

Machine Learning

Session 8 - PL

Introduction to Supervised Learning

Ciência de Dados Aplicada 2023/2024

Classification Metrics with Scikit-Learn

• https://scikit-learn.org/stable/modules/model_evaluation.html

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	
'top_k_accuracy'	metrics.top_k_accuracy_score	
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	

Regression Metrics with Scikit-Learn

• https://scikit-learn.org/stable/modules/model_evaluation.html

Regression	
'explained_variance'	metrics.explained_variance_score
'max_error'	metrics.max_error
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_root_mean_squared_error'	metrics.root_mean_squared_error
'neg_mean_squared_log_error'	metrics.mean_squared_log_error
'neg_root_mean_squared_log_error'	metrics.root_mean_squared_log_error
'neg_median_absolute_error'	metrics.median_absolute_error
'r2'	metrics.r2_score
'neg_mean_poisson_deviance'	metrics.mean_poisson_deviance
'neg_mean_gamma_deviance'	metrics.mean_gamma_deviance
$\verb 'neg_mean_absolute_percentage_error' \\$	metrics.mean_absolute_percentage_error
'd2_absolute_error_score'	metrics.d2_absolute_error_score
'd2_pinball_score'	metrics.d2_pinball_score
'd2_tweedie_score'	metrics.d2_tweedie_score

Error Estimation with Scikit-Learn

• Holdout:

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

```
sklearn.model_selection.train_test_split

selection.train_test_split(*arrays.test_size=None.train_size=None.random_state=None.
```

 $sklearn.model_selection. \textbf{train_test_split} (*arrays, test_size=None, train_size=None, random_state=None, shuffle=True, stratify=None) ~ [source]$

Error Estimation with Scikit-Learn

Cross Validation:

https://scikit-learn.org/stable/modules/cross_validation.html#computing-cross-validated-metrics

sklearn.model_selection.cross_val_score

```
sklearn.model\_selection. {\it cross\_val\_score} (estimator, X, y=None, *, groups=None, scoring=None, cv=None, n\_jobs=None, verbose=0, fit\_params=None, params=None, pre\_dispatch='2*n\_jobs', error\_score=nan) [source]
```

```
>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1, random_state=42)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores
array([0.96..., 1. , 0.96..., 0.96..., 1. ])
>>> print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
0.98 accuracy with a standard deviation of 0.02
```

Error Estimation with Scikit-Learn

• Others:

https://scikit-learn.org/stable/modules/classes.html#splitter-classes

<pre>model_selection.GroupKFold([n_splits])</pre>	K-fold iterator variant with non-overlapping groups.
<pre>model_selection.GroupShuffleSplit([])</pre>	Shuffle-Group(s)-Out cross-validation iterator.
<pre>model_selection.KFold([n_splits, shuffle,])</pre>	K-Fold cross-validator.
model_selection.LeaveOneGroupOut()	Leave One Group Out cross-validator.
<pre>model_selection.LeavePGroupsOut(n_groups)</pre>	Leave P Group(s) Out cross-validator.
model_selection.LeaveOneOut()	Leave-One-Out cross-validator.
model_selection.LeavePOut(p)	Leave-P-Out cross-validator.
<pre>model_selection.PredefinedSplit(test_fold)</pre>	Predefined split cross-validator.
<pre>model_selection.RepeatedKFold(*[, n_splits,])</pre>	Repeated K-Fold cross validator.
$model_selection. Repeated Stratified KFold(*[, \dots])$	Repeated Stratified K-Fold cross validator.
<pre>model_selection.ShuffleSplit([n_splits,])</pre>	Random permutation cross-validator.
<pre>model_selection.StratifiedKFold([n_splits,])</pre>	Stratified K-Fold cross-validator.
<pre>model_selection.StratifiedShuffleSplit([])</pre>	Stratified ShuffleSplit cross-validator.
model_selection.StratifiedGroupKFold([])	Stratified K-Fold iterator variant with non-overlapping groups.
<pre>model_selection.TimeSeriesSplit([n_splits,])</pre>	Time Series cross-validator.