MAP COLOR AND OTHER CHANNELS

Bùi Tiến Lên

01/01/2020

Contents

1. Color Theory

2. Colormaps

3. Other Channels

Motion Channels

The Big Picture

Encode > Map

Color Theory

- Color Vision
- Color Spaces
- Luminance, Saturation, and Hue
- Transparency

Color Vision

Color Spaces
Luminance, Saturati
and Hue

olorma

Categorical Colorma Ordered Colormaps Bivariate Colormap Colorblind-Safe Colormap Design

Other Ch

Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Color Vision

- The **retina** of the eye has two different kinds of receptors: rods, cones
- The rods actively contribute to vision only in low-light settings and provide low-resolution black and white information
- The main sensors in normal lighting conditions are the **cones**
- The visual system processes signals into three **opponent color channels**

Color Spaces

- The color space of what colors the human visual system can detect is three dimensional; that is, it can be adequately described using three separate axes
- The most common color space in computer graphics is the system where colors are specified as triples of red, green, and blue values, which is called the **RGB** system
- Another color space, the hue-saturation-lightness or HSL system, is more intuitive and is heavily used by artists and designers

lor Theory

Color Spaces

Luminance, Satur and Hue Transparency

Colormap

Categorical Colormap Ordered Colormaps Bivariate Colormaps Colorblind-Safe

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels
Texture and Stipplii

HSL System

- The hue axis captures what we normally think of as pure colors that are not mixed with white or black: red, blue, green, yellow, purple, and so on
- The **saturation** axis is the amount of white mixed with that pure color
- The lightness axis is the amount of black mixed with a color

Luminance, Saturation, and Hue

Color can be confusing in vis analysis because it is sometimes used as a magnitude channel and sometimes as an identity channel

- The magnitude channel of luminance is suitable for ordered data types
- The magnitude channel of saturation is also suitable for ordered data
- The identity channel of hue is extremely effective for categorical data and showing groupings

Color Vision
Color Spaces
Luminance, Saturatic
and Hue

Transparency

Categorical Colormap Ordered Colormaps Bivariate Colormaps Colorblind-Safe

Other Channel
Size Channels
Angle Channel
Curvature Channel
Shape Channel

Transparency

- A fourth channel strongly related to the other three color channels is transparency: information can be encoded by decreasing the opacity of a mark from fully opaque to completely see-through
- Transparency cannot be used independently of the other color channels
- Transparency is used most often with superimposed layers, to create a foreground layer that is distinguishable from the background layer

Colormaps

- Categorical Colormaps
- Ordered Colormaps
- Bivariate Colormaps
- Colorblind-Safe Colormap Design

Colormans

Colormaps

- A **colormap** specifies a mapping between *colors* and *data values*
- Using color to encode data is a powerful and flexible design choice
- Colormaps can be categorical or ordered
 - ordered colormaps can be either sequential or diverging
- Colormaps can either be a continuous range of values, or segmented into discrete bins of color

lor Theor

Color Vision
Color Spaces
Luminance, Saturationand Hue

Colormaps

Categorical Colorma
Ordered Colormaps
Bivariate Colormaps
Colorblind-Safe

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels
Texture and Stippling

Colormaps (cont.)

Categorical Colormaps

Categorical Colormaps

- A categorical colormap uses color to encode categories and groupings.
- Categorical colormaps are normally segmented
- Categorical colormaps are typically designed by using color as an integral identity channel to encode a single attribute
- The number of discriminable colors for coding small separated regions is limited to between six and twelve bins

lor Theory

Color Vision
Color Spaces
Luminance, Saturati
and Hue

Transparency Colormaps

Categorical Colormaps

Ordered Colormaps
Bivariate Colormap
Colorblind-Safe
Colormap Design

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels
Texture and Stippling

Ineffective categorical colormap use

or Theory

Color Vision
Color Spaces
Luminance, Saturatio
and Hue
Transparency

Colorma_l

Categorical Colormaps
Ordered Colormaps

Bivariate Colorma Colorblind-Safe Colormap Design

Other Channel Size Channels Angle Channel

Curvature Channel Shape Channel Motion Channels

Effective categorical colormap use

 A large space of visual encoding possibilities for 27 categories was considered systematically in addition to the color channel, including size and shape channels and more complex glyphs

lor Theor

Color Vision

Color Spaces

Luminance, Saturation and Hue

Transparency

Colormaps

Categorical Colormaps

Ordered Colormap
Bivariate Colorma
Colorblind-Safe

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Effective categorical colormap use (cont.)

• The final design uses the color channel for only four of the categories

Color Vision
Color Spaces
Luminance, Saturationand Hue

Colormap

Categorical Colormaps
Ordered Colormaps

Bivariate Colorn
Colorblind-Safe
Colormap Design

Other Channel
Size Channels

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Ordered Colormaps

An **ordered** colormap is appropriate for encoding ordinal or quantitative attributes

- A sequential colormap ranges from a minimum value to a maximum value
- A diverging colormap has two hues at the endpoints and a neutral color as a midpoint, such as white, gray, or black, or a high-luminance color such as yellow

lor Theory

Color Vision
Color Spaces
Luminance, Saturatio
and Hue
Transparency

Colormaps Categorical Colorma Ordered Colormaps

Ordered Colorma Bivariate Colorma Colorblind-Safe Colormap Design

Other Channel
Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Rainbow versus two-hue continuous colormap

• Many hue (rainbow) vs two-hue colormaps

Ordered Colormans

Problems with the rainbow

Three major problems with the common continuous rainbow colormap are

- Perceptual nonlinearity
- The expressivity mismatch of using hue for ordering
- The accuracy mismatch of using hue for fine-grained detail.

One way to address all three problems is to design monotonically increasing **luminance** colormaps

lor Theory

Color Vision
Color Spaces
Luminance, Saturatio
and Hue
Transparency

Colormaps

Ordered Colormaps

Bivariate Colormap

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Appropriate use of rainbows

- (a) The standard rainbow colormap is perceptually nonlinear.
- (b) Perceptually linear rainbows are possible, but they are less bright with a decreased dynamic range.
- (c) Segmented rainbows work well for categorical data when the number of categories is small.

Color Theory Color Vision Color Spaces Luminance, Saturatio and Hue

Colormaps

Ordered Colormaps

Bivariate Colormaps

Colorblind-Safe Colormap Desig

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels
Texture and Stippli

Bivariate Colormaps

- The safest use of the color channel is to visually encode a single attribute; these colormaps are known as **univariate**.
- Colormaps that encode two separate attributes are called **bivariate**.

Color Vision Color Spaces Luminance, Saturatic and Hue

Colorma

Categorical Colorma Ordered Colormaps Bivariate Colormaps

Colorblind-Safe Colormap Design

Other Channel Size Channels

Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Colorblind-Safe Colormap Design

- Designers using color should take the common problem of red—green color blindness into account
- It is a sex-linked inherited trait that affects 8% of males and a much smaller proportion of females, 0.5%.

Other Channels

- Size Channels
- Angle Channel
- Curvature Channel
- Shape Channel
- Motion Channels
- Texture and Stippling

Color Theory
Color Vision
Color Spaces
Luminance, Saturatio
and Hue
Transparency

olormap

Categorical Colorma Ordered Colormaps Bivariate Colormaps Colorblind-Safe Colormap Design

Other Channels

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Introduction

- While the previously discussed channels pertaining to position and color are highly salient, other visual channels are also an important part of the visual encoding design space.
- Other magnitude visual channels include
 - the size channels of length, area, and volume
 - the angle/orientation/tilt channel
 - curvature
- Other identity channels are
 - shape and motion.
- Textures and stippling use combinations of multiple channels.

Color Theory Color Vision Color Spaces Luminance, Saturatio and Hue Transparency

Colormap

Categorical Colormaps
Ordered Colormaps
Bivariate Colormaps
Colorblind-Safe
Colormap Design

Other Channe

Size Channels

Angle Channel
Curvature Channel
Shape Channel
Motion Channels
Texture and Stippling

Size Channels

- Size is a magnitude channel suitable for ordered data.
- It interacts with most other channels
- Length is one-dimensional (1D) size
- Area is two-dimensional (2D) size
- **Volume** is three-dimensional (3D) size

Color Theory Color Vision Color Spaces Luminance, Saturatio and Hue Transparency

Colormap

Categorical Colorma Ordered Colormaps Bivariate Colormaps Colorblind-Safe Colormap Design

Other Channels

Size Channels Angle Channel

Curvature Channel Shape Channel Motion Channels

Angle Channel

- The angle channel encodes magnitude information based on the orientation of a mark: the direction that it points
- With angle, the orientation of one line is judged with respect to another line
- With tilt, an orientation is judged against the global frame of the display

Angle Channel

Tiltmap

- (a) A sequential attribute can be shown with either a line mark or an arrow glyph in one quadrant.
- (b) A diverging attribute can be shown with two quadrants and an arrow glyph.
- (c) A cyclic attribute can be shown with all four quadrants and arrow glyphs

Curvature Channel

Curvature Channel

- The curvature channel is not very accurate, and it can only be used with line marks.
- It cannot be used with point marks that have no length, or area marks because their shape is fully constrained.
- The number of distinguishable bins for this channel is low, probably around two or three

Color Theory Color Vision Color Spaces Luminance, Saturation and Hue

Colormap

Ordered Colormaps
Bivariate Colormaps
Colorblind-Safe

Other Channe

Size Channels
Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Shape Channel

- The term **shape** is a catch-all word for a complex perceptual phenomenon
- Applying shape to point marks is the common case, and is easy to understand
- Applying the shape channel to line marks results in stipple patterns such as dotted and dashed lines

Motion Channels

Motion Channels

- Several kinds of **motion** are also visual channels, including **direction** of motion, velocity of motion, and flicker frequency
- Motion is extremely salient, and more- over motion is very separable from all other static channels

Color Vision
Color Spaces
Luminance, Saturatic
and Hue

Colorma

Categorical Colormaps
Ordered Colormaps
Bivariate Colormaps
Colorblind-Safe
Colormap Design

Other Channels

Angle Channel
Curvature Channel
Shape Channel
Motion Channels

Texture and Stippling

Texture and Stippling

The term **texture** refers to very small-scale patterns. It is considered as the combination of three perceptual dimensions: orientation, scale, and contrast.

- Texture can be used to show categorical attributes
- Texture can also be used to show ordered attributes

The term **stippling** means to fill in regions of drawing with short strokes. It is a special case of texture.

References

- Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
- Munzner, T. (2014).

 Visualization analysis and design.

 CRC press.
 - Russell, S. and Norvig, P. (2016).

 Artificial intelligence: a modern approach.

 Pearson Education Limited.
- Ward, M. O., Grinstein, G., and Keim, D. (2015). Interactive data visualization: foundations, techniques, and applications. CRC Press.