作业 11

王哲凡 2019011200

2020年5月10日

11.1. Solution. 首先 $H_0: \lambda = \lambda_0, H_1: \lambda \neq \lambda_0$.

假设 $\alpha > 0$ 给定,则考虑统计量 $\gamma_n = \lambda_0 n \overline{X}$,其服从 $\Gamma(1,n)$ 分布,因此可计算对应分位数:

$$P(\gamma \le \gamma_{\frac{\alpha}{2}}(n)) = P(\gamma \ge \gamma_{1-\frac{\alpha}{2}}(n)) = \frac{\alpha}{2}$$

则当 $\gamma_n \leq \gamma_{\frac{\alpha}{2}}(n)$ 或 $\gamma_n \geq \gamma_{1-\frac{\alpha}{2}}(n)$ 时拒绝 H_0 .

即
$$\overline{X} \leq \frac{\gamma_{\frac{\alpha}{2}}(n)}{\lambda_0 n}$$
 或 $\overline{X} \geq \frac{\gamma_{1-\frac{\alpha}{2}}(n)}{\lambda_0 n}$ 时拒绝 H_0 .

再考虑 $H_0: \lambda \geq \lambda_0, H_1: \lambda < \lambda_0$.

假设 $\overline{X} \ge C$ 时拒绝,则设 $\gamma_n = \lambda n \overline{X}$:

$$P(I) = P_{\lambda \ge \lambda_0} (\gamma_n \ge \lambda nC)$$

$$\Rightarrow 1 - \Gamma(\lambda nC) < \alpha, \lambda > \lambda_0$$

因此可取 $C = \frac{\gamma_{1-\alpha}(n)}{\lambda_0 n}$,即 $\overline{X} \ge \frac{\gamma_{1-\alpha}(n)}{\lambda_0 n}$ 时拒绝 H_0 . 另一侧同理.

11.2. (1). Solution. 利用样本均值:

$$\theta = 2E(X) \Rightarrow \theta \approx 2\overline{X}$$

设拒绝域为 $R = \left\{ (X_1, \cdots, X_n) \middle| \overline{X} \in \left(-\infty, \frac{\theta_0}{2} - z_{\frac{\alpha}{2}} \frac{\theta_0}{\sqrt{12n}} \right] \cup \left[\frac{\theta_0}{2} + z_{\frac{\alpha}{2}} \frac{\theta_0}{\sqrt{12n}}, +\infty \right) \right\}$. 若 H_0 成立,则 $\overline{X} \stackrel{\text{int}}{\sim} N\left(\frac{\theta_0}{2}, \frac{\theta_0^2}{12n} \right)$. 因此:

$$P_{\theta}((X_1, \cdots, X_n) \in R) = \alpha, \theta = \theta_0$$

若 H_1 成立,则 $\overline{X} \stackrel{\text{full }}{\sim} N\left(\frac{\theta}{2}, \frac{\theta^2}{12n}\right), \theta > \theta_0$:

$$P_{\theta}\left(\left(X_{1}, \cdots, X_{n}\right) \in R\right) = 1 - \Phi\left(\sqrt{3n}\frac{\theta_{0} - \theta}{\theta} + z_{\frac{\alpha}{2}}\frac{\theta_{0}}{\theta}\right) + \Phi\left(\sqrt{3n}\frac{\theta_{0} - \theta}{\theta} - z_{\frac{\alpha}{2}}\frac{\theta_{0}}{\theta}\right), \theta > \theta_{0}$$

综上所述:

$$g(\theta) = 1 - \Phi\left(\sqrt{3n}\frac{\theta_0 - \theta}{\theta} + z_{\frac{\alpha}{2}}\frac{\theta_0}{\theta}\right) + \Phi\left(\sqrt{3n}\frac{\theta_0 - \theta}{\theta} - z_{\frac{\alpha}{2}}\frac{\theta_0}{\theta}\right), \theta \ge \theta_0$$

(2). Solution. 极大似然估计为:

$$\theta^* = \max\{X_1, \cdots, X_n\}$$

因此:

$$P(\theta^* \le x) = \left(\frac{x}{\theta}\right)^n, 0 \le x \le \theta$$

故拒绝域为 $R = \{(X_1, \dots, X_n) | \theta^* \in (-\infty, \theta_0 \sqrt[n]] \}.$

若 H_0 成立,则:

$$P_{\theta}((X_1, \cdots, X_n) \in R) = \alpha, \theta = \theta_0$$

若 H_1 成立,则:

$$P_{\theta}((X_1, \cdots, X_n) \in R) = \frac{\theta_0^n}{\theta^n} \alpha, \theta > \theta_0$$

综上所述:

$$g(\theta) = \frac{\theta_0^n}{\theta^n} \alpha, \theta \ge \theta_0$$

11.3. Solution. $\Re \alpha = 0.05$.

$$\overline{X} - \mu_0 = 1.9 > \frac{S}{\sqrt{n}} t_{0.05} \approx 0.443$$

且相差较为明显,因此可以否定 $H_0: \mu \leq \mu_0$ 的原假设,选取备择假设 $H_1: \mu > \mu_0$,即公司雇员比常人容易生病.

11.4. (1). Solution. 若取 $\alpha = 0.05$.

$$\overline{X} = 1160, S \approx 111.5235$$

则:

$$\mu_0 - \overline{X} = 20 < \frac{S}{\sqrt{n}} t_{0.05} \approx 106.32$$

因此可以选择原假设 $H_0: \mu \geq \mu_0$,并且否定备择假设 $H_1: \mu < \mu_0$,即灯泡是合格的.

(2). Solution.

$$\overline{X} - \mu_0 = -20 < \frac{S}{\sqrt{n}} t_{0.05} \approx 106.32$$

故选择原来的备择假设 $\mu < \mu_0$, 这是由于检验水平选择较高,较不容易拒绝原假设.

(3). Solution. 取 $\alpha = 0.6$:

$$\frac{S}{\sqrt{n}}t_{0.6} \approx -13.50$$

则对于 (1),会否定原假设,选择备择假设;对于 (2),会选择原假设.即无论如何,结论都是 $\mu < \mu_0$.

11.5. Solution.

$$\overline{X} = 241.5, S \approx 101.9637$$

而:

$$\mu_0 - \overline{X} = -16.6 < \frac{S}{\sqrt{n}} t_{0.05} \approx 46.15$$

因此有理由认为元件寿命大于 225 小时.

概率论与数理统计 清华大学电子工程系

11.6. Solution. $\overline{X} \sim N\left(\lambda, \frac{\lambda}{n}\right)$, 因此若 H_0 为真:

$$P(I) = P_{\lambda_0} \left(\left| \frac{\overline{X} - \lambda_0}{\frac{\sqrt{\lambda_0}}{\sqrt{n}}} \right| \ge \frac{C}{\frac{\sqrt{\lambda_0}}{\sqrt{n}}} \right) \le \alpha$$

故可取:

$$C = z_{\frac{\alpha}{2}} \frac{\sqrt{\lambda_0}}{\sqrt{n}}$$

则 $|\overline{X} - \mu_0| \ge z_{\frac{\alpha}{2}} \cdot \frac{\sqrt{\lambda_0}}{\sqrt{n}}$ 时拒绝 H_0 .

11.7. (1). Solution. 比例为:

$$\frac{200}{4000} = \frac{1}{20} = 5\%$$

(2). Solution. 比例为:

$$\frac{200}{700} = \frac{2}{7}$$

这说明第一类错误在选择拒绝原假设时占比很高.

(3). Solution. 比例为:

$$\frac{500}{1000} = 50\%$$

(4). Solution. 检验功效约为:

$$1 - \beta(R) \approx 1 - 50\% = 50\%$$

- 11.8. (1). Solution. 不科学,设原假设为 $H_0: 2\% ,备择假设为 <math>H_1: 0 \le p < 2\%$. 则 $n\overline{X} \stackrel{\text{id}}{\sim} B(n,p)$,因此 $\overline{X} \sim N\left(p, \frac{p(1-p)}{n}\right)$. 则可取拒绝域为 $R = \left\{ (X_1, \cdots, X_n) | \overline{X} \in \left(-\infty, p_0 z_\alpha \frac{\sqrt{p_0(1-p_0)}}{\sqrt{n}}\right] \right\}$. 设上界为 $h(\alpha)$,若 $3\% < h(\alpha)$,则不能说明更有效,否则可以.
 - (2). Solution. 可取 $\alpha = 0.05$, 则 $h(\alpha) \approx 0.4\% < 3\%$, 因此可以说明更有效. 若取 $\alpha = 0.6$, 则 $h(\alpha) \approx 2.25\% < 3\%$, 同样说明更有效.
- 11.9. Solution. 重复 1000 次试验, 拒绝原假设次数为 44 次, 第一次错误比例为:

$$\frac{44}{1000} = 0.044$$

与 0.05 较为接近.