Rumour Detection

CS5803 - NLP Project Final Presentation

Kranthi Kumar P (Al20RESCH14002) Sandhya A (Al20RESCH14001)

Instructors: Dr. Maunendra Desarkar & Dr. Srijith P K

Agenda

- Introduction
- Problem Statement
- Datasets
- Model Description
- Hyperparameter tuning
- Word Embeddings
- Results and Evaluation

Introduction:

What are rumours?

A story or statement whose truth value is **unverified** or deliberately **false**.

Motivation:

- Difficult to distinguish rumours by humans
- crucial to track and debunk rumors early to minimize their harmful effects
- Online fact-checking services have limited topical coverage and long delay
- During the outbreak of COVID-19 pandemic, social media platform used for information of new revelations. Some of the information is factual, others are rumours. This causes adverse effect on individuals and society. Identify rumours and stop them before they become viral.

Problem statement and Proposed Solution

Problem Statement:

Given a dataset of tweets, classification of each tweet as rumour or non-rumour.

Solution:

- DNN model based on Bi-Directional Long Short-Term Memory with Convolutional Neural Network
- Considers contextual information in both directions for classification

Reference:

 Asghar, M.Z., Habib, A., Habib, A., Khan, A., Ali, R. and Khattak, A., 2019. Exploring deep neural networks for rumor detection. *Journal of Ambient Intelligence and Humanized Computing*, pp.1-19.

Datasets

- **Pheme**: #Source tweets 5800, Labels 2046(R) / 3754 (NR)
- Twitter15: #Source tweets 1490, Labels 374 (NR), 370 (F), 372(T), 374(UR) collapsed to 374 (NR), 1116 (R)
- Twitter16: #Source tweets 818, Labels 205 (NR), 205 (F),
 205(T), 203(UR) collapsed to 205 (NR), 613 (R)
- **COVID-19**: Obtained using Twitter API. #source tweets 313036(Unlabeled 29 Mar 2020 15 Apr-2020)

R - rumour, NR - non-rumour, F - false rumour,

T - true rumour, UR - unverified rumour

Data Preprocessing:

Model Description

Embedding - Googlevec, Fasttext, Glove

Dropout Layer - 0.5

BiLSTM - Forward and backward (units =278)

Convolution - Feature extraction (f=8, k=2, relu)

Maxpool (2)

Flatten

Single Neuron - Classification (Sigmoid)

Model Description

Hyperparameter Tuning

BiLSTM-CNN model Parameter setting

Train and Test: Pheme Dataset (Train:80%, Test:20%)

No.of Filters	Filter Size	Train acc	Train loss	Train time(s)	Test acc	Test loss	Precisi on	Recall	F1- Score
64	3	98.6	0.38	330	87	0.63	0.80	0.82	0.81
32	2	98.4	0.04	330	86.5	0.58	0.82	0.79	0.80
10	3	98.3	0.046	330	86	0.59	0.78	0.85	0.81
8	2	98	0.0538	432	87	0.60	0.80	0.83	0.82

Results:

Pheme Dataset: train - 80%(4640), Test- 20%(1160)

#epochs = 30

Train: 90%(4176), Val: 10% (464)

Train Accuracy: 0.9816 Validation Accuracy: 0.8772

Train Loss: 0.0510 Validation Loss: 0.438

Results:

Pheme Dataset:

Confusion matrix, without normalization [[661 96] [59 344]]

		precision	recall	f1-score	support
	NR	0.92	0.87	0.90	757
	R	0.78	0.85	0.82	403
accur	racy			0.87	1160
macro	avg	0.85	0.86	0.86	1160
veighted	avg	0.87	0.87	0.87	1160

Pre-trained Word Embeddings

Performance evaluation on BiLSTM CNN model using Pretrained word embeddings

Train: Pheme + Twitter15 Test: Twitter16

Pretrained Word Embedding	Train Accuracy	Validation Accuracy	Test Accuracy	Precision	Recall	F1-score
Base Model	98.1	78.5	70	0.84	0.74	0.79
Fasttext	94.1	75.2	74.82	0.83	0.84	0.83
Glove	89.2	74.6	73.11	0.81	0.84	0.82
Google Word2Vec	92.7	77.5	73.23	0.80	0.86	0.83
With self attention	90.8	75.9	71.39	0.84	0.77	0.80

Results: Cross-Domain Training

Pheme + Twitter15 Dataset: train - 90%(6561), validation - 10%(729)

#epochs = 30

Train Accuracy: 0.981

Validation Accuracy: 0.785

Train Loss: 0.025 Validation Loss: 1.25

Results: Cross-Domain Training

Test Dataset: Twitter16 (818)

Confusion matrix, without normalization [[120 85] [157 456]]

support	f1-score	recall	precision	
205	0.50	0.59	0.43	NR
613	0.79	0.74	0.84	R
818	0.70			accuracy
818	0.64	0.66	0.64	macro avg
818	0.72	0.70	0.74	weighted avg

FastText:

Train: Pheme + Twitter15 Test: Twitter16

Train Accuracy: 0.941 Validation Accuracy: 0.752 Train Loss: 0.164 Validation Loss: 0.586 25

30

20

FastText:

Train: Pheme + Twitter15 Test: Twitter16

[[96 109] [97 516]]

	precision	recall	f1-score	support
NR	0.50	0.47	0.48	205
R	0.83	0.84	0.83	613
accuracy			0.75	818
macro avg	0.66	0.66	0.66	818
eighted avg	0.74	0.75	0.75	818

Glove:

Train: Pheme + Twitter15 Test: Twitter16

Train Accuracy: 0.892 Validation Accuracy: 0.746 Train Loss: 0.281 Validation Loss: 0.586

Glove:

Train: Pheme + Twitter15 Test: Twitter16

Googlevec:

Train: Pheme + Twitter15 Test: Twitter16

Train Accuracy: 0.927 Validation Accuracy: 0.775 Train Loss: 0.21 Validation Loss: 0.58 25

30

Googlevec:

Train: Pheme + Twitter15 Test: Twitter16

support	f1-score	recall	precision	
205	0.40	0.35	0.46	NR
613	0.83	0.86	0.80	R
818	0.73			accuracy
818	0.61	0.61	0.63	macro avg
818	0.72	0.73	0.71	eighted avg

With Self Attention Layer:

Train: Pheme + Twitter15 Test: Twitter16

Train Accuracy: 0.908 Validation Accuracy: 0.759

Train Loss: 0.267 Validation Loss: 0.652

With Self Attention Layer:

Train: Pheme + Twitter15 Test: Twitter16

support

205

613

818

818

818

0.50

0.80

0.71

0.65

0.72

COVID-19 Dataset:

Twitter API

- Keywords coronavirus, COVID-19, #COVID19
- Language english
- Start date 29 Mar 2020
- End date 15 Apr 2020
- Metadata text (Tweet)
- Tweepy package and Bearer_Token for data access

Preprocessing: Lower case, Removal of punctuations, stop words, rare words

Tokenizing

Prediction using model

COVID-19 Dataset Results:

Classification Results on COVID-19 Dataset (#tweets: 313036) by Bi-LSTM-CNN model with different word embeddings.

Bi-LSTM-CNN model with word embedding	Fasttext	Glove	Googlevec
#Rumours	71971	25570	50574
#Non-Rumours	241065	287466	262462

Conclusion:

- The problem of tweet classification into rumor and non-rumor has been addressed by using deep learning based BiLSTM-CNN model.
- Various experiments have been conducted like hyper parameter tuning, usage of pre-trained word embeddings, self attention layer and reported the results.
- Achieved the best results using FastText pre-trained word embedding model.
- Obtained the COVID-19 dataset from Twitter using Twitter API and used the same for rumor detection.

References:

- [1] Ma, J., Gao, W. and Wong, K.F., 2018. Rumor detection on twitter with tree-structured recursive neural networks. Association for Computational Linguistics.
- [2] Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y. and Huang, J., 2020, April. Rumor detection on social media with bi-directional graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 549-556)
- [3] Asghar, M.Z., Habib, A., Habib, A., Khan, A., Ali, R. and Khattak, A., 2019. Exploring deep neural networks for rumor detection. Journal of Ambient Intelligence and Humanized Computing, pp.1-19
- [4] Chen, E., Lerman, K. and Ferrara, E., 2020. Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set. JMIR Public Health and Surveillance, 6(2), p.e19273
- [5] Christopher D. Manning, Hinrich Schuetze Foundations of Statistical Natural Language Processing-The MIT Press (1999)

Thank You!