EAD

DETERMINANTES

CONCEITO:

Dada uma Matriz Quadrada de ordem n, dizemos que Determinante de ordem n é um número associado a essa Matriz conforme determinadas leis.

Representamos o Determinante de uma Matriz M por Det (M), ou com os elementos da Matriz entre duas barras.

Assim, se tivermos a Matriz $M = \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 3 \\ 5 & 6 & 0 \end{bmatrix}$, o Determinante da Matriz M, ou simplesmente

$$Det(M) = \begin{vmatrix} 2 & 4 & -1 \\ 0 & 3 & 3 \\ 5 & 6 & 0 \end{vmatrix}.$$

Do mesmo modo que as Matrizes, os Determinantes também possuem diagonais, tanto a principal como a secundária.

Este conceito nos permite calcular apenas os Determinantes de primeira e de segunda ordem, do seguinte modo:

DETERMINANTE DE PRIMEIRA ORDEM:

Det(M) = |m| = m. Ou seja, o Determinante de primeira ordem é igual ao seu único elemento.

EXERCÍCIOS: Calcular os seguintes determinantes:

1)
$$|0|$$
; 2) $\left|\frac{2}{3}\right|$; 3) $|-1,2|$; 4) $|-\pi|$; 5) $\left|\frac{2\sqrt{3}}{5}\right|$

Resp.: 1) 0; 2)
$$\frac{2}{3}$$
; 3) -1,2; 4) - π ; 5) $\frac{2\sqrt{3}}{5}$.

DETERMINANTE DE SEGUNDA ORDEM:

 $Det(M) = \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix} = m_{11} \cdot m_{22} - m_{21} \cdot m_{12}$. Isto é, este determinante é igual à diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária, obtidas nesta ordem.

EXEMPLO: Calcular o Determinante:
$$\begin{vmatrix} 3 & 7 \\ -4 & -8 \end{vmatrix} = 3 \cdot (-8) - (-4) \cdot 7 = -24 + 28 = 4$$

EXERCÍCIOS:

1) Calcular os seguintes determinantes :

a)
$$\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}$$
; b) $\begin{vmatrix} -4 & 0 \\ 1 & -2 \end{vmatrix}$; c) $\begin{vmatrix} \frac{4}{3} & \frac{5}{2} \\ 0.4 & 1.5 \end{vmatrix}$; d) $\begin{vmatrix} 2\sqrt{6} & -3\sqrt{2} \\ 3\sqrt{8} & -4\sqrt{6} \end{vmatrix}$; e) $\begin{vmatrix} \frac{3\sqrt{5}}{4} & \frac{2\sqrt{3}}{7} \\ \frac{7\sqrt{3}}{2} & -\frac{6\sqrt{5}}{4} \end{vmatrix}$

Resp.: (a) 1; b) 8; c) 1; d) -12; e)
$$-\frac{69}{8}$$
)

2) Resolva as equações em R:

a)
$$\begin{vmatrix} 2x & x+1 \\ 8 & 3 \end{vmatrix} = -4;$$
 b) $\begin{vmatrix} x-2 & 2 \\ 3 & x-1 \end{vmatrix} = 0;$ c) $\begin{vmatrix} 2^x & 4 \\ 2^x & 2^x \end{vmatrix} = 32$
Resp.: (a) $V = \{-2\}$; b) $V = \{-1,4\}$; c) $V = \{3\}$.

DETERMINANTE DE TERCEIRA ORDEM:

A resolução destes determinantes não é advinda da definição, como as duas anteriores, mas de uma regra prática chamada "Regra de Sarrus" (matemático francês da primeira metade do século XIX), que se resume no seguinte esquema:

Repetimos as duas primeiras colunas, conforme a "figura" e multiplicamos os elementos da diagonal principal e suas "paralelas", somando os produtos obtidos. Em seguida multiplicamos os elementos da diagonal secundária, e das suas " paralelas", somando estes resultados colocando um sinal de "menos" à frente. Por fim, efetuamos a adição algébrica dos dois resultados.

Em outras palavras, temos:

$$Det(M) = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix} = \begin{vmatrix} m_{11} & m_{12} & m_{13} & m_{11} & m_{12} \\ m_{21} & m_{22} & m_{23} & m_{21} & m_{22} \\ m_{31} & m_{32} & m_{33} & m_{31} & m_{32} \end{vmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{11} & m_{12} \\ m_{21} & m_{22} & m_{23} & m_{23} & m_{21} & m_{22} \\ m_{31} & m_{32} & m_{33} & m_{31} & m_{32} \end{pmatrix}$$

$$= m_{11} \cdot m_{22} \cdot m_{33} + m_{12} \cdot m_{23} \cdot m_{31} + m_{13} \cdot m_{21} \cdot m_{32} +$$

$$- (m_{13} \cdot m_{22} \cdot m_{31} + m_{11} \cdot m_{23} \cdot m_{32} + m_{12} \cdot m_{21} \cdot m_{33})$$

EXEMPLO:

Calcular o determinante:
$$\begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 1 \\ 4 & 0 & 5 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 1 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 3 & 6 & 2 & 6 \\ 4 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 8 \\ 4 & 0 & 5 \end{vmatrix} =$$

$$= 60 + 16 + 0 - 192 - 0 - 60 = -176$$

EXERCÍCIOS:

1) Obter os seguintes determinantes:

a)
$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$
; b) $\begin{vmatrix} \sqrt{2} & 2 & 1 \\ -1 & \sqrt{3} & 3 \\ 3 & 2 & \sqrt{6} \end{vmatrix}$; c) $\begin{vmatrix} \frac{1}{2} & 3 & 0 \\ \frac{2}{5} & 2 & -\frac{4}{5} \\ 3 & -2 & \frac{3}{2} \end{vmatrix}$; d) $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ -1 & 1 & -1 \end{vmatrix}$
Resp.: (a) -2; b) $22 - 3\sqrt{3} + 2\sqrt{6} - 6\sqrt{2}$; c) $-\frac{38}{5}$; d) -2.)

2) Resolva em ℝ as equações:

a)
$$\begin{vmatrix} 4x & 5 & -3 \\ 0 & 1 & -1 \\ 3x & 1 & 0 \end{vmatrix} = 1; \quad b) \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 4 & 9 & 25 + x \end{vmatrix} = 0; \quad c) \begin{vmatrix} \log x & \log_x 10 & \log_x 10 \\ 10 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

$$Resp.: (a) \quad V = \{ -\frac{1}{2} \} ; b) \quad V = \{ -6 \} ; c) \quad V = \{ 10, \frac{1}{10} \}.)$$

DETERMINANTES DE ORDEM SUPERIOR À TERCEIRA:

Para resolvermos estes determinantes, é necessário que sejam definidos os conceitos de Cofator de um elemento de um Determinante:

Chamamos de Cofator de um elemento a_{ij} de um Determinante de ordem n, e que simbolizaremos por C_{ij} , ao produto entre $(-1)^{i+j}$ e o Determinante de ordem n-1 que obtemos com a supressão da linha e da coluna às quais pertence o citado elemento

EXEMPLO:

Seja o determinante $D = \begin{bmatrix} 2 & 5 & -3 \\ 1 & 4 & 7 \\ -2 & 0 & 6 \end{bmatrix}$. O Cofator do elemento a_{23} , que é o número 7,

é o determinante obtido de D, com a retirada de sua segunda linha e de sua terceira coluna, multiplicado por (-1)²⁺³.

Ou seja, é a expressão
$$C_{23} = (-1)^5 \cdot \begin{vmatrix} 2 & 5 \\ -2 & 0 \end{vmatrix} = (-1) \cdot (2 \cdot 0 + 2 \cdot 5) = -10$$

TEOREMA DE LAPLACE (Matemático francês do século XVIII):

Demonstra-se que: "Todo Determinante é igual à soma dos produtos dos elementos de uma de suas filas (linhas ou colunas) pelos seus respectivos Cofatores".

Em linguagem algébrica, que naturalmente é mais apropriada, escrevemos:

EXEMPLOS:

Calcular os seguintes Determinantes usando o Teorema de Laplace:

Para aplicarmos o Teorema de Laplace, devemos escolher inicialmente uma das filas, como, por exemplo, a 3ª linha, para, então, começarmos os cálculos:

$$\begin{vmatrix} 2 & 4 & 6 \\ 1 & 5 & 2 \\ 3 & 4 & 8 \end{vmatrix} = 3 \cdot (-1)^{3+1} \cdot \begin{vmatrix} 4 & 6 \\ 5 & 2 \end{vmatrix} + 4 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 2 & 6 \\ 1 & 2 \end{vmatrix} + 8 \cdot (1)^{3+3} \cdot \begin{vmatrix} 2 & 4 \\ 1 & 5 \end{vmatrix} =$$

$$= 3 \cdot (-1)^4 \cdot (8 - 30) + 4 \cdot (-1)^5 \cdot (4 - 6) + 8 \cdot (-1)^6 \cdot (10 - 4) =$$

$$= 3 \cdot 1 \cdot (-22) + 4 \cdot (-1) \cdot (-2) + 8 \cdot 1 \cdot 6 =$$

$$= -66 + 8 + 48 = -10$$

OBSERVAÇÃO: É natural que você tenha percebido que, se fosse usada a Regra de Sarrus, o trabalho para resolver este Determinante seria muito menor. Porém, Sarrus resolve apenas Determinantes de 3ª ordem, e, como você verá a seguir, Laplace resolve qualquer Determinante, apesar de ser bem mais trabalhoso.

OBSERVAÇÕES:

- a) Por não ser de 3ª ordem, este Determinante não pode ser resolvido por Sarrus.
- b) A fila escolhida será a 2ª linha, por possuir um zero, e isto nos diminuirá os cálculos.
- c) Chamaremos o Determinante de D.

RESOLUÇÃO:

Se aplicarmos em D o Teorema de Laplace, obteremos:

$$D = 4 \cdot (-1)^{2+1} \cdot \begin{vmatrix} 2 & 2 & 5 \\ 1 & 2 & 4 \\ 4 & 4 & 3 \end{vmatrix} + 0 \cdot (-1)^{2+2} \cdot \begin{vmatrix} 3 & 2 & 5 \\ 6 & 2 & 4 \\ 2 & 4 & 3 \end{vmatrix} + 3 \cdot (-1)^{2+3} \cdot \begin{vmatrix} 3 & 2 & 5 \\ 6 & 1 & 4 \\ 2 & 4 & 3 \end{vmatrix} + 1 \cdot (-1)^{2+4} \cdot \begin{vmatrix} 3 & 2 & 2 \\ 6 & 1 & 2 \\ 2 & 4 & 4 \end{vmatrix}$$

OBSERVAÇÃO:

Perceba que Laplace transformou o Determinante de 4ª ordem, que não sabíamos calcular, em 4 Determinantes de 3ª ordem, que podemos resolver por Sarrus. Vemos ainda que o segundo Determinante não precisará ser resolvido por estar multiplicado por zero.

Então, concluindo os cálculos, temos:

$$D = -4 \cdot (12 + 20 + 32 - 40 - 6 - 32) + 0 + (-3) \cdot (9 + 16 + 120 - 10 - 36 - 48) + 1$$
$$\cdot (12 + 8 + 48 - 4 - 48 - 24) = -105$$

OBSERVAÇÃO:

É importante notar que, por Laplace, um Determinante de 4ª ordem sem nenhum zero é transformado em 4 de 3ª. Analogamente, um Determinante de 5ª ordem se transforma em até 5 de 4ª, e cada um destes em até 4 de 3ª, e haverá então no máximo 20 Determinantes de 3ª ordem para chegarmos ao valor do Determinante de 5ª ordem.

3)
$$D = \begin{vmatrix} 4 & 6 & 3 & 0 & 2 \\ 3 & 0 & 0 & 4 & 1 \\ 2 & 5 & 0 & 1 & 4 \\ 3 & 3 & 0 & 0 & 5 \\ 0 & 2 & 0 & 3 & 3 \end{vmatrix}$$

OBSERVAÇÃO: Este Determinante de 5ª ordem (Meu Deus!) pode ser resolvido mais facilmente se utilizarmos a 3ª coluna, por ser a fila com a maior quantidade de zeros.

Então, passamos a ter: $D = 3.(-1)^{1+3} \begin{vmatrix} 3 & 0 & 4 & 1 \\ 2 & 5 & 1 & 4 \\ 3 & 3 & 0 & 5 \\ 0 & 2 & 3 & 3 \end{vmatrix}$, onde há um Determinante de 4ª ordem, e que,

também pelo Teorema de Laplace, pode ser reduzido a determinantes de 3ª ordem. Tomemos dele a primeira linha:

$$D = 3 \cdot \left\{ 3 \cdot (-1)^{1+1} \cdot \begin{vmatrix} 5 & 1 & 4 \\ 3 & 0 & 5 \\ 2 & 3 & 3 \end{vmatrix} + 0 + 4 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 2 & 5 & 4 \\ 3 & 3 & 5 \\ 0 & 2 & 3 \end{vmatrix} + 1 \cdot (-1)^{1+4} \cdot \begin{vmatrix} 2 & 5 & 1 \\ 3 & 3 & 0 \\ 0 & 2 & 3 \end{vmatrix} \right\}$$

$$D = 3 \cdot \{3 \cdot (36 + 10 - 9 - 75) + 4 \cdot (18 + 24 - 45 - 20) - 1 \cdot (18 + 6 - 45)\} = -555$$

EXERCÍCIOS:

1) Calcular os Determinantes a seguir:

a)
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 3 & 2 & 2 & 3 \end{vmatrix}$$
; b) $D = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 0 & 3 & 1 \\ 3 & 4 & 2 & 2 \end{vmatrix}$;

c) D =
$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix} .$$

2) Seja a Matriz
$$B = (b_{ij})_{4X4}$$
 tal que $b_{ij} = \begin{cases} -2. se \ i = j \\ i + j, se \ i \neq j \end{cases}$. Obtenha $Det(B)$.

Resp.:(-4240)

3) Resolva em \mathbb{R} as equações:

a)
$$\begin{vmatrix} 1 & x & 1 & 1 \\ 1 & x^{2} & 2 & 1 \\ 5 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$
 b)
$$\begin{vmatrix} 10x^{2} & 0 & 10x & -1 \\ 75 & 0 & 50 & 20 \\ 5 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$
 Resp.: (a) $V = \{1\}$; b) $V = \{-2, -\frac{1}{2}\}$)

SIMPLIFICAÇÃO DO CÁLCULO DE UM DETERMINANTE:

Você deve ter percebido que, com o uso do Teorema de Laplace, podemos resolver determinantes de qualquer ordem. Este teorema nos permite calcular um determinante de ordem "n" com a utilização de determinantes de ordem "n-l". Porém, este processo pode se tornar extremamente trabalhoso. Por isso alguns matemáticos desenvolveram outras maneiras de trabalhar com determinantes, procurando diminuir o esforço despendido.

DETERMINANTE DE VANDERMONDE:

Os Determinantes de Vandermonde são um caso muito particular de Determinante, pois todas as suas colunas, ou linhas, são formadas por elementos de Progressões Geométricas cujo elemento inicial "a " é igual a 1, conforme os exemplos:

$$D_{1} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 5 & 4 \\ 4 & 25 & 16 \end{vmatrix}; \qquad D_{2} = \begin{vmatrix} 1 & 3 & 9 & 27 \\ 1 & 10 & 100 & 1000 \\ 1 & -1 & 1 & -1 \\ 1 & 0,5 & 0,25 & 0,125 \end{vmatrix}; \qquad D_{3} = \begin{vmatrix} 1 & 1 \\ 5 & 120 \end{vmatrix}$$

Podemos demonstrar que um Determinante de Vandermonde é igual ao produto de todas as diferenças entre os elementos da 2ª fila (linha ou coluna conforme o caso) de modo que o minuendo esteja à direita ou abaixo do subtraendo, conforme o caso.

Se aplicarmos esta regra aos Determinantes D_1 , D_2 e D_3 , teremos:

$$D_1 = (-4 - 2) \cdot (-4 - 5) \cdot (5 - 2) = (-6) \cdot (-9) \cdot (-3) = 162$$

$$D_2 = (0,5 + 1) \cdot (0,5 - 10) \cdot (0,5 - 3) \cdot (-1 - 10) \cdot (-1 - 3) \cdot (10 - 3)$$

$$= 1,5 \cdot (-9,5) \cdot (-2,5) \cdot (-11) \cdot (-4) \cdot 7 = 10972,5$$

$$D_3 = (120 - 5) = 115$$

PROPRIEDADES DOS DETERMINANTES:

Para continuarmos a obtenção de maneiras de simplificar o cálculo de um Determinante, precisamos estudá-los com mais profundidade e com isso entender as propriedades que eles têm. Vamos a elas, portanto:

DETERM INANTE DA MATRIZ TRANSPOSTA:

A transposição de uma Matriz (Quadrada) não altera o seu Determinante.

Observe o exemplo:

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 5 & 0 \\ 4 & 7 & 2 \end{bmatrix} \implies A^{t} = \begin{bmatrix} 3 & 2 & 4 \\ 4 & 5 & 7 \\ 1 & 0 & 2 \end{bmatrix}$$

Se calcularmos Det(A) e $Det(A^t)$ utilizando a Regra de Sarrus, verificaremos facilmente que: Det(A) = Det(B) = 8, e isto está de acordo com a propriedade.

Com este exemplo, a propriedade não foi demonstrada, mas apenas verificada neste caso. Porém aceitaremos que ela seja verdadeira sempre.

MULTIPLICAÇÃO DE UMA FILA DE UM DETERMINANTE POR UM NÚMERO

Se multiplicarmos os elementos de uma fila de um determinante por um número real, o determinante ficará multiplicado por esse número.

Mais uma vez, recorreremos a um exemplo:

Seja o Determinante
$$D = \begin{bmatrix} 2 & 2 & 5 \\ 3 & 4 & 1 \\ 6 & 3 & 2 \end{bmatrix}$$
. Se multiplicarmos uma fila de D por 4, teremos: $D' = \begin{bmatrix} 4.2 & 4.2 & 4.5 \end{bmatrix}$

$$\begin{vmatrix} 4.2 & 4.2 & 4.5 \\ 3 & 4 & 1 \\ 6 & 3 & 2 \end{vmatrix}$$
. Se calcularmos D e D' utilizando Sarrus, veremos $D' = -260$ e $D = 65$.

e ficará nítido que D' = 4. D.

Como consequência, se multiplicarmos p linhas e q colunas por k, o Determinante inicial será multiplicado por k^{p+q} .

Exemplo:

$$D = \begin{vmatrix} 2 & 4 & 3 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 3 & 3 & 4 \\ 5 & 0 & 2 & 1 \end{vmatrix}$$
, e multiplicarmos a 1^a, a 3^a linha e a 4^a coluna por 3, teremos o determinante D'

dado por :
$$D' = \begin{vmatrix} 6 & 12 & 9 & 9 \\ 3 & 0 & 0 & 0 \\ 0 & 9 & 9 & 36 \\ 5 & 0 & 2 & 3 \end{vmatrix}$$

Se calcularmos D e D', verificaremos que D' = 3^{2+1} . D, pois , se utilizarmos o Teorema de Laplace, obteremos D = 69 e D' = 1863. Ou seja, D' = 3^3 . D.

FILA NULA:

Se todos os elementos de uma fila de um determinante forem iguais a zero, o determinante também será igual a zero.

Você pode imaginar um determinante de qualquer ordem que possua uma fila nula. Se você aplicar o Teorema de Laplace utilizando esta fila, você verá que todos os Cofatores se anularão ao serem multiplicados pelos seus respectivos elementos, pois estes são nulos.

FILAS PARALELAS PROPORCIONAIS:

É nulo o determinante que possuir duas filas paralelas iguais ou proporcionais.

EXEMPLOS:

a) O Determinante $D = \begin{vmatrix} 2 & 7 & 6 \\ 1 & -4 & 11 \\ 2 & 7 & 6 \end{vmatrix}$ tem a 1^a linha igual à 3^a linha. Se você calculá-lo usando a Regra de Sarrus, verá que ele é nulo: $D = 2 \cdot (-4) \cdot 6 + 1 \cdot 7 \cdot 6 + 2 \cdot 11 \cdot 7 - 2 \cdot (-4) \cdot 6 - 1 \cdot 7 \cdot 6 - 2 \cdot 11 \cdot 7 = 0$.

b) Se $D = \begin{bmatrix} 4 & 8 & -6 \\ -2 & -4 & 3 \\ 1 & 7 & -1 \end{bmatrix}$, você poderá perceber que a 1ª linha e a 2ª linha são proporcionais, pois seus elementos são tais que $l_1 = -2.l_2$. Também por Sarrus, você obterá o valor zero para D.

OBSERVAÇÃO: No segundo exemplo, dizemos que os dois determinantes têm linhas proporcionais, com fator de proporcionalidade -2. No primeiro, onde existem linhas iguais, podemos também afirmar que eles têm duas linhas proporcionais, porém com fator de proporcionalidade igual a 1.

TROCA DE POSIÇÕES ENTRE FILAS PARALELAS:

Se trocarmos as posições de duas filas paralelas de um determinante, ele mudará de sinal.

EXEMPLO:

Seja o Determinante
$$D = \begin{vmatrix} 3 & 3 & 4 \\ 2 & 1 & 6 \\ 1 & 2 & 7 \end{vmatrix}$$
 e seja $D' = \begin{vmatrix} 3 & 4 & 3 \\ 2 & 6 & 1 \\ 1 & 7 & 2 \end{vmatrix}$. Podemos perceber que D' foi obtido com a troca de posição entre a segunda e a terceira colunas de D. Se calcularmos por Sarrus os dois determinantes, teremos : $D = 21 + 16 + 18 - 4 - 42 - 36 = -27$ e $D = 36 + 42 + 4 - 18 - 16 - 21 = 27$. Ou seja: $D' = -D$.

FILA QUE É COMBINAÇÃO LINEAR DE OUTRAS PARALELAS A ELA:

Dizemos que um número real "a" é combinação linear dos números reais "b", "c" e "d", se ele puder ser escrito da seguinte forma "a = m.b + n.c + p.d", onde m,n e p são também reais.

Se os elementos de uma fila de um determinante forem combinação linear dos elementos de outras filas paralelas a ela, então o Determinante será nulo.

EXEMPLO:

Seja o Determinante $D = \begin{bmatrix} 2 & 3 & 2 \\ 5 & 1 & 18 \\ 6 & 7 & 10 \end{bmatrix}$. Talvez não seja assim tão visível, mas, com alguma paciência, você verá que os elementos da 3ª coluna obedecem à expressão " $c_{n3} = 4 \cdot c_{n1} - 2 \cdot c_{n2}$ "

.

Em outras palavras, os elementos da terceira coluna são combinações lineares dos elementos das outras duas, e então tal Determinante é nulo, e isto você poderá confirmar aplicando Sarrus.

REGRA DE CHIÒ (Felice Chiò, matemático italiano do século XIX)

Dado um Determinante de ordem n com $a_{11}=1$, demonstra-se ser ele igual a um outro Determinante de ordem n-1 que se obtém com a eliminação da primeira linha e da primeira coluna, e cujos elementos são iguais às diferenças entre os elementos do Determinante inicial que não estejam na 1^a linha nem na 1^a coluna e o produto dos elementos da 1^a linha e da 1^a coluna às quais pertence o elemento citado.

Costumamos dizer que a Regra de Chiò promove um abaixamento de ordem do Determinante.

EXEMPLO:

Calcular os Determinantes, aplicando a Regra de Chiò:

1)
$$D = \begin{vmatrix} 1 & 3 & 5 & 4 \\ 2 & 7 & 12 & 6 \\ 3 & 10 & 11 & 15 \\ 2 & 8 & 13 & 7 \end{vmatrix}$$

Para aplicarmos Chiò neste Determinante de 4^a ordem, em primeiro lugar devemos verificar que o elemento a_{11} é igual a 1, o que realmente ocorre. Em seguida vamos "separar" a 1^a linha e a 1^a coluna, e teremos o seguinte esquema:

$$D = \begin{vmatrix} 1 & 3 & 5 & 4 \\ 2 & 7 & 12 & 6 \\ 3 & 10 & 11 & 15 \\ 2 & 8 & 13 & 7 \end{vmatrix} = \begin{vmatrix} 7-2.3 & 12-2.5 & 7-2.4 \\ 10-3.3 & 15-3.5 & 15-3.4 \\ 8-2.3 & 13-2.5 & 7-2.4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -2 \\ 1 & -4 & 3 \\ 2 & 3 & -1 \end{vmatrix} = -13$$

OBSERVAÇÃO: O Determinante de 3ª ordem que obtivemos foi resolvido por Sarrus.

$$D = \begin{vmatrix} 3 & 4 & 2 & 0 \\ 4 & 6 & 1 & -2 \\ 5 & 2 & 2 & 4 \\ 6 & -3 & 4 & 3 \end{vmatrix}$$

Se você observar este Determinante, verá que seu elemento a₁₁ não é igual a 1, e, portanto não podemos aplicar Chiò. Porém, se aplicarmos convenientemente a propriedade que diz que "um determinante muda de sinal se trocarmos de lugar duas de suas filas paralelas", teremos:

$$D = -\begin{vmatrix} 4 & 6 & 1 & -2 \\ 3 & 4 & 2 & 0 \\ 5 & 2 & 2 & 4 \\ 6 & -3 & 4 & 3 \end{vmatrix}$$

A troca que fizemos se deu entre a 1ª e a 2ª linhas, que representamos por $l_1 \leftrightarrow l_2$. Em seguida, para que o elemento a_{11} passe a ser igual a 1, trocaremos as colunas 1 e 3, que representaremos por $c_1 \leftrightarrow c_3$, e assim teremos:

$$D = + \begin{vmatrix} 1 & 6 & 4 & -2 \\ 2 & 4 & 3 & 0 \\ 2 & 2 & 5 & 4 \\ 4 & -3 & 6 & 3 \end{vmatrix}$$

Agora o nosso Determinante está preparado para o uso da Regra de Chió. Assim, teremos:

$$D = \begin{vmatrix} 4 - 2 \cdot 6 & 3 - 2 \cdot 4 & 0 + 2 \cdot 2 \\ 2 - 2 \cdot 6 & 5 - 2 \cdot 4 & 4 + 2 \cdot 2 \\ -3 - 4 \cdot 6 & 6 - 4 \cdot 4 & 3 + 4 \cdot 2 \end{vmatrix} = \begin{vmatrix} -8 & -5 & 4 \\ -10 & -3 & 8 \\ -27 & -10 & 11 \end{vmatrix} = 230 \text{ (por Sarrus)}$$

3)
$$D = \begin{vmatrix} 2 & 0 & 3 & 7 \\ 5 & 5 & 4 & -8 \\ 6 & -3 & 12 & 5 \\ 4 & 10 & 6 & 9 \end{vmatrix}$$

Você deve ter percebido que neste caso não há elemento igual a 1. Neste caso, é conveniente encontrar a fila que tem a maior quantidade de elementos divisíveis por um mesmo número, e isto parece ocorrer na l_3 e na c_3 , que possuem três elementos divisíveis por 3.

Então, vamos optar por efetuar a multiplicação da 3^a coluna por $\frac{1}{3}$, e, para que D não se altere, multiplicaremos simultaneamente o Determinante por 3. Assim, teremos:

$$D = 3. \begin{vmatrix} 2 & 0 & 1 & 7 \\ 5 & 5 & \frac{4}{3} & -8 \\ 6 & -3 & 4 & 5 \\ 4 & 10 & 2 & 9 \end{vmatrix}.$$
Façamos agora $c_1 \Leftrightarrow c_3$, e D passará a ser: $D = -3$.
$$\begin{vmatrix} 1 & 0 & 2 & 7 \\ \frac{4}{3} & 5 & 5 & -8 \\ 4 & -3 & 6 & 5 \\ 2 & 10 & 4 & 9 \end{vmatrix}.$$

Tudo agora pronto para utilizarmos Chiò. Assim, teremos:

$$D = 3 \cdot \begin{vmatrix} 5 - 0 & 5 - \frac{8}{3} & -8 - \frac{28}{3} \\ -3 - 0 & 6 - 8 & 5 - 28 \\ 10 - 0 & 4 - 4 & 9 - 14 \end{vmatrix} = 3 \cdot \begin{vmatrix} 5 & \frac{7}{3} & -\frac{52}{3} \\ -3 & -2 & -23 \\ 10 & 0 & -5 \end{vmatrix} = 2605$$

EXERCÍCIOS:

Calcular os Determinantes:

1)
$$\begin{vmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ -1 & 1 & -2 & 2 \\ 1 & -1 & 2 & -2 \end{vmatrix}$$
 2)
$$\begin{vmatrix} 4 & 4 & 2 & 2 \\ -3 & 0 & 4 & 2 \\ 6 & 2 & 2 & 0 \\ -2 & 2 & 6 & 4 \end{vmatrix}$$
 3)
$$\begin{vmatrix} 4 & 2 & 2 & 2 \\ 2 & 1 & 2 & 3 \\ 2 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{vmatrix}$$

4) (UNICAMP – adap.) Seja a um número real se seja p(x)
$$\begin{bmatrix} 3-x & -1 & \sqrt{2} \\ 3-x & 0 & a-x \\ 0 & 4 & 1-x \end{bmatrix}$$
 -1

Para a = 1, encontre as raízes reais da equação p(x) = 0;

OBTENÇÃO DA INVERSA DE UMA MATRIZ, COM O USO DOS DETERMINANTES

Quando foi abordado este assunto no texto de Matrizes, vimos que para conseguirmos obter a inversa de uma Matriz, deveríamos resolver um sistema de equações de 1º grau com tantas equações quanto a ordem da Matriz. Assim, para invertemos uma Matriz de 5ª ordem deveríamos enfrentar a resolução de um sistema linear de 5 equações, e isto pode resultar em um trabalho que exige muita paciência e muito cuidado.

Para tentar aliviar esse trabalho, temos o seguinte:

Dada uma Matriz M, quadrada de ordem n, chamemos de M' a Matriz formada pelos cofatores de M. Definida M', podemos obter (M')^t, que será a Matriz Transposta da Matriz dos cofatores de M, que é denominada Matriz Adjunta de M.

Desta forma, podemos demonstrar que: $M^{-1} = \frac{1}{Det(M)} \cdot (M')^t$

OBSERVAÇÃO: Se Det (M) = 0, podemos dizer que não existe M^{-1} .

EXEMPLO: Inverter a seguinte Matriz:
$$M = \begin{bmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & 1 & -1 \end{bmatrix}$$

1° passo: Calculemos Det(M): Det(M) = 1 + 4 + 2 - 2 - 2 = 1, por Sarrus.

2º passo: Obtenhamos a Matriz M' dos cofatores:

$$M' = \begin{bmatrix} (-1)^{1+1} \begin{vmatrix} 1 & -2 \\ 1 & -1 \end{vmatrix} & (-1)^{1+2} \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} & (-1)^{1+3} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \\ (-1)^{2+1} \begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix} & (-1)^{2+2} \begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix} & (-1)^{2+3} \begin{vmatrix} -1 & -1 \\ 1 & 1 \end{vmatrix} \\ (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 1 & -2 \end{vmatrix} & (-1)^{3+2} \begin{vmatrix} -1 & 2 \\ 2 & -2 \end{vmatrix} & (-1)^{3+3} \begin{vmatrix} -1 & -1 \\ 2 & 1 \end{vmatrix} \end{bmatrix}$$

Logo
$$M' = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

3º passo : Obtenhamos (M'), Matriz Adjunta de M:

$$(M')^t = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

4º passo : Aplicação da fórmula de obtenção da Matriz Inversa: $M^{-1} = \frac{1}{\det M} \cdot (M')^t$

$$M^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

EXERCÍCIOS:

Inverta as seguintes Matrizes, utilizando a igualdade deste capítulo:

1)
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$
; 2) $X = \begin{bmatrix} 4 & 3 \\ -1 & -1 \end{bmatrix}$; 3) $A = \begin{bmatrix} 2 & -3 & 1 \\ 0 & 4 & -4 \\ -3 & 6 & -3 \end{bmatrix}$

Resp.: (1) $M^{-1} = \begin{bmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & 1 & -1 \end{bmatrix}$; 2) $X^{-1} = \begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix}$; 3) Não existe A^{-1} .)
