# APPLAUSE project meeting

# Model Methanogens



# Model Sabatier



- Transformer serves as bidirectional, lossless link
- Massive load, massive generator
- Battery extendable, solar extendable
- 10GW Grid supply available, 10MW demand

# Cost assumptions

#### S1. Cost assumptions

Table S1: Efficiency, lifetime and FOM cost per technology (values shown corresponds to 2020).

| Technology               | Unit<br>[%/a]      | 2025 Cost<br>[a] | FOM <sup>a</sup> | Lifetime | Efficiency | Source |
|--------------------------|--------------------|------------------|------------------|----------|------------|--------|
| Solar PV (utility-scale) | €/kW               | 452              | 1.6              | 35       |            | [1]    |
| Battery storage          | €/kWh              | 187              |                  | 20       |            | [1]    |
| Battery inverter         | €/kW               | 215              | 0.2              | 10       | 0.95       | [1]    |
| Electrolysis             | $\in$ /kW $_{el}$  | 550              | 2.0              | 25       | 0.66       | [1]    |
| Methanation              | $\in$ /kW $_{CH4}$ | 278              | 4.0              | 30       | 8.0        | [2]    |
| methanogens              | $\in$ /kW $_{CH4}$ | 834              | 4.0              | 30       | 8.0        |        |
| biogas generator         | $\in$ /kW $_{CH4}$ | 0                |                  |          | 0.9        |        |
| CO2 storage              | €/kWh              | 0                |                  |          |            |        |
| gas storage              | €/kWh              | 0                |                  |          |            |        |

#### generator dcurves

# Results

### no grid



## grid



methanogen





#### sabatier

## no grid

## grid





#### methanogen

#### battery inverters





#### sabatier

#### no grid

## grid





### methanogen

#### battery inverter dcurve





sabatier

#### methanation

# Results

## no grid



## grid



# methanogen





#### sabatier

#### methanation dcurve

# Results

## no grid



## grid



#### methanogen





sabatier

#### no grid

#### grid





## methanogen

#### biogas





#### sabatier

#### biogas dcurve

# Results

no grid

grid











sabatier

#### no grid







#### methanogen

#### electrolysis





sabatier

#### no grid







## methanogen

#### electrolysis dcurve





sabatier

#### stores

# Results

no grid

grid











#### sabatier

#### stores

# Results

## no grid







methanogen





sabatier

## Issues

- Size of battery and solar generator is primarily determined by the size of the grid load
- Solar and battery are infinitely extendable
- I set p\_max\_pu = 10000000
- The grid was therefore not used at all

# Research Question

- Limit size of solar to 130 MW, battery to 240 MWh
- Is there a difference when the grid is not allowed to use the battery? Should the grid be allowed to use the battery?

# Model

Methanogens—proposed



# Model Sabatier—proposed



# Experiment

• 1 kW vs 10 MW demand of gas

```
Solar PV 1.3000000e+05
Biogas 1.028351e+00
Grid 1.0000000e+08
```

```
Solar PV 1.3000000e+05
Biogas 1.028351e+04
Grid 1.0000000e+08
```

1 kW 10 MW

| battery         | 240000.000000 |
|-----------------|---------------|
| gas store       | 8758.106765   |
| CO2 environment | 85.647243     |

```
battery 2.400000e+05
gas store 8.758107e+07
CO2 environment 8.564724e+05
```

1 kW 10 MW





1 kW

10 MW





1 kW

**10 MW** 





1 kW

**10 MW** 

# Next steps

- Fix up model for inverter/converter and costs
- Make a figure where sweep demand and calculate levelized cost of fuel
- Next meeting with Michael and co? What should we present?
- Next experiments?
- YEEES?