1. An n-p-n transistor at room temperature has its emitter disconnected. A voltage of 5 V is applied between collector and base. With collector positive, a current of 0.2 μ A flows. When the base is disconnected and the same voltage is applied between collector and emitter, the current is found to be 20 μ A. Find α , IE and IB when collector current is 1 mA.

2. Determine VCB in the transistor circuit shown in Fig. (i). The transistor is of silicon and has $\beta = 150$.

3. For the circuit shown in Fig. 30, find the transistor power dissipation. Assume that $\beta = 200$.

4. Calculate the emitter current in the voltage divider circuit shown in Fig. find the value of I_E , V_{CE} and collector potential V_C .

5. An npn transistor circuit as shown in Fig. has α = 0.985 and V_{BE} = 0.3V. If V_{CC} =16V, calculate R1 and R_C to place Q point at I_C = 2mA, V_{CE} = 6 volts.

