in Homotopy Type Theory Using Agda

Generalised Species of Structures

13th June 2017

Outline

Introduction

Combinatorial Species

Sorted Species

SM Construction

Generalised Species

Implementation

Categorical Interpretation

SM Construction 1

SM Construction 2

Differentiation

Leibniz Rule

Warning Agda

Introduction

This project sits at the center of three main topics

Combinatorial Species

Combinatorial Species

A combinatorial species consists of a rule, F, that associates

- with every finite set, U, a finite set, F[U]
- with every bijection, $\sigma:U\to V$, a bijection, $F[\sigma]:F[U]\to F[V]$

and satisifies

- $\quad \bullet \quad F[\mathsf{id}_U] = \mathsf{id}_{F[U]}$
- $F[\tau \circ \sigma] = F[\tau] \circ F[\sigma]$

Sorted Species

A k-sorted species, F, acts on finite multisets, associating

- \bullet with every finite multiset, $U=(U_1,\ldots,U_k)$, a finite set, $F[U_1,\ldots,U_k]$
- with every bijective multifunction,

$$\sigma:(U_1,\dots,U_k)\to (V_1,\dots,V_k),$$

a bijection,

$$F[\sigma]\,:\, F[U_1,\ldots,U_k]\to F[V_1,\ldots,V_k]$$

Again this satisifies functoriality conditions

SM Construction

This notion of sorted species is linked to relational models of linear logic

Here we have operations on relations as the connectives of linear logic

$$A \otimes B :\equiv A \times B$$
 $A \& B :\equiv A \uplus B$ $1 :\equiv \emptyset$

$$A \multimap B :\equiv A \otimes B$$

The exponential modality of linear logic is modelled by SM, the finite-multiset construction

- $SM A :\equiv \mathcal{M}_{fin}(A)$
- SM $f := \{([a_1, \dots, a_n], [b_1, \dots, b_n]) \mid \forall i.(a_i, b_i) \in f\}$

Generalised Species

We can generalise the notion of relation between categories $\mathbb C$ and $\mathbb D$ as

$$\mathbb{C} \to \mathbb{D} \to Set$$

We can also generalise the SM construction to categories

The category $\mathsf{SM}\,\mathbb{C}$ has

- objects, finite sequences of objects of \mathbb{C} , $(c_i)_{i=1,\dots,n}$
- $\qquad \text{morphisms, pairs of bijections, } \sigma \in \pmb{\sigma}_n \text{, and sequences of maps } (\![f_i:c_i \to c'_{\sigma i}]\!]_{i=1,\ldots,n}$

Generalised species of structures are defined as

$$\mathbb{C} \leadsto \mathbb{D} :\equiv \mathsf{SM} \, \mathbb{C} \to \mathbb{D} \to \mathbf{Set}$$

Categorical Interpretation

The basis for the project is a categorical interpretation of homotopy type theory

Interpet

- Types as groupoids with morphisms given by the path space
- Type formers as categorical constructions, e.g. products
- The universe as the category **Set**
- Therefore, functions as both functions and functors

SM Construction 1

Sequences of elements of a type C given by $\operatorname{List} C$

Now quotient by the relation of ListPerm C

Quotient achieved using Higher Inductive Type (HIT) given by

$$\begin{aligned} & \text{HIT } \operatorname{Quot}_C(R) :\equiv \\ & \operatorname{q} : C \to \operatorname{Quot}_C(R) \\ & \text{rel} : \Pi_{(x,y:C)} \ R \ x \ y \to \operatorname{q} x = \operatorname{q} y \end{aligned}$$

NB: This is actually quotienting by R^*

SM Construction 2

A more abstract formalisation is given by

$$\mathsf{SM}\,C\,:\equiv \Sigma_{(I\,:\,\mathcal{U})}\,(I\,\to\,C)\,\times\,\Sigma_{(n\,:\,\mathbb{N})}\,\|I\,\simeq\,\mathsf{Fin}\,n\|$$

The sequence of elements of C is indexed by the type I

This is forced to be finite by the proof of equivalence to Fin n

The path space consists of bijections between finitely-indexed sets

Differentiation

The partial derivative of the species $P:A \sim B$ by a:A is defined as

$$\partial_a P m b :\equiv P(m \cup [a]) b$$

Intuitively we view $P_n/n!$ as the coefficients of an exponential power series

$$p(x) :\equiv \sum_{n>0} P_n \frac{x^n}{n!}$$

where differentiation shifts by 1

$$p'(x) :\equiv \sum_{i>0} P_{i+1} \frac{x^i}{i!}$$

Leibniz Rule

We can prove Leibniz Rule

$$\partial_a(P\boxtimes Q)=(\partial_a\,P\boxtimes Q)\boxplus(P\boxtimes\partial_a\,Q)$$

```
\partial c(P \boxtimes Q) dm
\equiv (P \boxtimes Q) d (m \cup [c])
\equiv \Sigma_{(m_1,m_2:\mathsf{SM}C)}\,P\,d\,m_1\times Q\,d\,m_2\times (m\cup[c]=m_1\cup m_2)
= \Sigma_{(m_1,m_2:SMC)} P d m_1 \times Q d m_2
                      \times ((\Sigma_{(m'\cdot SMC)}(m=m'\cup m_2)\times (m'\cup [c]=m_1))
                         (\Sigma_{(m':SMC)}(m = m_1 \cup m') \times (m' \cup [c] = m_2)))
                                                                                                                                                             (combinatorial lemma)
= (\Sigma_{(m_1,m_2:SMC)} P d m_1 \times Q d m_2
                       \times \Sigma_{(m' \cdot SMC)} (m = m' \cup m_2) \times (m' \cup [c] = m_1))
    Ш
    (\Sigma_{(m_1,m_2:SMC)} P d m_1 \times Q d m_2
                       \times \Sigma_{(m' \cdot SMC)} (m = m_1 \cup m') \times (m' \cup [c] = m_2))
= (\Sigma_{(m',m_2:\mathsf{SM}C)} \ P \ d \ (m' \cup [c]) \times Q \ d \ m_2 \times (m = m' \cup m_2))
    (\Sigma_{(m_1,m':\mathsf{SM}C)}\,P\,d\,m_1\times Q\,d\,(m'\cup[c])\times(m=m_1\cup m'))
                                                                                                                                                             (density formula twice)
\equiv (\partial\, c\, P \boxtimes Q) \boxplus (P \boxtimes \partial\, c\, Q)
```

An equational reasoning proof

```
leibniz' : ∀ b m
          + fst (∂ a (P ⋈ 0) b m)
            fst (((∂ a P ⊠ Q) ⊞ (P ⊠ ∂ a Q)) b m)
leihniz! h m =
  fst (d a (P 🗵 0) h m)
     ≃( Trunc-emap
         (S (S (-2)))
         (Σ-emap-r (λ mi +
           Σ-eman-r (λ ma →
             x-emap-r
               (fst (P h m:))
               (x-emap-r
                  (fst (0 b mg))
                  (coe-equiv (combinatorial-lemma m a m1 m2)))))))))
  Trunc
    (S (S (-2)))
     (\Sigma (SM (fst A)) (\lambda m_1 \rightarrow
     \Sigma (SM (fst A)) (\lambda ma \rightarrow
        fst (P b m1)
        x fst (Q b mg)
        × (Σ (SM (fst A)) (λ m' →
             (m == m' U mz) × (m' U SM-T a == m1))
          \Sigma (SM (fst A)) (\lambda m! \rightarrow
             (m == m_1 \cup m') \times (m' \cup SM-T \ a == m_2)))))))
     =( Trunc-emap
         (S (S (-2)))
         (Σ-eman-r (λ m<sub>1</sub> →
           Σ-emap-r (λ ma →
             x-eman-r
               (fst (P b m1))
               Σg-U-equiv-U)))))
```

```
(S (S (-2)))
  (Σ (SM (fst A)) (λ m<sub>1</sub> →
    Σ (SM (fst A)) (λ mg +
       fst (P h ma)
       × ((fst (0 b mg)
         \Sigma (SM (fst A)) (\lambda m' \rightarrow
           (m == m' U ma) x (m' U SM-T a == m1)))
          Ш
          (fst (Q b ma)
         \Sigma (SM (fst A)) (\lambda m' \rightarrow
           (m == m_1 \cup m') \times (m' \cup SM-T a == m_2))))))))
  ≃( Trunc-eman
       (S (S (-2)))
       (Σ-emap-r (λ m<sub>1</sub> +
         Σ-eman-r (λ m₂ →
           Σz-U-equiv-U)))))
Trunc
  (S (S (-2)))
  (Σ (SM (fst A)) (λ m<sub>1</sub> →
    Σ (SM (fst A)) (λ mg →
      (fst (P b m1)
      x fst (0 b ma)
      \times \Sigma (SM (fst A)) (\lambda m! \rightarrow
           (m == m' U mg) x (m' U SM-T a == m1)))
       (fst (P b m1)
      × fst (0 b mg)
      \times \Sigma (SM (fst A)) (\lambda m' \rightarrow
           (m == m_1 \cup m') \times (m' \cup SM-T \ a == m_2)))))))
  ={ Trunc-emap
       (S (S (-2)))
```

(Σ-emap-r (λ m₁ +

```
(snd (P b x))
                      (x-level
                        (snd (0 b mg))
                        (SM-level (snd A) _ _))))
               (m' U SM-T a) -1)))
         (Σ-emap-r (λ m<sub>1</sub> →
           Σ-emap-r (λ m' →
             density
               (λ x →
                 ( fst (P b m1)
                   x fst (Q b x)
                   × (m == m1 U m')
                 , x-level
                      (snd (P b m<sub>1</sub>))
                     (x-level
                        (snd (Q b x))
                        (SM-level (snd A) ))))
               (m' U SM-T a) -1)))) }
Trunc
 (S (S (-2)))
  (Σ (SM (fst A)) (λ m' →
   \Sigma (SM (fst A)) (\lambda m<sub>2</sub> \rightarrow
      fst (P b (m' v SM-T a))
     x fst (Q b m2)
      × (m == m' U me)))
 \Sigma (SM (fst A)) (\lambda m<sub>1</sub> \rightarrow
   Σ (SM (fst A)) (λ m' →
        fst (P b mi)
        x fst (0 b (m' u SM-T a))
        × (m == m<sub>1</sub> U m'))))
  ≃( Trunc-⊔-econv (-2) _ _ }
fst (((∂aP⊠Q) ⊞ (P⊠∂aQ)) b m)
```

