Работа 3.3.1

Определение удельного заряда электрона методами магнитной фокусировки и магнетрона

Подлесный Артём группа 827

6 ноября 2019 г.

Цель работы: определение отношения заряда электрона к его массе.

А. Метод магнитной фокусировки

Теоретическая справка

Изображения электронов на экране электронно-лучевой пушки будут сфокусированными, если расстояние от пушки до экрана l будет равно целому числу шагов спирали, по которой движутся электроны. Тогда:

$$l = \frac{2\pi v_{||}}{(e/m)B_{\Phi}}n.$$

Выразив из этой формулы скорость электрона через ускоряющее напряжение, получим, что удельный заряд определяется следующей формулой:

$$\frac{e}{m} = \frac{8\pi^2 V^2}{l^2} \left(\frac{n^2}{B_{\Phi}^2}\right). \tag{1}$$

Экспериментальная установка

Для расчета удельного заряда необходимо знать некоторые значения, которые есть на установке:

Рис. 1: Экспериментальная установка для определения e/m методом магнитной фокусировки.

$$r_{ exttt{BH}}=5~ ext{Om}, \ l=26.5~ ext{cm}, \ SN=3000~ ext{cm}^2, \ V=1~ ext{kB}.$$

Экспериментальные данные

Для определения удельного заряда необходимо найти наклон графика $B_{\Phi} = f(n)$. Для этого предлагается проградуировать магнит, чтобы с помощью милливеббеметра получить зависимость $B_{\Phi} = f(I)$, а затем снять зависимость силы тока от номера фокуса. Удобнее сначала получить зависимость n(I), а затем для этих конкретных значений тока проградуировать электромагнит. Эта зависимость представлена на таблице 1: Градуировка электромагнита представлена на таблице (2):

n	1	2	3	4	5	6	7
I_{Φ} , A	0.64	1.3	1.94	2.65	3.26	3.91	4.55

Таблица 1: Зависимость номера фокуса электронов на экране от тока через обмотки электромагнита.

n	1	2	3	4	5	6	7
I, A	0.64	1.3	1.94	2.65	3.26	3.91	4.55
Ф, мВб	1.83	1.98	2.13	2.28	2.415	2.559	2.625
$B_{\Phi}, 10 \cdot T$	6.1	6.6	7.1	7.6	8.05	8.53	8.75

Таблица 2: Зависимость номера фокуса от величины магнитной индукции, возникающей благодаря электромагниту.

Обработка результатов

Построим график $B_{\Phi} = f(I)$. Он изображен на рис.2.

Рис. 2: График зависимости $B_{\Phi}(I)$, необходимый для градуировки электромагнита

Можно заметить, что он нелинейный, что соответствует реальной картине. Используя значения B, мы можем построить график нужной нам зависимости B(n), представленный на рис.3.

Рис. 3: График зависимости $B_{\Phi}(n)$, с помощью которого можно рассчитать удельный заряд электрона, зная график его наклона.

Отсюда получаем, что угол наклона графика равен:

$$k = (0.046 \pm 0.002)$$
 Тл.

Используя формулу (1), можем получить выражение для удельного заряда электрона через измеряемые величины:

$$\frac{e}{m} = \frac{8\pi V^2}{l^2 k^2}. (2)$$

Отсюда получаем результат:

$$rac{e}{m} = (1.69 \pm 0.12) imes 10^{11} \; \mathrm{K}$$
л/кг

Табличное значение удельного заряда:

$$rac{e}{m}=1.75882 imes10^{11}\ \mathrm{K}$$
л/кг

Как видно, с учетом погрешности, экспериментальное значение совпадает с известным табличным.

Б. Метод магнетрона

Теоретическая справка

Зная значение магнитной индукции, при котором не все электроны далетают до анода(см. рис.4), можно найти удельный заряд электрона по следующей формуле:

$$\frac{e}{m} = \frac{8V_a}{B_{\rm Kp}^2 r_a^2},\tag{3}$$

где V_a – анодное напряжение, r_a – радиус анода, $B_{\rm kp}$ – критическое значение магнитной индукции. Снимая зависимость $I_a(B)$, можно определить $B_{\rm kp}$ по характерному резкому спаду на графике.

Рис. 4: Зависимость анодного тока от индукции магнитного поля в соленоиде.

Экспериментальная установка

Рис. 5: Экспериментальная установка для определения e/m методом магнетрона.

Для дальнейших расчетов необходимо знать радиус анода, который обозначен на установке:

$$r_a = 12 \text{ MM}.$$

Экспериментальные данные

В работе была снята зависимость $I_a(I_m)$ – от тока через соленоид. Как известно, Магнитное поле на оси соленоида, на его торце (где находится анод),

определяется следующей формулой (СИ):

$$B = \frac{1}{2}\mu_0 n I_m,\tag{4}$$

то есть определяется током I_m и числом витков соленоида. Но в нашей установке она определяется такой формулой:

$$B = kI_m, (5)$$

где $k=3.5\times 10^{-2}\,\frac{T}{A}$. Снималось несколько серий измерений для разных значений анодного напряжения. Результаты представлены на таблице

V_a	70		80		90		100		110		120
I_a	В	I_a	В	I_a	B	I_a	В	I_a	B	I_a	B
0.2	0	0.19	0	0.19	0	0.2	0	0.21	0	0.2	0
0.2	0.35	0.19	0.35	0.2	0.525	0.2	0.525	0.2	0.525	0.2	0.525
0.19	0.7	0.19	0.77	0.19	1.05	0.2	1.05	0.2	1.05	0.2	1.085
0.18	0.98	0.19	1.05	0.19	1.12	0.2	1.26	0.2	1.33	0.2	1.4
0.17	1.085	0.18	1.1375	0.18	1.225	0.18	1.295	0.19	1.365	0.15	1.435
0.08	1.1025	0.11	1.155	0.12	1.2425	0.16	1.3125	0.1	1.3825	0.06	1.4525
0.04	1.12	0.08	1.1725	0.05	1.26	0.08	1.33	0.06	1.4	0.04	1.4875
0.01	1.155	0.04	1.19	0.03	1.295	0.05	1.3475	0.03	1.435	0.01	1.575
		0.02	1.225	0.01	1.4	0.04	1.365	0.02	1.47		

Таблица 3: Результаты экспериментов по снятию зависимости $I_a(B)$ при разных напряжениях. Столбцы разделены на 6 экспериментов по V_a (мВ), каждый из экспериментов представлен 2 столбцами, I_a измеряется в мА, B – в 10^{-5} Тл.

Обработка результатов

Для того, чтобы найти удельный заряд электрона, необходимо найти угловой коэффциент графика зависимости $B_{\kappa p}^2(V_a)$, для чего надо найти $B_{\kappa p}$ для каждого из напряжений. Для этого построим семейство кривых $I_a(B)$. Они изображены на рис.6.

С помощью графика, находим зависимость $B_{\rm kp}(V_a)$, она показана на таблице 4.

Осталось только построить график по этим данным, который изображен на рис.7.

Из этого графика находим его угловой коэффициент:

$$k = (1.78 \pm 0.05) \times 10^{-9} \frac{\text{T}\pi^2}{B}$$

Рис. 6: График зависимости $I_a(B)$, с помощью которого можно найти $B_{\kappa p}$. Это можно сделать, взяв среднюю точку от части графика с большим коэф наклона. Кривые для разных напряжений обозначены разным цветом и формой точек, в соответствии с табличкой на графике. Как видно, спад на графике очень резкий, что свидетельствует о достаточно большой точности установки.

V_a , мВ	70 80					120
$B_{\rm kp}, \ 10^{-5} \ { m T}$ л	1.1025	1.164	1.243	1.33	1.3825	1.444

Таблица 4: Зависимость между критическим магнитным полем и напряжением на аноде.

Теперь мы можем написать формулу (3) через измеряемые величины, и с помощью нее рассчитать удельный заряд электрона:

$$\frac{e}{m} = \frac{8}{kr_a^2}. (6)$$

Получаем результат:

$$\frac{e}{m} = (1.75 \pm 0.09) \times 10^{11} \frac{\text{KJ}}{\text{K}\Gamma}$$

Как видно, он получился даже точнее, чем предыдущим методом.

Рис. 7: График зависимости $B_{\text{кр}}^2(V_a)$.

Вывод

В этой работе был посчитан удельный заряд электрона двумя методами – магнитной фокусировки и магнетрона. Показано, что установки достаточно точные, и позволяют оценить эту величину со сравнительно небольшой погрешностью. В моем случае оценка методом магнетрона оказалась несколько точнее, но с учетом погрешности оба результата совпадают с табличным.