

Poop For You: A Case Study of the Manure Matching Problem

KATRINA MAYNOR¹, RACHEL MOGLEN¹

¹The University of Texas at Austin

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

Motivation

N in manure produced

 \approx

Synthetic N fertilizer purchased

[1]

Figure source: [3]

Research Question

How can manure be optimally re-allocated to minimize total costs?

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

Assumptions

- 1. Losses are negligible
- 2. A central entity controls the manure market
- 3. Individual farms can be aggregated to the county level

What is a Mixed Integer Program (MIP)?

$$\min c^T x + d^T y$$
 $ightharpoonup$ objective function

s.t.

$$egin{array}{c} Ax + By \leq q \ x \in \mathbb{R}^n \ y \in \mathbb{Z}^m \end{array}
ight\} {}^{ ext{constraints}}$$

Formulation: Variables

<u>Sets</u>

I⁺: counties with excess manure (sources)

I⁻: counties in need of manure (sinks)

K: manure treatments

Decision Variables

 x_{ijk} : amount of type k manure transported from county i to county j

 y_{ijk} : whether manure type k is transported from county i to county j

 w_{ik} : whether source county treats manure to type k or sink county receives type k manure

 z_i : amount of manure disposed of in source county or synthetic fertilizer purchased in sink county

 q_i : whether manure is disposed of in source county or synthetic fertilizer is purchased in sink county

Formulation: Objective Function

$$\min \sum_{i \in I^+} \sum_{j \in I^-} \sum_{k \in K} (c^{v}_{ijk} x_{ijk} + c^{f}_{ijk} y_{ijk})$$
 transportation costs

$$+ \sum_{j \in I^{-}} \sum_{k \in K} \left(p_{jk}^{v} \sum_{i \in I^{+}} x_{ijk} \right) + \sum_{i \in I^{+}} \sum_{k \in K} \left(p_{ik}^{v} \sum_{j \in I^{-}} x_{ijk} \right)$$
 manure application costs

$$+ \sum_{i \in \{I^+, I^-\}} \sum_{k \in K} p_{ik}^f w_{ik} + \sum_{i \in \{I^+, I^-\}} (t_i^v z_i + t_i^f q_i)$$
 manure disposal & synthetic fertilizer costs

Formulation: Constraints

$$\sum_{j \in I^-} \sum_{k \in K} x_{ijk} + z_i = s_i$$

 $\forall \ i \in I^+$

1: source mass balance

$$\sum_{i \in I^+} \sum_{k \in V} x_{ijk} + z_j = d_j$$

 $\forall j \in I^-$

2: sink mass balance

$$\sum_{j \in I^{-}} x_{ijk} \le s_i w_{ik}$$

 $\forall \ i \in I^+, k \in K$

3: supply binary variable

$$\sum_{i \in I^+} x_{ijk} \le d_j w_{jk}$$

 $\forall\,j\in I^-,k\in K$

4: demand binary variable

$$x_{ijk} \le \min\{s_i, d_j\} y_{ijk}$$

$$\forall i \in I^+, j \in I^-, k \in K$$

5: transport binary variable

$$z_i \leq s_i q_i$$

$$\forall i \in I^+$$

$$z_j \le d_j q_j$$

$$\forall j \in I^-$$

7: unmet demand binary variable

Formulation: Decision Variable Bounds

$$0 \le x_{ijk} \le \min\{s_i, d_j\}$$

$$\forall i \in I^+, j \in I^-, k \in K$$

$$y_{ijk} \in \{0,1\}$$

$$\forall i \in I^+, j \in I^-, k \in K$$

$$w_{ik} \in \{0,1\}$$

$$\forall i \in I, k \in K$$

$$0 \le z_i \le s_i$$

$$\forall i \in I^+$$

$$0 \le z_i \le d_i$$

$$\forall j \in I^-$$

$$q_i \in \{0,1\}$$

$$\forall i \in I$$

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

Case Study: CA-CO-NV-UT-AZ-NM

Figure source: [3]

Case Study: Nitrogen Balance

Parameters

Symbol	Description	Value	Units	Source
s_i	Supply of manure from each source county	-	tons	[2]
d_{j}	Demand of manure for each sink county	-	tons	[2]
c^V_{ij}	Distance between counties (straight-line distance)	-	miles	[9]
	Cost of manure transport	\$0.0089	\$ / mi - lb N	[4]
p^v_j	Variable cost of applying manure (price of manure)	\$0.63	/lb N	[5]
t_i^f	Fixed cost of manure disposal	\$141,894	-	[6]
t_i^v	Variable cost of manure disposal	\$0.53	/lb N	[7]
t_j^v	Variable cost of synthetic fertilizer	\$0.92	/lb N	[8]

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

Results Summary

	Status Quo [2]		Least-Cost Matching		
	Weight (lbs N)	Cost (\$)	Weight (lbs N)	Cost (\$)	
Manure Wasted	178,390	\$ 13,148,795	43,322	\$ 164,855	
Synthetic Fertilizer Purchased	168,359	\$ 154,890	33,292	\$ 30,628	
Other Costs (Transportation, etc.)	-	-	135,067	\$ 330,489	
Total Cost	-	\$ 13,303,685	-	\$ 525,972	

Results Summary

- 1. Project Overview
- 2. Methodology
 - a. Assumptions
 - b. Nomenclature
 - c. Formulation
- 3. Case Study
- 4. Results
- 5. Conclusions

Conclusions

- 1. Significant savings possible through manure reallocation
- 2. In the least-cost matching solution, the majority of expense comes from transportation
- 3. Sources and sinks may not be matched purely by proximity due to relatively low transportation costs

Extensions & Future Work

- 1. Sensitivity Analysis
- 2. Expand geographic region of study
- 3. Different manure treatment options
- 4. Alternative objective: environmental impact optimization
- 5. Game-theoretic paradigm

Acknowledgements

PVAMU team

- Dr. Ali Fares
- Dr. Ripendra Awal

UT Austin INFEWS team

- Dr. Charlie Werth
- Laura Klopfenstein

References

- 1. Tan, M., Hou, Y., Zhang, L., Shi, S., Long, W., Ma, Y., ... & Oenema, O. (2021). Operational costs and neglect of end-users are the main barriers to improving manure treatment in intensive livestock farms. *Journal of Cleaner Production*, 289, 125149.
- 2. IPNI, 2012. A Nutrient Use Information System (NuGIS) for the U.S. International Plant Nutrition Institute, Norcross, Georgia. Available online at http://nugis.ipni.net/. (Accessed tabular data on June 8, 2022).
- 3. Spiegal, S., Kleinman, P. J., Endale, D. M., Bryant, R. B., Dell, C., Goslee, S., ... & Yang, Q. (2020). Manuresheds: Advancing nutrient recycling in US agriculture. *Agricultural Systems*, *182*, 102813.
- 4. https://www.bts.gov/content/average-freight-revenue-ton-mile
- 5. https://www.reuters.com/world/us/us-manure-is-hot-commodity-amid-commercial-fertilizer-shortage-2022-04-06/
- 6. https://ageconsearch.umn.edu/record/24057/
- 7. https://www.iastatedigitalpress.com/air/article/6256/galley/6121/download/
- 8. https://farmdocdaily.illinois.edu/2022/04/nitrogen-fertilizer-prices-and-supply-in-light-of-the-ukrain-e-russia-conflict.html
- 9. https://www.nber.org/research/data/county-distance-database

QUESTIONS?