CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 19 February 2004 (19.02.2004)

PCT

(10) International Publication Number WO 2004/015700 A1

(51) International Patent Classification7:

G11B 7/095

(21) International Application Number:

PCT/IB2003/002810

(22) International Filing Date: 26 June 2003 (26.06.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02078075.5

26 July 2002 (26.07.2002)

- (71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ANDERSEN, Ole, K. [DK/NL]; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). DEN HOLLANDER, Jacobus, M. [NL/NL]; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agent: DEGUELLE, Wilhelmus, H., G.; Philips Intellectual Property & Standards, Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR. TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

[Continued on next page]

(54) Title: OPTICAL DISC DRIVE APPARATUS, METHOD FOR MEASURING TILT OF AN OPTICAL DISC, AND METHOD FOR CORRECTING TILT OF AN OPTICAL DISC

(57) Abstract: Tilt $(\theta(r, \phi))$ is measured in a measuring location $(P(r, \phi))$ of an optical disc (2). A pivotable objective lens (34) is brought to a first focus measuring location such as to focus a light beam (32) in a first anchor point (P1(r- $\Delta r1$, ϕ)) having the same angular coordinate ϕ as said measuring location (P(r, ϕ)) and having a small radial distance $\Delta r1$ from said measuring location. The objective lens is brought to a second focus measuring location such as to focus the light beam in a second anchor point (P2(r+ Δ r2, ϕ)) having the same angular coordinate of as said measuring location and having a small radial distance $\Delta r2$ from said measuring location, wherein said first and second anchor pints are located on opposite sides of said measuring location. Tilt in said measuring location is calculated from the coordinates of said two focus measuring locations of said objective lens.

WO 2004/015700 A1