Séries numériques

Premiers résultats, deux séries de référence

QCOP SER. 1

Soit $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$.

- Donner la définition de « la série $\sum_{n} u_n$ est convergente ».
- Montrer que

$$\sum_n u_n$$
 converge $\implies u_n \longrightarrow 0$.

Étudier la nature des séries suivantes :

$$\sum_{n} \ln \left(\frac{n+1}{n} \right) \quad \text{et} \quad \sum_{n} \arctan(12n!).$$

QCOP SER.3

Soit $a \in \mathbb{C}$.

Compléter :

$$a^n \longrightarrow 0 \iff \cdots$$

- Soit $N \in \mathbb{N}$. Rappeler l'expression de $\sum_{k=0}^{N} a^k$ pour $a \neq 1$.
- Montrer que

$$\sum_n a^n \text{ converge } \iff |a| < 1.$$

2 On suppose que |a| < 1. Déterminer

$$\sum_{n=0}^{+\infty} a^n \quad \text{et} \quad \sum_{n=1}^{+\infty} a^n.$$

QCOP SER.2

Soit $N_0 \in \mathbb{N}$. Soient $(u_n)_{n \geqslant N_0}$ une suite de nombres réels positifs.

On pose, pour $N \geqslant N_0$, $U_N := \sum_{n=N_0}^N u_n$.

- \blacksquare Quelle est la monotonie de $(U_N)_N$?
- Montrer que

$$\sum_{n} u_n$$
 converge \iff $(U_N)_N$ est majorée.

Ceci reste-il vrai si l'on ne suppose plus que $(u_n)_n$ est à valeurs positives?

QCOP SER.4

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$.

 ${\cal P}$ (a) Soit $n \in \mathbb{N}$. Calculer

$$\sum_{k=0}^n (u_{k+1}-u_k).$$

- **(b)** En déduire que $\sum_{n} (u_{n+1} u_n)$ converge si, et seulement si, $(u_n)_n$ converge.
- On suppose que

$$u_{n+1}-u_n\longrightarrow 0.$$

Montrer que $\sum_{n} (u_{n+2} - 2u_{n+1} + u_n)$ est convergente.

Théorèmes de comparaison

QCOP SER.5

Soit $N_0 \in \mathbb{N}$. Soient $(u_n)_{n \geqslant N_0}, (v_n)_{n \geqslant N_0}$ deux suites de nombres réels positifs.

On pose, pour $N \geqslant N_0$,

$$U_N := \sum_{n=N_0}^N u_n \ \text{et} \ V_N := \sum_{n=N_0}^N v_n.$$

■ Compléter :

$$\sum_{n} u_n$$
 converge \iff $(U_N)_N$

On suppose que

$$\begin{cases} \exists N_1 \geqslant N_0: \ \forall n \geqslant N_1, \ u_n \leqslant v_n \\ \sum_n v_n \text{ est convergente.} \end{cases}$$

- (a) Montrer que $(U_N)_N$ est majorée.
- **(b)** En déduire que $\sum_{n} u_n$ converge.
- (c) Montrer que

$$\sum_{n=N_1}^{+\infty} u_n \leqslant \sum_{n=N_1}^{+\infty} v_n.$$

QCOP SER.6

Soient $(u_n)_n$, $(v_n)_n$ deux suites de nombres réels positifs telles que

$$u_n \sim v_n$$
.

- Rappeler la règle de comparaison pour les séries à termes positifs.
- ${m {\cal P}}$ Montrer qu'il existe ${\it N}_1\in {\Bbb N}$ tel que

$$\exists \textit{N}_1 \in \mathbb{N}: \ \forall \textit{n} \geqslant \textit{N}_1, \ \frac{1}{2}\textit{v}_\textit{n} \leqslant \textit{u}_\textit{n} \leqslant \frac{3}{2}\textit{v}_\textit{n}.$$

- Montrer que $\sum_{n} u_n$ et $\sum_{n} v_n$ sont de même nature.
- Ce résultat reste-il valable si l'on ne suppose plus $(u_n)_n$ et $(v_n)_n$ à valeurs positives?

QCOP SER.7

- Énoncer la règle de comparaison pour les séries à termes positifs.
- ightharpoonup Soient $(u_n)_n, (v_n)_n \in \mathbb{K}^{\mathbb{N}}$. Montrer que

$$\frac{u_n = o(v_n)}{\sum_n |v_n| \text{ converge}} \implies \sum_n |u_n| \text{ converge}.$$

Soit $\sum_{n} u_n$ une série numérique.

Montrer que

$$n^2 u_n \longrightarrow 0 \implies \sum_n u_n$$
 converge.

QCOP SER.8

- Énoncer la règle de comparaison pour les séries à termes positifs.
- Soient $(u_n)_n, (v_n)_n \in \mathbb{K}^{\mathbb{N}}$. Montrer que

$$\frac{u_n = \mathcal{O}(v_n)}{\sum_n |v_n| \text{ converge}} \implies \sum_n |u_n| \text{ converge}.$$

Soit $\sum_{n} u_{n}$ une série numérique telle que $(n^{2}u_{n})_{n}$ est bornée. Montrer que $\sum u_{n}$ converge.

Comparaison série-intégrale

QCOP SER.9

Soit $f:[1,+\infty[\longrightarrow \mathbb{R}]$ une fonction continue et décroissante.

Soient $m, n \in \mathbb{N}^*$ tels que $m \geqslant n$.

Montrer que

$$\int_{n}^{m} f(t) dt + f(m) \leqslant \sum_{k=n}^{m} f(k) \leqslant f(n) + \int_{n}^{m} f(t) dt.$$

- $\mbox{\ensuremath{\mbox{$\chi$}}}$ On note, pour $n\in\mathbb{N}^*$, $\mbox{H}_n\coloneqq\sum_{k=1}^n\frac{1}{k}.$
 - (a) Montrer que $\sum_{n\geq 1} \frac{1}{n}$ diverge.
 - **(b)** Montrer que $H_n \sim \ln(n)$.

QCOP SER. 10

Soit $\alpha \in \mathbb{R}$.

 $\red{\hspace{-0.1cm}/}$ On suppose $\alpha\leqslant$ 0.

Montrer que $\sum_{n} \frac{1}{n^{\alpha}}$ diverge.

- **?** On suppose que $\alpha > 0$.
 - (a) Soit $N \in \mathbb{N}^*$. Montrer que

$$I_N + \frac{1}{N} \leqslant \sum_{k=1}^N \frac{1}{n^{\alpha}} \leqslant 1 + I_N,$$

où
$$\mathsf{I}_N := \int_1^N rac{1}{t^{lpha}} \, \mathsf{d} t.$$

On n'utilisera pas une « formule toute faite » de comparaison série-intégrale mais on l'établira dans ce cas particulier.

(b) En déduire la nature de $\sum_{n} \frac{1}{n^{\alpha}}$ en distinguant les cas

$$\alpha \in [0, 1[, \alpha = 1, \alpha > 1]]$$

Convergence absolue

QCOP SER.11

Soit $\sum_{n} u_n$ une série numérique.

- Montrer que, si $\sum_{n} u_n$ est absolument convergente, alors $\sum_{n} u_n$ est convergente. On fera d'abord la preuve dans le cas où $(u_n)_n$ est à valeurs réelles, puis on utilisera le résultat établi pour en déduire le cas où $(u_n)_n$ est à valeurs complexes.
- Montrer que la réciproque est fausse.
- Écrire la contraposée du résultat démontré.

Séries alternées

QCOP SER. 12

Soit $(u_n)_n$ une suite de nombre réels positifs.

On pose, pour $N \in \mathbb{N}$, $S_N \coloneqq \sum_{n=0}^N (-1)^n u_n$.

- (a) Montrer que $(S_{2N})_N$ et $(S_{2N+1})_N$ sont adjacentes.
 - (b) Compléter :

$$\begin{cases} \sum_{n} (-1)^{n} u_{n} \dots \\ \forall N \in \mathbb{N}, \quad \dots \leqslant \sum_{n=0}^{+\infty} (-1)^{n} u_{n} \leqslant \dots \end{cases}$$

- (c) En déduire que $\left|\sum_{n=0}^{+\infty} (-1)^n u_n\right| \leqslant u_0$.
- \sim On suppose que $\sum_{n} (-1)^{n} u_{n}$ est convergente. Montrer que

$$\forall n \in \mathbb{N}, \quad \left| \sum_{k=n+1}^{+\infty} (-1)^k u_k \right| \leqslant u_{n+1}.$$