Nome: N° N°

Considere o sistema hidráulico abaixo, cuja bomba de engrenagens externas possui deslocamento volumétrico 0,08 L/rot, rotação 1200 rpm e eficiência volumétrica 92%. A válvula de alívio de pressão (PRV), instalada na saída da bomba, está configurada para abrir à pressão de 70 bar. O pórtico P da válvula de controle direcional (VCD) encontrase conectado ao pórtico A e o pórtico B da VCD encontra-se ligado ao pórtico T.

Dados adicionais: viscosidade cinemática 90 cS; peso específico do óleo 8800 N/m³; diâmetro do pistão 18 cm; diâmetro da haste 9 cm. Os diâmetros internos dos dutos e respectivos comprimentos são listados na tabela abaixo.

Duto	L (m)	D (pol)	Duto	L (m)	D (pol)
1	1	11/2	8	3	1
2	2	11/2	9	3	1
3	1	11/2	10	2	1
4	18	11/4	11	21	3/4
5	4	11/4	12	3	3/4
6	2	11/4	13	6	3/4
7	2	1			

Preencha uma tabela cujo modelo segue no verso, com os valores calculados para os fluxos (L/min) e velocidades (em m/s) em cada conjunto de segmentos de duto; idem para o número de Reynolds e para as perdas de carga (em metros e kPa).

Pesquise em sites de fabricantes de cotovelos de 90°, válvula de retenção por esfera, VCD e PRV os valores dos coeficientes de perda de carga (K) determinados experimentalmente para cada um dos acessórios.

Apresente as respostas na tabela com 3 (três) dígitos significativos. Os cálculos das perdas de carga na VCD devem ser feitos para o pior caso, ou seja, considerando a maior

velocidade. No caso de velocidades iguais nos pórticos de entrada e saída, deve-se adotar o pórtico de entrada para o cálculo.

Determine: (a) força externa F que o cilindro hidráulico pode deslocar (em kN) (b) potência consumida devido as perdas de carga no circuito (em kW) (c) a velocidade do pistão na expansão (em cm/s).

Segmentos	Q	v	N_R	$\Delta p(m)$	$\Delta p (kPa)$
1-2-3					
4-5-6					
7-8					
9-10					
11-12-13					

Formulário

$$Q = V_D \cdot N$$

$$p = \frac{F}{A}$$

$$\eta_v = \frac{Q_A}{Q_B}$$

$$Q = V \cdot A$$

$$A = \frac{\pi}{4}D^2$$

$$P = p \cdot Q$$

$$N_R = \frac{V \cdot D}{v}$$

$$H_{L_{maior}} = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}$$

$$f = \frac{64}{N_R}$$

$$H_{L_{menor}} = K \cdot \frac{V^2}{2g}$$

$$H_L(m) = H_{L_{maior}} + H_{L_{menor}}$$

$$\Delta p (kPa) = \gamma \cdot H_{L_{maior}} + \gamma \cdot H_{L_{menor}}$$