

4. Geometric Interpretation of Linear

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Lecture 20: Linear Regression 2</u> > Regression

4. Geometric Interpretation of Linear Regression **Geometric Interpretation of Linear Regression**

Note: Also see recitation 13 *Hypothesis testing in linear regression* for some explanation and comments on the linear algebra. You will not be tested on the geometric interpretation on multivariate linear regression, ie. when $\beta \in \mathbb{R}^p$ for p>1.

Geometric Interpretation of Linear Regression

1/1 point (graded)

Let $\mathrm{rank}\,(\mathbb{X})=p$, so that $\mathbb{X}^T\mathbb{X}$ is invertible and the LSE \hat{eta} uniquely exists. The statistical interpretation here is that the product $\mathbb{X}\hat{eta}$ provides the "best" prediction $\hat{\mathbf{Y}}$, in the sense that it minimizes the squared error $\|\mathbf{Y} - \hat{\mathbf{Y}}\|_2^2$. It also comes with a natural geometric interpretation, which we will now demonstrate.

Recall that the formula for the LSE is $\hat{\beta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}$. Plugging this in gives

$$\hat{\mathbf{Y}} = \mathbb{X}\hat{eta} = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbf{Y}.$$

Thus, the prediction $\hat{\mathbf{Y}}$ is some linear transformation of the observed values \mathbf{Y} via some matrix $\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$. Let $P=\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$. Which of the following statements about P, X, Y and \hat{Y} are true?

- \mathbf{Y} is a linear combination of the columns of \mathbb{X} .
- $m{\mathscr{Y}}$ is a linear combination of the columns of \mathbb{X} .

$$P\hat{\mathbf{Y}} = \hat{\mathbf{Y}}.$$

Solution:

All choices are true statements, except for " \mathbf{Y} is in the column space of \mathbb{X} ".

The distinction between $\hat{\mathbf{Y}}$ and $\hat{\mathbf{Y}}$ being in the column space of \mathbb{X} demonstrates that the data points give $\hat{\mathbf{Y}}$ that may not be perfectly on the subspace generated by the columns of \mathbb{X} . However, the predictions $\hat{\mathbf{Y}}$ ought to be in the column space of \mathbb{X} , since predictions look like $\hat{Y} = X^T \beta$, which are **linear functions** of **X**.

First, observe that since the left-most side in the product $\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$ is \mathbb{X} , so $\hat{\mathbf{Y}}$ is in the column space of \mathbb{X} . There is no such restriction on \mathbf{Y} , as it is being multiplied by P regardless of whether it lies in the subspace spanned by the columns of \mathbb{X} . A direct calculation reveals

$$P^{2} = P \cdot P$$

$$= (\mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}) (\mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T})$$

$$= \mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1} (\mathbb{X}^{T}\mathbb{X}) (\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}$$

$$= \mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T} = P.$$

Show all posts

▼

☑ I'm still learning linear algebra, so this may be a stupid question, but...

Such a matrix is commonly called a **projection** (or **idempotent**) matrix. This gives us the geometric interpretation of linear regression: $\hat{\mathbf{Y}}$ is the **orthogonal projection of Y onto the column space of** \mathbb{X} .

Finally, observe that $P\hat{\mathbf{Y}} = P(P\mathbf{Y}) = P\mathbf{Y} = \hat{\mathbf{Y}}$. This is natural: if we apply a projection to a vector, then apply the projection again, it should be the same as if we had applied it only once.

Submit You have used 1 of 3 attempts

Answers are displayed within the problem

Discussion

Topic: Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 4. Geometric Interpretation of Linear Regression

Add a Post

© All Rights Reserved

3

by recent activity ▼