NOTE DI ANALISI 2

Manuel Deodato

INDICE

1	Calcolo differenzialeciao in più variabili			3
	1.1	Derivate parziali		3
		1.1.1	Derivate direzionali	
		1.1.2	Funzioni differenziabili	4
		1.1.3	Derivate successive	(

1 Calcolo differenzialeciao in più variabili

1.1 Derivate parziali

Una funzione di più variabili f(x, y): $\mathbb{R}^2 \to \mathbb{R}$ può essere derivata mantenendo fissa una variabile e derivando rispetto all'altra. Questo corrisponde al valutare la variazione di f lungo un asse specifico.

Definizione 1.1 (Derivata parziale)

Sia $f(x_1, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$; la sua derivata parziale rispetto a x_k è:

$$\frac{\partial f}{\partial x_k}(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{h} \tag{1.1.1}$$

Il vettore che ha per componenti le derivate di f rispetto a ciascuna delle sue variabili si chiama **gradiente** e si indica con ∇f .

1.1.1 Derivate direzionali

È possibile studiare la variazione di f lungo una particolare direzione individuata dal versore \hat{n} . Una retta parallela a \hat{n} e passante per un punto x si individua con $x + t\hat{n}$; fissando i punti x e \hat{n} , $g(t) := f(x + t\hat{n})$ è una funzione di una variabile e g'(0) è la derivata direzionale di f lungo \hat{n} :

$$\frac{\partial f}{\partial \hat{n}}(x) = g'(0) = \lim_{h \to 0} \frac{f(x + h\hat{n}) - f(x)}{h} \tag{1.1.2}$$

Più in generale:

$$g'(t) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{g(t+h) - g(t)}{h} = \lim_{h \to 0} \frac{f(x_t + h\hat{n}) - f(x_t)}{h} \equiv \frac{\partial f}{\partial \hat{n}}(x_t)$$
 (1.1.3)

 $con x_t = x + t\hat{n}.$

Osservazione 1.1. Conoscendo ∇f , si può calcolare la derivata direzionale di f come $\nabla f \cdot \hat{n}$.

Esempio 1.1. Si calcola la derivata direzionale di $f(x, y) = x^2y - e^{x+y}$ lungo la direzione $\hat{n} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Svolgimento. Si ha

$$g(t) = f\left(x + \frac{t}{2}, y + \frac{\sqrt{3}}{2}t\right) = \left(x + \frac{t}{2}\right)^2 \left(y + \frac{\sqrt{3}}{2}t\right) - \exp\left[x + y + t\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)\right]$$

Allora

$$\frac{\partial f}{\partial \hat{n}}(x, y) = g'(0) = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$$

Alternativamente $\nabla f = \left(2xy - e^{x+y}, x^2 - e^{x+y}\right)$, quindi $\partial_{\hat{n}} f = \nabla f \cdot \hat{n} = xy - \frac{1}{2}e^{x+y} + \frac{\sqrt{3}}{2}x^2 - \frac{\sqrt{3}}{2}e^{x+y} = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$.

Teorema 1.1

Se $f:A\subset\mathbb{R}^2\to\mathbb{R}$ ha un massimo o minimo relativo in x_0 interno ad A e se ammette derivata lungo \hat{n} in x_0 , allora:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = 0 \tag{1.1.4}$$

Dimostrazione. Si prende $g(t) = f(x_0 + t\hat{n})$ che, per costruzione, ha un minimo in t = 0, quindi g'(0) = 0, da cui segue la tesi.

In particolare, se f è derivabile in x_0 , tutte le derivate parziali si annullano in quel punto; in questo caso, x_0 è detto **punto stazionario**.

Osservazione 1.2. Nel caso a una variabile, i punti di massimo/minimo che cadevano sulla frontiera di un insieme erano, solitamente, un numero finito; qua chiaramente non è più così.

Esempio 1.2. Calcolare massimi e minimi di $f(x, y) = (x^2 + y^2 - 1)e^{x+y}$ nel cerchio chiuso centrato nell'origine e di raggio 1.

Svolgimento. Sul bordo del cerchio $x^2 + y^2 = 1$, quindi $f \equiv 0$. All'interno:

$$f_x = 2xe^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

$$f_y = 2ye^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

che si annullano quando

$$x^{2} + y^{2} + 2x - 1 = 0$$
$$x^{2} + y^{2} + 2y - 1 = 0 \Rightarrow 2x - 2y = 0 \Rightarrow x = y$$

Sostituendo x = y nella prima equazione, ad esempio, si ottengono due soluzioni, una sola delle quali appartiene al cerchio; questo corrisponderà al punto di minimo della funzione:

$$f\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right) = (1-\sqrt{3})e^{\sqrt{3}-1} < 0$$

In più dimensioni vale un analogo del teorema di Lagrange:

Teorema 1.2

Sia f(x): $A \subset \mathbb{R}^n \to \mathbb{R}$ e $x_0 \in A$, con $I(x_0, r) \subset A$. Considerando una direzione \hat{n} , si definisce $g(s) = f(x_0 + s\hat{n})$ per |s| < r. Vale l'analogo del teorema di Lagrange:

$$f(x_0 + s\hat{n}) - f(x_0) = g(s) - g(0) = sg'(\tau) = s\frac{\partial f}{\partial \hat{n}}(x_0 + \tau\hat{n})$$
 (1.1.5)

1.1.2 Funzioni differenziabili

Una funzione derivabile, anche in ogni direzione, non è necessariamente continua in più variabili.

Esempio 1.3. La funzione $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} &, \ (x,y) \neq 0 \\ 0 &, \ (x,y) = 0 \end{cases}$ ha derivate in ogni direzione nel punto (0,0), ma non è continua; prendendo $x_k = (1/k,1/k^2)$ per $k \to \infty$, si ha $x_k \to (0,0)$, ma $f(x_k) = \frac{1/k^4}{2/k^4} \to \frac{1}{2}$.

Definizione 1.2 (Differenziabilità)

Una funzione f(x) si dice differenziabile in x_0 se è derivabile in x_0 e se:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle}{\|x - x_0\|} = 0$$
 (1.1.6)

Questa definizione impone che una funzione sia differenziabile in punto se esiste un piano tangente che la approssima precisamente nel punto stesso.

Teorema 1.3

Una funzione f(x) differenziabile in x_0 è continua in x_0 ed è derivabile in ogni direzione.

Dimostrazione. Si mostra che è continua:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0) - \left\langle \nabla f(x_0), x - x_0 \right\rangle}{\left\| x - x_0 \right\|} \left\| x - x_0 \right\| + \left\langle \nabla f(x_0), x - x_0 \right\rangle$$

Per $x \to x_0$ il primo termine di destra va a 0 per assunzione di differenziabilità e l'altro anche perché diventa un prodotto scalare per 0, quindi si verifica $\lim_{x\to x_0} f(x) = f(x_0)$. Data generica direzione \hat{v} con $x = x_0 + t\hat{v}$, usando ancora definizione di differenziabilità:

$$\lim_{t \to 0} \frac{f(x_0 + t\hat{v}) - f(x_0) - \langle \nabla f(x_0), t\hat{v} \rangle}{t} = 0$$

Visto che $\langle \nabla f(x_0), t\hat{v} \rangle = t \langle \nabla f(x_0), \hat{v} \rangle$, si ottiene la tesi.

La direzione di massimo incremento di una funzione è quella del gradiente. Per mostrarlo, si parte da x_0 , assumendo che non sia un punto stazionario; si definisce, allora, $\hat{n} = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$, da cui:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = \langle \nabla f(x_0), \hat{n} \rangle = \| \nabla f(x_0) \|$$

Prendendo altra direzione generica \hat{v} , si ha:

$$\frac{\partial f}{\partial \hat{v}}(x_0) = \left\langle \nabla f(x_0), \hat{v} \right\rangle \leq \left\| \nabla f(x_0) \right\| \left\| \hat{v} \right\| = \left\| \nabla f(x_0) \right\| \equiv \frac{\partial f}{\partial \hat{n}}(x_0)$$

Dalla definizione di funzione differenziabile il piano $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ è quello che meglio approssima la funzione in (x_0, y_0) .

Si è concluso che una funzione differenziabile è derivabile in ogni direzione, ma una funzione derivabile non è differenziabile in generale. Vale, però, il seguente.

Teorema 1.4 (Teorema del differenziale totale)

Sia f(x) derivabile in x_0 e siano le sue derivate continue nello stesso punto; allora f è differenziabile in x_0 .

Dimostrazione. Si vuole dimostrare che

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-f_x(x_0,y_0)(x-x_0)-f_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$$

Si usa il teorema di Lagrange per riscrivere $f(x, y) - f(x_0, y_0)$:

$$\begin{split} f(x,y_0) - f(x_0,y_0) &= f_x(\xi,y_0)(x-x_0), \ x_0 < \xi < x \\ f(x,y) - f(x,y_0) &= f_y(x,\eta)(y-y_0), \ y_0 < \eta < y \\ \Rightarrow f(x,y) - f(x_0,y_0) &= f_x(\xi,y_0)(x-x_0) + f_y(x,\eta)(y-y_0) \end{split}$$

Il limite scritto sopra si riscrive come:

$$\begin{split} \lim_{(x,y)\to(x_0,y_0)} \left[f_x(\xi,y_0) - f_x(x_0,y_0) \right] \frac{x-x_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} + \\ & + \left[f_y(x,\eta) - f_y(x_0,y_0) \right] \frac{y-y_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \end{split}$$

Essendo le frazioni ≤ 1 e visto che le quantità fra parentesi quadre, questo limite si maggiora con la somma delle parentesi quadre, che tende a 0 per $(x, y) \rightarrow (x_0, y_0)$.

1.1.3 Derivate successive

Riprendere da pagina 14