2017 一模

1.	设命题 $p: \forall x \in [0.+\infty)$,	$e^x \geqslant 1$,则¬ p 是			()		
	(A) $\exists x_0 \notin [0, +\infty), e^{x_0} <$	1						
	(B) $\forall x_0 \notin [0, +\infty), e^{x_0} <$	1						
	(C) $\exists x_0 \in [0, +\infty), e^{x_0} <$	1						
	(D) $\forall x_0 \in [0, +\infty), e^{x_0} <$	1						
2.	设 E , F 分别是正方形 $ABCD$ 的边 AB , BC 上的点,且 $AE=\frac{1}{2}AB$, $BF=\frac{2}{3}BC$, 如果 $\overrightarrow{EF}=m\overrightarrow{AB}+$							
	$\overrightarrow{nAC}(m,n$ 为实数),那么 m	+ n 的值为	1		()		
	$(A) - \frac{1}{2}$	(B) 0	(C) $\frac{1}{2}$	(D) 1				
3.	在三角形 $\triangle ABC$ 中,点 D	满足 $\overrightarrow{AD} = 2\overrightarrow{AB} - \overrightarrow{AC}$,贝	N		()		
	(A) 点 D 不在直线 BC 上		(B) 点 D 在 BC 的延长线	上				
	(C) 点 D 在线段 BC 上 (D) 点 D 在 CB 的延长线上							
4.	在三角形 $\triangle ABC$ 中,点 D	满足 $\overrightarrow{BC} = 3\overrightarrow{BD}$,则			()		
	$(A) \overrightarrow{AD} = \frac{1}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}$		(B) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}$					
	(C) $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$		(D) $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$					
5.	在平面直角坐标系 xOy 中	,曲线 C 的参数方程为 $\left\{ \right.$	$x = 2 + \sqrt{2}\cos\theta$ $y = \sqrt{2}\sin\theta$	(j),则曲线 <i>C</i> 是	()		
	(A) 关于 <i>x</i> 轴对称的图形	·	(B) 关于 y 轴对称的图形					
	(C) 关于原点对称的图形		(D) 关于直线 $y = x$ 对称	的图形				
6.	如果 $f(x)$ 是定义在 \mathbf{R} 上的奇函数,那么下列函数中,一定为偶函数的是)		
	(A) y = x + f(x)		(B) y = x f(x)					
	$(C) y = x^2 + f(x)$		$(D) y = x^2 f(x)$					
	设抛物线 $y^2 = 8x$ 的焦点为 $-\sqrt{3}$,则 $ PF =$	为 <i>F</i> , 准线为 <i>l</i> , <i>P</i> 为抛物	<i>]</i> 线上一点, <i>PA</i>	足,若直线 AF [的斜率:			
	(A) $4\sqrt{3}$	(B) 6	(C) 8	(D) 16				
8.	已知函数 $f(x) = \begin{cases} \left \log_4 x \right \\ x^2 - 10x \end{cases}$	$0 < x \le 4$, 若 a, b $x + 25$. $x > 4$.	p, c, d 是互不相同的正数,	且 $f(a) = f(b)$:	= f(c)	=		
	f(d),则 $abcd$ 的取值范围)		
	(A) $(24, 25)$	(B) (18, 24)	(C)(21,24)	(D) $(18, 25)$				

9.	小明和父母、爷爷奶奶一 人与他相邻,则不同的坐着		的现场录制,5人坐成一持	非. 若小明的父母至少有 (i 一)			
	(A) 60	(B) 72	(C) 84	(D) 96				
10.	甲、乙、丙、丁、戊五人	排成一排,甲和乙都排在	丙的同一侧,拍法种数为	()			
	(A) 12	(B) 40	(C) 60	(D) 80				
11.	已知曲线 $C: \begin{cases} x = \frac{\sqrt{2}}{2}t, \\ y = a + \frac{\sqrt{2}}{2}t \end{cases}$	(t为参数), A(-1, 0), B((1,0). 若曲线 <i>C</i> 上存在点	P 满足 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$,贝	削实			
	数 a 的取值范围为 $(A) \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$	(B) [-1, 1]	(C) $\left[-\sqrt{2}, \sqrt{2}\right]$	(D) [-2, 2])			
12.	现有10支队伍比赛,规定中,胜方得2分,负方得	0分,平局双方各得1分.	下面关于这 10 支队伍得	分的叙述正确的是(比赛)			
	(A) 可能有两支队伍得分	都是 18 分	(B) 各队得分总和为 180	分				
	(C) 各支队伍中最高得分	不少于 10 分	(D) 得偶数分的队伍必有	偶数个				
13.	5. 一次猜奖游戏中,1,2,3,4 四扇门里摆放了 a , b , c , d , 四件奖品 (每扇门内仅放一件). 甲同学说: 1 号门里是 b , 3 号门里是 c ; 乙同学说: 2 号门里是 b , 3 号门里是 d ; 丙同学说: 4 号门里是 b , 2 号门里是 c ; 丁同学说: 4 号门里是 a , 3 号门里是 c ; ,如果他们每个人都猜对了一半,那么 4 号门里是 ()							
	(A) <i>a</i>	(B) <i>b</i>	(C) <i>c</i>	(D) <i>d</i>				
	已知函数 $f(x) = \sin(\omega x - y)$ y = f(x) 有五个公共点,见	•	$n)(n \neq 1)$ 都在曲线 $y = f$	(x) 上,且线段 AB 与曲 (曲线			
	(A) 4	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$				
15.	将函数 $y = \sin(2x + \frac{\pi}{6})$ 的图上单调递减,则 m 的最小	值为		($\left[\frac{5\pi}{12}\right]$			
	$(A) \frac{\pi}{12}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$				
16.	函数 $f(x)$ 的图象上任意一有性质 P 的是	点 A(x, y) 的坐标满足条		具有性质 <i>P</i> . 下列函数中 (具 (
	$(A) f(x) = x^2$		(B) $f(x) = \frac{1}{x^2 + 1}$					
	$(C) f(x) = \sin x$		(D) $f(x) = \ln(x+1)$					
	如果函数 $y = f(x)$ 在定义 "倍增函数". 若函数 $f(x)$ (A) $\left(-\frac{1}{4}, +\infty\right)$	$=\ln(e^x+m)$ 为 "倍增函"		$f[2a, 2b]$,那么称 $f(x)$ (D) $\left(-\frac{1}{4}, 0\right)$)为			

- 25. 在三角形 $\triangle ABC$ 中,若 $b^2=ac$, $\angle B=\frac{\pi}{3}$,则 $\angle A=$ ______
- 26. 若非零向量 \vec{a} , \vec{b} 满足 $\vec{a} \cdot (\vec{a} + \vec{b}) = 0, 2|a| = |b|$,则向量 \vec{a} , \vec{b} 夹角的大小为_____.
- 27. 在平面直角坐标系 xOy 中,曲线 $C_1: x+y=4$,曲线 $C_2: \begin{cases} x=1+\cos\theta, \\ y=\sin\theta. \end{cases}$ (θ 为参数), 过原点 O 的直线 I 分别交 C_1 , C_2 于 A, B 两点,则 $\frac{|OB|}{|OA|}$ 的最大值为______.
- 28. 已知 x > 1,则函数 $y = \frac{1}{x-1} + x$ 的最小值为_____.
- 29. 实数 a, b 满足 $0 < a \le 2$, $b \ge 1$, 若 $b \le a^2$, 则 $\frac{b}{a}$ 的取值范围是_____.
- 30. 己知函数 $f(x) = \begin{cases} (x-2a)(a-x), & x \leq 1, \\ \sqrt{x} + a 1, & x > 1. \end{cases}$
 - (1) 若 a = 0, $x \in [0,4]$,则 f(x)的值域为_____;
 - (2) 若 f(x) 恰有三个零点,则实数 a 的取值范围是_____.
- 31. 已知函数 $f(x) = \begin{cases} 1-x^2, & x \ge 0, \\ & \text{ 若关于 } x \text{ 的方程 } f(x+a) = 0 \text{ 在 } (0,+\infty) \text{ 内有唯一实根,则实数 } a \text{ 的 } \\ \cos \pi x, & x < 0. \end{cases}$ 最小值是_____.
- 32. 己知实数 u, v, x, y 满足 $u^2 + v^2 = 1$, $\begin{cases} x + y 1 \ge 0, \\ x 2y + 2 \ge 0, \text{ 则 } z = ux + vy \text{ 的最大值是} \\ x \le 2. \end{cases}$
- 33. 己知函数 $f(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2}, \\ -1, & \frac{1}{2} \le x < 1, \end{cases}$ 和 $g(x) = \begin{cases} 1, & 0 \le x < 1, \\ 0, & x < 0$ 或 $x \ge 1$.
 - $(1) g(2x) = ___;$
 - (2) 若 $m, n \in \mathbb{Z}$ 且 $m \cdot g(n \cdot x) g(x) = f(x)$, 则 m + n =_____.
- 34. 已知甲, 乙, 丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存 36 天的水和食物,且计划每天向沙漠深处走 30 公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回,若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠 公里.
- 35. 如图,正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 2,点 P 在正方形 ABCD 的边界及其内部运动,平面区域 W 由所有满足 $A_1P \leqslant \sqrt{5}$ 的点 P 组成,则 W 的面积是________; 四面体 $P-A_1BC$ 的体积的最大值是_______.

36. 如图,正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 2,点 P 在正方形 ABCD 的边界及其内部运动,平面区域 W 由所有满足 $A_1P \geqslant \sqrt{5}$ 的点 P 组成,则 W 的面积是_____.

- 37. 数列 $\{a_n\}$ 是各项都为正数的等比数列, $a_{11}=8$,设 $b_n=\log_2 a_n$,且 $b_4=17$.
 - (1) 求证: 数列 $\{b_n\}$ 是以 -2 为公差的等差数列;
 - (2) 设数列 $\{b_n\}$ 的前 n 项和为 S_n , 求 S_n 的最大值.

- 38. 已知函数 $f(x) = \sin \omega x (\cos \omega x \sqrt{3} \sin \omega x) + \frac{\sqrt{3}}{2} (\omega > 0)$ 的最小正周期为 $\frac{\pi}{2}$.
 - (1) 求ω的值;
 - (2) 求函数 f(x) 的单调递减区间.

- 39. 已知 $\frac{\pi}{3}$ 是函数 $f(x) = 2\cos^2 x + a\sin 2x + 1$ 的一个零点.
 - (1) 求实数 a 的值;
 - (2) 求 f(x) 的单调递增区间.

- 40. 在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 且 $a \tan C = 2c \sin A$.
 - (1) 求角 C 的大小;
 - (2) 求 $\sin A + \sin B$ 的取值范围.

- 41. 己知函数 $f(x) = \ln x ax 1$ $(a \in \mathbf{R}), g(x) = xf(x) + \frac{1}{2}x^2 + 2x.$
 - (1) 求 f(x) 的单调区间;
 - (2) 当 a=1 时,若函数 g(x) 在区间 (m,m+1) $(m \in \mathbb{Z})$ 内存在唯一的极值点,求 m 的值.

- 42. 己知函数 $f(x) = \ln(kx) + \frac{1}{x} k \ (k > 0)$.
 - (1) 求 f(x) 的单调区间;
 - (2) 对任意 $x \in \left[\frac{1}{k}, \frac{2}{k}\right]$, 都有 $x \ln(kx) kx + 1 \le mx$, 求 m 的取值范围.

- 43. 已知函数 $f(x) = \frac{x+1}{e^x}$, $A(x_1,m)$, $B(x_2,m)$ 是曲线 y = f(x) 上的两个不同的点.
 - (1) 求 f(x) 的单调区间,并写出实数 m 的取值范围
 - (2) 证明: $x_1 + x_2 > 0$

- 44. 已知函数 $f(x) = x^2 2ax + 4(a-1)\ln(x+1)$, 其中实数 a < 3.
 - (1) 判断 x = 1 是否为函数 f(x) 的极值点,并说明理由;
 - (2) 若 $f(x) \le 0$ 在区间 [0, 1] 上恒成立,求 a 的取值范围.

- 45. 己知函数 $f(x) = x \ln x$.
 - (1) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;
 - (2) 求证: $f(x) \ge x 1$;
 - (3) 若 $f(x) \ge ax^2 + \frac{2}{a} (a \ne 0)$ 在区间 $(0, +\infty)$ 上恒成立,求 a 的最小值.

- 46. 已知函数 $f(x) = e^x x^2 + ax$, 曲线 y = f(x) 在点 (0, f(0)) 处的切线与 x 轴平行.
 - (1) 求 a 的值;
 - (2) 若 $g(x) = e^x 2x 1$, 求函数 g(x) 的最小值;
 - (3) 求证: 存在 c < 0, 当 x > c 时, f(x) > 0.

- 47. 己知函数 $f(x) = \frac{m}{2}x^2 x \ln x$.
 - (1) 求曲线 C: y = f(x) 在 x = 1 处的切线 l 的方程;
 - (2) 若函数 f(x) 在定义域内是单调函数,求m 的取值范围;
 - (3) 当 m > -1 时,(1) 中的直线 l 与曲线 C: y = f(x) 有且仅有一个公共点,求 m 的取值范围.

- 48. 已知函数 $f(x) = e^x \frac{1}{2}x^2$,设 l 为曲线 y = f(x) 在点 $P(x_0, f(x_0))$ 处的切线,其中 $x_0 \in [-1, 1]$.
 - (1) 求直线 l 的方程 (用 x_0 表示);
 - (2) 设 O 为坐标原点,直线 x=1 分别与直线 l 和 x 轴交于 A, B 两点,求 $\triangle AOB$ 的面积的最小值.
 - (3) 求直线 l 在 y 轴上的截距的取值范围;
 - (4) 设 y = a 分别与直线 y = f(x) 和射线 y = x 1 $(x \in [0, +\infty))$ 交于 M, N 两点,求 |MN| 的最小值 及此时 a 的值.

- - (1) 求椭圆 C 的方程及焦点坐标;
 - (2) 记 $\triangle AEE_1$, $\triangle AE_1F_1$, $\triangle AFF_1$ 的面积分别为 S_1 , S_2 , S_3 , 试证明 $\frac{S_1S_3}{S_2^2}$ 为定值.

- 50. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{2}}{2}$, 右焦点为 F, 点 P(0,1) 在椭圆 C 上.
 - (1) 求椭圆 C 的方程;
 - (2) 过点 F 的直线交椭圆 C 于 M, N 两点,交直线 x=2 于点 P, 设 $\overrightarrow{PM}=\lambda \overrightarrow{MF}$, $\overrightarrow{PN}=\mu \overrightarrow{NF}$, 求证: $\lambda+\mu$ 为定值.

- 51. 已知椭圆 $G: \frac{x^2}{2} + y^2 = 1$,与 x 轴不重合的直线 l 经过左焦点 F_1 ,且与椭圆 G 相交于 A, B 两点,弦 AB 的中点为 M,直线 OM 与椭圆 G 相交于 C, D 两点.
 - (1) 若直线 l 的斜率为 1,求直线 OM 的斜率;
 - (2) 是否存在直线 l,使得 $|AM|^2 = |CM| \cdot |DM|$ 成立?若存在,求出直线 l 的方程;若不存在,说明理由.

- 52. 已知点 P 是椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 上一点,点 P 到椭圆 C 的两个焦点的距离之和为 $2\sqrt{2}$.
 - (1) 求椭圆C的方程;
 - (2) 设 A, B 是椭圆 C 上异于点 P 的两点,直线 PA 与直线 x=4 交于点 M, 是否存在点 A, 使得 $S_{\triangle ABP}=\frac{1}{2}S_{\triangle ABM}$? 若存在,求出点 A 的坐标;若不存在,说明理由.

- 53. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$, 短半轴长为 1.
 - (1) 求椭圆 G 的方程;
 - (2) 设椭圆 G 的短轴端点分别为 A, B, 点 P 是椭圆 G 上异于点 A, B 的一动点,直线 PA, PB 分别与直线 x=4 交于 M, N 两点,以线段 MN 为直径作圆 C.
 - ① 当点 P 在 y 轴的左侧时, 求圆 C 半径的最小值;
 - ② 问:是否存在一个圆心在x轴上的定圆与圆C相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.

- 54. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的左、右顶点分别为 A, $B \perp |AB| = 4$, 离心率为 $\frac{1}{2}$.
 - (1) 求椭圆C的方程;
 - (2) 设点 Q(4,0),若点 P 在直线 x = 4 上,直线 BP 与椭圆交于另一点 M. 判断是否存在点 P,使得四 边形 APQM 为梯形?若存在,求出点 P 的坐标,若不存在,说明理由.