Navigating Large Graphs: Introduction to Shortest Path Algorithms

Khoruzhii Kirill

04.07.2024

Problem statement

The graph is given via

- \blacksquare target vertex V_0
- available moves $\{\sigma_j\}$

Graph structure:

- distance $d(V) \stackrel{\text{def}}{=} \min_{\text{path}} \text{len path}(V, V_0)$
- V_0 eccentricity $\stackrel{\text{def}}{=} \max_{V} d(V)$ (may be the same as diameter D)

Example: Rubik's Cube

- \blacksquare state as vector of numbers $(0,0,0,0,1,1,1,1,\dots)$
- permutations behave as

$$f_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & \dots \\ 0 & 1 & 19 & 17 & \dots \end{pmatrix}$$

Figure 1: Example of permutation, code here

Scale of the disaster

- for Cayley graphs the vertex degree is $n = \operatorname{card}\{\sigma_j\}$
- as a consequence exponential growth card ring $d' \propto n^{d'}$

	2x2	3x3	4x4	5x5
Rubik's Cube Sliding Puzzle			-	

Table 1: Graph sizes for different puzzles

	2x2	3x3	4x4	5x5
Rubik's Cube	14	26	≈ 48	≈ 80
Sliding Puzzle	4	31	80	≈ 150

Table 2: Graph diameters for different puzzles

Deep Approximate Value Iteration (DAVI)

Data annotation by Bellman Equation:

1.
$$d(V_2) = d(V_0) + 1 = 1$$

2.
$$d(V_4) = d(V_2) + 1 = 2$$

3.
$$d(V_5) = d(V_4) + 1 = 3$$

4.
$$d(V_1) = d(V_5) + 1 = 4$$

 $d(V_6) = d(V_5) + 1 = 4$

Bellman equation:

$$J'(V) = 1 + \min_{\sigma} J(\sigma V)$$

Deep Approximate Value Iteration (DAVI)

Model J(V) is trained to predict d.

Until convergence repeat:

- for $V \in \text{dataset calculate } J'(V)$
- train model to predict J'(V)

Bellman equation:

$$J'(V) = 1 + \min_{\sigma} J(\sigma V)$$

Instead of storing a dictionary with all the vertices, we train the model to «remember»/«understand» the values found according to Bellman.

[1] S. McAleer et al., Solving the rubik's cube with approximate policy iteration

Deep Approximate Value Iteration (DAVI)

Model J(V) is trained to predict d.

Until convergence repeat:

- for $V \in \text{dataset calculate } J'(V)$
- train model to predict J'(V)

Important details:

- dataset generation
- model architecture
- vertex representation
- model-based pathfinding

Bellman equation:

$$J'(V) = 1 + \min_{\sigma} J(\sigma V)$$

Dataset generation

For balanced dataset, we do $K \in [1, D_{\text{est}}]$ random steps from V_0 .

It is important to carefully choose $K_{\rm max} \sim D_{\rm est.}$

Rubik's Cube 222

Rubik's Cube 222 (QTM)

Rubik's Cube 333 (HTM)

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_n \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in \{\sigma_j\}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_n \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in {\sigma_j}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_n \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in \{\sigma_j\}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_{\rm n} \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in {\sigma_j}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_{\rm n} \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in {\sigma_j}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_n \neq V_0$:

1.
$$V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$$

2. for
$$\sigma \in {\sigma_j}$$
:
if $g(V_n) + 1 < g(\sigma V_n)$:
extend queue with σV_n
upd $g(\sigma V_n) = g(V_n) + 1$

The cost of each node V in the search tree:

$$f(V) = \lambda g(v) + h(V)$$
, with $\begin{bmatrix} g(v) & \text{path cost} \\ h(v) & \text{heuristic function} \end{bmatrix}$

A* algorithm

while $V_{\rm n} \neq V_0$:

- 1. $V_{\text{n}} = \underset{V \in \text{queue}}{\operatorname{argmin}} f(V)$
- 2. for $\sigma \in {\sigma_j}$: if $g(V_n) + 1 < g(\sigma V_n)$: extend queue with σV_n upd $g(\sigma V_n) = g(V_n) + 1$

Heuristics

- Hamming distance (number of correct tiles)
- Manhattan distance. For Sliding Puzzle 3x3 (180k states)

- K-prediction
- KL-div*

Heuristics

- Hamming distance (number of correct tiles)
- Manhattan distance. For Sliding Puzzle 3x3 (180k states)

- K-prediction
- KL-div*

Heuristics

- Hamming distance (number of correct tiles)
- Manhattan distance
- K-prediction

Rubik's Cube 2x2x2 # vertices: 3.67×10⁶

■ KL-div*

Unscrambling

- model is trained to predict probability distribution of the source vertex
- the shorter a path, the more likely it is to occur randomly
- the cumulative probability $p_1p_2...$ of a random training scramble increases as the number of moves decreases.
- \blacksquare beam search (greedy algorithm) based on cumulative p

Figure 2: A miniature instance of combinatorial search with a predefined goal from [3].

[3] K. Takano, Self-Supervision is All You Need for Solving Rubik's Cube, 2023

Metropolis-Hastings algorithm

Movement on a graph with heuristics h as a process of searching for a state with the lowest energy E(V) = h(V).

Metropolis-Hastings algorithm

init
$$V = V_0$$

while $V \neq V_0$:

- 1. Choose a random $\sigma \in \sigma_j$
- 2. if $E(\sigma V) < E(V)$: $V = \sigma V$
- 3. else with $p = e^{-\beta(E(\sigma V) E(V))}$ $V = \sigma V$

The behavior is highly dependent on the inverse temperature β .

Metropolis-Hastings algorithm

Movement on a graph with heuristics h as a process of searching for a state with the lowest energy E(V) = h(V).

Metropolis-Hastings algorithm

init $V = V_0$ while $V \neq V_0$:

- 1. Choose a random $\sigma \in \sigma_j$
- 2. if $E(\sigma V) < E(V)$: $V = \sigma V$
- 3. else with $p = e^{-\beta(E(\sigma V) E(V))}$ $V = \sigma V$

The behavior is highly dependent on the inverse temperature β .

Metropolis-Hastings algorithm

Movement on a graph with heuristics h as a process of searching for a state with the lowest energy E(V) = h(V).

The behavior is highly dependent on the inverse temperature β .