Notes for General Topology

Zhao Wenchuan

April 19, 2021

1 Basic Definitions

Definition 1.1 (topological space). Let X be a set, and let a family $\mathcal{T} \subseteq \mathcal{P}(X)$. \mathcal{T} is called a topology on X iff

- (i) $\emptyset, X \in \mathcal{T}$;
- (ii) \mathcal{T} is closed under arbitrary union;
- (iii) \mathcal{T} is closed under finite intersection.

The pair (X, \mathcal{T}) is called a topological space. The elements of \mathcal{T} are called open sets in (X, \mathcal{T}) .

Definition 1.2 (metrizable topology). Let (X, \mathcal{T}) be a topological space.

2 Untitled

Definition 2.1 (cover). Let (X, \mathcal{T}) be a topological space, and let $U \subseteq X$, then a family $\mathcal{C} \subseteq \mathcal{P}(X)$ is called a *cover* of U iff the union of \mathcal{C} is a superset of U. That is,

$$U \subseteq \bigcup \mathcal{C}$$
.

If $C \subseteq \mathcal{T}$, then we call C an open cover of U.

Let $\mathcal{C}' \subseteq \mathcal{C}$, iff the union of \mathcal{C}' is still a superset of U, then we call \mathcal{C}' a subcover of \mathcal{C} .

Definition 2.2 (basis). Let (X, \mathcal{T}) be a topological space, let $U \subseteq X$, and let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a cover of X. We call \mathcal{B} a base of (X, \mathcal{T}) iff $\mathcal{B} \subseteq \mathcal{T}$ and the union of \mathcal{B} is exactly U itself. That is,

$$\mathcal{B} \subseteq \mathcal{T}$$
, and $U = \bigcup \mathcal{B}$.

Definition 2.3 (subspace topology). Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. The *subspace topology* \mathcal{T}_A on A is defined to be the family of the intersections of open sets in (X, \mathcal{T}) and A. That is,

$$\mathcal{T}_A = \{ U \cap A : U \in \mathcal{T} \}.$$

Definition 2.4 (quotient topology). Let (X, \mathcal{T}) be a topological space and let \sim be an equivalence relation on X. The *quotient topology* is a topology on $\mathcal{P}(X/\sim)$; it is defined as

$$\mathcal{T}_{X/\sim} = \{ U \in \mathcal{P}(X/\sim) : \{ x \in X : [x] \in U \} \in \mathcal{T}_X \}.$$

Definition 2.5 (continuous functions). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is said to be *continuous* iff for all open subset U of Y, the preimage $f^{-1}[U]$ is open in X. That is,

$$\forall U \in \mathcal{T}_Y, \quad f^{-1}[U] \in \mathcal{T}_X.$$

Definition 2.6 (homeomorphisms). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A bijection $f: X \to Y$ is called a *homeomorphism* iff it is continuous and its inverse is also continuous.

Definition 2.7 (homeomorphic). Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are said to be *homeomorphic* or *topologically equivalent*, denoted $X \cong Y$, iff there is an homeomorphism between them.

Definition 2.8 (compactness). A topological space (X, \mathcal{T}) is said to be *compact* iff every open cover of X has a finite subcover. That is,

$$\forall \mathcal{C} \subseteq \mathcal{T}: \bigcup \mathcal{C} = X, \ \exists \mathcal{S} \subseteq \mathcal{C}: \bigcup \mathcal{S} = X, \quad |\mathcal{S}| < \aleph_0.$$

Definition 2.9 (connectedness). Let (X, \mathcal{T}) be a topological space. (X, \mathcal{T}) is said to be *connected* iff X is not empty and it it not the union of any disjoint open sets. That is,

$$\forall U, V \in \mathcal{T} : X = U \cup V, \quad U \cap V \neq \emptyset.$$

Definition 2.10 (path-connectedness). Let (X, \mathcal{T}) be a topological space.

(i) A map $\gamma: [0,1] \to X$ is called a *path* in X iff it is continuous. If $\gamma(0) = x$ and $\gamma(1) = y$, we say that γ is path from x to y in X.

(ii) X is said to be path-connected iff for all $x, y \in X$ there is a path from x to y in X.

Definition 2.11 (topologically indistinguishable). Let (X, \mathcal{T}) be a topological space. Two points $x, y \in X$ are said to be topologically indistinguishable iff they share all their neighbourhoods. That is, let \mathcal{N}_x be the family of all neighbourhoods of x and let \mathcal{N}_y be the family of all neibourhoods of y, we have

$$\mathcal{N}_x = \mathcal{N}_y$$
.

Respectively, x, y are said to be topologically distinguishable iff they are not topologically distinguishable; i.e.,

$$\mathcal{N}_x \neq \mathcal{N}_y$$
.

Definition 2.12 (T_0 spaces). A topological space (X, \mathcal{T}) is said to be T_0 or Kolmogorov, iff all distinct points $x, y \in X$ are topologically distinguishable.

Definition 2.13 (R_0 spaces). A topological space (X, \mathcal{T}) is said to be R_0 iff any two topologically distinguishable points in X are separated. That is, for any topologically distinguishable points $x, y \in X$, there is $U_x, U_y \in \mathcal{T}$ with $U_x \ni x$ and $U_y \ni y$, $U_x \cap U_y = \emptyset$.