Przetwarzanie Obrazów Cyfrowych

Transformata Fouriera

Politechnika Śląska

Jakub Zeifert

1 Przygotowanie obrazów testowych

(Zaliczone w trakcie zajęć)

1. trójkąty różnej orientacji (jeden trójkąt, na jednym obrazie) (imrotate)

Rysunek 1: trójkąty różnej orientacji

Przy rotacji możemy zauważyć, że widmo mocy nie zmienia kształu, lecz wraz z obrotem widmo jest również zrotowane. Najjaśniejsze miejsca wyznaczają granicę przejścia z białego w czerń, a więc krawędzie trójkąta.

Rysunek 2: trójkąty o różnym położeniu

Przy translacji wyniki w widmie mocy jest takie samo, co wynika z wykorzystania funckji ffshift. Powoduje ona umiejscowienie najniższych częstotliwości na środek. A więc nie ma znaczenia czy obraz jest przesunięty czy nie. Póki nie występuje rotacja albo zanik pewnych informacji poprzez przycięcie, to widmo nie powinno mieć różnic.

Rysunek 3: koła różnej wielkości

Tutaj możemy zaobserować niewiekie różnice w wyglądzie widm, jednakże przeskoków między kolorami jest podobna ilość. Niewielkie zmiany wynikają z faktu, że koło po przybliżeniu okazuję się być lekko "postrzępionym".

4. zestawy równoległych linii o różnym nachyleniu

Rysunek 4: zestaw równoległych linii o różnym nachyleniu

Za pomocą lini możemy zaobserwować wpływ rotacji na widmo mocy. Widmo nieco przypomina to z trójkąta lecz znacznie uboższe ze względu na występowanie tylko liń do siebie równoległych. Stąd też nie obserwujemy żadnych przecięć na widmie.

5. sinusoidy o różnej częstości i kierunkach.

Rysunek 5: sinusoidy o różnej częstości i kierunkach

Przy sinusoidach widzimy, że im większa częstotliwość lini oraz większy kontrast pomiędzy odcinkami, to będzie to bardziej wyraźne na widmie. Wraz z obrotem uwidoczniają się linie poprzeczne których nie widać na czwartym obrazie.

2 Wpływ filtracji w dziedzinie przestrzennej na charakterystyki częstotliwościowe

(Zaliczone w trakcie zajęć)

1. filtracja górnoprzepustowa

Rysunek 6: filtracja górnoprzepustowa

Rysunek 7: filtracja górnoprzepustowa

2. filtracja dolnoprzepustowa

Wraz ze wzrostem wyostrzenia na obrazie powstawał większy szum co powodował widoczne zakłócenia w widmie mocy. Zaczął również zanikać wyraźny środek widma, który odpowiada za najniższe częstotliwości. Przy ostatecznej iteracji obraz nie ma niemalże nic wspólnego z oryginałem i jego widmo ukazuje bardzo mocne szumy, lecz nic ciekawego poza tym.

Rysunek 8: filtracja dolnoprzepustowa

Rysunek 9: filtracja dolnoprzepustowa

Wraz ze wzrostem rozmycia obrazu widać znaczące zmniejszenie się skupiska widma mocy na środku. Jest one mniej zaszumione, co wynika z wyłagodzenia się przejść między krawędziami obrazu. Widmo mocy jest bardziej skuopione w środku, a dookoła występuje mniej zmian.

3 Filtracja w dziedzinie częstotliwości

(Zaliczone w trakcie zajęć)

1. Filtracja dolnoprzepustowa

Rysunek 10: filtracja dolnoprzepustowa

Rysunek 11: filtracja dolnoprzepustowa

Zastosowanie większej maski skutkuje mniejszym rozmyciem obrazu. Przy wykorzystaniu takiej maski bardzo widoczne jest efekt pierścieni, którego można się pozbyć za pomocą użycia filtru dolnoprzepustowego na samej masce.

2. Filtra górnoprzepustowa

Rysunek 12: filtracja gónoprzepustowa

Rysunek 13: filtracja górnoprzepustowa

Na obrazach możemu zaobserwować w widoczności kontur wraz ze zmianą maski, gdzie czarny środek jest mniejszy. Mniejsze pole zachowuje na wyniku większą ilość mocnych zmian kontrastu, a więc krawędzi w obrazie. Dzięki temu na wyniku znacznie bardziej widoczne są krawędzie.

Użyty kod do zadań został zaimplementowany w języku MATLAB.

Przygotowanie obrazów oraz ich zapis

```
clc;
  % Obracanie Obraz w
  t1=imread('triangle.png');
6 j = 0;
7 for i=1:25:91
|s| j = j + 1;
9 t1r=imrotate(t1, i-1, 'crop');
10 L1 = fftshift(fft2(t1r));
11 subplot (2,4,j)
12 | s1 = strcat(', k, t=', num2str(i-1));
13 imshow (t1r, [])
14 % imwrite(t1r, sprintf("triangle rotated %d.png",j));
15 title (s1);
  end
16
  subplot (2,4,1)
  ylabel('Tr jk ty rotacja');
  sc = int8(-150 + 250.*rand(4,2));
20 for i=1:4
_{21}|_{j=j+1;}
|t1t=imtranslate(t1,sc(i,:));
_{23} L1=fftshift (fft2(t1t));
24 subplot (2,4,j)
25 imshow (t1t, [])
imwrite(t1t, sprintf("traingle_translated_%d.png",j));
  end
  subplot (2,4,5)
29 ylabel('Tr jk ty translacja');
```

przygotowanie obrazow.m

```
clc;
  clear;
  %%
  % [file, path] = uigetfile({ '*.png'; '*.BMP'}, 'Select an image');
6 \% \text{ img} = \text{imread}([\text{path}, \text{file}]);
  % result = fft2_and_shift(img,'widmo');
9 % imshow(result, []);
  error = plotting('lines', 'lines rotated');
  error = plotting('circle', 'circle');
error = plotting('triangle', 'triangle_rotated');
error = plotting('triangle', 'triangle_translated');
12
13
14
  error = plotting('triangle_grey', 'traingle_rotated');
error = plotting('triangle_grey', 'traingle_translated');
  error = plotting('sinus', 'sinus');
17
18
19
20
21
2.2
  % Functions
23
24
  function error = plotting (folder name, figure name)
25
      figure;
26
      k = 1;
27
      label info = "";
28
      for i = 1:1:3
29
            for j = 1:1:4
30
                   file name = append(folder name, '/', figure name, sprintf(' %d.png',j));
31
                   if is file (file name)
                      % If the file exists, display it.
33
                       image data = imread(file name);
34
                       subplot(3,4,k);
35
                       k = 1 + k;
36
                       switch i
37
                            case 1
38
                                 imshow(image_data);
39
40
                                 image data = fft2 and shift(image data, 'widmo');
41
                                 label info = "widmo mocy";
42
                                 imshow(image data,[]);
43
44
                                 image_data = fft2_and_shift(image_data, 'faza');
45
                                 label info = "faza";
46
                                 imshow(image data,[]);
48
                       xlabel(label_info);
49
                       error = 0;
50
                  else
51
                       % Print alert for those files that don't exist.
                       fprintf('File not found: "%s".\n', file name)
53
                       error = 1;
54
                  end
            end
56
      end
57
  end
```

```
clc;
  clear;
  %%
  % [file, path] = uigetfile({ '*.BMP'; '*.png'}, 'Select an image');
6 \% \text{ img} = \text{imread}([path, file]);
  % error = img_prepare(img,10,"motyl","blur");
9 | % error = img prepare (img, 10, "motyl", "sharpen");
  |% error = img_prepare(img,10,"boat","blur");
  % error = img_prepare(img, 10, "boat", "sharpen");
12
13
  error = plotting('motyl', 'motyl', 'blur');
error = plotting('motyl', 'motyl', 'sharpen');
error = plotting('boat', 'boat', 'blur');
14
15
  error = plotting('boat', 'boat', 'sharpen');
18
19
21
2.2
23
  % Functions
24
25
  function error = img prepare (img, iterations, folder name, mode)
26
       k = 1;
27
       high pass kernel = \begin{bmatrix} -1 & -1 & -1; -1 & 9 & -1; & -1 & -1 \end{bmatrix};
28
       img = rgb2gray(img);
29
       imwrite(img,append(folder name,"/",folder name,".png"));
30
       if mode == "blur"
31
       windowSize = 5;
32
       avg3 \, = \, ones \, (\, window Size \, \hat{} \, \, 2; \,
33
       elseif mode == "sharpen"
34
            avg3 = high_pass_kernel;
35
36
       else
                 disp('ERROR! WRONG MODE INPUT!!!');
37
                 return;
38
       end
39
       for i=1:1:iterations
40
            if mode == "blur"
41
                 img = imfilter(img, avg3, 'conv');
42
                 imshow(img,[]);
43
44
                 img = imfilter(img, avg3);
45
                    img = imsharpen(img);
46
                 imshow(img, | |);
47
            end
48
            if (i==1||i==2||i==5||i==10) && mode == "blur"
49
                 k = k+1;
50
                 imwrite(img, append(folder name, "/", folder name, '', mode, sprintf(" %d.png", k
51
                     )));
             elseif mode == "sharpen"
                 imwrite(img, append(folder name, "/", folder name, '', mode, sprintf(" %d.png", i
53
            end
54
            error = 1;
       end
56
  end
57
58
59
60
  function error = plotting (folder name, figure name, mode)
      figure;
62
```

```
k = 1;
63
      blur\_iteration = [1,2,5,10];
64
      label_info = "";
65
      for i = 1:1:2
66
            for j = 1:1:5
67
                if k == 1
68
                     file name = append(folder name, '/', figure name, '.png');
69
70
                     file name = append(folder name, '/', figure name, '', mode, sprintf(' %d.
71
                        png',j));
                end
                  if is file (file name)
73
                     \% If the file exists, display it.
74
                     image_data = imread(file_name);
75
76
                     subplot(2,5,k);
77
                     k = 1 + k;
                     switch i
78
                         case 1
79
                              imshow(image data);
80
                              if mode == "blur" && i ~= 1
81
                                   label_info = append("iteracja ", sprintf("%d",
82
                                      blur_iteration(j-1));
                              elseif j = 1
83
                                   label_info = "orygina Ć ";
84
85
                              else
                                   label_info = append("iteracja ", sprintf("%d",j));
                              end
87
                         case 2
88
                              image data = fft2 and shift(image data, 'widmo');
89
                              label info = "widmo mocy";
90
91
                              imshow(image data,[]);
                     end
92
                     xlabel(label info);
93
                     error = 0;
                else
95
              % Print alert for those files that don't exist.
96
              fprintf('File not found: "%s".\n', file name)
97
              error = 1;
98
                 end
99
            end
100
101
      end
  end
102
```

zad3.m

kod do zadanie 4

```
clc;
  clear;
 %%
  [file, path] = uigetfile({ '*.BMP'; '*.png'}, 'Select an image');
6 | img = imread ([path, file]);
 |% img_1 = imread('boat.bmp');
 \% \text{ img } 2 = \text{imread}("\text{motyl.bmp"});
  [X, Y, DIM] = size(img);
  if DIM > 1
      img = rgb2gray(img);
  end
  [low 1, high 1, widmo 1] = low high pass filter(img, 1);
14
  [low 2, high 2, widmo 2] = low high pass filter (img, 0.5);
16
17
  inverted_img_high_1 = uint8(real(ifft2(ifftshift(widmo 1.*high 1))));
18
19 inverted_img_low_1 = uint8(real(ifft2(ifftshift(widmo_1.*low_1))));
20 inverted _img_high_2 = uint8(real(ifft2(ifftshift(widmo_2.*high_2))));
```

```
21 inverted_img_low_2 = uint8(real(ifft2(ifftshift(widmo 2.*low 2))));
  \operatorname{widmo}_{1} = \log(1 + \operatorname{abs}(\operatorname{widmo}_{1}));
22
  widmo 2 = \log(1 + abs(widmo 2));
23
24
  img_pack_1 = \{img, widmo_1, low_1, widmo_1.*low_1, inverted_img_low_1, widmo_2, low_2, widmo_2\}
25
       .*low 2, inverted img low 2};
  img pack 2 = {img, widmo 1, high 1, widmo 1.*high 1, inverted img high 1, widmo 2, high 2,
      widmo_2.*high_2, inverted img high 2};
  error = plot imgs(img pack 1);
28
  error = plot imgs(img pack 2);
30
31
  % Functions
33
34
  function [lowpass img, highpass img, widmo] = low high pass filter(img, scale)
35
       widmo = fftshift(fft2(img));
36
        [X,Y] = size(img);
37
       x 	 diff = 0:(X - 1);
38
        y = diff = 0:(Y - 1);
39
       idx = find(x_diff > X/2);
40
       x \operatorname{diff}(\operatorname{id} x) = x \operatorname{diff}(\operatorname{id} x) - X;
41
       idy \,=\, find \,(\,y\_diff\,>\, Y/2)\,;
42
       y_{diff}(idy) = y_{diff}(idy) - Y;
43
44
       [V, U] = meshgrid(y_diff, x_diff);
       D0=30;
45
       D = scale*sqrt(U.^2 + V.^2);
46
       lowpass img =abs(ifftshift( double(D <=D0)));
47
       % Highpass
48
49
       D0 = 10:
       H = ifftshift (double(D \le D0));
       highpass img=1-H;
51
  end
52
53
  % Plotting
54
  function error = plot_imgs(img_pack)
  figure;
56
  subplot (2,5,1);
57
58 imshow (img_pack { 1 } ,[]);
  xlabel("Obraz Wej Zciowy");
  subplot(2,5,2);
_{61} imshow (img pack \{2\},[]);
  xlabel("Widmo Mocy");
  subplot(2,5,3);
64 imshow(img_pack{3},[]);
  xlabel("Maska 1");
65
  subplot(2,5,4);
66
  imshow(img pack \{4\}, []);
  xlabel("Maska * Widmo");
  subplot(2,5,5);
69
  imshow(img pack {5}, []);
70
  xlabel("Wynik");
71
  subplot(2,5,6);
72
73 \left| \operatorname{imshow} \left( \operatorname{img} \operatorname{pack} \{1\}, [] \right) \right| \right|
74 xlabel ("Obraz Wej Żciowy");
  subplot(2,5,7);
76 imshow(img_pack { 6 } ,[]);
  xlabel("Widmo Mocy");
  subplot(2,5,8);
  imshow(img_pack \{7\}, []);
  xlabel ("Maska 1");
80
  subplot(2,5,9);
81
|s_2| imshow (img_pack \{8\}, []);
83 xlabel ("Maska * Widmo");
```

```
subplot (2,5,10);
imshow(img_pack {9},[]);
stabel("Wynik");
error =1;
stabel("Wynik");
```

zad4.m

funkcja pomocnicza

```
function result = fft2_and_shift(img, mode)
       [X,Y,DIM] = size(img);
       if DIM > 1
           img = rgb2gray(img);
      end
      img = double(img);
      if mode == "widmo"
           result = log(1+abs(fftshift(fft2(img))));
       elseif mode == "faza"
           result = angle(fftshift(fft2(img)));
10
       else
11
           disp('ERROR!');
12
13
      \quad \text{end} \quad
14 end
```

 $fft2_and_shift.m$