Project 2 - Earthquakes Analysis

Theme - Earthquake

The public platform USGS lead us to "Earthquake Hazards Program". They provide Earthquake related data in several ways such as Real-time Feeds, ATOM, KML, Spreadsheet, QuakeML, GeoJSON etc.,

We decided to pull data from 2 different ways -

1] Spreadsheet - Past 30 days (03/18 - 04/17) of Earthquakes data across the world

https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

2] GeoJSON - Past 30 days (LIVE Feed) of Earthquakes data across the world

https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php

Coding Approach

Technologies Used:

1] Pandas

2] ReverseGeocoder

3] SqlAlchemy

4] Postgres DB

5] Flask

6] HTML

7] Bootstrap

8] Javascript

9] D3

10] Plotly js

11] Apex js

12] am4Charts js

Data Munging

- Used "Reverse_Geocoder" Python library to get the nearest City, County, State and Country based on Lat and Long.
- Fixed the timestamp format by using Pandas

```
# sample test
  coordinates = (32.751, -115.8293333), (60.2994, -141.2456)
  rg.search(coordinates)
  Loading formatted geocoded file...
  [{'lat': '32.79311',
     'lon': '-115.69111',
     'name': 'Seeley',
     'admin1': 'California',
     'admin2': 'Imperial County',
     'cc': 'US'},
    {'lat': '63.33667',
     'lon': '-142.98556',
     'name': 'Tok',
     'admin1': 'Alaska',
     'admin2': 'Southeast Fairbanks Census Area',
     'cc': 'US'}]
```

	time	latitude	longitude	depth	mag	magType	nst	gap	dmin	rms		updated	place
0	2021-04- 17T22:20:57.320Z	32.751000	-115.829333	6.040000	1.24	ml	17.0	72.0	0.1296	0.22		2021-04- 17T22:24:25.471Z	15km E of Ocotillo, CA
1	2021-04- 17T22:18:44.955Z	60.299400	-141.245600	3.000000	1.50	ml	NaN	NaN	NaN	0.59	344	2021-04- 17T22:22:37.941Z	119 km NW of Yakutat, Alaska
2	2021-04- 17T22:13:31.910Z	19.182333	-155.393997	34.349998	1.85	md	38.0	166.0	NaN	0.12		2021-04- 17T22:16:49.020Z	9 km ESE of Pāhala, Hawaii

	time	latitude	longitude	depth	mag	magType	rms	id	updated	place	type
0	2021- 04-17 22:20:58	32.751000	-115.829333	6.040000	1.24	ml	0.22	ci39854328	2021- 04-17 22:24:26	15km E of Ocotillo, CA	earthquake
1	2021- 04-17 22:18:45	60.299400	-141.245600	3.000000	1.50	ml	0.59	ak0214xbpmk2	2021- 04-17 22:22:38	119 km NW of Yakutat, Alaska	earthquake
2	2021- 04-17 22:13:32	19.182333	-155.393997	34.349998	1.85	md	0.12	hv72430407	2021- 04-17 22:16:50	9 km ESE of Pāhala, Hawaii	earthquake

Data Munging

• Derived few summary fields to get the Earthquake stats for each Country. We used this for populating "Earthquake Info" table on Main webpage based on Country selection

Data Load

We created total 3 different tables with "id" being Primary and Foreign key to form the relationship and uniquely identify records in each table

Generate JSON from Postgres

We used json.dumps to generate JSON file from Postgres database inside Flask

```
# Convert query to objects of key-value pairs
objects list = []
for row in rows:
    d = collections.OrderedDict()
    d["id"] = row[0]
    d["type"] = row[1]
    d["depth"] = row[2]
    d["mag"] = row[3]
    d["magtype"] = row[4]
    d["rootmeansquare"] = row[5]
   d["status"] = row[6]
    d["latitude"] = row[7]
    d["longitude"] = row[8]
    d["city"] = row[9]
    d["county"] = row[10]
    d["state"] = row[11]
    d["country"] = row[12]
   d["mindepth"] = row[13]
    d["maxdepth"] = row[14]
    d["minmag"] = row[15]
    d["maxmag"] = row[16]
   d["count"] = row[17]
    d["mindate"] = str(row[18])
    d["maxdate"] = str(row[19])
    objects list.append(d)
j = json.dumps(objects list)
with open("Resources/Earthquakes.json", "w") as f:
    f.write(j)
```

{} Earthquakes.json ×

Resources > {} Earthquakes.json > {} 9

[{"id": "us7000dl51", "type": "earthquake", "depth": 10.0, "mag": 4.9, "magtype": "mb", "rootmeansquare": 0.57, "status": "reviewed", "latitude": -59.7161, "longitude": 150.46, "city": "Kettering", "county": "Kingborough", "state": "Tasmania", "country": "AU", "mindepth": 10.0, "maxdepth": 10.0, "minmag": 4.2, "maxmag": 6.0, "count": "13", "mindate": "2021-03-20", "maxdate": "2021-04-06"}, {
"id": "us7000dl5j", "type": "earthquake", "depth": 10.0, "mag": 6.0, "magtype": "mwb", "rootmeansquare": 0.54, "status": "reviewed", "latitude": -59.6179, "longitude": 150.3277, "city": "Kettering", "county": "Kingborough", "state": "Tasmania", "country": "AU", "mindepth": 10.0, "maxdepth": 10.0, "minmag": 4.2, "maxmag": 6.0, "count": "13", "mindate": "2021-03-20", "maxdate": "2021-04-06"}, {
"id": "us6000dxkg", "type": "earthquake", "depth": 10.0, "mag": 4.9, "magtype": "mb", "rootmeansquare": 0.52, "status": "reviewed", "latitude": -53.7784, "longitude": 140.5419, "city": "Geeveston", "county": "Huon Valley", "state": "Tasmania", "country": "AU", "mindepth": 10.0, "maxdepth": 10.0, "minmag": 4.2, "maxmag": 6.0, "count": "13", "mindate": "2021-03-20", "maxdate": "2021-04-06"},