特性:

- ◎容量: 32MB/64MB/128MB/256MB/512MB/1GByte
- ◎兼容规范版本 1.01
- ◎卡上错误校正
- ◎支持 CPRM
- ◎两个可选的通信协议: SD 模式和 SPI 模式
- ◎可变时钟频率 0-25MHz
- ◎通信电压范围: 2.0-3.6V
- 工作电压范围:2.0-3.6V
- ◎低电压消耗: 自动断电及自动睡醒, 智能电源管理
- ◎无需额外编程电压
- ◎卡片带电插拔保护
- ◎正向兼容 MMC 卡
- ◎高速串行接口带随即存取
- ---支持双通道闪存交叉存取
- ---快写技术:一个低成本的方案,能够超高速闪存访问和高可靠数据存储
- ---最大读写速率: 10Mbyte/s
- ◎最大 10 个堆叠的卡(20MHz,Vcc=2.7-3.6V)
- ◎数据寿命: 10 万次编程/擦除
- ◎CE 和 FCC 认证
- ◎PIP 封装技术
- ◎尺寸: 24mm 宽×32mm 长×1.44mm 厚

说明:

本 SD 卡高度集成闪存,具备串行和随机存取能力。可以通过专用优化速度的串行接口访问,数据传输可靠。接口允许几个卡垛叠,通过他们的外部连接。接口完全符合最新的消费者标准,叫做 SD 卡系统标准,由 SD 卡系统规范定义。

SD 卡系统是一个新的大容量存储系统,基于半导体技术的变革。

它的出现,提供了一个便宜的、结实的卡片式的存储媒介,为了消费多媒体应用。

- SD卡可以设计出便宜的播放器和驱动器而没有可移动的部分。
- 一个低耗电和广供电电压的可以满足移动电话、电池应用比如音乐播放器、个人管理器、掌上电脑、电子书、电子百科全书、电子词典等等。

使用非常有效的数据压缩比如 MPEG, SD 卡可以提供足够的容量来应付多媒体数据。

框图:

SD 卡上所有单元由内部时钟发生器提供时钟。接口驱动单元同步外部时钟的 DAT 和 CMD 信号到内部所用时钟。

本卡由6线SD卡接口控制,包括:CMD,CLK,DAT0-DAT3。

在多 SD 卡垛叠中为了标识 SD 卡,一个卡标识寄存器(CID)和一个相应地址寄存器(RCA) 预先准备好。

一个附加的寄存器包括不同类型操作参数。

这个寄存器叫做 CSD。

使用 SD 卡线访问存储器还是寄存器的通信由 SD 卡标准定义。

卡有自己的电源开通检测单元。

无需附加的主复位信号来在电源开启后安装卡。

它防短路,在带电插入或移出卡时。

无需外部编程电压。

编程电压卡内生成。

SD 卡支持第二接口工作模式 SPI。

如果接到复位命令(CMD0)时, CS信号有效(低电平), SPI模式启用。

(译者按:以下部分为本人翻译)

接口

该 SD 卡的接口可以支持两种操作模式:

- 。SD卡模式
- 。SPI 模式

主机系统可以选择以上其中任一模式,SD卡模式允许4线的高速数据传输。SPI模式允许简单通用的SPI通道接口,这种模式相对于SD模式的不足之处是丧失了速度。

SD卡模式针脚定义

针脚	名称	类型	描述
1	CD DAT3	I/O/PP	卡监测数据位3
2	CMD	PP	命令/回复
3	Vss	S	地
4	Vcc	S	供电电压
5	CLK	I	时钟
6	Css2	S	地
7	DAT0	I/O/PP	数据位 0
8	DAT1	I/O/PP	数据位1
9	DAT2	I/O/PP	数据位 2

1: S: 电源供电, I: 输入 O: 输出 I/O: 双向 PP: I/O 使用推挽驱动

SD卡的总线概念

SD 总线允许强大的 1 线到 4 线数据信号设置。当默认的上电后, SD 卡使用 DATO。 初始化之后, 主机可以改变线宽(译者按:即改为 2 根线, 3 根线。。。)。混和的 SD 卡连接方式也适合于主机。在混和连接中 Vcc, Vss 和 CLK 的信号连接可以通用。但是, 命令, 回复, 和数据(DATO~3)这几根线,各个 SD 卡必须从主机分开。

这个特性使得硬件和系统上交替使用。SD 总线上通信的命令和数据比特流从一个起始位开始,以停止位中止。

CLK:每个时钟周期传输一个命令或数据位。频率可在 0~25MHz 之间变化。SD 卡的总线管理器可以不受任何限制的自由产生 0~25MHz 的频率。

CMD: 命令从该 CMD 线上串行传输。一个命令是一次主机到从卡操作的开始。命令可以以单机寻址(寻址命令)或呼叫所有卡(广播命令)方式发送。

回复从该 CMD 线上串行传输。一个命令是对之前命令的回答。回复可以来自单机或 所有卡。

DAT0~3:数据可以从卡传向主机或副versa。数据通过数据线传输。

SD卡总线拓扑

SPI模式针脚定义

~== \text{\continuous}			
针脚	名称	类型	描述
1	CS	I	片选(负有效)
2	DI	I	数据输入
3	Vss	S	地
4	Vcc	S	供电电压
5	CLK	I	时钟
6	Vss2	S	地
7	DO	0	数据输出
8	RSV		
9	RSV		

1: S: 电源供电, I: 输入 O: 输出 I/O: 双向 PP: I/O 使用推挽驱动注意: SPI 模式时,这些信号需要在主机端用 10~100K 欧的电阻上拉。

SPI 总线概念

SPI 总线允许通过 2 通道(数据入和出)传输比特数据。SPI 兼容模式使得 MMC 主机

系统通过很小的改动就可以使用SD卡。SPI模式使用字节传输。

所有的数据被融合到一些字节中并aligned to the CS signal(可能是:同过CS信号来校正)。SPI 模式的优点就是简化主机的设计。特别的,MMC主机需要小的改动。SPI模式相对于SD模式的不足之处是丧失了速度性能。

SD卡的电特性

SD card Connection diagram

SD卡的连接电路图

直流特性

完全最大值评估

最大值评估指即使在瞬间也不能超出限制电压。当你在归定的最大值评估范围内使用该产品,不会出现永久性损坏。但是这并不能保证正常的逻辑操作。

Parameter	Symbol	Min.	Max.	Unit	Note	
Supply Voltage	Vcc	-0.3	4.6	V		
ESD (contact Pads)		-4	4	KV		
Storage Temperature	T_{STG}	-40	85	°C		
Storage Humidity	40°C, 93%					

Bus Signal Li ne Load

Parameter	Symbol	Min.	Max.	Unit	Note
Pull-up resistance for CMD	R _{CMD}	10	100	KO	Prevent bus floating
Pull-up resistance for DAT	R _{DAT}	10	100	КО	Prevent bus floating
Bus Signal Line Capacitance	C_L	-	250	pF	F _{pp} <5MHz,21cards
Bus Signal Line Capacitance	C_L	-	1000	pF	F _{pp} <20MHz, 7cards
Signal Card Capacitance	C _{CARD}	-	10	pF	
Maximum Signal line Inductances		-	16	nН	F _{pp} <20MHz
Pull-up resistance inside card(Pin1)	R _{DAT3}	10	90	KO	May be used for card
					detection

Operating Rating

Parameter	Symbol	Min.	Max.	Unit	Note
Operation Temperature	Totg	-25	85	°C	
Supply Voltage	V _{cc}	2.0	3.6	V	
Supply Voltage Specified in OCR Register		2.7	3.6	V	
Input Low Voltage	V _{IL}	Vss-0.3	0.25x V _{CC}	V	
Input High Voltage	V_{IH}	$0.625 x V_{CC}$	V _{CC} +0.3	V	
Output Low Voltage	V _{OL}		0.125x V _{CC}	V	I _{OL} =100uA@VDD Min
Output High Voltage	V _{OH}	$0.75 x V_{CC}$		V	I _{OH} = -100uA@VDD Min
Input Leakage Current		-10	10	uA	
Output Leakage Current		-10	10	uA	
Standby current			150	uA	At 0Hz, 3.6V Standby state
High Speed Supply current			80	mA	At 25Hz, 3.6V
Operation Humidity	25℃, 95%	6			

AC Characteristic

Bus Timing

Parameter	Symbol	Min.	Max.	Unit	Note
Clock Frequency Data Transfer Mode	F_{PP}	0	25	MHz	C _L ≤100pF(7Cards)
Clock Frequency identification Mode	F _{OD}	0	400	KHz	C _L ≤250pF(21Cards)
Clock Low time	t_{WL}	10		ns	C _L ≤100pF(7Cards)
Clock High time	t_{WH}	10		ns	C _L <100pF(7Cards)
Clock Rise time	T_{TLH}		10	ns	C _L <100pF(7Cards)
Clock Fall time	T_{THL}		10	ns	C _L <100pF(7Cards)
Clock Low time	t_{WL}	50		ns	C _L <250pF(21Cards)
Clock High time	t_{WH}	50		ns	C _L <250pF(21Cards)
Clock Rise time	T _{TLH}		50	ns	C _L <250pF(21Cards)
Clock Fall time	T_{THL}		50	ns	C _L < 250pF(21Cards)
Input Set-up Time	T _{ISU}	5		ns	CMD,DAT Reference to CLK
Input Hold Time	T_{IH}	5		ns	CMD,DAT Reference to CLK
Output Set-up Time	T _{OSU}	5		ns	CMD,DAT Reference to CLK
Output Set-up Time	T _{OH}	5		ns	CMD,DAT Reference to CLK

Transfer Rate

Testing Condition

1. Main Board: Abit BG7

2. CPU: Intel Pentium 4 2GHz3. DDR Memory: 256MByte

4. OS: XP with SP1

5. Software: HD Bench Ver3.4

6. Testing Device: SD card with USB 2.0 Card Reader(SM320T)

Capacity	Sequential Read	Sequential Write	Random Read	Random Write	Unit
32MB	6236	1562	6360	710	KB/s
64MB	6617	3386	6551	1269	KB/s
128MB	6858	6009	6824	1538	KB/s
256MB	8912	7843	8854	1592	KB/s
512MB	9225	8139	9098	1506	KB/s
1GB	9229	8238	9098	1848	KB/s

