(Linear) Regression

Nazerfard, Ehsan

nazerfard@aut.ac.ir

Basics

- Supervised learning
 - Regression (target output is a numeric variable/quantity)
 - Classification (target is a discrete variable/label)
- Discrete vs. numeric variable
- Discretizing a numeric variable
- Francis Galton first discovered the concepts of regression and correlation both.

Correlation

$$\square \rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}, \ -1 \le \rho_{XY} \le 1$$

House Price Prediction

Training data

	Price (\$k)
1	260
2	100
3	140
4	290
5	210

House Price Prediction

Training data

	Price (\$k)
1	260
2	100
3	140
4	290
5	210

$$\bar{y} = \$200k$$
 (a high bias answer)
 $residual\ error_i = \bar{y} - y^i$

Training Data

- A sample training data
 - o m=#of training data (here m=10)
 - \circ n= #of features (here n=1) \rightarrow Univariate

m	Size in <i>feet</i> ² (X)	Price in \$k (Y)
1	700	158
2	1060	230
3	582	120
4	830	175
••		
	-	
10	940	194

Regression

Goal is to learn a hypothesis function h, which maps input variable(s) to a numeric output variable:

 $h: X \to \mathbb{R}$

Regression (cont.)

Goal is to learn a hypothesis function h, which maps input variable(s) to a numeric output:

$$h: X \to \mathbb{R}$$

An example for Linear regression (LR):

LR Hypothesis Space

Linear Regression Hypothesis space:

$$h(x) = \theta_0 + \theta_1 x$$

- \circ Goal is to learn parameters θ_0 , θ_1
- A parametric model
- o Occam's razor principle

Best Fit Regression Line

How to find the best fit regression line?

How to Learn Parameters

□ Parameters θ_0 and θ_1 are estimated by minimizing a cost/loss function:

$$\underset{\theta_0,\theta_1}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} (h(x^i) - y^i)^2$$

- □ The above loss function is referred to as mean square error (MSE) function → L2 loss
- Other loss functions: MAE, Hubber, Log-Cosh, Quantile, ...

Mean Square Error Cost Function

$$\Box J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h(x^i) - y^i \right)^2$$

Goal is to $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Minimizing the Cost Function

- Minimizing the cost function in order to learn parameters $\theta's$:
- Two approaches:
 - Iterative Gradient Descent
 - Non-iterative Normal Equation (later on in this lecture)

Simplified Gradient Descent Algorithm

- For simplicity, assume that θ_0 is zero.
- Initialize θ_1
- Repeat until convergence:

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 (subject to: $\alpha > 0$)

Gradient Descent Example

Gradient Descent Example (cont.)

Multivariate Linear Regression

Multivariate linear regression:

$$h(\boldsymbol{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n ,$$
 where $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^T$

Feature engineering

- Feature Selection
 - Domain expert knowledge
 - Feature scaling
- Feature Extraction
- Adding Polynomial Features
- Dimensionality Reduction
 - Principal component analysis (PCA)
 - Auto Encoders
- **...**
- Computers Teach Themselves to Recognize Cats, Faces: by Peter Norvig
- Representation Learning, Yoshua Bengio et al.

Self Learned Cat!

Gradient Descent Algorithm

- Initialization
- Repeat until convergence:

for j=1 to n do

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_{0..n})$$

(subject to: $0 \le j \le n, \ \alpha > 0$)

Gradient Descent Algorithm (cont.)

- Initialization
- Repeat until convergence:

$$\boldsymbol{\theta}^{k+1} \leftarrow \boldsymbol{\theta}^k - \alpha \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Where gradient vector is defined as follows:

$$\boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} J(\boldsymbol{\theta}) \end{bmatrix}$$

How to Use Training Data

Holdout method: split up your data into a train and a test set.

	Price	Size
	247	1020
	133	806
Training set 60% 70%	390	1584
00% 70%	117	550
	403	1682
Tost set		
Test set 30% 40%	275	1054
	168	988

Polynomial Regression

A type of univariate non-linear regression:

$$h(x) = \theta_0 + \dots + \theta_i x^i + \dots + \theta_d x^d$$

$$h(x) = \theta_0 + \dots + \theta_i x_i + \dots + \theta_d x_d$$

- Parameter Learning:
 - Moving to a higher dimension allows us to treat the polynomial regression as a linear regression problem.

Example

Moving to a higher dimension, an example:

a)
$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$b) h(x) = \theta_0 + \theta_1 x + \theta_2 x_2$$

□ Suppose that parameters in (b), namely θ_0 , θ_1 , θ_2 , are estimated as (1,0,1), using the gradient descent algorithm:

$$y = x_2 + 1$$
 going back to the original space $y = x^2 + 1$

Polynomial Regression (cont.)

- Model Selection:
 - \circ How to select the hyper–parameter d, for a given set of data points?

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d$$

Over/Under Fitting

Considering the given data points, which model is best and why?

Validation Set

- Parameter Learning vs. Model Selection
- Why do we need a validation set?

Size	Price	
1020	247	
806	133	Training data 60%
1584	390	m_{tr}
550	117	U
1682	403	Validation data 20%
		m_v
1054	275	Test data 20%
988	168	m_{ts}

Model Selection

■ Model selection boils down to choosing the hyper parameter *d* (polynomial degree).

d	Hypothesis	Туре	Parameter Learning $min J_{tr}(heta)$	Error on Validation data
1	$h(x) = \theta_0 + \theta_1 x$	linear	$\boldsymbol{\theta_1} = [\theta_0, \theta_1]^T$	$J_v(\boldsymbol{\theta_1})$
2	$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$	quadratic	$\boldsymbol{\theta_2} = [\theta_0, \theta_1, \theta_2]^T$	$J_v(\boldsymbol{\theta_2})$
3	$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$	cubic	$\boldsymbol{\theta_3} = [\theta_0, \theta_1, \theta_2, \theta_3]^T$	$J_v(\boldsymbol{\theta_3})$
4		quartic		
5		quintic		

Model Selection (cont.)

Model selection boils down to choosing the hyper parameter d (polynomial degree).

d	Hypothesis	Type	Parameter Learning $min J_{tr}(heta)$	Error on Validation data
1	$h(x) = \theta_0 + \theta_1 x$	linear	$\boldsymbol{\theta_1} = [\theta_0, \theta_1]^T$	$J_v(\boldsymbol{\theta_1})$
2	$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$	quadratic	$\boldsymbol{\theta_2} = [\theta_0, \theta_1, \theta_2]^T$	$J_v(\boldsymbol{\theta_2})$
3	$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$	cubic	$\boldsymbol{\theta}_3 = [\theta_0, \theta_1, \theta_2, \theta_3]^T$	$J_v(\boldsymbol{\theta_3})$
4		quartic		
5		quintic		

$$d = \underset{k}{\operatorname{argmin}} J_{v}(\boldsymbol{\theta_{k}})$$

Why Validation Data: Intuition

Borrowed from a Data Mining Contest

You are limited to one submission per day and three total. On the final day, you are no longer restricted to one submission per day.

Under/Over Fitting

High bias vs. high variance model

Bias/Variance Tradeoff

Figure © Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Bias

- 1. Likelihood that a learner doesn't change its mind.
- How to push an ML algorithm in one direction, which is imposed from outside. (eg. Regularization, maximizing margin)
- Each learning algorithm has an inductive bias that imposes a preference on the space of all possible hypotheses.

Cross Validation

- Holdout method may be misleading if we happen to get an unfortunate split.
- \square *k*-fold cross validation (or out-of-sample testing):

Leave-one-out cross validation

Dataset Bias - Example

Personalised Magic Mugs | Heat ... smartphoto.eu · In stock

DINERA Mug, gray-blue - IKEA ikea.com · In stock

WM Bartleet & Sons 1750 T402 ... amazon.co.uk

12 oz Porcelain Mug, White,... katom.com · In stock

Personalized White Glo... printful.com · In stock

Mug | Le Creuset® Official ... lecreuset.com · In stock

DINERA Mug - dark grey - IK... ikea.com · In stock

I'm a Hermes Coffee Mug by I... society6.com · In stock

Dip Black and White Coffee M... cb2.com · In stock

LINO Coffee Mug notneutral.com

Welcome II Mug + Reviews | ... crateandbarrel.com · In stock

Magic Photo Coffee Mug |Sn... snapfish.com · In stock

12X Athena Hotelware Mugs 1... amazon.co.uk

Cornish 12oz Mug Mugs cornishware.co.uk · In stock

Regularization

Modify cost function to add preference or bias for certain parameters near zero to prevent overfitting.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Regularization (cont.)

Modify cost function to add preference or bias for certain parameters near zero to prevent overfitting.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Minimizing the Cost Function

- Minimizing the cost function in order to learn parameters $\theta's$:
- Two approaches:
 - Iterative Gradient Descent (already discussed)
 - Non-iterative Normal Equation
- Note: Either approach can be used for both Univariate and Multivariate models.

Notations

- □ Capital letters → random variables
- □ Lower case letters → values of random variables also for scalars
- \square Bold lower case letters \rightarrow real-valued vectors (even if random variables)
- Bold capital letters → matrices

Normal Equation

Here we discuss the normal equation for multivariate models:

$$h(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$
 goal is to minimize
$$J(\theta_{0,\dots n}) = \frac{1}{2m} \sum_{i=1}^m (h(x^i) - y^i)^2$$

Let's assume
$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$
, $\boldsymbol{x} = \begin{bmatrix} x_0 = 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$: $h(x) = \boldsymbol{\theta}^T \boldsymbol{x}$

Design Matrix

■ We define the design matrix as the following:

$$\mathbf{X}_{\mathbf{m}\times(\mathbf{n}+1)} = \begin{bmatrix} (\mathbf{x}^1)^T \\ (\mathbf{x}^2)^T \\ \vdots \\ (\mathbf{x}^m)^T \end{bmatrix}$$

The matrix form of the cost function (why?):

$$J(\theta) = \frac{1}{2m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

Justification

 $y = X\theta + \epsilon$ (goal is to minimize error ϵ)

$$\epsilon = y - X\theta \rightarrow \|\epsilon\| = \|y - X\theta\|$$

$$\|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|^2 = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}).(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})$$

$$= (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Normal Equation

$$\Box J(\theta) = (y - X\theta)^T (y - X\theta) = ((X\theta)^T - y^T)(X\theta - y)$$

$$= (X\theta)^T X\theta - (X\theta)^T y - y^T X\theta + y^T y$$

$$= (X\theta)^T X\theta - 2(X\theta)^T y + y^T y$$

$$\frac{\partial J}{\partial \boldsymbol{\theta}} = 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2\boldsymbol{X}^T \boldsymbol{y} = 0 \rightarrow \boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Normal Equation (cont.)

$$\Box J(\theta) = (y - X\theta)^T (y - X\theta) = ((X\theta)^T - y^T)(X\theta - y)$$

$$= (X\theta)^T X\theta - (X\theta)^T y - y^T X\theta + y^T y$$

$$= (X\theta)^T X\theta - 2(X\theta)^T y + y^T y$$

$$\frac{\partial J}{\partial \boldsymbol{\theta}} = 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2\boldsymbol{X}^T \boldsymbol{y} = 0 \rightarrow \boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

 \square When X^TX is not invertible?

Evaluation

 \square L2 error: LSE \rightarrow MSE \rightarrow RMSE

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h(x^i) - y^i \right)^2$$

□ L1 error: LAD → MAD

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} |h(x^i) - y^i|$$

■ Which one is less sensitive to outliers? MSE or MAE?

Further Reading

- Regression toward the mean
- Stochastic Gradient Descent
 - SAG: Stochastic Average Gradient
 - SAGA: A Fast Incremental Gradient Method
- K-nearest Neighbors Regressionm Support Vector Regression (SVR), Random Forest Regression, Gradient Boosting Machine (GBM), Recurrent Neural Networks (RNNs), LASSO Regression, Ridge Regression
- Sparsity and the Lasso
- Logistic Regression (!)
- **...**
- Representation Learning
 - Yoshua Bengio, Aaron Courville, Pascal Vincent, "<u>Representation Learning: A</u> Review and New Perspectives", 2014.