પ્રશ્ન 1(a) [3 માર્ક્સ]

પાવર અને એનર્જી વ્યાખ્યાયિત કરો.

જવાબ:

- **પાવર**: કાર્ય કરવાનો દર અથવા એકમ સમય દીઠ ઊર્જાનો વપરાશ. વોટ્સ (W)માં માપવામાં આવે છે.
- એનર્જી: કાર્ય કરવાની ક્ષમતા અથવા કરેલ કાર્ય. જૂલ (J) અથવા વોટ-કલાક (Wh)માં માપવામાં આવે છે.

કોષ્ટક: પાવર vs એનર્જી

પેરામીટર	વ્યાખ્યા	ફોર્મ્યુલા	એકમ
પાવર	ઊર્જા ટ્રાન્સફરનો દર	P = W/t	વોટ (W)
એનર્જી	કાર્ય કરવાની ક્ષમતા	$E = P \times t$	જૂલ (J) અથવા વોટ-કલાક (Wh)

મેમરી ટ્રીક: "પાવર પ્રવૃત્તિ કરે, એનર્જી એકત્રિત થાય"

પ્રશ્ન 1(b) [4 માર્ક્સ]

વિદ્યુત્પ્રવાહ અને વિદ્યુત પોટેંશિયલ વ્યાખ્યાયિત કરો.

જવાબ:

આકૃતિ:

- **વિદ્યુત્પ્રવાહ**: એકમ સમય દીઠ વહેતો વિદ્યુત ચાર્જ. એમ્પિયર (A)માં માપવામાં આવે છે.
- **વિદ્યુત પોટેશિયલ**: એક બિંદુથી બીજા બિંદુ પર ચાર્જ ખસેડવા માટે એકમ ચાર્જ દીઠ કરવામાં આવતું કાર્ય. વોલ્ટ (V)માં માપવામાં આવે છે.

મેમરી ટ્રીક: "કરંટ ચાર્જનું વહન, પોટેંશિયલ પ્રેરણા"

પ્રશ્ન 1(c) [7 માર્ક્સ]

ઉદાહરણો સાથે કેસીએલ અને કેવીએલ સમજાવો.

જવાબ:

કિરચોફનો કરંટ નિયમ (KCL):

- નોડમાં પ્રવેશતા કરંટનો સરવાળો તેમાંથી બહાર નીકળતા કરંટના સરવાળા સમાન હોય છે.
- ઉદાહરણ: નોડ X પર, i1 + i2 = i3

કિરચોફનો વોલ્ટેજ નિયમ (KVL):

- કોઈપણ બંધ લૂપમાં વોલ્ટેજ ડ્રોપ્સનો સરવાળો શૂન્ય છે.
- ઉદાહરણ: V1 V(R1) V(R2) = 0

મેમરી ટ્રીક: "કરંટ આવે-જાય, વોલ્ટેજ લૂપ-સરવાળો શૂન્ય થાય"

પ્રશ્ન 1(c) OR [7 માર્ક્સ]

રેસિસ્ટર્સ માટે વિવિદ્ય પ્રકારનાં જોડાણો સમજાવો.

જવાબ:

કોષ્ટક: શ્રેણી vs સમાંતર જોડાણ

પેરામીટર	શ્રેણી જોડાણ	સમાંતર જોડાણ
કુલ અવરોધ	Req = R1 + R2 + R3 +	1/Req = 1/R1 + 1/R2 + 1/R3 +
કરંટ	બધા અવરોધો માટે સમાન	દરેક માર્ગમાં વહેંચાય છે
વોલ્ટેજ	અવરોધો વચ્ચે વહેંચાય છે	બધા અવરોધો માટે સમાન
ઉપયોગ	વોલ્ટેજ ડિવાઇડર	કરંટ વહેંચણી

મેમરી ટ્રીક: "શ્રેણી સરવાળો, સમાંતર ભાગાકાર"

પ્રશ્ન 2(a) [3 માર્ક્સ]

અવરોદ્ય અને અવરોદ્યકતાને વ્યાખ્યાયિત કરો. તેમના એકમો પણ જણાવો.

જવાબ:

- **અવરોદ્ય**: કરંટ પ્રવાહમાં અડચણ, ઓહ્ય (Ω)માં માપવામાં આવે છે. R = V/I.
- **અવરોધકતા**: પદાર્થની એક ગુણધર્મ જે એકમ દિમેન્શન દીઠ અવરોધ દર્શાવે છે, ઓહ્ય-મીટર (Ω·m)માં માપવામાં આવે છે. ρ = RA/L.

મેમરી ટ્રીક: "અવરોધ અટકાવે, અવરોધકતા અભિલક્ષણ"

પ્રશ્ન 2(b) [4 માક્સી]

વિદ્યુત કોષને વ્યાખ્યાયિત કરો અને વિવિદ્ય પ્રકારના વિદ્યુત કોષના નામ લખો.

જવાબ:

આકૃતિ:

• **વિદ્યુત ક્રોષ**: એક ઉપકરણ જે રાસાયણિક ઊર્જાને વિદ્યુત ઊર્જામાં રૂપાંતરિત કરીને વોલ્ટેજ ઉત્પન્ન કરે છે.

વિદ્યુત કોષના પ્રકારો:

1. પ્રાથમિક કોષ: ડ્રાય સેલ, આલ્કલાઇન સેલ, મર્ક્યુરી સેલ

2. **દ્વિતીય કોષ**: લેડ-એસિડ, નિકલ-કેડમિયમ, લિથિયમ-આયન

મેમરી ટ્રીક: "પ્રાથમિક એક વાર પ્રવૃત્તિ, દ્વિતીય વારંવાર પુનઃચાર્જ"

પ્રશ્ન 2(c) [7 માર્ક્સ]

ઉપરોક્ત સર્કિટના કુલ સમકક્ષ અવરોધની ગણતરી કરો જેમા R1=5 Ω , R2=3 Ω , R3=4 Ω , R4=1 Ω , R5=2 Ω લો.

જવાબ:

आકृति:

પગલાવાર ઉકેલ:

1. R2 અને R3 શ્રેણીમાં છે: R23 = R2 + R3 = 3Ω + 4Ω = 7Ω

- 2. R23 અને R4 સમાંતરમાં છે: 1/R234 = 1/7 + 1/1 = (1+7)/7 = 8/7 આથી, R234 = 7/8 = 0.875Ω
- 3. R1, R234, અને R5 શ્રેણીમાં છે: Req = R1 + R234 + R5 = 5Ω + 0.875Ω + 2Ω = 7.875Ω

આથી, સમકક્ષ અવરોધ = 7.875Ω

મેમરી ટ્રીક: "શ્રેણી-સરવાળો, સમાંતર-ગુણાકાર ભાગ્યા સરવાળો"

પ્રશ્ન 2(a) OR [3 માર્ક્સ]

જો 100 વોટનો બલ્બ 30 દિવસ માટે દરરોજ 10 કલાક ચલાવે તો એનર્જીની કિંમત શોદ્યો. એનર્જી નો દર રૂપિયા 5/એકમ છે.

જવાબ:

કોષ્ટક: એનર્જી ગણતરી

પેરામીટર	મૂલ્ય	ગણતરી
પાવર	100W = 0.1kW	આપેલ છે
ઓપરેટિંગ કલાકો	10 કલાક/દિવસ × 30 દિવસ = 300 કલાક	આપેલ છે
વપરાયેલ એનર્જી	0.1kW × 300h = 30kWh = 30 એકમ	$E = P \times t$
53	રૂ. 5/એકમ	આપેલ છે
કુલ કિંમત	30 એકમ × રૂ. 5/એકમ = રૂ. 150	કિંમત = એકમો × દર

આથી, એનર્જીની કિંમત = રૂ. 150

મેમરી ટ્રીક: "એનર્જી × દર = વીજળી બિલનો ભાર"

પ્રશ્ન 2(b) OR [4 માર્ક્સ]

ઓહમનો નિયમ લખો અને કોઈપણ સર્કિટમાં કરંટની ગણતરી કરવા માટે ઓહ્યના નિયમ નો ઉપયોગ સમજાવો.

જવાબ:

આકૃતિ:

ઓહમનો નિયમ: વાહકમાંથી વહેતો કરંટ વોલ્ટેજના સીધા પ્રમાણમાં અને અવરોધના વ્યસ્ત પ્રમાણમાં હોય છે.

ફોર્મ્યુલા: V = IR અથવા I = V/R અથવા R = V/I

ઉપયોગ: સર્કિટમાં કરંટ શોધવા માટે, ઘટક પરના વોલ્ટેજને તેના અવરોધ વડે ભાગો (I = V/R).

મેમરી ટ્રીક: "વોલ્ટેજ ઇન્વાઇટ કરે, અવરોધ અટકાવે"

પ્રશ્ન 2(c) OR [7 માર્ક્સ]

સાબિત કરો કે સંપૂર્ણ કેપેસિટીવ સર્કિટમાં કરંટ વોલ્ટેજ થી 90° આગળ હોઇ છે, અને સંપૂર્ણ રીતે ઇંડક્ટીવ સર્કિટમાં કરંટ વોલ્ટેજ થી 90° પાછળ હોઇ છે.

જવાબ:

આકૃતિઓ:

કેપેસિટીવ સર્કિટ માટે:

- વોલ્ટેજ સમીકરણ: v = V sin(ωt)
- \dot{s} es: $i = C \times dv/dt = \omega CV \cos(\omega t) = I \sin(\omega t + 90^\circ)$
- કરંટ વોલ્ટેજથી 90° આગળ હોય છે

ઇંડક્ટીવ સર્કિટ માટે:

- વોલ્ટેજ સમીકરણ: v = L × di/dt = ωLl cos(ωt) = V sin(ωt + 90°)
- sėz: i = I sin(ωt)
- કરંટ વોલ્ટેજથી 90° પાછળ હોય છે

મેમરી ટ્રીક: "ELI the ICE man" - EL (ઇન્ડક્ટર)માં, I લગ્સ E; ICE (કેપેસિટર)માં, I લીડ્સ E

પ્રશ્ન 3(a) [3 માર્ક્સ]

સાયકલ, ફોર્મ ફેક્ટર અને એમ્પ્લિટ્યુડને વ્યાખ્યાયિત કરો.

જવાબ:

आङ्गति:

• સાયકલ: વેવફોર્મનું એક સંપૂર્ણ પુનરાવર્તન.

• ફોર્મ ફેક્ટર: RMS મૂલ્યનો સરેરાશ મૂલ્ય સાથેનો ગુણોત્તર. સાઇન વેવ માટે = 1.11.

• એમ્પ્લિટ્યુડ: વેવફોર્મનું તેના સરેરાશ સ્થાનથી મહત્તમ વિચલન.

મેમરી ટ્રીક: "સાયકલ સંપૂર્ણ, ફોર્મ ફેક્ટર ફોર્મ્યુલા, એમ્પ્લિટ્યુડ ઉચ્ચતમ"

પ્રશ્ન 3(b) [4 માર્ક્સ]

આરએમએસ અને સરેરાશ મૂલ્ય વ્યાખ્યાયિત કરો. સાઇન વેવફોર્મનું આરએમએસ અને સરેરાશ મૂલ્ય નુ સૂત્ર લખો.

જવાબ:

કોષ્ટક: RMS vs સરેરાશ મૂલ્ય

પેરામીટર	વ્યાખ્યા	સાઇન વેવ માટે ફોર્મ્યુલા
RMS મૂલ્ય	વર્ગ કરેલા મૂલ્યોના સરેરાશનો વર્ગમૂળ	Vrms = Vm/√2 = 0.707 Vm
સરેરાશ મૂલ્ય	અર્ધ સાયકલ પર તમામ ક્ષણિક મૂલ્યોની સરેરાશ	Vavg = 2Vm/π = 0.637 Vm

- RMS (રૂટ મીન સ્કવેર): સમાન હીટિંગ અસર ઉત્પન્ન કરતું સમકક્ષ DC મૂલ્ય.
- સરેરાશ મૂલ્ય: અર્ધ સાયકલ પર તમામ ક્ષણિક મૂલ્યોની સરેરાશ.

મેમરી ટ્રીક: "RMS રિલેટ્સ ટુ હીટિંગ, એવરેજ એડ્સ એન્ડ ડિવાઇડ્સ"

પ્રશ્ન 3(c) [7 માર્ક્સ]

એપરંટ પાવર, ટ્રુ પાવર અને રિચેક્ટીવ પાવર સમજાવો. તેમના માપનના એકમ જણાવો.

જવાબ:

કોષ્ટક: પાવરના પ્રકારો

પાવર પ્રકાર	વ્યાખ્યા	ફોર્મ્યુલા	એકમ
એપરંટ પાવર (S)	કુલ પૂરો પાડેલો પાવર	S = VI	VA (વોલ્ટ-એમ્પિયર)
ટ્રુ પાવર (P)	ખરેખર વપરાચેલો પાવર	P = VI cos φ	W (વોટ)
રિયેક્ટીવ પાવર (Q)	સ્ત્રોત અને લોડ વચ્ચે આવતો-જતો પાવર	Q = VI sin φ	VAR (વોલ્ટ-એમ્પિયર રિયેક્ટીવ)

પાવર ટ્રાયએંગલ: S² = P² + Q²

મેમરી ટ્રીક: "એક્ટિવ પરફોર્મ્સ વર્ક, રિયેક્ટીવ રિટર્ન્સ એનર્જી, એપરંટ એડ્સ વેક્ટર્સ"

પ્રશ્ન 3(a) OR [3 માર્ક્સ]

3-ફ્રેઝ વોલ્ટેજના ગાણિતિક અભિવ્યક્તિઓ લખો.

જવાબ:

થ્રી-ફેઝ વોલ્ટેજની અભિવ્યક્તિઓ:

કોષ્ટક: 3-ફેઝ વોલ્ટેજ

ફેઝ	અભિવ્યક્તિ
R-ફੇઝ	VR = Vm sin(ωt)
Y-ફેઝ	VY = Vm sin(ωt - 120°)
B-ફੇઝ	VB = Vm sin(ωt - 240°)

જ્યાં Vm મહત્તમ વોલ્ટેજ છે અને ω એન્ગ્યુલર ફ્રિક્વન્સી છે.

મેમરી ટ્રીક: "લાલ લીડર, પીળો 120° પાછળ, વાદળી 240° પાછળ"

પ્રશ્ન 3(b) OR [4 માક્સી]

કેસ્ટ ફેક્ટર વ્યાખ્યાયિત કરો અને સાઇન વેવ માટે કેસ્ટ ફેક્ટર ની કિમત લખો.

જવાબ:

આકૃતિ:

- ક્રેસ્ટ ફેક્ટર: વેવફોર્મના પીક મૂલ્યનો RMS મૂલ્ય સાથેનો ગુણોત્તર.
- **ફોર્મ્યુલા**: કેસ્ટ ફેક્ટર = પીક મૂલ્ય / RMS મૂલ્ય
- સાઇન વેવ માટે: કેસ્ટ ફેક્ટર = 1/0.707 = 1.414

મેમરી ટ્રીક: "ક્રેસ્ટ કમ્પેર્સ પીક ટુ RMS"

પ્રશ્ન 3(c) OR [7 માર્ક્સ]

વિવિદ્ય 3-ફેઝ વિદ્યુત જોડાણોનું વર્ણન કરો.

જવાબ:

કોષ્ટક: સ્ટાર vs ડેલ્ટા જોડાણ

પેરામીટર	સ્ટાર (Y) જોડાણ	ડેલ્ટા (Δ) જોડાણ
લાઇન વોલ્ટેજ (VL)	√3 × ફ્રેઝ વોલ્ટેજ	ફેઝ વોલ્ટેજ જેટલું જ
લાઇન કરંટ (IL)	ફેઝ કરંટ જેટલો જ	√3 × ફેઝ કરંટ
ન્યુટ્રલ વાયર	હાજર	ગેરહાજર
ઉપયોગ	અસંતુલિત લોડ્સ, રહેણાંક	સંતુલિત લોડ્સ, ઔદ્યોગિક

મેમરી ટ્રીક: "સ્ટાર શોઝ ન્યુટ્રલ, ડેલ્ટા ડિલિવર્સ હાયર કરંટ"

પ્રશ્ન 4(a) [3 માર્ક્સ]

જો આરએમએસ મૂલ્ય 230V હોય તો સાઇનયુસાઇડલ વોલ્ટેજની પીક-ટુ-પીક કિંમતની ગણતરી કરો.

જવાબ:

કોષ્ટક: ગણતરીના પગલાં

પેરામીટર	ફોર્મ્યુલા	ગણતરી
RMS મૂલ્ય	આપેલ છે	230V
પીક મૂલ્ય	Vm = √2 × Vrms	Vm = √2 × 230 = 325.27V
પીક-ટુ-પીક મૂલ્ય	Vp-p = 2 × Vm	Vp-p = 2 × 325.27 = 650.54V

આથી, પીક-ટુ-પીક મૂલ્ય = 650.54V

મેમરી ટ્રીક: "RMS થી પીક - √2 વડે ગુણો, પીક થી પીક-ટુ-પીક - બમણું કરો"

પ્રશ્ન 4(b) [4 માર્ક્સ]

આપેલા એસી પ્રવાહ i = 142.14sin628t માટે ફ્રીક્વંસી અને ટાઇમ પિરિયડ શોધો.

જવાબ:

કોષ્ટક: ગણતરીના પગલાં

પેરામીટર	ફોર્મ્યુલા	ગણતરી
આપેલ સમીકરણ	i = 142.14 sin(628t)	ω = 628 rad/s
ફ્રીક્વંસી	$f = \omega/(2\pi)$	f = 628/(2π) = 100 Hz
ટાઇમ પિરિયડ	T = 1/f	T = 1/100 = 0.01 s = 10 ms

આથી, ફ્રીક્વંસી = 100 Hz અને ટાઇમ પિરિયડ = 0.01 s

મેમરી ટ્રીક: "ફ્રીક્વંસી ફ્રોમ ઓમેગા ડિવાઇડ 2π, ટાઇમ ટેક્સ ઇન્વર્સ"

પ્રશ્ન 4(c) [7 માર્ક્સ]

ફ્લેમિંગના ડાબા હાથનો નિયમ અને જમણા હાથનો નિયમ સમજાવો.

જવાબ:

આકૃતિ:

ફ્લેમિંગનો ડાબા હાથનો નિયમ (મોટર):

• ચુંબકીય ક્ષેત્રમાં વિદ્યુત પ્રવાહ વહનકર્તા પર લાગતા **બળ**ની દિશા નક્કી કરવા માટે વપરાય છે.

• ડાબા હાથને અંગૂઠો, પ્રથમ અને મધ્ય આંગળીઓને કાટખૂણે રાખો.

• અંગૂઠો: ગતિ (બળ)

• પ્રથમ આંગળી: ચુંબકીય ક્ષેત્ર

• મધ્ય આંગળી: વિદ્યુત પ્રવાહ

ફ્લેમિંગનો જમણા હાથનો નિયમ (જનરેટર):

• જ્યારે વાહક ચુંબકીય ક્ષેત્રમાં ગતિ કરે છે ત્યારે **પ્રેરિત વિદ્યુત પ્રવાહ**ની દિશા નક્કી કરવા માટે વપરાય છે.

• જમણા હાથને અંગૂઠો, પ્રથમ અને મધ્ય આંગળીઓને કાટખૂણે રાખો.

• અંગૂઠો: વાહકની ગતિ

• પ્રથમ આંગળી: ચુંબકીય ક્ષેત્ર

• મધ્ય આંગળી: પ્રેરિત વિદ્યુત પ્રવાહ

મેમરી ટ્રીક: "ડાબો દર્શાવે મોટર, જમણો જણાવે જનરેટર"

પ્રશ્ન 4(a) OR [3 માર્ક્સ]

0.6 ટેસ્લાના મેગ્નેટિક ફીલ્ડમાં 30 મીટર/સેકંડ ગતિ સાથે 1 મીટરની લંબાઈ નો વાહક ક્ષેત્ર સાથે 30° નો કોણ બનાવે છે. તેમાં ઉત્ત્પન્ન થતુ ડાયનેમીક ઇએમએફની ગણતરી કરો. (sin 30°=0.5 નો ઉપયોગ કરો)

જવાબ:

કોષ્ટક: આપેલ પેરામીટર્સ

પેરામીટર	મૂલ્ય
લંબાઈ (l)	1 મીટર
ગતિ (v)	30 m/s
ચુંબકીય ક્ષેત્ર (B)	0.6 Tesla
કોບ (θ)	30°

ફોર્મ્યુલા: E = Blv sin θ

ગણતરી:

 $E = 0.6 \times 1 \times 30 \times 0.5 = 9 \text{ volts}$

આથી, પ્રેરિત EMF = 9 volts

મેમરી ટ્રીક: "EMF ઈમર્જિસ ફ્રોમ ફિલ્ડ, વેલોસિટી એન્ડ લેન્થ વિથ એંગલ"

પ્રશ્ન 4(b) OR [4 માર્ક્સ]

લેન્ઝનો નિયમ લખો અને સમજાવો.

જવાબ:

લેન્ઝનો નિયમ: પ્રેરિત EMF અથવા વિદ્યુત પ્રવાહની દિશા હંમેશા એવી હોય છે કે તે તેને ઉત્પન્ન કરતા કારણનો વિરોધ કરે છે.

ઉપયોગ: જ્યારે ચુંબક કોઈલની નજીક આવે છે, ત્યારે પ્રેરિત વિદ્યુત પ્રવાહ એક ચુંબકીય ક્ષેત્ર બનાવે છે જે આવતા ચુંબકને પાછો ધક્કો મારે છે.

મેમરી ટ્રીક: "લેન્ઝ લાઇક્સ ટુ ઓપોઝ"

પ્રશ્ન 4(c) OR [7 માર્ક્સ]

સ્થિર અને ગતિશીલ રીતે પ્રેરિત ઇએમએફ સમજાવો.

જવાબ:

કોષ્ટક: સ્થિર vs ગતિશીલ પ્રેરિત EMF

પેરામીટર	સ્થિર પ્રેરિત EMF	ગતિશીલ પ્રેરિત EMF
વ્યાખ્યા	કરંટ/ફલક્સમાં ફેરફાર થવાથી પ્રેરિત EMF	ચુંબકીય ક્ષેત્રમાં વાહકની ગતિથી પ્રેરિત EMF
ભૌતિક ક્રિયા	સ્થિર વાહક, બદલાતું ક્ષેત્ર	સ્થિર ક્ષેત્રમાં ગતિશીલ વાહક
ઉદાહરણ	ટ્રાન્સફોર્મર	જનરેટર
ફોર્મ્યુલા	e = -N dΦ/dt	e = Blv sin θ

મેમરી ટ્રીક: "સ્ટેટિક સ્ટેઝ બટ ફ્લક્સ ચેન્જીસ, ડાયનેમિક ડ્રાઇવ્ઝ થ્રુ ફિલ્ડ"

પ્રશ્ન 5(a) [3 માર્ક્સ]

પીવી સેલ સમજાવો.

જવાબ:

- PV સેલ: ફોટોવોલ્ટિક અસરનો ઉપયોગ કરીને સૂર્યપ્રકાશને સીધા વીજળીમાં રૂપાંતરિત કરતું ઉપકરણ.
- **કાર્યપ્રણાલી**: સૂર્યપ્રકાશ અર્ધવાહક પદાર્થમાં ઇલેક્ટ્રોન્સને ઉત્તેજિત કરે છે, જેનાથી વોલ્ટેજ તફાવત ઉત્પન્ન થાય છે.
- **સામગ્રી**: સામાન્ય રીતે P-N જંક્શન સાથે સિલિકોનમાંથી બનાવવામાં આવે છે.

મેમરી ટ્રીક: "ફોટોન્સ વિઝિટ, કરંટ ક્રિએટેડ"

પ્રશ્ન 5(b) [4 માર્ક્સ]

પીવી સોલર પેનલ અને એરેસ સમજાવો.

જવાબ:

आङ्गति:

કોષ્ટક: સોલર સિસ્ટમ હાયરાર્કી

ยรร	વર્ણન
PV સેલ	સૂર્યપ્રકાશને વીજળીમાં રૂપાંતરિત કરતું મૂળભૂત એકમ (0.5V - 0.6V)
PV પેનલ	શ્રેણી/સમાંતરમાં જોડાયેલા અનેક સેલ (સામાન્ય રીતે 12V, 24V)
PV એરે	જરૂરી વોલ્ટેજ/કરંટ મેળવવા માટે જોડાયેલા અનેક પેનલ

મેમરી ટ્રીક: "સેલ્સ કમ્બાઇન ઇન્ટુ પેનલ્સ, પેનલ્સ પ્રોડ્યુસ એરેસ"

પ્રશ્ન 5(c) [7 માર્ક્સ]

વિન્ડ પાવર સિસ્ટમનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

आङ्गति:

વિન્ડ પાવર સિસ્ટમના ઘટકો:

1. **વિન્ડ ટર્બાઇન**: પવનની ઊર્જાને યાંત્રિક ઊર્જામાં રૂપાંતરિત કરે છે

2. ગિયરબોક્સ: જનરેટર માટે રોટેશનલ સ્પીડ વધારે છે

3. જનરેટર: યાંત્રિક ઊર્જાને વિધુત ઊર્જામાં રૂપાંતરિત કરે છે

4. **પાવર ઇલેક્ટ્રોનિક્સ**: વિદ્યુત આઉટપુટને નિયંત્રિત અને નિયમિત કરે છે

5. **ટ્રાન્સફોર્મર**: ટ્રાન્સમિશન/ડિસ્ટ્રિબ્યુશન માટે વોલ્ટેજ વધારે/ઘટાડે છે

6. **કંટ્રોલ સિસ્ટમ**: સમગ્ર ઓપરેશનનું મોનિટરિંગ અને ઓપ્ટિમાઇઝેશન કરે છે

મેમરી ટ્રીક: "વિન્ડ ટર્ન્સ ગિયર્સ, જનરેટિંગ ઇલેક્ટ્રિકલ રિટર્ન્સ"

પ્રશ્ન 5(a) OR [3 માર્ક્સ]

ગ્રીન એનર્જી ના ફાયદા જણાવો.

જવાબ:

કોષ્ટક: ગ્રીન એનર્જીના ફાયદા

ફાયદા શ્રેણી	ઉદાહરણો	
પર્યાવરણીય	પ્રદૂષણ ઘટાડે છે, કાર્બન ફૂટપ્રિન્ટ ઘટાડે છે	
આર્થિક	નોકરીઓ સર્જે છે, ઊર્જા પર આધારિતતા ઘટાડે છે	
આરોગ્ય	હવાની ગુણવત્તા સુધારે છે, આરોગ્ય સમસ્યાઓ ઘટાડે છે	
ટકાઉપણું	નવીનીકરણીય, અખૂટ સ્ત્રોત	

મેમરી ટ્રીક: "ક્લીન એનર્જી ક્રિએટ્સ ઇકોનોમિક સેલ્વેશન"

પ્રશ્ન 5(b) OR [4 માર્ક્સ]

સોલર PV ના ઉપયોગો ટુંકમા સમજાવો.

જવાબ:

आङ्गति:

સોલર PV ઉપયોગો:

1. **રહેણાંક**: રૂફટોપ સિસ્ટમ, સોલર વોટર હીટર

2. વ્યાપારી: બિલ્કિંગ ઇન્ટીગ્રેટેડ PV, સોલર પાર્કિંગ

3. **ઔદ્યોગિક**: પ્રોસેસ હીટિંગ, પાવર જનરેશન

4. **યુટિલિટી સ્કેલ**: સોલર ફાર્મ, ગ્રીડ સપોર્ટ

5. **ઓફ-ગ્રિડ**: ગ્રામીણ વિદ્યુતીકરણ, રિમોટ એપ્લિકેશન્સ

મેમરી ટ્રીક: "રેસિડેન્સીસ, કોમર્સ, ઇન્ડસ્ટ્રી યુટિલાઇઝ સોલર"

પ્રશ્ન 5(c) OR [7 માર્ક્સ]

ગ્રીન એનર્જી ના વિવિદ્ય પ્રકારો સમજાવો.

જવાબ:

કોષ્ટક: ગ્રીન એનર્જીના પ્રકારો

SISK	સ્ત્રોત	ઉપયોગો
સોલર	સૂર્ય	PV સિસ્ટમ, થર્મલ પ્લાન્ટ
વિન્ડ	હવાની ગતિ	વિન્ડ ટર્બાઇન, વિન્ડમિલ
હાઇડ્રો	વહેતા પાણી	ડેમ, રન-ઓફ-રિવર સિસ્ટમ
બાયોમાસ નાયોમાસ	જૈવિક પદાર્થ	દહન, બાયોગેસ ઉત્પાદન
જીયોથર્મલ	પૃથ્વીની ગરમી	ડાયરેક્ટ હીટિંગ, પાવર પ્લાન્ટ
ટાઇડલ	સમુદ્રના ભરતી-ઓટ	બેરેજ સિસ્ટમ, ટાઇડલ ટર્બાઇન

મેમરી ટ્રીક: "સૂર્ય, પવન, જળ, બાયોમાસ, જીયોથર્મલ, ટાઇડલ - સરળ માર્ગે હરિત ભવિષ્ય"