Computational Linguistics CSC 2501 / 485 Assignment Project Examolical

10A

10A. Log-Liktpsi/powdoder.com
Dependencechapsingder

Gerald Penn
Department of Computer Science, University of Toronto

Based on slides by Yuji Matsumoto, Dragomir Radev, David Smith and Jason Eisner

Copyright © 2017 Gerald Penn. All rights reserved.

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

Part-of-speech tagging

POS-tagged sentence

He reckons the carse it grace to the first yellow to RB CD CD IN NNP .

https://powcoder.com Word dependency parsing

Word dependency parded Wee Chat powcoder

He reckons the current account deficit will narrow to only 1.8 billion in September .

Shift-Reduce Type Algorithms

Assignment Project Exam Help

- ▶ Stack $[..., w_i]_S$ of partially processed tokens
- Queue $[w_j, \ldots]_Q$ of remaining input tokens
- https://poweoder.com
 - Adding arcs $(w_i \rightarrow w_i, w_i \leftarrow w_i)$
 - Stack and queue operations
- Left-to-right Wasing in the power of the Restricted to projective dependency graphs

Dependency Parsing 54(103)

Yamada's Algorithm

► Three parsing actions:

Assignment Project Exam Help

- Anorithm validates Chat powcoder originally developed for Japaness (strictly head-final) with only the Shift and Right actions [Kudo and Matsumoto 2002]
 - ► Adapted for English (with mixed headedness) by adding the Left action [Yamada and Matsumoto 2003]
 - ▶ Multiple passes over the input give time complexity $O(n^2)$

Dependency Parsing 55(103)

Nivre's Algorithm

► Four parsing actions:

Assignment Project Exam Help

- Characteristics:
 - Integrated labeled dependency parsing
 - Arc-eager processing of right-dependents
 - ▶ Single pass over the input gives time complexity O(n)

Dependency Parsing 56(103)

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

```
https://powcoder.com
[root]<sub>S</sub> Economic [news had little effect on financial markets .]<sub>Q</sub>
Add WeChat powcoder

Left-Arc<sub>nmed</sub>
```

Assignment Project Exam Help

```
https://powcoder.com
[root Economic news]s [had little effect on financial markets .]Q
Add WeChat powcoder
Shift
```

Assignment Project Exam Help

```
https://powcoder.com
[root]<sub>S</sub> Economic news [had little effect on financial markets .]<sub>Q</sub>
Add WeChat powcoder

Left-Arc<sub>shi</sub>
```

Assignment Project Exam Help

Assignment Project Exam Help

```
https://powcoder.com

[root Economic news had little]s [effect on financial markets .]Q

Add WeChat powcoder

Shift
```

Assignment Project Exam Help

Dependency Parsing

Assignment Project Exam Help

Dependency Parsing

Classifier-Based Parsing

phriven deterministic parsing requires an oracle. Exam Help

- An oracle can be approximated by a classifier.
- A classifier can be trained using treebank data.
- the subport vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003, Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]

Nivre et al. 2004, Nivre and Schol 2004

Maximum entropy modeling (MaxEnt) [Cheng et al. 2005]

Dependency Parsing 58(103)

Feature Models

Learning problem: gnipoce full full into the control of states repetaned by elp feature vectors to parser actions, given a training set of gold

standard derivations.

Typical features: 7/powcoder.com

- Linear context (neighbors in S and Q)
- Structural context (parents, children, siblings in G)

Word form (and lemma

- Part-of-speech (and morpho-syntactic features)
- Dependency type (if labeled)
- Distance (between target tokens)

Dependency Parsing 59(103)

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff 1972)

In the beginning, we used generative models.

```
p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * ...
Assignment Project Exam Help
each choice depends on a limited part of the history

but which depttps://powcoder.com/D | A,B,C)?
what if they're all worthwhile?
Add WeChat powcoder
... p(D | A,B) * p(C | A,B,D)?
```

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff 1972)

In the beginning, we used generative models.

Solution: Log-linear (max-entropy) modeling

```
(1/Z) * \Phi(A) (A) (A)
```

...throw them all in!

- Features may interact in arbitrary ways
- **Iterative scaling** keeps adjusting the feature weights until the model agrees with the training data.

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

Add WeChat powcoder

Also good for dependency parsing

but to allow fast dynamic programming or MST parsing, only use single-edge features

Is this a good edge?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Byl jasný studený dubnový den a hodiny odbíjely třináctou

Is this a good edge?

How about this competing edge?

14

How about this competing edge?

"It was a bright cold day in April and the clocks were striking thirteen"

- Which edge is better?
 - "bright day" or "bright clocks"?

Assignment Project Exam Help

"It was a bright cold day in April and the clocks were striking thirteen"

our current weight vector

- Which edge is better?
- Score of an edge $e = \theta$ features(e)
- Standard algos → valid parse with max total score Assignment Project Exam Help

"It was a bright cold day in April and the clocks were striking thirteen"

- Which edge is better?
- Score of an edge $e = \theta$ features(e)
- Standard algos → valid parse with max total score Assignment Project Exam Help

https://powcoder.com

can't have both Add WeChat powcoder (no crossing links)

Thus, an edge may lose (or win) because of a consensus of <u>other</u> edges.

our current weight vector

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
 - CKY algorithm for CFG parsing is O(n³)
 Assignment Project Exam Help
 Unfortunately, O(n⁵) in this case
 - - to score "catto swore" winks der enough to know this is NP
 - must know it's rooted at "cat"
 - so expand nonterminal set by O(n): {NP_{the}, NP_{cat}, NP_{hat}, ...}
 - so CKY's "grammar constant" is no longer constant ☺

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
 - CKY algorithm for CFG parsing is O(n³)
 Assignment Project Exam Help
 Unfortunately, O(n⁵) in this case

 - Solution: Usetasdifferent decomposition (Eisner 1996)
 - Back to O(n³)dd WeChat powcoder

Spans vs. constituents

Two kinds of substring.

» Constituent of the tree links to the rest only through its headword (root).

» Span of the tree: links to the rest only through its endwords.

Decomposing a tree into spans

Hard Constraints on Valid Trees

our current weight vector

- Score of an edge $e = \theta$ features(e)
- Standard algos > valid parse with max total score Assignment Project Exam Help

https://powcoder.com

can't have bothdd WeChat powcoder (no crossing links)

Thus, an edge may lose (or win) because of a consensus of other edges.

Non-Projective Parses

subtree rooted at "talk".
is a Assignment Project Exam Help

https://powcoder.com

Add WeChat powcodern't have both (no crossing links)

The "projectivity" restriction. Do we really want it?

Non-Projective Parses

That glory may-know my going-gray (i.e., it shall last till I go gray)

frequent non-projectivity in Latin, etc.

Non-Projective Parsing Algorithms

Assignment (Non-Project Exam Help

Problem/Algorithm	Proj	NonP
Gaifman 1965, Neuhaus and Bröker 1997	ler.c	O Mrd
Deterministic parsing [Nivre 2003, Covington 2001]	O(n)	$O(n^2)$
Nivre 2003, Covington 2001 Airst Cler Wind tree at 1 [McDonald et al. 2005b])@W)(coder
Nth order spanning tree (N $>$ 1) [McDonald and Pereira 2006]	Р	<i>NP</i> hard

Dependency Parsing 65(103)

McDonald's Approach (non-projective)

- Consider the sentence "John saw Mary" (left).
- The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) – may be non-projective.
- Can be for giften the control of the c

Summing over all non-projective trees ng highest-scoring non projective tree

- Consider the sentence "John saw Mary" (left).
- The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) – may be non-projective.
- Can be for sgignment Broject Exam Help

https://powcoder.com

- How about total weight Z of all trees?

 Add WeChat powcoder

 Can be found in time O(n³) by matrix determinants and inverses (Smith & Smith, 2007).

Graph Theory to the Rescue!

O(n³) time!

Less Matrix! Prejetheorer Help948)

The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at orde r.

Exactly the Z we need!

$$\sum_{j\neq 1}^{r} s(1,j) - s(2,1) \cdots - s(n,1) - s(n,1)$$
Assignment Project Exam Help columns
$$-s(1,2) \sum_{j\neq 2} s(2,j) + \frac{1}{2} \sin^2 s(n,2) - s(n,1) - s(1,n) - s(2,n) \cdots \sum_{j\neq n} s(n,j)$$
• Negate edge scores
Help columns
(children)
• Strike root row/col.
• Strike determinant
$$-s(1,n) - s(2,n) \cdots \sum_{j\neq n} s(n,j)$$

N.B.: This allows multiple children of root, but see Koo et al. 2007.

Why Should This Work?

Clear for 1x1 matrix; use induction

 $K' \equiv K$ with contracted edge 1,2

$$K'' \equiv K(\{1,2\} \mid \{1,2\})$$

$$|K| = s(1,2)|K'| + |K''|$$

Chu-Liu-Edmonds analogy:

Chu-Liu-Edmonds analogy:

Service of the selects best parent content and recure and recure of the service of the se

Undirected case; special root cases for directed

Graph Deletion & Contraction

Important fact: $\kappa(G) = \kappa(G-\{e\}) + \kappa(G\setminus\{e\})$