YAU
Solution - Homework 2 gale -
81) Mobility delectron in Si=4,1850 cm2 = 0.135 m2
4p=Mobility of election in Si = 480 cm² = 0.048 m² Vs Vs
E= 0.1 V = 0.1 = 1×105 V/m
velocity of electrons = MnE = (0.135 m²) (1x05 y)
= 1.35×104 m/s
velocity of holls = upc = (0.048 m²) (1x105x)
= 4.8×103 m/s
(b) As hole current is negligible
Jia = 19 [MINE + MPPE] ~ QUINE Jia = 1 mA/4m2
$M = J_{Tot}$
QUINE 1×10-12
= 1×109 A/m2 = 1×109
(1.6×1072)(0.135 mm) (1×10CX) 9=1.6×10-19C
$m = 4.6 \times 10^{23}$ electrons/m3
or n=4 cx10 = electrons/cm3
· Question 2) L= 0.1 um = 0.1 × 10-6m
A DOC 112 - 2 = 12 10 - 3 × 10 - 12
$= 2.5 \times 10^{-15} \text{ m}^2$
V = 1V
un = 0.135 m2/Vs
Mp= 0.048 m2/Vs
$m = 10^{17} \text{ cm}^{-3} - 10^{17} = 10^{23} \text{ m}^{-3}$
10-6

Date:
(a) m; (i=300k) = 5.2×1016(300)3/2 = emp[-1.12eV×16×10-19.]
2(136,10) \$2,000
=108×1010 cm-3
= 1.08 × 1016 m-3
P: mi = (1.08 × 1010) = 1.17 × 109 m3 = 1.17 × 1003 cm-3
7 10
F=V/L= 161×10-6 = 1×107 V/m
I hat = A. Trai
= A. a [4mn +4pp] E
$= (2.5 \times 10^{-15}) \cdot (1.6 \times 10^{-19}) \cdot (0.35 \text{ m}^2 (10^{23}) + 0.048 \text{ m}^2 (1.13 \times 10^{9})$ $= (2.5 \times 10^{-15}) \cdot (1.6 \times 10^{-19}) \cdot (0.35 \text{ m}^2 (10^{23}) + 0.048 \text{ m}^2 (1.13 \times 10^{9})$ $= (3.5 \times 10^{-15}) \cdot (1.6 \times 10^{-19}) \cdot (0.35 \text{ m}^2 (10^{23}) + 0.048 \text{ m}^2 (1.13 \times 10^{9})$
· (1×107)
m
1tot = 5.4×10-5 = 5411A
(b) n; (I=400K) = 5.2×1015 (400)3/2 exp -1.12ev x1.6×10-19
2(1.38×10-23 T/K)(400K)
= 3.7 × 1012 cm-3
= 3.7 ×1018 m3
$P = n_1^2 = (3.7 \times 10^{18})^2 = 1.37 \times 10^{14} \text{m}^{-3}$ 1023
E = 1×107 Vm
$\overline{17} = (25 \times 10^{-15} m^2) (1.6 \times 10^{-19}) \left[0.135 m^2 \left(1023 \right) + 0.048 m^2 \left(1.37 \times 10^{44} \right) \right]$
[s, ms, Ns(w3)]
7 5 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T-Tot = 5.4 × 10-5 = 54 MA

Q3 Given
$$N_D = 3.10^{16} \text{ cm}^{-3}$$
 $N_i = 1.08 \cdot 10^{10} \text{ cm}^{-3}$

$$Find Vo.$$

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_0 N_A}{n_i^2} \right) = \frac{kT}{q} \ln \left(\frac{N_0}{n_i} \right)$$

$$= \frac{(1.38 \cdot 10^{-23} \text{ J}_k)(300 \text{ k})}{1.6 \cdot 10^{-19} \text{ C}} \ln \left(\frac{3 \cdot 10^{16} \text{ cm}^3}{1.08 \cdot 10^{10} \text{ cm}^3} \right)$$

$$= 0.384 \text{ V}$$

$$\frac{Cjo}{\sqrt{1+\frac{0.5}{V_o}}} = 2.2 \quad \bigcirc$$

$$\frac{Cjo}{\sqrt{1+\frac{0.5}{V_o}}} = 1.3 \quad \bigcirc$$

$$0 \div 2 : \frac{1 + \frac{1.5}{V_0}}{1 + \frac{0.5}{V_0}} = \left(\frac{2.2}{1.3}\right)^2 \implies V_0 = 0.0365 \text{ V}$$

Substitute Vo into D:

$$G_{jo} = 2.2 \sqrt{1 + 0.5} \approx 8.43 \text{ fF/um}^2$$

⇒
$$\frac{N_A N_D}{N_A + N_D} = (G_{jo})^2 \cdot V_b \cdot \frac{2}{\xi_i q}$$

= $\left(8.43 \frac{fF}{um^2}\right)^2 \times (0.0365V) \cdot \frac{2}{\xi_i q} \approx 3.13 \cdot 10^{17} \text{ cm}^3$

$$N_{A} = 2 \cdot 10^{18} \text{ cm}^{-3} \implies N_{D} = \underbrace{y N_{A}}_{N_{A} - y}$$

$$= \underbrace{(3.13 \cdot 10^{17} \text{ cm}^{-3})(2 \cdot 10^{18} \text{ cm}^{-3})}_{(2 \cdot 10^{18} - 3.13 \cdot 10^{17}) \text{ cm}^{-3}}$$

$$\approx 3.71 \cdot 10^{17} \text{ cm}^{-3}$$

Q5 a) +
$$O$$
 I Suppose $I = I_s (e^{\frac{V_{DI}}{VT}} - 1)$

$$V_D = I_s (e^{\frac{V_{DI}}{VT}} - 1)$$

$$I_{P_2} = I_s (e^{\frac{V_{DI}}{VT}} - 1)$$

$$R_1 + CI = I_0 = I$$

By kcl,
$$I_{0_1} = I_{0_2} = I$$

$$\Rightarrow (e^{V_{D}/V_T} - 1) = (e^{V_{DZ}/V_T} - 1) \Rightarrow V_{D_1} = V_{D_2} = \frac{V_D}{2}$$

..
$$I = I_s (e^{(Y_{P/2})/V_T} - 1)$$

 $V_{0/2}$ D Therefore, a series combination can be viewed as a single two-terminal device with exponential characteristics.

(b) Suppose
$$V_i = initial V_b$$
. Need IDX $V_f = final V_b$ increase in I .

$$\Rightarrow 10 = \frac{I_s(e^{V_f/V_T}-1)}{I_s(e^{V_f/V_T}-1)} \approx e^{\frac{V_f-V_1^*}{V_T}}$$

$$V_{B}^{+}$$
 D_{1} D_{2}

$$I_{tot} = I_{D_1} + I_{D_2} = I_{S_1} (e^{\frac{V_{S_{V_T}}}{-1}}) + I_{S_2} (e^{\frac{V_{S_{V_T}}}{-1}})$$
$$= (I_{S_1} + I_{S_2})(e^{\frac{V_{S_{V_T}}}{-1}})$$

Therefore, the parallel combination operates as an exponential device, with an equivalent saturation current of Is,+Isz.

$$\Rightarrow V_T \ln \left(\frac{I_{01}}{I_{s_1}} \right) = V_T \ln \left(\frac{I_{02}}{I_{s_2}} \right)$$

. V_T
$$\left(n\left(\frac{I_{0_{I}}}{I_{S_{I}}}\right) = V_{T}\left(n\left(\frac{I_{tot}-I_{0_{I}}}{I_{S_{Z}}}\right)\right)$$

$$\Rightarrow I_{D_1} = I_{tot} \left(\frac{I_{S_1}}{I_{S_1} + I_{S_2}} \right)$$

$$\Rightarrow I_{Dz} = I_{tot} \left(\frac{I_{sz}}{I_{s_1} + I_{s_2}} \right)$$