MAT – 450: Advanced Linear Algebra Solution 1

Thomas R. Cameron

1/27/2018

Other Problems

Problem 1. Let V be a vector space over a field F.

Theorem 1. The zero vector and additive inverse are unique.

Proof. Suppose there exists two zero vectors 0 and 0'. Then, by [1, VS 3], for all $x \in V$ we have

$$x + 0 = x + 0'.$$

It follows from [1, VS 1] that 0' = 0' + 0 = 0 + 0' = 0. Therefore, 0' = 0 and it follows that the zero vector is unique. Throughout this course we will denote the zero vector by 0.

Similarly, let $x \in V$ and suppose there exists two additive inverses y and y'. Then, by [1, VS 4], we have

$$x + y = 0$$
 and $x + y' = 0$.

It follows from [1, VS 1 and VS 2] that

$$y = y + 0 = y + (x + y') = (y + x) + y' = 0 + y' = y' + 0 = y'.$$

Therefore, y' = y and it follows that the additive inverse is unique. Throughout this course we will denote the additive inverse by -x.

Theorem 2. For $0 \in F$, we have 0x = 0 (zero vector) for all $x \in V$.

Proof. Let $x \in V$. It follows from [1, VS 8] that x + 0x = (1 + 0)x = x. So, by [1, VS 3] and Theorem 1, it follows that 0x = 0 (zero vector).

Theorem 3. For $(-1) \in F$, we have (-1)x = -x (additive inverse) for all $x \in V$.

Proof. Let $x \in V$. It follows from [1, VS 8] that x + (-1)x = (1-1)x = 0x. Therefore, by [1, VS 4] and Theorem 2, it follows that (-1)x = -x (additive inverse).

Problem 2. Let $P_n(\mathbb{R})$ denote the vector space of polynomials of degree n over the field \mathbb{R} . Let S denote the set of polynomials that are zero at $t_1, \ldots, t_j \in \mathbb{R}$, where $j \leq n$.

Theorem 4. The set S is a subspace of $P_n(\mathbb{R})$.

Proof. Let $x, y \in P_n(\mathbb{R})$ and $\alpha \in \mathbb{R}$. Then, $x(\lambda) = \hat{x}(\lambda)(\lambda - t_1) \cdots (\lambda - t_j)$ and $y(\lambda) = \hat{y}(\lambda)(\lambda - t_1) \cdots (\lambda - t_j)$, where $\hat{x}, \hat{y} \in P_{(n-j)}(\mathbb{R})$ and λ is a variable. Note that

$$x(\lambda) + y(\lambda) = (\hat{x}(\lambda) + \hat{y}(\lambda))(\lambda - t_1) \cdots (\lambda - t_j) \in S$$

and

$$\alpha x(\lambda) = \alpha \hat{x}(\lambda)(\lambda - t_1) \cdots (\lambda - t_j) \in S.$$

It follows that S is closed under addition of vectors and scalar multiplication, and is therefore a subspace of $P_n(\mathbb{R})$.

Since each element of S can be represented by $\hat{x}(\lambda)(\lambda-t_1)\cdots(\lambda-t_j)$, where $\hat{x}\in P_{(n-j)}(\mathbb{R})$, it follows that $\dim S=\dim P_{(n-j)}(\mathbb{R})=(n-j)+1$. Furthermore, as a corollary of [1, §1.6: Problem 35], we know that $\dim P_n(\mathbb{R})/S=\dim P_n(\mathbb{R})-\dim S=j$.

Problem 3. Let X be a finite-dimensional vector space, and let U and V be two subspaces of X such that X = U + V.

Theorem 5. Denote by W the intersection of U and V. Then

$$\dim X = \dim U + \dim V - \dim W.$$

Proof. Let $\{w_1, \ldots, w_k\}$ denote a basis for the subspace W. Then the intersection of U and V forms a k-dimensional subspace of X. Furthermore, we can extend this basis to form a basis $\{w_1, \ldots, w_k, u_{k+1}, \ldots, u_m\}$ for U and a basis $\{w_1, \ldots, w_k, v_{k+1}, \ldots, v_n\}$ for V.

By definition of the sum, $X = \{u + v \colon u \in U \text{ and } v \in V\}$, it follows that the set

$$S = \{w_1, \dots, w_k, u_{k+1}, \dots, u_m, w_1, \dots, w_k, v_{k+1}, \dots, v_n\}$$

spans X. Furthermore, if we remove the repeated vectors w_1, \ldots, w_k we can form a linearly independent set

$$S' = \{w_1, \dots, w_k, u_{k+1}, \dots, u_m, v_{k+1}, \dots, v_n\}.$$

Thus, S' forms a basis for X and it follows that

$$\dim X = m + n - k$$
$$= \dim U + \dim V - \dim W.$$

Problem 4. Any subset of a vector space V which is equal to $\{v\} + U$ for some vector $v \in V$ and some subspace U of V is called an *affine space* associated with the subspace U in V.

Theorem 6. Let S be a nonempty subset of a vector space V. Then, the following are equivalent:

- (i) S is an affine space in V.
- (ii) If $x, y \in S$, then $\alpha x + (1 \alpha)y \in S$ for all $\alpha \in F$.
- (iii) For any $n \in \mathbb{N}$, if $v_1, \ldots, v_n \in S$ and $\alpha_1, \ldots, \alpha_n \in F$ with $\sum_{j=1}^n \alpha_j = 1$, then $\sum_{j=1}^n \alpha_j v_j \in S$.

Proof. Assume that S is an affine space in V. Then $S = \{v\} + U$ for some $v \in V$ and for some subspace U of V. Let $v_1, \ldots, v_n \in S$ and $\alpha_1, \ldots, \alpha_n \in F$ with $\sum_{j=1}^n \alpha_j = 1$. Then $v_1 = v + u_1, \ldots, v_n = v + u_n$ for some $u_1, \ldots, u_n \in U$. Hence

$$\sum_{j=1}^{n} \alpha_{j} v_{j} = \sum_{j=1}^{n} \alpha_{j} (v + u_{j}) = v + \sum_{j=1}^{n} \alpha_{j} u_{j}.$$

Since U is a subspace of V, $u := \sum_{j=1}^{n} \alpha_{j} u_{j} \in U$. Therefore, $\sum_{j=1}^{n} \alpha_{j} v_{j} = v + u \in S$, and it follows that $(i) \implies (iii)$.

If we let n=2, then it is clear that $(iii) \Longrightarrow (ii)$. Now, suppose that (ii) holds, fix $v \in S$ and define $U=\{x-v\colon x \in S\}$. Then $S=\{v\}+U$, and to show that (i) holds it is enough to show that U is a subspace of V. To this end, let $u,u'\in U$ and $\alpha\in F$. Then, u=x-v for some $x\in S$. Since $x,v\in S$, we have $\alpha x+(1-\alpha)v\in S$. Thus

$$\alpha u = \alpha(x - v) = \alpha x + (1 - \alpha)v - v \in U.$$

Similarly, u' = x' - v for some $x' \in S$. Thus

$$u + u' = x + x' - 2v$$

= $2(\frac{x + x'}{2} - v) \in U$.

It follows that S is an affine space associated with the subspace U in V.

References

[1] S.H. Friedberg, A.H. Insel, and L.E. Spence. *Linear Algebra*. Pearson Education, Upper Saddle River, NJ, 4th edition, 2003.