# COMP30027 Machine Learning Basics of Machine Learning

Semester 1, 2019 Jeremy Nicholson & Tim Baldwin & Karin Verspoor



© 2019 The University of Melbourne

#### Lecture Outline

1 Basics of ML: Instances, Attributes and Learning Paradigms

2 ML in the Wild

### Terminology

- The input to a machine learning system consists of:
  - Instances: the individual, independent examples of a concept

#### also known as exemplars

- Attributes: measuring aspects of an instance also known as features
- Concepts: things that we aim to learn generally in the form of labels or classes

# Example: weather.nominal Dataset

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| overcast | hot         | high     | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| :        | •           | :        | •     | :    |
| •        | •           | •        | •     | •    |

## Example: weather.nominal Dataset

| Outlook  | Temperature   | Humidity | Windy | Play             |
|----------|---------------|----------|-------|------------------|
| surny    | Sot           |          | TALE  | <b>1</b> 0       |
| surny    | <b>S</b> ot T |          | TREE  | mo,              |
| overcast | hot           | high     | FALSE | yes <sup>2</sup> |
| rainy    | mild          | high     | FALSE | yes              |
| rainy    | cool          | normal   | FALSE | yes              |
| rainy    | cool          | normal   | TRUE  | no               |
| :        | :             | :        | :     | :                |

# Example: weather.nominal Dataset

| Outlook            | Temperature       | Humidity | Windy | Play |
|--------------------|-------------------|----------|-------|------|
| sunny              | Hot               | high     | FALSE | no   |
| suzhy              | i <b>⊼</b>        | high     | TRUE  | no   |
| overcast           | hot               | high     | FALSE | yes  |
| rainy              | $m_{11}$ d        | high     | FALSE | yes  |
| ra <del>in</del> y | c <del>5q</del> 1 | normal   | FALSE | yes  |
| ra <del>in</del> y | c <del>bd</del> l | normal   | TRUE  | no   |
|                    | E. 2              | :        | :     | :    |

# What's a Concept?

- Styles of "concepts" that we aim to learn:
  - Classification learning: predicting a discrete class
  - Clustering: grouping similar instances into clusters
  - Regression:
     predicting a numeric quantity
  - Association learning: detecting associations between attribute values

# Classification Learning

- Scheme is provided with actual outcome or class
- The learning algorithm is provided with a set of classified training data
- Measure success on "held-out" data for which class labels are known (test data)
- Classification learning is supervised



# Example Predictions for weather.nominal

| Outlook  | Temperature | Humidity | Windy        | Actual | Classified |
|----------|-------------|----------|--------------|--------|------------|
| sunny    | hot         | high     | FALSE        | no     |            |
| sunny    | hot         | high     | TRUE         | no     |            |
| overcast | hot         | high     | FALSE        | yes    |            |
| rainy    | mild        | high     | FALSE        | yes    |            |
| rainy    | cool        | normal   | <b>FALSE</b> | yes    |            |
| rainy    | cool        | normal   | TRUE         | no     |            |
| overcast | cool        | normal   | TRUE         | yes    |            |
| sunny    | mild        | high     | <b>FALSE</b> | no     |            |
| sunny    | cool        | normal   | <b>FALSE</b> | yes    |            |
| rainy    | mild        | normal   | <b>FALSE</b> | yes    |            |
| sunny    | mild        | normal   | TRUE         | yes    | no         |
| overcast | mild        | high     | TRUE         | yes    | yes        |
| overcast | hot         | normal   | <b>FALSE</b> | yes    | yes        |
| rainy    | mild        | high     | TRUE         | no     | yes        |

# Clustering

- Finding groups of items that are similar
- Clustering is unsupervised the learner operates without a set of labelled training data
- The class of an example is not known ... or at least, not given to the classifier
- Success often measured subjectively; evaluation is problematic

## Clustering over weather.nominal

| Outlook                                | Temperature            | Humidity                          | Windy                             | Play                 |
|----------------------------------------|------------------------|-----------------------------------|-----------------------------------|----------------------|
| sunny sunny overcast rainy rainy rainy | hot hot mild cool cool | high high high high normal normal | FALSE TRUE FALSE FALSE FALSE TRUE | no no ves yes ves no |

#### A Word on Supervision

- Supervised methods have prior knowledge of a closed set of classes and set out to discover and categorise new instances according to those classes
- Unsupervised methods:
  - dynamically discover the "classes" (implicitly derived from grouping of instances) in the process of categorising the instances [STRONG] ... OR ...
  - categorise instances as certain labels without the aid of pre-classified data [WEAK]

#### Regression

- Classification learning, but class is continuous (numeric prediction)
- Learning is supervised
- Why is this distinct from Classification?
  - In Classification, we can exhaustively enumerate all possible labels for a given instance; a correct prediction entails mapping an instance to the label which is truly correct
  - In Regression, infinitely many labels are possible, we cannot conceivably enumerate them; a "correct" prediction is when the numeric value is acceptably close to the true value

# Example Predictions for weather

| Outlook  | Humidity | Windy        | Play | Actual Temp | Classified Temp |
|----------|----------|--------------|------|-------------|-----------------|
| sunny    | 85       | FALSE        | no   | 85          |                 |
| sunny    | 90       | TRUE         | no   | 80          |                 |
| overcast | 86       | <b>FALSE</b> | yes  | 83          |                 |
| rainy    | 96       | <b>FALSE</b> | yes  | 70          |                 |
| rainy    | 80       | <b>FALSE</b> | yes  | 68          |                 |
| rainy    | 70       | TRUE         | no   | 65          |                 |
| overcast | 65       | TRUE         | yes  | 64          |                 |
| sunny    | 95       | <b>FALSE</b> | no   | 72          |                 |
| sunny    | 70       | <b>FALSE</b> | yes  | 69          |                 |
| rainy    | 80       | FALSE        | yes  | 75          |                 |
| sunny    | 70       | TRUE         | yes  | 75          | 68.8            |
| overcast | 90       | TRUE         | yes  | 72          | 76.2            |
| overcast | 75       | <b>FALSE</b> | yes  | 81          | 70.6            |
| rainy    | 91       | TRUE         | no   | 71          | 76.5            |

### Association Learning

- Detect "useful" patterns, associations, correlations, or causal structures among sets of items or objects in dataset
- "Good" pattern: combination of attribute values where the presence of one (or more) value(s) suggests that one (or more) other value(s) will also be attested for numerous instances in the dataset
- Any kind of structure is considered interesting, and no a priori sense of what we hope to predict; unsupervised; evaluation is problematic
- Potentially many, many association rules

#### Full weather.nominal Dataset

| Outlook  | Temperature | Humidity | Windy        | Play |
|----------|-------------|----------|--------------|------|
| sunny    | hot         | high     | FALSE        | no   |
| sunny    | hot         | high     | TRUE         | no   |
| overcast | hot         | high     | FALSE        | yes  |
| rainy    | mild        | high     | FALSE        | yes  |
| rainy    | cool        | normal   | FALSE        | yes  |
| rainy    | cool        | normal   | TRUE         | no   |
| overcast | cool        | normal   | TRUE         | yes  |
| sunny    | mild        | high     | <b>FALSE</b> | no   |
| sunny    | cool        | normal   | FALSE        | yes  |
| rainy    | mild        | normal   | FALSE        | yes  |
| sunny    | mild        | normal   | TRUE         | yes  |
| overcast | mild        | high     | TRUE         | yes  |
| overcast | hot         | normal   | <b>FALSE</b> | yes  |
| rainy    | mild        | high     | TRUE         | no   |

# Top-10 Association Rules for weather.nominal

# java weka.associations.Apriori -t data/weather.nominal.arff

- 1. humidity=normal windy=FALSE ==> play=yes
- 2. temperature=cool ==> humidity=normal
- 3. outlook=overcast ==> play=yes
- 4. temperature=cool play=yes ==> humidity=normal
- 5. outlook=rainy windy=FALSE ==> play=yes
- 6. outlook=rainy play=yes ==> windy=FALSE
- 7. outlook=sunny humidity=high ==> play=no
- 8. outlook=sunny play=no ==> humidity=high
- 9. temperature=cool windy=FALSE ==> humidity=normal play=yes
- 10. temperature=cool humidity=normal windy=FALSE ==> play=yes

## Instance Topology

- Instances characterised as "feature vectors", defined by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
  - Flat file representation
  - No relationships between objects
  - No explicit relationship between attributes

# A Family Tree



# Family Tree Represented as a Table

| Name    | Gender | Parent1 | Parent2 |
|---------|--------|---------|---------|
| Abrams  | Male   | ?       | ?       |
| Bronwyn | Female | ?       | ?       |
| Chikara | Male   | ?       | ?       |
| Denise  | Female | ?       | ?       |
| Esau    | Male   | Abrams  | Bronwyn |
| Francis | Male   | Abrams  | Bronwyn |
| Gretel  | Female | Abrams  | Bronwyn |
| Horatio | Male   | Chikara | Denise  |
| lva     | Female | Chikara | Denise  |
| Jason   | Male   | Chikara | Denise  |
| Kim     | Female | Gretel  | Horatio |
| Louise  | Female | Gretel  | Horatio |

#### The sister Relation

| X      | Y       | $\mathtt{sister}(X,Y)$ | X       | Y      | sister(X, Y) |
|--------|---------|------------------------|---------|--------|--------------|
| Abrams | Abrams  | No                     | Horatio | lva    | Yes          |
| Abrams | Bronwyn | No                     | Horatio | Jason  | No           |
| Abrams | Chikara | No                     | Horatio | Kim    | No           |
| :      | :       | :                      | :       | :      | :            |
| Esau   | Francis | No                     | Jason   | lva    | Yes          |
| Esau   | Gretel  | Yes                    | Jason   | Jason  | No           |
| Esau   | Horatio | No                     | Jason   | Kim    | No           |
| :      | :       | :                      | :       | :      | :            |
| Gretel | Denise  | No                     | Kim     | Kim    | No           |
| Gretel | Esau    | No                     | Kim     | Louise | Yes          |
| :      | :       | <u>:</u>               | :       | :      | <u>:</u>     |
|        |         |                        |         |        |              |

#### A Full Representation in One Table I

| X      |        |         | Y       |         |        |         | sister  |       |
|--------|--------|---------|---------|---------|--------|---------|---------|-------|
| Name   | Gender | Parent1 | Parent2 | Name    | Gender | Parent1 | Parent2 | (X,Y) |
| Abrams | Male   | ?       | ?       | Abrams  | Male   | ?       | ?       | No    |
| Abrams | Male   | ?       | ?       | Bronwyn | Female | ?       | ?       | No    |
| Jason  | Male   | Chikara | Denise  | Iva     | Female | Chikara | Denise  | Yes   |
| lva    | Female | Chikara | Denise  | Jason   | Male   | Chikara | Denise  | No    |
| Esau   | Male   | Abrams  | Bronwyn | Gretel  | Female | Abrams  | Bronwyn | Yes   |
| Esau   | Male   | Abrams  | Bronwyn | Horatio | Male   | Abrams  | Bronwyn | No    |
| Gretel | Female | Abrams  | Bronwyn | Denise  | Female | ?       | ?       | No    |
| Kim    | Female | Gretel  | Horatio | Louise  | Female | Gretel  | Horatio | Yes   |
|        | -      | -       |         |         |        |         |         |       |
| :      | :      | :       | :       | :       |        | :       | :       | :     |

• What we would like to be able to extract:

```
IF Y.Gender = Female AND (X.Parent1 =
Y.Parent1 AND X.Parent2 = Y.Parent2) OR
(X.Parent1 = Y.Parent2 AND X.Parent2 =
Y.Parent1) AND X \neq Y THEN sister(X,Y) =
yes
```

#### A Full Representation in One Table II

 What the supervised classifiers we will look at actually generate:

```
IF Y.Gender = Female AND X.Parent1 =
Gretel AND
Y.Parent1 = Gretel THEN sister(X,Y) = yes
IF X.Gender = Male AND Y.Name = Gretel
THEN sister(X,Y) = yes
```

 How can we convert the table into a "classifier-friendly" format?

# A Classifier-friendly Representation

|           |           | X.Parent1 = | X.Parent2 = |     |
|-----------|-----------|-------------|-------------|-----|
| X. Gender | Y. Gender | Y.Parent1   | Y.Parent2   |     |
| Male      | Female    | Yes         | Yes         | Yes |
| Female    | Female    | Yes         | Yes         | Yes |
| Male      | Female    | No          | No          | No  |
| Male      | Male      | Yes         | Yes         | No  |
| Female    | Male      | Yes         | Yes         | No  |
| :         | :         | :           | ÷           | :   |

The importance of feature engineering

#### What's in an Attribute?

- Each instance is described by a fixed feature vector
- Possible attribute types (levels of measurement):

nominal ordinal continuous

#### Nominal Quantities

- Values are distinct symbols (e.g. {sunny,overcast,rainy})
  - · values themselves serve only as labels or names
- Also called categorical, or discrete (NB. "discrete" implies an order which tends not to exist)
- Special case: dichotomy ("Boolean" attribute)
- No relation is implied among nominal values (no ordering or distance measure), and only equality tests can be performed

#### Ordinal Quantities

- An explicit order is imposed on the values (e.g. {hot,mild,cool} where hot > mild > cool)
- No distance between values defined and addition and subtraction don't make sense
- Example rule: temperature < hot →play = yes</li>
- Distinction between nominal and ordinal not always clear (e.g. outlook)

#### Continuous Quantities

- Continuous quantities are real-valued attributes with a well-defined zero point and no explicit upper bound
- Example: attribute distance
  - Distance between an object and itself is zero
- All mathematical operations are allowed (of which addition, subtraction, scalar multiplication are most salient, but other operations are relevant in some contexts)

#### Lecture Outline

 Basics of ML: Instances, Attributes and Learning Paradigms

2 ML in the Wild

#### Attribute Types Used in Practice

- Many data schemes/learners accommodate nominal attributes (perhaps with some awkwardness), and they are very commonly observed
- Many support continuous attributes, and they are commonly observed
- Some support ordinal attributes, which are occasionally observed (but often treated as one of the other types)

Transforming attributes to Boolean is one commonly-used work-around (more in later weeks)

# Preparing the Input

- Problem: different data sources (e.g. sales department, customer billing department, ...)
  - Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
  - Data must be assembled, integrated, cleaned up
  - Data warehouse: consistent point of access
- External data/storage may be required
- Critical: type and level of data aggregation

# Sample Representation: ARFF

```
Orelation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
Oattribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny, 85, 85, FALSE, no
sunny, 80, 90, TRUE, no
overcast,83,86,FALSE,yes
rainy, 70, 96, FALSE, yes
```

### Missing Values

- The number of attributes may vary in practice
  - missing values
  - inter-dependent attributes
- Frequently indicated by out-of-range entries
  - Types: unknown, unrecorded, irrelevant
  - Reasons:
    - malfunctioning equipment
      - changes in experimental design
    - collation of different datasets
    - measurement not possible
- Missing value may have significance in itself (e.g. missing test in a medical examination)
- Most schemes assume that is not the case
   →missing may need to be coded discretely

#### Inaccurate Values

- Cause: a given data mining application is often not known at the time logging is set up
- Result: errors and omissions that don't affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes values need to be checked for consistency
- Typographical and measurement errors in numeric attributes →outliers need to be identified
- Errors may be deliberate (e.g. wrong post codes)

#### Getting to Know the Data

- Simple visualization tools are very useful
  - Nominal attributes: histograms (distribution consistent with background knowledge?)
  - Numeric attributes: scatter plots (any obvious outliers?)
- 2-D and 3-D plots show dependencies
- Need to consult domain experts
- Too much data to inspect? Take a sample!
- You can never know your data too well

# Machine Learning and Ethics



1. To make distinctions.

For example, in supervised ML, for a given instance, we might try to discriminate between the various possible classes.

Source(s): Wiktionary contributors [2019]

# Machine Learning and Ethics



#### discriminate:

2. To make decisions based on prejudice.

Digital computers have no volition, and consequently cannot be prejudiced.

**However**, the data may contain information which leads to an application where the ensuing behaviour is prejudicial, intentionally or otherwise.

Source(s): Wiktionary contributors [2019]

## Machine Learning and Ethics I

ML has the potential to discriminate [def 2.] people

- some uses of data are unethical, some plainly illegal
  - race & sex in medical applications: OK
  - race & sex in loan applications: unethical
  - race & sex in student applications: ??? (affirmative action vs. racial/sex discrimination)
- legal frameworks are still being defined

# Machine Learning and Ethics II

Not everything that can be done, should be done

- attributes in the data can encode information in an indirect way
  - For example, home address and occupation can be used (perhaps with other seemingly-banal data) to infer age and social standing of an individual
- potential legal exposure due to implicit "knowledge" used by a classifier
- just because you didn't realise doesn't mean that you shouldn't have realised, or at least, made reasonable efforts to check

#### Questions to Ask

- Who is permitted to access the data?
- For what purpose was the data collected?
- What kinds of conclusions are legitimate?
- If our conclusions defy common sense, are there confounding factors?
  - car insurance & young male drivers?
  - car loans & owners of red cars?

#### Summary

- What are instances, attributes and concepts?
- What styles of learning are there and what are their similarities/differences?
- Define supervised and unsupervised learning
- What are the basic attribute types?

#### References I

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. *Introduction to Data Mining*. Addison Wesley, 2006.

Wiktionary contributors. discriminate, in Wiktionary, the free dictionary. https://en.wiktionary.org/w/index.php?title=discriminate&oldid=49576494, 2019.