Communication Network Design Lab

(course of Prof. Massimo Tornatore)

Lab 3

Mëmëdhe Ibrahimi, Qiaolun Zhang

Department of Electronics, Information and Bioengineering Politecnico di Milano

Piazza Leonardo da Vinci 32 – 20133 Milan, Italy <u>memedhe.ibrahimi@polimi.it</u> <u>qiaolun.zhang@polimi.it</u>

Outline

- Task #2 (RF VWP vs. RF WP)
- Elastic Optical Networks
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
- Exercise 3.2: RSA problem *unprotected* vs. 1+1 protection

Before starting Lab-3
Download 'LAB-3 Material' from WeBeep

Outline

- Task #2 (RF VWP vs. RF WP)
- Elastic Optical Networks
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
- Exercise 3.2: RSA problem *unprotected* vs. 1+1 protection

Task #2: RF with Wavelength Continuity vs. Without Wavelength Continuity

- RouteFormulationWP.java contains some MISSING lines of code. Add these lines to assume wavelength continuity!
- Load the 7-nodes network topology with traffic
- Modify offered traffic per demand and set it to 3 for all demands
 - In 'Design tables and control window', go to 'view/edit network state'
 → 'Layer 0' → 'Demands' then select 'Offered traffic()', right click and click on 'Set selected demands offered traffic', and set it to 3
- Compare with and without wavelength continuity varying link capacity $C = \{10, 15, 20, 25\}$; assume k = 1, 2, 3
 - Tabulate total capacity consumption on all links with respect to C
 - DEADLINE: 11/11/2022 (before next CND LAB)
- Share pdf and code via e-mail with subject "LAB_CND_task_2" and name the file with your codice persona

Task #2: Hints

1. Ensure you define the objective function correctly.

- $\min_{r_{cm\lambda}} \sum_{n=1}^{\infty} r_{cn\lambda} \cdot P_{cn}$
- You need to ensure parameter P_{cn} (a vector) multiplies variable $r_{cn\lambda}$ (You must use a function of the type "sum (matrix, dimension)"
- http://www.net2plan.com/jom/gettingStarted.php
- 2. In the capacity constraint: make sure that every wavelength can be used only once (you have only one fiber connecting two nodes).
 - You can set the number of wavelengths according to "linkcapacity" or similar to how you set "k" in line 31
- 3. Make sure you are considering decision variables to be integer

С	WP With continuity	vWP Without Continuity
10		
15		
20		
25		

Task #2: RF, VWP vs. WP

C	WP	VWP
	With continuity	Without Continuity
10		
15		
20		
25		

Outline

- Task #2
- **Elastic Optical Networks**
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
- Exercise 3.1: RSA problem *unprotected* vs. 1+1 protection

■ Current Wavelength Division Multiplexing grid: fixed channel spacing (50/100 GHz) → Fixed Grid

Flexible grid (Flexi Grid): frequency slices with finer granularity (12.5 GHz)
 Increased efficiency in the usage of spectral resources

(50GHz, optical bandwidth)

100 Gb/s = 28 GHz, 28 Gbaud

28 Gbaud are divided into:

1- 25 Gbaud → rate With DP-QPSK:

 $25 \text{ GHz } \times 4 \text{ bit/Hz} = 100 \text{ Gb/s}$

2- 3 Gbaud → FEC (forward error correction)

- Fixed Grid: fixed channel spacing (50/100 GHz)
- Flexible grid (Flexi Grid): Frequency Slice Units of finer granularity (12.5 GHz)

Routing and Spectrum Assignment (RSA) instead of traditional Routing and Wavelength Assignment (RWA)

RWA vs. RSA problem

GIVEN

RWA:

CRs require a wavelength (50GHz spectrum)

RWA:

- Wavelength continuity

RSA:

CRs require frequency slots that are multiple of the basic frequency slice

RSA:

- Spectral continuity
- Spectral adjacency

Connection requests (CR)

LP = LIGHTPATH

channels

Physical topology

CR: Connection Request

Elastic Optical Networks: From RWA to RSA

GIVEN

Now connection requests require frequency slots that are multiple of the basic Frequency Slice Unit (e.g., N x 12.5 GHz)

FIND RSA

Constraints:

- Route the requests
- Spectrum continuity
- Spectral adjacency (continguity)
- Link capacity

Connection requests

LP = LIGHTPATH

Optical wavelength channels

Physical topology

- Continuity constraint: demand must use exactly the same spectrum slots in all links over which it is routed (e.g., green and purple spectrum)
- Adjacency (contiguity) constraint: slices assigned to a particular demand must be adjacent (contiguous)

Elastic Optical Networks: spectrum continuity and contiguity constraints

Elastic Optical Networks: spectrum continuity and contiguity constraints

Outline

- Task #2
- Elastic Optical Networks
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
 - Heuristic vs. ILP
 - Greedy heuristic approach for the RSA problem
- Exercise 3.1: RSA problem *unprotected* vs. 1+1 protection

Heuristic vs. ILP

- Heuristic approaches
 - Practical methods, not guaranteed to be optimal but are good enough.
 - An alternative to Mathematical Programming for realistic dimension problems
- Types of Algorithms
 - 1. Greedy
 - 2. Local Search
 - 3. Meta-heuristic, e.g. Genetic Algorithms

(Example) Compare an ILP and a heuristic for RSA in two networks considering a full mesh traffic matrix
Objective: Minimize overall spectrum consumption

7-node network	ILP	Heuristic
Value of Obj. ft.	200	205
Execution time (sec)	150	2

52-node network	ILP	Heuristic
Value of Obj. ft.	NA	8000
Execution time (sec)	NA	25

Heuristic Approaches: Greedy approach

- Constructive algorithms that starts with an empty solution. A part of the solution is constructed in each iteration
 - Based on the optimization of a cost function
 - No iterative process: parts of solution already set do not change (only new pieces are added)
- Stop Conditions: When does it stop?
 - Maximum running time/iterations
 - After some fixed time, or a maximum number of iterations
 - Maximum time/iterations without improvement
 - If no improvement in the solution is observed for a finite time or number of iterations
 - Approximating an optimality bound
 - When the solution is near to the solution obtained with an approximation technique

Outline

- Task #2
- Elastic Optical Networks
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
 - Heuristic vs. ILP
 - Greedy heuristic approach for the RSA problem
- Exercise 3.1: RSA problem *unprotected* vs. 1+1 protection

Heuristic Approaches: RSA Problem

- Given <u>network topology</u> and <u>set of traffic demands</u> each requesting a number of Frequency Slot Units (FSUs)
- Decide Route and Spectrum Assignment (RSA) for each demand
- Objective: minimize overall amount of carried traffic on all links
- Subject to RSA constraints (capacity, continuity, contiguity)

Network Topology

Traffic Demands

Demand id	Src	Dst	#FSUs
D1	1	4	3
D2	2	4	3
D3	5	1	3
D4	6	2	3
D5	3	5	6

Heuristic Approaches: RSA Problem

- 1. Sort demands (in which order?)
- 2. Compute candidate paths for each demand (how many?)
- 3. For each demand
 - a) Sort paths in increasing order of number of links
 - b) Consider the shortest path: if enough capacity, perform RSA Otherwise, consider next path in list
 - c) Update number of FSUs available on each link used
- 4. Consider the next demand in the list
 - a) Stop when no more demands need to be routed
- 5. Output RSA of each demand and overall spectrum utilization

Demand id	Src	Dst
D1	1	4

Heuristic Approaches: RSA Problem

- For each demand
 - Find best path, Route and Spectrum Allocation
 - Update number of FSUs on each fiber

id	Src	Dst	# FSU s
D1	1	4	3
D2	2	4	3
D3	5	1	3
D4	6	2	3
D5	3	5	6

Shortest path available? If yes then route, else check 2nd shortest path

Link id	Available Capacity	Utilized Capacity
1,2	59 47	3
2,3	58 47 44	6
3,4	59 44	6
5,6	50 47	3
6,1	59 47	3
6,2	59 47	3
3,5	50 ′ 44	6

Outline

- Task #2
- Elastic Optical Networks
 - Routing and Spectrum Assignment (RSA) Problem
- Heuristic Approaches
- Exercise 3.1: RSA problem *unprotected* vs. 1+1 protection

Exercise 3.1: Unprotected vs. 1+1 Protection

Load «Example7nodes.n2p»

[Not the one we usually load! Make sure you load the correct file]

- Load the traffic matrix «tm7nodes.n2p»
- Load and run the heuristic: «Offline_ipOverWdm_routingSpectrumAndModulationAssignmentHeuristic NotGrooming»
 - The .java file is in zip folder of Lab Session #3.
- Run algorithm once so that IP layer is shown in «View/Edit network state»
- Set offered traffic per demand in <u>IP layer tab</u> to 10 Gbps
- Under settings:
 - Make sure numFrequencySlotsPerFiber (capacity) = 40
 - Spectrum resources in a fiber to serve the traffic requests
 - Other parameters as defined by defaults

Exercise 3.2: Unprotected vs. 1+1 Protection

- Run the heuristic with 'no protection' & then with '1+1protection'
 - No protection → NetworkRecoveryType: not-fault-tolerant
 - 1+1 Protection → NetworkRecoveryType: 1+1 srg-disjoint-lps
- Consider offered traffic per demand = 20 Gbps, 30 Gbps, and 40 Gbps What is the value of the objective function?

WHY

Objective function for varying traffic and varying numFrequencySlotsPerFiber

Traffic (Gbps)	not-fault-tolerant (no protection)	1+1 srg-disjoint-lps (1+1 protection)
10	26	52
20	52	104
30	78	156
40	104	188
80	208	196

Exercise 3.2: Unprotected vs. 1+1 Protection

What is the lowest number of frequency slots per fiber which ensures all demands are protected with 60Gbps (1+1 protection)?

numFreqSlots not-fault-tolerant (no protection)		1+1 srg-disjoint-lps (1+1 protection)	
40	156	156	
50	156	240	
60	156	282	
70	156	310	
80	156	312	

- 72!Low number of FSU -> CAN'T FULFILL THE CONSTRAINTS TO FULFILL THE DEMANDS
- What if we change the value of k? (k = 5 by default)
 - Does a higher k (e.g., k = 10) ensure a solution for 60 Gbps (1+1 protection) with a lower number of allocated frequency slots?

Exercise: Changing transponder capacity and spectrum occupancy

- "transponderTypesInfo": 10 1 1 9600 1
 - Default: 10 1 1 9600 1 Transpoder types separated by ";". Each type is characterized by the space-separated values: (i) Line rate in Gbps, (ii) cost of the transponder, (iii) number of slots occupied in each traversed fiber, (iv) optical reach in km (a non-positive number means no reach limit), (v) cost of the optical signal regenerator (regenerators do NOT make wavelength conversion; if negative, regeneration is not possible)
- Set offered traffic to 30 Gbps; numFreqSlots = 40
 - a) If number of slots for each transponder is one (default) can we ensure the contiguity constraint?
 - E.g., "transponderTypesInfo": 10 1 1 9600 1
 - b) What if we modify the number of slots for each transponder is there any difference compared to previous case?
 - E.g., "transponderTypesInfo": 30 1 3 9600 1

Exercise: Changing transponder capacity and spectrum occupancy

"transponderTypesInfo": 10 1 1 9600 1

Exercise: Changing transponder capacity and spectrum occupancy

"transponderTypesInfo": 30 1 3 9600 1

Amplification and 3R-regeneration

- In general signal regeneration can be 1R, 2R or 3R
 - Pulse re-amplification, re-shaping, re-timing
 - Optical amplification is 1R
- When should the signal be re-generated? How can we know?!

Amplification and 3R-regeneration

Data Rate (Gb/s)	Modulation format	Bits/symbol (Gb/s) - Entropy	Channel spacing Δf (GHz)	Reach (km)
800	PCS 64 QAM	5.67	100	150
700	PCS 64 QAM	5.00	100	400
600	16 QAM	4.00	100	700
500	PCS 16 QAM	3.60	100	1300
400	PCS 16 QAM	3.00	100	2500
300	PCS 16 QAM	2.39	100	4700
300	64 QAM	6.00	50	100
200	16 QAM	4.00	50	900
100	QPSK	2.00	50	3000

R1: (A, C) 100 Gb/s, QPSK R2: (A, C) 200 Gb/s, 16-QAM

Amplification and 3R-regeneration

Route traffic between each-node pair and minimize number of 3R regeneration sites