Функции на две променливи

Основни дефиниции и теореми

1. Разстояние

Разстояние между точките $P_1 = (x_1, y_1)$ и $P_2 = (x_2, y_2)$.

$$\rho(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

2. Граница на редица от точки в метрично пространство

Казваме, че редицата от точки $P_n = (x_n, y_n)$ клони към $P_0(x_0; y_0)$, ако

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\to 0.$$

Теорема: $P_n(x_n;y_n) \xrightarrow[n\to\infty]{} P(x_0;y_0)$ тогава и само тогава, когато $x_n \to x_0$ и $y_n \to y_0$.

3. Множества

Нека $P_0 = (x_0; y_0)$ е дадена точка от равнината и R е дадено число.

Множеството от всички точки $P(x;y) \in \mathbb{R}^2$, за които разстоянието $\sqrt{(x-x_0)^2+(y-y_0)^2} < R$ се нарича **отворен кръг** с център P_0 .

Дефиниция. Казваме, че множеството $A \subset \mathbb{R}^2$ е ограничено, ако съществува отворен кръг U, съдържащ всички точки на A.

Отрицание: Едно множество $A \subset \mathbb{R}^2$ не е ограничено, ако за всеки кръг U , съществува точка $P_U \in A$ и $P_U \not\in U$.

* Казваме, че точката $P(x_0;y_0)\!\in\!\mathbb{R}^2$ е **външна** за неограничено множеството $A\!\subset\!\mathbb{R}^2$, ако **съществува** кръг U с център P, който няма общи точки с A * Казваме, че точката $P(x_0;y_0)\!\in\!\mathbb{R}^2$ е **контурна** за множеството $A\!\subset\!\mathbb{R}^2$, ако **във**

* казваме, че точката $P(x_0; y_0) \in \mathbb{R}$ е контурна за множеството $A \subset \mathbb{R}$, ако във всеки кръг U с център P, който има общи точки с A и точки, които не принадлежат на A

Множеството V се нарича **отворено,** ако всичките му точки са вътрешни.

Множеството F се нарича **затворено**, ако съдържа всичките си контурни точки.

Множеството K се нарича **компактно**, ако е затворено и ограничено.

Цялото множеството \mathbb{R}^2 е и отворено и затворено.

Теорема. Множеството F е затворено, тогава и само тогава, контурн когато за всяка сходяща редица от точки $P_n \in F$, границата също принадлежи на F.

Теорема. Множеството K е **компактно,** тогава и само тогава, когато от всяка редица от точки $P_n \in K$ може да се избере сходяща подредица и за всяка сходяща редица от точки $P_n \in K$, границата ѝ също принадлежи на K.

4. Граница на функция

Нека функцията f(x; y) е дефинирана в множеството D.

Казваме, че функцията f(x;y) има граница A в точката $(x_0;y_0)$, ако за всяка сходяща редица от точки $(x_n; y_n) \in D$, клоняща към $(x_0; y_0)$, съответната редица от функционални стойности $f(x_n; y_n)$ клони към A.

Това записваме по следните начини:

Това записваме по следните начини:
$$(x;y) \to (x_0;y_0) \quad \Rightarrow f(x;y) \to A \quad ; \quad \lim_{(x;y) \to (x_0;y_0)} f(x;y) = A$$

$$P_n \rightarrow P_0 \Rightarrow f(P_n) \rightarrow A$$
 ; $\lim_{P \rightarrow P_0} f(x; y) = A$.

Забележка. Да обърнем внимание, че точката P_0 може да не принадлежи на D.

За да докажем, че функцията f(x; y) **няма** граница в точката $(x_0; y_0)$, ако трябва

- или да намерим една редица $(x_n; y_n) \in D$, клоняща към $(x_0; y_0)$, такава че редицата $f(x_n; y_n)$ **няма** граница
- или да намерим **две** редици $(x_n'; y_n') \in D$ и $(x_n''; y_n'')$, за които съответните функционални редици $f(x'_n; y'_n)$ и $f(x''_n; y''_n)$ имат различни граници.

4. Непрекъсната функция

Нека функцията f(x; y) е дефинирана в множеството D.

Казваме, че функцията f(x; y) е непрекъсната в точката $(x_0; y_0) \in D$, ако за всяка сходяща редица от точки $(x_n; y_n) \in D$, клоняща към $(x_0; y_0)$, съответната редица от функционални стойности $f(x_n; y_n)$ клони към $f(x_0; y_0)$.

Забележка. Да обърнем внимание, че точката P_0 **трябва** да принадлежи на D.

За да докажем, че функцията f(x; y) не е непрекъсната в точката $(x_0; y_0)$, трябва

- или да покажем, че f(x; y) н**яма** граница в точката $(x_0; y_0)$
- или да покажем, че има граница в точката $(x_0; y_0)$, **различна от** $f(x_0; y_0)$.

Задача 1. Дадена е функцията
$$f(x; y) = \frac{x+y}{x-y}$$
.

- а) Определете дефиниционното множество D на функцията. Определете контура на *D*. Определете дали множеството е отворено, затворено и компактно.
 - б) Докажете, че навсякъде в D функцията е непрекъсната.
 - в) Покажете, че в т. (0;0) функцията няма граница.

Решение. а) Функцията е дефинирана в множеството D, от точки с различни координати x и y, т.е. D се състои от всички точки в равнината \mathbb{R}^2 , не лежащи на правата p с уравнение y=x.

Множеството D е отворено – около всяка точка $P \in D$ може да се построи кръг, който няма общи точки с p.

Контурът на D е правата p – във всеки кръг около точка $Q \in p$ има както точки не принадлежащи на D (точките от правата), така и точки от D.

Tъй като контурът не принадлежи на D, множеството не е затворено и следователно не е компактно.

Очевидно D е неограничено.

б) Нека $P_0(x_0;y_0)\!\in\! D$, т.е. $x_0\!\neq\!y_0$ е . Да разгледаме произволна редица $P_n(x_n;y_n)\!\in\! D$, (т.е. $x_n\!\neq\!y_n$ за всяко n), $P_n(x_n;y_n)\!\to\! P(x_0;y_0)$. Съгласно теоремата $x_n\!\to\!x_0$ и $y_n\!\to\!y_0$ и от теоремите за граници на числови редици имаме

$$f(x_n; y_n) = \frac{x_n + y_n}{x_n - y_n} \Rightarrow \frac{x_0 + y_0}{x_0 - y_0} = f(x_0; y_0).$$

Това означава, че $f(x;y) = \frac{x+y}{x-y}$ е непрекъсната навсякъде в D.

Забележка. По същия начин се доказва, че всяка рационална функция е непрекъсната навсякъде в дефиниционната си област.

в) Нека
$$x_n \rightarrow 0$$
 и $y_n \neq 0$. Тогава $P_n(x_n;0) \in D$ и $P_n(x_n;0) \rightarrow (0;0)$

Нека $y_n \to 0$ и $x_n \neq 0$. Тогава $Q_n(0; y_n) \in D$ и $Q_n(0; y_n) \to (0; 0)$ и

$$f(0; y_n) = \frac{0 + y_n}{0 - y_n} = -1 \rightarrow -1.$$

Построихме **две** редици $P_n(x_n;0)$ и $Q_n(0;y_n)$, клонящи към (0;0), за които съответните функционални редици $f(x_n;0)$ и $f(0;y_n)$ имат различни граници, което означава, че функцията няма граница в точката (0;0).

Задача 2. Дадена е функцията
$$f(x; y) = \frac{(x^2 - y^2)\sqrt{4 - x^2 - y^2}}{x^2 + 2x - xy - 2y}$$
.

- а) Определете дефиниционното множество D на функцията. Определете контура на D. Определете дали множеството е отворено, затворено и компактно.
 - б) Определете точките, в които функцията е непрекъсната.
 - в) Покажете, че в т. Q(-1;1) функцията има граница.
 - г) Покажете, че в т. P(-2;0) функцията няма граница.

Решение. а) Функцията е дефинирана навсякъде, където

$$x^2 + 2x - xy - 2y \neq 0$$
 и $4 \geq x^2 + y^2$.

$$x^2+2x+xy+2y=(x+2)x+(x+2)y=0 \Leftrightarrow x+2=0$$
 или $x+y=0$.

Следователно дефиниционното множество D се състои от всички точки на затворения кръг с радиус 2 и център началото ($x^2+y^2\leq 4$), чиито координати удовлетворяват неравенствата $y+x\neq 0$ и $x\neq -2$ (вж. чертежа).

Контурът на множеството се състои от точките на окръжността $x^2+y^2=4$ и отсечката от правата y+x=0, лежащи в кръга. Тъй като част от контура се съдържа в D (например дъгата от окръжността в първи квадрант), част не принадлежи (отсечката от правата y+x=0), то множеството не е отворено, не е затворено, не е компактно.

Множеството е ограничено.

- б) Функцията е непрекъсната **навсякъде в дефиниционното множество** D (вж. предишната задача).
- в) Нека редицата точки $Q_n(x_n;y_n)\!\in\!D$ клони към Q(-1;1). Това означава, че $x_n^2+y_n^2\!\leq\!4$, $x_n+y_n\!\neq\!0$, $x_n\!\neq\!-2$ и $x_n\!\to\!-1$, $y_n\!\to\!1$. Тогава

$$f(x_n; y_n) = \frac{(x_n^2 - y_n^2)\sqrt{4 - x_n^2 - y_n^2}}{x^2 + 2x_n - x_n y_n - 2y_n} = \frac{(x_n - y_n)\sqrt{4 - x_n^2 - y_n^2}}{x_n + 2} \rightarrow \frac{-1 - 1}{-1 + 2}\sqrt{4 - (-1)^2 - 1^2} = -2\sqrt{2}.$$

Функцията има граница $-2\sqrt{2}$ в точката Q(-1;1).

г) Нека
$$x_n \to -2, -2 < x_n < -1.$$

Да разгледаме първо редицата $P_{_{\!n}}^{\,\prime}(x_{_{\!n}};0)\!\in\!D$ (точки върху оста ${\it Ox}$). Тогава

$$P_{n}'(x_{n};0) \rightarrow (-2;0)$$
 и

$$f(P_n') = f(x_n; 0) = \frac{(x_n^2 - y_n^2)\sqrt{4 - x_n^2 - y_n^2}}{x_n^2 + 2x_n - x_n y_n - 2y_n} = \frac{x_n \sqrt{4 - x_n^2}}{x_n + 2} = x_n \sqrt{\frac{2 - x_n}{x_n + 2}} \to \infty.$$

Сега да разгледаме редицата $P_n^{\,\prime\prime}(x_n;y_n)\!\in\! D$, където $y_n\!=\!\sqrt{4\!-\!x_n^2}$. Това е редица от точки по окръжността, клонящи към P(-2;0).

$$f(x_n; y_n) = f(P_n'') = \frac{(x_n^2 - y_n^2)\sqrt{4 - x_n^2 - y_n^2}}{x_n^2 + 2x_n - x_n y_n - 2y_n} = 0 \to 0.$$

Построихме две редици $P_n'(x_n;0)$ и $P_n''(x_n;y_n)$, клонящи към (-2;0), за които съответните функционални редици $f(x_n;0)$ и $f(x_n;y_n)$ имат различни граници, което означава, че функцията няма граница в точката (0;0).

Задача 3. Може ли да се избере числото A, така че функцията f(x; y), да бъде непрекъсната в точката (0;0), ако:

a)
$$f(x;y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{при } x^2 + y^2 \neq 0 \\ A & \text{при } x^2 + y^2 = 0 \end{cases}$$
;
6) $f(x;y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{при } x^2 + y^4 \neq 0 \\ A & \text{при } x^2 + y^4 = 0 \end{cases}$;
B) $f(x;y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{при } x^2 + y^2 \neq 0 \\ A & \text{при } x^2 + y^2 = 0 \end{cases}$.

Решение. а) Нека $x_n \rightarrow 0$, $x_n \neq 0$. Разглеждаме две редици, клонящи към

$$P_n'(x_n; x_n) \to (0;0) \Rightarrow f(P_n') = \frac{x_n x_n}{x_n^2 + x_n^2} = \frac{1}{2} \to \frac{1}{2} \text{ и}$$

$$P_n''(x_n; 2x_n) \to (0;0) \Rightarrow f(P_n'') = \frac{x_n \cdot 2x_n}{x_n^2 + (2x_n)^2} = \frac{2}{5} \to \frac{1}{2}.$$

Построихме две редици $P_n'(x_n;x_n)$ и $P_n''(x_n;2x_n)$, клонящи към (0;0), за които съответните функционални редици $f(x_n;x_n)$ и $f(x_n;2x_n)$ имат различни граници, което означава, че функцията няма граница в точката (0;0) и следователно не може да се избере число A, така че функцията да бъде непрекъсната.

б)) Нека $x_n \rightarrow 0$, $x_n \neq 0$. Разглеждаме две редици, клонящи към

$$P_n'(x_n; x_n) \to (0; 0)$$
 \Rightarrow $f(P_n') = \frac{x_n x_n^2}{x_n^2 + x_n^4} = \frac{x_n}{1 + x_n^2} \to 0$ и $P_n''(x_n^2; x_n) \to (0; 0)$ \Rightarrow $f(P_n'') = \frac{x_n^2 x_n^2}{x_n^4 + x_n^4} = \frac{1}{2} \to \frac{1}{2}$.

Построихме две редици $P_n'(x_n;x_n)$ и $P_n''(x_n^2;x_n)$, клонящи към (0;0), за които съответните функционални редици $f(x_n;x_n)$ и $f(x_n^2;x_n)$ имат различни граници, което означава, че функцията няма граница в точката (0;0) и следователно не може да се избере число A, така че функцията да бъде непрекъсната.

в) Ако, както в предишните примери се избират редици, всеки път ще се получава граница нула. Но това не означава, че функцията има граница.

Нека $P_n(x_n; y_n)$ е **произволна** редица от точки, клоняща към (0;0), и $x_n^2 + y_n^2 \neq 0$. Ше използваме неравенството

$$(|x_n| - |y_n|)^2 \ge 0 \quad \Leftrightarrow \quad |x_n|^2 - 2|x_n||y_n| + |y_n|^2 \ge 0 \quad \Leftrightarrow \quad |x_n y_n| \le \frac{x_n^2 + y_n^2}{2} . \text{ Оттук}$$

$$0 \le |f(x_n; y_n)| = \left| \frac{x_n y_n^2}{x_n^2 + y_n^2} \right| = \frac{|x_n y_n| . |y_n|}{x_n^2 + y_n^2} \le \frac{\frac{x_n^2 + y_n^2}{2} . |y_n|}{x_n^2 + y_n^2} \le \frac{|y_n|}{2} .$$

И от $P_n(x_n;y_n)$ \to (0;0) \Rightarrow y_n \to 0 следва, че $f(x_n;y_n)$ \to 0 (теорема за двамата полицаи).

Следователно функцията
$$f(x;y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{при } x^2 + y^2 \neq 0 \\ A & \text{при } x^2 + y^2 = 0 \end{cases}$$
 има граница 0 при

 $(x; y) \to 0$. За да бъде непрекъсната функцията числото A трябва да е равно на 0.

Задача 4. (за самостоятелна работа). За кои стойности на числото A е непрекъсната в точката (0;0) функцията

$$f(x;y) = \begin{cases} \frac{4x^4 + 4x^4}{25x^2 + 25y^2} & \text{при } x^2 + y^2 \neq 0\\ A & \text{при } x^2 + y^2 = 0 \end{cases}.$$

Задача 5. (за самостоятелна работа).

а) Нека
$$\begin{cases} x_n = \rho_n \cos \varphi_n \\ y_n = \rho_n \sin \varphi_n \end{cases}, \ \rho_n > 0.$$

Покажете, че $P_n(x_n; y_n) \rightarrow 0$ тогава и само тогава, когато $\rho_n \rightarrow 0$.

б) За кои стойности на числото A е непрекъсната в точката (0;0) функцията

$$f(x;y) = \begin{cases} \frac{1}{x^2 + y^2} e^{-\frac{1}{x^2 + y^2}} & \text{при } x^2 + y^2 \neq 0 \\ A & \text{при } x^2 + y^2 = 0 \end{cases}.$$

Задача 6. (за самостоятелна работа). Съществува ли число A така че функцията

$$f(x;y) = \begin{cases} \frac{x^4 - y^4}{x^4 + y^4} & \text{при } x^2 + y^2 \neq 0\\ A & \text{при } x^2 + y^2 = 0 \end{cases}$$

да е непрекъсната в точката (0;0) функцията.