LOG RG on Convex Optimization Week 1

Jinseok Chung, Donghyun Oh

January 11, 2023

Table of Contents

- 1. Basics of linear algebra
- 2. Basics of multivariable calculus
- 3. Convex Sets
 Definition and Examples
 Hyperplane
 Cones
- Convex Functions
 Definitions
 Monotone Property of Gradient
- Optimality Conditions for Convex Problems Optimality Conditions Projection

Table of Contents

- 1. Basics of linear algebra

Linear (in)dependence

A set of vectors $\{v_1, v_2, \cdots, v_n\}$ in a vector space \mathbb{V} is called **linearly independent** if the linear combination

$$\sum_{i=1}^n \alpha_i v_i = 0$$

implies that $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$. If not, is called **linearly dependent**.

Span and Basis

For a set of vectors $\{v_1, v_2, \dots, v_n\}$ in a vector space \mathbb{V} , the set of linear combinations of vectors in \mathbb{V} is called the **span** of $\{v_1, v_2, \dots, v_n\}$. i.e,

$$\mathsf{span}\{v_1,v_2,\cdots,v_n\} = \{\sum_{i=1}^n \alpha_i v_i | \forall \alpha_i \in \mathbb{R}, i = 1,2,\cdots,n \}$$

A **basis** of a vector space V is an independent set of vectors that spans V.

Matrix rank

Let $A \in \mathbb{R}^{d \times m}$ be a matrix, the **column rank** of A is defined as the number of linearly independent columns, similar the **row rank** of A is defined as the number of linear independent rows

- Row and column ranks are always the same for given matrix
- So we call it simply rank

(vector)Subspace

Let $\mathbb{V}=(V,+,\cdot)$ be a vector space and $\emptyset \neq U \subseteq V$. Then $\mathbb{U}=(U,+,\cdot)$ is called vector **subspace** of \mathbb{V} if \mathbb{U} is closed under $(+,\cdot)$ operations.

- $0 \in \mathbb{V}$ always belongs to any subspaces
- \bullet Lines and planes through the $0\in\mathbb{R}^3$ are subspaces in \mathbb{R}^3
- The intersection of arbitrarily many subspaces is a subspace itself

Affine subspace

Let $\mathbb V$ be a vector space, $x\in\mathbb V$ and $\mathbb U\subseteq\mathbb V$ a subspace. Then the subset

$$L = x + \mathbb{U} := \{x + u | u \in \mathbb{U}\}\$$

is called **affine subspace** \mathbb{V} .

- An affine subspace excludes 0 if $x \notin \mathbb{U}$
- ullet Points, lines and planes are affine subspaces in \mathbb{R}^3
- In \mathbb{R}^d , the (d-1)-dimensional affine subspaces are called hyperplanes.

Dot / Inner product

A **dot product** of $x=(x_1,x_2,\cdots,x_d),y=(y_1,y_2,\cdots,y_d)\in\mathbb{R}^d$ is defined as

$$x \cdot y = \sum_{i=1}^{d} x_i y_i$$

Dot / Inner product

A dot product of $x=(x_1,x_2,\cdots,x_d),y=(y_1,y_2,\cdots,y_d)\in\mathbb{R}^d$ is defined as

$$x \cdot y = \sum_{i=1}^{d} x_i y_i$$

An **inner product** of a real scalar vector space \mathbb{V} is a function of vector pairs $x, y \in \mathbb{V}$, which is denoted by $\langle x, y \rangle$ and satisfies the following three properties:

- (commutativity) $\langle x, y \rangle = \langle y, x \rangle$ for any $x, y \in \mathbb{V}$.
- (linearity) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for any $\alpha, \beta \in \mathbb{R}$ and $x, y, z \in \mathbb{V}$.
- (positive definiteness) $\langle x, x \rangle \geq 0$ for any $x \in \mathbb{V}$ and $\langle x, x \rangle = 0$ if and only if x = 0.

Dot / Inner product

A dot product of $x=(x_1,x_2,\cdots,x_d),y=(y_1,y_2,\cdots,y_d)\in\mathbb{R}^d$ is defined as

$$x \cdot y = \sum_{i=1}^{d} x_i y_i$$

An **inner product** of a real scalar vector space \mathbb{V} is a function of vector pairs $x, y \in \mathbb{V}$, which is denoted by $\langle x, y \rangle$ and satisfies the following three properties:

- (commutativity) $\langle x, y \rangle = \langle y, x \rangle$ for any $x, y \in \mathbb{V}$.
- (linearity) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for any $\alpha, \beta \in \mathbb{R}$ and $x, y, z \in \mathbb{V}$.
- (positive definiteness) $\langle x, x \rangle \geq 0$ for any $x \in \mathbb{V}$ and $\langle x, x \rangle = 0$ if and only if x = 0.
- A dot product is an inner product but the reverse is not true
- For $x = (x_1, x_2), y = (y_1, y_2)$, operation $\langle x, y \rangle = x_1y_1 + 2x_2y_2$ is also an inner product

Outer product

The outer product is operation between two vectors $x \in \mathbb{R}^d, y \in \mathbb{R}^m$ defined as

$$x \otimes y = xy^T \in \mathbb{R}^{d \times m}$$

• Rank of outer product of two vectors is 1

Norms

A norm $||\cdot||$ on a vector space $\mathbb V$ is a function $||\cdot||:\mathbb V\to\mathbb R$ satisfying the following properties:

- (nonnegativity) $||x|| \ge 0$ for any $x \in \mathbb{V}$ and ||x|| = 0 if and only if x = 0
- (positive homogeneity) $||\alpha x|| = |\alpha| \cdot ||x||$ for any $x \in \mathbb{V}$ and $\alpha \in \mathbb{R}$.
- (triangle inequality) $||x+y|| \le ||x|| + ||y||$ for any $x,y \in \mathbb{V}$

ℓ_p Norms

For a $p \geq 1$, the ℓ_p -norm on \mathbb{R}^d is given by the formula

$$||x||_p = \sqrt[p]{\sum_{i=1}^d |x_i|^p}$$

For a $p=\infty$, the ℓ_∞ -norm on \mathbb{R}^d is given by

$$||x||_{\infty} = \max_{i=1,2,\cdots,d} |x_i|$$

ℓ_p Norms

For a p=0, the ℓ_0 -norm on \mathbb{R}^d is given by

 $||x||_0 = \#$ of non zero components

- e.g) $x = (2,0,3), ||x||_0 = 2$
- This assumes $0^0 = 1$
- \bullet In fact, ℓ_0 norm is not a norm. Because it doesn't satisfy the positive homogeneity

Induced norm

Any inner product induces a norm, defined as

$$||x|| := \sqrt{\langle x, x \rangle}$$

which is called **induced norm** by the given inner product $\langle \cdot, \cdot \rangle$

- Induced norms satisfy the properties of norms
- ℓ_2 norm is induced norm by dot product
- \bullet Not all the norms are induced norm, e.g, $\ell_1\text{-norm}$

Angle

An **angle** ω of two vectors $x, y \in \mathbb{V}$ equipped with $\langle \cdot, \cdot \rangle$ is defined by

$$\omega = \frac{\langle x, y \rangle}{||x|| \ ||y||}$$

where the $||\cdot||$ is induced norm

- $-1 \le \omega \le 1$
- The two vectors have different angles depending on which inner product is used
- arccos(w) is an angle of two vectors in radian

Cauchy-Schwarz inequality

For vector space $\mathbb V$, an inner product $\langle\cdot,\cdot\rangle$ and its induced norm $||\cdot||$ satisfies the Cauchy-Schwarz inequality

$$|\langle x, y \rangle| \le ||x|| \ ||y||$$

Hölder inequality

For vector space $\mathbb V$ and $p,q\in [1,\infty]$ satisfying $\frac1p+\frac1q=1$, the $||\cdot||_p,||\cdot||_q$ satisfy the **Hölder inequality**

$$x \cdot y \le ||x||_p ||y||_q$$

- The pair (p, q) are called Hölder conjugates of each other
- Cauchy–Schwarz inequality is the case of p = q = 2

Minkowski inequality

For vector space $\mathbb V$ and $p\in [1,\infty]$, the $||\cdot||_p$ satisfies the **Minkowski inequality** $||x+y||_p \le ||x||_p + ||y||_p$

ullet From this inequality, ℓ_p -norms satisfy the triangle inequality property

Young's inequality

For $a, b \ge 0$ and p, q > 1 s.t $\frac{1}{p} + \frac{1}{q} = 1$, the **Young's inequality** is as follows

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Equality holds if and only if $a^p = b^q$

Eigenvalues and eigenvectors

Let $A \in \mathbb{R}^{d \times d}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an **eigenvalue** of A and $x \in \mathbb{R}^d/\{0\}$ is the corresponding **eigenvector** of A if

$$Ax = \lambda x$$

- There are at most d eigenvalues(and corresponding eigenvectors)
- For any symmetric (real)matrix A, all its eigenvalues are real
- All eigenvectors of a symmetric (real)matrix are orthogonal to each other

Eigenspace and Eigenspectrum

The set of all eigenvectors of A associated with an eigenvalue λ spans a subspace of \mathbb{R}^d , which is called the **eigenspace** of A with respect to λ and is denoted by E_{λ}

The span of all the eigenvectors of A is called the **eigenspectrum** of A

Positive (semi)definite matrices

The given square matrix $A \in \mathbb{R}^{d \times d}$ is called **positive semidefinite**, if for any $x \in \mathbb{R}^d$

$$x^T A x \ge 0$$

when the inequality holds strictly, the matrix called positve definite

- For any matrix A, A^TA is symmetric and positive semidefinite
- For any square matrix A,
 positive definiteness(respectively, semidefiniteness)
 every eigenvalues of A are positive (respectively, nonnegative)

Matrix Norms

Frobenius norm is norm of any $m \times n$ matrix A defined as square root of component wise squared sum

$$||A||_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

$$\bullet \ \|A\|_F = \sqrt{Tr(AA^T)}$$

Matrix Norms

Vector ℓ_p norm induced matrix ℓ_p norm is norm of any $m \times n$ matrix A defined as

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

- Matrix ℓ_1 norm is the maximum absolute column sum of the matrix
- Matrix ℓ_{∞} norm is the maximum absolute row sum of the matrix

Matrix Norms

• For example, for $A = \begin{bmatrix} -3 & 5 & 7 \\ 2 & 6 & 4 \\ 0 & 2 & 8 \end{bmatrix}$ we have that

$$||A||_1 = \max(|-3|+2+0; 5+6+2; 7+4+8) = \max(5, 13, 19) = 19$$

 $||A||_{\infty} = \max(|-3|+5+7; 2+6+4; 0+2+8) = \max(15, 12, 10) = 15$

• Matrix ℓ_2 norm, also called spectral norm, is the largest singular value of A

$$||A||_2 = \sqrt{\lambda_{\mathsf{max}}(A^T A)} = \sigma_{\mathsf{max}}(A)$$

- $||A||_2^2 = ||A^T A||_2 = ||AA^T||_2$
- $||A||_2 \le ||A||_F$

Table of Contents

- Basics of linear algebra
- 2. Basics of multivariable calculus
- 3. Convex Sets
 Definition and Examples
 Hyperplane
 Cones
- Convex Functions
 Definitions
 Monotone Property of Gradient
- Optimality Conditions for Convex Problems Optimality Conditions Projection

Gradient

For a differentiable function $f: \mathbb{R}^d \to \mathbb{R}^{,x} \in \mathbb{R}^d$ and $x = (x_1, x_2, \dots, x_d)$, the collection of partial derivatives is called the **gradient** of f defined as

$$\nabla_{x}f = grad \ f = \frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{d}} \end{bmatrix} \in \mathbb{R}^{d}$$

• It has the steepest ascending direction infinitesimally, similarly the opposite is the steepest descending direction.

Hessian

For a twice continuously differentiable function $f: \mathbb{R}^d \to \mathbb{R}^r$, $x \in \mathbb{R}^d$ and $x = (x_1, x_2, \cdots, x_d)$, the collection of second-order partial derivatives is called the **Hessian** of f defined as

$$\nabla_{x}^{2}f = H f = \frac{d^{2}f}{dx^{2}} = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \cdots & \frac{\partial^{2}f}{\partial x_{d}\partial x_{1}} \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{d}\partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{d}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{d}} & \cdots & \frac{\partial^{2}f}{\partial x_{d}^{2}} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

- If the above function is twice continuously differentiable, the Hessian matrix is always a real symmetric matrix
- The eigenvectors and eigenvalues of Hessian is directly related to curvature of the given function

Table of Contents

- 1. Basics of linear algebra
- 2. Basics of multivariable calculus
- 3. Convex Sets
 Definition and Examples
 Hyperplane
 Cones
- 4. Convex Functions
 Definitions
 Monotone Property of Gradient
- Optimality Conditions for Convex Problems Optimality Conditions Projection

Convex Sets: Definition

Definition

A set $C \subseteq \mathbb{R}^n$ is **convex** if

$$\forall x_1, x_2 \in C, \forall \lambda \in [0,1] \Rightarrow \lambda x_1 + (1-\lambda)x_2 \in C$$

Figure: Examples of convex and non-convex sets

Examples of Convex Sets

• **Simplex**: A simplex $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1 \text{ and for all } i = 1, 2, ..., n, x_i \ge 0\}$ in \mathbb{R}^n is a convex set. For any x, y in the simplex, and $\lambda \in [0, 1]$,

$$\sum_{i=1}^{n} (\lambda x + (1-\lambda)y)_{i} = \lambda \sum_{i=1}^{n} x_{i} + (1-\lambda) \sum_{i=1}^{n} y_{i} = 1$$

and each element of $\lambda x + (1 - \lambda)y$ is still non-negative.

• Set of psd matrices: A set of $n \times n$ positive semidefinite (psd) matrices, denoted by S_+^n , is convex. Take $M_1, M_2 \in S_+^n$. Then for all $x \in \mathbb{R}^n, \lambda \in [0, 1]$,

$$x^{T}(\lambda M_{1} + (1 - \lambda)M_{2})x = \lambda(x^{T}M_{1}x) + (1 - \lambda)(x^{T}M_{2}x) \geq 0$$

So
$$\lambda M_1 + (1 - \lambda)M_2 \in S^n_+$$
.

• Set of copositive matrices: An $n \times n$ matrix M is copositive if $x^T M x \ge 0$ for any $x \in \mathbb{R}^n_+$. We can show in the same way as above that the set of copositive matrices is a convex set. Note that since a psd matrix is always copositive, the set of psd matrices is included in the set of copositive matrices.

Hyperplane and Half-spaces

Definition

In \mathbb{R}^n , given some $s \in \mathbb{R}^n$ and $b \in \mathbb{R}$, we define a hyperplane as

$$H_{s,b} = \{x \in \mathbb{R}^n \mid s^T x = b\}$$

Here, s is called the **normal vector** of $H_{s,b}$.

Moreover, a hyperplane $H_{s,b}$ divides \mathbb{R}^n into two half-spaces

$$H_{s,b}^{-} = \{ x \in \mathbb{R}^n \mid s^T x \le b \}, \ H_{s,b}^{+} = \{ x \in \mathbb{R}^n \mid s^T x \ge b \}$$

Hyperplane and Convexity

A convex set can be "carved out" from half-spaces. Formally, a closed convex set is the intersection of every closed half-spaces that contain the set. This property is equivalent to the separating hyperplane theorem.

Theorem

Separating hyperplane theorem: Let $\mathcal{X} \subset \mathbb{R}^n$ be a closed convex set, and $x_0 \in \mathbb{R}^n \setminus \mathcal{X}$. Then, there exists $w \in \mathbb{R}^n$ and $t \in \mathbb{R}$ such that

$$\langle w, x_0 \rangle < t$$
, and $\forall x \in \mathcal{X}, \langle w, x \rangle \geq t$

Figure: Convex Set can be seen as intersection of half-spaces

Example of Separating Hyperplanes

Separating hyperplane between the set of psd matrices and a symmetric matrix \hat{M} that is not psd.

Since \hat{M} is symmetric, it has the eigenvalue decomposition $\hat{M} = \sum_i \hat{\lambda}_i \hat{v}_i \hat{v}_i^T$, where the eigenvectors are orthonormal. Since it is not psd, there is $i \in \{1, 2, ..., n\}$ such that $\hat{\lambda}_i < 0$. For simplicity, assume that i = 1. Now let $s = \hat{v}_1 \hat{v}_1^T$ and b = 0. Then, we have

$$\begin{split} \langle \boldsymbol{s}, \hat{\boldsymbol{M}} \rangle &= \langle \hat{v}_1 \hat{v}_1^T, \hat{\boldsymbol{M}} \rangle = tr(\hat{\boldsymbol{M}} \hat{v}_1 \hat{v}_1^T) \\ &= tr(\hat{v}_1^T \boldsymbol{M} \hat{v}_1) \\ &= \hat{v}_1^T \hat{\boldsymbol{M}} \hat{v}_1 \\ &= \hat{v}_1^T (\sum_i \hat{\lambda}_i \hat{v}_i \hat{v}_i^T) \hat{v}_1 = \hat{v}_1^T (\hat{\lambda}_1 \hat{v}_1) = \hat{\lambda}_1 < 0 \end{split}$$

This implies that $\hat{M} \in H_{s,b}^-$.

For any $M \in S^n_+$, $\langle s, M \rangle = \langle \hat{v}_1 \hat{v}_1^T, M \rangle = \hat{v}_1^T M \hat{v}_1 \geq 0$ since M is psd. So, $S^n_+ \subseteq H^+_{s,b}$, and $H_{s,b}$ is the separating hyperplane.

Cones and Polar Cones

Definition

A set K is called a **cone** if

$$\forall x_1, x_2 \in K, \forall \alpha_1, \alpha_2 \geq 0 \Rightarrow \alpha_1 x_1 + \alpha_2 x_2 \in K$$

Given a cone K, a **polar cone** of K, K^o is also a cone defined as

$$K^o = \{ z \mid \langle z, x \rangle \le 0, \forall x \in K \}$$

Note. A cone is always convex. Any subspace is a cone, but not vice versa.

Tangent Cones and Normal cones

Definition

Given a set \mathfrak{X} and a point $x \in \mathfrak{X}$, a **tangent cone** of \mathfrak{X} at x, denoted as $T_{\mathfrak{X}}(x)$, is informally the set of directions x can move inside \mathfrak{X} .

Definition

A **normal cone** of \mathfrak{X} at x, denoted as $N_{\mathfrak{X}}(x)$, is a polar cone of the tangent cone of \mathfrak{X} at x.

Tangent Cones and Normal Cones

- If x is an interior point of \mathfrak{X} , then $T_{\mathfrak{X}}(x) = \mathbb{R}^n$ and $N_{\mathfrak{X}}(x) = \{0\}$.
- If x is a "smooth" boundary point, then $T_{\mathfrak{X}}(x)$ is the half-space including \mathfrak{X} and $N_{\mathfrak{X}}(x) = \{s\}$ where the half-space and normal vector s are from the supporting hyperplane $H_{s,b}$ of \mathfrak{X} at x.
- If x is a "non-smooth" boundary point of \mathfrak{X} , then $T_{\mathfrak{X}}(x)$ and $N_{\mathfrak{X}}(x)$ are shown below.

Figure: A tangent cone and its normal cone at non-smooth boundary point

Table of Contents

- 1. Basics of linear algebra
- 2. Basics of multivariable calculus
- 3. Convex Sets
 Definition and Examples
 Hyperplane
 Cones
- Convex Functions
 Definitions
 Monotone Property of Gradient
- Optimality Conditions for Convex Problems
 Optimality Conditions
 Projection

Convex Functions: Definitions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$\forall x, y \in \mathbb{R}^n, \forall \lambda \in [0, 1] \Rightarrow f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Definition

Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then it is convex if given any $x \in \mathbb{R}^n$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$
 for all $y \in \mathbb{R}^n$

Definition

Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable. Then it is convex if for any $x \in \mathbb{R}^n$, the Hessian $\nabla f^2(x)$ is positive semidefinite.

Example: Quadratic Function

We will show that the quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = x^T Q x$ where $Q \succeq 0$, is convex using the three definitions.

Definition 1:

$$\{\lambda f(x) + (1-\lambda)f(y)\} - f(\lambda x + (1-\lambda)y) = (\lambda - \lambda^2)(y-x)^T Q(y-x) \ge 0$$

Definition 2: $\nabla f(x) = 2Qx$. Then

$$f(y) - \{f(x) + \langle \nabla f(x), y - x \rangle\} = (y - x)^T Q(y - x) \ge 0$$

for all $y \in \mathbb{R}^n$.

Definition 3: $\nabla^2 f(x) = 2Q \geq 0$.

Example: Maximum of Convex Function

The maximum function of convex functions is convex. This can be shown from Definition 1.

- A function returning the largest element: A function $f: \mathbb{R}^n \to \mathbb{R}$ defined as $f(x) = f(x_1, x_2, ..., x_n) = \max(x_1, x_2, ..., x_n) = \max(e_1^T x, e_2^T x, ..., e_n^T x)$ is convex since each $e_i^T x$ is linear and hence convex.
- Maximum eigenvalue of symmetric matrix: For a symmetric matrix Q, $f(Q) = \lambda_{max}(Q)$. We show that f is convex. Recall that if Q is symmetric, then $x^TQx \leq \lambda_{max}||x||_2^2$ and the equality holds when x is the eigenvector corresponding to λ_{max} . So $\lambda_{max} = \sup x^TQx$ subject to $||x||_2 = 1$, and since each x^TQx is a linear function of Q, (observe that $x^TQx = \langle xx^T, Q \rangle$), f is a convex function.

Subgradients and Subdifferentials

The second definition of convex functions can be extended to non-differentiable convex functions.

Definition

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, it is convex if given any $x \in \mathbb{R}^n$, there exists $g \in \mathbb{R}^n$ such that

$$f(y) \ge f(x) + \langle g, y - x \rangle$$
 for all $y \in \mathbb{R}^n$

Note that if f is convex and differentiable, $g = \nabla f(x)$ is unique g that satisfy the above inequality.

Definition

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$ and a point $x \in \mathbb{R}^n$, a vector $g \in \mathbb{R}^n$ such that $f(y) \geq f(x) + \langle g, y - x \rangle$ for all $y \in \mathbb{R}^n$ is called a **subgradient** at x. A set of subgradients at x is called the **subdifferential** of f at x and is denoted as $\partial f(x)$.

Monotone Property of Gradient

Theorem

f is convex according to Definition 2 if and only if it's gradient has the monotone property, that is, $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$.

Proof.

First, assume that f is convex according to Definition 2.

(i) Then, by Definition 2, we have two inequalities

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \ f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$

for all $x, y \in \mathbb{R}^n$. Adding them gives $0 \ge \langle \nabla f(x) - \nabla f(y), y - x \rangle$.

Monotone Property of Gradient

Proof.

Now assume that ∇f has the monotone property.

(ii) Define a function $g:[0,1]\to\mathbb{R}$ as g(t)=f(tx+(1-t)y)=f(y+t(x-y)). Its gradient is given as $g'(t)=[\nabla f(y+t(x-y))]^T(x-y)=\langle \nabla f(y+t(x-y)),x-y\rangle$. By the Fundamental Theorem of Calculus, we have

$$\int_0^1 g'(t)dt = g(1) - g(0) = f(x) - f(y) \text{ or } f(x) = f(y) + \int_0^1 g'(t)dt$$

(iii) We claim g'(t) is minimized at t = 0. By the monotone property,

$$\langle \nabla f(y + t(x - y)) - \nabla f(y), y + t(x - y) - y \rangle$$

= $\langle \nabla f(y + t(x - y)), t(x - y) \rangle - \langle \nabla f(y), t(x - y) \rangle$
= $t(g'(t) - g'(0)) \ge 0$

Monotone Property of Gradient

Proof.

Therefore, g'(t) has its minimum at t=0. (iv) From the results of (ii) and (iii),

$$f(x) = f(y) + \int_0^1 g'(t)dt$$

$$\geq f(y) + \int_0^1 g'(0)dt$$

$$= f(y) + g'(0)$$

$$= f(y) + \langle \nabla f(y), x - y \rangle$$

and f is convex according to Definition 2.

Table of Contents

- 1. Basics of linear algebra
- 2. Basics of multivariable calculus
- Convex Sets
 Definition and Examples
 Hyperplane
 Cones
- Convex Functions
 Definitions
 Monotone Property of Gradient
- Optimality Conditions for Convex Problems Optimality Conditions Projection

Optimality Condition for Smooth, Unconstrained Problem

Consider the problem **min** f(x) where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable.

Theorem

 \hat{x} is an optimal solution to the above problem if and only if $\nabla f(\hat{x}) = 0$.

Proof.

Only prove the "if" part. Apply Definition 2 for convex functions to point \hat{x} . Then for all $y \in \mathbb{R}^n$, $f(y) \ge f(\hat{x}) + \langle \nabla f(\hat{x}), y - \hat{x} \rangle = f(\hat{x})$ for all $y \in \mathbb{R}^n$. So, \hat{x} minimizes f.

Optimality Condition for Unconstrained Problem

Now consider the problem **min** f(x) where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and not necessarily differentiable.

Theorem

 \hat{x} is an optimal solution to the above problem if and only if $0 \in \partial f(\hat{x})$.

Proof.

Only prove the "if" part. Apply definition of subgradients to function f at point \hat{x} . Then for all $y \in \mathbb{R}^n$, $f(y) \ge f(\hat{x}) + \langle 0, y - \hat{x} \rangle = f(\hat{x})$ for all $y \in \mathbb{R}^n$. So, \hat{x} minimizes f.

Examples

- Sum of Squares: Given $a_1, a_2, ..., a_n \in \mathbb{R}$, find \hat{x} that minimizes $\frac{1}{n} \sum_{i=1}^n (a_i x)^2$ for x. We can check that the objective, the sum of convex functions, is convex. Taking derivative w.r.t x and setting it to 0 gives $-\frac{2}{n} \sum_{i=1}^n (a_i \hat{x}) = 0$ or $\hat{x} = \frac{1}{n} \sum_{i=1}^n a_i$.
- Sum of absolute values: Given $a_1, a_2, ..., a_n \in \mathbb{R}$, find $x \in \mathbb{R}$ that minimizes $\frac{1}{n} \sum_{i=1}^{n} |a_i x|$. \hat{x} is the optimal solution if $0 \in \frac{1}{n} \sum_{i=1}^{n} \partial(|a_i \hat{x}|)$. Recall that $(-1, \dots, x)$

the subdifferential of
$$|x|$$
 is given by $\partial |x| = \begin{cases} -1, & \text{if } x < 0 \\ 1, & \text{if } x > 0 \\ [-1,1], & \text{if } x = 0 \end{cases}$

Now, assume WLOG that $a_1 \le a_2 \le ... \le a_n$. If n = 2k is even, any $\hat{x} \in [a_k, a_{k+1}]$ is optimal. If n = 2k + 1 is odd, $\hat{x} = a_{k+1}$ is optimal.

Optimality Condition for Constrained Problem

We now consider the constrained optimization problem **min** f(x) **subject to** $x \in \mathfrak{X}$, where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and \mathfrak{X} is convex.

Theorem

 \hat{x} is an optimal solution to the above problem if and only if $0 \in \partial f(\hat{x}) + N_{\mathfrak{X}}(\hat{x})$.

Proof.

Only prove the "if" part. Then for $g \in \partial f(\hat{x})$, we have $-g \in N_{\mathfrak{X}}(\hat{x})$. Also, for any $y \in \mathfrak{X}$, we have $y - \hat{x} \in T_{\mathfrak{X}}(\hat{x})$. Combining two results, we have $\langle -g, y - \hat{x} \rangle \leq 0$ for all $y \in \mathfrak{X}$. Now from the definition of subgradient, we have for all $y \in \mathfrak{X}$, $f(y) \geq f(\hat{x}) + \langle g, y - \hat{x} \rangle \geq f(\hat{x})$. Therefore, \hat{x} is the optimal solution.

Projection

Definition

Given a convex set \mathfrak{X} and point $y \notin \mathfrak{X}$, the **projection** of y onto \mathfrak{X} is a point $\hat{x} = Pr_{\mathfrak{X}}(y)$ that solves the problem min $||x - y||_2^2$ subject to $x \in \mathfrak{X}$.

From the previous theorem, \hat{x} is optimal iff $0 \in (\hat{x} - y) + N_{\mathfrak{X}}(\hat{x})$ or $y - \hat{x} \in N_{\mathfrak{X}}(\hat{x})$.

Since for any $x \in \mathfrak{X}$, $x - \hat{x} \in T_{\mathfrak{X}}(\hat{x})$, we have $\langle y - \hat{x}, x - \hat{x} \rangle \leq 0$ if \hat{x} is optimal.

Contraction Property of Projection

Theorem

Given a convex set \mathfrak{X} and two points y_1, y_2 outside \mathfrak{X} , let x_1, x_2 be projections of y_1, y_2 onto \mathfrak{X} . Then $||y_1 - y_2||_2 \ge ||x_1 - x_2||_2$.

Proof.

Previous discussion gives two inequalities

$$\langle y_1 - x_1, x_2 - x_1 \rangle \le 0$$
 and $\langle y_2 - x_2, x_1 - x_2 \rangle \le 0$

Summing them gives

$$\langle (y_1 - y_2) - (x_1 - x_2), x_2 - x_1 \rangle \le 0 \text{ or } ||x_1 - x_2||_2^2 \le \langle y_1 - y_2, x_1 - x_2 \rangle$$

Also, by the Cauchy-Schwarz Inequality, $\langle y_1-y_2,x_1-x_2\rangle \leq ||y_1-y_2||_2||x_1-x_2||_2$. Combining the two inequalities give the result.

Acknowledgement

This work is based on Bubeck, 2014; Deisenroth, Faisal, and Ong, 2020; Beck, 2017; Bubeck, 2014

References I

- Beck, Amir (2017). First-Order Methods in Optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics. DOI: 10.1137/1.9781611974997. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611974997. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611974997.
- Bubeck, Sébastien (2014). "Convex Optimization: Algorithms and Complexity". In: DOI: 10.48550/ARXIV.1405.4980. URL: https://arxiv.org/abs/1405.4980.
- Deisenroth, Marc Peter, A Aldo Faisal, and Cheng Soon Ong (2020). *Mathematics for machine learning*. Cambridge University Press.