

1)Data structure কাকে বলে? Data Structure এর প্রকারভেদ

উদাহরন সহ লিখ

Logical and mathematical model কে Data Structure বলে।

Classification of Data Structure: ২ প্রকার-

(i)Primitive DS(Built-in DS):

Integer, Float, Character, Double, Pointer, Boolean

(ii)Non-primitive DS(User Defined (DS): ২ প্রকার-(a)Linear DS:

-Static DS: Examples: Array

-Dynamic DS: Example: Stack, Queue, Linked list (b)Non-Linear DS: Example: Tree, Graph, Set, Table

2)Data Structure এর প্রয়োজনীয়তা লিখ।

Processor speed, Data search, Multiple request

3)Data Structure এর সুবিধাগুলো লিখ l

Efficiency, Reusability, Abstraction

4)Linear Data structure / Data Structure এর Basic operation লিখ

(i)Insertion (ii) Deletion (iii) Sorting(iv) Searching (v) Traversing (vi) Merging

3)Algorithm কাকে বলে? Algorithm এর বৈশিষ্ট্য লিখ |

An Algorithm is a finite set of instructions or logic written in order, to accomplish a certain predefined task.

Properties: (i) Input (ii) Output (iii) Definiteness (iv) Finiteness (v) Correctness

4)Algorithm Performance কিসের উপর নিভর করে ?

Time Complexity: The amount of time needed by a program to run to the completion

Space Complexity: The amount of memory space required by an algorithm, during a course of its execution.

Array

1)Array কাকে বলে? সুবিধা ও অসুবিধাগুলো লিখ।

Array is a group of elements(data). All the elements are similar. It has contiguous memory location.

সুবিধা: (i) Easy to traverse (ii) Code optimization

(iii) Easy to sort data (iv) Random access

অসুবিধা: (i)Insertion and deletion কঠিন। (ii)Time consuming (iii) যেহেতু Array sized fixe সেহেতু Run time এ Memory অপচয় হওয়ার সম্ভাবনা থাকে। (iii)Run time এ

2)Array প্রকারভেদঃ (i) One dimensional (1-D)

মেমরি কমানো ও বাডানো যায়না।

(ii)Two dimensional(2-D) (iii)Multi-dimensional

3)One dimensional Array Linear array কে represent দেখা? int Student[5];

Addresses
1008 1006 1004 1002 1000
4 3 2 1 0

Index ←

- ->প্রথম index এর address কে Base Address বলে। 1000 হচ্ছে Base Address (BA)।
- ->First index কে upper bound (UB) বলে। UB=0
- ->Last index (ক Lower bound (LB) বলে। LB=4
- ->Array এর প্রতি c<mark>ell</mark> বা index এ যত বাইট জায়গা দখল করে তাকে word size(w) বলে।

Linear array length বা(Number of elements)বের করার সুত্রঃ length =UB-LB+1

Linear arrayএর indexএর address বের করার সূত্রঃ

LA[index]=BA+W(index-LB)

4)Apple company 2007 সাল থেকে 2020 পর্যন্ত প্রত্যেক সালের বিক্রিত iphone সংখ্যার Record Data array তে reserve আছে

উক্ত Array element সংখ্যা কত? Solution: Length=UB-LB+1 = 2020-2007+1= 4 (Ans)

5)মনে করো Array গুলো RRR(4:35),Student(-5:12), and Momentum(24) হলে প্রতিটি অ্যারের উপাদান সংখ্যা বা length বের করো।

Solution:

length(RRR) = UB-LB+1=35-4+1=32 (Ans) length(Student) = UB-LB+1=12-(-5)+1=18 (Ans) length(Momentum) = UB-LB+1=24-1+1=24 (Ans)

Note: যদি lower bound দেয়া না থাকলে LB=1 ধরে নিতে হবে। 5)মনে করো একটি Array Rusafa(5:50) যাহার BA=200 and word size 4 হলে Rusafa[15],Rusafa[65] এর

Address বের করো।

Solution: Rusafa[15]এর ক্ষত্রে ,

Given, LB=5,W=4, index=15

LA(Rusafa[index])=BA+W(index-LB)

LA(Rusafa[15])=200+4(15-5)=240 (Ans)

Rusafa[15] এর ক্ষেত্রে ,

Rusafa[65] হচ্ছে Rusafa array এর উপাদান নয়। সুতরাং বের করা সম্ভব নয়। কারন UB=50

6)Two dimensional array ক Memory তে Represent দেখা? int Rehan[3][3];

Rehan[0][0] Rehan[0][] Rehan[0][2		Rehan[0][2]
Rehan[1][0]	Rehan[1][1]	Rehan[1][2]
Rehan[2][0]	Rehan[2][1]	Rehan[2][2]

Data Structure

8)ধরো একটি Two-dimensional Array CSE(2:8, -4:1) ঘোষণা করা আছে।

Two-dimensional Array এর উপাদান বা দৈর্ঘ্য বের কর।

Solution: Given, $UB_1 = 8$, $LB_1 = 2$, $UB_2 = 1$, $LB_2 = -4$ We know, $Length = (UB_1 - LB_1 + 1)X(UB_2 - LB_2 + 1)$ = $(8-2+1)X\{(1-(-4)+1\}X(10-6+1)=7x6=42 \text{ (Ans)}\}$ =>মদি Array[M][N] হয় ——

Column-major order এর সূত্র :

 $Array_Name[J,K]=BA+W\{(J-1)+M(K-1)\}$

Row-major order সূত্ৰঃ

Array Name $[J,K]=BA+W\{N(J-1)+(K-1)\}$

7)50 জন ছাত্রের 4 টি Class test result সংরক্ষনের জন্য একটি 25X4 2D Array তে Student নামক

Array তে সংরক্ষন আছে | Student Array এর First Address হল 200 এবং প্রতি memory cell এ 4

word ধারন করে | Column major order এবং

Row major order এ সংরক্ষন উপয়োগী Array টিভে

Student[12,3] এর Address নির্ন্স কর।

Solution: Given,

M=25,N=4,J=12,K=3,BA=200,W=4

Column-major order ೨,

Student $[J,K]=BA+W\{(J-1)+M(K-1)\}$

বা, Student[12,3]=200+4{ (12-1) + 25(3-1)}=444 (Ans)

Row-major order – ೨.

Student $[J,K]=BA+W\{N(J-1)+(K-1)\}$

Student[12,3]=200+4{ 4(12-1) + (3-1)}=384 (Ans)

7)Three dimensional Array কে Memory তে Represent দেখা?

B Subscripts

(1,1,1)
(2,1,1)
(1,2,1)
(1,2,1)
(1,2,1)
(1,3,1)
(1,3,1)
(1,4,3)
(2,4,3)
(2,4,3)

Scanned with
CamScan(a) Column-major order.

(b) Row-major order.

```
8)ধরো একটি Three-dimensional Array
DUET( 2:8, -4:1, 6:10 ) ঘোষণা করা আছে।
```

Three dimensional Array এর উপাদান বা দৈর্ঘ্য বের কর।

Solution: Given

 $UB_1 = 8$, $LB_1 = 2$, $UB_2 = 1$, $LB_2 = -4$, $UB_3 = 10$, $LB_3 = 6$ We know,

Length= $(UB_1-LB_1+1)X(UB_2-LB_2+1)X(UB_3-LB_3+1)$ = $(8-2+1)X\{(1-(-4)+1\}X(10-6+1)=7x6x5=210$ (Ans)

7) ধরো একটি Three-dimensional Array

DUET(2:8, -4:1, 6:10) ঘাষণা করা আছে।

DUET Array এর First Address হল 200 এবং প্রতি memory cell এ 4 word ধারন করে। Row major order এ সংরক্ষন উপযোগী Array টিতে DUET[5,-1,8] এর Address নির্ব্ব কর।

Solution: Given,

 $index_1=5$, $index_2=-1$, $index_1=8$,

UB₁ =8 ,LB₁ =2, UB₂=1, LB₂=-4, UB₃=10 ,LB₃=6 আমরা জানি,

$$L_1 = (UB_1 - LB_1 + 1) = (8-2+1) = 7$$
,

$$L_2 = UB_2 - LB_2 + 1 = \{(1 - (-4) + 1) = 6\}$$

$$L_3 = UB_3 - LB_3 + 1 = 10 - 6 + 1 = 5$$

$$E_1 = index_1 - LB_1 = 5-2=3$$

$$E_2 = index_2 - LB_2 = -1 - (-4) = 3$$

$$E_3 = index_3 - LB_3 = 8 - 6 = 2$$

আবার,

Array_Name [index₁, index₁, index₁]

=BA+W{
$$(E_1xL_1 + E_2)xL_3 + E_3$$
}
 $= 200 + 4(3x6+3)x5+2$ }
=200 + 4(105+2)=200+4x107=628 (Ans)

- 8) 2D arrayএর Application লিখ।
- (i) Video displays (ii) Calendars (ii) Labeled lists(iv) Graph (v) Image solve linear equation (vi)Game boards (vii) Matrix processing etc

Pointer

Advantage of pointer:

- (i) Program এর length কমে যায়। Complexity কমে যায়। Memory Save করে।
- (ii) increase Execution speed.

Disadvantages:

- (i) Pointer handle করা কঠিন ।
- (ii)Run time available storage না থাকলে Program crash হতে পারে।

1)Stack কাকে বলে? উদাহরন সহ লিখ।

Stack হচ্ছে Linear data structure যাহা ,LIFO(Last-In-First-Out)পদ্ধতিতে কাজ করে। যেই ডাটা প্রথমে Insert হবে সেই ডাটা সর্ব শেষে Delete হবে।একটি Top নামক variable ধরে কাজ আমরা কাজ করে থাকি।

Application:

- (i) Recursion (ii) parsing (iii) browsers
- (iv) Tree Traversals (v) Editors
- (vi) Expression evaluations

2) Stack এর Common operation লিখ I

- (i) Create()(ii) Push()(iii) pop()(iv) isFull()
- (v) isEmpty()(vi) peek()(vii) Clear()
- 3) What is the data structure used to perform recursion?

Ans: Stack

4)Stack এর PUSH and POP Algorithm লিখ।

PUSH	POP	
1.If TOP=MAXSTK,	1. If TOP=0,	
Then :Print: Overflow and	Then :Print: Underflow and	
Return	Return	
2 Set TOP:=TOP+1	2. Set ITEM:=STACK[TOP]	
3. Set STACK[TOP]:=ITEM	a Set TOP:=TOP-1	
4.Return	4. Return	

(i) ((x+y) ↑2)+((x-y)/3) postfix এ রুপান্তর কর |
 (ii)((x+y) ↑2)+((x-y)/3) prefix এ রুপান্তর কর

Ans: Self study

6) মান নির্ণয় কর।

[‡] calculate the value of following postfix expression using Stack 5,6,2,+,*,12,4,/,-

Sol": 5,6,2,+,*,12,4,/,-)

Scanned	Stack	Scanned	Stack
5	5	12	40,12
6	5,6	4	40,12,4
2	5,6,2	1	40,3
+	5,8		37
Scanned with	40)	

MOMENTUM

(ii) 5,3,+,2,1,8,4,/,3,6,+,*,-)

calculate the value of following postfix expression using Stack (i) 12,7,3,-/,2,1,5,+,*,+ (ii) 5,3,+,2,↑,8,4,/,3,6,+,*,-

Sof: (i) 12,7,3,-/,2,1,5,+,*,+)

Scanned	Stack
12	12
7' -	12,7
3	12,7,3
2	12,4
1	3
2	3,2
1	3,2,1
5	3,2,1,5
+	3,2,6
*	3,12
+	15
10) 2-7	

Scanned	Stack
5	5
, 3	5,3
* * *	8
2	8,2
1	64
8	64,8
4	64,8,4
/	64,2
3	64.2,3
- 6	64.2.3.6
+	64,2,9
	64,18
	46
1 -)	X I

Sol": (a) ((A-B)*(D/E))

Sol": (b)	((A+B†D)/(E-F)+G)
-----------	-------------------

Scanned	Stack	Postfix expression
((
(((
A	((A
-	((-	A
В	((-	AB
)	(AB-
•	(*	AB-
((*(AB-
D	(*(AB-D
1	(*(/	AB-D
E	(*(/	Al3-DE
)	(*	AB-DE/
)		AB-DE/*

Scanned	Stack	Postfix expression
((
(((
A	((A
+	((+	A
В	{(+	AB
1	((+†	AB
D	((+1	ABD
)	. (ABD7+
1	(/	ABD†+
((/(ABD +
E	UL.	ABD†+E
	(/(-	ABD1+E
F	(/(-	ABD[+EF
)	U	ABD[+EF-
+	(+	ABD†+EF-/
G	{+	ABD[+EF-/G
)		ABD†+EF-/G+

CS Scanned with CamScanner

9)Given the following arithmetic expression in infix notation: 25/(9+3)+7*(13+10) Translate this expression into postfix notation and then evaluate it using stack by showing all necessary steps [**Ans: 163.08**]

10) নিচের রাশিটি Stack এর মাধ্যমে মান নির্ণ্য কর।

 $A+(B*C-(D/E\uparrow F)*G)*H$

Data Structure

Scanned	Stack	Postfix expression
((
A	(Α
+	(+	A
((+(A.
В	(+(AB
•	(+(*	AB
C .	(+(*	ABC
	(+(-	ABC*
((+(-(ABC*
D	(+(-(ABC*D
1	(+(-(/	ABC*D
E	(÷(-(/	ABC*DE
î	(+(-(/)	ABC*DE
F	(+(-(/†	ABC*DEF
)	(+{-	ABC*DEF†/
	(+(-*	ABC*DEF†/
G	(+(-*	ABC*DEF†/G
)	(+	ABC*DEF†/G*-
	(+*	ABC*DEF†/G*-◆
Н	Annual Control	ABC*DEF†/G*→H
)		ABC*DEF†/G*-eH*+

calculate the value of following Infix expression using Stack (5+3)†2-(8/4)*(3+6)

Seanned	Stack	Postfix expression
((
(((
5	((5
+	((+	5
3	((+	5,3
)	(5,3,+
1	(†	5,3,+
) † 2	(1	5,3,+,2
-	(-	5,3,+,2,†
((-(5,3,+,2,1
8	(-(5,3,+,2, ↑,8
1	(-(/	5,3,+,2, †,8
4	(-(/	5,3,+,2, †,8,4
) ·	(-	5,3,+,2, 1,8,4,/
•	(-*	5,3,+,2, 7,8,4,/
((-*(5,3,+,2,7,8,4,/
3	(-*(5,3,+,2, 1,8,4,/,3
+	(-*(+	5,3,+,2, 1,8,4,/,3
6	(-*(+	5,3,+,2, 7,8,4,/,3,6
)	(-*	5,3,+,2, 1,8,4,/,3,6+
-	rned with	5,3,+,2, 1,8,4,/,3,6+*-

Scanned	Stack
5	5
3	5.3
+	8
2	8.2
†	64
8	64,8
4	64,3,4
1	64,2
3	64,2,3
6	64,2,3,6
+	64,2,9
4	64,18
	46
)	7.00

Queue

1)Queueকাকে বলে? উদাহরন সহ লিখ।

Queue হচ্ছে Linear data structure যাহা ,FIFO(First-In-First-Out) পদ্ধতিতে কাজ করে । যেই ডাটা প্রথমে Insert হবে সেই ডাটা সর্ব প্রথম Delete হবে। দুইটি FRONT এবং REAR নামক variable ধরে কাজ আমরা কাজ করে থাকি ।

Application:

Waiting list: Printer, Disk, CPU

Synchronous data transfer : Pipes file IO,

Sockets Handling interrupts, MP3 media player, CD player, Ticket collect ইত্যাদি।

2)Queue এর Operation লিখ l

(i)Create() (ii)Push() (iii)pop() (iv)isFull() (v)isEmpty() (vi)peek()(vii)Clear()

3)Enqueue and Dequeue এর Algorithm লিখ।

Enqueue(Insert)	Dequeue(Delete)
1. If FRONT=1 and REAR=N	1. If FRONT=NULL
Then: Print: Overflow and Return	Then Print : Underflow and Return
2. If FRONT:=NULL	2. Set ITEM:=QUEUE[FRONT]
Set FRONT:=REAR:=1	3. If FRONT=REAR Then:
Else if REARN=N	Set FRONT:=REAR:=NULL
Set REAR:=1	Else if FRONT=N, Then:
Else:	Set FRONT:=1
Set REAR:=REAR+1	Else:
3. Set QUEUE[REAR]:=ITEM	Set FRONT:=FRONT+1
4. Return	4. Return

4)Queue এর প্রকারভেদ লিখ এবং সংজ্ঞা লিখ l

- (i) Normal Queue: যে কিউতে ডাটা এক দিক হতে ডাটা insert অন্য দিক হতে delete করা যা।
- (ii) De-queue queue: যে ডাটা উভয় পাশ হতে ডাটা insert and delete করা যায়।
- (iii) Priority queue: Priority অনুযায়ী ডাটা insert and delete করা যায়।
- (iv)Circular queue: (য কিউতে ডাটা circular অনুযায়ী ডাটা insert and delete করা যায়।

Linked list

Basic operation of Doubly Linked list:

- 1. Insertion
- 2. Deletion
- 3. Insert Last, Insert
- 4. After.Delete last
- 5. Display forward
- 6. Display Backward

➡ Linked List এর প্রকারভেদ লিখ এবং একটি করে চিত্র আঁক। Ans: Self study

चिভিন্ন প্রকার Searching technique গুলোর
 नाম এবং Complexity লিখ ।

Seaching Techniques:

(i)Linear Search:

Average and Worst Case: 0(n)

(ii)Binary Search:

Average and Worst Case: O(log n)

(iii)Interpolation Search: $O(\log(\log(n))$

(iv)Hash Table: O(n)

चिভিন্ন প্রকার Sorting technique গুলোর নাম
 এবং Complexity লিখ ।

Sorting Techniques:

Bubble sort, Insertion sort, selection sort, merge sort, shell sort, Quick sort, Heap sort, Radix sort

Complexity:

Quick Sort=Merge Sort=Heap sort

= O(nlogn) (best and average case)

Bubble, insertion sort=O(n)-best case,

O(n²)-average case

Selection sort= O(n²⁾ best and average case

⇒Array vs Linke list

Array	Linked list
Fixed sized	Dynamic sized
Insertion and deletion	Insertion and deletion
সহজ	কঠিন
Random access	No random access
Sequential access is	Sequential access is
faster করা যায়	slow
Binary search and	Linear seach করা যায়
linear search	

Stored consecutively

Stored randomly

⇒ Sparse Matrix কি

যে matrix এ Non-zero এর চেয়ে zero value এর elements বা numbers বেশি সেই matrix কে Sparse Matrix বলে

➡ Primitive data type(PDT) কি

Predefined types of data is called PDT

Examples: integer, float character, string etc

➡ Abstact data type (ADT) কি

Abstract data type is a mathematical model with a collection of operations defined on that model.

Examples:

Stack, Queue ,tree, graph ,linked list etc.

➡ Overflow, Underflow, Garbage Collection, Hashing, Articulation point কাকে বলে? Ans: Self Study

ENG. MD. AL FOYSAL RABBI (REHAN),

CSE, DUET, GAZIPUR

FB PAGE: (i)Fury Tent
(ii) ENGLISH CARE

Special Thanks to Ohiduzzaman