Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples

Paper by: Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey Sivachenko, David Jaffe, Carrie Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S Lander, & Gad Getz In Nature Biotechnology; vol. 31, no. 3 (March 2013)

Review Presentation by: Frank Austin Nothaft

October 31st, 2013

Problem Statement

- Somatic SNP mutations are common mechanisms that alter gene function in cancer
- However, hard to call because they occur at a low frequency (0.1–100 mutations/Mbp)
- May not be present in all DNA from the locus
 - Cross contamination from normal cells
 - Copy number variation
 - Tumor may be subclonal

Subclonality

- Tumor has a single set of mutations that cause tumor genesis
- But, tumor evolves to contain multiple different clonal colonies with divergent mutations
- Can analyze through several approaches:
 - Analyze mutations from metastasized tumors
 - Perform ultra deep sequencing
 - Sequence a small number of cells

Mutation Detection Setup

Based on methodology from TGCA

 Sample tumor exomes at 100-150x depth, genome at 30-60x (somatic)

 Reference normal sampled at 30-60x (germline)

Measuring Success

- Successful mutation caller will call very rare alleles but will not call false positives
- Tradeoff between sensitivity and specificity:
 - Need to amplify signal (sensitivity) while not amplifying noise (specificity)
- Can lose specificity by calling too many variants in tumor, or too few in germline

Downsampling - Methodology

Take subset of reads with known mutations

Randomly remove reads until desired coverage is reached

 Sensitivity at allele frequency is determined by percentage that can still be called

Downsampling - Discussion

Allows us to measure sensitivity at arbitrary coverage

• Cons:

- Small number of validated events
- Allele fractions are preserved, so only previously validated fractions can be explored
- Excludes mutations that were not previously detected
- Cannot measure specificity

Virtual Tumor - Methodology

- First, generate a virtual tumor which contains only false positives
 - Generated from two runs of sequencing from same normal sample

 Then, inject high confidence heterozygous event reads from another sample

Virtual Tumor - Discussion

- Specificity: "True" mutations are known (heterozygous events injected), so all other called mutations are false positives
- Sensitivity: Measured by percentage of heterozygous events detected and weight of reads injected
- Cons:
 - Heterozygous event signature does not match signature of a mutation event

Detecting Mutations

- Four steps:
 - 1. Remove low quality reads
 - 2. Detect variants with Bayesian classifier
 - 3. Filter to remove false positives
 - 4. Designate detected variant as germline/somatic
- Mutations are variants that are conclusively not detected in gemline
- Use steps 1 and 3 to improve specificity

Variant Detection

- Two models:
 - Reference model: Assume non-reference bases are due to sequencing errors
 - Variant model: Assume site contains a true allele
- Variant model:
 - Frequency is unknown but is modeled as the fraction of sample reads that support the mutation
- Detect variant if log(likelihood reference/likelihood variant) exceeds threshold
 - Use fixed 6.3 threshold \rightarrow 10^{6.3}:1 in favor of reference

Filter Variants (1/2)

Proximal Gap:

- Remove false positives caused by misaligned indels
- Reject if ≥3 indels in 11pb window

Poor mapping:

 Reject if ≥50% of reads have mapping quality of 0, or no observation of SNP variant with mapQ ≥ 20

Triallelic site:

 Reject if normal sample is heterozygous and mutation considered is a third allele

Filter Variants (2/2)

- Strand bias:
 - Separate reads by strand direction and apply test
 - Reject if LOD is < 2.0
- Clustered position:
 - Reject false positives caused by misalignments
 - Consistent distance to start/end of alignment
- Observed in control:
 - Check matched normal data
 - Reject if observed in ≥2/3% of reads with quality score summing to greater than 20

Variant Classification

- Three classifications:
 - Somatic if not in matched normal
 - Germ-line if present in matched normal
 - Indeterminate if insufficient data in matched normal

Indeterminate if germ line likelihood is <95%

Results - Sensitivity

- Validated against:
 - 3753 validated colorectal cancer mutations (100x coverage)
 - Exome capture from dbGAP (Genotypes and Phenotypes)
 - Virtual tumor from deep coverage genome
- MuTect is highly sensitive
 - @30x, detect F=0.2 with 95.6% sensitivity
 - F=0.1 with 58.9 sensitivity
 - F=0.2 sensitivity hits 99.9% @ 50x coverage
 - 150x coverage yields 66.4% sensitivity for F=0.03

Results - Specificity

- Check against 1 Gbp of NA12878 data
 - Varying depth in virtual tumor, 30x in virtual normal
- No filters:
 - 5x coverage \rightarrow 6.7 false positives per Mbp
 - -30x coverage \rightarrow 20.1 false positives Mpb
- Filters:
 - HC reduces to 1/Mbp
 - HC+PON filters to 0.5/Mbp