CSE 849 Deep Learning Spring 2025

Zijun Cui

• Let's first finish the backpropagation

Scalar functions of Affine functions

$$d_z \times d_y$$
 $\mathbf{z} = \mathbf{W}\mathbf{y} + \mathbf{b}$ scalar $d_z \times 1$ $d_z \times 1$ $d_z \times 1$

Matching Dimension:

Why?
$$\Delta D = \alpha \Delta y$$
 scalar $d_v \times 1$

So α must be $1 \times d_y$

and
$$\alpha = \nabla_y D$$

$$\Delta D = \alpha \Delta \mathbf{W}$$

scalar $d_z \times d_y$

and $\alpha = \nabla_W D$ with dimension $d_V \times d_Z$

Wrong.....

Scalar functions of Affine functions

$$\Delta D = \sum_{i,j} \frac{\partial D}{\partial W_{ij}} \Delta W_{ij}$$
 Frobenius Inner Product for matrix

$$\mathbf{z} = \mathbf{W}\mathbf{y} + \mathbf{b}$$
 We want to convert so that W becomes variables That is why we want to transpose

$$\mathbf{z}^{\mathsf{T}} = \mathbf{y}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} + \mathbf{b}^{\mathsf{T}}$$

$$\nabla_{\boldsymbol{W}^{\top}}D = \nabla_{\boldsymbol{z}^{\top}}D \ \nabla_{\boldsymbol{W}^{\top}}\boldsymbol{z}^{\top} = \nabla_{\boldsymbol{z}^{\top}}D \ \boldsymbol{y}^{\top}$$

$$\nabla_{\boldsymbol{W}}D = (\nabla_{\boldsymbol{W}}^{\mathsf{T}}D)^{\mathsf{T}} = \mathbf{y}\nabla_{\mathbf{z}}D$$

Special Case: Application to a network

Scalar functions of Affine functions

$$\mathbf{z}_{k} = \mathbf{W}_{k} \mathbf{y}_{k-1} + \mathbf{b}_{k}$$

$$Div = Div(\mathbf{z}_{k}) \qquad \nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

$$\nabla_{\mathbf{W}_{k}} D = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$

The divergence is a nested function: $Div(\mathbf{Y}(\mathbf{z}_N))$

$$\nabla_{\mathbf{z}_{N}} Div = \nabla_{\mathbf{Y}} Div. \nabla_{\mathbf{z}_{N}} \mathbf{Y} = \nabla_{\mathbf{Y}} Div. J_{\mathbf{Y}}(\mathbf{z}_{N})$$

Already computed

New term

First compute the derivative of the divergence w.r.t Y. The actual derivative depends on the divergence function.

 $\nabla_{\mathbf{b}_{\mathsf{N}}} Div = \nabla_{\mathbf{z}_{\mathsf{N}}} Div$

The Jacobian will be a diagonal matrix for scalar activations

$$\nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{z}_{N-1}} Div = \nabla_{\mathbf{y}_{N-1}} Div \cdot \nabla_{\mathbf{z}_{N-1}} \mathbf{y}_{N-1}$$

$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \cdot \nabla_{\mathbf{y}_{N-2}} \mathbf{z}_{N-1}$$

$$\Rightarrow \nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \mathbf{W}_{N-1}$$

$$\nabla_{\mathbf{W}_{N-1}} Div = \mathbf{y}_{N-2} \nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{b}_{N-1}} Div = \nabla_{\mathbf{z}_{N-1}} Div$$

$$\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$$

$$\nabla_{\mathbf{W}_{1}} Div = \mathbf{x} \nabla_{\mathbf{z}_{1}} Div$$

$$\nabla_{\mathbf{b}_{1}} Div = \nabla_{\mathbf{z}_{1}} Div$$

Setting up for digit recognition

Training data

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation
 - $Y \in (0,1)$
 - d is either 0 or 1
- Use KL divergence
- Backpropagation to compute derivatives
 - To apply in gradient descent to learn network parameters

Recognizing the digit

Training data

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence
 - To compute derivatives for gradient descent updates to learn network

Back to today's topic on Automatic Differentiation

Derivatives as code

We can compute the derivatives **not just of mathematical functions, but of general programs**(with control flow)

Manual Differentiation

You can see papers like this:

anisotropic CVT over a sound mathematical framework. In this article a new objective function is defined, and both this function and its gradient are derived in closed-form for surfaces and volumes. This method opens a wide range of possibilities, also described in the

Analytic derivatives are needed for theoretical insight

- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points

Unnecessary when we just need derivative evaluations for optimization

Symbolic differentiation

Symbolic computation with Mathematica, Maple, Maxima, and deep learning frameworks such as Theano

Problem: expression swell

Logistic map	$I_{n+1}=4I_n(1$	$-I_{n}$), $I_{1}=x$
--------------	------------------	-----------------------

\overline{n}	l_n	$\frac{d}{dx}l_n$
1	x	1
2	4x(1-x)	4(1-x)-4x
3	$16x(1-x)(1-2x)^2$	$16(1-x)(1-2x)^2 - 16x(1-2x)^2 - 64x(1-x)(1-2x)$
4	$64x(1-x)(1-2x)^2$ $(1-8x+8x^2)^2$	$128x(1-x)(-8+16x)(1-2x)^{2}(1-8x+8x^{2})+64(1-x)(1-2x)^{2}(1-8x+8x^{2})^{2}-64x(1-2x)^{2}(1-8x+8x^{2})^{2}-256x(1-x)(1-2x)(1-8x+8x^{2})^{2}$

Symbolic differentiation

• Mathematica's derivatives for one layer of soft ReLU (univariate case):

$$D[Log[1 + Exp[w * x + b]], w]$$
Out[11]=
$$\frac{e^{b+w \times} w}{1 + e^{b+w \times}}$$

Derivatives for two layers of soft ReLU:

$$\begin{array}{l} & \text{D} \left[\text{Log} \left[1 + \text{Exp} \left[w2 * \text{Log} \left[1 + \text{Exp} \left[w1 * x + b1 \right] \right] + b2 \right] \right], \ w1 \right] \\ & \text{Out} \\ & \text{Out} \\ & \text{II} \\ & \text{Out} \\ & \text{II} \\ & \text{Out} \\ & \text{II} \\ & \text{II} \\ & \text{Out} \\ & \text{II} \\ & \text{Out} \\ & \text{II} \\$$

Symbolic differentiation

Problem: only applicable to closed-form mathematical functions

You can find the derivative of

```
In [1]: def f(x): return 64 *(1-x) *(1-2*x)^2 *(1-8*x+8*x*x)^2
```

but not of

```
In [2]: def f(x,n):
    if n == 1:
        return x
    else:
        V = X
        for i in range(1,n):
              V = 4*v*(1-v)
        return v
```

There might not be a convenient formula for the derivatives.

Autodiff Versus Symbolic differentiation

 The goal of autodiff is not a formula, but a procedure for computing derivatives.

Numerical differentiation

Finite difference approximation of ∇f , $f:\mathbb{R}^n o \mathbb{R}$

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}, \quad 0 < h \ll 1$$

Problem: needs to be evaluated n times, once with each $\mathbf{e}_i \in \mathbb{R}^n$

Problem: we must select h and we face **approximation errors**

Numerical differentiation

Finite difference approximation of ∇f , $f:\mathbb{R}^n o \mathbb{R}$

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}, \quad 0 < h \ll 1$$

Better approximations exist:

- Higher-order finite differences e.g., center difference:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h} + O(h^2)$$

These increase rapidly in complexity and never completely eliminate the error

Autodiff Versus Finite Differences

Finite differences.

Still extremely useful as a quick check of our gradient implementations

Normally, we only use it for testing.

Autodiff is both efficient and numerically stable. **Is exact!**

If we don't need analytic derivative expressions, we can **evaluate a gradient exactly** with only one forward and one reverse execution

$$f: \mathbb{R}^n \to \mathbb{R} \qquad \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

In machine learning, this is known as **backpropagation** or "backprop"

- Automatic differentiation is more than backprop
- Or, backprop is a specialized reverse mode automatic differentiation

Nature 323, 533-536 (9 October 1986)

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a

Confusing Terminology

- Automatic differentiation (autodiff) refers to a general way of taking a program which computes a value, and automatically constructing a procedure for computing derivatives of that value.
- Backpropagation is the special case of autodiff applied to neural nets
 But in machine learning, we often use backprop synonymously with autodiff
- Autograd is the name of a particular autodiff package.
 But lots of people started using "autograd" to mean "autodiff"

What Autodiff Is

An autodiff system will convert the program into a sequence of primitive operations which have specified routines for computing derivatives.

In this representation, backprop can be done in a completely mechanical way.

Original program:

$$z = wx + b$$

$$y = \frac{1}{1 + \exp(-z)}$$

$$L = \frac{1}{2}(y - t)^{2}$$

Sequence of primitive operations:

$$t_1 = wx$$
 $z = t_1 + b$
 $t_3 = -z$
 $t_4 = \exp(t_3)$
 $t_5 = 1 + t_4$
 $y = 1/t_5$
 $t_6 = y - t$
 $t_7 = t_6^2$
 $L = t_7/2$

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a **trace** or a **Wengert list** (Wengert, 1964)
- Alternatively represented as a computational graph showing dependencies

$$f(a,b) = \log(ab)$$

$$\nabla f(a,b) = (1/a, 1/b)$$

Primal: The value computed during the forward pass of a computational graph

```
f(a, b):

c = a * b

d = log(c)

return d
```

$$1.791 = f(2, 3)$$


```
f(a, b):

c = a * b

d = log(c)

return d

1.791 = f(2, 3)

[0.5, 0.333] = f'(2, 3)

\nabla f(a, b) = (1/a, 1/b)
```


Two main flavors

Forward mode

Reverse mode (a.k.a. backprop)

Nested combinations

(higher-order derivatives, Hessian-vector products, etc.)

- Forward-on-reverse
- Reverse-on-forward

- ...

Primals

Derivatives (tangents)

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

```
f(x1, x2):

v1 = x1 * x2

v2 = log(x2)

y1 = sin(v1)

y2 = v1 + v2

return (y1, y2)
```


$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial x_1}{\partial x_1} = 1$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial x_2}{\partial x_1} = 0$$

Primals

Derivatives (tangents)

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\frac{\partial v_1}{\partial x_1} = \frac{\partial x_1}{\partial x_1} x_2 + x_1 \frac{\partial x_2}{\partial x_1} = x_2$$

Primals

Derivatives (tangents)

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

f(2, 3)

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial v_2}{\partial x_1} = \frac{1}{x_2} \frac{\partial x_2}{\partial x_1} = 0$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

f(2, 3)

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
 $return(y1, y2)$

$$\frac{\partial y_1}{\partial x_1} = \cos(v_1) \frac{\partial v_1}{\partial x_1}$$

Derivatives (tangents)

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_2}{\partial x_1} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_1}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

```
f(x1, x2):

v1 = x1 * x2

v2 = log(x2)

y1 = sin(v1)

y2 = v1 + v2

return (y1, y2)
```


$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

```
f(x1, x2):

v1 = x1 * x2

v2 = log(x2)

y1 = sin(v1)

y2 = v1 + v2

return (y1, y2)
```


$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

```
f(x1, x2):

v1 = x1 * x2

v2 = log(x2)

y1 = sin(v1)

y2 = v1 + v2

return (y1, y2)
```


$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial y_1} = 1$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial y_2} = 0$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial v_1} =$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial v_1} = \cos(v1) \frac{\partial y_1}{\partial y_1}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial v_2} = 0$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial x_1} =$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial x_1} = \frac{\partial v_1}{\partial x_1} \frac{\partial y_1}{\partial v_1} = x_2 \frac{\partial y_1}{\partial v_1}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial x_2} =$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x1, x2)$$
:
 $v1 = x1 * x2$
 $v2 = log(x2)$
 $y1 = sin(v1)$
 $y2 = v1 + v2$
return $(y1, y2)$

$$\frac{\partial y_1}{\partial x_2} = \frac{\partial v_1}{\partial x_2} \frac{\partial y_1}{\partial v_1} + \frac{\partial v_2}{\partial x_2} \frac{\partial y_1}{\partial v_2} = x_1 \frac{\partial y_1}{\partial v_1}$$

Forward vs reverse summary

In the extreme $\mathbf{f}: \mathbb{R} \to \mathbb{R}^m$ use forward mode to evaluate

$$(\frac{\partial f_1}{\partial x}, \cdots, \frac{\partial f_m}{\partial x})$$

In the extreme $f: \mathbb{R}^n \to \mathbb{R}$ use reverse mode to evaluate

$$\nabla f(\mathbf{x}) = (\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n})$$

In general $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^m$ the Jacobian $\mathbf{J}_f(\mathbf{x}) \in \mathbb{R}^{m \times n}$ can be evaluated in - $O(n \operatorname{time}(\mathbf{f}))$ with forward mode - $O(m \operatorname{time}(\mathbf{f}))$ with reverse mode

Reverse performs better when $n\gg m$

Autograd

```
# Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)

Autograd constructs a
# Optimize weights using gradient descent. function for computing derivatives
weights = np.array([0.0, 0.0, 0.0])
print "Initial loss:", training_loss(weights)
for i in xrange(100):
    weights -= training_gradient_fun(weights) * 0.01
print "Trained loss:", training_loss(weights)
```

- The rest of this lecture covers how Autograd is implemented.
- Source code for the original Autograd package:

https://github.com/HIPS/autograd

 Autodidact, a pedagogical implementation of Autograd — you are encouraged to read the code.

> https://github.com/mattjj/aut odidact

Building the Computation Graph

- Most autodiff systems, including Autograd, explicitly construct the computation graph.
 - Some frameworks like TensorFlow provide mini-languages for building computation graphs directly. Disadvantage: need to learn a totally new API.
 - Autograd instead builds them by tracing the forward pass computation, allowing for an interface nearly indistinguishable from NumPy.
- The Node class (defined in tracer.py) represents a node of the computation graph. It has attributes:
 - value, the actual value computed on a particular set of inputs
 - fun, the primitive operation defining the node
 - args and kwargs, the arguments the op was called with
 - parents, the parent Nodes

Building the Computation Graph

- Autograd's fake NumPy module provides primitive ops which look and feel like NumPy functions, but secretly build the computation graph.
- They wrap around NumPy functions:

Building the Computation Graph

Example:

```
def logistic(z):
    return 1. / (1. + np.exp(-z))

# that is equivalent to:
def logistic2(z):
    return np.reciprocal(np.add(1, np.exp(np.negative(z))))

z = 1.5
y = logistic(z)
```


Vector-Jacobian Products

Implement the primitive operations in vectorized form.

The Jacobian is the matrix of partial derivatives:

$$\mathbf{J} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

 The backprop equation (single child node) can be written as a vector-Jacobian product (VJP):

$$\overline{\mathbf{x}_{j}} = \sum_{i} \overline{\mathbf{y}_{i}} \frac{\partial \mathbf{y}_{j}}{\partial \mathbf{x}_{j}} \qquad \overline{\mathbf{x}} = \overline{\mathbf{y}}^{T} \mathbf{J}$$

Note: usually don't explicitly construct the Jacobian. It's simpler and more efficient to compute the VJP directly.

That gives a row vector 1 by n. We can treat it as a column vector by taking

$$\overline{\mathbf{x}} = \mathbf{J}^T \overline{\mathbf{y}}$$

Vector-Jacobian Products

- For each primitive operation, we must specify VJPs for *each* of its arguments. Consider $y = \exp(x)$.
- This is a function which takes in the output gradient (i.e. \bar{y}), the answer (y), and the arguments (x), and returns the input gradient (\bar{x})
- defvjp (defined in core.py) is a convenience routine for registering VJPs. It just adds them to a dict.
- Examples from numpy/numpy vjps.py

Backward Pass

Backprop computations are more modular if we view them as message passing.

The backwards pass is defined in core.py.

```
def backward_pass(g, end_node):
    outgrads = {end_node: g}
    for node in toposort(end_node):
        outgrad = outgrads.pop(node)
        fun, value, args, kwargs, argnums = node.recipe
        for argnum, parent in zip(argnums, node.parents):
            vjp = primitive_vjps[fun][argnum]
            parent_grad = vjp(outgrad, value, *args, **kwargs)
            outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)
    return outgrad

def add_outgrads(prev_g, g):
    if prev_g is None:
        return g
    return prev_g + g
```

Summary

- We saw three main parts to the code:
 - tracing the forward pass to build the computation graph
 - vector-Jacobian products for primitive ops
 - the backwards pass
- Building the computation graph requires fancy NumPy gymnastics, but other two items are basically what I showed you.
- You're encouraged to read the full code (< 200 lines!) at:</p>

https://github.com/mattjj/autodidact/tree/master/autograd