Robotics & Automation Lecture 03 **Rotation Operator** John T. Wen **September 12, 2011**

Geometric Objects and Operations

Point: O

Vector: \vec{p}

Frames: $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$, $\vec{e}_i \cdot \vec{e}_j = \delta_{ij}$, $\vec{e}_1 \times \vec{e}_2 = \vec{e}_3$

Bound Vector: (O, \vec{p}) vector attached to a point

Linear transforms: \mathcal{L} .

Representation of vector in a frame: $v = \mathcal{E}^* \vec{v}$, $\vec{v} = \mathcal{E} v$

Representation of linear transform in a frame: $L = \mathcal{E}^* \mathcal{L} \mathcal{E}, \ \mathcal{L} = \mathcal{E} \mathcal{L} \mathcal{E}^*$

Examples: $I, \vec{k} \times, rot(\vec{k}, \theta)$)

Rotation Operator

Planar: SO(2) (special orthogonal group of dimension 2), Spatial: SO(3) (special orthogonal group of dimension 3, Orthogonal $\mathbb{R}^{3\times 3}m$ matrix, with determinant 1)

 R_{ob} = representation of \mathcal{E}_b in \mathcal{E}_0

= representation of rotation operator in \mathcal{E}_0

= transformation of representations in \mathcal{E}_0 to \mathcal{E}_b

Properties: $R_{ob}^{T}R_{ob} = I$, $R_{oo} = I$, $R_{oc} = R_{ob}R_{bc}$, $R_{ob}^{-1} = R_{ob}^{T} = R_{bo}$

Transformation of representations in different frames (backward rotation):

$$v_0 = R_{0b}v_b$$

$$L_0 = R_{0b}L_bR_{b0}.$$

Representation of Rotation Operator

Consider a general rotation $\mathcal R$ about a unit vector $\vec k$ over an angle θ .

Consider $\mathcal{R}\vec{v}$. Decompose $\mathcal{R}\vec{v}$ into a component along \vec{k} and a component perpendicular to \vec{k} :

$$\mathcal{R}\vec{v} = (\vec{k}\cdot\vec{v})\vec{k} + (\mathcal{R}\vec{v})_{\perp}.$$

Consider the disk formed by the tip of \vec{v} rotating about \vec{k} . Then $(\mathcal{R}\vec{v})_{\perp}$ may be decomposed as

$$(\mathcal{R}\vec{v})_{\perp} = \sin\theta \vec{k} \times \vec{v} - \cos\theta \vec{k} \times (\vec{k} \times \vec{v}).$$

Continuing...

Let *r* be the radius of the disk. From simple trigonometry,

$$r^{2} = \|\vec{v}\|^{2} - (\vec{k} \cdot \vec{v})^{2} = v^{T}v - v^{T}kk^{T}v = v^{T}v - v^{T}(\hat{k}\hat{k} + I)v = -v^{T}\hat{k}\hat{k}v = (\hat{k}v)^{T}(\hat{k}v) = \|\hat{k}v\|^{2}.$$

Now decompose $(R\vec{v})_{\perp}$ to components along $\vec{k} \times \vec{v}$ and $\vec{k} \times (\vec{k} \times v)$:

$$(R\vec{v})_{\perp} = r\sin\theta\vec{k} \times \vec{v} / \left\| \vec{k} \times \vec{v} \right\| - r\cos\theta\vec{k} \times (\vec{k} \times \vec{v}) / \left\| \vec{k} \times (\vec{k} \times \vec{v}) \right\|.$$

Note that
$$\|\vec{k} \times (\vec{k} \times \vec{v})\| = \|\vec{k} \times \vec{v}\|$$
.

Euler-Rodrigues Formula

Hence

$$\mathcal{R}\vec{v} = (\vec{k}\vec{k} \cdot + \sin\theta\vec{k} \times - \cos\theta\vec{k} \times (\vec{k} \times))\vec{v}.$$

Representing \vec{v} and \vec{k} with respect to a frame, we have \mathcal{R} as a 3×3 matrix:

$$R = I_3 + \sin \theta \hat{k} + (1 - \cos \theta) \hat{k}^2.$$

This is called the Euler-Rodrigues Formula. We'll denote R as the so(3) matrix $rot(k,\theta)$. Verify that if $\mathcal{E}_b = \mathcal{R}\mathcal{E}_0$, then \mathcal{R} represented in both \mathcal{E}_0 and \mathcal{E}_b is $rot(k,\theta)$ (and \vec{k} in both frames is k).

In spacecraft literature, you'll see

$$R^T = I_3 - \sin \theta \hat{k} + (1 - \cos \theta) \hat{k}^2.$$

Consecutive Rotations

Consecutive rotations about the same axes is additive:

$$\operatorname{rot}(\vec{k}, \theta_2)\operatorname{rot}(\vec{k}, \theta_1) = \operatorname{rot}(\vec{k}, \theta_1 + \theta_2).$$

Rotations about body axes, e.g., rotate about \vec{x} for θ_1 , then body \vec{y} for θ_2 , then new body \vec{z} for θ_3 :

$$\mathcal{E}_{1} = \operatorname{rot}(\vec{x}_{0}, \theta_{1}) \mathcal{E}_{0}, \ \mathcal{E}_{2} = \operatorname{rot}(\vec{y}_{1}, \theta_{2}) \mathcal{E}_{1}, \ \mathcal{E}_{b} = \operatorname{rot}(\vec{z}_{2}, \theta_{2}) \mathcal{E}_{2}$$

$$\mathcal{E}_{b} = \operatorname{rot}(\vec{z}_{2}, \theta_{3}) \operatorname{rot}(\vec{y}_{1}, \theta_{2}) \operatorname{rot}(\vec{x}_{0}, \theta_{1}) \mathcal{E}_{0}$$

$$R_{0b} = \mathcal{E}_{0}^{*} \mathcal{E}_{b} = \operatorname{rot}(x, \theta_{1}) \operatorname{rot}(y, \theta_{2}) \operatorname{rot}(z, \theta_{3})$$

$$x = [1, 0, 0]^{T}, \ y = [0, 1, 0]^{T}, \ z = [0, 0, 1]^{T}.$$

Rotations about fix axes:

$$\mathcal{E}_b = \operatorname{rot}(\vec{z}_0, \theta_3) \operatorname{rot}(\vec{y}_0, \theta_2) \operatorname{rot}(\vec{x}_0, \theta_1) \mathcal{E}_0$$
$$R_{0b} = \mathcal{E}_0^* \mathcal{E}_b = \operatorname{rot}(z, \theta_3) \operatorname{rot}(y, \theta_2) \operatorname{rot}(x, \theta_1)$$