1016. Что можно сказать о дифференцируемости функции

F(x) = f(g(x))

в данной точке $x=x_0$, если: а) функция f(x) имеет производную в точке $x=g(x_0)$, а функция g(x) не имеет производной в точке $x=x_0$; б) функция f(x) не имеет производную в точке $x=g(x_0)$, а функция g(x) имеет производную в точке $x=x_0$; в) функция f(x) не имеет производной в точке $x=g(x_0)$ и функция g(x) не имеет производной в точке $x=x_0$?

Полагая $x_0 = 0$, рассмотреть примеры:

a)
$$f(x) = x^2$$
, $g(x) = |x|$, 6) $f(x) = |x|$, $g(x) = x^2$

B)
$$f(x) = 2x + |x|$$
, $g(x) = \frac{2}{3}x - \frac{1}{3}|x|$.

1017. В каких точках график функции $y = x + \sqrt[3]{\sin x}$ имеет вертикальные касательные? Построить этот график.

1018. Может ли функция f(x) в точке ее разрыва иметь: а) конечную производную; б) бесконечную производную?

Рассмотреть пример: $f(x) = \operatorname{sgn} x$.

1019. Если функция f(x) дифференцируема в ограниченном интервале (a, b) и $\lim_{x\to a} f(x) = \infty$, то обязають оди

1)
$$\lim_{x\to a} f'(x) = \infty$$
; 2) $\lim_{x\to a} |f'(x)| = +\infty$?

Рассмотреть пример: $f(x) = \frac{1}{x} + \cos \frac{1}{x}$ при $x \to 0$.

1020. Если функция f(x) дифференцируема в ограниченном интервале (a, b) и $\lim_{x\to a} f'(x) = \infty$, то обязательно ли

$$\lim_{x\to a}f(x)=\infty?$$

Рассмотреть пример: $f(x) = \sqrt[3]{x}$ при $x \to 0$.

1021. Пусть функция f(x) дифференцируема в интервале $(x_0, +\infty)$ и существует $\lim_{x\to +\infty} f(x)$. Следует ли отсюда, что существует $\lim_{x\to +\infty} f'(x)$?

Pассмотреть пример: $f(x) = \frac{\sin(x^2)}{x}$.