常用函数变换表格

Dr. Zhuo Qing zhuoqing@tsing

常用函数变换表格

The table of LT or ZT of some frequentlyused function functions.e

Contents

给出了两个表格,分别列出了一些常用函数的LT 或者ZT的变换结果。

掌握一些常用函数的拉氏变换和Z变换结果。 便于进行感性的分析。

Key Points

■一些常用函数的拉氏变换

■一些常用函数的2变换

一些吊用函数的拉瓦变换				一些吊用函数的Z类换			
	f(t), (t>0)	$F(s) = \mathcal{X}[f(t)]$	— (收敛域省略) —	x[n]	$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$	(收敛域省略) continue table	
1	$\delta(t)$	1			$\begin{vmatrix} 1 \\ z^{-m} \end{vmatrix}$	(15) $\beta^n \sin(n\omega_0)$	$\frac{\beta z \sin(\omega_0)}{z^2 - 2\beta z \cos\omega_0 + \beta^2}$
2	$u(t)$ e^{-at} , n 是正整数				$\frac{z}{z-1}$	(16) $\beta^n \cos(n\omega_0)$	$\frac{z(z-\beta\cos\omega_0)}{z^2-2\beta z\cos\omega_0+\beta^2}$
34	t^n	$\frac{n!}{s^{n+1}}$		n	$\frac{z}{(z-1)^2}$	(17) $\sin(n\omega_0 + \theta)$	$\frac{z[z\cos\theta-\cos(\omega_0-\theta)]}{z^2-2z\cos\omega_0+1}$
(5)	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$		n^2	$\frac{z(z+1)}{(z-1)^3}$	(18) $\cos(n\omega_0 + \theta)$	$\frac{z \left[z \sin \theta + \sin(\omega_0 - \theta)\right]}{z^2 - 2z \cos \omega_0 + 1}$
6	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$		a^n	$\frac{z}{z-a}$	$na^n\sin(n\omega_0)$	$\frac{z(z-a)(z+a)a\sin(\omega_0)}{\left(z^2-2az\cos\omega_0+a^2\right)^2}$
7	$e^{-at}\sin(\omega t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$		na^n	$\frac{az}{\left(z-a\right)^2}$	$na^n\cos(n\omega_0)$	$\frac{az\left[z^2\cos\omega_0 - 2az + a^2\cos\omega_0\right]}{\left(z^2 - 2z\cos\omega_0 + a^2\right)^2}$
8	$e^{-at}\cos(\omega t)$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	(8	n^2a^n	$\frac{az(z+a)}{(z-a)^3}$	$\sinh\left(n\omega_{_{0}} ight)$	$\frac{z \sinh \omega_0}{z^2 - 2z \cosh \omega_0 + 1}$
9	te^{-at}	$\frac{1}{\left(s+a\right)^2}$		$(n+1)a^n$	$\frac{z^2}{\left(z-a\right)^2}$	$\cosh\left(n\omega_{_{0}} ight)$	$\frac{z(z-\cosh_0)}{z^2-2z\cosh\omega_0+1}$
10	$t^n e^{-at}$, n 是正整数	$\frac{n!}{\left(s+a\right)^{n+1}}$	(10)	$\frac{(n+1)\cdots(n+m)}{m!}a^n$		$\frac{a^n}{n!}$	$e^{\frac{a}{z}}$ $\cosh\left(z^{-\frac{1}{2}}\right)$
(11)	$t\sin(\omega t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$	(1	1) e^{bn}	$\frac{z}{z-e^b}$	$\frac{\overline{(2n)!}}{\underline{(\ln a)^n}}$	$\cosh \left(z^{-2} \right)$ $a^{1/z}$
(12)	$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$	(1	2) $e^{jn\omega_0}$	$\frac{z}{z - e^{j\omega_0}}$	$\frac{n!}{n} (n=1,2,\cdots)$	$\ln\left(\frac{z}{z-1}\right)$
(13)	sinh(at)	$\frac{a}{s^2 - a^2}$	(1	3) $\sin(n\omega_0)$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}$	$\frac{n(n-1)}{2!}$	$\frac{z}{(z-1)^3}$
(14)	$\cosh(at)$	$\frac{s}{s^2 - a^2}$	(1	$4) \cos(n\omega_0)$	$\frac{z(z-\cos\omega_0)}{z^2-2z\cos\omega_0+1}$	$\frac{n(n-1)\cdots(n-m)}{m!}$	$\frac{z}{\left(z-1\right)^{m+1}}$