Lecture 7 Multiplication

Byung-gi Kim

School of Computer Science and Engineering Soongsil University

3. Arithmetic for Computers

- 3.1 Introduction
- 3.2 Addition and Subtraction
- 3.3 Multiplication
- 3.4 Division
- 3.5 Floating Point
- 3.6 Parallelism and Computer Arithmetic: Associativity
- 3.7 Real Stuff: Floating Point in the x86
- 3.8 Fallacies and Pitfalls
- 3.9 Concluding Remarks
- 3.10 Historical Perspective and Further Reading
 - 3.11 Exercises

3.3 Multiplication

Binary multiplication is just a bunch of left shifts and adds

Pencil and Paper Algorithm

				A3 * B3	A2 B2	A1 B1	AO BO
	B3•A3	B2•A3 B3•A2	B1•A3 B2•A2 B3•A1	B0•A3 B1•A2 B2•A1 B3•A0	B0•A2 B1•A1 B2•A0	BO•A1 B1•A0	BO•AO
 М7	M6	M5	 M4	 МЗ	M2	M1	MO

Array Multiplier

Binary Multiplication

• An example: 8 x 9 = 72

Multiplicand:

Multiplier:

* 1 0 0 0

* 1 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

Product:

1 0 0 1 0 0 0

- Ignoring the sign bits,
 - n-bit multiplicand and m-bit multiplier
 - Then (n+m)-bit product
- Each step of the multiplication
 - If multiplier bit = 1, copy the multiplicand.
 - If multiplier bit = 0, place all 0's.

Sequential Version of the Multiplication Algorithm and Hardware

First version of the multiplication hardware

First Version - Algorithm

Figure 3.5

Example: First Version

Multiply 0010_{two} X 0011_{two}.

[Answer] Multiplication time ... almost 100 clock cycles

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
	1a: 1 ⇒ Product += Multiplicand	00(1)		0000 0010
1	2: Shift Multiplicand left		0000 0100	
	3: Shift Multiplier right	0001		
	1a: 1 ⇒ Product += Multiplicand	00(1)		0000 0110
2	2: Shift Multiplicand left		0000 1000	
	3: Shift Multiplier right	0000		
	1: 0 ⇒ no operation	0000		0000 0110
3	2: Shift Multiplicand left		0001 0000	
	3: Shift Multiplier right	0000		
	1: 0 ⇒ no operation	0000		0000 0110
4	2: Shift Multiplicand left		0010 0000	
	3: Shift Multiplier right	0000		0000 0110

Second Version - Hardware

Figure 4.28 of 2ed.

Example: Second Version

• Multiply 0010_{two} X 0011_{two} . [Answer]

Figure 4.30 of 2ed.

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0010	0000 0000
	1a: 1 ⇒ Product += Multiplicand	00(1)		0010 0000
1	2: Shift Product right			0001 0000
	3: Shift Multiplier right	0001		
	1a: 1 ⇒ Product += Multiplicand	00(1)		0011 0000
2	2: Shift Product right			0001 1000
	3: Shift Multiplier right	0000		
	1: 0 ⇒ no operation	0000		0001 1000
3	2: Shift Product right			0000 1100
	3: Shift Multiplier right	0000		
	1: 0 ⇒ no operation	0000		0000 1100
4	2: Shift Product right			0000 0110
	3: Shift Multiplier right	0000		0000 0110

Refined Version of the Multiplication Hardware

Figure 3.6

Refined Version - Algorithm

Figure 4.32 in 2ed.

Example 1: Refined Version

• Multiply 0010_{two} X 0011_{two} . [Answer]

Iteration	Step	Multiplicand	Product
0	Initial values	0010	0000 0011
	1a: 1 ⇒ Product += Multiplicand		0010 0011
1	2: Shift Product right		0000 0011
2	1a: 1 ⇒ Product += Multiplicand		0011 0001
2	2: Shift Product right		0001 1000
3	1: 0 ⇒ no operation		0001 1000
3	2: Shift Product right		0000 1100
4	1: 0 ⇒ no operation		0000 1100
4	2: Shift Product right	0001 10 0000 11 0000 11	0000 0110

Figure 4.33 of 2ed.

Example 2: Refined Version

Signed Multiplication

Booth's Algorithm

Multiplication algorithm for signed 2's complement numbers

Key idea

*
$$30_{\text{ten}} = 16_{\text{ten}} + 8_{\text{ten}} + 4_{\text{ten}} + 2_{\text{ten}}$$

= $32_{\text{ten}} - 2_{\text{ten}}$

• 011110_{two}

$$= 010000_{two} + 001000_{two} + 000100_{two} + 000010_{two}$$

$$= 100000_{\text{two}} - 000010_{\text{two}}$$

Multiplication by Booth's Algorithm

1. Depending on the current and previous bits

00, 11: No arithmetic

01: Addition (end of a string of 1s)

10: Subtraction (beginning of a string of 1s)

2. Arithmetic shift right the product register.

Booth's Algorithm - Flowchart

Example: Booth's Algorithm

Multiply 0010_{two} X 1101_{two}[Answer]

Iteration	Step	Multiplicand	Product
0	Initial values	0010	0000 1101 0
1	1c: 10 ⇒ Prod = Prod - Mcand	0010	1110 1101 0
1	2 : Shift Product right	0010	1111 0110 1
2	1b: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
	2 : Shift Product right	0010	0000 1011 0
3	1c: 10 ⇒ Prod = Prod - Mcand	0010	1110 101 10
3	2 : Shift Product right	0010	1111 0101 1
4	1d: 11 ⇒ no operation	0010	1111 0101 1
4	2 : Shift Product right	0010	1111 1010 1

Comparison

Iteratio	Multipli	Original algorithm		Booth's algorithm		
n	cand	Step	Product	Step	Product	
0	0010	Initial values	0000 0110	Initial values	0000 0110 0	
1	0010	1: 0 => no operation	0000 0110	1a: 00 => no operation	0000 0110 0	
I	0010	2: Shift right Product	0000 0011	2: Shift right Product	0000 0011 0	
2	0010	1a: 1 => Prod=Prod+Mcand	0010 0011	1c: 10 => Prod=Prod-Mcand	1110 0011 0	
	0010	2: Shift right Product	0001 0001	2: Shift right Product	1111 0001 1	
3	0010	1a: 1 => Prod=Prod+Mcand	0011 0001	1d: 11 => no operation	1111 0001 1	
	0010	2: Shift right Product	0001 1000	2: Shift right Product	1111 1000 1	
4	0010	1: 0 => no operation	0001 1000	1b: 01 => Prod=Prod+Mcand	0001 1000 1	
4	0010	2: Shift right Product	0000 1100	2: Shift right Product	0000 1100 0	

Booth's Algorithm – Theoretical Background (1/2)

Booth's algorithm with signed 2's complement numbers

```
* If ((a_{i-1} - a_i) == 0) do nothing;
else if ((a_{i-1} - a_i) == (+1)) add B;
else if ((a_{i-1} - a_i) == (-1)) subtract B;
* Product = (a_{-1} - a_0) \times B
+ (a_0 - a_1) \times B \times 2^1
+ (a_1 - a_2) \times B \times 2^2
+ (a_{29} - a_{30}) \times B \times 2^{30}
+ (a_{30} - a_{31}) \times B \times 2^{31}
```

Booth's Algorithm – Theoretical Background (2/2)

* Product =
$$B \times ((a_{-1} + (a_0 \times 2^0) + (a_1 \times 2^1) + \dots + (a_{30} \times 2^{30}) + (a_{31} \times -2^{31}))$$

= $B \times ((a_0 \times 2^0) + (a_1 \times 2^1) + \dots + (a_{30} \times 2^{30}) + (a_{31} \times -2^{31}))$
= $B \times (-a_{31} \times 2^{31} + \sum a_i \times 2^i)$
 $\Rightarrow B \times (A \text{ in two's complement representation})$

(cf) Value of
$$X = x_{n-1}x_{n-2} \cdots x_1x_0$$
 in signed 2'complement

$$V(X) = -x_{n-1} \cdot 2^{n-1} + \sum_{k=0}^{n-2} x_k \cdot 2^k$$

Supplement

Hardware/Software Interface

- Replacing arithmetic by shifts
- Multiplies by short constants in some compilers
 - Replacing them with a series of shifts and adds
- Shift n-bit left = multiply by 2ⁿ
- Strength reduction optimization
 - Substituting a left shift for a multiply by a power of 2
 - Done by almost every compiler

MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product

mult	\$ s 0,	\$s1 #	hi 1	.o = \$s	s0 * \$s	1
0	16	17	0	0	0x18	

- Low-order word of the product is left in processor register 10 and the high-order word is left in register hi
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are usually done by fast, dedicated hardware and are much more complex (and slower) than adders

Multiply in MIPS

A separate pair of 32-bit registers

- Hi and Lo registers
- 64-bit product store

Instructions

```
* mult $s2,$s3 # Hi,Lo = $s2 x $s3 (signed)

* multu $s2,$s3 # Hi,Lo = $s2 x $s3 (unsigned)

* mul $t0,$s2,$s3 # $t0 = lower 32 bits of $s2 x $s3

* mflo $s1 # $s1 = Lo (move from lo)

* mfhi $s1 # $s1 = Hi (move from hi)
```

Pseudoinstructions

- (mul \$t0,\$s2,\$s3 &) mulu \$t0,\$s2,\$s3 (no overflow check)
- mulo \$t0,\$s2,\$s3 & mulou \$t0,\$s2,\$s3 (overflow check)

Overflow Check

Example C program

```
integer x, y, z;
x = y * z;
y * z in Hi-Lo register
```

For signed multiply

- When $(Lo_{31} == 0)$, if $(Hi \neq 0000...0)$ then overflow
- When $(Lo_{31} == 1)$, if $(Hi \neq 1111...1)$ then overflow

For unsigned multiply

• If (Hi \neq 0000...0) then overflow