(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出關公開番号 特開平11-349769

(43)公開日 平成11年(1999)12月21日

(51) Int.CL*		識別記号	PI	
		BRJ71BG+7		
COSL	29/14		COSL 29/14	
C03C	27/12		CO3C 27/12	D
C08K	5/13		C 0 8 K 5/13	
# C08J	5/18	CEX	C 0 8 J 5/18	CEX

審査請求 未請求 萧求項の数2 OL (全 7 頁)

(21)出願番号	特 數平10-157356	(71)出職人	000003296
			電気化学工業株式会社
(22) 出願日	平成10年(1998) 6月5日		東京都千代田区有楽町1丁目4番1号
		(72)発明者	河西 後明
		(10))2011	新潟県西頭城郡青海町大字青海2209番地
			電気化学工業株式会 青海工場内
		(72)発明者	青木 裁二
			新潟県西頭城郡青海町大字青海2209番地
			電気化学工業株式会 青海工場内

(54) 【発明の名称】 ポリビニルアセタール組成物及び合わせガラス用中間膜

(57) 【要約】

【課題】 耐熱安定性の優れたポリピニルアセタール組 成物、及び耐熱安定性の優れた合わせガラス用中間膜を 提供する。

【解決手段】 ポリピニルアセタールと一般式 (I) で 表される化合物を含有する組成物において、該ポリビニ ルアセタール100重量部に対して一般式(I)で表さ れる化合物を0.01~3重量部含有するポリビニルア セタール組成物は耐熱安定性に優れ、合わせガラス用中 間膜に好適に使用される。

【特許請求の範囲】

【請求項1】 ポリビニルアセタールと下記一般式

- (1) で表される化合物を含有する組成物において、該 ポリビニルアセタール100重量部に対して下記一般式
- (I) で表される化合物を 0. 01~3重量部含有する ポリビニルアヤタール組成物。
- [(E:1]

(R1~R3は、それぞれ炭素数1~2個の炭化水素基、 R4~R9はそれぞれ炭素数1~4の炭化水素基を示 t.)

【請求項2】 請求項1記載のポリピニルアセタール組 成物からなる合わせガラス用中間膜。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は耐熱安定性の優れた ポリピニルアセタール組成物及びそれを用いた合わせガ ラス用中間膜に関する。

[0002]

【従来技術】従来より、ポリピニルアセタールは、ポリ ピニルアルコール (以下「PVA」という。) をアルデ ヒドによりアセタール化して製造されており、塗料、接 着剤、安全ガラス用中間膜等の用途において工業的に広 く使用されている。

【0003】しかしながら、ポリピニルアセタールは耐 熱安定性が不十分であり、例えば熱劣化により、その粒 子、溶液、膜、成形品等が着色したりする問題がある。 【0004】これら間顕改良のため、種々の方法が提案 されている。例えば、下記一般式 (A) で示される化合 物をポリピニルアセタールに配合する方法が特別図54 -125291号公報に開示されている。

[0005]

[化2]

(R10~R13はそれぞれ炭素数1~4の炭化水素基を 示す。)

【0006】また、下記一般式(B)又は(C)で示さ れる化合物をポリビニルアセタールに配合する方法が特 開昭54-125292号公報に開示されている。 [0007]

【化3】

[0008] 【化4】

O─R17 【0009】(上記一般式(B)及び(C)中R14か 6R16はそれぞれ水素又は炭素数1~4の炭化水素

基、R17はメチル基又はエチル基を示す。)

【0010】しかしながら、これらの方法による耐熱性 の改良効果は、添加する化合物の昇基性等のため持続性 が不十分であったり、添加する化合物自体がキノン構造 を形成することによりかえって着色を発生させたり、又 は、合わせガラス用中間膜中に配合される紫外線吸収剤 との組み合わせにおいて、かえつて着色させたりして、 十分演足出冬ものとは言えない。

[0011]

【0015】(上式中R1~R3は、それぞれ炭素数1~ 2個の炭化水素基、R4~R9はそれぞれ炭素数1~4の 炭化水素基を示す。)

[0016]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明の制度物に含有される前配一般式(I)で表され ん化合物(以下「化合物(I)」という。)の具体倒と して1、3、5ートリメチルー2、4、6ートリス (3、5ージー tーブチルー4ードロキンペンジル) ペンゼン、1、3、5ードンチルー2、4、6ートリス (3、5ージー tーブチルー4ードロキンペンジ ル)ペンゼン等が挙げられるが、中でも1、3、5ート リメチルー2、4、6ートリス(3、5ン・tープチ ルー4ードロキシペンジル)ペンゼンが好ましい。 【0017】本発明のポリビールアセタールが化合物 (1)を含有する割合は、ポリビールアセタール100 【発明が解決しようとする課題】本発明は、上配従来技 術に鑑みてなされたものであり、その目的とするところ は、 耐熱安定性の優れたポリビニルアセタール組成物、 及び耐熱安定性の優れた合わせガラス用中間膜を提供す ることである。

[0012]

[職題を解決するための手段] 本発明者は、種々検討の 結果、ポリビニルアセタールに特定の化合物を含有させ たポリビニルアセタール組成物が優れた副熱安定性を示 すとの知見を得て、本発明を完成させるに至ったもので ある。

[0013] すなわち、本類明は、ポリビニルアセタールと下記・較式(1) で表される化合物を含有する組成 物において、該ポリビニルアセクール100重量能に対 して下記一般式(1) で表される化合物を0.01~3 重量部含有するポリビニルアセタール組成物、及びそれ を用いた合わせガラス用中間度である。

[0014] [化5]

重量部に対し0.01~3重量部、好ましくは0.02 ~2重量部である。その割合が0.01重量部未満では ポリビニルアセタール組成物の耐熱安定性の向上が十分 でなく、又3重量部を超えた場合にはポリビニルアセタ ール組成物がJMW能と19着したすくたろ。

【0018】本発明の組成物を得るために用いるポリビ ニルアセタールには特に制限は無く、市販のものも用い ることが出来る。

【0019】ポリビニルアセタールは、PVAを原料と、それをアルデヒドでアセタール化することにより、例えば粉酸は、液状などの形状で得ることが出来る。本 発明で用いるポリビニルアセタールには、カルボン酸ビニルエステル重合体をケン化して得られる通常のPVAをアセタール化したポリビニルアセタールの他に、原料PVAとして実態を、後変性等により変性されたPVAを用いて得られる変性ポリビールアセタール、また変

性、未変性、平均重合度、ケン化度等の異なるFVAを 2種以上組合せて原料FVAとして用いて得られるポリ ビニルアセタールなども包含される。原料FVAは、酢 酸ビニルなどの脂肪酸ビニルエステルの重合体、共重合 体を完全に、あるいは部分的にケン化した平均重合度 2 0~4000和度のもの表明いることができる。

【0020】PVAをアセタール化するには次に示す (1)、(2)及び(3)の方法が一般的であるが、これらに限定されるものではない。

- (1) 沈殿法: PVA水溶液に酸燥媒の存在下、アルデ ヒドを添加し、アセタール化反応を開始する。その後、 アセタール化の進行に伴い沈殿が生成し、以降は不均一 系で反応を進める方法。
- (2) 溶解法: PVA粉末をポリビニルアセタールの溶 蝶に懸濁させて酸性媒の存在下、アルデヒドを添加し、 アセタール化反応を開始する。アセタール化の進行とと もに、反応物は溶媒に溶解し、その後は均一系で反応を 進める方法。
- (3) 均一系法: PV A水溶液に酸触媒の存在下、アル デヒドを添加してアセタール化反応を開始し、沈瞭生成 前に、水に相溶性のあるポリピニルアセタールの溶媒を 添加し、沈瞭の析出を防止しながら、終始均一系で反応 を進める方法。

【0021】 PVAをアセタール化する反応において用いられるアルデヒドとしては、例えばホルムアルデヒド、プチルアルデヒド、プロピオンアルデヒド、グチルアルデヒド、クロトンアルデヒド、ペンズアルデヒド等があり、アルデヒドは「種を用いたり、又は2種以上をアセタール化反応蒸れた井を含せて用いて得られるポリピニルアセタールも本発明において使用することが出来る。アセタール化反応終了に既し、酸性媒は、アルカリ性物質により中和するのが一般的であるが、アルキレンオキサイド駆と反応させてもよい。

【0023】ポリピニルアセタールに化合物(I)を添加するに際し、ポリピニルアセタール製造工程等で該化合物の該化合物(I)のロスがある場合は、得られる組

成物においてポリビニルアセタール100重量部に対し、該化合物(1)の含有量が0.01~3重量部となるように、該化合物の添加量は顕節される。

【0024】化合物(I)は、そのままポリピニルアセ タールに添加してもよいが、アルデヒド、PVA水溶 液、アセタール反応用の媒体、有機溶剤、可塑剤などに 溶解又は乳化分散した状態で混合、撒布、浸漬などによ り添加配合するなどの任意の方法で行うことが出来る。 【0025】本発明の組成物には種々の物質を配合、含 有させることができ、配合、含有させる物質としては、 例えば未硬化あるいは部分硬化熱硬化性樹脂 (フェノー ル系樹脂、アミノ系樹脂、メラミン系樹脂、これらの変 性樹脂等)、無機系あるいは有機系の充填剤(クレー、 タルク、炭酸カルシウム、紛状シリカ、カーボンブラッ ク、炭素繊維、ガラス繊維、石粉ゼオライト、ポリビニ ルアセタールと相談性のないプラスチックの粉末等)... 可塑剤類、紫外線吸収剤、顔料類(カーボン類、酸化チ タン、塩基性クロム酸亜鉛系化合物等)、安定剤類、触 媒類、染料類、無機塩類、界面活性剤類等が挙げられ

【0026】本発明の合わせガラス用中間膜において、 可塑剤としては、プラスチック用可塑剤として通常使用 されるものが使用可能であるが、ポリビニルブチラール 系組成物には、分子内にエーテル結合を有するエステル 系可塑剤〔トリエチレングリコールジー2-エチルプチ レート、トリエチレングリコールジー2-エチルヘキサ ノエート、ジ (プトキシエトキシエチル) アジベート、 ジーn-ヘキシルアジペート等]が好ましい。紫外線吸 収剤としても、プラスチック用として通常使用されてい るものが使用可能であるが、ベンゾトリアゾール系紫外 線吸収剤 [2- (2'-ヒドロキシ-5'-メチルフェ ニル) ベンゾトリアゾール、2-(2'-ヒドロキシー 3'-t-ブチル- 5'-メチルフェニル)-5-ク ロロペンゾトリアゾール等]が好ましい。又、ヒンダー ドアミン系光安定剤も必要に応じて配合しても良い。 【0027】本発明の組成物及びそれを用いた合わせガ ラス用中間膜において、種々の物質を配合、含有させる 割合は、目的に応じて任意に選択することが出来る。 [0028]

【実施例】以下、本発明を実施例及び比較例により、具体的に説明する。尚、以下、特にことわりのない限り、「部」、「%」はそれぞれ「重量部」、「重量%」を示す。

【0029】実施例1

温度関節及び維炸装置をそ次えた反応等器中で平均塩合 度1700、ケン化度98.5 モル%のPVA100部 を、慢搾下900部の水に加熱溶解した。慢搾を継続し ながらこの水溶液を10℃に保ち、これに35%塩酸6 0部を加えた。次いでそこに化合物(1)として1, 3,5ートリメテルー2,4,6-トリス(3,5-ジ □ t - ブゲルー4 - t ドロキシペンジル) ベンゼンの 1 部をブゲルアルデヒド5 7 部に溶解し、その全量を3 0分間で速燃的に添加混合した。添加開始15分後ポリビニルブチラール粒子が折出した。その後反応某を慢伸下に4 0℃に昇程し、4 0℃で4 時間保持し、反応転下後、水酸化ナトリウム水溶液を添加して拡減を中和し、室場まで冷却した。次いで水洗、濾過、乾燥等を行い白色効素のボリビニルブチラール超成物を得た。得られた成場のボリビニルブチラール化度は、7 6 重動であるた。又、稀られたボリビニルブチラールル成成物中の1、3、5 - トリメチルー2、4、6 - トリス (3、5 - ジー t - ブゲルー4 - t ドロキンペンジル ペンゼンの含有量は、ボリビニルブチラール100 部に対し、0、7 部であった。得られた組成物の部開外で実情の状態を対している。であった。その10 に対し、0、7 であった。その10 に対し、0、7 10 であった。その10 に対し、10 であった。その10 に対し、10 であった。その10 に対し、10 であった。その10 に対し、0、7 10 に対し、10 であった。その10 に対し、0、0 で 10 に対し、10 で 10 に対し、10 で 10 に対し、10 で 10 に対し、10 に対し、10 で 10 に対し、10 に対しが対し、10 に対し、10 に対し、10

【0030】実施例2

示す。

化合物(1)として、1,3,5-トリメチルー2,4,6-トリス(3,5-ピー・アンチルー4ーとドロキンベンジル)ペンゼンの、05節を、含有非約50%のアニオン性水系乳化剤に分散して、反応容器中で慢炸下の10℃のドンスが溶液に添加したのち、57部のプナルアルデドを30分間かけで連続して添加した以外は実施例1と同様にしてボリビニルブチラール組成物を得た。得られた組成物の上配化合物(1)の含有量、着色女性化の数定数果を表1に示す。

【0031】実施例3

化合物 (1) として1, 3, 5ートリメチルー2, 4, 6ートリス (3, 5ージーセーブチルー4ーとドロキシベンジル) ペンゼンの量を0, 03部にした以外は実施例1 同様にしてポリビニルブチラール相成物を得た。得られた組成物の上記化合物 (1) の含有量、着色安定性の側定結果を数1に示す。

【0032】実施例4

化合物(1)として1,3,5-ドリメチルー2,4,6-ドリス(3,5-ジーtーブチルー4-ドドロキシベンジル、ペンゼンの量を2,0部にした以外は実施例1同様にしてポリビニルブチラール組成物を得た。得5 れた組成物の上配化合物(1)の含有量、着色安定性の都容針率を表また。ボー

【0033】実施例5

化合物 (I) として1, 3, 5ートリメチルー2, 4, 6ートリス (3, 5ージー tープチルー4ーヒドロキシ ペンジル) ペンゼンの量を0, 0015部にした以外は 実施例1回標にしてポリビニルブチラール組成物を得 た。得られた組成物の上配化合物 (I) の合有量、着色 安定性の顕微規奏を表1に示す。

【0034】実施例6

化合物 (I) として1, 3, 5-トリメチル-2, 4, 6-トリス (3, 5-ジーt-プチル-4-ヒドロキシ

ペンジル)ベンゼンの量を4節にした以外は実施例1同 様にしてポリビニルブチラール組成物を得た。得られた 組成物の上記化合物(I)の含有量、着色安定性の測定 結果を表1に示す。

【0035】実施例7

実施例1の1,3,5ートリメチルー2,4,6ートリ ス(3,5ージーtープチルー4ーヒドロキシベンジ ル)ベンゼン0.1部の代わりに化合物(1)として 1,3,5ートリエチルー2,4,6ートリス(3,5 -ジーtープチルー4ーヒドロキシベンジル)ベンゼン 0.1部を用いた以外は実施例1と同様にして、ポリビ ニルブチラール組成物を得た。得られた組成物の上記化 合物(1)の含有量、着色安定性の測定結果を表1に示 す。

【0036】実施例8

温度調節及び攪拌装置を備えた反応容器中のメタノール 490部、35%塩酸6部の混合溶液を攪拌しながら、 それに平均重合度2400、ケン化度98.5モル%の PVA100部を添加した。次いで攪拌下のこのPVA 粒子の懸濁液にアセトアルデヒド37部及びプチルアル デヒド34部を添加し、温度60℃で6時間反応させ、 アセトアセタール単位、プチルアセタール単位を有する ポリピニルアセタールのメタノール溶液を得た。反応終 了後冷却し、水酸化ナトリウム水溶液を添加混合して反 応液を中和した。さらに、その反応液に化合物(I)と して1、3、5-トリメチル-2、4、6-トリス (3. 5-ジーt-プチル-4-ヒドロキシベンジル) ベンゼン0. 1部を添加混合した。この液に水を添加し て粒子を折出させ、水洗、濾過、乾燥して粉粒状のポリ ビニルアセタール組成物を得た。得られた組成物中のポ リピニルアセタールはピニルアセテート単位1.9重量 %、ピニルアルコール単位 1 6、4 重量%であり、アセ タール化度81、7重量% (アセトアセタール単位とブ チルアセタール単位との割合は赤外吸収スペクトルによ る測定より重量比で50:50)であった。得られた組 成物の上記化合物(1)の含有量、着色安定性の結果を 表1に示す。

【0037】実施例9

実施例1の平処重合度1700、ケン化度98、5モル

MのPVA100部の代りに、平均重合度2400、ケン化度99キル%のPVA50部と平均重合度500、ケン化度99キル%のPVA50部を併用し、かつ
化合物(I)として1,3、5ートリメチルー2,4、6ートリス(3、5・ジー上・ブチルー4ードロキシベンジル)ペンゼンの使用量を0.2部にした以外は実施例1と同様にして、ボリビールブチラール組成物を得。後65れ上観象中のポリビールブチラール化度は77重量%、1,3、5ートリメチルー2,4、6ートリス(3、5・ジーヒーブチルー4ードドロ・ナシベンジル)ペンゼンの含有量は、ポリビールブチラキシペンジル)ペンゼンの含有量は、ポリビールブチラキシペンジル)ペンゼンの含有量は、ポリビールブチラキシペンジル)ペンゼンの含有量は、ポリビールブチラキシペンジル)ペンゼンの含有量は、ポリビールブチラ

ルル100 部に対し、0、13部であった。得られた組成物の上配化合物(1)の含有量、着色変定性の結果を 表1に示す。4部にした以外は実施例1両線にしてポリ ビニルブチラール組成物を得た。得られた組成物の上配 化合物(1)の含有量、着色変定性の測定結果を表1に 示す。

【0038】比較例1

1,3,5 ートリメチルー2,4,6 ートリス(3,5 - ジー t ー プチルー4 ード ドロキシベンジル) ベンゼン 0.1 節の代わりに2,6 ージー t ー プチルバラクレゾ ール0.1 節を用いたこと以外は実施例1 同様にしてポ リビニルプチラール組成物を得た。得られた組成物の 2,6 ージー t ープチルバラクレブールの含有量、着色 安定性の酸度結果を表1に示す。

【0039】比較例2

1,3,5ートリメチルー2,4,6ートリス(3,5)
ージー tープチルー4ーヒドロキシペンジル)ペンゼン
0.1節の付わりに2,2'ーメチレンピスー(4ーメ チルー6ーtープチルフェノール)0.05節を用いた こと以外は実施例1回際にしてポリピニルプチラール組 成物を得た。得ちれた組成物の2,2'ーメチレンピス (4ーメチルー6ーtープチルフェノール)の含有 量、育色交尾性の測定結果を表しに示す。

【0040】比較例3

1, 3, 5ートリメチルー2, 4, 6ートリス (3, 5 -ジーtーブチルー4ーヒドロキシベンジル)を使用し なかったこと以外は実施例1 同様にしてポリビニルブチ ラールを得た。得られたポリビニルブチラールの着色安 定性の別定鉢星を表1に示す

【0041】比較例4

化合物(I)として1,3,5ートリメチルー2,4,6ートリス(3,5ージーtープチルー4ーヒドロキン
ペンジル)ペンゼンの量を0,005部に変更した以外は実施例1回標にしてポリピニルブチラール組成物を得た。得られた組成物の上配化合物(I)の含有量、着色安定性の敵域及を31に不守。

【0042】比較例5

化合物(I)として1,3,5-トリメチル-2,4,

6-トリス (3, 5-ジーtープチルー4-ヒドロキシ ベンジル) ベンゼンの量を5.0部に変更した以外は実 施例1同様にしてポリピールプチラール組成物を得た。 得られた組成物の上配化合物 (1) の含有量、着色安定 性の側定結果を表1に示す。

【0043】実施例10~12及び比較例6

エタノール/トルエン (重量比1/1) 混合密膜900 (町に、比較例3で得たポリビールプチラル100 部及 び化合物(1)として1、3、5ージートリメチルー2、4、6ートリス(3、5ージーヒーブチルー4ーとドロ キシペンジル)ペンゼンを変とに示すた量つが添加し、混合密解した。得られた彼をポリエステルシート上に就 風乾後、20℃で減圧乾燥して、厚さ300ミクロンのフィルム状成形物を得た。このフィルを容器に入れ、120℃のオープン中で所定日数(2、4、6日 間)加熱した後、取り出し、数かし、制定は「潜仓安定性」(2)の方法により、その表面色の黄色度の値を1、って成形物の潮色安定性とした。前、0日の黄色度の値を1、一次転割のフィルムの測定値である。測定結果は変とに示

【0044】実施例13~15及び比較例7~8

表3 記載の冬実施例、比較刺上り、得られたポリピニル アセタール組成物100部、無外線吸収剤として、2-(2'ーヒドロキシー5'ーメチルフェニル) ペンプト リアゾールを0.2部、可塑剤としてジーnーへキシル アジペート3 5 前を提合した。得られた風合物を2 に加熱なれた二本ロールでよく隔線りした。得られたと 一ト状成形物をスペーサーで規制したプレスで140℃ に加熱加圧し、厚さ0.3 mmの合わセガラス用門側膜を 得た、得られた中間膜を1辺15cmの正ガ形の厚少mmの 2枚のフロートプタスで開始1シンドイッチし、ロール後で予備接着した。次いで、140℃のエガルの厚かの セガウスを得た、海外で、3分間圧着、通明を合力 セガラスを得た、動機性安度性評価に創度法1第を安定 性の(3)の方法により、野価した。測定結果は衰3に 示す。

[0045]

【表1】

	化合物 (1)			着色交流 (黄色蛇)			
	名称	含有壓部 1)	0Н	2日	48	6 F	
支侧1	L35-H# 246-HX35-V-t		-1.6	1.0	3.3	4.6	
共	-J* F#-4-EF* (#3#^*29*#) ^*2#*2	0.040	~l. 6	1.5	4.0	5.8	
数额3		0.021	-1.0	3.0	6.3	8.0	
数据例4		L 556	-0.9	2.3	8.3	9.8	
地侧5		0.010	0.4	7.1	10.9	15. 1	
共計 6		2.715	.03	80	12.0	19.5	
共通列7		0.076	-1.3	1.7	6.8	12 1	
地灣8		0.031	0.9	3.5	6.4	8.9	
划4919		0.130	1.2	42	6.2	9.6	
H188911	2.6-ジーレブサルドラルドール	0.066	-1.5	50.1	68.3	82.5	
地約12	2.7 MXX-(4-174 6-t-T# 7-1-4)	0.082	1.2	13.5	25.0	40.2	
地約13		(10055/11)	3.0	66.9	92.0	110.5	
1839 14	1.3.5 M/#-2.4.6 MX3.5-9' t	0.008	0.1	10.4	22.1	38.	
LEXF (5	·ブラル・4 とドロジタハンジョ) ペンピン	2 913	0.3	U.3	19.8	33	

お取物中、ポリビニルアセタール100部に対する化合物(1)の量(部)。

【0046】 【表2】

	化合物(I)の 添加量 I) (部)	3	着色安定性(黄色度)			
		0 H	2 H	4Fl	6H	
比較明6	0	4.1	68.3	36.7	115.9	
块的10	0. 02	0.9	6.8	10.1	13.4	
獎納到11	0. 1	1.2	42	7.6	9 1	
実施例12	2. 0	13	6.5	11.2	14.4	

1) :ボリビニルアセタール100部に対する化合物(I) の新加量(節)。 【0047】

【表3】

	使用ポリビニルアセタール 組成物の対象実施機局	着性宏建 (黄色鹭)
実施例13	実施例1	1. 2
実施例14	9300 915	1. 9
共動列 15	実施例6	1. 8
出鄉 7	JE1808H 1	5. 7
H#9994 B	H109(3	8. l

【0048】測定法

1. 着色安定性

(1) 各実施例及び比較例それぞれで得たポリピニルア セタール組成物、ポリピニルブチラールの100メッシ ュ篩パス品を試料とし、試料を容器に入れて120℃の オープン中で所定日数(2、4、6日間) 加熱する。試 料は所定日数軽温後オープンより覧り出し。放発する、

黄色度=(100)(1,28X-1,06Z)/Y

- 尚、黄色度0日は加熱前の粉末状(100メッシュバ
- ス) 試料の黄色度測定値である。
- (3) 合わせガラスの着色評価は、(2) の方法により 行う。但し、黄色度として示す値は、フィルムを含んだ 合わせガラスとして測定される値より、フィルムの無い 状態での複合ガラスで測定される値を引いたものであ

【0049】2. 添加物質の含有量

各実施例、比較例それぞれで得たポリビニルアセタール 加成物を飲料とし、それを認合溶線 [エタノール/木= 9/1 (電量比) [に溶解した液を高速液体タコマトグ ラフィー (目立製作所製、Lー4000 UV DETECTOR、 紫外線吸収280mm、Lー6000PUMP) を用いて、筋 加物質の含有量を、あらかじめ件成した検験解析比によ り定量した。定量により得た値は、前距線成時中のポリ ビニルアセタール100mに対する量(部)に換算して 添加物質の含有量とした。

[0050]

【発明の効果】本発明のポリピニルアセタール組成物は 上述の通り、ポリピニルアセタールの好ましい特性を損なうことなく、耐熱安定性に優れたものである。