ELL201 Lab Project

Saket Kandoi

 $2021\mathrm{MT}60265$

Sequence to be generated: $\{1,1,0,1,0,1\}$

Mealy FSM

Idle state: A (000) Unused state: A (000)

Minimum number of flip-flops needed = $\lceil \log_2 6 \rceil = 3$

A	000
В	001
C	010
D	011
E	100
F	101

Truth table

Current State		Input	Output				D Flipflops			
Q_2	Q_1	Q_0	X	Y	$\mathbf{Q_2}^{+}$	Q_1^+	Q_0^+	D_2	D_1	D_0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	1	0	0	1	0	0	1
0	0	1	0	1	0	1	0	0	1	0
0	0	1	1	1	0	1	0	0	1	0
0	1	0	0	0	0	1	1	0	1	1
0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1	0	0
0	1	1	1	1	1	0	0	1	0	0
1	0	0	0	0	1	0	1	1	0	1
1	0	0	1	0	1	0	1	1	0	1
1	0	1	0	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Note: Any stray states are redirected to idle state.

States are represented by $Q_2Q_1Q_0.D_0$ is the LSB and D_2 is the MSB.

Karnaugh Maps

$$D_0 = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0' + X Q_2' Q_0'$$

$$D_1 = Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0'$$

$$D_2 = Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0'$$

$$Y = Q_2'Q_0 + Q_2'Q_1' + Q_2Q_1Q_0'$$

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	1	0	0
01	1	1	0	0
11	0	0	0	0
10	1	1	0	0

Figuro	1.	K-map	for	D.
Figure	1:	K-map	IOT	D_0

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	0	0	0
10	1	1	0	0

Figure 3: K-map for D_2

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	0	0
10	0	0	0	0

Figure 2: K-map for D_1

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	1	1	1	1
01	0	0	1	1
11	1	1	0	0
10	0	0	0	0

Figure 4: K-map for Y

D Flipflop

Positive edge triggered

```
module D_FF(
   input clk,
   input D,
   output Q);
   reg Q;
   always @(posedge clk)
   begin
      Q = D;
   end
endmodule
```

FSM Implementation

Using 3 D Flipflops (code for simulation)

```
module fsm();
    reg clk;
    reg D2,D1,D0,x;
    wire [2:0] Q;
    wire y;

assign y = (~Q[2] & Q[0])|(~Q[2] & ~Q[1])|(Q[2] & Q[1] & ~Q[0]);
    // Y = Q_2'Q_0 + Q_2'Q_1' + Q_2Q_1Q_0'

D_FF D_FF2(clk,D2,Q[2]);
    D_FF D_FF1(clk,D1,Q[1]);
    D_FF D_fF0(clk,D0,Q[0]);
```

```
always @(negedge clk)
   begin
       D2 = (^{\sim}Q[2] & Q[1] & Q[0])|(Q[2] & ^{\sim}Q[1] & ^{\sim}Q[0]);
       D1 = (^{\sim}Q[2] & ^{\sim}Q[1] & Q[0])|(^{\sim}Q[2] & Q[1] & ^{\sim}Q[0]);
      ~Q[0] & x);
   end
   initial begin
       $dumpfile("fsm.vcd");
       $dumpvars(0,fsm);
       monitor(time," \%b Input = \%b Output = \%b State = \%b \%b
           %b",clk,x,y,Q[2],Q[1],Q[0]);
       x = 0;
      D2 = 0;
      D1 = 0;
       D0 = 0;
       clk = 1;
       x = 1;
       #8
       x = 0;
       #20
      x = 1;
       #8
       x = 0;
       #20
       $finish;
   end
   always #2 clk = ~clk;
endmodule
```

Output on Terminal

Output Waveform