Universidade Estadual de Campinas

ES827A - ROBÓTICA INDUSTRIAL TURMA A

Projeto Final - Dinâmica e cinemática do robô Puma560

Alunos:

Augusto Miranda Garcia 104627 Guilherme de Oliveira Souza 117093

> Professor responsável: Dr. Ely Carneiro Paiva

Sumário

1	Objetivo	2
2	Dinâmica	2
	2.1 Simulações em malha aberta	2

1 Objetivo

O objetivo desse relatório é apresentar o desenvolvimento dos conceitos apresentados em aula de robótica industrial nas atividades propostas para o projeto, sendo então concluído com questões sobre o assunto desenvolvido. É utilizado para tal o Robotics Toolbox, sendo usado o robô Puma560, já incluído na toolbox.

Figura 1: Robô Puma560.

2 Dinâmica

Para a modelagem dinâmica do robô seguiu-se o capítulo 6 da tese fornecida no roteiro do projeto, com a ressalva de ter-se evitado o uso do simulink, sendo ao invés feita a chamada do robô e montagem do sistema diretamente em código, que pode ser encontrado nos anexos. Além disso, foi evitado o uso de atrito seco, que deixa as simulações muito lentas para o propósito desse relatório. Após a montagem, foram feitos testes em malha aberta e análise do equilíbrio de energia cinética do robô.

2.1 Simulações em malha aberta

As simulações em malha aberta foram feitas baseadas nos ângulos fornecidos pela tese. Para tal, foi primeiramente encontrado o torque necessário para manter o robô parado na posição final q_f , resistindo a força da gravidade. Então, o mesmo torque foi aplicado diretamente sobre o robô para assim observar se o robô se direciona até a posição final a partir de uma posição inicial. A posição final escolhida foi:

$$q_f = [0, \pi/2, -\pi/2, 0, 0, 0]$$

E as posições iniciais simuladas foram, respectivamente:

$$q_{0a} = [0, 0, 0, 0, 0, 0]$$

$$q_{0b} = [0, \pi, -\pi/2, 0, 0, 0]$$

$$q_{0c} = [0, \pi/2, -\pi/2, 0, 0, 0]$$

$$q_{0d} = [0, \pi/2 + 0.05, -\pi/2, 0, 0, 0]$$

Os respectivos movimentos estão demonstrados na figura 2 abaixo. Observe que, nas figuras 2a 2b e 2d, a posição q_2 (ou $q_f[2]$) não vai até a posição final $\pi/2$, indo ao invés para a posição $3\pi/2$. Ao verificar a posição do robô, notou-se que ela é equivalente a posição final do robô em $\pi/2$

Observou-se também que houveram oscilações indesejáveis com a simulação em malha aberta.

Figura 2: Simulação em malha aberta para as respectivas condições iniciais com o torque para a condição final q_f aplicado.