

DEPARTAMENTO DE FÍSICA E MATEMÁTICA EXAME DE ANÁLISE MATEMÁTICA II

 $03/07/09 \gg Duração: 2h30 + 30m$

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Exame da Época Normal » teste A

1. Seja $f(x,y) = (29 - x^2 - y^2)^{1/2}$,

g(x,y) e h(x,y) campos escalares dados sob a forma dos algoritmos seguintes:

[1.0] (a) Determine o domínio da função g(x,y) e represente-o geometricamente. O domínio é fechado? Justifique.

[1.5] (b) Trace um esboço da superfície definida por z = g(x, y).

[3.0] (c) Das alíneas seguintes resolva apenas duas

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

(i) O vector [1, y, -5] define parametricamente a equação da recta tangente à curva de intersecção da superfície z = h(x, y) com o plano x = 1 no ponto P(1, 1, -5).

(ii) Se a temperatura em qualquer ponto do plano xOy for dado por $T=f^2(x,y)$, então a taxa de variação mínima e máxima da temperatura no ponto P(-1,-1) ocorrem na direcção e sentido dos vectores $\vec{w}=\langle -2,-2\rangle$ e $\vec{v}=\langle 2,2\rangle$ respectivamente.

(iii) A função h(x,y) é contínua nos pontos do cordão de soldadura definido por $C=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2=4\right\}$.

(iv) Se
$$z = f^2(x,y)$$
, $y = r \sin \theta$ e $x = r \cos \theta$, então $2 \times \frac{\partial^2 z}{\partial r^2} + \frac{\partial z}{\partial \theta} = \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial^2 z}{\partial y^2} + \frac{\partial^2 z}{\partial x^2}$

2. A figura 1 representa um sólido, de densidade constante $\rho(x,y,z)=2$, composto por duas partes:

- cilindro de raio $r = \sqrt{29}$ e altura h = 5
- segmento de esfera de raio $r=\sqrt{29}$ seccionado por um cone de raio r=2 e altura h=5

Exame .: AM2

Figura 1

[2.0] (a) Justifique, associando os conjuntos seguintes a dois sistemas de coordenadas 3D, que o sólido é definido por $S = S_1 \cup S_2$, onde:

$$\begin{split} S_1 &= \left\{ (\rho, \theta, z) : 0 \le \rho \le \sqrt{29} \land 0 \le \theta \le 2\pi \land -5 \le z \le 0 \right\} \\ S_2 &= \left\{ (R, \theta, \varphi) : 0 \le R \le \sqrt{29} \land 0 \le \theta \le 2\pi \land \arctan(\frac{2}{5}) \le \varphi \le \frac{\pi}{2} \right\} \end{split}$$

- [2.5] (b) Calcule o volume, a massa e o centro de massa do sólido.
- [1.0] (c) Das alíneas seguintes resolva apenas <u>uma</u>
 - i) Prove, usando coordenadas cilíndricas, que o volume de um cilindro de raio r e altura h é $\pi r^2 h$.
 - ii) Mostre, que a área da superfície cónica que limita o sólido é igual a $A(S) = \pi r m = 2\sqrt{29}\pi$, em que r é o raio e m a medida da hipotenusa do triângulo que se obtém por projecção da superfície no plano yOz.
 - iii) Complete as duas funções e associe-as a duas transformações/mudança de variáveis em 2D e 3D respectivamente

$$\begin{array}{lll} \operatorname{Transforma01}(x,\,y) \equiv & \operatorname{Transforma02}(\,\rho\,,\,\theta,\,z) \equiv \\ \operatorname{Prog} & \operatorname{Prog} \\ \rho \equiv \operatorname{SQRT}(\,?\,) & \operatorname{If}\,(\,?\,) \\ \theta \equiv \operatorname{ATAN}(\,?\,) & \operatorname{RETURN} "\operatorname{erro}" \\ \operatorname{RETURN}[\rho,\,\theta] & x \equiv ? \\ y \equiv ? \\ z \equiv ? \\ \operatorname{RETURN}[x,\,y,\,z] \end{array}$$

- 3. Considere a equação não linear $e^{-x} 2x^2 + 2 = 0 \Leftrightarrow f(x) = 0$
- [1.0] (a) Determine, um intervalo de amplitude igual a 1, onde a equação dada tem uma única raiz real x_r positiva.
- $[1.5] \begin{tabular}{ll} \textbf{(b)} Utilizando o método da bissecção, uma vez, obtenha uma aproximação x_0 para a raiz da equação e, mostre que x_0 seria uma aproximação inicial favorável à aplicação do método de Newton/Raphson ou das tangentes. \\ \end{tabular}$
 - 4. Na figura 2, protótipo de um copo, a região sombreada é limitada pela exponencial de equação $y=e^{-x}$, por uma parábola e por segmentos de recta.
- [1.0] (a) Determine, usando a interpoladora de Newton das Diferenças Divididas, a equação da parábola.
- [2.0] **(b)** Aplicando a regra de Simpson simples (n=2), obtenha um valor aproximado, com duas casas decimais, do integral $I = \int_0^{1.08} \int_{2x^2-2}^{e^{-x}} 1 dy dx$ e interprete o resultado obtido. <u>Sugestão</u>: Comece por transformar o integral duplo num integral simples.
- [0.5] **(c)** Calcule um majorante para o erro absoluto cometido na aproximação obtida na alínea anterior

Figura 2

- 5. Considere o problema de condição inicial $y'=-ty, \ y(0)=1, \ t\in [0,2]$
- [0.5] (a) Mostre que $y(t) = \exp(-\frac{1}{2}t^2)$ é a solução exacta do problema.
- [1.5] (b) Complete a tabela seguinte e interprete os resultados obtidos.

		•	Aproximações			Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_i	exacta	Euler	RK2	RK4	Euler	RK2	RK4
0	0						0	0
1		0.6065					0.1065	0.0024
2	2			0.2500	0.1510			

[1.0] **6.** Complete as funções seguintes e acrescente comentários para explicar os algoritmos associados a métodos numéricos específicos. Nota: a sintaxe usada é a da programação em *Matlab*.

```
\begin{split} & \text{function } y = \text{funcao1}(f, a, b, n, y0) \\ & \text{h} = \underline{?} \; ; \\ & \text{t}(1) = \underline{?}; \\ & \text{y}(1) = \underline{?}; \\ & \text{for } i = 1 : n, \\ & \text{k1} = \text{h*feval}(f, \underline{?} \; , \underline{?} \; ); \\ & \text{k2} = \text{h*feval}(f, \underline{?} \; , \underline{?} \; ); \\ & \text{y}(i + 1) = \underline{?} \; + 1/2 * (\underline{?} \; ); \\ & \text{t}(i + 1) = \underline{?} \; ; \\ & \text{end} \end{split}
```

Exame .: AM2

```
function out = funcao2(f,a,b,n)

h=?;

x=?;

s=?;

for i=1:n-1,

x=x+h;

if mod(i,2)==0,

s=?+2*feval(f,x);

else

s=?;

end

end

out=h/3*(feval(f,a)+?+feval(f,b));
```