Bases de datos Introducción

Elizabeth León Guzmán, Ph.D. eleonguz@unal.edu.co

Arles Rodríguez, Ph.D. aerodriguezp@unal.edu.co

Jonatan Gómez Perdomo, Ph. D. igomezpe@unal.edu.co

Camilo Cubides, Ph.D. (c) eccubidesg@unal.edu.co

Carlos Andres Sierra, M.Sc.

Research Group on Data Mining – Grupo de Investigación en Minería de Datos – (Midas)
Research Group on Artificial Life – Grupo de Investigación en Vida Artificial – (Alife)
Computer and System Department
Engineering School
Universidad Nacional de Colombia

Datos e información

- Datos
- Información
- DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relaciona
- MySQL

Agenda

- Datos e información
 - Datos
 - Información
- DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relacional
- MySQL

Datos I

¿Qué es un dato?

Definición (Población)

- Conjunto con elementos que tienen propiedades en común.
- Conjunto bien definido (es posible identificar cuáles elementos pertenecen al conjunto y cuáles no).

Características de la población

Son propiedades de la población que se pueden medir. En estadística, las propiedades medibles se llaman Variables).

¿Qué es un dato?

Ejemplo

Población: Personas que viven en mi barrio.

Las personas tienen características o propiedades en común que pueden ser *medibles*

Característica de la población (variable):

$$edad = \{25, 15, 6, 75, 15, \ldots\}$$

Datos III

¿Qué es un dato?

Variable

$$edad(x) = ?$$

- La variable tiene rango.
- La variable aleatoria es una función.
- La posibilidad de que se tome un x y x tome un valor y, se le llama evento.

Datos IV

Datos

Los datos son:

- Hechos individuales acerca de algo de interés para alguien.
- Representación simbólica de una variable numérica o categórica.

Ejemplos

Temperatura : 17, 28, 15

Ciudad : Bogotá, Cartagena

Fecha: Julio 20 2020, Julio 20 2021

Datos V Tipos de Datos

- Las variables cuantitativas son las que se expresan mediante un número. Se puede realizar operaciones aritméticas con ellas.
- Las variables cualitativas son las que expresan características o cualidades, y no pueden ser medidas con número

Ejemplos

Cuantitativas: temperatura, edad, altura

Cualitativa: nombre, titulo, profesión

Generación de Datos

Tomado de [2]

Comerciales

- Web (e-commerce, e-learning).
- Supermercados (compras).
- Bancos (transacciones con tarjetas, web).

- Satélites
- Telescopios
- Microarrays (información genética)
- Simulaciones

- Datos e información
 - Datos
 - Información
- DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relaciona
- MySQL

Información I

¿Qué es información?

- Datos relacionados y estructurados.
- Almacenados generalmente en Bases de Datos.
- Consultas para obtener información.

Ciudad	Temperatura	Fecha
Bogotá	15	Julio 20 2020
Cartagena	28	Julio 20 2020
Bogotá	17	Julio 20 2021

Ej: los datos se relacionan en una fila de una tabla

Información II

Información III

Los datos se pueden procesar y modelar para guardarlos para luego recuperar información.

Los datos se pueden guardar en:

- Archivos txt
- Excel, pdf
- Estructuras
- Bases de datos

Base de Datos

Definición

Una colección de datos relacionados, y una descripción de estos datos, diseñados para cumplir con las necesidades de información de una organización.

(Connolly & Begg)

Operaciones sobre los datos

Para cumplir con las necesidades de información las Organizaciones pueden realizar operaciones sobre los datos provenientes de su actividad que se encuentran almacenados en una base de datos:

- Almacenar
- Procesar
- Recuperar
- Actualizar
- Eliminar
- Intercambiar

Actividades con requerimientos de datos

Ejemplos

Algunos ejemplos de industrias y/o actividades que requieren tener almacenados los datos para satisfacer necesidades de información:

Ejemplos

- Ventas
- Bancos
- Hospitales
- Educación
- Bibliotecas
- Finanzas
- Transporte

- Datos e información
 - Datos
 - Información
- 2 DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relacional
- MySQL

DBMS (DataBase Management System)I

Sistemas administrador de bases de datos

Arquitectura Cliente Servidor

- Servidor: gestiona la base de datos (DBMS)
- Cliente: permite enviar comandos al servidor

DBMS (DataBase Management System) I

Definición (DataBase Management System)

UN DBMS es un conjunto de programas que maneja la estructura de la BD y controla el acceso a los datos guardados en ella.

- Permite crear y organizar los datos.
- Maneja los datos según las necesidades de los usuarios.
- Mantiene integridad y seguridad de los datos.
- Establece y mantiene rutas de acceso.
- Control de usuarios que acceden.

DBMS (DataBase Management System) II

Eficiencia

Manejo de grandes cantidades de datos y de usuarios

Seguridad

Proteger los datos de destrucciones maliciosas o cambios en los datos

Privacidad

Garantizar acceso solo a los datos que se requieran

- Multiusuario
- Manejo de concurrencia: para los usuarios es transparente que otros usuarios acceden a la base de datos simultáneamente.
- Miles de consultas por segundos

saldo de su cuenta bancaria

- Robo, destrucción, intentos de falsificación
 Eiemplo: alguien que guiera incrementar el
- Datos deben ser consistentes a pesar de lo
- que pueda ocurrir
- Acceso a los datos pertinentes para cada perfil de usuario
- Ejemplo: los vendedores no deberían tener acceso a los datos de salario de los empleados de la compañía

DBMS (DataBase Management System) III

Recuperación de datos

Capacidad de recuperar los datos si estos son perdidos o dañados

- Fallas de hardware
- Desastre natural
- Persistencia: datos deben mantenersen. (Respaldo de los datos)

Exactitud de Datos

Integridad y consistencia de los datos

- Evitar redundancia
- Datos deben ser consistentes a pesar de lo que pueda ocurrir

Tipos de DBMS I

Según modelo de datos

- DBMS jerárquico
- DBMS de red
- DBMS relacional
- DBMS orientados a objetos
- DBMS basada en clave-valor
 - Orientadas a Columnas
 - Documentales
 - •1960
 •IBM, UNIVAC,
 HoneyWell
 - Computadores mainframe
 - Legacy systems (datos históricos)

Jerárquico: Modelo de datos basado en árboles

Red: Modelo de datos basado en grafos

Tipos de DBMS II

Según modelo de datos

- DBMS jerárquico
- DBMS de red
- DBMS relacional
- DBMS orientados a objetos
- DBMS basada en clave-valor
 - Orientadas a Columnas
 - Documentales

- Viable en 1980
- Preferido desde entonces
- Lenguaje SQL

Relacional: Modelo de datos basado en tablas

Tipos de DBMS III

Según modelo de datos

- DBMS jerárquico
- DBMS de red
- DBMS relacional
- DBMS orientados a objetos
- DBMS basada en ciave-valor
 - Orientadas a Columnas
 - Documentales
 - POO
 - Se usa para aplicaciones que intuitivamente se manejan con objetos

Orientado a Objetos: Modelo de datos donde los datos se almacenan en objetos (clases)

Tipos de DBMS IV

Según modelo de datos

- DBMS jerárquico
- DBMS de red
- DBMS relacional
- DBMS orientados a objetos
- DBMS basada en clave-valor
 - Orientadas a Columnas
 - Documentales
 - NoSQL
 - Datos No estructurados o semiestructurados
 - Big Data
 - Preferibles para disponibilidad de datos
 - Distribución de datos

```
001:{
       personal: {
                                   nombre: {
                       timestamp1 : "Juan"
                                   telefono:{
                       timestamp1 : 3129765437
                       timestamp2 : 3114563523
         oficina: {
                                   dirección:
                     timestamp1 : "Av 20 de Julio
3-20"
                                   telefono: {
                     timestamp1 : 3789029
```


Agenda

- Datos e información
 - Datos
 - Información
- 2 DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relacional
- 4 MySQL

Modelo Relacional I

Definición (Base de datos relacional)

Una base de datos relacional es una colección de relaciones que contienen los datos que describen un ambiente de negocios.

- Las relaciones se representan en tablas y cada una tiene un nombre exclusivo.
- Basado en conceptos matemáticos.

Modelo Relacional II

Es el más usado desde el año 1970

Relación — Tabla

Estudiante

Nombre	Apellido	Edad	Género	teléfono
Jorge	Díaz	20	m	3562819
María	Martínez	23	f	9873209
Rosa	Gómez	19	f	1743829
Pedro	Suarez	21	m	6386472

Modelo Relacional III

Relación — Tabla

Modelo Relacional IV

Varias tablas

Estudiante

Código	Nombre	Apellido	Edad	Género	teléfono
100	Jorge	Díaz	20	m	3562819
101	María	Martínez	23	f	9873209
102	Rosa	Gómez	19	f	1743829
103	Pedro	Suarez	21	m	6386472

Asignatura

Código	Nombre	Créditos
10	Programación	4
20	Bases de Datos	3
30	Matemáticas	4
40	Software	3

Inscripción

Código_Estudiante	Cod_asignatura	Semestre
100	10	2020-I
100	20	2020-I
100	10	2019-II
102	10	2020-I
102	20	2020-I
102	30	2020-I
103	30	2019-I
103	40	2019-I

Modelo Relacional V

Aplicaciones

Ventas: Clientes, productos y compras.

Bancos: Clientes, cuentas, préstamos y transacciones bancarias.

Hospitales Historias clínicas, citas, doctores, enfermeras y enfermedades.

Educación (colegios, universidades) Estudiantes, matrículas, cursos y profesores.

Bibliotecas: Libros, autores, editoriales, préstamos.

Finanzas: Acciones, bonos, ventas y compras.

Transporte: Reservas, horarios, inventario.

SQL-Structured Query Language

Definición (SQL)

Lenguaje propio de los DBMS para interactuar con los datos

- Crear
- Definir
- Consultar
- Modificar
- Actualizar

Modelo Relacional Vs. NoSQL

RELACIONALES	NoSQL	
Aplicaciones centralizadas	Aplicaciones descentralizadas	
(ERPs, CRMs, etc)	(web, IoT, móbil, etc.)	
Datos estructurados Volumen	Datos semi–estructurados y No	
moderado	estructurados. "Big Data"	
Alta disponibilidad	Disponibilidad Continua	
Velocidad Moderada	Alta velocidad. Datos de sen-	
	sores, gps, máquinas, etc.	
Transacciones complejas	Transacciones simples	
Escalabilidad Vertical	Escalabilidad Horizontal	

Agenda

- Datos e información
 - Datos
 - Información
- DBMS(DataBase Management System) Sistema Administrador de Bases de Datos
- Modelo relacional
- 4 MySQL

MySQL I

- DBMS relacional
- Programada en C y C++
- Es el DBMS de código abierto más popular.
- Esta bajo licencia dual: Licencia pública general/Licencia comercial por Oracle Corporation

MySQL II

Instalación

Se intalará el servidor de MySQL y el cliente workbench

Enlace para bajar el instalador (incluye el servidor y el cliente) en windows.

Referencias I

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, *Introduction to data mining, (first edition)*, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

