## Exercise No. 1

David Bubeck, Pascal Becht, Patrick Nisblè April 21, 2017

## 2 - Numerical Integration

a)

```
import numpy as np
   import matplotlib.pyplot as plt
  n = np.array([1,5,10,20,30,50])
   xdata = np.linspace(0,1, 1000)
   y = lambda x, a, n: x**n/(x+a)
9
10
11
   plt.figure(figsize = (10,5))
12
   plt.xlabel('x')
13
   plt.ylabel('y')
14
15
   for it in n:
16
   plt.plot(xdata, y(xdata, a, it))
17
```

Listing 1: h



Figure 1: h

b)

```
1 import numpy as np
  import sys
2
3
   import pandas as pd
5
   def y(a, n, y0):
       if n == 0:
7
            return y0
       else:
8
9
            return 1/n - a* y(a, n-1, y0)
10
   if __name__ == '__main__':
11
12
13
       # accepting args as: a, n0, y0, n1
14
15
       print(sys.argv)
16
       a = int(sys.argv[1])
17
       n0 = int(sys.argv[2])
18
19
       n1 = int(sys.argv[4])
       y0 = int(sys.argv[3])
20
21
22
       ndata = range(min(n0, n1), max(n0, n1)+1)
23
       print(ndata)
24
       ydata = [y(a, i, y0) for i in ndata]
       print(ydata)
25
```

w2

|    | n    | $y_n(5)$      |
|----|------|---------------|
| 0  | 10.0 | -1.780484e+06 |
| 1  | 11.0 | 8.902420e+06  |
| 2  | 12.0 | -4.451210e+07 |
| 3  | 13.0 | 2.225605e+08  |
| 4  | 14.0 | -1.112802e+09 |
| 5  | 15.0 | 5.564012e+09  |
| 6  | 16.0 | -2.782006e+10 |
| 7  | 17.0 | 1.391003e+11  |
| 8  | 18.0 | -6.955015e+11 |
| 9  | 19.0 | 3.477508e+12  |
| 10 | 20.0 | -1.738754e+13 |
|    |      |               |

c)