LLM-Supported Natural Language to Bash Translation

Finnian Westenfelder^{1,2}, Erik Hemberg¹, Miguel Tulla¹, Stephen Moskal¹, Una-May O'Reilly¹, Silviu Chiricescu³

¹ALFA Group MIT-CSAIL, ²Draper Scholar, ³Charles Stark Draper Laboratory

Motivation

- Bash is the default Linux command line interface
- Bash commands are complex and difficult to memorize
- Incorrect commands can cause system failures

https://xkcd.com/1168/

Motivation

- The translation capabilities of Large Language Models (LLMs) can simplify command line interfaces
- Current LLMs are unreliable for translating natural language to Bash commands (NL2SH)
- Improving NL2SH requires
 - (1) clean data
 - (2) reliable benchmarks
 - (3) accurate translation methods

Input: Natural Language
List files in the /workspace directory that

were accessed over an hour ago.

Output: Bash Command

find /workspace -type f -amin +60

Dataset Overview

Goal:

Given		Determine
Natural Language	\mathbf{Bash}	Correct
print the system disk usage	df -h	True
remove a directory named foo	rm foo	False
print the current user's id	id -u	True

- Challenge: Datasets contain invalid translations.
- Research Question: How can we validate NL2SH datasets to ensure models are evaluated using accurate assessments?

Errors in the InterCode Dataset by Type

Relationships between NL2SH datasets.

Dataset Findings

- Research Question: How can we validate NL2SH datasets to ensure models are evaluated using accurate assessments?
- Result: Manual verification of test data improves benchmark reliability. Cleaning and increasing training data improves inweight learning.
- Contribution: We clean and increase the size of NL2SH test and training datasets by over 4x and 2x, respectively.

Benchmark Overview

Goal:

Given			Determine
Natural Language	GT Command	Model Output	Equivalent
print the system boot time	who -b	uptime -s	True
delete bin\ in the current dir	rm -r ./bin	rm -r /bin	False
list all groups on the system	getent group	cat /etc/group	True

- Challenge: Benchmarks cannot determine the functional equivalence of Bash commands.
- Research Question: How can we design a functional equivalence heuristic that accurately measures the quality of model translations?

NL2SH Translation

Diagram Key

Natural Language Prompt: Display the current time

|NL2SH | NL2SH Model: Fine-tuned LLaMa3.1-8b-Instruct

NL2SH Model Command: timedatectl | grep "Local time"

NL2SH Model Command Output: 2024-06-27 14:18:48

Ground Truth Command: date +"%H:%M:%S"

Ground Truth Command Output: 14:18:48

Conventional Evaluation: BLEU, Edit, TF-IDF

Command Execution Environment: Docker Container

Language Model Evaluation: OpenAl's GPT-4

NL2SH Model Benchmarking Methods

Conventional Evaluation (Agarwal et al.)

Language Model Evaluation (Song et al.)

Command Execution + Conventional Evaluation (Yang et al.)

Command Execution + Language Model Evaluation (Ours)

Functional Equivalence Heuristic (FEH) Runtime vs. Accuracy

Benchmark Findings

- Research Question: How can we design a functional equivalence heuristic that accurately measures the quality of model translations?
- Result: Command execution with language model evaluation of command outputs outperforms previous benchmarking methods.
- Contribution: We present a state-of-the-art method for determining the functional equivalence of Bash commands.

Translation Method Overview

Goal:

Given	Determine	
Natural Language	Bash Command	
List files in /workspace accessed over an hour ago	find /workspace -type f -amin +60	
base64 decode aGVsbG8	echo 'aGVsbG8=' openssl enc -base64 -d	
Sort and print only group names from /etc/group	cut -d: -f1 /etc/group sort	

- Challenge: LLMs have poor NL2SH performance.
- Research Question: How can we improve the NL2SH performance of LLMs as measured by a reliable benchmark?

NAACL 2025 13

Impact of Parsing on Model Accuracy

Impact of In-Context Learning (ICL) on Model Accuracy

Translation Method Findings

- Research Question: How can we improve the accuracy of NL2SH models as measured by a reliable benchmark?
- Result: Parsing, in-context learning, in-weight learning and constrained decoding can improve NL2SH accuracy by up to 32%.
- Contribution: We demonstrate methods for improving the NL2SH performance of open and closed-source LLMs.

NAACL 2025 16

Conclusion

- Clean datasets are necessary for model training and evaluation
- Bash command execution paired with language model evaluation of command outputs can determine functional equivalence
- Parsing and in-context learning improve NL2SH performance
- NL2SH remains a difficult task and model outputs should be verified before they are used in real-world applications

Future Work

- Automate methods for dataset verification
- Evaluate the correctness of synthetic training data
- Increase speed and scalability of execution-based benchmarking
- Apply execution+LLM benchmarking to other translation tasks
- Evaluate the translation and functional equivalence capabilities of reasoning models
- Evaluate methods for increasing translation speed

NAACL 2025 18

Thank You!

