

A Level · OCR · Physics

Structured Questions

The Nuclear Atom

Alpha Particle Scattering Experiment / Atomic Structure / AZX Notation & Isotopes / The Strong Nuclear Force / Nuclear Radius & Density

Medium (1 question) /7 Hard (1 question) /15 122 **Total Marks**

Scan here to return to the course

or visit savemyexams.com

Medium Questions

1 (a)	Describe the nature of the <i>strong nuclear force</i> .
	[2]
	(2 marks)
	(2 marks)
(b)	i) Name a hadron found in the nucleus of an atom and state its quark combination.
	name of hadron: quark combination: [1]
	ii) Write a decay equation in terms of a quark model for beta-minus decay.
	[2]
	(3 marks)
(c)	The radius of a nucleus is directly proportional to $A\frac{1}{3}$, where A is the nucleon number. The mass of a proton and a neutron are similar. Explain why the mean density of all nuclei is about the same.
	[2]
	(2 marks)

Hard Questions

1 (a)	In the 1800s, the atom was considered to be a fundamental particle. It was an indivisible particle of matter. Modern physics shows that this idea is not correct.
	Describe the fundamental particles within an atom of carbon-14 $\binom{14}{6}$ C).
	In your answer state the composition of the hadrons.
	[4]
	(4 marks)
(b)	The half-life of the isotope carbon-14 is 5700 years (y).
	i) Show that the decay constant λ for this isotope is about 1.2 \times $10^{-4}y^{-1}.$
	[1]
	ii) Carbon-dating is a technique used to date an ancient wooden axe.
	The ratio of carbon-14 to carbon-12 in the axe material is 78% of the current ratio of carbon-14 to carbon-12 in a living tree.
	Calculate the age in years of the wooden axe.
	age = y [3]
	iii) State one assumption made in the calculation in (ii).
	[1]

(5 marks)

(c) A graph of the density ρ of a nucleus against distance d from the centre of the nucleus is shown below.

The radius of the nucleus r is taken as the distance d where the density is half the maximum density.

Fig. 21.1 shows the density ρ variation for three different nuclei and **Table 21.1** shows the nucleon number A of each nucleus.

Fig. 21.1

Nucleus	Nucleon number A
Al-27	27
Mo-96	96
Hg-200	200

Table 21.1

Use the information provided opposite to

- describe how the density of a nucleus depends on its nucleon number A
- show numerically that $r \propto A^{rac{1}{3}}$
- estimate the mean density of the nuclei.

[6	5]
(6 marks	