Opinion Mining and Sentiment Analysis: Sentiment Classification

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Sentiment Classification

Sentiment Classification: Task Definition

- Input: An opinionated text object
- Output: A sentiment tag/label
 - Polarity analysis: e.g., categories = {positive, negative, neutral}, or categories ={5, 4, 3, 2, 1}
 - Emotion analysis (beyond polarity): e.g., categories ={happy, sad, fearful, angry, surprised, disgusted}
- A special case of text categorization! → Any text categorization method can be used to do sentiment classification
- Further improvement comes from
 - More sophisticated features appropriate for sentiment tagging
 - Consideration of the order of the categories (e.g., ordinal regression)

Commonly Used Text Features

- Character n-grams: can be mixed with different n's
 - General and robust to spelling/recognition errors, but less discriminative than words
- Word n-grams: can be mixed with different n's
 - Unigrams are often very effective, but not for sentiment analysis (e.g., "it's not good" or "it's not as good as")
 - Long n-grams are discriminative, but may cause overfitting
- POS tag n-grams: mixed n-gram with words and POS tags
 - E.g., "ADJECTIVE NOUN" or "great NOUN"

Commonly Used Text Features (cont.)

- Word classes
 - Syntactic (= POS tags)
 - Semantic Concept: e.g., thesaurus/ontology, recognized entities
 - Empirical word clusters (e.g., cluster of paradigmatically or syntagmatically related words)
- Frequent patterns in text (e.g., frequent word set; collocations)
 - More specific/discriminative than words
 - May generalize better than pure n-grams
- Parse tree-based (e.g., frequent subtrees, paths)
 - Even more discriminative, but need to avoid overfitting
- Pattern discovery algorithms are very useful for feature construction

NLP Enriches Text Representation with Complex Features

A dog is chasing a boy on the playground

Feature Construction for Text Categorization

- Feature design affects categorization accuracy significantly
- A combination of machine learning, error analysis, and domain knowledge is most effective
 - Domain knowledge → seed features, feature space
 - Machine learning → feature selection, feature learning
 - Error analysis → feature validation
- NLP enriches text representation → enriches feature space (more likely overfitting!)
- Optimizing the tradeoff between exhaustivity and specificity is a major goal

high coverage (frequent)

discriminative (infrequent)