

Income prediction - using decision tree

Grace Palma

Problem

• Most valuable question in Market research:

Personal income

- Potential spending habits
- Discretionary income
- Audience segregation
- Product or campaign targeting

Background

- ABS census: Mean yearly personal income
 - o \$80,000 **+**
- Aim
 - To predict if a person earns above or below the average salary for Australians

Data

Г	Gender	State	Age	Employment	Partnership	Children	No_of_children	Home_status	Qualified	Income	Salary	Work_type	BDM	Industry
0	1	2	22	1	0	0	0	NaN	1	102499.5	Above 80	2	1	16
1	0	0	0	0	0	0	0	NaN	1	0.0	NaN	0	0	0
2	2	1	57	1	1	1	0	Mortgage	1	0.0	NaN	1	1	22
3	1	1	42	1	0	0	0	NaN	1	352499.5	Above 80	1	1	23
4	1	1	42	1	0	0	0	Renting	0	0.0	NaN	2	1	24
5	0	0	0	0	0	0	0	NaN	1	0.0	NaN	0	0	0
6	0	0	0	0	0	0	0	NaN	1	0.0	NaN	0	0	0
7	2	1	37	0	0	0	0	NaN	0	0.0	NaN	0	0	0
8	1	1	67	0	0	0	0	NaN	0	0.0	NaN	0	0	0
9	1	2	57	1	0	0	0	Mortgage	0	92499.5	Above 80	2	1	19

- Survey data
- Online panel
- Contains information on an individual's relationship status, work related information, etc.

Tools

- from sklearn import tree
- import pandas as pd
- import numpy as np
- import math

Visualisation:

- import matplotlib.pyplot as plt
- import seaborn as sns
- %matplotlib inline

Change categorical to numerical:

for c in features_categorical:

df[c] = pd.Categorical(df[c]).codes

Model classifier:

from sklearn.tree import DecisionTreeClassifier

Accuracy test:

from sklearn.metrics import roc_auc_score

Feature selection

- Correlation matrix
- Heatmap of correlation matrix

	Income			
Employment	0.418967			
Industry	0.342959			
BDM	0.289510			
Work_type	0.238678			
Qualified	0.191781			
Age	0.130094			
Partnership	0.077290			
Children	0.067124			
State	0.045941			
No_of_children	0.039495			
Gender	-0.008289			

Preprocessing

- Define relevant variables or features
- Define categorical variables
- Change categorical variables to numeric
- Define features
- Define target

	Employment	Industry	BDM	Work_type	Age	Qualified	Partnership	Salary	Home_status	Gender
0	1	16	1	2	22	1	0	1	0	1
1	0	0	0	0	0	1	0	0	0	0
2	1	22	1	1	57	1	1	0	2	2
3	1	23	1	1	42	1	0	1	0	1
4	1	24	1	2	42	0	0	0	4	1
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	37	0	0	0	0	2
8	0	0	0	0	67	0	0	0	0	1
9	1	19	1	2	57	0	0	1	2	1

Analysis

- Split and train the data set
 - 80% for training
 - 20% for testing
- DecisionTreeClassifier from scikit learn package to fit the decision tree

Accuracy test

Area under the curve

o Test: 0.608960029048

o Training: 0.792767534575

Tree depth restrictions

Tree depth restrictions

- Depth restricted to 18
- Area under the curve

o Test: 0.617106179584

Training: 0.775251922562


```
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=18, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=1, splitter='best')
```

Applications & next steps

- Applications
 - Consumer profiling
 - Predict other information EG Education
- Next steps
 - Find variables that can render better salary predictions
 - 0 ..

