Grafos e Algoritmos de Busca

Eduardo Camponogara

Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

DAS-9003: Introdução a Algoritmos

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Introdução

Grafos

- Aqui apresentaremos métodos para representar grafos e realizar buscas
- Busca em grafos significa seguir sistematicamente as arestas e visitar os vértices

Introdução

Grafos

Estudaremos três representações de grafos:

- listas de adjacência
- matrizes de adjacência
- matrizes de incidência

Estudaremos também:

- métodos de busca em largura
- métodos de busca em profundidade
- ordenação topológica

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Lista de Adjacência

- ▶ Dado um grafo G=(V,E), esta representação é tipicamente preferida pois é uma maneira compacta de representar grafos esparsos aqueles onde $|E| \ll |V|^2$
- A representação por listas de adjacência consiste em um vetor Adj com |V| listas de adjacência, uma para cada vértice v ∈ V.
- Para cada u ∈ V, Adj[u] contém ponteiros para todos os vértices v tal que (u, v) ∈ E. Ou seja, Adj[u] consiste de todos os vértices que são adjacentes a u

Lista de Adjacência

Matriz de Adjacência

- A representação por matriz de adjacência é preferida, entretanto, quando o grafo é denso, ou seja, quando $|E| \approx |V|^2$.
- ▶ Para um grafo G = (V, E), assumimos que os vértices são rotulados com números 1, 2, ..., |V|.
- A representação consiste de uma matriz $A = (a_{ij})$ de dimensões $|V| \times |V|$, onde

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se } (i,j) \in E \ 0 & ext{caso contrário} \end{array}
ight.$$

Matriz de Adjacência

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Matriz de incidência

- ▶ O grafo direcionado G = (V, E) é representado por uma matriz $A \in \mathbb{R}^{n \times m}$, onde |V| = n e |E| = m.
- Cada linha de A corresponde a um vértice.
- Cada coluna de A corresponde a uma aresta.

Matriz de incidência

- A matriz de incidência é utilizada com frequência em problemas de otimização
- Problema de fluxo em redes

Minimize
$$c^T x$$

Sujeito a:
 $Ax = b$
 $I \le x \le u$
 $x = [x_{ii} : (i, j) \in E]$

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Busca em Largura

- ➤ A busca em largura é um dos algoritmos mais simples para exploração de um grafo.
- Dados um grafo G = (V, E) e um vértice s, chamado de fonte, a busca em largura sistematicamente explora as arestas de G de maneira a visitar todos os vértices alcançáveis a partir de s.

Busca em Largura

- Esta busca é dita em largura porque ela expande a fronteira entre vértices conhecidos e desconhecidos de uma forma uniforme ao longo da fronteira.
- Ou seja, o algoritmo descobre todos os vértices com distância k de s antes de descobrir qualquer vértice de distância k + 1.

Busca em Largura

Cores

- Para controlar a busca, a BL (Busca em Largura) pinta cada vértice na cor branca, cinza ou preta.
- Todos os vértices iniciam com a cor branca e podem, mais tarde, se tornar cinza e depois preta.

▶ Branca: não visitado

► Cinza: visitado

Preta: visitado e seus nós adjacentes visitados

```
\begin{aligned} \mathsf{BFS}(G,s) & & \text{for each } u \in V[G] - \{s\} \\ & & \mathit{Color}[u] \leftarrow \mathit{white} \\ & & d[u] \leftarrow \infty \\ & & \pi[u] \leftarrow \mathsf{NIL} \\ & \text{endfor} \\ & & \mathit{color}[s] \leftarrow \mathit{gray} \\ & d[s] \leftarrow 0 \\ & Q \leftarrow \{s\} * \mathsf{Queue} * \\ \vdots & & \vdots \end{aligned}
```

```
while Q \neq \emptyset
   u \leftarrow head[Q]
   for each v \in Adj[u]
       if color[v] = white
           color[v] \leftarrow gray
           d[v] \leftarrow d[u] + 1
           \pi[v] \leftarrow u
           Enqueue(Q, v)
       endif
   endfor
   Dequeue(Q)
   color[u] \leftarrow black
endwhile
```

- Quando um vértice é visitado pela primeira vez, sua cor é modificada de branco para cinza.
- Quando todos os vértices adjacentes a um vértice cinza são visitados, ele se torna preto.

Exemplo

Início

 $\mathrel{\sqsubseteq}_{\mathsf{Exemplo}}$

Busca em Largura

Exemplo

Explorando vértice 1

∟_{Exemplo}

Busca em Largura

Exemplo

Explorando vértice 2

Exemplo

Busca em Largura

Exemplo

► Explorando vértice 3

	1	2	3	4	5	6
d			2			
π	0	1	2	1	4	4
с	Ь	Ь	g	Ь	g	g
Q	3	5	6			

 $\mathrel{\sqsubseteq}_{\mathsf{Exemplo}}$

Busca em Largura

Exemplo

Árvore da busca em largura

Análise

- Cada vértice de V é colocado na fila Q no máximo uma vez.
- ▶ A lista de adjacência de um vértice qualquer de u é percorrida somente quando o vértice é removido da fila
- ▶ Daí concluímos que o algoritmo roda em tempo O(|V| + |E|) pois as operações executadas levam $\Theta(1)$.

Caminho mais curto

Seja $\delta(s, v)$ a distância do vértice v a partir do vértice s, sendo a distância o menor número de arestas em qualquer caminho em G com origem em s e destino para v.

Caminho mais curto

Busca em Largura

Teorema

Seja G = (V, E) um grafo direcionado ou não, e suponha que BFS é executada a partir de um vértice $s \in V$. Então:

- ▶ Durante a busca, BFS descobre cada vértice $v \in V$ que seja alcançável a partir de s
- ▶ Ao final, $d[v] = \delta(s, v)$ para todo $v \in V$.
- ▶ Além disso, para qualquer vértice $v \neq s$ que seja alcançável a partir de s, um caminho mais curto de s para v é o caminho de s para $\pi[v]$ seguido da aresta $(\pi[v], v)$.

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Busca em Profundidade

- ► A estratégia aqui é explorar o grafo em profundidade.
- Na busca em profundidade, as arestas são exploradas a partir do vértice mais recentemente visitado.
- Da mesma forma que a busca em largura, sempre que um vértice v é descoberto durante a busca na lista de adjacência de um outro vértice já visitado u, a DFS memoriza este evento ao definir o predecessor de v, π[v] como u.
- ▶ Diferentemente da BFS, cujo grafo predecessor forma uma árvore, o grafo predecessor de DFS pode ser composto de várias árvores.

Busca em Profundidade

Grafo predecessor

$$G_{\pi} = (V, E_{\pi})$$

 $E_{\pi} = \{(\pi[v], v) : v \in V \in \pi[v] \neq \mathsf{NIL} \}$

Os vértices do grafo são coloridos durante a busca.

- Branco: antes da busca.
- Cinza: quando o vértice for visitado.
- Preto: quando os vértices adjacentes foram visitados.

Busca em Profundidade

timestamp

Além de construir uma floresta, DFS marca cada vértice com um *timestamp*. Cada vértice tem dois *timestamps*.

- ▶ d[v] → indica o instante em que v foi visitado (pintado com cinza).
- f[v] → indica o instante em que a busca pelos vértices na lista de adjacência de v foi completada (pintado de preto).

Usando timestamp 1, 2, . . ., verifica-se que

- $b d[v], f[v] \in 1, \ldots, 2|V|, \forall v \in V$
- $b d[v] < f[v], \forall v \in V$

```
\begin{aligned} \mathsf{DFS}(G) \\ & \text{for each vertex } u \in V[G] \\ & \textit{color}[u] \leftarrow \textit{white} \\ & \pi[u] \leftarrow \mathsf{NIL} \\ & \textit{time} \leftarrow 0 \\ & \text{for each } u \in V[G] \\ & \text{if } \textit{color}[u] = \textit{white} \\ & \mathsf{DFS\_visit}(u) \end{aligned}
```

```
\begin{aligned} \mathsf{DFS\_visit}(u) \\ & \mathit{color}[u] \leftarrow \mathit{gray} \\ & \mathit{d}[u] \leftarrow \mathit{time} \leftarrow \mathit{time} + 1 \\ & \mathsf{for each} \ v \in \mathit{Adj}[u] \\ & \mathsf{if } \ \mathit{color}[u] = \mathit{white} \\ & \pi[v] \leftarrow u \\ & \mathsf{DFS\_visit}(v) \\ & \mathit{color}[u] \leftarrow \mathit{black} \\ & \mathit{f}[u] \leftarrow \mathit{time} \leftarrow \mathit{time} + 1 \end{aligned}
```

Exemplo

Busca em Profundidade

Exemplo

Exemplo

Busca em Profundidade

Exemplo

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Busca em Profundidade

Análise

O procedimento DFS_visit(v) é chamado exatamente uma vez para cada vértice, pois é chamado apenas para vértices white e na primeira vez que isto acontece, ele é pintado de gray.

Propriedades da Busca em Profundidade

Teorema dos Parênteses

Na busca em profundidade de um grafo (direcionado ou não-direcionado) G=(V,E), para quaisquer dois vértices u e v, exatamente uma de três condições vale:

- 1. os intervalos [d[u], f[u]] e [d[v], f[v]] são disjuntos, e u não é descendente de v, bem como v não é descendente de u na floresta da busca em profundidade
- 2. o intervalo [d[u], f[u]] está contido em [d[v], f[v]], e u é um descendente de v na floresta da busca em profundidade
- 3. o intervalo [d[v], f[v]] está contido em [d[u], f[u]], e v é um descendente de u na floresta da busca em profundidade

Teorema dos Parênteses

└─Teorema dos Parênteses

Teorema dos Parênteses

Propriedades da Busca em Profundidade

- ▶ A busca em profundidade pode ser usada para classificar as arestas de G = (V, E).
- ► Tal classificação traz informações úteis sobre o grafo.
- ▶ Por exemplo, *G* é acíclico se não existem arestas "reversas"

Classificação de Arestas

Propriedades da Busca em Profundidade

Podemos classificar as arestas em quatro tipos de acordo com a floresta G_{π} produzida pela busca em profundidade;

Arestas Árvore: as arestas da floresta em profundidade G_{π}

Arestas Reversas: as arestas (u, v) que conectam u a um ancestral

Laços são considerados arestas reversas.

Arestas Diretas: as arestas (u, v) que conectam um vértice u a um descendente v

Arestas Cruzadas: todas as demais arestas

└ Classificação de Arestas

Busca em Profundidade

└ Classificação de Arestas

Classificação de Arestas

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Ordenação topológica

- Mostraremos como busca em profundidade pode ser empregada para encontrar uma ordenação topológica de um grafo direcionado acíclico G = (V, E).
- ▶ Uma ordenação topológica $\langle u_1, \ldots, u_n \rangle$ dos vértices de G é uma ordenação linear tal que se $(u_i, u_j) \in E$, então u_i precede u_j na ordenação, ou seja, i < j.
- Ordenação topológica pode ser vista como um arranjo dos vértices na horizontal, tal que as arestas vão da esquerda para a direita.

Busca em Largura

Topological-Sort(G)

call DFS(G) to compute finishing f[v] for each vertex v, as each vertex is finished, insert it into the front of a linked list return the linked list of vertices

Sumário

Introdução

Representação de Grafos

Busca em Largura

Busca em Profundidade

Ordenação Topológica

Componentes Fortemente Conexos

Componentes Fortemente Conexos

- ▶ Um componente <u>fortemente conexo</u> de um grafo direcionado G = (V, E) é um conjunto de vértices $C \subseteq V$ máximo tal que para todo par de vértices $u \in V$ e um caminho $u \rightsquigarrow V$ e um caminho $v \rightsquigarrow u$.
- ► Estamos interessados em desenvolver um algoritmo que encontra todos os componentes fortemente conexos de *G*.
- ▶ Vamos utilizar o grafo transposto $G^T = (V, E^T)$ onde $E^T = \{(u, v) : (v, u) \in E\}$. G^T consiste de G com as arestas reversas.

Strongly-Connected-Components(G)

- 1 call DFS(G) to compute finishing f[u] for each vertex u
- 2 compute G^T
- 3 call $DFS(G^T)$, but in the main loop of DFS, consider the vertices in decreasing order of f[u] (as computed in step 1)
- 4 output the vertices of each depth-first search tree built in step 3 as an independent connected component

Exemplo: Grafo G = (V, E)

DFS(G)

 G^T

$DFS(G^T)$

Nós em amarelo são raízes das árvores de profundidade.

Conclusões

- ► Fim!
- Obrigado pela presença