Subreddit Classification:

r/Physics and r/chemistry

Sophia Scarano

Primary Goal

Predict which subreddit a post belongs to based on its content

Overview

- 1. Get subreddit data
- Data cleaning and preprocessing
- Baseline Accuracy?
- 4. Variable selection
 - a. Which features to use?
 - b. How to simplify data (lemmatization, stemming)
- 5. Explore:
 - a. Vectorizers
 - b. Classifiers
- 6. Compare results

r/Physics

- r/Physics and r/chemistry: two subreddits where redditors can ask questions pertaining to, or discuss topics of, physics or chemistry topics.
- Both of these fields have specific jargon, potentially allowing for easier discrete classification
- This allows us to build an appropriate model

r/Chemistry

Factors to prioritize

- 1. Post text content
- 2. Post title

Data Cleaning and Preprocessing

Methodology

Build a Set of Reddit Comments

Reddit API?

 Strict limitations on amount of data we can access (can only pull 100 of the most recent comments)

Pushshift API

- Open-source alternative to Reddit's API
- Can specify date and time we start our pull from
- Data returned as list of dictionaries

My data

 All comments for each subreddit in the past two years

```
"data": [
            "all awardings": [],
            "allow live_comments": false,
            "author": "AcanthocephalaOk5166",
            "author flair css class": null,
            "author flair richtext": [],
            "author flair text": null,
            "author flair type": "text",
            "author fullname": "t2 81pyq1n0",
            "author patreon flair": false,
            "author premium": false,
            "awarders": [],
            "can mod post": false,
            "contest mode": false,
            "created utc": 1602250070,
            "domain": "youtube.com",
            "full_link": "https://www.reddit.com/r/audiophile/co
            "gildings": {},
            "id": "j7ywrs",
            "is crosspostable": true,
            "is meta": false,
            "is original content": false,
            "is reddit media domain": false,
            "is robot indexable": true,
            "is self": false,
            "is video": false.
            "link flair background color": "#ffd635",
            "link flair css class": "red",
            "link flair richtext": [],
            "link flair template id": "08150e9a-2203-11e6-b64e-(
            "link flair text": "Music",
            "link flair text color": "dark",
            "link flair type": "text",
            "locked": false,
            "media": {
                "oembed": {
                    "author name": "Tre Made This",
                    "author url": "https://www.youtube.com/chanr
                    "height": 338,
                    "html": "<iframe width=\"600\" height=\"3
feature=oembed&enablejsapi=1\" frameborder=\"0\" allow=\"acc
picture\" allowfullscreen></iframe&gt;",
                    "provider name": "YouTube",
                    "provider url": "https://www.youtube.com/",
                    "thumbnail height": 360,
                    "thumbnail url": "https://i.ytimg.com/vi/3fa
                    "thumbnail width". 400
```

Data Cleaning

Only keep rows:

Where 'selftext' and 'title' are present,
 and have at least 4 words

Remove:

- Special characters
- Any word that is an overly common word, or 'stop word' in the english language

Crudo varcion of lammatizing

- Reduces noise
- Non-letter characters

Expand contractions

- Didn't end up working
- Tokenizing
 - Easier for processing
- Lemmatizing
 - Keep roots of words
- Stemming

Data Preprocessing

Created CSV files:

- Lemmatized data (removed stop words)
- Stemmed data (removed stop words)

• Kept columns:

- Subreddit
- Selftext
- Title

LEMMATIZATION

STEMMING

titl		selftext	subreddit		title	selftext	subreddit
oma	choic gpu run MD simul namd gr	t come MD simul use cuda	1	1	Choice GPU running MD simulation NAMD GROMACS	D simulation using CUDA	1
n to	balanc bird v sp	apolog difficult understand	. 1	2	Balance Bird v Spin top	logize difficult understand	1
cor	Do electron convec	magnet field thought pleas	1	3	Do electron convective core	etic field Thoughts please	1
ppo	Is quantum comput danger in	on would unravel problem	1	4	Is quantum computing dangerous impposible	ne would unravel problem	1

Natural Language Processing

- 1. Naive Bayes
- 2. Linear Regression

Vectorizers

COUNTVECTORIZER

TFIDFVECTORIZER

Vectorizers

Bag of Words:

- Use a vectorizer to split comment into words
- Convert each comment into a vector of word frequencies

CountVectorizer

Creates pure frequency vector

TfidfVectorizer

- Normalizes frequencies
- Up-weighting rare words
 - Good for jargon identification

$$W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

Modeling with Naive Bayes

LEMMATIZED

Accuracy score: 0.84 Precision score: 0.88

Recall score: 0.78

STEMMED

Accuracy score: 0.85

Precision score: 0.87

Recall score: 0.80

Logistic Regression: CountVectorizer

- Logistic regression: classic technique
 - Here with Stemmed data
 - Highly interpretable
- Can look at words or n-grams the model associates most to a subreddit

pre	cision	recall	f1–score	support
Chemistry Physics	0.85 0.87	0.88 0.83	0.86 0.85	493 469
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	962 962 962

		Predicted Physics	Predicted chemistry	
	Actual Physics	435	58	
	Actual chemistry	79	390	

Outperformed Naive Bayes (recall score .80)

Logistic Regression: TfidfVectorizer

TfidfVectorizer:

 Evaluates how relevant a word is to a collection of documents

Best performance so far

- Uses Tfidf Vectorization with normalization
- Ridge regulation with a strength of alpha
 = 1
- Excludes stop words
- Includes all words (n-grams that appear in at least one comment)

A	precision	recall	f1-score	support
Chemistry Physics _	0.90 0.92	0.92 0.89	0.91 0.90	493 469
accuracy macro avg weighted avg	0.91 0.91	0.90 0.91	0.91 0.91 0.91	962 962 962

Predicted Physics Predicted chemistry

Actual Physics	455	38
Actual chemistry	53	416

Comparisons

- Naive Bayes:
 - Lemmatizing: .78
 - Stemming: .80
- Logistic Regression:
 - CountVectorizer:
 - Chemistry: .88
 - Physics: .83
 - Tfidf:
 - Chemistry: .92
 - Physics: .89

ngram	coef
physic	7.311782
forc	2.812227
quantum	2.324193
light	2.304542
physicist	2.070253
univers	2.014284
theori	1.970260
wave	1.836353
time	1.811903
magnet	1.735726

ngram	coef
chemistri	-6.834085
chemic	-3.450784
acid	-2.842138
lab	-2.800149
reaction	-2.649828
chem	-2.622460
chemist	-2.275908
organ	-2.254280
water	-2.150410
molecul	-2.099812

Common Word Roots


```
oil
                             dissolv
                      water
  chemist
                             method
                                   bond
                      structur
                                    safe
                          sodium
      chemic
                         clean ph
 chemistri
      substanc sampl
                                  oxid
                       product<sup>smell</sup>
solut
                                  solvent
                   element
                rchemistri Compound
   chem
                molecul
         food
                             carbon
        lab
                concentr
```

Future Directions

- 1. Try with just using 'title' as a feature
- 2. More classification models:
 - a. Random Forest?
- 3. Get more data

Sources

- https://www.mygreatlearning.com/blog/multinomial-naive-bayes-explained/
- https://towardsdatascience.com/naive-bayes-document-classification-in-python-e33ff
 50f937e
- https://monkeylearn.com/blog/what-is-tf-idf/

