Regression

Linear Regression

1. Form

$$Y = \mathbf{X}\beta + \epsilon$$

where $Y=(y_1,y_2,\ldots,y_n)^T$, $\beta=(\beta_1,\beta_2,\ldots,\beta_p)^T$ and $\mathbf X$ is the data matrix with an extra column of ones on the left to account for the intercept.

2. Assumptions

- Linear relationship
- Multivariate normality + Independence + Constant variance

$$\epsilon \stackrel{iid}{\sim} N(0,\sigma^2)$$

Assumptions	Diagnosis	Solutions
Linearity	Scatter plot	1. Apply a nonlinear transformation; 2. Try a nonlinear form to fit
Normality	QQ plot of residuals/non- parametric tests(KS or AD test)	Box-cox transformation on dependent variable
Independence	Residual vs time/Durbin Watson test/VIF	1. Time series model like ARCH, ARMA or ARIMA; 2. Ridge Regression/Lasso Regression
Constant Variance	Residual vs predicted values	Log transformation

Ref: http://people.duke.edu/~rnau/testing.htm

3. Loss Function & Estimation

$$RSS = \Sigma_{i=1}^n (y_i - X_i eta)^2$$

The goal is to minimize RSS. The mean square estimation of β is:

$$\hat{eta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^TY$$

This only exists when \mathbf{X}^TX is invertible. This requires $n\geq p$ (because if a matrix is invertible, it should be full rank).

• What if $n \leq p$?

We could introduce **L1 regulariation** to solve the problem. Then the estimator would become

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T Y$$

Ref: https://zhuanlan.zhihu.com/p/44612139

• In practise: it would take long time to solve the inverse for a matrix with high dimension, therefore, we always use gradient descent to get the estimator in practise.

4. Goodness of Fit

- F-test: test whether a group of variables is important
- T-test: test whether a variable is important
- Variable selection:
 - Forward: start from a null model, include variables one at a time, minimize the RSS at each step.
 - Backward: start from a full model, eliminate variables one at a time, choosing the one with the largest t-test p-value at each step.
 - Mixed: start from a null model, include variables one at a time, minimizing the RSS at each step. If the p-value for some variables goes beyond a threshold, eliminate that variable.
- Model selection: AIC/BIC
- R square: $corr^2(Y, \hat{Y})$ always increases as we add more variables.
- RSE: residual standard error does not always imporve with more predictors:

$$RSE = \sqrt{rac{1}{n-p-1}RSS}$$

MSE:

$$MSE = rac{1}{n}RSS$$

5. Additionals

How to encode dummy variables?

Different ways of encoding would bring different interpretations for parameters. In order to get corresponding results, we have to carefully encode our dummy variables.

- How to solve overfitting problem when variables are too many?
 - o regularization
 - variable selection
 - dimension reduction (feature extraction)

Logistic Regression

Logistic regression is a method of classification which means its dependent variable should be qualitive.

1. Form

$$y = rac{1}{1 + e^{-(\mathbf{w}^T\mathbf{x} + b)}}$$

where $y = P(y = 1 | \mathbf{x})$. The form could be also written as

$$lnrac{p}{1-p} = w^T\mathbf{x} + b$$

we call $\frac{p}{1-p}$ as **odds** and $ln\frac{p}{1-p}$ as **logit**.

2. Loss Function & Estimation

$$Loss = rac{1}{m}\Sigma_{i=1}^m - y_i log(\hat{y}_i) - (1-y_i)log(1-\hat{y}_i)$$

Here we use logarithmic loss function (a.k.a 0-1 classification form of cross entropy) as our loss function. And **minimizing this loss function is actually equivalent to maximizing the log-likelihood**.

• Why don't we use MSE as loss function?

If we use MSE as loss function, the deriative of the loss function must include the deriative of sigmoid.

$$loss' = (\hat{y} - y)sigmoid'x$$

And we know the deriative of sigmoid would be 0 when x is big which would lead to **gradient vanishing** issue. However, logarithmic loss function would not have this problem. The derivative of logarithmic loss function looks as below

$$loss' = rac{1}{N}\Sigma_{i=1}^N x_i(y_i - p(x_i))$$

The advantage of logarithmic loss function is that when the predicted value is far away from the truth, graident would become big and then the training process would be speeded up.

- How to estimate parameters?
 - Gradient Descent: first-order deriative

$$w^{t+1} = w^t - \alpha \frac{\partial L}{\partial w^t}$$

Newton's algorithm: second-order deriative

$$w^{t+1} = w^t - lpha rac{L'}{L''}$$

3. Additionals

• Is it linear or non-linear classfication?

Logistic regression is a linear classifier because the predicted log-odds could be formed as a linear function of x. However, non-linear classification, such as neural networks, there is no way to summarize the output of a neural network in terms of a linear function of x.

• Can it apply to multi-classes problem?

Yes. As for k-classes problem, we could fit k-1 logistic regression models to classify k-classes.

• Can it be used to non-linear problem?

regression.		

Yes. Think about Kernel used in SVM. For non-linear problem, we could fit kernel logistic