

软件分析

指针分析

熊英飞 北京大学 **2016**

指向分析

- 每个指针变量可能指向的内存位置
- 通常是其他很多分析的基础
- 本节课先考虑流非敏感指向分析
- 不考虑在堆上分配的内存,不考虑struct、数组等结构,不考虑指针运算(如*(p+1))
 - 内存位置==局部和全局变量在栈上的地址

指向分析——例子


```
o=&v;
q=&p;
if (a > b) {
  p=*q;
  p=o; }
*q=&w;
```

- 指向分析结果
 - $p = \{v, w\};$
 - $q = \{p\};$
 - $o = \{v\};$
- 问题: 如何设计一个指向分析算法?

复习: 方程求解

- 数据流分析的传递函数和⊓操作定义了一组方程
 - $D_{v_1} = F_{v_1}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - $D_{v_2} = F_{v_2}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - ...
 - $D_{v_n} = F_{v_n}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
- 其中
 - $F_{v_1}(D_{v_1}, D_{v_2}, ..., D_{v_n}) = f_{v_1}(I)$
 - $F_{v_i}(D_{v_1}, D_{v_2}, \dots, D_{v_n}) = f_{v_i}(\bigcap_{j \in pred(i)} D_{v_j})$
- 数据流分析即为求解该方程的最大解
 - 传递函数和口操作表达了该分析的安全性条件,所以该方程的解都是安全的
 - 最大解是最有用的解

从不等式到方程组

- 有一个有用的解不等式的unification算法
 - 不等式
 - $D_{v_1} \sqsubseteq F_{v_1}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - $D_{v_2} \sqsubseteq F_{v_2}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - ...
 - $D_{v_n} \sqsubseteq F_{v_n}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - 可以通过转换成如下方程组求解
 - $D_{v_1} = D_{v_1} \sqcap F_{v_1}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - $D_{v_2} = D_{v_2} \sqcap F_{v_2}(D_{v_1}, D_{v_2}, ..., D_{v_n})$
 - ...
 - $D_{v_n} = D_{v_n} \sqcap F_{v_n}(D_{v_1}, D_{v_2}, ..., D_{v_n})$

Anderson指向分析算法

赋值语句	约東
a=&b	$\boldsymbol{a}\supseteq\{b\}$
a=b	$a \supseteq b$
a=*b	$\forall v \in \boldsymbol{b}. \boldsymbol{a} \supseteq \boldsymbol{v}$
*a=b	$\forall v \in a. v \supseteq b$

其他语句可以转换成这四种基本形式

Anderson指向分析算法-例


```
o=&v;
q=&p;
if (a > b) {
    p=*q;
    p=o; }
*q=&w;
```

- 产生约束
 - $\boldsymbol{o} \supseteq \{v\}$
 - $q \supseteq \{p\}$
 - $\forall v \in q. p \supseteq v$
 - $p \supseteq o$
 - $\forall v \in q. v \supseteq \{w\}$
- 如何求解这些约束

约束求解方法一通用框架

- 将约束
 - $o \supseteq \{v\}$
 - $q \supseteq \{p\}$
 - $\forall v \in q. p \supseteq v$
 - $p \supseteq o$
 - $\forall v \in q. v \supseteq \{w\}$
- 转换成标准形式
 - $p = p \cup o \cup (\bigcup_{v \in q} v) \cup (p \in q ?\{w\} : \emptyset)$
 - $q = q \cup \{p\} \cup (q \in q ? \{w\} : \emptyset)$
 - $o = o \cup \{v\} \cup (o \in q ? \{w\} : \emptyset)$
 - 等号右边都是递增函数

求解方程组

•
$$p = p \cup o \cup (\bigcup_{v \in q} v) \cup (p \in q ? \{w\} : \emptyset)$$

•
$$q = q \cup \{p\} \cup (q \in q ? \{w\} : \emptyset)$$

•
$$o = o \cup \{v\} \cup (o \in q ? \{w\} : \emptyset)$$

$$p = \{ \} \\
 q = \{ \} \\
 o = \{ \} \}$$
 $p = \{v, w\} \\
 q = \{p\} \\
 o = \{v\} \}$
 $q = \{p\} \\
 o = \{v\}$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

 $\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$ $\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

- $\boldsymbol{o} \supseteq \{v\}$
- $q \supseteq \{p\}$
- $\forall v \in q. p \supseteq v$
- $p \supseteq o$
- $\forall v \in q. v \supseteq \{w\}$

$$\forall v \in \mathbf{q}. \, \mathbf{p} \supseteq \mathbf{v}$$
$$\forall v \in \mathbf{q}. \, \mathbf{v} \supseteq \{w\}$$

复杂度分析

- 对于每条边来说,前驱集合新增元素的时候该边将被激活,激活后执行时间为O(m),其中m为新增的元素数量
 - 应用均摊分析,每条边传递的总复杂度为O(n),其中 n为结点数量
- 边的数量为 $O(n^2)$
- 总复杂度为 $O(n^3)$

进一步优化

- 强连通子图中的每个集合必然相等
- 动态检测图中的强连通子图,并且合并成一个集合
- •参考论文:
 - The Ant and the Grasshopper: Fast and Accurate Pointer Analysis for Millions of Lines of Code, Hardekopf and Lin, PLDI 2007

流敏感的指针分析算法

- · 能否通过SSA直接将流敏感转换成流非敏感分析?
 - 不能
- 如何把Anderson算法转换成数据流分析?
 - 半格集合是什么?
 - 指针变量到内存位置集合的映射
 - 交汇操作是什么?
 - 对应内存位置集合取并
 - 四种基本操作对应的转换函数是什么?

流敏感的指针分析算法

赋值语句	转换函数
a=&b	$a_{out} := \{b\}$
a=b	a_{out} : = b_{in}
a=*b	$a_{out} := \bigcup_{\forall v \in b} v_{in}$
*a=b	$\begin{cases} \forall v \in a. v_{out} \coloneqq b_{in} & a = 1 \\ \forall v \in a. v_{out} \coloneqq v_{in} \cup b_{in} & a > 1 \end{cases}$
Strong	

流敏感的指针分析算法

- 传统流敏感的指针分析算法很慢
- 最新工作采用部分SSA来对流敏感进行加速,可以应用到百万量级的代码

- •参考论文:
 - Hardekopf B, Lin C. Flow-sensitive pointer analysis for millions of lines of code. CGO 2011:289-298.

堆上分配的内存

- a=malloc();
- malloc()语句每次执行创造一个内存位置
- 无法静态的知道malloc语句被执行多少次
 - 为什么?
 - 停机问题可以转换成求每个语句的执行次数
 - 造成什么影响?
 - 无法定义出有限半格
- 应用Widening
 - 每个malloc()创建一个抽象内存位置

Struct


```
Struct Node {
 int value;
 Node* next;
 Node* prev;
};
a = malloc();
a - next = b;
a - prev = c;
```

- 如何处理结构体的指针分析?
- 域非敏感Field-Insensitive分析
- 域敏感Field-sensitive 分析
- 猜一猜应该如何做?

域非敏感Field-Insensitive分析


```
Struct Node {
 int value;
 Node* next;
 Node* prev;
};
a = malloc();
a - next = b;
a - prev = c;
```

- 把所有struct中的所有fields当成一个对象
- 原程序变为
 - a'=malloc();
 - a'=b;
 - a'=c;
 - 其中a'代表a,a->next,a->prev
- 分析结果
 - a, a->next, a->prev都有可能指 向malloc(), b和c

域敏感Field-sensitive分析


```
Struct Node {
 int value;
 Node* next;
 Node* prev;
a = malloc();
a->next = b;
a->prev = c;
```

- 对于Node类型的内存位置x,添加两个指针变量
 - x.next
 - x.prev
- 对于任何Node类型的内存位置x, 拆分成四个内存位置
 - X
 - x.value
 - x.next
 - x.prev
- a->next = b转换成
 - $\forall x \in a, x.next \supseteq b$

• Java上的指向分析可以看成是C上的子集

Java	C
A a = new A()	A* a = malloc(sizeof(a));
a.next = b	a->next = b
b = a.next	b = a->next

基于CFL可达性的域敏感分析


```
y = new B();
m=new A();
x=y;
y.f=m;
n=x.f;
new A()
new A()
put[f] 图上的每条边f同时存在反向边<u>f</u>
```

FlowTo= new (assign | put[f] Alias get[f])*
PointsTo = (assign | get[f] Alias put[f])* new
Alias = PointsTo FlowTo

基于CFL和基于Anderson算法的域敏感分析等价性

基于CFL	基于Anderson算法
$x \xrightarrow{PointsTo} m$	m ∈ x
$m \xrightarrow{FlowsTo} x$	m ∈ x
$x \xrightarrow{\text{Alias}} y$	$\mathbf{x} \cap \mathbf{y} \neq \emptyset$
$\exists y. y \xrightarrow{PointsTo} m \land y \xrightarrow{puts[f] PointsTo} n$	n ∈ m. f

归纳证明 以上各行左右的等价性

- 从左边推出右边: 在CFL的路径长度上做归纳
- 从右边推出左边: 在集合的元素个数上做归纳

数组和指针运算

- 从本质上来讲都需要区分数组中的元素和分析下标的值
 - p[i], *(p+i)
- 大多数框架提供的指针分析算法不支持数组和指针运算
 - 一个数组被当成一个结点

Steensgaard指向分析算法

- Anderson算法的复杂度为 $O(n^3)$
- Steensgaard指向分析通过牺牲精确性来达到效率
- 分析复杂度为 $O(n\alpha(n))$,接近线性时间。
 - n为程序中的语句数量。
 - α为阿克曼函数的逆
 - $\alpha(2^{132}) < 4$

Steensgaard指向分析算法

- Anderson算法执行速度较慢的一个重要原因是边数就达到 $O(n^2)$ 。
- 边数较多的原因是因为*p的间接访问会导致动态创建边

• Steensgaard算法通过不断合并同类项来保证间接 访问可以一步完成,不用创建边

Steensgaard指向分析算法


```
o=&v;
q=&p;
if (a > b) {
    p=*q;
    p=o; }
*q=&w;
```

• 产生约束

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*
- $\forall y. \forall x \in y. x = * y$
- 赋值使得左右两边的集合相等
- 因为集合相等,所以只需要一个集合来表示
- 每个等号约束都是集合的合并

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*

- 边表示指向关系
- 每个元素只能有一个后继
- 如果合并导致多于一个后继,就合并后继

W

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*

- 边表示指向关系
- 每个元素只能有一个后继
- 如果合并导致多于一个后继,就合并后继

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*

对于集合和元素的合并,添加元素到集合中,并添加元素的后继为集合的后继

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*

对于集合和元素的合并,添加元素到集合中,并添加元素的后继为集合的后继

W

- $v \in \mathbf{0}$
- $p \in q$
- p=*q
- p=o
- $w \in {}^*q$

继续合并后继

W

- $v \in o$
- $p \in q$
- p=*q
- p=o
- *w* ∈**q*

对于集合的合并,直接合并两个集合

W

- $v \in o$
- $p \in q$
- p=*q
- p=0
- *w* ∈**q*

对于集合的合并,直接合并两个集合

W

- $v \in o$
- $p \in q$
- p=*q
- p=o
- $w \in {}^*q$

- 返回
 - $p = \{v, w\}$
 - $q = \{p\}$
 - $o = \{v, w\} //$ 不精确

复杂度分析

- 节点个数为O(n)
- 每次合并会减少一个节点,所以总合并次数是O(n)
- 每次合并的时间开销包括
 - 集合的合并开销
 - •解析*p等指针引用找到合适集合的开销
- 通过选择合适的数据结构(union-find structure),可以做到O(1)时间的合并和 $O(\alpha(n))$ 的查找

术语

- Inclusion-based
 - 指类似Anderson方式的指针分析算法
- Unification-based
 - 指类似Steensgaard方式的指针分析算法

别名分析

- 给定两个变量a, b, 判断这两个变量是否指向相同的 内存位置, 返回以下结果之一
 - a, b是must aliases: 始终指向同样的位置
 - a, b是must-not aliases: 始终不指向同样的位置
 - a, b是may aliases: 可能指向同样的位置,也可能不指向
- 别名分析结果可以从指向分析导出
 - 如果a=b且|a|=1,则a和b为must aliases
 - 如果a∩b=Ø,则a和b为must-not aliases
 - 否则a和b为may aliases
- 别名分析本身有更精确的算法,但可伸缩性不高, 在实践中较少使用

上下文敏感的指针分析

- 能否做精确的上下文敏感的指针分析?
- 域敏感的指针分析或者考虑二级指针的分析:不能
- 简单理论理解
 - 上下文无关性是一个上下文无关属性
 - 必须用下推自动机表示
 - 域敏感性也是一个上下文无关属性
 - 两个上下文无关属性的交集不一定是上下文无关属性
- Tom Reps等人2000年证明这是一个不可判定问题

解决方法

- 降低上下文敏感性: 把被调方法根据上下文克隆 n次
- 降低域敏感性: 把域展开n次

域展开一次


```
Struct Node {
  int value;
  Node* next;
};
a = malloc();
a->next = b;
```

约束中不含全程量词,可以 用IFDS转成图并加上括号。

- 对于每个Node*的变量a,创建 两个指针变量
 - a
 - a->next
- a->next=b产生
 - a->next ⊇ b
 - a->next ⊇ b->next
- a=b->next产生
 - a ⊇ b->next
 - a->next ⊇ b->next

域展开两次


```
Struct Node {
  int value;
  Node* next;
};
a = malloc();
a->next = b;
```

- 对于每个Node*的变量a,创建两个指针变量
 - a
 - a->next
 - a->next->next
- a->next=b产生
 - a->next ⊇ b
 - a->next->next ⊇ b->next
 - a->next->next ⊇ b->next->next
- a=b->next产生
 - a ⊇ b->next
 - a->next ⊇ b->next->next
 - a->next->next ⊇ b->next->next

过程间分析-函数指针


```
interface I {
 void m();
class A implements I {
 void m() \{ x = 1; \}
class B implements I {
 void m() { x = 2; }
static void main() {
 Ii = new A();
 i.m();
```

如何设计分析算法得出程序执行结束后的x 所有可能的值?

控制流分析

- 确定函数调用目标的分析叫做控制流分析
- 控制流分析是may analysis
 - 为什么不是must analysis?
- 控制流分析 vs 数据流分析
 - 控制流分析确定程序控制的流向
 - 数据流分析确定程序中数据的流向
 - 数据流分析在控制流图上完成,因此控制流分析是数据流分析的基础

Class Hierarchy Analysis


```
interface I {
 void m(); }
class A implements I {
 void m() \{ x = 1; \} \}
class B implements I {
 void m() \{ x = 2; \} \}
static void main() {
 Ii = new A();
 i.m(); }
class C { void m() {} }
```

- 根据i的类型确定m可能的 目标
- 在这个例子中,i.m可能的目标为
 - A.m()
 - B.m()
- 不可能的目标为
 - C.m()
- 分析结果为x={1,2}
- 优点: 简单快速
- 缺点:非常不精确,特别是有Object.equals()这类调用的时候

Rapid Type Analysis


```
interface I {
 void m(); }
class A implements I {
 void m() \{ x = 1; \} \}
class B implements I {
 void m() \{ x = 2; \} \}
static void main() {
  Ii = new A();
 i.m(); }
class C { void m() {
 new B().m();
}}
```

- 只考虑那些在程序中创建了的对象
- 可以有效过滤library中的大量 没有使用的类

Rapid Type Analysis


```
interface I {
 void m(); }
class A implements I {
 void m() \{ x = 1; \} \}
class B implements I {
 void m() \{ x = 2; \} \}
static void main() {
 Ii = new A();
 i.m(); }
class C { void m() {
 new B().m();
} }
```

• 三个集合

- 程序中可能被调用的方法集合Methods,初始包括main
- 程序中所有的方法调用和对应目标 Calls→Methods
- 程序中所有可能被使用的类Classes
- Methods中每增加一个方法
 - 将该方法中所有创建的类型加到Classes
 - 将该方法中所有的调用加入到Call,目标初始为根据当前Classes集合类型匹配的方法
- Classes中每增加一个类
 - 针对每一次调用,如果类型匹配,把该类中对应的方法加入到Calls→Methods
 - 把方法加入到Methods当中

Rapid Type Analysis


```
interface I {
 void m(); }
class A implements I {
 void m() \{ x = 1; \} \}
class B implements I {
 void m() \{ x = 2; \} \}
static void main() {
 Ii = new A();
 Ii = new B();
 i.m(); }
class C { void m() {
 new B().m();
}}
```

- 分析速度非常快
- 精度仍然有限
- 在左边的例子中,得出i.m的目标包括A.m 和B.m
- 如何进一步分析出精确的结果?

精确的控制流分析CFA

- 该算法没有名字,通常直接称为CFA (control flow analysis)
- CFA和指针分析需要一起完成
 - 指针分析确定调用对象
 - 调用对象确定新的指向关系
- 原始算法定义在λ演算上
- 这里介绍算法的面向对象版本

CFA-算法


```
interface I {
 I m(); }
class A implements I {
 I m() { return new B(); } }
class B implements I {
 I m() { return new A(); } }
static void main() {
  Ii = new A();
 if (...) i = i.m();
  Ix = i.m();
```

- 首先每个方法的参数和返回值都变成图上的点
 - 注意this指针是默认参数
- 对于方法调用 f() {... x = y.g(a, b)

根据调用对象 和方法名确定 被调用方法

方法的声明类

- 生成约束
 - ∀y ∈ f#y. ∀m ∈ targets(y, g),
 f#x ⊇ m#ret
 m#this ⊇ filter (f#y, declared(m))
 m#a ⊇ f#a
 m#b ⊇ f#b
- · 约束求解方法和Anderson指针分析 算法类似 ______

保留符合特定 类型的对象

CFA-计算示例


```
interface I {
 I f(); }
class A implements I {
 I f() { return new B<sup>1</sup>(); } }
class B implements I {
 If() { return new A^2(); } }
static void main() {
  Ii = new A^3();
  if (...) i = i.f();
  I x = i.f();
```

- main#i ⊇{3}
- $\forall i \in \text{main#i}, \forall m \in \text{targets(i, f)},$
 - main#i⊇m#ret
 - m#this ⊇
 filter(main#i, declared(m))
- **A.f**#ret ⊇{1}
- **B.f**#ret ⊇{2}
- $\forall m \in \text{targets}(\text{main#i}, f),$
 - main#x⊇m#ret
 - m#this ⊇
 filter (main#i, declared(m))
- 求解结果
 - main#i={1,2,3}
 - main#x={1, 2}

CFA

- ·以上CFA算法是否是上下文敏感的?
- 不是,因为每个方法只记录了一份信息,没有区分上下文
- 用克隆的方法处理上下文敏感性
- •基于克隆方法的CFA也被称为m/k-CFA
 - 上下文不敏感的CFA称为0-CFA

流敏感vs上下文敏感

- 当不能同时做到两种精度时,优先考虑哪个?
 - 通常认为,在C语言等传统命令式语言中流敏感性比较重要
 - 在Java、C++等面向对象语言中上下文敏感性比较重要
 - 主流指针分析算法通常时上下文敏感而流非敏感的

实践中的指针分析算法

- 大多数代码分析框架都提供指针分析
- •除非研究指针分析本身,很少需要自己搭建指针分析
- 但是需要了解各种不同的分析算法对精度和速度的影响,以便选择合适的指针分析算法

作业

- SOOT本身带有指针分析PADDLE和SPARK,查找资料并回答以下问题
 - 这两个算法是Anderson风格, Steensgaard风格,还 是两者都不是?
 - 这两个算法是否是flow-sensitive的?
 - 这两个算法是否是field-sensitive的?
 - 这两个算法是否是Context-sensitive的? 是什么意义上的Context-sensitivity?
 - 这两个算法是如何进行控制流分析的?