PID control

Table of Contents

- PID controllers
- 2. Transfer functions brief description
- 3. More on these topics and references

PID controllers

PID Controller - Etymology

If some terms are missing we have "P", "PD" and so on controllers

Takes into account 3 terms based on the error:

Notation

- current drone altitude: *z*
- desired altitude: H

We can control the thrust of the propellers...

... they determine the acceleration of the drone

Proportional term:

What do you think will happen?

Let's see a simulation for **H** = 2...

$$e(z) = z - H$$

Drone Example - PD Controller Simulation

Proportional term:

... and then the cycle repeats over and over again

Proportional term:

 $F_p = k_{prop} \cdot e(z)$

But the amplitudes were actually slowly getting smaller and smaller

This is because we have air resistance...

... which depends on velocity, i.e.: \dot{z}

Let's use this to our advantage!

Derivative term:

Let's add our own "air resistance" term for quicker convergence, i.e. in our case: $\dot{e}(z) = \dot{z}$

signed error:

$$e(z) = z - H$$

What do you think will happen?

Let's see a simulation for H = 2...

H

Drone Example - PD Controller Simulation

Derivative term:

$$F_p \,=\, k_{prop} \cdot e(z) + k_{der} \cdot \dot{e}(z)$$

The drone quickly stabilised - great!

$$\dot{e}(z)=\dot{z}$$
 signed error: $e(z)=z-H$

But it did not stabilise where we wanted it to...

The drone will stay at the altitude where: $F_p = gravity$

This is not at H, because at H: $F_p = 0$

Integral term:

How much error we have accumulated over time

$$F_p \,=\, k_{prop} \cdot e(z) + k_{der} \cdot \dot{e}(z) + k_{int} \int e(z) dt$$

integral gain

signed error:

$$e(z) = z - H$$

H

What do you think will happen?

Let's see a simulation for **H** = 2...

Drone Example - PID Controller Simulation

<u>Integral term:</u>

altitude and stayed there :)

The drone reached the desired

part reacts slowly

This is because after reaching the steady state the integral term drives the drone behaviour

H

Multiloop PID Controller

Rotor speed has to react quickly (e.g. to gusts of wind) to keep the desired resultant force zHCorrections to altitude should be considered at much slower rate - e.g. to average the observation over time to get rid of noise

Transfer Functions

Transfer Function - General Idea

Transfer Function - General Idea

Comments:

- Vast topic if seen for the first time, don't try to process everything at once
- From perspective of this course: enough to treat it as a black box tool

Block profiles

Every block has some profile...

... which determines how the output is generated

g(t)

What is this profile?

Imagine single impulse input (modelled with dirac delta function):

This generates some output:

This is the profile!

Generating outputs for known profiles

How to determine the output for any signal (not necessarily an impulse)?

Look at the signal as an infinite sum of impulses:

Determine the effect of each impulse and combine

Profile of g Generating outputs for known profiles g(t)must be scaled u(t)according to the corresponding impulse strength u(t) Will have an impact on Only impulses at time au < tthe output at time t

Generating outputs for known profiles

Sum up over all impulses which can potentially influence time *t*

The problem is...

Transfer Functions

Turns out we can use Laplace transform: \mathcal{L}

To represent all our functions with (unique!) functions from a different domain $\mathcal{L}u = U$

$$\mathcal{L}u(s)=U(s)=\int_0^\infty u(t)e^{-st}dt$$

The result of convolution in time domain is the multiplication of representatives in *s* domain:

$$\mathcal{L}(u * g) = \mathcal{L}u \cdot \mathcal{L}g$$

AND MULTIPLICATION IS EASY

Transfer Functions - PID Example

What will we get in *s* domain

More on these topics

AKA References

More on these topics and references:

- lectures on PID control:
 https://youtube.com/playlist?list=PLn8PRpmsu08pQBgjxYFXSsODEF3|qmm-y&si=Vb|drjhBxXwnmcwL
- transfer functions: https://www.youtube.com/watch?v=RJleGwXorUk
- understanding convolution in the context of signal processing:
 <a href="https://www.analog.com/media/en/technical-documentation/dsp-book/ds