

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年10月21日 (21.10.2004)

PCT

(10)国際公開番号
WO 2004/090891 A1

(51) 国際特許分類: G11B 20/12, 27/00, H04N 5/91

(21) 国際出願番号: PCT/JP2004/004717

(22) 国際出願日: 2004年3月31日 (31.03.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2003-100357 2003年4月3日 (03.04.2003) JP

(71) 出願人(米国を除く全ての指定国について): ソニー株式会社 (SONY CORPORATION) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 Tokyo (JP).

(72) 発明者: および
(75) 発明者/出願人(米国についてのみ): 真貝 光俊

(SHINKAI, Mitsutoshi) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 安藤 秀樹 (ANDO, Hideki) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 逸見 文明 (HENMI, Fumiaki) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 鈴木 隆夫 (SUZUKI, Takao) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 田中 寿郎 (TANAKA, Hisao) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 村上 宏部 (MURAKAMI, Hirofumi) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 兵頭 賢次 (HYODO, Kenji) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP).

[続葉有]

(54) Title: RECORDING DEVICE AND METHOD

(54) 発明の名称: 記録装置および方法

WO 2004/090891 A1

(57) Abstract: Video data of a plurality of different formats are recorded on one disc-shaped recording medium in such a manner that they can be continuously reproduced. A clip consists of video data, audio data, and auxiliary AV data which are related in time series and time-series meta data. The data is managed by a directory structure. The data constituting the clip is stored together in a clip directory under the directory CLPR. For example, if the video data format is modified while recording a clip, the clip is divided at the modification position, a new clip directory is generated, and a new clip is generated. Different formats may be mixed between the clip directories. Mixing of different formats is not allowed in a file stored in the clip directory.

(57) 要約: 異なる複数のフォーマットのビデオデータを、1枚のディスク状記録媒体に連続的な再生が可能なように混在して記録する。クリップは、時系列的関連する、ビデオデータ、オーディオデータ、補助AVデータおよび時系列メタデータからなる。ディレクトリ構造でデータが管理され、クリップを構成するデータは、ディレクトリ CLPR 下のクリップディレクトリに纏めて格納される。クリップを記録中に、例えばビデオデータのフォーマットが変更されると、変更位置でクリップが分割されクリップディレクトリが新規に作成され新規のクリップが生成される。クリップディレクトリ間でのフォーマットの混在は、許可される。クリップディレクトリに格納されたファイル内のフォーマットの混在は許可されない。

(74) 代理人: 杉浦 正知, 外(SUGIURA, Masatomo et al.);
〒1710022 東京都豊島区南池袋 2丁目49番 7号 池袋
パークビル 7階 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が
可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が
可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL,
SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY,
CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC,
NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイド」を参照。

明細書

記録装置および方法

技術分野

5 この発明は、異なる複数のフォーマットのビデオデータを、連続的な再生が可能なように1枚のディスク状記録媒体に混在して記録することが可能な記録装置および方法に関する。

背景技術

10 近年では、より波長の短いレーザ光を光源として用い、より大容量の記録再生を可能としたディスク状記録媒体が出現している。例えば、波長405nmのレーザ光を発する青紫色レーザを光源とし、片面1層構造の光ディスクを用いて23GB（ギガバイト）の記録容量が実現されている。

15 一方、ビデオデータのデータフォーマットも、近年では、テレビジョン放送における画像の高精細度化などに伴い多岐にわたっており、符号化／復号化方式、データのピットレート、フレームレート、画素数、画面のアスペクト比など、それぞれ複数種類が一般的に用いられるようになっている。オーディオデータも同様に、ピット解像度や符号化／復号化方式など、それぞれ複数種類が一般的に用いられる。

20 さらに、ビデオカメラなどでは、撮像信号に基づき、高解像度の本映像信号を出力すると共に低解像度の補助映像信号を生成することが提案されている。補助映像信号は、例えばネットワークを介して一刻も早く映像信号を送りたいときや、早送りや巻き戻しによりビデオ映像の頭出しを行う際のシャトル操作などのときに用いて好適である。

25 非特許文献「AV Watch編集部、”ソニー、青紫色レーザー

ディスクを使ったカムコーダなど”、”ソニー、青紫色レーザーディスクを使ったカムコーダなど－4月開催のNAB 2003に出展。スタジオレコーダなども展示” [online]、2003年3月5日、Impress Corporation、AV Watchホームページ（平成15年3月25日検索、インターネット<URL : <http://www.watch.impress.co.jp/av/docs/20030305/sony.htm>>）」には、上述した、大容量のディスク状記録媒体を用いると共に、高解像度の本映像信号を出力すると共に低解像度の補助映像信号を生成するようにしたビデオカメラが記載されている。

10 このような状況において、上述した大容量のディスク状記録媒体に対して、複数の異なるデータフォーマットのオーディオ／ビデオデータ（以下、AVデータ）を混在させ、尚かつ、連続的に記録、再生を可能とすることが求められている。

従来では、このように、複数の異なるデータフォーマットのAVデータを混在させ、且つ、連続的に記録媒体に記録し、複数の異なるデータフォーマットのAVデータが混在されて記録された記録媒体から、これら複数の異なるデータフォーマットのAVデータを連続的に再生し、また、編集するような技術は存在しなかった。

20 発明の開示

したがって、この発明の目的は、異なる複数のフォーマットのビデオデータを、連続的な再生が可能なように1枚のディスク状記録媒体に混在して記録できるようにした記録装置および方法を提供することにある。

25 この発明は、上述した課題を解決するために、第1のビデオデータと第1のビデオデータに時系列的に対応するデータとをディスク状記

録媒体に記録する記録装置において、連続的に供給される第1のビデオデータと、第1のビデオデータに時系列的に対応して供給されるデータとのうち少なくとも1つにフォーマットの変化が検出されたら、
第1のビデオデータおよび第1のビデオデータに時系列的に対応して
5 供給されるデータを変化に対応した位置でそれぞれ分割してディスク状記録媒体に記録するようにしたことを特徴とする記録装置である。

また、この発明は、第1のビデオデータと第1のビデオデータに時系列的に対応するデータとをディスク状記録媒体に記録する記録方法において、連続的に供給される第1のビデオデータと、第1のビデオ
10 データに時系列的に対応して供給されるデータとのうち少なくとも1つにフォーマットの変化が検出されたら、第1のビデオデータおよび第1のビデオデータに時系列的に対応して供給されるデータを変化に対応した位置でそれぞれ分割してディスク状記録媒体に記録するようにしたことを特徴とする記録方法である。

15 上述したように、この発明は、連続的に供給される第1のビデオデータと、第1のビデオデータに時系列的に対応して供給されるデータとのうち少なくとも1つにフォーマットの変化が検出されたら、第1のビデオデータおよび第1のビデオデータに時系列的に対応して供給されるデータを変化に対応した位置でそれぞれ分割してディスク状記
20 録媒体に記録するようにしているため、例えば第1のビデオデータのフォーマットが記録中に異なるフォーマットに変化しても、フォーマット変化前および後の当該第1のビデオデータを、当該第1のビデオデータに時系列的に対応して供給されるデータと共に、1枚のディスク状記録媒体に混在して記録することができる。

25

図面の簡単な説明

第1図は、UMIDのデータ構造を示す略線図、第2図は、エッセンスマーカーを定義するために用いられる予約語の例を示す略線図、第3図は、エッセンスマーカーの一例のデータ構造を示す略線図、第4図は、光ディスクに対して年輪データが形成された一例の様子を示す略
5 線図、第5図Aおよび第5図Bは、年輪が形成された光ディスクに対するデータの読み書きが行われる一例の様子を示す略線図、第6図A
、第6図Bおよび第6図Cは、年輪の連続性が保証されるようにデータ記録を行うことを説明するための図、第7図A、第7図B、第7図
Cおよび第7図Dは、アロケーションユニットについて説明するため
10 の図、第8図は、この発明の実施の一形態におけるデータの管理構造について説明するための図、第9図は、この発明の実施の一形態におけるデータの管理構造について説明するための図、第10図は、この発明の実施の一形態におけるデータの管理構造について説明するための図、第11図A、第11図B、第11図Cおよび第11図Dは、非
15 時系列メタデータの一例の記述を示す略線図、第12図Aおよび第1
2図Bは、クリップ分割の境界を補助AVデータのGOPの境界に一致させることを説明するための図、第13図は、クリップ分割の際に元クリップと分割によって新規に生成されるクリップとに重複部分を持たせることを説明するための図、第14図は、この発明の実施の一
20 形態に適用可能なディスク記録再生装置の一例の構成を示すブロック
図、第15図は、データ変換部の一例の構成を示すブロック図、第1
6図は、ビットレートが変更されたときに実際のビデオデータのビット
トレートを徐々に変化させていくことを説明するための図、第17図
Aおよび第17図Bは、オーディオデータのピット解像度が変更され
25 たときの処理を説明するための図、第18図Aおよび第18図Bは、
オーディオデータのピット解像度が変更されたときの処理を説明する

ための図である。

発明を実施するための最良の形態

以下、この発明の実施の一形態について説明する。この発明では、

- 5 1枚のディスク状記録媒体（以下、ディスクと略称する）に対して、複数の信号種類（フォーマット）のオーディオデータおよびビデオデータ（以下、適宜、AVデータと略称する）を、当該複数の信号種類のAVデータを連続的に再生することができるよう混在させて連続的に記録可能とする。
- 10 なお、以下では、上述の「1枚のディスク状記録媒体に対して、複数の信号種類のAVデータを、当該複数の信号種類のAVデータを連続的に再生することができるよう混在させて連続的に記録する、」ことを、繁雑さを避けるために、適宜「1枚のディスクに混在可能」などと称する。
- 15 先ず、この発明において1枚のディスクに混在可能とするデータの信号種類（フォーマット）の例について説明する。

符号化方式としては、例えばMPEG 2 (Moving Pictures Experts Group 2)方式においてフレーム内符号化によるIピクチャのみでビデオデータを構成する符号化方式や、Iピクチャと、予測符号化によるPピクチャおよびBピクチャとによりビデオデータを構成する符号化方式を1枚のディスクに混在可能とされる。勿論、MPEG 2方式以外の符号化方式を混在させることも可能である。

なお、上述の、Iピクチャのみでビデオデータを構成する符号化方式においては、ランダムアクセスの単位であるGOP (Group Of Picture)は、一枚のIピクチャで構成される。この方式を、便宜上「シングルGOP方式」と称する。この発明の実施の一形態では、こ

のシングルG O P方式は、M P E G 2の4：2：2プロファイルが適用される。また、I、PおよびBピクチャを用いてビデオデータを構成する符号化方式では、G O Pは、Iピクチャで始まり、1または複数のPおよびBピクチャを含む。以下では、便宜上、複数フレームからG O Pが構成されるこの方式を、「ロングG O P方式」と称する。

ビデオデータについては、一例として、上述のシングルG O P方式におけるビットレートモード30 M b p s (Mega bit per second)、40 M b p s および50 M b p s のビデオデータが1枚のディスクに混在可能とされ、ロングG O Pにおけるビットレートモード25 M b p s のビデオデータがさらに1枚のディスクに混在可能とされる。シングルG O PやロングG O Pで、さらに他のビットレートモードを混在させてもよい。

なお、ビットレートモードは、ビットレートモードで示されるビットレート値を最大値とするようにビデオデータを圧縮符号するモードである。例えば、ビットレートモード50 M b p s のビデオデータは、実際には、画像の複雑さなどに応じて、50 M b p s 以下のビットレートのデータを伝送データ中に含む。ビットレートモードで示されるビットレートに満たないデータ量のフレームに対し、ビットレートモードで示されるビットレートとのデータ量の差分を、所定のパディングデータで埋めることで、見かけのビットレートをビットレートモードで示されるビットレートとことができる。

また、ビデオデータに関して、走査方式はインタレース方式およびプログレッシブ方式のデータを1枚のディスクに混在可能とされ、それぞれの方式において複数のフレームレートのデータを1枚のディスクに混在可能とされる。画面サイズでは、アスペクト比が4：3および16：9のそれぞれのデータを1枚のディスクに混在して記録可能

とされ、例えばアスペクト比が4：3であれば、標準的（S D : Standard Definition）な640画素×480ラインおよびより高精細（H D : High Definition）な1440画素×1088ラインのデータを1枚のディスクに混在可能である。アスペクト比が16：9の場合
5 にも、複数種類の画像サイズのデータを同様に1枚のディスクに混在可能である。

さらに、カラープロファイルも、上述の4：2：2に限らず、4：2：0など、他のフォーマットが混在可能である。

オーディオデータについては、リニアP C M (Pulse Code Modulation)で符号化されたオーディオデータ（以下、リニアP C Mオーディオデータと略称する）およびリニアP C M以外の符号化方式で符号化されたオーディオデータ（例えば、リニアP C Mオーディオデータをさらに圧縮符号化したオーディオデータ）を1枚のディスクに混在可能である。オーディオデータは、例えば16ビットおよび24ビット
10 といった複数種類のビット解像度に対応し、4 c hや8 c hなど、複数のチャンネル組み合わせを1枚のディスクに混在可能とされる。
15

この発明の実施の一形態においては、上述の本線系、すなわち、実際の放送や編集の対象とされるA Vデータの他に、さらに、本線系のA Vデータに対応した補助A Vデータおよびメタデータが同一のディスク上に記録される。
20

補助A Vデータは、本線系のA Vデータに基づくより低ビットレートとしたオーディオ／ビデオデータである。この補助A Vデータは、本線系のA Vデータを、ビットレートを例えば数M b p sまで落とすように圧縮符号化して生成する。補助A Vデータを生成するための符号化方式は、M P E G 4を始めとして複数種類が存在するが、この発明の実施の一形態では、異なる複数の符号化方式で符号化された補助
25

A Vデータを1枚のディスクに混在可能である。また、同一の符号化方式であって、異なる符号化パラメータを用いて符号化された補助A Vデータも、1枚のディスクに混在可能である。

メタデータは、あるデータに関する上位データであり、各種データ
5 の内容を表すためのインデックスとして機能する。メタデータには、
上述の本線系のA Vデータの時系列に沿って発生される時系列メタデ
ータと、本線系のA Vデータにおけるシーン毎など、所定の区間に對
して発生される非時系列メタデータの2種類がある。

時系列メタデータは、例えばタイムコード、UMID (Unique Mate
rial Identifier)、エッセンスマークが必須データとされる。さらに
、撮影時におけるビデオカメラのアイリスやズーム情報といったカメ
ラメタ情報を、時系列メタデータに含めることもできる。さらにまた
、ARIB (Association of Radio Industries and Businesses)に規定
される情報を時系列メタデータに含めることもできる。なお、AR
15 IBに基づくデータおよびカメラメタ情報は、データサイズが比較的
大きいので、排他的に混在させることが好ましい。カメラメタ情報お
よびARIBは、時間解像度を落として時分割多重で時系列メタデ
ータに含ませることもできる。

非時系列メタデータとしては、タイムコードやUMIDの変化点情
20 報、エッセンスマークに関する情報、ユーザビットなどが含まれる。

UMIDについて、概略的に説明する。UMIDは、ビデオデータ
、オーディオデータおよびその他の素材データを識別するために唯一
的に決定される、SMPTE-330Mにより規格化された識別子で
ある。

25 第1図は、UMIDのデータ構造を示す。UMIDは、素材データ
を識別するためのID情報としてのベーシックUMIDと、素材データ

タ内の各コンテンツを識別するためのシグネイチャメタデータとから構成される。ベーシックUMIDおよびシグネイチャメタデータは、それぞれ32バイトのデータ長からなるデータ領域を有する。ベーシックUMIDにシグネイチャメタデータが付加された64バイトのデータ長を有する領域を、拡張UMIDと称する。

ベーシックUMIDは、12バイトのデータ長を有する領域Universal Label（ユニバーサルラベル）と、1バイトのデータ長を有する領域Length Value（レングス）と、3バイトのデータ長を有する領域Instance Number（インスタンスナンバ）と、16バイトのデータ長を有する領域Material Number（マテリアルナンバ）とから構成される。

領域Universal Labelは、直後から続くデータ列がUMIDであることを識別するための符号が格納される。領域Length Valueは、UMIDの長さが示される。ベーシックUMIDと拡張UMIDとでは符号の長さが異なるため、領域Length Valueにおいて、ベーシックUMIDは値〔13h〕で示され、拡張UMIDは値〔33h〕で示される。なお、この括弧〔〕内の表記において、数字の後の「h」は、数字が16進表記であることを示す。領域Instance Numberは、素材データに上書き処理や編集処理が施されたか否かが示される。

領域Material Numberは、8バイトのデータ長を有する領域Time Snap（タイムスナップ）と、2バイトのデータ長を有する領域Rndと、6バイトのデータ長を有する領域Machine node（マシンノード）の3つの領域からなる。領域Time Snapは、1日のスナップクロックサンプル数を示す。これにより、クロック単位で素材データの作成時刻などが示される。領域Rndは、正確でない時刻をセットしたときや、例えばIEEE（Institute Electrical and Electronic Engineers）で

定義された機器のネットワークアドレスが変化したときに、番号が重複して付されないようにするためのランダムナンバである。

シグネイチャメタデータは、8バイトのデータ長を有する領域Time /Date（タイム／デイト）と、12バイトのデータ長を有する領域Spatial Co-ordinated（スペシャル コ・オーディネイト）と、それ 5 ぞれ4バイトのデータ長を有する領域Country（カントリー）、領域Organization（オーガニゼーション）および領域User（ユーザ）とから構成される。

領域Time/Dateは、素材が生成された時間と日付とが示される。領域 10 Spatial Co-ordinatedは、素材が生成された時間に関する補正情報（時差情報）や、緯度、経度および高度で表される位置情報とが示される。位置情報は、例えばビデオカメラにGPS（Global Positioning System）に対応する機能を設けることで取得可能である。領域Country、領域Organizationおよび領域Userは、省略されたアルファベット 15 の文字や記号などを用いて、それぞれ国名、組織名およびユーザ名が示される。

なお、UMIDは、上述したように拡張UMIDを用いる場合、データ長が64バイトとなり、時系列的に順次記録するためには、容量が比較的大きい。そのため、時系列メタデータに対してUMIDを埋め込む際には、UMIDを所定の方式で圧縮することが好ましい。 20

UMIDは、この発明の実施の一形態の用途に用いる限りは、先頭から10バイト乃至13バイトが固定的な値とされる。そのため、この発明の実施の一形態においては、UMIDの先頭から10バイト乃至先頭から13バイトは、省略することができる。また、UMIDを 25 時系列メタデータに格納する際に、所定の方式でエンコードすることができる。この場合、エンコード方式としてBase64を用いると

、エンコード結果がアスキーコードとなり、例えばXML文書に埋め込むのが容易となり好ましい。さらに、差分だけを用いることも考えられる。例えば、同一ディレクトリ内に同一時刻に発生されるデータには、一部が共通とされたUMIDが付与される。これを利用してU
5 MIDの差分だけを用いることで、データ量を減らすことができる。

エッセンスマークについて概略的に説明する。エッセンスマークは、撮影時において例えばビデオデータに構成される映像シーン（またはカット）である映像シーンデータに関連するインデックスを表す。
エッセンスマークを用いることで、撮影後に、どのようなシーンであるかが映像シーンデータの再生処理をしなくても把握することができる。
10

この発明の実施の一形態においては、エッセンスマークは、予め予約語として定義される。そのため、例えば撮像装置、再生装置および編集装置のインターフェイス間で、エッセンスマークを相手装置に応
15 じて変換することなく、共通した制御を行うことが可能とされる。

第2図は、エッセンスマークを定義するために用いられる予約語の例を示す。なお、この第2図の例は一例であって、さらに他のエッセンスマークを追加定義することも可能である。
"_RecStart"は、記録の開始位置を示す撮影開始マークである。
"_RecEnd"は、記録の終了位置を示す撮影終了マークである。
"_ShotMark1"および"_ShotMark2"は、注目すべき時点などの任意の位置を示すショットマークである。
"_Cut"は、カット位置を示すカットマークである。
"_Flash"は、フラッシュが発光された位置を検出したフラッシュ検出位置を示すフラッシュマークである。
"_FilterChange"は、撮像装置においてレンズフィルタを変更した位置を示すフィルタ変更マークである。
"_ShutterSpeedChange"は、撮像装置においてシャッタ速度を変更した位置を示
20
25

すシャッタ速度変更マークである。"_GainChange"は、フィルタなどのゲインを変更した位置を示すゲイン変更マークである。"_WhiteBalanceChange"は、ホワイトバランスを変更した位置を示すホワイトバランス変更マークである。"_OverBrightness"は、ビデオ信号の出力
5 レベルが限界値を超えた位置を示すマークである。"_OverAudioLimiter"は、オーディオ信号の出力レベルが限界値を超えた位置を示す大音量マークである。上述までの各マークは、例えばビデオデータのフレーム単位で記録される。

"_In-XXX"は、カットまたは素材の切り出し開始位置を示す編集開始マークである。"_Out-XXX"は、カットまたは素材の切り出し終了位置を示す編集終了マークである。編集開始マークおよび編集終了マークは、編集開始点（IN点）や編集終了点（OUT点）が追加される毎に、数字やアルファベットなどが"XXX"の部分にシケンシャルにナンバリングされる。例えば、"_In-001"、"_In-002"、・・・のよう¹⁰
15 になる。

上述のように定義されたエッセンスマークを、粗編集処理時にインデックス情報として用いることで、目的とする映像シーンを効率的に選択することが可能とされる。

第3図は、エッセンスマークの一例のデータ構造を示す。エッセンスマークは、第2図を用いて説明したように、映像シーンの特徴などがテキストデータにより表され、映像コンテンツデータ（本線系のAVデータ）と関連付けられたメタデータである。エッセンスマークは、KLV(Key Length Value)符号化されて記録や伝送がなされる。²⁰ 第3図は、このKLV符号化されたエッセンスマークのフォーマットを示す。²⁵ このフォーマットは、SMPTE 335M/RP210Aのメタデータ辞書に準拠したものである。

K L V符号化されたエッセンスマークは、16バイトのデータ長を有する「Key」部と、1バイトのデータ長を有する「L (length)」部と、最大32バイトのデータ長を有する「Value」部とからなる。「Key」部は、SMPTE 335M/RP210Aに準拠した、K L V符号化されたデータ項目を示す識別子であり、この例では、エッセンスマークであることを示す値とされる。「L」部は、「L」部以降に続くデータ長をバイト単位で表す。最大で32バイトのデータ長が表現される。「Value」部は、エッセンスマークが格納されるテキストデータからなる領域である。

10 次に、この発明の実施の一形態によるディスク上へのデータ配置について説明する。この発明の実施の一形態では、ディスク上に年輪を形成するようにしてデータを記録する。年輪データは、データの再生時間によって示されるデータ量を単位としてディスクに記録されるデータである。例えば本線系のオーディオデータおよびビデオデータに限定して説明すると、再生時間帯が対応するオーディオデータおよびビデオデータを、トラックの1周分以上のデータサイズを有する所定の再生時間単位毎に交互に配置して記録する。このように記録を行うことで、再生時間帯が対応するオーディオデータおよびビデオデータの組が時系列的に重層されて、年輪が形成される。

15 20 この実施の一形態では、実際には、再生時間帯が対応するオーディオデータおよびビデオデータに加え、これらのデータに再生時間帯が対応する補助AVデータおよび時系列メタデータを一組として記録することで年輪を形成し、光ディスク1に対するデータの記録を行う。

なお、年輪を形成するデータを年輪データと称する。年輪データは

25 、ディスクにおける最小の記録単位であるセクタの整数倍のデータ量とされる。また、年輪は、その境界がディスクのセクタの境界と一致

するように記録される。

第4図は、光ディスク1に対して年輪データが形成された一例の様子を示す。この第4図の例では、光ディスク1の内周側から順に、オーディオ年輪データ#1、ビデオ年輪データ#1、オーディオ年輪データ#2、ビデオ年輪データ#2、補助AV年輪データ#1および時系列メタ年輪データ#1が記録されており、この周期で年輪データが扱われる。時系列メタ年輪データ#1の外周側には、さらに、次の周期の年輪データの一部がオーディオ年輪データ#3およびビデオ年輪データ#3として示されている。

10 この第4図の例は、時系列メタ年輪データの1年輪データ分の再生時間帯と補助AV年輪データの1年輪データ分の再生時間帯とが対応し、時系列メタ年輪データの1年輪データ分の再生時間帯とオーディオ年輪データの2周期分の再生時間帯が対応することを示している。同様に、時系列メタ年輪データの1年輪データ分の再生時間帯とビデオ年輪データの2周期分の再生時間帯が対応することを示している。このような、各年輪データの再生時間帯および周期の対応付けは、例えばそれぞれのデータレートなどに基づき設定される。なお、ビデオ年輪データやオーディオ年輪データの1年輪データ分の再生時間は、経験値的には1.5秒～2秒程度が好ましい。

20 第5図Aおよび第5図Bは、上述の第4図のように年輪が形成された光ディスク1に対するデータの読み書きが行われる一例の様子を示す。光ディスク1に十分な大きさの連続した空き領域が存在し、その空き領域に欠陥が無い場合、オーディオデータ、ビデオデータ、補助AVデータ時系列メタデータの各データ系列から、再生時間帯に基づきそれぞれ生成されたオーディオ年輪データ、ビデオ年輪データ、補助AV年輪データおよび時系列メタ年輪データは、第5図Aに一例が

示されるように、光ディスク 1 の空き領域に対して、恰も一筆書きをするように書き込まれる。このとき、何れのデータの境界も、光ディスク 1 のセクタの境界と一致するように書き込まれる。光ディスク 1 からのデータの読み出しまも、書き込み時と同様にして行われる。

5 一方、光ディスク 1 からある特定のデータ系列を読み出す場合には、読み出しデータ系列の記録位置にシークしてそのデータを読み出すという動作が繰り返される。第 5 図 B は、このようにして補助 A V データの系列を選択的に読み出す様子を示す。例えば第 4 図も参照し、
補助 A V 年輪データ # 1 が読み出されたら、続いて記録されている時
10 系列メタ年輪データ # 1 、オーディオ年輪データ # 3 およびビデオ年輪データ # 3 、ならびに、オーディオ年輪データ # 4 およびビデオ年輪データ # 4 (図示しない) をシークにより飛び越し、次の周期の補助 A V 年輪データ # 2 が読み出される。

15 このように、データの光ディスク 1 への記録を、再生時間を単位とし、再生時間帯に応じた年輪データとして周期的に行うことで、同じような再生時間帯のオーディオ年輪データとビデオ年輪データとが光ディスク 1 上の近い位置に配置されるので、光ディスク 1 から、再生時刻が対応するオーディオデータとビデオデータとを迅速に読み出して再生することが可能となる。また、年輪の境界とセクタの境界と
20 が一致するように記録されるので、光ディスク 1 からオーディオデータまたはビデオデータだけを読み出すことが可能となり、オーディオデータまたはビデオデータだけの編集を迅速に行うことが可能となる。また、上述したように、オーディオ年輪データ、ビデオ年輪データ、補助 A V 年輪データおよび時系列メタ年輪データは、光ディスク 1
25 のセクタの整数倍のデータ量を有し、さらに、年輪データの境界とセクタの境界とが一致するように記録されている。そのため、オーディ

オ年輪データ、ビデオ年輪データ、補助AV年輪データおよび時系列メタ年輪データのうち何れか1系列のデータだけが必要な場合に、他のデータの読み出しを行うことなく、必要なデータだけを読み出すことができる。

5 上述したような、年輪によるデータ配置の利便性を活かすためには、光ディスク1に対するデータの記録を、年輪の連続性が保証されるように行う必要がある。このことについて、第6図A、第6図Bおよび第6図Cを用いて説明する。例えば補助AV年輪データ（第6図A、第6図Bおよび第6図Cでは「L R」と表示）だけ読み出すことを
10 考える。

例えは記録時に連続した十分に大きな空き領域が確保されていれば、複数周期の年輪を連続的に記録することができる。この場合、第6図Aに示されるように、時間的に連続する補助AV年輪データを、最小のトラックジャンプで読み出すことができる。すなわち、補助AV
15 年輪データを読み出したら、次の周期の年輪における補助AV年輪データを読み出すという動作を繰り返すことが可能となり、ピックアップがジャンプする距離が最短となる。

これに対して、例えは記録時に連続した空き領域が確保できず、時間的に連続する補助AVデータを光ディスク1上の飛び飛びの領域に
20 記録した場合、第6図Bに一例が示されるように、最初の補助AV年輪データを読み出したら、例えは年輪の複数周期分に相当する距離をピックアップがジャンプして、次の補助AV年輪データを読み出さなければならない。この動作が繰り返されるため、第6図Aに示される場合に比べて、補助AV年輪データの読み出し速度が低下してしまう
25 。また、本線系のAVデータにおいては、第6図Cに一例が示されるように、未編集AVデータ（AVクリップ）の再生が滞る可能性があ

る。

そこで、この発明の実施の一形態では、年輪の連続性を保証するために、年輪の複数周期分の長さを持つアロケーションユニットを定義し、年輪でデータを記録する際に、このアロケーションユニットで定義されたアロケーションユニット長を越える長さの、連続した空き領域を確保する。

第7図A、第7図B、第7図Cおよび第7図Dを用いてより具体的に説明する。アロケーションユニット長は、予め設定される。アロケーションユニット長を、年輪で1周期に記録される各データの合計再生時間の複数倍に設定する。例えば、年輪の1周期に対応する再生時間が2秒であるとした場合、アロケーションユニット長を10秒に設定する。このアロケーションユニット長は、光ディスク1の空き領域の長さを計測する物差しとして用いられる（第7図A右上参照）。初期状態を、第7図Aに一例が示されるように、使用済み領域が光ディスク1に対して飛び飛びに3箇所、配置されているものとし、使用済み領域に挟まれた部分を空き領域とする。

この光ディスク1に対してある程度の長さを有するAVデータと、当該AVデータに対応する補助AVデータとを記録する場合、先ず、アロケーションユニット長と空き領域の長さとを比較して、アロケーションユニット長以上の長さを有する空き領域を予約領域として確保する（第7図B）。この第7図Aの例では、2つの空き領域のうち、右側の空き領域がアロケーションユニット長より長いとされ、予約領域として確保される。次に、この予約領域に対して、予約領域の先頭から年輪データを順次連続的に記録する（第7図C）。このように年輪データを記録していく、予約領域の空き領域の長さが次に記録する年輪データの1周期分の長さに満たないときは（第7図D）、予約領

域を開放し、第7図Aのように、光ディスク1上のさらに他の空き領域に対してアロケーションユニット長を適用させながら、予約領域にできる空き領域を探す。

このように、複数周期分の年輪が記録できるだけの空き領域を探し
5 て、当該空き領域に年輪を記録することで、ある程度の年輪の連続性
が保証され、年輪データの再生をスムースに行うことが可能とされる
。なお、アロケーションユニット長は、上述では10秒に設定したが
、これはこの例に限定されず、さらに長い再生時間に対応する長さを
アロケーションユニット長として設定することができる。実際的には
10 、10秒～30秒の間でアロケーションユニット長を設定すると好ま
しい。

次に、この発明の実施の一形態におけるデータの管理構造について
、第8図、第9図および第10図を用いて説明する。この発明の実施
の一形態では、データは、ディレクトリ構造で管理される。ファイル
15 システムとしては例えばUDF(Universal Disk Format)が用いられ
、第8図に一例が示されるように、ルートディレクトリ(root)
の直下にディレクトリPAVが設けられる。この実施の一形態では、
このディレクトリPAV以下を定義する。

すなわち、上述した、複数信号種のオーディオデータおよびビデオ
20 データの1枚のディスク上への混在記録は、このディレクトリPAV
の配下において定義される。この発明の実施の一形態におけるデータ
管理が及ばないディレクトリPAVに対するデータの記録は、任意で
ある。

ディレクトリPAVの直下には、4つのファイル(INDEX.XML、IND
25 EX.RSV、DISCINFO.XMLおよびDISCINFO.RSV)が置かれると共に、2つ
のディレクトリ(CLPRおよびEDTR)が設けられる。

ディレクトリ C L P R は、クリップデータを管理する。ここでいうクリップは、例えば撮影が開始されてから停止されるまでの、ひとまとまりのデータである。例えば、ビデオカメラの操作において、操作開始ボタンが押されてから操作停止ボタンが押される（操作開始ボタンが解放される）までが 1 つのクリップとされる。

このひとまとまりのデータとは、上述した本線系のオーディオデータおよびビデオデータと、当該オーディオデータおよびビデオデータから生成された補助 A V データと、当該オーディオデータおよびビデオデータに対応した時系列メタデータと非時系列メタデータとからなる。ディレクトリ C L P R の直下に設けられたディレクトリ「C0001」、「C0002」、・・・には、クリップ毎に、クリップを構成するひとまとまりのデータが格納される。

第 9 図は、ディレクトリ C L P R の直下に設けられた、一つのクリップ「C0001」に対応するディレクトリ「C0001」の一例の構造を示す。以下、ディレクトリ C L P R の直下の一つのクリップに対応するディレクトリを、適宜、クリップディレクトリと称する。クリップディレクトリ「C0001」に対して、上述のひとまとまりのデータのそれぞれがファイル名により区別されて格納される。この第 9 図の例では、ファイル名は、12 桁で構成され、デリミタ「.」より前の 8 桁のうち、前側 5 桁がクリップを識別するために用いられ、デリミタ直前の 3 桁は、オーディオデータ、ビデオデータ、補助 A V データといった、データのタイプを示すために用いられている。また、デリミタ後の 3 桁は拡張子であって、データの形式を示している。

より具体的には、この第 9 図の例では、クリップ「C0001」を構成するひとまとまりのファイルとして、クリップ情報を示すファイル「C0001C01.SMI」、本線系ビデオデータファイル「C0001V01.MXF」、本

線系の 8 c h 分のオーディオデータファイル「C0001A01.MXF」～「C0001A08.MXF」、補助AVデータファイル「C0001S01.MXF」、非時系列メタデータファイル「C0001M01.XML」、時系列メタデータファイル「C0001R01.BIM」およびポインタ情報ファイル「C0001I01.PPF」が、ク
5 リップディレクトリ「C0001」に格納される。

この発明の実施の一形態では、ディレクトリ C L P R 内におけるクリップディレクトリ間での上述のデータ信号種の混在は、許可される。例えば、本線系のビデオデータの信号種について、クリップディレクトリ「C0001」にシングルG O P、ビットレート 5 0 M b p s のビ
10 デオデータを格納し、クリップディレクトリ「C0002」にロングG O P、ビットレート 2 5 M b p s のビデオデータを格納することは可能である。一方、クリップディレクトリ内における各データ内でのデータ信号種の混在は、許可されない。例えば、ビデオデータにおいて、先頭からある時点まではビットレートモード 5 0 M b p s で記録され
15 ており、その時点以降から末尾まではビットレートモード 2 5 M b p s で記録されたようなビデオデータファイルは、格納できないものとされる。

説明は第 8 図に戻り、ディレクトリ E D T R は、編集情報が管理される。この発明の実施の一形態では、編集結果は、エディットリスト
20 やプレイリストとして記録される。ディレクトリ E D T R の直下に設けられたディレクトリ「E0001」、「E0002」、・・・には、編集結果毎に、編集結果を構成するひとまとめのデータが格納される。

エディットリストは、クリップに対する編集点（IN 点、OUT 点など）や再生順序などが記述されるリストであって、クリップに対する非破壊の編集結果と、後述するプレイリストとからなる。エディットリストの非破壊の編集結果を再生すると、リストの記述に従いクリ

ップディレクトリに格納されたファイルを参照し、恰も編集された 1 本のストリームを再生するかのように、複数のクリップからの連続した再生映像が得られる。しかしながら、非破壊編集の結果では、ファイルの光ディスク 1 上での位置とは無関係にリスト中のファイルが参
5 照されるため、再生時の連續性が保証されない。

プレイリストは、編集結果に基づき、リストにより参照されるファイルやファイルの部分が連続的に再生するのが困難であると判断された場合に、当該ファイルやファイルの一部を光ディスク 1 上の所定の領域に再配置することで、エディットリストの再生時の連續性を保証
10 するようにしたものである。

編集作業により上述のエディットリストを作成した結果に基づき、編集に用いられるファイルの管理情報（例えば後述するインデックスファイル「INDEX.XML」）を参照し、編集作業に基づき非破壊で、すなわち、編集結果に基づき参照されるファイルが各クリップディレクトリに置かれたままの状態で、連続的な再生が可能か否かを、見積もる。その結果、連続的な再生が困難であると判断されると、該当するファイルを光ディスク 1 の所定領域にコピーする。この所定領域に再配置されたファイルを、ブリッジエッセンスファイルと称する。また、編集結果にブリッジエッセンスファイルを反映させたリストを、ブ
15 レイリストと称する。
20

例えば、編集結果が複雑なクリップの参照を行うようにされている場合、編集結果に基づく再生の際に、クリップからクリップへの移行の際にピックアップのシークが間に合わない事態が発生する可能性がある。このような場合に、プレイリストが作成され、ブリッジエッセ
25 ンスファイルが光ディスク 1 の所定領域に記録される。

第 10 図は、ディレクトリ E D T R の直下に設けられた、一つの編

集結果「E0002」に対応するディレクトリ「E0002」の一例の構造を示す。以下、ディレクトリ E D T R の直下の一つの編集結果に対応するディレクトリを、適宜、エディットディレクトリと称する。エディットディレクトリ「E0002」に対して、上述の編集結果により生成され
5 たデータがそれぞれファイル名により区別されて格納される。ファイル名は、12桁で構成され、デリミタ「.」より前の8桁のうち、前側5桁がエディット作業を識別するために用いられ、デリミタ直前の3桁は、データのタイプを示すために用いられる。また、デリミタ後の3桁は拡張子であって、データの形式を示している。

10 より具体的には、この第10図の例では、編集結果「E0002」を構成するファイルとして、エディットリストファイル「E0002E01.SMI」時系列および非時系列メタデータの情報が記述されるファイル「E0002M01.XML」、プレイリストファイル「E0002P01.SMI」、本線系データによるプリッジエッセンスファイル「E0002V01.BMX」および「E0002A
15 01.BMX」～「E0002A04.BMX」、補助AVデータによるプリッジエッセンスファイル「E0002S01.BMX」および時系列、非時系列メタデータによるプリッジエッセンスファイル「E0002R01.BMX」が、エディットディレクトリ「E0002」に格納される。

エディットディレクトリ「E0002」に格納されるこれらのファイル
20 のうち影を付して示したファイル、すなわち本線系データによるプリッジエッセンスファイル「E0002V01.BMX」および「E0002A01.BMX」～「E0002A04.BMX」、補助AVデータによるプリッジエッセンスファイル「E0002S01.BMX」および時系列、非時系列メタデータによるプリッジエッセンスファイル「E0002R01.BMX」は、プレイリストに属するフ
25 ァイルである。

なお、上述したように、エディットリストによりクリップディレク

トリに格納された例えはビデオデータが参照される。クリップディレクトリ間では、異なるデータ信号種の混在が可能なので、結果的に、エディットリスト上では、異なるデータ信号種の混在が可能とされる。

- 5 説明は第8図に戻り、ファイル「INDEX.XML」は、ディレクトリ P A V 以下に格納された素材情報を管理するインデックスファイルである。この例では、ファイル「INDEX.XML」は、XML (Extensible Markup Language) 形式で記述される。このファイル「INDEX.XML」により、上述した各クリップおよびエディットリストが管理される。例えば
10 、ファイル名と U M I D の変換テーブル、長さ情報 (Duration)、当該光ディスク 1 全体を再生する際の各素材の再生順などが管理される。また、各クリップに属するビデオデータ、オーディオデータ、補助 A V データなどが管理されると共に、クリップディレクトリ内にファイルで管理されるクリップ情報が管理される。
- 15 ファイル「DISCINFO.XML」は、このディスクに関する情報が管理される。再生位置情報なども、このファイル「DISCINFO.XML」に保存される。

この発明の実施の一形態では、撮影が開始されてから停止されるまでの間に、クリップを構成するひとまとまりのデータにおいて所定の
20 変化が検出された場合には、その変化検出位置に対応する位置でクリップが分割され、分割位置以降を新規のクリップとする。この新規のクリップに対応する新規のディレクトリがディレクトリ C L P R に対して自動的に作成され、作成されたディレクトリに当該新規クリップを構成するひとまとまりのデータが格納される。
- 25 クリップ分割は、少なくとも、クリップを構成するビデオデータおよびオーディオデータのうち何れか一方において、信号種（フォーマ

ット) の変化が検出された場合になされる。分割の条件としては、より具体的には、以下の例が考えられる。先ず、ビデオデータに関しては、

- (1) ビットレートの変化
- 5 (2) フレームレートの変化
- (3) ブルダウンの種類または位相の変化
- (4) 画像サイズの変化
- (5) 画像のアスペクト比の変化
- (6) 符号化方式の変化

10 オーディオデータに関しては、

- (1) ビット解像度の変化
- (2) サンプリング周波数の変化
- (3) 入力チャンネル数の変化
- (4) 符号化方式の変化

15 (5) オーディオ以外のメタデータ（ノンオーディオ）の変化
これらのうち、何れか一つに変化が検出された場合に、変化が検出されたタイミングに対応した位置で自動的にクリップが分割される。
このとき、あるデータに変化が検出された場合、そのデータと同一のクリップに属する他のデータも、同じタイミングで分割される。

20 なお、これらのクリップ分割に伴うビデオデータ、オーディオデータのデータ形式（例えばビットレートの数値）は、非時系列メタデータおよびクリップのファイルヘッダの何方か一方または両方に記録される。換言すれば、例えば非時系列メタデータに記述されたビデオデータやオーディオデータのデータ形式に合うように、ビデオデータや
25 オーディオデータが記録される。

第11図A、第11図B、第11図Cおよび第11図Dは、非時系

列メタデータの一例の記述を示す。この第11図A、第11図B、第11図Cおよび第11図Dの例では、非時系列メタデータは、XML(Extensible Markup Language)を用いて記述されている。XMLは、独自の定義が可能なタグを用いて情報を記述するようにした言語である。XMLを用いることで、記述された情報に対して、タグにより特定の意味を持たせることができる。XMLは、XMLファイルの各タグにパラメータの意味情報を埋め込むことができるので、新たなパラメータの定義などを容易に行うことが可能で、拡張性に優れている。

XMLファイルのタグについて、概略的に説明する。タグは、一般的には、範囲の開始および終了をそれぞれ示す一对の記号からなり、テキスト中に埋め込んで任意の範囲を指定することができる。例えば、範囲の開始を示すタグは、予め定義された文字列を記号「<」と「>」とで囲んで表現され（開始タグと称する）、終了を示すタグは、開始を示すタグ中に記される文字列と同一の文字列が記号「</」と「>」とで囲んで表現される（終了タグと称する）。一对のタグによって指定された範囲に対して、記号「<」と「>」（あるいは記号「</」と「>」）とで囲まれた文字列によって、任意の意味を持たせることができる。また、タグ中に、所定のパラメータの記述を含ませることができる。タグは、入れ子構造を取ることが可能である。通常、XMLファイルの記述において、入れ子のレベルは、各行のインデントの深さで表現される。

第11図A、第11図B、第11図Cおよび第11図Dの例では、例えばタグ<complexType name>により、データの種類が記述され、タグ<element name>でタグ<complexType name>に対して下位のデータ種類が記述される。タグ<attribute>により、タグ<complexType name>およびタグ<element name>で指定されたデータ種類のデータの属性が

記述される。一例として、このタグ<attribute>の記述内容が変化するタイミングと、対応するタグ<complexType name>で指定されたデータ種類のデータのクリップ分割位置とが対応する。

クリップ分割は、上述の例に限らず、ビデオデータおよびオーディオデータのさらに他の属性の変化に応じて行うようにしてもよい。また、ビデオデータおよびオーディオデータに限らず、補助AVデータや時系列メタデータにおける所定の変化を検出してクリップ分割を行うようにしてもよい。

例えば、補助AVデータについては、例えばビットレートモードや符号化方式が変更された場合に、クリップ分割するようになる。また、時系列メタデータについては、例えば、A R I Bによるメタデータとカメラデータとを排他的に記録する場合、A R I Bおよびカメラデータ間でデータ種類の変更があった場合に、クリップ分割するようになる。さらに、時系列メタデータを伝送するために当初設定されているデータレートが変更されたときに、クリップ分割することも可能である。

さらに、本線系のビデオデータの変更に伴うクリップ分割の際に、本線系のオーディオデータおよび時系列メタデータを分割しないようにすることもできる。このようにすることで、クリップ分割によるファイルの増加を抑えることができる。なお、この場合でも、補助AVデータは、本線系のビデオデータの変更に伴い分割される。

クリップ分割の際には、分割の境界を補助AVデータのG O Pの境界に一致させると、クリップ内での時間軸とバイトオフセットとの関係が簡単になるので、処理が容易になり、好ましい。これは、例えばビデオデータやオーディオデータに上述した変化が検出された際に、第12図Aに一例が示されるように、補助AVデータの次のG O P境

界までクリップ分割を待つか（分割位置B）、前のG O P境界に遡つてクリップ分割を行うことでなされる（分割位置A）。実際には、分割位置Bでクリップ分割をするのが好ましい。

これに限らず、クリップ分割の際の分割の境界が補助A Vデータの

5 G O P境界に一致しない場合に、補助A VデータのG O Pの余った部分をスタッフィングバイトで埋め、補助A Vデータと本線系のビデオデータなど他のデータに対してデータ量を揃えることも考えられる。

すなわち、第12図Bに一例が示されるように、補助A Vデータにおいて、例えばビデオデータに変化が検出された位置の直前のG O Pを

10 当該クリップの最後のG O Pとし、その最後のG O Pの後端の境界から変化検出位置まで（第12図B中に斜線で表示）をスタッフィングバイトで埋める。

なお、本線系のビデオデータがシングルG O Pであれば、任意のフレーム位置でクリップ分割を行うことができる。これに対して、本線

15 系のビデオデータがロングG O Pである場合には、クリップ分割位置のフレームが予測符号化によるPピクチャあるいはBピクチャによるフレームである可能性がある。そこで、ロングG O Pのビデオデータに対してクリップ分割を行う場合には、クリップ分割位置で一旦G O Pを完結させるようとする。これは、例えば、分割位置直前のフレームがBピクチャであれば当該フレームをPピクチャあるいはIピクチャに変換することで可能である。

クリップ分割の際に、分割の元クリップと分割によって新規に生成されるクリップとに重複部分を持たせるようにしてもよい。例えば、分割の元クリップおよび／または新規クリップにおいて、信号種の変化点を時間的に含むように、変化のタイミングに対して時間的な余裕を持ってクリップ分割が行われる。

一例として、本線系のビデオデータにおいて、当初のピットレート 50 Mb/s が 30 Mb/s に切り換えられる場合について、第 13 図を用いて説明する。第 13 図に示されるように、ピットレートが 50 Mb/s のビデオデータにおいては、ピットレートの切り換えが指示された位置からさらに所定の時間だけ余分（図中の斜線の部分）に 5 、ピットレートが 50 Mb/s のままで記録がなされる。一方、ピットレートが 30 Mb/s のビデオデータは、ピットレートの切り換えが指示された位置よりも所定時間前（図中の斜線の部分）から、ピットレートが 30 Mb/s での記録がなされる。

10 ピットレート切り換え点がクリップ分割位置となるため、例えばクリップの開始位置を指定するためのコマンドである "clip Begin" を用いて、実際のファイルの先頭位置に対するクリップの開始位置を調整する必要がある。

15 このような記録は、一例として、圧縮符号化以前のベースバンドのビデオデータにおいて、第 13 図の斜線の部分をそれぞれバッファリングしておき、対応するピットレートでそれぞれ圧縮符号化する。そして、例えば 50 Mb/s のビデオデータの例では、ピットレート切り換え点以前のビデオデータによるファイルに対して、斜線部分のファイルを継ぎ足すことで可能である。これは、実際にファイルを継ぎ足さずとも、上述したエディットリストへの記述や、クリップディレクトリ内のクリップ情報を示すファイル「C0001C01.SMI」にその旨を記述するようにしてもよい。

20 25 なお、クリップディレクトリ名およびクリップディレクトリ内の各ファイルのファイル名の命名規則は、上述の例に限定されない。例えば、ファイル名やクリップディレクトリ名として、上述した U M I D を利用することが考えられる。U M I D は、上述したように、拡張 U

M I Dまで考えるとデータ長が 6 4 バイトとなり、ファイル名などに用いるには長いため、一部分だけを用いるのが好ましい。例えば、U M I D 中で、クリップ毎に異なる値が得られるような部分がファイル名などに用いられる。

- 5 また、クリップが分割された場合には、クリップディレクトリ名やファイル名を、クリップの分割理由を反映させるように命名すると、クリップの管理上、好ましい。この場合、少なくとも、クリップの分割がユーザにより明示的になされたものか、装置側の自動処理によるものかを判別可能なように、命名する。
- 10 第 14 図は、この発明の実施の一形態に適用可能なディスク記録再生装置 10 の一例の構成を示す。ここでは、ディスク記録再生装置 10 は、ビデオカメラ（図示しない）に内蔵される記録再生部であるものとし、ビデオカメラにより撮像された撮像信号に基づくビデオ信号と、撮像に伴い録音されたオーディオ信号とが信号処理部 31 に入力
15 され、ディスク記録再生装置 10 に供給される。また、信号入出力部 31 から出力されたビデオ信号およびオーディオ信号は、例えばモニタ装置に供給される。

勿論、これは一例であって、ディスク記録再生装置 10 は、独立的に用いられる装置であるとしてもよい。例えば、記録部を有さないビデオカメラと組み合わせて用いることができる。ビデオカメラから出力されたビデオ信号およびオーディオ信号や、所定の制御信号、データが信号入出力部 31 を介してディスク記録再生装置 10 に入力される。また例えば、他の記録再生装置で再生されたビデオ信号およびオーディオ信号を、信号入出力部 31 に入力するようにできる。また、
20 信号入出力部 31 に入力されるオーディオ信号は、ビデオ信号の撮像
25 に伴い入力されるものに限定されず、例えば撮像後に、ビデオ信号の

所望の区間にオーディオ信号を記録する、アフレコ（アフターレコーディング）のためのアフレコオーディオ信号でもよい。

スピンドルモータ12は、サーボ制御部15からのスピンドルモータ駆動信号に基づいて、光ディスク1をCLV(Constant Linear Velocity)またはCAV(Constant Angular Velocity)で回転駆動する。

ピックアップ部13は、信号処理部16から供給される記録信号に基づきレーザ光の出力を制御して、光ディスク1に記録信号を記録する。ピックアップ部13はまた、光ディスク1にレーザ光を集光して照射すると共に、光ディスク1からの反射光を光電変換して電流信号を生成し、RF(Radio Frequency)アンプ14に供給する。なお、レーザ光の照射位置は、サーボ制御部15からピックアップ部13に供給されるサーボ信号により所定の位置に制御される。

RFアンプ14は、ピックアップ部13からの電流信号に基づいて、フォーカス誤差信号およびトラッキング誤差信号、ならびに、再生信号を生成し、トラッキング誤差信号およびフォーカス誤差信号をサーボ制御部15に供給し、再生信号を信号処理部16に供給する。

サーボ制御部15は、フォーカスサーブフォUSAやトラッキングサーボ動作の制御を行う。具体的には、サーボ制御部15は、RFアンプ14からのフォーカス誤差信号とトラッキング誤差信号に基づいてフォーカスサーボ信号とトラッキングサーボ信号をそれぞれ生成し、ピックアップ部13のアクチュエータ(図示しない)に供給する。またサーボ制御部15は、スピンドルモータ12を駆動するスピンドルモータ駆動信号を生成して、光ディスク1を所定の回転速度で回転させるスピンドルサーボ動作の制御を行う。

さらにサーボ制御部15は、ピックアップ部13を光ディスク1の径方向に移動させてレーザ光の照射位置を変えるスレッド制御を行う

。なお、光ディスク1の信号読み出し位置の設定は、制御部20によって行われ、設定された読み出し位置から信号を読み出すことができるように、ピックアップ部13の位置が制御される。

信号処理部16は、メモリコントローラ17から入力される記録データを変調して記録信号を生成し、ピックアップ部13に供給する。
5

信号処理部16はまた、RFアンプ14からの再生信号を復調して再生データを生成し、メモリコントローラ17に供給する。

メモリコントローラ17は、データ変換部19からの記録データを、後述するように、適宜、メモリ18に記憶すると共に、それを読み
10 出し、信号処理部16に供給する。メモリコントローラ17はまた、信号処理部16からの再生データを、適宜、メモリ18に記憶すると共に、それを読み出し、データ変換部19に供給する。

ビデオカメラで撮影された撮影画像に基づくビデオ信号とオーディオ信号が、信号入出力部31を介してデータ変換部19に供給される
15 。詳細は後述するが、データ変換部19では、供給されたビデオ信号を、例えばMPEG2などの圧縮符号化方式を用い、制御部20に指示されたモードで圧縮符号化し、本線系のビデオデータを生成する。このとき、よりビットレートの低い圧縮符号化処理も行われ、補助AVデータが生成される。

20 また、データ変換部19では、供給されたオーディオ信号を、制御部20に指示された方式で圧縮符号化し、本線系のオーディオデータとして出力する。オーディオ信号の場合は、圧縮符号化せずにリニアPCMオーディオデータのまま出力してもよい。

データ変換部19で上述のようにして処理された本線系のオーディオデータおよびビデオデータ、ならびに、補助AVデータは、メモリコントローラ17に供給される。
25

データ変換部19はまた、メモリコントローラ17から供給される再生データを、必要に応じて復号化し、所定のフォーマットの出力信号に変換して、信号入出力部31に供給する。

制御部20は、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)などのメモリ、これらを接続するためのバスなどからなり、このディスク記録再生装置10の全体を制御する。ROMは、CPUの起動時に読み込まれる初期プログラムや、ディスク記録再生装置10を制御するためのプログラムなどが予め記憶される。RAMは、CPUのワークメモリとして用いられる。また、制御部20により、ビデオカメラ部の制御もなされる。

さらに、制御部20により、ROMに予め記憶されたプログラムに従い、光ディスク1にデータを記録し、記録されたデータを再生する際のファイルシステムが提供される。すなわち、このディスク記録再生装置10において、データの光ディスク1に対する記録、光ディスク1からのデータの再生は、制御部20の管理下において行われる。

操作部21は、例えば、ユーザによって操作され、その操作に対応する操作信号を制御部20に供給する。制御部20は、操作部21からの操作信号などに基づき、サーボ制御部15、信号処理部16、メモリコントローラ17およびデータ変換部19を制御し、記録再生処理を実行させる。

また、操作部21からの操作信号に基づき、例えば記録ビデオデータに対するビットレート、フレームレート、画像サイズ、画像アスペクト比の設定などが行われる。さらに、記録オーディオデータに対する圧縮符号化処理のON/OFFやピット解像度の設定を、操作部21から行うようにしてもよい。これらの設定に基づく制御信号がメモ

リコントローラ 17 およびデータ変換部 19 に供給される。

なお、このディスク記録再生装置 10 には、GPS による信号を受信するためのアンテナ 22 と、アンテナ 22 で受信された GPS 信号を解析し、緯度、経度、高度からなる位置情報を出力する GPS 部 23 を有する。GPS 部 23 から出力された位置情報は、制御部 20 に供給される。なお、アンテナ 22 および GPS 部 23 は、ビデオカメラ部に設けてもよいし、ディスク記録再生装置 10 の外部に外付けされる装置としてもよい。

第 15 図は、データ変換部 19 の一例の構成を示す。光ディスク 11 へのデータの記録時には、信号入出力部 31 から入力された記録すべき信号が、デマルチプレクサ 41 に供給される。信号入出力部 31 には、ビデオカメラ部から、動画のビデオ信号、当該ビデオ信号に付随するオーディオ信号が入力されると共に、カメラの撮影情報、例えばアイリスやズームに関する情報がカメラデータとしてリアルタイムに 15 入力される。

デマルチプレクサ 41 は、信号入出力部 31 から供給される信号から、関連する複数のデータ系列、すなわち、例えば、動画のビデオ信号と、そのビデオ信号に付随するオーディオ信号とを分離し、データ量検出部 42 に供給する。さらに、デマルチプレクサ 41 は、信号入出力部 31 から供給される信号からカメラデータを分離して出力する。このカメラデータは、制御部 20 に供給される。

データ量検出部 42 は、デマルチプレクサ 41 から供給されたビデオ信号とオーディオ信号を、そのまま、画像信号変換部 43A および 43B と、音声信号変換部 44 とにそれぞれ供給すると共に、そのビデオ信号とオーディオ信号のデータ量を検出し、メモリコントローラ 17 に供給する。すなわち、データ量検出部 42 は、デマルチプレク

サ 4 1 から供給されるビデオ信号とオーディオ信号のそれぞれについて、例えば、所定の再生時間分のデータ量を検出し、メモリコントローラ 1 7 に供給する。

画像信号変換部 4 3 B は、データ量検出部 4 2 から供給されるビデオ信号を、制御部 2 0 からの指示に従い、例えば M P E G 2 方式で圧縮符号化し、その結果得られるビデオデータのデータ系列を、メモリコントローラ 1 7 に供給する。画像信号変換部 4 3 B に対して、制御部 2 0 により、例えば圧縮符号化による発生符号量の最大ビットレートが設定される。画像信号変換部 4 3 B は、圧縮符号化後の 1 フレームのデータ量を見積もり、その結果に基づき圧縮符号化処理を制御して、発生符号量が設定された最大ビットレートに収まるようにビデオデータに対する実際の圧縮符号化処理を行う。設定された最大ビットレートと、実際の圧縮符号化によるデータ量との差分は、例えば所定のパディングデータで埋められ、最大ビットレートが維持される。圧縮符号化されたビデオデータのデータ系列は、メモリコントローラ 1 7 に供給される。

一方、画像信号変換部 4 3 A は、データ量検出部 4 2 から供給されるビデオ信号を、制御部 2 0 からの指示に従い、例えば M P E G 4 方式で圧縮符号化して補助 A V データを生成する。この実施の一形態では、このとき、ビットレートが数 M b p s に固定的とされ、1 枚の I ピクチャおよび 9 枚の P ピクチャの 1 0 フレームで G O P が形成される。

また、音声信号変換部 4 4 は、データ量検出部 4 2 から供給されるオーディオ信号がリニア P C M オーディオデータでない場合、制御部 2 0 からの指示に従い、当該オーディオ信号をリニア P C M オーディオデータに変換する。これに限らず、音声信号変換部 4 4 では、オーディオデータに変換する。

ディオ信号を、例えばM P E G方式に則った、M P 3 (Moving Pictures Experts Group 1 Audio Layer 3)やA A C (Advanced Audio Coding)方式などで圧縮符号化することもできる。オーディオデータの圧縮符号化方式は、これらに限定されず、他の方式でもよい。音声信号変換部4 4から出力されるオーディオデータのデータ系列を、メモリコントローラ1 7に供給する。

なお、上述の構成は一例であって、これに限定されるものではない。例えば、信号入出力部3 1に対し、本線系のA Vデータ、カメラデータなどがそれぞれ独立的に入力される場合には、デマルチプレクサ4 1を省略することができる。また、本線系のオーディオデータがリニアP C Mオーディオデータである場合には、音声信号変換部4 4での処理を省略することもできる。

そして、メモリコントローラ1 7に供給されたビデオデータとオーディオデータは、上述したようにして、光ディスク1に供給されて記録される。

記録は、上述したように、光ディスク1上に年輪が形成されながら行われる。データ変換部1 9のデータ量検出部4 2は、例えばオーディオデータにおいて、1年輪データ分の時間の再生に必要なオーディオデータが検出されたら、その旨をメモリコントローラ1 7に通知する。メモリコントローラ1 7は、この通知を受けて、1年輪データ分の再生に必要なオーディオデータをメモリ1 8に記憶させたか否かの判定を行い、その判定結果を制御部2 0に通知する。制御部2 0では、この判定結果に基づき、1年輪データ分の再生時間に対応するオーディオデータをメモリ1 8から読み出すようにメモリコントローラ1 7を制御する。メモリコントローラ1 7により、この制御に基づきメモリ1 8からオーディオデータが読み出され、信号制御部1 6に供給

されて光ディスク 1 上にオーディオデータが記録される。

1 年輪データ分の再生時間に対応するオーディオデータが記録されると、次は、例えばビデオデータに対して同様の処理がなされ、オーディオ年輪データの次から 1 年輪データ分のビデオ年輪データが記録
5 される。補助 A V データも、同様にして、1 年輪データ分の再生時間に対応するデータが順次、記録される。

また、時系列メタデータについては、例えばカメラデータがデマルチプレクサ 4 1 から制御部 2 0 に供給されると共に、時系列メタデータのうち U M I D などの幾つかのデータは、制御部 2 0 で生成される
10 。カメラデータと制御部 2 0 で生成されたデータとがまとめて時系列メタデータとされ、メモリコントローラ 1 7 を介してメモリ 1 8 に記憶される。メモリコントローラ 1 7 では、上述と同様にして、1 年輪データ分の再生時間に対応する時系列メタデータをメモリ 1 8 から読み出し、信号処理部 1 6 に供給する。

15 なお、制御部 2 0 では、非時系列メタデータも生成される。非時系列メタデータは、当該データが属するクリップのクリップディレクトリに記録される。

光ディスク 1 に対して上述のようにして記録されるデータは、第 8 図、第 9 図および第 10 図を用いて既に説明したように、ファイルに
20 格納され、ディレクトリ構造により管理される。例えば、データの光ディスク 1 への記録の際に、制御部 2 0 により、各ファイルのアドレス情報やディレクトリ構造におけるポインタ情報、ファイル名およびディレクトリ名情報などの管理情報が光ディスク 1 の所定の管理領域に記録される。また、記録されたファイル情報などがインデックスファイル「INDEX. XML」に反映される。
25

一方、光ディスク 1 からのデータの再生時においては、上述したよ

うにして、光ディスク 1 からビデオデータ、オーディオデータ、補助 A V データおよび時系列メタデータが読み出される。このとき、高ビットレートである本線系のビデオデータの再生速度で、本線系のオーディオデータ、補助 A V データ、時系列メタデータといった低ビット
5 レートのデータも再生し、光ディスク 1 からのデータの再生速度を、読み出すデータによって変えないようにする。光ディスク 1 から読み出されたビデオデータおよび補助 A V データは、メモリコントローラ 1 7 から画像データ変換部 4 5 B および 4 5 A にそれぞれ供給される。
10 オーディオデータは、メモリコントローラ 1 7 から音声データ変換部 4 6 に供給される。

画像データ変換部 4 5 A および 4 5 B は、メモリコントローラ 1 7 から供給される補助 A V データおよび本線系のビデオデータのデータ系列を復号化し、その結果得られるビデオ信号を、マルチプレクサ 4 7 に供給する。また、音声データ変換部 4 6 は、メモリコントローラ
15 1 7 から供給されるオーディオデータのデータ系列を復号化し、その結果得られるオーディオ信号を、マルチプレクサ 4 7 に供給する。

なお、画像データ変換部 4 5 A、4 5 B および音声データ変換部 4 6 において、供給された再生データを復号化せずに、そのままマルチ
20 プレクサ 4 7 に供給し、多重化して出力することも可能である。さらに、マルチプレクサ 4 7 を省略し、それぞれのデータを独立的に出力することも可能である。

以上のように構成されたディスク記録再生装置 1 0 では、ユーザが操作部 2 1 を操作することにより、データの記録を指令すると、信号入出力部 3 1 から供給されるデータがデータ変換部 1 9、メモリコン
25 トローラ 1 7、信号処理部 1 6 およびピックアップ部 1 3 を介して光ディスク 1 に供給され、記録される。

記録の際に、ユーザは、操作部 21 を操作することにより、本線系のビデオデータのピットレートを変更することができる。例えば、当初、ピットレートを 5.0 M b p s に設定して記録を行い、光ディスク 1 の記録可能領域が少なくなったときにピットレートを 3.0 M b p s
5 などの低いピットレートに変更し、録り逃しが無いようにするなどの使用法が考えられる。

このとき、ピットレートの変更のタイミングに対応して、クリップが分割され、変更後のデータが新規のクリップとして光ディスク 1 に記録される。ピットレートの変更の検出は、操作部 21 に対してなされた操作を検出することで行ってもよいし、制御部 20 でビデオデータのピットレートを監視した結果に基づき行うことも可能である。例えば、メモリコントローラ 17 で、データ変換部 19 から供給された本線系のビデオデータのヘッダにおける、ピットレート情報が記述される所定のピット位置のデータを抽出して、ピットレートが変更されたことを検出することが可能である。
10
15

ピットレートの変更が検出されると、例えば、制御部 20 によりメモリコントローラ 17 が制御され、ピットレート変更前のデータがメモリ 18 から掃き出されて光ディスク 1 に記録され、変更後のデータにより新たな年輪が形成される。

20 本線系のビデオデータの変更が検出されると、他のデータ、すなわち、本線系のオーディオデータ、補助 A V データおよび時系列メタデータも同様にしてメモリコントローラ 17 による制御がなされ、クリップの分割が行われる。このとき、上述したように、補助 A V データの G O P 境界に合わせて本線系の A V データを分割することができる
25 。

また、本線系のビデオデータのピットレートが変更された場合、実

際のビデオデータのピットレートを徐々に変化させていくようになると、再生画像に不自然な変化が現れず、好ましい。

先ず、高ピットレートから低ピットレートに変化させる場合について、第16図を用いて説明する。当初、ピットレートモードが50 Mb/sに設定されているものとする。記録中の操作部21に対する操作により、時刻 t_0 においてピットレートモードを30 Mb/sに変更するように指示される。制御部20は、その指示を受けて、データ変換部19の画像信号変換部43Bに対してピットレート変更を指示する。このとき、時刻 t_0 から所定時間後の時刻 t_1 を目標として、ピットレートが徐々に低くなるように、ピットレートの変化速度に対して時定数処理がなされる。そして、時刻 t_1 が実際のピットレートの変更点とされ、この点でクリップ分割が行われる。

またこの場合、時点 t_0 でピットレートの変更が指示されても、実際には、時点 t_1 に達するまでは、変更前のピットレートモードのビデオデータとして扱われる。例えば、ピットレートモードで指定されたピットレートによるデータ量と、実際の圧縮符号化による発生符号量との差分が所定のパディングデータで埋められる。

低ピットレートから高ピットレートに変化させる場合は、上述の逆の処理になる。すなわち、例えば当初30 Mb/sに設定されているピットレートを50 Mb/sに変更するような場合、先ず、変更の指示のタイミングでピットレートモードが30 Mb/sから50 Mb/sに変更される。そして、制御部20からデータ変換部19の画像信号変換部43Bに対して、所定の時間をかけて徐々にピットレートを高くするように、ピットレートの変化速度に対して時定数処理がなされる。また、例えば、ピットレートモードで指定されたピットレートによるデータ量と、実際の圧縮符号化による発生符号量との差分が所

定のパディングデータで埋められる。クリップ分割は、例えばピットレートモードの変更点で行われる。

制御部 20 から画像信号変換部 43B に対して、所定の時間間隔で少しずつ小さい値のピットレートを指示することで、上述のように、
5 ピットレートを徐々に変更することができる。画像信号変換部 43B では、少しずつ小さく指示されるピットレートの値に応じて符号化後のフレームの総符号量を見積もり、見積もられた値に応じて符号化処理を行う。

一方、オーディオデータに関しては、例えばリニアPCMオーディオデータとして入力された本線系のオーディオデータのピット解像度の変更に対応することができる。変更が検出されると、上述のビデオデータの場合と同様に、変更点でクリップが分割される。ここでも、補助AVデータのGOP境界に合わせてクリップ分割を行うことが可能である。
10
15 オーディオデータの場合には、ピット解像度の変更後に変更前のピット解像度を維持し、ピット解像度の変更によるクリップ分割を行わないようにできる。例えば、この発明の実施の一形態によるディスク記録再生装置 10 に対して外部から入力されるオーディオデータを光ディスク 1 に記録する際に、入力されるオーディオデータのピット解像度が当初 24 ピットだったものが、ある時点で 16 ピットに変更された場合、ピット解像度の変更後も、ピット解像度は 24 ピットのまままとすることができます。
20
25

なお、以降、オーディオデータに関して、「24 ピットのピット解像度」および「16 ピットのピット解像度」を適宜、それぞれ「24 ピット」と「16 ピット」と略称する。

第 17 図 A および第 17 図 B を用いて説明する。当初、24 ピット

で入力されていたオーディオデータが、ビット解像度変更点において
、ビット解像度が 16 ビットに変更される（第 17 図 A）。このとき
、16 ビットに変更されたオーディオデータの下位側（L S B 側）8
ビットに、第 17 図 B に一例が示されるように、オーディオデータに
5 おいて無音を示すデータ（例えば値「0」）が付加され、全体として
24 ビットとされる。このとき、付加する 8 ビットのデータは無音に
限らず、ディザを加えるようにしてもよい。

また例えば、当初 16 ビットだったオーディオデータが 24 ビット
に変更された場合も同様に、ビット解像度の変更後も、ビット解像度
10 は 16 ビットのままとすることができる。

第 18 図 A および第 18 図 B を用いて説明する。当初、16 ビット
で入力されていたオーディオデータが、ビット解像度変更点において
、ビット解像度が 24 ビットに変更される（第 18 図 A）。このとき
、第 18 図 B に一例が示されるように、24 ビットで入力されたオー
15 ディオデータの下位側（L S B 側）の 8 ビットが捨てられ、全体とし
て 16 ビットとされる。

さらに、リニア PCM オーディオデータとして入力されていたオー
ディオデータが、リニア PCM 以外の符号化方式で符号化されたオー
ディオデータ（以降、ノンオーディオのオーディオデータと称する）
20 に変更された場合には、ノンオーディオのオーディオデータをミュー
トし、クリップ分割をせずに記録を続行することができる。ミュート
は、例えば無音を表すオーディオデータを記録することでなされ、ノ
ンオーディオのオーディオデータは、無音のオーディオデータとして
記録される。すなわち、ノンオーディオのオーディオデータは、無音
25 を表すオーディオデータと置き換えられることになる。

なお、ノンオーディオのオーディオデータがリニア PCM オーディ

オーディオデータに変更された場合には、分割後のクリップでリニアPCMオーディオデータを記録することができる。

以上のようなオーディオデータのビット解像度の変換処理やノンオーディオのオーディオデータ入力時の無音処理は、例えば、制御部25の指示に基づく音声信号変換部45で行うことができる。これに限らず、制御部20の指示に基づくメモリコントローラ17の制御により、メモリ18からオーディオデータを読み出す際の処理により行うこともできる。例えば、メモリ18に、ノンオーディオのオーディオデータ表すデータを例えば1サンプル分格納しておき、当該データを10繰り返し読み出す。

オーディオデータの解像度は、オーディオデータが例えば放送局などで一般的に用いられる、AES／EBU(Audio Engineering Society/European Broadcasting Union)による規格に準拠したフォーマットで伝送される場合には、ヘッダの所定位置に対してビット解像度の15情報が格納されるので、このデータを抜き出すことで、判定できる。また、リニアPCMオーディオデータと、ノンオーディオのオーディオデータの識別も、同様にしてヘッダ情報などから判別することができる。

なお、上述では、本線系のビデオデータについて、記録中のピット20レートの変更について説明したが、これはこの例に限定されず、この発明の実施の一形態によるディスク記録再生装置10は、記録中のフレームレートの変更や画像サイズ、アスペクト比の変更などにも対応可能である。この場合には、再生時に、フレームレートの変更の際には時間軸方向の補間／間引き処理を、画像サイズやアスペクト比の変25更の際にはフレーム内での補間／間引き処理を行うことで、一定のフレームレート、画像サイズ、画像アスペクト比でビデオデータを出力

することができる。このような補間／間引き処理は、例えば、メモリコントローラ17により、メモリ18に記憶されたビデオデータに対して行われる。画像信号変換部43Bにおいて行ってもよい。

また、上述では、本線系のビデオデータの符号化方式をMPEG2として説明したが、これはこの例に限定されず、さらに他の方式で符号化されたビデオデータを混在記録するようにできる。また、ビデオデータのピットレートや他のパラメータについても、同様に、上述した以外のものにも対応可能である。

オーディオデータについても同様に、符号化してノンオーディオとする場合、さらに他の符号化方式を用いることができる。オーディオデータについても、ピット解像度も、16ビットおよび24ビットに限らず、32ビットや8ビット、12ビットなど、他のピット解像度のオーディオデータを混在記録するようにできる。また、オーディオデータのサンプリング周波数は、標準的には48kHzであるが、これもこの例に限定されず、例えば96kHz、192kHzなど、他のサンプリング周波数のオーディオデータを混在記録するようにできる。

さらに、補助AVデータもMPEG4方式に限定されず、他の方式で符号化したビデオデータを混在記録するようにできる。

さらにまた、光ディスク1に記録されたクリップの一覧表示を、図示されないモニタ装置などに表示できるようにすると、好ましい。例えば、ユーザの操作部21に対する操作に応じてインデックスファイル「INDEX.XML」を読み込み、光ディスク1に記録されている全クリップの情報を得る。そして、各クリップディレクトリを参照し、補助AVデータに基づきサムネイル画像を自動的に作成する。サムネイル画像は、例えば補助AVデータの所定位置のフレームを読み込んで、

所定の画像サイズに縮小などしてその都度、作成される。

各クリップのサムネイル画像データがメモリコントローラ17に供給され、メモリ18に記憶される。そして、メモリ18に記憶されたサムネイル画像データがメモリコントローラ17により読み出され、

- 5 データ変換部19および信号入出力部31を介して図示されないモニタ装置に供給され、モニタ装置にサムネイル画像が一覧表示される。モニタ装置に対するサムネイル画像の表示制御は、操作部21からの操作により行うことができる。また、操作部21に対する所定の操作により、サムネイル画像から所望の画像を選択し、選択されたサムネ

- 10 イル画像に対応したクリップを再生するようにできる。

なお、上述のサムネイル画像のモニタ装置への表示の際に、表示されるサムネイル画像に対応するクリップの諸情報、例えば本線系ビデオデータのピットレート、符号化方式などを、サムネイル画像と共に表示することができる。これは、各クリップディレクトリから時系列メタデータや非時系列メタデータを読み出すことで、可能である。

なお、上述では、光ディスクを記録媒体として用いているが、この発明は、ファイルとして記録するような記録媒体であれば、例えば半導体メモリなど、他の種類の記録媒体にも適用できる。

以上説明したように、この発明では、本線系のオーディオデータおよびビデオデータ、補助A Vデータ、ならびに、時系列メタデータのうち何れか一つのフォーマットが記録中に変更されたら、変更点に対応する位置でクリップ分割を行うようになっているため、1枚のディスク状記録媒体に、連続的な再生が可能なように、複数の異なるフォーマットのデータを混在して記録することができるという効果がある。

請求の範囲

1. 第1のビデオデータと第1のビデオデータに時系列的に対応するデータとをディスク状記録媒体に記録する記録装置において、
 - 5 連続的に供給される第1のビデオデータと、該第1のビデオデータに時系列的に対応して供給されるデータとのうち少なくとも1つにフォーマットの変化が検出されたら、上記第1のビデオデータおよび上記第1のビデオデータに時系列的に対応して供給されるデータを該変化に対応した位置でそれぞれ分割してディスク状記録媒体に記録するようにした
- 10 ことを特徴とする記録装置。
2. 請求の範囲1に記載の記録装置において、
 - 上記第1のビデオデータに時系列的に対応するデータは、少なくとも、上記第1のビデオデータに基づくデータであって上記第1のビデオデータに対してより伝送レートが低くされた第2のビデオデータで
- 15 あることを特徴とする記録装置。
3. 請求の範囲2に記載の記録装置において、
 - 上記分割は、上記第2のビデオデータのランダムアクセス可能な単位の境界位置で行われることを特徴とする記録装置。
4. 請求の範囲2に記載の記録装置において、
 - 20 上記第2のビデオデータのランダムアクセス単位が複数フレームからなり、上記分割の位置が上記ランダムアクセス単位の境界に一致していない場合、上記境界を上記分割の位置に強制的に合わせるようにしたことを特徴とする記録装置。
5. 請求の範囲1に記載の記録装置において、
 - 25 上記第1のビデオデータに時系列的に対応するデータは、少なくともオーディオデータであることを特徴とする記録装置。

6. 請求の範囲 5 に記載の記録装置において、

上記オーディオデータはリニアPCMで符号化されたオーディオデータまたはリニアPCMデータ以外の符号化方式で符号化されたオーディオデータであって、上記フォーマットの変化は、上記リニアPCMで符号化されたオーディオデータおよび上記リニアPCM以外の符号化方式で符号化されたオーディオデータ間の変化であることを特徴とする記録装置。

7. 請求の範囲 1 に記載の記録装置において、

上記第 1 のビデオデータに時系列的に対応するデータは、少なくとも上記第 1 のビデオデータに対するメタデータであることを特徴とする記録装置。

8. 請求の範囲 1 に記載の記録装置において、

上記第 1 のビデオデータのランダムアクセス単位が複数フレームからなり、上記分割の位置が上記ランダムアクセス単位の境界に一致しない場合、上記境界を上記分割の位置に強制的に合わせるようにしたことを特徴とする記録装置。

9. 請求の範囲 1 に記載の記録装置において、

上記分割により生成されるデータは、上記変化に対応した位置を含むように、該位置に対して時間的余裕を持たせて成るようにしたことと特徴とする記録装置。

10. 請求の範囲 1 に記載の記録装置において、

上記第 1 のビデオデータに時系列的に対応するデータは、上記第 1 のビデオデータに基づくデータであって上記第 1 のビデオデータに対してより伝送レートが低くされた第 2 のビデオデータと、オーディオデータと、上記第 1 のビデオデータに対するメタデータとであることを特徴とする記録装置。

1 1 . 請求の範囲 1 0 に記載の記録装置において、

上記分割は、上記第 2 のビデオデータのランダムアクセス可能な単位の境界位置で行われることを特徴とする記録装置。

1 2 . 請求の範囲 1 0 に記載の記録装置において、

5 上記オーディオデータはリニア P C M で符号化されたオーディオデータまたはリニア P C M データ以外の符号化方式で符号化されたオーディオデータであって、上記フォーマットの変化は、上記リニア P C M で符号化されたオーディオデータおよび上記リニア P C M 以外の符号化方式で符号化されたオーディオデータ間の変化であることを特徴

10 とする記録装置。

1 3 . 第 1 のビデオデータと第 1 のビデオデータに時系列的に対応するデータとをディスク状記録媒体に記録する記録方法において、

連続的に供給される第 1 のビデオデータと、該第 1 のビデオデータに時系列的に対応して供給されるデータとのうち少なくとも 1 つにフ
15 オーマットの変化が検出されたら、上記第 1 のビデオデータおよび上記第 1 のビデオデータに時系列的に対応して供給されるデータを該変化に対応した位置でそれぞれ分割してディスク状記録媒体に記録するようにした

ことを特徴とする記録方法。

第1図

第2図

_RecStart	記録の開始位置
_RecEnd	記録の終了位置
_ShotMark1	任意の位置1
_ShotMark2	任意の位置2
_Cut	カット位置
_Flash	Flash検出位置
_FilterChange	レンズフィルタを変更した位置
_ShutterSpeedChange	シャッタ速度を変更した位置
_GainChange	ゲインを変更した位置
_WhiteBalanceChange	ホワイトバランスを変更した位置
_OverBrightness	ビデオ出力レベルが100%を超えた位置
_OverAudioLimiter	オーディオ出力レベルがリミット値を超えた位置
_In-XXX	素材の切り出し開始位置
_Out-XXX	素材の切り出し終了位置

第3図

Key(16バイト)	L (1バイト)	Value(最大32バイト)
------------	-------------	----------------

第4図

第5図A

第5図B

第6図A

第6図B

第6図C

第8図

第9図

第10図

第11図A

第73図
第11図A
第11図B
第11図C
第11図D

```
<!-- Definition of VideoFormatType -->
<complexType name="VideoFormatType">
    <sequence>
        <element name="VideoRecPort" minOccurs="0">
            <complexType>
                <attribute name="port" type="lib:videoPortType" use="required"/>
            </complexType>
        </element>
        <element name="VideoFrame">
            <complexType>
                <attribute name="videoCodec" type="lib:videoCodecType"
                           use="required"/>
                <attribute name="captureFps" use="optional">
                    <simpleType>
                        <restriction base="string">
                            <pattern value="((\d{3}|\d{2}|\d{1})(.\d{2})?)?(p|i)"/>
                        </restriction>
                    </simpleType>
                </attribute>
                <attribute name="recFps" use="optional">
                    <simpleType>
                        <restriction base="string">
                            <pattern value="(\d{3}|\d{2}|\d{1})(.\d{2})?"/>
                        </restriction>
                    </simpleType>
                </attribute>
                <attribute name="formatFps" use="required" type="lib:fpsType"/>
                <attribute name="clipBegin" use="optional" default="0"
                           type="lib:frameCountType"/>
            </complexType>
        </element>
    </sequence>
</complexType>
```

第11図B

```
<element name="VideoLayout" minOccurs="0">
  <complexType>
    <sequence>
      <element name="PullDownSetting" minOccurs="0">
        <complexType>
          <attribute name="pullDownKind" use="required">
            <simpleType>
              <restriction base="string">
                <enumeration value="1-1"/>
                <enumeration value="2-2"/>
                <enumeration value="2-3"/>
                <enumeration value="2-3-3-2"/>
                <enumeration value="24-25"/>
                <enumeration value="other"/>
              </restriction>
            </simpleType>
          </attribute>
          <attribute name="aFramePhase" use="required">
            <simpleType>
              <restriction base="string">
                <pattern value="^d[2](^(0|1))?" />
              </restriction>
            </simpleType>
          </attribute>
        </complexType>
      </element>
    </sequence>
    <attribute name="pixel" type="unsignedShort" use="required"/>
    <attribute name="numOfVerticalLine" type="unsignedShort"
      use="required"/>
    <attribute name="aspectRatio" type="lib:AspectRatioType"
      use="optional"/>
  </complexType>
</element>
</sequence>
</complexType>
```

第11図C

```
<!-- Definition of AudioFormatType -->
<complexType name="AudioFormatType">
  <sequence>
    <element name="AudioRecPort" minOccurs="1" maxOccurs="8">
      <complexType>
        <attribute name="port" type="lib:audioPortType"
          use="required"/>
        <attribute name="audioCodec" type="lib:audioCodecType"
          use="required"/>
        <attribute name="trackDst" type="lib:trackType"
          use="required"/>
      </complexType>
    </element>
  </sequence>
  <attribute name="numOfChannel" type="lib:numOfChannelType" use="required"/>
  <use="required"/>
</complexType>
```

第 1 1 図D

```
<!-- Definition of SubStreamType -->
<complexType name="SubStreamType">
    <attribute name="codec" type="lib:subStreamCodecType" use="required"/>
    <attribute name="clipBegin" use="optional" default="0"
        type="lib:frameCountType"/>
</complexType>
```


第12図A

第12図B

第13図

第14図

第15図

第16図

ビット解像度変更(24→16)

第17図A

第17図B

第18図A

第18図B

符 号 の 説 明

- 1 光ディスク
- 1 0 ディスク記録再生装置
- 1 6 信号処理部
- 1 7 メモリコントローラ
- 1 8 メモリ
- 1 9 データ変換部
- 2 0 制御部
- 2 1 操作部
- 3 1 信号入出力部
- 4 2 データ量検出部
- 4 3 A, 4 3 B 画像信号変換部
- 4 4 音声信号変換部
- 4 5 A, 4 5 B 画像データ変換部
- 4 6 音声データ変換部

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/004717

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ G11B20/12, 27/00, H04N5/91

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G11B20/12, 27/00, H04N5/91Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2003-018549 A (Matsushita Electric Industrial Co., Ltd.), 17 January, 2003 (17.01.03), Par. Nos. [0116] to [0129]; Figs. 18, 19 & EP 1363291 A1	1-13
Y	JP 2000-011545 A (Sony Corp.), 14 January, 2000 (14.01.00), Par. Nos. [0105], [0116] to [0129] (Family: none)	1-13
Y	JP 2000-030414 A (Toshiba Corp.), 28 January, 2000 (28.01.00), Par. Nos. [0033] to [0034] & EP 1145230 A2	1-13

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
26 April, 2004. (26.04.04)Date of mailing of the international search report
18 May, 2004 (18.05.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/004717

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2000-082276 A (Toshiba Corp.), 21 March, 2000 (21.03.00), Par. No. [0266] & EP 0929072 A2	9

国際調査報告

国際出願番号 PCT/JP2004/004717

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. Cl' G11B 20/12, 27/00, H04N 5/91

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' G11B 20/12, 27/00, H04N 5/91

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国登録実用新案公報	1994-2004年
日本国実用新案登録公報	1996-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2003-018549 A (松下電器産業株式会社) 2003. 01. 17 段落【0116】-【0129】, 第18, 19図 & EP 1363291 A1	1-13
Y	JP 2000-011545 A (ソニー株式会社) 2000. 01. 14 段落【0105】，【0116】- 【0129】 (ファミリーなし)	1-13

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当事者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 26. 04. 2004	国際調査報告の発送日 18. 5. 2004
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 齋藤 哲 電話番号 03-3581-1101 内線 3550 5Q 4232

C(読み) 引用文獻の カテゴリー*	関連すると認められる文獻 引用文獻名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2000-030414 A (株式会社東芝) 2000. 01. 28 段落【0033】-【0034】 & EP 1145230 A2	1-13
Y	JP 2000-082276 A (株式会社東芝) 2000. 03. 21 段落【0266】 & EP 0929072 A2	9