

Capstone Project – AI Medical Insurance **Cost Prediction Tool**

6 Leveraging Machine Learning to Improve Cost Transparency in Healthcare

Dr Subramani Suresh

Healthcare insurance premiums can vary significantly depending on lifestyle, demographics, and health-related risk factors. To address this challenge, I developed an AI-powered web application capable of predicting the expected cost of medical insurance using real-world, datadriven insights.

This project demonstrates end-to-end machine learning integration — from data preprocessing and model optimization to a fully deployed, interactive web interface.

Live Demo:

https://ckd-prediction-6dif.onrender.com/insurance/

Github location:

- Model:
 - https://github.com/aisubramani/Hope Ai Assignment/blob/main/Week5 7 Web Project /Medical insurance/Medical Insurance Cost Prediction.ipynb
- Django app: https://github.com/aisubramani/Hope Ai Assignment/tree/main/Week5 7 Web Project/ Medical insurance/insurance

II Dataset Summary

The model is built on a dataset containing 1338 records and 6 key features:

- Age Age in years
- Sex Male / Female
- **BMI** Body fat index
- Children Number of dependents
- Smoker Lifestyle habit risk
- Charges Final insurance cost (USD)

Exploratory data analysis highlighted three strong contributors to increased cost:

- ✓ BMI
- Smoking Status (highest impact)

Supervised Regression Model Comparison

To find the most accurate prediction engine, multiple machine learning algorithms were trained and evaluated:

R ² Score
0.78
0.78
0.78
0.87
0.85

Why Random Forest Wins

- Handles complex, non-linear relationships
- Resistant to outliers
- Superior generalization accuracy

After hyperparameter tuning with GridSearchCV, Random Forest achieved the best performance and became the final production model.

Technical Stack

Programming & ML

- Python
- Scikit-learn
- Pandas, NumPy

Web Development

- Diango
- HTML5 / CSS3

Deployment

- Render Cloud Platform
- Gunicorn
- WhiteNoise for static file delivery

This ensures scalability, security, and a clean user experience.

🗱 System Architecture

- 1. Data Preparation
 - Encoding categorical values
 - Scaling numerical features
- 2. Model Training
 - o Train-Test split
 - o MAE, RMSE, R² evaluation
- 3. Model Optimization
 - o GridSearchCV tuning
- 4. Serialization
 - Pickle saved model
- 5. Web Integration
 - \circ User inputs \rightarrow real-time predictions

Solution User-Friendly Web Interface

