TEORÍA DE LA DECISIÓN Exámenes

Curso 2017/2018 - 1ª Semana

Considérese un problema de decisión en el que el espacio de acciones es $A = \{a_1, a_2, a_3\}$ y el espacio de estados de la naturaleza es $\Theta = [0, 1]$, siendo las funciones de pérdida:

$$L(\theta, a_1) = 3\theta + 1$$
 $L(\theta, a_2) = 4 - 4\theta$ $L(\theta, a_3) = \theta + 2$

- A) Determinar con el criterio minimax las acciones óptimas no aleatorizadas y las acciones óptimas aleatorizadas.
- B) Establecer la acción Bayes frente a cualquier distribución a priori π sobre Θ , y especificar el riesgo Bayes correspondiente.
- C) Indicar cuáles son las distribuciones a priori menos favorables y el riesgo Bayes asociado.

Antes de adoptar la acción, el decisor puede realizar un experimento con dos resultados posibles, x_1 y x_2 , siendo $p(x_1) = \theta$ y $p(x_2) = 1 - \theta$ las probabilidades de obtener cada resultado según el valor real de θ .

D) Determinar las reglas de decisión Bayes frente a la distribución a priori de densidad

$$\pi(\theta) = 2(1 - \theta)$$
 sobre [0, 1]

E) Calcular la cantidad máxima que debería pagarse por realizar el experimento.

Solución:

A) Se tiene que

$$\max_{\theta \in \Theta} L(\theta, a_1) = 4 \qquad \max_{\theta \in \Theta} L(\theta, a_2) = 4 \qquad \max_{\theta \in \Theta} L(\theta, a_3) = 3$$

Por tanto, la acción óptima no aleatorizada por el criterio minimax es a_3 .

Consideremos ahora decisiones aleatorizadas $\mathbf{a} = (a_1, a_2, 1 - a_1 - a_2)$ con $0 \le a_1 + a_2 \le 1$. Se tiene entonces que la pérdida asociada a cada acción aleatorizada viene dada por

$$L(\theta, \mathbf{a}) = L(\theta, a_1, a_2) = a_1 L(\theta, a_1) + a_2 L(\theta, a_2) + (1 - a_1 - a_2) L(\theta, a_3) =$$

$$= a_1 (3\theta + 1) + a_2 (4 - 4\theta) + (1 - a_1 - a_2)(\theta + 2) =$$

$$= 2\theta a_1 - 5\theta a_2 - a_1 + 2a_2 + \theta + 2$$

se trata de, tomando fijos (a_1, a_2) , calcular el máximo de dicha función. El máximo siempre estará en los extremos de θ , ya que la función es lineal en θ . Además, se puede escribir

$$L(\theta, \mathbf{a}) = \theta(2a_1 - 5a_2 + 1) - a_1 + 2a_2 + 2$$

y el máximo estará en el extremo superior o inferior de $\Theta = [0, 1]$ según que $2a_1 - 5a_2 + 1$ sea positivo o negativo. Por tanto, se tiene que

TEORÍA DE LA DECISIÓN Exámenes

$$\max_{\theta \in \Theta} L(\theta, \mathbf{a}) = \begin{cases} a_1 - 3a_2 + 3 & 2a_1 - 5a_2 + 1 \ge 0 \\ -3a_1 + 7a_2 + 1 & 2a_1 - 5a_2 + 1 < 0 \end{cases}$$

Los vértices de la regiones críticas, donde estará el mínimo, son

$$(4/7, 3/7)$$
 $(0, 1/5)$ $(1, 0)$ $(0, 1)$ $(0, 0)$

el mínimo se alcanza en $(a_1, a_2) = (4/7, 3/7)$, y por tanto la acción óptima aleatorizada con el criterio del minimax es

$$a = (4/7, 3/7, 0)$$

B) Supongamos una distribución a priori π sobre Θ , con función de densidad $\pi(\theta)$. Se tiene que el riesgo Bayes de cada acción viene dado por

$$\hat{r}(\pi, a_1) = \int_{\Theta} L(\theta, a_1) d\pi = \int_{\Theta} (3\theta + 1) d\pi = 3 E_{\pi}[\theta] + 1$$

$$\hat{r}(\pi, a_2) = \int_{\Theta} L(\theta, a_2) d\pi = \int_{\Theta} (4 - 4\theta) d\pi = 4 - 4 E_{\pi}[\theta]$$

$$\hat{r}(\pi, a_3) = \int_{\Theta} L(\theta, a_3) d\pi = \int_{\Theta} (\theta + 2) d\pi = E_{\pi}[\theta] + 2$$

Por tanto, el mínimo riesgo Bayes viene dado por

$$\widehat{r}(\pi) = \widehat{r}(E_{\pi}[\theta]) = \min_{a \in A} \widehat{r}(\pi, a) = \begin{cases} 3 E_{\pi}[\theta] + 1 & E_{\pi}[\theta] \le 3/7 \\ 4 - 4 E_{\pi}[\theta] & E_{\pi}[\theta] > 3/7 \end{cases}$$

Y, por tanto, para cualquier distribución a priori π si $E_{\pi}[\theta] \leq 3/7$ la acción Bayes es a_1 y si $E_{\pi}[\theta] > 3/7$ la acción Bayes es a_2 .

C) Mirando el apartado anterior, el máximo riesgo Bayes se alcanza cuando la distribución a priori π verifica que

$$E_{\pi}[\theta] = 3/7$$

el riesgo Bayes asociado a estas distribuciones es $\hat{r}(\pi) = 16/7$.

D) En primer lugar calcularemos $p(x_1)$ y $p(x_2)$ con la distribución a priori especificada. Se tiene que

$$p(x_1) = \int_{\Theta} p_{\theta}(x_1) \, \pi(\theta) = 1/3$$

$$p(x_2) = \int_{\Theta} p_{\theta}(x_2) \, \pi(\theta) = 2/3$$

Se tiene entonces que

$$\pi(\theta \mid x_1) = \frac{\pi(\theta) p_{\theta}(x_1)}{p(x_1)} = 6\theta(1 - \theta)$$

TEORÍA DE LA DECISIÓN Exámenes

$$\pi(\theta \mid x_2) = \frac{\pi(\theta) p_{\theta}(x_2)}{p(x_2)} = 3(1 - \theta)^2$$

Se trata ahora de calcular $\int_{\Theta} L(\theta, d(x)) \pi(\theta \mid x)$ para cada uno de los dos resultados del experimento y probando con cada posible regla de decisión. Se toma como regla de decisión la que minimiza este valor para cada resultado del experimento.

• Caso
$$d(x_1) = a_1$$
:
$$\int_{\Theta} L(\theta, d(x_1)) \pi(\theta \mid x_1) = \int_{\Theta} L(\theta, a_1) \pi(\theta \mid x_1) = 5/2$$

• Caso
$$d(x_1) = a_2$$
:
$$\int_{\Theta} L(\theta, d(x_1)) \, \pi(\theta \mid x_1) = \int_{\Theta} L(\theta, a_2) \, \pi(\theta \mid x_1) = 2$$

• Caso
$$d(x_1) = a_3$$
:
$$\int_{\Theta} L(\theta, d(x_1)) \, \pi(\theta \mid x_1) = \int_{\Theta} L(\theta, a_3) \, \pi(\theta \mid x_1) = 5/2$$

• Caso
$$d(x_2) = a_1$$
:
$$\int_{\Theta} L(\theta, d(x_2)) \, \pi(\theta \mid x_2) = \int_{\Theta} L(\theta, a_1) \, \pi(\theta \mid x_2) = 7/4$$

• Caso
$$d(x_2) = a_2$$
:
$$\int_{\Theta} L(\theta, d(x_2)) \, \pi(\theta \mid x_2) = \int_{\Theta} L(\theta, a_2) \, \pi(\theta \mid x_2) = 3$$

• Caso
$$d(x_2) = a_3$$
:
$$\int_{\Theta} L(\theta, d(x_2)) \, \pi(\theta \mid x_2) = \int_{\Theta} L(\theta, a_3) \, \pi(\theta \mid x_2) = 9/4$$

Por tanto, con la distribución a priori π la regla de decisión Bayes es

$$d(x_1) = a_2 \qquad d(x_2) = a_1$$

E) La cantidad máxima que debería pagarse será la diferencia entre el riesgo Bayes obtenido con la distribución a priori π del apartado anterior usando experimentación y sin usarla. Para ello, calcularemos dichos riesgos Bayes y evaluaremos la diferencia.

Como se tiene que con la distribución a priori de densidad $\pi(\theta) = 2(1 - \theta)$ es

$$E_{\pi}[\theta] = 1/3$$

podemos usar entonces los resultados del apartado B) y se tiene que sin usar experimentación, el riesgo Bayes y la acción Bayes son

$$\hat{r}(\boldsymbol{\pi}) = 2$$
 y a_1

Vamos a calcular ahora el riesgo Bayes de nuestra regla de decisión Bayes. Se tiene que

$$R(\theta, d) = p_{\theta}(x_1) L(\theta, d(x_1)) + p_{\theta}(x_2) L(\theta, d(x_2)) =$$

$$= \theta(4 - 4\theta) + (1 - \theta)(3\theta + 1) = -7\theta^2 + 6\theta + 1$$

y el riesgo Bayes de la regla de decisión viene dado por

$$\hat{r}(\boldsymbol{\pi}, d) = \int_{\Theta} R(\theta, d) \, \pi(\theta) = 11/6$$

Por tanto, la cantidad máxima que se debe pagar por la experimentación es $C = \hat{r}(\pi) - \hat{r}(\pi, d) = 1/6$.