MAT324: Real Analysis – Fall 2014

Assignment 7 – Solutions

Problem 1: Suppose $f \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})$. Prove that f also belongs to $L^3(\mathbb{R})$.

Solution. Notice that $f \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})$ implies $|f| \in L^2(\mathbb{R})$, and $(f^2) \in L^2(\mathbb{R})$. By Holder's inequality,

$$\left| \int_{\mathbb{R}} |f| f^2 dx \right| \le \left(\int_{\mathbb{R}} |f|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} |f^2|^2 dx \right)^{\frac{1}{2}}$$
$$\left| \int_{\mathbb{R}} |f|^3 dx \right| \le \infty$$

Hence $f \in L^3(\mathbb{R})$.

Problem 2: Determine if the following functions belong to $L^{\infty}(\mathbb{R})$.

- a) $f(x) = \frac{1}{x^2} \chi_{(0,n]}$ for some n > 0.
- b) $f(x) = \frac{1}{\sqrt{x}} \chi_{[n,n^2]}$ for some n > 0.

SOLUTION.

a) f is not essentially bounded. Given M>0, for any $\epsilon>0$, we have $x=\frac{1}{\sqrt{M+\epsilon}}$. Then $f(x)=M+\epsilon>M$, implying that

$$m(\lbrace x \in \mathbb{R} | |f(x)| > M \rbrace \ge m\left(\left(0, \frac{1}{M}\right)\right) = \frac{1}{M} > 0.$$

b) f is bounded by $\frac{1}{\sqrt{n}}$

Problem 3: Consider the function

$$f(x,y) = \begin{cases} \frac{1}{x^2} & \text{if } 0 < y < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that $\int_{[0,1]\times[0,1]} f(x,y) \, dm_2(x,y) = \infty.$

SOLUTION. Check example 6.1 on the textbook.

Problem 4: Consider the function

$$g(x,y) = \begin{cases} \frac{1}{x^2} & \text{if } 0 < y < x < 1\\ -\frac{1}{y^2} & \text{if } 0 < x < y < 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that $\int_0^1 \int_0^1 g(x,y) dxdy = -1$ and $\int_0^1 \int_0^1 g(x,y) dydx = 1$. However, the function g is not integrable since its positive part $g^+ = f$ from the previous problem is not integrable.

Solution. Direct calculation shows that

$$\int_{0}^{1} \left[\int_{0}^{1} g(x, y) dx \right] dy = \int_{0}^{1} \left[\int_{0}^{y} \left(\frac{-1}{y}^{2} \right) dx + \int_{y}^{1} \frac{1}{x}^{2} dx \right] dy$$
$$= \int_{0}^{1} (-1) dy$$
$$= -1$$

And

$$\int_0^1 \left[\int_0^1 g(x, y) dy \right] dx = \int_0^1 \left[\int_0^x \frac{1}{x}^2 dy + \int_x^1 \left(\frac{-1}{y}^2 \right) dy \right] dx$$
$$= \int_0^1 1 dx$$
$$= 1$$

Problem 5: Consider the measure spaces (X, \mathcal{F}_1, μ) and (Y, \mathcal{F}_2, ν) where X = Y = [0, 1], $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{B}_{[0,1]}$ is the σ -algebra of Borel subsets of [0,1]. Let μ be the Lebesgue measure on \mathcal{F}_1 and ν be the counting measure on \mathcal{F}_2 , that is $\nu(E) = \text{number of elements in } E \text{ if } E \text{ is finite and } \nu(E) = \infty$ otherwise. Let $D = \{(x,y) \mid x=y\}$ and consider

$$D_n = \bigcup_{k=1}^n \left(\left[\frac{k-1}{n}, \frac{k}{n} \right] \times \left[\frac{k-1}{n}, \frac{k}{n} \right] \right)$$

a) Show that $D = \bigcap_{n=1}^{\infty} D_n$ and that $D \in \mathcal{F}_1 \times \mathcal{F}_2$.

b) Compute $\int_0^1 \int_0^1 \chi_D(x,y) d\mu(x) d\nu(y)$ and $\int_0^1 \int_0^1 \chi_D(x,y) d\nu(y) d\mu(x)$ and show that they are not equal.

Recall that χ_D is the characteristic function of the set D and $\chi_D(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$

Note: This problem does not contradict Theorem 6.12 since ν is not σ -finite. Solution.

a) Notice that if $(x,y) \in D_n$, then $|x-y| \leq \frac{1}{n}$. In particular, if $(x,y) \in \bigcap_{n=1}^{\infty} D_n$, then $|x-y| \leq \frac{1}{n}$, $\forall n \in \mathbb{N}$, hence $x = y \Rightarrow (x,y) \in D$. The other inclusion is trivial. Since D can be expressed as countable intersection of countable unions of products, it belongs to the product σ -algebra.

b)

$$\int_{0}^{1} \int_{0}^{1} \chi_{D}(x, y) d\mu(x) d\nu(y) = \int_{0}^{1} \left[\int_{0}^{1} \chi_{D}(x, y) d\mu(x) \right] d\nu(y)$$
$$= \int_{0}^{1} 0 d\nu(y)$$
$$= 0$$

The second equality follows from the fact that for fixed y, $\chi_D(x,y)$ is 0 Lebesgue a.e. On the other hand,

$$\int_{0}^{1} \int_{0}^{1} \chi_{D}(x, y) d\nu(y) d\mu(x) = = \int_{0}^{1} \left[\int_{0}^{1} \chi_{D}(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int_{0}^{1} 1 d\mu(x)$$
$$= 1$$