基于 STM32 的自行车装配智能安全系统

一、摘要

基于 STM 3 2 的自行车装配智能安全系统是一种具有测距警示,超速提醒,GPS 定位,记录行车轨迹,刹车提示灯,蓝牙语音聊天等功能的新型装置,在减少自行车危险事故发生起着重要作用。随着对自行车性能要求的不断提高,自行车的速度越来越快,经常造成来不及刹车造成交通事故的情况。同时,由于自行车装配的简易,不如电动车等有灯光照明系统,在夜间,机动车驾驶者难以观察到自行车夜骑者,从而造成一系列交通事故的事件也屡屡发生。本文对基于 STM 3 2 的自行车装配智能安全系统的设计理念以及相关技术进行解读,总结出该创造的实用价值和社会意义。

关键字: 智能控制 行车安全系统 危险警示

二、背景技术研究

目前,自行车骑行成为了现实生活中一个很大的安全隐患。随着对自行车性能要求的不断提高,自行车的速度越来越快,这就经常造成来不及刹车造成交通事故的情况出现。我们经常能从新闻报道中听到自行车,电动车因为反应不及时所造成的交通事故。对比综合来看,事故的原因有如下五点:

- 1. 天黑视野狭窄,看不清来车,导致事故。
- 2. 紧急情况下刹车过快被后车追尾;
- 3. 速度过快,来不及刹车;
- 4. 行车轨迹没有记录, 使得骑车人安全得不到保障;
- 5. 存在侥幸心理,边骑车边打电话;

针对这五个原因,我们决定设计一种通过智能控制技术保证行车安全的装置,包括记录行车轨迹,超声波测距,蓝牙互动,速度监测控制等。在距离过近有安全隐患时,蜂鸣器响起,进行警示。目前市场上并没有针对自行车安全所研发的智能装置。在自行车不断提速的当下,此系统的研究具有一定的现实意义。

三、技术领域

本系统提供了一种通过智能控制技术保证行车安全的装置,包括记录行车轨迹,蓝牙配对进行语音交互的功能,属于自动控制技术领域。

四、实用新型技术

本系统解决的技术问题主要是针对背景技术中所涉及的问题,提供一种具有智能控制技术的安全装置。

本系统为解决上述问题,采用如下技术方案:

基于 STM32 的自行车装配智能安全系统,包括微处理单元,振铃电路,LCD 液晶模块,蜂鸣器,GPS 定位系统,灯光提示系统,可充电直流电源系统,测距系统,蓝牙控制模块,太阳能发电模块,动力发电模块,数据存储模块,速度监测电路。

所述测距系统,蓝牙控制模块,GPS 定位系统,数据存储模块与 STM32 相连接,由单片机进行统一控制。

所述太阳能发电模块,动力发电模块与直流电源系统相连接,对电源进行充电。

所述 GPS 系统与速度监测电路, 行车记录系统相连接, 并将数据送回单片机, 进行数据存储。

所述灯光提示系统与电源系统相连接, 由机械开关控制。

由于直流电源系统产生的电压较高,而且易产生反向电流,在与单片机之间加上了一组二极管和稳压管,在给单片机稳定供电的同时,保护单片机不因电压过高烧坏。

本系统采用以上技术方案,具有以下技术效果:

- 1. 动力发电模块与太阳能发电模块对直流电源进行充电,其余子系统由电源供电发挥作用,免去了时常充电的麻烦,实现电能的有效利用。在电量充满时,可以选择断开充电开关,也可在骑车时对手机进行充电。
- 2. 在左,后,右三个方向设置有超声波测距模块。在检测到周围障碍物距离过近时,单片机向蜂鸣器发送高电平,蜂鸣器鸣响发出警示,提醒骑车人远离。
 - 3. 夜晚可以打开车尾灯,避免黑夜视野不清晰产生的安全隐患。刹车时,

车尾刹车灯交替闪亮, 提醒后面的骑车人减速。

- 4. 车载蓝牙模块,可扫描配对,在骑车过程中与他人语音通话。
- 5. 单片机实时检测骑车速度,骑车速度将以一定的时间间隔刷新,反馈在 LCD 电子显示屏上。若速度过快,单片机向蜂鸣器发送高电平,蜂鸣器鸣响发出 警示,提醒骑车人减速。
- 6. GPS 系统实时定位并记录行车轨迹,将行车轨迹存储在存储系统中,并可通过单片机进行数据查询。

五、附图说明

基于STM32的自行车配装智能交通安全系统

图一 电路连接图

图二 系统功能图

图一为电路连接图,详细描述了各模块之间的电气连接方式。

图二为系统功能图,详细介绍了各系统内容,以及各系统之间的影响关系。

六、具体实施方式

下面结合附图对此基于 STM32 的自行车装配智能安全系统的具体实施方式 做进一步的说明。

此基于 STM32 的自行车装配智能安全系统在常规的安全控制基础上,增加了 STM32 单片机作为智能控制,在无外接电源的情况下,可以实现自发电,并统筹 安排各电气模块实现各种功能。

电源系统方面,太阳能发电模块对直流电源进行直流充电,并通过二极管 IN4007,5.1v 直插稳压管整流,避免电流过大或电流反向对直流电源造成损伤。

动力发电模块与自行车机械传动装置相连接,由骑车人踩脚踏板进行发电。 由于产生的是交流电,在输出端接有二极管桥式整流电路,将交流信号转成直流 信号对电源进行充电。

直流电源储存产生的电能,并对灯光提示系统与 STM32 单片机进行供电。为防止电压过大对单片机造成损伤,连接中间通过二极管 IN4007, 3.3V 直插稳压管进行整流。

灯光提示系统包括左右转向灯,车尾灯和刹车提示灯。使用者可通过开关选择是否开启灯光提示系统的功能。其中,左右转向灯和车尾灯由手动开关控制,可在需要时打开。刹车提示灯的开关设置在刹车手柄上,当骑车人刹车时,手柄转动,开关接通,刹车提示灯亮。刹车结束时,手柄转回原来位置,开关断开,刹车提示灯灭,实现刹车提示灯的自动控制。

左右转向灯,车尾灯,刹车提示灯均使用低压节能 LED 灯(额定电压 4V)。

STM32 单片机与无线测距子系统,无线近距社交子系统,GPS 定位子系统, 行车记录系统,速度监测系统相连接,对其进行统一控制。

无线测距子系统包括左,后,右三个方向的超声波测距模块 HC-SR04。 HC-SR04 发送信号并接收到发射回来的超声波,将高低电平传回单片机,单片机计算时间差并判断障碍物与车体距离。若判断车体与周围障碍物距离过近时,单片机向蜂鸣器发送高电平,蜂鸣器鸣响 1s 发出警示,提醒骑车人远离。

无线近距社交子系统使用蓝牙模块,可在骑车前引导手机进行自动配对。骑车时即可接听手机来电。

速度监测系统记录动力发电所产生的电流,并将电流大小传回 STM32 单片机进行判断。若电流过大(高于 0.65A),则说明骑车速度过快,单片机向蜂鸣器发送高电平,蜂鸣器鸣响 2s 发出警示,提醒骑车人减速。

GPS 定位子系统包括两个 2. 4G 无线传输模块 NRF24L01+, 一个 GPS 定位模块 NEO-6M, 两片 STC52 单片机, 两个指示灯。等待 GPS 定位后, LED 指示灯闪烁, 显示发射器位置,记录跟踪行车轨迹,显示所在地点的经纬度。

数据存储模块 EEPROM 存放发射器传回单片机的数据,并可在 STM32 单片机 LCD 模块上操作调出前 5 次的行车记录轨迹。

七、总结

本文对基于 STM 3 2 的自行车装配智能安全系统的设计理念以及相关技术进行解读,其测距警示,超速提醒, GPS 定位,记录行车轨迹,刹车提示灯,蓝牙语音交互等功能,对当前自行车行车安全问题有一定缓解作用,具有一定的实用价值和社会意义。但是,该理论还有改进和完善的空间,以便于未来做出更具有现实意义的实物。