MANAGEMENT AND ANALYSIS OF PHYSICS DATASET (MOD. A)

Number Systems
Arithmetic Operations

- Computers doesn't work with decimal numbers
 - Binary numbers are more reliable -> two-states discrimination
- Decimal number system uses ten digits (from 0 to 9)
 - Reset-and-carry
 - The units reset to zero and carry to the tens...
- Binary number system uses two digits (0 and 1)
 - Still Reset-and-carry

- Computers doesn't work with decimal numbers
 - Binary numbers are more reliable -> two-states discrimination
- Decimal number system uses ten digits (from 0 to 9)
 - Reset-and-carry
 - The units reset to zero and carry to the tens...
- Binary number system uses two digits (0 and 1)
 - Still Reset-and-carry
- Base or radix of a number system is the number of digits
- Bit stands for binary digit
- Binary is less compact than decimal

0	0	0	0	0	0
0	1	0	0	0	1
0	2	0	0	1	0
0	3	0	0	1	1
0	4	0	1	0	0
0	5	0	1	0	1
0	6	0	1	1	0
0	7	0	1	1	1
0	8	1	0	0	0
0	9	1	0	0	1
1	0	1	0	1	0
1	1	1	0	1	1
1	2	1	1	0	0
1	3	1	1	0	1
1	4	1	1	1	0
1	5	1	1	1	1

- Computers doesn't work with decimal numbers
 - Binary numbers are more reliable -> two-states discrimination
- Decimal number system uses ten digits (from 0 to 9)
 - Reset-and-carry
 - The units reset to zero and carry to the tens...
- Binary number system uses two digits (0 and 1)
 - Still Reset-and-carry
- Base or radix of a number system is the number of digits
- Bit stands for binary digit
- Binary is less compact than decimal
- They are equivalent (ten pebbles are 10_{10} pebbles or 1010_2 pebbles)

- Computer can store Program and Data only in a binary form
- Transistors have parameters that can vary of more than 50% with temperature and among them for manufacturing differences
- Two-state design uses only two working points
 - For instance, cutoff and saturation

- Computer can store Program and Data only in a binary form
- Transistors have parameters that can vary of more than 50% with temperature and among them for manufacturing differences
- Two-state design uses only two working points
 - For instance, cutoff and saturation
- Punched cards are another example of Program and Data storing

- 4 bit are a *nibble*
- 8 bit are a byte
- 16 bit are a halfword
- 32 bit are a (single)word
- 64 bit are a doubleword
- 128 bit are a quadword
- A string is a group of character (either letters or digits) written one after the other
- Word can also refer to a string of bits of a specific length (i.e., a 24-bit word)
- The abbreviation *K* stands for 1024 (powers of two!)
 - 64K is 65536
- b is the abbreviation of bit, B of byte
 - 1 MB = 1048576 B = 8388608 b

Binary-to/from-decimal

- Both systems use positional notation
 - Decimal -> power of ten
 - Binary -> power of two

```
• 38572 = 3 \cdot 10^4 + 8 \cdot 10^3 + 5 \cdot 10^2 + 7 \cdot 10^1 + 2 \cdot 10^0
```

```
• 10110100 = 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0
```

Double-dabble algorithm

```
19

9 1

4 1

2 0

1 0

0 1 -> 10011
```

Hexadecimal numbers

- Number system with base 16
 - Digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Shorter representation than binary
- Easy to convert
 - Nibble by nibble
 - A3C = 101000111100
- It uses positional notation as well

•
$$A3C = A \cdot 16^2 + 3 \cdot 16^1 + C \cdot 16^0 = 2620_{10}$$

Hex-dabble algorithm

```
2620
163 C
10 3
0 A -> A3C
```

0	0	0	0	0	0	0
0	1	0	0	0	1	1
0	2	0	0	1	0	2
0	3	0	0	1	1	3
0	4	0	1	0	0	4
0	5	0	1	0	1	5
0	6	0	1	1	0	6
0	7	0	1	1	1	7
0	8	1	0	0	0	8
0	9	1	0	0	1	9
1	0	1	0	1	0	Α
1	1	1	0	1	1	В
1	2	1	1	0	0	С
1	3	1	1	0	1	D
1	4	1	1	1	0	Ε
1	5	1	1	1	1	F

Exercises

- Convert 82₁₀ in binary
- Convert 10A4₁₆ in binary
- Convert 650₁₀ in hex

Arithmetic Operations

Binary addition

- Simple additions
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 10 (zero, carry one)
 - 1 + 1 + 1 = 11 (one, carry one)
- Larger numbers
 - 11100 +
 - 11010 =
 - 110110

Binary subtraction

- Simple subtractions
 - 0 0 = 0
 - 1 0 = 1
 - 1 1 = 0
 - 10 1 = 1
- Larger numbers

1101 -

1010 =

0011

Modular arithmetic

- When the set of number is finite, we use modular arithmetic
- Numbers "wrap around"
- $a \equiv b \pmod{n} \rightarrow a = kn + b$
 - $25 \mod 8 = 1$
 - $24 \mod 8 = 0$
 - $17 \mod 3 = 2$
- Examples of operations on 3 bit $(mod 2^3)$
 - 3 + 2 = 5
 - 3 + 6 = 1
 - 7 5 = 2
 - 2 5 = 5

Signed binary numbers

- Simply setting one as MSB (MSB as sign)
 - For instance, in an 8-bit representation: 9 -> 00001001 -9 -> 10001001
 - +0 and -0
 - $9 + (-9) \neq +0$ $9 + (-9) \neq -0$
- Inverting all the bits (one's complement)
 - For instance, in an 8-bit representation: 9 -> 00001001 -9 -> 11110110
 - +0 and -0
 - 9 + (-9) = -0
- Inverting all the bits and adding one (two's complement)
 - For instance, in an 8-bit representation: 9 -> 00001001 -9 -> 11110111
 - Only one 0
 - 9 + (-9) = 0 (plus a carry)
 - In general, all the sums work: 9 + (-3) = 6 00001001 + 11111101 = 100000110

2's complement operations

- Given k bit, we can represent the numbers in the interval $[-2^{k-1}, 2^{k-1} 1] \subset \mathbb{Z}$
- The most significant bit tells us if the number is positive or negative
- For instance, 8 bit -> 256 numbers from -128 to 127

10000000	-128
11111110	-2
11111111	-1
00000000	0
0000001	1
0000010	2
01111111	127

Binary multiplication

Same as decimal multiplication

```
    For instance

      1101 ·
      1011=
      1101
     1101
    0000
   1101
 10001111
• If M has n-bit and Q has m-bit, M \cdot Q has n+m bit
```

Binary division

Same as decimal division

```
For instance
100010010 / 1101
1101 10101
10000
1101
1110
1101
1
```

• If M has n-bit and P has m-bit, M/P has n-m bit

Parallel multiplier

 $P = M \cdot Q$

 $M = (m_3, m_2, m_1, m_0)$

 $Q = (q_3, q_2, q_1, q_0)$

Exercises

- Calculate the binary sum 11100+10011
- Calculate the binary subtraction 100101-11011
- Calculate the binary multiplication 1011·1001
- Calculate the binary division 1111÷110
- Calculate 10011-11100 using 2's complement method

Bit manipulation

Bitwise operations

- Operators that work on a bit array at the level of its individual bit
 - NOT (complement)
 - NOT 10010101 = 01101010
 - AND
 - 0111 AND 1010 = 0010
 - OR
 - 0011 OR 0100 = 0111
 - XOR
 - 0010 XOR 1010 = 1000
- Quite often a single register has several bits with different functionalities
- To manipulate the single bit, we do bit-masking

Bitwise operations

Register 135. Reset/Freeze/Memory Control

Bit	D7	D6	D5	D4	D3 D2 D1		D1	D0
Name	RST_REG	NewFreq	Freeze M	Freeze VCADC	N/A			RECALL
Type	R/W	R/W	R/W	R/W	R/W		R/W	

Bit	Name	Function
7	RST_REG	Internal Reset.
		0 = Normal operation.
		1 = Reset of all internal logic. Output tristated during reset.
		Upon completion of internal logic reset, RST_REG is internally reset to zero.
		Note: Asserting RST_REG will interrupt the I ² C state machine. It is not the recommended approach for starting from initial conditions.
6	NewFreq	New Frequency Applied.
		Alerts the DSPLL that a new frequency configuration has been applied. This bit will
		clear itself when the new frequency is applied.
5	Freeze M	Freezes the M Control Word.
		Prevents interim frequency changes when writing RFREQ registers.
4	Freeze	Freezes the VC ADC Output Word.
	VCADC	May be used to hold the nominal output frequency of an Si571.
3:1	N/A	Always Zero.
0	RECALL	Recall NVM into RAM.
		0 = No operation.
		Write NVM bits into RAM. Bit is internally reset following completion of operation. Note: Asserting RECALL reloads the NVM contents in to the operating registers without interrupting the I ² C state machine. It is the recommended approach for starting from initial conditions.

- For setting a bit to 1, we do an OR with a mask done by all 0s except the bit we want to set
 - Set bit 3 of register R0

R0	В7	В6	B5	B4	В3	B2	B1	В0	OR
Mask	0	0	0	0	1	0	0	0	=
R0	В7	В6	B5	В4	1	B2	B1	В0	

• R0 OR 0x08

- For clearing a bit to 0, we do an AND with a mask done by all 1s except the bit we want to clear
 - Clear bit 3 of register R0

R0	В7	В6	B5	В4	В3	В2	B1	В0	AND
Mask	1	1	1	1	0	1	1	1	=
R0	В7	В6	B5	В4	0	B2	B1	В0	

R0 AND 0xF7

- For inverting a bit, we do a XOR with a mask done by all 0s except the bit we want to invert
 - Invert bit 3 of register R0

R0	В7	В6	B5	В4	В3	В2	B1	В0	XOR
Mask	0	0	0	0	1	0	0	0	=
R0	В7	В6	B5	В4	B3	В2	B1	В0	

• R0 XOR 0x08

- For testing a bit, we do an AND with a mask done by all 0s except the bit we want to test and then we check if the result is equal to 0
 - Test bit 3 of register R0

R0	В7	В6	B5	В4	В3	B2	B1	В0	AND
Mask	0	0	0	0	1	0	0	0	=
R0	0	0	0	0	В3	0	0	0	

• R0 AND $0x08 \stackrel{?}{=} 0x00$

Exercises

- Check if the MSB of a 32-bit register is set
- Get the third bit (starting from the LSB) of an 8-bit register

Real numbers

Real numbers representation

- As for \mathbb{Z} , with a finite number of bit we can represent only a subset of \mathbb{R}
- Any number belonging to $\mathbb R$ must be approximated
- Two main techniques
 - Fixed point
 - Floating point

Fixed point

- Given k bit, we set a number of bit r < k for the fractional part
- The weight of each bit of the fractional part is given by 2^{-1} , 2^{-2} , ...
- The integer part will have k-r bit
- For instance, if k=8 and r=4 the number 00110110 means:

$$00110110 = 0011.0110$$

$$= 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 0 \cdot 2^{-4}$$

$$= 2 + 1 + 0.25 + 0.125 = 3.375$$

- Real to binary conversion algorithm
 - Usual algorithm for the integer part
 - Fractional part multiplied by two, extraction of the integer part and so on
 - For instance, if k=8 and r=4 the number 3.375 becomes:

$$3.375 \stackrel{?}{\searrow} 3 \rightarrow 0011$$
 $0.375 \rightarrow 0.750 \rightarrow 0$
 $1.5 \rightarrow 1$
 $1 \rightarrow 1$
 $0 \rightarrow 0$

Floating point

- ullet Fixed point represents a too small subset of ${\mathbb R}$
- For being more flexible floating point uses a *significand* or *mantissa* and an *exponent*
- A typical example is IEEE 754 the float of C/C++
 1 bit for sign S
 8 bit for exponent E
 23 bit for mantissa M
 - $(-1)^{s} \cdot 1.M \cdot 2^{E-127}$
- For instance

Sum of floating points

- $M_1 \cdot 2^{E_1} + M_2 \cdot 2^{E_2}$
- Let's assume $E_1 < E_2$, we get M_1' as a right shift of M_1 of $E_2 E_1$ positions
- The mantissa of the sum will be $M_s = M_1' + M_2$
- So, the sum will be $M_S \cdot 2^{E_2}$
- Finally, the result is normalized to the form $1.M \cdot 2^E$

```
1.0001 \cdot 2^{2} + 1.1101 \cdot 2^{4} =
0.010001 \cdot 2^{4} + 1.1101 \cdot 2^{4} =
10.000101 \cdot 2^{4} =
1.0000101 \cdot 2^{5}
```

Multiplication of floating points

•
$$M_1 \cdot 2^{E_1} \cdot M_2 \cdot 2^{E_2} = (M_1 \cdot M_2) \cdot 2^{E_1 + E_2}$$

• The result is then normalized to the form $1.M \cdot 2^E$

•
$$M_1 \cdot 2^{E_1} / M_2 \cdot 2^{E_2} = (M_1/M_2) \cdot 2^{E_1-E_2}$$

• The result is then normalized to the form $1.M \cdot 2^E$

$$1.0001 \cdot 2^{2} \cdot 1.1101 \cdot 2^{4} =$$
 $(1.0001 \cdot 1.1101) \cdot 2^{(2+4)} =$
 $1.11101101 \cdot 2^{6}$

ASCII code

- To input and output data to/from a computer we need numbers, letters and other symbols
- American Standard Code for Information Interchange is a standard input/output code
- 7-bit code
- 0x48 0x65 0x6C 0x6C 0x6F -> Hello
- 0x48 0x65 0x6C 0x6C 0x77 0x08 0x6F -> Hello

```
ISTART OF HEADING
              ICARRIAGE RETURI
11100 34
                                                                                                     1111100 174
                                                                                125
                                                                                                    1111111 177 [DEL]
                                                          1011101 135
```

Exercises

- Find the decimal value of the binary number 11101.011
- Calculate $23.75_{10} + 4.5_{10}$ using floating point