B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Information Technology

IT 4502 - DIGITAL SIGNAL PROCESSING

(Regulations 2013)

Answer ALL questions.

Time: Three Hours

Maximum: 100 Marks

PART - A (10 × 2 = 20 Mark

- 1. What is a continuous and discrete time signal?
- 2. What are time invariant systems?
- Compute the DFT of the sequence s(n) = (1, 1, 1).
- Perform circular convolution of two seq (n) = (1, 2, 3) and h(n) = (4, 5, 6).
- 5. Discuss the need for prewarping.
- 6. What are the properties of Select Select
- 7. What are the properties of IR fiber?
- 8. What are the desirable compristics of the windows ?
- 9. What are the three too. Jution errors to finite word length registers in digital filters ?
- 10. What is meant by "ad band" of the filter?

18-06

11.	(a)	(i) Determine the power and energy of the signal $s(n) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} u(n)$. (ii) Determine whether the system described by the input-output relation is	(8)
		linear or non-linear y(n) = nir(n). OR	(8)
	(0)	Determine the z transform and ROC of the signal: (i) $z(n) = (n)^n u(n)$ (ii) $z(n) = \cos n\theta u(n)$	(16)
12.	(a)	Compute the DFT for the sequence (1-1, 1, 1, 1, 1, 1, 0). Using radix-2 DIT-FFT algorithm.	(16)
	(6)	In a LTI system the ing s(n) 5 D=1, 0, 1, 3, 2, 0, 1, 2, 1) and the impulse response b(n) = {1, 1, 1}. Fine soutput y(n) of the system using overlap save method.	
13.	(a)	Using Bilinear montant aution design a high pass filter monotonic in the passband with cuto frequency of 1000 Hz and down 10 dB at 350 Hz. The sampling frequency is 5000 Hz. OR	
	(b)	Described Chebyshev filter with the following specifications, using IIM $(0.00000000000000000000000000000000000$	
		$ H(e^{i\omega}) \le 0.2, 0.6\pi \le \omega \le \pi$	(16)
		2 5	7490

14. (a) Design a HPF with the following frequency response:

11,(o)0) = 1 for x/4 5 ax

= 0 for |a| ≤ 104

of length N = 11 using Hanning window.

(16)

OR

- (b) Using frequency sampling method design a bandpass filter with the following specifications; sampling frequency 8 kHz, lower cutoff frequency 1000 Hz and upper cut off frequency 3000 Hz.

 (16)
- 15. (a) Two first order filters are connected in cascaded whose system functions of the individual sections are H1 (z) = 1 / (1 0.5 z⁻¹) and (z) = 1/(1 0.4 z⁻¹). Determine the overall output noise power. (16)

OR

(b) Derive the steady state input and out or power of an analog to digital converter used in a digital signal power of an analog to digital (16)