Basics of Algorithms Analysis CS 2c03

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Measuring the Running Time of a Program I

- The running time of a program depends on factors such as:
 - 1 the input to the program,
 - 2 the quality of code generated by the compiler used to create the object program,
 - 3 the nature and speed of the instructions on the machine used to execute the program, and
 - the time complexity of the algorithm underlying the program.
- The fact that running time depends on the input tells us that the running time of a program should be defined as a function of the input.
- Often, the running time depends not on the exact input but only on the "size" of the input.

Measuring the Running Time of a Program II

- It is customary, then, to talk of T(n), the running time of a program on inputs of size n. For example, some program may have a running time $T(n) = cn^2$, where c is a constant.
- The units of T(n) will be left unspecified, but we can think of T(n) as being the number of instructions executed on an idealized computer.
- For many programs, the running time is really a function of the particular input, and not just of the input size.
- In that case we define T(n) to be **the worst case** running time, that is, the maximum, over all inputs of size n, of the running time on that input.
- We also consider T_{avg}(n), the average, over all inputs of size n, of the running time on that input.
- While $T_{avg}(n)$ appears a fairer measure, it is often fallacious to assume that all inputs are equally likely.

Measuring the Running Time of a Program III

- In practice, the average running time is often much harder to determine than the worst-case running time, both because the analysis becomes mathematically intractable and because the notion of "average" input frequently has no obvious meaning.
- Thus, we shall use worst-case running time as the principal measure of time complexity, although we shall mention average-case complexity wherever we can do so meaningfully.

Cost of Basic Operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds †
variable declaration	int a	c_1
assignment statement	a = b	C2
integer compare	a < b	<i>c</i> ₃
array element access	a[i]	c_4
array length	a.length	C5
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	c7 N 2

Caveat. Non-primitive operations often take more than constant time.

• We will assume that for basic operations T(n) = c.

Big-Oh notation

Definition (Upper bounds)

T(n) is O(f(n)) if there exist constants c>0 and $n_0\geq 0$ such that $T(n)\leq c\cdot f(n)$ for all $n\geq n_0$.

Example

$$T(n) = 32n^2 + 17n + 1.$$

- T(n) is $O(n^2)$. \leftarrow choose c = 50, $n_0 = 1$
- T(n) is also $O(n^3)$.
- T(n) is neither O(n) nor $O(n \log n)$.

Typical usage. Insertion makes $O(n^2)$ compares to sort n elements.

Notational abuses

• Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$.

Example

Consider $f(n) = 5n^3$ and $g(n) = 3n^2$.

- We have $f(n) = O(n^3) = g(n)$.
 - Thus, f(n) = g(n).
- **Domain.** The domain of f(n) is typically the natural numbers $\{0, 1, 2, \dots\}$.
 - Sometimes we restrict to a subset of the natural numbers.
 Other times we extend to the reals.
- Nonnegative functions. When using big-Oh notation, we assume that the functions involved are (asymptotically) nonnegative.
- Bottom line. OK to abuse notation; not OK to misuse it.

Big-Omega notation

Definition (Lower bounds)

T(n) is $\Omega(f(n))$ if there exist constants c>0 and $n_0\geq 0$ such that

 $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$.

Example

$$T(n) = 32n^2 + 17n + 1.$$

- T(n) is both $\Omega(n^2)$ and $\Omega(n)$. \leftarrow choose $c = 32, n_0 = 1$
- T(n) is also $O(n^3)$.
- T(n) is neither $\Omega(n^3)$ nor $\Omega(n^3 \log n)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case. We will discuss details later.

Big-Theta notation

Definition (Tight bounds)

T(n) is $\Theta(f(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(c) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

Example

 $T(n) = 32n^2 + 17n + 1.$

- T(n) is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
- T(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Omega(n \log n)$ compares to sort n elements. We will discuss details later.

Useful facts

Proposition

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$$
, then $f(n)$ is $\Theta(g(n))$.

Proof.

By definition of the limit, there exists n_0 such such that for all $n \geq n_0$

$$\frac{1}{2}c < \frac{f(n)}{g(n)} < 2c$$

- Thus, $f(n) \leq 2cg(n)$ for all $n \geq n_0$, which implies f(n) is O(g(n)).
- $f(n) \ge \frac{1}{2}cg(n)$ for all $n \ge n_0$, which implies f(n) is $\Omega(g(n))$.

Proposition

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n)$ is $O(g(n))$.

Tilde Notation (Textbook)

In the textbook, if f(n) is $\Theta(g(n))$ we will write

$$f(n) \sim g(n)$$
.

Formally:

Definition

$$f(x) \sim g(x) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.$$

Asymptotic bounds for some common functions

• Polynomials. Let $T(n) = a_0 + a_1 n + \ldots + a_d n^d$ with $a_d > 0$. Then, T(n) is $\Theta(n^d)$. Proof. $\lim_{n \to \infty} \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} = a_d > 0$.

• Logarithms. Theta($\log_a n$) is $\Theta(\log_b n)$ for any constants a, b > 0.

Proof. Since $\log_a n = \frac{\log_n n}{\log_b a}$.

• Exponentials and polynomials. For every r > 1 and every d > 0, n^d is $O(r^n)$.

Proof. Since $\lim_{n \to \infty} \frac{n^d}{r^d} = 0$.

Big-Oh notation with multiple variables

Definition (Upper bounds)

T(m,n) is O(f(m,n)) if there exist constants c>0, $m^0\geq 0$, and $n_0\geq 0$ such that $T(m,n)\leq c\cdot f(m,n)$ for all $n\geq n_0$ and $m\geq m_0$.

Example

 $T(m,n) = 32mn^2 + 17mn + 32n^3.$

- T(m, n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- T(m, n) is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. Breadth-first search takes O(m+n) time to find the shortest path from s to t in a digraph. We will discuss details later.

Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Typical O(...): (notation $log \ n = log_2 n$)

- $O(\log n)$ $O(\log(\log(n))...$
- O(n)
- O(n log n)
- \circ O(n^2) O(n^k)
- \circ O(2ⁿ) O(k^n)

Classification:

$$O(\log n)$$

 $O(n)$
 $O(n \log n)$ desired

 $O(n^k)$: may be acceptable for small k

 $O(2^n)$: UNACCEPTABLE

Fact

For every $k \ge 0$ and every $\alpha > 1$, there exists n_0 such that for every $n > n_0$:

$$n^k < \alpha^n$$

Another classification:

 $O(n^k)$: polynomial, i.e. **might be OK**

 $O(\alpha^n)$: non-polynomial, i.e. **usually BAD**

Helpful Results

Lemma

- $O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max(f(n), g(n)))$
- O(f(n))O(g(n)) = O(f(n)g(n))
 - for each polynomial $f(n) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, where $a_n \neq 0$, we have:

$$O(f(n)) = O(x^n)$$

- $O(2^n + n^{10000000000}) = O(2^n)$
- $O(n^{10000000000}) = O(2^n)$
- $O(2^n) \neq O(n^k)$ for any k
- Since $log_b n = \frac{1}{log b} log n$, for any b we have

$$O(\log_b n) = O(\log n)$$

Some Examples I

Q. How many instructions as a function of input size N?

$$\begin{array}{c} \text{int count} = 0; \\ \text{for (int i = 0; i < N; i++)} \\ \text{for (int j = i+1; j < N; j++)} \\ \text{if (a[i] + a[j] == 0)} \\ \text{count++;} \\ \\ \text{Pf. [n even]} \\ \end{array}$$

$$0+1+2+\ldots+(N-1) \ = \ \frac{1}{2}N^2 \ - \ \frac{1}{2}N$$
 half of square diagonal

• $T(n) = \Theta(N^2) = \sim N^2$ (loose loops counting).

Some Examples II

Q. Approximately how many array accesses as a function of input size N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0) "inner loop"
count++;
$$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!}$$

• $T(n) = \Theta(N^3) = \sim N^3$ (loose loops counting).

Binary Search

- Goal. Given a sorted array and a key, find index of the key in the array?
- Binary search. Compare key against middle entry.
 - Too small, go left.
 - Too big, go right.
 - Equal, found.

See Binary Seach Demo.

Binary Search: Time Complexity

Proposition

Binary search uses at most $1 + \log N$ key compares to search in a sorted array of size N, i.e. it has time complexity $T(N) = O(\log N)$.

Proof: Sketch.

Binary search recurrence: $T(N) \le T(N/2) + 1$ for N > 1, with T(1) = 1. Assume N is a power of 2.

$$T(N) \leq T(N/2) + 1$$
 [given] [apply recurrence to first term]
$$\leq T(N/8) + \underbrace{1+1+1}_{3=\log 8}$$
 [apply recurrence to second term]

:
$$\leq T(N/N) + \underbrace{1+1+\ldots+1}_{\log N}$$
 [stop applying, $T(1)=1$] $= 1 + \log N = O(\log N)$.

Binary Search: Java

```
public static int binarySearch(int[] a, int key)
   int lo = 0, hi = a.length-1;
   while (lo <= hi)
       int mid = lo + (hi - lo) / 2;
       if (\text{key} < a[\text{mid}]) hi = mid - 1;
       else if (key > a[mid]) lo = mid + 1;
                                                            one "3-way compare"
       else return mid;
  return -1;
```

Types of Analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Summary of Complexity Measurements

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2}N^{2}$ $10 N^{2}$ $5 N^{2} + 22 N \log N + 3N$	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	10 N ² 100 N 22 N log N+3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{\% N^2}{N^5}$ $N^3 + 22 N \log N + 3 N$	develop lower bounds

• The most popular and the most useful is **Big-Oh**.