Математический анализ 1. Направление 38.03.01 Экономика Семинар 1. Школьные и околошкольные сведения

- 1. В развернутой записи выражения $(2+3x)^5$ найдите коэффициент при x^3 .
- 2. В развернутой записи заданного выражения укажите слагаемое, не содержащее x:
 - (1) $\left(x^2 + \frac{2}{x}\right)^3$; (2) $\left(x + \frac{1}{x} + 2\right)^4$.
- 3. Докажите, что многочлен $P(x) = x^4 3x^3 + 6x^2 3x + 5$ делится нацело на многочлен $Q(x) = x^2 + 1$, и найдите частное от деления.
- 4. Найдите частное и остаток от деления многочлена $P(x)=x^3+5x^2-7x-3$ на $Q(x)=x^2-8x+16$.
- 5. Разделите с остатком многочлен $3x^4-2x^2+x+1$ на многочлен x^2-x+1 .
- 6. Найдите все корни многочлена $x^3 x^2 16x 20$, предварительно подобрав один из них. Укажите кратность найденных корней.
- 7. Убедившись, что x = 1 является корнем многочлена $x^5 3x^4 + 8x^2 9x + 3$, найдите его кратность.
- 8. Найдите целые корни уравнения:

(1)
$$x^3 + 2x^2 + x + 2 = 0$$
; (2) $x^4 + 4x^3 - 25x^2 - 16x + 84 = 0$.

9. Для заданного многочлена определите кратность его корня x_0 :

(1)
$$3x^4 - 4x^3 + 1 = 0$$
, $x_0 = 1$; (2) $x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8 = 0$, $x_0 = 2$.

10. Найдите все вещественные корни многочлена:

(1)
$$x^4 - 3x^2 - 4 = 0$$
; (2) $x^4 + 2x^3 - x - 2 = 0$.

11. Разложите заданный многочлен на произведение неприводимых многочленов:

(1)
$$3x^3 + 6x^2 + x + 2$$
; (2) $4 - 20x + 33x^2 - 20x^3 + 4x^4$.

- 12. (*) Разложите многочлен x^4+1 на произведение неприводимых многочленов второй степени.
- 13. Докажите неравенство $\left|x + \frac{1}{x}\right| \geq 2$.
- 14. В таблице приведены данные о стоимости ценной бумаги A в первый, второй, третий и четвертый дни продаж:

1

x_i , день	1	2	3	4
y_i , y.e.	2	1	3	5

В ней x_i – номер дня, а y_i – стоимость ценной бумаги в этот день. Найдите уравнение прямой вида y=kx, для которой $cpe \partial hek a \partial pamuчное$ omknohehue $D=\sum_{i=1}^4 (y(x_i)-y_i)^2$ минимально.

15. Разложите рациональную дробь в сумму элементарных дробей (и, быть может, многочлена):

(1)
$$\frac{x}{(x-3)(x+4)}$$
; (2) $\frac{6}{x^3-1}$; (3) $\frac{3}{x^2-x^5}$; (4) $\frac{2x^4-5x^3+11x^2-17x+19}{x^3-2x^2+3x-6}$.

16. Разложите рациональную дробь в сумму элементарных дробей (и, быть может, многочлена):

(1)
$$\frac{x^3 + x + 2}{x^2 - 6x + 8}$$
; (2) $\frac{3x^3 - 3x + 9}{(x - 1)(x + 2)^2}$; (3) $\frac{5x + 5}{(x - 1)(x^2 + 4)}$; (4*) $\frac{4}{x^4 + 1}$.

17. Упростите выражение

$$\bigg(\frac{9^{\frac{1}{5}}27^{\frac{2}{3}}}{3^{\frac{1}{2}}}\bigg)^{\frac{10}{11}}.$$

18. Решите уравнение

(1)
$$64^x \cdot 2^{x^2} = (16)^{-2}$$
; (2) $25^x - 5^{x+1} + 6 = 0$; (3) $\log_{\frac{1}{7}}(7 - x) = -2$;

(4)
$$(x+2)^{\log_2(x+2)} = 4(x+2)$$
; (5) $5^{\log_2 x} + x^{\log_2 5} = 10$.

19. Решите систему уравнений
$$\begin{cases} x^{0.2}y^{-0.7} = 10 \\ x^{-0.8}y^{0.3} = 5 \end{cases}.$$

- 20. Представьте в виде суммы выражений вида $\sin ax$ и/или $\cos bx$ выражения:
 - (1) $\sin 2x \cos 4x$; (2) $\sin x \sin 2x \sin 3x$; (3) $\sin^2 2x \cos 3x$.
- 21. Использовав представление суммы или разности тригонометрических функций в виде произведения, решите уравнения:
 - (1) $\sin x + \sin 3x = 0$; (2) $\sin x = \cos 2x$.
- 22. Найдите $\sin x$ и $\cos x$ из уравнения $3\sin x + 4\cos x = 0$.
- 23. Выразите $\sin x$, $\cos x$, $\tan x$, $\cot x$ через $\tan x$. Использовав найденные выражения, решите уравнение $2\cos x + 5\sin x = 3$.

2