Natural and Artificial Cognition Lab Orazio Miglino University of Naples Federico II

Una guida step-by-step

PCA CON PYTHON

Con il supporto di Numpy

Numpy

🔀 Cos'è numpy? 🔀

NumPy (Numerical Python) è una libreria fondamentale per la programmazione scientifica in linguaggio Python.

Contiene funzioni e moduli per affrontare una vasta gamma di operazioni matematiche.

Un modulo è un file contenente definizioni di funzioni e istruzioni Python.

Esempi di moduli NumPy

numpy.random

Contiene funzioni per la generazione di numeri casuali

numpy.linalg

Contiene funzioni per l'algebra lineare, come calcolo di determinanti, calcolo di autovalori e autovettori, e molte altre.

3/20

NumPy array object

Caratteristiche

Struttura di dati base fornita da NumPy

02 n-dimensionale

Istituito da 03 funzioni di NumPy

Creazione di array

🎮 Esempio 1


```
1 \text{ array} = \text{np.array}([1, 4, 2, 5, 3])
2 print(array)
```

array([1, 4, 2, 5, 3])

Esempio 2


```
1 \text{ lista} = [1,2,3,4]
2 array = np.array(lista)
3 print(array)
```

[1 2 3 4]

🞮 Esempio 3

1 random_array = np.random.random((2, 3)) 2 print(random_array)

[[0.45315979 0.93884467 0.50065782] [0.38647618 0.56890807 0.59955228]]

NumPy array object

Gli array NumPy hanno degli attributi:

Restituisce il numero di righe e di colonne dell'array.

Restituisce il tipo di dati degli elementi dell'array. Questo può essere "int", "float", ecc.

Restituisce il numero totale di elementi nell'array.

Step 0: Prima di iniziare

Importare numpy e numpy.linalg

- 1 import numpy as np
- 2 from numpy import linalg

7/20

Step 1: Importare il dataset

150 istanze di Iris classificate secondo tre specie: Iris setosa, Iris virginica e Iris versicolor. Le 4 variabili considerate sono la lunghezza e la larghezza del sepalo e del petalo.

2 iris = load_iris()

3 X = iris.data

8/20

Step 2: Centrare i dati

np.mean


```
1 X_{mean} = np.mean(X)
```


Step 3: Calcolare la matrice di covarianza

np.cov

1 cov_matrix = np.cov(X_centered, rowvar=False)

rowvar = False

Permette di calcolare la covarianza tra le quattro dimensioni del dataset, che sono disposte in colonna

Step 4: Autovalori e autovettori


```
np.linalg.eig
```

- 1 eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
- La funzione restituisce 2 array:
 - l'array degli autovalori (4,)
 - l'array degli autovettori (4, 4)

Step 5: Ordinare gli autovettori

Dobbiamo ordinare gli autovettori in ordine decrescente in base al loro autovalore corrispondente

np.argsort

Ordina gli indici di un array

- 0
- 1 sorted_eigenvalues_indexes = np.argsort(eigenvalues)[::-1]
- X.
- [::-1]

Impone che gli indici siano disposti in base all'ordine decrescente degli autovalori

0

1 sorted_eigenvectors = eigenvectors[:, sorted_eigenvalues_indexes]

Step 6: Selezionare gli autovettori

Osservare gli autovalori e scegliere quanti preservarne

autovalori: [4.22824171 0.24267075 0.0782095 0.02383509]

Step 7: Calcolare le PC

np.dot

1 pc = np.dot(X_centered, selected_eigenvectors)

Le componenti principali si ottengono attraverso il prodotto scalare tra la matrice dei dati centrati e gli autovettori selezionati

Otteniamo come output una matrice con tanti vettori quanti sono le PC

Step 8: Proiezione dei dati

np.dot

1 projected_data = np.dot(pc, selected_eigenvectors.T)

Calcoliamo il prodotto tra le componenti principali e la trasposta della matrice degli autovettori

Nel prodotto matriciale, il numero di colonne della prima matrice deve essere uguale al numero di righe della seconda matrice)

Plot dati

matplotlib.pyplot

Collezione di funzioni per la visualizzazione dei dati

- 1 import matplotlib.pyplot as plt
 2 plt.scatter(X_centered[:,0], X_centered[:,1])
 3 plt.xlabel('lunghezza del sepalo')
 4 plt.ylabel('larghezza del sepalo')
- 🜠 plt.scatter

Permette di visualizzare la relazione tra due variabili

Permettono di dare un nome alle ascisse e alle ordinate

Plot dati

```
1 plt.figure() #serve a separare le due immagini
2 plt.scatter(projected_data[:,0], projected_data[:,1])
3 plt.xlabel('lunghezza del sepalo')
4 plt.ylabel('larghezza del sepalo')
```

Visualizziamo la stessa relazione di prima ma con i dati proiettati nel sottospazio delle componenti principali

Step 9: Varianza spiegata

np.sum

Somma di tutti autovalori

Somma degli autovalori corrispondenti agli autovettori selezionati

1 total_variance = np.sum(eigenvalues)

Step 9: Varianza spiegata

- 1 explained_variance = sum_selected_eigenvalues/total_variance
 2 print('varianza spiegata: ', explained_variance)
- varianza spiegata: 0.9776852063187949

Rapporto tra la somma degli autovalori selezionati e la varianza totale, data dalla somma di tutti gli autovalori

