# 第二章 极限与连续

### 一、单项选择

- **1.** 设  $x_n > 0$ , 且  $\lim_{n \to \infty} x_n$  存在, 则  $\lim_{n \to \infty} x_n$  (B). (A) > 0 (B)  $\geq 0$  (C) = 0

- (D) < 0

- **2.** 极限  $\lim_{x\to 1} e^{\frac{1}{x-1}} = (C)$ .
- (A) ∞
- (C) 不存在
- (D) 0

- 3.  $\lim_{x\to 0} (1+x)^{-\frac{1}{x}} + \lim_{x\to \infty} x \sin \frac{1}{x} = (D)$ (A) e (B)  $e^{-1}$

- (C) e+1 (D)  $e^{-1}+1$
- **4.** 下列运算过程正确的是(C) 
  (A)  $\lim_{n \to \infty} (\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+n}) = \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n+1} + \dots + \lim_{n \to \infty} \frac{1}{n+n} = 0 + 0 + \dots + 0 = 0$
- (B) 当  $x \to 0$  时,  $\tan x \sim x$ ,  $\sin x \sim x$ , 故  $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{x x}{x^3} = 0$
- (C) 当  $x \to 0$  时,  $\tan x \sim x$ ,  $\sin x \sim x$ , 故  $\lim_{x \to 0} \frac{\sin 2x}{\sin 5x} = \lim_{x \to 0} \frac{2x}{5x} = \frac{2}{5}$ (D) 当  $x \to 0$  时,  $\tan x \sim x$ , 故  $\lim_{x \to 0} \frac{\sqrt{1 + \tan x} \sqrt{1 \tan x}}{x} = \lim_{x \to 0} \frac{\sqrt{1 + x} \sqrt{1 x}}{x} = \frac{1}{1 + 1}$

$$\lim_{x \to 0} \frac{2x}{(\sqrt{1+x} + \sqrt{1-x})x} = 1$$

- (A) 1
- (C) a
- (D) b
- **6.** 设 f(x) 在  $(-1, 0)\cup(0, 1)$  定义. 如果极限  $\lim_{x \to 0} f(x)$  存在,则下列结论正确的是(B)
- (A) f(x) 在 (-1,1) 有界;
- (B) 存在正数  $\delta$ , f(x) 在 ( $-\delta$ , 0) $\cup$  (0,  $\delta$ ) 有界;
- (C) f(x) 在  $(-1,0)\cup(0,1)$  有界;
- (D) 存在正数  $\delta$ , f(x) 在  $(-\delta, \delta)$  有界.
- 7. 已知  $\lim_{x\to 0} \frac{f(x)}{x} = 2$ , 则  $\lim_{x\to 0} \frac{\sin 2x}{f(3x)} = (C)$



**12.** 当  $x \to 0$  时, 下列函数中比 x 高阶的无穷小量是(B).

(B)  $x - \sin x$ 

(B) 无穷大量

**13**. 设在某个极限过程中函数 f(x) 与 g(x) 均是无穷大量, 则下列函数中哪一个也

(A) f(x)+g(x) (B) f(x)-g(x) (C)  $f(x)\cdot g(x)$  (D)  $\frac{f(x)}{g(x)}$ 

(D) 无界但非无穷大量

(B) 同阶无穷小, 但不等价

(D) 低阶无穷小

(B) 跳跃间断点 (C) 可去间断点 (D) 无穷间断点

(C)  $\ln(1+x)$  (D)  $\ln(1-x)$ 

(A) 无穷小量

(A)  $x + \sin x$ 

(C) 有界量非无穷小量

必是无穷大量(C).

(A) 高阶无穷小

(C) 等价无穷小

(A) 连续点

**14.**  $x \to 0$  时,  $1 - \cos 3x$  是  $x^2$  的(B).

**15.**  $x = 1 \not\equiv f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} e^{\frac{1}{x - 1}} & x \neq 1 \\ 0 & x = 1 \end{cases}$  的 ( D )

**16.**  $y = \frac{\sqrt{x-3}}{(x+1)(x+2)}$  的连续区间是(B)

(A) 
$$(-\infty, -2) \cup (-2, -1) \cup (-1, +\infty)$$

$$(B)[3,+\infty)$$

(C) 
$$(-\infty, -2) \cup (-2, +\infty)$$

(D) 
$$(-\infty, -1) \cup (-1, +\infty)$$

**17.** 设 
$$f(x) = \begin{cases} \frac{\sin x}{x - x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则  $f(x)$  的间断点个数为(C).

$$(C)$$
 2

**18.** 设 
$$f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 为连续函数,则  $k = (B)$ 

$$(B) -3$$

**19.** 函数 
$$f(x) = \begin{cases} x & x \le 0 \\ e^{\frac{1}{x}} & x > 0 \end{cases}$$
 在点  $x = 0$  处是否连续?( C )

- (B) 不连续, 因为无定义
- (C) 不连续, 因为极限不存在
- (D) 前面都不对

**20.** 要使 
$$f(x) = (1 + x^2)^{-\frac{2}{x^2}}$$
 在  $x = 0$  处连续, 应补充定义  $f(0)$  的值为 ( B ) .

(B) 
$$e^{-2}$$

(C) 
$$e^{-4}$$

(D) 
$$e^{-1}$$

### 二、填空题

2. 若 
$$a > 0$$
,  $b > 0$  均为常数, 则  $\lim_{x \to 0} \left( \frac{a^x + b^x}{2} \right)^{\frac{3}{x}} = \underline{(ab)^{\frac{3}{2}}}$ 

3. 
$$\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2} = \frac{2}{\pi}$$

**4.** 设 
$$P(x)$$
 是  $x$  的多项式, 且  $\lim_{x\to\infty} \frac{P(x)-6x^3}{x^2} = 2$ ,  $\lim_{x\to0} \frac{P(x)}{x} = 3$ , 则  $P(x) = \underline{6x^3 + 2x^2 + 3x}$ .

**5.** 
$$\lim_{x\to\infty} \left(1-\frac{2}{x}\right)^{\frac{x}{3}} = e^{-\frac{2}{3}}$$
.

7. 设 
$$f(x) = x \sin \frac{2}{x} + \frac{\sin x}{x}$$
, 则  $\lim_{x \to \infty} f(x) = \underline{2}$ .

**8.** 
$$\lim_{x\to 0} \frac{x^2 + \sin^3 x \cdot \sin\frac{1}{x}}{3x^2} = \frac{1}{3}$$
.

**9.** 
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}\right) = \frac{1}{2}$$
.

10. 
$$\lim_{x \to +\infty} (\arcsin(\sqrt{x^2 + x} - x)) = \frac{\pi}{6}$$
.

**11.** 
$$\lim_{x \to \infty} x \sin \frac{2x}{1 + x^2} = \underline{2}$$
.

**12.** 当 
$$x \to 0$$
 时,  $2x^2 + 3x^{\frac{5}{2}}$  是关于  $x$  的 高或 2 阶无穷小.

**13.** 当 
$$x \to 0$$
 时,  $\sqrt{1-3x} = 1 + ax + bx^2 + o(x^2)$ , 则  $a$  和  $b$  的值分别为  $a = -\frac{3}{2}$ ,  $b = -\frac{9}{8}$ .

**14.** 当 
$$x \rightarrow 0$$
 时,  $2\sin x - \sin 2x$  与  $x^k$  是等价无穷小量, 则  $k = 3$  .

**15.** 函数 
$$y = \frac{\sqrt{1+x}}{(x-1)(x+2)}$$
 的间断点是  $x=1$ .

**16.** 设函数 
$$y = \begin{cases} (1-x)^{\frac{3}{x}} & x \neq 0 \\ K & x = 0 \end{cases}$$
 在  $x = 0$  处连续, 则参数  $K = \underline{e^{-3}}$ .

**17.** 函数 
$$f(x) = \begin{cases} x+a & x \le 0 \\ e^x+1 & x > 0 \end{cases}$$
 在点  $x = 0$  处连续, 则  $a = 2$ 

**18.** 设函数 
$$f(x) = \begin{cases} \frac{2\sin 2x}{x} & x < 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处间断, 则 } a \underline{\hspace{0.5cm} \neq 4} \\ \frac{\ln(1+4x)}{x} & x > 0 \end{cases}$$

**19.** 函数 
$$f(x) = \frac{\sqrt{x^2 - 4}}{x - 2}$$
 的连续区间是  $(-\infty, -2], (2, +\infty)$ .

**20.** 
$$x = 1$$
 是函数  $f(x) = \arctan \frac{1}{1-x}$  的跳跃间断点.

## 三、计算题

1. 求极限  $\lim_{x\to \frac{\pi}{a}}(1+\cos x)^{\tan x}$ .

**M.** 
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x} = \lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\frac{1}{\cos x} \cdot \sin x} = e.$$

$$2. \lim_{x \to \infty} \left(\frac{x-1}{x+3}\right)^{x+2}$$

$$3. \lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

解. 
$$\frac{1}{2}$$

**4.** 
$$\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 2} - \sqrt{x^2 - 2x + 2})$$

**解.** 原式 = 
$$\lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 2x + 2} + \sqrt{x^2 - 2x + 2}} = \lim_{x \to +\infty} \frac{4}{\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}} + \sqrt{1 - \frac{2}{x} + \frac{2}{x^2}}} = 2$$

**5.**  $\lim_{x\to\infty} \left(\arctan x \cdot \arcsin \frac{1}{x}\right)$ 

解.0

**6.** 
$$x_n = \frac{1}{3} + \frac{1}{15} + \dots + \frac{1}{4n^2 - 1}, \ \ \ \lim_{n \to \infty} x_n.$$

**AF.** 
$$x_n = \frac{1}{2} \left( 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right), \ \therefore \lim_{n \to \infty} x_n = \frac{1}{2}.$$

7. 
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$$

7. 
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$$
  
解. 记  $x_n = \frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}$ ,因为

$$\frac{n}{n^2+n} + \frac{n}{n^2+n} + \dots + \frac{n}{n^2+n} \le x_n \le \frac{n}{n^2} + \frac{n}{n^2} + \dots + \frac{n}{n^2},$$

即

$$\frac{n}{n+1} \le x_n \le 1$$

由于

$$\lim_{n\to\infty}\frac{n}{n+1}=1,$$

所以由夹逼定理, 得  $\lim_{n\to\infty} x_n = 1$ 

**解.** 由不等式 
$$\sqrt{x \cdot y} \le \frac{x + y}{2}$$
, 知  $x_n \le y_n$   $(n = 1, 2, 3, \cdots)$  于是,

$$x_{n+1} = \sqrt{x_n y_n} \ge \sqrt{x_n \cdot x_n} = x_n, \ y_{n+1} = \frac{x_n + y_n}{2} \le \frac{y_n + y_n}{2} = y_n,$$

即,  $\{x_n\}$  为递增数列,  $\{y_n\}$  为递减数列, 又  $a=x_1 \le x_n \le y_n \le y_1 = b$ , 则  $\{x_n\}$  与  $\{y_n\}$ 均为有界数列. 故它们均存在极限. 记  $\lim_{n\to\infty} x_n = \alpha$ ,  $\lim_{n\to\infty} y_n = \beta$ , 对  $y_{n+1} = \frac{x_n + y_n}{2}$  的 两边取极限, 得  $\alpha = \beta$ , 因此  $\lim_{n \to \infty} (x_n - y_n) = 0$ .

**9.** 已知 
$$\lim_{x \to \infty} f(x)$$
 存在,且  $f(x) = x^2 (e^{-\frac{1}{x^2}} - 1) + \frac{2x^2}{\sqrt{1+x^4}} \cdot \lim_{x \to \infty} f(x)$ ,求  $\lim_{x \to \infty} f(x)$ 

解. 1.

- (1) 求 f(x) 在点 x=0 的左、右极限;
- (2) 当 a 和 k 取何值时, f(x) 在点 x = 0 连续?

**解.** (1) 
$$e^{-2}$$
,  $k$  (2)  $a = k = e^{-2}$ .

#### 四、综合与应用题

1. 讨论极限  $\lim_{x\to 0} \frac{|\sin x|}{x}$ .

**解**. 因为 
$$\lim_{x\to 0^+} \frac{|\sin x|}{x} = 1$$
,  $\lim_{x\to 0^-} \frac{|\sin x|}{x} = -1$ ,故原极限不存在.

**2.** 若  $\lim_{x \to x_0} g(x) = 0$ , 且在  $x_0$  的某去心邻域内  $g(x) \neq 0$ ,  $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$ , 则  $\lim_{x \to x_0} f(x)$  必等于 0, 为什么?

**解.** 因 
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot g(x) = A \cdot 0 = 0$$

**3.** 设  $f(x) = \frac{x}{\tan \frac{x}{2}}$ , 问: 当 x 趋于何值时, f(x) 为无穷小.

**解.** 当 
$$x_k = (2k-1)\pi(k \in \mathbb{Z})$$
 时,  $\lim_{x \to x_k} \frac{x}{\tan \frac{x}{2}} = 0$ . 故当  $x \to x_k$  时, $f(x)$  为无穷小.

**4.** 确定  $f(x) = \frac{\sin \pi x}{x(x-1)}$  的间断点, 并判定其类型.

**解.** x = 0 及 x = 1 是可去间断点

**5.**  $\bar{x} y = \frac{x^2 - 1}{x^2 - 3x + 2}$  的间断点,并判别间断点的类型.

**解**. 因为  $x^2-3x+2=(x-1)(x-2)$ , 而

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = -2, \lim_{x \to 2} \frac{x^2 - 1}{x^2 - 3x + 2} = \infty.$$

因此有间断点: x=1为可去间断点,x=2为无穷间断点.

**6.** 求函数  $y = 6x + \frac{1}{r}$  的连续区间, 若有间断点, 试指出间断点的类型.

**解**. 函数的连续区间为  $(-\infty, 0) \cup (0, +\infty)$ , 点 x = 0 为函数的第二类无穷间断点.

7. 讨论函数  $f(x) = \lim_{t \to x} \left( \frac{x-1}{t-1} \right)^{\frac{t}{x-t}}$  的连续性.

解. 因为

$$f(x) = \lim_{t \to x} \left(\frac{x-1}{t-1}\right)^{\frac{t}{x-t}} = \lim_{t \to x} \left(1 + \frac{x-t}{t-1}\right)^{\frac{t}{x-t}} = y = \frac{x-t}{t-1} \lim_{y \to 0} \left(1 + y\right)^{\frac{x+y}{y(x-1)}} = e^{\frac{x}{x-1}}$$

其在点 x=1 处没有定义, 是间断点, 故 f(x) 的连续区间为  $(-\infty,1)\cup(1,+\infty)$ , 点 x=1 为 f(x) 的第二类无穷间断点.

8. 讨论函数 
$$f(x) = \begin{cases} \cos x & x \ge 0 \\ x+1 & x < 0 \end{cases}$$
 在点  $x = 0$  处的连续性.

解. 因为

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \cos x = 1, \ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x+1) = 1,$$

所以 f(x) 在点 x=0 处连续

**9.** 设函数 
$$y = f(x) = \begin{cases} \frac{\sqrt{a} - \sqrt{a - x}}{x} & x < 0 \\ \frac{\cos x}{x + 2} & x \ge 0 \end{cases}$$
  $(a > 0)$ 

- (1) 当 a 取何值时, 点 x = 0 是函数 f(x) 的间断点? 是何种间断点?
- (2) 当 a 取何值时, 函数 f(x) 在  $(-\infty + \infty)$  上连续? 为什么?

**解**. (1) 在点 x = 0 处,

$$f(0) = \frac{1}{2}$$
,  $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\cos x}{x+2} = \frac{1}{2}$ ,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sqrt{a} - \sqrt{a - x}}{x} = \lim_{x \to 0^{-}} \frac{1}{\sqrt{a} + \sqrt{a - x}} = \frac{1}{2\sqrt{a}}.$$

故当 a > 0 且  $a \ne 1$  时, 由于  $\lim_{x \to 0^+} f(x) \ne \lim_{x \to 0^-} f(x)$ , 所以点 x = 0 是 f(x) 的跳跃间断 点.

(2) 当 a=1 时, 由于  $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$ , 则 f(x) 在点 x=0 处连续. 又因 为在  $(-\infty,0)$  或  $(0,+\infty)$  上 f(x) 为初等函数, 所以连续. 故当 a=1 时, 函数 f(x) 在  $(-\infty + \infty)$ 上连续.

10. 求函数 
$$f(x) = \lim_{n \to \infty} \frac{x(x^{2n} - 1)}{x^{2n} + 1}$$
 的解析式, 并判断它的间断点及其类型.

**解.**  $f(x) = \begin{cases} x & x < -1 \\ 0 & x = -1 \\ x & -1 < x < 1, \ x = -1, x = 1 \end{cases}$  都是跳跃间断点.

 $\begin{cases} 0 & x = 1 \\ x & x > 1 \end{cases}$ 

#### 五、分析与证明题

**1.** 用函数极限的定义证明  $\lim_{x \to -\frac{1}{2}} \frac{1-4x^2}{2x+1} = 2$ .

**解**.  $\forall \varepsilon > 0$ , 要使

$$\left|\frac{1-4x^2}{2x+1}-2\right|=|2x+1|=2\left|x+\frac{1}{2}\right|<\varepsilon$$
成立, 只需  $\left|x+\frac{1}{2}\right|<\frac{\varepsilon}{2}$ , 取  $\delta=\frac{\varepsilon}{2}$ , 则当  $0<\left|x-(-\frac{1}{2})\right|<\delta$  时, 都有 
$$\left|\frac{1-4x^2}{2x+1}-2\right|<\varepsilon,$$

故

$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2.$$

**2.** 设  $x \to x_0$  时, $\alpha(x)$  与  $\beta(x)$  是等价无穷小,且  $\lim_{x\to x_0} \alpha(x) f(x) = A$ . 证明  $\lim_{x\to x_0} \beta(x) f(x) = A$ .

解. 由条件可得

$$\lim_{x \to x_0} \beta(x) f(x) = \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \cdot \alpha(x) \cdot f(x)$$

$$= \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \cdot \lim_{x \to x_0} \alpha(x) \cdot f(x)$$

$$= 1 \cdot A$$

$$= A$$

**3.** 设 f(x), g(x) 为连续函数, 试证明  $M(x) = \max\{f(x), g(x)\}$  也是连续函数.

解. 易知

$$M(x) = \max\{f(x), g(x)\} = \frac{1}{2}[f(x) + g(x)] + \frac{1}{2}|f(x) - g(x)|$$

f(x), g(x) 为连续函数, 故 f(x)+g(x), f(x)-g(x) 均为连续函数, 从而 |f(x)-g(x)| 是连续函数.

所以有

$$M(x) = \frac{1}{2}[f(x) + g(x)] + \frac{1}{2}|f(x) - g(x)|$$

是连续函数.

**4.** 设函数 f(x) 在  $(-\infty, +\infty)$  上有定义, 且在点 x = 0 处连续, 又对任意的  $x_1$  和  $x_2$ , 有  $f(x_1 + x_2) = f(x_1) + f(x_2)$ . 证明: f(x) 在  $(-\infty, +\infty)$  内连续.

**解.** 令  $x_1 = 0$ ,  $x_2 = 0$ , 得 f(0) = 0; 又令  $x_1 = x$ ,  $x_2 = \Delta x$ , 则  $f(x + \Delta x) = f(x) + f(\Delta x)$ , 即

$$\Delta y = f(x + \Delta x) - f(x) = f(\Delta x),$$

而 f(x) 在点 x = 0 处连续, 所以

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} f(\Delta x) = f(0) = 0,$$

故 f(x) 在  $(-\infty, +\infty)$  内连续.

**5.** 证明方程  $x = a \sin x + 2$  (a > 0) 至少有一个正根, 并且不超过 a + 2.

**解**. 设  $f(x) = x - a \sin x - 2$ , 下面分两种情形来讨论:

情形 1: 若  $\sin(a+2)=1$ ,则因为 a>0,故 a+2 是方程  $x=a\sin x+2$  (a>0)的正根,并且不超过 a+2.

情形 2: 若  $\sin(a+2) \neq 1$ ,则因为 a > 0,故

$$f(a+2) = a[1-\sin(a+2)] > 0, f(0) = -2 < 0.$$

又因 f(x) 在 [0,a+2] 上连续, 故由零点定理知,  $\exists \xi \in (0,a+2)$ , 使得  $f(\xi)=0$ , 因此  $\xi$  是方程  $x=a\sin x+2$  (a>0) 的正根, 并且不超过 a+2.