Convergence, generalisation and privacy

Olof Mogren, PhD. RISE Research institutes of Sweden

, 0

in generative adversarial networks

Discriminative modelling

Generative modelling

• Model conditional distribution P(Y|X)

• Model joint distribution P(X, Y)

Generative modelling of fashion segmentation

Generative adversarial networks (GANs)

- Generate realistic images
- Discriminate between generated and real images
- Training: min-max game
- $\min_{\theta_G} \max_{\theta_D} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{real}} \left[\log D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{G_{\theta_G}}} \left[\log (1 D_{\theta_D}(\mathbf{x})) \right) \right]$
- No expensive normalizing constant

- Generate realistic images
- Discriminate between generated and real images
- Training: min-max game
- $\bullet \ \, \min_{\theta_G} \max_{\theta_D} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{real}} \left[\log D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{G_{\theta_G}}} \left[\log (1 D_{\theta_D}(\mathbf{x})) \right) \right]$
- No expensive normalizing constant

- Generate realistic images
- Discriminate between generated and real images
- Training: min-max game
- $\bullet \ \, \min_{\theta_G} \max_{\theta_D} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{real}} \left[\log D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{G_{\theta_G}}} \left[\log (1 D_{\theta_D}(\mathbf{x})) \right) \right]$
- No expensive normalizing constant

- Generate realistic images
- Discriminate between generated and real images
- Training: min-max game
- $\bullet \ \, \mathsf{min}_{\theta_G} \mathsf{max}_{\theta_D} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{real}} \left[\log D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{G_{\theta_G}}} \left[\log (1 D_{\theta_D}(\mathbf{x})) \right) \right] \\$
- No expensive normalizing constant

- Generate realistic images
- Discriminate between generated and real images
- Training: min-max game
- $\bullet \ \, \mathsf{min}_{\theta_G} \mathsf{max}_{\theta_D} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{real}} \left[\log D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{G_{\theta_G}}} \left[\log (1 D_{\theta_D}(\mathbf{x})) \right) \right] \\$
- No expensive normalizing constant

Regularization

- Lipschitz continuity: gradient bound
- Loss-sensitive GAN: loss that restricts D to satisfy Lipschitz condition (Qi, 2017)
- Spectral normalization: regularization on the weight parameters (Miyato, ICLR 2018)
- Wasserstein GAN: penalty constrains the magnitude of the gradient (Arjovsky, 2017

Sufficiently large discriminator

- Capacity of D, and data: large enough
- If G "wins", then the generated distribution D is close to D_{real}
- But "large enough" could mean exp(d)!

Generalization; intuition

Learning objectives

- Supervised learning: minimize loss
- GAN: find Nash equilibrium

Definition of generalization

- $\hat{\mathcal{D}}_{real}$ empirical version, m samples
- \mathcal{D}_G generalizes if with high probability:

$$|d(\mathcal{D}_{\mathsf{real}}, \mathcal{D}_{\mathsf{G}}) - d(\hat{\mathcal{D}}_{\mathsf{real}}, \hat{\mathcal{D}}_{\mathsf{G}})| \leq \epsilon$$

- $\hat{\mathcal{D}}_G$ empirical version of $\hat{\mathcal{D}}_G$, polynomial number of samples
- $d(\cdot, \cdot)$ divergence or distance
- ϵ generalization error.

Neural net distance

- Jensen-Shannon divergence and Wasserstein distance don't generalize
- A weaker distance, the Neural net distance does

MIX+GAN

- A mixture of generators achieves provable approximate pure equilibria
- Experiments show that this can also help in practice

MIX+DCGAN

DCGAN

Method	Score
SteinGAN [Wang and Liu, 2016]	6.35
Improved GAN [Salimans et al., 2016]	8.09 ± 0.07
AC-GAN [Odena et al., 2016]	8.25 ± 0.07
S-GAN (best variant in [Huang et al., 2017])	8.59 ± 0.12
DCGAN (as reported in Wang and Liu [2016])	6.58
DCGAN (best variant in Huang et al. [2017])	7.16 ± 0.10
DCGAN (5x size)	$7.34 {\pm} 0.07$
MIX+DCGAN (Ours, with 5 components)	7.72 ± 0.09
Wasserstein GAN	3.82 ± 0.06
MIX+WassersteinGAN (Ours, with 5 components)	4.04 ± 0.07
Real data	11.24 ± 0.12

Differential privacy

A randomized algorithm $\mathcal{A}: D \to R$ satisfies ϵ -differential privacy if for any two adjacent datasets $\mathcal{S}, \mathcal{S}' \subseteq D$ and for any subset of outputs $O \subseteq R$ it holds:

$$P[\mathcal{A}(\mathcal{S} \in O)] \leq e^{\epsilon} P[\mathcal{A}(\mathcal{S}') \in O]$$

Generalization/privacy

- Common goal: learn the population features
- Membership attacks

Generalization/privacy

- Common goal: learn the population features
- Membership attacks

Generalization/privacy

- Differential privacy → RO-stability*
- RO-stability → Generalization

Theorem 1 (Generalization gap) If an algorithm A satisfies ϵ -differential privacy, then the generalization gap can be bounded by a data-independent constant.

Regularization and privacy

Lipschitz condition crucial for privacy

Experimental validation

- Membership attack
- GAN information leakage

Attacker, α

- Given the discriminator D_{θ_D} and an image from the attack testing dataset
- α sets a threshold $t \in (0, 1)$
- α outputs 1 if $D_{\theta_D}/b \ge t$, otherwise, it outputs 0.

Experimental validation

Table 1: Evaluation results of DCGAN trained with different strategies. IS denotes the Inception score. N/A indicates that the strategy leads to failure/collapse of the training. The last row presents the Inception scores of the real data (training images of these two datasets).

Strategy	LFW				IDC				
Strategy	F1	AUC	Gap	IS	F1	AUC	Gap	IS	
-JS divergence-									
Original	0.565	0.729	0.581	3.067	0.445	0.531	0.138	2.148	
Weight Clipping	0.486	0.501	0.113	3.112	0.378	0.502	0.053	2.083	
Spectral Normalization	0.482	0.506	0.106	3.104	0.416	0.508	0.124	2.207	
Gradient Penalty	N/A				N/A				
-Wasserstein-									
W/o clipping	N/A			N/A					
Weight Clipping	0.484	0.512	0.042	3.013	0.388	0.513	0.045	1.912	
Spectral Normalization	0.515	0.505	0.017	3.156	0.415	0.507	0.013	2.196	
Gradient Penalty	0.492	0.503	0.031	2.994	0.426	0.504	0.017	1.974	
IS (Real data)	4.272				3.061				

Thank you.

Appendix

Byggstenarna i deep learning

- Varje lager innehåller ett antal enheter/neuroner
- Löst inspirerade av biologiska neuroner
- Ett djupt nät kan innehålla miljontals enheter
- $w_1, ..., w_n$ inlärda parametrar

Lager i djupa neuronnät

- I praktiken arrangeras neuronerna i lager
- Varje lager:
 - linjär transformation av input-vektorn
 - icke-linjär aktiveringsfunktion

Neural net distance

- Jensen-Shannon divergence and Wasserstein distance don't generalize
- A weaker distance, the Neural net distance does

$$d_{\mathcal{F}, \boldsymbol{\phi}}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \sup_{D \in \mathcal{F}} \mathbb{E}_{\mathbf{x} \sim \boldsymbol{\mu}} \left[\boldsymbol{\phi} D_{\theta_D}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim \boldsymbol{\nu}} \left[\boldsymbol{\phi} (1 - D_{\theta_D}(\mathbf{x}))) \right] - 2 \boldsymbol{\phi}(1/2)$$

RO-stability

Define 2 (Uniform RO-stability) The randomized algorithm A is uniform RO-stable with respect to the discriminator loss function (Equation 2) in our case, if for all adjacent datasets S, S', it holds that:

$$\sup_{x \in S} |\mathbb{E}_{\theta_d \sim \mathcal{A}(S)}[\phi(\mathbf{d}(x; \theta_d))] - \mathbb{E}_{\theta_d \sim \mathcal{A}(S')}[\phi(\mathbf{d}(x; \theta_d))]| \le \epsilon_{stable}(m)$$
 (6)

A well-known heuristic observation is that differential privacy implies uniform stability. The prior work [35] has formlized this observation into the following lemma:

Lemma 1 (Differential privacy \Rightarrow uniform RO-stability) If a randomized algorithm \mathcal{A} is ϵ -differentially private, then the algorithm \mathcal{A} satisfies $(e^{\epsilon}-1)$ -RO-stability.

The stability of the algorithm is also related to the generalization gap. Numerous studies 30 23 focus on exploring the relationship in various settings. Formally, we have the following lemma:

Lemma 2 If an algorithm A is uniform RO-stable with rate $\epsilon_{stable}(m)$, then $|F_U(A)|$ (Equation 4) can be bounded: $|F_U(A)| \le \epsilon_{stable}(m)$.

Generalization gap (Wu, et.al., NeurIPS 2019)

$$F_U(\mathcal{A}_d) = \mathbb{E}_{\theta_d \sim \mathcal{A}_d(S)} \mathbb{E}_{S \sim p_{data}^m} [\hat{U}(\theta_d, \theta_q^*) - U(\theta_d, \theta_q^*)]$$

