

Introdução

 Proposta: método de coloração de vídeos usando aprendizado de máquina;

Motivação

- Não resolvido, inovador.
- Difícil
 - Problema multimodal;
 - o Inconsistência entre quadros.
- Mercado: Soluções manuais são proeminentes
 - 23 mil dólares para 9 minutos.

Estado da arte

- Rede convolucional profunda
- Arquitetura encoder-decoder
 Classificação por pixel
- Entrada de usuário versus automação completa
- Transferência de estilo

Estado da arte

Escolha do espaço de cores

HVS (e.g. RGB), CIE (e.g. CIE L*a*b*), específicos (e.g. YUV)

Fig. 13b. CIELAB L* (further transformed back to sRGB for consistent display).

Fig. 13c. Rec. 601 luma Y'.

Fig. 13d. Component average: "intensity" I.

Fig. 13e. HSV value V.

Fig. 13f. HSL lightness L.

Arquitetura inicial

Melhorias incrementais

Guiado

Máscara a*b*

Estado

Recorrência

Fluxo ótico denso

Máscara para regressão de oclusões/aparições

Compressão

APoZ

Resultados

GTX1080

32ms/quadro (modelo grande, sem batching)

Otimizado: 28ms/quadro

Demos!

Testes de usuário

	Escolhido		
Real	Não	Sim	
Não	38.6	11.4	50
Sim	5.6	41.4	50
	47.1	52.9	

Conclusão

Atingimos consistência entre frames

Alto desempenho

Arquitetura simples

Imagens desaturadas

Função de perda (MSE)

Balanceamento

Má coloração multimodal

Função de perda

Dataset

Construímos um dataset

Separado por cenas

Suporte a orientação

Open source

Melhorias futuras

Função de perda

MSE versus densidade de probabilidade Dataset

Balanceamento

Mais exemplos

Rede de fluxo ótico denso

FlowNet 2.0

UnFlow

