

A 1/3-inch 1.12µm-Pitch 13Mpixel CMOS Image Sensor with Low-power Readout Architecture

Yunhong Kim, Heesung Chae, Kyung-Min Kim, Kyungtae Kim, Sukki Yoon, Kyoungmin Koh, Jesuk Lee and Yongin Park

Samsung Electronics, Hwaseong, South Korea

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Motivation

High-resolution and High-frame-rate CIS

- Smartphone
- Medical device
- Automotive vehicle

Target Spec.		
Resolution	> 10 Mp	
Frame rate	30 fps	
Noise	< 5 e ⁻	
Bit depth	10 bit	
Power	< 100 mW	

Requires energy-efficient CMOS Image Sensor

Block Diagram - CMOS Image Sensor

- Column parallel ADC structure
- Single-slope ADC

 - ⇒ To maintain energy efficiency < < >
 - ⇒ Frame rate limit 😮

- Built-in self-test (BIST)
 - ⇒ For mass production

Proposed Architecture

- ① Ripple Counter ⇒ Gray Counter
- 2 Clock Driver
 - ⇒ Impedance matching technique
- 3 Address Decoder
 - ⇒ Pre-decoder & Clock gating
- 4 Analog-level Serializer
- ⑤ Built-in self-test (BIST)
 - ⇒ Only Two test patterns

Conventional Clock Driver

- Conventional Clock Driver
 - ⇒ To avoid the large peak current ⇒ Inverter units

Proposed Clock Driver

- Added dummy buffer: Match the load impedance
 - ⇒ Rise / fall time mismatch: < 5 ps ⇒ Buffer size & power ↓ 😊

Proposed Counter Structure

- 2-bit gray counter + 9-bit ripple counter (+ MSB 1-bit for Overflow)
 - \Rightarrow Power $\downarrow \odot \Rightarrow$ Only 6.42 mW @ 720 MHz

Proposed Address Decoder – Decoder

- Data clock masking + Pre-column address decoder
 - \Rightarrow Power $\downarrow \odot \Rightarrow$ Only 0.4 mW (@ 30 fps, 4240 Column)

Proposed Serializer (1)

Analog-level Serializer

- Input Swing Limitation ⇒ Power ↓ ⇒ Only 4.03 mW @ 144 MHz ©
- Low Input Impedance $(g_{m,mn}) \Longrightarrow Speed \uparrow \odot$

Proposed Serializer (2)

Scheamtic of Analog Sense-Amplifier

1. Reset Phase

 \Rightarrow Initial value of V_{IN} & V_{O} are determined by the feedback network

Proposed Serializer (3)

Scheamtic of Analog Sense-Amplifier

2. Amplification Phase

⇒ Pull-down current makes input voltage difference

Proposed Serializer (4)

Scheamtic of Analog Sense-Amplifier

3. Decision Phase

 \Rightarrow The $V_{IN,PP}$ is limited by feedback amplifier \Rightarrow Output swing limitation \bullet

Proposed BIST Technique (1)

- 1 Two test patterns
 - ⇒ TP1 & TP1'
 - ⇒ Test for worst case

- ② Shift register
 - ⇒ For address decoder test

- ③ Flag Detector
 - ⇒ Error Flag

Proposed BIST Technique (2)

- Two error flags
 - Error in Data output (FL1) and Memory access signals, RDs (FL2)

Implementation Result

Process	65nm	
Pixel Resolution	4240×3216	
Pixel Pitch [μm]	1.12	
Chip Size [mm²]	29.15	
ADC Size [mm ²]	2.54	
Supply [V]	2.8 / 1	
Frame Rate [fps]	30~120	
A/D Clock Freq. [MHz]	720	
ADC Resolution [Bit]	10	
Analog Gain 1 ~ 16		

Captured Image

- 30 fps
- 20 lux
- 33 ms exposure
- Macbeth Color Checker Chart

Power Breakdown

Readout power consumption 3.39× ↓ (40.4mW to 11.9mW)

Performance Comparison

Publication	This Work	JSSC'17 [6]
Process (nm)	65	35
Pixel pitch (μm)	1.12	5.86
FWC (e-)	5500	30,450
Conversion Gain (µV/e-)	124	30.4
# of Total Pixels (H×V)	4240×3216	4240×3216
Frame Rate (fps)	30 - 120	480
Power Consumption (mW)	99.7 (30 fps)	5,230 (480 fps)
Dynamic Range (dB)	65.2	76.3
Noise (e _{rms})	2	4.6
DNL (LSB)	0.26	-
INL (LSB)	0.18	-
[†] FoM [e ⁻ ·pJ/*DRU]	0.18	0.92

 † FoM = (Power × Noise) / (Frame rate × fps × DRU) †† DRU = (FWC / Noise)

Conclusions

- A Low power 13Mp CMOS Image Sensor in 65-nm CMOS
 - Energy efficient readout structure
 - High frame rate (<u>Max 120 fps</u>) & Low power (<u>99.7 mW</u>)
 - State-of-the-art FoM : 0.18 e-nJ
 - Built-in self-test for Mass production

Conclusions

- A Low power 13Mp CMOS Image Sensor in 65-nm CMOS
 - Energy efficient readout structure
 - High frame rate (<u>Max 120 fps</u>) & Low power (<u>99.7 mW</u>)
 - State-of-the-art FoM : 0.18 e-nJ
 - Built-in self-test for Mass production

Thank you for your attention!

