Homework 10

Early problem due on Gradescope at 11:59 pm on Wednesday, April 12th. Due on Gradescope at 11:59 pm on Friday, April 14th.

(1) (Early problem) The *n*-sphere is the subspace

$$\mathbb{S}^n := \{ \vec{x} \in \mathbb{R}^{n+1} \mid |\vec{x}| = 1 \}$$

of \mathbb{R}^{n+1} with the subspace topology.

Prove that $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ is homeomorphic to $[0, 1]/\sim$ where \sim is the equivalence relation where $0 \sim 1$, $1 \sim 0$, and $x \sim x$ for all $x \in [0, 1]$.

- (2) Let $U_1 = \{1,2\} \times (0,3)$, $U_2 = \{3,4\} \times (0,3)$. Let U_{12} be the open subset $\{1,2\} \times ((0,1) \cup (2,3))$ of U_1 and let U_{21} be the open subset $\{3,4\} \times ((0,1) \cup (2,3))$ of U_2 .
 - (a) Find a homeomorphism $\phi_{12}: U_{12} \to U_{21}$ so that the space X obtained by gluing U_1 to U_2 with ϕ_{12} is homeomorphic to a disjoint union of two copies of \mathbb{S}^1 . You do not need to prove that X is homeomorphic to two copies of \mathbb{S}^1 .
 - (b) Find a homeomorphism $\psi_{12}: U_{12} \to U_{21}$ so that the space Y obtained by gluing U_1 to U_2 with ψ_{12} is homeomorphic to \mathbb{S}^1 . You do not need to prove that Y is homeomorphic to \mathbb{S}^1 .
- (3) Consider the equivalence relation \sim on \mathbb{S}^1 defined by $\vec{x} \sim \vec{y}$ if and only if $\vec{x} = \pm \vec{y}$. Find a homeomorphism of \mathbb{S}^1/\sim with a familiar space and prove that your map is a homeomorphism.
- (4) Let τ and τ' be two topologies on X. If τ' is finer than τ , what does connectedness of X in one topology imply about connectedness in the other?
- (5) Let X be a topological space. For each integer $n \ge 1$, let A_n be a connected subspace of X, such that $A_n \cap A_{n+1} \ne \emptyset$ for all n. Show that $\bigcup_{n \in \mathbb{Z}_{>0}} A_n$ is connected.
- (6) Recall that the lower limit topology is the topology on $\ensuremath{\mathbb{R}}$ generated by the basis

$$\mathcal{B} = \{ [a, b) \mid a, b \in \mathbb{R} \}.$$

(See Recitation 6 or Section 13 of the text.) Denote \mathbb{R} with the lower limit topology by \mathbb{R}_{ℓ} . Is \mathbb{R}_{ℓ} connected or disconnected? Justify your answer.