Chapitre 1 :

Fonctions Intégrables

Motivation.

Les **intégrales** sont utilisées dans de multiples disciplines scientifiques notamment en **physique** pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en **probabilités**. Ses utilités pluridisciplinaires en font un outil scientifique fondamental¹. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.

1.1. Intégrale des fonctions en escaliers.

Définition 1. Soit I=[a,b] un intervalle fermé et borné de $\mathbb R$. Une $rac{ extstyle subdivision}{ extstyle subdivision}$ (partition-تجزئة) d'ordre n de [a,b] est un sous-ensemble fini ordonné (une suite fini de nombres) :

$$\mathcal{S} = \{x_0, x_1, x_2, \dots, x_n\} \quad , \quad \text{telle que} \quad x_0 = a < x_1 < x_2 < \dots < x_n = b$$

$$\begin{matrix} a & & b \\ & & \\ & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x \end{matrix}$$

• Dans ce cas nous avons *n* sous-intervalles semi-ouverts, sous la forme :

$$I_i = [x_{i-1}, x_i]$$
 , $i = 1, ... n$

• Le pas de la subdivision , noté ||S||, est égale :

$$\|\mathcal{S}\| = \sup_{i=\overline{1,n}} (x_i - x_{i-1})$$

• On peut créer plusieurs subdivivsion de chaque intervalle. Parmi ces subdivisions, il y a une seule qui admet **un pas uniforme** $h = ||\mathcal{S}|| = \frac{b-a}{n}$, dans ce cas nous avons :

$$x_i = a + ih$$
 , $i = 0, \dots n$

Exemple 1. Soit l'intervalle $\left[\frac{1}{2},3\right]$. L'ensemble $S_1=\left\{\frac{1}{2},1,2,3\right\}$ est une subdivision de $\left[\frac{1}{2},3\right]$.

L'ensemble $S_2 = \left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3\right\}$ est une subdivision à pas uniforme de $\left[\frac{1}{2}, 3\right]$.

Définition 2. Soit $\varphi:[a,b]\to\mathbb{R}$ une fonction réelle. On dit que φ est **fonction en escalier** s'il existe une subdivision \mathcal{S} telle que φ est constante sur chaque sous-intervalle $]x_{i-1},x_i[$, c'est-à-dire:

$$\varphi(x) = \lambda_i$$
 , $\forall x \in]x_{i-1}, x_i[$ et $\lambda_i \in \mathbb{R}$

Exemple 2. La fonction partie entière sur l'intervalle $\left[\frac{1}{2},3\right]$ est une fonction en escalier :

$$E(x) = \begin{cases} 0 & \text{, si } \frac{1}{2} \le x < 1 \\ 1 & \text{, si } 1 \le x < 2 \\ 2 & \text{, si } 2 \le x < 3 \end{cases}$$

Exemple 3. La fonction de Dirac est une fonction en escalier :

$$\delta(x) = \begin{cases} 1 & \text{, si } 0 \le x \le 1 \\ 0 & \text{, sinon} \end{cases}$$

Définition 3. Soit $\varphi: [a,b] \to \mathbb{R}$ une fonction en escalier. On appelle **intégrale de \varphi** sur l'intervalle [a,b] le nombre réel défini et noté par :

$$\int_{a}^{b} \varphi(x) dx = \sum_{i=1}^{n} \lambda_{i} (x_{i} - x_{i-1})$$

Interprétation géométrique.

L'intégrale d'une fonction en escalier est l'aire des rectangles comprises entre l'axe des abscisses les droites d'équations $y=\lambda_i$ et les droites d'équations $x=x_i$.

Exemple 4. Dans l'exemple précédent, l'intégrale de la fonction partie entière sur l'intervalle $\left[\frac{1}{2},3\right]$ est :

$$\int_{0.5}^{3} E(x) dx = 0.\left(1 - \frac{1}{2}\right) + 1.(2 - 1) + 2.(3 - 2) = 3$$

• On trouve le même résultat par une autre partition de l'intervalle. Par exemple, pour la subdivision à pas uniforme $S_2 = \left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3\right\}$ on a :

$$\int_{0.5}^{3} E(x) \, dx = 0. \left(1 - \frac{1}{2} \right) + 1. \left(\frac{3}{2} - 1 \right) + 1. \left(2 - \frac{3}{2} \right) + 2. \left(\frac{5}{2} - 2 \right) + 2. \left(3 - \frac{5}{2} \right) = 3$$

Exemple 5. Si $\varphi(x) = c$ est une fonction constante sur [a, b], alors:

$$\int_{a}^{b} \varphi(x) \, \mathrm{d}x = c(b-a)$$

1.2. Intégrale de Riemann.

Définitions 4. (Sommes de Darbaux) Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée sur [a,b]. On définit deux nombres réels par :

$$K^{-}(f) = \sup \left\{ \int_{a}^{b} \varphi(x) \, \mathrm{d}x \, , \, \forall \varphi \text{ une fonction en escalier avec } \varphi \leq f \right\}$$

$$K^+(f) = \inf \left\{ \int_a^b \varphi(x) \, \mathrm{d}x \, , \, \forall \varphi \text{ une fonction en escalier avec } \varphi \ge f \right\}$$

Définitions 5. Soit $f: [a, b] \to \mathbb{R}$ une fonction bornée sur [a, b]. On dit que f est intégrable sur l'intervalle [a, b] si on a :

$$K^-(f) = K^+(f) = K$$

Le nombre K s'appelle « intégrale de Riemann de f », on le note :

$$K = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Interprétation géométrique.

L'intégrale d'une fonction bornée est l'aire de la partie comprise entre le graphe de la fonction et l'axe des abscisses et les droites d'équations x = a, x = b.

Exemple 6. En appliquant la définition on peut trouver les intégrales suivantes :

$$\int_{0}^{1} e^{x} dx = e - 1 \qquad , \qquad \int_{0}^{1} x^{2} dx = \frac{1}{3}$$

Remarque: Il n'est pas facile de calculer l'intégrale de plusieur fonctions par cette définition. Alors que les primitives sont un outil très efficace pour démontrer l'intégrabilité des fonctions.

Théorème 1. Si f est continue sur [a, b] alors elle est intégrable [a, b].

Corollaire. Si f est continue par morceaux alors elle est intégrable.

Proposition 1. Si f est monotone sur [a, b] alors elle est intégrable sur [a, b].

Proposition 2. Si f est intégrable alors la restriction de f à un sous-intervalle de [a, b] est intégrable.

Proposition 3. Si f est intégrable sur [a, b] alors f est intégrable sur $[a, b] \setminus \{\text{un nombre fini de points}\}$ et la valeur de l'intégrale ne change pas.

1.3. Propriétés.

Lemme. Si f est intégrable, alors :

$$\int_{a}^{a} f(x) dx = 0 \qquad , \qquad \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Proposition 3. (Relation de Chasles)

Soient < c < b . Si f est intégrable sur [a, c] et [c, b], alors f est intégrable sur [a, b] et on a :

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Proposition 4. (Linéarité de l'intégrale)

Soient f et g deux fonctions intégrables sur [a,b], alors :

1. La fonction $\alpha f + \beta g$ est intégrable sur [a, b], pour tous réels α et β , de plus on a :

$$\int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. La fonction $f \times g$ est intégrable sur [a, b] mais (dans le cas général) :

$$\int_{a}^{b} (f \times g)(x) \, \mathrm{d}x \neq \left(\int_{a}^{b} f(x) \, \mathrm{d}x \right) \times \left(\int_{a}^{b} g(x) \, \mathrm{d}x \right)$$

1. La fonction |f| est intégrable sur [a, b] et on a :

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

Exemple 7. Les fonctions $f(x) = e^x$ et $g(x) = x^2$ sont intégrables sur [0,1] (d'après un exemple précédent), donc la fonction $h(x) = e^x + x^2$ et on a :

$$\int_{0}^{1} (3e^{x} + 9x^{2}) dx = 3 \int_{0}^{1} e^{x} dx + 9 \int_{0}^{1} x^{2} dx = 3 \times (e - 1) + 9 \times \frac{1}{3} = 3 e$$

Exemple 8. Les fonctions suivantes sont intégrables sur [0,1]: (comme des fonctions en escaliers)

$$f(x) = \begin{cases} 1 & \text{si } x \in \left[0, \frac{1}{2}\right] \\ 0 & \text{si } x \in \left[\frac{1}{2}, 1\right] \end{cases} \quad \text{et} \quad g(x) = \begin{cases} 0 & \text{si } x \in \left[0, \frac{1}{2}\right] \\ 1 & \text{si } x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

donc la fonction $h(x) = f(x) \times g(x)$ est intégrable et on a :

$$\int_{0}^{1} h(x) \, \mathrm{d}x = \int_{0}^{1} 0 \, \mathrm{d}x = 0$$

Or que:

$$\int_{0}^{1} f(x) dx = 1\left(\frac{1}{2} - 0\right) = \frac{1}{2} \qquad \text{et} \qquad \int_{0}^{1} g(x) dx = 1\left(1 - \frac{1}{2}\right) = \frac{1}{2}$$

Donc

$$\left(\int_{a}^{b} f(x) dx\right) \times \left(\int_{a}^{b} g(x) dx\right) = \frac{1}{4} \neq 0$$

Proposition 5. (Encadrement de l'intégrale)

Soient f et g deux fonctions intégrables sur [a,b] tel que $f(x) \leq g(x)$, alors :

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x$$

Exemple 9. Soit l'intégrale :

$$I_n = \int_{1}^{n} \frac{\sin(nx)}{1 + x^n} \, \mathrm{d}x$$

On va montrer que $\lim_{n \to +\infty} I_n$, en utilisant un encadrement :

$$|I_n| = \left| \int_1^n \frac{\sin(nx)}{1 + x^n} \, \mathrm{d}x \right| \le \int_1^n \frac{|\sin(nx)|}{1 + x^n} \, \mathrm{d}x \le \int_1^n \frac{1}{1 + x^n} \, \mathrm{d}x \le \int_1^n \frac{1}{x^n} \, \mathrm{d}x$$

On peut calculer le dernier intégrale par les primitives (voir la prochaine section), on trouve :

$$\int_{1}^{n} \frac{1}{x^{n}} \, \mathrm{d}x = \frac{1 - n^{1 - n}}{n - 1}$$

D'autre part : $\lim_{n\to+\infty}\frac{1-n^{1-n}}{n-1}=0$, d'où : $\lim_{n\to+\infty}I_n=0$.

Corollaire1. (Positivité)

Soit f une fonction positive et intégrable sur [a, b], alors :

$$0 \le \int_{a}^{b} f(x) \, \mathrm{d}x$$

Corollaire2. (La moyenne)

Soit f une fonction bornée et intégrable sur [a,b]. On pose $M=\sup_{a\leq x\leq b}f(x)$ et $m=\inf_{a\leq x\leq b}f(x)$, alors :

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

1.4. Primitives.

Définition 6.

Soit f une fonction réelle définie sur un intervalle . On appelle **primitive** de f toute fonction F dérivable sur I telle que pour tout $x \in I$: F'(x) = f(x).

Dans ce cas on note:

$$F(x) = \int f(x) dx + c \quad , \quad c \in \mathbb{R}$$

Exemples 10.

- 1) Soit $f(x)=x^2$ définie sur $=\mathbb{R}$. Alors, la fonction $F(x)=\frac{1}{3}x^3$ définie sur \mathbb{R} est une primitive de f. Les fonctions $F_1(x)=\frac{1}{3}x^3+5$, $F_2(x)=\frac{1}{3}x^3+2024$ sont aussi des primitives de .
- 2) Soit $g(x) = \cos x$ définie sur $= \mathbb{R}$. Alors, la fonction $G(x) = \sin x$ définie sur \mathbb{R} est une primitive de . Les fonctions $G_1(x) = \sin x + \pi$, $G_2(x) = \sin x + e$ sont aussi des primitives de g .
- 3) Soit $h(x) = \frac{1}{x}$ définie sur \mathbb{R}_+^* . Alors, la fonction $H(x) = \ln x$ définie sur \mathbb{R}_+^* est une primitive de h. Les fonctions $H_1(x) = \ln(3x)$, $H_2(x) = \ln x + 1$ sont aussi des primitives de h. (La primitive $H(x) = \ln x$ est la seule qui s'annule en x = 1)

Proposition 7.

Soit f une fonction réelle définie sur un intervalle I et F une primitive de f . Toute autre primitive de f s'écrit $\phi = F + c$ avec $c \in \mathbb{R}$.

Proposition 8.

Soit $\alpha, \beta \in \mathbb{R}$. Soient f, g deux fonctions et F (resp. G) une primitive de f (resp. g). Alors $\alpha F + \beta G$ est une primitive de $\alpha f + \beta g$ et on a :

$$\int (\alpha f + \beta g)(t) dt = \alpha \int f(t) dt + \beta \int g(t) dt$$

Théorème 2.

• Soit f une fonction réelle définie sur un intervalle I = [a, b]. La fonction F définie sur [a, b] par

$$F(t) = \int_{a}^{t} f(x) \, \mathrm{d}x$$

est dérivable et on a F'(t)=f(t). C'est-à-dire que F est une primitive de f .

• Donc, pour une primitive quelconque on a :

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

• Si F est une fonction de classe \mathcal{C}^1 , on peut écrire :

$$\int_{a}^{b} F'(x) \, \mathrm{d}x = F(b) - F(a)$$

• Pour l'expression F(b) - F(a), on utilise la notation : $[F(x)]_a^b$ où $F(x)|_a^b$

Remarque.

1) La fonction F donnée par l'intégrale du théorème est l'unique primitive de f qui s'annule en a. (Voir l'exemple de $\ln x$)

2) Si la fonction f est impaire alors ses primitives sont paires, dans ce cas on :

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Exemples 11.

1) Soit $f(x) = x^2$. La fonction $F(x) = \frac{1}{3}x^3$ est une primitive de f sur $I = \mathbb{R}$. On a

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

2) Soit $g(x) = \sin x$. La fonction $G(x) = -\cos x$ est une primitive de g sur $I = \mathbb{R}$. On a

$$\int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = (-\cos \pi) - (-\cos 0) = 2$$

3) Soit $h(x) = e^x$. La fonction $H(x) = e^x$ est une primitive de h sur $I = \mathbb{R}$. On a

$$\int_{-1}^{1} e^{x} dx = [e^{x}]_{-1}^{1} = e^{1} - e^{-1} = e - \frac{1}{e}$$