EE4704 Image Processing and Analysis

Semester 1, 2020/21

Tutorial Set C

- 1. (a) Describe a simple procedure, based on the bubble sort algorithm, for computing the median of an $k \times k$ neighbourhood. Obtain an expression for C_1 , the number of comparison operations that are needed.
 - (b) Instead of sorting k^2 values each time the window is moved to the next pixel, we can remove k values corresponding to the discarded pixels from the sorted list, and insert the new k values in the appropriate positions in the list. Determine the number of comparison operations, C_2 that are needed with this procedure (assuming the worst-case scenario).
 - (c) Calculate the ratio C_2/C_1 for k=3,5,7.
- 2. A noisy 8×8 image consists of a bright object on a dark background. The nominal gray values of the background and object are, respectively, 60 and 160.
 - (a) Show the result of applying these noise reduction techniques
 - neighbourhood averaging
 - median filter
 - mid-point filter
 - alpha-trimmed mean filter with p=2

to the image. Use 3×3 windows; hence, the resulting images are of size 6×6 .

(b) Rate the effectiveness of each method in (i) handling pepper noise, and (ii) preserving edges. (A = good, B = moderate, C = poor)

60	66	66	63	70	66	52	60
64	70	60	48	76	40	76	50
70	0	52	64	76	72	50	76
64	56	50	68	58	55	74	64
60	54	71	52	158	146	162	152
51	54	60	68	164	140	142	148
66	52	75	55	160	172	171	166
58	62	50	66	156	160	168	156

Note: The image is available as a text file if you wish to do the computations by MATLAB.

- 3. An image is contaminated by salt noise of probability 0.01. The image and its histogram are shown below.
 - (a) Is the MMSE filter effective in removing noise in this case? Discuss this by considering a neighbourhood centred at a noise point (gray level = 255).
 - (b) Discuss the suitability of applying image averaging to reduce noise in this image.

