

	$\sigma_{0}^{\#1}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}\dagger$	0	0
$\sigma_0^{\sharp 1}$ †	0	$\frac{1}{k^2 r_2}$

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}\alpha\beta}^{\#2}$	$\sigma_{1-lpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\sigma_{1}^{\sharp 1}\dagger^{lpha}$	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0
$\sigma_1^{\sharp 2} \dagger^{\alpha}$	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0
$\sigma_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0
·		

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\omega_1^{\#1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_1^{\#_1} \dagger^{\alpha}$	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	0

Source constraints		
SO(3) irreps	#	
$\sigma_{0^{+}}^{\#1} == 0$	1	
$\sigma_1^{\#2\alpha} == 0$	3	
$\sigma_{1^{+}}^{\#2\alpha\beta} == 0$	3	
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	5	
Total #:	12	

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$