UNIT 4: Greedy Technique

Greedy Technique:

Dijkstra's algorithm

Variants of the shortest path problem:

- Single- source shortest paths problem
- Single- destination shortest paths problem
- Single pair shortest path problem
- All pairs shortest paths problem

Algorithms to solve shortest path problem:

- **Dijkstra's algorithm** solves the single-source shortest paths problem with non-negative edge weight.
- **Bellman–Ford algorithm** solves the single-source shortest paths if edge weights may be negative. But do not solve if there is a negative cycle.
- Floyd—Warshall algorithm solves all pairs shortest paths.
- Johnson's algorithm solves all pairs shortest paths, and may be faster than Floyd-Warshall on sparse graphs.
- A* search algorithm solves for single-pair shortest path using heuristics to try to speed up the search.

Shortest paths applications:

- Driving directions on web mapping
- If a nondeterministic abstract machine is represented as a graph where vertices describe states and edges describe possible transitions, shortest path algorithms can be used to find an optimal sequence of choices to reach a certain goal state, or to establish lower bounds on the time needed to reach a given state

if vertices represent the states of a puzzle like a Rubik's Cube and each directed edge corresponds to a single move or turn, shortest path algorithms can be used to find a solution that uses the minimum possible number of moves.

- networking or telecommunications
- operations research: plant and facility layout planning, robotics, transportation
- VLSI design

Dijkstra's algorithm to find Single Source Shortest Paths

Single Source Shortest Paths Problem

- For a given vertex called the source in a weighted connected graph, find shortest paths to all its other vertices.
- The single-source shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the graph, though some paths may, of course, have edges in common.

NOTE:

BFS algorithm finds shortest path; works on unweighted graphs; each edge is considered to have unit weight.

Dijkstra's algorithm is usually the working principle behind

- link-state routing protocols,
- Open Shortest Path First (OSPF) and
- Intermediate System to Intermediate System(IS-IS)

ALGORITHM Dijkstra(G, s)//Dijkstra's algorithm for single-source shortest paths //Input: A weighted connected graph $G = \langle V, E \rangle$ with nonnegative weights //and its vertex s //Output: The length d_v of a shortest path from s to v and its penultimate vertex p_v for every vertex v in VInitialize(Q) //initialize vertex priority queue to empty for every vertex v in V do $d_n \leftarrow \infty$; $p_n \leftarrow \text{null}$ $Insert(Q, v, d_v)$ //initialize vertex priority in the priority queue $d_s \leftarrow 0$; Decrease(Q, s, d_s) //update priority of s with d_s $V_T \leftarrow \emptyset$ for $i \leftarrow 0$ to |V| - 1 do $u^* \leftarrow DeleteMin(Q)$ //delete the minimum priority element $V_T \leftarrow V_T \cup \{u^*\}$ for every vertex u in $V - V_T$ that is adjacent to u^* do **if** $d_{u^*} + w(u^*, u) < d_u$ $d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*$

 $Decrease(Q, u, d_u)$

Time efficiency of Dijkstra's algorithm

- Depends on the data structures used for implementing the priority queue and for representing an input graph itself.
- Weight matrix + priority queue implemented as an unordered array: $\Theta(|v|^2)$
- Adjacency list + priority queue implemented as a min-heap:
 O(|E| log|V|)

Dijkstra's algorithm visualization

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

https://visualgo.net/en/sssp

Tree vertices	Remaining vertices	Illustration
a(-, 0)	$b(a, 3) c(-, \infty) d(a, 7) e(-, \infty)$	3 2 6 6 6 7 d 4 e
b(a, 3)	$c(b, 3+4) d(b, 3+2) e(-, \infty)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
d(b, 5)	c (b , 7) e(d, 5 + 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c(b, 7)	e(d, 9)	$\begin{pmatrix} 3 & 4 & c \\ 3 & 2 & 6 \\ 7 & d & \theta \end{pmatrix}$
e(d, 9)		7 0 4 9
	from a to b : $a-b$ from a to d : $a-b$ from a to c : $a-b$ from a to e : $a-b$	-c of length 7

Let's check our understanding

Let's check our understanding

Let's check our understanding

MST vs Shortest Paths

Find MST, Single source shortest paths: consider 0 as the source vertex

Extra Miles...

Bellman Ford Algorithm