ความสมมูลของสัจพจน์การเลือกและสัจพจน์ที่เกี่ยวข้อง

เปมทัต แท่นสุนทร

เมษายน 2022

สารบาญ

1	บทน้ำ	2
2	ความสมมูลของสัจพจน์การเลือกทั้งสาม	3
3	ความสมมูลระหว่าง AC และ ZP	4
4	ความสมมูลระหว่าง ${f ZL},{f HM}$ และ ${f AC}$	5
5	ความสมมูลระหว่าง WOP และ AC	7
6	บรรณานุกรม	11

1 บทน้ำ

ในเอกสารฉบับนี้ เราจะพิสูจน์ว่าข้อความ "การเลือก" ต่อไปนี้สมมูลกันในระบบทฤษฎีเซต ZF

สัจพจน์ $\mathbf{1}$ (Axiom of Choice, Formulation A). สำหรับทุกเซตที่ไม่ว่าง จะมีฟังก์ชันการเลือก

ในที่นี้ ฟังก์ชันการเลือกสำหรับเซต $A \neq \emptyset$ คือฟังก์ชัน $f \colon \mathcal{P}^*\left(A\right) \to A$ เมื่อ $\mathcal{P}^*\left(A\right) = \mathcal{P}\left(A\right) \setminus \{\emptyset\}$ คือเซตของสับเซตของ A ทั้งหมดที่ไม่ใช่เซตว่าง และ f สอดคล้องกับ $f(B) \in B$ สำหรับทุก $B \in \mathcal{P}^*\left(A\right)$

สัจพจน์ 2 (Axiom of Choice, Formulation B). ให้ I เป็นเซตดรรชนี และ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซต โดยที่ $A_i\neq\emptyset$ สำหรับทุก $i\in I$ ถ้า $I\neq\emptyset$ แล้วผลคูณคาร์ทีเซียน $\prod_{i\in I}A_i$ ไม่เป็นเซตว่าง

ในที่นี้เราจะกล่าวถึงอีกรูปแบบหนึ่งของสัจพจน์การเลือกที่สมมูลกับรูปแบบข้างต้นทั้งสอง รูปแบบที่จะกล่าวถึง ต่อไปนี้เป็นที่รู้จักมากกว่า และใช้งานบ่อยกว่ารูปแบบข้างต้นทั้งคู่

สัจพจน์ 3 (Axiom of Choice, Formulation C). ให้ X เป็นวงศ์ของเซตที่สมาชิกทั้งหมดเป็นเซตไม่ว่าง แล้ว X มีฟังก์ชันการเลือก (บน X)

คำว่า *ฟังก์ชันการเลือกบน X* ในที่นี้คือฟังก์ชัน $f\colon X\to \bigcup X$ ที่สอดคล้องกับเงื่อนไขที่ว่า $f(A)\in A$ สำหรับทุก $A\in X$

จะเห็นว่าข้อความในสัจพจน์รูปแบบ C นำไปสู่ข้อความในสัจพจน์รูปแบบ A โดยง่าย เพื่อป้องกันความสับสน ระหว่างความหมายของฟังก์ชันการเลือกทั้งสองที่นิยามบนโดเมนต่างกัน เราจะพิสูจน์ว่า $(A) \Leftrightarrow (B)$ และ $(B) \Leftrightarrow (C)$ ดังนี้แทน และเมื่อเราพิสูจน์ความสมมูลของสัจพจน์การเลือกทั้งสามรูปแบบ เราจะใช้สัจพจน์การเลือกในรูป แบบ (C) เป็นหลัก และเรียกมันว่า *สัจพจน์การเลือก* และเขียนแทนด้วย (AC)

นอกจากรูปแบบของสัจพจน์การเลือกแล้ว ยังมีข้อความแบบอื่น ๆ อีกมากที่สมมูลกับสัจพจน์การเลือก ต่อไปนี้ เป็นตัวอย่างข้อความที่เราจะพิสูจน์ว่าสมมูลกันกับสัจพจน์การเลือกในเอกสารฉบับนี้

สัจพจน์ 4 (Zermelo's postulate (ZP)). สัจพจน์มูลบทของแซร์เมโล: ให้ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซตไม่ว่าง ที่สมาชิกแต่ละคู่ไม่มีส่วนร่วมกัน นั่นคือ ถ้า $i\neq j$ แล้ว $A_i\cap A_j=\emptyset$ แล้วจะมีเซต $B\subseteq \bigcup_{i\in I}A_i$ โดยที่สำหรับ ทุก $i\in I$ จะได้ว่า $B\cap A_i$ มีสมาชิกเพียงตัวเดียว

เพื่อความบริบูรณ์เราจะพิสูจน์ความสมมูลของสัจพจน์ต่อไปนี้ด้วย ซึ่งเป็นที่รู้จักกันดีว่าสมมูลกับสัจพจน์การ เลือก

สัจพจน์ 5 (Zorn's lemma (ZL)). บทตั้งของซอร์น: ถ้า (A, \leq) เป็นเซตอันดับบางส่วน ถ้าทุกลูกโซ่ใน A มี ขอบเขตบนน้อยสุด แล้ว A จะมีสมาชิกใหญ่ที่สุด

สัจพจน์ $\bf 6$ (Hausdorff maximal principle (HM)). หลักการใหญ่สุดของเฮาส์ดอร์ฟ: ทุกเซตอันดับบาง ส่วนมีลูกโซ่ที่ใหญ่ที่สุด

สัจพจน์ 7 (Well-ordering principle (WOP)). หลักการจัดอันดับดี: ทุกเซตสามารถจัดอันดับดีได้

2 ความสมมูลของสัจพจน์การเลือกทั้งสาม

ก่อนอื่นเราให้นิยามผลคูณคาร์ทีเซียนสำหรับเซตใด ๆ เสียก่อน

บทนิยาม 2.1. ผลคูณคาร์ทีเซียนสำหรับวงค์ของเซต $\{A_i\}_{i\in I}$ คือเซตของฟังก์ชัน $f\colon I\to \bigcup_{i\in I}A_i$ ทั้งหมดที่ ส่ง i ไปยังสมาชิกภายในเซต A_i สำหรับแต่ละ i นั้น กล่าวคือ

$$\prod_{i \in I} A_i = \left\{ f \colon I \to \bigcup_{i \in I} A_i \colon (\forall i \in I) . f(i) \in A_i \right\}$$

สำหรับเซต $I=\{1,2,\ldots,n\}$ ผลคูณคาร์ทีเซียน $\prod_{i\in I}A_i$ ยังไม่ใช่เซตของ n-สิ่งอันดับโดยตรง แต่เรา สามารถมอง (a_1,a_2,\ldots,a_n) ว่าเป็นฟังก์ชันที่ส่งจำนวนนับ $1,2,\ldots,n$ ไปยังของที่อยู่ตำแหน่งนั้นใน n-สิ่ง อันดับได้ นั่นคือ $f(i)=a_i$ สำหรับ $i=1,2,\ldots,n$ การมองดังกล่าวเป็นธรรมชาติและให้การส่ง 1-1 ทั่วถึง ระหว่าง ผลคูณคาร์ทีเซียน $\prod_{i\in I}A_i$ และเซตของ n-สิ่งอันดับ $A_1\times A_2\times A_n$ ในทางปฏิบัติเราถือว่าวัตถุทั้งสอง เป็นอย่างเดียวกัน (เรียกว่ามี natural identification ระหว่างเซตทั้งสอง)

จากข้างต้นเราจะได้ความสมมูลด้านล่างโดยทันที

ทฤษฎีบท $\mathbf{2.1}\ (\mathrm{(B)} \Leftrightarrow \mathrm{(C)})$. สัจพจน์การเลือกในรูปแบบ $\mathrm{B}\$ และรูปแบบ $\mathrm{C}\$ สมมูลกัน

 $ilde{\textit{พิสูจน์}}.$ $[(B)\Rightarrow(C)]$ ให้ X เป็นวงศ์ของเซตไม่ว่าง เราสามารถให้ดรรชนีกับ X ด้วยตัวมันเองได้ จะได้ว่า

$$X = \{X_i\}_{i \in X}$$

โดยที่ $X_i=i$ สำหรับทุก $i\in X$ นั่นเอง

จากสัจพจน์การเลือกในรูปแบบ B จะได้ว่าผลคูณคาร์ทีเซียน $\prod_{i\in X}X_i$ เป็นเซตไม่ว่างด้วย แต่จากนิยามเรา ทราบว่าเซตดังกล่าวมีสมาชิกเป็นฟังก์ชัน $f\colon X\to \bigcup_{i\in I}X_i$ ที่ซึ่ง $f(i)=f(X_i)\in X_i$ สำหรับทุก $i\in X$ ดัง นั้นผลคูณคาร์ทีเซียนมีสมาชิกเป็นฟังก์ชันการเลือกบน X

เนื่องจากผลคูณคาร์ทีเซียน $\prod_{i\in X} X_i$ เป็นเซตไม่ว่าง ดังนั้นจะมีฟังก์ชันการเลือกบน X ที่เป็นสมาชิกของมัน

 $[(\mathrm{B})\Rightarrow(\mathrm{C})]$ จากข้อสังเกตข้างต้น เห็นได้ชัดว่า ถ้ามีฟังก์ชันการเลือกบน $\{X_i\}_{i\in I}$ แล้วผลคูณคาร์ทีเซียน $\prod_{i\in I}X_i$ ต้องเป็นเซตไม่ว่าง

ต่อไปเราพิสูจน์ว่า $(A) \Leftrightarrow (B)$

ทฤษฎีบท $\mathbf{2.2}\ ((A) \Leftrightarrow (B))$. สัจพจน์การเลือกในรูปแบบ A และรูปแบบ B สมมูลกัน

พิสูจน์. $[({
m A})\Rightarrow({
m B})]$ ให้ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซตไม่ว่าง แล้วกำหนดให้ $A=igcup_{i\in I}A_i$

จากสัจพจน์การเลือกในรูปแบบ A จะได้ว่ามีฟังก์ชันการเลือก $f\colon \mathcal{P}^*\left(A\right) o A$ ที่ซึ่ง $f(B)\in B$ สำหรับ แต่ละ $B\in \mathcal{P}^*\left(A\right)$ ซึ่งสมมูลกับเงื่อนไขที่ว่า $B\subseteq A$ และ B ไม่เป็นเชตว่าง

เราจะได้ทันทีว่า $f(A_i)\in A_i$ สำหรับแต่ละ $i\in I$ เพราะ $A_i\subseteq A$ ไม่เป็นเซตว่างสำหรับทุก $i\in I$ ฉะนั้นหากนิยามฟังก์ชันการฉายกลับ $l\colon I\to \{A_i\}_{i\in I}$ โดยที่ $l(i)=A_i$ สำหรับทุก $i\in I$ แล้วจะได้ว่า $f\circ l\colon I\to \bigcup_{i\in I}A_i$ เป็นฟังก์ชันที่ซึ่ง

$$f \circ l(i) = f(l(i)) = f(A_i) \in A_i$$

สำหรับทุก $i\in I$ นั่นคือ $f\circ l$ เป็นฟังก์ชันการเลือกบน $\{A_i\}_{i\in I}$ (ในความหมายของรูปแบบ C) และ $f\circ l\in\prod_{i\in I}A_i$ ดังนั้นผลคูณคาร์ทีเซียนดังกล่าวเป็นเซตไม่ว่าง

 $[(A) \leftarrow (B)]$ ให้ A เป็นเซตไม่ว่าง ดังนั้น $\mathcal{P}^*(A)$ เป็นวงศ์ของเซตไม่ว่าง (เพราะมี $A \neq \emptyset$ เป็นสมาชิก) เราให้ $\mathcal{P}^*(A)$ ดรรชนีด้วยตัวมันเอง นั่นคือ

$$\mathcal{P}^*(A) = \{A_i\}_{i \in \mathcal{P}^*(A)}$$

โดยที่ $A_i=i$ สำหรับแต่ละ $i\in\mathcal{P}^*(A)$ ดังนั้นผลคูณคาร์ทีเซียน $\prod_{i\in\mathcal{P}^*(A)}A_i$ ไม่เป็นเซตว่าง และจะได้ว่ามี ฟังก์ชัน $f\colon\mathcal{P}^*(A)\to\bigcup_{i\in\mathcal{P}^*(A)}i$ ที่ซึ่ง $f(i)\in A_i$ สำหรับแต่ละ $i\in\mathcal{P}^*(A)$

แต่จากการให้นิยามข้างต้นเราจะได้ว่า $\bigcup_{i\in\mathcal{P}^*(A)}i=A$ ดังนั้น f เป็นฟังก์ชันการเลือกสำหรับเซต A \square

f 3 ความสมมูลระหว่าง f AC และ f ZP

เพื่อความสะดวกเราเขียนสัจพจน์มูลบทของแซร์เมโล (ZP) อีกครั้ง

สัจพจน์ 4 (Zermelo's postulate (ZP)). สัจพจน์มูลบทของแซร์เมโล: ให้ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซตไม่ว่าง ที่สมาชิกแต่ละคู่ไม่มีส่วนร่วมกัน นั่นคือ ถ้า $i\neq j$ แล้ว $A_i\cap A_j=\emptyset$ แล้วจะมีเซต $B\subseteq\bigcup_{i\in I}A_i$ โดยที่สำหรับ ทุก $i\in I$ จะได้ว่า $B\cap A_i$ มีสมาชิกเพียงตัวเดียว

หลักการ ZP เสนอโดย Ernst Zermelo ในปี 1908 ซึ่งเขามองว่าเป็นรูปแบบหนึ่งของสัจพจน์การเลือก ใน ภาษาของ Zermelo เรียกเซตที่มีสมบัติอย่างเซต B ใน ZP ว่า transversal ดังนั้น ZP จึงเป็นข้อความที่ว่าทุก วงศ์ของเซตไม่ว่างที่สมาชิกแต่ละคู่ไม่มีส่วนร่วมกันจะมีเซต transversal เสมอนั่นเอง

ทฤษฎีบท 3.1. AC สมมูลกับ ZP

พิสูจน์. $[(AC) \Rightarrow (ZP)]$ ให้ $\{A_i\}_{i \in I}$ เป็นวงศ์ของเซตไม่ว่างที่สมาชิกแต่ละคู่ไม่มีส่วนร่วมกัน ดังนั้นจะมีฟังก์ชัน การเลือก $f \colon I \to \bigcup_{i \in I} A_i$ ให้ B = f(I) เป็นภาพของ I ภายใต้การส่ง f

จึงเหลือเพียงแต่พิสูจน์ว่า $B\cap A_i$ มีสมาชิกเพียงตัวเดียวสำหรับแต่ $i\in I$ เราจะพิสูจน์ว่ามันเป็นเซตไม่ว่าง แล้วจากนั้นจะพิสูจน์ว่ามันมีสมาชิกตัวเดียว

ให้ $i\in I$ ดังนั้น $f(i)\in A_i$ จากการที่ f เป็นฟังก์ชันการเลือก และเราเห็นได้ว่า $f(i)\in f(I)=B$ ฉะนั้น $B\cap A_i\neq\emptyset$

ต่อไป ให้ $x\in B\cap A_i$ จาก $x\in B=f(I)$ ดังนั้น x=f(j) สำหรับบาง $j\in I$ และจาก f เป็นฟังก์ชัน การเลือก ดังนั้น $x=f(j)\in A_j$ ด้วย

แต่ถ้า $j \neq i$ แล้ว $A_j \cap A_i = \emptyset$ ขัดแย้งกับ $x \in A_j$ และ $x \in A_i$ ดังนั้น i=j แต่จาก f เป็นฟังก์ชัน จะได้ว่า x=f(i) นั่นคือ $B \cap A_i$ มีสมาชิกเพียงตัวเดียวคือ f(i) ตามต้องการ

 $[(\mathrm{AC}) \Leftarrow (\mathrm{ZP})]$ ให้ X เป็นวงศ์ของเซตไม่ว่าง พิจารณาเซต

$$X' = \{\{x\} \times x \colon x \in X\}$$

ถ้า $x,y\in X$ สอดคล้องกับ $(\{x\}\times x)\cap (\{y\}\times y)\neq\emptyset$ แล้วจะได้ว่า x=y หรืออีกนัยหนึ่ง หาก $x\neq y$ แล้ว $(\{x\}\times x)\cap (\{y\}\times y)=\emptyset$ ดังนั้น X' เป็นวงศ์ของเซตไม่ว่างที่ไม่มีส่วนร่วมกันทุกคู่ ดังนั้นจะมีเซต $B\subseteq \bigcup X'$ ที่ทำให้ $B\cap (\{x\}\times x)$ มีสมาชิกเพียงตัวเดียวสำหรับแต่ละ $x\in X$

นิยามฟังก์ชัน $f\colon X \to \bigcup X$ ดังนี้

$$f(x) =$$
 สมาชิกตัวท้ายของคู่อันดับหนึ่งเดียวที่ปรากฏใน $B \cap (\{x\} \times x)$

จากการที่ $B\cap (\{x\}\times x)$ มีสมาชิกเพียงหนึ่งเดียว จะได้ว่า f นิยามดี และมีโดเมนและโคโดเมนตามที่กำหนดไว้ นอกจากนี้จะได้ว่า $f(x)\in x$ สำหรับทุก $x\in X$ นั่นคือ f เป็นฟังก์ชันการเลือกตามต้องการ

สัจพจน์ AC และ ZP เสนอเป็นครั้งแรกโดย Zermelo ในปี 1904 และ 1908 ตามลำดับ เพื่อพิสูจน์หลัก การจัดอันดับดี (WOP) ซึ่งเราจะพิสูจน์ต่อไปในบทความนี้

f 4 ความสมมูลระหว่าง ${f ZL},\,{f HM}$ และ ${f AC}$

ในส่วนนี้เราจะพิสูจน์ความสมมูลระหว่างสัจพจน์การเลือก (AC), บทตั้งของซอร์น (ZL) และ หลักการใหญ่ สุดของเฮาส์ดอร์ฟ (HM) เพื่อความสะดวกเราเขียนสัจพจน์ทั้งสองอีกครั้งที่นี่

สัจพจน์ ${f 5}$ (Zorn's lemma (ZL)). บทตั้งของซอร์น: ถ้า (A,\leq) เป็นเซตอันดับบางส่วน ถ้าทุกลูกโซใน A มี ขอบเขตบนน้อยสุด แล้ว A จะมีสมาชิกใหญ่ที่สุด

สัจพจน์ 6 (Hausdorff maximal principle (HM)). หลักการใหญ่สุดของเฮาส์ดอร์ฟ: ทุกเซตอันดับบางส่วนมีลูกโช่ที่ใหญ่ที่สุด

ก่อนอื่นเรากล่าวถึงนิยามของลูกโซ่ (chain) เสียก่อน ซึ่งก็คือสับเซตของเซตอันดับบางส่วนที่ตัวมันเองเป็นเซต อันดับทุกส่วน ในขณะที่ลูกโซ่ใหญ่ที่สุด $(maximal\ chain)$ คือลูกโซ่ C ที่มีสมบัติว่า ลูกโซ่ที่บรรจุ C เป็นสับเซต มีได้แค่ C ตัวมันเองเท่านั้น

มีหลักการที่ใกล้ชิดกับหลักการใหญ่สุดของเฮาส์ดอร์ฟซึ่งเราอาจถือว่าเป็นข้อความของ HM ได้เช่นกัน

สัจพจน์ 8 (Hausdorff maximal principle, alternative statement). ทุกลูกโซ่ในเซตอันดับบางส่วน สามารถขยายไปเป็นลูกโซ่ที่ใหญ่ที่สุดและบรรจุตัวมันได้เสมอ

บทตั้ง 4.1. ข้อความ HM ทั้งสองรูปแบบสมมูลกัน

พิสูจน์. ให้ A เป็นเซตอันดับบางส่วน และ $C\subseteq A$ เป็นเซตอันดับทุกส่วน พิจารณาเซต $\mathcal C$ ที่กำหนดโดย

$$\mathcal{C} = \left\{ S \colon C \subseteq S \subseteq A \text{ โดยที่ } S \text{ เป็นเซตอันดับทุกส่วน}
ight\}$$

ดังนั้นจะได้ว่า $\mathcal C$ เป็นเซตอันดับบางส่วนภายใต้การเป็นสับเซต โดย HM จะได้ว่าเซต $\mathcal C$ มีลูกโซ่ P ที่ใหญ่ที่สุด เซต ดังกล่าวคือลูกโซ่ที่ใหญ่ที่สุดใน A ที่บรรจุ C นั่นเอง

สำหรับอีกทิศทางหนึ่ง สังเกตว่า \varnothing เป็นเซตอันดับทุกส่วนที่เป็นสับเซตของเซตอันดับบางส่วน A ใด ๆ ดังนั้น จาก HM ในอีกรูปแบบจะมีลูกโซ่ P ที่ใหญ่ที่สุดของ A ที่บรรจุ \varnothing ซึ่งก็เป็นลูกโซ่ที่ใหญ่ที่สุดของ A

เราจะใช้ HM ในรูปแบบที่สองเพื่อพิสูจน์ว่ามันสมมูลกับ ZL

ทฤษฎีบท 4.2. $(ZL) \Leftrightarrow (HM)$

พิสูจน์. ในการพิสูจน์นี้ ให้ (A,\leq) เป็นเซตอันดับบางส่วน

 $[(\mathrm{ZL})\Rightarrow (\mathrm{HM})]$ ให้ $C\subseteq A$ เป็นลูกโซ่ใน A พิจารณาคอลเลคชั่น $\mathcal C$ ของลูกโซ่ทั้งหมดใน A ที่บรรจุ C เซตนี้เป็นเซตอันดับบางส่วนที่เรียงลำดับโดยการเป็นสับเซต

เราจะใช้ Zorn's lemma กับเซต $\mathcal C$ ให้ $\{C_\alpha\}_{\alpha\in A}\subseteq \mathcal C$ เป็นลูกโซใด ๆ พิจารณา $\bigcup_\alpha C_\alpha$ ภายใต้การเรียง อันดับเดียวกับ A เราอ้างว่า $\bigcup_\alpha C_\alpha$ จะเป็นลูกโซ่ด้วย

เพื่อพิสูจน์คำกล่าวอ้างข้างต้น ให้ x,y เป็นสมาชิกใน $\bigcup_{\alpha} C_{\alpha}$ ดังนั้น $x\in C_{\alpha}$ และ $y\in C_{\beta}$ สำหรับบาง α,β แต่เนื่องจาก $\{C_{\alpha}\}_{\alpha\in A}$ เป็นลูกโซ่ ดังนั้น $x,y\in\max\{C_{\alpha},C_{\beta}\}$ และจาก C_{α},C_{β} เป็นลูกโซ่จะได้ว่า

x,y เปรียบเทียบกันได้ นั่นคือ $\bigcup_{\alpha} C_{\alpha}$ เป็นลูกโซ่ เพราะฉะนั้น $\bigcup_{\alpha} C_{\alpha}$ เป็นสมาชิกใน $\mathcal C$ และเป็นขอบเขตบนของ $\{C_{\alpha}\}_{\alpha\in A}$ ฉะนั้นจึงใช้ Zorn's lemma ได้

ดังนั้น ${\mathcal C}$ มีสมาชิกที่ใหญ่ที่สุด ซึ่งก็คือลูกโซ่ที่ใหญ่ที่สุดใน A ที่บรรจุ C ตามต้องการ

 $[(\mathrm{ZL})\Rightarrow (\mathrm{HM})]$ สมมุติให้ A เป็นเซตอันดับบางส่วนที่ทุกลูกโซ่มีขอบเขตบน จาก HM ในรูปแบบแรกจะได้ ว่า A มีลูกโซ่ C ที่ใหญ่ที่สุด โดยข้อสมมติฐานจะได้ว่า C มีขอบเขตบน ให้เป็น x

เราจะได้ว่า x จะเป็นสมาชิกใหญ่สุดของ A ทั้งนี้เพราะว่าถ้า $x \leq y$ แล้ว $C = C \cup \{y\}$ จากการเป็นลูกโซ่ ใหญ่ที่สุดของ C ดังนั้น $y \in C$ จึงได้ว่า $y \leq x$ จากการที่ x เป็นขอบเขตบนของ C

สำหรับความสัมพันธ์ระหว่าง ZL และ AC นั้นทั้งคู่สมมูลกันในระบบเซต ZF แต่ทว่าบทพิสูจน์ของ ZL หาก สมมติว่า AC จริงนั้นยากกว่าทิศทางกลับกัน

ทฤษฎีบท 4.3. $(ZL) \Rightarrow (AC)$

 $\widehat{\mathit{W}}$ สูจน์. ให้ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซตไม่ว่างที่ดรรชนีด้วยเซต I พิจารณาเซต

$$\mathcal{F}=\left\{f\colon J_f o igcup_i A_i\colon J_f\subseteq I$$
 และ $f(j)\in A_j$ สำหรับทุก $j\in J_f
ight\}$

ซึ่งเป็นเซตของ*ฟังก์ชันการเลือกบางส่วน*จาก I ไปยัง $\bigcup_{i\in I}A_i$ และเรียงลำดับโดยการเป็นภาคขยายของกันและกัน หรืออีกนัยหนึ่งจะกำหนด $f\leq g$ ก็ต่อเมื่อ $J_f\leq J_g$ และ $g|_{J_f}=f$ เห็นได้ว่า (\mathcal{F},\leq) เป็นเซตอันดับบางส่วน (เพราะ \leq คือ \subseteq เมื่อมองฟังก์ชันต่าง ๆ เป็นเซตของคู่อันดับ) และ \mathcal{F} เป็นเซตไม่ว่าง

ให้ $C=\{f_{\alpha}\}_{\alpha\in A}$ เป็นลูกโซ่ของฟังก์ชันใน $\mathcal F$ จะได้ว่า $F=\bigcup_{\alpha}f_{\alpha}$ เป็นฟังก์ชันด้วย ทั้งนี้เพราะว่าโดเมน และโคโดเมนของ F คือ $\bigcup_{\alpha}J_{\alpha}$ และ $\bigcup_{i}A_{i}$ ตามลำดับ และถ้า $x\in\bigcup_{\alpha}J_{\alpha}$ แล้วจะได้ว่า $x\in J_{\alpha}$ สำหรับบาง $\alpha\in A$ ซึ่งทำให้ $f_{\alpha}(x)\in A_{x}$ นอกจากนี้ถ้า $x\in J_{\beta}$ สำหรับ $\beta\in A$ แล้วจาก C เป็นลูกโซ่จะได้ว่า $f_{\alpha}\leq f_{\beta}$ หรือ $f_{\alpha}\geq f_{\beta}$

ถ้า $f_{\alpha} \leq f_{\beta}$ แล้วจะได้ว่า $f_{\beta}(x) = f_{\beta}|_{J_{\alpha}}(x) = f_{\alpha}(x)$ และถ้า $f_{\alpha} \geq f_{\beta}$ แล้วจะได้ว่า $f_{\alpha}(x) = f_{\alpha}|_{J_{\beta}}(x) = f_{\beta}(x)$ นั่นคือ $f_{\alpha}(x) = f_{\beta}(x)$ ทุกสมาชิกในลูกโซ่ที่ x อยู่ในโดเมนส่ง x ไปสมาชิกเดียวกัน ทำให้ F นิยามดี และจะเห็นชัดว่า F เป็นขอบเขตบนของลูกโซ่ C

ดังนั้นทุกลูกโซ่ใน ${\cal F}$ มีขอบเขตบน เราจะได้ว่า $\overset{\circ}{{\cal F}}$ มีสมาชิกที่ใหญ่ที่สุดให้แทนด้วย g ถ้าเราสามารถแสดงได้ว่า $J_q=I$ แล้วจะได้ g เป็นฟังก์ชันการเลือกบน $\{A_i\}_{i\in I}$ ตามต้องการ

สมมติ $J_g
eq I$ ดังนั้นมี $j \in I$ ที่ซึ่ง $j
otin J_g$

ให้ $a\in A_j$ แล้วจะได้ว่าเราสามารถขยาย g ไปเป็นฟังก์ชัน \hat{g} ที่ซึ่ง $\hat{g}(x)=g(x)\in A_x$ สำหรับทุก $x\in J_g$ และ $\hat{g}(j)=a\in A_j$ จะได้ $\hat{g}\neq g$ และ $\hat{g}\geq g$ ซึ่งขัดแย้งกับการที่ g เป็นสมาชิกที่ใหญ่ที่สุด ดังนั้น $J_g=I$ เท่านั้น

ด้านล่างเป็นการพิสูจน์ว่าถ้า AC เป็นจริงแล้ว ZL เป็นจริงด้วย บทพิสูจน์ด้านล่างปรากฏใน [nLa22]

ทฤษฎีบท 4.4.
$$(ZL) \Leftarrow (AC)$$

พิสูจน์. ให้ A เป็นเซตอันดับบางส่วนที่ทุกลูกโซ่มีขอบเขตบน เราจะพิสูจน์โดยใช้ข้อขัดแย้งว่า A ต้องมีสมาชิกใหญ่ สุด สมมติว่าไม่ ดังนั้นทุกลูกโซ่ C ของ A จะต้องมีขอบเขตบนโดยแท้ กล่าวคือจะมี $x\in A$ ที่ c< x สำหรับทุก $x\in C$ ทั้งนี้เพราะว่าถ้า y เป็นขอบเขตบนของ C แล้ว y ไม่สามารถเป็นสมาชิกใหญ่ที่สุดของ A ได้ ฉะนั้นจะมี x ที่ y< x ซึ่งเป็นขอบเขตบนโดยแท้ของ C ตามต้องการ

ให้ $\operatorname{Well}(A)$ แทนสับเซตของ A ทั้งหมดที่จัดอันดับดีโดย \leq (เห็นได้ชัดว่าสมาชิกใน $\operatorname{Well}(A)$ เป็นลูกโซ่) ใช้สัจพจน์การเลือกเพื่อเลือก f(W) ให้เป็นขอบเขตบนโดยแท้ตัวหนึ่งของ $W\subseteq \operatorname{Well}(A)$ จะเรียกเซต $W\in \operatorname{Well}(A)$ ว่าเป็นเซต f-inductive ก็เมื่อสำหรับทุก $x\in W$ จะได้ว่า $x=f(\{y\in W\colon y< x\})$

เซต $\operatorname{Well}(A)$ เป็นเซตไม่ว่างเพราะมี \varnothing เป็นสมาชิก ดังนั้น $f(\varnothing)$ หาได้ แล้วจะได้ว่า $\{f(\varnothing)\}$ เป็นเซต f-inductive เราสามารถใช้ f กับเซตดังกล่าวไปเรื่อง ๆ เพื่อสร้างลูกโซ่ใน A ได้ ลูกโซ่ดังกล่าวจะ "ยาวกว่า" A (สามารถพิสูจน์ได้หากใช้ $\operatorname{transfinite}$ induction) เราเสนอวิธีพิสูจน์อีกแบบด้วยเทคนิคด้านล่าง

ให้ $Y,Z\in \mathrm{Well}(A)$ เป็นเซต f-inductive เราจะแสดงว่าต้องมีเซตหนึ่งเป็นชิ้นส่วนต้นของอีกเซตหนึ่ง ใน ความหมายที่ว่า

• L เป็นชิ้นส่วนต้นของ P ก็ต่อเมื่อ ถ้า $y,x\in P$ โดยที่ $y\leq x$ และ $x\in L$ แล้ว $y\in L$ ด้วย

ให้ I เป็นยูเนียนของสับเซตของ S ทั้งหมดที่เป็นชิ้นส่วนต้นของทั้ง Y และ Z แล้วจะได้ว่า I เป็นชิ้นส่วนต้นที่ใหญ่ ที่สุดที่สอดคล้องกับเงื่อนไขดังกล่าว ถ้า I เป็นสับเซตแท้ของทั้ง Y และ Z แล้วจะมี y และ z ที่เป็นสมาชิกที่น้อย ที่สุดใน $Y\setminus I$ และ $Z\setminus I$ ตามลำดับ (มีเพราะ Y,Z เป็นเซตจัดอันดับดี)

ดังนั้น $\{x\in Y\colon x< y\}=I=\{x'\in Z\colon x'< z\}$ แล้วอาศัยความเป็น f-inductive ของเซตทั้งสอง จะได้ y=f(I)=z แล้วเราจะสามารถขยาย I ไปเป็นชิ้นส่วนต้น $I\cup\{y\}=I\cup\{z\}$ ได้ แต่จะขัดแย้งกับ ความใหญ่สุดของ I ดังนั้นเราต้องได้ว่า I ไม่เป็นสับเซตแท้ของบางเซต นั่นคือ I=Y หรือ I=Z ทำให้ Y,Z ต้องมีเซตใดเซตหนึ่งเป็นชิ้นส่วนของอีกเซต

เพราะฉะนั้นเราจะได้ว่าคอลเลคชั่นของเซต f-inductive นั้นเรียงอันดับทุกส่วนภายใต้การเป็นสับเซต แล้วเรา จะได้ว่ายูเนียน U ของเซตดังกล่าวจะเป็นเซต f-inductive ที่ใหญ่ที่สุดใน A (ดูบทตั้งด้านล่าง) ฉะนั้นจะมี ขอบเขตบนโดยแท้ f(U) ของ U พิจารณา $U \cup \{f(U)\}$ จะเป็นเซต f-inductive ที่ใหญ่กว่า U ขัดแย้ง กับความใหญ่สุดของมัน

บทตั้ง 4.5. ให้ P_{α} เป็นคอลเลคชั่นของสับเซตของ S ที่เรียงอันดับดีด้วย \leq_{α} โดยมีเงื่อนไขว่าสำหรับ α,β แล้ว เซต $(P_{\alpha},\leq_{\alpha})$ และ (P_{β},\leq_{β}) จะต้องมีเซตใดเซตหนึ่งที่เป็นชิ้นส่วนต้นของอีกเซต

ให้ P เป็นยูเนียน $\bigcup_{\alpha} P_{\alpha}$ และนิยามการเรียงลำดับ $x \leq y$ ก็ต่อเมื่อ $x \leq_{\alpha} y$ ในบางเซต P_{α} ที่บรรจุสมาชิก ทั้งสอง แล้ว P เป็นเซตจัดอันดับดีภายใต้ \leq โดยที่แต่ละ P_{α} เป็นชิ้นส่วนต้นของ P

พิสูจน์. สังเกตว่า \leq นิยามดีและเป็นอันดับทุกส่วนบน P เพราะถ้าให้ $x,y\in P$ แล้วจะได้ว่า $x\in P_{\alpha}$ และ $y\in P_{\beta}$ สำหรับบาง α,β โดยที่ P_{α},P_{β} ต้องมีเซตใดเซตหนึ่งบรรจุอีกเซต โดยไม่เสียนัยทั่วไปให้ $P_{\alpha}\subseteq P_{\beta}$ แล้ว จะได้ว่า x,y เปรียบเทียบกันได้ใน P_{β}

ถ้า $T\subseteq P$ เป็นเซตไม่ว่าง แล้ว $T\cap P_\alpha$ เป็นเซตไม่ว่างสำหรับบาง α ดังนั้นจะมีสมาชิกน้อยสุด $t\in T\cap P_\alpha$ ภายใต้ \leq_α เราอ้างว่า t นี้จะเป็นสมาชิกน้อยสุดภายใต้ \leq ด้วย

ให้ $s\in T$ โดยที่ $s\leq t$ แล้วจะได้ว่า $s\in P_{\alpha}$ ด้วยจากการที่ P_{α} เป็นชิ้นส่วนต้นของ P ดังนั้นจะได้ $t\leq s$ จากนิยามของ t

บทพิสูจน์ข้อความที่ว่า $(ZL) \Leftarrow (AC)$ อีกรูปแบบหนึ่งที่ปรากฏทั่วไปในหนังสือต่าง ๆ จะอ้างทฤษฎีบท Bourbaki–Witt เป็นวิธีการระหว่างกลาง ผู้สนใจสามารถติดตามอ่านได้ใน [Lan 02]

f 5 ความสมมูลระหว่าง f WOP และ f AC

สัจพจน์ 7 (Well-ordering principle (WOP)). หลักการจัดอันดับดี: ทุกเซตสามารถจัดอันดับดีได้

เราดำเนินการตามโปรแกรมที่เราวางไว้ด้วยการพิสูจน์ว่า $(AC) \Rightarrow (WOP)$ บทพิสูจน์ด้านล่างนี้(โดยเนื้อแท้ แล้ว)เป็นบทพิสูจน์ที่ Zermelo ใช้พิสูจน์หลักการจัดอันดับดีในปี 1908 โดยไม่ใช้แนวคิดเกี่ยวกับ ordinals ที่ยัง ไม่มีนิยามในสมัยของเขา และปรากฏเป็นแบบฝึกหัดใน [Joh96]

ทฤษฎีบท 5.1 (ทฤษฎีบทของแชร์เมโล, 1908). (AC) \Rightarrow (WOP)

พิสูจน์. ให้ A เป็นเซต ถ้า A เป็นเซตว่างย่อมได้ว่า A จัดอันดับดี ดังนั้นเราพิจารณา $A \neq \varnothing$ ดังนั้นจะมีฟังก์ชัน การเลือก $g \colon \mathcal{P}^*(A) \to A$ เราจะเรียกสับเซต C ของ $\mathcal{P}(A)$ ว่าเป็น*เซตปิด*¹ ก็เมื่อ

- 1. ถ้า $B \in C$ และ $B \neq A$ แล้วจะได้ว่า $B \cup \{g(A \setminus B)\}$ เป็นสมาชิกของ C และ
- 2. ยูเนียนของคอลเลคชั่นใด ๆ ของสมาชิกใน C ก็เป็นสมาชิกของ C ด้วย (ซึ่งจะทำให้ได้ว่า $\varnothing \in C$ ด้วย) สังเกตว่า $\mathcal{P}(A)$ เป็นเซตปิด ดังนั้นคอลเลคชั่น \mathfrak{C} ของเซตปิดทั้งหมดไม่เป็นเซตว่าง พิจารณา $\bigcap \mathfrak{C}$ เราจะพิสูจน์ว่า เซตนี้เป็นเซตปิดที่เล็กที่สุดด้วย
 - 1. ให้ $B\in \bigcap \mathfrak{C}$ และ $B\neq A$ ดังนั้น $B\in C$ สำหรับทุกเซตปิด C เพราะฉะนั้น $B\cup \{g(A\setminus B)\}$ จะ อยู่ใน C สำหรับทุกเซตปิด C ด้วย นั่นคือ $B\cup \{g(A\setminus B)\}\in \bigcap \mathfrak{C}$
 - 2. สังเกตว่า $\varnothing\in\cap\mathfrak{C}$ ให้ $\{B_{\beta}\}$ เป็นคอลเลคชั่นของสมาชิกใน \mathfrak{C} ดังนั้น $\{B_{\beta}\}$ เป็นคอลเลคชั่นของสมาชิกในเซตปิด C ใด ๆ เพราะฉะนั้น $\bigcup\{B_{\beta}\}$ เป็นสมาชิกในทุกเซตปิด C ด้วย และจะได้ว่า $\bigcup\{B_{\beta}\}$ เป็นสมาชิกของ $\cap\mathfrak{C}$ ด้วย
 - 3. ให้ C เป็นเซตปิด เห็นได้ชัดจากนิยามว่า $\bigcap \mathfrak{C} \subseteq C$

เราจะเรียก $B\in \bigcap\mathfrak{C}$ ว่าเป็น $pinch\ point$ ถ้า B สามารถเปรียบเทียบได้กับสมาชิกทุกตัวใน \mathfrak{C} ภายใต้การ เป็นสับเซต (นั่นคือสำหรับทุก $Y\in \bigcap\mathfrak{C}$ จะได้ว่า $B\subseteq Y$ หรือ $Y\subseteq B$) และให้ \mathcal{B} เป็นเซตของ pinch point ทั้งหมดใน \mathfrak{C} พบว่า

- 1. ให้ $B\in\mathcal{B}$ และ $B\neq A$ แล้วจะได้ว่า $B\cup\{g(A\setminus B)\}\in\bigcap\mathfrak{C}$ เราจะแสดงว่าเซต $B'\coloneqq B\cup\{g(A\setminus B)\}$ เป็น pinch point ด้วย
 - ให้ \mathfrak{B}' แทนเซตใน $\bigcap \mathfrak{C}$ ที่เปรียบเทียบได้กับ B' ทั้งหมด (นั่นคือ ถ้า $Y \in \mathfrak{B}'$ แล้วจะได้ว่า $Y \subseteq B'$ หรือ $B' \subseteq Y$) เราจะพิสูจน์ว่าเซตดังกล่าวเป็นเซตปิด
 - (a) ให้ $Y\in\mathfrak{B}$ ถ้า Y=A แล้วจะได้ว่า $B'\subseteq A$ โดยทันที จึงสมมติให้ $Y\neq A$ ฉะนั้นจะสามารถ สร้าง $Y'\coloneqq Y\cup\{g(A\setminus Y)\}$ ได้

เราจะแสดงว่า $B'\subseteq Y'$ หรือ $Y'\subseteq B'$ แต่เราทราบว่า Y ต้องสอดคล้องกับเงื่อนไขต่อไปนี้

$$B\subseteq Y'$$
 หรือ $Y'\subseteq B$ (เนื่องจาก B เป็น pinch point) และ $B'\subseteq Y$ หรือ $Y\subseteq B'$ (เนื่องจาก $Y\in\mathfrak{B}$)

สังเกตว่า $B \subsetneq B'$ และ $Y \subsetneq Y'$ เสมอ ถ้า $Y' \subseteq B$ หรือ $B' \subseteq Y$ แล้วจะได้ทันทีว่า $Y' \subseteq B'$ หรือ $B' \subseteq Y'$ ฉะนั้น Y' และ B' เปรียบเทียบกันได้ จึงเหลือกรณีเมื่อ $B \subseteq Y'$ และ $Y \subseteq B'$ พร้อมกัน

¹ไม่ใช่เซตปิดในความหมายของทอพอโลยี แต่ใกล้เคียงกัน

จาก B เป็น pinch point เราจะได้ว่า $B\subseteq Y$ หรือ $Y\subseteq B$ ในกรณีแรกเราย่อมได้ว่า $B\subseteq Y\subseteq B'=B\cup\{g(A\setminus B)\}$ ซึ่งทำให้ได้ว่า B=Y หรือ Y=B' ในกรณีที่สอง เราได้ว่า $Y\subseteq B\subseteq Y'=Y\cup\{g(A\setminus Y)\}$ ฉะนั้น Y=B หรือ B=Y' ไม่ว่าในกรณีไหนจะได้ว่า Y' เปรียบเทียบกันได้กับ B' ทั้งสิ้น ดังนั้น $Y'\in\mathfrak{B}'$

(b) สังเกตว่า $\varnothing \in \mathfrak{B}'$

ให้ $\{B_{\beta}\}_{\beta\in I}$ เป็นคอลเลคชั่นของเซตใน \mathfrak{B}' ดังนั้นสำหรับทุก $\beta\in I$ จะได้ว่า $B_{\beta}\subseteq B'$ หรือ $B'\subseteq B_{\beta}$ ฉะนั้นจะมีกรณีเกิดขึ้นได้คือ

- i. ถ้ามีดรรชนี β' ที่ทำให้ $B'\subseteq B_{\beta'}$ แล้วจะได้ว่า $B'\subseteq B_{\beta'}\subseteq\bigcup\{B_{\beta}\}$
- ii. ถ้าสำหรับทุก β' เราได้ว่า $B_{\beta'}\subseteq B'$ แล้วจะได้ว่า $\bigcup\{B_{\beta'}\}\subseteq B'$

ดังนั้น $\bigcup\{B_{eta}\}$ เปรียบเทียบได้กับ B' นั่นคือ $\bigcup\{B_{eta}\}\in\mathfrak{B}'$

จากทั้งสองกรณี สรุปได้ว่า \mathfrak{B}' เป็นเซตปิด แต่จาก $\mathfrak{B}'\subseteq \bigcap\mathfrak{C}$ และ $\bigcap\mathfrak{C}$ เป็นเซตปิดที่เล็กที่สุด แล้วจะได้ ว่า $\mathfrak{B}'=\bigcap\mathfrak{C}$ นั่นคือ ทุกสมาชิกใน $\bigcap\mathfrak{C}$ เปรียบเทียบได้กับ B' ฉะนั้น B' เป็น pinch point ด้วย และ $B'\in\mathcal{B}$

2. สังเกตว่า $\varnothing \in \mathcal{B}$

ให้ $\{B_{\beta}\}_{\beta\in I}$ เป็นคอลเลคชั่นของ pinch point ดังนั้นสำหรับทุก $Y\in \cap\mathfrak{C}$ และ $\beta\in I$ จะได้ว่า $B_{\beta}\subseteq Y$ หรือ $Y\subseteq B_{\beta}$ ฉะนั้นจะมีกรณีเกิดขึ้นได้คือ

- (a) ถ้ามีดรรชนี β' ที่ทำให้ $Y \subseteq B_{\beta'}$ แล้วจะได้ว่า $Y \subseteq B_{\beta'} \subseteq \bigcup \{B_{\beta}\}$
- (b) ถ้าสำหรับทุก β' เราได้ว่า $B_{\beta'}\subseteq Y$ แล้วจะได้ว่า $\bigcup\{B_{\beta'}\}\subseteq Y$

ดังนั้น $\bigcup\{B_{\beta}\}$ เปรียบเทียบได้กับทุก $Y\in\bigcap\mathfrak{C}$ นั่นคือ $\bigcup\{B_{\beta}\}$ เป็น pinch point และ $\bigcup\{B_{\beta}\}\in\mathcal{B}$

จากทั้งสองของข้างต้นจะได้ว่า $\mathcal B$ เป็นเซตปิด แต่จาก $\mathcal B\subseteq\cap\mathfrak C$ และ $\cap\mathfrak C$ เป็นเซตปิดที่เล็กที่สุด แล้วจะได้ว่า $\mathcal B=\cap\mathfrak C$ ดังนั้นทุกสมาชิกใน $\cap\mathfrak C$ เป็น pinch point และสามารถเรียงลำดับได้ทุกส่วนด้วยการเป็นสับเซต ต่อไปเราจะเรียงอันดับดีให้กับเซต A ให้ $x\in A$ เป็นสมาชิกใด ๆ พิจารณาเซต

$$B_x = \bigcup \{ B \in \bigcap \mathfrak{C} \colon x \notin B \}$$

นั่นคือ B_x เป็นยูเนียนของสมาชิกทั้งหมดใน $\bigcap \mathfrak C$ ที่ไม่มี x เป็นสมาชิก สังเกตว่า $B_x \in \bigcap \mathfrak C$ เพราะ $\bigcap \mathfrak C$ เป็นเซต ปิด ฉะนั้น B_x เป็นเซตที่ใหญ่ที่สุดที่มีสมบัติว่า $x \notin B_x$

เนื่องจาก $x\in A$ และ $x\notin B_x$ ดังนั้น $A\neq B_x$ ฉะนั้นเราสามารถสร้างเซต $B_x'=B\cup g(A\setminus B_x)$ ได้ และ $B_x\subsetneq B_x'$ ถ้า $x\neq g(A\setminus B_x)$ แล้วจะได้ว่า B_x' เป็นเซตที่ใหญ่กว่า B_x โดยแท้ และไม่มี x เป็นสมาชิก ขัดแย้งกับการสร้าง B_x ของเรา ดังนั้นจะต้องได้ว่า $x=g(A\setminus B_x)$ เท่านั้น

นิยามการเรียงลำดับ < ให้เซต A ดังนี้

$$(x < y) \Leftrightarrow$$
 มี $B \in \bigcap \mathfrak{C}$ ที่ทำให้ $x \in B$ และ $y \notin B$

จะได้ว่า < มีสมบัติต่อไปนี้

• (Irreflexive) เห็นได้ชัดว่า $x \not< x$ สำหรับทุก x

- (Antisymmetric) สมมติให้ x < y แล้วจะได้ว่ามี $B \in \bigcap \mathfrak{C}$ ที่ทำให้ $x \in B$ และ $y \notin B$ ดังนั้น $x \in B \subseteq B_y$ และ $y \notin B_y$
 - ให้ C เป็นเซตใน $\bigcap \mathfrak C$ ใด ๆ ที่ $y \in C$ จากการที่ $\bigcap \mathfrak C$ เรียงลำดับทุกส่วนด้วยการเป็นสับเซต ดังนั้น $C \subseteq B_y$ หรือ $B_y \subseteq C$ เท่านั้น แต่จาก $y \notin B_y$ ดังนั้น $B_y \subseteq C$ ได้อย่างเดียว และจะได้ว่า $x \in C$ ด้วย ฉะนั้น y < x ไม่จริง จึงส่งผลให้ < มีสมบัติปฏิสมมาตร
- (Transitive) ให้ x < y และ y < z ดังนั้นมีเซต $B, C \in \bigcap \mathfrak{C}$ ที่ทำให้ $x \in B, y \notin B$ และ $y \in C, z \notin C$

เนื่องจาก y < z และ < มีสมบัติปฏิสมมาตร ดังนั้น z < y ไม่จริง นั่นคือทุกเซต $V \in \bigcap \mathfrak{C}$ จะได้ว่า $z \notin V$ หรือ $y \in V$ เมื่อพิจารณากับเซต B จากข้างต้นเราทราบว่า $y \notin B$ ดังนั้น $z \notin B$ ด้วย ฉะนั้น $B \cup C$ เป็นเซตใน $\bigcap \mathfrak{C}$ ที่ซึ่ง $x \in (B \cup C)$ และ $z \notin (B \cup C)$ นั่นคือ x < z ตามต้องการ

• (Connected) ให้ $x,y \in A$ โดยที่ $x \neq y$ และ $\neg (x < y)$ ดังนั้นทุกเซต $B \in \bigcap \mathfrak{C}$ จะได้ว่า $x \notin B$ หรือ $y \in B$

จากข้างต้น จะมีเซต $B_y \in \bigcap \mathfrak{C}$ ที่ซึ่ง $y \notin B_y$ บังคับให้ $x \notin B_y$ ด้วย พิจารณา

$$B'_y = B_y \cup \{g(A \setminus B_y)\} = B_y \cup \{y\}$$

(สร้างเซตดังกล่าวได้ เพราะ $B_y \neq A$) เนื่องจาก $x \notin B_y$ และจาก $x \neq y$ เราจะได้ว่า $x \notin B_y'$ ด้วย ดังนั้น B_y' เป็นเซตที่มี y เป็นสมาชิก แต่ x ไม่เป็นสมาชิก เพราะฉะนั้น y < x ตามต้องการ

• (Well-orderedness) ให้ $X = \{x_i\}_{i \in I} \subseteq A$ เป็นเซตไม่ว่าง เราจะแสดงว่ามีสมาชิก x ใน X ที่เป็น สมาชิกเล็กที่สุด (นั่นคือ ถ้า $y \neq x$ แล้ว y > x) พิจารณา

$$B_X = \bigcup \{ B \in \bigcap \mathfrak{C} \colon X \cap B = \emptyset \}$$

จะได้ว่า B_X เป็นเซตที่ใหญ่ที่สุดใน $\bigcap \mathfrak C$ ที่มีสมบัติว่า $X\cap B_X=\varnothing$ ด้วย และทำให้ $A\neq B_X$ (เพราะ $X\cap A\neq\varnothing$ แต่ $X\cap B_X=\varnothing$) ดังนั้นจะมีเซต

$$B_X' = B_X \cup \{g(A \setminus B_X)\} \in \bigcap \mathfrak{C}$$

เราอ้างว่า $g(A\setminus B_X)\in X$ มิฉะนั้น $B_X'\supsetneq B_X$ จะเป็นเซตใน $\bigcap\mathfrak C$ ที่ใหญ่กว่า B_X ที่ $B_X'\cap X=\varnothing$ ขัดแย้งกับการสร้าง X ของเรา ดังนั้น $g(A\setminus B_X)\in X$

กำหนด $x \coloneqq g(A \setminus B_X)$ ให้ $y \in X$ เป็นสมาชิกใด ๆ ที่ $y \neq x$ ดังนั้นมีเซต B_X' ที่ซึ่ง $x \in B_X'$ แต่ $y \notin B_X'$ นั่นคือ x < y และจะได้ว่า x เป็นสมาชิกเล็กที่สุดใน X

จากทุกข้อข้างต้น จะได้ว่า < เป็นการจัดอันดับดีบน A

ขากลับของทฤษฎีบทข้างต้นนั้นง่ายมาก

ทฤษฎีบท 5.2. $(WOP) \Rightarrow (AC)$

พิสูจน์. ให้ $\{A_i\}_{i\in I}$ เป็นวงศ์ของเซตไม่ว่าง ให้ $X=\bigcup_{i\in I}A_i$ และให้ \leq เป็นการเรียงอันดับดีบน X นิยาม ฟังก์ชัน $f\colon I\to X$ โดยที่ f(i) ให้เป็นสมาชิกที่น้อยที่สุดของ A_i แล้วจะได้โดยง่ายว่า f เป็นฟังก์ชันการเลือก

ทฤษฎีบท 5.3. $(ZL) \Rightarrow (WOP)$

พิสูจน์. ให้ A เป็นเซต ถ้า A เป็นเซตว่างเห็นได้ชัดว่า A เรียงลำดับดี ดังนั้นสมมติให้ A ไม่เป็นเซตว่าง ให้ A เป็นเซตของอันดับดีทั้งหมดบนสับเซตของ A ดังนี้

$$\mathcal{A}=\left\{ (X,\leq_X)\in\mathcal{P}\left(A
ight) imes A^2\colon X\subseteq A$$
 และ \leq_X เป็นการจัดอันดับดีบน $X
ight\}$

เห็นได้ว่า ${\cal A}$ ไม่เป็นเซตว่าง เพราะเซตที่มีสมาชิก 1 ตัวสามารถจัดอันดับดีได้ และอันดับดังกล่าวจะเป็นสมาชิกของ ${\cal A}$ ด้วย

เพื่อใช้ Zorn's lemma เราเรียงลำดับ $\mathcal A$ ด้วยการเรียงลำดับร่วมกัน นั่นคือนิยาม $(E,\leq_E)\leq (F,\leq_F)$ ก็ ต่อเมื่อ E เป็นชิ้นส่วนต้นของ F (นั่นคือถ้า $x,y\in F$ โดยที่ $x\leq y$ และ $y\in E$ แล้ว $x\in E$ ด้วย) และการ เรียงลำดับใน E เหมือนกับการเรียงลำดับใน F

ให้ $C = \{(E_i, \leq_{E_i})\}_{i \in I}$ เป็นลูกโซใน ${\mathcal A}$ เราสามารถสร้างการเรียงลำดับ

$$\bigcup C = \left(\bigcup E_i, \bigcup \leq_{E_i}\right)$$

จากบทตั้ง 4.5 จะได้ว่า $\bigcup C$ เป็นการเรียงลำดับดีด้วย จะเห็นได้ชัดว่า $\bigcup C$ เป็นขอบเขตบนของโซ่ C ดังนั้นทุกโซ่ มีขอบเขตบน โดย Zorn 's lemma จะได้ว่า $\mathcal A$ มีสมาชิกมากที่สุด ให้เป็น (M,\leq_M)

เราอ้างว่า M=A มิฉะนั้นจะมีสมาชิก $x\notin M$ และเราสามารถนิยาม $(M\cup\{x\},\leq_{M\cup\{x\}})$ ได้ด้วยใช้ อันดับเดิมสำหรับสมาชิกใน M และให้ $m\leq x$ สำหรับทุก $m\in M$ จะเห็นได้ว่า $(M\cup\{x\},\leq_{M\cup\{x\}})$ เป็นการ เรียงลำดับดีบน $M\cup\{x\}$ และ $(M,\leq_M)<(M\cup\{x\},\leq_{M\cup\{x\}})$ ขัดแย้งกับความใหญ่ที่สุดของ (M,\leq_M) ดังนั้น M=A เท่านั้น นั่นคือ $(M,\leq_M)=(A,\leq_A)$ เป็นการเรียงลำดับดีบน A

บทแทรก 5.4. $(AC) \Leftrightarrow (ZL) \Leftrightarrow (WOP)$

พิสูจน์. • (AC) \Leftrightarrow (ZL) พิสูจน์ในทฤษฎีบท 4.4 และทฤษฎีบท 4.3

- $(ZL) \Rightarrow (WOP)$ พิสูจน์ในทฤษฎีบท 5.3
- $(WOP) \Leftrightarrow (AC)$ พิสูจน์ในทฤษฎีบท 5.1 และทฤษฎีบท 5.2

ยังมีวิธีการพิสูจน์แบบอื่น ๆ ที่ใช้ทฤษฎีที่เกี่ยวข้องกับ ordinals ซึ่งทำให้บทพิสูจน์สั้นลงอย่างมาก ผู้ที่สนใจ สามารถติดตามอ่านได้ใน [Cie97] หรือ [Pot04] ประวัติความเป็นมาและข้อถกเถียงเกี่ยวสัจพจน์การเลือกใน ประวัติศาสตร์ของคณิตศาสตร์สามารถหาอ่านได้ใน [Bel21]

6 บรรณานุกรม

- [Bel21] John L. Bell, *The Axiom of Choice*, The Stanford Encyclopedia of Philosophy (Edward N. Zalta, ed.), Metaphysics Research Lab, Stanford University, Winter 2021 ed., 2021.
- [Cie97] Krzysztof Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, no. 39, Cambridge University Press, 1997.
- [Fre87] Peter Freyd, Choice and well-ordering, Annals of Pure and Applied Logic **35** (1987), 149–166.

- [Gar13] D. J. H. Garling, A course in mathematical analysis, vol. I, Cambridge University Press, 2013.
- [HL19] Martin Hils and François Loeser, A first journey through logic, Student Mathematical Library, no. 89, American Mathematical Society, 2019.
- [Joh96] P. T. Johnstone, *Notes on logic and set theory*, Cambridge Mathematical Textbooks, Cambridge University Press, 1996.
- [Lan02] Serge Lang, Algebra, revised third ed., Graduate Texts in Mathematics, no. 211, Springer-Verlag, 2002.
- [nLa22] nLab authors, Zorn's lemma, https://ncatlab.org/nlab/show/Zorn's+lemma, April 2022.
- [Pot04] Michael Potter, Set theory and its philosophy: A critical introduction, Oxford University Press, 2004.
- [vH67] J. van Heijenoort (ed.), From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA, 1967.
- [Zer08] Ernst Zermelo, Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische Annalen 65 (1908), 107–128 (German).
- [Zer67] _____, A new proof of the possiblity of a well-ordering, in van Heijenoort [vH67], pp. 183–198.