Heuristic analysis

Part 1. Planning problems

After experimenting with 3 given PDDL problems (their states and goals), metrics were documented for non-heuristic planning solution searches.

		Node expansions	Goal tests	Time elapsed	New nodes	Plan length
Problem 1	breadth_first_search	43	56	0.04	180	6
	breadth_first_tree_search	1,458	1,459	0.98	5,960	6
	depth_first_graph_search	21	22	0.02	84	20
	depth_limited_search	101	271	0.13	414	50
	uniform_cost_search	55	57	0.05	224	. 6
Problem 2	breadth_first_search	3,343	4,609	17.02	30,509	9
	breadth_first_tree_search	N/A	N/A	N/A	N/A	. N/A
	depth_first_graph_search	624	625	4.26	5,602	619
	depth_limited_search	222,719	2,053,741	1,263.85	2,054,119	50
	uniform_cost_search	4,853	4,855	14.91	44,041	9
Problem 3	breadth_first_search	5,621	7,281	31.82	39,000	12
	breadth_first_tree_search	N/A	N/A	N/A	N/A	. N/A
	depth_first_graph_search	1,292	1,293	4.11	5,744	875
	depth_limited_search	N/A	N/A	N/A	N/A	. N/A
	uniform_cost_search	7,302	7,304	23.26	50,692	12

Table 1

Breadth first tree search was aborted in problems 2 and 3 because it exceeded 10 minutes, similarly depth limited search was aborted in problem 3 as it exceeded the same time limit as well; those are marked as *N*/*A* in the *Table 1*.

After running tests following optimal plans were computed (*Table 2*).

Problem 1	Problem 2	Problem 3
Load(C1, P1, SF0) Load(C2, P2, JFK) Fly(P2, JFK, SF0) Unload(C2, P2, SF0) Fly(P1, SF0, JFK) Unload(C1, P1, JFK)	Load(C1, P1, SF0) Load(C2, P2, JFK) Load(C3, P3, ATL) Fly(P2, JFK, SF0) Unload(C2, P2, SF0) Fly(P1, SF0, JFK) Unload(C1, P1, JFK) Fly(P3, ATL, SF0) Unload(C3, P3, SF0)	Load(C1, P1, SF0) Fly(P1, SF0, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Load(C2, P1, JFK) Unload(C3, P1, JFK) Unload(C1, P1, JFK) Fly(P1, JFK, ORD) Load(C4, P1, ORD) Fly(P1, ORD, SF0) Unload(C4, P1, SF0) Unload(C2, P1, SF0)

Table 2

Non-heuristic planning solution searches

If algorithm is chosen based solely on time it takes to find the solution then depth first graph search is the fastest one from non-heuristic solutions (*Figure 1*), but it does not find the optimal solution, just the first matching one, e.g. in Problem 3 its plan is 875 steps (*Table 1*), where uniform cost search finds a solution with just 12 steps. Instead I would recommend using uniform cost search as it outperforms breadth first search and finds shortest search plan.

Part 2. Domain-independent heuristics

Same problems that were mentioned above were tested with graph search algorithms that used heuristics (*Table 3*).

		Node expansions	Goal tests	Time elapsed	New nodes	Plan length
Problem 1	A* ignore preconditions	41	43	0.05	170	6
	A* level-sum	11	13	0.73	50	6
Problem 2	A* ignore preconditions	1450	1452	5.25	13303	9
	A* level-sum	86	88	63.32	841	9
Problem 3	A* ignore preconditions	2829	2831	10.84	20879	13
	A* level-sum	167	169	78.38	1180	12

Table 3

Heuristic planning solution searches

Although A* ignore preconditions search is faster (*Figure 2*) it expands far more nodes that A* level-sum (*Table 3*) because when algorithm ignores preconditions there are more actions allowed (edges created). Furthermore it does not calculate optimal plan length in Problem 3, this might be because A* level sum is more accurate that ignore preconditions heuristic.

Summary

Both non-heuristic and heuristic searches find optimal plans but there is no clear winner when comparing their execution for Problem 3. Best non-heuristic is a uniform cost search which finds **optimal plan** (12 steps) by expanding 7302 nodes and does it in 23 seconds. Fastest heuristic search is A* ignore preconditions search, it expands less nodes (2829) and does it under 11 seconds but it finds **non optimal plan** (13 steps), it adds more edges to the graph, making it strictly easier to find a path [1]! Last heuristic search is A* level sum, which finds **optimal plan** (12 steps) "it is much more accurate than the number-of-unsatisfied-goals heuristic" [2] and it does so by expanding only 167 nodes but takes longer and finishes in 78 seconds.

References

- [1] Stuart J. Russell and Peter Norvig, Artificial Intelligence. A Modern Approach. Third Edition, 376 10.2.3 Heuristics for planning
- [2] Stuart J. Russell and Peter Norvig, Artificial Intelligence. A Modern Approach. Third Edition, 382 10.3.1 Planning graphs for heuristic estimation