四、四个抽样分布定理

- 数理统计中最重要的总体: $X^{n}(\mu,\sigma^{2})$
- 问题:如何由样本X₁,X₂,...,X_n推断μ,σ²?
 - 统计推断通过抽样调查,从样本的统计值来估计总体的参数值,或检验关于总体特征的假设是否可接受。
- · 方法: 构造统计量
 - ① 如何构造好的统计量g(X₁,X₂,...,X_n)?
 - ② g(X₁,X₂,...,X_n)服从什么分布?
 - · 统计量是样本的函数,也是随机变量,统计量所服从的分布 称为<mark>抽样分布</mark>。
 - · 统计推断中最重要的结论: 四个抽样分布定理

一、单个正态总体的抽样分布

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$

的样本, \bar{X} 是样本均值,则有

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 \mathbb{P} $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

【提示】在已知总体 μ , σ^2 时,可用本定理计算样本均值 \overline{X} .

n 取不同值时 样本均值 \bar{X} 的分布

设 $X_1,X_2,...,X_n$ 是来自正态总体 $N(\mu,\sigma^2)$ 的样本, \overline{X} 和 S^2 分别为样本均值和样本方差,则有

$$(1) \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2) \bar{X} 与 S^2 独立.

【提示】在已知总体 σ^2 时,可用本定理计算样本方差 S^2 .

n 取不同值时 $\frac{(n-1)S^2}{\sigma^2}$ 的分布

例 设 X_1, X_2, \dots, X_{10} 是总体 $X \sim N(\mu, 4)$ 的样本, 求样本方差容量 S^2 大于2.622的概率。

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
解: 由定理2, $\frac{(10-1)S^2}{4} \sim \chi^2(10-1)$

$$P(S^2 > 2.622) = P(\frac{9}{4}S^2 > \frac{9}{4} \times 2.622) = P(\frac{9}{4}S^2 > 5.8995)$$

由 χ^2 分布表,可知 $\chi^2_{0.75}(9) = 5.899$

则近似地有 S^2 大于2.622的概率为0.75。

x²分布临界值表(卡方分布)

n′	P												
	0. 995	0. 99	0. 975	0.95	0.9	0. 75	0. 5	0.25	0. 1	0.05	0.025	0.01	0.005
1					0.02	0.1	0. 45	1.32	2.71	3.84	5.02	6. 63	7. 88
2	0.01	0.02	0.02	0.1	0.21	0. 58	1.39	2. 77	4. 61	5. 99	7. 38	9. 21	10.6
3	0.07	0.11	0.22	0.35	0.58	1. 21	2. 37	4. 11	6. 25	7.81	9.35	11.34	12.84
4	0.21	0.3	0.48	0.71	1.06	1.92	3. 36	5. 39	7. 78	9. 49	11. 14	13. 28	14.86
5	0.41	0.55	0.83	1. 15	1.61	2.67	4. 35	6.63	9.24	11.07	12.83	15.09	16. 75
6	0.68	0.87	1.24	1.64	2.2	3. 45	5. 35	7.84	10.64	12. 59	14. 45	16.81	18. 55
7	0. 99	1.24	1.69	2. 17	2.83	4. 25	6. 35	9.04	12.02	14.07	16.01	18. 48	20. 28
8	1.34	1.65	2.18	2. 73	3. 4	5. 07	7. 34	10. 22	13.36	15. 51	17.53	20.09	21.96
9	1.73	2.09	2. 7	3. 33	4. 17	5. 9	8. 34	11.39	14.68	16. 92	19.02	21.67	23. 59
	h 10	h -a	A A-	0.04	4 07	0.74		10 FF	1 - 00	10 01	00 40	00 01	05 40

$$P(S^2 > 2.622) = P(\frac{9}{4}S^2 > \frac{9}{4} \times 2.622) = P(\frac{9}{4}S^2 > 5.8995)$$

由 χ^2 分布表,可知 $\chi^2_{0.75}(9) = 5.899$

则近似地有 s^2 大于2.622的概率为0.75。

利用Excel函数CHIDIST, 求 $\chi^2_{\alpha}(9) = 5.8995$,

可得 α = 0.75,

由此,可得 S^2 大于2.622的概率为0.75

当总体方差 σ^2 未知时,可以用 S^2 来代替,同样也可以得到样本均值的分布。

由定理1、2,可知

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 且相互独立

根据t分布的定义,可得

$$\frac{X}{Y/\sqrt{n-1}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} / \sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}} \sim t(n-1)$$

$$\mathbb{P} \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

设 $X_1, X_2, ..., X_n$ 是取自正态总体 $N(\mu, \sigma^2)$ 的样本,

 \bar{X} 和 S^2 分别为样本均值和样本方差,

则有
$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$

【提示】在总体 σ^2 未知时,可用本定理计算样本均值 \overline{X} .

例 设总体 $X \sim N(3,\sigma^2)$,有n=10的样本,样本方差 S^2 =4, 求样本均值 \bar{x} 落在2.1253到3.8747之间的概率。

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$
解:由定理3, $\frac{\bar{X}-3}{2/\sqrt{10}} \sim t(9)$

学: 田足達3, $\frac{2}{\sqrt{10}}$ ~l(9)

$$P(2.1253 \le \overline{X} \le 3.8747) = P(\frac{2.1253 - 3}{2/\sqrt{10}} \le \frac{\overline{X} - 3}{2/\sqrt{10}} \le \frac{3.8747 - 3}{2/\sqrt{10}})$$

$$= P(-1.3830 \le \frac{\overline{X} - 3}{2/\sqrt{10}} \le 1.3830)$$

由t分布表,可得 (9)=1.3830,由t分布的对称性及 α 分位点的定义,上述概率为

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$
 $P(2.1253 \le \overline{X} \le 3.8747) = 1 - 2 \times 0.1 = 0.8$

例 设总体 $X \sim N(3,\sigma^2)$,有n=10的样本,样本方差 S^2 =4,

$$P\{t(n) > t_{\alpha}(n)\} = \alpha$$

α
$t_{\alpha}(n)$

H	:73	
Œ	产	•
Д	丁	•

$: \underline{n}$	0.2	0. 15	0.1	0.05	0.025	0.01	0.005
6	0.906	1. 134	1.4398	1.9432	2. 4469	3. 1427	3. 7074
7	0.896	1. 119	1.4149	1.8946	2.3646	2.9980	3. 4995
8	0.889	1. 108	1. 3968	1.8595	2.3060	2.8965	3. 3554
9	0.883	1. 100	1.3830	1.8331	2. 2622	2.8214	3. 2498
10	0.879	1.093	1.3722	1.8125	2. 2281	2.7638	3. 1693

$$= P(-1.3830 \le \frac{\overline{X} - 3}{2/\sqrt{10}} \le 1.3830)$$

由t分布表,可得 (9)=1.3830,由t分布的对称性及 α 分位点的定义,上述概率为

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$
 $P(2.1253 \le \overline{X} \le 3.8747) = 1 - 2 \times 0.1 = 0.8$

二、两个正态总体的抽样分布

设 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$), 且X = Y独立,

 $X_1, X_2, ..., X_{n_1}$ 是来自X的样本, $Y_1, Y_2, ..., Y_{n_2}$ 是取自Y的样本,

 \overline{X} 和 \overline{Y} 分别是这两个样本的样本均值, S_1^2 和 S_2^2

分别是这两个样本的样本方差,则有

(1)
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

证明:(1) 由定理2知,
$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1)$$
, $\frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1)$
且两者独立,由 F 分布的定义,有:

$$\frac{\frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}}/(n_{1}-1)}{\frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}}/(n_{2}-1)} = \frac{\sigma_{2}^{2}S_{1}^{2}}{\sigma_{1}^{2}S_{2}^{2}} \sim F(n_{1}-1,n_{2}-1)$$
(2) $\exists \Xi \Xi 1, \overline{X} \sim N(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}), \overline{Y} \sim N(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}),$

(2) 由定理
$$1, \bar{X} \sim N(\mu_1, \frac{\sigma_1^2}{n_1}), \bar{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2}),$$

且
$$\overline{X}$$
与 \overline{Y} 相互独立,所以 $\overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2})$,

即
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
时,得 $U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$

又由给定条件知:
$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

且它们相互独立,故有 χ^2 分布的可加性知:

$$V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2 (n_1 + n_2 - 2)$$

由附录2可知: U与V相互独立,

于是按t分布知:

$$\frac{U}{\sqrt{V/(n_1+n_2-2)}} = \frac{\left(\overline{X}-\overline{Y}\right)-(\mu_1-\mu_2)}{\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}} \sim t\left(n_1+n_2-2\right)$$

- 例 两独立总体 $X \sim N(30,12), Y \sim N(20,18)$ 从两总体中分别抽取容量为16,25的样本
 - (1) 求两样本均值差在(8,12)内的概率;
 - (2) 求两样本方差比不大于1.4的概率.

解:

(1) 由定理1可知

$$egin{aligned} ar{ar{X}} - ar{ar{Y}} &\sim ext{N}(30-20,rac{12}{16}+rac{18}{25}) = egin{aligned} ext{N}(10,1.47) \end{aligned}$$
于是
 $P(8 < ar{X} - ar{Y} < 12) = \Phi(rac{12-10}{\sqrt{1.47}}) - \Phi(rac{8-10}{\sqrt{1.47}}) = 2\Phi(1.65) - 1 = 2 imes 0.9505 - 1 = 0.9010 \end{aligned}$

(2) 由定理4可知

$$\frac{S_1^2/S_2^2}{12/18} \sim F(16-1, 25-1) = F(15, 24)$$

从而

$$P(S_1^2/S_2^2 \le 1.4) = P(\frac{S_1^2/S_2^2}{12/18} \le \frac{1.4}{12/18})$$
$$= P(\frac{S_1^2/S_2^2}{12/18} \le 2.1)$$
$$= 0.95$$

例 总体 $X \sim N(\mu, 3)$, $Y \sim N(\mu, 5)$ 中分别抽取 $n_1 = 10$, $n_2 = 15$ 的独立样本,求二样本方差之比 S_1^2/S_2^2 大于1.272的概率。

解: 由定理 4,
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{S_1^2}{S_2^2} \cdot \frac{5}{3} \sim F(9, 14)$$

$$P(\frac{S_1^2}{S_2^2} > 1.272) = P(\frac{S_1^2}{S_2^2} \cdot \frac{5}{3} > 1.272 \times \frac{5}{3}) = P(\frac{S_1^2}{S_2^2} \cdot \frac{5}{3} > 2.12)$$

由上分布表

$$F_{0.1}(9, 14) = 2.12$$

$$\text{ET} P(\frac{S_1^2}{S_2^2} > 1.272) = 0.1.$$

单个正态总体的抽样分布

定理 $1\sim3$ 给出了样本均值 \bar{X} 和样本方差 S^2 的分布,可用于对正态总体的期望 μ 和方差 σ^2 进行统计推断(区间估计、假设检验)。

两个正态总体的抽样分布

定理 4 给出了样本均值差 $\bar{X} - \bar{Y}$ 和样本方差 比 S_1^2/S_2^2 的分布,可用于对正态总体的期望差 μ_1 - μ_2 和方差比 σ_1^2/σ_2^2 进行统计推断。