Predicting Home Sale Price in Ames, A

Prem Patel

Why Ames?

- Recently contracted by Iowa's Dept. of Housing & Urban Development
- Teach / consult their team how to build a good predictive model
- Cover methodology and workflow process I utilized for a *preliminary* model
- Necessary improvements

 Problem: lots of missing data

Solution: dropping, or imputing

Which variables can help us predict?

- Observing correlation between the variables of interest and our outcome of interest - Sale Price
- Ensuring all categorical dummies are included
- Creating new variables

01
G
Ga
Ga
Tota
Foundati
TotRn
Ma
Bsm
ga
Garage F
Kitche

_
0
(
Ga
G
Tot
Foundati
TotRr
Ma
Bsn
g
Garage l
Kitche
rer
Exte

Overall Qual
Gr Liv Area
Garage Area
Garage Cars
Total Bsmt SF
1st Flr SF
Full Bath
undation_PConc
TotRms AbvGrd
Mas Vnr Area
Bsmt Qual_TA
garage_age
rage Finish_Unf
Citchen Qual_TA
remodel_age
age
Exter Qual_TA

SalePrice

0.800207

0.697038 0.650246

0.648197

0.628754 0.618486

0.537969 0.529047

0.504014

0.503579 -0.505320

-0.516738 -0.532545 -0.540860 -0.550370 -0.571849

-0.600362

My First Model

 Increased error for home prices greater than ~ \$275,000

Distribution Before Log Transformation Skew: 1.56 SalePrice

Is Sale Price Normally Distributed?

- Heavy right skew, likely being affected by outliers
- |Skew| > 1

Distribution After Log Transformation Skew: -0.15 175 150 125 75 50 25 12.5 12.0 10.5 13.0 9.5 10.0 13.5 Log SalePrice

Is Sale Price Normally Distributed?

- Log Transforming the target variable
- Reduces skew
- Slightly more normalized
- Kurtosis

First Model after Log Transformation

- Slightly tighter Prediction vs. Actual scatter plot
- Overall RMSE has been reduced
- Substantial improvement for lower priced homes

Ridge and Lasso

- Didn't go improve predictive power as expected ...
- Takeaways
 - Reduced feature set via Lasso
 - Trimming outliers

Highly Skewed Features

	Skew
Gr Liv Area	1.281492
1st Flr SF	1.635146
Total Bsmt SF	1.389436
Foundation_Wood	31.999977
Foundation_Stone	20.194030
Bsmt Qual_Po	45.287967
Foundation_Slab	7.577887
Bsmt Qual_Fa	5.590991
Kitchen Qual_Fa	6.381325
Exter Qual_Fa	8.718292

Final Model & Comparisons

	Training r2	RMSE
MLR Log Model 3	0.8633	24586.62
MLR Log Model 2	0.8369	25896.96
MLR Log Transform	0.8369	25911.35
Lasso 2	0.8365	26062.27
Lasso 1	0.8365	26063.20
Ridge	0.8357	26559.09
MLR Model 1	0.8270	27374.59

Improvements to Consider

- Detailed hyperparameter optimization
- Fine tuning the feature selection process
- Experimenting with different models

Thank You