Autor: Raquel Leandra Pérez Arnal

Directores: Dario Garcia Gasulla y Claudio Ulises Cortés García

Universidad Politécnica de Cataluña raquelpa93@gmail.com

22/01/18

Tabla de contenidos

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Ejemplos

Enfoque

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Ejemplos

Redes Neuronales

0000

Una Neurona

Pesos Entrada

Figura: Ejemplo de una neurona

Análisis

0000

Red Neuronal

Figura: Ejemplo de red neuronal compuesta por capas completas

Redes Convolucionales

0000

Redes Convolucionales

Figura: Ejemplo de convolución y de feature

Análisis

Definición

Transfer learning es campo de estudio que reutiliza el lenguaje de representación de un problema (que llamaremos problema origen o *Source*) para resolver otro (que llamaremos objetivo o *Target*).

- Fine Tuning
- Feature Extraction

Figura: Estructura básica que se suele utilizar en feature extraction

Enfoque

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Ejemplos

Partes del algoritmo:

- Fordward Pass
- Spatial Pooling
- Feature Standarization
- Feature Discretization

Figura: Estructura del full-network embedding

Wordnet

Wordnet

Figura: Ejemplo de las relaciones sintácticas de Wordnet

Imagenet

Enfoque

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
- 4 Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Ejemplos

Datos iniciales

Figura: La disposición de las características por capas

Figura: Conjuntos de synsets que estudiaremos

• Analizar el *embedding* dado y el comportamiento de las *features* en las distintas capas.

Objetivos

 Analizar si hay alguna relación entre el embedding y los synsets seleccionados.

Figura: Muestra de una sección del embedding.

Estadísticas e Hipótesis iniciales

Estadísticas del embedding

Figura: Cantidad de features de cada categoría

Estadísticas del embedding

Figura: Distribución del número de *features* con los distintos valores categóricos, para las 50,000 imágenes

Distribución de los synsets en el embeding

Figura: Cantidad de imágenes de cada synset respecto al embedding total

Hipótesis

 Las características se distribuyen de diferente manera en las capas convolucionales y los completos.

Enfoque

- Cuanto más profundo es el layer, debería haber más features representativas, tanto por ausencia como por presencia.
- O Cuanto más concreto es un synset, debería haber más features representativas, tanto por ausencia como por presencia, es decir, mayor proporción de -1 y 1 respecto a los 0.
- Se puede ver una relación entre los embeddings de synsets hipónimos. La idea sería que dada una imagen perteneciente a un synset, compartiría features características con sus hipónimos.

Enfoque

- - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- - Full-Network Embedding
 - Wordnet.
 - Imagenet
- - Objetivos
 - Estadísticas e Hipótesis iniciales
- **Análisis**
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Ejemplos

Distribución por tipo de capa

Figura: Distribución del número de *features* con los distintos valores categóricos distinguiendo las capas convolucionales de las *fully-connected*

Enfoque

De Wordnet a Full-Network Embedding

Comportamiento respecto a la profundidad

	conv1	conv2	conv3	conv4	conv5	fc6	fc7
Proporción de -1	0.47	0.44	0.46	0.49	0.55	0.77	0.76
Proporción de 0	0.18	0.17	0.17	0.17	0.17	0.05	0.06
Proporción de 1	0.36	0.39	0.37	0.34	0.28	0.18	0.18

Figura: Cantidad de features de cada categoría por capa

Sub-matriz

Synset

Figura: Ejemplo de una sub-matriz de un synset.

Enfoque

Figura: Distribución del número de *features* con los distintos valores categóricos distinguiendo las capas convolucionales de las *fully-connected* del *synset* seres vivos

Figura: Cantidad de features de cada categoría por synset

	Ser Vivo	Mamífero	Perro	Perro de Caza	Artefacto	Instrumento	Transporte	Vehículo
-1	0.69	0.69	0.70	0.70	0.66	0.67	0.66	0.65
0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
1	0.22	0.22	0.21	0.21	0.24	0.24	0.25	0.26

Representante

Synset

Figura: Ejemplo de un representante de synset.

Figura: Cantidad de *features* de cada tipo de los representantes de los distintos *synsets*

Synset

Figura: Cantidad de *features* de cada tipo del representante del *synset* Vehículo por capa.

Matrices de cambio

Figura: Matriz de cambios general

Ejemplo

Conocimientos Previos

Enfoque

(a) Ser Vivo a Instrumento

(b) Ser Vivo a Vehículo

(c) Ser Vivo a Perro de Caza

Figura: Matrices de cambio de Ser Vivo

Pseudo-Métrica

$$T = C_{(1,-1)}(s_1, s_2) + C_{(1,0)}(s_1, s_2) + C_{(1,1)}(s_1, s_2) + C_{(1,1)}(s_1, s_2) + C_{(0,1)}(s_1, s_2) + C_{(-1,1)}(s_1, s_2)$$

$$d(s_1, s_2) = 1 - \frac{C_{(1,1)}(s_1, s_2)}{T}$$

	Instrumento	Vehículo	Perro de Caza
Ser Vivo	0.9965	0.9333	0.5520
Perro	0.9671	0.8753	0.1614
Transporte	0.2201	0.2192	0.9124

(a) Perro a Perro de

caza

Figura: Matrices de cambio

(b) Transporte a

Vehículo

(c) Perro de caza a

Vehículo

(b) Greyhound

(c) Water Spaniel

Figura: Ejemplos de razas

	Spaniel	Grayhound	Water Spaniel
Spaniel	0	0.7371	0.6442
Grayhound	0.7371	0	0.8330
Water Spaniel	0.6442	0.8330	0

Figura: Ejemplo de Árbol del synset perro.

₹ 990

Podéis encontrar el código utilizado en el trabajo en: github.com/RaquelLeandra/TFG-WordnetDeepLearning