# Parametric Model Reduction with Convolutional Neural Networks

Yumeng Wang Yanzhi Zhang Shiping Zhou

Missouri University of Science and Technology, Rolla, USA

# Problem Setting: Parameterized Partial Differential Equations (PDEs)

## Parameterized PDEs:

 $\partial_t u(\mathbf{x}, t; \boldsymbol{\xi}) + \mathcal{N}([u(\mathbf{x}, t; \boldsymbol{\xi}); \boldsymbol{\xi}]) + \mathcal{L}([u(\mathbf{x}, t; \boldsymbol{\xi}); \boldsymbol{\xi}]) = f(\mathbf{x}, t; \boldsymbol{\xi}), \quad (\mathbf{x}, t, \boldsymbol{\xi}) \in \Omega \times \mathcal{T} \times \mathcal{P},$ 

with following properly defined initial and boundary conditions:

$$u(\mathbf{x}, t; \boldsymbol{\xi}) = u_0(\mathbf{x}; \boldsymbol{\xi}), \qquad t = t_0,$$
  
 $\mathcal{B}[u(\mathbf{x}, t; \boldsymbol{\xi}); \boldsymbol{\xi}] = h(\mathbf{x}, t; \boldsymbol{\xi}), \quad \mathbf{x} \in \partial \Omega.$ 

**Parameters:**  $\xi$  can be from equation, initial condition or boundary conditions.

**Notation:**  $u(\mathbf{x}, t; \xi)$  denotes the solution of PDE.  $\mathcal{N}[\cdot]$ ,  $\mathcal{L}[\cdot]$  and  $\mathcal{B}[\cdot]$  are nonlinear, linear and boundary operator, respectively.

## **Motivation and Goal**

**Motivation:** To find a parameterized PDE solver  $\Gamma: \mathbb{R}^P \to \mathbb{R}^N$ 

$$u = \Gamma(\xi), \qquad \xi \in \mathbb{R}^P, u \in \mathbb{R}^N$$

- Challenges: Repeatedly solving PDE with varying parameters
- **High dimensions:** Computationally infeasible for high dimensions

Goal: Solve parameterized PDE efficiently.

- Construct parameterized PDEs solver by neural networks.
- Reduce high-dimensions to low-dimensions.

#### **Convolutional Neural Network**

Convolutional Neural Network (CNN): CNN utilizes convolution operations effectively capture spatial features. It mainly contains:

- Convolutional layer: It uses learnable filters to capture hierarchical features.
- Pooling layer: It downsamples feature map obtained from the convolutional layer, which helps reduce dimension.

**Notice:** We use CNN as the basic structure to solve parameterized PDE.

# **Proposed Parameterized PDE Solver**



#### Stage1: Reduced order models via CAE

Convolutional Autoencoder (CAE): It serves as a data-driven nonlinear reduced order models (ROMs). Encoder compresses the data into a low-dimensional latent representation and decoder reconstruct it back to high-dimensions.

**Mathematics**: Encoder  $\Psi(\psi)$ :  $\mathbb{R}^N \to \mathbb{R}^H$ , Decoder  $\Phi(\phi)$ :  $\mathbb{R}^H \to \mathbb{R}^N$ 

$$\hat{u}(\xi) = \Phi(\Psi(u(\xi); \psi); \phi)$$

$$h(\xi) = \Psi(u(\xi); \psi)$$

$$\hat{u}(\xi) = \Phi(h(\xi); \phi)$$

Here  $H \ll N$  and  $u(\xi) \in \mathbb{R}^N$ 

Reconstruction loss:

$$\mathcal{L}_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^{N} |u_i(\xi) - \Phi(\Psi(u_i(\xi); \boldsymbol{\psi}); \boldsymbol{\phi})|^2$$

**Notice:** Encoder and decoder are trained together.

## Stage2: Regression via CNN

Mapping: CNN is implemented to learn a mapping from parameters to latent solutions in the low-dimensional latent space.

**Mathematics**: Latent parameterized PDE solver  $\Theta(\theta)$ :  $\mathbb{R}^P \to \mathbb{R}^H$ 

$$\hat{h}(\xi) = \Theta(\xi; \theta)$$

Reconstruction loss:

$$\mathcal{L}_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^{N} |h_i(\xi) - \Theta(\xi; \boldsymbol{\theta})|^2$$

Here  $h_i(\xi)$  is latent representation from convolutional encoder  $\Psi(\psi)$ .

**Notice:** For time-dependent PDEs, t as an additional parameter.

**Training strategy:** We take separated training strategy instead of coupled training strategy for its advantages:

- Fast convergence
- Computationally efficiency

**Testing strategy:** For a given new parameter q with well-trained neural networks:

$$\hat{u}(q) = \Psi(\Theta(q; \theta); \beta)$$

# Examples

#### 2D Buckley Leverett equation

$$\partial_t u + \partial_x (f_1(u)) + \partial_y (f_2(u)) - \mu \nabla^2 u = 0, \quad \text{for } x, y \in \Omega, \quad t \in (0, T]$$
  
 $u = 0, \quad \text{for } x, y \in \partial \Omega,$ 

where the initial condition is

$$u(x,y,0) = \begin{cases} 1, & \text{for } x^2 + y^2 < 0.5, \\ 0, & \text{otherwise,} \end{cases}$$

Additionally,  $f_1$  and  $f_2$  are the fluxes that are non-linear functions of the field variable u,

$$f_1(u) = \frac{u^2}{u^2 + (1-u)^2}, \quad f_2(u) = f_1(u)(1-5(1-u)^2)$$

Here is the parameter  $\omega = (-1.5, 1.5)^2$ ,  $\mu \in [0.01, 0.1]$ , and T = 0.5.

**Data preparation:** 10 PDEs are numerically solved with uniformly sampled parameters, mesh size  $(h_x, h_y) = (\frac{3}{255}, \frac{3}{255})$  and timesteps = 0.05. Randomly sampled another 11 PDEs are used as test data.



Figure 1. From left to right:  $l_2$  norm for  $\mu=0.017$ ,  $\mu=0.095$  and corresponding absolute error evaluation

### Comparison with POD for compression ability:



Figure 2. From left to right: Comparison with POD among parameter space and sample at  $\mu=0.017,\,\mu=0.095$ 

# Results Analysis and Summary

- Our proposed framework: Learning a latent parameterized PDE solver with CAE can give competitive results with computational efficiency.
- Decoupled training strategy is more efficient and appropriate.
- Convolutional autoencoder outperform traditional reduced order models (POD), with a low reconstruction error and low latent dimension.
- The optimal latent dimension need to be determined, usually determined by reconstruction loss empirically. But POD can be as a upper bound reference.
- Our proposed method can predict solutions in arbitrary time for time-dependent parameterized PDEs, not constrained by training timestep.

#### References

<sup>[1]</sup> R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. *Physics of Fluids*, 33(3):037106, 2021.

<sup>[2]</sup> Y. Wang, Y. Zhang, and S. Zhou. Parametric model reduction with convolutional neural network. to be submitted (March, 2024).