Policy gradient primal-dual mirror descent for constrained MDPs

Dongsheng Ding

https://dongshed.github.io

a joint work with Mihailo R. Jovanović

61st IEEE Conference on Decision and Control, Cancún, Mexico

Success stories of RL

Go

AlphaZero, Silver et al., '17

Robot hand

Rubik's cube, '19

Constrained RL

Automated vehicles

Waymo

Industrial robot

Siemens

Constrained RL

Automated vehicles

Waymo

Industrial robot

Siemens

Applications	Goal	Constraints
Automated vehicles	Follow a path	Fuel efficiency
Industrial robot	Manufacture products	Risk-awareness
•••	•••	• • •

Framework for constrained RL

CONSTRAINED MDPS

 $\pi: S \text{ (states)} \to A \text{ (actions)} - \text{a policy}$

Framework for constrained RL

CONSTRAINED MDPS

$$\pi: S \text{ (states)} \to A \text{ (actions)} - \text{a policy}$$

$$V_r^\pi(s_0) = \mathbb{E}\left[\, \sum_{t=0}^\infty \gamma^t r_t \, \right] - \text{reward value function}$$

$$V_g^\pi(s_0) = \mathbb{E}\left[\, \sum_{t=0}^\infty \gamma^t g_t \, \right] - \text{utility value function}$$

Constrained policy optimization

$$\begin{array}{ll} \underset{\pi}{\text{maximize}} & V_r^{\pi}(\rho) \; \coloneqq \; \mathbb{E}_{s_0 \sim \rho} \left[V_r^{\pi}(s_0) \right] \\ \\ \text{subject to} & V_q^{\pi}(\rho) \; \coloneqq \; \mathbb{E}_{s_0 \sim \rho} \left[V_q^{\pi}(s_0) \right] \; \geq \; b \end{array}$$

Altman, CRC Press '99

Constrained policy optimization

maximize
$$V_r^{\pi}(\rho) := \mathbb{E}_{s_0 \sim \rho} \left[V_r^{\pi}(s_0) \right]$$

subject to $V_q^{\pi}(\rho) := \mathbb{E}_{s_0 \sim \rho} \left[V_q^{\pi}(s_0) \right] \geq b$

Altman, CRC Press '99

non-convex objective

non-convex feasible set

$$V_r^{\pi}(\rho)$$

$$\left\{\pi \mid V_a^{\pi}(\rho) \ge b\right\}$$

Constrained parameter optimization

POLICY PARAMETRIZATION

$$\star \ \pi_{\theta}(a \,|\, s) = \theta_{s,a} \ - \ \text{direct policy}$$

$$\star \pi_{\theta}(a \mid s) = \frac{e^{\theta_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}$$
 — softmax policy

$$\star \ \pi_{\theta}(a \mid s) = \frac{e^{f_{\theta}(s,a)}}{\sum_{l'} e^{f_{\theta}(s,a')}} \ - \ \text{general softmax policy}$$

Agarwal, Kakade, Lee, Mahajan, JMLR '21

Constrained parameter optimization

POLICY PARAMETRIZATION

$$\star \ \pi_{\theta}(a \mid s) = \theta_{s,a} - \text{direct policy}$$

$$\star \ \pi_{\theta}(a \,|\, s) = \frac{\mathrm{e}^{\theta_{s,a}}}{\sum_{a'} \mathrm{e}^{\theta_{s,a'}}} \ - \ \mathrm{softmax} \ \mathrm{policy}$$

$$\star \ \pi_{\theta}(a \mid s) = \frac{e^{f_{\theta}(s,a)}}{\sum_{l'} e^{f_{\theta}(s,a')}} \ - \ \text{general softmax policy}$$

Agarwal, Kakade, Lee, Mahajan, JMLR '21

PARAMETER OPTIMIZATION

$$\begin{array}{ll}
\text{minimize} & V_r^{\pi_{\theta}}(\rho) \\
\theta \in \Theta & V_g^{\pi_{\theta}}(\rho) \ge b
\end{array}$$
subject to $V_g^{\pi_{\theta}}(\rho) \ge b$

Lagrangian method

SADDLE POINT PROBLEM

$$L(\theta,\lambda) := V_r^{\pi_\theta}(\rho) \, + \, \lambda(V_g^{\pi_\theta}(\rho) \, - \, b) \, - \, \text{Lagrangian}$$

Existence of saddle points

Non concave (θ) and convex (λ)

Lagrangian method

SADDLE POINT PROBLEM

$$L(\theta,\lambda):=V_r^{\pi_\theta}(\rho)\,+\,\lambda(V_g^{\pi_\theta}(\rho)\,-\,b)\,\,-\,\,\text{Lagrangian}$$
 Existence of saddle points
$$\text{Non concave }(\theta)\text{ and convex }(\lambda)$$

Popularity of primal-dual methods with different guarantees

Related work (incomplete)

SMALL STATE/ACTION SPACES

* policy in spherical coordinates, policy gradient primal-dual

Abad, Krishnamurthy, Martin, Baltcheva, CDC '02

* direct policy, projected policy gradient primal-dual

Borkar, SCL '05; Bhatnagar, SCL '10 Ding, Zhang, Başar, Jovanović, ACC '22

Related work (incomplete)

■ SMALL STATE/ACTION SPACES

⋆ policy in spherical coordinates, policy gradient primal-dual

Abad, Krishnamurthy, Martin, Baltcheva, CDC '02

⋆ direct policy, projected policy gradient primal-dual

Borkar, SCL '05; Bhatnagar, SCL '10 Ding, Zhang, Başar, Jovanović, ACC '22

■ LARGE STATE/ACTION SPACES

* general policy, projected policy gradient primal-dual

Tessler, Mankowitz, Mannor, ICLR '19

* general softmax policy, natural policy gradient primal-dual

Ding, Zhang, Başar, Jovanović, NeurIPS '20 Ding, Zhang, Duan, Başar, Jovanović, arXiv '22 (arXiv: 2206.02346)

Related work (incomplete)

■ SMALL STATE/ACTION SPACES

policy in spherical coordinates, policy gradient primal-dual

Abad, Krishnamurthy, Martin, Baltcheva, CDC '02

direct policy, projected policy gradient primal-dual

Borkar, SCL '05; Bhatnagar, SCL '10 Ding, Zhang, Başar, Jovanović, ACC '22

■ LARGE STATE/ACTION SPACES

* general policy, projected policy gradient primal-dual

Tessler, Mankowitz, Mannor, ICLR '19

* general softmax policy, natural policy gradient primal-dual

Ding, Zhang, Başar, Jovanović, NeurIPS '20 Ding, Zhang, Duan, Basar, Jovanović, arXiv '22 (arXiv: 2206.02346)

Question: a unified famework?

Two pillars

■ Q-VALUE FUNCTION

$$Q_r^{\pi}(s,a) := \mathbb{E}\left[\left.\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)\right| s_0 = s, a_0 = a\right]$$

 $Q_g^{\pi}(s,a)$ — use g to define it similarly

Two pillars

■ Q-VALUE FUNCTION

$$Q_r^{\pi}(s, a) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \,\middle|\, s_0 = s, a_0 = a\right]$$

 $Q^\pi_g(s,a)$ — use g to define it similarly

■ BREGMAN DISTANCE

$$D(p, p') = h(p) - (h(p') + \langle \nabla h(p'), p - p' \rangle)$$

 $h(\cdot)$ – strictly convex and continuously differentiable

Two pillars

■ Q-VALUE FUNCTION

$$Q_r^{\pi}(s, a) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \,\middle|\, s_0 = s, a_0 = a\right]$$

 $Q^\pi_g(s,a)$ — use g to define it similarly

■ BREGMAN DISTANCE

$$D(p, p') = h(p) - (h(p') + \langle \nabla h(p'), p - p' \rangle)$$

 $h(\cdot)$ – strictly convex and continuously differentiable

*
$$D(p,p') = \frac{1}{2} \|p-p'\|^2$$
 - squared Euclidean 2-norm $(h(p) = \frac{1}{2} \|p\|^2)$

*
$$D(p, p') = \sum_a p_a \log \frac{p_a}{p'_a}$$
 - KL divergence $(h(p) = \sum_a p_a \log p_a)$

Policy gradient primal-dual mirror descent

$$\pi^{+}(\cdot \mid s) \stackrel{\forall s}{=} \underset{\pi'(\cdot \mid s) \in \Delta_{A}}{\operatorname{argmax}} \alpha \left\langle Q_{r}(s, \cdot) + \lambda Q_{g}(s, \cdot), \pi'(\cdot \mid s) \right\rangle - D_{s}(\pi', \pi)$$
$$\lambda^{+} = \mathcal{P}_{\Lambda} \left(\lambda - \eta \left(V_{g}(\rho) - b \right) \right)$$

$$D_s(\pi',\pi)$$
 – Bregman distance at s

 \mathcal{P}_{Λ} – projection

- $\star~Q_r(s,\cdot) + \lambda Q_g(s,\cdot)$ direction of policy search
- \star $b-V_{
 ho}(
 ho)$ price of constraint violation
- no dependence on policy parametrizations

Special case (I)

$$\pi^{+}(\cdot \mid s) \stackrel{\forall s}{=} \underset{\pi'(\cdot \mid s) \in \Delta_{A}}{\operatorname{argmax}} \alpha \left\langle Q_{r}(s, \cdot) + \lambda Q_{g}(s, \cdot), \pi'(\cdot \mid s) \right\rangle - \underline{D}_{s}(\pi', \pi)$$
$$\lambda^{+} = \mathcal{P}_{\Lambda} \left(\lambda - \eta \left(V_{g}(\rho) - b \right) \right)$$

$$D_s(\pi',\pi)$$
 – Bregman distance

 \mathcal{P}_{Λ} - projection

*
$$D_s(\pi',\pi) = \sum_a \pi'(a|s) \log \frac{\pi'(a|s)}{\pi(a|s)}$$
 - KL divergence

$$\pi^+(\cdot \mid s) \propto \pi(\cdot \mid s) e^{\alpha(Q_r(s,\cdot) + \lambda Q_g(s,\cdot))}$$

Natural policy gradient primal-dual method

Ding, Zhang, Başar, Jovanović, NeurIPS '20

Special case (II)

$$\pi^{+}(\cdot \mid s) \stackrel{\forall s}{=} \underset{\pi'(\cdot \mid s) \in \Delta_{A}}{\operatorname{argmax}} \alpha \left\langle Q_{r}(s, \cdot) + \lambda Q_{g}(s, \cdot), \pi'(\cdot \mid s) \right\rangle - D_{s}(\pi', \pi)$$

$$\lambda^{+} = \mathcal{P}_{\Lambda} \left(\lambda - \eta \left(V_{g}(\rho) - b \right) \right)$$

$$D_s(\pi',\pi)$$
 – Bregman distance

 \mathcal{P}_{Λ} – projection

*
$$D_s(\pi',\pi) = \frac{1}{2} \|\pi'(\cdot \mid s) - \pi(\cdot \mid s)\|^2$$
 - squared Euclidean 2-norm

$$\pi^{+}(\cdot \mid s) = \mathcal{P}_{\Delta_{A}} \left(\pi(\cdot \mid s) + \alpha \left(Q_{r}(s, \cdot) + \lambda Q_{g}(s, \cdot) \right) \right)$$

Projected *Q*-policy gradient primal-dual method

Finite-time performance guarantee

OPTIMALITY GAP

$$\frac{1}{T} \sum_{t=0}^{T-1} \left(V_r^{\star}(\rho) - V_r^{(t)}(\rho) \right) \lesssim \frac{1}{(1-\gamma)^2 \sqrt{T}}$$

CONSTRAINT VIOLATION

$$\left[\frac{1}{T} \sum_{t=0}^{T-1} \left(b - V_g^{(t)}(\rho) \right) \right]_+ \lesssim \frac{1}{(1-\gamma)^2 \sqrt{T}}$$

 $\lesssim \equiv \leq$ up to an absolute constant

Finite-time performance guarantee

OPTIMALITY GAP

$$\frac{1}{T} \sum_{t=0}^{T-1} \left(V_r^{\star}(\rho) - V_r^{(t)}(\rho) \right) \lesssim \frac{1}{(1-\gamma)^2 \sqrt{T}}$$

CONSTRAINT VIOLATION

$$\left[\frac{1}{T} \sum_{t=0}^{T-1} \left(b - V_g^{(t)}(\rho) \right) \right]_+ \lesssim \frac{1}{(1-\gamma)^2 \sqrt{T}}$$

 $\lesssim \equiv \leq$ up to an absolute constant

- * no dependence on the size of state/action spaces
- \star no dependence on the distribution mismatch coefficient κ
- * agnostic to distance metrics

$$V_r^{\star}(s) - V_r^t(s) + \lambda^t \left(V_g^{\star}(s) - V_g^t(s) \right)$$

$$V_r^{\star}(s) - V_r^t(s) + \lambda^t \left(V_g^{\star}(s) - V_g^t(s) \right)$$

$$= \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\star}} \left[\langle Q_L^t(s', \cdot), (\pi^{\star} - \pi^{t+1})(\cdot \mid s') + (\pi^{t+1} - \pi^t)(\cdot \mid s') \rangle \right]$$

$$\begin{split} & V_r^{\star}(s) - V_r^t(s) + \lambda^t \left(V_g^{\star}(s) - V_g^t(s) \right) \\ &= \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\star}} \left[\langle Q_L^t(s', \cdot), (\pi^{\star} - \pi^{t+1})(\cdot \mid s') + (\pi^{t+1} - \pi^t)(\cdot \mid s') \rangle \right] \\ &\lesssim \frac{1}{\alpha} \mathbb{E}_{s' \sim d^{\star}} \left[D_{s'} \left(\pi^{\star}, \pi^t \right) - D_{s'} \left(\pi^{\star}, \pi^{t+1} \right) \right] \\ &+ \left[\left(V_r^{t+1} (d_{\rho}^{\star}) - V_r^t (d_{\rho}^{\star}) \right) + \lambda^t \left(V_g^{t+1} (d_{\rho}^{\star}) - V_g^t (d_{\rho}^{\star}) \right) \right] \end{split}$$

$$\begin{split} & V_r^{\star}(s) - V_r^t(s) + \lambda^t \left(V_g^{\star}(s) - V_g^t(s) \right) \\ & = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_s^{\star}} \left[\langle Q_L^t(s', \cdot), (\pi^{\star} - \pi^{t+1})(\cdot \mid s') + (\pi^{t+1} - \pi^t)(\cdot \mid s') \rangle \right] \\ & \lesssim \frac{1}{\alpha} \mathbb{E}_{s' \sim d^{\star}} \left[D_{s'}(\pi^{\star}, \pi^t) - D_{s'}(\pi^{\star}, \pi^{t+1}) \right] \\ & + \left[\left(V_r^{t+1}(d_{\rho}^{\star}) - V_r^t(d_{\rho}^{\star}) \right) + \lambda^t \left(V_g^{t+1}(d_{\rho}^{\star}) - V_g^t(d_{\rho}^{\star}) \right) \right] \end{split}$$

$$\frac{1}{T} \sum_{t=0}^{T-1} \lambda^t \left(V_g^{t+1}(d_\rho^\star) - V_g^t(d_\rho^\star) \right) \lesssim \frac{1}{\sqrt{T}}$$

AVERAGE PERFORMANCE

$$\boxed{V_r^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_r^t(\rho) + \lambda \left(V_g^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_g^t(\rho) \right) \lesssim \frac{1}{\sqrt{T}}}$$

any
$$\lambda \in [0, C], C > 0$$

$$V_a^{\star}(\rho) \ge b$$

■ AVERAGE PERFORMANCE

$$V_r^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_r^t(\rho) + \lambda \left(V_g^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_g^t(\rho) \right) \lesssim \frac{1}{\sqrt{T}}$$

any
$$\lambda \in [0,C],\, C>0$$

$$V_q^\star(\rho) \, \geq \, b$$

Step #2: linear programming & strong duality

AVERAGE PERFORMANCE

$$\boxed{V_r^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_r^t(\rho) + \lambda \left(V_g^{\star}(\rho) - \frac{1}{T} \sum_{t=0}^{T-1} V_g^t(\rho) \right) \lesssim \frac{1}{\sqrt{T}}}$$

any
$$\lambda \in [0,C],\, C>0$$

$$V_g^\star(\rho) \, \geq \, b$$

Step #2: linear programming & strong duality

■ CONSTRAINED OPTIMALITY MEASURE

$$\exists \pi', \underbrace{V_r^{\star}(\rho) - V_r^{\pi'}(\rho)}_{\text{optimality gap}} + C \times \underbrace{\left[b - V_g^{\pi'}(\rho)\right]_+}_{\text{constraint violation}} \lesssim \frac{1}{\sqrt{T}}$$

LINEAR VALUE FUNCTION ASSUMPTION

LINEAR VALUE FUNCTION ASSUMPTION

⋆ linear MDPs − a special case

Jin, Yang, Wang, Jordan, COLT '20

LINEAR VALUE FUNCTION ASSUMPTION

$$Q_r^\pi(\cdot,\cdot) = \langle \phi_r(\cdot,\cdot), w_r^\pi \rangle$$
 and $Q_g^\pi(\cdot,\cdot) = \langle \phi_g(\cdot,\cdot), w_g^\pi \rangle$
$$\phi_r, \phi_g: S \times A \to \mathbb{R}^d - \text{feature maps}$$

⋆ linear MDPs − a special case

Jin, Yang, Wang, Jordan, COLT '20

 $\star~V_g^\pi(\cdot) = \langle \varphi_g(\cdot), u_g^\pi \rangle$ — linear value function

LINEAR VALUE FUNCTION ASSUMPTION

$$Q_r^\pi(\cdot,\cdot) = \langle \phi_r(\cdot,\cdot), w_r^\pi \rangle$$
 and $Q_g^\pi(\cdot,\cdot) = \langle \phi_g(\cdot,\cdot), w_g^\pi \rangle$
$$\phi_r, \phi_g: S \times A \to \mathbb{R}^d - \text{feature maps}$$

⋆ linear MDPs − a special case

Jin, Yang, Wang, Jordan, COLT '20

- $\star V_g^{\pi}(\cdot) = \langle \varphi_g(\cdot), u_g^{\pi} \rangle$ linear value function
- $\star~\hat{Q}^\pi_r(\cdot,\cdot),\,\hat{Q}^\pi_q(\cdot,\cdot),$ and $\hat{V}^\pi_q(\rho)$ unbiased estimates, e.g.,

$$\hat{Q}_r^{\pi}(\cdot,\cdot) = \langle \phi_g(\cdot,\cdot), \hat{w}_r^{\pi} \rangle$$

$$\hat{w}_r^{\pi} \; \simeq \; \mathsf{LR}(\{(\phi_r(s^k, a^k), R^k)\}_{k \, = \, 1}^K)$$

Sample-based algorithm

$$\pi^{+}(\cdot \mid s) \stackrel{\forall s}{=} \underset{\pi'(\cdot \mid s) \in \Delta_{A}}{\operatorname{argmax}} \alpha \left\langle \hat{Q}_{r}(s, \cdot) + \lambda \hat{Q}_{g}(s, \cdot), \pi'(\cdot \mid s) \right\rangle - D_{s}(\pi', \pi)$$

$$\lambda^{+} = \mathcal{P}_{\Lambda} \left(\lambda - \eta \left(\hat{V}_{g}(\rho) - b \right) \right)$$

$$D_s(\pi',\pi)$$
 – Bregman distance

$$\mathcal{P}_{\Lambda}$$
 – projection

- \star $\hat{Q}_r(s,\cdot) + \lambda \hat{Q}_g(s,\cdot)$ estimated direction of policy search
- $\star~b \hat{V}_{\rho}(\rho)$ estimated price of constraint violation

Finite-time performance guarantee

OPTIMALITY GAP

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\left(V_r^{\star}(\rho)-V_r^{(t)}(\rho)\right)\right] \lesssim \frac{1}{(1-\gamma)^2\sqrt{T}} + \sqrt{\kappa\,\epsilon_{\mathsf{stat}}}$$

■ CONSTRAINT VIOLATION

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\left(\,b-V_g^{(t)}(\rho)\,\right)\right]_+ \;\lesssim\; \frac{1}{(1-\gamma)^2\sqrt{T}}\,+\,\sqrt{\kappa\,\epsilon_{\mathsf{stat}}}$$

 $\lesssim \equiv \leq$ up to an absolute constant

Finite-time performance guarantee

OPTIMALITY GAP

$$\boxed{ \mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\left(V_r^{\star}(\rho)-V_r^{(t)}(\rho)\right)\right] \hspace{0.1cm} \lesssim \hspace{0.1cm} \frac{1}{(1-\gamma)^2\sqrt{T}} \hspace{0.1cm} + \hspace{0.1cm} \sqrt{\kappa\hspace{0.1cm}\epsilon_{\hspace{0.1em}\mathsf{stat}}} }$$

■ CONSTRAINT VIOLATION

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\left(b-V_g^{(t)}(\rho)\right)\right]_+ \hspace{0.1cm} \lesssim \hspace{0.1cm} \frac{1}{(1-\gamma)^2\sqrt{T}} \hspace{0.1cm} + \hspace{0.1cm} \sqrt{\kappa\hspace{0.1cm}\epsilon_{\text{stat}}}$$

 $\lesssim \equiv \leq$ up to an absolute constant

- * ϵ_{stat} estimation error, e.g., O(1/K) for SGD
- * $O(1/\epsilon^4)$ sample complexity

Summary

- POLICY GRADIENT PRIMAL-DUAL MIRROR DESCENT
 - * dimension-free finite-time performance bounds
 - * model-free algorithm & sample complexity

Summary

■ POLICY GRADIENT PRIMAL-DUAL MIRROR DESCENT

- * dimension-free finite-time performance bounds
- * model-free algorithm & sample complexity

■ FUTURE DIRECTIONS

- better sample complexity
- ⋆ general function approximation
- policy-directed exploration

Thank you for your attention.