

Bab 6 Pushdown Automata

Definition

Moves of the PDA

Languages of the PDA

Deterministic PDA's

Informatika

Pushdown Automata

- The PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nondeterministic PDA defines all the CFL's.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA's.

Intuition: PDA

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - The current state (of its "NFA"),
 - 2. The current input symbol (or ϵ), and
 - 3. The current symbol on top of its stack.

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - 1. Change state, and also
 - 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
 - ☐ Zero symbols = "pop."
 - ☐ Many symbols = sequence of "pushes."

Ilustrasi PDA

PDA Formalism

A PDA is described by:

- 1. A finite set of *states* (Q, typically).
- An input alphabet (Σ, typically).
- 3. A *stack alphabet* (Γ, typically).
- 4. A *transition function* (δ , typically).
- 5. A *start state* $(q_0, in Q, typically)$.
- 6. A start symbol $(Z_0, in \Gamma, typically)$.
- 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
 - But sometimes we allow ε as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- α , β ,... are strings of stack symbols.

The Transition Function

Takes three arguments:

- 1. A state, in Q.
- 2. An input, which is either a symbol in Σ or ϵ .
- A stack symbol in Γ.
- δ(q, a, Z) is a set of zero or more actions of the form (p, α).
 - p is a state; α is a string of stack symbols.

Actions of the PDA

- If δ(q, a, Z) contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 - 1. Change the state to p.
 - 2. Remove a from the front of the input (but a may be ϵ).
 - 3. Replace Z on the top of the stack by α .

Example: PDA

- Design a PDA to accept {0ⁿ1ⁿ | n ≥ 1}.
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

Example: PDA – (2)

The stack symbols:

- Z_0 = start symbol. Also marks the bottom of the stack, so we know when we have counted the same number of 1's as 0's.
- X = marker, used to count the number of 0's seen on the input.

Example: PDA – (3)

The transitions:

- $\delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
- $\delta(q, 0, X) = \{(q, XX)\}$. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- $\delta(q, 1, X) = \{(p, \epsilon)\}$. When we see a 1, go to state p and pop one X.
- $\delta(p, 1, X) = \{(p, \epsilon)\}$. Pop one X per 1.
- $\delta(p, \epsilon, Z_0) = \{(f, Z_0)\}$. Accept at bottom.

Instantaneous Descriptions

- We can formalize the pictures just seen with an instantaneous description (ID).
- A ID is a triple (q, w, α) , where:
 - 1. q is the current state.
 - 2. w is the remaining input.
 - 3. α is the stack contents, top at the left.

The "Goes-To" Relation

- To say that ID I can become ID J in one move of the PDA, we write I⊦J.
- Formally, (q, aw, Xα)⊦(p, w, βα) for any w and α, if δ(q, a, X) contains (p, β).
- Extend ⊦ to ⊦*, meaning "zero or more moves," by:
 - Basis: I+*I.
 - Induction: If I+*J and J+K, then I+*K.

Example: Goes-To

- Using the previous example PDA, we can describe the sequence of moves by:
- (q, 000111, Z_0)+(q, 00111, XZ_0)+
 (q, 0111, XXZ_0)+(q, 111, $XXXZ_0$)+(p, 11, XXZ_0)+
 (p, 1, XZ_0)+(p, ϵ , Z_0)+ (f, ϵ , Z_0)
- Thus, $(q, 000111, Z_0) \vdash *(f, \epsilon, Z_0)$.
- What would happen on input 0001111?

Legal because a PDA can use input even if input remains. €

Answer

- (q, 0001111, Z_0)+(q, 001111, XZ_0)+(q, 01111, XXZ_0)+(q, 1111, $XXXZ_0$)+ (p, 111, XXZ_0)+(p, 1, Z_0)+ (f, 1, Z_0)
- Note the last ID has no move.
- 0001111 is not accepted, because the input is not completely consumed.

0^n1^{2n}

 $\{w\#x\mid w^R \text{ is a substring of } x, \text{ where } w, x\in\{a,b\}^*\}$

Aside: FA and PDA Notations

- We represented moves of a FA by an extended δ, which did not mention the input yet to be read.
- We could have chosen a similar notation for PDA's, where the FA state is replaced by a statestack combination, like the pictures just shown.

FA and PDA Notations – (2)

- Similarly, we could have chosen a FA notation with ID's.
 - Just drop the stack component.
- Why the difference? My theory:
- FA tend to model things like protocols, with indefinitely long inputs.
- PDA model parsers, which are given a fixed program to process.

Language of a PDA

- There are 2 approach to defining language of a PDA: PDA final state, PDA empty stack
- The common way to define the language of a PDA is by final state.
- If P is a PDA, then L(P) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (f, \varepsilon, \alpha)$ for final state f and any α .

Language of a PDA – (2)

- Another language defined by the same PDA is by empty stack.
- If P is a PDA, then N(P) is the set of strings w such that (q₀, w, Z₀) ⊦* (q, ε, ε) for any state q.

Contoh CFG if-else

Let's design P_N for for cathing errors in strings meant to be in the *if-else*-grammar G

$$S \to \epsilon |SS| iS |iS| iSe$$
.

Here e.g. $\{ieie, iie, iei\} \subseteq G$, and e.g. $\{ei, ieeii\} \cap G = \emptyset$.

The diagram for P_N is

Formally,

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$

where $\delta_N(q,i,Z) = \{(q,ZZ)\},$ and $\delta_N(q,e,Z) = \{(q,\epsilon)\}.$

Equivalence of Language Definitions

- If L = L(P), then there is another PDA P' such that L = N(P').
- 2. If L = N(P), then there is another PDA P" such that L = L(P").

Proof: L(P) -> N(P') Intuition

- P' will simulate P.
- If P accepts, P' will empty its stack.
- P' has to avoid accidentally emptying its stack, so it uses a special bottom-marker to catch the case where P empties its stack without accepting.

Proof: L(P) -> N(P')

- P' has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol X₀, used to guard the stack bottom against accidental emptying.
 - 2. New start state s and "erase" state e.
 - 3. $\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\}$. Get P started.
 - 4. $\delta(f, \epsilon, X) = \delta(e, \epsilon, X) = \{(e, \epsilon)\}$ for any final state f of P and any stack symbol X.

The PDA for L_{wwr} as a transition diagram:

Example: The PDA

$$P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}),$$

where δ is given by the following table (set brackets missing):

	$0, Z_0$	$1, Z_0$	0,0	0,1	1,0	1,1	ϵ, Z_0	$\epsilon, 0$	$\epsilon, 1$
$\rightarrow q_0$	$q_0, 0Z_0$	$q_0, 1Z_0$	$q_0,00$	<i>q</i> ₀ ,01	$q_0, 10$	$q_0, 11$	q_1, Z_0	$q_1, 0$	$q_1, 1$
q_1			q_1,ϵ			q_1,ϵ	q_2, Z_0		
$\star q_2$									

Example: On input 1111 the PDA

Proof: N(P) -> L(P") Intuition

- P" simulates P.
- P" has a special bottom-marker to catch the situation where P empties its stack.
- If so, P" accepts.

Proof: N(P) -> L(P")

- P" has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol X₀, used to guard the stack bottom.
 - New start state s and final state f.
 - 3. $\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\}$. Get P started.
 - 4. $\delta(q, \epsilon, X_0) = \{(f, \epsilon)\}\$ for any state q of P.

Let's design P_N for for cathing errors in strings meant to be in the *if-else*-grammar G

$$S \to \epsilon |SS| iS |iSe$$
.

Here e.g. $\{ieie, iie, iei\} \subseteq G$, and e.g. $\{ei, ieeii\} \cap G = \emptyset$. The diagram for P_N is

Formally,

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$

where $\delta_N(q,i,Z) = \{(q,ZZ)\},$ and $\delta_N(q,e,Z) = \{(q,\epsilon)\}.$

The diagram for P_F is

$$P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\}),$$

where

$$\delta_F(p, \epsilon, X_0) = \{(q, ZX_0)\},\$$
 $\delta_F(q, i, Z) = \delta_N(q, i, Z) = \{(q, ZZ)\},\$
 $\delta_F(q, e, Z) = \delta_N(q, e, Z) = \{(q, \epsilon)\},\$ and $\delta_F(q, \epsilon, X_0) = \{(r, \epsilon)\}$

Ekivalensi antara PDA dan CFG

Informatika

Ekivalen PDA dan CFG

CFG
$$G = (V, T, Q, S)$$

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$$

Input symbol

CFG ke PDA dgn Empty Stack

- Ide Konversi, G= (V,T,P,S)
 - semua isi pada aturan produksi di CFG G akan diproses sebagai manipulasi stack shg hanya akan ada satu state q pada PDA dan banyak simbol stack.
 - Maka arti dari A → α akan berarti untuk "top symbol of the stack adalah A", "gantilah top tsb dgn α" atau "pop A dan push α"
- maka PDA-nya (P = (Q, Σ , Γ , δ , q_0 , Z_0)) adalah:
 - $P = (\{q\}, T, V U T, \delta, q, S)$
 - dimana {q} adl states(Q); T adl input symbol (Σ); V U T adl stack alphabet (Γ); δ adl transition function; q adl start state dan S adalah start stack symbol

CFG ke PDA dgn Empty Stack (2)

- CFG G = (V, T, Q, S)
 - V: variable (non terminal); T: terminal; Q: aturan produksi; S: start variable
- PDA P = ({q}, T, V U T, δ, q, S)
 - $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ Q:state; Σ :input symbol; Γ :stack symbol; δ : transition function; q_0 :start stack
- Dengan δ adl:
 - Utk setiap terminal a bagian dari T akan ada δ(q,a,a) = {(q,ε)}
 - Utk setiap variable A bagian dari V, akan ada δ(q,ε,A) = {(q,β)|A→ β adalah produksi di Q}

Contoh CFG ke PDA

- $CFG = (\{I, E\}, \{0,1,+,*\},G,E)$ dimana G
 - $I \to 0 | 1 | I0 | I1$
 - $E \rightarrow I \mid E + E \mid E * E$
- PDA = ({q}, T, V U T, δ , q, S) = ({q}, {0,1,+,*}, {I,E,0,1,+,*}, δ , q, E) dgn δ adl
 - Utk setiap terminal: $\delta(q,0,0) = (q, \epsilon)$; $\delta(q,1,1) = (q,\epsilon)$; $\delta(q,+,+) = (q, \epsilon)$; $\delta(q,*,*) = (q, \epsilon)$
 - Utk setiap non terminal:
 - $\delta(q, \epsilon, I) = \{(q, 0), (q, 1), (q, I0), (q, I1)\}$
 - $\delta(q, \epsilon, E) = \{(q, l), (q, E+E), (q, E*E)\}$

Latihan

- 6.3.1
 - Konversi grammar berikut ke PDA empty stack:

$$S \rightarrow 0 S 1 | A$$

 $A \rightarrow 1 A 0 | S | \epsilon$

$$L = \{a^n b^m c^k : k \neq n + m \}$$

54

Let L1 =
$$\{a^nb^mc^k : k < n + m\}$$
, L2 = $\{a^nb^mc^k : k > n + m\}$

$$S \rightarrow EcC \mid aAE \mid AU$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$E \rightarrow aEc \mid F$$

$$F \rightarrow bFc \mid \lambda$$

$$U \rightarrow aUc \mid V$$

$$V \rightarrow bVc \mid bB$$

$$Q=\{q\}$$

$$\partial(q,a,a) = \{(q,\varepsilon)\}$$

$$\partial(q,b,b) = \{(q,\varepsilon)\}$$

$$\partial(q,c,c) = \{(q,\varepsilon)\}$$

$$\partial(q,\varepsilon,S) = \{(q,EcC),(q,aAE),(AU)\}$$

$$\partial(q,\varepsilon,A) = \{(q,aA),(q,\varepsilon)\}$$

$$\partial(q,\varepsilon,B) = \{(q,bB),(q,\varepsilon)\}$$

$$\partial(q,\varepsilon,C) = \{(q,cC),(q,\varepsilon)\}$$

$$\partial(q,\varepsilon,E) = \{(q,aEc),(q,F)\}$$

$$\partial(q,\varepsilon,F) = \{(q,bFc),(q,\varepsilon)\}$$

$$\partial(q,\varepsilon,V) = \{(q,aUc),(q,V)\}$$

$$L = \{a^nb^mc^k : k \neq n+m \}$$

$$L = \{a^nb^mc^k : k \neq n+m \}$$

PDA (P) ke CFG (G)

- Misalkan P = (Q, Σ , Γ , δ , q_0 , Z_0)
- Maka $G = (V, \Sigma, R, S)$ dimana:
 - simbol Terminal adalah sama dengan input symbol pada PDA P yaitu Σ;
 - Ditambahkan satu non terminal S sbg start symbol
 - Simbol non terminal V adalah S ditambah dengan hasil kombinasi antara simbol stack dan state sbb: [pXq] dimana p dan q adalah state dan X adalah stack. Pada akhirnya, [pXq] ini bisa diganti dgn satu karakter spt misalnya A.

Ide Dasar PDA ke CFG

- Non Terminal (CFG)
 - Berdasar pada transisi pada PDA
 - Transisi dari satu state asal ke state tujuan
 - state asal bisa sama dengan state tujuan
 - Aksi pada stack
 - Pop
 - Push
 - Tetap
 - [q Z p] yg artinya dari mewakili transisi dari state q ke state p dgn aksi pada top of stack berupa Z
 - Tulis semua kombinasi state dan stack yang mungkin untuk semua non terminal pada CFG
 - Contoh: [qZp], [qZq], [pZp], [pZq]
 - Target adalah [q₀ Z₀ q_f] yaitu transisi dari state awal q₀ ke state final q_f dengan mem-pop Z₀ start stack
 - karena PDA dgn empty stack, maka q_f diganti dgn semua state yg ada

Aturan Produksi (1)

• Utk semua state p pada P, buat aturan produksi sbb S \rightarrow [q₀ Z₀ p], dimana q₀ adalah start state pada P dan Z₀ adalah start stack pada P. Jumlah aturan produksi ini sama dengan jumlah state yang ada pada P. Misalkan selain p, ada state q, maka akan ada aturan S \rightarrow [q₀ Z₀ q]

Aturan Produksi (2)

- Target adalah S → [q₀ Z₀ q_f]
- Prinsip CFG: mengurai dari solusi total ke sub-nya ->
 pohon ke sub pohon dst
- Untuk setiap fungsi transisi pada PDA, buatlah aturan produksi sbb:
 - Jika transisi di pop:
 - $\delta(q,0,Z) = (p,\epsilon)$ maka pd CFG: $[qZp] \rightarrow 0$
 - Jika transisi tetap atau diganti:
 - $\delta(q,0,Z) = (p,Y)$ maka pd CFG: $[qZ_r] \rightarrow 0$ $[pY_r]$ dimana r adalah semua state yg ada pd PDA
 - Jika transisi di push:
 - $\delta(q,0,Z) = (p,YZ)$ maka $[qZr] \rightarrow 0$ [pYs] [sZr] dimana r dan s adalah semua state yg ada pd PDA

Aturan Produksi (3)

 Untuk fungsi transisi δ(q,a,X)=(r, Y₁Y₂...Y_k), maka buatlah aturan produksi untuk setiap kombinasi state sbb:

 $[q_0 \times q_0] \rightarrow [q_1 \times q_0]$

Contoh: untuk {anbn}


```
• [q<sub>1</sub> Z<sub>0</sub> q<sub>2</sub>] → ε [q<sub>0</sub> Z<sub>0</sub> q<sub>1</sub>] → [q<sub>1</sub> Z<sub>0</sub> q<sub>1</sub>] [q<sub>0</sub> X q<sub>1</sub>] → [q<sub>1</sub> X q<sub>1</sub>]

• [q<sub>1</sub> X q<sub>1</sub>] → b [q<sub>0</sub> Z<sub>0</sub> q<sub>2</sub>] → [q<sub>1</sub> Z<sub>0</sub> q<sub>2</sub>] [q<sub>0</sub> X q<sub>2</sub>] → [q<sub>1</sub> X q<sub>2</sub>]

[q<sub>0</sub> Z<sub>0</sub> q<sub>0</sub>] → a [q<sub>0</sub> X q<sub>0</sub>] [q<sub>0</sub> Z<sub>0</sub> q<sub>0</sub>] | a [q<sub>0</sub> X q<sub>1</sub>] [q<sub>1</sub> Z<sub>0</sub> q<sub>0</sub>] | a [q<sub>0</sub> X q<sub>2</sub>] [q<sub>2</sub> Z<sub>0</sub> q<sub>0</sub>]

[q<sub>0</sub> Z<sub>0</sub> q<sub>1</sub>] → a [q<sub>0</sub> X q<sub>0</sub>] [q<sub>0</sub> Z<sub>0</sub> q<sub>1</sub>] | a [q<sub>0</sub> X q<sub>1</sub>] [q<sub>1</sub> Z<sub>0</sub> q<sub>1</sub>] | a [q<sub>0</sub> X q<sub>2</sub>] [q<sub>2</sub> Z<sub>0</sub> q<sub>1</sub>]

[q<sub>0</sub> Z<sub>0</sub> q<sub>2</sub>] → a [q<sub>0</sub> X q<sub>0</sub>] [q<sub>0</sub> Z<sub>0</sub> q<sub>2</sub>] | a [q<sub>0</sub> X q<sub>1</sub>] [q<sub>1</sub> Z<sub>0</sub> q<sub>2</sub>] | a [q<sub>0</sub> X q<sub>2</sub>] [q<sub>2</sub> Z<sub>0</sub> q<sub>2</sub>]
```

 $[q_0 \times q_0] \rightarrow a [q_0 \times q_0] [q_0 \times q_0] | a [q_0 \times q_1] [q_1 \times q_0] | a [q_0 \times q_2] [q_2 \times q_0]$

 $[q_0 \ X \ q_1] \ \to \ \mathsf{a} \ [q_0 \ X \ q_0] \ [q_0 \ X \ q_1] \ | \ \mathsf{a} \ [q_0 \ X \ q_1] \ | \ \mathsf{a} \ [q_0 \ X \ q_2] \ [q_2 \ X \ q_1]$

 $[q_0 X q_2] \rightarrow a [q_0 X q_0] [q_0 X q_2] | a [q_0 X q_1] [q_1 X q_2] | a [q_0 X q_2] [q_2 X q_2]$

 $[q_0 Z_0 q_0] \rightarrow [q_1 Z_0 q_0]$

IF2220 Sem ii 2013-2014 KK - Informatika

 $S \rightarrow [q_0 Z_0 q_2]$

aabb

Latihan

* Exercise 6.3.3: Convert the PDA $P = (\{p,q\},\{0,1\},\{X,Z_0\},\delta,q,Z_0)$ to a CFG, if δ is given by:

1.
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}.$$

2.
$$\delta(q, 1, X) = \{(q, XX)\}.$$

3.
$$\delta(q, 0, X) = \{(p, X)\}.$$

4.
$$\delta(q, \epsilon, X) = \{(q, \epsilon)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}.$$

Contoh Soal 6.3.3

- Dengan 2 state yaitu p dan q maka dari start symbol S, start state q dan start stack symbol Zo, diperoleh aturan produksi:
 - $S \rightarrow [q Zo q]$
 - $S \rightarrow [q Zo p]$

Contoh Soal 6.3.3

- Dari transition function 1 yaitu
 δ(q,1,Zo)=(q,X Zo), diperoleh aturan produksi:
 - [q Zo q] → 1 [q X q] [q Zo q]
 - [q Zo q] → 1 [q X p] [p Zo q]
 - [q Zo p] → 1 [q X q] [q Zo p]
 - [q Zo p] → 1 [q X p] [p Zo p]

Contoh Soal 6.3.3

- Dari transition function 3 yaitu
 δ(q,0,X)=(p,X), diperoleh aturan produksi:
 - $[q X q] \rightarrow 0 [p X q]$
 - $[q X p] \rightarrow 0 [p X p]$
- Dari transition function 4 yaitu δ(q,ε,X)=(q,ε),
 diperoleh aturan produksi:
 - [q X q] → ε

6.3.3

- In the following, S is the start symbol, e stands for the empty string, and Z is used in place of Z_0 .
 - $-S \rightarrow [qZq] \mid [qZp]$
- The following four productions come from rule (1).
 - [qZq] -> 1[qXq][qZq]
 - $[qZq] \rightarrow 1[qXp][pZq]$
 - $[qZp] \rightarrow 1[qXq][qZp]$
 - $[qZp] \rightarrow 1[qXp][pZp]$
- The following four productions come from rule (2).
 - [qXq] -> 1[qXq][qXq]
 - [qXq] -> 1[qXp][pXq]
 - $[qXp] \rightarrow 1[qXq][qXp]$
 - $[qXp] \rightarrow 1[qXp][pXp]$
- The following two productions come from rule (3).
 - [qXq] -> 0[pXq]
 - [qXp] -> 0[pXp]
- The following production comes from rule (4).
 - [qXq] -> e
- The following production comes from rule (5).
 - [pXp] -> 1
- The following two productions come from rule

(6).

 $- [pZq] \rightarrow 0[qZq]$

Deterministic PDA's

- To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- In addition, there must not be a choice between using input ∈ or real input.
- Formally, δ(q, a, X) and δ(q, ε, X) cannot both be nonempty.

70

$$L_{wcwr} = \{wcw^R : w \in \{0, 1\}^*\}$$

Then L_{wcwr} is recognized by the following DPDA