18.404 Recitation 3

Sept 18, 2020

Today's Topics

- CFL Pumping Lemma
 - o What it is?
 - Why it works?
- Example: Proving Non-CFL Languages
 - 0 { ww }
 - $\circ \quad \{ a^i b^j c^k \mid i > j > k \}$
- Definition: Turing Machines
 - Multitape equivalence, Nondeterministic equivalence
 - (reset, R) TM equivalent to regular TM
- Church-Turing Thesis
- Turing-Recognizable, Turing-Decidable Languages
 - A is T-decidable iff ¬A is T-decidable
 - **Not True:** A is T-recognizable iff ¬A is T-recognizable
- Recap

CFL Pumping Lemma (What it is)

- A tool to prove languages are non-context free
- CFLs are always true under the CFL Pumping Lemma
 - To prove non- CFL , need to find only 1 counter example
- Many more possible pumpings of a given string
 - Need to make sure all cases are not pump-able

Formal Statement

For every CFL, there exists a pumping number $p \ge 1$ such that every string of length at least p can be written as s=uvxyz and satisfies:

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| ≤ p

CFL Pumping Lemma (Why it works)

A long enough string *s* generated by a CFG will have repeated variables

- Loop Form: $R \rightarrow vRy$ where $|vy| \ge 1$
- Assume minimal CFG so never $R \rightarrow ... \rightarrow R$

CFL Pumping Lemma (Why it works)

Pumping Up

 $= uv^2xy^2z$

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- | vy | ≥ 1
- |vxy| <= p

CFL Pumping Lemma (Why it works)

Pumping Down

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| <= p

Example: Proving Non-CFL Languages

Prove that { ww } is not a CFL

$$0^{p}1^{p}0^{p}1^{p}$$

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| <= p

Example: Proving Non-CFL Languages

Prove that $\{a^ib^jc^k \mid i>j>k\}$ is not a CFL

$$a^{p+2}b^{p+1}c^p$$

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| <= p

Definition: Turing Machines

Big Upgrades

- Head can read and <u>write</u>
- Head is two-way (can move left and right)
- Tape is infinite to the right with blank spaces as scratch area
- Can accept/reject at any time, not limited to end of the input

Multi-Tape vs Single Tape TM equivalence

Non-Deterministic vs Deterministic TM equivalence

(reset, R) TM equivalent to regular TM

 (reset, R) TM ≡ a TM that can only move right or RESET to the beginning of the tape. It cannot move left space-by-space

Show how to get back left-move using only (reset, R)

01

finite memory

Church-Turing Thesis

Instead of Turing machines, can use any other "reasonable" model of unrestricted computation: λ -calculus, random access machine, your favorite programming language, ...

Definition: TM-Recog, TM-Decidable

Language A is T-Recognizable language if exists TM M s.t. L(M)=A

- Corollary: M must accept only and all strings in A
 - Can loop or reject on all others

Language B is T-Decidable language if exists TM <u>decider</u> M s.t. L(M)=B

- Corollary: M must accept only and all strings in B
 - <u>Must</u> reject on all others

Example: T-Decidable

Show A is T-decidable iff $\neg A$ is T-decidable

M' = "on input s

- Run TM M on s
- Return opposite of result"

Example: T-Recognizable

M'

Not True: Show A is T-recognizable iff ¬A is T-recognizable

D = "on input s

- Non det. run s on both M and M'
- return result of whichever terminates"

Recap

