The Graph-Simplex Correspondence and its Algorithmic Implications

Ben Chugg, Supervisor: Renaud Lambiotte

Oxford, June 2019

Graph G = (V, E, w).

- Vertex set $V = \{1, 2, ..., n\};$
- Edge set $E \subset V \times V$;
- Edge weights given by $w: E \to \mathbb{R}_{\geq 0}$. (Graph is unweighted if $w(i,j) \in \{0,1\}$ for all i,j).

Graph G = (V, E, w).

- Vertex set $V = \{1, 2, ..., n\};$
- Edge set $E \subset V \times V$;
- Edge weights given by $w: E \to \mathbb{R}_{\geq 0}$. (Graph is unweighted if $w(i,j) \in \{0,1\}$ for all i,j).

Weight of vertex i, $w(i) = \sum_{j} w(i, j)$.

Important matrices associated with graph G:

• Adjacency matrix $A_G(i,j) = w(i,j)$.

Important matrices associated with graph G:

- Adjacency matrix $A_G(i,j) = w(i,j)$.
- Weight (degree) matrix $\mathbf{W}_G = \operatorname{diag}(w(1), w(2), \dots, w(n))$

Important matrices associated with graph G:

- Adjacency matrix $A_G(i,j) = w(i,j)$.
- Weight (degree) matrix $\mathbf{W}_G = \operatorname{diag}(w(1), w(2), \dots, w(n))$
- Laplacian matrix $L_G = W_G A_G$.

Laplacian matrix $L_G = W_G - A_G$.

• Symmetric!

- Symmetric!
- Lovely quadratic form: $\mathbf{x}^* \mathbf{L}_G \mathbf{x} = \sum_{i < j} w(i, j) (x(i) x(j))^2 \ge 0$.

Laplacian matrix $L_G = W_G - A_G$.

- Symmetric!
- Lovely quadratic form: $\mathbf{x}^* \mathbf{L}_G \mathbf{x} = \sum_{i < j} w(i, j) (x(i) x(j))^2 \ge 0$.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and orthonormal eigenvectors $\varphi_1,\ldots,\varphi_n$.

I.e., $\langle \boldsymbol{\varphi}_i, \boldsymbol{\varphi}_i \rangle = \delta_{i,j}$.

- Symmetric!
- Lovely quadratic form: $\mathbf{x}^* \mathbf{L}_G \mathbf{x} = \sum_{i < j} w(i, j) (x(i) x(j))^2 \ge 0$.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and orthonormal eigenvectors $\varphi_1, \dots, \varphi_n$. I.e., $\langle \varphi_i, \varphi_i \rangle = \delta_{i,j}$.
- $L_G \mathbf{1} = \mathbf{0}$, so $\varphi_n = \mathbf{1}/\sqrt{n}$ and $\lambda_n = 0$.

- Symmetric!
- Lovely quadratic form: $\mathbf{x}^* \mathbf{L}_G \mathbf{x} = \sum_{i < j} w(i, j) (x(i) x(j))^2 \ge 0$.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and orthonormal eigenvectors $\varphi_1, \dots, \varphi_n$. I.e., $\langle \varphi_i, \varphi_i \rangle = \delta_{i,j}$.
- $L_G \mathbf{1} = \mathbf{0}$, so $\varphi_n = \mathbf{1}/\sqrt{n}$ and $\lambda_n = 0$.
- If G is connected, then $\lambda_i > 0$ for all i < n.

- Symmetric!
- Lovely quadratic form: $\mathbf{x}^* \mathbf{L}_G \mathbf{x} = \sum_{i < j} w(i, j) (x(i) x(j))^2 \ge 0$.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and orthonormal eigenvectors $\varphi_1, \dots, \varphi_n$. I.e., $\langle \varphi_i, \varphi_i \rangle = \delta_{i,i}$.
- $L_G \mathbf{1} = \mathbf{0}$, so $\varphi_n = \mathbf{1}/\sqrt{n}$ and $\lambda_n = 0$.
- If G is connected, then $\lambda_i > 0$ for all i < n.
- Set $\Phi = (\varphi_1 \ldots \varphi_{n-1})$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{n-1})$. Then

$$L_G = \Phi \Lambda \Phi^*$$
.

Simplices! Just high-dimensional triangles.

Simplices! Just high-dimensional triangles.

Simplex $S \subset \mathbb{R}^{n-1}$ is the convex hull of n vertex vectors $\sigma_1, \ldots, \sigma_n$. Technical note: Vertex vectors must be affinely independent.

Formalisms (boooo).

Formalisms (boooo).

Vertex matrix
$$\Sigma = (\sigma_1 \ldots \sigma_n)$$
.

$$S = \left\{ \sum_{i} x(i) \boldsymbol{\sigma}_{i} : \sum_{i} x(i) = 1, x(i) \ge 0 \right\}$$
$$= \left\{ \boldsymbol{\Sigma} \boldsymbol{x} : \|\boldsymbol{x}\|_{1}, \boldsymbol{x} \ge 0 \right\}$$

Formalisms (boooo).

Vertex matrix $\Sigma = (\sigma_1 \ldots \sigma_n)$.

$$S = \left\{ \sum_{i} x(i) \boldsymbol{\sigma}_{i} : \sum_{i} x(i) = 1, x(i) \ge 0 \right\}$$
$$= \left\{ \boldsymbol{\Sigma} \boldsymbol{x} : \|\boldsymbol{x}\|_{1}, \boldsymbol{x} \ge 0 \right\}$$

Each face of a simplex is a lower-dimensional simplex. For $U \subset [n]$, face corresponding to vertices $\{\sigma_i\}_{i \in U}$ is

$$S_U = \{ \mathbf{\Sigma} \mathbf{x} : \|\mathbf{x}\|_1, \mathbf{x} \ge 0, x(i) = 0 \ \forall i \in U^c \}$$

Pictures! (Yaaaaaay)

 $=S_{\{1,3,4\}}$

 $= S_{\{1,2,3\}}$

First uncovered by Miroslav Fiedler in 1993. Recently investigated by Devriendt and Van Mieghem (2018).

First uncovered by Miroslav Fiedler in 1993. Recently investigated by Devriendt and Van Mieghem (2018).

Connected, weighted, graph G with non-zero eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ and corresponding eigenvectors $\varphi_1, \ldots, \varphi_{n-1}$.

For $i \leq n$ and $j \leq n-1$, define

$$\sigma_i(j) = \varphi_j(i)\lambda_j^{1/2},$$

SO

$$\Sigma = (\sigma_1 \ldots \sigma_n) = \Lambda^{1/2} \Phi^*.$$

First uncovered by Miroslav Fiedler in 1993.

Recently investigated by Devriendt and Van Mieghem (2018).

Connected, weighted, graph G with non-zero eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ and corresponding eigenvectors $\varphi_1, \ldots, \varphi_{n-1}$.

For $i \leq n$ and $j \leq n-1$, define

$$\sigma_i(j) = \varphi_j(i)\lambda_j^{1/2},$$

SO

$$\Sigma = (\boldsymbol{\sigma}_1 \ldots \boldsymbol{\sigma}_n) = \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Phi}^*.$$

Then,

$$\Sigma^*\Sigma = \Phi\Lambda\Phi^* = L_G.$$

That is, the Laplacian is the Gram matrix of the vertex vectors!

First uncovered by Miroslav Fiedler in 1993. Recently investigated by Devriendt and Van Mieghem (2018).

Connected, weighted, graph G with non-zero eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ and corresponding eigenvectors $\varphi_1, \ldots, \varphi_{n-1}$.

For $i \leq n$ and $j \leq n-1$, define

$$\sigma_i(j) = \varphi_j(i)\lambda_j^{1/2},$$

SO

$$\Sigma = (\boldsymbol{\sigma}_1 \ldots \boldsymbol{\sigma}_n) = \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Phi}^*.$$

Then,

$$\Sigma^*\Sigma = \Phi\Lambda\Phi^* = L_G.$$

That is, the Laplacian is the Gram matrix of the vertex vectors! Denote this simplex S_G .

Dual Simplex

We can also define the "dual" vertices

$$\sigma_i^+(j) = \varphi_j(i)\lambda_j^{-1/2},$$

so that

$$\mathbf{\Sigma}^+ = (\boldsymbol{\sigma}_1^+ \ \dots \ \boldsymbol{\sigma}_n^+) = \mathbf{\Lambda}^{-1/2} \mathbf{\Phi}^*.$$

Then

$$(oldsymbol{\Sigma}^+)^*oldsymbol{\Sigma}^+ = oldsymbol{L}_G^+ = \sum_{i: \lambda_i
eq 0} rac{1}{\lambda_i} oldsymbol{arphi}_i oldsymbol{arphi}_i^*.$$

Dual Simplex

We can also define the "dual" vertices

$$\sigma_i^+(j) = \varphi_j(i)\lambda_j^{-1/2},$$

so that

$$\Sigma^+ = (\sigma_1^+ \ldots \sigma_n^+) = \Lambda^{-1/2} \Phi^*.$$

Then

$$(\mathbf{\Sigma}^+)^*\mathbf{\Sigma}^+ = oldsymbol{L}_G^+ = \sum_{i: \lambda_i
eq 0} rac{1}{\lambda_i} oldsymbol{arphi}_i oldsymbol{arphi}_i^*.$$

This matrix is the Moore-Penrose pseudoinverse (generalized inverse)

of $L_G!$

Dual Simplex

We can also define the "dual" vertices

$$\sigma_i^+(j) = \varphi_j(i)\lambda_j^{-1/2},$$

so that

$$\Sigma^+ = (\sigma_1^+ \ldots \sigma_n^+) = \Lambda^{-1/2} \Phi^*.$$

Then

$$(oldsymbol{\Sigma}^+)^*oldsymbol{\Sigma}^+ = oldsymbol{L}_G^+ = \sum_{i: \lambda_i
eq 0} rac{1}{\lambda_i} oldsymbol{arphi}_i oldsymbol{arphi}_i^*.$$

This matrix is the Moore-Penrose pseudoinverse (generalized inverse) of L_G !

Denote this simplex \mathcal{S}_G^+ .

Pseudo-whaaaaat?

Pseudoinverse relationship:

$$\boldsymbol{L}_{G}^{+}\boldsymbol{L}_{G}=\boldsymbol{L}_{G}\boldsymbol{L}_{G}^{+}=\boldsymbol{I}-\frac{1}{n}\boldsymbol{J}=\operatorname{Projection onto span}(\boldsymbol{1})^{\perp}.$$

J is the all 1's matrix.

Pseudo-whaaaaat?

Pseudoinverse relationship:

$$\boldsymbol{L}_{G}^{+}\boldsymbol{L}_{G}=\boldsymbol{L}_{G}\boldsymbol{L}_{G}^{+}=\boldsymbol{I}-\frac{1}{n}\boldsymbol{J}=\operatorname{Projection} \text{ onto } \operatorname{span}(\mathbf{1})^{\perp}.$$

J is the all 1's matrix.

Interestingly,

$$\Sigma^*\Sigma^+ = (\Sigma^+)^*\Sigma = I - \frac{1}{n}J.$$

Pseudo-whaaaaat?

Pseudoinverse relationship:

$$\boldsymbol{L}_{G}^{+}\boldsymbol{L}_{G}=\boldsymbol{L}_{G}\boldsymbol{L}_{G}^{+}=\boldsymbol{I}-\frac{1}{n}\boldsymbol{J}=\text{Projection onto span}(\boldsymbol{1})^{\perp}.$$

J is the all 1's matrix.

Interestingly,

$$\Sigma^*\Sigma^+ = (\Sigma^+)^*\Sigma = I - \frac{1}{n}J.$$

Yields orthogonality relationships between simplex and inverse simplex: $\mathcal{S}_{U^c}^+$ orthogonal to \mathcal{S}_U .

Graph of a Simplex?

The simplex of a graph is hyperacute: Angle $\theta_{i,j}$ between $\mathcal{S}_{\{i\}^c}$ and $\mathcal{S}_{\{j\}^c}$ (these are hyperplanes) is $<\pi/2$.

Graph of a Simplex?

The simplex of a graph is hyperacute: Angle $\theta_{i,j}$ between $\mathcal{S}_{\{i\}^c}$ and $\mathcal{S}_{\{j\}^c}$ (these are hyperplanes) is $<\pi/2$.

Conversely, each hyperacute simplex is the inverse simplex of a graph!

Graph of a Simplex?

The simplex of a graph is hyperacute: Angle $\theta_{i,j}$ between $S_{\{i\}^c}$ and $S_{\{j\}^c}$ (these are hyperplanes) is $<\pi/2$.

Conversely, each hyperacute simplex is the inverse simplex of a graph!

Why? (Needs another half an hour).

Recap

Start with graph G.

Defines hyperacute simplex S_G where $\Sigma^*\Sigma = L_G$.

Recap

Start with graph G.

Defines hyperacute simplex S_G where $\Sigma^*\Sigma = L_G$.

Dual simplex S_G^+ where $(\Sigma^+)^*\Sigma^+ = L_G^+$.

Recap

Start with graph G.

Defines hyperacute simplex S_G where $\Sigma^*\Sigma = L_G$.

Dual simplex S_G^+ where $(\Sigma^+)^*\Sigma^+ = L_G^+$.

Given hyperacute simplex S_0 , there is a graph G such that $S_G^+ = S_0$.

• $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = w(i, j)$. In particular, $\|\boldsymbol{\sigma}_i\|_2^2 = w(i)$. Therefore, can recover the graph easily from the simplex.

- $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_i \rangle = w(i, j)$. In particular, $\|\boldsymbol{\sigma}_i\|_2^2 = w(i)$. Therefore, can recover the graph easily from the simplex.
- Centroid (center of mass) coincides with origin: $c(\mathcal{S}_G) \equiv \frac{1}{n} \Sigma \mathbf{1} = \mathbf{0} = \frac{1}{n} \Lambda^{1/2} \Phi^* \mathbf{1} = \mathbf{0}$. Same for \mathcal{S}_G^+ .

- $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = w(i, j)$. In particular, $\|\boldsymbol{\sigma}_i\|_2^2 = w(i)$. Therefore, can recover the graph easily from the simplex.
- Centroid (center of mass) coincides with origin: $c(S_G) \equiv \frac{1}{n} \Sigma \mathbf{1} = \mathbf{0} = \frac{1}{n} \mathbf{\Lambda}^{1/2} \mathbf{\Phi}^* \mathbf{1} = \mathbf{0}$. Same for S_G^+ .
- Cut set of $U \subset V$: $\delta U \equiv \{(i, j) \in E : i \in U, j \in U^c\}$. Centroid of face \mathcal{S}_U related to weight of cut:

$$\|\boldsymbol{c}(\mathcal{S}_U)\|_2^2 = \frac{w(\delta U)}{|U|^2}.$$

(Weight of set A is $w(A) = \sum_{i \in A} w(i)$).

• Altitude $a(S_U)$ points from S_U to S_{U^c} and is orthogonal to both.

• Altitude $a(S_U)$ points from S_U to S_{U^c} and is orthogonal to both.

• Altitudes of \mathcal{S}_G relate to centroids of \mathcal{S}_G^+ :

$$\frac{\boldsymbol{a}(\mathcal{S}_{U})}{\|\boldsymbol{a}(\mathcal{S}_{U})\|_{2}} = \frac{\boldsymbol{c}^{+}(\mathcal{S}_{U^{c}})}{\|\boldsymbol{c}^{+}(\mathcal{S}_{U^{c}})\|_{2}}.$$

• Altitude $a(S_U)$ points from S_U to S_{U^c} and is orthogonal to both.

• Altitudes of \mathcal{S}_G relate to centroids of \mathcal{S}_G^+ :

$$rac{oldsymbol{a}(\mathcal{S}_U)}{\|oldsymbol{a}(\mathcal{S}_U)\|_2} = rac{oldsymbol{c}^+(\mathcal{S}_{U^c})}{\|oldsymbol{c}^+(\mathcal{S}_{U^c})\|_2}.$$

• Altitudes of inverse simplex describe cut weights:

$$\|\boldsymbol{a}^+(\mathcal{S}_U)\|_2^2 = \frac{1}{w(\delta U)}.$$

Insights?

Simplex geometry yields new Laplacian inequalities. E.g., for $\boldsymbol{x} \perp \boldsymbol{1},$

$$oldsymbol{x}^*oldsymbol{L}_Goldsymbol{x}\cdotoldsymbol{\chi}_A^*oldsymbol{L}_G^*oldsymbol{\chi}_A^*oldsymbol{L}_G^*oldsymbol{\chi}_A \geq rac{\|oldsymbol{x}\|_1^2}{4},$$

where $A = \{i : x(i) \ge 0\}$ and χ_A is indicator vector.

Insights?

Simplex geometry yields new Laplacian inequalities. E.g., for $x \perp 1$,

$$oldsymbol{x}^*oldsymbol{L}_Goldsymbol{x}\cdotoldsymbol{\chi}_A^*oldsymbol{L}_G^*oldsymbol{\chi}_A^*oldsymbol{L}_G^*oldsymbol{\chi}_A \geq rac{\|oldsymbol{x}\|_1^2}{4},$$

where $A = \{i : x(i) \ge 0\}$ and χ_A is indicator vector.

Spectral theory yields new geometric inequalities. E.g., for any U,

$$\|\mathbf{\Sigma} \mathbf{\chi}_U\|_2^2 \ge \frac{|U|}{2} \min_j \|\Pi_j(\mathbf{\Sigma})\|_2^2,$$

where Π_i is projection onto j-th axis.

Insights

Algorithmic Graph Theory understood very well. Obtain immediate results in Algorithmic Simplex Theory.

Insights

Algorithmic Graph Theory understood very well. Obtain immediate results in Algorithmic Simplex Theory.

Relationship $\|a^+(S_U)\|_2^2 = \frac{1}{w(\delta U)}$ implies the problem **compute the** minimum altitude of a hyperacute simplex is NP hard.

Insights

Algorithmic Graph Theory understood very well. Obtain immediate results in Algorithmic Simplex Theory.

Relationship $\|a^+(S_U)\|_2^2 = \frac{1}{w(\delta U)}$ implies the problem **compute the** minimum altitude of a hyperacute simplex is NP hard.

On the other hand, given $s, t \in V$,

$$\max_{U} \|\boldsymbol{a}^{+}(\mathcal{S}_{U})\|_{2}^{2}$$
s.t. $s \in U, t \in U^{c}$,

admits a polynomial time algorithm (via max-flow min-cut theorem).

Questions

- Can we apply random graph theory to gain insights about random simplices?
- Given G, can we compute S_G and/or S_G^+ faster than $O(n^3)$? Can we approximate S_G ? This keeps me up at night.
- Do low dimensional approximations of S_G converse graph properties? (E.g., communities?)
- A probability distribution over the vertices is a barycentric coordinate. The distribution of a random walk therefore gives a path in the simplex. Does this path have any significance?
- The normalized Laplacian $\hat{\boldsymbol{L}}_G = \boldsymbol{W}_G^{-1/2} \boldsymbol{L}_G \boldsymbol{W}_G^{-1/2}$ also admits a corresponding simplex. What are its properties?