INSURANCE CLAIM

Prediction & Classification

ARUN RAJESH B.

AGENDA

- 1. Project Background & Objectives
- 2. Project Framework
- 3. Business Insights- Metabase and PowerBi
- 4. ML Prediction Results
- 5. ML Classification Results
- 6. ML Clustering Results
- 7. Model deployment Shiny app and Plumber API

Project Background & Objectives

Insurance Prediction dataset has 1.8L observations – 6 Numeric columns and 12 factor columns.

- 1. Explore the data & deliver key business Insights
- 2. Fit a regression model with highest adjusted R-square and least RMSE
- 3. Perform classification on the same dataset & achieve high accuracy scores
- 4. Perform clustering on the dataset and arrive at optimal clusters
- 5. Deploy the model for production ready

Project Approach/Framework

Data Loading

Data Preparation

Feature Selection

Model Building Mo

Model Deployment

Data Import
 PostgreSQL
 R -csv import
 Spark

Metabase

PowerBI

- Data Exploration
 Visualization using
- Cleaning of data
 Char to factor conv.
 Missing Values
 one hot coding

Descriptive Stats
Relation of Y& X's
Box Plot
Correlation Plot
auto - EDA

- Relevant X only
 Removal of Unique Col
- Relevant
 Transformation
 Log Transform Y
 Normalization
- New Feature
 Added
 Established Years

- Regression

 Linear Regression
 Random Forest
 Regularized Model
 Neural Networks
- Classification
 Naïve Bayes
 K-Nearest Neighbour
- Clustering
 Kmeans

- R Shiny Random Forest
- Plumber API
 Linear Regression

H2o Auto ML Validation & Benchmark Setting**

**

H2o Flow: Distributed Random Forest Model: R2: 0.998, RMSE: 3231.59 H2o Flow: Gradient Boosting Machine Model: R2: 0.945, RMSE: 18,801

Key Business Insights

- Average amount withdrawn under Polo4 for is highest mostly coming from semi urban region and urban regions in popular multi-speciality hospitals
- Most withdrawals are made in Urban, followed by town (<50% of Urban), semi urban and bigger town are very less withdrawals (scope for expansion in semi urban and bigger towns)
- Across all policy types, most withdrawals were made for medicine treatment type. For POLO5, comparatively higher withdrawal made for surgery treatment type
- Average amount withdrawn is highest for patients admitted under neurology followed by cardiology and endocrinology (Scope for more hospitals to come / Health awareness to be made on neurology related disorders)
- Most withdrawals are made by people in age bracket 30 to 40 (surprising as not old) across all hospital locations. 50 + withdraw most in bigger towns. 40 to 50 is the only age bracket which is making withdrawals for surgery and trauma care. People in other brackets are only doing it for Medicine. Average amount paid is highest for 50+ group for "medicine" treatment type.

Few Exploratory analysis in R (auto – EDA)

Few Transformations(auto – EDA)

Target Variable: Amount With Drawn

Table of correlation coefficients (0.5 or more)

Variable1	Variable2	Correlation Coefficient
No_Days_Stay_Recommended	Amount_WithDrawn	0.7902981
Average_Room_Rent	Amount_WithDrawn	0.6053716
	Number_of_I	nount_WithDrawn Months_as_Customer tor_Visited_Before_Days
		Premium_Amo
		No_Days_Stay_Recomm

Target Variable: Amount With Drawn

S.No	Regression Algorithm	Input Pre-processing & Other	Train Model Accuracy (Percentage)	Hyper Parameter &Others	Test Model Accuracy (Percentage)		
1	Linear Regression (Base Model)	- Scaling, With/Without Cross Validation	Res.SE: 0.4785 R-squared: 0.7703 (adjusted)	- CSV file output Generated for test data	RMSE : 0.4738 R-squared : 0.7740 MAE : 0.3178 MAPE : 4.1097		
2	Linear Regression (Log Transform of Y Variable)	 Skewness was observed in Y Parameter. Log Transform, Scaling, With/Without Cross Validation 	Res.SE: 0.1645 R-squared: 0.8187 (adjusted)	- CSV file output Generated for test data	RMSE : 0.1629 R-squared : 0.824 MAE : 0.1218 MAPE : 0.0101		
	Linear Regression (Log Transform of Y and Continuous X Variables)	 Skewness was observed in Y Parameter. Log Transform, Scaling, With/Without Cross Validation 	Res.SE: 0.1603 R-squared: 0.8278 (adjusted)		RMSE : 0.1599 R-squared: 0.8305 MAE : 0.1183 MAPE : 0.0098		

Learnings

Log Transformation of Skewed data gives better results

S.No	Regression Shrinkage Models	Input Pre-processing & Other	Train Model Performance (Percentage)	Hyper Parameter &Others	Test Model Accuracy (Percentage)
4	Lasso Regression	Scaling ,CenterWith Cross Validation	R -squared: 0.8264	- Model best tune Fraction: 0.9	RMSE : 0.1606 R-squared : 0.8294 MAE : 0.1185 MAPE : 0.0098
5	Ridge Regression	Scaling, CenterWith Cross Validation	R -squared: 0.8276	- Model best tune lambda : 0	RMSE : 0.1599 R-squared: 0.8305 MAE : 0.1183 MAPE : 0.0098
6	Elastic Net Regression	Scaling , CenterWith Cross Validation	R -squared: 0.8276	- Model best tune lambda : 0 Fraction : 1	RMSE : 0.1599 R-squared: 0.8305 MAE : 0.1183 MAPE : 0.0098

Learnings

Shrinkage Models didn't improve model performance. They yield the same result as normal Linear models for this dataset

S.No	Regression - Tree Based Models	Input Pre-processing & Other	Train Model Performance (Percentage)	Hyper Parameter &Others	Test Model Accuracy (Percentage)
7	Random Forest (Spark – ML Lib through Sparklyr Package)	- Log Transform of Y Parameter	RMSE: 0.05376 R2:0.9805	Num. trees =80 Max_depth =12	RMSE : 0.0537 R-squared : 0.9811 MAE : 0.0376 MAPE : 0.0032
8	Random Forest (Ranger Package)	Scaling ,With Cross Validation	OOB prediction error (MSE): 0.01809 R squared (OOB): 0.98184	 Num. trees = 500 Mtry = 6 Node. Size = 5 	RMSE : 0.1377 R-squared : 0.9851 MAE : 0.0935 MAPE : 1.3804
	Random Forest (Ranger Package)	 No Scaling of X Parameters Log Transform of Y Parameter 	OOB prediction error (MSE): 0.00048 R squared (OOB): 0.99677	 Mtry= 11:17 Min. Node. Size = 3:9 Splitrule="variance" CSV file output Generated Optimum Value Mtry = 17 Min. Node. Size = 9 	RMSE : 0.2212 R-squared: 0.9967 MAE : 0.0167 MAPE : 0.0014

Learnings

Tree models perform better than regression models when hyperparameter tuning is involved

Variable Importance & Model Interpretation (LIME)

- local interpretations of ML models using 4 Observations of training dataset (LIME Package)
- 11 influential variables are plotted.
 Explains the support of variables for prediction
- No. of Days stay recommended, Hospital Rating, Average Room Rent are the most influential variables

Regression Algorithm Results IV

S.No	Regression - Neural Networks	Input Pre- processing & Other	Train Model Performance (Percentage)	Hyper Parameter &Others	Test Model Accuracy (Percentage)
9	Neural Networks – Keras Package	 Log Transform of Y Parameter Scaling, Center values of X Parameter 	Train loss: 0.0175 - mean_squared_error: 0.0175 Validation loss: 0.0135 mean_squared_error: 0.0135	Compile function: optimizer = "rmsprop", loss = "mse", metrics = c("mse") Training epochs = 15, batch_size = 32, validation_split = 0.2	RMSE : 0.1215 R-squared: 0.9223 MAE : 0.0954 MAPE : 0.0079

network architecture

layer_dense(units = 50, activation = "relu", input_shape = ncol(train_x))
%>%

layer_dense(units=20,activation="relu")%>%
layer_dense(units = 5, activation = "relu")

Layer (type)	Output Shape	Param #
dense_19 (Dense)	(None, 50)	2000
dense_20 (Dense)	(None, 20)	1020
dense_21 (Dense)	(None, 5)	105
=======================================		

Total params: 3,125 Trainable params: 3,125 Non-trainable params: 0

Classification Algorithm Results

Target Variable: Amount With Drawn

Class: High, Low

S.No	Classification Algorithm	Input Pre-processing & Other	Train Model Accuracy (Percentage)	Hyper Parameter Condition & Optimum value	Test Model Accuracy (Percentage)
1	Naïve Bayes Classification algorithm	 3 Fold Repeated Cross Validation No scaling 	90.05	Laplace=1 to 5, usekernel=TRUE,FALSE, adjust=1 to 5 Optimum Values: Laplace = 1.5, Usekernel=TRUE Adjust=2	Accuracy: 90.02 Sensitivity: 88.84 Specificity: 91.20
2	K-Nearest Neighbours algorithm.	 Without Scaling With Scaling (Note: Scaling execution was little faster than the other) 		<pre>K = 7 to 17 Optimum Value: K = 11 K = 7 to 17 Optimum Value: K = 11</pre>	Accuracy: 98.23 Sensitivity: 98.30 Specificity: 98.17 Accuracy: 98.48 Sensitivity: 98.46 Specificity: 98.50

Many Zero Probabilities were identified during execution of Naïve Bayes algorithm. Used Laplace smoothing to prevent such errors

Clustering Algorithm Results

S.No	Clustering Algorithm	Input Pre-processing & Other	Hyper Parameter Condition & Optimum value	Observations
1	K means Clustering	 PCA performed on input parameters to reduce the dimensions Base on the screeplot, Dimension from PC1 to PC 17 are selected and clustering is performed 	Kmeans Parameters K = 1 to 30 Max.Iter = 100 Algorithm = MacQueen	Though, PC1 to PC17 is chosen from Screeplot (eigen value >1), the total variation explained is only 63% Optimum no. of clusters couldn't be established using Elbow Method. Attempt is made to plot 10 cluster on a 2 dimensional space
2	K Means Clustering – ClusterR Package	- PCA performed and dimensions are reduced to 2	max_clusters = 15 criterion = WCSSE max_iters = 100 initializer = kmeans++	PC1 and PC2 explains only 15% variation in the original data Sharp decline observed at cluster 3 and 5. Attempt is made to plot 5 cluster on a 2 dimensional space

Optimum cluster based on elbow method couldn't be figured out. The total variation explained by PCA is less

Clustering Algorithm Results

Model Deployment – R Shiny

		D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S
		jum_	Illness_	Ty _l Hospital_	l Hostpital_	Hospital_	No_Days	Items_No	Average_F	No_Times	Treatment	Hospital_Rating	Admitted_Under	Age_Brac	ck Establishe	(exp(prediction\$predict	tions))
	5	3574	Chronic	Urban	Multi Spec	Popular H	1	7 Histopath	864	3	Only Medi	4	Cardiology	30-40	11	213971.8485	
		2435	Chronic	Urban	Multi Spec	Popular H		6 Histopath	871	3	Only Medi	3	Cardiology	30-40	10	153632.81	
	62	7740	Chronic	Urban	Multi Spec	Popular H	!	5 Physiothe	977	4	Sugery	3	Pulmonology	30-40	10	128429.3012	
	81	9718	Chronic	Town	Multi Spec	Popular H	1 8	3 Histopath	1079	3	Only Medi	4	Cardiology	30-40	13	219143.6822	
	79	8042	Chronic	Town	Multi Spec	Popular H	. (6 Histopath	1240	2	Only Medi	4	Cardiology	50+	10	217422.1153	
	61	9712	Chronic	Urban	Multi Spec	Popular H		7 Extra Atte	697	3	Only Medi	4	Pulmonology	30-40	11	163625.3221	
	83	9729	Chronic	Urban	Multi Spec	Popular H	!	5 Histopath	1057	3	Only Medi	3	Cardiology	30-40	10	128399.2019	
	78	14703	Chronic	Urban	Multi Spec	Popular H	!	5 Physiothe	1382	2	Only Medi	3	Oncology	30-40	10	170882.056	
)	42	6899	Chronic	Town	Multi Spec	Popular H		7 Histopath	1392	2	Only Medi	4	Cardiology	50+	13	208287.7882	
1	72	9222	Chronic	Urban	Multi Spec	Popular H	!	5 Histopath	884	3	Only Medi	3	Pulmonology	30-40	13	134509.5196	
2	75	9369	Chronic	Urban	Single Spe	Popular H	(6 Histopath	1091	3	Only Medi	3	Cardiology	30-40	12	139914.8019	
3	59	10718	Chronic	Urban	Multi Spec	Popular H	!	5 Histopath	812	2	Only Medi	3	Pulmonology	30-40	12	101110.7297	
	00	42222	٠.		Malico			<u> </u>	2020		~		<u></u>	FA.	40	400027.0005	

Model Deployment – Plumber API

plumber

