

Estrutura dos Computadores Digitais

Guiou Kobayashi guiou.kobayashi@ufabc.edu.br

2º Quadrimestre, 2014

Bits e Bytes

Bit: Binary Digit. Unidade elementar de informação: 0 ou 1

Byte =
$$8 \text{ Bits} = 256 \text{ valores} (2^8)$$

Sistema de Numeração:

-Bases	_	Bin	рес нех
-Da3C3			

- -Casas 0000 00 0
- -Representação 0001 01 ´
 - 0010 02 2
 - 0011 03 3
 - 0100 04 4
 - 0101 05 5
 - 0110 06 6
 - 0111 07 7
 - 1000 08 8
 - 1001 09 9
 - 1010 10 A
 - 1011 11 B
 - 1100 12 C
 - 1101 13 D
 - 1110 14 E
 - 1111 15 F

Notação:

- binária: base 2

- decimal: base 10

- hexadecimal: base 16

Sistema Binário

- Álgebra Booleana
 - George Boole (1815--1864): Matemático e filósofo inglês
 - Operadores: E, OU, NÃO (negação)

Operador **E**:
$$0 e 0 = 0$$
 Operador **OU**: $0 ou 0 = 0$ $0 e 1 = 0$ $0 ou 1 = 1$ $1 e 0 = 0$ $1 ou 0 = 1$ $1 ou 1 = 1$

Bits como código:

Codificação dos caracteres em byte. Correspondência segundo ASCII. (American Standard Code for Information Interchange):

7 bits + paridade

Hex	Name	Meaning	Hex	Name	Meaning
0	NUL	Null	10	DLE	Data Link Escape
1	SOH	Start Of Heading	11	DC1	Device Control 1
2	STX	Start Of Text	12	DC2	Device Control 2
3	ETX	End Of Text	13	DC3	Device Control 3
) 4	EOT	End Of Transmission	14	DC4	Device Control 4
5	ENQ	Enquiry	15	NAK	Negative AcKnowledgement
6	ACK	ACKnowledgement	16	SYN	SYNchronous idle
7	BEL	BELI	17	ETB	End of Transmission Block
8	BS	BackSpace	18	CAN	CANcel
9	HT	Horizontal Tab	19	EM	End of Medium
A	LF	Line Feed	1A	SUB	SUBstitute
В	VT	Vertical Tab	1B	ESC	ESCape
C	FF	Form Feed	1C	FS	File Separator
D	CR	Carriage Return	1D	GS	Group Separator
E	SO	Shift Out	1E	RS	Record Separator
F	SI	Shift In	1F	US	Unit Separator

Hex	Char	Нех	Char	Hex	Char	Hex	Char	Hex	Char	Hex	Char
20	(Space)	30	0	40	@	50	Р	60		70	р
21	1	31	1	41	Α	51	Q	61	а	71	q
22	Ш	32	2	42	В	52	R	62	b	72	r
23	#	33	3	43	C	53	S	63	С	73	S
24	\$	34	4	44	D	54	T	64	ď	74	t
25	%	35	5	45	Ε	55	U	65	е	75	u
26	&	36	6	46	F	56	٧	66	f	76	٧
27	,	37	7	47	G	57	W	67	g	77	w
28	(38	8	48	Н	58	Χ	68	h	78	X
29	j	39	9	49	1	59	Υ	69	i	79	У
2A	*	ЗА	:	4A	J	5A	Z	6A	j	7A	Z
2B	+	3B	;	4B	K	5B	[6B	k	7B	{
2C	,	3C	<	4C	L	5C	Ň	6C	1	7C	ì
2D	-	3D	=	4D	М	5D	1	6D	m	7D	}
2E		3E	>	4E	N	5E	Ž	6E	n	7E	~
2F	1	3F	?	4F	0	5F	_	6F	0	7F	DEL

Figure 2-41. The ASCII character set.

Caracteres - ASCII (MS-DOS com código 850 - internacional)

(Primeira coluna código normal em Times Roman e segunda Symbol)

ASCII code page Unicode: 2 bytes

000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

DIGITALIZAÇÃO

Processo de conversão da informação analógica (real) em valores binários (dígitos). Envolve amostragem(tempo) e quantização (leitura de valor)

Processo de Digitalização

Digitalização de Imagens por mapeamento em bits (bitmap): Raster

Grade ou Matriz

- resolução: número de pixels por unidade de espaço ou área

VOXEL?

- impressoras: dpi: dots per inch (pontos por polegada)

Arquivos de imagem tipo .bmp (bitmap): tratados por programas como Corel, Paintbrush

- cada pixel: um bit (imagem preto e branco)

um byte (256 tons de cinza)

dois bytes (64 mil cores, selecionados de uma paleta de cores)

três bytes (um byte para cada cor), etc

Bitmap em cores

320 x 200 x 16,7 milhões de cores (24 bits)

Gravação de Bits em meio ótico: CD e DVD

Enquanto o CD consegue armazenar até 650 MB, o DVD começa em 4,7 GB e pode chegar a 17 GB, gravado nos dois lados e em duas camadas. O DVD aproveita melhor o espaço: 1. No DVD, a distância entre um sulco e outro é de 0,74 mícron, contra 1,6 mícron no CD. 2. Na trilha do DVD, as informações também estão mais compactadas.

BITS & BYTES:

Bits (0 e 1) podem ser:

- números;
- codificados para representar qualquer símbolo (caracter);
- sinais (após digitalização), som;
- imagens, vídeos;
- podem representar qualquer informação.

DIGITALIZAR:

converter informações reais para o formato binário (digital)

VANTAGENS DA DIGITALIZAÇÃO:

- Uma vez convertidas em informação binária, torna-se mais fácil e robusto o armazenamento e a preservação da informação. Uma cópia de informação binária é uma cópia fiel e idêntica do original.
- As informações no formato digital podem ser manipuladas e tratadas por programas e processadores, possibilitando uma extensa gama de aplicações e uso.

Estrutura dos Computadores Digitais

Em arquivos digitais estruturados em diretórios. Podem conter dados ou programas. Dispositivos: discos, fitas, discos óticos, etc. Troca de informação com outros computadores (protocolo) e dispositivos. Rede de computadores. Internet, automação industrial e comercial

Processamento

PROCESSAMENTO

Programas: sequência de comandos para o *processador*

Dados: informações armazenadas em *memórias*

Protocolos: regras que permitem a troca de dados entre elementos quaisquer

Exemplo: efetuar a equação

$$A = (5 \times B) + C$$

PROGRAMA

Sequência de Comandos:

C1: Ler o valor de B e guardar no acumulador

C2: Multiplicar por 5 e salvar o resultado no acumulador

C3: Ler o valor de C e somar com o acumulador Salvar o resultado no acumulador

C4: Escrever o conteúdo do acumulador em A

Obs: Acumulador: registrador temporário de dados, utilizado pelo processador realizar as operações

DADOS

Valores das variáveis:

Α

В

C

PROCESSAMENTO

$$A = (5 \times B) + C$$

Processador: exemplo de 8 bits:

- realiza operações com variáveis de 8 bits
- lê e escreve dados de 8 bits (256 valores)
- capacidade de endereçamento (n. bits) normalmente, 16 bits (64 K)
- comandos de 8 bits (256 instruções diferentes)
- velocidade: clock em MHz, ou MIPS (milhões instruções por segundo)

Memória: armazena dados na forma binária Tipos de memória:

RAM: Random Access Memory (memória de acesso aleatório): permite escrita e leitura

ROM: Read Only Memory: memória permanente, permite somente leitura

Capacidade: dado em total de bits tamanho do endereço x tamanho dado ex: 256 bits = 64 K x 8 bits (1 byte)

Sistemas Operacionais

Computador: execução de um programa

Programa: um conjunto de comandos para o computador que realizam uma determinada função.

Exemplo: executar o programa Word para Windows (editor de textos da Microsoft)

O programa Word está contido em um arquivo chamado "winword.exe", que por sua vez, está armazenado no disco rígido do computador, normalmente no diretório:

"C:\Arquivos de programas\Microsoft Office\Office\" (local de instalação)

Ao solicitarmos a execução do programa (através de um "click" de mouse no ícone do programa ou através de uma linha de comando), o sistema operacional busca antes se o programa já está armazenado na memória. Se estiver, inicia a execução do programa, se não, lê o arquivo "winword.exe" e transfere o seu conteúdo para a memória, para então iniciar a execução do programa.

Na realidade, o programa Word está distribuído em vários arquivos contendo os comandos necessários para a realização de todas as funções do editor de textos. O arquivo "winword.exe" contém o programa principal, a partir do qual outros programas são acionados (e carregados na memória) conforme a solicitação de funções pelo usuário. Esses arquivos possuem a extensão ".dll". Além desses arquivos, o Word utiliza também arquivos que contém dados e informações de configurações.

SISTEMAS OPERACIONAIS

Sistemas Operacionais (SO) são programas que controlam os dispositivos de hardware do computador e também a execução de programas aplicativos.

HARDWARE

Dispositivos de E/S:

- vídeo / monitor
- teclado / mouse
- impressoras / scannersArmazenamento:(sistema de arquivos)
- disco rígido
- driver de disquete Comunicação:

(protocolos)

- modem
- rede local

Processador e Memória

Tem como objetivo gerenciar os recursos do computador:

- otimizar o seu uso: máximo desempenho e eficiência
- prover serviços padronizados de funções e interfaces
- assegurar a integridade e a segurança dos dados e programas

SISTEMAS OPERACIONAIS

Principais Funções:

- 1) Gerenciamento e controle dos recursos do computador
 - . UPC e memória
 - . armazenamento
 - . dispositivos E/S
 - . comunicação
- 2) Gerenciamento dos softwares aplicativos
 - . chaveamento de tarefas (preempção)
 - . administração das prioridades
- 3) Serviços padronizados para o acesso aos recursos do computador
 - . transparência da configuração do hardware para o aplicativo
 - . instalação / alteração de recursos administrados pelo SO
- 4) Interface com o(s) usuário(s): nos Computadores Pessoais
 - . GUI: Graphic User Interface

SISTEMAS OPERACIONAIS

MAINFRAMES

IBM:

OS/360 – IBM System/360, 1966

MVS - IBM System/360, 1970

z/OS - atual

CP-67 – IBM System/360, 1967 (Virtual Machine)

z/VM - atual

Burroughs:

MCP - B5000, 1961

Unisys Clearpath/MCP - atual

UNIVAC

EXEC 8 – UNIVAC 1108, 1967

OS 2200 Unisys Clearpath Dorado - atual

UNIX - Minicomputadores:

AT&T Bell Labs (escrito em C), Ken Thompson, Dennis Ritchie, 1973 DEC (Digital Equipment Corp), PDP-11, Vax HP-UX (Hewlett Packard UniX) - HP, Motorola 68000, 1984 AIX (Advanced Interactive eXecutive) - IBM, 6150 RISC workstation, 1986 Solaris - SUN Microsystems, SPARC workstations, 1992 MAC OS X - Apple

Software Livre:

BSD (Berkeley Software Distribution) - University of California, Berkeley, 1970 GNU project: (GNU's Not Unix) - Richard Stallman, 1983

Microcomputadores PC:

Linux kernel - Linus Torvalds, 1991 FreeBSD, NetBSD and OpenBSD

Padronização:

IEEE POSIX standard, 1988
The Open Group - Single UNIX Specification
Open Group + IEEE = Austin Group, 1998

Sistema Operacional de Tempo Real: Real-time operating system (RTOS)

- sistemas de controle e automação
- sistemas embarcados
- telefones inteligentes, computação móvel
- exemplos: VxWorks, PikeOS, eCos, QNX, MontaVista Linux and RTLinux

Sistemas Móveis:

- iOS (Apple iPhone, iPad)
- Android (Google)
- Windows Phone (Windows Mobile, CE), RT (Tablets)
- BlackBerry OS (RIM Research in Motion)
- Symbian OS (Nokia)
- Tizen (Linux, Samsung, Intel)

Antigos:

- BADA (Samsung)
- Palm OS

Evolução dos Sistemas Operacionais para PC

Circuito Integrado

CIRCUITOS INTEGRADOS

Tecnologia atual: dispositivos implementados em circuitos integrados (CI ou chips) em silício, material semicondutor, onde as dimensões de cada elemento estão na ordem de grandeza de mícrons (milésimos de milímetro) e nanos (22, 16 nm).

Microprocessadores:

Core i3, i5, i7 segunda geração (Nehalen)

Pentium 4 D (Dual core), HT (Hyper Threading)/ Intel: 32 bits, 3,6 GHz, uso geral, desktop

Itanium 2 / Intel: 64 bits, 1,6 GHz, uso geral, server

Athlon 64 FX-51 / AMD: 64 bits, 2800+, uso geral, server (Opteron)

Cell Processor / Sony Playstation 3: 9 núcleos (1 + 8) 64 bits, 4 GHz

Memória:

C.I. de 1 Gbits: 1 Giga x 1 bit, Memória dinâmica RAM (1 Giga = 10⁹)

Pentes: 4 GBytes DDR3, 2.133 GHz, PC3-17000

CIRCUITOS INTEGRADOS

10 µm — 1971 $3 \mu m - 1975$ 1.5 µm — 1982 1 um — 1985 800 nm (0.80 μm) — 1989 600 nm (0.60 µm) — 1994 $350 \text{ nm} (0.35 \mu\text{m}) - 1995$ 250 nm (0.25 μm) — 1998 180 nm (0.18 μm) — 1999 130 nm (0.13 μm) — 2000 90 nm - 200265 nm — 2006 45 nm — 2008 32 nm — 2010 22 nm — aprox. 2011 16 nm — aprox. 2013 11 nm — aprox. 2015

1 mm² = um milhão de elementos de 1 mícron

Os circuitos de silício, depois de cortados, são soldados aos pinos e encapsulados em plástico ou cerâmica para formar os chips.

CIRCUITOS INTEGRADOS

Família de microprocessadores da Intel, que equipa os microcomputadores do tipo IBM-PCs

Placa-mãe (motherboard), onde são instalados e conectados diversos Cls que realizam as funções necessárias para um microcomputador funcionar. No soquete azul é instalado o microprocessador.

soquete para pentes de memória

Armazenamento

ARMAZENAMENTO

Arquivos digitais estruturados em diretórios. **Dispositivos** Podem conter dados ou de E/S programas. Dispositivos: discos, fitas, discos óticos, etc. **Processamento** Comunicação Armazenamento

UNIDADES DE ARMAZENAMENTO: DISCOS

Figure 2-19. A portion of a disk track. Two sectors are illustrated.

Capacidade do disco: nº de bytes por setor X nº de setores por trilha X nº de trilhas

Zonas: regiões com nº de setores por trilha (10 a 30 zonas por disco)

Tempo de acesso (Seek): tempo médio de 5 a 15 ms até a primeiro setor

Entre trilhas consecutivas: 1 ms

Rotação: 3600, 5400, 7200 (4 a 8 ms), 10.800, 12.000 rpm

Taxa de transferência (após o Seek): 5 a 60 MB/s. Depende da densidade e da rotação Taxas diferentes para Burst (um setor) e Sustentado (valor médio)

UNIDADES DE ARMAZENAMENTO: DISCOS

Diâmetro do disco: 3 a 12 cm

Típico: 3.5" = 8.9 cm (Desktop) e 2.5" (Notebook)

Capacidade: Terabytes

Microdrive: 1 a 60 GByte

disco: 1 polegada Seek: média 12 ms

rotação: 3600 rpm

UNIDADES DE ARMAZENAMENTO: CD e DVD

Figure 2-24. Recording structure of a Compact Disc or CD-ROM.

CD: gravação em espiral velocidade variável

Figure 2-26. Cross section of a CD-R disk and laser (not to scale). A silver CD-ROM has a similar structure, except without the dye layer and with a pitted aluminum layer instead of a gold layer.

Capacidades:

CD 700 MB

DVD 4,7 GB a 17 GB (duas camadas, duas faces)

Blu-ray 25 GB a 100 GB (4 camadas) Sony

HD-DVD 15 GB a 45 GB (3 camadas) Toshiba / Microsoft

UNIDADES DE ARMAZENAMENTO: Outros

Memórias Flash

2 a 128 GBytes regraváveis Gravação Rápida

Hi-MD:

- 1 GBytes regraváveis.

Armazenamento

RAID: REDUNDANT ARRAY OF INDEPENDENT DISKS

RAID 0: Strip: número fixo de setores Arquivo: divididos em strips armazenados em vários discos. Resultado: escrita e leitura paralela

RAID 1: escrita duplicada

Resultado: escrita igual a RAID 0, leitura 2X

Confiabilidade: excelente

RAID 2: distribuição por bit / byte ou word Exemplo: dados 4 bits (nibble) e 3 bits ECC Hamming code. Exige sincronismo.

RAID 3: versão simplificada de RAID 2.1 bit de paridade serve para corrigir,pois o disco defeituoso é conhecido

RAID 4: versão RAID 3 com Strip, onde o disco de paridade armazena o Strip de paridade.

Problema: alterações pequenas exige a leitura de todos os Strips para recalcular a paridade. Sobrecarga do disco de paridade

RAID 5: versão do RAID 4, onde a sobrecarga foi distribuída entre os discos

Strip 17

Strip 18

Strip 19

P16-19

Strip 16

Comunicação

COMUNICAÇÃO

Troca de informação com outros computadores (protocolo de comunicação) e dispositivos.

Rede de computadores

Internet Automação industrial e comercial

Processamento

Armazenamento

Dispositivos de E/S

Processamento

Comunicação

COMUNICAÇÃO

Transmissão de Bits em série por vários meios de comunicação:

- Meios de Comunicação:
 cabos: par trançado, coaxial, fibra ótica
 sem fio: rádio freqüência, infra-vermelho
- Capacidade do Canal ou Velocidade:
 Taxa de comunicação:
 bps: Bits Por Segundo

Modems

- Modulação
 - Tradução de dados no formato digital para o analógico
- Demodulação
 - Processo inverso

- Modems
 - Dispositivos de modulação/demodulação para transmissão de dados digitais por cabos condutores elétricos: cabos telefônicos, TV a cabo, etc

Tipos de rede

- Dependendo da distância física entre os nós de uma rede e dos serviços e comunicações por ela providos:
 - Redes de área local (LAN)
 - Agrupam equipamentos em um edifício ou área local
 - Redes de área expandida (WAN)
 - Operam sobre grandes regiões geográficas
 - Redes internacionais
 - Usadas para comunicação entre países

Rede Local

Conjunto de computadores interligados, compartilhando um mesmo meio de comunicação (rede), permitindo a troca de informações entre si.

INTERNET - Rede Mundial de Computadores

Comunicação Sem Fio

- Wi-Fi: IEEE 802.11 faixa livre (2,4 GHz)
 - 802.11 a, b, 1999 11 Mbps
 - 802.11 g, 2003 54 Mbps
 - 802.11 n, 2009 até 150 Mbps (5 GHz) por canal, 4 canais
- Wi MAX:IEEE 802.16 (Microondas)
 - 802.16 d, 2004 34 Mbps
 - 802.16 e, 2005 Mobile WiMAX
 - 802.16 m, ? até 1 Gbps
- Sistema Celular
 - GPRS GSM
 - CDMA2000
 - 3G
 - 4G (LTE)
- Bluetooth

Dispositivos de E/S

DISPOSITIVOS DE ENTRADA E SAÍDA

Interface com o usuário Interface com máquinas e equipamentos:

. Sensores e atuadores

TECLADOS

SENSORES HÁPTICOS

Tato Consistência Formato

TELAS 3D

- óculos sincronizados
- óculos polarizados (cinemas)

