Homework Assignment No. 1

Due Fri 1/14/2000

- 1. Write the truth table for the following statements.
 - (a) $p \to (q \to r)$
 - (b) $(p \to q) \to r$
- 2. Let p and q be primitive statements such that $p \to q$ is false. Find the truth value of the following:
 - (a) $q \to p$
 - (b) $\neg p \rightarrow \neg q$
 - (c) $\neg q \rightarrow \neg p$
- 3. Write the following statement in *conjunctive normal form*:

$$p \leftrightarrow (q \rightarrow r)$$

4. We define the connective *nand* by:

$$p \uparrow q \Leftrightarrow \neg (p \land q)$$

Make its truth table. Write the following statements using ↑ only

- (a) $\neg p$
- (b) $p \wedge q$
- (c) $p \vee q$
- (d) $p \to q$
- (e) $p \leftrightarrow q$

(For instance: $\neg p \Leftrightarrow p \uparrow p$.)

- 5. Use truth tables to determine if the following logical equivalences are correct (in exercise 1 you already made the truth table for the left hand sides):
 - (a) $p \to (q \to r) \Leftrightarrow (p \land q) \to r$
 - (b) $(p \to q) \to r \Leftrightarrow (\neg p \to r) \land (q \to r)$
- 6. Solve problem 5 by using the laws of logic instead of truth tables.
- 7. Check the following logical implications:
 - (a) $(\neg p \to p) \Rightarrow p$
 - (b) $p \Rightarrow (\neg p \rightarrow q)$
 - (c) $(p \rightarrow q) \Rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

8. Given the following set of premises:

1.
$$(\neg p \to p) \to p$$

2.
$$p \rightarrow (\neg p \rightarrow q)$$

3.
$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

and using only *Modus Ponens* as rule of inference:

$$\begin{array}{c}
p \\
p \to q \\
\vdots \quad q
\end{array}$$

prove: $p \to p$.

9. What truth values of p, q and r are compatible with the following set of premises?

1.
$$p \leftrightarrow \neg q$$

2.
$$q \leftrightarrow \neg r$$

3.
$$r \leftrightarrow (\neg p \land \neg q)$$

10. Consider the following statements:

(a)
$$\forall x \forall y (x \leq y)$$

(b)
$$\forall x \exists y (x \leq y)$$

(c)
$$\exists x \forall y (x \leq y)$$

(d)
$$\exists x \exists y (x \leq y)$$

Determine their truth value assuming that the universe of discourse is:

- (1) The set of all integers.
- (2) The set of positive integers.
- (3) The set of negative integers.
- (4) The set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- 11. Assume that the universe of discourse is the set of integers. Prove the following, stating the method or principle being used:

(a)
$$\exists x (x^2 = x)$$
.

(b)
$$\forall x \forall y (x + y < 10 \rightarrow x < 2 \lor y < 8)$$
.

12. Write the negation of the following quantified statement in prenex normal form, leaving the statement inside in disjunctive normal form:

$$\forall \varepsilon [\varepsilon > 0 \to \exists N \, \forall n \, (n > N \to |a_n| < \varepsilon)].$$