### **Matrix Transformation**

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology



### **Linear Transformation**

Matrix is a linear transformation: map one vector to another vector

$$A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^m: \qquad y_{m \times 1} = A_{m \times n} x_{n \times 1}$$
 
$$A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

Input-output





## Matrix in applications

- Feature matrix
- Signal matrix
- Correlation matrix

### **Linear Transformation**



Domain, codomain, and range of  $T: \mathbb{R}^n \to \mathbb{R}^m$ 

### **Linear Transformation**

**EXAMPLE 1** Let 
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
,  $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ ,  $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ , and

define a transformation  $T: \mathbb{R}^2 \to \mathbb{R}^3$  by  $T(\mathbf{x}) = A\mathbf{x}$ , so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- a. Find  $T(\mathbf{u})$ , the image of  $\mathbf{u}$  under the transformation T.
- b. Find an **x** in  $\mathbb{R}^2$  whose image under T is **b**.
- c. Is there more than one **x** whose image under *T* is **b**?
- d. Determine if  $\mathbf{c}$  is in the range of the transformation T.

### Linear mapping

- V, W are vector spaces over  $\mathbb{F}$ .
- A function  $T: V \to W$  is called **linear** if

$$T(u+v) = T(u) + T(v)$$
 for all  $u, v \in V$ ,  
 $T(av) = aT(v)$  for all  $a \in \mathbb{F}$  and  $v \in V$ .

### Linear mapping

- Example: which are linear mapping?
  - **zero** map  $0: V \to W$
  - identity map  $I: V \to V$
  - Let  $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$  be the **differentiation** map defined as Tp(z) = p'(z).
  - Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be the map given by T(x,y) = (x-2y,3x+y)
  - $f(x) = e^x$
  - $f: \mathbb{F} \to \mathbb{F}$  given by f(x) = x 1

### Linear mapping

#### Theorem

Let  $(v_1, \ldots, v_n)$  be a basis of V and  $(w_1, \ldots, w_n)$  an arbitrary list of vectors in W. Then there exists a unique linear map

$$T: V \to W$$
 such that  $T(v_i) = w_i$ .

### Projection

Example:



If 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation  $\mathbf{x} \mapsto A\mathbf{x}$  projects

points in  $\mathbb{R}^3$  onto the  $x_1x_2$ -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

# Projection

| Transformation                  | Image of the Unit Square                                                           | Standard Matrix                                |
|---------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|
| Projection onto the $x_1$ -axis | $\stackrel{x_2}{\uparrow}$                                                         | $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ |
|                                 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ |                                                |
| Projection onto the $x_2$ -axis |                                                                                    | $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ |
|                                 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$                                             |                                                |

### Projection

The **projection** of a vector  $y \in \mathbb{R}^m$  onto the span of  $\{x_1, \ldots, x_n\}$  is the vector  $v \in \text{span}(\{x_1, \ldots, x_n\})$ , such that v is as close as possible to y, as measured by the Euclidean norm  $\|v - y\|_2$ .

$$\text{Proj}(y; \{x_1, \dots x_n\}) = \operatorname{argmin}_{v \in \text{span}(\{x_1, \dots, x_n\})} ||y - v||_2.$$



### Rotation

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$





### Reflection

$$R = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$





## Reflection

| Transformation                          | Image of the Unit Square                                       | Standard Matrix                                               |
|-----------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| Reflection through the $x_1$ -axis      | $\begin{bmatrix} x_2 \\ 0 \\ -1 \end{bmatrix}$                 | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$               |
| Reflection through the $x_2$ -axis      | $\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$                       | $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$               |
| Reflection through the line $x_2 = x_1$ | $x_{2} = x_{1}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $x_{1}$ | $\left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$ |

### Reflection

Reflection through the line  $x_2 = -x_1$ 



$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Reflection through the origin



$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

## **Uniform Scaling**

$$S = sI = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$





## Non-uniform Scaling

$$S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$





### Shearing

#### Example

Let 
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. The transformation  $T : \mathbb{R}^2 \to \mathbb{R}^2$ 



sheep

A typical shear matrix is of the form

$$S = egin{pmatrix} 1 & 0 & 0 & \lambda & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$



sheared sheep

## Shearing

A shear parallel to the x axis results in  $x'=x+\lambda y$  and y'=y. In matrix form:

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} 1 & \lambda \ 0 & 1 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight).$$

Similarly, a shear parallel to the y axis has x'=x and  $y'=y+\lambda x$ . In matrix form:

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} 1 & 0 \ \lambda & 1 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight).$$



### **Difference Matrix**

$$D_{(n-1) imes n} = egin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \ 0 & -1 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & & dots \ 0 & 0 & \cdots & -1 & 1 & 0 \ 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

$$D: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1} \quad \Longrightarrow \quad D \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 - 0 \\ 3 - (-1) \\ 2 - 3 \\ 5 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$

#### **Selectors**

an  $m \times n$  selector matrix: each row is a unit vector (transposed)

$$A = \left[ \begin{array}{c} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{array} \right]$$

multiplying by *A* selects entries of *x*:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad \Longrightarrow \quad A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_{k_1} \\ x_{k_2} \\ \vdots \\ x_{k_-} \end{bmatrix}$$

### Selectors

Example 
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 1 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

- Selecting first and last elements of vector:
- Reversing the elements of vector:

## Slicing

Keeping m elements from r to s (m=s-r+1)

$$\begin{bmatrix} \mathbf{0}_{m\times(r-1)} & I_{m\times m} & \mathbf{0}_{m\times(n-s)} \end{bmatrix}$$

Example: Slicing two first and one last

elements:

$$egin{bmatrix} -1 \ 2 \ 0 \ -3 \ 5 \end{bmatrix} = egin{bmatrix} 0 \ -3 \end{bmatrix}$$

## **Down Sampling**

 Down sampling with k: selecting one sample in every k samples

Example: k=2?



### **Applications**

Rotation matrix

(i) 
$$\sin 2A = 2 \sin A \cos A$$
  
(ii)  $\cos 2A = \cos^2 A - \sin^2 A$ 

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \implies R^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{bmatrix}$$

Adjacency matrix



$$A^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

### **Multiple Transformation**

$$= x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \implies \begin{cases} y = Ax \\ z = By \end{cases} \implies z = B(Ax) = BAx$$

#### Example

Difference Matrix

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x \end{bmatrix} \xrightarrow[A \to X]{D} y = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_4 - x_3 \\ x_5 - x_4 \end{bmatrix} \xrightarrow[A \to X]{D} z = \begin{bmatrix} x_3 - x_2 - (x_2 - x_1) \\ x_4 - x_3 - (x_3 - x_2) \\ x_5 - x_4 - (x_4 - x_3) \end{bmatrix} = \begin{bmatrix} x_3 - 2x_2 + x_1 \\ x_4 - 2x_3 + x_2 \\ x_5 - 2x_4 + x_3 \end{bmatrix}$$

$$x \longrightarrow z \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}_{3 \times 5}$$

$$x \longrightarrow y \longrightarrow z$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}_{3\times4} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 10 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

### **Multiple Transformation**

$$= x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \implies \begin{cases} y = Ax \\ z = By \end{cases} \implies z = B(Ax) = BAx$$

Example

Rotation

$$\begin{aligned} x & = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\ x & = z & z = R_{\delta + \theta} x & \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix} \\ x & \to y & \to z & \begin{cases} y = R_{\theta} x \\ z = R_{\delta} y \end{cases} \implies z = R_{\delta} R_{\theta} x & \begin{bmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos \delta \cos \theta - \sin \delta \sin \theta & -\cos \delta \sin \theta - \sin \delta \cos \theta \\ \sin \delta \cos \theta + \cos \delta \sin \theta & -\sin \delta \sin \theta + \cos \delta \cos \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix} \end{aligned}$$

#### **Invertible Linear Transformations**



#### Definition:

A linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^n$  is said to be **invertible** if there exists a function  $S: \mathbb{R}^n \to \mathbb{R}^n$  such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all  $\mathbf{x}$  in  $\mathbb{R}^n$ 

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all  $\mathbf{x}$  in  $\mathbb{R}^n$ 

#### **Invertible Linear Transformations**

#### Theorem:

Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by  $S(\mathbf{x}) = A^{-1}\mathbf{x}$  is the unique function satisfying

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all  $\mathbf{x}$  in  $\mathbb{R}^n$ 

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all  $\mathbf{x}$  in  $\mathbb{R}^n$ 

- Proof in HW3!
- Example:

### Mapping

A mapping  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be **onto**  $\mathbb{R}^m$  if each **b** in  $\mathbb{R}^m$  is the image of at least one **x** in  $\mathbb{R}^n$ .



A mapping  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be **one-to-one** if each **b** in  $\mathbb{R}^m$  is the image of *at most one* **x** in  $\mathbb{R}^n$ .



Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Does T map  $\mathbb{R}^4$  onto  $\mathbb{R}^3$ ? Is T a one-to-one mapping?

### **One-to-One Linear Transformation**

#### THEOREM

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Then T is one-to-one if and only if the equation  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

### **One-to-One Linear Transformation**

- Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. Then:
  - a. T maps  $\mathbb{R}^n$  onto  $\mathbb{R}^m$  if and only if the columns of A span  $\mathbb{R}^m$ ;
  - b. T is one-to-one if and only if the columns of A are linearly independent.

#### Example

Let  $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$ . Show that T is a one-to-one linear transformation. Does T map  $\mathbb{R}^2$  onto  $\mathbb{R}^3$ ?



## **Machine Learning Application**

The central problem in machine learning and deep learning is to meaningfully transform data: in other words, to learn useful representations of the input data at hand — representations that get us closer to the expected output.