ליניארית 11

שחר פרץ

2025 בינואר 15

CHANGING BASE.....(1)

משפט. יהי $B=\{\theta_1\dots\theta_n\}$ לכל וגם $B=\{u_1\dots u_n\}$ כך ש־ $B=\{\theta_1\dots\theta_n\}$ לכל משפט. יהי

$$\begin{pmatrix} \alpha_{11} & \cdots & \alpha_{in} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & \alpha_{nn} \end{pmatrix}$$

A' אז A' הפיכה אמ"מ B' בסיס ל

הוכחה.

הפיכה $M\iff \operatorname{rk} M=n\iff n$ בסיס בת"ל העמודות בת"ל בת"ל העמודות בת"ל בח"ל בת"ל בח"ל הפיכה B'

B' ל־B' המעכר מעכר המעכר מטריצת היא מייו. אז $M=[id]_B^{B'}$ היא מייום של V בסיסים של הגדרה.

נסמן , $B'=(1,x+x^2,2x+3x^2)$ ו בעבור $B=(1+x,1-x,1+x^2)$ אז בעבור הבסיסים ($\mathbb{R}_s[x]$) אז בעבור הפרעה לי $B=(b_1,b_2,b_3)$ אז:

$$1 = \frac{1}{2}b_1 + \frac{1}{2}b_3 + 0b_3 \implies [1]_B = (0.5, 0.5, 0)$$

ולכן השורה הראשונה:

$$[M]_B^{B'} = \begin{pmatrix} 0.5 & \cdots \\ 0.5 & \cdots \\ 0 & \cdots \end{pmatrix}$$

. נבצע כפולה מימין, וו $[T(x)]_B o [T(x)]_{B'}$, געביר את לעשות כדי כדי לעשות מימין. כדי לעשות איז איך נעביר איז איך נעביר און איז איך נעביר בין בסיסים?

משפט. יהי V מ"ז, כך ש" $B'=\{u_1\dots u_n\}$, $B=\{\theta_1\dots \theta_n\}$ ו בסיסים ל $A'=\{u_1\dots u_n\}$ בסיסים ל $B'=\{u_1\dots u_n\}$ וווא בסיסים ל $B'=\{u_1\dots u_n\}$ בסיסים ל $B'=\{u_1\dots u_n\}$ וווא בסיסים ל $B'=\{u_1\dots u_n\}$ בסיסים ל $B'=\{u_1\dots u_n\}$

. לכן: $\forall v \in V \colon [\varphi]_C = [\varphi]_C^B[v]_B$ שמתקיים ש- $\varphi \colon V \to U$, בסיסים בהתאמה, בסיסים שU,V מ"וים עם ש

$$M \cdot [\theta]_{B'} = [id]_B^{B'}[\theta]_{B'} = [id(\theta)]_B = [\theta]_B$$

 $[T]_B^B=:[T]_B$ סימון. נסמן די ט"ל ו־V ט"ל ו־ $T\colon V o V$

 $[T^{-1}]^C_B=([T]^B_C)^{-1}$ איזו', ו־C, בסיסים של V ושל V ושל $T\colon V o W$ טענה. תהי

 $.[\psi\circ\varphi]^{B_v}_{B_w}=[\psi]^{B_v}_{B_w}[\varphi]^{B_V}_{B_U}$ מתקיים, מתקיים שעבור $\psi\colon U\to W$ ו־ $\psi\colon V\to U$ ו־ $\psi\colon V\to U$

 $[T]_C^B$ נראה ש־ $[T^{-1}]_B^C$ ההופכית ל

$$[T]_C^B[T^{-1}]_R^C = [T \circ T^{-1}]_C^C = [id_W]_C = [id_W]_C^C = I$$

הערה: ומכיוון שהופכית הפיכה מצד אחד אמ"מ משני הצדדים והדבר שם ריבועי (הנחנו בסתר שוויון ממדים מתאים) אז זה תקין.

 U^- בסיסים לB,B' , $\dim V=n$ ט"ך, $T\colon V o V$ ט"ך, יהיו למטריצה מייצגת"). יהיו

$$[T]_{B'} = M^{-1}[T]_B M$$

הוכחה.

 $M^{-1}[T]_B M = [id]_{B'}^B [T]_B^B [id]_B^{B'} = [id \circ T \circ id]_{B'}^{B'} = [T]_{B'}$

 $A,B\in M_n(\mathbb{F})\colon A=M^{-1}BM$ הגדרה. A,B מטריצות. אז $A,B\in M_n(\mathbb{F})$ הגדרה.

דוגמה.

- $A=M^{-1}IM=MM^{-1}=I$ אם A דומה ל-I, אז .1
 - Aדומה ל־B אז B דומה ל-2.

 $A=[T]_C,\; B=[T]_{C'}$ מטריצות. אז $A,B\in M_n(\mathbb{F})$ אמ"ט, מיים $A,B\in M_n(\mathbb{F})$ אמ"ט, אז הייו $A,B\in M_n(\mathbb{F})$ איז הייו $A,B\in M_n(\mathbb{F})$ איז הייו $A,B\in M_n(\mathbb{F})$ איז מעבר בסיס, $A=M^{-1}BM$ מניח A,B כמתואר, אז A,B

טל: "יש פה בחור ישן". צימרמן: "אני כותב". טל: "אני מבין... תהיה איתנו". צימרמן: "אני כותב". טל: "בסדר פשוט... תכתוב". צימרמן: "אני כותב".

יהיו T(v)=Av ונסמן ב־U(v)=Av ונסמן ב־U(v)=Av נסמן ב־U(v)=Av ונסמן ב־U(v)=Av יהיו איז איז איז אור ב־U(v)=Av נסמן ב־U(v)=Av נסמן ב־U(v)=Av נסמן ב־U(v)=Av נסמן ב־U(v)=Av נסמן ב־U(v)=Av נסמן ב-U(v)=Av נסמן ב-U(v)=Av

$$b'_i = \sum_{j=1}^n m_{ji} e_j, \ B' = \{b'_i\}$$

B',E,T,V בסיס. סה"כ קיבלנו $\{b_i'\}$ בסיס הפיכה M בסיס הפיס האברת בסיס מייצגת מטריצה מייצגת מייצגת B' בסיס B' בסיס הפיס מייצגת ולכן בסיס. $B=[I]_{B'}$ בסיס. המיצגת בסיס מייצגת בסיס הייב בסיס מייצגת ולכן בסיס מייצגת בסיס מייצגת ולכן בסיס מייצגת מייצגת בסיס מייצג

$$[B] = M^{-1}AM = [id]_{B'}^E \cdot [T]_E^E [id]_E^B = [T]_B$$

DETERMINANTS (2)

משפט (יחידות דיטרפיינוטה). נניח שקיימות $A=E_1\cdots E_t\cdot B$ אז $A\in M_n(\mathbb F)$ תהי שונות. תהי $d_1\colon M_n(\mathbb F) o \mathbb F$ עבור $d_1\colon M_n(\mathbb F)$ שנור $d_2\colon M_n(\mathbb F)$ עבור $d_1\colon M_n(\mathbb F)$ מדורגת.

הוכחה. אם נסמן φ_t (כך ש־ λ_i הן הקבוע שמתאים $B=(\varphi_t(\cdots(\varphi_1(A))))$ הוכחה. אם נסמן φ_t (כך ש־ λ_i הן הקבוע שמתאים $B=(\varphi_t(\cdots(\varphi_1(A))))$ נפצל למקרים.

- עם $\exists c \colon \det A = c$, אז B = I כדרוש.
- $\det B=0 \implies \det A=0 \implies d_1(A)=d_2(A)$ בגלל שי $B\in M_n(\mathbb{F})$, אם לא $B\in M_n(\mathbb{F})$. בגלל שי $B\neq I$

הערה: הגיון שלי להוכחה: דרטרפינטה היא 0 אם לא הופכי, ואחרת היא מכפלת הקבועים של הפעולות האלמנטריות שהיא צריכה לעשות כמו שהראו.

 $\det A=0$ עם שורת אפסים. אז $A\in M_n(\mathbb{F})$ למה. תהי

הורה. משהומשהו מולטילינאיריות אני לא מקליד את כל הבלגן הזה (דורש הרבה מטריצות כלליות כאלו עם המון 3 נקודות). השורה הוכחה. משהומשהו מולטילינאיריות אני לא מקליד את כל הבלגן הזה ($\det A = 0$ לכומר $\det A = 2 \det A$ התחתונה שמפצלים ומקבלים ומקבלים

 $|A|:=\det A$ סימון.

 $\det(AB)=\det A\cdot\det B$ דט'. אז $A,B\in M_n(\mathbb{F}),\;\det\colon M_n(\mathbb{F}) o\mathbb{F}$ משפט. יהיו

 $|AB|=|E_1\cdot A_1B|=\prod_{i=1}^s|E_i|$ איז A:A איז A:A אונית מתאימה A:A מט' אלמנטריות, A:A מט' אלמנטריות, A:A מדורגת קאנונית מתאימה ל-A:A עבור A:A מט' אלמנטריות, אם A:A מון איז A:A בתור תוצאה של הפעולות האלמנטריות). אם A:A איז A:A בתור תוצאה של הפעולות האלמנטריות). אם A:A אורת, A:A בעלת שורת אפסים. A:A

|A||B|=|0||B| סה"כ ו $|A_1B|=0$ כי $|AB|=\lambda |A_1B|=0$ סה"כ כלומר אפסים, כלומר ל־ר

|A|
eq 0 טענה. תהי $A \in M_n(\mathbb{F})$ אז $A \in M_n(\mathbb{F})$

... מציב את A' באמצעות $E_i \cdot A'$ עבור A' קאנונית...

 $|A|
eq 0 \iff |\prod E_i||A'|
eq 0 \iff |A'|
eq 0 \iff A' = I \iff A$ הפיכה

 $|A| = |A^T|$ משפט.

 $\det A = \det A^T$ ואכן $\det A^T = 0$ ואם לא הפיכה כלומר $\det A = 0$ ואם לא הפיכה, אז $\det A = 0$ ואם לא הפיכה כלומר $\det A = 0$ ואכן $\det A = 0$ אחרת, $\det A = \prod_i E_i \cdot A' = I$ לא הפיכה, אז $\det A = 0$ ואכן $\det A = \prod_i E_i \cdot A' = I$ אחרת, $\det A = I$ לכל \det

הגדרה. יהי מחיקת מ"ל מים $A\in M_n(\mathbb{F})$ היא המטעיצה המינור A_{ij} אז המינור היו מחיקת השורה היו המערצה המתקבלת מים A_{ij}

משפט. קיימת פאקינג דטרמיננטה.

הוכחה. נוכיח ש־:

$$|A| = \sum_{j=1}^{n} ((-1)^{n+j} \alpha_{nj}) |A_{nj}| =: dn$$

היא בסיס. נוכיח באינדוקציה. בסיס. מוכיח היא דיטרמיננה לכל הקורדינאטות. נראה שאכן נראה מחכן האו A_{nj} הערה: נראה מינור ו־ α

$$a_{11}=1\iff ...AI\implies |A|=1$$
 . $|I|=1$.1

- .2 מולטי־ליניאריות. אפשר לעשות על דף.
- 3. שתי שורות שוות גורר דט' הפיכה. לא קיים, באופן ריק.

צעד.

|A|=1 אז $A=I_n$ נראה שאם. |I|=1 .1

$$|A| = \sum_{j=1}^{n} (-1)^{n+j} a_{nj} |A_{nj}|$$

נשים לב שעבור $j\neq n$ נקבל שב A_{nj} יש שורת אפסים. זאת כי "העפנו" 2 איברי ספותחים אבל יש יותר שורות מאיברים פותחים. זאת כי "העפנו" $j\neq n$ נקבל שבים $A_{nn}=1$, וסה"כ נקבל שוויון איי שורת אפסים. לכן נקבל שהלעיל שווה ל־ $A_{nn}=1$. בגלל ש־ $A_{nn}=1$ ובאינדוקציה $A_{nn}=1$, וסה"כ נקבל שוויון ר-1.

2. מולטי־ליניאריות. ספוילר, עומד להיות כיף.

$$\begin{vmatrix} \alpha_{11} & & \alpha_{1n} \\ \vdots & & \vdots \\ \alpha \alpha_{il} + \beta \beta_{i1} & & \alpha_{in} + \beta \beta_{in} \\ \vdots & & \vdots \\ \alpha_{ni} & & \alpha_{ni} \end{vmatrix}, (\alpha_{11})$$