Integers

Definition

The set of *integers* includes the positive and negative whole numbers and zero and is given by:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Thus, by the trichotomy principle, $\forall n \in \mathbb{Z}$, exactly one of the following is true:

- 1). n is positive
- 2). n is zero
- 3). n is negative

Definition

Let a and b be two integer values, regardless of representation. To say that a equals b, denoted a = b, means that a and b represent the same element in \mathbb{Z} .

Axiom: Substitution Principle

Let a and b be two integer values, regardless of representation. If a=b then a and b can syntactically replace each other in a given context without altering the context.

Properties: Equality

Let \boldsymbol{a} and \boldsymbol{b} be two integer values:

1). Reflexivity

$$a = a$$

2). Symmetry

$$a = b \implies b = a$$

3). Transitivity

$$a = b$$
 and $b = c \implies a = c$

Properties

The set of integers is a commutative ring with unity under the binary operations of addition and multiplication, and as such, the following axioms hold:

$\forall a, b, c, d \in \mathbb{Z}$:

- 1). Well-defined
 - a+b=c and $a+b=d \implies c=d$
 - ab = c and $ab = d \implies c = d$
- 2). Closure
 - $a+b \in \mathbb{Z}$
 - $ab \in \mathbb{Z}$
- 3). Cummutativity
 - a + b = b + a
 - ab = ba
- 4). Associativity
 - (a+b) + c = a + (b+c)
 - (ab)c = a(bc)
- 5). Distributivity
 - a(b+c) = ab + ac
- 6). Identity
 - a + 0 = a
 - a1 = a
- 7). Additive Inverse
 - $\exists (-a) \in \mathbb{Z}, a + (-a) = 0$

Since the set of integers is a commutative ring with unity, the following properties also hold:

Properties: Zero

 $\forall\, a,b\in\mathbb{Z}\text{:}$

- 1). -0 = 0
- 2). a0 = 0
- 3). $ab = 0 \implies a = 0 \text{ or } b = 0$

Properties: Negatives

 $\forall a, b \in \mathbb{Z}$:

1).
$$(-1)a = -a$$

2).
$$-(-a) = a$$

3).
$$(-a)b = -(ab) = a(-b)$$

4).
$$(-a)(-b) = ab$$

5).
$$-(a+b) = (-a) + (-b)$$

Notation

Integer subtraction is nothing more than a syntactic convenience:

$$\forall a, b \in \mathbb{Z}, a - b = a + (-b)$$

Properties: Cancellation

 $\forall\, a,b,c\in\mathbb{Z} :$

1).
$$a = b \iff a + c = b + c$$

2).
$$a = b \implies ac = bc$$

3).
$$ac = bc$$
 and $c \neq 0 \implies a = b$

The last cancellation law cannot be proven in the common manner due to the lack of multiplication inverses. Instead:

Proof

Assume $a,b,c\in\mathbb{Z}$ Assume ac=bc and $c\neq 0$ ac-bc=0 (a-b)c=0Since $c\neq 0, a-b=0$ $\therefore a=b$