CS & IT

ENGINERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Floating Point Representation

Lecture No.- 02

Recap of Previous Lecture

Topic **Floating-Point Numbers**

Topic

Biased Exponent

Topic

Number Range

Topic

IEEE-754 Floating Point Representation

Topic

Denormalized Number

Topics to be Covered

Topic

IEEE Floating-Point Representation

Topic

Denormalized Number

Topic: IEEE-754 Floating Point Representation

e + bias

float variable of C-larg.

Single Precision

Double Precision

double - Variable of c-lang.

$$E = 00...0$$

special number

 $E = 11...-1$

Topic: IEEE-754 Floating Point Representation

S	E	M	Number	
0	00	0~	+ 🔿	¿ 2 representations of Zero
1	000	00	-0 -	
0	111	0 0	+00	
1	11 1	O O	-00	
0 or 1	11	M +0	N.A.N. (Not A	Number)
0 or 1	00	M + 0	Denormalized n	umber => The number which can
0 or 1	E # 0 0	xxX	Implicitly normal	ized not be normalized.
	E 7 111		number	

for a normalized number $E \Rightarrow (00000001)$ ([1]]]

Range of e => -126 to 127

$$e = 1 - 127$$

$$E = 128 + 127$$

$$= (255)_{10}$$

e = 128

$$=$$
 (11111111)

NOT A Number

101000... ~-- 0.0

Denormalized Number

A very-very small number which Can not be implicitly normalized.

0.0000..... 0101 Implicitly normalizat" 1.01 * 2

not allowed because e = -127 < -126 0.101 * 2 - 126 store it as denormalized

S	E	M
o or 1	00000000	101000

esc:- 0.0000..... normalize 0.00011 * 2 - 126 number is not implicitly normalized hence store it as denormalized number. 0 or 0000000 000 lloo....0

E = ME - bias

Value (Implicit) = (-1) * 1. M * 2

Value (denormalized) = $(-1)^5 * 0.00 * 2$ = 5ingle precision or

(-1) * 0.19 * 2 = louble | 2reasion

-(bias-1)

#Q. The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -27.625. The representation of X in hexadecimal notation is?

$$5 = 1$$

$$(27.625)_{10} = (11011.101)_{2}$$
Implicit normalizatⁿ

$$1.1011101 * 2$$

$$e = 4$$
 $E = 4 + 12f$
 $= (131)_{10}$
 $= (10000011)_{2}$
 $M = |01||0|$

#\alpha.
$$-(37.25)_{10}$$
 how to represent it in IEEE-754 single precision representation? Ans = $(2150000)_{16}$
 $\frac{501}{37.25}_{10} = (100101.01)_{2}$

5 E M

10000100 00 1010100...0

C2150000

Implicit normalizatⁿ

1.0010101 * 2⁵

M = 00/0/01

$$e = 5$$
 $E = 5 + 127 = (132)_{10} = (10000100)_{2}$

#Q. The value represented by the following 32-bits in IEEE-754 representation is?

$$E = (100000011)_2$$
 $M = 110...0$

Value =
$$+1.11 * 2$$

= $1.11 * 2$
= $(11100.0)_2$
= $+(28)_{10}$

#Q. 010000010 101010000....0

Above 32-bits represents a float value in Single precision IEFF-754 format. The float value represented is _____?

$$5 = 0 \Rightarrow + ve$$

$$E = (10000010)_{2} = (130)_{10}$$

Value =+1.10101 *2

= 1.10101 *2

= (1101.01)₂

=+(13.25)₁₀ \Leftarrow Ans.

#Q. The value represented by the following 32-bits in IEEE-754 representation is?

Value =
$$+ 0.11 \times 2^{-126}$$

= $11.0 \times 2^{-2} \times 2^{-126}$
= 3×2^{-128}

#Q. Maximum value represented in IEEE-754 single precision?

#Q. Minimum value represented in IEEE-754 single precision?

Pw

Maximum

#Q. Minimum positive normalized value represented in IEEE-754 single

precision?

Value = 1.11..... |
$$\frac{254 - 127}{254}$$

= 1.111.... | $\frac{127}{25}$
= 11111.... | $\frac{127}{25}$
= 11111.... | $\frac{127}{25}$
= $\frac{1111}{25}$ | $\frac{127}{25}$
= $\frac{24}{25}$ | $\frac{104}{25}$ | $\frac{24}{25}$ | $\frac{104}{25}$ | $\frac{24}{25}$ | $\frac{104}{25}$ | $\frac{24}{25}$ | $\frac{104}{25}$ |

#Q. Minimum positive normalized value represented in IEEE-754 single precision?

Value =
$$1.0 * 2$$

$$= 2^{-126}$$

value = 0.0000...01 *
$$2^{-126}$$
= 1.0 * 2^{-23} * 2^{-126}
= $+(2^{-149})$

#Q. Maximum positive denormalized value represented in IEEE-754 single precision?

Value = 0.11...-1
$$*2^{-126}$$

= 111.....1.0 $*2^{-23} *2^{-126}$
= $(2^{23}-1) *2^{-149}$

#Q. How to represent (+1) and (-1) in IEEE-754 single precision floating point number?

#Q. The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of −14.25. The representation of X in hexadecimal notation is

A C1640000H

B 416C0000H

41640000H

C16C0000H

Here S, E and F denote the sign, exponent and fraction components of the floating-point representation.

The decimal value corresponding to the above representation (rounded to 2 decimal places) is_____

Sign	Exponent	mantissa

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?

- A. exponent = 00000001 and mantissa = 0000000000000000000001

- D. exponent = 00000000 and mantissa = 0000000000000000000001

2 mins Summary

Topic

IEEE Floating-Point Representation

Topic

Denormalized Number

Happy Learning

THANK - YOU