

第4章 触发器

- 4.1 概述
- 4.2 触发器的电路结构与动作特点
- 4.3 触发器的逻辑功能及其描述
- 4.4 触发器逻辑功能的转换

4.1 触发器概述

一、触发器的特点:

能够记忆一位二值信号的 基本逻辑单元电路

- 1. 具有两个能自动保持稳定的状态, '1'态和'0'态
- 2. 根据不同的输入信号可以置成'1'态和'0'态
- 3. 输入信号消失后,获得的新状态能自行保持下来
- 二、触发器的分类:
- 1. 按电路结构不同: 直接型、同步型、主从型、边沿型
- 2. 按逻辑功能不同: RSF、JKF、DF、TF和T'F
- 3. 按存储数据的原理不同: 静态、动态
- 4. 按稳定状态的特点不同: 双稳态、单稳态

4.2 触发器的电路结构与动作特点

4.2.1 基本RS触发器

基本RS触发器的工作原理

•			ı		_
车	S_D	$\overline{R_D}$	Qn	$\mathbf{Q}^{\mathbf{n+1}}\overline{\mathcal{Q}}^{n+1}$	-1
	1	1	1	1 0)
	1	1	0	0 1	
	1	0	1	0 1	
	1	0	0	0 1	
	0	1	1	1 0	
	0	1	0	1 0	
	0	0	1	1 1	
	0	0	0	1 1	

二、特性表

$\overline{S_{\scriptscriptstyle D}}$	\overline{R}_{D}	Q^{n+1}	功能描述
1 1 0	1 0 1	Q n 0 1	状态保持 清零,复位 置位,置1
0	0	×(1*	

三、逻辑符号和动作特点

- 1. 5 为置位端,低电平有效
- 2. R_D 为复位端,低电平有效
- 3. 置位端与复位端不能同时作用,其约束条件为

$$\overline{S_D} + \overline{R_D} = 1$$

4. 动作特点:输入信号随时能改变触发器的状态。

4.2.2 同步RS触发器

- 一、电路结构与工作原理
- 1. CP: 时钟脉冲,一系列的 高低电平
- 2. CP=0, $\overline{S_D}=1$ $\overline{R_D}=1$ 触发器的状态保持不变
- 3. CP=1, $\overline{S_D} = \overline{S}$ $\overline{R_D} = \overline{R}$

触发器的状态随RS的变化而变化

合作進取求實創新

二、特性表

S	R	Qn+1	功能描述
0	0	Qn	状态保持
0	1	0	清零,复位
1	0	1	置位,置1
1	1	×(1*)	状态不定

三、同步RS触发器逻辑符号和动作特点

- 1. S 为置位端,高电平有效
- 2. R 为复位端,高电平有效
- 3. 置位端与复位端不能同时作用,其约束条件为

SR=0

- 4. 动作特点: CP=0, 触发器的状态保持不变,
 - CP=1,输入信号能随时多次改变触发器的状态

4.2.3 主从触发器

- 一、主从RS触发器
- 1. CP=1, F1工作, F2不工作, 从触发器状态保持不变
- 2. CP=0, F2工作, F1不工作,

主 触发器状态保持不变

- 3. 触发器的状态只在CP 下降沿时刻发生变化
- 4. 特性表与同步型一致

二、主从RS触发器的逻辑符号和动作特点

- 1. 触发器的状态在CP一个 周期内只在下降沿发生一次 变化
- 2. 如果CP=1期间,输入信号不发生变化,触发器的状态在CP下降沿按特性表发生变化
- 3. 如果CP=1期间,输入信号发生变化,触发器的状态在CP下降沿按主触发器状态发生变化
- 4. 置位端与复位端还是不能同时作用,其约束条件为

三、主从JK触发器

1. 电路结构与工作原理

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$S \cdot R = J \cdot Q \cdot K \cdot Q = 0$$

合作追取求實創新

2. 主从JKF的符号与特性表

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J	K	Qn+1	功能描述
0	0	Qn	保持
0	1	0	复位
1	0	1	置位
1	1	\overline{Q}^n	翻转

3. 主从JKF的动作特点

如果CP=1期间,输入信号不发生变化,触发器的状态在CP 下降沿按特性表发生变化

二、工作原理 0 1. CP=0时, 触发器的状态保持不变 Q F3 2. $CP=0\rightarrow 1$, $D=0 \rightarrow Q=0$ S_D R_{D} 0 D=1Q F1 F2 S_D R_{D} R_D S_D

D=1

三、逻辑符号和特性表

D	Qn+1
0	0
1	1

四、动作特点

- 1. 触发器的状态在CP一个周期内只在上升沿发生一次变化;
- 2. 触发器的状态只取决于CP上升沿时该输入信号的状态, 与之前和之后的状态无关。

4.3 触发器的逻辑功能及其描述方法

4.3.1 触发器逻辑功能的描述方法

一、RSF

1. 功能表

S	R	Qn+1
0	0	Qn
0	1	0
1	0	1
1	1	X

2. 真值表

S	R	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

3. 特性方程

$$Q^{n+1} = S + \overline{R}Q^n$$

$$RS=0$$

S	R	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	X

合作追取求實創新

4. 状态转换图

S	R	Qn	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	\times
1	1	1	×

二、JKF

1. 功能表

J	K	Qn+1
0	0	Qn
0	1	0
1	0	1
1	1	$\overline{Q^n}$

2. 真值表

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3. 特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

合作追取求實創新

4. 状态转换图

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

三、TF(受控翻转触发器)

1. 功能表

T	Qn+1
0	Qn
1	$\overline{\mathbf{Q}}^{\mathbf{n}}$

3. 特性方程

2. 真值表

T	Q n	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

$$Q^{n+1} = TQ^n + \overline{T}Q^n = T \oplus Q^n$$

四、T'F(翻转型触发器)

1. 真值表

Qn	Q^{n+1}
0	1
1	0

2. 特性方程

$$Q^{n+1} = \overline{Q^n}$$

五、DF(延迟触发器)

1. 特性表

D	Qn+1
0	0
1	1

2. 特性方程

$$Q^{n+1} = D$$

4.3.2 触发器的电路结构

与逻辑功能之间的关系

一、逻辑功能

触发器的次态与现态及输入信号之间在稳态下的逻辑关系

二、电路结构

触发器的电路结构决定了触发器的动作特点

- 三、同一逻辑功能可用不同电路结构形式实现
- 四、同一电路结构可实现不同的逻辑功能
- 五、常用集成触发器:主从JKF、维持阻塞DF

1. 主从JKF (74LS112)

2. 维持阻塞DF (74LS74)

D触发器逻辑符号

4.4 触发器逻辑功能的相互转换

一、JKF转化为TF、T'F、DF

1. JKF转化为TF

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

$$Q^{n+1} = TQ^n + \overline{T}Q^n$$

2. JKF转化为T'F

$$Q^{n+1} = \overline{Q^n}$$

合作進取求實創新

3. JKF转化为DF

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

$$Q^{n+1} = D = DQ^n + DQ^n$$

$$J=D$$
, $K=D$

1. DF转化为TF

$$Q^{n+1} = D$$

$$Q^{n+1} = TQ^n + \overline{T}Q^n$$

$$D = TQ^n + TQ^n = T \oplus Q^n$$

2. DF转化为T'F

$$Q^{n+1} = \overline{Q}^n$$

$$D = \overline{Q}^n$$

3. DF转化为JKF

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

$$Q^{n+1} = D = J\overline{Q^n} + \overline{K}Q^n = J\overline{Q^n} \cdot \overline{K}Q^n$$

合作追取求實創新