2018/2019 SEMESTER ONE EXAMINATION

Diploma in Aerospace Electronics (DASE) 1st Year FT Diploma in Energy Systems and Management (DESM) 1st Year FT Diploma in Computer Engineering (DCPE) 1st Year FT Diploma in Electrical & Electronic Engineering (DEEE) 1st Year FT Common Engineering Programme (DCEP) 1st Year FT Diploma in Engineering with Business (DEB) 2nd Year FT

PRINCIPLES OF ELECTRICAL & ELECTRONIC ENGINEERING II

Time Allowed: 2 Hours

Instructions to Candidates

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 2 marks each.

Section B - 8 Short Questions, 10 marks each.

- 3. **ALL** questions are **COMPULSORY**.
- 4. All questions are to be answered in the answer booklet.
- 5. Start each question in Section B on a new page.
- 6. Fill in the Question Numbers, in the order that they were answered, in the boxes found on the front cover of the answer booklet under the column "Questions Answered".
- 7. This paper contains 10 pages, inclusive of formulae sheets.

2018/2019/S1 Page 1 of 10

SECTION A

MULTIPLE CHOICE QUESTIONS (20 marks)

- 1. Please **tick** your answers in the **MCQ box** on the inside of the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- A1. Electrons in a P-type semiconductor are
 - (a) majority carriers that are thermally produced.
 - (b) minority carriers that are thermally produced.
 - (c) majority carriers that are produced by doping.
 - (d) minority carriers that are produced by doping.
- A2. An N-type semiconductor is formed when
 - (a) a trivalent material is added to intrinsic silicon.
 - (b) a pentavalent material is added to intrinsic silicon.
 - (c) thermal energy is applied to intrinsic silicon.
 - (d) a dc voltage source is applied to intrinsic silicon.
- A3. The correct order of connection of a DC power supply is
 - (a) transformer, rectifier, voltage regulator and filter.
 - (b) transformer, voltage regulator, rectifier and filter.
 - (c) transformer, filter, voltage regulator and rectifier.
 - (d) transformer, rectifier, filter and voltage regulator.
- A4. Which one of the following devices is a transducer?
 - (a) Thermistor
 - (b) Germanium diode
 - (c) Silicon diode
 - (d) Transistor
- A5. When a 50 Hz sinusoidal voltage is applied to the input of a full-wave rectifier, the output frequency is equal to
 - (a) 25 Hz
 - (b) 50 Hz
 - (c) 100 Hz
 - (d) 150 Hz

2018/2019/S1 Page 2 of 10

- A6. For the silicon diode circuit shown in Figure A6, current I is equal to
 - (a) 0.359 mA
 - (b) 0.717 mA
 - (c) 0.833 mA
 - (d) 2.867 mA

- A7. Figure A7 shows an NPN transistor. Given that $I_B=150~\mu A$ and $\beta_{DC}=180$, calculate current I_E
 - (a) 26.85 mA
 - (b) 27 mA
 - (c) 27.15 mA
 - (d) 270 mA

- A8. For the transistor circuit shown in Figure A8, the emitter current I_E is equal to
 - (a) 0.13 mA
 - (b) 0.27 mA
 - (c) 0.6 mA
 - (d) 0.8 mA

- A9. The device symbol shown in Figure A9 represents
 - (a) a Zener diode.
 - (b) a photo diode.
 - (c) a light dependent resistor.
 - (d) a relay.

Figure A9

- A10. Which one of the following devices is reverse biased for its typical applications?
 - (a) Moisture sensor
 - (b) Light emitting diode
 - (c) PN junction diode
 - (d) Photo diode

SECTION B

SHORT QUESTIONS (80 marks)

- B1. For the circuit shown in Figure B1,
 - (a) name the circuit and explain how it works; (6 marks)
 - (b) if Vcc = 10 V, $Rc = 270 \Omega$, $V_{LED} = 2 \text{ V}$, $V_{CE(sat)} = 0.2 \text{ V}$ and $\beta_{DC} = 230$, find the minimum base current $I_{B(min)}$ to saturate the transistor. (4 marks)

Figure B1

- B2. The circuit shown in Figure B2 uses silicon diodes.
 - (a) Calculate the peak current I and I_L during the positive half cycle of the supply voltage. (5 marks)
 - (b) Sketch the voltage waveform v_{out} across the 2 k Ω resistor. Indicate the minimum and maximum values. (5 marks)

Figure B2

2018/2019/S1 Page 4 of 10

- B3. For the circuit shown in Figure B3,
 - (a) calculate the peak output voltage $V_{out(p)}$; (4 marks)
 - (b) sketch the output waveform v_{out} and indicate the voltage levels; (3 marks)
 - (c) draw a circuit to be connected to v_{out} such that its output is $-2v_{\text{out}}$. (3 marks)

Figure B3

- B4. For the circuit shown in Figure B4,
 - (a) identify the circuit; (2 marks)
 - (b) calculate the reference voltage V_{Ref} ; (4 marks)
 - (c) determine the output voltage V_{out}; (2 marks)
 - (d) calculate the resistance of R_L which allows the LED to light up with a forward current 15 mA. (2 marks)

Assume $+V_{sat} = 13 \text{ V}$ and $-V_{sat} = -13 \text{ V}$ and the LED forward voltage, $V_{LED} = 2 \text{ V}$.

2018/2019/S1

B5. The three voltage sources in Figure B5 are $V_{S1}(t) = 8\sin(\omega t - 12^{\circ}) \text{ V}$,

 $V_{S2}(t) = 12\sin(\omega t) \text{ V}$ and $V_{S3}(t) = 15\sin(\omega t + 30^{\circ}) \text{ V}$ respectively.

- (a) Find the total voltage V_T in polar form. (6 marks)
- (b) Find the circuit current I in polar form. (2 marks)
- (c) Write down the time-domain sinusoidal equation for the circuit current. (2 marks)

Figure B5

B6. For the circuit shown in Figure B6, if the total power of the circuit is 200 W and the power factor is 0.8 leading, calculate

(a) the current I in polar form; (3 marks)

(b) the total impedance in polar form; (2 marks)

(c) the resistance R; (3 marks)

(d) the capacitance C. (2 marks)

Figure B6

2018/2019/S1 Page 6 of 10

- B7. For the circuit shown in Figure B7, calculate
 - (a) the currents, I_R , I_L and I_T ; (7 marks)
 - (b) the total admittance. (3 marks)

Express all your answers in polar form.

Figure B7

- B8. For the circuit shown in Figure B8, calculate
 - (a) the total impedance Z in polar form; (2 marks)
 - (b) the circuit current I in polar form; (2 marks)
 - (c) the power factor; (2 marks)
 - (d) the total reactive power and the total apparent power. (4 marks)

Figure B8

- End of Paper -

2018/2019/S1 Page 7 of 10

This page is intentionally left blank

2018/2019/S1 Page 8 of 10

Formulae List

The maximum number of electrons in a shell (band) = $2N^2$

6.25 x 10^{18} electrons \rightarrow 1C of negative charge

Ohm's Law for ac:

$$\overline{V} = \overline{I}\overline{Z}$$
 $\overline{I} = \frac{\overline{V}}{\overline{Z}} = \overline{V}\overline{Y}$ $\overline{Z} = \frac{\overline{V}}{\overline{I}}$

Capacitive reactance, $X_C = \frac{1}{2\pi fC}$ in ohms

Inductors:

Inductive reactance, $X_L = 2\pi f L$ in ohms

AC Voltages and Currents:

$$\begin{split} I_{rms} &= I_p \: / \! \sqrt{\: 2} = 0.7071 \: I_p & I_{p\text{-}p} = 2I_p & I_{av} = 2I_p \: / \! \pi = 0.637I_p \\ V_{rms} &= V_p \: / \! \sqrt{\: 2} = \: 0.7071 \: V_p & V_{p\text{-}p} = 2V_p & V_{av} = 2V_p \: / \! \pi = 0.637V_p \end{split}$$

AC Impedance/Admittance:

Series circuit,

$$\overline{Z}_{R} = R \qquad \overline{Z}_{C} = -jX_{C} = -j\frac{1}{\omega C} = \frac{1}{\omega C} \angle -90^{\circ} \quad \overline{Z}_{L} = jX_{L} = j\omega L = \omega L \angle 90^{\circ} \quad \omega = 2\pi f$$

$$\overline{Z} = \overline{Z}_{1} + \overline{Z}_{2} + \overline{Z}_{3} + \dots \qquad \phi = \angle \overline{Z} = \angle \overline{I} = \tan^{-1} \frac{X_{tot}}{R_{tot}}$$

Parallel circuit,

$$\overline{Y}_{R} = G \qquad \overline{Y}_{C} = jB_{C} = j\omega C = \omega C \angle 90^{\circ} \qquad \overline{Y}_{L} = -jB_{L} = -j\frac{1}{\omega L} = \frac{1}{\omega L} \angle -90^{\circ} \qquad \omega = 2\pi f$$

$$\overline{Y} = \overline{Y}_{1} + \overline{Y}_{2} + \overline{Y}_{3} + \dots \qquad \phi = \angle \overline{Y} = \angle \overline{V}_{S} = \tan^{-1}\frac{B_{tot}}{G_{tot}}$$

AC Power:

$$S = V_S I = I^2 Z$$
 $P = V_S I \cos \phi = I^2 R$ $Q = V_S I \sin \phi = I^2 X$ $\cos \phi = \frac{P}{S}$

Diodes:

Forward voltage drop is 0.7 V for silicon diode and 0.3 V for germanium diode

$$Z_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

Half-Wave Rectifier:

$$V_{out(p)} = V_{\sec(p)} - 0.7V$$

$$V_{AVG} = \frac{V_{out(p)}}{\pi}$$
 $PIV = V_{\sec(p)}$

$$V_{AVG} = rac{V_{out(p)}}{\pi}$$

$$PIV = V_{\sec(p)}$$

Centre-Tapped Full-Wave Rectifier:

$$V_{out(p)} = \frac{V_{sec(p)}}{2} - 0.7V$$

$$V_{out(p)} = \frac{V_{sec(p)}}{2} - 0.7V$$
 $V_{AVG} = \frac{2V_{out(p)}}{\pi}$ $PIV = 2V_{out(p)} + 0.7V$

Full-Wave Bridge Rectifier:

$$V_{out(p)} = V_{sec(p)} - 1.4 \ V \ V_{AVG} = \frac{2V_{out(p)}}{\pi} \ PIV = V_{out(p)} + 0.7 \ V$$

Ripple Factor:

$$r = \frac{V_{r(rms)}}{V_{DC}} \text{ where } V_{r(rms)} = \frac{V_{r(p-p)}}{2\sqrt{3}}$$

Line Regulation =
$$\left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) 100\%$$

$$\textbf{Line Regulation} = \left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) 100\% \qquad \textbf{Load Regulation} = \left(\frac{V_{NL} - V_{FL}}{V_{FL}}\right) 100\%$$

Transistors:

$$\begin{split} I_E &= I_C + I_B \qquad \beta_{DC} = \frac{I_C}{I_B} \qquad \alpha_{DC} = \frac{I_C}{I_E} \qquad \beta_{DC} = \frac{\alpha_{DC}}{1 - \alpha_{DC}} \\ V_{BE} &= 0.7V \qquad \qquad V_{CC} = V_{CE} + I_C R_C \\ V_{BB} &= V_{BE} + I_B R_B \qquad V_{CE} = V_{CB} + V_{BE} \end{split}$$

Operational Amplifiers

Voltage Gain of Inverting Amplifier: $-\frac{R_f}{R}$

Voltage Gain of Non-inverting Amplifier: $1 + \frac{R_f}{R_s}$

Output voltage of summing amplifier:

$$V_{O} = -\left(\frac{R_{f}}{R_{1}}V_{1} + \frac{R_{f}}{R_{2}}V_{2} + \frac{R_{f}}{R_{3}}V_{3} + \dots + \frac{R_{f}}{R_{n}}V_{n}\right) \text{ for "n" inputs}$$

Threshold Voltages for comparator with positive feedback:

Upper Trigger Point (UTP) =
$$\frac{R_2}{R_1 + R_2} (+V_{O[max]})$$

$$Lower \ Trigger \ Point \ (LTP) = \frac{R_2}{R_1 + R_2} (-V_{O[max]})$$

ANSWERS

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
В	В	D	A	C	В	C	A	D	D

B1(a) Automatic lighting circuit (b) 125.6 μA

B2 (a) 1.433 mA, 0.35 mA

B2(b)

B3(a) -4V

B3(b)

B3(c)

2018/2019/S1 Page 11 of 10

B4(a) Comparator (b) 2.705 V (c) +Vsat = +13 V (d) 733.33Ω

B5 (a) $23.568 \angle 10.09^{\circ} \text{ V}$ (b) $2.3568 \angle -79.91^{\circ} A$ (c) $3.333 \sin(\omega t - 79.91^{\circ}) A$

B6 (a) $2.174 \angle 36.87^{\circ}$ A (b) $52.898 \angle -36.87^{\circ}$ Ω (c) 42.318 Ω (d) 100.29 μF

B7(a) $4.8 \angle 0^{\circ} A$, $7.639 \angle -90^{\circ} A$, $9.022 \angle -57.86^{\circ} A$ (b) $0.0752 \angle -57.86^{\circ} S$

B8(a) $12.806 \angle -38.66^{\circ} \Omega$ (b) $17.96 \angle 38.66^{\circ} A$ (c) 0.7809 leading

(d)reactive power Q = 2.58 kVar, apparent power S = 4.13 kVA

2018/2019/S1 Page 12 of 10