Concepts of continuity

Tatsuji Kawai

Japan Advanced Institute of Science and Technology

25 September 2019

In 1927, Brouwer announced the following result.

Theorem

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

In 1927, Brouwer announced the following result.

Theorem

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

Brouwer's argument rests on two assumptions:

Continuity principle

Every function $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is continuous.

Fan theorem

Every bar $B \subseteq T$ of a fan T is uniform.

Fan theorem

A fan is a decidable subset $T \subseteq \mathbb{N}^*$ which is a spread, i.e.

- $1 \langle \rangle \in T$,
- **2** $a \in T \leftrightarrow \exists i \in \mathbb{N} (a * \langle i \rangle \in T),$

and finitely branching

3
$$\forall a \in T \exists m \in \mathbb{N} \forall i \in \mathbb{N} \ (a * \langle i \rangle \in T \to i \leq m).$$

For $\alpha \in \mathbb{N}^{\mathbb{N}}$, write

$$\alpha \in T \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall n \in \mathbb{N} (\overline{\alpha}n \in T).$$

A subset $B \subseteq T$ is a **bar** of T if

$$\forall \alpha \in T \exists n \in \mathbb{N} B(\overline{\alpha}n).$$

A bar B is uniform if

$$\exists m \in \mathbb{N} \forall \alpha \in T \exists n \leq m B(\overline{\alpha}n).$$

Fan theorem

Every bar $B \subseteq T$ of a fan T is uniform.

Fan theorem

- For $a, b \in X^*$ define $a \le b \stackrel{\text{def}}{\Longleftrightarrow}$ "b is an initial segment of a".
- ► For $B \subseteq X^*$ write $\downarrow B \stackrel{\mathsf{def}}{=} \{a \in X^* \mid \exists b \in B \, (a \leq b)\}$.

Proposition

The following are equivalent:

- **1.** (Fan theorem) Every bar $B \subseteq T$ of a fan T is uniform.
- **2.** (Fan theorem for $\{0,1\}^{\mathbb{N}}$) Every bar $B \subseteq \{0,1\}^*$ is uniform.
- **3.** If $B \subseteq \{0,1\}^*$ is a bar and $Q \subseteq \{0,1\}^*$ is such that
 - $ightharpoonup \downarrow B \subseteq Q$,
 - $\forall a \in \{0,1\}^* \ (a*\langle 0 \rangle \in Q \ \& \ a*\langle 1 \rangle \in Q \rightarrow a \in Q),$ then $\langle \cdot \rangle \in Q$.
- **4.** $B \subseteq \{0,1\}^*$ is a bar if and only if $\langle \ \rangle \lhd B$, where the relation $a \lhd B$ is inductively defined by

$$\frac{a \in \downarrow B}{a \lhd B}, \qquad \frac{a \leq b \lhd B}{a \lhd B}, \qquad \frac{a * \langle 0 \rangle \lhd B \quad a * \langle 1 \rangle \lhd B}{a \lhd B}.$$

Continuity principle

Every function $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is continuous.

Fan theorem

Every bar $B \subseteq T$ of a fan T is uniform.

Theorem (Continuity principle + Fan theorem)

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

Let $f \colon T \to \mathbb{N}$ be a function on a fan $T \subseteq \mathbb{N}^*$:

► f is continuous if

$$\forall \alpha \in T \exists n \in \mathbb{N} \forall \beta \in T \left(\overline{\alpha} n = \overline{\beta} n \to f(\alpha) = f(\beta) \right).$$

► f is uniformly continuous if

$$\exists n \in \mathbb{N} \forall \alpha, \beta \in \{0,1\}^{\mathbb{N}} \left(\overline{\alpha} n = \overline{\beta} n \to f(\alpha) = f(\beta) \right).$$

Lemma (Continuity principle + Fan theorem)

Every function $f : T \to \mathbb{N}$ on a fan T is uniformly continuous.

Let $f \colon T \to \mathbb{N}$ be a function on a fan $T \subseteq \mathbb{N}^*$:

► f is continuous if

$$\forall \alpha \in T \exists n \in \mathbb{N} \forall \beta \in T \left(\overline{\alpha} n = \overline{\beta} n \to f(\alpha) = f(\beta) \right).$$

► f is uniformly continuous if

$$\exists n \in \mathbb{N} \forall \alpha, \beta \in \{0, 1\}^{\mathbb{N}} \left(\overline{\alpha} n = \overline{\beta} n \to f(\alpha) = f(\beta) \right).$$

Lemma (Continuity principle + Fan theorem)

Every function $f: T \to \mathbb{N}$ on a fan T is uniformly continuous.

Proof.

By the continuity principle, $f\colon T\to \mathbb{N}$ is continuous. Define $B\subseteq T$ by

$$B(a) \stackrel{\mathsf{def}}{=} \forall \alpha, \beta \in T \left(f(a * \alpha) = f(a * \beta) \right),$$

which is a (monotone) bar of T by continuity of f. By the fan theorem, there is $n \in \mathbb{N}$ such that $\forall \alpha \in T B(\overline{\alpha}n)$.

We have a mapping $\Phi \colon \{0,1,2\}^{\mathbb{N}} \to [0,1]$ given by

$$\Phi(\alpha) \stackrel{\mathsf{def}}{=} \langle 2^{-(n+1)} N(\overline{\alpha}n) \rangle_{n \in \mathbb{N}}.$$

with the quotient property:

Theorem

A function $f \colon [0,1] \to \mathbb{R}$ is uniformly continuous if and only if the composition $f \circ \Phi \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{R}$ is uniformly continuous.

We also have a mapping $\Phi_{\mathbb{R}} \colon \mathbb{T}_{\mathbb{R}} \to \mathbb{R}$ with a similar quotient property

Theorem (Continuity principle + Fan theorem)

Every function $f:[0,1] \to \mathbb{R}$ is uniformly continuous.

Proof.

Write $\Psi_{\mathbb{R}} \colon \mathbb{R} \to \mathbb{T}_{\mathbb{R}}$ for the assignment of a path α_x in $\mathbb{T}_{\mathbb{R}}$ to each real number x. Then $x \simeq \Phi_{\mathbb{R}}(\Psi_{\mathbb{R}}(x))$.

8

Theorem (Continuity principle + Fan theorem)

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

Proof.

Write $\Psi_{\mathbb{R}} \colon \mathbb{R} \to \mathbb{T}_{\mathbb{R}}$ for the assignment of a path α_x in $\mathbb{T}_{\mathbb{R}}$ to each real number x. Then $x \simeq \Phi_{\mathbb{R}}(\Psi_{\mathbb{R}}(x))$.

$$\{0,1,2\}^{\mathbb{N}} \xrightarrow{g} \mathbb{T}_{\mathbb{R}}$$

$$\downarrow^{\Phi} \qquad \qquad \Psi_{\mathbb{R}} \left(\begin{array}{c} \Phi_{\mathbb{R}} \end{array} \right)$$

$$[0,1] \xrightarrow{f} \mathbb{R}$$

Put $g = \Psi_{\mathbb{R}} \circ f \circ \Phi \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{T}_{\mathbb{R}}$. Since each projection $g_n = \lambda \alpha . g(\alpha)_n \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous, so is g.

8

Theorem (Continuity principle + Fan theorem)

Every function $f:[0,1] \to \mathbb{R}$ is uniformly continuous.

Proof.

Write $\Psi_{\mathbb{R}} \colon \mathbb{R} \to \mathbb{T}_{\mathbb{R}}$ for the assignment of a path α_x in $\mathbb{T}_{\mathbb{R}}$ to each real number x. Then $x \simeq \Phi_{\mathbb{R}}(\Psi_{\mathbb{R}}(x))$.

Put $g = \Psi_{\mathbb{R}} \circ f \circ \Phi \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{T}_{\mathbb{R}}$. Since each projection $g_n = \lambda \alpha. g(\alpha)_n \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous, so is g.

Thus, $\Phi_{\mathbb{R}} \circ g = f \circ \Phi \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{R}$ is uniformly continuous. Since Φ is a uniform quotient map, f is uniformly continuous.

Question

How essential the fan theorem is to the uniform continuity theorem?

Question

How essential the fan theorem is to the uniform continuity theorem?

With the help of continuity principle (and enough choice),

Every function $f \colon T \to \mathbb{N}$ from a fan T has a **continuous modulus**,

where a **modulus** of $f \colon T \to \mathbb{N}$ is a function $g \colon T \to \mathbb{N}$ such that

$$\forall \alpha, \beta \in T\left(\overline{\alpha}g(\alpha) = \overline{\beta}g(\alpha) \to f(\alpha) = f(\beta)\right).$$

9

Question

How essential the fan theorem is to the uniform continuity theorem?

With the help of continuity principle (and enough choice),

Every function $f \colon T \to \mathbb{N}$ from a fan T has a **continuous modulus**,

where a **modulus** of $f \colon T \to \mathbb{N}$ is a function $g \colon T \to \mathbb{N}$ such that

$$\forall \alpha, \beta \in T \left(\overline{\alpha} g(\alpha) = \overline{\beta} g(\alpha) \to f(\alpha) = f(\beta) \right).$$

Theorem ([Berger, 2005])

The following are equivalent:

- **1.** Every function $f: T \to \mathbb{N}$ from a fan T with a continuous modulus is uniformly continuous.
- **2.** The decidable fan theorem (FAN_D) .

- **1.** Every function $f: T \to \mathbb{N}$ from a fan T with a continuous modulus is uniformly continuous.
- **2.** The decidable fan theorem (FAN_D) .

Proof.

It sufficies to consider $T = \{0, 1\}^*$.

 $(1 \to 2)$ Given a decidable bar B, define $f_B \colon \{0,1\}^{\mathbb{N}} \to \mathbb{N}$ by

$$f_B(\alpha) = \text{the least } n \text{ such that } B(\overline{\alpha}n).$$

Then f_B is continuous modulus of itself, and thus uniformly continuous. The modulus of uniform continuity of f_B gives a bound of B.

 $(2 \to 1)$ Given a continuous modulus $g: \{0,1\}^{\mathbb{N}} \to \mathbb{N}$ of $f: \{0,1\}^{\mathbb{N}} \to \mathbb{N}$, define $B_g \subseteq \{0,1\}^*$ by

$$a \in B_g \stackrel{\mathsf{def}}{\Longleftrightarrow} g(a * 0^\omega) < |a|,$$

which is a bar by continuity of g. By the fan theorem, B_g is uniform.

Moduli of continuity for real-valued functions

Let T be a fan. A **modulus** of $f : T \to \mathbb{R}$ is a sequence $\langle g_n \rangle_{n \in \mathbb{N}}$ of functions $g_n : T \to \mathbb{N}$ such that

$$\forall k \in \mathbb{N} \forall \alpha, \beta \in T \left(\overline{\alpha} g_k(\alpha) = \overline{\beta} g_k(\alpha) \to |f(\alpha) - f(\beta)| \le 2^{-k} \right).$$

A modulus $\langle g_n \rangle_{n \in \mathbb{N}}$ of f is **continuous** if each g_n is continuous.

▶ A modulus of $f: [0,1] \to \mathbb{R}$ is a sequence $\langle g_n \rangle_{n \in \mathbb{N}}$ of functions $g_n: \{0,1,2\}^{\mathbb{N}} \to \mathbb{N}$ such that

$$\forall k \in \mathbb{N} \forall \alpha \in \{0, 1, 2\}^{\mathbb{N}} \, \forall x \in [0, 1] \, \Big(|x - \Phi(\alpha)| \le 2^{-g_k(\alpha)}$$
$$\to |f(x) - f(\Phi(\alpha))| \le 2^{-k} \Big) \,,$$

where $\Phi \colon \{0,1,2\}^{\mathbb{N}} \to [0,1]$ is the quotient map. A modulus $\langle g_n \rangle_{n \in \mathbb{N}}$ of f is **continuous** if each g_n is continuous.

Theorem

The following are equivalent:

- 1. The decidable fan theorem.
- **2.** Every function $f: T \to \mathbb{N}$ from a fan T with a continuous modulus is uniformly continuous.
- **3.** Every function $f: T \to \mathbb{R}$ from a fan T with a continuous modulus is uniformly continuous.
- **4.** Every function $f:[0,1]\to\mathbb{R}$ with a continuous modulus is uniformly continuous.

Theorem

The following are equivalent:

- 1. The decidable fan theorem.
- **2.** Every function $f: T \to \mathbb{N}$ from a fan T with a continuous modulus is uniformly continuous.
- **3.** Every function $f: T \to \mathbb{R}$ from a fan T with a continuous modulus is uniformly continuous.
- **4.** Every function $f \colon [0,1] \to \mathbb{R}$ with a continuous modulus is uniformly continuous.

Proof.

- $(1 \rightarrow 2)$ [Berger, 2005].
- $(2 \to 3)$ If $f: T \to \mathbb{R}$ has a continuous modulus $g: \mathbb{N} \to T \to \mathbb{N}$, we can modify g so that each $g_n: T \to \mathbb{N}$ is a continuous modulus of itself. Thus f has a uniformly continuous modulus.
- $(3 \to 4)$ follows from the quotient property of $\Phi \colon \{0,1,2\}^{\mathbb{N}} \to [0,1]$.

- The decidable fan theorem.
- **4** Every function $f \colon [0,1] \to \mathbb{R}$ with a continuous modulus is uniformly continuous.
- $(4 \to 1)$ Define a function $\kappa \colon \{0,1\}^{\mathbb{N}} \to [0,1]$ by

$$\kappa(\alpha) = \left\langle \sum_{i < n} 2\alpha_i 3^{-(i+1)} \right\rangle_{n \in \mathbb{N}}.$$

The image of κ is called the **Cantor's discontinuum**. For each $a \in \{0,1\}^*$, define an interval \mathbb{C}_a with rational endpoints:

$$\mathbb{C}_a = \left[\sum_{i < |a|} 2a_i 3^{-(i+1)}, \ 3^{-|a|} + \sum_{i < |a|} 2a_i 3^{-(i+1)} \right].$$

For each $n \in \mathbb{N}$ and $a \in \{0, 1\}^n$, the interval \mathbb{C}_a is in the n-th level of Cantor's middle-third set, which is of length 3^{-n} .

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1]\to \mathbb{R}$ by f(x)=the value of the piecewise linear function around x.

Let $B\subseteq \mathbb{N}^*$ be a decidable bar. Define $f\colon [0,1] \to \mathbb{R}$ by

f(x) = the value of the piecewise linear function around x.

A continuous modulus $g \colon \mathbb{N} \to \{0,1,2\}^{\mathbb{N}} \to \mathbb{N}$ of f is defined by

 $g_k(\alpha)$ =the modulus of uniform continuity of piecewise linear the function around $\Phi(\alpha)$ with respect to 2^{-k} .

By the assumption, f is uniformly continuous.

The composition $\{0,1\}^{\mathbb{N}} \xrightarrow{\kappa} [0,1] \xrightarrow{f} \mathbb{R}$ satisfies

$$f(\kappa(\alpha)) = \text{the least } n \text{ such that } B(\overline{\alpha}n).$$

The upper bound of the image of $f\circ\kappa$ gives a uniform bound of B. \square

References (fan theorem)

J. Berger.

The fan theorem and uniform continuity.

Lecture Notes in Comput. Sci., volume 3526, pages 18–22. 2005.

D. Bridges and H. Diener.

The pseudocompactness of $\left[0.1\right]$ is equivalent to the uniform continuity theorem.

J. Symbolic Logic, 72(4):1379-1384, 2007.

I. Loeb.

Equivalents of the (weak) fan theorem.

Ann. Pure Appl. Logic, 132(1):51-66, 2005.

References (spread representation of real numbers)

L. E. J. Brouwer.

Über Definitionsbereiche von Funktionen.

Math. Ann., 97:60-75, 1927.

J. van Heijenoort.

From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, 1967.

R. S. Lubarsky and F. Richman. Signed-Bit Representations of Real Numbers *J. Log. Anal.*, 1(10), 1–16, 2009.

A. S. Troelstra and D. van Dalen.

Constructivism in Mathematics: An Introduction. Volume I,
North-Holland, Amsterdam, 1988.

References (formal topology)

J. Cederquist and S. Negri.

A constructive proof of the Heine–Borel covering theorem for formal reals.

Lecture Notes in Comput. Sci., vol. 1158, pp 62-75, 1996.

T. Coquand, G. Sambin, J. Smith, and S. Valentini.

Inductively generated formal topologies.

Ann. Pure Appl. Logic, 124(1-3):71-106, 2003.

E. Palmgren.

Continuity on the real line and in formal spaces.

In L. Crosilla and P. Schuster, editors, *From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics*, pages 165–175. Oxford University Press, 2005.