Step-1

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
Given that

The characteristic equation of this matrix is $\det(Q - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (\cos - \lambda)^2 + \sin^2 \theta = 0$$

$$\Rightarrow \cos^2 \theta + \lambda^2 - 2\lambda \cos \theta + \sin^2 \theta = 0$$

$$\Rightarrow \lambda^2 - 2\lambda \cos \theta + 1 = 0$$

$$\Rightarrow \lambda = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2}$$

$$=\frac{2\left(\cos\theta\pm\sqrt{1-\cos^2\theta}\right)}{2}$$

$$\Rightarrow \cos\theta \pm \sqrt{\sin^2\theta}$$

 $\Rightarrow \cos \theta + i \sin \theta, \cos \theta - i \sin \theta$ are the eigen values of the given matrix that rotates the xy $\hat{a} \in$ "plane through an angle θ .

Step-2

We now find the eigen vectors of Q for the eigen value $\lambda = \cos \theta + i \sin \theta$

For, we solve $(Q - \lambda I)x = 0$ where x is the required eigen vector.

$$\Rightarrow \begin{bmatrix} -i\sin\theta & -\sin\theta \\ \sin\theta & -i\sin\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Using the row operation $R_2 \rightarrow iR_2 + R_1$, we get

$$\begin{bmatrix} -i\sin\theta & -\sin\theta \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is the row reduced matrix and so, writing the homogeneous equations, we get

$$ix_1 + x_2 = 0$$

Putting $x_1 = 1$, we get the solution set $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ which is the eigen vector corresponding to $\lambda = \cos \theta + i \sin \theta$

Step-3

Similarly, the eigen vector corresponding to the eigen value $\lambda = \cos \theta - i \sin \theta$ is obtained by $\begin{bmatrix} i \sin \theta & -\sin \theta \\ \sin \theta & i \sin \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$

Applying
$$R_2 \to iR_2 - R_1$$
, we get $\begin{bmatrix} i\sin\theta & -\sin\theta \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$

$$\Rightarrow ix_1 - x_2 = 0$$

Putting $x_1 = 1$, we get the solution $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix}$ the eigen vector corresponding to $\lambda = \cos \theta - i \sin \theta$

Step-4

Thus, the eigen values of the rotation matrix $\operatorname{are} \lambda = \cos \theta + i \sin \theta$, $\lambda = \cos \theta - i \sin \theta$ and the respective eigen vectors are $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$