UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA TEÓRICA 2019 - LISTA III - Parte II

Instruções:

- A resolução do exercício deve ser feita **individualmente**. Cópias evidentes entre trabalhos não serão aceitas.
- A entrega deve ser online via Moodle (exclusivamente), somente até a data especificada. Não serão aceitos trabalhos atrasados.
- Para cada uma das tarefas deve-se entregar o com código fonte. O nome do aquivo deve identificar a tarefa, exemplo "e4-1a.py" referente ao item "1a" da tarefa. Arquivos corrompidos serão desconsiderados.
- Além do código fonte deve-se entregar um um único arquivo PDF com o nome "e32.pdf" apresentando o pseudocódigo do algoritmo desenvolvido e os resultados encontrados.
- Data de entrega: 29.10.2019 (terça-feira) até as 13:00 via Moodle (https://moodle.ufrgs.br/login/index.php).

	~
NOME:	CADEAO
N() N/I H'•	('A D'I' A ()•

Objetivos: Construção de árvores filogenéticas, implementação do método Agglomerative methods for ultrametric trees (Neighbour Joining).

1. Dada matriz de distâncias gerada a partir da sequência de DNA mitocondrial de primatas, utilize o algoritmo de Neighbour Joining para a contrução da árvore filogenética das seguintes espécies: gorila, orangotango, humano, chimpanzé e gibão. A entrada para o algoritmo é a matriz de distâncias dos 5 primatas, do qual deve ser gerada a árvore filogenética.

Gorila Orangotango Humano Chimpangá	0 0.1890 0.1100	0.1890 0 0.1790	0.1100 0.1790 0	Chimpanzé 0.1130 0.1920 0.09405	Gibão 0.2150 0.2110 0.2050
Chimpanzé	0.1130	0.1920	0.0940	0	0.2140
$Gib ilde{a}o$	0.2150	0.2110	0.2050	0.2140	0

Informações Importantes:

- Os dados deste exercício foram obtidos do artigo J Mol Evol. 1982;18(4):225-39. Mitochondrial DNA sequences of primates: tempo and mode of evolution. Brown WM, Prager EM, Wang A, Wilson AC.
- O código fonte deve ser entregue.
- Entregar em PDF a descrição do algoritmo implementado. Sugestão: preparar a descrição do algoritmo na forma de slides. Alguns trabalhos serão selecionados para apresentação em sala de aula.