Ejercicios capítulo 6

Christian Limbert Paredes Aguilera

2022-08-12

Ejercicios Capítulo 6

6.1.

Se seleccionaron, aleatoriamente, 60 personas y se le preguntó su preferencia con respecto a tres marcas, A, B y C. Estas fueron de 27,18 y 15 respectivamente. ¿Qué tan probable es este resultado si no existen otras marcas en el mercado y la preferencia se comparte por igual entre las tres?.

Respuesta.- Ya que las preferencias son iguales entonces, se utilizará la función de distribución multinomial, comos se verá a continuación:

$$p(x_1, x_2, \dots, x_{k-1}; n, p_1, p_2, \dots, p_{k-1}) = \frac{n!}{x_1! x_2! x_3!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

De donde

$$p(27, 18, 15; 60, 1/3, 1/3, 1/3) = \frac{60!}{27!18!15!} \left(\frac{1}{3}\right)^{27} \left(\frac{1}{3}\right)^{18} \left(\frac{1}{3}\right)^{15} = 0.002153159.$$

factorial(60)/(factorial(27)*factorial(18)*factorial(15))*(1/3)^(27)*(1/3)^(18)*(1/3)^(15)

[1] 0.002153159

dmultinom(c(27,18,15),60,c(1/3,1/3,1/3))

[1] 0.002153159

6.2.

Supóngase que de un proceso de producción se seleccionan, de manera aleatoria, 25 artículos. Este proceso de producción por lo general produce un 90% de artículos listos para venderse y un 7% reprocesables. ¿Cuál es la probabilidad de que 22 de los 25 artículos estén listos para venderse y que dos sean reprocesables?.

Respuesta.- Sea la función de distribución trinomial

$$p(x, y; n, p_i, p_2) = \frac{n!}{x!y!(n-x-y)!} p_1^x p_2^y (1 - p_1 - p_2)^{n-x-y}.$$

Entonces,

$$p(22, 2; 25, 0.9, 0.07) = \frac{25!}{22!2!(25 - 22 - 2)!} 0.9^{22} 0.07^{2} (1 - 0.9 - 0.07)^{25 - 22 - 2} = 0.09988531.$$

```
(factorial(25)/(factorial(22)*factorial(2)*factorial(25-22-2))*
0.9^(22)*0.07^(2)*(1-0.9-0.07)^(25-22-2))
```

[1] 0.09988531

6.3.

Sean X y Y dos variables aleatorisa continuas con una función de densidad conjunta de probabilidad dada por:

$$f(x,y) = \begin{cases} \frac{3x - y}{5} & 1 < x < 2, \quad 1 < y < 3, \\ 0 & \text{para cualquier otro valor.} \end{cases}$$

a)

Obtener la función de distribución conjunta acumulativa.

Respuesta.-

$$F(x,y) = \int_{1}^{x} \int_{1}^{y} \left(\frac{3u - v}{5}\right) dv du = \int_{1}^{x} \int_{1}^{y} \left(\frac{3u}{5} - \frac{v}{5}\right) dv du$$

$$= \int_{1}^{x} \left(\frac{3u}{5}v - \frac{v^{2}}{10}\right) \Big|_{1}^{y} du = \int_{1}^{x} \frac{3uy}{5} - \frac{3u}{5} - \frac{y^{2}}{10} + \frac{1}{10} du$$

$$= \left(\frac{3u^{2}y}{10} - \frac{3u^{2}}{10} - \frac{y^{2}u}{10} - \frac{u}{10}\right) \Big|_{1}^{x}$$

$$= \frac{3x^{2}y}{10} - \frac{3y}{10} - \left(\frac{3x^{2}}{10} - \frac{3}{10}\right) - \left(\frac{y^{2}x}{10} - \frac{y^{2}}{10}\right) + \frac{x}{10} - \frac{1}{10}$$

$$= \frac{3x^{2}y - xy^{2} - 3x^{2} + x - 3y + y^{2} + 2}{10}$$

b)

¿Cuál es la probabilidad conjunta de que X < 3/2 e Y < 2?.

Respuesta.- Ya que
$$\int_1^x \int_1^y \left(\frac{3u-v}{5}\right) \, dv du = \frac{3x^2y-xy^2-3x^2+x-3y+y^2+2}{10}$$
, entonces
$$P(X<3/2,Y<2) = \int_1^{3/2} \int_1^2 \left(\frac{3u-v}{5}\right) \, dv du$$

$$= \frac{3\cdot (3/2)^2\cdot 2 - (3/2)\cdot 2^2 - 3(3/2)^2 + 3/2 - 3\cdot 2 + 2^2 + 2}{10}$$

$$= 0.225.$$

```
x=3/2
y=2
(3*x^2*y-3*y-3*x^2+x-3*y+y^2+2)/10
```

[1] 0.225

c)

Mediante el empleo de sus respuesta a la parte a, obtener las distribuciones acumulativas marginales de X e Y.

Respuesta.- Dado que 2 y 3 son los límite superior para x e y respectivamente, entonces

$$P(X \le x) = F_X(x) = F(x,3)$$

$$= \frac{3x^2 \cdot 3 - x \cdot 3^2 - 3x^2 + x - 3 \cdot 3 + 3^2 + 2}{10}$$

$$= \frac{9x^2 - 9x - 3x^2 + x - 9 + 9 + 2}{10}$$

$$= \frac{3x^2 - 4x + 1}{5}, \quad 1 < x < 2.$$

Y

$$\begin{split} P(Y \leq y) &= F_Y(y) = F(2, y) \\ &= \frac{3 \cdot 2^2 y - 2 \cdot y^2 - 3 \cdot 2^2 + 2 - 3y + y^2 + 2}{10} \\ &= \frac{12y - 2y^2 - 12 + 2 - 3y + y^2 + 2}{10} \\ &= \frac{9y - y^2 - 8}{10}, \qquad 1 < y < 3. \end{split}$$

d)

Obtener las funciones de densidad marginales de X y de Y.

Respuesta.- Sea $F(x,3) = P(X \le x) = \frac{3x^2 - 4x + 1}{5}$, entonces

$$f_X(x) = \frac{\partial F(x,3)}{\partial x} = \frac{(6x^2 - 4)5}{5^2} = \frac{6x^2 - 4}{5}.$$

Y para $F(2,y) = P(Y \le y) = \frac{9y - y^2 - 8}{10}$, se tiene

$$f_Y(y) = \frac{\partial F(2,y)}{\partial y} = \frac{(9-2y)10}{10^2} = \frac{9-2y}{10}.$$

6.4.

Sean X e Y dos variables aleatorias continuas con una función de densidad conjunta de probabilidad dada por

$$f(x,y) = \left\{ \begin{array}{ll} xe^{-x(y+1)} & x,y>0, \\ 0 & \text{para cualquier otro valor.} \end{array} \right.$$

a)

Demostrar que f(x,y) es una función de densidad conjunta de probabilidad.

Respuesta.-; Ya que x, y > 0 entonces,

$$\int_0^\infty \int_0^\infty x e^{-xy-x} \, dy \, dx = \int_0^\infty x e^{-x} \int_0^\infty e^{-xy} \, dy \, dx$$

$$= \int_0^\infty x e^{-x} \int_0^\infty e^{-xy} \left(\frac{-x}{-x}\right) \, dy \, dx$$

$$= \int_0^\infty -e^{-x} \int_0^\infty e^{-xy} (-x) \, dy \, dx$$

$$= \int_0^\infty -e^{-x} \left(e^{-xy}\right) \Big|_0^\infty dx$$

$$= \int_0^\infty -e^{-x} \left(e^{-xy}\right) dx$$

$$= \int_0^\infty e^{-x} \, dx = e^{-x} \Big|_0^\infty$$

$$= 1.$$

```
integrate(function(y) {
  sapply(y, function(y) {
    integrate(function(x) x*exp(-x*(y+1)), 0, Inf)$value
  })
}, 0, Inf)$value
```

[1] 0.9999956

b) ¿Cuál es la probabilidad conjunta de que X < 2 e Y < 1?.

Respuesta.-

$$\int_{0}^{2} \int_{0}^{1} x e^{-xy-x} \, dy \, dx = \int_{0}^{2} x e^{-x} \int_{0}^{1} e^{-xy} \, dy \, dx$$

$$= \int_{0}^{2} -e^{-x} \left(e^{-xy} \right) \Big|_{0}^{1} \, dx$$

$$= \int_{0}^{2} -e^{-x} \left(e^{-x} - e^{0} \right) \, dx$$

$$= \int_{0}^{2} e^{-3x} \, dx = -\frac{1}{3} \int_{0}^{2} e^{-3x} (-3) \, dx$$

$$= \left. -\frac{1}{3} \left(e^{-3x} \right) \right|_{0}^{2} = -\frac{1}{3} \left(e^{-6} - 1 \right)$$

$$= 0.3738225$$

```
integrate(function(y) {
  sapply(y, function(y) {
    integrate(function(x) x*exp(-x*(y+1)), 0, 2)$value
  })
}, 0, 1)$value
```

[1] 0.3738225

c)

Obtener las funciones de densidad marginal de X y de Y.

Respuesta.- La densidad marginal para x está dada por:

$$f_X(x) = \int_0^\infty x e^{-xy-x} dy = x e^{-x} \int_0^\infty e^{-xy} dy = -e^{-x} \left(e^{-xy} \right) \Big|_0^\infty = e^{-x}$$

La densidad marginal para y está dada por:

$$f_X(x) = \int_0^\infty x e^{-xy-x} dx$$

$$= \left(\frac{x}{-y-1} e^{-xy-x} - \frac{1}{-y-1} \int_0^\infty e^{-xy-x} dx \right) \Big|_0^\infty$$

$$= 0 - \frac{1}{(-y-1)^2} e^{xy-x} \Big|_0^\infty$$

$$= -\frac{1}{(-y-1)^2} (e^\infty - e^0)$$

$$= -\frac{1}{(-y-1)^2} (0-1)$$

$$= \frac{1}{(-y-1)^2}.$$

d)

 λ Son X e Y estadísticamente independientes?.

Respuesta.- por el hecho de que,

$$xe^{-x(y-1)} \neq e^{-x} \frac{1}{(-y-1)^2} = \frac{e^{-x}}{(-y-1)^2}$$

Diremos que X e Y no son estadísticamente independientes.

6.5.

Sean X e Y dos variables aleatorias discretas en donde los posibles valores que estas pueden tomar son -1, 0 y 1. En la siguiente tabla se dan las probabilidades conjuntas para todos los posibles valores de X e Y.

			X	
		-1	0	1
	-1	1/16	3/16	1/16
Y	0	3/16	0	3/16
	1	1/16	3/16	1/16

a)

Obtener las funciones de probabilidad marginal $p_X(X)$ y $P_Y(y)$.

Respuesta.- Para $p_X(x)$ se tiene al sumar las tres columnas de la tabla. Lo propio con $p_Y(y)$.

$$p_X(x) = p_Y(y) = \frac{5}{16}, \frac{6}{16}, \frac{5}{16}, \ x = y = -1, 0, 1.$$

b)

 \downarrow Las variables aleatorias X e Y son estadísticamente independientes?

Respuesta.- No, ya que $p_{XY}(x,y) \neq p_X(x)p_X(y)$.

c)

Obtener Cov(X, Y)

Respuesta.-

$$(-1*-1*1/16+-1*1*1/16+1*-1*1/16+1/16) - (5/16*-1+6/16*0+5/16*1)*2$$

[1] 0

6.6.

Para las funciones de densidad conjuntas de probabilidad del ejercicio 6.3., obtener Cov(X,Y) y $\rho(X,Y)$. Respuesta.-