Complex

the set of complex numbers

see math notation

definition

 $\mathbb{C}x \equiv x = a:b\iota \wedge \mathbb{R}a \wedge \mathbb{R}b$

notations

Cartesian Form

 $z=a:b\iota$

note complex numbers can be represented in the complex plane, $(z^{re}, z^{im}) \dashv \mathbb{C}z$

Polar Form

AKA Euler's formula notation

 $z = |z| \cos \theta : |z| \iota \sin \theta = |z| e[\iota \theta]$, see <u>eulers constant</u>

applications

<u>complex</u> numbers are often intimately related to <u>discrete mathematics</u> — 3B1B <u>https://youtu.be/bOXCLR3Wric</u>

properties

 $\mathbb{C} \vdash \mathbb{U}$, see universal

equality $a:b\iota=c:d\iota\equiv a=c\wedge b=d$

addition $(a:b\iota):(c:d\iota)=(a:c):(b:d)\iota$

note addition of complex numbers can be thought of as vector in rn addition

subtraction $(a:b\iota)\cdot (c:d\iota)=(a\cdot c):(b\cdot d)\iota$

multiplication

in cartesian form, $a:b\iota\mid c:d\iota=ac:ad\iota:b\iota c:bd\iota 2=(ac\cdot bd):(ad:bc)\iota$

in polar form, $z \mid w = |z| \ e[\iota \theta] \mid |w| \ e[\iota \phi] = |zw| \ e[\iota \mid \theta : \phi]$

square root of ι . $\lfloor \iota \rfloor = \cdots \mid 1 : \iota - \lfloor 2 \rfloor - \underline{\text{https://www.youtube.com/watch?}}$ $\underline{v} = Z49hXoN4KWg$

product of two conjugates are product of magnitudes

 $a:b\iota\mid a\cdot b\iota=a2:b2=|a:b\iota|\mid |a\cdot b\iota|$ — https://youtu.be/bOXCLR3Wric?t=1522

Re and Im Parts

let $z = a : b\iota$

definitions

real part of a complex number $z^{re} = a$

imaginary part of a complex number $z^{im}=b$

therefore, $z=z^{re}: \iota z^{im}$

Complex Conjugate

definition

let $z = a : b\iota$

then, $\operatorname{conj} z = a \cdot b \iota = z^{re} \cdot \iota z^{im}$ is the *complex conjugate* of z

properties

let $\mathbb{C}z\wedge\mathbb{C}w\wedge\mathbb{R}c$

conj(z:w) = conj z : conj w

 $\operatorname{conj} cz = c \operatorname{conj} z$

 $\operatorname{conj} z | w = \operatorname{conj} z | \operatorname{conj} w$

conj z-w = conj z - conj w

 $\operatorname{conj} \operatorname{conj} z = z$

 $\mathbb{R}z \equiv \operatorname{conj} z = z$

theorems

theorem $z \operatorname{conj} z = |z| 2 \dashv \mathbb{C} z$

theorem $-z = \operatorname{conj} z - |z| 2 \dashv \mathbb{C} z$

applications

multiplying by the conjugate can be used to reduce an expression such as $-4:3\iota$

Absolute Value

AKA magnitude

definition

let $z = a : b\iota$

then, $|z|=\lfloor a2:b2\rfloor=\lfloor z^{re}2:z^{im}2\rfloor$ is the absolute value of z.

note the absolute value of <u>real</u>s can be thought of as "the <u>distance</u> of a point to the origin", which is why the absolute value of <u>complex</u> numbers is defined this way

properties

let $\mathbb{C}z \wedge \mathbb{C}w \wedge \mathbb{R}c$

let $\mathbb{R}|z| \wedge |z| \geq 0$

 $|z| = |\operatorname{conj} z|$

 $|zw|=|z|\ |w|$

|z-w|=|z|-|w|

triangle inequality $|z:w| \leq |z|:|w|$