Grundbegriffe

- Graph G = (V, E)
 - Paar der Menge der Knoten V und Menge der Kanten E
 - E (V,2)
 - * Menge von 2-elementrigeTeilmengen von V
 - z.B. ungerichtete Graph

• gerichtete Graph (Digraph)

$$V = \{1, 2, 3, 4\}$$
 $E = \{(1, 2), (1, 3), (2, 3), (4, 4), (3, 4)\}$
 $D = (V, E)$
 $Q = D \times Q = D \times Q = Q \times Q = Q$

- Knoten A ist Nachbar von B, wenn verbunden durch Kante
- Knoten ist isoliert, wenn er keine Nachbarn hat
- Schleife
 - Knoten mit sich selbst verbunden
- + G_1 ist Teilgraph von G_2 , wenn
 - $\,G_1=(V_1,E_1)$ und $G_2=(V_2,E_2)\,$
 - $-\ V_1\subseteq V_2 \text{und}\ E_1\subseteq E_2$
- Teilgraph induziert(aufgespannt), wenn

Grad

- falls Knoten auf Kante liegt
 - V und E inzident
- falls e aus zwei unterschiedlichen Knoten v und w besteht
 - v und w sind adjazent/benachbart
- Graph ist vollständig, wenn je zwei Knoten benachbart
 - jeder Knoten ist mit jedem verbunden?

- Teilmenge von V und E sind unabhängig
 - wenn Elemente paarweise nicht benachbart sind

- Grad von Knoten = Anzahl von Nachbarn
 - $deg(V) = |N_G(V)|$
- Gradarten

• Summe aller Grade in Graph = doppelte Kantenanzahl

$$S(G) \leq d(G) \leq \Delta(G)$$

$$|V| = \sum_{v \in V} d(v) \stackrel{!}{=} 2|E|$$

• gerichteter Graph ==> Unterscheidung in Ausgangs- und Eingangsgrad

- Knoten mit Ausgangsgrad 0 heißt Senke
- Knoten mit Eingangsgrad 0 heißt Quelle

[[Diskrete Mathematik]] [[Graphs KR]]