Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

Кафедра «Нефтегазоразработка и гидропневмоавтоматика»

ОТЧЕТ по лабораторным работам

по курсу: «Гидравлика»

Выполнил(а) ст. гр. С-31

(фамилия И.О.)

Проверил ст.преподаватель Андреевец Ю.А.

Лабораторная работа № 1

Определение плотности и кинематической вязкости рабочей жидкости

Цель работы: ознакомиться с устройством денсиметров (ареометров), определить плотности нескольких рабочих жидкостей и сравнить их со справочными величинами; овладеть методикой определения кинематической вязкости жидкостей; определить коэффициент кинематической вязкости жидкости.

Обработка опытных данных

1) Определение вязкости жидкости

Вычислить среднее арифметическое значение времени течения жидкости в вискозиметре (с точностью до 0,1 с)

$$t_{\rm cp} = \frac{\sum t_i}{n} = \underline{\qquad}, c$$

где t_i – время течения жидкости в вискозиметре по опыту, с;

n — количество опытов.

Определить коэффициент кинематической вязкости испытуемой жидкости по формуле

$$v = C \cdot t_{cp} \cdot K$$
, cCT

где C — коэффициент, учитывающий изменение гидростатического напора жидкости в результате расширения её при нагревании. Для вискозиметров типа ВПЖ-2 коэффициент равен C=1.

K — постоянная вискозиметра, сСт/с (указана на приборе).

Коэффициент кинематической вязкости жидкости вычисляют с точностью до четвёртой значащей цифры (например 1,255; 16,47; 193,1; 1735) при температуре опыта.

Результаты измерений и расчетов занести в таблицу 1.1 и определить вид рабочей жидкости.

Таблица 1.1 - Результаты измерений и расчетов вязкости жидкости

№ п.п	Время течения жидко- сти <i>t</i> ,с				Темпе- ратура <i>T</i> , °C	Кинематический коэффициент	Вид рабочей жидкости
	t_1	t_2	t_3	$t_{\rm cp}$	1, C	ВЯЗКОСТИ, V, сСт	
1							
2							
3							
4							
5							

	2) Измерение плотности жидкос	СТИ	
	Измерить температуру рабочей	жидкости $T = _{___}$	°C.
	Определить плотность жидкости	и по денсиметру	
	ρ =	\dots , $\kappa\Gamma/M^3$	
	Для получения сравнительных р	оезультатов, произвести	и перерасчет экс-
пери	ментально полученных значений	плотности по уравнени	ІЮ
	$\rho_0 = \rho + \alpha_\rho \cdot \Delta T = \underline{\hspace{1cm}}$		$_{}$, $_{\text{K}\Gamma}/\text{M}^3$
где	$ ho_0$ – плотность рабочей жидкос	ги при температуре 20	°С, кг/м³;
	ΔT - разность температуры опы	та и нормальной темпо	ературы в 20 °C;
	$lpha_{ ho}$ - средняя температурная поп	равка плотности, кг/м ³	·°C.
	Результаты измерений и вычисл	ений занести в таблиц	y 1.2.
	Таблица 1.2 - Результаты измере	ений и расчетов плотно	ости жидкости

Вид	Темпера- тура, <i>T</i> , °C	Плотность, р, кг/м ³	Температур- ная поправка	Плотность при $20 ^{\circ}\text{C}, \rho_0, \text{кг/м}^3$	
жидкости			плотности, α_{ρ} , кг/м 3 . $^{\circ}$ С	расчетная	спра- вочная

Полученные значения сравнить со справочными данными.

Лабораторная работа №2 Определение гидростатического давления

Цель работы: ознакомиться с устройством опытной установки, изучить виды измерительных приборов для определения давления, научиться измерять гидростатическое давление.

Обработка опытных данных

	Измерить расстояние $l_0 = $ см. Измерить манометрическое давление $p_{\text{ман}} = $ атм=Па. Измерить пьезометрический напор сечения 1: $h_p = $ см.
напо	Измерить пьезометрический напор сечения 1: $h_p = $ см. Определить пьезометрическое давление исходя из пьезометрического ра h_p по формуле
	$p_p = h_p \cdot \rho \cdot g = $ \square
где	$\rho = 1000 \text{ кг/м}^3 - \text{плотность воды};$
	$g = 9.81 \text{ м/c}^2$ – ускорение свободного падения. Результаты измерений и вычислений заносятся в таблицу 2.1.

Таблица 2.1 Результаты измерений и расчетов

No	Диаметр	Расстояние между	Пьезометрический	Пьезометрическое дав-
	сечения	сечениями,	напор	ление
сеч.	d, cm	l, cm	h_p , cm	p_p , Па
1				
2				
3				
4				
5				
6				
7				
8				
14				

По данным этой таблицы в масштабе построить пьезометрическую линию. — зависимость пьезометрического давления от расстояния между центрами сечений $p_p = f(l)$. За начало отсчета принять точку подключения манометра.