Global Cybersecurity Threats Analysis

Contents

1	Set	up	2
	1.1	Import Packages	2
	1.2	Load data	2
2	Trend Analysis		
	2.1	Financial Losses	2
		2.1.1 Overall	2
		2.1.2 Breakdown by Attack types	3
		2.1.3 Breakdown by Target Industries	4
		2.1.4 Breakdown by Vulnerabilities	5
	2.2		6
		2.2.1 Overall	6
		2.2.2 Breakdown by Attack types	7
		2.2.3 Breakdown by Target Industries	8
		2.2.4 Breakdown by Vulnerabilities	9
3	Geographical Analysis		
	3.1	Financial Losses	10
		3.1.1 Overall	10
	3.2	Number of Affected Users	11
		3.2.1 Overall	11
4	Fina	ancial Impact Analysis	12
5	Ind	ustry Analysis	12
6	Viil	nerability Analysis	12
O	vui	nerability Analysis	14
7	Use	er Impact Analysis	13
7 8		er Impact Analysis sponse Time Analysis	13 13

1 Setup

1.1 Import Packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import seaborn as sns
```

1.2 Load data

```
pd.set_option('display.max_columns', 50, 'display.width', 200)
df = pd.read_csv('data/Global_Cybersecurity_Threats_2015-2024.csv')
df.head()
```

```
| Country | Year | Attack Type | Target Industry | Financial Loss (in Million
→ $) | Number of Affected Users | Attack Source | Security Vulnerability Type | Defense
→ Mechanism Used | Incident Resolution Time (in Hours) |
| 2019 | Phishing
| 0 | China
                                  | Education
→ 80.53 |
                         773169 | Hacker Group | Unpatched Software
                                                                        | VPN
→ |
                                 63 l
| 1 | China
          | 2019 | Ransomware
                                  | Retail

→ 62.19 |

                          295961 | Hacker Group | Unpatched Software

→ Firewall

| 2 | India | 2017 | Man-in-the-Middle | IT

→ 38.65 |

                          605895 | Hacker Group | Weak Passwords
                                                                        | VPN
                                 20 I
\hookrightarrow
| 3 | UK
           | 2024 | Ransomware
                                  | Telecommunications |
                         659320 | Nation-state | Social Engineering

→ AI-based Detection

                      7 |
| 4 | Germany | 2018 | Man-in-the-Middle | IT

→ 74.41 |

                  810682 | Insider
                                             | Social Engineering
                                                                        | VPN
                                 68 I
```

2 Trend Analysis

2.1 Financial Losses

2.1.1 Overall

```
trend_df = df.groupby('Year')['Financial Loss (in Million $)'].sum()
plt.figure(figsize=(12, 6))
sns.barplot(x=trend_df.index,y=trend_df, palette="GnBu")
```

```
plt.title('Trend of Total Financial Losses Over Time (2015-2024)')
plt.xlabel('Year')
plt.ylabel('Total Financial Loss (in Million $)')
plt.grid(axis='y')

plt.tight_layout()
#plt.show()
```


2.1.2 Breakdown by Attack types

2.1.3 Breakdown by Target Industries

```
# Group by Year and Target Industry, summing financial losses

trend_df = df.groupby(['Year', 'Target Industry'])['Financial Loss (in Million

→ $)'].sum().unstack(fill_value=0)

# Plotting the data as a bar chart

trend_df.plot(kind='bar', figsize=(12, 8), width=0.8)

plt.title('Trend of Financial Losses Breakdown by Target Industries Over Time (2015-2024)')

plt.xlabel('Year')

plt.ylabel('Total Financial Loss (in Million $)')

plt.xticks(rotation=0) # Keep x-axis labels horizontal

plt.legend(title='Target Industry')

plt.grid(axis='y')

plt.tight_layout()

plt.show()
```


2.1.4 Breakdown by Vulnerabilities

```
# Group by Year and Security Vulnerability Type, summing financial losses
vulnerability_df = df.groupby(['Year', 'Security Vulnerability Type'])['Financial Loss (in

→ Million $)'].sum().unstack(fill_value=0)

# Plotting the data as a bar chart
vulnerability_df.plot(kind='bar', figsize=(12, 8), width=0.8)

plt.title('Financial Losses Due to Vulnerabilities Over Time (2015-2024)')

plt.xlabel('Year')
plt.ylabel('Total Financial Loss (in Million $)')
plt.xticks(rotation=0) # Keep x-axis labels horizontal
plt.legend(title='Vulnerability Type')
plt.grid(axis='y')
plt.tight_layout()
plt.show()
```


2.2 Number of Affected Users

2.2.1 Overall

```
trend_df = df.groupby('Year')['Number of Affected Users'].sum()

plt.figure(figsize=(12, 6))
sns.barplot(x=trend_df.index,y=trend_df, palette="GnBu")

plt.title('Trend of Total Number of Affected Users Over Time (2015-2024)')
plt.xlabel('Year')
plt.ylabel('Total Number of Affected Users')
plt.grid(axis='y')

# Apply number formatting
plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, _: f'{int(x):,}'))

plt.tight_layout()
plt.show()
```


2.2.2 Breakdown by Attack types

2.2.3 Breakdown by Target Industries

2.2.4 Breakdown by Vulnerabilities

3 Geographical Analysis

- Compare the frequency and impact of cyberattacks across different countries.
- Identify which countries are most affected by specific attack types.

3.1 Financial Losses

3.1.1 Overall

3.2 Number of Affected Users

3.2.1 Overall

4 Financial Impact Analysis

- Assess the total financial losses caused by cyberattacks per year or country.
- Analyze the correlation between attack types and financial losses.

5 Industry Analysis

- Determine which industries are most frequently targeted by cyberattacks.
- Assess the impact of attacks on different sectors, such as healthcare, finance, and education.

6 Vulnerability Analysis

- Identify common security vulnerabilities exploited in attacks.
- Analyze the effectiveness of various defense mechanisms used against attacks.

7 User Impact Analysis

- Assess how many users are affected by different attack types or in different countries.
- Explore the relationship between the number of affected users and financial losses.

8 Response Time Analysis

- Analyze the incident resolution times based on attack types or countries.
- Identify any patterns in response effectiveness.

9 Defensive Mechanism Effectiveness

• Evaluate the success rates of different defense mechanisms against various attack types.