# 2. Дискретизация взятием отсчетов.

- П1. Спектр дискретизованного сигнала. Эффект наложения.
- П2. Теорема Котельникова во временной области.
- ПЗ. Теорема отсчетов в частотной области.
- П4. Особенности дискретизации синусоидальных сигналов.

### 2. Дискретизация сигналов взятием отсчетов.

#### П1. Спектр дискретизованного сигнала

Рассмотрим способы описания дискретизованного сигнала, т.е. дискретного сигнала, получаемого из аналогового с помощью операции дискретизации.

#### 1) Функция дискретного времени.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени  $k\Delta t$ ,  $n\in Z$ , где  $\Delta t$  — шаг дискретизации:

$$x[k] = Tx(k\Delta t), T \in \{1; \Delta t\}$$

где T — константа с размерностью времени, равная единице или  $\Delta t$ . Выбор этой константы, как будет показано далее, влияет на связь между спектрами дискретизованного и исходного сигнала.

### 2) Функция непрерывного времени (континуальная запись).

$$x_{_{\mathrm{I}}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t)$$

В этой записи дискретизованный сигнал представляется как результат умножения исходного аналогового сигнала x(t) на идеальную функцию дискретизации, представляющую собой периодическую последовательность дельта-функций Дирака с площадями Т

$$D(t) = T\delta(t - k\Delta t)$$
.

В таком случае дискретизованный сигнал описывается последовательностью дельта-функций с площадями (весами)  $x[k] = Tx(k\Delta t)$ :

$$x_{_{\mathrm{II}}}(t) = \sum_{k=-\infty}^{\infty} \mathrm{T}x(k\Delta t)\delta(t-k\Delta t).$$

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t)$$



Определим спектр дискретизованного сигнала  $X_{\pi}(f)$ , зная спектр исходного аналогового сигнала до дискретизации X(f). Воспользуемся континуальной формой записи дискретизованного сигнала

$$x_{_{\Pi}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t)\delta(t - n\Delta t) = D(t)x(t)$$

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

Ряд Фурье для идеальной функции дискретизации

$$D(t) = \frac{T}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t),$$

где коэффициенты Фурье  $C_{\scriptscriptstyle m}=\frac{\mathrm{T}}{\Delta t}$  одинаковые для всех номеров m. Таким образом,

$$x_{\rm m}(t) = \frac{T}{\Delta t} \sum_{n=-\infty}^{\infty} x(t) \exp(jm \frac{2\pi}{\Delta t} t).$$

### Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом  $\left[-\frac{f_{_{\rm I\! I}}}{2},\frac{f_{_{\rm I\! I}}}{2}\right]$ , то возникает **эффект наложения** (англ. alias-

ing). В таком случае спектр аналогового и дискретизованного на этом интервале не совпадают. Частично устранить этот эффект можно применением фильтра нижних частот с частотой среза  $f_c = f_\pi/2$ , при этом информация о высокочастотных спектральных компонентах  $\mid f \mid > f_c$  не сохраняется.

Тогда по теореме смещения для преобразования Фурье:

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

При непосредственном взятии отсчетов  $x[k] = x(k\Delta t)$  константа T=1, и спектр перед периодическим повторением масштабируется.

При  $\mathbf{T} = \Delta t$  (когда  $x[k] = \Delta t \; x(k\Delta t)$ ) дискретизация аналогового сигнала x(t) по времени с шагом  $\Delta t$  приводит к периодическому повторению его спектра с периодом (по частоте), равным частоте дискретизации  $f_{\pi} = 1/\Delta t$ 

$$X_{_{\mathrm{I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

Заметим, что при этом интервал  $\left[-\frac{f_{_{\rm I}}}{2},\frac{f_{_{\rm I}}}{2}\right]$  является одним периодом

функции  $X_{_{\rm I\! I}}(f)$  . Если спектр аналогового сигнала лежит в этом интервале, то он периодически повторяется без наложения





## П2. Теорема Котельникова во временной области.

Теорема отсчетов для сигнала с финитным спектром (Котельников 1933 г., Шеннон 1949 г.). Если сигнал x(t) имеет спектр, ограниченный интервалом  $[-f_{_{\rm B}},f_{_{\rm B}}]$ , и не содержит гармонических компонент на частотах  $\pm f_{_{\rm B}}^{-1}$ , то он представим с помощью своих дискретных отсчетов  $x(k\Delta t)$ , взятых с шагом  $\Delta t = \frac{1}{2f_{_{\rm B}}}$ :

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}.$$

Приведем две различные интерпретации этой теоремы.

- 1) Если сигнал x(t) дискретизован с частотой  $f_{\pi}$ , а его спектр ограничен интервалом  $\left[-\frac{f_{\pi}}{2},\frac{f_{\pi}}{2}\right]$ , его можно представить с помощью дискретных отсчетов  $x(k\Delta t)$ . Частота  $f_{\pi}/2$ , равная половине частоты дискретизации, называется частотой Найквиста.
- 2) Отсчеты  $x(k\Delta t)$  являются коэффициентами Фурье разложения сигнала x(t) по базису из функций отсчетов:

$$\varphi_k(t) = \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_{\rm B}}.$$

В пространстве сигналов из  $L_2(-\infty,\infty)$  с спектром, ограниченным интервалом  $\left[-\frac{f_{_{\! A}}}{2},\frac{f_{_{\! A}}}{2}\right]$ , система функций  $\{\phi_k(t)\}_{k\in Z}$  полна и ортогональна.



Для сигнала  $\mathit{x}(t)$  с финитным спектром  $\mathit{X}(f)$  запишем представление по функциям отсчетов:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \frac{\sin(2\pi f_{\rm B}(t-k\Delta t))}{2\pi f_{\rm B}(t-k\Delta t)},$$

где

$$c_{k} = \frac{(\mathbf{x}, \mathbf{\phi}_{k})}{(\mathbf{\phi}_{k}, \mathbf{\phi}_{k})} = \frac{1}{\Delta t} \int_{-\infty}^{\infty} x(t) \frac{\sin(2\pi f_{B}(t - k\Delta t))}{2\pi f_{B}(t - k\Delta t)} dt$$

 $<sup>^1</sup>$  Без этой оговорки теорема Котельникова не выполняется, например, для случая дискретизации сигнала  $x(t)=\sin(2\pi f_{_{
m B}}t)$  с шагом  $\Delta t=\frac{1}{2f_{_{
m B}}}$  .

есть коэффициенты Фурье и  $\Delta t = 1/2f_{\rm g}$ . Спектр функции отсчётов

$$\int_{-\infty}^{\infty} \varphi_k(t) e^{-j2\pi f t} dt = \Pi_{2f_{\mathbf{B}}}(f) \exp(-j2\pi f k\Delta t)$$

имеет фазовый множитель из-за сдвига по времени на  $k\Delta t$ . Модуль этого спектра  $\Pi_{2f_{\rm B}}(f)$  является прямоугольной функцией с единичной площадью (доказать самостоятельно)



С учётом обобщённого равенства Парсеваля

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

выражение для коэффициента  $c_{\scriptscriptstyle k}$  можем записать в виде

$$c_k = \frac{1}{\Delta t} \int_{-\infty}^{\infty} X(f) \Pi_{2f_{\theta}}(f) e^{j2\pi f k \Delta t} df.$$

Произведение под интегралом при $-f_{\scriptscriptstyle g} < f < f_{\scriptscriptstyle g}$ 

$$X(f)\Pi_{2f_{\theta}}(f) = X(f)\frac{1}{2f_{\theta}} = X(f)\Delta t,$$

Поэтому  $c_k = x(k\Delta t)$ . Отсюда вывод:

если сигнал имеет спектр, ограниченный интервалом  $\left[-f_{s},f_{s}\right]$  и шаг дискретизации  $\Delta t=1/2f_{s}$ , то коэффициенты Фурье  $c_{k}$  разложения сигнала по функциям отсчётов  $\phi_{k}(t)$  являются выборками сигнала  $x(k\Delta t)$  и для x(t) имеет место представление рядом Котельникова:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_{e}(t - k\Delta t)}{2\pi f_{e}(t - k\Delta t)}.$$

Алгоритм передачи непрерывного сигнала с помощью его отсчетов.

- Взять отсчеты  $x(k\Delta t)$ ,  $k = 0, \pm 1, \pm 2, ...$
- Передать величины этих отсчетов.
- На приемном конце сформировать короткие импульсы с площадями  $\Delta t x(k \Delta t)$ .
- Восстановить сообщение с помощью фильтра нижних частот с полосой пропускания  $[-f_{\mathfrak s},f_{\mathfrak s}]$ , подавая на вход сформированные короткие импульсы

#### Недостатки подхода.

- Спектры реальных сигналов ограничены по частоте приближено.
- Невозможно измерить отсчеты сигнала за бесконечно малый промежуток времени.
- Реальные фильтры восстановления отличаются от идеального фильтра нижних частот.
- Короткие импульсы отличны от дельта-функций.

#### ПЗ. Теорема отсчетов в частотной области

Реально все сигналы наблюдаются в течение конечного интервала времени, например, [-T, T]. Поэтому можно считать, что x(t) является финитной функцией. Спектр такого сигнала имеет бесконечную протяжённость и записывается в виде

$$X(f) = \int_{-T}^{T} x(t)e^{-j2\pi ft}dt.$$

Для периодического продолжения x(t) с периодом 2T (без наложения) справедливо представление рядом Фурье:

$$x_{\Pi}(t) = \sum_{n} c_{n} \exp(j2\pi n \Delta f t),$$

 $\Gamma$ де  $\Delta f = 1/27$ 

 $\Delta f = 1/2T$  и коэффициенты

Фурье

$$c_n = (1/2T) \int_{-T}^{T} x(t) \exp(-j2\pi n\Delta f t) dt = \Delta f X(n\Delta f).$$

Для спектральной функции можем записать

$$X(f) = \int_{-T}^{T} \left[ \sum_{n} \Delta f X(n\Delta f) \exp(j2\pi n\Delta f t) \right] \exp(-j2\pi f t) dt =$$

$$= \Delta f \sum_{n} X(n\Delta f) \int_{-T}^{T} \exp(j2\pi (n\Delta f - f) t) dt.$$

Интеграл в этом выражении легко находится

$$\int_{-T}^{T} \exp(j2\pi(n\Delta f - f)t)dt =$$

$$\frac{1}{j2\pi(n\Delta f - f)} \exp(j2\pi(n\Delta f - f)t)\Big|_{-T}^{T} =$$

$$= \frac{2\sin 2\pi T(n\Delta f - f)}{2\pi(n\Delta f - f)}.$$

Для X(f) окончательно получаем

$$X(f) = \sum_{n=-\infty}^{\infty} X(n\Delta f) \frac{\sin 2\pi T (f - n\Delta f)}{2\pi T (f - n\Delta f)}; \ \Delta f = 1/2T.$$

Это интерполяционная формула Котельникова (теорема отсчётов) в частотной области. Функция X(f) на любой частоте f однозначно представляется последовательностью своих отсчётов, взятых через равные интервалы  $\Delta f = 1/2T$ .

Дискретизация спектральной функции с шагом  $\Delta f = 1/2T$  приводит к периодическому повторению сигнала по оси времени с периодом 2T. При этом эффекта наложения отдельных периодов друг на друга не будет, поскольку шаг дискретизации по частоте выбран в соответствии с теоремой отсчётов в спектральной области. Выделив один из периодов, например, при  $t \in [-T, T]$ , можно точно восстановить спектральную функцию X(f), взяв преобразование Фурье для x(t).