```
In [1]:
        import pandas as pd
         import statistics as st
         import matplotlib.pyplot as plt
         import seaborn as sns
         df = pd.read_csv('titanic (1).csv')
In [2]:
         df.head(2)
         df.tail(2)
Out[2]:
              Passengerld Survived Pclass
                                                            Sex Age SibSp Parch
                                                                                    Ticket
                                                                                           Fare Cabin Embarked
                                                     Name
          889
                      890
                                          Behr, Mr. Karl Howell
                                                            male 26.0
                                                                          0
                                                                                   111369
                                                                                           30.00
                                                                                                  C148
                                                                                                              С
          890
                      891
                                0
                                                                                                              Q
                                       3
                                            Dooley, Mr. Patrick male 32.0
                                                                          0
                                                                                   370376
                                                                                            7.75
                                                                                                  NaN
In [3]: df.shape
```

Exploratory Data Analysis

```
In [4]: df.dtypes
Out[4]: PassengerId
                          int64
        Survived
                          int64
        Pclass
                          int64
                         object
        Name
                         object
        Sex
        Age
                        float64
        SibSp
                          int64
        Parch
                          int64
        Ticket
                         object
        Fare
                        float64
        Cabin
                         object
        Embarked
                         object
        dtype: object
```

Out[3]: (891, 12)

In [5]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
```

Data	COTUMNIS (COC	ar iz corumns).						
#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
dtype	es: float64(2), int64(5), obj	ect(5)					
memory usage: 83.7+ KB								

In [6]: |df.describe(include='all')

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.000000	891	891.000000	204	889
unique	NaN	NaN	NaN	891	2	NaN	NaN	NaN	681	NaN	147	3
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	NaN	347082	NaN	B96 B98	S
freq	NaN	NaN	NaN	1	577	NaN	NaN	NaN	7	NaN	4	644
mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381594	NaN	32.204208	NaN	NaN
std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806057	NaN	49.693429	NaN	NaN
min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000000	NaN	0.000000	NaN	NaN
25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000000	NaN	7.910400	NaN	NaN
50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000000	NaN	14.454200	NaN	NaN
75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000000	NaN	31.000000	NaN	NaN
max	891.000000	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000000	NaN	512.329200	NaN	NaN

In [7]: df.corr()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

```
In [8]: df.isnull().sum()
```

Out[8]: PassengerId 0 Survived 0 Pclass Name Sex 177 Age SibSp Parch Ticket Fare Cabin 687 Embarked 2 dtype: int64

In [9]: | df['Age'].hist()

Out[9]: <AxesSubplot:>

In [10]: sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1e7e0506f50>

In [11]: sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[11]: <AxesSubplot:>

13/07/2022, 05:34 exam - Jupyter Notebook

In [12]: sns.heatmap(df.corr())

Out[12]: <AxesSubplot:>


```
In [13]: sns.countplot(x='Survived',data=df)
```

Out[13]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [14]: sns.boxplot(x='Pclass', y='Age', data =df)
```

Out[14]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

data wrengling:- cleaning data

Out[15]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [16]: df.dropna(inplace=True)
    df.isnull().sum()
```

Out[16]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex Age SibSp Parch Ticket Fare 0 Cabin 0 Embarked dtype: int64

```
In [17]: df.dtypes
Out[17]: PassengerId
                          int64
         Survived
                          int64
         Pclass
                          int64
                         object
         Name
         Sex
                         object
                        float64
         Age
         SibSp
                          int64
         Parch
                          int64
         Ticket
                         object
         Fare
                        float64
         Cabin
                         object
         Embarked
                         object
         dtype: object
In [18]: df.corr()
Out[18]:
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	0.148495	-0.089136	0.030933	-0.083488	-0.051454	0.029740
Survived	0.148495	1.000000	-0.034542	-0.254085	0.106346	0.023582	0.134241
Pclass	-0.089136	-0.034542	1.000000	-0.306514	-0.103592	0.047496	-0.315235
Age	0.030933	-0.254085	-0.306514	1.000000	-0.156162	-0.271271	-0.092424
SibSp	-0.083488	0.106346	-0.103592	-0.156162	1.000000	0.255346	0.286433
Parch	-0.051454	0.023582	0.047496	-0.271271	0.255346	1.000000	0.389740
Fare	0.029740	0.134241	-0.315235	-0.092424	0.286433	0.389740	1.000000

In [19]: df.drop(['PassengerId','Ticket','Cabin','Name'],axis=1,inplace=True)

In [20]: df

Out[20]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
1	1	1	female	38.0	1	0	71.2833	С
3	1	1	female	35.0	1	0	53.1000	S
6	0	1	male	54.0	0	0	51.8625	S
10	1	3	female	4.0	1	1	16.7000	S
11	1	1	female	58.0	0	0	26.5500	S
871	1	1	female	47.0	1	1	52.5542	S
872	0	1	male	33.0	0	0	5.0000	S
879	1	1	female	56.0	0	1	83.1583	С
887	1	1	female	19.0	0	0	30.0000	S
889	1	1	male	26.0	0	0	30.0000	С

183 rows × 8 columns

In [21]: df

Out[21]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
1	1	1	female	38.0	1	0	71.2833	С
3	1	1	female	35.0	1	0	53.1000	S
6	0	1	male	54.0	0	0	51.8625	S
10	1	3	female	4.0	1	1	16.7000	S
11	1	1	female	58.0	0	0	26.5500	S
871	1	1	female	47.0	1	1	52.5542	S
872	0	1	male	33.0	0	0	5.0000	S
879	1	1	female	56.0	0	1	83.1583	С
887	1	1	female	19.0	0	0	30.0000	S
889	1	1	male	26.0	0	0	30.0000	С

183 rows × 8 columns

```
import numpy as np
outlier = []
def detect_z(data):
    thres = 3
    mean = np.mean(data)
    std = np.std(data)

for i in data:
    z = (i-mean)/std
    if (np.abs(z) > thres):
        outlier.append(i)
    print(outlier)

detect_z(df['Fare'])
```

[512.3292, 512.3292]

In [23]: sns.boxplot(df['Fare'])

C:\python314\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[23]: <AxesSubplot:xlabel='Fare'>


```
In [24]: for i in df.index:
    if df.loc[i,'Fare']>150:
        df.drop(i, inplace=True)
```

```
In [25]: sns.boxplot(df['Fare'])
print(df.shape)
```

(160, 8)

C:\python314\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

change datatype

```
In [26]: # df['Embarked'] = df['Embarked'].astype(int)
```

replace str with null

```
In [27]: # df['Embarked'] = df['Embarked'].replace('C', np.nan)
# df.dropna(inplace=True)
```

algorithm apply

```
In [28]: from sklearn.preprocessing import LabelEncoder
df1 = df.copy()
e1 = LabelEncoder()
e2 = LabelEncoder()

df1.Sex = e1.fit_transform(df1.Sex)
df1.Embarked = e2.fit_transform(df1.Embarked)
```

Out[28]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
1	1	1	0	38.0	1	0	71.2833	0
3	1	1	0	35.0	1	0	53.1000	2
6	0	1	1	54.0	0	0	51.8625	2
10	1	3	0	4.0	1	1	16.7000	2
11	1	1	0	58.0	0	0	26.5500	2
871	1	1	0	47.0	1	1	52.5542	2
872	0	1	1	33.0	0	0	5.0000	2
879	1	1	0	56.0	0	1	83.1583	0
887	1	1	0	19.0	0	0	30.0000	2
889	1	1	1	26.0	0	0	30.0000	0

160 rows × 8 columns

```
In [29]: df = df1
         df.dtypes
Out[29]: Survived
                        int64
         Pclass
                        int64
                        int32
         Sex
                     float64
         Age
         SibSp
                        int64
         Parch
                        int64
         Fare
                      float64
         Embarked
                        int32
         dtype: object
In [30]: # X = df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']]
         X = df.drop('Survived', axis=1)
         y = df['Survived']
In [31]: from sklearn.model selection import train test split
In [32]: X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=.30,random_state=5)
In [33]: # from sklearn.linear_model import LinearRegression
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.linear_model import LogisticRegression
In [34]: T = LogisticRegression()
```

```
In [35]: |T.fit(X train,y train)
                                      #train dataset
         C:\python314\lib\site-packages\sklearn\linear model\ logistic.py:814: ConvergenceWarning: lbfgs failed to conv
         erge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/prepro
         cessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit-learn.org/st
         able/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[35]: LogisticRegression()
In [36]: pred = T.predict(X test)
                                        #predict by
                                                        x test
In [37]: pred
Out[37]: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
                1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
               1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,
                1, 1], dtype=int64)
In [38]: from sklearn.metrics import classification report, accuracy score, confusion matrix
In [39]: print(classification report(y test,pred))
                                                       #y test use
                      precision
                                   recall f1-score
                                                     support
                           0.65
                                     0.50
                                               0.56
                                                          40
                   0
                           0.75
                                     0.85
                                              0.80
                                                          72
                   1
                                               0.72
                                                         112
             accuracy
                                               0.68
                                                         112
            macro avg
                           0.70
                                     0.67
                                     0.72
                                               0.71
                                                         112
         weighted avg
                           0.71
```