ADPRES V.1.1 USER MANUAL

1. Introduction

Abu Dhabi Polytechnic Reactor Simulator (ADPRES) solves static diffusion equation in two or three dimensional rectangular geometry. ADPRES uses 4-th order Nodal Expansion Method (NEM) where the transverse leakage moments are approximated using quadratic leakage fit to solve the diffusion equation. ADPRES can solve either forward or adjoint problems as well as fixed source problems. Among the feature of ADPRES is it can handle problem with Assembly Discontinuity Factor (ADF). Currently ADPRES is under extensive development to make it enable solving transient reactor problems.

2. Theory

Users who are interested in the theoretical background of NEM used in ADPRES can refer to MOSRA Manual [1].

3. Program Compilation and Execution

In UNIX environment such as GNU-LINUX or CYGWIN where the gfortran is already installed, the source codes can be compiled using command

```
gfortran mod data.f90 mod InpOutp.f90 mod nodal.f90 ADPRES.f90 -O4 -o adpres
```

This command will produce executable file called "adpres". This executable file can be run by

```
./adpres
```

Then the program will ask input file name. Type the input file name, then the program the runs and produce output file. The output file name will be similar to input file name but with "out" extension.

4. Input Description

The input is designed to be problem-descriptive for the convenient of users. The input is grouped into several cards which depend on the nature of the problems.

4.1 General Rules

Some general rules for the ADPRES inputs:

1. Comments are marked by !. Example:

```
! COMPOSITION 1
0.20574 0.00654 0.00415 0.00415 1.0 0.0 0.01462 !Group 1
0.68866 0.04850 0.06099 0.06099 0.0 0.0 0.00000 !Group 2
```

2. Currently ADPRES has ten input cards. Cards' name shall be uppercase and marked by %. Example:

```
%MODE
FORWARD
%XSEC
2 4   ! Number of groups and number of materials
...
%GEOM
12 12 2 !nx, ny, nz
...
...
```

3. Numbers can be repeated using * mark. For example

4.2 Cards Description

ADPRES has 10 input cards. Each card can be placed arbitrarily in the input deck. Some cards are obligatory for any problems, while some cards are conditionally-mandatory depend on the problem being solved and some cards are optional. The description of input for each card is explained in this subsection. The ten input cards as well as their description are listed in Table 4-1.

No. Cards Description Remark %MODE 1. Calculation mode Mandatory %XSEC 2. **Cross Sections** Mandatory %GEOM 3. Geometry of the problem Mandatory %CASE 4. Problem case Optional 5. %ESRC Extra source Conditionally-mandatory %WRST Write restart file 6. Optional %RRST 7. Read restart file Optional %ITER **Iteration Control** 8. Optional %PRNT 9. Output print control Optional %ADF 10. Assembly Discontinuity Factor Optional

Table 4-1. Input Card Description

The input for each card is described in the followings subsections

4.2.1 Calculation Mode

This card tells ADPRES the calculation mode. The calculation mode can be either forward, adjoint or fixed source.

Table 4-2. Calculation mode card

LINE 1	MODE	Calculation mode	FORWARD: Forward Calculation
			ADJOINT : Adjoint Calculation
			FIXEDSRC : Fixed Source
			Calculation

4.2.2 Cross Section Data

This card describes to ADPRES the few-group cross section data as well as number of group and materials used in the problem.

%XSEC ! Number of LINE 1 NG Number of groups groups and number of **NMAT Number materials** materials Repeat LINE 2 NG times. And LINE 2 Transport macroscopic XS for group g SIGTR(g) Absorption macroscopic XS for group g again repeat this input SIGA(g) Nu * Fission macroscopic XS for group g segment NMAT times. NUF(g) (See example in the SIGF(g) Fission macroscopic XS for group g provided sample inputs)

Fission neutron spectrum for group g

to other groups

Scattering macroscopic XS from group g

Table 4-3. Cross section data card

4.2.3 Geometry

CHI(g)

SIGS(g,1:NG)

Geometry of the reactor core is described in this card. The coordinate system used in ADPRES is shown in Figure 4-1. The point of origin is located between west, bottom and south sides. Figure 4-2 shows the coordinate system seen from top which typically used for two-dimensional problems.

Figure 4-1. Coordinate system used in APDRES

Figure 4-2. Coordinate system seen form top (typically used for two-dimensional problems)

Table 4-4. Geometry card

%GEOM			
LINE 1	NX	Number of assemblies along X-direction	Example: 9 9 19 !NX,NY,NZ
	NY	Number of assemblies along Y-direction	
	NZ	Number of assemblies along Z-direction	
LINE 2	XSIZE(1:NX)	Assembly size along X-direction (from west to east)	Example: 10.0 8*20.0 !X- direction assembly size
LINE 3	XDIV(1:NX)	Assembly division along X-direction (from west to east)	Example: 1 8*2 !Last 8 assemblies divided into 2 along Y- direction
LINE 4	YSIZE(1:NY)	Assembly size along Y-direction (from south to north)	Example: 10.0 8*20.0 !Y- direction assembly size
LINE 5	YDIV(1:NY)	Assembly division along Y-direction (from south to north)	Example: 1 8*2 !Last 8 assemblies divided into 2 along Y- direction
LINE 6	ZSIZE(1:NZ)	Assembly size along Z-direction (from bottom to top)	Example: 19*20.0 !Uniform assembly size along Z-direction
LINE 7	ZDIV(1:NZ)	Assembly division along Z-direction (from bottom to top)	Example: 19*1 !Assembly alone Z-direction is not divided

LINE 8	NP	Number of different core planar with different material composition	Example: 4 !There are four different planar
LINE 9	ZPLN(1:NZ)	Planar assignment along Z-direction from bottom to top	Example: 1 13*2 4*3 4 !planar assignment (from bottom to top)
LINE 10	DO j = NY, 1, -1 ASM(1:NX) END DO	Planar material map	Repeat this LINE NP times in order, from planar number 1 to NP. (See example in the provided sample inputs)
LINE 11	XEAST	East boundary conditions	0 = Zero flux
	XWEST	West boundary conditions	1 = Zero incoming current
	YNORTH	North boundary conditions	2 = Reflective
	YSOUTH	South boundary conditions	
_	ZBOTT	Bottom boundary conditions	Example:
	ZTOP	Top boundary conditions	0 2 0 2 2 2 !BC

4.2.4 Problem Case

This card describes the problem case if necessary.

Table 4-5. Problem case card

%CASE	%CASE				
LINE 1	CASE_ID	Case name	Example:		
	_		DVP		
LINE 2	CASE_EXP	Case Description	Example:		
			DVP Problem Test		

4.2.5 Extra Source

This card shall be present only if the calculation mode is fixed source.

Table 4-6. Extra source card

%ESRC				
LINE 1	NSRC	Number of sources	Example:	
			2 ! Number of extra	
			sources	
LINE 2	SDEN	Source density	Repeat LINE 2 through LINE	
			7 NSRC times	

LINE 3	SPEC(1:NG)	Source energy spectrum (normalized to 1.0)	Example LINE 2 through LINE 3: Example: 1.0 !Source density 1 1.0 0.0 ! Spectrum 1 2.0 !Source density 2 0.9 0.1 ! Spectrum 2
LINE 4	ZPOS	Axial position of the source (between 1 to NZ)	This line must be followed by XPOS and YPOS. And then this input segment can be repeated as many as desired until 0 (LINE 7) is entered
LINE 5	XPOS	Radial position of the source (along X	Repeat this line as many as
		axis) for current axial position	desired until 0 (LINE 6) is
	YPOS	Radial position of the source (along Y	entered
		axis) for current axial position	
LINE 6	0	Zero numbers are entered to end XPOS	
	0	and YPOS	
LINE 7	0	Zero number to end ZPOS	Example for LINE 4 through LINE 7 together: 10 !zpos of source 2 9 !xpos-ypos of source 2 8 !xpos-ypos of source 0 0 !x-y position ends 11 !zpos of the source 2 9 !xpos-ypos of source 2 8 !xpos-ypos of source 0 0 !x-y position ends o !z-position ends

4.2.6 Writing Restart File

It is often useful to write restart file, which stores flux, flux moments and other parameters, to solve large problem repetitively with minor changes in the cross section data.

Table 4-7. Restart file card (writing)

LINE 1	FNAME	Restart file name (max. 20 characters)	Example:
		to be produced	IAEA3D.res

4.2.7 Reading Restart File

In order to read the restart file this card must be present. Note that the problem being solved shall have identical geometry as the restart file.

Table 4-8. Restart file card (reading)

%RRST	%RRST				
LINE 1	FNAME	Restart file name (max. 20 characters)	Example:		
		to be read	IAEA3D.res		

4.2.8 Iteration Control

If the user wishes, he or she can alter the iteration parameters.

Table 4-9. Iteration control card

%ITER			
LINE 1	NOUT	Maximum number of outer iteration	Default: 300
	NIN	Maximum number of inner iteration	Default: 2
	SERC	Fission source error criteria	Default: 1.0e-5
	FERC	Flux error criteria	Default: 1.0e-5
	IERC	Inner iteration error criteria	Default: 1.0e-5
	NAC	Fission source extrapolation interval	Default: 5
			Example:
			500 5 1.0e-6 1.0e-
			6 1.0e-6 3
			!Iteration control

4.2.9 Print Option

This card can be used to choose the specific output that the users want.

Table 4-10. Output print option card

%PRNT			
LINE 1	CAPRAD	Radial assembly power distribution	1 = YES
		print option	0 = NO
	CAPAXI	Axial assembly power distribution print	
		option	Default for all = YES
	CAFRAD	Radial Flux Power Distribution	
			Example:
			1 1 0 !Print
			output

4.2.10 Assembly Discontinuity Factor

ADF can be incorporated into ADPRES input, if any, to make the solution more accurate.

Table 4-11. Assembly Discontinuity Factor card

%ADF			
LINE 1	DC(1)	East side discontinuity factor	Repeat LINE 2 NG times. And
	DC(2)	West side discontinuity factor	again repeat this input
	DC(3)	North side discontinuity factor	segment NMAT times.
	DC(4)	South side discontinuity factor	(See example in the
	DC(5)	Bottom side discontinuity factor	provided sample inputs)
	DC(6)	Top side discontinuity factor	
LINE 2	ROT	Direction for ADF rotation	This line is optional. Necessary if the value of discontinuity factor is not fully symmetric. Repeat this line followed by LINE 3 as many as desired until zero number (LINE 5) is entered. 1 = 90 degree counter clockwise 2 = 180 degree counter clock wise 3 = 270 degree counter clockwise
LINE 2	V1	Chart accomply a cities in V discotion	
LINE 3	X1 X2	Start assembly position in X-direction	This line follows LINE 2
		End assembly position in X-direction	which tells the position of
	Y1	Start assembly position in Y-direction	assembly being rotated. Repeat this line as many as
	Y2	End assembly position in Y-direction	desired until zero numbers
	Z1	Start assembly position in Z-direction	(LINE 4). Followings are
	Z2	End assembly position in Z-direction	value limits for these line 1 <= X1 <= NX; 1 <= X2 <= NX; 1 <= Y1 <= NY; 1 <= Y2 <= NY; 1 <= Z1 <= NZ; 1 <= Z2 <= NZ; X1 <= X2; Y1 <= Y2; Z1 <= Z2
LINE 4	0	Zero numbers entered to end X1	Example LINE 2 through LINE
	0	through Z2	6:
	0		1 ! 90 degree
	0		counter clock-wise 2 2 1 1 1 2
	0		2 2 3 3 1 2
	0		
LINE 5	0	Zero number to end ROT	 0 0 0 0 0 0 2 ! 180 degree

			counter clock-wise
			2 2 2 2 1 2
			2 2 4 4 1 2
			• • •
			0 0 0 0 0
			3 ! 270 degree
			counter clock-wise
			1 1 2 2 1 2
			1 1 4 4 1 2
			• • •
			• • •
			0 0 0 0 0
			0 ! ADF INPUTS END
			! ADF PRINT(OPTIONAL)
			1
LINE 6	ZP	ADF print option	This line is optional.

5. References

1. Okumura K (1998) MOSRA-light: high speed three-dimensional nodal diffusion code for vector computers, JAERI-Data/Code 98-025. Japan Atomic Energy Research Institute, Tokaimura (in Japanese)