- 1. Let \mathcal{A} be a collection of subsets of Ω . Prove that \mathcal{A} is a λ -system if

 - (i) $\Omega \in \mathcal{A}$ (ii) If $A, B \in \mathcal{A}$ and $A \subset B$, then $B A \in \mathcal{A}$, (iii) If $A_i \in \mathcal{A}$ for $i \geq 1$ and $A_i \uparrow$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Ignore the question

2. Prove that for any events A_i , i = 1, 2, ..., n, where $n \ge 3$

$$P(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j)$$

and

$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k)$$

- 3. Show that, the so called countable additivity or σ -additivity, is equivalent to finite additivity plus continuity (if $A_n \downarrow \emptyset$, then $P(A_n) \rightarrow 0$).
- 4. If X_1 and X_2 are random variables, so is $X_1 + X_2$.
- Textbook:

1.1.5, 1.2.3, 1.2.5, 1.2.6, 1.2.7, 1.3.1, 1.3.7, 1.3.8