Project Title: Heart Disease Diagnostic Analysis

Import necessary libraries

In [1]: # Import necessary libraries

import numpy as np import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

Loading Dataset

In [2]: # Loading Dataset

Heart_Disease = pd.read_csv('C:\\Users\\stati\\OneDrive\\Desktop\\Heart Disease data.csv')

Heart_Disease

[2]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
	•••														
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
	1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
	1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

1025 rows × 14 columns

EDA (Exploratory Data Analysis)

In [3]: Heart_Disease.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1025 entries, 0 to 1024
         Data columns (total 14 columns):
             Column
                        Non-Null Count Dtype
              -----
          0
                        1025 non-null
                                       int64
             age
          1
              sex
                        1025 non-null
                                        int64
          2
              ср
                        1025 non-null
                                       int64
          3
              trestbps 1025 non-null
                                        int64
          4
              chol
                        1025 non-null
                                        int64
              fbs
                        1025 non-null
                                        int64
              restecg 1025 non-null
thalach 1025 non-null
                                        int64
                                        int64
          8
              exang
                        1025 non-null
                                        int64
          9
              oldpeak
                       1025 non-null
                                        float64
          10 slope
                        1025 non-null
                                        int64
          11 ca
                        1025 non-null
                                        int64
          12 thal
                        1025 non-null
                        1025 non-null
          13 target
                                        int64
         dtypes: float64(1), int64(13)
         memory usage: 112.2 KB
In [4]: Heart_Disease.isnull().sum()
Out[4]: age
         sex
         ср
                     a
         trestbps
                     0
         chol
                     0
         fbs
         restecg
                     0
         thalach
         exang
                     0
         oldpeak
         slope
                     0
         thal
                     0
         target
         dtype: int64
In [5]: Heart_Disease.duplicated().sum()
Out[5]:
 In [6]: Heart_Disease.drop_duplicates(inplace=True)
In [7]: Heart_Disease.duplicated().sum()
Out[7]:
 In [8]: Heart_Disease.shape
Out[8]: (302, 14)
In [9]: Heart_Disease.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 302 entries, 0 to 878
         Data columns (total 14 columns):
          # Column
                        Non-Null Count Dtype
         ---
              -----
                                       int64
          0 age
                        302 non-null
          1
              sex
                        302 non-null
                                        int64
                        302 non-null
                                        int64
              trestbps 302 non-null
                                        int64
              chol
                        302 non-null
                                        int64
                        302 non-null
                                        int64
              fbs
              restecg 302 non-null
                                        int64
              thalach
                        302 non-null
                                        int64
          8
              exang
                        302 non-null
                                        int64
              oldpeak
                        302 non-null
                                        float64
                        302 non-null
          10 slope
                                        int64
                        302 non-null
                                        int64
          11 ca
          12 thal
                        302 non-null
                                        int64
          13 target
                        302 non-null
                                        int64
         dtypes: float64(1), int64(13)
         memory usage: 35.4 KB
In [10]: Heart_Disease.describe().T
```

Out[10]:		count	mean	std	min	25%	50%	75%	max
	age	302.0	54.420530	9.047970	29.0	48.00	55.5	61.00	77.0
	sex	302.0	0.682119	0.466426	0.0	0.00	1.0	1.00	1.0
	ср	302.0	0.963576	1.032044	0.0	0.00	1.0	2.00	3.0
	trestbps	302.0	131.602649	17.563394	94.0	120.00	130.0	140.00	200.0
	chol	302.0	246.500000	51.753489	126.0	211.00	240.5	274.75	564.0
	fbs	302.0	0.149007	0.356686	0.0	0.00	0.0	0.00	1.0
	restecg	302.0	0.526490	0.526027	0.0	0.00	1.0	1.00	2.0
	thalach	302.0	149.569536	22.903527	71.0	133.25	152.5	166.00	202.0
	exang	302.0	0.327815	0.470196	0.0	0.00	0.0	1.00	1.0
	oldpeak	302.0	1.043046	1.161452	0.0	0.00	0.8	1.60	6.2
	slope	302.0	1.397351	0.616274	0.0	1.00	1.0	2.00	2.0
	ca	302.0	0.718543	1.006748	0.0	0.00	0.0	1.00	4.0
	thal	302.0	2.314570	0.613026	0.0	2.00	2.0	3.00	3.0
	target	302.0	0.543046	0.498970	0.0	0.00	1.0	1.00	1.0

Visualization

Pie charts for Heart Disease Distribution and Gender Distribution

Distribution Analysis of Numerical Data

```
In [13]: sns.set(style="darkgrid")
  fig, axes = plt.subplots(3, 2, figsize=(12, 12))

Numerical_feature = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
```


Pie Chart of Categorical Data

```
In [14]: Categorical_Features = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']

Cat_features = len(Categorical_Features)
Cat_rows, Cat_cols = (Cat_features + 1) // 2, min(2, Cat_features)

fig, axes = plt.subplots(Cat_rows, Cat_cols, figsize=(10, 4*Cat_rows))

for i, feature in enumerate(Categorical_Features):
    r, c = i // Cat_cols, i % Cat_cols
    values = Heart_Disease[feature].value_counts()
    axes[r, c].pie(values, labels=values.index, autopct='%1.1f%%', colors=sns.cubehelix_palette(start=2))
    axes[r, c].set_title(feature)

plt.tight_layout()
plt.show()
```


Bar chart for Chest Pain Type counts

```
In [15]: fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Chart 1 - Chest Pain Type vs Count
ax1 = Heart_Disease['cp'].value_counts().plot(kind='bar', color=sns.cubehelix_palette(start=2), ax=axes[0])
ax1.set_xticklabels(labels=['type 0', 'type 1', 'type 2', 'type 3'], rotation=0)
ax1.set_title('Chest pain type vs count')

# Chart 2 - Type of chest pain for sex
ax2 = pd.crosstab(Heart_Disease['sex'], Heart_Disease['cp']).plot(kind='bar', color=sns.cubehelix_palette(start=2), ax=axes[1]
ax2.set_xticklabels(labels=['Female', 'Male'], rotation=0)
ax2.set_title('Type of chest pain for sex')

plt.show()
```


Correlation Heatmap of Numerical Variables

The Relationship Between Categorical Variables and Heart Disease (Target)

```
In [17]: sns.set(style="darkgrid")
fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(12, 16))
Categorical_Features = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']
for i, cat in enumerate(Categorical_Features):
    row = i // 2
    col = i % 2
    sns.countplot(x=cat, hue='target', data=Heart_Disease, ax=axes[row, col], palette=sns.cubehelix_palette(start=2))
    axes[row, col].set_title(f"Target vs. {cat}")

fig.suptitle("Count Plot of Target vs. Categorical Values", fontweight='bold')
plt.tight_layout()
plt.show()
```


Modeling

```
In [18]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.preprocessing import StandardScaler
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
```

```
In [19]: # Splitting data into features (x) and target (y)
    x = Heart_Disease.drop("target", axis=1)
    y = Heart_Disease["target"]

In [20]: # Splitting the data into train and test sets
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=50)

In [21]: # Data Normalization using Min-Max Method
    x = MinMaxScaler().fit_transform(x)
```

Model Implementation

Logistic Regression

```
In [22]: LR_classifier = LogisticRegression(max_iter=1000, random_state=1,
                                                                                      solver='liblinear', penalty='l1').fit(
                           x_train, y_train)
                   y_pred_LR = LR_classifier.predict(x_test)
In [23]: LR_Accuracy = accuracy_score(y_pred_LR, y_test)
                   print('Logistic Regression Accuracy:'+'\033[1m {:.2f}%'.format(LR_Accuracy*100))
                   Logistic Regression Accuracy: 82.12%
                   K-Nearest Neighbour (KNN)
In [24]: KNN_Classifier = KNeighborsClassifier(n_neighbors=3).fit(
                           x_train, y_train)
                   y_pred_KNN = KNN_Classifier.predict(x_test)
In [25]: KNN_Accuracy = accuracy_score(y_pred_KNN, y_test)
                   print('K-Nearest Neighbour Accuracy:'+'\033[1m {:.2f}%'.format(KNN_Accuracy*100))
                   K-Nearest Neighbour Accuracy: 57.62%
                   Support Vector Machine (SVM)
In [26]: scaler = StandardScaler()
                   x_train_scaled = scaler.fit_transform(x_train)
                  x_test_scaled = scaler.transform(x_test)
In [27]: SVM_Classifier = SVC(kernel='linear', max_iter=5000, C=10, probability=True).fit(
                          x_train_scaled, y_train)
                   y_pred_SVM = SVM_Classifier.predict(x_test_scaled)
                   \verb|C:\Users\stati\AppData\Roaming\Python\Python311\site-packages\sklearn\swm\_base.py:297: Convergence Warning: Solver terminated and the state of t
                  early (max_iter=5000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
                   warnings.warn(
In [28]: SVM_Accuracy = accuracy_score(y_pred_SVM, y_test)
                   print('Support Vector Machine Accuracy:', '\033[1m{:.2f}%'.format(SVM_Accuracy * 100))
                  Support Vector Machine Accuracy: 82.12%
                   Decision Tree
In [29]: DT_Classifier = DecisionTreeClassifier(max_depth=3, min_samples_leaf=5, criterion='entropy', min_samples_split=5,
                                                                                                splitter='random', random_state=1).fit(
                           x_train, y_train)
                   y_pred_DT = DT_Classifier.predict(x_test)
In [30]: DT_Accuracy = accuracy_score(y_pred_DT, y_test)
                   \label{localization} \mbox{print('Decision Tree Accuracy:', '\033[1m{:.2f}\%'.format(DT\_Accuracy * 100))}
                  Decision Tree Accuracy: 78.15%
                   Random Forest
In [31]: RF_Classifier = RandomForestClassifier(n_estimators=1000, random_state=1)
                                                                                                 max_leaf_nodes=20, min_samples_split=15).fit(
                           x_train, y_train)
```

```
y_pred_RF = RF_Classifier.predict(x_test)

In [32]: RF_Accuracy = accuracy_score(y_pred_RF, y_test)
    print('Random Forest Accuracy:'+'\033[1m {:.2f}%'.format(RF_Accuracy*100))
    Random Forest Accuracy: 81.46%
```

Model Comparison

```
'Accuracy': [
                                  LR_Accuracy * 100, KNN_Accuracy * 100, SVM_Accuracy * 100, DT_Accuracy * 100, RF_Accuracy * 100]})
In [34]: # Sorting and styling the comparison table
         compare_sorted = compare.sort_values(by='Accuracy',
                                           ascending=False).reset_index(drop=True)
         compare_styled = compare_sorted.style.background_gradient(
            cmap='Blues', subset=['Accuracy']).set_properties(**{'font-family': 'Segoe UI'})
In [35]: compare_styled
Out[35]:
                       Model Accuracy
              Logistic Regression 82.119205
        1 Support Vector Machine 82.119205
                 Random Forest 81.456954
        2
                   Decision Tree 78.145695
         3
             K-Nearest Neighbors 57.615894
```