SAITS: SELF-ATTENTION-BASED IMPUTATION FOR TIME SERIES

고려대학교 산업경영공학과 데이터 애널리틱스 및 헬스케어 시스템 연구실 202202144 석사과정

김홍범

1. Introduction

1. Traditional Methods

- 결측치 삭제(Deletion)
 - sample 혹은 feature를 제거 -> 파라미터 추정에 bias가 생김
- 결측치 대체(Imputation)
 - unbiased하고 주변 값의 정보를 이용해 대체 -> 그렇다면 어떤 값을 채워야 할까?
- 결측치 종류
 - MCAR(Missing completely at random)
 - MAR(Missing at random)
 - MNAR(missing not at random)

2. Related work

RNN-based

- M-RNN, BRITS등의 모델은 bi-rnn 의 hidden state에 따라 결측치 처리를 진행
- 이처럼 RNN을 통한 Time decay를 학습할 수 있었음

GAN-based

- GAN 역시 근간은 RNN이나, 생성자와, 판별자를 기반으로 학습을 진행함
- 위의 두 모델의 근간은 RNN이고, Bi-RNN을 활용한다 할지라도 두 방향의 평균으로 대치한 결과로서 완전한 양방향 모델은 아님

VAE(Variation auto-encoder)-based

- Latent space에서의 Gaussian process를 기반으로 하여 결측치 처리를 진행함
- 데이터의 구체적인 구조 또는 분포와 일치하지 않을 때가 존재함
- GAN, VAE 모두 훈련이 어렵다는 단점을 가지고 있음

Self-attention-based

- Self-attention 기반으로 진행됨, 대표적인 모델은 NRTSI
- NRTSI는 두 개의 중첩된 루프로 구성되어 병렬로 계산되는 Self-attention의 이점을 약화시킴

- Joint-optimization training approach
- Two learning tasks
 - 1. MIT(Masked Imputation task) -> 인위적인 결측치 생성 후 예측 진행
 - 2. ORT(Observed Reconstruction task) -> 실제 결측치 예측 진행
- SAITS model(Weighted combination of two DMSA blocks)
 - Diagonally-masked self-attention
 - Positional encoding and feed-forward network
 - The second DMSA block
 - The weighted combination block
 - Loss function of learning objectives

1. Joint-optimization training approach

2. Two learning tasks

 \hat{x} : Actual input time series \hat{M} : Missing mask vector

 \tilde{x} : Estimated time series(reconstructions)

$$\hat{M}^d_t = \left\{ \begin{array}{ll} 1 & \text{if } X^d_t \text{ is observed} \\ 0 & \text{if } \hat{X}^d_t \text{ is missing} \end{array} \right., \quad I^d_t = \left\{ \begin{array}{ll} 1 & \text{if } \hat{X}^d_t \text{ is artificially masked} \\ 0 & \text{otherwise} \end{array} \right.$$

Masked Imputation Task (MIT)

$$\ell_{\text{MAE}}\left(estimation, target, mask\right) = \frac{\sum_{d=1}^{D} \sum_{t=1}^{T} |(estimation - target) \odot mask|_{t}^{d}}{\sum_{d=1}^{D} \sum_{t=1}^{T} mask_{t}^{d}}$$

$$\mathcal{L}_{ ext{MIT}} = \ell_{ ext{MAE}} \left(\tilde{X}, X, I
ight)$$

Observed Reconstruction Task(ORT)

$$\mathcal{L}_{ ext{ORT}} = \ell_{ ext{MAE}} \left(ilde{X}, X, \hat{M}
ight)$$

3. SAITS(Self – attention-based Imputation for Time Series)

Figure 3: The SAITS model architecture.

4. Simple Transformer 구조

5. Self-attention(Q,K,V) – Encoder 구조 파악

X: 입력 벡터 시퀀스, W: 가중치 행렬

$$Q=X\times W_Q$$

$$K=X\times W_K$$

$$V=X \times W_V$$
 Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^\top}{\sqrt{d_K}})V$

Self-attention

• 위의 3가지 요소사이들의 관계성을 추출하는 과정(어떤 Attention을 가지고 있는지 파악)

Multi-Head Attention

- Self attention을 여러 번 수행함
 - ◆ 단순 한번 셀프 어텐션을 진행하는 것보다 효율적임
- 방법은 셀프 어텐션 결과값을 concat 후에 그에 맞는 가중치 벡터를 곱한 형태로서 주어짐

5. Self-attention(Q,K,V) – Encoder 구조 파악

For-example

$$\bullet \quad X = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

•
$$X = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 $W_Q = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ $W_K = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ $W_V = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

Query Vector

$$X \times W_Q = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$X \times W_Q = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix} \qquad X \times W_K = \begin{bmatrix} 0 & 1 & 1 \\ 4 & 4 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$

Value Vector

$$X \times W_V = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 0 \\ 2 & 6 & 3 \end{bmatrix}$$

Self-attention example

$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 4 & 2 \\ 1 & 4 & 3 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 \end{bmatrix}, \text{ softmax}(\begin{bmatrix} \frac{2}{\sqrt{3}}, \frac{4}{\sqrt{3}}, \frac{4}{\sqrt{3}} \end{bmatrix}) = \begin{bmatrix} 0.13613, 0.43194, 0.43194 \end{bmatrix}$$

self_attention(first query) =
$$\begin{bmatrix} 0.13613 & 0.43194 & 0.43194 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 0 \\ 2 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 1.8639 & 6.3194 & 1.7042 \end{bmatrix}$$

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_{\mathbf{K}}}})\mathbf{V}$$

6. Diagonally-masked self-attention

Self-attention과의 차이점

Diagonally-Masked Self Attention(DMSA)

- 대각 성분은 Time-series에서 추정의 왜곡을 불러일으킴
 - ◆ Diagonally masking 진행을 통해 해결

장점

• Temporal dependency와 feature간의 correlation을 학습할 수 있음

7. Positional Encoding and Feed-Forward Network

$$\operatorname{PosEnc}(pos, 2i) = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{\operatorname{model}}}}}\right), \quad \operatorname{PosEnc}(pos, 2i+1) = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{\operatorname{model}}}}}\right)$$

where pos is the time-step position, i is the dimension

- Transformer 구조는 기존의 RNN 모델과 다르게 병렬 처리 진행
 - ◆ 데이터의 입력 순서를 잃어버림
- 이를 해결한 방법이 Positional encoding임
 - ◆ 기존의 Naïve한 방법들은 한계가 명확함(Memory loss)

- 멀티 헤드 어텐션 이후의 진행 과정
- 신경망의 한 종류로서 Input layer, hidden layer, output layer로 구성된 네트워크임

8. DMSA Block

- 총 2개의 블록 으로 구성되어 있음
- 2번째 DMSA 블록에서는 1번째 DMSA 블록에서 학습된 값을 가져와 사용함
- 각각의 블록을 거치면서 Missing value(\hat{X})는 \tilde{X}_1 , \tilde{X}_2 로 치환됨

9. The weighted combination block

- 그림을 보면 Attention Weights를 가져오는 것을 확인할 수 있음
- 해당 가중치 (η) 를 통하여 \tilde{X}_3 를 추정함

 \hat{X}_C : Imputed data

$$\hat{A} = \frac{1}{h} \sum_{i=1}^{h} A_{i}$$

$$\eta = \text{Sigmoid} \left(\text{Concat} \left(\hat{A}, \hat{M} \right) W_{\eta} + b_{\eta} \right)$$

$$\tilde{X}_{3} = (1 - \eta) \odot \tilde{X}_{1} + \eta \odot \tilde{X}_{2}$$

$$\hat{X}_{c} = \hat{M} \odot \hat{X} + \left(1 - \hat{M} \right) \odot \tilde{X}_{3}$$

10. Loss Function of Learning Objectives

$$\mathcal{L}_{\text{ORT}} = \frac{1}{3} \left(\ell_{\text{MAE}} \left(\tilde{X}_{1}, X, \hat{M} \right) + \ell_{\text{MAE}} \left(\tilde{X}_{2}, X, \hat{M} \right) + \ell_{\text{MAE}} \left(\tilde{X}_{3}, X, \hat{M} \right) \right)$$

$$\mathcal{L}_{\text{MIT}} = \ell_{\text{MAE}} \left(\hat{X}_{c}, X, I \right)$$

$$\mathcal{L} = \mathcal{L}_{\text{ORT}} + \lambda \, \mathcal{L}_{\text{MIT}}$$

- Two learning tasks들에 대하여 각각 loss를 계산함
- 최종 loss는 둘의 합으로 계산됨

4. Experiments

1. Datasets

Table 1: General information of four datasets used in this work.

	PhysioNet-2012	Air-Quality	Electricity	ETT
Number of total samples	11,988	1,461	1,400	5,803
Number of features	37	132	370	7
Sequence length	48	24	100	24
Original missing rate	80.0%	1.6%	0%	0%

- 서로 다른 도메인의 3가지 데이터셋 + 검증을 위한 데이터셋(ETT)
- PhysioNet-2012 : ICU에 입원한 환자의 48시간 상태 데이터
- Air-Quality: 베이징의 12개 모니터링 사이트에서 얻은 시간별 대기 오염물질 데이터
- Electricity: 15분마다 370명의 고객으로부터 수집된 전력 소비 데이터(결측치 X -> 인공 결측치 생성)
- ETT: 2년동안 15분마다 수집된 오일 온도와 6가지 유형의 외부 전력 부하 기능을 포함한 데이터(결측치 X-> 인공 결측치 생성)

4. Experiments

2. Baseline methods, Experimental setup

Baseline methods

- 2가지의 Naïve한 방법과 5가지의 SOTA 딥러닝 모델들과의 성능 비교를 진행함
 - Naïve : Median, Last
 - SOTA Deep Learning: GRUI-GAN, E^2GAN, M-RNN, GP-VAE, BRITS

Experimental setup

- Evaluation Metric : MAE, RMSE, MRE
- Batch size: 128
- Early stopping: 30 epoch(without decrease of MAE)
- Optimizer : Adam
- GPU: Nvidia Quadro RTX 5000 PyTorch

1. Imputation performance comparison

Method	PhysioNet-2012	Air-Quality	Electricity	ETT
Median	0.726 / 0.988 / 103.5%	0.763 / 1.175 / 107.4%	2.056 / 2.732 / 110.1%	1.145 / 1.847 / 139.1%
Last	0.862 / 1.207 / 123.0%	0.967 / 1.408 / 136.3%	1.006 / 1.533 / 53.9%	1.007 / 1.365 / 96.4%
GRUI-GAN	0.765 / 1.040 / 109.1%	0.788 / 1.179 / 111.0%	/	0.612 / 0.729 / 95.1%
E^2GAN	0.702 / 0.964 / 100.1%	0.750 / 1.126 / 105.6%	/	0.584 / 0.703 / 89.0%
M-RNN	0.533 / 0.776 / 76.0%	0.294 / 0.643 / 41.4%	1.244 / 1.867 / 66.6%	0.376 / 0.428 / 31.6%
GP-VAE	0.398 / 0.630 / 56.7%	0.268 / 0.614 / 37.7%	1.094 / 1.565 / 58.6%	0.274 / 0.307 / 15.5%
BRITS	0.256 / 0.767 / 36.5%	0.153 / 0.525 / 21.6%	0.847 / 1.322 / 45.3%	0.130 / 0.259 / 12.5%
Transformer	0.190 / 0.445 / 26.9%	0.158 / 0.521 / 22.3%	0.823 / 1.301 / 44.0%	0.114 / 0.173 / 10.9%
SAITS-base	0.192 / 0.439 / 27.3%	0.146 / 0.521 / 20.6%	0.822 / 1.221 / 44.0%	0.121 / 0.197 / 11.6%
SAITS	0.186 / 0.431 / 26.6%	0.137 / 0.518 / 19.3%	0.735 / 1.162 / 39.4%	0.092 / 0.139 / 8.8%

- MAE/RMSE/MRE 순서대로 평가지표를 나타냄
- Electricity의 GRUI-GAN, E²GAN은 훈련에 실패하여 결과 없음(Loss explosion)

2. Performance comparison between missing rates

Method	20%	30%	40%	50%
Median	2.053 / 2.726 / 109.9%	2.055 / 2.732 / 110.0%	2.058 / 2.734 / 110.2%	2.053 / 2.728 / 109.9%
Last	1.012 / 1.547 / 54.2%	1.018 / 1.559 / 54.5%	1.025 / 1.578 / 54.9%	1.032 / 1.595 / 55.2%
M-RNN	1.242 / 1.854 / 66.5%	1.258 / 1.876 / 67.3%	1.269 / 1.884 / 68.0%	1.283 / 1.902 / 68.7%
GP-VAE	1.124 / 1.502 / 60.2%	1.057 / 1.571 / 56.6%	1.090 / 1.578 / 58.4%	1.097 / 1.572 / 58.8%
BRITS	0.928 / 1.395 / 49.7%	0.943 / 1.435 / 50.4%	0.996 / 1.504 / 53.4%	1.037 / 1.538 / 55.5%
Transformer	0.843 / 1.318 / 45.1%	0.846 / 1.321 / 45.3%	0.876 / 1.387 / 46.9%	0.895 / 1.410 / 47.9%
SAITS-base	0.838 / 1.264 / 44.9%	0.845 / 1.247 / 45.2%	0.873 / 1.325 / 46.7 %	0.939 / 1.537 / 50.3%
SAITS	0.763 / 1.187 / 40.8%	0.790 / 1.223 / 42.3%	0.869 / 1.314 / 46.7%	0.876 / 1.377 / 46.9%
Method	60%	70%	80%	90%
Method Median	60% 2.057 / 2.734 / 110.2%	70% 2.050 / 2.726 / 109.8%	80% 2.059 / 2.734 / 110.2%	90% 2.056 / 2.723 / 110.1%
				1
Median	2.057 / 2.734 / 110.2%	2.050 / 2.726 / 109.8%	2.059 / 2.734 / 110.2%	2.056 / 2.723 / 110.1%
Median Last	2.057 / 2.734 / 110.2% 1.040 / 1.615 / 55.7%	2.050 / 2.726 / 109.8% 1.049 / 1.640 / 56.2%	2.059 / 2.734 / 110.2% 1.059 / 1.663 / 56.7%	2.056 / 2.723 / 110.1% 1.070 / 1.690 / 57.3%
Median Last M-RNN	2.057 / 2.734 / 110.2% 1.040 / 1.615 / 55.7% 1.298 / 1.912 / 69.4%	2.050 / 2.726 / 109.8% 1.049 / 1.640 / 56.2% 1.305 / 1.928 / 69.9%	2.059 / 2.734 / 110.2% 1.059 / 1.663 / 56.7% 1.318 / 1.951 / 70.5%	2.056 / 2.723 / 110.1% 1.070 / 1.690 / 57.3% 1.331 / 1.961 / 71.3%
Median Last M-RNN GP-VAE	2.057 / 2.734 / 110.2% 1.040 / 1.615 / 55.7% 1.298 / 1.912 / 69.4% 1.101 / 1.616 / 59.0%	2.050 / 2.726 / 109.8% 1.049 / 1.640 / 56.2% 1.305 / 1.928 / 69.9% 1.037 / 1.598 / 55.6%	2.059 / 2.734 / 110.2% 1.059 / 1.663 / 56.7% 1.318 / 1.951 / 70.5% 1.062 / 1.621 / 56.8%	2.056 / 2.723 / 110.1% 1.070 / 1.690 / 57.3% 1.331 / 1.961 / 71.3% 1.004 / 1.622 / 53.7%
Median Last M-RNN GP-VAE BRITS	2.057 / 2.734 / 110.2% 1.040 / 1.615 / 55.7% 1.298 / 1.912 / 69.4% 1.101 / 1.616 / 59.0% 1.101 / 1.602 / 59.0%	2.050 / 2.726 / 109.8% 1.049 / 1.640 / 56.2% 1.305 / 1.928 / 69.9% 1.037 / 1.598 / 55.6% 1.090 / 1.617 / 58.4%	2.059 / 2.734 / 110.2% 1.059 / 1.663 / 56.7% 1.318 / 1.951 / 70.5% 1.062 / 1.621 / 56.8% 1.138 / 1.665 / 61.0%	2.056 / 2.723 / 110.1% 1.070 / 1.690 / 57.3% 1.331 / 1.961 / 71.3% 1.004 / 1.622 / 53.7% 1.163 / 1.702 / 62.3%
Median Last M-RNN GP-VAE BRITS Transformer	2.057 / 2.734 / 110.2% 1.040 / 1.615 / 55.7% 1.298 / 1.912 / 69.4% 1.101 / 1.616 / 59.0% 1.101 / 1.602 / 59.0% 0.891 / 1.404 / 47.7 %	2.050 / 2.726 / 109.8% 1.049 / 1.640 / 56.2% 1.305 / 1.928 / 69.9% 1.037 / 1.598 / 55.6% 1.090 / 1.617 / 58.4% 0.920 / 1.437 / 49.3%	2.059 / 2.734 / 110.2% 1.059 / 1.663 / 56.7% 1.318 / 1.951 / 70.5% 1.062 / 1.621 / 56.8% 1.138 / 1.665 / 61.0% 0.924 / 1.472 / 49.5%	2.056 / 2.723 / 110.1% 1.070 / 1.690 / 57.3% 1.331 / 1.961 / 71.3% 1.004 / 1.622 / 53.7% 1.163 / 1.702 / 62.3% 0.934 / 1.491 / 49.8 %

• 결측치가 없는 Electricity의 인위적인 결측치 비율을 조정하며 성능 비교를 진행함(20% ~ 90%)

3. Downstream classification task

Method	ROC-AUC	PR-AUC	F1-score
Median	$83.4\% \pm 0.4\%$	$46.0\% \pm 0.6\%$	38.5% ± 3.1%
Last	$82.8\% \pm 0.3\%$	$46.9\% \pm 0.4\%$	$ $ 39.5% \pm 2.4%
GRUI-GAN	$83.0\% \pm 0.2\%$	$45.1\% \pm 0.7\%$	$ $ 38.8% \pm 2.0%
E ² GAN	$83.0\% \pm 0.2\%$	$45.5\% \pm 0.5\%$	$ $ 35.6% \pm 2.0%
M-RNN	$82.2\% \pm 0.2\%$	$45.4\% \pm 0.6\%$	38.8% ± 3.5%
GP-VAE	$83.4\% \pm 0.2\%$	$48.1\% \pm 0.7\%$	40.9% ± 3.3%
BRITS	$83.5\% \pm 0.1\%$	$49.1\% \pm 0.4\%$	$ $ 41.3% \pm 1.8%
Transformer	$84.3\% \pm 0.5\%$	$49.2\% \pm 1.4\%$	41.2% ± 1.9%
SAITS-base	$84.6\% \pm 0.2\%$	$49.8\% \pm 0.4\%$	41.5% ± 2.0%
SAITS	84.8% \pm 0.2%	$51.0\% \pm 0.5\%$	42.7% \pm 2.8%

- 결측치 처리를 각 모델로 진행 후 -> 환자의 사망여부를 레이블로 하여 예측을 진행함
- 데이터 간의 Imbalance가 존재하므로 AUROC, AUPRC, F1-SCORE등의 지표로 성능 비교를 진행함

4. Comparing with NRTSI

Figure 5: The visualized comparison with NRTSI on datasets Air and Gas. The percentage numbers above the bars indicate, compared with NRTSI, the amount of imputation MSE reduced by SAITS.

- Self-attention base 모델인 NRTSI 대비 높은 성능을 보임
- 전체적인 모델의 코드는 공개가 되어 있지 않고, 전처리만 공개되어 이를 이용하여 구현 후 비교 진행

6. Ablation studies

Q: 2개 이상의 DMSA 블록을 적용한다면 성능이 증가하지 않을까?

Model	PhysioNet-2012	Air-Quality	Electricity	ETT
SAITS-3residual	0.189 / 0.620 / 27.0%	0.158 / 0.509 / 22.2%	0.740 / 1.020 / 39.6%	0.103 / 0.145 / 9.6%
SAITS-3cascade	0.185 / 0.418 / 26.4%	0.146 / 0.512 / 20.5%	0.800 / 1.147 / 42.8%	0.096 / 0.141 / 8.8%
SAITS	0.186 / 0.431 / 26.6%	0.137 / 0.518 / 19.3 %	0.735 / 1.162 / 39.4%	0.092 / 0.139 / 8.8%

- 전체적인 성능에서 기존의 SAITS가 더 뛰어남
- 또한 블록의 증가에 따른 파라미터수 증가와 Compuatational resource의 낭비가 심함다는 결론을 내림

7. Conclusions

Conclusion

- Joint-optimization training approach을 통하여 SOTA 보다 높은 성능을 가지는 모델을 생성함
- 두개의 DMSA 블록의 가중 조합으로 구성된 SAITS라는 모델을 생성하였고, 해당 모델은 RNN을 사용하지 않더라도 시간 종속성 및 변수 간의 상관관계를 학습할 수 있었음
- 3가지 Real world dataset을 통해 검증을 진행함
- 또한 기존의 BRITS 대비 SAITS는 MAE를 12~38% 가량 줄일 수 있었고, 2~2.6배 빠른 훈련 속도를 달성함
- 특히 기존의 Transformer 백본 모델인 NRTSI등 보다 확실히 높은 정확도를 보였음

Future work

- 현재 MCAR로 Missing pattern을 가정하고 진행하는데, 향후 만약 missing value가 패턴을 가지는 경우 이를 적용하여 고려해볼 예정이다.(MAR 등)
- 다양한 도메인 영역에서 해당 모델을 적용하고 검증해 볼 예정

Thank you