5 ДЗ по сетям

Мовсин Марат 19.Б05-МКН

12 марта 2022

2. При одноранговой раздаче время равно $\max\left(\frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \sum u_i}\right)$ При клиент-серверной раздаче время равно $\max\left(\frac{NF}{u_s}, \frac{F}{d_min}\right)$ Все графики есть в репозитории.

3.

- а) Если сервер делит скорость равномерно, то каждый получает со скоростью $\frac{u_s}{N}$ (скорость передачи меньше, поэтому скорость приёма неважна). А значит время раздачи $\frac{NF}{u_s}$ б) Если сервер делит скорость равномерно, то каждый получает со скоростью d_{min} (скорость приёма
- б) Если сервер делит скорость равномерно, то каждый получает со скоростью d_{min} (скорость приёма меньше, поэтому скорость передачи неважна). А значит время раздачи равно максимальному времени приёма, то есть $\frac{F}{d}$
- то есть $\frac{F}{d_{min}}$ в) В пункте а быстрее чем в примере не получится, так как минимальная скорость передачи не превосходит средней, то есть $\frac{u_s}{N}$. В пункте б быстрее чем в примере не получится, так как самый медленный клиент не сможет принять быстрее, чем за $\frac{F}{d_{min}}$. Заметим, что $\frac{NF}{u_s} > \frac{F}{d_m in} \iff \frac{u_s}{N} < d_m in$. Значит, если $\frac{NF}{u_s} > \frac{F}{d_m in}$, то это случай из пункта а и минимальное время $\frac{NF}{u_s}$, а иначе это случай б и минимальное время раздачи $\frac{F}{d_{min}}$. Таким образом, ответ действительно максимум из этих двух величин.