Идентификация нелинейных динамических систем на основе рядов Вольтерра с использованием многочленов Чебышева

В. А. Муратов, Д. Н. Сидоров, А. Н. Тында

18 сентября 2023 г.

Линейная динамическая система с памятью

Любая линейная система может быть описана с помощью следующего интеграла:

$$y(t) = \int_{-\infty}^{\infty} h(s)x(t-s)ds,$$

где x(t) и y(t) — это вход и выход системы, соответственно, h(s) — ядро интегрального оператора.

Нелинейная динамическая система без памяти

С другой стороны, нелинейная система без памяти может быть описана с помощью степенного ряда:

$$y(t) = \sum_{i=0}^{\infty} a_i x^i(t),$$

где *a*; — коэффициенты степенного ряда.

Нелинейная динамическая система с памятью

$$y(t) = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} K_n(s_1, s_2, \ldots, s_n) \prod_{i=1}^{n} x(t - s_i) ds_i,$$

где t — время, x(t) и y(t) — вход и выход динамической системы, соответственно. $K_n(s_1,s_2,\ldots,s_n)$ — ядро интегрального уравнения порядка n.

Используемая модель описания динамических систем

Задача идентификации системы состоит в нахождении ядер $K_1(s)$ и $K_2(s_1,s_2)$:

$$y(t) = \int_0^t K_1(s)x(t-s)ds + \int_0^t \int_0^t K_2(s_1,s_2)x(t-s_1)x(t-s_2)ds_1ds_2.$$

Способ аппроксимации ядер

Аппроксимация ядер модели производится с помощью системы ортогональных многочленов Чебышева 1-го рода $T_i,\ i\geq 0$:

$$T_0(x) = 1,$$
 $T_1(x) = x,$ $T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x), i \ge 2$

Способ аппроксимации ядер

Полагается, что ядра имеют следующий вид:

$$\widetilde{K}_{1,m}(s) = \sum_{i=1}^m A_i \cdot T_{i-1}(s),$$
 $\widetilde{K}_{2,m_1,m_2}(s_1,s_2) = \sum_{i=1}^{m_1} \sum_{i=1}^{m_2} C_{ij} \cdot T_{i-1}(s_1) \cdot T_{j-1}(s_2),$

где m, m_1, m_2 — количество слагаемых для аппроксимации, A_i, C_{ij} — некоторые коэффициенты.

Идентификация динамической системы

$$\widetilde{y}(t) = \sum_{i=0}^{m-1} A_i \int_0^{t_k} T_i(s) x(t_k - s) ds + \sum_{i=0}^{m_1-1} \sum_{j=0}^{m_2-1} C_{ij} \int_0^{t_k} \int_0^{t_k} T_i(s_1) T_j(s_2) x(t_k - s_1) x(t_k - s_2) ds_1 ds_2$$

Задача идентификации системы сводится к нахождению коэффициентов A_i и C_{ij} .

Экспериментальные измерения

Пусть известны вход динамической системы x(t) и ее выход y(t). Возьмем k пар следующего вида:

$$(x(t_i), y(t_i)),$$

 $t_i \in [0, 1], i = 1, ..., k,$
 $k \ge m + m_1 m_2$

Переопределенная система линейных уравнений

Получается переопределенная система линейных уравнений относительно коэффициентов A_i и C_{ii} :

$$\widetilde{y}(t_i) = y(t_i), i = 1, \ldots, k$$

Метод наименьших квадратов

Наилучшее решение такой системы находится с помощью метода наименьших квадратов:

$$\sum_{i=1}^k (y(t_i) - \widetilde{y}(t_i))^2 \longrightarrow \min$$

Модельная задача

$$y(t) = \frac{1}{81002} \Big(199 \cos^2(20t) - 15 \sin(40t) - 200 \cos(20t)e^{-2t} + 1 + \\ + 10 \sin(20t)e^{-2t} + 20 \sin(20t)e^{-t} \Big) + \frac{1}{409} \left(3 \sin(20t) - 20 \cos(20t) + \frac{850920}{40501}e^{-3t} \right).$$

 $x(t) = \sin(20t)$.

Модельная задача

Мера ошибки

Для оценки качества аппроксимации используется следующая мера ошибки:

$$\varepsilon_N = \max_{t \in [0,1]} |y(t) - \widetilde{y}(t)|$$

Модельная задача. Результаты

Для удобства тестирования предполагается, что все 3 переменные m, m_1, m_2 равны между собой.

Таблица: Зависимость ошибки ε_N от параметров m и k

	m = 3	m = 5	m = 7
$k=m+m^2$	$9.32 \cdot 10^{-4}$	$2.04 \cdot 10^{-9}$	$3.43 \cdot 10^{-16}$
$k=(m+m^2)\cdot 2$	$8.07 \cdot 10^{-4}$	$4.92 \cdot 10^{-10}$	$2.50 \cdot 10^{-16}$
$k=(m+m^2)\cdot 5$	$8.07 \cdot 10^{-4}$	$3.90 \cdot 10^{-10}$	$1.04 \cdot 10^{-16}$
$k=(m+m^2)\cdot 10$	$8.07 \cdot 10^{-4}$	$4.90 \cdot 10^{-10}$	$2.87 \cdot 10^{-15}$

Выводы

- Предложен способ идентификации нелинейных динамических систем с памятью
- Протестирован данный метод на модельной задаче

Спасибо за внимание!

- Volterra V. Theory of Functionals and of Integrals and Integro-Differential Equations. Madrid 1927 (Spanish), translated version reprinted. — New York: Dover Publications, 1959.
- 2. Guan, L. and Zhu, A. (2012). Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(3), 594-603.