Data Warehousing

R&G Chapter 25

(slides adapted from content by J.Gehrke, J.Shanmugasundaram, and/or C.Koch)

Data Warehousing

- Big companies gather lots of data.
- This data can be exploited to...
 - ...identify interesting patterns.
 - ...correlate different data sources.
 - ...support hypotheses/what if questions.

Data Warehousing

Extract **Transform** Query Load Data Mining

External Data Sources

Data Warehouse

OLAP Queries

image credit: openclipart.org

A Data Warehouse

- Incorporates data spanning long time periods.
 - Merges data from many sources.
- Varies widely in scale: GB to TB to PB
- OLAP-centric workload:
 - Interactive query response times desirable.
 - Ad-hoc updates rare.

Warehousing Challenges

- **Semantic Integration**: Data coming from different sources has different schemas, identifiers for the same entities.
- Heterogeneous Sources: Data arrives/is stored in in a variety of different formats.
- Load/Refresh: Must load/organize data, and keep it up to date with the outside world.
- Metadata Management: Increasingly important to track <u>provenance</u> of source data.

Multidimensional Data Model (MOLAP)

- A Data Warehouse stores:
 - A collection of numeric measures...
 - ... that depend on a set of <u>dimensions</u>.
- For example:
 - Sales by Product, Location, Time

PID	Time	LocID	Sales		
11		I	25		
П	2		8		
П	3		15		
12	I	I	30		
12	2		20		
12	3		50		
13		_	8		
13	2	_	10		
13	3	I	10		
П	I	2	35		
•••					

Relational Data Model (ROLAP)

- Central <u>fact table</u> relates multiple dimensions together.
 - Extremely large (nearly all data here)
- Each dimension can have additional attributes stored in a <u>dimension table</u>.
 - E.g. Products(pid, pname, category, price)

Relational Data Model (ROLAP)

- Dimension Tables stored Un-Normalized
 - Updates/Inserts; Unlikely to cause issues
- Common schema in OLAP: The Star Schema

Relational Data Model (ROLAP)

Dimension tables establish hierarchies of data

OLAP Queries

- Influenced by SQL and Spreadsheets
- Most Common Operation: Aggregate over one or more dimensions.
 - Find total sales
 - Find total sales for each city, for each state.
 - Find top five products by sales

OLAP Queries

- Roll-Up: Move to a coarser grained view of the data (more values aggregated)
 - "Moving up" in one dimension's hierarchy
- **Drill-Down**: Move to a finer grained view of the data (more aggregate values shown)
 - "Moving down" in one dimension's hierarchy

OLAP Queries

- **Pivoting**: Aggregate over selected dimensions to get a cross-tabulation.
- Slice and Dice: Equality or Range
 Selections on one or more dimensions.

	NY	WA	Total
2012	63	81	144
2011	38	107	145
2010	75	35	110
Total	176	223	339

 Cross-tabulations can be obtained from SQL Queries. How?

- Cross-tabulations can be obtained from SQL Queries. How?
- Generalizing, how many different group-by queries can we create over a fact table with k dimensions?

- Cross-tabulations can be obtained from SQL Queries. How?
- Generalizing, how many different group-by queries can we create over a fact table with k dimensions?
- The CUBE operator creates all of these.

- Cross-tabulations can be obtained from SQL Queries. How?
- Generalizing, how many different group-by queries can we create over a fact table with k dimensions?
- The CUBE operator creates all of these.
 - Prebuilds cube for faster OLAP queries.

The CUBE Operator

- CUBE pid, locid, timeid BY SUM Sales
 - Contains results of all 8 possible groupby queries.
 - How would this be represented in SQL?
- This is an expensive operation, how might it be implemented efficiently?

Bitmap Indexes

- Slice & Dice requires Equality Tests.
- Testing for equality is expensive (pipeline stalls)
 - Can we aggregate using purely arithmetic operations?
- Store enumerations as bitmaps
 - One bit per possible value: Each row sets one bit.

Bitmap Indexes

Data			Bitmaps		
CustID	Name	Gender	Rating	Gender	Rating
112	Alice	F	3	01	00100
115	Bob	М	5	10	00001
119	Carol	F	5	01	00001
113	Dave	М	4	10	00010

```
SELECT SUM(Sales)
WHERE Gender = 'M'
AND Rating = 5
```

```
Tot += Sales * (
    ((G & 0x2) >> 1)
    &((R & 0x1) >> 0)
)
```

Join Index

- Consider the Join of Sales, Products, Times, Locs with the predicate Country = 'USA'
 - A join index helps speed this process up.
 - < s, p, t, l > in the index if SaleID s (respectively p, t, l) matches the predicate.
- Problem: Too many, too big join indexes.
 - Solution: Index by value and SaleID (fact table rowid)
 - To match multiple predicates, intersect columns.

Sequences

- Trend analysis is difficult (in SQL 92)
 - Find the % change in monthly sales
 - Find the daily top-5 product by sales in the last week
 - Find the trailing n-day moving average of sales.
- The first two examples are hard to express.
 - The third can not be expressed if n is a parameter
- SQL 99's WINDOW clause analyzes sequences.

WINDOW

- Define a sequence (by sorting a relation)
- Generate all subsequences of size N.
- Compute aggregates for each subsequence.

WINDOW

```
SELECT L.state, T.month,
       AVG(S.sales) OVER W as movavg
FROM
       Sales S, Times T, Locations L
WHERE S.timeid = T.timeid
  AND S.locid = L.locid
WINDOW W AS (
   PARTITION BY L.state
   ORDER BY T.month
   RANGE BETWEEN INTERVAL '1' MONTH PRECEDING
         AND INTERVAL '1' MONTH FOLLOWING
```