Optimisation

Chapitre 5 : Condition nécessaire, condition suffisante de solution

Joseph GERGAUD, Serge GRATTON & Daniel RUIZ

10 septembre 2024

Théorème 5.1.1

Soient Ω un ouvert d'un espace vectoriel normé E et f une application de Ω à valeurs dans $\mathbb R$. Si f admet un minimum local en x^* et si f est dérivable en x^* alors on a l'équation parfois appelée équation d'Euler

$$f'(x^*) = 0. (1)$$

▶ Soit $h \in E$, comme Ω est ouvert, il existe $\eta > 0$ tel que la fonction

$$\varphi \colon \quad]-\eta, \eta[\quad \longrightarrow \quad \mathbb{R}$$

$$t \quad \longmapsto \quad \varphi(t) = f(x^* + th)$$

soit bien définie. φ est dérivable en 0 et $\varphi'(0)=f'(x^*).h$. Mais x^* est un minimum local de f, donc 0 est un minimum local de φ , par suite on a

$$0 \geq \lim_{t \to 0^-} \frac{\varphi(t) - \varphi(0)}{t} = \varphi'(0) = \lim_{t \to 0^+} \frac{\varphi(t) - \varphi(0)}{t} \geq 0.$$

Ainsi, pour tout $h, \varphi'(0) = f'(x^*).h = 0$.

Définition 5.1.2 – Point critique

Un point qui vérifie f'(x) = 0 est dit un point critique et sa valeur en f, f(x) une valeur critique.

Théorème 5.1.3

Soient Ω un ouvert d'un espace vectoriel normé E et $f:\Omega$ à valeur dans $\mathbb R$. Soit $C\subset\Omega$ convexe. Si f admet un minimum local en x^* sur C et si f est dérivable en x^* alors on a l'inéquation d'Euler

$$\forall y \in C, f'(x^*).(y - x^*) \ge 0.$$
 (2)

▶ Soit $y \in C$, alors la fonction

$$\varphi \colon \begin{bmatrix} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \varphi(t) = f(x^* + t(y - x^*)) \end{bmatrix}$$

est bien définie et admet une dérivé à droite en 0 $\varphi'^+(0) = f'(x^*).(y-x^*)$. Mais 0 est un minimum local de φ et donc $\varphi(0) \leq \varphi(t)$ pour t suffisamment proche de 0. Par suite

$$\varphi'^{+}(0) = \lim_{t \to 0^{+}} \frac{\varphi(t) - \varphi(0)}{t} \ge 0.$$

Remarque 5.1.1.

i) Si C est un sous espace affine ($C = x_0 + V$, avec V sous-espace vectoriel de E) alors l'inéquation d'Euler (2) devient

$$\forall h \in V, f'(x^*).h = 0$$

ii) Si C = E alors l'inéquation d'Euler (2) devient l'équation d'Euler (1).

Théorème 5.1.4

Soit $f:\Omega\subset E\to\mathbb{R}$, Ω ouvert d'un espace vectoriel normé E et soit $C\subset\Omega$ convexe. On suppose que f est convexe sur C et dérivable en tout point de C, alors les conditions suivantes sont équivalentes.

- i) x^* est un minimum global de f sur C.
- ii) x^* est un minimum local de f sur C.
- iii) Pour tout $y \in C$, $f'(x^*).(y x^*) \ge 0$.
- ► (i))⇒ (ii)) est évident.
- (ii))⇒ (iii)) est le théorème (3) précédent.
- (iii) \Rightarrow (i) ?

f est convexe, par suite nous avons grâce à (iii)

$$f(y) \ge f(x^*) + f'(x^*) \cdot (y - x^*) \ge f(x^*).$$

Remarque 5.1.2. Si C est un ouvert convexe (iii) est équivalent à $f'(x^*) = 0$. L'équation d'Euler est donc dans ce cas une condition nécessaire et suffisante de solution.

Correction.

On considère le problème au moindres carrés linéaire

$$(P) \begin{cases} Min \ f(\beta) = \frac{1}{2} ||y - X\beta||^2 \\ \beta \in \mathbb{R}^p. \end{cases}$$

Alors β^* est une solution de (P) si et seulement si ce point vérifie les équations normales

$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y. \tag{3}$$

▶ le problème est un problème convexe et on a $\nabla f(\beta) = X^T X \beta - X^T y$.

Théorème 5.2.1 – Condition nécessaire du deuxième ordre

Soit Ω un ouvert d'un espace vectoriel normé E et $f:\Omega\to\mathbb{R}$. Si x^* est un minimum local de f et si f est deux fois dérivables en x^* alors $f''(x^*)$ est semi-définie positive.

▶ Soit $h \neq 0$ un vecteur quelconque de E. x^* est un minimum local de f, donc $f'(x^*) = 0$ et il existe $\theta_0 > 0$ tel que pour tout $0 < \theta < \theta_0$ on ait $f(x^*) \leq f(x^* + \theta h)$. f étant deux fois dérivable en x^* on a par Taylor-Young

$$f(x^* + \theta h) - f(x^*) = f'(x^*) \cdot h + \frac{\theta^2}{2} f''(x^*) \cdot (h, h) + \|\theta h\|^2 \varepsilon(\theta h))$$
$$= \frac{\theta^2}{2} (f''(x^*) \cdot (h, h) + 2\|h\|^2 \varepsilon(\theta h)) \ge 0.$$

En divisant par θ^2 et en passant à la limite dans le membre de droite on en déduit que $f''(x^*).(h,h) \ge 0$. Ceci étant vrai pour tout h, on obtient le résultat.

Remarque 5.2.1. Il ne s'agit bien que d'une condition nécessaire (prendre $f(x) = x^3$).

Définition 5.2.2

Soit $B \in \mathcal{L}_2(E,\mathbb{R})$ une forme bilinéaire symétrique définie sur E, espace vectoriel normé.

i) B est dite semi-définie positive si et seulement si pour tout $h \in E$

$$B(h,h)\geq 0.$$

ii) B est dite définie positive si et seulement si pour tout $h \in E, h \neq 0$

iii) B est uniformément définie positive ou elliptique si et seulement si il existe c>0 tel que pour tout $h\in E$

$$B(h,h)\geq c\|h\|^2.$$

Remarque 5.2.2. Si E est un espace vectoriel de dimension fini il y a équivalence entre la définie positivité et l'ellipticité.

Théorème 5.2.3 – Condition suffisante du deuxième ordre

Soit Ω un ouvert d'un espace vectoriel normé E et $f:\Omega\to\mathbb{R}$ dérivable sur Ω .

- i) Si x^* est un point de Ω tel que $f'(x^*) = 0$, f deux fois déribable en x^* et $f''(x^*)$ elliptique, alors x^* est un minimum local de f.
- ii) Si f est deux fois dérivable sur Ω et s'il existe une boule $B(x^*, \eta) \subset \Omega$ telle que, pour tout $x \in B(x^*, \eta), f''(x)$ est semi-définie positive et si $f'(x^*) = 0$, alors x^* est un minimum local de f.
- i) Pour tout h suffisamment petit

$$f(x^* + h) - f(x^*) = \frac{1}{2}f''(x^*) \cdot (h, h) + ||h||^2 \varepsilon(h)$$
$$\geq \frac{1}{2}(c + 2\varepsilon(h))||h||^2.$$

Par suite il existe $\eta > 0$ tel que pour tout h tel que $||h|| < \eta$ on ait

$$f(x^* + h) - f(x^*) > 0.$$

ii) Si pour tout $x \in B(x^*, \eta)$, f''(x) est semi-postive, f est convexe sur l'ouvert $B(x^*, \eta)$. Par suite, comme $f'(x^*) = 0$, x^* est un minimum local de f.

Exercice 5.3.1. On considère la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = 3x_1^4 - 4x_1^2x_2 + x_2^2.$$

- **1.** Montrer que l'unique point critique de f est $\bar{x} = \begin{pmatrix} 0 & 0 \end{pmatrix}$.
- 2. La condition nécessaire de solution du deuxième ordre est-elle vérifiée?
- 3. La condition suffisante de solution du deuxième ordre est-elle vérifiée?
- **4.** On fixe maintenant $d \in \mathbb{R}^2$ et on considère la fonction

$$\varphi \colon \mathbb{R} \longrightarrow \mathbb{R} \\
t \longmapsto \varphi(t) = f(\bar{x} + td).$$

Montrer que t = 0 est un minimum local de φ .

5. Calculer $f(x_1, 2x_1^2)$. Conclusion.

Exercice 5.4.1. Attention à l'intuition dans \mathbb{R}

- 1. On considère une fonction f de $\mathbb R$ à valeurs dans $\mathbb R$ dérivable en tout point. On suppose que f admette un minimum local en $\bar x$ et que $\bar x$ est l'unique point critique de f. Démontrer que $\bar x$ est un minimum global de f.
 - 2. On considère maintenant la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = 2x_1^3 + 3e^{2x_2} - 6x_1e^{x_2}$$

Montrer que $\bar{x}=\begin{pmatrix} 1 & 0 \end{pmatrix}$ est l'unique point critique de f, que \bar{x} est un minimum local de f, mais que f n'admet par de minimum global.

Exercice 5.4.2. Donner un exemple de fonction f (de \mathbb{R} dans \mathbb{R}), deux fois dérivable, ayant un minimum strict en un point \overline{x} et telle que dans toute boule $\mathcal{B}(\overline{x},\rho)$ il existe un point $x \in \mathcal{B}(\overline{x},\rho)$ vérifiant f''(x) < 0.

Exercice 5.4.3. Donner un exemple de fonction f (de \mathbb{R} dans \mathbb{R}), deux fois dérivable, ayant un minimum strict en un point \overline{x} et telle que dans toute boule $\mathcal{B}(\overline{x},\rho)$ il existe un point $x \in \mathcal{B}(\overline{x},\rho)$ vérifiant f''(x) < 0.

$$f(x) = \begin{cases} x^p(2 + \sin\frac{1}{x}) & \text{si} \quad x \neq 0, \\ 0 & \text{si} \quad x = 0, \end{cases}$$

avec $p \ge 6$ pair.