纳米光子学 14-数值模拟计算方法2

有限元法FEM网格划分和FDTD的区别 P3 有限元法FEM总结 P5-6 平面波展开法PWM基本思想和缺点 P8 TE TM模 P9 傅里叶模态法FMM-解决亚波长光栅问题 P11 传输矩阵法 TE-TM P14 一维光子晶体能带结构色散方程 P21 带隙与介电常数差的关系 P28 有效折射率近似 P31

- ▶ FEM建模过程▶ 傅里叶模态法简略介绍▶ 平面波展开法简单介绍
- ▶ 传输矩阵法
 - ▶ 传输矩阵的获得▶ 传输矩阵应用于一维光子晶体结合布洛赫定理
 - ▶ ——色散关系▶ ——能隙
 - 长波近似下介电常数对应的物理解释
 - ▶ 双曲型超材料
 - ▶ ——态密度无穷大

01

各种方法优缺点

平面波展开法是周期结构(光子晶体)研究中最常用的方法

- 优势:
 - ▶ 将Maxwell方程化成一个本征方程,求解本征值得到传播光子的本征频率,准确,高效
 - ▶ 计算资源的成本低,台式电脑
- 缺点:
 - ▶ 复杂结构或有缺陷体系是个挑战
 - 如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程,这种情况下根本无法求解

•**有限时域差分法**作为电磁场数值计算的经典方法之一,也可以用来进行光 子晶体能带计算,但由于没有考虑晶格的具体形状,遇到特殊形状晶格的 光子晶体时候,很难精确求解。

•这些方法各有优缺点,在应用时要根据实际场合合理地选用

441

有限元法 网格划分与求解

02

FEM总结

FEM的优势

- ·很容易处理复杂的几何形状和材料的不均匀性
- ·很容易处理分散的或与频率相关的材料
- ·容易处理本征问题
- ·可以将热学或力学解决方案转化为电磁学结果方案,所以适用于解决"多学科"问题。

FEM的弱点

- ·大的3-D结构的有限元网格变得很复杂
- ·比时域有限差分法更难以实现,从而限制了它们在商业软件的使用。 没有工程师改进编码。
- ·当使用高阶元时需要有效预条件的迭代解。

一些商业软件

Comsol, Ansoft Maxwell SV, ANSYS, FEM2000, FlexPDE, QuickField, Matlab PDE Toolbox, Ansoft HFSS, uGS FEMAP

各种方法优缺点

通常,最受欢迎的建模方法:FDTD, FEM

- ▶ 优势
 - 灵活地对几乎任意复杂几何形状建模
 - ▶ FDTD可以很容易地给出场的时间演化
 - 强于建模和描述近场响应
- 缺点
 - ▶ 繁重的计算负荷: 计算时间长和巨大的内存成本

傅立叶模态法(FMM)是周期结构(光栅)建模最常用的方法

- ▶ 优势:
 - ▶ 快速(几秒钟完成一次计算),准确,高效
 - ▶ 计算资源成本低
 - ▶ 强于对光栅的远场响应建模
- ▶ 缺点:
 - ▶ 复杂的图案结构建模是个挑战(如球型阵列)
 - 不适合用于非周期结构建模

40

小结

光学纳米结构电磁响应的严格模拟、设计和优化需要数值方法 纳米光子<mark>学的数值方法概述</mark>:

频域vs.时域,域内离散vs.边界离散,周期vs.非周期,近场vs.远场,理解原理和不同方法的局限性是非常重要的

时域有限差分方法(FDTD):

适用于任意复杂的几何形状,时域法,场的空间和时间演变,一种计算的宽带响应,显式法,长时间计算

<mark>有限元法(FEM)</mark>:适用于任意复杂的几何形状,频域法,自适应网格,多端口仿真,解大矩阵(大内存消耗)

<mark>傅立叶模态方法(FMM</mark>):对亚波长光栅高效和通用的方法,快速、准确和可靠的,易于编程和执行,远场模拟强大,弱点是造型复杂的结构和非周期性结构建模。

平面波展开法:适用于大部分体系的光子晶体和声子晶体能带结构的计算

42

网格划分与FDTD的区别

- 整个区域划分的基本子区域, 称为有限元
- 与FDTD不同,网格单元(有限元)不一定是长方形的,可能是三 角形、多边形等
- · 与FDTD不同,网格不需要一致
- 更细的网格用于具有更大场梯度的区域
 除了计算域边界需要设置边界条件外,内部不同材料之间接触部分需要自行添加边界条件

03

FEM VS FDTD

FEM	FDTD
Arbitrarily shaped 3D metals and dielectrics	Arbitrarily shaped 3D metals and dielectrics
Full wave	Full wave
Frequency domain, individual frequency points calculated with Fast Frequency Sweep	Time domain, frequency via Fourier transform, broadband response in one simulation
Multi-port simulations with no additional cost	Each port requires new simulation
Implicit scheme: requires solution of matrix equation with sparse matrix	Explicit scheme: does not require matrix solution, instead iterative time-stepping
Good for stationary field problems (e.g., mode analysis in high-Q structures)	Good for transient field problems (e.g., pulse propagation, antenna radiation)
Advantages: mature method, adaptive mesh	Advantages: simple, robust, versatile
Disadvantage: huge matrices (large memory)	Disadvantage: long computation time
Adaptive mesh refinement	
Better in handling multi-physics problems	Better in handling larger, higher complexity structures
	Hardware acceleration (GPU)

平面波展开法(PWM)

平面波展开法的基本思想:

将电磁场在倒格矢空间以平面波叠加的形式展开,将麦克斯韦方程组化成一个本征方程,求解该方程的本征值便得 到传播光子的本征频率。

缺点: 晶体结构复杂或处理有缺陷的体系时,可能因为计算能力的限制而不能计算或者难以准确计算。而且如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程形式,这种情况下根本无法求解。

Plane wave method 07

平面波展开法(PWM)

在二维光子晶体中TM模电磁波的电矢量和TE模电磁波的磁矢量都平行于介电柱的方向(即对应的电矢量和磁矢量与坐标 z 无关)

$$\begin{cases} \frac{1}{\varepsilon(r)} \nabla^2 E(r) + \frac{\omega^2}{c^2} E(r) = 0 & \text{TM} \not\models \\ \nabla \times \frac{1}{\varepsilon(r)} \nabla \times H(r) = \left(\frac{\omega}{c}\right)^2 H(r) & \text{TE} \not\models \\ \frac{\partial}{\partial x} \left(\frac{1}{\varepsilon(r)} \frac{\partial}{\partial x} H_z(r)\right) + \frac{\partial}{\partial y} \left(\frac{1}{\varepsilon(r)} \frac{\partial}{\partial y} H_z(r)\right) = -\frac{\omega^2}{c^2} H_z(r) \end{cases}$$

根据Bloch定理,电场和磁场分量可以表示成一系列平面波的迭加

09

傅立叶模态法(FMM)

- 一种解决亚波长光栅衍射建模问题的最有效和最灵活的 严格的数值方法
- 也被称为严格耦合波理论(RCWA)
- 最适合为在某方向不变的"二进制"光栅结构建模

¹11

傅立叶模态法(FMM)

- 是模拟亚波长光栅的最高效和灵活的数值方法(尤其是二进制结构)
- 易于理解和执行;可以通过<mark>台式个人计算机</mark>自己编程(例如,在 MATLAB编码)
- 快速、准确、可靠地解决一维光栅的问题
- 交叉(2D)光栅,特别是金属光栅,一些<mark>先进的技术</mark>(如利用对称 性)来提高计算速度和收敛性
- 强于远场模拟;弱点不能用于在造型复杂的(非二进制)的结构和 非周期性结构
- 一些商业软件与FMM模型:

Rsoft (DiffractMOD), g-solver, unigit, Crossed Grating

平面波展开法(PWM)

- 光子晶体的平移矢量R,可以表示为 $R = n_1 a_1 + n_2 a_2 + n_3 a_3$,这里 a_1, a_2, a_3 是点阵基矢, n_1, n_2, n_3 为任意整数。
- 点阵的倒格矢为 $G = h_1 b_1 + h_2 b_2 + h_3 b_3$, 这里 b_1, b_2, b_3 是倒格基矢, h_1, h_2, h_3 为任意整数。与点阵矢量的关系: $a_i \cdot b_i = 2\pi \delta_{ij}$
- 周期性的介电常数表示为 $\varepsilon(r) = \varepsilon(r+R)$,R为晶格平移矢量,其中介电常数的倒数也是**周期性的**,可将其表示成一系列平面波的迭加(傅里叶级数) $\frac{1}{\varepsilon(r)} = \sum \eta_G e^{iG\cdot r}$

其中G是光子晶体的倒格矢,相应的傅利叶展开系数 η_G 为

 $\eta_{G} = \frac{1}{\Omega} \int_{\text{wsc}} \frac{1}{\varepsilon(r)} \times e^{-iG \cdot r} dr$

平面波展开法(PWM)

- 平面波展开法,采取的是矢量分析的方法,其算法精度与平面波的数量成正比关系,故如平面波的数量设定不足会产生计算不准确(不可能用无穷多的平面波!)。
- FDTD算法中采用了对微分方程进行差分,导致对禁带的结果必然为一近似解,虽然通过缩短空间步长的方式可以有效的提高计算精度,但计算量将成几何量级增大,不适合大量和快速设计需求的场景。
- 鉴于光子晶体加工的复杂性和高难度性,有必要在理论设计时将两种方法结合起来,运用平面波法进行禁带的粗略计算,运用FDTD法作为真假禁带的判定方法。

FMM流程图

Fourier Modal Method #2

传输矩阵法

- ▶ 传输矩阵法是处理多层膜的有效方法
- \triangleright 传输矩阵 T 反映了介质前后空间电磁场之间的关系
- ▶ 总的传输矩阵 *T* 是各层传输矩阵 *T* 的乘积

- TM模:磁场与多层膜的膜面平行, 垂直于传播方向 k
 - 磁场仅有H。分量,电场 E。, E。
- TE模: 电场与多层膜的膜面平行, 垂直于传播方向k
 - 电场仅有 E_y , 磁场 H_x , H_z

∄3

08

10

传输矩阵方法

边界处, 电场、磁场 的x, y 分量连续

TM波,每一层,电场和磁场的水平分量可以写为:

$$E_x(z) = A^+ e^{ik_z z} + A^- e^{-ik_z z}$$

$$\tilde{H}_{y}(z) = B^{+}e^{\mathrm{i}k_{z}z} + B^{-}e^{-\mathrm{i}k_{z}z}$$

$$\frac{E}{\tilde{H}} = \sqrt{\frac{\mu_0 \mu_{\rm r}}{\varepsilon_0 \varepsilon}} = \frac{Z_0}{\sqrt{\varepsilon}}$$

对磁场做伸缩:
$$H=Z_0 ilde{H} \Rightarrow rac{E}{H}=rac{1}{\sqrt{arepsilon}}$$

引入波阻抗 $Z = A^+/B^+$,有

$$E_{x}\!=\!E\cos heta\!=\!Erac{k_{z}}{k}\!=\!Erac{k_{z}}{\sqrt{arepsilon}\,k_{0}}$$

$$\frac{E_x}{H_y} = Z_{\mathrm{TM}} = \frac{A^+}{B^+} = -\frac{A^-}{B^-} = \frac{E\cos\theta}{H} = \frac{k_z}{\varepsilon k_0}$$

TE波:
$$\frac{E_y}{H_x} = Z_{\text{TE}} = \frac{A^+}{B^+} = -\frac{A^-}{B^-} = \frac{k_0}{k_z}$$

₽7

49

传输矩阵方法

$$E_x(z) = A^+ e^{\mathrm{i} k_z z} + A^- e^{-\mathrm{i} k_z z}$$
 $H_y(z) = \frac{A^+}{Z} e^{\mathrm{i} k_z z} - \frac{A^-}{Z} e^{-\mathrm{i} k_z z}$
北,在 $z = 0$ 和 $z = h$ 的界面处:

$$\begin{cases} E_x(0) = A^+ + A^- \\ H_y(0) = \frac{A^+}{Z} - \frac{A^-}{Z} \\ E_x(h_1) = A^+ e^{\mathrm{i} k_z h_1} + A^- e^{-\mathrm{i} k_z h_1} \\ H_y(h_1) = \frac{A^+}{Z} e^{\mathrm{i} k_z h_1} - \frac{A^-}{Z} e^{-\mathrm{i} k_z h_1} \end{cases}$$

化简,得矩阵形式:

 $\cos(k_z h)$ $\frac{i}{Z}\sin(k_z h)$

 $\left\lfloor H_{y}(0) \right\rfloor$

传输矩阵方法

$$\hat{T}_{ ext{TM}} = egin{bmatrix} \cos\left(k_z h
ight) & irac{k_z}{arepsilon k_0}\sin\left(k_z h
ight) \ irac{arepsilon k_0}{k_z}\sin\left(k_z h
ight) & \cos\left(k_z h
ight) \end{bmatrix}$$

$$\hat{T}_{\mathrm{TM}}\!=\!\!\begin{bmatrix}\cos(k_zh) & i\frac{k_z}{\varepsilon k_0}\sin(k_zh)\\ i\frac{\varepsilon k_0}{k_z}\sin(k_zh) & \cos(k_zh)\end{bmatrix}$$
同理,有 $\hat{T}_{\mathrm{TE}}\!=\!\begin{bmatrix}\cos(k_zh) & i\frac{k_0}{k_z}\sin(k_zh)\\ i\frac{k_z}{k_0}\sin(k_zh) & \cos(k_zh)\end{bmatrix}$

对干多层结构:

$$\hat{T}(h_1+h_2+\cdots+h_n)=\hat{T}_1\hat{T}_2\cdots\hat{T}_n$$

$$\det\hat{T}=1$$

—一维光子晶体能带结构

传输矩阵方法-

波在周期性结构中的传播满足布洛赫定理:

$$\psi_{n,k_b}(z) = u_{n,k_b}(z)e^{ik_bz}, \ u_{n,k_b}(z) = u_{n,k_b}(z+d)$$

n 能带指标,类比,得到电场满足: k_n 布洛赫波数 $\boldsymbol{E}(x,y,z) = e^{\mathrm{i}k_b z} \boldsymbol{U}_{n,k_b}(z) e^{\mathrm{i}k_y y + \mathrm{i}k_x x}$

$$\boldsymbol{U}_{n,k_b}(z+\boldsymbol{d}) = \boldsymbol{U}_{n,k_b}(z)$$

$$\omega\left(k_b+rac{2\pi}{d}m\right)=\omega(k_b), \quad m=0\,,\,\pm 1\,,\,\pm 2\,,\,\cdots$$

対TM波:
$$\begin{cases} E_x(x,y,z+d) = e^{\mathrm{i}k_b d} E_x(x,y,z) \\ H_y(x,y,z+d) = e^{\mathrm{i}k_b d} H_y(x,y,z) \end{cases}$$

写为矩阵形式,为: $\begin{bmatrix} E_x(x,y,z+d) \\ H_y(x,y,z+d) \end{bmatrix} = e^{\mathrm{i}k_b d} \begin{bmatrix} E_x(x,y,z) \\ H_y(x,y,z) \end{bmatrix}$

498

₽6

传输矩阵方法--维光子晶体能带结构

考虑如图所示的两层不同介质周期排列 由传输矩阵理论,有:

$$egin{bmatrix} E_x(x,y,z+d) \ H_y(x,y,z+d) \end{bmatrix} = \hat{T} egin{bmatrix} E_x(x,y,z) \ H_y(x,y,z) \end{bmatrix}$$

 $\hat{T}igg[egin{aligned} E_x(x,y,z) \ H_y(x,y,z) \end{matrix}igg] = e^{\hspace{1pt}\mathrm{i} k_b d} igg[E_x(x,y,z) \ H_y(x,y,z) \end{matrix}$

特征值方程!

$$\hat{T} = \begin{bmatrix} \cos\left(k_{z}^{(1)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{2}\right) - \frac{\varepsilon_{2}k_{z}^{(1)}}{\varepsilon_{1}k_{z}^{(2)}}\sin\left(k_{z}^{(1)}d_{1}\right)\sin\left(k_{z}^{(2)}d_{2}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(1)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{2}\right) + \frac{i\varepsilon_{2}k_{0}}{i\varepsilon^{2}}\cos\left(k_{z}^{(1)}d_{1}\right)\sin\left(k_{z}^{(2)}d_{2}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{2}\right) + \frac{i\varepsilon_{2}k_{0}}{i\varepsilon^{2}}\cos\left(k_{z}^{(1)}d_{1}\right)\sin\left(k_{z}^{(2)}d_{2}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{2}\right) + \frac{i\varepsilon_{2}k_{0}}{i\varepsilon^{2}}\cos\left(k_{z}^{(2)}d_{1}\right)\sin\left(k_{z}^{(2)}d_{2}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{2}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0}}\sin\left(k_{z}^{(2)}d_{1}\right)\cos\left(k_{z}^{(2)}d_{1}\right) \\ \frac{i\varepsilon_{1}k_{0}}{\varepsilon_{1}k_{0$$

$$\cos(k_{z}^{(i)}d_{i})\cos(k_{z}^{(0)}d_{2}) - \frac{\varepsilon_{2}k_{z}^{(i)}}{\varepsilon_{1}k_{z}^{(i)}}\sin(k_{z}^{(i)}d_{1})\sin(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}k_{z}^{(0)}}{\varepsilon_{2}k_{0}}\cos(k_{z}^{(i)}d_{1})\sin(k_{z}^{(0)}d_{2}) + \frac{\mathbf{i}k_{z}^{(i)}}{\varepsilon_{2}k_{0}}\sin(k_{z}^{(i)}d_{1})\cos(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{k_{z}^{(i)}}\sin(k_{z}^{(i)}d_{1})\cos(k_{z}^{(i)}d_{2}) + \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{\varepsilon_{z}k_{0}^{(i)}}\sin(k_{z}^{(i)}d_{1})\sin(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{\varepsilon_{z}^{(i)}}\sin(k_{z}^{(i)}d_{1})\cos(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{\varepsilon_{z}^{(i)}}\sin(k_{z}^{(i)}d_{1})\sin(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{\varepsilon_{z}^{(i)}}\sin(k_{z}^{(i)}d_{2}) \\ = \frac{\mathbf{i}\varepsilon_{z}^{(i)}}{\varepsilon_{$$

传输矩阵方法——一维光子晶体能带结构

$$\begin{split} \hat{T} = & \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \qquad \hat{T} \begin{bmatrix} E_x(0) \\ H_y(0) \end{bmatrix} = e^{\mathrm{i}k_b d} \begin{bmatrix} E_x(0) \\ H_y(0) \end{bmatrix} \\ & \hat{T} \boldsymbol{a} = \lambda \boldsymbol{a}, \quad \lambda = e^{\mathrm{i}k_b d} \\ & \begin{vmatrix} T_{11} - \lambda & T_{12} \\ T_{21} & T_{22} - \lambda \end{vmatrix} = 0 \\ & \begin{vmatrix} \hat{T}_{11} T_{22} - T_{21} T_{12} - (T_{11} + T_{22})\lambda + \lambda^2 = 0 \\ \Rightarrow \lambda^2 - (T_{11} + T_{22})\lambda + 1 = 0 \\ & \Rightarrow \lambda^2 + (T_{11} + T_{22})\lambda + 1 = 0 \end{split}$$
两个根的特征方程,可以写为:

 $(\lambda - \lambda_1)(\lambda - \lambda_2) = 0$

即: $\lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2 = 0$ (2)

20

传输矩阵方法——一维光子晶体能带结构

方程(1)和(2)对比系数,可以得到:

$$\left\{egin{array}{l} \lambda_1\lambda_2\!=\!1\ \lambda_1\!+\!\lambda_2\!=\!T_{11}\!+\!T_{22} \end{array}
ight.$$

已知其中一个根为: $\lambda_{\scriptscriptstyle 1} = e^{{\hspace{1pt}\mathrm{i}\hspace{1pt} k_b d}}$

由第一式,得:

由第二式,得: $T_{11} + T_{22} = e^{ik_b d} + e^{-ik_b d}$

色散方程

代入 T_{11} 和 T_{22} ,即可得到具体表达式

传输矩阵方法——一维光子晶体能带结构

TM波: $\cos k_b d = \cos(k_z^{(1)}d_1)\cos(k_z^{(2)}d_2) - \frac{1}{2}\left(\frac{\varepsilon_2 k_z^{(1)}}{\varepsilon_1 k_z^{(2)}} + \frac{\varepsilon_1 k_z^{(2)}}{\varepsilon_2 k_z^{(2)}}\right)\sin(k_z^{(1)}d_1)\sin(k_z^{(2)}d_2)$ TE波: $\cos k_b d = \cos (k_z^{(1)} d_1) \cos (k_z^{(2)} d_2) - \frac{1}{2} \left(\frac{k_z^{(1)}}{k_z^{(2)}} + \frac{k_z^{(2)}}{k_z^{(1)}} \right) \sin (k_z^{(1)} d_1) \sin (k_z^{(2)} d_2)$

右边绝对值可以大于1, k_b 虚数,<mark>意味着什么?</mark>

• 垂直入射: $(k_z^{(i)})^2 = \varepsilon_i \left(\frac{\omega}{c}\right)^2 - k_x^2 - k_y^2 \implies k_z^{(i)} = \sqrt{\varepsilon_i} \, k_0$

TM波与TE波色散关系一致

为什么?

传输矩阵方法——一维光子晶体能带结构

垂直入射:

$$\cos k_b d = \cos \left(n_1 d_1 k_0 \right) \cos \left(n_2 d_2 k_0 \right) - \frac{1}{2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} \right) \sin \left(n_1 d_1 k_0 \right) \sin \left(n_2 d_2 k_0 \right)$$

代入:
$$k_0 = \frac{\omega}{c}$$

即可得到 k_b 与 ω 的色散关系

- 同一个k_b对应无数多个ω
- 带边群速度为(

23

传输矩阵方法——一维光子晶体能带结构

• 计算能带中心的位置(垂直入射)

$$\diamondsuit: \ \alpha = \frac{1}{2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} \right)$$

 $\cos k_b d = \cos(n_1 d_1 k_0) \cos(n_2 d_2 k_0) - \alpha \sin(n_1 d_1 k_0) \sin(n_2 d_2 k_0)$

右侧三角函数积化和差展开,并令为F

$$F(k_0) = \frac{1}{2} \left[(1+\alpha)\cos(n_1 d_1 k_0 + n_2 d_2 k_0) + (1-\alpha)\cos(n_1 d_1 k_0 - n_2 d_2 k_0) \right]$$

从而有: $\cos k_b d = F(k_0)$

- 如图所示,函数 F 在禁带 中央处取极值
- 禁带中央的频率由 $\frac{\partial F}{\partial k_0}=0$

25

传输矩阵方法——一维光子晶体能带结构

 $\left\{egin{array}{ll} n_1d_1\!=\!n_2d_2\!=\!rac{\lambda_{
m B}}{4} & _{1/4}$ 波片条件 $\omega_{
m B}\!=\!rac{\pi c}{n_1d_1+n_2d_2} & ext{ 布拉格频率} \end{array}
ight.$

Reflection coating $\Delta \varphi = 2k_0(n_1d_1 + n_2d_2) = 2\pi$

完全反射: 光程差为波长的整数倍, 或者相位差为2π的整数倍

27

29

传输矩阵方法——一维光子晶体能带结构

能带结构与周期数量的关系

随着周期数量得增加,禁带反射趋于平整,允带光反射出现振荡

传输矩阵方法——一维光子晶体能带结构

周期结构中传播的布洛赫波(假定在 x-z 平面传播)

$$\boldsymbol{E}(x,z,t) = e^{\mathrm{i}k_b z} \boldsymbol{U}_{n,k_s}(z) e^{\mathrm{i}k_x x - \mathrm{i}\omega t}$$

色散关系 $\omega = \omega_n(k_b, k_x)$

考虑垂直入射, $k_x = 0$

传输矩阵方法——一维光子晶体能带结构

由
$$\frac{\partial F}{\partial k_0}=0$$
 得
$$\begin{cases} k_0\left(n_1d_1+n_2d_2\right)=m\pi\\ k_0\left(n_1d_1-n_2d_2\right)=p\pi \end{cases}, \ m,p=0\,,\,\pm 1\,,\,\pm 2\,,\,\cdots$$

考虑特殊情况: p = 0, m = 1

由第二式,得: $n_1d_1=n_2d_2$

代入第一式,得:
$$2n_1d_1k_0=\pi$$
 由于 $k_0=\frac{2\pi}{\lambda}=\frac{\omega}{c}$

该式可以化为:

$$\left\{egin{array}{ll} n_1d_1=n_2d_2=rac{\lambda_{
m B}}{4} & 1/4$$
波片条件 $\omega_{
m B}=rac{\pi c}{n_1d_1+n_2d_2} & ext{ 节拉格频率} \end{array}
ight.$

传输矩阵方法——一维光子晶体能带结构

带隙与介电常数差的关系

 n_{eff} 有效折射率: 对色散关系在 $k_{\text{b}} = 0$ 附近做泰勒级数展开得到

线性介质
$$k=nk_0 \Rightarrow k_0=rac{k}{n}$$
 周期性膜 $k_0=rac{k_b}{n_{
m eff}}+\cdots$

有效折射率近似

▶ 传输矩阵法结论:

24

26

28

有效折射率近似

▶ 传输矩阵法结论:

$$\begin{bmatrix} \boldsymbol{E}(x,y,z+d) \\ \boldsymbol{H}(x,y,z+d) \end{bmatrix} = \hat{T} \begin{bmatrix} \boldsymbol{E}(x,y,z) \\ \boldsymbol{H}(x,y,z) \end{bmatrix} = e^{\mathrm{i}k_b d} \begin{bmatrix} \boldsymbol{E}(x,y,z) \\ \boldsymbol{H}(x,y,z) \end{bmatrix}$$

色散关系

TM波:
$$\cos k_b d = \cos \left(k_z^{(1)} d_1\right) \cos \left(k_z^{(2)} d_2\right) - \frac{1}{2} \left(\frac{\varepsilon_2 k_z^{(2)}}{\varepsilon_1 k_z^{(2)}} + \frac{\varepsilon_1 k_z^{(2)}}{\varepsilon_2 k_z^{(1)}}\right) \sin \left(k_z^{(1)} d_1\right) \sin \left(k_z^{(2)} d_2\right)$$

TE波:
$$\cos k_b d = \cos (k_z^{(1)} d_1) \cos (k_z^{(2)} d_2) - \frac{1}{2} \left(\frac{k_z^{(1)}}{k_z^{(2)}} + \frac{k_z^{(2)}}{k_z^{(1)}} \right) \sin (k_z^{(1)} d_1) \sin (k_z^{(2)} d_2)$$

$$k_z^{(i)}\!=\!k_{iz},\ (k_{iz})^2\!=\!arepsilon_i k_0^2\!-\!k_\parallel^2,\ lpha=rac{1}{2}igg(rac{arepsilon_2 k_{1z}}{arepsilon_1 k_{2z}}\!+\!rac{arepsilon_1 k_{2z}}{arepsilon_2 k_{1z}}igg),$$

有效折射率近似

$$k_0^2 = rac{k_b^2}{rac{arepsilon_1 d_1 + arepsilon_2 d_2}{d_1 + d_2}} + rac{k_\parallel^2}{rac{d_1 + d_2}{d_1 + d_2}}$$
 \Leftrightarrow : $arepsilon_o = rac{arepsilon_1 d_1 + arepsilon_2 d_2}{d_1 + d_2}$, $arepsilon_e = rac{d_1 + d_2}{rac{d_1}{d_1} + rac{d_2}{arepsilon_2}}$ 得到: $k_0^2 = rac{k_b^2}{arepsilon_o} + rac{k_\parallel^2}{arepsilon_e}$

$$^{\text{\tiny ID}:} \ \left(\frac{\omega}{c}\right)^2 = \frac{k_b^2}{\varepsilon_o} + \frac{k_{\parallel}^2}{\varepsilon_e} = \frac{k_b^2}{\varepsilon_o} + \frac{k_x^2 + k_y^2}{\varepsilon_e}$$

晶体长波极限:各向异性,沿 z 方向为一个光轴,垂直 z 方向另一个光轴

34

36

38

32

有效折射率近似

长波极限:准静态

有效折射率近似

$$\left(rac{\omega}{c}
ight)^2 = rac{k_b^2}{arepsilon_o} + rac{k_x^2 + k_y^2}{arepsilon_e}$$

- 层金属、一层介质,可能使一个等效介电常数为正,一个
- 双曲函数不闭合:等能面面积无穷大: 态密度近乎无穷大
- 人工设计各向异性材料!
- 双曲型超材料(Hyperbolic Metamaterials)

Fig. 1. (a) Two configurations of HMMs. (b) IFS for Type I, Type II HMMs and normal anisotropic dielectric medium.

有效折射率近似

TM波: $\cos k_b d = \cos(k_{1z}d_1)\cos(k_{2z}d_2) - \alpha\sin(k_{1z}d_1)\sin(k_{2z}d_2)$

$$2\cos k_b d = (1+lpha)\cos(k_{1z}d_1 + k_{2z}d_2) + (1-lpha)\cos(k_{1z}d_1 - k_{2z}d_2)$$

考虑每一层的厚度远小于波长,即**长波近似**

$$n_idk_0\!=\!n_irac{2\pi d}{\lambda_0}\stackrel{d^{\ll\lambda_0}}{\longrightarrow}0\,,\;\cos x\!=\!1\!-rac{x^2}{2}+O(x^4)$$

$$2 \left(1 - \frac{1}{2} k_b^2 d^2 \right) = (1 + \alpha) \left[1 - \frac{1}{2} \left(k_{1z} d_1 + k_{2z} d_2 \right)^2 \right] + (1 - \alpha) \left[1 - \frac{1}{2} \left(k_{1z} d_1 - k_{2z} d_2 \right)^2 \right]$$

化简:
$$k_b^2 d^2 = (k_{1z}d_1)^2 + (k_{2z}d_2)^2 + 2\alpha k_{1z}k_{2z}d_1d_2$$

将
$$(k_{iz})^2 = arepsilon_i k_0^2 - k_\parallel^2, \; lpha = rac{1}{2} \Big(rac{arepsilon_2 k_{1z}}{arepsilon_1 k_{2z}} + rac{arepsilon_1 k_{2z}}{arepsilon_2 k_{1z}} \Big)$$

代入后, 化简

有效折射率近似

考虑平行

板电容器

对应 k_v方向, 电场垂直于膜面

 d_1 , ε_1

 $\frac{d}{\varepsilon_0} = \frac{d_1}{\varepsilon_1} + \frac{d_2}{\varepsilon_2}$

有效折射率近似

$$\left(rac{\omega}{c}
ight)^2 = rac{k_x^2 + k_y^2 + k_b^2}{arepsilon_{rx}^{
m eff}}$$

自己推导!

对应沿//传播方向

33

35

37

为什么只有一个等效介电常数?

TE模式电场只有垂直于 z 轴的分量

双曲型超构材料应用

