Elektrosztatika 1

 a) Amikor szőrmével dörzsölünk meg egy keménygumi rudat, a szőrmedarab magához vonzza a rúd megdörzsölt végét.

b) Két ilyen megdörzsölt rúd taszítja egymást.

Elektromos töltés

$$1C = 1As$$

1 Amper áram által 1 másodperc alatt szállított töltés

proton és elektron $\pm 1.602 \cdot 10^{-19} \text{ C}$

lölése	töltése	tömege(kg)
p	+e	1,673 · 10 ⁻²⁷
n 🕠	0	$1,675 \cdot 10^{-27}$
e	-е	$9,110 \cdot 10^{-31}$
	n 🕠	e lölése töltése p +e n 0

Vezetők és szigetelők

https://javalab.org/en/conductor_and_insulator_en/

k és szigetelők

Mitől függ az erő nagysága?

Coulombtörvény

$$F = k \frac{q_1 q_2}{r^2}$$

Coulomb-törvény vektoros alakban

$$F = k \frac{q_1 q_2}{r^2} \longrightarrow \mathbf{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \,\hat{\mathbf{r}}_{12}$$

$$r = r_{12} = r_2 - r_1$$

Coulomb-törvény vektoros alakban

Coulomb állandó

$$k = \frac{1}{4\pi\varepsilon_0}$$

 $\mathbf{r} = \mathbf{r_{12}} = \mathbf{r_2} - \mathbf{r_1}$

A vákuum permittivitása

$$\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ Vm/C}$$

Permittivitás

Szócikk Vitalap

Olvasás

A Wikipédiából, a szabad enciklopédiából

A permittivitás, abszolút permittivitás, dielektromos állandó vagy abszolút dielektromos állandó egy, az anyagi minőségre jellemző állandó.

Elektromos erőtér

Elektromos erőtér – ponttöltés tere

 q_0 : próbatöltés

q : (pont)forrás

 $\mathbf{r} = \mathbf{r}_f - \mathbf{r}_0$

$$\mathbf{E}(\mathbf{r}) = \frac{\mathbf{r}}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\mathbf{r}^2} \,\hat{\mathbf{r}}$$

Valódi anyagok: nagyon sok töltés összessége szuperpozíció elve!

$$egin{aligned} \mathbf{r}_i^* &= \mathbf{r} - \mathbf{r}_i \ \mathbf{\hat{r}}_i^* &= rac{\mathbf{r} - \mathbf{r}_i}{|\mathbf{r} - \mathbf{r}_i|} \end{aligned}$$

Az eredő elektromos tér

n darab töltés, i-vel indexelve

Az eredő erő:
$$\mathbf{F}=\mathbf{F}_1+\mathbf{F}_2+...+\mathbf{F}_i=\sum_{i=1}^n\mathbf{F}_i=\sum_{i=1}^nq_0\cdot\mathbf{E}_i(\mathbf{r})=q_0\sum_{i=1}^n\cdot\mathbf{E}_i(\mathbf{r})$$

Az eredő elektromos tér:

Erővonalak:

Elektromos erővonalak:

A próbatöltésre ható erő iránya

- 1. A (+) töltésnél kezdődnek és a (-) töltésnél érnek véget, vagy végtelennél is kezdődhetnek vagy végződhetnek.
- 2. A vonalak száma arányos az elektromos térerősség nagyságával.
- 3. Nem keresztezik egymást és nem válnak szét
- 4. Merőlegesen kezdődnek vagy végződnek a vezető anyag felületén
- 5. A vezető anyagokba nem hatolnak be (vezető belsejében **E**=0)

https://javalab.org/en/electric_field_line_en/

Elektromos erővonalak:

A próbatöltésre ható erő iránya

- 1. A (+) töltésnél kezdődnek és a (-) töltésnél érnek véget, vagy végtelennél is kezdődhetnek vagy végződhetnek.
- 2. A vonalak száma arányos az elektromos térerősség nagyságával.
- 3. Nem keresztezik egymást és nem válnak szét
- 4. Merőlegesen kezdődnek vagy végződnek a vezető anyag felületén
- 5. A vezető anyagokba nem hatolnak be (vezető belsejében **E**=0)

Hol a legerősebb az elektromos tér ($\mathbf{E}(\mathbf{r})$)?

