In the name of God

Advanced Mathematics I

Sharif University of Technology

Department of Aerospace engineering

Instructor: Dr.A.Emami Problem Set #1-Fall 2023 Due Date: 20/10/2023

1. Illustrate the use of the Gauss reduction in obtaining the general solution of each of the following sets of equations:

$$I)2x_1 + x_3 = 4,x_1 - 2x_2 + 2x_3 = 7,3x_1 + 2x_2 = 1$$

$$II)2x_1 - x_2 = 6,$$

$$-x_1 + 3x_2 - 2x_3 = 1,$$

$$-2x_2 + 4x_3 - 3x_4 = -2,$$

$$-3x_3 + 5x_4 = 1$$

2. If A and B are $n \times n$ matrices, when is it true that:

$$(A+B)(A-B) = A^2 - B^2$$

Give an example in which this relation does not hold.

3. Determine those values λ for which the following set of equations may possess a nontrivial solution:

$$3x_1 + x_2 - \lambda x_3 = 0,$$

$$4x_1 - 2x_2 - 3x_3 = 0,$$

$$2\lambda x_1 + 4x_2 + \lambda x_3 = 0$$

For each permissible value of $\boldsymbol{\lambda}$, determine the most general solution.

- **4.** Let A and B represent diagonal matrices of order n.
 - a) Prove that A B is also a diagonal matrix.
 - b) Prove that BA = AB.
- 5. a)Show that the set

$$2x_1 - 2x_2 + x_3 = \lambda x_1,$$

$$2x_1 - 3x_2 + 2x_3 = \lambda x_2,$$

$$-x_1 + 2x_2 = \lambda x_3$$

can possess a nontrivial solution only if $\lambda = 1$ or $\lambda = -3$

- b) Obtain the general solution in each case.
- **6.** a) If $a_{ij} = r_i s_j$, prove that $A = [a_{ij}]$ is of rank one or zero.
 - b) If $A = [a_{ij}]$ is of rank one, prove that a_{ij} can be writen as $r_i s_j$.
- **7.** If $D = [d_i \delta_{ij}]$ is a nonsingular diagonal matrix, prove that its invers e is given by: (δ_{ij} is a function of two variables, The function is 1 if the variables are equal, and 0 otherwise)

$$D^{-1} = \left[\frac{1}{d_i}\delta_{ij}\right].$$

Good Luck