Экспериментальный анализ реализации

Гамаонов Алан

23 Сентября 2020

1 Предисловие

1.1 Железо

CPU: Intel Core i7-7700HQ, $2.80\text{GHz} \times 8$

RAM: 16 FB DDR5

1.2 О тестах

Источник данных: refinedDataForRPQ Количество итераций при тестах: 5 Точность: 6 знаков после запятой Единицы измерения: Секунды

1.3 Обозначения

adj - умножение на матрицу смежности

sqr - возведение матрицы в квадрат

avg - среднее время

int - пересечение

out - вывод

D - дисперсия

2 Замеры

2.1 Комментарий

Уместить все замеры сюда крайне сложно, поэтому сырые данные можно найти в папке $\mathrm{src}/\mathrm{output}$

2.2 Результаты замеров времени транзитивного замыкания графов по тройкам

Graph	Pairs	adj (avg)	adj (D)	sqr (avg)	sqr (D)
LUBM300	6532882	0.462087	0.045858	0.372715	0.000402
LUBM500	10885048	0.699804	0.004328	0.687959	$< 10^{-6}$
LUMB1M	21833383	1.572919	0.012780	1.545213	$< 10^{-6}$
LUBM1.5M	32799959	2.510089	0.020000	2.552377	0.012710
LUBM1.9M	42561736	3.184284	0.052554	3.606988	0.011808

2.3 Результаты замеров времени транзитивного замыкания графов по регексам (из LUBM300/regexes)

Regex	Pairs	adj (avg)	adj (D)	sqr (avg)	sqr (D)
q7_7	4	0.000177	$< 10^{-6}$	0.000112	$< 10^{-6}$
q11_4_7	10	0.000201	$< 10^{-6}$	0.000157	$< 10^{-6}$
q10_3_3	2	0.000107	$< 10^{-6}$	0.000118	$< 10^{-6}$
q10_5_6	2	0.000157	$< 10^{-6}$	0.000124	$< 10^{-6}$
q7_6	4	0.000147	$< 10^{-6}$	0.000159	$< 10^{-6}$
q7_0	4	0.000131	$< 10^{-6}$	0.000115	$< 10^{-6}$
q6_9	3	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_2_4	2	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q_14_5	17	0.000196	$< 10^{-6}$	0.000187	$< 10^{-6}$
q9_5_0	1	0.000106	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$

2.4 Результаты замера времени пересечения графа с регекспом (граф LUMB300)

,				
LUMB300/regexes/	int (avg)	int (D)	out (avg)	out (D)
q7_7	0.232790	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q11_4_7	0.235803	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_3_3	0.231380	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_5_6	0.232800	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q7_6	0.239221	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
LUMB500/regexes/	int (avg)	int (D)	out (avg)	out (D)
q7_7	0.226191	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q11_4_7	0.228129	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_3_3	0.224980	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_5_6	0.223299	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q7_6	0.230619	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
			•••	
LUMB1M/regexes/	int (avg)	int (D)	out (avg)	out (D)
q7_7	0.225486	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q11_4_7	0.234870	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_3_3	0.224663	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_5_6	0.224977	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q7_6	0.233074	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
•••				
LUMB1.5M/regexes/	int (avg)	int (D)	out (avg)	out (D)
q7_7	0.248678	0.000159		
q11_4_7	0.244064	$< 10^{-6}$	$< 10^{-6}$	
q10_3_3	0.272300	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_5_6	0.283769	0.000923	$< 10^{-6}$	$< 10^{-6}$
q7_6	0.241523	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
LUMB1.9M/regexes/	int (avg)	int (D)	out (avg)	out (D)
q7_7	0.250255	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q11_4_7	0.239677	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$
q10_3_3	0.264624	0.000199		$< 10^{-6}$
q10_5_6	0.333578	0.001203		
q7_6	0.282564	0.000979	$< 10^{-6}$	
	•••	•••		

3 Выводы

Замеры показали, что на больших графах вычисление транзитивного замыкания умножением на матрицу смежности показывает немного лучший результат, чем вычисление возведением в квадрат. Однако на маленьких графах возведение в квадрат заметно быстрее.