ECON 7011, Semester 110.1, Practice Problems 7

You do no need to hand in the solution to these problems.

1. Many freemium games offer loot boxes in exchange for real money. Suppose that a game offers high-quality and medium-quality loot boxes, which are virtually costless to provide. The boxes are valued by the normal players ϑ_N and the so-called "whales" ϑ_W as follows:

	ϑ_W	ϑ_N
Good	10000	300
Medium	1030	30

- (a) For which ratio μ of whales is the normal type excluded from loot boxes?
- (b) Find the second-best contract as a function of μ .
- 2. Suppose the government outsources the provision of a public good to a private company, which may be one of two types $\vartheta_2 > \vartheta_1 > 0$. Type ϑ can produce an indivisible amount q of the public good at cost $c(\vartheta, q) = \vartheta q^2$, which the government values at v(q) = q. Suppose that a fraction μ_0 of firms are efficient and that utilities satisfy $u_1(p, q) = v(q) p$ and $u_2(\vartheta, p, q) = p c(\vartheta, q)$.
 - (a) If the government knew the firms' types, what contract would it offer to each type?
 - (b) What is the optimal contract when the government does not know the firms' types?
- 3. A TV network has two crews available that can produce one TV show each, subject to budget b>0. Suppose that the audience's preferences are one-dimensional and characterized by $\theta \geq 0$ on the seriousness scale, where θ is exponentially distributed with mean $\frac{1}{\lambda}$. The production of a TV show with seriousness s and quality q incurs a cost c(q,s)=qs, that is, it is more costly to produce a good TV show when it is serious than when it is silly. Type θ 's utility from watching show i is $q_i-(s_i-\theta)^2$ with outside option 0 by not watching either show. The TV Network's utility is $v(s,q,a_2)=r1_{\{a_2=\text{watching either show}\}}-c(q_1,s_1)-c(q_2,s_2)$.
 - (a) Argue that in any optimal production, there exist \underline{s} , \overline{s} such that show 1 captures viewers in the segment $[0,\underline{s}]$ and show 2 captures viewers in the segment $[\underline{s},\overline{s}]$.
 - (b) Assuming that b is low enough that the budget constraint binds, i.e., $s_1q_1 + s_2q_2 = b$ in the optimum, find the perfect Bayesian equilibria of this game.
 - Hint: Use (a) to eliminate s_1 and s_2 , then use the binding budget constraint to write q_2 as a function $q_2(q_1)$. The explicit expression of $q_2(q_1)$ is nasty, but we do not need it to find the PBE. Instead, we can directly maximize the objective function $V(q_1, q_2(q_1))$ with respect to q_1 , where we find $q'_2(q_1)$ by implicitly differentiating the binding budget constraint.
 - (c) Which show has the higher quality in equilibrium?
 - (d) How does the ratio of the quality of the two shows change when the budget constraint is no longer assumed to be binding?