Solutions Manual for Lawvere and Schanuel $Conceptual\ Mathematics$

Robin Adams

September 17, 2022

Contents

L	Preview	2
1	Session 1 — Galileo and Multiplication of Objects	3
Π	Part I — The category of sets	4
2	Article I — Sets, maps, composition	5
3	Session 3 — Composing maps and counting maps	6
Π	I Part II — The algebra of composition	7
4	Article II — Isomorphisms 4.1 1. Isomorphisms	8 8 9
5	Session 4 — Division of Maps: Isomorphisms 5.1 4. A small zoo of isomorphisms in other categories	11 11
6	Session 5 — Division of Maps: Sections and Retractions 6.1 1. Determination Problems 6.2 3. Choice Problems 6.3 5. Stacking or Sorting	12 12 12 12
7	Session 9 — Retracts and Idempotents 7.1 1. Retracts and Comparisons	13 13 13
8	Quiz	14
9	Summary / quiz on pairs of 'opposed' maps	15

Part I Preview

Session 1 — Galileo and Multiplication of Objects

Exercise 1 Many examples — every instance of a product in a category gives an example. I will not list them.

Exercise 2 I am not entirely sure what solution the authors had in mind. Here are some that come to my mind:

Place a spirit level between the two points and see if it reads as level.

Place a smooth plank between the two points and see if a ball placed at one point rolls to the other, or *vice versa*.

Hang a plumbline at each point and see if they form a right angle with the line joining the two points.

Of these, the third is my favourite.

Part II

Part I — The category of sets

Article I — Sets, maps, composition

```
Exercise 1 Easy.
```

Exercise 2 There are 8 maps from A to B.

Exercise 3 There are 27 maps from A to A.

Exercise 4 There are 9 maps from B to A.

Exercise 5 There are 4 maps from B to B.

Exercise 6 There are 10 such maps from A to A.

Exercise 7 There are 3 such maps from B to B.

Exercise 8 There is no such pair of maps.

Exercise 9 There are 12 such pairs of maps.

Session 3 — Composing maps and counting maps

Exercise 1 (a) and (c) make sense.

Exercise 2 (a) and (c) still make sense.

Part III

Part II — The algebra of composition

Article II — Isomorphisms

4.1 1. Isomorphisms

Exercise 1

- (R) We have $1_A \circ 1_A = 1_A$ by the Identity Laws, so 1_A is an isomorphism with inverse 1_A .
- (S) We have $g \circ f = 1_A$ and $f \circ g = 1_B$ (this is what it means for g to be an inverse for f). This says exactly that f is an inverse for g.
- (T) Let $f^{-1}: B \to A$ be an inverse for f and $k^{-1}: C \to B$ be an inverse for k. We prove $f^{-1} \circ k^{-1}$ is an inverse for $k \circ f$. We have

$$f^{-1} \circ k^{-1} \circ k \circ f = f^{-1} \circ 1_B \circ f$$
 (definition of inverse)
= $f^{-1} \circ f$ (Identity Law)
= 1_A (definition of inverse)

and $k \circ f \circ f^{-1} \circ k^{-1} = 1_C$ similarly.

Exercise 2 We have

$$g = g \circ 1_B$$
 (Identity Law)
 $= g \circ f \circ k$ (k is an inverse of f)
 $= 1_A \circ k$ (g is an inverse of f)
 $= k$ (Identity Law)

Exercise 3

(a) Let $f: A \to B$. Let $h, k: C \to A$. Suppose $f \circ h = f \circ k$. Then

$$f^{-1} \circ f \circ h = f^{-1} \circ f \circ k$$

 $\therefore 1_A \circ h = 1_A \circ k$ (Definition of inverse)
 $\therefore h = k$ (Identity Law)

(b) Let $f: A \to B$. Let $h, k: B \to C$. Suppose $h \circ f = k \circ f$. Then

$$h \circ f \circ f^{-1} = k \circ f \circ f^{-1}$$

 $\therefore h \circ 1_B = k \circ 1_B$ (Definition of inverse)
 $\therefore h = k$ (Identity Law)

(c) Let $A = \{0, 1\}$. Define $f: A \to A$ by f(0) = 1 and f(1) = 0. Define $h: A \to A$ by h(x) = 0 for all x. Define $k: A \to A$ by k(x) = 1 for all x. f is invertible, and is its own inverse.

We have $h \circ f = f \circ k = h$.

We do not have h = k.

Exercise 4

- (1) This function is invertible with inverse $f^{-1}(x) = (x-7)/3$.
- (2) This function is invertible with inverse $g^{-1}(x) = \sqrt{x}$.
- (3) This function is not invertible because h(1) = h(-1) = 1.
- (4) This function is not invertible because k(1) = k(-1) = 1.
- (5) This function is not invertible because there is no x such that l(x) = 2.

4.2 2 — General division problems: Determination and choice

Exercise 5 There are 6 maps f such that $g \circ f = 1_{\{0,1\}}$; we can map 0 to any of b, p or q, and 1 to either of r or s.

Given any one of these maps f, there are 8 maps g such that $g \circ f = 1_{\{0,1\}}$. We must map f(0) to 0, f(1) to 1, and the other three elements to any of 0 or 1.

Exercise 6 If $r: B \to A$ is a section for f, then we take $t = g \circ r$. We have $t \circ f = g \circ r \circ f = g \circ 1_A = g$.

Exercise 7 Let $s: B \to A$ be a section for f. Let T be any set and $t_1, t_2: T \to B$. Suppose $t_1 \circ f = t_2 \circ f$. Then

$$t_1 \circ f \circ s = t_2 \circ f \circ s$$
$$\therefore t_1 \circ 1_B = t_2 \circ 1_B$$
$$\therefore t_1 = t_2$$

Exercise 8 If $s_1: B \to A$ is a section for $r_1: A \to B$ and $s_2: C \to B$ is a section for $r_2: B \to C$, then $s_1 \circ s_2$ is a section for $r_2 \circ r_1$ since

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ 1_B \circ s_2$$
$$= r_2 \circ s_2$$
$$= 1_C$$

Exercise 9 We have

$$e \circ e = f \circ r \circ f \circ r$$

= $f \circ 1 \circ r$ (r is a retraction of f)
= $f \circ r$
= e

Exercise 10 From the proof of Proposition 3, $f^{-1} \circ g^{-1}$ is both a section and a retraction for $g \circ f$.

Exercise 11 Set f(Fatima) = coffee, f(Omer) = tea and f(Alysia) = cocoa. Then f is an isomorphism.

There is no isomorphism $g:A\to C$. For if g(Fatima)=true then g(Omer) must be false, and then it is impossible to choose a value for g(Alysia) without having g(Alysia)=g(Fatima) or g(Alysia)=g(Omer). Similarly if g(Fatima)=false then g(Omer) must be true, and then again we cannot choose a value for g(Alysia).

Session 4 — Division of Maps: Isomorphisms

5.1 4. A small zoo of isomorphisms in other categories

Exercise 1 We have h(d(x)) = h(2x) = x and d(h(x)) = d(x/2) = x for any x.

Exercise 2 f(odd) = negative and f(even) = positive

Exercise 3

- (a) This is not an isomorphism because p(0+0)=1 but p(0)+p(0)=2
- (b) This is not an isomorphism because it is not surjective; there is no x such that sq(x) = -1.
- (c) This is not an isomorphism because it is not injective. We have sq(1) = sq(-1) = 1.
 - (d) This is an isomorphism; it is bijective and -(x+y) = (-x) + (-y).
 - (e) This is not an isomorphism because $m(1 \times 1) = -1$ but $m(1) \times m(1) = 1$.
 - (f) This is not a well-defined map because $c(-1) = -1 \notin \mathbb{R}_{>0}$.

Session 5 — Division of Maps: Sections and Retractions

6.1 1. Determination Problems

Exercise 1

- (a) Suppose $h = g \circ f$ and $fa_1 = fa_2$. Then $ha_1 = g(fa_1) = g(fa_2) = ha_2$.
- (b) No. Take $A = C = \emptyset$ and $B = \{*\}$. Let $f : A \to B$ and $h : A \to C$ be the unique such maps. Vacuously, if $fa_1 = fa_2$ then $ha_1 = ha_2$. But there is no map $g : B \to C$.

6.2 3. Choice Problems

Exercise 2

- (a) Suppose $g \circ f = h$. Let $a \in A$. Let b = f(a). Then h(a) = g(f(a)) = g(b).
 - (b) This is equivalent to the Axiom of Choice.

6.3 5. Stacking or Sorting

Exercise 3 I'm not going to draw all of them, but there are 8 of them.

Session 9 — Retracts and Idempotents

7.1 1. Retracts and Comparisons

Exercise 1 If A is empty, then the nowhere-defined function is a map $A \to B$. If B has a point, say b, then the constant map with value b is a map $A \to B$.

7.2 2. Idempotents as records of retracts

Exercise 3 Suppose $s:A\to B,\ r:B\to A$ and $s':A'\to B,\ r':B\to A'$ are splittings of $e:B\to B$. Let

$$f = r' \circ s$$
 : $A \to A'$
 $f^{-1} = r \circ s'$: $A' \to A$

Then we have

$$f \circ f^{-1} = r' \circ s \circ r \circ s'$$

$$= r' \circ e \circ s'$$

$$= r' \circ s' \circ r' \circ s'$$

$$= 1$$

$$f^{-1} \circ f = r \circ s' \circ r' \circ s$$

$$= r \circ e \circ s$$

$$= r \circ s \circ r \circ s$$

$$= 1$$

Quiz

Question 1 Let $A = \{*\}$ and $B = \{0,1\}$. Define $f: A \to B$ by f(*) = 0. Then the unique function $r: B \to A$ is a retraction for f (since r(f(*)) = *) but not a section for f (since f(s(1)) = 0). Therefore there is no section for f, since there is only one map $B \to A$.

Question 2

- (a) Yes: if pqp = p then pqpq = pq
- **(b)** Yes: if pqp = p then qpqp = qp

Question 2* Let q' = qpq Then we have

$$pq'p = pqpqp$$

$$= pqp$$

$$= p$$

$$q'pq' = qpqpqpq$$

$$= qpqpq$$

$$= qpq$$

$$= qpq$$

$$= q'$$

Question 1* Take $A = B = \mathbb{N}$ and define $f: A \to B$ by f(x) = 2x. Then f has a retraction f given by

$$r(y) = \begin{cases} y/2 & \text{if } y \text{ is even} \\ 0 & \text{if } y \text{ is odd} \end{cases}$$

It has no section since it is not surjective (Article II Proposition 1).

Summary / quiz on pairs of 'opposed' maps

Question 1 Given two maps f, g with domains and codomains as above, we can always form the composites $g \circ f$ and $f \circ g$. All we can say about $g \circ f$ and $f \circ g$ as maps in themselves is that they are endomaps.

Question 2 If we know that g is a retraction for f, that means $g \circ f$ is actually the identity map 1_A ; then we can prove that $f \circ g$ is not only an endomap, but actually an idempotent. The latter means that the equation $f \circ g \circ f \circ g = f \circ g$ is true.

Question 3 If we even know that f is an isomorphism and that $g \circ f = 1_A$, then $f \circ g$ is not only an idempotent, but is the identity map 1_B . If, moreover, s is a map for which $f \circ s = 1_B$, we can conclude that s = g.

Question 4 Going back to 0, i.e. assuming no equations, but only the domain and codomain statements about f and g, the composite $f \circ g \circ f$ could be different from f. Likewise $f \circ g \circ f \circ g$ could be different from $f \circ g$.