

Jesús Fuentes ¹ Jorge Gonçalves ^{1,2}

¹Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux L-4367, Luxembourg

²Department of Plant Sciences, Cambridge University, Cambridge CB2 3EA, United Kingdom

Classical Motion

For a harmonic potential $V(\mathbf{x}) = \frac{\alpha}{2m}\mathbf{x}^2$ and constant external forces \mathbf{F} in the Ox and Oy directions, the Hamilton's equations of motion for the system

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{m} \begin{pmatrix} p_x + \beta y \\ p_y - \beta x \end{pmatrix}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} p_x \\ p_y \end{pmatrix} = \frac{1}{m} \begin{pmatrix} \beta p_y - \tilde{\beta}^2 x \\ -\beta p_x - \tilde{\beta}^2 y \end{pmatrix} + \begin{pmatrix} F_x \\ F_y \end{pmatrix}, \tag{1}$$

where $\beta:=eB/2c$, $\tilde{\beta}^2:=\beta^2+\alpha$ and $\omega=2\beta/m$ is the cyclotron frequency.

Figure 1. Exact solution to Eqs. (1) for a charged particle with initial conditions $x=y=0, p_x=3/2, p_y=0$. The particle moves in an elastic field $\beta=3$, the strength of the harmonic potential $\alpha=2$ and $F_x=0, F_y=1$.

Learning and reconstructing the classical motion

Figure 2. Learning classical orbits from noisy data through model (2). (a) Noisy data in the interval of integration $t \in [0, 5]$. (b) Learned portion of orbit through model (2). (c) Long-term prediction using model (2) in the interval of integration $t \in [0, 20]$, which closes the loop.

Quantum motion in magnetic ion-traps

The matrix b(t) forms a symplectic algebra and satisfies the evolution equation (see [2,3]):

$$\frac{\mathrm{d}b(t)}{\mathrm{d}t} = \Lambda(t)b(t); \quad \Lambda(t) = \begin{pmatrix} 1\\ -\beta^2(t) \end{pmatrix}, \tag{3}$$

a possible parameterisation of this equation is:

$$\frac{\mathrm{d}b(t)}{\mathrm{d}t} = \begin{pmatrix} b_{21}(t) & b_{22}(t) \\ -G_1(b_{11}(t), \beta(t)) & -G_2(b_{12}(t), \beta(t)) \end{pmatrix}. \tag{4}$$

Figure 3. Left panel: Ince-Strutt diagram of the parameter space spanned by $\{\beta_1,\beta_2\}$. The clear areas (coloured) areas correspond to stable (unstable) motion. Right panel: Numerical solution to the Heisenberg's evolution problem (Mielnik's evolution loop). The quantum particle has initial conditions $x=y=0, p_x=10, p_y=-5$ and recovers its basal state after 25 cycles. The elastic potential is in the stability region, $\beta(t)=\beta_1+\beta_2\sin(\omega t)$. In the example, $(\beta_1,\beta_2)=(-1,1)$.

Learning quantum dynamics

Figure 4. Reconstruction of fuzzy orbits using the symplectic model (4). (a) Noisy data corresponding to the eigenvalues of the position operators X and Y. (b) The parameterisation allows to learn from noisy data and reconstruct a portion of the fuzzy orbits. (c) Long-term prediction using the oscillatory model (4). The parameters β_1 and β_2 could be identified from the learning data leading to stable motion.

References

- 1 C. Rackauckas et al., *Universal Differential Equations for Scientific Machine Learning*, arXiv:2001.04385 (2021).
- 2 J. Fuentes, Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields, Sci. Rep. 10, 22256 (2020).
- 3 B. Mielnik & A. Ramírez, *Ion traps: some semiclassical observations*, Phys. Scr. 82 055002 (2010).
- * Code available on https://github.com/fuentesigma/cyclotronReconstruction