Monday April 13th, 2015

Baye's Rule

P(A|B) = [P(A) P(B|A)] / P(B)

A: some statement/hypothesis

B: data/ "new" information

Example –

A: "accused is guilty"

B: evidence in trial - DNA is a match

P(A) = 1/10,000,000

 $P(B|\sim A) = 1/1,000,000$ (chance of a false positive - the probability of B given *not* A is one in a million)

P(B|A) = 1 (assuming there is never a chance of a false negative)

 $P(B) = P(B \text{ and } A) + P(B \text{ and } \sim A) \leftarrow \text{adding up the two possibilities}$

$$= P(A)P(B|A) + P(\sim A)P(B|\sim A)$$

=(1/10,000,000)(1)+(9,999,999/10,000,000)(1/1,000,000)

 $\sim = (1/10,000,000) + (1)(10/10,000,000)$

= 11/10,000,000

Baye's Rule: P(A|B) = [P(A) P(B|A)] / P(B)

P(A|B) = [(1/10,000)(1)]/(11/10,000,000) = 1/11

Prosecutor's fallacy: $P(B|\sim A) = P(\sim A|B)$ - prosecutor wants to deny Baye's Rule

Think about Baye's Rule in terms of cohorts of people

10,000 people in New York:

1 guilty person \rightarrow 1 positive test

10,000,000 not guilty \rightarrow 10 positive tests (one in a million times ten million)

1 guilty / 11 total

Probability

- X: random variable anything we are unsure about
- Ω (omega): space/probability space/support = set of possible outcomes
- $x \in \Omega$: possible outcomes
- Probability distribution: P(X)
 - o Complete description of uncertainty
 - Brute-force list

X	P(X=x)
x1 \$.99	.3
x2 \$1.00	.5
x3 \$1.01	.2

- Probability mass function
 - Large number of possibilities and probabilities
 - PMF: P(X=x) = f(x)
 - Examples: parametric probability models
 - o Binomial distribution: X~Binomial(N,w)
 - Poisson: X~Poisson(ℓ)

0

- Probability density function
- o Expected value = "center" of your distribution
 - $E(X) = summation_{x e omega} P(X=x) * x$
 - Summing all possible events (assuming omega is discrete)
 - X = stock price of AAPL (12 months from today)

X	P(X=x)	
\$100	.2	
\$120	.4	
\$140	.4	

- Decision Trees
 - Ordered temporally left to right
 - o How a sequence of events may unfold in time
 - o Squares and circles are nodes
 - Square decision node
 - Circle stochastic node

- o Solving a Decision Tree:
 - Work backward in time
 - Reduce every stochastic node to get expected value
 - At every decision node, take the option with the highest EV

Insurance Decision Tree example:

$$E(B) = w(1M-c) + (1-w)(1M-c) = 1M - c$$

$$EC = w*0 + (1-w)*1M = 1M - w*1M$$

Buy whenever E(B) > E(C)

$$1M-c > 1M -w1M$$

$$-c > -w1M$$