

Human Activity Recognition

Mid Semester Presentation

Subject: Computer Vision Guided by: Dr. Mehul Raval Date: September 19, 2018 Prepared by: Group 07

Ashna Jain (201501008)
Dhruti Chandarana(201501015)
Charmi Chokshi (201501021)
Hena Ghonia (2015010132)
Janvi Patel (201501072)
Nishi Patel (201501076)

Motivation

- Human Activity Recognition is one of the active research areas in computer vision for various contexts like
 - security surveillance
 - Healthcare
 - human computer interaction
- Due to rapidly increasing amount of video records, based on automatic video analysis such as visual surveillance, human-machine interfaces, sports video analysis, and video retrieval it is important to make the detection more accurate and robust.

Problem Statement

Deep Learning based Human Activity Recognition

The objective is to classify activities into one of the activities performed.

- Two Stream Convolutional Networks for Action Recognition Videos by Karen Simonyan and Andrew Zisserman(2014) [6]
 - Incorporates spatial and temporal networks.
 - Limited training data ConvNet trained on multi-frame dense optical flow achieves good performance
 - Multitask learning- To decrease over-fitting, one could consider combining the two datasets into one

Figure 1: Two-stream architecture for video classification.

- Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. [2]
- DeepConvLSTM and the baseline CNN: topology of the dense layers.
 - MLP: all input and output independent
 - LSTM with RNN: fed back to itself (weight and a unit time delay), provides a memory of past activations: learn temporal dynamics of sequential data.

LSTM recurrent cells: DeepConvLSTM
Non-recurrent and fully connected: baseline CNN
Datasets: OPPORTUNITY, Skoda;

Accuracy :88%, 71.3%

- Feature extraction on sliding windows approach: static and periodic activities.
- Template matching approaches, Hidden Markov modelling: sporadic activities.

- Human Activity Recognition using Wearable Sensors by Deep Convolutional Neural Networks [3]
- Human physical activity recognition based on wearable sensors has applications relevant to our daily life such as health care.
- Implement using wearable devices such as smart phones, smart watches and sport bracelets which embed accelerometers and gyroscopes.

 The proposed DCNN architecture: Input layer - convolution layer1 (5*5 filter) - subsampling layer1 (4*4) - convolution layer2 (5*5) - subsampling layer2 (2*2) - fully connected layer softmax layer

- LSTM Networks for Mobile Human Activity Recognition [4]
- Feature extraction for AR is an important task.Parameters such as mean, standard deviation, entropy, Fourier transform are widely used features in AR.
- Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture which is efficient in predicting results in situations when there are long time lags of unknown size.
- Acceleration of three directions into a three dimensional vector with a sliding window of length N.
- Feature extraction of accelerometer raw data through long short memory network with N timesteps. And finally a new feature vector is generated, which is classified by a multiclassifier.
- Dataset: Wireless Sensor Data Mining(WISDM). It has 1,098,207 records and 6 Class attributes recorded using tri-axial accelerometers.
- Accuracy: 92.1%

- Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables[5]
- Describes 3 different approaches for Human activity recognition (HAR): Deep Feedforward Network, Convolution Neural Network and Recurrent Neural Network.
- It includes comparative studies of suitability and impact of hyper parameters (fANOVA framework).
- CNN approach is suitable for short-term activities, RNN approach is suitable for longer activities.
- DNN is sensible to hyperparameters and require significant efforts to explore parameters.
- Experiments done using 3 different dataset: Opportunity Dataset, PAMP2, Daphent Gait.

Comparative study of Datasets

Table 3. Public HAR datasets (A=accelerometer, G=gyroscope, M=magnetometer, O=object sensor, AM=ambient sensor, ECG=electrocardiograph)

ID	Dataset	Type	#Subject	S. Rate	#Activity	#Sample	Sensor	Reference
D01	OPPORTUNITY	ADL	4	32 Hz	16	701,366	A, G, M, O, AM	(Ordóñez and Roggen, 2016)
D02	Skoda Checkpoint	Factory	1	96 Hz	10	22,000	A	(Plötz et al., 2011)
D03	UCI Smartphone	ADL	30	50 Hz	6	10,299	A, G	(Almaslukh et al., 2017)
D04	PAMAP2	ADL	9	100 Hz	18	2,844,868	A, G, M	(Zheng et al., 2014)
D05	USC-HAD	ADL	14	100 Hz	12	2,520,000	A, G	(Jiang and Yin, 2015)
D06	WISDM	ADL	29	20 Hz	6	1,098,207	A	(Alsheikh et al., 2016)
D07	DSADS	ADL	8	25 Hz	19	1,140,000	A, G, M	(Zhang et al., 2015c)
D08	Ambient kitchen	Food preparation	20	40 Hz	2	55,000	0	(Plötz et al., 2011)
D09	Darmstadt Daily Routines	ADL	1	100 Hz	35	24,000	A	(Plötz et al., 2011)
D10	Actitracker	ADL	36	20 Hz	6	2,980,765	A	(Zeng et al., 2014)
D11	SHO	ADL	10	50 Hz	7	630,000	A, G, M	(Jiang and Yin, 2015)
D12	BIDMC	Heart failure	15	125 Hz	2	>20,000	ECG	(Zheng et al., 2014)
D13	MHEALTH	ADL	10	50 Hz	12	16,740	A, C, G	(Ha and Choi, 2016)
D14	Daphnet Gait	Gait	10	64 Hz	2	1,917,887	A	(Hammerla et al., 2016)
D15	ActiveMiles	ADL	10	50-200 Hz	7	4,390,726	A	(Ravì et al., 2017)
D16	HASC	ADL	1	200 Hz	13	NA	A	(Hayashi et al., 2015)
D17	PAF	PAF	48	128 Hz	2	230,400	EEG	(Pourbabaee et al., 2017)
D18	ActRecTut	Gesture	2	32 Hz	12	102,613	A, G	(Yang et al., 2015)
D19	Heterogeneous	ADL	9	100-200 Hz	6	43,930,257	A, G	(Yao et al., 2017)

Reference: Wang, Jindong, et al. "Deep learning for sensor-based activity recognition: A survey." Pattern Recognition Letters (2018).

Comparison study of Literature review

Article name	Algorithm	Performance metrics	Dataset used
Two Stream Convolutional Networks for Action Recognition Videos [6]	Spatial ConvNet and temporal stream ConvNet -> fusion of two ConvNet by averaging and multiclass SVM.	Maximum accuracy achieved for UCF-101:88% and for HMDB-66.8%	UCF101 and HMDB-51
Deep convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition[2]	DeepConvLSTM for recurrent cells and Baseline CNN for non recurrent cells and fully connected network. MLP but input and output are independent; RNN used for fed back to itself and to provide memory of past activities. LSTM with RNN is used to learn temporal dynamic of sequential data.	Maximum accuracy for OPPORTUNITY - 88% Skoda - 71.3%	OPPORTUNITY (D01) Skoda (D02) mHealth (D13)
Human Activity Recognition using Wearable Sensors by Deep Convolutional Neural Networks [3]	Sensed signals from Accelerometer, gyroscope - From Raw signals stacked image - Discrete Fourier Transform - Activity image - DCNN - Low level to High level features learning - Activity Recognition	Maximum accuracy for UCI - 95.18 % USC - 97.01 % SHO - 99.93 %	UCI, USC, SHO

Comparison study of Literature review

Article name	Algorithm	Performance metrics	Dataset used	
LSTM Networks for Mobile Human Activity Recognition [4]	LSTM+Multiclass classification	Accuracy : 92.1%	WISDM	
Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables[5]	Finding impact of hyperparameters using fANOVA framework. Three different approaches: CNN, DNN, RNN(bi-directional and forward in time) Dropout and Max-in-Norm regularization	Maximum accuracy for D04 dataset- CNN Approach- 93.7% D01 dataset- RNN(bi-directional) Approach- 74.5% D14 dataset- RNN(forward in time) Approach- 76%	D01, D04, D14	

Data Set

- UCI HAR dataset
- The dataset was collected from the in-built accelerometer and gyroscope of a smartphone worn around the waist of participants.
- Number of subjects: 30
- Number of activities: 06
 - Walking
 - Walking upstairs
 - Walking downstairs
 - Sitting
 - Standing
 - Laying

CNN Network Structure

About the inputs

- That dataset contains 9 channels of the inputs: (acc_body, acc_total and acc_gyro) on x-y-z. So the input channel is 9
- So in the end, we reformatted the inputs from 9 inputs files to 1 file, the shape of that file is [n_sample,128,9], that is, every windows has 9 channels with each channel has length 128
- Convolution + pooling + convolution + pooling + dense + dense
- learning_rate = 0.001
- dropout = 0.8
- training_epoch = 20
- kernel_size = 64 (total 32)

Output

dropout	LR	epoch	train_acc	test_acc
0.7	0.01	100	0.894	0.801
0.7	0.001	10	0.788	0.715
0.8	0.001	10	0.843	0.741

```
Epoch: 19, batch: 1616, loss: 3861.32617188, accuracy: 0.81250000
Epoch: 19, batch: 2416, loss: 3103.45263672, accuracy: 0.93750000
Epoch: 19, batch: 3216, loss: 0.00000000, accuracy: 1.00000000
Epoch: 19, batch: 4016, loss: 2461.26611328, accuracy: 0.87500000
Epoch: 19, batch: 4816, loss: 0.00000000, accuracy: 1.00000000
Epoch: 19, batch: 5616, loss: 10780.86328125, accuracy: 0.87500000
Epoch: 19, batch: 6416, loss: 6024.33496094, accuracy: 0.93750000
Epoch: 19, batch: 7216, loss: 0.00000000, accuracy: 1.00000000
Epoch: 20, batch: 016, loss: 0.00000000, accuracy: 1.00000000
Epoch:20,batch:816,loss:0.00000000,accuracy:1.00000000
Epoch: 20, batch: 1616, loss: 0.00000000, accuracy: 1.00000000
Epoch: 20, batch: 2416, loss: 9006.54785156, accuracy: 0.68750000
Epoch: 20, batch: 3216, loss: 0.00000000, accuracy: 1.00000000
Epoch: 20, batch: 4016, loss: 1838.11120605, accuracy: 0.81250000
Epoch: 20, batch: 4816, loss: 4942.12695312, accuracy: 0.93750000
Epoch: 20, batch: 5616, loss: 0.00000000, accuracy: 1.00000000
Epoch: 20, batch: 6416, loss: 0.00000000, accuracy: 1.00000000
Epoch: 20, batch: 7216, loss: 0.00000000, accuracy: 1.00000000
Optimization finished!
Accuracy of testing:0.83338988
```

Future Work

- Modification of the current CNN based model for better accuracy
- Implementation of RNN-LSTM based approach
- Create threads by exploiting multiple cores
- Thresholding in the system which restricts assigning label to an unknown activity (outlier detection)

References

Recognition Letters (2018).
[2] Ordóñez, Francisco Javier, and Daniel Roggen. "Deep convolutional and Istm recurrent neural networks

recognition: A survey." Pattern

[1] Wang, Jindong, et al. "Deep learning for sensor-based activity

- for multimodal wearable activity recognition." Sensors 16.1 (2016): 115.

 [3] Jiang W, Yin Z Proceedings of the 23rd ACM international conference on Multimedia. Human Activity
- Recognition using Wearable Sensors by Deep Convolutional Neural Networks[C] ACM, 2015:1307-1310. [4] Yuwen Chen, Kunhua Zhong, Ju Zhang, Qilong Sun and Xueliang Zhao, "LSTM Networks for Mobile Human Activity Recognition" in International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016).
- [5] Hammerla, Nils Y., Shane Halloran, and Thomas Ploetz. "Deep, convolutional, and recurrent models for human activity recognition using wearables." arXiv preprint arXiv:1604.08880(2016).
- [6] Simonyan, Karen, and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." *Advances in neural information processing systems*. 2014.

Thank you!