This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Patent Office Canberra

I, DAVID DANIEL CLARKE, ASSISTANT DIRECTOR PATENT SERVICES, hereby certify that the annexed are true copies of the Provisional specification and drawing(s) as filed on 9 July 1996 in connection with Application No. PO 0893 for a patent by UNIVERSITY OF MELBOURNE filed on 9 July 1996.

I further certify that the above application is now proceeding in the name of HOWARD FLOREY INSTITUTE OF EXPERIMENTAL PHYSIOLOGY AND MEDICINE pursuant to the provisions of Section 113 of the Patents Act 1990.

I further certify that the annexed documents are not, as yet, open to public inspection.

PRIORITY DOCUMENT

WITNESS my hand this Twenty Second day of July 1997

DAVID DANIEL CLARKE
ASSISTANT DIRECTOR PATENT SERVICES

AUSTRALIA Patents Act 1990

PROVISIONAL SPECIFICATION

AUSTRALIAN PROVISIONAL No.

DATE OF FILING

P00893

-9 JUL. 96

PATENT OFFICE

Applicant(s):

A THE SAME AND THE STATE OF THE PROPERTY OF THE PROPERTY OF THE SAME AND THE SAME A

6

 $i^{(i)}$

三年の発展で、後の経費者を持ちないできることでいる。

-UNIVERSITY OF MELBOURNE

HOWARD FLORE I INSTITUTE
EXPERIMENTAL PHYSIOLOGY
NEUROACTIVE PEPTIDE

AND MEDICINE

The invention is described in the following statement:

NEUROACTIVE PEPTIDE

This invention relates to neuroactive peptides, and in particular to peptides which have the ability to act as analogues of angiotensin IV. The peptides of the invention bind with high affinity and specificity to a variety of sites in the central nervous system, and are useful as modulators of motor and cognitive function, and of neuronal development.

10

15

25

30

一种加工工作。1914年,新年中华福州和西部市中的

Background of the Invention

The renin-angiotensin system has diverse roles in the regulation of body fluid and electrolyte balance and blood pressure control. These actions are exerted in a variety of target organs, including the cardiovascular system, adrenal glands, kidney and central and peripheral nervous systems, by both the circulating hormone and hormone locally produced in tissues. Most of these actions are exerted by the octapeptide, angiotensin II, although the C-terminal heptapeptide angiotensin III has some activity. The hexapeptide

NH2-Val Tyr Ile His Pro Phe-COOH, corresponding to the 3-8 fragment of angiotensin II (ie. amino acids 3-8), is also called angiotensin IV (Ang IV), and has until recently been believed to be an inactive degradation product devoid of biological activity.

However, Harding and co-workers have confirmed an earlier report (Braszko et al, 1988) that Ang IV has central nervous system activity, and can modify learning and behaviour (Wright et al, 1995). In addition, Ang IV has vasoactive effects, and can dilate cerebral arteries (Haberl et al, 1991) and increase renal blood flow (Swanson et al, 1992). This, coupled with the discovery of highly

specific, high affinity sites for Ang IV binding in bovine adrenal and other tissues, has reawakened interest in the hexapeptide, and the subject has been comprehensively reviewed (Wright et al 1995).

Ang IV has been associated with the central nervous system effects of increasing stereotypy behaviour (Braszko et al, 1988) and facilitating memory retrieval in passive avoidance studies (Braszko et al, 1988; Wright et al, 1995). Ang IV also dilates cerebral arterioles (Haberl et al, 1991), and increases renal blood flow (Swanson et al, 1992).

20

64

Receptor autoradiographic studies have revealed a widely abundant but selective and characteristic distribution of binding sites for [125I]Ang IV in the guinea pig, sheep and monkey central nervous systems, in regions associated with cholinergic neurons and in somatic motor and sensory associated areas (Miller-Wing et al, 1993; Moeller et al, 1995). In addition, Ang IV binding sites are abundant in supraspinal components of the autonomic nervous system, and in the spinal cord are found in sympathetic preganglionic neurons, in the dorsal root ganglia, and in Lamina II of the dorsal horn, and in the motor neurons of the ventral horn (Moeller et al, 1995).

differs from the localization of the Ang II AT₁ or AT₂
receptors. In addition, the pharmacology of each receptor
is distinct in that the Ang IV site exhibits a low to very
low affinity for [Sar¹Ile⁸]Ang II, the non-subtype
selective Ang II antagonist, and losartan (du Pont-Merck).
and PD 123319 (Parke-Davis), the specific AT₁ and AT₂
receptor antagonists respectively (Miller-Wing et al, 1993;
Swanson et al, 1992; Hanesworth et al, 1993). Conversely,

and the first of the standard from the present weare. Brillian representations

Ang II receptors show a low affinity for the Ang IV binding site (Bennett and Snyder, 1976).

The wide distribution of the Ang IV binding site in motor, sensory and cholinergic regions suggests important roles for this peptide in the central nervous system. However, a physiological action of the peptide in neurons has yet to be clearly defined.

Numerous neurotransmitters and neuropeptides have been associated with the regulation of neuronal development. Acetylcholine inhibits neurite outgrowth from embryonic chicken ciliary ganglion cells and sympathetic neurons (Pugh and Berg, 1994; Small et al, 1995), and rat hippocampal neurons (Muttson, 1988). Conversely, vasoactive intestinal peptide stimulates superior cervical ganglion branching (Pincus et al, 1990) and somatostatin increases neuronal sprouting from Helisoma buccal ganglion neurons (Bulloch, 1987).

We have now surprisingly found that the peptide LVV-haemorphin 7, derived from β -globin, acts as an agonist of AngIV, and is the endogenous ligand for AngIV receptors in the brain. We have characterised its pharmacological activity. This enables us to design novel agonists and antagonists of AngIV action.

25 Summary of the Invention

10

15

20

30

In one aspect, the invention provides a neuroactive peptide having at least one of the biological activities of angiotensia IV as herein defined, comprising the amino acid sequence:

Leu-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe, or a biologically-active analogue or fragment of said peptide.

It will be clearly understood that the sequence of the invention may be modified by conservative amino acid substitutions, insertions, deletions or extensions, provided that the biological activity is retained. Such variants may, for example, include sequences comprising D-amino acids, non-naturally occurring amino acids, and/or amino acid analogues.

との一方であるというというとのではいいが、新田市市の方面のはいるのではある。

10

20

30

In an alternative aspect, the invention provides a non-peptide analogue of the peptide of the first aspect of the invention. This non-peptide analogue is to be understood to encompass modifications or substitutions of the peptide structure which are designed to improve the bioavailability, metabolic stability, half-life in the body, or to modify the biological activity, of the compound of the invention. Such non-peptide analogues are known in the art, for example compounds in which the peptide backbone is replaced by a non-peptide chain, and are often referred to as peptidomimetic compounds. Alternatively, in one or more of the peptide linkages the order of the nitrogen and carbon atoms can be reversed to form a pseudo peptide bond. One or more of the amino acid side-chains may be replaced by an analogous structure of greater Many other such variations will occur to the stability. person skilled in the art. The only requirement is that the overall 3-dimensional structure is sufficiently preserved that ability to bind to the Ang IV receptor at suitable affinity is retained. Using modern methods of peptide synthesis and combinatorial chemistry; it is possible to synthesize and test very large numbers of analogues within a short space of time, and such synthesis and screening is routinely carried out by pharmaceutical companies.

Considerable information is available regarding the structural features of Ang IV peptides which are necessary for high affinity, and these results may be used as guidelines for modification of the peptides of the invention. See for example Wright et al, 1995.

のでは

15

20

The person skilled in the art will appreciate that by modifying the sequence or by constructing a non-peptide analogue the activity of the compound of the invention can be very considerably modified. Not only can improvement in activity be obtained, it is also possible to obtain compounds which bind to the AngIV binding site in such a way that AngIV activity is inhibited. Such inhibitory compounds can have the ability to antagonize the activity of AngIV. The person skilled in the art will readily be able to synthesize modified peptides and peptide analogues and to test whether they have activity as AngIV agonists or antagonists, using methods well known in the art.

Thus according to a second aspect, the invention also provides compounds which are able to act as antagonists of the neuroactive peptides of the invention.

According to a third aspect, the invention provides a method of modulating motor neuron activity, cholinergic neuron activity, or neuronal development, comprising the step of administering an effective amount of a compound of the invention to a mammal in need of such treatment. This aspect of the invention specifically includes the use of decapeptide sequence referred to above in the method of the invention which relies on a previously unknown and unsuspected activity of the decapeptide.

1. 100 A C T A THE PROPERTY THE PROPERTY BETWEEN THE PROPERTY OF THE PROPERTY BETWEEN THE PR

Preferably the mammal is a human.

The AngIV agonist and antagonist compounds according to the invention are useful in the treatment of a variety of conditions, including but not limited to:

- Dementia, including Alzheimer's disease
- Other neurodegenerative disorders involving cholinergic pathways, motor pathways, or sensory pathways, such as motor neurone disease
- sensory and motor peripheral neuropathies
- brain or spinal cord injury due to trauma, hypoxia or vascular disease.

Detailed Description of the Invention

5

15

20

の地域を対しているというないのでは、大きのでは、ないで

The invention will be now described in detail by way of reference only to the following non-limiting examples, and to the figures, in which

Figure 1 shows competition curves derived from prefrontal cortical sections incubated with [125I]Ang IV in the presence of increasing concentrations of the following unlabelled ligands: ▲ Ang IV, □ Ang II, ■ Ang III, △ Ang II(1-7), ● losartan and ○ PD 123319. Values are the mean of four sections, each from two animals. B/Bo is the fraction of available receptors occupied;

Figure 2 shows the results of competition binding studies showing the inhibition of [125I]Ang IV binding to E13 chicken chorioallantoic membranes with varying concentrations of unlabelled compounds: ▲ Ang IV,

Nle¹-AIV, △ CGP 42112, □ Ang II, ▼ Nle¹-Y-Ĭ-amide,

WSU-4042, ■ [Sar¹Ile8]Ang II, ● PD 123319 and

O losartan. Values are expressed as a percentage of total binding, and are pooled from two experiments. B/Bo x 100=% of available receptors occupied;

Figure 3 summarizes competition binding studies showing the inhibition of ¹²⁵I[Sar¹Ile⁸]Ang II binding to E13 chicken chorioallantoic membranes with varying concentrations of unlabelled compounds:

也是是是一种,也是是一个人,我们是一种是是一种的,是是是一种的是是是是一种的,但是是一种的的是是是是是一种的。

と、これは、それにはなるのでは、大きのできるとは、大きのできると

10

15

25

Figure 4 shows the effect of Ang IV on neurite outgrowth from E11 chicken sympathetic neurons. Values are expressed as a percentage of control levels, and are depicted as the mean±standard error of the mean (SEM). The results are pooled from 3 experiments, each with at least 40 neurite measurements. * indicates a significant difference from control values using Bonferroni's test;

Figure 5 shows the effect of 10 nM Ang IV on neurite outgrowth in the presence of 1 μ M Nle¹-Y-I-amide, WSU-4042, Nle¹-AIV, [Sar¹Ile⁸]Ang II, losartan, PD 123319 and CGP 42112. Values are expressed as a percentage of control levels, and are depicted as the mean±S.E.M. The results are pooled from 3 experiments, each with at least 40 neurite measurements. * indicates a significant difference from control values using Bonferroni's test;

Figure 6 shows the effect of 10 nM Ang II on neurite outgrowth in the presence of 1 µM Nle¹-Y-I-amide, WSU-4042, Nle¹-AIV, [Sar¹Ile⁸]Ang II, losartan, PD 123319 and CGP 42112. Values are expressed as a percentage of control levels, and are depicted as the mean±S.E.M. The results are pooled from 3 experiments, each with at least 40 neurite measurements. * indicates a significant difference from control values using Bonferroni's test;

Figure 7 illustrates the binding of ¹²⁵Iangiotensin IV to sheep spinal cord. The arrow indicates
the site of damage to the spinal cord;

Figure 8 summarizes the results of competition binding studies showing the inhibition of [125]LVV-haemorphin-7 binding to sheep cerebellar cortical membranes with varying concentrations of unlabelled compounds:

Δ Ang IV, Δ LVV-haemorphin-7, ■ Ang III, □ Ang II,
□ PD 123319, ● losartan, * naloxone and ∇ haloperidol.

Values are the mean of three experiments. B/Bo x 100 = % of available receptors occupied;

氢

.

公司人工工作,大學學學問題,以及如此一十一年四十二十年

20

25

Figure 9 summarizes the results of competition binding studies showing the inhibition of [125]AngIV binding to sheep cerebellar cortical membranes with varying concentrations of unlabelled compounds: A AngIV,

\[\Delta \text{LVV-haemorphin-7}, \begin{array}{c} \text{AngIII}, \Boxed \text{AngII}, \Operatorname{Opt PD 123319}, \\

\Delta \text{losartan}, \psi \text{naloxone and } \nabla \text{haloperidol}. \quad Values are the mean of three experiments. \quad \text{B/Bo} \times 100 = \frac{2}{3} \text{ of available receptors occupied;} \end{array}

Figure 10 is a schematic diagram illustrating the position of the oligonucleotide probes used for cloning and PCR experiments. (A) schematic diagram of the β -globin precursor showing relevant position and direction of oligonucleotides used. The shaded region represents the LVV-haemorphin-7 sequence, which is given below. (B) sequences of the oligonucleotides used in this study;

Figure 11 illustrates the detection of β -globin mRNA by RT-PCR and Southern blotting in sheep cerebellar and cerebral cortices, Reart and liver. Molecular weight markers are shown on the left;

Figure 12 shows the complete nucleotide sequence of Clone EX; and

Figure 13 shows the nucleotide sequence and derived amino acid sequence of the rat EX clone. The region of the potential LVV-haemorphin-7 is shown in bold.

The unlabelled ligands, Ang IV (Peninsula Laboratories, California USA), Ang II and the Ang II antagonist [Sar¹Ile8]Ang II (Sigma, Missouri USA), the Ang II partial agonist CGP 42112 (Ciba-Geigy, Basle Switzerland), the Ang II AT1 antagonist, losartan (Du Pont Merck Pharmaceutical Company, Delaware USA), the Ang II AT2 antagonist, PD 123319 (Parke-Davis, Michigan USA-Ms. C.L.Germain), and the Ang IV analogues, WSU 4042, Nle¹-Y-I-amide and Nle¹-AIV (prepared as previously described by Sardinia et al, 1993), were used at final concentrations ranging from 10-9 to 10-4 M.

15

のでは、

Example 1 Mapping of Angiotensin IV Receptors in Monkey Brain

We mapped the distribution of the receptors for Ang IV (AT4 receptors) in the Macaca fascicularis brain using in vitro receptor autoradiography in order to determine if the widespread and distinct distribution of the receptors that are found in the guinea pig brain is also found in primates. The binding sites were initially characterized pharmacologically in competition studies on prefrontal cortical brain sections. 25 These results are summarized in Figure 1. Ang IV, Ang III and Ang II competed for [125I]Ang IV binding with IC50s of 5 nM, 80 nM and 730 nM respectively, while Ang II(1-7) was a weak completitor (IC50 of 24 $\overline{m}\overline{M}$). The AT1 receptor antagonist, losartan (du Pont-Merck) and the AT2 receptor antagonist, 30 PD 123319 (Parke-Davis), were inactive, even at concentrations of 10 mM. These pharmacological properties are similar to those previously described for the AT4

receptor in bovine adrenal and guinea pig septal membranes, confirming that we were mapping the distribution of the same receptor.

京 電

A SECOND OF THE PROPERTY OF TH

10

15

20

The distribution of the AT4 receptor was remarkable, in that its distribution extended throughout several neural systems. This is summarized in Table 1. The most striking finding was the localization of this receptor in motor nuclei and motor-associated regions. These included the ventral horn spinal motor neurons, all cranial nerve motor nuclei including the oculomotor, trochlear, facial and hypoglossal nuclei, and the dorsal motor nucleus of the vagus. Receptors were also present in the vestibular, reticular and inferior olivary nuclei, the granular layer of the cerebellum, and the Betz cells of the motor cortex. Moderate AT4 receptor density was seen in all cerebellar nuclei, ventral thalamic nuclei and the substantia nigra pars compacta, with a lower receptor density being observed in the caudate nucleus and putamen. The localization of the \mathtt{AT}_4 receptor in all levels of the motor hierarchy in the central nervous system implies an important role for the binding site in motor activity.

Table 1

Localization and Quantitation of the AT₄ Receptor in the *Macaca fascicularis* Brain

Region	AT4 receptor density dpm/mm2 (mean ± SD)		
		Caudate nucleus	48 ± 2
		Vertical limb of the diagonal band*	86 ± 3
Basal nucleus of Meynert*	81 ± 5		
Granular layer of the dentate gyrus	117 ± 11		
CA1	45 ± 4		
CA3	41 ± 3		
Supraoptic retrochiasmatic nucleus*	93 ± 7		
Ventral posterior lateral/medial nuclei	35 ± 2		
Red nucleus*	44 ± 2		
Oculomotor nucleus*	44 ± 1		
Pontine nuclei	50 ± 2		
Lateral geniculate	52 ± 2		
Mo5*	84 ± 3		
Facial nucleus*	90 ± 4		
Hypoglossal nucleus*	93 ± 8		
Inferior olive	76 ± 10		
Granular layer of the cerebellum	126 ± 10		
Molecular layer of the cerebellum	47 ± 6		

Values are the mean of four sections from one animal and are representative of the relative densities of AT₄ receptors. * Values are determined from the overall area and not from individual cell bodies which exhibit higher binding.

で、一般のできるというでは、一般のできるとは、一般のできるというできるというできるという。

からいるというで

と中心情があるなど、これに関する。 金を養養養養 東京的人を持ちて

5

Λ

In addition to the somatic motor nuclei and autonomic preganglionic motor nuclei, abundant AT4 receptors were also found in other cholinergic systems and their projections, including the nucleus basalis of Meynert, vertical limb of the diagonal band and the hippocampus. Apart from being a neurotransmitter in motor neurons, acetylcholine is also implicated in cognition, since anti-cholinergic drugs induce memory disorders and confusion; in Alzheimers's disease, neuronal loss occurs in the cholinergic-rich basal nucleus of Meynert. Ang IV has been shown by two independent studies to facilitate memory retrieval in passive and conditioned avoidance tests (Braszko et al, 1988; Wright et al, 1993), and, when administered intracerebroventricularly, induces c-fos expression in the hippocampus (Roberts et al, 1995). Together with the presence of high densities of AT4 receptors in this region, these observations suggest that Ang IV may play an important role in the modulation of cognitive function.

公司等等發放了 人名英格兰 教養教養 教養教育

20 AT4 receptors were also observed in sensory regions, with moderate levels in spinal trigeminal, gracile, cuneate and thalamic ventral posterior nuclei, and in the somatosensory cortex. While receptor density was low in sensory neurons when compared with that observed in motor and cognitive areas, the AT_4 receptor was located throughout all sensory-associated areas, including the lamina II of the spinal cord, gracile, cuneate and spinal trigeminal nuclei, ventral posterior thalamic and lateral geniculate nuclei and the sensory cortex, suggesting a 30 substantial involvement with sensory activity. distribution pattern has also been observed in the guinea pig and sheep brain. As shown in Example 2, abundant \mathtt{AT}_4 receptors were also observed in sheep dorsal root ganglia.

Example 2 Mapping of Angiotensin IV Receptors in Sheep Spinal Cord

We extended the localization of the AT_4 receptors to the sheep spinal cord, to investigate if the strong presence of the AT_4 receptors in supraspinal motor and sensory regions persists in the spinal cord.

When the binding characteristics of [125I]Ang IV were assessed in the eighth cervical segment (C8) of the sheep spinal cord, we found that the affinities of the different unlabelled ligand in competing for the binding were similar to those observed for the monkey brain.

10

15

20

30

In the sheep spinal cord, high densities of AT₄ receptors were found in lamina IX in the ventral horns of all segments examined. At a cellular level, the binding was found overlying the cytoplasm of lateral and medial motor neurons and in their processes, but binding was absent from the cell nuclei. Whilst a clearly defined function of the Ang IV binding site is yet to be determined, the association with motor activity is strengthened in view of its abundant localization in the motor neurones in the ventral horn of the spinal cord, in addition to its strong presence in supraspinal motor areas.

High densities of AT₄ receptors were also found in the lateral tip of lamina VIF of all thoracic segments and lumbar segments L1 to L4, which corresponded with sympathetic preganglionic neurons in the intermediolateral cell column. However, binding was absent from L5 and L6 and from the sacral segments S1 and S2.

In the dorsal root ganglia associated with all spinal segments, high densities of AT4 receptors were found in the cytoplasm of small and large cell bodies of the sensory neurons, but not in the satellite cells, nor in the endoganglionic connective tissue. In laminae I and II, the

terminal fields of the dorsal root ganglia sensory afferents, only a low abundance of the receptor was noted in lamina II. Despite the low levels of AT₄ receptors in lamina II, their high abundance in the dorsal root ganglia and their consistent but low levels in most supraspinal sensory areas suggest that AT₄ receptors may still play a role in the processing of sensory information.

Low levels of the AT4 receptors were also found in the blood vessels which extended radially to the pial surface, in the blood vessels of the anterior and posterior fissures, and in the ependyma of the central canal. Ang IV has been reported to induce an endothelium-dependent dilation of rabbit pial arterioles, and in rats Ang IV reverses acute cerebral blood flow reduction after experimental subarachnoid haemorrhage.

Our localization studies suggest that AT_4 receptors are quite distinct from the known angiotensin receptors—the AT_{1a} , AT_{1b} and AT_2 receptors—in terms of their pharmacological specificity and their pattern of distribution in the brain and spinal cord. Furthermore, the pattern of distribution of the AT_4 receptors suggests that they may be involved in the function of neurones involved in motor function, sensory function and cholinergic systems, including cognition—

25

20

10

15

かんからは、ななのは、金をは西部のよ

Example 3 Characterization of Embryonic Chicken Ang IV and Ang II Binding Sites

In order to characterize the pharma clogy of the embryonic chicken AT₄ and Ang II receptors, chorioallantoic membranes (CAM) from embryonic day 13 (E13) chickens were used. The membranes were removed and frozen in isopentane cooled to -40°C.

a) Characterization of the embryonic chicken Ang IV binding site

CAM were homogenized in 30 ml of a hypotonic buffer (50 mM Tris, pH 7.4, 5 mM EDTA) and then centrifuged for 10 min at 500 g and 4°C. The supernatant fraction was removed and centrifuged for 20 min at 40,000 g and 4°C. The resulting pellet was rehomogenized in 2 ml of hypotonic buffer, and the final volume of the homogenate was adjusted to give a protein concentration of 10 mg/ml, as determined 10 by the Biorad protein assay. The binding assay contained CAM (100 μ g of protein), 0.14 μ Ci of [125] Ang IV (approximately 260 pM), and competing ligand, in a total volume of 270 µl in a 50 mM Tris buffer, pH 7.4, containing 15 150 mM NaCl, 5 mM EDTA, 100 µM phenylmethylsulfonyl fluoride, 20 μ M bestatin and 0.1% (w/v) bovine serum albumin. The binding system was incubated at 37°C for 2 h.

对抗的人们发生的人类数据的现在分词

204

では、東京の中では、これでは、大学の大学の教育の教育を表現している。

20

25

30

b) Characterization of the embryonic chicken Ang II binding site

CAM were prepared as described above with the following exceptions. The isotonic buffer contained 50 mM Tris, pH 7.4 and 6.5 mM MgCl₂ and the hypotonic buffer contained 50 mM Tris, pH 7.4, 6.5 mM MgCl₂, 125 mM NaCl and 0.2% (w/v) bovine serum albumin. In addition, the peptidase inhibitors, leupeptin, lisinopril, phosphoramidon, Plummer's inhibitor and bestatin, each used at a 1 µM concentration and 1 mM benzamidine and 2.5 mM phenanthroline, were included in both buffers.

In binding competition studies on E13 chicken CAM, [125 I]Ang IV binding was strongly inhibited by Ang IV and Nle 1 -AIV (IC $_{50}$ s of 18 and 43 nM respectively), whereas

WSU-4042, Nle¹-Y-I-amide and Ang II were weaker competitors with IC₅₀s of 5, 2.2 and 0.65 μ M respectively, and losartan and PD 123319, were inactive at concentrations up to 10 μ M. [Sar¹Ile⁸]Ang II and CGP 42112 were effective at only competing for 50% of the sites, and then only at concentrations of 10 and 0.5 μ M respectively. These results are summarized in Figure 2.

In studies of $^{125}I[Sar^1Ile^8]Ang$ II binding to CAM, Ang II, $[Sar^1Ile^8]Ang$ II and CGP 42112 competed for binding with IC₅₀s of 100, 13 and 180 nM respectively, whilst Ang IV, Nle¹-AIV and losartan were very weak competitors (IC₅₀s of 50, 8 and 100 μ M respectively). PD 123319, WSU-4042 and Nle¹-Y-I-amide exhibited IC₅₀s greater than 100 μ M. These results are shown in Figure 3.

15

continued the constitution and the second second section in the second s

Ludial !

J. 1800

Example 4 Effects of Ang IV on Neurite Outgrowth

The wide distribution of the AT4 receptors in motor, sensory and cholinergic regions suggests important roles for this peptide in the central nervous system.

20 However, a physiological action of Ang IV in neurons has yet to be clearly defined. Numerous neurotransmitters and neuropeptides have been associated with the regulation of neuronal development. For instance, acetylcholine inhibits neurite outgrowth from embryonic chicken ciliary ganglion cells, sympathetic neurons, and rat hippocampal neurons. Conversely, vasoactive intestinal peptide stimulates superior cervical ganglion branching and somatostatin increases neuronal sprouting from Helisoma buccal ganglion neurons.

30 We determined whether Ang IV has a trophic role in the central nervous system by examining its effects on

neurite outgrowth from cultured embryonic chicken sympathetic neurons.

100

三、金属等的是一个一个工工工程的必要的一种情報的人 我们可能是是一个人们

20

25

Sympathetic ganglia from Ell chickens were dissociated using trypsin/Versene, and were cultured in 24 well plates in DMEM and Ham's F12 medium which contained 1% (v/v) insulin-transferrin-selenium-X growth supplement (Gibco BRL, Maryland USA), 100 mM putrescine, 1.67 mg/ml prostaglandin $F2\alpha$, 6.67 ng/ml progesterone, and 5 ng/ml nerve growth factor (Sigma, Missouri USA). Neurons were allowed to adhere to the wells (approximately 2 h) before being given a 24 h treatment of peptides and/or their antagonists. Peptides and antagonists used were added to the cultures 0.5 h prior to either Ang IV or Ang II addition. Ang IV dose response curves were performed over the concentration range 10^{-11} to 10^{-5} M. Culture dishes were coated with 0.1 mg/ml polylysine and then given three washes with phosphate-buffered saline (PBS) before being * coated with 10 $\mu g/ml$ laminin. Wells were washed with PBS before being used for culture.

At the conclusion of the experiment, the culture medium was removed from the wells, the neurons were fixed with 2.5% glutaraldehyde in PBS for 20 min and examined under a phase-contrast microscope, attached to an MD30 Plus image analysis software (Adelaide, Australia). The length of neurites (longer than 50 μm) of every neuron examined was measured. A minimum of forty neurite measurements was taken per treatment group, and each experimental treatment was performed at least in triplicate.

At the conclusion of the experiment, the viability of the cells were confirmed by exclusion of 0.1% aniline blue.

In cultures of embryonic (E11) chicken sympathetic neurons, Ang IV inhibited neurite outgrowth in

المحتجب الأرامية والمتناف والمنافي والمعتقد والمعتمل والمعتمل والمعتمل والمناف والمنطورة والمتابي والمتاب والما

a dose-dependent manner, with a threshold at 10⁻¹¹ M, half maximal inhibition at 10⁻¹⁰ M and a maximal effect at 10⁻⁹ M. Between 10⁻⁹ to 10⁻⁵ M, outgrowth was maximally inhibited (P<0.05). These results are shown in Figure 4. At 10⁻⁸ M Ang IV, the inhibition of neurite outgrowth was totally reversed by 1 µM of the Ang IV analogues WSU-4042, Nle¹-Y-I-amide, and Nle¹-AIV. The effects of the analogues alone were not statistically different from control values. In contrast to the Ang IV analogues, the Ang II antagonist, [Sar¹Ile⁸]Ang II, the AT₁ and AT₂ antagonists, losartan and PD 123319, and the Ang II partial agonist, CGP 42112, had no effect on the Ang IV response, as shown in Figure 5.

では、100mmので

3

公司等 學學的 经强制 海上一年 医帕勒氏动脉腺素医肠丛 人名 人名英西尔

F17. "

15

20

25

At 10⁻⁸ M Ang II, neurite outgrowth was inhibited by 25%, which was highly significant. The Ang IV analogues completely reversed this effect, whilst the Ang II antagonists [Sar¹Ile⁸]Ang II, losartan, PD 123319, and CGP 42112 were ineffective. This is illustrated in Figure 6.

These studies suggest that the inhibition of neurite outgrowth by both peptides is mediated by the AT₄ receptors, and supports a role for angiotensin IV in neurite modelling.

Example 5 Effect of Angiotensin IV on Spinal Cord Damage

Glial fibrillary acid protein (GFAP)-positive astrocytes are involved with modelling neurite formation after damage to the spinal cord (Bovolenta et al, 1992). Injury-evoked plasticity is a similar situation to that observed in the developing embryo (Schwartz, 1992). In light of our findings on the ability of spinal cord tissue to bind Ang IV (Example 2), we tested the effect of spinal cord injury on Ang IV binding. Surprisingly, we found a

marked elevation of [125] Ang IV binding in damaged spinal cord sections. This is illustrated in Figure 7.

These results suggest that the AT₄ receptor may be a suitable target for alleviation of the effects of spinal cord injury.

Example 6 Purification of an Endogenous Brain Peptide Which Binds to the AT4 Receptor

The level of Ang IV in the brain is very low to undetectable (DJ Campbell, personal communication). The widespread and characteristic distribution of AT_4 receptors in the central nervous system suggests that there may be an as yet unidentified peptide ligand for this receptor. We therefore undertook a search for such a ligand, using conventional protein chemistry purification techniques together with an AT_4 receptor assay system in order to detect and monitor substance(s) in extracts of sheep brain which compete for $[^{125}I]Ang$ IV binding in this system.

a) 125AT4 Receptor Binding Assay

地方が

一年 はいている 神経の神経の神経のないという。

10

20

25

30

The binding of $^{125}\text{I-Ang}$ IV to bovine adrenal membranes was used as an assay system to screen for AT4 receptor binding activity in sheep cerebral cortex fractions. Bovine adrenal glands obtained from the abbatoir were diced into 1 mm x 1 mm blocks, homogenized in 3 ml of a hypotonic buffer (50 mM Tris, 5 mM EDTA, pH 7.4) and then centrifuged for 10 min at 500 g. The supernatant was removed and centrifuged for 20 min at 40,000 g, and the resulting pellet was rehomogenized in 2 ml of hypotonic buffer. Binding assay samples contained bovine adrenal (56 mg of protein as determined by the Biorad protein assay), 0.14 μCi of [^{125}I]Ang IV (approximately 260 pM), and 10 μl of test sample, in a total volume of 270 ml in

15

30

50 mM Tris buffer, pH 7.4, containing 150 mM sodium chloride, 5 mM EDTA, 100 μM phenylmethylsulfonyl fluoride, 20 μM bestatin, and 0.1% (w/v) bovine serum albumin. The relative potency of the fractions in competing for ¹²⁵I-Ang IV binding was determined from a standard curve in which known amounts of unlabelled Ang IV were added (10⁻¹⁰ to 10⁻⁶ M). Fractions from each purification step were assayed for their ability to compete for [¹²⁵I]Ang IV binding, with those exhibiting the highest activity undergoing the next purification step.

b) Purification Procedure

Sheep cerebral cortex was homogenized in 2 M acetic acid, (2 ml/g tissue), centrifuged, and the supernatant decanted. A preliminary purification of the extract was performed using a column of preparative C18 material (55-105 mm, Waters). The C18 eluent was lyophilized, reconstituted, and subjected to a series of chromatographic steps, in which fractions were assayed for Ang IV displacement activity. In brief, the chromatographic steps were: three successive reversed-phase HPLC steps, using columns of varying pore size (Deltapak C18, 300°A, and Novapak C18) as well as changing ionpairing agents, solvents and gradient elution conditions; this was followed by anion exchange, then cation exchange, with final purification on a microbore LC C8 column. purified active peptide was sequenced using an Applied Biosystems Model 470 A Protein Sequencer with an on-line Model 120A PTH Analyzer

The sheep cerebral cortex yielded 1.9 nmoles of AT $_4$ receptor binding activity per gram of wet weight after the first C18 Deltapak column. Following the third Poly LC column (55°C), Ang IV activity coeluted with the major UV

design the collection

absorption peak, and the following peptide sequence was obtained from this peak:

Leu-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe.

A search of protein database records revealed that this sequence corresponded to the amino acid sequence 32-41 of the human β , δ , γ and ϵ globin chains and is known as LVV Haemorphin 7.

LVV-haemorphin 7 is a 10 amino acid peptide found in the brain, pituitary, hypothalamus and bone marrow which binds with high affinity to the angiotensin AT4 receptor. The sheep peptide sequence is identical to amino acids 31-40 of the sheep β_A , β_B , β_C , and ϵ globin precursors (Garner and Lingrel, 1989; Saban and King, 1994), and this sequence is conserved in many species, including human (see for example Karelin et al, 1994). In humans, there are 6 β -globin-like genes ϵ , γ^{A} , γ^{G} , δ , β and a pseudogene $\psi\beta$, clustered on chromosome 11, and all encode the LVV-haemorphin 7 sequence (Karlsson and Nienhuis, 1985). This sequence is not present in any of the α globin family of genes. LVV-haemorphin-7 and some shorter sequences within this peptide have opioid activity, and it appears that the sequence VVYP is required for this activity (Karellin et al, 1994).

25 Example 7 Properties of Synthetic LVV-Haemorphin 7

A decapeptide with the sequence isolated above was synthesized under contract by Chiron Mimotopes, and its biochemical and pharmacological properties were characterized as follows:

a) HPLC

A preliminary hplc run indicated that the synthetic peptide did not coelute with the fraction that

30

15

20

1

1日 國本門兵至第一年日十八年與秦中公衛衛衛衛衛衛衛衛衛衛衛門等於

It appeared that the fraction might have was sequenced. been degraded due to prolonged storage at 4°C. spectrometry analysis was carried out in order to determine whether this was the case. The data obtained from mass spectrometry analysis of the two active peaks produced following prolonged storage of the original purified material were indeed consistent with degradation. The early eluting peak gave a mass corresponding exactly to the loss of the phenylalanine residue from the carboxy terminus, whereas the second active peak gave a mass corresponding exactly to the loss of the amino terminal leucine residue. Furthermore, these data (given that all the mass readings were unambiguous) strongly suggest that the active peptide is not post-translationally modified, either in the peptide core or at the amino or carboxyl terminus.

b) <u>Ligand Binding Studies</u>

20

25

30

6. 6 Ju.

題のは 明かせ、 ここに から者の 幸の教を ひがっこうや かいかいこう

The pharmacological properties of the decapeptide LVV-haemorphin 7 in competing for the binding of ¹²⁵I-Ang IV in bovine adrenal membrane and sheep cerebellar cortical membranes were determined. Both LVV-haemorphin-7 and Ang IV were radioiodinated using chloramine T, and separated on a C18 Sep-pak column using 0.5% trifluoroacetic acid in a 20-80% methanol gradient.

Bovine adrenal membranes or sheep cerebellar cortical membranes were homogenized in 30 ml of a hypotonic buffer (50 mM Tris, 5 mM EDTA, pH 7.4), and then centrifuged for 10 min at 500 g. The supernatant was removed and centrifuged for 20 min at 40,000 g, and the resulting pellet was rehomogenized in 2 ml of hypotonic buffer. Binding assays contained:

and a simulation of the control of t

bovine adrenal (56 μ g of protein) or sheep cerebellar membranes (26 μ g of protein), as determined by the Biorad protein assay (Bradford, 1976);

0.14 μ Ci of [125 I]Ang IV (approximately 260 pM), or 0.11 μ Ci of [125 I]LVV-haemorphin-7 (approximately 200 pM), and

competing ligand,

でしる。これではなる。一般を見るとは、一般のではないできる。

8

30

in a total volume of 270 ml in 50 mM Tris buffer, pH 7.4, containing 150 mM sodium chloride, 5 mM EDTA, 10 mM phenylmethylsulfonyl fluoride, 20 μ M bestatin and 0.1% (w/v) bovine serum albumin.

The assay was incubated at 37°C for 2 h.

In the bovine adrenal membranes, a range of concentrations of unlabelled LVV haemorphin 7 or Ang IV was added to the assay system in order to determine the relative potencies of the two peptides in this radioreceptor assay system. Both Ang IV and LVV haemorphin 7 displayed comparable affinities in competing for the 125I-Ang IV binding (approx. 1-5 nM), with Ang IV exhibiting slightly higher affinity.

For competition studies in sheep cerebellar cortical membranes, dilutions of the unlabelled ligands, LVV-haemorphin-7, Ang IV, Ang II, Ang III and the non-specific opioid antagonist, naloxone, the Ang II AT1 antagonist, losartan, the Ang II AT2 antagonist, PD 123319, and the sigma opioid and dopamine D_2 antagonist, haloperidol, were used at concentrations ranging from 10^{-13} to 10^{-4} M. Quantitation of receptor binding was calculated as the mean of two experiments.

In these studies, ¹²⁵I-LVV-haemorphin-7 binding to sheep cerebellar cortical membranes was competed for by LVV-haemorphin-7, Ang IV, Ang III, and Ang II (IC₅₀s of

5.6 nM, 1 nM, 77 nM, and 1.6 μM respectively). PD 123319 was a weak competitor (IC₅₀ of 46 μM), whilst losartan, naloxone and haloperidol were ineffective (IC₅₀ greater than 100 mM). These results are illustrated in Figure 8. Similarly, [¹²⁵I]Ang IV binding to cerebellar membranes was competed for by Ang IV, LVV-haemorphin-7, Ang III, and Ang II with IC₅₀s of 1.13 nM, 2 nM, 6.9 nM and 2 μM respectively, whilst PD 123319, losartan, naloxone and haloperidol were inactive at 10 μM. These results are illustrated in Figure 9.

できるない。

停

Binding of 125I-LVV Haemorphin 7 to Sheep Brain c) Sheep hindbrain sections were used to compare the distribution of 125I-LVV-haemorphin-7 binding and AT4 receptor sites. Sections at 10 mm thickness were equilibrated to 22°C (30 min), and then preincubated for 30 min in an isotonic buffer containing 50 mM Tris, 150 mM sodium chloride, 5 mM EDTA, 100 µM phenylmethylsulfonyl fluoride, 20 µM bestatin and 0.1% bovine serum albumin, pH 7.4, before a further 2 h incubation in the same buffer containing 2.84 µCi of [125I]LVV-haemorphin-7 or $[^{125}I]Ang\ IV\ (approximately\ 140\ pM)$. The binding of the radioligands was cross-displaced with either 1 μM unlabelled LVV-haemorphin-7 or Ang IV. After incubation, the sections were given three 2 min washes in buffer at 4°C, and exposed to X-ray film for 14 to 28 d.

[125I]LVV-haemorphin-7 and [125I]Ang IV exhibited an identical binding pattern in the sheep hindbrain. Binding was localized to the motor-associated areas, the granular layer of the cerebellum, the inferior olive, hypoglossal and lateral reticular nuclei, to the autonomic regions, the dorsal motor nucleus of the vagus and the

nucleus ambiguus, and to the sensory regions, the external cuneate and spinal trigeminal nuclei. The binding of both radioligands was displaced by a 1 μ M concentration of either unlabelled Ang IV or LVV haemorphin 7, indicating that not only are the two binding sites distributed in the same brain regions, but that the two radioligands are actually binding to the same sites.

Example 8 Isolation of Potential LVV-Haemorphin-7 Precursor Clones

10

20

30

() ()

自然的事情以為此為國際 國際門 改造門 不 明日日本

It is not known whether LVV-haemorphin-7 is synthesized in the brain, or whether it is derived from the breakdown of haemoglobin. Demonstration of LVV-haemorphin-7 precursor mRNA in the brain would provide evidence for the former. Possible methods to demonstrate that LVV-haemorphin-7 precursor mRNA is present in the brain include:

- (a) isolation of specific cDNA clones from a brain cDNA library;
 - (b) detection of the mRNA in the brain by PCR;
- (c) detection of LVV-haemorphin 7 precursor mRNA by in situ hybridization histochemistry; and
- (d) demonstration of the mRNA in brain specific cell cultures.

It has previously been reported that $\alpha-$ and $\beta-$ globin mRNAs are expressed in mouse brain, as demonstrated by Northern analysis (Ohyagi,Y., et al, 1994).

Each of these approaches has specific advantages. In situ hybridization histochemistry and detection of the mRNA in brain specific cell cultures would provide evidence for synthesis in the brain. Isolation of clones and the reverse transcription polymerase chain reaction (RT-PCR) detection of mRNA would show the presence of mRNA in the brain, but contamination by reticulocytes cannot be

excluded. However, isolation of cDNA clones provides considerable information about the structure of the precursor. The precursor of LVV-haemorphin-7 may be a member of the β -globin family, eg β^A , ϵ , etc, or an alternatively spliced globin, or it may be a previously unknown non-globin peptide.

To isolate potential clones that code for the precursor of the LVV-haemorphin-7 peptide, we have screened a rat brain cDNA library using an oligonucleotide based on the LVV-haemorphin-7 sequence.

Oligonucleotide Design

÷.

The Park agence

10

15

20

A number of oligonucleotides have been designed, as illustrated in Figure 10. Oligonucleotide H170 was designed to correspond to the region of the sheep β -globin gene encoding the LVV-haemorphin-7 sequence. This probe was used for screening the library, and also as the sense oligonucleotide in PCR. Oligonucleotide H173 was designed as the antisense primer for use in PCR. PCR with H170/H173 spans intron 2, and will generate a 255 bp fragment with cDNA as the template and a 1098 bp fragment with genomic DNA. Oligonucleotide H172 can be used as an internal probe for H170/H172 PCR products. Oligonucleotide H171 is an antisense probe corresponding to the region of the sheep β -globin gene encoding the LVV-haemorphin 7 sequence, and was used for in situ hybridization histochemistry, with H170 as the matching sense control oligonucleotide.

Detection of β -Globin Like Sequences in Brain by Polymerase Chain Reaction (PCR)

RNA was isolated from sheep cerebellar and cerebral cortices, heart and liver. The RNA (20 μg) was reverse transcribed in a 25 μl reaction containing 100mM

KCl, 50mM Tris-HCl (pH 8.4), 6 mM MgCl₂, 10 mM dithiothreitol, 500μM dNTPs (Progen), 12μg/ml random hexamers (Boehringer Mannheim), 40 units RNasin (Progen), and AMV reverse transcriptase (Boehringer Mannheim, 25 units) at 42°C for 1 h. An aliquot of the reverse transcription reaction (10%) was used in the polymerase chain reaction. The primers used for amplification of the β-globin mRNA were sense H170 and antisense H173 (see Figure 10). PCR was performed in a reaction containing: 10mM Tris-HCl (pH 8.3), 50mM KCl, 400μM dNTPs, Taq Polymerase (Bresatec, 2.5 units), 3μM MgCl₂, and each primer at 400nM. Denaturation, annealing and extension were carried out at 94°C, 60°C and 72°C for 1 min each for 40 cycles, followed by a final extension at 72°C for 10 min.

15

20

(EX)

17. 1887年之

The PCR products were separated on an agarose gel, transferred to Hybond N+, and Southern analysis using an internal oligonucleotide (H172) was performed to confirm that the products were derived from globin precursors. Specific bands of the expected size of 255 bp were detected in all four tissues examined, as shown in Figure 11.

An oligonucleotide corresponding to the nucleotide sequence of the LVV-haemorphin-7 region of the sheep β-globin (H170) was used to screen a rat brain cDNA library (Stratagene Cat No: 936515, Sprague-Dawley, whole brain). Approximately 8-x 10⁵ clones were plated, and plaque lifts taken using standard methods (eg Maniatis et al: Molecular Cloning). The filters were prehybridzed in Rapid-Hyb (Amersham) for 1 hr at 42°C, then the 5' end labelled H170 was added for 2 hr. The filters were then washed 3 times at 42°C in 2xSSC/0.1% SDS. The filters were autoradiographed for 4 days using Biomax film and an

intensifying screen. A total of 24 putative positives was isolated. The positives were eluted in PSB.

The positives were then further characterized using a PCR based method. PCR was performed using oligonucleotide H170 as the 5' primer and H173 as the 3' primer. A PCR product derived from H170/H173 will span an intron in the sheep β -globin gene, and will generate a 255 bp fragment.

An aliquot of the eluted λ clone was boiled for 5 min, then chilled on ice. This was used as template DNA in a PCR reaction containing 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 400 μ M dNTPs, Taq Polymerase (Bresatec, 2.5 units), 3 μ M MgCl₂, and each primer at 400 nM. Denaturation, annealing and extension were carried out 94°C, 60°C and 72°C for 1 min each for 30 cycles, followed by a final extension at 72°C for 10 min. PCR products were analysed by electrophoresis on a 1.4% agarose gel.

The H170 positive/PCR negative clones were stored for further characterization. It is considered that they may be either non-globin precursors, alternatively spliced precursors or fragments of globin clones.

Sequencing Rat β -globin Clones

翻

不過 通過的 的现在分词的 医多克斯氏病 医眼睛眼睛眼 经现代的 医生物病

10

The 6 positives selected by PCR were plaque purified, and subjected to plasmid excision according to the manufacturers instructions. The insert sizes were determined by separate restriction mapping with the enzymes EcoRI and PvuII. Clones EX, FX, LX, RX and TX contain inserts of approx 500 bp. Clone DX was the longest, and contained an insert of approximately 2500bp. Southern analysis of the clones using an internal oligonucleotide (H172) confirmed that these clones were derived from globin precursors.

These plasmids were sequenced using the Pharmacia T7 sequencing kit. Sequencing of clones EX, FX and LX, using the universal primer, showed sequence homology to the 3' untranslated region of β -globin. Clones RX and TX when sequenced with the universal primer, and clone DX when sequenced with the reverse primer, showed sequence homology to the 5' end of the β -globin gene, including the initiation codon ATG.

Clone DX was subjected to nested deletion analysis to generate more templates for sequencing. This clone contained the β -globin sequence, and approximately 1.8 kb of sequence which was not homologous to the globin cluster, and may be the result of two inserts in the one clone.

Complete sequencing of clone EX showed that the clone was identical to rat β^A -globin (Genbank accession No: X16417), as shown in Figure 12. Figure 13 shows the nucleotide sequence and derived amino acid sequence of clone EX, indicating the putative LVV-haemorphin-7 region.

20

25

10

15

されていた。 1978年 1988年 19

を

11 18

Example 9 In situ Hybridization Histochemistry

The distribution of mRNA encoding LVV haemorphin 7 and its precursor peptide is being investigated using a range of oligonucleotides for the different regions of the β -globin gene, including the C-terminal of exon 2 (H172 of Figure 13) and the N-terminal regions of exon 3 (H173). Both sense and antisense (initially H172, H173) oligonucleotides were 3' end labelled with a $\frac{1}{35}$ S-dATP using terminal d-transferase and purified on a Nensorb column. Sheep brain sections were then hybridized with 7.5 x 10⁵ cpm of labelled probe in a 75 μ l total volume of 50% formamide, 4xSSC, 1xDenhardt's solution, 2% sarcosyl, 20 mM Na₂PO₄ buffer (pH 7), 10% dextran sulphate, 50 μ g/ml

herring sperm DNA and 0.2 M dithiothreitol. After a 16 h hybridization period, the sections were washed four times in 1 x SSC, rinsed in distilled water and dehydrated through increasing ethanol and exposed to Hyperfilm β -max. Preliminary experiments using oligonucleotides H172 and H173 detected β -globin mRNA in the inferior colliculus and nucleus of the spinal trigeminal. Further in situ hybridization histochemical studies involve the use of additional antisense and sense synthetic oligonucleotides from different regions of the β -globin sequence to confirm our finding of β -globin mRNA in brain nuclei. The distribution of β -globin mRNA is then compared to our autoradiographic localization of the AT4 receptors in order further to lucidate roles for this novel peptide system.

15

ż

上七百百百八百 衛苗居在野山山村

(Th

Example 10 Radioimmunoassay and Immunohistochemical Detection of LVV Haemorphin 7

Two sheep were immunized with the LVV haemorphin 7 sequence conjugated to diphtheria toxoid and both antisera and affinity purified antisera with adequate titre to set up radioimmunoassays for LVV haemorphin 7 have been obtained. The radioimmunoassay, which is of conventional type, is used to determine the concentration of LVV haemorphin 7 in different tissues or in specific regions within a tissue, in order to provide us with further information as to other possible physiological actions of the decapeptide.

The antisera are also used immunohistochemically to determine the tissue distribution of LVV haemorphin 7, particularly in the brain. Guinea pigs are perfused intracardially with 4% paraformaldehyde in phosphate-buffered saline solution, the tissues dissected out and immersed in a 20% sucrose solution overnight. The tissues

are then frozen, 5-10 micron sections cut, and endogenous peroxidase blocked by a 30 min incubation in 0.5% hydrogen peroxidase in methanol prior to an overnight incubation with the primary antibody in phosphate-buffered saline containing 3% normal goat serum. After a few washes in phosphate buffered saline, the sections are incubated with the secondary anti-sheep antibody, and detected using the streptavidin-biotin/horseradish peroxidase complex system (Vectastain). The detection of LVV haemorphin 7 in neurones provides further support that the decapeptide is synthesized within neurones, and thereby may function as a neuropeptide, since we have already shown that its receptor occurs in neurones. Immunohistochemistry is also performed at the electron microscopic level in order to evaluate the subcellular distribution of the peptide, in particular whether it occurs in intracellular storage granules.

30

The radioimmunoassay for LVV haemorphin 7 is also employed to investigate the secretion of the peptide from neural tissue. Slices prepared from brain regions found to be rich in LVV haemorphin 7 immunoreactivity are incubated in Krebs Ringer Bicarbonate buffer at 37°C, and the effects of depolarization by high K⁺ medium and various secretagogues are evaluated to test whether the peptide is secreted from neurones. Similar experiments are carried out on cultured neuronal cell lines which are found to contain the peptide. Radioimmunoassays of body fluids including plasma and cerebrospinal fluid are used to determine levels of the peptide in these fluids under normal and pathological conditions.

9 5 5

In addition, the subcellular distribution of the peptide is evaluated by radioimmunassay of subcellular fractions from nervous tissues, including synaptosomes, in

order to evaluate if the peptide is stored in subcellular granules, as occurs for other secreted neuropeptides.

We have mapped the distribution of AT₄ receptors in the brain of Macaca fascicularis and sheep spinal cord. The receptor has a striking and unique distribution, including motor— and sensory—associated regions and pathways and cholinergic cell bodies, including all motor nuclei in the brain stem and spinal cord. We have demonstrated that AngIV inhibits neurite outgrowth in cultured embryonic chicken neurones, and that this peptide may therefore have a role in growth and development of the central and peripheral nervous systems.

10

15

25

- 4,

We have purified an endogenous brain peptide which binds to the AT₄ receptor with high affinity. This decapeptide is 100% identical to the internal amino-acid sequence 31-40 of sheep β -globin. The presence of this β -globin-like sequence was demonstrated in sheep brain and other tissues using PCR. Screening of a rat brain cDNA library led to the isolation of a clone identical in sequence to rat β^A -globin.

We have demonstrated the presence of β -globin mRNA in brain tissue and isolated a β -globin cDNA clone from a rat brain library. These data suggest that LVV-haemorphin-7 is derived from β -globin precursors synthesized in the brain, although contamination by reticulocytes cannot be excluded. All of the cDNA clones sequenced correspond to the sequence encoding rat β^{A} -globin. The rat LVV-haemorphin-7 peptide sequence has a conservative substitution at position 10, with a tyrosine replacing a phenylalanine.

It therefore appears that a peptide corresponding to the sequence of the bovine LVV-haemorphin-7 exists in

いったというではないというというないとはなるというないというなななないというないというと

brain, and is derived from β -globin as precursor. The peptide is almost certainly the endogenous ligand for abundant brain AT₄ receptors, and may therefore exert a range of action on defined motor sensory and cholinergic neurones. In a wider context, our findings suggest that β -globin may be a precursor of a range of neuroactive peptides generated in the central nervous system by specific cleavage enzymes to interact with a range of receptors.

10

THE PARTY OF THE P

1000

ر زاد

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this invention.

References cited herein are listed on the 20 following pages, and are incorporated by this reference.

REFERENCES

15

30

在全

東京の日本学院を開発をにいる。

TO SELECT THE REAL PROPERTY AND ADDRESS OF THE PERSON OF T

- Bovolenta, P., Wandosell, F., Nieto-Sampedro, M., Prog. Brain Res., 1992 94 367-379
- Braszko, J.J., Kupryszewski, G., Witczuk, B. and Wisniewski, K.
 Neurosci., 1988 27 777-783.
- 3. Garner, K.J. and Lingrel, J.B.J. Mol. Evol., 1989 28 (3) 175-184
 - 4. Haberl, R.L., Decker, P.J. and Einhaupl, K.M., Circ. Res., 1991 68 1621-1627.
 - Karksson, S. and Nienhuis, A.W.
 Ann. Rev. Biochem., 1985 54 1071-1108
- 6. Karelin, A.A., Philippova, M.M., Karelina, E.V. and
 Ivanov, V.T.
 Biochem. Biophys. Res. Comm., 1994 202 410-415
- Miller-Wing, A.V., Hanesworth, J.M., Sardinia, M.F., Hall, K.L., Wright, J.W., Speth, R.C., Grove, K.L. and Harding, J.W.
 J. Pharmacol. Exp. Ther. 266 (1993) 1718-1726.
 - 7. Moeller, I., Chai, S.Y., Oldfield, B.J., McKinley, M.J., Casley, D. and Mendelsohn, F.A.O.

 Brain Res., 1995 701 301-306.
 - Ohyagi, Y., Yamada, T. and Goto, I.
 Brain Res., 1994 635 323-327

- Roberts, K.A., Krebs, L.T., Kramar, E.A., Shaffer,
 M.J., Harding, J.W. and Wright, J.W.
 Brain Res., 1995 682 13-21.
- Saban, J. and King, D.
 Biochim. Biophys. Acta., 1994 1218 87-90

十二十二四次5月日、韓立書門墓園者 学のできってき

25

30

- 12. Swanson, G.N., Hanesworth, J.M., Sardinia, M.F., Coleman, J.K.M., Wright, J.W., Hall, K.L., Miller-Wing,
 15 A.V., Stobb, J.W., Cook, V.I., Harding, E.C. and Harding, J.W.
 Reg. Peptides, 1992 40 409-419.
- 13. Schwartz, J.P.20 Int. Rev. Neurobiol. 34 (1992) 1-23.
 - 14. Wong, P.C., Hart, S.D., Zaspel, A.M., Chiu, A.T.,
 Ardecky, R.J., Smith, R.D. and Timmermans, P.B.
 J. Pharmacol. Exp. Ther. 255 (1990) 584-592.
 - 15. Wright, J.W., Miller-Wing, A.V., Shaffer, M.J., Higginson, C., Wright, D.E., Hanesworth, J.M. and Harding, J.W.

 Brain Res. Bull., 1993 32 497-502.
 - 16. Wright, J.W., Krebs, L.T., Stubb, J.W. and
 Harding, J.W.
 Neuroendocrinology, 1995 16 23-52

UNIVERSITY OF MELBOURNE 9 JULY 1996
HOWARD FLOREY INSTITUTE OF EXPERIMENTAL
PHYSIOLOGY AND MEDICINE.

FIGURE 1

三文學學 医二种甲状腺素 医二种甲状腺素 医二种甲状腺素

一個的問題的一個一門的問題的一個 國際國際 人名英格兰姓氏

FIGURE 2

5

1. 在新聞的人的一個一個一個一個一個一個一個一個一個一個一個一個一個一個

FIGURE 3

建加尔 ***

- No. 1

FIGURE 4

公の時に、 ここの経帯の機械を持ちるというには

% of control

% of control

ではないという。これには、10mmのでは

7

一、我們看得在一個官員之外就在最後有人有意理是發情報的學不可以行行的

FIGURE 6

and the control of the state of

FIGURE 7

A STATE OF THE STA

「一つのです」となりとなる場合のでは、機能を発展したからして

FIGURE 8

となっに、過程の大型ないのでは、

FIGURE 9

1

というないを持ちているとの情報であるないというで

....

鶣

FIGURE 10

AND PRINCE BUILDING THE SELECTION OF A SELECTION OF THE S

12/13

N. 4000

A THE RESIDENCE OF THE PARTY OF

September :

では、曹操を書きていては極極を表を養養を持ちなるととないでく

EX						כמכמז	10		20	CCNMO	30	
				::::	:::::						GTGCA	
RNBGL	O TGCTTC	TGACA	TAGT	GTGT'	TGACT	CACAA	ACTCA	GAAAC	AGACA	CCATG	GTGCA	CCTG
		10		20		30)	40		50		6
	40		50		60		70		80		00	
EX	CTGATG	CTGAG	AAGGC	TGCT	GTTAA	TGGCC	TGTGG	GGAAA	GGTGA	ACCCT	90 GATG23	ייבייםיו
DNIDCE			: : : : :									
MIDGE	O CTGATG	TGAG. 70	AAGGC	TGCTO 80	STTAA	TGGCC	TGTGG	ggaaa.	GGTGA	ACCCT	GATGAT	FGTT
		,,		80		90		100	-	110		120
	100		110		120		130		140		150	
EX	GTGGCG/	AGGCC	CTGGG	CAGG	CTGCT	GGŢTG	ידירידא רי	CCTTC	~~ ~~~	AGAGG'		rgatz
RNBGLC												
	O GTGGCG	130	C 1 GGG	140	TGCT	GGTTG 150	TCTAC	CCTTG	EACCC!	AGAGG:	FACTT1	GATA
				1.0		150		160		170		180
T,	160		170		180		190		200		210	
EX	GCTTTG	EGGAC(CTGTC	CTCTG	SCCTC:	rgcta	TCATG	GGTAA	י בידים ז	ÄGGTG	320000	CATO
RNBGLO	GCTTTGG	· • • • • ·										
•		190	JIGIC	200	SCC i C.	210	TCATGO	GTAAC 220	CCTA		\AGGCC	
						210		220		230		240
EK	220		230		240		250		260		270	
£`-	GCAAGAA	(GGT'GA	ATAAA	CGCCT	TCAA?	CGATG	GCCTG	AAACA	TTGG	CAAC		GGCA
RNBGLO	GCAAGAA											
		250		260	I CATA	270	GCC I GA	144CAC 280	TTGGA	CAACC 290	TCAAG	
	222							200		290		300
EK	280	·TC 3 TC	290		300		310		320		330	
	CCTTTGC	TCATC	TGAG	rgaac	TCCAC	TGTG	ACAAGO	TGCAT	GTGGA	TCCT		TTCA
RNBGLO	CCTTTGC	TCATO	TGAG	GAAC	TCCAC	: : : : : ידיפידים:	::::::	::::: ידיכראידי	:::::	:::::	::::	::::
		310		320		<u>3</u> 30	·	340	GIGGA	350	AGAAC	TTCA 360
	340		250							330		300
EX		GGGCA	350 בדבדת	: 2 mmC	360 TC>TT	cmcmn	370		380		390	
•	GGCTCCT											
RNEGLO		00000	ATATO	ATTG	TGATT	GTGTT	GGGCC	ACCAC	:::: CTGGG	CAAGG	::::: ::::::	::::
		370		380		390		400	-1000	410	AA11C	420
	400		410		420							
EX	CCTGTGC			TTCC	420 AGAAG	СТССТ	430	C 3 C T C	440		450	
RNEGLO			CTGCC		AGAAG	GTGGT	GGCTG	GAGTG	GCCAG	TGCCC	TGGCTC	
		430		440		450		460		470		480
	460		470		480		400		.			
EX	AGTACCA	AAATO	CCTCT	TTTC	TECT	CTTGT	490 'CTTTG	TGCSA	500 recré	· mm.c	510	
PNECTO												
KNEGLO		CTAAA 490			601.	CITGI	CTTTG	TGCAA:	rggrc.	AATTG	TTCCC:	AAGA
- CP	•	450		500		510		520		530		540
	520		530		540		550		5.00			
EX	GAGCATC	rgtca(GTTGT	TGTC	AAAAT	GÁČAA	26266	TTTGA	560	זיכיזיררי	570 Tacman	
ENECTO	GAGCATC	:::::	:::::	:::::	::::	:::::	:::::	:::::	:::::	:::::		41.44
	GAGCATC	GTCA	GTTGT	TGTC	LAAAT(GACAA	AGACC:	TTTGA	VAATC:	rgrcc:	racta.	AATA
	580		590		600							
EX	AAGGCATI	TACT	TTCAC	TGCAA	JAAAA.	AAAA.	610 AAAAA	4.2				
DMPCTO		:::::	:::::	:::	· - •			···				
ranaGEQ	AAGGCATI	TACT	TTCAC	TGC	-							

FIGURE 12

13/13

έx									c	ACA	AAC	10 TCA	GAA	ACA	2 GAC	0 ACC	ATG M	GTG	CAC	CTGA L
EX		GAT	GCT	GAG	AAG	GCT	GCT	GTT	AAT	GGC	CTC	70 TGG W	GGA	AAG	GTG	AAC	CCT	GAT		GTTG V
EK	GT G	100 GGC G	GAG E	GCC(CTG	GGC	AGG	ÇTG	CTG	GTT	'GTC	130 TAC: Y	CCT	TGG	ACC	CAG	AGG'	TAC	50 TTT F	GATA D
ĒΧ	GC	160	GGG	GAC	CTG	TCC	TCT	GCC	TCT	GCT	ATC	190 ATG	GGT	AAC	CCT.	AAG	GTG.	AAG	10 GCC	CATG
	S	F 220		D								M 250							A 70	Н
EK	GC G	IAAG. K	AAG K	GTG V	ATA	AAC	GCC	TTC	AAT	'GAT	'GGC	CTG	AAA	CAC	TTG	GAC	AAC	CTC	AAG	GGCA G
EK	CC	280 TTT	GCT	CAT	CTG	AGT	GAA	CTC	CAC	TGI	'GAC	310 AAG K	CTG	CAT	GTG	GAT	CCT	GAG	AAC	TTCA
,		340			35	0		3	60			370			38	0		3	90	
EK	R	L	L	G G	N	M	Ι	V	I	V	L	G	H	H	L	G	K	E	F	ACCC T
EX	CC P	400 TGT C	GCA	.C.A.G.	GCT	GCC	TTC	CAG	AAC	GTG	GTC	430 GCT A	GGA	GTG	GCC	AGT	GCC	CTG	GCT	CACA H
EX	AC K	460 STAC Y	CAC	TAA	47 ACC	o TCT	TTT	4 CCT	80 GCT	'CTI	_ : GTC	490 TTT	GTG	CAA	50 TGG	0 TCA	ATT	5 GTT	10 CCC	'AAGA
EK	G.	520 AGCA	TCT	GTC.	53 AGT	0 TGT	TGT	5 'CAA	40 AAT	'GAC		550 AGAC	CTT	'TGA	56 AAA	0 TCT	GTC	5 CTA	70 .CTA	ATAA
ek	A.	58 AGGC	0 ATT	TAC	5 TTT	90 CAC	TGC	- LAAA	000 ممجر) LALALA	ኣዳፉ	61 \aaa	0 AAA		-	-				

da A - şə