Espaces de configuration de variétés compactes

Najib Idrissi

But

Étudier les espaces de configuration des variétés :

$$Conf_k(M) := \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Idée

Utiliser la « formalité des opérades E_n » : résultats pour $\mathrm{Conf}_k(\mathbb{R}^n)$

1

Modèles

On se place dans le cadre des modèles rationnels/réels :

$$\mathsf{A} \simeq \Omega^*(\mathsf{M})$$
 « formes sur M » (de Rham, polynomiales par morceaux...)

où A est une CDGA « explicite »

algèbre différentielle graduée commutative

M nilpotente de type finie \implies A contient tout le type d'homotopie rationnel/réel de M

On cherche une CDGA $\simeq \Omega^*(\operatorname{Conf}_k(M))$ construite à partir de A

Formalité de $\operatorname{Conf}_k(\mathbb{R}^n)$

[Kontsevich] $\operatorname{Conf}_k(\mathbb{R}^n)$ est un espace «formel» sur \mathbb{Q} , c.-à-d. :

$$H^*(\operatorname{Conf}_R(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_R(\mathbb{R}^n))$$

 \implies détermine entièrement son type d'homotopie $/\mathbb{Q}$

Théorème (Arnold 1969, Cohen 1976)

- $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})_{1 \le i \ne j \le k}/I$
- $\cdot \deg \omega_{ii} = n 1$
- $\cdot I = \left(\omega_{ji} = \pm \omega_{ij}, \ \omega_{ij}^2 = 0, \ \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0\right)$

Modèles à dualité de Poincaré

CDGA à dualité de Poincaré (A, ε)

(p.ex. M est comp. or. sans bord)

· A: CDGA connexe de type fini;

 $(p.ex. (H^*(M), d = 0))$

• $\varepsilon: A^n \to \mathbb{k}$ t.q. $\varepsilon \circ d = 0$;

- $(\text{p.ex. } \int_{M}(-))$ $(\text{p.ex. } H^{k}(M) \otimes H^{n-k}(M) \rightarrow \Bbbk)$
- $A^k \otimes A^{n-k} \to \mathbb{k}$, $a \otimes b \mapsto \varepsilon(ab)$ est non-dégén.

Théorème (Lambrechts-Stanley 2008)

Toute variété simplement connexe admet un tel modèle

$$\Omega^*(M) \overset{\sim}{\longleftarrow} \cdot \overset{\sim}{\longrightarrow} \exists A$$

Remarque

D'après un résultat de Longoni–Salvatore (2005), $\exists L \simeq L'$ non simplement connexe t.q. $\mathrm{Conf}_k(L) \not\simeq \mathrm{Conf}_k(L') \ \forall k \geq 2$.

Le modèle de Lambrechts-Stanley

$$G_A(k)$$
 modèle conjectural de $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Rightarrow := \{x_i = x_i\}$

- « Générateurs » : $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Relations d'Arnold; $(\omega_{ji} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0)$ $p_i^*(a) \cdot \omega_{ij} = p_i^*(a) \cdot \omega_{ij}$. $(p_i^*(a) := 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$
- · $d \omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A) \rightarrow \text{tue le dual de } [\Delta_{ij}].$

Théorème (Lambrechts-Stanley)

$$\dim_{\mathbb{Q}} H^{i}(\operatorname{Conf}_{R}(M)) = \dim_{\mathbb{Q}} H^{i}(G_{A}(R))$$

Premiers exemples

$$G_A(k) = (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k} / \text{relations}, \ d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$G_A(1) = A \rightarrow \text{ modèle de } \mathrm{Conf}_1(M) = M \quad \checkmark$$

$$\begin{aligned} \mathsf{G}_{A}(2) &= \left(\frac{A \otimes A \otimes 1 \ \oplus \ A \otimes A \otimes \omega_{12}}{1 \otimes a \otimes \omega_{12} \equiv a \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{A} \otimes 1\right) \\ &\cong \left(A \otimes A \otimes 1 \ \oplus \ A \otimes_{\mathsf{A}} A \otimes \omega_{12}, \ d\omega_{12} = \Delta_{A} \otimes 1\right) \\ &\cong \left(A \otimes A \otimes 1 \ \oplus \ A \otimes \omega_{12}, \ d\omega_{12} = \Delta_{A} \otimes 1\right) \\ &= \left(A \otimes A \otimes 1 \ \oplus \ A \otimes \omega_{12}, \ d\omega_{12} = \Delta_{A} \otimes 1\right) \\ &= \operatorname{cone}(A \xrightarrow{\cdot \Delta_{A}} A^{\otimes 2}) \\ &\xrightarrow{\sim} A^{\otimes 2} / (\Delta_{A}) \end{aligned}$$

Historique de G_A

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- **1978** [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts & Stanley] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si M est 2-connexe
- ~2004 [Félix & Thomas, Berceanu & Markl & Papadima] $G_{H^*(M)}^{\vee}(k)\cong$ page E^2 de la SS de Bendersky–Gitler $\implies H^*(M^{\times k},\bigcup_{i\neq j}\Delta_{ij})$
 - **2008** [Lambrechts & Stanley] $H^*(G_A(k)) \cong_{\Sigma_k-gVect} H^*(Conf_k(M))$
 - **2015** [Cordova Bulens] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si $\dim M = 2m$

Première partie du théorème

Théorème

Soit M une variété lisse, compacte, sans bord, simplement connexe, de dimension ≥ 4 . Alors $G_A(k)$ est un modèle sur \mathbb{R} de $\operatorname{Conf}_k(M)$ pour tout $k \geq 0$.

Corollaire

Le type d'homotopie réel de $\mathrm{Conf}_k(M)$ ne dépend que du type d'homotopie réel de M :

$$M \simeq_{\mathbb{R}} N \implies \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N).$$

Idée de la preuve

Idée

Étudier $\{\operatorname{Conf}_k(M)\}_{k\geq 0}$: plus de structure \to module sur une opérade

Compactification de Fulton–MacPherson $\operatorname{Conf}_k(M) \overset{\sim}{\hookrightarrow} \operatorname{\mathsf{FM}}_M(k)$

Compactification de $Conf_k(\mathbb{R}^n)$

On a aussi $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n)/(\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \operatorname{FM}_n(k)$

(+ normalisation parce que \mathbb{R}^n n'est pas compact)

Opérades

 $\mathsf{FM}_n = \{\mathsf{FM}_n(k)\}_{k \geq 0}$ est une opérade : on peut « composer » les configurations

$$\mathsf{FM}_n(k) \times \mathsf{FM}_{\mathbb{R}^n}(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

Remarque

Faiblement équivalent à l'opérade des petits disques/cubes.

Modules sur les opérades

M parallélisée \Longrightarrow $FM_M = \{FM_M(k)\}_{k\geq 0}$ est un FM_n -module à droite : on peut insérer une configuration infinitésimale dans une configuration de M

$$\mathsf{FM}_{\mathsf{M}}(k) \times \mathsf{FM}_{\mathsf{n}}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathsf{M}}(k+l-1), \quad 1 \leq i \leq k$$

Cohomologie de FM_n et coaction sur G_A

 $H^*(FM_n)$ hérite d'une structure de coopérade de Hopf On peut réécrire

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Proposition

$$\chi(M)=0 \implies {\sf G}_{A}=\{{\sf G}_{A}(k)\}_{k\geq 0}$$
 est un $H^*({\sf FM}_n)$ -comodule de Hopf à droite

Motivation

On cherche à remplir ce diagramme :

$$G_A(k) \stackrel{\sim}{\leftarrow} ? \stackrel{\sim}{\longrightarrow} \Omega^*(FM_M(k))$$

Si c'est vrai, on peut s'attendre à pouvoir remplir celui-là :

Déjà connu : formalité de l'opérade des petits disques

Complexes de graphes de Kontsevich

[Kontsevich] Coopérade de Hopf $Graphs_n = \{Graphs_n(k)\}_{k \geq 0}$

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

Version complète du théorème

Idée

Construire $Graphs_R$ qui est à $Graphs_n$ ce que G_A est à $H^*(FM_n)$

Théorème (Version complète, cas sans bord)

 M : variété compacte sans bord, simplement connexe, lisse, $\dim \mathit{M} \geq 4$

† Si
$$\chi({\rm M})=0$$
 † Si M est parallélisée

Modèles à dualité de Poincaré-Lefschetz

Maintenant $\partial M \neq \emptyset \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}\,, arepsilon_{\partial})$ CDGA à dualité de Poincaré de dim. n-1; (modèle ∂ M, $\int_{\partial M})$
 - B : CDGA connexe de t.f.;
- $\lambda: B \rightarrow B_{\partial}:$ morphisme surjectif; (modèle $\partial M \hookrightarrow M$)
- \cdot $\varepsilon: B^n o \mathbb{R}$ t.q. $\varepsilon(dy) = \varepsilon_\partial(\lambda(y))$; (modèle $\int_{\mathbb{M}} (-) \, \&$ Stokes)
- soit $K := \ker \lambda$, alors $\theta : B \to K^{\vee}[-n]$, $b \mapsto \varepsilon(b \cdot -)$ est un quasi-iso surjectif. $(\kappa \simeq \Omega^*(M, \partial M))$

Dans ce cas, $A := B / \ker \theta$ est un modèle de M, et $\theta : A \xrightarrow{\cong} K^{\vee}[-n]$

(modèle M)

Existence & exemple de modèle à DPL

Exemple

Si $M = N \setminus \{*\}$ avec N compacte sans bord, soit P un modèle à DP de N, on pose :

$$B=(P\oplus \mathbb{R} v_{n-1}, dv=\mathrm{vol}_P) \twoheadrightarrow B_\partial=H^*(S^{n-1})=(\mathbb{R}\oplus \mathbb{R} v_{n-1}, d=0)$$

Proposition

Si M et ∂M sont simplement connexes et $\dim M \geq 7$, alors $(M, \partial M)$ admet un modèle à DPL.

Remarque

Également vrai si *M* admet un « *surjective pretty model* », cf. résultats de Cordova Bulens, Lambrechts et Stanley.

Le dg-module G_A « na $\ddot{i}f$ »

Soit (B, B_{∂}) un modèle à DPL et $A = B/\ker\theta \simeq B \implies$ même définition de $G_A(k)$

Théorème

$$\dim H^{i}(\operatorname{Conf}_{k}(M)) = \dim H^{i}(G_{A}(k))$$

Idée de la preuve

On combine:

- Des techniques de Lambrechts–Stanley pour calculer l'homologie d'espaces du type $M^k\setminus\bigcup_{i\neq j}\Delta_{ij}$;
- Des techniques de Cordova Bulens-Lambrechts-Stanley pour calculer l'homologie de M = N \ X où N est une variété sans bord et X ⊂ N est un sous-polyhèdre.

Le vrai modèle

En général, $G_A(k)$ n'est pas un modèle de $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Alors $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$.

- dans $G_A(2)$: $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12}$.
- · dans $Conf_3(\mathbb{R}^2)$ (Arnold) : $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12} \pm (\eta \otimes \eta)$.

 \implies on définit un « modèle perturbé » $\tilde{\mathbf{G}}_{\mathrm{A}}(k)$

Proposition

Isomorphisme de dg-modules $G_A(k)\cong \tilde{G}_A(k)$

Swiss-Cheese & graphes

M ressemble (localement) à $\mathbb{H}^n \Longrightarrow \text{opérade Swiss-Cheese}$

Théorème (Willwacher 2015)

Modèle $\mathsf{SGraphs}_n$ de $\mathsf{SFM}_n = \overline{\mathsf{Conf}_{\bullet,\bullet}(\mathbb{H}^n)} \simeq \mathsf{SC}_n$:

Théorème pour les variétés à bord

Avec des techniques similaires :

Théorème

M : variété lisse, compacte, de dimension ≥ 7 , M et ∂M simplement connexes :

En plus : modèle $\operatorname{SGraphs}_{R,R_{\partial}}^{c_{M},\mathbf{z}_{\varphi}^{S}}(k,l)$ de $\operatorname{SFM}_{M}(k,l)$, compatible avec la (co)action de $\operatorname{SGraphs}_{n}/\operatorname{SFM}_{n}$

Merci de votre attention!

Ces diapos, ma thèse: https://operad.fr/