EE2000 Logic Circuit Design

Lecture 3 – Combinational System Design

Design a logic circuit that perform code conversion

- ■Input is BCD 2421 code
- ■Output is BCD 8421 code

State the case

Design a circuit to convert the BCD 2421 to the BCD 8421 code

- A, B, C, D are the input.
- W, X, Y, Z are the output.
- The output functions are:

^{*}Using only Two-input Gates and NOT Gates.

Formulation

Decimal	Minterms	Inputs			Outputs				
numbers			(2421)			(8421)			
Hambers		A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	1
2	2	0	0	1	0	0	0	1	0
3	3	0	0	1	1	0	0	1	1
4	4	0	1	0	0	0	1	0	0
5	11	1	0	1	1	0	1	0	1
6	12	1	1	0	0	0	1	1	0
7	13	1	1	0	1	0	1	1	1
8	14	1	1	1	0	1	0	0	0
9	15	1	1	1	1	1	0	0	1
Unused	5	х	Х	Χ	X	X	Х	Х	Х
Unused	6	х	Х	Χ	X	X	Х	Х	Х
Unused	7	x	Х	X	X	X	Х	Х	Х
Unused	8	Х	Х	Х	Х	Х	Х	Х	Х
Unused	9	Х	Х	Х	Х	Х	Х	Х	Х
Unused	10	Х	х	Х	Х	Х	х	Х	Х

```
W(A, B, C, D)
= \sum m(14, 15)
+\sum d(5,6,7,8,9,10)
X(A,B,C,D)
= \sum m(4, 11, 12, 13)
+ \sum d(5, 6, 7, 8, 9, 10)
Y(A, B, C, D)
= \sum m(2, 3, 12, 13)
+ \sum d(5, 6, 7, 8, 9, 10)
Z(A,B,C,D)
= \sum m(1, 3, 11, 13, 15) 
+ \sum d(5, 6, 7, 8, 9, 10)
```

Simplification

cd	00	01	11	10
00	m_0	m ₄	m ₁₂	<i>m</i> ₈
01	<i>m</i> ₁	<i>m</i> ₅	m ₁₃	<i>m</i> ₉
11	<i>m</i> ₃	m ₇	m ₁₅	m ₁₁
10	m ₂	<i>m</i> ₆	m ₁₄	m ₁₀

$$W = BC$$

$$X = BC' + AB'$$

$$Y = AC' + A'C$$

$$Z = D$$

Logic Circuit

$$W = BC$$

$$X = BC' + AB'$$

$$Y = AC' + A'C$$

$$Z = D$$

^{*}Using only Two-input Gates and NOT Gates.

K-map for segment 'c'

$$c(w, x, y, z) = \Sigma m(0,1,3,4,5,6,7,8,9) + \Sigma d(10,11,12,13,14,15)$$

$$c(w, x, y, z) = x + y' + z$$

K-map for segment 'e'

$$e(w, x, y, z) = \Sigma m(0,2,6,8) + \Sigma d(10, 11, 12, 13, 14, 15)$$

yz wx	00	01	11	10
00	1		х	1
01		-	Х	
11		-	Х	х
10	1	1	Х	х

$$e(w, x, y, z) = x'z' + yz'$$

Assume that the propagation delay of each gate are as shown above.

Work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (x, y, z) = (1,1,0) to (1,1,1).

No hazard!!!

Assume that the propagation delay of all gates is $\Delta \tau$.

Work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (w, x, y, z) = (0,0,0,0) to (0,0,0,1).

Static-O hazard!!!

Assume that the propagation delay of NOT gate is $\Delta \tau$ and $2\Delta \tau$ for others .

Work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (w, x, y, z) = (0,0,0,1) to (0,1,0,1).

Dynamic hazard!!!

Given $f(a, b, c) = \sum m(0,2,4,5)$

a) Minimize the function f

cak	00	01	11	10
0	1	1		1
1				1

$$f(a,b,c) = a'c' + ab'$$

Given $f(a, b, c) = \sum m(0,2,4,5)$

b) Realize f to a hazard-free circuit

$$f(a,b,c) = a'c' + ab'$$

$$f(a,b,c) = a'c' + ab' + b'c'$$