Methodology

Convolutional Neural networks are specialized deep neural networks which can process the data that has input shape like a 2D matrix. Images are easily represented as a 2D matrix and CNN is very useful in working with images.

CNN is basically used for image classifications and identifying if an image is a bird, a plane or Superman, etc.

It scans images from left to right and top to bottom to pull out important features from the image and combines the feature to classify images. It can handle the images that have been translated, rotated, scaled and changes in perspective.

LSTM

LSTM stands for **Long short term memory**, they are a type of RNN (**recurrent neural network**) which is well suited for sequence prediction problems. Based on the previous text, we can predict what the next word will be. It has proven itself effective from the traditional RNN by overcoming the limitations of RNN which had short term memory. LSTM can carry out relevant information throughout the processing of inputs and with a forget gate, it discards non-relevant information.

We start by writing a function that will create a descriptions dictionary that maps images with a list of 5 captions. Next we begin cleaning of the dataset, this is a very important step. This function takes all descriptions and performs data cleaning. This is an important step when we work with textual data, according to our goal, we decide what type of cleaning we want to perform on the text. In our case, we will be removing punctuations, converting all text to lowercase and removing words that contain numbers. So, a caption like "A man riding on a three-wheeled wheelchair" will be transformed into "man riding on three wheeled wheelchair".

Extracting features

This technique is also called transfer learning, we don't have to do everything on our own, we use the pre-trained model that have been already trained on large datasets and extract the features from these models and use them for our tasks. We are using the Xception model which has been trained on imagenet dataset that had 1000 different classes to classify. We can directly import this model from the *keras.applications*. Make sure you are connected to the internet as the weights get automatically downloaded. Since the Xception model was originally built for imagenet, we will do little changes for integrating with our model. One thing to notice is that the Xception model takes 299*299*3 image size as input. We will remove the last classification layer and get the 2048 feature vector.

Now the Flikr_8k dataset is loaded and transfer learning process is done on this dataset to train the model.