Dropout

Heni Ben Amor, Ph.D.
Assistant Professor
Arizona State University

Overfitting

- Noise in training data
- Network can learn to model this noise

Overfitting

Data

Worse runtime accuracy on unseen data many productions/ chassificate, Teshy Training **Overfit Testing Data/Inference Training**

Solutions: Early stopping

Stop training when loss on testing dataset begins increasing.

Solutions: Dropout

- Introduced by Geoffrey Hinton et al. in 2012
- Mean of many differently trained networks likelier to produce better results.
- Dropout approximates using multiple neural networks without the costly computation or memory.

Dropout Training

During training, for any number of layers, completely dropout each neuron with probability P.

Dropping Neurons

This can be done simply through matrix multiplication.

Dropping Neurons

This can be done simply through matrix multiplication.

Dropout Evaluation

- Dropout is applied during training.
- During network evaluation, dropout layer neurons are instead scaled by P.

Summary

- Properly fit model to data
- Dropout approximates using multiple differently trained networks.
- Prevents overreliance on specific inputs or combinations
- Training neurons dropped out with probability P, during evaluation inference neurons scaled by P.