

Sparse Matrix-Vector Multiplication

Motivation

Algorithm 2. HPCG

```
1: while k \leq iter \& r_{norm}/r_0 > tol do
```

- 2: z = MG(A,r)
- $3: \quad oldrtz = rtz$
- 4: $rtz = \langle r, z \rangle$
- 5: $\beta = rtz/oldrtz$
- 6: $p = \beta * p + z$
- 7: Ap = A * p
- 8: $pAp = \langle p, Ap \rangle$
- 9: $\alpha = rtz/pAp$
- 10: $x = x + \alpha * p$
- 11: $r = r \alpha * Ap$
- 12: $r_{norm} = \langle r, r \rangle$
- 13: $r_{norm} = sqrt(r_{norm})$
- 14: k + +

Performance Modelling?
Optimal Performance?
Performance Optimizations?

Our plan for today

The Roofline Model – revisited

- Performance Engineering for SpMV CPU
- Data layout considerations GPUs

Boundary conditions:

- Node-level (OpenMP / CUDA)
- Application problems / matrices: Standard collection / own work

The Roofline Model – revisited

Roofline Performance Model

- When to apply: Single chip or compute node
- Performance bottleneck: Executing Flops or transfering data
- Maximum attainable performance $P = min (P_{peak}, I * b_s)$ with

Peak Performance: [Flop/s] Ppeak

Memory bandwidth: b_{S} [Byte/s]

Computational Intensity: I (Code Balance: $B_C = I^{-1}$

[Flop/Byte]

[Byte/Flop]

R.W. Hockney and I.J. Curington. Parallel Computing 10, 277-286 (1989).

S. Williams. UCB Tech. Report No. UCB/EECS-2008-164. PhD thesis (2008)

S. Williams, A. Waterman, and D. Patterson. 2009. Commun. ACM 52, 4 (April 2009)

Roofline Model – Characteristic behaviour

Machine model with $P_{peak}=4.5$ TF/s and $b_S=300$ GB/s

Roofline Model: Application information

Measure application performance P and calculate / measure application intensity I

Lower horizontal roofs (P_{peak})

More realistic bounds for "bad" implementations

Lower horizontal roofs (Ppeak)

More realistic bounds for "bad" implementations

Lower horizontal roofs (P_{peak})

No SIMD, no pipelining, 1 FMA only \rightarrow 64 x decrease in P_{Peak}

Lower horizontal roofs (P_{peak})

Reality: Lower horizontal roofs (P_{peak}) are typically not known

Countermeasure: Improve code quality, e.g. compiler options, SIMD vectorization,...

Power - Energy - HPC

Bandwith limited code

Well implemented code exploits memory bandwidth

Bandwith limited code

Well implemented code exploits memory bandwidth

Roofline Model - Sparse Matrix Vector Multiplication

SpMV:

$$y = A x$$

Today: Performance engineering of a single SpMV – general structure

- Can we use RLM? What is the intenstiy of SpMV?
- Is there an maximum code intensity I for SpMV?
- Impact of matrix structure / OpenMP parallelization?
- CPU vs. GPU: Data layouts and more

Tomorrow: Can we increase I if we look beyond a single SpMV?

■ RACE: Looking at SpMV differently: SpMVM ←→ Graph traversal problem

Performance Engineering for Sparse Matrix-Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in some matrix diagonalization algorithms
 - Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: $N_{nzr} = N_{nz}/N_r$

SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores

- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme

- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Mainly streaming data access mixed with partially indirect access:

```
\label{eq:somp} \begin{tabular}{ll} !\$OMP parallel do schedule(???) \\ do i = 1,N_r \\ do j = row\_ptr(i), row\_ptr(i+1) - 1 \\ C(i) = C(i) + val(j) * B(col\_idx(j)) \\ enddo \\ enddo \\ !\$OMP end parallel do \\ \end{tabular}
```

- Usually many spMVs required to solve a problem
- Now let's look at some performance measurements...

Performance characteristics

- Strongly memory-bound for large data sets → saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?
- Is there a "light speed" for SpMV?

Optimization?

SpMV node performance model – CRS (1)

```
do i = 1, N_r
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo
```

```
real*8 val(N<sub>nz</sub>)
integer*4 col_idx(N<sub>nz</sub>)
integer*4 row_ptr(N<sub>r</sub>)
real*8 C(N<sub>r</sub>)
real*8 B(N<sub>c</sub>)
```

Min. load traffic [B]: $(8 + 4) N_{nz} + (4 + 8) N_r + 8 N_c$

Min. store traffic [B]: $8 N_r$

Total FLOP count [F]: $2 N_{nz}$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = N_{nz}/N_r)$ or column $(N_{nzc} = N_{nz}/N_c)$

Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F}$ $\rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

do i = 1,
$$N_r$$

do j = row_ptr(i), row_ptr(i+1) - 1
 $C(i) = C(i) + val(j) * B(col_idx(j))$
enddo
enddo

$$B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}$$

Parameter (α) quantifies additional traffic for **B** (:) (irregular access):

$$\alpha \ge 1/N_{nzc}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

CRS code balance

• α quantifies the traffic for loading the Right Hand Side (RHS) vector

$$B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}$$
$$= \left(6 + 4 \alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$$

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis
- \rightarrow Determine α by measuring the actual memory traffic (\rightarrow measured code balance B_C^{meas})

Determine α (RHS traffic quantification)

$$B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F} \quad (= B_C^{meas})$$

- V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)
- Solve for α :

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{10}{N_{nzr}} \right)$$

Example: kkt_power matrix from the UoF collection (one Intel SNB socket)

- $N_{nz} = 14.6 \cdot 10^6$, $N_{nzr} = 7.1$
- $V_{meas} \approx 258 \text{ MB}$
- $\rightarrow \alpha = 0.36$, $\alpha N_{nzr} = 2.5$
- → RHS is loaded 2.5 times from memory

11% extra traffic → optimization potential!

Three different sparse matrices

Roofline performance prediction :
$$P_{opt} = I * b_S = {}^{b_S}/_{B_{C,min}}$$

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_S = 46.6 \, \mathrm{GB/s}$

Matrix	N	N_{nzr}	$B_{C,min}$ [B/F]	P _{opt} [GF/s]
DLR1	278,502	143	6.1	7.64
scai1	3,405,035	7.0	8.0	5.83
kkt_power	2,063,494	7.08	8.0	5.83

DLR1

scai1

kkt_power

Now back to the start...

- $b_S = 46.6 \, \text{GB/s}$, $B_c = 6 \, \text{B/F}$
- Maximum spMVM performance:

$$P_{max} = 7.8 \, \text{GF/s}$$

- DLR1 causes (almost) minimum CRS code balance (as expected)
- scai1 measured balance:

 $B_c^{meas} \approx 8.5 \text{ B/F} > B_{C,min}$ (6% higher than min)

- \rightarrow good BW utilization, slightly non-optimal α
- kkt_power measured balance:

 $B_c^{meas} \approx 8.8 \text{ B/F} > B_{c,min}$ (10% higher than min)

→ performance degraded by load imbalance, fix by block-cyclic schedule

Investigating the load imbalance with kkt_power

Measurements with likwid-perfctr (MEM_DP group)

static,2048

→ Fewer overall instructions, (almost) BW saturation, 50% better performandce with load balancing

→ CPI value unchanged!

SpMV node performance model – CPU

Intel Xeon Platinum 9242 24c@2.8GHz (turbo) $b_S = 122 \ GB/s$

Matrices taken from: C. L. Alappat et al.: *ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.* In print. Preprint: arXiv:2103.0301

Data layout considerations – GPUs

What about GPUs?

- GPUs need
 - Sufficient work per kernel launch in order to leverage their parallelism

 Coalesced access to memory (consecutive threads in a warp should access consecutive memory addresses)

- Plain CRS for SpMV on GPUs is not a good idea
 - 1. Short inner loop
 - 2. Different amount of work per thread
 - 3. Non-coalesced memory access
- Remedy: Use SIMD/SIMT-friendly storage format
 - ELLPACK, SELL-C-σ, DIA, ESB,...

What about GPUs?

- Each GPU thread computes one row, iterates over column indices
- This is the best mapping for CRS:
 - Enough parallelism to saturate the GPU (unless matrix is small)
 - Consecutive threads use similar data, spatial locality is used
 - No reduction among threads, each thread computes its own sum
- But plain CRS has problems on GPUs!

CRS SpMV in CUDA (y = Ax)

```
template <typename VT, typename IT>
global static void
spmv csr(const ST num rows,
         const IT * RESTRICT row ptrs, const IT * RESTRICT col idxs,
         const VT * RESTRICT values, const VT * RESTRICT x,
                                             VT * RESTRICT V)
   ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row
   if (row < num rows) {</pre>
       VT sum{};
       for (IT j = row ptrs[row]; j < row ptrs[row + 1]; ++j) {
            sum += values[j] * x[col idxs[j]];
       y[row] = sum;
```

$$B_c(\alpha) = \left(6 + 4 \alpha + \frac{6}{N_{nzr}}\right) \frac{B}{F}$$

No write-allocate on GPUs for consecutive stores

SpMV CRS performance on a GPU

NVIDIA Ampere A100 Memory bandwidth $b_S = 1400 \text{ GB/s}$

- Strong " α effect" large deviation from optimal α for many matrices
 - Many cache lines touched b/c every thread handles one row → bad cache usage
- Mediocre memory bandwidth usage (<< 1400 GB/s) in many cases
 - Non-coalesced memory access
 - Imbalance across rows/threads of warps

CRS SpMV on GPUs: scattered loads

- Loads are executed in lock step on GPUs too
- GPUs prefer compact "coalescable" addresses for each load (i.e. consecutive access across threads)

CRS vs. GPU

- Row-wise storage format but access pattern orthogonal! → Scattered loads within warp
- Scattered loads need more cycles
- Scattered values occupy more cache lines
- Higher latencies and redundant data transfers

CRS SPMV on GPUs – Problems: Idle threads

- Threads are grouped in warps
- Threads in a warp execute in lockstep, similar to SIMD
- Problem: loop over column indices can have different trip count for each vector
- Threads in a warp that have completed the loop are masked off
- All threads in a warp have to wait for the thread with most non-zeros

M. Kreutzer et al.: A Unified Sparse Matrix Data Format For Efficient General Sparse Matrix-vector Multiplication On Modern Processors With Wide SIMD Units, SIAM SISC 2014, DOI: 10.1137/130930352

Idea

- Sort rows according to length within sorting scope σ
- Store nonzeros column-major in zero-padded chunks of height C

SELL-C- σ SpMV in CUDA (y=Ax)

```
template <typename VT, typename IT> global static void
spmv_scs(const ST C, const ST n_chunks, const IT * RESTRICT chunk_ptrs,
        const IT * RESTRICT chunk lengths, const IT * RESTRICT col idxs,
        const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)
  ST row = threadIdx.x + blockDim.x * blockIdx.x;
  ST c = row / C; // the no. of the chunk
  ST idx = row % C; // index inside the chunk
  if (row < n chunks * C) {
      VT tmp{};
      IT cs = chunk ptrs[c]; // points to start indices of chunks
      for (ST j = 0; j < chunk lengths[c]; ++j) {
          tmp += values[cs + idx] * x[col idxs[cs + idx]];
          cs += C;
      y[row] = tmp;
```

Code balance of SELL-C- σ (y=Ax)

When measuring B_C^{meas} , take care to use the "useful" number of flops (excluding zero padding) for work

How to choose the parameters C and σ on GPUs?

- **-** C
 - n× warp size to allow good utilization of GPU threads and cache lines

- 0
 - As small as possible, as large as necessary
 - Large σ reduces zero padding (brings β closer to 1)
 - Sorting alters RHS access pattern $\rightarrow \alpha$ depends on σ

SpMV node performance model – GPU

NVIDIA Ampere A100

 $b_S = 1400 \text{ GB/s}$

SpMV node performance model – CPU

Roofline analysis for spMVM

- Conclusion from the Roofline analysis
 - The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
 - We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
 - Result indicates:
 - 1. how much actual traffic the RHS generates
 - 2. how efficient the RHS access is (compare BW with max. BW)
 - 3. how much optimization potential we have with matrix reordering
- Do not forget about load balancing!
- Sparse matrix times multiple vectors bears the potential of huge savings in data volume
- Consequence: Modeling is not always 100% predictive. It's all about learning more about performance properties!

BACKUP

Applying sparse matrix to multiple vectors (Sparse Matrix Multiple Vectors: SpMMV)

Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS (r) vectors to yield multiple LHS (r) vectors

```
do s = 1,r

do i = 1, Nr

do j = row\_ptr(i),row\_ptr(i+1)-1

C(i,s) = C(i,s) + val(j) *

B(col\_idx(j),s)

enddo

enddo

B_c unchanged, no

enddo

reuse of matrix data
```

```
do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *
B(s,col_idx(j))
enddo
enddo
enddo
enddo
structure (row major)
```

SpMMV code balance

One complete inner (s) loop traversal:

- 2r flops
- 12 bytes from matrix data (value + index)
- $\frac{16r}{N_{nzr}}$ bytes from the r LHS updates
- $\frac{4}{N_{nzr}}$ bytes from the row pointer
- $8r\alpha(r)$ bytes from the r RHS reads

$$B_c(r) = \frac{1}{2r} \left(12 + 8r\alpha(r) + \frac{16r + 4}{N_{nzr}} \right) \frac{B}{F}$$

$$= \left(\frac{6}{r} + 4\alpha(r) + \frac{8 + 2/r}{N_{nzr}}\right) \frac{B}{F}$$

```
do i = 1, Nr
  do j = row_ptr(i),row_ptr(i+1)-1
  do s = 1,r
      C(s,i) = C(s,i) + val(j) *
            B(s,col_idx(j))
  enddo
enddo
enddo
```

OK so what now???

SpMMV code balance

Let's check some limits to see if this makes sense!

M. Kreutzer et al.: Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems.

Proc. <u>IPDPS15</u>, <u>DOI: 10.1109/IPDPS.2015.76</u>

SELL-C- σ kernel on CPUs

Example C = 4 without further unrolling

```
for(i = 0; i < N/4; ++i)
  for(j = 0; j < cl[i]; ++j)
   y[i*4+0] += val[cs[i]+j*4+0] *
              x[col[cs[i]+j*4+0]];
   y[i*4+1] += val[cs[i]+j*4+1] *
              x[col[cs[i]+j*4+1]];
                                       C = 4
    y[i*4+2] += val[cs[i]+j*4+2] *
              x[col[cs[i]+j*4+2]];
    y[i*4+3] += val[cs[i]+j*4+3] *
              x[col[cs[i]+j*4+3]];
```