

KURIKULUM 2018-2023 PROGRAM STUDI SARJANA DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA, KOMPUTASI, DAN SAINS DATA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

2017

DAFTAR ISI

DAFTAR ISI	
DEPARTEMEN MATEMATIKA ITS	1
Visi Departemen Matematika ITS	
Misi Departemen Matematika ITS	1
Visi Program Studi Sarjana	1
Misi Program Studi Sarjana	2
Tujuan Program Studi Sarjana	2
Capaian Pembelajaran Lulusan (CPL) Program Studi Sarjana	5
Rincian Capaian Pembelajaran Lulusan (CPL) Program Studi Sarjana	8
Evaluasi CPL, dan Keterkaitan CPL dengan Bahan Kajian (BK) dan Ma	ata
KuliahError! Bookmark not de	
SUMBER DAYA MANUSIA	11
Dosen RMK Analisis dan Aljabar	11
Dosen RMK Matematika Terapan	12
Dosen RMK Ilmu Komputer	14
SARANA DAN PRASARANA	15
Ruang Kerja Dosen	15
Ruang Perkuliahan dan Penelitian	15
Ruang Baca Matematika	16
Laboratorium	16
SILABUS	18
Daftar Mata Kuliah Program Sarjana	18
Daftar Mata Kuliah Pilihan	21
Detail Mata Kuliah	23
Detail Mata Kuliah di RMK Analisis dan Aljabar	16
Detail Mata Kuliah di RMK Matematika Terapan	56
Detail Mata Kuliah di RMK Ilmu Komputer	1

DEPARTEMEN MATEMATIKA ITS

Visi Departemen Matematika ITS

Menjadi departemen yang bereputasi internasional dalam bidang matematika dan komputasi serta terapannya yang menunjang sains dan teknologi terutama dalam bidang industri, energi, kelautan, finansial dan teknologi informasi yang berwawasan lingkungan.

Misi Departemen Matematika ITS

- Menyelenggarakan pendidikan matematika berbasis teknologi informasi dan komunikasi untuk menghasilkan lulusan yang bertaqwa kepada Tuhan YME, berkualitas internasional, sesuai dengan kebutuhan pasar kerja, tanggap terhadap perkembangan sains dan teknologi serta mempunyai pengetahuan kewirausahaan.
- Meningkatkan kualitas penelitian matematika dan terapannya bertaraf nasional maupun internasional yang menunjang sains dan teknologi terutama dalam bidang industri, energi, kelautan, finansial dan teknologi informasi yang berwawasan lingkungan.
- 3. Meningkatkan kegiatan pengabdian pada masyarakat dalam rangka menyebarluaskan matematika dan penerapannya.
- Mengembangkan jejaring dan bersinergi dengan perguruan tinggi dalam dan luar negeri, industri, masyarakat, dan pemerintahandalam penyelenggaraan Tridharma Perguruan Tinggi pada bidang matematika dan terapannya.
- 5. Meningkatkan kompetensi dosen dan tenaga kependidikan agar lebih kreatif dan profesional dalam menjalankan tugas.

Visi Program Studi Sarjana

PSSM-ITS sebagai institusi unggulan dalam pendidikan sarjana matematika yang bereputasi internasional terutama dalam bidang analisis, aljabar dan komputasi untuk mendukung dan mengembangkan matematika terapan pada bidang industri, energi, kelautan, finansial dan teknologi informasi yang berwawasan lingkungan.

Misi Program Studi Sarjana

- 1. Menyelenggarakan pendidikan sarjana matematika berbasis teknologi informasi dan komunikasi untuk menghasilkan lulusan yang bertaqwa kepada Tuhan YME, berkualitas internasional, sesuai dengan kebutuhan pasar kerja, tanggap terhadap perkembangan sains dan teknologi serta mempunyai pengetahuan kewirausahaan.
- Meningkatkan kualitas penelitian matematika dan terapannya bertaraf nasional maupun internasional yang menunjang sains dan teknologi terutama dalam bidang industri, energi, kelautan, finansial dan teknologi informasi yang berwawasan lingkungan.
- 3. Meningkatkan kegiatan pengabdian pada masyarakat dalam rangka menyebarluaskan matematika dan penerapannya.
- Mengembangkan jejaring dan bersinergi dengan perguruan tinggi dalam dan luar negeri, industri, masyarakat, dan pemerintahandalam penyelenggaraan Tridharma Perguruan Tinggi pada bidang matematika dan terapannya.

Tujuan Program Studi Sarjana

Menyediakan pendidikan dan penelitian bermutu tinggi berbasis teknologi informasi dan komunikasi untuk menghasilkan sarjana matematika yang:

- 1. tanggap terhadap perubahan dan kemajuan ilmu pengetahuan dan teknologi,
- berkualitas internasional yang mempunyai kompetensi dalam bidang Analisis, Aljabar, Matematika Terapan, dan Ilmu Komputer yang sesuai dengan kebutuhan pasar kerja,
- 3. mampu membantu menyelesaikan masalah-masalah nyata, khususnya yang berkaitan dengan bidang energi, transportasi, lingkungan, kelautan, finansial, industri, dan teknologi informasi, dan
- 4. mempunyai pengetahuan kewirausahaan.

Sasaran Program Studi Sarjana

Sasaran yang ingin dicapai oleh PSSM FMIPA ITS adalah:

- Lulusan yang memiliki kompetensi sesuai dengan yang dibutuhkan oleh pengguna, dengan keunggulan:
 - a. Lama masa studi sesuai dengan desain kurikulum.
 - b. Indeks Prestasi Kumulatif diatas rata-rata yang dipersyaratkan oleh pengguna.
 - c. Lulusan telah memiliki sertifikat minimal 3 macam pelatihan softskill.
 - d. Lulusan atau mahasiswa memiliki jiwa berwirausaha.

- 2. Terbentuknya iklim penelitian dan hasil penelitian yang melibatkan seluruh komponen, serta dapat diimplementasikan dan bermanfaat bagi masyarakat yang ditandai dengan:
 - a. Peningkatan jumlah judul dan dana penelitian.
 - b. Peningkatan jumlah kerjasama penelitian dengan industri, instansi pemerintah, universitas dalam dan atauluar negeri
- 3. Terciptanya sumber daya (manusia, aset, informasi & manajemen, keuangan) dan kenyamanan lingkungan yang menunjang perkembangan PSSM FMIPA ITS dengan cara meningkatkan:
 - a. Tersedianya sarana prasarana yang memadai untuk pelaksanaan pendidikan, penelitian dan pengabdian pada masyarakat.
 - b. Tersedianya sarana prasarana penunjang yang memadai, serta terciptanya suasana akademik dan lingkungan yang nyaman
- 4. Terciptanya jaringan kerja sama yang efektif antara lembaga pendidikan di dalam/ luar negeri, industri, instansi pemerintah dan swasta, dengan cara:
 - a. Meningkatkan jumlah kerjasama dan implementasi dengan universitas lain, instansi pemerintah maupun swasta.
 - b. Meningkatkan kerja sama dengan alumni sebagai sarana networking.

Rencana Pengembangan Program Studi

- 1. Pengembangan Akademik, meliputi:
- a. Penyempurnaan dan pemantapan kurikulum yang fleksibel sesuai dengan perkembangan matematika, sain dan teknologi, serta mampu memenuhi kebutuhan pasar kerja, mendorong kemandirian lulusan untuk menciptakan pekerjaan dan bekerja secara profesional sesuai dengan bidang keahliannya.
- b. Peningkatan penyediaan dan kualitas sarana prasarana pendidikan.
- c. Peningkatan kualitas lulusan dengan meningkatkan Indeks Prestasi Kumulatif bagi mahasiswa dan kemampuan softskill.
- d. Pengembangan bidang minat yang ada di PSSM-ITS.
- 2. Pengembangan Penelitian, meliputi:
- a. Peningkatan kualitas dan kuantitas penelitian yang dilakukan tenaga akademik sesuai dengan perkembangan matematika, sains dan teknologi serta terapannya, khususnya peningkatan jumlah hibah penelitian berskala nasional dan internasional yang melibatkan mahasiswa.

- b. Penyebarluasan hasil-hasil penelitian yang dilakukan oleh tenaga akademik maupun mahasiswa melalui jurnal nasional yang terakreditasi maupun jurnal/seminar internasional, serta menyebarluaskan hasil penelitian kepada stakeholders potensial.
- 3. Pengembangan Pengabdian Kepada Masyarakat, meliputi:
- a. Peningkatan peran PSSM-ITS dalam pemberdayaan masyarakat dan pemerintahan
- b. Peningkatan jumlah kegiatan pengabdian kepada masyarakat baik melalui dana internal ataupun dana dari instansi lain.
- 4. Pengembangan Sumber Daya Manusia, meliputi:
- a. Peningkatan kualitas tenaga akademik, dengan meningkatkan jumlah doktor.
- b. Peningkatan kualitas tenaga akademik dibidang penelitian dan penulisan karya ilmiah melalui workshop sesuai kompetensinya.
- c. Peningkatan kualitas tenaga kependidikan melalui pendidikan formal (S2 dan S3) dan non-formal (kursus dan workshop yang terkait dengan tugas pokok dan fungsinya).
- 5. Peningkatan Sarana dan Prasarana, meliputi:
- a. Peningkatan peralatan dan fungsi Laboratorium
- b. Peningkatan jumlah dan kualitas ruang kerja tenaga akademik
- c. Peningkatan kualitas lingkungan yang nyaman dan asri
- 6. Peningkatan Keuangan, meliputi:
- a. Peningkatan pendapatan/finansial Jurusan melalui upaya mendapatkan hibah penelitian, dan block grant
- b. Penggalian pendapatan dari peningkatan kerjasama
- 7. Peningkatan jumlah kerjasama dan implementasi dengan industri, instansi pemerintah, swasta, serta perguruan tinggi dalam dan luar negeri. Secara lebih spesifik, sasaran utama yang hendak dicapai adalah menjadikan PSSM-ITS sebagai the world class institution pada tahun 2020. Pada kurun tersebut, target tercapai ditandai dengan jumlah dosen yang berpendidikan S3 telah mencapai 50%, suasana akademik dan riset telah kondusif, jumlah mahasiswa yang keluar negeri maupun mahasiswa asing ke ITS semakin banyak, sarana prasarana pendidikan dan penelitian telah memadai, kerjasama internasional memadai dan berjalan baik.

Capaian Pembelajaran Lulusan (CPL) Program Studi Sarjana

Sikap	
1.1	Bertakwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religius
1.2	Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika
1.3	Berkontribusi dalam peningkatan mutu kehidupan bermasyarakat, berbangsa, bernegara, dan kemajuan peradaban berdasarkan Pancasila
1.4	Berperan sebagai warga negara yang bangga dan cinta tanah air, memiliki nasionalisme serta rasa tanggungjawab pada negara dan bangsa
1.5	Menghargai keanekaragaman budaya, pandangan, agama, dan kepercayaan, serta pendapat atau temuan orisinal orang lain
1.6	Bekerja sama dan memiliki kepekaan sosial serta kepedulian terhadap masyarakat dan lingkungan
1.7	Taat hukum dan disiplin dalam kehidupan bermasyarakat dan bernegara
1.8	Menginternalisasi nilai, norma, dan etika akademik
1.9	Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri
1.10	Menginternalisasi semangat kemandirian, kejuangan, dan kewirausahaan
1.11	Berusaha secara maksimal untuk mencapai hasil yang sempurna
1.12	Bekerja sama untuk dapat memanfaatkan semaksimal mungkin potensi yang dimiliki

Keterampilan Umum	
2.1	Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya
2.2	Mampu menunjukkan kinerja mandiri, bermutu, dan terukur
2.3	Mampu mengkaji implikasi pengembangan atau implementasi ilmu pengetahuan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan keahliannya berdasarkan kaidah, tata cara dan etika ilmiah dalam rangka menghasilkan solusi, gagasan, desain atau kritik seni
2.4	Menyusun deskripsi saintifik hasil kajian tersebut di atas dalam bentuk skripsi atau laporan tugas akhir, dan mengunggahnya dalam laman perguruan tinggi
2.5	Mampu mengambil keputusan secara tepat dalam konteks penyelesaian masalah di bidang keahliannya, berdasarkan hasil analisis informasi dan data
2.6	Mampu memelihara dan mengembangkan jaringan kerja dengan pembimbing, kolega, sejawat baik di dalam maupun di luar lembaganya
2.7	Mampu bertanggungjawab atas pencapaian hasil kerja kelompok dan melakukan supervisi dan evaluasi terhadap penyelesaian pekerjaan yang ditugaskan kepada pekerja yang berada di bawah tanggungjawabnya
2.8	Mampu melakukan proses evaluasi diri terhadap kelompok kerja yang berada dibawah tanggung jawabnya, dan Mampu mengelola pembelajaran secara mandiri
2.9	Mampu mendokumentasikan, menyimpan, mengamankan, dan menemukan kembali data untuk menjamin kesahihan dan mencegah plagiasi
2.10	Mampu mengembangkan diri dan bersaing di tingkat nasional maupun internasional
2.11	Mampu mengimplementasikan prinsip keberlanjutan (sustainability) dalam mengembangkan pengetahuan
2.12	Mampu mengimplementasikan teknologi informasi dan komunikasi dalam konteks pelaksanaan pekerjaannya
2.13	Mampu menerapkan kewirausahaan dan memahami kewirausahaan berbasis teknologi

	Pengetahuan	
3.1	Menguasai konsep dasar matematika yang meliputi konsep konstruksi pembuktian secara logis/analitis, memodelkan dan menyelesaikan masalah-masalah sederhana, serta dasar-dasar komputasi	
3.2	Menguasai konsep teoritis tentang salah satu bidang matematika yaitu analisis, aljabar, pemodelan, optimasi sistem dan ilmu komputer serta menerapkannya dalam menganalisis, merancang, dan mengevaluasi penyelesaian masalah	

	Keterampilan Khusus	
4.1	Mampu menerapkan kerangka berpikir matematis khususnya bidang analisis, aljabar, pemodelan, optimasi sistem dan ilmu komputer untuk menyelesaikan masalah nyata terutama dalam bidang lingkungan dan pemukiman, kelautan, energi dan teknologi informasi	
4.2	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi hingga pemahaman yang luas meliputi eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal	
4.3	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan atau tanpa bantuan piranti lunak	
4.4	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis, mengkaji keakuratan dan menginterpretasikannya	
4.5	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat	
4.6	Mampu beradaptasi atau mengembangan diri, baik dalam bidang matematika maupun bidang lainnya yang relevan	
4.7	Mampu menciptakan lapangan kerja sesuai bidang keahliannya	

Rincian Capaian Pembelajaran Lulusan (CPL) Program Studi Sarjana

Kode	Rincian Capaian Pembelajaran Lulusan (CPL)	
1.1.1	Bertakwa kepada Tuhan Yang Maha Esa dan Mampu menunjukkan sikap religious	
1.2.1	Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika	
1.3.1	Berkontribusi dalam peningkatan mutu kehidupan bermasyarakat, berbangsa, bernegara, dan kemajuan peradaban berdasarkan Pancasila	
1.4.1	Berperan sebagai warga negara yang bangga dan cinta tanah air, memiliki nasionalisme serta rasa tanggungjawab pada negara dan bangsa	
1.5.1	Menghargai keanekaragaman budaya, pandangan, agama, dan kepercayaan, serta pendapat atau temuan orisinal orang lain	
1.6.1	Bekerja sama dan memiliki kepekaan sosial serta kepedulian terhadap masyarakat dan lingkungan	
1.7.1	Taat hukum dan disiplin dalam kehidupan bermasyarakat dan bernegara	
1.8.1	Menginternalisasi nilai, norma, dan etika akademik	
1.9.1	Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri	
1.10.1	Menginternalisasi semangat kemandirian, kejuangan, dan kewirausahaan	
1.11.1	Berusaha secara maksimal untuk mencapai hasil yang sempurna	
1.12.1	Bekerja sama untuk dapat memanfaatkan semaksimal mungkin potensi yang dimiliki	
2.1.1	Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya	
2.2.1	Mampu menunjukkan kinerja mandiri, bermutu, dan terukur	
2.3.1	Mampu mengkaji implikasi pengembangan atau implementasi ilmu pengetahuan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan keahliannya berdasarkan kaidah, tata cara dan etika ilmiah dalam rangka menghasilkan solusi, gagasan, desain atau kritik seni	
2.4.1	Menyusun deskripsi saintifik hasil kajian tersebut di atas dalam bentuk skripsi atau laporan tugas akhir, dan mengunggahnya dalam laman	

	perguruan tinggi	
2.5.1	Mampu mengambil keputusan secara tepat dalam konteks penyelesaian masalah di bidang keahliannya, berdasarkan hasil	
	analisis informasi dan data	
2.6.1	Mampu memelihara dan mengembangkan jaringan kerja dengan pembimbing, kolega, sejawat baik di dalam maupun di luar	
2.0.1	lembaganya	
	Mampu bertanggungjawab atas pencapaian hasil kerja kelompok dan	
2.7.1	melakukan supervisi dan evaluasi terhadap penyelesaian pekerjaan	
	yang ditugaskan kepada pekerja yang berada di bawah	
	tanggungjawabnya Mampu melakukan proses evaluasi diri terhadap kelompok kerja yang	
2.8.1	berada dibawah tanggung jawabnya, dan Mampu mengelola	
2.0.1	pembelajaran secara mandiri	
	Mampu mendokumentasikan, menyimpan, mengamankan, dan	
2.9.1	menemukan kembali data untuk menjamin kesahihan dan mencegah	
	plagiasi	
2.10.1	Mampu mengembangkan diri dan bersaing di tingkat nasional maupun	
	internasional Mampy manaimplementasikan princip kaharlaniytan (syatainahility)	
2.11.1	Mampu mengimplementasikan prinsip keberlanjutan (sustainability) dalam mengembangkan pengetahuan	
2.12.1	Mampu mengimplementasikan teknologi informasi dan komunikasi	
2.12.1	dalam konteks pelaksanaan pekerjaannya	
2.13.1 Mampu menerapkan kewirausahaan dan memahami kewiraus		
	berbasis teknologi Mampu menginterpertasikan konsep dasar matematika dan menyusun	
3.1.1	pembuktian secara langsung, tidak langsung, maupun dengan induksi	
3.1.1	matematika	
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk	
	model matematika dan menyelesaikannya	
3.1.3	Menguasai metode-metode standar dalam bidang matematika	
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural,	
	berorientasi obyek dan pemrograman matematika Mampu menguasai teori fundamental matematika yang meliputi	
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur	
3.2.1	matematika	
222	Mampu melakukan identifikasi permasalahan, membentuk model	
3.2.2	matematika dan menyelesaikannya	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya	
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu	
	komputasi untuk menyelesaikan pengembangan perangkat lunak dan	

	sistem cerdas	
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya	
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya	
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris	
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas	
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi	
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal	
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis	
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak	
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis	
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat	
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni	
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang kerja	
4.7.1	Mampu mengaplikasikan keMampuan matematika untuk menciptakan lapangan kerja	

SUMBER DAYA MANUSIA

Dosen RMK Analisis dan Aljabar

Dosen Pengampu	Nama Mata Kuliah (MK)
Dr. Subiono, M.Si.	Aljabar Linier Elementer
Dian Winda, M.Si.	Aljabar I
Soleha, M.Si.	Aljabar II
Drs. Komar Baihaqi, M.Si.	Aljabar Linier
	Logika Matematika
Dr. Mahmud Yunus, M.Si.	Kapita Selekta Analisis
	Transformasi Fourier dan Wavelet
Drs. Sentot Didik Surjanto, M.Si.	Fungsi Peubah Kompleks
Drs. Suhud Wahyudi, M.Si.	Kalkulus Vektor
Drs. Sadjidon, M.Si.	Analisis II
Drs. IGN Rai Usadha, M.Si.	Geometri Analitik
	Teori Bilangan
Drs. Iis Herisman, M.Si.	Geometri
Wahyu F. Doctorina, M.Si.	Geometri Diferensial
Drs. Mohammad Setijo W., M.Si.	Analisis Kombinatorik
Dr. Darmaji, S.Si., M.T. Dra. Rinurwati, M.Si.	Pengantar Teori Graph
Sunarsini, S.Si, M.Si.	Analisis I
Dra. Rinurwati, M.Si.	Teori Ukuran & Integral
Dr. Dieky Adzkiya, S.Si, M.Si. Drs. Komar Baihaqi, M.Si.	Kapita Selekta Aljabar

Dosen RMK Matematika Terapan

Dosen Pengampu	Nama Mata Kuliah (MK)
Drs. Suharmadi Sanjaya, M.Phil.	Kapita Selekta Pemodelan, Sistem, dan Simulasi
Dra. Farida Agustini Widjajati, MS.	Pengendalian Kualitas
	Persamaan Diferensial Parsial
Du Harianata M.C.	Pemodelan Matematika
Dr. Hariyanto, M.Si.	Sistem Dinamik
	Sistem Optimasi
Dra. Sri Suprapti Hartatiati, M.Si.	Metode Matematika
	Penulisan Ilmiah Matematika
Dr. Chairul Imron, M.I.Komp.	Persamaan Diferensial Numerik
Prof. Basuki Widodo, M.Si.	Pengantar Komputasi Dinamika Fluida
	Persamaan Diferensial Parsial Numerik
Dr. Didik Khusnul Arif, S.Si., M.Si.	Matematika Sistem
Dr. Drs. Soehardjoepri, M.Si.	Teori Peluang
Drs. Suhud Wahyudi, M.Si.	Kalkulus Peubah Banyak
Prof. Dr. Erna Apriliani, M.Si.	Estimasi Optimum
Dr. Mardlijah, M.T.	Pengantar Optimasi Dinamis
Dra. Laksmi Prita W., M.Si.	Matematika Statistika
Dra. Nur Asiyah, M.Si.	Persamaan Diferensial Biasa
	Metode Statistika
Dra. Nuri Wahyuningsih, M.Kes.	Perancangan Eksperimen
	Metode Peramalan
Due Versione M.S.	Persamaan Beda
Drs. Kamiran, M.Si.	Metode Elemen Hingga
Drs. Lukman Hanafi, M.Sc.	Metode Numerik
Subchan, S.Si., M.Sc., Ph.D	Riset Operasi II
Valaniana Lulritagani C.C. M.T.	Riset Operasi I
Valeriana Lukitosari, S.Si., M.T. Titik Mudjiati, M.Si.	Kapita Selekta Stokastik, Optimasi, dan
	Resiko
Endah Rokhmati MP, S.Si., M.T.,	Pengantar Matematika Keuangan
Ph.D	Proses Stokastik
	Pengantar Analisis Resiko

Tahiyatul Asfihani, S.Si., M.Si.	Persamaan Diferensial Tak Linier
Dosen Matematika	Kerja Praktik

Dosen RMK Ilmu Komputer

Dosen Pengampu	Nama Mata Kuliah (MK)
Drs. Soetrisno, M.I.Komp.	Matematika Diskrit
	Teknik Simulasi
	Kecerdasan Buatan
Duof Du M. Iso Inovvon M.T.	Jaringan Syaraf Tiruan
Prof. Dr. M. Isa Irawan, M.T.	Logika Fuzzy
	Sistem Pendukung Keputusan
Dr. Darmaji, S.Si., M.T.	Kriptografi
D. L. M. H. L. C.C. M.T.	Data Mining
Dr. Imam Mukhlash, S.Si., M.T. Drs. Bandung Arry S., M.I.Komp.	Desain dan Analisis Algoritma
	Rekayasa Perangkat Lunak
Dr. Dwi Ratna Sulistyaningrum,	Algoritma dan Pemrograman
M.T.	Pemrograman Berorientasi Obyek
Alvida Mustika R., M.Si. Drs. Daryono Budi Utomo, M.Si.	Pengolahan Citra Digital
	Kapita Selekta Ilmu Komputer
Dr. Budi Setiyono, M.T. Drs. Nurul Hidayat, M.I.Komp.	Perangkat Lunak Matematika
	Sistem Basis Data
	Pengembangan Aplikasi Web dan Mobile

SARANA DAN PRASARANA

Ruang Kerja Dosen

Departemen Matematika mempunyai 24 ruang kerja dosen. Dari ruang kerja dosen tersebut, ada 17 ruang kerja yang ditempati oleh 2 dosen dan ada 7 ruang kerja yang ditempati 1 dosen.

Ruang Kerja Dosen	Jumlah Ruang	Luas (m ²)
Satu ruang untuk lebih dari 4 dosen		
Satu ruang untuk 3 atau 4 dosen		
Satu ruang untuk 2 dosen	17	247,42
Satu ruang untuk 1 dosen (bukan pejabat struktural)	7	91,72
Total	24	339,14

Ruang Perkuliahan dan Penelitian

Untuk mendukung proses perkuliahan dan penelitian, Departemen Matematika mempunyai 8 ruang kelas, 5 ruang laboratorium, 1 ruang baca dan 1 ruang Tugas Akhir. Ruang-ruang tersebut dapat menampung mulai dari 20 hingga 80 mahasiswa.

Nama Ruang	Jumlah Ruang	Luas (m ²)	Utilisasi (jam/minggu)
Ruang Kelas U.101	1	17,28	40
Ruang Lab U102	1	17,28	40
Ruang Kelas F.101	1	73,00	40
Ruang Kelas F.102	1	56,16	40
Ruang Kelas F.109	1	79,04	40
Ruang Kelas F.111	1	48,28	40
Ruang Kelas F.110	1	39,05	40
Ruang Kelas T.101	1	156,20	40
Ruang Lab. Ilmu Komputer	1	20,64	40
Ruang Lab. Model dan Simulasi	1	72,10	40
Ruang Lab. ROPD	1	58,59	40
Ruang Lab. Analisis dan Aljabar	1	84,66	40

Ruang Lab. Komputasi	1	85,49	40
Ruang Baca Matematika	1	107,12	40
Ruang Tugas Akhir	1	35,91	40

Ruang Baca Matematika

Adapun fasilitas yang ada di Ruang Baca Matematika ada bermacam-macam, yaitu buku teks, jurnal nasional yang terakreditasi, jurnal internasional, prosiding dan skripsi/tesis.

Jenis Pustaka	Jumlah
Buku teks	2681
Jurnal nasional yang terakreditasi	4
Jurnal internasional	9
Prosiding	20
Skripsi/Tesis	1067
Disertasi	0
Total	3781

Laboratorium

Seperti yang telah dijelaskan, di Departemen Matematika ada 5 laboratorium. Masing-masing laboratorium dilengkapi dengan AC, LCD, layar proyektor dan sejumlah PC.

Nama Laboratorium	Jenis Peralatan Utama	Jumlah Unit
	PC ACER AZ 5801i5 Intel Core i5,	15
Laboratorium Ilmu Komputer	DDR 4GB, HDD 1 TB, Wifi	13
	LCD Proyektor	1
	Layar Proyektor	1
	PC ACER AZ 5801i5 Intel Core i5,	28
I ah anatanin ma Wananatani	DDR 4GB, HDD 1 TB, Wifi	20
Laboratorium Komputasi	LCD Proyektor	1
	Layar Proyektor	1
Laboratorium Riset Operasi	PC Intel Core i3, DDR 2 GB, HDD	21
dan Pengolahan Data	500	21

	LCD Proyektor	1
Laboratorium Pemodelan	PC ACER AZ 5801i5 Intel Core i5, DDR 4GB, HDD 1 TB, Wifi	17
dan Simulasi Sistem	LCD Proyektor	1
	Layar Proyektor	1
Laboratorium Analisis, Aljabar dan Pembelajaran Matematika	PC ACER AZ 5801i5 Intel Core i5, DDR 4GB, HDD 1 TB, Wifi	5

SILABUS

Daftar Mata Kuliah Program Sarjana

	Semester I				
No.	Kode Mata Kuliah	Nama Mata Kuliah	sks		
1	UG184914	Bahasa Inggris	2		
2	KM184101	Matematika 1	3		
3	SF184101	Fisika 1	4		
4	SK184101	Kimia	3		
5	KM184102	Logika Matematika	3		
6	KM184103	Geometri Analitik	3		
	18				

	Semester II				
No.	Kode Mata Kuliah	Nama Mata Kuliah	sks		
1	UG18490X	Agama	2		
2	UG184913	Kewarganegaraan	2		
3	KM184201	Matematika 2	3		
4	SF184202	Fisika II	3		
5	KM184202	Algoritma dan Pemrograman	4		
6	KM184203	Aljabar Linier Elementer	4		
	18				

Semester III					
No.	Kode Mata Kuliah	Nama Mata Kuliah		sks	
1	UG184911	Pancasila		2	
2	KM184301	Kalkulus Peubah Banyak		4	
3	KM184302	Riset Operasi I		3	
4	KM184303	Pemrograman Berorientasi Obyek		3	
5	KM184304	Matematika Diskrit		3	
6	KM184305	Metode Statistika		3	
	Total				

Semester IV				
No.	Kode Mata Kuliah	Nama Mata Kuliah	sks	
1	KM184401	Persamaan Diferensial Biasa	3	
2	KM184402	Aljabar I	3	
3	KM184403	Perangkat Lunak Matematika	3	
4	KW184901	Teori Peluang	3	
5	KM184404	Metode Numerik	3	
6	KM184405	Riset Operasi II	3	
Total				

	Semester V					
No.	No. Kode Mata Kuliah Nama Mata Kuliah					
1	KM184501	Analisis I	4			
2	KM184502	Kalkulus Vektor	2			
3	KM184503	Persamaan Diferensial Parsial	3			
4	KM184504	Aljabar II	3			
5	KM184505	Matematika Statistika	3			
6	KM184506	Teknik Simulasi	3			
	Total					

		Semester VI			
No.	Kode Mata Kuliah	Nama Mata Kuliah	sks		
1	UG184912	Bahasa Indonesia	2		
2	KM184601	Analisis II	4		
3	KM184602	Fungsi Peubah Kompleks	3		
4	KM184603	Metode Matematika	3		
5	KM184604	Matematika Sistem	4		
6		MK Pengayaan	3		
	Total 19				
		Semester VII			
No.	Kode Mata Kuliah	Nama Mata Kuliah	Sks		
1	UG184915	Teknopreneur	2		
2	KM184701	Pemodelan Matematika	4		
3	KM184702	Aljabar Linier	3		
4	KM184703	Penulisan Ilmiah Matematika	2		
5	KM184704	Analisis Kombinatorik	3		
6		Pilihan	4		
		Total	18		

Semester VIII				
No.	Kode Mata Kuliah	Nama Mata Kuliah		Sks
1	KM184801	Tugas Akhir		6
2	UG184916	Wawasan dan Aplikasi Teknologi		3
3		Pilihan		8
	Total 17			

Daftar Mata Kuliah Pilihan

Semester VII			
RMK	Kode Mata Kuliah Nama Mata Kuliah		Sks
	KM184711	Teori Bilangan	2
AA	KM184712	Geometri	2
	KM184713	Pengantar Teori Graph	2
	KM184714	Persamaan Diferensial Tak Linier	2
	KM184715	Persamaan Beda	2
	KM184716	Pengantar Optimasi Dinamis	2
	KM184717	Kerja Praktik	2
MT	KM184718	Pengantar Matematika Keuangan	2
	KM184719	Proses Stokastik	2
	KM184720	Pengendalian Kualitas	2
	KM184721	Persamaan Diferensial Numerik	2
	KM184731	Pemodelan Matematika Sistem	3
	KM184722	Sistem Basis Data	2
IK	KM184723	Pengolahan Citra Digital	2
	KM184724	Kecerdasan Buatan	2
	KM184725	Data Mining	2
	KM184726	Struktur Data	2

Semester VIII			
RMK	Kode Mata Nama Mata Kuliah		sks
	KM184811	Teori Ukuran dan Integral	2
	KM184812	Kapita Selekta Analisis	2
AA	KM184813	Kapita Selekta Aljabar	2
	KM184814	Transformasi Fourier dan Wavelet	2
	KM184815	Geometri Diferensial	2
	KM184816	Estimasi Optimum	2
	KM184817	Pengantar Sistem Dinamik	2
	KM184818	Perancangan Eksperimen	2
	KM184819	Kapita Selekta Pemodelan, Sistem, dan Simulasi	2
MT	KM184820	Kapita Selekta Stokastik, Optimasi, dan Resiko	2
IVI I	KM184821	Metode Peramalan	2
	KM184822	Metode Elemen Hingga	2
	KM184823	Pengantar Analisis Resiko	2
	KM184824	Pengantar Komputasi Dinamika Fluida	2
	KM184825	Persamaan Diferensial Parsial Numerik	2
	KM184826	Desain dan Analisis Algoritma	2
	KM184827	Rekayasa Perangkat Lunak	2
	KM184828	Jaringan Syaraf Tiruan	2
IK	KM184829	Logika Fuzzy	2
	KM184830	Kriptografi	2
	KM184831	Kapita Selekta Ilmu Komputasi	2
	KM184832	Pengembangan Aplikasi Web	2
	KM184833	Sistem Pendukung Keputusan	2
	KM184834	Teknologi Basis Data	2

Detail Mata Kuliah

Mata Kuliah	Nama Mata Kuliah	: Agama Islam
	Kode Mata Kuliah	: UG184901
	Kredit	: 2
	Semester	: 1

Deskripsi Mata Kuliah

Mata kuliah Pendidikan Agama Islam ini membahas dan mendalami materimateri dengan substansi relasi manusia dengan Allah untuk mewujudkan generasi bertakwa dengan paradigma Qur'ani; relasi mausia dengan sesama manusia dalam rangka mengintegrasikan Iman, Islam dan Ihsan; serta relasi manusia dengan lingkungannya dalam rangka membumikan Islam untuk mewujudkan kesejahteraan. Dengan demikian lahirlah generasi religius, humanis, berwawasan luas dan memiliki kepedulian.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah
Bertaqwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religius (S.1);
Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral dan etika (S.2);
Menginternalisasi nilai, norma, dan etika akademik (S.8);
Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya (KU.1);
Mampu menunjukkan kinerja mandiri, bermutu, dan terukur (KU.2);
Mampu mengambil keputusan secara tepat dalam konteks penyelesaian masalah di bidang keahliannya, berdasarkan hasil analisis informasi dan data (KU.5);
Mampu mengimplementasikan prinsip keberlanjutan

(sustainability) dalam mengembangkan pengetahuan (KU.11).

Capaian Pembelajaran Mata Kuliah

Keterampilan Khusus:

- 1. Menjelaskan esensi relasi manusia dengan Allah, dengan sesama manusia dan dengan lingkungan alam dalam paradigma Qur'ani;
- 2. Menyajikan hasil penelaahan konseptual dan/atau empiris terkait esensi dan urgensi nilai-nilai spiritualitas Islam sebagai salah satu determinan dalam pembangunan bangsa yang berkarakter;
- 3. Mampu bersikap secara konsistensi terhadap koherensi pokok-pokok ajaran Islam sebagai implementasi Iman, Islam, dan Ihsan;
- 4. Terampil menyajikan hasil kajian individual maupun kelompok mengenai suatu kasus (studi kasus) terkait kontribusi Islam dalam perkembangan peradaban dunia;
- 5. Terampil menganalisis permasalahan optimalisasi peran masjid sebagai pusat pengembangan budaya islam, dan wadah perwujudan kesejahteraan umat.

Pengetahuan:

- Memahami esensi Pendidikan Agama Islam sebagai komponen Mata Kuliah Wajib Umum dan urgensinya sebagai nilai-nilai spiritualitas yang menjadi salah satu determinan dalam pembangunan karakter bangsa.
- Menguasai substansi agama sebagai salah satu komponen dasar persatuan dan kesatuan bangsa dalam wadah Negara Kesatuan Republik Indonesia.
- 3. Memahami korelasi sumber ajaran Islam dan kontekstualisasinya dalam kehidupan modern sebagai *rahmatan lil alamin*.
- 4. Menguasai aplikasi konsep Islam tentang IPTEK, seni, sosial-budaya, politik, ekonomi, dan masalah kesejahteraan umat.
- 5. Memahami kontribusi Islam dalam perkembangan peradaban dunia, dan menguasai strategi optimalisasi peran dan fungsi masjid sebagai pusat pengembangan budaya Islam.

Pokok Bahasan

- 1. Membangun Paradigma Qur'ani
- 2. Bagaimana Manusia Bertuhan
- 3. Integrasi Iman, Islam dan Ihsan
- 4. Bagaimana Agama Menjamin Kebahagiaan
- 5. Membumikan Islam di Indonesia

- 6. Islam Membangun Persatuan dalam Keberagaman
- 7. Islam tentag Zakat dan Pajak
- 8. Peran dan Fungsi Masjid untuk Kesejarteraan Umat
- 9. Islam Menghadapi Tantangan Modernisasi
- 10. Kontribusi Islam dalam Pengembangan Peradaban Dunia

Prasyarat

Pustaka

- Dirjen Pembelajaran dan Kemahasiswaan Kemenristekdikti, *Pendidikan Agama Islam untuk Perguruan Tinggi*, Jakarta, Dirjen Belmawa, 2016.
- 2. Muhibbin, Zainul, dkk, *Pendidikan Agama Islam Membangun Karakter Madani*, Surabayaa, ITS Press, 2012.
- 3. Razaq, Nasruddin, Dinnul Islam, Bandung, Al-Ma, arif, 2005.
- Iberani, Jamal Syarif dkk, Mengenal Islam, Jakarta: eL-Kahfi, 2003.
 Imarah, Muhammad, Islam dan Pluralitas Perbedaan dan Kemajemukan dalam Bingkai Persatuan, Jakarta, Gema Insani, 1999.

Mata Kuliah Kulia Kode Kulia Kred	Nama Mata Kuliah	: Agama Kristen Protestan
	Kode Mata Kuliah	: UG184902
	Kredit	: 2
	Semester	: 1

Deskripsi Mata Kuliah

Mata Kuliah Pendidikan Agama Kristen memberikan wawasan kepada mahasiswa untuk mengembangkan kepribadian yang utuh dan tangguh berlandaskan pada kebenaran Alkitab dalam kehidupan bersama, serta menerapkan Iptek secara bertanggung jawab yang didukung oleh pemahaman yang benar tentang materi ke-Tuhan-an, kemanusiaan, etika, budaya, hukum, ipteks dan politik.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah
Mahasiswa mampun memahami dan menjelaskan ajaran Kristen dengan benar.
Mahasiswa memahami hakikat manusia dan tanggung jawabnya sebagai umat beragama.
Mahasiswa mampu menjadikan Firman Tuhan sebagai landasan berfikir, berkata dan berperilaku.
Mahasiswa mampu mengimplementasikan nilai-nilai ajaran Kristen dalam kehidupan bermasyarakat dan bernegara.
Mahasiswa memiliki kesadaran moral dan hukum dalam kehidupan bermasyarakat.
Mahasiswa memiliki sikap toleransi dan mampu mewujudkan kerukunan.
Mahasiswa memahami konsep IPTEKS dalam Kristen dan mampu mengintegrasikan iman, ilmu, dan perilaku. Serta memiliki sikap tanggung jawab sebagai ilmuwan.
Mahasiswa mampu membedakan antara ajaran Kristen dengan Kebudayaan.
Mahasiswa mampu bersikap demokratis, dan memahami wacana politik dalam perspektif Teologi Kristen.

Mahasiswa memiliki karakter Kristiani dan siap menjadi bagian dari masyarakat post-modern, serta dapat mengimplementasikan dalam realitas kehidupan.

Capaian Pembelajaran Mata Kuliah

Mahasiswa memiliki Iman dan Ketakwaan, berbudi pekerti luhur serta menjadikan ajaran Kristen sebagai landasan berfikir, berkata dan berbuat dalam mengembangkan profesi dan kehidupan yang harmonis dalam bermasyarakat.

Pokok Bahasan

Pemahaman tentang agama, Doktrin Allah dalam Alkitab, Hakekat Manusia, etika dalam perspektif Kristen, Ilmu Pengetahuan teknologi dan seni dalam perspektif Kristen, Hukum, Kerukunan hidup umat beragama; Masyarakat dan Ham, Budaya sebagai ekspresi Iman dan Politik dalam perspektif Kristen.

Prasyarat

Kemampuan dasar Pendidikan Agama Kristen di tingkat pendidikan sebelumnya (entre behavior)

Pustaka

1. Daniael Nuhamara, dkk, 2016, "Pendidikan Agama Kristen untuk Perguruan Tinggi Umum", RISTEKDIKTI, Jakarta.

- 1. Hans Kung, 1999, "Etika Global", Pustaka Pelajar, Yogyakarta.
- 2. Henry C. Thiessen, 1995, "Teologi Sistematika", Gandum Mas, Malang.
- 3. Herman Bavinck, 2011, "Dogmatika Reformed 1: Prolegomena", Momentum, Surabaya.
- 4. Herman Bavinck, 2011, "Dogmatika Reformed 2: Allah dan Penciptaan", Momentum, Surabaya.
- 5. J. Verkuyl, 1992, "Etika Kristen, Ras, Bangsa dan Negara", BPK Gunung Mulia, Jakarta.
- 6. J. Verkuyl, 2002, "Etika Kristen Bagian Umum", BPK Gunung Mulia, Jakarta.
- 7. John M. Frame, 2004, "Doktrin Pengetahuan Tentang Allah", Literatur SAAT, Malang.
- 8. K. Bertens, 2011, "Etika", Gramedia, Jakarta.

- 9. Kenneth Richard Samples, 2015, "Without a Doubt", Literatur SAAT, Malang.
- 10. Millard J. Erickson, 1999, "Teologi Kristen", Gandum Mas, Malang.
- 11. Norman L. Geisler, 2015, "Etika Kristen", Literatur SAAT, Malang.
- **12**. Norman L. Geisler & Frank Turek, 2016, "*I Don't Enough Faith To Be An Atheist*", Literatur SAAT, Malang.
- **13**. Paul Enns, 2008, "*The Moody Handbook of Theology*", Literatur SAAT, Malang.
- **14.** R. C. Sproul, 2012, "*Kebenaran-Kebenaran Dasar Iman Kristen*", Literatur SAAT, Malang.
- 15. R. C. Sproul, 2008, "Defending Your Faith", Literatur SAAT, Malang.

Mata Kuliah	Nama Mata Kuliah	: Agama Katolik
	Kode Mata Kuliah	: UG184903
	Kredit	: 2
	Semester	: 1

Deskripsi Mata Kuliah

Mahasiswa mampu menjelaskan hakikat manusia sebagai makhluk religius yang memiliki iman dan ketakwaan berkualitas, mampu mengaplikasikan moralitas mulia, dan menjadikan ajaran Agama Katolik sebagai landasan berfikir dan berperilaku dalam berkarya sesuai bidang keahlianyang dimiliki, baik pada kinerja individu maupun kerjasama tim dalam kerja kelompok

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

Capaian Pembelajaran Mata Kuliah

- 1. Bertakwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religious.
- 2. Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika.
- 3. Berkontribusi dalam peningkatan mutu kehidupan bermasyarakat, berbangsa, bernegara, dan kemajuan peradaban berdasarkan nilai dan ajaran Katolik.
- 4. Bekerja sama dan memiliki kepekaan sosial serta kepedulian terhadap masyarakat dan lingkungan

Pokok Bahasan

- 1. Panggilan Hidup Manusia menurut Kitab Suci
- 2. Relasi Manusia dengan Diri, Sesama, Lingkungan, dan Tuhan
- 3. Iman dihidupi dalam pluralitas
- 4. Karya Yesus Kristus dan Kerajaan Allah

- 5. Gereja yang memasyarakat
- 6. Etika Kristiani

Prasyarat

Pustaka

Kemenristekdikti. 2016. *Pendidikan Agama Katolik Untuk Perguruan Tinggi*. Jakarta: Dirjen Belmawa Kemenristekdikti

- Konferensi WaliGereja Indonesia. Katekismus Gereja Katolik [cetakan 8]. Jakarta: KWI & Kanisius, 2013
- 2. Achmad, N. *Pluralisme Agama, Kerukunan dalam Keragaman*. Jakarta: Penerbit Buku Kompas, 2001.
- 3. Barbour, Ian G. *Juru Bicara Tuhan antara Sains dan Agama*. Bandung: Penerbit Mizan, 2000.
- 4. Griffin, David Ray. *Tuhan dan Agama dalam Dunia Post Modern*. Yogyakarta: Kanisius, 2005.
- 5. Ismartono, SJ, I. *Kuliah Agama Katolik Di Perguruan Tinggi Umum*. Jakarta: Obor, 1993.
- Sugiarto. I. Bambang. *Agama Menghadapi Jaman*. Jakarta: APTIK, 1992.
- 7. Leahy Louis. *Filsafat Ketuhanan Kontemporer*. Yogyakarta: Kanisius & BPK Gunung Mulia, 1994.
- 8. Sumartana, Th. *Kebangkitan Agama dalam Era Globalisasi* dalam *Reformasi Politik, Kebangkitan Agama, dan Konsumerisme*. Yogyakarta: Dian/Interfidei, 2000

Mata Kuliah	Nama Mata Kuliah	: Agama Budha
	Kode Mata Kuliah	: UG184905
	Kredit	: 2
	Semester	: 1

Deskripsi Mata Kuliah

Agama Buddha sebagai salah satu Mata kuliah wajib nasional

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

Mengembangkan sikp spiritual , social, dan ketrampilan untuk membangun karakter intelektual Indonesia yang peduli terhdap masalah masyarakat, bangsa dan negara.

Capaian Pembelajaran Mata Kuliah

- Mengerti dan memahami konsep Ketuhanan dalam Agama Buddha dan aturan kemoralan untuk membentuk kemoralan dari Lulusan.
- Memahami hukum-hukum yang berlaku yang akan berakibat pada setiap kehidupan dan pergaulan Lulusan
- Dapat memanfaatkan kemajuan Ilmu dan Teknologi berdasarkan kemoralan dalam Agama Buddha.

Pokok Bahasan

- Kitab Suci Tipitaka/Tripitaka
- Filosofi dan Histori Makna Agama Buddha dan Kehidupan MAnusia
- Hokum hokum dalam Agama Buddha yang bersifat universal
- Konsep dan Makna KETUHANAN YANG MAHA ESA dalam Agama Buddha
- Nilai-nilai kemoralan sebagai pedoman hidup manusia (Sila)
- Ilmu Pengetahuan dan Teknologi dalam kehidupan manusia dalam pandangan Agama Buddha.
- Konsep masyarkat Buddha dan kerukunan antar umat beragama.
- Konsep dan Urgensi Dinamika Budaya dan Politik Buddha dalam

kontek kebangsaan.

Prasyarat

- Setiap mahasiswa wajib hadir dalam kelas sesuai ketentuan dan ITS
- Diberikan Tugas-tugas/ bersilahturahmi ke vihara-vihara sekitar ITS/ se Surabaya atau direncanakan khusus.
- Mengikuti Ujian Tengan Semeter
- Mengikuti Ujian Akhir Semester

Pustaka

- Pendidikan Agama Buddha untuk Perguruan Tinggi cetakan I
- Kitab Suci Dhammapada
- Perdebatan Raja Milinda (ringkasan Milinda Panha oleh Bhiku Pesala Sangha Theravada Indonesia.

	Nama Mata Kuliah	: Agama Hindu
Mata Kuliah	Kode Mata Kuliah	: UG184904
Wata Kunan	Kredit	: 2
	Semester	: 1

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Bertaqwa kepada Tuhan Yang Maha Esa dan mampu menunjukan sikap yang Religius Bekerjasama dan memiliki kepekaan sosial serta kepedulian	Deskripsi Mata Kuliah			
Bertaqwa kepada Tuhan Yang Maha Esa dan mampu menunjukan sikap yang Religius				
sikap yang Religius	Capaia	n Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
Bakariasama dan mamiliki kanakaan sosial sarta kanadulian				
terhadap masyarakat dan lingkungan		Bekerjasama dan memiliki kepekaan sosial serta kepedulian		

Capaian Pembelajaran Mata Kuliah

- Mahasiswa mampu meningkatkan pemahaman, penghayatan dan pengamalan ajaran agama Hindu dengan baik dan meningkatkan kualitasnya baik sebagai pribadi maupun anggota masyarakat, bangsa dan negara, serta mampu bersaing secara global
- 2. Mahasiswa dapat meningkatkan kecerdasannya, harkat dan martabatnya,
- Mmampu menjadi insan Hindu dan manusia Indonesia yang beriman dan bertaqwa (Sraddha dan Bhakti) kepada Tuhan Yang Maha Esa, berkualitas dan mandiri
- 4. mampu membangun dirinya sendiri dan masyarakat sekelilingnya dan bertanggung jawab atas pembanguan bangsa

Pokok Bahasan

•

Prasyarat

•

Pustaka

1. Direktorat Jenderal Pembelajaran dan Kemahasiswaan, 2016, Pendidikan Agama Hindu untuk Perguruan Tinggi, Kemenristek Dikti RI

- 1. Singer, Wayan, 2012. Tattwa (Ajaran Ketuhanan Agama Hindu, Surabaya, Paramita
- 2. Tim Penyusun, 1997, Pendidikan Agama Hindu Untuk Perguruan Tinggi, Hanuman Sakti
- 3. Wiana, 1994, Bagaimana Hindu Menghayati Tuhan, Manikgeni.
- 4. Wiana, 1982, Niti Sastra, Ditjen Hindu dan Budha.
- 5. Titib, 1996, Veda Sabda Suci Pedoman Praktis Kehidupan, Paramita.
- 6. Pudja, 1997, Teologi Hindu, Mayasari

Mata Kuliah	Nama Mata Kuliah	: Bahasa Inggris
	Kode Mata Kuliah	: UG184914
	Kredit	: 2
	Semester	: 1

Pada mata kuliah ini, mahasiswa akan belajar tentang konsep-konsep dasar berbahasa Inggris yang meliputi ketrampilan menyimak (*listening*), berbicara (*speaking/presentation*), membaca (*reading*) dan menulis (*writing*). Pada mata kuliah ini, mahasiswa menerapkan konsep dasar berbahasa tersebut untuk mengungkapkan ide dan pikirannya secara lisan dan tertulis di dalam kehidupan akademik yang berkaitan dengan sains dan teknologi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

2.10.1 Mampu mengembangkan diri dan bersaing di tingkat nasional maupun internasional

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menulis kalimat sesuai dengan tata bahasa baku bahasa Inggris serta mampu mengembangkan gagasan/ide dalam bentuk kalimat yang terstruktur dalam bentuk paragraf.
- 2. Mahasiswa mampu berbicara dan menyampaikan opini, argumentasi, pertanyaan, jawaban, dan atau sanggahan dalam kegiatan presentasi akademik.
- 3. Mahasiswa mampu memahami percakapan (*dialogue/conversation*) dan ceramah (*monologue*) dalam bahasa Inggris.
- 4. Mahasiswa mampu memahami isi bacaan (*content aspects*) secara aktif dan kritis dengan menerapkan beberapa strategi membaca (*reading strategies*) yang tepat seperti *scanning, skimming* dan *reading for details* serta strategi memahami kosakata; dan mengenal struktur organisasi bacaan (*text pattern organizations*).

Pokok Bahasan

- 1. Developing effective English sentence and paragraph
 - Writing good sentences: phrases, clauses, sentences
 - Developing good paragraphs: topic sentence, supporting sentences, concluding sentence, coherence, cohesion
- 2. Oral academic communication.
 - Academic discussion and presentations
- 3. Listening to various conversations and talks.
 - Listening to short conversation (part A)
 - Listening to longer conversation (part B)
 - Listening to talks (part C)
- 4. Reading for Understanding: strategies and application
 - Skimming
 - Scanning
 - Vocabulary recognition
 - Reading for details:
 - Understanding main ideas
 - Understanding stated detail information
 - Understanding unstated detail information
 - Understanding implied information
 - Text pattern organizations

Prasyarat

Pustaka

- Hogue Ann, Oshima Alice, "Introduction to Academic Writing", Longman, 1997
- 2. Johnston Susan S, Zukowski Jean/Faust, "Steps to Academic Reading," heinle, Canada, 2002
- 3. Mikulecky, Beatrice S, "Advanced Reading Power", Pearson Education, New York, 2007
- 4. Preiss Sherry, "NorthStar: Listening and Speaking," Pearson Education, New York 2009

- 1. Becker Lucinda & Joan Van Emden, "Presentation Skills for Students, Palgrave, Macmillan, 2010
- Bonamy David, "Technical English," Pearson Education, New York, 2011
- 3. Fellag Linda Robinson, "College Reading," Houghton Mifflin Company, 2006
- 4. Fuchs Marjorie & Bonner Margaret, "Focus on Grammar; An Integrated Skills Approach," Pearson Education, Inc, 2006
- 5. Hague Ann, "First Steps in Academic Writing," Addison Wesley Publishing Company, 1996
- 6. Hockly Nicky & Dudeney Gavin, "How to Teach English with Technology, Pearson Education Limited, 2007
- 7. Phillipd Deborah, "Longman Preparation Course for the TOEFL Test," Pearson Education, Inc, 2003
- 8. Root Christine & Blanchard Karen, "Ready to Read Now, Pearson Education, New York, 2005
- 9. Root Christine & Blanchard Karen, "Ready to Write, Pearson Education, New York, 2003
- Weissman Jerry, "Presenting to Win, the Art of Telling Your Story, Prentice Hall, 2006

Mata Kuliah	Nama Mata Kuliah	: Fisika I
	Kode Mata Kuliah	: SF184101
	Kredit	: 4
	Semester	: 1

Pada mata kuliah ini mahasiswa akan belajar memahami hukum-hukum dasar fisika, Kinematika partikel; Dinamika partikel; Kerja dan energi; Gerak rotasi; Getaran dan Mekanika fluida, melalui uraian matematika sederhana serta memperkenalkan contoh pemakaian konsep, dan melakukan analisa materi dalam bentuk **praktikum**.

Praktikum yang dilakukan meliputi bandul fisis, bandul matematis, konstanta pegas, viskositas cairan, gerak peluru, koefisien gesek, momen inersia.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

1.12.1	bekerja sama untuk dapat memanfaatkan semaksimal mungkin potensi yang dimiliki
3.a	Menguasai konsep teoretis fisika klasik dan fisika modern secara
	mendalam;
3.d	Menguasai pengetahuan operasional lengkap tentang fungsi, cara mengoperasikan instrumen fisika yang umum, analisis data dan informasi dari instrumen tersebut;
4.a	Mampu merumuskan gejala dan masalah fisis melalui analisis berdasarkan hasil observasi dan eksperimen.

Capaian Pembelajaran Mata Kuliah

- memahami besaran fisika dan sistem satuan, serta ciri besaran skalar dan besaran vektor
- 2. memahami definisi gerak lurus dan melengkung secara grafis dan matematis serta penerapannya
- 3. memahami prinsip dasar hukum-hukum Newton dan jenis-jenis gaya

- serta penerapannya
- 4. memahami konsep kerja dan energi, energi mekanik, hukum kekekalan energi mekanik, dan penerapannya
- 5. menerapkan konsep impuls dan momentum, kekekalan momentum, tumbukan dan penerapannya
- 6. memahami prinsip gerak benda tegar dan menggelinding serta penerapannya
- 7. memahami konsep kesetimbangan benda tegar serta penerapannya
- 8. memahami mekanika benda berubah bentuk dan elastisitas serta penerapannya.
- 9. memahami getaran harmonik sederhana, superposisi 2 getaran serta penerapannya.
- 10. memahami konsep hidrostatika dan hidrodinamika serta penerapannya.

Pokok Bahasan

Besaran dan vektor;

Kinematika partikel: Pergeseran posisi, kecepatan, percepatan, gerak lurus, gerak lengkung (parabola dan melingkar); gerak relatif.

Dinamika partikel: Hukum Newton I, II dan III, macam-macam gaya (gaya gravitasi, gaya berat, gaya tegang tali, gaya normal, gaya gesek dan gaya pegas), kesetimbangan gaya, penerapan hukum Newton I,II dan III;

Kerja dan energi: konsep kerja, energi kinetik, energi potensial (gravitasi dan pegas), teorema kerja energi, hukum kekekalan energi mekanik,

Impuls dan Momentum: impuls, momentum, tumbukan (elastis dan tidak elastis),;

Dinamika rotasi: Pergeseran sudut, kecepatan sudut dan percepatan sudut, momen gaya (torsi), pusat massa, kesetimbangan momen gaya, momen inersia, energi kinetik rotasi, gerak menggelinding, hukum kekekalan energi (translasi dan rotasi)

Getaran: gerak harmonis sederhana, energi gerak harmonis sederhana, bandul matematis, bandul fisis, bandul puntir, gabungan getaran selaras (sejajar dan tegak lurus);

Mekanika fluida: tekanan hidrostatika, prinsip Pascal, prinsip Archimedes, tegangan permukaan, persamaan kontinuitas, persamaan Bernoulli, viskositas.

Prasyarat

Pustaka

- 1. Halliday, Resnic, Jearl Walker; 'Fundamental of Physics'. John Wiley and Sons, 10th ed, New York, 2014
- 2. Douglas C. Giancoli, 'Physics for Scientists and Engineers, Pearson Education, 4th ed, London, 2014
- 3. Tim Dosen, "Diktat Fisika I", Fisika FMIPA-ITS
- 4. Tim Dosen, "Soal-soal Fisika I", Fisika FMIPA-ITS
- 5. "Petunjuk Praktikum Fisika Dasar", Fisika, MIPA-ITS

- Sears & Zemanky, "University Physics", Pearson Education, 14thed, USA, 2016
- 2. Tipler, PA, 'Physics for Scientists and Engineers ',6th ed, W.H. Freeman and Co, New York, 2008

Mata Kuliah	Nama Mata Kuliah	: Fisika II
	Kode Mata Kuliah	: SF184202
	Kredit	: 3
	Semester	: 2

Pada mata kuliah ini mahasiswa akan belajar memahami hukum-hukum dasar fisika, Medan Listrik; Potensial Listrik; Arus Listrik; Medan magnet; Gaya Gerak Listrik (EMF) Induksi dan Arus Bolak Balik, melalui uraian matematika sederhana serta memperkenalkan contoh pemakaian konsep.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.a Menguasai konsep teoretis fisika klasik dan fisika modern secara mendalam;

Capaian Pembelajaran Mata Kuliah

Mahasiswa mampu memahami:

- 1. Muatan listrik, sifat kelistrikan bahan, Hukum Coulomb;
- 2. kuat medan listrik, dan menghitung kuat medan listrik;
- 3. konsep hukum Gauss dan aplikasinya
- potensial listrik pada konduktor bermuatan dan menghitung potensial listrik
- 5. konsep kapasitansi, bahan dielektrikum, dan rangkaian kapasitor
- 6. gaya medan magnit terhadap arus listrik dan muatan bergerak
- Konsep arus listrik dan resistansi bahan, konsep hukum ohm, hukum kirchof
- 8. sifat kemagnetan bahan dan menghitung medan magnet
- 9. prinsip timbulnya GGL induksi, induktansi
- 10. konsep impendansi, dan sudut fasa pada rangkaian R-L- C

Pokok Bahasan

Muatan Listrik dan Medan listrik

Muatan listrik, sifat kelistrikan bahan, Hukum Coulomb; kuat medan listrik, garis gaya, perhitungan kuat medan listrik;

Hukum Gauss: fluks, Hukum Gauss dan aplikasinya;

Potensial listrik: energi potensial, beda potensial listrik, perhitungan potensial listrik, gradien potensial;

Kapasitor: Kapasitansi, perhitungan kapasitansi kapasitor, rangkaian kapasitor, bahan dielektrik, energi kapasitor;

Arus listrik: arus dan gerak muatan, resistivitas, resistansi, hukum Ohm, emf, energi dan daya listrik;

Rangkaian arus searah: rangkaian resistor, hukum Kirchoff, alat ukur listrik, Gejala Transien R-C:

Medan magnet: fluks dan induksi magnet, gaya Lorentz, hukum Biot Savard-Ampere, perhitungan medan magnet;

GGL Induksi: Hukum Faraday, Hukum Lenz, GGL induksi, Induktansi diri dan induktansi gandeng; energi pada induktor;

Arus bolak balik:, reaktansi, Impedansi, diagram fasor, rangkaian seri dan pararel R-L-C, Daya, Resonansi, transformator.

Prasyarat

Pustaka

- 1. Halliday, Resnic, Jearl Walker; 'Fundamental of Physics'. John Wiley and Sons, 10th ed, New York, 2014
- 2. Douglas C. Giancoli, 'Physics for Scientists and Engineers , Pearson Education, 4th ed, London, 2014
- 3. Tim Dosen, "Diktat Fisika II", Fisika FMIPA-ITS
- 4. Tim Dosen, "Soal-soal Fisika II", "Soal-soal Fisika II", Fisika FMIPA-ITS

- Sears & Zemanky, "University Physics", Pearson Education, 14thed, USA, 2016
- 2. Tipler, PA, 'Physics for Scientists and Engineers ',6th ed, W.H. Freeman and Co, New York, 2008

	Nama Mata Kuliah	: Kimia
Mata Kuliah	Kode Mata Kuliah	: SK184101
Mata Kunan	Kredit	: 4
	Semester	: 1

Matakuliah ini mempelajari prinsip prinsip dasar ilmu kimia meliputi teori atom, konfigurasi elektron, ikatan kimia, wujud zat dan perubahan fasa, reaksi kimia dan stoikhiomeri, Teori Asam Basa, Kesetimbangan Ionik dalam Larutan (Asam Basa, Kelarutan, Kompleks dan Pengendapan), Termodinamika Kimia, Kinetika Kimia dan Elektrokimia.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

1.1.1	Mahasiswa mampu mendemonstrasikan pengetahuan dan
1.1.1	menerapkan prinsip dan konsep kimia.
1.1.2	Mahasiswa mampu mengkaji dan menyelesaikan masalah-masalah
	kualitatif dan kuantitatif dalam sains kimia baik secara individual
	dan kelompok.
1.1.4	Mahasiswa meyakini bahwa kimia memainkan peran penting di
	masyarakat.
1.1.5	Mahasiswa mampu berfikir kritis dan empiris.
1.1.6	Mahasiswa meyakini bahwa prinsip-prinsip kimia dapat diuji secara
	ilmiah.

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menggunakan prinsip-prinsip dasar ilmu kimia sebagai dasar dalam mempelajari ilmu yang berkaitan dengan kimia.
- 2. Mahasiswa dapat melakukan perhitungan-perhitungan dasar kimia.

Pokok Bahasan

- 1. Konsep Dasar Kimia
- 2. Model dan Struktur Atom

- 3. Konfigurasi Elektron dan Ikatan Kimia
- 4. Wujud Zat dan Perubahan Fase
- 5. Stoikhiometri dan Reaksi Kimia
- 6. Larutan, Konsentrasi, Sifat Koligatif
- 7. Kesetimbangan Kimia
- 8. Teori Asam Basa
- 9. Kesetimbangan Ionik dalam Larutan (Asam Basa, Kelarutan, Kompleks dan Pengendapan)
- 10. Termodinamika Kimia
- 11. Kinetika Kimia
- 12. Elektrokimia

Prasyarat

Pustaka

1. D. W. Oxtoby, H.P. Gillis and A. Champion,"Principles of Modern Chemistry", 7th edition, Mary Finc.,USA, 2012

- 1. R. Chang, "Chemistry", 7th edition, McGraw Hill, USA, 2009.
- 2. D. E. Goldberg, "Fundamental of Chemistry", Mc Graw Hill Companies, 2007.
- 3. I. Ulfin, I. K. Murwani, H. Juwono, A. Wahyudi dan F. Kurniawan, "Kimia Dasar", ITS Press, Surabaya, 2010.

Mata Kuliah	Nama Mata Kuliah	: Pancasila
	Kode Mata Kuliah	: UG184911
	Kredit	: 2
	Semester	: 3

Mahasiswa mendapatkan pengetahuan dan pengalaman belajar untuk meningkatkan pemahaman dan kesadaran tentang: rasa kebangsaan dan cinta tanah air melalui wawasan tentang Pancasila sehingga menjadi warganegara yang memiliki daya saing, serta berdisiplin tinggi dan berpartisifasi aktif dalam membangun kehidupan yang damai berdasarkan sistem nilai Pancasila. Setelah perkuliahan ini diharapkan mahasiswa mampu mewujudkan diri menjadi warga negara yang baik yang mampu mendukung bangsa dan negaranya. Warga negara yang cerdas, berkeadaban dan bertanggung jawab bagi kelangsungan hidup negara Indonesia dalam mengamalkan kemampuan ilmu pengetahun, teknologi dan seni yang dimilikinya.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

1.4.1	Berperan sebagai warga negara yang bangga dan cinta tanah air, memiliki nasionalisme serta rasa tanggungjawab pada negara dan bangsa
1.5.1	Menghargai keanekaragaman budaya, pandangan, agama, dan kepercayaan, serta pendapat atau temuan orisinal orang lain.
1.7.1	Taat hukum dan disiplin dalam kehidupan bermasyarakat dan bernegara

Capaian Pembelajaran Mata Kuliah

- 5. Bertakwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religious.
- 6. Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika.

- 7. Berkontribusi dalam peningkatan mutu kehidupan bermasyarakat, berbangsa, bernegara, dan kemajuan peradaban berdasarkan Pancasila.
- 8. Bekerja sama dan memiliki kepekaan sosial serta kepedulian terhadap masyarakat dan lingkungan
- 9. Bekerja sama untuk dapat memanfaatkan semaksimal mungkin potensi yang dimiliki.
- 10. Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya
- 11. Mampu mengimplementasikan prinsip keberlanjutan (*sustainability*) dalam mengembangkan pengetahuan;

Pokok Bahasan

- 1. Pancasila dalam persepktif Sejarah Bangsa Indonesia
- 2. Pancasila sebagai Dasar Negara Republik Indonesia
- 3. Pancasilla sebagai Ideologi NKRI
- 4. Pancasila sebagai sistem Filsafat
- 5. Panasila sebagai sistem Etika
- 6. Pancasila sebagai Dasar Pengembangan Ilmu

Prasyarat

Pustaka

1. Kemenristekdikti. 2016. Pendidikan Pancasila Untuk Perguruan Tinggi. Jakarta: Dirjen Belmawa Kemenristekdikti

- 1. Armaidy Armawi, Geostrategi Indonesia, Jakarta, Direktorat jenderal Pendidikan Tinggi, 2006
- 2. Azyumardi Azra, paradigma Baru Pendidikan Nasional dan Rekrontruksi dan Demokratisasi, Penerbit Kompas, Jakarta, 2002
- 3. Bahar, Dr. Saefrodin, Konteks Kenegaraan, Hak Asasi Manusia, Pustaka Sinar Harapan, Jakarta, 2000.
- Ir. Sukarno, editor H Amin Arjoso, SH Tjamkan Pancasila Dasar Falsafah Negara", Jakarta, Penerbit Panitia Nasional Peringatan Lahirnya Pancasila 1 Juni 1945 – 1 Juni 1964
- 5. Slamet Soemiarno, Geopolitik Indonesia, Jakarta, Direktorat Jenderal

Pendidikan Tinggi, 2006

6. Magnis-Suseno, Etika Politik: Prinsip-prinsip Moral Dasar Kenegaraan Modern, Jakarta, Penerbit Gramedia Pustaka Utama,

Mata Kuliah	Nama Mata Kuliah	: Matematika I
	Kode Mata Kuliah	: KM184101
	Kredit	: 3
	Semester	: 1

Mata kuliah ini membekali mahasiswa konsep matrik, deteminan dan sistem persamaan linier konsep berpikir matematis dalam penyelesaian masalah-masalah rekayasa, pemodelan dan lain-lain dalam keteknikan yang berkaitan dengan aplikasi diferensial. Materi perkuliahan lebih ditekankan pada teknik penyelesaian masalah-masalah riil yang dapat diformulasikan ke dalam fungsi satu variabel bebas.

Materi perkuliahan meliputi: matrik dan determinan, penyelesaian sistem persamaan linier, sistim bilangan riil (keterurutan, nilai mutlak),Bilangan komplek bererta operasi aljabar, bentuk polar bilangan komplek fungsi dan limit, derivatif dan aplikasinya dan integral tak tantu.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu memahami permasalahan matematis, menganalisa dan 3.1.1 menyelesaikannya. Mampu menganalisa suatu fenomena melalui model matematika 3.1.2 dan menyelesaikannya Mampu menerapkan berpikir kerangka matematis 3.1.3 menyelesaikan masalah optimasi baik secara analitis maupun empiris. Mampu menginterpertasikan konsep dasar matematika menyusun pembuktian secara langsung, tidak langsung, maupun 3.2.1 dengan induksi matematika. melakukan Mampu identifikasi permasalahan sederhana. 4.1.1 membentuk model matematika dan menyelesaikannya. Menguasai metode-metode standar dalam bidang matematika 4.1.2 Mampu menguasai teori fundamental matematika yang meliputi 4.1.3 konsep himpunan, fungsi, diferensial, integral, ruang dan struktur

matematika.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami matrik dan determinan serta sifat-sifatnya dan mampu menyelesaikan sistem persamaan linier, , menetukan nilai Eigen dan vector Eigen
- 2. Mampu memaham pengertian sistem bilangan riil, bentuk desimal bilangan riil, koordinat riil, sifat urutan, pengertian nilai mutlak, pertidaksamaan, koordinat bidang, garis, jarak dua titik, lingkaran, parabola
- 3. Mampu memahami bilangan komplek dan operasi aljabar bilangan komplek, bentuk polar bilangan komplek dan penarikan akar persamaan dalam sistem bilangan komplek
- 4. Mampu memahami dan menghitung limit fungsi dan menentukan kontinuitas fungsi fungsi sederhana
- 5. Mahasiswa dapat menurunkan (mendiferensialkan) fungsi explisit maupun implisit, meneraptak aturan rantai
- 6. Mahasiswa mampu menggambar grafik, menggunakan uji turunan untuk menentukan titik ekstrim, fungsi naik/turun, dan kecekungan dan menerapkannya pada masalah optimasi fungsi, Deret Taylor/Maclaurin dan mampu menghitung limit bentuk taktentu.
- Mahasiswa mampu menyelesaikan integral menggunakan teorema fundamental kalkulus

Pokok Bahasan

- 1. Konsep dasar aljabar matrik, sifat sifat determinan, operasi baris elementer, sistem persamaan linier, tranformasi linier, dan masalah nilai eigen dan vector eigen
- Konsep dasar sistim bilangan riil: pengertian sistem bilangan riil, bentuk desimal bilangan riil, koordinat riil, sifat urutan, pengertian nilai mutlak, pertidaksamaan, koordinat bidang, garis, jarak dua titik, lingkaran, parabola
- 3. Konsep dasar bilangan komplek: Penjumlahan , Perkalian, Hasil bagi, bentuk polar bilangan kompek beserta operasi aljabarnya dan penarikan akar persamaan dalam sistem bilangan komplek.
- Konsep-konsep fungsi, limit: Domain, range, fungsi linier, kuadratik dan trigonometri, dan transcendent, grafik fungsi, limit fungsi dan kontinuitas
- 5. Diferensial/turunan : definisi turunan, Aturan-aturan diferensisasi (untuk

- fungsi polynomial, trigonometri, tramsendent), aturan rantai dan turunan fungsi implisit
- Aplikasi Turunan : Laju-laju berkaitan, interval naik.turun,kecekungan, penggambaran grafik yang mempunyai asimtot dan puncak, nilai ekstrema dan aplikasi masalah optimasi, teorema L'hopital dan deret Taylor/Maclaurin
- 7. Integral tak-tentu:Turunan dan anti turunan, integral tak tentu, Sifat Linier integral tak tentu, Rumus-rumus dasar int tak tentu, Int tak tentu dgn substitusi

Prasyarat

Pustaka

- 1. Tim Dosen Jurusan Matematika ITS, *Buku Ajar Kalkulus I*, Edisi ke-4 Jurusan Matematika ITS, 2012
- Anton, H. dkk, Calculus, 10-th edition, John Wiley & Sons, New York, 2012

- 1. Kreyzig, E, *Advanced Engineering Mathematics*, 10-th edition, John Wiley & Sons, Singapore, 2011
- 2. Purcell, J, E, Rigdon, S., E., *Calculus*, 9-th edition, Prentice-Hall, New Jersey, 2006
- 3. James Stewart, *Calculus*, ed.7, Brooks/cole-Cengage Learning, Canada, 2012

Mata Kuliah	Nama Mata Kuliah	: Matematika II
	Kode Mata Kuliah	: KM184201
	Kredit	: 3
	Semester	: 2

Matakuliah ini memberikan konsep dasar berfikir matematis (eksistensi penyelesaian, alur logika/prosedur penyelesaian) pada mahasiswa dalam menyelesaikan masalah-masalah riil serta dapat menyelesaikan masalah-masalah rekayasa, pemodelan dan lain-lain dalam keteknikan yang berkaitan dengan aplikasi integral. serta kemampuan untuk mengikuti matakuliah-matakuliah tingkat lanjut yang membutuhkan konsep-konsep dasar matematika dan analisisnya.

Materi perkuliahan meliputi: Konsep teknik integrasi, Konsep Integral tertentu, integral tak wajar dan Aplikasinya, Koordinat kutub dan persamaan parametrik beserta aplikasinya penghitungan luas bidang datar dan panjang busur, Barisan dan deret tak hingga, deret pangkat, Deret Taylor dan deret Mac Laurin.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu memahami permasalahan matematis, mengana

3.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
3.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
3.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.
3.2.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya
4.1.1	Mampu melakukan identifikasi permasalahan sederhana,

	membentuk model matematika dan menyelesaikannya.		
4.1.2	Menguasai metode-metode standar dalam bidang matematika		
4.1.3	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.		

Capaian Pembelajaran Mata Kuliah

- 1. Mampu menguasai Konsep dasar teknik integrasi.
- 2. Mampu menyelesaikan Integral tertentu.
- 3. Mampu mengaplikasikan integral tertentu pada luas bidang datar, volume benda dengan metode cakram dan metode cincin, pusat massa, penerapan teorema Guldin, Gaya dan tekanan fluida.
- 4. Mampu memahami sistem Koordinat kutub dan persamaan parametrik, dapat menggambar grafiknya, mengaplikasikan pada Luas dataran dan panjang busur
- Mampu menghitung kekonvergenan barisan, mampu menguji kekonvergenan deret tak hingga dan menghitung deret tak hingga yang konvergen, mentransformasikan fungsi ke dalam bentuk deret Taylor atau deret Mac Laurint

Pokok Bahasan

- 1. **Konsep teknik integrasi**: Integral Parsial, : Integral fs rasional (faktorfaktor Linier, faktor kuadratik), Integrasi fungsi trigonometri, rumus reduksi, Int dgn substitusi trigonometri (bentuk akar).
- 2. **Konsep Integral tertentu**: Masalah luas dan integral tertentu, Evaluasi Int tertentu: Teorema Fundamental Kalkulus (I), Int tertentu dengan substitusi, Fungsi yang dinyatakan sebagai integral tertentu, Teorema Fundamental Kalkulus (II) dan integral tak wajar
- 3. **Aplikasi integral tertentu :** Luas bidang datar, Volume benda putar (metode cakram, cincin), Gaya dan tekanan Fluida, Kerja (Usaha), Titik berat (Pusat massa), titik berat dan Teorema Guldin
- 4. **Koordinat kutub dan persamaan parametrik**: Fungsi dan grafiknya dalam koord kutub, Luas dataran dan panjang busur dalam koord kutub, Fungsi dalam bentuk parametrik, Luas dan panjang busur fungsi parametrik
- Barisan dan deret tak hingga: Barisan, konvergensi barisan, Deret tak hingga, uji kekonvergenan dan menghitun jumlah Deret tak hingga yang konvergen, pengertian deret pangkat, deret Taylor dan deret MacLaurint.

Prasyarat

Pustaka

- 1. Tim Dosen Jurusan Matematika ITS, $Buku\ Ajar\ Kalkulus\ 2$, Edisi ke-4 Jurusan Matematika ITS, 2012
- Anton, H. dkk, Calculus, 10-th edition, John Wiley & Sons, New York, 2012

- 1. Kreyzig, E, *Advanced Engineering Mathematics*, 10-th edition, John Wiley & Sons, Singapore, 2011
- 2. Purcell, J, E, Rigdon, S., E., *Calculus*, 9-th edition, Prentice-Hall, New Jersey, 2006
- 3. James Stewart , *Calculus*, ed.7, Brooks/cole-Cengage Learning, Canada,2012

Mata Kuliah	Nama Mata Kuliah	: Matematika
	Kode Mata Kuliah	: KM184151
	Kredit	: 3
	Semester	: 1

Mata kuliah ini membekali mahasiswa konsep matrik, deteminan dan sistem persamaan linier konsep berpikir matematis dalam penyelesaian masalah-masalah rekayasa, pemodelan dan lain-lain dalam keteknikan yang berkaitan dengan aplikasi diferensial. Materi perkuliahan lebih ditekankan pada teknik penyelesaian masalah-masalah riil yang dapat diformulasikan ke dalam fungsi satu variabel bebas.

Materi perkuliahan meliputi: matrik dan determinan, penyelesaian sistem persamaan linier, nilai Eigen dan vector Eigen, sistim bilangan riil (keterurutan bilangan riil), fungsi dan gafik, derivatif dan aplikasinya dan integral dan aplikasinya pada perhitungan luas bidang datar dan volume benda putar.

Capaia	n Pembelajaran Lulusan yang Dibebankan Mata Kuliah
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk

menyelesaikan masalah optimasi baik secara analitis maupun

empiris.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami matrik dan determinan serta sifat-sifatnya dan mampu menyelesaikan sistem persamaan linier, menetukan nilai Eigen dan vector Eigen.
- 2. Mampu memaham pengertian sistem bilangan riil, bentuk desimal bilangan riil, koordinat riil, sifat keturutan, pertidaksamaan,
- 3. Mampu memahami fungsi polinomial dan fungsi transenden dan mampu menggambar grafiknya dasar.
- 4. Mahasiswa mampu mendefinisikan sinus, cosines, tangent dan megaplikasikan kesamaan trigonometri dalam menyederhanakan/menyelesaikaan persamaan trigonometri.
- 5. Mampu menurunkan (mendiferensialkan} fungsi explisit, meneraptak aturan rantai, turunan fungsi implisit serta mampu menentukan nilai maks/min untuk fungsi polynomial.
- 6. Mampu menyelesaikan integral menggunakan teorema fundamental kalkulus dan rumus rumus dasar integrasi.
- 7. Mampu menghitung luas bidang datar dan volume benda putar
- 8. Mampu memahami geometri

Pokok Bahasan

- Matriks: Konsep dasar aljabar matrik, menghitung determinan, invers matrik dengan matrik adjoint atau operasi baris elementer, dan penyelesaian sistem persamaan linier, menentukan nilai Eigen dan vector Eigen.
- 2. **Sistem Bilangan Riil**: pengertian sistem bilangan riil, Aritmetika: perpangkatan, penyelesaian Persamaan, sifat keteurutan dan penyelesaian Pertidaksamaan.
- 3. **Fungsi & Grafik**: Domain, range, fungsi dasar Polinomial, Transenden : eksponensial , logaritma beserta sketsa grafiknya
- 4. **Trigonimetri**: definisi Sinus, cosinus, tangen dan grafik fungsi trigonometri, kesamaan trigonometri, himpunan penyelesaian persamaan dalam bentur trigonometri
- 5. **Diferensial/turunan :** definisi turunan, rumus dasar diferensisasi, aturan rantai, aplikasi maks/min pada fungsi polinomial
- 6. **Integral:**Definisi, sifat dasar integral tak tentu, Rumus-rumus dasar int tak tentu, Int tak tentu dgn substitusi, integral parsial, integral tertentu

- dengan teorema fundamental kalkulus 1
- 7. Aplikasi Integral: Luas bidang datar, volume benda putar
- 8. **Geometri**: sistim koordinat dua dimensi, garis, garis sejajar atau tegak lurus, Skala, titik tengah antara 2 titik, Pytagoras, jarak dua titik, skala, irusan kerucut, Pencerminan, Proyeksi, sudut.

Prasyarat

Pustaka

- 1. Tim Dosen Jurusan Matematika ITS, *Buku Ajar Kalkulus I*, Edisi ke-4 Jurusan Matematika ITS, 2012
- Anton, H. dkk, Calculus, 10-th edition, John Wiley & Sons, New York, 2012

- 1. Kreyzig, E, *Advanced Engineering Mathematics*, 10-th edition, John Wiley & Sons, Singapore, 2011
- 2. Purcell, J, E, Rigdon, S., E., *Calculus*, 9-th edition, Prentice-Hall, New Jersey, 2006
- James Stewart , Calculus, ed.7, Brooks/cole-Cengage Learning, Canada, 2012

Mata Kuliah	Nama Mata Kuliah	: Matematika
	Kode Mata Kuliah	: KM184152
	Kredit	: 3
	Semester	: 1

Mata kuliah ini membekali mahasiswa konsep matrik, deteminan dan sistem persamaan linier konsep berpikir matematis dalam penyelesaian masalah-masalah rekayasa, pemodelan dan lain-lain dalam keteknikan yang berkaitan dengan aplikasi diferensial. Materi perkuliahan lebih ditekankan pada teknik penyelesaian masalah-masalah riil yang dapat diformulasikan ke dalam fungsi satu variabel bebas.

Materi perkuliahan meliputi: matrik dan determinan, penyelesaian sistem persamaan linier, nilai Eigen dan vector Eigen, sistim bilangan riil (keterurutan bilangan riil), fungsi dan gafik dasar polynomial, eksponensial dan logaritma, derivatif dan aplikasinya dan integral, Barisan dan deret

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
	Mampu menginterpertasikan konsep dasar matematika dan		
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun		
	dengan induksi matematika.		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,		
3.1.2	membentuk model matematika dan menyelesaikannya.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
	Mampu menguasai teori fundamental matematika yang meliputi		
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur		
	matematika.		
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan		
	menyelesaikannya.		
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika		
	dan menyelesaikannya		
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk		
	menyelesaikan masalah optimasi baik secara analitis maupun		
	empiris.		

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami matrik dan determinan serta sifat-sifatnya dan mampu menyelesaikan sistem persamaan linier, menetukan nilai Eigen dan vector Eigen.
- 2. Mampu memaham pengertian sistem bilangan riil, bentuk desimal bilangan riil, koordinat riil, sifat keturutan, pertidaksamaan,
- 3. Mampu memahami fungsi polinomial dan fungsi transenden dan mampu menggambar grafiknya dasar, fungsi permintaan dan penawaran, titik setimbang bidang ekonomi.
- 4. Mampu menurunkan (mendiferensialkan) fungsi explisit, meneraptak aturan rantai.
- 5. Mampu menentukan nilai maks/min untuk fungsi yang terkait dengan bidang ekonomi.
- 6. Mampu menyelesaikan integral menggunakan teorema fundamental kalkulus dan rumus rumus dasar integrasi, integral dengan subtitusi dan integral parsial.
- 7. Mampu mendefinisikan Barisan dan Deret dan mamapu memahami limit barisan menuju tak hingga, deret: aritmatika, geometri, limit fungsi yang terkait dengan bunga bank : $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$

Pokok Bahasan

- Matriks: Konsep dasar aljabar matrik, menghitung determinan, invers matrik dengan matrik adjoint atau operasi baris elementer, dan penyelesaian sistem persamaan linier,menentukan nilai Eigen dan vector Eigen.
- 2. **Sistem Bilangan Riil**: pengertian sistem bilangan riil, Aritmetika: perpangkatan, penyelesaian Persamaan, sifat keteurutan dan penyelesaian Pertidaksamaan.
- 3. **Fungsi & Grafik**: Domain, range, fungsi dasar Polinomial, Transenden : eksponensial , logaritma beserta sketsa grafiknya, fungsi permintaan dan penawaran, titik setimbang bidang ekonomi.
- 4. **Turunan**: Mampu menurunkan (mendiferensialkan) fungsi explisit, meneraptak aturan rantai,
- 5. **Aplikasi turunan:** nilai maks/min untuk fungsi yang terkait dengan bidang ekonomi.
- 6. **Integral:** Definisi, sifat2 dasar Integral dan rumus dasar Int, Integrasi dg Substitusi, Int Parsial. (fs polynomial dan transenden)

7. **Barisan dan Deret**: limit barisan menuju tak hingga, deret: aritmatika, geometri, limit fungsi yang terkait dengan bunga bank : $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$

Prasyarat

Pustaka

- 1. Tim Dosen Jurusan Matematika ITS, *Buku Ajar Kalkulus I* , Edisi ke-4 Jurusan Matematika ITS, 2012
- 2. Anton, H. dkk, *Calculus*, 10-th edition, John Wiley & Sons, New York, 2012

- 1. Kreyzig, E, *Advanced Engineering Mathematics*, 10-th edition, John Wiley & Sons, Singapore, 2011
- 2. Purcell, J, E, Rigdon, S., E., *Calculus*, 9-th edition, Prentice-Hall, New Jersey, 2006
- 3. James Stewart, *Calculus*, ed.7, Brooks/cole-Cengage Learning, Canada, 2012

Mata Kuliah	Nama Mata Kuliah	: Matematika
	Kode Mata Kuliah	: KM180153
	Kredit	: 3
	Semester	: 1

Mata kuliah ini membekali mahasiswa konsep matrik, deteminan dan sistem persamaan linier konsep berpikir matematis dalam penyelesaian masalah-masalah rekayasa, pemodelan dan lain-lain dalam keteknikan yang berkaitan dengan aplikasi diferensial. Materi perkuliahan lebih ditekankan pada teknik penyelesaian masalah-masalah riil yang dapat diformulasikan ke dalam fungsi satu variabel bebas.

Materi perkuliahan meliputi: matrik dan determinan, penyelesaian sistem persamaan linier, nilai Eigen dan vector Eigen, sistim bilangan riil (keterurutan bilangan riil), limit, fungsi dan gafik dasar, kontinuitas fungsi, derivatif dan aplikasinya dan integral, Barisan dan sitim koordinat kutub.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
2.1.1	Mampu menginterpertasikan konsep dasar matematika dan			
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.			
	Ď.			
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,			
3.1.2	membentuk model matematika dan menyelesaikannya.			
3.1.3	Menguasai metode-metode standar dalam bidang matematika			
	Mampu menguasai teori fundamental matematika yang meliputi			
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur			
	matematika.			
	Mampu memahami permasalahan matematis, menganalisa dan			
4.1.1	menyelesaikannya.			
	,			
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika			
	dan menyelesaikannya			
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk			
	menyelesaikan masalah optimasi baik secara analitis maupun			
	empiris.			

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami matrik dan determinan serta sifat-sifatnya dan mampu menyelesaikan sistem persamaan linier, menetukan nilai Eigen dan vector Eigen.
- 2. Mampu memaham pengertian sistem bilangan riil, bentuk desimal bilangan riil, koordinat riil, sifat keturutan, pertidaksamaan,mamapu memahami bilangan komplek dan sifat sifatnya.
- 3. Mampu memahami Domain, range, fungsi linier, kuadratik, grafik fungsi, limit fungsi dan kontinuitas.
- 4. Mampu menurunkan (mendiferensialkan) fungsi explisit, meneraptak aturan rantai.
- 5. Mampu memahami Interval fungsi naik/turun, kecekungan, nilai ekstrim dengan uji turunan pertama & kedua, grafik fungsi menentukan nilai maks/min suatu fungsi
- 6. Mampu menyelesaikan integral menggunakan rumus rumus dasar integrasi, integral dengan subtitusi dan integral parsial dan mampu memahaami teorema fundamental kalkulus.
- 7. Mampu mengaplikasikan integrasiuntuk menghitung Luas bidang datar, volume benda putar
- 8. Mampu memahami Koordinat kutub, dan mengaplikasikannya untuk menghitung Luas bidang datar

Pokok Bahasan

- Matriks: Konsep dasar aljabar matrik, menghitung determinan, invers matrik dengan matrik adjoint atau operasi baris elementer, dan penyelesaian sistem persamaan linier, menentukan nilai Eigen dan vector Eigen.
- 2. **Sistem Bilangan**: Bilangan riil (pengertian sistem bilangan riil , Aritmetika: perpangkatan, penyelesaian Persamaan , sifat keteurutan dan penyelesaian Pertidaksamaan) dan Bilangan komplek.
- 3. **Konsep-konsep fungsi, limit**: Domain, range, fungsi linier, kuadratik, grafik fungsi, limit fungsi dan kontinuitas.
- 4. **Turunan**: definisi turunkan (mendiferensialkan), aturan aturan diferensiasi, aturan rantai,
- 5. **Aplikasi turunan:** Interval naik. turun, kecekungan, nilai ekstrimbdengan uji turunan pertama & kedua, grafik fungsi.
- 6. **Integral:** Definisi, sifat2 dasar Integral dan rumus dasar Integral, Integrasi dg Substitusi, Integrasi Parsial. Integral tertentu.

- 7. Aplikasi integrasi: Luas bidang datar, volume benda putar
- 8. Koordinat Kutub: Koordinat kutub, Luas bidang datar

Prasyarat

Pustaka

- 1. Tim Dosen Jurusan Matematika ITS, *Buku Ajar Kalkulus I*, Edisi ke-4 Jurusan Matematika ITS, 2012
- Anton, H. dkk, Calculus, 10-th edition, John Wiley & Sons, New York, 2012

- 1. Kreyzig, E, *Advanced Engineering Mathematics*, 10-th edition, John Wiley & Sons, Singapore, 2011
- 2. James Stewart , *Calculus*, ed.7, Brooks/cole-Cengage Learning, Canada,2012
- 3. Mathematics for Economics and Business, 8/E..., Ian Jacques, Formerly of the University of Conventry, 2015

Detail Mata Kuliah di RMK Analisis dan Aljabar

Mata Kuliah	Nama Mata Kuliah	: Logika Matematika
	Kode Mata Kuliah	: KM184102
	Kredit	: 3
	Semester	: 1

Deskripsi Mata Kuliah

Pada mata kuliah ini mahasiswa akan belajar tentang Istilah-istilah dasar logika, Logika Sentensial, tabel kebenaran dan tautologi, Teori Inferensi: argumentasi, pembuktian; Logika Predikat: penggunaan kuantor, inferensi yang melibatkan kuantor dan Pengantar Teori Himpunan. Pada pembelajaran di kelas mahasiswa akan diberi pemahaman dan penjelasan yang berkaitan dengan materi yang diajarkan sesuai bahan ajar. Disamping itu diberi tugas-tugas yang mengarah untuk belajar mandiri dan kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun		
3.1.2	dengan induksi matematika. Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.		
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.		
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal;		
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis		

Capaian Pembelajaran Mata Kuliah

- Mahasiswa mampu menyusun dan membandingkan pernyataanpernyataan yang benar secara logika.
- 2. Mahasiswa mampu menerapkan aturan-aturan inferensi untuk membuktikan validitas suatu argumentasi dalam logika proposisional.
- Mahasiswa mampu menerapkan aturan-aturan inferensi logika predikat untuk membuktikan validitas suatu argumentasi yang melibatkan kuantor universal atau eksistensial.
- 4. Mahasiswa mampu menerapkan sifat-sifat dasar teori himpunan dalam pembuktian argumentasi.
- 5. Mahasiswa mampu menjelaskan kaitan konsep-konsep dasar logika matematika dan dengan cabang ilmu yang lain.

Pokok Bahasan

Dalam matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Istilah-istilah dasar logika; Logika Sentensial: penyambung sentensial, pengertian syarat perlu dan syarat cukup; tabel kebenaran dan tautologi; Teori Inferensi: argumentasi, pembuktian; Logika Predikat: penggunaan kuantor, inferensi yang melibatkan kuantor; Pengantar Teori Himpunan: operasi himpunan, diagram Venn, pembuktian menggunakan sifat himpunan.

Prasyarat

Pustaka

1. Yunus, M., "Logika: Suatu Pengantar", Graha Ilmu, Yogyakarta, 2007

- 1. Copi, I.M., Symbolic Logic, 5th ed., Prentice Hall, Singapore, 1979
- Rubin, J.E., Mathematical Logic: Application and Theory, Holt, Rinehart, and Winston, New York, 1997
- Suppes, P., Introduction to Logic, Dover Publications, Inc., New York, 1999
- 4. Suppes, P. and Hill, S., First Course in Mathematical Logic, Dover Publications, Inc., New York, 2002
- 5. Waner, S. and Costenoble, S.R., Finite Mathematics, 2nd edition, Brooks/Cole Publishing Co., New York, 2001

Mata Kuliah	Nama Mata Kuliah	: Geometri Analitik
	Kode Mata Kuliah	: KM184103
	Kredit	: 3
	Semester	: 1

Pada mata kuliah ini mahasiswa akan belajar tentang Koordinat Kartesius, tempat kedudukan titik-titik dan persamaannya, Geometry magnitute; Jenisjenis Irisan kerucut, Persamaan garis singgung dan garis normal, Tansformasi koordinat. Mahasiswa akan belajar untuk memahami dan bisa menjelaskan materi geometri analitik khususnya geometri datar.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan
	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan
	menyelesaikannya.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
	abstrakci dan bukti formal

Capaian Pembelajaran Mata Kuliah

masalah melalui pendekatan matematis

4.3.1

1. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dari Teori yang dipahaminya khususnya berkaitan dengan bangun pada bidang datar

Mampu mengamati, mengenali, merumuskan dan menyelesaikan

2. Mahasiswa mampu mengaitkan konsep dasar geometri datar dan beberapa aplikasikannya

Pokok Bahasan

Koordinat Kartesius: persamaan garis, jarak dua titik, jarak garis ke titik, sudut antara dua garis, Irisan kerucut: persamaan limgkaran, parabola, ellips, dan hiperbola, Persamaan garis singgung dan garis normal pada lingkaran, parabola, ellips, dan hiperbola, Tansformasi koordinat, Persamaan bola, silinder, Parabolaida, Hiperboloida, Ruang bidang putar.

Prasyarat

Pustaka

1. Riddle D. F., "Analytic Geometry", PWS Publishing Company, Boston, 1995.

Pustaka Pendukung

1. Parker, L., George Wentwoprth, David Eugene Smith; Analitic Geometry; Ginn and Company; Boston; 1922.

Mata Kuliah	Nama Mata Kuliah	: Aljabar Linier Elementer
	Kode Mata Kuliah	: KM184203
	Kredit	: 4
	Semester	: 2

Topik bahasan meliputi sistem persamaan linear dan solusinya, aljabar matriks, matriks invers, determinan dan ruang vektor real dimensi-n meliputi operasi vektor, norm dari vektor , hasil kali titik pada R^n , hasil kali silang pada R^n , basis, ruang baris, ruang kolom , ruang kosong, rank dan nulitas pada matriks, transformasi matriks, nilai eigen, vektor eigen dan diagonalisasi pada matriks, ruang hasil kali dalam.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan
- 2. Mahasiswa mampu menjelaskan secara cerdas dan kreatif tentang

- peranan signifikan aplikasi ALE dalam bidang rumpun pengetahuan terkait dan bidang lainnya serta menggunakan pemahaman yang diterima dalam kuliah untuk menyelesaikan masalah yang diberikan
- Mahasiswa mempunyai kemampuan khusus dan mampu mengolah gagasannya yang cukup untuk mendukung studi berikutnya sesuai dengan bidang terkait
- 4. Mahasiswa mampu menyajikan pemahaman ilmunya dalam ALE secara mandiri ataupun dalam kerja tim

Pokok Bahasan

Sistem persamaan linear, Determinan, Ruang vector Real, Nilai Eigen dan Vektor Eigen, Ruang hasil kali dalam

Prasyarat

Pustaka

1. Howard Anton and Chris Rorrers, "Elementary Linear Algebra, Tenth Edition", John Wiley and Sons, (2010).

- 1. C.D. Meyer,"Matrix Analysis and Applied Linear Algebra", SIAM, (2000)
- 2. Steven J. Leon, "Linear Algebra with Applications", Seventh Edition, Pearson Prentice Hall, (2006).
- 3. Stephen Andrilli and David Hecker,"Elementary Linear Algebra, Fourth Edition", Elsevier, (2010)
- 4. Subiono., "Ajabar Linier", Jurusan Matematika FMIPA-ITS, 2016

Mata Kuliah	Nama Mata Kuliah	: Aljabar I
	Kode Mata Kuliah	: KM184402
	Kredit	: 3
	Semester	: 4

4.2.2

Pembahasan matakuliah Aljabar I mencakup pengkajian Relasi, Fungsi dan Grup, Subgrup dan generator, subgrup terkecil, Grup Permutasi, grup normal dan grup factor, Homomorpisma grup, produk langsung internal dan eksternal serta Teorema Cayley. Dalam pembahasan kuliah digunakan perangkat lunak SAGEMATH untuk membekali peserta didik mempunyai kemampuan melakukan komputasi simbolik yang berkaitan dengan masalah grup. Pada proses pembelajaran di kelas peserta didik akan belajar untuk identifikasi masalah, mengungkapkan ide matematika simbolik dan mengekspresikanya kedalam bentuk tulisan. Selain diarahkan untuk belajar mandiri melalui tugas-tugas, peserta didik diarahkan untuk bekerjasama dalam kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. Mampu melakukan identifikasi permasalahan sederhana. 3.1.2 membentuk model matematika dan menyelesaikannya. 3.1.3 Menguasai metode-metode standar dalam bidang matematika Mampu menguasai teori fundamental matematika yang meliputi 3.2.1 konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika. Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya. Mampu menganalisa suatu fenomena melalui model matematika 4.1.2 dan menyelesaikannya Mampu melakukan eksplorasi, penalaran logis, generalisasi,

abstraksi, dan bukti formal;

	4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan			
		masalah melalui pendekatan matematis			
		Mampu memanfaatkan berbagai alternatif pemecahan masalah			
		matematis yang telah tersedia secara mandiri atau kelompok untuk			
		pengambilan keputusan yang tepat;			

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan.
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dan lanjut dari Teori yang dipahaminya khususnya berkaitan dengan struktur dari suatu grup berhingga dan mampu melakukan komputasi simbolik.
- 3. Mahasiswa mampu menjelaskan secara cerdas dan kreatif tentang peranan signifikan aplikasi ALJABAR I dalam bidang rumpun pengetahuan terkait atau bidang lainnya.
- 4. Mahasiswa mampu menyajikan pemahaman ilmunya dalam bidang ALJABAR I secara mandiri ataupun

Pokok Bahasan

Relasi, fungsi dan grup, subgrup dan generator subgrup terkecil, grup permutasi, grup normal dan grup faktor, homomorpisma grup, produk langsung internal dan eksternal serta Teorema Cayley.

Prasyarat

Pustaka

- 1. Subiono, "Catatan Kuliah : ALJABAR I", Jurusan Matematika FMIPA-ITS, 2014.
- 2. Randall B. Maddox," A Transition to Abstract Mathematics, Learning Mathematical Thinking and Writing, 2nd Edition", Academic Press, (2009)
- 3. Joseph A. Gallian, "Contemporary Abstract Algebra", 7th Edition, D.C. Heath and Company, (2010)

- 1. Derek J. S. Robinson, "An Introduction to Abstract Algebra", Walter de Gruyter, (2003).
- 2. William Paulsen," Abstract Algebra, An Interactive Approach", CRC

Press, (2010)

3. Robert A. Beezer," Sage for Abstract Algebra, A Supplement to Abstract Algebra, Theory and Applications ", Department of Mathematics and Computer Science University of Puget Sound, (2012)

Mata Kuliah	Nama Mata Kuliah	: Analisis I
	Kode Mata Kuliah	: KM184501
	Kredit	: 4
	Semester	: 5

Dalam matakuliah ini mahasiswa akan mempelajari Sistem Bilangan Riil yaitu sistem yang mempunyai sifat lapangan terurut lengkap,pengertian barisan konvergen, barisan monoton dan terbatas, barisan Cauchy, limit fungsi, fungsi kontinu dan kontinu seragam serta diferensiasi/turunan fungsi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dari teori yang dipahaminya khususnya berkaitan dengan sistem bilangan riil.
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar yang berkaitan dengan konvergensi barisan dan konsep pembuktiannya.
- 3. Mahasiswa mampu mengaitkan konsep konvergensi pada limit dan

- kontinuitas fungsi.
- 4. Mahasiswa mampu menjelaskan konsep dasar yang berkaitan dengan turunan fungsi dan sifat-sifatnyanya serta aplikasinya pada beberapa teorema.

Pokok Bahasan

Dalam matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut : sistem bilangan riil, nilai mutlak dan arti geometrinya serta persekitaran, supremum dan infimum dan aplikasi supremum , barisan konvergen, monoton dan terbatas, bariasan bagian, kriteria divergensi, barisan Cauchy, barisan kontraktif, limit fungsi, eksistensi limit dan prinsip apit, fungsi kontinu, fungsi diskontinu dan kontinu seragam serta kondisi Lipschitz, turunan fungsi dan sifatsifatnyanya serta aplikasinya pada teorema Rolle an Teorema Nilai Ratarata.

Prasyarat

Logika, Matematika Diskrit

Pustaka

- 1. Bartle R G and Sherbert D R," Introduction to Real Analysis", 4th Edition, John Wiley & Sons, Inc. 2011
- 2. Sunarsini dan Sadjidon, "Modul Ajar: *Analisis Riil I*", Jurusan Matematika FMIPA-ITS, 2014.

	Nama Mata Kuliah	: Kalkulus Vektor
Mata Kuliah Kode Mata Kuliah Kredit : KM184502 Semester : 5	: KM184502	
	Kredit	: 2
	Semester	: 5

Pada mata kuliah ini dipelajari tentang ruang vector, fungsi bernilai vector, differensial dan integral vector, gradien, divergensi dan curl serta teoremateorema yang terkait seperti teorema Green dan teorema Stokes.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

- 3.1.1. Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
- 3.1.2. Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
- 3.1.3. Menguasai metode-metode standar dalam bidang matematika
- 3.2.1. Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
- 4.1.1. Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.3.1. Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- Mahasiswa mampu memahami , melakukan diferensial dan intergral fungsi bernilai vector
- 2. Mahasiswa mampu menentukan gradien, divergensi dan curl suatu fungsi bernilai vector
- 3. Mahasiswa mampu membuktikan teorma Green, teorema Stokes dan teorema divergensi

Pokok Bahasan

Ruang vector, aljabar vector, Integral garis, gradient , teorema Green, divergensi dan curl, integral permukaan, teorema Stokes dan teorema divergensi

Prasyarat

Kalkulus Peubah Banyak

Pustaka

1. Howard Anton, IRL Bivens, Stephen Davis, "Multivariables Calculus", 9th Edition, John Wiley & Sons, Inc, Singapore, 2009

Pustaka Pendukung

1. Purcell J.E., Rigdon S.E., Vargerg D. "Calculus", Prentice Hall, New Jersey, 2000

Mata Kuliah	Nama Mata Kuliah	: Aljabar II
	Kode Mata Kuliah	: KM184504
	Kredit	: 3
	Semester	: 5

Pembahasan matakuliah Aljabar II mencakup pengkajian ring, daerah integral, lapangan, karakteristik suatu ring, ideal dan ring faktor, homomorpisma ring dan lapangan pecahan. Dalam pembahasan kuliah digunakan perangkat lunak SAGEMATH untuk membekali peserta didik mempunyai kemampuan melakukan komputasi simbolik yang berkaitan dengan masalah aljabar dengan dua operasi biner. Pada proses pembelajaran di kelas peserta didik akan belajar untuk identifikasi masalah, mengungkapkan ide matematika simbolik dan mengekspresikanya kedalam bentuk tulisan. Selain diarahkan untuk belajar mandiri melalui tugas-tugas, peserta didik diarahkan untuk bekerjasama dalam kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. Mampu melakukan identifikasi permasalahan sederhana. 3.1.2 membentuk model matematika dan menyelesaikannya. 3.1.3 Menguasai metode-metode standar dalam bidang matematika Mampu menguasai teori fundamental matematika yang meliputi 3.2.1 konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika. Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya. Mampu melakukan eksplorasi, penalaran logis, generalisasi, 4.2.2 abstraksi, dan bukti formal; Mampu mengamati, mengenali, merumuskan dan menyelesaikan 4.3.1 masalah melalui pendekatan matematis

	Mampu memanfaatkan berbagai alternatif pemecahan masalah				
4.5.1	matematis yang telah tersedia secara mandiri atau kelompok untuk				
	pengambilan keputusan yang tepat;				
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang				
4.0.1	kerja yang ditekuni				

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengikuti perkembangan, mengembangkan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dan lanjut dari teori yang dipahaminya khususnya berkaitan dengan struktur dari suatu lapangan berhingga dan mampu melakukan komputasi simbolik
- 3. Mahasiswa mampu menjelaskan secara cerdas dan kreatif tentang peranan signifikan aplikasi Aljabar dalam bidang rumpun pengetahuan terkait dan bidang lainnya
- 4. Mahasiswa mampu menyajikan pemahaman ilmunya dalam bidang Aljabar secara mandiri ataupun dalam kerja tim

Pokok Bahasan

Ring, daerah integral, lapangan, karakteristik suatu ring, ideal dan ring faktor, homomorpisma ring dan lapangan pecahan

Prasyarat

Pustaka

- 1. Subiono., "Catatan Kuliah : ALJABAR II", Jurusan Matematika FMIPA-ITS, 2014.
- 2. Joseph A. Gallian, "Contemporary Abstract Algebra, 7th Edition", Brooks/Cole, (2010)
- 3. Joseph J. Rotman,"Advanced Modern Algebra", Prentice Hall, (2003).

- 1. William Paulsen," Abstract Algebra, An Interactive Approach ", CRC Press, (2010).
- 2. Robert A. Beezer," SAGE for Abstract Algebra, A Supplement to Abstract Algebra, Theory and Applications ", Department of Mathematics and Computer Science, University of Puget Sound, 2013.

Mata Kuliah	Nama Mata Kuliah	: Analisis II
	Kode Mata Kuliah	: KM184601
	Kredit	: 4
	Semester	: 6

Dalam mata kuliah ini akan diberikan penjelasan kepada mahasiswa tentang fungsi terintegral Riemann dan konvergensi barisan fungsi serta deret fungsi juga diberikan pemahaman tentang Topologi di ruang riil dan operator Linier kontinu.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

	Mampu menginterpertasikan konsep dasar matematika dan		
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun		
	dengan induksi matematika.		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,		
3.1.2	membentuk model matematika dan menyelesaikannya.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
	Mampu menguasai teori fundamental matematika yang meliputi		
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur		
	matematika.		
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan		
	menyelesaikannya.		
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,		
	abstraksi, dan bukti formal;		
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan		
	masalah melalui pendekatan matematis		

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan prinsip-prinsip dasar tentang integral Riemann dan sifat-sifatnya
- 2. Mahasiswa mampu menjelaskan tentang himpunan kompak dan ruang yang lengkap.
- 3. Mahasiswa mampu memahami tentang operator Linier kontinu.

Pokok Bahasan

Dalam matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan: integral Riemann, sifat-sifat integral Riemann, Teorema fundamental kalkulus, integral Darboux, barisan fungsi, konvergensi barisan fungsi, deret fungsi, himpunan buka, himpunan tutup, himpunan kompak, ruang metrik, ruang lengkap, ruang Banach, ruang Hilbert, dan Operator Linier kontinu.

Prasyarat

Analisis I

Pustaka

- 1. Bartle,R,G.,Sherbert, 2010, "Introduction to Riil Analysis, Fourth Edition.
- 2. Bryan P. Rynne and Martin A Youngson, 2001, Linier Functional Analysis

	Nama Mata Kuliah	: Fungsi Peubah Kompleks
Mata Kuliah	Kode Mata Kuliah	: KM184602
	Kredit	: 3
	Semester	: 6

Matakuliah fungsi peubah kompleks membahas masalah: bilangan kompleks, fungsi/pemetaan kompleks, limit, kontinu, turunan, integral kompleks, Teorema Green, Cauchy, Morera dan Liouvile, konvergensi/divergensi barisan dan deret, singularitas, teorema residu dan penggunaannya dalam integral kompleks, pemetaan konformal.

Capaian I	Pembelajaran 🏻	Lulusan	yang Dibe	bankan N	Mata Kuliah

	Mampu menginterpertasikan konsep dasar matematika dan
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
3.1.2	membentuk model matematika dan menyelesaikannya.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
3.2.3	Mampu menganalisa system dan mengoptimumkan performansinya
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan
	menyelesaikannya.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
	abstraksi, dan bukti formal;
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

1. Mahasiswa mampu menjelaskan sifat aljabar pada bilangan kompleks,

- menentukan limit, kekontinuan dan turunan fungsi kompleks serta dapat menjelaskan sifat-sifat dari fungsi elementer: fungsi-fungsi eksponensial, logaritma, dan trigonometri, fungsi hiperbolik, dan invers trigonometri
- 2. Mahasiswa mampu menghitung integral fungsi kompleks menggunakan sifat dan teorema-teorema yang sesuai
- 3. Mahasiswa mampu menjelaskan pemetaan/transformasi oleh fungsi elementer dan pemetaan/transformasi konformal
- 4. Mahasiswa mampu menjelaskan teorema residu dan penggunaanya untuk menghitung integral fungsi kompleks
- Mahasiswa mampu menyelidiki kekonvergenan deret, menguraikan fungsi kompleks dalam deret pangkat, Taylor, Maclaurin dan deret Lourent

Pokok Bahasan

Sistem bilangan kompleks, fungsi peubah kompleks, limit, kontinuitas, turunan, fungsi analitik dan fungsi harmonic, fungsi-fungsi elementer: eksponensial, logaritma, trigonometri, hiperbolik, dan invers trigonometri, integrasi kompleks, kontur, teorema: Green, Cauchy, Morera dan Liouvile, konvergensi/divergensi barisan dan deret, singularitas, teorema residu dan penggunaanya dalam integral fungsi kompleks, pemetaan konformal.

Prasyarat

Analisis I

Pustaka

- 1. Churchil, R., "Complex Variables and Applications 8th edition", McGraw-Hill, New York, 2009.
- 2. Mathews, J.H, "Complex Variables for Mathematics and Engineering", 6th edition, WM C Brown Publiser, Iowa, 2010.

Pustaka Pendukung

1. Poliouras, J.D., Meadows D. S, "Complex Variables for Scientists and Engineers 2nd edition", New York, 2014.

	Nama Mata Kuliah	: Aljabar Linier
Mata Kuliah Kredit	Kode Mata Kuliah	: KM184702
	Kredit	: 3
	Semester	: 7

Pembahasan matakuliah Aljabar Linier mencakup pengkajian himpunan pembentang, bebas Linier dan basis, dimensi, jumlahan langsung, koordinat dan basis terurut, pemetaan Linier pada ruang vektor, pemetaan Linier dan aljabar matriks, perubahan basis, rank, determinan dan invers, bentuk echelon dari suatu matriks, vektor-eigen dan nilai-eigen, pendiagonalan matriks, orthogonalitas, general invers. aplikasi dari aljabar linier adalah suatu bagian yang terintegrasi dalam penyajian kuliah di kelas. Juga dalam pembahasan kuliah digunakan perangkat lunak SAGEMATH untuk membekali peserta didik mempunyai kemampuan melakukan komputasi numerik dan simbolik. Pada proses pembelajaran di klas peserta didik akan belajar untuk identifikasi masalah, mengungkapkan ide-ide matematika: grafis, numerik simbolik dan mengekspresikanya kedalam bentuk tulisan. Selain diarahkan untuk belajar mandiri melalui tugas-tugas, peserta didik diarahkan untuk bekerjasama dalam kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah menginterpertasikan konsep dasar matematika menyusun pembuktian secara langsung, tidak langsung, maupun 3.1.1 dengan induksi matematika. melakukan identifikasi Mampu permasalahan sederhana. 3.1.2 membentuk model matematika dan menyelesaikannya. 3.1.3 Menguasai metode-metode standar dalam bidang matematika Mampu menguasai teori fundamental matematika yang meliputi 3.2.1 konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika. 3.2.3 Mampu menganalisa system dan mengoptimumkan performansinya Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya.

4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
	abstraksi, dan bukti formal;
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan
- 2. Mahasiswa mampu mengembangkan lebih lanjut pemahaman yang telah didapat terutama berkaitan dengan matematika lanjut dan mengaplikasikannya baik dalam bidang matematika itu sendiri atau yang lainnya serta kemampuan melakukan manipulasi komputasi matematika secara numerik dan simbolik yang berkaitan dengan matriks
- Mahasiswa mempunyai kemampuan khusus dan mampu mengolah gagasannya yang cukup untuk mendukung studi berikutnya sesuai dengan bidang yang ditekuninya
- 4. Mahasiswa mampu menyajikan

Pokok Bahasan

Lapangan dan ruang vektor, ruang-bagian vektor, himpunan pembentang, bebas Linier dan basis, dimensi, jumlahan langsung, koordinat dan basis terurut, pemetaan Linier pada ruang vektor, pemetaan Linier dan aljabar matriks, perubahan basis, rank, determinan dan invers, bentuk echelon dari suatu matriks, vektor-eigen dan nilai-eigen, pendiagonalan matriks, orthogonalitas, general invers.

Prasyarat

Aljabar Linier Elementer, Aljabar I, dan Aljabar II

Pustaka

- 1. Subiono, "Catatan Kuliah : ALJABAR LINIER", Jurusan Matematika FMIPA-ITS, 2014.
- 2. Robert A. Beezer, "A First Course in Linear Algebra, Version 3.10", University of Puget Sound, Congruent Press, Washington, USA, (2013)
- 3. Gilbert Strang, "Linear Algebra and Its Applications", 4th Edition, Thomson, (2006).

4. C.D. Meyer,"Matrix Analysis and Applied Linear Algebra", SIAM, (2000)

- 1. David C. Lay, "Linear Algebra and Its Applications", Addison Wesley, (2002).
- 2. Steven J. Leon, "Linear Algebra with Applications", 7th Edition, Pearson Prentice Hall, (2006).

Mata Kuliah	Nama Mata Kuliah	: Analisis Kombinatorik
	Kode Mata Kuliah	: KM184704
	Kredit	: 3
	Semester	: 7

Pada mata kuliah ini mahasiswa akan belajar tentang Permutasi dan Kombinasi, Prinsip Sangkar Merpati (PHP), Koefisien Binomial, Prinsip Inklusi-Eksklusi, Relasi Rekurensi. Pada pembelajaran di kelas mahasiswa belajar dan mampu memahami serta mengaplikasikan prinsip-prinsip kombinatorik pada masalah sehari-hari.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan
	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika
	dan menyelesaikannya
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
	abstraksi, dan bukti formal;
161	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang

Capaian Pembelajaran Mata Kuliah

4.6.1

- 1. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dari teori yang dipahaminya khususnya berkaitan dengan permutasi dan kombinasi, prinsip sangkar merpati.
- 2. Mahasiswa mampu mengaitkan prinsip dasar dan PHP untuk

aplikasikannya relasi rekurensi dan inklusi-rekursi.

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Permutasi dan Kombinasi, Prinsip Sangkar Merpati (PHP), Koefisien Binomial, Prinsip Inklusi-Eksklusi, Relasi Rekurensi

Prasyarat

Pustaka

1. Brualdi R. A.,"Introductory Combinatorics", Pearson Prentice-Hall, 2004

Mata Kuliah	Nama Mata Kuliah	: Teori Bilangan
	Kode Mata Kuliah	: KM184711
	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini mahasiswa akan belajar tentang sifat-sifat keterbagian, faktor persekutuan terbesar dan kelipatan Persekutuan terkecil, Teorema Euclide, serta identitas Bezout. Relatif Prime, Aljabar modulo, persamaan Diophantin dan Sisa bagi China, kongruensi dan aplikasinya. Mahasiswa akan belajar dan dibekali untuk memahami serta untuk bisa menjelaskan materi yang diajarkan sesuai dengan bahan ajar dan disamping itu mahasiswa mampu mengidentifikasi masalah sehari hari yang berkaitan dengan teori bilangan dan terampil menyelesaikan masalah sampai tuntas.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. Menguasai metode-metode standar dalam bidang matematika 3.1.3 Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur 3.2.1 matematika. Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya. Mampu menerapkan kerangka berpikir matematika dan prinsip 4.1.4 dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan ystem cerdas Mampu melakukan eksplorasi, penalaran logis, generalisasi. 4.2.2 abstraksi, dan bukti formal; Mampu mengamati, mengenali, merumuskan dan menyelesaikan 4.3.1 masalah melalui pendekatan matematis Mampu memanfaatkan berbagai alternatif pemecahan masalah 4.5.1 matematis yang telah tersedia secara mandiri atau kelompok untuk

pengambilan keputusan yang tepat;

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dari Teori yang dipahaminya khususnya keterbagian dan algoritma pembagian.
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar yang berkaitan dengan faktor persekutuan terbesar dan kelipatan Persekutuan terkecil.
- 3. Mahasiswa mampu mengaitkan Teorema-teorema Kongruensi pada persoalan-persoalan teori bilangan.

Pokok Bahasan

Dalam matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Keterbagian dan algoritma pembagian, sifat-sifat keterbagian, faktor persekutuan terbesar dan kelipatan persekutuan terkecil, Algoritma Euclid pada faktor persekutuan terbesar, identitas Bezout dan aplikasinya, prime dan relatif prime serta Teorema Fermat, Aljabar Modulo dan inverse modulo, relasi kongruensi Linier, teorema Wilson, Persamaan Diophantine sertaTeorema Kongruensi dan teorema sisa Cina

Prasyarat

Aljabar I

Aljabar II

Pustaka

- 1. Gioia, A.A., "Theory of Numbers" Dover Pub., Chicago, 2001
- 2. Apostol, TM, "Introduction to Analytic Number Theory", ToppanCompany S.Pte. Ltd., Singapore, 1980

- 1. Ake Lindahl, L; Lectures on Number Theory; Uppsala, 2002
- 2. Stein, W; Elementary Number Theory; Harvard, UC San Diego; 2017

Mata Kuliah	Nama Mata Kuliah	: Geometri
	Kode Mata Kuliah	: KM184712
	Kredit	: 2
	Semester	: 7

Mata kuliah ini memberikan pengetahuan dan pemahaman tentang landasan yang logis dimulai dengan memberikan unsur-unsur geometri tak terdefinisi dalam aksioma insidensi dan kesejajaran, konsep urutan, konsep sinar, konsep sudut dan konsep kkongruenan. Selanjutnya konsep-konsep berikut akan dikaji dan dikembangkan dalam bentuk teorema-teorema serta pembuktiannya secara analisis dan dibantu dengan bangun-bangun geometri insidensi.

Capaia	n Pembelajaran Lulusan yang Dibebankan Mata Kuliah
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal;
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa diharapkan mampu dan menjelaskan unsur-unsur geometri si tak terdefinisi dalam bentuk geometri insidensi.
- 2. Mahasiwa mampu mengembangkan konsep-konsep alam bentuk aksioma dan teorema serta pembuktiannya.

Pokok Bahasan

Mata kuliah ini mencakup geometri insidensi dengan beberapa model geometri, ke-isomorf-an dan geometri affin. Konsep urutan titik pada garis , pada bidang dan ruang. Kedudukan urutan dari titik-titik dikembangkan pada konsep urutan sinar, sudut dan segitiga, serta dikembangkan pada konsep kekongruenan.

Prasyarat

Pustaka

- 1. Rawuh., "Geometri", Edisi kesatu, Universitas Terbuka Departemen Pendidikan Nasional, Indonesia, Juli 2008
- 2. Glencoe McGraw-Hill., "Geometry Concepts and Applications", United States of America, 2008
- 3. David A. Brannan, Matthew F. Esplen Jeremy J. Gray., "Geometry", Cambridge University Press, 1999

Mata Kuliah	Nama Mata Kuliah	: Pengantar Teori Graph
	Kode Mata Kuliah	: KM184713
	Kredit	: 2
	Semester	: 7

Teori Graf mempelajari himpunan simpul dan sisi berikut dengan relasi yang menghubungkan di antara keduanya. Pada tataran praktis, simpul dapat merepresentasikan entitas nyata dan sisi dapat merepresentasikan relasi yang terjadi di antara entitas tersebut. Pada mata kuliah akan dipelajari penggunaan prinsip-prinsip dalam teori graf sebagai alat bantu untuk memodelkan sebuah masalah, menyelesaikan model tersebut dan mengembalikan penyelesaian tersebut pada masalah yang dimodelkan.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. Mampu melakukan identifikasi permasalahan sederhana. 3.1.2 membentuk model matematika dan menyelesaikannya. 3.1.3 Menguasai metode-metode standar dalam bidang matematika Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya. Mampu menganalisa suatu fenomena melalui model matematika 4.1.2 dan menyelesaikannya Mampu melakukan eksplorasi, penalaran logis, generalisasi, 4.2.2 abstraksi, dan bukti formal; Mampu mengamati, mengenali, merumuskan dan menyelesaikan 4.3.1 masalah melalui pendekatan matematis Mampu menganalisa secara terstruktur suatu sistem/masalah, 4.4.1 merekonstruksi, dan memodifikasi ke dalam bentuk model matematis: Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang 4.6.1 kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

Mahasiswa mampu mengetahui konsep-konsep dalam Teori Graf dan menggunakannya dalam penyelesaian masalah yang muncul dalam dunia teknik maupun sosial, membuat model dan mensimulasikannya, baik dengan kerja individu maupun secara berkelompok dalam kerjasama tim.

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: dasar teori graf, pewarnaan graf, pelabelan graf, jarak dalam graf,pohon dan sifat-sifatnya.

Prasyarat

Matematika Diskrit

Pustaka

- 1. Nora Hartsfield, Gerhard Ringel, "Pearls in Graph Theory", Dover Publications, Inc., 2003.
- 2. I Ketut Budayasa, "Teori Graf dan Aplikasinya", Unesa University Press, 2007.

Pustaka Pendukung

1. Garry Chartrand, Ping Zhang, "A First Course in Graph Theory", Dover Publications, Inc., 2012.

Mata Kuliah	Nama Mata Kuliah	: Teori Ukuran dan Integral
	Kode Mata Kuliah	: KM184811
	Kredit	: 2
	Semester	: 8

Materi kuliah Teori Ukuran dan Integral meliputi aljabar himpunan, aljabar sigma, ukuran luar Lebesgue, ukuran Lebesgue, fungsi terukur Lebesgue, konsep almost everywhere dan integral Lebesgue pada R. Dalam matakuliah ini, mahasiswa akan belajar memahami dan menjelaskan konsep dasar dari materi bahasan. Sebagai matakuliah pilihan, maka mahasiswa diarahkan untuk mencari topik-topik yang sesuai dengan materi bahasan sebagai tugas mandiri. Hasil ini kemudian dipresentasikan, untuk selanjutnya dapat digunakan sebagai topic tugas akhir mahasiswa.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi, abstraksi, dan bukti formal;
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan konsep aljabar himpunan dan aljabar sigma
- 2. Mahasiswa mampu menjelaskan himpunan terukur Lebesgue pada R.

- 3. Mahasiswa mampu menjelaskan pengertian Fungsi Terukur Lebesgue
- 4. Mahasiswa mampu menjelaskan Pengertian integral Lebesgue pada R dan sifat-sifatnya.

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: aljabar himpunan dan aljabar sigma, ukuran dan sifat-sifatnya, fungsi himpunan, ukuran luar Lebesgue, ukuran Lebesgue, fungsi terukur Lebesgue, konsep Almost Everywhere, fungsi tangga dan fungsi sederhana, integral Lebesgue

Prasyarat

Analisis II

Pustaka

- 1. Jain, P.K., Gupta, V.P., "Lebesgue Measure and Integration", Wiley Eastern Ltd, 1986.
- 2. Sunarsini, Diktat Kuliah:"Teori Ukuran dan Integral", 2011

Pustaka Pendukung

2. Royden, H.L., "Real Analysis", 4th ed., Mac Millan Pub. Comp, New York, 2010.

Mata Kuliah	Nama Mata Kuliah	: Kapita Selekta Analisis
	Kode Mata Kuliah	: KM184812
	Kredit	: 2
	Semester	: 8

Dalam mata kuliah ini akan diberikan wawasan baru kepada mahasiswa tentang materi/topic yang sedang berkembang dan sesuai kebutuhan saat ini. Pada kuliah ini dikaji topik-topik baru tentang analisis. Kajian paper/makalah tentang topik tersebut disajikan dalam bentuk diskusi dan presentasi. Diharapkan muncul topik-topik tugas akhir

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

	Mampu menginterpertasikan konsep dasar matematika dan
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
4.2.2	abstraksi, dan bukti formal;
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah,
	merekonstruksi, dan memodifikasi ke dalam bentuk model
	matematis;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	leaving some distance:

Capaian Pembelajaran Mata Kuliah

kerja yang ditekuni

- 1. Mahasiswa mampu mengkaji topik baru tentang analisis dan aljabar
- 2. Mahasiswa mampu mengerti dan menyampaikan kembali materi dari paper/makalah terkait dalam bentuk presentasi

Pokok Bahasan

Materi tentang topik-topik baru analisis dan aljabar, paper/makalah analisis dan aljabar dengan topik terkait

Prasyarat

Pustaka

Buku dan paper untuk topik terkait

Mata Kuliah	Nama Mata Kuliah	: Kapita Selekta Aljabar
	Kode Mata Kuliah	: KM184813
	Kredit	: 2
	Semester	: 8

Dalam mata kuliah ini akan diberikan wawasan baru kepada mahasiswa tentang materi/topik yang sedang berkembang dan sesuai dengan kebutuhan saat ini. Pada kuliah ini dikaji topik-topik baru tentang aljabar, baik dari segi teorimaupun terapannya. Kajian paper/makalah tentang topik tersebut disajikan dalam bentuk diskusi dan presentasi. Diharapkan muncul topik-topik tugas akhir

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

Mampu menginterpertasikan konsep dasar

3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,
4.2.2	abstraksi, dan bukti formal;
121	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
4.3.1	masalah melalui pendekatan matematis
	Mampu menganalisa secara terstruktur suatu sistem/masalah,
4.4.1	merekonstruksi, dan memodifikasi ke dalam bentuk model

Capaian Pembelajaran Mata Kuliah

matematis;

4.6.1

1. Mahasiswa mampu mengkaji topik-topik baru tentang aljabar, baik secara teori maupun aplikasi

Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang

2. Mahasiswa mampu mengerti dan menyampaikan kembali materi dari paper/makalah terkait dalam bentuk presentasi

Pokok Bahasan

Materi tentang topik-topik baru dalam aljabar dan terapannya, paper/makalah aljabar dengan topik terkait

Prasyarat

Pustaka

- 1. Lidl, R. dan Pilz, G, "Applied Abstract Algebra (Undergraduate Texts in Mathematics) 2nd edition", 1997
- 2. Buku dan paper untuk topik terkait

Mata Kuliah	Nama Mata Kuliah	: Transformasi Fourier dan Wavelet
	Kode Mata Kuliah	: KM184814
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini mahasiswa akan belajar tentang ruang Linier, ruang bernorma, dan ruang hasil-kali-dalam, deret Fourier, transformasi Fourier, transformasi Fourier diskrit, dan aplikasinya. Pada pembelajaran di kelas mahasiswa akan belajar dan dibekali untuk memahami serta untuk bisa menjelaskan materi yang diajarkan sesuai dengan bahan ajar, Disamping itu diberi tugas-tugas yang mengarah untuk belajar mandiri dan kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. 3.1.3 Menguasai metode-metode standar dalam bidang matematika Mampu menguasai teori fundamental matematika yang meliputi 3.2.1 konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika. Mampu melakukan identifikasi permasalahan, membentuk model 3.2.2 matematika dan menyelesaikannya. Mampu menguasai konsep dasar dan penerapan matematika dan 3.2.4 ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas. Mampu memahami permasalahan matematis, menganalisa dan 4.1.1 menyelesaikannya. Mampu melakukan eksplorasi, penalaran logis, generalisasi, 4.2.2 abstraksi, dan bukti formal; Mampu mengamati, mengenali, merumuskan dan menyelesaikan 4.3.1 masalah melalui pendekatan matematis 4.4.1 Mampu menganalisa secara terstruktur suatu sistem/masalah,

merekonstruksi, dan memodifikasi ke dalam bentuk model matematis:

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa dapat menyajikan suatu fungsi (sinyal) dalam ekspansi Fourier, dan dapat menunjukkan keakuratan dari penyajian tersebut
- 2. Mahasiswa dapat menerapkan dekomposisi/rekonstruksi diskrit dalam pengolahan sinyal, khususnya dalam proses pemampatan dan denoising data/sinyal

Pokok Bahasan

Ruang Linier, ruang bernorma, dan ruang hasil-kali-dalam, analisis Fourier: deret Fourier, transformasi Fourier, transformasi Fourier diskrit, dan aplikasinya.

Prasyarat

Pustaka

- 1. Boggess, A., Narcowich, F. J., "A First Course in Wavelets with Fourier Analysis", Prentice-Hall, New Jersey, 2001.
- 2. Folland, G. B., "Fourier Analysis and Its Applications", American Mathematical Society., 2009.

Mata Kuliah	Nama Mata Kuliah	: Geometri Diferensial
	Kode Mata Kuliah	: KM184815
	Kredit	: 2
	Semester	: 8

Pada matakuliah ini mahasiswa akan belajar tentang persamaan aljabar dalam bentuk parameter, Kerangka Frenet, Bentuk dasar permukaan dalam parameter, bentuk dasar Gauss dan Codazzi, Diferensial kovarian, geometry hiperbolik, teori permukaan dalam bentuk Diferensial. Pada pembelajaran di kelas mahasiswa akan belajar dan dibekali untuk memahami serta untuk bisa menjelaskan materi yang diajarkan sesuai dengan bahan ajar dan disampingitu diberitugas-tugas yang mengarah untuk belajar mandiri dan kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasika nkonsep dasar Matematika dan
	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu menguasai teori fundamental matematika yang meliputi
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
	matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan
	menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model Matematika
	dan menyelesaikannya
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

1. Mahasiswa mampu menjelaskan dan mengklasifikasikan kelompok geometri, terutama yang berkaitan dengan aljabar linier, kalkulus dan persamaan Diferensial

- 2. Mahasiswa mampu menjelaskan elemen-elemen dari geometri Diferensial dan aplikasinya pada disiplin ilmu lainnya
- 3. Mahasiswa mampu menjelaskan definisi-definisi, lemma-lemma dan teorema-teorema dalam bidang geometri Diferensial
- 4. Mahasiswa mampu menjelaskan dan menafsirkan asumsi-asumsi dari kasus kejadian pada model system dengan menggunakan teoremateorema untuk mendapatkan penyelesaiannya.
- 5. Mahasiswa mampu mempresentasikan makalah bidang geometri Diferensial secara mandiri maupun kerja kelompok.

Pokok Bahasan

Review Aljabar Linier, Kalkulus, Persamaan Diferensial, Persamaan Aljabar dalam bentuk parameter, TeoriLokal; Kerangka Frenet, Bentuk dasar permukaan dalam parameter, Bentuk dasar dan pemetaan Gauss, Teorema dasar teori permukaan dari persamaan Gauss dan Codazzi, Diferensial kovarian, Translasi Parallel dan Geodesiks, Teorema Gauss-Bonnet dan Holonomy, Geometry Hiperbolik, Teori Permukaan dalam bentuk Diferensial, dan Kurvatur pada kalkulus variasi dan permukaan.

Prasyarat

Persamaan Diferensial Biasa

Pustaka

- 1. John McCleary., "Geometry from a Differentiabel Viewpoint", Cambridge University Press, New York America, 1994
- 2. Peter W, W Michor., "Topic in Differential Geometry", Institut fur Mathematik der Universitat Wien, Strudlhofgasse, Austria, 2006.
- 3. Theodore Shifrin, "Differential Geometry, A First Course in Curves and Surfaces", University Of Georgia, 2009.

Pustaka Pendukung

 Ivan Kolar, Peter W. Michor, Jan Slovak., "Natural Operations In Differential Geometry", Institut fur Mathematik der Universitat Wien, Strudlhofgasse, Austria, and Departement of Algebra and Geometry Faculty of Science, Masaryk University Janackovo, Czechoslovakia, 2000.

Detail Mata Kuliah di RMK Matematika Terapan

Mata Kuliah	Nama Mata Kuliah	: Kalkulus Peubah Banyak
	Kode Mata Kuliah	: KM184301
	Kredit	: 4
	Semester	: 3

Deskripsi Mata Kuliah

Pada mata kuliah ini mahasiswa akan belajar tentang fungsi dua peubah bebas atau lebih, limit dan kekontinuan, turunan parsial, maksimum dan minimum, integral rangkap dua dan tiga, aplikasi integral rangkap, integral garis dan permukaan. Pada pembelajaran di kelas mahasiswa akan belajar dan dibekali untuk memahami serta untuk bisa menjelaskan materi yang diajarkan sesuai dengan bahan ajar. Disamping itu mahasiswa diberi tugastugas yang mengarah untuk belajar mandiri dan kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.	
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.	
3.1.3	Menguasai metode-metode standar dalam bidang matematika	
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya	
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.	
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk	

	pengambilan keputusan yang tepat;	
4.6.2	Mampu mengikuti perkembangan IPTEK kerja	yang menunjang bidang

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengaplikasikan aljabar vektor khususnya berkaitan dengan persamaan garis dan bidang dalam ruang.
- 2. Mahasiswa mampu memahami konsep fungsi peubah banyak, khususnya yang berkaitan dengan diferensiasi dan integrasi.
- 3. Mahasiswa mampu mengaplikasikan masalah maksimum dan minimum dalam fenomena riil.
- 4. Mahasiswa mampu mengaplikasikan integral rangkap dalam menyelesaikan masalah-masalah riil.

Pokok Bahasan

Kalkulus vektor, fungsi dua peubah bebas atau lebih, limit dan kekontinuan, turunan parsial, masalah maksimum dan minimum, maksimum dan minimum dengan syarat tambahan (pengalih Lagrange), integral rangkap dua dan tiga, aplikasi integral rangkap, integral garis dan permukaan

Prasyarat

Matematika II

Pustaka

1. Howard Anton, IRL Bivens, Stephen Davis, "Multivariables Calculus", 9th Edition, Jhon Wiley & Sons, Inc, Singapore, 2009

Pustaka Pendukung

1. Pulcell J.E., Rigdon S.E., Vargerg D. "Calculus", Prentice Hall, New Jersey, 2000

Mata Kuliah	Nama Mata Kuliah	: Riset Operasi I
	Kode Mata Kuliah	: KM184302
	Kredit	: 3
	Semester	: 3

Mata Kuliah ini merupakan dasar dari pemodelan matematika khususnya yang bersifat linier dan tidak bersifat probabilistik.

Ruang lingkup mata kuliah ini meliputi penggunaan matematika dalam masalah manajemen khususnya pengambilan keputusan yang didasarkan pada pemodelan matematika sederhana dari permasalahan nyata.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.	
3.1.3	Menguasai metode-metode standar dalam bidang matematika	
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya	
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.	
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya	
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.	
4.4	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis.	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;	

Capaian Pembelajaran Mata Kuliah

- Mampu memahami permasalahan optimasi pada suatu fenomena nyata pada riset operasi dan menyelesaikannya menggunakan metode-metode yang ada.
- Mampu mengidentifikasi masalah sederhana pada masalah transportasi, program linier, penugasan dan membentuk model matematika menggunakan metode yang ada.
- 3. Mampu memberikan alternatif solusi yang optimal untuk permasalahan sederhana

Pokok Bahasan

Sejarah dan pengertian riset operasi, modelling dalam riset operasi, program linier, metode simpleks standar-non standar, metode big M, teorema dual, masalah transportasi, metode northwest corner, metode tabel minimum, metode pendekatan Russel, metode Vogel, optimasi dengan MODI, masalah penugasan, program linier bilangan bulat, analisa jaringan kerja, PERT, program dinamik.

Prasyarat

Aljabar Linier Elementer

Pustaka

- 1. F.S. Hillier & G.J. Lieberman [2005], "Introduction to Operations Research ", Eighth Editions, McGraw-Hill Publishing Company, Singapore.
- 2. Taha, Hamdy A [2007], "Introduction to Operations Research", Fifth Editions, Prentice Hall Inc., Englewood Cliffs, New Jersey.

- 1. H.M. Wagner [1972], "Principles of Operations Research", Prentice-Hall, Inc., London.
- 2. Winston [1994], "Operation Research Applications and Algorithms", Duxbury Press Belmont, California.

Mata Kuliah	Nama Mata Kuliah	: Metode Statistika
	Kode Mata Kuliah	: KM184305
	Kredit	: 3
	Semester	: 3

Mata kuliah ini merupakan mata kuliah dasar yang menjadi prasyarat untuk menempuh beberapa mata kuliah selanjutnya di jurusan Matematika. Pada mata kuliah ini dibahas tentang konsep dasar statistika, statistika deskriptif, distribusi variabel acak, distribusi peluang khusus, distribusi sampling ratarata, dugaan selang suatu parameter, uji hipotesa, dan regresi Linier sederhana. Pengenalan program Minitab dilakukan sebagai alat bantu untuk menyelesaikan permasalahan sederhana yang berhubungan dengan pengolahan dan analisa data.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.		
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya		
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis		
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya		
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;		

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami permasalahan sederhana statistika, menganalisa dengan metode dasar statistika, dan menyelesaikannya
- Mampu mengidentifikasi data, menganalisanya dengan metode dasar statistika dengan benar, dan menyajikannya secara lisan dan tertulis secara ilmiah
- 3. Mampu bertanggung jawab atas kesimpulan yang diambil berdasarkan data dan metode dasar yang dipelajari

Pokok Bahasan

Konsep dasar statistika, statistika diskriptif, distribusi variabel acak, distribusi peluang khusus, distribusi sampling rata-rata, dugaan selang suatu parameter, uji hipotesa, dan regresi Linier sederhana

Prasyarat

Matematika II

Pustaka

- 1. Walpole, R.E, Pengantar statistika, edisi 3, Gramedia, Jakarta, 2002
- 2. Walpole, R.E, Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, edisi 3, ITB, Bandung, 2000
- 3. Gouri, BC., Johnson RA, Statistical Concepts and Methods, John Wiley and Sons, New York, 1977
- 4. Walpole, RE, Probability and Statistics for Engineer and Scientis, 2016

- Draper NR, Smith H., Analisis Regresi Terapan, Gramedia, Jakarta, 1992
- Spiegel RM, Probability and Statistics, Kin Keong Print, Singapore, 1985

Mata Kuliah	Nama Mata Kuliah	: Persamaan Diferensial Biasa
	Kode Mata Kuliah	: KM184401
	Kredit	: 3
	Semester	: 4

Pada mata kuliah ini mahasiswa akan belajar tentang macam macam bentuk persamaan diferensial dengan 1 (satu) peubah bebas sekaligus metode metode untuk menyelesaikan persamaan diferensial maupun sistem persamaan diferensial, keujudan dan ketunggalan penyelesaian, sifat-sifat dan perilaku penyelesaian, kestabilan sistem berbentuk persamaan diferensial linear. Pada pembelajaran di kelas mahasiswa akan belajar dan dibekali untuk memahami serta untuk bisa menjelaskan materi yang diajarkan sesuai dengan bahan ajar. Disamping itu mahasiswa diberi tugastugas yang mengarah untuk belajar mandiri dan kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.		
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya		
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.		
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.		
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk		

	pengambilan keputusan yang tepat;
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang kerja

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengidentifikasi masalah dengan bentuk persamaan diferensial biasa dan sistem persamaan diferensial biasa
- 2. Mahasiswa mampu menerapkan metode-metode untuk menyelesaikan persamaan diferensial biasa dan sistem persamaan diferensial biasa
- 3. Mahasiswa mampu menganalisa sifat-sifat dan perilaku penyelesaian sistem persamaandiferensial biasa

Pokok Bahasan

- 1. Persamaan diferensial biasa tingkat satu: pemisahan variabel, persamaan diferensial linier, eksak dan faktor integrasi.
- 2. Persamaan diferensial tingkat dua dan tingkat tinggi: persamaan homogen, persamaan tak homogin, penyelesaian fundamental, metode koefisien tak tentu, metode variasi parameter.
- 3. Sistem persamaan diferensial tingkat satu: penyajian persamaan diferensial dalam bentuk sistem, keujudan dan ketunggalan penyelesaian, sifat-sifat dan perilaku penyelesaian, kestabilan sistem berbentuk persamaan diferensial linear, nilai eigen, metode Ruth Hurwitz, metode Lyapunov.

Prasyarat

Aljabar Linier Elementer

Pustaka

1. Boyce Di Prima, "Ordinary Differential Equation and Boundary Value Problem, 9th edition, 2005.

Mata Kuliah	Nama Mata Kuliah	: Teori Peluang
	Kode Mata Kuliah	: KW184901
	Kredit	: 3
	Semester	: 4

Pada kuliah ini akan dijelaskan mengenai definisi, konsep dasar, sifat-sifat peluang dan teknik penghitungan. Selanjutnya dibahas mengenai peubah acak, fungsi distribusi, fungsi peubah acak dan distribusi terbatas.Dasar-dasar teori peluang tersebut digunakan untuk merepresentasikan dan menginterpretasikan populasi dasar dan model matematika probabilistic.

Capaia	n Pembelajaran Lulusan yang Dibebankan Mata Kuliah
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan, memahami konsep dasar peluang , peubah acak ,distribusi peubah acak dan sifatnya
- Mahasiswa mampu mengidentifikasi dan menganalisa pemodelan suatu kejadian dan perkembangan matematika statistika yang berhubungan dengan konsep peluang dan peubah acak

Pokok Bahasan

Review Teori Himpunan, ruang sampel, event, sigma aljabar, ukuran Peluang, definisi Peluang, sifat Peluang, Peluang bersyarat, teori Bayes, peubah acak distribusi diskrit dan kontinu, nilai harapan, Momen, Momen Generating Function (MGF), distribusi khusus diskrit dan kontinu, distribusi bersama diskrit dan kontinu, variabel acak bebas, distribusi bersyarat, sifatsifat nilai harapan, korelasi, Nilai harapan bersyarat, MGF bersama, teknik CDF, metode transformasi jumlah dari variabel acak, Pengertian barisan dari variabel random, teorema limit pusat (CLT) dan aproksimasi untuk distribusi Binomial

Prasyarat

Metode Statistik

Kalkulus II

Pustaka

 $1. \ \ \, Bain, \ L.J., \ Engelhardt, \ M.1992 \ , \ " \ Introduction \ to \ Probability \ and \\ Mathematical \ statistics", \ Duxbury \ Press, \ 2nd.$

- 1. Kreyszig, Introductory to Mathematical Statistic, Principles and Methods, John Wiley, 1970
- 2. Ross, SM, Introduction to Probability Models, Academic Pres, 1980

Mata Kuliah	Nama Mata Kuliah	: Metode Numerik
	Kode Mata Kuliah	: KM184404
	Kredit	: 3
	Semester	: 4

Pada mata kuliah ini akan dipelajari metode-metode numerik untuk menyelesaikan pencarian akar-akar persamaan, sistem persamaan Linier, sistem persamaan non Linier, diferensial dan integrasi numerik serta pencocokan kurva. Algoritma-algoritma untuk metode-metode tersebut akan dipelajari dan diimplementasikan dalam bahasa-bahasa pemrograman yang telah dipelajari. Selanjutnya, mahasiswa diharapkan mampu menyelesaikan permasalahan numerik yang berhubungan dengan sains dan teknologi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.		
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika		
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;		
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak		
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang kerja		

Capaian Pembelajaran Mata Kuliah

Mahasiswa mengerti dan dapat menyelesaikan permasalahan yang berhubungan dengan metode-metode numerik yang banyak dijumpai pada masalah sains dan teknik dengan bantuan komputer.

Pokok Bahasan

Dalam matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: pengertian galat/error, akar—akar persamaan, sistem persamaan Linier, sistem persamaan non Linier, interpolasi, turunan numerik, integrasi numerik dan pencocokan kurva.

Prasyarat

Pustaka

- Gerald, C. F. & Wheatley O. P, 2013. "Applied Numerical Analysis 7th edition", Addison Wesley Publishing Company, California
- 2. Chapra, S.C. & R.P. Canale, 1989, "Metode Numerik" Edisi ke-2, Penerbit Airlangga, Jakarta

Pustaka Pendukung

1. Burden, R.C., Faires J.D., Reynolds, A.C., 2010, "Numerical Analysis", Brooks/Cole Cengage Learning, Boston.

Mata Kuliah	Nama Mata Kuliah	: Riset Operasi II
	Kode Mata Kuliah	: KM184405
	Kredit	: 3
	Semester	: 4

Mata Kuliah ini merupakan pengembangan dari pemodelan matematika yang bersifat linier dan pengenalan model non Linier. Ruang lingkup mata kuliah ini meliputi penggunaan matematika dalam masalah manajemen khususnya pengambilan keputusan yang didasarkan pada pemodelan permasalahan nyata.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.		
3.1.3	Menguasai metode-metode standar dalam bidang matematika		
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya		
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas		
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis		
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak		
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis		
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni		

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa dapat memahami segala sesuatu yang berhubungan dengan permasalahan nyata yang bersifat probabilistik.
- 2. Mahasiswa memahami persoalan Program Dinamis, Teori Permainan, dan dapat menyusun model matematika Non Linier dan sekaligus mencari penyelesaiannya.
- 3. Mahasiswa memahami dan mengerti Teori Persediaan dan Teori Antrian.
- 4. Mahasiswa memperoleh bekal dalam menyelesaikan Tugas Akhir.

Pokok Bahasan

Optimasi nonLinier, multiple objective, program dinamis probabilistik, goal programming, teori permainan, teori persediaan dan teori antrian

Prasyarat

Riset Operasi I Metode Statistika

Pustaka

1. F.S. Hillier & G.J. Lieberman [2005], "Introduction to Operations Research ", Eighth Editions, McGraw-Hill Publishing Company, Singapore.

- 1. Taha, Hamdy A [2007], "Introduction to Operations Research", 5th Editions, Prentice Hall inc., Englewood Cliffs, New Jersey.
- 2. Winston [1994], "Operation Research Applications and Algorithms", Duxbury Press Belmont, California.
- 3. H.M. Wagner [1972], "Principles of Operations Research", Prentice Hall, Inc., London.

Mata Kuliah	Nama Mata Kuliah	: Persamaan Diferensial Parsial
	Kode Mata Kuliah	: KM184503
	Kredit	: 3
	Semester	: 5

Pada kuliah ini dibahas tentang pengertian persamaan diferensial parsial, masalah-masalah riil yang berbentuk persamaan diferensial parsial serta metode-metode beserta teorema terkait untuk menyelesaiakannya.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.
3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.

- 4.1.1 Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.4.2 Mampu mengkaji keakuratan model matematis dan menginterpretasikannya;
- Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat
- 4.6.1 Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami masalah-masalah fisi satau fenomena alam membentuk dalam persamaan diferensial parsial, menganalisa serta menyelesaikannya
- 2. Mampu menguasai metode-metode yang tepat untuk menyelesaikan persamaan diferensial parsial, menganalisa karakteristik dan perilaku

sistem

- 3. Mampu melakukan pembuktian eksistensi dan ketunggalan penyelesaian untuk masalah Strum Liouvill
- 4. Mampu bekerjasama dalam menganalisa dan menyelesaiakan fenomena alam yang berbentuk persamaan diferensial parsial
- 5. Mampu berkomunikasi ilmiah baik secaralisan maupun tulisan

Pokok Bahasan

Persamaan diferensial parsial orde satu: eksistensi dan ketunggalan penyelesaian, Metode pemisahan variabel, Persamaan konduk sipanas, Masalah getaran dan gelombang, Masalah Strum Liouville, nilai karak teristik dan selft adjoint

Prasyarat

Persamaan Diferensial Biasa

Pustaka

- 1. Howard Anton,1995. "Multivariables Calculus", Jhon Wiley & Sons, Inc, Singapore.
- 2. Haberman, R., "Applied Partial Differential Equation", 2003
- 3. Pinchover, Y., Rubinstein, J., An Introduction to Partial Differential Equations, Cambridge, 2005

- 1. Pulcell J.E., Rigdon S.E., Vargerg D,2000. "Calculus", Prentice Hall, New Jersey.
- 2. Xiangmin,2009."AppliedMultivariabel Calculus".

Mata Kuliah	Nama Mata Kuliah	: Matematika Statistika
	Kode Mata Kuliah	: KM184505
	Kredit	: 3
	Semester	: 5

Mata kuliah ini merupakan statitistik inference dan merupakan konsep dari pengambilan keputusan dalam suatu populasi dengan pengambilan sampel, yang akandi pelajaria dalah limiting distribusi, distribusi sampling, estima sititik,evaluasi estimasi titik dan Estimasi Interval.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.1	Mampu menginterpertasikan konsep dasar matematika dan
	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
	Mampu melakukan identifikasi permasalahan sederhana,
3.1.2	membentuk model matematika dan menyelesaikannya.
	•
3.1.3	Menguasai metode-metode standar dalam bidang matematika
	Mampu melakukan identifikasi permasalahan, membentuk model
3.2.2	matematika dan menyelesaikannya.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan
	menyelesaikannya.
	Mampu menganalisa suatu fenomena melalui model matematika
4.1.2	dan menyelesaikannya
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis
4.4.2	Mampu mengkaji keakuratan model matematis dan
	menginterpretasikannya;

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu memjelaskan Teorema Limit pusat, asimtotik distribusi Normal, konvergensi statisti dan konvergensi peluang/distribusi.
- 2. Mahasiswa mampu menjelaskan Statistik & Distribusi Sampling

- 3. Mahasiswa mampu menjelaskan Estimasi Titik dan Estimasi Interval.
- 4. Mahasiswa mampu menjelaskan Kecukupan & Kelengkapan
- 5. Mahasiswa mampu menjelaskan Uji Hipotesa.

Pokok Bahasan

- 1. Barisan peubah acak, Teorema Limit Pusat, Asimtotik distribusi normal, konvergensi statistik dan konvergensi distribusi/peluang.
- 2. Statistik dan distribusi sampling, Distribusi Z, distribusi Khi-Kuadrat, distribusi T, distribusi F, dan distribusi Beta.
- Estimasi titik: Metode Estimasi yaitu Metode Momen dan metode MLE (Maximum Likelihood Est), Kriteria kebaikan estimator: Unbiased, UMVUE, Batas bawah Cramer Rao, effisien, konsisten dan statistik cukup, keluarga eksponential (REC), statistik cukup lengkap Teorema Lehman Scheffe.
- 4. Interval konfidensi, metoda pivotal quantity, dan metodeumum, dan masalah dua sampel.

Prasyarat

Teori Peluang Metode Statistik

Pustaka

1. Bain, L.J., Engelhardt, M., "Introduction to Probability and Mathematical statistics", Duxbury Press, 2nd., 1992.

- 1. Hogg, R.V., Tanis, E.A, "Probability and Statistical Inference", Pearson Education, 2006.
- 2. Casella, G., Berger, R.L., "Statistical Inference", Brooks/Cole Pub.Co., 1990.

Mata Kuliah	Nama Mata Kuliah	: Metode Matematika
	Kode Mata Kuliah	: KM184603
	Kredit	: 3
	Semester	: 6

Mata kuliah ini membekali mahasiswa dengan metode-metode tertentu dalam menyelesaikan permasalahan riil (real problems) seperti penghalusan signal, medan magnet dan penyelesaian hampiran. Mata kuliah ini mendukung perkuliah pada level yang lebih tinggi seperti pemodelan matematika, teori probabilitas, pengolahan citra dan masalah nilai batas.

Materi perkuliah meliputi: Fungsi-fungsi khusus (Gamma, Beta, Bessel, Legendre) dan tranformasi (transformasi Laplace dan Fourier).

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis.
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis.

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa memahami konsep-konsep dasar dari metode-metode matematika.
- 2. Mahasiswa mampu menerapkan metode-metode dasar matematika dalam menyelesaikan permasalahan riil.

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: fungsi beta dan fungsi gamma, penyelesaian persamaan diferensial dengan deret, fungsi Bessel, fungsi Legendre, tranformasi Laplace dan aplikasinya, deret dan tranformasi Fourier.

Prasyarat

Pustaka

- 1. Potter dan Goldberg, "Mathematical Methods", Prentice Hall International, New Jersey, 1987
- 2. Erwin Kreyzig, "Advance Engineering Mathematics 9th edition", Jon Wiley and Sons Inc, 2006.
- 3. Usadha, IGN, "Modul Ajar Metode Matematika, 2009

Mata Kuliah	Nama Mata Kuliah	: Matematika Sistem
	Kode Mata Kuliah	: KM184604
	Kredit	: 4
	Semester	: 6

Pembahasan matakuliah matematika sistem mencakup pengkajian model matematika sistem dinamik, pembentukan sistem ruang keadaan, analisa kestabilan, analisa keterkontrolan, analisa keteramatan, pembentukan pengendali sistem, sistem umpan balik kedaan, fungsi transfer dan riilisasi fungsi transfer dalam ruang keadaan. Dalam pembahasan kuliah digunakan perangkat lunak untuk membekali peserta didik mempunyai kemampuan melakukan komputasi yang berkaitan dengan topik bahasan. Pada proses pembelajaran di kelas peserta didik akan belajar untuk mengidentifikasi masalah, mengungkapkan ide matematika dan mengekspresikanya ke dalam bentuk tulisan. Selain diarahkan untuk belajar mandiri melalui tugas-tugas, peserta didik diarahkan untuk bekerjasama dalam kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

4.1.2	Mampu menganalisa suatu fenomena melalui model matematika
	dan menyelesaikannya.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis.
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah,
	merekonstruksi, dan memodifikasi ke dalam bentuk model
	matematis.
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	kerja yang ditekuni.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu mengidentifikasi fenomena alam dan masalah-masalah teknik dalam bentuk sistem dinamik.
- 2. Mampu menganalisa dinamika sistem terutama sifat kestabilan, keterkontrolan dan keteramatannya serta mampu menyusun input

- pengendali system.
- 3. Mampu membentuk fungsi transfer serta mengkaitannya dengan realisasi sistem dalam bentuk ruang keadaan.
- 4. Mampu bekerjasama dalam menganalisa sistem dinamik serta menyajikannya dalam bentuk tulisan dan lisan secara baik.

Pokok Bahasan

Model matematika sistem dinamik, pembentukan sistem ruang keadaan, analisa kestabilan, analisa keterkontrolan, analisa keteramatan, pembentukan pengendali sistem, sistem umpan balik kedaan, fungsi transfer, realisasi fungsi transfer dalam ruang keadaan.

Prasyarat

Pustaka

- 1. Olsder, G.J, "Mathematical System Theory", 1999.
- 2. Ogata K, "Modern Control Engineering", Fifth Edition, 2010.

Pustaka Pendukung

1. Zak, S.H, "Systems and Control", Oxford University Press, 2003.

	Nama Mata Kuliah	: Pemodelan Matematika
Mata Kuliah	Kode Mata Kuliah	: KM184701
Mata Kullali	Kredit	: 4
	Semester	: 7

Pada kuliah ini dibahas tentang pembentukan model berdasarkan hukum-hukum fisis yang berlaku dan data-data pengukuran.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
2.2.2	Mampu melakukan identifikasi permasalahan, membentuk model
3.2.2	matematika dan menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika
4.1.2	dan menyelesaikannya.
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah,
	merekonstruksi, dan memodifikasi ke dalam bentuk model
	matematis.
4.4.2	Mampu mengkaji keakuratan model matematis dan
	menginterpretasikannya.
461	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang

keria vang ditekuni. Capaian Pembelajaran Mata Kuliah

- Mampu menjelaskan komponen untuk membentuk model Matematika.
- Mampu membentuk model matematika berdasarkan hukum-hukum fisika yang berlaku dan data-data pengukuran.

Pokok Bahasan

4.6.1

Konsep dasar pemodelan: komponen pemodelan, variabel, parameter; datadata; pemodelan berdasarkan hukum-hukum fisika: masalah konduksi panas, getaran dawai, gelombang, pertumbuhan populasi; pemodelan berdasarkan data-data pengukuran: model time series, identifikasi parameter.

Prasyarat

Pustaka

- 1. Widodo, B., Pemodelan Matematika, ITS Press, 2012.
- 2. Lennart Ljung, System Identification, Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley, 1999.
- 3. Bellomo.N, Angelis, E.D, and Delitala.M, 2007," Lecture Note on Mathematical Modelling in Applied Sciences" Department of Mathematics Politecnico Torino Corso DucaDegli Abruzzi 24. 10129 Torino, Italy.
- 4. Taylor H.M, Karlin.S,1998," An Introduction to Stochastic Modeling", *Academic PressLimited*, Third Edition.

	Nama Mata Kuliah	: Penulisan Ilmiah Matematika
Mata Kuliah	Kode Mata Kuliah	: KM184703
Mata Kunan	Kredit	: 2
	Semester	: 7

Pada kuliah ini dibahas tentang teknik penggalian ide untuk topik Tugas Akhir/penelitian, teknik penulisan ilmiah serta presentasi. Setelah mengambil mata kuliah ini diharapkan mahasiswa menghasilkan proposal Tugas Akhir.

Capaian Pembelajaran Lulusan yang Dibebankan M	Mata .	Kuliah
--	--------	--------

_	
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model
	matematika dan menyelesaikannya.
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika
4.1.2	dan menyelesaikannya.
	Mampu menerapkan kerangka berpikir matematis untuk
4.1.3	menyelesaikan masalah optimasi baik secara analitis maupun
	empiris.
	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
4.3.2	masalah melalui pendekatan matematis dengan bantuan piranti
	lunak.
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah,
	merekonstruksi, dan memodifikasi ke dalam bentuk model
	matematis.
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	kerja yang ditekuni.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu membuat proposal Tugas Akhir dan penelitian.
- 2. Mampu mempresentasikan proposal.

3. Mampu menuliskan makalah dan mempresentasikan.

Pokok Bahasan

Penggalian topik tesis/riset matematika, teknik penulisan ilmiah, teknik presentasi.

Prasyarat

Pustaka

- 1. Martha Davis, Scientific Papers and Presentation, Academic Press, 2005
- 2. Buku Panduan Akademik ITS, 2014

Mata Kuliah	Nama Mata Kuliah	: Persamaan Diferensial Tak Linier
	Kode Mata Kuliah	: KM184714
Mata Kunan	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini dibahas tentang fenomena alam yang berbentuk persamaan diferensial tak linear, pelinearan, analisa kestabilan system dengan berbagai metode, indentifikasi terjadinya bifurkasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.3	Menguasai metode-metode standar dalam bidang matematika
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis.
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak.
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu mengidentifikasi fenomena alam yang mempunyai bentuk persamaan diferensial tak Linier.
- 2. Mampu menganalisa kestabilan dan perilaku sistem dinamik tak Linier berdasarkan metode yang tepat.
- 3. Mampu mengidentifikasi terjadinya bifurkasi pada sistem PD tak Linier.
- 4. Mampu bekerjasama dalam menganalisa sistem PD tak Linier serta menyajikannya dalam bentuk tulisan dan lisan secara baik.

Pokok Bahasan

Pembentukan sistem orde satu, pelinearan, analisa kestabilan dengan pole placement, Routh Hurwitz dan Lyapunov, analisa bifurkasi.

Prasyarat

Persamaan Diferensial Biasa

Pustaka

1. Verhulst F., "Non Linier Differential Equation and Dynamical Systems", Springer, 2013.

Mata Kuliah	Nama Mata Kuliah	: Persamaan Beda
	Kode Mata Kuliah	: KM184715
Mata Kunan	Kredit	: 2
	Semester	: 7

Pembahasan matakuliah persamaan beda meliputin masalah dasar dalam Kalkulus Beda Hingga dan dapat menggunakannya pada masalah terapan.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu	melakukan	identifikasi	permasalahan	sederhana,
	membentu	ık model mate	matika dan me	nyelesaikannya.	
3.1.3	Menguasa	i metode-meto	ode standar dal	am bidang Maten	natika.
3.2.1	Mampu n	nenguasai teo	ri fundamenta	l matematika ya	ng meliputi
	konsep hi	mpunan, fung	gsi, diferensial,	integral, ruang	dan struktur
	matematik	ca.			
2.2.2	Mampu n	nelakukan ide	ntifikasi perm	asalahan, membe	entuk model

- matematika dan menyelesaikannya.

 Mampu memahami permasalahan matematis, menganalisa dan
- 4.1.1 Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.2.1 Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi.
- 4.6.1 Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni.

Capaian Pembelajaran Mata Kuliah

- Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan.
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar kalkulus beda hingga dan metode penyelesainnya.
- 3. Mahasiswa mampu menjelaskan secara cerdas dan kreatif tentang peranan signifikan kalkulus beda hingga dalam bidang rumpun

pengetahuan terkait atau bidang lainnya.

Pokok Bahasan

Backward and forward difference, Newton's interpolation, computing series by using finite difference, Finite difference equations and integrations, and the application of finite difference in solving differential equations.

Prasyarat

Metode Numerik

Pustaka

- 1. Richardson, C., H., "An Introduction to the Calculus Finite Differences", Literacy Licencing, 2012.
- 2. Shochiro Nakamura, "Applied Numerical Methotds with software", Prentice-Hall International, Inc., 1991.

Mata Kuliah	Nama Mata Kuliah	: Pengantar Optimasi Dinamis
	Kode Mata Kuliah	: KM184716
Mata Kunan	Kredit	: 2
	Semester	: 7

Pembahasan mata kuliah optimasi dinamis mencakup pengkajian dasar-dasar kalkulus variasi, dan pedekatan kalkulus varasi pada kendali optimal. Pada proses pembelajaran di kelas peserta didik akan belajar untuk identifikasi masalah, memodelkan. Selain diarahkan untuk belajar mandiri melalui tugas-tugas, peserta didik diarahkan untuk bekerjasama dalam kerja kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.		
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.		
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya		
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.		
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya		
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.		
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis		
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis;		
Capaian Pembelajaran Mata Kuliah			
1. Ma	1. Mahasiswa mampu mengikuti perkembangan dan menerapkan		

- matematika serta mampu berkomunikasi secara aktif dan benar baik lisan ataupun tulisan .
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dan lanjut dari Teori yang dipahaminya khususnya berkaitan dengan formulasi desain optimasi dan metode penyelesainnya
- 3. Mahasiswa mampu menjelaskan secara cerdas dan kreatif tentang peranan signifikan sistem optimasi dalam bidang rumpun pengetahuan terkait atau bidang lainnya.

Pokok Bahasan

Basic Concepts, Function and Functional, Optimum of a Function and a Functional, The Basic Variational Problem, Fixed-End Time and Fixed-End State System, Discussion on Euler-Lagrange Equation, Different Cases for Euler-Lagrange Equation, The Second Variation, Extrema of Functions with Conditions, Extrema of Functionals with Conditions, Variational Approach to Optimal Control Systems.

Prasyarat

Pustaka

- 1. Naidu, D.S, Optimal Control Systems, CRC Press, 2002
- 2. Bolza, O. Lectures on the Calculus of Variations, American Mathematical Society; 3 edition (October 31, 2000)

Pustaka Pendukung

1. Subchan, S and Zbikowski, R., Computational Optimal Control: Tools and Practice, Wiley, 2009.

Mata Kuliah	Nama Mata Kuliah	: Kerja Praktik
	Kode Mata Kuliah	: KM184717
Mata Kunan	Kredit	: 2
	Semester	: 7

Kegiatan akademik ini dilakukan diluar kampus atau di Instansi yang sessuai dengan laboratorium Pemodelan dan Simulasi system, oleh karena itu diskroipsi dari matakuliah menyesuaikan dengan tugas yang diberika noleh pembimbing di tempat kerjapraktek.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.
2.2.2	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

1. Mampu menerapkan teori-teori yang sudah diterima pada situasi tempat kerja praktek.

- 2. Mampu memberikan alternative solusi berdasarkan teori yang sudah diterima.
- 3. Mampu membuat laporan dari kerja praktek yang telah dilakukan di perusahaan.

Pokok Bahasan

Pokok Bahasan adalah beberapa matakuliah yang pernah dipelajari di
Departemen Matematika FMKSD-ITS antara lain Pemodelan Matematika,
Optimasi Dinamis, Optimal Kontrol, PDP Numerik, Matemtika Sistem.
Prasyarat
Pustaka
Pustaka Pendukung

Mata Kuliah	Nama Mata Kuliah	: Pengantar Matematika Keuangan
	Kode Mata Kuliah	: KM184718
Mata Kunan	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini disajikan dasar-dasar Matematika Keuangan secara diskrit yang meliputi teori peluang dasar dan variabel acak diskrit, gerak geometrik Brownian, dan konsep bungan dan analisa nilai kini. Selanjutnya pembahasan difokuskan pada dua produk turunan keuangan yaitu opsi Eropa dan Amerika dimana penentuan harga opsi tersebut dilakukan melalui arbitrage. Model harga opsi yang dibahas adalah model Black-Scholes dan metode numerik yang dibahas adalah metode binomial. Selain itu implementasi gerak geometric Brownian pada harga saham dan harga minyak mentah akan dibahas sebagai pengayaan.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.	
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.	
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.	
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.	
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.	
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis	
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak	

	Mampu memanfaatkan berbagai alternatif pemecahan masalah
4.5.1	matematis yang telah tersedia secara mandiri atau kelompok untuk
	pengambilan keputusan yang tepat;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
4.0.1	kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Memahami permasalahan di keuangan secara melalui model matematika, menganalisa dan menyelesaikannya
- Mampu menerapkan kerangka berpikir matematis dan mengidentifikasi masalah keuangan sedehana di bidang keuangan. Untuk selanjutnya memodelkan dan menyelesaikan masalah secara analitis dan empiris

Pokok Bahasan

Konsep probabilitas dan variabel acak, proses stokastik, gerak geometrik Brownian, konsep bunga dan analisa nilai kini, opsi Eropa dan Amerika, harga kontrak melalui arbitrage, teorema arbitrage, metode binomial, formula Black Scholes, model optimasi, gerak geometric Brownian lanjut.

Prasyarat

Teori Peluang

Pustaka

1. Ross, M. Sheldon, An Introduction to Mathematical Finance, Cambridge University Press, 1999

Pustaka Pendukung

1. John C Hull, "Options, Futures, and Other Derivatives", Pearson, 2009

Mata Kuliah	Nama Mata Kuliah	: Proses Stokastik
	Kode Mata Kuliah	: KM184719
	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini dibahas tentang dasar-dasar proses stokastik, random walk Sederhana, Rantai Markov waktu Diskrit (RMWD) dan contoh contoh model RMWD, Klasifikasi State, Distribusi transient, Limiting Behavior, First Passage Time, Occupancy Times, Rantai Markov Waktu kontinu (RMWK), Proses Poisson Homogen dan Non Homogen, Birth Death Process, Model Antrian.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.			
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.			
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.			
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.			
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya			
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis			
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis			
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya;			
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk			

pengambilan keputusan yang tepat;

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami dasar-dasar proses stokastik dan menganalisa suatu fenomena melalui kerangka berpikir matematis selanjutnya menyelesaikannya secara optimal
- Mampu melakukan identifikasi sederhana permasalahan nyata, memodelkannya secara matematis dan menyelesaikannya secara optimal
- 3. Mampu mengajukan alternatif solusi menggunakan pendekatan stokastik terhadap permasalahan sederhana secara individu ataupun berkelompok

Pokok Bahasan

Konsep proses Stokastik , random walk Sederhana, Rantai Markov waktu Diskrit (RMWD) dan contoh contoh model RMWD, Klasifikasi State, Distribusi transient, Limiting Behavior, First Passage Time, Occupancy Times, Rantai Markov Waktu kontinu (RMWK), Proses Poisson Homogen dan Non Homogen, Birth Death Process, Model Antrian.

Prasyarat

Teori Peluang Matematika Statistika

Pustaka

- 1. Kulkarni, V.G, "Modelling, Analysis, Design, and Control of Stochastic System", Springer Verlag, New York, 1999
- V.G. Kulyarni, 1999."Modelling, Analysis, Design, and Control of Stochastic System". Springer Verleg New York

- 1. Allen Linda J.S, An Introduction to Stochastic Processes with Application to Biology, Pearson Education, 2003
- 2. Ross, S.M, Stochastic Processes, John Wiley and Sons, 1996

Mata Kuliah	Nama Mata Kuliah	: Pengendalian Kualitas
	Kode Mata Kuliah	: KM184720
	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini diperkenalkan tentang konsep pengendalian dan perbaikan kualitas secara statistik. Selanjutnya dibahas tentang metodemetode pengendalian dan perbaikan kualitas yang berdasarkan statistik antara lain grafik pengendali, kemampuan proses, sampling penerimaan dan kurva karakteristik operasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan ^{menyelesaikannya} .			
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.			
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.			
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.			
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya			
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.			
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis			
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya			
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat			

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami konsep pengendalian dan perbaikan kualitas secara statistik dari suatu proses dan menganalisanya.
- 2. Mampu mengidentifikasi dan menganalisa data kualitas dalam suatu proses untuk mengambil kesimpulan tentang kualitas dan kemampuan proses dan menyajikannya secara ilmiah
- Mampu menyelesaikan dan memberi alternatif solusi dalam perbaikan kualitas dengan pendekatan yang dipelajari baik secara mandiri maupun dalam kerjasama tim

Pokok Bahasan

Konsep pengendalian dan perbaikan kualitas, metode-metode pengendalian kualitas, sampel dan populasi, statistik deskriptif, distribusi peluang, statistik inferensia, parameter dan statistik, konsep sampling, estimasi parameter, selang kepercayaan, uji hipotesa. Grafik pengendali, kemampuan proses, sampling penerimaan, kurva karakteristik operasi.

Prasyarat

Metode Statistika Teori Peluang

Pustaka

- 1. Mitra A, "Fundamentals of Quality Control and Improvement", Jon Wiley and Sons Inc, 2008.
- 2. Montgomery C. Douglas, Statistical Quality Control, Wiley, 2009

Mata Kuliah	Nama Mata Kuliah	: Estimasi Optimum
	Kode Mata Kuliah	: KM184816
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini dikaji tentang estimasi klasik, observer deterministik, observer stokastik (estimasi sistem dinamik stokastik), pembentukannya dan penerapannya untuk masalah dinamik stokastik Linier.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami masalah estimasi sistem dinamik, mengetahui metode-metode estimasi baik klasik maupun modern serta mampu menerapkannya secara tepat
- 2. Mampu menganalisa feneomena alam; mengidentifikasi model matematika, mengestimasi variabel dengan membentuk algoritma pemrograman komputer yang baik
- 3. Mampu bekerjasama dalam menyajikan topik-topik kecil yang berkaitan dengan estimasi optimum dalam bentuk tulisan maupun lisan

Pokok Bahasan

Teori estimasi klasik, Observer deterministik, Observer stokastik, Kalman filter, Terapan Kalman filter, Colour Noise.

Prasyarat

Aljabar Linier Elementer Persamaan Diferensial Biasa

Pustaka

- 1. Phil Kim, Lynn Huh, "Kalman Filter for Beginners: with MATLAB Examples", A-JIN Publishing Company, 2010
- 2. Dan Simon, "Optimal State Optimation", John Wiley and Son, 2006

- 1. Lewis, F., "Optimal Estimation", John Wiley & Sons, Inc, 1986.
- 2. Grewal, Mohinder, S., "Kalman Filtering Theory and Practise Using MATLAB", John Wiley &Sons, Inc., 2008

Mata Kuliah	Nama Mata Kuliah	: Pengantar Sistem Dinamik
	Kode Mata Kuliah	: KM184817
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini akan dibahas mengenai sistem dinamik kontinu dan sistem dinamik diskrit.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
161	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang

Capaian Pembelajaran Mata Kuliah

kerja yang ditekuni

4.6.1

- 1. Mahasiswa mampu menjelaskan dan memberikan contoh tentang system dinamik
- 2. Mahasiswa mampu menjelaskan dan memberikan contoh tentang penyelesaian system dinamik Linier dan theorem keujudan dan ketunggalan

- 3. Mahasiswa mampu menjelaskan dan memberikan contoh tentang analisis perilaku sistem
- Mahasiswa mampu menjelaskan dan memberikan contoh tentang Analisis bifurkasi
- 5. Mahasiswa mampu menjelaskan dan memberikan contoh tentang barisan dan konstruksi model dinamik
- 6. Mahasiswa mampu menjelaskan tentang titik kesetimbangan dan melakukan analisis stabilitas

SISTEM DINAMIK KONTINU

- 1. Pengantar tentang pengertian Sistem Dinamik sebagai model matematika dinamis yang
- 2. Berbentuk persamaan Diferensial. dengan beberapa contoh tentang perkembangan ilmu ini
- Penyelesaian system sebagai model persamaan Diferensial Linier dantak Linier teorema
- 4. Keujudan dan ketunggalan, penyelesaian analitik, penyelesaian pendekatan geometric dalam bentuk trayektori
- 5. Analisis Kestabilan yang menunjukkan perilaku system Linier disekitar titik kesetimbangan dan dinyataka secara geometris pada bidang phase ataupotret phase.
- 6. Analisis Kestabilan pada perilaku sistem tak Linier disekitar titik kesetimbangan, peLinieran
- 7. Bifurkasi, Pengenalan tipe bifurkasi pada system prey-predator, bifurkasi Hofp,
- 8. Bifurkasi Superkritical

SISTEM DINAMIK DISKRIT

- 1. Barisan dan konstruksi model dengan beberapa contoh tentang iterasi fungsi, pertumbuhan logistic
- 2. Terapan pada masalah ilmu Kehayatan
- 3. Titik Kesetimbangan
- 4. Menentukan Stabilitas.

Prasyarat

Persamaan Differnsial Tak Linier

Pustaka

- 1. Ferdinand Verhulst, 1985."Non Linier Differential Equations and Dynamical Systems "Published by Epsilon Uitgaven, Utrecht
- 2. John K. Hunter, 2011," Introduction to Dynamical Systems" *Department of Mathematics, University of California at Davis*

Mata Kuliah	Nama Mata Kuliah	: Perancangan Eksperimen
	Kode Mata Kuliah	: KM184818
	Kredit	: 2
	Semester	: 8

Mata kuliah ini membahas konsep-konsep dasar perancangan eksperimen, perancangan eksperimen satu faktor dalam RAL, RAKL dan RBSL, perancangan eksperimen dua faktor dalam RAL dan RAKL, uji rata-rata setelah ANOVA, ekspektasi mean square, dan pengujian asumsi model.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

Mampu melakukan identifikasi permasalahan sederhana,
membentuk model matematika dan menyelesaikannya.
Mampu menguasai teori fundamental matematika yang meliputi
konsep himpunan, fungsi, diferensial, integral, ruang dan struktur
matematika.
Mampu melakukan identifikasi permasalahan, membentuk model
matematika dan menyelesaikannya.
Mampu memahami permasalahan matematis, menganalisa dan
menyelesaikannya.
Mampu menganalisa suatu fenomena melalui model matematika
dan menyelesaikannya
Mampu mengamati, mengenali, merumuskan dan menyelesaikan
masalah melalui pendekatan matematis
Mampu mengkaji keakuratan model matematis dan
menginterpretasikannya
Mampu memanfaatkan berbagai alternatif pemecahan masalah
matematis yang telah tersedia secara mandiri atau kelompok untuk
pengambilan keputusan yang tepat

- 1. Memahami konsep dasar perancangan eksperimen
- 2. Mampu menentukan faktor, lingkungan, dan pengukuran suatu sistem

- yang dipakai dalam perancangan eksperimen sehingga diperoleh respon yang optimal
- 3. Mampu membandingkan dua perlakuan berdasarkan data masa lalu
- 4. Mampu merancang suatu percobaan dengan lebih dari dua perlakuan
- Mampu mengidentifikasi dan mengolah data hasil perancangan eksperimen secara akurat dan mengambil keputusan berdasarkan hasil tersebut

Konsep dasar perancangan eksperimen, klasifikasi perancangan eksperimen, perbandingan dua perlakuan, rancangan eksperimen satu faktor dalam RAL, RAKL, RBSL, uji rata-rata setelah Anova, rancangan eksperimen dua faktor dalam RAL dan RAKL, ekspektasi mean square, dan uji asumsi model

Prasyarat

Metode Statistik

Pustaka

- 1. Mattjik, AA., Sumertajaya M., "Perancangan percobaan dengan aplikasi SAS dan Minitab, jilid 1", IPB Press, Bogor, 2000
- Box GEP., Hunter WG, Hunter JS, "Statistic for Experimenters, Design, Innovation and Discovery, 2nd Ed., John Wiley & Sons Inc., NewYork, 1995

Pustaka Pendukung

1. Montgomery DC., "Design and Analysis of Experiments, 8th Edition, John Wiley & Sons, New York, 2011

Mata Kuliah	Nama Mata Kuliah	: Kapita Selekta Pemodelan, Sistem, dan Simulasi
	Kode Mata Kuliah	: KM184819
	Kredit	: 2
	Semester	: 8

Pada kuliah ini dikaji topik-topik baru tentang pemodelan, optimasi dan terapan lainnya Kajian paper/makalah tentang topik tersebut disajikan dalam bentuk diskusi dan presentasi Diharapkan muncul topik-topik tugas akhir.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

- 3.2.2 Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.

 Mampu memahami permasalahan matematis, menganalisa dan
- 4.1.1 Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.1.2 Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
- 4.2.1 Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
- 4.3.1 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis
- 4.3.2 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
- Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
- 4.6.1 Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

- 1. Mahasiswa mampu mengkaji topik baru tentang analisis dan aljabar
- 2. Mahasiswa mampu mengerti dan menyampaikan kembali materi dari paper/makalah terkait dalam bentuk presentasi

Materi tentang topik-topik baru analisis dan aljabar, paper/makalah analisis dan aljabar dengan topik terkait.

Prasyarat

Pustaka

1. Buku dan paper untuk topik terkait

Mata Kuliah	Nama Mata Kuliah	: Kapita Selekta Stokastik, Optimasi dan Resiko
	Kode Mata Kuliah	: KM184820
	Kredit	: 2
	Semester	: 8

Padakuliah ini dikaji topik-topik baru tentang Stokastik, Optimasi dan Resiko. Kajian paper/makalah tentang topic tersebut disajikan dalam bentuk diskusi dan presentasi. Diharapkan muncul topik-topik tugas akhir.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

- 3.2.2 Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.
- 4.1.1 Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.1.2 Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
- 4.2.1 Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
- 4.3.1 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis
- Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
- Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
- 4.6.1 Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

- 1. Mahasiswa mampu mengkaji topic baru tentang Stokastik, Optimasi dan Resiko
- 2. Mahasiswa mampu mengerti dan menyampaikan kembali materi dari

paper/makalah terkait dalam bentuk presentasi

Pokok Bahasan

Materi tentang topik-topik baru Stokastik, Optimasi dan Resiko, paper/makalah Stokastik, Optimasi dan Resiko dengan topic terkait.

Prasyarat

Pustaka

1. Buku dan paper untuk topik terkait

Mata Kuliah	Nama Mata Kuliah	: Metode Peramalan
	Kode Mata Kuliah	: KM184821
	Kredit	: 2
	Semester	: 8

Pembahasan matakuliah metode peramalan mencakup pengkajian dasar-dasar peramalan kuantitatif, dasar-dasar probabilistik dan statistika inferensia, rata-rata bergerak sederhana untuk pola stasioner dan pola trend linier, penghalusan eksponensial untuk pola stasioner dan pola trend linier, metode regresi dalam analisa runtun waktu, plot ACF dan PACF, metode deret berkala Box-Jenkins (model ARIMA).

Capaia	Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.				
3.1.3	Menguasai metode-metode standar dalam bidang matematika				
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.				
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.				
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya				
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis				
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya				
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat				

Capaian Pembelajaran Mata Kuliah

1. Mahasiswa mampu menjelaskan definisi peramalan

- 2. Mahasiswa mampu menentukan pola dan tren data
- Mahasiswa mampu menentukan model peramalan terbaik untuk data runtun waktu

Arti dan kegunaan peramalan, dasar-dasar peramalan kuantitatif, dasar-dasar probabilistik dan statistika inferensia, rata-rata bergerak sederhana untuk pola stasioner dan pola trend linier, penghalusan eksponensial untuk pola stasioner dan pola trend linier, plot ACF dan PACF, metode deret berkala Box-Jenkins (model ARIMA).

Prasyarat

Teori Peluang

Pustaka

- 1. Andrianto US., Basith A., "Metode dan Aplikasi Peramalan, Jilid 1", Erlangga, Jakarta, 1999
- 2. Makridakis A. & Wheel Uright, Sc., "Forecasting Methods & Applications", John Wiley and Sons, New York, 1992
- 3. Wei, WWS., "Time Series Analysis: Univariate and Multivariate Methods", Addison-Wesley Publishing Company, USA, 1990

- 1. Suminto H., "Metode dan Aplikasi Peramalan, Jilid 2", Interaksara, Batam, 2000.
- 2. Wheelwright Sc, Mc Gee V.G., "Forecasting, 2nd ed.", John Wiley & Sons, Inc, 1983.

Mata Kuliah	Nama Mata Kuliah	: Metode Elemen Hingga
	Kode Mata Kuliah	: KM184822
	Kredit	: 2
	Semester	: 8

Persamaan Euler-Lagrange, Metode Ritz, Metode Elemen Hingga, Metode Galerkin, Pembentukan elemen – elemen, konstruksi fungsi – fungsi basis, koordinat Barycentric, assembly koordinat global.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

Mahasiswa mengerti dan dapat menyelesaikan permasalahan yang berhubungan dengan metode elemen hingga yang banyak dijumpai pada masalah sains dan teknik.

Pokok Bahasan

Persamaan Euler-Lagrange , Metode Ritz, Metode Elemen Hingga , Metode Galerkin, Pembentukan elemen – elemen , konstruksi fungsi – fungsi basis, koordinat Barycentric, assembly koordinat global.

Prasyarat

Pustaka

1. Cuvelier, C., Segal, A & A.A. Steenhoven, 1986. "Finite Element Method and Navier-Stokes Equation", Doordrecht.

Mata Kuliah	Nama Mata Kuliah	: Pengantar Analisis Resiko
	Kode Mata Kuliah	: KM184823
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini disajikan dasar-dasar teori resiko, ketidakpastian, peluang, distribusi peluang, data statistik, pencocokan data, distribusi agregrat, peramalan dengan ketidakpastian, pemodelan korelasi, copula, optimasi dalam analisa resiko. Penyajian teori-teori terkait disertai pembahasan aplikasi pada bidang asuransi dan beberapa bidang lain seperti resiko pada proyek, assesment keamanan makanan dan barang impor.

Capaia	Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.				
3.2.1	Mampu menguasai teori fundamental matematika yang meliputi konsep himpunan, fungsi, diferensial, integral, ruang dan struktur matematika.				
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.				
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.				
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya				
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.				
4.3.1	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis				
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya				
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk				

pengambilan keputusan yang tepat

Capaian Pembelajaran Mata Kuliah

- Mahasiswa mampu menjelaskan konsep dan metodologi dalam teori analisa resiko
- 2. Mahasiswa mengenal model-model resiko dalam asuransi dan bidang lain.
- 3. Mahasiswa mampu menggunakan model-model resiko untuk menganalisa suatu resiko dalam asuransi dan bidang lain.
- 4. Mahasiswa mampu menyajikan hasil analisa menggunakan metode yang dipelajari untuk masalah sederhana.

Pokok Bahasan

Definisi resiko dan analisa resiko, ketidakpastian, peluang, distribusi peluang, data statistic, pencocokan data, Bayesian inferensia, distribusi agregrat, dan aplikasinya pada proyek, asuransi, dan keuangan.

Prasyarat

Metode Statistika

Teori Peluang

Pustaka

1. Quantitative Risk Analysis, David Vose, Wiley, 2009

Pustaka Pendukung

 Probability and Risk Analysis, Igor Rychlik and Jesper Ryden, Springer, 2006

Mata Kuliah	Nama Mata Kuliah	: Pengantar Komputasi Dinamika Fluida
	Kode Mata Kuliah	: KM184824
	Kredit	: 2
	Semester	: 8

Konsep dasar aliran fluida, Metode numerik, beda hingga dan volume hingga yang berkaitan dengan aliran fluida, Penyelesaian persamaan Navier-Stokes, Aliran fluida yang melalui bentuk geometris yang komplesks, dan Aliran turbulen.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

	Mampu menginterpertasikan konsep dasar matematika dan
3.1.1	menyusun pembuktian secara langsung, tidak langsung, maupun
	dengan induksi matematika.
3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural,
3.1.4	berorientasi obyek dan pemrograman matematika
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan
	menyelesaikannya.
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari
	pemahaman prosedural/komputasi;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
	kerja yang ditekuni

- 1. Mahasiswa mengerti, menguasai dan memahami tentang konsep dasar aliran fluida.
- 2. Mahasiswa mampu mengembangkan Numerik untuk menyelesaikan persamaan aliran fluida.
- 3. Mahasiswa mampu memahami dan menyelesaikan persamaan Navier-Stokes.
- 4. Mahasiswa mampu memahami konsep dasar aliran turbulensi.

Konsep dasar aliran fluida, Metode numerik, beda hingga dan volume hingga yang berkaitan dengan aliran fluida, Penyelesaian persamaan Navier-Stokes, Aliran fluida yang melalui bentuk geometris yang komplesks, dan Aliran turbulen.

Prasyarat

Pustaka

- 1. Anderson, J. D. Jr.," Computational Fluid Dynamics (The Basics with Applications), International Edition", New York, USA: Mc Graw-Hill, 1995
- 2. Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics For Engineers", Wichita, USA: Engineering Education System, 1995
- 3. Chung, T.J., "Computational Fluid Dynamics", Cambridge: Cambridge UniversityPress, 2002

- 1. Welty, J.R., et al., Fundamentals of Momentum, Heat and Mass Transfer, 3rd Edition, New York, USA: John Wiley & Sons, Inc., 1995
- 2. Versteeg, H.K. and Malalasekera, W., *An Introduction to Computational Fluid Dynamics The Finite Volume Method, Second Edition*, England: Prentice Hall Pearson Education Ltd., 2007.
- 3. Tu, J.Y., Yeoh, G.H. and Liu, G.Q., *Computational Fluid Dynamics-A Practical Approach*, Oxford, UK: Butterworth-Heinemann Publications, 2008
- 4. Yeoh, G.H. and Yuen, K.K., *Computational Fluid Dynamics in Fire Engineering*, Oxford, UK: Butterworth-Heinemann Publications, 2009

Mata Kuliah	Nama Mata Kuliah	: Persamaan Diferensial Parsial Numerik
	Kode Mata Kuliah	: KM184825
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini akan dipelajari metode—metode penyelesaian persamaan diferensial parsial secara numerik, baik single step maupun multistep. Selain itu akan diberikan juga representasi dari beda hingga. Topik—topik yang berhubungan dengan mata kuliah ini adalah penyelesaian persamaan diferensial parsial berbentuk parabolik, eliptik dan hiperbolik. Penyelesaian dari PDP Eliptik dengan menggunakan persamaan Laplace. Penyelesaian dari PDP Parabolik menggunakan skema eksplisit dan skema implisit. Penyelesaian dari PDP Hiperbolik menggunakan skema beda hingga dan metode kharakteristik.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model
	matematika dan menyelesaikannya.
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari
	pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis dengan bantuan piranti
	lunak

- 1. Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar, baik lisan ataupun tulisan
- Mahasiswa mampu menjelaskan prinsipdasar dari Persamaan Diferensial Parsial yang terdiri dari PDP Parabolik, PDP Eliptik dan PDP

Hiperbolik.

3. Mahasiswa mampu memahami penyelesaian PDP dengan menggunakan numerik dengan beberapa metode.

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Definisi dari Persamaan Diferensial Parsial, PDP Parabolik dan penyelesaiannya (skema eksplisit dan implisit), PDP Eliptik dengan penyelesaiannya (skema ADI dan SOR) dan PDP Hiperbolik dengan penyelesaiannya (skema beda hingga dan metode karakteristik).

Prasyarat

Persamaan Diferensial Parsial Persamaan Diferensial Numerik Metode Numerik

Pustaka

- 1. Steven C. Chapra&Raymond P. Canale, 2010. "Numerical Methods for Engneers 6th edition", McGraw-Hill, Higher Education, Boston, USA.
- 2. Burden, R.C., Faires J.D., Reynolds, A.C., 2011, "Numerical Analysis, 9th edition", Brooks/Cole Cengage Learning, Boston.

- 1. Volker John, 2013, "Numerical Methods for Partial Differential Equations", Press, New York
- 2. Soehardjo, "Refreshing Matematika", 1997, ITS, Surabaya

Mata Kuliah	Nama Mata Kuliah	: Persamaan Diferensial Numerik
	Kode Mata Kuliah	: KM184721
	Kredit	: 2
	Semester	: 7

Pada mata kuliah ini akan dipelajari metode-metode penyelesaian persamaan diferensial secara numerik baik single step maupun multistep. Selain itu akan diberikan juga penyelesaian numerik dari sistem persamaan diferensial. Topik-topik yang berhubungan dengan mata kuliah ini adalah penyelesaian persamaan diferensial numerik dengan Metode Euler, Heun, Runge Kutta, Milne dan Adam-Moulton.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.2	Mampu melakukan identifikasi permasalahan sederhana,
	membentuk model matematika dan menyelesaikannya.
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model
	matematika dan menyelesaikannya.
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari
	pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
	masalah melalui pendekatan matematis dengan bantuan piranti
	lunak

- 1. Mahasiswa mampu mengikuti perkembangan dan menerapkan matematika serta mampu berkomunikasi secara aktif dan benar, baik lisan ataupun tulisan
- 2. Mahasiswa mampu menjelaskan prinsip-prinsip dasar dari Teori yang dipahaminya, khususnya berkaitan dengan kelengkapan bilangan riil, konvergensi, limit dan kekontiuan suatu fungsi
- 3. Mahasiswa mampu menjelaskan tentang peranan signifikan Analisis Riil I pada rumpun bidang terkait atau bidang lainnya
- 4. Mahasiswa mampu menyajikan pemahaman Analisis riil I secara

mandiri ataupun dalam kerja tim

Pokok Bahasan

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Definisi dari Persamaan Diferensial, Metode Taylor, Metode Euler, Metode Heun, Metode Runge Kutta, Metode Multistep, Metode Milne, Metode Adams – Moulton, Sistem Persamaan Diferensial, Definisi Beda Hingga, Persamaan Diferensial Laplace dan Poisson, Masalah nilai batas non-Linier.

Prasyarat

Persamaan Diferensial Biasa Metode Numerik

Pustaka

- 1. Gerald, C. F. & Wheatley O. P, 2013. "Applied Numerical Analysis 7th edition", Addison Wesley Publishing Company, California.
- 2. Burden, R.C., Faires J.D., Reynolds, A.C., 2010, "Numerical Analysis", Brooks/Cole Cengage Learning, Boston.

- 1. Smith, GD, 1986, "Numerical Solution of Partial Differential Equations: Finite Difference Methods", Oxford University Press, New York
- 2. Soehardjo, "Refreshing Matematika", 1997, ITS, Surabaya

Mata Kuliah	Nama Mata Kuliah	: Pemodelan Matematika Sistem
	Kode Mata Kuliah	: KM184731*
	Kredit	: 3
	Semester	: 7

Pada matakulian ini mahasiswa akan belajar untuk mengidentifikasi masalah sistem, pembentukan model matematika berdasarkan hukum-hukum fisika yang berlaku dan mengkaji perilaku dinamiknya baik secara analitik maupun secara simulasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
1.6	Bekerja sama dan memiliki kepekaan sosial serta kepedulian terhadap masyarakat dan lingkungan			
2.1	Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya			
2.3	Mampu mengkaji implikasi pengembangan atau implementasi ilmu pengetahuan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan keahliannya berdasarkan kaidah, tata cara dan etika ilmiah dalam rangka menghasilkan solusi, gagasan, desain atau kritik seni			
2.5	Mampu mengambil keputusan secara tepat dalam konteks penyelesaian masalah di bidang keahliannya, berdasarkan hasil analisis informasi dan data			

- 1. Mampu mengidentifikasi fenomena alam dan masalah-masalah teknik dalam bentuk sistem dinamik
- 2. Mampu menjelaskan komponen untuk membentuk model matematika sistem.

- 3. Mampu membuat model matematika dalam bentuk sistem berdasarkan hukum-hukum fisika yang berlaku.
- Mampu menganalisis dinamika sistem terutama sifat keterkontrolan, keteramatan dan kestabilannya serta mampu menyusun pengendali sistem

- 1. Konsep dasar pemodelan berdasarkan hukum-hukum fisika: masalah konduksi panas, getaran dawai, pertumbuhan populasi, transportasi; pembentukan sistem ruang keadaan;
- 2. Analisis sistem: keterkontrolan, keteramatan, kestabilan; pembentukan pengendali sistem; fungsi transfer dan realisasi fungsi transfer dalam ruang keadaan.

Prasyarat

Pustaka

- Bellomo.N, Angelis, E.D, and Delitala.M, 2007," Lecture Note on Mathematical Modelling in Applied Sciences" Department of Mathematics Politecnico Torino Corso DucaDegli Abruzzi 24. 10129 Torino, Italy.
- 2. Widodo, B., Pemodelan Matematika, ITS Press, 2012.
- 3. Ogata K, "Modern Control Engineering", Fifth Edition, 2010.
- 4. Subiono, "Sistem Linear dan Kontrol Optimal", versi 2.2.1, 2016.

Detail Mata Kuliah di RMK Ilmu Komputer

Mata Kuliah	Nama Mata Kuliah	: Algoritma dan Pemrograman
	Kode Mata Kuliah	: KM184202
	Kredit	: 4
	Semester	: 2

Deskripsi Mata Kuliah

Algoritma dan pemrograman merupakan mata kuliah yang membahas konsep-konsep dasar algoritma dan pemrograman prosedural. Konsep algoritma dan pemrograman tersebut diimplementasikan dalam bahasa pemrograman JAVA dan akan digunakan untuk menyelesaikan permasalahan sederhana. Topik-topik yang dibahas meliputi : dasar algoritma, pembuatan algoritma, tipe data, variabel, struktur I/O, operator, perulangan, struktur control, Fungsi(metoda) dan prosedur, Array, manipulasi string, rekursif, GUI dan event driven. Sistem pengajaran yang dilakukan meliputi tutorial, responsi dan praktikum yang terjadwal.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.4	Menguasai konsep pembuatan algoritma dan dasar pemrograman (komputasi) prosedural, dan pemrograman sesuai logika matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika serta ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.4	Mampu menerapkan kerangka berpikir matematis dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah

matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;

Capaian Pembelajaran Mata Kuliah

- 1. Mampu menguasai konsep dasar algoritma dan pemrograman komputer procedural
- Mampu merancang algoritma, flow chart, dan membuat program komputer dengan bahasa JAVA untuk meyelesaikan masalah matematis, baik dengan kinerja individu maupun secara berkelompok dalam kerjasama tim.

Pokok Bahasan

ALGORITMA: definisi,kriteria, flowchart, pseudo-code

KONSEP PEMROGRAMAN : Paradigma, Langkah-langkah pemrograman terstruktur, bahasa-bahasa pemrograman

PEMROGRAMAN JAVA: Tipe data, keyword, konstanta, variabel,struktur I/O, operator, perulangan, struktur control, Fungsi (metoda)dan prosedur, Array 1D dan 2D, manipulasi string, rekursif, GUI dan event driven

Prasyarat

Pustaka

- 1. Java Programming Comprehensive, 10th edition, Pearson Education, Inc., publishing as Prentice Hall, 2013
- 2. Paul Deitel, Harvey Deitel, Java: How to Program, 9th edition, Prentice Hall, 2012

Pustaka Pendukung

1. Abdul Kadir, "Algoritma & Pemrograman Menggunakan Java", Andi Offset, 2012

Mata Kuliah	Nama Mata Kuliah	: Pemrograman Berorientasi Objek
	Kode Mata Kuliah	: KM184303
	Kredit	: 3
	Semester	: 3

Pemrograman berorientasi objek merupakan mata kuliah yang membahas tentang konsep dasar pemrograman berorientasi objek. Dan juga tentang pembuatan algoritma dengan paradigma berorientasi objek dalam memecahkan suatu masalah dan mengimplementasikan dengan bahasa pemrograman JAVA. Materi yang diberikan meliputi: konsep pemrograman berorientasi objek, diagram UML, enkapsulation, pewarisan, polimorphisme, comparable, exception handling, dan struktur data.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;

Capaian Pembelajaran Mata Kuliah

1. Mampu memahami konsep dasar pemrograman berorientasi objek

- 2. Mampu memahami dan merancang class diagram dengan Unified Modelling Language (UML)
- Mampu menerapkan paradigma pemrograman berorientasi objek dalam merancang dan mengembangkan suatu program untuk menyelesaikan suatu masalah dengan menggunakan bahasa pemrograman JAVA secara individu maupun tim

PBO: Paradigma pemrograman berorientasi objek, diagram UML

KONSEP PBO: Enkapsulation, pewarisan, polimorphisme

UTILITAS PENDUKUNG PBO: comparable dan exception handling

STRUKTUR DATA: list, stack dan queue

Prasyarat

Algoritma dan Pemrograman

Pustaka

- 1. Y. Daniel Liang, "Java Programming Comprehensive", 10th edition, Pearson Education, Inc., publishing as Prentice Hall, 2013
- 2. Paul Deitel, Harvey Deitel, "Java: How to Program", 9th edition, Prentice Hall, 2012

- 1. Abdul Kadir, "Algoritma & Pemrograman Menggunakan Java", Andi Offset, 2012
- 2. C. Thomas Wu, An Introduction to Object-Oriented Programming with Java, 4thEdition, Mc Graw Hill, 2006.

Mata Kuliah	Nama Mata Kuliah	: Matematika Diskrit
	Kode Mata Kuliah	: KM184304
	Kredit	: 3
	Semester	: 3

Matakuliah ini membahas masalah himpunan, relasi dan fungsi, pengantar graph, relasi rekurensi, dan pengantar kombinatorik. Sebagai pendukung untuk matakuliah struktur data, teori graph, dan analisa kombinatorik. Untuk mengukur kemampuan mahasiswa dilakukan evaluasi berupa kuis, ujian, dan tugas-tugas individu maupun kelompok.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
3.1.3	Menguasai metode-metode standar dalam bidang matematika	
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika	
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.	
4.1.1	Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.	
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas	
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;	
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;	

- Mahasiswa diharapkan dapat memahami matematika objek-objek diskrit, menganalisis dan mengkonstruksi suatu argumentasi dalam masalah struktur diskrit, dan dapat menerapkannya untuk menyelesaikan permasalahan berstruktur diskrit
- 2. Mahasiswa mampu menjelaskan kaitan konsep-konsep dasar matematika diskret dengan cabang ilmu yang lain.

Himpunan diskrit dan operator pada himpunan, prinsip inklusi dan eksklusi, dasar counting, peluang diskrit. Relasi biner dan sifat-sifatnya, relasi ekivalen dan pengurutan parsial. Prinsip fungsi dan pigeon-hole, aljabar Boolean, graph, isomorfisma dan graph planar, lintasan Euler dan Hamilton, tree dan cut-set, fungsi numerik dan fungsi pembangkit, relasi recurrence, persamaan beda.

Prasyarat

Algoritma dan Pemrograman

Pustaka

1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications" 7th ed., McGraw-Hill, 2011

- 1. Grimaldi, R. P., "Discrete and Combinatorial Mathematics" 5th ed., Addison-Wesley Publ. Co., 2006.
- 2. Liu, C. L. and DP Mohepatra, "Elements of Discrete Mathematics", 3rd ed., McGraw-Hill Inc., 2008.

Mata Kuliah	Nama Mata Kuliah	: Perangkat Lunak Matematika
	Kode Mata Kuliah	: KM184403
	Kredit	: 3
	Semester	: 4

Perangkat lunak matematika merupakan mata kuliah yang memberikan pengetahuan, pemahaman dan pemanfaatan beberapa perangkat lunak untuk menyelesaian permasalahan matematika. Perangkat lunak yang digunakan diantaranya Matlab, Maple, Sage, OpenCV dan Geogebra. Topik-topik yang dibahas meliputi : perhitungan dasar, konsep data, pemrograman dan grafik. Sistem pengajaran yang dilakukan meliputi tutorial, responsi dan praktikum yang terjadwal.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;

- 1. Mampu memahami bagaimana beberapa perangkat lunak matematika melakukan perhitungan
- 2. Mampu membuat program menggunakan bahasa pemrograman yang

- merupakan bagian dari perangkat lunak
- 3. Mampu memahami bagaimana membuat grafik menggunakan suatu perangkat lunak

- 1. Pengenalan perangkat lunak dan sistem pendukungnya
- 2. Perhitungan dasar
- 3. Dekskripsi internal data dan pemrograman
- 4. Grafik Fungsi 2D dan 3D, kurva parametik dan permukaan parametrik

Prasyarat

Algoritma dan Pemrograman

Pemrograman Berorientasi Objek

Pustaka

- 1. Getting Started with MATLAB®, Version 7, The MathWorks, Inc., 2005
- 2. Maple User Manual, Maplesoft,a division of Waterloo Maple Inc. 2014.
- 3. OpenCV Java Tutorials Documentation
- 4. Mathematical Computation with SageMath, Paul Zimmermann, 2017

Mata Kuliah	Nama Mata Kuliah	: Teknik Simulasi
	Kode Mata Kuliah	: KM184506
	Kredit	: 3
	Semester	: 5

Simulasi adalah satu-satunya cara yang dapat digunakan untuk mengatasi masalah, jika sistem nyata sulit diamati secara langsung

Contoh: Jalur penerbangan pesawat ruang angkasa atau satelit. Simulasi juga bisa dilakukan jika solusi analitik tidak bisa dikembangkan, karena sistem sangat kompleks. Di samping itu simulasi juga terpaksa dlakukan jika pengamatan sistem secara langsung tidak dimungkinkan, karena:

- sangat mahal
- memakan waktu yang terlalu lama
- akan merusak sistem yang sedang berjalan.

Mata kuliah ini mengajarkan teknik/metode yang bisa digunakan dalam melakukan simulasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah	
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas

4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari
	pemahaman prosedural/komputasi;
	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
4.3.2	masalah melalui pendekatan matematis dengan bantuan piranti
	lunak

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa memahami tentang Analisis Simulasi Dan Pengambilan Keputusan
- 2. Mahasiswa mampu menjelaskan elemen analisis dan teknik simulasi
- 3. Mahasiswa menguasai konsep pengembangan model simulasi
- 4. Mahasiswa menguasai konsep perbandingan model analitis dan simulasi
- 5. Mahasiswa mampu menjelaskan konsep pembangkitan bilangan acak
- 6. Mahasiswa mampu menjelaskan konsep fungsi-fungsi distribusi yang penting yang digunakan dalam simulasi serta terapannya
- 7. Mahasiswa mampu menjelaskan konsep fungsi-fungsi distribusi yang penting yang digunakan dalam simulasi serta terapannya
- 8. Mahasiswa mampu mendeskripsikan tentang analisis keluaran
- 9. Mahasiswa mampu melakukan pengujian simulasi bilangan random

Pokok Bahasan

- 1. Analisis Simulasi dan Pengambilan Keputusan,
- 2. Elemen Teknik Simulasi,
- 3. Pengembangan Model Simulasi Sederhana,
- 4. Pengumpulan Dan Analisis Data,
- 5. Pembangkit Bilangan Acak Dan Variasi Acak,
- 6. Verifikasi Dan Validasi Model.
- 7. Analisis Keluaran.
- 8. Optimalisasi Model

Prasyarat

Metode Statistik

Teori Peluang

Pustaka

- 1. Harry Perros, "Computer Simulation Techniques", NC State University publisher, 2009.
- Singh, V.P., "System Modeling and Simulation", New Age International Publisher, 2009.

Pustaka Pendukung

 Claudius Ptolemoeus, "System Design, Modeling and Simulation", Mountain View California, 2014.

Mata Kuliah	Nama Mata Kuliah	: Sistem Basis Data
	Kode Mata Kuliah	: KM184722
	Kredit	: 2
	Semester	: 7

Matakuliah ini menjadi dasar dalam pengembangan perangkat lunak, baik yang berbasis dekstop maupun web. Dalam matakuliah mahasiswa diberikan pemahaman dan penguasaan konsep sistem basis data, manajemen dalam media penyimpanan, merancang dan memodelkan data berdasarkan analisis kebutuhan user serta mengimplementasikannya dalam suatu DBMS.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural,
3.1.4	berorientasi obyek dan pemrograman matematika
	Mampu menguasai konsep dasar dan penerapan matematika dan
3.2.4	ilmu komputasi untuk menyelesaikan pengembangan perangkat
	lunak dan sistem cerdas.
	Mampu menerapkan kerangka berpikir matematika dan prinsip
4.1.4	dasar komputasi untuk menyelesaikan permasalahan pengembangan
	perangkat lunak dan sistem cerdas
	Mampu mengamati, mengenali, merumuskan dan menyelesaikan
4.3.2	masalah melalui pendekatan matematis dengan bantuan piranti
	lunak
	Mampu memanfaatkan berbagai alternatif pemecahan masalah
4.5.1	matematis yang telah tersedia secara mandiri atau kelompok untuk
	pengambilan keputusan yang tepat;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang
4.0.1	kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Mampu memahami dan mendeskripsikan konsep sistem basis data
- 2. Mampu memahami konsep manajemen data dalam storage (storage organizations)

- 3. Mampu mengidentifikasi dan menganalisis kebutuhan user yang terkait dengan data
- 4. Mampu merancang dan memodelkan data dengan struktur basis data yang baik serta mengimplementasikannya dalam RDBMS
- 5. Mampu memahami dan mengimplementasikan query dalam basis data

Pokok Bahasan

- 1. Memaham konsep dasar sistem basis data
 - a. Mengapa diperlukan basis data
 - b. Sudut pandang Data
 - c. Instance dan skema
 - d. Adminstrasi Basis data
 - e. Pengguna Database
- 2. Mampu memahami konsep model relasional
 - a. Konsep Model Relasional
 - b. Konstrain dan skema pada model relasional serta Integritas konstrain
- 3. Pemodelan data menggunakan ER Model
 - a. Desain data menggunakan Conceptual Data Model
 - b. Entitas, Atribut dan Key, Weak entity
 - c. Contoh Notasi ER diagram lainnya
 - d. Mapping ER skema menjadi Relational Database Schema.
- 4. Structured Query Language (SQL)
 - a. Data Definition Languager (DDL)
 - b. Data Manipulation Language (DML)
- 5. Pengenalan teori desain database dan normalisasi
 - a. Ketergantungan Fungsional
 - b. Normalisasi

Prasyarat

Pemrograman Berorientasi Obyek

Pustaka

- Ramez A. Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", ADDISON WESLEY Publishing Company Incorporated, 2011
- Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "DATABASE SYSTEM CONCEPTS, SIXTH EDITION", McGraw-Hill Companies, 2011

Pustaka Pendukung

 Ramakrishnan, Raghu, Gehrke, Johannes, Database Management Systems, 3rd Edition, New York: The McGraw-Hill Companies, Inc., 2003

Mata Kuliah	Nama Mata Kuliah	: Pengolahan Citra Digital
	Kode Mata Kuliah	: KM184723
	Kredit	: 2
	Semester	: 7

Pengolahan citra merupakan mata kuliah yang berisi konsep dasar pengolahan citra digital dan algoritma-algoritma dasar untuk pengolahan citra. Teknik-teknik pengolahan citra meliputi enhancement, restorasi, segmentasi, pemampatan citra dan morphologi matematika. Selain itu pada mata kuliah ini juga akan membahas tentang ilmu matematika yang digunakan untuk pengolahan citra, yaitu transfromasi Fourier, dan morphological mathematics.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;

Capaian Pembelajaran Mata Kuliah

1. Mampu memahami konsep dan tehnik dasar pengolahan citra

- 2. Mampu memahami algoritma fundamental dan bagaimana mengimplementasikan dengan bahasa pemrograman.
- 3. Mampu menerapkan konsep tersebut untuk aplikasi pengolahan citra yang lebih kompleks secara individu maupun dalam kelompok.

Pokok Bahasan

- 1. Konsep dasar pengolahan citra
- 2. Image enhancement dengan spatial filtering
- 3. Image enhancement dalam domain frekuensi
- 4. Restorasi dan rekonstruksi citra (image restoration)
- 5. Morphological image processing
- 6. Segmentasi citra (image segmentation)
- 7. Pengolahan citra warna
- 8. Pemampatan citra

Prasyarat

Pemrograman Berorientasi Objek

Aljabar Linier Elementer

Pustaka

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Third Edition, Pearson, 2008
- John C. Russ, "The Image Processing Handbook", Sixth Edition, CRC Press, 2011.

Pustaka Pendukung

1. Gonzalez, Woods, and Eddins, "Digital Image Processing Using MATLAB (DIPUM)", Prentice Hall, 1st edition, 2004

Mata Kuliah	Nama Mata Kuliah	: Kecerdasan Buatan
	Kode Mata Kuliah	: KM184724
	Kredit	: 2
	Semester	: 7

Kecerdasan Buatan adalah salah satu cabang Ilmu pengetahuan berhubungan dengan pemanfaatan komputer untuk melakukan pekerjaan yang biasanya dilakukan oleh manusia. Hal Ini biasanya dilakukan dengan mengikuti/ mencontoh karakteristik dan analogi berpikir dari kecerdasan/ inteligensia manusia, dan menerapkannya sebagai algoritma yang dikenal oleh komputer. Dengan suatu pendekatan yang kurang lebih fleksibel dan efisien dapat diambil tergantung dari keperluan, yang mempengaruhi bagaimana wujud dari perilaku kecerdasan buatan

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah Mampu menginterpertasikan konsep dasar matematika 3.1.1 menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika. Menguasai konsep dasar pemrograman (komputasi) prosedural, 3.1.4 berorientasi obyek dan pemrograman matematika. Mampu menganalisa sistem dan mengoptimumkan performansinya 3.2.3 Mampu menguasai konsep dasar dan penerapan matematika dan 3.2.4 ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas. Mampu menerapkan kerangka berpikir matematika dan prinsip 4.1.4 dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas. Mampu mengembangkan pemikiran matematis, yang diawali dari 4.2.1 pemahaman prosedural/komputasi. Mampu melakukan eksplorasi, penalaran logis, generalisasi, 4.2.2 abstraksi, dan bukti formal. Mampu mengamati, mengenali, merumuskan dan menyelesaikan 4.3.2 masalah melalui pendekatan matematis dengan bantuan piranti

	lunak
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang
4.0.2	kerja.

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mamapu memahami definisi Kecedasan buatan, dan sejarah perkembangan kecerdasan buatan hingga teknologi terkini.
- 2. Mahasiswa mampu memahami bagaimana konsep penyelesaian masalah dengan pencarian heuristik.
- 3. Mahasiswa mampu memahami dan menginferensi logika orde pertama
- 4. Mahasiswa mampu memahami dan menyelesaiakan masalah ketidakpastian melalui penalaran.
- 5. Mahasiswa memahami cara-kerja sistem pakar berbasis aturan, serta mengimplementasikan dalam skala kecil.
- 6. Mahasiswa mampu memahami metode heuristik (MH).
- 7. Mahasiswa mampu memahami metode Swarm Intelligence.
- 8. Mahasiswa mampu memahami konsep Pemrosesan Bahasa Alami.
- 9. Mahasiswa memahami contoh-contoh praktis mesin pembelajar (machine learning).

Pokok Bahasan

- 1. Sejarah dan Perkembangan masa kini kecerdasan Buatan
- 2. Metode Searching
- 3. Inferensi Logika orde 1
- 4. Inferensi dalam ketidakpastian (probabilistik)
- 5. Sistem berbasis aturan dan sistem pakar
- 6. Metode Heuristik dan Swarm Intelligence
- 7. Pemrosesan bahasa alami

Prasyarat

Logika Matematika

Pustaka

1. S. Russel and P. Norvig, "Artificial Intelliegence: A Modern Approach 3ed, Penerbit Person Education, 2010

Pustaka Pendukung

1. Ian Millington, "Artificial Intelligencence for games:", Penerbit Elsevier,

2. Andre Popov, "Genetic Algorithm for Optimization using MATLAB" Penerbit Wolfram, 2005

Mata Kuliah	Nama Mata Kuliah	: Data Mining
	Kode Mata Kuliah	: KM184725
	Kredit	: 2
	Semester	: 7

Meningkatnya penggunaan teknologi informasi dan sistem menyebabkan volume data meningkat sangat pesat. Data mining menyediakan metode dan alat untuk memanfaatkan data melalui penemuan pola pengetahuan tersembunyi, menarik, dan berguna dari data.

Topik meliputi konsep mining data dasar, data preprocessing, klasifikasi, clustering, asosiasi, pola urutan, aplikasi matematika untuk data mining, aplikasi data mining: web mining, data mining spasial dan sebagainya.

Metode ceramah meliputi tutorial dan diskusi kelas. Selain itu, untuk melatih kemampuan mahasiswa dalam kerjasama dan komunikasi, akan diberikan sebuah proyek dalam bentuk pemecahan masalah dengan alat yang ada di data mining. Proyek ini akan selesai dalam kelompok dan diberikan di akhir ceramah.

Metode penilaian mencakup evaluasi dan penilaian tertulis terhadap proses dan desain, dan bagaimana mempresentasikannya.

Capaia	Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.2.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.			
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.			
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak.			
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat.			
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang			

kerja.

Capaian Pembelajaran Mata Kuliah

- 1. Mampu menerapkan kerangka berpikir matematika dan komputasi berbasis algoritma pengenalan pola untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas.
- Mampu menyelesaikan dan memberi alternatif solusi dalam permasalahan penemuan pola pada data skala besar dengan pendekatan algoritma yang dipelajari baik secara mandiri maupun dalam kerjasama tim.
- 3. Mahasiswa mampu menjelaskan konsep-konsep dalam data mining yang meliputi definisi, proses, task dalam data mining (klasifikasi, clustering, asosiasi, sequence), dan aplikasinya.

Pokok Bahasan

Konsep Data Mining, data besar, preprocessing data, tugas data mining: aturan asosiasi, klasifikasi, clustering, pola urutan, alat matematika untuk data mining, aplikasi data mining: pertambangan web, data mining spasial, studi kasus.

Prasyarat

Sistem Basis Data

Pustaka

1. Jiawei Han, Micheline Kamber, Jian Pei, Data Mining: Concepts and Techniques, Third Edition, Morgan Kaufmann Publisher, 2012

Pustaka Pendukung

1. Pang Ning Tan, Michael Steinbach, dan Vipin Kumar, Introduction to Data Mining, Addison Wesley, 2006

MATA KULIAH	Nama Mata Kuliah	: Struktur Data
	Kode MK	: KM184726
	Kredit	: 2
	Semester	: 6

DESKRIPSI MATA KULIAH

Struktur data merupakan mata kuliah yang berisi dasar dan prinsip perepresentasian informasi (bagaimana menyimpan/store dan mendapatkan kembali/retrieve informasi yang telah disimpan) dalam pemrograman yang berorientasi obyek. Dalam pemrograman, representasi ini melibatkan berbagai pengorganisasian atau penstrukturan himpunan item data yang disebut dengan struktur data, sehingga didapatkan program yang efisien. Topik-topik yang dibahas dalam mata kuliah ini antara lain struktur data dasar (list, stack, queue), struktur data kompleks (binary tree, heap, general tree), algoritma-algoritma sorting dan searching.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN		
MATA I	KULIAH	
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika	
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.	
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas	
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;	
4.3.2 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak		
CAPAIA	AN PEMBELAJARAN MATA KULIAH	

- 1. Menguasai dasar pemrograman berorientasi obyek yang melibatkan manipulasi struktur data dasar maupun lanjut.
- 2. Mahasiswa mampu menjelaskan tipe data abstrak dan mengimplementasikan dalam bahasa pemrograman Java serta mengetahui penggunaannya untuk memudahkan pekerjaan manusia saat ini dan yang akan datang.
- 3. Mahasiswa mampu mengimplementasikan struktur data sederhana dalam bahasa pemrograman Java: list, stack dan queue.
- 4. Mahasiswa mampu menganalisis dan mengimplementasikan struktur data yang lebih kompleks (binary tree, general tree) dalam bahasa pemrograman Java.
- 5. Mahasiswa mampu menjelaskan dan menganalisis algoritma-algoritma sorting dan searching serta menggunakan metoda yang sesuai

POKOK BAHASAN

Dalam Matakuliah ini mahasiswa akan mempelajari pokok bahasan-pokok bahasan sebagai berikut: Konsep struktur data, Tipe Data Abstrak, array based list, linked list, array based stack, linked stack, array based queues, linked queues, tree, binary tree, heap, searching dan studi kasus.

PRASYARAT

Pemrograman Berorientasi Objek

PUSTAKA

- Clifford A. Shaffer, Data Structures and Algorithm Analysis, Java edition, Prentice Hall 2013
- 2. Java Programming Comprehensive, 10th edition, Pearson Education, Inc., publishing as Prentice Hall, 2013

PUSTAKA PENDUKUNG

- Nell Dale, Daniel T. Joyce, Chip Weems, Object-oriented data structures using Java, Jones and Bartlett Publishers, Inc, 2002
- 2. Mark Allen WZeiss, "Data Structures and Problem Solving Using Java", 3rd Edition, Addison Wesley, 2006.

Mata Kuliah	Nama Mata Kuliah	: Desain dan Analisis Algoritma
	Kode Mata Kuliah	: KM184826
	Kredit	: 2
	Semester	: 8

4.7.1

Mata kuliah desain dan analisis algoritma mencakup bagaimana mentransformasikan permasalahan kedalam bentuk input, proses dan output dari suatu program. Mata kuliah ini membekali cara-cara mendesain suatu algoritma atas suatu permasalahan dan melakukan analisis terhadap algoritma yang dibuat sehingga bisa memilih algoritma yang tepat untuk diimplementasikan ke dalam program. Permasalahan yang sering muncul dalam komputasi akan menjadi contoh kasus pembahasan, seperti permasalahan dalam searching, sorting, operasi matriks, graf, dan permasalahan optimasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

menciptakan lapangan kerja.

Mampu menguasai konsep dasar dan penerapan matematika dan 3.2.4 ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas. Mampu menerapkan kerangka berpikir matematika dan prinsip 4.1.4 dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas. Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk 4.5.1 pengambilan keputusan yang tepat. Mampu mengikuti perkembangan IPTEK yang menunjang bidang 4.6.2 kerja. Mampu mengaplikasikan kemampuan matematika untuk

Capaian Pembelajaran Mata Kuliah

- 1. Mampu menyelesaikan dan memberi alternatif solusi dalam permasalahan pemrograman dengan pendekatan algoritma dan struktur data yang dipelajari baik secara mandiri maupun dalam kerjasama tim.
- 2. Memahami dasar-dasar desain algoritma untuk membangun sebuah algoritma yang benar dan efisien.
- 3. Memahami dasar-dasar analisis algoritma dari sudut pandang waktu komputasi dan kebutuhan memori.
- 4. Memahami dan mengimplementasikan algoritma-algoritma graf.
- 5. Memahami dan mengimplementasikan algoritma pemrograman optimasi.
- 6. Mahasiswa mampu menjelaskan dan menganalisis algoritma-algoritma sorting dan searching serta menggunakan metoda yang sesuai.
- 7. Mahasiswa mampu menyelesaikan permasalahan pemrograman dengan memanfaatkan algoritma dan menganalisanya secara cerdas dan kreatif.

Pokok Bahasan

Desain algoritma, analisis algoritma, searching, sorting, matrix algorithms, algoritma graf, dynamic programming, Greedy algorithm, evolutionary algorithm dan studi kasus.

Prasyarat

Matematika Diskrit

Algoritma dan Pemrograman

Pemrograman Berorientasi Objek

Pustaka

- 1. Sara Baase and Allen Van Gelder, Computer Algorithms: Introduction to Design and Analysis 3rd Ed., Addison-Wesley, 2000.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliffortd Stein, Introduction to Algorithms, 3rd ed., MIT Press, 2009.

Pustaka Pendukung

 Clifford A. Shaffer, Data Structures and Algorithm Analysis, Java edition, Prentice Hall 2013

MATA KULIAH	Nama Mata Kuliah	: Rekayasa Perangkat Lunak
	Kode MK	: KM184827
	Kredit	: 2
	Semester	: 8

DESKRIPSI MATA KULIAH

Mata kuliah ini membahas tentang konsep dan model pengembangan perangkat lunak berorientasi obyek, fungsional maupun gabungan keduanya (UML) disertai dengan pembuatan dokumentasi pengembangan.

Secara garis besar, materi kuliah ini antara lain adalah konsep dasar pengembangan perangkat lunak, tahap pengembangan PL, konsep analisis sistem dan pemodelannya, konsep desain sistem dan pemodelannya, implementasi dan pengujian, pengantar manajemen proyek PL. Metode perkuliahan meliputi tutorial di kelas dan diskusi. Selain itu, untuk melatih kerjasama dan berkomunikasi, akan diberikan projek pengembangan perangkat lunak yang akan diselesaikan secara berkelompok dan diberikan di pertengahan sampai akhir perkuliahan.

Metode asesmen berupa evaluasi tertulis dan penilaian atas proses dan pendokumentasian hasil analisis, desain dan pemodelannya, serta bagaimana mempresentasikannya.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH		
3.1.2	Mampu melakukan identifikasi permasalahan sederhana, membentuk model matematika dan menyelesaikannya.	
3.1.3	Menguasai metode-metode standar dalam bidang matematika	
3.2.2	Mampu melakukan identifikasi permasalahan, membentuk model matematika dan menyelesaikannya.	
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya.	
4.4.2	Mampu mengkaji keakuratan model matematis dan menginterpretasikannya.	

Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat.

CAPAIAN PEMBELAJARAN MATA KULIAH

- 1. Menguasai konsep dan model pengembangan perangkat lunak berorientasi obyek, fungsional maupun gabungan keduanya (UML) serta membuat dokumentasi pengembangan perangkat lunak.
- 2. Mampu menyelesaikan dan memberi alternatif solusi dalam pengembangan perangkat lunak baik dengan pendekatan yang dipelajari baik secara mandiri maupun dalam kerjasama tim.

POKOK BAHASAN

Pendahuluan: PL vs RPL, Tahap-tahap dalam RPM, Mitos2 dalam RPL, prosesproses dalam RPL, prinsip-prinsip dalam pengembangan PL, understanding requirement, requirement modeling, Studi Kasus I, pengenalan modelling with UML/Rational Rose, konsep desain, pemodelan desain, Pattern-Based Design, Web Apps Design, Studi Kasus II, pengujian perangkat lunak, pengantar manajemen proyek PL.

PRASYARAT

Pemrograman Berorientasi Objek

PUSTAKA

1. Roger S Pressman, Software Engineering: A Practitioner's approach, 8th ed, McGraw Hill , 2012.

PUSTAKA PENDUKUNG

1. Ian Sommerville: Software Engineering, 8th ed, McGraw Hill, 2010.

Mata Kuliah	Nama Mata Kuliah	: Jaringan Syaraf Tiruan
	Kode Mata Kuliah	: KM184828
	Kredit	: 2
	Semester	: 8

Mata kuliah Jaringan syaraf tiruan merupakan mata kuliah yang mempelajari algoritma komputasi yang meniru bagaimana jaringan syaraf biologi bekerja. Mata kuliah ini merupakan bagian dari Sains Data, karena algoritma yang dipelajari bisa berfungsi dengan baik jika mengaplikasikan pemrosesan data.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
3.1.1	Mampu menginterpertasikan konsep dasar matematika dan menyusun pembuktian secara langsung, tidak langsung, maupun dengan induksi matematika.	
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika.	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya	
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.	
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas.	
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi.	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat.	
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang kerja.	

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan di bidang apa saja aplikasi dari JST
- 2. Mahasiswa mampu menganalisis algoritma JST paling sederhana untuk mengenali pola logika AND, OR, NAND dan NOR.
- 3. Mahasiswa mampu dengan baik dalam menjelaskan perbedaan implementasi algoritma JST dengan 1 elemen pemroses dan multi elemen pemroses.
- 4. Mahasiswa mampu dengan baik dalam menjelaskan jaringan yang mampu menyimpan memori
- Mahasiswa mampu dengan baik dalam menjelaskan konsep dasar jaringan berbasis kompetisi dan masalah yang bisa diselesaikan jaringan tersebut
- 6. Mahasiswa mampu dengan baik dalam menjelaskan perbedaan konsep algoritma jaringan backpropagation dan variasin
- 7. Mahasiswa mampu dengan baik dalam menelaah karya ilmiah tentang aplikasi JST

Pokok Bahasan

- 1. Pemodelan jaringan saraf tiruan dari jaringan saraf biologi,
- 2. Pengenalan pola sederhana dengan Perceptron, Hebb dan Adaline,
- 3. Pengenalan karakter dengan Percepron, Associative memories,
- 4. Klasifikasi dengan BP,dan LVQ,
- 5. Clustering dengan Kohonen SOM,
- 6. Forecasting BP, dan RBF
- 7. Model alternatif JST

Prasyarat

Aljabar Linier Elementer

Pemrograman komputer

Pustaka

1. Irawan, M. Isa, "Dasar-Dasar Jaringan Syaraf Tiruan", Penerbit ITS Press, 2013

Pustaka Pendukung

1. Laurene Fauset, "Fundamental of Artificial Neural Networks", Penerbit Prentice Hall, 1994

- 2. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Penerbit Addison Wesley, 1991
- 3. Simon Haykin, "Kalman Filtering and Neuralnetwork", Penerbit John Wiley & Sons, 2001

	Nama Mata Kuliah	: Logika Fuzzy
Mata Kuliah	Kode Mata Kuliah	: KM184829
	Kredit	: 2
	Semester	: 8

Kuliah ini bertujuan untuk memberikan konsep dasar logika fuzzy dan aplikasinya. Kuliah ini terdiri dari dua bagian: bagian teori dan bagian aplikasi. Bagian pertama (bagian teori) meliputi konsep dasar fuzzy set dan operasi, ukuran kefuzzian dan kefuzzian pengukuran, perluasan teori fuzzy ke bilangan dan fungsi, relasi fuzzy dan graf fuzzy, pengembangan sifat-sifat fuzzy ke probabilitas dan himpunan fuzzy. Bagian kedua merupakan bagian aplikasi yang terdiri atas teknik inferensi fuzzy, aplikasi inferensi untuk logika fuzzy, model himpunan fuzzy dalam riset operasi.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah		
	Mampu menguasai teori fundamental matematika yang meliputi	
3.2.1	konsep himpunan, fungsi, diferensial, integral, ruang dan struktur	
	matematika.	
3.2.3	Mampu menganalisa sistem dan mengoptimumkan performansinya	
	Mampu menguasai konsep dasar dan penerapan matematika dan	
3.2.4	ilmu komputasi untuk menyelesaikan pengembangan perangkat	
	lunak dan sistem cerdas.	
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari	
4.2.1	pemahaman prosedural/komputasi;	
4.2.2	Mampu melakukan eksplorasi, penalaran logis, generalisasi,	
4.2.2	abstraksi, dan bukti formal;	
	Mampu mengamati, mengenali, merumuskan dan menyelesaikan	
4.3.2	masalah melalui pendekatan matematis dengan bantuan piranti	
	lunak	
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah	
	matematis yang telah tersedia secara mandiri atau kelompok untuk	

	pengambilan keputusan yang tepat;	
4.6.2	Mampu mengikuti perkembangan IPTEK kerja	yang menunjang bidang

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa berkemampuan baik dalam menjelaskan konsep himpunan crisp dalam teori himpunan
- 2. Mahasiswa mampu menjelaskan konsep himpunan fuzzy, bagaimna relasi dan mekanisme nilai keanggotaan fuzzy.
- 3. Mahasiswa mampu menjelaskan aljabar himpunan fuzzy (T-norm dan T-conorms), Hedges, aritmatika fuzzy, penalaran dan proposisi fuzzy
- Mahasiswa mampu menjelaskan konsep karakteristik rule based system, sistem produksi, fuzzifikasi dan defuzzifikasi sistem data-. driven, dan rule base expert system
- Mahasiswa mampu menjelaskan konsep rule based expert system, forward dan backward chaining, serta mengatasi ketidakpastian dalam rule based system.
- Mahasiswa mampu menjelaskan konsep ketidakpastian dalam sistem berbasis aturan, kombinasi bilangan fuzzy dan keanggotaan, metode Bayes dan dempster-shafer
- 7. Mahasiswa mampu menjelaskan modifikasi data dan nilai kebenaran, pemilihan tipe penalaran, fuzzifikasi dan defuzzifikasi
- 8. Mahasiswa mampu menjelaskan aplikasi fuzzy untuk pengenalan pola meliputi fuzzy clustering, fuzzy time series, fuzzy pattern recognition.
- Mahasiswa mampu menjelaskan pengambilan keputusan fuzzy, meliputi multi criteria, multi person dan multi stage, pengambilan keputusan fuzzybertahap, metode perankingan fuzzy dan pemrograman linier fuzzy

Pokok Bahasan

Konsep himpunan crisp, konsep himpunan fuzzy, relasi himpunan fuzzy, operasi himpunan fuzzy, inferensi berbasis aturan, inferensi fuzzy, logika fuzzy, fuzzy decision making.

Prasyarat

Logika Matematika

Pustaka

1. Kwang H. Lee, "First Course on Fuzzy Theory and Applications",

Penerbit Springer Verlag Berlin, 2005

Pustaka Pendukung

- 1. Zimmerman, "Fuzzy Set and Fuzz Logic", Kluwer Publishing, 1991
- 2. William Siler and James J. Bookley, "Fuzzy Expert System and Fuzzy Reasoning", Penerbit Wiley and Sons, Inc, 2006
- 3. George J. Klir dan Bo Yuan, "Fuzzy Set and Fuzzy Logic", Prentice Hall, 1995

	Nama Mata Kuliah	: Kriptografi
Mata Kuliah	Kode Mata Kuliah	: KM184830
	Kredit	: 2
	Semester	: 8

Pada mata kuliah ini diberikan dasar-dasar yang terkait dengan kriptografi dan tanda tangan digital untuk pengaman data. Topik-topik yang akan dibahas meliputi dasar-dasar ilmu matematika, algoritma kriptografi klasik dan modern, teknik-teknik kritografi dan aplikasi dari kriptografi. Sistem pengajaran yang dilakukan meliputi tutorial, responsi dan praktikum yang terjadwal

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah			
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika		
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.		
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas		
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;		
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak		
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;		
Capaian Pembelajaran Mata Kuliah			

Mahasiswa mampu mengembangkan pemahaman konsep dan prosedur dari

teknik – teknik pengamanan pada komputer, khususnya pengamanan data dan informasi, baik dengan kinerja individu maupun secara berkelompok dalam kerjasama tim.

Pokok Bahasan

PENGENALAN KRIPTOGRAFI : pengenalan dasar kriptografi, data sekuriti, teori informasi, kompleksitas dan bilangan

BEBERAPA ALGORITMA ENKRIPSI : algorithma enkripsi klasik dan modern (DES dan algoritma kunci public)

TEKNIK KRIPTOGRAFI: beberapa teknik kriptografi, manajemen kunci

Prasyarat

Pustaka

- 1. William.Stallings, Cryptography and Network Security, Principle and Practise. 2nd ed., Prentice Hall, 1999
- Douglas R. Stinson, "Cryptography Theory and Practice", 3rd Edition, Chapman & Hall/CRC, 2006

Pustaka Pendukung

- 1. Serge Vaudenay, "A Classical Introduction to Modern Cryptography", Springer, 2006
- 2. Rinaldi Munir "Kriptografi", Informatika Bandung

	Nama Mata Kuliah	: Kapita Selekta Ilmu Komputasi
Moto Kuliob	Kode Mata Kuliah	: KM184831
Mata Kuliah	Kredit	: 2
	Semester	: 8

Padakuliah ini dikaji topik-topik baru tentang Ilmu Komputer. Kajian paper/makalah tentang topic tersebut disajikan dalam bentuk diskusi dan presentasi Diharapkan muncul topik-topik tugas akhir.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.2.2	Mampu	melakukan	1dentifikasi	permasalahan, ya.	membentuk	model
	matemat	ika dan men	iyelesalkann	ya.		
	1.7	1 '	1.1		1.	- 1

- 4.1.1 Mampu memahami permasalahan matematis, menganalisa dan menyelesaikannya.
- 4.1.2 Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
- 4.2.1 Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;
- 4.3.1 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis
- 4.3.2 Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
- Mampu memanfaatkan berbagai alternative pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
- 4.6.1 Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu mengkaji topic baru tentang Ilmu Komputer
- 2. Mahasiswa mampu mengerti dan menyampaikan kembali materi dari paper/makalah terkait dalam bentuk presentasi

Pokok Bahasan

Materi tentang topik-topik baru Ilmu Komputer, paper/makalah Ilmu Komputer dengan topik terkait.

Prasyarat

Pustaka

1. Buku dan paper untuk topik terkait

Pustaka Pendukung

	Nama Mata Kuliah	: Pengembangan Aplikasi Web
Kode Mata Kuliah : KM184832	: KM184832	
Mata Kuliah	Kredit	: 2
	Semester	: 8

pemahaman Matakuliah ini memberikan dan kemampuan untuk mengimplementasikan pemrograman dalam kaitannya dengan pengembangan aplikasi berbasis web biasa yang luar cepat perkembangannya. Mata kuliah ini mencakup materi tentang konsep-konsep dasar pemrograman berbasis web serta teknologi pengembangan web terkini seperti framework, arsitektur berorientasi servis dan teknologi pada mesin pencarian (search engines).

Сирин	n Pembelajaran Lulusan yang Dibebankan Mata Kuliah
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural, berorientasi obyek dan pemrograman matematika
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;
4.6.1	Mampu menerima dan mengikuti ilmu baru sesuai dengan bidang kerja yang ditekuni

komponen

memahami

infrastruktur

dalam

Capaian Pembelajaran Mata Kuliah

1. Mengetahui

dan

- pengembangan aplikasi web
- 2. Mampu mengimplementasikan pemrograman client side dan server sideserta mengintegrasikannya dengan databaseuntuk digunakan dalam pengembangan aplikasi web
- 3. Memahami dan mengimplementasikan framework dan manajemen content dalam pengembangan aplikasi berbasis web
- 4. Memberikan dasar-dasar pengetahuan tentang Service-Oriented Architecture dan API

Pokok Bahasan

- 1. Pemrograman Client-side
 - a. Pengenalan lingkungan dan infrastrukut dalam kaitannya dengan pemrograman web
 - b. HTML5, CSS, forms, JavaScript
- 2. Pemrograman server side
 - a. Pemrograman PHP tingkat dasar dan lanjut
 - b. Penggunaan Pemrograman Berorientasi Obyek dalam PHP
 - c. AJAX dan Jquery
- 3. Intergrasi database dengan aplikasi berbasis web
 - a. Manajemen koneksi
 - b. Pemanfaatan session dan cookies untuk autentikasi
- 4. Arsitektur MVC dan dan responsif web
 - a. MVC
 - b. Bootstrap framework
- Service-Oriented Architecture
 - a. Cloud Services
 - b. Web Service APIs
 - c. Personalized search pada World Wide Web
 - d. Web Crawling
 - e. Social Web Search

Prasyarat

Pemrograman Berorientasi Obyek

Sistem Basis Data

Pustaka

1. Building Responsive Web Applications AJAX and PHP, Darie, C., et. All., PACKT Publishing Ltd, 2006

- Building JavaScript, CSS, HTML, and Ajax-Based Applications for iPhone, Android, Palm Pre, BlackBerry, Windows Mobile and Nokia S60, Frederick, R. G., Lal, R. Apress, 2009
- 3. PHP and MySQL Web Development, Welling, L., Thomson, L., SAMS, 2001

Pustaka Pendukung

- 1. CSS3 for web designers, Cederholm, D. Jeffrey Zeldman, 2010
- 2. Web Services Technologies: State of the Art definitions, Standards, Case Study, Albereshine A., Fyhrer P., Pasquier J. 2009
- 3. HTML5 for web designer, Keith, J., 2010
- 4. https://getbootstrap.com/

Mata Kuliah	Nama Mata Kuliah	: Sistem Pendukung Keputusan
	Kode Mata Kuliah	: KM184833
	Kredit	: 2
	Semester	: 8

Sistem Pendukung Keputusan merupakan mata kuliah yang membahas sistem berbasis komputerisasi (termasuk sistem berbasis pengetahuan / manajemen pengetahuan) yang mendukung pengambilan keputusan dalam organisasi serta komponen-komponen pendukungnya. SPK dapat digambarkan sebagai sistem yang berkemampuan mendukung analisis ad hoc data, dan pemodelan keputusan, berorientasi keputusan, orientasi perencanaan masa depan. Materi SPK meliputi : sistem pendukung manajemen (MSS), pengambilan keputusan, sistem dan pendukungnya. Sistem pendukung keputusan (SPK), manajemen data, pemodelan dan manajemen data, antar muka pengguna, membangun SPK, organisasi SPK, sistem pendukung keputusan kelompok, distribusi sistem keputusan kelompok, informasi eksekutif dan sistem pendukungnya, pengetahuan dan mesin data, serta aplikasi dan model SPK.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah

3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan ilmu komputasi untuk menyelesaikan pengembangan perangkat lunak dan sistem cerdas.
4.1.2	Mampu menganalisa suatu fenomena melalui model matematika dan menyelesaikannya
4.1.3	Mampu menerapkan kerangka berpikir matematis untuk menyelesaikan masalah optimasi baik secara analitis maupun empiris.
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip dasar komputasi untuk menyelesaikan permasalahan pengembangan perangkat lunak dan sistem cerdas
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari pemahaman prosedural/komputasi;

4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan masalah melalui pendekatan matematis dengan bantuan piranti lunak		
4.4.1	Mampu menganalisa secara terstruktur suatu sistem/masalah, merekonstruksi, dan memodifikasi ke dalam bentuk model matematis;		
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah matematis yang telah tersedia secara mandiri atau kelompok untuk pengambilan keputusan yang tepat;		
4.6.2	Mampu mengikuti perkembangan IPTEK yang menunjang bidang kerja		

Capaian Pembelajaran Mata Kuliah

- 1. Mahasiswa mampu menjelaskan kerangka kerja pengambilan keputusan dalam manajemen.
- 2. Mahasiswa dapat menjelaskan konsep dasar pengambilan keputusan
- 3. Mahasiswa dapat memahami karakterdan kapabilitas SPK
- 4. Mahasiswa dapat memahami modeldan analisis dalam SPK
- 5. Mahasiswa mampu mengenal dan memahamiisu dalam kecerdasan bisnis (business intellegence)
- 6. Mahasiswa mampu menjelaskan Sistem informasi Perusahaan dan dimana sistem pendukung keputusan diterapkan.
- 7. Mahasiswa dapat menjelaskan tentangmanajemen pengetahuan
- 8. Mahasiswa mampu memahami pengaruh perdagangan elektronik pada pengambilan keputusan
- 9. Mahasiswa mampu memahami dampak ataupengaruh dari sistem pendukung manajemen

Pokok Bahasan

- 1. Komponen SPK
- 2. Kecerdasan Bisnis
- Sistem Informasi pendukung SP
- 4. Perdagangan via elektronik
- 5. Sistem Pendukung Manajemen

Prasyarat

Pustaka

 Turban, Efraim & Aronson, Jay E., "Decision Support Systems and IntelligentSystems", 8th edition, Prentice Hall, Upper Saddle River, NJ, 2007

Pustaka Pendukung

- 1. Marakas, George M. "Decision Support Systems in the 21st Century", 2nd Edition, Prentice Hall, 2003
- Vicki L. Sauter, Decision Support for Business Intelliegence, John Wiley & Sons, 2010
- 3. Prague, Ralph, H & Hugh, J. Watson, "Decision Support Systems", Prentice Hall, Inc., 1993

Mata Kuliah	Nama Mata Kuliah	: Teknologi Basis Data
	Kode Mata Kuliah	: KM184834
	Kredit	: 2
	Semester	: 8

Matakuliah ini mempunyai prasyarat sistem basis data. Dalam matakuliah ini mahasiswa diberikan pemahaman tentang bagaimana Sistem Manejemen Basis datamelakukan pemrosesan dalam query, melakukan optimasi query dengan pemrograman SQL sehingga dpat meningkatkan kinerja dari database. Dalam matakuiah ini juga dijelaskan mengenai teknologi dan konsep distribusi data base, bagaimana desain serta query didalamnya. Disamping itu, dalam matakula ini juga dipelajari teknologi-teknologi basis data terkini yang meliputi datawarehouse, OLAP serta multimedia database. Di akhir perkuliahan juga diberikan pengetahuan mengenai hak akses user / user privillege.

Capaian Pembelajaran Lulusan yang Dibebankan Mata Kuliah				
3.1.4	Menguasai konsep dasar pemrograman (komputasi) prosedural,			
	berorientasi obyek dan pemrograman matematika			
3.2.4	Mampu menguasai konsep dasar dan penerapan matematika dan			
	ilmu komputasi untuk menyelesaikan pengembangan perangkat			
	lunak dan sistem cerdas.			
4.1.4	Mampu menerapkan kerangka berpikir matematika dan prinsip			
	dasar komputasi untuk menyelesaikan permasalahan pengembangan			
	perangkat lunak dan sistem cerdas			
4.2.1	Mampu mengembangkan pemikiran matematis, yang diawali dari			
	pemahaman prosedural/komputasi;			
4.3.2	Mampu mengamati, mengenali, merumuskan dan menyelesaikan			
	masalah melalui pendekatan matematis dengan bantuan piranti			
	lunak			
4.5.1	Mampu memanfaatkan berbagai alternatif pemecahan masalah			
	matematis yang telah tersedia secara mandiri atau kelompok untuk			
	pengambilan keputusan yang tepat;			

Capaian Pembelajaran Mata Kuliah

- Mampu memahami konsep pemrosesan Query dan pemrosesan transaksi dalam basis data
- 2. Mampu memahami dan menerapkan pemrograman SQL tingkat lanjut untuk meningkatkan perfomansi kinerja basis data
- 3. Mampu memahami konsep dasar basis data terdistribusi
- 4. Mampu menjelaskan dan memahami aplikasi basis data terkini, yang meliputi data warehouse, OLAP, Spatial database dan multimedia database
- 5. Mampu mengenal dan menjelaskan tentang sekuritas data base

Pokok Bahasan

- 1. Pemrosesan query dan pemrosesan transaksi
 - a. Evaluasi ekspresi
 - b. Relasi Aljabar
 - c. Implementasi Atomicity dan Durability
- 2. Pemrograman SQL
 - a. Store procedure dan fungsi, trigger, Cursors
 - b. Trigger dalam basis data
 - c. View, Error Handling
- 3. Basis data terdistribusi
 - a. Konsep databse terdistribusi
 - b. Arsitekture database terdistribusi
 - c. Teknik Replikasi, fragmentasi dan alokasi data
 - d. Pemrosesan Query dalam basis data terdistribusi
- 4. Aplikasi basis data terkini, Dataware house, OLAP, Spatial Database
 - a. Data Warehouse, OLAP
 - b. Spatial database
 - c. Multimedia database
- 5. Sekuritas dalam data base
 - a. Pengenalan pengamanan dalam database
 - b. Manajemen privillege
 - c. SQL Injection

Prasyarat

Sistem Basis Data

Pustaka

- 1. Ramez A. Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", ADDISON WESLEY Publishing Company Incorporated, 2011
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill Companies, 2011

Pustaka Pendukung

1. R. Ramakrishnan and J. Gehrke, Database Management Systems, 3rd Edition, New York: The McGraw-Hill Companies, Inc., 2003.