S4i APP3

Réponses aux procéduraux - H2022

Procédural 1:

- Q.4 a) saturation, 2.25 mA; b) triode, 2 mA; c) cutoff, Id=0.
- Q.5 a) $V_{GS} = 1.5 \text{ V}$, $V_S = 1 \text{ V}$, $R_S = 1 \text{ k}\Omega$; b) NMOS (à enrichissement, à cause du dessin discontinu du canal); c) autrement dit, vérifiez que $V_{DS} > V_{GS} V_t$.

Supplément : quelle est la gamme de valeur acceptable pour R_D (i.e. qui n'affecte pas I_D et qui le maintien en saturation) ? $R_D \le 3$ k Ω

- Q.6 a) 2.18 k Ω ; b) 5.4 k Ω ; c) 2.47 soit le ratio entre les réponses en a) et b)
- Q.7 !Y = A+BC; Y = !A(!B+!C) et donc QA en série avec (QB en parallèle avec QC)
- Q.8 a) W_p = 1.31 μ m, Surface de la grille = WL = 0.42 μ m²; b) VOH = 2.3 V, VOL = 0 V, VIH = 1.31 V, VIL = 0.99 V, NMH = NML = 0.99 V; c) RDSN = RDNP = 3.22 $k\Omega$ (même valeur parce que l'inverseur balancé).

Questions supplémentaires :

- Q.9 Eq. 14.26, R_{DSN} = 1.67 k Ω ; on pose R_{DSP} = R_{DSN} =1.67 k Ω puis on inverse l'équation de R_{DSP} pour obtenir (W/L) $_p$ = 6.
- 14.6 : !Y = A(B+C); Y = !A + (!B!C); QA parallèle avec QB et QC en série
- 14.7 : débutez par calculer Y car on vous donne le PUN puis !Y pour le PDN, Y = !A(!B+!C+!D); !Y = A + (BCD)

Procédural 2 :

Q.10 $(W/L)_n = 1.7$

- Q.11 a) $V_M = V_{DD}/2$. Est-ce que les transistors sont en saturation? oui; b) $I_{D,max} = \frac{1}{2}k'W/L(V_{DD}/2 V_t)^2$; c) 23 μA
- Q.12 24.7 ps; 49.4 ps; 37 ps.
- Q.13 32 uW
- Q.14 a) $t_p=0.69 R_o C_o$; b) $R=R_o/s$, $C=sC_o$, $t_p=0.69 R_o C_o$; c) $C_2=sC_o+C_{ex}$, $t_p=0.69 [R_o C_o+R_o C_{ex}/s]$
- Q.15 $Q_{NA}=Q_{NC}=Q_{ND}\rightarrow 3$ W_n/L_n ; $Q_{NB}\rightarrow 1.5$ W_n/L_n ; $Q_{PB}=Q_{PC}=Q_{PD}\rightarrow 2$ W_n/L_n ; $Q_{PA}\rightarrow 1$ W_p/L_p ; Puis établir W_p par rapport à W_n pour obtenir le dimensionnement absolu, mais il manque une donnée.
- Q.16 a) x=5.8; b) 23.5 × 50 ps; c) x^e , $n^7.1 \rightarrow 8$, x=2.42, 19.36 × 50 ps