Álgebra Linear e suas Aplicações

Notas de Aula

Petronio Pulino

$$\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = Q \begin{bmatrix} -4 \\ 1 \\ 6 \end{bmatrix} Q^{t}$$

$$Q^t Q = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Álgebra Linear e suas Aplicações Notas de Aula

Petronio Pulino

 $Departamento\ de\ Matemática\ Aplicada$ Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas $E{-}mail{:}\ pulino@ime.unicamp.br$ $www.ime.unicamp.br/{\sim}pulino/ALESA/$

Conteúdo

1	Est	Estruturas Algébricas				
	1.1	Operação Binária. Grupos	2			
	1.2	Corpo Comutativo	7			
	1.3	Corpo com Valor Absoluto	10			
	1.4	Corpo Ordenado	12			
	1.5	Valor Absoluto num Corpo Ordenado	15			
	1.6	Números Reais	17			
	1.7	Números Complexos	20			
	1.8	Característica do Corpo	25			
	1.9	Métricas	27			
2	Ma	trizes e Sistemas Lineares	29			
	2.1	Matrizes	30			
	2.2	Tipos Especiais de Matrizes	41			
	2.3	Inversa de uma Matriz	59			
	2.4	Matrizes em Blocos	63			
	2.5	Operações Elementares. Equivalência	76			
	2.6	Forma Escalonada. Forma Escada	81			
	2.7	Matrizes Elementares	84			
	2.8	Matrizes Congruentes. Lei da Inércia	101			
	2.9	Sistemas de Equações Lineares	107			
3	Esp	paços Vetoriais	L 3 9			
	3.1	Espaço Vetorial. Propriedades	140			
	3.2	Subespaço Vetorial	147			
	3.3	Combinação Linear. Subespaço Gerado	154			
	3.4	Soma e Intersecção. Soma Direta	158			
	3.5	Dependência e Independência Linear	167			
	3.6	Bases e Dimensão	173			
	3.7	Coordenadas	204			
	3.8	Mudança de Base	212			

ii CONTEÚDO

4	Tra	$nsforma \~c\~oes\ Lineares$	219	
	4.1	Transformações do Plano no Plano	. 220	
	4.2	Transformação Linear	. 221	
	4.3	Núcleo e Imagem	. 226	
	4.4	Posto e Nulidade	. 232	
	4.5	Espaços Vetoriais Isomorfos	. 244	
	4.6	Álgebra das Transformações Lineares	. 249	
	4.7	Transformação Inversa	. 253	
	4.8	Representação Matricial	. 268	
5	Produto Interno 28			
	5.1	Introdução	. 284	
	5.2	Definição de Produto Interno	. 284	
	5.3	Desigualdade de Cauchy–Schwarz	. 297	
	5.4	Definição de Norma. Norma Euclidiana	. 299	
	5.5	Definição de Ângulo. Ortogonalidade	. 303	
	5.6	Base Ortogonal. Coeficientes de Fourier	. 311	
	5.7	Processo de Gram–Schmidt	. 316	
	5.8	Complemento Ortogonal	. 324	
	5.9	Decomposição Ortogonal	. 329	
	5.10	Identidade de Parseval	. 337	
	5.11	Desigualdade de Bessel	. 339	
	5.12	Operadores Simétricos	. 341	
	5.13	Operadores Hermitianos	. 345	
	5.14	Operadores Ortogonais	. 347	
	5.15	Projeção Ortogonal	. 353	
	5.16	Reflexão sobre um Subespaço	. 361	
	5.17	Melhor Aproximação em Subespaços	. 365	
6	Autovalores e Autovetores 369			
	6.1	Autovalor e Autovetor de um Operador Linear	. 370	
	6.2	Autovalor e Autovetor de uma Matriz	. 379	
	6.3	Multiplicidade Algébrica e Geométrica	. 394	
	6.4	Matrizes Especiais	. 399	
	6.5	Aplicação. Classificação de Pontos Críticos	. 411	
	6.6	Diagonalização de Operadores Lineares	. 416	
	6.7	Diagonalização de Operadores Hermitianos	. 438	

CONTEÚDO iii

7	Funcionais Lineares e Espaço Dual		463	
	7.1	Introdução	464	
	7.2	Funcionais Lineares	465	
	7.3	Espaço Dual	471	
	7.4	Teorema de Representação de Riesz	488	
8	$\acute{A}lg$	ebra Linear Computacional	493	
	8.1	Introdução	494	
	8.2	Decomposição de Schur. Teorema Espectral	495	
	8.3	Normas Consistentes em Espaços de Matrizes	501	
	8.4	Análise de Sensibilidade de Sistemas Lineares	514	
	8.5	Sistema Linear Positivo—Definido	532	
	8.6	Métodos dos Gradientes Conjugados	537	
	8.7	Fatoração de Cholesky	555	
	8.8	Métodos Iterativos para Sistemas Lineares	566	
	8.9	Sistema Linear Sobredeterminado	591	
	8.10	Subespaços Fundamentais de uma Matriz	597	
	8.11	Projeções Ortogonais	615	
	8.12	Matriz de Projeção Ortogonal	621	
	8.13	Fatoração QR	629	
		Modelos de Regressão Linear		
	8.15	Solução de norma—2 Mínima	684	
		Problemas de Ponto Sela		
		Decomposição em Valores Singulares		
	Bib	liografia	735	

iv *CONTEÚDO*

6

Autovalores e Autovetores

Conteúdo				
6.1	Autovalor e Autovetor de um Operador Linear 370			
6.2	Autovalor e Autovetor de uma Matriz			
6.3	Multiplicidade Algébrica e Geométrica			
6.4	Matrizes Especiais			
6.5	Aplicação. Classificação de Pontos Críticos 411			
6.6	Diagonalização de Operadores Lineares 416			
6.7	Diagonalização de Operadores Hermitianos 438			

6.1 Autovalor e Autovetor de um Operador Linear

Sejam V um espaço vetorial real e T um operador linear sobre V. Podemos fazer a colocação do seguinte problema:

Quais são os elementos
$$v \in V$$
 tais que $T(v) = -v$?

Exemplo 6.1.1 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (-x, -y)$$

é a reflexão em torno da origem, isto é, uma rotação de 180º no sentido anti-horário.

Podemos verificar facilmente que

$$T(x,y) = (-x, -y) = -1(x, y).$$

Portanto, todo elemento $v = (x, y) \in \mathbb{R}^2$ satisfaz a condição acima.

Exemplo 6.1.2 Considere o espaço vetorial real \mathbb{R}^2 e o operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (x+2y,-y)$$

Podemos verificar facilmente que

$$T(x,-x) = (-x, x) = -1(x, -x)$$
.

Portanto, todo elemento $v=(x,-x)\in I\!\!R^2$ satisfaz a condição acima.

Sejam V um espaço vetorial real e T um operador linear sobre V. Podemos também fazer a colocação do seguinte problema:

Quais são os elementos $v \in V$, não—nulos, que são levados pelo operador T em um múltiplo de si mesmo, isto é, estamos procurando elementos $v \in V$, não—nulos, e escalares $\lambda \in \mathbb{R}$ tais que $T(v) = \lambda v$?

Definição 6.1.1 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e $T:V\longrightarrow V$ um operador linear. Se existirem $v\in V$, diferentes do elemento neutro, e $\lambda\in\mathbb{F}$ tais que $T(v)=\lambda v$, então o escalar $\lambda\in\mathbb{F}$ é um **autovalor** de T e o elemento v é um **autovetor** de T associado ao autovalor λ .

Exemplo 6.1.3 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (y,x)$$

 \acute{e} a reflexão em torno da reta r dada pela equação y=x

Assim, para qualquer elemento $v = (x, y) \in r$, não nulo, temos que

$$T(x,y) = T(x,x) = 1(x,x).$$

Portanto, qualquer elemento $v=(x,y)\in r$ não—nulo é um autovetor de T associado ao autovalor $\lambda=1$.

De modo análogo, qualquer elemento $v=(x,y)\in s$, não nulo, onde s é a reta dada pela equação y=-x, é um autovetor de T associado ao autovalor $\lambda=-1$. De fato,

$$T(x,y) = T(x,-x) = (-x, x) = -1(x, y).$$

Teorema 6.1.1 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , T um operador linear sobre V e v um autovetor associado ao autovalor λ . Então, qualquer elemento $w = \alpha v$, com $\alpha \in \mathbb{F}$ não-nulo, também é um autovetor de T associado a λ .

Demonstração – Considerando que (v, λ) é um autopar do operador linear T, isto é, $T(v) = \lambda v$, e que $w = \alpha v$, temos que

$$T(w) \ = \ T(\alpha v) \ = \ \alpha T(v) \ = \ \alpha(\lambda v) \ = \ \lambda(\alpha v) \ = \ \lambda w \ .$$

Logo, o elemento $w=\alpha v$, com $\alpha\in \mathbb{F}$ não-nulo, é um autovetor de T associado ao autovalor λ .

Podemos observar que o autovalor λ é unicamente determinado pelo operador T e pelo autovetor v. De fato, considere que λ e λ' são autovalores do operador T associados ao autovetor v, isto é,

$$T(v) = \lambda v$$
 e $T(v) = \lambda' v$.

Assim, temos que

$$\lambda v - \lambda' v = 0_V \implies (\lambda - \lambda') v = 0_V \implies (\lambda - \lambda') = 0 \implies \lambda = \lambda',$$

pois $v \neq 0_V$. Assim, temos somente um autovalor λ associado ao autovetor v .

Nos casos em que o autovalor $\lambda \in \mathbb{R}$, podemos dar uma interpretação geométrica para os autovetores associados como sendo os elementos de V que tem suas direções preservadas pelo operador T.

Definição 6.1.2 Sejam V um espaço vetorial sobre o corpo F e $T:V\longrightarrow V$ um operador linear. Fixando um autovalor λ do operador T, o subconjunto

$$V_{\lambda} = \{ v \in V / T(v) = \lambda v \}$$

é denominado subespaço associado ao autovalor λ .

Podemos observar facilmente que o subconjunto V_{λ} é igual ao subespaço $Ker(T - \lambda I_V)$. De fato, tomando um elemento $v \in V_{\lambda}$ temos que

$$T(v) = \lambda v \iff (T - \lambda I_V)(v) = 0_V \iff v \in Ker(T - \lambda I_V).$$

Logo, temos que $V_{\lambda} = Ker(T - \lambda I_{V})$. Assim, provamos que V_{λ} é um subespaço de V, pois sabemos que o núcleo de um operador linear é um subespaço de V.

Exemplo 6.1.4 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , T um operador linear sobre V, λ_1 e λ_2 autovalores distintos do operador T. Podemos verificar facilmente que $V_{\lambda_1} \cap V_{\lambda_2} = \{ 0_V \}$.

De fato, tomando um elemento $v \in V_{\lambda_1} \cap V_{\lambda_2}$ temos que

$$T(v) = \lambda_1 v$$
 e $T(v) = \lambda_2 v$.

Assim, obtemos

$$\lambda_1 v - \lambda_2 v = 0_V \implies (\lambda_1 - \lambda_2)v = 0_V.$$

Como $\lambda_1 \neq \lambda_2$, temos que $v = 0_V$. Portanto, mostramos que $V_{\lambda_1} \cap V_{\lambda_2} = \{ 0_V \}$.

Exemplo 6.1.5 Sejam V um espaço vetorial sobre o corpo $I\!\!F$, T um operador linear sobre V e λ um autovalor do operador T. Podemos verificar facilmente que o subespaço V_{λ} é invariante sob T, isto é $T(v) \in V_{\lambda}$ para todo $v \in V_{\lambda}$.

Exemplo 6.1.6 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (x,-y)$$

é a reflexão em torno do eixo-ox.

Assim, podemos observar que para os elementos do tipo $v=(0,y)\in \mathbb{R}^2$ temos que

$$T(0,y) = (0,-y) = -1(0,y).$$

Portanto, os elementos $v=(0,y)\in\mathbb{R}^2$ são autovetores de T com autovalor $\lambda=-1$.

De modo análogo, temos que os elementos $v=(x,0)\in \mathbb{R}^2$ são autovetores de T associados ao autovalor $\lambda=1$. De fato,

$$T(x,0) = (x,0) = 1(x,0).$$

Exemplo 6.1.7 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (-x, -y)$$

é a reflexão em torno da origem.

Assim, para qualquer elemento $v = (x, y) \in \mathbb{R}^2$, não nulo, temos que

$$T(x,y) = (-x, -y) = -1(x, y).$$

Portanto, qualquer elemento $v=(x,y)\in \mathbb{R}^2$, não—nulo, é um autovetor de T associado ao único autovalor $\lambda=-1$.

Exemplo 6.1.8 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

é a projeção no eixo-ox, isto é, um operador de projeção de coordenadas.

Podemos verificar facilmente que qualquer elemento $v=(x,0)\in\mathbb{R}^2$, não-nulo, é um autovetor de T associado ao autovalor $\lambda=1$. Além disso, qualquer elemento $v=(0,y)\in\mathbb{R}^2$, não-nulo, é um autovetor de T associado ao autovalor $\lambda=0$.

Exemplo 6.1.9 De um modo geral todo operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = \lambda(x,y)$$

com $\lambda \neq 0$, tem λ como único autovalor e qualquer elemento $v = (x, y) \in \mathbb{R}^2$, não nulo, como autovetor associado.

Exemplo 6.1.10 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear

 \acute{e} uma rotação de um ângulo $\theta=\frac{\pi}{2}$ no sentido anti-horário.

Note que nenhum vetor $v \in \mathbb{R}^2$ não—nulo é levado por T em um múltiplo de si mesmo. Logo, T não tem nem autovalores e nem autovetores. Este é um exemplo de que nem todo operador linear sobre um espaço vetorial real possui autovalores e autovetores. Mais a frente vamos fazer uma melhor colocação desse fato.

Exemplo 6.1.11 Considere o espaço vetorial real \mathbb{R}^3 e P o operador linear sobre \mathbb{R}^3 definido da seguinte forma: P(x,y,z) = (x,y,0) para $(x,y,z) \in \mathbb{R}^3$, que representa a projeção sobre o plano xy.

Neste exemplo, temos que todo elemento $v=(0,0,z)\in \mathbb{R}^3$, elementos sobre o eixo-oz, é um autovetor de P associado ao autovalor $\lambda_1=0$. De fato, P(0,0,z)=(0,0,0). Todo elemento $v=(x,y,0)\in \mathbb{R}^3$, elementos do plano xy, é um autovetor de P associado ao autovalor $\lambda_2=1$. De fato, P(x,y,0)=(x,y,0).

Exemplo 6.1.12 Seja V o espaço vetorial real das funções contínuas f, definidas em (a,b), que possuem derivadas contínuas de todas as ordens, que denotamos por $C^{\infty}((a,b))$. Considere o operador linear D sobre V definido da seguinte forma: D(f) = f'. Os autovetores do operador D são todas as funções contínuas não nulas f satisfazendo a equação da forma: $f' = \lambda f$ para algum $\lambda \in \mathbb{R}$. Assim, os autovetores são as funções $f(x) = c \exp(\lambda x)$, onde $c \in \mathbb{R}$ é uma constante não nula, associados aos autovalores $\lambda \in \mathbb{R}$. Note que para $\lambda = 0$, os autovetores associados são as funções constantes não nulas, isto é, f(x) = c, para $c \in \mathbb{R}$ não nula.

Exemplo 6.1.13 Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno usual $\langle \cdot, \cdot \rangle$ e o subespaço S = [(1, -1, 2)]. Seja P o operador linear sobre \mathbb{R}^3 onde w = P(u), para $u \in \mathbb{R}^3$, é a projeção ortogonal do elemento u sobre o subespaço S. Vamos determinar os autovalores e autovetores de P.

Fazendo
$$v = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
, temos que $w = P(u) = \alpha^* v \in S$ com

$$\alpha^* = \frac{\langle u, v \rangle}{\langle v, v \rangle} = \frac{v^t u}{v^t v}$$

Assim, temos que w pode ser escrito da seguinte forma:

$$w = P(u) = \frac{v^t u}{v^t v} v = \frac{v v^t}{v^t v} u$$

Considerando o \mathbb{R}^3 com a base canônica β , temos que

$$[P]_{\beta}^{\beta} = \frac{v v^{t}}{v^{t} v} = \frac{1}{6} \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$

Sabemos que, para todo $z \in S$ temos P(z) = z. Portanto, $\lambda_1 = 1$ é um autovalor de P com $v_1 = (1, -1, 2)$ o autovetor associado. Logo, o subespaço S é o subespaço associado ao autovalor $\lambda_1 = 1$.

O complemento ortogonal, S^{\perp} , do subespaço S em \mathbb{R}^3 é o hiperplano dado por:

$$S^{\perp} = H = \{ u \in \mathbb{R}^3 / \langle u, v \rangle = 0 \}$$

Note que S^{\perp} é um plano em \mathbb{R}^3 dado pela equação x-y+2z=0. Temos também que, P(u)=(0,0,0) para todo $u\in S^{\perp}$. Observamos também que $Ker(P)=S^{\perp}$.

Desse modo, como P(u) = 0 u para todo $u \in S^{\perp}$, podemos concluir que $\lambda_2 = 0$ é um autovalor de P e S^{\perp} é o subespaço associado ao autovalor λ_2 . Assim, quaisquer dois vetores v_2 e v_3 linearmente independentes em S^{\perp} são autovetores associados ao autovalor $\lambda_2 = 0$.

Finalmente, escolhemos $v_2=(1,1,0)$ e $v_3=(0,2,1)$ como sendo os autovetores do operador P associados ao autovalor $\lambda_2=0$.

Exemplo 6.1.14 Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno usual $\langle \cdot, \cdot \rangle$ e o subespaço S = [(1, -1, 2)]. Seja R o operador linear sobre \mathbb{R}^3 onde w = R(u), para $u \in \mathbb{R}^3$, é a reflexão do elemento u em torno do subespaço S^{\perp} . Vamos determinar os autovalores e autovetores de R.

Do Exemplo 6.1.13, sabemos que o operador P de projeção ortogonal sobre o subespaço S é dado por:

$$P(u) = \frac{v^t u}{v^t v} v = \frac{v v^t}{v^t v} u$$
 para todo $u \in \mathbb{R}^3$

Desse modo, o operador T de projeção ortogonal sobre o subespaço S^{\perp} é dado por:

$$T(u) = u - P(u) = u - \frac{v^t u}{v^t v} v = \left(I - \frac{v v^t}{v^t v}\right) u$$

Temos que o operador R de reflexão em torno do subespaço S^{\perp} é dado por:

$$R(u) = T(u) - P(u) = u - 2P(u) = \left(I - 2\frac{vv^t}{v^tv}\right)u$$

Desse modo, temos que R(u) = u para todo $u \in S^{\perp}$, concluindo que $\lambda_1 = 1$ é um autovalor de R e S^{\perp} é o subespaço associado ao autovalor λ_1 . Assim, quaisquer dois vetores v_1 e v_2 linearmente independentes em S^{\perp} são autovetores associados ao autovalor $\lambda_1 = 1$.

Portanto, podemos escolher $v_1=(1,1,0)$ e $v_2=(0,2,1)$ como sendo os autovetores de R associados ao autovalor $\lambda_1=1$.

Sabemos que, para todo $w \in S$ temos R(w) = -w. Portanto, $\lambda_2 = -1$ é um autovalor de R com $v_3 = (1, -1, 2)$ o autovetor associado. Logo, o subespaço S é o subespaço associado ao autovalor $\lambda_2 = -1$.

Note que podemos generalizar os dois últimos exemplos para o caso em que S = [v], com $v \in \mathbb{R}^n$ não-nulo.

Exercícios

Exercício 6.1 Sejam V um espaço vetorial sobre o corpo F, T um operador linear sobre V, v um autovetor de T associado a um autovalor λ e α um escalar não-nulo. Mostre que $\alpha\lambda$ é um autovalor do operador linear αT com v o autovetor associado.

Exercício 6.2 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador linear sobre V. Mostre que $\lambda = 0$ é um autovalor de T se, e somente se, T não é um operador injetor.

Exercício 6.3 Sejam V um espaço vetorial real e T um operador linear sobre V tal que $T^2 = T$, isto é, T(T(v)) = T(v) para todo $v \in V$ (operador idempotente). Mostre que os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$.

Exercício 6.4 Sejam V um espaço vetorial real e T um operador linear sobre V tal que $T^2 = I_V$, isto \acute{e} , T(T(v)) = v para todo $v \in V$ (operador auto-reflexivo). Mostre que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$.

Exercício 6.5 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , T um operador linear sobre V e λ é um autovalor de T com v o autovetor associado. Mostre que $a\lambda + b$ é um autovalor do operador $aT + bI_V$, para $a, b \in \mathbb{F}$, com v o autovetor associado.

Exercício 6.6 Determine o operador linear T sobre o \mathbb{R}^2 satisfazendo as seguintes propriedades simultaneamente:

- (a) $\lambda_1 = 1$ é um autovalor de T com os autovetores associados do tipo $v_1 = (y, -y)$ para $y \in \mathbb{R}$ não-nulo.
- (b) $\lambda_2 = 3$ é um autovalor de T com os autovetores associados do tipo $v_2 = (0, y)$ para $y \in \mathbb{R}$ não nulo.

Exercício 6.7 Considere o espaço vetorial \mathbb{R}^4 munido do produto interno usual e W o subespaço vetorial gerado pelos elementos $w_1=(1,-1,0,1)$ e $w_2=(-1,0,1,1)$. Sejam P o operador de projeção ortogonal sobre o subespaço W e R o operador de reflexão sobre o subespaço W. Pede-se:

- (a) Determine os autovalores e os autovetores do operador P.
- (b) Determine os autovalores e os autovetores do operador R.

Exercício 6.8 Sejam V um espaço vetorial sobre o corpo F, T um operador linear sobre V e v um autovetor de T associado a um autovalor λ . Mostre que v é um autovetor do operador T^n associado ao autovalor λ^n para qualquer $n \in \mathbb{N}$.

Exercício 6.9 Sejam V um espaço vetorial real e T um operador linear sobre V de modo que existe um número inteiro n tal que $T^n = 0$, isto \acute{e} , $T^n(v) = 0_V$ para todo $v \in V$ (operador nilpotente). Mostre que o único autovalor de T \acute{e} $\lambda = 0$.

Exercício 6.10 Sejam V um espaço vetorial sobre o corpo IF, T um isomorfismo de V e v um autovetor de T associado a um autovalor λ . Mostre que v é um autovetor do isomorfismo inverso T^{-1} associado ao autovalor $\frac{1}{\lambda}$.

Exercício 6.11 Seja T um operador linear sobre o espaço vetorial real $M_n(\mathbb{R})$ definido por: $T(A) = A^t$. Mostre que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$, descrevendo os subespaços associados a cada um dos autovalores.

Exercício 6.12 Sejam V um espaço vetorial sobre o corpo IF, T um operador linear sobre V e λ um autovalor de T. Mostre que o subconjunto definido por:

$$V_{\lambda} \ = \ \{ \ v \ \in \ V \ \ / \ T(v) \ = \ \lambda v \ \}$$

é um subespaço vetorial de V.

Exercício 6.13 Sejam V um espaço vetorial complexo e T um operador linear sobre V tal que $T^2 = -I_V$, isto é, T(T(v)) = -v para todo $v \in V$. Mostre que T é um automorfismo de V e que os autovalores de T são $\lambda_1 = i$ e $\lambda_2 = -i$.

Exercício 6.14 Considere o espaço vetorial real \mathbb{R}^4 e o operador T sobre o \mathbb{R}^4 definido da seguinte forma: $T(x,y,z,t)=(-y\,,x\,,-t\,,z)$. Mostre que T satisfaz $T^2(v)=-v$ para todo $v=(x,y,z,t)\in\mathbb{R}^4$. Determine a matriz $[T]^\beta_\beta$, onde β é a base canônica de \mathbb{R}^4 . O operador linear T possui autovalores e autovetores?

Exercício 6.15 Considere o espaço vetorial complexo \mathbb{C}^4 e o operador T sobre o \mathbb{C}^4 definido da seguinte forma: T(x,y,z,t)=(-t,z,-y,x). Mostre que T satisfaz $T^2(v)=-v$ para todo $v=(x,y,z,t)\in\mathbb{C}^4$. Determine a matriz $[T]^\beta_\beta$, onde β é a base canônica de \mathbb{C}^4 , como espaço vetorial complexo. O operador linear T possui autovalores e autovetores ?

6.2 Autovalor e Autovetor de uma Matriz

Sejam V um espaço vetorial de dimensão finita sobre um corpo F, digamos que dim(V)=n, e T um operador linear sobre V. O problema de encontrar os autovalores do operador T será resolvido através do cálculo de determinantes. Queremos encontrar escalares $\lambda \in F$ de modo que a equação $T(v)=\lambda v$ tenha solução $v\in V$, não nula. A equação $T(v)=\lambda v$ pode ser escrita na forma: $(T-\lambda I_V)(v)=0_V$.

A equação acima terá solução v não nula se, e somente se, $Ker(T - \lambda I_V) \neq \{0_V\}$. Assim, se $A = [T]^{\beta}_{\beta}$ é a representação matricial do operador T, com relação a alguma base ordenada de V, então a matriz $A - \lambda I_n$ é a representação matricial para o operador $T - \lambda I_V$. Desse modo, a matriz $A - \lambda I_n$ deve ser singular, isto é, $\det(A - \lambda I_n) = 0$.

Portanto, $\lambda \in \mathbb{F}$ é um autovalor do operador T se, e somente se, satisfaz a equação

$$\det(A - \lambda I_n) = 0.$$

Desse modo, dada uma matriz A de ordem n sobre um corpo $I\!\!F$, vamos definir um autovalor de A como sendo um autovalor do operador linear T_A sobre $I\!\!F^n$ associado à matriz A, isto é, $A = [T_A]^\beta_\beta$, onde β é a base canônica de $I\!\!F^n$. Portanto, os autovetores da matriz A, associados ao autovalor λ , são soluções não nulas da equação $T_A(v) = \lambda v$, representadas como matriz coluna. Assim, se $u = (x_1, \dots, x_n) \in I\!\!F^n$ é um autovetor de T_A associado ao autovalor $\lambda \in I\!\!F$, isto é, $T_A(u) = \lambda u$, temos que

$$AX = \lambda X$$
 , onde $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in IM_{n \times 1}(IF)$,

isto é, (λ, X) é um autopar da matriz A. Note que $[u]_{\beta} = X$.

Definição 6.2.1 Seja A uma matriz de ordem n sobre um corpo \mathbb{F} . Um autovalor da matriz A é um escalar $\lambda \in \mathbb{F}$ tal que a matriz $(A - \lambda I_n)$ seja singular.

Equivalentemente, λ é um autovalor de A se, e somente se, $det(A - \lambda I_n) = 0$. Evidentemente, os autovalores de A são exatamente os escalares $\lambda \in \mathbb{F}$ que são raízes do polinômio $p(\lambda) = det(A - \lambda I_n)$. O polinômio $p(\lambda)$ é denominado **polinômio** característico da matriz A, que é um polinômio de grau n.

Definição 6.2.2 Sejam $A, B \in \mathbb{M}_n(\mathbb{F})$. Dizemos que a matriz B é **similar** ou **semelhante** a matriz A, se existe uma matriz invertível $P \in \mathbb{M}_n(\mathbb{F})$ de maneira que $B = P^{-1}AP$.

Note que matrizes similares possuem a seguinte propriedade:

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1}) \det(A) \det(P) = \det(A).$$

Esta propriedade nos leva ao seguinte resultado, que é muito importante no estudo de autovalores.

Teorema 6.2.1 Matrizes similares possuem o mesmo polinômio característico.

Demonstração – Considerando que a matriz B é similar à matriz A, isto é, existe uma matriz P invertível tal que $B = P^{-1}AP$. Consideramos inicialmente o polinômio característico da matriz B, obtemos

$$p(\lambda) = \det(B - \lambda I_n)$$

$$= \det(P^{-1}AP - \lambda P^{-1}P)$$

$$= \det(P^{-1}(A - \lambda I_n)P)$$

$$= \det(P^{-1})\det(A - \lambda I_n)\det(P)$$

$$= \det(A - \lambda I_n),$$

o que completa a demonstração.

O Teorema 6.2.1 nos permite definir o polinômio característico do operador linear T como sendo o polinômio característico da matriz $A = [T]^{\beta}_{\beta}$, que é a representação matricial do operador T em relação a qualquer base ordenada β de V. Para isso, vamos precisar do seguinte resultado.

Teorema 6.2.2 Sejam V um espaço vetorial de dimensão finita sobre o corpo $I\!\!F$, T um operador linear sobre V, β e α bases ordenadas de V. Então,

$$[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} [I]^{\beta}_{\alpha}.$$

Demonstração – Seja $P = [I]^{\beta}_{\alpha}$ a matriz mudança da base β para a base α , e lembrando que $[I]^{\alpha}_{\beta} = P^{-1}$. Inicialmente, vamos calcular

$$[T(u)]_{\alpha} = [T]_{\alpha}^{\alpha} [u]_{\alpha} = [T]_{\alpha}^{\alpha} [I]_{\beta}^{\beta} [u]_{\beta}$$
 para todo $u \in V$.

Assim, podemos escrever $[T(u)]_{\beta}$ da seguinte forma:

$$[T(u)]_{\beta} = [I]_{\beta}^{\alpha} [T(u)]_{\alpha} = [I]_{\beta}^{\alpha} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\beta} [u]_{\beta} \Longrightarrow [T]_{\beta}^{\beta} = [I]_{\beta}^{\alpha} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\beta}.$$

Portanto, mostramos que $[T]^{\beta}_{\beta} = P^{-1} [T]^{\alpha}_{\alpha} P$, isto é, as matrizes $[T]^{\beta}_{\beta}$ e $[T]^{\alpha}_{\alpha}$ são similares, o que completa a demonstração.

Corolário 6.2.1 Sejam V um espaço vetorial de dimensão finita sobre o corpo IF, T um operador linear sobre V, β e α bases ordenadas de V. Então,

$$\det([T]^{\alpha}_{\alpha}) = \det([T]^{\beta}_{\beta}).$$

Demonstração − A prova é feita utilizando o resultado do Teorema 6.2.2.

Definição 6.2.3 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , T um operador linear sobre V e β uma base ordenada de V. Definimos o **determinante** do operador T da seguinte forma: $\det(T) = \det([T]_{\beta}^{\beta})$.

Teorema 6.2.3 Sejam V um espaço vetorial de dimensão finita sobre o corpo $I\!\!F$ e T um operador linear sobre V. Então, T é invertível se, e somente se, $\det(T) \neq 0$.

Demonstração − A prova segue da definição de determinante e do Corolário 4.8.2. □

Exemplo 6.2.1 Considere o espaço vetorial $\mathcal{P}_2(\mathbb{R})$ e o operador T sobre $\mathcal{P}_2(\mathbb{R})$ definido por: T(p(x)) = p(x) + xp'(x). Considerando a base canônica $\beta = \{1, x, x^2\}$, temos que

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Assim, $\det(T) = \det([T]_{\beta}^{\beta}) = 6$. Logo, o operador T é invertível, pois $\det(T) \neq 0$. Podemos observar facilmente que o determinante de um operador linear, assim definido, fica bem estabelecido devido ao Corolário 6.2.1.

Definição 6.2.4 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} e T um operador linear sobre V. Definimos o **polinômio característico** do operador T como sendo o polinômio característico da matriz $[T]^{\beta}_{\beta}$ em relação a qualquer base ordenada β de V.

Considerando o Exemplo 6.2.1, temos que o polinômio característico do operador $\,T\,$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda),$$

com $A = [T]^{\beta}_{\beta}$, onde β é a base canônica de $\mathcal{P}_2(\mathbb{R})$.

Proposição 6.2.1 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , digamos $\dim(v) = n$, e T um operador linear sobre V. Então, os autovalores do operador linear T são os escalares $\lambda \in \mathbb{F}$ que são raízes do polinômio característico da matriz $A = [T]^{\beta}_{\beta}$ em relação a qualquer base ordenada β de V.

Demonstração – Por definição, um escalar $\lambda \in \mathbb{F}$ é um autovalor do operador T, se a equação $T(v) = \lambda v$ tem solução não nula. A equação $T(v) = \lambda v$ pode ser escrita na forma: $(T - \lambda I_V)(v) = 0_V$.

Assim, a equação acima terá solução não nula se, e somente se, $Ker(T - \lambda I_V) \neq \{ 0_V \}$. Desse modo, se $A = [T]^{\beta}_{\beta}$ é a representação matricial do operador linear T, com relação a alguma base ordenada β de V, então $A - \lambda I_n$ é a matriz do operador $T - \lambda I_V$. Desse modo, a matriz $A - \lambda I_n$ deve ser singular, isto é, $\det(A - \lambda I_n) = 0$.

Portanto, um escalar $\lambda \in \mathbb{F}$ é um autovalor do operador T se, e somente se, satisfaz a equação $\det(A - \lambda I_n) = 0$, o que completa a demonstração.

Finalmente, para determinar os autovetores do operador T associados ao autovalor λ , temos que encontrar os elementos não—nulos do núcleo do operador $T - \lambda I_V$, isto é, temos que encontrar as soluções não nulas da equação $T(v) = \lambda v$.

De uma maneira geral, podemos simplificar os cálculos para determinar os autovetores do operador T associados ao autovalor λ , fazendo a seguinte observação.

Considerando que $u \in V$ é um autovetor do operador linear T associado ao autovalor λ , isto é, $T(u) = \lambda u$, obtemos

$$[T(u)]_{\beta} = \lambda [u]_{\beta} \implies [T]_{\beta}^{\beta} [u]_{\beta} = \lambda [u]_{\beta}.$$

Portanto, podemos observar facilmente que $[u]_{\beta} = X$, onde $X \in M_{n \times 1}(\mathbb{F})$ é um autovetor da matriz $A = [T]_{\beta}^{\beta}$ associado ao autovalor λ .

Sabemos que os autovalores do operador T são os escalares $\lambda \in \mathbb{F}$ que são raízes do polinômio característico da matriz $A = [T]^{\beta}_{\beta}$ em relação a qualquer base ordenada β de V. Desse modo, podemos também simplificar os cálculos para encontrar os autovalores de T, escolhendo a base canônica de V para determinar a representação matricial do operador linear T.

Exemplo 6.2.2 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = (1 + x)p'(x) + p''(x).$$

Determine os autovalores do operador linear T.

Temos que $A = [T]^{\beta}_{\beta}$, onde $\beta = \{1, x, x^2\}$ é a base canônica de $\mathcal{P}_2(\mathbb{R})$, é dada por:

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

Desse modo, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = -\lambda(1 - \lambda)(2 - \lambda)$$

Portanto, os autovalores de T são $\lambda_1=0$, $\lambda_2=1$ e $\lambda_3=2$.

Como $\lambda_1 = 0$ é um autovalor do operador linear T, podemos observar que

$$V_{\lambda_1} = Ker(T)$$
.

Assim, o operador linear T não é um operador injetor.

Exemplo 6.2.3 Considere o espaço vetorial real \mathbb{R}^2 com a base canônica β e T o operador linear definido por:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (2x+2y,y)$$

Determine o polinômio característico do operador T.

Temos que a matriz $A = [T]^{\beta}_{\beta}$ é dada por:

$$A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}.$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (2 - \lambda)(1 - \lambda) = \lambda^2 - 3\lambda + 2.$$

Desse modo, temos que $\lambda_1 = 2$ e $\lambda_2 = 1$ são os autovalores do operador T.

Exemplo 6.2.4 No Exemplo 6.2.3 considere o espaço vetorial real \mathbb{R}^2 com a base ordenada $\gamma = \{ (1,1), (-1,1) \}$.

Temos que a matriz $A = [T]_{\gamma}^{\gamma}$ é dada por:

$$A = \frac{1}{2} \begin{bmatrix} 5 & 1 \\ -3 & 1 \end{bmatrix}.$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = \left(\frac{5}{2} - \lambda\right) \left(\frac{1}{2} - \lambda\right) + \frac{3}{4} = \lambda^2 - 3\lambda + 2.$$

Assim, obtemos o resultado esperado, de acordo com o Teorema 6.2.2.

Para determinar os autovetores associados ao autovalor $\lambda_1 = 2$, temos que determinar os elementos não—nulos $(x,y) \in \mathbb{R}^2$ tais que T(x,y) = 2(x,y). Equivalentemente, temos que encontrar os elementos não nulos do núcleo do operador (T-2I). Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \implies \begin{cases} 0x + 2y = 0 \\ y = 0 \end{cases}$$

Portanto, os autovetores associados a $\lambda_1 = 2$ são do tipo $v_1 = (x,0)$, com $x \neq 0$. Desse modo, podemos escolher $v_1 = (1,0)$ o autovetor associado ao autovalor $\lambda_1 = 2$.

Para determinar os autovetores associados ao autovalor $\lambda_2 = 1$, temos que determinar os elementos não—nulos $(x,y) \in \mathbb{R}^2$ tais que T(x,y) = (x,y). Equivalentemente, temos que encontrar os elementos não—nulos do núcleo do operador (T-I). Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \implies x + 2y = 0$$

Portanto, os autovetores associados ao autovalor $\lambda_2 = 1$ são do tipo $v_2 = t(-2, 1)$, para $t \in \mathbb{R}$ não—nulo. Assim, podemos escolher $v_2 = (-2, 1)$ o autovetor associado ao autovalor $\lambda_2 = 1$.

Exemplo 6.2.5 Considere a matriz $A \in \mathbb{M}_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$$

Determine os autovalores e os autovetores da matriz A.

Seja T_A o operador linear sobre $I\!\!R^3$ associado a matriz A, isto é,

$$T_A(x,y,z) = (2x + y + z, 2x + 3y + 4z, -x - y - 2z)$$

Assim, $A = [T_A]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T_A , e os autovetores são os autovetores do operador T_A , representados como matriz coluna.

Temos que o polinômio característico da matriz $A = [T_A]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 & 1 \\ 2 & 3 - \lambda & 4 \\ -1 & -1 & -2 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 1)(\lambda - 3)$$

Os autovalores da matriz A são $\lambda_1 = 1$, $\lambda_2 = -1$ e $\lambda_3 = 3$.

Para determinar os autovetores associados ao autovalor $\lambda_1=1$, temos que encontrar os elementos não—nulos do núcleo do operador (T_A-I) . Assim, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \implies \begin{cases} x + y + z = 0 \\ 2x + 2y + 4z = 0 \\ -x - y - 3z = 0 \end{cases}$$

Adicionando a primeira equação e a terceira equação encontramos z=0, as duas primeiras equação ficam reduzidas a equação x+y=0.

Portanto, os autovetores associados a $\lambda_1 = 1$ são do tipo $v_1 = (x, -x, 0)$, com $x \neq 0$. Assim, podemos escolher $v_1 = (1, -1, 0)$ o autovetor associado ao autovalor $\lambda_1 = 1$. De modo análogo, obtemos os autovetores associados ao autovalor $\lambda_2 = -1$ que são do tipo $v_2 = t(0, 1, -1)$, e os autovetores associados ao autovalor $\lambda_3 = 3$ que são do tipo $v_3 = t(2, 3, -1)$, para $t \in \mathbb{R}$ não—nulo. Finalmente, os autovetores da matriz A são representados da seguinte forma:

$$X_1 = \begin{bmatrix} x \\ -x \\ 0 \end{bmatrix}$$

para $x\in\mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_1=1$. Desse modo, temos que $AX_1=\lambda_1X_1$.

$$X_2 = \begin{bmatrix} 0 \\ y \\ -y \end{bmatrix}$$

para $y\in \mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_2=-1$. Desse modo, temos que $AX_2=\lambda_2X_2$.

$$X_3 = \begin{bmatrix} -2z \\ -3z \\ z \end{bmatrix}$$

para $z \in \mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_3 = 3$. Desse modo, temos que $AX_3 = \lambda_3 X_3$.

Portanto, podemos escolher os seguintes autovetores para a matriz A

$$X_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} , \quad X_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \quad \text{e} \quad X_3 = \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$$

associados aos autovalores $\lambda_1=1$, $\lambda_2=-1$ e $\lambda_3=3$, respectivamente.

É importante observar que como A é uma matriz quadrada de ordem 3, seus autovetores são matrizes coluna de ordem 3×1 .

Sejam V é um espaço vetorial complexo de dimensão finita, digamos dim(V) = n, e T um operador linear sobre V. Então, o polinômio característico do operador linear T é um polinômio complexo que possui n raízes em \mathbb{C} , levando em conta a multiplicidade, veja **Teorema Fundamental da Álgebra**. Neste caso, um operador linear T tem n autovalores. Entretanto, se V é um espaço vetorial real o número de autovalores do operador T é menor ou igual à dimensão de V. Para ilustrar este fato vamos considerar os seguintes exemplos.

Exemplo 6.2.6 Seja \mathbb{C}^2 um espaço vetorial complexo com a base $\beta = \{ (1,0), (0,1) \}$. O operador linear

$$T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$

$$(x,y) \longrightarrow T(x,y) = (-y,x)$$

 \acute{e} uma rotação de um ângulo $\theta=\frac{\pi}{2}$ no sentido anti-horário.

Temos que o polinômio característico da matriz $[T]^{\beta}_{\beta}$ é dado por $p(\lambda) = \lambda^2 + 1$ para $\lambda \in \mathbb{C}$. Assim, o operador T possui os autovalores $\lambda_1 = -i$ e $\lambda_2 = i$.

Desse modo, o autovetor $v_1 \in \mathbb{C}^2$ associado ao autovalor $\lambda_1 = -i$ é a solução do seguinte sistema linear homogêneo

$$\begin{cases} ix - y = 0 \\ x + iy = 0 \end{cases} \iff ix - y = 0 \implies y = ix$$

Portanto, todo elemento $v_1 = (a, i \, a) \in \mathbb{C}^2$, para $a \in \mathbb{C}$ não—nulo, é um autovetor do operador T associado ao autovalor $\lambda_1 = -i$. Assim, podemos escolher $v_1 = (1, i)$ o autovetor associado ao autovalor $\lambda_1 = -i$.

De modo análogo, o autovetor $v_2 \in \mathbb{C}^2$ associado ao autovalor $\lambda_2 = i$ é a solução do seguinte sistema linear homogêneo

$$\begin{cases}
-ix - y = 0 \\
x - iy = 0
\end{cases} \iff ix + y = 0 \implies y = -ix$$

Portanto, todo elemento $v_2 = (a, -ia) \in \mathbb{C}^2$, para $a \in \mathbb{C}$ não—nulo, é um autovetor do operador T associado ao autovalor $\lambda_2 = i$. Assim, podemos escolher $v_2 = (1, -i)$ o autovetor associado ao autovalor $\lambda_2 = i$.

É importante observar que, neste caso, não temos a interpretação geométrica para o autovetor como sendo o elemento que tem sua direção preservada pelo operador T.

Exemplo 6.2.7 Considere o operador linear T sobre o \mathbb{R}^3 definido por:

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x,y,z) \longrightarrow T(x,y,z) = (x,-z,y)$$

que representa uma rotação de um ângulo $\theta=\frac{\pi}{2}$ no sentido anti-horário no plano yz.

A matriz $A = [T]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 é dada por:

$$A = [T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Assim, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (1 - \lambda)(1 + \lambda^2),$$

que possui as seguintes raízes $\lambda_1=1\,,\ \lambda_2=i$ e $\lambda_3=-i.$

Desse modo, como estamos considerando o operador linear T sobre o espaço vetorial real \mathbb{R}^3 , temos que $\lambda_1 = 1$ é o único autovalor de T.

Podemos verificar facilmente que os autovetores associados ao autovalor $\lambda_1 = 1$ são do tipo v = (x, 0, 0) para $x \in \mathbb{R}$ não—nulo. Assim, podemos escolher o autovetor $v_1 = (1, 0, 0)$ associado ao autovalor $\lambda_1 = 1$.

Entretanto, considerando o operador linear T sobre o espaço vetorial complexo \mathbb{C}^3 , temos que $\lambda_1 = 1$, $\lambda_2 = i$ e $\lambda_3 = -i$ são os autovalores de T.

Neste caso, podemos verificar facilmente que $v_2=(0,1,-i)$ é um autovetor associado ao autovalor $\lambda_2=i$. De modo análogo, temos que $v_3=(0,1,i)$ é um autovetor associado ao autovalor $\lambda_2=-i$.

Exemplo 6.2.8 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = p(0) + p(1)(x + x^2).$$

Determine os autovalores e os autovetores do operador T.

Vamos determinar a matriz $[T]^{\beta}_{\beta}$, onde $\beta = \{1, x, x^2\}$ é a base canônica de $\mathcal{P}_2(\mathbb{R})$. Desse modo, temos que

$$T(1) = 1 + x + x^2$$
, $T(x) = x + x^2$ e $T(x^2) = x + x^2$.

Logo, a matriz $A = [T]^{\beta}_{\beta}$ é dada por:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Assim, o polinômio característico do operador linear T é dado por:

$$p(\lambda) = \det(A - \lambda I) = \lambda(\lambda - 1)(\lambda - 2)$$
.

Portanto, os autovalores do operador linear T são $\lambda_1=2$, $\lambda_2=1$ e $\lambda_3=0$, que são os autovalores da matriz A.

Podemos verificar facilmente que os autovetores da matriz A são

$$X_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 , $X_2 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ e $X_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

associados aos autovalores $\lambda_1=2\,,\ \lambda_2=1\,$ e $\lambda_3=0\,,$ respectivamente.

Portanto, sabemos que

$$[p_1(x)]_{\beta} = X_1$$
 , $[p_2(x)]_{\beta} = X_2$ e $[p_3(x)]_{\beta} = X_3$,

onde $p_1(x)$, $p_2(x)$ e $p_3(x)$ são os autovetores do operador linear T associados aos autovalores $\lambda_1=2$, $\lambda_2=1$ e $\lambda_3=0$, respectivamente. Logo, obtemos

$$p_1(x) = x + x^2$$
, $p_2(x) = 1 - x - x^2$ e $p_3(x) = x - x^2$.

Podemos observar facilmente que

$$V_{\lambda_1} = [x + x^2]$$
 , $V_{\lambda_2} = [1 - x - x^2]$ e $V_{\lambda_3} = [x - x^2]$.

Exercícios

Exercício 6.16 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + (x+1)p'(x)$$
.

Determine os autovalores e os autovetores do operador T.

Exercício 6.17 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = xp'(x) + p''(x).$$

Determine os autovalores e os autovetores do operador T.

Exercício 6.18 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + xp'(x).$$

Determine os autovalores e os autovetores do operador T.

Exercício 6.19 Considere o operador linear T sobre $\mathcal{P}_3(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + xp''(x).$$

Determine os autovalores e os autovetores do operador T. O operador linear T é um automorfismo de $\mathcal{P}_3(I\!\!R)$?

Exercício 6.20 Considere o operador T sobre \mathbb{R}^3 definido por:

$$T(x,y,z) = (x + 2y - z, 3y + z, 4z).$$

Determine os autovalores e os autovetores do operador T.

Exercício 6.21 Considere o operador linear T sobre \mathbb{R}^3 definido por:

$$T(x, y, z) = (x + y, x - y + 2z, 2x + y - z).$$

Determine os autovalores e os autovetores do operador T.

Exercício 6.22 Considere o operador linear T sobre $M_2(\mathbb{R})$ definido por:

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}2a+b&2b\\2c&3d\end{array}\right].$$

Determine os autovalores e os autovetores do operador T.

Exercício 6.23 Sejam V um espaço vetorial real de dimensão finita e T um operador linear sobre V definido em uma base ordenada $\gamma = \{v_1, v_2, \cdots, v_n\}$ de V da seguinte forma: $T(v_i) = \lambda_i v_i$, $\lambda_i \in \mathbb{R}$. Determine o polinômio característico e os autovalores do operador linear T.

Exercício 6.24 Seja $D \in M_n(\mathbb{R})$ uma matriz Diagonal. Mostre que D possui um conjunto de n autovetores linearmente independentes.

Exercício 6.25 Seja $A \in M_n(\mathbb{R})$. Mostre que as matrizes A e A^t possuem os mesmos autovalores. Sugestão: utilize o polinômio característico.

Exercício 6.26 Considere o operador linear T sobre o \mathbb{R}^4 cuja matriz em relação à base canônica β de \mathbb{R}^4 é dada por:

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Determine os autovalores e os autovetores do operador linear T. O operador linear T é um automorfismo de \mathbb{R}^4 ?

Exercício 6.27 Sejam $A \in M_n(\mathbb{R})$ uma matriz invertível e λ um autovalor de A. Mostre que $\frac{1}{\lambda}$ é um autovalor de A^{-1} . Sugestão: utilize o polinômio característico.

Exercício 6.28 Determine os autovalores da matriz A dada por:

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right].$$

Exercício 6.29 Sejam T um operador linear sobre \mathbb{R}^3 , $\gamma = \{v_1, v_2, v_3\}$ uma base ordenada para o espaço vetorial real \mathbb{R}^3 e o subespaço $S = [v_1, v_3]$. Sabendo que T(v) = v para todo $v \in S$ e $T(v_2) = v_1 + 2v_2 + 3v_3$. Determine os autovalores e os autovetores do operador linear T.

Exercício 6.30 Mostre que se λ é um autovalor de uma matriz A com X o autovetor associado, então $\alpha\lambda + \beta$ é um autovalor da matriz $\alpha A + \beta I_n$ com X o autovetor associado.

Exercício 6.31 Seja V o subespaço vetorial de $M_2(\mathbb{R})$ das matrizes triangulares superiores. Pede-se:

- (a) Exiba uma base ordenada para V.
- (b) Seja $T: V \longrightarrow V$ o operador linear definido por:

$$T\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}a+b&b\\0&c-a-b\end{array}\right].$$

Mostre que T é um automorfismo de V.

(c) Determine os autovalores e os autovetores de T.

Exercício 6.32 Considere o operador linear T sobre $\mathcal{P}_3(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + p'(x) + x^2 p''(x)$$
.

Determine os autovalores e os autovetores do operador linear T, descrevendo para cada autovalor o subespaço associado.

Exercício 6.33 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(a + bx + cx^2) = (2b + c) + (2b - c)x + 2cx^2$$
.

Determine os autovalores e os autovetores do operador linear T, descrevendo para cada autovalor o subespaço associado.

Exercício 6.34 Seja A uma matriz de ordem n triangular superior (inferior) ou uma matriz diagonal. Mostre que os autovalores de A são os elementos da diagonal principal da matriz A.

Exercício 6.35 Seja λ um autovalor de A com X o autovetor associado. Mostre que λ^n é um autovalor de A^n com X o autovetor associado, para $n \in \mathbb{N}$.

Exercício 6.36 Sejam A uma matriz invertível e λ um autovalor de A com X o autovetor associado. Mostre que $\frac{1}{\lambda}$ é um autovalor da matriz A^{-1} com X o autovetor associado.

Exercício 6.37 Determine os autovalores e autovetores das matrizes A e A^{-1} , onde

$$A = \left[\begin{array}{cc} 0 & 2 \\ 1 & 1 \end{array} \right].$$

Exercício 6.38 Considere a matriz diagonal em blocos $T \in \mathbb{M}_4(\mathbb{R})$ dada por:

$$T = \begin{bmatrix} U & 0_2 \\ 0_2 & D \end{bmatrix},$$

onde $U \in M_2(\mathbb{R})$ é uma matriz triangular superior e $D \in M_2(\mathbb{R})$ é uma matriz diagonal, representadas por:

$$U = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \qquad e \qquad D = \begin{bmatrix} d & 0 \\ 0 & e \end{bmatrix},$$

 $com\ a,\ b,\ c,\ d,\ e\in R.\ Mostre\ que$

$$\lambda_1 = a$$
 , $\lambda_2 = c$, $\lambda_3 = d$ e $\lambda_4 = e$

são os autovalores da matriz T, com autovetores associados

$$X_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} , X_{2} = \begin{bmatrix} \frac{b}{c-a} \\ 1 \\ 0 \\ 0 \end{bmatrix} , X_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} e X_{4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

respectivamente, para $c \neq a$. Considerando a = c, determine os autovalores e os autovetores da matriz T.

Exercício 6.39 Determine os autovalores e os autovetores da matriz T dada por:

$$T = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

Exercício 6.40 Determine os autovalores e os autovetores da matriz T dada por:

$$T = \begin{bmatrix} 6 & 2 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

Exercício 6.41 Sejam $A, B \in M_n(\mathbb{R})$ matrizes similares, isto é, existe uma matriz invertível $P \in M_n(\mathbb{R})$ tal que $B = P^{-1}AP$. Mostre que se A é invertível, então B é invertível e as matrizes A^{-1} e B^{-1} são similares.

6.3 Multiplicidade Algébrica e Geométrica

Definição 6.3.1 Definimos a multiplicidade algébrica de um autovalor λ como sendo a quantidade de vezes que ele aparece como raiz do polinômio característico.

Definição 6.3.2 Definimos a multiplicidade geométrica de um autovalor λ como sendo a dimensão do subespaço V_{λ} associado ao autovalor λ .

Exemplo 6.3.1 Considere a matriz $A \in M_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}.$$

Determine os autovalores e os autovetores da matriz A.

Seja T_A o operador linear sobre \mathbb{R}^3 associado a matriz A, isto é, , isto é,

$$T_A(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z).$$

Assim, $A = [T_A]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T_A , e os autovetores são os autovetores do operador T_A , representados como matriz coluna.

Temos que o polinômio característico da matriz $A = [T_A]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{vmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

Os autovalores do operador T_A são $\lambda_1 = 2$ com multiplicidade algébrica igual a 2, e $\lambda_2 = 4$ com multiplicidade algébrica igual a 1.

Para determinar os autovetores associados ao autovalor $\lambda_1 = 2$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A - 2I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} \implies \begin{cases} - & y + z = 0 \\ & y - z = 0 \\ 2x + y + z = 0 \end{cases}$$

Assim, obtemos a solução z=y=-x. Portanto, os autovetores associados ao autovalor $\lambda_1=2$ são do tipo $v_1=(x,-x,-x)$, com $x\neq 0$. Desse modo, o autovalor $\lambda_1=2$ tem multiplicidade geométrica igual a 1. De modo análogo, obtemos que os autovetores associados ao autovalor $\lambda_2=4$ são do tipo $v_2=(x,-x,x)$, com $x\neq 0$. Note que o autovalor λ_2 tem multiplicidade geométrica igual a 1.

Finalmente, os autovetores da matriz A são representados da seguinte forma:

$$X_1 = \begin{bmatrix} x \\ -x \\ -x \end{bmatrix}$$

para $x \in \mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_1 = 2$, que possui multiplicidade algébrica igual a 2 e multiplicidade geométrica igual a 1. Desse modo, temos que $AX_1 = \lambda_1 X_1$.

$$X_2 = \begin{bmatrix} x \\ -x \\ x \end{bmatrix}$$

para $x \in \mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_2 = 4$, que possui multiplicidade algébrica igual a 1 e multiplicidade geométrica igual a 1. Desse modo, temos que $AX_2 = \lambda_2 X_2$.

Portanto, podemos escolher os seguintes autovetores para a matriz A

$$X_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \qquad e \qquad X_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

associados aos autovalores $\lambda_1 = 2$ e $\lambda_2 = 4$, respectivamente.

Exemplo 6.3.2 Considere a matriz $A \in \mathbb{M}_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}.$$

Determine os autovalores e os autovetores da matriz A.

Seja T_A o operador linear sobre \mathbb{R}^3 associado a matriz A, isto é, , isto é,

$$T_A(x, y, z) = (2x + y + z, 2x + 3y + 2z, 3x + 3y + 4z).$$

Assim, $A = [T_A]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T_A , e os autovetores são os autovetores do operador T_A , representados como matriz coluna.

Temos que o polinômio característico da matriz $A = [T_A]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 & 1 \\ 2 & 3 - \lambda & 2 \\ 3 & 3 & 4 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda - 1)(\lambda - 7)$$

Os autovalores do operador T_A são $\lambda_1=7$ com multiplicidade algébrica igual a 1, e $\lambda_2=1$ com multiplicidade algébrica igual a 2.

Para determinar os autovetores associados ao autovalor $\lambda_1 = 7$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A - 7I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7x \\ 7y \\ 7z \end{bmatrix} \implies \begin{cases} 5x - y - z = 0 \\ -2x + 4y - 2z = 0 \\ -3x - 3y + 3z = 0 \end{cases}$$

Assim, obtemos a solução y=2x e z=3x. Portanto, os autovetores associados ao autovalor $\lambda_1=7$ são do tipo $v_1=t(1,2,3)$, com $t\neq 0$. Desse modo, o autovalor $\lambda_1=7$ tem multiplicidade geométrica igual a 1. De maneira análoga, obtemos que os autovetores associados ao autovalor $\lambda_2=1$ são do tipo $v_2=a(1,0,-1)+b(0,1,-1)$, com $a,b\neq 0$. Note que o autovalor λ_2 tem multiplicidade geométrica igual a 2.

Finalmente, os autovetores da matriz A são representados da seguinte forma:

$$X_1 = \begin{bmatrix} x \\ 2x \\ 3x \end{bmatrix}$$

para $x \in \mathbb{R}$ não—nulo, são os autovetores associados ao autovalor $\lambda_1 = 7$, que possui multiplicidade algébrica igual a 1 e multiplicidade geométrica igual a 1. Desse modo, temos que $AX_1 = \lambda_1 X_1$.

$$X_2 = \begin{bmatrix} x \\ 0 \\ -x \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ -y \end{bmatrix}$$

para $x, y \in \mathbb{R}$ não–nulos, são os autovetores associados ao autovalor $\lambda_2 = 1$, que possui multiplicidade algébrica igual a 2 e multiplicidade geométrica igual a 2. Desse modo, temos que $AX_2 = \lambda_2 X_2$.

Portanto, podemos escolher os seguintes autovetores para a matriz A

$$X_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 , $X_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ e $X_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

onde X_1 é o autovetor associado ao autovalor $\lambda_1=7,\ X_2$ e X_3 são os autovetores associados ao autovalor $\lambda_2=1.$

Exercícios

Exercício 6.42 Considere a matriz A dada por:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Determine a multiplicidade algébrica e a multiplicidade geométrica dos autovalores da matriz A.

Exercício 6.43 Sejam $A, B \in \mathbb{M}_n(\mathbb{R})$ matrizes similares, isto é, existe uma matriz invertível $P \in \mathbb{M}_n(\mathbb{R})$ tal que $A = P^{-1}BP$. Estabeleça a relação entre os autovalores e autovetores das matrizes $A \in B$.

Exercício 6.44 Sejam A e B matrizes invertíveis de mesma ordem. Mostre que as matrizes AB^{-1} e $B^{-1}A$ possuem os mesmos autovalores.

Exercício 6.45 Sejam A e B matrizes invertíveis de mesma ordem. Pede-se:

- (a) Mostre que as matrizes AB e BA possuem os mesmos autovalores.
- (b) Mostre que se λ é um autovalor da matriz AB com X o autovetor associado, então λ é um autovalor da matriz BA com BX autovetor associado.
- (c) Mostre que se λ é um autovalor da matriz BA com Y o autovetor associado, então λ é um autovalor da matriz BA com AY o autovetor associado.

Exercício 6.46 Seja A uma matriz de ordem n. Mostre que a transformação de similaridade preserva tanto a multiplicidade algébrica quanto a multiplicidade geométrica dos autovalores da matriz A.

Exercício 6.47 Sejam A, B, C matrizes quadradas de mesma ordem. Mostre que a transformação de similaridade é uma relação de equivalência, isto é,

- (a) A é similar a A.
- (b) Se A é similar a B, então B é similar a A.
- (c) Se A é similar a B e B é similar a C, então A é similar a C.

6.4 Matrizes Especiais

Com o objetivo de simplificar a notação e facilitar as demonstrações que apresentamos nesta seção, sempre que necessário, vamos considerar os elementos do espaço vetorial real \mathbb{R}^n representados na forma de matriz coluna, elementos do espaço vetorial real $\mathbb{M}_{n\times 1}(\mathbb{R})$, tendo em vista que os espaços vetoriais reais \mathbb{R}^n e $\mathbb{M}_{n\times 1}(\mathbb{R})$ são isomorfos. Sabemos também que os espaços vetoriais complexos \mathbb{C}^n e $\mathbb{M}_{n\times 1}(\mathbb{C})$ são isomorfos.

Um conceito que utilizaremos com muita freqüência é o de transposta Hermitiana de uma matriz $A = [a_{ij}] \in \mathbb{M}_n(\mathbb{C})$, que denotamos por A^* , que é definido da forma: $A^* = [\overline{a}_{ji}]$. Como ilustração, considere a matriz $A \in \mathbb{M}_2(\mathbb{C})$ e sua respectiva transposta Hermitiana $A^* \in \mathbb{M}_2(\mathbb{C})$, dadas por:

$$A = \begin{bmatrix} 2 - 3i & 1 + i \\ 4i & 1 + 2i \end{bmatrix}$$
 e $A^* = \begin{bmatrix} 2 + 3i & -4i \\ 1 - i & 1 - 2i \end{bmatrix}$.

De mesmo modo, esse conceito é aplicado aos elementos de $M_{n\times 1}(\mathbb{C})$, resultando em um elemento de $M_{1\times n}(\mathbb{C})$.

Considere o espaço vetorial \mathbb{R}^n com a base canônica $\beta = \{e_1, \dots, e_n\}$. Sabemos que todo elemento $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ é escrito de modo único da forma:

$$x = \sum_{i=1}^{n} x_i e_i,$$

que vamos representar pela matriz coluna

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{M}_{n \times 1}(\mathbb{R}) .$$

Assim, o produto interno usual do \mathbb{R}^n , que denotamos por $\langle \cdot, \cdot \rangle$, pode ser escrito como:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = Y^t X$$

para todos $x, y \in \mathbb{R}^n$.

De modo análogo, considere o espaço vetorial complexo \mathbb{C}^n com a base canônica. Desse modo, podemos escrever o produto interno usual da seguinte forma:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i = Y^* X$$

para todos $x, y \in \mathbb{C}^n$.

Teorema 6.4.1 Seja $A \in M_n(\mathbb{R})$. Então, para todos $x, y \in \mathbb{R}^n$ temos que

$$\langle Ax, y \rangle = \langle x, A^t y \rangle.$$

Demonstração – Para $x, y \in \mathbb{R}^n$, representados na forma de matriz coluna, tem-se

$$\langle Ax, y \rangle = y^t Ax = (A^t y)^t x = \langle x, A^t y \rangle,$$

o que completa a demonstração.

Corolário 6.4.1 Seja $A \in \mathbb{M}_n(\mathbb{R})$ simétrica. Então, para todos $x, y \in \mathbb{R}^n$ tem-se

$$\langle Ax, y \rangle = \langle x, Ay \rangle.$$

Demonstração − A prova é imediata utilizando o resultado do Teorema 6.4.1.

Teorema 6.4.2 Seja $A \in M_n(\mathbb{C})$. Então, para todos $x, y \in \mathbb{C}^n$ temos que

$$\langle Ax, y \rangle = \langle x, A^*y \rangle.$$

Demonstração – Para $x, y \in \mathbb{C}^n$, representados na forma de matriz coluna, tem-se

$$\langle Ax, y \rangle = y^*Ax = (A^*y)^*x = \langle x, A^*y \rangle,$$

o que completa a demonstração.

Corolário 6.4.2 Seja $A \in M_n(\mathbb{C})$ Hermitiana. Então, para todos $x, y \in \mathbb{C}^n$ tem-se

$$\langle Ax, y \rangle = \langle x, Ay \rangle.$$

Demonstração − A prova é imediata utilizando o resultado do Teorema 6.4.2.

Os resultados do Teorema 6.4.1 e do Teorema 6.4.2, e os respectivos corolários, serão muito utilizados nas demonstrações que se seguem.

Teorema 6.4.3 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. Então, seus autovalores são todos reais. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração – Considere o espaço vetorial complexo \mathbb{C}^n munido do produto interno usual $\langle \cdot, \cdot \rangle$. Seja T o operador linear sobre \mathbb{C}^n associado a matriz A, isto é,

$$T_A(v) = Av$$

para todo $v \in \mathbb{C}^n$, representado na forma de matriz coluna.

Como a matriz $A = [T_A]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{C}^n , temos que um autovalor de A é um autovalor do operador T_A .

Como, por hipótese, a matriz $A = [T_A]^{\beta}_{\beta}$ é Hermitiana, sabemos que o operador T_A é Hermitiano.

Tomando λ um autovalor de T_A e v o autovetor associado, isto é, $T_A(v) = \lambda v$, obtemos

$$\lambda \langle v, v \rangle = \langle T_A(v), v \rangle = \langle v, T_A(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle.$$

Desse modo, obtemos a equação

$$(\lambda - \overline{\lambda})\langle v, v \rangle = 0.$$

Como v é não—nulo, temos que $\lambda - \overline{\lambda} = 0$. Portanto, o autovalor λ é real, completando a demonstração da primeira parte.

Para a prova da segunda parte, sejam λ_1 e λ_2 autovalores distintos de T_A , com v_1 e v_2 os autovetores associados, respectivamente. Desse modo, temos que

$$\lambda_1 \langle \, v_1 \,,\, v_2 \, \rangle \; = \; \langle \, T_A(v_1) \,,\, v_2 \, \rangle \; = \; \langle \, v_1 \,,\, T_A(v_2) \, \rangle \; = \; \langle \, v_1 \,,\, \lambda_2 v_2 \, \rangle \; = \; \lambda_2 \langle \, v_1 \,,\, v_2 \, \rangle \,.$$

Desse modo, obtemos a equação

$$(\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle = 0.$$

Portanto, tem-se

$$\langle v_1, v_2 \rangle = 0,$$

pois os autovalores λ_1 e λ_2 são distintos, o que completa a demonstração.

Corolário 6.4.3 Seja $A \in M_n(\mathbb{C})$ uma matriz simétrica. Então, seus autovalores são todos reais. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração − A prova segue do Teorema 6.4.3, considerando que a matriz simétrica real é um caso particular de uma matriz Hermitiana.

Exemplo 6.4.1 Considere a matriz simétrica A dada por:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

Determine os autovalores e os autovetores de A.

Seja T_A o operador linear sobre \mathbb{R}^2 associado a matriz A. Sabemos que $A = [T_A]_{\beta}^{\beta}$, onde β é a base canônica do \mathbb{R}^2 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T_A , e os autovetores são os autovetores do operador T_A , representados na forma de matriz coluna.

O polinômio característico da matriz $A = [T_A]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3.$$

Portanto, os autovalores do operador T_A são $\lambda_1=3$ e $\lambda_2=-1$.

Para determinar os autovetores associados ao autovalor $\lambda_1 = 3$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A - 3I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 3y \end{bmatrix} \iff -x + y = 0.$$

Portanto, os autovetores associados a $\lambda_1 = 3$ são do tipo $v_1 = (x, x)$, com $x \neq 0$. Desse modo, podemos escolher $v_1 = (1, 1)$ o autovetor associado ao autovalor $\lambda_1 = 3$, do operador linear T_A .

Assim, podemos escolher

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

um autovetor da matriz A associado ao autovalor $\lambda_1=3$, isto é, $AX_1=\lambda_1X_1$.

De modo análogo, para determinar os autovetores associados ao autovalor $\lambda_2 = -1$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A + I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} \iff x + y = 0.$$

Portanto, os autovetores associados ao autovalor $\lambda_2 = -1$ são do tipo $v_2 = (x, -x)$, para $x \in \mathbb{R}$ não nulo. Assim, podemos escolher $v_2 = (1, -1)$ o autovetor associado ao autovalor $\lambda_2 = -1$, do operador linear T_A .

Assim, podemos escolher

$$X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

um autovetor da matriz A associado ao autovalor $\lambda_2=-1$, isto é, $AX_2=\lambda_2X_2$. Note que os autovetores X_1 e X_2 são ortogonais.

Definição 6.4.1 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Dizemos que A é uma matriz **positiva-definida** se

$$\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_j x_i = x^t A x = \langle Ax, x \rangle > 0$$

para todo $x \in \mathbb{R}^n$ não-nulo, representado na forma de matriz coluna.

No caso em que existe um elemento não–nulo $x \in \mathbb{R}^n$ tal que $x^tAx = 0$, dizemos que A é uma matriz **semipositiva–definida**.

Exemplo 6.4.2 Considere a matriz simétrica $A \in M_2(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Mostre que a matriz A é positiva-definida.

Fazendo uso da Definição 6.4.1, temos que

$$\langle Ax, x \rangle = x^t Ax = 2x_1^2 + 2x_2^2 + 2x_1x_2 = x_1^2 + x_2^2 + (x_1 + x_2)^2 > 0$$

para todo $x = (x_1, x_2) \in \mathbb{R}^2$ não—nulo, representado na forma de matriz coluna. Desse modo, mostramos que a matriz A é positiva—definida.

Definição 6.4.2 Seja $A \in \mathbb{M}_n(\mathbb{C})$ uma matriz Hermitiana. Dizemos que A é uma matriz **positiva**-definida se

$$\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{j} \overline{x}_{i} = x^{*} A x = \langle Ax, x \rangle > 0$$

para todo $x \in \mathbb{C}^n$ não-nulo, representado na forma de matriz coluna.

No caso em que existe um elemento não-nulo $x \in \mathbb{C}^n$ tal que $x^*Ax = 0$, dizemos que A é uma matriz **semipositiva-definida**.

Teorema 6.4.4 Seja $A \in \mathbb{M}_n(\mathbb{C})$ positiva-definida. Então, seus autovalores são todos positivos. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração – Como A é uma matriz Hermitiana, do Teorema 6.4.3, sabemos que seus autovalores são reais. Tomando λ uma autovalor da matriz A com v o autovetor associado, isto é, $Av = \lambda v$, e utilizando a hipótese que U é uma matriz positiva—definida, temos que

$$\langle Av, v \rangle = \lambda \langle v, v \rangle > 0.$$

Como $\langle v, v \rangle > 0$, pois v é não-nulo, provamos que o autovalor $\lambda > 0$.

Como A é uma matriz Hermitiana, do Teorema 6.4.3, sabemos que autovetores associados a autovalores distintos são ortogonais, o que completa a demonstração.

Corolário 6.4.4 Seja $A \in M_n(\mathbb{R})$ positiva-definida. Então, seus autovalores são todos positivos. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração − A prova segue do Teorema 6.4.4, e do fato que a matriz simétrica real é um caso particular de uma matriz Hermitiana.

Exemplo 6.4.3 Considere a matriz positiva-definida A dada por:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Determine os autovalores e os autovetores de A.

Seja T_A o operador linear sobre \mathbb{R}^2 associado a matriz A. Sabemos que $A = [T_A]_{\beta}^{\beta}$, onde β é a base canônica do \mathbb{R}^2 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T_A , e os autovetores são os autovetores do operador T_A , representados na forma de matriz coluna.

O polinômio característico da matriz $A = [T_A]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3.$$

Portanto, os autovalores do operador T_A são $\lambda_1=3$ e $\lambda_2=1$.

Para determinar os autovetores associados ao autovalor $\lambda_1 = 3$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A - 3I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 3y \end{bmatrix} \iff -x + y = 0.$$

Portanto, os autovetores associados a $\lambda_1 = 3$ são do tipo $v_1 = (x, x)$, com $x \neq 0$. Desse modo, podemos escolher $v_1 = (1, 1)$ o autovetor associado ao autovalor $\lambda_1 = 3$, do operador linear T_A .

De modo análogo, para determinar os autovetores associados ao autovalor $\lambda_2 = 1$, temos que encontrar os elementos não—nulos do núcleo do operador $(T_A - I)$. Desse modo, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \iff x + y = 0.$$

Portanto, os autovetores associados ao autovalor $\lambda_2 = 1$ são do tipo $v_2 = (x, -x)$, para $x \in \mathbb{R}$ não nulo. Assim, podemos escolher $v_2 = (1, -1)$ o autovetor associado ao autovalor $\lambda_2 = 1$, do operador linear T_A .

Desse modo, temos que os autovetores da matriz A são dados por:

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

associados aos autovalores $\lambda_1=3$ e $\lambda_2=1$, respectivamente. Note que os autovetores X_1 e X_2 são ortogonais.

Na seção 6.7 vamos provar o resultado abaixo, que é muito importante na teoria de autovalores e autovetores, e nas suas aplicações, que é a caracterização de uma matriz positiva—definida.

Teorema 6.4.5 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. Então, A é uma matriz positiva-definida se, e somente se, seus autovalores são todos positivos.

Corolário 6.4.5 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Então, A é uma matriz positiva-definida se, e somente se, seus autovalores são todos positivos.

Exemplo 6.4.4 Fazendo uso do Corolário 6.4.5, podemos verificar que a matriz simétrica do Exemplo 6.4.1 não é positiva-definida, pois seus autovalores são $\lambda_1 = 3$ e $\lambda_2 = -1$.

Definição 6.4.3 Dizemos que $U \in \mathbb{M}_n(\mathbb{C})$ é uma matriz unitária se $U^*U = I$. Assim, temos que $UU^* = I$. Desse modo, tem-se que $U^{-1} = U^*$.

Teorema 6.4.6 Seja $Q \in M_n(\mathbb{R})$ uma matriz ortogonal. Então, $\det(Q) = \pm 1$.

Demonstração — A prova segue da utilização da definição de matriz ortogonal e das propriedades de determinante de uma matriz. Como Q é ortogonal, tem—se que

$$\det(Q^t Q) = \det(I) = 1.$$

Desse modo, obtemos

$$\det(Q^t Q) \ = \ \det(Q^t) \ \det(Q) \ = \ (\det(Q))^2 \ = \ 1 \, .$$

Portanto, mostramos que $det(Q) = \pm 1$.

Teorema 6.4.7 Seja $Q \in \mathbb{M}_n(\mathbb{R})$ ortogonal. Então, para todos $x, y \in \mathbb{R}^n$ temos que

1.
$$\langle Qx, Qy \rangle = \langle x, y \rangle$$
.

2.
$$\|Qx\|_2 = \|x\|_2$$
.

Demonstração — A prova do primeiro item segue do Teorema 6.4.1 e da definição de matriz ortogonal. De fato,

$$\langle Q x, Q y \rangle = \langle x, Q^t Q y \rangle = \langle x, y \rangle.$$

A prova do segundo item segue de imediato do primeiro item a da definição de norma Euclidiana, o que completa a demonstração.

Teorema 6.4.8 Sejam $U \in M_n(\mathbb{C})$ unitária e λ um autovalor. Então, $|\lambda| = 1$.

Demonstração – Considere o espaço vetorial complexo \mathbb{C}^n munido do produto interno usual $\langle \cdot, \cdot \rangle$. Seja T o operador linear sobre \mathbb{C}^n associado a matriz U, isto é, $T_U(v) = Uv$ para $v \in \mathbb{C}^n$, na forma de matriz coluna. Como $U = [T_U]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{C}^n , temos que um autovalor de U é um autovalor do operador T_U . Como $A = [T_U]^{\beta}_{\beta}$ é unitária, temos que o operador T_U é unitário.

Assim, tomando λ um autovalor de T_U e v o autovetor associado, isto é, $T_U(v) = \lambda v$, obtemos

$$|\lambda|\langle v, v\rangle = \lambda \overline{\lambda}\langle v, v\rangle = \langle T_U(v), T_U(v)\rangle = \langle Uv, Uv\rangle = \langle v, v\rangle.$$

Portanto, temos que $(1 - |\lambda|)\langle v, v \rangle = 0$. Como $v \in \mathbb{C}^n$ é não-nulo, obtemos $|\lambda| = 1$, o que completa a demonstração.

Corolário 6.4.6 Sejam $Q \in M_n(\mathbb{R})$ ortogonal e λ um autovalor. Então, $|\lambda| = 1$.

Demonstração − A prova segue do Teorema 6.4.8, considerando que a matriz ortogonal é um caso particular de uma matriz unitária.

Exemplo 6.4.5 A matriz $Q \in M_2(\mathbb{R})$ que representa uma rotação de um ângulo θ no sentido anti-horário

$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

é uma matriz ortogonal. Determine os autovalores da matriz Q, em função do ângulo θ .

Podemos verificar facilmente que o polinômio característico da matriz Q é dado por:

$$p(\lambda) = \lambda^2 - 2\cos(\theta)\lambda + 1.$$

Portanto, os autovalores da matriz Q, em função do ângulo θ , são dados por:

$$\lambda(\theta) \ = \ \cos(\theta) \ \pm \ \sqrt{\cos^2(\theta) \ - \ 1} \ = \ \cos(\theta) \ \pm \ \left(\sqrt{ \left| \cos^2(\theta) \ - \ 1 \right| } \right) i \ .$$

Note que $|\lambda(\theta)| = 1$, para todo $\theta \in \mathbb{R}$.

Definição 6.4.4 As matrizes $A, B \in M_n(\mathbb{R})$ são ortogonalmente similares se existe uma matriz ortogonal $Q \in M_n(\mathbb{R})$ tal que $B = Q^t A Q$.

Exemplo 6.4.6 A matriz $U \in M_2(\mathbb{C})$ dada por:

$$U = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}.$$

é uma matriz unitária.

Definição 6.4.5 As matrizes $A, B \in M_n(\mathbb{C})$ são unitáriamente similares se existe uma matriz unitária $U \in M_n(\mathbb{C})$ tal que $B = U^*AU$.

Teorema 6.4.9 Seja $U \in M_n(\mathbb{C})$ é uma matriz unitária. Então, $|\det(U)| = 1$.

Demonstração – A prova pode ficar a cargo do leitor.

Teorema 6.4.10 Seja $U \in \mathbb{M}_n(\mathbb{C})$ uma matriz unitária. Então, autovetores associados a autovalores distintos são ortogonais.

Demonstração – Sejam λ_1 e λ_2 autovalores distintos de U com v_1 e v_2 os autovetores associados, respectivamente. Tomando a hipótese que U é uma matriz unitária, temos que

$$\lambda_1 \overline{\lambda}_2 \langle v_1, v_2 \rangle = \langle \lambda_1 v_1, \lambda_2 v_2 \rangle = \langle U v_1, U v_2 \rangle = \langle v_1, v_2 \rangle.$$

Desse modo, obtemos a equação

$$(1 - \lambda_1 \overline{\lambda}_2) \langle v_1, v_2 \rangle = 0$$
.

Como os autovalores λ_1 e λ_2 são distintos, temos que $1 - \lambda_1 \overline{\lambda}_2 \neq 0$.

Portanto, obtemos

$$\langle v_1, v_2 \rangle = 0,$$

mostrando que v_1 e v_2 são ortogonais, o que completa a demonstração.

Exemplo 6.4.7 Considere a matriz unitária $U \in M_2(\mathbb{C})$ dada por:

$$U = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}.$$

Determine os autovalores e autovetores da matriz U.

O polinômio característico da matriz U é dado por: $p(\lambda) = \lambda^2 - 2\lambda + 2$. Assim, os autovalores da matriz U são dados por:

$$\lambda_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 e $\lambda_2 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.

Temos que os autovetores associados aos autovalores λ_1 e λ_2 são dados por:

$$v_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 e $v_2 = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$,

respectivamente.

Recordamos que $A \in \mathbb{M}_n(\mathbb{R})$ é uma matriz **idempotente** se $A^2 = A$, isto é,

$$A(Ax) = Ax$$

para todo $x \in \mathbb{R}^n$, representado na forma de matriz coluna.

Teorema 6.4.11 Seja $A \in \mathbb{M}_n(\mathbb{R})$ uma matriz idempotente. Então, seus autovalores são $\lambda_1 = 1$ e $\lambda_2 = 0$.

Demonstração – Tomando λ um autovalor de A e v o autovetor associado, isto é, $Av = \lambda v$, temos que

$$A(Av) = A(\lambda v) \iff \lambda v = \lambda^2 v \iff \lambda (1 - \lambda)v = 0.$$

Como v é não-nulo, obtemos a equação

$$\lambda(1 - \lambda) = 0,$$

que tem como soluções $\lambda_1=1$ e $\lambda_2=0,$ o que completa a demonstração.

Recordamos que $A \in \mathbb{M}_n(\mathbb{R})$ é uma matriz **auto-reflexiva** se $A^2 = I$, isto é,

$$A(Ax) = x$$

para todo $x \in \mathbb{R}^n$, representado na forma de matriz coluna.

Teorema 6.4.12 Seja $A \in \mathbb{M}_n(\mathbb{R})$ uma matriz auto-reflexiva. Então, seus autovalores são $\lambda_1 = 1$ e $\lambda_2 = -1$.

Demonstração – Tomando λ um autovalor de A e v o autovetor associado, isto é, $Av = \lambda v$, temos que

$$A(Av) = A(\lambda v) \iff v = \lambda^2 v \iff (1 - \lambda^2)v = 0.$$

Como v é não-nulo, obtemos a equação

$$1 - \lambda^2 = 0,$$

que tem como soluções $\lambda_1=1$ e $\lambda_2=-1,$ o que completa a demonstração.

Exemplo 6.4.8 Considere a matriz auto-reflexiva $A \in M_2(\mathbb{R})$ dada por:

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Determine os autovalores da matriz A.

O polinômio característico da matriz A é dado por:

$$p(\lambda) = \lambda^2 - 1,$$

que possui como raízes $\lambda_1=1$ e $\lambda_2=-1$, que são os autovalores da matriz A.

Exemplo 6.4.9 Considere a matriz idempotente $A \in \mathbb{M}_2(\mathbb{R})$ dada por:

$$A = \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

Determine os autovalores da matriz A.

O polinômio característico da matriz A é dado por:

$$p(\lambda) = \left(\frac{1}{2} - \lambda\right)^2 - \frac{1}{4} = \lambda^2 - \lambda = \lambda(1 - \lambda),$$

que possui como raízes $\lambda_1=1$ e $\lambda_2=0,$ que são os autovalores da matriz A.

6.5 Aplicação. Classificação de Pontos Críticos

Exemplo 6.5.1 Considere a função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$, com derivadas contínuas de segunda ordem, definida da seguinte forma:

$$F(x,y) = 6x - 4y - x^2 - 2y^2$$
 , $(x,y) \in \mathbb{R}^2$.

Pede-se:

- 1. Determinar os pontos críticos da função F.
- 2. Classificar os pontos críticos.
- 3. Fazer um esboço do gráfico da função F.

Por simplicidade, dado um elemento $(x,y) \in I\!\!R^2$, vamos representa—lo na forma de vetor coluna

$$X = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Sabemos que os pontos críticos de F são os ponto $(\overline{x}, \overline{y}) \in \Omega$ que satisfazem a equação

$$\nabla F(x,y) = 0$$

Para fazer a classificação dos pontos críticos, vamos fazer uso da $F\'{o}rmula$ de Taylor de Segunda-Ordem da função F numa vizinhança do ponto crítico \overline{X} dada por:

$$F(X) = F(\overline{X}) + Y^{t} \nabla F(\overline{X}) + \frac{1}{2} Y^{t} H(\overline{X}) Y$$

$$= F(\overline{X}) + \langle \nabla F(\overline{X}), Y \rangle + \frac{1}{2} \langle H(\overline{X}) Y, Y \rangle$$

$$= F(\overline{X}) + \frac{1}{2} \langle H(\overline{X}) Y, Y \rangle$$

para todo $X \in B_r(\overline{X})$, onde $Y = X - \overline{X}$, $\nabla F(X)$ é o gradiente da função F e H(X) é a matriz **Hessiana** da função F.

Portanto, se a matriz Hessiana $H(\overline{x}, \overline{y})$ for positiva-definida, isto é, seus autovalores são positivos, temos que o ponto crítico $(\overline{x}, \overline{y})$ é um ponto de mínimo relativo. No caso em que a matriz $H(\overline{x}, \overline{y})$ for negativa-definida, isto é, seus autovalores são negativos, temos que o ponto crítico $(\overline{x}, \overline{y})$ é um ponto de máximo relativo. No caso em que a matriz Hessiana $H(\overline{x}, \overline{y})$ possuir autovalores negativo e positivo, isto é, $H(\overline{x}, \overline{y})$ é uma **matriz indefinida**, temos que o ponto crítico $(\overline{x}, \overline{y})$ é um ponto de sela.

Voltando ao exemplo, temos que

$$\nabla F(x,y) = \begin{pmatrix} 6 & -2x \\ -4 & -4y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Temos um ponto crítico $(\overline{x}, \overline{y}) = (3, -1)$. Vamos calcular a matriz Hessiana H(x, y)

$$H(x,y) = \begin{pmatrix} -2 & 0 \\ 0 & -4 \end{pmatrix}$$

que não depende do ponto crítico $(\overline{x}, \overline{y})$, e possui os autovalores $\lambda_1 = -2$ e $\lambda_2 = -4$. Logo, o ponto crítico $(\overline{x}, \overline{y}) = (3, -1)$ é um ponto de **máximo global** da função F.

Exemplo 6.5.2 Considere a função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$, com derivadas contínuas de segunda ordem, definida da seguinte forma:

$$F(x,y) = y^2 - x^2$$
 , $(x,y) \in \mathbb{R}^2$.

Pede-se:

- 1. Determinar os pontos críticos da função F.
- 2. Classificar os pontos críticos.
- 3. Fazer um esboço do gráfico da função F.

Neste caso, temos que

$$\nabla F(x,y) = \begin{pmatrix} -2x \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Temos um ponto crítico $(\overline{x}, \overline{y}) = (0,0)$. Vamos calcular a matriz Hessiana H(x,y)

$$H(x,y) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$

que não depende do ponto crítico $(\overline{x},\overline{y})$, e possui os autovalores $\lambda_1=-2$ e $\lambda_2=2$.

Temos que os autovetores associados ao autovalor $\lambda_2=2$ são do tipo $v_2=(0,y)$ com $y\neq 0$. Assim, tem—se que

$$\langle H(\overline{x}, \overline{y}) v_2, v_2 \rangle = \lambda_2 \|v_2\|_2^2 > 0$$
 para todo $v_2 \neq 0$.

Temos que os autovetores associados ao autovalor $\lambda_1 = -2$ são do tipo $v_1 = (x, 0)$ com $x \neq 0$. Assim, tem—se que

$$\langle H(\overline{x}, \overline{y}) v_1, v_1 \rangle = \lambda_1 \|v_1\|_2^2 < 0 \quad \text{para todo} \quad v_1 \neq 0.$$

Logo, o ponto crítico $(\overline{x}, \overline{y}) = (0,0)$ é um ponto de sela da função F.

Exemplo 6.5.3 Considere a função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$, com derivadas contínuas de segunda ordem, definida da seguinte forma:

$$F(x,y) = 2x^4 + y^2 - x^2 - 2y$$
 , $(x,y) \in \mathbb{R}^2$.

Pede-se:

- 1. Determinar os pontos críticos da função F.
- 2. Classificar os pontos críticos.
- 3. Fazer um esboço do gráfico da função F.

Neste caso, temos que

$$\nabla F(x,y) = \begin{pmatrix} 8x^3 - 2x \\ 2y - 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Temos os seguintes pontos críticos (0,1), (0.5,1) e (-0.5,1). Vamos calcular a matriz Hessiana $H(\overline{x},\overline{y})$ para o ponto crítico $(\overline{x},\overline{y})=(0,1)$

$$H(x,y) = \begin{pmatrix} -2 + 24x^2 & 0 \\ 0 & 2 \end{pmatrix} \implies H(\overline{x},\overline{y}) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$

que possui os autovalores $\lambda_1 = -2$ e $\lambda_2 = 2$. Logo, o ponto crítico $(\overline{x}, \overline{y}) = (0, 1)$ é um ponto de **sela** da função F.

Agora, vamos calcular a matriz Hessiana $H(\overline{x}, \overline{y})$ para o ponto crítico $(\overline{x}, \overline{y}) = (0.5, 1)$

$$H(\overline{x}, \overline{y}) = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

que possui os autovalores $\lambda_1 = 4$ e $\lambda_2 = 2$. Logo, o ponto crítico $(\overline{x}, \overline{y}) = (0.5, 1)$ é um ponto de **mínimo relativo** da função F. De modo análogo, temos que o ponto crítico $(\overline{x}, \overline{y}) = (-0.5, 1)$, também é um ponto de **mínimo relativo** da função F.

Exercícios

Exercício 6.48 Determine quais das seguintes classes de matrizes são matrizes normais:

- (a) Matrizes Hermitianas.
- (b) Matrizes anti-simétricas.
- (c) Matrizes anti-Hermitianas.
- (d) Matrizes unitárias.
- (e) Matrizes simétricas.
- (f) Matrizes ortogonais.

Exercício 6.49 Mostre que toda matriz ortogonal em $M_2(\mathbb{R})$ pode ser escrita na forma:

$$Q = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \qquad ou \qquad Q = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

 $com \ a^2 + b^2 = 1 \ para \ a, b \in \mathbb{R}.$

Exercício 6.50 Mostre que toda matriz unitária no espaço vetorial complexo $M_2(\mathbb{C})$ pode ser escrita da seguinte forma:

$$U = \begin{bmatrix} a & b \\ -e^{i\theta} \overline{b} & e^{i\theta} \overline{a} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} a & b \\ -\overline{b} & \overline{a} \end{bmatrix}$$

onde $\theta \in \mathbb{R}$ e $|a|^2 + |b|^2 = 1$ para $a, b \in \mathbb{C}$.

Exercício 6.51 Sejam $Q \in \mathbb{M}_n(\mathbb{R})$ ortogonal e λ um autovalor real. Então, $\lambda = 1$ ou $\lambda = -1$.

Exercício 6.52 Sejam $Q \in IM_n(IR)$ uma matriz ortogonal e λ um autovalor complexo de Q. Então, $\overline{\lambda}$ é também um autovalor de Q.

Exercício 6.53 Seja $Q \in M_n(\mathbb{R})$ uma matriz ortogonal com n ímpar. Então, Q possui pelo menos um autovalor real.

Exercício 6.54 Seja $A \in M_n(\mathbb{R})$ idempotente. Se $B \in M_n(\mathbb{R})$ é similar a matriz A, então B é uma matriz idempotente.

Exercício 6.55 Seja $A \in \mathbb{M}_n(\mathbb{R})$ auto-reflexiva. Se $B \in \mathbb{M}_n(\mathbb{R})$ é similar a matriz A, então B é uma matriz auto-reflexiva.

Exercício 6.56 Seja $A \in M_n(\mathbb{R})$ simétrica. Se $B \in M_n(\mathbb{R})$ é ortogonalmente similar a matriz A, então B é simétrica.

Exercício 6.57 Seja $A \in M_n(\mathbb{C})$ Hermitiana. Se $B \in M_n(\mathbb{R})$ é unitáriamente similar a matriz A, então B é Hermitiana.

Exercício 6.58 Sejam $A \in M_n(\mathbb{C})$ anti-Hermitiana $e \ B \in M_n(\mathbb{R})$ unitáriamente similar a matriz A. Então, B é anti-Hermitiana.

Exercício 6.59 Sejam $A \in \mathbb{M}_n(\mathbb{R})$ positiva-definida e $B \in \mathbb{M}_n(\mathbb{R})$ ortogonalmente similar a A. Então, B é positiva-definida.

Exercício 6.60 Mostre que se A é positiva-definida, então A é uma matriz invertível e A^{-1} também é uma matriz positiva-definida.

Exercício 6.61 Mostre que se A é semipositiva-definida, então A é uma matriz singular e $\lambda = 0$ é um autovalor de A.

Exercício 6.62 Classifique os pontos críticos da função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por:

$$F(x,y) = 2x^2 - xy - 3y^2 - 3x + 7y.$$

Exercício 6.63 Determine todos os valores extremos, absoluto e relativo, e os pontos de sela da função $F(x,y) = xy(1-x^2-y^2)$ no quadrado definido por:

$$Q \ = \ \left\{ \ (x,y) \ \in \ I\!\!R^2 \ / \ 0 \ \leq \ x \ \leq \ 1 \quad e \quad 0 \ \leq \ y \ \leq \ 1 \ \right\} \, .$$

Exercício 6.64 Classifique os pontos críticos da função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por:

$$F(x,y) = x^3 + y^3 - 3xy.$$

6.6 Diagonalização de Operadores Lineares

Sejam V um espaço vetorial de dimensão finita sobre o corpo F e T um operador linear sobre V. Nosso objetivo é determinar sob que condições V possui uma base ordenada com relação a qual a matriz do operador T seja uma matriz diagonal, que é a forma mais simples de se representar um operador linear. A solução para o problema de diagonalização de operadores lineares também nos leva naturalmente ao conceito de autovalores e autovetores do operador T.

Teorema 6.6.1 Sejam $A \in \mathbb{M}_n(\mathbb{F})$, γ uma base ordenada para o espaço vetorial \mathbb{F}^n e T_A o operador linear sobre \mathbb{F}^n associado a matriz A. Então,

$$[T_A]^{\gamma}_{\gamma} = P^{-1} A P,$$

onde P é a matriz de mudança da base γ para a base canônica β de \mathbb{F}^n .

Demonstração – Como β é a base canônica para \mathbb{F}^n , temos que $A = [T_A]_{\beta}^{\beta}$.

Como $P = [I]^{\gamma}_{\beta}$, pelo Teorema 6.2.2, temos que

$$[T_A]^{\gamma}_{\gamma} = ([I]^{\gamma}_{\beta})^{-1} [T_A]^{\beta}_{\beta} [I]^{\gamma}_{\beta} = P^{-1} A P,$$

o que completa a demonstração.

Exemplo 6.6.1 Sejam $\gamma = \{(1,2), (1,1)\}$ uma base ordenada para \mathbb{R}^2 e a matriz $A \in \mathbb{M}_2(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix},$$

para uma ilustração do Teorema 6.6.1.

Assim, temos que

$$P = [I]^{\gamma}_{\beta} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad \text{e} \quad P^{-1} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Desse modo, obtemos

$$[T_A]_{\gamma}^{\gamma} = P^{-1}AP = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -3 \\ 8 & 7 \end{bmatrix},$$

o que completa a ilustração do Teorema 6.6.1.

Teorema 6.6.2 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , β uma base ordenada para V, T um operador linear sobre V e B uma matriz similar a matriz $[T]^{\beta}_{\beta}$. Então, existe uma base ordenada γ para V tal que $B = [T]^{\gamma}_{\gamma}$.

Demonstração – Considerando que a matriz B é similar a matriz $[T]^{\beta}_{\beta}$. Então, existe uma matriz $P = [p_{ij}]$ invertível tal que $B = P^{-1}[T]^{\beta}_{\beta}P$.

Seja $\beta = \{v_1, \dots, v_n\}$, e definimos

$$w_j = \sum_{i=1}^n p_{ij} v_i$$
 para $j = 1, \dots, n$.

Então, $\gamma = \{w_1, \dots, w_n\}$ é uma base ordenada para V tal que P é a matriz de mudança da base γ para a base β , isto é, $P = [I]^{\gamma}_{\beta}$ (Exercício 3.71).

Portanto, temos que

$$[T]_{\gamma}^{\gamma} = P^{-1} [T]_{\beta}^{\beta} P = [I]_{\gamma}^{\beta} [T]_{\beta}^{\beta} [I]_{\beta}^{\gamma}$$

de acordo com o Teorema 6.2.2, o que completa a demonstração.

O conceito de matrizes similares é muito importante para o estudo de diagonalização de operadores lineares, tendo em vista que este problema pode ser reformulado no contexto de matrizes.

Definição 6.6.1 Sejam V um espaço vetorial de dimensão finita sobre \mathbb{F} e T um operador linear sobre V. Dizemos que T é um operador diagonalizável se existe uma base ordenada β para V tal que $[T]^{\beta}_{\beta}$ é uma matriz diagonal.

Definição 6.6.2 Seja $A \in M_n(\mathbb{F})$. Dizemos que A é uma matriz **diagonalizável** se A é similar a uma matriz diagonal.

Exemplo 6.6.2 Considere a matriz simétrica $A \in M_2(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

Pelo Exemplo 6.4.1, sabemos que seus autovalores são $\lambda_1=3$ e $\lambda_2=-1$ com os autovetores associados

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad e \qquad X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$

respectivamente.

Tomamos a matriz P e a matriz diagonal D dadas por:

$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad e \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}.$$

Note que a matriz P foi construída a partir dos autovetores da matriz A e a matriz diagonal D foi construída com os autovalores da matriz A.

Assim, temos que a matriz A é similar a matriz diagonal D, onde P é a matriz que realiza a transformação de similaridade, isto é, $A = PDP^{-1}$ ou $D = P^{-1}AP$.

De fato, podemos verificar facilmente que

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \left(\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right).$$

Portanto, a matriz A é diagonalizável.

Teorema 6.6.3 Sejam V um espaço vetorial de dimensão finita sobre o corpo IF, β uma base ordenada para V e T um operador linear sobre V. Então, T é um operador diagonalizável se, e somente se, $[T]^{\beta}_{\beta}$ é uma matriz diagonalizável.

Demonstração – Considerando que T é um operador diagonalizável. Então, existe uma base ordenada γ para V tal que $[T]_{\gamma}^{\gamma}$ é uma matriz diagonal. Portanto, pelo Teorema 6.2.2, temos que a matriz $[T]_{\beta}^{\beta}$ é similar a matriz $[T]_{\gamma}^{\gamma}$. Logo, $[T]_{\beta}^{\beta}$ é uma matriz diagonalizável.

Considerando agora que $[T]^{\beta}_{\beta}$ é uma matriz diagonalizável. Então, a matriz $[T]^{\beta}_{\beta}$ é similar a uma matriz diagonal B. Pelo Teorema 6.6.2, existe uma base ordenada γ para V tal que $B = [T]^{\gamma}_{\gamma}$. Logo, T é um operador diagonalizável.

Corolário 6.6.1 Sejam $A \in M_n(\mathbb{F})$ e T_A o operador linear sobre \mathbb{F}^n associado a matriz A. Então, A é uma matriz diagonalizável se, e somente se, T_A é um operador diagonalizável.

Definição 6.6.3 Seja $A \in M_n(\mathbb{F})$. Dizemos que A é uma matriz simples se possui um conjunto de n autovetores linearmente independentes.

Teorema 6.6.4 Seja $A \in \mathbb{M}_n(\mathbb{F})$. Então, A é uma matriz simples se, e somente se, A é uma matriz diagonalizável.

Demonstração – A prova pode ficar a cargo do leitor.

Exemplo 6.6.3 Considere o espaço vetorial real \mathbb{R}^3 . O operador linear T sobre o \mathbb{R}^3 definido por: T(x,y,z) = (3x-4z, 3y+5z, -z) é um operador diagonalizável.

Temos que a matriz $A = [T]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 , é dada por:

$$A = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Assim, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = -(3 - \lambda)^2 (1 + \lambda).$$

Portanto, os autovalores de T são $\lambda_1=3$, com multiplicidade algébrica igual a 2, e $\lambda_2=-1$, com multiplicidade algébrica igual a 1.

Podemos verificar facilmente que os autovetores associados ao autovalor $\lambda_1 = 3$ são do tipo v = (x, y, 0) para $x, y \in \mathbb{R}$ não—nulos. Assim, podemos escolher os autovetores $v_1 = (1, 0, 0)$ e $v_2 = (0, 1, 0)$ associados ao autovalor $\lambda_1 = 3$. Logo, o autovalor $\lambda_1 = 3$ tem multiplicidade geométrica igual a 2.

Os autovetores associados ao autovalor $\lambda_2 = -1$ são do tipo v = (-4y, 5y, -4y) para $y \in \mathbb{R}$ não—nulo. Assim, podemos escolher o autovetor $v_3 = (-4, 5, -4)$ associado ao autovalor $\lambda_2 = -1$.

Portanto, temos que a matriz $A = [T]^{\beta}_{\beta}$ é diagonalizável. Podemos verificar que

$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 5 \\ 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 5 \\ 0 & 0 & -4 \end{bmatrix} \right)^{-1}.$$

Assim, mostramos que T é um operador diagonalizável.

De modo análogo, sabemos que T é um operador diagonalizável, pois $\gamma = \{v_1, v_2, v_3\}$ é uma base para \mathbb{R}^3 de modo que $[T]_{\gamma}^{\gamma}$ é uma matriz diagonal. De fato, podemos verificar facilmente que

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Teorema 6.6.5 Sejam V um espaço vetorial sobre o corpo F e T um operador linear sobre V que possui autovalores distintos $\lambda_1, \dots, \lambda_k$ com v_1, \dots, v_k os autovetores associados, respectivamente. Então, $\{v_1, \dots, v_k\}$ é linearmente independente em V.

Demonstração – A prova é feita por indução matemática sobre k. Para k=1 o resultado é obtido trivialmente. De fato, como $v_1 \neq 0_V$, pois v_1 é um autovetor, temos que $\{v_1\}$ é linearmente independente.

Agora supomos que o resultado seja válido para k-1 autovalores distintos, onde $k-1 \geq 1$. Finalmente, vamos mostrar que o resultado é válido para k autovalores distintos. Para isso, consideramos a combinação linear nula

$$\sum_{i=1}^k c_i v_i = 0_V.$$

Aplicando o operador T na equação acima e usando o fato $T(v_i) = \lambda v_i$, obtemos

$$\sum_{i=1}^k c_i \, \lambda_i \, v_i = 0_V \, .$$

Subtraindo da segunda equação o resultado da multiplicando a primeira equação por λ_k , tem—se a seguinte equação

$$\sum_{i=1}^{k-1} c_i (\lambda_i - \lambda_k) v_i = 0_V.$$

Pela hipótese de indução, temos que v_1, \dots, v_{k-1} são linearmente independentes, o que devemos ter $c_i(\lambda_i - \lambda_k) = 0$ para $i = 1, \dots, k-1$. Como os autovalores são distintos, isto é, $\lambda_i \neq \lambda_k$ para $i \neq k$, temos que $c_i = 0$ para $i = 1, \dots, k-1$. Assim da primeira equação, temos também que $c_k = 0$, provando que os autovetores v_1, \dots, v_k são linearmente independentes em V.

Corolário 6.6.2 Sejam V um espaço vetorial de dimensão finita sobre o corpo $I\!\!F$, digamos que dim(V)=n, e T um operador linear sobre V que possui n autovalores distintos. Então, T é um operador diagonalizável.

Demonstração – Considerando que T possui n autovalores distintos $\lambda_1, \dots, \lambda_n$. Sejam v_1, \dots, v_n os respectivos autovetores associados. Pelo Teorema 6.6.5, temos que $\beta = \{v_1, \dots, v_n\}$ é linearmente independente em V. Como dim(V) = n, temos que o conjunto β de autovetores é uma base para V. Como $T(v_i) = \lambda_i v_i$, temos que a matriz do operador T com relação à base ordenada de autovetores é a matriz diagonal $D = diag(\lambda_1, \dots, \lambda_n)$, o que completa a demonstração.

Note que o operador linear T pode possuir n autovetores linearmente independentes que não estão associados a autovalores distintos, isto é, algum autovalor pode possuir multiplicidade algébrica r maior do que 1, mas possui uma multiplicidade geométrica igual a r, como já vimos em exemplos anteriores. Desse modo, podemos introduzir o conceito de diagonalização para operadores lineares.

Teorema 6.6.6 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} e T um operador linear sobre V. Então, T é um operador diagonalizável se, e somente se, existe uma base ordenada β para V cujos elementos são autovetores de T.

Demonstração – Inicialmente, supomos que T seja diagonalizável. Então, existe uma base ordenada $\beta = \{v_1, \dots, v_n\}$ para V tal que $[T]^{\beta}_{\beta}$ é uma matriz diagonal $\Lambda = diag(\lambda_1, \dots, \lambda_n)$, onde os escalares $\lambda_1, \dots, \lambda_n$ não necessariamente são distintos dois a dois. Assim, temos que

$$T(v_j) = \sum_{i=1}^n d_{ij} v_i = \lambda_j v_j$$
 para $j = 1, \dots, n$.

Portanto, mostramos que cada elemento v_j da base ordenada β é um autovetor do operador T associado ao autovalor λ_j , isto é,

$$T(v_j) = \lambda_j v_j$$
 para $j = 1, \dots, n$.

Desse modo, temos que $\beta = \{v_1, \cdots, v_n\}$ é uma base de autovetores para V.

Finalmente, considerando que $\beta = \{v_1, \dots, v_n\}$ seja uma base ordenada para V formada de autovetores do operador T, isto é,

$$T(v_i) = \lambda_i v_i$$
 para $i = 1, \dots, n,$

onde $\lambda_1, \dots, \lambda_n$ são os respectivos autovalores do operador T.

Podemos verificar facilmente que a matriz $[T]^{\beta}_{\beta}$ é dada por:

$$[T]^{\beta}_{\beta} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

o que completa a demonstração.

Exemplo 6.6.4 Considere o operador linear T sobre \mathbb{R}^2 definido por:

$$T(x,y) = (x + 3y, 4x + 2y).$$

Mostre que T é um operador diagonalizável.

Temos que a matriz $A = [T]^{\beta}_{\beta}$, com relação à base canônica β do $I\!\!R^2$, é dada por:

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (1 - \lambda)(2 - \lambda) - 12 = \lambda^2 - 3\lambda - 10.$$

Desse modo, temos que $\lambda_1 = 5$ e $\lambda_2 = -2$ são os autovalores de T. Podemos verificar facilmente que $v_1 = (3,4)$ e $v_2 = (1,-1)$ são os autovetores associados, respectivamente. Evidentemente, $\gamma = \{v_1, v_2\}$ é uma base de autovetores para \mathbb{R}^2 . Logo, temos que T é um operador diagonalizável.

Exemplo 6.6.5 Considere o operador linear T sobre \mathbb{R}^3 definido por:

$$T(x, y, z) = (2y, 2x, 2z).$$

Mostre que T é um operador diagonalizável.

Temos que a matriz $A = [T]^{\beta}_{\beta}$, com relação à base canônica β do \mathbb{R}^3 , é dada por:

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (2 - \lambda)(\lambda^2 - 4) = -(2 - \lambda)^2(\lambda + 2).$$

Desse modo, temos que $\lambda_1=2$ é um autovalor com multiplicidade algébrica igual 2 e $\lambda_2=-2$ é um autovalor com multiplicidade algébrica igual a 1.

Podemos verificar facilmente que os autovalores associados ao autovalor λ_1 são do tipo v=(x,x,z) para $x,z\in\mathbb{R}$ não-nulos. Assim, podemos escolher $v_1=(1,1,0)$ e $v_2=(0,0,1)$ os autovetores associados ao autovalor $\lambda_1=2$, que tem multiplicidade geométrica igual a 2. Para o autovalor $\lambda_2=-2$ temos que os autovetores associados são do tipo v=(0,0,z) para $z\in\mathbb{R}$ não-nulo. Assim, podemos escolher $v_3=(1,-1,0)$ o autovetor associado ao autovalor $\lambda_2=-2$, que tem multiplicidade geométrica igual a 1. Evidentemente, $\gamma=\{v_1,v_2,v_3\}$ é uma base de autovetores para \mathbb{R}^3 . Logo, temos que T é um operador diagonalizável.

Exemplo 6.6.6 Considere o espaço vetorial real \mathbb{R}^2 e T o operador linear dado por

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (-3x + 4y, -x + 2y)$$

Mostre que T é um operador linear diagonalizável.

Seja β a base canônica do \mathbb{R}^2 . Temos que a matriz $A = [T]^{\beta}_{\beta}$ é dada por:

$$A = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}.$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (-3 - \lambda)(2 - \lambda) + 4 = \lambda^2 + \lambda - 2.$$

Assim, $\lambda_1 = 1$ e $\lambda_2 = -2$ são os autovalores do operador T. Como os autovalores são distintos, podemos garantir que existe uma base de autovetores γ para \mathbb{R}^2 de modo que a matriz $[T]_{\gamma}^{\gamma} = \Lambda = diag(\lambda_1, \lambda_2)$.

Os autovetores associados a λ_1 e λ_2 são $v_1=(1,1)$ e $v_2=(4,1)$, respectivamente. Assim, temos que $\gamma=\{v_1,\,v_2\}$ é uma base de autovetores para \mathbb{R}^2 . Sabemos que

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

são os autovetores da matriz A associados aos autovalores $\lambda_1=1$ e $\lambda_2=-2$, respectivamente. Podemos observar facilmente que $AP=P\Lambda$, onde

$$P = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$
 , $\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ e $P^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$.

Desse modo, a matriz $A = [T]^{\beta}_{\beta}$ pode ser representada da seguinte forma:

$$A = P \Lambda P^{-1} \quad \text{ou} \quad \Lambda = P^{-1} A P ,$$

com a matriz P realizando a diagonalização da matriz $A = [T]^{\beta}_{\beta}$.

Exemplo 6.6.7 Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = (1 + x)p'(x) + p''(x).$$

Determine uma base ordenada γ para $\mathcal{P}_2(\mathbb{R})$ tal que $[T]_{\gamma}^{\gamma}$ seja uma matriz diagonal.

Temos que $A = [T]^{\beta}_{\beta}$, onde $\beta = \{1, x, x^2\}$ é a base canônica de $\mathcal{P}_2(\mathbb{R})$, é dada por:

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

Desse modo, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = -\lambda(1 - \lambda)(2 - \lambda)$$
.

Portanto, os autovalores de T são $\lambda_1=0$, $\lambda_2=1$ e $\lambda_3=2$. Como o operador T possui três autovalores distintos, pelo Corolário 6.6.2, sabemos que T é um operador linear diagonalizável e que a base ordenada $\gamma=\{p_1(x),p_2(x),p_3(x)\}$, formada pelos autovetores de T, é tal que $[T]_{\gamma}^{\gamma}=\Lambda=diag(\lambda_1,\lambda_2,\lambda_3)$.

Podemos verificar facilmente que os autovetores da matriz A são

$$X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 , $X_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ e $X_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$

associados aos autovalores $\lambda_1=0\,,\ \lambda_2=1\,$ e $\lambda_3=2\,,$ respectivamente. Portanto, sabemos que

$$[p_1(x)]_{\beta} = X_1$$
 , $[p_2(x)]_{\beta} = X_2$ e $[p_3(x)]_{\beta} = X_3$,

onde $p_1(x)$, $p_2(x)$ e $p_3(x)$ são os autovetores do operador linear T associados aos autovalores $\lambda_1=0$, $\lambda_2=1$ e $\lambda_3=2$, respectivamente. Logo, obtemos

$$p_1(x) = 1$$
 , $p_2(x) = 1 + x$ e $p_3(x) = 2 + 2x + x^2$.

É importante observar que $A = P \Lambda P^{-1}$ ou $\Lambda = P^{-1} A P$, onde

$$P = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} , P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
 e
$$\Lambda = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Exemplo 6.6.8 Considere o espaço vetorial real \mathbb{R}^2 e T o operador linear dado por

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (2x+2y, 2x+5y)$$

Mostre que T é um operador linear diagonalizável.

Seja β a base canônica do \mathbb{R}^2 . Temos que a matriz $A = [T]^{\beta}_{\beta}$ é dada por

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}.$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = (2 - \lambda)(5 - \lambda) - 4 = \lambda^2 - 7\lambda + 6.$$

Assim, $\lambda_1 = 1$ e $\lambda_2 = 6$ são os autovalores do operador T. Como os autovalores são distintos, podemos garantir que existe uma base de autovetores γ para \mathbb{R}^2 de modo que a matriz $[T]_{\gamma}^{\gamma} = \Lambda = diag(\lambda_1, \lambda_2)$.

Os autovetores associados aos autovalores λ_1 e λ_2 são $v_1 = (-2,1)$ e $v_2 = (1,2)$, respectivamente. Assim, temos que $\gamma = \{v_1, v_2\}$ é uma base ortogonal de autovetores para o espaço vetorial \mathbb{R}^2 . Podemos obter também uma base ortonormal de autovetores $\gamma^* = \{q_1, q_2\}$ para \mathbb{R}^2 , obtida a partir da base ortogonal γ . Sabemos que

$$X_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1 \end{bmatrix} \qquad e \qquad X_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

são os autovetores da matriz A associados aos autovalores $\lambda_1=1$ e $\lambda_2=6$, respectivamente. Podemos observar facilmente que $AQ=Q\Lambda$, onde

$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 & 1\\ 1 & 2 \end{bmatrix} \qquad e \qquad \Lambda = \begin{bmatrix} 1 & 0\\ 0 & 6 \end{bmatrix}.$$

Desse modo, a matriz $A = [T]^{\beta}_{\beta}$ pode ser representada da seguinte forma:

$$A = Q \Lambda Q^t$$
 ou $\Lambda = Q^t A Q$.

Note que a matriz Q é uma matriz ortogonal, isto é, $QQ^t=Q^tQ=I$, e realiza a diagonalização da matriz $A=[T]^\beta_\beta$.

Exemplo 6.6.9 Considere o espaço vetorial real \mathbb{R}^3 e T o operador linear dado por

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \longrightarrow T(x, y, z) = (y + z, x + z, x + y)$$

Mostre que T é um operador linear diagonalizável.

Seja β a base canônica do \mathbb{R}^3 . Temos que a matriz $A = [T]^{\beta}_{\beta}$ é dada por

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Portanto, o polinômio característico do operador T é dado por:

$$p(\lambda) = \det(A - \lambda I) = -\lambda^3 + 3\lambda + 2 = -(\lambda + 1)^2(\lambda - 2).$$

Os autovalores do operador T são $\lambda_1=2$, com multiplicidade algébrica igual a 1, e $\lambda_2=-1$, com multiplicidade algébrica igual a 2.

Para determinar os autovetores associados ao autovalor $\lambda_1=2$, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} \iff \begin{cases} -2x + y + z = 0 \\ 3y - 3z = 0 \end{cases}$$

que tem como solução z=y=x. Portanto, os autovetores associados ao autovalor $\lambda_1=2$ são do tipo $v_1=(x,x,x)$, com $x\neq 0$. Desse modo, podemos escolher $v_1=(1,1,1)$ o autovetor associado ao autovalor $\lambda_1=2$. Assim, temos que o autovalor λ_1 tem multiplicidade geométrica igual a 1.

Para determinar os autovetores associados ao autovalor $\lambda_2=-1$, temos que obter a solução do seguinte sistema linear

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \iff x + y + z = 0$$

que tem como solução z = -y - x.

Os autovetores associados ao autovalor $\lambda_2 = -1$ são do tipo v = (x, y, -x - y), com $x, y \neq 0$. Desse modo, podemos escolher $v_2 = (0, 1, -1)$ e $v_3 = (1, 0, -1)$ os autovetores associados ao autovalor $\lambda_2 = -1$. Assim, temos que o autovalor λ_2 tem multiplicidade geométrica igual a 2.

Desse modo, temos que $\gamma = \{v_1, v_2, v_3\}$ é uma base de autovetores para o espaço vetorial real \mathbb{R}^3 que realiza a diagonalização do operador T, isto é, a representação matricial $[T]_{\gamma}^{\gamma} = \Lambda = diag(\lambda_1, \lambda_2, \lambda_3)$.

A partir da base de autovetores γ podemos obter uma base de autovetores ortonormais $\gamma^* = \{q_1, q_2, q_3\}$ dada por:

$$q_1 = \frac{\sqrt{3}}{3}(1,1,1)$$
 , $q_2 = \frac{\sqrt{2}}{2}(0,1,-1)$ e $q_3 = \frac{\sqrt{6}}{6}(2,-1,-1)$.

Assim, temos que

$$X_{1} = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix} , \quad X_{2} = \begin{bmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix} \quad e \quad X_{3} = \begin{bmatrix} \frac{\sqrt{6}}{3} \\ -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} \end{bmatrix}$$

são os autovetores da matriz A associados aos autovalores $\lambda_1=2$, $\lambda_2=-1$ e $\lambda_3=-1$, respectivamente. Podemos observar facilmente que $AQ=Q\Lambda$, onde

$$Q = \begin{bmatrix} \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \end{bmatrix} \quad \text{e} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Desse modo, a matriz $A = [T]^{\beta}_{\beta}$ pode ser representada da seguinte forma:

$$A = Q \Lambda Q^t$$
 ou $\Lambda = Q^t A Q$.

Note que a matriz Q é uma matriz ortogonal, isto é, $QQ^t=Q^tQ=I$, e realiza a diagonalização da matriz $A=[T]^\beta_\beta$.

Exemplo 6.6.10 Seja A uma matriz de ordem n diagonalizável, isto é, existe uma matriz P invertível tal que $\Lambda = P^{-1}AP$ ou $A = P\Lambda P^{-1}$, onde Λ é uma matriz diagonal dada por:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

com $\lambda_1, \dots, \lambda_n$ os autovalores da matriz A, não necessariamente distintos dois a dois.

Podemos verificar facilmente que $A^m = P \Lambda^m P^{-1}$, onde Λ^m é dada por:

$$\Lambda^{m} = \begin{bmatrix} (\lambda_{1})^{m} & 0 & \cdots & 0 \\ 0 & (\lambda_{2})^{m} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & (\lambda_{n})^{m} \end{bmatrix},$$

para todo $m \in \mathbb{N}$. Desse modo, quando A é uma matriz diagonalizável, podemos calcular com uma certa eficiência qualquer potência de A.

Exemplo 6.6.11 Seja A uma matriz de ordem n. Sabemos que a série

$$I_n + A + \frac{A^2}{2!} + \cdots + \frac{A^m}{m!} + \cdots$$

converge para a matriz $\exp(A)$, isto \acute{e} ,

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!} .$$

Considerando que A é uma matriz diagonalizável, temos que

$$\exp(A) = \sum_{k=0}^{\infty} \frac{P \Lambda^k P^{-1}}{k!} = P\left(\sum_{k=0}^{\infty} \frac{\Lambda^k}{k!}\right) P^{-1} = P \exp(\Lambda) P^{-1},$$

onde P é a matriz que realiza a diagonalização de A e a matriz $\exp(\Lambda)$ é dada por:

$$\exp(\Lambda) = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n} \end{bmatrix}.$$

Desse modo, quando A é uma matriz diagonalizável, podemos calcular com uma certa eficiência a matriz $\exp(A)$.

Exemplo 6.6.12 Como uma aplicação direta do Exemplo 6.6.11, vamos considerar o seguinte Problema de Valor Inicial representado pelo sistema dinâmico

$$\begin{cases} X'(t) &= AX(t) \\ X(0) &= X_0 \end{cases}$$

onde A é uma matriz de ordem n, e os vetores coluna de ordem $n \times 1$, X(t) e X_0 são dados por:

$$X(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_i(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad e \qquad X_0 = \begin{bmatrix} x_1(0) \\ \vdots \\ x_i(0) \\ \vdots \\ x_n(0) \end{bmatrix}.$$

Estamos considerando que cada componente da função vetorial X(t), isto é, $x_i(t)$, é uma função continuamente diferenciável para todo $t \geq 0$. O vetor coluna X_0 é a condição inicial do sistema dinâmico. Os vetores X(t) e X_0 são geralmente denominados vetor de estado e vetor de estado inicial, respectivamente.

Vamos apresentar o desenvolvimento para obtenção da solução do sistema dinâmico acima, considerando que a matriz A seja diagonalizável. Desse modo, sabemos que existe uma matriz invertível P de ordem n tal que $A = P \Lambda P^{-1}$, onde $\Lambda = diag(\lambda_1, \dots, \lambda_n)$.

Assim, substituindo $A = P \Lambda P^{-1}$ no sistema dinâmico e fazendo a mudança de variável $Y(t) = P^{-1} X(t)$ e $Y(0) = P^{-1} X(0)$, obtemos o sistema dinâmico equivalente

$$\begin{cases} Y'(t) = \Lambda Y(t) \\ Y(0) = Y_0 \end{cases}$$

Note que como Λ é uma matriz diagonal, ficamos com n Problemas de Valor Inicial de primeira ordem sem acoplamentos, isto é,

$$\begin{cases} y_i'(t) = \lambda_i y_i(t) \\ y_i(0) = c_i \end{cases}$$

onde c_i é a condição inicial de cada um dos problemas, para $i=1,\cdots,n$.

Sabemos que a solução de cada um dos Problemas de Valor Inicial, sem acoplamentos, é

$$y_i(t) = c_i \exp(\lambda_i t)$$
 e $i = 1, \dots, n$.

Podemos verificar facilmente que as n soluções podem ser escritas da seguinte forma:

$$Y(t) = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} y_1(0) \\ \vdots \\ y_i(0) \\ \vdots \\ y_n(0) \end{bmatrix} = \exp(\Lambda t) Y(0) .$$

Utilizando novamente a mudança de variável, obtemos a solução do sistema dinâmico original que é dada por:

$$X(t) = P \exp(\Lambda t) P^{-1} X(0)$$
 para todo $t \ge 0$.

Assim, pelo Exemplo 6.6.11, temos que $X(t) = \exp(At) X_0$ para todo $t \ge 0$.

Para exemplificar, vamos considerar o seguinte sistema dinâmico

$$\begin{cases} x'(t) &= -2x(t) + y(t) + z(t) \\ y'(t) &= x(t) - 2y(t) + z(t) \\ z'(t) &= x(t) + y(t) - 2z(t) \end{cases}$$

com a condição inicial

$$\begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}.$$

Neste caso, a matriz do sistema dinâmico é dada por:

$$A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}.$$

Vamos determinar os autovalores e os autovetores da matriz A. O polinômio característico da matriz A é dada por:

$$p(\lambda) = \det(A - \lambda I) = -\lambda(\lambda + 3)^2$$

Assim, os autovalores da matriz A são $\lambda_1=0$, $\lambda_2=-3$ e $\lambda_3=-3$.

Podemos verificar facilmente que os autovetores da matriz A são

$$X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 , $X_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ e $X_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

associados aos autovalores $\lambda_1=0$, $\lambda_2=-3$ e $\lambda_3=-3$, respectivamente. Podemos observar facilmente que os autovetores X_1 , X_2 e X_3 são linearmente independentes. Logo, a matriz A é diagonalizável.

Portanto, a matriz P que realiza a diagonalização da matriz A, sua respectiva inversa e a matriz diagonal Λ são dadas por:

$$P = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} , P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
 e $\Lambda = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

Finalmente, sabemos que a solução do sistema dinâmico é dada por:

$$X(t) = P \exp(\Lambda t) P^{-1} X(0)$$
 para todo $t \ge 0$.

Portanto, obtemos

$$X(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} 3 + e^{-3t} - 3e^{-3t} \\ 3 - 3e^{-3t} \\ 3 + 3e^{-3t} \end{bmatrix}$$
para todo $t \ge 0$.

Na Figura 6.1 temos os gráficos das soluções do sistema dinâmico do Exemplo 6.6.12. A curva azul representa o gráfico da solução x(t), a curva verde representa o gráfico da solução y(t) e a curva vermelha representa o gráfico da solução z(t), para $0 \le t \le 2$.

Exemplo 6.6.13 Determine a solução do seguinte sistema dinâmico

$$\begin{cases} x'(t) = x(t) - 2y(t) \\ y'(t) = 3x(t) - 4y(t) \end{cases}$$

com a condição inicial

$$\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Neste caso, a matriz do sistema dinâmico é dada por:

$$A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}.$$

Vamos determinar os autovalores e os autovetores da matriz A. O polinômio característico da matriz A é dada por:

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 + 3\lambda + 2$$

Assim, os autovalores da matriz A são $\lambda_1 = -1$ e $\lambda_2 = -2$. Portando, a matriz A é diagonalizável.

Podemos verificar facilmente que os autovetores da matriz A são

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

associados aos autovalores $\lambda_1 = -1$ e $\lambda_2 = -2$, respectivamente.

Portanto, a matriz P que realiza a diagonalização da matriz A, sua respectiva inversa e a matriz diagonal Λ são dadas por:

$$P = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
 , $P^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$ e $\Lambda = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$.

Finalmente, sabemos que a solução do sistema dinâmico é dada por:

$$X(t) = P \exp(\Lambda t) P^{-1} X(0)$$
 para todo $t \ge 0$.

Portanto, obtemos

$$X(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} -2e^{-t} + 4e^{-2t} \\ -2e^{-t} + 6e^{-2t} \end{bmatrix}$$
 para todo $t \ge 0$.

Na Figura 6.2 temos os gráficos das soluções do sistema dinâmico do Exemplo 6.6.13. A curva azul representa o gráfico da solução x(t) e a curva verde representa o gráfico da solução y(t), para $0 \le t \le 6$.

Figura 6.1: Gráficos dos soluções do sistema dinâmico do Exemplo 6.6.12. A curva azul representa o gráfico da solução x(t), a curva verde representa o gráfico da solução y(t) e a curva vermelha representa o gráfico da solução z(t), para $0 \le t \le 2$.

Figura 6.2: Gráficos das soluções do sistema dinâmico do Exemplo 6.6.13. A curva azul representa o gráfico da solução x(t), a curva verde representa o gráfico da solução y(t), para $0 \le t \le 6$.

Exercícios

Exercício 6.65 Seja T o operador linear sobre \mathbb{R}^3 definido por:

$$T(x, y, z) = (-3x - 4y, 2x + 3y, -z).$$

Encontre os autovalores e os autovetores do operador linear T. O operador linear T é diagonalizável ? Justifique sua resposta.

Exercício 6.66 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ e o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por: T(p(x)) = p(x) + xp'(x). Determine uma base ordenada γ para $\mathcal{P}_2(\mathbb{R})$ de modo que $[T]^{\gamma}_{\gamma}$ seja uma matriz diagonal.

Exercício 6.67 Considere o espaço vetorial real $\mathcal{P}_3(\mathbb{R})$ e o operador linear T sobre $\mathcal{P}_3(\mathbb{R})$ definido por: T(p(x)) = p'(x) + p''(x). Verifique se T é um operador linear diagonalizável. Em caso afirmativo, determine uma base ordenada γ para $\mathcal{P}_3(\mathbb{R})$ de modo que $[T]_{\gamma}^{\gamma}$ seja uma matriz diagonal.

Exercício 6.68 Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ e o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por: T(p(x)) = p(x) + (x+1)p'(x). Determine uma base ordenada γ para $\mathcal{P}_2(\mathbb{R})$ de modo que $[T]_{\gamma}^{\gamma}$ seja uma matriz diagonal.

Exercício 6.69 Seja $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_2(\mathbb{R})$ o operador linear dado por:

$$T(a + bx + cx^2) = (2b + c) + (2b - c)x + 2cx^2.$$

Verifique se T é um operador diagonalizável. Justifique sua resposta.

Exercício 6.70 Considere o espaço vetorial real $M_3(\mathbb{R})$ e o operador linear T sobre $M_3(\mathbb{R})$ definido por: $T(A) = A^t$. Determine uma base ordenada para $M_3(\mathbb{R})$ tal que $[T]^{\beta}_{\beta}$ seja uma matriz diagonal.

Exercício 6.71 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , digamos que $\dim(V) = n$, T um operador linear sobre V que possui somente dois autovalores distintos λ_1 e λ_2 com $\dim(V_{\lambda_1}) = n - 1$. Prove que T é um operador diagonalizável.

Exercício 6.72 $D\hat{e}$ um exemplo de um operador linear diagonalizável T sobre \mathbb{R}^3 cujo núcleo é gerado pelo elemento u=(1,0,1).

Exercício 6.73 Dê um exemplo de um operador linear diagonalizável T sobre \mathbb{R}^3 cujo imagem é gerada pelos elementos $u_1 = (1, 1, 0)$ e $u_2 = (1, 0, 1)$.

Exercício 6.74 Considere o espaço vetorial complexo \mathbb{C}^2 e o operador linear T sobre \mathbb{C}^2 definido por: $T(x,y)=(x+iy\,,ix+y)$. Verifique se T é um operador linear diagonalizável. Em caso afirmativo, determine uma base ordenada γ para \mathbb{C}^2 de modo que $[T]_{\gamma}^{\gamma}$ seja uma matriz diagonal.

Exercício 6.75 $D\hat{e}$ um exemplo de um operador linear diagonalizável T sobre $\mathcal{P}_2(\mathbb{R})$ satisfazendo simultaneamente as seguintes propriedades:

- 1. $\lambda_1 = -3$ é um autovalor de T.
- 2. Ker(T) = [1 x].
- 3. $T(p(x)) \neq p(x)$ para todo p(x) não-nulo.

Exercício 6.76 Considere a matriz A dada por:

$$A = \begin{bmatrix} 0 & 1 & 5 & 9 \\ 2 & 1 & 6 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}.$$

Determine se possível uma matriz $P \in \mathbb{M}_4(\mathbb{R})$ invertível de modo que $P^{-1}AP$ seja uma matriz diagonal.

Exercício 6.77 Considere a matriz A dada por:

$$A = \left[\begin{array}{cc} 3 & -5 \\ 1 & -3 \end{array} \right].$$

Calcule de maneira eficiente A^n para $n \in \mathbb{N}$.

Exercício 6.78 Considere a matriz A dada por:

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ a & 2 & 0 \\ 0 & b & 2 \end{array} \right] .$$

Determine todos os valores dos parâmetros a e b de modo que a matriz A seja diagonalizável. Para estes valores de a e b, determine uma matriz invertível P e a matriz diagonal D de modo que $P^{-1}AP = D$.

Exercício 6.79 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} , digamos que $\dim(V) = n$, $e \ c \in \mathbb{F}$. Pede-se:

- (a) Para qualquer base ordenada β de V mostre que $[cI_V]^{\beta}_{\beta} = cI_n$, onde I_V é o operador identidade sobre V e I_n é a matriz identidade de ordem n.
- (b) Determine o polinômio característico do operador cI_V .
- (c) Mostre que o operador cI_V possui um único autovalor.
- (d) Mostre que o operador cI_V é um operador diagonalizável.

Exercício 6.80 Considere o espaço vetorial complexo \mathbb{C}^2 e o operador linear T sobre \mathbb{C}^2 definido por: T(x,y)=(ix+y,2x-iy). Verifique se T é um operador linear diagonalizável. Em caso afirmativo, determine uma base ordenada γ para \mathbb{C}^2 de modo que $[T]_{\gamma}^{\gamma}$ seja uma matriz diagonal.

Exercício 6.81 Determine o operador linear T sobre o \mathbb{R}^4 , diagonalizável, que satisfaz simultaneamente as seguintes condições:

- (a) $Ker(T) = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y z + t = 0 \ e \ z t = 0 \}.$
- (b) T(0,0,1,0) = (0,0,2,0).
- (c) $(0,1,0,0) \in Im(T)$.
- (d) $\lambda = -3$ é um autovalor do operador T.

Exercício 6.82 Considerando o operador linear diagonalizável T do Exemplo 6.6.6, determine explicitamente a expressão do operador linear T^{16} sobre o \mathbb{R}^2 .

Exercício 6.83 Considere o operador linear diagonalizável T do Exemplo 6.6.7. Dado o polinômio $p(x) = 2 - x + 3x^2$, determine o polinômio $q(x) = T^{16}(p(x))$.

Exercício 6.84 Determine o operador linear T sobre o \mathbb{R}^4 , diagonalizável, que satisfaz simultaneamente as seguintes condições:

- (a) $Ker(T) = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y z + t = 0 \ e \ z t = 0 \}.$
- (b) Im(T) = [(1,0,0,0), (0,1,1,0)].
- (c) $\lambda = 2$ é um autovalor de T com multiplicidade algébrica igual a 2.

Exercício 6.85 Considere o operador linear $T: \mathcal{P}_1(\mathbb{R}) \longrightarrow \mathcal{P}_1(\mathbb{R})$ dado por:

$$T(p(x)) = p'(x) + (x + 1)p(1).$$

Sejam $\beta = \{1, 7-4x\}$ e $\gamma = \{q(x), 2x-1\}$ bases para $\mathcal{P}_1(\mathbb{R})$ tais que

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 3 & s \\ -1 & 1 \end{bmatrix}.$$

- (a) Determine o polinômio q(x) e o parâmetro $s \in \mathbb{R}$.
- (b) T é um automorfismo? Em caso afirmativo, determine o automorfismo inverso.
- (c) O operador linear T é diagonalizável? Justifique sua resposta.

Exercício 6.86 Considere o espaço vetorial real \mathbb{R}^n munido do produto interno usual, que denotamos por $\langle \cdot, \cdot \rangle$, e o elemento $u \in \mathbb{R}^n$ não-nulo. Definimos as aplicações P e Q de \mathbb{R}^n em \mathbb{R}^n da seguinte forma:

$$P(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u \qquad e \qquad Q(v) = v - 2P(v)$$

para todo $v \in \mathbb{R}^n$.

- (a) Mostre que P e Q são operadores lineares sobre \mathbb{R}^n .
- (b) Mostre que P(w) = w, com $w = \alpha u$ para todo $\alpha \in \mathbb{R}$.
- (c) Mostre que $P(w) = 0_{\mathbb{R}^n}$ para $\langle u, w \rangle = 0$.
- (d) Mostre que Q(w) = -w, com $w = \alpha u$ para todo $\alpha \in \mathbb{R}$.
- (e) Mostre que Q(w) = w para $\langle u, w \rangle = 0$.
- (f) $D\hat{e}$ uma interpretação geométrica para os operadores lineares P e Q.
- (g) O operador linear P é diagonalizável? Justifique sua resposta.
- (h) O operador linear Q é diagonalizável? Justifique sua resposta.

Exercício 6.87 Considere o operador linear $T: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ definido por:

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}2a+b&2b\\2c&3d\end{array}\right].$$

o operador linear $\,T\,$ é diagonalizável? Justifique sua resposta.

6.7 Diagonalização de Operadores Hermitianos

Considere V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$. Seja T um operador Hermitiano sobre V, isto é,

$$\langle T(u), v \rangle = \langle u, T(v) \rangle \quad ; \quad \forall u, v \in V.$$

Pelo Teorema 5.13.1, sabemos que a matriz $A = [T]^{\beta}_{\beta}$ é uma matriz Hermitiana, onde β é uma base ortonormal de V. Assim, O problema de diagonalização de uma matriz Hermitiana é equivalente ao problema de diagonalização de um operador Hermitiano.

Teorema 6.7.1 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador Hermitiano sobre V. Então, todo autovalor de T é real. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração — Seja λ um autovalor de T com v o autovetor associado. Usando a hipótese que T é Hermitiano, obtemos

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle.$$

Logo, $(\lambda - \overline{\lambda})\langle v, v \rangle = 0$. Como v é não—nulo, temos que $\lambda = \overline{\lambda}$. Portanto, os autovalores do operador T são reais.

Sejam λ_1 e λ_2 autovalores distintos do operador T, com v_1 e v_2 os autovetores associados, respectivamente. Desse modo, temos que

$$\lambda_1 \langle v_1, v_2 \rangle = \langle T(v_1), v_2 \rangle = \langle v_1, T(v_2) \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle.$$

Portanto, tem—se que $(\lambda_1 - \lambda_2)\langle v_1, v_2 \rangle = 0$. Logo, $\langle v_1, v_2 \rangle = 0$, pois λ_1 e λ_2 são distintos. Assim, completamos a demonstração.

Teorema 6.7.2 Sejam V um espaço vetorial complexo munido do produto interno $\langle \cdot, \cdot \rangle$, T um operador Hermitiano sobre V e S um subespaço de V invariante sob T, isto \acute{e} , $T(v) \in S$ para todo $v \in S$. Então, o subespaço S^{\perp} \acute{e} também invariante sob T.

Demonstração – Seja $u \in S^{\perp}$, para todo $v \in S$ temos que

$$\langle T(u), v \rangle = \langle u, T(v) \rangle = 0.$$

Assim, provamos que $T(u) \in S^{\perp}$ para todo $u \in S^{\perp}$.

Teorema 6.7.3 Sejam V um espaço vetorial sobre o corpo F com o produto interno $\langle \cdot, \cdot \rangle$, com dim(V) = n, e S o subespaço de V gerado pelo elemento unitário $u \in V$. Então, o subespaço S^{\perp} tem dimensão (n-1).

Demonstração – Seja $\beta = \{u, v_2, \dots, v_n\}$ uma base ortonormal para V. Dado um elemento $v \in S^{\perp} \subset V$ temos que

$$v = c_1 u + c_2 v_2 + \cdots + c_n v_n \quad ; \quad c_j \in \mathbb{F}$$

Note que $c_1 = \langle u, v \rangle = 0$. Portanto, todo elemento do subespaço S^{\perp} pode ser escrito como uma combinação linear dos elemento v_2, \dots, v_n da base ortonormal de V. Assim, provamos que $dim(S^{\perp}) = (n-1)$.

Teorema 6.7.4 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$, com $\dim(V) = n$, e T um operador Hermitiano sobre V. Então, existe uma base ortonormal para V formada de autovetores de T.

Demonstração – A prova é feita por indução sobre a dimensão do espaço V. Se n=1, T possui exatamente um autovalor λ_1 com v_1 o autovetor associado. Assim, podemos considerar $||v_1||_2 = 1$. Agora consideramos que o resultado seja válido para um espaço de dimensão n-1, com n>2, e vamos mostrar que o resultado é válido para um espaço de dimensão n.

Seja (λ_1, v_1) um autopar de T, isto é, $T(v_1) = \lambda_1 v_1$. Vamos considerar o subespaço $S = [v_1]$. Temos que S é invariante sob T. Pelo Teorema 6.7.2, temos que S^{\perp} é invariante sob T. Desse modo, T é um operador Hermitiano sobre S^{\perp} . Como $dim(S^{\perp}) = n - 1$ e pela hipótese de indução, existem autovetores v_2, \dots, v_n de T os quais formam uma base ortonormal para o subespaço S^{\perp} .

Como $V = S \oplus S^{\perp}$, os autovetores v_1, v_2, \dots, v_n formam uma base ortonormal para o espaço V, o que completa a demonstração.

Tomando $\beta = \{v_1, \dots, v_n\}$ a base ortonormal de autovetores para o espaço V. Sabemos que a matriz do operador T com relação à base ortonormal β de autovetores é a matriz diagonal $[T]^{\beta}_{\beta} = diag(\lambda_1, \dots, \lambda_n)$, onde v_k é o autovetor associado ao autovalor λ_k para $k = 1, \dots, n$. Portanto, o operador T é diagonalizável.

Teorema 6.7.5 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador Hermitiano sobre V . Então, T é um operador diagonalizável.
Demonstração − A prova segue do Teorema 6.6.6 e do Teorema 6.7.4.
Proposição 6.7.1 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. Então, A é uma matriz diagonalizável, isto é, A é unitáriamente similar a uma matriz diagonal.
Demonstração − A prova segue do Corolário 6.6.1 e do Teorema 6.7.5.
Proposição 6.7.2 Seja $A \in M_n(\mathbb{R})$ um matriz simétrica. Então, A é uma matriz diagonalizável, isto é, A é ortogonalmente similar a uma matriz diagonal.
Proposição 6.7.3 Considere o espaço vetorial complexo \mathbb{C}^n munido do produto interno usual. Sejam $A \in M_n(\mathbb{C})$ uma matriz Hermitiana e T_A o operador linear sobre \mathbb{C}^n associado a matriz A . Então, o espaço vetorial complexo \mathbb{C}^n possui uma base ortonormal de autovetores do operador linear T_A .
Demonstração — A prova segue aplicando o Teorema 6.7.4 no operador linear T_A que é um operador Hermitiano sobre \mathbb{C}^n .
Proposição 6.7.4 Considere o espaço vetorial real \mathbb{R}^n com o produto interno usual. Sejam $A \in M_n(\mathbb{R})$ uma matriz simétrica e T_A o operador linear sobre \mathbb{R}^n associado a matriz A . o espaço vetorial real \mathbb{R}^n possui uma base ortonormal de autovetores do operador linear T_A .

Demonstração — A prova segue da Proposição 6.7.3 e do fato que uma matriz simétrica

real é um caso particular de uma matriz Hermitiana.

Exemplo 6.7.1 Considere a matriz simétrica $A \in \mathbb{M}_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

para fazer uma ilustração da Proposição 6.7.4.

Seja T_A o operador linear sobre $I\!\!R^3$ associado a matriz A, isto é,

$$T_A = (x + 2z, y, 2x + z)$$
.

Assim, $A = [T]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 . Desse modo, os autovalores da matriz a são os autovalores do operador T_A , e os autovetores são os autovetores do operador T_A , representados como vetor coluna.

Temos que o polinômio característico da matriz $A = [T]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = (1 - \lambda)(\lambda^2 - 2\lambda - 3).$$

Assim, os autovalores da matriz A são $\lambda_1 = -1$, $\lambda_2 = 1$ e $\lambda_3 = 3$.

Os autovetores de T_A associados ao autovalor $\lambda_1 = -1$ são do tipo v = (x, 0, -x) para $x \in \mathbb{R}$ não—nulo.

Os autovetores de T_A associados ao autovalor $\lambda_2=1$ são do tipo $v=(0,\,y,\,0)$ para $y\in\mathbb{R}$ não—nulo.

Os autovetores de T_A associados ao autovalor $\lambda_3=3$ são do tipo $v=(x,\,0,\,x)$ para $x\in I\!\!R$ não—nulo.

Assim, temos a seguinte base ortonormal $\gamma = \{q_1, q_2, q_3\}$ para \mathbb{R}^3 , onde

$$q_1 = \frac{\sqrt{2}}{2}(1, 0, -1)$$
 , $q_2 = (0, 1, 0)$ e $q_3 = \frac{\sqrt{2}}{2}(1, 0, 1)$,

formada por autovetores do operador linear T_A . Podemos observar facilmente que

$$X_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$
 , $X_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ e $X_3 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$,

são os autovetores da matriz A associados aos autovalores $\lambda_1 = -1$, $\lambda_2 = 1$ e $\lambda_3 = 3$, respectivamente.

Exemplo 6.7.2 Considere o operador linear T sobre \mathbb{C}^2 definido por:

$$T(x,y) = (4x + 2iy, -2ix + 4y)$$
 para todo $(x,y) \in \mathbb{C}^2$.

Mostre que T é um operador Hermitiano sobre \mathbb{C}^2 e determine seus autovalores e autovetores.

Seja $\beta = \{e_1, e_2\}$ a base canônica de \mathbb{C}^2 , a matriz $A = [T]^{\beta}_{\beta}$ é dada por:

$$A = \begin{bmatrix} 4 & 2i \\ -2i & 4 \end{bmatrix}.$$

Podemos observar facilmente que A é uma matriz Hermitiana, isto é, $A^* = A$. Logo, pelo Teorema 5.13.1, temos que T é um operador Hermitiano.

O polinômio característico do operador linear T é dado por:

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 - 8\lambda + 12.$$

Portanto, $\lambda_1 = 2$ e $\lambda_2 = 6$ são os autovalores do operador linear T.

Para determinar os autovalores de T associados ao autovalor $\lambda_1 = 2$, temos que encontrar os elementos não—nulos de Ker(T-2I). Assim, temos que obter as soluções não nulas do sistema linear homogêneo

$$\begin{cases} 2x + 2iy = 0 \\ -2ix + 2y = 0 \end{cases} \iff -2ix + 2y = 0 \implies y = ix$$

Portanto, todo elemento $v_1 = (a, ia) \in \mathbb{C}^2$, para $a \in \mathbb{C}$ não—nulo, é um autovetor do operador T associado ao autovalor $\lambda_1 = 2$. Assim, podemos escolher $v_1 = (1, i)$ o autovetor associado ao autovalor $\lambda_1 = 2$.

Para determinar os autovalores de T associados ao autovalor $\lambda_2=6$, temos que encontrar os elementos não—nulos de Ker(T-6I). Assim, temos que obter as soluções não nulas do sistema linear homogêneo

$$\begin{cases}
-2x + 2iy = 0 \\
-2ix - 2y = 0
\end{cases} \iff -2ix - 2y = 0 \implies y = -ix$$

Portanto, todo elemento $v_1 = (a, -ia) \in \mathbb{C}^2$, para $a \in \mathbb{C}$ não—nulo, é um autovetor do operador T associado ao autovalor $\lambda_2 = 6$. Assim, podemos escolher $v_1 = (1, -i)$ o autovetor associado ao autovalor $\lambda_2 = 6$.

Temos que $\gamma = \{v_1, v_2\}$ é uma base ortogonal de autovetores para o espaço vetorial complexo \mathbb{C}^2 . Além disso, sabemos que a matriz $\Lambda = [T]_{\gamma}^{\gamma}$ é dada por:

$$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}.$$

Desse modo, temos que $\gamma^* = \{ q_1, q_2 \}$, onde

$$q_1 = \frac{\sqrt{2}}{2}(1, i)$$
 e $q_2 = \frac{\sqrt{2}}{2}(1, -i)$,

é uma base ortonormal de autovetores para \mathbb{C}^2 .

Assim, temos que

$$X_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\i \end{bmatrix}$$
 e $X_2 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\-i \end{bmatrix}$

são os autovetores da matriz A associados aos autovetores $\lambda_1=2$ e $\lambda_2=6$, respectivamente. Podemos observar que $AU=U\Lambda$, onde

$$U = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}.$$

Desse modo, a matriz $A = [T]^{\beta}_{\beta}$ pode ser representada da seguinte forma:

$$A = U \Lambda U^*$$
 ou $\Lambda = U^* A U$.

Note que a matriz U é uma matriz unitária, isto é, $UU^*=U^*U=I$, e realiza a diagonalização da matriz $A=[T]^\beta_\beta$.

Definição 6.7.1 Sejam V um espaço vetorial complexo munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador Hermitiano sobre V. Dizemos que T é um **operador positivo** sobre V se

$$\langle T(u), u \rangle > 0$$
 para todo $u \in V$ não-nulo.

Desse modo, temos que a aplicação

$$p: V \times V \longrightarrow \mathbb{C}$$

$$(u,v) \longrightarrow p(u,v) = \langle T(u), v \rangle$$

 $define\ um\ produto\ interno\ no\ espaço\ vetorial\ complexo\ V.$

Teorema 6.7.6 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$, $\beta = \{q_1, \cdots, q_n\}$ uma base ortonormal ordenada para V, T um operador Hermitiano sobre V e $A = [T]^{\beta}_{\beta}$ a matriz do operador T com relação à base β . Então, T é um operador positivo se, e somente se, A é uma matriz positiva—definida.

Demonstração – Seja $A = [a_{ij}]$ a representação matricial do operador T com relação à base ortonormal β , isto é, $a_{ij} = \langle T(q_j), q_i \rangle$. Para todo $u \in V$ temos que

$$u = \sum_{j=1}^{n} \langle u, q_j \rangle q_j = \sum_{j=1}^{n} b_j q_j.$$

Podemos escrever $\langle T(u), u \rangle$ da seguinte forma:

$$\langle T(u), u \rangle = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{j} \overline{b}_{i} \langle T(q_{j}), q_{i} \rangle$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{j} \overline{b}_{i} a_{ij}$$

$$= ([u]_{\beta})^{*} A [u]_{\beta}$$

Portanto, para todo $u \in V$, não-nulo, obtemos

$$\langle T(u), u \rangle > 0 \quad \iff \quad ([u]_{\beta})^* A [u]_{\beta} > 0 ,$$

o que completa a demonstração.

Teorema 6.7.7 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. Então, a matriz A é positiva-definida se, e somente se, seus autovalores são todos positivos.

Demonstração

 (\Longrightarrow) Tomando A positiva—definida, do Teorema 6.4.4, temos que seus autovalores são todos positivos.

 (\Leftarrow) Considerando A uma matriz Hermitiana e seus autovalores todos positivos.

Seja T_A o operador linear sobre \mathbb{C}^n associado a matriz A. Da Proposição 6.7.3, temos que existe uma base ortonormal para o espaço vetorial complexo \mathbb{C}^n de autovetores do operador T_A . Sejam $\lambda_1, \dots, \lambda_n$ os autovalores do operador T_A , que são também os autovalores da matriz A, com v_1, \dots, v_n os autovetores associados.

Tomando um elemento não—nulo $u \in \mathbb{C}^n$, que não seja um autovetor de T_A , sabemos que pode ser escrito de modo único da seguinte forma:

$$u = \sum_{i=i}^{n} c_i v_i.$$

Desse modo, temos que

$$\langle T_A(u), u \rangle = \langle \sum_{i=i}^n c_i T_A(v_i), \sum_{j=i}^n c_j v_j \rangle = \langle \sum_{i=i}^n c_i \lambda_i v_i, \sum_{j=i}^n c_j v_j \rangle.$$

Logo, temos que

$$\langle T_A(u), u \rangle = \sum_{i=1}^n \sum_{j=1}^n c_i \, \overline{c}_j \, \lambda_i \, \langle v_i, v_j \rangle.$$

Como v_1, \dots, v_n são mutuamente ortonormais, obtemos

$$\langle T_A(u), u \rangle = \sum_{i=1}^n |c_i|^2 \lambda_i > 0.$$

Logo, T_A é um operador positivo. Assim, mostramos que a matriz A é positiva—definida, pois $A = [T]^{\beta}_{\beta}$, onde β é a base canônica de \mathbb{C}^n .

Corolário 6.7.1 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Então, a matriz A é positiva-definida se, e somente se, seus autovalores são todos positivos.

Demonstração – A prova segue do Teorema 6.7.7 e do fato que uma matriz simétrica real é um caso particular de uma matriz Hermitiana.

Exemplo 6.7.3 Considere a matriz Hermitiana A dada por:

$$A = \begin{bmatrix} 3 & -i \\ i & 3 \end{bmatrix}$$

para fazer uma ilustração do Teorema 6.7.7.

Podemos verificar facilmente que o polinômio característico da matriz A é dado por:

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 - 6\lambda + 8.$$

Assim, temos que os autovalores da matriz A são $\lambda_1=2$ e $\lambda_2=4$. Logo, pelo Teorema 6.7.7, temos que A é uma matriz positiva—definida.

Exemplo 6.7.4 Considere a matriz simétrica A dada por:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

para fazer uma ilustração do Corolário 6.7.1.

Podemos verificar facilmente que o polinômio característico da matriz A é dado por:

$$p(\lambda) = \det(A - \lambda I) = (2 - \lambda) \{ (2 - \lambda)(3 - \lambda) - 2 \} = (2 - \lambda)(\lambda^2 - 5\lambda + 4).$$

Assim, temos que os autovalores da matriz A são $\lambda_1=1$, $\lambda_2=2$ e $\lambda_3=4$. Logo, pelo Corolário 6.7.1, temos que A é uma matriz positiva—definida.

A seguir, enunciamos um resultado geométrico para uma matriz positiva—definida, que será muito importante na análise de convergência do Método dos Gradientes Conjugados.

Teorema 6.7.8 Seja $A \in M_n(\mathbb{R})$ uma matriz positiva-definida. Então, a equação

$$x^t A x = 1 (6.1)$$

representa um hiper-elipsóide em \mathbb{R}^n com centro na origem e cujos semi-eixos tem comprimentos

$$\frac{1}{\sqrt{\lambda_1}}$$
, \cdots , $\frac{1}{\sqrt{\lambda_n}}$

nas direções dos autovetores q_1, \dots, q_n associados aos autovalores

$$0 < \lambda_1 \leq \ldots \leq \lambda_n$$
.

Demonstração – Como A é positiva-definida, vamos utilizar a sua diagonalização

$$A = Q \Lambda Q^t$$
,

onde

$$\Lambda = diag(\lambda_1, \ldots, \lambda_j, \ldots \lambda_n)$$

é uma matriz diagonal e

$$Q = [q_1 \cdots q_i \cdots q_n]$$

é uma matriz ortogonal. Note que $(\lambda_j\,,\,q_j)$ é um autopar da matriz A.

Desse modo, podemos escrever a equação (6.1) da seguinte forma:

$$x^t A x = (Q^t x)^t \Lambda (Q^t x) = 1.$$

Fazendo a mudança de variável $\ y \ = \ Q^t \, x \, ,$ obtemos a seguinte equação

$$y^t \Lambda y = \sum_{j=1}^n \lambda_j y_j^2 = \sum_{j=1}^n \frac{y_j^2}{a_j^2} = 1,$$

onde

$$a_j = \frac{1}{\sqrt{\lambda_j}}$$

é o comprimento do semi-eixo na direção do autovetor q_j .

Portanto, o maior eixo está na direção do autovetor associado ao menor autovalor e o menor eixo está na direção do autovetor associado ao maior autovalor, o que completa a demonstração.

Lei de Inércia de Sylvester

Definição 6.7.2 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. A **inércia** da matriz A, que indicamos por i(A), é o terno ordenado

$$i(A) = (i_{+}(A), i_{-}(A), i_{0}(A)),$$

onde $i_+(A)$ é o número de autovalores positivos de A, $i_-(A)$ é o número de autovalores negativos de A, e $i_0(A)$ é o número de autovalores iguais a zero de A, considerando a multiplicidade de cada um dos autovalores.

Definição 6.7.3 Sejam $A, B \in M_n(\mathbb{C})$. Dizemos que a matriz B é congruente com a matriz A se existe uma matriz invertível $P \in M_n(\mathbb{C})$ tal que $B = PAP^*$.

Exemplo 6.7.5 Seja $A \in \mathbb{M}_m(\mathbb{C})$ uma matriz Hermitiana. Então, $A = U\Lambda U^*$, onde

$$\Lambda = diag(\lambda_1, \ldots, \lambda_i, \ldots, \lambda_m)$$

é uma matriz diagonal real e

$$U = [u_1 \cdots u_j \cdots u_m]$$

é uma matriz unitária, com (λ_j, u_j) um autopar da matriz A. Vamos mostrar que toda matriz Hermitiana A é congruente com a matriz diagonal $\widehat{\Lambda} \in M_m(\mathbb{R})$ dada por:

$$\hat{\Lambda} = diag(1, \dots, 1, -1, \dots, -1, 0, \dots, 0),$$
(6.2)

denominada **matriz de inércia** da matriz A, onde o número de 1 é igual a $i_+(A)$, o número de -1 é igual a $i_-(A)$, e o número de 0 é igual a $i_0(A)$.

De fato, para simplificar a prova, vamos organizar os autovalores de A em três grupos. Os autovalores positivos que vamos denotar por $\lambda_1^+, \cdots, \lambda_p^+$, os autovalores negativos que vamos denotar por $\lambda_1^-, \cdots, \lambda_n^-$, e os autovalores nulos que vamos denotar por $\lambda_1^0, \cdots, \lambda_r^0$, com p+n+r=m. Assim, representamos a matriz diagonal Λ da seguinte forma:

$$\Lambda = diag(\lambda_1^+, \ldots, \lambda_n^+, \lambda_1^-, \ldots, \lambda_n^-, \lambda_1^0, \ldots, \lambda_n^0).$$

Vamos definir uma matriz diagonal $D \in M_m(\mathbb{R})$ da seguinte forma:

$$D = diag\left(\sqrt{\lambda_{1}^{+}}, \dots, \sqrt{\lambda_{p}^{+}}, \sqrt{-\lambda_{1}^{-}}, \dots, \sqrt{-\lambda_{n}^{-}}, 1, \dots, 1\right),$$

com a qual podemos escrever a matriz diagonal $\Lambda \in I\!\!M_m(I\!\!R)$ da seguinte forma:

$$\Lambda = D \, \widehat{\Lambda} \, D \; .$$

Portanto, a matriz Hermitiana A pode ser escrita da forma:

$$A = U\Lambda U^* = U D \hat{\Lambda} D U^* = (U D) \hat{\Lambda} (U D)^* = P \hat{\Lambda} P^*,$$
 (6.3)

onde a matriz invertível P = UD realiza a relação de congruência. Assim, mostramos que toda matriz Hermitiana A é congruente com a matriz diagonal $\widehat{\Lambda}$, em uma forma mais simples. Logo, conhecida a matriz diagonal $\widehat{\Lambda}$ sabemos a inércia da matriz A. Reciprocamente, sabendo a inércia da matriz A conhecemos a matriz diagonal $\widehat{\Lambda}$.

Proposição 6.7.5 Sejam $A, B \in M_n(\mathbb{C})$ matrizes congruentes. Então,

$$posto(A) = posto(B)$$
.

Demonstração – A prova segue imediata do Exercício 4.50.

Teorema 6.7.9 (Lei de Inércia de Sylvester) Sejam $A, B \in M_n(\mathbb{C})$ matrizes Hermitianas. Então, existe uma matriz invertível $P \in M_n(\mathbb{C})$ tal que $A = PBP^*$ se, e somente se, A e B tem a mesma inércia.

Demonstração

 (\Longrightarrow) Tomando a hipótese que as matrizes A e B são congruentes, isto é, $A = PBP^*$, para alguma matriz invertível $P \in IM_n(\mathbb{C})$. Como matrizes congruentes tem o mesmo posto, posto(A) = posto(B), temos que $i_0(A) = i_0(B)$. Assim, precisamos mostrar somente que $i_+(A) = i_+(B)$.

Sejam u_1, \dots, u_p autovetores ortonormais da matriz Hermitiana A associados aos autovalores positivos $\lambda_1^+, \dots, \lambda_p^+$. E denotamos por $E_+(A)$ o subespaço gerado por esse conjunto de autovetores ortonormais, isto é,

$$E_+(A) = [u_1, \cdots, u_p].$$

Note que $dim(E_+(A)) = i_+(A)$.

Agora consideramos um elemento $w \in E_{+}(A)$ não—nulo, isto é,

$$w = \alpha_1 u_1 + \cdots + \alpha_1 u_p \neq 0_{\mathbb{C}^n}.$$

Assim, temos que

$$w^*Aw = \lambda_1^+ |\alpha_1|^2 + \cdots + \lambda_p^+ |\alpha_p|^2 > 0.$$

Portanto, obtemos

$$x^*(PBP^*)x = (P^*x)^*B(P^*x) = z^*Bz > 0$$

para todo elemento z não—nulo no subespaço gerado pelo conjunto

$$\{P^*u_1, \cdots, P^*u_p\}$$

linearmente independente, desde que P é uma matriz invertível. Desse modo, podemos concluir que $i_+(B) \geq i_+(A)$.

Trocando as posições das matrizes A e B, e fazendo as mesmas argumentações, temos que $i_+(A) \geq i_+(B)$. Portanto, provamos que $i_+(A) = i_+(A)$.

(\Leftarrow) Tomando como hipótese que as matrizes Hermitianas A e B tem a mesma inércia, sabemos que podem ser representadas como em (6.3), possuindo a mesma matriz de inércia $\widehat{\Lambda}$, isto é,

$$A = P \widehat{\Lambda} P^*$$
 e $B = S \widehat{\Lambda} S^*$,

onde $P, S \in \mathbb{M}_n(\mathbb{C})$ são matrizes invertíveis.

Pela propriedade transitiva da relação de congruência, veja Exemplo 2.8.3, e pelo fato que as matrizes A e B são congruentes a mesma matriz $\widehat{\Lambda}$, temos que as matrizes A e B são congruentes. De fato, podemos escrever a matriz $\widehat{\Lambda}$ da seguinte forma:

$$\widehat{\Lambda} = QBQ^* \implies A = (SQ)B(SQ)^*,$$

onde $Q=S^{-1}$, com SQ uma matriz invertível, desde que S e Q são matrizes invertíveis, o que completa a demonstração.

Corolário 6.7.2 Sejam $A, B \in \mathbb{M}_n(\mathbb{R})$ matrizes simétricas. Então, existe uma matriz invertível $P \in \mathbb{M}_n(\mathbb{R})$ tal que $A = PBP^t$ se, e somente se, A e B tem a mesma inércia.

Demonstração − A prova segue do resultado do Teorema 6.7.9, e do fato que uma matriz simétrica real é um caso particular de uma matriz Hermitiana.

Corolário 6.7.3 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Então, existe uma matriz $P \in M_n(\mathbb{R})$ invertível tal que $D = PAP^t$ é uma matriz diagonal. Além disso, o número de elementos na diagonal de D que são positivos, negativos e nulos é sempre o mesmo, independente da matriz P que realiza a relação de congruência.

Definição 6.7.4 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Dizemos que A é uma matriz indefinida quando possui autovalores de ambos os sinais.

Exemplo 6.7.6 Seja $B \in M_n(\mathbb{R})$ uma matriz invertível. Mostre que a matriz simétrica H, de ordem 2n, dada por:

$$H = \begin{bmatrix} I_n & B^t \\ B & 0_n \end{bmatrix}$$

é uma matriz indefinida.

Inicialmente vamos mostrar que $\,H\,$ é uma matriz invertível. De fato, considere o sistema linear homogêneo

$$\begin{bmatrix} I_n & B^t \\ B & 0_n \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \begin{bmatrix} 0_{\mathbb{R}^n} \\ 0_{\mathbb{R}^n} \end{bmatrix} \qquad \Longleftrightarrow \qquad \begin{cases} u + B^t w = 0_{\mathbb{R}^n} \\ Bu = 0_{\mathbb{R}^n} \end{cases}$$

Portanto, como B é uma matriz invertível, obtemos

$$u = 0_{\mathbb{R}^n}$$
 e $w = 0_{\mathbb{R}^n}$.

Assim, mostramos que o sistema linear homogêneo possui somente a solução trivial.

Finalmente, vamos determinar os autovalores da matriz simétrica H, isto é, determinar os escalares $\lambda \in \mathbb{R}$ tais que

$$HX = \lambda X \qquad \Longleftrightarrow \qquad \begin{bmatrix} I_n & B^t \\ B & 0_n \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \lambda \begin{bmatrix} u \\ w \end{bmatrix},$$

para $u, w \in \mathbb{R}^n$ não-nulos.

Desse modo, obtemos as seguintes equações

$$\begin{cases} u + B^t w = \lambda u \\ Bu = \lambda w \end{cases}$$

Da segunda equação, obtemos

$$w = \frac{1}{\lambda} B u ,$$

com $\lambda \neq 0$, pois H é uma matriz invertível. Substituindo w na primeira equação, obtemos

$$B^t B u = (\lambda^2 - \lambda) u.$$

Como B é uma matriz invertível, sabemos que B^tB é uma matriz positiva—definida. Logo, seus autovalores são todos positivos, que vamos denotar por $\alpha_1, \dots, \alpha_n$.

Desse modo, considerando (α_i, v_i) um autopar da matriz $B^t B$, obtemos

$$\lambda_i^2 - \lambda_i = \alpha_i$$

para $i = 1, \dots n$.

Assim, para cada autovalor α_i de B^tB , temos dois autovalores associados para H dados por:

$$\lambda_i^+ = \frac{1 + \sqrt{1 + 4\alpha_i}}{2} > 0$$
 e $\lambda_i^- = \frac{1 - \sqrt{1 + 4\alpha_i}}{2} < 0$.

para $i = 1, \dots n$.

Portanto, mostramos que H é uma matriz indefinida, e determinamos seus autovalores.

Exemplo 6.7.7 Seja $B \in M_{m \times n}(\mathbb{R})$, com $m \leq n$ e posto(B) = m. Mostre que a matriz simétrica H, de ordem n + m, dada por:

$$H = \begin{bmatrix} I_n & B^t \\ B & 0_m \end{bmatrix}$$

é uma matriz indefinida.

Inicialmente vamos mostrar que $\,H\,$ é uma matriz invertível. De fato, considere o sistema linear homogêneo

$$\begin{bmatrix} I_n & B^t \\ B & 0_m \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \begin{bmatrix} 0_{\mathbb{R}^n} \\ 0_{\mathbb{R}^m} \end{bmatrix} \iff \begin{cases} u + B^t w = 0_{\mathbb{R}^n} \\ Bu = 0_{\mathbb{R}^m} \end{cases}$$

Multiplicando a primeira equação por B, obtemos a equação

$$BB^t w = 0_{\mathbb{R}^m}$$

Como posto(B) = m, sabemos que BB^t , de ordem m, é uma matriz positiva—definida. Logo, BB^t é uma matriz invertível. Desse modo, obtemos

$$w = 0_{\mathbb{R}^m}$$
 e $u = 0_{\mathbb{R}^n}$.

Assim, mostramos que o sistema linear homogêneo possui somente a solução trivial.

Finalmente, vamos determinar os autovalores da matriz simétrica H, isto é, determinar os escalares $\lambda \in \mathbb{R}$ tais que

$$HX = \lambda X \qquad \Longleftrightarrow \qquad \begin{bmatrix} I_n & B^t \\ B & 0_m \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \lambda \begin{bmatrix} u \\ w \end{bmatrix},$$

para $u \in \mathbb{R}^n$ e $w \in \mathbb{R}^m$ não-nulos.

Desse modo, obtemos as seguintes equações

$$\begin{cases} u + B^t w = \lambda u \\ Bu = \lambda w \end{cases}$$

Da segunda equação, obtemos

$$w = \frac{1}{\lambda} B u ,$$

com $\lambda \neq 0,$ pois Hé uma matriz invertível. Substituindo w na primeira equação, obtemos

$$B^t B u = (\lambda^2 - \lambda) u.$$

Como posto(B) = m e $m \le n$, sabemos que a matriz B^tB , de ordem n, é uma matriz semipositiva—definida e tem $posto(B^tB) = m$.

Logo, a matriz B^tB possui m autovalores positivos, que vamos denotar por $\alpha_1, \dots, \alpha_m$, e um autovalor $\beta=0$ com multiplicidade algébrica p=n-m.

Desse modo, considerando (α_i, u_i) um autopar da matriz $B^t B$, obtemos

$$\lambda_i^2 - \lambda_i = \alpha_i$$

para $i = 1, \dots m$.

Assim, para cada autovalor α_i de B^tB , temos dois autovalores associados para H dados por:

$$\lambda_i^+ = \frac{1 + \sqrt{1 + 4\alpha_i}}{2} > 0$$
 e $\lambda_i^- = \frac{1 - \sqrt{1 + 4\alpha_i}}{2} < 0$.

para $i = 1, \dots m$.

Para o autovalor $\beta=0$, obtemos um autovalor $\widehat{\lambda}=1$ com multiplicidade algébrica p=n-m da matriz H.

Portanto, mostramos que H é uma matriz indefinida, e determinamos seus autovalores.

Exemplo 6.7.8 Sejam $A \in M_n(\mathbb{R})$ uma matriz positiva-definida $e \ B \in M_{m \times n}(\mathbb{R})$, com $m \le n$ e posto(B) = m. Mostre que a matriz simétrica H, de ordem n + m, dada por:

$$H = \begin{bmatrix} A & B^t \\ B & 0_m \end{bmatrix}$$

é uma matriz indefinida.

Como $A \in \mathbb{M}_n(\mathbb{R})$ é uma matriz positiva—definida, sabemos que $A = Q\Lambda Q^t$, onde

$$\Lambda = diag(\lambda_1, \ldots, \lambda_i, \ldots, \lambda_n)$$

é uma matriz diagonal real, onde os autovalores $\lambda_1, \ldots, \lambda_j, \ldots, \lambda_n$ são todos positivos, e $Q \in \mathbb{M}_n(\mathbb{R})$ é uma matriz ortogonal. Desse modo, pelo Exemplo 6.7.5, sabemos que a matriz positiva—definida A é congruente com a matriz identidade, isto é,

$$A = (QD)\widehat{\Lambda}(QD)^t = P\widehat{\Lambda}P^t = PI_nP^t,$$

onde a matriz invertível P=QD realiza a relação de congruência, e as matrizes D e $\widehat{\Lambda}$ são dadas por:

$$D = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$
 e $\widehat{\Lambda} = diag(1, \dots, 1) = I_n$.

Desse modo, temos que

$$I_n = P^{-1} A P^{-t}$$

onde
$$P^{-1} = D^{-1}Q^t$$
 e $P^{-t} = QD^{-1}$.

Considere a matriz invertível S, de ordem n + m, definida da seguinte forma:

$$S = \begin{bmatrix} P^{-1} & 0_{m \times n}^t \\ 0_{m \times n} & I_m \end{bmatrix}.$$

Podemos verificar facilmente que a matriz simétrica $\hat{H} = SHS^t$, onde

$$\widehat{H} = SHS^{t} = \begin{bmatrix} P^{-1}AP^{-t} & P^{-1}B^{t} \\ BP^{-t} & 0_{m} \end{bmatrix} = \begin{bmatrix} I_{n} & P^{-1}B^{t} \\ BP^{-t} & 0_{m} \end{bmatrix},$$

é uma matriz indefinida, pelo resultado do Exemplo 6.7.7.

Desse modo, pelo Corolário 6.7.2, as matrizes simétricas H e \widehat{H} tem a mesma inércia. Portanto, mostramos que a matriz simétrica H é uma matriz indefinida.

Diagonalização de Operadores anti-Hermitianos

Considere V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$. Seja T um operador anti-Hermitiano sobre V, isto é,

$$\langle T(u), v \rangle = -\langle u, T(v) \rangle \quad ; \quad \forall u, v \in V.$$

Pelo Teorema 5.13.3, sabemos que a matriz $A=[T]^{\beta}_{\beta}$ é uma matriz anti–Hermitiana, onde β é uma base ortonormal de V. Assim, O problema de diagonalização de uma matriz anti–Hermitiana é equivalente ao problema de diagonalização de um operador anti–Hermitiano.

Teorema 6.7.10 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$, T um operador anti-Hermitiano sobre V e λ um autovalor de T. Então, λ é imaginário puro, isto é, $\lambda = -\overline{\lambda}$. Além disso, autovetores associados a autovalores distintos são ortogonais.

Demonstração — Seja λ um autovalor de T com v o autovetor associado. Usando a hipótese que T é anti-Hermitiano, obtemos

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle T(v), v \rangle = -\langle v, T(v) \rangle = -\langle v, \lambda v \rangle = -\overline{\lambda} \langle v, v \rangle.$$

Logo, $(\lambda + \overline{\lambda})\langle v, v \rangle = 0$. Como v é não—nulo, temos que $\lambda + \overline{\lambda} = 0$, isto é, $\lambda = -\overline{\lambda}$. Portanto, mostramos que o autovalor λ é imaginário puro.

Sejam λ_1 e λ_2 autovalores distintos do operador T, com v_1 e v_2 os autovetores associados, respectivamente. Desse modo, temos que

$$\lambda_1 \langle v_1, v_2 \rangle = \langle T(v_1), v_2 \rangle = -\langle v_1, T(v_2) \rangle = -\langle v_1, \lambda_2 v_2 \rangle = -\overline{\lambda}_2 \langle v_1, v_2 \rangle.$$

Portanto, tem-se que $(\lambda_1 - \lambda_2)\langle v_1, v_2 \rangle = 0$. Logo, $\langle v_1, v_2 \rangle = 0$, pois λ_1 e λ_2 são distintos. Assim, completamos a demonstração.

Teorema 6.7.11 Sejam V um espaço vetorial complexo munido do produto interno $\langle \cdot, \cdot \rangle$, T um operador anti-Hermitiano sobre V e S um subespaço de V invariante sob T, isto é, $T(v) \in S$ para todo $v \in S$. Então, o subespaço S^{\perp} é também invariante sob T.

Demonstração – Seja $u \in S^{\perp}$, para todo $v \in S$ temos que

$$\langle \, T(u) \, , \, v \, \rangle \; = \; - \langle \, u \, , \, T(v) \, \rangle \; = \; 0 \, .$$

Assim, provamos que $T(u) \in S^{\perp}$ para todo $u \in S^{\perp}$.

Teorema 6.7.12 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$, com dim(V) = n, e T um operador anti-Hermitiano sobre V. Então, existe uma base ortonormal para V formada de autovetores de T.

Demonstração − A prova é feita de modo análogo ao Teorema 6.7.4.

Tomando $\beta = \{v_1, \dots, v_n\}$ a base ortonormal de autovetores para o espaço V. Sabemos que a matriz do operador T com relação à base ortonormal β de autovetores é a matriz diagonal $[T]_{\beta}^{\beta} = diag(\lambda_1, \dots, \lambda_n)$, onde v_k é o autovetor associado ao autovalor λ_k para $k = 1, \dots, n$. Portanto, o operador T é diagonalizável.

Teorema 6.7.13 Sejam V um espaço vetorial complexo de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador anti-Hermitiano sobre V. Então, T é um operador diagonalizável.

Demonstração − A prova segue do Teorema 6.6.6 e do Teorema 6.7.12.

Proposição 6.7.6 Seja $A \in M_n(\mathbb{C})$ uma matriz anti-Hermitiana. Então, A é uma matriz diagonalizável, isto é, A é unitáriamente similar a uma matriz diagonal.

Demonstração − A prova segue do Corolário 6.6.1 e do Teorema 6.7.13.

Proposição 6.7.7 Considere o espaço vetorial complexo \mathbb{C}^n munido do produto interno usual. Sejam $A \in I\!\!M_n(\mathbb{C})$ uma matriz anti-Hermitiana e T_A o operador linear sobre \mathbb{C}^n associado a matriz A. Então, o espaço vetorial complexo \mathbb{C}^n possui uma base ortonormal de autovetores do operador linear T_A .

Demonstração — A prova segue aplicando o Teorema 6.7.12 no operador linear T_A que é um operador anti-Hermitiano sobre \mathbb{C}^n .

Exemplo 6.7.9 Considere a matriz anti-Hermitiana A dada por:

$$A = \begin{bmatrix} i & 1-i \\ -1-i & 0 \end{bmatrix}$$

para fazer uma ilustração da Proposição 6.7.6.

Podemos verificar facilmente que o polinômio característico da matriz A é dado por:

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 - i\lambda + 2.$$

Podemos verificar que os autovalores da matriz A são $\lambda_1=2i$ e $\lambda_2=-i$.

Os autovetores da matriz A são do tipo

$$X_1 = \begin{bmatrix} -(1+i)y \\ y \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} x \\ (1-i)x \end{bmatrix}$

associados aos autovalores $\lambda_1 = 2i$ e $\lambda_2 = -i$, respectivamente.

Portanto, podemos escolher os seguintes autovetores para a matriz A

$$X_1 = \begin{bmatrix} 1+i\\-1 \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} 1\\1-i \end{bmatrix}$

associados aos autovalores $\lambda_1=2i$ e $\lambda_2=-i$, respectivamente.

Desse modo, podemos representar a matriz A da seguinte forma:

$$A = U \Lambda U^*$$
 ou $\Lambda = U^* A U$,

onde

$$U = \frac{\sqrt{3}}{3} \begin{bmatrix} 1+i & 1 \\ -1 & 1-i \end{bmatrix} \quad \text{e} \quad \Lambda = \begin{bmatrix} 2i & 0 \\ 0 & -i \end{bmatrix}.$$

Note que a matriz U é uma matriz unitária, isto é, $UU^* = U^*U = I$, e realiza a diagonalização da matriz A.

Exercícios

Exercício 6.88 Seja $A \in \mathbb{M}_n(\mathbb{C})$ uma matriz Hermitiana. Mostre que $x^*Ax \in \mathbb{R}$ para todo elemento $x \in \mathbb{C}^n$.

Exercício 6.89 Seja $A \in \mathbb{M}_n(\mathbb{C})$ uma matriz Hermitiana. Mostre que SAS^* é uma matriz Hermitiana para toda matriz $S \in \mathbb{M}_n(\mathbb{C})$.

Exercício 6.90 Seja $A \in M_n(\mathbb{C})$ uma matriz Hermitiana. Mostre que existe um escalar $\lambda \in \mathbb{R}$ de modo que a matriz $\lambda I + A$ seja positiva-definida.

Exercício 6.91 Sejam V um espaço vetorial complexo munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador anti-Hermitiano sobre V. Mostre que $\langle T(u), u \rangle$ é imaginário puro para todo $u \in V$.

Exercício 6.92 Seja $A \in M_n(\mathbb{F})$ uma matriz diagonalizável. Pede-se:

- (a) Mostre que o det(A) é igual ao produto de seus autovalores.
- (b) Mostre que o tr(A) é igual a soma de seus autovalores.

Exercício 6.93 Sejam V um espaço vetorial complexo munido do produto interno $\langle \cdot, \cdot \rangle$ e T um operador positivo sobre V. Mostre que a aplicação

$$p: V \times V \longrightarrow \mathbb{C}$$

$$(u,v) \longrightarrow p(u,v) = \langle T(u), v \rangle$$

 $define\ um\ produto\ interno\ no\ espaço\ vetorial\ complexo\ V.$

Exercício 6.94 Considere a matriz simétrica $A \in M_3(\mathbb{R})$ dada por:

$$A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

Determine uma matriz ortogonal $Q \in M_3(\mathbb{R})$ que realiza a diagonalização da matriz A, isto \acute{e} , $\Lambda = Q^t A Q$ \acute{e} uma matriz diagonal.

Exercício 6.95 Seja $A \in M_n(\mathbb{R})$ positiva-definida. Mostre que $\det(A)$ é positivo.

Exercício 6.96 Considere a matriz simétrica B dada por:

$$B = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}.$$

Determine os autovalores e os autovetores da matriz B utilizando os resultados do Exercício 6.5 e do Exercício 6.94.

Exercício 6.97 Determine a solução do seguinte sistema dinâmico

$$\begin{cases} x'(t) = -3x(t) + y(t) \\ y'(t) = x(t) - 3y(t) \end{cases}$$

com a condição inicial

$$\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

Exercício 6.98 Determine a solução do seguinte sistema dinâmico

$$\begin{cases} x'(t) &= -5x(t) \\ y'(t) &= & -4y(t) + 3z(t) \\ z'(t) &= & +3y(t) - 4z(t) \end{cases}$$

com a condição inicial

$$\begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

Exercício 6.99 Considere a seguinte matriz simétrica

$$A = \begin{bmatrix} -4 & -1 & 2 \\ -1 & -1 & -1 \\ 2 & -1 & -4 \end{bmatrix}.$$

Determine os autovalores e os autovetores da matriz A.

Exercício 6.100 Seja $A \in M_n(\mathbb{R})$ anti-simétrica. Mostre que as matriz I - A e I + A são invertíveis e que a matriz $(I - A)(I + A)^{-1}$ é uma matriz ortogonal.

Exercício 6.101 Considere a seguinte matriz simétrica

$$A = \begin{bmatrix} 5 & -1 & 2 \\ -1 & 8 & -1 \\ 2 & -1 & 5 \end{bmatrix}.$$

Verifique se A é uma matriz positiva-definida. Determine o det(A) e o tr(A), utilizando os resultados do Exercício 6.92.

Exercício 6.102 Considere a matriz diagonal em blocos $T \in M_4(\mathbb{R})$ dada por:

$$T = \begin{bmatrix} A & 0_2 \\ 0_2 & U \end{bmatrix},$$

onde $A \in M_2(\mathbb{R})$ é uma matriz simétrica e $U \in M_2(\mathbb{R})$ é uma matriz triangular superior, representadas por:

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \qquad e \qquad U = \begin{bmatrix} d & e \\ 0 & f \end{bmatrix},$$

com $a, b, c, d, e \in R$ não-nulos. Determine as condições para que a matriz T seja diagonalizável. Justifique sua resposta.

Exercício 6.103 Considere a matriz diagonal em blocos T dada por:

$$\begin{bmatrix} 2 & 2 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Encontre os autovalores e os autovetores da matriz T. A matriz T é diagonalizável?

Exercício 6.104 Considere a matriz simétrica $A \in \mathbb{M}_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}.$$

Determine uma matriz ortogonal $Q \in M_3(\mathbb{R})$ e uma matriz diagonal $\Lambda \in M_3(\mathbb{R})$ tais que $A = Q\Lambda Q^t$. A matriz A é positiva-definida?

Exercício 6.105 Considere a matriz simétrica $A \in \mathbb{M}_3(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}.$$

Determine uma matriz ortogonal $Q \in M_3(\mathbb{R})$ e uma matriz diagonal $\Lambda \in M_3(\mathbb{R})$ tais que $A = Q\Lambda Q^t$. A matriz A é positiva-definida?

Exercício 6.106 Sejam $A \in M_n(\mathbb{R})$ uma matriz positiva-definida $e \ C \in M_n(\mathbb{R})$ uma matriz invertível. Mostre que a matriz $B = CAC^t$ é positiva-definida.

Exercício 6.107 Sejam $A \in M_n(\mathbb{R})$ uma matriz positiva-definida e $Q \in M_n(\mathbb{R})$ uma matriz ortogonal. Mostre que a matriz $C = QAQ^t$ é uma matriz positiva-definida.

Exercício 6.108 Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Mostre que A é congruente com a matriz identidade se, e somente se, todos os autovalores de A são positivos.

Exercício 6.109 Seja $B \in M_n(\mathbb{R})$ uma matriz invertível. Mostre que a matriz simétrica H, de ordem 2n, definida da sequinte forma:

$$H = \begin{bmatrix} 0_n & B^t \\ B & 0_n \end{bmatrix}$$

é uma matriz indefinida.

Exercício 6.110 Seja $B \in M_{m \times n}(\mathbb{R})$, com $m \leq n$ e posto(B) = m. Mostre que a matriz simétrica H, de ordem n + m, definida da seguinte forma:

$$H = \begin{bmatrix} 0_n & B^t \\ B & 0_m \end{bmatrix}$$

é uma matriz indefinida.

Bibliografia

- [1] Tom M. Apostol, Análisis Matemático, Segunda Edición, Editorial Reverté, 1977.
- [2] Tom M. Apostol, Calculus, Volume I, Second Edition, John Wiley & Sons, 1976.
- [3] Tom M. Apostol, Calculus, Volume II, Second Edition, John Wiley & Sons, 1976.
- [4] Tom M. Apostol, Linear Algebra–A First Course with Applications to Differential Equations, John Wiley & Sons, 1997.
- [5] Alexander Basilevsky, Applied Matrix Algebra in the Statistical Sciences, Dover, 1983.
- [6] J. L. Boldrini, S. I. R. Costa, V. L. Figueiredo e H. G. Wetzler, Álgebra Linear, Terceira Edição, Editora Harbra Ltda, 1986.
- [7] C. A. Callioli, H. H. Domingues e R. C. F. Costa, Álgebra Linear e Aplicações, Sexta Edição, Atual Editora, 2003.
- [8] R. Charnet, C. A. L. Freire, E. M. R. Charnet e H. Bonvino, *Análise de Modelos de Regressão Linear com Aplicações*, Editora da Unicamp, Segunda Edição, 2008.
- [9] F. U. Coelho e M. L. Lourenço, Um Curso de Álgebra Linear, edusp, 2001.
- [10] S. H. Friedberg, A. J. Insel and L. E. Spence, *Linear Algebra*, Prentice—Hall, Third Edition, 1997.
- [11] Gene H. Golub & Charles F. Van Loan, *Matrix Computations*, Third Edition, John Hopkins, 1996.
- [12] K. Hoffman e R. Kunze, Álgebra Linear, Editora da USP, 1971.
- [13] Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, Cambridge University Press, 1996.
- [14] Bernard Kolman e David R. Hill, *Introdução à Álgebra Lienar com Aplicações*, LTC, Oitava Edição, 2006.
- [15] Serge Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986.
- [16] Elon L. Lima, Álgebra Linear, Coleção Matemática Universitária, IMPA, 1996.
- [17] Elon L. Lima, Curso de Análise, Projeto Euclides, IMPA, 1996.

- [18] Seymour Lipschutz, Álgebra Linear, Terceira Edição, Makron Books, 1994.
- [19] LUENBERGER, D. D. (1973), Introduction to Linear and Nonlinear Programming, Addison—Wesley.
- [20] Patricia R. de Peláez, Rosa F. Arbeláez y Luz E. M. Sierra, *Algebra Lineal con Aplicaciones*, Universidad Nacional de Colombia, 1997.
- [21] Gilbert Strang, *Linear Algebra and its Applications*, Third Edition, Harcourt Brace Jovanovich Publishers, 1988.
- [22] David S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, 1991.