Bessel's Inequality

Theorem: Bessel

Let E be an inner product space and let (\vec{x}_n) be an orthonormal sequence in E. $\forall \vec{x} \in E$:

$$\sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \le ||\vec{x}||^2$$

Proof

Assume $\{\vec{x}_{n_1},\ldots,\vec{x}_{n_r}\}$ is a finite subset of (\vec{x}_n) . Let $S=\operatorname{Span}\{\vec{x}_{n_1},\ldots,\vec{x}_{n_r}\}$.

Let
$$y = \operatorname{proj}_S \vec{x} = \sum_{k=1}^r \langle \vec{x}, \vec{x}_{n_k} \rangle \vec{x}_{n_k}$$
.

$$\|\vec{x}\|^{2} = \|(\vec{x} - \vec{y}) + \vec{y}\|^{2}$$

$$= \|\vec{x} - \vec{y}\|^{2} + \|\vec{y}\|^{2}$$

$$\geq \|\vec{y}\|^{2}$$

$$= \left\|\sum_{k=1}^{r} \langle \vec{x}, \vec{x}_{n_{k}} \rangle \vec{x}_{n_{k}} \right\|^{2}$$

$$= \left\langle \sum_{k=1}^{r} \langle \vec{x}, \vec{x}_{n_{k}} \rangle \vec{x}_{n_{k}}, \sum_{j=1}^{r} \langle \vec{x}, \vec{x}_{n_{j}} \rangle \vec{x}_{n_{j}} \right\rangle$$

$$= \sum_{k=1}^{r} |\langle \vec{x}, \vec{x}_{n_{k}} \rangle|^{2}$$

Now, let $r \to \infty$.

$$\therefore \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \le ||\vec{x}||^2$$

Corollary

Let E be an inner product space and let (\vec{x}_n) be an orthonormal sequence in E. $\forall \vec{x} \in E$: $(\langle \vec{x}, \vec{x}_n \rangle)$ is a sequence in ℓ^2 .

Proof

$$\sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \le ||\vec{x}||^2 < \infty$$

Therefore, by definition, $(\langle \vec{x}, \vec{x}_n \rangle)$ is in ℓ^2 .

Corollary

Let E be an inner product space and let (\vec{x}_n) be an orthonormal sequence in E:

$$\vec{x} \xrightarrow{w} \vec{0}$$

Proof

Assume $\vec{x} \in E$.

Assume
$$x \in E$$
. $(\langle \vec{x}, \vec{x}_n \rangle)$ is a sequence in ℓ^2 . And so $\langle \vec{x}, \vec{x}_n \rangle \to 0 = \left\langle \vec{x}, \vec{0} \right\rangle$.

$$\therefore \vec{x} \stackrel{w}{\longrightarrow} \vec{0}$$

But note that for an orthonormal sequence (\vec{x}_n) , $\vec{x}_n \not \to \vec{0}$:

$$\left\| \vec{x}_n - \vec{0} \right\| = \left\| \vec{x}_n \right\| = 1 \not\to 0$$