Yyuebru 6.

6—12 окт. **6** Магнитное поле в веществе. 6.3/4 06.1 06.2

26.3. (6.4)

6.3. Бесконечная плоская пластина изготовлена из однородного намагниченного ферромагнетика, причем вектор намагниченности \mathbf{I} перпендикулярен плоскости пластины. Найти поля \mathbf{B} и \mathbf{H} внутри и вне пластины.

 ${f 6.4.}$ Бесконечная плоская пластина изготовлена из однородного намагниченного ферромагнетика, причем вектор намагниченности ${f I}$ параллелен плоскости пластины. Найти поля ${f B}$ и ${f H}$ внутри и вне пластины.

H = B - 4+]

T. v. nuaemuna Secnonumae, mo mone navamunubakue, muyupue no upaeu maemuun, ne eoganom

montumero none. => B=0 enaggio a brighipa

Torga Îl = B = 0 enapyru
Îl = B - 4trÎ = - 4trÎ legropu.

Ombun: B = 0 lungy

H=0 unapyru, R=-44I brynyn

Hone kanamucubanue npomunaro bjans
bee ninemum om upano go upano
Ohn concuen human none à concuendant

Our eogacon frympu none B, conanpabrennee e I chapyre none B palno hyrro (nau

nose blu grumo connocea).

Nove brynger - neue Sieushaus grunnes eacenoige:

$$B = \frac{kH}{C}$$
 i won = kHJ . Beumopno: $\vec{B} = 4H\vec{J}$.

Ombern
$$B=0$$
; $\widehat{H}=0$ (enapyonal $\widehat{B}=4\pi\widehat{J}$) $\widehat{H}=0$ (buyunpu)

26.10

 0 6.1. Постоянный магнит длиной L с однородной намагниченностью I согнут в кольцо так, что между полюсами остался маленький зазор $\ell \ll L$. Определите магнитную индукцию в зазоре.

$$\underline{\text{Otbet:}} B = 4\pi I \frac{L}{L+\ell} \approx 4\pi I.$$

Pemerue:

Samuure the o gupuyayuu non B gre nounge :

$$B \cdot (L+U) = \frac{utt}{e} i_{max} \cdot L = 4H J L$$

$$=> B = 4H J \frac{L}{1+0}$$

Ombern' B=4#I Lie

 $^{0}6.2.$ (2017-1A) Постоянный магнит изготовлен из однородно намагниченного материала и имеет форму тонкого диска толщиной d и площадью S. Вектор намагниченности \vec{I} направлен по нормали к плоскости диска. Найти циркуляцию векторов индукции и напряжённости магнитного поля \vec{B} и \vec{H} по контуру L, показанному на рисунке штриховой линией.

Sis, 201-1.

$$\oint (\vec{H}, d\vec{e}) = \underbrace{ut}_{e} \cdot I_{npologue uocu}$$

$$\oint (\vec{B}, d\vec{e}) = \underbrace{utt}_{e} \cdot I_{npolog} \cdot I_{valuam}$$

$$= utt = utt$$

Omban: \((\vec{1}, de) = 0; \quad \(\vec{1} \), \de (\vec{1} \), \de (\vec{1} \).