Отчёта по лабораторной работе №5

Дисциплина: архитектура компьютера

Гашимова Эсма Эльшан кызы

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Создание программы Hello world!	10
	4.2 Транслятор NASM	11 11
	4.4 Компоновщик LD	11
	4.5 Запуск исполняемого файла	12 12
5	Выводы	15
6	Список литературы	16

Список иллюстраций

4.1	Создание рабочей директроии	10
4.2	Создание пустого файла	10
	Открытие файла в текстовом редакторе	10
4.4	Компиляция текста программы	11
4.5	Возможности синтаксиса NASM	11
4.6	Отправка файла компоновщику	11
4.7	Передача объектного файла на обработку компоновщику	12
4.8	Запуск программы	12
4.9	Создание копии	12
4.10	Компиляция текста программы	12
4.11	Передача объектного файла на обработку компоновщику	13
4.12	Запуск исполняемого файла	13
4.13	Отправка файлов в локальный репозиторий	13
4.14	Добавление файлов на GitHub	13
4.15	Отправка файлов	14

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) обеспечивает управление и контроль всех устройств компьютера; - регистры сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): - RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32-битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8-битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к

следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции x86-64.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

В домашней директории создаю каталог, в котором буду хранить файлы для текущей лабораторной работы. (рис. 4.1).

Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch (рис. 4.2).

Рис. 4.2: Создание пустого файла

Открываю созданный файл в текстовом редакторе mousepad (рис. 4.3).

Рис. 4.3: Открытие файла в текстовом редакторе

Заполняю файл, вставляя в него программу для вывода "Hello word!"

4.2 Транслятор NASM

Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду nasm -f elf hello.asm, ключ -f указывает транслятору nasm, что требуется создать бинарный файл в формате ELF. Далее проверяю правильность выполнения команды с помощью утилиты ls: действительно, создан файл "hello.o". (рис. 4.4)

```
esmagashimova@fedora:~/work/arch-pc/lab04$ nasm -f elf hello.asm
esmagashimova@fedora:~/work/arch-pc/lab04$ ls
hello.asm hello.o
```

Рис. 4.4: Компиляция текста программы

4.3 Расширенный синтаксис командной строки NASM

Выполняю команду, указанную на (рис. 4.5), она скомпилировала исходный файл hello.asm в obj.o, расшиерние .o говорит о том, что файл - объектный, помимо него флаги -g -l подготвоят файл отладки и листинга соответственно.

```
esmagashimova@fedora:-/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm
esmagashimova@fedora:-/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.5: Возможности синтаксиса NASM

4.4 Компоновщик LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello (рис. 4.6). Ключ -о задает имя создаваемого исполняемого файла. Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
esmagashimova@fedora:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello esmagashimova@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst obj.o
```

Рис. 4.6: Отправка файла компоновщику

Выполняю следующую команду (рис. 4.7). Исполняемый файл будет иметь имя main, т.к. после ключа -о было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o

```
esmagashimova@fedora:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main esmagashimova@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst main obj.o
```

Рис. 4.7: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю исполняемый файл из текущего каталога. (рис. 4.8)

```
esmagashimova@fedora:~/work/arch-pc/lab04$ ./hello
Hello world!
```

Рис. 4.8: Запуск программы

4.6 Задания для самостоятельной работы

Создаю копию файла для последующей работы с ней. (рис. 4.9)

```
esmagashimova@fedora:~/work/arch-pc/lab04$ cp hello.asm lab4.asm
```

Рис. 4.9: Создание копии

С помощью текстового редактора mousepad открываю файл lab4.asm и вношу изменения в программу так, чтобы она выводила мои имя и фамилию.

Компилирую текст программы в объектный файл (рис. 4.10). Проверяю с помощью утилиты ls, что файл lab4.o создан.

```
esmagashimova@fedora:~/work/arch-pc/lab04$ nasm -f elf lab4.asm esmagashimova@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4.asm lab4.o list.lst main obj.o
```

Рис. 4.10: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD, чтобы получить исполняемый файл lab5 (рис. 4.11).

```
esmagashimova@fedora:~/work/arch-pc/lab04$ ld -m elf_i386 lab4.o -o lab4 esmagashimova@fedora:~/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o
```

Рис. 4.11: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл lab4, на экран действительно выводятся мои имя и фамилия (рис. 4.12)

```
esmagashimova@fedora:~/work/arch-pc/lab04$
Esma Gashimova
```

Рис. 4.12: Запуск исполняемого файла

Копирую рабочие файлы в свой локальный репозиторий. (рис. 4.13)

```
esmagashimovasfedora:-/work/arch-pc/lab84$ cp hello.asm lab4.asm -/work/study/2024-2025/Архитектура\ компьютера/arh-pc/lab8/lab0 4/
a/
esmagashimovasfedora:-/work/arch-pc/lab84$ cd
esmagashimovasfedora:-/work/study/2024-2025/Архитектура\ компьютера/arh-pc/labs/lab04$ rm hello hello.o lab4 lab4.0 list.lst main
obj.o
rm: невозможно удалить 'hello': Нет такого файла или каталога
rm: невозможно удалить 'hello.o': Нет такого файла или каталога
rm: невозможно удалить 'lab4': Нет такого файла или каталога
rm: невозможно удалить 'lab4': Нет такого файла или каталога
rm: невозможно удалить 'lab4': Нет такого файла или каталога
rm: невозможно удалить 'lab4': Нет такого файла или каталога
rm: невозможно удалить 'main': не такого файла или каталога
rm: невозможно удалить 'main': нет такого файла или каталога
rm: невозможно удалить 'main': нет такого файла или каталога
rm: невозможно удалить 'main': нет такого файла или каталога
em: невозможно удалить 'main': нет такого файла или каталога
em: невозможно удалить 'main': нет такого файла или каталога
emsagashimovasfedora:-/work/study/2024-2025/Архитектура компьютера/arh-pc/labs/lab04$ ls
hello.asm lab4.asm presentation report
```

Рис. 4.13: Отправка файлов в локальный репозиторий

С помощью команд git add . и git commit добавляю файлы на GitHub, комментируя действие как добавление файлов для лабораторной работы №5 (рис. 4.14)

```
esmagashimova@fedora:-/work/study/2024-2025/Apxитектура компьютера/arh-pc/labs/lab04$ git add .
esmagashimova@fedora:-/work/study/2024-2025/Apxитектура компьютера/arh-pc/labs/lab04$ git commit -m "Add files for lab05"
[master 4do847b] Add files for lab05"
2 files changed, 34 insertions(*)
create mode 100644 labs/lab04/lab4.asm
create mode 100644 labs/lab04/lab4.asm
```

Рис. 4.14: Добавление файлов на GitHub

Отправляю файлы на сервер с помощью команды git (рис. 4.15)

```
esmagashimova@fedora:-/work/study/2024-2025/Архитектура компьютера/arh-pc/labs/lab04$ git push
Перечисление объектов: 9 котово.
Подсчет объектов: 100% (6/9), готово.
Сжатие объектов: 100% (6/6), готово.
Запись объектов: 100% (6/6), 052 байта | 952.00 КиБ/с, готово.
Тотаі 6 (delta 3), reused 0 (delta 0), расК-reused 0 (from 0)
remote: Resolving deltas: 100% (3/3), completed with 2 local objects.
To github.com:esmagashimova/study_2024-2025_arh-pc.git
4610ac8..46da87b master -> master
4610ac8..46da87b master -> master
```

Рис. 4.15: Отправка файлов

5 Выводы

При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.

6 Список литературы