1 Approach

1.1 Specification of the MAC Scheme in Cost-Effective Tag Design

Notation Let $\{0,1\}^n$ be the set of all n-bit binary strings. The set of all binary string is expressed as $\{0,1\}^*$. For a string $X \in \{0,1\}^n$, —X— is its length in bits, and $|X|_l = \lceil |X|/l \rceil$ is the length of X in l-bit blocks. Let 0^l and 1^l denote bit strings of all zeros and all ones. For a bit string X and an integer l that $|X| \ge l$, $msb_l(X)$ denotes the most significant l bits(left most l bits) of X and $lsb_l(X)$ for least significant l bits(right most l bits) of X. For two bit string X and Y, we denote X||Y or XY as the their concatenation. For bit string X whose length in bits is multiple of integer l, we denote X parted into l-bit sub-strings as $X = (X[1]X[2]...X[n])_l$, where $X[1], X[2], ..., X[n] \in \{0,1\}^l$. The number of bits in a string of X is denoted as len(X).

The block cipher encryption of a string X with a secret key K is denoted as $\mathcal{E}_K(\mathcal{X})$.

1.2 The Collision of Block Rotate Shiftting Operation

In this article, we name the MAC scheme adopted in Cost-Effective Tag Design[] CETD-MAC.

Shuffle Rounds, Input Length and Tag Length Let $E_K(X)$ be the block cipher encryption with secret key K and accepting X as input. We denote $\pi = E_K(X)$. Then π : $\{0,1\}^n \to \{0,1\}^n$.

1.2.1

1.3 A Solution to Elimitated the Collision

2 Experiments and Results