Aeronautics & Mechanics AENG11301 Lecture 7 Wave Drag & Pitching Moments

Department of Aerospace Engineering University of Bristol

aerospace engineering

In class test – Friday Feb 23th

- 11am in Biomedical Building E29
- Right after class, so we can all walk over as one big happy family

• In the class before (Tues 20th) we will go through some example problems

Outline for today

- Lift slope of a finite wing
- Wave drag
- Wing sweep
- Pitching moments

Aims for today

- Be able to state how the lift curve for a finite wing differs from a 2D wing
- Understand the impact of supersonic flow over an aerofoil
- Appreciate why high speed aircraft have swept wings
- Understand why pitching moments are defined around the ¼ chord point

Recap: Induced Drag

- In 2D flow we only have profile drag
- In 3D flow an additional drag component
 - lift-induced drag
- tip vortices induce **downwash**, a downward flow component (w) over the wing span
- rotates local velocity vector downwards by a small angle \mathcal{E} :
 - a) reduces incidence to $lpha_{\it eff}$ and hence $\it reduces$ lift to $\it L_{\it eff}$
 - b) rotates lift vector $L_{e\!f\!f}$ rearwards by angle ${m arepsilon}$

The effect of a finite wing is to reduce the lift curve slope

Kelly Johnson – the coolest aerospace engineer ever? → Yes

Critical Mach number

The **critical Mach** number (M_{cr}) is the lowest free stream Mach number (M_{∞}) at which the airflow over any part of the aerofoil reaches the speed of sound.

Aerofoil at Critical Mach

Air is subsonic below wing

In this example the critical Mach number is 0.7

Aerofoil above Critical Mach

Different velocity distributions

Drag divergence

Drag divergence Mach number (M_{dd}) is the free-stream Mach number where C_D begins to increase rapidly due to **wave drag** caused by shock waves

Two common solutions to increasing M_{dd}

- Aerofoil level = supercritical design
- Wing level = sweep

Supercritical Aerofoils

significant lower surface curvature

- rather similar to modern laminar flow sections
 - good structural shape!

Swept wings – delay M_{dd}

Now sweep the same wing by 30°.

M_{cr} for swept wing $\approx \frac{0.7}{\cos 30^{\circ}}$ $= \frac{0.7}{0.866} = 0.808$ Airfoil "sees" only this component of velocity.

Airfoil section with $M_{\rm cr} = 0.7$

Impact of sweep on wing drag

Centre of Pressure (1)

- lift L and drag D can be combined into a single resultant aerodynamic force R
- line of action of R crosses the chord-line at the **centre of** pressure x_{cp}
 - there is <u>no pitching moment</u> about this point!
- unfortunately, the centre of pressure is not fixed
 - changes with C_L and hence with incidence
 - rate of variation depends on camber

Moment About a Fixed Axis

- movement of cp makes balance & stability calculations rather awkward
 - would rather have a fixed reference point … but where?
- one option is the leading-edge
 - resolve lift at CP into lift and pitching moment at LE
 - ignore drag as << lift (& moment arm is small)

Effect of Moment Axis Position

• but now $C_{M_{IF}}$ varies (linearly) with lift / incidence

- not really an improvement!
- what about a different moment axis position?

• general equation for pitching moment at fixed axis x

$$C_{Mx} = -\left(\frac{x_{cp}}{c} - \frac{x}{c}\right)C_L = C_{M_{LE}} + \left(\frac{x}{c}\right)C_L$$

The Aerodynamic Centre

slope of general pitching moment curve at x

$$\frac{dC_{Mx}}{dC_L} = \frac{dC_{M_{LE}}}{dC_L} + \left(\frac{x}{c}\right)$$

chose x so that pitching moment is constant

- i.e.
$$\frac{dC_{Mx}}{dC_L} = 0$$
 $\left(\frac{x_{ac}}{c}\right) = -\frac{dC_{M_{LE}}}{dC_L} = -b$

- this is the **aerodynamic centre** (x_0 or x_{ac})
 - for 2D thin aerofoils the aerodynamic centre is at the quarter-chord point

$$C_{M_{ac}} = C_{M_0}, \quad \frac{x_{ac}}{c} = 0.25$$

Typical 2D Aerofoil Characteristics

Typical 2D Aerofoil Characteristics

Typical 2D Aerofoil c/4 Moment

Summary

- The effect of a finite wing is to reduce the lift curve slope
- Drag divergence Mach number is the free-stream Mach number where C_D begins to increase rapidly due to wave drag
- High speed aircraft have swept wings to reduce wave drag
- The aerodynamic centre is where the pitching moment is constant and does not vary with angle of attack
- For 2D thin aerofoils the aerodynamic centre is at the quarter-chord point

$$C_{M_{ac}} = C_{M_0}, \quad \frac{x_{ac}}{c} = 0.25$$

Follow-up materials

To help with exam:

- Introduction to Flight
 - 5.15 change in lift slope
 - 5.10 drag divergence
 - 5.16 swept wings
 - 7.3 moments