Recitation 6

Implied Volatility

In the Week 6 lecture, we saw how the Black-Scholes-Merton (BSM) model can be used to infer the volatilities of underlying stock prices. These so-called **implied volatilities**—i.e., volatilities that are "reverse-engineered" from the BSM model using observed options prices—are forward-looking measures of market uncertainty about future returns, and are typically less variable than options prices themselves.

For example, consider a European call option on a non-dividend-paying stock with spot price S = 21, strike price K = 20, risk-free rate r = 10%, and time-to-expiration T - t = 0.25. Recall the BSM pricing formula for a European call option:

$$C(S, K, T - t, r, \sigma) = S\mathcal{N}(d_1) - Ke^{-r(T-t)}\mathcal{N}(d_2)$$
(1)

where $\mathcal{N}(\cdot)$ is the cumulative density function of a standard normal random variable, with $d_1 = \frac{\ln(\frac{S}{K}) + (r + \frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$ and $d_2 = d_1 - \sigma\sqrt{T-t}$.

Suppose the market price of the call option is C = 1.875. How can we use Equation (1) to find σ , the volatility of the underlying stock price?

While it's impossible to invert Equation (1) in order to solve for σ as a function of S, K, r, T, and C, we can numerically iterate on σ using the BSM & Black's Model.xls spreadsheet.

Begin by guessing an initial value for σ , say 0.3. Plugging these parameters into the "BSM" tab of the spreadsheet, we calculate a call price of 2.10.

slack-Sc	holes-Merton	viodei							
		Inputs (yellow)							
	X	\$20.00000			strike	price			
	S	\$21.000000			currer	nt stock price			
	r	10.00%			spot y	yield for maturity T			
	sigma	0.3			volatili	olatility			
	Т	0.25			time to	to option expiration			
	delta	0.00%	0.00% dividend y		nd yield	I			
	d1	0.566934428							
	N(d1)	0.714620634	N(-d1)	0.29					
	d2	0.416934428							
	N(d2)	0.661636815	N(-d2)	0.34					
	С	\$2.101014			call va	value			
	Р	\$0.6072			put value				

Clearly, the call price of 2.10 is too high relative to the market price of 1.875, so what value of σ should we try next? Since we know that the price of a European call option is increasing in the volatility of the underlying stock price, we should try a smaller value of σ , say 0.2. Doing so yields a call price of 1.76, which is now too low relative to the market price of 1.875.

We can repeat the above procedure, plugging in a value of σ somewhere between 0.2 and 0.3, say 0.25. Depending on whether the calculated call price is above or below the market price, we adjust our input of σ upward or downward. Iterate until the calculated call price is "close enough" to the market price, and the resulting value of σ is the implied volatility of the option.

This iterative method can be tedious to implement by hand, though! Is there a faster way to find the optimal input of σ ? Yes! One way to efficiently calculate the implied volatility of the call option is to use Excel's Solver tool.

After loading the Solver add-in, open Solver under the "Analysis" group in the "Data" tab. In the pop-up menu, define the objective to be the cell corresponding to the value of the call option. We want to change the variable in the cell corresponding to σ such that the call option has a value equal to its market price of 1.875. The correct inputs for Solver are displayed in the figure below:

Solver finds that $\sigma = 0.235$ yields a value of the call option that is approximately equal to the market price of 1.875. Thus, the implied volatility of the call option is 23.5% per annum.

In principle, one could use a similar procedure with binomial trees to compute the implied volatilities of American options.

Black's Model

Recall from the Week 6 lecture that we can price European options on futures contracts using **Black's model**, a version of the BSM model that assumes that futures prices are log-normally distributed. Let's see how we can use Black's model to price a European call option on a bond.

Assume that a European call option with 10 months to expiration is written on a bond with 9.75 years to maturity, a face value of \$1,000, and a semiannual coupon of \$50. Furthermore, assume that the futures price of the bond is \$939.68, the strike price of the call option is \$1,000, and the risk-free rate for the next 10 months is 10%.

If the volatility of the futures bond price is 9% annually, what is the price of the call option according to Black's model?

Solution: Recall that, according to Black's model, the price of a European call option on a futures contract with strike price K, futures price F, risk-free rate F, and volatility of the futures price F is equal to:

$$c = e^{-rT} \left[F \mathcal{N} \left(d_1 \right) - K \mathcal{N} \left(d_2 \right) \right]$$

where

$$d_1 = \frac{\ln(F/K) + (\sigma^2/2)T}{\sigma\sqrt{T}}; \quad d_2 = d_1 - \sigma\sqrt{T}.$$

As noted in the Week 6 lecture, this pricing formula is identical to that for a European call option on a stock according to the BSM model, except that we substitute the futures price for the stock price and set the "dividend yield" equal to the risk-free rate.

Plugging in K = 1,000, F = 939.68, r = 0.1, $\sigma = 0.09$, and T = 10/12 = 0.8333 into the expressions for d_1 , d_2 , and c above, we get that:

$$d_1 = \frac{\ln(939.68/1000) + (0.09^2/2) \times 0.8333}{0.09\sqrt{0.8333}}$$

$$d_2 = d_1 - 0.09\sqrt{0.8333}$$

$$c = e^{-0.1(0.8333)} [939.68\mathcal{N}(d_1) - 1000\mathcal{N}(d_2)] = 9.49.$$

Alternatively, we can input the parameters into the corresponding cells in the "Black's Model" tab of the BSM & Black's Model.xls spreadsheet to find the price of the European call option directly.

	Inputs (yellow)							
X	1000			strike price				
F	\$939.68			current forw	ard price of the	e bond		
r	10.00%			spot yield for maturity T				
sigma	0.09			volatility of forward bond price				
T	0.8333			time to option expiration				
d1	-0.716204439							
N(d1)	0.236932561	N(-d1)	0.763067					
d2	-0.79836118							
N(d2)	0.212330462	N(-d2)	0.78767					
С	\$9.486			call value				
P	\$64.98			put value				

Currency Options

Currency options are conceptually quite similar to options on stocks and futures that we've seen in lecture. A **currency option** gives the holder the right, but not the obligation, to buy or sell a certain currency at a predetermined exchange rate on or before a specified date. Are there BSM formulae analogous to those used to price call and put options on stocks for European currency options?

Recall from the Week 5 lecture that the BSM pricing formulae for European call and put options on a stock with a known dividend yield δ are as follows:

$$c = Se^{-\delta T} \mathcal{N}\left(d_1\right) - Ke^{-rT} \mathcal{N}\left(d_2\right); \quad p = Ke^{-rT} \mathcal{N}\left(-d_2\right) - Se^{-\delta T} \mathcal{N}\left(-d_1\right)$$
 with $d_1 = \frac{\ln(S/K) + \left(r - \delta + \sigma^2/2\right)T}{\sigma\sqrt{T}}$ and $d_2 = d_1 - \sigma\sqrt{T}$.

The key to pricing currency options is to realize that foreign currency is analogous to a stock paying a known dividend yield: the holder of the foreign currency receives a "dividend yield" equal to the risk-free rate, r_f , in the foreign currency.

To keep the notation consistent, let's define S to be the spot exchange rate: in particular, S is the value of one unit of a foreign currency in U.S. dollars. Then, the prices of European call and put currency options are the same as those for a stock with a known dividend yield, except we replace δ with the foreign risk-free rate r_f :

$$c = Se^{-r_f T} \mathcal{N}(d_1) - Ke^{-rT} \mathcal{N}(d_2); \quad p = Ke^{-rT} \mathcal{N}(-d_2) - Se^{-r_f T} \mathcal{N}(-d_1)$$

with $d_1 = \frac{\ln(S/K) + \left(r - r_f + \sigma^2/2\right)T}{\sigma\sqrt{T}}$ and $d_2 = d_1 - \sigma\sqrt{T}$. Both the domestic risk-free rate, r, and the foreign risk-free rate, r_f , are for maturity T.

As an example, consider a 6-month European call option on the British pound. Suppose that the spot exchange rate is 1.50, the strike price is 1.50, the risk-free rate in the United States is 5% per annum, the risk-free rate in the United Kingdom is 7% per annum, and the pound/dollar exchange rate has a volatility of 12% per annum. What is the price of the call option (in dollars)?

Solution: Using the "BSM" tab of the BSM & Black's Model.xls spreadsheet, we can calculate the price of the European call option with $S=1.50, K=1.50, r=0.05, \sigma=0.12, \delta$ or $r_f=0.07,$ and T=0.5 to be 4.2 cents.

3lack-Sch	noles-Merton I	Model						
		Inputs (yellow)						
	X	\$1.50000			strike price current stock price			
	S	\$1.500000						
	r	5.00%			spot yi	yield for maturity T		
	sigma	0.12			volatility			
	Т	0.5			time to option expiration dividend yield			tion
	delta	7.00%						
	d1	-0.075424723						
	N(d1)	0.469938394	N(-d1)	0.53				
	d2	-0.160277537						
	N(d2)	0.436331226	N(-d2)	0.56				
	C	\$0.042325			call va	all value		
	Р	\$0.0569			put value			

Finally, assume that the 6-month forward exchange rate F between pounds and dollars is equal to the strike price K of the European call option. What would be the price of a 6-month European put option on the pound?

Solution: We don't need any other information to solve this, actually! From put-call parity, note that we can relate European call and put prices on currency options as:

$$c + Ke^{-rT} = p + Se^{-r_fT}.$$

Back in the Week 1 lecture, we learned the following relationship between the forward exchange rate, F, and the spot exchange rate, S:

$$F = Se^{(r-r_f)T}.$$

Combining these two equations, we have that:

$$c + Ke^{-rT} = p + Fe^{-rT}.$$

So, if K = F, then c = p, and the price of a European put option is the same as that of a European call option! This result holds generically for options on any underlying asset as long as the strike price is equal to the forward price.