Первообразный корень

- Повторение. Пусть $1 = d_1 < d_2 < \ldots < d_k = n$ все делители числа n. Докажите, что $\varphi(d_1) + \ldots + \varphi(d_k) = n$.
 - Обозначим через $\psi(t)$ количество остатков от деления на p, чей показатель равен t.
- [2] Пусть p простое число. $1 = d_1 < d_2 < \ldots < d_k = p-1$ все делители числа p-1. Докажите, что $\psi(d_1) + \ldots + \psi(d_k) = p-1$.
- $\boxed{3}$ Пусть показатель остатка a по модулю p равен d.
 - (a) Докажите, что $1, a, \dots, a^{d-1}$ это все корни многочлена $x^d 1$.
 - (b) Пусть показатель остатка b по модулю p также равен d. Докажите, что $b \equiv a^s \pmod p$.
 - (c) В условиях предыдущего пункта докажите, что HOД(d,s) = 1.
- [4] Выведите из предыдущей задачи, что $\psi(d) \leqslant \varphi(d)$ для любого делителя $d \mid (p-1)$.
- [5] Докажите, что $\psi(d) = \varphi(d)$ для любого делителя $d \mid (p-1)$. Из задачи 5 следует, что $\psi(p-1) = \varphi(p-1) > 0$. Значит, существует остаток g (и не один, а целых $\varphi(p-1)$ штук) такой, что показатель g равен p-1. Такой остаток называется первообразным корнем по модулю p.
- 6 Для каких простых p первообразный корень может быть квадратичным вычетом?
- [7] Докажите, что любой ненулевой остаток a от деления на p представим в виде $a \equiv g^t \pmod{p}$ для некоторой степени t.
- [8] Сколько решений имеет уравнение
 - (a) $x^5 \equiv 1 \pmod{101}$?
 - (b) $x^{70} \equiv 1 \pmod{101}$?
 - (c) $x^4 + x^3 + x^2 + x + 1 \equiv 0 \pmod{101}$?
- $\boxed{9}$ Найдите остаток $1^{10} + 2^{10} + \ldots + 100^{10}$ от деления на 101.
- Пусть p простое. Можно ли расставить по кругу числа $1, 2, \ldots, p-1$ так, чтобы для любых трех подряд идущих чисел a, b, c (именно в таком порядке) число $b^2 ac$ делилось бы на p?
- 11 Можно ли разбить числа от 1 до 2016 на группы по 7 так, чтобы сумма чисел в каждой семёрке делилась на 2017?