Vision in Human and Machine

Part 3 Principles of Sensory Coding

Heiko Wersing

Honda Research Institute Europe GmbH

Sensory Coding 1

Sensory Coding

- What is the role of sensory coding?
 - Transmitting information
 - Building representations
 - Preparing computations

Types of sensory coding

Compact Coding

- Dimension reduction
- Few representing units
- Principal component Analysis

Sparse Distributed Coding

- Same or larger dimensionality (Overcomplete representation)
- Few number of active units
- Independent component analysis
- Nonnegative Matrix Factorization
- Sparse Coding Methods

Grandmother Cells

- "Explosion of dimensionality"
- One unit for every sensory concept

Sensory Coding 3

Convergence and divergence in the visual pathway

- Critical sampling of the input?
 - 8 x 8 pixel patch uniquely represented by D=64 (upper bound)
 - Cat V1... 25 output fibers for every input
 - Macague V1... 50 output fibers for every input
- Overcompleteness in the code
 - Nonlinearities in V1 exist to allow a large population of neurons to represent data with a small number of active units

An image decomposition toy example

Formal description of linear encoding

The simplest case: Linear encoding (remember your linear algebra math course!)

$$E_1 = \sum_{p} ||\mathbf{I}^p - \sum_{i} s_i^p \mathbf{w}_i||^2$$
Reconstruction error

I^p: Input pattern (vector)

w_i: Basis (weight) vector representing the data

s_i^p: Coefficient of the contribution of w

Sensory Coding 5

Case 1: Orthonormal basis expansion

$$E_1 = \sum_p ||\mathbf{I}^p - \sum_i s_i^p \mathbf{w}_i||^2$$

- Standard case: Exactly as many basis vectors as input dimensions
- Any linearly independent basis of weight vectors represents the input perfectly
- Bars ensemble: Any set of 49dimensional linear independent vectors allow perfect reconstruction

Sensory Coding 7

Case 1: Orthonormal basis expansion

Non-sparse basis representation

Case 2: Compact coding

$$E_1 = \sum_p ||\mathbf{I}^p - \sum_i s_i^p \mathbf{w}_i||^2$$

- Compact coding: Fewer basis vectors as input dimensions
- "Information bottleneck"
- Optimal solution: Search for directions with maximum variance
- Method: Principal Component Analysis, Eigenvalue analysis of the covariance matrix

Sensory Coding 9

Case 2: Compact Coding

Bars ensemble

First 20 principal components of the bars ensemble

- Principal components capture abstract directions of maximum variance
- Representation does not capture parts-based structure, but holistic variation
- First 14 principal components allow near-perfect reconstruction of the 49-dimensional bars stimuli

Sparse coding

$$E_1 = \sum_{p} ||\mathbf{I}^p - \sum_{i} s_i^p \mathbf{w}_i||^2 + \sum_{p} \sum_{i} \Phi(s_i^p)$$
Reconstruction error Sparsity-enforcing cost

- Sparse coding: More basis vectors than dimensionality
- "Overcomplete representations"
- Several different approaches exist
- Learning consists of solving a difficult complex optimization problem with several local minima

Sensory Coding 11

Sparse coding: 1. Olshausen & Field

$$E_1 = \sum_{p} ||\mathbf{I}^p - \sum_{i} s_i^p \mathbf{w}_i||^2 + \sum_{p} \sum_{i} \Phi(s_i^p)$$
Reconstruction error Sparsity-enforcing cost

- Generating an overcomplete basis
- Take much more basis vectors than input dimensionality
- Choose Phi as $log (1+x^2)$
- Apply to small patches taken from natural images

Olshausen & Field: Overcomplete code for natural image patches

Input data: patches

Learned Features

Sensory Coding 13

Interpretation of sparse coding

$$(I - Ws)^2 + \lambda |s| \rightarrow min$$

 Sparse coding introduces competition between feature detectors

Nonnegative sparse coding

$$E_1 = \sum_{p} ||\mathbf{I}^p - \sum_{i} s_i^p \mathbf{w}_i||^2 + \sum_{p} \sum_{i} \Phi(s_i^p)$$
Reconstruction error
Sparsity-enforcing cost

- Constrain inputs, weights and coefficients to be positive or zero (≥ 0)
- Choose Φ as $f(x)=\lambda x$
- λ controls the sparsity cost
- For the right number of basis vectors, this can solve the bars test
- See Practical exercise!

Sensory Coding 15

Nonnegative Matrix Factorization

- Lee & Seung (1999)
- Positivity constraint for basis vectors and coefficients
- Multiplicative update rules
- No explicit sparsity cost

Sparse coding: Independent Component Analysis

$$E_1 = \sum_{p} ||\mathbf{I}^p - \sum_{i} s_i^p \mathbf{w}_i||^2 + \sum_{p} \sum_{i} \Phi(s_i^p)$$
Reconstruction error Sparsity-enforcing cost

- ICA: Independent Component Analysis (Olshausen & Field 1996, Bell & Sejnowski 1998)
- Take same dimensionality as number of basis vectors
- Choose Phi appropriately
- Then this is equivalent to independent component analysis: find directions in the data, where the data is maximally independent

Sensory Coding 17

ICA

Training with Natural Images

- ☐ Batch size: 100 ☐ Training: 10 images (512x512)
- ☐ Basis Function: 16x16 □ 10,000 presentations

Training with Face Database

- ☐ Training: 100 images (100x100) ☐ Batch size: 100
- □ 10,000 presentations ☐ Basis Function: 16x16

Sensory Coding 19

ICA

Training with Car Database

- ☐ Training: 200 images (128x128) ☐ Batch size: 100
- □ 10,000 presentations ☐ Basis Function: 16x16

