

Service Manual

ORDER NO.
RRV1199

CD-ROM WRITER

DR-R504X

THIS MANUAL IS APPLICABLE TO THE FOLLOWING MODEL(S) AND TYPE(S).

Type	Model	Power Requirement	Remarks
	DR-R504X		
ZUCEB/WL	○	DC power supplied from other system component	

- This product is a component of a system.

For the system composition, instruction manuals etc., refer to the service manual RRV1173 for DRM-5004X.

- This product does not function properly when independent; to avoid malfunctions, be sure to connect it to the prescribed system component(s), otherwise damage may result.

CONTENTS

1. SAFETY INFORMATION	2	4. PCB PARTS LIST	25
2. EXPLODED VIEWS, PAKING AND PARTS LIST	4	5. ADJUSTMENTS	28
3. SCHEMATIC AND PCB CONNECTION DIAGRAMS	10	6. IC INFORMATION	45
		7. BLOCK DIAGRAMS	59

PIONEER ELECTRONIC CORPORATION

4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan

PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A.

PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada

PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY. LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911

© PIONEER ELECTRONIC CORPORATION 1995

1. SAFETY INFORMATION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

Lead in solder used in this product is listed by the California Health and Welfare agency as a known reproductive toxicant which may cause birth defects or other reproductive harm (California Health & Safety Code, Section 25249.5).

When servicing or handling circuit boards and other components which contain lead in solder, avoid unprotected skin contact with the solder. Also, when soldering do not inhale any smoke or fumes produced.

NOTICE

(FOR CANADIAN MODEL ONLY)

Fuse symbols (fast operating fuse) and/or (slow operating fuse) on PCB indicate that replacement parts must be of identical designation.

REMARQUE

(POUR MODÈLE CANADIEN SEULEMENT)

Les symboles de fusible (fusible de type rapide) et/ou (fusible de type lent) sur CCI indiquent que les pièces de remplacement doivent avoir la même désignation.

(FOR USA MODEL ONLY)

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

AC Leakage Test

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a Δ on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which does not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

(FOR EUROPEAN MODEL ONLY)

VARO!

AVATTAESSA JA SUOJALUKITUS
OHITETTAESSA OLET ALTIINA
NÄKYMÄTTÖMÄLLE LASERSATEILYLLE.
ÄLÄ KATSO SÄTEESEEN.

ADVERSEL:

USYNLIG LASERSTRÅLING VED ÅBNING
NÄR SIKKERHEDSAFTRYDRE ER UDE AF
FUNKTION UNDGÅ UDSETTELSE FOR
STRÅLING.

WARNING!

OSYNLIG LASERSTRÅLNING NÄR DENNA
DEL ÄR ÖPPNAD OCH SPÄRREN
ÄR URKOPPLAD. BETRAKTA EJ STRÅLEN.

LASER

Kuva 1

Lasersateilyn
varoitusmerkki

WARNING!

DEVICE INCLUDES LASER DIODE WHICH
EMITS INVISIBLE INFRARED RADIATION
WHICH IS DANGEROUS TO EYES. THERE IS
A WARNING SIGN ACCORDING TO PICTURE
1 INSIDE THE DEVICE CLOSE TO THE LASER
DIODE.

LASER

Picture 1

Warning sign for
laser radiation

IMPORTANT

THIS PIONEER APPARATUS CONTAINS
LASER OF CLASS 1.
SERVICING OPERATION OF THE APPARATUS
SHOULD BE DONE BY A SPECIALLY
INSTRUCTED PERSON.

LASER DIODE CHARACTERISTICS

MAXIMUM OUTPUT POWER: 5 mw

WAVELENGTH: 780-785 nm

LABEL CHECK

ZUCEB/WL model

Additional Laser Caution

1. Laser Interlock Mechanism

The position of the switch *1 (S614, S615, S616) for detecting loading state is detected by the system microprocessor, and the design prevents laser diode oscillation when the switch *1 (S614, S615, S616) is not on CLMP terminal side (CLMP signal is OFF or high level).

Thus, the interlock will no longer function if the switch *1 (S614, S615, S616) is deliberately set to CLMP terminal side. (low level)

The interlock also does not function in the test mode *2. Laser diode oscillation will continue, if between collector and emitter of Q102 and Q110 mounted on the HEAD UNIT is connected to GND, shorted to each other (fault condition).

2. When the cover is opened, close viewing of the objective lens with the naked eye will cause exposure to a Class 1 laser beam.

Note

*1 : S614, S615 and S616 are situated in the CMSB UNIT of DRM - 5004X.

*2 : Refer to page 29.

ZUCEB/WL model

2. EXPLODED VIEWS, PACKING AND PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The Δ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "◎" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

2.1 PACKING

Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
NSP	1	Follow card bag	DHL1011	NSP	8	Caution note (English)	DRM1172
	2	Follow up card	DRY1032		9	Polyethylene bag	Z21-016
	3	Clamper assy - S	DXX2270		10	Screw	IPZ20P050FMC
	4	Protector	DHA1326		11	Yoke	RNE1627
	5	Paking case	DHG1626		12	C magnet	PMF1017
NSP	6	Polyethylene bag	DHL1093	NSP	13	Clamper retainer	RNK1945
	7	Air cap bag	DHL1057		14	Clamp cushion assy	DXB1557

Caution of packing :

1. Turn the all DIP SW to OFF.
2. Lock the hook of SCSI connector.

2.2 MAIN SECTION

Parts List

Mark	No.	Description	Part No.
A	1	DRIVE unit	DWX1552
	2	Connector assy (11P)	DKP2993
	3	Connector assy (5P)	DKP2994
	4	Plunger	DXP1036
	5	Connector	PF04PP6B05
	6	Servo mechanism assy	DXB1530
	7	Float screw	DBA1072
	8	LP spring	DBH1280
	9	LA spring	DBH1281
	10	Float spring	DBH1282
NSP	11	Float rubber	DEB1306
	12	Cord clamp S	DEC1574
	13	Nylon rivet	DEC1830
	14	LP shaft	DLA1651
	15	RW box	DNE1280
B	16	Shield plate	DNH1984
	17	P base	DNH1985
	18	Lock plate B	DNH1986
	19	Lock arm	DNK3051
NSP	20	Mechanism sheet	VEX1024
	21	Label	DAL1094
NSP	22	Serial label	DRW1618
	23	Caution label (G)	VRW-329
	24	Caution label	VRW1094
	25	HEAD unit	DWX1519
C	26	MAIN unit	DWX1520
	27	Sheet	DEC1870
	28	Screw	BBZ30P060FMC
	29	Screw	PMH26P060FMC
	30	Washer	WT16D032D025
NSP	31	Washer	WT21D050D025
	32	Plastic rivet	DEC1704

2.3 SERVO MECHANISM SECTION

When removing the pickup assy,
this portion is sure to short-
circuit with the solder.
Remove the solder after the pickup
assy is installed.

Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
NSP	1	TOC board assy	DWX1538	NSP	51	Yoke angle assy	DXX2237
	2	FG board assy	DWX1539		52	Disc table assy	DXX2238
	3	Roller holder spring (SUS)	ABH7023		53	Linear motor assy	DXX2239
	4	Centering spring	DBH1242		54	Sensor assy	DXX2240
	5	Cushion	DEB1302		55	Pickup assy	DXX2241
NSP	6	Table sheet	DEC1484				
	7	Shading plate	DEC1825				
	8	Reflection sheet	DEC1826				
	9	Centering hab	DLA1644				
	10	Yoke	DNH1974				
NSP	11	Yoke angle	DNH1975				
	12	Mechanism base	DNH1976				
	13	Lock plate	DNH1980				
	14	FG angle	DNH2012				
	15	Carriage unit	DNS1174				
NSP	16	Yoke holder	DNS1175				
	17	Disc table	DNS1171				
	18	Motor magnet	DNS1177				
	19	Sensor magnet	DNS1178				
	20	Motor bobbin	DNV1025				
NSP	21	Sensor bobbin	DNV1026				
	22	Flexible holder	DNV1027				
	23	TAN arm unit	DXB1527				
	24	Bearing	DXB1531				
	25	Spindle motor	DXM1071				
NSP	26	Shaft holder spring	PBH1136				
	27	Skew spring	PBH1155				
	28	Plate spring S	PBK1122				
	29	Plate spring L	PBK1123				
	30	Stopper rubber	PEB1035				
NSP	31	Guide bar	PLA1026				
	32	Guide shaft	PLA1120				
	33	Shaft holder	PNR1038				
	34	Nylon rivet	DEC1830				
	35	Screw	BMZ20P040FZK				
NSP	36	Screw	BMZ26P040FMC				
	37	Screw	BMZ30P160FMC				
	38	Screw	BMZ30P350FMC				
	39	Nut	NZ30FMC				
	40	Screw	PMA26P040FMC				
NSP	41	Screw	PMB20P050FMC				
	42	Screw	PMF20P050FMC				
	43	Screw	PMH20P040FMC				
	44	Screw	PMH20P050FZK				
	45	Screw	PMH20P100FMC				
NSP	46	Screw	SMZ30H080FNI				
	47	Washer	WC30FMC				
	48	Washer	WT17D034D050				
	49	Washer	WT26D047D025				
	50	Screw	ZMD26H040FBT				

3. SCHEMATIC AND PCB CONNECTION DIAGRAMS

NOTE FOR SCHEMATIC DIAGRAMS

(Type 4A)

- When ordering service parts, be sure to refer to "PARTS LIST of EXPLODED VIEWS" or "PCB PARTS LIST".

- Since these are basic circuits, some parts of them or the values of some components may be changed for improvement.

3. RESISTORS:

Unit: $k\Omega$, $M\Omega$, or Ω unless otherwise noted.
 Rated power: 1/4W, 1/6W, 1/8W, 1/10W unless otherwise noted.
 Tolerance: (F): $\pm 1\%$, (G): $\pm 2\%$, (K): $\pm 10\%$, (M): $\pm 20\%$ or $\pm 5\%$ unless otherwise noted.

4. CAPACITORS:

Unit: pF or μF unless otherwise noted.
 Ratings: capacitor (μF) / voltage (V) unless otherwise noted.
 Rated voltage: 50V except for electrolytic capacitors.

5. COILS:

Unit: $m:mH$ or μH unless otherwise noted.

6. VOLTAGE AND CURRENT:

\square or $\leftarrow V$: DC voltage (V) in PLAY mode unless otherwise noted.
 $\leftrightarrow mA$ or $\leftarrow mA$: DC current in PLAY mode unless otherwise noted.
 Value in () is DC current in STOP mode.

7. OTHERS:

- \odot or \bullet : Adjusting point.
- \blacktriangleleft : Measurement point.
- The Δ mark found on some component parts indicates the importance of the safety factor of the parts. Therefore, when replacing, be sure to use parts of identical designation.

8. SCH - □ ON THE SCHEMATIC DIAGRAM:

- SCH - □ indicates the drawing number of the schematic diagram.
 (SCH stands for schematic diagram.)

9. SWITCHES (Underline indicates switch position):

MAIN UNIT

S1001 :DIP SW
 S1001- 1:BLKSZ
 S1001- 2:PARTY
 S1001- 3:TEARM
S1001- 4:MTCS
S1001- 5:TEST-1
S1001- 6:TEST-2

NOTE FOR PCB DIAGRAMS:

- Part numbers in PCB diagrams match those in the schematic diagrams.
- A comparison between main parts of PCB and schematic diagrams is shown below.

Symbol in PCB Diagrams	Symbol in Schematic Diagrams	Part Name
		Transistor
		Transistor with resistor
		Field effect transistor
		Resistor array
		3-terminal regulator

3.1 OVERALL WIRING DIAGRAM

SCH-1

A

SERVO MECHANISM ASSY
(DXB1530) (→ SCH-2)PICKUP ASSY
(DXX2241)TOC BOARD ASSY
(DWX1538)SPINDLE MOTOR
(DWX1071)△ DRIVE UNIT
(DWX1552)* THERE ARE NO SERVICE
PARTS ON THE DRIVE UNIT.FG BOARD ASSY
(DWX1539)(POWER SUPPLY)
CN122

V+5	GND	V+5	GND
GND	V+5	GND	V+5
5V	GND	-5V	GND
GND	5V	GND	-5V
+10V	GND	-10V	GND

GND	1
ID0	2
ID1	3
ID2	4

GND	1
ID0	2
ID1	3
ID2	4
ID3	5

GND	1
ID0	2
ID1	3
ID2	4
ID3	5

(TP201)
CN601

RF	1
TRKIN	2
GND	3
100	4
101	5
102	6

(TP202)
CN609

GFS	1
PFLCN	2
EPCLK	3
GND	4
HF	5

DO	1
D1	2
D2	3
D3	4
D4	5
D5	6
D6	7
D7	8
D8	9
REQ	10
ACK	11
MRESET	12
GND	13

GND	1
GND	2
GND	3
GND	4
GND	5
GND	6
GND	7
GND	8
GND	9
GND	10
GND	11
NC	12
NC	13
NC	14
GND	15
GND	16
GND	17
GND	18
GND	19
GND	20
GND	21
GND	22
GND	23
GND	24
GND	25
SD0	26
SD1	27
SD2	28
SD3	29
SD4	30
SD5	31
SD6	32
SD7	33
SDP	34
GND	35
GND	36
NC	37
TRMOW	38
NC	39
GND	40
ATN	41
GND	42
SV	43
ACK	44
RST	45
MSG	46
SEL	47
C/D	48
REQ	49
I/O	50

MAIN UNIT (DWX1520)
(1/2 : → SCH-4)
(2/2 : → SCH-5)

BLKSZ	1
PARTY	2
TERM	3
MTCS	4
TEST	5
TEST2	6

PLSTS	1
RELEASE	2
MCSTS	3
CLMPE	4
GND	5

VCC	1
RXD	2
TXD	3
GND	4

XSYNC	1
LCKB	2
CCF	3
GND	4
WBL	5

AUDIO_R	1
GND	2
AUDIO_L	3
GND	4

SCH-1	1
OVERALL WIRING DIAGRAM	2

SCH-1

OVERALL
WIRING
DIAGRAM

12

3.2 HEAD UNIT (1/2), TOC BOARD, FG BOARD AND PICKUP ASSEMBLIES

A

B

C

D

HEAD UNIT (1/2),
TOC BOARD ASSY,
FG BOARD ASSY,
PICKUP ASSY

SCH-2

SIGNAL ROUTE
→ : RF SIGNAL LINE

SCH-3

SCH-2

Waveforms of HEAD UNIT (1/2)

CAUTION : FOR CONTINUED PROTECTION AGAINST RISK OF FIRE REPLACE WITH SAME TYPE, NO. ICP-N15, MFD BY ROHM CO., LTD, FOR IC124.

POWER SUPPLY ASSY (DRM-5004X)

HEAD UNIT (1/2),
TOC BOARD ASSY,
FG BOARD ASSY,
PICKUP ASSY

PCB - 1

- This is a multi-layer PCB.
But information for both sides is shown.

PCB - 1

A

A

- This is a multi-layer PCB.
But information for both sides is shown.

3.3 HEAD UNIT (2/2)

A

HEAD UNIT (DWX1519) (2/2)

B

IC702:
STRATEGY SWITCH
EVERY SPEEDIC707 (1/4),
IC706 (1/3 - 3/3):
STRATEGY MIX
EVERY SPEED

D

SCH-3

HEAD UNIT
(2/2)HEAD UNIT
(2/2)

SCH-3

3.4 MAIN UNIT (1/2)

MAIN UNIT (DWX1520) (1/2)

Waveforms of MAIN UNIT (1)

MAIN UNIT
(1/2)

SCH-4

PCB - 2

A

MAIN UNIT

B

HEAD
UNIT
CN107

HEAD
UNIT
CN106

C

HEAD
UNIT ←
CN201

D

- This is a multi-layer PCB.
But information for both sides is shown.

PCB - 5

A

A

- This is a multi-layer PCB.
But information for both sides is shown.

3.5 MAIN UNIT (2/2)

MAIN UNIT (DWX1520) (2/2)

IC1005 : HIGH-SPEED SRAM FOR
ROM ENCODE AND DECODE
(256KB)

A

2

IC1006, IC1014, IC1016, IC1024 :
SUBCODE DATA
TIMING SIGNAL CONVERSION

3

4

4

SIGNAL ROUTE
→ : DIGITAL AUDIO SIGNAL LINE

SCH - 5

CN1001
(GGC1078
(FAP-5001-1202-OBS))

SCSI BUS

B

C

D

D

MAIN UNIT
(2/2)

SCH-5

1

Q1102 :
REMOTE CONTROL INTERFACEHEAD UNIT
(1/2)
CN201
(→ SCH - 2)IC1007 :
POWER SUPPLY GENERATION
FOR FLASH MEMORY WR

CN1026

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1025

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1024

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1023

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1022

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1021

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1020

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1019

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1018

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1017

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1016

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1015

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1014

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1013

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1012

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1011

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1010

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1009

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1008

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1007

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1006

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1005

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1004

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1003

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1002

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1001

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1000

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1009

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1008

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1007

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1006

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1005

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1004

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1003

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1002

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1001

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1000

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1009

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1008

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1007

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1006

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1005

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1004

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1003

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1002

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1001

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1000

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1009

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1008

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1007

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1006

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1005

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1004

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1003

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1002

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1001

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1000

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1009

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1008

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1007

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1006

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1005

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1004

PLSTS
RELEASE
WESTS
CLMPE
GND

CN1003

4. PCB PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
 - The Δ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
 - Parts marked by "◎" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
 - When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex.1 When there are 2 effective digits(any digit apart from 0), such as 560 ohm and 47k ohm(tolerance is shown by J=5%, and K=10%).
- 560 Ω \rightarrow 56 $\times 10^3$ \rightarrow 561 RD1/8PM 5|6|1J
- 47k Ω \rightarrow 47 $\times 10^3$ \rightarrow 473 RD1/4PS 4|7|3J
- 0.5 Ω \rightarrow 0R5 RN2H 0|R|5K
- 1 Ω \rightarrow 010 RS1P 0|1|0K
- Ex.2 When there are 3 effective digits(such as in high precision metal film resistors).
- 5.62k Ω \rightarrow 562 $\times 10^3$ \rightarrow 5621 RN1/4PC 5|6|2|1F

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.							
LIST OF ASSEMBLIES														
NSP	COMP UNIT └ HEAD UNIT └ MAIN UNIT	DWM1454 DWX1519 DWX1520	IC103 IC20 IC111, IC15 IC117 Q115, Q116, Q200, Q605, Q606	TC7S08F TC7S32F UPC811G2 UPC812G2 2SA1037K										
Δ	DRIVE UNIT	DWX1552	Q609, Q610 Q102-Q106, Q110 Q10, Q107, Q108, Q9 Q202 Q101, Q607, Q608, Q611, Q612	2SA1037K 2SA1461 2SA1462 2SB1114 2SC2412K										
	SERVO MECHANISM ASSY └ TOC BOARD ASSY └ FG BOARD ASSY └ PICKUP ASSY	DXB1530 DWX1538 DWX1539 DXX2241	Q201, Q630-Q632 D603, D609, D801, D802 D202, D204 D201, D210, D602 D200	DTC124EU 1SS133X 21DQ04 DA114 RB100A										
	*: THERE ARE NO SERVICE PARTS ON THE DRIVE UNIT.													
HEAD UNIT														
SEMICONDUCTORS														
Δ	IC26 IC124 IC116 IC11, IC14 IC616	CXD7500M ICP-N15 LA6517 LM6364M M5238AFP	C2, C410, C412, C414, C416 C420, C422, C424 C16-C19 C710 C683, C684, C706-C709	CCSQCH020C50 CCSQCH020C50 CCSQCH030C50 CCSQCH101J50 CCSQCH151J50	DL704 DL705 L102	DTF1083 DTF1084 RTF1163								
	IC617, IC619, IC629 IC624, IC626 IC622, IC623 IC108, IC110, IC1104, IC113, IC12 IC121, IC16-IC19, IC618, IC620	NJM2903M NJM2904M NJM311M NJM4560M NJM4560M	C1, C14, C15, C202 C835, C836, C839, C840 C24 C698, C699, C702, C703 C411, C413, C415, C417, C73	CCSQCH220J50 CCSQCH221J50 CCSQCH330J50 CCSQCH331J50 CCSQCH391J50										
	IC625, IC627, IC628, IC630, IC717 IC122 IC123 IC118, IC119 IC109	NJM4560M NJM78L02A NJM79L03A PA6004A TA8410AK	C30 C21 C22, C23 C666, C678, C679 C134, C230, C231, C76	CCSQCH470J50 CCSQCH680J50 CCSQCH820J50 CEAL010M50 CEAL100M16										
	IC610 IC707 IC702 IC706 IC711	TC4053BF TC74HC08AF TC74HC253AF TC74HC4075AF TC74HCU04AF	C691 C730 C151, C153, C165, C167, C181 C225 C647, C651, C656, C657, C675	CEAL220M16 CEAL2R2M50 CEAL470M16 CEAL470M16 CEAL470M6R3										

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
MAIN UNIT							
SEMICONDUCTORS							
IC601		CEAL470M6R3	CEAL470M6R3	IC601		CXA1372Q	
IC1003		CEAL470M6R3	CEAL470M6R3	IC1003		CXD1198AQ	
IC1008		CEAL470M735	CEAS101M6R3	IC1008		DYW1388	
IC605		CEAS101M6R3	CEAS102M6R3	IC605		DYW1389	
IC1018, IC1019		CEAS102M6R3	C129	IC1018, IC1019		HM514400BZ-8	
IC606		CFTYA474J50	C160, C95, C97	IC606		LC3517BML-15	
IC1005		CKSQYB102K50	C655	IC1005		LH52258AK-25	
IC1017		CKSQYB103K50	C130, C131, C141, C221, C222	IC1017		M51953BL	
IC1027		CKSQYB104K25	C194, C203, C658, C672, C70	IC1027		MAX662CSA	
IC1002		CKSQYB104K25	C72, C98, C99	IC1002		MB86601	
IC1011		CKSQYB182K50	C227	IC1011		MC34268D	
IC1010		CKSQYB332K50	C421, C423	IC1010		MC3142235DW	
IC1007(MS62256CLL-10FC)		CKSQYB333K25	C162, C163, C685	IC1007(MS62256CLL-10FC)		GGC1029	
IC611, IC613-IC615, IC621		CKSQYB472K50	C649, C671, C96	IC611, IC613-IC615, IC621		NJM4560M	
IC632, IC633, IC635, IC637, IC639		CKSQYB473K50	C150, C155, C161	IC632, IC633, IC635, IC637, IC639		NJM4560M	
IC709		CKSQYB822K50	C802	IC709		NJM4560M	
IC604		CKSQYF103Z50	C11-C13, C135, C139, C152	IC604		PDJ006A	
IC602		CKSQYF103Z50	C154, C164, C166, C168, C172	IC602		PDS004A	
IC1004		CKSQYF103Z50	C176, C20, C200, C201	IC1004		PDS005A	
IC638		CKSQYF103Z50	C204-C220, C224, C228, C229	IC638		TC74AC04F	
IC1009		CKSQYF103Z50	C418, C419, C426, C427, C650	IC1009		TC74AC139F	
IC607, IC710		CKSQYF103Z50	C652, C673, C674, C676	IC607, IC710		TC74AC573F	
IC608		CKSQYF103Z50	C687, C688, C800, C803	IC608		TC74HC4051AF	
IC1021		CKSQYF104Z25	C811-C813	IC1021		TC7S00F	
IC1015, IC1016		CKSQYF104Z25	C132, C157, C159, C196, C197	IC1015, IC1016		TC7S04F	
IC1014, IC1022		CKSQYF473Z50	C682, C693	IC1014, IC1022		TC7S08F	
IC1013, IC1024, IC634		CKSQYF473Z50	C223, C664, C665	IC1013, IC1024, IC634		TC7S32F	
IC1020, IC1023		CKSQYF473Z50	C700, C701, C728, C729	IC1020, IC1023		TC7SH32F	
IC1102		CKSQYF473Z50	C837, C838	IC1102		TC7W74F	
IC1006		DCN1028	R226(2.2k Ω)	IC1006		TC7W74FU	
IC1001(UPD70325GJ-10-5BG)		DCN1055	R129, R130(100 Ω)	IC1001(UPD70325GJ-10-5BG)		GGC1062	
IC603(UPD78355GC-7EA)		R209	R209	IC603(UPD78355GC-7EA)		GGC1077	
Q601, Q613		RD1/2PM2R7J	VR1, VR101, VR104, VR4-VR6	Q601, Q613		2SC2412K	
Q603, Q614, Q622		VRTB6HS103	VR2, VR3	Q603, Q614, Q622		DTA124EU	
RS1/10S□□□J		VRTB6HS223		RS1/10S□□□J			
RESISTORS							
OTHERS							
CN106, CN107		DIN CONNECTOR	52299-0200	CN106, CN107		Q1001-Q1004, Q1101, Q1102, Q604	
CN201		KR CONNECTOR	B4B-PH-K	CN201		D604-D606, D803	
CN101		FLEXIBLE CONNECTOR(26P)	DKP2991	CN101		DA114	
		EARTH PLATE	DNF1446			KV1420	
CN111		KR CONNECTOR	S2B-PH-K	CN111		D1009	
CN105		KR CONNECTOR	S3B-PH-K	CN105		RB100A	
CN202		KR CONNECTOR	S4B-PH-K	CN202		D1003(SLR-342MCT31-TS)	
CN122		KR CONNECTOR	S9B-PH-K	CN122		GGC1084	
						D1004, D1006(SLR-342VCT31-TS)	
						GGC1085	
						D1002, D1005(SLR-342YCT31-TS)	
						GGC1086	
COILS							
L603(1UH)		DTL1012		L603(1UH)			
L1000-L1003, L602, L604, L605		RTF1163		L1000-L1003, L602, L604, L605			
SWITCH							
S1001		DSX1040		S1001			
CAPACITORS							
C638, C639		CCSQCH100D50		C638, C639			

Mark	No.	Description	Part No.
C637, C644		CCSQCH820J50	
C610		CEAL010M50	
C1029, C1030, C606		CEAL100M16	
C612		CEAL101M6R3	
C692		CEAL2R2M50	
C1025		CEAL470M16	
C1024, C608, C614, C627, C641		CEAL470M6R3	
C643, C645, C653, C654, C725		CEAL470M6R3	
C753		CEALNP2R2M35	
C628		CEALNP3R3M25	
C626		CEALNP4R7M16	
C1013		CEALR47M50	
C733		CEAS102M6R3	
C731, C732		CEAS471M6R3	
C1009, C715		CKSQYB102K50	
C603, C611, C617, C622, C623		CKSQYB103K50	
C663		CKSQYB103K50	
C604, C605, C607, C609, C625		CKSQYB104K25	
C690, C742, C760		CKSQYB104K25	
C720		CKSQYB122K50	
C749		CKSQYB123K50	
C669		CKSQYB153K50	
C727		CKSQYB183K50	
C721		CKSQYB223K50	
C686		CKSQYB272K50	
C714, C716		CKSQYB273K50	
C601		CKSQYB332K50	
C602, C613, C719		CKSQYB333K25	
C615, C616		CKSQYB472K50	
C801		CKSQYB823K25	
C1000, C1001, C1003-C1007		CKSQYF103Z50	
C1010-C1012, C1014, C1017-C1019		CKSQYF103Z50	
C1021-C1023, C1032, C1102, C624		CKSQYF103Z50	
C630, C634-C636, C642		CKSQYF103Z50	
C659-C661, C717, C718		CKSQYF103Z50	
C722, C723, C740, C743, C745		CKSQYF103Z50	
C747, C750-C752, C798, C799		CKSQYF103Z50	
C817, C818, C841, C842		CKSQYF103Z50	
C1008, C1020, C1028, C631, C633		CKSQYF104Z25	
C640, C689, C726, C734-C736		CKSQYF104Z25	
C741		CKSQYF104Z25	
C1026, C1027		CKSQYF224Z25	
C621		CKSQYF473Z50	

RESISTORS

VR601, VR602
Other resistors

VRTB6HS103
RS1/10S□□□J

OTHERS

CN1004, CN609 CONNECTOR(2MM)

52084-0410

CN701 CONNECTOR(2MM)

52084-0510

CN702 CONNECTOR(2MM)

52084-0610

CN602, CN603 DIN CONNECTOR

53229-0200

CN1007 KR CONNECTOR

B13B-PH-K

CN1002 KR CONNECTOR

B4B-PH-K

EARTH PLATE

DNF1446

X1002 CRYSTAL OSCILATOR(24.00MHz)

DSS1055

X602 CRYSTAL OSCILATOR

DSS1060

(45.1584MHz)

Mark	No.	Description	Part No.
CN1001(FAP-5001-1202-OBS)		CONNECTOR	GGC1078
		IC SOCKET(PLCC32P)	GGC1080
		(IC160-0324-230)	
		IC SOCKET(PLCC44P)	GGC1079
		(IC160-0444-230)	
X1001		CERAMIC RESONATOR(20MHz)	OSS1020
X601		CERAMIC RESONATOR(32MHz)	OSS1021
CN706		KR CONNECTOR	S3B-PH-K
CN1025		KR CONNECTOR	S5B-PH-K

TOC BOARD ASSY**RESISTORS**

All resistors

RD1/6PM□□□J

OTHERS

PHOTO INTERRUPTER
BINDER(SKB-90BK)

GP1A51HR
Z09-056

FG BOARD ASSY**RESISTORS**

All resistors

RD1/6PM□□□J

OTHERS

PHOTO REFLECTOR
BINDER(SKB-90BK)

NJL5801K-F1
Z09-056

5. ADJUSTMENTS

• Adjustment and Check Items

Perform the adjustment of this model in the order as shown below.

(Adjustment 1)

1. Playback power adjustment
2. Coarse focus offset adjustment
3. Coarse skew adjustment
4. Grating adjustment
5. DPP (tracking offset) adjustment
6. Fine skew adjustment
7. Grating re-adjustment

(Adjustment 2)

1. VCO free-run frequency adjustment
2. Slider speed control offset adjustment
3. Playback power re-adjustment
4. Recording power adjustment
5. Focus offset adjustment
6. Main and Sub mix ratio adjustment
7. Tracking amp. gain adjustment
8. Tracking offset adjustment
9. Fine focus offset adjustment
10. Focus servo loop gain adjustment
11. Tracking servo loop gain adjustment
12. VCO free-run frequency verification
13. WBL offset adjustment

• Measuring Equipment

1. Dual trace oscilloscope (10:1 probe)
2. Laser power meter
3. Test disc (YEDS - 7)
4. CDR disc with recorded
(Type No. CD - R63, manufactured by TDK.)
5. Low-pass filter ($39k \Omega + 1000pF$)
6. Hight-pass filter ($3.9k \Omega + 180pF$)
7. Signal generator
8. Frequency counter (measurable over 10MHz)
9. Hexagonal screwdriver (1.5mm diagonal)
10. Other general tools

• Adjustment Points and Their Names

- VR1 : WBL offset (WBL. OFS)
- VR2 : Tracking amp gain (TE. GAIN)
- VR3 : Main and Sub mix ratio (MS. MIX)
- VR4 : Tracking offset (TE. OFS)
- VR5 : Playback power (PB. PW)
- VR6 : Focus offset (FE. OFS)
- VR101 : Slider speed control offset (SLD. OFS)
- VR104 : Recording power (REC. PW)
- VR601 : Focus servo loop gain (FCS. GAIN)
- VR602 : Tracking servo loop gain (TRK. GAIN)
- L603 : VCO adjustment (VCO ADJ)
- Radial/tangential adjustment screws of pickup
: Skew
- Grating adjustment slit of pickup
: Grating

Fig. 1 Adjustment point

5.1 Function Table of the Remote Controller (RU-V101) for Service

- Test mode

Shows the function table of the remote controller (RU-V101) for service as follows. When operating the CD-ROM writer directly, it is possible to operate as shown below by connecting the wired-remote control to the CD-ROM writer with the interface.

Fig. 3 RU-V101

- Test command

key operation	Description
[REJECT]	STOP
[0]+[TIME]	All servo OFF
[1]+[TIME]	Laser diode (LD) ON
[2]+[TIME]	Focus ON
[3]+[TIME]	Spindle ON/tracking OFF
[4]+[TIME]	Tracking ON
[5]+[TIME]	MAX power ON entry
[6]+[TIME]	MAX power ON
[7]+[TIME]	Spindle rotation frequency : Normal speed
[8]+[TIME]	Spindle rotation frequency : Twofold speed
[9]+[TIME]	Spindle rotation frequency : Fourfold speed
[3]+[4]+[CHAPTER]	TOC read
[4]+[2]+[CHAPTER]	Power calibration
[3]+[7]+[CHAPTER]	REC pause
[2]+[1]+[CHAPTER]	REC start
[4]+[1]+[CHAPTER]	PMA record
[5]+[3]+[CHAPTER]	Calibration power ON
[0]+[9]+[CHAPTER]	1 Track jump : FWD
[1]+[0]+[CHAPTER]	1 Track jump : RWD
[1]+[1]+[CHAPTER]	10Track jump : FWD
[1]+[2]+[CHAPTER]	10Track jump : RWD
[1]+[3]+[CHAPTER]	96Track jump : FWD
[1]+[4]+[CHAPTER]	96Track jump : RWD
[MIN]+[SEC]+[FRM]+[SEARCH]	TIME search
[TRACK NUMBER]+[FUNC1]+[0]	Track number search

Caution:

- Caution:**

 - When replacing the disc, perform the TOC read. (However, does not perform the TOC read in the adjustment.)
 - Perform the power calibration before first recording after the disc is replaced.
 - Perform the PMA record after the recording.
 - Perform the STOP when changing the spindle rotation frequency.
 - Perform the power calibration before first recording after the spindle rotation frequency is changed.

- Schematic Diagram of the Conversion Jig for Remote Control Operation

Fig. 2

5.2 How to Control the Remote Control Unit

Importance : When performing the adjustment, be sure to turn the power on after set to DIP SW5 to ON, SW6 to OFF and SCSI ID to 7 (Pins 1 to 4 of CN202 are all shorted.) At this time, operation can not be performed from the Host.

5.3 Adjustments

5.3.1 Adjustment 1

1. Playback Power Adjustment

(Adjustment 1)

● Objective	To optimize the playback power of the laser diode.		
● Symptom when out of adjustment	Play does not start, track search is impossible, track are skipped.		
● Measurement instrument connections	Shine the light discharged from the objective lens on the light power meter sensor. [Settings] Wavelength 790nm Average mode	● Player state ● Adjustment location ● Disc	Laser diode (LD) ON VR5 (PB. PW) None needed
[Procedure]			
1. Move the pickup to the outer edge of the disc. 2. Lights up the playback laser diode by laser diode (LD) ON. 3. Shine the light discharged from the objective lens in the pickup on the light power meter sensor. Adjust VR5 (PB.PW) so that the playback laser diode output is an average $0.6 \text{ mW} \pm 0.02 \text{ mW}$.			

2. Coarse focus offset adjustment

(Adjustment 1)

● Objective	To optimize the DC offset voltage of the focus error amp.		
● Symptom when out of adjustment	The player does not focus in and the RF signal is dirty.		
● Measurement instrument connections	Connect the oscilloscope to TP201 (CN601), Pin 6 (FCSER). [Settings] 5 mV/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Stop VR6 (FE. OFS) None needed
[Procedure]			
1. Adjust VR6 (FE. OFS) so that the DC voltage at TP201, Pin 6 (FCSER) is $0 \pm 10\text{mV}$.			

3. Coarse Skew Adjustment

(Adjustment 1)

● Objective	To coarse adjust the angle to the disc of pickup for perform the grating and DPP (tracking offset) adjustments correctly.		
● Symptom when out of adjustment	Some discs can be played but not others.		
● Measurement instrument connections	Connect the oscilloscope to TP201 (CN601), Pin 1 (RF). [Settings] 20 mV/division 200 ns/division AC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON/tracking OFF Radial adjustment screw and tangential adjustment screw YEDS - 7

[Procedure]

1. Move the pickup to the position where the radial/tangential adjustment screws will be seen so that the radial/tangential adjustment screws can be adjusted.
Set to normal speed, focus ON and spindle ON.
2. Adjust the RAD (radial direction) and TAN (tangential direction) adjustment screws alternately with hexagonal screwdriver (1.5 mm) to maximize the RF output at TP201 (CN601), pin 1.

Note : Radial and tangential mean the direction relative to the disc shown in Fig. 4.

Fig. 4

4. Grating Adjustment

(Adjustment 1)

● Objective	To align the tracking error generation laser beam spots to the optimum angle on the track.		
● Symptom when out of adjustment	Play does not start, track search is impossible, tracks are skipped.		
● Measurement instrument connections	Connect the oscilloscope to TP201, Pin 2 (TE) via a low-pass filter. (see Fig. 5) [Settings] 50 mV/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON/tracking OFF Grating slit on pickup YEDS-7

[Procedure]

1. Move the pickup to the position where the grating adjustment slit will be seen so that the grating adjustment can be adjusted.
 2. Set to normal speed, focus ON and spindle ON.
 3. Insert a screwdriver into the grating adjustment slit and adjust the grating to find the null point.
For more details, see next page.
 4. Turn the screw driver counterclockwise from the null point and set the grating to the first point where the wave amplitude reaches its maximum.
- Reference : Fig. 6 shows the relation between the angle of the tracking beam with the track and the waveform.

Fig. 5

[How to find the null point]

When you insert the small screwdriver into the slit for the grating adjustment and change the grating angle, the amplitude of the tracking error signal at TP201 (CN601), Pin 2 changes. Within the range for the grating, there are five or six locations where the amplitude of the wave reaches a minimum. Of these five or six locations, there is only one at which the envelope of the waveform is smooth. This location is where the three laser beams divided by the grating are all right above the same track. (See Fig. 6.)

This point is called the null point. When adjusting the grating, this null point is found and used as the reference position.

Fig. 6

Note : If the difference between the amplitude of the error signal at the innermost edge and outermost edge of the disc is more than 10%, adjust the grating again.

5. DPP (Tracking Offset) Adjustment

(Adjustment 1)

● Objective	To correct for the variation in the sensitivity of the tracking photodiode.		
● Symptom when out of adjustment	Play does not start or track search is impossible.		
● Measurement instrument connections	<p>Connect the oscilloscope to TP201 (CN601), Pin 2 (TE) [This connection may be via a low-pass filter (39kΩ +1000pF).]</p> <p>[Settings] 50 mV/division 5 ms/division DC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	Spindle rotation frequency : Normal speed, focus ON, spindle ON/ tracking OFF VR4 (TE. OFS) YEDS-7

[Procedure]

1. Move the pickup to midway across the disc (R=35mm).
2. Set to normal speed, focus ON and spindle ON.
3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
4. Adjust VR4 (TE. OFS) so that the positive amplitude and negative amplitude of the tracking error signal at TP201 (CN601), Pin 2 (TE) are the same (in other words, so that there is no DC component).

6. Fine Skew Adjustment

(Adjustment 1)

● Objective	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals.		
● Symptom when out of adjustment	Some discs can be played but not others.		
● Measurement instrument connections	Connect the oscilloscope to TP201 (CN601), Pin 1 (RF). [Settings] 20mV/division 200ns/division AC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON/tracking ON Pickup radial adjustment screw and tangential adjustment screw YEDS-7

[Procedure]

1. Move the pickup to the position where the radial/tangential adjustment screws will be seen so that the radial/tangential adjustment screws can be adjusted.
Set to normal speed, focus ON, spindle ON and tracking OFF.
2. First, adjust the radial adjustment screw with the hexagonal screwdriver so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly (Fig. 7).
3. Next, adjust the tangential adjustment screw with the hexagonal screwdriver so that the eye pattern can be seen the most clearly (Fig. 7).
4. Adjust the radial adjustment screw and the tangential adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.

Fig. 7 Eye pattern

7. Grating Re-Adjustment

(Adjustment 1)

Adjust in the same manner as "4. Grating Adjustment" in (Adjustment 1).

5.3.2 Adjustment 2**1. VCO Free-run Frequency Adjustment**

(Adjustment 2)

● Objective	To optimize the VCO free-run frequency.		
● Symptom when out of adjustment	No play.		
● Measurement instrument connections	Connect the frequency counter and TP202 (CN609), pin 3 (EPLCK) [Settings]	● Player state ● Adjustment location ● Disc	Stop (just the power switch ON) L603 (VCO. ADJ) None needed

[Procedure]

1. Adjust L603 so that the VCO oscillation frequency at TP202 (CN609), pin 3 (EPLCK) is $4.322\text{MHz} \pm 0.001\text{MHz}$.

2. Slider Speed Control Offset Adjustment

(Adjustment 2)

● Objective	To optimize the DC offset voltage of the slider speed control amp.		
● Symptom when out of adjustment	Player does not playback (slider moves at stop).		
● Measurement instrument connections	Connect the oscilloscope to TP1(CN103), Pin 7 (SLDDRV). GND : TP1 (CN103), Pin 5 (AGND) [This connection may be via a low-pass filter (39k Ω +1000pF)] [Settings] 5 mV/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Stop VR101 (SLD. OFS) None needed
[Procedure]			
<ol style="list-style-type: none"> 1. Move the pickup to midway across the disc. 2. If the pickup continues moving even when you try to stop it, coarse adjust VR101 (SLD.OFS) to stop it. 3. Adjust VR101 (SLD.OFS) so that the DC voltage at TP1 (CN103), pin 7 (SLDDRV) is 0 ± 10 mV. 4. Check that pickup movement is stopped. 			

3. Playback Power Re-Adjustment

(Adjustment 2)

Adjust in the same manner as "1. Playback Power Adjustment" in (Adjustment 1).

4. Recording Power Adjustment

(Adjustment 2)

● Objective	To optimize the recording power of the laser diode.		
● Symptom when out of adjustment	The player does not record nor playback self-recorded discs. It also skips tracks and the RF waveform is dirty. (No problems during CD playback)		
● Measurement instrument connections	<p>Shine the light discharged from the objective lens on the light power meter sensor.</p> <p>[Settings]</p> <p>Wavelength 790 nm Average mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Spindle rotation frequency : Fourfold speed, max power ON entry, max power ON</p> <p>VR104 (REC. PW)</p> <p>None needed</p>

[Procedure]

1. Fully turn VR104 (REC.PW) counterclockwise to reduce the power to the minimum.
2. Move the pickup to the outer edge of the disc.
3. Spindle rotation frequency : Fourfold speed, max power ON entry and max power ON to lights up the laser diode.
4. Shine the light discharged from the objective lens in the pickup on the light power meter sensor and adjust VR104 (REC.PW) so that the playback laser diode output is an average of $10 \text{ mW} \pm 0.05 \text{ mW}$.

Notes

- Power more than ten times greater than playback power is released during these adjustments.
Never look directly at the objective lens.
- The laser diode may be damaged if the recording power is greater than the specified value.
Always perform step 1 before making adjustments.

5. Focus Offset Adjustment

(Adjustment 2)

● Objective	To coarse adjust the DC offset voltage of the focus servo circuit for perform the tracking adjustments correctly.		
● Symptom when out of adjustment	The model does not focus in, sound broken and the RF signal is dirty.		
● Measurement instrument connections	<p>Connect the oscilloscope to TP201 (CN601), Pin 1 (RF)</p> <p>[Settings]</p> <p>20mV/division 10 ms/division DC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Spindle rotation frequency : Normal speed, focus ON, spindle ON/ tracking OFF</p> <p>VR6 (FE. OFS)</p> <p>YEDS - 7</p>

[Procedure]

1. Move the pickup to midway across the disc ($R=35\text{mm}$).
2. In the normal speed, focus ON and spindle ON state, adjust VR6 (FE. OFS) so that the amplitude of TP201 (CN601), Pin 1 (RF) becomes maximam.

6. Main and Sub Mix Ratio Adjustment

(Adjustment 2)

● Objective	To mix the gain of the main signal output and sub signal output of the pickup.		
● Symptom when out of adjustment	Player does not playback.		
● Measurement Instrument connections	<p>Connect the oscilloscope to CH1 : TP2 (CN104), Pin 1 (STE) CH2 : TP2 (CN104), Pin 2 (MSTE).</p> <p>[This connection may be via a L.P.F. ($39k\Omega + 1000pF$.)]</p> <p>[Settings] CH 1 : 5 mV/div. AC mode 1 ms/div. ADD mode CH 2 : 10 mV/div. AC mode (Match the GND level of CH1 and CH2.)</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Spindle rotation frequency : Normal speed, focus ON, spindle ON/tracking OFF</p> <p>VR3 (MS. MIX)</p> <p>YEDS-7</p>

[Procedure]

1. Spindle rotation frequency : Normal speed, focus ON and spindle ON to move the pickup to midway across the disc.
2. Set the oscilloscope to ADD mode (waveform adding mode of CH1 and CH2) and observe the adding waveform of CH1 and CH2.
3. Adjust VR3 (MS. MIX) so that the amplitude of waveform becomes minimum.

Out of adjustment

Optimum adjustment

7. Tracking Amp. Gain Adjustment

(Adjustment 2)

● Objective	To correct the discrepancy in the tracking error level with the pickup.		
● Symptom when out of adjustment	Player does not playback, track search is impossible, tracks are skipped.		
● Measurement instrument connections	<p>Connect the oscilloscope to TP201 (CN601), Pin 2 (TE). [This connection may be via a low-pass filter ($39k\Omega + 1000pF$).]</p> <p>[Settings] 50 mV/division 5 ms/division DC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Spindle rotation frequency : Normal speed, focus ON, spindle ON/tracking OFF</p> <p>VR2 (TE. GAIN)</p> <p>YEDS - 7</p>

[Procedure]

1. Move the pickup to midway across the disc (R=35mm).
2. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
3. Set to spindle rotation frequency : Normal speed, focus ON and spindle ON.
4. Adjust VR2 (TE. GAIN) so that the positive amplitude and negative amplitude of the tracking error signal at TP201 (CN601), Pin 2 (TE) is $2.0V \pm 0.1V$.

8. Tracking Offset Adjustment

(Adjustment 2)

Adjust in the same manner as "5. DPP (Tracking Offset) Adjustment" in (Adjustment 1).

Note : Perform the run-on adjustment in the section 7 and 8.

9. Fine Focus Offset Adjustment

(Adjustment 2)

● Objective	To optimize the DC offset voltage of the focus servo circuit.		
● Symptom when out of adjustment	The player does not focus in, sound broken and the RF signal is dirty.		
● Measurement instrument connections	Connect the oscilloscope to TP201 (CN601), Pin 1 (RF). [Settings] 20 mV/division 500 ns/division AC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON, tracking ON VR6 (FE. OFS) YEDS-7

[Procedure]

1. Move the pickup to midway across the disc (R=35mm). Spindle rotation frequency : Normal speed, focus ON, spindle ON and tracking ON put the player into play mode.
2. Adjust VR6 (FE. OFS) so that the eye pattern of TP201 (CN601), Pin 1 (RF) (the diamond shape at the center of the RF signal) can be seen the most clearly.

Out of adjustment

Optimum adjustment

10. Focus Servo Loop Gain Adjustment

(Adjustment 2)

● Objective	To optimize the focus servo loop gain.		
● Symptom when out of adjustment	Playback does not start or focus actuator noisy.		
● Measurement instrument connections	See Fig. 8 [Settings] CH 1 : 0.1 V/division X-Y mode CH 2 : 10 mV/division	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON, tracking ON VR601 (FCS. GAIN) YEDS-7

[Procedure]

1. Set the AF generator output to 1.44kHz and 1Vp-p.
2. Move the pickup to midway across the disc ($R=35\text{mm}$). Spindle rotation frequency : Normal speed, focus ON, spindle ON and tracking ON put the player into play mode.
3. Adjust VR601 (FCS. GAIN) so that the lissajous waveform is symmetrical about the X axis and the Y axis.

Fig. 8

Higher gain

Optimum gain

Lower gain

11. Tracking Servo Loop Gain Adjustment

(Adjustment 2)

● Objective	To optimize the tracking servo loop gain.		
● Symptom when out of adjustment	Playback does not start, during searches the actuator is noisy, or tracks are skipped.		
● Measurement instrument connections	<p>See Fig. 9. [Settings] CH 1 : 0.1 V/division X - Y mode CH 2 : 10 mV/division</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Spindle rotation frequency : Normal speed, focus ON, spindle ON, tracking ON VR602 (TRK. GAIN) YEDS - 7</p>

[Procedure]

1. Set the AF generator output to 1.33kHz and 2Vp-p.
2. Move the pickup to midway across the disc ($R=35\text{mm}$). Spindle rotation frequency : Normal speed, focus ON, spindle ON and tracking ON put the player into play mode.
3. Adjust VR602 (TRK. GAIN) so that the lissajous waveform is symmetrical about the X axis and the Y axis.

Fig. 9

Higher gain

Optimum gain

Lower gain

12. VCO free-run frequency verification

(Adjustment 2)

● Objective	To verify the VCO free-run frequency is optimized.		
● Symptom when out of adjustment	No play and track search is impossible.		
● Measurement instrument connections	Connect the oscilloscope to TP202 (CN609) , pin 2 (PLLCN) [Settings] 0.1 V/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed•Fourfold speed, focus ON, spindle ON/tracking ON L603 (VCO ADJ) YEDS - 7
[Procedure]			
<ol style="list-style-type: none"> 1. In the normal speed, focus ON, spindle ON and tracking ON state, verify the center value (center value which is the thick portion of line) of waveform's DC elements at TP202 (CN609), pin 2 (PLLCN) is $0V \pm 0.1V$. 2. In the fourfold speed, focus ON, spindle ON and tracking ON state, verify the center value of waveform's DC elements at TP202 (CN609), pin 2 (PLLCN) is $0V \pm 0.1V$. 3. If the specified values cannot be obtained, perform the verification after adjusting the section "1. VCO free-run frequency adjustment" in (Adjustment 2) again. 			

13. WBL Offset Adjustment

(Adjustment 2)

● Objective	To optimize the DC offset voltage of the wobble amp.		
● Symptom when out of adjustment	CD - R disc does not record and playback.		
● Measurement instrument connections	Connect the oscilloscope to TP2 (CN104), Pin 5 (WBL). [This connection may be via a high-pass filter (180pF+39.0kΩ).] [Settings] 100 mV/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Spindle rotation frequency : Normal speed, focus ON, spindle ON, tracking ON VR1 (WBL. OFS) CDR disc with recorded (Type No. CD - R63, manufactured by TDK.)
[Procedure]			
<ol style="list-style-type: none"> 1. Move the pickup to the midway across the disc. 2. Set to the normal speed, focus ON, spindle ON and tracking ON state. 3. Adjust VR1 (WBL. OFS) so that the amplitude of the waveform becomes minimum. 			

6. IC INFORMATION

- The information shown in the list is basic information and may not correspond exactly to that shown in the schematic diagrams.

■ TC7S32F (IC20 : HEAD UNIT) •CMOS DIGITAL INTEGRATED CIRCUIT

• Block Diagram (Top View)

■ TC74HC253AF (IC702 : HEAD UNIT) •DUAL 4 - CHANNEL MULTIPLEXER WITH 3 - STATE OUTPUT

• Pin Arrangement (Top View)

• Truth Table

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT Y
B	A	C0	C1	C2	C3	\bar{G}	
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

X : Don't care

Z : High-Impedance

■ TC74HC4051AF (IC608 : MAIN UNIT) •8 - CHANNEL ANALOG MULTIPLEXER/ DEMULTIPLEXER

• Pin Arrangement (Top View)

• Truth Table

CONTROL INPUTS				"ON" CHANNEL
INHIBIT	C	B	A	
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	X	X	X	NONE

X : Don't care

■ TC74HC4075AF (IC706 : HEAD UNIT) •TRIPLE 3 - INPUT OR GATE

• Block Diagram (Top View)

• Truth Table

A	B	C	Y
H	X	X	H
X	H	X	H
X	X	H	H
L	L	L	L

X : Don't care

**■ HM514400BZ - 8
(IC1018, IC1019 : MAIN UNIT)**

• 1MB BUFFER RAM

• Pin Arrangement (Bottom View)

• Pin Arrangement Table

Pin No.	Pin Name	I/O
1	/OE	-
2	/CAS	-
3	I/O3	I/O
4	I/O4	I/O
5	VSS	-
6	I/O1	I/O
7	I/O2	I/O
8	/WE	-
9	/RAS	-
10	A9	I
11	A0	I
12	A1	I
13	A2	I
14	A3	I
15	VCC	-
16	A4	I
17	A5	I
18	A6	I
19	A7	I
20	A8	I

■ PDJ006A (IC604 : MAIN UNIT)

• ATIP DECODER

• Pin Arrangement (Top View)

● Pin Function

No.	Pin Name	I/O	Function
1	WBL	I	WOBBLE signal input.
2	FSK	O	FSK demodulation signal output.
3	SBSY	I	Subcode sync. signal input. Normal speed:75Hz
4	MDP	O	MDP output for CLV servo.
5	SPSEL	I	Selection input of microcomputer interface mode. H:Serial mode, L:Parallel mode
6	ASYNC	O	ATIP sync. output. Normal speed:75Hz
7	ACK	I	Clock input for serial interface.
8	GND	—	Ground.
9	AOUTPE	I	Read enable input of serial data.
10	AOUT	O	Serial data output. 32 bits
11	AINPE	I	Write enable input of serial data.
12	AIN	I	Serial data input. 16 bits
13	XCK	I	Master clock input. Normal speed:4.3218MHz
14	XSRST	I	System reset input. Low active
15	SIOK	O	Special information standby flag output. STS BIT2 H:Special information is able to read.
16	CRCOK	O	CRC arithmetic result output. STS BIT7 H:CRCOK, L:CRCNG
17	PROTECT	O	ATIP sync. protection state output. H:Protection state, L:Non protection state
18	VCC	—	Power supply voltage pin.
19	N.C.	—	Not used.
20	XADSEL	I	Start address setting strobe input of address decoder.
21	XWE	I	Write enable input of microcomputer.
22	XRE	I	Read enable input of microcomputer.
23	SYA0	I	Address bus of microcomputer.
24	SYA1	I	
25	SYA2	I	
26	SYA3	I	
27	SYA12	I	
28	GND	—	Ground.
29	SYA13	I	Address bus of microcomputer.
30	SYA14	I	
31	SYA15	I	
32	SYD0	I/O	Data bus of microcomputer.
33	SYD1	I/O	
34	SYD2	I/O	
35	SYD3	I/O	
36	SYD4	I/O	
37	SYD5	I/O	
38	VCC	—	Power supply voltage pin.
39	SYD6	I/O	Data bus of microcomputer.
40	SYD7	I/O	

No.	Pin Name	I/O	Function
41	XCE0	O	Chip enable output.
42	XCE1	O	
43	XCE2	O	
44	XCE3	O	
45	POA0	I/O	Parallel output of general - purpose register A. GRA BIT0
46	POA1	I/O	Parallel output of general - purpose register A. GRA BIT1
47	POA2	I/O	Parallel output of general - purpose register A. GRA BIT2
48	GND	-	Ground.
49	POA3	I/O	Parallel output of general - purpose register A. GRA BIT3
50	POA4	I/O	Parallel output of general - purpose register A. GRA BIT4
51	POA5	I/O	Parallel output of general - purpose register A. GRA BIT5
52	POA6	I/O	Parallel output of general - purpose register A. GRA BIT6
53	POA7	I/O	Parallel output of general - purpose register A. GRA BIT7
54	POB0	O	Parallel output of general - purpose register B. GRB BIT0
55	POB1	O	Parallel output of general - purpose register B. GRB BIT1
56	POB2	O	Parallel output of general - purpose register B. GRB BIT2
57	POB3	O	Parallel output of general - purpose register B. GRB BIT3
58	VCC	-	Power supply voltage pin.
59	POB4	O	Parallel output of general - purpose register B. GRB BIT4
60	POB5	O	Parallel output of general - purpose register B. GRB BIT5
61	POB6	O	Parallel output of general - purpose register B. GRB BIT6
62	POB7	O	Parallel output of general - purpose register B. GRB BIT7
63	POC0	O	Parallel output of general - purpose register C. GRC BIT0
64	POC1	O	Parallel output of general - purpose register C. GRC BIT1
65	POC2	O	Parallel output of general - purpose register C. GRC BIT2
66	POC3	O	Parallel output of general - purpose register C. GRC BIT3
67	POC4	O	Parallel output of general - purpose register C. GRC BIT4
68	GND	-	Ground.
69	POC5	O	Parallel output of general - purpose register C. GRC BIT5
70	POC6	O	Parallel output of general - purpose register C. GRC BIT6
71	POC7	O	Parallel output of general - purpose register C. GRC BIT7
72	TESTB	I	Test pins.
73	TEST	I	
74	TEST0	I	
75	TEST1	I	
76	TEST2	I	
77	TEST3	I	
78	VCC	-	Power supply voltage pin.
79	TEST4	-	Test pins.
80	N.C.	-	Not used.

■ DYW1389 (IC605 : MAIN UNIT)

• ROM

● Pin Arrangement (Top View)

● Pin Function

No.	Pin Name	Function	No.	Pin Name	Function
1	N.C.	Non connection.	23	N.C.	Non connection.
2	VPP	Program power supply.	24	A0	
3	CE	Chip enable.	25	A1	
4	I/O15		26	A2	
5	I/O14		27	A3	
6	I/O13		28	A4	Address input.
7	I/O12	Data input/output.	29	A5	
8	I/O11		30	A6	
9	I/O10		31	A7	
10	I/O9		32	A8	
11	I/O8		33	N.C.	Non connection.
12	VSS	Ground.	34	VSS	Ground.
13	N.C.	Non connection.	35	A9	
14	I/O7		36	A10	
15	I/O6		37	A11	
16	I/O5		38	A12	Address input.
17	I/O4	Data input/output.	39	A13	
18	I/O3		40	A14	
19	I/O2		41	A15	
20	I/O1		42	N.C.	Non connection.
21	I/O0		43	PGM	Program enable.
22	OE	Output enable.	44	VCC	Power supply voltage.

■ PA6004A (IC118, IC119 : HEAD UNIT)

• MAIN BEAM I-V CONVERSION AMP.

• Block Diagram (Top View)

• Pin Function

No.	Pin Name	Function
1	XSPL	Sample & hold control signal input.
2	GND	Ground.
3	S&H OUT1	Sample & hold output pin 1.
4	I/V OUT1	I/V conversion output pin 1.
5	C1	Hold capacitor connecting pin 1.
6	IN1	Input pin 1.
7	N.C.	Non connection.
8	N.C.	Non connection.
9	IN2	Input pin 2.
10	C2	Hold capacitor connecting pin 2.
11	I/V OUT2	I/V conversion output pin 2.
12	S&H OUT2	Sample & hold output pin 2.
13	S&H OUT3	Sample & hold output pin 3.
14	I/V OUT3	I/V conversion output pin 3.
15	C3	Hold capacitor connecting pin 3.
16	IN3	Input pin 3.
17	N.C.	Non connection.
18	VEE	Power supply voltage pin.
19	N.C.	Non connection.
20	IN4	Input pin 4.
21	C4	Hold capacitor connecting pin 4.
22	I/V OUT4	I/V conversion output pin 4.
23	S&H OUT4	Sample & hold output pin 4.
24	VCC	Power supply voltage pin.

PDS004A (IC602 : MAIN UNIT)
•EFM, CIRC ENCODE/DECODE AND ATIP DEMODULATION

• Pin Arrangement (Top View)

GND	1	128	GND	102	VCC
XIN	2	127	LRCKIN	101	EPDODOWN
XOUT	3	126	LRCK	100	EPDOUP
XHALF	4	125	WCK	99	A3
CIN	5	124	C2FCK	98	A2
MCK2	6	123	BCK /	97	A1
MCK	7	122	BCK	96	A0
XSSYNC/	8	121	DCKIN	95	RE/
XSYNC/	9	120	C2F	94	WE/
SYD0	10	119	DOUT	93	D7
SYD1	11	118	DIN1	92	D6
SYD2	12	117	DIN0	91	D5
SYD3	13	116	DREQ	90	D4
SYD4	14	115	DAOUT	89	D3
SYD5	15	114	DAIN	88	D2
SYD6	16	113	DPDO	87	D1
SYD7	17	112	DHALF	86	D0
SYA0	18	111	DVCOIN	85	CCF
SYA1	19	110	A11	84	QRCOK
SYA2	20	109	A10	83	SUBOUT
SYA3	21	108	A9	82	SUBIN
SYA4	22	107	A8	81	SOCKIN
SYRE/	23	106	A7	80	SICKIN
SYWE/	24	105	A6	79	SBSYNC
SYCS/	25	104	A5	78	SFSYNC
IRQ/	26	103	VCC	77	EEPD
RES/	27			76	DASYIN
VSSYNC/	28			75	DASYOUT
VSYNC/	29			74	ATIPIN
GFS	30			73	ATIPOUT
ELOCK	31			72	PWMOUT
EVCOIN	32			71	WBLIN
EVCOOUT	33			70	ACRCOK
EPLCK	34			69	ASYNC/
ECKIN	35			68	AXSV
DPLCK	36			67	FSW
EVFSEL	37			66	FGIN
VCC	38			65	GND
VCC	39				
EFMAY	40				
REALWR	41				
EFMOUT	42				
EFMRSE	43				
EFM3T	44				
EFM4T	45				
DEFMOU	46				
EFMEN/	47				
PANICIN	48				
EVEN	49				
TEST0	50				
TEST1	51				
TEST2	52				
EPDO	53				
TESTM0	54				
TESTM1	55				
TESTM2	56				
TESTM3	57				
TESTR0	58				
TESTR1	59				
MON	60				
MDP	61				
MDS	62				
GND	63				
WBLIN	64				
PAYOUT	65				
DASYOUT	66				
DASYIN	67				
ATTOUT	68				
ATTIN	69				
ASTNC/	70				
ACRCOK	71				
RES/	72				
SYCS/	73				
SYA	74				
SYE/	75				
IRQ/	76				
XIN	77				
XOUT	78				
CIN	79				
XHALF	80				
MCK	81				
XSYNC/	82				
VSSYNC/	83				
INNER LOGIC	84				
INNER LOGIC	85				

• Block Diagram

● Pin Function

No.	Pin Name	I/O	Function
1	GND	—	Ground.
2	XIN	I	X'tal clock (45.1584/22.5792/11.2896MHz) input.
3	XOUT	O	X'tal clock (45.1584/22.5792/11.2896MHz) feedback output.
4	XHALF	O	X'tal clock divided for two output.
5	CIN	I	External clock (33.8688/16.9344MHz) input.
6	MCK2	O	Master double clock (256xfs) output (11.2896MHz). *
7	MCK	O	Master clock (128xfs) output (5.6448MHz). *
8	XSSYNC/	O	Subcode frame sync. signal output of X'tal system (75Hz). *
9	XSYNC/	O	EFM frame sync. signal output of X'tal system (7.35kHz). *
10	SYD0	I/O	MCU data bus.
11	SYD1	I/O	
12	SYD2	I/O	
13	SYD3	I/O	
14	SYD4	I/O	
15	SYD5	I/O	
16	SYD6	I/O	
17	SYD7	I/O	
18	SYA0	I	MCU address bus.
19	SYA1	I	
20	SYA2	I	
21	SYA3	I	
22	SYA4	I	
23	SYRE/	I	MCU read input.
24	SYWE/	I	MCU write input.
25	SYCS/	I	MCU chip select input.
26	IRQ/	O	MCU interrupt requirement output.
27	RES/	I	Reset input.
28	VSSYNC/	O	Subcode frame sync.signal output of EVCO system (75Hz). *
29	VSYNC/	O	EFM frame sync. signal output of EVCO system (7.35kHz). *
30	GFS	O	EFM frame sync. discordance output.
31	ELOCK	O	Decode EFM - PLL lock output.
32	EVCOIN	I	EVCO clock (34.5744/17.2872/8.6436MHz) input.
33	EVCOOUT	O	EVCO clock (34.5744/17.2872/8.6436MHz) feedback output.
34	EPLCK	O	EFM channel clock (4.3218MHz) of EVCO clock. *
35	ECKIN	I	EFM clock input for decode.
36	DPLCK	O	EFM channel clock (4.3218MHz) of ECKIN clock. *
37	EVFSEL	O	EVCO filter switching output (Read/Write mode command output).
38	VCC	—	Power supply voltage.
39	VCC	—	
40	EFMIN	I	EFM data input.
41	EFMASY	O	EFM data feedback output.
42	REALWR	O	Output period command output of EFM writing pulse.
43	EFMOUT	O	EFM writing pulse output.

*: Frequency values are in the normal speed.

No.	Pin Name	I/O	Function
44	EFMRISE	O	Rising command output of EFM writing pulse.
45	EFM3T	O	3T command output of EFM writing pulse.
46	EFM4T	O	4T command output of EFM writing pulse.
47	DEFMOUT	O	Failing 2T delayed output of EFM writing pulse.
48	EFMEN/	I	Permission input of EFM writing pulse output.
49	PANICIN	I	Forced stop requirement signal input of EFM writing pulse output.
50	EVFEN	I	EVFSEL switch timing adjustment input.
51	TEST0	I	
52	TEST1	I	Test mode setting input.
53	TEST2	I	
54	EPDO	O	Phase error output for EFM clock generating PLL.
55	TESTM0	I	
56	TESTM1	I	
57	TESTM2	I	
58	TESTM3	I	Test mode setting input.
59	TESTR0	I	
60	TESTR1	I	
61	MON	O	Spindle motor ON output.
62	MDP	O	Motor drive output of phase difference factor.
63	MDS	O	Motor drive output of speed difference factor.
64	GND	-	
65	GND	-	Ground.
66	FGIN	I	Spindle motor FG pulse input.
67	FSW	O	ATIP servo command output.
68	AXSV	O	AX servo command output.
69	ASYNC/	O	ATIP frame sync. signal output (75Hz). *
70	ACROCK	O	ATIP CRC result output.
71	WBLIN	I	ATIP - WOBBLE input (22.05kHz). *
72	PWMOUT	O	PWM output.
73	ATIPOUT	O	FSK demodulation output.
74	ATIPIN	I	FSK demodulation input.
75	DASYOUT	O	DETASYNC output for correcting the filter delay.
76	DASYIN	I	DETASYNC input for correcting the filter delay.
77	EEPД	O	Phase error output for EFM clock generating PLL for encode.
78	SFSYNC	O	EFM frame sync. clock for subcode data output.
79	SBSYNC	O	Subcode sync. clock for subcode data output.
80	SICKIN	I	Subcode data input clock.
81	SOCKIN	I	Subcode data output clock.
82	SUBIN	I	Subcode data input.
83	SUBOUT	O	Subcode data output.
84	QCRCOK	O	Q channel subcode CRC result output.
85	CCF	O	CIRC error correction flag output.

* : Frequency values are in the normal speed.

No.	Pin Name	I/O	Function
86	D0	I/O	
87	D1	I/O	
88	D2	I/O	
89	D3	I/O	SRAM data bus for CIRC (for TEST).
90	D4	I/O	
91	D5	I/O	
92	D6	I/O	
93	D7	I/O	
94	WE/	O	SRAM write signal output for CIRC (for TEST).
95	RE/	O	SRAM read signal output for CIRC (for TEST).
96	A0	O	
97	A1	O	SRAM address bus for CIRC (for TEST).
98	A2	O	
99	A3	O	
100	EPDOUP	O	EPDOUP output.
101	EPDODOWN	O	EPDODOWN output.
102	VCC	-	
103	VCC	-	Power supply voltage.
104	A6	O	
105	A7	O	
106	A8	O	SRAM address for CIRC (for TEST).
107	A9	O	
108	A10	O	
109	A11	O	
110	DVCOIN	I	DVCO clock (45.1584/22.5792/11.2896MHz) input.
111	DVCOOUT	O	DVCO clock (45.1584/22.5792/11.2896MHz) feedback output.
112	DHALF	O	DVCO clock divided for two output.
113	DPDO	O	Digital audio interface sync. agreement output.
114	DAIN	I	Digital audio interface input.
115	DAOUT	O	Digital audio interface output.
116	DREQ	O	Serial data input requirement output.
117	DIN0	I	Serial data input (0).
118	DIN1	I	Serial data input (1).
119	DOUT	O	Serial data output.
120	C2F	O	Validity flag output.
121	DCKIN	I	Serial data input clock.
122	BCK	O	Bit clock output (2.8224MHz). *
123	BCK/	O	Bit clock inverting output (2.8224MHz). *
124	C2FCK	O	Validity flag clock output (176.4kHz). *
125	WCK	O	Word clock output (88.2kHz). *
126	LRCK	O	LEFT/RIGHT clock output (44.1kHz). *
127	LRCKIN	I	LEFT/RIGHT clock input (44.1kHz). *
128	GND	-	Ground.

* : Frequency values are in the normal speed.

■ PDS005A (IC1004 : MAIN UNIT)

• CD - ROM SIGNAL MANAGEMENT,
INTERFACE

• Pin Arrangement (Top View)

• Block Diagram (Top View)

● Pin Function

No.	Pin Name	I/O	Function
1	VCC	-	
2	RA15	O	
3	RA14	O	
4	RA13	O	
5	RA12	O	
6	RA11	O	RAM address output.
7	RA10	O	
8	RA9	O	
9	RA8	O	
10	GND	-	Ground.
11	RA7	O	
12	RA6	O	
13	RA5	O	
14	RA4	O	
15	RA3	O	RAM address output.
16	RA2	O	
17	RA1	O	
18	RA0	O	
19	GND	-	Ground.
20	RD7	I/O	
21	RD6	I/O	
22	RD5	I/O	
23	RD4	I/O	
24	RD3	I/O	RAM data input/output.
25	RD2	I/O	
26	RD1	I/O	
27	RD0	I/O	
28	RWE	O	RAM write enable.
29	ROE	O	RAM output enable.
30	VCC	-	Power supply voltage.
31	RCS	O	RAM chip select output.
32	SYD0	I/O	
33	SYD1	I/O	
34	SYD2	I/O	
35	SYD3	I/O	
36	SYD4	I/O	System control data bus.
37	SYD5	I/O	
38	SYD6	I/O	
39	SYD7	I/O	
40	GND	-	Ground.
41	SYA0	I	
42	SYA1	I	
43	SYA2	I	System control address bus.
44	SYA3	I	
45	SYA4	I	

No.	Pin Name	I/O	Function
46	SYRE	I	Read strobe input to system control.
47	SYWE	I	Write strobe input to system control.
48	SYCS	I	Chip select input to system control.
49	IRQ	O	Interrupt requirement to system control.
50	RES	I	System control reset input.
51	VCC	-	Power supply voltage.
52	CLKIN	I	22.5792MHz.
53	SYSCLKO	O	System clock output. Clock is changed by speed, then output the system clock (22.5792MHz, 11.2896MHz, 5.6448MHz).
54	TESTD	I	Test pin. Connect to GND at actual use.
55	TESTC	O	Test pin. Open at actual use.
56	TESTB	O	
57	TESTA	O	
58	WSYNC	O	Word sync. signal output.
59	ESYNC	O	ENC sync signal output.
60	DSYNC	O	Detecting sync. signal output.
61	GND	-	Ground.
62	BSYNC	O	Block sync. signal output.
63	C2PO	I	CIRC C2 pointer signal.
64	SDO	O	Serial data output.
65	SDI	I	Serial data input.
66	SREQ	I	Serial data requirement signal.
67	BTCK	I	Bit clock input.
68	LRCK	I	LEFT/RIGHT clock input.
69	16B	I	16 bit display signal output.
70	DTACK	O	Data acknowledge.
71	INT	O	Interrupt requirement signal.
72	HWR	I	Write enable.
73	HRD	I	Read enable.
74	EOP	O	End of process.
75	DACK	I	DMA acknowledge.
76	DREQ	O	DMA request.
77	HA2	I	Host MPU address input.
78	HA1	I	
79	HA0	I	
80	VCC	-	Power supply voltage.
81	HCS	I	Perform the host MPU chip select input.
82	MODE	I	Switch the 80 - system and 68 - system.
83	PARITY	I/O	Generate or check when transferring the ODD parity data.
84	HD15	I/O	Host MPU data bus.
85	HD14	I/O	
86	HD13	I/O	
87	HD12	I/O	
88	HD11	I/O	
89	HD10	I/O	
90	HD9	I/O	

No.	Pin Name	I/O	Function
91	GND	-	Ground.
92	HD8	I/O	
93	HD7	I/O	
94	HD6	I/O	
95	HD5	I/O	
96	HD4	I/O	Host MPU data bus.
97	HD3	I/O	
98	HD2	I/O	
99	HD1	I/O	
100	HD0	I/O	

**■ TC7W74FU (IC1006 : MAIN UNIT),
TC7W74F (IC1102 : MAIN UNIT)**

• D - TYPE FLIP FLOP WITH PRESET AND CLEAR

• Block Diagram (Top View)

• Table of Truth Value

INPUTS				OUTPUTS		FUNCTION
CLR	PR	D	CK	Q	Q̄	
L	H	X	X	L	H	CLEAR
H	L	X	X	H	L	PRESET
L	L	X	X	H	H	-
H	H	L	—	L	H	-
H	H	H	—	H	L	-
H	H	X	—	Qn	Q̄n	NO CHANGE

X : Don't care

7. BLOCK DIAGRAM

7.1 HEAD UNIT BLOCK DIAGRAM

7.2 MAIN UNIT BLOCK DIAGRAM

The Art of Entertainment

SERVICE INFORMATION

(1/1)

Date : Nov.14, 1995

No : SI-V50085-G

MODEL NO	* SER. NO	S/M NO	PG
DR-R504X/ZUCEB/WL	A PJ0403531-	RRV1199	30

MODEL NO	* SER. NO	S/M NO	PG

DETAIL

Sometimes an error occurs during recording, play back and seek operation under high-temperature environment.

SYMPTOM

A characteristic of defocus becomes a critical.

CAUSE

1 Change of focus offset adjustment.

SERVICE**REMEDY**

1 Change of focus offset adjustment.

FACTORY**COUNTER****-MEASURE**

COUNTERMEASURE

1. Perform "P30, 5.3 Adjustments" of service manual.

Adds an adjustment to "P41, 9.Fine focus offset adjustment".

Adjust 3T of RF waveform for Max, with normal speed (uses CD-R disc recorded at factory).

2. Make sure recording, playback and seek operation.

Focus offset adjustment value becomes it almost just and obtains more margin under high temperature.

We will inform you about part number for CD-R Test disc.

Ref.	CURRENT PARTS			CO	NEW PARTS	
	*	#	SYMBOL/DESCRIPTION		PART NUMBER	DE PART NUMBER
A	1				adjustment	

PIONEER ELECTRONIC CORPORATION

J. Imamizu

Y. IMAMIZU, MANAGER
Industrial Engineering Section
Service Division

NOTE: PARTS CODE
 1: Changeable from old to new.
 2: Not Interchangeable at all.
 3: Interchangeable in both ways.
 5: Do not use old parts.

TQM50-048....

(AI-105)

Classify

Fixture News

No. : SI-J50010

Date: March 27, 1996

Recorded CD-R disk for adjustment GGF1278

[Fixture No.] GGF1278

[Description] Recorded CD-R disk for adjustment

[Price Code] C

[Applicable Models] DR-R504X
DW-ST14X

[Usage]

1. If you adjust focus off set, please adjust with this disk after adjusted with YEDS-7.
2. If you adjust WBL off set, please use this disk.
* Please refer to SI-V50079-G.

PIONEER ELECTRONIC CORPORATION

(KS/MH101)

Aleio Tokuno

A. TOKUMO, General Manager
Engineering Coordination Section
Service Division, Customer Satisfaction Group