Homework 08

Due Date: 111/04/27

Instruction. Do not submit part B.

A Homework Problems

Definition A.1. Let V be a finite-dimensional vector space, and H be a bilinear form on V. The **rank** of H is defined to be the rank of any matrix representation of H. If rank(H) = dim(V), we call H **non-degenerate**.

- 1. Let V be a finite-dimensional vector space, and H be a bilinear form on V. Prove that for any two bases β_1, β_2 of V, the matrices $\psi_{\beta_1}(H)$ and $\psi_{\beta_2}(H)$ has the same rank. Hence the rank of H is well-defined.
- 2. For the following matrix $A \in M_3(\mathbb{R})$, find a diagonal matrix D with all its entries equalling to 1, -1 or 0, and an invertible matrix $Q \in M_3(\mathbb{R})$ such that $Q^t A Q = D$.

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 4 & 0 \\ 2 & 0 & -1 \end{pmatrix}.$$

3. Let V and W be vector spaces over the same field \mathbb{F} , and let $T: V \to W$ be a linear transformation. For any $H \in \mathcal{B}(W)$, define the mapping $\widehat{T}(H)$ on $V \times V$ by

$$\widehat{T}(H) \colon V \times V \longrightarrow \mathbb{F}$$

$$(x,y) \longmapsto H(T(x),T(y))$$

Prove the following results.

- (a) Show that $\widehat{T}(H)$ is also a bilinear form on V.
- (b) Show that $\widehat{T} \colon \mathcal{B}(W) \to \mathcal{B}(V)$ is a linear transformation.
- (c) If T is an isomorphism, then so is \widehat{T} .

Such $\widehat{T}(H)$ is called the **pull-back** bilinear form of H on V.

- 4. Let V be a vector space over a field \mathbb{F} (not necessarily finite-dimensional). For any $H \in \mathcal{B}(V)$, define a function $\mathscr{L}_H \colon V \to V^*$ by $(\mathscr{L}_H(v))(w) := H(v, w)$.
 - (a) Show that \mathcal{L}_H is a linear transformation.
 - (b) Show that the map

$$\mathcal{B}(V) \xrightarrow{\varphi} \mathcal{L}(V, V^*)$$

$$H \longmapsto \mathcal{L}_H$$

is a linear transformation.

(c) Show that φ is an isomorphism by constructing an inverse linear transformation. (You need to explain that your function is linear, and is inverse to φ .)

B Supplementary Problems

- 5. For $v \in \mathbb{R}^3$, let $L_v : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by $L_v(w) = v \times w$ (cross product in \mathbb{R}^3). Set $B(v,w) = \operatorname{tr}(L_v L_w)$. Show that B is a symmetric bilinear form on \mathbb{R}^3 and compute its matrix representation relative to the standard basis of \mathbb{R}^3 . Is it non-degenerate?
- 6. Let V be a finite-dimensional vector space over F and $H: V \times V \to \mathbb{F}$ be a non-degenerate bilinear form on V. Suppose $T: V \to V$ is a linear operator on V.
 - (a) Show that there exists a unique linear operator $T^*: V \to V$ such that

$$H\left(T\left(v\right),w\right) = H\left(v,T^{*}\left(w\right)\right)$$

for all $v, w \in V$. Such linear operator T^* is called the **adjoint** of T relative to H.

(b) Fix a basis β of V. Show that the matrix representations $[T]_{\beta}$, $[T^*]_{\beta}$, and $\psi_{\beta}(H)$ satisfy the relation

$$[T^*]_{\beta} = [H]_{\beta}^{-1} [T]_{\beta}^t [H]_{\beta}.$$

- 7. Let V be a finite-dimensional vector space over \mathbb{F} and $H: V \times V \to \mathbb{F}$ be a non-degenerate bilinear form on V. Suppose $T: V \to V$ is a linear operator on V. Show that the following properties are equivalent:
 - (a) H(v, w) = 0 implies H(Tv, Tw) = 0 for all $v, w \in V$.
 - (b) There is a constant $c \in \mathbb{F}$ such that H(Tv, Tw) = cH(v, w) for all $v, w \in V$.
 - (c) There is a constant $c \in \mathbb{F}$ such that $T^*T = c \operatorname{id}_V$.
- 8. Let V = C([0,1]) be the space of real-valued continuous functions on [0,1]. The function

$$B(f,g) = \int_0^1 f(x)g(x) \, dx$$

is a symmetric bilinear form on V. Also, for any continuous function $k:[0,1]^2\to\mathbb{R}$, the function

$$B_k(f,g) = \iint_{[0,1]^2} f(x)g(y)k(x,y) \, dx \, dy$$

is a bilinear form on V. Prove or disprove that there exists a function k that makes $B_k = B$. (The function k = 1 does not work.)

9. (**Duality**) Let V be a finite-dimensional vector space over \mathbb{F} and $H: V \times V \to \mathbb{F}$ be a bilinear form on V. Similar as Problem 4, define the mappings

If we identify the double dual space V^{**} by V in the canonical way (that is, using $\phi \colon V \to V^{**}$ defined by $\phi(v)f = f(v)$ for all $f \in V^{*}$ and $v \in V$), show that $\mathscr{L}_{H}^{*} \colon V^{**} \to V^{*}$ is the same mapping as $\mathscr{R}_{H} \colon V \to V^{*}$. Roughly speaking, we have $\mathscr{L}_{H}^{*} = \mathscr{R}_{H}$.

- 10. (2019 NTU Math Master Entrance Exam) Let V be a finite-dimensional vector space over \mathbb{R} and $H: V \times V \to \mathbb{R}$ be a **symmetric** bilinear form on V.
 - (a) Let W be the vector subspace of V and let

$$W^{\perp} = \{ u \in V \mid H(u, v) = 0, \text{ for all } v \in W \}.$$

Prove that if dim W=m, and W^{\perp} is a vector sunspace of V with dim $W^{\perp} \geqslant n-m$. (*Hint*. Choose a basis $\{v_i\}_{i=1}^m$ of W and consider the map

$$u \mapsto (B(u, v_1), \dots, B(u, v_m))$$

from V to \mathbb{R}^n .)

- (b) Prove that $V = W \oplus W^{\perp}$ if and only if the restriction of H to W is non-degenerate.
- (c) Prove that if H is non-degenerate on V, then there is a non-negative integer p with $p \le n$ and a basis $\{v_i\}_{i=1}^n$ of V such that

$$H(v_i, v_j) = \begin{cases} 1 & , 1 \le i = j \le p; \\ -1 & , p + 1 \le i = j \le n; \\ 0 & , i \ne j. \end{cases}$$

One may regard this as a "Gram-Schmidt orthonormalization" on V with respect to H.

- 11. (Sylvester's Law of Inertia) Let V be a finite-dimensional vector space over \mathbb{R} and $H: V \times V \to \mathbb{R}$ be a symmetric bilinear form on V. Show that
 - (a) the number of positive diagonal entries and
 - (b) the number of negative diagonal entries

in any diagonal matrix representation of H are each independent of the diagonal representation. (*Hint*: Use Courant-Fischer min-max theorem from Homework 5, or see Theorem 6.38 in textbook.) The number of positive diagonal entries is called the **index** of the bilinear form H, and the number of positive diagonal entries minus the number of negative diagonal entries is called the **signature** of the bilinear form H.

12. Let V be a n-dimensional vector space over \mathbb{R} ($n \ge 2$) and $f, g \in V^*$ be two linearly independent functionals. Define

$$H\colon \quad V\times V \quad \to \qquad \mathbb{R}$$

$$(v,w) \quad \mapsto \quad f(v)g(w)+f(w)g(v)$$

- (a) Show that H is a symmetric bilinear form.
- (b) Show that the index of H is 1 and the signature of H is 0.