Let $\mathbf{p} = (p_u)_{u \in \mathbf{X}}$ denote the PPR vector computed over $G_{n,r}$ (where for ease of reading we suppress dependence on the hyperparameter α and seed node v.)

Lemma 1. Consider running Algorithm 1 with any $r < \sigma$ and

$$\frac{\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{10} \le \alpha \le \frac{\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{9}.$$
(A.1)

There exists a good set $C_{\sigma}[\mathbf{X}]^g \subseteq C_{\sigma}[\mathbf{X}]$ with $\operatorname{vol}(C_{\sigma}[\mathbf{X}]^g) \geq \operatorname{vol}(C_{\sigma}[\mathbf{X}])/2$ such that the following statements hold for all $v \in C_{\sigma}[\mathbf{X}]^g$:

• For all $u \in C[\mathbf{X}]$,

$$p_u \ge \frac{4}{5}\widetilde{\pi}_{n,r}(u) - \frac{2\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])\widetilde{D}_{\min}}$$

• For all $u' \in \mathcal{C}'_{\sigma}[\mathbf{X}]$,

$$p_{u'} \le \frac{2\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])\widetilde{D}_{\min}}$$

Proof. For $S \subseteq X_1^n$, let I_S be a diagonal matrix where $I_{jj} = 1$ if $X_j \in S$ and 0 otherwise. Let D_S be the corresponding degree matrix for the subgraph induced by S. D_S is a diagonal matrix where for $X_j \in S$, $(D_S)_{jj} = \sum_{i:X_i \in S} A_{ij}$, and if $X_j \notin S$ then $(D_S)_{jj} = 0$. Then, define leakage and soakage vectors

$$\ell_t := e_v(WI_{\mathcal{C}_{\sigma}[\mathbf{X}]})^t (I - D^{-1}D_{\mathcal{C}_{\sigma}[\mathbf{X}]})$$

$$\ell := \sum_{t=0}^{\infty} (1 - \alpha)^t \ell_t$$

$$s_t := e_v(WI_{\mathcal{C}_{\sigma}[\mathbf{X}]})^t (WI_{G/\mathcal{C}_{\sigma}[\mathbf{X}]})$$

$$s := \sum_{t=0}^{\infty} (1 - \alpha)^t s_t$$

Roughly, the proof will unfold in four steps. The first two will result in the lower bound of (??), while the latter two will imply the upper bound in (??).

- 1. For $u \in \mathcal{C}'[\mathbf{X}]$, use the results of [1] to lower bound $p_v(u) \geq 4/5\widetilde{\pi}(u) \widetilde{p}_\ell(u)$, where \widetilde{p} is the PPR random walk over the subgraph induced by $\mathcal{C}_{\sigma}[\mathbf{X}]$, and ℓ has bounded norm $||\ell||_1 \leq 2 \frac{\Phi^{btw}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\alpha}$.
- 2. Since $r < \sigma$, there are no edges between u and $G/\mathcal{C}_{\sigma}[\mathbf{X}]$. Therefore, the page-rank vector \widetilde{p}_{ℓ} will not assign more than $||\ell||_1/d_{\min}(\mathcal{C}_{\sigma}[\mathbf{X}])$ probability mass to any vertex in $\mathcal{C}'[\mathbf{X}]$. This will conclude our proof of (??).

- 3. For vertices $u' \in G/\mathcal{C}_{\sigma}[\mathbf{X}]$, we can upper bound $p_v(u) \leq p_s(u')$. In particular, this hold for all $u' \in \mathcal{C}'[\mathbf{X}]pr$.
- 4. Since $r < \sigma$, there are no edges between u' and $G/\mathcal{C}'[\mathbf{X}]prthick$. Therefore, the page-rank vector p_s will assign no more than $||s||_1/d_{\min}(\mathcal{C}_{\sigma}[\mathbf{X}])$ probability mass to any vertex in $\mathcal{C}'[\mathbf{X}]$. Additionally, s has bounded norm $||s||_1 \le ||\ell||_1$. This will conclude our proof of (??), and hence Proposition ??.

Step 1 We will begin by restating the results of [1].

Denote by \widetilde{p} the PageRank vector computed only over the subgraph induced by $\mathcal{C}_{\sigma}[\mathbf{X}]$.

$$\widetilde{p}_v = \alpha e_v + (1 - \alpha)\widetilde{p}_v \widetilde{W} \tag{A.2}$$

$$= \alpha \sum_{t=0}^{\infty} (1 - \alpha)^t \left(e_v \widetilde{W}^t \right)$$
 (A.3)

and correspondingly for the leakage vector

$$\widetilde{p}_{\ell} = \alpha \ell + (1 - \alpha) \widetilde{p}_{\ell} \widetilde{W}.$$

From Lemma 3.1 of [1] we have for all $u \in \mathcal{C}_{\sigma}[\mathbf{X}]$

$$p_v(u) \ge \widetilde{p}_v(u) - \widetilde{p}_\ell(u).$$

with $||\ell||_1 \leq \frac{2\Phi^{btw}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\alpha}$. Moreover if, as we have specified, $\alpha \leq \frac{1}{9T_{\infty}(\mathcal{C}_{\sigma}[\mathbf{X}])}$, Lemma 3.2 of [1] yields a lower bound on \widetilde{p}

$$\widetilde{p}_v(u) \ge \frac{4}{5}\widetilde{\pi}(u).$$
(A.4)

Step 2 We turn to upper bounding $\widetilde{p}_{\ell}(u)$. We have

$$\widetilde{p}_{\ell}(u) = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} \left(\ell \widetilde{W}^{t} \right) [u]$$

$$= \|\ell\|_{1} \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} \left(\frac{\ell}{\|\ell\|_{1}} \widetilde{W}^{t} \right) [u]$$

$$\stackrel{(i)}{=} \|\ell\|_{1} \alpha \sum_{t=1}^{\infty} (1 - \alpha)^{t} \left(\frac{\ell}{\|\ell\|_{1}} \widetilde{W}^{t} \right) [u]$$

$$\stackrel{(ii)}{\leq} \|\ell\|_{1} \frac{1}{d_{\min}(\mathcal{C}_{\sigma}[\mathbf{X}])}$$
(A.5)

where (i) follows from the fact that since $r < \sigma$, $E(\mathcal{C}'[\mathbf{X}], G/\mathcal{C}_{\sigma}[\mathbf{X}]) = 0$ and therefore $\ell(u) = 0$. To see (ii), let $q = \frac{\ell}{\|\ell\|_1} \widetilde{W}^{t-1}$, and then

$$\left(\frac{\ell}{\|\ell\|_1}\widetilde{W}^t\right)[u] = (qW)[u]$$

$$\leq \|q\|_1\|W(\cdot,u)\|_{\infty}$$

$$\leq \frac{1}{d_{\min}(C_n^{\sigma})}.$$

where (iii) comes from the fact that $||u-v|| \le r$ means $v \in \mathcal{C}_{\sigma}[\mathbf{X}]$. Combining (A.5) with (A.4), and since $||\ell||_1 \le 2 \frac{\Phi^{btw}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\alpha}$, we have

$$p_v(u) \ge \frac{4}{5}\widetilde{\pi}(u) - 2\frac{9\Phi^{btw}(\mathcal{C}_{\sigma}[\mathbf{X}])}{d_{\min}(\mathcal{C}_{\sigma}[\mathbf{X}])\alpha}.$$

Step 3 To get the corresponding upper bound on $p_v(u')$, we will use the soakage vectors s and s_t . We will first argue that s is a worse starting distribution – meaning it puts uniformly more mass outside the cluster – than simply starting at v.

Lemma 2. For all $u' \notin \mathcal{C}_{\sigma}[\mathbf{X}]$,

$$p_v(u') \le p_s(u'). \tag{A.6}$$

The proof of Lemma 2 is left to the supplement. It follows largely the same steps as Lemma 3.1 of [1], except over $G/\mathcal{C}_{\sigma}[\mathbf{X}]$ rather than $\mathcal{C}_{\sigma}[\mathbf{X}]$.

Step 4 Just as we upper bounded the probability mass \widetilde{p}_{ℓ} could assign to any one vertex, we can upper bound

$$\widetilde{p}_{s}(u) = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} \left(s\widetilde{W}^{t}\right) [u]$$

$$= \|s\|_{1} \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} \left(\frac{s}{\|s\|_{1}} \widetilde{W}^{t}\right) [u]$$

$$= \|s\|_{1} \alpha \sum_{t=1}^{\infty} (1 - \alpha)^{t} \left(\frac{s}{\|s\|_{1}} \widetilde{W}^{t}\right) [u]$$

$$\leq \|s\|_{1} \frac{1}{d_{\min}(\mathcal{C}_{\sigma}[\mathbf{X}])}. \tag{A.7}$$

Finally, by the definition of $s_t = e_v(WI_{\mathcal{C}_{\sigma}[\mathbf{X}]})^t(WI_{G/\mathcal{C}_{\sigma}[\mathbf{X}]})$, letting $q_t = e_v(WI_{\mathcal{C}_{\sigma}[\mathbf{X}]})^t$ for ease of notation, we have

$$||s_t||_1 = ||q_t(WI_{G/\mathcal{C}_{\sigma}[\mathbf{X}]})||_1$$

$$= \sum_{u' \in G} \sum_{u \in G} q_t(u)(WI_{G/\mathcal{C}_{\sigma}[\mathbf{X}]})[u, u']$$

$$= \sum_{u' \in G/\mathcal{C}_{\sigma}[\mathbf{X}]} \sum_{u \in \mathcal{C}_{\sigma}[\mathbf{X}]} \frac{q(u)}{d(u)} I(e_{u, u'} \in G)$$

$$= \sum_{u \in \mathcal{C}_{\sigma}[\mathbf{X}]} \frac{q(u)(d(u) - d_{\mathcal{C}_{\sigma}[\mathbf{X}]}(u))}{d(u)}$$

$$= ||q_t(I - D^{-1}D_{\mathcal{C}_{\sigma}[\mathbf{X}]})||_1 = ||\ell_t||_1.$$

and as a result $||s||_1 = ||\ell||_1$. Combining with $||\ell||_1 \le 2 \frac{\Phi^{btw}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\alpha}$ and (A.7) yields the desired upper bound.

Lemma 3. Let C_{σ} satisfy the conditions of Theorem 4. For $r < \sigma$, the following statements hold with probability tending to one as $n \to \infty$:

$$D_{\min}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r}) \ge \frac{1}{2} \nu_{d} r^{d} \lambda_{\sigma}$$

$$D_{\max}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r}) \le 2 \nu_{d} r^{d} \Lambda_{\sigma}$$

$$\widetilde{\operatorname{vol}}_{n,r}(\widetilde{G}_{n,r}) \le 2 \nu(\mathcal{C}_{\sigma}) \Lambda_{\sigma}$$

where $D_{\min}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r})$ is the minimum degree of any vertex $v \in \mathcal{C}_{\sigma}[X]$ in the subgraph $\widetilde{G}_{n,r}$, and analogously for $D_{\max}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r})$.

The statement follows immediately from Lemma ??.

.1 Proof of Theorem 4

We note that by Theorems 1 and 2,

$$\kappa_2(\mathcal{C}) \ge \frac{\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}.$$

As a result Lemma 1 implies

$$p_{u} \geq \frac{4}{5} \widetilde{\pi}_{n,r}(u) - \frac{18\kappa_{2}(\mathcal{C})}{\widetilde{D}_{\min}} \qquad (u \in \mathcal{C}[\mathbf{X}])$$

$$p_{u'} \leq \frac{18\kappa_{2}(\mathcal{C})}{\widetilde{D}_{\min}} \qquad (u' \in \mathcal{C}'[\mathbf{X}])$$
(A.8)

We then have

$$\widetilde{\pi}_{n,r}(u) \ge \frac{D_{\min}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r})}{\widetilde{\operatorname{vol}}_{n,r}(\widetilde{G}_{n,r})}$$

$$\ge \frac{D_{\min}(\mathcal{C}_{\sigma}[X]; \widetilde{G}_{n,r})}{\widetilde{n}\widetilde{D}_{\max}}$$

and application of Lemma 3 yields

$$\widetilde{\pi}_{n,r}(u) \ge 8 \frac{\lambda_{\sigma}}{\nu(\mathcal{C}_{\sigma})\Lambda_{\sigma}^2}$$
(A.9)

and

$$\frac{1}{\widetilde{D}_{\min}} \le \frac{2}{\nu_d r^d \lambda_{\sigma}} \tag{A.10}$$

with probability tending to 1 as $n \to \infty$, for all $u \in \mathcal{C}[\mathbf{X}]$.

Combining (A.8), (A.9) and (A.10), along with the requirement on $\kappa_2(\mathcal{C})$ given by (17), we have

$$p_u \ge 3/5 \frac{\lambda_{\sigma}}{\nu(\mathcal{C}_{\sigma})\Lambda_{\sigma}^2}$$
$$p_{u'} \le 1/5 \frac{\lambda_{\sigma}}{\nu(\mathcal{C}_{\sigma})\Lambda_{\sigma}^2}$$

for any $u \in \mathcal{C}$, $u' \in \mathcal{C}'$. As a result, if $\pi_0 \in (2/5, 3/5) \cdot \frac{\lambda_{\sigma}}{\nu(\mathcal{C}_{\sigma})\Lambda_{\sigma}^2}$, as $n \to \infty$ with probability tending to one any sweep cut of the form of (6), including the output set \widehat{C} , will successfully recover \mathcal{C} in the sense of (9).

References

[1] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S Mirrokni. A local algorithm for finding well-connected clusters. In *ICML* (3), pages 396–404, 2013.