Serie N°6: Structures itératives

Exercice 1

Ecrire, en utilisant la boucle Pour, les algorithmes qui effecturent les calculs suivants

1. a)
$$S = \sum_{i=1}^{20} i$$
 b) $S = \sum_{i=1}^{20} i^2$ c) $S = \sum_{i=1}^{20} i^i$

b)
$$S = \sum_{i=1}^{20} i^2$$

c)
$$S = \sum_{i=1}^{20} i^{i}$$

2. a)
$$P = \prod_{k=1}^{20} k$$
 b) $P = \prod_{k=1}^{20} k^2$ c) $P = \prod_{k=1}^{20} k^k$

b)
$$P = \prod_{k=1}^{20} k^2$$

e)
$$P = \prod_{k=1}^{20} k^k$$

Exercice 2

Ecrire les boucles appropriés pour cacluler chacune des expressions ci-desosus

1. a)
$$s = 1^2 - 2^2 + \dots + 19^2 - 20^2$$

b)s =
$$1^1 - 2^2 + \dots + 19^{19} - 20^{20}$$

2. a)
$$s = 1^2 \times (-2)^2 \times \cdots \times 19^2 \times (-20)^2$$
 b) $p = 1^1 \times 2^2 + \cdots + 19^{19} \times 20^{20}$

b)
$$p = 1^1 \times 2^2 + \dots + 19^{19} \times 20^{20}$$

3. a)
$$s = \sqrt{1} + \sqrt{2} + \dots + \sqrt{19} + \sqrt{20}$$

b)s =
$$\frac{1^1}{\sqrt{2}} + \frac{2^2}{\sqrt{3}} + \dots + \frac{19^{19}}{\sqrt{20}}$$

Exercice 3

Exécuter l'algorithme ci-contre avec les entrée de la ligne 1 du tableau ci-dessous et compléter la ligne 2.

Exécution 🖾	1	2	3	4	5	6
N	7	11	13	25	37	38
p			•••	•••	•••	

D'après les valeurs de N et de p, que représente la valeur de p.

1:	$p \leftarrow vrai;$
2:	$i \leftarrow 2;$
3:	Lire (N)
4:	répéter
5:	$r \leftarrow Reste(N,i);$
6:	si(r==0) alors
7:	$p \leftarrow faux$
8:	finsi
9:	$i \leftarrow i + 1$
10:	$\mathbf{jusqu'à}((i >= N-1) \text{ OU } (p == faux))$
	2: 3: 4: 5: 6: 7: 8: 9:

Exercice 4

Exécuter l'algorithme ci-contre avec les entrées a et b des lignes 1 et 2 du tableau ci-dessous et compléer la ligne 3.

Exécution 🖾	1	2	3	4	5	6
а	2	3	13	25	37	16
b	4	5	6	12	12	38
q			•••		•••	

D'après les valeurs de a, b et de q, qu'indique de la valeur de q?

- a) le maximum de a et b,
- b) le PGCD de a et b,
- c) le PPCM de a et b.

1: Lire(a,b);
2:
$$i \leftarrow 2$$
;
3: $si(a < b)alors$
4: $temp \leftarrow a$;
5: $a \leftarrow b$;
6: $b \leftarrow temp$;
7: finsi
8: $r \leftarrow Reste(a,b)$;
9: $tant que(r <> 0)$ faire
10: $a \leftarrow b$;
11: $b \leftarrow r$;
12: $r \leftarrow Reste(a,b)$;
13: fin $tant que$
14: $q \leftarrow b$;

Exercice 5

1) Ecrire, en utilisant une structure de contrôle de votre choix, un algorithme qui calcule le produit suivant

$$f = \prod_{k=1}^{k=n} k = k! = 1 \times 2 \times \dots \times (n-1) \times n$$

2) Ecrire, en utilisant une structure de contrôle de votre choix, un algorithme qui calcule la somme

$$s = \sum_{q=1}^{q=M} q! = 1! + 2! + \dots + M!$$