Grunnatriði

Bergur Snorrason

16. janúar 2022

▶ Í grunninn snýst forritun um gögn.

- ▶ Í grunninn snýst forritun um gögn.
- ▶ Þegar við forritum flokkum við gögnin okkar með *tögum*.

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

Heiti	Lýsing	Skorður
int	Heiltala	Á bilinu $[-2^{31}, 2^{31} - 1]$
unsigned int	Heiltala	Á bilinu $[0, 2^{32} - 1]$
long long	Heiltala	Á bilinu $[-2^{63}, 2^{63} - 1]$
unsigned long long	Heiltala	Á bilinu $[0, 2^{64} - 1]$
double	Fleytitala	Takmörkuð nákvæmni
char	Heiltala	$ ilde{A} \; bilinu \; [-128, 127]$

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
1 from math import factorial
```

2 print(factorial(100))

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
1 from math import factorial 2 print (factorial (100))
```

- $1 \gg python fact.py$
- 2 10933262154439441526816992388562667004907159682643816214685929638952175999

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
1 from math import factorial 2 print (factorial (100))
```

- 1 >> python fact.py
 2 10933262154439441526816992388562667004907159682643816214685929638952175999
- ▶ Pað er einnig hægt að nota fractions pakkann í Python til að vinna með fleytitölur án þess að tapa nákvæmni.

 Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).

- ➤ Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- Petta tag býður upp á að nota tölur á bilinu $[-2^{127}, 2^{127} 1]$.

- Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- Petta tag býður upp á að nota tölur á bilinu $[-2^{127}, 2^{127} 1]$.
- Þetta þarf ekki að nota oft.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Forritunarmál	Röðun
C	qsort()
C++	sort()
Python	this.sort() eða sorted()

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Forritunarmál	Röðun
С	qsort()
C++	sort()
Python	this.sort() eða sorted()

► Skoðum nú hvert forritunarmál til að sjá nánar hvernig föllin eru notuð.

▶ Í grunninn tekur sort(...) við tveimur gildum.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- ► Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- ► Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- ▶ Við getum raðað flest öllum ílátum með sort.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- ► Ef við erum með eitthvað ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- ► Ef við erum með eitthvað ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- ► Ef við erum með eitthvað ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.
- ▶ Það kemur þá í stað "minna eða samasem" samanburðarins sem er sjálfgefinn.

► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- ► Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- ► Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.
- ▶ Pað er einnig inntak sem heitir reverse sem er Boole gildi sem leyfir auðveldlega að raða öfugt.

▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Petta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Petta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).
 - int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).
 - ▶ int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).
 - int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.
- Þetta er fallabendir (e. function pointer) ef þið viljið kynna ykkur það frekar.

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 4 int cmp(const void* p1, const void* p2)
 5
 6
       int x = *(int*)p1, y = *(int*)p2;
       return (x \le y) - (y \le x):
 8
9
10 int rcmp(const void* p1, const void* p2)
11
12
       int x = *(int*)p1, y = *(int*)p2;
       return (x \ge y) - (y \ge x):
13
14 }
15
16 // raðar tölum í vaxandi og minnkandi röð
17 // 5
18
  // 2 4 3 1 5
19 int main()
20
   {
21
       int n. i:
22
       scanf("%d", &n);
23
       int a[n];
24
       for (i = 0; i < n; i++) scanf("%d", &a[i]);
       qsort(a, n, sizeof(a[0]), cmp);
25
26
       for (i = 0; i < n; i++) printf("%d ", a[i]); printf("\n");
27
       qsort(a, n, sizeof(a[0]), rcmp);
       for (i = 0; i < n; i++) printf("%d ", a[i]); printf("\n");
28
29
       return 0:
30 }
```

Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.
- Þeir eru líka lengsti hluti dæmisins.

A Different Problem

Write a program that computes the difference between non-negative integers.

Input

Each line of the input consists of a pair of integers. Each integer is between 0 and 10^{15} (inclusive). The input is terminated by end of file.

Output

For each pair of integers in the input, output one line, containing the absolute value of their difference.

Sample Input 1

Sample Output 1

10 12	4
71293781758123 72784	
1 12345677654321	

Röng lausn. Hver er villan?

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 int main()
5 {
6     int a, b;
7     while (cin >> a >> b)
8     {
9         cout << abs(a - b) << endl;
10     }
11 }</pre>
```

Rétt lausn

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 int main()
5 {
6 long long a, b;
7 while (cin >> a >> b)
8 {
9 cout << abs(a - b) << endl;
10 }
11 }</pre>
```

▶ Við getum notað typedef til að spara okkur skriftir.

- ▶ Við getum notað typedef til að spara okkur skriftir.
- ▶ Við bætum við typedef <gamla> <nýja>; ofarlega í skrána.

- Við getum notað typedef til að spara okkur skriftir.
- ▶ Við bætum við typedef <gamla> <nýja>; ofarlega í skrána.
- Venjan í keppnisforritun er að nota typedef long long ll;.

- Við getum notað typedef til að spara okkur skriftir.
- Við bætum við typedef <gamla> <nýja>; ofarlega í skrána.
- ▶ Venjan í keppnisforritun er að nota typedef long long 11;.
- Við munum nota typedef aftur í námskeiðinu.

Rétt lausn með typedef

► Hvernig vitum að lausnin okkar sé of hæg?

- ► Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar þekkja tímaflækjur en önnur kannski ekki.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar þekkja tímaflækjur en önnur kannski ekki.
- Skoðum fyrst hvað tímaflækjur eru í grófum dráttum.

Keyrslutími forrits er háður stærðinni á inntakinu.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju O(n) þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- ► Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju O(n) þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.
- ▶ Til annars dæmis ef forritið hefur tímaflækju $\mathcal{O}(n^2)$ þá faldast keyrslutími þegar inntakið tvöfaldast.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- ► Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju O(n) þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.
- ▶ Til annars dæmis ef forritið hefur tímaflækju $\mathcal{O}(n^2)$ þá fjórfaldast keyrslutími þegar inntakið tvöfaldast.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju O(n) þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.
- ► Til annars dæmis ef forritið hefur tímaflækju $\mathcal{O}(n^2)$ þá fjórfaldast keyrslutími þegar inntakið tvöfaldast.
- Við ráð fyrir að grunnaðgerðirnar okkar taki fastann tíma, eða séu með tímaflækju $\mathcal{O}(1)$.

▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}($

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- ► Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n+n) = \mathcal{O}()$

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n+n)=\mathcal{O}(n)$

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n+n)=\mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n+n)=\mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.
- ► Til dæmis er $\mathcal{O}(n+n+n+n+n^2) = \mathcal{O}($).

- ► Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n+n)=\mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.
- ► Til dæmis er $\mathcal{O}(n+n+n+n+n^2) = \mathcal{O}(n^2)$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $c \cdot f(x)$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

- Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $c \cdot f(x)$.
- Pessi lýsing undirstrikar betur að f(x) er efra mat á g(x), það er að segja g(x) hagar sér ekki verr en f(x).

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Aðgerð	Lýsing	Tímaflækja
Línulega leit	Almenn leit í fylki	$\mathcal{O}(n)$
Helmingunarleit	Leit í röðuðu fylki	$\mathcal{O}(\log n)$
Röðun á heiltölum	Röðun á heiltalna fylki	$\mathcal{O}(n \log n)$
Strengjasamanburður	Bera saman tvo strengi af lengd <i>n</i>	$\mathcal{O}(n)$
Almenn röðun	Röðun með $\mathcal{O}(T(m))$ samanburð	$\mathcal{O}(T(m) \cdot n \log n)$

Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- ▶ Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- ▶ Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ *regluna*:

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ *regluna*:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ *regluna*:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10⁸ aðgerðir á sekúndu".

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10⁸ aðgerðir á sekúndu".
- ▶ Pessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ *regluna*:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10⁸ aðgerðir á sekúndu".
- Þessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.
- Með þetta í huga fáum við eftirfarandi töflu.

Stærð n	Versta tímaflækja	Dæmi
<u>≤ 10</u>	$\mathcal{O}((n+1)!)$	TSP með tæmandi leit
≤ 15	$\mathcal{O}(n^2 2^n)$	TSP með kvikri bestun
≤ 20	$\mathcal{O}(n2^n)$	Kvik bestun yfir hlutmengi
≤ 100	$\mathcal{O}(n^4)$	Almenn spyrðing
≤ 400	$\mathcal{O}(n^3)$	Floyd-Warshall
$\leq 10^4$	$\mathcal{O}(n^2)$	Lengsti sameiginlegi hlutstrengur
$\leq 10^5$	$\mathcal{O}(n\sqrt{n})$	Reiknirit sem byggja á rótarþáttun
$\leq 10^6$	$\mathcal{O}(n \log n)$	Röðun (og margt fleira)
$\leq 10^8$	$\mathcal{O}(n)$	Næsta tala sem er stærri (NGE)
$\leq 2^{10^8}$	$\mathcal{O}(\log n)$	Helmingunarleit
$> 2^{10^8}$	$\mathcal{O}(1)$	Ad hoc

Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þegar við lesum af staðalinntaki eða skrifum á staðalúttak þarf forritið að tala við stýrikerfið.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þegar við lesum af staðalinntaki eða skrifum á staðalúttak þarf forritið að tala við stýrikerfið.
- Slíkar að gerðir eru mjög hægar.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þegar við lesum af staðalinntaki eða skrifum á staðalúttak þarf forritið að tala við stýrikerfið.
- Slíkar að gerðir eru mjög hægar.
- ► Til að leysa þetta skrifa föll oft í biðminni (e. buffer) og prenta bara þegar það fyllist.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þegar við lesum af staðalinntaki eða skrifum á staðalúttak þarf forritið að tala við stýrikerfið.
- Slíkar að gerðir eru mjög hægar.
- ► Til að leysa þetta skrifa föll oft í biðminni (e. buffer) og prenta bara þegar það fyllist.
- Svona er þetta gert í C.

▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ▶ Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().
- ► Ef þið eruð í Java mæli ég með Kattio.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().
- ► Ef þið eruð í Java mæli ég með Kattio.
- Það má finna á GitHub.

► Grunnur C++ býr yfir mörgum sterkum gagnagrindum.

- ► Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- ▶ Við munum bara fjalla um gagnagrindurnar í grófum dráttum.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- Við munum bara fjalla um gagnagrindurnar í grófum dráttum.
- Það er hægt að finna ítarlegra efni og dæmi um notkun á netinu.

Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.
- ▶ Þetta leyfir manni að vísa í fylkið í $\mathcal{O}(1)$.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.
- ▶ Þetta leyfir manni að vísa í fylkið í $\mathcal{O}(1)$.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(n)$ $\mathcal{O}(n)$
Skeyta saman tveimur	$\mathcal{O}(n)$

► Gagnagrindin vector er að mestu leiti eins og fylki.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.
- Margir nota bara vector og aldrei fylki sem slík.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.
- Margir nota bara vector og aldrei fylki sem slík.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(1)$ $\mathcal{O}(n)$
Skeyta saman tveimur	$\mathcal{O}(n)$

► Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.
- Aftur á móti er hægt að gera smávægilegar breytingar á list sem er ekki hægt að gera á fylkjum.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.
- Aftur á móti er hægt að gera smávægilegar breytingar á list sem er ekki hægt að gera á fylkjum.

Aðgerð	Tímaflækja
Finna stak	$\mathcal{O}(n)$
Bæta staki aftast	$\mathcal{O}(1)$
Bæta staki fremst	$\mathcal{O}(1)$
Bæta staki fyrir aftan tiltekið stak	$\mathcal{O}(1)$
Bæta staki fyrir framan tiltekið stak	$\mathcal{O}(1)$
Skeyta saman tveimur	$\mathcal{O}(1)$

stack

 Gagnagrindin stack geymir gögn og leyfir aðgang að síðasta staki sem var bætt við.

stack

 Gagnagrindin stack geymir gögn og leyfir aðgang að síðasta staki sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(1)$
Lesa nýjasta stakið	$\mathcal{O}(1)$
Bæta við staki Lesa nýjasta stakið Fjarlægja nýjasta stakið	$\mathcal{O}(1)$

queue

► Gagnagrindin queue geymir gögn og leyfir aðgang að fyrsta stakinu sem var bætt við.

queue

► Gagnagrindin queue geymir gögn og leyfir aðgang að fyrsta stakinu sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(1)$
Lesa elsta stakið	$\mathcal{O}(1)$ $\mathcal{O}(1)$
Fjarlægja elsta stakið	$\mathcal{O}(1)$

set

Gagnagrindin set geymir gögn án endurtekninga og leyfir hraða uppflettingu.

set

 Gagnagrindin set geymir gögn án endurtekninga og leyfir hraða uppflettingu.

_	Tímaflækja
Bæta við staki	$\mathcal{O}(\log n)$
Bæta við staki Fjarlægja stak Gá hvort staki hafi verið bætt við	$\mathcal{O}(\log n)$
Gá hvort staki hafi verið bætt við	$\mathcal{O}(\log n)$