Scientific Computing (COMP3407)

Programming Assignment 4

Start: May 1, 2019 Due: 22:00, May 20, 2019

1 Numerical Integration (40 marks)

Implement the midpoint rule and two-point Gaussian quadrature respectively. Then numerically compute each of the following integrals using these methods. Print the absolute difference between your results and the accurate values.

- (a) $\int_0^1 \sqrt{x^3} \, dx$.
- (b) $\int_{-1}^{1} x \sin(1 x^2) dx$.
- (c) $\int_0^1 \frac{36}{(2x+1)^3} dx$.
- (d) $\int_1^2 x e^{-x^2} dx$.

2 Convergence order (40 marks)

Use the composite trapezoid rule and the composite Simpson's rule to solve the following integration:

$$I(f) = \int_0^4 \sin(x) dx$$

for $n=2^k$, $k=1,\cdots,12$. Let A denote as the accurate value, I_k the numerical result you get from each method, and $e_k=|I_k-A|$ the absolute error. Compute the convergence order o_k of each algorithm as follows,

$$o_k = \frac{\ln(e_k/e_{k-1})}{\ln 2}, \quad k \ge 2$$

Them fill out the table below.

k	composite trapezoid		composite Simpson	
	e_k	o_k	e_k	o_k
1				
2				
:				
12				