I Algorithme de déterminisation

Déterminiser l'automate suivant en utilisant l'algorithme du cours :

Solution: En appliquant l'algorithme du cours, on obtient:

II Clôture des langages reconnaissables

Si $m=m_1...m_n$ est un mot, on définit son miroir $\widetilde{m}=m_n...m_1$. Si L est un langage, on définit son miroir $\widetilde{L}=\{\widetilde{m}\mid m\in L\}$.

1. Montrer que le miroir d'un langage reconnaissable est reconnaissable.

Si L est un langage sur Σ , on définit :

- $Pref(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, uv \in L\}$: ensemble des préfixes des mots de L.
- $Suff(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, vu \in L\}$: ensemble des suffixes des mots de L.
- $Fact(L) = \{u \in \Sigma^* \mid \exists v, w \in \Sigma^*, vuw \in L\}$: ensemble des facteurs des mots de L.
- 2. Donner des expressions régulières pour $Pref(a^*b)$ et $Pref((ab)^*)$.

<u>Solution</u>: $Pref(a^*b) = a^*|a^*b, Pref((ab)^*) = (ab)^*|(ba)^*|(ab)^*a|(ba)^*b.$

3. Montrer que si L est reconnaissable alors Pref(L), Suff(L), Fact(L) le sont aussi.

Solution : Soit $A = (\Sigma, Q, I, F, E)$ un langage reconnaissant L. Soit Q' l'ensemble des états co-accessibles et Q'' l'ensemble des états accessibles. Un mot m appartient à Pref(L) si et seulement si il existe un chemin étiqueté par m d'un état de I vers un état de Q'. Donc (Σ, Q, I, Q', E) reconnaît Pref(L). De même, (Σ, Q, Q'', F, E) reconnaît Suff(L) et (Σ, Q, Q'', Q', E) reconnaît Fact(L).

Autre solution : après avoir démontré que Pref(L) est reconnaissable, on peut remarquer que $Suff(L) = Pref(\widetilde{L})$ ($m \in \widetilde{Pref}(\widetilde{L}) \iff \widetilde{m} \in Pref(\widetilde{L}) \iff \exists v \in \Sigma^*, \ \widetilde{m}v \in \widetilde{L} \iff \exists v \in \Sigma^*, \ \widetilde{v}m \in L \iff m \in Suff(L), \ \text{où on a utilisé le fait que } \widetilde{xy} = \widetilde{y} \ \widetilde{x}$).

On peut aussi en déduire que Fact(L) est reconnaissable en remarquant que Fact(L) = Suff(Pref(L)) (= Pref(Suff(L))). En effet $m \in Suff(Pref(L)) \iff \exists u \in \Sigma^*, \ um \in Pref(L) \iff \exists u \in \Sigma^*, \ umv \in L \iff m \in Fact(L)$.

4. Montrer que si L est régulier alors Pref(L), Suff(L), Fact(L) le sont aussi (puisqu'on va montrer que régulier = reconnaissable, c'est une preuve alternative à la précédente).

Solution : Soit e est une expression régulière dont le langage est L. On définit par induction une expression régulière P(e) de langage Pref(L) :

- Si $e = a \in \Sigma$: $P(e) = \varepsilon + a$.
- Si $e = e_1 + e_2$: $P(e) = P(e_1) + P(e_2)$.
- Si $e = e_1 e_2$: $P(e) = P(e_1) + e_1 P(e_2)$.
- Si $e = e_1^*$: $P(e) = e_1^* P(e_1)$.

De même pour Suff(L) et Fact(L).