Credible Persuasion

Xiao Lin Ce Liu

UPenn Michigan State

Apr 26, 2023

Persuasion: One party uses information to influence another party's decision.

Sender

Receiver

Motivation: What Is Observable?

In practice, information structures are not observed.

Motivation: What Is Observable?

In practice, information structures are not observed.

What is often observable is the distribution of messages.

Motivation: What Is Observable?

In practice, information structures are not observed.

What is often observable is the distribution of messages.

- Grading policy: grade distribution
- Rating policy: distribution of ratings

Motivation: Credible Persuasion

This paper: introduce a notion of credibility for persuasion.

Motivation: Credible Persuasion

This paper: introduce a notion of credibility for persuasion.

Sender's information structure is **credible** if no other information structure

- gives the Sender a strictly higher payoff, and
- generates the same distribution of messages.

Example: Used Car Rating

Example: Used Car Rating

	Buy	Not Buy
Good	2	1
Bad	2	0

Sallar	Payoff
Jenei	i ayon

	Buy	Not Buy
Good	1	0
Bad	-1	0

Buyer Payoff

Uninformative Rating Policy

Fully-Revealing Rating Policy

Optimal Rating Policy (Kamenica-Gentzkow)

Optimal Rating Policy (Kamenica-Gentzkow)

Optimal Rating Policy (Kamenica-Gentzkow)

 $\mathsf{Undetectable} + \mathsf{Profitable} \Rightarrow \mathsf{Not} \; \mathsf{Credible}$

If a car is sold under rating $A \qquad \Rightarrow \quad \# \text{ of good cars} \geq \# \text{ of bad cars}$

If a car is sold under rating A \Rightarrow # of good cars $\geq \#$ of bad cars \exists another rating B \Rightarrow # of good cars < # of bad cars

```
If a car is sold under rating A \Rightarrow \# of good cars \geq \# of bad cars \exists another rating B \Rightarrow \# of good cars < \# of bad cars
```

Swap a good car in rating A with a bad car in rating B.

```
If a car is sold under rating A \Rightarrow \# of good cars \geq \# of bad cars \exists another rating B \Rightarrow \# of good cars < \# of bad cars
```

Swap a good car in rating A with a bad car in rating B.

The rating policy is not credible.

If a car is sold under rating A \Rightarrow # of good cars $\geq \#$ of bad cars \exists another rating B \Rightarrow # of good cars < # of bad cars

Swap a good car in rating A with a bad car in rating B.

The rating policy is not credible.

 \Rightarrow No cars can be sold in any credible rating policy.

Example: School's Grading Policy

Example: School's Grading Policy

	Hire	Not Hire
Good	2	0
Bad	1	0

	Hire	Not Hire
Good	1	0
Bad	-1	0

School Payoff

Employer Payoff

Optimal Grading under Full Commitment

Optimal Grading under Full Commitment

Optimal Grading under Full Commitment

The optimal full-commitment information structure is credible.

Examples: Takeaway

Used Car:

When the car quality is higher, the buyer has a stronger incentive to trade, but the seller has a weaker incentive to trade.

School & Employer:

When the student ability is higher, both the school and the employer have a stronger incentive to have the student hired.

Examples: Takeaway

Used Car:

When the car quality is higher, the buyer has a stronger incentive to trade, but the seller has a weaker incentive to trade.

School & Employer:

When the student ability is higher, both the school and the employer have a stronger incentive to have the student hired.

 \Rightarrow Marginal incentives play a crucial role in the scope of credible persuasion.

Bayesian Persuasion: Sender's choice of information structure is unconstrained.

Cheap Talk: Sender has no profitable deviation to any other information structure.

Bayesian Persuasion: Sender's choice of information structure is unconstrained.

Credible Persuasion: Sender has no profitable deviation to information structures with the same message distribution.

Cheap Talk: Sender has no profitable deviation to any other information structure.

Bayesian Persuasion: Sender's choice of information structure is unconstrained.

Credible Persuasion: Sender has no profitable deviation to information structures with the same message distribution.

Cheap Talk: Sender has no profitable deviation to any other information structure.

Cheap Talk ⊂ Credible Persuasion ⊂ Bayesian Persuasion

	Used Car	School–Employer
Bayesian Persuasion	KG-optimal	KG-optimal

Comparison with Canonical Models

	Used Car	School–Employer
Bayesian Persuasion	KG-optimal	KG-optimal
Cheap Talk	No Information	No Information

Comparison with Canonical Models

	Used Car	School–Employer
Bayesian Persuasion	KG-optimal	KG-optimal
Cheap Talk	No Information	No Information
Credible Persuasion	No Information	KG-optimal

Propose a notion of credibility for persuasion problems

Propose a notion of credibility for persuasion problems

Characterization: credibility ⇔ cyclical monotonicity

Propose a notion of credibility for persuasion problems

Characterization: credibility ⇔ cyclical monotonicity

Information transmission depends on the "alignment" of preferences

Propose a notion of credibility for persuasion problems

Characterization: credibility ⇔ cyclical monotonicity

Information transmission depends on the "alignment" of preferences

Application: market for lemons

Literature

Optimal Information Disclosure

 Ostrovsky and Schwarz (2010); Rayo and Segal (2010); Kamenica and Gentzkow (2011)

Limited Commitment

 Lipnowski, Ravid, and Shishkin (2021); Min (2021); Nguyen and Tan (2021); Perez-Richet and Skreta (2022)

Repeated Communication

 Renault, Solan, and Vieille (2013); Best and Quigley (2020); Kuvalekar, Lipnowski, and Ramos (2022); Mathevet, Pearce, and Stacchetti (2022);

Quota Mechanism and Multi-Issue Cheap Talk

 Jackson and Sonnenschein (2007); Chakraborty and Harbaugh (2007); Rahman (2010); Frankel (2014)

Examples When is Credibility Restrictive

Model Market for Lemons

Characterization Summary

One Sender (S) and one Receiver (R).

One Sender (S) and one Receiver (R).

State: $\theta \in \Theta$ with prior μ_0

Action: $a \in A$

Message: $m \in M$

All spaces are finite

One Sender (S) and one Receiver (R).

State: $\theta \in \Theta$ with prior μ_0

Action: $a \in A$

Message: $m \in M$

All spaces are finite

One Sender (S) and one Receiver (R).

State: $\theta \in \Theta$ with prior μ_0

 ${\sf Action:}\ a\in A$

Message: $m \in M$

All spaces are finite

Payoff functions: $u_S(\theta,a)$ and $u_R(\theta,a)$

Sender chooses an information structure $T:\Theta \to \Delta(M)$.

Receiver chooses a pure strategy $\sigma:M\to A.$

Sender chooses an information structure $T:\Theta \to \Delta(M)$.

Receiver chooses a pure strategy $\sigma:M\to A.$

Under profile (T, σ) , the expected payoff of player $i \in \{S, R\}$ is

$$U_i(T,\sigma) =$$

Sender chooses an information structure $T: \Theta \to \Delta(M)$.

Receiver chooses a pure strategy $\sigma: M \to A$.

Under profile (T, σ) , the expected payoff of player $i \in \{S, R\}$ is

$$U_i(T,\sigma) = u_i(\theta,\sigma(m))$$

Sender chooses an information structure $T: \Theta \to \Delta(M)$.

Receiver chooses a pure strategy $\sigma: M \to A$.

Under profile (T,σ) , the expected payoff of player $i\in\{S,R\}$ is

$$U_i(T,\sigma) = \mu_0(\theta)T(m|\theta) \ u_i(\theta,\sigma(m))$$

Sender chooses an information structure $T: \Theta \to \Delta(M)$.

Receiver chooses a pure strategy $\sigma: M \to A$.

Under profile (T, σ) , the expected payoff of player $i \in \{S, R\}$ is

$$U_i(T,\sigma) = \sum_{\theta,m} \mu_0(\theta) T(m|\theta) \ u_i(\theta,\sigma(m))$$

Credibility and R-IC

Definition. A profile (T^*, σ^*) is credible if

$$T^* \in \underset{T \in D(T^*)}{\operatorname{arg\,max}} U_S(T, \sigma^*)$$

 $D(T^*)$: The set of information structures with the same message distribution as T^*

Credibility and R-IC

Definition. A profile (T^*, σ^*) is credible if

$$T^* \in \underset{T \in D(T^*)}{\operatorname{arg\,max}} \ U_S(T, \sigma^*)$$

 $D(T^*)$: The set of information structures with the same message distribution as T^*

Definition. A profile (T^*, σ^*) is Receiver Incentive Compatible (R-IC) if

$$\sigma^* \in \operatorname*{arg\,max}_{\sigma:M \to A} U_R(T^*, \sigma)$$

Credibility and R-IC

Definition. A profile (T^*, σ^*) is credible if

$$T^* \in \underset{T \in D(T^*)}{\operatorname{arg\,max}} \ U_S(T, \sigma^*)$$

 $D(T^*)$: The set of information structures with the same message distribution as T^*

Definition. A profile (T^*, σ^*) is Receiver Incentive Compatible (R-IC) if

$$\sigma^* \in \underset{\sigma:M \to A}{\operatorname{arg\,max}} \ U_R(T^*, \sigma)$$

A credible and R-IC profile always exists

Examples When is Credibility Restrictive

Model Market for Lemons

Characterization Summary

Outcome Distributions

An outcome distribution $\pi \in \Delta(\Theta \times A)$ is induced by a profile (T, σ) if

$$\pi(\theta, a) = \sum_{m \in \sigma^{-1}(a)} T(m|\theta) \mu_0(\theta)$$

Cyclical Monotonicity

An outcome distribution $\pi \in \Delta(\Theta \times A)$ is u_S -cyclically monotone if for any n and $(\theta_1, a_1), \ldots, (\theta_n, a_n) \in \operatorname{supp}(\pi)$

$$\sum_{i=1}^{n} u_S(\theta_i, a_i) \ge \sum_{i=1}^{n} u_S(\theta_i, a_{i+1})$$

where $a_{n+1} \equiv a_1$.

School Example

 ${\sf pairwise\ swappings} = {\sf cycles\ of\ length}\ 2$

Characterization

Theorem. An outcome distribution $\pi \in \Delta(\Theta \times A)$ can be induced by a credible and R-IC profile if and only if:

1. π is u_R -obedient: for any a in the support of π_A ,

$$\sum_{\Theta} \pi(\theta|a) \; u_R(\theta,a) \geq \sum_{\Theta} \pi(\theta|a) \; u_R(\theta,a') \; \text{ for all } \; a' \in A.$$

2. π is u_S —cyclically monotone: for any $(\theta_1, a_1), \ldots, (\theta_n, a_n) \in \text{supp}(\pi)$,

$$\sum_{i=1}^{n} u_{S}(\theta_{i}, a_{i}) \ge \sum_{i=1}^{n} u_{S}(\theta_{i}, a_{i+1})$$

where $a_{n+1} \equiv a_1$.

technical details

Suppose π has a profitable and undetectable deviation π' .

Suppose π has a profitable and undetectable deviation π' .

$$\sum_{\theta,a} \pi(\theta,a) u_S(\theta,a) < \sum_{\theta,a} \pi'(\theta,a) u_S(\theta,a)$$

where $\pi_{\Theta} = \pi'_{\Theta}$ and $\pi_A = \pi'_A$.

Suppose π has a profitable and undetectable deviation π' .

$$\sum_{\theta,a} \pi(\theta,a) u_S(\theta,a) < \sum_{\theta,a} \pi'(\theta,a) u_S(\theta,a)$$

where $\pi_{\Theta} = \pi'_{\Theta}$ and $\pi_A = \pi'_A$.

In matrix form \Rightarrow

$$\pi \cdot u_S < \pi' \cdot u_S$$

where π and π' with the same row- and column- sums.

 $\mathsf{Rescaling} + \mathsf{Splitting} \Rightarrow$

$$\underbrace{\Pi}_{\text{bi-stochastic}} \cdot U_S \quad < \underbrace{\Pi'}_{\text{bi-stochastic}} \cdot U_S$$

Rescaling + Splitting \Rightarrow

$$\underbrace{\boldsymbol{\Pi}}_{\text{bi-stochastic}} \cdot \mathbf{U_S} \quad < \underbrace{\boldsymbol{\Pi}'}_{\text{bi-stochastic}} \cdot \mathbf{U_S}$$

Birkhoff-von Neumann theorem ⇒

$$\underbrace{P}_{\text{permutation}} \cdot U_S \quad < \underbrace{P'}_{\text{permutation}} \cdot U_S$$

Sufficiency

Rescaling + Splitting \Rightarrow

$$\underbrace{\boldsymbol{\Pi}}_{\text{bi-stochastic}} \cdot \mathbf{U_S} \quad < \underbrace{\boldsymbol{\Pi'}}_{\text{bi-stochastic}} \cdot \mathbf{U_S}$$

Birkhoff-von Neumann theorem ⇒

$$\underbrace{P}_{\text{permutation}} \cdot U_S \quad < \underbrace{P'}_{\text{permutation}} \cdot U_S$$

 \Rightarrow Profitable cyclical deviation.

Sufficiency: $n \leq \min\{|\Theta|, |A|\}$

Theorem. An outcome distribution $\pi \in \Delta(\Theta \times A)$ can be induced by a credible and R-IC profile if and only if:

1. π is u_R -obedient: for any a in the support of π_A ,

$$\sum_{\Theta} \pi(\theta|a) \; u_R(\theta,a) \geq \sum_{\Theta} \pi(\theta|a) \; u_R(\theta,a') \; \text{ for all } \; a' \in A.$$

2. π is u_S —cyclically monotone: for any $n \leq \min\{|\Theta|, |A|\}$ and $(\theta_1, a_1), \ldots, (\theta_n, a_n) \in \operatorname{supp}(\pi)$,

$$\sum_{i=1}^{n} u_S(\theta_i, a_i) \ge \sum_{i=1}^{n} u_S(\theta_i, a_{i+1})$$

where $a_{n+1} \equiv a_1$.

technical details

Examples When is Credibility Restrictive

Model Market for Lemons

Characterization Summary

Additively Separable Preference

Observation. If $u_S(\theta,a)=\phi(\theta)+\psi(a)$, every outcome distribution is cyclically monotone.

⇒ Credibility does not restrict Sender's ability to persuade.

Additively Separable Preference

Observation. If $u_S(\theta,a)=\phi(\theta)+\psi(a)$, every outcome distribution is cyclically monotone.

⇒ Credibility does not restrict Sender's ability to persuade.

A special case: state-independent preference $u_S(\theta, a) = \psi(a)$

(e.g. Chakraborty and Harbaugh, 2010; Alonso and Câmara, 2016; Lipnowski and Ravid, 2020)

Supermodular Preference

Assume both Θ and A are subsets of \mathbb{R} .

Sender's payoff $u_S(\theta, a)$ is supermodular.

Definition. A payoff function $u:\Theta\times A\to\mathbb{R}$ is supermodular if for any $\theta_H>\theta_L$ and $a_H>a_L$,

$$u(\theta_H, a_H) - u(\theta_H, a_L) \ge u(\theta_L, a_H) - u(\theta_L, a_L).$$

Comonotonicity

Lemma. If $u_S(\theta, a)$ is strictly supermodular,

 π is u_S -cyclically monotone $\Leftrightarrow \pi$ is comonotone

Comonotonicity

Lemma. If $u_S(\theta, a)$ is strictly supermodular,

 π is u_S -cyclically monotone $\Leftrightarrow \pi$ is comonotone

Comonotonicity: for any $(\theta, a), (\theta', a') \in \text{supp}(\pi)$,

$$\theta > \theta' \quad \Rightarrow \quad a \ge a'$$

Theorem. When $\Theta, A \subseteq \mathbb{R}$ and $u_S(\theta, a)$ is strictly supermodular, an outcome distribution $\pi \in \Delta(\Theta \times A)$ can be induced by a credible and R-IC profile if and only if:

- 1. π is u_R -obedient;
- 2. π is comonotone.

Theorem. When $\Theta, A \subseteq \mathbb{R}$ and $u_S(\theta, a)$ is strictly supermodular, an outcome distribution $\pi \in \Delta(\Theta \times A)$ can be induced by a credible and R-IC profile if and only if:

- 1. π is u_R -obedient;
- 2. π is comonotone.

Monotone Persuasion

Dworczak and Martini (2019); Goldstein and Leitner (2018); Mensch (2021); Ivanov (2020); Kolotilin (2018); and Kolotilin and Li (2020)

Theorem. When $\Theta, A \subseteq \mathbb{R}$ and $u_S(\theta, a)$ is strictly supermodular, an outcome distribution $\pi \in \Delta(\Theta \times A)$ can be induced by a credible and R-IC profile if and only if:

- 1. π is u_R -obedient;
- 2. π is comonotone.

Monotone Persuasion

Dworczak and Martini (2019); Goldstein and Leitner (2018); Mensch (2021); Ivanov (2020); Kolotilin (2018); and Kolotilin and Li (2020)

An additional rationale

Proposition 1. Supermodular + Submodular \Rightarrow No information

full statement

Proposition 1. Supermodular + Submodular \Rightarrow No information

full statement

Proposition 2. Supermodular + Supermodular ⇒ Benefit from persuasion?

Proposition 1. Supermodular + Submodular ⇒ No information

full statement

Proposition 2. Supermodular + Supermodular ⇒ Benefit from persuasion?

counter example

Proposition 1. Supermodular + Submodular \Rightarrow No information

full statement

Proposition 2. Supermodular + Supermodular \Rightarrow Benefit from persuasion + Additional condition

Proposition 1. Supermodular + Submodular \Rightarrow No information

full statement

Proposition 2. Supermodular + Supermodular ⇒ Benefit from persuasion + Additional condition

full conditions

Proposition 3. Supermodular + Supermodular and |A|=2

⇒ Optimal full commitment solution is credible

full statement

Examples When is Credibility Restrictive

Model Market for Lemons

Characterization Summary

A seller and two buyers.

A seller and two buyers.

Asset's quality (seller's value) $\theta \in [0,1]$. Common prior μ_0 .

A seller and two buyers.

Asset's quality (seller's value) $\theta \in [0,1]$. Common prior μ_0 . (Gains from trade) buyers' value $v(\theta) > \theta$, increasing in θ ; (Adverse selection) $E_{\mu_0}[v(\theta)] < 1$.

A seller and two buyers.

Asset's quality (seller's value) $\theta \in [0,1]$. Common prior μ_0 .

(Gains from trade) buyers' value $v(\theta) > \theta$, increasing in θ ; (Adverse selection) $E_{\mu_0}[v(\theta)] < 1$.

The base game G:

- Seller observes θ , chooses an ask price $a \in [0, v(1)]$;
- Buyers submit bids $b_1, b_2 \in [0, v(1)]$;
- Asset traded at winning bid if higher than ask; no trade otherwise.

Market for Lemons: Information

Before the game is played, the seller chooses $T:\Theta\to\Delta(M)$ to disclose information to the buyers.

Market for Lemons: Information

Before the game is played, the seller chooses $T:\Theta\to\Delta(M)$ to disclose information to the buyers.

 $\langle G, T \rangle$ forms a Bayesian game:

- Message from T observed publicly;
- Buyers update posteriors; seller observes θ ;
- Seller and buyers simultaneously submit ask and bids.

⇒ Prices determined endogenously by beliefs (ratings).

Full Commitment

If the seller can commit:

fully reveal $\theta \Rightarrow$ seller captures all gains from trade.

Full Commitment

If the seller can commit:

fully reveal $\theta \Rightarrow$ seller captures all gains from trade.

Is this credible?

Market for Lemons: Credibility and IC

Definition. A profile of information structure and players' strategies (T^*, σ^*) is credible and IC if

- σ^* is a Bayesian Nash equilibrium in $\mathcal{G} = \langle G, T^* \rangle$
- ullet T^* is optimal for the Sender among all information structures that generate the same message distribution

Market for Lemons: Credible Information Disclosure

Proposition. Under any credible and IC profile (T^*, σ^*) , ${\sf Seller's\ payoff} \leq {\sf No\ information\ payoff}$

Step 1: \exists a common trading threshold τ across all ratings

Step 1: \exists a common trading threshold τ across all ratings

Suppose two different prices are induced:

Step 1: \exists a common trading threshold τ across all ratings

Suppose two different prices are induced:

Step 1: \exists a common trading threshold τ across all ratings

Suppose two different prices are induced:

There should be no cars with quality $\theta \in (p_1, p_2)$ under message m_2 .

Step 1: \exists a common trading threshold τ across all ratings

Suppose two different prices are induced:

There should be no cars with quality $\theta \in (p_1, p_2)$ under message m_2 .

A car is traded if and only if its quality $\theta \leq \tau = p_1$.

Market for Lemons: Proof Idea (Cont'd)

Step 2: Under the prior μ_0 , \exists equilibrium threshold $\tau^* \geq \tau$

Market for Lemons: Proof Idea (Cont'd)

Step 2: Under the prior μ_0 , \exists equilibrium threshold $\tau^* \geq \tau$

Market for Lemons: Proof Idea (Cont'd)

Step 2: Under the prior μ_0 , \exists equilibrium threshold $\tau^* \geq \tau$

Taking expectation over m gives

$$\tau \le E_{\mu_0}[v(\theta)|\theta \le \tau] = p$$

So with no information:

Market for Lemons: Proof Idea (Cont'd)

Tarski's fixed point theorem $\Rightarrow \exists \tau^* \geq \tau$ such that

$$E_{\mu_0}[v(\theta)|\theta \le \tau^*] = \tau^*.$$

Market for Lemons: Proof Idea (Cont'd)

There exists an equilibrium (under no information) where assets are traded at a higher threshold $\tau^* \geq \tau$.

Market for Lemons: Proof Idea (Cont'd)

There exists an equilibrium (under no information) where assets are traded at a higher threshold $\tau^* \geq \tau$.

 \Rightarrow The seller receives a higher payoff under no information.

Examples When is Credibility Restrictive

Model Market for Lemons

Characterization Summary

We propose a new credibility notion for persuasion

We propose a new credibility notion for persuasion

In general: credibility ⇔ cyclical monotonicity

We propose a new credibility notion for persuasion

In general: credibility ⇔ cyclical monotonicity

Provide conditions on how credibility affects communication

• These conditions depend on the "alignment" of preferences

We propose a new credibility notion for persuasion

In general: credibility ⇔ cyclical monotonicity

Provide conditions on how credibility affects communication

These conditions depend on the "alignment" of preferences

Apply our approach to markets for lemons

Information disclosure cannot credibly prevent inefficiency

Takeaways

A way to evaluate the commitment assumption in Bayesian Persuasion

Takeaways

A way to evaluate the commitment assumption in Bayesian Persuasion

A rationale to explain why certain industries can effectively disclose information by utilizing their own rating system

- School designs grading rule
- Hospital designs treatment guideline

Takeaways

A way to evaluate the commitment assumption in Bayesian Persuasion

A rationale to explain why certain industries can effectively disclose information by utilizing their own rating system

- School designs grading rule
- Hospital designs treatment guideline

but some other industries have to reply on other means

- Used car dealers
- Antique dealers

Literature

Optimal Information Disclosure

 Ostrovsky and Schwarz (2010); Rayo and Segal (2010); Kamenica and Gentzkow (2011)

Limited Commitment

 Lipnowski, Ravid, and Shishkin (2021); Min (2021); Nguyen and Tan (2021); Perez-Richet and Skreta (2022)

Repeated Communication

 Renault, Solan, and Vieille (2013); Best and Quigley (2020); Kuvalekar, Lipnowski, and Ramos (2022); Mathevet, Pearce, and Stacchetti (2022);

Quota Mechanism and Multi-Issue Cheap Talk

 Jackson and Sonnenschein (2007); Chakraborty and Harbaugh (2007); Rahman (2010); Frankel (2014) **Proposition.** Suppose u_S and u_R are both supermodular.

- 1. If $u_S(\theta,a)>u_S(\theta,a')$ for any θ and a>a', the Sender benefits from credible persuasion for generic prior as long as she benefits from persuasion;
- 2. If $u_S(\overline{\theta}, \overline{a}) > u_S(\overline{\theta}, a)$ for all $a \neq \overline{a}$ and $u_S(\underline{\theta}, \underline{a}) > u_S(\underline{\theta}, a)$ for all $a \neq \underline{a}$, she benefits from credible persuasion;
- 3. If the Sender is strictly better off from fully revealing outcome than from no information outcome, then the Sender benefits from credible persuasion.

Extensive-Form Foundation

Timing:

- 1. Sender chooses an information structure T;
- 2. Receiver observes the distribution of messages $P_m(\cdot) = \sum_{\theta} \mu_0(\theta) T(\cdot | \theta)$;
- 3. Receiver chooses an action for each message $\sigma:M\to A$

Extensive-Form Foundation

Timing:

- 1. Sender chooses an information structure T;
- 2. Receiver observes the distribution of messages $P_m(\cdot) = \sum_{\theta} \mu_0(\theta) T(\cdot | \theta)$;
- 3. Receiver chooses an action for each message $\sigma: M \to A$

Proposition.

 (T,σ) is a SPE outcome

 (T,σ) is Credible and R-IC & $U_S(T,\sigma) \geq No$ Information Value

Kantorovich Duality. Suppose X and Y are both finite sets, and $u: X \times Y \to \mathbb{R}$ is a real-valued function. Let $\mu \in \Delta(X)$, $\nu \in \Delta(Y)$, and $\Pi(\mu, \nu) = \{P \in \Delta(X \times Y) | P_X = \mu, P_Y = \nu\}.$

For any $\pi^* \in \Pi(\mu, \nu)$, the following three statements are equivalent:

- 1. $\pi^* \in \arg \max_{\pi \in \Pi(\mu, \nu)} \sum_{x,y} \pi(x, y) u(x, y);$
- 2. π^* is *u*-cyclically monotone.
- 3. There exists $\psi:Y\to\mathbb{R}$ such that for any $(x,y)\in\operatorname{supp}(\pi^*)$ and any $y'\in Y$,

$$u(x,y) - \psi(y) \ge u(x,y') - \psi(y').$$

Back

Proposition.

 $\mathsf{Cheap}\;\mathsf{Talk}\;+\;\mathsf{Transfers}\quad\Leftrightarrow\quad\mathsf{Credibility}$

Approximation

Suppose

$$\sum_{\theta,a} \pi(\theta,a) u_S(\theta,a) < \sum_{\theta,a} \pi'(\theta,a) u_S(\theta,a)$$

Approximation

Suppose

$$\sum_{\theta,a} \pi(\theta,a) u_S(\theta,a) < \sum_{\theta,a} \pi'(\theta,a) u_S(\theta,a)$$

By continuity, \exists rational $\widetilde{\pi}$ and $\widetilde{\pi}'$ with the same support as π and π' such that

$$\sum_{\theta,a} \widetilde{\pi}(\theta,a) u_S(\theta,a) < \sum_{\theta,a} \widetilde{\pi}'(\theta,a) u_S(\theta,a)$$

Back

Proposition. If u_S is strictly supermodular and u_R is submodular, then any outcome distribution that can be induced by a credible and R-IC profile is a no information outcome.

Proposition. If u_S is strictly supermodular and u_R is submodular, then any outcome distribution that can be induced by a credible and R-IC profile is a no information outcome.

Intuition:

 $Supermodularity + Credibility \Rightarrow Higher \ states \ match \ with \ higher \ actions$

Proposition. If u_S is strictly supermodular and u_R is submodular, then any outcome distribution that can be induced by a credible and R-IC profile is a no information outcome.

Intuition:

Supermodularity + Credibility \Rightarrow Higher states match with higher actions

Submodularity + Obedience \Rightarrow Higher states match with lower actions

Proposition. If u_S is strictly supermodular and u_R is submodular, then any outcome distribution that can be induced by a credible and R-IC profile is a no information outcome.

Intuition:

Supermodularity + Credibility \Rightarrow Higher states match with higher actions

Submodularity + Obedience \Rightarrow Higher states match with lower actions

Only one action can be induced

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

$$\Theta = \{\theta_L, \theta_H\}, A = \{a_1, a_2, a_3, a_4\}.$$

Additional conditions:

- Sender prefers a higher action regardless of the state;
- Sender and Receiver agree under extreme states;
- Fully revealing gives the Sender higher payoff than no information.

Proposition. Suppose u_S and u_R are both supermodular and |A|=2, at least one optimal full-commitment outcome distribution can be induced by a credible and R-IC profile.

Proposition. Suppose u_S and u_R are both supermodular and |A|=2, at least one optimal full-commitment outcome distribution can be induced by a credible and R-IC profile.

Intuition (Mensch 2021):

suppose an outcome distribution is obedient but not comonotone

Proposition. Suppose u_S and u_R are both supermodular and |A|=2, at least one optimal full-commitment outcome distribution can be induced by a credible and R-IC profile.

Intuition (Mensch 2021):

swapping non-comonotone pairs

$$\theta_H$$
 a_H

$$\theta_L = a_L$$

Proposition. Suppose u_S and u_R are both supermodular and |A|=2, at least one optimal full-commitment outcome distribution can be induced by a credible and R-IC profile.

Intuition (Mensch 2021):

Sender's payoff weakly improves + the obedient constraints still hold

$$\theta_H = a_H$$

$$\theta_L = a_L$$

