserv	Reserv	DOW_LPTXCUR	DOW_LPTXCUR
Name	RL3	RL2	RL1	RL0	ed	ed	R1EN	ROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 6-43 Data Lane 0 DPHY TX Control register

Register Field	Bit	Description
Reserved	[31:10]	
D0W_CAP1	[9]	Selection bit 1 of different HSTX output capacitors for Data Lane 0.

TC358746A/748XBG Functional Spec

Page 77 of 118

Register Field	Bit	Description
D0W_CAP0	[8]	Selection bit 0 of different HSTX output capacitors for Data Lane 0. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	Tuning of transmit window position. The High Speed Data output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	
DOW_LPTXCURR1EN	[1]	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 0.
DOW_LPTXCURROEN	[0]	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 0. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

6.5.3 Data Lane 1 DPHY TX Control Register (D1W_DPHYCONTTX: 0x0108)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			D1W_CAP1	D1W_CAP0				
Type	RO	RO	RO	RO	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0
Bit	B7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNTR	DLYCNT	DLYCNTR	Reserved		D1W_LPTXCU	D1W_LPTXCU
Name	RL3	L2	RL1	LO			RR1EN	RROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 6-44 Data Lane 1 DPHY TX Control Register

Register Field	Bit	Description
Reserved	[31:10]	
D1W_CAP1	[9]	Selection bit 1 of different HSTX output capacitors for Data Lane 1.
D1W_CAP0	[8]	Selection bit 0 of different HSTX output capacitors for Data Lane 1. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF]

TC358746A/748XBG Functional Spec

Page 78 of 118

Register Field	Bit	Description
		(CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 7ps.
Reserved	[3:2]	
D1W_LPTXCURR1EN	[1]	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 1
D1W_LPTXCURR0EN	[0]	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 1 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

6.5.4 Data Lane 2 DPHY TX Control Register (D2W_DPHYCONTTX: 0x010C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name			D2W_CAP1	D2W_CAP0				
Type	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	1	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNTRL	DLYCNTR	DLYCNT	Reserved		D2W_LPTXC	D2W_LPTXCU
Name	RL3	2	L1	RL0			URR1EN	RROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 6-45 Data Lane 2 DPHY TX Control Register

Register Field	Bit	Description
Reserved	[31:10]	
D2W_CAP1	[9]	Selection bit 1 of different HSTX output capacitors for Data Lane 2.

Register Field	Bit	Description
D2W_CAP0	[8]	Selection bit 0 of different HSTX output capacitors for Data Lane 2. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	
D2W_LPTXCURR1EN	[1]	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 2.
D2W_LPTXCURR0EN	[0]	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 2 0: no additional output current 1: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

6.5.5 Data Lane 3 DPHY TX Control Register (D3W_DPHYCONTTX: 0x0110)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			D3W_CAP1	D3W_CAP0				
Type	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	1	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNTRL	DLYCNT	DLYCNTR	Reserved		D3W_LPTXC	D3W_LPTXCU
Name	RL3	2	RL1	LO			URR1EN	RROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 6-46 Data Lane 3 DPHY TX Control Register

Register Field Bit Description	Register Field	Bit	Description
--------------------------------	----------------	-----	-------------

TC358746A/748XBG Functional Spec

Page 80 of 118

Register Field	Bit	Description
Reserved	[31:10]	
D3W_CAP1	[9]	Selection bit 1 of different HSTX output capacitors for Data Lane 3.
D3W_CAP0	[8]	Selection bit 0 of different HSTX output capacitors for Data Lane 3. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	
D3W_LPTXCURR1EN	[1]	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 3
D3W_LPTXCURR0EN	[0]	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 3 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

6.5.6 Clock Lane DPHY Control Register (CLW_CNTRL: 0x0140)

Bit	B15	B15 B14 B13 B12 B11 B10 B9						B8
Name								
Туре	RO							
Default	0x00							
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name	Reserved							CLW_LaneDisable
Туре	RO							R/W
Default				0x00				0

Table 6-47 Clock Lane DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	

TC358746A/748XBG Functional Spec

Page 81 of 118

Register Field	Bit	Default	Description
CLW_LaneDisable	[0]	0x0	Force Lane Disable for Clock Lane. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable.

6.5.7 Data Lane 0 DPHY Control Register (D0W_CNTRL: 0x0144)

Bit	B15	B14	B13	B12	B11	B10	В9	B8				
Name	Reserved											
Туре		RO										
Default		0x00										
Bit	В7	В6	B5	B4	В3	B2	B1	В0				
Name				Reserve	ed			CLW_LaneDisable				
Туре		RO R/W										
Default				0x00				0				

Table 6-48 Data Lane 0 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	
D0W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 0. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable.

6.5.8 Data Lane 1 DPHY Control Register (D1W_CNTRL: 0x0148)

Bit	B15	B14	B13	B12	B11	B10	В9	B8				
Name	Reserved											
Туре		RO										
Default		0x00										
Bit	В7	В6	B5	B4	В3	B2	B1	В0				
Name				Reserve	ed			D1W_LaneDisable				
Туре		RO R/W										
Default				0x00				0				

Table 6-49D ata Lane 1 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	

TC358746A/748XBG Functional Spec

Page 82 of 118

Register Field	Bit	Default	Description
D1W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 0. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable.

6.5.9 Data Lane 2 DPHY Control Register (D2W_CNTRL: 0x014C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8					
Name	Reserved												
Туре		RO											
Default		0x00											
Bit	B7	В6	B5	B4	В3	B2	B1	В0					
Name				Reserve	ed			D2W_LaneDisable					
Туре		RO R/W											
Default				0x00				0					

Table 6-50 Data Lane 2 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	
D2W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 2. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable.

6.5.10 Data Lane 3 DPHY Control Register (D3W_CNTRL: 0x0150)

Bit	B15	B14	B13	B12	B11	B10	В9	B8				
Name	Reserved											
Туре		RO										
Default		0x00										
Bit	В7	В6	B5	B4	В3	B2	B1	В0				
Name				Reserve	ed			D3W_LaneDisable				
Туре		RO R/W										
Default				0x00				0				

Table 6-51 Data Lane 3 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	

TC358746A/748XBG Functional Spec

Page 83 of 118

Register Field	Bit	Default	Description
D3W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 3. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable.

Tx PPI Registers

6.6.1 PPI STARTCNTRL (STARTCNTRL: 0x0204)

Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name	Reserved										
Type	RO	RO	RO	RO	RO	RO	RO	W			
Default	0	0	0	0	0	0	0	0			

Table 6-52 STARTCNTRL

Register Field	Bit	Description
Reserved	[31:1]	
		START control bit of PPI-TX function.
		By writing 1 to this bit, PPI starts function.
		0: Stop function. (default). Writing 0 is invalid and the bit can be set to zero by
		system reset only.
START	[0]	1: Start function.
		The following registers are set to appropriate value before starting any
		transmission by START bit in STARTCTRL register. Once START bit is set to high,
		the change of the register bits does not affect to function. In order to change
		the values, initialization by RESET_N is necessary.

6.6.2 PPI STATUS (PPISTATUS: 0x0208)

Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name	Reserved									
Type	RO	RO	RO	RO	RO	RO	RO	R		
Default	0	0	0	0	0	0	0	0		

Table 6-53 PPI STATUS

Register Field	Bit	Description
Reserved	[31:1]	
BUSY	[0]	After writing 1 to the START bit in the STARTCNTRL register, this bit is set until RESET_N is asserted. 0: Not Busy. (default) 1: Busy.

TC358746A/748XBG Functional Spec

Page 84 of 118

6.6.3 LINEINITCNT (LINEINITCNT: 0x0210)

Bit	B15	B14	B13	B12	B11	B10	В9	B8			
Name	LINEINITCNT[15:8]										
Туре		R/W									
Default		0x20									
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name				LINEINIT	CNT[7:0]						
Туре	R/W										
Default				0x	8E						

Table 6-54 LINEINITCNT

Register Field	Bit	Description
Reserved	[31:16]	
LINEINITCNT	[15:0]	Line Initialization Wait Counter This counter is used for line initialization. Set this register before setting [STARTCNTRL].START = 1. MIPI specification requires that the slave device needs to observe LP-11 for 100 us and ignore the received data before the period at initialization time. The count value depends on HFCLK and the value needs to be set to achieve more than 100 us. The counter starts after the START bit of the STARTCNTRL register is set. The Master device needs to output LP-11 for 100 us in order for the slave device to observe LP-11 for the period. For example, in order to set 100 us when the period of HFCLK is 12 ns, the counter value should be more than 8333.3 = 0x208D (100 us / 12 ns). Default is 0x208E.

6.6.4 LPTXTIMECNT (LPTXTIMECNT: 0x0214)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name			Reserved	LPTXTIMECNT[10:8]						
Туре		RO R/W								
Default			0x00				0x0			
Bit	В7	В6	B5	B4	B3	B2	B1	В0		
Name				LPTXTIM	ECNT[7:0]					
Туре		R/W								
Default				0:	(01					

Table 6-55 LPTXTIMECNT

Register Field	Bit	Description
Reserved	[15:11]	
LPTXTIMECNT	[10:0]	SYSLPTX Timing Generation Counter The counter generates a timing signal for the period of LPTX. This counter is counted using the HSByteClk (the Main Bus clock), and the value of (setting + 1) *HSByteClk Period becomes the period LPTX. Be sure to set the counter to a value greater than 50 ns.

Set this register before setting [STARTCNTRL].START = 1.

6.6.5 TCLK_HEADERCNT (TCLK_HEADERCNT: 0x0218)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name	TCLK_ZEROCNT[7:0]										
Туре		R/W									
Default	0x01										
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name	Reserved			TCLK_	PREPARECN	T[6:0]					
Туре	RO		R/W								
Default	0				0x01						

Table 6-56 TCLK_HEADERCNT

Register Field	Bit	Description
TCLK_ZEROCNT	[15:8]	TCLK_ZERO Counter This counter is used for Clock Lane control in the Master mode. In order to satisfy the timing parameter TCLK-PRE + TCLK-ZERO for Clock Lane, this counter is used. This counter is counted by HSBYTECLk. Set this register in order to set the minimum time (TCLK-PRE + TCLK-ZERO) to a value greater than 300 ns. The actual value is ((1 to 2) + (TCLK_ZEROCNT + 1)) x HSByteClkCycle + (PHY output delay). The PHY output delay is about (0 to 1) x HSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (2 to 3) x MIPIBitClk cycle in the BitClk conversion.
Reserved	[7]	
TCLK_PREPARECNT	[6:0]	TCLK_PREPARE Counter This counter is used for Clock Lane control in the Master mode. In order to satisfy the timing parameter TCLK-PREPARE for Clock Lane, this counter is used. This counter is counted by HSBYTECLK. Set TCLK-PREPARE period that is greater than 38 ns but less than 95 ns. Calculating formula (TCLK_PREPARECNT + 1) x HSByteClkCycle

Set this register before setting [STARTCNTRL].START = 1.

6.6.6 TCLK_TRAILCNT (TCLK_TRAILCNT: 0x021C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8			
Name	Reserved										
Type		RO									
Default	0x00										
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name				TCLKTRAI	LCNT[7:0]						
Type	R/W										
Default				0x	01						

Table 6-57 TCLK_TRAILCNT

Register Field	Bit	Description
Reserved	[15:8]	
TCLK_TRAILCNT	[7:0]	TCLK_TRAIL Counter This counter is used for Clock Lane control in Master mode. In order to satisfy the timing parameter about TCLK-TRAIL and TEOT for Clock Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register in order to set TCLK-TRAIL to a value greater than 60 ns and TEOT to a value less than 105 ns + 12 x UI The actual value is (TCLK_TRAILCNT + (1 to 2)) xHSByteClkCycle + (2+(1 to 2)) * HSBYTECLKCycle - (PHY output delay). The PHY output delay is about (0 to 1) xHSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (2 to 3) xMIPIBitClk cycle in the BitClk conversion.

Set this register before setting [STARTCNTRL].START = 1.

6.6.7 THS_HEADERCNT (THS_HEADERCNT: 0x0220)

Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name	Reserved		THS_ZEROCNT[6:0]								
Type	RO		R/W								
Default	0		0x01								
Bit	B7	B6	B5	B4	В3	B2	B1	В0			
Name	Reserved			THS_F	PREPARECNT	[6:0]					
Туре	RO		R/W								
Default	0				0x01						

Table 6-58 THS_HEADERCNT

Register Field Bit Description

TC358746A/748XBG Functional Spec

Page 87 of 118

Register Field	Bit	Description				
THS_ZEROCNT [14:8]		THS_ZERO Counter This counter is used for Data Lane control in Master mode. In order to satisfy the timing parameter about THS-PREPARE + THS-ZERO for Data Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register to set the (THS-PREPARE + THS-ZERO) period, which should be greater than (145 ns + 10 x UI) results. The actual value is ((1 to 2) + 1 + (TCLK_ZEROCNT + 1) + (3 to 4)) x ByteClk cycle + HSByteClk x (2+(1 to 2)) +(PHY delay). The PHY output delay is about (1 to 2) x HSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (8+(5 to 6)) x MIPIBitClk cycle in BitClk conversion.				
Reserved	[7]					
THS_PREPARECNT [6:0		THS_PREPARE Counter This counter is used for Data Lane control in Master mode. In order to satisfy the timing parameter about THS-PREPARE for Data Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register in order to set the THS-PREPARE period, which should be greater than (40 ns + 4xUI) and less than (8 5 ns + 6xUI) results. Calculating Formula: (THS_PREPARECNT + 1) x HSByteClkCycle				

Set this register before setting [STARTCNTRL].START = 1.

6.6.8 TWAKEUP (TWAKEUP: 0x0224)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name	TWAKEUPCNT[15:8]									
Туре	R/W									
Default	0x4E									
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name	TWAKEUPCNT[7:0]									
Туре	R/W									
Default				0x	20					

Table 6-59 TWAKEUP

Register Field	Bit	Description
Reserved	[31:16]	
TWAKEUPCNT	[15:0]	TWAKEUP Counter This counter is used to exit ULPS state. Ultra-Low Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state. This counter is counted by the unit of LPTXTIMECNT.

Set this register before setting [STARTCNTRL].START = 1.

Page 88 of 118

6.6.9 TCLK_POSTCNT (TCLK_POSTCNT: 0x0228)

Bit	B15	B14	B13	B12	B11	B10	В9	B8			
Name			Reserved			TCLK	_POSTCNT[1	[8:01			
Type	RO R/W										
Default			0x00	0x2							
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name		TCLK_POSTCNT[7:0]									
Type		R/W									
Default		0x00									

Table 6-60 TCLK_POSTCNT

Register Field	Bit	Description
Reserved	[15:11]	
TCLK_POSTCNT	[10:0]	TCLK_POST Counter This counter is used for Clock Lane control in Master mode. This counter is counted by the HSByteClk. Set a value greater than (60 ns + 52 x UI) results. The actual value is ((1 to 2) + (TCLK_POSTCNT + 1)) x HSByteClk cycle + (1) x HSBYTECLK cycle.

Set this register before setting [STARTCNTRL].START = 1.

6.6.10 THS_TRAILCNT (THS_TRAILCNT: 0x022C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Reserved									
Туре	RO									
Default	0x00									
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name		Rese	rved		THS_TRAILCNT[3:0]					
Туре		R	0		R/W					
Default		0:	κ 0		0x2					

Table 6-61 THS_TRAILCNT

Register Field	Bit	Description
Reserved	[15:4]	

Register Field	Bit	Description
THS_TAILCNT	[3:0]	THS_TRAIL Counter This counter is used for Data Lane control in Master mode. This counter is counted by HSBYTECLK. Set a value greater 8 x UI or (60 ns + 4 x UI) and less than TEOT which is 105 ns + 12 x UI results. The actual value is (1 + THS_TRAILCNT) xByteClk cycle + ((1 to 2) + 2) xHSBYTECLK cycle - (PHY output delay). The PHY output delay is about (1 to 2) xHSByteClkCycle in ByteClk conversion performed during RTL simulation and is about (8+(5 to 6)) xMIPIBitClk cycle in BitClk conversion.

Set this register before setting [STARTCNTRL].START = 1.

6.6.11 HSTXVREGCNT (HSTXVREGCNT: 0x0230)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name	HSTXVREGCNT[15:8]									
Туре	R/W									
Default	0x00									
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name	HSTXVREGCNT[7:0]									
Туре	R/W									
Default				0x20)					

Table 6-62 HSTXVREGCNT

Register Field	Bit	Description
HSTXVREGCNT	[15:0]	TX Voltage Regulator setup Wait Counter This counter is used for all lanes of HSTXVREG commonly. Counter value is counted by HFCLK. The counter starts when START bit is set. After the counter is counted up, PPI-TX can change the line from LP mode to HS mode. If the counter value is set to zero, there is no wait by the counter. Recommended counter value will be decided by evaluation. It was determined that a value of 200 ns max in the ELDEC TEG skew evaluation results (5/21/2009) is sufficient. LINEINCNT is 100 us, so any value less than that will not affect the value of this counter. The value 1 us is used in the example setting.

Set this register before setting [STARTCNTRL].START = 1.

6.6.12 HSTXVREGEN (HSTXVREGEN: 0x0234)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	Reserved									
Type	RO	RO	RO	RO	RO	RO	RO	RO		
Default	0	0	0	0	0	0	0	0		

TC358746A/748XBG Functional Spec

Page 90 of 118

Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name		Reserved		D3M_HSTX	D2M_HSTX	D1M_HST	D0M_HST	CLM_HST
		reserved		VREGEN	VREGEN	XVREGEN	XVREGEN	XVREGEN
Туре	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0

Table 6-63 HSTXVREGEN

Register Field	Bit	Description
Reserved	[15:5]	
D3M_HSTXVREGEN	[4]	Voltage regulator enable for HSTX Data Lane 3. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1:Enable
D2M_HSTXVREGEN	[3]	Voltage regulator enable for HSTX Data Lane 2. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1:Enable
D1M_HSTXVREGEN	[2]	Voltage regulator enable for HSTX Data Lane 1. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0:Disable (Default) 1:Enable
DOM_HSTXVREGEN	[1]	Voltage regulator enable for HSTX Data Lane 0. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0:Disable (Default) 1:Enable
CLM_HSTXVREGEN	[0]	Voltage regulator enable for HSTX Clock Lane. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0:Disable (Default) 1:Enable

Set this register before setting [STARTCNTRL].START = 1.

6.6.13 TXOPTIONCNTRL (TXOPTIONCNTRL: 0x0238)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name				Rese	rved			
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0

TC358746A/748XBG Functional Spec

Page 91 of 118

Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name				Reserved				CONTCLK MODE
Туре	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	0	0

Table 6-64 TXOPTIONCNTRL

Register Field	Bit	Description
Reserved	[15:1]	
CONTCLKMODE	[0]	Set Continuous Clock Mode Writing "1" to this bit will set the Clock Lane to the Continuous Clock mode regardless of the PPI interface signal and will maintain the Clock Lane output. O: Non-continuous clock mode. Transitions into the LP11 state in coordination with the Data Lane operation. 1:Continuous clock mode. Maintains the Clock Lane output regardless of the Data Lane operation.

This bit can be rewritten when [STATUS].BUSY is set.

Set this register before setting [STARTCNTRL].START = 1. Do not change this register after START = 1 is set.

Tx Control Register 6.7

6.7.1 CSI Configuration Read Register(CSI_CONTROL: 0x040C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	Csi_mode		Rese	erved		HtxToEn	Rese	rved
Туре	RO		RO			RO	RO	
Default	1	0	1	1	1	1	()
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name	TxMd	Reserved	HsCkMd	Rese	rved	NOL	[1:0]	EoTDis
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0

Table 6-65 CSI Control Register

Register Field	Bit	Description
CSI_mode	15	CSI Mode Selection 0: Reserved 1: CSI MOde
Reserved	[14:11]	Reserved
HtxToEn	10	HSTX_TO_EN 0: Disables the HTX_TO timer. 1: Enables the HTX_TO timer.

TC358746A/748XBG Functional Spec

Page 92 of 118

Reserved	[9:8]	
TxMd	7	TXMODE 0: Low power transfer is performed to Tx. 1: High-Speed data transfer is performed to Tx.
Reserved	6	
HsCkMd	5	HSCLOCKMODE 0: Operation is in the discontinuous clock mode. 1: Operation is in the continuous clock mode.
Reserved	[4:3]	
NOL	[2:1]	NOL This field specifies the number of HS lanes. This field is also used as the LP Lane Enable setting. Data Lane 0 is used as the Enable for LP communication and ULPS. Data Lane 1 or higher is used as the Enable for ULPS. This setting can only be made during initial setup or during reset. 00: Only Data Lane 0 is used. 01: Data Lanes 0 and 1 are used. 10: Data Lanes from 0 to 2 are used. 11: Data Lanes 0 to 3 are used.
EoTDis	0	EOT_DISABLE 0: The EOT packet is automatically granted at the end of HS transfer then is transmitted. 1: The EOT packet is not automatically granted at the end of HS transfer and is not transmitted.

Only indirect writing, i.e. write to CSI_CONFW Register is possible.

6.7.2 CSI STATUS Register (CSI_STATUS: 0x0410)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name			Reserved			WSync	TxAct	RxAct		
Туре			RO			RO	RO	RO		
Default			0xX	0	0	0				
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name				Reserved				Hlt		
Туре		RO								
Default				0x0X				0		

Table 6-66 CSI STATUS Register

Register Field	Bit	Default	Description
Reserved	[15:11]	Х	
WSync	10	0	Wait Sync Signal This bit indicates that the CSI-TX module is waiting for a particular Sync signal
TxAct	9	0	Transmitter Active This bit indicates that the CSI-TX module is in the Transmit mode.
RxAct	8	0	Receiver Active This bit indicates that the CSI-TX module is in the Receive mode.
Reserved	[7:1]	Х	

TC358746A/748XBG Functional Spec

Page 93 of 118

Register Field	Bit	Default	Description
Hlt	0	0	Halted The CSI-TX module is stopped by either an error or a pause request.

6.7.3 CSI_INT Register (CSI_INT: 0x0414)

Bit	B31	B30	B29	B28	B27	B26	B25	B24					
Name				Res	erved								
Туре		RO											
Default		0x00											
Bit	B23	B22	B21	B20	B19	B18	B17	B16					
Name			Reserved			IntAck	Rese	erved					
Туре	RO				RO	RO							
Default			0x00			0 0x00							
Bit	B15	B14	B13	B12	B11	B10	В9	B8					
Name				Res	erved								
Туре				F	RO								
Default				0:	(00								
Bit	В7	В6	B5	B4	В3	B2	B1	В0					
Name	·	Rese	erved	·	IntHlt	IntEr	Rese	erved					
Туре		R	KO		RO	RO	R	Ю.					
Default		0>	(00		0	0		0					

Table 6-67 CSI_INT Register

Register Field	Bit	Default	Description
Reserved	[31:19]	0x0	
IntAk	18	0x0	INT_ACK This bit indicates that the Acknowledge trigger has been received.
Reserved	[17:4]	0x0	
IntHlt	3	0x0	INT_HALTED The CSI-TX module was stopped by an error or a pause request.
IntEr	2	0x0	INT_CSI_ERR An interrupt was requested by a CSI_ERR register error.
Reserved	[1:0]	0x0	

Each bit can indirectly clear a register value either when "1" is written to the bit of each corresponding CSI_INT_CLR register.

6.7.4 CSI_INT_ENA Register (CSI_INT_ENA: 0x0418)

Bit	B31	B30	B29	B28	B27	B26	B25	B24	
Name		Reserved							
Туре				R	0				

TC358746A/748XBG Functional Spec

Page 94 of 118

Default		0x00									
Bit	B23	B23 B22 B21 B20 B19 B18 B17 B16									
Name	Reserved IEnAk Reserved										
Туре			RO			RO	R	0			
Default			0x00			0	0:	x0			
Bit	B15	B14	B13	B12	B11	B10	В9	B8			
Name	Reserved										
Туре				F	RO						
Default				0:	(00						
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name		Rese	erved		IEnHlt	IEnEr	Rese	rved			
Туре		R	.0		RO	RO	R	0			
Default		0:	x0		0	0	0:	x0			

Table 6-68 CSI_INT_ENA Register

Register Field	Bit	Default	Description
Reserved	[31:19]	0x0	
IEnAk	18	0x0	INTENA_ACK This bit enables interrupt notification by INT_ACK sources.
Reserved	[17:4]	0x0	
IEnHlt	3	0x0	INTENA_HALTED This bit enables interrupt notification by INT_HALTED sources.
IEnEr	2	0x0	INTENA_CSI_ERR This bit enables interrupt notification by INT_CSI_ERR sources.
Reserved	[1:0]	0x0	

Only indirect writing, i.e. write to CSI_CONFW with [Addr] = 0x06.

6.7.5 CSI_ERR Register (CSI_ERR: 0x044C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			InEr	WCEr				
Type			R	0			RO	RO
Default			0x	00			0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name	SynTo	RxFRdEr	TeEr	QUnk	QWrEr	HTxTo	HTxBrk	Cntn
Туре	RO	RO	RO	RO	RO			
Default	0	0	0	0	0	0	0	0

Table 6-29 CSI_ERR Register

Register Field	Bit	Default	Description
Reserved	[31:10]	0x0	

TC358746A/748XBG Functional Spec

Page 95 of 118

In En	0	00	INTERNAL_ERROR
InEr	9	0x0	This bit indicates that another internal error occurred.
WCEr	8	0x0	WC_ERROR This bit indicates that more bytes than expected were received from the PDIF. Because distinguishing the current data from the next payload data of continuous transfers is difficult when the last payload data is 4-byte aligned, this error is not detected.
SynTo	7	0x0	SYNC_TO This bit indicates that a synchronous wait timeout occurred.
RxFRdEr	6	0x0	RXFIFO_RDERR This bit indicates that an empty Receive FIFO was read.
TeEr	5	0x0	TE_ERROR This bit indicates that the peripheral interface did not transmit the tearing trigger the CSI-TX module is expecting.
QUnk	4	0x0	CQ_UNKNOWN This bit indicates that an unknown command or incorrect parameter was detected by the command queue.
QWrEr	3	0x0	CQ_WRERR This bit indicates that Write access to a full command queue occurred.
НТхТо	2	0x0	HTX_TO This bit indicates that a High-Speed TX timeout occurred.
HTxBrk	1	0x0	HSTX_BROKEN This bit indicates that the byte stream was disrupted during High-Speed transfer.
Cntn	0	0x0	CONTENTION This bit indicates that a contention was detected during lower power transfer.

The content of the CSI_ERR register is cleared by reading it out.

6.7.6 CSI_ERR_INTENA (CSI_ERR_INTENA: 0x0450)

Bit	B15 B14 B13 B12 B11 B10							B8		
Name		Reserved CSI_ERR_INTENA								
Туре		RO RO								
Default			0x	:00			()		
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name				CSI_ERR_II	NTENA[7:0]					
Туре		RO								
Default				0x	00					

Table 6-69 CSI_ERR_INTENA Register

Register Field	Bit	Default	Description
Reserved	[31:10]	0x0	
CSI_ERR_INTENA	[9:0]	0x0 (??)	CSI_ERR_INTENA This field controls interrupt generation for when an error has been reported to the CSI_ERR register. Generation of the CSI_ERR_INT interrupt which corresponds to the CSI_ERR register error is enabled.

Only indirect writing, i.e. write to CSI_CONFW with [Addr] = 0x14.

Page 96 of 118

6.7.7 CSI_ERR_HALT Register(CSI_ERR_HALT: 0x0454)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name			CSI_ERR_HALT[9:8]							
Туре		RO RO								
Default		0x00 0								
Bit	B7	В6	B5	B4	В3	B2	B1	В0		
Name				CSI_ERR_	HALT[7:0]					
Туре		RO								
Default				0×	00					

Table 6-70 CSI_ERR_HALT Register

Register Field	Bit	Default	Description
Reserved	[31:10]	0x0	
CSI_ERR_HALT	[9:0]	0x0 (??)	CSI_ERR_HALT This field controls CSI-TX operation for when an error is reported to the CSI_ERR register. The CSI-TX module stops command processing when it receives an error corresponding to the set bits in the CSI_ERR_INTENA and CSI_ERR_HALT registers. (??)

Only indirect writing, i.e. write to CSI_CONFW with [Addr] = 0x15.

6.7.8 CSI Configuration Register (CSI_CONFW: 0x0500)

Bit	B31	B30	B29	B28	B27	B26	B25	B24			
Name		MODE			Address						
Туре	WO	WO	WO	WO	WO	WO	WO	WO			
Default	0	0	0	0	0	0	0	0			
Bit	B23	B22	B21	B20	B19	B18	B17	B16			
Name				Reserve	d[23:16]						
Туре	WO	WO	WO	WO	WO	WO	WO	WO			
Default	0	0	0	0	0	0	0	0			
Bit	B15	B14	B13	B12	B11	B10	B9	B8			
Name				DATA	[15:8]						
Туре	WO	WO	WO	WO	WO	WO	WO	WO			
Default	0	0	0	0	0	0	0	0			
Bit	B7	B6	B5	B4	B3	B2	B1	B0			
Name		DATA[7:0]									
Туре	WO	WO	WO	WO	WO	WO	WO	WO			
Default	0	0	0	0	0	0	0	0			

Table 6-71 CSI Configuration Write Register

Page 97 of 118

Register Field	Bit	Description
MODE	[31:29]	Set or Clear AddrReg (register specified in Address field) Bits 3'b101: Set Register Bits in AddRegas indicated in DATA field 3'b110: Clear Register Bits in AddRegas indicated in DATA field Others: Reserved
Address	[28:24]	Address Field 0x03: CSI_Control Register 0x06: CSI_INT_ENA Register 0x14: CSI_ERR_INTENA Register 0x15: CSI_ERR_ HALT Register Others: Reserved
Reserved	[23:16]	
DATA	[15:0]	DATA Field When location DATA[n] is set to '1', the corresponding bit at AddrReg[n] will be cleared or set depending on MODE bits described above. Multiples bits can be set simultaneously

Note: Write to CSI_CONFW Register results to changes in corresponding bit changed in AddrReg Register.

6.7.9 CSI LP Command (CSI_LPCMD: 0x0500)

Bit	B31	B30	B29	B28	B27	B26	B25	B24	
Name				LP Con	nmand				
Туре	WO	wo wo wo wo wo wo							
Default	0	0	1	1	0	0	0	0	
Bit	B23	B22	B21	B20	B19	B18	B17	B16	
Name				Reserve	d[23:16]				
Туре				W	0				
Default				0x	XX				
Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name				Reserve	ed[15:8]				
Туре				W	' O				
Default				0x	XX				
Bit	В7	В6	B5	B4	В3	B2	B1	В0	
Name		LANE_ENA LP_Code							
Туре	WO	wo wo wo wo							
Default	0	0	0	0	0		0		

Note: This command share the same register as CSI_CONFW. It is in LP command mode when [31:24] = 0x 30

Table 6-72 CSI Configuration Write Register

Register Field	Bit	Default	Description
LPCommand	[31:24]	0x0	LP Command Mode Selection 8'h30: Set Register Bits to this value to enable LP Command mode Others: Reserved
Reserved	[23:8]	0x0	Reserved

TC358746A/748XBG Functional Spec

Page 98 of 118

r			
LANE_ENA	[7:3]	0x0	LANE Enable Field This Lane Enable is only used by LPC_CODE 000 (ULPS transition) and 001 (LP Stop transition). Select the following Lanes within the range of Lanes set to "Enable" by CSI_CONTROL[NOL]. Do not set ULPS transition and LP Stop transition for Lanes that have not been set to "Enable" by the NOL bit. LANE_ENA[3]: Select Clock Lanes LANE_ENA[4]: Select Lane 0 LANE_ENA[5]: Select Lane 1
			LANE_ENA[6]: Select Lane 2 LANE_ENA[7]: Select Lane 3
LP_CODE	[2:0]	0x0	 000: The Lane indicated by LANE_ENA transitions to ULPS (the ultra low power state). 001: The Lane indicated by LANE_ENA transitions to the LP stop state. 010: A remote application reset trigger is transmitted to Lane 0. Then, Lane 0 returns to the LP stop state. The state of other Lanes is not affected. 011: Bus direction change (BTA) is executed on Lane 0. After BTA, Lane 0 returns to the LP Stop state. Other Lanes are not affected. Others: Reserved

Note: Setting 0x0500 = 0x300000F8 with put the clock lane and 4 data lanes into ULPS mode.

While sending any packet during ULPS mode will cause CSI link to exit ULPS mode

6.7.10 CSI_RESET Register (CSI_RESET: 0x0504)

Bit	В7	В6	B5	B4	В3	B2	B1	В0	
Name		Reserved							
Туре			R/W	R/W					
Default			0x	:00			0	0	

Table 6-73 CSI_RESET Register

Register Field	Bit	Default	Description
Reserved	[31:2]	0x0	
RstCnf	1	0x0	RST_CONF 0: Operation is not affected. 1: The setting register is reset.
RstMdl	0	0x0	RST_MODULE Do not set this bit to "1". Perform a hardware reset when a CSITX block reset is necessary. Use this bit when resetting the sub modules inside this block (CSI layer). The PHY layer or the application layer blocks are not reset. 0: Operation is not affected. 1: Modules inside the CSI layer are reset.

6.7.11 CSI_INT_CLR Register(CSI_INT_CLR: 0x050C)

Bit	B31	B30	B29	B28	B27	B26	B25	B24	
Name		Reserved							
Туре				R	0				
Default				()				

TC358746A/748XBG Functional Spec

Page 99 of 118

Bit	B23	B22	B21	B20	B19	B18	B17	B16	
Name	Reserved ICrAk Res							rved	
Туре		RO WO RO							
Default			0			0	()	
Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name				Rese	erved				
Туре				F	KO				
Default					0				
Bit	В7	В6	B5	B4	B3	B2	B1	В0	
Name	Reserved ICrHlt ICrEr Reserve						rved		
Туре		RO WO WO RO							
Default			0	•	0	0	()	

Table 6-74 CSI_INT_CLR Register

Register Field	Bit	Default	Description
Reserved	[31:19]	0x0	
			INTCLR_ACK
ICrAk	18	0x0	0: Operation is not affected.
			1: The INT_ACK interrupt is cleared.
Reserved	[17:4]	0x0	
			INTCLR_HALTED
ICrHlt	3	0x0	0: Operation is not affected.
			1: The INT_HALTED interrupt is cleared.
			INTCLR_CSI_ERR
ICrEr	2	0x0	0: Operation is not affected.
			1: The INT_CSI_ERR interrupt is cleared.
Reserved	[1:0]	0x0	

6.7.12 CSI_START (CSI_START: 0x0518)

Bit	B7	В6	B5	B4	В3	B2	B1	В0	
Name		Reserved[7:1]							
Туре	RO	RO	RO	RO	RO	RO	RO	WO	
Default	0	0	0	0	0	0	0	0	

Table 6-75 CSI2_START

Register Field	Bit	Description
Reserved	[31:1]	

6.8 **TxDebug Register**

6.8.1 Debug Active Line Count Register (DBG_LCNT: 0x00E0)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name	db_wsram	db_cen	Reserved				db_alcnt[9:8]		
Type	R/W	R/W		RO RW					
Default	0x0	0x0		0x0 0x1					
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name		-		db_alo	nt[7:0]				
Type		RW							
Default				0:	x0				

Debug Active Video Line Count Register

Register Field	Bit	Description		
db_wsram	[15]	Debug Video Buffer 0: normal 1: enable I2C/SPI write to VB sram		
db_cen	[14]	Debug csitx mode enable 0: Normal mode 1: Debug mode (enable color bar logic)		
Reserved	[13:10]			
db_alcnt	[9:0]	Debug Active Line Count 10'h0: 1 line 10'h1: 2 line 10'h3FF: 1024 line		

Debug Line Width Register (DBG_Width: 0x00E2)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Re	served		Db_width[11:8]			
Type	RO				R/W			
Default	0x0			0x1				
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		Db_awcnt[7:0]						
Type		R/W						
Default					0x0		•	

Debug Video Line Word Count Register

Register Field	Bit	Description
Reserved	[15:12]	
Db_width	[11:0]	Debug Total byte count in a line (include blank period) 12'h0: 1 byte 12'h1: 2 bytes 12'hFFF: 4096 bytes

Debug Vertical Blank Line Count Register (DBG_VBlank: 0x00E4)

Bit	B15	B14	B13	B12	B11	B10	B9	B8

TC358746A/748XBG Functional Spec

Page 101 of 118

Name		Reserved						
Туре		RO						
Default		0x0						
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	Reserved		Db vb[6:0]					
Туре	RO		R/W					
Default	0x0				0x10			

Debug Vertical Blank Register

Register Field	Bit	Description
Reserved	[15:7]	
Db_vb	[6:0]	Debug Vertical Blank line 7'h0: 1 line 7'h1: 2 line 7'7F:128 line

6.8.4 Debug Video Data Register (DBG_Data: 0x00E8)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Db_data[15:8]						
Type		WO						
Default					0xX			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		Db_data[7:0]						
Туре	WO							
Default					0xX			

Debug Video Data Register

Register Field	Bit	Description
Db_data	[15:0]	Data will be written into Video FIFO in continuous. Note: must be in multiple of 4 bytes

		CSI_START
		0: The clock is not supplied to modules other than CONIF.
		1: The clock is supplied to all modules.
C+r+		When "1" is written to this bit, the clock is supplied to modules other than the
Strt	0	CSI2-TX CONIF. To start CSI2-TX operation, set this bit to "1" after a reset is
		performed. This bit must be set to "1" even when accessing registers other than
		CSI2_START. Once this bit is set to "1", writing of "0" is not allowed. Perform a
		reset to change this bit from "1" to "0".

7 **Package**

7.1 TC358746A Package

The packages for TC358746AXBG are described in the figures below.

Figure 7-1 P-VFBGA72-0404-0.40A3 package

Table 7-1P-VFBGA72-0404-0.40A3 Mechanical Dimension

Dimension	Min.	Тур.	Max.
Solder ball pitch		0.4 mm	
Solder ball height	0.15 mm	0.2 mm	0.205 mm
Package dimension		4.5 x 4.5 mm ²	
Package height			1.0 mm

7.2 TC358748 Package

The packages for TC358748XBG are described in the figures below.

Figure 7-2 P-VFBGA80-0707-0.65 package

Table 7-2 P-VFBGA80-0707-0.65 Mechanical Dimension

Dimension	Min.	Тур.	Max.
Solder ball pitch		0.65 mm	
Solder ball height	0.20 mm	0.25 mm	0.30 mm
Package dimension		7.0 x 7.0 mm ²	
Package height			1.0 mm

Electrical Characteristics 8

8.1 **Absolute Maximum Ratings**

VSS= 0V reference

Parameter	Symbol	Rating	Unit
Supply voltage (1.8V - Digital IO)	VDDIO	-0.3 ~ +3.9	V
Supply voltage (1.2V – Digital Core)	VDDC	-0.3 ~ +1.8	V
Supply voltage (1.2V – MIPI CSI PHY)	VDD_MIPI	-0.3 ~ +1.8	V
Input voltage (CSI IO)	V _{IN_CSI}	-0.3 ~ VDD_MIPI+0.3	V
Output voltage (CSI IO)	V _{OUT_CSI}	-0.3 ~ VDD_MIPI+0.3	V
Input voltage (Digital IO)	V _{IN_IO}	-0.3 ~ VDDIO+0.3	V
Output voltage (Digital IO)	V _{OUT_IO}	-0.3 ~ VDDIO+0.3	V
Juntion temperature	Tj	125	°C
Storage temperature	Tstg	-40 ~ +125	°C

8.2 Recommended Operating Condition

VSS= 0V reference

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (1.8V – Digital IO)	VDDIO	1.65	1.8	1.95	V
Supply voltage (3.3V – Digital IO)	VDDIO	3.0	3.3	3.6	V
Supply voltage (1.2V – Digital Core)	VDDC	1.1	1.2	1.3	V
Supply voltage (1.2V – MIPI CSI PHY)	VDD_MIPI	1.1	1.2	1.3	V
Operating temperature (ambient temperature with voltage applied)	Та	-30	+25	+85	°C
Supply Noise Voltage	V _{SN}			100	mV_{pp}

8.3 **DC Electrical Specification**

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input voltage, High levelinput	V _{IH}	0.7 VDDIO		VDDIO	V
Input voltage, Low levelinput	V _{IL}	0		0.3 VDDIO	V
Input voltage High level CMOS Schmitt Trigger Note1,2	V _{IHS}	0.7 VDDIO		VDDIO	V
Input voltage Low level CMOS Schmitt Trigger Note1,2	V _{ILS}	0		0.3 VDDIO	V

Output voltage High level Note1, Note2 (Condition: I _{OH} = -0.4mA)	V _{OH}	0.8 VDDIO		VDDIO	V
Output voltage Low level Note1, Note2 (Condition: IOL = 2mA)	V _{OL}	0		0.2 VDDIO	V
Input leak current, High level (Normal IO or Pull-up IO) (Condition: $V_{IN} = +VDDIO$, $VDDIO = 3.6V$)	I _{ILH1} (Note4)	-10	-	10	uA
Input leak current,High level (Pull-down IO) (Condition: V _{IN} = +VDDIO, VDDIO = 3.6V)	I _{ILH2} (Note4)		-	100	uA
Input leak current,Low level (Normal IO or Pull-down IO) (Condition: $V_{IN} = 0V$, VDDIO = 3.6V)	I _{ILL1} (Note5)	-10	-	10	uA
Input leak current,Low level (Pull-up IO) (Condition: V _{IN} = 0V, VDDIO = 3.6V)	I _{ILL2} (Note5)	-	-	200	uA

Note1 :Each power source is operating within recommended operation condition.

Note2 :Current output value is specified to each IO buffer individually. Output voltage changes with output current value.

Note4: Normal pin or Pull-up IO pin applied VDDIO supply voltage to Vin (input voltage)

Note5 :Normal pin or Pull-down IO pin applied VSSIO (0V) to Vin (input voltage)

9 Timing Definitions

9.1 MIPI CSI - 2 Timings

Timing specification below has been ported from MIPI Alliance specification for D-PHY version 01-00-00. Timing defined in MIPI Alliance specification for D-PHY version 01-00-00 has precedence over timing described in the sections below.

Figure 9-1 Signaling and voltage levels

Table 9-1 MIPI TX DC specifications

Description	Min	Nom	Max	Units	Notes			
HS mode								
HS transmit static common								
mode	150	200	250	mV	1			
ŭ								
			5	m\/	2			
is Differential-1 or Differential-0			3	111 V	2			
HS transmit differential voltage	140	200	270	mV	1			
VOD mismatch when output is			10	m\/	2			
Differential-1 or Differential-0			10	IIIV	۷			
HS output high voltage			360	mV				
Single ended output impedance	40	50	62.5	Ω				
Single ended output impedance			10	0/				
mismatch			10	70				
LF	P Mode							
Thevenin output high level	1.1	1.2	1.3	V				
Thevenin output low level	-50		50	mV				
Output impedance of LP	110			Ω	3			
	HS HS transmit static common mode voltage VCMTX mismatch when output is Differential-1 or Differential-0 HS transmit differential voltage VOD mismatch when output is Differential-1 or Differential-0 HS output high voltage Single ended output impedance Single ended output impedance mismatch Lf Thevenin output high level Thevenin output low level	HS mode HS transmit static common mode voltage VCMTX mismatch when output is Differential-1 or Differential-0 HS transmit differential voltage 140 VOD mismatch when output is Differential-1 or Differential-0 HS output high voltage Single ended output impedance 40 Single ended output impedance mismatch LP Mode Thevenin output high level 1.1 Thevenin output low level -50 Output impedance of LP 110	HS mode HS transmit static common mode 150 200 Voltage VCMTX mismatch when output is Differential-1 or Differential-0 HS transmit differential voltage 140 200 VOD mismatch when output is Differential-1 or Differential-0 HS output high voltage Single ended output impedance 40 50 Single ended output impedance mismatch LP Mode Thevenin output high level 1.1 1.2 Thevenin output low level -50 Output impedance of LP 110	HS mode HS transmit static common mode 150 200 250 voltage VCMTX mismatch when output is Differential-1 or Differential-0 HS transmit differential voltage 140 200 270 VOD mismatch when output is Differential-1 or Differential-0 HS output high voltage 360 Single ended output impedance 40 50 62.5 Single ended output impedance mismatch LP Mode Thevenin output high level 1.1 1.2 1.3 Thevenin output low level -50 50 Output impedance of LP 110	HS mode HS transmit static common mode 150 200 250 mV voltage VCMTX mismatch when output is Differential-1 or Differential-0 HS transmit differential voltage 140 200 270 mV VOD mismatch when output is Differential-1 or Differential-0 HS output high voltage 360 mV Single ended output impedance 40 50 62.5 Ω Single ended output impedance mismatch LP Mode Thevenin output low level -50 50 mV Output impedance of LP 110			

Notes:

- 1. Value when driving into load impedance anywhere in the ZID range.
- 2. It is recommended the implementer minimize ΔVOD and $\Delta VCMTX(1,0)$ in order to minimize radiation and optimize signal integrity.

Confidential

Though no maximum value for ZOLP is specified, the LP transmitter output impedance shall ensure the TRLP/TFLP specification is met.

Parameter	Description	Min	Nom	Max	Units	Notes
V_{PIN}	Pin signal voltage range	-50		1350	mV	
V _{PIN(absmax)}	Transient pin voltage	-0.15		1.45	V	
T _{VPIN(absmax)}	Maximum transient time			20	ns	3
	above $V_{PIN(absmax)}$ or below					
	V _{PIN(absmax)} .					
V_{OH}	Thevenin output high level	1.1	1.2	1.3	V	
V_{IH}	Logic 1 input voltage	880			mV	
V _{IL}	Logic 0 input voltage, not in ULP State			550	mV	
V _{IL-ULPS}	Logic 0 input voltage, ULP State			300	mV	
$V_{CMRX(DC)}$	Common-mode voltage HS receiver mode	70		330	mV	1,2
V_{IDTH}	Differential input high threshold			70	mV	
V _{IDTL}	Differential input low threshold	-70			mV	
V _{IHHS}	Single-ended input high voltage			460	mV	1
V _{ILHS}	Single-ended input low voltage	-40			mV	1

Table 9-2 MIPI Rx DC specifications

Notes:

- 4. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.
- 5. This table value included a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz.
- 6. The voltage undershoot or overshoot beyond V_{PIN} is only allowed during a single 20 ns window after any LP-0 LP-1 transition or vice versa. For all other situations it must stay within the V_{PIN} range.

Table 9-3 MIPI High Speed Tx AC specifications

Parameter	Description	Min	Nom	Max	Units	Notes
ΔVCMTX(HF)	Common-level variations above 450MHz			15	mVRMS	
ΔVCMTX(LF)	Common-level variation between 50-450MHz			25	mVPEAK	
tR and tF	20%-80% rise time and fall time			0.3	UI	1
		150			ps	

Notes:

1. UI is equal to 1/(2*fh). See section 7.3 for the definition of fh.

Confidential

Page 110 of 118

Parameter	Description		Min	Nom	Max	Units	Notes
TRLP/TFLP	15%-85% rise	time and fall time			25	ns	1
TREOT	30%-85% rise	time and fall time			35	ns	1, 5, 6
	Pulse width of the LP exclusive-OR clock	First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state	40			ns	4
		All other pulses	20			ns	4
TLP-PER-TX		LP exclusive-OR clock	90			ns	
	Slew rate @	CLOAD = 0pF	30		500	mV/ns	1,2,3,7
δV/δtSR	Slew rate @	CLOAD = 5pF	30		200	mV/ns	1,2,3,7
UV/UISK	Slew rate @	CLOAD = 20pF	30		150	mV/ns	1,2,3,7
	Slew rate @	CLOAD = 70pF	30		100	mV/ns	1,2,3,7
CLOAD	Load ca	apacitance	0		70	pF	1

Table 9-4 MIPI Low Power Tx AC characteristics

Notes:

- CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.
- 2. When the output voltage is between 15% and below 85% of the fully settled LP signal levels.
- 3. Measured as average across any 50 mV segment of the output signal transition.
- 4. This parameter value can be lower than TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior.
- 5. The rise-time of TREOT starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.
- 6. With an additional load capacitance CCM between 0-60pF on the termination center tap at RX side of the Lane
- 7. This value represents a corner point in a piecewise linear curve.

Parameter	Description	Min	Nom	Max	Units	Notes
$\Delta V_{\text{CMRX(HF)}}$	Common-mode interference beyond 450MHz			100	mV	2
$\Delta V_{\text{CMRX(LF)}}$	Common-mode interference 50MHz- 450MHz	-50		50	mV	1,3

Notes:

- Excluding `static' ground shift of 50mV
- 2. $\Delta V_{CMRX(HF)}$ is the peak amplitude of a sine wave superimposed on the receiver inputs.

Confidential

Page 111 of 118

3. Voltage difference compared to the DC average common-mode potential.

Figure 9-2 Input Glitch Rejection

Table 9-6 MIPI Low Power Rx AC characteristics

Parameter	Description	Min	Nom	Max	Units	Notes
e _{SPIKE}	Input pulse rejection			300	V.ps	1,2,3
T_{MIN-RX}	Minimum pulse width response	20			ns	4
V _{INT}	Peak interference amplitude			200	mV	
F _{INT}	Interference frequency	450			MHz	
T_{LPX}	Length of any Low Power state period	50			ns	

Notes:

- 1. Time-voltage integration of a spike above $V_{\text{\tiny IL}}$ when being in LP-0 or below $V_{\text{\tiny IH}}$ when being in LP-1 state.
- 2. An impulse less than this will not change the receiver state.
- 3. In addition to the required glitch rejection, implementers shall ensure rejection of known RFinterferers.
- 4. An input pulse greater than this shall toggle the output.

Figure 9-3 Data to clock timing reference

Table 9-7 Data-Clock timing specification

Parameter	Description	Min	Nom	Max	Units	Notes
T _{SKEW}	Data to clock skew measured at the transmitter	-0.15		0.15	UI _{INST}	
T _{SETUP}	Data to clock setup time at receiver	0.15			UI _{INST}	
T_{HOLD}	clock to data hold time at receiver	0.15			UI _{INST}	
UI _{INST}	1 Data bit time (instantaneous)			12.5	ns	
T _{CLKp}	Period of dual data rate clock	2	2	2	UI _{INST}	

9.2 **I2C Timings**

Table 9-8 I2C Timing

ltem	Symbol	Min	Max	Unit
SCL clock frequency	f _{SCL}	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	0.6	-	μs
LOW period of the SCL clock	t_{LOW}	1.3	-	μs
HIGH period of the SCL clock	t _{HIGH}	0.6	-	μs
Set-up time for a repeated START condition	t _{SU;STA}	0.6	-	μs
Data hold time:for I2C-bus devices	t _{HD;DAT}	0	0.9	μs
Data set-up time	t _{SU;DAT}	100	-	ns
Rise time of both SDA and SCL signals	t _r	20+0.1Cb	300	ns
Fall time of both SDA and SCL signals	t _f	20+0.1Cb	300	ns
Set-up time for STOP condition	t _{su;sto}	0.6	-	μs
Bus free time between a STOP and START condition	t _{BUF}	1.3	-	μs

Note: Cb = Capacitive load for each bus line (400pF max.)

9.3 **Parallel Port Output Timings**

Table 9-9 Parallel Output timing

Parameter	Description	Min.	Тур.	Max.	Units
T_{pdOUT}	Output data propagation time	1	-	6	ns

Notes: Maximum loading of PCLK, DATA, HVALID, VVALID are 10pF

Figure 9-4 Parallel Output timing (ConfCtl.PLCKP = 0)

Figure 9-5 Parallel Output timing (ConfCtl.PLCKP = 1)

9.4 **Parallel Port Input Timings**

Table 9-10 Parallel Input timing

Parameter	Description	Min.	Тур.	Max.	Units
T _{pd:SU}	Setup time of data	2.0	-	-	ns
$T_{pd:HD}$	Hold time of data	1.0	-	-	ns
$T_{pd:CLK}$	Clock period	6.0	-	-	ns

Figure 9-6 Parallel Input timing

9.5 **SPI Input/Output Timings**

Table 9-11 SPI timing

Parameter	Symbol	Min	Тур	Max	Unit
SPI Clock Frequency	f_{SEIS}			25	MHz
Clock to Data (MISO) Valid Time	t _{SOD}			15	ns
Clock to Data (MISO) Invalid Time	t _{SOH}	0		_	ns
Data in (MOSI) Setup Time	t _{SIS}	5		_	ns
Data in (MOSI) Hold Time	t _{SIH}	5		_	ns
Slave Select to Data (MISO) Valid Time	t _{SSDV}			25 ¹	ns
Slave Select to Clock	t _{SSTC}	3/f _{SYS}		_	ns
Consecutive Transfer Delay Time	t _{CTDT}	1/f _{SEIS}		_	ns
Load on SEI Interface Signals	C _{IF}			10	pF

Notes: Maximum loading of MISO is 10pF

Figure 9-7 SPI timing (data valid on second active clock edge)

RESTRICTIONS ON PRODUCT USE

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except
 in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.