NILESH PAT

M.S. in Data Science, University of Rochester

🍍 2017903854 | 📓 nilesh.patil@rochester.edu | 📦 nilesh-patil.github.io | 🗣 nilesh-patil | 🗖 Nilesh Patil

Graduate Projects, University of Rochester

- Analyzing large Graphical dataset:
 - Using NYC's transportation data (1 billion+ taxi trips), we built a large time variant network to analyze travel habits of residents and determining pressure points in this network
 - Using RNNs to predict demand at each node on dense, time variant geospatial transportation graphs (use case: NYC transportation network)
- Deep neural networks to identify detailed galaxy morphology from data accessible through SDSS (multi TB image dataset)
- Content based image similarity implementation for 10 million+ galaxies using deep learning
- Exoplanet detection from Kepler's datasets using deep neural networks (simulated data for training & testing on real data)
- Text extraction from heavily degraded ancient manuscripts using deep learning
- Random Forest based ML regression model for predicting pollution level from open data collected by federal agencies

Professional Experience

Data Scientist / Sr. Analyst, Predictive Analytics

AXA (New York, US / Pune, India)

December '14 to June '16

- Worked with AXA partners to develop machine learning based predictive analytics frameworks.
- At AXA, we used Hadoop stack for storage + manipulation & R/Python/SPARK for analysis. Aggregation & Exploratory analysis was done using HIVE/IMPALA & R/Python.
- Underwriting pipeline & KPI visualization using tableau.
- Mortality rate error minimization using actual historical dataset from AXA's customers & transactions.
- Promoting Data science community by organizing seminars, best practices sessions, machine learning & big data tools workshops for AXA-US & AXA-India.
- Mentoring & training colleagues in possible applications of machine learning & data science stack.

Analyst – Big Data/Predictive Analytics

AbsolutData Research and Analytics

June '13 to December '14

- Sensor & transactional data analytics: Extensive predictive analytics experience for a Mining equipment failure prediction project with one of the world's largest copper and gold mining companies.
- Developed multi stage prediction model for prediction of engine failure (~\$850,000 per engine).
- Developed machine learning based predictive models for oil quality in heavy machinery. Used random forests in the final production implementation.
- Worked hands-on as R & Analytics resource on data management and data reshaping for the project using R, Hive queries & Hadoop. The data varied from Sensor data (13 TB) to Gigs of manually entered and unclean work order & maintenance data.
- Implemented an unsupervised learning algorithm which helped reduce false alarms for the mining major based on actual effect of alarms based on historical alarms & maintenance data.
- Trained 47 co-workers on using R as a part of the capability building program.
- Marketing mix modelling: Worked with Mondelez, Japan to analyze the impact of various marketing activities in the year on sales w.r.t investment made.

EDUCATION			
Year	Degree	Specialization	Institute
2017	MS	Data Science	University of Rochester, USA
2013	B.Tech.	Metallurgical & Materials Engg.	Indian Institute of Technology - Roorkee, India

Skills

Programming: Python, R, SQL, Scala, Julia

Toolset: Numpy, Pandas, Scipy, Scikit-learn, ggplot2, plyr, dplyr, Spark, Tensorflow, Keras, Tableau for visualization, hands on experience with HIVE/IMAPALA queries, MapReduce using Python, Hadoop

Data Science & Machine Learning: Experience in solving business problems using machine learning techniques such as Random Forests, Neural Networks, Support Vector Machines, Gradient Boosted Regression, Linear Regression, Logistic Regression, Clustering Techniques (k-means, hierarchical clustering, knn etc), CNNs, RNNs