MITx: Statistics, Computation & Applications

Criminal Networks Module

Lecture 2: Centrality Measures

$$= \sum_{s,t} \frac{\bigcap_{st}}{g_{st}}$$

$$\times = A \times$$

C: = (1 & dik) - 1

MITx: Statistics, Computation & Applications

Criminal Networks Module

Lecture 2: Centrality Measures

Find important nodes

- Centrality measure: A measure that captures importance of a node's position in the network
- There are many different centrality measures
 - degree centrality (indegree / outdegree)
 - "propagated" degree centrality (score that is proportional to the sum of the score of all neighbors)
 - closeness centrality
 - betweenness centrality

Which centrality measure to use

Choice of centrality measure depends on application!

In a friendship network:

- high degree centrality: most popular person
- high eigenvector centrality: most popular person that is friends with popular people
- high closeness centrality: person that could best inform the group
- high betweenness centrality: person whose removal could best break the network apart

Small network in which distinct nodes maximize degree, eigenvector, closeness and betweenness centralities?

Degree centrality

- For undirected graphs the degree k_i of node i is the number of edges connected to i, i.e. $k_i = \sum_i A_{ij}$
- For directed graphs the indegree of node i is $k_i^{\text{in}} = \sum_j A_{ij}$ and the outdegree is $k_i^{\text{out}} = \sum_j A_{ji}$
- Simple, but intuitive: individuals with more connections have more influence and more access to information.

Degree centrality

• For undirected graphs the degree k_i of node i is the number of edges connected to *i*, i.e. $k_i = \sum_i A_{ij}$

- For directed graphs the indegree of node i is $k_i^{\mathrm{in}} = \sum_j A_{ij}$ and the -outdegree is $k_i^{\text{out}} = \sum_i A_{ii}$ indegree
- Simple, but intuitive: individuals with more connections have more influence and more access to information.
- Does not capture "cascade of effects": importance better captured by having connections to important nodes

• Closeness centrality: Tracks how close a node is to any other node:

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where d_{ii} is the distance between nodes i and j

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where d_{ij} is the distance between nodes i and j

• In disconnected networks: average over nodes in same component as i or use harmonic centrality: $H_i = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ij}}$

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where d_{ij} is the distance between nodes i and j

- In disconnected networks: average over nodes in same component as i or use harmonic centrality: $H_i = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ii}}$
- Betweenness centrality: Measures the extent to which a node lies on paths between other nodes:

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where d_{ij} is the distance between nodes i and j

- In disconnected networks: average over nodes in same component as i or use harmonic centrality: $H_i = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ii}}$
- Betweenness centrality: Measures the extent to which a node lies on paths between other nodes:

$$B_i = \frac{1}{n^2} \sum_{s,t} \frac{n_{st}^i}{g_{st}},$$

where n_{st}^i is number of shortest paths between s and t that pass through i, and g_{st} is total number of shortest paths between s and t

- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know

- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know
- start with equal centrality: $x_i^{(0)} = 1$ for all nodes $i = 1, \dots, n$

update each centrality by the centrality of the neighbors:

$$x_i^{(1)} = \sum_{j=1}^n A_{ij} x_j^{(0)}$$
 (10 10)

• iterate this process:

$$x^{(k)} = A^{k}x^{(0)} \qquad x^{(1)} = Ax^{(0)} \qquad x_{M}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{k} \vee_{i} \vee_{i}^{T} x^{(0)} \qquad x_{M}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{k} \vee_{i} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} v_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{k} \vee_{i}^{T} v_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} v_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{K} \vee_{i}^{T} v_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{K} \vee_{i}^{T} v_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{K} \vee_{i}^{T} v_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{K} \vee_{i}^{T} v_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{K} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)}$$

$$= \sum_{i=1}^{M} \lambda_{i}^{T} \vee_{i}^{T} x^{(0)} + \sum_$$

- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know
- ullet start with equal centrality: $x_i^{(0)}=1$ for all nodes $i=1,\ldots,n$
- update each centrality by the centrality of the neighbors:

$$x_i^{(1)} = \sum_{j=1}^n A_{ij} x_j^{(0)} \qquad \times \qquad = \bigwedge_{\text{cons}} A_{\text{cons}} A_{\text{cons}}$$

- iterate this process: $x^{(k)} = A^k x^{(0)}$
- if there exists m > 0 such that $A^m > 0$, then one can show that

$$x^{(k)} \stackrel{k \to \infty}{\longrightarrow} \alpha \lambda_{\mathsf{max}}^k v,$$

where λ_{max} is the largest eigenvalue and $v \ge 0$ the corresponding eigenvector; α depends on choice of $x^{(0)}$ (Perron-Frobenius theorem)

Interpretation:
$$v_i = \frac{1}{\lambda_{\text{max}}} \sum_{j=1}^n A_{ij} v_j$$

- node is important if it has important neighbors
- node is important if it has many neighbors
- eigenvector corresponding to largest eigenvalue of A provides a ranking of all nodes

Interpretation:
$$v_i = \frac{1}{\lambda_{\text{max}}} \sum_{j=1}^n A_{ij} v_j$$

- node is important if it has important neighbors
- node is important if it has many neighbors
- eigenvector corresponding to largest eigenvalue of A provides a ranking of all nodes

What happens when G is directed?

Interpretation:
$$v_i = \frac{1}{\lambda_{\text{max}}} \sum_{j=1}^n A_{ij} v_j$$

- node is important if it has important neighbors
- node is important if it has many neighbors
- eigenvector corresponding to largest eigenvalue of A provides a ranking of all nodes

What happens when G is directed?

- right eigenvector: $v_i = \frac{1}{\lambda_{max}} \sum_{i=1}^n A_{ii} v_i$
 - importance comes from nodes i points to
 - Example: determining malfunctioning genes
- left eigenvector: $w_i = \frac{1}{\lambda_{max}} \sum_{i=1}^{n} w_i A_{ii}$
 - importance comes from nodes pointing to i
 - Example: ranking websites

• Can the eigenvector centrality be applied to any directed network?

- Can the eigenvector centrality be applied to any directed network?
- Any directed graph with a source / sink node gives zero eigenvector centrality (since the zeros are propagated through)

- Can the eigenvector centrality be applied to any directed network?
- Any directed graph with a source / sink node gives zero eigenvector centrality (since the zeros are propagated through)
- Remedy: Give every node some fixed (but small) centrality for free:

$$x_i^{(k+1)} = \alpha \sum_{j=1}^n A_{ij} x_j^{(k)} + \beta_i$$

or equivalently,

$$x^{(k+1)} = \alpha A x^{(k)} + \beta$$

- Can the eigenvector centrality be applied to any directed network?
- Any directed graph with a source / sink node gives zero eigenvector centrality (since the zeros are propagated through)
- Remedy: Give every node some fixed (but small) centrality for free:

$$x_i^{(k+1)} = \alpha \sum_{j=1}^n A_{ij} x_j^{(k)} + \beta_i$$

or equivalently,

$$x^{(k+1)} = \alpha A x^{(k)} + \beta$$

• If α is chosen in the interval $(0, 1/\lambda_{\max}(A))$, then one can show that

$$x^{(k)} \stackrel{k \to \infty}{\longrightarrow} v$$

where $v = (I - \alpha A)^{-1}\beta \ge 0$ (for example: for DAGs it holds that $\lambda_{\max} = 0$, hence no constraints on α ; take e.g. $\alpha = 1$)

Page rank

• Drawback of Katz centrality: A node of high centrality pointing to many nodes gives them all high centrality.

Page rank

- Drawback of Katz centrality: A node of high centrality pointing to many nodes gives them all high centrality.
- **Remedy:** Scale by the degree of a node:

$$x_j^{(k+1)} = \alpha \sum_{i=1}^n A_{ij} \frac{x_i^{(k)}}{k_i^{\text{out}}} + \beta_j,$$

or equivalently,

$$x^{(k+1)} = \alpha D^{-1} A x^{(k)} + \beta$$
, where $D = \operatorname{diag}(k_1^{\text{out}}, \dots, k_n^{\text{out}})$

Page rank

- Drawback of Katz centrality: A node of high centrality pointing to many nodes gives them all high centrality.
- Remedy: Scale by the degree of a node:

$$x_j^{(k+1)} = \alpha \sum_{i=1}^n A_{ij} \frac{x_i^{(k)}}{k_i^{\text{out}}} + \beta_j,$$

or equivalently,

$$x^{(k+1)} = \alpha D^{-1} A x^{(k)} + \beta$$
, where $D = \operatorname{diag}(k_1^{\text{out}}, \dots, k_n^{\text{out}})$

• If α is chosen in the interval $(0,1/\lambda_{\max}(D^{-1}A))$, then one can show that

$$x^{(k)} \stackrel{k \to \infty}{\longrightarrow} v$$
.

where
$$v = (I - \alpha D^{-1}A)^{-1}\beta \ge 0$$

• Example: Paper can be important because

- Example: Paper can be important because
 - it contains important information itself (authority)
 - it points to important papers (hub)

- Example: Paper can be important because
 - it contains important information itself (authority)
 - it points to important papers (hub)
- **Approach:** Define 2 centrality measures x (hub, is high if it points to many authorities) and y (authority, is high if many hubs point to it)

$$x_{i}^{(k+1)} = \alpha \sum_{j=1}^{n} A_{ij} y_{j}^{(k)}, \quad \text{i.e.,} \quad x^{(k+1)} = \alpha A y^{(k)}$$

$$y_{i}^{(k)} = \beta \sum_{j=1}^{n} A_{ji} x_{j}^{(k)}, \quad \text{i.e.,} \quad y^{(k)} = \beta A^{T} x^{(k)}$$

$$x^{(k+1)} = \beta A^{T} x^{(k)}$$

- Example: Paper can be important because
 - it contains important information itself (authority)
 - it points to important papers (hub)
- Approach: Define 2 centrality measures x (hub, is high if it points to many authorities) and y (authority, is high if many hubs point to it)

$$\begin{aligned} x_i^{(k+1)} &= \alpha \sum_{j=1}^n A_{ij} \, y_j^{(k)}, & \text{i.e.,} & x^{(k+1)} &= \alpha A y^{(k)} \\ y_i^{(k)} &= \beta \sum_{j=1}^n A_{ji} \, x_j^{(k)}, & \text{i.e.,} & y^{(k)} &= \beta A^T x^{(k)} \end{aligned}$$

$$\bullet \text{ Choosing } \alpha\beta = 1/\lambda_{\max}(AA^T), \text{ then}$$

$$x^{(k)} \stackrel{k \to \infty}{\longrightarrow} v$$
 and $y^{(k)} \stackrel{k \to \infty}{\longrightarrow} w$

such that $AA^Tv = \lambda v$ and $A^TAw = \lambda w$ (in fact $w = A^Tv$)

References

• Chapters 6 - 10 (but mostly Chapter 7) in

M. E. J. Newman. Networks: An Introduction. 2010.