Probabilistic error analysis of limited-precision stochastic rounding

EL-Mehdi EL ARAR el-mehdi.el-arar@inria.fr

PASC25: Massimiliano Fasi, Silviu-Ioan Filip, Mantas Mikaitis

16/06/2025

Motivation

¹Gupta et al: Deep Learning with Limited Numerical Precision

²Paxton et al: Climate Modeling in Low Precision: Effects of Both Deterministic and Stochastic Rounding

³Parker: Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arithmetic

⁴El Arar: Stochastic models for the evaluation of numerical errors

Stochastic rounding (SR)

• For $x, y \in \mathbb{R}$ and op $\{+, -, \times, /\}$

$$\begin{aligned} \mathsf{SR}_{p}(x) &= x(1+\delta), & |\delta| \leqslant u_{p} \\ \mathsf{SR}_{p}(x \, \mathsf{op} \, y) &= (x \, \mathsf{op} \, y)(1+\beta), & |\beta| \leqslant u_{p} \end{aligned}$$

• Upward rounding [x] and downward rounding [x]:

FIGURE.
$$SR_p$$
 with $q(x) = \frac{x - ||x||}{||x|| - ||x||}$

•
$$\mathbb{E}\left(\mathsf{SR}_{\rho}(x)\right) = q(x) \|x\| + (1 - q(x)) \|x\| = x$$
, then $\mathbb{E}(\delta) = \mathbb{E}\left(\frac{\mathsf{SR}_{\rho}(x) - x}{x}\right) = 0$

SR and mean independence

• Using SR_{ρ} , for $x_1, x_2, x_3 \in \mathcal{F}_{\rho}$ and $\mathsf{op}_1, \mathsf{op}_2 \in \{+, -, *, /\}$ $c = x_1 \, \mathsf{op}_1 \, x_2 \, \mathsf{op}_2 \, x_3 \qquad \Longrightarrow \qquad \mathsf{SR}_{\rho}(c) = ((x_1 \, \mathsf{op}_1 \, x_2)(1 + \delta_1) \, \mathsf{op}_2 \, x_3) \, (1 + \delta_2),$ with $\mathbb{E}(\delta_1) = \mathbb{E}(\delta_2) = 0$

- Mean independence: $\mathbb{E}[X_k/X_1,...,X_{k-1}] = \mathbb{E}(X_k)$ for all k
- ullet Independence \Longrightarrow Mean independence \Longrightarrow uncorrelatedness

Lemma 1 (M. P. Connolly et al.).

For some $\delta_1, \delta_2, ...$, in that order obtained from SR_p , the δ_k are random variables with mean zero such that $\mathbb{E}[\delta_k/\delta_1, ..., \delta_{k-1}] = \mathbb{E}(\delta_k) = 0$.

SR and mean independence

• Using SR_p , for $x_1, x_2, x_3 \in \mathcal{F}_p$ and $\mathsf{op}_1, \mathsf{op}_2 \in \{+, -, *, /\}$ $c = x_1 \, \mathsf{op}_1 \, x_2 \, \mathsf{op}_2 \, x_3 \qquad \Longrightarrow \qquad \mathsf{SR}_p(c) = ((x_1 \, \mathsf{op}_1 \, x_2)(1 + \delta_1) \, \mathsf{op}_2 \, x_3) \, (1 + \delta_2),$ with $\mathbb{E}(\delta_1) = \mathbb{E}(\delta_2) = 0$

- Mean independence: $\mathbb{E}[X_k/X_1,...,X_{k-1}] = \mathbb{E}(X_k)$ for all k
- Independence ⇒ Mean independence ⇒ uncorrelatedness

Lemma 1 (M. P. Connolly et al.).

For some $\delta_1, \delta_2, ...$, in that order obtained from SR_p , the δ_k are random variables with mean zero such that $\mathbb{E}[\delta_k/\delta_1, ..., \delta_{k-1}] = \mathbb{E}(\delta_k) = 0$.

- Martingale and Azuma-Hoeffding inequality: AH bound
- Bound of the variance and Chebyshev inequality: BC bound
- Inner product, Horner's polynomial, statistical variance...

Example: inner product

Figure. Probabilistic bounds with probability at least 0.95 vs deterministic bound of the computed forward errors of the inner product for floating-point numbers chosen uniformly at random in [0;1] with $u_p=2^{-23}$

The Rosenbrock function is a non-convex function defined by

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

with a global minimum of 0, occurring at $\mathbf{x}^* = (1, 1)$.

The gradient descent:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)$$

FIGURE. Convergence profiles for 5000 iterations of gradient descent on the Rosenbrock function, with learning rate $t_k = 0,001$.

https://github.com/MehdiElArar/srfloat

FIGURE. Convergence profiles for 5000 iterations of gradient descent on the Rosenbrock function, with learning rate $t_k = 0,001$.

https://github.com/MehdiElArar/srfloat

7 / 19

FIGURE. Convergence profiles for 5000 iterations of gradient descent on the Rosenbrock function, with learning rate $t_k = 0,001$.

https://github.com/MehdiElArar/srfloat

Addition

Let $a, b \in \mathcal{F}_p$, if we compute a + b in \mathcal{F}_q such that p < q, we take r = q - p.

- non-random bits
- random bits
- zero bits
- SR bits

Addition

Let $a, b \in \mathcal{F}_p$, if we compute a + b in \mathcal{F}_q such that p < q, we take r = q - p.

 $= SR_p(m(a+b))$

A Stochastic Rounding-Enabled Low-Precision Floating-Point MAC for DNN Training "Ali, Sami Ben and Filip, Silviu-Ioan and Sentieys, Olivier"

- non-random bits
- random bits
- ____ zero bits
- SR bits

Toy example: a + b

Toy example: a + b

Limited-precision stochastic rounding

FIGURE. SR_p with $q(x) = \frac{x - ||x||}{||x|| - ||x||}$

Limited-precision stochastic rounding

FIGURE. $SR_{p,r}$ with $q_r(x) = \frac{\mathfrak{fl}_{p+r}(x) - \|x\|}{\|x\| - \|x\|}$

Limited-precision stochastic rounding

FIGURE.
$$SR_{p,r}$$
 with $q_r(x) = \frac{f|_{p+r}(x) - ||_x||}{||_x||_{-}||_x||}$

•
$$\mathsf{SR}_{p,r}(x) = x(1+\delta), \ |\delta| \leqslant u_p \quad \neq \quad \mathsf{fl}_{p+r}(x) = x(1+\beta), \ |\beta| \leqslant u_{p+r}(x)$$

•
$$\mathbb{E}\left(\mathsf{SR}_{p,r}(x)\right) = q_r(x) \llbracket x \rrbracket + (1 - q_r(x)) \llbracket x \rrbracket = \mathsf{fl}_{p+r}(x)$$
, then

$$\mathbb{E}(\delta) = \mathbb{E}\left(\frac{\mathsf{SR}_{\rho,r}(x) - x}{x}\right) = \beta$$

• The mean independence is lost

$$\mathbb{E}(\delta_k \mid \delta_1, \dots, \delta_{k-1}) = \beta_k \neq \mathbb{E}(\delta_k)$$

• β_k is a random variable and $\mathbb{E}(\beta_k) = \mathbb{E}(\delta_k)$

Main result

Doob-Meyer decomposition

Lemma 2.

Let $\delta_1, \delta_2, \ldots, \delta_n$ be random errors produced by a sequence of elementary operations using $\mathsf{SR}_{p,r}$, and let $\beta_1, \beta_2, \ldots, \beta_n$ be their corresponding errors incurred by fl_{p+r} . Then, the random variables $\alpha_k = \delta_k - \beta_k$ for $1 \leqslant k \leqslant n$ are mean independent

$$\mathbb{E}(\alpha_k \mid \alpha_1, \ldots, \alpha_{k-1}) = \mathbb{E}(\alpha_k) = 0.$$

Moreover, for all $1 \leqslant i \leqslant n$

$$\prod_{k=i}^{n} (1 + \delta_k) = \prod_{k=i}^{n} (1 + \alpha_k) + \mathcal{B}_i,$$

with

$$|\mathcal{B}_i| \leqslant \gamma_{n-i+1}(u_p + u_{p+r}) - \gamma_{n-i+1}(u_p)$$

Error analysis of algorithms with limited-precision SR

Theorem 3.

For $y = \sum_{i=1}^{n} a_i b_i$ and $0 < \lambda < 1$, the quantity $SR_{p,r}(y)$ satisfies

$$\begin{split} \frac{|SR_{p,r}(y) - y|}{|y|} &\leqslant \kappa(a \circ b) \left(\sqrt{u_p \gamma_{2n}(u_p)} \sqrt{\ln(2/\lambda)} + \gamma_n(u_p + u_{p+r}) - \gamma_n(u_p) \right) \\ &= \kappa(a \circ b) \left(\sqrt{2n} \sqrt{\ln(2/\lambda)} u_p + \frac{nu_{p+r}}{n} \right) + \mathcal{O}(\|(u_p, u_{p+r})\|_2) \end{split}$$

with probability at least $1 - \lambda$.

Rule of thumb

Lemma 4.

Theorem 3 leads to

$$\mathcal{O}(\sqrt{n}u_p + nu_{p+r})$$

we want

$$\sqrt{n}u_p > nu_{p+r}$$

we thus have this good rule of thumb

$$r \geqslant \lceil (\log_2 n)/2 \rceil$$

Numerical experiments

- Rosenbrock function (srfloat)
- Parameter update in deep neural network training (MPTorch)

- https://github.com/MehdiElArar/srfloat
- https://github.com/mptorch/mptorch

Rosenbrock function

FIGURE. Convergence profiles for 5,000 iterations of gradient descent on the Rosenbrock function. For both experiments, we average each $SR_{11,r}$ error over 500 different runs, and the learning rate is $t_k = 0.001$.

Rosenbrock function

FIGURE. Convergence profiles for 5,000 iterations of gradient descent on the Rosenbrock function. For both experiments, we average each $SR_{11,r}$ error over 500 different runs, and the learning rate is $t_k = 0.001$.

$$\lceil \log_2(5,000)/2 \rceil = 7$$

Parameter update in deep neural network training

Focus:

Training a ResNet32¹ model on the CIFAR-10 dataset

Training Setup:

- Hyperparameters:
 - ▶ Batch Size: 128, Momentum: $\mu = 0.9$
 - ► Total Training: 64,000 iterations (200 epochs)
 - ▶ **Learning Rate:** $t_k = 0.1$, reduced by 10 at 32,000 and 48,000 iterations

Numerical Precision:

- Arithmetic: bfloat16 (p = 8)
- Update Rule:

$$\mathbf{v}_{k+1} = \circ (\mu \mathbf{v}_k + \mathbf{g}_k),$$

$$\mathbf{x}_{k+1} = \circ (\mathbf{x}_k - t_k \mathbf{v}_{k+1})$$

- Components:
 - ▶ **v**_k: Velocity vector
 - ightharpoonup \mathbf{g}_k : Gradient of the loss function

¹Deep Residual Learning for Image Recognition

Parameter update in deep neural network training

FIGURE. In the baseline configuration, binary32 arithmetic with RN is used for computing, and the same format is used for storage. For the low-precision configurations, parameters are stored and updated using bfloat16 arithmetic with either RN or $SR_{\rm p,r}$.

Parameter update in deep neural network training

FIGURE. In the baseline configuration, binary32 arithmetic with RN is used for computing, and the same format is used for storage. For the low-precision configurations, parameters are stored and updated using bfloat16 arithmetic with either RN or $SR_{\rm p,r}$.

$$\lceil \log_2(64,000)/2 \rceil = 8$$

Summary

	SR_p	$SR_{p,r}$
Unbiased	✓	X
Mean independence	✓	X
Probabilistic bound	$\mathcal{O}(\sqrt{n}u_p)$	$\mathcal{O}(\sqrt{n}u_p + nu_{p+r})$
Rule of thumb		$r \geqslant \lceil (\log_2 n)/2 \rceil$

Table. Classic stochastic rounding versus limited-precision stochastic rounding

To appear in SIAM Journal on Scientific Computing: https://arxiv.org/abs/2408.03069

Probabilistic error analysis of limited-precision stochastic rounding **El-Mehdi El Arar**, Massimiliano Fasi, Silviu-Ioan Filip, Mantas Mikaitis

Hardware with SR

- Graphcore IPU supports SR for binary32 and binary16 arithmetic
- AWS Trainium chips supports SR binary16 or bfloat16 arithmetic (at least additions)
- AMD MI300 GPUs supports SR down-conversion of binary32 values to 8-bit
- Tesla D1 supports SR down-conversion of binary32 values to 8-bit
- Blackwell architecture, NVIDIA GPUs support SR down-conversion from binary32 to 16, 8, 6, and 4-bit values

Example: no stagnation

FIGURE. Probabilistic bounds with probability $1-\lambda=0.95$ vs deterministic bound of the computed forward errors of the inner product for floating-point numbers chosen uniformly at random in [-1;1] with $u_p=2^{-23}$