KEY gtID#____

ChBE 4300A – Kinetics and Reactor Design Exam #1 – February 13th, 2014 – 2 hours – Closed Book

School of Chemical & Biomolecular Engineering
Georgia Institute of Technology
Prof. Michael A. Filler
Spring 2014

Problem #1	/10
Problem #2	/30
Problem #3	/30
Problem #4	/30
Total	/100

I have read the Georgia Institute of Technology Academic Honor code. I understand and accept my responsibility as a member of the Georgia Tech Community to uphold the Academic Honor Code at all times.

Signature: Date:	Signature:	Date:	
------------------	------------	-------	--

Remember:

- · No wireless devices are permitted at any time.
- Show all of your work.
- · Explain your reasoning and state all assumptions.
- · Additional worksheets are available if necessary.

Useful Constants:

Avagadro's constant	L	6.022 x 10 ²³ molecules/mol
Universal gas constant	R	1.987 cal/mol-K = 8.314 J/mol-K
Boltzmann's constant	k_B	$1.381 \times 10^{-23} \mathrm{J/K}$

Problem 1. (10 points)

Name: KEY

Reaction rate constants are well known to follow the Arrhenius equation:

$$k = k_o e^{-E_a/k_B T}$$

For each of the following sets of elementary reactions, circle the reaction with the largest activation energy (E_a). Explain why for each.

(a) OH +
$$H_2 \rightarrow H_2O + H$$
) or OH + $H \rightarrow H_2O$

1 requires band breaking

(**b**)
$$O_2 \to 2O$$
 or $HOOH \to 2OH$

1 0=0 darble band is stronger

a number of equally correct answer were also accepted

For each of the following sets of elementary reactions, circle the reaction with the largest pre-exponential factor (k_o) . Explain why for each.

(c)
$$C_2H_2 + H_2 \rightarrow C_2H_4$$
) or $C_2H_4 + H_2 \rightarrow C_2H_6$

Less steric hyderauce

(d)
$$H + Cl_2 \rightarrow HCl + Cl$$
 or $HCl + Cl \rightarrow H + Cl_2$

1- orientation of H collision w/ C/z less constrained due to symmetry H-... (1-C/ = C/-C/-...H

Problem 2. (30 points)

Name:

Consider the overall reaction

$$A \rightarrow B + C$$

which occurs via the following sequence of elementary steps:

$$A \xrightarrow{k_1} I \xrightarrow{k_2} B$$

$$C$$

(a) If the reactor only contains A with a concentration of C_{Ao} at t=0, what is the exact concentration of the intermediate I as a function of time?

Write system of ODEs:

$$\frac{dc_A}{dt} = -(k, +k_3)C_A \qquad \frac{dC_B}{dt} = k_2C_T$$

$$\frac{dC_T}{dt} = k_1C_A - k_2C_T \qquad \frac{dC_C}{dt} = k_3C_A$$
Integrale dC_A/dt where dC_A/dt where dC_A/dt is C_A/dt and C_A/dt into dC_T/dt :

Substitute into dCILAL

3

$$dC_{I} + k_{Z}C_{I} = k, c_{N}e^{-(k,+k_{3})t}$$
Use an integrating factor: $I = e^{k_{Z}t}$

$$C_{I}(t) = e^{-k_{Z}t}\int_{0}^{t} e^{k_{I}t}k_{I}, c_{N}e^{-(k,+k_{3})t}dt + C$$

This page was intentionally left blank to provide you additional space for calculations.

$$C_{I}(t) = e^{-k_{1}t} \left[\frac{k_{1}c_{M0}}{k_{2}-k_{1}-k_{3}} e^{(k_{2}-k_{1}-k_{3})t} + C \right]$$

$$C = \frac{-k_1 c_{A0}}{k_2 - k_1 - k_3}$$

3

3
$$C_{I}(E) = \frac{k_{1} C_{A0}}{k_{2}-k_{1}-k_{3}} \left[e^{-(k_{1}+k_{3})t} - e^{-k_{2}t} \right]$$

Problem 2. – Continued

Name: KEY

(b) What is the concentration of I as a function of time if $k_2 >> k_1$, k_3 ? Explain the key differences between the exact and approximate solutions.

$$C_{\pm}(t) = \frac{k_1 C_{AO}}{k_2} e^{-(k_1 + k_3)t}$$

Method II: apply pseudo steady State opproximation

$$\frac{dC_{I}}{dt} \approx 0 = k_{i}C_{A} - k_{z}C_{I} \implies C_{I} = \frac{k_{i}C_{A}}{k_{z}}$$

substitule *

$$C_{I}(t) = \frac{k_1 C_{A0}}{k_2} e^{-(k_1 + k_3)t}$$

Similar to bechure:

- solutions similar at long times, but different at short HIMEC

This page was intentionally left blank to provide you additional space for calculations.

Problem 3. (30 points)

Name: KEY

Consider the following reaction:

$$H_2 + I_2 \rightarrow 2HI$$

Two similar mechanisms have been proposed for this reaction. In both mechanisms, I and H_2I are intermediates.

<u>Mechanism 1</u>		
$I_2 \rightleftharpoons 2I$	k ₁ , k ₋₁	(fast)
$I + H_2 \rightarrow H_2I$	$\mathbf{k_2}$	(slow)
$H_2I + I \rightarrow 2HI$	k_3	(slow)
Mechanism 1'		
$I_2 \rightleftharpoons 2I$	k ₁ , k ₋₁	(slow)
$I + H_2 \rightarrow H_2I$	k_2	(fast)
$H_2I + I \rightarrow 2HI$	k ₂	(fast)

(a) Write the complete set of ODEs describing these mechanisms.

System of ODEs is Ru same for both weehenisms! $\frac{dC_{T_z}}{dt} = -k_1C_{T_z} + k_{-1}C_{T_z}$ $\frac{dC_{H_z}}{dt} = -k_2C_{T_z}C_{H_z}$ $\frac{dC_{H_z}}{dt} = -k_2C_{T_z}C_{H_z}$ $\frac{dC_{H_z}}{dt} = 2k_3C_{H_z}C_{T_z}$ $\frac{dC_{T_z}}{dt} = 2k_3C_{H_z}C_{T_z}$ $\frac{dC_{T_z}}{dt} = 2k_3C_{T_z}C_{T_z}$ $\frac{dC_{T_z}}{dt} = k_2C_{T_z}C_{T_z}$ $\frac{dC_{T_z}}{dt} = k_2C_{T_z}C_{T_z}$ $\frac{dC_{T_z}}{dt} = k_2C_{T_z}C_{T_z}$

3

3

3

Name: KEY

(b) Considering the rates indicated for each elementary reaction (i.e., slow or fast), determine the most reduced (i.e., simplified) system of ODEs for each mechanism.

DO NOT ATTEMPT TO SOLVE THESE SYSTEMS

Mechanism 1: apply equilibrium approximation
$$Zk_{i}C_{IZ}-k_{-i}C_{I}^{2}=0$$

$$ZK_{i}C_{IZ}-C_{I}^{2}=0 \text{ where } K_{i}=\frac{k_{i}}{k_{-i}}$$

take derivative w.r.E. hue:

$$\frac{dC_{I}}{dt} = \frac{K_{I}}{C_{I}} \frac{dC_{IZ}}{dt} = \frac{K_{I}}{C_{I}} \left(-k_{I}C_{IZ} + k_{I}C_{I}^{2} \right)$$

decoupled dCI/dt from equations for Hz and Hz I

-> all offer ODEs remain the same.

Name:	KEY

This page was intentionally left blank to provide you additional space for calculations.

Mechanism I' apply preudo sheady state approximation
$$\Rightarrow$$
 I and $H_z T$ will both be short-lived

3 $\frac{dc_T}{dt} = Zk_1(I_z - Zk_{-1}C_z^2 - k_zC_zC_{H_z} - k_3(H_z T)(I_z \approx 0))$

3 $\frac{dC_{H_z T}}{dt} = k_z C_T C_{H_z} - k_3 C_{H_z T} C_T \approx 0$

Convert to algebraic equations

-> all other ODE's remain the same.

Problem 4. (30 points)

Name: KEY

The thermal cracking of ethane

$$C_2H_6 \rightleftharpoons C_2H_4 + H_2$$

is typically performed in a <u>steam diluent</u>. Use the thermodynamic data provided to answer the following questions.

Component	Temperature	ΔG (kcal/mol)
	(K)	
C_2H_6	900	21.00
	1000	26.13
C_2H_4	900	26.35
	1000	28.25
H_2	900	0.0
	1000	0.0
H_2O	900	-47.36 -46.04
	1000	-46.04

(a) Is the reaction endothermic or exothermic?

$$\frac{\partial l_{N} K}{\partial T} = \frac{H}{PT^{2}} \implies \frac{\partial \left(\Delta^{6}/T\right)}{\partial T} = -\frac{H}{T^{2}}$$

3
$$\Delta G_{rxn}(1000K) = 76.35 - 21.00 = 5.35 | kcal/mol$$

3 $\Delta G_{rxn}(1000K) = 78.25 - 26.13 = 2.12 | kcal/mol$

Problem 4. – Continued

Name: KEY

(b) What is the equilibrium mixture (in partial pressure) at 1000 K, 1 atm total pressure for a mixture that is initially 1 mole of ethane and 5 moles of steam.

4
$$K_a(1000K) = e^{-2120f(.987)(1000)} = 0.34$$

$$4 K_q = K_y K_q K_p = \frac{3C_2H_4 J_{+2}}{J_{C_2H_6}}$$

1

$$K_a = \frac{\chi^2}{(6+\chi\chi_{1-\chi})}P$$

$$4 \quad \chi = 0.75$$

Name: KEY

This page was intentionally left blank to provide you additional space for calculations.

$$PC_2H_6 = \frac{1-x}{6+x} = 0.036 \text{ atm}$$

$$PCzHy = \frac{X}{6+X} = 0.112 \text{ atm}$$

$$PH_2 = \frac{X}{6+X} = 0.11Z \text{ atm}$$

$$Ptzo = \frac{5}{G+x} = 0.740 \text{ atm}$$