MATEMATIKA DISKRIT (Tugas Individu)

Disusun Oleh:

Prames Ray Lapian - 140810210059

PROGRAM STUDI S-1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN JATINANGOR

2022

42. Kami membuktikannya dengan induksi daya i . Biarkan w menjadi string apa pun. Untuk i=0

$$(w^R)^0 = \epsilon$$

 $(w^0)^R = \epsilon^R = \epsilon$

Maka hasil berlaku untuk i = 0.

untuk i = k.

buktikan

untuk i=k+1

$$(w^R)^{k+1}$$
 = $(w^R)^k w^R$
= $(w^k)^R w^R$
= $(w^k)^R$
= $(w^{k+1})^R$

Hasil berlaku untuk i=k+1.

Hasil: (wR) i=(wi) R

47.

A. Partisi bilangan bulat n adalah cara untuk menulis n sebagai jumlah bilangan bulat positif. Urutan bilangan bulat dalam jumlah tidak masalah.

P_{m,n}= banyaknya cara yang berbeda untuk menyatakan m.

 $P_{m,n}$ = banyaknya cara berbeda untuk menyatakan m sebagai jumlah bilangan bulat positif yang kurang dari atau sama dengan n. Untuk membuktikan : $P\{m,m\}=P\{m\}$

Jika salah satu bilangan bulat positif dalam jumlah melebihi m, maka jumlah bilangan bulat positif juga harus melebihi m dan dengan demikian semua cara untuk menyatakan m sebagai jumlah bilangan bulat positif hanya perlu menyertakan bilangan bulat positif yang paling banyak m.

$$P_{m,m}=P_{m}$$

B. Menggunakan induksi struktural.

Langkah dasar : $P_{1,n}$ menyatakan banyaknya cara untuk menyatakan 1 sebagai jumlah bilangan bulat positif yang kurang dari atau sama dengan n. $P_{m,1}$ menyatakan banyaknya cara untuk menyatakan m sebagai jumlah bilangan bulat positif yang kurang dari atau sama dengan 1. Atau setara dengan banyaknya cara untuk menyatakan m sebagai jumlah dari 1's. Namun, m hanya dapat dinyatakan dalam 1 cara sebagai jumlah dari 1's"m=1+1+...+1". $P_{m,1}=1$

Langkah induktif

Mempertimbangkan $P_{m,n}$ dengan m<n. $P_{m,n}$ kemudian mewakili banyak cara untuk menyatakan m sebagai jumlah bilangan bulat positif dari paling banyak n. Jika salah satu bilangan bulat positif dalam jumlah melebihi m , maka jumlah bilangan bulat positif juga harus melebihi m dan dengan demikian semua cara untuk menyatakan m sebagai jumlah

bilangan bulat positif hanya perlu menyertakan bilangan bulat positif yang paling banyak m. $P_{m,n}=P_{m,m}$ kapanpun m<n

Mempertimbangkan $P_{m,n}$ dengan m1. Pm,n kemudian menyatakan banyak cara untuk menyatakan m sebagai jumlah bilangan bulat positif dari paling banyak m . Ada tepat satu cara untuk menyatakan m sebagai jumlah termasuk m (yaitu, " m") dan ada $P_{m,m-1}$ cara untuk menyatakan m sebagai jumlah bilangan bulat positif paling banyak m-1. $P_{m,n}=1+P_{m,m}=1$ kapanpun m=n>1

Mempertimbangkan $P_{m,n}$ dengan m>n>1. $P_{m,n}$ kemudian menyatakan banyak cara untuk menyatakan m sebagai jumlah bilangan bulat positif dari paling banyak n. Kami memiliki dua pilihan: salah satu istilah dalam jumlah adalah n atau salah satu istilah dalam jumlah bukan n.

Jika salah satu suku dalam jumlah tersebut adalah n, maka suku-suku lain dalam jumlah tersebut harus dijumlahkan menjadi m-n (sehingga m-n+n=m) sedangkan suku-suku dalam jumlah tersebut adalah bilangan bulat paling banyak n dan dengan demikian ada P_{m-n} , n cara seperti itu. Jika salah satu suku dalam jumlah tersebut bukan n, maka suku-suku dalam jumlah ini adalah semua bilangan bulat paling banyak n-1 sementara mereka masih perlu menjumlahkan hingga m dan dengan demikian ada $P_{m,n-1}$ cara seperti itu.

 $P_{m,n}=P_{m-n,n}+P_{m,n-1}$ kapanpun m>n>1

C.

```
P5 = P5,5
                                                     m = n
   = 1 + P5.4
                                                     m > n
   = 1 + P5,3 + P1,4
                                                     m > n
   = 1 + P5.2 + P2.3 + P1.4
                                                     m > n
   = 1 + P5,1 + P3,2 + P2,3 + P1,4
                                                     n = 1
   = 1 + 1 + P3,2 + P2,3 + P1,4
                                                     m > n
   = 1 + 1 + P3,1 + P1,2 + P2,3 + P1,4
                                                     m = n
   = 1 + 1 + 1 + P1,2 + P2,3 + P1,4
                                                     n = 1
   = 1 + 1 + 1 + P1,1 + P2,2 + P1,4
                                                     m < n
   = 1 + 1 + 1 + 1 + P2,3 + 1
                                                     m = 1
   = 1 + 1 + 1 + 1 + P2,2 + 1
                                                     m < n
   = 1 + 1 + 1 + 1 + 1 + P2,1 + 1
                                                     m = n
   = 1 + 1 + 1 + 1 + 1 + 1 + 1
                                                     n = 1
   = 7
```

```
P6 = P6.6
                                                     m = n
   = 1 + P6,5
                                                     m > n
   = 1 + P6,4 + P1,5
                                                     m > n
   = 1 + P6,3 + P2,4 + P1,5
                                                     m > n
   = 1 + P6,2 + P3,3 + P2,4 + P1,5
                                                     m > n
   = 1 + P6,1 + P4,2 + P3,3 + P2,4 + P1,5
                                                     m > n
   = 1 + 1 + P4,2 + P3,3 + P2,4 + P1,5
                                                     m = 1
   = 2 + P4,1 + P2,2 + P3,3 + P2,4 + P1,5
                                                     m > n
   = 2 + 1 + P2.2 + P3.3 + P2.4 + P1.5
                                                     n = 1
```

```
= 3 + 1 + P2,1 + P3,3 + P2,4 + P1,5
                                                  m = n
= 4 + 1 + P3,3 + P2,4 + P1,5
                                                  n = 1
= 5 + 1 + P3,2 + P2,4 + P1,5
                                                  m = n
= 6 + P3,1 + P1,2 + P2,4 + P1,5
                                                  m > n
= 6 + 1 + P1,2 + P2,4 + P1,5
                                                  n = 1
= 7 + 1 + P2,2 + 1
                                                  m = 1
= 9 + 1 + P2,1
                                                  m = n
= 10 + 1
                                                  n = 1
= 11
```

46.

- A. 9 perbandingan
- B. 5 perbandingan
- C. 8 perbandingan

48.

A.
$$A(1,0) = 0$$

 $N = 0$
B. $A(0,1) = 2(1)$
 $= 2$
 $M = 0$
C. $A(1,1) = 2$
 $N = 1$
D. $A(2,2) = A(1,A(2,1))$
 $= A(1,2)$
 $= A(0,A(1,1))$
 $= 2A(1,1)$

51.

A.
$$A(2,3)$$
 = $A(1,A(2,2))$
= $2A(2,2)$
= $2A(1,A(2,1))$
= $2A(1,2)$
= 24
= 16

= 2 . 2 = 4

B.
$$A(3,3)$$
 = $A(2,A(3,2))$
= $A(2,A(2,A(3,1)))$
= $A(2,A(2,2))$
= $A(2,A(1,A(2,1)))$
= $A(2,A(1,2))$
= $A(2,22)$
= $A(2,4)$

= A(1,A(2,3))

= A(1,16)= 2^{16}

= 65536