6. Exercise sheet Bayesian inference and data assimilation

Exercise 1. Consider the two sequences of measures $\mu_n = \delta_{1-2^{-n}}$ and $\nu_n = \frac{1}{n}\delta_{-1} + (1-\frac{1}{n})\delta_1$. From the mere look of it one would guess that both of these sequences approach the measure $\pi = \delta_1$ in some way. The KL divergence $KL(\mu|\nu)$ from μ to ν is defined as ∞ if there is an x with $\mu(x) > 0$ and $\nu(x) = 0$ and

$$KL(\mu|\nu) = \sum_{x \in \text{supp}(\mu)} \mu(x) \log \left(\frac{\mu(x)}{\nu(x)}\right)$$

otherwise.

- (i) Calculate $KL(\pi|\mu_n)$ and $KL(\pi|\nu_n)$. Do the sequences μ_n and ν_n converge to π w.r.t. the KL-divergence? I.e. do the sequences $KL(\pi|\mu_n)$ and $KL(\pi|\nu_n)$ approach 0?
- (ii) For each μ_n and ν , find the optimal coupling T between μ_n (resp. ν_n) and π with the procedure from Example 2.29 (by hand). The Wasserstein-2 distance is then given as $\mathcal{W}(T) = \sqrt{\sum_{i,j} t_{ij} |a_i a_j|^2}$. Do the sequences μ_n and ν_n converge to π in the Wasserstein-2 distance?

Exercise 2. Let $X \sim \mathcal{N}(1,3)$ and $f(x) = 1 + 2x + x^2$.

(i) Calculate $\mathbb{E}[f(X)]$ and Var[f(X)] by hand.

We now approximate the expectation value of f in a Monte-Carlo fashion with M samples, i.e.

$$\mathbb{E}[f(X)] \approx f_M := \frac{1}{M} \sum_{i=1}^{M} f(x_i), \qquad x_i \sim X.$$

- (ii) Calculate the expectation $\mathbb{E}[f_M]$ and variance $\operatorname{Var}[f_M]$ of the estimator f_M by hand. The result will depend on M.
- (iii) Let $M = 1, 2, 4, \dots, 256$. For each M, do $N = 10\,000$ simulations to approximate the expectation value using f_M . For each M, calculate the mean and the f_M . Which value should it take? For each M, calculate the variance of the f_M . Which value should it take. Make a plot with M on the x-axis and the variance of the estimates on the y-axis. Overlay the plot with the $Var[f_M]$ that you calculated in (ii).

Exercise 3. You are given 4 samples $a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4$ with uniform weights $w_i = \frac{1}{4}$. This represents the measure $\mu_1 = \sum_{i=1}^4 \frac{1}{4} \delta_{a_i}$. After doing a Bayesian update step and multiplying each weight by the likelihood you end up with new weights, $w'_1 = \frac{5}{8}, w'_2 = w'_3 = w'_4 = \frac{1}{8}$. This represents the measure $\mu_2 = \sum_{i=1}^4 w'_i \delta_{a_i}$.

(i) What is the mean of μ_2 ?

In task (ii) and (iii) you get ways to generate samples from μ_2 . Repeat each of these sampling procedures N=2000 times. For each experiment, calculate the mean of the resulting 4 samples. In the end, you should now have N mean estimates, both for (ii) and (iii) respectively. Calculate the average mean estimate and the variance of the mean estimates for (ii) and (iii).

- (ii) Use Algorithm 3.27 from the book to generate L=4 new samples.
- (iii) Use the procedure described in Example 2.29 to find a coupling between the measures/random variables described by the above samples and weights. I.e. find a coupling between X_1 and X_2 with $\mathbb{P}[X_1 = a_i] = w_i = \frac{1}{4}$ and $\mathbb{P}[X_2 = a_i] = w'_i$. Recall that $T_{ij} = \mathbb{P}[X_1 = a_i, X_2 = a_j]$. Use this joint distribution and the formulas for the conditional expectation to find the values of $\mathbb{P}[X_2 = a_j|X_1 = a_i]$. Now for each row of T, generate one new sample from X_2 , i.e. sample from $\mathbb{P}[X_2|X_1 = a_i]$ for each i.

Which estimation procedure is better in this case?