LLM 모델을 활용한 화합물 특성 예측에서 지속적인 데이터 불균형 문제 해결

<u>Do Yeon Kim</u>.¹, Yong Oh Lee, Ph.D.^{2,3}

¹Dept. of Computer Engineering, Hongik University, Seoul

²Dept. of Industrial and Data Engineering, Hongik University, Seoul, yongoh.lee@hongik.ac.kr

³Hongik University Bio-Health Convergence Research Center

I . Background

- 화학 화합물의 특성 예측 및 생성에서 SMILES는 분자 구조를 효율적으로 인코딩하는 방식으로, 최근 LLM(Large Language Model)을 활용하는 방식으로 발전하고 있음.
- 기존의 descriptor 기반 머신러닝 모델이나 descriptor-free Transformer 모델 모두 데이터셋 자체의 데이터 불균형 문제로 인해 소수 클래스의 예측 성능이 낮아지는 경향이 존재함.
- Llama 기반의 생성 모델인 LlaMol을 활용하여 데이터 불균형 문제 해결 방향을 제시하고자 함.

I. Method

• Benchmark Dataset 및 불균형도

Tox21(5343 SMILES, 불균형도 11:1), HIV(41127, 28:1), Clintox(1480, 15:1), BBBP(2039, 3:1)

c3ccc(Cl)cc3-2)cc1 BrC1=CC=CC=C1C(=0)C2=CC=CC3=C2NC(=0)C3 [그림 1] SMILES 데이터 예시

- Oversampling을 위한 생성 모델: LlaMol
 - Llama기반의 SMILES 생성 모델
 - [Context Token]으로 특정 SMILES 사용 가능

[그림 2] LlaMol 모델 구조 및 실험 진행 순서

- Oversampling 데이터 필터링
 - 1. Validity(화학적으로 유효한 분자의 비율) = 1
 - 2. Novelty(학습 데이터에 포함되지 않은 분자의 비율) = 1
 - 3. 생성된 데이터 간의 중복 제거
- 사용한 분류 모델: ChemBERTa
 - SMILES 형식으로 인코딩된 화학 화합물 구조를 학습하여 특성을 예측하는 RoBERTa 기반 모델

II. Results

[표 1] Tox21 데이터셋에서 구간에 따른 성능 비교

(OS: OverSampling							
구분	Base	OS 1	OS 2	OS 3	OS 4	OS 5	
불균형도	11:1	9:1	6:1	5:1	4:1	3:1	
정확도 (or ROC)	0.729	0.935	0.942	0.943	0.954	0.947	
민감도☆	0.516	0.706	0.639	0.718	0.797	0.790	
특이도	0.980	0.707	0.980	0.965	0.967	0.959	

[표 2] Clintox 데이터셋에서 구간에 따른 성능 비교

(OS: OverSampling								
구분	Base	OS 1	OS 2	OS 3	OS 4	OS 5		
불균형도	15:1	10:1	7:1	6:1	5:1	4:1		
정확도 (or ROC)	0.551	0.673	0.731	0.722	0.809	0.788		
민감도	1.000	0.125	0.524	0.462	0.548	0.556		
특이도☆	0.000	0.467	0.934	0.978	0.912	0.883		

[표 3] HIV 데이터셋에서 구간에 따른 성능 비교

(OS: OverSampling) 구분 OS 1 OS 2 OS 3 **OS 4** OS 5 Base 불균형도 28:1 23:1 20:1 18:1 16:1 15:1 정확도 0.795 0.960 0.977 0.969 0.951 0.934 (or ROC) 민감도☆ 0.358 0.373 0.442 0.662 0.713 0.729 특이도 0.993 0.985 0.991 0.986 0.988 0.985

[표 4] BBBP 데이터셋에서 구간에 따른 성능 비교 (OS: OverSampling) 구분 OS₁ OS 2 OS 3 **OS 4** OS 5 Base 불균형도 2.7:1 2.5:1 3:1 2.9:1 2.3:1 2.1:1 정확도 0.922 0.941 0.936 0.945 0.947 0.949 (or ROC) 민감도 1.000 0.315 0.612 0.685 0.704 0.712

• 모든 데이터셋에 대해 생성 데이터를 추가하였을 때 정확도가 향상

0.894

0.881

0.780

0.747

0.524

- 민감도가 대체로 증가→ 생성 데이터를 추가하여 소수 클래스의 데이터의 예측 성능 향상
- 특이도의 경우, 모든 데이터셋에서 공통적으로 증가하다 감소하는 지점 존재(구간 2 또는 3)→ 추가하는 생성 데이터 개수의 조정 필요

N.Conclusion

- ChemBERTa를 사용한 화합물 특성 예측에서 데이터 불균형 문제가 여전히 존재함을 확인하였으며, 이러한 문제를 LlaMol을 활용한 SMILES 합성으로 데이터 증강을 통해 해결 가능함을 보임.
- 향후 데이터 불균형을 해결하기 위해 생성 모델의 효율성을 극대화하여 데이터를 증강하는 방식을 연구할 예정임.
- ※ 본 연구는 '바이오헬스 혁신융합대학 정책연구'와 '홍익대학교 학술진흥연구비'의 지원을 받아서 수행하였습니다.

특이도☆

0.000