```
1 //CG Exp 2: DDA Algorithm implementation
//SE-3, 41, Kunal Patil
#include<graphics.h>
 #include<conio.h>
 #include<stdio.h>
int round(float n)
     if (n - (int)n < 0.5)
     return (int)n;
     return (int)(n + 1);
int main()
     int gd = DETECT, gm, i, k = 0;
     float x, y,dx,dy,steps;
     int x0, x1, y0, y1;
     initgraph(&gd, &gm, "C:\\TURBOC3\\BGI");
     x0 = 100, y0 = 110, x1 = 140, y1 = 150;
     dx = (float)(x1 - x0);
     dy = (float)(y1 - y0);
     if(dx>=dy)
         steps = dx;
         steps = dy;
     dx = dx/steps;
     dy = dy/steps;
     x = x0;
         y = y0;
     i = 1;
     printf("k(n)\t x\t y\t Plot(Round(x), Round(y))\n");
     while(i<= steps)</pre>
         putpixel(x, y, YELLOW);
         printf("%d\t%f\t\t(%d, %d)\n", k, x, y, round(x), round(y));
         x += dx;
         y += dy;
         i++;
         delay(25);
         k++;
     getch();
     closegraph();
     return 0;
```


k(n)	х	у	Plot(Round(x), Round(y))
0	100.000000	110.000000	(100, 110)
1	101.000000	111.000000	(101, 111)
2	102.000000	112.000000	(102, 112)
3	103.000000	113.000000	(103, 113)
4	104.000000	114.000000	(104, 114)
5	105.000000	115.000000	(105, 115)
6	106.000000	116.000000	(106, 116)
7	107.000000	117.000000	(107, 117)
8	108.000000	118.000000	(108, 118)
9	109.000000	119.000000	(109, 119)
10	110.000000	120.000000	(110, 120)
11	111.000000	121.000000	(111, 121)
12	112.000000	122.000000	(112, 122)
13	113.000000	123.000000	(113, 123)
14	114.000000	124.000000	(114, 124)
15	115.000000	125.000000	(115, 125)
16	116.000000	126.000000	(116, 126)
17	117.000000	127.000000	(117, 127)
18	118.000000	128.000000	(118, 128)
19	119.000000	129.000000	(119, 129)
20	120.000000	130.000000	(120, 130)
21	121.000000	131.000000	(121, 131)
22	122.000000	132.000000	(122, 132)
23	123.000000	133.000000	(123, 133)
24	124.000000	134.000000	(124, 134)
25	125.000000	135.000000	(125, 135)
26	126.000000	136.000000	(126, 136)
27	127.000000	137.000000	(127, 137)
28	128.000000	138.000000	(128, 138)
29	129.000000	139.000000	(129, 139)
30	130.000000	140.000000	(130, 140)
31	131.000000	141.000000	(131, 141)
32	132.000000	142.000000	(132, 142)
33	133.000000	143.000000	(133, 143)
34	134.000000	144.000000	(134, 144)
35	135.000000	145.000000	(135, 145)
36	136.000000	146.000000	(136, 146)
37	137.000000	147.000000	(137, 147)
38	138.000000	148.000000	(138, 148)
39	139.000000	149.000000	(139, 149)