Sigma Notation

What does each bit of this expression mean?

If the expression being summed (in this case 2r+1) is **linear**, we get an **arithmetic series**. We can therefore apply our usual approach of establishing a, d and n before applying the S_n formula.

	First few terms?	Values of a, n, d or r ?	Final result?
$\sum_{n=1}^{7} 3n$	n=1 $n=2$ $n=3$ $3+6+9+12$ $+15+18+21$	a=3 n=7 d=3	$S_{n} = \frac{n}{2} (2\alpha + (n-1)d)$ $S_{n} = \frac{n}{2} (\alpha + L)$ $S_{7} = \frac{7}{2} (3 + 2l) = \frac{84}{2}$
		a=0 d=-2 n=11 5, 6, 7, 8, 5, 10, 11, 12, 13, 14, 15	$S_{11} = \frac{11}{2} (0 - 20)$ $= -110$ $= -110$ $= -110$ $k = 5$ $(10 - 2h) = -110$ $k = 5$
$\sum_{k=1}^{12} 5 \times 3^{k-1}$	$k=1$ $k=2$ $k=3$ $5 \times 3^{\circ}$ 5×3^{1} 5×3^{2} $5 + 15 + 45$ $\times 3$	a= 5 r= 3 h= 12	$S_{n} = \alpha (1-r^{n})$ $1-r$ $S_{12} = 5(1-3^{n})$ $1-3$

= 1,328,600

On your calculator

$$\sum_{k=5}^{12} 2 \times 3^k$$

$$\sum_{\alpha=5}^{12} (2 \times 3^{32}) = 1,594,680$$

Given that
$$\sum_{r=1}^{k} 2 \times 3^r = 59046$$
,

a show that
$$k = \frac{\log 19683}{\log 3}$$

b For this value of k, calculate $\sum_{r=k+1}^{13} 2 \times 3^r$.

a)
$$2 \times 3^{1} = 6$$

 $2 \times 3^{2} = 18$
 $2 \times 3^{3} = 54$

$$a = 6$$

 $n = k$
 $r = 3$

b)
$$\sum_{r=10}^{13} 2 \times 3^r = \sum_{r=1}^{13} (2 \times 3^r) - \sum_{r=1}^{9} (2 \times 3^r)$$

= 4,7-23,920

$$59046 = \frac{6(1-3k)}{1-3}$$

$$59046 = -3(1-3k)$$

$$-19682 = 1-3k$$

$$3k = 19683$$

$$k \log 3 = \log 19683$$

$$k = \frac{\log 19683}{\log 3}$$

Ex 3F

Exam Question - challenging!

- 13. Given that p is a positive constant,
 - (a) show that

$$\sum_{n=1}^{11} \ln(p^n) = k \ln p$$

where k is a constant to be found,

(2)

(b) show that

$$\sum_{n=1}^{11} \ln(8p^n) = 33\ln(2p^2)$$
(2)

(c) Hence find the set of values of p for which

$$\sum_{n=1}^{11} \ln(8p^n) < 0$$

giving your answer in set notation.

a)
$$\sum_{n=1}^{11} \ln p^n = \ln p + \ln p^2 + \ln p^3 + \dots + \ln p^{11}$$

$$= \ln p + 2 \ln p + 3 \ln p + \dots + 11 \ln p$$

$$= \ln p (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11)$$

$$= 66$$

$$= 66 \ln p$$

$$= \ln 8p^{n} = \ln 8p + \ln 8p^{2} + \ln 8p^{3} + \dots + \ln 8p^{11}$$

$$= \ln 8 + \ln p + \ln 8 + 2 \ln p + \dots + \ln 8 + 11 \ln p$$

$$= 11 \ln 8 + 66 \ln p$$

$$= 11 \ln 2^{3} + 66 \ln p$$

$$= 33 \ln 2 + 33 \ln p^{2}$$

$$= 33 (\ln 2 + \ln p^{2}) = 33 (\ln 2 p^{2})$$

$$= 33 \ln 2p^{2} < 0 \qquad \ln 2p^{2} = 0$$

$$= 2p^{2}$$

Question	Scheme	Marks	AOs
13 (a)	$\sum_{n=1}^{11} \ln(p^n) = \ln p + \ln p^2 + \ln p^3 + + \ln p^{11}$		
	$= \ln p + 2 \ln p + 3 \ln p + + 11 \ln p$	M1	3.1a
	$= \frac{11}{2} (2 \ln p + (11-1) \ln p) \text{or} \frac{1}{2} (11)(12) \ln p$		
	$= 66 \ln p \qquad \{k = 66\}$	A1	1.1b
		(2)	
(b)	$S = \sum_{n=1}^{11} \ln(8p^n) = \ln 8p + \ln 8p^2 + \ln 8p^3 + \dots + \ln 8p^{11}$	M1	1.1b
	$=11\ln 8+66\ln p$		
	e.g. • $11\ln 8 + 66\ln p = 11\ln 2^3 + 66\ln p = 33\ln 2 + 66\ln p$ $= 33(\ln 2 + 2\ln p) = 33(\ln 2 + \ln p^2) = 33\ln(2p^2)$ * • $11\ln 8 + 66\ln p = 11\ln 2^3 + 66\ln p = 33\ln 2 + 66\ln p$ $= \ln(2^{33}p^{66}) = \ln((2p^2)^{33}) = 33\ln(2p^2)$ *	A1*	2.1
		(2)	
(c)	$S < 0 \implies 33\ln(2p^2) < 0 \implies \ln(2p^2) < 0$		
	so either $0 < 2p^2 < 1$ or $2p^2 < 1$	M1	2.2a
	$\Rightarrow p^2 < \frac{1}{2} \text{ and } p > 0 \Rightarrow 0$		
	In set notation, e.g. $\left\{ p: 0$	A1	2.5
		(2)	