Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_şt-nat*Barem de evaluare și de notare

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	_	
1.	$z^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 =$	3 p
	=-5+12i	2 p
2.	$f(x) = 0 \Rightarrow (x-3)^2 = 0$	3 p
	x = 3 si y = 0	2 p
3.	$x^2 + 5 = 9 \Rightarrow x^2 - 4 = 0$	3 p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	2 p
4.	Sunt 7 numere de două cifre divizibile cu 13, deci sunt 7 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{7}{1}$	25
	nr. cazuri posibile 90	2 p
5.	AB = 4, $CO = 3$ și CO este înălțime	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{4 \cdot 3}{2} = 6$	2p
6.	$E\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} + \sin\frac{\pi}{4} =$	3p
	$=0+\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(1)) = \begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} = 3 \cdot 2 - 1 \cdot 0 =$	3p
	= 6	2p
b)	$\det(A(a)) = \begin{vmatrix} 2a+1 & 1\\ 1-a & 2 \end{vmatrix} = 5a+1$	3 p
	$5a+1=1 \Rightarrow a=0$	2p
c)	$A(0) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; \det(A(0)) = 1$	2p
	$\left(A(0)\right)^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$	3p
2.a)	$1 \circ 2 = 2 \cdot 1 \cdot 2 - 3 \cdot 1 - 3 \cdot 2 + 6 =$	3p
	=1	2p
b)	$x \circ y = 2\left(xy - \frac{3}{2}x - \frac{3}{2}y + \frac{9}{4} + \frac{3}{4}\right) =$	2 p
	$=2\left(x\left(y-\frac{3}{2}\right)-\frac{3}{2}\left(y-\frac{3}{2}\right)\right)+\frac{3}{2}=2\left(x-\frac{3}{2}\right)\left(y-\frac{3}{2}\right)+\frac{3}{2} \text{ pentru orice numere reale } x \text{ si } y$	3p

c)	$2\left(x-\frac{3}{2}\right)^2 + \frac{3}{2} = 2 \Rightarrow \left(x-\frac{3}{2}\right)^2 = \frac{1}{4}$	3p
	$x_1 = 1$ și $x_2 = 2$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{e^{-x}}{x - 2} = \frac{e^{-1}}{1 - 2} =$	3p
	$=-\frac{1}{e}$	2p
b)	$f'(x) = \frac{\left(e^{-x}\right)' \cdot (x-2) - e^{-x} \cdot (x-2)'}{(x-2)^2} = \frac{-e^{-x} \cdot (x-2) - e^{-x}}{(x-2)^2}$	3p
	$= \frac{-e^{-x} \cdot (x-1)}{(x-2)^2} = \frac{(1-x)e^{-x}}{(x-2)^2}, \ x \in (-\infty, 2)$	2p
c)	$f'(1) = 0$, $f'(x) > 0$ pentru orice $x \in (-\infty, 1)$ și $f'(x) < 0$ pentru orice $x \in (1, 2)$	3 p
	$f(x) \le f(1) \Rightarrow f(x) \le -\frac{1}{e}$ pentru orice $x \in (-\infty, 2)$	2p
2.a)	$\int_{1}^{2} (x+1) f(x) dx = \int_{1}^{2} \ln x dx = x \ln x \Big _{1}^{2} - \int_{1}^{2} 1 dx =$	3р
	$= 2\ln 2 - x \Big _{1}^{2} = 2\ln 2 - 1$	2p
b)	$\int_{1}^{e} (f(x) + (x+1) \cdot f'(x)) dx = \int_{1}^{e} ((x+1) \cdot f(x))' dx =$	3р
	$= (x+1) f(x) \Big _{1}^{e} = \ln e = 1$	2p
c)	$V = \pi \cdot \int_{2}^{3} g^{2}(x) dx = \pi \cdot \int_{2}^{3} (x+1)^{2} dx =$	2p
	$=\pi \cdot \frac{(x+1)^3}{3} \Big _2^3 = \frac{37\pi}{3}$	3р