Agenda

Sample

Point Estimation

Sampling Distribution

Interval estimation

Hypothesis tests

Practical Significance

Why do we need sampling?

Sampling

Parameter

A measurable factor that defines a characteristic of a population, process, or system

"Random sampling" is the method to collect a <u>sample (n)</u> representative of the population (N).

simple random sample - each possible sample of size *n* has the same probability of being selected. [*finite population*]

random sample - every element has the same probability of being selected in the sample. [in finite population]

Other methods:

- Available sample
- Volunteer sample
- Quota sample
- Referral sample
- Stratified sample

Point Estimation

Numerical value obtained for \overline{x} , s and \overline{p} is called "point estimate"

When the expected value of a point estimator equals the population parameter, we say the point estimator is <u>unbiased.</u>

Sample mean
$$\overline{x} = \frac{2x_i}{n}$$

Sample standard deviation $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

Sample proportion $\overline{p} = \frac{x}{n}$

Population Parameter	Parameter Value	Point Estimator	Point Estimate
$\mu = ext{Population mean annual salary}$ $\sigma = ext{Population standard deviation}$ for annual salary	\$51,800 \$4,000	$\overline{x} =$ Sample mean annual salary $s =$ Sample standard deviation for annual salary	\$51,814 \$3,348
p = Population proportion completing the management training program	0.60	 Sample proportion having completed the management training program 	0.63

Sampling Distribution

Knowledge of the sample distribution and its properties enables us to make probability statements about how close the sample mean, $\overline{\mathbf{x}}$ Is to the population mean μ .

Sample Number	Sample Mean (\overline{x})	Sample Proportion (\overline{p})
1	51,814	0.63
2	52,670	0.70
3	51,780	0.67
4	51,588	0.53
500	51,752	0.50

<u>Sampling distribution - animation</u>

Sampling Distribution

EXPECTED VALUE OF \bar{x}

$$E(\overline{x}) = \mu \tag{6.1}$$

where

 $E(\overline{x})$ = the expected value of \overline{x} μ = the population mean

ESTIMATED STANDARD DEVIATION OF \bar{x}

Finite Population

$$[n/N > 0.05] \quad s_{\overline{x}} = \sqrt{\frac{N-n}{N-1}} \left(\frac{s}{\sqrt{n}} \right)$$

$$s_{\overline{x}} = \left(\frac{s}{\sqrt{n}}\right)$$

(6.3)

Sampling Distribution - proportion

Sample proportion is the point estimator for the population proportion (p)

$$\cdots \longrightarrow \overline{p} = \frac{x}{n}$$

EXPECTED VALUE OF P

$$E(\overline{p}) = p \tag{6.4}$$

where

$$E(\overline{p})$$
 = the expected value of \overline{p}
 p = the population proportion

ESTIMATED STANDARD DEVIATION OF \bar{p}

Finite Population

$$s_{\overline{p}} = \sqrt{\frac{N-n}{N-1}} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

Infinite Population

$$s_{\overline{p}} = \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \tag{6.6}$$

Hypothesis

Hypothesis - States the relationship between the variables involved or a phenomenon.

Testable, defined terms and does not have to be correct

Good or Bad hypothesis?

- Sales of Ford automobiles in America would be higher if Lexus did not exist.
- Students who do not have smartphones tend to have better grades.
- Clocks run clockwise because most people are right-handed.

Null/Alternative Hypothesis

Null Hypothesis - hypothesis of no difference

Difference is due to random error

Alternative Hypothesis - Opposite of what is stated in the hypothesis

$$H_0: \mu \ge \mu_0$$
 $H_0: \mu \le \mu_0$ $H_0: \mu = \mu_0$
 $H_a: \mu < \mu_0$ $H_a: \mu > \mu_0$ $H_a: \mu \ne \mu_0$

$$H_a$$
: $\mu < \mu_0$ H_a : $\mu > \mu$

$$H_0$$
: $\mu = \mu_0$

$$\begin{array}{cccc} \vdots & \mu & \mu_0 \\ \vdots & \mu \neq \mu_0 \end{array}$$
 two-tailed

Significance level & Regions of rejection

Significance level (α) - is the probability of rejecting the null hypothesis.

[0.01, 0.05]

Errors

H ₀ is true Type I error Correct H ₀ is false Correct Type II error		Reject H ₀	Accept H ₀
H ₀ is false Correct Type II error	H ₀ is true	Type I error	Correct
	H ₀ is false	Correct	Type II error

- Type I:
 - \circ Rejection of $H_{\mathcal{Q}_i}$ which should be accepted
 - O Decrease α , increase confidence level (1α)
- Type II:
 - \circ Accepting H_{0} , which should be rejected
 - Increase sample size

Hypothesis tests - Summary

Number of groups	Quantitative	Nominal
1 group	T-test, z-test	chi-square test
2 independent groups	Independent samples t-test	chi-square test
2 dependent groups	Paired t-test	McNemar test
>2 independent groups	ANOVA	chi-square test

Z-distribution vs **t-distribution**

Degrees of freedom

Number of independent values needed for calculation.

- Qualitative variable = k 1
- Quantitative variable = n 1 (if mean is known)

Single t-test, z-test

- Comparing sample with a population
 - Small sample size (<30), unknown variance → t-test</p>
 - t-statistic, df, level of significance --> p-value
 - Compare the compare of the compare the
 - Z-statistic, level of significance --> p-value

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$
 $z = (\bar{x} - \mu) / \sigma$

Independent t-test

Comparing 2 independent samples

- One member cannot be part of both groups.
- Small sample size (<30), unknown variance
- t-statistic, df, significance

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \qquad s_p = \frac{s_1^2(df_1) + s_2^2(df_2)}{df_1 + df_2}$$

Paired t-test

Comparing 2 dependent samples

- 2 set of observation from the same group.
- t-statistic, df, significance

$$t = \frac{\bar{x}_d}{S_d / \sqrt{n}}$$

Statistical tests – qualitative variables

Chi-square test

- O Compare observed values to expected values.
- O Degrees of freedom $(m-1) \times (n-1)$

$$\chi_c^2 = \frac{(O_i - E_i)^2}{E_i}$$

Mcnemer test

- Paired nominal data.
- 2 categories (yes/no). How many switched?

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

Interval Estimation

- Because a point estimator cannot be expected to provide the exact value of a population parameter, interval estimation is frequently used to generate an estimate of the value of a population parameter.
- The general form of an interval estimate is:

INTERVAL ESTIMATE OF A POPULATION MEAN

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}},\tag{6.7}$$

where s is the sample standard deviation, α is the level of significance, and $t_{\alpha/2}$ is the t value providing an area of $\alpha/2$ in the upper tail of the t distribution with n-1 degrees of freedom.

Summary

Point Estimation

Sampling Distribution

Interval estimation

Hypothesis tests

