Capstone 1

Pandas Exercise

Data Dictionary

Variable	Description	Variable	Description
visits	Number of physician office visits	health	Factor indicating self-perceived health
nvisits	Number of non-physician office visits	chronic	Number of chronic conditions
ovisits	Number of physician hospital outpatient visits	adl	Factor indicating whether the individual has a condition that limits activities of daily living
novisits	Number of non-physician hospital outpatient visits	region	Factor indicating region
emergency	Emergency room visits	age	Age in years (divided by 10)

Data Dictionary

Variable	Description	Variable	Description
hospital	Number of hospital stays	afam	Factor. Is the individual African-American?
gender	Factor indicating gender	married	Factor. Is the individual married?
school	Number of years of education	income	Family income in USD 10000
employed	Factor. Is the individual employed?	insurance	Factor. Is the individual covered by private insurance?
medicaid	Factor. Is the individual covered by Medicaid?		

Section 1 Data Import, Inspection, and Cleaning

Please provide your observations for each output.

- 1. Import Libraries: Begin by importing the necessary Python libraries for programming and numerical operations, such as pandas and numpy.
- 2. Load CSV Data: Import the NSMES1988.csv file into a Pandas DataFrame.
- 3. Inspect the Data: Use Pandas functions to examine the dataset, including checking the number of rows and columns, data types, duplicates, nulls, and a general overview of the data.
- 4. Memory Optimization: Analyze the memory usage of the DataFrame and suggest appropriate nondefault data types to optimize memory.
- 5. Data Cleaning: drop any unnecessary columns, such as those labeled "unnamed."

Section 2

Data Transformation and Aggregation

Please provide your observations for each output.

- Column Updates: Multiply the values in the 'Age' column by 10. Also, multiply the values in the 'Income' column by 10,000.
- 2. Value Ranges: Calculate the counts of values for different age and income ranges.
- 3. Aggregation:
 - 1. Calculate the total number of visits by gender.
 - 2. Compute the average income by health status.
 - 3. Calculate the average number of visits by region.
- 4. Crosstab and Pivot Table:
 - 1. Build a crosstab between two categorical columns (e.g., health and insurance).
 - 2. Create a pivot table for health and gender, with hospital values and aggregate both sum and mean.

Section 3Data Export and Visualization

Please provide your observations for each output.

- Export to CSV: Export the cleaned DataFrame to a CSV file with pipe (|) delimiters and ensure the index is excluded.
- 2. Scatter Plot: Create a scatter plot to visualize the relationship between income and age, and provide your observation based on the plot.
- 3. Advanced Aggregation: Use groupby() and agg() functions to perform more advanced aggregation, such as calculating total visits or average income by specific categories (e.g., by region and gender).