ID-Clicker: A Battery-Free In-Class Response System Using RFID Tags

Liqiong Chang

Ju Wang, Omid Abari and Srinivasan Keshav

In-class Response System

How do they work?

- Students hold remote controllers.
- Wireless Access Points (APs) collect responses.

Existing systems

Specialized remote controllers:

Existing systems

Specialized remote controllers:

Cellphone and web based:

learning catalytics

Limitation of existing systems

- Specialized remote controllers:
- Expensive
- > require batteries
- can't detect cheating

Limitation of existing systems

- Specialized remote controllers:
- Expensive
- > require batteries
- can't detect cheating

- Cellphone and web based:
- > more distractions, lower scores.
- more cheating through Internet.

What can we do?

Idea: use RFID tags

ID-Clicker

- The first RFID-based in-class response system.
- It enables low cost and battery free remotes.
- It can also detect cheating.

Challenge 1: detect a response

RFID touch sensing

[H. Jin MobiSys'18, S. Pradhan MobiCom'18, H. Li CHI'16, H. Li CHI'15, etc.]

It does not work 🕾

Limitation of existing RFID-based UI

Using RSS/phase, not robust

(a) Absolute RSS readings.

(b) Absolute phase readings.

Using Differential RSS/phase, not robust

11

Our solution: use digital feature

Step 1: Selecting the Tag Type

Step 1: Selecting the Tag Type

Step 1: Selecting the Tag Type

Long and stable reading range.

Step 2: Modifying RFID Tags

Step 2: Modifying RFID Tags

remove the plastic cover

Step 2: Modifying RFID Tags

remove the plastic cover

cut away a small part of its antenna

Step 2: Modifying RFID Tags

remove the plastic cover

cut away a small part of its antenna

replace the cut-off part with a switch

Step 2: Modifying RFID Tags

- remove the plastic cover
- cut away a small part of its antenna
- replace the cut-off part with a switch
- put four modified RFID tags together

Step 3: Encoding a student's ID

Alien Squiggle ALN-9740 tag: 128 bits of EPC memory.

- 3 bits for the answer part: up to 8 answer options.
- 125 bits for the student's ID.

Challenge 2: cheater detection

Key insights:

1. RSS measurements of cheating pads have similar values.

Deployment of three pads.

CDF plot for RSS measurements of three pads.

Cheater detection

Key insights:

- 1. RSS measurements of cheating pads have similar values.
- 2. Answers from cheating pads are the same.
- 3. Response time from cheating pads are close.

Questionnaire	Will you choose the same answers for two clickers?		Will you press two clickers at almost the same time?	
Answer	Yes	No	Yes	No
The number of students	67	0	63	4

Cheater detection

An example of detection process for two pads,

Experimental Setup

Deployment scene

reader antenna

Overall response accuracy

- 15 subjects, 15 random seats, press each option switch 20 times.
- Confusion matrix of identification results over 1200 tests.

Pressed True Answer Options

Our system identifies every pressed answer option correctly.

Impact of Concurrent Responses

- Under one antenna, a subject press each option switch 50 times.
- Concurrent users: a number of unmodified tags.

The accuracy is 100% for up to 70 users.

Impact of Environment Changes

- 'Dynamic 1': 1 moving student,
- "Dynamic 2 and 3": 3 and 5 moving students, respectively.
- NLoS: the direct pad-antenna path is blocked by student.

Our system is robust to environment changes in realistic settings.

Impact of Pad Range

- The pad faces the antenna and we change the pad-antenna distance.
- Each answer option switch is activated 50 times.

By mounting antenna on the ceiling, we achieve 100% accuracy in most indoor classrooms.

Impact of Cheating Detection

- 8 pads, 7 students, 12 questions.
- One of the students acts as a cheater and hold two pads.

When at least 4 questions are asked, all cheating pads are correctly detected without any false alarm.

Conclusion

- ID-Clicker provides students with a very affordable, battery-free alternative to existing 'clicker' systems.
- It can accurately detect cheating students with simple and effective algorithm.

