Deep Learning: Homework 1

Qi Luo A02274095

1/18/2019

Problem 1

- 1. Multilayer perceptron: Solar radiation map
- 2. Convolutional Neural Network: Drug discovery
- 3. Recurrent Neural Network: Digital asset management in marketing
- 4. Autoencoder: One-class classification
- 5. Generative Adversarial Network: Create clothing images and styles from an image
- 6. Deep reinforcement learning: Personalized news recommendations

Problem 2

- 1. Let A, B be positive definite matrixs, then $\forall x \in \mathbf{R}^n \setminus 0$, $x^TAx > 0$ and $x^TBx > 0$. Therefore, $x^TAx + x^TBx > 0 \Rightarrow x^T(A+B)x > 0$. Hence, $x^T(A+B)x > 0$ for all $x \in \mathbf{R}^n \setminus 0$ which implies that the sum of two PD matrices is also PD.
- 2. Let A be a PD matrice and B be a PSD matrix, then $\forall x \in \mathbf{R}^n \setminus 0$, $x^TAx > 0$ and $x^TBx \geq 0$. Therefore, $A+B = x^TAx + x^TBx > 0 \Rightarrow x^T(A+B)x > 0$. Hence, the sum of a PD and PSD is PD.
- 3. (a) A is not a square matrix, so neither PD and PSD.
 - (b) $A^T A$ is PD, since it is a symmetric matrix and its eigenvalues [22.911286 68.088714] are all greater than zero.
 - (c) AA^T is PSD, since its eigenvalues [6.80887140e+01 -4.88498131e-15 2.29112860e+01] are all greater or very close to zero.
 - (d) B is PD, since it is a symmetric matrix and its eigenvalues [1 1 1] are all greater than zero.

- (e) -B is neither PD and PSD, since its eigenvalues [-1 -1 -1] are all less than zero.
- (f) C is PD, since it is a symmetric matrix and its eigenvalues [5.82842712 1. 0.17157288] are all greater than zero.
- (g) $C 0.1 \times B$ is PD, since it is a symmetric matrix and its eigenvalues [5.72842712 0.9 0.07157288] are all greater than zero.
- (h) $C 0.01 \times AA^T$ is neither PD and PSD, since its eigenvalues [4.46822067 1.37698649 5.19123418] are less than zero.

Problem 3

1.

$$\nabla f_1 = \begin{bmatrix} 2v_1 + 3e^{v_2} \\ 3v_1e^{v_2} \end{bmatrix}$$

$$\nabla^2 f_1 = \begin{bmatrix} 2 & 3e^{v_2} \\ 3e^{v_2} & 3v_1 e^{v_2} \end{bmatrix}$$

2.

$$\nabla f_2 = \begin{bmatrix} 12v_1^2v_2 - v_2 \log v_2 \\ 4v_1^3 - v_1 \log v_2 - v_1 \end{bmatrix}$$

$$\nabla^2 f_2 = \begin{bmatrix} 24v_1v_2 & 12v_1^2 - \log v_2 - 1\\ 12v_1^2 - \log v_2 - 1 & -\frac{v_1}{v_2} \end{bmatrix}$$

3.

$$J = \begin{bmatrix} 2v_1 + 3e^{v_2} & 3v_1e^{v_2} \\ 12v_1^2v_2 - v_2\log v_2 & 4v_1^3 - v_1\log v_2 - v_1 \end{bmatrix}$$

Problem 4

- 1. (a) $Pr(X = x, Y = y) \le Pr(X = x)$
 - The probability for x happen should be equal or grater than the probability that x and y are both happen, since we need to consider that the probability for y happen should be less or equal to one.
 - (b) It depends on whether this two random variables are dependent or independent. If they are independent random variables, Pr(X = x|Y = y) = Pr(X = x).
 - (c) $Pr(X = x | Y = y) \ge Pr(Y = y | X = x) Pr(X = x)$ Since $Pr(X = x | Y = y) = \frac{Pr(X = x, Y = y)}{Pr(Y = y)}$, $Pr(Y = y | X = x) Pr(X = x) = \frac{Pr(X = x, Y = y)}{Pr(X = x)} Pr(X = x)$, and $Pr(Y = y) \le 1$.

Problem 5

1.
$$mse = \frac{1}{n} \sum_{i=1}^{n} (w^{T}x_{i} + w_{0} - y_{i})^{2}$$

$$= \frac{1}{n} [wx - y]^{T} [wx - y]$$

$$= \frac{1}{n} [(wx)^{T} (wx) + (wx)^{T} (-y) - y^{T} (wx) - y^{T} (-y)]$$

$$= \frac{1}{n} [(wx)^{T} (wx) + y^{T} y]$$

$$\frac{\partial mse}{\partial w} = \frac{1}{n} [2x^{T} wx - 2x^{T} y] = 0$$

$$w* = (x^{T}x)^{-1} x^{T} y$$

2. According to the plots, when degree = 9 and sigma = 0.2 is looks like overfit the data.

1	Sigma	Degree	MSE	Weights									
1	5 0)	1 14.54316837	0.93098078	-0.65713384								
			2 5.55E-28	1	-3	1							
			9 2.80E-15	1.00E+00	-3.00E+00	1.00E+00	1.60E-06	-1.73E-07	-3.05E-06	3.60E-06	-1.79E-06	4.19E-07	-3.81E-08
	0.05	5	1 28.76266461	0.8606674	-0.71379981								
			2 0.02112102453	1.00381929	-3.04773459	1.01979942							
			9 0.00902656430	3 1.11E+00	-3.06E+00	1.51E-01	6.76E-01	1.16E+00	-2.02E+00	1.20E+00	-3.15E-01	2.81E-02	8.02E-04
	0.2	2	1 14.22869484	1.17603072	-0.68335129								
			2 0.3750097712	1.0469403	-2.96487379	0.97058011							
			9 0.2102336807	1.17952488	-3.14060687	-0.21991351	1.63241144	-0.25149625	-1.39742186	1.99768538	-1.23214554	0.3520455	-0.03783919
10	0 0)	1 154.1210067	1.69180011	-1.27390864								
			2 5.50E-27	1	-3	1							
			9 1.22E-16	1	-3	1.00E+00	-3.81E-09	4.29E-08	-1.92E-08	-2.15E-08	2.16E-08	-6.78E-09	7.35E-10
	0.05	5	1 133.231257	0.99957878	-0.77560223								
			2 0.2513029899	1.0062637	-3.000359	0.99806238							
			9 0.226077497	1.03E+00	-3.02E+00	7.94E-01	1.62E-01	1.81E-01	-1.94E-01	2.29E-02	2.53E-02	-8.82E-03	8.09E-04
	0.2	2	1 146.0396365	1.495408	-1.16811145								
			2 3.781836257	0.97709135	-2.9829376	0.99767143							
			9 3.251049268	0.96897598	-3.36094628	1.29685125	0.80669999	-1.14002863	0.06391825	0.79551026	-0.62026314	0.19046528	-0.02135225