Consignes:

Écrivez vos nom et prénom avant de commencer une nouvelle double feuille.

Tracez et laissez une marge de 1 cm environ à gauche de chaque page.

Encadrez la réponse définitive qui devra être sous forme de formule. Vous écrirez ensuite

l'application numérique, précédée par « A.N. : », le cas échéant.

Documents: non autorisés.

Calculatrice: autorisée

Téléphone (même en remplacement de la calculatrice) : non autorisé

Attention: aucun échange ne sera autorisé entre étudiants (stylo, effaceur, calculatrice, etc.)

Soignez votre écriture : cela en facilitera la lecture et en accélèrera la correction.

Durée: 2h00

Exercice 1 (8 pts):

On dispose dans un cylindre fermé par un piston une certaine masse d'un gaz parfait diatomique (y=1,40). Les parois du cylindre et du piston sont isolées et supposées imperméables à la chaleur. Dans les conditions initiales, le volume occupé par le gaz est $V_1=10$ L, la pression est $P_1=10^5$ N.m⁻²et la température $T_1=300$ K.

- 1. Calculer la capacité calorifique C_V relative à cette masse de gaz.
- 2. On comprime ce gaz de manière réversible jusqu'à $P_2 = 10^6 \text{ N.m}^{-2}$.
 - a. Dans quelle(s) condition(s) la réversibilité est-elle réalisée ?
 - b. Calculer V₂ et T₂.
 - c. Calculer le travail W₁₂ au cours de l'évolution.
- 3. On comprime maintenant le gaz en partant du même état initial (P_1 , V_1 , T_1) mais en appliquant brutalement $P_2 = 10^6 \, \text{N.m}^{-2}$.
 - a. Que peut-on dire de la transformation ?
 - b. Exprimer le travail W₁₃ échangé par le système de deux manières différentes.
 - c. En déduire la valeur de V_3 et T_3 en fin d'évolution ainsi que W_{13} . Comparer ces résultats à ceux de la question 2. Expliquer la différence.
- 4. On suppose que l'on retire l'isolant thermique qui entourait le cylindre, les parois deviennent perméables à la chaleur. On réalise un refroidissement isobare de l'état (P2, V3, T3) à l'état (P2, V2, T2). Calculer la quantité de chaleur échangée au cours de cette transformation.

Thermodynamique

Dura: CPI2

Examen final

Exercice 2 (5 pts):

Un cylindre indéformable dont les parois sont isolées thermiques contient de l'azote (assimilé à un gaz parfait) réparti dans deux compartiments A et B séparés par un piston également adiabatique. Ce piston peut se mouvoir sans frottement. Le compartiment A contient nA = 5 moles de gaz, le compartiment B contient n_B = 3 moles de gaz.

Dans A, une résistance électrique de capacité calorifique négligeable permet de chauffer le gaz. La transformation subie par le gaz du compartiment B sera considérée comme réversible.

- Initialement, la température T₀ et la pression P₀sont les mêmes dans les deux compartiments. Calculer le volume V du cylindre.
- A reçoit une quantité de chaleur Q.
 - a. Écrire les variations d'énergie interne du système complet en appelant TA la température finale dans A et T_B la température finale dans B.
 - En déduire la pression finale P.
- Que peut-on dire de l'évolution subie par le gaz dans le compartiment B?
 - a. En déduire T_B

A.N. : $P_0 = 10$ atm ; 1 atm = 101325 Pa ; $T_0 = 300$ K ; Q = 120 calories ; 1 cal = 4,18 J ; $(1+\epsilon)^n \approx 1 + n\epsilon$

Exercíce 3 (7 pts) : détente irréversible d'un gaz dans l'atmosphère

On considère un gaz parfait diatomique qui occupe un récipient calorifugé de volume Vo sous la pression 3 P_0 à la température T_0 . P_0 est la pression à l'extérieure du récipient. On ouvre le robinet et le gaz se détend irréversiblement dans l'atmosphère. $\gamma = 1,4 = 7/5$. On supposera que le gaz se détend rapidement dans l'atmosphère de sorte que l'échange de chaleur n'a pas le temps de se faire.

- Exprimer le travail W en fonction de p₀, V₀, T₀ et T₁.
- Exprimer la température T₁ du gaz en fonction de T₀.
- 3. Exprimer la variation de l'énergie interne en fonction de p₀, V₀, T₀ et γ.
- 4. Même question pour l'enthalpie
- Même question pour l'entropie
- Exprimer l'entropie échangée
- En déduire l'entropie créée

Exercice 4 (5 pts, facultatif) : entropie échangée - entropie créée

Un vase calorifugé contient $m_1 = 200$ g de liquide de capacité thermique massique $C_1 = 2850$ J Kg $^{-1}$ K $^{-1}$ à la température $T_1 = 20$ °C. On y plonge rapidement un bloc de cuivre de masse $m_2 = 250$ g (C₂ = 390 J kg⁻¹ K⁻¹) pris initialement à la température T₂ = 80°C. La capacité thermique du récipient est $C_3 = 150 \text{ J K}^{-1}$ est soigneusement refermé.

- Déterminer la température d'équilibre.
- Calculer la variation globale d'entropie au cours de cette opération.
- 3. On retire le couvercle et on laisse l'ensemble se refroidir lentement jusqu'à la température ambiante 20°C.
 - a. Quelle est la variation d'entropie de l'ensemble {vase + liquide + cuivre} ?
 - b. Quelle est la variation d'entropie de l'ensemble {vase + liquide + cuivre + milieu extérieur}?
 - c. Conclure.