Regressão Linear

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

Tópicos

- Regressão: Conceitos gerais
- Regressão linear
- Função custo
- Otimização analítica (equação normal)
- Regressão linear com funções de base
- Overfitting e regularização
- Escolha de hiperparâmetros

Regressão: Conceitos Gerais

Regressão

	TV	Radio	Newspaper	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9

- Variáveis aleatórias:
 - $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ é o vetor de entrada ou vetor de atributos
 - $y \in \mathbb{R}$ é a variável de saída ou valor-alvo ou rótulo correspondente a \mathbf{x}
- A distribuição $p(\mathbf{x},y)$ é desconhecida, mas conhecemos m amostras $(\mathbf{x}^{(i)},y^{(i)})$ dessa distribuição chamadas de exemplos de treinamento
- ▶ Conjunto de treinamento: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$

Regressão

- ▶ Um modelo de aprendizado determina uma função hipótese $f: \mathbb{R}^n \to \mathbb{R}$ que realiza a predição $\hat{y} = f(\mathbf{x})$
 - A função f é escolhida dentre um espaço de hipóteses \mathcal{H}
- ▶ É intuitivo exigir $f(\mathbf{x}) \approx y$ para $(\mathbf{x},y) \in \mathcal{D}$, mas o que realmente importa é qualidade da predição para novos exemplos $(\mathbf{x},y) \notin \mathcal{D}$ fora do conjunto de treinamento

Função Perda

- Para avaliar um modelo é preciso definir uma métrica de desempenho, isto é, uma função perda (loss function) $L(y,\hat{y})$
 - ▶ Indica quão "ruim" é a predição \hat{y} quando o valor-alvo correto é y
- Exemplos:
 - ▶ Erro absoluto (perda ℓ_1):

$$L(\hat{y}, y) = |\hat{y} - y|$$

Frro quadrático (perda ℓ_2):

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

- Vantagem: Mais conveniente matematicamente, diferenciável em todos os pontos
- Desvantagens: Mais sensível a outliers, unidade quadrática

Erro Médio de um Modelo

Para medir o desempenho de um modelo no conjunto de treinamento, é usual calcular a perda média (ou erro médio) sobre todo o conjunto:

$$J(f) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} L(f(\mathbf{x}), y) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), y^{(i)})$$

- Exemplos:
 - L = erro quadrático \implies J = erro quadrático médio (MSE)
 - lacksquare L = erro absoluto $\Longrightarrow J$ = erro absoluto médio (MAE)

Treinamento

- ▶ O erro no conjunto de treinamento é usado para determinar os parâmetros do modelo (através de otimização numérica), isto é, para selecionar a hipótese $f \in \mathcal{H}$ (dentre um espaço de hipóteses pré-definido) que melhor se ajusta aos dados de treinamento
 - ► Treinamento também é chamado de ajuste (fit)
- A função J(f) é usada como função objetivo (ou função custo) de um algoritmo de otimização:

$$\min_{f \in \mathcal{H}} J(f)$$

Avaliação do Modelo Treinado

 Para avaliar o poder preditivo de um modelo (generalização), deve-se medir o desempenho sobre um conjunto de teste

$$\mathcal{D}_{\text{test}} = \{(\mathbf{x}_{\text{test}}^{(1)}, y_{\text{test}}^{(1)}), \dots, (\mathbf{x}_{\text{test}}^{(m_{\text{test}})}, y_{\text{test}}^{(m_{\text{test}})})\}$$

gerado a partir da mesma distribuição $p(\mathbf{x},y)$ de forma independente do conjunto de treinamento:

$$J_{\text{test}}(f) = \frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{test}}} L(f(\mathbf{x}), y) = \frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} L(f(\mathbf{x}_{\text{test}}^{(i)}), y_{\text{test}}^{(i)})$$

- Em alguns casos podemos estar interessados em métricas de teste diferentes da usada no treinamento
 - Ex: MSE para treinamento / RMSE (raiz do MSE) e MAE para teste

Regressão Linear

Modelo Linear para Regressão

Função-hipótese:

$$\hat{y} = f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

- Parâmetros do modelo: w_0, w_1, \ldots, w_n
- ▶ Se n = 1, temos uma reta

$$\hat{y} = f(x) = w_0 + w_1 x = b + w x$$

onde $w=w_1$ é o coeficiente de inclinação e $b=w_0$ é a intersecção com o eixo y (intercept term), também chamado de bias

Notação Vetorial

Em notação vetorial, temos

$$\hat{y} = f(\mathbf{x}) = w_0 + \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = b + \mathbf{w}^T \mathbf{x}$$

onde
$$b = w_0$$
 e $\mathbf{w} = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}^T$

Matematicamente, é mais conveniente considerar b=0 e incluir o atributo constante $x_0=1$ como parte do vetor ${\bf x}$:

$$\hat{y} = f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

onde
$$\mathbf{w} = \begin{bmatrix} w_0 & w_1 & \cdots & w_n \end{bmatrix}^T$$
 e $\mathbf{x} = \begin{bmatrix} 1 & x_1 & \cdots & x_n \end{bmatrix}^T$

 Usaremos essa notação daqui para frente, exceto quando mencionado o contrário

Função Custo

ightharpoonup Como $f(\cdot)$ é parametrizada por ${f w}$, denotamos a função custo do treinamento (erro médio no conjunto de treinamento) por

$$J(\mathbf{w}) = J(f) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{w}^T \mathbf{x}^{(i)}, y^{(i)})$$

- Assumindo como função perda o erro quadrático $L(\hat{y},y)=(\hat{y}-y)^2$:

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

▶ Como encontrar w que minimiza $J(\mathbf{w})$?

Função Custo

ightharpoonup Como $f(\cdot)$ é parametrizada por ${f w}$, denotamos a função custo do treinamento (erro médio no conjunto de treinamento) por

$$J(\mathbf{w}) = J(f) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{w}^T \mathbf{x}^{(i)}, y^{(i)})$$

Assumindo como função perda o erro quadrático $L(\hat{y},y)=(\hat{y}-y)^2$:

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

- ▶ Como encontrar \mathbf{w} que minimiza $J(\mathbf{w})$?
- **R:** Fazendo $\frac{\partial J(\mathbf{w})}{\partial w_j} = 0$

Função Custo

ightharpoonup Como $f(\cdot)$ é parametrizada por ${f w}$, denotamos a função custo do treinamento (erro médio no conjunto de treinamento) por

$$J(\mathbf{w}) = J(f) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{w}^T \mathbf{x}^{(i)}, y^{(i)})$$

- Assumindo como função perda o erro quadrático $L(\hat{y},y)=(\hat{y}-y)^2$:

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

- Como encontrar w que minimiza J(w)?
- ▶ **R**: Fazendo $\frac{\partial J(\mathbf{w})}{\partial w_i} = 0$
- ▶ Também conhecido como Método dos Mínimos Quadrados (Ordinary Least Squares)

Otimização dos Parâmetros do Modelo

Podemos escrever

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} = \frac{1}{m} \sum_{i=1}^{m} (e^{(i)})^{2}$$

onde
$$e^{(i)} = \mathbf{x}^{(i)}^T \mathbf{w} - y^{(i)}$$

Agrupando em um vetor coluna, temos e = Xw - y, onde

$$\mathbf{X} = \begin{bmatrix} - (\mathbf{x}^{(1)})^T - \\ \vdots \\ - (\mathbf{x}^{(m)})^T - \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

são a matriz de projeto (design matrix) e o vetor de rótulos

Portanto,

$$J(\mathbf{w}) = \frac{1}{m} \|\mathbf{e}\|^2 = \frac{1}{m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Otimização dos Parâmetros do Modelo

- Função custo: $J(\mathbf{w}) = \frac{1}{m} ||\mathbf{X}\mathbf{w} \mathbf{y}||^2$
- Pode-se mostrar que

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_0} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{bmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Decorre que o valor ótimo de w é dado pela solução do sistema

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

o qual admite uma solução analítica

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Conhecida como equação normal (normal equation)
- ightharpoonup Requer que $\mathbf{X}^T\mathbf{X}$ seja inversível

Interpretação Geométrica

- Predição no conjunto de treinamento: $\hat{y}^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} = \mathbf{x}^{(i)}^T \mathbf{w}$
- ▶ Seja $\hat{\mathbf{y}} = (\hat{y}^{(1)}, \dots, \hat{y}^{(m)})^T = \mathbf{X}\mathbf{w}$ o vetor de predições
 - $\,\blacktriangleright\,$ Note que $\hat{y}\in\mathcal{S},$ onde \mathcal{S} é o subespaço gerado pelas colunas de X
- Erro de predição médio sobre o conjunto de treinamento:

$$J(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||^2$$

- Desejamos encontrar o vetor $\hat{\mathbf{y}} \in \mathcal{S}$ mais próximo de y
- Solução é dada pela projeção ortogonal de y em S:

$$\hat{\mathbf{y}} = \mathbf{P}\mathbf{y}$$

onde $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ é a matriz de projeção

Interpretação Geométrica

Regressão Linear: Extensões

- Suponha n=1. Se desejarmos ajustar um modelo mais flexível do que uma reta $\hat{y}=w_0+w_1x$?
- Regressão polinomial:

$$\hat{y} = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$

A determinação de ${\bf w}$ continua a mesma: basta definir $x_i=x^i$, isto é, ${\bf x}=(1,x,x^2,x^3,\cdots,x^d)^T$ e n=d. Em particular:

$$\mathbf{X} = \begin{bmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \cdots & (x^{(1)})^d \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x^{(m)} & (x^{(m)})^2 & \cdots & (x^{(m)})^d \end{bmatrix}$$

▶ Em geral, podemos considerar como atributos $x_i = \varphi_i(x)$, i.e.,

$$\hat{y} = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) + \dots + w_n \varphi_n(x)$$

onde $\varphi_i(x)$ são funções de base quaisquer

Nesse caso,

$$\mathbf{X} = \begin{bmatrix} 1 & \varphi_1(x^{(1)}) & \varphi_2(x^{(1)}) & \cdots & \varphi_d(x^{(1)}) \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \varphi_1(x^{(m)}) & \varphi_2(x^{(m)}) & \cdots & \varphi_d(x^{(m)}) \end{bmatrix}$$

е

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

 Matematicamente, o modelo continua idêntico, apenas partindo de atributos diferentes

A determinação de w não muda pois o modelo continua sendo linear nos parâmetros:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- ▶ Do ponto de vista computacional, não importa se x_i é um atributo "natural" ou produzido "artificialmente" a partir de outros atributos
- Exemplos:
 - ▶ Base polinomial: $\{1, x, x^2, x^3, \ldots\}$
 - ▶ Base de Fourier: $\{1,\cos(\frac{2\pi}{T_0}jx),\sin(\frac{2\pi}{T_0}jx),j=1,2,3,\ldots\}$
- Nesse caso, o número de funções de base é um hiperparâmetro, isto é, um parâmetro que não pode ser aprendido no treinamento e deve ser definido previamente
 - Hiperparâmetros alteram o espaço de hipóteses \mathcal{H}

▶ De maneira geral, podemos transformar um vetor $\mathbf{x} = (x_1, \dots, x_n)^T$ através de funções arbitrárias $\varphi_i(\mathbf{x})$:

$$\mathbf{x}' = (x_1', \dots, x_n')^T = \boldsymbol{\varphi}(\mathbf{x}) = (\varphi_1(\mathbf{x}), \dots, \varphi_{n'}(\mathbf{x}))^T$$

- Treinamento e predição não mudam, basta substituir X por X'
- **Exemplo** (n=2, base polinomial de grau d=3):

$$\varphi_0(\mathbf{x}) = 1 \qquad \varphi_1(\mathbf{x}) = x_1 \qquad \varphi_3(\mathbf{x}) = x_1^2 \qquad \varphi_6(\mathbf{x}) = x_1^3$$
$$\varphi_2(\mathbf{x}) = x_2 \qquad \varphi_4(\mathbf{x}) = x_1 x_2 \qquad \varphi_7(\mathbf{x}) = x_1^2 x_2$$
$$\varphi_5(\mathbf{x}) = x_2^2 \qquad \varphi_8(\mathbf{x}) = x_1 x_2^2$$
$$\varphi_9(\mathbf{x}) = x_2^3$$

 Escolher bons atributos (ou transformações de atributos) é um problema de feature engineering

Desafios

- ightharpoonup O uso da equação normal requer que $\mathbf{X}^T\mathbf{X}$ seja inversível
- ▶ No entanto, X^TX será singular (não-inversível):
 - ▶ se $n \ge m$; ou
 - se houver atributos redundantes (linearmente dependentes)
- Além disso, o aumento de n pode causar overfitting
- Uma solução para ambos os problemas é utilizar regularização

Overfitting e Regularização

Overfitting

- O uso de um grande número de atributos torna o modelo mais suscetível a overfitting
- Em alguns casos, pode ser interessante reduzir o número de atributos, seja de forma manual ou através de algoritmos
- Em outros casos, podemos preferir manter todos os atributos—por exemplo, se todos os atributos são ligeiramente úteis individualmente mas bastante úteis em conjunto
 - Nesse caso, como evitar overfitting?

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Navalha de Occam

- Figure 28.2. How many boxes are behind the tree?
- Navalha de Occam (Occam's razor): dentre todas as explicações consistentes com os dados, a mais simples é a mais plausível
 - Menores valores de w_0, w_1, \dots, w_n = explicação "mais simples"

Regularização

Consiste em penalizar parâmetros que assumem valores muito elevados:

$$J(\mathbf{w}) = J_{\text{train}}(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

onde

- ▶ $J_{\text{train}}(\mathbf{w})$ é o erro médio sobre o conjunto de treinamento
- $lackbox{}\Omega(\mathbf{w})$ é a função de penalidade, chamada de regularizador
- λ é o parâmetro de regularização (controla nossa preferência por parâmetros "menores", i.e., que sejam menos penalizados)
- $ightharpoonup J(\mathbf{w})$ é a função objetivo da otimização
- ▶ Regularização ℓ_2 ou *ridge regression* ou *weight-decay*:

$$\Omega(\mathbf{w}) = \|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_n^2$$

Regularização

▶ Regularização ℓ_1 ou *lasso regression*:

$$\Omega(\mathbf{w}) = \|\mathbf{w}\|_1 = |w_0| + |w_1| + \dots + |w_n|$$

Favorece modelos com poucos coeficientes não-nulos

Efeito da regularização ℓ_2

Exemplo (com regularização ℓ_2)

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
$w_{\scriptscriptstyle A}^{\star}$	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Mínimos Quadrados com Regularização ℓ_2

Função custo:

$$J(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \frac{1}{m} \|\mathbf{w}\|^2$$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \frac{2}{m} \mathbf{w}$$

► Equação normal:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Obs: resolve o problema da invertibilidade

Mínimos Quadrados com Regularização ℓ_2

▶ Por convenção, normalmente não se aplica regularização em w_0 :

$$\Omega(\mathbf{w}) = w_1^2 + \dots + w_n^2$$

- $\qquad \qquad \mathbf{E} \text{quações adaptáveis definindo } \mathbf{L} = \begin{bmatrix} 0 & \mathbf{0}_{1 \times n} \\ \mathbf{0}_{n \times 1} & \mathbf{I}_n \end{bmatrix}$
- Função custo:

$$J(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \frac{1}{m} \mathbf{w}^T \mathbf{L} \mathbf{w}$$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \frac{2}{m} \mathbf{L} \mathbf{w}$$

► Equação normal:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{L})^{-1} \mathbf{X}^T \mathbf{y}$$

Avaliação do Modelo

- A função custo regularizada $J(\mathbf{w})$ é usada como função objetivo do problema de otimização
- No entanto, o desempenho do modelo (ex: MSE) deve continuar sendo avaliado pela função custo sem regularização

$$J_{\text{test}}(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}_{\text{test}}\mathbf{w} - \mathbf{y}_{\text{test}}\|^2$$
$$J_{\text{train}}(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}_{\text{train}}\mathbf{w} - \mathbf{y}_{\text{train}}\|^2$$

Regularização é apenas um "viés" (ou preferência) em favor de modelos mais simples introduzido durante o projeto, não interfere na avaliação do modelo no "mundo real"

Escolha de Hiperparâmetros

- λ é um parâmetro do modelo que não pode ser determinado durante o treinamento, o que é chamado de hiperparâmetro
- ightharpoonup O aumento de λ sempre piora o desempenho no conjunto de treinamento (por quê?) mas tende a melhorar a generalização, isto é, tende a reduzir o gap $J_{\rm test}-J_{\rm train}$
 - $ightharpoonup \lambda$ muito pequeno pode causar overfitting
 - λ muito grande pode causar underfitting
- ▶ O valor ótimo de λ é o que minimiza $J_{\rm test}$ —mas como escolhê-lo durante o projeto?
 - O conjunto de teste nunca deve ser usado durante o desenvolvimento do modelo (por quê?)

- ▶ Obs: aumento de λ reduz a capacidade do modelo
- Ex: $C = 1/\lambda$

Escolha de Hiperparâmetros

 A escolha de hiperparâmetros deve ser feita usando um conjunto separado (diferente dos conjuntos de treinamento e teste), chamado de conjunto de validação (ou conjunto de desenvolvimento)

$$J_{\text{val}}(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}_{\text{val}}\mathbf{w} - \mathbf{y}_{\text{val}}\|^2$$

- Exemplo: 60% treinamento, 20% validação, 20% teste
- Este método é chamado de validação cruzada hold-out
- **E**scolhem-se os hiperparâmetros que minimizam $J_{\text{val}}(\mathbf{w})$:

$$\min_{\lambda} J_{\mathrm{val}}(\mathbf{w}(\lambda))$$

onde

$$\mathbf{w}(\lambda) = \operatorname*{argmin}_{\mathbf{w}} J(\mathbf{w}; \frac{\lambda}{\lambda})$$

Outros Métodos de Validação Cruzada (*Cross-Validation*)

- Uma alternativa a usar conjuntos fixos é calcular a média de $J_{\rm val}$ ao longo de k rodadas de divisão dos dados em conjuntos de treinamento e validação (com proporção fixa)

 - **Desvantagem:** Mais complexo do que o hold-out (k = 1)
- Método de subamostragem aleatória: A cada rodada, o conjunto de validação é escolhido aleatoriamente dentre os dados disponíveis
- ▶ Método k-fold: os k conjuntos de validação usados nas k rodadas formam uma partição dos dados disponíveis (proporção 1/k)
 - ▶ Tipicamente, k = 5

Validação Cruzada: Método k-fold

Obs: nesta figura, Test data = Validation data

Obs: **All data** = todos os dados disponíveis para treinamento+validação, i.e., excetuando-se o conjunto de teste

Re-Treinamento

ightharpoonup Opcionalmente, após a escolha de λ , pode ser feito um último treinamento usando todos os dados disponíveis para treinamento + validação