Math 71: Algebra Fall 2022

PSET 3 — October 4, 2022

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

- **1.** (sorta DF 1.7.18) Let G be a group, let X be a set with an action by $G \circlearrowright X$.
 - (a) Prove that the relation $x \sim y$ if $x = g \cdot y$ for some $g \in G$ defines an equivalence relation on X. The set of equivalence classes are called the emphorbits of X under G.
 - (b) Show that the multiplicative group $G = \mathbb{R}^{\times}$ acts on the xy-plane $X = R^2$ by $r \cdot (x, y) = (rx, y)$. What are the orbits of G acting on X? Compute the stabilizers of G on the points (1, 1) and (0, 0).

Amittai, S Math 71: Algebra

2. (sorta DF 1.7.18) Let F be a field, let $G=\mathrm{GL}_2(F)$, and let

$$H:=\left\{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G: a,d \in F^\times, \ b \in F \right\}.$$

- (a) Show that H is a subgroup of G, and show H is nonabelian whenever #F>2. What happens when #F=2 (so $F\simeq \mathbb{Z}/2\mathbb{Z}$)?
- (b) Show that the map

$$\phi \colon H \to F^{\times}$$

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto a$$

is a surjective group homomorphism that is not an isomorphism.

Amittai, S Math 71: Algebra

3. (DF 1.3.1, sorta 1.3.7)

Let G be a group and let $A \subseteq G$ be a subset. For $g \in G$, write

$$gAg^{-1} := \{gag^{-1} : a \in A\}.$$

The *normalizer* of A in G is defined to be:

$$N_G(A) := \{ g \in G : gAg^{-1} = A \}.$$

(a) Let $g \in G$. Show that the map

$$\phi_g \colon G \to G$$

$$x \mapsto qxq^{-1}$$

is an isomorphism of groups. (We call an isomorphism from a group to itself an emphautomorphism.)

- (b) Show that $N_G(A)$ is a subgroup of G that contains the centralizer $C_G(A)$. [Hint: if $gAg^{-1} = A$ then $h(gAg^{-1})h^{-1} = hAh^{-1}$, we just took two equal sets and conjugated their elements by h.]
- (c) Let $G = Q_8$ and let $A = \{\pm i\}$. Compute $C_G(A)$ and $N_G(A)$.
- (d) Show that if $H \leq G$ is a subgroup, then $H \leq N_G(H)$. [Hint: use (a), with G = H.]

Amittai, S Math 71: Algebra

4. (DF 2.1.8)

Let $H, K \leq G$ be subgroups of a group G. Prove that the union $H \cup K$ is a subgroup if and only if $H \supseteq K$ or $K \subseteq H$. [Hint: if there exists $h \in H$ with $h \notin K$, show that $K \subseteq H$ by consider hk for $k \in K$.]

Amittai, S Math 71: Algebra

5. (DF 2.3.10)

- (a) Let $G = \langle a \rangle$ be a cyclic group of order $n \in \mathbb{Z}_{\geq 1}$. For $k \in \mathbb{Z}$, show that a^k has order n/g where $g = \mathbf{gcd}((, k), n)$. [Hint: what is $\#\langle a^k \rangle$?] (b) What is the order of $\overline{30}$ in $\mathbb{Z}/54\mathbb{Z}$? Write out all of the elements in $\langle \overline{30} \rangle$ and their orders.
- (c) For which values of $n \in \{8, 9, 10, 11, 12\}$ is $(\mathbb{Z}/n\mathbb{Z})^{\times}$ a cyclic group?