Note there are no constraints on diagonal entries, and half of the equations

$$a_{ij} - a_{ji} = 0, \quad 1 \le i \ne j \le n$$

are redundant. It is easy to check that the equations (linear forms) for which i < j are linearly independent. To be more precise, let U be the space of linear forms in E^* spanned by the linear forms

$$u_{ij}^*(a_{11},\ldots,a_{1n},a_{21},\ldots,a_{2n},\ldots,a_{n1},\ldots,a_{nn}) = a_{ij} - a_{ji}, \quad 1 \le i < j \le n.$$

The dimension of U is n(n-1)/2. Then the set U^0 of common solutions of these equations is the space $\mathbf{S}(n)$ of symmetric matrices. By the duality theorem (Theorem 11.4), this space has dimension

$$\frac{n(n+1)}{2} = n^2 - \frac{n(n-1)}{2}.$$

We leave it as an exercise to find a basis of S(n).

Example 11.4. If $E = M_n(\mathbb{R})$, consider the subspace U of linear forms in E^* spanned by the linear forms

$$u_{ij}^*(a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{2n}, \dots, a_{n1}, \dots, a_{nn}) = a_{ij} + a_{ji}, \quad 1 \le i < j \le n$$

$$u_{ij}^*(a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{2n}, \dots, a_{n1}, \dots, a_{nn}) = a_{ii}, \quad 1 \le i \le n.$$

It is easy to see that these linear forms are linearly independent, so $\dim(U) = n(n+1)/2$. The space U^0 of matrices $A \in \mathrm{M}_n(\mathbb{R})$ satisfying all of the above equations is clearly the space $\mathbf{Skew}(n)$ of skew-symmetric matrices. By the duality theorem (Theorem 11.4), the dimension of U^0 is

$$\frac{n(n-1)}{2} = n^2 - \frac{n(n+1)}{2}.$$

We leave it as an exercise to find a basis of $\mathbf{Skew}(n)$.

Example 11.5. For yet another example with $E = M_n(\mathbb{R})$, for any $A \in M_n(\mathbb{R})$, consider the linear form in E^* given by

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn},$$

called the *trace* of A. The subspace U^0 of E consisting of all matrices A such that tr(A) = 0 is a space of dimension $n^2 - 1$. We leave it as an exercise to find a basis of this space.

The dimension equations

$$\dim(V) + \dim(V^{0}) = \dim(E)$$

$$\dim(U) + \dim(U^{0}) = \dim(E)$$

are always true (if E is finite-dimensional). This is part of the duality theorem (Theorem 11.4).