Rozdział 1

28 września 2015

Definicja 1

Mówimy, że ciąg (f_n) jest zbieżny punktowo do funkcji $g: P \to \mathbb{R}$ wtedy i tylko wtedy, gdy:

$$\forall_{x \in P} \forall_{\varepsilon > 0} \exists_{n_o \in \mathbb{N}} \forall_{n > n_o} |f_n(x) - g(x)| < \varepsilon$$

Przykład 1

a)

$$P = \mathbb{R}$$

$$f_n(x) = \frac{x}{n}$$

$$f_n(x_0) = \frac{x_0}{n} \to 0 \Rightarrow g(x) = 0$$

b)

$$P = \mathbb{R}$$

$$f_n(x) = xe^{-nx}$$

$$\forall_x \lim_{n \to \infty} f_n(x) = 0$$

c)

$$P = [0,1]$$

$$f_n(x) = x^n$$

$$g(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases}$$

Definicja 2

Ciąg (f_n) jest zbieżny jednostajnie na zbiorze P do funkcji $g: P \to \mathbb{R}$ wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon>0} \exists_{n_o \in \mathbb{N}} \forall_{n>n_o} \forall_{x \in P} |f_n(x) - g(x)| < \varepsilon$$

Twierdzenie 1

Założenia:

- (f_n) funkcje ciągłe
- $f_n \to f$ jednostajnie zbieżny na P

Teza:

$$f: P \to \mathbb{R} \ jest \ ciagla$$

$$\mathcal{C}([a,b],\mathbb{R}) = \{f : [a,b] \to \mathbb{R}; \text{ ciagla}\}\$$

- $\bullet \,$ przestrzeń liniowa $(f+g;\alpha\cdot f)$
- przestrzeń unormowana $\|f\|_0 = \sup_{x \in [a,b]} |f(x)|$

Twierdzenie 2

 $Ciag(f_n) \in \mathcal{C}([a,b],\mathbb{R})$ jest zbieżny do $f \in \mathcal{C}$ wtedy i tylko wtedy, gdy:

$$\lim_{n \to \infty} ||f_n - f||_0 = 0$$

Dowód. Mamy pokazać, że f jest ciągła w x_0 .

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in P} |x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \varepsilon$$

 $\varepsilon > 0$ ustalone:

$$\exists_{\delta} \forall_{x} |x - x_{0}| < \delta \Rightarrow |f_{n}(x) - f_{n}(x_{0})| < \frac{\varepsilon}{3}$$

$$\exists_{n_{o}} \forall_{n > n_{0}} \forall_{x} |f_{n}(x) - f(x)| < \frac{\varepsilon}{3}$$

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \varepsilon$$

Twierdzenie 3 (Kryterium Diniego)

Załóżmy, że $f_n:[a,b]\to\mathbb{R}$ jest monotoniczny i zbieżny punktowo do funkcji $f:[a,b]\to\mathbb{R}$. Jeśli f_n i f są ciągłe to zbieżność jest jednostajna.

Przykład 2

Brak ciągłości funkcji granicznej $f_n(x) = x^n$ na [0,1]Brak monotoniczności nxe^{-nx^2} na [0,2]Brak ciągłości funkcji $\chi_{\left(0,\frac{1}{n}\right)}:[0,1]\to\mathbb{R}$ Brak zwartości dziedziny $f_n(x)=x^n$ na [0,1)