Algoritmo k-NN

Bruno Mendes de Souza¹, Mairieli Santos Wessel¹

¹Departamento de Ciência da Computação – Universidade Tecnológica Federal do Paraná (UTFPR)

BR 369 – km 0,5 – Caixa Postal 271 – Campo Mourão – PR – Brazil

{brunosouza, mairieliw}@alunos.utfpr.edu.br

Resumo. O algoritmo k-NN (k-Nearest Neighbor) classifica uma instância de acordo com as classes dos k ($k \ge 1$) vizinhos mais próximos, pertencentes a uma base de treinamentos dada. Este artigo descreve a implementação do algoritmo k-NN, utilizando a distância Euclidiana e Z-score, a fim de avaliar seu desempenho para diferentes valores de k. A avaliação do impacto de usar mais ou menos instâncias no conjunto de treinamento também será avaliada.

1. Introdução

O algoritmo de classificação baseado no vizinho mais próximo NN (Nearest Neighbor) é amplamente utilizado para reconhecer padrões. A base de seu funcionamento está em encontrar o vizinho mais próximo de uma determinada instância. O algoritmo k-NN (k-Nearest Neighbor) pertence a um grupo de técnicas onde são encontrados os k vizinhos mais próximos, ao invés de apenas um vizinho mais próximo.

O k-NN (k-Nearest Neighbor) classifica uma instância de acordo com as classes dos k ($k \ge 1$) vizinhos mais próximos, pertencentes a uma base de treinamentos dada. O algoritmo calcula a distância da instância para cada um dos elementos do conjunto de treinamento, e então os ordena do mais próximo ao mais distante. Dos elementos ordenados selecionam-se apenas os k primeiros, que servem de parâmetro para a regra de classificação.

A regra de classificação e a função que calcula a distância entre duas instâncias são dois pontos importantes no algoritmo k-NN. A regra de classificação diz como o algoritmo vai tratar a importância de cada um dos k elementos mais próximos. À função de distância cabe a tarefa identificar quais são os k-NN.

2. Materiais e Métodos

O algoritmo k-NN foi implementado utilizando a distância Euclidiana e para a normalização o Z-Score. A normalização dos dados com Z-score tem como base a média e o desvio padrão da característica. Para o utilizar o Min-Max é necessário saber os possíveis valores máximos e os valores mínimos de cada característica, já no Z-Score não é necessário. Escolhemos utilizar o Z-Score porque não sabemos qual valor máximo e mínimo que cada característica pode ter.

O algoritmo implementado inicia normalizando o conjunto de treino e teste com Z-Score. Logo após é selecionado o conjunto de instâncias para treino. Para cada uma das instâncias do conjunto de teste, calcula-se a distancia euclidiana no conjunto de treino. São escolhidos os k vizinhos com menor valor de distância para cada uma das

instâncias de teste. Define-se a classe de cada uma das instâncias pelo maior número de classes dos k vizinhos e o resultado é incrementado na matriz de confusão.

Utilizando a matriz de confusão calcula a taxa de acerto do algoritmo implementado: taxa = soma(diagonal_principal) / soma(total_matriz).

3. Resultados

Após a implementação do algoritmo, testamos o seu desempenho com $k=1,\,3,\,5,\,7,\,9$ e 11 e utilizando 25%, 50% e 100% das instâncias para treino, os resultados serão apresentados abaixo.

Tabela 1. Taxas de acerto do Algoritmo k-NN

k	= 1	k	= 3	k = 5		
25%	0.6483	25%	0.6458	25%	0.6550	
50%	0.6525	50%	0.6842	50%	0.6942	
100%	0.6675	100%	0.7025	100%	0.7192	
k	= 7	k	= 9	k = 11		
25%	0.6433	25%	0.6867	25%	0.6583	
50%	0.7025	50%	0.6992	50%	0.6925	
100%	0.7192	100%	0.7250	100%	0.7225	

Segue a matriz de confusão para o melhor caso encontrado, com k=9 utilizando 100% das instâncias de treino.

Tabela 1. Matriz de confusão para k=9 e 100% das instâncias de treino

	Jan	Fev	Mai	Abr	Jun	Jul	Ago	Set	Out	Nov	Dez
Jan	63	13	6	3	3	1	0	2	3	2	1
Fev	29	52	7	0	2	0	2	1	2	5	0
Mai	4	14	130	10	2	2	5	10	10	11	1
Abr	4	0	5	76	0	0	1	3	9	2	0
Jun	17	3	1	0	68	1	0	1	1	8	0
Jul	3	2	2	0	31	53	0	1	4	3	1
Ago	0	2	7	2	0	2	72	0	1	0	14
Set	2	1	8	0	2	0	0	75	7	5	0
Out	0	3	8	0	1	6	0	11	71	0	0
Nov	4	6	12	1	5	2	0	6	11	53	0
Dez	1	2	7	0	4	0	12	5	0	4	65

4. Conclusões

Desenvolvendo o algoritmo e analisando os resultados com k = 1, 3, 5, 7, 9 e 11 e utilizando 25%, 50% e 100% das instâncias para treino, a melhor taxa de acerto obtida é 0.7250, utilizando k = 9 e 100% das instâncias de treino.

Analisando os resultados contidos na Tabela 1, a qual contém as taxas de acerto do algoritmo k-NN, observamos que para todos os valores de k testados, utilizar um menor número de instâncias no conjunto de treinamento diminui as taxas de acerto.

5. Referências

Deepak Sinwar, Rahul Kaushik (2014) "Study of Euclidean and Manhattan Distance Metrics using Simple K-Means Clustering".