Project Euler #140: Modified Fibonacci golden nuggets

This problem is a programming version of Problem 140 from projecteuler.net

Consider the infinite polynomial series $A_G(x)=xG_1+x^2G_2+x^3G_3+\ldots$, where G_k is the $k^{\rm th}$ term of the second-order recurrence relation $G_k=G_{k-1}+G_{k-2}$, $G_1=1$ and $G_2=4$; that is, $1,4,5,9,14,23,\ldots$

For this problem we shall be interested in values of x for which $A_G(x)$ is a positive integer.

The corresponding values of \boldsymbol{x} for the first five natural numbers are shown below.

$oldsymbol{x}$	$A_G(x)$
$\frac{\sqrt{5}-1}{4}$	1
$\frac{2}{5}$	2
$\frac{\sqrt{22}-2}{6}$	3
$\frac{\sqrt{137}-5}{14}$	4
$\frac{1}{2}$	5

We shall call $A_G(x)$ a golden nugget if x is rational, because they become increasingly rarer. for example, the $20^{\rm th}$ golden nugget is 211345365.

Let's denote the k^{th} golden nugget as g(k); for example, g(20)=211345365.

Given L and R, find $\sum_{k=L}^R g(k)$, i.e., $g(L)+g(L+1)+\ldots+g(R-1)+g(R)$. Since this sum can be very large, output it modulo 10^9+7 .

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing two space-separated integers, $m{L}$ and $m{R}$.

Constraints

$$1 \le T \le 40000$$

In the first test case: $1 \le L \le R \le 40$ In the second test case: $1 \le L \le R \le 10^6$ In the third test case: $1 \le L \le R \le 10^{18}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input