初等数论自测题三 参考答案与评分标准

一、名词解释	
1. Given m integers $\{a_1, a_2, \dots, a_m\}$, if $\{\overline{a_1}, \overline{a_2}, \dots, \overline{a_m}\}$	$\overline{a_m}$ = $\{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$ (modulo m sense),
then $\{a_1, a_2, \dots, a_m\}$ is called a complete residucity: 模 m 的完全剩余系的定义形式不唯一	
2. Let m be a positive integer, a is an integer	or coprime to m , the order of a modulo
<i>m</i> is the least positive integer r , s.t. $a^r = 1(max)$	od m). ···································
3. Euler's Theorem: Let m be a positive integer, a is an integer copr.	ime to m, then
$a^{\phi(m)} \equiv 1 (mod \ m)$	
	4 分
二、应用题 4. Sol:	
Yes, it is possible.	3分
The algorithm is the so called "repeated squarir First, write out the binary presentation of b=20 repeatedly, thus takes no time.	
Now, suppose we already know $x^{2^i}(modn)$, w	hich should be a 20-digit number, then we
square it to get a 40-digit number and then divid	de the result by n, all these cost at most 2
seconds, we then get $x^{2^{i+1}}(modn)$, thus by indu	ction, we could get $x^{2^i}(modn)$ for all
i < k in $2k$ seconds.	3 分
Now multiply all $x^{2^i}(modn)$ if the i-th digit in	the binary presentation is 1 in the same
way as above: multiply the first 2 numbers and result with the 3rd number and then divide it by	
Thus the total time is at most 4k where $k = [lo, lo]$	$[g_2b] < 70$, so we can finish the computation
in 5 minutes. In fact, an upper bound of the tim	e is 200 seconds ····································

三、计算题
5.
Sol:
a) $\phi(1000000) = (2^6 - 2^5) \times (5^6 - 5^5) = 400000$, so the number of integers between 0 and
1000000 that are coprime to 1000000 is 400000
6. Sol:
We calculate $2021^{12306} \pmod{8^4}$ first.
Since 2021 is coprime to 8^4 , and $\phi(8^4) = \phi(2^{12}) = 2^{11} = 2048$, by Euler's theorem
$2021^{2048} \equiv 1 \pmod{8^4}$
So, Use repeated Squaring Method(自行补完过程),
$2021^{12306} \equiv 2021^{18} \equiv 665 \pmod{8^4}$, i.e. $2021^{12306} \pmod{8^4} = 665$.
3分
(注:也可直接使用反复平方法计算 2021 12306 (mod 84),但过程较为冗繁。)
Now, convert 665 to octal representation (自行补完过程), we get the last four digits of
the octal representation of 2021^{12306} are $(1231)_8$
7. Sol: a) Yes, there is a primitive root modulo 250
In fact, there is a primitive root modulo n if and only if n is one of the following: 2,4,
p^{l} , $2p^{l}$ where p is an odd prime. Now, since $250 = 2 \times 5^{3}$, so there is a primitive root
modulo 250.

8. Sol:
a) 参考课上例题写出过程
The order of 2021 modulo 108108 is 180.
·····································
b) By part a), $2021^{180} \equiv 1 \pmod{108108}$
Thus $2021^{1800} (mod 108108) = 1$
(注:b)小问也可不利用 a)小问的结论直接求解:可以用反复平方法直接计算、也可以用欧拉定理、费马小定理、中国剩余定理结合反复平方法计算。)
四、证明题 9. Proof:
Note that $n, n+1, n+2$ is a complete residue system modulo 3
Thus $n^2 + (n+1)^2 + (n+2)^2 \equiv 0^2 + 1^2 + 2^2 \equiv 2 \pmod{3}$
But the remainder of every square divided by 3 is either 0 or 1.
Thus $n^2 + (n+1)^2 + (n+2)^2$ can't be a square
10. Proof: a)
127 is a prime. ————————————————————————————————————
In fact, $[\sqrt{127}] = 11$, to verify 127 is a prime or not, we just need to let 2,3,5,7,11 to
divide 127.
b) By Fermat's little theorem, for any integer a coprime to 127,
$a^{126} \equiv 1 \pmod{127} \qquad \cdots \qquad 2 \ \text{f}$
c)
Since a coprime to 1729, a coprime to 7, 13, 19 respectively. \cdots 1% By Fermat's little theorem,
$a^6 \equiv 1 \pmod{7} \qquad \cdots \qquad 2 $

	$a^{12} \equiv 1 (mod 13)$	2分
	$a^{18} \equiv 1 (mod 19)$	2分
Thus		
	$a^{1728} \equiv 1 (mod 7)$	
	$a^{1728} \equiv 1 \pmod{13}$	
	$a^{1728} \equiv 1 \pmod{19}$	
	•••••	······1分
So 7,13,19 ar	e divisors of $a^{1728}-1$,	, and they are pairwise coprime, thus
$a^{1728} \equiv 1 (mod$	1729)	2 分
11. Proof:		
$2^{251} - 1$ is a c	composite number.	2 分
Use repeated	squaring method, we d	can get $2^{251} \equiv 1 \pmod{503}$.
(注: 关于:		
		了)为纪念美国电子工程学会(IEEE)一百周年作了
一个纪念碑,	上面刻有2 ²⁵¹ -1的	素因子分解式。ACM 主席还做了以下注解:
"大约三百年	年前,法国数学家梅森	森预言2251-1是合数,大约一百年前证明了它的确
是合数,但是	直到20年前还被认为	7没有进行分解的计算装置。事实上,用通常的计算
机和传统算法	法,分解它的计算时间	间预估是10 ²⁰ 年。今年2月,这个数在Sandia的
•		成功。这是一个世纪的记录,我们在计算方面已走了 +算的贡献,在这里刻上这个梅森数的5 个素因子。