Geometry Unit 8: Congruence transformations Bronx Early College Academy

Christopher J. Huson PhD

1 January - 13 January 2023

8.1 Translation, equilateral triangle construction	1 January
8.5 Translation, equilateral triangle construction	10 January
8.4 Translation, equilateral triangle construction	6 January
SSS Triangle congruence	1 January
SAS Triangle congruence	1 January
ASA Triangle congruence	1 January
SSA Triangle congruence	1 January
HL Triangle congruence	1 January

CCSS: HSG.CO.C.9 Prove geometric theorems

4.1

Four pages of \triangle duplication constructions for binder

- 1. Side-side (SSS)
- 2. Side-angle-side (SAS)
- 3. Angle-side-angle (ASA)
- 4. Side-side-angle (SSA), false, "ambiguous case"

1 January

SAS triangle congruence

SAS \triangle congruence

- 1. SAS \triangle congruence Angle must be the *included* angle, between the two sides
- 2. Duplicate a side, duplicate an angle, duplicate a side.
- 3. $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}$, $\angle A \cong \angle A'$, and $\overline{AC} \cong \overline{A'C'}$
- 4. Angle-side-angle (ASA) $\triangle ABC \cong \triangle A'B'C'$ iff $\angle A \cong \angle A', \overline{AB} \cong \overline{A'B'}, \text{ and } \angle B \cong \angle B'$
- 5. Duplicate an angle, duplicate a side, duplicate an angle
- 6. SSA \triangle congruence (or ASS, "jack ass theorem")
- 7. Duplicate an angle, duplicate a side, duplicate an side
- 8. Given $\triangle ABC$ if $\angle A \cong \angle A'$, $\overline{AB} \cong \overline{A'B'}$, and $\overline{BC} \cong \overline{B'C'}$ then two possible \triangle s may result.
- 9. ff

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

 \triangle ABC must be congruent to \triangle A'B'c' because a translation is a basic rigid motion which preserves angle measure and side length. Therefore the 2 \triangle 's have all corresponding parts congruent.

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

 \triangle ABC must be congruent to \triangle A'B'c' because a translation is a basic rigid motion which preserves angle measure and side length. Therefore the 2 \triangle 's have all corresponding parts congruent.

Yes, the ∆'s are ≥ because a translation is a rigid motion so it preserves side lengths. and angle mouses.

Because corr sides have the same lengths, the ∆'s are ≥ by 555.

Symmetry

When is an object unchanged by a transformation?

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

When is an object unchanged by a transformation?

If have an ablest A and A and A dillion as as

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

Which transformation would *not* carry a square onto itself?

- (1) a reflection over one of its diagonals
- (2) a 90° rotation clockwise about its center
- (3) a 180° rotation about one of its vertices
- (4) a reflection over the perpendicular bisector of one side

Symmetry

When is an object unchanged by a transformation?

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

Which transformation would *not* carry a square onto itself?

- (1) a reflection over one of its diagonals
- (2) a 90° rotation clockwise about its center
- (3) a 180° rotation about one of its vertices
- (4) a reflection over the perpendicular bisector of one side

The regular polygon below is rotated about its center.

Learning Target: I can translate objects

CCSS: HSG.CO.C.9 Prove geometric theorems

8.1

Four pages of \triangle duplication for your binder

- 1. Side-side (SSS $\triangle \cong$) $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \overline{BC} \cong \overline{B'C'}, \text{ and } \overline{AC} \cong \overline{A'C'}$
- 2. Side-angle-side (SAS)
- 3. Angle-side-angle (ASA)
- 4. Side-side-angle (SSA), false, "ambiguous case"

Function notation: $A \rightarrow A'$ is pronounced "A gets mapped to A prime," or "A corresponds to A prime."

SSS Triangle congruence ("side-side-side")

Given $\triangle ABC$, duplicate $\triangle ABC$ by duplicating each side.

- 1. Construct \overrightarrow{A}' .
- 2. Circle A' with radius AB. Intersection B'.
- 3. Circle A' with radius AC.
- 4. Circle B' with radius BC. Intersection C'.
- 5. $\triangle ABC \cong \triangle A'B'C'$ by the SSS $\triangle \cong$ Postulate.

SAS Triangle congruence ("side-angle-side")

- 1. Given $\triangle ABC$, construct a duplicate $\triangle A'B'C'$
- 2. Duplicate side \overline{AB} , duplicate $\angle A$, duplicate side \overline{AC}
- 3. Angle must be the *included* angle, between the two sides
- 4. $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \angle A \cong \angle A', \& \overline{AC} \cong \overline{A'C'}$

ASA Triangle congruence ("angle-side-angle")

- 1. Given $\triangle ABC$, construct a duplicate $\triangle A'B'C'$
- 2. Duplicate $\angle A$, duplicate side \overline{AB} , duplicate $\angle B$
- 3. One side and *any* two angles ("AAS" is ok)
- 4. $\triangle ABC \cong \triangle A'B'C'$ iff $\angle A \cong \angle A', \overline{AB} \cong \overline{A'B'}, \& \angle B \cong \angle B'$

SSA false congruence (ASS or "jack ass theorem")

- 1. Given $\triangle ABC$, two \triangle s may have two pairs of congruent sides and a *non-included* congruent angle.
- 2. This is called the "ambiguous case"

HL Triangle congruence ("hypotenuse-leg")

Given right $\triangle ABC$, duplicate $\triangle ABC$ by duplicating a leg, the right angle, and the hypotenuse.

- 1. Construct \overrightarrow{A}' .
- 2. Circle A' with radius AB. Intersection B'.
- 3. Construct a perpendicular to $\overline{A'B'}$ through B'.
- 4. Circle A' with radius AC. Intersection C'.
- 5. $\triangle ABC \cong \triangle A'B'C'$ by the HL $\triangle \cong$ theorem.

