Семинар 8

Кратчайшие пути в графах с отрицательными весами

Пример, когда алгоритм Дейкстры не работает

Присваиваем вершинам метки $\min \{v_m, v_{m-1} + l(v_{m-1}, v_m)\}$ (как в алгоритме Дейкстры), но можем их корректировать. Нет разбиения на X и V-X.

Максимальная длина пути (по количеству пройденных ребер) |V|-1. Сделаем такое количество проходов, корректируя метки.

Если перебирать ребра в порядке SA, SB, BA, то за 1 проход найдем расстояния до всех вершин. (A(3), B(4), A(2)). Но обычно хороший порядок мы не знаем. Пусть порядок такой:

BA, SB, SA.

Имеем 3-1=2 итерации:

итерации Вершина	0	1	2
S	0	0	0
В	∞	4	4
A	∞	3	2

Отрицательный цикл

Если в графе есть отрицательный цикл, то кратчайший путь определить невозможно.

Если на итерации с номером |V| какие-либо метки продолжают уменьшаться, значит в графе

есть отрицательный цикл.

итерации Вершина	0	1	2	3	4	5
S	0	0	0	0	0	0
v	8	10	10	10	10	8
x	8					
W	8					
и	8					

Алгоритм Беллмана-Форда

```
Вход: орграф G=(V, E), \forall x \ l(x) \in \mathbb{R}, s \in V
Выход: \forall x \in V \ len(v) = dist(s, v) либо объявление, что граф содержит отрицательный цикл
for каждой v \neq s do
 len(v) := \infty; prev[v] := nil
 len[s] := 0
for i:=1 to |V|-1 do // перебрать |V|-1 раз все ребра
 for каждого ребра (u, v) \in E
  if len[v] > len[u] + l_{uv} then
     len[v] := len[u] + l_{uv}
     prev[v] \coloneqq u
for каждого ребра (u, v) \in E
   if len[v] > len[u] + l_{uv} then
     return false // есть цикл отрицательной длины
return true
Время?
```

Пример.

итерации Вершина	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
A	8	10s	10s	5 _F	5 _F	5 _F	5 _F	5 _F
В	8	∞	~	10 _E	6 <mark>E</mark>	5 <mark>E</mark>	5 <mark>E</mark>	5 <mark>E</mark>
С	8							
D	8							
E	8							
F	8							
G	8							

В каких графах наверняка нет циклов отрицательного веса?

- Графы без отрицательных ребер -> алгоритм Дейкстры
- Ациклические графы

Применим к такому графу топологическую сортировку (DFS) и прономеруем вершины. Пройдемся по вершинам в найденном порядке, просматривая (по одному разу) исходящие ребра и обновляя оценку $len[v_m] = \min \{len[v_m], \ len[v_{m-1}] + l(v_{m-1}, v_m)\}$. Т.к. граф топологически отсортирован, на шаге m всем вершинам с номером, меньшим m, уже присвоены значения меток.

Поиск в глубину

вершина	А	В	С	D	Е	F	G	Н
№ в топ.сорт							8	

Кратчайшие пути

№вершины <i>т</i>	1	2	3	4	5	6	7	8
$len[v_m]$	0	1	2	•	•			

Время?

Бинарные деревья поиска

Ключ левого потомка меньше ключа объекта.

Ключ правого потомка не меньше ключа объекта.

Сбалансированные деревья поиска и отсортированные массивы: поддерживаемые операции и их время выполнения, где *п* обозначает текущее число объектов, хранящихся в структуре данных

Операция	Отсортированный массив	Сбалансированное дерево поиска
Отыскать	$O(\log n)$	$O(\log n)$
Минимум	O(1)	$O(\log n)$
Максимум	O(1)	$O(\log n)$
Предшественник	$O(\log n)$	$O(\log n)$
Преемник	$O(\log n)$	$O(\log n)$
Вывести в отсортирован- ном порядке	O(n)	O(n)
Выбрать	O(1)	$O(\log n)$
Взять ранг	$O(\log n)$	$O(\log n)$
Вставить	O(n)	$O(\log n)$
Удалить	O(n)	$O(\log n)$

Задание

Начертить бинарные деревья поиска с высотой 2, 3, 4, 5, 6 для множества ключей {1, 4, 5, 10 16, 17, 21}

Обходы дерева: прямой, симметричный и обратный

