







Tiago A. Alm

#### Formato atributo-valor

- ☑ Representação de conjunto de dados
- ☑ Cada objeto corresponde a uma ocorrência dos dados

|                                         | Sintomas                |             |     |   |         |        |  |  |  |  |
|-----------------------------------------|-------------------------|-------------|-----|---|---------|--------|--|--|--|--|
|                                         |                         | temperatura | dor |   | pressão | doente |  |  |  |  |
| (                                       | paciente <sub>1</sub>   |             | sim |   | 12.7    | Sim    |  |  |  |  |
|                                         | paciente <sub>2</sub>   | 36ºC        | não |   | 12.7    | Não    |  |  |  |  |
| Objetos <                               | )                       |             |     | : |         |        |  |  |  |  |
|                                         |                         |             |     | • |         |        |  |  |  |  |
| V.                                      | ∟ paciente <sub>m</sub> | 40∘C        | não |   | 14      | Sim    |  |  |  |  |
| *************************************** |                         |             |     |   |         |        |  |  |  |  |

## Conjunto de dados

 $\mathbf{V}$  Pode ser representado por uma matriz de objetos  $\mathbf{X}_{m \times n}$ 

<u>✓</u> *m* = número de amostras

 $\mathbf{v}$  = número de atributos (excluindo atributo-meta)

☑ Dimensionalidade do espaço de objetos (de entradas/de atributos)

☑ Elemento  $x_i^{(i)}$  (ou  $x_{ii}$ )  $\Rightarrow$  valor do j-ésimo atributo para o objeto i

#### Formato atributo-valor

Cada objeto é descrito por um conjunto de atributos de entrada

✓ Vetor de características

☑ Cada atributo está associado a uma propriedade do objeto



# Conjunto de dados: visualização gráfica

Representação de conjunto de dados com dois atributos



Tinne A Alm

### Análise de dados

- Análise das características de um conjunto de dados
- Muitas podem ser obtidas por fórmulas estatísticas simples
- ☑ Estatística descritiva
- Manalise visual também é importante



# Exploração de dados

#### Frequência

- Proporção de vezes que um atributo assume um dado valor
- Aplicável a valores numéricos e simbólicos
- Ex.: 40% dos pacientes têm febre

#### Localização, dispersão e distribuição

- Diferem para dados
- univariados e multivariados
- Maioria dos dados em AM é multivariado, mas análises em cada atributo podem fornecer informações valiosas
- Geralmente aplicados a valores numéricos

# Exploração de dados

- Estatística descritiva: resumo quantitativo das principais características de um conjunto de dados
- ✓ Muitas medidas podem ser calculadas rapidamente
- ☑ Captura de informações como:
- Frequência
- ☑ Localização ou tendência central
- ☑ Dispersão ou espalhamento
- Distribuição ou formato

Continuos funtos

Continuos funtos

Continuos funtos

Continuos funtos

Tradicios Foner

Informações obtidas podem ajudar na seleção de técnicas apropriadas de pré-processamento e aprendizado

# Frequência

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Frequência: 25% das manchas são médias

Tiago A. Al

nugore

Dados univariados

☑ Objetos com apenas um atributo
☑ Conjunto com m objetos x = {x¹, x², ..., x<sup>m</sup>}

Observação: termo conjunto não tem o mesmo significado do usado em teoria dos conjuntos Em um conjunto de dados, o mesmo valor pode aparecer mais de uma vez em um atributo







Mediana

Passos:

☑Calcular a equação:

mediana(**x**) = 
$$\begin{cases} \frac{1}{2} (x^{r} + x^{r+1}) & \text{se } m \text{ for par } (m = 2r) \\ x^{r+1} & \text{se } m \text{ for impar } (m = 2r + 1) \end{cases}$$

Facilita observar se distribuição é assimétrica ou se existem outliers



# 



## Média e mediana

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | M    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média: 26,1 Mediana: 21.5

#### Média e mediana

☑Ex. conjunto de dados hospital

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média: 5 Mediana: 2.5

### Média truncada

- ☑ Descarta elementos extremos da sequência ordenada de valores
- Minimizar problemas da média
- ✓ Necessário definir porcentagem
- Passos:
- ☑ Definir porcentagem p
- ✓ Ordenar valores
- ☑Descartar (p/2)% de valores de cada extremo
- ☑ Calcular a média dos exemplos restantes



Média truncada

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | M    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média: 26,1 Mediana: 21,5 Média truncada (p = 25%): 23,7

#### Média truncada

| ld.  | Nome    | ldade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  |       | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média: 5 Mediana: 2,5 Média truncada (p = 25%): 3,2

Tiago A. Al

nugorere

#### Exercício

Dado o conjunto de dados {1, 2, 3, 4, 5, 80}, calcular:

**Média** 

✓ Mediana

✓ Média truncada com p = 33%

#### Exercício

✓ Dado o conjunto de dados {1, 2, 3, 4, 5, 80}, calcular:

Média: (1+2+3+4+5+80)/6 = 15,8

 $\checkmark$ Média truncada com p = 33%: (2+3+4+5)/4 = 3.5

Quartis e percentis

Mediana divide dados ordenados ao meio

☑ Quartis e percentis usam pontos de divisão diferentes

#### Quartis

- · Divide em quartos
- 1º quartil (Q1) ⇒ valor que tem 25% dos demais valores abaixo dele
- 2º quartil = mediana

#### Percentil

- Para p entre 0 e 100
- $p^{\circ}$  percentil =  $Pp \Rightarrow x_i$  tal que p% dos valores observados são menores do que  $x_i$
- P25 = Q1
- P50 = Q2 = mediana

**Percentil** 

Igoritmo para cálculo do percentil

Entrada: m valores e percentil p Saída: valor do percentil

✓ Ordenar os m valores de maneira crescente

Calcular k = m \* p

Se k não for inteiro então

- Arredondar para o próximo inteiro
- ☑ Retornar o valor dessa posição na sequência

☑ Retornar média entre os valores nas posições k e k+1

# Quartil e percentil

☑Ex. conjunto de dados hospital

| اما  | Mama    | ماممام | C    | Dana | Manahaa  | T     | # 14   | F-4  | Diamatation |
|------|---------|--------|------|------|----------|-------|--------|------|-------------|
| ld.  | Nome    | idade  | Sexo | Peso | wanchas  | remp. | # int. | ⊏Sτ. | Diagnóstico |
| 4201 | João    | 28     | M    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18     | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49     | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18     | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21     | F    | 52   | Médias   | 37,6  | 1      | PΕ   | Saudável    |
| 2301 | Ana     | 22     | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19     | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34     | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média: 26,1 Mediana: 21,5 Média truncada (p= 25%): 23,7 Q1: 18,5; Q2: 21,5; Q3: 31 P40: 21

# Quartil e percentil

**☑** Ex. conjunto de dados hospital

| ld.  | Nome    | ldade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Média:5 Mediana: 2,5 Média truncada (p= 25%): 3,2 Q1: 2; Q2: 2,5; Q3: 5 P40: 2













Intervalo

☑Ex. conjunto de dados hospital

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Intervalo: 19

# Variância e desvio padrão

Mais utilizadas

variância(
$$\mathbf{x}$$
) =  $\frac{1}{m-1} \sum_{i=1}^{m} (x^i - \bar{x})^2$ 

desvio padrão( $\mathbf{x}$ ) =  $\sqrt{\text{variância}(\mathbf{x})}$ 



Problema: também são distorcidas pela presença de outliers

# Desvio padrão

**☑**Ex. conjunto de dados hospital

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | M    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Intervalo: 31 Desvio padrão: 10,8

# Desvio padrão

| ld.  | Nome    | Idade | Sexo | Peso | Manchas  | Temp. | # Int. | Est. | Diagnóstico |
|------|---------|-------|------|------|----------|-------|--------|------|-------------|
| 4201 | João    | 28    | М    | 79   | Grandes  | 38,0  | 2      | SP   | Doente      |
| 3217 | Maria   | 18    | F    | 67   | Pequenas | 39,5  | 4      | MG   | Doente      |
| 4039 | Luiz    | 49    | M    | 92   | Grandes  | 38,0  | 2      | RS   | Saudável    |
| 1920 | José    | 18    | M    | 43   | Grandes  | 38,5  | 20     | MG   | Doente      |
| 4340 | Cláudia | 21    | F    | 52   | Médias   | 37,6  | 1      | PE   | Saudável    |
| 2301 | Ana     | 22    | F    | 72   | Pequenas | 38,0  | 3      | RJ   | Doente      |
| 1322 | Marta   | 19    | F    | 87   | Grandes  | 39,0  | 6      | AM   | Doente      |
| 3027 | Paulo   | 34    | M    | 67   | Médias   | 38,4  | 2      | GO   | Saudável    |

Intervalo: 19 Desvio padrão: 6,3

# Histograma

- Forma gráfica para visualizar distribuição: histograma
- ✓ Valores categóricos: cada valor é uma cesta
- Valores numéricos: divisão em intervalos contíguos de mesmo tamanho e cada intervalo é uma cesta
- Para cada cesta, desenha uma barra com altura proporcional ao número de elementos na cesta



# Dados multivariados

Possuem mais de um atributo de entrada

☑Ex. conjuntos de dados hospital

Medidas de localidade e espalhamento podem ser calculadas para cada atributo separadamente

$$\overline{\mathbf{x}} = (\overline{x}^1, ..., \overline{x}^m)$$

# Gráfico de pizza

- Outra forma gráfica de visualizar distribuição de um conjunto de valores
- Para quantitativos, deve agrupar valores em cestas
- Cada valor ocupa fatia com área proporcional ao número de vezes que aparece no conjunto de dados



### **Dados multivariados**

- Permitem análises da relação entre dois ou mais atributos
- Para variáveis contínuas, espalhamento é melhor capturado por uma matriz de covariância

☑ Cada elemento é covariância entre dois atributos

covariância(
$$\mathbf{x}^i, \mathbf{x}^j$$
) =  $\sum_{k=1}^{n} (x_k^i - \overline{x}^i)(x_k^j - \overline{x}^j)$ 

Observação: covariância(xi, xi) = variância(xi)

Tinne A

Covariância

Covariância entre dois atributos mede grau com que variam juntos

Valores de covariância entre dois atributos xi e xi:

- Próximo de 0: atributos não têm um relacionamento linear
- > 0 (positiva): atributos são diretamente relacionados
- < 0 (negativa): atributos são inversamente relacionados</li>

✓ Valor depende da magnitude dos atributos

☑ Não é possível avaliar relacionamento de atributos apenas por covariância

# Correlação

✓ Indicação mais clara da força da relação linear entre dois atributos

✓ Matriz de correlação: correlação entre todos pares de atributos

 $\begin{array}{c} \text{correlação}(\textbf{x}^{i},\ \textbf{x}^{j}) = & \text{covariância}(\textbf{x}^{i},\ \textbf{x}^{j}) \\ \hline \text{desv\_pad}(\textbf{x}^{i}) * \text{desv\_pad}(\textbf{x}^{j}) \end{array}$ 

Observação: valores variam de -1 (correlação negativa máxima) a +1 (correlação positiva máxima) e correlação(xi, xi) = 1

Covariância vs Correlação

Iris Versicolor

Iris Virginica

Covariância

Iris Versicolor

Iris Virginica

Iris Virginica

Iris Virginica

Covariância

Iris Versicolor

Iris Virginica

Iris Virginica

Iris Virginica

Covariância

Iris Virginica

Iris Virg



