

Deep Vectorization of Technical Drawings

Vage Egiazarian^{1*}, Oleg Voynov^{1*}, Alexey Artemov¹, Denis Volkhonskiy¹, Aleksandr Safin¹, Maria Taktasheva¹, Denis Zorin^{2,1}, Evgeny Burnaev¹

¹ Skolkovo Institute of Science and Technology, Russia ² New York University, USA

Intro:

- Compact
- Easy primitive-level editing

- Exact representation
- No noise in output
- Minimal number of primitives

- Exact representation
- No noise in output
- Minimal number of primitives

- Exact representation
- No noise in output
- Minimal number of primitives

Intro3:

¹ www.peppercarrot.com

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

Merging of patches

- **Exact representation**
- No noise in output
- Minimal number of primitives

Input raster image

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

Merging of patches

- Exact representation
- No noise in output
- Minimal number of primitives

Input raster image

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

Merging of patches

- Exact representation
- No noise in output
- Minimal number of primitives

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

- **Exact representation**
- Minimal number of primitives

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

Merging of patches

- Exact representation
- No noise in output
- Minimal number of primitives

Estimation of primitives

Estimation of primitives


```
Primitive {
    control_point_1_x;
    control_point_1_y;
    ...
    control_point_k_y;
    width;
    confidence;
}
```

- Operation on patches for increased efficiency and robustness
- Learning for automatic optimal representation
- Attention to leverage sparsity of line drawings

Datasets:

1.5k real-world floorplans ¹

10k mechanical drawings

¹ http://precisionfloorplan.com

Input raster image

Noise removal, contrast adjustment, hole inpainting

Estimation of primitives

Refinement of primitives

Merging of patches

- Exact representation
- No noise in output
- Minimal number of primitives

Cleaning:

20k synthetic images

66 real-world floorplans

Model output

Refinement of primitives

E (estimated primitives, input raster) \longrightarrow min

Refinement of position

Refinement of size

Correction of overlaps

Comparisons

	IoU,%	d_{H}, px	d_{M}, px	#P
Favreau et al. 16	31	381	2.8	696
Donati et al. 19	22	214	2.1	1214
Bessmeltsev and Solomon. 19	60	204	1.5	38k
Our method	88	25	0.2	1331

 $\begin{array}{c} {\rm IoU\ /\ max\ error\ d_H} \\ {\rm avg\ error\ d_M\ /\ num\ of\ primitives\ \#P} \end{array}$

	IoU,%	d _H , px	d_{M}, px	#P
Favreau et al. 16	65	38	1.7	63
Donati et al. 19	60	9	1	109
Our method	77	19	0.6	97

 $\begin{array}{c} IoU\ /\ max\ error\ d_H \\ avg\ error\ d_M\ /\ num\ of\ primitives\ \#P \end{array}$

67%/32px1.1 px/79

67%/7px1.0 px / 108

95%/4px $0.2 \text{px} / \frac{9.5 \text{k}}{}$ 86%/5px0.4 px / 139

#P 139

	IoU,%	d_H , px	d_M, px	#P
Favreau et al. 16	65	38	1.7	63
Donati et al. 19	60	9	1	109
Bessmeltsev and Solomon. 19	89	17	0.7	7818
Our method	77	19	0.6	97
w/o final merging	91	19	0.3	240

IoU / max error d_H avg error d_{M} / num of primitives #P

	IoU,%	#P
Donati et al. 19	47	329
Our method	82	452