

SISTEMAS DE CONTROL

TEMA 1 Fundamentos de los Sistemas de Control

- 1.1. Introducción a Matlab.
- 1.2. Señales, Secuencias y Sistemas.
- 1.3. Sistemas de Control en Lazo Abierto y Cerrado.
- 1.4. Modelado de un Sistema.
- 1.5. Sistemas de Control Muestreados.
- 1.6. Análisis y Diseño de un Sistema de Control.

01/10/2025 - Sistemas de Control - 1

© Departamento de Ingeniería Telemática y Electrónica

1

© Departamento de Ingeniería Telemática y Electrónica

Índice

- 1. Cuestiones Previas
- 2. Estabilidad
- 3. Análisis temporal
- 4. Proyecto de un sistema de control

01/10/2025 - Sistemas de Control - 2

POLITÉCNICA

Cuestiones previas

- Se han visto técnicas de modelado de sistemas
 - Sistema + Modelado → Modelo del sistema (M₁)
- El modelo permite la aplicación de técnicas de análisis y simulación
 - Modelo + Análisis → Comportamiento esperado (c₁)
- Las técnicas de análisis pueden adaptarse para ser utilizadas a la inversa (diseño)
 - Comportamiento deseado (c₂) + Diseño → Modelo necesario (M₂)
- A partir del modelo diseñado se obtiene el controlador necesario
 - Modelo → Controlador (F) → Implementación (a=f(e))

01/10/2025 - Sistemas de Control - 3

3

Análisis de sistemas de control

- · En la asignatura se abordará el análisis temporal
 - Modelo + Análisis → Respuesta en el tiempo esperada
- El análisis temporal a partir de FdeT se basa en la transformada inversa (S o Z)
 - ⇒ Los polos de la FdeT son decisivos en la respuesta temporal
- En el análisis temporal cabe distinguir:
 - Estabilidad
 - Régimen transitorio
 - Régimen permanente

$$M(w) = \sum_{i=1}^{n} \frac{\alpha_{Mi}}{w - p_i}$$

01/10/2025 - Sistemas de Control - 4

POLITÉCNICA

4

Análisis de estabilidad (I)

- Los sistemas realimentados son más propensos a la inestabilidad que los no realimentados (se verá en Tema 3)
- $m(t) = \sum_{i=1}^{n} \alpha_{M_i} e^{p_i t}$ $m[k] \approx \sum_{i=1}^{n} \alpha_{M_i} p_i^{k}$

© Departamento de Ingeniería Telemática y Electrónica

- Estabilidad absoluta
 - Sistema estable: respuesta acotada y no oscilante (con amplitud constante) ante entrada acotada y no oscilante
 - Sistema inestable: en caso contrario
- p_i ?
- Condición de estabilidad en la FdeT:
 - Sistema continuo: Re[p_s]<0, $\forall p_s \equiv \text{polos}$ de la FdeT en S del sistema
 - Sistema discreto: $|p_7|$ <1, $\forall p_7$ ≡ polos de la FdeT en Z del sistema
- · Estabilidad relativa:
 - Comparativa del grado de estabilidad entre dos sistemas estables
 - 2. Comparativa del grado de estabilidad de un sistema con diferentes controladores

Continuo: $e^{p_i t} \to 0$ Discreto: $p_i^k \to 0$

Continuo: $e^{p_i t} < e^{p_j t}$ Discreto: $p_i^k < p_i^k$

01/10/2025 - Sistemas de Control - 5

5

POLITÉCNICA

Análisis de estabilidad (II)

- Ejemplo:
 - Analizar la estabilidad (absoluta y relativa) de los siguientes sistemas continuos

POLITÉCNICA

6

Análisis de estabilidad (III)

- Ejemplo:
 - Analizar la estabilidad (absoluta y relativa) de los siguientes sistemas discretos

01/10/2025 - Sistemas de Control - 7

7

POLITÉCNICA

Análisis de la respuesta en el tiempo (I)

- Matemáticamente:

$$c(t) = c_{rt}(t) + c_{rp}(t)$$

$$c_{rp}(t) = c_{rp} = \begin{cases} \lim_{t \to \infty} c(t) = \lim_{s \to 0} [sC(s)] \\ \lim_{k \to \infty} c[k] = \lim_{z \to 1} [(z-1)C(z)] \end{cases} \leftarrow \text{(sistemas continuos)} \downarrow$$

$$= \lim_{w \to \gamma} [(w-\gamma)C(w)]$$

$$\leftarrow \text{(sistemas muestreados)} \uparrow$$

$$c_{rt}(t) = c(t) - c_{rp}(t)$$

- Operativamente:

$$c_{rp}(t) = c(t) \Big|_{t \ge t_s}$$

01/10/2025 - Sistemas de Control - 8

POLITÉCNICA

© Departamento de Ingeniería Telemática y Electrónica

Análisis de la respuesta en el tiempo (II)

$$C(w) = C_R(w) + C_M(w)$$

C(w) es superposición de \begin{cases} una función de la naturaleza de la entrada una función dependiente del sistema

Según los polos de M(w), las componentes de entrada se sumarán a:

típicamente Exponenciales crecientes o decrecientes
Oscilaciones sinusoidales con envolventes exponenciales

La respuesta transitoria no depende cualitativamente de R(w):

La constante de tiempo de las exponenciales La frecuencia de oscilación de las sinusoides

sólo depende de M(w)

01/10/2025 - Sistemas de Control - 9

9

POLITÉCNICA

© Departamento de Ingeniería Telemática y Electrónica

Proyecto de un sistema de control (I)

- El Proyecto (diseño de controladores) Implica:
 - Determinar una estrategia de control en LC con un regulador LTI
 - Hacer cumplir unas especificaciones
 - Dinámicas (régimen transitorio)
 - Estáticas (régimen permanente)
 - Calcular F
 - Construir el regulador con electrónica

01/10/2025 - Sistemas de Control - 10

POLITÉCNICA

10

5

Proyecto de un sistema de control (II)

- 1. Identificación y modelado de la planta (T1, P2)
- 2. Diseño del regulador (T4, PGA)
 - Estrategia de control
 - Especificaciones temporales
- 3. Análisis en lazo cerrado (T2 y T3, P3-P5)
 - Verificación del cumplimiento de las especificaciones
- 4. Construcción de los circuitos o escritura de los programas

01/10/2025 - Sistemas de Control - 11

POLITÉCNICA

© Departamento de Ingeniería Telemática y Electrónica

11

SISTEMAS DE CONTROL

TEMA 1 Fundamentos de los Sistemas de Control

- 1.1. Introducción a Matlab.
- 1.2. Señales, Secuencias y Sistemas.
- 1.3. Sistemas de Control en Lazo Abierto y Cerrado.
- 1.4. Modelado de un Sistema.
- 1.5. Sistemas de Control Muestreados.
- 1.6. Análisis y Diseño de un Sistema de Control.

01/10/2025 - Sistemas de Control - 12

© Departamento de Ingeniería Telemática y Electrónica