Extinction risk from climate change: taxonomy

March 25th, 2024

Load libraries and data

```
rm(list = ls())
 root.dir = "C:/Users/mcu08001/Documents/1New Research/CC MetaRisk2/Analysis"
 #Load Libraries
library(coda); library(ggplot2); library(rstan); library(bayesplot); library(
shinystan); library(loo); library(rstanarm); library(dplyr); library(ggpubr)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = FALSE)
#Load data
dataP<-read.table("MetaRisk2 aggthres 5.txt",header=T);</pre>
attach(dataP)
#note that do not need to eliminate NAs like for pre-industrial
#betareg requires no 0s or 1s
koffset = 0.001 #the k that gives the best posterior predictive check
percent2 <- adj.percent</pre>
percent2[adj.percent == 0] = koffset;
percent2[adj.percent == 1] = 1 - koffset;
dataP$percent2 <- percent2;</pre>
data.use<-dataP
N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies</pre>
Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
phi = data.use$Total.N
```

Test for effect of Taxonomic group

Here I tested if extinction predictions change based on taxonomic group.

```
#create model matrix for coefficients
betamat <- (model.matrix(~Taxa,data=data.use)) #create model matrix 1 - amphi
bians, 2 - birds, 3 - fish, 4 - insects, 5 - inverts, 6 - mammals, 7 - mixed,
8 - plants, 9 - reptiles

stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =
phi, S = n.Study, P = ncol(betamat), Study = Studyint)</pre>
```

```
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor.
#
           chains = 3, warmup=18000, cores=8, iter=21000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max treedepth = 15))
load("2taxaL4.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                          se mean
                 mean
                                         sd
                                                  2.5%
                                                             97.5%
                                                                       n eff
## beta[1] -2.1891429 0.005818926 0.1557564 -2.4958500 -1.88330293 716.4838
## beta[2] -0.6556791 0.006546553 0.1613068 -0.9715787 -0.33512185 607.1279
## beta[3] -0.2668427 0.008240859 0.3137951 -0.8736203 0.35900645 1449.9316
## beta[4] -0.2846334 0.006594635 0.1889663 -0.6608612 0.07566196 821.0837
## beta[5] -0.1053025 0.008989957 0.3444496 -0.7952416 0.55825747 1468.0339
## beta[6] -0.4646970 0.006658980 0.1693717 -0.7953425 -0.13244809 646.9432
## beta[7] -0.1009387 0.009502242 0.2084218 -0.4976557 0.31057629 481.0987
## beta[8] -0.1996163 0.007506970 0.1654578 -0.5173072 0.12368858 485.7861
## beta[9] -0.4526508 0.006383483 0.1710563 -0.7927669 -0.11490334 718.0633
##
               Rhat
## beta[1] 1.002969
## beta[2] 1.003046
## beta[3] 1.000259
## beta[4] 1.002847
## beta[5] 1.000720
## beta[6] 1.001662
## beta[7] 1.005918
## beta[8] 1.009752
## beta[9] 1.001104
#checks
traceplot(mod,pars=params.to.monitor2,inc warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
              7614.6
                      96.7
## p_loo
              1983.3 25.1
## looic
            -15229.3 193.5
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                             Count Pct.
                                            Min. ESS
##
## (-Inf, 0.7]
                  (good)
                             1441 44.5%
                                            120
##
      (0.7, 1]
                  (bad)
                             1531
                                   47.3%
                                            <NA>
                  (very bad) 263
      (1, Inf)
##
                                     8.1%
                                            <NA>
## See help('pareto-k-diagnostic') for details.
#create data frame of looics from two models
load("2taxaL4.rds")
loo.mod2=loo.mod # rename Loo.mod so can Load n
mod2 = mod
```

```
load("2all_interc.rds")

table.data<-data.frame(
    Model = c("Intercept-only model","Model including taxonomy"),
    LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
    SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 1: Comparisons of LOOic between bas eline and model with taxonomy", format = "markdown")</pre>
```

Table 1: Comparisons of LO0ic between baseline and model with taxonomy

```
ModelLO0icSEIntercept-only model-15213.77193.3243Model including taxonomy-15229.28193.4593
```

```
Looic.diff = loo.mod2$estimates[3] - loo.mod$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = -15.51152
#Intercept-only model
load("2all_interc.rds") #intercept only model
mod.int <- mod</pre>
loo.int <- loo.mod</pre>
#use common definition for global median for graph, or else it varies a bit
posterior2=as.data.frame(mod.int)
grand.mean = posterior2[["mu"]]
grand.mean.pred <- invlogit(quantile(grand.mean, probs = c(0.025, 0.5, 0.975)</pre>
))
load("2taxaL4.rds")
modx = mod
          (Intercept) TaxaBirds TaxaFish TaxaInsects TaxaInvertebrates TaxaMa
mmals TaxaMixed TaxaPlants TaxaReptiles
cats <- c("Amphibians", "Birds", "Fish", "Insects", "Invertebrates", "Mammals</pre>
", "Mixed", "Plants", "Reptiles")
#Calculate estimates; note original is 1 in matrix
posterior=as.data.frame(modx);
n.total <- nrow(data.use) #total N
#absolute risks
beta.0<-posterior[["beta[1]"]]</pre>
beta.1<-posterior[["beta[1]"]]+posterior[["beta[2]"]]</pre>
beta.2<-posterior[["beta[1]"]]+posterior[["beta[3]"]]</pre>
```

```
beta.3<-posterior[["beta[1]"]]+posterior[["beta[4]"]]</pre>
beta.4<-posterior[["beta[1]"]]+posterior[["beta[5]"]]</pre>
beta.5<-posterior[["beta[1]"]]+posterior[["beta[6]"]]</pre>
beta.6<-posterior[["beta[1]"]]+posterior[["beta[7]"]]</pre>
beta.7<-posterior[["beta[1]"]]+posterior[["beta[8]"]]</pre>
beta.8<-posterior[["beta[1]"]]+posterior[["beta[9]"]]</pre>
beta.cat<-cbind(beta.0, beta.1, beta.2, beta.3, beta.4, beta.5, beta.6, beta.7, beta.
8)
#calculate median and credible intervals
pred.cat = invlogit(apply(beta.cat, 2, quantile, probs = c(0.025, 0.5, 0.975)
.na.rm=TRUE))
pred.cat.df <- data.frame(x = cats,</pre>
                           mean = pred.cat[2,],
                           low = pred.cat[1,],
                           hi = pred.cat[3,])
#arrange in increasing order#
pred.cat.df$cats = with (pred.cat.df, reorder(cats, mean))
#rbeta.cat = invlogit(beta.cat)-invlogit(grand.mean)
rbeta.cat = invlogit(beta.cat)-grand.mean.pred[2] #use median rather than eac
h sample (compare vs. one value)
rpred.cat = (apply(rbeta.cat, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
rpred.cat.df <- data.frame(x = cats,</pre>
                           mean = rpred.cat[2,],
                           low = rpred.cat[1,],
                           hi = rpred.cat[3,])
#Differences from zero
glob.mean.over <- rep("n", nrow(rpred.cat.df))</pre>
glob.mean.over[rpred.cat.df$mean > 0 & rpred.cat.df$low > 0] = "y" #decided t
o use grand mean vs. all samples (vs. median value)
glob.mean.over[rpred.cat.df$mean < 0 & rpred.cat.df$hi < 0] = "y"</pre>
rpred.cat.df$glob.mean.over <- glob.mean.over</pre>
#arrange in increasing order#
rpred.cat.df$cats = with (rpred.cat.df, reorder(cats, mean))
#show values
pred.cat.r <- pred.cat.df[,1:4]</pre>
pred.cat.r[,2:4] <- round((pred.cat.r[,2:4]), digits = 4)</pre>
knitr::kable(pred.cat.r, caption = "Table 1: Extinction risk by taxa, with 95
% credible intervals", format = "markdown", font = 7)
```

Table 2: Extinction risk by taxa, with 95% credible intervals

	X	mean	low	hi
beta.0	Amphibians	0.1009	0.0761	0.1320
beta.1	Birds	0.0550	0.0446	0.0674
beta.2	Fish	0.0787	0.0471	0.1324
beta.3	Insects	0.0777	0.0604	0.0999
beta.4	Invertebrates	0.0921	0.0515	0.1564
beta.5	Mammals	0.0656	0.0528	0.0817
beta.6	Mixed	0.0917	0.0669	0.1264
beta.7	Plants	0.0841	0.0709	0.0991
beta.8	Reptiles	0.0666	0.0525	0.0834

```
rpred.cat.r <- rpred.cat.df[,1:4]
rpred.cat.r[,2:4] <- round((rpred.cat.r[,2:4]), digits = 4)
knitr::kable(rpred.cat.r, caption = "Table 2: Relative extinction risk by tax
a, with 95% credible intervals", format = "markdown", font = 7)</pre>
```

Table 3: Relative extinction risk by taxa, with 95% credible intervals

	X	mean	low	hi
beta.0	Amphibians	0.0250	0.0002	0.0560
beta.1	Birds	-0.0210	-0.0314	-0.0086
beta.2	Fish	0.0027	-0.0288	0.0564
beta.3	Insects	0.0018	-0.0156	0.0239
beta.4	Invertebrates	0.0161	-0.0244	0.0804
beta.5	Mammals	-0.0103	-0.0231	0.0057
beta.6	Mixed	0.0157	-0.0091	0.0504
beta.7	Plants	0.0081	-0.0051	0.0231
beta.8	Reptiles	-0.0094	-0.0235	0.0074

```
#Figures
Fig1a<-ggplot(data = pred.cat.df)+
   geom_vline(xintercept=grand.mean.pred[2]) +
   geom_errorbar(aes(y = cats, xmin = low, xmax = hi), width = 0) +
   geom_point(stat = "identity", aes(y = cats, x = mean), color = "#416788", s
ize = 3, shape = 15) +
   xlab("Pre-industrial rise \n in temperature (C)") + xlim(c(0,.5)) +</pre>
```

```
theme_classic()+
  theme(axis.title.y = element_blank(),axis.title=element_text(size=14),axis.
text = element_text(size=12))+
  guides(size=F)

## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none
" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Fig1a
```


Fig. 1. Predicted extinction risk based on taxonomy

guides(size=F) Fig1b

Fig. 2. Predicted extinction risk based on taxonomy

```
ggarrange(Fig1a, NULL, Fig1b, ncol=3, widths = c(4,.4, 2))
```


Fig. 3. Predicted extinction risk based on taxonomy

```
#ggsave("Metarisk2 taxa.png",width=4,height=3,unit="in",dpi="print")
```

Conclusion

Taxonomic groups vary in risk, with the highest risks for plants and the lowest risks for birds, reptiles and mammals.

```
#catalog sample sizes
N.1.st<-length(unique(dataP$Study[dataP$Taxa == "Birds"]))
N.1.mod<-length((dataP$Study[dataP$Taxa == "Birds"]))
N.2.st<-length(unique(dataP$Study[dataP$Taxa == "Fish"]))
N.2.mod<-length((dataP$Study[dataP$Taxa == "Fish"]))
N.3.st<-length(unique(dataP$Study[dataP$Taxa == "Insects"]))
N.3.mod<-length((dataP$Study[dataP$Taxa == "Insects"]))
N.4.st<-length(unique(dataP$Study[dataP$Taxa == "Invertebrates"]))
N.4.mod<-length((dataP$Study[dataP$Taxa == "Invertebrates"]))
N.5.st<-length(unique(dataP$Study[dataP$Taxa == "Mammals"]))
N.5.mod<-length((dataP$Study[dataP$Taxa == "Mammals"]))
N.6.st<-length(unique(dataP$Study[dataP$Taxa == "Mixed"]))
N.6.mod<-length((dataP$Study[dataP$Taxa == "Mixed"]))</pre>
```

```
N.7.st<-length(unique(dataP$Study[dataP$Taxa == "Plants"]))
N.7.mod<-length((dataP$Study[dataP$Taxa == "Plants"]))
N.8.st<-length(unique(dataP$Study[dataP$Taxa == "Reptiles"]))
N.8.mod<-length((dataP$Study[dataP$Taxa == "Reptiles"]))
N.9.st<-length(unique(dataP$Study[dataP$Taxa == "Amphibians"]))
N.9.mod<-length((dataP$Study[dataP$Taxa == "Amphibians"]))
table.data<-data.frame(
   Factor = c("Birds", "Fish", "Insects", "Invertebrates", "Mammals", "Mixed", "Plants", "Reptiles", "Amphibians"),
   Studies = c(N.1.st,N.2.st,N.3.st,N.4.st,N.5.st,N.6.st,N.7.st,N.8.st,N.9.st),
   Models = c(N.1.mod,N.2.mod,N.3.mod,N.4.mod,N.5.mod,N.6.mod,N.7.mod,N.8.mod,N.9.mod)
)
knitr::kable(table.data, caption = "Table 2: Number of studies and models for each factor", format = "markdown")</pre>
```

Table 3: Number of studies and models for each factor

Factor	Studies	Models	
Birds	92	536	
Fish	24	68	
Insects	68	389	
Invertebrates	21	57	
Mammals	75	333	
Mixed	14	167	
Plants	199	1177	
Reptiles	48	275	
Amphibians	43	233	

Variation explained

```
#After Gelman 2019 R2 for Bayesian
#
#Load model and beta matrix - check if mu is modeled separately
load("2taxaL4.rds")
posterior=as.data.frame(mod);
betamat <- (model.matrix(~Taxa,data=data.use))

#Variables and matrices
S = 9000; #samples</pre>
```

```
K = ncol(betamat); #factors
p.mat <- as.matrix(posterior[,1:K])</pre>
y = dataP$percent2
y.mat = t(matrix(rep(y,S), nrow = N, ncol = S))
y.mean <- mean(y)</pre>
#Calculate y.pred for fixed effects only
y.pred <- matrix(rep(NA, N*S), nrow = S, ncol = N)</pre>
theta <- y.pred
for (i in 1:N) {
      theta[,i] = invlogit(p.mat %*% betamat[i,])#rows = samples, cols = i
      y.pred[,i] = (theta[,i] * data.use$Total.N[i])/(theta[,i] * data.use$To
tal.N[i] + (1-theta[,i]) * data.use$Total.N[i])
#Calcluate residual variance
res.f = v.mat - v.pred
RSS.f = rowSums((res.f)^2)
res.v.f = 1/(N-1) * RSS.f
#Calculate fit variance
pred.v.f = 1/(N-1) * rowSums((y.pred)^2)
#Calculate R2
R2.v.f = pred.v.f/(pred.v.f + res.v.f)
cat("fixed effects R2 = ", quantile(R2.v.f, probs = c(0.025, 0.5, 0.975), na.rm
= T))
## fixed effects R2 = 0.0653845 0.08645069 0.1135329
#Total model With random effects
y.pred.c <-(as.matrix(posterior[,(K+1):(N+K)])) #calculated in STAN, with all</pre>
RE and weightings
#Calculate residual variance
res.c = y.mat - y.pred.c
RSS.c = rowSums((res.c)^2)
res.v.c = 1/(N-1) * RSS.c
#Calculate fit variance
pred.v.c = 1/(N-1) * rowSums(y.pred.c^2)
#Calculate full model R2
R2.v.c = pred.v.c/(pred.v.c + res.v.c)
                                                            ")
print("
## [1] "
```

```
cat("Overall model R2 = ", quantile(R2.v.c,probs = c(0.025, 0.5, 0.975),na.rm
= T))
## Overall model R2 = 0.764939 0.7861843 0.8065545
```