CSE 428/ EEE476: Image Processing

Department of Computer Science and Engineering Brac University

Examination: Midterm Semester: Fall 2023
Duration: 1 Hour 15 Minutes Full Marks: 40

Name:	ID:	Section:

ANSWER ALL QUESTIONS

Data Section

Consider the image below for each of the following questions.

The histogram of the image is given in the following table (r denotes intensity level, n_r denotes total number of pixels with intensity r):

r	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_r	10	20	11	13	20	13	11	12	15	16	10	26	28	25	21	9

[C01] Question 1.

Consider the above $~13~\times~20$ image with 4-level quantization ($L_{min}=0,\,L_{max}=15$) given in the data section

- a. Plot the histogram and mark the **region of interest** in the histogram (i.e. the relevant intensity levels) assuming that you want to clearly identify the "**428**". [4 marks]
- b. Calculate PDF and CDF for each input pixels r. [8 marks]
- c. Apply Histogram Equalization technique to improve the image clarity. You need to show

- the updated values of each pixels. [6 marks]
- d. State an issue with Histogram Equalization and an advantage of AHE. [2 marks]

[CO1] Question 2.

Refer to the same image given in data section and consider (r_1, s_1) and (r_2, s_2) as (4,6) and (11,13) respectively.

- a. **Plot** a graph $r_k vs s_k$ representing contrast stretching clearly indicating (r_1, s_1) and (r_2, s_2) in your piecewise linear mapping. No need to indicate all pixel values in your plot. **[2 marks]**
- b. **Determine** the values of the gradients of your plot α , β and γ [3 marks]
- c. Now update your pixel values from the table using the gradients you have calculated in b. **[6 marks]**

[C02] Question 3.

Consider the CDF curve below

- a. Write three features of the image using the CDF curve. [3 marks]
- b. If a point transformation is carried out s=r +2, explain what will happen to the contrast of the image ? [2 marks]
- c. What is quantization? What is mirror padding [2+2 marks]