CV 9 - Generovanie hladkej trajektórie (20 bodov)

V nasledovnom zadaní si ukážeme generovanie hladkej traktórie polynomiálnou interpoláciou [1] v kĺbovom a kartezianskom priestore priemyselného 6-osového robotického manipulátora. Študent bude mať k dizpozícií nakonfigurovaný moveit balík robotického ramena ABB IRB 4600 [2] s algoritmom riešenia inverznej kinematickej úlohy ikfast [3]. Náplňou cvičenia bude preopakovanie teoretických poznatkov z prednášok, vysvetlenie ukážkových programov (použitie knižnice Eigen pre maticové operácie, použitie inverznej kinematickej úlohy a vizualizácia trajektórie v Rviz) a predstavenie zadania.

Konfiguračný moveit balík robota

Prvou úlohou je z dokumentového serveru si stiahnuť konfiguračný moveit balík robota ABB. Oboznámte sa s týmto balíkom, ktorý je možné spustiť pomocou príkazu:

roslaunch abb_moveit_config demo.launch

Ukážkové zdrojové kódy

1. Balík **eigen_examples** demonštruje použitie základných maticových operácií v knižnici Eigen. Demo je možné pustiť príkazom:

rosrun eigen_example eigen_example

2. Balík **trajectory_visualization** poukazuje ako vyplniť moveit_msgs pre vizualizáciu trajektórie. Ukážku je možné pustiť príkazom (potrebné mat spustený moveit):

rosrun trajectory_visualization trajectory_visualization

3. Balík **ik_solver_example** využíva zabudovaný algoritmus *ikfast* inverznej kinematickej úlohy v moveite.Ukážku je možné pustiť príkazom (potrebné mat spustený moveit):

rosrun ik_solver_example ik_solver_example

BLOK 3 - ZADANIE 1

- 1. Stiahnuť a spustiť konfiguračný moveit balík z dokumentoveho serveru.
- 2. Stiahnuť si ukážkové programy
- 3. Naprogramovať trajektóriu robota v kĺbovom priestore, ktorá bude spĺňať požiadavky dané v tab. 1. (2b)
- 4. Vykresliť trajektóriu robota v 3D priestore v Rviz ako je znázornené na obr. 1. (2b)
- 5. Vykresliť priebehy polohy, rýchlosti, zrýchlenia a trhov pre kĺb 1 a kĺb 3. (2b)

Tab 1. Požiadavky pre trajektóriu

T [s]	Q1 [°]	dQ1 [°/s] d^2Q1 [°/s^2]	Q3 [°]	dQ3 [°] d^2Q3 [°/s^2]
0	0	0	0	0
1	-	-	30	0
4	90	0	0	0

^{*} Q1 = prvý kĺb, Q3 tretí kĺb, d – derivácia, d^2 – druhá derivácia

Obr. 1 Ukážka trajektórie v úlohe 1

BLOK 3 - ZADANIE 2

- 1. Naprogramovať trajektóriu robota v karteziánskom súradnicovom systéme nástroja robota, ktorá bude spĺňať požiadavky dané v tab. 2. (6b), ktorá sa bude skladať z nasledovných bodov:
 - a. Presun nástroja po z-osi dole z 1,6 na 1,0 m za 1 sekundu a zároveň žiadna iná súradnica sa nesmie meniť.
 - b. Otočenie nástroja na mieste okolo osi Z o 90 stupňov za 1 sekundu
 - c. 1 Sekundu robot stojí
 - d. Presun nástroja po y-osi z 0 na 0,5 m za 1 sekundu, ale robot v tomto bode nesmie zastaviť ale plynulo prechádzať do bodu e) a zároveň nesmie zmeniť rotáciu nastroja.
 - e. Presun nástroja po z-osi z 1,0 na 1,6 metra a zároveň zmena rotácie okolo osi z o 90 stupňov naspäť za 1 sekundu.
 - f. Presun do počiatočnej polohy za čas 5 sekúnd.
- 2. Vykresliť polohy, rýchlosti, zrýchlenia súradnice Y,Z a rotácie okolo osi Z v súradnicovom systéme nástroja robota. (2b)
- 3. Prepočítať trajektóriu do kĺbového priestoru robota. (2b)
- 4. Vybrať vhodné konfigurácie robota, tak aby trajektória bola plynulá a vykresliť trajektóriu robota v 3D priestore v Rviz ako je znázornené na obr. 2. (4b)

Tab 2. Požiadavky pre trajektóriu

t [s]	х	у	z	rx	ry	rz	dx	dy	dz	drz/d^2rz
0	1	0	1,6	0	π/2	0	0	0	0	0
1	1	0	1	0	π/2	0	0	0	0	0
2	1	0	1	0	π/2	π/2	0	0	0	0
3	1	0	1	0	π/2	π/2	0	0	0	0
4	1	0,5	1	0	π/2	π/2	0			0
5	1	0,5	1,6	0	π/2	0	0	0	0	0
9	1	0	1,6	0	π/2	0	0	0	0	0

Čas t [s], Poloha x,y,z [m], rotácia rx, ry, rz [rad], rýchlosť v osiach dx, dy, dz [m/s], rýchlosť rotácie drz okolo osi z [rad/s] a zrýchlenie rotácie d^2rz okolo osi z [rad/s^2].

Obr. 1 Ukážka trajektórie v úlohe 2

Hodnotenie:

40% zadania je hodnotená funkcionalita a 60% je pochopenie celému procesu

Termín odovzdania 12. Týždeň

Literatúra

[1] R. N. Jazar, Theory of Applied Robotics. Melbourn, Australia, 2022, pp. 687–730.

[2] ABB, IRB 4600 documentation, dostupné online: https://new.abb.com/products/robotics/industrial-robots/irb-4600

[3] Diankov, Rosen, Automated construction of robotic manipulation programs. 2010.