Etude d'une équation fonctionnelle

Thèmes abordés: Continuité et dérivabilité des fonctions numériques.

Les parties I et II sont entièrement indépendantes.

En dehors de la dernière question, la partie III est indépendante de la partie II.

Dans tout le problème : on considère la fonction $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

Partie I : Etude de la fonction φ

- 1.a Etudier la parité de φ .
- 1.b Etudier les variations de φ sur $\mathbb R$ et préciser ses branches infinies en $+\infty$ et $-\infty$.
- 1.c Donner l'allure de la courbe représentative de φ .
- 2.a Justifier que φ est une bijection de $\mathbb R$ sur un intervalle I de $\mathbb R$ à préciser.
- 2.b Observer que pour tout $x \in \mathbb{R}$: $\varphi'(x) = 1 \varphi^2(x)$.
- 2.c Montrer que $\varphi^{-1}: I \to \mathbb{R}$ est dérivable et exprimer simplement sa dérivée.

Partie II : Etude d'une première équation fonctionnelle

Le but de cette partie est de déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 vérifiant :

$$\forall x \in \mathbb{R}, f(2x) = 2f(x)$$
.

On considère f une fonction solution.

- 1. Calculer f(0).
- $2. \qquad \text{Soit } x \in \mathbb{R}^* \text{ . On définit une suite réelle } (u_{\scriptscriptstyle n}) \text{ par : } \forall n \in \mathbb{N}, u_{\scriptscriptstyle n} = \frac{f\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}.$
- 2.a Montrer que (u_n) converge et exprimer sa limite.
- 2.b Exprimer u_{n+1} en fonction de u_n .
- 3. Conclure qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, f(x) = \alpha . x$.

Partie III : Etude d'une seconde équation fonctionnelle

Le but de cette partie est de déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivable en 0 vérifiant :

$$\forall x \in \mathbb{R}, f(2x) = \frac{2f(x)}{1 + (f(x))^2}.$$

- 1. Montrer que φ est solution du problème posé.
- 2. On considère dans cette question f une solution du problème posé.
- 2.a Déterminer les valeurs possibles de f(0).
- 2.b Montrer que -f est aussi solution

- 2.c Montrer que $\forall x \in \mathbb{R}, -1 \le f(x) \le 1$. (indice : on pourra exprimer f(x) en fonction de $f\left(\frac{x}{2}\right)$).
- 3. On suppose dans cette question que f est solution du problème posé et que f(0)=1. On considère $x\in\mathbb{R}$ et l'on définit la suite (u_n) par $\forall n\in\mathbb{N}, u_n=f\left(\frac{x}{2^n}\right)$.
- 3.a Montrer que la suite (u_n) est convergente et préciser sa limite.
- 3.b Etablir une relation entre u_n et u_{n+1} .
- 3.c En déduire que la suite (u_n) garde un signe constant et préciser celui-ci.
- 3.d Etudier la monotonie de la suite (u_n) et en déduire que celle-ci est constante égale à 1.
- 3.e Qu'en déduire quant à la fonction f?
- 3.f Que peut-on dire si l'hypothèse « f(0) = 1 » et remplacée par « f(0) = -1 »?
- 4. On suppose dans cette question que f est solution du problème posé et que f(0) = 0.
- 4.a En raisonnant par l'absurde et en considérant une suite du même type que ci-dessus, montrer que $\forall x \in \mathbb{R}, f(x) \neq 1$ et $f(x) \neq -1$.
- 4.b On introduit la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \varphi^{-1}(f(x))$. Montrer que $\forall x \in \mathbb{R}, g(2x) = 2g(x)$ et que g est dérivable en 0.
- 4.c En déduire une expression de f(x) dépendant d'un paramètre $\alpha \in \mathbb{R}$.