

FORM PTO-1390
(REV 3/2001)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

DATE: March 27, 2002

EXPRESS MAIL LABEL NO.
EL717377872USATTORNEY DOCKET NO.
48072/DBP/S318U.S. APPLICATION NO.
NA 707089290

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371**

INTERNATIONAL APPLICATION NO PCT/CA00/01042	INTERNATIONAL FILING DATE September 8, 2000	PRIORITY DATE CLAIMED September 29, 1999
TITLE OF INVENTION METHOD, SYSTEM, SIGNALS AND MEDIA FOR INDEXING, SEARCHING AND RETRIEVING DATA BASED ON CONTEXT		
APPLICANT(S) FOR DO/EO/US MACKENZIE, Chad Matthew; CANNON, Finlay; NICKULL, Duane Allan; and HOGLUND, Jamie Michael Thomas		

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/LUS).
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. A copy of the International Search Report (PCT/ISA/210).
8. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
9. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
10. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
11. A copy of the International Preliminary Examination Report (PCT/IPEA/409).
12. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5))

Items 13 to 20 below concern document(s) or other information included:

13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
15. A FIRST preliminary amendment.
16. A SECOND or SUBSEQUENT preliminary amendment..
17. A substitute specification.
18. A change of power of attorney and/or address letter.
19. SMALL ENTITY Assertion: Applicant(s) and any other associated with it/them under 37 CFR § 1.27(a) are a small entity.
20. Certificate of Mailing by Express Mail.
21. Other items or information: Extra Set of Drawings

U.S. APPLICATION NO. (Unknown cases 37 CFR 1.5) N/A 10/089290	INTERNATIONAL APPLICATION NO. PCT/CA00/01042	ATTORNEY DOCKET NO. 48072/DBP/S318	
21. The following fees are submitted:		CALCULATIONS	PTO USE ONLY
<input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor International search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO:		\$1,040.00	
<input checked="" type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO		\$890.00	
<input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International search fee (37 CFR 1.445(a)(2)) paid to USPTO		\$740.00	
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)(4)		\$710.00	
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)(4)		\$100.00	
ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 890			
Surcharge of \$130 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).			
Claims	Number Filed	Number Extra	Rate
Total Claims	25+4 -20=	9	X \$18 \$ 162
Independent Claims	9 -3=	6	X \$84 \$ 504
Multiple dependent claim(s) (if applicable)			+ \$280 \$ 280
TOTAL OF ABOVE CALCULATIONS = \$ 1,836			
Reduction by 1/2 for filing by small entity, if applicable. Verified Small entity statement must also be filed. (Note 37 CFR 1.9, 1.27, 1.28).			
SUBTOTAL = \$ 918			
Processing fee of \$130 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).			
TOTAL NATIONAL FEE = \$ 918			
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property			
TOTAL FEES ENCLOSED = \$ 958			
Note (1): The basic national fee must be paid when filing this application. The 20-month time limit (37 CFR § 1.494) and 30-month time limit (37 CFR § 1.495) are not extendable.		Amount to be: - refunded - charged	\$
a. <input checked="" type="checkbox"/> Checks in the amount of \$918.00 and \$40.00 to cover the above fees are enclosed.			
b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.			
c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>03-1728</u> . A duplicate copy of this sheet is enclosed.			
NOTE (2): Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.			
SEND ALL CORRESPONDENCE TO:			
<p>D. Bruce Prout CHRISTIE, PARKER & HALE P.O. Box 7068 Pasadena, CA 91109-7068</p> <p>CUSTOMER NUMBER: 23363</p>			
 By <u>D. Bruce Prout</u> D. Bruce Prout Reg. No. 20,958			

10/089290

JC15 Rsrcd PCT/PTO 27 MAR 2002

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

EXPRESS MAIL NO. EL717377872US

Applicant : Chad Matthew MacKenzie, et al.
Application No. : N/A
Filed : March 27, 2002
Title : METHOD, SYSTEM, SIGNAL AND MEDIA FOR
INDEXING, SEARCHING AND RETRIEVING DATA
BASED ON CONTEXT
Docket No. : 48072/DBP/S318

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Post Office Box 7068
Pasadena, CA 91109-7068
March 27, 2002

Commissioner:

Please amend the above-identified application as follows:

IN THE SPECIFICATION

After the title please add the following:

-- CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority of International application number PCT/CA00/01042, filed September 8, 2000, which in turn claims priority of U.S. Patent Application number 09/407,336, filed September 29, 1999--.

IN THE CLAIMS

By this Amendment, Applicants are amending claims 7 and 24. Pending claims 1 to 25 follow.

1. A computer-implemented method of retrieving data based on context, comprising:
 - (a) receiving a search criterion from a requesting party;
 - (b) searching a database for data sources which contain a data element that matches the search criterion;
 - (c) retrieving a set of structural components that provide context to the data element in any of the data sources; and

Application No. N/A

(d) transmitting the set of structural components and references to the data sources to the requesting party.

2. The method of Claim 1, further comprising restricting the data sources to a set of structured documents which contain a structural component selected from the set of structural components that provide context to the data element in the set of structured documents.

3. The method of Claim 2, further comprising transmitting references to the restricted set of structured documents to the requesting party.

4. The method of Claim 2, further comprising receiving from the requesting party an indicator identifying a structural component selected from the set of structural components transmitted to the requesting party.

5. The method of Claim 4, further comprising restricting the set of structured documents to structured documents which contain the structural component identified by the indicator.

6. The method of any of Claim 1 to 5, wherein the search criterion is received from a user machine.

7. (Amended) The method of Claim 1, wherein the search criterion is used to search the database whose structure is hidden by a search application interface.

8. A computer-implemented method of retrieving data based on context, comprising:

- (a) receiving a set of search criteria from a requesting party;
- (b) retrieving from a database a set of references to data sources comprising structured documents which contain data elements matching the search criteria;
- (c) generating a set of contextual terms identified in the database as providing context to at least one of the data elements in the structured documents; and
- (d) transmitting the set of references and the set of contextual terms to the requesting party.

Application No. N/A

9. The method of Claim 8, further comprising restricting the set of references to references to structured documents which contain a contextual term selected from the set of contextual terms.

10. A computer-readable medium having stored instructions for use in the execution of the method of Claim 8.

11. A computer-implemented method of retrieving data, comprising:

- (a) identifying a set of structural components based on one or more search criteria received from a requesting party;
- (b) transmitting the set of structural components to the requesting party for selection;
- (c) receiving a selected structural component from the set of structural components transmitted to the requesting party;
- (d) retrieving references to structured documents that contain data associated with the selected structural component; and
- (e) transmitting the references to the requesting party.

12. The method of Claim 11, further comprising identifying a set of references to structured documents that contain data marked by at least one of said set of structural components and transmitting said set of references to structured documents to the requesting party with the transmission of the set of structural components.

13. The method of Claim 11, wherein said set of structural components is identified as being a set of contexts associated with a set of structured documents.

14. The method of Claim 11, wherein said set of structural components is identified as being associated with a set of document structures.

15. A computer-readable medium having stored instructions for use in the execution of the method of Claim 11.

16. A computer system comprising:

Application No. N/A

- (a) a processor;
- (b) a network interface in communication with said processor for connection with a network; and
- (c) memory in communication with said processor, said memory comprising computer-readable instructions adapting said processor to:
 - (i) receive a set of search criteria from a requesting party;
 - (ii) retrieve from a database a set of references to structured documents which contain data elements matching the search criteria;
 - (iii) generate a set of contextual terms identified in the database as providing context to the data elements in the structured documents; and
 - (iv) transmit the set of references and the set of contextual terms to the requesting party.

17. A system for retrieving context sensitive data, comprising:

- (a) means for receiving a set of search criteria from a requesting party;
- (b) means for retrieving from a database a set of references to data sources which contain data elements matching the search criteria;
- (c) means for generating a set of contextual terms identified in the database as providing context to the data elements in at least one of the data sources; and
- (d) means for transmitting the set of references and the set of contextual terms to the requesting party.

18. A computer-readable medium for providing instructions for directing a processing unit to retrieve data based on context, by:

- (a) receiving a search criterion from a requesting party;
- (b) searching a database for data sources which contain a data element that matches the search criterion;
- (c) retrieving a set of structural components that provide context to the data element in any of the data sources; and
- (d) transmitting the set of structural components and references to the data sources to the requesting party.

Application No. N/A

19. A computer-implemented method of indexing data into a database, the method comprising:
indexing a data source within the database comprising:
scanning the data source in search of structural components that provide context to any data elements within the data source;
retrieving the data elements and the structural components from the data source;
recording organizational data representing an organization of the data elements and the structural components within the data source; and
storing the organizational information within the database.
20. The method of Claim 19, further comprising keeping track of position information and nesting information for both data elements and structural components retrieved from the data source.
21. The method of Claim 19, wherein the data elements represent textual components of the data source, wherein recording further comprises recording position information and nesting information for textual components retrieved from the data source, and recording position information, nesting information and boundary information for the structural components.
22. The method of Claim 19, further comprising converting the data source to an XML document prior to indexing the data source, if the data source is not originally in XML format.
23. A computer-readable medium having stored instructions for use in the execution of the method of Claim 19.
24. (Amended) A computer system comprising:
 - (a) a processor;
 - (b) a network interface in communication with said processor for connection with a network; and
 - (c) memory in communication with said processor, said memory comprising computer-readable instructions adapting said processor to perform the method of:
indexing a data source within the database comprising:

Application No. N/A

scanning the data source in search of structural components that provide context to any data elements within the data source;

retrieving the data elements and the structural components from the data source;

recording organizational data representing an organization of the data elements and the structural components within the data source; and

storing the organizational information within the database.

25. A system for indexing data into a database, comprising:

- (a) means for scanning a data source in search of structural components that provide context to any data elements within the data source;
- (b) means for retrieving the data elements and the structural components from the data source;
- (c) means for recording organizational information representing an organization of the data elements and the structural components within the data source; and
- (d) means for storing the organizational information within the database.

REMARKS

Claims 1-25 remain in the application. Claims 7 and 24 have been amended. It is respectfully requested that the foregoing preliminary amendment be entered prior to examination.

Attached hereto is a marked-up version of the changes made to the claims by the current amendment. The attached page is captioned "Version with markings to show changes made."

Respectfully submitted,
CHRISTIE, PARKER & HALE, LLP

By
D. Bruce Prout
Reg. No. 20,958
626/795-9900

VERSION WITH MARKINGS TO SHOW CHANGES MADE

7. (Amended) The method of [any of Claims 1 to 6] Claim 1, wherein the search criterion is used to search the database whose structure is hidden by a search application interface.

24. (Amended) A computer system comprising:

- (a) a processor;
- (b) a network interface in communication with said processor for connection with a network; and
- (c) memory in communication with said processor, said memory comprising computer-readable instructions adapting said processor to perform the method of [Claim 19]:
indexing a data source within the database comprising:
scanning the data source in search of structural components that provide context to any data elements within the data source;
retrieving the data elements and the structural components from the data source;
recording organizational data representing an organization of the data elements and the structural components within the data source; and
storing the organizational information within the database.

Docket No. : 48072/DBP/S318 CHRISTIE, PARKER & HALE, LLP
Post Office Box 7068
Applicant or Patentee : Chad Matthew MacKenzie, et al. Pasadena, CA 91109-7068
Application or Patent No. :
Filed or Issued :
Entitled : METHOD, SYSTEM, SIGNAL AND MEDIA FOR INDEXING,
SEARCHING AND RETRIEVING DATA BASED ON CONTEXT

**VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS
(37 CFR 1.9(f) & 1.27(c) – SMALL BUSINESS CONCERN**

I hereby declare that I am

the owner of the small business concern identified below:

an official of the small business concern empowered to act on behalf of the concern identified below:

NAME OF SMALL BUSINESS CONCERN : XML-Global Technologies, Inc.

ADDRESS OF SMALL BUSINESS CONCERN : 701 Dexter Avenue, Suite 420, Seattle, Washington, 98108
U.S.A.

I hereby declare that the above identified small business concern qualifies as a small business concern as defined in 13 CFR 121.12, and reproduced in 37 CFR 1.9(d), for the purposes of paying reduced fees to the United States Patent and Trademark Office, in that the number of employees of the concern, including those of its affiliates, does not exceed 500 persons. For purposes of this statement, (1) the number of employees of the business concern is the average over the previous fiscal year of the concern of the persons employed on a full-time, part-time or temporary basis during each of the pay periods of the fiscal year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to control the other, or a third party or parties controls or has the power to control both.

I hereby declare that rights under contract or law have been conveyed to and remain with the small business concern identified above with regard to the invention entitled **METHOD, SYSTEM, SIGNAL AND MEDIA FOR INDEXING, SEARCHING AND RETRIEVING DATA BASED ON CONTEXT** by inventor(s) **Chad Matthew MacKenzie, Finlay Cannon, Duane Allan Nickull, and Jamie Michael Thomas Hoglund** described in

the specification filed herewith

Application No. __ filed

Patent No. __ issued

If the rights held by the above identified small business concern are not exclusive, each individual, concern or organization having rights in the invention is listed below* and no rights to the invention are held by any person, other than the inventor, who would not qualify as an independent inventor under 37 CFR 1.9(c) if that person made the invention, or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d), or a nonprofit organization under 37 CFR 1.9(e). *NOTE: Separate verified statements are required from each named person, concern or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27)

NAME :

ADDRESS :

INDIVIDUAL

SMALL BUSINESS CONCERN

NONPROFIT ORGANIZATION

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS
(37 CFR 1.9(f) & 1.27(c) – SMALL BUSINESS CONCERN

Docket No.: 48072/DBP/S318

NAME :
ADDRESS :

INDIVIDUAL SMALL BUSINESS CONCERN NONPROFIT ORGANIZATION

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING : Simon Anderson
TITLE OF PERSON IF OTHER THAN OWNER : CFO, XML-Global Technologies, Inc.
ADDRESS OF PERSON SIGNING : Suite 9, 1818 Cornwall Avenue, Vancouver, British Columbia V6J 1C7

SIGNATURE DATE 2002-03-21

DBP/aam
AAM PAS422289.1-3/20/02 2:49 PM

METHOD, SYSTEM, SIGNALS AND MEDIA FOR INDEXING, SEARCHING
AND RETRIEVING DATA BASED ON CONTEXT

This application is a continuation-in-part of, and claims the benefit of, U.S. Patent Application Serial No. 09/407,336 filed September 29, 1999.

5

FIELD

The present invention relates generally to a method, system, signals and media for indexing, searching and retrieving data based on context.

10
15

BACKGROUND

The Internet has rapidly become one of the leading communications mediums of our age. One of the most popular applications used in the Internet is the World Wide Web. Tens of thousands of Web sites around the world house hundreds of millions of Web pages and related structured documents.

20

Yet as the volume and diversity of information available over the Internet continues to grow, the ability to locate relevant information is becoming increasingly more challenging. This challenge is complicated by the fact that much of the structured data available over the Internet generally lacks any centralized organization beyond the organization of Web pages amongst particular Web sites. As a result, it is increasingly difficult for users to quickly and easily locate the information that they need. In this ever growing networked environment, search engines have become an important tool for enabling users to search for and retrieve information that is relevant to their needs. Popular search engines for searching the Internet are available from YahooTM (<http://www.yahoo.com>), InfoseekTM (<http://www.infoseek.com>), LycosTM (<http://lycos.cs.cmu.edu>), AltaVistaTM (<http://www.altavista.com>), ExciteTM (<http://www.excite.com>), Microsoft NetworkTM (<http://www.msn.com>), HotBotTM (<http://www.hotbot.com>), Northern LightTM (<http://www.nlsearch.com>) and others.

-2-

Several conventional search engine services organize the information contained within their databases into broad categories. Yahoo™, for instance, provides users with a number of categories within which they may narrow their search including such categories as "government", "entertainment", and "health". Users are able to browse these categories in order to narrow their search to structured documents indexed within a particular category. While these broad categories provide users with some mechanism for organizing the nature of their search, they do not enable a user to perform a search for particular data which has been given specific context within structured documents.

The Extensible Markup Language (XML) provides one solution to the need to include context sensitive data within structured documents accessible over the Internet and other networks. XML was introduced in part to serve as the basis for applications that permit Web authors and publishers to create XML-based Web pages containing structured context sensitive data. While XML is being rapidly adopted by organizations, existing search interfaces that are difficult to understand and use, and provide limited functionality.

In order to enhance the searching of XML documents and other structured documents having context sensitive data, it would be desirable to have a simple yet effective tool for performing context-based searching. It would be further desirable to have a context sensitive search query interface that organizes a search for context sensitive data in an easy to understand manner.

SUMMARY OF THE INVENTION

The above and related desires are addressed in the present invention by providing a method, system, signals and media for indexing, searching and retrieving data based on context. The present invention can be applied to index, search and retrieve context sensitive data associated with structured documents or structured data created with the Extensible Markup Language

(XML), an XML-derived markup language, or another context sensitive markup language. The present invention can also be applied to indexing, searching and retrieving other types of context sensitive data.

In accordance with one aspect of the invention, a computer-implemented method is provided for retrieving data based on context. In this aspect, a search criterion is received from a requesting party and used to find a set of data sources containing a data element that matches the search criterion. For structured documents retrieved as part of the set of data sources, a set of structural components is retrieved that provide context to the data element found in the retrieved structured documents. The set of structural components and references to the set of data sources are transmitted to the requesting party for further processing.

In accordance with another aspect of the invention, a computer-implemented method of retrieving data is provided. In this aspect, a set of structural components is identified based on one or more search criteria received from a requesting party. The set of structural components are transmitted to the requesting party for selection. A selected structural component is received and references are retrieved to structured documents that contain data associated with the selected structural component. These references are then transmitted to the requesting party. The set of structural components may be identified as a set of contexts associated with a set of structured documents. A set of references may be identified to structured documents that contain data marked by at least one of the set of structural components. These latter references may be transmitted to the requesting party with the transmission of the set of structural components for selection. In another variation, the set of structural components identified based on the one or more search criteria may be identified as being associated with a set of document structures.

In accordance with another aspect of the invention, there is provided a computer-implemented method of indexing data into a database. In this

5

10
15
20
25

20

25

30

aspect, a data source is indexed within the database. The data source is scanned in search of structural components that provide context to any data elements within the data source. Such data elements and their associated structural components are retrieved from the data source. Organizational information representing an organization of the data elements and the structural components within the data source is also retrieved and stored within the database.

Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

In drawings which illustrate embodiments of the invention,

FIG. 1 is a block diagram of a system for indexing, searching, and retrieving data according to a first embodiment of the invention;

FIG. 2 is a block diagram illustrating further aspects of the system shown in FIG. 1;

FIG. 3 is a block diagram illustrating the indexing system shown in FIG. 1;

FIG. 4 is a flow diagram illustrating the submission of a data source for indexing by the indexing system in FIG. 3;

FIG. 5 is a flow diagram illustrating the indexing of data sources by the indexing system in FIG. 3;

FIG. 6 is a diagram illustrating a sample XML document that can be indexed in the system in FIG. 1;

FIG. 7 is a block diagram illustrating a sample content submission request for the submission of an XML document to the indexing system in FIG. 3;

5 FIG. 8 is a block diagram illustrating a sample submission response issued by the indexing system in FIG. 3;

FIG. 9 is a diagram illustrating a textual components layer for the sample XML document in FIG. 6;

10 FIG. 10 is a diagram illustrating a structural components layer for the sample XML document in FIG. 6;

FIG. 11 is a block diagram illustrating a data structure for textual components retrieved by the system in FIG. 3 from the sample XML document in FIG. 6;

15 FIG. 12 is a block diagram illustrating a data structure for structural components retrieved by the system in FIG. 3 from the sample XML document in FIG. 6;

FIG. 13 is a diagram illustrating a sample entry in a computer file to store data regarding unique document terms encountered by the system in FIG. 3 during the indexing process;

20 FIG. 14 is a block diagram illustrating a structure for a node within the index used in the first embodiment;

FIG. 15 is a block diagram illustrating a structure of a postings blob for a textual component managed by a node in accordance with the first embodiment;

25 FIG. 16 is a block diagram illustrating a structure of a postings blob for a structural component managed by a node in accordance with the first embodiment;

FIG. 17 is a block diagram illustrating an arrangement of key/blob pairs in accordance with the present invention;

FIG. 18 is a block diagram illustrating an alternative arrangement of the index of the first embodiment, including a computer-readable file for channel mappings;

5 FIG. 19 & 20 are flow diagrams illustrating a method of searching for data based on context according to the first embodiment of the invention;

10 FIG. 20A is a flow diagram illustrating a portion of FIG. 19 according to the first embodiment of the invention;

FIG. 21 is a block diagram illustrating the sequence of information exchanged as data signals between a user machine and a search engine via an intermediary search application in accordance with the first embodiment of the invention;

15 FIG. 22 is a diagram illustrating the structure of an initial search form presented to the user in accordance with the first embodiment in FIG. 1;

20 FIG. 23 is a diagram illustrating the structure of a first representation of a context-sensitive search form presented to the user in accordance with the first embodiment in FIG. 1;

FIG. 24 is a diagram illustrating the structure of a second representation of the context-sensitive search form presented to the user in accordance with the first embodiment in FIG. 1;

25 FIG. 25 is a diagram illustrating a sample raw XML search request in accordance with the first embodiment in FIG. 1;

FIG. 26 is a diagram illustrating a sample raw XML search response in accordance with the first embodiment in FIG. 1; and

FIG. 27 is a block diagram of a system for searching, and retrieving data according to another embodiment of the invention;

DETAILED DESCRIPTION

Reference will now be made in detail to implementations and embodiments of the invention, examples of which are illustrated in the accompanying drawings.

In one aspect of the invention, there is provided a context-sensitive search query interface for searching and retrieving data based on context. In another aspect of the invention, there is provided an indexing system for indexing data elements and their data sources based on the context of such data elements in their data sources.

FIG. 1 is a block diagram illustrating a system 20 for providing search engine services according to a first embodiment of the invention. The system 20 has at least one computer server 22, a search engine 24 running on the computer server 22, and a database 31 which contains an index 30 to indexed data including, but not necessarily limited to, context sensitive data. The computer server 22 is provided with conventional communications equipment for communicating over a network or internetwork such as the Internet 42.

In the first embodiment, the search engine 24 is programmed to conduct user-initiated searches of the index 30 to retrieve references to structured documents 17, and other data sources including, but not limited to, other structured data sources, which are cataloged within the index 30. A user communicates with the search engine 24 via a web browser (or micro-browser or other navigational tool) running on one of the user machines 40. Examples of commercially available web browsers include Netscapé Navigator, Microsoft Internet Explorer, and Mosaic. An intermediary search application 26 runs on a web computer server 27 supporting user-based searching of the index 30. The display of the search interface (i.e. the search forms) on a user's web browser, including the display of the search results, and

communications with the search engine 24, are handled by the intermediary search application 26 which serves as an interface between users and the search engine 24.

The user interacts with the search engine 24 via search forms 21 displayed by the user's web browser. The search forms 21 are stored on the intermediary search application 26 as computer-readable instructions. The search forms 21 provide an end-user with a sequence of search forms to assist the user in defining and refining the user's search for relevant information within the index 30. With the search forms 21, users can define search criteria using well-known search definition techniques such as keyword searches and phrase searches. The search engine 24 searches the index 30 for relevant data based on the search criteria that the user has defined via a search form.

The user initiates a search of the index 30 by retrieving an initial search form 23 from the intermediary search application 26. This may be performed by simply connecting one of the user machines 40 to a Web site running on the web computer server 27 and serving as the human interface to the search engine system 20. The user machines 40 can be any type of computing device capable of communicating with the intermediary search application 26 or the search engine 24. In the first embodiment, the user machines 40 are personal computers connected to the Internet. Other types of user machines may also be used, for example wireless hand-held computing devices and other microprocessor-based electronic devices having a web browser and a network connection. In the first embodiment, the user machines 40 can access the services of the search engine 24 through a dial-up connection with an ISP and a network connection established over the Internet 42. Other connections by the user machines 40 may be established. For example, the user machines 40 may access the search engine services through an intranetwork, a cable or xDSL modem connection, a wireless connection or dedicated network connection (e.g. LAN or WAN) or the like.

When the initial search form 23 is displayed to a user on one of the user machines 40, the user is prompted to provide one or more search criteria in order to proceed with a search. The search criteria generated by a user using the initial search form 23 serves as a search request that is transmitted as a set of variables via intermediary search application 26 to the computer server 22 for further processing by the search engine 24. When a search request is received by the computer server 22, the search request is used by the search engine 24 to define and initiate a search of the index 30. The search results generated from this search are sent by the search engine 24 via the intermediary search application 26 to the user's web browser where the results are displayed using a context-sensitive search form.

The first embodiment provides at least two types of search forms which can be communicated to the user machines 40: initial search form 23, and a context-sensitive search form 25. Examples of search forms 21 are shown in FIG. 22 to 24 which are discussed later in this specification. Referring to FIG. 1, the search forms 21 are implemented in the first embodiment using HTML and are displayed as Web pages on the user machines 40. It will be appreciated by persons skilled in the art, however, that other programming techniques can be used (independently, in combination or in addition) to encode the search forms in place of or in addition to HTML. For instance, XML or another SGML-based markup language may be used. As another example, applets may be used such as Java Servlets, Server Side Includes, Java™, Javascript™, ActiveX™, or Active Server Pages™ or other equivalent computer-readable instructions that can be invoked either locally on a user machine or via command over a network.

User-based searching

The intermediary search application 26 acts as an intermediary between the user's web browser and the search engine 24. The intermediary search application 26 receives and converts user-based search requests into raw XML-based search requests which it transmits to the search engine 24. The

-10-

intermediary search application 26 also receives and converts raw XML search results from the search engine 24 into a user-presentable format which the intermediary search application 26 transmits to the user's machine. Web server software 28 runs on the web computer server 27 to support the intermediary search application 26. The web server software 28 can be any of several well-known server packages including, for example, Apache's web server software or Microsoft's Internet Information Server.

The intermediary search application 26 comprises a plurality of CGI scripts in the first embodiment. When a user formulates a set of one or more search criteria search via a search form and uses the search form to request that a search be conducted based on the search criteria, an HTTP message (Hypertext Transport Protocol message) is transmitted from the user's machine (40) to the web computer server 27. The HTTP message sent from the user serves as a user-based search request containing an Internet Protocol (IP) address associated with the web computer server 27, the name of a common gateway interface (CGI) script 26.1 residing on the web computer server, and query parameters for configuring the CGI script 26.1 with the formulated search criteria. The web server software 28 launches the CGI script 26.1 with the transmitted query parameters. The CGI script 26.1 converts the format of the user's formulated search criteria into a raw XML search request which the web computer server 27 transmits to the search engine 24 where the search of the index 30 is performed, and waits for a response. Once the search results are retrieved by the search engine 24, they are transmitted as a raw XML response to the web computer server 27 where the CGI script 26.1 converts the raw XML response into a format that is presentable to the user's browser. In this embodiment, the CGI script 26.1 provides the actual display information to the user's browser for the display of search forms and search results.

Indexing

The index 30 is a storage structure that is used to catalog data and the location of the source(s) of such data, including, but not limited to, context sensitive data and the location of the source(s) of such context sensitive data.

5 In the first embodiment, the sources of data include, amongst other types of data, structured documents 17 located locally or on an accessible network resource 18. The structured documents 17 contain data elements which are marked with structural components that provide context to such data elements. Data elements that are marked by (or surrounded by) such structural components represent context sensitive data. The structural components are represented by contextual markup tags based on a markup language. Data elements which may be marked with contextual markup tags include character data and other markup tags (for example, graphical or multimedia objects). The term "character data" refers to textual components of the structured documents 17 which are not part of a markup tag contained within the structured documents 17. The textual components of a document are made up of one or more characters based on a binary-coded character set containing letters, numbers and other typographic symbols. Preferably, the textual components are Unicode compliant. The Unicode standard is a
20 universal character encoding standard used for the representation of text for computer processing. The Unicode standard conforms with ISO/IEC 10646 and is supported by the Unicode Consortium (<http://www.unicode.org>). Other examples of binary-coded character sets which may be used include ASCII (American Standard Code for Information Interchange), EBCDIC (Extended Binary Coded Decimal Interexchange Code), and BCD (Binary Coded Decimal).

25

Examples of contexts which may be used in one or more structural components to provide context to data elements are illustrated in Table 1 below. Nested contexts are shown separated by slashes "/".

5

Name
Name/First Name
Name/Last Name
Person/Name/Last Name

10

Address
Address/PostalCode
Address/Country
Inventory
Part/SKU
Part/PartNumber
Inventory/Vehicles/Transmission/Part/PartNumber

15

Play
Play/Act
Play/Act/Line
Email
Email/Sender
Email/Recipient
Email/Message

20

Email/Message/Reply
Email/Mime_Headers/X-Originating-IP

Table 1

In the first embodiment, the structured documents 17 are XML documents. Other types of structured documents and structured data may also be processed using the present invention such as, for example, data formatted with an XML-derived markup language or another context-sensitive markup

language, as well as other forms of data containing context sensitive data. Quasi-structured documents may also be processed, such as HTML documents, WML documents and standardized text formats such as those employed by academics (eg. essay or dissertation formats).

5 Data sources such as the structured documents 17 are cataloged (or indexed) within the index 30 as part of an index building and maintaining process supported by indexing system 32. The indexing system 32 is implemented as a set of computer-readable instructions running on the computer server 22 or another computer having access to index 30.

10 Referring to FIG. 2, the computer server 22 has at least one processor 46 (a central processing unit in the first embodiment) connected via a bus 43 to a computer-readable medium 45. The computer-readable medium 45 provides a memory store for software and data residing on the computer server 22. The computer-readable medium 45 can include one or more types of computer-readable media including volatile memory such as Random Access Memory (RAM), and non-volatile memory such as a hard disk or Read Only Memory (ROM). In the first embodiment, RAM 48 and a hard disk drive 49 each serve as computer-readable media.

20 The search engine 24 resides on a hard disk drive 49 and is loaded via bus 43 into RAM 48 as computer-readable instructions which execute on the processor 46 to provide search engine services to user machines 40 directly or indirectly connected to the system 20. The search engine 24 runs as an application on an operating system 47. The indexing system 32 also runs on the operating system 47. The operating system can be any of several well-known operating systems such as, for example, Windows NTTM, Windows 25 2000TM, MacOSTTM, UNIX, Linux or the like. For the first embodiment, the operating system is Linux. The computer server 22 includes a network interface 44 which is in communication with the processor 46 to connect the computer server 22 to a network so that the computer server 22 can communicate with user machines 40 or other networked devices.

Referring to FIG. 3, the indexing system 32 comprises a content submission interface 50, a content acceptor 52, a queue 54 and an indexer 56. The data sources, such as the structured documents 17 in FIG. 1, are submitted by a submitting party (for example, a user or application) to the content submission interface 50 which runs as a computer program on the computer server 22 (FIG. 1) or another computer server having access to the index 30. The content submission interface 50 monitors for content submission requests. A content submission request can be received from either a user or an application. A content submission request contains a data source intended for insertion into the index 30. Context sensitive data is submitted in a content submission request in the form of a structured document or in the form of a structured data stream which preserves the context of such context sensitive data. A content submission request also contains resource location information identifying the location of a data source on a resource. In the first embodiment, the resource location information is represented by a Uniform Resource Locator (commonly known as a URL) which specifies the location of the data source (for example, one of structured documents 17). For the purpose of this specification, the term "resource" refers to any computer-implemented object or data that can be accessed via a computer network (e.g. LAN, WAN, etc.) or internetwork such as the Internet, and which contains or refers to a data source. Examples of resources include Web sites, Web pages, file directories, URIs, URNs, URLs, IP addresses, POP, Email (MIME or S/MIME), electronic data files and other electronic documents accessible over a network.

The resource location information is a form of metadata that identifies an attribute of a data source. Other metadata may also be included within the content submission request to further specify attributes of a data source to be indexed within index 30.

In the first embodiment, the content submission interface 50 is implemented using sockets. When a request is made to a socket from a remote host, the content submission interface 50 accepts the request, gives the remote host a

-15-

connection and processes the content submission request sent to the content submission interface 50 over the socket.

Referring to FIG. 3 and 4, a content submission request received via the content submission interface 50 is scanned by the content acceptor 52 which is programmed to determine if the content submission request contains content in an acceptable format. The content of an accepted content submission request is placed on queue 54 for subsequent indexing into index 30. The content acceptor 52 informs the submitting party whether or not the content of the content submission request has been accepted for indexing.

In the first embodiment, content submission requests contain XML documents which contain data elements that are given context using markup tags. An example of an XML document is shown in FIG. 6 generally at 60 containing data elements 62 marked by contextual markup tags 64 (structural components) which contain contextual terms that provide context to marked data elements 62. Attributes may also be used within the XML document to provide context to data. Attribute names are equivalent to markup tags 64 and attribute data is equivalent to data elements 62.

FIG. 7 shows a sample of a raw content submission request 66 received from a submitting party via the content submission interface 50 for processing by the content acceptor 52 in FIG. 3. The content submission request 66 contains a request to submit the XML document shown in FIG. 6 for indexing within index 30, a copy of the XML document 60 and metadata 68 regarding the submitted XML document. The metadata 68 includes resource location information 65 which is a URL identifying the location of the original XML document 60. Preferably, the metadata 68 also includes other information regarding a submitted document, including, for example, channel information 67, the type of document (MIME type 69), the date the document was last modified, and a title and abstract for the document. Channel information 67 is used to index a document under a channel within the index 30. A document may be indexed into several channels within index 30. With channels, a user

or application can search the entire index 30 or a subset of the index 30 under one or more channels. For instance, using channels a search may be narrowed by document type.

Referring to FIG. 3 and 7, the content acceptor 52 scans the content submission request 66 to determine if the submitted content is in an acceptable format. Preferably, when scanning the content submission request, the content acceptor 52 checks the metadata 68 for the type of document that has been submitted. If the document is in XML, then the content acceptor checks the remainder of the content submission request 66 to, for instance, check that the document is in well-formed XML and to check whether or not the document is already in the index 30. If the document is identified as something other than an XML document, the content acceptor 52 invokes a document handler 58 to transform the document into XML. Context sensitive data within the submitted document is preserved during the conversion process. If the submitted document cannot be transformed into XML, the content acceptor 52 will not accept the document. Preferably, all submitted documents are processed by a version of the document handler, with documents that are not in XML being transformed into XML, and with XML documents not undergoing such transformation. A document that is not in XML is transformed into XML by a version of the document handler programmed to recognize the submitted document type and transform it into XML.

If the content acceptor 52 accepts the content submission request 66 then a submission response is transmitted to the submitting party confirming acceptance. An example of content submission response is shown in FIG. 8 at 70 acknowledging that the content submission request in FIG. 7 has been accepted and the submitted document and meta-data concerning the document have been queued for indexing. If the content acceptor 52 rejects the content submission request 66, then a submission response is transmitted to the submitting party notifying the submitting party of the rejection.

10
15
20
25
30

30

Referring to FIG. 3 and 5, content, for instance structured content such as a structured document and its metadata, which has been queued for indexing is processed by the indexer 56. The indexer 56 runs as a computer program on the computer server 22 or another computer server having access to the index 30. The structured content in the first embodiment is represented by XML documents and their metadata residing in queue 54 awaiting processing. The indexer 56 retrieves an XML document and its metadata from the queue 54, parses the document and its metadata, and then catalogs the parsed information within the index 30.

The indexer 56 parses the submitted XML document in order to retrieve and temporarily store data elements from the document and structural components within the document that provide context to any of the retrieved data elements. Preferably, the retrieved data elements and structural components are stored in data structures to maintain the association between such structural components and corresponding data elements, and to record information representing the organization of the data elements and the structural components within the document that is being parsed.

During parsing, in order to record the organization of data elements and structural components, a submitted XML document is preferably divided into two logical layers: a textual components layer and a structural components layer. The textual components layer contains textual components representing any words and any other non-markup character sequences retrieved from the submitted XML document, and any other data elements that are marked in the submitted XML document with contextual markup tags.

The structural components layer contains structural components retrieved from the submitted XML document, including contextual terms from contextual markup tags that provide context to data elements in the submitted XML document. If a submitted document contains no structural components, then the structural components layer is empty.

-18-

FIG. 8 and 9 illustrate a textual components layer 72 and a structural components layer 74 respectively for the sample document in FIG. 6. The textual components layer 72 is shown containing the words found in the sample document 60. The structural components layer 74 is shown containing contextual terms 76 from contextual markup tags used in the sample document 60 to provide textual components with context.

Logically dividing the textual components and the structural components into different layers allows the indexer 56 (FIG. 3) to separately manage the indexing of textual components and structural components parsed from the submitted XML document. The indexer 56 keeps track of position information and nesting information for both textual components and structural components. In addition, the indexer 56 keeps track of boundary information identifying which textual components are first and last surrounded by the structural components. With the layered approach to parsing the submitted XML document, position information and nesting information for textual components are stored in a data structure, while position information, nesting information and boundary information for structural components are stored in another data structure.

FIG. 11 shows, by way of example, a data structure 80 for textual components retrieved from the sample XML document 60 in FIG. 6. The data structure 80 is used by the indexer 56 in FIG. 3 to store the position information 82 and nesting information 84 for the words and other non-markup character sequences retrieved from the sample XML document 60. A particular piece of position information in data structure 80 represents the position of a particular textual component relative to the other textual components retrieved from the XML document. The nesting information 84 represents the depth at which a corresponding textual component occurs inside a structural component. Thus if a textual component has a structural component with a depth of 3, the nesting information for the textual component would be 4.

5

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

FIG. 12 shows, by way of example, a data structure 86 for structural components retrieved from the sample XML document 60. The data structure 86 is used by the indexer 56 in FIG. 3 to store position information 87, nesting information 88 and boundary information 89 for the structural components retrieved from the sample XML document 60. The position information 87 is used to identify the hierarchical relationship between structural components. The position information 87 for data structure 86 identifies the position of a structural component within the sample XML document 60 relative to the other structural components. The nesting information 88 for data structure 86 is used to identify whether any structural components are nested within other structural components, and if so, the depth of the nesting. The depth of the nesting is relative to the root structural component. The boundary information 89 stored as "begin" and "end" fields in the data structure 86 is used to identify, for any structural component retrieved, the position information in the data structure 80 of the first and last textual components surrounded by such structural component in the sample XML document 60.

Other types of data structures may be used to record the information shown in FIG. 11 and 12 and are considered equivalent.

Referring to FIG. 3, a computer-readable file, referred to in the first embodiment as TermList file 30.1, is used to store data regarding each of the unique document terms that the indexer 56 encounters when parsing submitted documents. Both textual components and structural components retrieved from a parsed document are treated by the indexer 56 as document terms. The TermList file 30.1 serves as a translation table between actual document terms and numeric identifiers that index structures within the index 30 use to refer to the actual document terms.

As an XML document is parsed by the indexer 56, each retrieved document term that is unique to the TermList file 30.1, whether the document term is a textual component or a structural component, is assigned a unique identifier number which, in combination with the corresponding unique document term,

-20-

are stored as part of a new entry in the TermList file 30.1. If the retrieved document term already has an existing entry in the TermList file 30.1, then the existing entry is updated to modify frequency information about the retrieved document term.

5 A sample entry in the TermList file 30.1 is illustrated in FIG. 13 generally at 90. The entry 90 contains a variable ("term_string") to store the actual string representation of a document term retrieved from a parsed document. Another variable ("term_id") is used to store a unique numeric identifier assigned to the retrieved document term. The entry 90 also preferably stores statistical information about the total number of instances that a document term appears in the index and the total number of documents that contain such document term. This statistical information is used by the search engine 24 (FIG. 1) to prioritize queries on the index 30 and to determine weights for document terms that are retrieved as part of search results. In the first embodiment, the entry contains a plurality of variables to store the statistical information. Such statistical information preferably includes information on: the number of times a document term appears as a textual component, the number of times the document term appears as a structural component, the number of documents that contain the document term as a textual component, and the number of documents that contain the document term as a structural component.

20

25 Referring to FIG. 3, once a submitted XML document is parsed and the parsed information is temporarily stored in data structures (such as the data structures in FIG. 11 and 12), the parsed information is then added by the indexer to an index file 30.2 within index 30 so that the information can be later searched. In the first embodiment, the index file 30.2 is a computer-readable file organized in a B-plus tree structure containing a plurality of nodes having key/value pairs. Data is stored in a blob (or block) in the value chunk of a node. Each blob is structured to store data on either a textual component or a structural component, and a flag in the key of the node

30

-21-

identifies whether the data stored in the blob is for a textual component or a structural component.

An illustration of the structure of a node 92 within index file 30.2 is shown in FIG. 14. Each node 92 has a key portion 94 identifying a particular document term for which the node 92 is being used to store data, and a blob portion 96 for storing organizational data about the particular document term with respect to those data sources from which the particular document term has been retrieved and indexed within index 30. The blob portion 96 forms the value chunk of the node 92.

In the first embodiment, the key portion 94 of the node 92 contains an identifier 93 for uniquely identifying the document term for which the node 92 is being used to store data, and a flag 95 which indicates whether the node 92 is storing information for a textual component or a structural component.

Organizational data within the blob portion 96 is stored as a set of postings. Each posting records data identifying position information and nesting information for each instance of the document term in a particular data source. Each posting is associated with a particular data source which has been indexed by indexer 56.

FIG. 15 illustrates the structure of a postings blob 100 for a textual component that is being tracked by a particular node within the index file 30.2 (FIG. 3). The postings blob 100 contains a set of postings 102 each of which contains data identifying the position and nesting information (82 and 84 in FIG. 10) for each instance of the textual component retrieved from a particular data source. For example, if node 92 is used to store data about the textual component "Introduction" and the sample document in FIG. 6 is indexed, then a posting would appear in the set of postings 102 identifying the document (for example, doc_id1) and the position and nesting information for the textual component "Introduction" in the document.

FIG. 16 illustrates the structure of a postings blob 104 for a structural component that is being tracked by a particular node within the index file 30.2 (FIG. 3). The postings blob 100 contains a set of postings 102 each of which is used to store the position information, nesting information and boundary information (87, 88 and 89 in FIG. 11) for each instance of the structural component retrieved from a particular data source.

Referring to FIG. 17, preferably the key/blob pairs are structured so that a pointer from a key points to its corresponding blob portion so that blobs are not necessarily stored in contiguous chunks in the index file 30.2 (FIG. 3).

As illustrated in FIG. 14, the key portion 94 of a node 92 preferably includes a low document ID indicator 97. The low document ID indicator 97 indicates the lowest document ID contained within a particular blob. The low document ID indicator 97 can be used during a search for multiple terms within the index 30 to speed up the retrieval of the results. If, during the search for a first term, the search engine 24 finds that the first term only occurs in documents numbered, for example, 1001, 1007 and 1024, the search for the second term could ignore any node having a low document ID of less than 1001 or a low document ID of greater than 1024, since such nodes have already been eliminated as possible matches. It will be noted that the low document ID, while providing enhanced retrieval capabilities, is not required to retrieve results.

The low document ID indicator 97 is included in nodes to improve the performance of searches on the index 30. The lowest document ID within a blob can also be determined during a search by looking inside a node at the contents of its blob portion.

Once an existing node grows to a maximum manageable size, the existing node is split into two nodes. For a very common document term, as with textual components "the" or "and", such a document term will have several nodes that their index information is spread amongst. Alternatively, a new node may be inserted with a low document ID of the first new posting entered

in the new node and all subsequent new postings for the document term managed by the existing node will be stored in the new node.

Referring to FIG. 1, a computer-readable file, referred to here as DocumentList file 30.3 is used to store all meta-data about each data source indexed within index 30. For each data source indexed within the index 30, the DocumentList file 30.3 contains an entry recording meta-data about the data source, including, for example, resource location information (65), MIME type (69), date last modified, title, summary/abstract, size, owner etc. This information can be retrieved as part of the search results obtained by the search engine 24 during a search of the index 30.

Processing the textual components and structural components of a document in separate layers and indexing such textual components and structural components using the node structure of index 30 allows the index 30 to be more manageable and scalable. As the number of documents indexed within index 30 grows, the index 30 will grow more linearly than would be the case with a relational database. Storing textual components, structural components and their associations with textual components and other structural components in a relational database, the database would grow much larger and complex as the number of documents submitted for indexing increased. In addition, with such a relational database structure, it can be more difficult, or require more processing, to find nestings of terms that are multiple levels apart. With index 30, ancestor-child relationships between stored structural components can be easily and rapidly retrieved. Moreover, the index 30 stores enough information about textual components and structural components retrieved from documents to enable the search engine 24 to retrieve data based on context, to retrieve nested context, and to retrieve data based on nested context, but at the same time the index 30 is not tied to a specific schema or structure for a document. As illustrated in this first embodiment of the invention, such retrieval can be achieved by indexing within the node structure of index 30 the position information and nesting information for textual components in nodes specific to such textual

components, and by indexing position, nesting and boundary information for structural components such as contextual terms in nodes specific to such structural components.

Thus, while a relational database may be used in place of the index 30 for other aspects of the present invention, indexing data based on context from index 30 provides for an efficient configuration which readily supports rapidly retrieving data based on context.

Context Sensitive Search Queries and Interface

FIG. 19 and 20 show flow diagrams illustrating a method of retrieving data based on context by searching for data sources using context sensitive search queries according to the first embodiment of the invention. As a specific example, the flow diagrams in FIG. 19 and 20 will be described with reference to the system 20 shown in FIG. 1.

In operation, the intermediary search application 26 receives a request to send the initial search form 23 to a requesting party which, in the first embodiment, is one of the user machines 40. In response, the intermediary search application 26 sends computer-readable instructions representing the initial search form 23 to the requesting user machine 40 where the initial search form 23 is displayed on the local web browser. As illustrated at 220 in FIG. 21, the computer-readable instructions for the initial search form 23 are transmitted to the requesting user machine 40 as a computer data signal embodied in a carrier wave.

FIG. 22 illustrates the initial search form 23 that is displayed to a user via a web browser 41 running on one of the user machines 40 (FIG. 1). The initial search form 23 provides an easy and simple mechanism for prompting the user to specify an initial set of search criteria without necessarily having to define the context for the search criteria. As the initial set of search criteria for the first embodiment, a user inputs into one of the user machines 40 one or more search terms via the initial search form 23. Preferably, the user may

also include operators, such as Boolean operators (eg. AND, OR, NOT etc.), to further define the nature of the search desired.

Referring to FIG. 1, the initial set of search criteria is transmitted as part of a user-based search request to the intermediary search application 26 which converts the user-based search request into a raw XML search request which is then transmitted to the search engine 24 to initiate an initial search of the records of the index 30. in the first embodiment, the user-based search request is an HTTP message identifying CGI script 26.1 that is part of the intermediary search application 26, and query parameters for configuring the CGI script 26.1 with the initial set of search criteria. The CGI script 26.1 is launched with the query parameters and converts the format of the initial set of search criteria into the raw XML search request which the web computer server transmits as a computer data signal to the search engine 24. FIG. 21 illustrates at 222 the transmission of the initial set of search criteria to the intermediary search application and, at 224, the transmission of the initial set of search criteria as a raw XML search request to the search engine 24, each as a computer data signal embodied in a carrier wave.

FIG. 25 shows a sample raw XML search request 240 containing sample search criteria 242. In the sample shown, a basic search request is included for the phrase "off to see the wizard".

Referring to FIG. 1 and 19, the search engine 24 receives the initial set of search criteria in the raw XML search request at block 200. Once the search engine 24 receives the initial set of search criteria, the search engine 24 proceeds at block 202 to initiate an initial search of the index 30 in search of matches (or "hits") using the parameters within the initial set of search criteria. A "match" or "hit" represents an entry in the index 30 identifying a data source having data fitting within the parameters of a given set of search criteria. In the first embodiment, the search engine 24 searches the index file 30.2 for nodes which contain document terms that fit within the constraints of the initial set of search criteria.

At block 204, the search engine 24 organizes an initial set of search results based on the matches found in the index 30. The search engine 24 retrieves from the index 30 a set of resource location identifiers that identify data sources containing terms, phrases or other data that satisfy the initial set of search criteria. In the first embodiment, the resource location identifiers are Uniform Resource Locators (URLs) which are retrieved and arranged in a list of URLs. If any of the search criteria is identified in the index 30 as being marked with one or more contextual terms in any of the data sources in the list of URLs, then the search results will also include a list of such contextual terms. In one alternative, the search results may also include reference to all unique contextual terms within retrieved data sources, whether or not any of the search terms of the search criteria are marked with such contextual terms in those data sources.

The contextual terms returned in a search can be used to refine the search for relevant data within the index 30 by presenting the requesting party with contextual information (ie. the contextual terms) which the requesting party can use to filter the search results. In an alternative embodiment, the contextual terms may also be used to refine the search by predicting possible document types and presenting them to the requesting party. For instance, if the document type "Invoice" is known in the index 30 to have the structural components "Name", "Address", "Invoice Number", and "ItemNumber", the search engine 24 predicts that the presence of these structural components indicates that certain document types, including the "Invoice" document type, are available to be searched upon within the index 30. This information can then be communicated to the requesting party so that a particular document type may be used to refine a search for relevant data within the index 30.

FIG. 20A illustrates the search and retrieval process performed by the search engine 24 in FIG. 1 and in blocks 202 and 204 of FIG. 19. When a search is received, the search engine 24 uses the TermList file 30.1 to resolve search terms into numeric identifiers (IDs) at block 300. Search terms which cannot be mapped to numeric IDs with the TermList file 30.1 are preferably ignored in

the remainder of the search. At block 302, the search engine 24 then searches for the search terms from amongst the nodes in the index file 30.2 and retrieves at block 304 a list of document identifiers that satisfy the search criteria.

5 In performing a search at block 302, the search engine 24 is able to perform a wide range of searching for relevant documents based on the position and nesting information for textual components and the position, nesting and boundary information for structural components stored in the index structure of index file 30.2. For instance, certain search criteria may require that the
10 search engine 24 retrieve documents having textual components side-by-side or in a certain proximity to one another, such as phrase or proximity searching. With the position information of structural components stored within the search engine 24 is able to rapidly determine which documents have terms that fit within such a phrase or proximity search. With the index structure of index file 30.2, the search engine 24 is also able to rapidly retrieve nesting information and boundary information for a contextual term retrieved during a search without having to traverse during runtime each ancestor of the contextual term. Other search criteria, such as the contextual criteria discussed further below, may require that the search engine 24 retrieve
20 structural components having a particular nesting. Another search criteria may require that the search engine 24 retrieve document identifiers for documents having textual components associated with a certain nesting of structural components. For example, in an alternative embodiment the search criteria may specify that the search engine 24 retrieve a list of documents having the textual component "Francis" within the nested context
25 "Person/Name/Last Name".

Since the index file 30.2 contains the position and nesting information for textual components and the position, nesting and boundary information for structural components, all indexed in advance from source documents, the
30 search engine 24 is able to search the tree structure of the index file 30.2 and rapidly identify relevant search results without having to calculate at runtime

-28-

the location of textual components within structural components or the nesting levels of structural components. In searching for structural components, the search engine 24 can restrict its searching to nodes in the index file 30.2 that are used to store information on structural components. Similarly, in
5 searching for textual components, the search engine 24 can restrict its searching to nodes in the index file 30.2 that are used to store information on textual components. With searches for textual components associated with a particular context term, the search engine 24 retrieves the position information for the textual component in question and determines if it falls within the
10 boundary information recorded in the index file 30.2 for the particular context term of a document. As another example of the flexibility provided with the index 30, in order to determine whether a first contextual term (structural component) is a parent or ancestor of a second contextual term (structural component) in a document, the search engine 24 compares the nesting information and boundary information of the two contextual terms. The first contextual term is a parent or ancestor of the second contextual term if the second contextual term has a depth (see FIG. 12 as an example) of greater than the first contextual term, and the begin field (in the boundary information) for the second contextual term is greater than or equal to the begin field for the first contextual term, and the end field (in the boundary information) for the second contextual term is less than or equal to the end field for the first contextual term. The nesting information can also be used to readily determine the number of levels of nesting between a structural component and one or more of its ancestors.

25 If a channel was specified in the search, the search engine 24 retrieves at block 306 a list of document identifiers from the channel mappings table 30.4 (FIG. 18) for a list of documents that are associated with the one or more channels specified in the search. In this case, the search engine 24 intersects
30 the list of document identifiers retrieved from channel mappings table 30.4 with the list of document identifiers retrieved from the index file 30.2 to

generate search results that contain a list of document identifiers that satisfy the search criteria and that appear in the channel(s) specified.

At block 308 the search engine 24 sorts and ranks the resulting list of document identifiers. At block 310 the search engine 24 looks up the metadata in the DocumentList file 30.3 for those documents identified in the resulting list which are to be presented to the user. The set of retrieved metadata and sorted listed of document identifiers to be presented to the user are then transmitted.

Referring to FIG. 1 and 19, at block 206 the search engine 24 transmits the initial set of search results as a raw XML response. The raw XML response is transmitted to the intermediary search application running on the web server computer, where the CGI script 26.1 converts the raw XML response into a format presentable to the user's web browser. FIG. 21 illustrates at 226 the transmission of the raw XML response to the intermediary search application as a computer data signal embodied in a carrier wave.

Referring to FIG. 26, a sample raw XML response 246 containing a sample set of search results is shown generated from a search based on the sample XML search request in FIG. 25. In the sample illustrated, the response 246 contains a set of hits which identify matching documents, their URLs and summary information regarding each matching document including title, abstract, date last modified, size, rank and score of the document. The summary information returned for each matching document allows the intermediary search application 26 to use a variety of techniques to display or further filter the search results for the user. The response 246 also contains the list of contextual terms 248 found to provide context to search terms within the retrieved documents. The response 246 also contains metadata 247 summarizing the search including the search criteria that formed the basis of the search. Providing metadata 247 about the search criteria in the response 246 allows the intermediary search application to be stateless. As well, with the metadata 247 the search engine 24 can inform the search application 26

-30-

of ignored text and structural components such as with fields 250, and unused text and structural components such as with fields 252. The one or more fields 250 for ignored text and structural components contains search terms that the requesting party specified to exclude from the scope of a search as well as search terms which the search engine 24 ignored to improve the speed of a search, for instance very common terms such as "and", "the", "or", and "a". The one or more fields 252 for the unused text and structural components contains search terms not used in the search because they did not appear within the index 30.

Referring to FIG. 1, the intermediary search application 26 processes the raw XML response with CGI script 26.1 to generate a representation of the context-sensitive search form 25 containing the list of URLs and the list of contextual terms received in the raw XML response. The representation of the context-sensitive search form 25 is transmitted to the user's browser for display. FIG. 21 illustrates at 228 the transmission to a user machine 40 of a computer data signal embodied in a carrier wave, the computer data signal containing computer-readable instructions for the display of the representation of the context-sensitive search form 25 with the list of contextual terms and the list of URLs.

FIG. 23 illustrates, by way of example, the context-sensitive search form 25 presented to the user for the first embodiment. The context-sensitive search form 25 is displayed on a user machine 40 within web browser 41 as a Web page that includes a display area 126 for displaying all or a portion of the list of URLs generated in the initial search. Preferably, each URL is displayed as a hyperlink and includes some information from the corresponding data source (e.g. title, a subset of text retrieved from a document). Data sources referenced by the URLs are accessed by selecting a given hyperlink. In the first embodiment, the context-sensitive search form 25 also includes a contextual display area, which is shown in FIG. 23 as a context box 128, for displaying all or a portion of the list of contextual terms generated from the initial search of the index 30 (FIG. 1). The context box 128 and other aspects

of the context-sensitive search form 25 are displayed to the user via the web browser in the first embodiment using a meta-language such as HTML or another SGML-based language. It will be appreciated by one skilled in the art that selecting an item, such as a contextual term, from the context box 128 or
5 from another part of the first context-sensitive search form 25 can be achieved using one of many known techniques used for selecting a feature on a web page (or an electronic form) and sending information identifying the selection to another application.

For the context-sensitive search form 25, the option to view only segments of
10 the list of URLs generated from the initial set of search criteria is helpful, particularly when the list of URLs is quite long. A preferred technique for providing this option is to catalog the search results and to dynamically identify which portions of the search results are to be presented to the user. This may be done by grouping the search results into "pages" or "segments", presenting the user with one of the pages of results, and allowing the user to navigate through the search results on a page-by-page basis. An example of this technique is illustrated with the page links 127 in FIG. 23. The same technique may be used to allow a user to view the refined search results via the context-sensitive search form 25 in FIG. 24.

20 Referring to FIG. 1 and 23, in addition, the context box 128 preferably appears on each "page" of search results viewed by the user via a search form so that the user can quickly refine search results using contextual terms retrieved from the index 30.

25 The context-sensitive search form 25 provides a refinement mechanism for enabling a user to refine, via the web browser 41, the list of URLs by selecting one (or more) of the contextual terms from the context box 128. The user can initiate this refinement mechanism by selecting one (or more) of the contextual terms in the context box 128. The selected contextual terms are encoded in a data signal (230 in FIG. 21) that is transmitted to the
30 intermediary search application 26 which converts the transmission into a raw

-32-

XML search request that is then transmitted as another data signal (232 in FIG. 21) to the search engine 24 to initiate further searching of the index 30.

Referring to FIG. 1 and 19, when the search engine 24 receives at block 208 instructions in the form of a raw XML search request to refine the list of URLs using one (or more) of the contextual terms from the list of contextual terms presented to the user, the search engine 24 generates a refined list of URLs from the original list of URLs. The refined list of URLs is generated by determining which of the documents referred to in the original list of URLs includes the contextual term(s) selected by the user. In a preferred arrangement, the refined list of URLs does not include URLs from the original list of URLs referring to data sources that do not include one or more of the original search terms marked by the refining contextual term(s). This latter arrangement helps to narrow the search results by identifying only those data sources within which search terms are used in the context(s) selected to refine the initial search results.

When the search engine 24 receives one or more selected contextual terms at block 208, the initial search results are filtered at block 210 using the one or more contextual terms selected by the user, and a refined list of contextual terms and a refined list of URLs are generated. The selected contextual terms are used by the search engine 24 to filter from the original list of URLs the references to data sources that are not identified in the index 30 as containing one or more the selected contextual terms.

At block 212 the search engine 24 transmits the refined list of URLs as part of a raw XML response (234 in FIG. 21) to the intermediary search application 26 which processes the raw XML response to generate a search form with the refined search results in a form presentable to the user. Preferably, the intermediary search application 26 generates a second representation of the context-sensitive search form 25 containing the refined list of URLs. This second representation of the context-sensitive search form 25 is then transmitted by the intermediary search application 26 to the user's machine.

FIG. 21 illustrates at 236 the transmission to a user machine 40 of a computer data signal embodied in a carrier wave, the computer data signal containing computer-readable instructions for the display of the second representation of the context-sensitive search form 25 with the refined list of URLs.

5 FIG. 24 illustrates, by way of example, the second representation of the context-sensitive search form 25 presented to the user for the first embodiment. The context-sensitive search form 25 is displayed in web browser 41 as a Web page that includes display area 126 now used for displaying all or a portion of the refined list of URLs. Each URL in the refined list of URLs is preferably displayed as a hyperlink and includes some information from the corresponding document (e.g. title, a subset of text retrieved from the document). The context-sensitive search form 25 may also include context box 128 for displaying all or a portion of the refined list of contextual terms used to generate the refined list of URLs. If more than one contextual term remains in the context box 128, the user may select from the remaining contextual terms to initiate a further search of the index 30 (FIG. 1) to further refine the already refined list of URLs.

10 The combination of presenting the user with a list of data sources and a list of contextual terms associated with one or more data sources, and providing the user with a mechanism for selecting from the list of contextual terms so as to 20 contextually refine the list of data sources, provides the user with a number of advantages. The search engine 24 automatically determines for the user the context within which the user's initial set of search criteria are used in the documents identified in the search results from the initial search. The user 25 does not have to guess or try to predict the contexts within which the user's search terms are used in structured data sources, such as XML documents, identified in the search results. This automated technique for presenting the user with contextual information associated with the list of data sources retrieved from the initial search gives the user a mechanism for contextually filtering out data sources identified in the initial search. Thus, the user can 30 quickly narrow the search results according to the context given to terms,

phrases and other sets of data within structured data sources indexed within the index 30.

Referring to FIG. 1, the system 20 may have other aspects to further enhance functionality and usability. Each of the following aspects individually provides a beneficial enhancement and is an embodiment of the present invention.

In one variation, the index 30 maps contextual terms that it stores to an index of general (or normalized) contextual categories or generic contextual terms. In this variation, when contextual terms are retrieved in a search, their corresponding general contextual categories in the normalized index may be retrieved and displayed as a generic list of contextual terms or categories (or both) in a location of the context-sensitive search form 25, or in place of the contextual terms displayed in the context box 128. By selecting one of the generic contextual terms from the context-sensitive search form 25, the user can then have the search engine 24 refine the initial search results by filtering out URLs referring to documents which do not contain either the generic contextual term selected or any of those contextual terms in the index 30 associated with the selected generic contextual term. For example, if the contextual terms "actor", "cameo", "stunt man", "performer" and "stage performer" are stored within the index 30 and are all associated with the generic contextual term "performer", then selection of this generic contextual term from a list of generic contextual terms presented to the user provides the basis for reducing the list of URLs to those having documents which contain any of the contextual terms associated with "performer". In a further variation, the search engine 24 is programmed to refine the list of URLs to only those URLs referring to documents identified in the index 30 as having one or more of the initial search terms marked by one or more contextual terms associated with the generic contextual term. In another alternative, the selection of a generic contextual term may be used not only to reduce the number of URLs referred to, but to potentially increase the number of URLs listed. In this latter case, the search engine 24 may be programmed, in response to the selection of a generic contextual term, to retrieve all URLs identified in the index 30 as

5

10
11
12
13
14
15

20

25

30

referring to a structured document having at least one of the contextual terms aliased by the generic contextual term, provided that such contextual terms provide context to data that match the user's search criteria.

Referring to FIG. 1, in the first embodiment, the user's machine does not communicate directly with the search engine 24, but instead goes through the web computer server 27 and intermediary search application 26. In one variation, the intermediary search application 26 may reside on the computer system 20 that supports the search engine 24. In another alternative, client-side processing on the user's machine with, for example, style sheets or an applet such as a Java app, may be used to communicate directly with the search engine 24 without web server software or a web computer server, as illustrated in FIG. 27. In this latter alternative, the user's browser serves as a search application interface to the search engine 24, converting user-based search requests into raw XML requests which can be processed by the search engine 24, and converting raw XML search results received from the search engine 24 into a format presentable to the user on the web browser.

Referring to FIG. 1, in one variation, to assist the search engine 24 in performing a context sensitive search of the database 31, the initial search form 23 includes a list of at least one contextual term stored within the index 30 in database 31. This list provides the user with an indication of some or all of the contextual terms available within the index 30 to assist the user in formulating a context-based search request. The context-based search request can contain one or more contextual terms defining the context within which the search is to be performed on some or all of the other search terms that form part of the search request. In receiving the at least one contextual term with the context-based search request, the search engine 24 can then search the database 31 for references to documents and other data sources (for example, Web pages) having data elements such as character data associated with such contextual term(s) and return search results to the user machine that submitted the context-based search request.

-36-

In another alternative, if a search request received by the search engine 24 lacks any contextual terms used within the database 31, the search engine 24 is programmed to compare the search term(s) submitted with the search request with contextual terms used by the database 31. If the search engine 5 24 determines that any contextual terms within the database 31 provide context to any of the search terms, the search engine 24 then provides the user machine that submitted the search request with a list of contextual terms in the database 31 that are found to be associated with one or more of the search terms, along with instructions providing the user with the option to submit a context-based search request using one or more of the contextual 10 terms provided. The user may then refine the search request and specify the context sensitive nature of the search request by selecting one or more of the contextual terms from the list of contextual terms retrieved by the search engine 24. The refined search request (now context-based), once received by the search engine 24 may be used to conduct a context sensitive search for structured documents referenced by the database 31.

In yet another alternative, the searching and retrieval of data described in the first embodiment may be performed on a relational database which associates data elements scanned from data sources with contextual terms from such 20 data sources in the manner described in the first embodiment for index 30.

Although this invention has been described with reference to illustrative and preferred embodiments of carrying out the invention, this description is not to be construed in a limiting sense. Various modifications of form, arrangement 25 of parts, steps, details and order of operations of the embodiments illustrated, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover such modifications and embodiments as fall within the true scope of the invention.

What is claimed is:

1. A computer-implemented method of retrieving data based on context, comprising:

- (a) receiving a search criterion from a requesting party;
- 5 (b) searching a database for data sources which contain a data element that matches the search criterion;
- (c) retrieving a set of structural components that provide context to the data element in any of the data sources; and
- (d) transmitting the set of structural components and references to the data sources to the requesting party.

2. The method of Claim 1, further comprising restricting the data sources to a set of structured documents which contain a structural component selected from the set of structural components that provide context to the data element in the set of structured documents.

15 3. The method of Claim 2, further comprising transmitting references to the restricted set of structured documents to the requesting party.

4. The method of Claim 2, further comprising receiving from the requesting party an indicator identifying a structural component selected from the set of structural components transmitted to the requesting party.

20 5. The method of Claim 4, further comprising restricting the set of structured documents to structured documents which contain the structural component identified by the indicator.

6. The method of any of Claims 1 to 5, wherein the search criterion is received from a user machine.

-38-

7. The method of any of Claims 1 to 6, wherein the search criterion is used to search the database whose structure is hidden by a search application interface.

8. A computer-implemented method of retrieving data based on context, comprising:

- (a) receiving a set of search criteria from a requesting party;
- (b) retrieving from a database a set of references to data sources comprising structured documents which contain data elements matching the search criteria;
- (c) generating a set of contextual terms identified in the database as providing context to at least one of the data elements in the structured documents; and
- (d) transmitting the set of references and the set of contextual terms to the requesting party.

9. The method of Claim 8, further comprising restricting the set of references to references to structured documents which contain a contextual term selected from the set of contextual terms.

10. A computer-readable medium having stored instructions for use in the execution of the method of Claim 8.

11. A computer-implemented method of retrieving data, comprising:

- (a) identifying a set of structural components based on one or more search criteria received from a requesting party;
- (b) transmitting the set of structural components to the requesting party for selection;
- (c) receiving a selected structural component from the set of structural components transmitted to the requesting party;

5

(d) retrieving references to structured documents that contain data associated with the selected structural component; and

(e) transmitting the references to the requesting party.

10 12. The method of Claim 11, further comprising identifying a set of references to structured documents that contain data marked by at least one of said set of structural components and transmitting said set of references to structured documents to the requesting party with the transmission of the set of structural components.

15 13. The method of Claim 11, wherein said set of structural components is identified as being a set of contexts associated with a set of structured documents.

16. The method of Claim 11, wherein said set of structural components is identified as being associated with a set of document structures.

20 15. A computer-readable medium having stored instructions for use in the execution of the method of Claim 11.

16. A computer system comprising:

(a) a processor;

(b) a network interface in communication with said processor for connection with a network; and

25 (c) memory in communication with said processor, said memory comprising computer-readable instructions adapting said processor to:

(i) receive a set of search criteria from a requesting party;

(ii) retrieve from a database a set of references to structured documents which contain data elements matching the search criteria;

-40-

5

- (iii) generate a set of contextual terms identified in the database as providing context to the data elements in the structured documents; and
- (iv) transmit the set of references and the set of contextual terms to the requesting party.

17. A system for retrieving context sensitive data, comprising:

- (a) means for receiving a set of search criteria from a requesting party;
- (b) means for retrieving from a database a set of references to data sources which contain data elements matching the search criteria;
- (c) means for generating a set of contextual terms identified in the database as providing context to the data elements in at least one of the data sources; and
- (d) means for transmitting the set of references and the set of contextual terms to the requesting party.

15

18. A computer-readable medium for providing instructions for directing a processing unit to retrieve data based on context, by:

20

- (a) receiving a search criterion from a requesting party;
- (b) searching a database for data sources which contain a data element that matches the search criterion;
- (c) retrieving a set of structural components that provide context to the data element in any of the data sources; and
- (d) transmitting the set of structural components and references to the data sources to the requesting party.

25

-41-

19. A computer-implemented method of indexing data into a database, the
method comprising:

indexing a data source within the database comprising:

scanning the data source in search of structural components
that provide context to any data elements within the data
source;

retrieving the data elements and the structural components from
the data source;

recording organizational data representing an organization of
the data elements and the structural components within
the data source; and

storing the organizational information within the database.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
1011

-42-

24. A computer system comprising:

- (a) a processor;
- (b) a network interface in communication with said processor for connection with a network; and
- 5 (c) memory in communication with said processor, said memory comprising computer-readable instructions adapting said processor to perform the method of Claim 19;

25. A system for indexing data into a database, comprising:

- (a) means for scanning a data source in search of structural components that provide context to any data elements within the data source;
- (b) means for retrieving the data elements and the structural components from the data source;
- 10 (c) means for recording organizational information representing an organization of the data elements and the structural components within the data source; and
- (d) means for storing the organizational information within the database.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 April 2001 (05.04.2001)

PCT

(10) International Publication Number
WO 01/24045 A2

(51) International Patent Classification⁷:

G06F 17/30

(71) Applicant (for all designated States except US); XML-GLOBAL TECHNOLOGIES, INC. [US/US]; 701 Dexter Avenue, Suite 420, Seattle, WA 98109 (US).

(21) International Application Number:

PCT/CA00/01042

(22) International Filing Date:

8 September 2000 (08.09.2000)

(72) Inventors; and

(25) Filing Language:

English

(75) Inventors/Applicants (for US only); MACKENZIE, Chad, Matthew [CA/CA]; 1238 Richards Street, Suite 1806, Vancouver, British Columbia V6B 3G2 (CA). CANNON, Finlay [CA/CA]; 969 West 10th Avenue, Vancouver, British Columbia, V5Z 1L9 (CA). NICKULL, Duane, Allan [CA/CA]; 199-1027 Davie Street, Vancouver, British Columbia V6E 4L2 (CA). HOGLUND, Jamie, Michael, Thomas [US/CA]; 1516 Davie Street, Suite 1108, Vancouver, British Columbia V6B 2V6 (CA).

(26) Publication Language:

English

(30) Priority Data:

09/407,336 29 September 1999 (29.09.1999) US

(74) Agents: SUM, Theodore, W. et al.; Smart & Biggar, Box 11560, Vancouver Centre, Suite 2200, 650 West Georgia Street, Vancouver, British Columbia V6B 4N8 (CA).

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 09/407,336 (CIP)

Filed on 29 September 1999 (29.09.1999)

29 Mar 02 (30muz)

[Continued on next page]

(54) Title: METHOD, SYSTEM, SIGNALS AND MEDIA FOR INDEXING, SEARCHING AND RETRIEVING DATA BASED ON CONTEXT

(57) Abstract: A search engine receives an initial set of search criteria from a user and proceeds to initiate a search of a database containing an index of documents and their contents. The search engine searches the database for the location of documents containing data that matches the initial search criteria, and contextual terms (if any) that are recorded in the database as providing context to one or more of the data elements within any of the documents retrieved. A list of identified documents and a list of contextual terms are generated and transmitted to the user for display in a context-sensitive search form. The context-sensitive search form provides a refinement mechanism for enabling the user to refine the list of identified documents by selecting one or more of the contextual terms from the list of contextual terms presented. When the search engine receives one or more of the contextual terms from the user, a refined list of documents is generated and transmitted to the user for further selection.

WO 01/24045 A2

FIG. 1

FIG. 2

10/089290

FIG. 3

FIG. 4

FIG. 5

10/08/9290

Sheet 4 of 17

60

```
<?xml version="1.0"?>
<?xml:stylesheet type="text/xsl" href="sewblue.xsl"?>
<story>
  <title>Introduction to Little Red Riding Hood</title>
  <author>A. Nonymous</author>
  <characters>
    <character>Little Red Riding Hood</character>
    <character>Grandmother</character>
    <character>Wolf</character>
  </characters>
  <body>
    There once was a young girl named Little Red Riding Hood who lived on the edge of a large forest. One day, while traveling through the forest to visit her grandmother, Little Red Riding Hood encountered a big wolf, who asked her where she was going.
  </body>
</story>
```

FIG. 6

72

Introduction to Little Red Riding Hood A Nonymous Little Red Riding Hood Grandmother Wolf There once was a young girl named Little Red Riding Hood who lived on the edge of a large forest One day while traveling through the forest to visit her grandmother Little Red Riding Hood encountered a big wolf who asked her where she was going

FIG. 9

74

FIG. 10

10/089290

Sheet 5 of 17

```
<?xml version="1.0" encoding="UTF-8"?>
<submission_request>

<auth user="A. Anonymous" password="&*^HJK"/>

<metadata
    title="Introduction to Little Red Ridding Hood"
    abstract="A brief introduction to a classic fairy tail"
    url="http://www.classic-stories.ca/~intros/red_ridding_hood.xml"
    size="3"
    channel="classic_stories"
    mime_type="text/xml"
    last_modified="2000-08-21"
    overwrite="0"
/>

<content>
<![CDATA[
    XML document
]]>
</content>

</submission_request>
```

65

67

69

68

/>

<content>

<![CDATA[

XML document

]]>

</content>

</submission_request>

FIG. 7

70

66

```
<?xml version="1.0" encoding="UTF-8"?>

<submission_response>
    <status code="OK" message="DOCUMENT QUEUED FOR INDEXING"/>
    <details
        document_id="12335"
        title="Introduction to Little Red Ridding Hood"
        abstract="A brief introduction to a classic fairy tail"
        url="http://www.classic-stories.ca/~intros/red_ridding_hood.xml"
        size="3"
        channel="classic_stories"
        mime_type="text/xml"
        last_modified="2000-08-21"
        overwrite="0" />
</submission_response>
```

FIG. 8

10/089290

Sheet 9 of 17

FIG. 11 shows a table of textual components. The columns are labeled "textual component", "position", and "depth". The rows list words from a story, including "introduction", "to", "little", "red", "grandmother", "wolf", "where", "she", "was", and "going". Arrows point from the column headers to their respective positions in the table.

textual component	position	depth
introduction	1	3
to	2	3
little	3	3
red	4	3
...		
grandmother	13	4
wolf	14	4
...		
where	57	3
she	58	3
was	59	3
going	60	3

FIG. 11 also shows a table of structural components. The columns are labeled "structural component", "position", "depth", "begin", and "end". The rows list parts of the story, including "story", "title", "author", "characters", "character", "character", "character", and "body". Arrows point from the column headers to their respective positions in the table.

structural component	position	depth	begin	end
story	1	1	1	60
title	2	2	1	6
author	3	2	7	8
characters	4	2	9	14
character	5	3	9	12
character	6	3	13	13
character	7	3	14	14
body	8	2	15	60

FIG. 13 shows a table of fields and their descriptions. The columns are "field" and "description". The rows list "term_string", "unique UTF-8 string of the term"; "term_id", "unique numeric id"; "textual_frequency", "number of times the term appears as a textual component"; "structural_freq", "number of times the term appears as a structural component"; "doc_textual_freq", "number of docs that include the term as a textual component"; and "doc_structural_freq", "number of docs that include the term as a structural component".

field	description
term_string	unique UTF-8 string of the term
term_id	unique numeric id
textual_frequency	number of times the term appears as a textual component
structural_freq	number of times the term appears as a structural component
doc_textual_freq	number of docs that include the term as a textual component
doc_structural_freq	number of docs that include the term as a structural component

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 20A

- 41

23

Search the Web for:

ANSWER

[Click Here to Search](#)

FIG. 22

10/089290

Sheet 13 of 17

41

25

Search the Web for:

Results: 126 Total Hits: 77

Contexts retrieved: 128

Title
Chapter
Name
Web Site
City
Place

URLs and summary information

[Next Results Page 1 2 3 4 5 6 7](#) 127

FIG. 23

41

54

Search the Web for:

Results: 126 Total Hits: 27

Contexts retrieved: 128

Name
Web Site

URLs and summary information

127

Next Results Page 1 2 3

128

FIG. 24

10/089290

FIG. 21

```
<?xml version="1.0" encoding="UTF-8"?>
<search_request>

    <auth user="UserA" password="&*^HJK"/>
    <info
        first_hit="1"
        page_size="10"
        tags=""
        text="off to see the wizard"
        channel="">
    />
</search_request>
```

240
242

FIG. 25

```
<?xml version="1.0" encoding="UTF-8"?>
<search_query_reponse>
```

```
    <status code="OK"/>
```

```
    <summary>
```

```
        total_hits="2"
        mime_type="text/xml"
        tags=""
        text="&quot;off to see the wizard&quot;"
250      ignored_text=""
        ignored_tags=""
252      unused_text="to the"
        unused_tags=""
        page_size="10"
        channel=""
        first_hit="1"/>
```

247

```
    <context name="story"/>
```

```
    <context name="movie"/>
```

```
    <content name="famous_quote"/>
```

248

```
    <hit>
```

```
        document_id="21134"
        rank="1"
        score="3.222146"
        title="The Wizard of Oz, Large Print"
        abstract="A timeless classic, in an easy to read format"
        size="2"
        mime_type="text/xml"
        extra_info=""
        url="http://www.wizardofoz.com/dorothy/index.xml" />
```

```
    <hit>
```

```
        document_id="21784"
        rank="2"
        score="3.122141"
        title="Dorothy, A Parody"
        abstract="Dorothy has grown up, and written about her trip to see the wizard."
        size="6"
        mime_type="text/xml"
        extra_info=""
        url="http://www.wizardofoz.com/dorothy/autobiography.xml" />
```

```
</search_query_reponse>
```


FIG. 27

**DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

Docket No. 48072/DBP/S318

SMART & BIGGAR in the event the power granted herein is for an application filed on behalf of a foreign attorney or agent.

R. W. Johnston	(17,968)	Constantine Marantidis	(39,759)	Harold E. Wurst	(22,183)
D. Bruce Prout	(20,958)	Daniel R. Kimbell	(34,849)	Robert A. Green	(28,301)
Hayden A. Carney	(22,653)	Craig A. Gelfound	(41,032)	John W. Peck	(44,284)
Richard J. Ward, Jr.	(24,187)	Syed A. Hasan	(41,057)	Stephen D. Burbach	(40,285)
Russell R. Palmer, Jr.	(22,994)	Kathleen M. Olster	(42,052)	Nicholas J. Pauley	(44,999)
LeRoy T. Rahn	(20,356)	Daniel M. Cavanagh	(41,661)	Mark J. Marcelli	(36,593)
Richard D. Seibel	(22,134)	Joel A. Kauth	(41,886)	Peter A. Nichols	(47,822)
Walter G. Maxwell	(25,355)	Patrick Y. Ikcharya	(42,681)	David J. Steele	(47,317)
William P. Christie	(29,371)	Mark Garscia	(31,953)	Laurence H. Pretty	(25,312)
David A. Dillard	(30,831)	Gary J. Nelson	(44,257)	Robert A. Schroeder	(25,373)
Thomas J. Daly	(32,213)	Raymond R. Tabandeh	(43,945)	Richard A. Wallen	(22,671)
Vincent G. Gioia	(19,959)	Cynthia A. Bonner	(44,548)	Michael J. MacDermott	(29,946)
Edward R. Schwartz	(31,135)	Jun-Young E. Jeon	(43,693)	Anne Wang	(36,045)
John D. Carpenter	(34,133)	Marc A. Karish	(44,816)	Richard A. Clegg	(33,485)
David A. Plumley	(37,208)	John F. O'Rourke	(38,985)	Natu J. Patel	(39,559)
Wesley W. Monroe	(39,778)	Richard J. Paculana	(28,248)	Tom H. Dao	(44,641)
Gregory S. Lampert	(35,581)	Josephine E. Chang	(46,083)	James M. Collison	(50,517)
Grant T. Langton	(39,739)	Frank L. Cire	(42,419)	Gary D. Lueck	(50,791)
				Rodney V. Warford	
				(P-51,304)	

The authority under this Power of Attorney of each person named above shall automatically terminate and be revoked upon such person ceasing to be a member or associate of or of counsel to that law firm.

DIRECT TELEPHONE CALLS TO: D. Bruce Prout, 626/795-9900

SEND CORRESPONDENCE TO:
CHRISTIE, PARKER & HALE, LLP
P.O. Box 7068
Pasadena, CA 91109-7068

Customer Number: 23363

I declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

NAME OF SOLE OR FIRST INVENTOR			
Chad Matthew MacKenzie			
Inventor's Signature			Date 3/21/02
City Residence: Vancouver	State British Columbia	Country Canada	Citizenship Canadian
Mailing Address: 1238 Richards Street, Suite 1806, Vancouver, British Columbia V6B 3G2 Canada			

**DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

Docket No. 48072/DBP/S318

NAME OF SECOND INVENTOR

Finlay Cannon

Inventor's Signature

Date
21 MAR 2002

City

State

Country

Residence: Vancouver

British Columbia

Canada

Citizenship
Canadian

Mailing Address: 969 West 10th Avenue, Vancouver, British Columbia V5Z 1L9 Canada

NAME OF THIRD INVENTOR

Duane Allan Nickull

Inventor's Signature

Date
MAR 21/02

City

State

Country

Residence: Vancouver

British Columbia

Canada

Citizenship
Canadian

Mailing Address: 199-1027 Davie Street, Vancouver, British Columbia V6E 4L2 Canada

NAME OF FOURTH INVENTOR

Jamie Michael Thomas Hoglund

Inventor's Signature

Date

City

State

Country

Residence: Vancouver

British Columbia

Canada

Citizenship
American

Mailing Address: 1501 East Broadway, Monticello, Minnesota, 55362 US

AAM PAS422256 1-3/20/02 2:53 PM

**DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

Docket No. 48072/DBP/S318

NAME OF SECOND INVENTOR

Finlay Cannon

Date

Inventor's Signature

City
Residence: VancouverState
British ColumbiaCountry
CanadaCitizenship
CanadianMailing Address: 969 West 10th Avenue, Vancouver, British Columbia V5Z 1L9 Canada**NAME OF THIRD INVENTOR**

Duane Allan Nickull

Date

Inventor's Signature

City
Residence: VancouverState
British ColumbiaCountry
CanadaCitizenship
Canadian

Mailing Address: 199-1027 Davie Street, Vancouver, British Columbia V6E 4L2 Canada

NAME OF FOURTH INVENTOR

Jamie Michael Thomas Hoglund

Date
2002-3-22

Inventor's Signature

City
Residence: VancouverState
British Columbia

MN

Country
Canada

USA

Citizenship
American

Mailing Address: 1501 East Broadway, Monticello, Minnesota, 55362 US

**DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

PATENT

Docket No. : 48072/DBP/S318

As a below named inventor, I hereby declare that:

My residence, mailing address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled METHOD, SYSTEM, SIGNALS AND MEDIA FOR INDEXING, SEARCHING AND RETRIEVING DATA BASED ON CONTEXT, the specification of which is attached hereto unless the following is checked:

was filed on September 8, 2000 as United States Application Number or PCT International Application Number PCT/CA00/01042 and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the national or PCT international filing date of the continuation-in-part application.

I hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of the foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States of America, listed below and have also identified below, any foreign application for patent or inventor's certificate, or any PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

<u>Application Number</u>	<u>Country</u>	<u>Filing Date (day/month/year)</u>	<u>Priority Claimed</u>
---------------------------	----------------	-------------------------------------	-------------------------

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below.

<u>Application Number</u>	<u>Filing Date</u>
---------------------------	--------------------

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112.

<u>Application Number</u>	<u>Filing Date</u>	<u>Patented/Pending/Abandoned</u>
---------------------------	--------------------	-----------------------------------

09/407,336	September 29, 1999	Pending
------------	--------------------	---------

POWER OF ATTORNEY: I hereby appoint the following attorneys and agents of the law firm CHRISTIE, PARKER & HALE, LLP to prosecute this application and any international application under the Patent Cooperation Treaty based on it and to transact all business in the U.S. Patent and Trademark Office connected with either of them in accordance with instructions from the assignee of the entire interest in this application; or from the first or sole inventor named below in the event the application is not assigned; or from