Final Report for Capstone Project

Name: Bibek Nath

Roll No.: 240107024

Department: Chemical Engineering

College: IIT Guwahati

Problem Statement:

Modern cities suffer from inefficient and static parking pricing that fails to respond to dynamic conditions like traffic, demand, or time-of-day. Our goal is to build a real-time, demand-aware, interpretable pricing model for urban parking that is:

- Simple enough to deploy
- Robust to noisy data
- Responsive to real-world demand and supply fluctuations

Dataset Overview

Source: Provided hackathon dataset

Rows: 18,368 live records

Key Features:

- Occupancy, Capacity
- Vehicle Type
- Queue Length
- Traffic Conditions
- Location (Latitude/Longitude)
- Time & Date
- Special Days

Engineering & Preprocessing

Feature Engineering:

- Timestamp combined from date and time
- Hour of Day and Day of Week extracted
- Traffic Mapping: 'low' \rightarrow 0.3, 'medium' \rightarrow 0.6, 'high' \rightarrow 1.0
- Vehicle Type Weights:
- o Car = 1.0
- o Bike = 0.5

- o Bus = 1.5
- o Truck = 1.8

Pricing Models Developed

Model 1: Smoothed Linear Demand-Based Pricing Formula:

Price_t+1 =
$$\beta$$
 * Price_t + $(1 - \beta)$ * (Price_t + α * (Occupancy / Capacity))

- $\alpha = 2, \beta = 0.6$
- Exponential smoothing added for stability
- Strengths: Simple, stable
- Weaknesses: Ignores other factors like time, queue, traffic

Model 2: Multi-Factor Demand-Based Normalized Model Raw Demand Score (before normalization):

Demand = α * (Occupancy/Capacity) + β * QueueLength - γ * TrafficScore

+ δ * IsSpecialDay + ϵ * VehicleTypeWeight + η * (Hour / 24)

Normalized per parking lot to handle local demand variation.

Final Price:

Price = BasePrice \times (1 + $\lambda \times$ NormalizedDemand)

- $\alpha=1.0$, $\beta=0.5$, $\gamma=0.7$, $\delta=1.0$, $\epsilon=0.8$, $\eta=0.2$, $\lambda=0.6$
- Prices bounded between ₹5 and ₹20
- Strengths: Highly responsive, interpretable

Model 3: Competition-Aware Adjustment Model Logic:

- Uses NearestNeighbors to find nearby parking lots
- Compares their Model 2 prices
- Modifies own price accordingly:

If overcrowded and nearby cheaper: Price = 0.9 × Price_2

If nearby more expensive: $Price = 1.1 \times Price_2$

Else: Price = Price_2

- Strengths: Geo-smart and context-sensitive
- Limitation: Sensitive to noise in nearby data

Visual Analysis

Sample Lot Visualization (interactive via Bokeh + static Matplotlib)

Legend:

- Model 1 Smooth and stable
- Model 2 Demand-sensitive and reactive
- Model 3 Market-smart and adjusted

Evaluation Strategy

If true prices were available (e.g. TruePrice):

We would compute:

```
from sklearn.metrics import mean_absolute_error,
mean_squared_error, r2_score

mae = mean_absolute_error(true_prices,
df["Price_Model_3"])

rmse = mean_squared_error(true_prices,
df["Price_Model_3"], squared=False)

r2 = r2 score(true prices, df["Price Model 3"])
```

In absence of true prices:

- Use domain validation
- Evaluate response to demand surges
- Compare pricing range, trend, stability

Output Files

Filename Description

final_pricing_output.csv
prices

Contains Model 1, 2, and 3

Future Enhancements

Type Suggestion

Short-Term Add rolling forecast for occupancy

Mid-Term Learn dynamic λ values for different lots

Long-Term Simulate user behavior to test price

elasticity

Conclusion

- Model 1 ensures stability
- Model 2 ensures fairness and responsiveness
- Model 3 ensures real-world competitiveness
- Together, they form a robust dynamic pricing engine for smart urban parking

THANK YOU!