Mitschrieb Elementare Geometrie

Jens Ochsenmeier & Maximilian Franz & Nadine Schorpp

12. Januar 2018

Ubungen

1.1 2017-10-27 - Übungsblatt 1

Aufgabe (1). Zeigen Sie: (\mathbb{R}^2, d) mit $d(x, y) = |(x_1 - y_1) + (x_2 - y_2)|$ ist pseudometrischer Raum.

- Positivität. Zu zeigen: $\forall x \in \mathbb{R}^2 : d(x, x) = 0$. $d(x,x) = |(x_1 - x_1) + (x_2 - x_2)| = |0| = 0.$
- Symmetrie. Zu zeigen: $\forall x, y \in \mathbb{R}^2 : d(x, y) = d(y, x)$. $d(x,y) = |(x_1 - y_1) + (x_2 - y_2)| = |(y_1 - x_1) + (y_2 - x_2)| = d(y,x).$
- Dreiecksungleichung. Zu zeigen: $\forall x, y, z \in \mathbb{R}^2 : d(x, z) \leq d(x, y) + d(y, z)$. $d(x,y) + d(y,z) = |(x_1 - y_1) + (x_2 - y_2)| + |(y_1 - z_1) + (y_2 - z_2)| \ge$ $|(x_1-z_1)+(x_2-z_2)|=d(x,z).$

Aufgabe (2). Gegeben:

- $||x||_1 := \sum_{i=1}^n |x_i|$, $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$,
- $||x||_{\infty} := \max_{i=1,...,n} |x_i|$.

Wir zeigen, dass alle drei Normen sind. Dafür ist zu zeigen:

- 1. Positivität: $||x|| \ge 0 \forall x, x = 0 \iff ||x|| = 0$.
- 2. Sublinearität: $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$
- 3. Homogenität: $\forall x \in V \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| \cdot ||x||$.

Positivität ist klar für alle drei. Homogenität ist auch arg simpel.

Sublinearität:

1.

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i|$$
$$= ||x||_1 + ||y||_1$$

2.

$$\begin{aligned} ||x+y||_{2}^{2} &= \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle - \langle y, y \rangle \\ &\stackrel{\text{CSU}}{\leq} ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2} \\ &\Rightarrow ||x+y||_{2} \leq ||x||_{2} + ||y||_{2} \end{aligned}$$

3.

$$\begin{split} ||x+y||_{\infty} &= \max_{i=1,...,n} |x_i + y_i| \leq \max_{i=1,...,n} (|x_i| + |y_i|) \\ &\leq \max_{i=1,...,n} \max_{j=1,...,n} (|x_i| + |y_j|) = (\max_i |x_i|) + (\max_j |y_j|) \\ &= ||x||_{\infty} + ||y||_{\infty} \end{split}$$

Aufgabe (3). Sei (X, d) ein metrischer Raum, $r_1, r_2 \in \mathbb{R}_{>0}$.

- 1. Beweise:
 - 1. Falls $d(x,y) \ge r_1 + r_2$, dann sind $B_{r_1}(x)$, $B_{r_2}(y)$ disjunkt.

 Beweis: Angenommen, $\exists z \in B_{r_1}(x) \cap B_{r_2}(y)$.

 Dann ist $d(x,y) \le d(x,z) + d(z,y) < r_1 + r_2$
 - 2. Falls $d(x,y) \le r_1 r_2$, so ist $B_{r_2}(y) \subseteq B_{r_1}(x)$.

 Beweis: Angenommen, $\exists \ z \in B_{r_2}(y) \setminus B_{r_1}(x)$. Dann ist

$$d(x,z) \ge r_1 = (r_1 - r_2) + r_2$$

> $d(x,y) + d(z,y)$ 4

- 2. Finde je ein Gegenbeispiel für die Rückrichtung:
 - 1. Sei $X = \{0, 1\}$ und d Metrik auf X mit d(0, 1) = 1.

Idee: Wir nehmen zwei Bälle, die sich in der Theorie überschneiden, weil die Summe der Radien kleiner ist als der Abstand, aber in der Schnittmenge liegen

keine Elemente.

Wir wählen
$$r_1=r_2=\frac{2}{3}, x=0, y=1$$
. Wir haben $B_{r_1}(0)=\{0\}, B_{r_2}(1)=\{1\}$, aber $r_1+r_2=\frac{4}{3}>d(0,1)$.

2. Metrik wie in erstem Gegenbeispiel, $r_1=r_2=100, x=0, y=1$. Dann ist $B_{r_1}(0)=\{0,1\}, B_{r_2}(1)=\{0,1\},$ aber d(0,1)>100-100.

Aufgabe (4). 1. Zeigen Sie, dass (\mathbb{R}^2 , d_1) und (\mathbb{R}^2 , d_{∞}) isometrisch sind.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (x + y, x - y)$.

Behauptung: $f: (\mathbb{R}^2, d_1) \to (\mathbb{R}^2, d_{\infty})$ ist Isometrie.

f ist linear mit Rang 2, also bijektiv.

Seien $p = (x_1, y_1), q = (x_2, y_2) \in \mathbb{R}^2$. Zu zeigen:

$$d_{\infty}(f(p), f(q)) = d_1(p, q).$$

Es ist

$$\begin{split} d_1(p,q) &= |x_1 - x_2| + |y_1 - y_2| \\ &= \max\{|(x_1 - x_2) + (y_1 - y_2)|, \ |(x_1 - x_2) - (y_1 - y_2)|\} \\ &= \max\{|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|\} \\ &= (\text{undeutlich}) = d_{\infty}(f(p), f(q)). \end{split}$$

2. Zeigen Sie, dass (\mathbb{R}^n, d_1) und $(\mathbb{R}^n, d_{\infty})$ nicht isometrisch sind für n > 2.

Angenommen, es gibt eine Isometrie $\varphi^1:(\mathbb{R}^n,d_\infty)$ nach (\mathbb{R}^n,d_1) . Die Abbildung $\varphi^2:(\mathbb{R}^n,d_1)\to(\mathbb{R}^n,d_1)$, $x\mapsto x-\varphi^1(0)$ ist eine Translation, also eine Isometrie.

Wähle $\varphi := \varphi^2 \circ \varphi^1$. φ ist Isometrie mit $\varphi(0) = 0$.

Die Menge $\{(x_1,\ldots,x_n):x_i\in\{-1,1\}\}=A$ hat folgende Eigenschaft: Für alle $p,q\in A$ mit $p\neq q$ gilt $d_\infty(p,q)=2$ und $d_\infty(p,0)=1$.

Sei $B=\varphi(A)$. Für alle $p,q\in B$ mit $p\neq q$ gilt $d_1(p,q)=2$ und $d_1(p,0)=1$. Da φ injektiv ist, gilt $|B|=|A|=2^n>2n$ (weil $n\geq 3$). Da jedes $x\in B$ mindestens eine Koordinate $\neq 0$ hat, gibt es ein $i\in\{1,\ldots,n\}$ und $p,q,r\in B$ mit $p_i,q_i,r_i\neq 0$.

Dann gibt es oBdA verschiedene $p,q\in B$ mit $p_i,q_i>0$ (bzw haben selbes Vorzeichen, da es nur zwei mögliche Vorzeichen gibt).

Es gilt
$$d_1(p,q) = \sum_{j=1}^n |p_j - q_j|$$
 da beide $> 0 < \sum_{j=1}^n |p_j| + |q_j| = d_1(p,0) + d_1(0,q) = 2$

1.2 2017-11-03 - Übungsblatt 2

Aufgabe (1a). Es reicht zu zeigen, dass zu je zwei Punkten $p_1, p_2 \in \mathbb{R}^2$ eine Isometrie $\varphi_{p_1,p_2}:\mathbb{R}^2\to\mathbb{R}$ existiert mit $\varphi_{p_1,p_2}(0,0)=p_1$ und $\varphi_{p_1,p_2}(0,l)=p_2$, wobei

Dann gibt es für $p_1,p_2,q_1,q_2\in\mathbb{R}^2$ mit $d_e(p_1,p_2)=l=d_e(q_1,q_2)$ eine Isometrie $\varphi \coloneqq \varphi_{q_1,q_2} \circ \varphi_{p_1,p_2}^{-1}, \text{ die das gewünschte Liefert.}$ Sei $p_1 = (x_1,y_1), p_2 = (x_2,y_2)$. Für $(x,y) \in \mathbb{R}^2$ wähle

$$\varphi_{p_1p_2} \coloneqq \begin{pmatrix} y_2 - y_1 & x_2 - x_1 \\ x_1 - x_2 & y_2 - y_1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

Dann ist $\varphi_{p_1p_2}$ die gewünschte Isometrie.

Zeige, indem man (0,0) und (0,l) einsetzt.

Aufgabe (1b). Analog zu a).

Sei $X = (S^2, d_s)$. Gesucht $\psi_{n_1 n_2} : S^2 \to S^2$ eine Isometrie mit:

$$\psi_{p_1 p_2}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = p_1 \qquad \qquad \psi_{p_1 p_2}\begin{pmatrix} a\\b\\0 \end{pmatrix} = p_2 \tag{1.1}$$

wobei

$$a = cos(d_s(p_1, p_2)) = \langle p_1, p_2 \rangle$$

$$b = sin(d_s(p_1, p_2)) = ||p_1 \times p_2||$$

Bemerkung: $d_s(p,q) = \cos^{-1}\langle p,q\rangle$.

Seien $p_1, p_2 \in S^2$ wähle:

$$\psi_{p_{1}p_{2}}\begin{pmatrix} x \\ y \\ z \end{pmatrix} := x \cdot p_{1} + \frac{y}{b}(p_{2} - ap_{1}) + \frac{z}{b}(p_{1} \times p_{2})$$

Damit gilt wie gefordert:

$$\psi_{p_1p_2}(\begin{pmatrix}1\\0\\0\end{pmatrix})=p_1 \qquad \qquad \psi_{p_1p_2}(\begin{pmatrix}a\\b\\0\end{pmatrix})=p_2$$

Nachrechnen

eine Isometrie von \mathbb{R}^3 nach \mathbb{R}^3 , die den Ursprung fest lässt, erzeugt eine Isometrie auf $S = \{p \in \mathbb{R}^3 | d_e(0,p) = 1\}$ mit der euklidischen Metrik d_e .

Zu zeigen: $\psi_{p_1p_2}$ ist lineare Isometrie auf \mathbb{R}^3 .

Es reicht zu zeigen, dass $\{p_1, \frac{1}{b}(p_2 - ap_1), \frac{1}{b}(p_1 \times p_2)\}$ eine Orthonormalbasis ist. Hier sind die Eigenschaften der ONB über die Skalarprodukte $\langle \cdot, \cdot \rangle$ nachzurechnen! Speziell:

 $\langle \frac{1}{b}(p_2-ap_1), \frac{1}{b}(p_1\times p_2)\rangle=0$, weil lineare Kombinationen von p_1,p_2 immer orthogonal zu $p_1\times p_2$ stehen.

Für $p, q \in S^2$ ist

$$d_e(p,q) = \sqrt{\langle p - q, p - q \rangle} = \sqrt{\langle p, p \rangle - 2\langle p, q \rangle + \langle q, q \rangle}$$
$$= \sqrt{2 - 2\langle p, q \rangle}$$

und $d_s(p,q) = cos^{-1}(\langle p,q \rangle) = cos^{-1}(1 - \frac{1}{2}d_e(p,q)^2)$. Sei $f(x) = cos^{-1}(1 - \frac{1}{2}x^2)$.

Dann ist $d_s(p,q) = f(d_e(p,q))$.

Die Isometrie $\psi \coloneqq \psi_{p_1p_2}$ von (S^2, d_e) ist auch eine Isometrie von (S^2, d_s) , denn

$$d_s(\psi(p), \psi(q)) = f\left(d_e(\psi(p), \psi(q))\right) \stackrel{\text{Vor.}}{=} f(d_e(p, q)) \stackrel{Def,}{=} d_s(p, q)$$

Aufgabe (2). Seien $(X, d_x), (Y, d_y)$ metrische Räume.

Zu zeigen: $f: X \to Y$ ist stetig $\iff f$ ist folgenstetig.

" \Rightarrow ": Sei f stetigt aber nicht folgenstetig.

Dann gibt es eine Folge (x_n) in X mit $x_n \to x_0$, aber $f((x_n))_n$ nicht gegen $f(x_0)$. Dann gibt es ein $\varepsilon > 0$ sodass $d_y(f(x_n), f(x_0)) > \varepsilon$ für unendlich viele $n \in \mathbb{N}$. Für alle $\delta > 0$ gibt es nun ein $N \in \mathbb{N}$ mit $d_x(x_n, x_0) < \delta$ für alle n > N.

Für mindestens ein solches n > N gilt $d_y(f(x_n), f(x_0)) > \varepsilon$, was ein Widerspruch zur Stetigkeit ist! f

[&]quot; \Leftarrow ": Angenommen f sei folgenstetig, aber nicht stetig.

1 Übungen

Dann gibt es ein $x_0 \in X$ und ein $\varepsilon > 0$, sodass für alle $\delta > 0$ ein $x \in X$ exisitiert mit: $d_x(x,x_0) < \delta$ aber $d_y(f(x_0),f(x)) \ge \varepsilon$.

Wähle für alle $n \in \mathbb{N}$ ein $x_n \in X$ mit

$$d_x(x_n, x_0) < \frac{1}{n}$$
, aber $d_y(f(x_0), f(x_n)) \ge \varepsilon$.

Jetzt gilt $x_n \to x_0$, aber $(f(x_n))_n$ kann nicht gegen $f(x_0)$ konvergieren, da kein solches x_n in $B_{\varepsilon}(f(x_0))$ liegt, was ein Widerspruch zur Folgenstetigkeit ist! f

1.3 2017-11-10 - Übungsblatt 3

Aufgabe (1). Sei (X, d) ein metrischer Raum. Zu zeigen: Die Menge O aller doffenen¹ Teilmengen von X ist Topologie. Wir zeigen die Eigenschaften einer Topologie.

- 1. $\emptyset \in O, X \in O$
- 2. Zu zeigen: beliebige Vereinigungen von d-offenen Mengen sind wieder d-offen. Sei $\{A_i\}_{i\in I}$ eine Familie von d-offenen Mengen. Zu zeigen: $A:=\bigcup_{i\in I}A_i$ ist d-offen.

Beweis: Sei $x \in A$ beliebig. Dann $\exists i \in I \text{ mit } x \in A_i$. Da A_i d-offen ist, gibt es ein $\varepsilon > 0$ mit $B_{\varepsilon}(x) \subseteq A_i \subseteq A$.

Damit ist A d-offen.

Zu zeigen: endliche Durchschnitte d-offener Mengen sind wieder d-offen.
 Seien A, B d-offen. Zu zeigen: A ∩ B ist wieder d-offen.
 Sei x ∈ A ∩ B. Da A und B d-offen sind, gibt es ε, ε' > 0, sodass B_ε(x) ⊆ A und B_{ε'}(x) ⊆ B. Wähle ε" = min{ε, ε'}. Dann ist B_{ε''}(x) = B_ε(x) ∩ B_{ε'}(x) ⊆ A ∩ B und A ∩ B ist d-offen.

Aufgabe (2). Seien X, Y_1, Y_2 topologische Räume, seien

$$\begin{split} p_i: Y_1 \times Y_2 &\to Y_i \\ & (y_1, y_2) \mapsto y_i \quad \text{(für $i=1,2$)}. \end{split}$$

1. Zu zeigen: f ist stetig $\iff f_1 \coloneqq p_1 \circ f, f_2 \coloneqq p_2 \circ f$ stetig.

Beweis:

 ${\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$ Sei fstetig. Zu zeigen (oBdA): f_1 ist stetig, i.e. die Urbilder offener Mengen sind wieder offen.

Sei $U \subseteq Y_1$. Zu zeigen: $f_1^{-1}(U)$ offen. Es gilt³:

$$f_1^{-1}(U) = f^{-1}(p_1^{-1}(U)) = f^{-1}(U \times Y_2).$$

Diese Menge ist offen, da f stetig ist.

¹ d− offen: $U \subset X$ heißt d-offen, falls $\forall x \in U \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq U$.

 $^{^2}$ Es ist immer nur der Schnitt zweier Mengen zu zeigen, da $A_1\cap\cdots\cap A_n=(((A_1\cap A_2)\cap A_3)\cdots).$ Also ist sukzessive der gesamte Schnitt offen.

 $p_1^{-1}(U) = U \times Y_2$

• \Leftarrow . Seien f_1, f_2 stetig. Zu zeigen: f ist stetig. Wir zeigen wieder, dass die Urbilder offener Mengen wieder offen sind.

Sei $U \in Y_1 \times Y_2$ offen. Zu zeigen: $f^{-1}(U)$ ist wieder offen.

Sei $x \in f^{-1}(U)$. Zu zeigen: Es gibt eine offene Menge $U' \subseteq f^{-1}(U)$ sodass $x \in U'$.

Es ist $f(x) \in U$. Da U offen ist in $Y_1 \times Y_2$ gibt es offene $V_1 \subseteq Y_1, V_2 \subseteq Y_2$, sodass $f(x) \in V_1 \times V_2 \subseteq U$.

Jetzt sei $U_1 := f_1^{-1}(U_1), U_2 := f_2^{-1}(U_2)$. Da f_1, f_2 stetig sind, sind U_1 und U_2 offen, also auch $U_1 \cap U_2 =: U'$ offen.

Da $f(x) \in V_1 \times V_2$, ist $f_1(x) = p_1(f(x)) \in V_1$, $f_2(x) = p_2(f(x)) \in V_2$, also $x \in U_1 \cap U_2 = U'$.

2. Sind p_1 , p_2 immer offen?⁴

Ja — sei $U \subseteq Y_1 \times Y_2$ offen. Dann ist

$$U = \left\{ \ \left| \left\{ V_1 \times V_2 : V_1 \subseteq Y_1 \text{ offen, } V_2 \subseteq Y_2 \text{ offen, } V_1 \times V_2 \subseteq U \right\} \right. \right.$$

Dann ist $p_1(U) = \bigcup \{V_1 : \text{ analog zu } U, V_2 \neq \emptyset \}$ eine Vereinigung offener Mengen, also wieder offen $-p_2$ analog.

3. Sind p_1 , p_2 immer abgeschlossen?

Nein - sei

$$M = \left\{ (x, y) \in \mathbb{R}^2 : x \cdot y = 1 \right\}.$$

Das ist eine klassische Hyperbel. M ist abgeschlossen, aber $p_1(M) = \mathbb{R} \setminus 0$ nicht, auch nicht $p_2(M) = \mathbb{R} \setminus 0$.

Aufgabe (3). Seien X, Y Hausdorffräume, $f, g : X \rightarrow Y$ stetig. Zu zeigen: $\{x \in X : f(x) = g(x)\}$ ist abgeschlossen.

Da Y Hausforffraum ist

$$\Delta_y \coloneqq \{(y, y) : y \in Y\}$$

in \boldsymbol{Y}^2 abgeschlossen. (\star)

Beweis (*). Zu zeigen: $\{(y, y') \in Y^2 : y \neq y'\} =: \Delta_y^c$ ist offen.

Sei $(y,y') \in \Delta_y^c$. Da Y hausdorffsch ist, gibt es offene Räume U_y und $U_{y'}$, sodass $y \in U_y$, $y' \in U_{y'}, U_y \cap U_{y'} = \emptyset$. Dann ist $(y,y') \in U_y \times U_{y'} \subseteq \Delta_y^c$.

[^] Offene + geschlossene Abbildungen: $f: X \to Y$ heißt offen, wenn für alle offenen $U \subseteq X$ auch f(U) offen ist; $f: X \to Y$ heißt abgeschlossen, wenn für alle abgeschlossenen $U \subseteq X$ auch f(U) abgeschlossen ist.

Die Funktion

$$h: X \to Y,$$

 $x \mapsto (f(x), g(x))$

ist stetig, denn $p_1 \circ h = f$ und $p_2 \circ h = g$ sind stetig nach Voraussetzung, also können wir den ersten Teil der Aufgabe 2 anwenden.

Da Δ_y abgeschlossen ist, ist $h^{-1}(\Delta_y) = \{x \in X : f(x) = g(x)\}$ ebenfalls abgeschlossen.

Aufgabe (4). Sei X topologischer Raum und ~ Äquivalenzrelation auf X. Die kanonische Abbildung $\pi: X \to X/_{\sim}$ sei offen.

1. Zu zeigen: Falls X eine abzählbare Basis hat, dann auch $X/_{\sim}$. Sei B eine beliebige Basis von X. Sei $U \in X/_{\sim}$ offen. Dann ist $\pi^{-1}(U)$ nach Definition der Quotiententopologie offen, also existiert $A \subseteq B$ mit $\pi^{-1}(U) = \bigcup_{M \in A} M$. Dann ist

$$U = \pi(\pi^{-1}(U)) = \pi\left(\bigcup_{M \in A} M\right) = \bigcup_{M \in A} \pi(M).$$

Damit ist $\pi(B) := \{\pi(M) : M \in B\}$ eine Basis von $X/_{\sim}$ und wenn B abzählbar ist, so ist auch $\pi(B)$ abzählbar.

2. Zu zeigen: Ist $A:=\left\{(x,y)\in X^2:x\sim y\right\}$ abgeschlossen, so ist $X/_\sim$ hausdorffsch.

Beweis: Sei A abgeschlossen. Seien $p_1, p_2 \in X/_{\sim}, p_1 \neq p_2$. Wir wollen zeigen, dass p_1 und p_2 durch offene Mengen getrennt werden können.

Seien $x_1 \in \pi^{-1}(p_1)$, $x_2 \in \pi^{-1}(p_2)$ (x_1 und x_2 existieren, weil die kanonische Abbildung surjektiv ist). Da $[x_1]_{\sim} = p_1 \neq p_2 = [x_2]_{\sim}$ ist $x_1 \not \uparrow x_2$, also $(x_1, x_2) \in A^c$.

Da A_c in der Produkttopologie auf X^2 offen ist, gibt es $U_1, U_2 \subseteq X$ offen, sodass $(x_1, x_2) \in U_1 \times U_2 \subseteq A^c$.

Sei nun $V_1=\pi(U_1)$, $V_2=\pi(U_2)$. Es gilt $p_1\in V_1$, $p_2\in V_2$. V_1 und V_2 sind offen, da die kanonische Abbildung nach Voraussetzung offen ist.

Es bleibt zu zeigen, dass $V_1 \cap V_2 = \emptyset$. Sei $q_1 \in V_1$, $q_2 \in V_2$, $x_1 \in q_1$, $x_2 \in q_2$. Dann ist $(x_1, x_2) \in U_1 \times U_2 \subseteq A_c$, also ist $x_1 \not = x_2$ und demnach $q_1 = [x_1]_{\sim} \neq [x_2]_{\sim} = q_2$.

1.4 2017-11-17 - Übungsblatt 4

Aufgabe (1). Sei $A \subseteq X$ zusammenhängend. Zu zeigen: \bar{A} ist abgeschlossen. Sei $B \subseteq \bar{A}$ offen und abgeschlossen in \bar{A} .

OBdA sei $B \cap A \neq \emptyset$, ansonsten setze $B' = \overline{A} \setminus B$. Da $B \cap A$ offen, abgeschlossen und nichtleer in A ist, folgt aus A zusammenhängend, dass $B \cap A = A$ also $A \subseteq B$.

Damit ist $A \subseteq B \subseteq \bar{A}$ und da B abgeschlossen ist, ist $\bar{A} \subseteq B$

 $\operatorname{und} B \subseteq \bar{A} \Longrightarrow \to \bar{A} = B$

Folglich ist auch \bar{A} abgeschlossen.

Aufgabe (1b). Seien $A, B \subseteq X$ zusammenhängend und $A \cap B = \emptyset$.

Zu zeigen: $A \cup B$ zusammenhängend. **Beweis**: Sei $C \subseteq A \cup B$ nichtleer, offen udn abgeschlossen in $A \cup B$.

Sei $x \in C$, dann ist $x \in A$ (oBdA, sonst wähle B)

Da $C \cap A$ abgeschlossen, offen und nichtleer in A und da A zusammenhängend, ist $C \cap A = A$ also $A \subseteq C$. Damit ist $\emptyset \neq A \cap B \subseteq C \cap B$. Weiter ist $C \cap B$ abgeschlossen, offen und nichtleer in B. Da B zusammenhängend ist, ist $C \cap B = B$ und $B \subseteq C$. Damit ist $C \subseteq A \cup B \subseteq C$.

Also $C = A \cup B \Rightarrow A \cup B$ ist zusammenhängend, da $A \cup B$ und Ø die einzigen gleichzeitig offenen und abgeschlossenen Mengen sind.

Aufgabe (1c). Sei $\{A_i\}_{i\in I}$ eine zusammenhängende Familie (Familie zusammenhängender Mengen), sodass $A_i\cap A_j\neq\emptyset$.

Zu zeigen: $A := \bigcup_{i \in I} A_i$ ist zusammenhängend.

Sei $B\subseteq A$ offen, abgeschlossen und nichtleer. Sei weiter $x\in B$. Dann existiert $i\in I$ mit $x\in A_i$. Sei $y\in A$ beliebig.

Behauptung: $y \in B$ **Beweis**: Sei $j \in I$, sodass $y \in A_j$ nach Aufgabenteil b) ist dann $A_j \cup A_i$ zusammenhängend. Damit ist $B \cap (A_i \cup A_j) = A_j \cup A_i$, weil alle A_i zusammenhängend. Weiter ist $y \in A_i \cup A_j$ und $y \in B$.

Daraus folgt: $A \subseteq B$ und $B \subseteq A \Rightarrow A = B$.

Aufgabe (2a). Zu zeigen: B ist die Basis einer Topologie O_p auf P.

- 1. Zeige: $P \in O_p$, wobei $O_p = \{\bigcup_{U \in A} U | A \subseteq B\}$. $P = U_{\varnothing}(0, 0, \dots) \in B \text{ also } P \in O_p$
- 2. Für $V_1,V_2\in O_p$ gilt $V_1\cap V_2\in O_p$. Sei $V_1=\bigcup_{U\in A_1}U,V_2=\bigcup_{U\in A_2}U$.

Behauptung: Für alle $U, U' \in B : U \cap U' \in B$ oder $U \cap U' = \emptyset$. Dann ist

$$V_1 \cap V_2 = \bigcup_{U \in A_1} \bigcup_{U' \in A_2} (U \cap U')$$
 also $V_1 \cap V_2 \in O_p$

Beweis: Seien $U = U_{\mu}(a) \in B, U' = U_{\mu'}(a') \in B$. Falls $U \cap U' \neq \emptyset$ existiert $a'' \in U \cap U'$. Dann gilt $U = U_{\mu}(a''), U' = U_{\mu'}(a'')$. Also: $U \cap U' = U_{\mu \cup \mu'}(a'')$

3. O_P ist bezüglich Vereinigung abgeschlossen, denn O_p besteht aus Vereinigungen von Elementen aus B.

Insgesamt folgt damit: O_p ist Topologie!

Aufgabe (2b). Ist (P, O_p) zusammenhängend, unzusammenhängend oder total unzusammenhängend?

Behauptung:: (P, O_p) ist total unzusammenhängend!

Beweis: Seien $a,b \in P$ Zeige: Es gibt offene, abgeschlossene Mengen U_a, U_b mit $U_a \cup U_b = P, U_a \cap U_b = \emptyset$ und weiter $a \in U_a, b \in U_b$.

Seien $a \neq b \Rightarrow \exists i \in \mathbb{N}$ sodass $a_i \neq b_i$. Setze $U_a = U_{\{i\}}(a)$ und $U_b = U_{\{i\}}(b)$.

 U_a und U_b sind in O_p offen. Nach Wahl von i ist $U_a \cap U_b = \emptyset$ und $U_a \cup U_b = P$.

Angenommen es gibt ein zusammenhängendes $V \subseteq Pmit|V| \ge 2$.

Wähle $a, b \in V$ mit $a \neq b$ und konstruiere U_a, U_b wie oben.

Dann ist $V = (V \cap U_a) \cup (V \cap U_b)$ eine offene disjunkte Zerlegung von V.

Widerspruch! 4

Aufgabe (3a). Es reicht zu zeigen, dass alle p_i stetig sind.

"⇒": Die Mengen:

•
$$p_i^{-1}(\{0,1\}) = P$$

•
$$p_i^{-1}(\{1\}) = U_{\{i\}}(1,...)$$

•
$$p_i^{-1}(\{0\}) = U_{\{i\}}(0,...)$$

$$\bullet \ p_i^{-1}(\emptyset) = \emptyset$$

sind alle offen.

"\(\sigmu\)": Sei $U \subseteq P$ offen. Dann ist $U = \bigcup_{U' \in A} U'$ für $A \subseteq B$ also $f^{-1}(U) = \bigcup_{U \in A} f^{-1}(U')$.

Fallse alle $f^{-1}(U')$ offen sind, dann auch $f^{-1}(U)$. Damit können wir uns für U auf

Basiselemente beschränken. Sei also $U = U_{\mu}(a) \in B$.

Sei weiter $M = \{i_1, \dots, i_n\}$. Dann ist:

$$U = U_{i_1}(a) \cap \cdots \cap U_{i_n}(a) = p_i^{-1}(\{a_{i_1}\}) \cap \cdots \cap p_i^{-1}(\{a_{i_n}\})$$

Also ist: $f^{-1}(U) = f_i^{-1}(\{a_{i_1}\}) \cap \cdots \cap f_i^{-1}(\{a_{i_n}\}).$

Diese Menge ist endlicher Schnitt offener Mengen, weil alle f_i stetig sind.

Aufgabe (3b). Zu zeigen: $f: X \to (P, \mathcal{P}(P))$ ist nicht genau dann stetig, wenn alle $f_i: X \to \{0, 1\}$ stetig sind.

Beispiel: $X = (P, O_P), f : (P, O_p) \rightarrow (P, \mathcal{P}(P)), a \mapsto a.$

Sei $A \in \mathcal{P}(P) \setminus O_p$ beliebig, dann ist A offen in $\mathcal{P}(P)$ aber $f^{-1}(A) = A$ ist in (P, O_P) nicht offen, also ist f nicht stetig.

1.5 2017-11-24 - Übungsblatt 5

Aufgabe (1a). Sei $Y \subseteq \mathbb{R}^n$. Y heißt konvex, falls für $p,q \in Y$ auch die Verbindungsgerade \overline{pq} in Y.

Zeigen sie: Jede konvexe Teilemenge von \mathbb{R}^n ist zusammenhängend.

Behauptung: Y konvex $\Rightarrow Y$ wegzusammenhängend.

Seien $p, q \in Y$, Sei $c : [0,1] \to Y$, $t \mapsto (1-t)p + tq$ Die Verbindungsstrecke. Dann ist c(0) = p, c(1) = q, $c([0,1]) \subseteq Y$ wegen Konvexität.

Da p, q bel. waren, ist Y wegzusammenhänged.

Aufgabe (2). vgl. Aufgabentext..

Zu zeigen: X ist kompakt \iff für alle Familien $(A_i)_{i\in I}$ **abgeschlossen** Teilmengen von X mit endlicher Schnitteigenschaft gilt: $\bigcap_{i\in I} \neq \emptyset$.

Sei (A_i) , Familie und $\forall i \in I$ sei $B_i := X \setminus A_i = A_i^C$.

Dann gelten: $(A_i)_{i \in I}$ ist Familie von offenen Mengen \iff (B_i) besteht aus abg. Mengen.

$$\bigcap_{i \in M} A_i \neq \emptyset \Longleftrightarrow X \setminus \bigcap_{i \in M} A_i \neq X \setminus \emptyset \Longleftrightarrow \bigcup_{i \in M} (X \setminus A_i) \neq X \Longleftrightarrow (B_i)_{i \in M}$$

ist keine Überdeckung von X.

Beweis: Alle Familien abgeschlossener Teilmengen von X mit endl. Schnitteigenschaft haben nichtleeren Schnitt. \iff Alle Familien mit abgeschlossenen Teilmengen von X mit leerem Schnitt besitzen eine undendliche Teilfamilie mit leerem Schnitt. \iff Alle Familien offener Teilmengen von X, die X überdecken, besitzen eine endliche Teilfamilie, die X überdeckt. \iff ist kompakt

Aufgabe (3). Sei X kompakt, $f: X \to \mathbb{R}$ stetig.

Zeigen Sie: f nimmt auf \mathbb{R} ein endliches Minimum und endliches Maximum an.

Beweis: Da stetige Bilder kompakter Mengen wieder kompakt sind, ist f(X) kompakt in \mathbb{R} .

Nach dem Satz von Heine-Borel sind die kompakten Mengen in \mathbb{R} genau die abgeschlossenen, beschränkten Mengen. Damit ist f(X) also abgeschlossen und beschränkt, außerdem nichtleer.

Zeige ausführlich (statt mit Ana I.): f(X) hat Maximum, Minimum.

Sei s := supf(X). Da f(X) nichtleer ist, ist $s > -\infty$.

Da f(X) nach oben beschränkt ist, ist $s < \infty$. Für alle $n \in \mathbb{N}$ gibt es ein $x_n \in f(X)$

1 Übungen

sodass $s - \frac{1}{n} < x_n \le s$, weil $s - \frac{1}{n}$ keine obere Schranke von f(X) ist. Damit ist $\lim_{n \to \infty} x_n = s$. Damit ist $s \in f(X)$ und somit Maximum von f.

Aufgabe (4a). Sind Mannigfaltigkeiten stückweise wegzusammenhängend? **Behauptung**: Ja!

Beweis: Sei $x \in M$, M sei n - dim Mannigfaltigkeit.

Dann gibt es eine Karte (φ, U) von $M, \varphi : U \to \mathbb{R}^n, x \in U$.

Damit ist $\varphi(x)$ innerer Punk von $\varphi(U)$, also gibt es einen offenen Ball

$$B\coloneqq B_\varepsilon(\varphi(x))\subseteq \varphi(U).$$

B ist wegzusammenhängend, also auch $\varphi^{-1}(B) \subseteq U$ wegzusammenhängend und $\varphi^{-1}(B)$ ist **offene** Umgebung von $\varphi^{-1}(\varphi(x)) = x$, wie gesucht.

Aufgabe (4b). Sind zusammenhängede Mannigfalitgkeiten immer wegzusammenhängend?

Behauptung: Ja!

Beweis: Für alle $x \in X$ ist W(x) offen.

Zu zeigen: Für alle $y \in W(x)$ gibt es eine in X offene Umgebung von y in W(x).

Sei $y \in W(x)$. Dann ist W(x) = W(y). Sei U eine offene, wegzusammenhängende Umgebung von y.

Dann ist $U \subseteq W(y) = W(x)$ die gesuchte Umgebung.

Angenommen, X ist nicht wegzusammenhängend.

Dann gibt es $x, y \in X$ mit $x \in W(x), y \notin W(x)$.

Nun ist W(x) offen (siehe oben), und W(x) ist abgeschlossen, denn

$$X\setminus W(x)=\bigcup_{z\notin W(x)}W(z)$$

ist auch offen. Damit ist W(x) Zeuge, dass X nicht zusammenhängend ist. Damit folgt die Behauptung.

1.6 2017-12-01 - Übungsblatt 6

Aufgabe (1a). Zu zeigen: **Stereographische Projektion** an p_+ und p_- ist genau die Umkehrabbildung φ^{-1} .

$$\psi_{\pm}: S^2 \setminus \{p_{\pm}\} \to \mathbb{R}^{\nvDash}, (x, y, z) \mapsto (\frac{x}{1 \pm z}, \frac{y}{1 \pm z})$$

zz: $\psi_+ \circ \varphi_+ = id$.

Nachrechnen...: $\psi_+(\varphi_+(x,y)) = \cdots = (x,y)$

 $zz: \varphi_+ \circ \psi_+ = id.$

Nachrechnen...: $\varphi_+(\psi_+(x,y,z)) = \cdots = (x,y,z)$

Aufgabe (1b). Zeige: Der Kartenwechsel $\psi_+ \circ \psi_-^{-1} = \varphi_+^{-1} \circ \varphi_-$ ist C^{∞} .

Sei
$$f: \psi_{-}(S^2 \setminus \{p_+, p_-\}) \to \psi_{+}(S^2 \setminus \{p_+, p_-\}).$$

$$f(x,y) = \cdots = \frac{1}{x^2 + y^2}(x,y)$$
 ist C^{∞} .

Seien dafür: $g(x,y) = (\frac{p(x,y)}{(x^2+y^2)^n}, \frac{q(x,y)}{(x^2+y^2)^n})$ für $p,q \in \mathbb{R}[x,y]$.

Behauptung: Es gibt $N \in \mathbb{N}, P, Q \in \mathbb{R}[x, y]$ sodass:

$$g_x(x,y) = \left(\frac{P(x,y)}{(x^2+y^2)^n}, \frac{Q(x,y)}{(x^2+y^2)^n}\right)$$

Mit dieser Behauptung folgt, dass alle partiellen Ableitungen von f auf $\mathbb{R}^2\setminus\{0\}$ existieren.

Beweis:

$$\frac{d}{dx}g(x,y) = ((x^2 + y^2)p_x(x,y) - 2xp(x,y),$$
$$(x^2 + y^2)q_x(x,y) - 2xq(x,y)) \cdot \frac{1}{(x^2 + y^2)^n + 1} = Q(x,y)$$

Aufgabe (2a). Der Tangentialraum T_pF von F in p sei definiert als $T_pF := Bild(d\varphi(\varphi^{-1}(p)))$, wobei $\varphi: V \to F, V \subseteq \mathbb{R}^2$, eine Parametrisierung von F um den Punkt $p \in F$ ist.

Zeige: Diese Definition ist unabhängig von φ .

Ansatz: Wähle zwei Parametrisierungen und zeige, dass das Bild das selbe ist.

Beweis: Seien φ , ψ Parametrisierungen von F um p. Sei $q = \varphi^{-1}(p)$, $r = \psi^{-1}(p)$, Zu Zeigen:

$$Bild(d\varphi(q)) = Bild(d\psi(r))$$

Es gilt $\psi = \varphi \circ (\varphi^{-1} \circ \psi)$ wobei $f := (\varphi^{-1} \circ \psi)$. also: $d\psi(r) = d(\varphi \circ f(r)) = d\varphi(f(r)) \cdot df(r) = d\varphi(q) \cdot df(r)$, also: $Bild(d\psi(r)) \subseteq Bild(d\varphi(q))$.

Durch Vertauschung von ψ , φ erhalten wir auch $Bild(d\varphi(q)) \subseteq Bild(d\psi(r))$ also:

$$Bild(d\varphi(q)) = Bild(d\psi(r))$$

Aufgabe (2b). Vgl. Aufgabenstellung...

Beweis:

Sei $p=(p_x,p_y,p_z)$. Sei oBdA $p_z>0$. Sei $\varphi:B_1(0)\to S^2,(x,y)\mapsto (x,y,\sqrt{1-x^2-y^2})$. Dann ist:

$$d\varphi(p) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x}{\sqrt{1-x^2-y^2}} & \frac{-y}{\sqrt{1-x^2-y^2}} \end{pmatrix} (p) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-p_x}{p_z} & \frac{-p_y}{p_z} \end{pmatrix}$$

Also:

$$T_pS^2 = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ \frac{-p_x}{p_z} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \frac{-p_y}{p_z} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} p_z \\ 0 \\ -p_x \end{pmatrix}, \begin{pmatrix} 0 \\ p_z \\ -P_y \end{pmatrix} \end{bmatrix}$$

Jetzt ist: $p \cdot t_1 = p_x p_z - p_z p_x = 0$ und $p \cdot t_2 = p_y p_z - p_z p_y = 0$ also $\{p\} \perp \{t_1, t_2\}$ und $[p] \perp [t_1, t_2] = T_p S$, also auch $T_p S = [p]^{\perp}$.

Aufgabe (3a). Sei

$$U_i := \{ [x_1, \dots, x_{n+1}] \in P^n \mathbb{R} | x_i \neq 0 \}$$

und

$$\varphi_i([x_1,\ldots,x_n]) = \frac{1}{x_i}(x_1,\ldots,x_{i-1},x_{i+1},\ldots x_{n+1})$$

Zeige: (U_i, φ_i) bilden einen differenzierbaren Atlas von $P^n\mathbb{R}$.

Behauptung: Es gilt:

$$\varphi_i^{-1}(u_1,\ldots,u_n) = [u_1,\ldots,u_{i-1},1,u_i,\ldots,u_n]$$

Zeige: $\varphi_i \circ \varphi_i^{-1}$ ist differenzierbar für $i, j = 1, \dots, n+1, i < j$.

$$\varphi_{i}(\varphi_{j}^{-1}(u_{1},\ldots,u_{n})) = \varphi_{i}([u_{1},\ldots,u_{i-1},1,u_{i},\ldots,u_{n}])$$

$$= \left(\frac{u_{1}}{u_{i}},\ldots,\frac{u_{i-1}}{u_{i}},\frac{u_{i+1}}{u_{i}},\ldots,\frac{u_{j-1}}{u_{i}},\frac{1}{u_{i}},\frac{u_{j}}{u_{i}},\ldots,\frac{u_{n}}{u_{i}}\right)$$

ist C^{∞} von $\{u \in \mathbb{R}^n : u_i \neq 0\}$ nach $\{u \in \mathbb{R}^n : u_{i-1} \neq 0\}$.

Noch zz: $U_1 \cup \cdots \cup U_{n+1} = P^n \mathbb{R}$.

Für $[x_1, \ldots, x_{n+1}] \in P^n \mathbb{R}$ gibt es mindestens ein i mit $x_i \neq 0$ damit ist $[x_1, \ldots, x_{n+1}]$ in U_i . Damit gilt $U_1 \cup \cdots \cup U_{n+1} = P^n \mathbb{R}$.

Aufgabe (3b). **Behauptung:** $P^n\mathbb{R}$ ist hausdorffsch mit abzählbarer Basis.

Wir wissen aus der VL, dass $P^n\mathbb{R} = S^n/\sim$ wobei $x\sim y :\Leftrightarrow x=\pm y$, (Vgl. Abbildung).

Seien $\pm x, \pm y \in S^2 / \sim$.

Seien $U_x := B_{\varepsilon}(x) \cup B_{\varepsilon}(-x)$ und

 $U_y \coloneqq B_{\varepsilon}(y) \cup B_{\varepsilon}(-y).$

Zu jedem $z \in U_x$ ist auch $-z \in U_x$.

Zu jedem $z \in U_y$ ist auch $-z \in U_y$.

Also ist $\pi^{-1}(\pi(U_x)) = U_x$ also $\pi(U_x)$ auch offen in $S^n / \sim \cong P^n \mathbb{R}$.

Da U_x, U_y disjunkt gilt: $\pi(U_x) \cap \pi(U_y) = \emptyset$. Also sind $\pi(U_y), \pi(U_x)$ disjunkte offene Umgebungen von $\pm x, \pm y$ und damit ist $S^n/\sim P^n\mathbb{R}$ hausdorffsch.

Zur abzählbaren Basis:

Seien B_1,\ldots,B_{n+1} abzählbare Basis von $U_1,\ldots U_n+1$. Dann ist $B_1\cup B_2\cup\cdots\cup B_{n+1}$ eine abzählbare Basis von ??? $P^n\mathbb{R}$??? -> Weiß nicht was hier hin sollte

1.7 2017-12-08 - Übungsblatt 7

Abbildungen müssen nachgetragen werden!

Aufgabe (1a). Vgl. Aufgabenstellung.

Zu zeigen: $S := f^{-1}(0)$ ist reguläre Fläche. Wobei $f : \mathbb{R}^3 \to \mathbb{R}$ stetig differenzierbar und für alle Punkte $p \in S$ gelte $f(0) \neq 0$.

Beweis: Sei $p \in S$. Dann gilt nach Vor.

$$f(p) \coloneqq \left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right) \neq 0$$

Sei oBdA $\frac{\partial}{\partial z}P(p)\neq 0$. Nach dem Satz p
ber implizit definierte Funktion gibt es $U\subseteq\mathbb{R}^2, V\subseteq\mathbb{R}, g:U\to V, p\in U\times V$, so
dass gilt

$$g(x,y) = z \Leftrightarrow f(x,y,z) = 0$$
 $\forall (x,y) \in U, z \in V,$

g ist stetig differenzierbar. Dann ist g ein Homöomorphismus von U auf $(U \times V) \cap S$, denn $\varphi^{-1}: (x, y, z) \to (x, y)$ ist eine stetige Umkehrabbildung. Also ist φ Parametrisierung von S um p.

$$\varphi: U \to (U \times V) \cap S, (x, y) \mapsto (x, y, g(x, y))$$

Dann ist S eine reguläre Fläche. Die Jacobimatrix von φ ist

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ g_x & g_y \end{pmatrix}$$
 und hat immer Rang 2.

Aufgabe (1b). Benutze hier \triangle statt des Nabla-Symbols (vorerst).

Zu Zeigen: $T_pS = Kern(\triangle f(p))$.

Beweis: Sei $\varphi: U \to S$ irgendeine Parametrisierung um einen Punkt $p \in S$.

Jetzt ist $f \circ \varphi = 0$. Ableiten ergibt

$$0 = \partial_q 0 = \partial_q (f \circ \varphi) = \partial_{\varphi(q)} f \cdot \partial_q \varphi = \Delta_p f \cdot \partial_q \varphi.$$

Damit ist $T_n S = Bild(\partial_a \varphi) \subseteq Kern(\Delta_n f)$.

Da $\triangle_p f \neq 0$ ist, ist $dim Kern \triangle_p f = 2$, $dim T_p S = 2$.

Also ist $Kern(\triangle_{p}f) = T_{p}S$.

Aufgabe (2a). K_n ist ein vollständiger Graph mit n Ecken, d.h. die Ecken von K_n sind paarweise durch eine Kante verbunden.

Zu zeigen: Für $n \le 4$ ist K_n planar.

Zeige, indem einzelne Einbettungen für alle $n \le 4$ gezeichnet werden.

Aufgabe (2b). **Behauptung:** Für $n \ge 5$ ist K_n nicht planar.

Beweis: Angenommen es gibt eien Einbettung von K_n in eine Ebene. Betrachte vier Ecken von K_n :

Eine weitere Ecke von K_n muss dann in a, b, c, d liegen, aber man kann sie dann nicht, mit A, B, C, D verbinden.

Aufgabe (3). Sei G ein Graph mit Ecken p_1, \ldots, p_n .

Für $i, j = 1, \ldots, n$ sei

$$A \coloneqq ((a_{i,j}))_{i,j=1,...,n} \qquad a_{i,j} \coloneqq \begin{cases} 0, \text{ wenn keine Kante } p_i p_j \text{ in G} \\ 1, \text{ wenn Kante } p_i p_j \text{ in G existiert} \end{cases}$$

Die Matrix A heißt Adjazenzmatrix von G. **Zu zeigen:** Sei $G = K_n$ dann ist n-1 der größte Eigenwert von A.

$$A = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} - \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

Die Eigenräume von $\mathbf{1}_n$ sind:

$$E_0 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ \vdots \\ 0 \end{bmatrix}, \dots \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Jeder Eigenwert λ von A mit zugehörigem eigenvektor von v erfüllt $\mathbf{1}_n \cdot v = (A+I_n) \cdot v = Av + v = \lambda v + v = (\lambda+1)v, \text{ also ist } \lambda+1 \text{ EW von } \mathbf{1}_n.$ Damit sind die Eigenvektoren von A höchstens -1 oder n-1, und da

1 Übungen

$$A = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} n-1 \\ n-1 \\ \vdots \\ n-1 \end{pmatrix}$$

Ist n-1 der größte EW von A.

Aufgabe (3b). **Zeige:** Für allgemeines G sind die Eigenvektoren von A nicht größer als n-1.

Beweis: Sei $x = (x_1 \dots x_n)^T$ Eigenvektor von G mit EW λ .

Sei weiter $i \in \{1, ..., n\}$ sodass $|x_i| \ge |x_i|$ für alle j.

Sei oBdA $x_i > 0$, also $x_i \ge |x_j|$ für alle j. Aus $Ax = \lambda x$ folgt $(Ax)_i = \lambda x_i$:

$$\lambda x_i = (Ax)_i = \sum_{j=1}^n a_{ij} x_j \le \sum_{j=1}^n a_{ij} x_i \le (n-1)x_i,$$

Damit folgt $\lambda \leq n-1$.

Aufgabe (4). **Zu zeigen:** G ist Baum \iff G ist zusammenhängend aber besitzt keinen Kreis.

" \Rightarrow ": Sei G ein Baum. Dann ist G zusammenhängend.

Angenommen, G besitzt einen Kreis. Wenn man eine einzige Kante dieses Kreise entfernt, so bleibt der entstehende Graph zusammenhängend., denn jeden verbindenden Pfad in G, der durch diese Kante geht, können wir um den Kreis umleiten.

Formaler: Sei $p_0 \dots p_n = p_0$ ein Kreis.

Zwischen je zwei Ecken in G gibt es einen Weg $q=q_0\dots q_n=q'$ in G. Ersetzen wir in diesem Weg jedes Vorkommen von p_0p_{n-1} durch $p_0p_1\dots p_{n-1}$ und $p_{n-1}p_0$ durch $p_{n-1}\dots p_0$ so finden wir einen Kantenzug in $G\setminus \{\overline{p_0p_{n-1}}\}$ der q, q' verbindet. Damit ist $G\setminus \{p_0p_{n-1}\}$ zusammenhängend, also ist G kein Baun. Widerspruch!

" \Leftarrow ": Sei G zusammenhängend und besitze keinen Kreis.

Angenommen G ist kein Baum, also dass es eine Kante pp' gibt, nach deren Entfernung G noch zusammenhägend ist. Also $G\setminus \{\overline{pp'}\}$ zusammenhängend.

Dann gibt es einen Weg $p=p_0\dots p_n=p'$ in $G\setminus \{\overline{pp'}\}$. Damit ist p_0,\dots,p_n,p_0 ein Kreis. Widerspruch.

1.8 2017-12-15 - Übungsblatt 8

Aufgabe (1a). Sei $n \ge 3$, sei G ein planarer Graph mit $k(G) \ge n$, so dass alle Kreise in G min. Länge n haben.

Zu zeigen: $k(G) \leq \frac{n}{n-2}(e(G)-2)$.

Sei oBdAGeben. Sei K die Menge der Kanten von G, sei S die Menge der Flächenstücke von G

Sei $W = \{(k, s) \in K \times S : k \text{ liegt auf dem Rand von S} \}.$

Für alle $k \in K$ gibt es höchstens zwei $s \in S$ mit $(k, s) \in W$, damit gilt $|W| \le 2|K|$. Für alle $s \in S$ gibt es mindestens n Kanten $k \in K$, sodass $(k, s) \in W$, denn falls s beschränkt ist, besteht der äußere Rand von s aus einem Kreis, der min n Kanten hat (Vor.). Wenn s unbeschränkt:

- Fall 1: G ist Baum. Dann ist s das einizige Flächenstück und alle Kanten berühren s. $(k(G) \ge n)$.
- Fall 2: G ist kein Baum, dann schließt s andere Flächenstücke ein, der Rand dieser Einschlüsse besteht aus einem oder mehreren Kreisen. Alle $\geq n$ Kanten dieser Kreise berühren s.

Also erhalten wir $|W| \ge n|S|$. Wir erhalten $n \cdot s(G) = n|S| \le |W| \le 2|k| = 2k(G)$.

Nach Eulerformel gilt:

$$s(G) = k(G) - e(G) + 2, \text{ also } \frac{2}{n}k(G) \ge \frac{n}{n}s(G) = k(G) - e(G) + 2.$$

$$\Rightarrow \frac{2-n}{n}k(G) \ge -e(G) + 2$$

$$\Rightarrow \frac{n-2}{n}k(G) \le e(G) - 2$$

$$\Rightarrow k(G) \le \frac{n}{n-2}(e(G) - 2)$$

Aufgabe (1b). Vgl. Zeichnungen:

Aufgabe (3). Für einen platonischen Körper $P \subseteq \mathbb{R}^3$ mit Zentrum 0 ist:

$$Sym(P) := \{ f \in O(3) : f(P) = P \}$$

 $Sym_0(P) := \{ f \in SO(3) : f(P) = P \}$

Sei P Würfel.

Zu zeigen:

- $Sym(P) = S_4 \times \{1, -1\}$
- $Sym_0(P) = S_4$

Behauptung: $|Sym(P)| \le 48, |Sym_0(P)| \le 24.$

 $\label{eq:Beweis:SeiSeine} \begin{array}{l} \text{Beweis: Sei S eine Ecke von P und seien F,G,H die zu E benachbarten Ecken. Da φ \\ Ecken von P auf Ecken von P abbilden, gibt es nur 8 mögliche Werte von $\varphi(E)$. Da φ benachbarte Ecken auf benachbarte Ecken von P abbildet, sind $\varphi(G), \varphi(H), \varphi(F)$ in einer von 6 Reihenfolgen die Nachbarn von $\varphi(E)$. Jetzt ist aber φ vollständig durch $\varphi|_{\{E,F,G,H\}}$ bestimmt, da E,F,G,H ein Erzeugendensystem von \mathbb{R}^3 ist.$

Damit ist $|Sym(P)| \le 6 \cdot 8 = 48$.

 $Sym_0(P)$ ist Untergruppe von Sym(P).

Nach dem Satz von Lagrange ist $\frac{|Sym(P)|}{|Sym_0(P)|} \in \mathbb{N}(\star)$.

$$Da \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in Sym(P), \text{ aber } det(-I) = (-1)^3 = -1,$$

ist $I \in Sym(P) \setminus Sym_0(P)$, also ist $|Sym(P)| > |Sym_0(P)|$.

Wegen (★) folgt

$$\frac{|Sym(P)|}{|Sym_0(P)|} \ge 2 \Rightarrow |Sym_0(P)| \le \frac{1}{2}|Sym(P)| \le 24,$$

Sei D die Menge der Hauptdiagonalen von P. Dann ist

$$h: Sym_0(P) \to B_{ij}(D) \cong S_4, h(\varphi) := (d \mapsto \varphi(d))$$

Gruppenhomomorphismus.

Behauptung: *h* ist surjektiv.

Da $B_{ij}(D)$ von Transpositionen erzeugt wird reicht es zu zeigen, dass Bild(h) jede Transposition enthält. Sei also (d_1, d_2) eine beliebige Transposition in $B_{ij}(D)$.

Gesucht: $\varphi \in Sym_0(P)$ mit $h(\varphi) = (d_1, d_2)$,

Wähle φ als Rotation um 180° um die gestrichelte Achse (vgl. Abb.), dann ist $\varphi(P) = P$, $det(\varphi) = 1$, $\varphi(RL) = BL$, $\varphi(BL) = RL$, $\varphi(GL) = GL$, $\varphi(YL) = YL$. Wobei GL = Grüne Linie, etc.

Damit ist $h(\varphi) = (d_1, d_2)$,

Wir haben einen surjektiven Hom. $h: Sym_0(P) \to B_{ij}(D)$. Aus $|Sym_0(P)| \le 24 = |S_4| = |B_{ij}(D)|$ folgt sofort, dass $|Sym_0(P)| = |B_{ij}(D)|$ ist und dass h bijektiv ist:

$$Sym_0(P) \cong B_{ij}(D) \cong S_4,$$

Behauptung: $Sym(P) \cong Sym_0(P) \times \{-1, 1\},\$

Beweis: Seien:

$$g: Sym(P) \to Sym_0(P) \times \{-1, 1\}, \psi \mapsto (det(\psi) \cdot \psi, det(\psi))$$
$$k: Sym_0(P) \times \{-1, 1\} \to Sym(P), (\varphi, \varepsilon) \mapsto \varepsilon\varphi,$$

Behauptung: k, q sind zueinander Invers.

Bew:

$$g(k(\varphi,\varepsilon)) = g(\varepsilon\varphi) = (\varepsilon^3 \cdot \varepsilon\varphi, \varepsilon) = (\varphi,\varepsilon)$$
$$k(g(\psi)) = k(\det(\psi) \cdot \psi, \det(\psi)) = \det(\psi)^2 \cdot \psi = \psi$$

Behauptung: k ist Hom.

Beweis:

$$k((\varphi, \varepsilon) \cdot (\varphi', \varepsilon')) = k(\varphi, \varepsilon) \cdot k(\varphi', \varepsilon'),$$

Damit folgt Behauptung. Also ist

$$Sym(P) \cong Sym_0(P) \times \{-1, 1\} \cong S_4 \times \{-1, 1\},$$

1.9 2018-01-12 - Übungsblatt 9

Definition zu Aufgabe 1 (Vgl. Blatt): Eine trianguliert Fläche (M, K, t) besteht aus einer Fläche M, einem Simplizialkomplex K und einem Homöomorphismus $t: |K| \to M$.

(K, t) heißt Triangulierung von M.

Die Eulercharakteristik $\chi(M)$ ist definiert als $\chi(K)$, $\chi(M)$ hängt also nicht von (K,t) ab.

Aufgabe (1). **Frage:** Ist das eine Triangulierung des Torus T?

Antwort: Nein!

Begründung: In der Zeichnung werden alle Ecken identifiziert, aber Dreiecke in Simplizialkomplexen haben drei verschiedene Ecken (0-Simplices). Außerdem ist der Schnitt der zwei Dreiecke in er Zeichnung kein Simplex.

Überlegung: Was ist dann eine korrekte Triangulierung des Torus T?

Bonusfrage: Wieviele Dreiecke braucht man mindestens, um einen Torus korrekt zu triangulierung?

Antwort: 14!

Sei (K, t) eine Triangulierung des Torus, sei

- e die Anzahl der Ecken von K.
- k die Anzahl der Kanten von K.
- s die Anzahl der Dreiecke von K.

Zeichne auf jede Seite von jedem Dreieck innenëin Punkt. Sei x die Anzahl der Punkte. Da in jedem Dreieck drei Punkte liegen gilt x = 3s.

Da in jeder Kante zwei Punkte liegen gilt x = 2k, also 3s = 2k.

Der Torus hat Euler-Charakteristik 0, also gilt

$$3 \cdot 0 = 3 \cdot (s - k + e) = 3s - 3k + 3e = \underbrace{(3s - 2k)}_{=0} - k + 3e \Rightarrow k = 3e$$

Damit ist $2e = \frac{2}{3}k = \frac{2}{3}s = s$.

Da es $\begin{pmatrix} e \\ 2 \end{pmatrix}$ Paare von Ecken gibt und jede Kante ein anderes Eckenpaar als Enden hat,

$$\operatorname{gilt} \begin{pmatrix} e \\ 2 \end{pmatrix} \ge k = 3e \operatorname{Da} \begin{pmatrix} e \\ 2 \end{pmatrix} \ge 3e \operatorname{erst ab} e \ge 7 \operatorname{erfüllt ist, gilt} e \ge 7, \operatorname{also} s = 2e \ge 14.$$

Um zu beweisen, dass der kleinste Wert für s genau 14 ist, reicht ein Beispiel:

Aufgabe (2). *Vorraussetzungen:* Seien M_1 , M_2 zwei Flächen. Für jede Fläche existiert eine triangulierung.

Behauptung: $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2$.

Lemma 1: Homöomorphe Flächen haben die gleiche Euler-Charakteristik.

Beweis: Sei $\varphi: M \to \tilde{M}$ Homöo. Sei (K, t) eine Triangulierung von M.

Dann ist $(K, \varphi \circ t)$ Triangulierung von \tilde{M} , denn $\varphi \circ t$ ist Verkettung von Homöomorphismen.

s

Lemma 2: Seien M_1, M_2, N_1, N_2 Flächen, sodass $M_1 \cong N_1, M_2 \cong N_2$. Dann ist $M_1 \# M_2 \cong N_1 \# N_2$.

Beweisansatz: Seien $\varphi_1:M_1\to N_1, \varphi_2:M_2\to N_2$ Homöomorphismen.

Sei $M\coloneqq M_1\#M_2, N\coloneqq N_1\#N_2$ beliebige zusammenhängende Summen.

Seien $B_1\subseteq M_1, B_2\subseteq M_2$ die Kreisscheiben, die zur Konstruktion von M verwendet wurden und sei $F:\partial B_1\to\partial B_2$ der verwendete Homöomorphismus.

Seien $C_1 := \varphi_1(B_1), C_2 := \varphi_2(B_2).$

Sei dann $\tilde{f}: \partial C_1 \to \partial C_2$ gegeben durch

$$\tilde{f}(p) \coloneqq \varphi_2(f(\varphi_1^{-1}(p)))$$

Sei \tilde{N} zusammenhängende Summe von N_1, N_2 mittels C_1, C_2, \tilde{f} . Dann ist

$$\varphi: M \to \tilde{N}, [p] \mapsto \begin{cases} [\varphi_1(p)], \text{ falls } p \in M_1 \\ [\varphi_2(p)], \text{ falls } p \in M_2, \end{cases}$$

ein wohldefinierter Homöomorphismus.

Also ist $M \cong \tilde{N} \cong N$.

Beweis der Aufgabe:

Seien (K_1, t_1) und (K_2, t_2) Triangulierungen von M_1 und M_2 . Jetzt ist nach *Vorraussetzung* $M_1 \cong |K_1|, M_2 \cong |K_2|$ also ist

$$M_1 \# M_2 \cong |K_1| \# |K_2|$$

also auch:

$$\chi(M_1 \# M_2) = (|K_1| \# |K_2|)$$

wobei wir uns die Verklebung von $|K_1|$ und $|K_2|$ beliebig aussuchen dürfen.

Seien also Δ_1, Δ_2 Dreiecke in K_1 bzw. K_2 .

Sei $f: \partial \Delta_1 \to \partial \Delta_2$ ein Homö
omorphismus, der Ecken von Δ_1 auf Ecken von Δ_2 abbildet.

Sei S die zusammenhängende Summe von $|K_1|$ und $|K_2|$ bzgl. Δ_1, Δ_2, f .

Dann hat S eine durch K_1 und K_2 erzeugte simpliziale Struktur.

Es gilt:

$$s(K) = s(K_1) + s(K_2) - 2$$
 da die Dreiecke fehlen
$$k(K) = k(K_1) + k(K_2) - 3$$
 da drei Kantenpaare verklebt wurden
$$e(K) = e(K_1) + e(K_2) - 3$$
 da drei Eckenpaare verklebt wurden

Also ist

$$\chi(K) = \chi(K_1) + \chi(K_2) - 3 + 3 - 2 = \chi(K_1) + \chi(K_2) - 2$$

Damit ist

$$\chi(M_1 \# M_2) = \chi(|K_1| \# |K_2|)$$

$$= \chi(S) = \chi(K)$$

$$= \chi(K_1) + \chi(K_2) - 2$$

$$= \chi(M_1) + \chi(M_2) - 2,$$

Aufgabe (3). Sei I ein Intervall und $c: I \to \mathbb{R}^3$ eine diff bare Kurve mit $\frac{dc}{fs}(t) \neq 0$ für alle $t \in I$.

Zu zeigen: Es gibt ein Intervall J und einen Diffeomorphismus $\varphi:I\to J$, sodass für die umparametrisierte Kurve $\tilde{c}:c\circ\varphi^{-1}$ die Gleichung

$$\|\frac{d\tilde{c}}{ds}(s) = 1\|$$

für alle $s \in J$ gilt.

Beweis: Sei $a \in I$ beliebig. Sei $\varphi : I \to \mathbb{R}$ gegeben durch

$$\varphi(x) \coloneqq \int_{a}^{x} \|\frac{dc}{dt}(t)\|dt$$

Da $\left\|\frac{dc}{dt}(t)\right\| > 0$ für alle $t \in I$ ist, ist φ stetig und streng monoton steigend, also ist φ Homöomorphismus von I nach $J \coloneqq \varphi(I)$.

Nach Konstruktion ist φ stetig diff'bar...

$$\left(\frac{d\varphi}{dx}(x) = \left\|\frac{dc}{dt}(x)\right\|\right)$$

... mit nicht verschwinde
nder Ableitung also ist φ^{-1} auch überall stetig diff'bar und damit ist φ ein Diffe
omorphismus.

Sei nun $\tilde{c}=c\circ\varphi^{-1}$, sei $s_0\in J$ beliebig. Sei $t_0=\varphi^{-1}(s_0)$ Jetzt gilt $c=\tilde{c}\circ\varphi$, mit Kettenregel folgt:

$$\begin{split} \frac{dc}{dt}(t_0) &= \frac{d\tilde{c}}{ds}(\varphi(t_0)) \cdot \frac{d\varphi}{dt}(t_0) \\ \Rightarrow & \|\frac{dc}{dt}(t_0)\| = \|\frac{d\tilde{c}}{ds}(s_0)\| \cdot |\frac{d\varphi}{dt}(t_0)| = \|\frac{d\tilde{c}}{ds}(s_0)\| \cdot \|\frac{dc}{dt}(t_0)\| \end{split}$$

Kürzen mit $\left\| \frac{dc}{dt}(t_0) \right\|$ ergibt $1 = \left\| \frac{d\tilde{c}}{ds}(s_0) \right\|$ wie gewünscht.