Informe de Configuración del Router "PARTES"

Fecha del Informe: 18 de mayo de 2025

Este informe detalla la configuración del router denominado "PARTES". El objetivo es explicar de manera secuencial los comandos aplicados y la funcionalidad que cada sección de la configuración proporciona al equipo, cubriendo desde la configuración inicial y de interfaces hasta los servicios de red como DHCP, DNS local y los protocolos de enrutamiento dinámico OSPF para IPv4 e IPv6.

Responsable: Sofía Santís Silva

TABLA DE CONTENIDO

- 1. Configuración Inicial y Global del Router
- 2. Configuración de Interfaces
 - 2.1. Interfaces Seriales (Enlaces WAN)
 - Interfaz Serial0/1/0 (Enlace a Matriz)
 - Interfaz Serial0/1/1 (Enlace a Concesionario)
 - Interfaz Serial0/2/1 (Enlace a Accesorios)
 - Interfaz Seria10/2/0 (Enlace a Taller)
 - 2.2. Interfaz GigabitEthernet0/0/0 (Enlace Troncal a Switch)
 - 2.3. Subinterfaces GigabitEthernet0/0/0.x (VLANs)
 - Subinterfaz GigabitEthernet0/0/0.1 (VLAN 1 Red general)
 - Subinterfaz GigabitEthernet0/0/0.10 (VLAN 10 Área de Ventas)
 - Subinterfaz GigabitEthernet0/0/0.20 (VLAN 20 Secretaría)
 - Subinterfaz GigabitEthernet0/0/0.30 (VLAN 30 Administración)
 - Subinterfaz GigabitEthernet0/0/0.40 (VLAN 40 Aplicaciones)
 - Subinterfaz GigabitEthernet0/0/0.50 (VLAN 50 Servidores)
 - Subinterfaz GigabitEthernet0/0/0.60 (VLAN 60 WiFi Bodega)
- 3. Configuración de Servicios de Red
 - 3.1. Servidor DNS Local (Resolución de Nombres Internos)
 - o 3.2. Servidor DHCP
 - 3.2.1. DHCP para IPv4
 - Direcciones Excluidas
 - Pools de DHCP IPv4
 - 3.2.2. DHCP para IPv6 (DHCPv6)
 - Pools de DHCPv6
- 4. Configuración de Enrutamiento Dinámico (OSPF)
 - 4.1. OSPFv2 para IPv4
 - 4.2. OSPFv3 para IPv6
- 5. Finalización y Guardado de la Configuración
- 6. Conclusión

1. Configuración Inicial y Global del Router

El proceso de configuración comienza accediendo al modo de configuración del dispositivo y estableciendo parámetros globales fundamentales:

• enable

- Este comando se utiliza para ingresar al modo EXEC privilegiado del router, que es un requisito previo para realizar cambios en la configuración.
- configure terminal
 - Ingresa al modo de configuración global, permitiendo la modificación de la configuración general del router.
- hostname PARTES
 - Asigna el nombre "PARTES" al router. Este nombre se utilizará para identificar el dispositivo en la red.
- ipv6 unicast-routing
 - Habilita la capacidad del router para enrutar paquetes IPv6. Sin este comando, el router solo podría asignar direcciones IPv6 pero no enrutarlas entre diferentes redes.

2. Configuración de Interfaces

Las interfaces del router se configuran para permitir la comunicación a través de diferentes segmentos de red, tanto enlaces WAN como redes LAN internas (VLANs).

2.1. Interfaces Seriales (Enlaces WAN)

Estas interfaces se utilizan para las conexiones con redes externas o sucursales:

Interfaz Serial0/1/0 (Enlace a Matriz)

- o description Enlace a Matriz: Etiqueta la interfaz para fácil identificación.
- o ip address 172.16.0.2 255.255.255.252: Asigna la dirección IPv4 172.16.0.2 con máscara /30 para esta conexión punto a punto.
- ipv6 address 2820:1013::1:2/112: Asigna la dirección IPv6 2820:1013::1:2 con prefijo /112.
- ipv6 ospf 1 area 0: Habilita el protocolo de enrutamiento OSPFv3 (proceso
 1) en esta interfaz para el área 0.
- o no shutdown: Activa la interfaz.

• Interfaz Serial0/1/1 (Enlace a Concesionario)

- o description Enlace a Concesionario: Descripción del enlace.
- o ip address 172.16.0.18 255.255.255.252: Dirección IPv4 172.16.0.18/30.
- ipv6 address 2820:1013::6:1/112: Dirección IPv6 2820:1013::6:1/112.
- o ipv6 ospf 1 area 0: Habilita OSPFv3 en el área 0.
- o no shutdown: Activa la interfaz.

Interfaz Serial0/2/1 (Enlace a Accesorios)

- o description Enlace a Accesorios: Descripción del enlace.
- o ip address 172.16.0.21 255.255.255.252: Dirección IPv4 172.16.0.21/30.
- ipv6 address 2820:1013::7:1/112: Dirección IPv6 2820:1013::7:1/112.
- o ipv6 ospf 1 area 0: Habilita OSPFv3 en el área 0.
- o no shutdown: Activa la interfaz.

• Interfaz Serial0/2/0 (Enlace a Taller)

- o description Enlace a Taller: Descripción del enlace.
- o ip address 172.16.0.38 255.255.255.252: Dirección IPv4 172.16.0.38/30.
- ipv6 address 2820:1013::10:2/112: Dirección IPv6 2820:1013::10:2/112.
- o ipv6 ospf 1 area 0: Habilita OSPFv3 en el área 0.
- o no shutdown: Activa la interfaz.

2.2. Interfaz GigabitEthernet0/0/0 (Enlace Troncal hacia el Switch)

Esta interfaz física se configura como un enlace troncal (trunk) para transportar múltiples VLANs hacia un switch.

- description Trunk hacia el Switch para todas las VLANs: Indica su propósito.
- ipv6 enable: Habilita IPv6 en la interfaz, permitiendo la asignación de una dirección link-local automáticamente.
- ipv6 address fe80::1 link-local: Asigna explícitamente la dirección IPv6 link-local fe80::1 a esta interfaz.
- ipv6 nd other-config-flag: En los Router Advertisements (RAs) enviados desde esta interfaz, se activa el flag "O" (Other configuration). Esto indica a los clientes IPv6 que pueden obtener información de configuración adicional (como DNS) a través de DHCPv6 (stateless).

- ipv6 nd managed-config-flag: En los RAs, se activa el flag "M" (Managed address configuration). Esto indica a los clientes IPv6 que deben obtener su dirección IPv6 y otra información de configuración a través de DHCPv6 (stateful).
- ipv6 ospf 1 area 0: Habilita OSPFv3 en esta interfaz física para el área 0.
- no shutdown: Activa la interfaz.

2.3. Subinterfaces GigabitEthernet0/0/0.x (VLANs)

Se crean subinterfaces en GigabitEthernet0/0/0 para cada VLAN, permitiendo el enrutamiento entre ellas.

Subinterfaz GigabitEthernet0/0/0.1 (VLAN 1 - Red general)

- o description VLAN 1 Red general: Identifica la VLAN.
- encapsulation dot1Q 1: Especifica que esta subinterfaz maneja tráfico para la VLAN 1 usando el estándar 802.1Q.
- ip address 172.16.5.1 255.255.255.248: Asigna la IP 172.16.5.1/29 como gateway para la VLAN 1.
- o ipv6 enable: Habilita IPv6.
- ipv6 address 2820:1013:5:1::1/64: Asigna la IP 2820:1013:5:1::1/64 como gateway IPv6.
- o ipv6 ospf 1 area 0: Habilita OSPFv3.
- o no shutdown: Activa la subinterfaz.

• Subinterfaz GigabitEthernet0/0/0.10 (VLAN 10 - Área de Ventas)

- Configurada similarmente para la VLAN 10, con IP 172.16.5.9/29 e IPv6 2820:1013:5:10::1/64.
- ipv6 dhcp server DHCPV6-VENTAS: Vincula esta subinterfaz al pool de DHCPv6 llamado DHCPV6-VENTAS.
- ipv6 nd managed-config-flag y ipv6 nd other-config-flag: Instruyen a los clientes a usar DHCPv6 para direccionamiento e información adicional.
- o ipv6 ospf 1 area 0: Habilita OSPFv3.

Subinterfaz GigabitEthernet0/0/0.20 (VLAN 20 - Secretaría)

- Configurada para la VLAN 20, IP 172.16.5.25/29 e IPv6 2820:1013:5:20::1/64.
- Vinculada al pool DHCPV6-SECRETARIA y con flags ND para DHCPv6.
- ipv6 ospf 1 area 0: Habilita OSPFv3.

Subinterfaz GigabitEthernet0/0/0.30 (VLAN 30 - Administración)

- Configurada para la VLAN 30, IP 172.16.5.41/29 e IPv6 2820:1013:5:30::1/64.
- Vinculada al pool DHCPV6-ADMIN y con flags ND para DHCPv6.
- ipv6 ospf 1 area 0: Habilita OSPFv3.

• Subinterfaz GigabitEthernet0/0/0.40 (VLAN 40 - Aplicaciones)

- Configurada para la VLAN 40, IP 172.16.5.57/29 e IPv6 2820:1013:5:40::1/64.
- Esta VLAN utiliza direccionamiento estático. El router enviará Router Advertisements para permitir SLAAC y la obtención del gateway, pero no se vincula a un pool DHCPv6 para direccionamiento.
- o ipv6 ospf 1 area 0: Habilita OSPFv3.

Subinterfaz GigabitEthernet0/0/0.50 (VLAN 50 - Servidores)

- Configurada para la VLAN 50, IP 172.16.5.73/29 e IPv6 2820:1013:5:50::1/64.
- Similar a la VLAN 40, está destinada a direccionamiento estático, con RAs habilitados desde el router.
- o ipv6 ospf 1 area 0: Habilita OSPFv3.

• Subinterfaz GigabitEthernet0/0/0.60 (VLAN 60 - WiFi Bodega)

- Configurada para la VLAN 60, IP 172.16.5.97/27 e IPv6 2820:1013:5:60::1/64.
- Vinculada al pool DHCPV6-WIFI y con flags ND para DHCPv6.
- o ipv6 ospf 1 area 0: Habilita OSPFv3.

3. Configuración de Servicios de Red

El router proporciona servicios básicos de DNS local y DHCP para las VLANs.

3.1. Servidor DNS Local (Resolución de Nombres Internos)

El router está configurado para resolver ciertos nombres de host a direcciones IP internas:

- ip host www.partes.totes.com 172.16.5.74
- ip host sftp.partes.totes.com 172.16.5.75
- ip host correo.partes.totes.com 172.16.5.76
- ip host voip.partes.totes.com 172.16.5.77

3.2. Servidor DHCP

3.2.1. DHCP para IPv4

• Direcciones Excluidas:

Se configuran múltiples rangos y direcciones IP individuales para ser excluidas de la asignación dinámica por DHCP (ip dhcp excluded-address ...). Esto es crucial para reservar direcciones para gateways, servidores y otros dispositivos con IPs estáticas. Los rangos 172.16.5.56 172.16.5.63 (VLAN 40) y 172.16.5.72 172.16.5.79 (VLAN 50) están excluidos ya que estas VLANs usan direccionamiento estático. También se excluyen las IPs de los gateways de las otras VLANs.

Pools de DHCP IPv4:

- o ip dhcp pool VLAN10:
 - network 172.16.5.8 255.255.255.248: Define el rango de red
 172.16.5.8/29 para la VLAN 10.
 - default-router 172.16.5.9: Especifica el gateway para los clientes de esta VLAN.
- o **ip dhcp pool VLAN20**: Configurado para la red 172.16.5.24/29 con gateway 172.16.5.25.
- o **ip dhcp pool VLAN30**: Configurado para la red 172.16.5.40/29 con gateway 172.16.5.41.
- o **ip dhcp pool VLAN60**: Configurado para la red 172.16.5.96/27 con gateway 172.16.5.97.

3.2.2. DHCP para IPv6 (DHCPv6)

Se configuran pools para la asignación de direcciones y parámetros IPv6:

- ipv6 dhcp pool DHCPV6-VENTAS (para VLAN 10):
 - o address prefix 2820:1013:5:10::/64: Define el prefijo de red que se asignará.
 - o dns-server 2820:1013:5:10::1: Asigna la dirección IPv6 del router en esa VLAN como servidor DNS.
 - domain-name partes.totes.com: Proporciona el nombre de dominio.
- ipv6 dhcp pool DHCPV6-SECRETARIA (para VLAN 20): Similar, con prefijo 2820:1013:5:20::/64 y DNS 2820:1013:5:20::1.
- ipv6 dhcp pool DHCPV6-ADMIN (para VLAN 30): Similar, con prefijo 2820:1013:5:30::/64 y DNS 2820:1013:5:30::1.
- **ipv6 dhcp pool DHCPV6-WIFI (para VLAN 60)**: Similar, con prefijo 2820:1013:5:60::/64 y DNS 2820:1013:5:60::1.

4. Configuración de Enrutamiento Dinámico (OSPF)

El router utiliza OSPF (Open Shortest Path First) para el enrutamiento dinámico, tanto para IPv4 como para IPv6, permitiendo que el router aprenda y anuncie rutas automáticamente.

4.1. OSPFv2 para IPv4

- router ospf 1: Inicia el proceso de enrutamiento OSPF con el ID de proceso 1.
- Comandos network ... area θ:
 - o network 172.16.5.0 0.0.0.255 area 0: Habilita OSPF en todas las interfaces cuya dirección IP pertenezca a la red 172.16.5.0/24 (esto cubre todas las subinterfaces VLAN).
 - Se especifican adicionalmente las redes exactas para cada subinterfaz VLAN (ej. network 172.16.5.8 0.0.0.7 area 0 para VLAN10) y para cada interfaz serial (ej. network 172.16.0.18 0.0.0.3 area 0).
 - Se incluye network 172.16.0.41 0.0.0.3 area 0
 - Todas estas redes se anuncian dentro del Área 0 de OSPF.

4.2. OSPFv3 para IPv6

- ipv6 router ospf 1: Inicia el proceso de enrutamiento OSPFv3 con el ID de proceso 1.
- router-id 1.1.1.1: Asigna manualmente un Router ID de 1.1.1.1 al proceso OSPFv3. Este ID es un número de 32 bits que identifica unívocamente al router dentro del dominio OSPF.
- **Habilitación por Interfaz**: OSPFv3 se habilita directamente en cada interfaz que participará en el enrutamiento IPv6:
 - En todas las interfaces seriales (Serial0/1/0, Serial0/1/1, Serial0/2/0, Serial0/2/1).
 - En la interfaz física GigabitEthernet0/0/0.
 - En todas las subinterfaces VLAN (GigabitEthernet0/0/0.1 a GigabitEthernet0/0/0.60).
 - Todas estas interfaces están configuradas para pertenecer al Área 0 de OSPFv3 mediante el comando ipv6 ospf 1 area 0 aplicado bajo cada contexto de interfaz.

5. Finalización y Guardado de la Configuración

Una vez que todos los comandos de configuración han sido ingresados, se procede a finalizar la sesión de configuración y a guardar los cambios de forma permanente.

5.1. Salida del Modo de Configuración

- end
 - Este comando se utiliza para salir del modo de configuración global y regresar al modo EXEC privilegiado (PARTES#). Desde este modo se pueden ejecutar comandos de verificación, guardado, entre otros.

5.2. Guardado Permanente de la Configuración

- copy running-config startup-config
 - Este comando es fundamental y se ejecuta desde el modo EXEC privilegiado.
 Su función es copiar la configuración actualmente activa en la memoria RAM del router (conocida como running-config) a la memoria no volátil o NVRAM (conocida como startup-config).
 - Al realizar esta copia, se asegura que todos los cambios de configuración realizados se conserven incluso si el router se reinicia o se apaga. Si no se ejecuta este comando después de realizar cambios, dichos cambios se perderían tras un reinicio, y el router cargaría la startup-config anterior. El sistema pedirá confirmación antes de sobrescribir la configuración de inicio existente.

6. Conclusión:

La configuración aplicada al router "PARTES" establece un dispositivo de red multifuncional y robusto. Se ha definido una clara segmentación de la red mediante VLANs, cada una con sus propios servicios de direccionamiento IP (estático o dinámico vía DHCP/DHCPv6). El router también actúa como un resolvedor DNS básico para servicios internos. Fundamentalmente, la implementación de OSPFv2 y OSPFv3 asegura un enrutamiento dinámico y eficiente tanto para el tráfico IPv4 como IPv6 a través de la red interna y los enlaces WAN. Esta configuración proporciona una base sólida para las operaciones de red de "PARTES".