USB 3.1 Legacy Cable and Connector Specification

Hewlett-Packard Inc.
Intel Corporation
Microsoft Corporation
Renesas Corporation
STMicroelectronics
Texas Instruments

Revision 1.0 including all errata and ECNs through June 2017 September 22, 2017

Revision History

Revision	Comments	Issue Date
1.0	Initial Release - USB 3.0	November 12, 2008
	Incorporated errata and ECNs June 6, 2011	
1.0	Initial Release - USB 3.1	July 26, 2013
1.0	Published as a separate specification incorporating errata and ECNs September 1	

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO THE USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Please send comments to techsup@usb.org.

For industry information, refer to the USB Implementers Forum web page at http://www.usb.org.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Copyright © 2007 – 2017, USB 3.0 Promoter Group (Hewlett-Packard Inc., Intel Corporation, Microsoft Corporation, Renesas Corporation, STMicroelectronics, and Texas Instruments).

Acknowledgement of Technical Contribution

Dedication

Dedicated to the memory of Brad Hosler, the impact of whose accomplishments made the Universal Serial Bus one of the most successful technology innovations of the Personal Computer era.

The authors of this specification would like to recognize the following people who participated in the USB 3.0 Bus Specification technical work group. We would also like to acknowledge the many unnamed others throughout the industry who provided feedback and contributed to the development of this specification.

Hewlett-Packard Inc	Promoter Company Employ	ees	
Alan Berkema	Walter Fry	Anthony Hudson	David Roderick
Intel Corporation - Pro	omoter Company Employees		
Kok Hong Chan	Huimin Chen	Bob Dunstan	Dan Froelich
Howard Heck	Brad Hosler	John Howard	Rahman Ismail
John Keys	Yun Ling	Andy Martwick	Steve McGowan
Ramin Neshati	Duane Quiet	Jeff Ravencraft	Brad Saunders
Joe Schaefer	Sarah Sharp	Micah Sheller	Gary Solomon
Karthi Vadivelu	Clint Walker	Jim Walsh	
Microsoft Corporation	- Promoter Company Employ	yees	
Randy Aull	Fred Bhesania	Martin Borve	Jim Bovee
Stephan Cooper	Lars Giusti	Robbie Harris	Allen Marshall
Kiran Muthabatulla	Tomas Perez-Rodriguez	Mukund Sankaranarayan	Nathan Sherman
Glen Slick	David Wooten	Rob Young	
NEC Corporation - Pro	moter Company Employees		
Nobuo Furuya	Hiroshi Kariya	Masami Katagiri	Yuichi Mizoguchi
Kats Nakazawa	Nobuyuki Mizukoshi	Yutaka Noguchi	Hajime Nozaki
Kenji Oguma	Satoshi Ohtani	Takanori Saeki	Eiji Sakai
Hiro Sakamoto	Hajime Sakuma	Makoto Sato	Hock Seow
"Peter" Chu Tin Teng	Yoshiyuki Yamada	Satomi Yamauchi	Yoshiyuki Yamada
Susumu Yasuda			
ST-NXP Wireless / NXP	Semiconductors, B.V Pron	noter Company Employees	
Alan Chang	Wing Yan Chung	Socol Constantin	Knud Holtvoeth
Linus Kerk	Martin Klein	Geert Knapen	Chee Ee Lee
Christian Paquet	Veerappan Rajaram	Shaun Reemeyer	Dave Sroka
Chee-Yen TEE	Jerome Tjia	Bart Vertenten	Hock Meng Yeo
Texas Instruments - Pi	romoter Company Employees	3	
Olivier Alavoine	David Arciniega	Richard Baker	Sujoy Chakravarty
T. Y. Chan	Romit Dasgupta	Alex Davidson	Eric Desmarchelier
Christophe Gautier	Dan Harmon	Will Harris	Richard Hubbard
Ivo Huber	Scott Kim	Grant Ley	Karl Muth
Lee Myers	Julie Nirchi	Wes Ray	Matthew Rowley
Bill Sherry	Mitsuru Shimada	James Skidmore	Yoram Solomon
Sue Vining	Jin-sheng Wang	Roy Wojciechowski	

Contributor Company Employees				
Acon	Glen Chandler Charles Wang George Yee	John Chen Norman Wu	Roger Hou Steven Yang	
Contech Research	George Olear			
Electronics Testing Cente	er, Taiwan (ETC)	Sophia Liu		
FCI	William Northey	Tom Sultzer		
Foxconn	Garry Biddle Gustavo Duenas Jim Koser James Sabo Tsuneki Watanabe	Kuan-Yu Chen Bob Hall Joe Ortega Pei Tsao Chong Yi	Jason Chou Jiayong He Ash Raheja Kevin Walker	
Hirose Electric	Taro Hishinuma Karl Kwiat Eiji Wakatsuki	Kaz Ichikawa Tadashi Sakaizawa	Ryozo Koyama Shinya Tono	
Japan Aviation Electronic	es Industry Ltd. (JAE) Kazuhiro Saito	Takashi Ehara	Ron Muir	
Mitsumi	Hitoshi Kawamura Yasuhiko Shinohara	Takashi Kawasaki	Atsushi Nishio	
Molex Inc.	Tom Lu Jason Squire	Edmund Poh	Scott Sommers	
NTS/National Technical S	System	Dat Ba Nguyen		
Nokia	Jan Fahllund	Richard Petrie	Panu Ylihaavisto	
Seagate Technology LLC	Martin Furuhjelm Tony Priborsky	Julian Gorfajn Harold To	Marc Hildebrant	
Synopsys, Inc.	Robert Lefferts Daniel Weinlader	Saleem Mohammad	Matthew Myers	
Tektronix, Inc.	Mike Engbretson			
Tyco Electronics	Thomas Grzysiewicz Hiroshi Shirai	Masaaki Iwasaki Scott Shuey	Kazukiyo Osada Masaru Ueno	

The authors of this specification would like to recognize the following people who participated in the USB 3.1 Bus Specification technical work group. We would also like to acknowledge the many unnamed others throughout the industry who provided feedback and contributed to the development of this specification.

Hewlett-Packard Comp	pany - Promoter Company	y Employees	
Alan Berkema	Norton Ewart	Monji Jabori	Rahul Lakdawala
Jim Mann	Linden McClure		
Intel Corporation - Pr	omoter Company Employ	ees	
Mike Bell	Huimin Chen	Kuan-Yu Chen	Bob Dunstan
Benjamin Graniello	Howard Heck	John Howard	Rahman Ismail
Yun Ling	Steve McGowan	Sridharan Ranganathan	Kaleb Ruof
Brad Saunders	Sarah Sharp	Ronald Swartz	Jennifer Tsai
Karthi Vadivelu			

Microsoft Corporation - l	Promoter Company Empl	oyees	
Randy Aull	Vivek Gupta	Toby Nixon	Yang You
Renesas Electronics Corp	oration - Promoter Comp	pany Employees	
Nobuo Furuya	Masami Katagiri	Steven Kawamoto	Kiichi Muto
Peter Teng			
STMicroelectronics - Pro		es	
Hicham Bouzekri	Morten Christiansen		
Texas Instruments - Pro			
Grant Ley	James Skidmore	Sue Vining	Tod Wolf
Li Yang			
Contributor Company Em	ployees		
Aces Electronics Co., Ltd.		Jason Chen	Andy Feng
	Chris Kao		
Acon	Glen Chandler	Alan MacDougall	
Advanced Micro Devices		Shadi Barakat	Walter Fry
	Will Harris	Jason Hawken	Hugo Lamarche
	Yufei Ma	Joseph Scanlon	Vishant Tyagi
A silona t Translation and a silona trans	Min Wang	Laure a Charata	The cost of Cost of the cost
Agilent Technologies, Inc	:. Takuya Hirato	James Choate Hiroshi Kanda	Thorsten Goelzelmann Donald Schoenecker
ACModia Tookuology Inc	,		
ASMedia Technology Inc.	Chiahsin Chen	Chi Chang Weber Chuang	Chin Chang Ming-Wei Hsu
	Han Sung Kuo	ShuYu Lin	Luke Peng
	Daniel Wei	ShengChung Wu	, , , , , , , , , , , , , , , , , , ,
Bizlink Technology, Inc.	Ted Hsiao		
DisplayLink (UK) Ltd.	Pete Burgers	Dan Ellis	Richard Petrie
Foxconn / Hon Hai	Terry Little	Steve Sedio	
Fresco Logic Inc.	Tim Barilovits	Bob McVay	Christopher Meyers
	Jie Ni	Jeffrey Yang	Jing-Fan Zhang
Granite River Labs	Mike Engbretson		
Hirose Electric	Kunia Aihara	Kazu Ichikawa	Masaru Kawamura
	William MacKillop	Sho Nakamura	Toshiyuki Takada
	Sid Tono		
Intersil Corporation	Tirumal Annamaneni	Colby Keith	Gourgen Oganessyan
I Anistica Plantani	Michael Vrazel	marking It Markala	Talakan Nata
Japan Aviation Electronic	Mark Saubert	Toshiyuki Moritake Toshio Shimoyama	Takeharu Naito Takamitsu Wada
LaCray Cornaration			
LeCroy Corporation	Roy Chestnut Daniel H Jacobs	Christopher Forker David Li	Linden Hsu Mike Micheletti
	Michael Romm	Chris Webb	Time Meneretti
Lenovo	Tomoki Harada		
Lotes Co., Ltd.	Ariel Delos Reyes	Smark Huo	Regina Liu-Hwang
,	John Lynch		G
LSI Corporation	Harvey Newman	Dave Thompson	Srinivas Vura
Luxshare-ICT	Josue Castillo	Alan Kinningham	
Luxsnare-ICI	josue castillo	Alan Kinningnam	John Lin

	Stone Lin	Pat Young	
MCCI Corporation	John Garney		
Nokia	Peter Harrison	Mika Tolvanen	Panu Ylihaavisto
NXP Semiconductors	Jason Chen Ho Wai Wong-Lam	Gerrit den Besten	Bart Vertenten
Samsung Electronics Co.,	Ltd. Jun Bum Lee	Jagoun Koo Cheolyoon Chung	Cheolho Lee
Seagate Technology LLC	Alvin Cox Henry (John) Hein Dan Smith	Steven Davis Tony Priborsky	Bahar Ghaffari Tom Skaar
SMSC	Mark Bohm		
STMicroelectronics	Jerome DeRoo	Benoit Mercier	
Synopsys, Inc.	Subramaniam Aravindhan Gervais Fong Behram Minwalla Tri Nguyen Paul Wyborny	Bala Babu Kevin Heilman Saleem Mohammad John Stonick	Sanjay Dave Eric Huang Matthew Myers Zongyao Wen
Tektronix, Inc.	Sarah Boen Randy White	Darren Gray	Srikrishna N.H.
Tyco Electronics Corp., a	TE Connectivity Ltd. compa	iny	Jim McGrath
	Josh Moody Noah Zhang	Scott Shuey	Egbert Stellinga
Western Digital Technolo	ogies, Inc. Cristian Roman Del Nido	Marvin DeForest Curtis Stevens	Larry McMillan

Contents

1	intro	oauction	l		
	1.1	Backg	round		1
	1.2	Object	ive of the	Specification	1
	1.3	Scope	of the Do	cument	1
	1.4	USB P	roduct Co	mpliance	2
	1.5			ents	
	1.6				
		1.6.1		ence	
		1.6.2	1.6.2.1	dsInformative	
			1.6.2.2		
				May	
			1.6.2.3	N/A	
			1.6.2.4	Normative	
			1.6.2.5	Optional	3
			1.6.2.6	Reserved	3
			1.6.2.7	Shall	3
			1.6.2.8	Should	3
			1.6.2.9	Numbering	3
2	Tern	ns and A	bbreviati	ons	
3	Over	view			5
4	Inte	ntionally	Blank		6
5		•			
	5.1	Object	ive		7
	5.2	,		ures	
		5.2.1	Connect	tors	7
			5.2.1.1	USB 3.1 Standard-A Connector	8
			5.2.1.2	USB 3.1 Standard-B Connector	8
			5.2.1.3	USB 3.1 Micro-B Connector	8
			5.2.1.4	USB 3.1 Micro-AB and USB 3.1 Micro-A Connectors	9
		5.2.2	Allowed	d Cable Assemblies	
		5.2.3		ble	
	5.3	Conne	ctor Mati	ng Interfaces	9
		5.3.1	USB 3.1	Standard-A Connector	9
			5.3.1.1	Interface Definition	9
			5.3.1.2	USB 3.1 Standard-A Reference Footprints	19
			5.3.1.3	Pin Assignments and Description	25
			5.3.1.4	USB 3.1 Standard-A Connector Color Coding	26

	5.3.2	USB 3.1	Standard-B Connector	27
		5.3.2.1	Interface Definition	27
		5.3.2.2	Pin Assignments and Description	31
	5.3.3	USB 3.1	Micro Connector Family	31
		5.3.3.1	Interfaces Definition	31
		5.3.3.2	Pin Assignments and Description	39
5.4	Cable	Construct	ion and Wire Assignments	40
	5.4.1	Cable Co	onstruction	40
	5.4.2		signments	
	5.4.3		uges and Cable Diameters	
5.5			2S	
	5.5.1		Standard-A to USB 3.1 Standard-B Cable Assembly	
	5.5.2		Standard-A to USB 3.1 Standard-A Cable Assembly	
	5.5.3		Standard-A to USB 3.1 Micro-B Cable Assembly	
	5.5.4		Micro-A to USB 3.1 Micro-B Cable Assembly	
	5.5.5 5.5.6		Micro-A to USB 3.1 Standard-B Cable Assembly	
	5.5.6		ssembly Length	
5.6			rements	
5.0	5.6.1	_	peed Electrical Requirements	
	0.0.1	5.6.1.1	Raw Cable	
		5.6.1.2	Mated Connector Impedance	51
		5.6.1.3	Mated Cable Assemblies for Gen 1 Speed	52
	5.6.2	DC Elect	trical Requirements	55
		5.6.2.1	Low Level Contact Resistance (EIA 364-23B)	55
		5.6.2.2	Dielectric Strength (EIA 364-20)	55
		5.6.2.3	Insulation Resistance (EIA 364-21)	55
		5.6.2.4	Contact Current Rating (EIA 364-70, Method 2)	56
5.7	Mecha	nical and	Environmental Requirements	56
	5.7.1	Mechan	ical Requirements	56
		5.7.1.1	Insertion Force (EIA 364-13)	56
		5.7.1.2	Extraction Force Requirements (EIA 364-13)	56
		5.7.1.3	Durability or Insertion/Extraction Cycles (EIA 364-09)	56
		5.7.1.4	Cable Flexing (EIA 364-41, Condition I)	57
		5.7.1.5	Cable Pull-Out (EIA 364-38, Condition A)	57
		5.7.1.6	Peel Strength (USB 3.1 Micro Connector Family Only)	57
		5.7.1.7	4-Axes Continuity Test (USB 3.1 Micro Connector Family Only)	57
		5.7.1.8	Wrenching Strength (Reference, USB 3.1 Micro Connector Family Only)	
		5.7.1.9	Lead Co-Planarity	

		5.7.1.10	Solderability	59
		5.7.1.11	Restriction of Hazardous Substances (RoHS) Compliance	59
	5.7.2	Environr	nental Requirements	
	5.7.3		S	
5.8			Notes and Design Guides	
3.0	-		_	
	5.8.1		onnector Dimensions	
	5.8.2		RFI Management	
	5.8.3		Connectors	
	5.8.4	Steady-S	tate Voltage Drop Budget	64
Figures				
			-A Receptacle Interface Dimensions	
			Standard-A Receptacle with Grounding Springs and Required con	
			rd-A PlugStandard-A Mid-Mount Receptacles	
			-A Plug Interface Dimensions	
			nt for the USB 3.1 Standard-A Receptacle – Through-Hole with Ba	
Shield	ł	······		20
			nt for the USB 3.1 Standard-A Receptacle – Mid-Mount Standard M	
-		•	nt for the USB 3.1 Standard-A Receptacle – Mid-Mount Reverse M	
			or Coding Recommendation for USB 3.1 Standard-A Connector	
			-B Receptacle Interface Dimensions	
			d-B Plug Interface Dimensions	
			rint for the USB 3.1 Standard-B Receptacle	
			and Micro-AB Receptacle Interface Dimensions	
			and Micro-A Plug Interface Dimensions	
			orint for the USB 3.1 Micro-B and Micro-AB Receptacle	
			USB 3.1 Cable Cross-Section	
			d-A to USB 3.1 Standard-B Cable Assembly Plug Cable Overmold Dimensions	
			Plug Cable Overmold Dimensions	
			entation	
			Ground Void Dimension for USB Standard-A Receptacle	
			ts of a Mated Connector for Gen 1 Speed	
			est Points for a Mated Cable Assembly	
			rtion Loss Requirement	
			eak-to-Peak Crosstalk	
			ommon-Mode Conversion Requirement	
			ty Testty Testty Test	
_			tandard-B Connector	
			1icro-B Connector	
			nector Apertures	
Tables				
Table 5-1.	Plugs A	ccepted by	Receptacle	8

Table 5-2. USB 3.1 Standard-A Connector Pin Assignments	25
Table 5-3. USB 3.1 Standard-B Connector Pin Assignments	
Table 5-4. USB 3.1 Micro-B Connector Pin Assignments	39
Table 5-5. USB 3.1 Micro-AB/Micro-A Connector Pin Assignments	39
Table 5-6. Cable Wire Assignments	41
Table 5-7. Reference Wire Gauges	41
Table 5-8. USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly Wiring	43
Table 5-9. USB 3.1 Standard-A to USB 3.1 Standard-A Cable Assembly Wiring	43
Table 5-10. USB 3.1 Standard-A to USB 3.1 Micro-B Cable Assembly Wiring	45
Table 5-11. USB 3.1 Micro-A to USB 3.1 Micro-B Cable Assembly Wiring	47
Table 5-12. USB 3.1 Micro-A to USB 3.1 Standard-B Cable Assembly Wiring	48
Table 5-13. SDP Differential Insertion Loss Examples	51
Table 5-16. Durability Ratings	
Table 5-17. Environmental Test Conditions	59
Table 5-18. Reference Materials ¹	60

1 Introduction

1.1 Background

The original Universal Serial Bus (USB) was driven by the need to provide a user-friendly plug-and-play way to attach external peripherals to a Personal Computer (PC). USB has gone beyond just being a way to connect peripherals to PCs. Printers use USB to interface directly to cameras. Mobile devices use USB connected keyboards and mice. USB technology commonly finds itself in automobiles, televisions, and set-top boxes. USB, as a protocol, is also being picked up and used in many nontraditional applications such as industrial automation. And USB as a source of power has become the mobile device charging solution endorsed by international communities across the globe.

Initially, USB provided two speeds (12 Mbps and 1.5 Mbps) that peripherals could use. As PCs became increasingly powerful and able to process larger amounts of data, users needed to get more and more data into and out of their PCs. This led to the definition of the USB 2.0 specification in 2000 to provide a third transfer rate of 480 Mbps while retaining backward compatibility. By 2006, two things in the environment happened: the transfer rates of HDDs exceeded 100 MB/sec, far outstripping USB 2.0's \sim 32 MB/sec bandwidth and the amount of digital content users were creating was an ever increasing pace. USB 3.0 was the USB community's response and provided users with the ability to move data at rates up to 450 MB/sec while retaining backward compatibility with USB 2.0.

In 2013, with the continued trend for more bandwidth driven by larger and faster storage solutions, higher resolution video, and broader use of USB as an external expansion/docking solution, USB 3.1 extended the performance range of USB up to 1 GB/sec by doubling the SuperSpeed USB clock rate to 10 Gbps and enhancing data encoding efficiency.

Now, with the addition of USB Type- C^{TM} to the USB connector/cable ecosystem, USB 3.2 extends the performance range of USB up to 2 GB/sec by enabling two lanes of SuperSpeed signaling to be used in combination over two sets of SuperSpeed pins/wires across the USB Type-C standard connector/cable solution.

Given that the multi-lane capabilities of USB 3.2 are *not applicable* to the USB 3.1 series of legacy USB cables and connectors, this separate cable and connector specification has been derived from Chapter 5 of the USB 3.1 specification to separate going forward the USB bus functional specifications from the electro-mechanical specifications for USB.

1.2 Objective of the Specification

This document defines the legacy generation of USB cables and connectors as derived from the USB 3.1 industry-standard. The specification covers the electro-mechanical requirements and recommendations for the USB SuperSpeed-capable cables and connectors for USB Standard-A, USB Standard-B and the USB Micro-series of receptacles and plugs.

1.3 Scope of the Document

The specification is primarily targeted at developers of cables and connectors as well as for USB system and device product developers that incorporate or use USB connectors or cables.

Product developers using this specification are expected to know and understand both the USB 2.0 Specification and USB 3.2 Specification.

Please note that all prior references to USB Power Delivery specification and USB PD variants of USB legacy connectors or cables were removed from this release of the specification. USB Power Delivery is only applicable to USB Type-C connectors and cables.

Revision 1.0 September 22, 2017

1.4 **USB Product Compliance**

Adopters of the USB 3.1 Legacy Cable and Connector specification have signed the USB 3.0 Adopters Agreement, which provides them access to a reasonable and nondiscriminatory (RANDZ) license from the Promoters and other Adopters to certain intellectual property contained in products that are compliant with the USB 3.1 Legacy Cable and Connector specification. Adopters can demonstrate compliance with the specification through the testing program as defined by the USB Implementers Forum (USB-IF). Products that demonstrate compliance with the specification will be granted certain rights to use the USB-IF logos as defined in the logo license.

- 2 -

Starting with USB 3.1, product compliance requirements were tightened up to prohibit noncertified cables and connectors. Use of any registered icons or logos on products, documentation or packaging will require a license and license requirements will include passing specific product certification.

1.5 **Related Documents**

Universal Serial Bus Specification, Revision 2.0

USB On-the-Go Supplement to the USB 2.0 Specification, Revision 1.3

USB On-the-Go and Embedded Host Supplement to the USB 3.0 Specification, Revision 1.0

Universal Serial Bus Micro-USB Cables and Connectors Specification, Revision 1.01

EIA-364-1000.01: Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Business Office Applications

USB 3.1 Legacy Connectors and Cable Assemblies Compliance Document

USB SuperSpeed Electrical Test Methodology white paper

USB 3.0 Jitter Budgeting white paper

INCITS TR-35-2004, INCITS Technical Report for Information Technology - Fibre Channel -Methodologies for Jitter and Signal Quality Specification (FC-MJSQ)

Universal Serial Bus 3.2 Specification

1.6 Conventions

Precedence 1.6.1

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures, and then text.

1.6.2 Keywords

The following keywords differentiate between the levels of requirements and options.

1.6.2.1 Informative

Informative is a keyword that describes information with this specification that intends to discuss and clarify requirements and features as opposed to mandating them.

1.6.2.2 May

May is a keyword that indicates a choice with no implied preference.

1.6.2.3 N/A

N/A is a keyword that indicates that a field or value is not applicable and has no defined value and shall not be checked or used by the recipient.

1.6.2.4 Normative

Normative is a keyword that describes features that are mandated by this specification.

1.6.2.5 Optional

Optional is a keyword that describes features not mandated by this specification. However, if an optional feature is implemented, the feature shall be implemented as defined by this specification (optional normative).

1.6.2.6 Reserved

Reserved is a keyword indicating reserved bits, bytes, words, fields, and code values that are set-aside for future standardization. The use and interpretation of these may be specified by future extensions to this specification and, unless otherwise stated, shall not be utilized or adapted by vendor implementation. A reserved bit, byte, work or field shall be set to zero by the sender and shall be ignored by the receiver. Reserved field values shall not be sent by the sender and, if received, shall be ignored by the receiver.

1.6.2.7 Shall

Shall is a keyword indicating a mandatory (normative) requirement. Designers are mandated to implement all such requirements to ensure interoperability with other compliant devices.

1.6.2.8 Should

Should is a keyword indicating flexibility of choice with a preferred alternative. Equivalent to the phrase "it is recommended that".

1.6.2.9 Numbering

Numbers that are immediately followed by a lowercase "b" (e.g., 01b) are binary values. Numbers that are immediately followed by an uppercase "B" are byte values. Numbers that are immediately followed by a lowercase "h" (e.g., 3Ah) are hexadecimal values. Numbers not immediately followed by either a "b", "B", or "h" are decimal values.

2 Terms and Abbreviations

This chapter lists and defines terms and abbreviations used throughout this specification. Note, for terms and abbreviations not defined here, use their generally accepted or dictionary meaning.

Term/Abbreviation	Definition
AWG	The measurement of a wire's cross section, as defined by the American Wire Gauge standard.
cable	Raw cable with no plugs attached.
cable assembly	Cable attached with plugs.
captive cable	Cable assembly that has a Type-A plug on one end and that is either permanently attached or has a vendor specific connector on the other end.

Term/Abbreviation	Definition
D+ and D-	Differential pair defined in the USB 2.0 specification.
Gbps	Transmission rate expressed in gigabits per second (1,000,000,000 bits per second).
Gen 1	Gen 1 is an adjective used to refer to the Physical layer associated with a 5.0 Gbps signaling rate. The original USB SuperSpeed Phy and a Gen 1 Phy refer to the same Phy.
Gen 2	Gen 2 is an adjective used to refer to the Physical layer associated with a 10 Gbps signaling rate.
host	The host computer system where the USB host controller is installed. This includes the host hardware platform (CPU, bus, etc.) and the operating system in use.
ID pin	Denotes the pin on the USB 3.1 Micro connector family that is used to differentiate a USB 3.1 Micro-A plug from a USB 3.1 Micro-B plug.
peripheral	A physical entity that is attached to a USB cable and is currently operating as a "device" as defined in this specification.
plug	Connector attached to the cable, to be mated with the receptacle
receptacle	Connector mounted on the host or device, to be mated with the plug.
SuperSpeed	An adjective referring to the architectural layer portions of a device defined in this specification when operating with a Gen 1 PHY. Note previously defined as USB operation at 5 Gbps.
SuperSpeedPlus	An adjective referring to the architectural layer portions of a device defined in this specification when operating with a Gen 2 PHY
Type-A connector	The Standard-A connector defined in this specification.
USB 3.1 Standard-A connector	USB 3.1 host connector, supporting either SuperSpeed or both SuperSpeed and SuperSpeedPlus modes.
USB 3.1 Standard-B connector	USB 3.1 standard Type-B device connector, supporting either SuperSpeed or both SuperSpeed and SuperSpeedPlus modes.
USB 3.1 Micro-A plug	Part of the USB 3.1 Micro connector family for OTG use; it can be plugged into a USB 3.1 Micro-AB receptacle; it differs from the USB 3.1 Micro-B plug only in keying and ID pin connection.
USB 3.1 Micro-AB receptacle	Part of the USB 3.1 Micro connector family; it accepts either a USB 3.1 Micro-B plug or a USB 3.1 Micro-A plug.
USB 3.1 Micro-B connector	USB 3.1 device connector, supporting either SuperSpeed or both SuperSpeed and SuperSpeedPlus modes.
USB 3.1 Micro connector family	All the receptacles and plugs supporting either SuperSpeed or both SuperSpeed and SuperSpeedPlus modes that are used on devices, including the USB 3.1 Micro-B, USB 3.1 Micro-AB, and USB 3.1 Micro-A connectors.
USB 2.0 Standard-A connector	The Type-A connector defined by the USB 2.0 specification.
USB 2.0 Standard-B connector	The standard Type-B connector defined by the USB 2.0 specification.
USB-IF	USB Implementers Forum, Inc. is a nonprofit corporation formed to facilitate the development of USB compliant products and promote the technology.

3 Overview

The mechanical specifications for USB 3.1 cables and connector assemblies are provided in this specification. All USB devices have an upstream connection. Hosts and hubs (defined below) have one or more downstream connections. Upstream and downstream connectors are not mechanically interchangeable, thus eliminating illegal loopback connections at hubs.

USB 3.1 cables have eight primary conductors: three twisted signal pairs for USB data paths and a power pair. Figure 4-1 illustrates the basic signal arrangement for the USB 3.1 cable. In addition to the twisted signal pair for USB 2.0 data path, two twisted signal pairs are used to provide the SuperSpeed data path, one for the transmit path and one for the receive path.

Figure 4-1. USB 3.1 Cable

USB 3.1 receptacles (both upstream and downstream) are backward compatible with USB 2.0 connector plugs. USB 3.1 cables and plugs are not intended to be compatible with USB 2.0 upstream receptacles. As an aid to users, USB 3.1 recommends standard coloring for plastic portions of USB 3.1 plugs and receptacles.

Electrical (insertion loss, return loss, crosstalk, etc.) performance for USB 3.1 is defined with regard to raw cables, mated connectors, and mated cable assemblies, with compliance requirements using industry test specifications established for the latter two categories. Similarly, mechanical (insertion/extraction forces, durability, etc.) and environmental (temperature life, mixed flowing gas, etc.) requirements are defined and compliance established via recognized industry test specifications.

4 Intentionally Blank

This chapter intentionally left blank to retain Mechanical Chapter alignment with the USB 3.2 Specification.

5 Mechanical

This chapter defines form, fit, and function of the USB 3.1 legacy connectors and cable assemblies. It contains the following:

- Connector mating interfaces
- Cables and cable assemblies
- Electrical requirements
- Mechanical and environmental requirements
- Implementation notes and guidelines

The intention of this chapter is to enable connector, system, and device designers and manufacturers to build, qualify, and use the USB 3.1 connectors, cables, and cable assemblies.

If any part of this chapter conflicts with the USB 2.0 specification, the USB 3.1 specification supersedes the USB 2.0 specification.

With some clearly noted exceptions, USB 3.1 connectors and cable assemblies provide the same functionally as the previously defined USB 3.0 connectors and cables assemblies. The primary differences are that USB 3.1 connectors and cable assemblies include features and requirements associated with improved EMI/RFI performance. From the perspective of interface mating interoperability, USB 3.0 connectors and cable assemblies are the same as USB 3.1 connectors and cable assemblies therefore, only USB 3.1 is listed for interface interoperability requirements and is inclusive of USB 3.0.

5.1 Objective

The mechanical layer specification has been developed with the following objectives:

- Supporting Gen 1 speed (5 Gbps)
- Backward compatible with USB 2.0
- Minimizing connector form factor variations
- Providing the system designer features that allow implementations to comply with EMI and RFI requirements
- Supporting On-The-Go (OTG)
- Low cost

5.2 Significant Features

This section identifies the significant features of the USB 3.1 (SuperSpeed) connectors and cable assemblies' specification. The purpose of this section is not to present all technical details associated with each major feature, but rather to highlight their existence. Where appropriate, this section references other parts of the document where additional details are found,

5.2.1 Connectors

The USB 3.1 specification defines the following connectors:

- SuperSpeed Standard A plug and receptacle
- SuperSpeed Standard B plug and receptacle
- SuperSpeed Micro B plug and receptacle

- SuperSpeed Micro A plug
- SuperSpeed Micro-AB receptacle

All SuperSpeed connectors have the same mating interfaces and are compatible with each other.

Table 5-1 lists the compatible plugs and receptacles.

Table 5-1. Plugs Accepted by Receptacle

Receptacle	Plugs Accepted
USB 2.0 Standard-A	USB 2.0 Standard-A or USB 3.1 Standard-A
USB 3.1 Standard-A	USB 3.1 Standard-A or USB 2.0 Standard-A
USB 2.0 Standard-B	USB 2.0 Standard-B
USB 3.1 Standard-B	USB 3.1 Standard-B or USB 2.0 Standard-B
USB 2.0 Micro-B	USB 2.0 Micro-B
USB 3.1 Micro-B	USB 3.1 Micro-B or USB 2.0 Micro-B
USB 2.0 Micro-AB	USB 2.0 Micro-B or USB 2.0 Micro-A
USB 3.1 Micro-AB	USB 3.1 Micro-B, USB 3.1 Micro-A, USB 2.0 Micro-B, or USB 2.0 Micro-A

5.2.1.1 USB 3.1 Standard-A Connector

The USB 3.1 Standard-A connector is defined as the host connector. It has the same mating interface as the USB 2.0 Standard-A connector, but with additional pins for two more differential pairs and a drain. Refer to Section 5.3.1.3 for pin assignments and descriptions.

A USB 3.1 Standard-A receptacle accepts either a USB 3.1 Standard-A plug or a USB 2.0 Standard-A plug. Similarly, a USB 3.1 Standard-A plug may be mated with either a USB 3.1 Standard-A receptacle or a USB 2.0 Standard A receptacle.

A unique color coding is recommended for the USB 3.1 Standard-A connector plastic housings to help users distinguish the USB 3.1 Standard-A connector from the USB 2.0 Standard-A connector (refer to Section 5.3.1.4 for details).

5.2.1.2 USB 3.1 Standard-B Connector

The USB 3.1 Standard-B connector is defined for relatively large, stationary peripherals, such as external hard drives and printers. It is defined so that the USB 3.1 Standard-B receptacle accepts either a USB 3.1 Standard-B plug, or a USB 2.0 Standard-B plug. Inserting a USB 3.1 Standard B plug into a USB 2.0 Standard-B receptacle is physically disallowed (refer to Section 5.3.2 for details).

5.2.1.3 USB 3.1 Micro-B Connector

The USB 3.1 Micro-B plug and USB 3.1 Micro-B receptacle connectors are defined for small handheld devices and other applications where a small connector size may be used. It is defined so that the USB 3.1 Micro-B receptacle accepts either a USB 3.1 Micro-B plug, or a USB 2.0 Micro-B plug. Inserting a USB 3.1 Micro-B plug into a USB 2.0 Micro-B receptacle or USB 2.0 Micro-AB receptacle is physically disallowed by the implementation.

5.2.1.4 USB 3.1 Micro-AB and USB 3.1 Micro-A Connectors

The USB 3.1 Micro-AB receptacle is similar to the USB 3.1 Micro-B receptacle except for different keying. It accepts a USB 3.1 Micro-A plug, a USB 3.1 Micro-B plug, a USB 2.0 Micro-A plug, or a USB 2.0 Micro-B plug. The USB 3.1 Micro-AB receptacle is only allowed on OTG products which may function as either a host or device. All other uses of the USB 3.1 Micro-AB receptacle are prohibited.

The USB 3.1 Micro-A plug is similar to the USB 3.1 Micro-B plug except for different keying and ID pin connections. Similar to the USB 2.0 Micro-A plug, the USB 3.1 Micro-A plug is defined for OTG applications only. Section 5.3.3 defines the USB 3.1 Micro connector family.

5.2.2 Allowed Cable Assemblies

The USB 3.1 specification defines the following cable assemblies:

- USB 3.1 Standard-A plug to USB 3.1 Standard-B plug
- USB 3.1 Standard-A plug to USB 3.1 Micro-B plug
- USB 3.1 Standard-A plug to USB 3.1 Standard-A plug
- USB 3.1 Micro-A plug to USB 3.1 Micro-B plug
- USB 3.1 Micro-A plug to USB 3.1 Standard-B plug
- Captive cable with USB 3.1 Standard-A plug
- Captive cable with USB 3.1 Micro-A plug

A captive cable is a cable assembly that has a USB Standard-A plug on one end and that is either hardwired or has a vendor-specific connector on the other end. A hardwired cable is directly wired to the device and it is not detachable from the device. This specification does not define how the vendor-specific connector or hardwired attachment is done on the device side.

For electrical compliance purposes, a USB 3.1 captive cable (hardwired or with vendor-specific connector on the device end) shall be considered part of the USB 3.1 device.

No other types of cable assemblies are allowed by this specification. Section 5.5 provides detailed discussion on USB 3.1 cable assemblies.

5.2.3 Raw Cable

Due to EMI, RFI, and signal integrity requirements, each cable differential pair used for the SuperSpeed lines in a USB 3.1 cable assembly shall be shielded; the Unshielded Twisted Pair (UTP) used for USB 2.0 is not allowed for SuperSpeed lines. Section 0 defines the cable construction for USB 3.1.

5.3 Connector Mating Interfaces

This section defines the connector mating interfaces, including the connector interface drawings, pin assignments, and descriptions.

5.3.1 USB 3.1 Standard-A Connector

5.3.1.1 Interface Definition

Figure 5-1 and Figure 5-2 show the USB 3.1 Standard-A receptacle and required ground spring mating areas, respectively. Figure 5-4 shows the USB Standard-A plug interface dimensions for USB 3.1. Only the dimensions that govern the mating interoperability are specified. All REF dimensions are informative.

Although the USB 3.1 Standard-A connector has basically the same form factor as the USB 2.0 Standard-A connector, it has significant differences inside. Below are the key features and design areas that need attention:

- In addition to the VBUS, D-, D+, and GND pins that are required for USB 2.0, the USB 3.1 Standard-A connector includes five more pins: two differential signal pairs plus one ground (GND_DRAIN). The two added differential signal pairs are for SuperSpeed data transfer, supporting dual simplex SuperSpeed signaling. The added GND_DRAIN pin is for drain wire termination and managing EMI, RFI, and signal integrity.
- The contact areas of the five SuperSpeed pins are located towards the front of the receptacle as blades, while the four USB 2.0 pins towards the back of the receptacle as beams or springs. Accordingly, in the plug, the SuperSpeed contacts are beams located behind the USB 2.0 blades. In other words, the USB 3.1 Standard-A connector has a two-tier contact system.
- The tiered-contact approach within the USB Standard-A connector form factor results in less contact area as compared to the USB 2.0 Standard-A connector. The connector interface dimensions take into consideration contact mating requirements between the USB 3.1 Standard-A receptacle and USB 3.1 Standard-A plug, the USB 3.1 Standard-A receptacle and USB 2.0 Standard-A plugs, and the USB 2.0 Standard-A receptacles and USB 3.1 Standard-A plug.
- The connector interface definition avoids shorting between the SuperSpeed and USB 2.0 pins during insertion when plugging a USB 2.0 Standard-A plug into a USB 3.1 Standard-A receptacle or a USB 3.1 Standard-A plug into a USB 2.0 Standard-A receptacle.
- There may be some increase in the USB 3.1 Standard-A receptacle connector depth (into a system board) to support the two-tiered-contacts as compared to the USB 2.0 Standard-A receptacle.
- Drawings for stacked USB 3.1 Standard-A receptacles are not shown in this specification. They are allowed as long as they meet all the electrical and mechanical requirements defined in this specification. When designing a stacked USB 3.1 Standard-A receptacle, efforts need to be made to minimize impedance discontinuity of the top connector in the stack because of its long electrical path. Attention to the high speed electrical design of USB 3.1 Standard-A connectors is required. In addition to minimizing the connector impedance discontinuities, crosstalk between the SuperSpeed differential signal pairs and USB 2.0 D+/D- pair should also be minimized.
- The receptacle connector should have a back-shield to ensure that the receptacle connector is fully enclosed. The USB 3.1 receptacle should also make good contact to the PCB ground by providing sufficient number of ground tabs to ensure a low impedance path to PCB ground. The USB 3.1 receptacle connector should have a robust mating interface to the shield of the USB 3.1 plug when it is inserted. Previous versions of this specification required providing a grounding spring tab in the middle of the side closest to the USB SuperSpeed signal contacts and grounding springs on both sides of the shell for USB 3.0 Standard-A receptacles. New designs shall have three grounding spring tabs on the side closest to the USB SuperSpeed signal contacts, two grounding spring tabs on the side opposite the USB SuperSpeed signal contacts, and a grounding spring on both sides of the shell of the USB 3.1 Standard-A receptacle. See Figure 5-2.

Figure 5-1. USB 3.1 Standard-A Receptacle Interface Dimensions

Figure 5-1. USB 3.1 Standard-A Receptacle Interface Dimensions, cont.

Figure 5-1. USB 3.1 Standard-A Receptacle Interface Dimensions, cont.

Figure 5-2. Example USB 3.1 Standard-A Receptacle with Grounding Springs and Required contact zones on the USB Standard-A Plug

TOP VIEW (SIDE NEAREST SUPERSPEED CONTACTS)

Figure 5-2. Example USB 3.1 Standard-A Receptacle with Grounding Springs and Required contact zones on the USB Standard-A Plug, cont.

BOTTOM VIEW (SIDE OPPOSITE SUPERSPEED CONTACTS)

Figure 5-3. Example USB 3.1 Standard-A Mid-Mount Receptacles

Spring fingers on the side of receptacle shell are EMI functional

Figure 5-4. USB 3.1 Standard-A Plug Interface Dimensions

- NOTES:

 1) NON-DIMENSIONED GEOMETRY FOR REFERENCE ONLY,
 SUBJECT TO CHANGE

 2) DRAWING FOR MATING INTERFACE DIMENSIONS ONLY,
 VIEWS MAY NOT SHOW REALISTIC MANUFACTURING CONDITION.

Figure 5-4. USB 3.1 Standard-A Plug Interface Dimensions, cont.

Figure 5-4. USB 3.1 Standard-A Plug Interface Dimensions, cont.

5.3.1.2 USB 3.1 Standard-A Reference Footprints

This specification does not define standard footprints. Any footprint may be used as long as all mechanical and electrical requirements are met. Example footprints are provided for reference only.

Figure 5-5 shows through-hole example footprints for the USB 3.1 Standard-A receptacle with a back-shield. Pin numbers are marked.

Figure 5-6 shows an example footprint for a mid-mount standard mount (mounted on the top of the PCB) Standard-A receptacle.

Figure 5-7 shows an example mid-mount reverse mount (mounted on the bottom of the PCB). The reverse mount configuration locates the SuperSpeed signals between the USB 2.0 signals and the PCB edge, making the SuperSpeed signal routing more challenging.

See Section 0 for target characteristic impedance.

Figure 5-5. Example Footprint for the USB 3.1 Standard-A Receptacle -Through-Hole with Back-Shield

Figure 5-5. Example Footprint for the USB 3.1 Standard-A Receptacle – Through-Hole with Back-Shield, cont.

Figure 5-5. Example Footprint for the USB 3.1 Standard-A Receptacle – Through-Hole with Back-Shield, cont.

Figure 5-6. Example Footprint for the USB 3.1 Standard-A Receptacle - Mid-Mount Standard Mount Through-Hole

Figure 5-7. Example Footprint for the USB 3.1 Standard-A Receptacle - Mid-Mount Reverse Mount Through-Hole

5.3.1.3 Pin Assignments and Description

The usage and assignments of the nine pins in the USB 3.1 Standard A connector are defined in Table 5-2.

Table 5-2. USB 3.1 Standard-A Connector Pin Assignments

Pin Number ¹	Signal Name ²	Description	Mating Sequence ³
1	VBUS	Power	Third
2	D-	USB 2.0 differential pair	Fourth
3	D+		
4	GND	Ground for power return	Third
5	StdA_SSRX-	SuperSpeed receiver differential pair	Last
6	StdA_SSRX+		
7	GND_DRAIN	Ground for signal return	
8	StdA_SSTX-	SuperSpeed transmitter differential pair	
9	StdA_SSTX+		
Shell	Shield	Connector metal shell	First

Notes:

- 1. Pin numbers not included in this table do not have contacts present.
- 2. Tx and Rx are defined from the host perspective.

The physical location of the pins in the connector is illustrated in Figure 5-1 to Figure 5-7. Pins 1 to 4 are referred to as the USB 2.0 pins, while pins 5 to 9 are referred to as the SuperSpeed pins.

5.3.1.4 USB 3.1 Standard-A Connector Color Coding

Since both the USB 2.0 Standard A and USB 3.1 Standard-A receptacles may co-exist on a host, color coding is recommended for the USB 3.1 Standard-A connector (receptacle and plug) housings to help users distinguish it from the USB 2.0 Standard-A connector.

Blue (Pantone 300C) is the recommended color for the USB 3.1 Standard-A receptacle and plug plastic housings. When the recommended color is used, connector manufacturers and system integrators should make sure that the blue-colored receptacle housing is visible to users. Figure 5-8 illustrates the color coding recommendation for the USB 3.1 Standard-A connector.

Figure 5-8. Illustration of Color Coding Recommendation for USB 3.1 Standard-A Connector

5.3.2 USB 3.1 Standard-B Connector

5.3.2.1 Interface Definition

Figure 5-9, Figure 5-10, and Figure 5-11 show the USB Standard-B receptacle dimensions, the USB Standard-B plug dimensions, and a USB Standard-B receptacle reference footprint, respectively. See Section 0 for target characteristic impedance.

Figure 5-9. USB 3.1 Standard-B Receptacle Interface Dimensions

Figure 5-9. USB 3.1 Standard-B Receptacle Interface Dimensions, cont.

- NOTES:

 1) CRITICAL DIMENSIONS ARE TOLERANCED
 AND SHALL NOT BE DEVIATED.

 2) GENERAL TOLERANCE IS ±0.10 OTHERWISE
 THE SPECIFIED TOLERANCE APPLIES.

 3) ALL DIMENSIONS ARE IN MILLIMETERS.

 4) DIMENSIONS THAT ARE LABELED REF ARE
 TYPICAL DIMENSIONS AND MAY VARY FROM
 MANUFACTURER TO MANUFACTURER.

 5) NON-DIMENSIONED GEOMETRY FOR REFERENCE
 ONLY, SUBJECT TO CHANGE.

Figure 5-10. USB 3.1 Standard-B Plug Interface Dimensions

Figure 5-11. Reference Footprint for the USB 3.1 Standard-B Receptacle

REFERENCE PCB LAYOUT

The USB 3.1 Standard-B receptacle interfaces have two portions: the USB 2.0 interface and the SuperSpeed interface. The USB 2.0 interface consists of pins 1 to 4, while the SuperSpeed interface consists of pins 5 to 9.

When a USB 2.0 Standard-B plug is inserted into the USB 3.1 Standard-B receptacle, only the USB 2.0 interface is engaged and the link will not take advantage of the SuperSpeed capability. Since the USB 3.1 SuperSpeed portion is visibly not mated when a USB 2.0 Standard-B plug is inserted in the USB 3.1 Standard-B receptacle, users have the visual feedback that the cable plug is not matched with the receptacle. Only when a USB 3.1 Standard-B plug is inserted into the USB 3.1 Standard-B receptacle, is the interface completely visibly engaged.

5.3.2.2 Pin Assignments and Description

The usage and assignments of the nine pins in the USB 3.1 Standard-B connector are defined in Table 5-3.

Table 5-3. USB 3.1 Standard-B Connector Pin Assignments

Pin Number	Signal Name	Description	Mating Sequence
1	VBUS	Power	Second
2	D-	UCD 2 0 differential main	Third on bossed
3	D+	USB 2.0 differential pair	Third or beyond
4	GND	Ground for power return	Second
5	StdB_SSTX-	Conservation differential aria	Third or beyond
6	StdB_SSTX+	SuperSpeed transmitter differential pair	
7	GND_DRAIN	Ground for signal return	
8	StdB_SSRX-		
9	StdB_SSRX+	SuperSpeed receiver differential pair	
Shell	Shield	Connector metal shell	First

Notes: Tx and Rx are defined from the device perspective.

The physical location of the pins in the connector is illustrated in Figure 5-9 to Figure 5-11.

5.3.3 USB 3.1 Micro Connector Family

5.3.3.1 Interfaces Definition

The USB 3.1 Micro connector family consists of the USB 3.1 Micro-B receptacle, USB 3.1 Micro-AB receptacle, USB 3.1 Micro-B plug, and USB 3.1 Micro-A plug. Figure 5-12 and Figure 5-13 show the USB 3.1 Micro family receptacle and plug interface dimensions, respectively. Only dimensions that govern the mating interoperability are specified.

The USB 3.1 Micro connector family has the following characteristics:

- The USB 3.1 Micro-B connector may be considered a combination of USB 2.0 Micro-B interface and the USB 3.1 SuperSpeed contacts. The USB 3.1 Micro-B receptacle accepts a USB 2.0 Micro-B plug, maintaining backward compatibility.
- The USB 3.1 Micro-B connector maintains the same connector height and contact pitch as the USB 2.0 Micro-B connector.
- The USB 3.1 Micro-B connector uses the same latch design as the USB 2.0 Micro-B connector.
- The USB 3.1 Micro-AB receptacle is identical to the USB 3.1 Micro-B receptacle except for a keying difference in the connector shell outline.
- The USB 3.1 Micro-A plug is similar to the USB 3.1 Micro-B plug with different keying and ID pin connections.

There is no required footprint for the USB 3.1 Micro connector family. Figure 5-14 shows reference Micro-B and Micro-AB connector footprints.

 $\textbf{12.85}\,\pm\,\textbf{0.2}$

1.3 MIN 0.6 MIN 4.75 **USB ICON** $12.25 \ ^{+0.06}_{-0.02}$ 3.45 REF 6.7 1.85 +0.08 1.3 1.3 2.6 2.6 3.35 MAX 3.5 MAX Α ΖI В С 0.22 R 0.2 REF R 0.15 MIN R 0.15 MIN R 0.2 REF 0.37 MIN 0.97 MIN 0.6 ± 0.04 С В

Figure 5-12. USB 3.1 Micro-B and Micro-AB Receptacle Interface Dimensions

NOTE: General tolerance is ± -0.05 mm, otherwise the specified tolerances apply.

Figure 5-12. USB 3.1 Micro-B and Micro-AB Receptacle Interface Dimensions, cont.

Subject to change by individual connector manufacturer to assure specified performance and intermateability. A-Ao 15 ROZ MAY 2.55 ± 0.1 В 0.56 1.05 ± 0.2 R 0.15 MIN 2.1 +0.2 -0.05 2.7 +0.05 -0.08 3.5 ± 0.1 KEY B KEY AB SHIELD DIMENSIONS SHIELD DIMENSIONS 12.25 +0.06 12.25 +0.06 1.1 +0.04 (INSIDE INTERSECTION) 6.9 +0.06 6.9 +0.06 1.04 (DATUM POINT) 1.85 +0.08 1.24 0 .85 4.53 ⁰ _{-0.05} $\textbf{5.4}\,\pm\,\textbf{0.05}$ (INSIDE INTERSECTION) $4.53 \begin{array}{l} 0 \\ -0.05 \end{array}$ $\textbf{6.7}\,\pm\,\textbf{0.05}$ $6.7\,\pm\,0.05$

NOTE: Chamfer metals are optional with no sharp edges.

C0.08 MIN 12.2 +0.02 6.85 +0.02 1.03 +0.02 (INTERSECTION) 4.75 1.25 MIN 3.6 MIN 2.6 1.3 (INTERSECTION) (THICKNESS OF SHIELDING METAL) No.10 No.1 4.625 +0.05 0.25 MAX REF (FOR THE SHIELD CONTACT) No.5 6.7 USB3.0 Micro-B Plug 0.22 MAX NOTES: 1. Dimensions that are labeled REF may vary from manufacturer to manufacturer.

Figure 5-13. USB 3.1 Micro-B and Micro-A Plug Interface Dimensions

2. General tolerance is \pm -0.05mm, otherwise the specified tolerances apply.

 $Figure\ 5\text{-}13.\ USB\ 3.1\ Micro-B\ and\ Micro-A\ Plug\ Interface\ Dimensions,\ cont.$

NOTES:

- 1. Dimensions that are labeled REF may vary from manufacturer to manufacturer.
- 2. General tolerance is ± -0.05 mm, otherwise the specified tolerances apply.

Figure 5-13. USB 3.1 Micro-B and Micro-A Plug Interface Dimensions, cont.

Figure 5-14. Reference Footprint for the USB 3.1 Micro-B and Micro-AB Receptacle

Standard-Surface Mount-Version Drawing

NOTES:

- 1. Critical Dimensions are TOLERANCED and shall not be deviated.
- 2. Dimensions that labeled REF are typical dimensions and may vary from manufacturer to manufacturer.
- 3. General tolerance is \pm / \pm 0.05 mm, otherwise the specified tolerances apply.
- 4. Chamfer metals are optional with no sharp edges.

Figure 5-14. Reference Footprint for the USB 3.1 Micro-B and Micro-AB Receptacle, cont.

Standard-Surface Mount-Version Drawing

USB3.0 Micro-AB RECEPTACLE

NOTES:

- 1. Critical Dimensions are TOLERANCED and shall not be deviated.
- 2. Dimensions that labeled REF are typical dimensions and may vary from manufacturer to manufacturer.
- 3. General tolerance is $\pm/-$ 0.05 mm, otherwise the specified tolerances apply.
- 4. Chamfer metals are optional with no sharp edges.

5.3.3.2 Pin Assignments and Description

Table 5-4 and Table 5-5 show the pin assignments for the USB 3.1 Micro connector family.

Table 5-4. USB 3.1 Micro-B Connector Pin Assignments

Pin Number	Signal Name	Description	Mating Sequence
1	VBUS	Power	Second
2	D-	UCD 2.0 differential main	
3	D+	USB 2.0 differential pair	Last
4	ID	OTG Identification	
5	GND	Ground for power return	Second
6	MicB_SSTX-	Constitution differential action	Last
7	MicB_SSTX+	SuperSpeed transmitter differential pair	
8	GND_DRAIN	Ground for SuperSpeed signal return	Second
9	MicB_SSRX-	Consecutive differential action	T
10	MicB_SSRX+	SuperSpeed receiver differential pair	Last
Shell	Shield	Connector metal shell	First

Notes: Tx and Rx are defined from the device perspective.

Table 5-5. USB 3.1 Micro-AB/Micro-A Connector Pin Assignments

Pin Number	Signal Name	Description	Mating Sequence
1	VBUS	Power	Second
2	D-	HCD 2 0 differential main	
3	D+	USB 2.0 differential pair	Last
4	ID	OTG Identification	
5	GND	Ground for power return	Second
6	MicA_SSTX-	Construction differential action	T and
7	MicA_SSTX+	SuperSpeed transmitter differential pair	Last
8	GND_DRAIN	Ground for SuperSpeed signal return	Second
9	MicA_SSRX-	Construction differential action	T t
10	MicA_SSRX+	SuperSpeed receiver differential pair	Last
Shell	Shield	Connector metal shell	First

Notes: Tx and Rx are defined when an OTG device serves as a host.

The physical location of the pins in the connector is illustrated in Figure 5-12 to Figure 5-14.

5.4 Cable Construction and Wire Assignments

This section discusses the USB 3.1 cables, including cable construction, wire assignments, and wire gauges. The performance requirements are specified in Section 5.6.1.

5.4.1 Cable Construction

Figure 5-15 illustrates a USB 3.1 cable cross-section. There are three groups of wires: D+/D- signal pair (typically unshielded twisted pair (UTP)), SuperSpeed signal pairs (typically Shielded Differential Pair (SDP), twisted, twinax, or coaxial signal pairs), and power and ground wires.

Figure 5-15. Illustration of a USB 3.1 Cable Cross-Section

The D+/D- signal pair is intended to transmit the USB 2.0 signaling while the SuperSpeed signal pairs are used for SuperSpeed; the shield is needed for the SuperSpeed differential pairs for signal integrity and EMI performance. Each SuperSpeed drain wire is connected to the system ground through the GND_DRAIN pin(s) in the connector.

A metal braid is required to enclose all the wires in the USB 3.1 cable. The braid shall be terminated to the plug metal shells, as close to 360° as possible, to reduce EMI.

5.4.2 Wire Assignments

Table 5-6 defines the wire number, signal assignments of the wires.

Table 5-6. Cable Wire Assignments

Wire Number	Signal Name	Description
1	PWR	Power
2	D-	Unshielded twist pair, negative
3	D+	Unshielded twist pair, positive
4	GND_PWRrt	Ground for power return
5	P1-	Shielded differential pair 1, negative
6	P1+	Shielded differential pair 1, positive
7	P1_Drain	Drain wire for SDP1
8	P2-	Shielded differential pair 2, negative
9	P2+	Shielded differential pair 2, positive
10	P2_Drain	Drain wire for SDP2
Braid	Shield	Cable external braid to be 360° terminated on to plug metal shell

5.4.3 Wire Gauges and Cable Diameters

This specification does not specify wire gauges. Table 5-7 lists typical wire gauges for reference purposes only. A large gauge wire incurs less loss, but at the cost of cable flexibility. It is recommended to use the smallest possible wire gauges that meet the cable assembly electrical requirements.

To maximize cable flexibility, all wires should be stranded and the cable outer diameter should be minimized as much as possible. A typical cable outer diameter may range from 3 mm to 6 mm.

Table 5-7. Reference Wire Gauges

Wire Number	Signal Name	Wire Gauge (AWG)
1	PWR	20 - 28
2	D-	28 - 34
3	D+	28 - 34
4	GND_PWRrt	20 - 28
5	P1-	26 - 34
6	P1+	26 - 34
7	P1_Drain	28 - 34
8	P2-	26 - 34
9	P2+	26 - 34
10	P2_Drain	28 - 34

5.5 Cable Assemblies

5.5.1 USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly

Figure 5-16 shows a USB 3.1 Standard-A to USB 3.1 Standard-B cable assembly.

Figure 5-16. USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly

Table 5-8 defines the wire connections for the USB 3.1 Standard-A to USB 3.1 Standard-B cable assembly.

Table 5-8. USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly Wiring

USB 3.1 St	tandard-A Plug		Wire		andard-B plug
Pin Number	Signal Name	Wire Number	Signal Name	Pin Number	Signal Name
1	VBUS	1	PWR	1	VBUS
2	D-	2	D-	2	D-
3	D+	3	D+	3	D+
4	GND	4	GND_PWRrt	4	GND
5	StdA_SSRX-	5	P1-	5	StdB_SSTX-
6	StdA_SSRX+	6	P1+	6	StdB_SSTX+
7	GND_DRAIN	7 and 10	P1_Drain P2_Drain	7	GND_DRAIN
8	StdA_SSTX-	8	P2-	8	StdB_SSRX-
9	StdA_SSTX+	9	P2+	9	StdB_SSRX+
Shell	Shield	Braid	Shield	Shell	Shield

5.5.2 USB 3.1 Standard-A to USB 3.1 Standard-A Cable Assembly

The USB 3.1 Standard-A to USB 3.1 Standard-A cable assembly is defined for operating system debugging and other host-to-host connection applications. Table 5-9 shows wire connections for such a cable assembly. Refer to Figure 5-16 for the USB 3.1 Standard A plug cable overmold dimensions.

Table 5-9. USB 3.1 Standard-A to USB 3.1 Standard-A Cable Assembly Wiring

USB 3.1 Standard-A Plug #1		Wire		USB 3.1 Standard-A plug #2	
Pin Number	Signal Name	Wire Number	Signal Name	Pin Number	Signal Name
1	VBUS	No	o connect	1	VBUS
2	D-	No	o connect	2	D-
3	D+	No connect		3	D+
4	GND	4	GND_PWRrt	4	GND
5	StdA_SSRX-	5	P1-	5	StdA_SSTX-
6	StdA_SSRX+	6	P1+	6	StdA_SSTX+
7	GND_DRAIN	7 and 10	P1_Drain P2_Drain	7	GND_DRAIN
8	StdA_SSTX-	8	P2-	8	StdA_SSRX-
9	StdA_SSTX+	9	P2+	9	StdA_SSRX+
Shell	Shield	Braid	Shield	Shell	Shield

5.5.3 USB 3.1 Standard-A to USB 3.1 Micro-B Cable Assembly

Figure 5-17 shows the USB 3.1 Micro-B plug overmold dimensions for a USB 3.1 Standard-A to USB 3.1 Micro-B cable assembly. The USB 3.1 Standard-A plug overmold dimensions are found in Figure 5-16.

Figure 5-17. USB 3.1 Micro-B Plug Cable Overmold Dimensions

Notes:

- 1. Any surface may have texturing up to $0.3\ \mathrm{mm}$ below the surface.
- 2. A square area around the letter B may be lowered as much as $0.5\ mm$.
- 3. USB authorized icon, connector type letter designation (i.e., B), color of the insulator body, and maximum dimensions are mandatory. Overmold outer configuration, color, and final shape are reference.
- 4. Pin 4 is not connected to pin 5 inside the plug.

Table 5-10 shows the wire connections for the USB 3.1 Standard-A to USB 3.1 Micro-B cable assembly. Note that the ID pin in the USB 3.1 Micro-B plug shall not be connected, but left in the open condition.

Table 5-10. USB 3.1 Standard-A to USB 3.1 Micro-B Cable Assembly Wiring

USB 3.1 Standard-A Plug			Wire	USB 3.1	Micro-B plug
Pin Number	Signal Name	Wire Number	Signal Name	Pin Number	Signal Name
1	VBUS	1	PWR	1	VBUS
2	D-	2	D-	2	D-
3	D+	3	D+	3	D+
4	GND	4	GND_PWRrt	5	GND
5	StdA_SSRX-	5	P1-	6	MicB_SSTX-
6	StdA_SSRX+	6	P1+	7	MicB_SSTX+
7	GND_DRAIN	7 and 10	P1_Drain P2_Drain	8	GND_DRAIN
8	StdA_SSTX-	8	P2-	9	MicB_SSRX-
9	StdA_SSTX+	9	P2+	10	MicB_SSRX+
				4	ID
Shell	Shield	Braid	Shield	Shell	Shield

5.5.4 USB 3.1 Micro-A to USB 3.1 Micro-B Cable Assembly

Figure 5-18 shows the USB 3.1 Micro-A plug cable overmold dimensions in a USB 3.1 Micro-A to USB 3.1 Micro-B cable assembly. The USB 3.1 Micro-B plug cable overmold dimensions are shown in Figure 5-17.

Figure 5-18. USB 3.1 Micro-A Plug Cable Overmold Dimensions

Notes:

- 1. Any surface may have texturing up to 0.3 mm below the surface.
- 2. A square area around the letter A may be lowered as much as 0.5 mm.
- 3. USB authorized icon, connector type letter designation (i.e., A), color of the insulator body, and maximum dimensions are mandatory. Overmold outer configuration, color, and final shape are reference.
- 4. Pin 4 is connected to pin 5 inside the plug.

Table 5-11 shows the wire connections for the USB 3.1 Micro-A to USB 3.1 Micro-B cable assembly. The ID pin on a USB 3.1 Micro-A plug shall be connected to the GND pin. The ID pin on a USB 3.1 Micro-B plug shall be a no-connect or connected to ground by a resistance of greater than Rb_PLUG_ID (1 M Ω minimum). See the USB On-the-Go Supplement to the USB 2.0 Specification for additional details regarding electrical connections to ID pins. An OTG device is required to be able to detect whether a USB 3.1 Micro-A or USB 3.1 Micro-B plug is inserted by determining if the ID pin resistance to ground is less than Ra_PLUG_ID (10 Ω

maximum) or if the resistance to ground is greater than Rb_PLUG_ID. Any ID resistance less than Ra_PLUG_ID shall be treated as ID = FALSE and any resistance greater than Rb_PLUG_ID shall be treated as ID = TRUE.

Table 5-11. USB 3.1 Micro-A to USB 3.1 Micro-B Cable Assembly Wiring

USB 3.1 Micro-A Plug		Wire		USB 3.1	Micro-B plug
Pin Number	Signal Name	Wire Number	Signal Name	Pin Number	Signal Name
1	VBUS	1	PWR	1	VBUS
2	D-	2	D-	2	D-
3	D+	3	D+	3	D+
4	ID (see Note 1)	No connect		4	ID (see Note 2)
5	GND	4	GND_PWRrt	5	GND
6	MicA_SSTX-	5	P1-	9	MicB_SSRX-
7	MicA_SSTX+	6	P1+	10	MicB_SSRX+
8	GND_DRAIN	7 and 10	P1_Drain P2_Drain	8	GND_DRAIN
9	MicA_SSRX-	8	P2-	6	MicB_SSTX-
10	MicA_SSRX+	9	P2+	7	MicB_SSTX+
Shell	Shield	Braid	Shield	Shell	Shield

Notes:

- 1. Connect to the GND
- 2. No connect or connect to ground by a resistance greater than 1 $M\Omega$ minimum.

5.5.5 USB 3.1 Micro-A to USB 3.1 Standard-B Cable Assembly

A USB 3.1 Micro-A to USB 3.1 Standard-B cable assembly is also allowed. Figure 5-18 and Figure 5-16 show, respectively, the USB 3.1 Micro-A cable overmold and the USB 3.1 Standard-B cable overmold dimensions.

Table 5-12 shows the wire connections for the USB 3.1 Micro-A to USB 3.1 Standard-B cable assembly.

Table 5-12. USB 3.1 Micro-A to USB 3.1 Standard-B Cable Assembly Wiring

USB 3.1	USB 3.1 Micro-A Plug Wire		Wire	USB 3.1	Micro-B plug
Pin Number	Signal Name	Wire Number	Signal Name	Pin Number	Signal Name
1	VBUS	1	PWR	1	VBUS
2	D-	2	D-	2	D-
3	D+	3	D+	3	D+
4	ID (see Note 1)	No connect			
5	GND	4	GND_PWRrt	4	GND
6	MicA_SSTX-	5	P1-	8	StdB_SSRX-
7	MicA_SSTX+	6	P1+	9	StdB_SSRX+
8	GND_DRAIN	7 and 10	P1_Drain P2_Drain	7	GND_DRAIN
9	MicA_SSRX-	8	P2-	5	StdB_SSTX-
10	MicA_SSRX+	9	P2+	6	StdB_SSTX+
Shell	Shield	Braid	Shield	Shell	Shield

Notes:

1. Connect to the GND

5.5.6 USB 3.1 Icon Location

USB 3.1 cable assemblies compliant with the *USB 3.1 Legacy Connectors and Cable Assemblies Compliance Specification* shall display the appropriate USB 3.1 Icon. A dimensioned drawing and allowable usage of the icon are supplied with the license from the USB-IF.

The USB 3.1 Icon is embossed in a recessed area on the side of the USB 3.1 plug. This provides easy user recognition and facilitates alignment during the mating process. The USB Icon and Manufacturer's logo should not project beyond the overmold surface. The USB 3.1 compliant cable assembly is required to have the USB 3.1 Icons on the plugs at both ends, while the manufacturer's logo is recommended. USB 3.1 receptacles should be orientated to allow the Icon on the plug to be visible during the mating process. Figure 5-19 shows a typical plug orientation.

Figure 5-19. Typical Plug Orientation

5.5.7 Cable Assembly Length

This specification does not specify cable assembly lengths. A USB 3.1 cable assembly may be of any length as long as it meets all the requirements defined in this specification. The cable assembly voltage drop budget defined in Section 5.8.4 and the cable assembly loss budget defined in Section 5.6.1.3.1, limit the cable assembly length.

SECTION A-A

5.6 Electrical Requirements

This section covers the electrical requirements for raw cables, mated connectors, and mated cable assemblies. SuperSpeed USB signals are governed by this specification. The USB 2.0 signals are governed by the USB 2.0 specification, unless otherwise specified.

Compliance to the USB 3.2 specification is established through normative requirements of mated connectors and mated cable assemblies. SuperSpeed requirements are specified mainly in terms of S-parameters, using industry test specification with supporting details when required.

DC requirements, such as contact resistance and current carrying capability, are also specified in this section.

Any informative specification for cable and connector products is for the purpose of design guidelines and manufacturing control.

In conjunction with performance requirements, the required test method is referenced for the parameter stated. A list of the industry standards for DC requirements is found in the Section 5.6.2. Additional supporting test procedures are found in the *USB 3.1 Legacy Connectors and Cable Assemblies Compliance Document*.

The requirements in the section apply to all USB 3.1 connectors and/or cable assemblies unless specified otherwise.

5.6.1 SuperSpeed Electrical Requirements

The following sections outline the requirements for SuperSpeed signals.

5.6.1.1 Raw Cable

Informative raw cable electrical performance targets are provided to help cable assembly manufacturers manage raw cable suppliers. These targets are not part of the USB 3.1 compliance requirements. The mandatory requirements are that the mated cable assembly performance specified in Section 5.6.1.3 and other tests specified in the USB 3.1 Legacy Connectors and Cable Assemblies Compliance Document.

5.6.1.1.1 Characteristic Impedance

The differential characteristic impedance for the SDP pairs is recommended to be 90 Ω ± 5 Ω . The single-ended characteristic impedance of coaxial SuperSpeed signal wires is recommended to be 45 Ω ± 3 Ω . It should be measured with a TDR in a differential mode using a 200 ps (10% – 90%) rise time.

5.6.1.1.2 Intra-Pair Skew

The intra-pair skew for the SDP pairs is recommended to be less than 15 ps/m. It should be measured with a Time Domain Transmission (TDT) in a differential mode using a 200 ps (10% - 90%) rise time with a crossing at 50% of the input voltage.

5.6.1.1.3 Differential Insertion Loss

Cable loss depends on wire gauges and dielectric materials. Table 5-13 lists examples of differential insertion losses for the SDP pairs. Note that the differential loss values are referenced to a 90 Ω differential impedance.

Table 5-13. SDP Differential Insertion Loss Examples

Frequency	34AWG	30AWG	28AWG	26AWG
0.625 GHz	2.7 dB/m	1.3 dB/m	1.0 dB/m	0.9 dB/m
1.25 GHz	3.3 dB/m	1.9 dB/m	1.5 dB/m	1.3 dB/m
2.50 GHz	4.4 dB/m	3.0 dB/m	2.5 dB/m	1.9 dB/m
5.00 GHz	6.7 dB/m	4.6 dB/m	3.6 dB/m	3.1 dB/m
7.50 GHz	9.0 dB/m	5.9 dB/m	4.7 dB/m	4.2 dB/m

5.6.1.2 Mated Connector Impedance

SuperSpeed signal routing on the PCB should minimize the stub length and minimize impedance discontinuities in the signal path. It is recommended that the SuperSpeed signals be routed on the opposite side of the PCB from the side the lead is inserted for through-hole implementations. It is recommended that the SuperSpeed signals be routed on the same side of the PCB as the solder pads for SMT implementations.

Example ground voids under pads shown in Figure 5-20 are based on pad geometry, mounting type, and PCB stack up.

Figure 5-20. Recommended Ground Void Dimension for USB Standard-A Receptacle

Example PTH Example SMT pad Example PCB stack-up

Note: See Section 5.6.1.3 for recommended electrical requirements in determining void dimensions

PTH for Standard A and B SMT for Micro-B Generic Stack-ups 0.25 0.25 0.40 0.40 0.10 0.03 0.03 0.10 Prepreg 0.05 a Finished hole radius 0.35 W b Annular ring radius 0.50 R Antipad radius to center 0.75 L Ground void length 1.35 Total thickness: 0.8 ~ 1.8 mm Antipad center to center 2.00 (Std-A) W Ground void width 1.55 1.75 (Std-B)

Unit: mm

The recommended mated connector impedance is needed to maintain signal integrity. The differential impedance of a mated connector should be 90 Ω ± 10 Ω , as seen from a 40 ps (20% – 80%) rise time of a differential TDR. The impedance profile of a mated connector should fall within the limits shown in Figure 5-21. The impedance profile of the mated connector is defined from the receptacle footprints through the plug cable termination area. In a case where the plug is directly attached to a device PCB, the mated connector impedance profile includes the path from the receptacle footprints to the plug footprints.

The normative cable assembly requirements are specified in Section 5.6.1.3.

Figure 5-21. Impedance Limits of a Mated Connector for Gen 1 Speed

5.6.1.3 Mated Cable Assemblies for Gen 1 Speed

A mated cable assembly refers to a cable assembly mated with the corresponding receptacles mounted on a test fixture at the both ends. The requirements are for the entire signal path of the mated cable assembly, from the host receptacle contact solder pads or through-holes on the host system board to the device receptacle contact solder pads or through holes on the device system board, not including PCB traces, as illustrated in Figure 5-22; the measurement is between TP1 (test point 1) and TP2 (test point 2).

Figure 5-22. Illustration of Test Points for a Mated Cable Assembly

For proper measurements, the receptacles shall be mounted on a test fixture. The test fixture shall have uncoupled access traces from SMA or microprobe launches to the reference planes or test points, preferably with 50 Ω +/-7% Ω single-ended characteristic impedance. The test fixture shall have appropriate calibration structures to calibrate out the fixturing effect. All non-ground pins that are adjacent but not connected to measurement ports shall be terminated with 50 Ω loads.

To be consistent with the USB 3.1 channel nominal differential characteristic impedance requirement of 90 Ω , all measured differential S-parameters shall be normalized with a 90- Ω reference differential impedance. Most VNA measurement software allows normalization of measured S-parameters to a different reference impedance. For example, in PLTS, one can set the port impedance to 45 Ω to normalize the measured 50- Ω single-ended S-parameters to 45 Ω ; this will result in 90- Ω differential S-parameters after the singled-ended-to-differential conversion.

A reference USB 3.1 mated cable assembly test fixture is defined in the *USB 3.1 Legacy Connectors and Cable Assemblies Compliance Document*, in which the detailed testing procedures are given.

5.6.1.3.1 Differential Insertion Loss (EIA-360-101)

The differential insertion loss, SDD12, measures the differential signal energy transmitted through the mated cable assembly. Figure 5-23 shows the differential insertion loss limit, which is normalized with $90-\Omega$ differential impedance and defined by the following vertices:

Standard B assembly: (100 MHz, -1.5 dB), (1.25 GHz, -5.0 dB), (2.5 GHz, -7.5 dB), and (7.5 GHz, -25 dB).

Micro B assembly: (100 MHz, -0.6 dB), (1.25 GHz, -2.33 dB), (2.5 GHz, -3.5 dB), and (7.5 GHz, -11.67 dB).

The measured differential insertion loss of a mated cable assembly must not exceed the differential insertion loss limit.

Figure 5-23. Differential Insertion Loss Requirement

5.6.1.3.2 Differential Near-End Crosstalk Between SuperSpeed Pairs (EIA-360-90)

The differential crosstalk measures the unwanted coupling between differential pairs. Since the Tx pair is right next to the Rx pair for SuperSpeed, only the differential near-end crosstalk (DDNEXT) is specified for SuperSpeed pairs. The DDNEXT shall be measured in time domain with a rise time of 50 ps (20-80%) entering the connector under test. The mated cable assembly meets the DDNEXT requirement if its peak-to-peak DDNEXT does not exceed the limits below (see Figure 5-24 for illustration of the peak-to-peak crosstalk):

USB 3.1 Standard-A connector: 0.9%
USB 3.1 Standard-B connector: 1.8%
USB 3.1 Micro connector family: 1.2%

Figure 5-24. Illustration of Peak-to-Peak Crosstalk

5.6.1.3.3 Differential Crosstalk Between D+/D- and SuperSpeed Pairs (EIA-360-90)

The differential near-end crosstalk (DDNEXT) and far-end crosstalk (DDFEXT between the D+/D- pair and the SuperSpeed pairs shall be measured in time domain with a rise time of 500 ps (10-90%) entering the connector under test. The mated cable assembly meets the DDNEXT/DDFEXT requirement if its peak-to-peak value does not exceed the limits below (see Figure 5-24 for illustration of the peak-to-peak crosstalk):

• USB 3.1 Standard-A connector: 2%

USB 3.1 Standard-B connector: 2%

• USB 3.1 Micro connector family: 2%

5.6.1.3.4 Differential-to-Common-Mode Conversion

Since the common mode current is directly responsible for EMI, limiting the differential-to-common-mode conversion, SCD12, will limit EMI generation within the connector and cable assembly. Figure 5-25 illustrates the SCD12 requirement; a mated cable assembly passes the SCD12 requirement if its SCD12 is less than or equal to -20 dB across the frequency range shown in Figure 5-25.

Figure 5-25. Differential-to-Common-Mode Conversion Requirement

5.6.2 DC Electrical Requirements

5.6.2.1 Low Level Contact Resistance (EIA 364-23B)

The following requirement applies to both the power and signal contacts:

- 30 m Ω (Max) initial for VBUS and GND contacts.
- 50 m Ω (Max) initial for all other contacts.
- Maximum change (delta) of +10 m Ω after environmental stresses.
- Measure at 20 mV (Max) open circuit at 100 mA.
- Refer to Section 5.7 for environmental requirements and test sequences.

5.6.2.2 Dielectric Strength (EIA 364-20)

No breakdown shall occur when 100 Volts AC (RMS) is applied between adjacent contacts of unmated and mated connectors.

5.6.2.3 Insulation Resistance (EIA 364-21)

A minimum of 100 $M\Omega$ insulation resistance is required between adjacent contacts of unmated and mated connectors.

5.6.2.4 Contact Current Rating (EIA 364-70, Method 2)

A current of 1.8 A shall be applied to VBUS pin and its corresponding GND pin (pin 1 and pin 4 of the USB 3.1 Standard-A and Standard-B connectors; pin 1 and pin 5 of the USB 3.1 Micro connector family). Additionally, a minimum current of 0.25 A shall be applied to all the other contacts. When the current is applied to the contacts, the delta temperature shall not exceed +30 °C at any point on the USB 3.1 connectors under test, when measured at an ambient temperature of 25 °C.

5.7 Mechanical and Environmental Requirements

The requirements in this section apply to all USB 3.1 connectors and/or cable assemblies unless specified otherwise.

5.7.1 Mechanical Requirements

5.7.1.1 Insertion Force (EIA 364-13)

The connector insertion force shall not exceed 35 N at a maximum rate of 12.5 mm (0.492") per minute.

It is recommended to use a non-silicon based lubricant on the latching mechanism to reduce wear. The effects of lubricants should be restricted to insertion and extraction characteristics.

5.7.1.2 Extraction Force Requirements (EIA 364-13)

5.7.1.2.1 Extraction Force (EIA 364-13, USB Standard Connector)

The connector extraction force shall not be less than 10 N initial and 8 N after the specified insertion/extraction or durability cycles (at a maximum rate of 12.5 mm (0.492") per minute).

No burs or sharp edges are allowed on top of locking latches (hook surfaces that will rub against the receptacle shield).

It is recommended to use a non-silicon based lubricant on the latching mechanism to reduce wear. The effects of lubricants should be restricted to insertion and extraction characteristics.

5.7.1.2.2 Extraction Force (EIA 364-13, USB Micro Connector Family Only)

The connector extraction force shall not be less than 10 N or more than 25 N initial and less than 8 N and more than 25 N after the specified insertion/extraction or durability cycles (at a maximum rate of 12.5 mm (0.492") per minute).

No burs or sharp edges are allowed on top of locking latches (hook surfaces that will rub against the receptacle shield).

It is recommended to use a non-silicon based lubricant on the latching mechanism to reduce wear. The effects of lubricants should be restricted to insertion and extraction characteristics.

5.7.1.3 Durability or Insertion/Extraction Cycles (EIA 364-09)

The durability ratings listed in Table 5-14 are specified for the USB 3.1 connectors.

Table 5-14. Durability Ratings

Connector	Standard Durability Class	High Durability Class
USB 3.1 Standard-A connector	1500 cycles minimum	5000 cycles minimum
USB 3.1 Standard-b connector	1500 cycles minimum	5000 cycles minimum
USB 3.1 Micro connector family	10000 cycles minimum	

The durability test shall be done at a maximum rate of 200 cycles per hour and no physical damage to any part of the connector or cable assembly shall occur.

5.7.1.4 Cable Flexing (EIA 364-41, Condition I)

No physical damage or discontinuity over 1 ms during flexing shall occur to the cable assembly with Dimension X = 3.7 times the cable diameter and 100 cycles in each of two planes.

5.7.1.5 Cable Pull-Out (EIA 364-38, Condition A)

No physical damage to the cable assembly shall occur when it is subjected to a 40 N axial load for a minimum of 1 minute while clamping one end of the cable plug.

5.7.1.6 Peel Strength (USB 3.1 Micro Connector Family Only)

No visible physical damage shall be noticed to a soldered receptacle when it is pulled up from the PCB in the vertical direction with a minimum force of 150 N.

5.7.1.7 4-Axes Continuity Test (USB 3.1 Micro Connector Family Only)

The USB 3.1 Micro connector family shall be tested for continuity under stress using the test configurations shown below. Plugs shall be supplied in a cable assembly with a representative overmold. A USB 3.1 Micro-B or Micro-AB receptacle shall be mounted on a 2 layer printed circuit board (PCB) between 0.8 and 1.0 mm thickness. The PCB shall be clamped on either side of the receptacle no further than 5 mm away from the solder tails. The PCB shall initially be placed in a horizontal plane, and an 8 N tensile force shall be applied to the cable in a downward direction, perpendicular to the axis of insertion, for a period of at least 10 seconds.

The continuity across each contact shall be measured throughout the application of the tensile force. The PCB shall then be rotated 90 degrees such that the cable is still inserted horizontally and the 8 N tensile force will be applied again in the downward direction and continuity measured as before. This test is repeated for 180 degree and 270 degree rotations. Passing parts shall not exhibit any discontinuities greater than 1 μs duration in any of the four orientations.

One method for measuring the continuity through the contacts is to short all the wires at the end of the cable pigtail and apply a voltage through a pull-up to each of VBUS, D+, D-, ID, and the SuperSpeed pins, with the GND pins connected to ground.

When testing a USB 3.1 Micro-A plug, all the sense resistors shall stay pulled down for the length of the test. When testing a USB 3.1 Micro-B plug, the ID pin shall stay high and the other pins shall remain low for the duration of the test. Alternate methods are allowed to verify continuity through all pins.

The 4 axes continuity tests shall be done with a USB 3.1 Micro-B/Micro-A plug in a USB 3.1 Micro-B/Micro-AB receptacle and with a USB 2.0 Micro-B/Micro-A plug in a USB 3.1 Micro-B/Micro-AB receptacle, as illustrated in Figure 5-26.

USB3.0 RECEPTACLE + USB3.0 PLUG 5 mm MAX 0.8~ 1 mm USB3.0 RECEPTACLE + USB2.0 PLUG mm MAX 0.8 ~ 1 mm

Figure 5-26. 4-Axes Continuity Test

5.7.1.8 Wrenching Strength (Reference, USB 3.1 Micro Connector Family Only)

The wrenching strength test shall be performed using virgin parts. Perpendicular forces (Fp) are applied to a plug when inserted at a distance (L) of 15 mm from the edge of the receptacle. Testing conditions and method shall be agreed to by all parties. These forces shall be applied in all four directions (i.e., left, right, up, and down). Compliant connectors shall meet the following force thresholds:

• No plug or receptacle damage shall occur when a force of 0 25 N is applied.

The plug may be damaged, but only in such a way that the receptacle does not sustain damage when a force of 25 – 50 N is applied.

5.7.1.9 Lead Co-Planarity

Co-planarity of all SMT leads shall be within a 0.08 mm range.

5.7.1.10 Solderability

Solder shall cover a minimum of 95% of the surface being immersed, when soldered at a temperature 255 $^{\circ}$ C +/ 5 $^{\circ}$ C for an immersion duration of 5 s.

5.7.1.11 Restriction of Hazardous Substances (RoHS) Compliance

It is recommended that components be RoHS compliant.

5.7.2 Environmental Requirements

The connector interface environmental tests shall follow EIA 364-1000.01, Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Business Office Applications.

Since the connector defined has far more than 0.127 mm wipe length, Test Group 6 in EIA 364-1000.01 is not required. The temperature life test duration and the mixed flowing gas test duration values are derived from EIA 364-1000.01 based on the field temperature per the following.

Table 5-15. Environmental Test Conditions

Temperature Life test temperature and duration	105 °C for 120 hours
Temperature Life test temperature and duration for preconditioning	105 °C for 72 hours
Mixed flowing gas test duration	7 days

The pass/fail criterion for the low-level contact resistance (LLCR) is as defined in Section 5.6.2.1. The durability ratings are defined in Section 5.7.1.3.

5.7.3 Materials

This specification does not specify materials for connectors and cables. Connector and cable manufactures should select appropriate materials based on performance requirements. Table 5-16 below is provided for reference only.

Note:

Connector and cable manufacturers shall comply with contact plating requirements per the following options:

Option I

Receptacle

Contact area: (Min) 0.05 µm Au + (Min) 0.75 µm Ni-Pd on top of (Min) 2.0 µm Ni

Plug

Contact area: (Min) 0.05 µm Au + (Min) 0.75 µm Ni-Pd on top of (Min) 2.0 µm Ni

Option II

Receptacle

Contact area: (Min) 0.75 µm Au on top of (Min) 2.0 µm Ni

Plug

Contact area: (Min) 0.75 µm Au on top of (Min) 2.0 µm Ni.

Other material parameters, which connector and cable manufacturers select based on performance parameters, are listed below in Table 5-16 for reference only.

Table 5-16. Reference Materials¹

Component	Materials
Cable	Conductor: copper with tin or silver plating
	SDP shield: AL foil of AL/Mylar foil
	Coaxial shield: copper strand
	Braid: Tin plated copper or aluminum
	Jacket: PVC or halogen-free substitute material
Cable Overmold	Thermoset or thermoplastic
Connector Shell	Copper alloy or stainless steel, depending on durability requirement
Housing	Thermoplastics capable of withstanding lead-free soldering temperature.

Note:

1. Halogen-free materials should be considered for all plastics

5.8 Implementation Notes and Design Guides

This section discusses a few implementation notes and design guides to help users design and use the USB 3.1 connectors and cables.

5.8.1 Mated Connector Dimensions

Figure 5-27, Figure 5-28, and Figure 5-29 show the mated plugs and receptacles for the USB 3.1 Standard-A, USB 3.1 Standard-B, and USB 3.1 Micro-B connectors, respectively. The distance between the receptacle front surface and the cable overmold should be observed by system designers to avoid interference between the system enclosure and the cable plug overmold.

Provisions are made in connectors and chassis to ground the connector metal shells to the metal chassis to reduce EMI and RFI.

Figure 5-27. Mated USB 3.1 Standard-A Connector

FULLY MATED PLUG AND RECEPTACLE

Figure 5-28. Mated USB 3.1 Standard-B Connector

FULLY MATED PLUG AND RECEPTACLE

Figure 5-29. Mated USB 3.1 Micro-B Connector

5.8.2 EMI and RFI Management

Systems that include USB 3.1 connectors and cable assemblies need to meet the relevant EMI/EMC regulations.

Connector and cable assembly designers, as well as system implementers should pay attention to receptacle and cable plug shielding to ensure a low-impedance grounding path. The following are guidelines for EMI and RFI management:

- The quality of raw cables should be ensured. The intra-pair skew or the differential to common mode conversion of the SuperSpeed pairs has a significant impact on cable EMI performance and should be controlled within the limits of this specification.
- The cable external braid should be terminated to the cable plug metal shell as close to 360° as possible. Without appropriate shielding termination, even a perfect cable with zero intra-pair skew may not meet EMI requirements.
- The wire termination contributes to the differential-to-common-mode conversion. The breakout distance for the wire termination should be kept as small as possible for EMI, RFI, and signal integrity. If possible, symmetry should be maintained for the two lines within a differential pair.
- The mating interface between the receptacle and cable plug should have a sufficient number of grounding fingers, or springs, to provide a continuous return path from the cable plug to system ground. Friction locks should not compromise ground return connections.
- The receptacle connectors should be designed with a back-shield as part of the receptacle connector metal shell. The back-shield should have connections to adjacent shell surfaces and provide multiple connections for ground termination. The back-shield should be designed with a short return path to the chassis ground.
- The receptacle connectors should be connected to metal chassis or enclosures through grounding fingers, screws, or any other way to mitigate EMI and RFI.
- Plug connectors should have back-shields when possible.
- Outer connector shell surfaces in the mated configuration should have a maximum aperture size of 2 mm. This applies to both mounted connectors (e.g., soldered to a circuit board) and connectors used in cable assemblies. See Figure 5-30.

Figure 5-30. Examples of Connector Apertures

5.8.3 Stacked Connectors

Stacked USB connectors are commonly used in PC systems. This specification does not explicitly define the stacked USB 3.1 Standard-A receptacles, but they are allowed. The following are a few points that should be taken into account when designing a stacked USB 3.1 connector:

- A stacked connector introduces additional crosstalk between the top and bottom connectors. Such crosstalk should be minimized when designing a stacked USB 3.1 connector. SuperSpeed Gen 1 Standard-A stacked connector differential NEXT and FEXT should be managed within -32 dB (up to the fundamental frequency of 2.5 GHz) between differential pairs in the top and bottom connectors.
- Due to the additional electrical length, the top connector generally does not perform as well as the bottom connector. Connector designers should carefully design the top connector contact geometries and materials to minimize impedance discontinuity.
- Regardless of how many connectors within a stack one may choose to design, the electrical requirements defined in Section 5.6 shall be met.

5.8.4 Steady-State Voltage Drop Budget

This analysis is based on the following:

- 3 meter cable assembly with A-series and B-series plugs
- #22AWG wire used for power and ground (0.019 Ω /foot)
- A-series and B-series plug/receptacle pair have a contact resistance of 30 m Ω
- Wire \sim 380 m Ω series resistance
- IR Drop at device = $(((2 * 30 m\Omega) + 190 m\Omega) * 900 mA) * 2 or 0.450 V$

The steady-state voltage drop budget is determined by:

- The nominal 5 V source is 4.75 V to 5.50 V.
- The maximum voltage drop (for detachable cables) between the USB A-series plug and USB B-series plug on VBUS is 171 mV.
- The maximum current for the calculations is 0.9 A.
- The maximum voltage drop for all cables between upstream and downstream on GND is 171 mV.
- The maximum voltage drop for all mated connectors is 27 mV.
- All hubs and peripheral devices are able to provide configuration information with as little as 4.00 V at the device end of their B-series receptacle. Both low and highpower devices need to be operational with this minimum voltage.