Analysis of a Complex Kind Week 1

Lecture 3: Polar Representation of Complex Numbers

Petra Bonfert-Taylor

Polar Coordinates

- Consider $z = x + iy \in \mathbb{C}$, $z \neq 0$.
- z can also be described by the distance r from the origin (r = |z|) and the angle θ between the positive x-axis and the line segment from 0 to z.
- (r, θ) are the polar coordinates of z.
- Relation between Cartesian and polar coordinates:
 - $x = r \cos \theta$
 - $v = r \sin \theta$
- ... so: z = x + iy= $r \cos \theta + ir \sin \theta$ = $r(\cos \theta + i \sin \theta)$.

This is called the *Polar representation of z*.

The Argument of a Complex Number

- $z = x + iy = r(\cos \theta + i \sin \theta)$.
- r = |z| is easy to find, but how to find θ ? Note: θ is not unique!

Definition

The *principal argument of z*, called Arg *z*, is the value of θ for which $-\pi < \theta \le \pi$.

- $\arg z = \{ \operatorname{Arg} z + 2\pi k : k = 0, \pm 1, \pm 2, \ldots \}, z \neq 0.$
- Examples:
 - Arg $i = \frac{\pi}{2}$,
 - Arg 1 = 0,
 - $Arg(-1) = \pi$,
 - Arg $(1-i) = -\frac{\pi}{4}$,
 - Arg $(-i) = -\frac{\pi}{2}, \dots$

Exponential Notation

- Convenient notation: $e^{i\theta} = \cos \theta + i \sin \theta$.
- So $z = r(\cos \theta + i \sin \theta)$ becomes $z = re^{i\theta}$, the *polar form of z*.
- Note: $e^{i(\theta+2\pi)}=e^{i\theta}=e^{i(\theta+4\pi)}=\cdots=e^{i(\theta+2k\pi)}, k\in\mathbb{Z}.$
- Examples
 - $e^{i\frac{\pi}{2}} = i$,
 - $e^{i\pi} = -1$,
 - $e^{i\frac{\pi}{4}} = \frac{1+i}{\sqrt{2}}$,
 - $e^{2\pi i} = 1, ...$

Properties of the Exponential Notation

•
$$|e^{i\theta}| = 1$$
.

$$\bullet \ \overline{e^{i\theta}} = e^{-i\theta}.$$

$$\bullet \ \ \tfrac{1}{e^{i\theta}}=e^{-i\theta}.$$

•
$$e^{i(\theta+\varphi)}=e^{i\theta}\cdot e^{i\varphi}$$
.

Conclusions for the Argument Function

- $arg(\overline{z}) = arg z$.
- $arg(\frac{1}{z}) = -arg z$.
- $arg(z_1z_2) = arg(z_1) + arg(z_2)$.
- Examples:
 - $arg(i \cdot i) = arg(-1) = \pi$, $arg(i) + arg(i) = \frac{\pi}{2} + \frac{\pi}{2} = \pi$.
 - arg((-1)(-1)) = arg(1) = 0, $arg(-1) + arg(-1) = \pi + \pi = 2\pi$.

Multiplication in Polar Form

- Consider $z_1 = r_1 e^{i\varphi_1}$ and $z_2 = r_2 e^{i\varphi_2}$. What is the polar form of $z_1 z_2$?
- $z_1z_2 = r_1e^{i\varphi_1}r_2e^{i\varphi_2} = (r_1r_2)e^{i(\varphi_1+\varphi_2)}$.

De Moivre's Formula

- $\bullet e^{i\theta} \cdot e^{i\theta} = e^{i(\theta+\theta)} = e^{i\cdot 2\theta}.$
- $\bullet (e^{i\theta})^3 = e^{i\cdot 3\theta}.$

- $(e^{i\theta})^n = e^{in\theta}$ (also true for negative n).
- Recall that $e^{i\theta}$ is simply short for $\cos \theta + i \sin \theta$. Thus this last formula means:
- $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$.

Consequences of De Moivre's Formula

- $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$.
- This can be used to derive equations for sine and cosine. Ex: n = 3:
 - $cos(3\theta) = cos^3 \theta 3 cos \theta sin^2 \theta$.
 - $\sin(3\theta) = 3\cos^2\theta\sin\theta \sin^3\theta$.