第 12 讲: 偏序关系与格

姓名: 林凡琪 **学号:** <u>211240042</u>

评分: _____ 评阅: ____

2021年12月23日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

• Lattice theory draws on both order theory and universal algebra.

1 作业(必做部分)

题目 1 (SM Problem 14.44)

解答:

见附图。

题目 2 (SM Problem 14.58)

证明:

- (a) Define a one-to -one function $f: A \to A$, by f(x) = x. (a and a' are a pair)
- (1) If $a \lesssim a'$ then $f(a) = a \lesssim f(a') = a'$.
- (2) If a||a', then f(a) = a||f(a') = a'.
- (b) If $A \lesssim B$ then there exists at least a function $f: A \to B, a$ and a' in X, f(a) and f(a') in Y.

We can get that:

If $a \preceq a'$ then $f(a) \preceq f(a')$.

If a||a', then f(a)||f(a').

So for the function $f^{-1}: B \to A$

If $f(a) \lesssim f(a')$, then $f^{-1}(f(a)) = a \lesssim f^{-1}(f(a')) = a'$.

(c) If for function $f: A \to B, g: B \to C, h = g \circ f$.

We can know that:

(condition 1) If $a \lesssim a^{'}$, then $f(a) \lesssim f(a^{'})$, then $g(f(a)) \lesssim g(f(a^{'}))$

That is, if $a \preceq a'$, then $g(f(a)) \preceq g(f(a'))$

题目 3 (SM Problem 14.62)

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$

解答:

Let a be the first element of A, and b be the first element of B.

By the definition, a is the only element satisfied $\forall x, (x \in A \to a \lesssim x)$.

By the definition, b is the only element satisfied $\forall x, (x \in B \to b \lesssim x)$.

$$\forall x, (x \in A \to a \preceq x) \to \exists y_1, (y_1 = f(a) \land \forall y, (y \in B \to y_1 \preceq y))$$

We can conclude f(a) = b.

Let A be $A \setminus a, B$ be $B \setminus b$, repeat the step above, until $A = B = \emptyset$

We can see that each element in A can only be mapped into a certain element in B.

So there is only one insomorphic mapping $f: A \to B$.

题目 4 (SM Problem 14.71)

解答:

- (a)1 or p^k , p is prime and $k \in \mathbb{N}^+$.
- (b)All prime numbers.

题目 5 (SM Problem 14.72)

解答:

(a)

Since $b \wedge c \le b$ and $b \le a \vee b$, we can conclude that $b \wedge c \le a \vee b$.

Since $b \wedge c \le c$ and $c \le a \vee c$, we can conclude that $b \wedge c \le a \vee c$.

So we can conclude $b \wedge c$ is a lower bound of $\{(a \vee b), (a \vee c)\}$, and $b \wedge c <= (a \vee b), (a \vee c)$.

Since $a \le a \lor b$ and $a \le a$ is a low bound of $\{(a \lor b), \land (a \lor c)\},\$

so $a \le (a \lor b) \land (a \lor c)$.

Since $b \wedge c \le (a \vee b) \wedge (a \vee c)$ and $a \le (a \vee b) \wedge (a \vee c)$, we can conclude $(a \vee b) \wedge (a \vee c)$

is an upper bound of $\{a, (b \land c)\}\$, so $a \lor (b \land c) <= (a \lor b) \land (a \lor c)$.

(b)

Since $a \wedge b \le b$ and $b \le b \vee c$, we can conclude $a \wedge b \le b \vee c$.

Since $a \wedge c \le c$ and $c \le b \vee c$, we can conclude $a \wedge c \le b \vee c$.

So we can conclude $b \lor c >= (a \land b) \lor (a \land c)$.

Since $b \wedge c >= (a \wedge b) \vee (a \wedge c)$ and $a >= (a \wedge b) \vee (a \wedge c)$, we can conclude $(a \wedge b) \vee (a \wedge c)$

is a lower bound of $\{a, (b \lor c)\}$, so $a \land (b \lor c) >= (a \land b) \lor (a \lor c)$

```
解答:
```

```
(a) Since a \le c, a \lor c = c.
a \vee (b \wedge c)
= (a \lor b) \land (a \lor c)
= (a \lor b) \land c
(b) Let f(x, y, z) = x \ lor(y \land z), g(x, y, z) = (x \lor y) \land z.
\forall y, z \in (b), f(0, y, z) = y \land z = g(0, y, z).
\forall x, y \in (b), f(x, y, 1) = x \land y = g(x, y, 1).
Consider other cases, we have that:
f(a,0,a) = a = g(a,0,a), f(a,a,a) = a = g(a,a,a), f(a,1,a) = a = g(a,1,a), f(a,b,a) = a
a = g(a, b, a), f(a, c, a) = a = g(a, c, a)
f(b,0,b) = b = g(b,0,b), f(b,b,b) = b = g(b,b,b), f(b,1,b) = b = g(b,1,b), f(b,a,b) = b
b = g(b, a, b), f(b, c, b) = b = g(b, c, b)
f(c,0,c) = c = g(c,0,c), f(c,c,c) = c = g(c,c,c), f(c,1,c) = c = g(c,1,c), f(c,b,c) = c = g(c,0,c), f(c,c,c) = c = g(c,0,c), f(c,c,c) = c = g(c,c,c), f(c,c,c), f(c,c,c) = c = g(c,c,c), f(c,c,c) = c = g(c,c,c), f(c,c,c) = c = g(c,c,c), f(c,c,c) = g(c,c,c), f(c,c,c) = g(c,c,c), f(c,c,c), f(c,c,c) = g(c,c,c), f(c,c,c), f(c,c,
c = g(c, b, c), f(c, a, c) = c = g(c, a, c)
Since \forall x, y, z \in (b), x \le z \to x \lor (y \land z) = (x \lor y) \land z, the lattice is modelar.
(c)
a \le c in Fig.(a).
a \vee (b \wedge c) = a but (a \vee b) \wedge c = c.
So a \lor (b \land c) \neq (a \lor b) \land c.
It is non-modular.
```

作业 (选做部分)

3 **Open Topics**

Open Topics 1 (Dilworth's Theorem)

介绍 Dilworth's theorem, 如 (不限于):

- 定理
- 证明
- 应用

参考资料:

- Dilworth's theorem @ wiki
- Chapter 6 of Book "A Course in Combinatorics" (2nd Edition) by J.H. van Lint and R.M. Wilson

Open Topics 2 (Lattice of Stable Matchings)

请从 Distributive Lattice 的角度介绍 Stable Matching 问题, 如 (不限于):

- Stable Matching 问题
- Stable Matching 算法
- 与 Distributive Lattice 的关系

参考资料:

- Lattice of stable matchings @ wiki
- Stable Marriage Problem @ Numberphile

- 4 订正
- 5 反馈