Unsure if you were informed already, but because this was a rush order the calibration is non-standard. Please use these Q factors and calculation method.

Read calibration data (factory calibrated) from PROI	Read calibration	data	(factor	v calibrated)	from	PRON
--	------------------	------	---------	---------------	------	------

Variable	Description /Equation	Recommender	Size	Value		
Vallable	Description/Equation	Variable Type	[8it]	Min	Max	
CO	Bridge Offset	Signed int 16	14	-8192	819	
C1	Gain	Signed int 16	14	-8192	819	
C2	Non-Linearity 2nd Order	Signed int 16	9	-256	255	
C3	Temperature Coefficient, Bridge Offset 1st order	Signed int 16	10	-512	511	
C4	Temperature Coefficient, Bridge Offset 2nd order	Signed int 16	9	-256	25	
C5	Temperature Coefficient, Gain 1st order	Signed int 16	10	-512	511	
C6	Temperature Coefficient, Gain 2nd order	Signed int 16	9	-256	25	
Q0	Calculation Factor 0	Unsigned char 8	3	0	7	
Q1	Calculation Factor 1	Unsigned char 8	3	0	7	
Q2	Calculation Factor 2	Unsigned char 8	3	0	7	
A0	Temperature Coefficient 0	Signed char 8	8	-128	127	
A1	Temperature Coefficient 1	Signed char 8	8	-128	127	
A2	Temperature Coefficient 2	Signed char 8	8	-128	127	

		Read digital pressure and temp	perature	data	
D1	Digital pressure value	Unsigned long	24	0	16777216
D2	Digital temperature	Unsigned long	24	0	16777216

	Calculate ten	nperature		
TEMP	Actual Temperature(0-85 with 0.01C resolution) TEMP=A0*10 +A1*20*D2/2 ²⁴ +A2*20*(D2/2 ²⁴) ²	Double	32	26.56 C

Calculate temperature compensated pressure

Y	$Y=(D1+C0^{\circ}2^{(15-O1)}+C3^{\circ}2^{15}D2/2^{24}+C4^{\circ}2^{15}(D2/2^{24})$ $^{2})/(C1^{\circ}2^{(15-O1)}+C5^{\circ}2^{18}D2/2^{24}+C6^{\circ}2^{18}(D2/2^{24})^{2})$	Double	32	
Р	P=Y*(1-C2*2 ^(15-Q2) /2 ²⁴)+C2*2 ^(15-Q2) /2 ²⁴ °Y ²	Double	32	
Pressure	Pressure=((P-0.1)/0.8)*(P _{max} *P _{min})+P _{min}	Double	32	, i

$$Y = \frac{D1 + \left(C0 \times 2^{(15-Q0)}\right) + \left(\frac{D2 \times C3 \times 2^{15}}{2^{24}}\right) + \left[C4 \times 2^{15} \times \left(\frac{D2}{2^{24}}\right)^{2}\right]}{\left(C1 \times 2^{15-Q2}\right) + \left(\frac{C5 \times 2^{18} \times D2}{2^{24}}\right) + \left(C6 \times 2^{18} \times \left(\frac{D2}{2^{24}}\right)^{2}\right)}$$

$$P = Y\left(1 - \frac{C2 \times 2^{15-Q2}}{2^{24}}\right) + Y^{2}\left(\frac{C2 \times 2^{(15 \times Q2)}}{2^{24}}\right)$$

$$Pressure = \left[\left(\frac{P - 0.1}{0.8}\right) \times \left(Pmax - Pmin\right)\right] + Pmin$$

Temp =
$$(A0 \cdot 10) + \left(\frac{A1 - 20 \cdot 02}{2^{24}}\right) + A2 \cdot 20 \cdot \left(\frac{D2}{2^{24}}\right)^2$$

					V	lemo	ory r	nap	oing							
Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0						16	bit res	erved 1	or man	ufactur	er					
1	C0 ₁₃	C0 ₁₂	C0 ₁₁	C010	C0 ₀₉	C0 ₀₈	C0 ₀₇	C0 ₀₆	C0 ₀₅	C004	C0 ₀₃	C0 ₀₂	C0 ₀₁	C0 ₀₀	C1 ₁₃	C1 ₁
2	C1 ₁₁	C1 ₁₀	C1 ₀₉	C1 ₀₈	C1 ₀₇	C1 ₀₆	C1 ₀₅	C164	C1∞	C1 ₀₂	C101	C100	C2 ₀₀	C2 ₀₇	C2 ₀₆	C20
3	C2 ₀₄	C2∞	C2 ₀₂	C2 ₀₁	C200	C309	C3 ₀₈	C3 ₀₇	C3 ₀₈	C3 ₀₅	C3 ₀₄	C3 ₀₅	C3 ₀₂	C3 ₀₁	C300	C4 ₀
4	C4 ₀₇	C4 ₀₈	C4 ₀₅	C4 ₀₄	C4 ₀₃	C4 ₀₂	C4 ₀₁	C400	C509	C5 ₀₈	C5 ₀₇	C5 ₀₄	C5 ₆₅	C5 ₀₄	C5 ₀₃	C5 ₀
5	C5 ₀₁	C5∞	C6 ₀₈	C6 ₉₇	C6 ₀₆	C6 ₀₅	C6₀₄	C6 ₀₃	C6 ₀₂	C6 ₀₁	C6∞	Q0 ₀₂	Q0 ₀₁	Q000	Q1 ₀₂	Q1 ₀
6	Q1 ₀₀	Q2 ₀₂	Q2 ₀₁	Q2 ₀₀	A0 ₀₇	A0 ₀₆	A0 ₀₅	A0 ₀₄	A0 ₀₃	A0 ₀₂	A0 ₀₁	A000	A1 ₀₇	A1 ₀₆	A1 ₀₅	A1 ₀
7	A1 ₀₃	A1 ₀₂	A1 ₀₁	A100	A2 ₀₇	A204	A2 ₀₅	A2 ₀₄	A2 ₀₃	A2 ₀₂	A201	A200		CF	₹С	

Vincent Wong Office (510)-498-1570 ext 245 vincent.wong@meas-spec.com