Combinatorial Bandits Revisited

Richard Combes ¹, Sadegh Talebi ², Alexandre Proutière ² and Marc Lelarge ³

¹Centrale-Supélec / L2S, France ²KTH, Royal Institute of Technology, Sweden ³INRIA, France.

Nov. 2015

Combinatorial optimization

- ▶ Decisions: $\mathcal{M} \subset \{0,1\}^d$, weights $\theta \in [0,1]^d$
- ▶ Maximize $\mu(M) = M^T \theta = \sum_{i=1}^d M_i \theta_i$ over M

Combinatorial optimization ... in the bandit setting

Bandit vs Semi-bandit

Choose M(n) based on previous samples:

$$X(n) = (0, 1, 1, 0, 1, 0)$$

 $M(n) = (1, 1, 0, 0, 0, 1) \in \mathcal{M}$

Bandit vs Semi-bandit

Choose M(n) based on previous samples:

$$X(n) = (0, 1, 1, 0, 1, 0)$$
 $M(n) = (1, 1, 0, 0, 0, 1) \in \mathcal{M}$

$$\vdots$$

$$M(n)^{T}X(n) = 2$$

$$\vdots$$

$$X(n) = (0, 1, \times, \times, \times, 0)$$

$$\vdots$$

$$\vdots$$
Bandit
$$\vdots$$
Semi-Bandit

Regret

Minimize regret:

$$R^{\pi}(T) = \underbrace{\max_{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{T} X(n)\right]}_{\text{oracle}} - \underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{T} X(n)\right]}_{\text{your algorithm}}.$$

- ▶ Stochastic: X(n) i.i.d. , $\mathbb{E}[X(n)] = \theta$, $X_1(n), ..., X_d(n)$ independent.
- Adversarial: X(n) chosen beforehand by an adversary.

Application 1: Shortest path routing

Application 2: Channel Allocation

Stochastic case: prior work

How do we quantify problem size?

- ▶ Dimension $d = \dim \mathcal{M}$,
- ▶ Decision size $m = \max_{M \in \mathcal{M}} \sum_{i=1}^{d} M_i$,
- ▶ Optimality gap $\Delta = \min_{M \neq M^*} (\mu^* \mu(M))$
- Regret upper bounds:

LLR	CUCB	CUCB	ESCB
(Gai, 2012)	(Chen, 2013)	(Kveton, 2014)	(Present work)
$\mathcal{O}\left(\frac{m^3d\Delta_{\max}}{\Delta_{\min}^2}\log(T)\right)$	$\mathcal{O}\left(\frac{m^2d}{\Delta_{\min}}\log(T)\right)$	$\mathcal{O}\left(\frac{md}{\Delta_{\min}}\log(T)\right)$	$\mathcal{O}\left(\frac{\sqrt{m}d}{\Delta_{\min}}\log(T)\right)$

Optimism in the face of uncertainty

Optimism in the face of uncertainty

Analysis idea:

$$\mathbb{E}[t_M(T)] \leq \sum_{n=1}^T \mathbb{P}[b_{M^*}(n) \leq \mu^*] + \sum_{n=1}^T \mathbb{P}[M(n) = M, b_M(n) \geq \mu^*].$$

Optimism in the face of uncertainty

Analysis idea:

$$\mathbb{E}[t_M(T)] \leq \underbrace{\sum_{n=1}^T \mathbb{P}[b_{M^\star}(n) \leq \mu^*]}_{o(\log(T))} + \underbrace{\sum_{n=1}^T \mathbb{P}[M(n) = M, b_M(n) \geq \mu^*]}_{dominant \ term}.$$

Index construction

- ▶ Empirical mean $\hat{\theta}_i(n)$, number of observations: $t_i(n)$.
- ▶ Naive approach: consider each component of θ separately
- ▶ Hoeffding's inequality, w.p. $1 O(T^{-1})$:

$$\left|\hat{\theta}_i(n) - \theta_i\right| \leq \sqrt{\frac{2\log(T)}{t_i(n)}}$$

► Index:

$$b_M(n) = \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{2 \log(T)}{t_i(n)}}.$$

- ► Too conservative: we ignored independence!
- ▶ Intuition: $\operatorname{var}(\hat{\mu}_M(n)) = O(\sum_{i=1}^d \frac{M_i}{t_i(n)}).$

Index construction

- ▶ Empirical mean $\hat{\theta}_i(n)$, number of observations: $t_i(n)$.
- ▶ Naive approach: consider each component of θ separately
- ► Hoeffding's inequality, w.p. $1 O(T^{-1})$:

$$\left|\hat{\theta}_i(n) - \theta_i\right| \leq \sqrt{\frac{2\log(T)}{t_i(n)}}$$

Index:

$$b_M(n) = \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{2\log(T)}{t_i(n)}}.$$

- ► Too conservative: we ignored independence!
- ▶ Intuition: $\operatorname{var}(\hat{\mu}_M(n)) = O(\sum_{i=1}^d \frac{M_i}{t_i(n)}).$

Index construction

- ▶ Empirical mean $\hat{\theta}_i(n)$, number of observations: $t_i(n)$.
- ▶ Naive approach: consider each component of θ separately
- ► Hoeffding's inequality, w.p. $1 O(T^{-1})$:

$$\left|\hat{\theta}_i(n) - \theta_i\right| \leq \sqrt{\frac{2\log(T)}{t_i(n)}}$$

Index:

$$b_M(n) = \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{2\log(T)}{t_i(n)}}.$$

- Too conservative: we ignored independence!
- ▶ Intuition: $\operatorname{var}(\hat{\mu}_M(n)) = O(\sum_{i=1}^d \frac{M_i}{t_i(n)}).$

Confidence intervals: one dimension

Confidence intervals: multiple dimensions

Idea: concentration of empirical KL-divergence.

$$P[M^T \theta \le \max_{\lambda \in B} M^T \lambda] \ge 1 - \delta$$

$$\hat{\theta}(n)$$

$$\times$$

$$\lambda$$

$$\times$$

$$B = \{\lambda : \sum_{i} t_i(n) k l(\hat{\theta}_i, \lambda_i) \le \log(1/\delta)\}$$

Proposed algorithm: ESCB

$$b_{M}(n) = \max_{\lambda \in [0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i}$$
s.t.
$$\sum_{i=1}^{d} M_{i} t_{i}(n) k l(\hat{\theta}_{i}(n), \lambda_{i}) \leq \log(T).$$

- ▶ b_M computed by a line search (KKT conditions)
- UCB-like index:

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\sum_{i=1}^d M_i \frac{\log(T)}{2t_i(n)}}.$$

Proposed algorithm: ESCB

$$b_{M}(n) = \max_{\lambda \in [0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i}$$
s.t.
$$\sum_{i=1}^{d} M_{i} t_{i}(n) k I(\hat{\theta}_{i}(n), \lambda_{i}) \leq \log(T).$$

- b_M computed by a line search (KKT conditions)
- ▶ UCB-like index:

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\sum_{i=1}^d M_i \frac{\log(T)}{2t_i(n)}}.$$

Regret analysis

Theorem

The regret under ESCB satisfies $R(T) = \mathcal{O}\left(\frac{d\sqrt{m}\log(T)}{\Delta}\right)$

- ▶ Idea: $c_M(n) \ge b_M(n) \ge M^T \theta$ with high probability
- Crucial concentration inequality:

Lemma (Combes et al., COLT 2014)

$$\mathbb{P}\left[\max_{n\leq T} \sum_{i=1}^{d} M_{i} t_{i}(n) k l(\hat{\theta}_{i}(n), \theta_{i}) \geq \delta\right] \leq C_{m} (\log(T)\delta)^{m} e^{-\delta}$$

Proof: multi-dimensional peeling.

Regret Lower Bound

How far are we from the optimal algorithm?

▶ Uniformly good algorithm: $R^{\pi}(T) = O(\log(T))$ for all θ .

Theorem

For any uniformly good algorithm, $\liminf_{T\to\infty} \frac{R^{\pi}(T)}{\log(T)} \geq c(\theta)$, with $c(\theta)$ solution to:

$$\begin{split} &\inf_{c \in (\mathbb{R}^+)^{|\mathcal{M}|}} \sum_{M \in \mathcal{M}} c_M(\mu^* - \mu(M)) \\ &\text{s.t. } \sum_{i=1}^d k l(\theta_i, \lambda_i) \sum_{M \in \mathcal{M}} c_M M_i \geq 1 \;, \; \forall \lambda \in B(\theta). \end{split}$$

- Proof idea: Graves and Lai's LP.
- ▶ Decision M must be sampled at least $c_M \log(T)$ times.

How does $c(\theta)$ scale with d,m and Δ ?

- The LP is not explicit, we must work harder ...
- Idea: consider a covering of the suboptimal items

 \bigcirc

 \bigcirc

 \bigcirc

 M^*

 \bigcirc

 \bigcirc

 \bigcirc

- ▶ Proposition: $c(\theta) = \Omega(|\mathcal{H}|/\Delta)$
- ▶ For most problems $|\mathcal{H}| = \Omega(d m)$.

- Proposition: $c(\theta) = \Omega(|\mathcal{H}|/\Delta)$
- ► For most problems $|\mathcal{H}| = \Omega(d m)$.

- Proposition: $c(\theta) = \Omega(|\mathcal{H}|/\Delta)$
- ▶ For most problems $|\mathcal{H}| = \Omega(d m)$.

Some numerical experiments, matchings

Conclusion

- Efficient algorithms for online combinatorial optimization
- Much more in the paper: adversarial + bandit feedback
- http://arxiv.org/abs/1502.03475
- A (personal) conjecture: ESCB is asymptotically optimal

Thank you for your attention!