7. РАСЧЕТ ОБЪЕМНОГО ГИДРОПРИВОДА

7.2. Расчет гидропривода

При расчете гидропривода принимается ряд допущений, основными из которых являются следующие:

- рабочая жидкость считается несжимаемой;
- температура жидкости, основные физические свойства жидкости (плотность, вязкость и др.) принимаются постоянными;
 - режим работы гидропривода установившийся;
 - коэффициенты гидравлических сопротивлений постоянны;
- разрыва потока жидкости при работе гидропривода не происходит;
 - подача насоса, питающего гидросистему, постоянна.

7.2.1. Определение мощности гидропривода и выбор насоса

- 7.2.2. Определение внутреннего диаметра гидролиний, скоростей движения жидкости
- 7.2.3. Выбор гидроаппаратуры, кондиционеров рабочей жидкости
 - 7.2.4. Расчет потерь давления в гидролиниях
 - 7.2.5. Расчет и выбор гидроцилиндров
 - 7.2.6. Расчет и выбор гидромоторов
 - 7.2.7. Определение КПД гидропривода

7.2.1. Определение мощности гидропривода и выбор насоса

Мощность гидропривода определяется по заданным нагрузкам и скоростям гидродвигателей, обеспечивающих привод исполнительных механизмов.

Полезная мощность гидродвигателя возвратно-поступательного действия (гидроцилиндра) определяется по формуле

$$N_{\text{\tiny ГДВ}} = FV, \tag{7.1}$$

где $N_{\text{гдв}}$ — мощность гидродвигателя, кВт; F — усилие на штоке, кH; V — скорость движения штока, м/с.

Полезная мощность гидродвигателя вращательного действия (гидромотора) определяется по формуле

$$N_{\text{\tiny ГДВ}} = M\omega_{_{\text{\tiny M}}} = M2\pi n_{_{\text{\tiny M}}}, \tag{7.2}$$

где $N_{\text{гдв}}$ — мощность гидродвигателя, кВт; M — крутящий момент на валу гидромотора, кH·м; $\omega_{_{M}}$ — угловая скорость вращения вала гидромотора, $c^{\text{-1}}$; $n_{_{M}}$ — частота вращения вала гидромотора, $c^{\text{-1}}$ (об/с).

Полезная мощность гидропривода при работе в цикличном режиме определяется по заданной в исходных данных циклограмме как средняя за цикл по формулам:

для гидроцилиндра:

$$N_{\text{\tiny ГДВ.cp}} = \frac{\sum_{i=1}^{n} F_{i} V_{i} \Delta t_{i}}{T_{\text{\tiny II}}}, \tag{7.3}$$

для гидромотора:

$$N_{\text{\tiny ГДВ.cp}} = \frac{\sum_{i=1}^{n} M_{i} \omega_{i} \Delta t_{i}}{T_{\text{\tiny II}}}, \tag{7.4}$$

где $N_{\text{гдв.ср}}$ — средняя мощность, кВт; i=1,2,..., n — номер операции в цикле; Δt_i — продолжительность i - ой операции, c; T_{ii} — время цикла, c; F_i , M_i , V_i , ω_i — нагрузки и скорости гидродвигателей на протяжении i - ой операции цикла.

Если же в гидросистеме несколько гидроцилиндров и гидромоторов, то полезную мощность находят по сумме мощностей одновременно работающих гидродвигателей.

На первом этапе расчета гидропривода потери давления и расхода рабочей жидкости учитываются коэффициентами запаса по усилию и скорости.

Коэффициент запаса по усилию учитывает гидравлические потери давления в местных сопротивлениях и по длине гидролиний, а также потери мощности на преодоление инерционных сил, сил механического трения в подвижных соединениях и т.д.

Коэффициент запаса по скорости учитывает утечки рабочей жидкости, уменьшение подачи насоса с увеличением давления в гидросистеме.

Полезная мощность насоса определяется исходя из мощности гидродвигателя, с учетом потерь энергии при ее передаче от насоса к гидродвигателю по формуле

$$N_{HII} = k_{3y} k_{3c} N_{\Gamma JB}, \qquad (7.5)$$

где $N_{\rm HII}$ — полезная мощность насоса, кВт; $k_{\rm 3y}$ — коэффициент запаса по усилию, $k_{\rm 3y}=1,1...1,2;$ $k_{\rm 3c}$ — коэффициент запаса по скорости, $k_{\rm 3c}=1,1...1,3;$ $N_{\rm гдв}$ — мощность гидродвигателя, кВт.

Меньшие значения коэффициентов следует выбирать для гидроприводов, работающих в легком и среднем режимах, а большие — в тяжелом и весьма тяжелом режимах эксплуатации.

Зная необходимую полезную мощность насоса, определяемую по формуле (7.5), и учитывая, что полезная мощность насоса связана с номинальным давлением и подачей зависимостью $N_{\mbox{\tiny HII}} = p_{\mbox{\tiny HOM}} Q_{\mbox{\tiny H}}$ (см. формулу 2.7), можно найти подачу или рабочий объем насоса по формулам:

$$Q_{H} = \frac{N_{H\Pi}}{p_{HOM}}; \qquad (7.6)$$

$$q_{H} = \frac{N_{H\Pi}}{p_{HOM}n_{H}}, \qquad (7.7)$$

где $N_{\rm HII}$ – полезная мощность насоса, кВт; $Q_{\rm H}$ – подача насоса, дм 3 /с, $Q_{\rm H} = q_{\rm H} n_{\rm H}$; $p_{\rm HOM}$ – номинальное давление, МПа; $q_{\rm H}$ – рабочий объем насоса, дм 3 (дм 3 /об); $n_{\rm H}$ – частота вращения вала насоса, с $^{-1}$ (об/с).

Для того чтобы найти рабочий объем насоса по формуле (7.7), необходимо задаться частотой ращения вала насоса, которая зависит от типа приводного двигателя (двигатель внутреннего сгорания, электродвигатель и др.).

Для мобильных машин в качестве приводных двигателей насосов чаще всего используются дизели с номинальной частотой вращения 1500, 1600, 1700 об/мин и т.д.

Номинальные частоты вращения, установленные ГОСТ 12446-80, следующие: 480, 600, 750, 960, 1200, 1500, 1920, 2400, 3000 об/мин и другие.

Для насосов с приводом от электродвигателей принимаются значения частот вращения соответствующих электродвигателей.

Насос выбирают из технической литературы по двум параметрам, ближайшим к расчетным: номинальному давлению $p_{\text{ном}}$ и рабочему объему насоса $q_{\text{н}}$. В пояснительной записке приводится техническая характеристика выбранного насоса.

При выборе насоса следует учитывать, что насосы, рассчитанные на высокое давление, могут быть использованы в гидроприводах, имеющих более низкое давление.

По технической характеристике выбранного насоса производят уточнение действительной подачи насоса:

По технической характеристике выбранного насоса производится уточнение действительной подачи насоса по формуле

$$Q_{H\partial} = q_{H\partial}^{} n_{H\partial}^{} \eta_{OO}^{}, \tag{7.8}$$

где $Q_{_{n\delta}}$ — действительная подача насоса, дм 3 /с; $q_{_{n\delta}}$ — действительный рабочий объем насоса, дм 3 (дм 3 /об); $n_{_{n\delta}}$ — действительная частота вращения вала насоса, $n_{_{n\delta}}=n_{_{n}}$, с $^{-1}$ (об/с); $\eta_{_{o\delta}}$ — объемный КПД насоса.

Действительная частота вращения вала насоса $n_{_{\!\scriptscriptstyle H\!O}}$ в формуле (7.8) может отличаться от номинальной частоты вращения вала насоса из его технической характеристики и берется равной частоте $n_{_{\!\scriptscriptstyle H}}$, принятой в формуле (7.7).

Если значения рабочего объема насоса в результате расчетов оказываются большими, то возможно применение двух и более насосов, устанавливаемых параллельно. При этом с целью унификации целесообразно использовать один тип насосов.

7.2.2. Определение внутреннего диаметра гидролиний, скоростей движения жидкости

Расчетные значения внутренних диаметров всасывающей, напорной и сливной гидролиний определяют из уравнения неразрывности потока жидкости с учетом размерностей по формуле

$$d_{p} = \sqrt{\frac{4 \cdot 10^{-3} Q_{no}}{\pi V_{\infty}}} , \qquad (7.9)$$

Скорости движения рабочей жидкости выбирают в зависимости от назначения гидролинии таким образом, чтобы для уменьшения потерь давления на гидравлическое трение режим движения был ламинарным или близким к нему.

Рекомендуемые значения скорости движения рабочей жидкости для всасывающей, напорной и сливной гидролиний приведены в табл. 4.6.

По расчетному значению внутреннего диаметра гидролинии d_p производят выбор трубопровода по ГОСТ 8734-75, при этом действительное значение диаметра трубопровода d должно быть больше расчетного, т.е. $d \ge d_p$. Значение толщины стенки трубопровода принимают конструктивно равным $2 \dots 4$ мм.

После выбора трубопроводов производят определение действительных скоростей движения жидкости во всасывающей, напорной и сливной гидролиниях по формуле

$$V_{_{\mathcal{H}O}} = \frac{4 \cdot 10^{-3} Q_{_{HO}}}{\pi d^2}, \tag{7.10}$$

где $V_{\rm жд}$ — действительное значение скорости движения жидкости, м/c; d — действительное значение внутреннего диаметра гидролинии, м; $Q_{\rm нд}$ — действительный расход жидкости, дм 3 /c.

7.2.3. Выбор гидроаппаратуры, кондиционеров рабочей жидкости

Гидроаппаратуру (распределители, клапаны, дроссели и др.) выбирают по условную проходу и номинальному давлению. Дополнительным параметром для гидроаппаратуры является номинальный расход рабочей жидкости.

Под условным проходом d_y по ГОСТу 16516-80 понимается округленный до ближайшего значения из установленного ряда диаметр круга, площадь которого равна площади характерного проходного сечения канала устройства или площади проходного сечения присоединяемого трубопровода.

Соотношение между условными проходами и действительными внутренними диаметрами по ГОСТу 16516-80 приведены в табл. 7.2.

Соотношение между условными проходами и действительными внутренними диаметрами

Условный проход d_y , мм	Диапазон действительных внутренних
	диаметров d, мм
5,0	4,55,7
6,0	5,77,2
8,0	7,29,0
10,0	9,011,0
12,0	11,014,0
16,0	14,018,0
20,0	18,022,5
25,0	22,528,5
32,0	28,536,0
40,0	36,045,0
50,0	45,057,0
63,0	57,072,0
80,0	72,090,0

Перед выбором кондиционеров рабочей жидкости устанавливаются требования к тонкости фильтрации, обуславливаемые в основном типом выбранного насоса. Определяется место установки кондиционера в гидросистеме.

Кондиционеры рабочей жидкости в зависимости от требований, предъявляемых к чистоте рабочей жидкости, выбираются по следующим параметрам: условному проходу, номинальной тонкости фильтрации, номинальной пропускной способности и номинальному давлению.

Выбор рабочей жидкости производится на основе анализа режимов работы и условий эксплуатации гидропривода, а также с учетом конструктивных особенностей используемого гидрооборудования, особенно насоса.

7.2.4. Расчет потерь давления в гидролиниях

Определение потерь давления при движении жидкости в гидролиниях необходимо для более точного расчета гидродвигателя, а также для определения гидравлического КПД гидропривода.

Потери давления определяют отдельно для каждой гидролинии (всасывающей, напорной, сливной) при определенной температуре рабочей жидкости. В соответствии с известным из гидравлики

принципом наложения потерь потери давления в гидролинии определяют по формуле

$$\Delta p = \Delta p_{\ell} + \Delta p_{M} \quad , \tag{7.11}$$

где $_{\Delta}$ р — потери давления в гидролинии, МПа; $_{\Delta p_{_{M}}}$ — потери давления по длине гидролинии (путевые), МПа; $_{\Delta p_{_{M}}}$ — потери давления в местных сопротивлениях, МПа.

Потери давления по длине гидролинии (путевые) определяют по формуле

$$\Delta p_{\ell} = \lambda \frac{\ell}{d} \cdot \frac{V_{\text{sco}}^2}{2} \rho \cdot 10^{-6}, \qquad (7.12)$$

где Δp_{ℓ} — потери давления по длине гидролинии (путевые), МПа; λ — коэффициент путевых потерь (коэффициент Дарси); ℓ — длина гидролинии, м; d — внутренний диаметр гидролинии, м; $V_{_{\mathcal{M}^{0}}}$ — действительная скорость движения жидкости в гидролинии, м/с; ρ — плотность рабочей жидкости, кг/м 3 .

Коэффициент путевых потерь зависит от режима движения жидкости, его определяют по формулам, рекомендуемым в гидравлике:

а) для ламинарного режима (Re < 2320):

$$\lambda = \frac{75}{Re};\tag{7.13}$$

б) для турбулентного режима (Re > 2320):

$$\lambda = \frac{0.3164}{Re^{0.25}},\tag{7.14}$$

где Re — число Рейнольдса, $Re = V_{MO} d / V$, здесь V — кинематический коэффициент вязкости жидкости.

Потери давления в местных сопротивлениях определяются по формуле

$$\Delta p_{M} = \xi \frac{V_{MCO}^{2}}{2} \rho \cdot 10^{-6}, \qquad (7.15)$$

где $\Delta p_{_{M}}$ — потери давления, МПа; ξ — коэффициент местного сопротивления; $V_{_{\mathcal{R}\mathcal{I}}}$ — средняя скорость движения жидкости, м/с; ρ — плотность жидкости, кг/м³.

Значения коэффициентов для различных видов местного сопротивления (поворот гидролинии, внезапное расширение потока при входе в гидроцилиндр и т.д.) приводятся в технической литературе.

подсчете суммарных потерь давления местных необходимо сопротивлениях учитывать потери давления гироаппарате, сведения которых приводятся 0 технической характеристике выбранных гидроаппаратов. При предварительном расчете гидропривода определение потерь давления не производится.

7.2.5. Расчет и выбор гидроцилиндров

Поршневые гидроцилиндры двустороннего действия с односторонним штоком являются самыми распространенными гидродвигателями поступательного движения выходного звена.

Основными параметрами гидроцилиндров являются: усилие на штоке F, скорость штока V, диаметр поршня D, диаметр штока d и ход штока L. Усилие на штоке, скорость штока и ход штока заданы, а диаметры поршня и штока рассчитываются. Расчетные схемы гидроцилиндров приведены на рис. 7.1.

Диаметр поршня гидроцилиндра с поршневой рабочей полостью A (шток выталкивается, см. рис. 7.1, a) определяют из уравнения равновесия сил, действующих на шток:

$$F_{1} = p_{1} \frac{\pi D^{2}}{4} - p_{2} \frac{\pi}{4} (D^{2} - d^{2}), \tag{7.16}$$

где F_1 — усилие на штоке, H; p_1 — давление в поршневой полости, Π а, p_1 = $p_{\text{ном}}$ — $\Delta p_{_{_{\!\it H}}}$, здесь $p_{\text{ном}}$ — номинальное давление, $\Delta p_{_{\!\it H}}$ — потери давления в напорной гидролинии; D — диаметр поршня, M; p_2 — давление в штоковой полости, Π а, p_2 = Δp_c — потери давления в сливной гидролинии; d — диаметр штока, M.

Потери давления в напорной и сливной гидролиниях определяются по формуле (7.11).

Рис. 7.1. Расчетные схемы гидроцилиндров: a) — с поршневой рабочей полостью;

 δ) – со штоковой рабочей полостью

Задавшись значением коэффициента $\varphi = d/D = 0,3...0,7$ и решив уравнение (7.16) относительно диаметра поршня, получим следующее выражение:

$$D = D_{1} = \sqrt{\frac{4F_{1}}{\pi \left[(p_{HOM} - \Delta p_{H}) - (1 - \varphi^{2}) \Delta p_{c} \right]}}$$
 (7.17)

После нахождения диаметра поршня определяют диаметр штока $\mathbf{d} = \boldsymbol{\varphi} \cdot \boldsymbol{D}$.

Для гидроцилиндра со штоковой рабочей полостью Б (шток втягивается, см. рис. 7.1, δ) диаметр поршня определяют из формулы

$$F_2 = p_2 \frac{\pi}{4} (D^2 - d^2) - p_1 \frac{\pi D^2}{4}, \qquad (7.18)$$

где F_2 — усилие на штоке, H; p_2 — давление в штоковой полости, Π а, $p_2 = p_{\text{ном}} - \Delta p_{\text{н}}$, здесь $p_{\text{ном}}$ — номинальное давление, $\Delta p_{_{\scriptscriptstyle H}}$ — потери давления в напорной гидролинии; D — диаметр поршня, M; d — диаметр

штока, м; p_1 — давление в поршневой полости, Па, p_1 = Δp_c , здесь Δp_c — потери давления в сливной гидролинии.

Решив уравнение (7.18) относительно диаметра поршня при выбранном значении $\phi = d/D$, получим

$$D = D_{1} = \sqrt{\frac{4F_{2}}{\pi \left[(p_{HOM} - \Delta p_{H})(1 - \varphi^{2}) - \Delta p_{c} \right]}}$$
 (7.19)

Кроме определения диаметра поршня из условия обеспечения заданного усилия F необходимо произвести еще расчет гидроцилиндра по обеспечению заданной скорости движения штока V.

В этом случае диаметр поршня вторично определяется из уравнения неразрывности потока жидкости ($Q_{_{n\partial}} = VS_{_{3\phi}}$, здесь $S_{_{3\phi}}$ — эффективная площадь поршня) по формулам:

а) для гидроцилиндра с поршневой рабочей полостью:

$$D = D_2 = \sqrt{\frac{4Q_{\text{\tiny H}\dot{0}}}{\pi V}} \quad ; \tag{7.20}$$

б) для гидроцилиндра со штоковой рабочей полостью:

$$D = D_2 = \sqrt{\frac{4Q_{HO}}{\pi(1 - \varphi^2)V}}, \qquad (7.21)$$

где D — диаметр поршня, м; $Q_{\text{нд}}$ — расход жидкости, м³/c; V — скорость движения штока, м/c; ϕ — коэффициент, ϕ = d / D .

По известным значениям диаметров поршня, полученным по уравнениям (7.17) и (7.20) или (7.19) и (7.21), находим его среднее значение $D_{cp} = (D_1 + D_2)/2$ и среднее значение диаметра штока гидроцилиндра.

Основные параметры гидроцилиндров, в том числе диаметры поршня и штока, регламентируются ГОСТ 6540-68 "Гидроцилиндры и пневмоцилиндры. Ряды основных параметров" и другими нормативнотехническими документами, по которым и выбираются ближайшие к средним расчетным значениям диаметры поршня D и штока d.

Можно также воспользоваться сведениями по гидроцилиндрам, приведенным в технической литературе. Общие технические требования к гидроцилиндрам определяются ГОСТ 16514-87.

По выбранным стандартным значениям диаметров поршня D и штока d определяют действительное усилие $F_{\rm д}$, развиваемое гидроцилиндром, по формуле (7.16) или (7.18).

Действительную скорость движения штока определяют из уравнения неразрывности потока жидкости по формуле

$$V_{o} = \frac{Q_{no}}{S_{od}}, \qquad (7.22)$$

где $V_{\rm д}$ — действительная скорость штока, м/с; $Q_{\rm Hд}$ — расход жидкости, м³/с; $S_{\rm э \varphi}$ — эффективная площадь поршня, м², $S_{\rm э \varphi} = \pi D^2/4$ — для поршневой рабочей полости, $S_{\rm э \varphi} = \pi/4 \cdot \left(D^2 - d^2\right)$ — для штоковой рабочей полости, здесь D и d — стандартные значения диаметров поршня и штока соответственно.

Затем производят сравнение действительных и заданных параметров по относительным величинам:

$$\delta_{v} = \frac{\Delta V}{V} 100 \% = \frac{V - V_{o}}{V} 100 \%;$$
 (7.23)

$$\delta_F = \frac{\Delta F}{F} 100\% = \frac{F - F_o}{F} 100 \% . \tag{7.24}$$

Допускаемая величина отклонения действительных значений выходных параметров гидроцилиндра от заданных не должна превышать $\pm~10~\%$.

Ход штока определяется по кинематической схеме машины, но он должен соответствовать значению, рекомендованному для выбранных значений диаметров поршня и штока.

7.2.6. Расчет и выбор гидромоторов

Основными параметрами гидромотора являются рабочий объем $\,q_{\scriptscriptstyle M},\,$ номинальное давление $\,p_{\scriptscriptstyle HOM},\,$ крутящий момент на валу гидромотора $\,M,\,$ частота вращения вала $\,n_{\scriptscriptstyle M},\,$ расход рабочей жидкости $\,Q_{\scriptscriptstyle M}\,$.

Мощность, потребляемую гидромотором, определяют по его основным параметрам:

$$N_{u} = p_{u}Q_{u} = p_{u}q_{u}n_{u}, (7.25)$$

где $N_{\rm M}$ — мощность гидромотора, кВт; $p_{\rm M}$ — перепад давления на гидромоторе, МПа, $p_{\rm M}=(p_{\rm HOM}-\Delta p_{_{\it H}})-\Delta p_{_{\it C}}$, здесь $p_{\rm HOM}$ — номинальное давление, $\Delta p_{_{\it C}}$ — потери давления в напорной и сливной гидролиниях; $Q_{_{\it M}}$ — расход жидкости через гидромотор, дм 3 /с; $q_{_{\it M}}$ — рабочий объем гидромотора, дм 3 (дм 3 /об); $n_{_{\it M}}$ — частота вращения вала гидромотора, с $^{-1}$ (об/с).

Рабочий объем гидромотора находят из равенства полезной мощности гидромотора, определяемой по формуле (2), и потребляемой мощности (24) по формуле

$$q_{M} = \frac{2\pi M}{(p_{HOM} - \Delta p_{H}) - \Delta p_{c}}, \qquad (7.26)$$

где $q_{\rm M}$ – рабочий объем, дм³ (дм³/об); M – крутящий момент на валу гидромотора, кH·м; $p_{\rm HOM}$ – номинальное давление, М Π а; $p_{\rm H}$ – потери давления в напорной гидролинии, М Π а; $\Delta p_{\rm c}$ – потери давления в сливной гидролинии, М Π а.

Но значение рабочего объема гидромотора должно еще удовлетворять следующему соотношению:

$$Q_{\scriptscriptstyle H\partial} = Q_{\scriptscriptstyle M} = q_{\scriptscriptstyle M} n_{\scriptscriptstyle M} \tag{7.27}$$

Из формулы (7.27) вторично определяют рабочий объем гидромотора:

$$q_{M} = \frac{Q_{n\delta}}{n_{M}}, \qquad (7.28)$$

где $q_{\scriptscriptstyle M}$ — рабочий объем, дм³ (дм³/об); $Q_{\scriptscriptstyle HJ}$ — расход жидкости, дм³/с; $n_{\scriptscriptstyle M}$ — частота вращения вала гидромотора, $c^{\scriptscriptstyle -1}$ (об/с).

По среднему значению рабочего объема и остальным параметрам производят выбор гидромотора.

После выбора гидромотора определяют действительные значения частоты вращения вала и крутящего момента, развиваемого гидромотором.

Действительные значения крутящего момента и частоты вращения вала гидромотора вычисляют по формулам

$$\mathbf{M}_{\mathbf{I}} = \frac{q_{\scriptscriptstyle M\partial} \left(p_{\scriptscriptstyle HOM} - \Delta p_{\scriptscriptstyle H} - \Delta p_{\scriptscriptstyle c}\right)}{2\pi} \cdot \eta_{\scriptscriptstyle \mathcal{EM}}; \tag{7.29}$$

$$\mathbf{n}_{\mathrm{M},\mathrm{I}} = \frac{Q_{\mathrm{H}\delta}}{q_{\mathrm{H}\delta}} \eta_{\mathrm{o}\delta}, \qquad (7.30)$$

где $q_{\text{мд}}$ — действительный рабочий объем гидромотора, дм 3 (дм 3 /об); $\eta_{\text{гм}}$, $\eta_{\text{об}}$ — гидромеханический и объемный КПД гидромотора из его технической характеристики.

Далее приводят сравнение действительных и заданных параметров по относительным величинам

$$\delta_{m} = \frac{\Delta M}{M} \cdot 100 \% = \frac{M - M_{o}}{M} \cdot 100 \% ; \tag{7.31}$$

$$\delta_{n_{m}} = \frac{\Delta n_{M}}{n_{M}} \cdot 100 \% = \frac{n_{M} - n_{M\dot{O}}}{n_{M}} \cdot 100 \% . \tag{7.32}$$

Допускаемая величина отклонения не превышает ± 10 %.

7.2.7. Определение КПД гидропривода

Коэффициент полезного действия гидропривода позволяет установит эффективность спроектированной машины.

Полный КПД гидропривода определяют произведением гидравлического, механического и объемного (или гидромеханического и объемного) КПД:

$$\eta = \eta_z \eta_{\nu} \eta_{\alpha \delta} = \eta_{z \nu} \eta_{\alpha \delta}. \tag{7.33}$$

Гидравлический КПД гидропривода, учитывающий потери давления в гидролиниях, определяется по формуле

$$\eta_{\varepsilon} = \frac{p_{\scriptscriptstyle HOM} - \left(\Delta p_{\scriptscriptstyle H} + \Delta p_{\scriptscriptstyle C} + \Delta p_{\scriptscriptstyle g}\right)}{p_{\scriptscriptstyle HOM}},\tag{7.34}$$

где $p_{\text{ном}}$ — номинальное давление гидропривода, МПа; $\Delta p_{_{\scriptscriptstyle B}}$, $\Delta p_{_{\scriptscriptstyle g}}$ — потери давления в напорной, сливной и всасывающей гидролиниях, МПа.

Механический $\eta_{\scriptscriptstyle M}$ (гидромеханический $\eta_{\scriptscriptstyle \Gamma M}$) КПД гидропривода определяется произведением механических (гидромеханических) КПД всех последовательно соединенных элементов гидропривода:

$$\eta_{M} = \eta_{MH} \eta_{MP} ... \eta_{MZ\partial B};$$

$$\eta_{ZM} = \eta_{ZMH} \eta_{ZMP} ... \eta_{ZMZ\partial B};$$
(7.35)

где $\eta_{_{MH}}, \eta_{_{MP}}, ..., \eta_{_{MZOB}}$ — механические КПД насоса, распределителя,..., гидродвигателя; $\eta_{_{ZMH}}, \eta_{_{ZMP}}, ..., \eta_{_{ZMZOB}}$ — гидромеханические КПД насоса, распределителя, гидродвигателя.

Значения механических (гидромеханических) КПД гидрооборудования выбираются из технических характеристик.

Объемный КПД гидропривода η_{ob} находится из выражения

$$\eta_{o\delta} = \eta_{o\delta n} \eta_{o\delta n} \dots \eta_{o\delta c\delta n}, \tag{7.36}$$

где $\eta_{_{oбn}},\eta_{_{oбp}},...\eta_{_{oбz\partial s}}$ — объемный КПД насоса, распределителя, ..., гидродвигателя.

Объемные КПД элементов гидропривода берутся из их технических характеристик.