

(a) Switches in Series

Switches		Light Bulb
P	Q	State
closed	closed	01
closed	open	011
open	closed	014
open	open	011

(b) Switches in Parallel

Switches		Light Bulb
P	Q	State
closed	closed	01
closed	open	00
open	closed	01
open	open	011

Find the state (on/off) of the light bulb in each situation. How do these tables compare to some logical connectives that we have learned?

switches in series are like

"and" connectives

closed on: T penoff: 7

switches in parallel are like

"br" connectives

In the setting of circuit design, it is customary to use 1 and 0 instead of T and F.

The inside of a **black box** contains the detailed implementation of the circuit and is often ignored while attention is focused on the relation between the input and the output signals.

The operation of a black box is completely specified by constructing an input/output table that lists all of its possible input signals together with their corresponding output signals.

It may be something like this:

I	NPU	T	output
P	Q	R	S
((1	0
1	١	0	(
1	0		1
1	0	0	O 25
000	(
0	\ (0	0
0	10	10	9
0	10	1	1

ex

An efficient method for designing more complicated circuits is to build them by connecting less complicated black box circuits.

Three such circuits are known as \mathbf{NOT} -, \mathbf{AND} -, and \mathbf{OR} -gates.

Type of Gate	Symbolic Representation		Action	
NOT		In	put	Output
	$P \longrightarrow NOT > \sim R$		P	R
		-	1	0
			0	1
	$Q \longrightarrow AND \longrightarrow R$	Different Administration of	put	Output
		P	Q	R
AND		1	1	1
		1	0	0
		0	1	0
		0	0	0
OR	$P \longrightarrow OR \longrightarrow R$	Inj	out	Output
		P	Q	R
		ı	1	1
	Q OK	1	0	1
		0	1	1
		0	0	0

Gates can be combined into circuits in a variety of ways. If the following rules are obeyed, the result is a combinational circuit.

(A combinational circuit has the property that its output at any time is determined entirely by its input at that time without regard to previous inputs.)

 $\mathbf{R1}$: Never combine two input wires.

R2: A single input wire can be split partway and used as input for two separate gates.

R3: An output wire can be used as input.

R4: No output of a gate can eventually feed back into that gate.

If you are given a set of input signals for a circuit, you can find its output by tracing through the circuit gate by gate.

Example: Indicate the output of the circuits for the given input signals.

Input signals: P = 0 and Q = 1

R=1

b. $P \longrightarrow OR$ $R \longrightarrow OR$ $AND \longrightarrow S$

Input signals: P = 1, Q = 0, R = 1

5 = 0

If we are not given any specific input signals, we might want to construct the entire input/output table of the circuit.

Example: Construct the input/output table for the following circuit.

An expression composed of variables (such as P, Q, etc.) and the connectives \neg , \wedge , \vee is called a **Boolean expression**.

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a corresponding Boolean expression can be obtained by tracing the actions of the gates on the input variables.

Example: Find the Boolean expressions that correspond to the circuits shown below.

(A dot indicates a soldering of two wires; wires that cross without

Observe that the output of the circuit shown in Example (b) is 1 for exactly one combination of inputs.

$$(P \land Q) \land \neg R = P \land Q \land \neg R$$

This has value 1 only if $P=1, Q=1 & R=0$

The circuit can be said to "recognize" one particular combination of inputs. It is called a recognizer circuit.

The problem of constructing circuits corresponding to given Boolean expressions is just as interesting.

Example: Construct circuits for the following Boolean expressions.

- (i) $(\neg P \land Q) \lor \neg Q$
- (ii) $((P \wedge Q) \wedge (R \wedge S)) \wedge T$

Now we address the question of how to design a circuit (or find a Boolean expression) corresponding to a given input/output table.

The way to do this is to put several recognizers together in parallel. This brings us to the notion of the disjunctive normal form of a proposition.

A disjunctive normal form (DNF) of a proposition is a disjunction of conjunctions which may involve negations of the variables.

Examples:

Given the truth table of a proposition/expression, to find its DNF:

- 1. Identify each row for which the output is 1.
- 2. For each such row, construct an \land -expression that produces a 1 (or true) for the exact combination of input values for that row, and a 0 (or false) for all other combinations of input values.
 - 3. Bring together the \land -expressions of the previous step with \lor 's.

Example: Design a circuit for the following input/output table.

IN	JPUT	OUTPUT
P	Q	R
1		0
0	0	\ 0

First find an expression in \mathbf{DNF} with this table as its truth table.

(PNQ) V (-PNQ)

To create the required circuit for the input/output takk we would recognizer circuit for each expression corresponding to output 1, and y then weld connect them through or gates.