Homological Subdifferential 本永さんゼミ

大柴 寿浩

2024年9月27日

目次

層理論

•0

定義 層化と茎

層係数コホモロジー

導来圏

層の導来圏

層の超局所台

ホモロジカル劣微分

References

はじめに

はじめに

[lke24] は導来圏を使わずに SS(F) を定義している.

劣微分の定義をダイジェスト的に述べると

- $f: X \to \mathbf{R}:$ 下半連続関数
- $\operatorname{epi}(f) \subset X \times \mathbf{R} : f$ のエピグラフ
- ullet $F_f = \mathbf{k}_{\mathsf{epi}(f)}:$ エピグラフに台を持つ定数層
- $SS(F_f) \subset T^*X \times T^*\mathbf{R}$: 超局所台をとる
- $\partial f = -\operatorname{Red}(SS(F_f)) \subset T^*X$:「射影」(簡約)をとってひねる

設定と記号

- X:位相空間
- Op(X): 開集合のなす順序集合
- ullet $I_P:P\in X$ の開近傍のなす有向順序集合
- $U \in \mathsf{Op}(X)$: 開集合
- ullet $C^0(U):U$ 上の連続関数環
- $(U_i)_{i\in I}: U$ の被覆.

簡単な例

連続関数に対する2つの操作:

制限 $f \in C^0(U)$ の $V \subset U$ 上の $f|_V \in C^0(V)$ への制限.

$$U\supset V\supset W$$
 ならば, $(f|_V)|_W=f|_W$.

はりあわせ $(f_i)_i\in\prod_{i\in I}C^0(U_i)$ で $f_i=f_j$ on $U_i\cap U_j$ のとき, $f|_{U_i}=f_i$ として $f\in C^0(U)$ に貼り合わせ.

- 制限 → 前層
- 貼り合わせ → 層

として定式化

前層の定義

Definition (前層)

k 加群の前層 牙とは k 加群の族と k 加群の射の族の組

$$\left((\mathfrak{F}(U))_{U \in \mathsf{Op}(X)}, (\rho_{VU} \colon \mathfrak{F}(U) \to \mathfrak{F}(V))_{(V \hookrightarrow U)} \right)$$

で次をみたすもののこと

- 1. $\rho_{UU} = \mathrm{id}_{\mathfrak{F}(U)}$
- 2. $W \subset V \subset U$ $\Leftrightarrow K$, $\rho_{WU} = \rho_{WV} \circ \rho_{VU}$.

層の導来圏

前層の定義

Definition (前層の射)

k 加群の前層の射 $\mathcal{F} \rightarrow \mathcal{G}$ とは k 加群の射の族

$$(\phi_U \colon \mathfrak{F}(U) \to \mathfrak{G}(U))_{U \in \mathsf{Op}(X)}$$

で次を可換にするもののこと

$$\begin{split} &\mathcal{F}(U) \xrightarrow{\phi_{U}} &\mathcal{G}(U) \\ & \downarrow^{\rho_{VU}^{\mathfrak{F}}} & \downarrow^{\rho_{VU}^{\mathfrak{G}}} \\ &\mathcal{F}(V) \xrightarrow{\phi_{V}} &\mathcal{G}(V) \end{split}$$

前層の例

例

X を位相空間とする.

- 1. $C_X^r \colon U \mapsto C_X^r(U) \coloneqq \left\{ U \text{ 上の } C^r \text{ 級関数} \right\}$ は X 上の前層である.
- 2. $\mathcal{O}_X \colon U \mapsto \mathcal{O}_X(U) \coloneqq \big\{ U \; \text{上の正則関数} \big\} \; \mbox{は} \; X \; \text{上の前層である.}$
- 3. $\mathcal{M}_X \colon U \mapsto \mathcal{M}_X(U) \coloneqq \{U \text{ 上の有理型関数}\}\$ は X 上の前層である.
- 4. M をアーベル群とする. $U \mapsto M$ は X 上の前層である.

前層の例

例

 $E \to X$ を C^{∞} ベクトル東とする.

$$U \mapsto \Gamma(U; E) := \{s \colon U \to E; s \colon C^{\infty}, \pi \circ s = \mathrm{id}_U\}$$

は前層である.

層の定義

Definition (層)

牙: X 上の k 加群の前層.

 $\mathfrak F$ が層 (sheaf) であるとは、 $orall U\in \mathsf{Op}(X)$ とその開被覆 $(U_i)_{i\in I}$ に対して

- $(S0) \ \mathcal{F}(\varnothing) = 0.$
- (S1) $s \in \mathcal{F}(U)$ が各 $i \in I$ に対して $U_i \perp s|_{U_i} = 0$ ならば, s = 0.
- (S2) $(s_i)_i \in \prod_i \mathcal{F}(U_i)$ が各 $i,j \in I$ で $U_i \cap U_j \neq \varnothing$ となるものに対して $U_i \cap U_j$ 上 $s_i|_{U_i \cap U_j} s_j|_{U_i \cap U_j} = 0$ ならば, $s \in \mathcal{F}(U)$ で各 $U_i \perp s|_i = s_i$ となるものが存在する.

層の定義

層の射は前層としての射

記号を定める.

- $PSh(X) \coloneqq \{X \perp \mathcal{O}$ 前層 $\}$
- $Sh(X) := \{X \perp \mathcal{O} \mathbb{P}\}$
- $\operatorname{Mod}(\mathbf{k}_X) \coloneqq \{X \perp \mathcal{O} \mathbf{k} \text{ 加群の層}\}$
- $\mathbf{Ab}\coloneqq \big\{ \mathcal{P}$ ーベル群 $\big\}$

切断関手

定義 (切断関手)

 $U \in \mathsf{Op}(X)$: fixed

$$\Gamma(U; \cdot) \colon \operatorname{Sh}(X) \to \mathbf{Ab}; \quad F \mapsto \Gamma(U; F) = F(U)$$

10) 10) 12) 12) 15) *=*

層の例

例

X を位相空間とする.

- 1. 前層 C_X^r は X 上の層である.
- 2. 前層 O_X は X 上の層である.
- 3. 前層 \mathcal{M}_X は X 上の層である.
- 4. M をアーベル群とする。前層 $M: U \mapsto M$ は X 上の層ではない。実際,X を 2 点からなる離散空間 $2=\{0,1\}$ とし,その上の前層として $M={\bf C}$ を 考えると, $1\in {\bf C}(\{0\})$, $i\in {\bf C}(\{1\})$ に対して, ${\bf C}(\{0\}\cap\{1\})={\bf C}(\varnothing)=0$ より, $\rho_{\varnothing,0}(1)=0=\rho_{\varnothing,1}(i)$ となるが,2 上の切断 $z\in {\bf C}(2)$ で $z|_{\{0\}}=1,z|_{\{1\}}=i$ をみたすものは存在しない.したがって,条件 (S2) が 成り立たない.

前層の例

例

 $E \to X$ を C^{∞} ベクトル束とする.

$$C^{\infty}(E) \colon U \mapsto \Gamma(U; E) \coloneqq \{s \colon U \to E; s \colon C^{\infty}, \pi \circ s = \mathrm{id}_U\}$$

は層である.

層化

層ではない前層に対して、「最も近い」層を自然に対応させる.

定理

X 上の任意の前層 $\mathcal F$ に対して,X 上の層 $\mathcal F^\dagger$ と前層の射 $\theta\colon \mathcal F\to \mathcal F^\dagger$ で次の普遍性をみたすものがただ一つ存在する.

任意の層 $\mathcal{G}\in\mathrm{Sh}(X)$ と前層の射 $\varphi\colon\mathcal{F}\to\mathcal{G}$ に対し、層の射 $\varphi^\dagger\colon\mathcal{F}^\dagger\to\mathcal{G}$ で、

$$\varphi^{\dagger} \circ \theta = \varphi$$

をみたすものがただ一つ存在する.

茎の例から

- X:例えばリーマン面, $U \subset X:$ 開集合
- 正則関数 $f \in \mathcal{O}_X(U)$ は各点 P のまわりで冪級数展開可能
- 関数 $f \in \mathcal{O}_X(U)$ と $g \in \mathcal{O}_X(V)$ が P の近くで等しいとは $U \cap V$ に含まれる P の近傍 W とって, P のまわりの座標 $z \colon W \to z(W)$ を用いて f,g を展開したとき、収束冪級数として等しいということ

定義域の異なる関数(環)に対して、各点まわりに注目するという操作を茎として定式化.

茎の定義

定義(茎)

- $\mathfrak{F} \in \operatorname{Sh}(X)$
- \bullet $P \in X$

 \mathfrak{F} の P での茎 (stalk) \mathfrak{F}_P を次で定める.

$$\mathcal{F}_P := \varinjlim_{U \in I_P} \mathcal{F}(U).$$

 $\mathfrak{F}(U) \to \mathfrak{F}_P$ から定まる $s \in \mathfrak{F}(U)$ の行き先を s_P とかき、s の芽 (germ) という.

茎の定義

$$\mathfrak{F}_P \cong \left(\bigsqcup_{U \in I_P} \mathfrak{F}(U) \right) / \sim$$

ここで、(f,U), $(g,V)\in \bigsqcup_{U\in I_P}\mathfrak{F}(U)$ に対し、

$$(f,U)\sim (g,V)\colon \Longleftrightarrow egin{cases} P \ {
m O}$$
 開近傍 $W\in I_P \ {
m c} \ W\subset U\cap V \ {
m c} \ f|_W=g|_W \ {
m c}$ みたすものが存在する.

つまり、Pのまわりでの挙動が同じ切断を同一視した類が芽.

層化の構成

開集合Uに対し、

任意の
$$P \in U$$
 に対し,近傍 $W \in I_P \cap U$ と $\mathbb{F}^\dagger(U) := \left\{ (s^P)_{P \in U} \in \prod_{P \in U} \mathfrak{F}_P; \ 切断 \ t \in \mathfrak{F}(W) \ \texttt{で,任意の} \ Q \in W \ \texttt{に対し,} \right\}$ $s^Q = t_Q$ となるものが存在する.

とおき、制限射 $\mathcal{F}^{\dagger}(U) \to \mathcal{F}^{\dagger}(V)$ を $(s^P)_{P \in U} \mapsto (s^P)_{P \in V}$ で定めると、前層 \mathcal{F}^{\dagger} が定まり、 \mathcal{F}^{\dagger} が層の条件をみたすことも確かめられる.

コメント

層化は茎を保つ. $\mathcal{F}_P=\mathcal{F}_P^\dagger$

層化の例

例

 $M:U\mapsto M$ をアーベル群 M から定まる前層とする. M の層化 M^{\dagger} は

$$M^\dagger(U) = \left\{ U \; extsf{L}$$
の $M \;$ に値をとる局所定数関数 $ight\}$

である. M^{\dagger} を M_X とかき, X 上の定数層と呼ぶ.

命題

$$M_X(U) \cong M^{\#\pi_0(U)}$$

ここで、 $\pi_0(U)$ は U の連結成分の集合.

層の全射・単射

定義

X 上の層の射 $\varphi: \mathcal{F} \to \mathcal{G}$ が

- 1. 単射とは各点 x に対し, $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ が単射.
- 2. 全射とは各点 x に対し, $\varphi_x: \mathcal{F}_x \to \mathcal{G}_x$ が全射.

層の完全列

定義

$$\mathcal{F} \to \mathcal{G} \to \mathcal{H}$$
 in $Sh(X)$

が完全列であるとは各点xに対し、

$$\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x \quad \text{in } \mathrm{Mod}(\mathbf{k})$$

が完全列であることである.

切断は左完全

命題

$$0 \to F \to G \to H \to 0$$
 in $Sh(X)$

が完全列のとき

$$0 \to \Gamma(U; F) \to \Gamma(U; F) \to \Gamma(U; H)$$
 in **Ab**

は完全列.

導来関手

右完全でない度合いを定量化する量としてコホモロジーを導入

アーベル圏から導来圏まで

導来圏の動機

完全列

$$0 \to X \to Y \to Z \to 0$$

を考える.

層係数コホモロジー

空間 X の上の層 \mathcal{F} について、コホモロジー

 $H^i(X; \mathcal{F})$

は重要な量.

はじめに

層係数コホモロジー

計算するときには、"良い層" \mathfrak{I}^i たちで分解して

もとの層
$$\mathcal{F}$$
 $\left\{ \begin{array}{c} \phi \\ \phi \end{array} \right\}$ $\left\{ \begin{array}{c} \phi \\ \phi \end{array} \right\}$ $\left\{ \begin{array}{c} \phi \\ \phi \end{array} \right\}$ $\left\{ \begin{array}{c} \phi \\ \phi \end{array} \right\}$ コホモロジー $\left\{ \begin{array}{c} \phi \\ \phi \end{array} \right\}$

のようにする

層係数コホモロジー

もっと一般に、アーベル圏 A, B に対して、左完全関手 $F: A \to B$ があるとき、

 $\mathbf{R}^i F \colon \mathcal{A} \to \mathcal{B}$

を定めた

はじめに

問題点

- 導来関手どうしの合成の計算が面倒
- "双対性"の定式化がしづらい

複体の圏

Definition (アーベル圏の複体の圏 C(C))

対象 :
$$Ob(\mathsf{C}(\mathcal{C})) = \{ X = ((X^n)_{n \in \mathbf{Z}}, (d_X^n)_{n \in \mathbf{Z}}); d_X^{n+1} \circ d_X^n = 0 \quad (n \in \mathbf{Z}) \}$$

射 : $\operatorname{Hom}_{\mathsf{C}(\mathcal{C})}(X,Y) = \{\mathcal{C} \ \mathfrak{O}$ 複体の射 $\}$

複体の射 $f: X \to Y$ は、射の族 $(f^n: X^n \to Y^n)_{n \in \mathbb{Z}}$ で、次を可換にするもの.

ホモトピー圏

Definition $(f, g: X \to Y \text{ in } \mathsf{C}(\mathfrak{C}) \text{ が } \mathsf{0} \text{ にホモトピック})$

 $\mathfrak C$ の射の族 $(s^n\colon X^n o Y^{n-1})$ で,

$$f^{n} - g^{n} = d_{Y}^{n-1} \circ s^{n} + s^{n+1} \circ d_{X}^{n} \quad (n \in \mathbf{Z})$$

となるものが存在すること.

ホモトピー圏

Definition $(f, g: X \to Y \text{ in } \mathsf{C}(\mathfrak{C}) \text{ が } \mathsf{0} \text{ にホモトピック})$

 \mathfrak{C} の射の族 $(s^n \colon X^n \to Y^{n-1})$ で,

$$f^n - g^n = d_Y^{n-1} \circ s^n + s^{n+1} \circ d_X^n \quad (n \in \mathbf{Z})$$

となるものが存在すること.

これは同値関係.

$$\operatorname{Ht}(X,Y) := \{f \colon X \to Y \text{ のホモトピー類 } \}$$

とおく.

ホモトピー圏

Definition (圏 C のホモトピー圏 K(C))

対象 : $Ob(K(\mathcal{C})) = Ob(C(\mathcal{C}))$

射 : $\operatorname{Hom}_{\mathsf{K}(\mathfrak{C})}(X,Y) = \operatorname{Hom}_{\mathsf{C}(\mathfrak{C})}(X,Y) / \operatorname{Ht}(X,Y)$

注意

K(♡) はアーベル圏ではない!

完全列の代わりに完全三角というものを用いる.

写像錐

Definition (f の写像錐 M(f))

$$\begin{cases} M(f)^n = X^{n+1} \oplus Y^n, \\ d_{M(f)}^n = \begin{bmatrix} d_{X[1]}^n & 0 \\ f^{n+1} & d_Y^n \end{bmatrix} \end{cases}$$

写像錐

射 $\alpha(f)$: $Y \to M(f)$ と $\beta(f)$: $M(f) \to X[1]$ を次で定める.

(0.1)
$$\alpha(f)^n = \begin{bmatrix} 0 \\ \mathrm{id}_{Y^n} \end{bmatrix},$$

$$\beta(f)^n = \begin{bmatrix} \mathrm{id}_{X^{n+1}} & 0 \end{bmatrix}.$$

ホモトピー圏 K(C) は三角圏

Definition (三角)

射の列

$$X \to Y \to Z \to X[1]$$
 in $K(\mathcal{C})$

を三角という

$$X \to Y \to M(f) \to X[1]$$

と同形な △ を完全三角という

層の複体の圏

Definition (層の導来圏 $\mathsf{D}^b(\mathbf{k}_X)$)

$$\mathsf{D}^b(\mathbf{k}_X) \coloneqq \mathsf{D}^b(\operatorname{Mod}(\mathbf{k}_X))$$

層の超局所台

$$\mathsf{D}^{\mathrm{b}}(\mathbf{k}_X) \ni F \mapsto SS(F) \subset T^*X$$

Definition (層の超局所台)

 $p \notin SS(F)$ となるのは、 $\exists U \in I_p$ で $\forall x_0 \in X, \varphi \colon X \to \mathbf{R}$ で $d\varphi(x_0) \in U$ となるものに対し、

$$\underset{x_0 \in B}{\varinjlim} H^n(B; F) \xrightarrow{\sim} \underset{x_0 \in B}{\varinjlim} H^n(B \cap \{\varphi < \varphi(x_0)\}; F)$$

となるものが存在するとき.

超局所台の性質

$$F, F_i \ (i = 1, 2, 3) \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_M)$$

- 超局所台は T*M の錐状閉集合
- $SS(F) \cap T_M^*M = \operatorname{supp}(F)$
- $F_1 o F_2 o F_3 o +1$: d.t. のとき, $SS(F_i) \subset SS(F_j) \cup SS(F_k)$ $(j \neq k)$

超局所台の性質

$$F \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_M)$$

定理

はじめに

SS(F) は包合的.

超局所台の例

- a) F を連結多様体 M 上の零でない局所系とすると $SS(F) = T_M^*M$.
- b) $Z \subset M$: 滑らかな閉部分多様体, $F = \mathbf{k}_Z$ とすると $SS(F) = T_Z^*M$.
- c) ϕ を $\phi(x)=0$ となる x で $d\phi(x)\neq 0$ となる C^1 級関数とする. $Z:=\{x\in M; \phi(x)\geqq 0\}$ とすると

$$SS(\mathbf{k}_Z) = Z \times_M T_M^* M \cup \{(x; \lambda d\phi(x)); \phi(x) = 0, \lambda \ge 0\}.$$

補助的な定義

- X:C[∞] 多様体
- $J^1(X) := T^*X \times \mathbf{R} : 1$ ジェット空間, $(x, t; \xi)$
- $\tilde{\lambda} = \lambda + dt : J^1(X)$ の接触形式

$$\{\tau > 0\} \cap T^*(X \times \mathbf{R}) \xrightarrow{\rho_t} T^*X$$

$$J^1(X)$$

$$\rho_t(x,t;\xi,\tau) \coloneqq \left(x,\frac{\xi}{\tau}\right), \quad \tilde{\rho}_t(x,t;\xi,\tau) \coloneqq \left(x,\frac{\xi}{\tau},t\right), \quad r : \text{ projection.}$$

錐化と簡約

Definition (錐化集合 (conification))

• $L \subset T^*X$:滑らかなラグランジュ部分多様体

 $\mathsf{Cone}(L) \coloneqq \rho_t^{-1}(L) \subset T^*X \times T^*\mathbf{R} \colon (n+2)$ 次元部分多様体

Definition (簡約集合 (reduction))

• $A \subset T^*X \times T^*\mathbf{R}$: 錐状部分集合

$$\mathsf{Red}(A) \coloneqq \rho_t(A \cap \{\tau > 0\})$$

錐化と簡約

Claim

$$\mathsf{Red}(\mathsf{Cone}(L)) = L \subset T^*X$$

層の representative

- X: C[∞] 多様体
- k: 単位元を持つ大域次元が有限な可換環

Definition (層の representative)

• $F \in \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{X \times \mathbf{R}})$ に対し、次の集合 $\mathsf{R}(F)$ を F の representative という.

$$R(F) := \mathsf{Red}(SS(F)) \subset T^*X$$

1 U 2 1 OF 2 1 E 2 1 E 2

エピグラフ

Definition (エピグラフ (epigraph))

• $f: X \to \mathbf{R}$ に対し、次の集合 $\operatorname{epi}(f)$ を f のエピグラフという.

$$\operatorname{epi}(f) \coloneqq \left\{ (x,t) \in X \times \mathbf{R}; f(x) \leqq t \right\}.$$

 $\operatorname{epi}(f)$ を Z_f ともかく、エピグラフに台を持つ層を $F_f\coloneqq \mathbf{k}_{\operatorname{epi}(f)}$ で表す、

Definition (ホモロジカル劣微分)

下半連続関数 $f: X \to \mathbf{R}$ に対し、f の劣微分 ∂f とは

$$\partial f := \mathbf{R}(F_f)^a$$

C1 級関数の劣微分は1点

記号

- $\partial f|_x = \partial f \cap T_x^* X$
- $\partial f(x) = \partial f|_x$

例

$$f \in C^1(X)$$
 とすると

$$\partial f|_x = \{df(x)\}.$$

劣微分の特徴づけ

劣微分は epi(f) 上の定数層の超局所台の計算に帰着. \Rightarrow 等位集合コホモロジーの局所的な振る舞いを見れば良い.

定義

 $f: X \to \mathbf{R}$:連続関数 (!?)

• $x \in X$ が f の特異点とは次が同型でないことをいう.

$$\varinjlim_{U\ni x,\epsilon \to 0} H^*(U\cap f^{<\epsilon+a}) \to \varinjlim_{U\ni x,\epsilon \to 0} H^*(U\cap f^{$$

• x が臨界点とは、列 $(\phi_n, x_n) \in C^1(X) \times X$ で $f - \phi_n$ が x_n で特異かつ $x_n \to x$ かつ $d\phi_n(x_n) \to 0$ となるものが存在することをいう.

劣微分の特徴づけ

命題

はじめに

 $f\colon X \to \mathbf{R}$. $\xi \in \partial f|_x$ となるのは,x が $x\mapsto f(x)-\langle \xi,x \rangle$ の臨界点となるときである.

References I

[lke24] 池 祐一, 層理論と層のモース理論, https://drive.google.com/file/d/1x1ibUAqXxNQHSLJrIYg72Rbu60-043JZ/view?usp=drive_link.

[KS90] Kashiwara, Schapira, Sheaves on Manifolds, Springer, 1990.

[Vic13] Vichery, Homological Differential Calculus, https://doi.org/10.48550/arXiv.1310.4845.