The active geometric shape model: A new robust deformable shape model and its applications

Computer Vision and Image Understanding, December 2012

Quan Wang, Kim L. Boyer

Signal Analysis and Machine Perception Laboratory

Department of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute

Abstract

- WHAT: we present a novel approach for <u>fitting a</u> <u>geometric shape</u> in images
- WHY: we can <u>detect an object</u> described with a geometric shape, represented by **parametric equations**
- HOW: we <u>adjust shape parameters</u> according to integrals of a force field along the shape contour
- APPLICATION: we use this model to detect the crosssections of subarachnoid spaces containing cerebrospinal fluid (CSF) in phase-contrast magnetic resonance (PC-MR) image sequences

Background: Model-based image analysis

- Existing well known models:
 - Active Shape Model (ASM)
 - Statistics of point distribution
- a model point is also called a landmark
- Active Appearance Model (AAM)
 - Statistics of point distribution + appearance
- Two major steps of such models:
 - 1. Train the model parameters (e.g. PCA shapes)
 - 2. Fit the model to new images
- Drawbacks:
 - Need accurate annotation of landmark points
 - Need a large training dataset

Background: Geometric shape fitting

- Least squares / weighted least squares
 - Difficult to solve for complicated shapes
 - For set of points, not suited for <u>images</u>

- Hough transform / generalized Hough transform
 - <u>Brute-force search</u> on a high dimensional parameter space – <u>cost</u> increases exponentially when the number of parameters increases
 - Suited for black & white images, not gray/color

Important concept: Force field

- To fit a deformable model, model points move along the *force field* in each iteration
- A good force field needs to:
 - 1. Respect the gradient
 - 2. Be smooth and have a large capture range
- Gradient vector flow (GVF) is most widely used:
 - GVF $\mathbf{v}(x,y) = [u(x,y), v(x,y)]$ minimizes an energy functional (f is the smoothed image)

$$\mathcal{E} = \iint \left(\mu (u_x^2 + u_y^2 + v_x^2 + v_y^2) + \|\nabla f\|^2 \|\mathbf{v} - \nabla f\|^2 \right) dxdy$$

Deformable models and force field

- Biggest advantage of gradient vector flow (GVF)
 - large capture range

Overview of our AGSM

- Our problem
 - Training set is too small for statistical analysis

Shape has a good geometric representation:
 parametric equations

- 1. We associate each parameter with a force or torque
 - Force for position/size/shape parameters
 - Torque for orientation parameters

2. We adjust the parameter according to this force or torque

Example: Line-fitting

Parametric equation for a line:

$$x\cos\theta + y\sin\theta - s = 0$$

- Two parameters: s and θ
- Geometric understanding:
 - *s*: the distance from the origin to the line
 - θ : the orientation
- Let the GVF force field be $\mathbf{F}(x,y) = [F_x(x,y), F_y(x,y)]$

Example: Line-fitting (define the force)

• The <u>normal force</u> for parameter *s*:

The dot product indicates whether the force is pushing the line or pulling the line

$$F_n = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

• The torque around pivot point (x_k, y_k) :

$$T_k = \frac{1}{N^2} \sum_{i=1}^{N} \operatorname{sgn}(k-i) d_{ik} \mathbf{F}(x_i, y_i) \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$d_{ik} = \sqrt{(x_i - x_k)^2 + (y_i - y_k)^2}$$

$$\tilde{k} = \arg \max_{k} |T_k|$$

 (x_k, y_k)

Example: Line-fitting (update parameters)

Parameters are updated according to the force/torque:

$$\begin{cases} s_{\text{new}} = s + \delta s & \text{if } F_n > t_s \\ s_{\text{new}} = s - \delta s & \text{if } F_n < -t_s \end{cases}$$
 threshold
$$\begin{cases} \theta_{\text{new}} = \theta - \delta \theta & \text{if } T > t_\theta \\ \theta_{\text{new}} = \theta + \delta \theta & \text{if } T < -t_\theta \end{cases}$$

• Explanation: if the force pushes the line towards the origin, then we change the parameters to move it closer to the origin

 $S - \delta S$ $S - \delta S$ $S - \delta S$

Generalization from the line example

- 1. For each parameter, we define a force/torque for it according to its **geometric meaning**
 - This force/torque tends to directly change the value of this parameter
- 2. We adjust the parameter according to the **sign** of the force/torque
- 3. All parameters are adjusted in arbitrary order (order does not matter) in one iteration
- 4. After many iterations we get a good fit to the image

Fitting a circle

Parametric equations:

$$\begin{cases} x = x_c + r\cos\theta \\ y = y_c + r\sin\theta \end{cases}$$

• For the center (x_c, y_c) , we define horizontal (ch), vertical (cv), diagonal (cd), and anti-diagonal (ca) forces:

$$F_{ca} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot [1, 0]^{\mathsf{T}}, \qquad F_{cd} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]^{\mathsf{T}},$$

$$F_{ca} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot [0, 1]^{\mathsf{T}}, \qquad F_{ca} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]^{\mathsf{T}}.$$

• For the radius *r*, we define the normal force:

$$F_n = \frac{1}{N} \sum_{i=1}^{N} \mathbf{F}(x_i, y_i) \cdot \begin{bmatrix} \cos \theta_i \\ \sin \theta_i \end{bmatrix}$$

The dot product indicates whether the force makes the circle expand or shrink

Fitting an ellipse in standard orientation

Parametric equations:

$$\begin{cases} x = x_c + a\cos\theta \\ y = y_c + b\sin\theta \end{cases}$$

- The center (x_c, y_c) can be fitted in a similar way to a circle
- The force for the shape parameters *a* and *b* are defined on part of the ellipse:

$$F_{a} = \frac{1}{N_{a}} \left(\sum_{\frac{3\pi}{4} < \theta_{i} < \frac{5\pi}{4}} \mathbf{F}(x_{i}, y_{i}) \cdot [1, 0]^{\mathsf{T}} + \sum_{\theta_{i} < \frac{\pi}{4} \text{ or } \theta_{i} > \frac{7\pi}{4}} \mathbf{F}(x_{i}, y_{i}) \cdot [-1, 0]^{\mathsf{T}} \right) \qquad N_{a} = \sum_{\frac{3\pi}{4} < \theta_{i} < \frac{5\pi}{4}} 1 + \sum_{\theta_{i} < \frac{\pi}{4} \text{ or } \theta_{i} > \frac{7\pi}{4}} 1,$$

$$N_{b} = \sum_{\mathbf{M}} 1 + \sum_{\mathbf{M}}$$

$$F_b = \frac{1}{N_b} \left(\sum_{\frac{5\pi}{4} < \theta_i < \frac{7\pi}{4}} \mathbf{F}(x_i, y_i) \cdot [0, 1]^{\mathsf{T}} + \sum_{\frac{\pi}{4} < \theta_i < \frac{3\pi}{4}} \mathbf{F}(x_i, y_i) \cdot [0, -1]^{\mathsf{T}} \right)$$

$$\begin{split} N_a &= \sum_{\frac{3\pi}{4} < \theta_i < \frac{5\pi}{4}} 1 + \sum_{\theta_i < \frac{\pi}{4} \text{ or } \theta_i > \frac{7\pi}{4}} 1, \\ N_b &= \sum_{\frac{5\pi}{4} < \theta_i < \frac{7\pi}{4}} 1 + \sum_{\frac{\pi}{4} < \theta_i < \frac{3\pi}{4}} 1. \end{split}$$

Normalization numbers

Fitting an ellipse in arbitrary orientation

• Parametric equations:

$$\begin{cases} x = x_c + a\cos\theta\cos\phi - b\sin\theta\sin\phi \\ y = y_c + a\cos\theta\sin\phi + b\sin\theta\cos\phi \end{cases}$$

- The center (x_c, y_c) and the shape parameters a^l and b are similar to a standard ellipse

 The dot product
- The torque for the shape orientation ϕ :

$$T_c = \frac{1}{N^2} \sum_{i=1}^{N} d_i \mathbf{F}(x_i, y_i) \cdot \begin{bmatrix} -\sin(\theta + \phi) \\ \cos(\theta + \phi) \end{bmatrix}$$

$$d_i = \sqrt{(x_i - x_c)^2 + (y_i - y_c)^2}$$

The dot product can
be thought of
something similar to a
shear stress, but not
necessarily in a
tangent direction!

Fitting a distorted ellipse

• Parametric equations (p > 1):

$$\begin{cases} x = x_c + a\cos\theta \\ y = y_c + b(1 - (1 - \sin\theta)^p) \end{cases}$$

This is the problem that motivated this work

• The force for the distortion parameter *p*:

$$F_p = \frac{1}{N_p} \sum_{\frac{11\pi}{8} < \theta_i < \frac{13\pi}{8}} \mathbf{F}(x_i, y_i) \cdot [0, 1]^{\mathsf{T}}$$

Defined on the lower part (the most protruding part) of the shape

Fitting a cubic spline contour

• Shape is obtained by cubic spline interpolation using N_{lm} landmark points:

$$\begin{cases} x_{P_k} = x_c + D_k \cos \Theta_k \\ y_{P_k} = y_c + D_k \sin \Theta_k \end{cases} \qquad \Theta_k = (k-1) \frac{2\pi}{N_{lm}}$$

- Parameters: (x_c, y_c) and $D = (D_1, D_2, ..., D_{Nlm})$
- Force for D_k :

Dot product defined on local arc: expand or shrink

$$F_{D_k} = \frac{1}{N_{D_k}} \sum_{\Theta_k - \frac{\pi}{N_{lm}} < \theta_i < \Theta_k + \frac{\pi}{N_{lm}}} \mathbf{F}(x_i, y_i) \cdot \left[\cos \theta_i, \sin \theta_i\right]^\mathsf{T}$$

Correction of curvature

- To increase the capture range of the force field, the gradient is computed on the **smoothed** version of the image (standard practice)
- This smoothing operation dislocates the local maxima (where the model converges to) from original positions

A circle

The Gaussian smoothed circle (enhanced for visualization)

The local maxima of the smoothed circle are on a smaller circle (yellow)

Correction of curvature

Correction for a circle

- In the polar coordinate system (ρ, θ) , we define a <u>disk</u> with radius R as $M(\rho, \theta) = U(R \rho)$, where $U(\bullet)$ is the unit step convolution
- The convolution with Gaussian kernel $G_{\sigma}(\rho,\theta)$ is $L(\rho,\theta) = G_{\sigma} * M$
- The derivative of M in the radial direction is M_{ρ} = $\delta(R$ $\rho)$

standard deviation

• Based on the work of Bouma *et al.* (PAMI 2005), we can compute the first order and second order derivatives of $L(\rho, \theta)$:

$$L_{\rho}(\rho, \theta) = G_{\sigma} * M_{\rho} = -\frac{R}{\sigma^2} e^{-\frac{R^2 + \rho^2}{2\sigma^2}} I_1\left(\frac{\rho R}{\sigma^2}\right)$$

$$L_{\rho\rho}(\rho,\,\theta) = e^{-\frac{R^2+\rho^2}{2\sigma^2}} \Biggl(-\frac{R^2}{\sigma^4} I_0 \biggl(\frac{\rho R}{\sigma^2} \biggr) + \biggl(\frac{\rho R}{\sigma^4} + \frac{R}{\rho \sigma^2} \biggr) I_1 \biggl(\frac{\rho R}{\sigma^2} \biggr) \Biggr)$$

• $I_n(\bullet)$ is the modified Bessel function of the first kind

M

 M_{o}

Correction for a circle

- If $L_{\rho\rho}(r,\theta) = 0$, then r is the dislocated radius of the disk $M(\rho,\theta) = U(R \rho)$ whose true radius is R M: disk
- The equation $L_{\rho\rho}(r,\theta) = 0$ can be rewritten as:

$$\frac{R}{\sigma^2}I_0\left(\frac{rR}{\sigma^2}\right) = \left(\frac{r}{\sigma^2} + \frac{1}{r}\right)I_1\left(\frac{rR}{\sigma^2}\right)$$

• We solve for $R = \Omega(r, \sigma)$ using numeric iterations:

$$R^{(k+1)} = \left(r + \frac{\sigma^2}{r}\right) \frac{I_1\left(\frac{rR^{(k)}}{\sigma^2}\right)}{I_0\left(\frac{rR^{(k)}}{\sigma^2}\right)}$$

• When \dot{x} is large, we make use of the fact:

$$\frac{I_1(x)}{I_0(x)} \approx \frac{128x^2 - 48x - 15}{128x^2 + 16x + 9}$$

M

 M_{o}

 M_o : circle

Correction for a circle

• Example:

$$R = 100$$

$$\sigma = 50$$

$$r = 90.42$$

Correction for other shapes

- If the shape is not a circle, it is difficult to analytically determine the dislocation using equations of mathematical physics
- Thus we approximately make corrections according to local curvature
- Example approximate correction for an ellipse
 - For an ellipse, we correct *a* and *b* for the curvature at $\theta = k\pi/2$
 - Let the solution of the equation for a circle be $R = \Omega(r, \sigma)$

$$rac{b'^2}{a'} = R_1 = \Omega\left(rac{b^2}{a}, \sigma
ight) \qquad \qquad a' = \sqrt[3]{R_2^2 R_1} \ b' = \sqrt[3]{R_1^2 R_2}$$

Fig. The 4 positions to be corrected.

Experiments on synthetic data

Before and after correction of curvature

Experiments on PC-MR images

Experiments on PC-MR images

- Goodness measurement
 - We generate 50 seed shapes to evolve, and select the
 best fit
 - Goodness is measured by

$$\mathcal{F}(\mathcal{P}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{F}(x_i, y_i)|| - \frac{1}{2N'} \sum_{i=1}^{N'} ||\mathbf{F}(x_i', y_i')|| - \frac{1}{2N''} \sum_{i=1}^{N''} ||\mathbf{F}(x_i'', y_i'')||$$

Current shape

Shrunken shape

Expanded shape

- CSF segmentation
 - Detection + Graph cuts → Segmentation
 - We have achieved a mean Dice similarity coefficient
 (DSC) of 86.4% on our dataset (unsupervised!)

Difficulties of non-heuristic methods

- Our AGSM method is heuristic (inspired by physics)
- AGSM iteratively adjust parameters
- Question: Can we directly minimize the fitness function using gradient descent or genetic algorithms?
- Answer: It sounds feasible. But actually the fitness function:
 - Is not continuous
 - Is non-convex
 - Has local minimums almost everywhere
 - Is slow to compute (render three shapes)

- If we know the ground truths of a, b and ϕ
- The fitness function with respect to x_c and y_c :

 The solution paths of AGSM and gradient-based method on the fitness map

The zoom-in view around the initial solution

- If we know the ground truths of x_c , y_c and φ
- The fitness function with respect to *a* and *b*:

• The solution paths of AGSM and gradient-based method on the fitness map

Conclusion

- Our active geometric shape model (AGSM) is a novel and powerful approach to fit a geometric shape to image
- This model is <u>validated</u> on both synthetic data and PC-MR image sequences
- These slides are only a quick view of the work. For more technical details (some are very important) and more experiments, please look at our CVIU paper, and check our website:
 - https://sites.google.com/site/agsmwiki/

The active geometric shape model: A new robust deformable shape model and its applications

Computer Vision and Image Understanding, December 2012

Quan Wang, Kim L. Boyer

Signal Analysis and Machine Perception Laboratory

Department of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute

