举例

例:求完全由n个布尔变量确定的布尔函数的个数。

	0 0	0 1	10	11	f(x1,x2)
f1	0	0	0	0	0
f2	0	0	0	1	$x_1 \wedge x_2$
f3	0	0	1	0	$x_1 \land \neg x_2$
f4	0	0	1	1	x_1
f5	0	1	0	0	$\neg x_1 \land x_2$
f6	0	1	0	1	x_2
f7	0	1	1	0	$x_1 \overline{\vee} x_2$
f8	0	1	1	1	$x_1 \vee x_2$
f9	1	0	0	0	$\neg x_1 \land \neg x_2$
f10	1	0	0	1	$x_1 \leftrightarrow x_2$
f11	1	0	1	0	$\neg x_2$
f12	1	0	1	1	$x_2 \rightarrow x_1$
f13	1	1	0	0	$\neg x_1$
f14	1	1	0	1	$x_1 \rightarrow x_2$
f15	1	1	1	0	$\neg x_1 \lor \neg x_2$
f16	1	1	1	1	1

- f(x₁,x₂,...x_n)中n个布尔变量的不同的状态数为2ⁿ
- •每个状态有0,1两种 取值,
- 故f(x₁,x₂,...x_n)的布尔函数个数为 2^{2ⁿ}

$f(x_1, x_2, \cdots x_n)$ 的布尔函数个数为 2^{2^n}

例。求完全由n个布尔变量确定的布尔函数的个数。

解:设 $f(x_1,x_2,...,x_n)$ 不依赖于 x_i 的布尔函数类为 A_i ,i=1,2,...,n不依赖于某个布尔变量的布尔函数个数为 $C(n,1)2^{2^{n-1}}$ 不依赖于2个布尔变量的布尔函数个数为 $C(n,2)2^{2^{n-2}}$

不依赖于k个布尔变量的布尔函数个数为 $C(n,k)2^{2^{n-k}}$ 根据容斥原理,满足条件的函数数目为:

$$\begin{aligned} |-A_1 \cap -A_2 \cap \cdots \cap -A_n| \\ &= 2^{2^n} - C_n^1 2^{2^{n-1}} + C_n^2 2^{2^{n-2}} - \cdots + (-1)^k C_n^k 2^{2^{n-k}} + \cdots \\ &+ (-1)^n C_n^n 2 \end{aligned}$$

定义: 不依赖于

设 $f(x_1, x_2, \dots, x_n)$ 是 一个布尔函数, $f(x_1, x_2, \dots, x_n)$ 不依赖于变量 x_i 是指对于每一 $(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$

都有

$$f(x_1,\dots,x_{i-1},0,x_{i+1},\dots,x_n) = f(x_1,\dots,x_{i-1},1,x_{i+1},\dots,x_n)$$

$$|-A_1 \cap -A_2 \cap \cdots \cap -A_n|$$

$$= 2^{2^n} - C_n^1 2^{2^{n-1}} + C_n^2 2^{2^{n-2}} - \cdots + (-1)^k C_n^k 2^{2^{n-k}} + \cdots + (-1)^n C_n^n 2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=2$$

$$n=3$$

举例

例. 求完全由n个布尔变量确定的布尔函数的个数。

	0 0	0 1	10	11	f(x1,x2)
f1	0	0	0	0	0
f2	0	0	0	1	$x_1 \wedge x_2$
f3	0	0	1	0	$x_1 \wedge \neg x_2$
f4	0	0	1	1	x_1
f5	0	1	0	0	$\neg x_1 \wedge x_2$
f6	0	1	0	1	x_2
f7	0	1	1	0	$(\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$
f8	0	1	1	1	$x_1 \vee x_2$
f9	1	0	0	0	$\neg x_1 \land \neg x_2$
f10	1	0	0	1	$(\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2)$
f11	1	0	1	0	$\neg x_2$
f12	1	0	1	1	$x_1 \vee \neg x_2$
f13	1	1	0	0	$\neg x_1$
f14	1	1	0	1	$ \begin{array}{c c} \neg x_1 \lor x_2 \\ \neg x_1 \lor \neg x_2 \end{array} $
f15	1	1	1	0	$\neg x_1 \lor \neg x_2$
f16	1	1	1	1	1

- •f(x₁, x₂, ····x_n)中 n个布尔变量的不 同的状态数为2ⁿ
- 每个状态有0,1两种取值,
- 故f(x₁, x₂, ····x_n)
 的布尔函数个数
 为2^{2ⁿ}

用替换公理等的举例证明(P152)

已知u和v是集合,下面证明 {u, v}也是集合。

由空集公理, Ø是集合。

由幂集公理, P(Ø)={Ø}是集合。

P({Ø})={Ø, {Ø}}也是集合。

令集合 $t = \{\emptyset, \{\emptyset\}\}, 定义 P(x, y) 为 P(\emptyset, u) = T$

 $P(\{\emptyset\}, v)=T, 则 t 和 P(x, y)满足替换公理的前提,$

由替换公理可得,存在由u和v构成的集合 $s = \{u, v\}$ 。

 $(\forall x)(\exists! y)P(x,y) \to (\forall t)(\exists s)(\forall u)(u \in s \leftrightarrow (\exists z)(z \in t \land P(z,u)))$