ELEC 4700

Assignment 4

Circuit Modeling

Student Name: Jeremy Schelhaas

Student Number: 100976020

Date: April 7, 2019

Table of Contents

Part 1: Circuit MNA Modeling3
Part 2: Transient Circuit Simulation5
Part 3: Circuit with Noise
Part 4: Non-linearity8
Figures
Figure 1: Vin vs Vo and V33
Figure 2: G, C, b Matrices4
Figure 3: Frequency Response4
Figure 4: Perturbations in C5
Figure 5: FFT of Step Response6
Figure 6: FFT of Sin Function6
Figure 7: FFT of Gaussian Pulse7
Figure 8: Noise Response8
Figure 9: FFT Response8
Figure 10: Noise Distribution9

Part 1: Circuit MNA Modeling

Component stamps were created as separate functions in MatLab to add values to the respective cells in the G, C and b matrices respective of where the components are located in the circuit. Solving for the voltage matrix where $V = (G + sC) \setminus b$ gives the G, C and b matrices given in Figure 2, and the gain of the circuit in the DC response is given in Figure 1.

Figure 1: DC Gain

G =								
	1.0000	-1.0000	0	0	0	0	0	1.0000
-	-1.0000	1.5000	0	0	0	1.0000	0	0
	0	0	0.1000	0	0	-1.0000	0	0
	0	0	0	10.0000	-10.0000	0	1.0000	0
	0	0	0	-10.0000	10.0010	0	0	0
	0	1.0000	-1.0000	0	0	0	0	0
	0	0	-10.0000	1.0000	0	0	0	0
	1.0000	0	0	0	0	0	0	0
C =								
	0.2500	-0.2500	0	0	0	0	0	0
-	-0.2500	0.2500	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	-0.2000	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Figure 2: G, C, b matrices

Next the AC frequency response can be modelled, as shown in figure 3.

Figure 3: Frequency Response

Finally, random perturbations in the C matrix can be modelled, as shown in Figure 4.

Figure 4: Perturbations in C

Part 2: Transient Circuit Simulation

The circuit acts as a low pass filter with an amplifier. The low frequency responses will be amplified, while the high frequencies have no output.

A step response is shown in Figure 5, sinusoidal response in Figure 6 and Gaussian pulse in Figure 7.

Figure 5: Step Response

Figure 6: Sinusoidal Response

Figure 7: Gaussian Pulse Response

Part 3: Circuit with Noise

With the addition of noise in the circuit, the C matrix has been updated, as shown below:

2.5000e-01	-2.5000e-01	0	0	0	0
-2.5000e-01	2.5000e-01	0	0	0	0
0	0	1.0000e-05	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	-2.0000e-01
0	0	0	0	0	0
0	0	0	0	0	0

Figure 8: C Matrix

There is also a new FFT response, shown below:

Figure 9: FFT Response

There is also noise in the circuit now, so a distribution can be modelled:

Figure 10: Noise Distribution