WIRELESS NETWORK SYSTEM

Publication number: JP2002135304

Publication date:

2002-05-10

Inventor:

YOSHIDA NORIO

Applicant:

SHARP KK

Classification:

- international:

H04L29/00; H04L12/28; H04L12/56; H04L29/00;

H04L12/28; H04L12/56; (IPC1-7): H04L12/56;

H04L12/28; H04L29/00

- European:

Application number: JP20000318816 20001019 **Priority number(s):** JP20000318816 20001019

Report a data error here

Abstract of JP2002135304

PROBLEM TO BE SOLVED: To provide a wireless network system that realizes real time transmission of a broadband data stream whose band exceeds an available band per one channel in a wireless network. SOLUTION: The wireless network system is provided with a gateway 20 that transmits/receives a data stream to/from an external information source and has 1st wireless units 24a, 24b and with an information device 30 that is provided with 2nd wireless units 34a, 34b that transmit/receive a wireless signal corresponding to the 1st wireless units 24a, 24b, the gateway 20 has a distribution assembling control means 23a and the information device 30 has a distribution assembling control means 33a respectively. The distribution assembling control means 23a/33a disassembles the broadband data stream into data packets, distributes the packets to the 1st wireless units 24a, 24b or the 2nd wireless units 34a, 34b, allows them to transmit the packets in parallel and assembles the data packets received in parallel by the 2nd wireless units 34a, 34b or the 1st wireless units 24a, 24b, which are placed correspondingly to each other, into the original data stream.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-135304 (P2002-135304A)

(43)公開日 平成14年5月10日(2002.5.10)

(51) Int.Cl.7		識別記号		FΙ		ž	7] *(参考)
H 0 4 L	12/56			H04L	11/20	102E	5 K O 3 O
	12/28		•		11/00	310B	5 K O 3 3
	29/00				11/20	102F	5 K O 3 4
, 4					13/00	s	

審査請求 未請求 請求項の数4 OL (全 12 頁)

(21)出願番号	特爾2000-318816(P2000-318816)	(71)出願人	000005049		
			シャープ株式会社		
(22)出顧日	平成12年10月19日(2000.10.19)		大阪府大阪市阿倍野区長池町22番22号		
* .		(72)発明者	吉田 式雄		
	•		大阪府大阪市阿倍野区長池町22番22号	シ	
•		_	ャープ株式会社内		
•		(74)代理人	100079843		
			弁理士 高野 明近 (外2名)		

最終頁に続く

(54) 【発明の名称】 無線ネットワークシステム

(57)【要約】

【課題】 無線ネットワークの1チャネル当たりの伝送 可能帯域を越す広帯域のデータストリームのリアルタイ ム伝送を実現する。

【解決手段】 外部にある情報源とデータストリームを送受するためのゲートウェイ20内に複数個の第1の無線ユニット24a,24bと、前記第1の無線ユニット24a,24bと対応して無線信号を送受する複数個の第2の無線ユニット34a,34bを有する情報機器30とを備え、広帯域データストリームを複数個のデータパケットに分割して、複数個の第1または第2の無線コニット24a,24bまたは34a,34bに順次振り分けて分配して、並行して送信せしめ、対応して配設されている複数個の第2または第1の無線ユニット34a,34bまたは24a,24bで並行して受信したデータパケットを元のデータストリームに組み立てる分配組立制御手段23a/33aとをゲートウェイ20及び情報機器30それぞれに有する。

【特許請求の範囲】

【請求項1】 外部にある情報源とデータストリームを 送受信し、情報機器との間で無線信号として該データス トリームを送受信する第1の無線ユニットを有するゲー トウェイと、前記第1の無線ユニットと対応させて無線 信号を送受信する第2の無線ユニットを有する情報機器 とからなる無線ネットワークシステムにおいて、互いに 異なる周波数の無線チャネル信号を送受信する複数個の 前記第1の無線ユニット及び前記第2の無線ユニットを それぞれ前記ゲートウェイ及び前記情報機器に配設さ せ、前記第1の無線ユニットと前記第2の無線ユニット からなる一対の無線ユニット対(以下、前記第1・第2 の無線ユニット対と記す) の実効伝送可能帯域を超える 広帯域データストリームを送受信する場合においては、 複数対の前記第1・第2の無線ユニット対を同時に該広 帯域データストリームの送受信のための無線ユニットと して割り当てて、該広帯域データストリームを複数個の 前記第1の無線ユニットまたは前記第2の無線ユニット (以下、前記第1/第2の無線ユニットと記す) へのデ ータパケットに分割して振り分ける制御を行なう分配制 御手段と、複数個の前記第1/第2の無線ユニットと対 応させて配設されている複数個の前記第2の無線ユニッ トまたは前記第1の無線ユニットからの前記データパケ ットを受信して、元の広帯域データストリームに組立て る組立制御手段とを前記ゲートウェイ及び前記情報機器 それぞれに有していることを特徴とする無線ネットワー クシステム。

【請求項2】 請求項1に記載の無線ネットワークシステムにおいて、前記広帯域データストリームの送受信に関し、前記データパケットの送受信を行なう複数対の前記第1・第2の無線ユニット対の1対のみが、メイン無線ユニット対として、すべての前記データパケットの伝送制御を行ない、残りの複数対の前記第1・第2の無線ユニット対は、前記メイン無線ユニット対の伝送制御に従って前記データパケットの送受信の動作を行なうことを特徴とする無線ネットワークシステム。

【請求項3】 請求項1または2に記載の無線ネットワークシステムにおいて、前記第1/第2の無線ユニットそれぞれの実効伝送可能帯域に相当する前記データパケットを蓄積することができる送信用のバッファメモリをそれぞれの前記第1/第2の無線ユニットに備えられた前記パッファメモリに蓄積することができるデータパケット量を越える前記データパケットの送信要求がある場合、前記バッファメモリに蓄積し切れない前記データパケットを他の前記第1/第2の無線ユニットに備えられているバッファメモリに転送させて格納させ、前記他の第1/第2の無線ユニットから送信させる制御を行なう送信パケット格納手段を有することを特徴とする無線ネット

ワークシステム。

【請求項4】 請求項1乃至3のいずれかに記載の無線ネットワークシステムにおいて、前記無線ネットワークシステムを構成する無線信号が、IEEE802.11 b規格に準拠していることを特徴とする無線ネットワークシステム。

2

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、家庭/オフィス向けの無線ネットワークシステムに関し、特に、有線、あるいは、無線アクセス系の通信網を形成するCATVケーブルや電話線を使ったデジタル加入者線 x D S L (x Digital Subscriber Line) などの有線系アクセスライン、あるいは、WLL (Wireless Local Loop) などの無線系アクセスラインを終端し、家庭/オフィス内の無線ネットワークを介して、家庭/オフィスにある情報機器との情報交換を実現する通信ユニットシステムを無線アクセスポイントとして位置付け、該無線アクセスポイントとも情報機器との間で、MPEG-2データ等の広帯域情報のリアルタイム伝送を実現する無線ネットワークシステムに関する。

[0002]

【従来の技術】現在、家庭/オフィス向けの高速の無線 ネットワークシステムを構成することが可能なIEEE 802.11b規格に準拠した各種の商品が市場に出回 りはじめている。本規格においては、従来のIEEE8 02.11規格における物理的な伝送速度が2Mbps であったものをCCK変調を用いて11Mbpsまで高 速化している。しかし、実際に伝送したいデータストリ ームがどの程度の速度で伝送できるかを表す実効的伝送」 速度については、物理的な最大伝送速度の半分の5Mb p s 前後に低下してしまう。すなわち、伝送したいデー タストリームは複数のデータパケットに分割され、各デ ータパケット毎に、宛先やパケット長、パケット番号等 を含む伝送制御用の情報からなるヘッダ情報及び誤り訂 正制御用の情報が付加されて I P (Internet Protoco 1) パケットとして送信される。一方、該宛先で指定し た相手から該IPパケットを正しく受信できたか否かを 示すACK (Acknowledgement) 信号が返送されてくる ので、該ACK信号を確認しながら、正しく受信できな かったIPパケットを再送させる動作も行なっている。 したがって、宛先に向けて送出することができる実効的 なデータストリームのデータ量は、平均すると、IEE E802.11b準拠の無線ネットワークの物理的な伝 送速度である11Mbpsそのままで伝送させることは できなく、伝送系の環境条件にもよるが、経験的には約 半分の実効的伝送速度 5 M b p s 前後でしか伝送できな いのが実状である。

【0003】図5は、従来の実施例における家庭/オフ

3

ィス向けの無線ネットワークシステムの構成図である。 該家庭/オフィス向け無線ネットワークシステム10 は、家庭/オフィス内において、有線または無線系の外 部の通信網を構成するアクセス網との相互接続を行なう ゲートウェイ20と、前記アクセス網からの情報をその まま、または、各種の情報処理を施して表示したり、あ るいは、逆に、前記アクセス網へ各種情報を送信したり する情報機器30とからなり、ゲートウェイ20と複数 の情報機器30との間では、IEEE802.11b規 格等に準拠した無線信号の送受信が行われる。

【0004】ゲートウェイ20は、前記アクセス網からの有線または無線系のアクセスライン1を終端させ、家庭/オフィス内の無線ネットワークを介して、特定の情報機器30へ前記アクセス網からの受信情報を送信する通信ユニットシステム21を有している。該通信ユニットシステム21は、前記アクセス網からのアクセスライン1を終端させるアクセス系終端ユニット22と、前記アクセス網とやり取りする信号と家庭/オフィス内の情報機器30と送受する信号との間の信号フォーマットの変換等を制御する信号インタフェースユニット23と、アンテナ25を介して、家庭/オフィス内の無線ネットワークにIEEE802.11b規格に準拠の無線信号を送受する第1の無線ユニット24とを有している。

【0005】一方、情報機器30は、パソコンやテレビジョン受像機などの情報機器本体39と、該情報機器本体39と、該情報機器本体39と家庭/オフィス内の無線ネットワークとの間での情報の送受信を行う端末ユニットシステム31は、アンテナ35、家庭/オフィス内の無線ネットワークを介して、前記第1の無線ユニット24との間でIEEE802.11b規格に準拠の無線信号を送受する第2の無線ユニット34と、該無線信号による情報を情報機器本体39との間で伝送することを制御する端末インタフェースユニット33とを有している。

【0006】ここに、通信ユニットシステム21は、前記アクセス網との接続を行なうアクセスライン1と1対1に対応して1個ずつ配設され、一方、端末ユニットシステム31は各情報機器端末本体39毎に1個ずつ配設されるものである。また、家庭/オフィス内の無線ネットワークを形成する第1の無線ユニット24及び第2の無線ユニット34は、それぞれ、通信ユニットシステム21及び端末ユニットシステム31毎に1個ずつ搭載されている構成となっている。

【0007】したがって、従来の家庭/オフィス向け無線ネットワークシステム10においては、通信ユニットシステム21に内蔵されている第1の無線ユニット24と端末ユニットシステム31に内蔵されている第2の無線ユニット34との間の情報伝送はIEEE802.11b規格に準拠した1対の第1の無線ユニット24と第2の無線ユニット34(以下、第1・第2の無線ユニット

ト24・34と記す。尚、符号を示す番号は必要に応じて付したり、変更する場合がある。)の対で行なわれることとなり、第1・第2の無線ユニット24・34の対の物理的伝送速度が11Mbpsであるので、実効的伝送速度(すなわち、実効的伝送帯域)がほぼ半分の5Mbps程度の帯域を有している無線ネットワークを構築することができる。

[0008]

【発明が解決しようとする課題】しかしながら、従来の家庭/オフィス向け無線ネットワークシステムのごとく、IEEE802.11b規格に準拠した無線ネットワークシステムにて、動画像等の映像信号を伝送しようとする場合、帯域圧縮技術を採用したMPEG-2(Moving Picture Experts Group-2)データとして伝送せんとしても、該MPEG-2データストリームの帯域は6Mbps程度必要とするため、IEEE802.11b準拠の無線ネットワークシステムの実効的伝送速度5Mbpsでは不足してしまう。さらには、約20Mbpsの帯域を必要とする高解像度テレビジョンHDTV(High Definition Television)の映像信号のデータストリームをIEEE802.11b規格に準拠の無線ネットワークシステムを用いて配信せんとしても全く実効的伝送速度が不足してしまう。

【0009】すなわち、CATVケーブル等で送られてきたかかるMPEG-2あるいはHDTV等の広帯域データストリームをアクセス系終端ユニット(家庭/オフィス向けゲートウェイ装置)で受信し、IEEE802.11b規格に準拠の無線ネットワークを用いて、家庭/オフィス内のパソコンやテレビジョン受像機等の情報機器に送信して、該広帯域データストリームをリアルタイムで視聴しようとしても、実効的伝送速度は不足である。したがって、図5に示した家庭/オフィス向け無線ネットワークシステムにおけるごとく、IEEE802.11b規格に準拠の無線ユニット1対での実効的伝送速度5Mpbsでは、MPEG-2信号の6Mbps,HDTV信号の約20Mbpsの広帯域データストリームを伝送することができず、リアルタイムの映像表示を行なうことができないという問題がある。

[0010]

40 【課題を解決するための手段】本発明は、かかる問題を解決するためになされたものであり、家庭/オフィス内の無線ネットワークシステムを構成するIEEE802.11b準拠の無線ユニット対に関し、該無線ユニット1対の実効的伝送速度を越える広帯域データストリーム(たとえば映像データストリーム)を伝送する場合、該広帯域データストリームの帯域を満たすことができるだけの2対以上の複数対の無線ユニットを同時に使用可能とするものである。たとえば、MPEG-2のデータストリームにおいては2対、HDTVのデータストリームにおいては2対、HDTVのデータストリームにおいては2対、HDTVのデータストリームにおいては2対、HDTVのデータストリームにおいては2対、HDTVのデータストリー

るものである。すなわち、MPEG-2, HDTV等の 広帯域の映像データストリームを複数のIPパケットに 分割して、通信ユニットシステム内に配設した複数の第 1の無線ユニットに順次振り分けて、各第1の無線ユニ ットにある無線送信機から2 c h以上の複数の無線信号 を使って並行して送信し、一方、端末ユニットシステム 側では、前記第1の無線ユニットに対応して配設されて いる複数の第2の無線ユニットにある無線受信機で並行 して受信したIPパケットを集め、各IPパケットに付 与されているパケット番号に基づいて配列し直して、元 のMPEG-2、HDTVの映像データストリームを再 構成するものである。而して、広帯域の映像データスト リームを伝送する場合においては、2対以上の複数の第 1/第2の無線ユニットを同時に使うことにより、実効 的伝送速度(実効的伝送帯域)についても所望の帯域を 確保することができ、たとえば、家庭/オフィス内の任 意の場所においてIEEE802.11b規格準拠の第 1/第2の無線ユニット対を用いて、映像データストリ ームをリアルタイムで送受信できることとなり、該映像 データストリームに基づく映像をパソコン、テレビジョ ン受像機、あるいは、ディスプレイ装置などの情報機器 にリアルタイムで表示させることができる。

【0011】また、本発明にかかる無線ネットワークシ ステムにおいては、2対以上の複数対の第1/第2の無 線ユニットを用いて、IEEE802.11b規格に準 拠した無線信号を送受信する場合、主となるメイン無線 ユニットの1対だけで、すべての無線ユニット対間の I Pパケットの送受信に関して、IEEE802.11b 規格に準拠した伝送制御を行わしめることとし、その他 の従となるサブ無線ユニット対については、前記メイン 無線ユニット対に連動して起動させることとし、該サブ 無線ユニット対間のIPパケットの送受信に関する伝送 制御はメイン無線ユニット対に制御信号のやり取りを任 せることとしても良い。かかる場合においては、前記サ ブ無線ユニット対は実効的伝送速度を満たさせるため に、単に、IPパケットをメイン無線ユニット対や他の サブ無線ユニット対と並行して無線伝送する動作のみを 行なわしめることとなる。したがって、物理的に複数対 の無線ユニットを使用していても、論理的な伝送制御は 1対のメイン無線ユニットのみで実現させることができ るので、無線ネットワークの伝送制御を簡素化させるこ とが可能となる。

【0012】本発明にかかる無線ネットワークシステムの具体的な技術手段は、次の通りである。第1の技術手段は、外部にある情報源とデータストリームを送受信し、情報機器との間で無線信号として該データストリームを送受信する第1の無線ユニットを有するゲートウェイと、前記第1の無線ユニットと対応させて無線信号を送受信する第2の無線ユニットを有する情報機器とからなる無線ネットワークシステムにおいて、互いに異なる

周波数の無線チャネル信号を送受信する複数個の前記第 1の無線ユニット及び前記第2の無線ユニットをそれぞれ前記ゲートウェイ及び前記情報機器に配設させ、前記 第1の無線ユニットと前記第2の無線ユニットからなる 一対の無線ユニット対(以下、前記第1・第2の無線ユニット対と記す)の実効伝送可能帯域を超える広帯域データストリームを送受信する場合においては、複数対の 前記第1・第2の無線ユニット対を同時に該広帯域データストリームの送受信のための無線ユニットとして割り 当てて、該広帯域データストリームを複数個の前記第1 の無線ユニットまたは前記第2の無線ユニット(以下、 前記第1/第2の無線ユニットと記す)へのデータパケ

6

前記第1/第2の無線ユニットと記す)へのデータパケットに分割して振り分ける制御を行なう分配制御手段と、複数個の前記第1/第2の無線ユニットと対応させて配設されている複数個の前記第2の無線ユニットまたは前記第1の無線ユニットからの前記データパケットを受信して、元の広帯域データストリームに組立てる組立制御手段とを前記ゲートウェイ及び前記情報機器それぞれに有していることを特徴とした無線ネットワークシステムである。

【0013】第2の技術手段は、第1の技術手段において、前記広帯域データストリームの送受信に関し、前記データパケットの送受信を行なう複数対の前記第1・第2の無線ユニット対のうち、特定の前記第1・第2の無線ユニット対の1対のみが、メイン無線ユニット対として、すべての前記データパケットの伝送制御を行ない、残りの複数対の前記第1・第2の無線ユニット対は、前記メイン無線ユニット対の伝送制御に従って前記データパケットの送受信の動作を行なうことを特徴とした無線ネットワークシステムである。

【0014】第3の技術手段は、第1または第2の技術手段において、前記第1/第2の無線ユニットそれぞれの実効伝送可能帯域に相当する前記データパケットを蓄積することができる送信用のバッファメモリをそれぞれの前記第1/第2の無線ユニット内に備えさせ、ある前記第1/第2の無線ユニット内に備えられた前記バッファメモリに蓄積することができるデータパケット 量を越える前記データパケットの送信要求がある場合、前記パッファメモリに蓄積し切れない前記データパケットを他の前記第1/第2の無線ユニットに備えられているバッファメモリに転送させて格納させ、前記他の第1/第2の無線ユニットから送信させる制御を行なう送信パケット格納手段を有することを特徴とした無線ネットワークシステムである。

【0015】第4の技術手段は、第1乃至第3のいずれかの技術手段において、前記無線ネットワークシステムを構成する無線信号が、IEEE802.11b規格に準拠していることを特徴とした無線ネットワークシステムである。

[0016]

【発明の実施の形態】以下に、本発明にかかる家庭/オ フィス向けの無線ネットワークの実施形態について、図 に従って説明する。図1は、本発明にかかる家庭/オフ ィス向けの無線ネットワークシステムの一実施形態を示 す構成図である。図1に示す家庭/オフィス向け無線ネ ットワークシステム10は、外部のアクセス網と接続す るアクセスライン1に接続されているゲートウェイ20 と複数個の情報機器30A, 30B, … (図1では、パ ソコン30A, テレビジョン受像機30Bを記してい る) からなっている。ここに、ゲートウェイ20はアク セス網として、たとえば、CATVケーブル等の有線系 のアクセスライン1に1対1に対応して配置されてお り、該ゲートウェイ20に備えられた通信ユニットシス テム21内にある複数の第1の無線ユニット毎にアンテ ナ25A, 25b, …が配備されている。

【0017】また、各情報機器30A, 30Bは、それ ぞれ情報機器本体であるパソコン本体39A、テレビジ ョン受像機本体39Bと、それぞれの情報機器本体と前 記通信ユニットシステム21とのデータの送受を制御す る端末ユニットシステムA, B 31A, 31Bを備え 20 ており、各端末ユニットシステムA, B 31A, 31 B内にある複数の第2の無線ユニット毎にアンテナ35 Aa, 35Ab, …, 35Ba, 35Bb, …が配備さ れている。ここで、CATVケーブル等のアクセスライ ン1を介して受信される外部の情報提供源(情報源)か らのデータストリームが広帯域を要するデータストリー ム(例えば、映像データストリーム)である場合、通信 ユニットシステム21において、該データストリームは 複数のデータパケットに分割されて、IPパケットとし て、複数の第1の無線ユニットに並列に振り分けられ て、IEEE802.11b規格に準拠の無線信号とし て各第1の無線ユニット毎に設けられている各アンテナ 25a, 25b, …から並行して送信される。

【0018】一方、複数の該無線信号を並行して受信す る情報機器30A.30Bには、通信ユニットシステム 21側の前記第1の無線ユニットそれぞれに接続されて いるアンテナ25a, 25b…に対応して、複数の第2 の無線ユニットそれぞれに接続されている複数アンテナ 35Aa, 35Ab, …, 35Ba, 35Bb…が備え られており、振り分けられた各前記無線信号は、それぞ れのアンテナ32Aa, 32Ab, …, 32Ba, 32 Bb, …により受信されて、かかる複数のアンテナがそ れぞれ接続されている複数の第2の無線ユニットを介し て端末ユニットシステムA, B 31A, 31Bにおい て、それぞれ受信されたIPパケットが集められて、再 構成されることにより、元の広帯域のデータストリーム が再生される。再生されたデータストリームはパソコン 本体39A, テレビジョン受像機本体39Bに送出され て表示される。

複数対の無線ユニットとそれぞれに接続されているアン テナとを、それぞれ通信ユニットシステム及び端末ユニ ットシステムに搭載することにより、家庭/オフィス内 の無線ネットワークの伝送帯域を拡大させて、伝送する データストリームの実効的伝送速度 (実効的伝送帯域) を高速化(広帯域化)させることにより、映像データス トリームなどの広帯域を要するデータストリームでもリ アルタイムで送受信させる構成としている。

【0020】次に、本発明にかかる家庭/オフィス向け 無線ネットワークシステム10の詳細な構成を図2を用 いて説明する。ここに、図2は、本発明にかかる無線ネ ットワークシステムを構成する通信ユニットシステム及 び端末ユニットシステムの詳細な構成を示す図である。 一般に、家庭/オフィス内においては、複数の情報機器 に対応して複数の端末ユニットシステムが配置される が、本発明においては、複数の端末ユニットシステムそ れぞれは同一の構成からなっているので、図2には、そ のうちの1個のみの端末ユニットシステムを示してい る。ここに、通信ユニットシステム21は、前述の通 り、アクセス網からのアクセスライン1を終端させるア クセス系終端ユニット22と、前記アクセス網とのやり 取りをする信号と家庭/オフィス内の情報機器毎に配置 されている端末ユニットシステム31と送受する信号と の間の信号フォーマットの変換等を制御する信号インタ フェースユニット23と、複数のアンテナ25a, 25 b, …を介して家庭/オフィス内の無線ネットワーク上 にIEEE802.11b規格に準拠した無線信号を送 受する複数の第1の無線ユニット24a,24b,…と を有している。

30 【0021】一方、端末ユニットシステム31は、通信 ユニットシステム21の複数の第1の無線ユニット24 a, 24b, …と対向して、該第1の無線ユニット24 a, 24b, …に接続されているアンテナ25a, 25 b, …からの無線信号をそれぞれ複数のアンテナ35 a, 35b…を介して受信し、端末インタフェースユニ ット33に送信する複数の第2の無線ユニット34a, 34b,…と、該無線信号によるデータストリームをパ ソコンやテレビジョン受像機等の本体である情報機器本 体39に転送することを制御する端末インタフェースユ ニット33とを有している。

【0022】また、1対の無線ユニットの実効的伝送帯 域ではリアルタイムに伝送することができない広帯域の データストリームを無線ネットワークに送受信する場合 に備えて、本発明における信号インタフェースユニット 23には、アクセスライン1からの広帯域データストリ ームを複数の I Pパケットに分割して、複数の第1の無 線ユニット24a, 24b…に順次振り分けて分配した り、逆に、無線ネットワークから複数の第1の無線ユニ ット24a, 24b…を介して、受信した複数のIPパ 【0019】すなわち、本発明においては、2対以上の 50 ケットを再構成し、元の広帯域データストリームに組み

10

立てる分配組立制御サブユニット23aを有している。 【0023】一方、端末インタフェースユニット33には、前記分配組立制御サブユニット23aに対応して、無線ネットワークから複数のアンテナ35a,35b…及び第2の無線ユニット34a,34b…を介して受信した複数のIPパケットを再構成し、元の広帯域データストリームに組立てたり、逆に、情報機器39本体からの広帯域データストリームを複数のIPパケットに分割して、複数の第2の無線ユニット34a,34b…に順次振り分けて分配する組立分配制御サブユニット33aを有している。

【0024】次に、図2に示した無線ネットワークシステムの各部位の動作を説明する。まず、情報機器本体39からの要求に基づいて、有線あるいは無線の通信網を構成するアクセス網からのアクセスライン1を介して、外部にある所望の情報源(図示していない)との接続がなされ、該情報源から、映像データストリーム等のデータストリームがアクセスライン1を介して、アクセス系終端ユニット22に伝送されてくる。アクセス系終端ユニット22に伝送されてくる。アクセス系終端ユニット22に伝送されてくる。アクセス系終端ユニット22に伝送されてくる。アクセス系終端ユニット22に伝送されてくる。アクセス系終端ユニット23においては、該データストリームをベースバンド信号に復調して、信号インタフェースユニット23に転送する。信号インタフェースユニット23に転送する。信号インタフェースコニット23に転送する。信号インタフェースコニット23内の分配組立制御サブユニット23aにおいて、復調したベースバンド信号から、MPEGー2等の元のデータストリームに組立て直される。

【0025】さらに、信号インタフェースユニット23 内の分配組立制御サブユニット23aが、1対の無線ユ ニットの実効的伝送帯域ではリアルタイムに送信するこ とができない広帯域データストリームであることを該広 帯域データストリーム中の制御情報等に基づいて識別し た場合、分配組立制御サブユニット23aはデータスト リームを複数のデータパケットに分解して、広帯域デー タストリームである旨の情報やパケット番号等をヘッダ として付加してIPパケット化するとともに、後段にあ る第1の無線ユニット24a, 24b, …に順次生成し たIPパケットを振り分けて送信させる。ここで、たと えば、無線ユニット24a, 24b, …の個数をN個と すると、元のデータストリームを分割生成した全IPパ ケット数の1/N個のIPパケット数ずつを1個の第1 の無線ユニットで送ればよくなるので、第1の無線ユニ ット1個当りの実効的な伝送速度すなわち実効伝送帯域 がT Mbpsしかない場合であって、無線ネットワー ク全体を構成する無線ユニットN個全体では、T. Mb p s のN倍の伝送帯域が確保できる。したがって、無線 ネットワーク全体のT×N Mbpsの伝送帯域が、前 記広帯域データストリームの必要伝送帯域以上であれ ば、該無線ネットワークを介して、該広帯域データスト リームをリアルタイムで伝送することができる。すなわ ち、無線ユニットの設置個数は該無線ネットワークを伝 送させるデータストリームの帯域の大きさに応じて算出 50

され、通信ユニットシステム21内の信号インタフェースユニット23の後段に必要に応じて複数個配置される。以上により、通信ユニットシステム21が構成されている。また、各第1の無線ユニット24a,24b,…にはアンテナ25a,25b,…が接続されていて、各アンテナ25a,25b,…から第1の無線ユニットの数だけ無線チャネル数を占有して無線信号が並行して送信される。

【0026】一方、家庭/オフィス内の任意の場所に設置されたパソコン、あるいは、テレビジョン受像機等の情報機器には、端末ユニットシステム31が搭載されており、家庭/オフィス内の無線ネットワークを介してIEEE802.11b規格に準拠の無線信号として伝送されてきたIPパケットを受信する。端末ユニットシステム31には通信ユニットシステム21に内蔵されている第1の無線ユニット24a,24b,…と対応させた同数の第2の無線ユニット34a,34b,…が内蔵されており、各第2の無線ユニット34a,34b,…によって対応する無線チャネルのIPパケットが受信され、後段に配置されている端末インタフェースユニット33内の組立分配制御サブユニット33aに入力される。

【0027】組立分配制御サブユニット33aにおいて は、元のデータストリームがMPEG-2等の広帯域デ ータストリームの信号であることを受信したIPパケッ トのヘッダ部の制御情報に基づいて識別した場合、複数 の第2の無線ユニット34a, 34b, …から送られて くるIPパケットをパケット番号に基づいて再組立てを 行ない、MPEG-2等の元の広帯域データストリーム に再構成させる。再構成された該広帯域データストリー ムは、端末インタフェースユニット33から情報機器本 体39 (パソコン本体、テレビジョン受像機本体やその 他ディスプレイ装置本体)に出力される。情報機器本体 39においては、広帯域データストリームが映像データ ストリームであれば、映像デコーダ(たとえば、MPE G-2デコーダなど)により、受信した広帯域データス トリームの信号を表示用の映像信号に変換し、ディスプ レイ画面に表示させる。

【0028】また、1対の無線ユニットでリアルタイムにデータストリームの送受信が可能な狭帯域のデータストリームや、リアルタイム性を要しない大量のデータストリームを送受信する場合においては、ある1対の無線ユニットのみを使用して、無線信号の送受信が行われ、他の無線ユニット対は、他のデータストリームの伝送のために並行して使用させることができる。

【0029】以上のごとく、アクセスライン1毎に配備される通信ユニットシステム21と複数の情報機器毎に配備される端末ユニットシステム31とにより、家庭/オフィス向け無線ネットワークシステム10が構成されている。

30

12

【0030】なお、アクセスライン1で送受信する信号 が、家庭/オフィス内の無線ネットワーク内で送受信す るIPパケットと同じ伝送制御手順のIPパケットで構 成されている場合には、たとえば、上記の信号インタフ エースユニット23内の分配組立制御ユニット23aで は、アクセスライン1を介して外部から受信したIPパ ケットをデータストリームに再構成して、家庭/オフィ ス内の無線ネットワークへ伝送させるために再度IPパ ケット化するパケット組立・分解過程を省略して、家庭 /オフィス内無線ネットワーク向けに宛先, パケット番 号等のヘッダ情報のみを編集し直して、受信したIPパ ケットを各第1の無線ユニット24a, 24b, …に振 り分けて送信すればよい。

【0031】次に、本発明にかかる家庭/オフィス向け の無線ネットワークシステムの他の実施形態を図3に基 づいて説明する。本実施形態は、1つの広帯域データス トリームの伝送のために複数対の無線ユニットを同時に 使用する場合においても、無線ネットワーク上の伝送制 御を簡素化させ、無線ネットワークの制御を容易にせし めることを目的とするものである。図3において、複数 対ある無線ユニットのうちの特定の1対を第1・第2の メイン無線ユニット26 a・36 aのメイン無線ユニッ ト対とし、その他の無線ユニット対は従の位置付けとな る第1・第2のサブ無線ユニット26b・36b. …の サブ無線ユニット対とすることによって、アクセス権を 決めるための制御信号等の各種伝送制御信号のやり取り は、1対の第1・第2の前記メイン無線ユニット対26 a・36 a ですべておこなうこととしている。而して、 見かけ上、IEEE802.11 b 規格に準拠した前記 メイン無線ユニット対26 a・36 aの1対のみが、通 信ユニットシステム21及び端末ユニットシステム31 に搭載されているように、論理的に扱えるようにするも のである。

【0032】前述した図2に示す実施形態においては、 たとえば、通信ユニットシステム21から端末ユニット システム31へ2対の第1・第2の無線ユニット対24 a・34a及び24b・34bを用いて広帯域の映像デ ータストリームを伝送する場合、信号インタフェースユ ニット23内にある分配組立制御サブユニット23aに て該映像データストリームを送るために分割されたIP パケットについて約半数ずつのパケット数(第1の無線 ユニットがN個ある場合には約1/Nずつのパケット 数) をそれぞれの第1の無線ユニット24a, 24bに 振り分ける。各第1の無線ユニット24a, 24bはそ れぞれ異なる周波数を有する複数のチャネルを並行して 使う形で各IPパケットの無線伝送を行なう。一方、端 末ユニットシステム31のそれぞれ対応する第2の無線 ユニット34a, 34bで各IPパケットを個別に受信 した後、端末インタフェースユニット33へそれぞれ送

分配制御サブユニット33aにおいては、全てのIPパ ケットを集めて、再構成し直し、元の映像データストリ ームに戻す。ここで、第1・第2の無線ユニット対24 a・34a及び24b・34bの各無線ユニット対毎に それぞれ I EEE802.11b 規格に準拠した伝送制 御が独立に行われる方式となっている。

【0033】これに対して、図3に示す実施形態におい ては、通信ユニットシステム21に内蔵されている信号 インタフェースユニット23において分割されたIPパ ケットは、一旦すべて、特定の主たる第1のメイン無線 ユニット26aに送出される。該第1のメイン無線ユニ ット26aにおいて、送出されてきた全IPパケットを 無線ネットワークに送信するためには該第1のメイン無 線ユニット26aの無線伝送帯域が不足していると判断 された場合、該第1のメイン無線ユニット26 a は、送 信し切れない I Pパケットを順次従たる第1のサブ無線 ユニット26b,…に振り分けて無線伝送させるべく、 順次第1のサブ無線ユニット26b, …に転送する。而 して、第1のメイン無線ユニット26a, 第2のサブ無 線ユニット26b,…からアンテナ25a,26b,… を介して、異なる周波数を有する複数のチャネルを並行 して使用して、複数の前記IPパケットが、並行して無 線ネットワークに送信される。一方、並行して送信され てくる各 I Pパケットは端末ユニットシステム31内の 対応する第2のメイン無線ユニット36a, 第2のサブ 無線ユニット36b, …にて受信される。従たる第2の サブ無線ユニット36b,…で受信されたIPパケット は、すべて一旦、主たる第2のメイン無線ユニット36 aに転送される。第2のメイン無線ユニット36aで全 部のIPパケットを集めると、第2のメイン無線ユニッ ト36aから後段に位置する端末インタフェースユニッ ト33に送出され、端末インタフェースユニット33に おいて、IPパケットは元の広帯域データストリームに 組立てられ、さらに、MPEG-2, HDTV等の所望 の映像信号に変換される。

【0034】ここで、第1・第2のメイン無線ユニット 26a・36aのメイン無線ユニット対相互の無線伝送 周波数のチャネルは、IEEE802.11b規格に準 拠した無線ネットワークで用いられる周波数チャネルと し、端末ユニットシステム31は他の端末ユニットシス テム(図示していない)と該周波数チャネルを共用して アクセス権を取得し合いながら使う無線ネットワークシ ステムである。当然、該周波数チャネルのアクセス権を 取得するための制御信号など無線伝送に使う制御信号が 前記メイン無線ユニット26a・36a間で送受信され ることとなる。一方、第1・第2のサブ無線ユニット2 6 b・36 bのサブ無線ユニット対相互の無線伝送周波 数のチャネルは、映像伝送などで広帯域の伝送帯域が必 要となる特定の通信ユニットシステムから特定の端末ユ 信する。端末インタフェースユニット33内にある組立 50 ニットシステムの間の経路に予め割り当てて確保してお くこととし、該サブ無線ユニット相互の無線チャネルの アクセス権を取得し合うための制御信号等の送受信を不 要とし、第1のメイン無線ユニット26 a から振り分け られたIPパケット(データのみ)をそのまま垂れ流す 伝送を行う。

【0035】これにより無線伝送路上では、各前記サブ 無線ユニット対26b・36b相互に送受されるIPパ ケットも含めて、前記メイン無線ユニット対26a・3 6 a が制御している I E E E 8 0 2. 1 1 b 規格に準拠 したアクセス制御が見かけ上なされているごとく動作す 10 る。また、通信ユニットシステム21の内部において も、信号インタフェースユニット23の出力端から、第 1の無線ユニット26a, 26b, …側を見た場合、見 かけ上IEEE802.11b規格に準拠の無線ユニッ トが1つだけあるようにみなせる。一方、端末ユニット システム31の内部においても、端末インタフェースユ ニット33の入力端から、第2の無線ユニット36a, 36b, …側を見た場合、見かけ上IEEE802.1 1 b 規格に準拠の無線ユニットが1つだけあるようにみ ーク上の伝送帯域のみを、従来のIEEE802.11 b規格に準拠した無線信号の伝送帯域よりも、サブ無線 ユニット数の設置台数に応じて、広帯域化させた無線ネ ットワークシステムを構築することができる。

【0036】従って、かかる構成の無線ネットワークシ ステムにおいて、広帯域の伝送帯域を要するデータスト リームの送受信を行なう場合には、無線ネットワークを 構成する2対以上の第1・第2の無線ユニットのうち、 特定の1対の第1・第2の無線ユニット対 (図3におい ては、第1・第2のメイン無線ユニット26a・36a のメイン無線ユニット対) がメイン無線ユニット対とし て動作し、IEEE802.11規格に準拠する各種制 御信号の送受信を司り、他の対をなす従となる第1・第 2のサブ無線ユニット対(図3においては、第1・第2 のサブ無線ユニット26b・36b, …のサブ無線ユニ ット対)におけるIPパケットの送受信は、前記メイン 無線ユニット対の制御下において実行される。即ち、前 記各第1・第2のサブ無線ユニット26b・36b, … 対間のIPパケットの伝送制御はメイン無線ユニット対 26a・36a間の制御信号のやり取りに任せて、各サ ブ無線ユニット対26b・36b、…は無線ネットワー クの実効的伝送速度を満たすべく、無線データ信号の送 受信のみを司るものである。

【0037】なお、1対の無線ユニットのみでリアルタ イムに無線データの送受信が可能な狭帯域のデータスト リームを送受信する場合は、第1・第2のメイン無線ユ ニット26a・36aの対のみを使用して、無線信号の 送受信が行われるので、他の無線ユニット対は、他のデ ータストリームの伝送のために同時に並行して利用する ことができる。

【0038】ここで、高速伝送速度を要する広帯域のデ ータストリームの場合のみについて、複数対の無線ユニ ットを使用し、低速伝送速度の狭帯域のデータストリー ムの場合には、1対の無線ユニットのみを使用して無線 通信を行なわしめるために、伝送するデータストリーム の種別を送信側のメイン無線ユニットが識別する方法に ついて、図4を用いて説明する。図4は、図3に示す第 1のメイン無線ユニット26aと第2のサブ無線ユニッ ト26bの送信部の回路ブロックを示す構成図である。 図4に示すように、第1のメイン無線ユニット26aに は、該第1のメイン無線ユニット26 a から送信可能な データ量の信号を一時蓄積できるバッファメモリ26a 1を備えており、信号インタフェースユニット23から 送られてくる I Pパケットは送信パケット格納部26 a 2の制御に基づいて、順次バッファメモリ26 a1に蓄積 されていく。該バッファメモリ26a1に蓄積されたI Pパケットは、送信パケット格納部26a2の制御に基 づいて、送信制御部26a3に渡されて、アンテナ25 a から送信される。

なせる。かかる構成を用いることにより、無線ネットワ 20 【0039】低速伝送速度しか要しない狭帯域のデータ ストリームの伝送の場合には、信号インタフェースユニ ット23から入力されるすべてのデータ(IPパケッ ト) がパップァメモリ26 a1から溢れ出ることなく、 すべてのデータ(IPパケット)は第1のメイン無線ユ ニット26aの送信制御部26a3を介してアンテナ2 5 a から送出される。 つまり、通信ユニットシステム内 の第1のメイン無線ユニット26aと端末ユニットシス テム内の第2のメイン無線ユニット36aの1対の無線 ユニットのみで通信できることとなる。

> 【0040】これに反して、高速の伝送速度を要する広 帯域のデータストリームの伝送の場合には、信号インタ フェースユニット23から入力されるすべてのデータを バッファメモリ26a1に蓄積し切れなく、溢れ出てし まうので、送信パケット格納部26a2は、かかる事態 の発生を検出して、バッファメモリ26alから溢れ出 たデータを、第1のサブ無線ユニット26 b内に用意さ れていて、該第1のサブ無線ユニット26 bが送信可能 なデータ量を有するバッファメモリ26b1に蓄積させ るために、第1のサブ無線ユニット26 b内の送信パケ ット格納部26 b2を起動する。起動された送信パケッ ト格納部26b2は、第1のメイン無線ユニット26a から転送されてくるIPパケットを逐次バッファメモリ 26 b1に蓄積していく。バッファメモリ 26 b1に蓄積 されたIPパケットは、送信パケット格納部26b2の 制御の下、第1のサブ無線ユニット26b内にある送信 制御部26 b3を通ってアンテナ25 bから送出され る。つまり、第1のメイン無線ユニット26aで送信し 切れないデータ(IPパケット)は、第1のサブ無線ユ ニット26 bに転送され、2つの第1の無線ユニット2 50 6 a 及び 2 6 b を用いて、リアルタイムの通信を実現さ

30

せることになる。即ち、各無線ユニットが送信可能なデ ータ量を一時蓄積させるバッファメモリをそれぞれの第 1の無線ユニットに備えさせることにより、各送信パケ ット格納部において、各バッファメモリからの蓄積デー タの溢れを検出させて、広帯域/狭帯域のいずれのデー タストリームの入力であるかを自動的に識別させること ができる。

【0041】ここでは、1対あるいは2対の無線ユニッ トを用いた無線伝送の例を説明したが、3対以上の複数 対の無線ユニットを用いる場合についても、全く同様の・10 制御により、対応可能なシステムを構成できる。即ち、 前記の第1のサブ無線ユニット26bのバッファメモリ 26 b1が溢れ出ることを送信パケット格納部26 b2が 検出した場合、その旨を第1のメイン無線ユニット26 aの送信パケット格納部26a2に通知してくるので、 送信パケット格納部26a2は図示していない他の第1 のサブ無線ユニットの送信パケット格納部を起動させる ことになる。

【0042】以上の説明においては、リアルタイム性が 要求されるデータ伝送を想定しているが、リアルタイム 20 性が不要となるファイル転送等の大容量のデータ伝送に 関しては、たとえば、データストリーム中の制御情報や IPパケットのヘッダの中に含まれているTOS(タイ プ オブ サービス) によりリアルタイム性が不要であ ることを識別するなどの手段を用いることにより、別途 用意された容量の大きいメモリ(図示していない)など に蓄積して、順次、IPパケットを生成して、メイン無 線ユニット対のみを用いて送受させることが可能であ る。この結果、無線伝送チャネルのリソースを節約で き、複数対用意されているサブ無線ユニット対を他のデ ータストリームの伝送に利用することが可能となる。

[0043]

【発明の効果】異なる周波数のチャネル信号を送受信す ることができる複数対の無線ユニットを配備させること により、高速伝送速度を要する広帯域のデータストリー ムをIEEE802.11b規格に準拠の無線ネットワ ークにおいても、リアルタイムで送受信させることがで きる。たとえば、MPEG-2データストリーム信号で は、6Mbpsの帯域を確保するために、無線ユニット 2対を用いれば、実効的伝送速度はほぼ5Mbps×2 個=10Mbpsとなり、MPEG-2データストリー ム信号をリアルタイムで送受信することができる。

【0044】また、複数対の無線ユニットに対して、メ イン無線ユニット対及びサブ無線ユニット対として互に 機能を分担させ、メイン無線ユニット対のみで、IEE E802.11b規格に準拠の伝送制御を行なわしめる ことにより、無線ネットワークシステムにおけるアクセ ス制御を一元化することができ、物理的には無線ユニッ

トを複数対用いているが、該無線ネットワークのアクセ ス権等を制御する動作は、無線ユニット1対においての みなされたと同様に行なわれ、無線ネットワークの制御

16

を容易にすることができる。

【0045】また、実際に複数のユニットが必要となる 広帯域のデータストリームの場合にのみ、複数の無線ユ ニットそれぞれに割り当てられた異なる周波数のチャネ ルを束ねて広帯域のデータストリームの伝送用のチャネ ルとして占有するが、ファイル転送のようにリアルタイ ム性を要しない大容量データ伝送においては、1対のメ イン無線ユニットのみを用いて無線伝送させ、他のサブ 無線ユニット対は他のデータストリームの伝送に利用す ることができる。つまり、外部の情報源から配信されて くる複数のデータストリームについて、同時に、異なる 複数の端末ユニットシステムへの伝送を行なうことが可 能となる。

【図面の簡単な説明】

【図1】本発明にかかる家庭/オフィス向けの無線ネッ トワークシステムの一実施形態を示す構成図である。

【図2】本発明にかかる無線ネットワークシステムを構 成する通信ユニットシステム及び端末ユニットシステム の詳細な構成を示す図である。

【図3】本発明にかかる家庭/オフィス向けの無線ネッ トワークシステムの他の実施形態を示す構成図である。

【図4】図3に示すメイン無線ユニットとサブ無線ユニ ットの送信部の回路ブロックを示す構成図である。

【図5】従来の実施例における家庭/オフィス向けの無 線ネットワークシステムの構成図である。

【符号の説明】

30

1…アクセスライン、10…家庭/オフィス向けネット ワークシステム、20…ゲートウェイ、21…通信ユニ ットシステム、22…アクセス系終端ユニット、23… 信号インタフェースユニット、23a…分配組立制御サ ブユニット、24, 24a, 24b…第1の無線ユニッ ト、25, 25a, 25b…アンテナ、26a…第1の メイン無線ユニット、26b…第1のサブ無線ユニッ ト、26 a1, 26 b1…バッファメモリ、26 a2, 2 6 b2…送信パケット格納部、26 a3, 26 b3…送信 制御部、30…情報機器、30A…パソコン、30B… 40 テレビジョン受像機、31,31A,31B…端末ユニ ットシステム、33…端末インタフェースユニット、3 3 a …組立分配制御サブユニット、34,34 a,34 b…第2の無線ユニット、35, 35a, 35b, 35 Aa, 35Ab, 35Ba, 35Bb...アンテナ、36 a…第2のメイン無線ユニット、36b…第2のサブ無 線ユニット、39…情報機器本体、39A…パソコン本 体、39B…テレビジョン受像機本体。

【図1】

【図2】

[図3]

【図4】

【図5】

フロントページの続き

Fターム(参考) 5K030 GA03 GA13 HA08 HC14 HD03

JA05 JL01 KA01 KA03 KA06

LB06 LC09 LE03 LE14 MA13

MB15

5K033 AA02 BA15 CA17 CB06 DA05

DA17 DB13 DB14 DB16 DB18

5K034 AA01 CC02 EE03 EE11 HH21

HH27 HH56 HH64 JJ11 LL07

MM25