SEMAINE 9

SÉRIES NUMÉRIQUES

EXERCICE 1:

Soit γ la constante d'Euler : $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$. Démontrer l'égalité

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n} = \gamma \cdot \ln 2 - \frac{1}{2} (\ln 2)^2 .$$

La série de terme général $(-1)^n \frac{\ln n}{n}$ est convergente car $\lim_{n\to\infty} \frac{\ln n}{n} = 0$ et la suite $\left(\frac{\ln n}{n}\right)$ est

décroissante... à partir du rang 3, notons $s_n = \sum_{k=1}^n (-1)^k \frac{\ln k}{k}$ sa somme partielle d'ordre n. On peut faire apparaître les sommes partielles de la série harmonique en décomposant s_{2n}

de la façon suivante :

$$s_{2n} = \sum_{k=1}^{2n} (-1)^k \frac{\ln k}{k} = -\sum_{k=1}^{2n} \frac{\ln k}{k} + 2\sum_{k=1}^n \frac{\ln(2k)}{2k}$$
$$= -\sum_{k=1}^{2n} \frac{\ln k}{k} + \left(\sum_{k=1}^n \frac{1}{k}\right) \cdot \ln 2 + \sum_{k=1}^n \frac{\ln k}{k}.$$

En posant $H_n = \sum_{k=1}^n \frac{1}{k}$ et $S_n = \sum_{k=0}^n \frac{\ln k}{k}$, on a donc

$$s_{2n} = H_n \ln 2 - \sum_{k=n+1}^{2n} \frac{\ln k}{k} = H_n \ln 2 + S_n - S_{2n}$$
.

Le développement asymptotique $H_n = \ln n + \gamma + o(1)$ est connu (isn't it ?), l'exercice sera terminé si l'on trouve un développement asymptotique de S_n à la précision o(1).

Par comparaison avec une intégrale, on obtient déjà $S_n \sim \frac{1}{2}(\ln n)^2$, mais cela ne suffit pas.

Cherchons donc à estimer $S_n - \frac{1}{2}(\ln n)^2$. Pour cela, écrivons $S_n - \frac{1}{2}(\ln n)^2 = \sum_{k=2}^n a_k$, avec

$$a_k = \frac{\ln k}{k} - \frac{1}{2} \left[(\ln k)^2 - (\ln(k-1))^2 \right] = \frac{\ln k}{k} + \frac{1}{2} \ln \left(1 - \frac{1}{k} \right) \cdot \left(\ln k + \ln(k-1) \right)$$

$$= \frac{\ln k}{k} + \frac{1}{2} \left(-\frac{1}{k} - \frac{1}{2k^2} + o\left(\frac{1}{k^2}\right) \right) \left(2 \ln k + O\left(\frac{1}{k}\right) \right)$$

$$= -\frac{\ln k}{2k^2} + o\left(\frac{\ln k}{k^2}\right).$$

De $a_k \sim -\frac{\ln k}{2k^2}$, on déduit que la série de terme général a_k est convergente donc, en posant

 $l = \sum_{k=0}^{+\infty} a_k$, on a le développement asymptotique $S_n = \frac{1}{2}(\ln n)^2 + l + o(1)$, puis

$$s_{2n} = (\ln n + \gamma)(\ln 2) + \frac{1}{2}((\ln n)^2 - (\ln(2n)^2)) + l - l + o(1)$$

$$= (\ln n + \gamma)(\ln 2) + \frac{1}{2}((\ln n)^2 - (\ln(n)^2 + (\ln 2)^2 + 2\ln 2 \cdot \ln n)) + o(1)$$
$$= \gamma \cdot \ln 2 - \frac{1}{2}(\ln 2)^2 + o(1).$$

Comme $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n} = \lim_{n \to \infty} s_{2n}$, on obtient le résultat demandé.

EXERCICE 2:

1. Soient (A_n) et (B_n) deux suites complexes de limites A et B respectivement. Montrer que

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} A_k B_{n-k} = AB.$$

2. Soient $\sum_{n} a_n$ et $\sum_{n} b_n$ deux séries de nombres complexes, on note $\sum_{n} c_n$ leur produit de Cauchy : $c_n = \sum_{k=0}^{n} a_k b_{n-k}$. Montrer que, si les trois séries $\sum_{n} a_n$, $\sum_{n} b_n$ et $\sum_{n} c_n$ sont convergentes, alors on a la relation

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

1. Posons $C_n = \frac{1}{n+1} \sum_{k=0}^{n} A_k B_{n-k}$, alors

$$C_n - AB = \frac{1}{n+1} \sum_{k=0}^{n} (A_k B_{n-k} - AB) = \frac{1}{n+1} \sum_{k=0}^{n} \left[(A_k - A) B_{n-k} + (B_{n-k} - B) A \right],$$

donc

$$|C_n - AB| \le |B_{n-k}| \left(\frac{1}{n+1} \sum_{k=0}^n |A_k - A|\right) + |A| \left(\frac{1}{n+1} \sum_{k=0}^n |B_{n-k} - B|\right).$$

Or, d'après Cesaro, $\frac{1}{n+1}\sum_{k=0}^{n}|A_k-A|$ et $\frac{1}{n+1}\sum_{k=0}^{n}|B_{n-k}-B|=\frac{1}{n+1}\sum_{k=0}^{n}|B_k-B|$ tendent vers zéro et $|B_{n-k}|$ est majoré puisque la suite (B_n) est convergente, donc $\lim_{n\to\infty}(C_n-AB)=0$.

2. Pour tout n, posons $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$ et enfin, pour tout $N \in \mathbb{N}$,

posons
$$\Gamma_N = \sum_{n=0}^N C_n$$
. On a alors

$$\Gamma_N = \sum_{n=0}^N \left(\sum_{k=0}^n c_k \right) = (N+1)c_0 + Nc_1 + \dots + 2c_{N-1} + c_N = \sum_{n=0}^N (N+1-n)c_n.$$

On remarque que c'est aussi $\sum_{k=0}^{N} A_k B_{N-k}$, en effet :

$$\sum_{k=0}^{N} A_k B_{N-k} = a_0(b_0 + \dots + b_{N-1} + b_N) + (a_0 + a_1)(b_0 + \dots + b_{N-1}) + \dots + (a_0 + a_1 + \dots + a_N)b_0$$

$$= (N+1)a_0b_0 + N(a_0b_1 + a_1b_0) + (N-1)(a_0b_2 + a_1b_1 + a_2b_0) + \dots + (a_0b_N + \dots + a_Nb_0)$$

$$= \sum_{n=0}^{N} (N+1-n)c_n = \Gamma_N.$$

Posons enfin $A = \sum_{n=0}^{\infty} a_n$, $B = \sum_{n=0}^{\infty} b_n$, $C = \sum_{n=0}^{\infty} c_n$. Comme $\lim_{n \to \infty} C_n = C$, du théorème de Cesaro, on déduit que $\lim_{n \to \infty} \frac{\Gamma_n}{n+1} = C$, c'est-à-dire $\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} A_k B_{n-k} = C$ mais, d'après la question **1**, cette dernière expression tend aussi vers AB, donc C = AB.

EXERCICE 3:

Convergence et calcul de $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} E(\log_2(n)).$

Posons $u_n = \frac{(-1)^n}{n} E(\log_2(n))$ pour $n \ge 2$.

• Effectuons une sommation par paquets en regroupant les entiers n pour lesquels l'expression $E(\log_2(n))$ garde une valeur constante :

pour tout $k \in \mathbb{N}^*$ donné, on a $E(\log_2(n)) = k \iff 2^k \le n < 2^{k+1}$.

Posons alors $A_k = \sum_{n=2^k}^{2^{k+1}-1} u_n = k \cdot \sum_{n=2^k}^{2^{k+1}-1} \frac{(-1)^n}{n}$ pour $k \in \mathbb{N}^*$ et montrons la convergence de la série de terme général A_k .

Pour cela, introduisons encore quelques notations :

- pour $n \in \mathbb{N}^*$, soit $H_n = \sum_{k=1}^n \frac{1}{k}$ (somme partielle de la série harmonique) :

- pour $n \in \mathbb{N}^*$, soit $J_n = \sum_{k=1}^n \frac{(-1)^k}{k}$ (somme partielle de la série harmonique alternée) :

- pour
$$k \in \mathbb{N}^*$$
, soit $S_k = H_{2^k - 1} = \sum_{p=1}^{2^k - 1} \frac{1}{p}$;

- pour
$$k \in \mathbb{N}^*$$
, soit $T_k = J_{2^k - 1} = \sum_{p=1}^{2^k - 1} \frac{(-1)^p}{p}$;

On a alors facilement $S_k + T_k = S_{k-1}$ pour tout $k \ge 1$ (on convient $S_0 = 0$), donc $T_k = S_{k-1} - S_k$, puis

$$A_k = k(T_{k+1} - T_k) = -k(S_{k+1} - 2S_k + S_{k-1})$$
.

Simplifions les sommes partielles : pour tout $m \in \mathbb{N}^*$,

$$\sum_{k=1}^{m} A_k = -\sum_{k=1}^{m} k(S_{k+1} - 2S_k + S_{k-1})$$

$$= -\sum_{k=2}^{m+1} (k-1)S_k + 2\sum_{k=1}^{m} kS_k - \sum_{k=0}^{m-1} (k+1)S_k$$

$$= \sum_{k=2}^{m-1} \left[2k - (k-1) - (k+1) \right] S_k - S_0 - 2S_1 + 2S_1 + 2mS_m - (m-1)S_m - mS_{m+1}$$

$$= (m+1)S_m - mS_{m+1}.$$

Du développement asymptotique classique : $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$, où γ est la constante d'Euler, on tire

$$S_m = \ln(2^m - 1) + \gamma + O\left(\frac{1}{2^m - 1}\right) = m \ln 2 + \gamma + O\left(\frac{1}{2^m}\right)$$
,

puis

$$\begin{split} \sum_{k=1}^m A_k &= (m+1) \left[m \, \ln 2 + \gamma + O\left(\frac{1}{2^m}\right) \right] - m \left[(m+1) \, \ln 2 + \gamma + O\left(\frac{1}{2^{m+1}}\right) \right] \\ &= \gamma + O\left(\frac{m}{2^m}\right) = \gamma + o(1) \; . \end{split}$$

La série de terme général A_k converge donc et $\sum_{k=1}^{+\infty} A_k = \gamma$.

• La série $\sum_{n} u_n$ n'étant pas absolument convergente, on ne peut pas affirmer directement que

$$\sum_{n=2}^{+\infty} u_n = \sum_{k=1}^{+\infty} \left(\sum_{n=2^k}^{2^{k+1}-1} u_n \right) = \sum_{k=1}^{+\infty} A_k$$

(la convergence de la série $\sum_n u_n$ n'étant d'ailleurs pas encore prouvée).

Majorons pour cela les sommes partielles dans les paquets : si $n \ge 2$ est tel que $2^m \le n < 2^{m+1}$ avec $m \in \mathbb{N}^*$, alors

$$\left| \sum_{i=2^m}^n u_i \right| = m \left| \sum_{i=2^m}^n \frac{(-1)^i}{i} \right| \le \frac{m}{2^m}$$

(majoration classique d'une somme partielle d'une série alternée par la valeur absolue de son premier terme). Donc (toujours avec $2^m \le n < 2^{m+1}$), on a $\left|\sum_{i=2}^n u_i - \sum_{k=1}^{m-1} A_k\right| \le \frac{m}{2^m}$. Comme $\lim_{m \to +\infty} \frac{m}{2^m} = 0$, on en déduit la convergence de la série $\sum_n u_n$ et le résultat $\sum_{n=2}^{+\infty} u_n = \gamma$: si on se donne $\varepsilon > 0$, il existe un entier M tel que, pour tout $m \ge M$, on ait $\frac{m}{2^m} \le \frac{\varepsilon}{2}$ et $\left|\sum_{k=1}^{m-1} A_k - \gamma\right| \le \frac{\varepsilon}{2}$; pour tout entier n tel que $n \ge 2^M$, on a alors $\left|\sum_{i=2}^n u_i - \gamma\right| \le \varepsilon$.

• Conclusion : $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} E(\log_2(n)) = \gamma.$

EXERCICE 4:

Soit (u_n) une suite réelle qui converge vers zéro.

Montrer qu'il existe une suite (ε_n) , à valeurs dans $\{-1,1\}$, telle que la série $\sum_n \varepsilon_n u_n$ soit convergente.

Si $\sum_{n} u_n$ est convergente, alors c'est gagné avec $\varepsilon_n = 1$.

Supposons $\sum_n u_n$ divergente, donc a fortiori $\sum_n v_n$ est divergente avec $v_n = |u_n|$. Essayons de construire par récurrence une suite (α_n) , à valeurs dans $\{-1,1\}$, de façon que les sommes partielles $s_n = \sum_{k=0}^n \alpha_k v_k$ aient une limite nulle, on aura ainsi $\sum_{n=0}^\infty \varepsilon_n u_n = 0$ avec, pour tout n, $\varepsilon_n = \mathrm{sgn}(u_n)\alpha_n$. L'idée pour cela est de toujours "revenir" vers zéro, c'est-à-dire ajouter le terme négatif $-v_n$ à chaque fois que s_n est positif, et le terme positif v_n à chaque fois que s_n est négatif. Allez, on rédige :

Posons d'abord $\alpha_0=1$, ainsi $s_0=v_0=|u_0|\geq 0$, ce qui amène à poser $\alpha_1=-1$ et ainsi

 $s_1=v_0-v_1$, on posera ensuite $\alpha_2=+1$ si $s_1<0$ et $\alpha_2=-1$ si $s_1\geq 0$. Pour $n\in\mathbb{N}^*$ donné, supposons $\alpha_0,\,\cdots,\,\alpha_n$ construits (éléments de $\{-1,1\}$), posons $s_n=\sum_{k=0}^n\alpha_kv_k$, puis $\alpha_{n+1}=\begin{cases} +1 & \text{si } s_n<0 \\ -1 & \text{si } s_n\geq 0 \end{cases}$. Remarquons que, les réels s_n et $\alpha_{n+1}v_{n+1}$ étant de signes contraires, on a $|s_{n+1}|=|s_n+\alpha_{n+1}v_{n+1}|\leq \max\{|s_n|,v_{n+1}\}$. Montrons maintenant que $\lim_{n\to\infty}s_n=0$.

Soit $\varepsilon > 0$. Soit N un entier tel que $n \ge N \Longrightarrow 0 \le v_n \le \varepsilon$. Alors,

(i) : si $|s_N| \le \varepsilon$, par une récurrence immédiate, on a $|s_n| \le \varepsilon$ pour tout $n \ge N$ et c'est gagné ;

(ii) : si $s_N > \varepsilon$, la série $\sum_k v_k$ étant divergente, il existe un entier p tel que $\sum_{k=N+1}^{N+p} v_k > s_N - \varepsilon$. Pour le plus petit de ces entiers p, on aura plus précisément $s_N - \varepsilon < \sum_{k=N+1}^{N+p} v_k \le s_N$, ce qui amène à poser $\alpha_{N+1} = \cdots = \alpha_{N+p} = -1$ et ainsi $0 \le s_{N+p} = s_N - \sum_{k=N+1}^{N+p} v_k \le \varepsilon$,

ce qui nous ramène au cas (i) ; (iii) : si $s_N < -\varepsilon$, raisonnement analogue à (ii).

On a ainsi prouvé que, si (u_n) est une suite de limite nulle, mais telle que la série de terme général u_n ne soit pas absolument convergente, on peut trouver une suite de coefficients (ε_n) dans $\{-1,1\}$ telle que $\sum_{n=0}^{\infty} \varepsilon_n u_n = 0$. Il est alors immédiat que, pour tout réel a donné, on peut aussi trouver une suite $(\varepsilon_n) \in \{-1,1\}^{\mathbb{N}}$ telle que $\sum_{n=0}^{\infty} \varepsilon_n u_n = a$.