## 1 Eletrónica 4

Eletrónica 4 é efetivamente Sistemas de Instrumentação em Eletrónica

**TODO** Documentos para ler com atenção:

- Guião da disciplina
- Guia dos trabalhos práticos

#### 2 Docentes

- · Pedro Fonseca
  - pf@ua.pt
  - Atendimento: 4ª feira, 16:00 18:00 IT1
  - http://sweet.ua.pt/pf
- · Rui Escadas
  - rmm@ua.pt

# 3 Sistemas de Insturmentação em Electrónicaa

Controlo -> Atuação -> Sistema -> Captação

O diagrama representa o seguinte raciocínio:

- Existe um sistema físico que pretendo controlar
- Uso um transdutor para ir ao mundo físico obter informação e converter essa informação para um sinal elétrico que posso interpretar
- Para puder atuar de forma eficiente preciso de captar a informação relevante sobre o seu funcionamento
- Usando um algoritmo de controlo adequado, irei interpretar esse sinal e de seguida, atuar no sistema
- O objetivo de um sistema de controlo é impor um comportamento à saída de um sistema
- A questão que o projetista deve se perguntar é: "O que tenho que impor à entrada desse sistema para que a saída seja o que desejo"

Os sistemas de instrumentação em eletrónica estão presentes vários ramos:

• Eletrónica de Consumo



Figure 1: Diagrama de um sistema de um sistema de instrumentação em Eletrónica

- smartphones
- tv
- Medicina
  - hoje em dia é inteiramente dependente de dispositivos que utilizam instrumentação em eletrónica
- Ambiente
- Produção Industrial
- Automóveis
- Aviões
- Comboios
- Eletrodomésticos
- Dispositivos de Comunicação
- etc.

Tem se tornado cada vez mais necessários devido ao aparecimento das Smart

- SmartCities
- SmartHomes
- SmartFarms
- ...

## 3.1 Exemplos de sistemas

- · reator químico
  - monitorização da temperatura
- carros:
  - Sistema ABS:
    - \* sistema físcico: carro, rodas
    - \* sensor que detete se a roda está a rolar ou não
    - \* se uma das rodas bloqueou o sistema de controlo atua sobre os travões, libertando o calço
    - \* deixa a roda girar, ganhar aderência e depois volta a travar
  - Sistema ESP
    - \* determinar se o carro está em risco de sair ou não da curva
  - medir os gases de escape
  - atuar de acordo com
  - carro é um central de comunicações
  - sensor de gravidade de acidente

- Smart city Cidade com sensores
  - Atua em alguns sistemas físico para:
    - \* otimizar o tráfego
    - \* reduzir a poluição
    - \* (IEEE page for smart cities)[https://smartcities.ieee.org/]
- Smartphone
  - sensor de luz
  - gps
  - acelerómetro
  - girsoscópio
- Medicina > qualquer unidade e cuidadosintensivos é uma montra de eletrónica
- Controlo de processos industriais
- Indústria 4.0
  - Cada produto possui uma tag RFID única
  - em cada tag vai a recieta de produção
  - máquinas lêm as tags
  - consigo fazer lotes de 1
    - 1. fazer 1 unidade do tipo A
    - 2. fazer 2 unidades do tipo B
    - 3. fazer 1 unidade do tipo A
  - Posso fazer a mudança de produtos na linha em tempo real
  - Industrial Internet Consortium
    - \* sistema físico
    - \* captação de sinal
    - \* controlo
    - \* atuação

Dever de diligência de um Engenheiro: Não devemos fazer única e simplesmente aquilo que nos é dito que nos devemos fazer

#### 3.2 Metrologia

Detalhado o diagrama de instrumentação anterior obtemos:

Controlo -> Atuação -> Sistema -> Captação de Sinal -> TRatamento/Acondicionamento -> Controlo Tratamento/Acondicionamento -> Indicação/Registo



Figure 2: Diagrama detalhado de um sistema de instrumentação em Eletrónica

#### A metrologia involve:

- Captação de sinal usando sensores
- Tratamento/Acondicionamento desse sinal, usando Circuitos de Acondicionamento
- Indicação/Registo usando um microcontrolador + memória para guardar + registar os valores medidos

Qualquer medição de um sinal do mundo físico está sujeita a **ruído** na captação de sinal. O ruído é mais nefasto caso afete a malha de feedback.

## 4 Objetivos gerais de E4

- Conhecer os conceitos básicos de metrologia
- Conhecer dispositivos que permitem a **trandução** de outras grandezas em grandezas elétricas
- Conhecer e saber projetar os circuitos de aquisição, atuação e conversão de sinal
- Conhecer e saber eliminar/reduzir o efeito de perturbações, como o ruído e interferências

# 5 Aulas e Avaliação

- Teóricas [60%]:
  - Essencialmente expositivas
  - mini testes durante o semestre
  - duas provas escritas
    - 1. Durante o semestre
    - 2. Época de Exames
- Práticas: [40%]
  - 1 trabalho para todo o semestre
  - até 8 de Junho
  - implica preparação e organiação
  - existem 9 trabalhos propostos
  - Qualquer trabalho proposto tem de defender a
  - Propostas têm de ser entregue até 3 feira, dia 20

$$NF = 0.6 \times CT + 0.4 \times CL$$
 
$$CT = 0.35 * PE1 + 0.55 \times PE2 + 0.1 \times MT$$

| Abreviatura | Descrição               |  |
|-------------|-------------------------|--|
| NF          | Nota final              |  |
| СТ          | Componente Teórica      |  |
| CL          | Componente Laboratorial |  |
| PE1         | Teste 1                 |  |
| PE2         | Teste 2                 |  |
| MT          | Mini-teste              |  |

Nota mínima em CT e CL: 8 valores

## 6 Trabalho Prático

- Projeto simples para todo o semestre
- Projeto de um sistema simples de instrumentação e controlo
- Grupos de 2
- Componente de HW e SW
- Sistema baseado em micro-processador/micro-controlador
  - PIC32MX795, Microchip
- · Interface com sensores
  - Acondicionamento de sinal
  - Sinais de baixo nível ⇒ proteção do ruído
  - Sensores
  - Atuadores
  - Interface com o operador
- Ação sobre o mundo exterior
  - Indicação
  - Registo
  - Atuação (PWM, pontes H)
- Inserção numa malha de alimentação
  - É/Pode ser necessário utilizar algoritmos de controlo elementares

#### **Cuidados a ter:**

- Nunca ensaio o circuito de preparação
- Primeiro ensaio do circuito sobre um modelo do circuito que simula o sensor que pretendo usar

• Só depois é que ligo o circuito de condicionamento

Quanto menos variáveis tiver de cada vez, melhor

#### Considerações:

- Irá existir uma sessão de esclarecimento
- Acesso às pré-montages (set-up) só é possível durante as aulas práticas
  - Planeamento cuidadoso do trabalho
  - Desenvolvimento de circuitos/modelos equivalentes para testar os vários sensores
- Será usada a MPLAB X IDE e o X32
- O levantamento da PIC + Programador + Cabo USB requer uma caução de 50€
- Requisição na secretaria do DETI
  - Acompanhada por formulário + talão MB com NIB

## 6.1 Trabalho Autoproposto

- Sujeito a aprovação pelos docentes
- Deve ser redigida uma proposta detalhada, contendo:
  - Especificação do trabalho proposto
  - Componentes requeridos
    - \* tipo de processador
    - \* sensores
    - \* outros componentes
  - Aspetos de implementação
    - \* estruturas mecânicas
  - Contribuição para os objetivos de Eletrónica 4

#### Prazo: FINAL DA PRIMEIRA SEMANA DE AULAS!

• Interface com o exterior:

## 6.2 Modelo de Realização do Projeto

#### 3 fases

- 1. Projeto
- 2. Montagem da infrastrutura
- 3. Programa da Aplicação

A passagem a uma fase seguinte do projeto está condicionada à conclusão com sucesso da fase anterior

### Documentação

- papel + pdf
- Técnica
  - esquemas
  - diagramas de blocos
  - especificação de procedimentos de teste e validação
- Manual de Utilizador (Fase 3)
- Relatório de Execução (Fase 3)

## **Apresentações**

- Avaliação laboratorial
- Apresentações públicas

#### 6.2.1 Fase I: Planeamento e Projeto

Data de término: 3 aula, 6 Março

Tema: Projeto

- Projeto detalhado do hardware a ser implmentado, através de:
  - Diagrama de blocos
  - Esquema elétrico
  - Listagem identificando os tipos de sinais e gamas de variaçãoem pontos críticos do circuito
- Planeamento do trabalho
  - Tabela de atividades
  - Interdependência entre as tarefas
  - Esforço estimado
  - Gráfico de rede (PERT)

Os documentos devem acompanhar a realização do trabalho ao longo de todo o semestre. É natural que surja a necessidade de efetuar alterações durante as fases II e III. Neste caso, **estes documentos devem ser atualizados**.

## 6.2.2 Fase II: Implementação da Infrastrutura

Data de término: 9 aula (P2), 17 Abril

**Objetivo:** Aceder a todos os dispositivos sem coordenação entre eles

**Tema:** Montagem + device drivers

Para isso deve ser concluída a: - Montagem de todos os componentes - Desenvolvimento/Escrita dos device-drivers (hardware abstraction layers) - Validação da implementação - A leitura da informação deve estar dentro das margens de erro definidas

No final deve ser possível aceder a todos os dispositivos de I/O sem existir coordenação entre eles:

- · Ler dados dos sensores
- · Atuar sobre os atuadores
- Enviar/Receber mensagens do/para operador

No final desta fase os grupos têm de apresentar:

- Material montado
- device drivers
- Atualização da documentação entregue na fase I, se se justificar
- Especificação dos procedimentos de validação dos respetivos resultados

Existe uma aula de avaliação laboratorial:

- A validação é feita pelo docente em contexto de aula prática
- Compete a cada grupo a definição dos procedimentos de teste do seu sistema

#### 6.2.3 Fase III: Sistema Completo

Data de término: Penúltima aula, 29 Maio

**Tema:** *Software* de gestão e controlo

Criação do sistema final segundo as especificações iniciais/definidas sobre a infrastrutura desenvolvida na Fase II.

Deve ser apresentado:

- Sistema desenvolvido, a funcionar de acordo com as especificações desenvolvidas
- Manual do utilizador
- Atualização da documentação entregu nas Fases I e II, sempre que se justifique
- Relatório de Execução, incluinod os testes de conformidade do sistema desenvolvido

Existe uma aula de avaliação laboratorial:

- A avaliação do funcionamento é feita pelo docente em contexto de aula prática
- A avaliação é efetuada até à penúltima aula do semestre
- A última aula é para a apresentação dos projetos

## 6.3 Documentação

O objetivo da documentação é avaliar a conformidade com os objetivos definidos.

A documentação técnica correspondente deve ser entregue no final de cada fase.

Objetivos técnicos através da documentação técnica descritiva do sistema, tal como:

- Esquemas
- Diagramas de blocos

**Manual de utilizador** que deve explicitar o modo de utilização e as características técnicas do sistema, entre outros.

#### Relatório de Execução:

- Processo de realização
- Dimensionamento
- Opções tomadas e a sua justificação
- Rsultados obtidos
- · entre outros

## 6.4 Apresentações

| Apresentação | Discussão | Duração |
|--------------|-----------|---------|
| 10 min       | 5 min     | 15 min  |

Deve ser apresentada e discutida a solução desenvolvida, incluindo:

- Objetivos
- Enquadramento
- Abordagem
- Resultados
- Conclusões

## 6.5 Critérios de Avaliação

- Funcionamento:
  - Grau de cumprimento dos objetivos
  - Robustez da solução

#### Documentação:

- Grau de detalhe
- Rigor técnico
- Clareza
- Qualidade de escrita

## Apresentação:

- Clareza da apresentação
- Domínio dos conceitos

Defender o que faze e não como faz

A fase I é apenas um requesito para a fase II, não é avaliada

|                                        | Fase II | Fase III |
|----------------------------------------|---------|----------|
| Peso Total                             | 50%     | 50%      |
| Funcionamento                          | 50%     | 45%      |
| Documentação                           | 50%     | 25%      |
| Apresentação                           | _       | 15%      |
| Avaliação da apresentação (pela turma) | _       | 5%       |
| Avaliação pelos pares (grupo)          | _       | 10%      |

# Podem ser feitas, ao longo do semestre, provas de avaliação individuais sobre os trabalhos práticos

Notas superiores a 16 exigem a prestação de uma prova suplementar:

• Introdução de uma melhoria/característica adicional ao projeto

#### 6.6 Normas Gerais

- Todos os trabalhos pressupõem a sua preparação prévia
- É dada importância à realização progressiva dos trabalhos
- Para apoio aos grupos é necessário:
  - esquemas de circuitos eletrónicos
  - pesudo-código/fluxograma para os programas

# 6.7 Logbook

Todos os **elementos relevantes** para o trabalho devem constar num livro de registos/ser nele baseados

# A registar:

- Todos os cálculos
- Esquemas dos circuitos
- Documentação dos programas
- Observações feitas durante as aulas
- Tratamento posterior/análise dos dados obtidos