## 선박의 운동과 조종

2018. 5

류재문

#### 6.1 선박의 운동

- Wave Force (파력)
- Seakeeping (내항성)
  - 파도중 선박의 동요 surge sway, heave roll, pitch, yaw
- wave loads shear forces and bending moments
- slamming, deck wetness, green water, sloshing

- Added resistance and speed loss voluntary and involuntary
- Cpasizing, whipping, springing, parametric roll

## 선형 중첩



그림 6.1 수없이 많은 규칙파의 중첩으로 이루어진 불규칙파

## Regular Waves

- A : 진폭(amplitude)
- k: 파수(wave number)
- ω :주파수(frequency)



- Wave crest and trough (파정과 파저)
- Wave height H = 2A

• 
$$k\lambda = 2\pi$$
, 또는  $k = \frac{2\pi}{\lambda}$ 

• 
$$\omega T = 2\pi$$
, 또는  $\omega = \frac{2\pi}{T}$ 

• 
$$\omega T = 2\pi$$
,  $\Xi = \omega = \frac{2\pi}{T}$ .  
•  $\theta(x,t) = kx - \omega t = k\left(x - \frac{\omega}{k}t\right) = k(x - ct)$ ,  $c = \frac{\omega}{k} = \frac{\lambda}{T}$ 

$$\bullet \quad \eta = A\cos\{k(x-ct)\}\$$

## Dispersion Relation

• 파의 시간적 주기성과 공간적 주기성 사이의 관계

• 
$$\omega^2 = gk$$

• 
$$\lambda = \frac{g}{2\pi} T^2$$

• 
$$c^2 = \frac{\omega^2}{k^2} = \frac{gk}{k^2} = \frac{g}{k} = \frac{g}{2\pi} \lambda$$
,  $c = \frac{g}{2\pi} T$ 

• 너울 (swell)

## 불규칙파 (Irregular Waves)

• 
$$\eta(x,t) = \sum_{n=1}^{N} A_n \cos(k_n x - \omega_n t + \epsilon_n)$$

Pierson-Moskowitz Spectrum

$$S(\omega) = \frac{\alpha g^2}{\omega^5} \exp\left[-\beta \left(\frac{g}{U\omega}\right)^4\right], \ \alpha = 8.1 \times 10^{-3}, \ \beta = 0.74$$





## 파도 중의 동요





$$\omega_e = \omega - k\,U_0\,\cos\mu = \omega - \frac{U_0\,\cos\mu}{g}\omega^2$$

## 과도한 동요에 의한 현상

- 횡동요 방지 bilge keel, anti-rolling, stabilizing fin (fin stabilizer), gyroscopic 안정기
- 횡동요 고유주기  $\sqrt{GM}$  에 반비례
- Deck wetness, Green water
- Slamming
- Sloshing 동영상



## 내항성 모형시험

표 6.1 내항성 수조시험에서 고려할 항목

| 조사대상                                                                     | 선박의 상태                                                                    | 항주 상태                                                                              | 파도의 상태                                                          |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1.직접법(시험적) 1)선체운동 2)저항추진 3)파도하중 2.간접법(해석적) 1)부가질량, 감쇠력 2)파도강제력 3)기타 역학적량 | 1.정적요소<br>1)선형<br>2)배수량<br>3)흘수<br>2.동적요소<br>1)중심위치<br>2)관성반경<br>3)갑판상부구조 | 1.운동의 자유도<br>1)완전고정<br>2)부분고정<br>3)완전자유<br>2.선속<br>1)항주 2)정지<br>3.추진법<br>1)예인 2)자항 | 1.주기의 형태 1)규칙파 2)불규칙파 2.파 만남각 1)정면파 2)사파 3.파정의 형태 1)장파정파 2)단파정파 |

표 6.2 내항성 수조시험의 조사 대상

|             | 조사대상        | 조사항목                                                 | 조사내용                                      | 특기 사항                                      |  |
|-------------|-------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------|--|
| 직 접 법       | 선체운동        | 6자유도 동요 (pitch,<br>roll, yaw, heave,<br>surge, sway) | 변위, 속도, 가속도 등의<br>진폭 및 위상차와<br>주파수에 따른 변화 | 선수미 상하가속도<br>상대운동<br>갑판침수<br>프로펠러 racing   |  |
|             | 저항추진        | 저항증가<br>추력증가<br>토크 증가<br>회전수 증가                      | 주로 증가량의 평균치와<br>주파수에 따른 변화                | 저항, 추력, 토크 변동<br>최대치<br>회전수의 변화<br>선속 저하 등 |  |
|             | 파 하중        | 종방향 및 횡방향<br>굽힘모멘트<br>국부하중                           | 진폭과 위상차의<br>주파수에 따른 변화                    | 슬래밍<br>whipping                            |  |
| 간<br>접<br>법 | 부가질량<br>감쇠력 | 부가질량 및 감쇠력                                           | 각종 계수의 주파수에<br>따른 변화                      | 단면 형상에 대한<br>부가질량 및 감쇠계수                   |  |
|             | 파 강제력       | 파 강제력                                                | 주파수에 따른 변화                                | 단면 형상에 대한 파<br>강제력                         |  |
|             | 기타          | ART의 bench test에 의한 anti rolling moment의 측정 등        |                                           |                                            |  |

#### 선박의 조종

- 선박의 조종성능(controllability)
- 출발, 가속 및 정상침로에서의 조종 선회, 감속, 후진 등

- 보침성(coursekeeping)
- 조종성(maneuvering)
- 변속(speed change)

#### 조종성 평가

- 선회시험(turning test) 타각 35도
- 지그재그시험(zigzag test or Z test) 10° /10° 20° /20°
- 정지시험(stopping test)

#### 선회시험



## Zig-Zag Test



## Stopping Test



#### 선형과 조종성능

- 선수성능 미미하나 직진안정성은 U형 유리함. 구상선수 형상 및 크기도 영향 줌
- 선미형상 횡방향 투영면적 클수록 직진 안정성 유리 → 선미스케그



V형 선미프레임 선형



U형 선미프레임 선형

#### 표 6.3 선미선형 변화에 따른 조종성능 변화

|                                      |                         | Ⅴ형 단면 | U형 단면 | IMO 규정 |
|--------------------------------------|-------------------------|-------|-------|--------|
| 선회성능                                 | 전진거리/ $oldsymbol{L}$    | 2.91  | 3.15  | 4.5    |
|                                      | 기동직경/ $oldsymbol{L}$    | 2.79  | 3.33  | 5.0    |
| 10° /10°<br>지그재그<br>20° /20°<br>지그재그 | $\Delta\psi_1(^\circ$ ) | 15.97 | 11.43 | 20.0   |
|                                      | $\Delta\psi_2(^\circ$ ) | 52.96 | 33.71 | 35.0   |
|                                      | $\Delta\psi_1(^\circ$ ) | 24.90 | 20.81 | 25.0   |

### 타 (Rudder)

#### • 타 설계시 고려사항

- 1) 측면에서 바라볼 때, 타가 선박의 기선(base line)보다 내려가거나 선미보다 뒤로 돌 출되지 않아야 한다.
- 2) 타는 직진 시 속도 손실을 최소화 하는 방향으로 설계되어야 한다.
- 3) 타, 타두재, 타의 지지재 및 조타장치들은 함께 고려되어야 하고, 요구되는 신뢰도를 유지하면서 최소한의 크기와 중량을 가져야 하며, 복잡성, 초기가격과 유지비가 낮아 야 한다.
- 4) 타에 기인하여 발생하는 선체진동과 같은 불리한 영향들은 허용한계 이하로 억제되어야 한다.

#### • 유체역학 측면

- 1) 타의 위치: 타는 선미 프로펠러의 후류에 위치시킴으로써 속도가 낮거나 또는 영일 때도 적절한 타력을 확보할 수 있다.
- 2) 직선안정성과 조종성능과 관련하여 충분한 타 면적을 가져야 한다. 특히 비대한 선박의 경우에는 직선안정성 면에서 충분한 고려가 필요하다.
- 3) 타의 크기는 일반적으로 선미 형상과 흘수에 의하여 제한되지만 효율을 증가시키기 위해서는, 타의 연직방향 길이인 스팬(span)과 타의 선수미방향 길이인 코드(chord)의 비인 종횡비(aspect ratio)를 크게 해야 하므로, 가능한 한 타의 스팬을 크게 해야 한다.
- 4) 일반적으로 타의 회전속도는 2.33°/s로 고정되어 있으나 타 회전속도를 증가시키 면 조종성능이 제한적인 범위 내에서 향상된다. 비대한 선박의 경우에는 타의 회전 속도보다는 타의 면적을 증가시키는 것이 효과적이다.

## 타 형상



#### 타 면적

• DNV 제안 식

$$r_R \equiv \frac{A_R}{L T} = \frac{1}{100} \left[ 1 + \frac{25}{(L/B)^2} \right]$$





## 타 회전속도



# 특수 타

