201-SH2-AB - Exercises #16 - Curve Sketching

Sketch the graph of each function f, using the derivatives provided. Preliminary steps usually include:

- a) domain,
- b) intercepts,
- c) asymptotes,
- d) intervals of increase/decrease and local extrema
- e) intervals of concavity and points of inflection

(1)
$$f(x) = \frac{(x-2)(2x-1)}{(x+1)^2}$$
 with $f'(x) = \frac{9(x-1)}{(x+1)^3}$ and $f''(x) = \frac{18(2-x)}{(x+1)^4}$

(2)
$$f(x) = \left(\frac{x+2}{x-2}\right)^2$$
 with $f'(x) = \frac{-8(x+2)}{(x-2)^3}$ and $f''(x) = \frac{16(x+4)}{(x-2)^4}$

(3)
$$f(x) = \frac{6x^2}{4 - x^2}$$
 with $f'(x) = \frac{48x}{(4 - x^2)^2}$ and $f''(x) = \frac{48(3x^2 + 4)}{(4 - x^2)^3}$

(4)
$$f(x) = \frac{6}{x^2 + 4x}$$
 with $f'(x) = \frac{-12(x+2)}{(x^2 + 4x)^2}$ and $f''(x) = \frac{12(3x^2 + 12x + 16)}{(x^2 + 4x)^3}$

(5)
$$f(x) = \frac{1}{5}x^5 - \frac{2}{3}x^3 + x$$
 with $f'(x) = (x+1)^2(x-1)^2$ and $f''(x) = 4x(x+1)(x-1)$

(6)
$$f(x) = x^3 + 9x^2 + 120$$
 with $f'(x) = 3x(x+6)$ and $f''(x) = 6x + 18$

(7)
$$f(x) = (x-1)^4 (3x+2)$$
 with $f'(x) = 5(x-1)^3 (3x+1)$ and $f''(x) = 60x(x-1)^2$

(8)
$$f(x) = x + \frac{1}{x+2}$$
 with $f'(x) = \frac{(x+1)(x+3)}{(x+2)^2}$ and $f''(x) = \frac{2}{(x+2)^3}$

(9)
$$f(x) = \frac{x^2}{x-1}$$
 with $f'(x) = \frac{x(x-2)}{(x-1)^2}$ and $f''(x) = \frac{2}{(x-1)^3}$

(10)
$$f(x) = \frac{(x-2)(3x+1)}{(x-1)^2}$$
 with $f'(x) = \frac{9-x}{(x-1)^3}$ and $f''(x) = \frac{2(x-13)}{(x-1)^4}$

(11)
$$f(x) = \left(\frac{x+3}{x+1}\right)^2$$
 with $f'(x) = \frac{-4(x+3)}{(x+1)^3}$ and $f''(x) = \frac{8(x+4)}{(x+1)^4}$

(12)
$$f(x) = \frac{4}{x^2 - 4x}$$
 with $f'(x) = \frac{8(2-x)}{(x^2 - 4x)^2}$ and $f''(x) = \frac{8(3x^2 - 12x + 16)}{(x^2 - 4x)^3}$

(13)
$$f(x) = \frac{1}{5}x^5 - \frac{8}{3}x^3 - 9x$$
 with $f'(x) = (x^2 - 9)(x^2 + 1)$ and $f''(x) = 4x(x^2 - 4)$

(14)
$$f(x) = (x+2)^4 (4-3x)$$
 with $f'(x) = 5 (x+2)^3 (2-3x)$ and $f''(x) = -60x (x+2)^2$

(15)
$$f(x) = \frac{x^2}{x+2}$$
 with $f'(x) = \frac{x(x+4)}{(x+2)^2}$ and $f''(x) = \frac{8}{(x+2)^3}$

(16)
$$f(x) = \frac{(x-4)(x+1)}{x^2-4}$$
 with $f'(x) = \frac{3x^2+12}{(x^2-4)^2}$ and $f''(x) = \frac{-6x(x^2+12)}{(x^2-4)^3}$

*(17)
$$f(x) = \sqrt[3]{2x(x-3)^2}$$
 with $f'(x) = \frac{2(x-1)}{\sqrt[3]{4x^2(x-3)}}$ and $f''(x) = \frac{-4}{\sqrt[3]{4x^5(x-3)^4}}$

*(18)
$$f(x) = -(x+1)(x-4)^{2/3}$$
 with $f'(x) = \frac{5(2-x)}{3(x-4)^{1/3}}$ and $f''(x) = \frac{10(5-x)}{9(x-4)^{4/3}}$

Sketch the graph of a function f satisfying the following requirements.

*(19) Points at
$$(-3,2)$$
, $(-2,0)$, $(0,-2)$, $(1,0)$, $\lim_{x\to +\infty} f(x) = 1$
for $x<-3$: $f'(x)<0$; $f''(x)<0$
for $-3< x<0$: $f'(x)<0$; $f''(x)>0$
for $x>0$: $f'(x)>0$; $f''(x)<0$

*(20) Points at
$$(-3,0)$$
, $(-2,1)$, $(-1,0)$, $(0,-0.5)$, $(1,-2)$, $\lim_{x \to +\infty} f(x) = 0$
$$f'(x) < 0 \text{ for } -2 < x < 1 \text{ ; } f'(x) > 0 \text{ for } x < -2 \text{ or } x > 1$$

$$f''(x) < 0 \text{ for } x < -2 \text{ or } x > -1 \text{ ; } f''(x) > 0 \text{ for } -2 < x < -1$$

*(21) Points at
$$(-2,0)$$
, $(-1,-1)$, $(0,0)$ vertical asymptote at $x=1$ and $\lim_{x\to +\infty} f(x)=2$ for $x<-1$: $f'(x)<0$; $f''(x)<0$ for $-1< x<0$: $f'(x)>0$; $f''(x)<0$ for $0< x<1$: $f'(x)>0$; $f''(x)>0$ for $x>1$: $f'(x)<0$: $f''(x)>0$

*(22) Points at
$$(-3,0)$$
, $(-1,-1)$, $(0,-2)$, $(1,-1)$ vertical asymptote at $x=-2$
$$\lim_{x \to -\infty} f(x) = 1 \quad \lim_{x \to +\infty} f(x) = 0$$

$$f'(x) < 0 \text{ for } x < -2 \text{ or } -1 < x < 0 \text{ ; } f'(x) > 0 \text{ for } -2 < x < -1 \text{ or } 0 < x < 1 \text{ or } x > 1$$

$$f''(x) < 0 \text{ for } x < -2 \text{ or } -2 < x < -1 \text{ or } x > 1 \text{ ; } f''(x) > 0 \text{ for } -1 < x < 1$$

*(23) Points at
$$(-2,2)$$
, $(0,1)$, $(2,2)$ and $\lim_{x \to -\infty} f(x) = 0$
for $x < -2$: $f'(x) > 0$; $f''(x) > 0$
for $-2 < x < 0$: $f'(x) < 0$; $f''(x) < 0$
for $0 < x < 2$: $f'(x) > 0$; $f''(x) < 0$
for $x > 2$: $f'(x) > 0$; $f''(x) > 0$

*(24) Points at
$$(-2,1)$$
, $(0,-1)$, $(2,0)$ and $\lim_{x\to +\infty} f(x) = 2$
$$f'(x) < 0 \text{ for } x < 0 \text{ ; } f'(x) > 0 \text{ for } x > 0$$

$$f''(x) < 0 \text{ for } -2 < x < 0 \text{ or } x > 2 \text{ ; } f''(x) > 0 \text{ for } x < -2 \text{ or } 0 < x < 2$$

*(25) Points at
$$(-2,0)$$
, $(0,0)$ vertical asymptote at $x=-1$ and $\lim_{x\to +\infty} f(x)=1$ for $x<-2: f'(x)>0$; $f''(x)<0$ for $-2< x<-1: f'(x)<0$; $f''(x)<0$ for $-1< x<0: f'(x)<0$; $f''(x)>0$ for $x>0: f'(x)>0: f''(x)<0$

```
*(26) Domain: -3 < x \le 4; Points at (-1,0), (0,-1), (1,0), (4,2) f'(x) < 0 \text{ for } -3 < x < 0 \text{ ; } f'(x) > 0 \text{ for } 0 < x < 4 f''(x) < 0 \text{ for } -3 < x < -1 \text{ or } 1 < x < 4 \text{ ; } f''(x) > 0 \text{ for } -1 < x < 1
```

*(27) Domain:
$$-2 \le x < 4$$
; Points at $(-2, -1)$, $(0, 0)$, $(2, 2)$
 $f'(x) < 0$ for $2 < x < 4$; $f'(x) > 0$ for $-2 < x < 2$
 $f''(x) < 0$ for $-2 < x < 0$ or $2 < x < 4$; $f''(x) > 0$ for $0 < x < 2$

*(28) Domain:
$$-4 < x \le 3$$
; Points at $(0,1)$, $(1,0)$, $(3,2)$; vertical asymptote at $x = -2$ for $-4 < x < -2$: $f'(x) > 0$; $f''(x) > 0$ for $-2 < x < 0$: $f'(x) < 0$; $f''(x) > 0$ for $0 < x < 1$: $f'(x) < 0$; $f''(x) < 0$ for $1 < x < 3$: $f'(x) > 0$; $f''(x) < 0$

ANSWERS:

(4)

(5)

(6)

 $^{^*}$ For questions (19)-(28), answers are not unique and multiple graphs are possible. Check with your teacher to verify your answers.