### Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Фізико-технічний інститут

«Методи обчислень»

# **Лабораторна робота №6** Варіант 2

«Розв'язання задачі коші методами Рунге-Кутта та Адамса»

Виконала:

студентка групи ФБ-95 Гурджия Валерія Вахтангівна

#### Завдання

Методами Рунге-Кутта та Адамса-Башфорта четвертого порядку розв'язати задачу Коші. На початку інтервалу у необхідній кількості точок значення для методу Адамса визначити методом Рунге-Кутта четвертого порядку.

#### Вимоги до звіту

Для деякого фіксованого h потрібно навести:

- значення точної функції розв'язку у(х);
- значення наближеного розв'язку у(x) у тих самих точках, одержані обома методами;
- значення функції помилки e(x) для обох методів (порівняти із «теоретичною» точністю);

#### У звіті наводять:

- графіки точного розв'язку та обох наближених на одному рисунку;
- графіки обох помилок на другому рисунку;
- лістинг програми.

Рівняння має вигляд:  $y' = (1 - x^2)y + F(x)$ . Покласти h = 0,1, початкові умови x(0) визначити, використовуючи точне значення розв'язку.

| № вар. | Точний розв'язок |
|--------|------------------|
| 2      | $y = \cos x$     |

Необхідно підставити розв'язок у рівняння та визначити F(x) у правій частині. Таким чином, відомим є вигляд рівняння та його точний розв'язок, за допомогою числових методів далі будуємо наближений розв'язок.

Значення точної функції розв'язку у(х):

| X   | F(x)    |
|-----|---------|
| 0   | 1       |
| 0,1 | 0,995   |
| 0,2 | 0,98007 |
| 0,3 | 0,95534 |
| 0,4 | 0,92106 |
| 0,5 | 0,87758 |
| 0,6 | 0,82534 |
| 0,7 | 0,76484 |
| 0,8 | 0,69671 |
| 0,9 | 0,62161 |
| 1   | 0,5403  |

Значення наближеного розв'язку y(x) у тих самих точках, одержані обома методами:

| h   | RangeKutta | AdamsBashfort |
|-----|------------|---------------|
| 0   | 1          | 1             |
| 0,1 | 0,998419   | 0,998419      |
| 0,2 | 0,987209   | 0,987209      |
| 0,3 | 0,966492   | 0,966492      |
| 0,4 | 0,936457   | 0,933379      |
| 0,5 | 0,897358   | 0,890707      |
| 0,6 | 0,849504   | 0,839482      |
| 0,7 | 0,793255   | 0,779859      |
| 0,8 | 0,729024   | 0,712385      |
| 0,9 | 0,657275   | 0,637727      |
| 1   | 0,578538   | 0,556578      |

### Значення функції помилки е(х) для обох методів:

| h   | RangeKutta | AdamsBashfort |
|-----|------------|---------------|
| 0   | 0          | 0             |
| 0,1 | 0,0034148  | 0,003414835   |
| 0,2 | 0,0071424  | 0,007142422   |
| 0,3 | 0,0111555  | 0,011155511   |
| 0,4 | 0,015396   | 0,012318006   |
| 0,5 | 0,0197754  | 0,013124438   |
| 0,6 | 0,0241684  | 0,014146385   |
| 0,7 | 0,0284128  | 0,015016813   |
| 0,8 | 0,0323173  | 0,015678291   |
| 0,9 | 0,035665   | 0,016117032   |
| 1   | 0,0382357  | 0,016275694   |

### Всі значення на одному графіку:



### Похибки:



## Результат роботи програми

| RangeKutta:    |          |          |
|----------------|----------|----------|
|                |          |          |
| X              | result   | pohibka  |
| 0.000000       | 1.000000 | 0.000000 |
| 0.100000       | 0.998419 | 0.003414 |
| 0.200000       | 0.987209 | 0.007142 |
| 0.300000       | 0.966492 | 0.011155 |
| 0.400000       | 0.936457 | 0.015396 |
| 0.500000       | 0.897358 | 0.019776 |
| 0.600000       | 0.849504 | 0.024168 |
| 0.700000       | 0.793255 | 0.028413 |
| 0.800000       | 0.729024 | 0.032317 |
| 0.900000       | 0.657275 | 0.035665 |
| 1.000000       | 0.578538 | 0.038235 |
| AdamsBashfort: |          |          |
|                |          |          |
| X              | result   | pohibka  |
|                | 1.000000 | 0.000000 |
| 0.100000       | 0.998419 | 0.003414 |
|                | 0.987209 | 0.007142 |
| 0.300000       | 0.966492 | 0.011155 |
| 0.400000       | 0.933379 | 0.012318 |
| 0.500000       | 0.890707 | 0.013125 |
| 0.600000       | 0.839482 | 0.014146 |
| 0.700000       | 0.779859 | 0.015017 |
| 0.800000       | 0.712385 | 0.015678 |
| 0.900000       | 0.637727 | 0.016118 |
| 1.000000       | 0.556578 | 0.016276 |
| F(x):          |          |          |
| · x            | result   |          |
| 0.000000       | 1.000000 |          |
| 0.100000       | 0.995004 |          |
| 0.200000       | 0.980067 |          |
| 0.300000       | 0.955337 |          |
| 0.400000       | 0.921061 |          |
| 0.500000       | 0.877583 |          |
| 0.600000       | 0.825336 |          |
| 0.700000       | 0.764842 |          |
| 0.800000       | 0.696707 |          |
| 0.900000       | 0.621610 |          |
| 1.000000       | 0.540302 |          |
| 11000000       | 01340302 |          |

#### Код програми

```
#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>
using namespace std;
float func_(float x) {
    float \overline{Y} = \cos(x);
    return Y;
float func(float x, float y) {
    float Y = (1 - pow(x, 2)) * y - sin(x) - cos(x) * (1 - pow(x, 2));
    return Y;
}
vector<float> RangeKutta(float h, float start, float end) {
    float x = 0;
    float y = 0;
    vector<float> result;
    result.push_back(func_(start));
    for (int i = 0; i < (start+end)/h; i++) {</pre>
        float k1 = h * func(x, result[i]);
        float k2 = h * func(x + 1/2 * h, result[i] + 1/2 * k1);
        float k3 = h * func(x + 1/2 * h, result[i] + 1/2 * k2);
        float k4 = h * func(x + h, result[i] + k3);
        float ans = result[i] + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
        result.push_back(ans);
        x += h;
    return result;
}
vector<float> AdamsBashfort(float h, float start, float end) {
    vector<float> range_kutta_values = RangeKutta(h, start, end);
    vector<float> result;
    for (int i = 0; i < 4; i++)
    {
        result.push_back(range_kutta_values[i]);
    float x = start;
    int i = 3;
    while (end > x+0.3) {
        float answer = result[i] + (h / 24) * (55 * func(x + 3 * h, result[i]) - 59 * func(x
+ 2 * h, result[i - 1]) + 37 * func(x + h, result[i - 2]) - 9 * func(x, result[i - 3]));
        x += h;
        i++;
        result.push_back(answer);
    return result;
}
int main()
    float h = 0.1;
    float start = 0;
    float end = 1;
```

```
vector<float> result RK = RangeKutta(h, start, end);
vector<float> result_AB = AdamsBashfort(h, start, end);
vector<float> result_func;
for (float x = start; x < end+h; x += h)
    result_func.push_back(func_(x));
}
// pohibka
vector<float> pohibka_RK;
vector<float> pohibka_AB;
for (float i = 0; i < result_func.size(); i++)</pre>
    float pohibka_rk = abs(result_func[i] - result_RK[i]);
    pohibka_RK.push_back(pohibka_rk);
    float pohibka_ab = abs(result_func[i] - result_AB[i]);
    pohibka_AB.push_back(pohibka_ab);
}
cout << "\RangeKutta:\n\n";</pre>
cout << fixed << setw(4) << "x" << "\t\tresult" << "\t\tpohibka\n";</pre>
float x = 0;
for (int i = 0; i < result_RK.size(); i++)</pre>
    cout << x << "\t" << result_RK[i] << "\t" << pohibka_RK[i] << endl;</pre>
    x += 0.1;
}
cout << "\nAdamsBashfort:\n\n";</pre>
cout << fixed << setw(4) << "x" << "\t\tresult" << "\t\tpohibka\n";</pre>
x = 0;
for (int i = 0; i < result_AB.size(); i++)</pre>
{
    cout << x << "\t" << result AB[i] << "\t" << pohibka AB[i] << endl;</pre>
    x += 0.1;
}
cout << "\nF(x):\n\n";</pre>
cout << fixed << setw(4) << "x" << "\t\tresult\n";</pre>
x = 0;
for (int i = 0; i < result_func.size(); i++)</pre>
    cout << x << "\t" << result_func[i] << endl;</pre>
    x += 0.1;
}
```

}