# Sprawozdanie z ćwiczeń laboratoryjnych nr 8 Tablice z haszowaniem

Kacper Kafara nr grupy 9 śr. 14:40

 $14~\mathrm{maja}~2020$ 

### 1 Zadanie

Zgodnie z "Instrukcją do ćwiczeń laboratoryjnych":

- Porównanie czasów wykonania oraz liczby kolizji w algorytmach haszowania otwartego dla różnych danych wejściowych.
- Pomiar czasu wykonania algorytmu haszowania łańcuchowego dla różnych danych wejściowych.

### 2 Metodologia

- Do pomiaru czasu wykonania algorytmów wykorzystana została funkcja clock\_t clock().
- Pomiar czasu wykonania algorytmów opierał się na:
  - wygenrerowaniu bazy danych (o zadanym rozmiarze n) złożonej z rekordów [name, number]
  - -wygenerowaniu sekwencji kzapytań (add / remove / get) oraz numerów rekordów do których odnosi się poszczególne zapytanie
  - 100-krotnym pomiarze czasu wykonania wszystkich 3 algorytmów (każdy pomiar dla tej samej bazy danych, ale za każdym razem generowana nowa kelementowa sekwencja zapytań)
  - za czas wykonania algorytmu przyjęta została średnia arytetyczna ze wszystkich 100 prób.
- Liczba kolizji to podobnie  $\lfloor srednia arytmetyczna z liczby kolizji \rfloor$ .

## 3 Rezultaty

W dalszej części sprawozdania zamieszona została seria wykresów czasu wykonania t ([t] = s) poszczególnych algorytmów haszowania w zależności od liczby zapytań przy ustalonej wielkości bazy danych oraz - w przypadku haszowania otwartego - także wykresy ilości kolizji od ilości zapytań. W lewym górnym rogu każdego z wykresów znajdziemy rozmiar bazy danych n dla którego były wykonywane pomiary. Na osi poziomej liczba zapytań k. Dla każdego n zostały wybrane 3 liczby zapytań: znacznie mniejsza od rozmiaru bazy, nieco mniejsza niż rozmiar bazy oraz przewyższająca rozmiar bazy.

### 3.1 Haszowanie otwarte

Kolorami oznaczone rodzaje haszowania otwartego.

### Wielkość bazy n == 3000



Rysunek 1: czas(ilość\_zapytań), n=3000

### Wielkość bazy n == 5000



Rysunek 2: czas(ilość\_zapytań), n=5000

### Wielkość bazy n == 10000



Rysunek 3: czas(ilość\_zapytań), n=10000

### Wielkość bazy n == 3000



Rysunek 4: ilość\_kolizji(ilość\_zapytań), n=3000

### Wielkość bazy n == 5000



Rysunek 5: ilość\_kolizji(ilość\_zapytań), n=5000

### Wielkość bazy n == 10000



Rysunek 6: ilość\_kolizji(ilość\_zapytań), n=10000

### 3.2 Haszowanie łańcuchowe



Rysunek 7: czas(ilość\_zapytań), n=3000



Rysunek 8: czas(ilość\_zapytań), n = 5000

# Wielkość bazy n == 10000 0,005 0,004 0,003 0,002 0,001 0,000 4000 9000 15000

Rysunek 9: czas(ilość\_zapytań), n = 10000

llość zapytań (k)

### 4 Wnioski

### 4.1 Haszowanie otwarte

- Metoda z adresowaniem kwadratowym wydaje się być szybsza dla stosunkowo małych baz danych oraz liczby zapytań niższej niż mocy całego uniwersum kluczy. Rzadko jednak wiemy jak liczny jest zbiór wszystkich możliwych kluczy ⇒ metoda z adresowaniem mieszanym obciążona jest mniejszym ryzykiem gwałtownego wzrostu czasu wykonania.
- Adresowanie mieszane daje znacznie bardziej stabilne rezultaty niż adresowanie kwadratowe.
- Adresowanie mieszane prowadzi do znacznie mniejszej ilości kolizji (a w takim razie mamy mniej tracenia czasu na dodatkowe obliczenia), szczególnie gdy ilość zapytań zbliża się do mocy uniwersum kluczy lub go przewyższa.
- ullet Widzimy, że adresowanie kwadratowe w pewnych przypadkach z pewnością nie działa w czasie stałym. (Można popatrzeć na bardzo zmienny stosunek czasu wykonania algorytmu od ilości zapytań, szczególnie dla k>>n.

### 4.2 Haszowanie łańcuchowe

- Dla losowych (pseudolosowych) danych daje czasy zbliżone do adresowania mieszanego.
- Jeżeli popatrzymy na stosunek czasu wykonania algorytmu do liczby zapytań to możemy zauważyć że jest on w przybliżeniu stały ( $\simeq 0,24*10^{-6}$ )dla różnych n i k, co odróżnia ten algorytm od algorytmu z adresowaniem kwadratowym.