A Book of Abstract Algebra (2nd Edition)

Step 1 of 2

Here, we use induction method to prove

Basic case: for m=1

 $x^m + 2 = x + 2$, so obviously true

Hypothesis: assume x+2 is factor of x^m+2 for m=k

 $\Rightarrow x+2$ is a factor of x^k+2

To prove: x+2 is a factor of x^m+2 for m=k+1

As 3 is characteristic of A so

$$x^{k+1} + 2 \equiv x^{k+1} + 3x^k + 2$$
$$\equiv x^{k+1} + 2x^k + x^k + 2$$
$$\equiv x^k (x+2) + x^k + 2$$

 \Rightarrow x+2 is a factor of $x^{k+1}+2$ so true for m=k+1

Hence, x+2 is a factor of x^m+2 for all m

Comment

Step 2 of 2

Step 2 of 2

Just like in step 1, here also, we use induction method to prove.

Basic case: for m=1

$$x^m + (p-1) = x + (p-1)$$
, so obviously true

Hypothesis: assume x+(p-1) is a factor of $x^m+(p-1)$ for m=k

$$\Rightarrow x + (p-1)$$
 is a factor of $x^k + (p-1)$

To prove: x+(p-1) is a factor of $x^m+(p-1)$ for m=k+1

As p is characteristic of A

$$x^{k+1} + (p-1) \equiv x^{k+1} + px^k + (p-1)$$
$$\equiv x^{k+1} + (p-1)x^k + x^k + (p-1)$$
$$\equiv x^k (x + (p-1)) + x^k + (p-1)$$

 \Rightarrow x + (p-1) is a factor of $x^{k+1} + (p-1)$ so true for m = k+1

Therefore, x+(p-1) is a factor of $x^m+(p-1)$ for all m

Comment