APML-Applied Machine Learning

ASSIGNMENT 2 PRESENTATION

20-FEB-2020

Presented By:

Lim Yuan Her (P7359221)

Agenda

- Part A: Unsupervised Learning
 - K-Selection
 - Model Building
 - Model Evaluation
- Part B: Deep Learning
 - Data Exploration
 - Data Preprocessing
 - Model Training and Evaluation
 - Hyperparameter Tuning
 - ☐ Tuned Model Evaluation
 - Conclusion

Unsupervised Learning – K-Selection

□ IRIS Data

- Consists of 150 records each with 4 features (sepal length, sepal width, petal length, petal width)
- Available as part of sklearn.datasets library

□ Selection of K

Using Elbow Method

Based on the result, the optimal K value is **3**

Data Pre-processing

 Data standardized to reduce bias due to varying scale range of different features

Unsupervised Learning – Model Building and Evaluation (1)

Model Building

- 5 algorithms were evaluated, namely K-Means, MiniBatch K-Means, Spectral Clustering, Birch and Hierarchical Clustering (Ward/Complete/Average/Single)
- Model performance evaluated based on composite score derived from Silhouette Coefficient, Calinski-Harabasz Index and Davies-Bouldin Index

Model Performance (based on standardized data)

K-Means and Spectral Clustering provides optimal results clear with delineation of the different clusters identified

Evenly clustered data

NumClusters SilhouetteScore CalinskiHarahaszScore DaviesBouldinScor

	Name = Ward Hierarchical, Silhouette Coefficient = 0.447, Calinski-Harabasz Index = 222.719,	Silhoue Calinski-H	= Complete Hierarchical, ette Coefficient = 0.450, Harabasz Index = 213.082,		Name = Birch, Silhouette Coefficient = 0.454, Calinski-Harabasz Index = 219.819,		
Г	Davies-Bouldin Index = 0.803	Davie:	s-Bouldin Index = 0.758		Davies-Bouldin Index = 0.822	_ 0	
15 -	<u>-₩</u> /	1.5 -	-27	15-	₩ /	2	MiniBato
1.0 -		10		1.0 -		1	Spectral
0.5 -		0.5		0.5 -		5	
0.0 -	·	0.0	·	0.0 -		3	Ward H
-0.5 -		-0.5	↑	-0.5 -	—	4	Complete H
-1.0 -		-1.0		-		6	Average H
-1.5	-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5	-1.5 -1.0 -	0.5 0.5 10 15	-1.5	-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5	7	Single H
			ام ام می میلامی ام	-1-			

	ivalile	Nullicausters	311110uet teacore	Calliskinai abaszscoi e	DaviesBoululiiscore	30016
0	KMeans	3	0.459948	241.904402	0.833595	92.748694
2	MiniBatch KMeans	3	0.459948	241.904402	0.833595	92.748694
1	Spectral Clustering	3	0.462976	236.888875	0.825716	90.559533
5	Birch	3	0.453550	219.818769	0.821830	81.935524
3	Ward Hierarchical	3	0.446689	222.719164	0.803467	79.933840
4	Complete Hierarchical	3	0.449618	213.081710	0.758358	72.654880
6	Average Hierarchical	3	0.480267	149.025799	0.575269	41.173226
7	Single Hierarchical	3	0.504646	131.535896	0.492925	32.719890

Unsupervised Learning – Model Building and Evaluation (2)

■ Model Performance (based on 2-component PCA data)

- Principal Component Analysis (PCA) was used to reduce data to a 2dimensional representation to facilitate visualization
- Clustering performed on PCA data using same algorithms as that for standardized data

Uneven clustered data

Poorly clustered data

	Name	NumClusters	SilhouetteScore	CalinskiHarabaszScore	DaviesBouldinScore	Score
0	KMeans_PCA	3	0.506153	505.957631	0.738682	189.170470
1	Spectral Clustering_PCA	3	0.506153	505.957631	0.738682	189.170470
2	MiniBatch KMeans_PCA	3	0.503489	492.184439	0.750328	185.938119
3	Ward Hierarchical_PCA	3	0.485768	463.112725	0.788649	177.418550
4	Complete Hierarchical_PCA	3	0.511822	436.447626	0.701087	156.611211
5	Birch_PCA	3	0.478296	350.017579	0.685556	114.770305
6	Average Hierarchical_PCA	3	0.553808	253.061764	0.374795	52.526551
7	Single Hierarchical_PCA	3	0.553808	253.061764	0.374795	52.526551

<u>K-Means</u> and <u>Spectral Clustering</u> provides optimal results with clear delineation of the different clusters identified

Unsupervised Learning – Model Building and Evaluation (3)

 Based on the results, <u>K-Means</u> and <u>Spectral Clustering</u> with 2-component PCA data provided the optimal results with clear delineation of the different clusters identified

	Name	NumClusters	SilhouetteScore	CalinskiHarabaszScore	DaviesBouldinScore	Score
0	KMeans_PCA	3	0.506153	505.957631	0.738682	189.170470
1	Spectral Clustering_PCA	3	0.506153	505.957631	0.738682	189.170470
2	MiniBatch KMeans_PCA	3	0.503489	492.184439	0.750328	185.938119

 From the silhouette profiles for <u>K-Means</u> and <u>Spectral Clustering</u> models, only one of the clustered class data exhibit the best performance.

Deep Learning – Data Exploration

- ☐ MNist Data
 - Consists of 60,000 images of handwritten digits from 0 to 9
- □ Data Exploration
 - 10 classes (0 to 9)

Deep Learning – Data Preprocessing

- ☐ Image Data Format
 - Channel ordering is Channels Last as Tensorflow default
- Data Transformation
 - Pixel Value Normalization
 - Pixels are represented in the range 0 to 255, but for faster convergence, data values are normalized to the range 0 to 1.
 - Convert class vector to binary class matrices

Deep Learning- Model Building and Evaluation

Model Training

A base CNN was evaluated with the following architecture:

Model Evaluation

Model was evaluated based on loss and validation accuracy metrics

> Test loss: 13.16 Test accuracy: 97.38

Deep Learning – Hyperparameter Tuning (1)

Model Tuning

- Hyperparameter tuning was performed for batch size, optimizer, activation function, # of neurons, dropout parameters
- # of epochs kept constant at 25

0.00

Training Accuracy 0.98 **Training Times Testing Losses** Testing Accuracies 0.975 0.4 0.97 **Batch Size** ₹ 0.950 0.3 SO 0.2 S 0.15 0.925 0.900 0.95 128 0.1 0.00 0.05 0.10 0.5 1.0 200 0.0 Time Loss Accuracy 20 20 20 20 Epoch Epoch Epoch Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss **Training Times Testing Losses Testing Accuracies** Adagrad **Optimizer** Adagrad 0.6 Accuracy 08.0 08.0 0.20 0.96 SSO 0.4 SS 0.15 Accura 0.95 Adam Adagrad 0.94 0.10 0.75 50 0.0 0.1 Time Loss Accuracy Epoch Epoch Epoch Epoch 1.00 **Activation Training Times** Testing Losses **Testing Accuracies** 0.95 ₅ 0.96 tanh Accuracy 0.80 0.75 0.6 **Function** S 0.50 SSOT 0.4 0.94 0.25 0.80 0.2 Relu

50

Time

0.2

Accuracy

Loss

Deep Learning – Hyperparameter Tuning (2)

Model Tuning

Evaluation criteria based on testing loss/accuracy

Dropout 0.4

Based on the hyperparameter tuning results optimal parameters are:

- 1. Batch Size = 128
- 2. Optimizer = Adagrad
- 3. Activation Function = Relu
- 4. # of Neurons = 400
- 5. Dropout = **0.4**

Deep Learning – Tuned Model Evaluation (1)

Tuned Model Performance

- Tuned model evaluated based on classification metrics and test loss/accuracy
- Tuned model achieved improved accuracy and loss metrics as compared to base model

Test loss: 7.21

Test accuracy: 98.91

Correctly Classified

Mis-Classified

Deep Learning – Tuned Model Evaluation (2)

. Tuned Model Performance

 Tuned model achieved improved classification metrics (Precision/ Recall/ F1) and validation loss/accuracy as compared to base model

Tuned model Visualization

Sample: 7

o Original Image o Sallency map

MNIST target = 7

Sample: 2

MNIST target = 2

Sample: 9

MNIST target = 9

Grad-CAM Class Activation Maps

Saliency maps

