8 класс

Числа сочетаний

15 декабря 2018

Определение. Пусть имеется n предметов, k из них одного вида, а n-k другого. Число различных способов выложить их в ряд обозначается C_n^k .

1. Придумайте комбинаторные доказательства тождеств

$$C_n^k = C_n^{n-k};$$
 $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k;$ $C_n^k \cdot C_k^{n-m} = C_n^m \cdot C_m^{n-k}.$

2. а) Докажите равенство $C_n^k = \frac{n!}{k!(n-k)!}$.

б) Докажите, что $\frac{(d_1+d_2+\cdots+d_m)!}{d_1!d_2!\dots d_m!}$ — целое число.

в) Для натурального n докажите, что $C_{2n}^n : n+1$.

3. Найдите суммы (a) $C_n^0 + C_n^1 + \cdots + C_n^n$; (б) $C_n^0 - C_n^1 + \cdots + (-1)^n C_n^n$

4. В клетчатом квадрате $(n+1) \times (n+1)$ строки и столбцы пронумерованы числами $0, 1, \ldots, n$. Рассмотрим пути из клетки (0,0) в клетку (n,n), идущие только вверх и вправо и не поднимающиеся выше диагонали квадрата. Такие пути называются $nymsmu\ \mathcal{Д}uka$. Количество таких путей обозначается C_n и называется n-м числом Kamanana.

а) Последовательность из n открывающихся и n закрывающихся скобок называется npaвильной скобочной nocnedoвameльностью, если в любом её начальном куске открывающихся скобок не меньше, чем закрывающихся. Постройте биекцию между путями Дика и правильными скобочными последовательностями.

б) Постройте биекцию между путями Дика и разбиениями выпуклого (n+2)-угольника диагоналями на треугольники.

в) Докажите, что число путей из (0,0) в (n,n), которые поднимаются выше диагонали, равно числу всех путей из (0,0) в (n-1,n+1). Выведите отсюда формулу для n-го числа Каталана.

5. Найдите сумму $C_n^0 C_n^n + C_n^1 C_n^{n-1} + \cdots + C_n^n C_n^0$.

6. а) В классе n ребят. Учитель хочет отправить на олимпиаду команду произвольного размера, один из членов которой был бы капитаном. Из скольких вариантов ему нужно выбирать?

б) Найдите сумму $C_n^1 + 2C_n^2 + \cdots + nC_n^n$.

8 класс

Числа сочетаний

15 декабря 2018

Определение. Пусть имеется n предметов, k из них одного вида, а n-k другого. Число различных способов выложить их в ряд обозначается C_n^k .

1. Придумайте комбинаторные доказательства тождеств

$$C_n^k = C_n^{n-k}; \qquad C_n^k = C_{n-1}^{k-1} + C_{n-1}^k; \qquad C_n^k \cdot C_k^{n-m} = C_n^m \cdot C_m^{n-k}.$$

2. а) Докажите равенство $C_n^k = \frac{n!}{k!(n-k)!}$.

б) Докажите, что $\frac{(d_1+d_2+\cdots+d_m)!}{d_1!d_2!\dots d_m!}$ — целое число.

в) Для натурального n докажите, что $C_{2n}^n : n+1$.

3. Найдите суммы (a) $C_n^0 + C_n^1 + \cdots + C_n^n$; (б) $C_n^0 - C_n^1 + \cdots + (-1)^n C_n^n$.

4. В клетчатом квадрате $(n+1) \times (n+1)$ строки и столбцы пронумерованы числами $0,1,\ldots,n$. Рассмотрим пути из клетки (0,0) в клетку (n,n), идущие только вверх и вправо и не поднимающиеся выше диагонали квадрата. Такие пути называются $nymsmu\ \mathcal{A}uka$. Количество таких путей обозначается C_n и называется n-м $uucnom\ Kamanaha$.

а) Последовательность из *п* открывающихся и *п* закрывающихся скобок называется *правильной скобочной последовательностью*, если в любом её начальном куске открывающихся скобок не меньше, чем закрывающихся. Постройте биекцию между путями Дика и правильными скобочными последовательностями.

б) Постройте биекцию между путями Дика и разбиениями выпуклого (n+2)-угольника диагоналями на треугольники.

в) Докажите, что число путей из (0,0) в (n,n), которые поднимаются выше диагонали, равно числу всех путей из (0,0) в (n-1,n+1). Выведите отсюда формулу для n-го числа Каталана.

5. Найдите сумму $C_n^0 C_n^n + C_n^1 C_n^{n-1} + \cdots + C_n^n C_n^0$.

6. а) В классе n ребят. Учитель хочет отправить на олимпиаду команду произвольного размера, один из членов которой был бы капитаном. Из скольких вариантов ему нужно выбирать?

б) Найдите сумму $C_n^1 + 2C_n^2 + \cdots + nC_n^n$.