IOT - Internet de las cosas

IE El Pilar - 2023

Alfonso Trigo iotelpilar 2023@gmail.com

Introducción

Internet de las cosas

<u>Dispositivos</u> que tienen <u>sensores</u> y son capaces de intercambiar información (Generalmente a través de Internet) y <u>actuar</u> en base a esa información.

- Teléfonos móviles
- Coches
- Relojes
- Frigoríficos
- Termostátos
- Cámaras
- Etc, etc, etc...

Sensores

Captan información del entorno y la reportan al **dispositivo** al que están conectados

- Un sensor de temperatura mide 15°C
- Un sensor de una alarma detecta movimiento
- Un sensor de luz detecta que es de noche

Actuadores

Reciben una orden del <u>dispositivo</u> al que están conectados y realizan una acción

- Un radiador se enciende
- El altavoz de una alarma suena
- Una bombilla se enciende

Sensores y Actuadores

Pulsador

Ultrasonidos

Temperatura y húmedad

Leds

Buzzer (altavoz)

Servo motor

Relé

Sensores y actuadores

Microcontrolador

Componente electrónico encargado de interpretar los datos de los sensores e informar a los actuadores cuándo y cómo deben actuar

- Pueden tener múltiples formas y tamaños
- Muchos dispositivos tienen varios microcontroladores a la vez

Microcontrolador

Componente electrónico <u>programable</u> compuesto de :

- Procesador
- Memoria
- Puertos de entrada para recibir datos de los sensores
- Puertos de salida para comandar acciones a los actuadores

Microcontrolador - Arduino vs ESP8266

	ESP8266	Arduino UNO
Number of Cores	1	1
Architecture	32 Bit	8 Bit
CPU Frequency	80 MHz	16 MHz
WiFi	YES	NO
BLUETOOTH	NO	NO
RAM	160 KB	2 KB
FLASH	16 MB	32 KB
GPIO PINS	17	14
Busses	SPI, I2C, UART, I2S	SPI, I2C, UART
ADC Pins	1	6

Microcontrolador - ESP8266

- Microcontrolador ESP8266
- Placa Nodemcu v1.0
- 17 puertos de propósito general (GPIO)
- Puertos digitales y analógicos
- Conectividad Wifi!

Digital vs Analógico

Microcontrolador - Arduino

Arduino UNO Microcontroller's Port Analog Pin D19 PA3 SCL D18 PA2 SDA AREF PD7 LED_BUILTIN PD6 ATmega32U

Arduino Nano

Manejo de un LED

Manejo de un LED

2 puntos importantes a tener en cuenta

- Polaridad del LED
- Añadir una resistencia de protección

Manejo de un LED - Leer una resistencia

(CÓDIGO DE	COLORES	DE LAS RESISTENC	AS
_				
			X	
COLOR	BANDÁ 1	BANDA 2	MULTIPLICADOR	TOLERANCIA
NEGRO	0	0	x 1 Ω	
MARRÓN	1	1	x 10 Ω	± 1%
ROJO	2	2	x 100 Ω	± 2%
NARANJA	3	3	x 1K Ω	
AMARILLO	4	4	x 10K Ω	
VERDE	5	5	x 100K Ω	
AZUL	6	6	x 1M Ω	
VIOLETA	7	7	x 10M Ω	
GRIS	8	8		
BLANCO	9	9		
DORADO			x 0,1 Ω	± 5%

Placa de prototipado

- 4 líneas horizontales conectadas
- 2 bloques de 64 líneas verticales conectadas

Alimentar un LED

- 1 Placa de prototipado
- 1 Led de cualquier color
- 1 Resistencia de 220 Ohm
- 1 Fuente de alimentación de 3v

Alimentar un LED

Alimentar un LED

- 1 Placa de prototipado
- 1 Led de cualquier color
- 1 Resistencia de 220 Ohm
- 1 Fuente de alimentación de 3v

Parpadear un LED

- Emplearemos una salida digital (D2)
- 1 lógico equivale a 3v en la salida
- 0 lógico equivale a 0v en la salida

Arduino IDE

Símbolo	Descripción	
	Crear nuevo proyecto	
.	Abrir un proyecto	
*	Guardar proyecto	
0	Compilar y depurar código	
0	Cargar programa en la placa de Arduino tras compilar	
Q	Abrir la ventana del monitor serie	

Estructura de un programa

```
Variables
setup()
loop()
```

```
//Variables
     const int led_pin = 2;
     //Inicialización
     void setup() {
       pinMode(led_pin, OUTPUT);
     //Bucle que se repite de manera infinita
     void loop() {
10
       digitalWrite(LED_BUILTIN, HIGH); //Enciende el led
11
                                         //Espera 1s sin hacer nada
12
       delay(1000);
13
       digitalWrite(LED_BUILTIN, LOW);
                                         //Apaga el led
       delay(1000);
                                         //Espera 1s sin hacer nada
14
15
```

Operadores Aritméticos

- = (asignación)
 - Se usa para asignar valores a las variables.
 - o No indica igualdad
- + (suma)
 - Puede sumar dos números o valores de variables.
- (resta)
- * (multiplicación)
- / (división)

Operadores Lógicos

- == (igual que)
- != (Distinto que)
- < (menor que)</p>
- > (mayor que)
- <= (menor o igual que)</p>
- >= (mayor o igual que)

Leer un pulsador

- Emplearemos una entrada digital (GPIO 10)
- 1 lógico equivale a 3v en la entrada
- 0 lógico equivale a 0 v en la entrada
- Necesitamos una resistencia para estabilizar la entrada

Monitor y Plotter serie

Pantalla LCD

- Pantalla lcd de 2 líneas de 16 caracteres
- Puede conectarse directamente o mediante I2C
- Necesitaremos la librería LiquidCrystal

Pantalla LCD

IOT - Internet of things

