```
# 예제 1.3 p15
import matplotlib.pyplot as plt
import numpy as np
# 패키지 선언
plt.rc('font', family='Malgun Gothic')
# 한글 폰트 설정
x = np.arange(4) #values 개수만큼 필요
desc = ['찢어짐', '구멍', '접힘', '기타']
values = [22, 15, 5, 8]
# 설명과 변수 입력
plt.bar(x, values)
# 기본 막대그래프 생성
plt.bar(x, values, color=['red', 'orange', 'yellow', 'green'])
# 색상이 있는 막대그래프 생성
plt.xticks(x, desc)
plt.show()
예제 1.4
# 예제 1-3 p15
import matplotlib.pyplot as plt
import numpy as np
# 패키지 선언
plt.rc('font', family='Malgun Gothic')
# 한글 폰트 설정
desc = ['찢어짐', '구멍', '접힘', '기타']
values = [22, 15, 5, 8]
color=['red', 'orange', 'yellow', 'green']
# 설명과 변수 입력
plt.pie(values, labels=desc, autopct='%d%%', colors=color)
```

예제 1.3

```
# 원 그래프 생성, 정수로만 표시, 색상 지정
plt.show()
예제 1.13
# 예제 (1.13), p32
import matplotlib.pyplot as plt
import numpy as np
# 기본 스타일 설정
plt.style.use('default')
plt.rcParams['figure.figsize'] = (4, 3)
plt.rcParams['font.size'] = 12
# 데이터 준비
np.random.seed(0)
values = [55.9, 63.8, 57.2, 59.8, 65.7, 62.7, 60.8, 51.3, 61.8, 56.0, 66.9, 56.8, 66.2,
64.6, 59.5, 63.1, 60.6, 62.0, 59.4, 67.2, 63.6, 60.5, 66.8, 61.8, 64.8, 55.8, 55.7, 77.1,
62.1, 61.0, 58.9, 60.0, 66.9, 61.7, 60.3, 51.5, 67.0, 60.2, 56.2, 59.4, 67.9, 64.9, 55.7,
61.4, 62.6, 56.4, 56.4, 69.4, 57.6, 63.8]
# 그래프 그리기
fig, ax = plt.subplots()
box = ax.boxplot([values], notch=False, whis=1, vert=False)
# vert : True(수직), False(수평), whis : 이상치 경계값, notch : 데이터의 모양을 홈 모양
으로 표시
plt.show()
# 예제 (1.14), p33
from statistics import *
work_time = [45, 43, 41, 39, 39, 35, 37, 40, 39, 36, 37]
print(f"평균: {round(mean(work_time),1)}")
print(f"분산 : {variance(work_time)}")
print(f"표준편차 : {stdev(work_time)}")
# 평균은 round 함수 이용 소수점 첫째자리까지 표시/반올림, 분산, 표준편차는 전부 표시
```

연습문제 1, p39

```
# 데이터 입력
blood = ['O', 'O', 'A', 'B', 'A', 'O', 'A', 'A', 'A', 'O', 'B', 'O', 'B', 'O', 'A', 'O',
'A', 'O', 'O', 'AB']
# 데이터프레임으로 개수 구하기
pd.Series(blood).value_counts()
# 연습문제 3, p39
import numpy as np
import matplotlib.pyplot as plt
values = [15, 3, 18, 10, 5, 12, 8, 5, 8, 10, 7, 2, 1, 5, 3, 5, 15, 10, 15, 9, 8, 18, 1, 2,
11]
bins = np.arange(11) + 0.5
# 히스토그램 계급구간 만들기
hist, edges = np.histogram(values, bins=bins)
# 계급구간 도수 구하기
y = np.arange(1,hist.max()+1)
# y = 도수 범위
x = np.arange(10) + 1
# 데이터 속성값 범위
X, Y = np.meshgrid(x, y)
# x-y 평면 범위 ( 격자 형태 )
plt.scatter(X, Y, c=Y<=hist, cmap="Greys", )
# 산점도 플롯 그리기
plt.grid()
```

import pandas as pd

plt.show()

연습문제 5, p40 import pandas as pd

speed = [1.28, 1.36, 1.24, 2.47, 1.94, 2.52, 2.67, 1.37, 1.56, 2.66, 2.17, 1.57, 2.10, 2.54, 1.63, 2.11, 2.57, 1.72, 0.76, 1.02, 1.78, 0.50, 1.49, 1.57, 1.04, 1.92, 1.55, 1.78, 1.70, 1.20]

label = $['0.45 \sim 0.89', '0.90 \sim 1.34', '1.35 \sim 1.79', '1.80 \sim 2.24', '2.25 \sim 2.70']$

speed_cut = pd.cut(speed, 5, labels=label)
pd.value_counts(speed_cut).sort_index()

연습문제 5, p40 import matplotlib.pyplot as plt

speed = [1.28, 1.36, 1.24, 2.47, 1.94, 2.52, 2.67, 1.29, 1.56, 2.66, 2.17, 1.57, 2.10, 2.54, 1.63, 2.11, 2.57, 1.72, 0.76, 1.02, 1.78, 0.50, 1.49, 1.57, 1.04, 1.92, 1.55, 1.78, 1.70, 1.20]

plt.hist(speed, color='pink', edgecolor='black')

plt.show()

연습문제 6, p40

import stemgraphic

value = [20, 18, 25, 26, 17, 14, 20, 40, 18, 15, 22, 15, 17, 25, 22, 12, 52, 27, 24, 41, 34, 20, 17, 20, 19, 20, 16, 20, 15, 34, 22, 29, 29, 34, 27, 13, 6, 24, 47, 32, 12, 17, 36, 35, 41, 36, 32, 46, 30, 51] # 데이터 입력

stemgraphic.stem_graphic(value, scale=10) # 데이터 출력

연습문제 9, p41

data = [15.2, 15.3, 16.8, 23.2, 14.3, 21.9, 22.4, 20.5, 15.0, 17.0, 12.8, 21.0, 27.7, 28.0, 18.8, 16.4, 14.9, 20.0, 23.5, 23.9, 24.0, 13.2, 13.6, 24.1, 25.9, 30.8, 26.3, 32.1, 29.2, 31.5, 28.5]

bins = [10,15,20,25,30,35]

labels = ['10 \sim 14', '15 \sim 19', '20 \sim 24', '25 \sim 29', '30 \sim 34']

```
freq_table = {}
for label in labels:
    freq_table[label] = 0
for value in data:
    for i in range(len(bins)-1):
        if bins[i] <= value < bins[i+1]:</pre>
            freq_table[labels[i]] +=1
            break
print(freq_table)
putput > {'10 ~ 14': 5, '15 ~ 19': 7, '20 ~ 24': 10, '25 ~ 29': 6, '30 ~ 34': 3}
# 연습문제 9, p41
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(5)
label = ['10 ~ 14', '15 ~ 19', '20 ~ 24', '25 ~ 29', '30 ~ 34']
values = [freq_table]'10 \sim 14'], freq_table['15 \sim 19'], freq_table['20 \sim 24'],
freq_table['25 ~ 29'], freq_table['30 ~ 34']]
fig, ax1 = plt.subplots()
ax1.plot(label, values,
                         '-s', color='red', markersize=7, linewidth=5, alpha=0.7,
label='Count')
ax1.set_xlabel('degree')
ax1.set_ylabel('Count')
ax1.tick_params(axis='both', direction='in')
plt.bar(x, values)
plt.xticks(x, label)
plt.show()
```


연습문제 17, p43 import stemgraphic

time = [5.9, 5.3, 1.6, 7.4, 9.8, 1.7, 8.9, 1.2, 2.1, 4.0, 6.5, 7.2, 7.3, 8.4, 8.9, 6.7, 9.2, 2.8, 4.5, 6.3, 7.6, 9.7, 9.4, 8.8, 3.5, 1.1, 4.3, 3.3, 3.1, 1.3, 8.4, 1.6, 8.2, 6.5, 4.1, 3.1, 1.1, 5.0, 9.4, 6.4, 7.7, 2.7]

stemgraphic.stem_graphic(time, scale=1)

```
9.8
       9 24478
42
37
       8 244899
31
         23467
26
         34557
21
         0135
18
       3 1135
2 178
1 1123667
14
10
7
   1.1
```

연습문제 17, p43 from statistics import *

time = [5.9, 5.3, 1.6, 7.4, 9.8, 1.7, 8.9, 1.2, 2.1, 4.0, 6.5, 7.2, 7.3, 8.4, 8.9, 6.7, 9.2, 2.8, 4.5, 6.3, 7.6, 9.7, 9.4, 8.8, 3.5, 1.1, 4.3, 3.3, 3.1, 1.3, 8.4, 1.6, 8.2, 6.5, 4.1, 3.1, 1.1, 5.0, 9.4, 6.4, 7.7, 2.7]

print("평균: ", mean(time))

print("중위수(중앙값): ", median(time)) print("최빈수(최빈값): ", mode(time))

▶ 평균: 5.523809523809524

▶ 중위수(중앙값): 6.1▶ 최빈수(최빈값): 1.6

연습문제 17, p43

from statistics import *

time = [5.9, 5.3, 1.6, 7.4, 9.8, 1.7, 8.9, 1.2, 2.1, 4.0, 6.5, 7.2, 7.3, 8.4, 8.9, 6.7, 9.2, 2.8, 4.5, 6.3, 7.6, 9.7, 9.4, 8.8, 3.5, 1.1, 4.3, 3.3, 3.1, 1.3, 8.4, 1.6, 8.2, 6.5, 4.1, 3.1, 1.1, 5.0, 9.4, 6.4, 7.7, 2.7]

print("범위: ", max(time) - min(time)) print("표준편차: ", stdev(time))

범위: 8.700000000000001 표준편차: 2.863036893844863

연습문제 17, p43 import matplotlib.pyplot as plt import numpy as np

time = [5.9, 5.3, 1.6, 7.4, 9.8, 1.7, 8.9, 1.2, 2.1, 4.0, 6.5, 7.2, 7.3, 8.4, 8.9, 6.7, 9.2, 2.8, 4.5, 6.3, 7.6, 9.7, 9.4, 8.8, 3.5, 1.1, 4.3, 3.3, 3.1, 1.3, 8.4, 1.6, 8.2, 6.5, 4.1, 3.1, 1.1, 5.0, 9.4, 6.4, 7.7, 2.7]

plt.style.use('default') # 플롯 스타일 설정

```
plt.rcParams['font.size'] = 12
# 폰트 사이즈 지정
fig, ax = plt.subplots()
# 서브플롯 할당
ax.boxplot([time], notch=False, whis=2, vert=False)
# 박스플롯 생성
ax.set_xlim(-10.0, 10.0)
ax.set_xlabel('Pass Time')
```


연습문제 14, p42 from statistics import *

plt.show()

sample = [66.9, 66.2, 71.0, 68.6, 65.4, 68.4, 71.9]

print(f"표본중앙값 : {median(sample)}")
print(f"표본평균 : {mean(sample):.3f}")
print(f"표본표준편차 : {stdev(sample):.3f}")

표본중앙값 : 68.4 표본평균 : 68.343 표본표준편차 : 2.419

연습문제 15, p43 import stemgraphic

values = [2.0, 3.0, 0.3, 3.3, 1.3, 0.4, 0.2, 6.0, 5.5, 6.5, 0.2, 2.3, 1.5, 4.0, 5.9, 1.8, 4.7, 0.7, 4.5, 0.3, 1.5, 0.5, 2.5, 5.0, 1.0, 6.0, 5.6, 6.0, 1.2, 0.2]

stemgraphic.stem_graphic(values, scale=1) # scale1 = 소수점 왼쪽 1 기반 분석

> Key: aggr|stem|leaf 30 | 6 | 0 | = 6.0x1 = 6.0

30 6 0005 26 5 0569 22 4 057 19 3 03 17 2 035 14 1 023558 8 0 22233457

두변수 자료의 요약 - Part2

연습문제 2.8, p55 두변수 자료의 요약 # d type = low, middle, high from matplotlib import pyplot as plt

non_serious_heart_attack = [29, 17, 18] serious_heart_attack = [19, 20, 9] values, re_values, tx_values = [], [], [] label = ['낮음', '중간', '높음']

콜레스테롤 수치에 따른 막대그래프, 주변 분포 구하기 # serious_heart_attack의 변수 수를 계산하여 반복하여 더해 저장 for i in range(len(non_serious_heart_attack)):

```
xs = non_serious_heart_attack[i] + serious_heart_attack[i]
values.append(xs)

# 토탈 값 구하기
total = sum(non_serious_heart_attack) + sum(serious_heart_attack)
for i in range(3):
    data = round((values[i] / total), 3)
    data = round((data * 100), 1)
    re_values.append(data)

plt.rc('font', family='Malgun Gothic')
plt.bar(label, re_values, color='violet', alpha=0.7, edgecolor='purple')
plt.show()
```


예제(5.4), p156 05 여러가지 확률분포 from scipy.integrate import quad from scipy.stats import *

```
meeting_hours = 3

def f(x):
   if 0 <= x <= 4:
      return 1/4</pre>
```

```
return 0
print(f"확률밀도함수: {uniform.pdf(meeting_hours, loc=0, scale=4)}")
result, _ = quad(f, meeting_hours, 4)
print(f"회의가 최소한 3시간 이상일 확률 : {result}")
확률밀도함수: 0.25
회의가 최소한 3시간 이상일 확률: 0.25
# 예제(5.11), p161
from math import comb
n = 5
      # 전체 제품 수
N = 40 # 전체 제품 중 불량품 수
k = 3 # 뽑은 제품 중 불량품 수
p = comb(3, 1) * comb(37, 4) / comb(40, 5)
print(f"정확히 한 개의 불량품이 있을 확률 : {round((p), 4)}")
정확히 한 개의 불량품이 있을 확률: 0.3011
# 예제(5.20), p168
p = 0.05 # 5%의 확률로 상대방과 통화할 수 있음
# 1 try
value = (p) * (1-p) ** 3
print(f"네 번째 시도에서 상대방과 통화할 수 있는 확률 : {round(value, 4)}")
네 번째 시도에서 상대방과 통화할 수 있는 확률 : 0.0429
# 예제(5.21), p173
from scipy.stats import norm
     = 50 # 평균
mu
sigma = 10 # 표준편차
\# P(60 < X < 65)
prob = norm.cdf(65, mu, sigma) - norm.cdf(60, mu, sigma)
```

else:

```
print(f"P(60 < X < 65) = {prob}")
P(60 < X < 65) = 0.09184805266259899
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
plt.rc('font', family='Malgun Gothic')
mu = 1500
sigma = 75
\# P(X < 1410)
prob = norm.cdf(1410, mu, sigma)
# P(1563 <= X <= 1648)
prob2 = norm.cdf(1648, mu, sigma) - norm.cdf(1563, mu, sigma)
# 백열전구의 수명이 1410시간 이하일 확률
print(f"P(X < 1410) = \{prob:.4f\}")
print(f"P(1536 < X < 1648) = \{prob2:.4f\}")
P(X < 1410) = 0.1151
P(1536 < X < 1648) = 0.1762
# 예제(5.25), p176
from scipy.stats import norm
mu = 6
sigma = 2.258
x = 5
\# P(4.5 \le X \le 5.5)
prob = norm.cdf(x + 0.5, mu, sigma) - norm.cdf(x - 0.5, mu, sigma)
print(f"5대가 결점이 있을 확률: {round((prob), 4)}")
5대가 결점이 있을 확률 : 0.1591
# 예제(5.27), p177
from scipy.stats import norm
```

```
import numpy as np
import matplotlib.pyplot as plt
plt.rc('font', family='Malgun Gothic')
x = 155
mu = (250 * 0.6)
sigma = 7.746
prob = norm.cdf(x + 0.5, mu, sigma)
print(f"예산삭감을 지지할 확률: {round((prob), 4)}")
예산삭감을 지지할 확률: 0.7612
# 예제(5.13), p163
# 은행에서는 오전 11시 ~ 12시 사이에 평균 60명의 손님이 방문할 때, 조건을 만족하는 확
률을 구하시오
# [ 조건 ]
# 1. 오전 11시에서 12시 사이에 어느 1분 동안 두 손님이 방문할 확률은?
# 2. 어느 1분 동안에 3명 이하의 손님이 도착할 확률을 계산하시오
from math import exp, factorial
mean = 60 / 60
prob_2 = (mean ** 2) * exp(-mean) / factorial(2)
print(f"1분 동안 두 손님이 방문할 확률 : {prob_2:.3f}")
prob_3_or_fewer = sum([(mean ** i) * exp(-mean) / factorial(i) for i in range(4)])
print(f"1분 동안 3명 이하의 손님이 도착할 확률 : {prob_3_or_fewer:.3f}")
1분 동안 두 손님이 방문할 확률: 0.184
1분 동안 3명 이하의 손님이 도착할 확률: 0.981
여러 가지 확률분포
# 5장 연습문제
# 연습문제 01 , p181
from scipy.stats import uniform
```

```
a = 0
b = 10
x = 7
x1 = 2
prob = 1 - uniform.cdf(x, a, b-a)
print(f"승객이 7분 이상 기다릴 확률 : {round((prob), 1)}")
prob = uniform.cdf(x1, a, b-a) - uniform.cdf(x, a, b-a)
print(f"승객이 2분에서 7분 이상 기다릴 확률: {round((abs(prob)), 1)}")
승객이 7분 이상 기다릴 확률: 0.3
승객이 2분에서 7분 이상 기다릴 확률: 0.5
# 연습문제 02 , p181
# 이항 분포 : n번의 독립적인 시행에서 성공 확률이 p인 사건이 k번 이상 발생할 확률
from scipy.stats import binom
n = 20
p = 0.3
k = 10
sig = 4
prob = 1 - binom.cdf(k-1, n, p)
print(f"작업자 실수에 의해 발생할 확률 : {prob:.3f}%")
prob = binom.cdf(sig, n, p)
print(f"20번의 사고 중 4번 이하가 작업자 실수에 의해 발생할 확률 : {prob:.3f}%")
prob = binom.pmf(sig, n, p)
print(f"20번의 사고 중 5번만이 작업자 실수에 의해 발생할 확률 : {prob:.3f}%")
작업자 실수에 의해 발생할 확률: 0.048%
20번의 사고 중 4번 이하가 작업자 실수에 의해 발생할 확률 : 0.238%
20번의 사고 중 5번만이 작업자 실수에 의해 발생할 확률: 0.130%
# 연습문제 07, p182
```

M = 25 # 전체 동물 수
n = 10 # 전체 동물 중 꼬리표가 있는 동물 수
N = 15 # 뽑은 동물 수
k = 5 # 뽑은 동물 중 꼬리표가 있는 동물 수

from scipy.stats import hypergeom

result = hypergeom.pmf(k, M, n, N) print(f"생포한 동물 5마리에 꼬리표가 있을 확률 : {result:.4f}")

생포한 동물 5마리에 꼬리표가 있을 확률 : 0.2315

연습문제 09 , p182 from scipy.stats import hypergeom

M = 20 # 전체 기업수

n = 3 # 규정위반 기업수

N = 5 # 조사할 기업수

k = 0 # 규정위반 기업이 없을 확률

u = 2 # 규정위반 기업이 2개일 확률

result = hypergeom.pmf(k, M, n, N)
print(f"5개의 기업이 모두 규정위반기업이 아닐 확률 : {result:.3f}")
result = hypergeom.pmf(u, M, n, N)
print(f"5개의 기업 중 2개의 위반기업이 있을 확률 : {result:.3f}")

5개의 기업이 모두 규정위반기업이 아닐 확률 : 0.399 5개의 기업 중 2개의 위반기업이 있을 확률 : 0.132

연습문제 11 , p183 from scipy.stats import poisson

mu = 5 # 연간 평균 결함있는 차의 수 k = 3 # 기껏해야 3대일 확률 x = 1 # 결함차가 1대일 확률

result = poisson.cdf(k, mu)
print(f"연간 결함있는 차가 3대일 확률 : {result:.3f}")
result = 1 - poisson.cdf(x, mu)
print(f"결함을 나타내는 차가 연간 1대를 초과할 확률 : {result:.3f}")

연간 결함있는 차가 3대일 확률: 0.265 결함을 나타내는 차가 연간 1대를 초과할 확률: 0.960

[코드 변경 - fix, 수정]

연습문제 13 , p183 from scipy.stats import poisson

 mu = 3 # 평균 3건의 교통사고 가정

 k = 5 # 5건의 교통사고가 발생할 확률

 u = 2 # 2건의 교통사고가 발생할 확률

 result = poisson.pmf(k, mu)

 print(f"정확히 4건의 교통사고가 일어날 확률 : {result:.3f}")

 result = poisson.cdf(u, mu)

print(f"3건 미만의 교통사고가 일어날 확률 : {result:.3f}")

정확히 4건의 교통사고가 일어날 확률: 0.101 3건 미만의 교통사고가 일어날 확률: 0.423

연습문제 15 , p183 from scipy.stats import norm

z = [1.43, -0.89, -2.16, -0.65, -1.39, 1.96, -0.48, 1.74]

result = norm.cdf(z[0])

print(f"1 : Z=1.43의 왼쪽 면적 확률 : {result:.3f}")

result = 1 - norm.cdf(z[1])

print(f"2 : Z=-0.89의 오른쪽 면적 확률 : {result:.3f}")

result = norm.cdf(z[3]) - norm.cdf(z[2])

print(f"3 : Z=-2.16과 Z=-0.65 사이의 면적 확률 : {result:.3f}")

result = norm.cdf(z[4])

print(f"4: Z=-1.39의 왼쪽 면적 확률: {result:.3f}")

result = 1 - norm.cdf(z[5])

print(f"5 : Z=1.96의 오른쪽 면적 확률 : {result:.3f}")

result = norm.cdf(z[7]) - norm.cdf(z[6])

print(f"6 : Z=-0.48과 Z=1.74 사이의 면적 확률 : {result:.3f}")

@ 이거 줄이고 싶어도 관련 면적을 구하는 방법이라서 코드를 줄일 수 없습니다.

▶ 억지로 줄이면 난이도가 크게 올라 변경하지 않은 부분입니다.

1 : Z=1.43의 왼쪽 면적 확률 : 0.924

2 : Z=-0.89의 오른쪽 면적 확률 : 0.813

3 : Z=-2.16과 Z=-0.65 사이의 면적 확률 : 0.242

4 : Z=-1.39의 왼쪽 면적 확률 : 0.082

5 : Z=1.96의 오른쪽 면적 확률 : 0.025

6 : Z=-0.48과 Z=1.74 사이의 면적 확률 : 0.643

연습문제 17, p184

from scipy.stats import norm

mu = 800 # 수명 평균값 sigma = 40 # 표준편차 x1 = 778 # 수명 최소값 x2 = 834 # 수명 최대값

result = norm.cdf(x2, mu, sigma) - norm.cdf(x1, mu, sigma) print(f"전구의 수명이 778시간과 834시간 사이에 있을 확률 : {result:.3f}")

전구의 수명이 778시간과 834시간 사이에 있을 확률: 0.511

연습문제 21 , p184 from scipy.stats import binom

n = 100 # 로트에 포함된 부품의 수 p = 0.05 # 불량 부품의 비율 k = 2 # 불량 부품의 수 u = 10 # 불량 부품의 수(2)

prob = 1 - binom.cdf(k, n, p) print(f"불량 부품이 2개를 초과할 확률 : {prob:.3f}") prob = 1 - binom.cdf(u, n, p) print(f"불량 부품이 10개를 초과할 확률 : {prob:.3f}")

불량 부품이 2개를 초과할 확률: 0.882 불량 부품이 10개를 초과할 확률: 0.011

연습문제 23 , p185 from scipy.stats import expon

mu = 3 # 평균 3초 x1 = 5 # 5초 이상 x2 = 10 # 10초 이상

prob1 = 1 - expon.cdf(x1, scale=mu)
prob2 = 1 - expon.cdf(x2, scale=mu)

print(f"반응시간이 {x1}초를 초과할 확률 : {prob1:.3f}") print(f"반응시간이 {x2}초를 초과할 확률 : {prob2:.3f}")

반응시간이 5초를 초과할 확률: 0.189

반응시간이 10초를 초과할 확률: 0.036

06 표본평균 # 예제(6.2), p190 from scipy.stats import binom

n = 400 # 차가 지나간 수

p = 0.48 # 안전벨트를 하고 있을 확률

k1 = int(0.45 * n) # 안전벨트를 하고 있을 비율이 45%일 확률 k2 = int(0.55 * n) # 안전벨트를 하고 있을 비율이 55%일 확률

prob = binom.cdf(k2, n, p) - binom.cdf(k1 - 1, n, p) print(f'안전벨트를 하고 있을 비율이 45%에서 55%일 확률 : {prob:.4f}') 안전벨트를 하고 있을 비율이 45%에서 55%일 확률 : 0.8925

[오타 수정 (퍼센트 > 차이)] # 예제(6.2), p192 from scipy.stats import norm

prob = 1 - norm.cdf(-0.20) print(f'남자의 퍼센트와 여자의 차이가 10%를 넘을 확률 : {prob:.4f}')

남자의 퍼센트와 여자의 차이가 10%를 넘을 확률 : 0.5793

예제(6.4), p193 from scipy.stats import norm import math

n1 = 200 # 혼인한 커플

p1 = 0.43 # 혼인한 커플의 집 소유 비율

n2 = 180 # 독신

p2 = 0.19 # 독신의 집 소유 비율

mu = p1 - p2 # 두 모집단의 차이

sd = math.sqrt(p1*(1-p1)/n1 + p2*(1-p2)/n2) # 표준오차 print(f"표준오차 : {sd}")

sc = norm.ppf(0.1, mu, sd) # 표준정규분포의 누적분포함수 print(f"퍼센트 차이가 몇 퍼센트보다 클 확률 : {round((sc), 3)}")

표준오차 : 0.04561249828720194

퍼센트 차이가 몇 퍼센트보다 클 확률: 0.182

예제(6.7), p196 from scipy.stats import norm

mu = 650 # 평균 미결제 잔액 sd = 420 # 표준편차 n = 100 # 커플의 수 sem = 42 # 표준오차 cx = 700 # 700달러 이상 미결제 잔액을 가진 커플의 수

z = (cx - mu) / sem # z스코어 구하기 p = 1 - norm.cdf(z) # p벨류 print(f'700달러를 넘을 확률: {p:.3f}')

700달러를 넘을 확률: 0.117

예제(6.8), p197 from scipy.stats import norm

mu_a = 4.5 # 비료 A를 쓰는 분포표의 평균 수확 sd_a = 0.7 # 비료 A를 쓰는 분포표의 표준편차

mu_b = 4.3 # 비료 B를 쓰는 분포표의 평균 수확 sd_b = 0.4 # 비료 B를 쓰는 분포표의 표준편차

n_a = 45 # 비료 A를 쓰는 분포표의 표본 수 n_b = 50 # 비료 B를 쓰는 분포표의 표본 수

sem_a = sd_a / (n_a ** 0.5)
비료 A를 사용했을 때의 표준 오차를 계산
sem_b = sd_b / (n_b ** 0.5)
비료 B를 사용했을 때의 표준 오차를 계산
mu_diff = mu_a - mu_b
두 비료의 평균 수확량 차이를 계산
sd_diff = (sem_a ** 2 + sem_b ** 2) ** 0.5
두 비료의 표준 오차 차이를 계산
z = (0 - mu_diff) / sd_diff
z 점수를 계산
p = norm.cdf(z)
z 점수를 사용하여 누적 분포 함수를 계산

```
비료 A를 쓰는 분포표의 평균 수확이 B를 평균 분포표보다 낮을 확률: 0.0460
# 예제(6.9), p198
import math
mu_public = 8.5 # 주립학교 결석한 날 평균 수
sd_public = 4.1 # 주립학교 결석한 날 표준편차
mu_private = 5.3 # 사립학교 결석한 날 평균 수
sd_private = 2.9 # 사립학교 결석한 날 표준편차
n_public = 200 # 주립학교 학생 수
n_private = 150 # 사립학교 학생 수
probability = 0.95 # 확률
sd = math.sqrt(sd_public**2/n_public + sd_private**2/n_private)
ex = (mu\_public - mu\_private) - 1.645 * sd
print(f'확률이 0.95일 때 결석한 날 평균수의 차이 : {round((ex), 1)}')
print(f"넘을 확률 : {probability}")
확률이 0.95일 때 결석한 날 평균수의 차이 : 2.6
넘을 확률: 0.95
# 예제(6.10), p202
from scipy.stats import t
p = t.cdf(-1.415, df=10)
tc = t.ppf(1 - 0.05, df=25)
print(f"P(T \le -1.415) = 1-P(T \le 1.415) : \{round((p), 3)\}")
print(f"자유도가 n = 25, α = 0.05인 t : {round((tc), 3)}")
P(T <= -1.415) = 1 - P(T <= 1.415) : 0.094
자유도가 n = 25, α = 0.05인 t : 1.708
# 예제(6.14), p205
from scipy.stats import chi2
sample = [1.9, 2.4, 3.0, 3.5, 4.2]
n = len(sample)
mu = 3
sigma = 1
```

print(f'비료 A를 쓰는 분포표의 평균 수확이 B를 평균 분포표보다 낮을 확률 : {p:.4f}')

```
x2 = sum(((x - mu) / sigma) ** 2 for x in sample)
p = 1 - chi2.cdf(x2, df=n-1)
print(f"x²의 값: {round((x2), 3)}")
print(f''P(x^2 > x_0^2) : \{round((p), 3)\}'')
x<sup>2</sup>의 값: 3.26
P(x^2 > x_0^2) : 0.515
# 예제(6.15), p205
from scipy.stats import chi2
df = 9 # 자유도
x = chi2.ppf(1 - 0.05, df=df)
print(f"x의 값 : {round((x), 2)}")
x의 값: 16.92
# 예제(6.17), p208
from scipy.stats import f
p = 1 - f.cdf(3.18, dfn=9, dfd=9)
print(f"두 집단의 표본분산비가 3.18 이상일 확률 : {round((p), 3)}")
두 집단의 표본분산비가 3.18 이상일 확률 : 0.05
# 예제(6.17), p208
from scipy.stats import f
alpha = 0.05
dfn, dfd = 2, 4
f_{value} = f.ppf(1 - alpha, dfn, dfd)
f_value2 = f.ppf(1 - 0.1, dfn, dfd)
print(f'F0.05,(2,4) : \{round((f_value), 2)\}')
print(f'F0.01,(2,4) : \{round((f_value2), 2)\}')
F0.05,(2,4): 6.94
F0.01,(2,4): 4.32
```

연습문제 01 p210

from scipy.stats import norm

n = 200 # 유권자 200명

p = 0.455 # A 후보자 지지율 45.5%

k = 110 # A 후보자 지지할 최소 유권자

mu = n * p

sigma = (n * p * (1 - p)) ** 0.5

z = (k - mu) / sigma

prob = 1 - norm.cdf(z)

print(f'적어도 {k}명이 A 후보자를 지지할 확률: {prob:.4f}')

적어도 110명이 A 후보자를 지지할 확률: 0.0035

연습문제 03 p210

from scipy.stats import norm

n1 = 470 # 미혼 남자의 수

n2 = 619 # 미혼 여자의 수

p1 = 245 / n1 # 성인 전용 극장의 찬성 미혼 남자의 비율

p2 = 223 / n2 # 성인 전용 극장의 찬성 미혼 여자의 비율

mu = p1 - p2

sigma = ((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)) ** 0.5

z = (0.20 - mu) / sigma

prob = norm.cdf(z)

print(f'지지율의 차가 20% 이하가 될 확률 : {prob:.4f}')

지지율의 차가 20% 이하가 될 확률: 0.9027

연습문제 05 p210

from scipy.stats import norm

n1 = 100 # 월요일 생산 차량 수

n2 = 200 # 다른 요일 생산 차량 수

p1 = 0.08 # 월요일 생산 차량 결함률

p2 = 0.06 # 다른 요일 생산 차량 결함률

```
mu = p1 - p2
sigma = ((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)) ** 0.5
z = (0.03 - mu) / sigma
prob = 1 - norm.cdf(z)
print(f'월요일 생산 차가 다른 요일의 생산 차보다 결함이 3% 많을 확률 : {prob:.3f}')
월요일 생산 차가 다른 요일의 생산 차보다 결함이 3% 많을 확률 : 0.377
# 연습문제 11 p211
from scipy.stats import norm
import math
z1 = (75 - 75) / (10 / math.sqrt(25))
z2 = (79 - 75) / (10 / math.sqrt(25))
prob = norm.cdf(z2) - norm.cdf(z1)
print(f'P({z1:.4f} \le Z \le {z2:.4f}) : {prob:.4f}')
P(0.0000 \le Z \le 2.0000): 0.4772
# 연습문제 15 p212
from scipy.stats import norm
sample_mean = 187.5 # 체납된 금액의 평균
std_dev = 54.5 # 체납된 금액의 표준편차
n = 50
                   # 랜덤 50개 추출
sample_std_dev = std_dev / (n ** 0.5)
prob = 1 - norm.cdf(200, sample_mean, sample_std_dev)
print(f"체납된 평균 금액이 200달러 이상일 확률: {prob:.4f}")
체납된 평균 금액이 200달러 이상일 확률: 0.0524
# 연습문제 17 p212
from math import sqrt
from scipy.stats import norm
mean1 = 50
var1 = 9
```

```
mean2 = 40
var2 = 4
n1 = 5
n2 = 4
mean_diff = mean1 - mean2
std_dev_diff = sqrt(var1 / n1 + var2 / n2)
prob = norm.cdf(8.2, mean_diff, std_dev_diff)
print(f"P(X-Y < 8.2)의 확률: {prob:.4f}")
P(X-Y < 8.2)의 확률: 0.1410
# 연습문제 22 p213
from scipy.stats import t
df = [17, 6, 18, 17]
t_{value} = [-1.740, 3.143, 1.330, -2.567]
p_value = t.cdf(t_value[0], df[0])
print(f'P(T < \{t_value[0]\}) = \{p_value:.2f\}')
p_value = t.cdf(t_value[1], df[1]) - t.cdf(-t_value[1], df[1])
print(f'P(|T| < \{t\_value[1]\}) = \{p\_value:.2f\}')
p_value = t.cdf(-t_value[2], df[2]) - t.cdf(t_value[2], df[2])
print(f'P(\{-t\_value[2]\} < T < \{t\_value[2]\}) = \{round((abs(p\_value)), 3)\}')
p_value = 1 - t.cdf(t_value[3], df[3])
print(f'P(T > \{t\_value[3]\}) = \{p\_value:.2f\}')
P(T < -1.74) = 0.05
P(|T| < 3.143) = 0.98
P(-1.33 < T < 1.33) = 0.8
P(T > -2.567) = 0.99
# 연습문제 25 p214
from scipy.stats import chi2
df = [8, 17, 11, 23]
```

```
alpha = [0.05, 0.01, 0.025, 0.95]
x = chi2.ppf(1 - alpha[0], df[0])
print(f'x^2_{0.05} = \{round((x), 2)\}')
x = chi2.ppf(1 - alpha[1], df[1])
print(f'x^{2}_{0.01} = \{round((x), 2)\}')
x = chi2.ppf(1 - alpha[2], df[2])
print(f'x^{2}_{0.025} = \{round((x), 2)\}')
x = chi2.ppf(1 - alpha[3], df[3])
print(f'x^{2}_{0.95} = \{round((x), 2)\}')
x^{2}_{0.05} = 15.51
x^{2}_{0.01} = 33.41
x^{2}_{0.025} = 21.92
x^{2}_{0.95} = 13.09
# 연습문제 26 p214
from scipy.stats import chi2
df = [19, 5, 10, 18]
x = [30.14, 5, 3.24, 3.49]
c = [15.99, 17.53]
p_value = 1 - chi2.cdf(x[0], df[0])
print(f'P(x^2 > \{x[0]\}) = \{round((p\_value), 2)\}')
p_value = 1 - chi2.cdf(x[1], df[1])
print(f'P(x^2 > \{x[1]\}) = \{round((p_value), 3)\}')
p = chi2.cdf(c[0], df[2]) - chi2.cdf(x[2], df[2])
print(f'P({x[2]} < x^2 < {c[0]}) : {round((p), 3)}')
p = chi2.cdf(c[1], df[3]) - chi2.cdf(x[3], df[3])
print(f'P({x[3]} < x^2 < {c[1]}) : {round((p), 3)}')
P(x^2 > 30.14) = 0.05
P(x^2 > 5) = 0.416
```

```
P(3.24 < x^2 < 15.99) : 0.875
P(3.49 < x^2 < 17.53) : 0.513
# 연습문제 27 p214
from scipy import stats
from scipy.stats import chi2
df = [4, 19, 25]
p = [0.99, 0.025, 0.045]
c = [37.652]
x = chi2.ppf(1 - p[0], df[0])
print(f''P(x^2 > x^2a) : \{round((x), 3)\}'')
x = chi2.ppf(1 - p[1], df[1])
print(f''P(x^2 > x^2a) : \{round((x), 3)\}'')
Xa2 = chi2.ppf(1 - p[2], df[2])
P = chi2.cdf(Xa2, df[2]) - chi2.cdf(c[0], df[2])
print(f'P({c} < x^2 < {Xa2:.3f}) = {P:.3f}')
X_0_{005} squared = stats.chi2.ppf(1 - 0.005, df)
print("x^2_{0.005} = ", round((X_0_005_squared[2]),3))
P(x^2 > x^2a) : 0.297
P(x^2 > x^2a) : 32.852
P([37.652] < x^2 < 38.123) = 0.005
x^{2}_{0.005} = 46.928
# 연습문제 29 p215
from scipy.stats import chi2
n = [31]
sigma2 = [5]
alpha = [0.10, 0.95]
dof = n[0] - 1
upper_bound = chi2.ppf(1 - alpha[0], dof)
C = upper_bound * sigma2[0] / dof
```

```
print(f"P(S^2 \le C)=0.90, C : \{round((C), 2)\}")
upper_bound2 = chi2.ppf(1 - alpha[1], dof)
C = upper_bound2 * sigma2[0] / dof
print(f"P(S^2 \le C)=0.95, C : \{round((C), 2)\}")
P(S^2 \le C) = 0.90 , C : 6.71
P(S^2 \le C) = 0.95 , C : 3.08
# 연습문제 32 p215
from scipy.stats import f
alpha = 0.25
dfn, dfd = 3, 5
f_{value} = f.ppf(1 - alpha, dfn, dfd)
f_{value2} = f.ppf(1 - 0.05, dfn, dfd)
f_value3 = f.ppf(1 - 0.975, dfn, dfd)
f_value4 = f.ppf(1 - 0.95, dfn, dfd)
print(f'F_{0.25},(3,5) : \{round((f_value), 2)\}')
print(f'F_{0.95},(3,5) : \{round((f_value2), 2)\}')
print(f'F_{0.975},(3,5) : \{round((f_value3), 3)\}')
print(f'F_{0.95},(3,5) : \{round((f_value4), 4)\}')
F_{0.25},(3,5):1.88
F_{0.95}, (3,5): 5.41
F_{0.975},(3,5): 0.067
F_{0.95},(3,5):0.1109
# 연습문제 34 p216
from scipy.stats import f
n1 = 8
n2 = 12
f_ratio = 4.5
dof1 = n1 - 1
dof2 = n2 - 1
p_value = 1 - f.cdf(f_ratio, dof1, dof2)
```

```
print(f"표본분산비가 4.5 이상일 확률 : {round((p_value), 2)}")
표본분산비가 4.5 이상일 확률: 0.01
# 통계적 추정
# 예제(7.2), p220
from math import sqrt
from scipy.stats import norm
n = 225
x = 18
p_hat = x / n
z = norm.ppf(0.975)
se = sqrt(p_hat * (1 - p_hat) / n)
lower = p_hat - z * se
upper = p_hat + z * se
print(f"95% 신뢰구간: {round((lower), 3)}, {round((upper), 3)}")
95% 신뢰구간: 0.045, 0.115
# 예제(7.5), p223
import math
from scipy.stats import norm
n1 = 125
p1 = 0.84
n2 = 150
p2 = 0.72
alpha = 0.1
phat1 = p1
phat2 = p2
phat = (n1 * phat1 + n2 * phat2) / (n1 + n2)
z = norm.ppf(1 - alpha / 2)
se = math.sqrt(phat * (1 - phat) * (1 / n1 + 1 / n2))
ci_low = (phat1 - phat2) - z * se
ci_high = (phat1 - phat2) + z * se
diff = phat1 - phat2
```

```
margin_of_error = z * se
print(f'차이: {diff:.2f} ± {margin_of_error:.3f}')
차이: 0.12 ± 0.083
# 예제(7.7), p226
from math import sqrt
            # 무작위 표본의 평균 박동수
x = 5.32
sigma = 2.49 # 모표준편차
n = 50
             # 표본의 크기(인수)
v = 1.96 # 95% 신뢰구간의 z-값
lower = x - (v * (sigma / sqrt(n)))
upper = x + (v * (sigma / sqrt(n)))
print(f"95% 신뢰구간 추정 : {round((lower), 3)} < μ < {round((upper), 3)}")
95% 신뢰구간 추정 : 25.9 < μ < 28.5
# 예제(7.11), p229
from math import sqrt
     = 10 # 표본의 크기
n
   = 27.2 # 표본평균
x1
    = 1.8 # 표본표준편차
S
t
     = 2.262 # t분포표에서 검정유의수준 0.05
lower = x1 - (t * s / sqrt(n))
upper = x1 + (t * (s / sqrt(n)))
print(f"95% 신뢰구간 추정 : {round((lower), 1)} < \mu < {round((upper), 1)}")
# 연습문제 5 / 예제(7.12), p230
from scipy.stats import *
import numpy as np
import math
data = [0.43, 0.52, 0.46, 0.49, 0.60, 0.56]
xbar = np.mean(data)
```

```
= round((np.std(data, ddof=1)), 4)
sd
              = len(data)
n
             = 2.015
t
lower = xbar - (t * (sd / math.sqrt(n)))
upper = xbar + (t * (sd / math.sqrt(n)))
print(f"90% 신뢰구간 추정 : {round((lower), 3)} < \mu < {round((upper), 3)}")
90% 신뢰구간 추정 : 0.458 < µ < 0.562
# 예제(7.14), p232
from math import sqrt
simga
                             = 0.05 # 유의수준 5%
                              = 1.96 # 95% 구간의 z값
z1
month
                                = 30 # 연구 기간 30개월
teamA
                                 = 3.5 # teamA의 표준편차
teamA_mean = 12.3 # teamA의 사고 평균
                            = 3.4 # teamB의 표준편차
teamB_mean = 7.6 # teamB의 사고 평균
lower = (teamA_mean - teamB_mean) - (z1 * sqrt(((teamA**2) / month) + continuous 
((teamB**2)/month)))
upper = (teamA_mean - teamB_mean) + (z1 * sqrt(((teamA**2) / month) +
((teamB**2)/month)))
print(f"95% 신뢰구간 추정 : {round((lower), 2)} < μ1 - μ2 < {round((upper), 2)}")
95% 신뢰구간 추정 : 2.95 < μ1 - μ2 < 6.45
# 예제(7.16), p235
from math import sqrt
import numpy as np
data1 = [40, 49, 38, 48, 40]
data2 = [51, 41, 53, 39, 40, 47]
x1 = int(np.mean(data1))
x2 = int(np.mean(data2))
```

```
s1 = 5.517 # s1
n1 = len(data1) # 구획 A
n2 = len(data2)
                  # 구획 B
t = 2.821
lower = (x1-x2) - (t * (s1 * sqrt(1/n1 + 1/n2)))
upper = (x1-x2) + (t * (s1 * sqrt(1/n1 + 1/n2)))
print(f"98% 신뢰구간 : {lower:.3f} < μ1 - μ2 < {upper:.3f}")
98% 신뢰구간 : -11.424 < µ1 - µ2 < 7.424
[ 코드 수정 > zip등 고급 함수 제외,. 난이도 감소 ]
import numpy as np
from scipy.stats import t
x = np.array([19, 11, 14, 17, 23, 11, 15, 19, 11, 8])
y = np.array([22, 18, 17, 19, 22, 12, 14, 11, 19,7])
d = x - y
d_bar = np.mean(d)
s_d = np.std(d, ddof=1)
n = len(d)
t_{value} = t.ppf(0.975, n - 1)
margin_of_error = t_value * s_d / np.sqrt(n)
lower = d_bar - margin_of_error
upper = d_bar + margin_of_error
print(f"95% 신뢰구간 : {round(lower, 2)} < μ(D) < {round(upper, 2)}")
95% 신뢰구간 : -4.55 < μ(D) < 1.95
# 예제(7.19), p240
from scipy.stats import chi2
weight = [46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, 46.0]
n = len(weight)
x_bar = sum(weight) / n
```

```
s2 = sum((x - x_bar)**2 \text{ for } x \text{ in weight}) / (n - 1)
lower = (n - 1) * s2 / chi2.ppf(0.975, n - 1)
upper = (n - 1) * s2 / chi2.ppf(0.025, n - 1)
print(f"95% 실뢰구간: ({round((lower), 3)} < σ^2 < {round((upper), 3)})")
95% 신뢰구간 : (0.135 < σ^2 < 0.954)
# 7장 연습문제
# 연습문제 1 p241 , node (3)
from math import sqrt
from scipy.stats import norm
               # 샘플 사이즈
n = 40
x = 34
               # 성공한 샘플의 수
p_hat = x / n # 성공률
z = norm.ppf(0.975)
se = sqrt(p_hat * (1 - p_hat) / n)
lower = p_hat - z * se
upper = p_hat + z * se
print(f"성공률 p의 95% 신뢰구간: ({round((lower), 3)} < p < {round((upper), 3)})")
성공률 p의 95% 신뢰구간 : (0.739 < p < 0.961)
# 연습문제 7 p242
from math import sqrt
from scipy.stats import norm
a = [928, 72] # 품목 A
b = [772, 28] # 품목 B
n1 = sum(a)
n2 = sum(b)
p1 = a[1] / n1
p2 = b[1] / n2
p_hat = p1 - p2
z = norm.ppf(0.975)
se = sqrt((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2))
```

```
lower = -(p_hat - z * se)
upper = p_hat + z * se
print(f"신뢰 상한과 하한 : ({lower:.4f}, {upper:.4f})\n : ({lower:.4f} < p1 - p2 <
{upper:.4f})")
신뢰 상한과 하한 : (-0.0165, 0.0575)
: (-0.0165 < p1 - p2 < 0.0575)
# 연습문제 9 p242
from scipy.stats import *
n = 100
sample_mean = 1.022
sigma = 0.021
sem = sigma / (n ** 0.5)
ci = norm.interval(0.95, loc=sample_mean, scale=sem)
print(f"95% 신뢰구간 : ({round((ci[0]), 3)} < μ < {round((ci[1]), 3)}) [단위 : mm]")
95% 신뢰구간 : (1.018 < µ < 1.026) [단위 : mm]
# 연습문제 12 p243
import numpy as np
from scipy import stats
x = [4.6, 3.6, 4.0, 6.1, 8.8, 5.3, 1.2, 5.6, 3.3, 1.6]
x_mean = np.mean(x)
s = np.std(x, ddof=1)
sem = s / np.sqrt(len(x))
t_value = stats.t.ppf((1 + 0.90) / 2, len(x) - 1)
margin_of_error = t_value * sem
ci_lower = x_mean - margin_of_error
ci_upper = x_mean + margin_of_error
print(f"90%에 대한 모평균 뮤(μ)의 신뢰구간 : ({ci_lower:.2f} < μ < {ci_upper:.2f})")
90%에 대한 모평균 뮤(μ)의 신뢰구간 : (3.12 < μ < 5.70)
```

```
# 연습문제 18 p244
import numpy as np
from scipy import stats
man = [52, 60, 55, 46, 33, 75, 58, 45, 57, 88]
girl = [62, 58, 65, 56, 53, 45, 56, 65, 77, 47]
man_mean = np.mean(man)
girl_mean = np.mean(girl)
man_std = np.std(man, ddof=1)
girl_std = np.std(girl, ddof=1)
pooled_std = np.sqrt(((len(man) - 1) * man_std **2 + (len(girl) -1) * girl_std **2) /
(len(man) + len(girl) -2))
sem = pooled_std * np.sqrt(1 / len(man) +1 / len(girl))
t_value = stats.t.ppf((1 +0.90) /2 , len(man) + len(girl) -2)
margin_of_error = t_value * sem
ci_lower = (man_mean - girl_mean) - margin_of_error
ci_upper = (man_mean - girl_mean) + margin_of_error
print(f"합동표준편차 : {pooled_std:.2f}")
print(f"평균생존연령의 차이에 대한 90% 신뢰구간 : ({ci_lower:.2f} < μ < {ci_upper:.2f})")
합동표준편차 : 12.83
평균생존연령의 차이에 대한 90% 신뢰구간 : (-11.45 < \mu < 8.45)
# 연습문제 20 p245
import numpy as np
from scipy import stats
data = [[1, 34400, 36700], [2, 45500, 46800], [3, 36700, 37700], [4, 32000, 31100], [5,
48400, 47800], [6, 32800, 36400], [7, 38100, 38900], [8, 30100, 31500]]
differences = [row[1] - row[2] for row in data]
d_mean = np.mean(differences)
s = np.std(differences, ddof=1)
sem = s / np.sqrt(len(differences))
```

```
t_value = stats.t.ppf((1 + 0.99) / 2, len(differences) - 1)
margin_of_error = t_value * sem
ci_lower = d_mean - margin_of_error
ci_upper = d_mean + margin_of_error
print(f"μ(d) 의 99% 신뢰구간 : ({round((ci_lower), 1)}km < μ(d) < {round((ci_upper),
1)\km)")
μ(d) 의 99% 신뢰구간 : (-2912.1km < μ(d) < 687.1km)
▶ 이 코드를 포함하여 유사한 일부 코드의 경우 특정한 조건 ( 문제의 요구 테스트 케이스 )
  를 맞추기 위해 위와 같이 설계되었으며 간단하게는 할 수 있으나 특정 테스트의 요구 데
  이터를 맞추기 위한 가공에 의해 불가합니다.
# 연습문제 25 p246
import numpy as np
from scipy import stats
life = [1.9, 2.4, 3.0, 3.5, 4.2]
x_mean = np.mean(life)
s = np.std(life, ddof=1)
chi2\_lower = stats.chi2.ppf((1 - 0.95) / 2, len(life) - 1)
chi2\_upper = stats.chi2.ppf((1 + 0.95) / 2, len(life) - 1)
ci_lower = (len(life) - 1) * s ** 2 / chi2_upper
ci\_upper = (len(life) - 1) * s ** 2 / chi2\_lower
print(f"α^2에 대한 95% 신뢰구간 : ({round((ci_lower), 2)} < α^2 < {round((ci_upper),
2)})")
\alpha^2에 대한 95% 신뢰구간 : (0.29 < \alpha^2 < 6.73)
# 연습문제 28 p247
import numpy as np
from scipy import stats
weight = [46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, 46.0]
```

```
x_mean = np.mean(weight)
s = np.std(weight, ddof=1)
chi2\_lower = stats.chi2.ppf((1 - 0.95) / 2, len(weight) - 1)
chi2\_upper = stats.chi2.ppf((1 + 0.95) / 2, len(weight) - 1)
ci_lower = (len(weight) - 1) * s ** 2 / chi2_upper
ci_upper = (len(weight) - 1) * s ** 2 / chi2_lower
print(f"무게 분산에 대한 95% 신뢰구간 : ({round((ci_lower), 3)} < α^2 <
{round((ci_upper), 3)})")
무게 분산에 대한 95% 신뢰구간 : (0.135 < α^2 < 0.954)
# 08 검정
# 예제 8.1
from statsmodels.stats.proportion import proportions_ztest
# 귀무 가설: 연합 일원들 중 쟁의를 지지하는 비율은 75% 이하이다.
# 대립 가설: 연합 일원들 중 쟁의를 지지하는 비율은 75% 초과이다.
n = 125 # 샘플 크기
x = 87 # 샘플 중 쟁의를 지지하는 인원 수
p = 0.75 # 귀무 가설 하에서의 비율
# z-검정
z_stat, p_value = proportions_ztest(x, n, p, alternative='smaller')
alpha = 0.10 # 유의 수준
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
p-value는 0.0947로, 유의 수준 0.1보다 작다.
따라서 귀무 가설을 기각한다.
```

예제(8.4), p256

from statsmodels.stats.proportion import proportions_ztest

귀무 가설: 두 조립 절차 간의 결점 비율 차이는 없다. # 대립 가설: 두 조립 절차 간의 결점 비율 차이가 있다.

n1 = 350 # 첫 번째 조립 절차의 샘플 크기

x1 = 28 # 첫 번째 조립 절차에서 결점이 있는 차량 수

n2 = 500 # 두 번째 조립 절차의 샘플 크기

x2 = 32 # 두 번째 조립 절차에서 결점이 있는 차량 수

z-검정

z_stat, p_value = proportions_ztest([x1, x2], [n1, n2])

alpha = 0.10 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value는 0.3701로, 유의 수준 0.1보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

예제(8.6), p258 from scipy import stats import numpy as np

귀무 가설: 판매원의 평균 판매고는 1000달러 이하이다. # 대립 가설: 판매원의 평균 판매고는 1000달러 초과이다.

sales = np.array([1280, 1250, 990, 1100, 880, 1300, 1100, 950, 1050]) # 판매고 데이터 mu = 1000 # 귀무 가설 하에서의 평균 sigma = 100 # 모표준편차

z-검정

z_stat = (np.mean(sales) - mu) / (sigma / np.sqrt(len(sales)))
p_value = stats.norm.sf(z_stat)

alpha = 0.01 # 유의 수준 / 1%유의 수준 if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각하지 않는다")

p-value는 0.0013로, 유의 수준 0.01보다 작다. 따라서 귀무 가설을 기각하고 대립 가설을 채택한다

예제(8.7), p260 from scipy import stats import numpy as np

귀무 가설: 에어컨의 새 브랜드가 전기를 하루에 6.5 킬로와트 이하로 사용한다. # 대립 가설: 에어컨의 새 브랜드가 전기를 하루에 6.5 킬로와트 초과로 사용한다.

n = 15 # 샘플 크기 x_bar = 7.0 # 표본 평균 s = 1.4 # 표본 표준편차 mu = 6.5 # 귀무 가설 하에서의 평균

t-검정

t_stat = (x_bar - mu) / (s / np.sqrt(n))
p_value = stats.t.sf(t_stat, df=n-1)

alpha = 0.05 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다")

p-value는 0.0941로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없다

예제(8.9), p262 from scipy import stats import numpy as np

귀무 가설: 유럽의 성인 몸무게와 미국 성인의 몸무게는 같다.

대립 가설: 유럽의 성인 몸무게가 미국 성인의 몸무게보다 작다.

n1 = 15 # 유럽 성인 샘플 크기 x1 = 154 # 유럽 성인 표본 평균 sigma1 = 10 # 유럽 성인 모표준편차

n2 = 18 # 미국 성인 샘플 크기 x2 = 162 # 미국 성인 표본 평균 sigma2 = 13 # 미국 성인 모표준편차

z-검정

 $z_{stat} = (x1 - x2) / np.sqrt(sigma1**2 / n1 + sigma2**2 / n2)$ $p_{value} = stats.norm.cdf(z_{stat})$

alpha = 0.05 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다.")

p-value는 0.0229로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각하고 대립 가설을 채택한다.

예제(8.12), p266

from scipy import stats

귀무 가설: 남성과 여성 공무원들은 경찰서에 승진을 위해 똑같은 시간을 기다린다. # 대립 가설: 남성과 여성 공무원들은 경찰서에 승진을 위해 다른 시간을 기다린다.

male_waiting_times = [8, 7, 10, 5, 7] # 남성 공무원들의 기다린 시간 female_waiting_times = [9, 5, 12, 8] # 여성 공무원들의 기다린 시간

t-검정

 $t_stat,_value=stats.ttest_ind(male_waiting_times,female_waiting_times,equal_var=False)$

문법이 이상하다고 되어 있지만 복합문법으로 ttest.ind의 반환값이 튜플 / 리스트로서 인덱스를 통해 데이터를 분류할 수 있는 원리를 이용합니다.

위 문법은 파이썬 기초문법으로 자주 사용되는 문법입니다. (판다스 등)

ex = t_stat = return[0] , _value = return[1]

alpha = 0.05 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다")

p-value는 0.5369로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없다

예제(8.14), p269

from scipy import stats

귀무 가설: 새로운 정신안정제의 효과와 가짜약에 의한 효과는 같다. # 대립 가설: 새로운 정신안정제의 효과가 가짜약에 의한 효과보다 좋다.

 $d = [-3, -7, -3, -2, 1, -1, 1, 8, -8, 1] \# \bar{x}$

t-검정

t_stat, p_value = stats.ttest_1samp(d, popmean=0)

alpha = 0.05 # 유의 수준

if p_value / 2 < alpha:

print(f"p-value는 {p_value / 2:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value / 2:.4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다.")

p-value는 0.1948로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없다.

예제(8.16), p271 from scipy import stats import numpy as np

귀무 가설: 햄스터의 몸무게의 분산은 2.25 이하이다. # 대립 가설: 햄스터의 몸무게의 분산은 2.25 초과이다. weights = np.array([12, 8, 7, 12, 14, 13]) # 햄스터들의 몸무게

n = len(weights)

샘플 크기

s2 = np.var(weights, ddof=1)

표본 분산

sigma2 = 2.25

귀무 가설 하에서의 분산

카이제곱 검정

 $chi2_stat = (n - 1) * s2 / sigma2$

p_value = stats.chi2.sf(chi2_stat, df=n-1)

alpha = 0.05 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다.")

p-value는 0.0032로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각하고 대립 가설을 채택한다.

연습문제 1 p273, node (3) - B

from scipy import stats

from statsmodels.stats.proportion import proportions_ztest

귀무 가설: 시장의 지지율은 4년전과 같다. # 대립 가설: 시장의 지지율은 4년전보다 낮다.

n = 300 # 샘플 크기

x = 158 # 지지하는 유권자 수

p = 0.56 # 귀무 가설 하에서의 비율

z-검정

z_stat, p_value = proportions_ztest(x, n, p, alternative='smaller')

alpha = 0.05 # 유의 수준

print("2. 4년 전에 비하여 지지율이 내려갔다고 할 수 있는가?")

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value: 4f}로, 유의 수준 {alpha}보다 크거나 같다. \n따라서 귀무 가설을 기각할 수 없다.")

검정 결과에 따른 결론 : 지지율이 4년전에 비해 내려갔다고 할 수 없다.

2. 4년 전에 비하여 지지율이 내려갔다고 할 수 있는가? p-value는 0.1238로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없다.

연습문제 4 p273

from statsmodels.stats.proportion import proportions_ztest

귀무 가설: 새로운 약의 효과는 기존의 약의 효과와 같다. # 대립 가설: 새로운 약의 효과가 기존의 약의 효과보다 높다.

n = 100 # 샘플 크기

x = 70 # 효과를 보인 사람 수

p = 0.6 # 귀무 가설 하에서의 비율

z-검정

z_stat, p_value = proportions_ztest(x, n, p, alternative='larger') # proportions_ztest 함수를 호출하여 z-통계량과 p-값을 계산

alpha = 0.05 # 유의 수준

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같습니다. \n따라서 귀무 가설을 기각할 수 없다.")

p-value는 0.0145로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각하고 대립 가설을 채택한다.

연습문제 9 p274

from scipy import stats

도시 거주자의 지지율 city = [1] * 63 + [0] * 37 # 교외 거주자의 지지율 suburb = [1] * 59 + [0] * 66 # 두 집단 간의 비율 차이 검정

oddsratio, p_value = stats.fisher_exact([[63, 37], [59, 66]])

print(f'P-값: {p_value:.4f}')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다. \n따라서 귀무 가설을 기각하고 대립 가설을 채택한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같습니다. \n따라서 귀무 가설을 기각할 수 없다.")

P-값: 0.0221

p-value는 0.0221로, 유의 수준 0.05보다 작다.

따라서 귀무 가설을 기각하고 대립 가설을 채택한다.

연습문제 10 p274

from scipy import stats

귀무 가설: 두 집단(도시지역과 농촌지역)의 성인 여성 발병률은 독립적이다. 즉, 발병률은 지역에 따라 달라지지 않는다.

대립 가설: 두 집단(도시지역과 농촌지역)의 성인 여성 발병률은 독립적이지 않다. 즉, 발병률은 지역에 따라 달라진다.

도시지역의 성인여성 발병률

city = [1] * 20 + [0] * 180

농촌지역의 성인여성 발병률

rural = [1] * 10 + [0] * 140

두 집단 간의 비율 차이 검정

oddsratio, p_value = stats.fisher_exact([[20, 180], [10, 140]])

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value는 0.3360로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

연습문제 7 p274 import numpy as np from scipy.stats import norm

귀무가설: 어떤 도시의 가정 중 1/5가 기름난방을 한다

대립가설: 어떤 도시의 가정 중 1/5가 기름난방을 하지 않는다

n = 1000 # 무작위로 추출한 가정의 수

x = 136 # 기름난방을 하는 가정의 수

p = 0.2 # 귀무가설에 따른 기름난방을 하는 가정의 비율

정규 근사를 사용한 검정

z = (x - n * p) / np.sqrt(n * p * (1 - p))

 $p_value = 2 * norm.sf(np.abs(z))$

np.abs == 절대값 연산하는 함수

print(f'p-value: {p_value}')

alpha = 0.02

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 4.2003939760219985e-07 p-value는 0.0000로, 유의 수준 0.02보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 13 p275

from scipy.stats import chi2_contingency

귀무가설: 시와 인접지역의 유권자 지지율은 같다 # 대립가설: 시와 인접지역의 유권자 지지율은 다르다

observed = [[120, 80], [240, 260]] # 시와 인접지역의 찬성/반대 표

카이제곱 검정

chi2, p_value, dof, expected = chi2_contingency(observed)
print(f'p-value: {p_value: .4f}')

```
alpha = 0.05
```

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.0053

p-value는 0.0053로, 유의 수준 0.05보다 작다.

따라서 귀무 가설을 기각한다.

연습문제 14 p275

from scipy.stats import norm

귀무가설: 한국사람의 평균수명은 70년 이하이다 # 대립가설: 한국사람의 평균수명은 70년 초과이다

n = 100 # 표본 크기

x_bar = 71.8 # 표본 평균

mu = 70 # 귀무가설에 따른 모평균

sigma = 8.9 # 모표준편차

z-검정

 $z = (x_bar - mu) / (sigma / n**0.5)$

p_value = norm.sf(z)

#sf(z) = 1 - cdf(z)

print(f'p-value: {p_value:.4f}')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.0216

p-value는 0.0216로, 유의 수준 0.05보다 작다.

따라서 귀무 가설을 기각한다.

연습문제 17 p276 from scipy.stats import t import numpy as np

귀무가설: 신제품의 평균인장강도는 8kg이다 # 대립가설: 신제품의 평균인장강도는 8kg이 아니다

n = 50 # 표본 크기 x_bar = 7.8 # 표본 평균 mu = 8 # 귀무가설에 따른 모평균 s = 0.5 # 표본 표준편차

t-검정

t_stat = (x_bar - mu) / (s / n**0.5)
p_value = t.sf(np.abs(t_stat), n-1) * 2
n-1) * 2는 t 통계량의 절대값이 주어진 경우, 그 값보다 크거나 작은 값을 얻을 확률(즉, # 양측 p-value)을 계산
print(f'p-value: {p_value: .4f}')

alpha = 0.01

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.0068 p-value는 0.0068로, 유의 수준 0.01보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 18 p276 from scipy.stats import t # type = t검정

귀무가설: 에디슨 진공청소기의 연평균 전력사용량은 46kwh 이상이다 # 대립가설: 에디슨 진공청소기의 연평균 전력사용량은 46kwh 미만이다

n = 12 # 표본 크기 x_bar = 42 # 표본 평균 mu = 46 # 귀무가설에 따른 모평균

```
s = 11.9 # 표본 표준편차
# t-검정
t_stat = (x_bar - mu) / (s / n**0.5)
p_value = t.cdf(t_stat, n-1)
# -일 경우 abs로 절대값으로 취하면 된다. ( 예제 : 8e8 참조, t.cdf(np.abs(tstat)) )
print(f'p-value: {p_value:.4f}')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
p-value: 0.1344
p-value는 0.1344로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
# 연습문제 19 p276
from scipy.stats import t
# 귀무가설: u가 10이다 | u = 10
# 대립가설: µ가 10보다 적다 | µ > 10
    = 16 # 표본 크기
x_bar = 11 # 표본 평균
mu = 10 # 귀무가설에 따른 모평균
   = 3 # 표본 표준편차
# 기각역 계산
alpha = 0.2 # 유의수준
t_{crit} = t.ppf(alpha, n-1)
# 유의수준 기반 기각역 계산
rejection_region = (t_crit)
print(f'기각역: {round((rejection_region), 4)}')
```

t-검정

t_stat = (x_bar - mu) / (s / n**0.5) print(f'검정통계량: {round((t_stat), 2)}\n')

if t_stat < t_crit:

print(f"t_stat는 {round((t_stat), 2)}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"t_stat는 {round((t_stat), 2)}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

기각역: -0.8662 검정통계량: 1.33

t_stat는 1.33로, 유의 수준 0.2보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 20 p276 from scipy import stats

귀무가설: 약물복용 청소년의 평균 IQ는 이 지역의 평균 IQ인 110과 같다 # 대립가설: 약물복용 청소년의 평균 IQ는 이 지역의 평균 IQ인 110보다 낮다

iq = [125, 105, 117, 109, 118, 104, 98, 111, 107, 108, 135, 94, 90, 100, 99] # 약물복 용 청소년의 IQ mu = 110 # 귀무가설에 따른 모평균

t-검정

t_stat, p_value = stats.ttest_1samp(iq, mu) print(f'p-value: {p_value/2:.4f}')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.2637

p-value는 0.5274로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

```
# 연습문제 21 p277
import math
from scipy import stats
# 귀무가설: 전구의 평균 수명은 1000시간이다
# 대립가설: 전구의 평균 수명은 1000시간이 아니다
    = 20 # 표본 크기
x_bar = 1216 # 표본 평균
    = 1000 # 귀무가설에 따른 모평균
mu
    = 495 # 표본 표준편차
# 이 문제를 풀기 위해서는 반드시 정규분포여야 한다.
# t-검정
t_statistic = (x_bar - mu) / (s / math.sqrt(n))
# 자유도 계산
df = n - 1
# p-value 계산 (양측 검정)
p_value = stats.t.sf(abs(t_statistic), df) * 2
# 결과 출력
print(f't-statistic: {t_statistic}')
print(f'p-value: {p_value}\n')
# 유의 수준 설정
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
t-statistic: 1.9514775076361803
p-value: 0.06590109707725218
p-value는 0.0659로, 유의 수준 0.05보다 크거나 같다.
```

따라서 귀무 가설을 기각할 수 없음

```
# 연습문제 22 p277
import numpy as np
from scipy import stats
# 딕셔너리로 데이터 입력 / np.array 혹은 리스트도 가능
sampleA = {'n1': 12, 'x1': 35, 's1': 4.2}
sampleB = {'n2': 16, 'x2': 43, 's2': 3.7}
# 통합분산 계산
pooled_var = ((sampleA['n1'] - 1) * sampleA['s1']**2 + (sampleB['n2'] - 1) *
sampleB['s2']**2) / (sampleA['n1'] + sampleB['n2'] - 2)
print(f'통합분산: {pooled_var:.4f}')
# t-검정
t_stat,
         p_value
                   =
                         stats.ttest_ind_from_stats(sampleA['x1'],
                                                                sampleA['s1'].
sampleA['n1'], sampleB['x2'], sampleB['s2'], sampleB['n2'], equal_var=True)
print(f'p-value: {p_value}\n')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다. \n")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음 \n")
# 두 모평균의 차이에 대한 95% 신뢰구간 계산
diff_mean = sampleA['x1'] - sampleB['x2']
se = np.sqrt(pooled_var * (1/sampleA['n1'] + 1/sampleB['n2']))
margin_of_error = stats.t.ppf(0.975, df=sampleA['n1']+sampleB['n2']-2) * se
ci = [diff_mean - margin_of_error, diff_mean + margin_of_error]
print(f"t-value {t_stat}")
print(f'두 모평균의 차이에 대한 95% 신뢰구간 : {diff_mean:.4f} ± {margin_of_error:.4f}')
통합분산: 15.3612
p-value: 1.3550195956491572e-05
p-value는 0.0000로, 유의 수준 0.05보다 작다.
따라서 귀무 가설을 기각한다.
```

t-value -5.345024082400142

두 모평균의 차이에 대한 95% 신뢰구간: -8.0000 ± 3.0766

연습문제 23 p277

from scipy import stats import numpy as np

귀무가설: 4년제 대학생과 2년제 대학생의 주당 과제물 수행 시간의 평균은 같다 # 대립가설: 4년제 대학생의 주당 과제물 수행 시간의 평균이 2년제 대학생보다 높다

n1 = 47 # 4년제 대학생 표본 크기

x1 = 18.6 # 4년제 대학생 표본 평균

s1 = np.sqrt(22.4) # 4년제 대학생 표본 표준편차

n2 = 36 # 2년제 대학생 표본 크기

x2 = 14.7 # 2년제 대학생 표본 평균

s2 = np.sqrt(20.9) # 2년제 대학생 표본 표준편차

t-검정

t_stat, p_value = stats.ttest_ind_from_stats(x1, s1, n1, x2, s2, n2, equal_var=False) print(f'p-value: {p_value/2:.4f}')

alpha = 0.01

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.0001

p-value는 0.0003로, 유의 수준 0.01보다 작다.

따라서 귀무 가설을 기각한다.

연습문제 26 p278

from scipy import stats

귀무가설: 두 암기법의 평균은 같다 # 대립가설: 두 암기법의 평균은 다르다

learnA = [5, 2, 4, 7, 4, 4, 8, 3, 7, 6] # 암기법 A

learnB = [6, 5, 4, 9, 4, 6, 8, 5, 6, 7] # 암기법 B

t-검정

t_stat, p_value = stats.ttest_ind(learnA, learnB)
print(f'p-value: {p_value:.4f}')

alpha = 0.01

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.2289

p-value는 0.2289로, 유의 수준 0.01보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

연습문제 27 p278

두 강재의 마모량을 비교하기 위한 실험을 할 때, 강재A와 강재B에 대하여 각각 12회 및 10회씩 실험한 결과 강재A의 마모량은 평균이 85, 표본표준편차가 4이고 강재B에서는 81과 5로 나타났다. 강재A의 마모량이 강재B의 마모량보다 2이상 심한지를 유의수준 0.05로 검정하라.

[조건]: 단 분산이 같은 정규분포를 근사적으로 따른다.

from scipy import stats

귀무가설: 강재A의 마모량이 강재B의 마모량보다 2 이상 심하지 않다 # 대립가설: 강재A의 마모량이 강재B의 마모량보다 2 이상 심하다

n1 = 12 # 강재A 표본 크기

x1 = 85 # 강재A 표본 평균

s1 = 4 # 강재A 표본 표준편차

n2 = 10 # 강재B 표본 크기

x2 = 81 + 2 # 강재B 표본 평균

s2 = 5 # 강재B 표본 표준편차

t-검정

t_stat, p_value = stats.ttest_ind_from_stats(x1, s1, n1, x2, s2, n2) print(f'p-value: {p_value:.4f}')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.3093

p-value는 0.3093로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 28 p279

어느 회사에서 직업 훈련이 근로자의 능력 향상에 효과가 있는지 알아보려고 한다. 이를 위해 16명의 근로자를 추출해 직업 훈련 전과 후의 작업능률 점수를 통해 알아본 결과 아래의 데이터와 같을 때, 이 조사결과에서 훈련 전과 훈련 후의 능률이 같은지 검정하시오.

[조건] : 유의수준 1% 사용

from scipy import stats

귀무가설: 훈련 전과 훈련 후의 능률은 같다 # 대립가설: 훈련 전과 훈련 후의 능률은 다르다

after = [80, 90, 92, 75, 86, 90, 81, 70, 89, 88, 82, 79, 91, 90, 78, 89] before = [75, 83, 96, 77, 81, 90, 82, 67, 94, 85, 78, 82, 98, 80, 87, 81]

t-검정

t_stat, p_value = stats.ttest_rel(after,before) print(f'p-value: {p_value:.4f}')

alpha = 0.01

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무

가설을 기각할 수 없음")

p-value: 0.5411

p-value는 0.5411로, 유의 수준 0.01보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

연습문제 30 p279

[조건] : 모집단은 정규분포를 따른다.

from scipy import stats

귀무가설 : 피로한 상태에서 신체기능조절능력이 떨어지지 않는다.

대립가설: 피로한 상태에서 신체기능조절능력이 떨어진다.

non_fatigued = [158, 92, 65, 98, 33, 89, 148, 58, 142, 117, 74, 66, 109, 57, 85] fatigued = [91, 59, 215, 226, 223, 91, 92, 177, 134, 116, 153, 219, 143, 164, 100]

t_statistic, p_value = stats.ttest_ind(non_fatigued,fatigued)

print(f"t-statistic : {t_statistic:.4f}")
print(f"p-value: {p_value:.4f}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

t-statistic : -3.1498 p-value: 0.0039

p-value는 0.0039로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 31 p280

[조건] : 유의수준 0.01로 검정하여라

from scipy import stats

```
# 귀무가설: 모분산이 0.03이다
# 대립가설: 모분산이 0.03이 아니다
1 = [10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, 9.8]
n = len(l)
s2 = sum((x - sum(1)/n)**2 for x in 1) / (n-1)
chi2\_stat = (n-1) * s2 / 0.03
p_value = stats.chi2.sf(chi2_stat, n-1)
print(f"검정통계량 : {chi2_stat:.4f}")
print(f"p-value : {p_value:.4f}\n")
alpha = 0.01
if p_value < alpha:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
검정통계량 : 18.1333
p-value : 0.0337
p-value는 0.0337로, 유의 수준 0.01보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
# 연습문제 32 p280
# [ 조건 ] : 함량의 분포는 근사적으로 정규분포를 따른다.
from scipy import stats
# 귀무가설 : 기계가 관리하에 있다.
# 대립가설 : 기계가 관리하에 있지 않다.
n = 25
sample_variance = 2.03
population_variance = 1.15
chi_squared_statistic = (n - 1) * sample_variance / population_variance
p_value = 1 - stats.chi2.cdf(chi_squared_statistic, n - 1)
```

```
print(f"Chi-statistic: {chi_squared_statistic:.4f}")
print(f"p-value: {p_value:.4f}\n")
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
Chi-statistic: 42.3652
p-value: 0.0117
p-value는 0.0117로, 유의 수준 0.05보다 작다.
따라서 귀무 가설을 기각한다.
# 연습문제 33 p280
from scipy import stats
# 귀무가설: 시스템이 안정적이다. (분산이 1g 이하이다.)
# 대립가설 : 시스템이 안정적이지 않다. ( 분산이 1g 이하가 아니다. )
n = 10
s2 = 0.16
alpha = 0.05
chi2\_stat = (n-1) * s2 / 1
p_value = stats.chi2.sf(chi2_stat, n-1)
print(f"statistics : {chi2_stat:.4f}")
print(f"p-value : {p_value:.4f}\n")
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
```

statistics: 1.4400 p-value: 0.9976

p-value는 0.9976로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

범주형 자료와 카이제곱검정

연습문제 1 / 예제(9.2), p284 from scipy import stats

귀무가설 : 3 종류 고장의 확률은 각각 20%, 50%, 30%

대립가설 : 3 종류 고장의 확률은 각각 20%, 50%, 30%가 아니다.

observed = [9, 24, 13]

expected = [0.2 * 46, 0.5 * 46, 0.3 * 46]

chi2_stat, p_value = stats.chisquare(observed, expected)

print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 0.0942

p-value: 0.9539906110247998

p-value는 0.9540로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 2 / 예제(9.4), p286 from scipy import stats

귀무가설 : 월요일과 금요일에 사고가 빈번하게 발생하지 않는다.

대립가설 : 월요일과 금요일에 사고가 빈번하게 발생한다.

data = {'월요일' : 65, '화요일' : 43, '수요일' : 48, '목요일' : 41, '금요일' : 73}

observed = list(data.values())

total = sum(observed)

expected = [total/5 for _ in range(5)]

chi2_stat, p_value = stats.chisquare(observed, expected)

print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 14.9630

p-value: 0.004778654086776808

p-value는 0.0048로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

예제(9.6)

회사에서 학력과 회사에 대한 만족도 조사의 연관성이 있는지 알아보기 위해 회사원 300명을 랜덤하게 뽑아 조사한 결과 다음의 자료를 얻었다. 두 변수에 연관성이 있다고 할 수 있는 가?

from scipy import stats

귀무가설 : 학력과 회사에 대한 만족도는 연관성이 없다. # 대립가설 : 학력과 회사에 대한 만족도는 연관성이 있다.

dataA = ['고졸 이하', 40, 32, 10] dataB = ['대졸 이하', 92, 50, 28] dataC = ['대학원 이상', 16, 20, 12]

observed = [dataA[1:], dataB[1:], dataC[1:]] chi2_stat, p_value, dof, expected = stats.chi2_contingency(observed) print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 8.7636

p-value: 0.06728899139887037

p-value는 0.0673로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

예제(9.7)

from scipy import stats

귀무가설 : 승용차의 크기와 통근 거리 사이에 관계가 없다. # 대립가설 : 승용차의 크기와 통근 거리 사이에 관계가 있다.

경승용차 = [6, 27, 19] 소형승용차 = [8, 36, 17] 중형승용차 = [21, 45, 33] 대형승용차 = [14, 18, 6]

observed = [경승용차, 소형승용차, 중형승용차, 대형승용차] chi2_stat, p_value, dof, expected = stats.chi2_contingency(observed)

print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 14.1584

p-value: 0.027916449953844118

p-value는 0.0279로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

예제(9.9)

from scipy import stats

귀무가설 : 지역에 따라 지지도가 다르지 않다. # 대립가설 : 지역에 따라 지지도가 다르다.

서울 = [73, 71, 56]

부산 = [102, 55, 43]

대구 = [73, 66, 61]

광주 = [62, 98, 40]

observed = [서울, 부산, 대구, 광주] chi2_stat, p_value, dof, expected = stats.chi2_contingency(observed)

print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 31.2946

p-value: 2.226786050768775e-05

p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

예제(9.11)

[조건] : 유의수준 1%에서 검정

```
from scipy import stats
```

귀무가설: 지역에 따라 공해를 느끼는 정도가 차이가 없다. # 대립가설: 지역에 따라 공해를 느끼는 정도가 차이가 있다. 지역1 = [20, 28, 23, 14, 12] 지역2 = [14, 34, 21, 14, 12] 지역3 = [4, 12, 10, 20, 53] observed = [지역1, 지역2, 지역3] chi2_stat, p_value, dof, expected = stats.chi2_contingency(observed) print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value}\n") alpha = 0.01if p_value < alpha: print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.") else: print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음") 검정통계량: 70.6416 p-value: 3.661824689679792e-12 p-value는 0.0000로, 유의 수준 0.01보다 작다. 따라서 귀무 가설을 기각한다. # 연습문제 5 from scipy import stats # 귀무가설 : 시간에 따라 사상자가 다르지 않다. # 대립가설 : 시간에 따라 사상자가 다르다. 사상자 = [1372, 1578, 1686] total = sum(사상자) expected = [total/3 for _ in range(3)] chi2_stat, p_value = stats.chisquare(사상자, expected)

```
print(f"검정통계량: {chi2_stat:.4f}")
print(f"p-value: {p_value}\n")
alpha = 0.05
if p_value < alpha:
기각한다.")
else:
```

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 32.9370

p-value: 7.043980413550305e-08

p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 6

from scipy import stats

귀무가설 : 5개 다리를 이용하는 교통량의 비율이 2 : 3 : 3 : 4 : 6이다. # 대립가설 : 5개 다리를 이용하는 교통량의 비율이 2 : 3 : 3 : 4 : 6이 아니다.

observed = [720, 970, 1013, 1380, 1917]

total = sum(observed)

expected = [total * (2/18), total * (3/18), total * (3/18), total * (4/18), total * (6/18)] chi2_stat, p_value = stats.chisquare(observed, expected)

print(f"검정통계량: {chi2_stat:.4f}") print(f"p-value: {p_value:.4f}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각하다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 10.4135 p-value: 0.0340

p-value는 0.0340로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 7

from scipy import stats

귀무가설 : 경품의 선호도에 차이가 없다. # 대립가설 : 경품의 선호도에 차이가 있다.

frequency = [183, 175, 142]
total = sum(frequency)
expected = [total/3 for _ in range(3)]
chi2_stat, p_value = stats.chisquare(frequency, expected)

print(f"검정통계량 : {chi2_stat:.4f}") print(f"p-value : {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량 : 5.6680

p-value: 0.058777273728757906

p-value는 0.0588로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 8

from scipy import stats

귀무가설: 범죄발생건수가 대도시의 각 지역과는 무관하다. # 대립가설: 범죄발생건수가 대도시의 각 지역과는 무관하지 않다.

지역1 = [162, 118, 451, 18] 지역2 = [310, 196, 996, 25]

```
지역3 = [258, 193, 458, 10]
지역4 = [280, 175, 390, 19]
observed = [지역1, 지역2, 지역3, 지역4]
chi2_stat, p_value, dof, expected = stats.chi2_contingency(observed)
print(f"검정통계량 : {chi2_stat:.4f}")
print(f"p-value : {p_value}\n")
alpha = 0.01
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
검정통계량 : 124.5297
p-value: 1.576242682023537e-22
p-value는 0.0000로, 유의 수준 0.01보다 작다.
따라서 귀무 가설을 기각한다.
# 연습문제 9
from scipy.stats import chi2_contingency
# 귀무가설: 나이와 선호하는 자동차 종류는 무관하다.
# 대립가설: 나이와 선호하는 자동차 종류는 무관하지 않다.
data = [[42, 29, 12, 58], [59, 34, 43, 19], [67, 42, 81, 7]]
chi2, p_value, dof, expected = chi2_contingency(data)
print(f"검정통계량: {chi2:.4f}")
print(f"p-value: {p_value}\n")
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
```

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무

가설을 기각할 수 없음")

검정통계량: 104.3775

p-value: 3.058332817880553e-20

p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 13

from scipy.stats import chi2_contingency

귀무가설: 운동 강도와 흡연습관은 독립이다. # 대립가설: 운동 강도와 흡연습관은 독립이 아니다.

data = [[113, 113, 110, 159], [119, 135, 172, 190], [77, 91, 86, 65], [181, 152, 124, 73]]

chi2, p_value, dof, expected = chi2_contingency(data)

print(f"검정통계량: {chi2:.4f}") print(f"p-value: {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 87.2727

p-value: 5.7306646048374425e-15

p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 14

from scipy.stats import chi2_contingency

귀무가설 : 등급과 기계의 종류는 독립이다. # 대립가설 : 등급과 기계의 종류는 독립이 아니다. data = [[78, 65, 68], [22, 8, 30]] chi2, p_value, dof, expected = chi2_contingency(data)

print(f"검정통계량 : {chi2:.4f}") print(f"p-value : {p_value}\n")

alpha = 0.01

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량 : 9.3759

p-value: 0.009205414784649132

p-value는 0.0092로, 유의 수준 0.01보다 작다. 따라서 귀무 가설을 기각한다.

연습문제 15

from scipy.stats import chi2_contingency

귀무가설 : 몸의 정도와 머리 잃는 정도는 관계가 없다. # 대립가설 : 몸의 정도와 머리 잃는 정도는 관계가 있다.

data = [[137, 22, 40], [218, 34, 67], [153, 30, 68]] chi2, p_value, dof, expected = chi2_contingency(data)

print(f"검정통계량 : {chi2:.4f}") print(f"p-value : {p_value}\n")

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

검정통계량: 4.8089

p-value : 0.30747607236753727

p-value는 0.3075로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 9 p302, node (16) from scipy.stats import chi2_contingency import numpy as np

귀무가설: 낮, 저녁, 밤에 만들어진 제품의 불량품과 양품의 비율이 서로 같다. # 대립가설: 낮, 저녁, 밤에 만들어진 제품의 불량품과 양품의 비율이 서로 다르다.

defective = [80, 70, 80] non_defective = [1120, 930, 720]

obs = np.array([defective, non_defective])
chi2, p_value, dof, expected = chi2_contingency(obs)
print(f'p-value: {p_value:.4f}')

alpha = 0.025

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

p-value: 0.0144

p-value는 0.0144로, 유의 수준 0.025보다 작다.

따라서 귀무 가설을 기각한다.

연습문제 17

from scipy.stats import chi2_contingency import numpy as np

귀무가설: 각 기간마다 주부의 생활수준의 비율은 동일하다. # 대립가설: 각 기간마다 주부의 생활수준의 비율은 동일하지 않다.

improved = [72, 63, 47, 40] same = [144, 135, 100, 105]

```
worsened = [84, 102, 53, 55]
obs = np.array([improved, same, worsened])
chi2, p_value, dof, expected = chi2_contingency(obs)
print(f'p-value: {p_value}')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
p-value: 0.43170620277662486
p-value는 0.4317로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
# 연습문제 18 p302
from scipy.stats import chi2_contingency
import numpy as np
# 귀무가설: 두 도시의 유권자들의 성향은 동일하다.
# 대립가설: 두 도시의 유권자들의 성향은 동일하지 않다.
candidate_A = [204, 225]
candidate_B = [211, 198]
undecided = [85, 77]
obs = np.array([candidate_A, candidate_B, undecided])
chi2, p_value, dof, expected = chi2_contingency(obs)
print(f'p-value: {p_value}')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
p-value: 0.39926962230647095
```

```
p-value는 0.3993로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
# 연습문제 20
from scipy.stats import chi2_contingency
import numpy as np
# 귀무가설: 지역에 따라 찬성률에 차이가 없다.
# 대립가설: 지역에 따라 찬성률에 차이가 있다.
region1 = [198, 202]
region2 = [140, 210]
region3 = [133, 217]
obs = np.array([region1[:2], region2[:2], region3[:2]])
chi2, p_value, dof, expected = chi2_contingency(obs)
print(f'p-value: {p_value}')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
p-value: 0.002811845136348792
p-value는 0.0028로, 유의 수준 0.05보다 작다.
따라서 귀무 가설을 기각한다.
# 예제(10.2)
두 변수간 표본상관계수 r을 구하시오
import numpy as np
x = [2.4, 3.4, 4.6, 3.7, 2.2, 3.3, 4.0, 2.1]
y = [1.33, 2.12, 1.80, 1.65, 2.00, 1.76, 2.11, 1.63]
x_mean = np.mean(x)
y_mean = np.mean(y)
numerator = sum((x_i - x_mean) * (y_i - y_mean) for x_i, y_i in zip(x, y))
```

```
denominator = np.sqrt(sum((x_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x)) * np.sqrt(sum((y_i - x_mean) ** 2 for x_i in x_i
y_mean) ** 2 for y_i in y))
r = numerator / denominator
print(f'표본상관계수 r: {r:.3f}')
표본상관계수 r: 0.347
[ 코드 수정 > b0 + b1 ]
import numpy as np
from scipy import stats
x = np.array([4.3, 4.5, 5.9, 5.6, 6.1, 5.2, 3.8, 2.1, 7.5])
y = np.array([126, 121, 116, 118, 114, 118, 132, 141, 108])
# 1. 상관계수 계산
r, = stats.pearsonr(x, y)
print(f'1. 상관계수 r: {r:.4f}')
# 2. 회귀직선의 방정식 계산
b1, b0, _, _, _ = stats.linregress(x, y)
print(f'2. 회귀직선의 방정식: y = {b0:.4f} ± {b1:.4f}x')
# 3. 강우량이 x = 5.8 일 때 대기오염 제거정도 추정
x = 5.8
y_hat = b0 + b1 * x
print(f'3. 강우량이 \{x\} 일 때 대기오염 제거정도: \{y_hat:.3f\}')
1. 상관계수 r: -0.9787
2. 회귀직선의 방정식: y = 153.1755 ± -6.3240x
3. 강우량이 5.8 일 때 대기오염 제거정도: 116.496
[ 코드 수정 > 난이도 조절 ]
import numpy as np
from scipy import stats
x = np.array([4.3, 4.5, 5.9, 5.6, 6.1, 5.2, 3.8, 2.1, 7.5])
y = np.array([126, 121, 116, 118, 114, 118, 132, 141, 108])
# 상관계수 계산
r, = stats.pearsonr(x, y)
```

```
# 결정계수 R^2 계산
r2 = r**2
print(f'결정계수 R<sup>2</sup>: {r2:.5f}')
결정계수 R<sup>2</sup>: 0.95777
[ 코드 수정 > zip 및 단일 for문 수정 ]
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
x = np.array([1950, 1960, 1970, 1980, 1990])
y = np.array([50, 67, 91, 122, 165])
# 회귀직선의 방정식 계산
slope, intercept, _, _, _ = stats.linregress(x, y)
# 예측값과 잔차 계산
y_hat = intercept + slope * x
residuals = y - y_hat
# 산점도와 잔차플롯 그리기
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
ax1.scatter(x, y)
ax1.plot(x, y_hat, color='r')
ax1.set_xlabel('년도')
ax1.set_ylabel('인구')
ax1.set_title('산점도')
ax2.scatter(x, residuals)
ax2.axhline(y=0, color='r', linestyle='--')
ax2.set_xlabel('년도')
ax2.set_ylabel('잔차')
ax2.set_title('잔차플롯')
plt.show()
```


예제(10.15) import numpy as np from scipy import stats

```
x = np.array([12, 21, 8, 20, 16, 16, 24, 0, 11, 18])
y = np.array([3.1, 2.3, 3.5, 2.5, 3.0, 2.6, 2.1, 3.8, 2.9, 2.6])
alpha = 0.05
```

회귀직선의 방정식 계산 slope, intercept, _, _, stderr = stats.linregress(x, y)

t-분포의 임계값 계산 df = len(x) - 2 t = stats.t.ppf(1 - alpha / 2, df)

신뢰구간 계산

lower = slope - t * stderr
upper = slope + t * stderr

print(f'최소 제곱법 선: y = {intercept:.4f} + x = {slope:.4f}')
print(f'실제 기울기의 95% 신뢰구간: {slope:.4f} ± {t * stderr:.4f}')
최소 제곱법 선: y = 3.8916 + x = -0.0720
실제 기울기의 95% 신뢰구간: -0.0720 ± 0.0166

```
[ 코드 수정 > 간결하게 ]
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
old_racket = np.array([125, 133, 108, 128, 115, 135, 125, 117, 130, 121])
new_racket = np.array([133, 134, 112, 139, 123, 142, 140, 129, 139, 126])
# 상관 계수 계산
r, p_value = stats.pearsonr(old_racket, new_racket)
print(f'상관 계수 r: {r:.4f}')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.5f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.5f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
# 산점도 그리기
plt.rc('font', family='Malgun Gothic')
plt.scatter(old_racket, new_racket)
plt.xlabel('old_racket')
plt.ylabel('new_racket')
plt.title('서브 속도 (mph)')
plt.show()
```


[코드 수정 > 난이도 조절] import numpy as np

x = np.array([70, 90, 80, 74, 65, 83])y = np.array([74, 84, 63, 87, 78, 90])

r = np.corrcoef(x, y)[0, 1]

print(f'상관 계수: {r:.4f}')

상관 계수: 0.2345

#연습문제 3

```
[코드 수정 > 난이도 조정 ]
import numpy as np
from scipy import stats
x = np.array([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])
y = np.array([8.1, 7, 8.5, 9.8, 9.5, 8.9, 8.6, 10.2, 9.3, 9.2, 10.5])
# 회귀직선의 방정식 계산
slope, intercept, _, _, _ = stats.linregress(x, y)
# 예측값 계산
x_new = 1.75
y_hat = intercept + slope * x_new
print(f'1. 회귀직선: y = {intercept:.4f} + {slope:.4f}x')
print(f'2. 온도가 {x_new} 일 때 당분으로 변환된 양: {y_hat:.2f}')
1. 회귀직선: y = 5.9045 + 2.1000x
2. 온도가 1.75 일 때 당분으로 변환된 양: 9.58
# 연습문제 5
import numpy as np
from scipy import stats
x = np.array([1, 2, 3, 4, 5])
y = np.array([3, 3, 2, 6, 5])
# 선형 회귀 모델
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
print("1. 선형 회귀 모델을 구하시오")
print(f'선형 회귀 모델: b0 = {intercept:.2f} y = {intercept:.2f} + {slope:.2f}x')
# SE^2
SE_2 = (std_err**2) * 10
print("\n2. SE^2을 구하시오")
print(f'SE^2: {SE_2:.5f}')
# H0 : Beta1 = 0, Ha : beta ! 0을 alpha = 0.05로 검정
print("\n3. H0 : Beta1 = 0, Ha : beta ! 0을 alpha = 0.05로 검정하시오")
alpha = 0.05
if p_value < alpha:
```

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

유의 수준 5%인 beta의 신뢰 구간
n = len(x)
t_critical = stats.t.ppf(1 - alpha/2, n-2)
lower_bound = abs(slope - t_critical * std_err)
upper_bound = slope + t_critical * std_err
print("\n4. 유의수준 5%인 beta의 신뢰구간을 구하시오")
print(f'유의 수준 5%인 beta의 신뢰 구간: [{lower_bound:.4f}, {upper_bound:.4f}]')
print(f'beta의 신뢰구간 {lower_bound:.4f} < beta < {upper_bound:.4f}')

1. 선형 회귀 모델을 구하시오 선형 회귀 모델: b0 = 1.70 y = 1.70 + 0.70x

2. SE^2을 구하시오 SE^2: 1.96667

3. H0: Beta1 = 0, Ha: beta! 0을 alpha = 0.05로 검정하시오 p-value는 0.2126로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

4. 유의수준 5%인 beta의 신뢰구간을 구하시오 유의 수준 5%인 beta의 신뢰 구간: [0.7113, 2.1113] beta의 신뢰구간 0.7113 < beta < 2.1113

연습문제 7

import numpy as np from scipy import stats

x = np.array([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])y = np.array([8.1, 7.8, 8.5, 9.8, 9.5, 8.9, 8.6, 10.2, 9.3, 9.2, 10.5])

회귀직선 추정

print('1. 회귀직선을 추정하라')

slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) print(f'회귀직선: y = {intercept:.2f} + {slope:.2f}x')

```
# 온도가 1.75일 때 당분으로 변환된 양 추정
print('\n2. 온도가 1.75일 때, 당분으로 변환된 양을 추정하라')
y_pred = intercept + slope * 1.75
print(f'온도가 1.75일 때 당분으로 변환된 양: {y_pred:.2f}')
# s(2)^2 계산
SE_2 = std_err**2
print('\n3. s(e)^2을 구하라')
print(f's(2)^2: {SE_2:.4f}')
# beta의 95% 신뢰구간 계산
n = len(x)
t_{critical} = stats.t.ppf(0.975, n-2)
lower_bound = slope - t_critical * std_err
upper_bound = slope + t_critical * std_err
print(f'\nβ의 95% 신뢰구간: [{lower_bound:.3f} < β < {upper_bound:.3f}]')
1. 회귀직선을 추정하라
회귀직선: y = 6.41 + 1.81x
2. 온도가 1.75일 때, 당분으로 변환된 양을 추정하라
온도가 1.75일 때 당분으로 변환된 양: 9.58
3. s(e)^2을 구하라
s(2)^2: 0.3638
β의 95% 신뢰구간: [0.445 < β < 3.174]
# 연습문제 11
import numpy as np
from scipy import stats
x = np.array([2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10])
y = np.array([3, 7, 6, 8, 10, 8, 13, 16, 15, 21, 23, 24])
# 최소제곱 회귀직선식
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
print(f'최소제곱 회귀직선식: y = {intercept:.2f} + {slope:.2f}x')
```

90% 구간 추정

n = len(x)

```
t_{critical} = stats.t.ppf(0.95, n-2)
lower_bound = slope - t_critical * std_err
margin_of_error = t_critical * std_err
print(f'90% 구간 추정: {slope:.2f} +- {margin_of_error:.3f}')
최소제곱 회귀직선식: y = -3.23 + 2.68x
90% 구간 추정: 2.68 +- 0.513
# 연습문제 13
# 데이터를 보고 물음에 답하라!
# [ 조건 ]
# 1. 회귀직선식을 구하시오
# 2. 95%의 beta의 구간추정치를 구하시오
# 3. 회귀직선의 기울기에 대한 유의성 검정을 수행하시오
import numpy as np
from scipy import stats
from sklearn.linear_model import LinearRegression
X = \text{np.array}([4, 2, 9, 8, 14, 2, 11, 14, 7, 4, 1, 9, 9, 10, 5]).reshape(-1, 1)
Y = np.array([423, 520, 550, 309, 690, 401, 470, 582, 284, 440, 452, 568, 339, 355,
472])
model = LinearRegression()
model.fit(X,Y)
print('1. 회귀직선식을 구하시오')
print("Intercept: ", round((model.intercept_), 3))
print("Coefficient: ", round((model.coef_[0]), 3))
Y_pred = model.predict(X)
residuals = Y - Y_pred
residual_sum_of_squares = np.sum(residuals**2)
s2 = residual_sum_of_squares / (len(Y) -2)
standard\_error = np.sqrt(s2) * np.sqrt(np.sum((X - np.mean(X))**2))
t_{critical} = stats.t.ppf(1 - 0.05/2, df = len(Y) - 2)
lower_bound = model.coef_[0] - t_critical * standard_error
```

upper_bound = model.coef_[0] + t_critical * standard_error

print('\n2. beta의 95% 구간추정치를 구하시오')
print("beta의 95% 구간추정치 : (", round((lower_bound), 3),",", round((upper_bound), 3),")")

 $t_{statistic} = model.coef_[0] / (np.sqrt(s2) * np.sqrt(np.sum((X - np.mean(X))**2)))$ $p_{value} = 2 * (1 - stats.t.cdf(abs(t_statistic), df=len(Y)-2))$

print('\n3. 회귀직선의 기울기에 대한 유의성 검정을 수행하시오') alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

1. 회귀직선식을 구하시오

Intercept: 385.39 Coefficient: 9.855

- 2. beta의 95% 구간추정치를 구하시오 beta의 95% 구간추정치 : (-3636.206 , 3655.915)
- 3. 회귀직선의 기울기에 대한 유의성 검정을 수행하시오 p-value는 0.9954로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 15

import numpy as np

from sklearn.linear_model import LinearRegression

X = np.array([1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990]).reshape(-1,1)

Y = np.array([76.1, 83.8, 92.4, 100.5, 106.5, 115.8, 123.1, 127.3, 132.5, 133.4, 151.9, 165.1, 180.0, 193.5, 204.0,215.5 ,227.2 ,237.9 ,249.4])

 $log_Y = np.log(Y)$

model = LinearRegression()

```
model.fit(X,Y)
print('1. 회귀직선식과 상관계수를 구하여라')
print("Intercept: ", round((model.intercept_), 4))
print("Coefficient: ", round((model.coef_[0]), 4))
correlation_coefficient = np.corrcoef(X.reshape(1,-1), Y)[0][1]
print("상관계수 : ", round((correlation_coefficient), 4))
population_2100_modelA = model.predict(np.array([[2100]]))[0]
year_modelA = (300 - model.intercept_) / model.coef_[0]
model.fit(X,log_Y)
print('\n2. 비선형 모델을 찾기 위해, log(인구수) 대 년도(1900~)을 그리고 회귀직선과 상관
계수를 구하여라')
print("Intercept: ", round((model.intercept_), 4))
print("Coefficient: ", round((model.coef_[0]), 4))
correlation_coefficient = np.corrcoef(X.reshape(1,-1), Y)[0][1]
print("상관계수: ", round((correlation_coefficient), 4))
population_2100_modelB = model.predict(np.array([[2100]]))[0]
year_modelB = (300 - model.intercept_) / model.coef_[0]
print('\n3. 각각의 모델을 이용해 2100년의 인구수를 예측하고 인구수가 300(millions)에 이
르는 시기를 예측하라')
print(f"2100년의 인구수 예측 (모델A) {population_2100_modelA}")
print(f"300 millian에 인구수가 도달하는 시점 (모델A): {year_modelA}\n")
print(f"2100년의 인구수 예측 (모델B) {population_2100_modelB}")
print(f"300 millian에 인구수가 도달하는 시점 (모델B) : {year_modelB}")
# 연습문제 15
import numpy as np
from sklearn.linear_model import LinearRegression
X = np.array([1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950,
1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990]).reshape(-1,1)
Y = np.array([76.1, 83.8, 92.4, 100.5, 106.5, 115.8, 123.1, 127.3, 132.5, 133.4, 151.9,
165.1, 180.0, 193.5, 204.0,215.5 ,227.2 ,237.9 ,249.4])
log_Y = np.log(Y)
```

model = LinearRegression()

```
print('1. 회귀직선식과 상관계수를 구하여라')
print("Intercept: ", round((model.intercept_), 4))
print("Coefficient: ", round((model.coef_[0]), 4))
correlation_coefficient = np.corrcoef(X.reshape(1,-1), Y)[0][1]
print("상관계수: ", round((correlation_coefficient), 4))
population_2100_modelA = model.predict(np.array([[2100]]))[0]
year_modelA = (300 - model.intercept_) / model.coef_[0]
model.fit(X,log_Y)
print('\n2. 비선형 모델을 찾기 위해, log(인구수) 대 년도(1900~)을 그리고 회귀직선과 상관
계수를 구하여라')
print("Intercept: ", round((model.intercept_), 4))
print("Coefficient: ", round((model.coef_[0]), 4))
correlation_coefficient = np.corrcoef(X.reshape(1,-1), Y)[0][1]
print("상관계수: ", round((correlation_coefficient), 4))
population_2100_modelB = model.predict(np.array([[2100]]))[0]
year_modelB = (300 - model.intercept_) / model.coef_[0]
print('\n3. 각각의 모델을 이용해 2100년의 인구수를 예측하고 인구수가 300(millions)에 이
르는 시기를 예측하라')
print(f"2100년의 인구수 예측 (모델A) {population_2100_modelA}")
print(f"300 millian에 인구수가 도달하는 시점 (모델A): {year_modelA}\n")
print(f"2100년의 인구수 예측 (모델B) {population_2100_modelB}")
print(f"300 millian에 인구수가 도달하는 시점 (모델B) : {year_modelB}")
분산분석
# 연습문제 1 / 예제(11.1), p351
import pandas as pd
from scipy import stats
# 귀무가설: 각 지역에 있어서 박테리아의 균집수에는 유의적인 차이가 없다.
# 대립가설: 각 지역에 있어서 박테리아의 균집수에는 유의적인 차이가 있다.
A = [72, 69, 63, 53, 51]
B = [47, 52, 45, 30]
```

model.fit(X.Y)

```
C = [56, 58, 56]
D = [69, 67, 62]
df = pd.DataFrame(zip(A, B, C, D), columns=['A', 'B', 'C', 'D'])
h_value, p_value = stats.kruskal(df['A'].dropna(), df['B'].dropna(), df['C'].dropna(),
df['D'].dropna())
print(f'H-value: {round((h_value), 4)}')
print(f'P-value: \{round((p_value), 4)\}\n')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
H-value: 9.6185
P-value: 0.0221
p-value는 0.0221로, 유의 수준 0.05보다 작다.
따라서 귀무 가설을 기각한다.
# 예제(11.1)
import pandas as pd
from scipy import stats
# 귀무가설 : 온도계에 따른 온도의 차이가 없다.
# 대립가설 : 온도계에 따른 온도의 차이가 있다.
# 11.1 과 다르게 한번에 데이터프레임으로 변환하는 경우.
data = {'A': [18, -18, -4, 8],
       'B': [24, 20, 1, 10],
       'C': [5, -24, -8, -17]}
df = pd.DataFrame(data)
```

f_value, p_value = stats.f_oneway(df['A'], df['B'], df['C'])

print(f'F-value: {round((f_value), 3)}')
print(f'P-value: {round((p_value), 3)}\n')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.3f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.3f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

F-value: 3.641 P-value: 0.069

p-value는 0.069로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

예제(11.3)

공원1 , 공원2, 공원3이 기계(A~D)를 사용하여 하루에 생산하는 제품의 수는 다음과 같았을 때, 기계의 차에 의한 영향을 배제하고 개인차를 검정하여라 또한 개인차를 배제한 기계에 의한 제품수의 평균차(기계의 우열)을 검정하라

[조건]

1. 평균값 사이의 차를 조사하면 유의차는 인정되지 않는다.

2. 데이터는 기계의 차에 의한 변동 때문에 개인차에 의한 변동이 나타나지 않을 수도 있다.

3. 데이터의 각 제품 수는 제조한 제품 개수에서 [35]개를 제외한 것이다.

import pandas as pd from scipy import stats

귀무가설A : 개인차가 없다. # 대립가설A : 개인차가 있다.

귀무가설B : 기계에 의한 차이가 없다. # 대립가설B : 기계에 의한 차이가 있다.

data = {'1': [1, 3, 2, 0], '2': [0, 2, 3, -2], '3': [-1, 1, 0, -3]}

```
df = pd.DataFrame(data, columns=['1', '2', '3'], index=['A', 'B', 'C', 'D'])
# 개인차 검정
f_value, p_value = stats.f_oneway(df['1'], df['2'], df['3'])
print(f'F-value (개인차 검정): {round((f_value), 2)}')
print(f'P-value (개인차 검정) : {round((p_value), 2)}\n')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
print("\n-----")
# 기계 차이 검정
f_value, p_value = stats.f_oneway(df.loc['A'], df.loc['B'], df.loc['C'], df.loc['D'])
print(f'\nF-value (기계차 검정) : {round((f_value), 2)}')
print(f'P-value (기계차 검정) : {round((p_value), 2)}\n')
alpha = 0.05
if p_value < alpha:
   print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value: .4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
F-value (개인차 검정) : 1.66
P-value (개인차 검정): 0.24
p-value는 0.2438로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
```

F-value (기계차 검정): 5.13

P-value (기계차 검정): 0.03

p-value는 0.0286로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

예제(11.4)

무연탄에서 코크스를 제조하는데 10% 첨가하는 역청탄 (Y(n))을 5종류 선택하고 타르피티 (A1~A4)을 A1: 4%, A2: 6%, A3: 8%, A4: 10%로 첨가하여 5종류의 혼합탄을 제조하고 코 크스의 내압강도 (kg/com^2)을 측정한 결과가 다음과 같을 때, 이 자료에 대해 이원배치법의 모형을 적용한다면 역청탄의 종류와 타르피치의 첨가량이 코크스의 내압강도에 미치는 영향을 검정하시오.

[조건]: 유의수준 5%에서 검정하시오.

import pandas as pd from scipy import stats

귀무가설: 역청탄의 종류와 타르피치의 첨가량이 코크스의 내압강도에 영향을 미치지 않는다.

대립가설: 역청탄의 종류와 타르피치의 첨가량이 코크스의 내압강도에 영향을 미친다.

data = {'Y1': [79, 75, 65, 65], 'Y2': [72, 66, 62, 62], 'Y3': [51, 48, 41, 41], 'Y4': [58, 56, 45, 45], 'Y5': [68, 62, 58, 58]}

df = pd.DataFrame(data, columns=['Y1', 'Y2', 'Y3', 'Y4', 'Y5'], index=['A1', 'A2', 'A3', 'A4'])

역청탄 종류 영향 검정

f_value1, p_value1 = stats.f_oneway(df['Y1'], df['Y2'], df['Y3'], df['Y4'], df['Y5'])

print(f'F-value : {f_value1}')
print(f'P-value : {p_value1}')

alpha = 0.05

if p_value1 < alpha:

print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

타르피치 첨가량 영향 검정

f_value2, p_value2 = stats.f_oneway(df.loc['A1'], df.loc['A2'], df.loc['A3'], df.loc['A4'])

print(f'\nF-value2 : {f_value2}')
print(f'P-value2 : {p_value2}')

alpha = 0.05

if p_value2 < alpha:

print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

F-value: 13.13366093366094

P-value: 8.588588287858503e-05

p-value는 0.0001로, 유의 수준 0.05보다 작다.

따라서 귀무 가설을 기각한다.

F-value2 : 1.4011025358324143 P-value2 : 0.2788614720327024

p-value는 0.2789로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

예제(11.5)

세 종류의 호르몬 처리와 성별에 따라 혈액 칼슘값에 차이가 있는지 알아보기 위해 남녀 각 15명씩 선정하여 세 집단으로 나누어 세 가지 호르몬 처리를 한 후 혈액 칼슘을 측정한 결과가 다음과 같을 때, 조건을 따라 검정하시오

[조건]

1. 남녀 간의 혈액칼슘값에 차이가 있는가?

2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가?

3. 성별과 처리 간의 상호작용(교호작용)이 있는가?

import pandas as pd from scipy import stats

```
data = {'x1': [16.87, 16.18, 17.12, 16.83, 17.19, 15.86, 14.92, 15.63, 15.24, 14.80],
       'x2': [19.07, 18.77, 17.63, 16.99, 18.04, 17.20, 17.64, 17.89, 16.78, 16.72].
       'x3': [32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41, 28.97, 28.46, 29.65]}
df = pd.DataFrame(data)
f_value1, p_value1 = stats.f_oneway(df.loc[:4].mean(axis=1), df.loc[5:].mean(axis=1))
# 귀무가설: 남녀 간의 혈액칼슘값에 차이가 없다.
# 대립가설: 남녀 간의 혈액칼슘값에 차이가 있다.
print('1. 남녀 간의 혈액칼슘값에 차이가 있는가?')
print(f'F-value (gender): {f_value1}')
print(f'P-value (gender): {p_value1}')
alpha = 0.05
if p_value1 < alpha:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
f_value2, p_value2 = stats.f_oneway(df['x1'], df['x2'], df['x3'])
# 귀무가설: 처리 1,2,3 간의 혈액칼슘값에 차이가 없다.
# 대립가설: 처리 1,2,3 간의 혈액칼슘값에 차이가 있다.
print('\n2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가?')
print(f'F-value (hormone treatment): {f_value2}')
print(f'P-value (hormone treatment): {p_value2}')
alpha = 0.05
if p_value2 < alpha:
   print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
```

_, p_value3 = stats.f_oneway(df.loc[:4].mean(axis=1), df.loc[5:].mean(axis=1), df['x1'], df['x2'], df['x3'])

 $f_{value3} = stats.f_{oneway}(df.loc[:4].mean(axis=1), df.loc[5:].mean(axis=1), df['x1'], df['x2'], df['x3']).statistic$

귀무가설: 성별과 처리 간의 상호작용(교호작용)이 없다. # 대립가설: 성별과 처리 간의 상호작용(교호작용)이 있다.

print('\n3. 성별과 처리 간의 상호작용(교호작용)이 있는가?') print(f'P-value (상호작용(p)): {p_value3}')

alpha = 0.05

if p_value3 < alpha:

print(f"p-value는 {p_value3:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value3:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

1. 남녀 간의 혈액칼슘값에 차이가 있는가?
F-value (gender): 1.2281053891636358
P-value (gender): 0.2999781499107576
p-value는 0.3000로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음

2. 처리 1,2,3 간의 혈액칼슘값에 차이가 있는가? F-value (hormone treatment): 183.84284815750473 P-value (hormone treatment): 1.8793907468359085e-16 p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

3. 성별과 처리 간의 상호작용(교호작용)이 있는가? P-value (상호작용(p)): 3.5024986934065393e-19 p-value는 0.0000로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

예제(11.6)

시멘트 분쇄공정에서 시멘트 강도에 영향을 주는 여러 요인 중에서 우선적으로 석고의 종류(A) 와 석고첨가량으로 사용되는 SO(3)함량 (B)가 어떤 영향을 주는 지 실험한 결과가 다음 과 같았을 때, 석고 종류의 효과, 첨가량에 대한 효과가 있는지와 석고의 종류와 첨가량 사이에 교호작용의 효과가 있는지를 검정하시오

```
# 1. 유의수준은 0.05로 한다.
import pandas as pd
from scipy import stats
data = {'A1': [607, 672, 730, 746, 749, 698],
       'A2': [647, 698, 650, 660, 657, 618],
       'A3': [642, 686, 674, 696, 700, 658]}
df = pd.DataFrame(data, columns=['A1', 'A2', 'A3'], index=['B1', 'B2', 'B3', 'B4', 'B5',
'B6'])
f_value1, p_value1 = stats.f_oneway(df['A1'], df['A2'], df['A3'])
# 귀무가설: 석고의 종류에 따른 시멘트 강도의 차이가 없다.
# 대립가설: 석고의 종류에 따른 시멘트 강도의 차이가 있다.
print(f'P-value : {p_value1}')
alpha = 0.05
if p_value1 < alpha:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
else:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
f_value2, p_value2 = stats.f_oneway(df.loc['B1'], df.loc['B2'], df.loc['B3'], df.loc['B4'],
df.loc['B5'], df.loc['B6'])
# 귀무가설: 첨가량에 따른 시멘트 강도의 차이가 없다.
# 대립가설: 첨가량에 따른 시멘트 강도의 차이가 있다.
print(f'P-value SO(3)): {p_value2}')
alpha = 0.05
if p_value2 < alpha:
   print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각한다.")
```

[조건]

else:

print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

_, p_value3 = stats.f_oneway(df['A1'], df['A2'], df['A3'], df.loc['B1'], df.loc['B2'], df.loc['B3'], df.loc['B4'], df.loc['B5'], df.loc['B6'])

귀무가설: 석고의 종류와 첨가량 사이에 교호작용의 효과가 없다. # 대립가설: 석고의 종류와 첨가량 사이에 교호작용의 효과가 있다.

print(f'\nP-value : {p_value3}')

alpha = 0.05

if p_value3 < alpha:

print(f"p-value는 {p_value3:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value3:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

F-value : 2.232521526796042 P-value : 0.14166715686164683

p-value는 0.1417로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

F-value SO(3)): 1.682756296857889 P-value SO(3)): 0.2130940316327734 p-value는 0.2131로, 유의 수준 0.05보다 크거나 같다.

P-value: 0.17321653654926122

따라서 귀무 가설을 기각할 수 없음

p-value는 0.1732로, 유의 수준 0.05보다 크거나 같다.

따라서 귀무 가설을 기각할 수 없음

연습문제 1

세 공정에서 생산된 철선의 인장강도 차이를 알아보기 위해 공정 1에서 4회, 공정 2에서 5회, 공정 3에서 6회 총 15회의 랜덤 측정을 진행한 후 얻은 인장강도 결과가 다음과 같을 때, 일원배치법의 모형을 적용해 공정에 따라 인장강도에 차가 있다고 할 수 있는지를 유의수준 5%에서 검정하시오.

import pandas as pd from scipy import stats

process1 = [2, 3, 4, 5] process2 = [4, 5, 6, 4, 3] process3 = [6, 5, 7, 4, 6, 8]

df = pd.DataFrame(zip(process1, process2, process3), columns=['Process 1', 'Process 2', 'Process 3'])

 $f_value, \ p_value = stats.f_oneway(df['Process 1'].dropna(), \ df['Process 2'].dropna(), \ df['Process 3'].dropna())$

print(f'F-value: {f_value}')
print(f'P-value: {p_value}\n')

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

F-value: 2.882352941176471 P-value: 0.10779030282150491

p-value는 0.1078로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

연습문제 5

생산 공장에서 5명의 기능공 (b1~b5)가 4대의 기계 (a1~4)를 하루씩 이용하여 생산한 제품의 양을 조사한 결과이다. 제품을 생산하는데 기능공 사이에 효과가 다른지, 기계들의 효과가다른지 검정하시오

import pandas as pd from scipy import stats

data = {'b1': [90, 92, 95, 98], 'b2': [98, 92, 93, 96],

```
'b4': [100, 94, 96, 93],
       'b5': [96, 98, 90, 99]}
df = pd.DataFrame(data, columns=['b1', 'b2', 'b3', 'b4', 'b5'], index=['a1', 'a2', 'a3',
'a4'])
f_value1, p_value1 = stats.f_oneway(df['b1'], df['b2'], df['b3'], df['b4'], df['b5'])
print('1. 제품을 생산하는데 기능공 사이에 효과가 다른지 검정하시오')
print(f'F-value (workers): {f_value1}')
print(f'P-value (workers): {p_value1}')
alpha = 0.05
if p_value1 < alpha:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value1:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
f_value2, p_value2 = stats.f_oneway(df.loc['a2'], df.loc['a3'], df.loc['a4'])
print('\n2. 기계들의 효과가 다른지 검정하시오')
print(f'F-value (machines): {f_value2}')
print(f'P-value (machines): {p_value2}')
alpha = 0.05
if p_value2 < alpha:
   print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을
기각하다.")
else:
   print(f"p-value는 {p_value2:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무
가설을 기각할 수 없음")
1. 제품을 생산하는데 기능공 사이에 효과가 다른지 검정하시오
F-value (workers): 0.481042654028436
P-value (workers): 0.7493498549100586
p-value는 0.7493로, 유의 수준 0.05보다 크거나 같다.
```

'b3': [99. 93. 91. 97].

따라서 귀무 가설을 기각할 수 없음

```
2. 기계들의 효과가 다른지 검정하시오
F-value (machines): 2.045197740112995
P-value (machines): 0.172062870805254
p-value는 0.1721로, 유의 수준 0.05보다 크거나 같다.
따라서 귀무 가설을 기각할 수 없음
import numpy as np
import scipy.stats as stats
data = np.array([[39.0, 33.1, 33.8, 33.0],
               [36.9, 27.2, 29.7, 28.5],
               [27.4, 29.2, 26.7, 30.9]])
# 평균과 제곱합 계산
grand_mean = np.mean(data)
ss_total = np.sum((data - grand_mean) ** 2)
ss_humidity = np.sum((np.mean(data, axis=1) - grand_mean) ** 2) * data.shape[1]
ss_plastic_type = np.sum((np.mean(data, axis=0) - grand_mean) ** 2) *
data.shape[0]
ss_error = ss_total - ss_humidity - ss_plastic_type
# 자유도 계산
df_humidity = data.shape[0] - 1
df_plastic_type = data.shape[1] - 1
df_error = df_humidity * df_plastic_type
df_total = np.prod(data.shape) - 1
# 평균제곱과 F-통계량 계산
ms_humidity = ss_humidity / df_humidity
ms_plastic_type = ss_plastic_type / df_plastic_type
ms_error = ss_error / df_error
f_humidity = ms_humidity / ms_error
f_plastic_type = ms_plastic_type / ms_error
# P-value 계산
p_humidity = stats.f.sf(f_humidity, df_humidity, df_error)
p_plastic_type = stats.f.sf(f_plastic_type, df_plastic_type, df_error)
print('요인\t\t제곱합\t\t자유도\t\t평균제곱\t\tF-통계량\t\tP-value')
                                                                   df_humidity,
print('A\t\{:.3f\}\t\{:.3f\}\t\{:.3f\}\t\}.format(ss_humidity,
```

ms_humidity, f_humidity, p_humidity))

 $print('B\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\t$

ms_plastic_type, f_plastic_type, p_plastic_type))

 $print('\mathcal{P}^{t}_{1:3f}^{t}_{1:3$

print('총합\t\t{:.3f}\t\t{}'.format(ss_total, df_total))

요인	제곱합		자유도	평균제곱	F-통계량
	P-value	P-value			
А	79.272		2	39.636	4.692
0.059					
В	41.217		3	13.739	1.626
0.280					
오차	50.688		6	8.448	
총합	171.177		11		

연습문제 9

네 종류 기계와 세 사람의 기능공이 생산하는 제품의 생산량을 3회 반복하여 측정한 자료는 다음과 같다. 이때 [조건]을 유의수준 5%에서 검정하시오.

[조건]

1. 세 기능공의 능력은 같은가?

2. 네 종류의 기계의 성능은 같은가?

3. 네 종류의 기계와 세 기능공의 상호작용(교호작용)이 있는가?

import pandas as pd from scipy import stats

data = {'1': [47, 58, 53], '2': [47, 64, 65], '3': [33, 42, 29], '4': [39, 52, 50]} df = pd.DataFrame(data, index=['A', 'B', 'C'])

print('1. 세 기능공의 능력은 같은가?')

 $fvalue, \ p_value \ = \ stats.f_oneway(df.loc['A'], \ df.loc['B'], \ df.loc['C'])$

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

print('\n2 네 종류의 기계의 성능은 같은가?')

 $fvalue, p_value = stats.f_oneway(df['1'], df['2'], df['3'], df['4'])$

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

print('\n3. 네 종류의 기계와 세 기능공의 상호작용(교호작용)이 있는가?')

 $\verb|--, p_value| = stats.friedmanchisquare(df.loc['A'], df.loc['B'], df.loc['C'])$

alpha = 0.05

if p_value < alpha:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 작다.\n따라서 귀무 가설을 기각한다.")

else:

print(f"p-value는 {p_value:.4f}로, 유의 수준 {alpha}보다 크거나 같다.\n따라서 귀무 가설을 기각할 수 없음")

1. 세 기능공의 능력은 같은가? p-value는 0.3113로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음

2 네 종류의 기계의 성능은 같은가? p-value는 0.0234로, 유의 수준 0.05보다 작다. 따라서 귀무 가설을 기각한다.

3. 네 종류의 기계와 세 기능공의 상호작용(교호작용)이 있는가? p-value는 0.1054로, 유의 수준 0.05보다 크거나 같다. 따라서 귀무 가설을 기각할 수 없음