$\frac{\mathrm{DI/PPGI/CT/UFES}}{\mathrm{TEORIA\ DOS\ GRAFOS}-2019/2}$

Revisão para a Prova 1 Profa Claudia Boeres

Nome:

1. Considere os grafos da figura 1:

Figura 1: Grafos G_1 e G_2

- a) G_1 é bipartido? E G_2 ? Se forem, indique os conjuntos de vértices pertencentes a cada partição em cada grafo. Se não forem, indique alguma característica dos grafos que garanta essa afirmação.
 - b) Desenhe o subgrafo induzido por $\{1, 2, 4, 5, 6\}$ em G_1 .
 - c) Dê um exemplo de um ciclo simples que não seja elementar em G_2 .
- 2. Construa dois grafos simples não isomorfos com seis vértices, com graus 1, 1, 2, 2, 3 e 3. Indique quantas arestas tem esses grafos.
- 3. Dê exemplos de:
 - a) um grafo G completo que possui exatamente dois ciclos hamiltonianos com arestas disjuntas.
 - b) um subgrafo induzido de um grafo simples e conexo G, que seja desconexo.
 - c) um grafo regular de grau 4.
 - d) um grafo de pelo menos 8 vértices, acíclico e conexo, cujo centro é composto por apenas 2 vértices. Indique no grafo desenhado quais são esses vértices.
- 4. Verifique se cada uma das afirmações abaixo é **verdadeira** ou **falsa**. Se for verdadeira, prove. Se for falsa, dê um contra-exemplo.
 - a) Todo grafo hamiltoniano é euleriano.
 - b) Se G é desconexo, então \bar{G} (complementar de G) é conexo.
 - c) Seja $\Delta(G)$ o grau do vértice de maior grau de um grafo simples G. Então $\Delta(G-v) < \Delta(G)$, onde $v \in V$ é um vértice de G com grau Δ .
 - d) Se G possui apenas dois vértices v e w de grau ímpar, então o grafo obtido de G pela remoção de v e w é necessariamente euleriano.
- 5. Mostre que:
 - a) Não existe grafo com 7 vértices que seja regular de grau 3.

- b) O grafo de linha L(G) de um grafo G é aquele que possui como vértices as arestas de G, sendo dois vértices adjacentes em L(G) se e somente se as arestas correspondentes o forem em G. O grafo de linha de K_4 é euleriano.
- c) É impossível visitar todas as casas de um tabuleiro 4×4 com movimentos de cavalo, sem passar duas vezes pela mesma casa e voltando à casa inicial.