NUMBERS

Class-7 CBSE Math Worksheets with Solutions Practice Question & worksheet for chapter 1

Question: Find a rational number lying between $\frac{1}{3}$ and $\frac{1}{2}$.

Solution: $x = \frac{1}{3}$ and $y = \frac{1}{2}$, Then clearly x < y

A rational number lying between x and y.

$$= \frac{1}{2}(x+y) = \frac{1}{2}\left(\frac{1}{3} + \frac{1}{2}\right) = \frac{1}{2} \times \left(\frac{2+3}{6}\right)$$
$$= \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$$

Question: Find six rational numbers between 4 and 5.

Solution: x = 4, y = 5 and n = 6.

Let
$$d = \frac{y-x}{n+1} = \frac{5-4}{6+1} = \frac{1}{7}$$

So, the six rational numbers between 4 and 5 are (x+d), (x+2d), (x+3d), (x+4d), (x+5d) and (x+6d)

or
$$\left(4+\frac{1}{7}\right)$$
, $\left(4+\frac{2}{7}\right)$, $\left(4+\frac{3}{7}\right)$, $\left(4+\frac{4}{7}\right)$, $\left(4+\frac{5}{7}\right)$ and $\left(4+\frac{6}{7}\right)$

or
$$4\frac{1}{7}$$
, $4\frac{2}{7}$, $4\frac{3}{7}$, $4\frac{4}{7}$, $4\frac{5}{7}$ and $4\frac{6}{7}$

or
$$\frac{29}{7}, \frac{30}{7}, \frac{31}{7}, \frac{32}{7}, \frac{33}{7}$$
 and $\frac{34}{7}$

Hence, the required rational numbers between 4 and 5 are

$$\frac{29}{7}, \frac{30}{7}, \frac{31}{7}, \frac{32}{7}, \frac{33}{7}$$
 and $\frac{34}{7}$

Question. Express the following in the form q

(i) $0.6666 \dots$ (ii) $0.\overline{001} \dots$

Solution. (i) Let $x = 0.6666 \dots = 0.6$...(i) Multiplying both sides by 10, we get

 $10x = 6.6666... = 6.\overline{6}$...(ii)

Subtracting (i) from (ii), we get

$$9x = 6 \Rightarrow x = \frac{6}{9} = \frac{2}{3}$$

(ii) Let $x = 0.\overline{001}$...(i)

Multiplying both sides by 1000, we get

$$1000x = 1.\overline{001}$$
 ...(ii)

Subtracting (i) from (ii), we get

$$999x = 1 \Longrightarrow x = \frac{1}{999}$$

Question. Express the following in the form $\frac{p}{q}$:

(i)
$$0.4\overline{7}$$

(ii)
$$0.2\overline{45}$$

...(i)

Solution.

(i) Let
$$x = 0.4\overline{7}$$

Multiplying both sides by 10, we get

$$10x = 4.\overline{7}$$

Multiplying both sides again by 10, we get

$$100x = 47.\overline{7}$$
 ...(ii)

Subtracting (i) from (ii), we get

$$90x = 43$$
 $x = \frac{43}{90}$

(ii) Let
$$x = 0.2\overline{45}$$

Then,
$$x = 0.24545...$$
 ...(i)

$$\therefore$$
 10x = 2.4545... ...(ii)

and
$$1000x = 245.4545...$$
 ...(iii)

on subtracting (ii) from (iii), we get

$$990x = 243 \Leftrightarrow x = \frac{243}{990} = \frac{27}{110}$$

Hence,
$$0.2\overline{45} = \frac{27}{110}$$