

19CSE435: Computer Vision

Image formation: Photometry

Adopted from Computer Vision Textbook and course materials R_Szeliski

Image Formation

Digital Camera

The Eye

- Point light source
- Area light source
- Environment map

Point and area light sources

https://blog.demofox.org/2017/07/01/why-are-some-shadows-soft-and-other-shadows-hard/https://cg-masters.com/nicks-rants-and-raves/contact-shadows-cast-shadows-myth/

Environment map

$$L(\hat{\boldsymbol{v}};\lambda),$$

http://www.sparse.org/3d.html

2.2.2 Reflectance and Shading

- Specular reflection
- Diffuse reflection
- Oren-Nayar
- Phong shading
 - ambient illumination
 - Phong formula
- BRDF
- Isotropic vs anisotropic
- Global illumination
- Photon's life choices

Specular reflection

Specular reflection direction for light source $i = deterministic function of incoming light direction <math>v_i$ and normal n:

$$\boldsymbol{\hat{s}}_i = \boldsymbol{v}_{\parallel} - \boldsymbol{v}_{\perp} = (2\boldsymbol{\hat{n}}\boldsymbol{\hat{n}}^T - \boldsymbol{I})\boldsymbol{v}_i$$

Photo Carol Highsmith/LOC

Diffuse Reflection

- Lambertian
- Oren-Nayar
- Fully general: BRDF

Lambertian Reflectance Model

Surface normal n
Direction of illumination s

$$k_d(\lambda) \sum_i L_i(\lambda) [\hat{\boldsymbol{v}}_i \cdot \hat{\boldsymbol{n}}]^+$$

A Lambertian sphere

Commonly used in computer vision and computer graphics

Foreshortening

The diminution of returned light caused by foreshortening depends on $\hat{v}_i \cdot \hat{n}$, the cosine of the angle between the incident light direction \hat{v}_i and the surface normal \hat{n} .

Confusion around Lambert's cosine law

Figure: 1. The mental images corresponding to the two descriptions of Lambertian surfaces.

number of points (surface area) seen by a radiometer $\sim 1/\cos\theta$

Figure: 2. Resolution of the paradoxical statements about how Lambertian surfaces reflect light. png

n-Nayar Reflectance Model

Moon is a counter-example! Roughness of surface makes that more light is reflected back to the viewer than expected under a Lambertian model.

http://www1.cs.columbia.edu/CAVE/projects/oren/oren.php

Phong Reflectance Model

Combines diffuse (Lambertian) and specular lobe

 $k_a(\lambda)L_a(\lambda)+$ frequently with "ambient" component

$$k_d(\lambda) \sum_i L_i(\lambda) [\hat{\boldsymbol{v}}_i \cdot \hat{\boldsymbol{n}}]^+ + k_s(\lambda) \sum_i L_i(\lambda) (\hat{\boldsymbol{v}}_r \cdot \hat{\boldsymbol{s}}_i)^{k_e}$$
 diffuse specular

 $k_d = 0.3, k_s = 0.7, k_e = 2$

 k_d =0.7, k_s =0.3, k_e =0.5

Based on slide by loannis

Stamos

Figure 2.15: (a) Light scattering when hitting a surface. (b) The bidirectional reflectance distribution function (BRDF) $f(\theta_i, \phi_i, \theta_r, \phi_r)$ is parameterized by the angles the incident \hat{v}_i and reflected \hat{v}_r light ray directions make with the local surface coordinate frame $(\hat{d}_x, \hat{d}_y, \hat{n})$.

For an isotropic material, we can simplify the BRDF to

$$f_r(\theta_i, \theta_r, |\phi_r - \phi_i|; \lambda)$$
 or $f_r(\hat{\boldsymbol{v}}_i, \hat{\boldsymbol{v}}_r, \hat{\boldsymbol{n}}; \lambda)$,

While light is scattered uniformly in all directions, i.e., the BRDF is constant,

$$f_d(\hat{\boldsymbol{v}}_i, \hat{\boldsymbol{v}}_r, \hat{\boldsymbol{n}}; \lambda) = f_d(\lambda),$$

2.2.3 Optics

Pinhole size / aperture

How does the size of the aperture affect the image we'd get?

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

Adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Pinhole vs. lens

Thin lens model

$$\frac{1}{z_o} + \frac{1}{z_i} = \frac{1}{f}$$

- In a camera, we can adjust image plane to be at z_i
- If $z_i == f$, focus is at infinity
- If we increase zi > f, we bring the focal plane back from infinity.
 - E.g.: $z_i == 102$ mm, f == 100mm $=> z_o == 5$ m

Focus and depth of field

The smaller the aperture (area that lets light through), the more a lens behaves as a pinhole, the more everything is in focus.

Phones: fake "depth of field" with deep learning and stereo ©

Image Formation

2.1	Geome	etric primitives and transformations	
	2.1.1	Geometric primitives	
	2.1.2	2D transformations	
	2.1.3	3D transformations	
	2.1.4	3D rotations	
	2.1.5	3D to 2D projections	
	2.1.6	Lens distortions	
2.2	Photon	netric image formation	
	2.2.1	Lighting	
	2.2.2	Reflectance and shading	
	2.2.3	Optics	
2.3	The dig	gital camera	
	2.3.1	Sampling and aliasing	
	2.3.2	Color	
	2.3.3	Compression	
2.4	Additio	onal reading	
2.5	Exercises		

2.3.0 Human Vision (not in book)

The human eye is a pinhole camera!

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

The Retina

https://www.youtube.com/watch?v=L_W-IXqoxHA

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Averted vision: http://en.wikipedia.org/wiki/Averted_vision

Electromagnetic Spectrum

Human Luminance Sensitivity Function

The Physics of Light

Some examples of the spectra of light sources

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Physiology of Color Vision

Three kinds of cones:

- Why are M and L cones so close?
- Why are there 3?

Tetrachromatism

- Most birds, and many other animals, have cones for ultraviolet light.
- Some humans, mostly female, seem to have slight tetrachromatism.

More Spectra

2.3 The Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types:
 - Charge Coupled Device (CCD)
 - CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

The sensing pipeline

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

2.3.1 Samnling and Aliacing

Violation of Shannon's sampling theorem: $f_s \ge 2 f_{max}$

$$f = 3/4$$
 $f = 5/4$

Rolling Shutter

2.3.2 Color: the Bayer grid

Estimate RGB at 'G' cells from neighboring values

Color Image

Images in Matlab Python

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - -im(0,0,0) = top-left pixel value in R-channel
 - -im(y, x, b) = y pixels down, x pixels to right in the b^{th} channel
 - -im(N-1, M-1, 2) = bottom-right pixel in B-channel

	col	um	n							\Rightarrow						
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
- 1	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	ı G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91	l		_
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	<u> </u>	I	B
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	
•	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	
			="		0.05	0.75	0.50	0.00	0.45	0.72	0.77	0.75	0.71	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

Color spaces

• How can we represent color?

Additive color mixing

Colors combine by adding color spectra

Light *adds* to existing black.

Subtractive color mixing

Pigments *remove* color from incident light (white).

Color spaces: RGB

Default color space

Some drawbacks

- Strongly correlated channels
- Non-perceptual

R (G=0,B=0)

G (R=0,B=0)

B (R=0,G=0)

Color spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

V (H=1,S=0)

Color gamut

Color spaces: YCbCr

Fast to compute, good for compression, used by TV

Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

Color spaces: L*a*b*

"Perceptually uniform" color space

(a=0,b=0)

a (L=65,b=0)

b (L=65,a=0)

If you had to choose, would you rather go without luminance or chrominance?

If you had to choose, would you rather go without luminance or chrominance?

Most information in intensity

Only color shown – constant intensity

Most information in intensity

Only intensity shown – constant color

Most information in intensity

Original image

AMRITAVISHWA VIDYAPEETHAM

2.3.3 Compression

Figure 2.33 Image compressed with JPEG at three quality settings. Note how the amount of block artifact and high-frequency aliasing ("mosquito noise") increases from left to right.

Gamma correction

Power-law transformations
$$S = C(r + \varepsilon)^{\gamma}$$
 $S = Cr^{\gamma}$

- - maps'a narrow range of dark input values into a wider range of output maps a narrow range of bright input values into a wider values, while range of output values
- : gamma, gamma correction

Perceived (linear) brightness	=	0.0			0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
Physical (linear) brightness	=	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Monitor,

a b c d

FIGURE 3.7

(a) Intensity ramp image. (b) Image as viewed on a simulated monitor with a gamma of 2.5. (c) Gamma-corrected image. (d) Corrected image as viewed on the same monitor. Compare (d) and (a).

FIGURE 3.8 (a) Magnetic resonance (MR) image of a fractured human spine. (b)–(d) Results of (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4$, and 0.3, respectively. (Original image for this example courtesy of Dr. David R. Pickens, David R. Pickells,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0,$ and 5.0, respectively. (Original image for this example courtesy of NASA.)

