Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной №2 по дисциплине «Стохастические модели и анализ данных»

Выполнил студент: Коваленко Надежда группа: 3640102/90201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Оглавление

Постановка задачи	3
Теория	
Критерий Фишера	
Правило Стерджесса	
Реализация	3
Практические результаты	4
Выводы	6
Литература	6

Постановка задачи

Есть данные, полученные регистратором. По этим данным нужно провести дисперсионный анализ для значений сигнала с применением критерия Фишера.

Теория

Критерий Фишера

Дисперсию совокупности можно оценить двумя способами [1].

Во-первых, дисперсия, вычисленная для каждой группы— это оценка дисперсии совокупности. Поэтому дисперсию совокупности можно оценить на основании групповых дисперсий. Такая оценка не будет зависеть от различий групповых средних.

Во-вторых, разброс выборочных средних тоже позволяет оценить дисперсию совокупности. Понятно, что такая оценка дисперсии зависит от различий выборочных средних.

В качестве оценки дисперсии совокупности возьмем среднее выборочных дисперсий. Эта оценка называется внутригрупповой дисперсией. Обозначим ее s_{BHy}^2 .

$$s_{\text{BHy}}^2 = \frac{1}{k} \sum_{i=1}^k s_i^2 = \frac{1}{k} \sum_{i=1}^k \frac{\sum_{j=1}^n (x_{ij} - \bar{X})^2}{k - 1}$$
 (1)

Где \bar{X} - среднее для части выборки, k — количество частей, на которое делим сходную выборку, n — количество элементов в подвыборке.

Также нужно вычислить межгрупповую дисперсию. Обозначается она $s_{\rm MEЖ}^2$. Вычисление межгрупповой дисперсии происходит в несколько этапов:

- 1. Вычисление среднего значения для всех выбранных подвыборок $(\overline{X_1}, \overline{X_2}, \dots, \overline{X_k})$.
- 2. Вычисление среднего этих средних: $\bar{X} = \frac{1}{k} \sum_{i=1}^k \overline{X}_i$.

3.
$$s_{\text{ME}}^2 = k * \frac{\sum_{i=1}^k (\overline{X_i} - \overline{X})^2}{k-1}$$
 (2)

Тогда
$$F=rac{s_{
m MEW}^2}{s_{
m RHV}^2}$$
 (3).

Правило Стерджесса

Данное правило [2] используется для определения оптимального количества интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при изучении ее распределения.

По этому правилу число интервалов считается по формуле:

$$n = 1 + \lfloor log_2 N \rfloor$$

Где n – число интервалов, N – общее число наблюдений.

Реализация

Лабораторная работа выполнена на языке Python (версия 3.8) с использованием библиотек NumPy, matplotlib в среде разработки Visual Studio Code. Детали можно посмотреть на GitHub по ссылке в литературе [3].

Практические результаты

Рассмотрим некоторые сигналы, которые представлены в файле. Их там 800. В каждом сигнале по 1024 значения.

Возьмем один из сигналов и проанализируем его. Рассмотрим сигнал 432. Он представлен на рис.1.

Рисунок 1. Исходный сигнал

Необходимо разделить сигнал на подобласти: сигнал, фон, переходные процессы. Сделано это было с помощью построения гистограммы, которая представлена на рис.2.

Рисунок 2. Гистограмма сигнала

Столбец гистограммы, в котором наибольшее число значений, отвечает за принадлежность к фону, следующий по величине столбец — за сигнал, а остальное — переходные процессы.

Однако, прежде чем разделить сигнал на области однородности необходимо определить наличие выбросов и сгладить их. Это было выполнено с помощью медианного фильтра, то есть значение выброса становится равным среднему арифметическому его соседних элементов. Результат сглаживания представлен на рис. 3.

Рисунок 3. Сигнал без выбросов

С помощью гистограммы теперь можно разделить сигнал на разные области, которые представлены на рис. 4.

Рисунок 4. Деление преобразованного сигнала на участки однородности

Данный сигнал после разделения на области с выбросами представлен на рис.5.

Рисунок 5. Деление исходного сигнала на участки однородности

Чтобы определить однородность каждой части сигнала, необходимо применить критерий Фишера. Результаты вычисления представлены в табл.1.

Номер промежутка	Тип промежутка	Число разбиений (k)	Значение межгрупповой дисперсии (2)	Значение внутри групповой дисперсии (1)	Значение критерия Фишера (3)
1	Фон	4	0.000006	0.000067	0.036318
2	Переходный процесс	5	0.003587	0.000054	66.503898
3	Сигнал	5	0.000001	0.000059	0.020053
4	Переходный процесс	5	0.003595	0.000059	61.032616
5	Фон	4	0.000001	0.000035	0.032911

Для данного сигнала критерий Фишера будет равен:

- для левого фона 0.036318,
- для левого переходного процесса 66.503898,
- для сигнала 0.020053,
- для правого переходного процесса 61.032616,
- для правого фона 0.032911

Выводы

Так как критерий Фишера для фона и сигнала близок к 1, то эти части сигнала – однородные.

Литература

[1] Гланц, С. Медико-биологическая статистика. Пер. с англ. — М.: Практика, 1998. — 459 с.

[2] Правило Стерджесса

[3] Реализация применения критерия хи-квадрат.

URL: https://github.com/NadezhdaKovalenko/StochasticModels