Bayesian classification CISC 5800 Professor Daniel Leeds

The **true**

posterior

Incorporating prior probability

- Define **prior** probabilities for each class $P(y) = P(\mu_y, \sigma_y)$ Probability of class y same as probability of parameters μ_y, σ_y
- "Posterior probability" estimated as likelihood \times prior : $P(x|\mu_y,\sigma_y)$ $P(\mu_y,\sigma_y)$
- Classify as $\operatorname{argmax}_{y} P(x|\mu_{y}, \sigma_{y}) P(\mu_{y}, \sigma_{y})$
- Terminology: μ_y , σ_y are "parameters." In general use $\boldsymbol{\theta}_y$ Here: $\boldsymbol{\theta}_y = \left\{\mu_y, \sigma_y\right\}$. "**Posterior"** estimate is $P(x|\theta_y) P(\boldsymbol{\theta}_y)$

Probability review: Bayes rule

Recall:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

and:
$$P(A,B) = P(B|A)P(A)$$

so:
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Equivalently:
$$P(y|x) = P(\theta_y|x) = P(\theta_y|D) = \frac{P(D|\theta_y)P(\theta_y)}{P(D)}$$

The posterior estimate

$$\mathop{\rm argmax}_{\boldsymbol{\theta}_y} P\big(\boldsymbol{\theta}_y \big| \boldsymbol{D}\big) \propto P\big(\boldsymbol{D} \big| \boldsymbol{\theta}_y\big) P(\boldsymbol{\theta}_y)$$

Posterior \propto Likelihood x Prior \propto - means proportional We "ignore" the P(D) denominator because D stays same while comparing different classes (y represented by θ_{ν})

Typical classification approaches

MLE – Maximum Likelihood: Determine parameters/class which maximize probability of the data $\arg\max P(\boldsymbol{D}|\boldsymbol{\theta}_y)$

MAP – Maximum A Posteriori: Determine parameters/class that has maximum probability

$$\operatorname*{argmax}_{\boldsymbol{\theta_y}} P(\boldsymbol{\theta_y}|\boldsymbol{D})$$

Incorporating a prior

Three classes: Y={Cloudy, Non-Cloudy, Eclipse} 0.12 0.12 0.08 0.04 0 5 10 15 20 25

P(Cloudy)=0.4 P(Non-Cloudy)=0.4 P(Eclipse)=0.2

x=9

P(x=9 | Cloudy) P(Cloud) =0.12x.4 = .048 P(x=9 | Non-Cloud) P(Non-Cloud) = 0.02x.4 = 0.008 P(x=9 | Eclipse) P(Eclipse)=0.16x.2 = .032

12

Bernoulli distribution – coin flips

We have three coins with known biases (favoring heads or tails)

How can we determine our current coin?

Flip K times to see which bias it has

Data (**D**): {HHTH, TTHH, TTTT} Bias (θ_{v}): p_{v} probability of H for coin y

$$P(\boldsymbol{D}|\theta_{y}) = p_{y}^{|H|} (1 - p_{y})^{|T|} |H|$$
 - # heads, $|T|$ - # tails

14

Bernoulli distribution – reexamined

$$P(\boldsymbol{D}|\theta_{\mathbf{y}}) = p_{\mathbf{y}}^{|H|} (1-p_{\mathbf{y}})^{|T|} |\mathbf{H}|$$
 - # heads, $|\mathbf{T}|$ - # tails

More rigorously: in K trials, $side_k = \begin{cases} 0 & \text{if tails on flip k} \\ 1 & \text{if heads on flip k} \end{cases}$ $P(\mathbf{D}|\theta_y) = \prod_{k} p_y^{side_k} (1 - p_y)^{(1 - side_k)}$

15

Multinomial example

4-sided die – 4 probabilities:

$$p_{\text{side1}}, p_{\text{side2}}, p_{\text{side3}}, p_{\text{side4}}$$
 (Note: $p_{\text{side4}} = 1 - \sum_{k=1}^{3} p_{\text{sidek}}$)

Define:
$$\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & otherwise \end{cases}$$

$$P(\mathbf{D}|\theta_y) = \prod_{k} p_{side1}^{\delta(side_k-1)} p_{side2}^{\delta(side_k-2)} p_{side3}^{\delta(side_k-3)} p_{side4}^{\delta(side_k-4)}$$

Optimization: finding the maximum likelihood parameter for a fixed class (fixed coin)

$$\mathop{\rm argmax}_{\theta} P(\pmb{D}|\theta_y) = p_y \text{- probability of Head}$$

$$\mathop{\rm argmax}_{p} p_y^{|H|} \big(1-p_y\big)^{|T|}$$

Equivalently, maximize $\log P(\boldsymbol{D}|\theta_y)$ argmax $|H|\log p_y + |T|\log (1-p_y)$

18

The properties of logarithms

Convenient when dealing with small probabilities

• $0.0000454 \times 0.000912 = 0.0000000414 \rightarrow -10 + -7 = -17$

19

Optimization: finding zero slope

Location of maximum has slope 0

p - probability of Head

maximize $\log P(\boldsymbol{D}|\theta)$

 $\underset{p}{\operatorname{argmax}} |H| \log p + |T| \log(1-p):$

$$\frac{d}{dp}|H|\log p + |T|\log(1-p) = 0$$

$$\frac{|H|}{p} - \frac{|T|}{1-p} = 0$$

.

Intuition of the MIF result

$$p_{\mathcal{Y}} = \frac{|H|}{|H| + |T|}$$

• Probability of getting heads is # heads divided by # total flips

Finding the maximum a posteriori

- $P(\theta_y|\mathbf{D}) \propto P(\mathbf{D}|\theta_y)P(\theta_y)$
- Incorporating the Beta prior:

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

 $\underset{\theta}{\operatorname{argmax}} P(D|\theta_y) P(\theta_y) = \\ \underset{\theta}{\operatorname{argmax}} \log P(D|\theta_y) + \log P(\theta_y)$

Example Beta distributions $\alpha = 0.5, \quad \beta = 0.5$ $\alpha = 2, \quad \beta = 5$

25

MAP: estimating θ (estimating p)

$$\underset{\theta}{\operatorname{argmax}} \log P(D|\theta) + \log P(\theta)$$

$$\underset{\sim}{\operatorname{argmax}} |H| \log p + |T| \log(1-p) +$$

$$(\alpha-1)\log p + (\beta-1)\log(1-p) - \log(\mathsf{B}(\alpha,\beta))$$

↓ Set derivative to 0

$$\frac{|H|}{p} - \frac{|T|}{1-p} + \frac{(\alpha - 1)}{p} - \frac{(\beta - 1)}{1-p} = 0$$

$$(1-p)|H|-p|T|+(1-p)(\alpha-1)-p(\beta-1)=0$$

$$|H| + (\alpha - 1) = (|H| + |T| + (\alpha - 1) + (\beta - 1))p$$

Intuition of the MAP result

$$p_{y} = \frac{|H| + (\alpha - 1)}{|H| + (\alpha - 1) + |T| + (\beta - 1)}$$

- Prior has strong influence when |H| and |T| small
- Prior has weak influence when |H| and |T| large
- $\alpha > \beta$ means expect to find coins biased to heads
- $oldsymbol{eta} > lpha$ means expect to find coins biased to tails

Multinomial distribution Classification

• What is mood of person in current minute? M={Happy, Sad}

• Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Data (**D**): {LLJLCY, JJLYJL, CCLLLJ, JJJJJJ}

Bias (θ_{ν}) : Probability table

	Нарру	Sad
Cry	0.1	0.5
Jump	0.3	0.2
Laugh	0.5	0.1
Yell	0.1	0.2

$$P(\boldsymbol{D}|\theta_{y}) = \left(p_{y}^{\mathit{Cry}}\right)^{|\mathit{Cry}|} \left(p_{y}^{\mathit{Jump}}\right)^{|\mathit{Jump}|} \left(p_{y}^{\mathit{Laugh}}\right)^{|\mathit{Laugh}|} \left(p_{y}^{\mathit{Yell}}\right)^{|\mathit{Yell}|}$$

28

Multinomial distribution – reexamined

$$P(\boldsymbol{D}|\boldsymbol{\theta}_{y}) = \left(p_{y}^{Cry}\right)^{|Cry|} \left(p_{y}^{Jump}\right)^{|Jump|} \left(p_{y}^{Laugh}\right)^{|Laugh|} \left(p_{y}^{Yell}\right)^{|Yell|}$$

More rigorously: in K measures,

$$\delta(trial_k = Action) = \begin{cases} 0 & \text{if } trial_k \neq Action \\ 1 & \text{if } trial_k = Action \end{cases}$$

$$P(\mathbf{D}|\theta_{\mathbf{y}}) = \prod_{k} \prod_{i} \left(p_{\mathbf{y}}^{\text{Action}_{i}} \right)^{\delta(trial_{k} = \text{Action}_{i})}$$

Classification: Given known likelihoods for each action, find mood that maximizes likelihood of observed sequence of actions (assuming each action is independent in the sequence)

Learning parameters

MLE:
$$P(A = a_i | M = m_j) = p_j^i = \frac{\#D\{A = a_i \land M = m_j\}}{\#D\{M = m_j\}}$$

MAP:
$$P(A = a_i | M = m_j) = \frac{\#D(A = a_i \land M = m_j) + (\gamma_i - 1)}{\#D(M = m_j) + \sum_k (\gamma_k - 1)}$$

 γ_k is prior probability of each action class a_k

$$P(Y = y_j) = \frac{\#D(M = m_j) + (\beta_j - 1)}{|D| + \sum_m (\beta_m - 1)}$$

 β_k is prior probability of each mood class m_k

Multiple multi-variate probabilities Sad Happy Mood based on Action, Tunes, Cry, Jazz, Sun 0.003 0.102 Weather Cry, Jazz, Rain 0.024 0.025 $\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(A, T, W | \boldsymbol{\theta}_{y})$ Cry, Rap, Snow 0.011 0.115 How many entries in probability Laugh, Rap, Rain 0.042 0.007 table? Yell, Opera, Wind 0.105 0.052

Naïve bayes: Assuming independence of input features					Нарру	Sad
			J	azz	0.05	0.4
			R	lap	0.5	0.3
			C	nera		ΛZ
$\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(A, T, W \boldsymbol{\theta}_{y}) = \\ \operatorname{argmax} P(A \boldsymbol{\theta}_{y}) P(T \boldsymbol{\theta}_{y}) P(W \boldsymbol{\theta}_{y})$					Нарру	Sad
				Sun	0.6	0.2
				Rain	0.05	0.3
				Snow	0.3	0.3
How many entries in		Нарру	Si	Wind	0.05	0.2
	Cry	0.1	0.	5		
probability tables?	Jump	0.3	0.2 0.1 0.2			
	Laugh	0.5				
	Yell	0.1				37

Benefits of Naïve Bayes

Very fast learning and classifying:

- For multinomial problem:
 - Naïve independence: learn $|Y| \times \sum_{i} (|X_{i}| 1)$ parameters
 - Non-naı̈ve: learn $|Y| \times (\prod_i |X_i| 1)$ parameters

Often works even if features are NOT independent

|Y| is number of possible classes

 $|X_i|$ is number of possible values for ith feature

Typical Naïve Bayes classification

$$\underset{\boldsymbol{\theta}_y}{\operatorname{argmax}} P(\boldsymbol{\theta}_y | \boldsymbol{D}) \to \underset{\boldsymbol{\theta}_y}{\operatorname{argmax}} P(\boldsymbol{D} | \boldsymbol{\theta}_y) P(\boldsymbol{\theta}_y) \qquad P(\boldsymbol{\theta}_y) \text{ prior class probability}$$

$$P(\mathbf{D}|\mathbf{\theta}_y) = \prod_i P(X^i|\mathbf{\theta}_y)$$
 where $\mathbf{D} = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix}$ is a list of feature values e.g., \mathbf{x}^1 =Action, \mathbf{x}^2 =Tunes

NB (Naïve Bayes): Find class y with θ_{v} to maximize $P(\theta_{v}|D)$

Multi-dimensional probability functions

- Multiple features as vector: $\mathbf{x} = \begin{bmatrix} temperature \\ windSpeed \\ musicVolume \end{bmatrix}$
- In 1D: likelihood P(temperature | mood)

$$L = \frac{\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)}{\sigma\sqrt{2\pi}}$$

• In 2D: likelihood $P\left(\begin{bmatrix}temp\\wind\end{bmatrix} \mid mood\right)$

$$L = \frac{\exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^2 |\boldsymbol{\Sigma}|}}$$

Multi-dimensional Gaussian – Naïve

• In 2D: likelihood $P\left(\begin{bmatrix} temp \\ wind \end{bmatrix} | mood \right)$

$$L = \frac{\exp\left(-\frac{1}{2}(x-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^2 |\boldsymbol{\Sigma}|}}$$

$$\bullet \, \pmb{\varSigma} = \begin{bmatrix} \sigma_{temp}^2 & \sigma_{temp} \sigma_{wind} \\ \sigma_{temp} \sigma_{wind} & \sigma_{wind}^2 \end{bmatrix}$$

 $\sigma_{temp}\sigma_{wind}=0$

Multi-dimensional Gaussian – Non-naive

• In 2D: likelihood $P\left(\begin{bmatrix}temp\\wind\end{bmatrix} \mid mood\right)$

$$\Sigma = \begin{bmatrix} \sigma_{temp}^2 & \sigma_{temp}\sigma_{wind} \\ \sigma_{temp}\sigma_{wind} & \sigma_{wind}^2 \end{bmatrix}$$

Gaussian parameter counts

For k dimensions

- Naïve: $\mathbf{k} + \mathbf{k} \approx 2k$ parameters
- Non-naı̈ve: $k + \frac{k(k-1)}{2} \approx \frac{k^2}{2}$

$$\bullet \mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_1 \sigma_k \\ \vdots & \ddots & \vdots \\ \sigma_1 \sigma_k & \cdots & \sigma_k^2 \end{bmatrix}$$