Some useful inequalities

- O | $Sin \theta$ | ≤ 101 for all $\theta \in \mathbb{R}$ Reason If $101 \geq 1$, then $|Sin \theta| \leq 1 \leq 101$. If $|\theta| < 1$, then draw $\triangle AOB$ with OA = OB = 1 and $\triangle AOB = 20$.

 B $AB = 2 Sin \theta \leq \widehat{AB} = 2\theta$.
 - 2 $\forall a,b \in \mathbb{R}$, $|\sin a \sin b| \le |a b|$ and $|\cos a \cos b| \le |a b|$. Reason $|\sin a - \sin b| = |2 \sin \frac{a - b}{2} \cos \frac{a + b}{2}| \le 2|\sin \frac{a - b}{2}| \le 2|\frac{a - b}{2}| + a - b|$. $|\cos a - \cos b| = |\sin(\frac{\pi}{2} - a) - \sin(\frac{\pi}{2} - b)| \le |(\frac{\pi}{2} - a) - (\frac{\pi}{2} - b)| = |a - b|$.
 - If a,b > 0 and $x \in (0,1]$, then $|a^{x}-b^{x}| \leq |a-b|^{x}$. (In particular, $|\sqrt{a}-\sqrt{b}| \leq \sqrt{|a-b|}$ for n=2,3,4,...). Reason. In case a>b, let $c=\frac{b}{a}$, then 0< c<1. So $c^{1-x} \leq 1$ $\Rightarrow c \leq c^{x} \Rightarrow c-c^{x} \leq 0$. Also 0<1-c<1. So $1-c \leq (1-c)^{x}$. Adding (x) and (xx), $1-c^{x} \leq (1-c)^{x}$. Multiplying by a^{x} , we get $a^{x}-b^{x} \leq (a-b)^{x}$. The case b>a is smilar and case a=b is obvious.
 - $\Theta \forall x \geq 0, \quad \ln(1+x) \leq x$ Reason $\ln(1+x) = \int_{1}^{1+x} \pm dt \leq \int_{1}^{1+x} 1 dt = x.$