

JUNIOR NETWORK ADMINISTRATOR

Slide Pertemuan 3 Merancang Pengalamatan Jaringan

......

Profil: Iwan Lesmana, M.Kom

Jabatan Akademik: Dosen Teknik Informatika - FKOM-UNIKU

Pendidikan

- ☐ S1 Sistem Informasi Universitas Kuningan
- ☐ S2 Ilmu Komputer, IPB

Riwayat Pekerjaan

2016-2020

Kepala Lab Jaringan Komputer • Fakultas Ilmu Komputer Universitas Kuningan

2012-2014

Individual Consultant NAWASIS (National Water Supply and Sanitation Information Services)

BAPPENAS

2012-2014

Ketua Program Studi Teknik Informatika • Fakultas Ilmu Komputer Universitas Kuningan

2009-2012

Kepala UPT Laboratorium Fakultas Ilmu Komputer Universitas Kuningan

Contact

HP WA only: 083824425656

Email: iwanlesmana@uniku.ac.id

Profil: Fitra Nugraha, M.Kom

Jabatan Akademik: Dosen Teknik Informatika - FKOM-UNIKU

Pendidikan

- ☐ S1 Sistem Informasi Universitas Kuningan
- ☐ S2 Sistem Informasi, Universitas Budi Luhur

Riwayat Pekerjaan

2016-2020

Kepala Pusat Sistem Informasi • Universitas Kuningan

2012-2016

Kepala Divisi Jaringan – Pusat Sistem Informasi • Universitas Kuningan

Contact

HP WA only: 0822-1408-2222
Email: fitra@uniku.ac.id

Pelatihan

Deskripsi Singkat mengenai Topik

Mata Pelatihan ini memfasilitasi pembentukan kompetensi dalam merancang pengalamatan jaringan komputer sehingga jaringan bekerja dengan baik.

Tujuan Pelatihan

Setelah mengikuti seluruh rangkaian pembelajaran pada mata pelatihan ini, peserta mampu merancang pengalamatan jaringan komputer sehingga jaringan bekerja dengan baik.

Materi Yang akan disampaikan:

- 1. IP Address versi 4
- 2. Subnetting
- 3. VLSM

Tugas : Menentukan jumlah host jaringan, segmen alamat jaringan, dan memberikan alamat jaringan pada host.

Outcome/Capaian Pelatihan

Mengidentifikasi sistem operasi pada jaringan, Membagi alamat jaringan pada perangkat jaringan, Mendokumentasikan pengalamatan jaringan

Pelatihan

IP ADDRESS Versi 4

- 1. Pendahuluan
- 2. Sistem Bilangan Biner dan Desimal serta Konversi Sistem Bilangan
- 3. Network Portion, Host Portion dan Subnet Mask
- 4. Logika AND
- 5. Prefix Length
- 6. Alamat Network, Host dan Broadcast
- 7. Tipe IP Address
 - a. Public Address, Private Address
 - b. Spesial Address
 - c. Classfull Address
- 8. Penerapan IP Address versi 4

Pelatihan

IP ADDRESS Versi 4 – Pendahuluan

- Ditetapkan oleh Internet Assigned Numbers Authority (IANA)
- Sistem Pengalamatan terbagi atas IPv4 dan IPv6
- Terdiri atas 32 bit pada IPv4 dan 128 bit pada IPv6
- Menggunakan sistem bilangan biner dan bilangan desimal

Pelatihan

IP ADDRESS Versi 4 - Pendahuluan

- IP Address range: 0.0.0.0 255.255.255.255
- Host Addresses
 - 0.0.0.0 223.255.255.255
- Experimental Addresses
 - 240.0.0.0 255.255.255.254 (RFC 3330)
- Multicast Addresses
 - 224.0.0.0 239.255.255.255

Pelatihan

IP ADDRESS Versi 4 – Sistem Bilangan Biner dan Desimal

Binary To Decimal Conversion

2 ⁴	2 ³	2 ²	21	20	
16	8	4	2	1	
0	0	0	0	0	0 0

A 1 in this position means 64 is added to the total. A 0 in any position means that 0 is added to the total.

Pelatihan

IP ADDRESS Versi 4 – Sistem Bilangan Biner dan Desimal

Pelatihan

IP ADDRESS Versi 4 - Network Portion, Host Portion dan Subnet Mask

Terbagi menjadi dua bagian Bagian networkID dan Bagian HostID

32 bit dibagi menjadi 4 bagian setiap bagian terdiri dari 8 bit.

Untuk kemudahan dikonversi menjadi desimal.

Pelatihan

IP ADDRESS Versi 4 - Network Portion, Host Portion dan Subnet Mask

Pelatihan

IP ADDRESS Versi 4 - Network Portion, Host Portion dan Subnet Mask

Class A	Network	Host		
Desimal	0-127	0-255	0-255	0-255
SubnetMask	255	0	0	0

Class B	Network		Host	
Desimal	128-191	0-255	0-255	0-255
SubnetMask	255	255	0	0

Class C	Network			Host
Desimal	192-223	0-255	0-255	0-255
SubnetMask	255	255	255	0

Pelatihan

IP ADDRESS Versi 4 - Network Portion, Host Portion dan Subnet Mask

- Pada Pengalamatan Logik, selain butuh nomor IP dibutuhkan netmask atau subnetmask.
- Subnetmask besarnya sama dengan nomor IP yaitu 32 bit.
- Ada tiga pengelompokan besar subnet mask:
 255.0.0.0
 255.255.0.0
 255.255.255.0.
- Hal tadi biasa disebut class, dikenal tiga class:
 Class A, adalah semua nomor IP yang mempunyai subnetmask 255.0.0.0
 Class B, adalah semua nomor IP yang mempunyai subnetmask 255.255.0.0
 Class C, adalah semua nomor IP yang mempunyai subnetmask 255.255.255.0

Pelatihan

IP ADDRESS Versi 4 - Logika AND

- Logika AND merupakan salah satu dari 3 operasi dasar pada logika digital
- Digunakan untuk menentukan Network Address dengan cara mengANDkan IP Address dengan Subnet Mask
- Prinsip logika AND:

1 AND 1 = 1 0 AND 1 = 0 0 AND 0 = 0 1 AND 0 = 0

Pelatihan

IP ADDRESS Versi 4 – Prefix Length

- Bentuk penulisan singkat dari subnet mask.
- Nilainya sama dengan jumlah bit 1 pada subnet mask
- Dituliskan dalam bentuk notasi / (slash notation) dan diikuti jumlah network

Comparing the Subnet Mask and Prefix Length					
Subnet Mask	32-bit Address	Prefix Length			
255 .0.0.0	1111111.0000000.0000000.00000000	/8			
255.255 .0.0	1111111.11111111.00000000.00000000	/16			
255.255.255 .0	1111111.11111111.11111111.00000000	/24			
255.255.255.128	1111111.11111111.11111111.10000000	/25			
255.255.255.192	1111111.11111111.11111111.11000000	/26			
255.255.255.224	1111111.11111111.11111111.11100000	/27			
255.255.255.240	1111111.11111111.11111111.11110000	/28			
255.255.255.248	11111111.11111111.111111111.11111000	/29			
255.255.255.252	11111111.11111111.111111111.11111100	/30			

Pelatihan

IP ADDRESS Versi 4 – Alamat Network, Host dan Broadcast

Tipe Address pada jaringan 192.168.10.0/24

- Alamat Network host portion adalah semua bit 0 (.0000000)
- Host address Pertama host portion adalah semua bit 0 dan diakhiri dengan bit 1 (.00000001)
- Host address Terakhir host portion adalah semua bit 1 dan diakhir dengan bit 0 (.11111110)
- Broadcast Address host portion dengan semua diset menjadi bit 1 (.11111111)

Pelatihan

IP ADDRESS Versi 4 – Tipe IPv4

Private Address

- Tidak digunakan pada jaringan internet
- Diperkenalkan pada pertengahan tahun 1990 karena keterbatasan IPv4 addresses
- Hanya digunakan pada internal networks.
- Harus ditranslasikan ke IP Public agar dapat digunakan pada jaringan internet.
- Didefinisikan pada RFC 1918

Blok Private Address

10.0.0.0 /8 or 10.0.0.0 to 10.255.255.255 172.16.0.0 /12 or 172.16.0.0 to

172.31.255.255192.168.0.0 /16

192.168.0.0 to 192.168.255.255

Pelatihan

IP ADDRESS Versi 4 – Type IPv4

Special Address:

Network address & Broadcast Address → alamat pertama dan terakhir dr network Loopback → 127.0.0.1

127.0.0.0 - 127.255.255.255

Default route → 0.0.0.0

0.0.0.0 - 0.255.255.255

Link Local Addresses

169.254.0.0 - 169.254.255.255

Testnet Addresses

192.0.2.0 - 192.0.2.255

Pinging the Loopback Interface

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.0.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\Users\NetAcad> ping 127.1.1.1
Pinging 127.1.1.1 with 32 bytes of data:
Reply from 127.1.1.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.1.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
```


* 0.0.0.0 and 127.0.0.0 are reserved and cannot be assigned

Pelatihan

IP ADDRESS Versi 4 – Type IPv4

Class A Specifics	
Address Block	0.0.0.0 - 127.0.0.0
Default Subnet Mask	/8 (255.0.0.0)
Maximum Number of Networks	128
Number of Host per Network	16,777,214
High order bit	0xxxxxx

Class B Specifics	
Address Block	128.0.0.0 - 191.255.0.0
Default Subnet Mask	/16 (255.255.0.0)
Maximum Number of Networks	16,384
Number of Host per Network	65,534
High order bit	10xxxxxx

Class C Specifics	
Address Block	192.0.0.0 - 223.255.255.0
Default Subnet Mask	/24 (255.255.255.0)
Maximum Number of Networks	2,097,152
Number of Host per Network	254
High order bit	110xxxxx

Pelatihan

IP ADDRESS Versi 4 – Type IPv4

- Classful Addressing menyebabkan banyak alamat yang tidak terpakai dan mengakibatkan keterbatasan ketersediaan IPv4 address.
- Classless Addressing diperkenalkan pada tahun 1990
 - Classless Inter-Domain Routing (CIDR, disebut "cider")
 - Memungkinkan service provider untuk mengalokasikan IPv4 addresses pada beberapa bit boundary address (prefix length) sebagai pegganti dari class A, B, atau C.

Pelatihan

IP ADDRESS Versi 4 – Penerapan IP Address

Static Address

- Diterapkan pada sebuah interface host seperti printer, server, perangkat jaringan yang membutuhkan alamat statik
- Dapat diterapkan untuk setiap host pada jaringan skala kecil

Dynamik Address

- Kebanyakan jaringan menerapkan Dynamic Host Configuration Protocol (DHCP)
- Server DHCP menyediakan alamat IP address, subnetmask, default gateway dan informasi lainnya

Pelatihan

IP ADDRESS Versi 4 - Penerapan IP Address (OS Windows)

General	Protocol (TCP/IP) Pro	percies	Ė
this cap		d automatically if your network supports eed to ask your network administrator for	
0.0	btain an IP address autor	matically	
F .	se the following IP addre	ss:	
IP a	ddress:	10 . 36 . 13 . 223	
Subr	net mask:	255 . 255 . 255 . 0	
Defa	ult gateway:	10 . 36 . 13 . 1	
00	btain DNS server address	s automatically	
_ © U	se the following DNS ser	ver addresses:	
Prefe	erred DNS server:	194 . 95 . 207 . 10	
	nate DNS server		

Pelatihan

IP ADDRESS Versi 4 - Penerapan IP Address (OS Linux)

Lokasi direktori file konfigurasi interface jaringan terletak pada /etc/network/interface, dapat melakukan proses editing dengan text editor, text editor yang digunakan adalah nano.

nano /etc/network/interfaces

```
GNU nano 2.0.7
                                   File: /etc/network/interfaces
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces (5).
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
auto eth0
iface eth0 inet static
        address 192.168.1.1
        netmask 255.255.255.0
        network 192.168.1.0
        broadcast 192.168.1.255
        gateway 192.168.1.1
       # dns-* options are implemented by the resolvconf package, if installed
        dns-nameservers 192.168.1.1
        dns-search smkn4gorontalo.sch.id
```


Pelatihan

IP Address - TUGAS

Identifikasi Class, Alamat Network, Alamat Broadcast dari Alamat IP berikut:

- 1. 192.168.200.4/24
- 2. 172.12.50.5/16
- 3. 12.1.1.100 255.0.0.0

Pelatihan

SUBNETTING

- 1. Latar Belakang
- 2. Pembentukan Subnetting IPv4

Pelatihan

SUBNETTING – Latar Belakang

- Kongesti pada jaringan
 Semakin banyak host yang terhubung dalam satu media akan menurunkan performasi dari jaringan.
- Kebutuhan keamanan jaringan

Pelatihan

SUBNETTING – Latar Belakang

Pelatihan

SUBNETTING – Pembentukan Subnetting

Pelatihan

SUBNETTING - Pembentukan Subnetting

Dalam membentuk subnetting dapat didasarkan:

- Jumlah jaringan
- Jumlah host

Pelatihan

SUBNETTING – Pembentukan Subnetting

Langkah-langkah membentuk Subnetting berdasarkan jumlah network atau subnet:

- Menentukan jumlah jaringan atau subnet yang dibutuhkan
- 2. Menghitung jumlah bit 1 yang diwakili oleh x berdasarkan rumus

 $2^{x} \ge jumlah subnet.$

- 3. Jumlah bit hostID baru adalah HosiID lama dikurangi jumlah bit nomor 2
- 4. Isi subnetID dengan 1 dan jumlahkan dengan NetIDLama.

Contoh

Jaringan yang diberikan adalah 192.168.10.0/24 dalam kelas C dan

Pelatihan

SUBNETTING – Pembentukan Subnetting

Jawaban:

Kelas C default memiliki NetID 16 bit dan HostID 8 bit, sehingga dapat dihitung sbb:

- 1. Jumlah jaringan yang dibutuhkan adalah 4 subnet
- 2. Jumlah bit 1 adalah 2 bit

 $2^{x} \ge jumlah subnet.$

- 3. HostID baru adalah 8 bit -2 bit =6 bit hostID
- 4. SubnetID baru adalah 24 bit + 2 bit = 26 bit SubnetID

11111111. 11111111. 11111111.00000000 NetID Lama HostID Lama

11111111. 11111111. 11111111.11000000 NetID Baru HostID Baru

Pelatihan

SUBNETTING – Pembentukan Subnetting

Sehingga, terbentuk subnneting dari alamat IP 192.168.10.0/24: 192.168.10.0/26, 192.168.10.64/26, 192.168.10.128/26, 192.168.10.192/26

Pelatihan

SUBNETTING – Pembentukan Subnetting

Langkah-langkah membentuk Subnetting berdasarkan jumlah Host:

- 1. Menentukan jumlah host yang dibutuhkan
- 2. Menghitung jumlah bit 0 yang diwakili oleh y berdasarkan rumus

 $2^{y}-2 \ge \text{jumlah host per subnet}$.

- 3. Jumlah bit hostID baru jumlah bit pada nomor 2
- 4. SubnetID baru adalah jumlah SubnetIDLama dengan jumlah bit 1.

Contoh

Host yang dibutuhkan sebuah jaringan adalah 30 pada jaringan 192.168.10.0/24 dalam kelas C. Tentukan tabel pengalamatan subnetting!

Pelatihan

SUBNETTING – Pembentukan Subnetting

Jawaban:

Kelas C default memiliki NetID 16 bit dan HostID 8 bit, sehingga dapat dihitung sbb:

- 1. Jumlah Host yang dibutuhkan adalah 30 host
- 2. Jumlah bit 0 adalah 5 bit

 $2^{y}-2 \ge jumlah host per subnet.$

- 3. HostID baru adalah 5 bit
- 4. SubnetID baru adalah 24 bit + (8 bit 5 bit) = 27 bit SubnetID

11111111. 11111111. 11111111.00000000

NetID Lama HostID Lama

11111111. 11111111. 11111111.11100000

NetID Baru HostID Baru

Pelatihan

SUBNETTING – Pembentukan Subnetting

Sehingga, terbentuk subnneting dari alamat 192.168.10.0/24 dengan menambahkan kelipatan 32, dimulai dari 0, 32, 64, 96, 128, 160, 192, 224

	Subnet	Host 1	Host ke-n	Broadcast
1	192.168.10.0/27	192.168.10.1/27	192.168.10.30/27	192.168.10.31/27
2	192.168.10.32/27	192.168.10.33/27	192.168.10.62/27	192.168.10.63/27
3	192.168.10.64/27	192.168.10.65/27	192.168.10.94/27	192.168.10.95/27
4	192.168.10.96/27	192.168.10.97/27	192.168.10.126/27	192.168.10.127/27
5	192.168.10.128/27	192.168.10.129/27	192.168.10.158/27	192.168.10.159/27
6	192.168.10.160/27	192.168.10.161/27	192.168.10.190/27	192.168.10.191/27
7	192.168.10.192/27	192.168.10.193/27	192.168.10.223/27	192.168.10.224/27
8	192.168.10.224/27	192.168.10.225/27	192.168.10.254/27	192.168.10.255/27

Pelatihan

SUBNETTING - Pembentukan Subnetting

/25 Subnetting Topology

Pelatihan

SUBNETTING - Pembentukan Subnetting

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhh 11111111.1111111111	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.1111111111	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh 11111111.1111111111	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhh 11111111.1111111111	16	14

Pelatihan

SUBNETTING – Tugas

Sebuah Bank Swasta membutuhkan 2 buah jaringan dengan blok IP address yang diberikan 192.168.100.0/24. Desainlah IP Addressnya dengan metode subnetting

Pelatihan

Variable Length Subnet Masking - VLSM

Basic VLSM

- Subnet yang terbentuk tidak harus memiliki ukuran yang sama, selama range IP address ranges tidak saling overlap.
- Dalam membentuk VLSM menjadi lebih mudah, dibentuk subnet dengan dimulai dari kebutuhan host yang paling banyak.

Pelatihan

Pelatihan

VLSM

Contoh:

Diberikan alamat network 172.16.0.0 /23 membentuk subnets:

1 network for 200 hosts - 256

1 network for 100 hosts - 128

1 network for 50 hosts - 64

1 network for 25 hosts - 32

1 network for 10 hosts - 16

4 point-to-point networks for 2 hosts each

-4x4 = 16

Pelatihan

VLSM - Penerapan

Pelatihan

VLSM - Penerapan

Pelatihan

VLSM

Pelatihan

VLSM

Pelatihan

Variable Length Subnet Masking – Wildcard MAsk

- Wildcard mask panjangnya 32-bit yang dibagi menjadi empat octet.
- Wildcard mask adalah pasangan IP address.
- Angka 1 dan 0 pada mask digunakan untuk mengidentifikasikan bit-bit IP address.
 Wildcard mask mewakili proses yang cocok dengan ACL mask-bit.
- Wildcard mask digunakan untuk memungkinkan menerima atau menolak sutau IP address atau kelompok dari sejumlah IP address.
- Wildcard mask dan subnet mask dibedakan oleh dua hal. Subnet mask menggunakan biner 1 dan 0 untuk mengidentifikasi jaringan, subnet dan host.
- Wildcard mask menggunakan biner 1 atau 0 untuk memfilter IP address individual atau grup untuk diijinkan atau ditolak akses.
- Persamaannya hanya satu dua-duanya sama-sama 32-bit.

Pelatihan

Variable Length Subnet Masking – Wildcard Mask

```
IP = 192.168.1.0
Subnet Mask =255.255.255.0
Wildcard=0.0.0.255
```

Wildcard diperoleh dari

```
SM = 255.255.255.0—-> 11111111 11111111 1111111 00000000
255.255.255.255
255.255.255.0
0. 0. 0.255
```


Pelatihan

Variable Length Subnet Masking – TUGAS

Sebuah perusahaan swasta memiliki 5 divisi yang masing:

Divisi HRD membutuh 14 user

Divisi Marketing membutuhkan 28 user

Divisi Financial membutuhkan 18 user

Divisi Teknisi Gangguan membutuhkan 90 user

Divisi Operator dan Adminitrasi membutuhkan 20 user

Desain IP Address Jaringan tersebut dengan menggunakan metode VLSM

Spesifikasi Perangkat Jaringan

Pelatihan

Kesimpulan Pertemuan 5

Dalam menerapkan pengalamatan jaringan, menggunakan 3 metode pengalamatan dan dapat digunakan sesuai kebutuhan jaringan:

- 1. IP Address
- 2. Subnetting
- 3. VLSM

Merancang Pengalamatan Jaringan

Pelatihan

Referensi:

- 1. P. Clark, Martin. 2003, Data Networks, IP and the Internet: Protocols, Design and Operation, England: John Wiley & Sons, Ltd ISBN: 0-470-84856-1.
- 2. Hunt, Craig. 2002, TCP/IP Network Administration, Third Edition, United States of America: O'Reilly Media, Inc. ISBN: 978-0-596-00297-8.
- 3. Naomi J. Alpern and Robert J. Shimonski. 2010, Eleventh Hour Network+ Exam N10-004 Study Guide, USA: Elsevier Inc. ISBN: 978-1-59749-428-1.
- 4. Doug Lowe. 2018, Networking All-in-One For Dummies®, 7th Edition, New Jersey: John Wiley & Sons, Inc, ISBN 978-1-119-47160-8 (pbk).
- 5. Craig Hunt. Desember 1997, TCP/IP Network Administration, Second Edition, O'Reilly & Associates, ISBN 1-56592-322-7.

TIM PENYUSUN

Disusun dan diedit oleh:

- 1. Ir. Siswanto, M.M, M.Kom (Universitas Budi Luhur Jakarta /IAII)
- 2. Hariyono Kasiman, S.T (PT. Elnusa Tbk. Jakarta /IAII)

Kontributor:

- 1. Ferry Fachrizal.ST., M.Kom (Politeknik Negeri Medan)
- 2. Alde Alanda, S.Kom, MT (Politeknik Negeri Padang)
- 3. Wendhi Yuniarto (Politeknik Negeri Pontianak)
- 4. Nikson Fallo, ST., M. Eng (Politeknik Negeri Kupang)
- 5. Irmawati, S.T., M.T. (Politeknik Negeri Ujung Pandang)
- 6. Fachroni Abi Murad, S.Kom., M.Kom (Politeknik Negeri Jakarta)
- 7. Indarto, S.T., M.Cs (Politeknik Negeri Sriwijaya)
- 8. Setiadi Rachmat (Politeknik Negeri Bandung)
- 9. I Nyoman Gede Arya Astawa, ST., M.Kom (Politeknik Negeri Bali)
- 10. Ari Sriyanto Nugroho, ST., MT. MSc. (Politeknik Negeri Semarang)
- 11. Idris Winarno (Politeknik Elektronik Negeri Surabaya)
- 12. Arief Prasetyo (Politeknik Negeri Malang)
- 13. Bekti Maryuni Susanto, S.Pd.T, M.Kom (Politeknik Negeri Jember)
- 14. Moh. Dimyati Ayatullah, S.T., S. Kom (Politeknik Negeri Banyuwangi)
- 15. Mulyanto (Politeknik Negeri Samarinda)
- 16. Anristus Polii, SST., MT (Politeknik Negeri Manado)

Merancang Pengalamatan Jaringan

Pelatihan

Terima Kasih

TUGAS

- 1. Diberikan IP address:
 - a. 10.34.0.0 / 16
 - b. 192.168.4.0 / 24

Desainlah jaringan dengan menggunakan ip di atas bila di suatu perusahaan terdapat 5 departemen (asumsi semua departemen memliki user yang sama yaitu 40).

- 2. Dengan IP pada no. 1, digunakan untuk 5 departemen dengan komposisi sbb:
 - a. Dept Produksi: 60
 - b. Dept IT 5
 - c. Dept Teknik 25
 - d. Dept HRD 10
 - e. Dept Quality 6

TUGAS

- 3. Diberikan IP: 50.0.0.0 / 8
 Desainlah jaringan bila terdapat 3 dept dengan jumlah user 700, 400 dan 100
- 4. Berikan network ID dari no ip berikut:
 - a. 130.200.35.30 / 20
 - b. 200.20.100.221 / 28
 - c. 5.5.5.58 / 30
- 5. Tuliskan subnet, alamat broadcast, dan range host yang valid dari alamat-alamat berikut ini:

172.21.10.15 mask: 255.255.255.128

172.16.10.33 mask: 255.255.255.224

172.16.10.65 mask: 255.255.255.192

192.168.100.37 mask: 255.255.255.248

10.10.10.5 mask: 255.255.255.252

Berikan penjelasan secukupnya.