

# Лекция 5

Модель нейрона

# План лекции

- 1. Recap линейных моделей
- 2. Recap градиентного спуска (GD)
- 3. SGD
- 4. Нейрон
- 5. Обучение нейрона
- 6. Функции активации

# Linear Regression Recap

### Одномерная линейная регрессия

(х,у) -- пары точек

Задача: построить предсказания по х для неизвестных у в предположении, что у(х) -- линейная функция

$$y = Ax + B$$



# Пример

Наша цель — предсказать объем годовых продаж для всех новых магазинов, зная их размеры.



$$y = Ax + B$$

|   | id         | date            | price     | pedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view |     | grade | sqft_above | sqft_basem |
|---|------------|-----------------|-----------|----------|-----------|-------------|----------|--------|------------|------|-----|-------|------------|------------|
| 0 | 7129300520 | 20141013T000000 | 221900.00 | 3        | 1.00      | 1180        | 5650     | 1.00   | 0          | 0    | *** | 7     | 1180       | 0          |
| 1 | 6414100192 | 20141209T000000 | 538000.00 | 3        | 2.25      | 2570        | 7242     | 2.00   | 0          | 0    |     | 7     | 2170       | 400        |
| 2 | 5631500400 | 20150225T000000 | 180000.00 | 2        | 1.00      | 770         | 10000    | 1.00   | 0          | 0    | *** | 6     | 770        | 0          |
| 3 | 2487200875 | 20141209T000000 | 604000.00 | 1        | 3.00      | 1960        | 5000     | 1.00   | 0          | 0    |     | 7     | 1050       | 910        |
| 4 | 1954400510 | 20150218T000000 | 510000.00 | 3        | 2.00      | 1680        | 8080     | 1.00   | 0          | 0    |     | 8     | 1680       | 0          |

$$y = (y_1, \dots, y_{\ell})$$
$$x = (x_1, \dots, x_{\ell})$$
$$w = (w_1, \dots, w_d)$$

$$y = a(x) = w_0 + \sum_{j=1}^d w_j x_j$$

$$X = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}\$$

Матричная запись

Фиктивная переменная (случай 2х параметров, n наблюдений)

$$\mathbf{X}\boldsymbol{\omega} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \ddots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} ax_1 + b \\ ax_2 + b \\ \vdots \\ ax_n + b \end{pmatrix}$$

$$ec{y} = Xec{w} + \epsilon,$$

$$\omega = \binom{b}{a}$$

$$= \begin{vmatrix} 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{vmatrix}$$

# Линейная регрессия

$$\vec{y} = X\vec{w} + \epsilon,$$



где

- $ec{y} \in \mathbb{R}^n$  объясняемая (или целевая) переменная;
- w вектор параметров модели (в машинном обучении эти параметры часто называют весами);
- X матрица наблюдений и признаков размерности n строк на m+1 столбцов (включая фиктивную единичную колонку слева) с полным рангом по столбцам:  $\mathrm{rank}\,(X)=m+1$ ;
- $\epsilon$  случайная переменная, соответствующая случайной, непрогнозируемой ошибке модели.

# Gradient descent Recap

# Построение прогноза



# Метод наименьших квадратов (одномерный случай)



http://www.machinelearning.ru

# МНК (многомерный случай)

$$Q(\alpha,X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i,\alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

# Общий случай

$$Q(\alpha, X^{l}) = \sum_{i=1}^{l} L(f(x_{i}, w), y_{i}) \rightarrow min$$

Метод градиентного спуска

$$Q(\alpha, X^{l}) = \sum_{i=1}^{l} L(f(x_{i}, w), y_{i}) \rightarrow min$$

Нужно подобрать вектор параметров Минимизируем ошибку путем минимизации функции потерь

Градиент

 $\nabla \varphi$ 

 $\operatorname{grad} \varphi$ 



http://www.machinelearning.ru

# Градиентный спуск **(GD)**

$$Q(\alpha, X^l) = \sum_{i=1}^{l} L(f(x_i, w), y_i) \to min$$

Численная минимизация методом градиентного спуска:

 $w^{(0)} :=$  начальное приближение:

$$w^{(t+1)} := w^{(t)} - h \cdot \nabla Q(w^{(t)}),$$

где h — градиентный шаг, называемый также темпом обучения

где 
$$h-$$
 градиентный шаг, называемый также тем $w^{(t+1)}:=w^{(t)}-h\sum^\ell 
abla \mathscr{L}_iig(w^{(t)}ig).$ 



# "Спуск ночью с фонариком в горах"



# Градиентный спуск **(GD)**

- 1. Складываем градиенты для каждого примера из выборки
- 2. Обновляем веса после вычисления производных для всех элементов выборки

#### Алгоритм:

Повторять, пока не сойдется:

$$w_i = w_i + \alpha \sum_{i=1}^n \frac{dL(f(x_i, w), y_i)}{dw_i}$$

# Стохастический градиентный спуск

# Стохастический градиентный спуск **(SGD)**

- 1. Вычисляем градиент для одного примера из выборки
- 2. Обновляем веса каждый раз после вычисления производных для **одного** элемента выборки

#### Aлгоpumм GD:

Повторять, пока не сойдется:

$$w_i = w_i + \alpha \sum_{i=1}^n \frac{dL(f(x_i, w), y_i)}{dw_i}$$

#### Aлгоpumм SGD:

Повторять, пока не сойдется:

for i in range(len(X\_train)):

$$w_i = w_i + \alpha \frac{dL(f(x_i, w), y_i)}{dw_i}$$

#### GD vs SGD

#### Вид функции потерь:



#### Вид сверху:

крестик -- точка минимума, куда должен стремиться алгоритм



# GD



# SGD



#### GD vs SGD

- SGD быстрее обновляет веса, но требует больше шагов для сходимости
- SGD хорошо работает на функциях с большим количеством локальных минимумов -- каждый шаг есть шанс, что очреденое значение "выбьет" из локальной ямы и конечное решение будет более оптимальным, чем для GD
- GD хорош для строго выпуклых функций -- он уверенно стремится к точке локального минимума

#### GD vs SGD

Компромисс?

#### Mini-batch gradient descent

Каждый раз обновлять веса по сумме градиентов по небольшой подвыборке.



# Нейрон

# Линейный классификатор

Как из линейной регрессии сделать линейную классификацию?

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j$$

# Линейный классификатор

Как из линейной регрессии сделать линейную классификацию?

$$a(x) = w_0 + \sum_{j=1}^d w_j x_j$$



$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

# Линейный классификатор как модель нейрона

Линейная модель нейрона МакКаллока-Питтса [1943]:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right)$$

 $\sigma(z)$  — функция активации (например, sign),  $w_j$  — весовые коэффициенты синаптических связей,  $w_0$  — порог активации,

### Биологический нейрон человека



# Искусственный нейрон



# Нейронная сеть



# Нейрон: обучение

Обучение градиентным спуском:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right)$$

$$w_i = w_i + \alpha \frac{dL(f(x_i, w), y_i)}{dw_i}$$

# Нейрон: обучение

Пример с  $L(f(x_i, w), y_i) = MSE$ 

$$\frac{dL(f(x_i, w), y_i)}{dw_i} = 2(f(x_i, w) - y_i) \frac{df(x_i, w)}{dw_i} =$$

$$=2(f(x_i,w)-y_i)\frac{d\sigma}{d(w_if_i+b)}\frac{d(w_if_i+b)}{dw_i}$$

# Нейрон: функции активации

• Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Область значений: [0, 1]

$$\frac{d\sigma}{dx} = \sigma(x) \cdot (1 - \sigma(x))$$

Для каких задач применима?

# Нейрон: функции активации

#### Другие функции активации:

- Relu
- LeakyRelu
- Softmax





- Tanh
- Elu
- ..

# The End

