Résumé 7 - Réduction d'endomorphismes

Éléments propres

Soit $u \in \mathcal{L}(E)$ où E désigne un \mathbb{K} -espace vectoriel.

→ Généralités

- Définition

• On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u associé au vecteur propre $x \in E$ si :

$$u(x) = \lambda x$$
 avec $x \neq 0_E$

On appelle spectre de u et on note Sp(u) l'ensemble des valeurs propres de u.

• On appelle sous-espace propre associé à λ l'espace vectoriel $E_{\lambda}(u) = \text{Ker}(u - \lambda \text{id}_{E})$.

Théorème

- Les sous-espaces propres associés à des valeurs propres distinctes sont en somme directe.
- Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

→ Polynôme caractéristique

On suppose désormais E de dimension finie n.

Définition

On appelle polynôme caractéristique de $M \in \mathcal{M}_n(\mathbb{K})$ le polynôme $\chi_M = \det(XI_n - M)$.

Deux matrices semblables ont même polynôme caractéristique, donc mêmes valeurs propres.

M et M^{\top} ont même polynôme caractéristique.

Définition

On appelle polynôme caractéristique de u le polynôme caractéristique de toute matrice représentative de u.

Théorème

- Les valeurs propres de u sont exactement les racines de χ_u .
- $\chi_u = X^n \text{Tr}(u)X^{n-1} + \dots + (-1)^n \det(u)$.
- La somme des valeurs propres (complexes) vaut Tr(*u*) et leur produit det(*u*).

Lorsque E est un \mathbb{C} -espace vectoriel, u admet exactement n valeurs propres comptées avec leur ordre de multiplicité. Lorsque E est un \mathbb{R} -espace vectoriel, elle en admet au plus n.

Si F est stable par u, le polynôme caractéristique $\chi_{u_{|F}}$ de l'endomorphisme induit divise χ_u .

Théorème

Soit $\lambda \in \operatorname{Sp}(u)$ d'ordre de multiplicité $m(\lambda)$.

$$1 \leq \dim(\operatorname{Ker}(u - \lambda \operatorname{id}_E)) \leq m(\lambda)$$

Si λ est valeur propre simple, alors $\operatorname{Ker}(u-\lambda \operatorname{id}_E)$ est une droite vectorielle.

Polynômes d'endomorphismes et de matrices

\rightarrow Algèbre commutative $\mathbb{K}[u]$

Pour $u \in \mathcal{L}(E)$ (ou $M \in \mathcal{M}_n(\mathbb{K})$), on définit :

$$\mathbb{K}[u] = \{P(u) \mid P \in \mathbb{K}[X]\} = \underset{n \in \mathbb{N}}{\text{Vect}}(u^n)$$

 $(\mathbb{K}[u], +, \circ, \cdot)$ possède une structure d'algèbre commutative. L'application $P \mapsto P(u)$ définit un morphisme d'algèbres de $\mathbb{K}[X]$ dans $\mathcal{L}(E)$; son image est $\mathbb{K}[u]$.

Si E est de dimension finie, $\mathbb{K}[u] \subset \mathcal{L}(E)$ l'est aussi.

- Proposition

Si $P \in \mathbb{K}[X]$, les sous-espaces Im(P(u)) et Ker(P(u)) sont stables par u.

→ Polynômes annulateurs et polynôme minimal

— Définition : Polynôme annulateur

Soient $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. P est appelé polynôme annulateur de u si $P(u) = 0_{\mathcal{L}(E)}$.

La définition est identique pour une matrice $M \in \mathcal{M}_n(\mathbb{K})$.

En dimension finie, il existe toujours un polynôme annulateur non trivial (donc une infinité).

Si P et Q annulent u, pgcd(P,Q) annule u (Bézout).

Théorème / Définition : Polynôme minimal

Si $u \in \mathcal{L}(E)$ est non nul et E de dimension finie, il existe un unique polynôme unitaire qui divise tous les polynômes annulateurs de u.

Ce polynôme est appelé polynôme minimal de u et on le note π_u .

Un endomorphisme en dimension infinie n'admet pas toujours de polynôme minimal.

- Proposition

Deux matrices semblables ont même polynôme minimal.

- Proposition

Si d est le degré du polynôme minimal de u, alors la famille $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$.

En particulier, $\dim(\mathbb{K}[u]) = \deg(\pi_u)$.

Proposition

Soit F un sous-espace stable par u non réduit à $\{0_E\}$. Alors, le polynôme minimal de l'endomorphisme induit $u_{|F}$ divise celui de u.

Cela fournit un argument utile de diagonalisabilité pour un endomorphisme induit.

→ Polynômes annulateurs et valeurs propres

Théorème

Si P annule u, toute valeur propre de u est racine de P. Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda)x$.

Attention, l'ensemble des racines d'un polynôme annulateur contient les valeurs propres mais n'est pas égal, en général, au spectre de u.

→ Théorème de Cayley-Hamilton

Théorème : Théorème de Cayley-Hamilton

Le polynôme caractéristique d'un endomorphisme en dimension finie est un polynôme annulateur. En d'autres termes, si E est de dimension finie,

$$\forall u \in \mathcal{L}(E), \quad \chi_u(u) = 0_{\mathcal{L}(E)}$$

Le polynôme minimal d'un endomorphisme divise ainsi le polynôme caractéristique. Le degré du polynôme minimal est donc inférieur ou égal à $\dim(E)$.

Théorème

Les racines du polynôme minimal de u sont exactement ses valeurs propres.

Proposition

Une matrice de $\mathcal{M}_n(\mathbb{C})$ est nilpotente si, et seulement si, son polynôme caractéristique est X^n .

→ Lemme des noyaux

Théorème : Lemme des noyaux

Si $P_1, ..., P_r$ sont des polynômes deux à deux premiers entre eux de produit égal à P, alors :

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{r} \operatorname{Ker}(P_i(u))$$

En particulier, si P annule u, $E = \bigoplus_{i=1}^{r} \text{Ker}(P_i(u))$.

E est alors la somme de sous-espaces stables par u.

Diagonalisation

Définition

- Un endomorphisme f de E est dit diagonalisable s'il existe une base de E dans laquelle sa matrice est diagonale.
- Une matrice est dite diagonalisable si elle est semblable à une matrice diagonale.

Un endormorphisme est diagonalisable si et seulement s'il existe une base de vecteurs propres de f. Dans cette base, la matrice de f est diagonale.

Théorème: CNS de diagonalisabilité

Les assertions suivantes sont équivalentes.

- (i) u est diagonalisable
- (ii) $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}$
- (iii) $\dim(E) = \sum_{\lambda \in \operatorname{Sp}(u)} \dim(E_{\lambda})$
- (iv) χ_u est scindé et, $\forall \lambda \in \operatorname{Sp}(u)$, dim $E_{\lambda} = m(\lambda)$
- (v) il existe un polynôme scindé à racines simples annulant u.
- (vi) le polynôme minimal de *u* est scindé à racines simples.

Une matrice est diagonalisable si, et seulement si, elle est annulée par un polynôme scindé à racines simples.

Pour que u soit diagonalisable, π_u ne doit pas contenir de facteur de la forme $(X - \lambda)^{\alpha}$ avec $\alpha > 1$.

Théorème : CS de diagonalisabilité (1)

Si χ_u est scindé et n'admet que des racines simples alors u est diagonalisable.

Théorème : CS de diagonalisabilité (2)

- Tout endomorphisme symétrique d'un espace euclidien est diagonalisable à l'aide d'une base orthonormale de vecteurs propres.
- Toute matrice symétrique réelle est diagonalisable au moyen d'une matrice orthogonale.

Plan de diagonalisation (à l'aide de χ_u):

- Étude de la diagonalisabilité de u.
 - On détermine χ_u .
 - Si χ_u n'est pas scindé, u n'est pas diagonalisable.
 - Si χ_u est scindé, on compare dim E_{λ} et $m(\lambda)$.
- Diagonalisation de u lorsque c'est possible. On détermine une base de E_{λ} pour tout $\lambda \in \operatorname{Sp}(u)$ en résolvant $u(x) = \lambda x$ et on concatène les bases obtenues.

Corollaire

Si u est diagonalisable, alors pour tout sous-espace vectoriel F non réduit à $\{0_E\}$ et stable par u, l'endomorphisme induit par u sur F est diagonalisable.

Trigonalisation

- Définition : Trigonalisabilité —

- Un endomorphisme u de E est dit trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure.
- Une matrice est dite trigonalisable si elle est semblable à une matrice triangulaire supérieure.

© Mickaël PROST Année 2022/2023

Théorème: CNS de trigonalisablité

Les assertions suivantes sont équivalentes.

- (i) u est trigonalisable.
- (ii) son polynôme caractéristique est scindé.
- (iii) son polynôme minimal est scindé
- (iv) *u* est annulé par un polynôme scindé.

Toute matrice est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$. $T = P^{-1}MP$ avec T une matrice triangulaire supérieure dont la diagonale est constituée par les valeurs propres de M.

Lorsque n=2 ou n=3, on cherchera généralement T sous la forme :

$$\begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_2 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} \lambda_1 & \times & \times \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Si $\chi_u = (X - \lambda_1)^{m_1} \times \cdots \times (X - \lambda_r)^{m_r}$, où $\lambda_1, \dots, \lambda_r$ sont les r valeurs propres distinctes de u,

$$E = \operatorname{Ker}((u - \lambda_1 \operatorname{id}_E)^{m_1}) \oplus \cdots \oplus \operatorname{Ker}((u - \lambda_r \operatorname{id}_E)^{m_r})$$

- Définition : Sous-espace caractéristique -

On appelle sous-espace caractéristique de u associé à la valeur propre λ le sous-espace $\operatorname{Ker}((u-\lambda \operatorname{id}_E)^m)$ où $m=m(\lambda)$.

En notant d est l'ordre de multiplicité de λ en tant que racine du polynôme minimal $(d \le m)$,

$$\operatorname{Ker}((u - \lambda \operatorname{id}_E)^m) = \operatorname{Ker}((u - \lambda \operatorname{id}_E)^d)$$

De plus, dim Ker $((u - \lambda id_E)^m) = m$.

Théorème

Soit $M \in \mathcal{M}_n(\mathbb{K})$. S'il existe un polynôme scindé annulant M, alors M est semblable à une matrice de la forme :

$$\begin{bmatrix} T_1 & & & \\ & \ddots & & \\ & & T_r \end{bmatrix} \quad \text{avec} \quad T_i = \begin{bmatrix} \lambda_i & & \\ & \lambda_i \end{bmatrix}$$

Si M est annulée par un polynôme scindé, M est semblable à une matrice de la forme D+N où D est diagonale, N est nilpotente et DN=ND.