

Khôlles de Mathématiques $\mathbb{H} \mathbb{X} \mathbb{I} \mathbb{I}$

N. CLOAREC

Espaces préhilbertiens réels

Exercice 1. Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt, la famille (u, v, w) avec u = (1, 0, 1), v = (1, 1, 1), w = (-1, 1, 0).

Exercice 2. Soient $x_1, ..., x_n$ des vecteurs d'un espace préhilbertien réel E. On suppose qu'il existe $M \in \mathbb{R}$ tel que $\forall (\varepsilon_1, ..., \varepsilon_n) \in \{1, -1\}^n$, $\left\| \sum_{k=1}^n \varepsilon_k x_k \right\| \le M$. Montrer $\sum_{k=1}^n \|x_k\|^2 \le M^2$.

Exercice 3. Soient *a* un vecteur unitaire d'un espace préhilbertien réel *E*, *k* un réel et $\varphi: E \times E \to \mathbb{R}$ l'application déterminée par

$$\varphi(x,y) = \langle x,y \rangle + k \langle x,a \rangle \langle y,a \rangle$$

Donner une condition nécessaire et suffisante pour que φ soit un produit scalaire.

Exercice 4. Soient $e = (e_i)_{1 \le i \le n}$ et $f = (f_j)_{1 \le j \le n}$ deux bases orthonormales d'un espace euclidien E. Soit $u \in \mathcal{L}(E)$. On pose

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} (f_i \mid u(e_j))^2$$

Montrer que A ne dépend pas des bases orthonormales choisies.

Exercice 5. Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille de $n \ge 2$ vecteurs d'un espace préhilbertien réel. On suppose

$$\forall 1 \leq i \neq j \leq n, (x_i \mid x_j) < o$$

Montrer que toute sous famille de n-1 vecteurs de $\mathcal F$ est libre.

Exercice 6. On définit une application $\varphi \colon \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ par $\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$.

- 1. Après avoir montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$, calculer $\varphi(X^p, X^q)$.
- 2. Déterminer $\inf_{(a,b)\in\mathbb{R}^2}\int_0^{+\infty} e^{-t}(t^2-(at+b))^2 dt$.

Exercice 7. Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille d'obtusangle de $n \ge 2$ vecteurs d'un espace E préhilbertien réel définie par $\forall 1 \le i \ne j \le n$, $(x_i \mid x_j) < 0$.

- 1. Si *E* est de dimension 1, que dire des familles obtusangles?
- 2. Supposons $E = \mathbb{R}^2$. Exhiber une famille obtusangle de cardinal 3 et montrer qu'il n'existe pas de famille obtusangle de cardinal 4.
- 3. Supposons $E = \mathbb{R}^3$. Exhiber une famille obtusangle de cardinal 4.
- 4. Montrer que si E est de dimension n, alors il n'existe pas de famille obtusangle de cardinal n + 2.

Exercice 8. Soit (E, \langle , \rangle) un espace euclidien non nul et $u \in \mathcal{L}(E)$ tel que tr(u) = o.

- 1. Montrer qu'il existe $x \in E \setminus \{o\}$ tel que $\langle u(x) | x \rangle = o$.
- 2. Montrer qu'il existe une base orthonormée de E dans laquelle la matrice de u est à diagonale nulle.

Exercice 9. Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice réelle vérifiant

$$\forall i \in \{1, ..., n\}, a_{i,i} \ge 1 \text{ et } \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} a_{i,j}^2 < 1$$

1. Montrer

$$\forall X \in \mathbb{R}^n \setminus \{o\}, X^T A X > o$$

2. En déduire que la matrice *A* est inversible.

Exercice 10. Soit *E* un espace vectoriel euclidien muni d'une base orthonormée $\mathcal{B} = (i, j, k)$. Soit $p \in \mathcal{L}(E)$ déterminé par

$$\operatorname{Mat}_{\mathcal{B}}(p) = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

Montrer que p est une projection orthogonale sur un plan dont on précisera une équation.

Exercice 11. Soient a et b deux vecteurs distincts d'un espace vectoriel euclidien E tels que

$$||a|| = ||b||$$

Montrer qu'il existe une unique réflexion échangeant a et b.

Exercice 12. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. Calculer

$$\inf_{M \in \mathcal{S}_n(\mathbb{R})} \left(\sum_{1 \le i,j \le n} \left(a_{i,j} - m_{i,j} \right)^2 \right)$$

Exercice 13. Calculer le minimum de

$$\int_0^1 \left(t^3 - at^2 - bt - c\right)^2 \mathrm{d}t$$

pour a, b, c parcourant \mathbb{R} .

Exercice 14. Soit $f: E \to E$ une application vérifiant

$$\forall (x,y) \in E^2, (f(x) \mid f(y)) = (x \mid y)$$

Montrer que f est linéaire.