포인트 클라우드 데이터를 활용한 대상물 위치 검출

포인트 클라우드 개요

포인트 클라우드란?

- 3D 공간에서 특정 지점을 나타내는 데이터 집합
- 각 포인트는 (x, y, z) 좌표값을 가짐
- 3D 스캐닝 기술(예: LiDAR, 깊이 카메라)에서 생성됨

포인트 클라우드 생성 과정

• LiDAR, 스테레오 카메라, RGB-D 카메라 등을 통한 포인트 클라우드 생성

포인트 클라우드의 처리

필터링과 노이즈 제거

- Statistical Outlier Removal (SOR) 필터
- Voxel Grid 필터

정렬 및 정합

- ICP (Iterative Closest Point) 알고리즘
- 포인트 클라우드 정합을 위한 방법론

• ICP (Iterative Closest Point) 알고리즘

Iterative Closest Point (ICP)

 Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y, iterate:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing:

$$\sum_{i=1}^{N} \|\mathbf{R}x_i + t - y_i\|_2^2$$

포인트 클라우드를 활용한 위치 검출 기법

물체 인식과 위치 추정

- 포인트 클라우드를 사용하여 물체의 6D 위치 추정
- 특징 기반 매칭: SIFT, SURF, FPFH (Fast Point Feature Histograms)

카메라 모델과의 연계

- 카메라 좌표계와 포인트 클라우드의 변환
- 포인트 클라우드로부터 3D 포즈(위치와 회전) 추정

포인트 클라우드 데이터를 활용한 대상물 위치 검출

sim.getPointCloudPoints

Retrieves point positions from a point cloud

Synopsis

```
Python Lua

list points = sim.getPointCloudPoints(int pointCloudHandle)
```

Arguments

• pointCloudHandle: handle of the point cloud

Return values

• points: the point [x y z] positions, relative to the point cloud reference frame

See also:

· point cloud related functions

