

Motivation & Problem Statement

In an era of ubiquitous online communication, hate speech and toxic remarks have attracted a lot of attention. Using data mining and machine learning algorithms, this project attempts to create a model that is able to recommend to the user to change/update their comments to reduce online negativity and promote a positive discussion, or discourse. The primary focus of this project is,

- To create a model to analyze the sentiment of user comments in an online setting to identify comments for – 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', and, 'identity_hate' classes.
- 2. To help users to choose a positive discourse in an effort to reduce online negativity in form of bullying, or abusing which can affect the mental and psychological health of the content creators.

Dataset Overview

- The dataset is readily available on Kaggle with -
 - 159571 rows and 8 columns
- The dataset has a variety of comments classified into 6 different levels of toxicities.

EDA

- Data Composition -
- - The number of 'toxic' comments is, 10,652
- The number of 'severe_toxic' comments is, 1091
- - The number of 'obscene' comments is, 5876
- - The number of 'threat' comments is, 338
- - The number of 'insult' comments is, 5474
- - The number of 'identity_hate' comments is, 950
- - The number of 'clean' comments is, 99,384

Percentages of Types of comments

Disclaimer – The following slides may include explicit language, sensitive topics, or triggering themes that may be distressing to some users. Reader discretion is advised.

Wordclouds for 'toxic' and 'severe_toxic' comments

Word Cloud for Severe Toxic Comments

yourselfgo fuck

Word Cloud for Toxic Comments

Wordclouds for 'threat' and 'obscene' comments

Word Cloud for Threat Comments

Word Cloud for Obscene Comments

Wordclouds for 'insult' and 'identity_hate' comments

Word Cloud for Insult Comments

Wordcloud for 'clean' comments

Word Cloud for Clean Comments

Current Models & Observations

	Label	Accuracy	Precision	Recall	F1 Score
0	toxic	0.9569	0.9551	0.9569	0.9532
1	severe_toxic	0.9903	0.9879	0.9903	0.9885
2	obscene	0.9767	0.9756	0.9767	0.9746
3	threat	0.9978	0.9971	0.9978	0.9971
4	insult	0.9689	0.9657	0.9689	0.9653
5	identity_hate	0.9917	0.9897	0.9917	0.9890
6	Combined	0.9183	0.8928	0.9183	0.9022

Logistic Regression – 91.8% accuracy

	Label	Accuracy	Precision	Recall	F1 Score
0	toxic	0.9572	0.9548	0.9572	0.9548
1	severe_toxic	0.9898	0.9849	0.9898	0.9858
2	obscene	0.9778	0.9766	0.9778	0.9767
3	threat	0.9977	0.9969	0.9977	0.9969
4	insult	0.9687	0.9658	0.9687	0.9664
5	identity_hate	0.9915	0.9897	0.9915	0.9885
6	Combined	0.9172	0.8907	0.9172	0.8991

Random Forest – 91.7% accuracy

	Label	Accuracy	Precision	Recall	F1 Score
0	toxic	0.9600	0.9582	0.9600	0.9573
1	severe_toxic	0.9902	0.9879	0.9902	0.9858
2	obscene	0.9792	0.9781	0.9792	0.9779
3	threat	0.9978	0.9971	0.9978	0.9972
4	insult	0.9710	0.9683	0.9710	0.9685
5	identity_hate	0.9919	0.9905	0.9919	0.9891
6	Combined	0.9213	0.8974	0.9213	0.9061

SVM - 92.1% accuracy

Layer (type)	Output Shape ====================================	Param #			
input_3 (InputLayer)	[(None, 100)]	0			
embedding_1 (Embedding)	(None, 100, 300)	52248900			
<pre>spatial_dropout1d_1 (Spati alDropout1D)</pre>	(None, 100, 300)	0			
bidirectional (Bidirection al)	(None, 100, 256)	439296			
conv1d (Conv1D)	(None, 100, 64)	16448			
<pre>max_pooling1d (MaxPooling1 D)</pre>	(None, 50, 64)	0			
flatten (Flatten)	(None, 3200)	0			
dense (Dense)	(None, 128)	409728			
dropout (Dropout)	(None, 128)	0			
batch_normalization (Batch Normalization)	(None, 128)	512			
dense_1 (Dense)	(None, 6)	774			

LSTM Neural Net

Non-trainable params: 52249156 (199.31 MB)

(Please note, the project is still being optimized, we are still trying to improve the recall and reduce computational time.)

Expected Outcomes & Future Improvements

- We are still involved in optimizing the models further, to improve the recall for multiple labels.
- Multi language recognition
- Develop real-time monitoring capabilities to identify and address toxic comments as soon as they are posted.
- Integrate user feedback mechanisms to enhance the model's performance on real-world usage.

