

Виртуальный коуч

Junior DS Ильназ Хабиров

О проекте

1 Тема:

Проектирование виртуального коуча на основе модели, обнаруживающей ключевые точки на теле человека.

- 3 Факторы актуальности:
 - ❖ Популярность индивидуальных занятий без посещения зала.
 - **❖** Высокий спрос на профессиональных тренеров.
 - **•** Дух времени умных технологий.

• 2 Цель:

Приложение, помогающее людям выполнять физические упражнения без вреда здоровью.

Планирование

- 1. Исследование и анализ Чтение научных статей и материалов Сбор информации о доступных данных
- 2. Подготовка данных Сбор и очистка Аннотация и разделение данных
- 3. Выбор и настройка модели Выбор архитектуры Настройка гиперпараметров
- 4. Обучение модели Обучение, валидация и тестирование Оптимизация модели
- 5. Инференс, оценка и доработка модели Разработка и тестирование инференса Доработка модели

Продолжительность

каждого из этапов может быть от двух до пяти

Сроки

Общая продолжительность этапа разработки модели: 12-20 недель

Технические ресурсы

BM с хорошими вычислительными компонентами: CPU, GPU, SSD; OC Linux Доступ к облачным платформам: AWS, Google Cloud, Azure
Высокоскоростной интернет

Источники данных

- 1. Популярные аннотированные наборы данных: COCO (Common Objects in Context) MPII Human Pose Dataset LSP (Leeds Sports Pose)
- 2. Синтетические данные Simulated Environments
- 3. Видеозаписи Спортивные и фитнес-видео
- 4. Партнёрства с фитнес-центрами и тренерами

Хранение данных

Форматы хранения COCO JSON, MPII MAT, или CSV

AWS S3, Google Cloud Storage MongoDB, PostgreSQL

COCO KeyPoints

MPII KeyPoints

, ,	
	PostgreSQL
	mongoDB

COCO output format	MPII output format	
Nose - 0	Head - 0	
Neck - 1	Neck - 1	
Right Shoulder - 2	Right Shoulder - 2	
Right Elbow - 3	Right Elbow - 3	
Right Wrist - 4	Right Wrist - 4	
Left Shoulder - 5	Left Shoulder - 5	
Left Elbow - 6	Left Elbow - 6	
Left Wrist - 7	Left Wrist - 7	
Right Hip - 8	Right Hip - 8	
Right Knee - 9	Right Knee - 9	
Right Ankle - 10	Right Ankle - 10	
Left Hip - 11	Left Hip - 11	
Left Knee - 12	Left Knee - 12	
Left Ankle - 13	Left Ankle - 13	
Right Eye - 14	Chest - 14	
Left Eye - 15		
Right Ear - 16		
Left Ear - 17		
Background - 18	Background - 15	

Алгоритмы ИИ

O PyTorch

keypointrcnn_resnet50_fpn

Предобученная модель из torchvision, оснванная на сети R-CNN, пригодная для употребления в качестве baseline-решения.

Super Gradients™

2 YOLOv11-pose

Новая линейка моделей от Ultralytics, позволяющих заметно увеличить скорость инференса по сравнению с сетями R-CNN.

3 YOLO-NAS-POSE

Улучшенная YOLO от Deci, собранная с помощью AutoNAC, автоматизированной технологии построения нейронной архитектуры.

4 MMPose и OpenPose

Ещё два популярных набора keypoints detection инструментов, предоставляющих SOTA модели.

O модели RTMO (<u>arxiv.org</u>)

Неаd выводит прогнозы для Score, BBox, координат Крt и видимости для каждой ячейки сетки. DCC преобразует характеристики позы в К пар 1D тепловых карт для горизонтальной и вертикальной осей, охватывая расширенную область в 1,25 раза больше размера ограничивающих прямоугольников. Из этих тепловых карт точно извлекаются координаты Крt.

Метрики

 Во время обучения модели для контроля можно использовать метрику Object Keypoint Similarity (OKS)

 Для сравнения поз людей по полученным ключевым точкам можно использовать косинусную схожесть векторов

Procrustes analysis

default:

transformed:

Пример сравнение поз танцующих девушек на видео (певый кадр)

Frame ID: 0 Cosine Similarity: 0.9584

