TP 1 : Variables, fonctions et instructions conditionnelles

I Fonctions

Il est possible d'afficher d'afficher plusieurs objets avec print. Cela peut-être si l'on souhaite afficher des entiers des chaines de caractères simultanément. Pour cela, il suffit de les séparer par des virgules.

```
1 >>> print("23+23=", 23+23)
2 23+23=46
```

Exercice 1. Écrire une fonction ecoule qui prend en argument deux années a1 et a2 et qui affiche Entre a1 et a2 il s'est écoulé a2-a1 années.

Par exemple ecoule (2001, 2023) affiche

Entre 2001 et 2023, il s'est écoulé 22 années

<u>Réponse</u> :	

Exercice 2. Différence entre afficher et renvoyer.

- 1. Écrire une fonction vitesseMoyenne1 qui prend en argument une distance d et un temps t et qui affiche la vitesse moyenne correspondante.
- 2. Écrire une fonction vitesseMoyenne2 qui prend en argument une distance d et un temps t et qui renvoie la vitesse moyenne correspondante.
 - Comme à chaque fois que l'on écrira une fonction Python, on la testera dans plusieurs cas!
- 3. Quelle est la différence entre ces deux fonctions.

<u>Réponse</u> :		

Exercice 3. Étude de suites définies explicitement

- 1. Écrire une fonction qui prend en argument un entier n et qui renvoie $u_n = \sqrt{n^2 + 1}$. Calculer u_3 et u_{50} .
- 2. Écrire une fonction qui prend en argument n et u_0 et qui renvoie $u_n=(2^n-1)u_0$. Calculer u_5 lorsque $u_0=1$ et u_{10} lorsque $u_0=4$.

Réponse :	

II Instructions conditionnelles

Exercice 4. Écrire une fonction nature qui prend en argument pH est qui renvoie neutre, acide ou basique.

Réponse :		

Exercice 5.	Écrire une fonction	positionmax (qui prend ei	n argument	trois entier p,	q,	r deux à deux
distincts et d	qui affiche lequel est l	le plus grand.					

Par exemple, positionmax(3, 5, 1) affiche:

Le deuxième nombre est le plus grand.

<u>Réponse</u> :			
Exercice 6. Écrire un nombre de solutions	nne fonction trinome qui dans \mathbb{R} à l'équation ax^2	prend en argument trois r $-bx + c = 0.$	nombres a, b et c et renvoie le
<u>Réponse</u> :			