

Análisis Numérico / Métodos Matemáticos y Numéricos (75.12/95.04/95.13)

Aproximación de funciones

Interpolación

¿A qué llamamos Interpolación?

- Método de aproximación de funciones con igual cantidad de datos que funciones aproximantes (m=n)
- Determina un polinomio único de a lo sumo grado n, que pasa por n+1 puntos dato
- $P_n(x_i) = f(x_i)$ para i = 0,1,...,n
- Interpolación ocurre dentro $(x_0, x_n) \rightarrow$ aproximamos valores de la función entre nodos

Interpolación Lineal

$$n+1=2$$
 \rightarrow puntos dato
 $n=1$ \rightarrow grados del polinomio

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

$$b_0 \qquad b_1 \equiv \text{Dif. Divididas Finitas } f'(x) = f[x_0, x_1]$$

Interpolación Cuadrática

$$n+1=3 \rightarrow puntos dato$$

 $n=2 \rightarrow grados del polinomio$

$$P_{2}(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0}) + f[x_{0}, x_{1}, x_{2}] (x - x_{0}) (x - x_{1})$$

$$b_{0} \qquad b_{1} \equiv \text{Dif. Divididas Finitas } f'(x) \qquad b_{2} \equiv \text{Dif. Divididas Finitas } f''(x)$$

Polinomio de Newton grado n:

n+1
$$\rightarrow$$
 puntos $x_0, x_1, ..., x_n$
n \rightarrow grados del polinomio

$$P_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$b_0 = f(x_0)$$

$$b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

• • •

$$b_n = f[x_0, x_1, \dots, x_{n-1}, x_n] = \frac{f[x_1, \dots, x_{n-1}, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

Ejercicio 1.1. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) = 1/x. Evaluar para f(3)

i	x_i	$f(x_i)$	n+1=2	→ Puntos
0	1	1	n=1	→ Interpolación Lineal
1	1	0.25		7 mesi polacion zinear

$$P_1(x) = b_0 + b_1(x - x_0)$$

$$b_0 = f(x_0) = f(1) = 1$$

$$b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0.25 - 1}{4 - 1} = 3$$

Ejercicio 1.1. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) = 1/x. Evaluar para f(3)

$$P_1(x) = b_0 + b_1(x - x_0)$$

$$b_0 = f(x_0) = f(1) = 1$$

$$b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0.25 - 1}{4 - 1} = 3$$

$$P_1(x) = 1 - 0.25(x - x_0)$$

Ejercicio 1.2. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) = 1/x. Evaluar para f(3)

$$P_1(x) = b_0 + b_1(x - x_0)$$

$$b_0 = f(x_0) = f(1) = 1$$

$$b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0.2 - 1}{5 - 1} = -0.2$$

$$P_1(x) = 1 - 0.2(x - x_0)$$

Ejercicio 1.2. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) = 1/x. Evaluar para f(3)

$$P_1(3)=0,5$$

 $P_1(3)=0,6$

Mejor aproximación del valor real

$$f(3) = \frac{1}{3} = 0.333...$$

Ejercicio 1.3. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) 1/x.

0,2

$$P_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0)$$

$$b_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Ejercicio 1.3. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) 1/x.

_	i	x_i	$f(x_i)$	n+1=3	→ Puntos
-	0	1	1	n=2	→ Interpolación Cuadrática
	1	4	0,25		
	2	5	0,2		

i	x_i	$f(x_i)$		$f[x_i, x_i]$	$f[x_i, x_i, x_i]$	$f[x_i, x_i, x_i, x_i]$
0	x0	f(x0)		f[x0, x1] -	f[x0, x1, x2]	f[x0, x1, x2, x3]
1	x1	f(x1)	_	f[x1, x2] f[x2, x3]	f[x1, x2, x3]	
2	x2	f(x2)	$\stackrel{\frown}{\rightarrow}$	f[x2, x3]		
3	x3	f(x3)				

Ejercicio 1.3. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) 1/x.

i	x_i	$f(x_i)$
0	1	1
1	4	0,25
2	5	0,2

n+1=3 → Puntos

n=2

→ Interpolación Cuadrática

$$P_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

i
$$X_i$$
 $f(x_i)$ $f[x_i, x_i]$ $f[x_i, x_i, x_i]$

0 1 1 $f[x_0, x_1] = \frac{0.25 - 1}{4 - 1} = -0.25$ $f[x_0, x_1, x_2] = \frac{-0.05 + 0.25}{5 - 1} = 0.05$

1 4 0.25 $f[x_1, x_2] = \frac{0.2 - 0.25}{5 - 4} = -0.05$

$$P_2(x) = 1 - 0.25(x - 1) + 0.05(x - 1)(x - 4)$$

Ejercicio 1.3. Encontrar el polinomio de Newton que interpola los siguientes puntos dados de la función f(x) 1/x.

$$(3)=0,4$$

Mejor aproximación del valor real

$$f(3) = \frac{1}{3} = 0.333...$$

$$f(x) = P_n + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n) \qquad \xi(x) \in [x_0, x_n] \text{ desconocido}$$

Expresión del error de truncamiento R_n

$$R_n = f[x_0, x_1, ..., x_n, x](x - x_0)(x - x_1) ... (x - x_n)$$

 $R_n \cong f[x_0, x_1, ..., x_n, x_{n+1}] (x - x_0)(x - x_1) ... (x - x_n)$ Dato adicional que dispongamos

Ec. de Estimación del error de truncamiento

i	x_i	$f(x_i)$
0	1	1
1	4	0,25
2	5	0,2
3	8	0,125

Estimación del error de truncamiento del polinomio de segundo grado a partir de un dato adicional

$$R_2 \cong f[x_0, x_1, x_2, x_3] (x - x_0)(x - x_1)(x - x_2)$$

$$R_2 \cong -6.25.10^{-3}(x-1)(x-4)(x-5) = -0.025$$

$$x = 3$$

$$f(x) = P_n + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n)$$
 $\xi(x) \in [x_0, x_n]$ desconocido

Expresión del error de truncamiento R_n

$$\xi(x) \to m \acute{a} x \quad f^{(n+1)}$$

$$COTA$$

 $|R_n| \le \left| \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n) \right|$

Cota del error de truncamiento

$$\xi(x) \in [x_0, x_n] \rightarrow m\acute{a}x \quad f^{(n+1)}$$

<u>i</u>	x_i	$f(x_i)$
0	1	1
1	4	0,25
2	5	0,2

$$P_2(x) = 1 - 0.25(x - 1) + 0.05(x - 1)(x - 4)$$

$$|R_2| \le \left| \frac{f^{('')}(\xi(x))}{3!} (x-1)(x-4)(x-5) \right| \qquad \xi(x) \in [1,5]$$

$$f(x) = \frac{1}{x}$$
 \rightarrow $f'''(x) = -\frac{6}{x^4}$ $\rightarrow \text{máx } |f'''(1)| = |-6|$

$$|R_2| \le \left| \frac{-6}{3!} (x-1)(x-4)(x-5) \right| = 4$$

Cota del error de truncamiento

x = 3

Interpolación de Lagrange

Es una reformulación del polinomio de Newton, por lo que los polinomios interpolantes resultantes de ambos métodos, son equivalentes.

$$P_n(x) = \sum_{i=0}^n L_i(x) \ f(x_i)$$

$$L_i(x) = \prod_{i=0, i \neq j}^{n} \frac{x - x_j}{x_i - x_j}$$

Interpolación de Lagrange

Ejercicio1.4. Encontrar el polinomio de grado 2 que pasa por los siguientes puntos utilizando la fórmula de Lagrange:

$$P_2(x) = L_0(x) f(x_0) + L_1(x) f(x_1) + L_2(x) f(x_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$P_2(x) = L_0(x) \cdot 0 + L_1(x) \cdot 1,386294 + L_2(x) \cdot 1,791759$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 4)(x - 6)}{(1 - 4)(1 - 6)} = \frac{x^2 - 10x + 24}{15}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 1)(x - 6)}{(4 - 1)(4 - 6)} = \frac{x^2 - 7x + 6}{-6}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 1)(x - 4)}{(6 - 1)(6 - 4)} = \frac{x^2 - 5x + 4}{10}$$

Interpolación de Lagrange

Ejercicio1.4. Encontrar el polinomio de grado 2 que pasa por los siguientes puntos utilizando la fórmula de Lagrange:

i	x_i	$f(x_i)$
0	1	0
1	4	1,386294
2	6	1,791759

$$P_{2}(x) = L_{0}(x) f(x_{0}) + L_{1}(x) f(x_{1}) + L_{2}(x) f(x_{2})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_{2}(x) = L_{0}(x) \cdot 0 + L_{1}(x) \cdot 1,386294 + L_{2}(x) \cdot 1,791759$$

$$P_2(x) = -0.0518731 \, x^2 + 0.7214635 \, x - 0.6695904$$

A nuestro polinomio interpolante le pedimos:

•
$$P(x_i) = f(x_i)$$
 con $i = 0,1...,n$

•
$$P^k(x_i) = f^k(x_i)$$

- En nuestra tabla repetiremos filas donde tenga el dato de la derivada k-ésima
- Utilizaremos el método de las Diferencias Finitas para interpolar

Ejercicio1.5. Utilizando el polinomio de Hermite para lo siguientes datos, calcular una aproximación de f(0,5)

$$\begin{array}{c|cccc}
i & x_i & f(x_i) & f[x_i, x_i] & f[x_i, x_i, x_i] & f[x_i, x_i, x_i, x_i] \\
0 & 0 & f(x_0) & f[x_0, x_0] & f[x_0, x_0, x_1] & f[x_0, x_0, x_1, x_1] \\
0 & 0 & f(x_0) & f[x_0, x_1] & f[x_0, x_1, x_1] \\
1 & 1 & f(x_1) & f[x_1, x_1] & f[x_0, x_0, x_1, x_1]
\end{array}$$

$$f[x_0, x_0] = \frac{f(x_0) - f(x_0)}{x_0 - x_0} \rightarrow ind$$

Ejercicio1.5. Utilizando el polinomio de Hermite para lo siguientes datos, calcular una aproximación de f(0,5)

$$\frac{i}{0} \qquad x_{i} \qquad f(x_{i}) \qquad f[x_{i}, x_{i}] \qquad f[x_{i}, x_{i}, x_{i}] \qquad f[x_{i}, x_{i}, x_{i}, x_{i}] \qquad f[x_{0}, x_{0}, x_{1}, x_{i}] \qquad f[x_{0}, x_{0}, x_{1}, x_{i}] \qquad f[x_{0}, x_{0}, x_{1}, x_{1}] \qquad f[x_{0}, x_{0}, x_{$$

Ejercicio1.5. Utilizando el polinomio de Hermite para lo siguientes datos, calcular una aproximación de f(0,5)

$$P_3(x) = f(x_0) + f'(x_0)(x - x_0) + f[x_0, x_{0,1}](x - x_0)^2 + f[x_0, x_{0,1}, x_1](x - x_0)^2(x - x_1)$$

i
$$X_i$$
 $f(x_i)$ $f[x_i, x_i]$ $f[x_i, x_i, x_i]$ $f[x_i, x_i, x_i, x_i]$

0 0 0 $f'(x_0)=1$ $\xrightarrow{\frac{3-1}{1-0}}=2$ $\xrightarrow{\frac{3-2}{1-0}}=1$

0 0 $\frac{3-0}{1-0}=3$ $\frac{6-3}{1-0}=3$

1 1 3 $f'(x_1)=6$

$$P_3(x) = 0 + 1(x - 0) + 2(x - 0)^2 + 1(x - 0)^2(x - 1)$$

Fenómeno de Runge – Polinomios de Tchebycheff

Fenómeno de Runge

- \rightarrow n>10
- → nodos equiespaciados
- →típico en funciones pares

Para grados de polinomios altos(n>10) y nodos equiespaciados, aparecen oscilaciones en el polinomio interpolante entre los nodos, aumentando el error en la aproximación de la función.

Nodos de Tchebycheff

$$t_i = \cos\left(\frac{2i+1}{n+1}\frac{\pi}{2}\right) \qquad [-1,1]$$

Fenómeno de Runge – Polinomios de Tchebycheff

Fenómeno de Runge

- \rightarrow n>10
- → nodos equiespaciados
- →típico en funciones pares

Para grados de polinomios altos(n>10) y nodos equiespaciados, aparecen oscilaciones en el polinomio interpolante entre los nodos, aumentando el error de truncamiento en la aproximación de la función.

Nodos de Tchebycheff

$$t_i = \cos\left(\frac{2i+1}{n+1}\frac{\pi}{2}\right) \qquad [-1,1]$$

$$\tilde{x}_i = a + \frac{b-a}{2} (t_i + 1) \qquad [a, b]$$

Fenómeno de Runge – Polinomios de Tchebycheff

Ejemplo. Polinomio de interpolación con abscisas de Tchebycheff

Datos

Necesitamos conocer la función f(x)

Abscisas de Tchebycheff

$$t_i = \cos\left(\frac{2i+1}{3}\frac{\pi}{2}\right) \quad [-1,1]$$

	t_i	$f(x_i)$	x_i	i
$\left(\frac{\pi}{2}\right) = 0.866$	$\cos\left(\frac{2.0+1}{3}\frac{\pi}{2}\right)$	1	0	0
$\left(\frac{\pi}{2}\right) = 0$	$\cos\left(\frac{2.1+1}{3}\frac{\pi}{2}\right)$	1,648	0,5	1
$\left(\frac{\pi}{2}\right) = -0.866$	$\cos\left(\frac{2.2+1}{3}\frac{\pi}{2}\right)$	2,718	1	2

Transformo intervalo [-1,1]
$$\rightarrow$$
 [0,1] $\tilde{x}_i = 0 + \frac{1-0}{2} (t_i + 1) [0,1]$

4	Hallo el polinomio
	interpolante con alguno
	de los métodos
	conocidos.

<u> </u>	$\widetilde{x_i}$	$f(\widetilde{x_i})$
0	0,9330	2,5421
1	0,5	1,648
2 0 Tarala Fac	0,0669	0,6928

MUCHAS GRACIAS!