Math 210C Lecture 14 Notes

Daniel Raban

May 1, 2019

1 Long Exact Sequences of Homology and Chain Homotopy

This lecture was given by Jeremy Brightbill.

1.1 Long exact sequences of homology

If X is a topological space, we can associate to it the chain complex $C(X) = \operatorname{span}_K \{ \sigma : \Delta^n \to X \}$. We are trying to capture "homological information," information about whether X is built out of glued together simpler parts. We often get enough information for what we're interested in by looking at the homology $H_n(X)$.

Last time, we showed that homology is a functor: if we have a map $f_{\cdot}: A_{\cdot} \to B_{\cdot}$, this induces a homomorphism $(f_n)_*: H_m(A) \to H_n(B)$.

Theorem 1.1. Let

$$0 \longrightarrow X_{\cdot} \xrightarrow{f} Y_{\cdot} \xrightarrow{g} Z_{\cdot} \longrightarrow 0$$

be a short exact sequence of chain complexes. Then there exist maps $\delta_i: H_i(Z_{\cdot}) \to H_{i-1}(X_{\cdot})$ such that the sequence

$$\cdots \longrightarrow H_i(X) \xrightarrow{f_*} H_i(Y) \xrightarrow{g_*} H_i(Z) \xrightarrow{f_i} H_{i-1}(X_{\cdot})H_{i-1}(Y) \longrightarrow \cdots$$

is exact.

Proof. We have the diagram

$$0 \longrightarrow X_i \stackrel{f_i}{\longrightarrow} Y_i \stackrel{g_i}{\longrightarrow} Z_i \longrightarrow 0$$

$$0 \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} Y_{i-1} \xrightarrow{g_{i-1}} Z_{i-1} \longrightarrow 0$$

Using the snake lemma, we get exact sequences

$$0 \longrightarrow \ker(d_{X_i}) \longrightarrow \ker(d_{Y_i}) \longrightarrow \ker(d_{Z_i})$$

$$\operatorname{coker}(d_{X_i}) \longrightarrow \operatorname{coker}(d_{Y_i}) \longrightarrow \operatorname{coker}(d_{Z_i}) \longrightarrow 0$$

So we have

Using the snake lemma again, we get an exact sequence

$$\ker(\overline{d}_{X_{i+1}}) \xrightarrow{} \ker(\overline{d}_{Y_{i+1}}) \xrightarrow{} \ker(\overline{d}_{Z_{i+1}})$$

$$\operatorname{coker}(\overline{d}_{X_{i+1}}) \xrightarrow{} \operatorname{coker}(\overline{d}_{X_{i+1}}) \xrightarrow{} \operatorname{coker}(\overline{d}_{Z_{i+1}})$$

Now observe that $\ker(\overline{d}_{X_{i+1}}) = H_{i+1}(X)$, $\ker(\overline{d}_{Y_{i+1}}) = H_{i+1}(Y)$, and $\ker(\overline{d}_{Z_{i+1}}) = H_{i+1}(Z)$, $\operatorname{coker}(\overline{d}_{X_{i+1}}) = H_{i}(X)$, $\operatorname{coker}(\overline{d}_{Y_{i+1}}) = H_{i}(X)$, and $\operatorname{coker}(\overline{d}_{Z_{i+1}}) = H_{i}(Z)$.

Example 1.1. Let X_{\cdot} be a complex. Define

$$\tau_{>0}X_{\cdot} = \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow \ker(d_{X_0}) \longrightarrow 0$$

We get the morphism of complexes

where $\tau_{<0}X_{\cdot}=X_{\cdot}/\tau_{\geq 0}X_{\cdot}$. Then $H_i(\tau_{<0}X)=H_i(X)$ for all $i\geq 0$, and $H_i(\tau_{\geq 0}X)=0$ for all i<0. We have

$$0 \longrightarrow H_1(\tau_{\geq 0}X_{\cdot}) \longrightarrow H_1(X) \longrightarrow \underbrace{H_1(\tau_{< 0}X_{\cdot})}_{=0}$$

$$H_0(\tau_{\geq 0}X_{\cdot}) \longrightarrow H_0(X) \longrightarrow \underbrace{H_0(\tau_{< 0}X_{\cdot})}_{=0}$$

$$\underbrace{H_{-1}(\tau_{\geq 0}X_{\cdot})}_{=0} \longrightarrow H_{-1}(X) \longrightarrow H_{-1}(\tau_{< 0}X_{\cdot}) \longrightarrow 0$$

Example 1.2. Call

$$X^{\geq 0} = \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow 0$$

Then we get a morphism of complexes:

We get

$$\underbrace{H_1(X^{<0})}_{=0} \longrightarrow H_1(X) \longrightarrow H_1(X^{\geq 0})$$

$$\underbrace{H_0(X^{<0})}_{=0} \longrightarrow H_0(X) \longrightarrow H_0(X^{\geq 0})$$

$$H_{-1}(X^{<0}) \longrightarrow H_{-1}(X) \longrightarrow \underbrace{H_{-1}(X^{\geq 0})}_{=0}$$

1.2 Chain homotopy

Nobody works in the category of chain complexes for very long. It's too hard for chain complexes to be isomorphic.

Definition 1.1. Let $f_i, g_i : X \to Y$ be morphisms of complexes. Write $f \sim g$ if there exist $h_i : X_i \to Y_i$ such that $f - g = d_{Y_{i+1}}h_i + h_{i-1}d_{X_i}$.

$$X_{i+1} \xrightarrow{X_i} X_{i-1}$$

$$f_{i+1} \downarrow g_{i+1} \qquad f_i \downarrow g_i \qquad f_{i-1} \downarrow g_{i-1}$$

$$Y_{i+1} \xrightarrow{Y_i} Y_i \xrightarrow{Y_i} Y_{i-1}$$

We say that f is **chain homotopic** to g

If X and Y are topological spaces with $f, g: X \to Y$ homotopic, then $f_* \sim g_*$ are homotopic, where $f_*, g_*: C_{\cdot}(X) \to C_{\cdot}(Y)$.

Proposition 1.1. Chain homotopy has the following properties:

- 1. Chain homotopy is an equivalence relation on Hom(X, Y).
- 2. Let $f, g: X_{\cdot} \to Y_{\cdot}$, $a_{\cdot}: W_{\cdot} \to X_{\cdot}$, and $b_{\cdot}: Y_{\cdot} \to Z_{\cdot}$. If $f \sim g$, then $f \circ a = g \circ a$ and $b \circ f \sim b \circ g$.
- 3. If $f \sim g$ and $f' \sim g'$, then $f + g \sim f' + g'$, and $-f \sim -g$.

Definition 1.2. The homotopy category of complexes $\text{Ho}(\mathscr{A})$ has objects te chain complexes and $\text{Hom}_{\text{Ho}(\mathscr{A})}(X_{\cdot},Y_{\cdot}) = \text{Hom}_{\text{Ch}(A)}(X_{\cdot},Y_{\cdot})/\{f \sim g\}.$

Definition 1.3. We say that f is **null-homotopic** if $f \sim 0$.

Definition 1.4. $f: X \to Y$ and $g: Y \to X$ are homotopy equivalences if $1_X \sim gf$ and $1_Y \sim fg$.

Proposition 1.2. Let $f \sim g: X \to Y$. Then $f_{i*} = g_{i*}: X_i(X) \to H_i(Y)$.

Proof. $(f-g)_* = f_* - g_*$, so it suffices to prove this for $f \sim 0$. Then d = dh + hd = 0 on $H_i(X)$.

Example 1.3. In the diagram

$$0 \longrightarrow X \xrightarrow{\mathrm{id}} X \longrightarrow 0$$

$$\downarrow_{\mathrm{id}} \downarrow_{\mathrm{id}} \downarrow_{\mathrm{id}}$$

$$0 \longrightarrow X \xrightarrow{\mathrm{id}} X \longrightarrow 0$$

 $\mathrm{id}_X \sim 0$. So $X \cong 0$ in the homotopy category.

Example 1.4. In the diagram

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

 id_X is not homotopic to 0.