Week 3 - Friday

last time	· prelicates Countilians Dules of Interesce
LIUI LIME	: predicates, Quantifiers, Rules of inference
	P
	:. 9
	the P(m)
	infantiation generalist
	<u> </u>
	for arbitrary c
	tor arbitrary c
	, 3x P(n) K
	for Some C
	for Some C
	V. f: a man and a
	Valia arguments:
	an argument is valid if every
	Statement follows from the
	previous ones via rules of inference.
Today:	
	ish the truth of a mathematical
esta b	12V the troop of a main and
5+0	tement. [11.
	tement. formally
	0 //
	informally
7 M	L top of overil Time + and to be welling
Differen	t types of proof. I) Direct proof II) Contragosition II) Contradiction
	III) Contradiction

Proof	techniques
-------	------------

The ones that we already know.	
Goal: Yx P(n)	
Structure:	
Assume a is arbitrary	
Therfore, P(a) Therfore, YXP(n) (by universal go	1.
Example: prove $\forall n \operatorname{odd}(n) \longrightarrow \operatorname{odd}(n^2)$	<i>0. j</i>
l · ·	
Structure: Assume c is arbitrary odd(c) = odd(c2)	
Therefore, $\forall x \ odd(x) \rightarrow odd(x^2)$	

Proof Techniques

	•		
I) Direc	t Proof	I) Proof by	III) proof by contradiction:
Goal: P		Contraposition	, ,
Struct ure		Goal: P -> Q	Goal: D
Assur	me P	Structure:	structure:
:	l	- Assume TQ	
₩	•	; - 7P	
lhere\$c	re, → Q	Therefore, page	
		, , , , , ,	
			Goal: P→9
			Structure:

I) Direct Proof

Intormal	Formal
Dfn: An integer n is even if there	$\forall n \ \text{even(n)} \iff \exists K \ (n=2K)$
exists an integer K S.t. N=2K	
Dfn: An integer n is odd if	∀n Gdd(n) ← → IK (n=2k+1)
there exists an integer K S.t.	
n=2K+	
Remark: in defenitions, if M	leans Iff (if and only if)
Remark: Can easily prove that	Vn Odd(n)←>> - even(n)
proposition: If an integer n is odd, then n² is odd.	$\forall n \ \text{odd}(n) \longrightarrow \text{odd}(n^2)$
We will Prove this	Draposition informuly
and formally on	

Prop. A: If an integer $\forall n (Odd(n) \longrightarrow Odd(n^2))$ n is odd, then no is odd Drouf. Assume n is arbitrary * Assume odd(n) Assume n is odd, IK (n=2k+1) (by defn.) Choose K S.f. n=2K+1. $N=2K_{s+1}$ (3 inst.) Observe that n2 = (2K, +1)2 = 4K, + 4K,+1 (by flyth) n2 = (2K+1)2 = 2(2K2+2K2)+1 = 2(2K2 +2K0)+1 Therefore, no is odd 12=21+1 for l=2ko+2ko os desired [Il n2 2/4/ (3 gen.) Odd (n2) (by dedn) odd(n) odd(n2) by * Vn odd(n2) Remark: There are many different phrases In English to say the same statement -Assume n is ...; Let n ... - Therefore, Thus, it fallow, ...

II) Proof by Contraposition $\forall n \circ dd(n^2) \longrightarrow odd(n)$ Prop B: For every integer n, if n2 is odd, then n is old. √n rodd(n) → rodd(n²) Note: prop B is the Converse of prop. A

Vn even(n) -> even(n2)

* Assume n is arbitrary Droof:

Assume Toda(n) Assume n is even.

Choose K St. n=2K 7x n=2k

 $n^2 = 4k^2 = 2(2k^2)$ Observe that n2=2(2k2)

N2=2l for l=2k2 Thus, no is even as desired 17

 $\exists l n^2 = 2l$

Ever(n2)

70dd (n2)

1099(N) -> 1099(NS)

od (N2) -> odd(n) by *

Yn odd(n2) - add(n) by

Prop. C:	12 is irrational	. iyy	tional (√2) Vp Vq (9≠0-	$\rightarrow \sqrt{2} \neq \frac{1}{2}$	
Proof:					

