

Árbol

Un **árbol** es un modelo abstracto de una estructura jerárquica, impuesta por existencia de un camino único entre cualquier nodo a la raíz.

En esta estructura, la raíz se encuentra en lo más alto del árbol y los otros nodos están organizados en niveles, de acuerdo con su distancia hasta la raiz.

Definition

Formalmente un **árbol libre** es un grafo no-orientado, conexo y sin ciclos denotado por T = (V, E), donde V es un conjunto de nodos y E es un conjunto de arcos o aristas.

Árborescencia

Si se permite que un nodo $u \in V$ sea distinguido como la **raíz** de T, entonces se puede decir que T es una **arborescencia**, definida por la tripleta T = (V, E, r), donde :

- E describe la relación binaria de parentesco entre los nodos de T, es decir, cada arista (u, v) ∈ E es una relación (padre, hijo),
- La raiz no tiene un padre, es decir, $\not\exists (u,r) \in E$ tal que $u,r \in V$,
- Cada nodo $u \in V \setminus \{r\}$ tiene un padre único, y
- Sólo existe un camino único $[r, \ldots, v]$ para todo $v \in V$.

Árbol vs Árborescencia

Fig. 2.2 – Arbre libre

Fig. 2.3 – Arborescence

La raíz r de un árbol T es denotada por root(T).

Propiedades de lo árboles

Dado un árbol T de k nodos (diremos que es un k-árbol o un árbol sobre [k]) su tamaño es determinado por |T| = |V|, igualmente escrito como size(T) = |V|.

Si un camino [r, ..., u], de la raíz a un nodo $u \in V$, está formado por k arcos, entonces la *profundidad* de u es igual a k y es denotada por depth(u) = k.

La profundidad de un árbol T está determinada por la máxima profundidad de sus hojas. Formalmente, $depth(T) = max\{depth(u)|u \in V\}$.

Relaciones de parentesco

Dado un árbol T = (V, E, r), se pueden definir las siguientes relaciones en función de un camino único $[r, \ldots, u]$, para todo $u \in V$:

- El padre de un nodo $u \in V \setminus \{r\}$, denotado por parent(u), es el nodo adyacente a u en el camino $[r, \ldots, u]$ tal que $parent(u) = \{v \in V | (v, u) \in E\}$. El padre de la raíz es indefinido, por lo tanto $parent(r) = \emptyset$.
- Si para una arista (v, u) ∈ E, decimos que v es el padre de u, entonces u es el hijo de v. El conjunto de hijos de un nodo v ∈ V es definido por children(v) = {u ∈ V | (v, u) ∈ E}. Si children(u) = ∅ entonces el nodo u es llamado una hoja, de lo contrario es referido como un nodo interno.

Relaciones ancestrales

• Las relaciones ancestrales de un árbol T son codificadas por la clausura transitiva E^+ de sus aristas :

```
E^{0} = \{(u,u)|u \in V\},\
E^{n+1} = \{(u,w)|\exists v \in V \text{ tal que } (u,v) \in E \land (v,w) \in E^{n}\}, \text{ para } n \geq 0,\
E^{\leq i} = \cup_{n>0}^{i} E^{n},\
E^{+} = \cup_{n>0} E^{n}
```

Los *ancestros* de un nodo $u \in V \setminus \{r\}$, son todos los nodos del camino $[r, \ldots, u]$ excepto u. El conjunto de ancestros de u está definido por la función $ancestors(u) = \{v \in V | (v, u) \in E^+\}$.

Si v es un ancestro de u, entonces decimos que u es un descendiente de v.
 El conjunto de descendientes de v está definido por la función descendants(v) = {u ∈ V | (v, u) ∈ E⁺}.

Relaciones de orden

Decimos que un árbol es *ordenado* si se establece una relación de orden parcial \leq entre los hijos de un nodo $u \in V$ tal que ellos puedan ser ordenados del *primero* al *último* de los hijos.

Dicho de otra forma, existe un orden relativo \preceq entre los subárboles $T_1,...,T_n$ que componen a un árbol T. Considerando esta relación de orden, un árbol ordenado es definido por $T=(V,E,r,\preceq)$.

Relaciones de hermandad

Dado un árbol ordenado $T=(V,E,r,\preceq)$, los nodos $w\in V$ y $u,v,y\in V\setminus \{r\}$, y las relaciones de parentesco $(w,u),(w,v),(w,y)\in E$, es posible definir las funciones siguientes para establecer una distinción entre los hijos de w:

- Los nodos u, v ∈ V \ {r} sont hermanos si parent(u) = parent(v). El conjunto de hermanos de un nodo, es definido por siblings(u) = {v ∈ V | parent(u) = parent(v)}.
- El hijo de más a la izquierda de w está definido por first(w) = {u| ∄v, (w, v) ∈ E ∧ v ≤ u}.
- El hijo de *más a la derecha* de *w* esta definido por $last(w) = \{v | \not \exists u, (w, u) \in E \land v \leq u\}.$

Relaciones de hermandad . . .

- El hermano siguiente de u, está definido next(u) = {v|(w,v) ∈ E ∧ u ≤ v∧ ∄y tal que (w,y) ∈ E ∧ u ≤ y ≤ v}.
- El nodo u es el hermano anterior de v, denotado por previous(v), si $next(u) = \{v\}$.
- La rama más a la izquierda de T, denotada Imb(T), corresponde al camino $[v_1, v_2, \ldots, v_k]$, tal que $v_1 = r$, y $first(v_{i-1}) = \{v_i\}, \forall i, 2 \le i \le k$ y que $deg(v_k) = 1$.
- El nodo terminal v_k dentro de Imb(T) es llamado la hoja más a la izquierda y es denotada por Iml(T).

Relaciones de hermandad

- La rama más a la derecha de T, denotada por rmb(T), corresponde al camino $[v_1, v_2..., v_k]$, tal que $v_1 = r$ y que $last(v_{i-1}) = \{v_i\}, \forall i, 2 \le i \le k$ et $deg(v_k) = 1$.
- El nodo terminal v_k dentro de rmb(T) es llamado la hoja más a la derecha y es denotada por rml(T).

Étiquetas

Dado un alfabeto $\Sigma = \{a, b, c, ...\}$, se dice que un árbol es etiquetado si a cada nodo $u \in V$ le corresponde una etiqueta $I \in \Sigma$.

Es definido por $T=(V,E,r,\lambda)$ donde $\lambda:V\to\Sigma$ tal que $\lambda(u)=I$.

Arbre étiqueté T sur $\Sigma = \{a, b\}$

Representación recursiva

Un árbol puede ser definido de forma recursiva, en función de los sub-árboles que lo componen. Decimos que una árbol es un conjunto finito de nodos si:

- 1. Existe un nodo especial, llamado raíz.
- Los nodos restantes son divididos en conjuntos considerados a sí mismos como árboles.

Lo anterior permite realizar una representación de un árbol utilizando paréntesis anidados. Consideremos un árbol T con sus sub-árboles inmediatos $< T_1, T_2, \ldots, T_n > n \geq 0$ cuya etiqueta en la raiz es $\lambda(root(T)) = I$, entonces el árbol T es representado por $T = (I(T_1) \ldots (T_n))$.

El árbol de la figura anterior es representado por T = (a(b)(a(a)(b)(a)))

Recorrido de un árbol

- Un proceso para visitar los nodos en un cierto orden es llamado recorrido.
- Un recorrido que visita cada nodo de un árbol exactamente una vez, es llamado *enumeración*.
- Los nodos de los árboles pueden ser enumerados, recorriendo de forma vertical (en profundidad) u horizontal (en amplitud).
- Un primer método permite recorrer el árbol de sub-árbol en sub-árbol, mientras que un segundo método lo hace de nivel en nivel.
- Un árbol T = (V, E, r) se recorre estableciendo una biyección de orden sobre n nodos, tal que : V → {1, ..., k}, de manera que el orden para el primer nodo u sea ordre[u] = 1, para el segundo nodo v, ordre[v] = 2, y así continuando hasta el último nodo w con un orden ordre[w] = k.

Recorrido de un árbol en pre-orden

Arbre étiqueté T sur $\Sigma = \{$