ANDREW TULLOCH

CONVEX OPTIMIZATION EXAMPLES

TRINITY COLLEGE
THE UNIVERSITY OF CAMBRIDGE

Contents

- 1 Example Sheet 1 5
- 2 Example Sheet 2 13
- 3 Example Sheet 3 17
- 4 Bibliography 21

Example Sheet 1

- Ex 1. (i) Theorem 3.5 is proven in the lecture notes.
 - (ii) Proposition 3.10 is proven as follows
 - (i) Recall that a function *f* is convex if and only if epi *f* is convex. Then we have

$$\operatorname{epi} \sup_{i \in I} f_i = \bigcap_{i \in I} \operatorname{epi} f_i \tag{1.1}$$

which is the intersection of convex sets, hence convex. Thus, $\sup_{i \in I} f_i$ is convex.

(ii) The case for |I|=1 is trivial. For |I|=2, let f, g be strictly convex and $h=\sup\{f,g\}$. Let $x,y\in X,\lambda\in (0,1),z=\lambda x+(1-\lambda)y$. Then

$$h(z) = \sup\{f(z), g(z)\}\tag{1.2}$$

$$< \sup\{\lambda f(x) + (1-\lambda)f(y), \lambda g(x) + (1-\lambda)g(y)\}$$
 (1.3)

$$\leq \lambda \sup\{f(x), g(x)\} + (1 - \lambda) \sup\{f(y), g(y)\}$$
 (1.4)

$$= \lambda h(x) + (1 - \lambda)h(y) \tag{1.5}$$

- (iii) Let C_i , $i \in I$ be convex, and let $C' = \bigcap_{i \in I} C_i$. Let $x, y \in C'$, $\lambda \in (0,1)$, $z = \lambda x + (1-\lambda)y$. Then $z \in C_i$ for all $i \in I$ (as C_i are convex), and so $z \in C'$. Thus C' is convex.
- (iv) Let $f^k = \sup_{k \ge n} f_i$. f^k is convex as a pointwise supremum of convex functions. Let $x, y \in X, \lambda \in (0,1), z = \lambda x + (1-\lambda)y$.

Then

$$f^k(z) \le \lambda f^k(x) + (1 - \lambda) f^k(y) \tag{1.6}$$

(1.7)

and taking $k \to \infty$ on both sides, we have

$$\limsup_{n \to \infty} f_i(z) = \lim_{n \to \infty} f^k(z) \tag{1.8}$$

$$\leq \lim_{n \to \infty} f^k(x) + (1 - \lambda)f^k(y) \tag{1.9}$$

$$= \lambda \limsup f_i(x) + (1 - \lambda) \limsup f_i(y) \quad (1.10)$$

and so $\limsup f_i$ is convex.

- (iii) Proposition 3.15 proceeds as follows.
 - (i) It is sufficient to prove for m=2 and use induction. Let A, B be convex sets, let u, $v=(a_1,b_1)$, $(a_2,b_2) \in A \times B$, $\lambda \in (0,1)$, $z=\lambda u+(1-\lambda)v$. Then

$$z = (\lambda a_1 + (1 - \lambda)a_2, \lambda b_1 + (1 - \lambda)b_2) \in A \times B$$
 (1.11)

as A, B are convex.

(ii) Let $y_1,y_2\in L(C)$. Then $y_i=Ax_i+b$ for some $x_i\in C$. Let $\lambda\in (0,1), z=\lambda y_1+(1-\lambda)y_2$. Then

$$z = \lambda(Ax_1 + b) + (1 - \lambda)(Ax_2 + b) \tag{1.12}$$

$$= A(\underbrace{\lambda x_1 + (1 - \lambda)x_2}) + b \tag{1.13}$$

$$\in L(C) \tag{1.14}$$

as C is convex.

- (iii) Let $x_1, x_2 \in L^{-1}(C)$. Let $y_i = Ax_i + b$. Let $\lambda \in (0,1), z = \lambda x_1 + (1 \lambda)x_2$. Note that $L(z) = \lambda y_1 + (1 \lambda)y_2 \in C$, and so $z \in L^{-1}(C)$ as required.
- (iv) This is the image of the function $f(x_1, x_2) = x_1 + x_2$ on the convex set $C_1 \times C_2$, and is thus convex.
- (v) This is the image of the function $f(x) = \lambda x$ on the convex set C, and is thus convex.

- Ex 2. (i) This is the intersection of the half planes formed by perpendicular bisectors between points, thus intersection of convex sets, and hence convex.
 - (ii) Let $(x_1, t_1), (x_2, t_2) \in K, \lambda \in (0, 1)$. Then by properties of the norm,

$$\|\lambda x_1 + (1 - \lambda)x_2\| \le \lambda \|x_1\| + (1 - \lambda)\|x_2\| \tag{1.15}$$

$$\leq \lambda t_1 + (1 - \lambda)t_2 \tag{1.16}$$

Thus $(\lambda x_1 + (1 - \lambda)x_2, \lambda t_1 + (1 - \lambda)t_2) \in K$, and so K is convex.

- (iii) Y_1 is convex as the unit sphere is convex. Y_2 is the intersection of the half planes $x_1 \le 2$, $x_1 \ge 0$, $x_2 \le 1$, $x_2 \ge -1$, and thus the intersection of convex sets. Thus $Y_1 + Y_2$ is the sum of convex sets, and hence convex.
- Ex 3. Let $x \in \Delta_n$. For purposes of contradiction, assume x can be written in two different forms $x = \sum_{i=0}^{m} \lambda_i v_i = \sum_{i=0}^{m} \gamma_i v_i, \lambda_i, \gamma_i \geq$ $0, \sum_{i=0}^{m} \gamma_i = \sum_{i=0}^{m} \lambda_i = 0$. Then consider

$$0 = x - x = \sum_{i=0}^{m} (\lambda_i - \gamma_i) v_i$$
 (1.17)

Then by affine independence of v_i , we have $\lambda_i = \gamma_i$ for all i as required.

Ex 4. If f is an improper convex function, then $f(x) = -\infty$ for every $x \in$ rint dom f. To show this, let $f(u) = -\infty$, and let $x \in \text{rint dom } f$. Then there exists $\mu > 1$ such that $y \in \text{dom } f$, where $y = (1 - \mu)u + \mu$ μx . Then $x = (1 - \lambda)u + \lambda y$. Then

$$f(x) \le (1 - \lambda)f(u) + \lambda f(y) < (1 - \lambda)\alpha + \lambda\beta \tag{1.18}$$

for any $\alpha > f(u)$ and $\beta > f(y)$. As $f(u) = -\infty$ and $f(y) < \infty$, we must have $f(x) = -\infty$.

If f is an improper lower semicontinuous convex function, then the set of points for $f(x) = -\infty$ includes clrint dom f by lower semi-continuity, and

$$\operatorname{cl}\operatorname{rint}\operatorname{dom} f=\operatorname{cl}\operatorname{dom} f\subset\operatorname{dom} f\tag{1.19}$$

and so an improper lower semicontinuous convex function can have no finite values.

Ex 5. (i) (i) $f''(x) = \frac{2}{x^3} > 0$, thus convex.

- (ii) $f''(x) = \exp x > 0$, thus convex.
- (iii) $f''(x) = \frac{1}{x^2} > 0$, thus convex.

(iv)

$$H(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix}$$
 (1.20)

$$=\frac{2}{y^3}\begin{bmatrix} y\\-x\end{bmatrix}^T\begin{bmatrix} y\\-x\end{bmatrix} \tag{1.21}$$

and so H is positive semidefinite as required.

(v) $||X||_{\sigma}$ is a norm on the s, and all norms are convex. This follows as $x, y \in X, \lambda \in (0,1)$ gives

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| \tag{1.22}$$

by triangle inequality and homogeneity.

(vi)

$$\lambda_{\max}(X) = \sup_{\|v\|=1} \langle Xv, v \rangle \tag{1.23}$$

which is the supremum of convex functions $v \mapsto \langle Xv, v \rangle$, and is hence convex.

- (ii) If *f* is convex, then *g* is the composition of *f* with an affine mapping.
- (iii) The forward direction is trivial, as it is the composition of a convex function with an affine function, and so is convex.

If g is convex for all t and $u, v \in \mathbb{R}^n$, then for any $\lambda \in (0, 1), u, v \in \mathbb{R}^n$ and $t_1, t_2 \in \mathbb{R}$, we must have

$$f(u + [\lambda t_1 + (1 - \lambda)t_2]v) = g(\lambda t_1 + (1 - \lambda)t_2)$$
 (1.24)

$$\leq \lambda g(t_1) + (1 - \lambda)g(t_2) \tag{1.25}$$

$$= \lambda f(u + t_1 v) + (1 - \lambda) f(u + t_2 v)$$

(1.26)

Now, we show f is necessarily convex. Let $x, y \in \mathbb{R}^n$, $\lambda \in (0, 1)$. Then, we must show

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \tag{1.27}$$

we just choose u, v, t_1, t_2 such that

$$\lambda x + (1 - \lambda)y = u + [\lambda t_1 + (1 - \lambda)t_2]v \tag{1.28}$$

$$x = u + t_1 v \tag{1.29}$$

$$y = u + t_2 v \tag{1.30}$$

Such u, v, t₁, t₂ can always be found, and thus f is convex.

Ex 6. As $x \mapsto -log(x)$ is convex on \mathbb{R}^+ , we have

$$-\log \sum_{i=1}^{k} \lambda_i x_i \le -\sum_{i=1}^{k} \lambda_i \log x_i \tag{1.31}$$

$$\sum_{i=1}^{k} \lambda_i x_i \ge e^{\sum_{i=1}^{k} \lambda_i \log x_i}$$
 (1.32)

$$\prod_{i=1}^{k} x_i^{\lambda_i} \le \sum_{i=1}^{k} \lambda_i x_i \tag{1.33}$$

and letting $\lambda_i = \frac{1}{k}$, we obtain

$$\prod_{i=1}^{n} x_{i}^{\frac{1}{n}} = \left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
(1.34)

as required.

Ex 7. We first prove for n = 1.

(i) $((1) \Rightarrow (3))$ Let f be convex. Then for $x, y \in C, t \in (0,1)$, we have

$$f(x+t(y-x)) \le (1-t)f(x) + tf(y)$$
 (1.35)

$$f(y) \le f(x) + \frac{f(x+t(y-x)) - f(x)}{t}$$
 (1.36)

and letting $t \to 0$, we obtain

$$f(y) \ge f(x) + f'(x)(y - x)$$
 (1.37)

(ii) $((3) \Rightarrow (2))$ Adding the identities for (x, y) and (y, x) gives

$$f(x) + f(y) \le f'(x)(y - x) + f'(y)(x - y) + f(x) + f(y)$$
 (1.38)

which when re-arranged yields

$$(x-y)(f'(x) - f'(y)) \ge 0 \tag{1.39}$$

as required.

(iii) $((2) \Rightarrow (1))$ Let $y = x + \epsilon$ for $\epsilon > 0, x, y \in X$. Then

$$(x-y)(f'(x)-f'(y)) \ge 0 \Rightarrow f(x+\epsilon) \ge f(x) \tag{1.40}$$

or alternatively, f' is an increasing function.

Let $x < z < y \in X$.

$$\frac{f(z) - f(x)}{z - x} = f'(\nu) \frac{f(y) - f(z)}{y - z} = f'(\mu)$$
 (1.41)

for $\nu \in (x,z), \mu \in (z,y)$. Note that $f'(\nu) \leq f'(\mu)$ as f' is increasing. Thus,

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z} \tag{1.42}$$

and thus f is convex.

(iv) $((1) \Rightarrow (4))$

Fill this in

(v) $((4) \Rightarrow (1))$

Fill this in

Ex 8. Let $x \in \text{con } X$, so $x = \sum_{i=1}^{p} \lambda_i x_i$ with $\lambda_i \geq 0$, $\sum_{i=1}^{p} \lambda_i = 1$. If $p \leq n+1$, there is nothing to prove. Thus, assume p > n+1

Consider the elements $x_j - x_1$, $2 \le j \le p$. These are p - 1 > n elements of \mathbb{R}^n , and thus are linearly dependent. Let $\sum_{i=2}^p \gamma_i (x_i - x_1) = 0$ with not all γ_i zero. Let $\gamma_1 = -\sum_{i=2}^p \gamma_i$, and then we have

$$\sum_{i=1}^{p} \gamma_i x_i = 0 \tag{1.43}$$

with $\sum_{i=1}^{p} \gamma_i = 0$.

Let $\alpha = \min\{\frac{\lambda_i}{\gamma_i}|\gamma_i > 0\}$. Then $\lambda_i - \alpha \gamma_i$ is non-negative and zero

for at least on i. Then we have

$$x = x - 0 = \sum_{i=1}^{p} x_i (\lambda_i - \alpha \gamma_i) = \sum_{i=1}^{p} \theta_i x_i$$
 (1.44)

with at least one θ_i zero. Thus, we can write x as a convex combination of p-1 coefficients. Induction on p shows that every element $x \in \text{con } X$ can be written as a convex combination of at most n + 1 elements of X as required.

Ex 9. Let $\{v_i\} \in \text{con } C$ be an infinite sequence. By Caratheordory's theorem, there exist $\lambda_{ij} \geq 0$ and $x_{ij} \in X$ such that for every j,

$$v_j = \sum_{i=1}^{n+1} \lambda_{ij} x_{ij}$$
 (1.45)

and $\sum_{i=1}^{n+1} \lambda_{ij} = 1$.

Note that the simplex $K = \{(\lambda_1, ..., \lambda_{n+1}) | \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1\}$ is closed and bounded in \mathbb{R}^{n+1} , and is thus compact. Then, we can take an infinite subsequence j' of the λ_{ij} and x_{ij} such that $x_{ij'} \rightarrow x_i \in C, \lambda_{ij'} \rightarrow \lambda_i \in K$. The subsequence $\{v_{j'}\}$ converges to $\sum_{i=1}^{n+1} \lambda_i x_i \in \text{con } X$ as required. Thus, every sequence has a convergent subsequence, and so con *X* is compact.

Ex 10. (i) $K = K_n^{SDP}$ is a cone as $0 \in K$, $A \in K \Rightarrow \lambda A \in K$ for $\lambda \geq 0$ $(x^T A x \ge 0 \Rightarrow x^T \lambda A x \ge 0)$. *K* is a convex cone as $K + K \subseteq K$ (the sum of positive semidefinite matrices is positive semidefinite).

Show *K* is closed.

(ii) Note that $f(X) = -\log \det X^{-1} = \log \det X$ by properties of the determinant. Consider the function g(t) defined by g(t) = $\log \det(Z + tV)$ for $Z, V \in K$. Then

Isn't this question incorrect?

$$g(t) = \log \det(Z + tV) \tag{1.46}$$

$$= \log \det(Z^{\frac{1}{2}}(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}})Z^{\frac{1}{2}}) \tag{1.47}$$

$$= \sum_{i=1}^{n} \log(1+t\lambda_i) + \log \det Z$$
 (1.48)

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}$. Then we

have

$$g''(t) = -\sum_{i=1}^{n} \frac{\lambda_i^2}{(1+t\lambda_i)^2} < 0$$
 (1.49)

and thus $g''(t) \leq 0$, and so f is concave.

Example Sheet 2

Ex. 1 The first direction is trivial. Assume $0 \in \int (C-D)$ and a separating hyperplane (b,β) exists. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(0) \subseteq \int (C-D)$. Let b_i be some non-zero element of b. Thus, there exists $(x^1,y^1),(x^2,y^2),(x^3,y^3) \in C \times D$ such that $\langle b,x^1-y^1\rangle = 0,\langle b,x^2-y^2\rangle = \epsilon b_i$ and $\langle b,x^3-y^3\rangle = -\epsilon b_i$.

Note however, that the condition of the separating hyperplane is such that $\langle b, x - y \rangle \leq 0$ for all $(x, y) \in C \times D$. By contradiction, we have that no such hyperplane exists.

Opposite direction

Ex. 2 At points of continuity of f, the subgradient is simply the singleton set $\{\nabla f\}$. Thus, for $x \neq 0$, $\partial f(x) = \{\frac{x}{\|x\|}$. At x = 0, we seek the set of $v \in \mathbb{R}^n$ such that

$$V = ||x|| \ge 0 + \langle v, x \rangle = \langle v, x \rangle \tag{2.1}$$

for all $x \in \mathbb{R}^n$.

We claim that $V = B_1$. First, let $v \in B_1$. Then by definition of the norm as

$$||x|| = \sup_{v \le 1} \langle v, x \rangle, \tag{2.2}$$

we have $v \in V$.

Now, let $v \in V$. Then taking x = v in (2.2), we have $||v|| \ge ||v||^2$, and so $||v|| \le 1$. Thus $v \in B_1$.

Hence, $V = B_1$.

Ex. 3 The problem is convex (sum of composition of convex function $f: x \mapsto x^2$ with affine transform $g: x \mapsto x - a^i$). The function is convex, continuous, level bounded, and proper. Thus, by Theorem 2.14, inf f is nonempty.

Optimality conditions at $x \in \mathbb{R}^n$ are equivalent to requiring that $0 \in \partial f(x)$. Taking derivatives, this is equivalent to

$$0 = \begin{cases} \sum_{i=1}^{m} \frac{w_i(x - a_i)}{\|x - a_i\|} & x \neq a_i \forall i \\ \sum_{i=1}^{m} v_i & \|v_i\| \leq 1, a_i = x \end{cases}$$
 (2.3)

with obvious interpolation between the two solutions.

In the case where n = 1, then the L^1 and L^2 norms are equal, and this is just computing the weighted medians of the a_i . Can just compute

What are the applications for this technique in image processing

Ex. 4 Note that g(x) is affine sum of convex functions, and so is convex. Let x minimize g. Then $0 \in \partial g(x)$, and we have

$$\partial_{i}g(x) = \begin{cases} 1 + \mu \nabla_{i} f(x) & x_{i} > 0 \\ [-1 + \mu \nabla_{i} f(x), 1 + \mu \nabla_{i} f(x)] & x_{i} = 0 \\ -1 + \mu \nabla_{i} f(x) & x_{i} < 0 \end{cases}$$
(2.4

and thus if $0 \in \partial g(x)$, we must have

$$\begin{cases} x_{i} = x_{i} - \nabla_{i} f(x) - \frac{1}{\mu} & x_{i} > 0 \\ |\nabla_{i} f(x)| \leq \frac{1}{\mu} & x_{i} = 0 \\ x_{i} = x_{i} - \nabla_{i} f(x) + \frac{1}{\mu} & x_{i} > 0 \end{cases}$$
 (2.5)

which is equivalent to the shrinkage operation.

Ex. 5 Note that *K* is a closed convex cone. As such, we have that $K^{\star\star} =$

Is this correct? It seems like we must be taking a shortcut

since the separating hyper-

plane theorem is so deep and

this seems to require only el-

ementary manipulation.

 $\operatorname{cl} K = K$. We have

$$K^{\star\star} = \{ w \in \mathbb{R}^n | \langle w, x \rangle \le 0 \forall x \in K^{\star} \}$$
 (2.6)

$$= \{ w \in \mathbb{R}^n | \langle w, Ax \rangle \le 0 \forall x \ge 0 \}$$
 (2.7)

$$= \{ w \in \mathbb{R}^n | \left\langle A^T w, x \right\rangle \le 0 \forall x \ge 0 \}$$
 (2.8)

$$= \{ w \in \mathbb{R}^n | A^T w \le 0 \} \tag{2.9}$$

By uniqueness, we have our result.

Now, consider Farkas's lemma. Consider the cone *K* as above, and consider the two cases, $b \in K^*$ and $b \notin K^*$. In the first case, we have that there exists $x \ge 0$ such that Ax = b. In the second case, we have $b \notin K^{\star\star\star} = K^{\star} = \{w | \langle w, x \rangle \leq 0 \forall x \in K\}$, and so there must exist $x \in K$ such that $\langle b, x \rangle > 0$, which is equivalent to requiring that $A^T x \leq 0$ and $\langle b, x \rangle > 0$, and so letting y = -x, we have our alternative.

Ex. 6 (i) aff C is a closed set, as

- (ii) cl C is the smallest closed set containing C. Then cl D is a closed set containing *D*. Thus, cl *D* contains *C*, and so cl $C \subseteq$ cl *D*.
- (iii) $\int D$ is the largest open set contained in D. Then $\int C$ is an open set contained in D. Thus, $\int C$

proof

(iv)

Ex. 7 (i) Recall that the affine

Ex. 8

Ex. 9

Ex. 10

Ex. 11

Ex. 12

Ex. 13

Ex. 14

Ex. 15

Ex. 16 We can show that f(u) is convex, lower semicontinuous, and proper. Since $f(u) \geq \frac{1}{2} \|u - g\|_2^2$, we have level boundedness. Thus we are guaranteed the existence of a solution.

Since
$$||v|| = \sup_{x \neq 0} \frac{\langle x, v \rangle}{||x||_2}$$
.

We can then find a product of scaled unit balls D such that $f(u) = \|u - g\|_2^2 + (\delta_D)^*(Lu)$.

If we form the perturbed function f', we have

$$f'(u,w) = k(u) + h(Lu + w)$$
 (2.10)

$$(f')^{\star}(v,y) = k^{\star}(-L^{T}y + v) + \underbrace{h^{\star}}_{\delta_{D}(y)}(y)$$
 (2.11)

with

$$k^{\star}(z) = \sup_{u} \langle z, u \rangle - \frac{1}{2} \|u - g\|_{2}^{2}$$
 (2.12)

$$= \frac{1}{2} \|z - g\|_2^2 - \frac{1}{2} \|g\|_2^2 \qquad (2.13)$$

which is a special case of the dual of $\frac{1}{2}||x||^2$ is $\frac{1}{2}||u||^2$.

Then

$$f^{\star}(v,y) = \|-L^{T}y + v - g\|_{2}^{2} + \frac{1}{2}\|g\|_{2}^{2} + \delta_{D}(y)$$
 (2.14)

$$\psi(y) = -f^{\star}(0, y) = -\frac{1}{2} \| - L^{T}y - g \|_{2}^{2} + \frac{1}{2} \|g\|_{2}^{2} - \delta_{D}(y)$$
 (2.15)

and so we have transformed our problem into a quadratic.

$$p(w) = \inf_{u} f'(u, w)$$
 (2.16)

$$q(v) = \inf_{y} f'^{\star}(v, y) \tag{2.17}$$

Then (u,y) is a primal-dual solution if and only if $(0,y) \in \partial f^{-1}(u,0) \iff (0,y) \in (u-g+L^T\partial(\delta_D)^*(Lu),\partial(\delta_D)^*())$

Example Sheet 3

Ex. 1

Ex. 2 We first show $con\{\nabla f_i|i\in I(x)\}\subseteq \partial f(x)$.

First, note that we have for all x, z and $k \in I(x)$,

$$f(z) \ge f_k(z) \ge f_k(x) + \langle \nabla f_k(x), z - x \rangle = f(x) + \langle \nabla f_k(x), z - x \rangle$$
(3.1)

and so $\nabla f_k(x) \in \partial f(x)$.

Now, let g be a convex combination of $\nabla f_k(x)$, $k \in I(x)$. Then we have

$$f(x) + \langle g, z - x \rangle = f(x) + \left\langle \sum_{k} \lambda_{k} \nabla f_{k}, z - x \right\rangle$$
 (3.2)

$$= f(x) + \sum_{k} \langle \lambda_k \nabla f_k, z - x \rangle \tag{3.3}$$

$$\leq f(x) + \sum_{k} \lambda_k (f(z) - f(x)) \tag{3.4}$$

$$= f(x) = f(z) - f(x)$$
 (3.5)

$$= f(z) \tag{3.6}$$

as required.

We must now show $\partial f(x) \subseteq \operatorname{con}\{\nabla f_i | i \in I(x)\}.$

Recall that $\partial f(x) = \{v | (v, -1) \in N_{\operatorname{epi} f}(x, f(x))\}.$

Then we claim

$$N_{\text{epi}\{\max_{i} f_i\}}(x, f(x)) = \sum_{i=1}^{n} N_{\text{epi} f_i}(x, f_i(x)).$$
 (3.7)

We show

Fill in

Ex. 3 We have

$$y \in B_{\tau f^{\star}}(x^{\star}) \tag{3.8}$$

$$\iff y \in (I + \tau \partial f^*)^{-1}(x^*)$$
 (3.9)

$$\iff y \in (I + \tau(\partial f^{-1})^{-1})^{-1}(x^*)$$
 (3.10)

$$\iff x^* \in (I + \tau(\partial f)^{-1})(y)$$
 (3.11)

$$\iff 0 \in y - x^* + \tau(\partial f)^{-1}(y)$$
 (3.12)

$$\iff \frac{x^* - y}{\tau} \in (\partial f)^{-1}(y)$$
 (3.13)

$$\iff y \in \partial f(\frac{x^* - y}{\tau})$$
 (3.14)

$$\iff 0iny - \partial f(\frac{x^* - y}{\tau})$$
 (3.15)

$$\iff 0 \in y + \frac{1}{\tau} \partial f(y - x^{star})$$
 (3.16)

$$\iff 0 \in (I + \frac{1}{\tau} \partial f(\cdot - x^*))(y)$$
 (3.17)

$$\iff y \in (I + \frac{1}{\tau} \partial f(\cdot - x^*))^{-1}(0)$$
 (3.18)

$$\iff y \in (I + \frac{1}{\tau} \partial f)^{-1} (-x^*)$$
 (3.19)

Ex. 4 Consider $f_z(x, u) = k(x) + h(z + u - x)$. Then

$$p(u) = \inf_{x} f_z(x, u) \tag{3.20}$$

$$= \inf_{y} k(y) + h(z + u - y) \tag{3.21}$$

$$= F(z+u) \tag{3.22}$$

as required.

Thus p(0) = F(z). By properness of $h, z, F(z) = p(0) \in \mathbb{R}$, and by lsc of h, z, F(z) = p(0) is lsc. Thus strong duality holds.

Consider the dual objective. First, we compute $f^*(v,y)$. We have

$$f^{\star}(v,y) = \langle -z, y \rangle + k^{\star}(y+v) + h^{\star}(y). \tag{3.23}$$

Then $\psi(y) = -f^*(0, y) = \langle z, y \rangle - k^*(y) - h^*(y)$.

Thus, we have $\sup_{y} \psi(y) = \sup_{y} \langle z, y \rangle - h^{\star}(y) - k^{\star}(y) = (h^{\star} + h^{\star}(y)) = (h^{$ $k^{\star})^{\star}(z).$

Ex. 5 Given an LP of the form max $\langle c, x \rangle$ s.t $Ax \leq b$, an SOCP of the form $\max c$, x s.t $||A_ix + b_i||_2 \le \langle c_i, x \rangle + d_i$, Fx = g, and an SDP of the form inf $\langle c, x \rangle$ s.t. Ax - b is positive semidefinite.

Note that by setting A_i , $b_i = 0$, we obtain that $LP \subseteq SOCP$. Now, note by setting

Ex. 6

Ex. 7

Ex. 8

Ex. 9

Ex. 10 Let our pre-Hilbert space \mathcal{G} be given as the span of κ_x , and let $f,g \in G$. Thus $f = \sum_{i=1}^n a_i \kappa_{x_i}, g = \sum_{j=1}^m b_j \kappa_{x'_j}$. Then let our inner product on *G* be given as

$$\langle f, g \rangle_{\mathcal{G}} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i \overline{b_j} \kappa(x_i, x_j')$$
 (3.24)

This trivially satisfies the properties of the norm - linearity, conjugate symmetric, and positive definite.

Now, let \mathcal{H} be the metric space completion of \mathcal{G} . By Hilbert space theory, \mathcal{G} is dense in \mathcal{H} , and we can write every element of \mathcal{H} in the form

$$\sum_{i=1}^{\infty} a_i \kappa_{x_i}. \tag{3.25}$$

with appropriate L^2 condition on a_i .

Let $f = \sum_{i=1}^{\infty} a_i \kappa_{x_i}$. Then

$$\langle k_x, f \rangle = \sum_{i=1}^{\infty} a_i \kappa(x_i, x) = f(x).$$
 (3.26)

as required.

Let κ be a Mercel kernel, and let $\mathcal H$ be the Hilbert space constructed before. Then

$$\nu: \mathcal{F} \to \mathcal{H}$$
 (3.27)

$$\nu(x) \mapsto \kappa_x \tag{3.28}$$

satisfies this requirement, with

$$\langle \nu(x), \nu(x') \rangle = \langle \kappa_x, \kappa_{x'} \rangle = \kappa(x, x')$$
 (3.29)