• U skupu $\mathbb{C}\setminus\{0\}$: $\overline{(1)}$ $z=\frac{1+i}{\sqrt{2}}\Rightarrow z^{-1}=\overline{z}$ $\overline{(2)}$ $|z_1z_2|=|z_2||z_1|$ 3) $R_e(z)=\frac{1}{2}(z-\overline{z})$

5.0 $\boxed{5} \ z\overline{z} = |z\overline{z}| \qquad \boxed{6} \ |z| = 1 \Leftrightarrow z^{-3} = \overline{z}^3 \qquad 7) \ |z_1 - z_2| \ge |z_2| + |z_1| \qquad \boxed{8} \ z_1|z_2| = z_2|z_1| \Leftrightarrow \arg z_1 = \arg z_2$

• Ako je $P(x) = ax^4 + bx^2 + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je:

(2) $dg(P) \in \{0, 2, 4\},$ (3) $dg(P) \in \{0, 1, 2, 4\},$ (4) $dg(P) \in \{4, 3, 2, 1, 0\}$ • Pri deljenju polinoma $x^4 + 2x^2 + 2$ sa $x^2 + 1$ nad \mathbb{R} , količnik je $x^2 + 1$, a ostatak je $x^4 + 2x^2 + 2$

Grupe su: 1)
$$(\{0,1\},\cdot)$$
 2) $(\{e^{i\theta}|\theta\in(-\pi,\pi]\},\cdot)$ 3) $(\{-1,1\},\cdot)$ 4) $\{i,-1,-i,1\},\cdot)$ 5 $(\{1,e^{i\frac{2\pi}{3}},e^{-i\frac{2\pi}{3}}\},\cdot)$ 6) (\mathbb{C},\cdot) 7) $(\{-1,0,1\},\cdot)$ 8) $((0,\infty),\cdot)$ 9) $([0,\infty),+)$ 6) $(\{0,1\},\binom{0}{10}\},\binom{0}{10}\},\circ)$ 1) 3,4 i 5 su podgrupe grupe 2.

1) $\arg z < 0 \Leftrightarrow I_m(z) \le 0$ 3) $-\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Rightarrow I_m(z) \in \mathbb{R}$

1) $\arg z < 0 \Leftrightarrow I_m(z) > 0$ 3) $-\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Leftrightarrow R_e(z) > 0$ 6) $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$

2) $\arg z > 0 \Rightarrow I_m(z) > 0$ 3) $-\frac{\pi}{2} < \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$ 6) $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$

2) $\arg z > 0 \Rightarrow I_m(z) > 0$ 6) $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$

3) $a \cdot e = e$ 4) $a^{-1} \cdot a = e$ 6) $e \cdot e = e$ 6) $e^{-1} = e$ 6) $e^{-1} = e$ 7 ($a \cdot b^{-1} = b^{-1} \cdot a^{-1} \cdot b^{-1}$ 8) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 7 Za kompleksni broj $z = e^{i\frac{\pi}{2}} - e^{i\frac{\pi}{6}} = |z|e^{i\arg z}$, naći: (Može i korišćenjem $e^{i\alpha} \pm e^{i\beta} = e^{i\frac{\pi+\beta}{2}}(e^{i\frac{\pi-\beta}{2}} \pm e^{-i\frac{\pi-\beta}{2}})$.) $R_e(z) = e^{i\frac{\pi}{2}} - e^{i\frac{\pi}{6}} = |z|e^{i\arg z}$, arg $z = \frac{\pi}{4}$ 7 $z = e^{i\frac{\pi}{4}}$ 8) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 9. Neka je $A = \{1,2,3,4\}$ i $B = \{1,2,3\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \neq 0$ označava rastuću funkciju $f : f \neq 0$ označava neopadajuću funkciju $f : f \neq 0$ označava neopadaju

A ALGEBRA - KOLOKVIJUM 1

04.12.2022.

- 1. Za $a, b \in \mathbb{R}$, neka je funkcija $f_{a,b} : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ definisana sa $f_{a,b}(x) = \frac{ax+b}{x-1}$. Neka je $\mathcal{F} = \{f_{a,b} \mid a, b \in \mathbb{R}\}$. Za funkcije $f : \mathbb{R} \to \mathbb{R}$ i $g : \mathbb{R} \to \mathbb{R}$, neka su operacije \oplus i \odot definisane sa $(f \oplus g)(x) = f(x) + g(x), x \in \mathbb{R}$.
 - (a) Dokazati da je (\mathcal{F}, \oplus) komutativna grupa. = ρ^{7} $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}$
 - (b) Ispitati da li je (\mathcal{F},\odot) komutativna grupa.
- 2. Napisati SDNF, sve proste implikante i sve minimalne DNF Bulove funkcije

							_									
$\begin{bmatrix} x \\ y \\ z \\ u \end{bmatrix}$	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
y	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
z	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
u	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
f	1	0	1	0	1	1	0	0	1	1	1	0	1	1	0	0

3. Odrediti $a,b\in\mathbb{R}$ tako da 2 i -3 budu koreni polinoma $p(x)=x^5-3x^4-x^3+ax^2+bx+60,$

a zatim za te a i b faktorisati polinom p nad poljima \mathbb{R} i \mathbb{C} .

1. (a) Zapazimo da je za sve $a, b, c, d \in \mathbb{R}$ i svako $x \in \mathbb{R}$

$$(f_{a,b} \oplus f_{c,d})(x) = f_{a,b}(x) + f_{c,d}(x) = \frac{ax+b}{x-1} + \frac{cx+d}{x-1}$$
$$= \frac{(a+c)x + (b+d)}{x-1} = f_{a+c,b+d}(x),$$

dakle $f_{a,b} \oplus f_{c,d} = f_{a+c,b+d}$.

Operacija \oplus je komutativna i asocijativna jer je

$$f_{a,b} \oplus f_{c,d} = f_{a+c,b+d} = f_{c+a,d+b} = f_{c,d} \oplus f_{a,b},$$

$$(f_{a,b} \oplus f_{c,d}) \oplus f_{e,f} = f_{a+c,b+d} \oplus f_{e,f} = f_{a+c+e,b+d+f}$$
$$= f_{a,b} \oplus f_{c+e,d+f} = f_{a,b} \oplus (f_{c,d} \oplus f_{e,f}).$$

Neutralni element je $f_{0,0} \in \mathcal{F}$ jer zbog [*] vai

$$f_{0,0} \oplus f_{a,b} = f_{0+a,0+b} = f_{a,b}, \quad f_{a,b} \oplus f_{0,0} = f_{a+0,b+0} = f_{a,b}.$$

Za proizvoljno $f_{a,b} \in \mathcal{F}$, inverzni element je $f_{-a,-b} \in \mathcal{F}$ jer zbog [*] vai

$$f_{a,b} \oplus f_{-a,-b} = f_{a+(-a),b+(-b)} = f_{0,0}, \quad f_{-a,-b} \oplus f_{a,b} = f_{-a+a,-b+b} = f_{0,0}.$$

Dakle, (\mathcal{F}, \oplus) je komutativna grupa.

(b) (\mathcal{F}, \odot) nije komutativna grupa jer nije ni grupoid. Naime, npr. za $f_{1,2} \in \mathcal{F}$ i $f_{3,4} \in \mathcal{F}$ imamo da je

$$(f_{1,2} \odot f_{3,4})(x) = f_{1,2}(x) \cdot f_{3,4}(x) = \frac{x+2}{x-1} \cdot \frac{3x+4}{x-1} = \frac{3x^2+10x+8}{(x-1)^2}$$

za sve $x \in \mathbb{R} \setminus \{1\}$, gde 1 nije koren polinoma $3x^2 + 10x + 8$ te stoga izraz $\frac{3x^2 + 10x + 8}{(x-1)^2}$ nije oblika

[*]

 $\frac{ax+b}{x-1}$ za neke $a,b \in \mathbb{R}$, dakle $f_{1,2} \odot f_{3,4} \notin \mathcal{F}$.

 $2. \ \ \mathsf{SDNF} = xyz'u + xyz'u' + xy'zu' + xy'z'u' + xy'z'u + x'y'zu' + x'yz'u' + x'y'z'u' + x'y'z'u' +$

Proste implikante: xz', y'u', yz', z'u'.

 $\mathsf{MDNF} = xz' + y'u' + yz'.$

$$\Rightarrow \begin{array}{c} 4a + 2b = -36 \\ -a + b = -87 \end{array} \Rightarrow \begin{array}{c} 6a = 138 \\ -a + b = -87 \end{array} \Rightarrow \begin{array}{c} a = 23 \\ b = -64 \end{array}$$

$$p(x) = x^5 - 3x^4 - x^3 + ax^2 + bx + 60 = x^5 - 3x^4 - x^3 + 23x^2 - 64x + 60$$

= $(x - 2)(x + 3)(x^3 - 4x^2 + 9x - 10)$.

Kandidati za racionalne korene polinoma $x^3 - 4x^2 + 9x - 10$ su $\pm 1, \pm 2, \pm 5$ i ± 10 , te Hornerovom šemom dobijamo

odakle je

$$p(x) = (x-2)^2(x+3)(x^2-2x+5),$$

a koreni polinoma x^2-2x+5 su $x_{1,2}=\frac{2\pm\sqrt{4-20}}{2}=1\pm2i\not\in\mathbb{R}.$

Sledi da je

$$p(x) = (x-2)^2(x+3)(x^2 - 2x + 5)$$

faktorizacija polinoma p nad \mathbb{R} , a faktorizacija polinoma p nad \mathbb{C} glasi

$$p(x) = (x-2)^2(x+3)(x-(1+2i))(x-(1-2i)).$$