

Meet our members!

Peilu Tu

Lunark Vu

Gloria Achom

Alfred Okorocha

Alondra Franco

Courtney Wright

Our data:

	Na	me
	Christii Bark	
	Jacquelii Lew	
	Shanne Chur	
	Charl Jorda	
	Income	C
	Income 26265.67	C
		c
	26265.67	c

Moderate

Moderate

31

Name Age

Habits

Moderate

Moderate

High Unhealthy

Low Unhealthy

Marital

Status

Married

Good

Poor

Education

Bachelor's

Degree

Level

Number

Children

2

Smoking

Status

Non-

Non-

smoker

smoker

No

No

No

No

No

Family

Yes

No

Yes

No

Physical

Activity

Level

Employment

Status

Employed

Employed

Chronic

Medical

Yes

Yes

No

No

Conditions

Recap: Last Week's Decision to **Use Smote**

Logistic Regression

0.70

0.00

recall

precision

Before:

on	Random Forest Classifier		
ecall	precision	recall	
1.00	0 0.74	0.67	
0.00	1 0.38	0.47	

After:

Logistic Regression			Random Forest Classifier		
	precision	recall		precision	recal
No Yes	0.63 0.63	0.63 0.63	No Yes	0.64 0.64	0.64 0.65

Our Focus Now: Random Forest Classifier

Parameters:

RandomForestClassifier(

- n_estimators=100,
- max_depth=5,
- random_state=42,
- n_jobs=-1

Feature Selection in Random Forest Classifier

Idea: remove least important features for better performance

Feature Selection in Random Forest Classifier Results

<pre>=== Random Forest (Optimized) === Test Accuracy: 0.6483 Classification Report:</pre>						
	precision	recall	f1-score	support		
0	0.72	0.81	0.76	71986		
1	0.39	0.27	0.32	31456		
accuracy			0.65	103442		
macro avg	0.55	0.54	0.54	103442		
weighted avg	0.62	0.65	0.63	103442		

 Dropped 3 least important features:

> Sleep Patterns(Good), Alcohol Consumption(High), Substance Abuse

Generating Interaction Features in Random Forest Classifier

PolynomialFeatures(degree=2. interaction_only=True, include_bias=False)

Before:

Train Accuracy: 0.6927605958593609 Test Accuracy: 0.6757494512821938						
Classification						
	precision					
0	0.66	0.73				
1	0.70	0.62				
accuracy						
macro avg	0.68	0.68				
weighted avg	0.68	0.68				

Train Accuracy: 0.8693812030191242						
Test Accuracy: 0.692949555006066						
Classification	Report for	Test Data:				
	precision	recall				
0	0.67	0.77				
1	0.73	0.61				
accuracy						
macro avg	0.70	0.69				
weighted avg	0.70	0.69				

After:

Binning Features in Random Forest Classifier

Before:

Train Accuracy: 0.6927605958593609 Test Accuracy: 0.6757494512821938 Classification Report for Test Data: precision recall 0.66 0.73 0.70 0.62 accuracy 0.68 0.68 macro avg weighted avg 0.68 0.68

After:

and the same of th		0.7268989: 0.67407551	and the second second
		Report for	
C1433111C	2011	precision	
	0	0.65	0.76
	1	0.71	0.59
accur	асу		
macro	avg	0.68	0.67
weighted	avg	0.68	0.67

Ensemble Methods: Random Forest Classifier and XGBoost

- Ensemble methods combine multiple models to improve accuracy
- Dropped three features: marital status, employment status and smoking status

Classification	Report:			
	precision	recall	f1-score	support
				C260C
0	0.71	0.84	0.77	71986
1	0.37	0.22	0.28	31456
accuracy			0.65	103442
macro avg	0.54	0.53	0.52	103442
weighted avg	0.61	0.65	0.62	103442

Summary

- Random Forest Classifier is our best model
- SMOTE balanced our precision and recall
- Feature Selection improved our model
- Generating Interaction Features improved our model but caused overfitting
- Ensemble methods also caused overfitting

Timeline...for now

Week 2 (Jan 20–Jan 26): Model Development:

- Train three classification models
- Evaluate initial performance and address issues (e.g., class imbalance)

Week 3 (Jan 27-Feb 2): Refinement:

 Compare models based on metrics like accuracy, precision, recall, and F1-score

Week 4 (Feb 3–Feb 9): More refinement:

- Attempt improvement techniques like feature selection, interaction features, hyperparameter tuning, ensemble methods
- Mitigate overfitting of models
- Try XGBoost and compare results

Week 5 (Feb 10–Feb 16): Interpretation:

- Visualize results (e.g., feature importance, confusion matrices).
- Draft conclusions about which model is best and why.

We thank you for your eyeballs

Any question?

https://linktr.ee/mayihave amediumespresso

