Diodi

Materiali per l'elettronica

	Resistività r (Wcm)
Metalli	$r < 10^{-3}$
Semiconduttori	$10^{-3} < r < 10^5$
Isolanti	$r > 10^5$

- Semiconduttori intrinseci
- Semiconduttori estrinseci (drogati con impurezze)

Materiali semiconduttori per diodi

- Silicio (Si)
- Germanio (Ge)
- Arseniuro di Gallio (GaAs)

Bande di Energia nel silicio

I livelli energetici degli atomi isolati si sparpagliano in intervalli (bande) di energia quando questi atomi sono portati in stretto contatto per formare un cristallo

Bande di Energia

La differenza fondamentale tra materiali conduttori, semiconduttori e isolanti sta nel valore di energia di gap, banda di energia proibita per gli elettroni che separa banda di valenza (elettroni di legame) e banda di conduzione (elettroni liberi).

Silicio intrinseco

cristallo di silicio intrinseco a OK

cristallo di silicio intrinseco a 300K (temperatura ambiente)

$$n_i^2 = BT^3 e^{-E_G/kT}$$
 concentrazione intrinseca in un semiconduttore

Per il silicio n_i @1.5′ 10^{10} portatori/cm³

silicio drogato n-type

- drogaggio di tipo n: drogaggio con impurezze pentavalenti (Sb, P, As)
 - Impurezze che introducono livelli vicini alla banda di conduzione danno luogo a un solido in cui domina il trasporto di corrente per elettroni (cariche maggioritarie).
 - •le cariche maggioritarie sono gli elettroni e le cariche minoritarie sono le lacune
 - l'atomo di impurezza di tipo n è detto donatore

cristallo di silicio drogato con elemento pentavalente (di tipo n)

silicio drogato p-type

drogaggio di tipo p: drogaggio con impurezze trivalenti (B, Ga, In)

- Impurezze che introducono livelli vicini alla banda di valenza danno luogo a un drogaggio in cui domina il trasporto di corrente per lacune (cariche maggioritarie)
- l'atomo di impurezza di tipo p è detto accettore

Corrente di drift

Sotto l'azione di un campo elettrico esterno *E* le cariche libere, elettroni e lacune si muovono in verso opposto, ma essendo di carica opposta contribuiscono alla corrente con due contributi dello stesso verso.

$$J_n = q m_n E = s E$$
 [A/cm²]

$$J_p = q mp E = s E$$
 [A/cm²]

Dove:

m la mobilità degli elettroni, e m la mobilità delle lacune;

n e p numero di elettroni e lacune per cm³ rispettivamente;

E il campo elettrico applicato in V/cm;

q la carica dell'elettrone = $|1.6 \times 10^{-19}|$ C

s la conducibilità del materiale

Questa densità di corrente origina la corrente di conduzione, analoga a quella presente nei metalli

Corrente di diffusione

Dovuta alla presenza di un gradiente di concentrazione dei portatori di carica. proporzionale alla differenza di concentrazione, tramite la costante di diffusione $D_{n,p}$.

$$J_n = qD_n dn/dx \text{ [A/cm}^2]$$
$$J_p = -qD_p dp/dx \text{ [A/cm}^2]$$

I coefficienti I coefficienti D, m sono legati tra di loro dalle relazioni di Einstein:

k è la costante di Boltzmann T la temperatura assoluta in kelvin.

$$D_p = rac{kT}{q} \mu_p = V_T m_p$$
 $D_n = rac{kT}{q} \mu_n = V_T m_p$

Corrente totale

In un semiconduttore è possibile che esistano contemporaneamente sia una differenza di energia potenziale sia una differenza di concentrazione dei portatori di carica.

In questo caso la corrente totale delle lacune è somma di una corrente di deriva e di una corrente di diffusione:

$$J_p = q m_p E - q D_p dp/dx$$

Analogamente la corrente totale di elettroni vale:

$$J_n = q m_n E + q D_n dn/dx$$

Potenziale di contatto

$$J_p = q mp E - qD_p dp/dx$$

Assenza di eccitazioni
$$J_p = 0 \qquad q mp \ E = q mV_T dp/dx$$

$$E = V_T/p \ dp/dx = - dV/dx$$

$$dV = V_2 - V_1 = V_0 = V_T \ln p_1/p_2$$

Analogamente la corrente totale di elettroni vale:

$$V_2 - V_1 = V_0 = V_T \ln n_2 / n_1$$

Struttura semplificata di un diodo a giunzione: condizioni di circuito aperto

Giunzione pn in polarizzazione diretta

Giunzione pn in polarizzazione inversa

Caratteristica i-v del diodo reale (1/2)

$$i_D = I_S \left(e^{v_D/nV_T} - 1 \right)$$
 equazione del diodo di Shockley

 I_S : corrente inversa di saturazione del diodo (10⁻⁶, 10⁻¹⁵A)

n : coefficiente di emissione o fattore di idealità (1, 2)

 $V_T = kT/q$: tensione termica ($V_T = 25.2 \text{mV} @ 20^{\circ}\text{C}, V_T = 25.8 \text{mV} @ 25^{\circ}\text{C}$)

k : costante di Boltzmann (k=1.38x10⁻²³J/K)

T: temperatura assoluta in kelvin (273+T(°C))

q : valore assoluto della carica dell'elettrone (q=1.6022x10⁻¹⁹)

Caratteristica i-v del diodo reale (2/2)

$$\operatorname{per} i_D >> I_S \quad \triangleright \quad i_D \quad @I_S e^{v_D/nV_T}$$

$$\qquad \qquad \qquad \mathsf{S}$$

$$v_D = nV_T \ln \frac{i_D}{I_S}$$

 \mathcal{S} $v_D = nV_T \ln \frac{i_D}{I_S} \qquad \text{espressione in forma logarithmica di } v_D$

per
$$v_D = V_{D1}$$
 Þ I_{D1} **@** $I_S e^{V_{D1}/nV_T}$

per
$$v_D = V_{D2}$$
 \triangleright $I_{D2} @I_S e^{V_{D2}/nV_T}$

$$\frac{I_{D2}}{I_{D1}} @e^{(V_{D2}-V_{D1})/nV_{T}}$$

$$V_{D2} - V_{D1} = nV_T \ln \frac{I_{D2}}{I_{D1}}$$

$$V_{D2} - V_{D1} = 2.3 \, nV_T \log \frac{I_{D2}}{I_{D1}}$$

variando la corrente nel diodo di una decade (cioè di un fattore 10) la tensione ai capi del diodo cambia solo di $2.3nV_T$

Effetti della temperatura

Analisi grafica di circuiti con diodi

$$I_D @ I_S e^{V_D/nV_T}$$

$$I_D = \frac{V_{DD} - V_D}{R}$$

Modello lineare a tratti del diodo

in questo caso $V_{D0} = 0.65 V$

 $r_D = 20 \text{ W}$

Modello a tensione costante del diodo

20

Il diodo ideale

Modello del diodo per piccoli segnali

Modelli della caratteristica diretta del diodo

$$i_D = I_S e^{v_D/nV_T}$$

$$v_D = 2.3nV_T \log \frac{i_D}{I_S}$$
 $v_D^3 V_{D0} \otimes i_D = \frac{v_D - V_{D0}}{r_D}$

$$v_D^{3} V_{D0} \otimes i_D = \frac{v_D - V_{D0}}{r}$$

 $v_D \, \mathop{\mathfrak{L}} V_{D0} \, \mathop{\mathfrak{E}} i_D = 0$

$$v_D < V_D \otimes v_D = 0$$
 $v_D < V_D \otimes v_D = 0$ $i_D > 0 \otimes v_D = V_D = 0.7$ $i_D > 0 \otimes v_D = 0$

$$v_D < V_D \otimes v_D = 0$$

$$i_D > 0 \otimes v_D = 0$$

$$i_d = v_d / r_d$$
$$r_d = nV_T / I_D$$

 $V_{D2} - V_{D1} = nV_T \ln \frac{I_{D2}}{I_{D1}}$

Diodo Zener

Regolatore di tensione con Zener (Es. 3.8)

25

Diagramma a blocchi di un alimentatore in continua

Elettronica

Raddrizzatore a singola semionda

Raddrizzatore a doppia semionda

Per
$$r_D << R$$
 \triangleright $v_O @ v_S - V_{D0}$

$$PIV = 2V_s - V_{D0}$$

Raddrizzatore a ponte

Per
$$r_D \ll R$$
 \triangleright v_O @ $v_S - 2V_{D0}$

$$PIV = V_s - V_{D0}$$

Concetto di filtro capacitivo

(b)

Raddrizzatore con condensatore di filtro

$$V_r = \frac{V_p}{fRC}$$

$$i_{Dav} = I_L \left(1 + \rho \sqrt{2V_p / V_r} \right)$$

$$i_{D\max} = I_L \left(1 + 2\rho \sqrt{2V_p/V_r} \right)$$

31

Raddrizzatore con condensatore di filtro

Raddrizzatore di picco a doppia semionda

$$V_r = \frac{V_p}{2 fRC}$$

$$i_{Dav} = I_L \left(1 + \rho \sqrt{V_p / V_r} \right)$$

$$i_{D\max} = I_L \left(1 + 2\rho \sqrt{2V_p / V_r} \right)$$

Circuiti limitatori

Semplici circuiti limitatori

Circuiti di aggancio

(f)

Duplicatore di tensione

