Neural networks William Ratcliff NIST; University of Maryland

Where to find the Code

https://bit.ly/3R9UdYz

Neurons!

Neurons!

https://www.researchgate.net/figure/Diagram-of-neuronand-synapse-Information-transfer-occurs-at-the-synapsea-junction_fig1_368474455

Perceptron

THE STRUCTURE OF A PERCEPTRON

https://www.sharpsightlabs.com/blog/python-perceptron-from-scratch/

Perceptron learning

Positive Examples

Perceptron Algorithm

Now that we know what the \mathbf{w} is supposed to do (defining a hyperplane the separates the data), let's look at how we can get such \mathbf{w} .

Perceptron Algorithm

```
Initialize \vec{w} = \vec{0}
                                                              // Initialize \vec{w}. \vec{w} = \vec{0} misclassifies everything.
while TRUE do
                                                              // Keep looping
   m = 0
                                                              // Count the number of misclassifications, m
   for (x_i, y_i) \in D do
                                                              // Loop over each (data, label) pair in the dataset, D
        if y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0 then
                                                              // If the pair (\vec{x_i}, y_i) is misclassified
            \vec{w} \leftarrow \vec{w} + y\vec{x}
                                                             // Update the weight vector \vec{w}
                                                              // Counter the number of misclassification
           m \leftarrow m + 1
        end if
   end for
    if m=0 then
                                                              // If the most recent \vec{w} gave 0 misclassifications
        break
                                                              // Break out of the while-loop
    end if
end while
                                                              // Otherwise, keep looping!
```

Geometric Intuition

Illustration of a Perceptron update. (Left:) The hyperplane defined by \mathbf{w}_t misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point \mathbf{x} is chosen and used for an update. Because its label is -1 we need to **subtract** \mathbf{x} from \mathbf{w}_t . (Right:) The udpated hyperplane $\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{x}$ separates the two classes and the Perceptron algorithm has converged.

Multilayer Networks

Cost

$$C = rac{1}{2} \|y - a^L\|^2 = rac{1}{2} \sum_j (y_j - a_j^L)^2$$

Gradient Descent

Backpropagation

$$e = y - \hat{y}$$
 $z = e^2$
 $z = e^2$

Neel

$$\frac{\partial L}{\partial w_2}$$
, $\frac{\partial L}{\partial b_2}$, $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial b_1}$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \hat{y}} \frac{\partial \hat{z}}{\partial z_2} \frac{\partial \hat{z}_2}{\partial w_2}$$

$$L = e^2 \qquad \Rightarrow \qquad \frac{\partial L}{\partial e} = (2e)$$

$$= y - \hat{y} \qquad \Rightarrow \frac{\partial e}{\partial \hat{y}} = (1)$$

$$= 6(2e) \Rightarrow \frac{\partial \hat{y}}{\partial z_2} = 6(2e)(1-e)$$

$$\hat{y} = 6(2) \rightarrow 3\hat{y} = 6(2)(1-6(2))$$

$$z_2 = w_2 a_1 + b_2 - \delta \frac{\partial z_2}{\partial w_2} = (a_1) \quad & \frac{\partial z_2}{\partial b_2} = (1)$$

So:
$$\frac{\partial L}{\partial w_z} = 2e(-)(\hat{g}(1-\hat{g}))(a_j)$$

$$-\frac{\partial L}{\partial wz} = -2eq \left[\frac{g(1-\hat{g})}{2} \right]$$

$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial g} \frac{\partial g}{\partial z_2} \frac{\partial z_2}{\partial b_2}$$

$$\frac{\partial L}{\partial b_{2}} = 2e(-1) \left[\hat{g} (1-\hat{g}) \right] (1)$$

$$= \left[-2e \left(\hat{g} (1-\hat{g}) \right) \right]$$

$$\Delta b_2 = -d \frac{\lambda}{\lambda w}$$

$$b_2 - b_2 + ob_2$$

Your turn:

$$\frac{\partial L}{\partial \omega_1} = ?$$

$$\frac{\partial L}{\partial b} = ?$$

$$\Delta w_1 = ?$$

$$\Delta b_{i} = ?$$

$$\frac{\partial L}{\partial w_{1}} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial g} \frac{\partial g}{\partial z_{2}} \frac{\partial z_{2}}{\partial a_{1}} \frac{\partial a_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}}$$

$$= 2e(-1)(\hat{g}(1-\hat{g}))w_{2}(a_{1}(1-\hat{g})) \times (a_{1}(1-\hat{g})) \times (a_{1}($$

$$Z_{1} = w_{1}^{"} \times_{1} + w_{1}^{21} \times_{2} + b_{1}^{1}$$

$$Z_{2} = w_{1}^{12} \times_{1} + w_{1}^{22} \times_{2} + b_{1}^{2}$$

$$Z_{3} = w_{1}^{13} \times_{1} + w_{1}^{23} \times_{2} + b_{1}^{3}$$

$$Z_{i} = \begin{bmatrix} w_{i}^{"} & w_{i}^{2i} \\ w_{i}^{"2} & w_{i}^{22} \end{bmatrix} \begin{bmatrix} x_{i} \\ x_{2} \end{bmatrix} + \begin{bmatrix} b_{i}^{2} \\ b_{i}^{2} \end{bmatrix} = \begin{bmatrix} w_{i} \\ x_{i} \end{bmatrix}$$

$$W_{1} = \begin{bmatrix} w_{1}^{11} & w_{1}^{12} & w_{1}^{13} \\ w_{1}^{21} & w_{1}^{22} & w_{1}^{23} \end{bmatrix}$$

Then similar to before, but w/ matrice

Convolutional Neural Networks

Hands On

https://tinyurl.com/3mmvny2r

Convolutional Layers

- Apply filter to image
- Extract high level features
- Reduce dimensionality

1x1	1x0	1x1	0	0
0x0	1x1	1 x 0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	0 1		0	0

Source: https://towardsdatascience.com/pytorch-basics-how-to-train-your-neural-net-intro-to-cnn-26a14c2ea29

CNN

1	1	1	0	0	
0	1	1	1		
0	0	1	1	1	
0	0	1	1	0	
0	1	1	0	0	

1	0	1
0	1	0
1	0	1

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	6

Max Pooling

- Further reduce dimensionality
- Reduce parameters → reduce training time
- Summarizes features

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Max Pool

Rectified Feature Map

NIST Center for Neutron Research

NIST Center for Neutron Research

Nanoscale Structures

Length Scale (Å)

$$\frac{d\Sigma(Q)}{d\Omega} = \phi_A (\rho_A - \rho_B)^2 V_A P(Q) S_I(Q)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$cross \qquad volume \qquad contrast \quad particle \quad form \quad structure \quad factor \quad volume \quad factor \quad fa$$

Fourier Transform

Density-density correlation function:

$$P(Q) = \frac{< n(-Q)n(Q)>}{n^2} = \int d\vec{r} \int d\vec{r}' \frac{< n(r)n(r')>}{n^2} exp[i\vec{Q}.(\vec{r}'-\vec{r})]$$

Fourier transform:

$$P(Q) = \int d^{3}r \exp[-i\vec{Q}.\vec{r}] P(\vec{r}) = \frac{1}{V_{P}} \int_{0}^{\infty} dr 4\pi r^{2} \frac{\sin(Qr)}{Qr} P(r)$$

[Solution of the property of the property

$$P(r) = 1 - \frac{3}{4} \left(\frac{r}{R}\right) + \frac{1}{16} \left(\frac{r}{R}\right)^3$$

Shape Reconstruction and Inverse Fourier Transform

Pluronics

Dissolved Unimer (low temperature)

PPO PEO

EO:-CH₂CH₂-O-

PO:-CH(CH₃)CH₂-O-

P85: EO₂₆PO₄₀EO₂₆

Formed Micelle (high temperature)

Pluronic Micelles

Phase Diagram

COLAB TIME

Where to find the Code

https://bit.ly/3R9UdYz

How Did We Do?

Filters and Feature Maps

https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/

Filters and Feature Maps

Results

fuzzy sphere

core multigage and speech and

Questions