Alimentación en Erizos de Mar

1. Introducción

En esta práctica se calculará una regresión lineal en donde la variable dependiente es el ancho de las suturas de los erizos de mar y la variable independiente el tipo de alimentación y el peso inicial. Debido que hasta ahora solo se ha visto regresiones lineales con variables numéricas, se considerará unicamente en el análisis el peso inicial.

Adicionalmente se calculará: TSS, ESS, RSS, R^2 y $\hat{\sigma}^2$

```
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
library(tidymodels)  # package that imports useful packages for modeling
library(readr)  # for importing data
library(dotwhisker)  # visualize regression results

# 72 urchins ==
# experimental feeding regime group
urchins <-
    read_csv("https://raw.githubusercontent.com/savrgg/class_ITAM_metodos/main/notas_r/urchins.csv") %>%
    setNames(c("food_regime", "initial_volume", "width")) %>%
    mutate(food_regime = factor(food_regime, levels = c("Initial", "Low", "High")))
urchins
```

```
## # A tibble: 72 x 3
##
      food regime initial volume width
##
      <fct>
                            <dbl> <dbl>
##
   1 Initial
                             3.5 0.01
##
  2 Initial
                             5
                                  0.02
    3 Initial
                             8
                                  0.061
##
  4 Initial
                             10
                                  0.051
  5 Initial
                             13
                                  0.041
  6 Initial
                                  0.061
##
                             13
##
   7 Initial
                             15
                                  0.041
## 8 Initial
                             15
                                  0.071
## 9 Initial
                             16
                                  0.092
## 10 Initial
                             17
                                  0.051
## # ... with 62 more rows
```

1.1 Exploratory Data Analysis

Como primer paso se realizará un análisis exploratorio de datos, donde se pondrá por tipo de alimentación los puntos entre volumen inicial y el peso del erizo:

Relación entre los distintos niveles de alimentación

Total de muestra: 72 erizos bajo tres tratamientos

Información recopilada de Constable, A.J., 1993

En este sentido vemos que la pendiente con alimentación alta es mayor, lo cual hace sentido debido a que mejor alimentación más ancho será la sutura, en cambio, para una alimentación baja, la pendiente es cercana a 0.

1.2 Regresión lineal para width de erizos

Ahora se realizará la regresión con tidymodels:

```
# experimental feeding regime group (food_regime: either Initial, Low, or High),
# size in milliliters at the start of the experiment (initial_volume)
# suture width at the end of the experiment (width).
# 1 - entrenar modelo
lm fit <-</pre>
 linear_reg() %>%
 fit(width ~ initial_volume, data = urchins)
# 2 - visualizar y graficar
glance(lm_fit)
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik
                                                                  AIC
##
        <dbl>
                      <dbl> <dbl>
                                     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
       0.0712
                     0.0579 0.0270
                                       5.37 0.0235
                                                       1 159. -312. -305.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
tidy(lm_fit)
## # A tibble: 2 x 5
   term
                   estimate std.error statistic p.value
##
     <chr>
                      <dbl> <dbl> <dbl>
                                                  <dbl>
## 1 (Intercept)
                   0.0587 0.00672
                                         8.73 8.24e-13
## 2 initial_volume 0.000657 0.000283
                                         2.32 2.35e- 2
```

La recta (estimación puntual y por intervalos) la podemos ver en la siguiente gráfica:

```
# 3 - graficar predicciones
new_points <- expand.grid(initial_volume = 0:50)</pre>
mean_pred <- predict(lm_fit, new_data = new_points)</pre>
conf_int_pred <-</pre>
  predict(
    object = lm_fit,
    new_data = new_points,
    type = "conf int",
    level = .95
    )
plot_data <-
  new_points %>%
  bind_cols(mean_pred) %>%
  bind_cols(conf_int_pred)
# 4 - graficar datos
ggplot(plot_data, aes(x = initial_volume)) +
  geom_point(data = urchins, aes(x = initial_volume, y = width))+
  geom_point(aes(y = .pred), alpha = 0.2) +
  geom_errorbar(aes(ymin = .pred_lower,
                    ymax = .pred_upper),
                width = .2, alpha = 0.2) +
  geom_smooth(data = urchins,aes(x = initial_volume, y = width), method = "lm")+
```


1.3 Coeficientes de β_0 y β_1

Podemos calcular los coeficientes de β_0 y β_1 con las fórmulas:

```
# 5 - ¿cómo se ven los coeficientes con las fórmulas?
b1 <- cov(urchins$width,urchins$initial_volume)/var(urchins$initial_volume)
b0 <- mean(urchins$width)-b1*mean(urchins$initial_volume)
b1
```

[1] 0.0006565835

b0

[1] 0.05866426

Ahora para poder calcular la \mathbb{R}^2 necesitamos calcular:

1.4 TSS, ESS y RSS

```
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
yhat <- predict(lm_fit, new_data = urchins %>% select(-width))
# TSS (Total Sum of Squares)
tss <- sum((urchins$width-mean(urchins$width))**2)</pre>
# RSS (Residual Sum of Squares)
rss <- sum((urchins$width-yhat)**2)</pre>
# ESS: (Explained Sum of Squares)
ess <- sum((urchins$width-yhat)**2)</pre>
# sigma_hat
rse <- round(sqrt(ess/(72-2)),4)
r2 <- (tss-rss)/tss
tss
## [1] 0.05492088
## [1] 0.05100981
## [1] 0.05100981
rse
## [1] 0.027
## [1] 0.07121268
```