Лабораторная работа 3.4.2. Закон Кюри-Вейсса

Сидорчук Максим, Б01-204

19 декабря 2024 г.

Краткая теория

В данной лабораторной работе предлагается проверить закон Кюри-Вейсса: при температуре выше температуры Кюри:

$$\chi \sim \frac{1}{T - \theta_P}$$

 θ_P - парамагнитная точка Кюри.

Исследуемый материал будет помещен в катушку индуктивности, из-за чего её индуктивность будет меняться с температурой:

$$L - L_0 \sim \mu - 1 = \chi$$

Изменение индуктивности будем наблюдать с помощью изменения периода колебаний: $\tau = 2\pi\sqrt{LC}$, поэтому

$$L - L_0 \sim \tau^2 - \tau_0^2 \rightarrow \chi \sim \tau^2 - \tau_0^2 \rightarrow \frac{1}{\tau^2 - \tau_0^2} \sim T - \theta_P$$

Здесь L_0 и τ_0 - индуктивность и период колебаний без образца в катушке соответственно.

Экспериментальная установка

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой

контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Измерения проводятся в интервале температур от 14° С до 40° С. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. Эта разность температур фиксируется термопарой, чувствительность которой $K = 24 \frac{\text{град}}{\text{мB}}$. ЭДС термопары измеряется цифровым вольтметром.

Результаты измерений и их обработка

Полученные значения τ при разных температурах записаны в таблице. Показания цифрового вольтметра изменялись достаточно сильно, поэтому примем их погрешность $\sigma_U = 0,002$ мВ, что в измерении температуры даст погрешность $0,05^{\circ}C$. Вместе с погрешностью измерения температуры в термостате $0,05^{\circ}C$ получаем погрешность $0,07^{\circ}C$ в измерении температуры образца.

Период колебаний без образца внутри катушки: $\tau_0 = 6.9092$ мкс.

$t, {}^{\circ}C$	ΔU , мкВ	τ , MKC	$t_{\text{ofp}}, {}^{\circ}C$
14.11	-11	7.9212	13.84
16.11	-9	7.8567	15.89
18.11	-12	7.758	17.82
20.11	-5	7.5611	19.99
22.80	-9	7.3836	22.58
24.07	-14	7.2207	23.73
26.09	-7	7.1263	25.92
28.09	-4	7.0831	27.99
30.08	-5	7.0578	29.96
32.06	-11	7.0423	31.79
34.05	-12	7.0285	33.76
36.04	-16	7.0185	35.65
38.06	-9	7.009	37.84
40.04	-10	7.0033	39.80

Таблица 1: Значения периода колебаний в зависимости от температуры образца

По этим данным построим график $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Аппроксимируем прямой часть графика, начиная с четвертого значения. Получили прямую $y\approx 0,349x-5,92$. Тогда она пересечет ось абсцисс в точке $\theta_P=(17,95\pm1,44)^\circ C$.

Выводы

В данной лабораторной работе мы проверили выполнимость закона Кюри-Вейсса, получив график зависимости $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Зависимость совпадает с теоретической по характеру, но значения точки Кюри и парамагнитной температуры Кюри отличаются от теоретических: $\theta_{th}=20,2^{\circ}C,\;\;\theta_{P_{th}}>\theta_{th}.$ Различия связаны, прежде всего, с способом получения данных: график построен в координатах $\frac{1}{\tau^2-\tau_0^2}=f(T),\;$ а $\frac{1}{\tau^2-\tau_0^2}\sim\frac{1}{\chi},\;$ то есть строго равенства

Рис. 1: Зависимость $\frac{1}{\tau^2 - \tau_0^2} = f(T)$

нет, есть только пропорциональность, а парамагнитная температура Кюри определяется из графика $\frac{1}{\chi}(T).$