Felsőbb matematika informatikusoknak - Analízis

March 11, 2017

1 Tematika

- 1. Függvények integrál reprezentációja, integrál transzformációk
 - (a) Fourier transzformáció
 - (b) Laplace transzformáció
 - (c) Waveletek
 - (d) klasszikus funkcióanalízis
 - (e) reprezentációk felhasználása, differenciálegyenletek megoldása
 - (f) adatok elemzése
 - (g) tömörítés
- 2. Optimalizáció
 - (a) variáció-számítás
 - (b) feltételes szélsőérték (Lagrange-féle multiplikátor)
 - (c) lineáris programozás (Simplex módszer)
- 3. Numerikus módszerek
 - (a) egyenletmegoldás iteratív módszerekkel (felezős módszer, Newton-iteráció)
 - (b) többdimenziós optimalizálás, gradiens módszerek
 - (c) integrálás és optimalizálás Monte Carlo módszerekkel
 - (d) differenciálegyenletek megoldása

2 Függvények integrál reprezentációja

Adott egy f függvényünk, állítsuk elő ezt egy másik, g függvény integráljaként: $\forall x: f(x) = \int g(t,x)dt$. Mire jó ez? Mikor deriválhatunk?

2.1 Emlékeztető: Mikor deriválhatunk?

Bevihetjük-e a deriválást az integrál mögé? Definíció szerint a deriválás egy limes: $\lim \frac{f(x)-f(x')}{x-x'}$. Legyen igaz: $\forall x: \exists \lim_n g_n(x) = g(x)$ - n függvény konvergál.

Igaz-e az alábbi egyenlet: $\lim_n \int g_n(x) dx = \int \lim_n g_n(x) dx = \int g(x) dx$ Általánosan véve ez nem igaz - de vannak esetek amikor igen.

Példa - Gauss függvény:

Gauss függvény

Legyen I függvényünk az alábbi:

$$I = \int_{-\infty}^{\infty} e^{-x^2}$$

és legyen I korlátos, pozitív szám: $0 < I < \infty$. Ekkor I négyzete:

$$I^2 = \int_{-\infty}^{\infty} e^{-x^2} \int_{-\infty}^{\infty} e^{-y^2} dx dy$$

ami

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dx dy$$

, tehát

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$$

. Látható, hogy az integrálandó függvény körszimmetrikus.

Váltsunk át Descartes-koordinátákból (ami most x,y) polár-koordinátákra (ϕ, r) . Itt ϕ a közbezárt szög, r pedig az origótól való távolság. A teljes körön integrálva, 0-tól végtelenig:

$$\int_0^\infty \int_0^{2\Pi} e^{-r^2} \phi d\phi dr$$

 $2\Pi \int_0^\infty e^{-r^2} r dr$

Értéke 0 esetén 0, 1-nél pedig Π , így $I=\sqrt{\Pi}$ Tehát tudjuk, hogy egy gauss-függvény integrálja a valós számokon $\sqrt{\Pi}$

Legyen g_n függvény az n-el el
tolt gauss:

$$\int g_n(e^{-(x+n^2)})dx$$

Ekkor:

Látható ahogy eltolódik a függvény, végtelenben – inf x esetén veszi fel az 1-et. Integrálja - n-től függetlenül mindig $\sqrt{\Pi}$. Tehát az integrálok limese is ez: $\lim_n \int g_n(x) dx = \sqrt{\Pi}$. Viszont a függvény folyamatosan elcsúszik jobbra, limese 0, így integráljának limese is nulla lesz: $\int \lim_n g_n(x) dx = 0$. Tehát ennél a példánál nem igaz, hogy az integrálok limese azonos a limesek integráljával.

Elégséges feltétel: A közös integrálható majoráns $\exists h$ függvény, hogy $\forall x$ és $\forall n$ -re

$$|g_n(x)| < h(x)$$

és h integrálható a kérdéses intervallumon, $\exists \int h < \infty$ (és véges), akkor:

$$\exists \int \lim_{n} g_n = \int g$$

Tegyük fel hogy $\forall t, x |g(t,x)|. |\frac{d}{dt}g(t,x)| < h(x) < \infty$

$$\frac{d}{dt} \int g(t,x) dx = \lim_{\epsilon \to 0} \frac{\int g(t+\epsilon,x) dx - \int g(t,x) dx}{\epsilon}$$

=

$$\lim_{\epsilon \to 0} \int \frac{g(t+\epsilon, x)dx - g(t, x)dx}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(t+\epsilon, x)dx - g(t, x)dx}{\epsilon}$$

- ez már a derivált

$$\int \frac{d}{dt}g(t,x)dx$$

BME Matekverseny-példa:

$$\forall x, x \neq 0, \frac{\sin(x)}{x} < 1$$

Bizonyítsuk be:

$$(\frac{d}{dt})^n \frac{\sin(x)}{x} < \frac{1}{n+1}$$

Megoldás: Írjuk fel más alakban, cos függvények összegeként:

$$\frac{\sin(x)}{x} = \int_0^1 \cos(xt)dt$$

ebből $\left[\frac{\sin(tx)}{x}\right]_0^1$ levezetés hiányzik