netGO:

R/shiny Package for network-integrated pathway enrichment analysis

Bioinformatics Lab Jinhwan Kim

Index

- What is netGO?
- How it works?
- How can I use?
- Example run & Result
- Q&A

What is netGO?

- R/shiny Package for network-integrated pathway enrichment analysis
- Open source program to use in Statistical analysis.
- Find how genes are significantly included in pathways
- Using Network information (Protein-Protein Interaction)

How it works?

Traditional Pathway analysis

Differentially Expressed Genes

CD

Pathway

$$\frac{G\cap P}{min(G,P)}=\frac{2}{5}$$

netGO

Differentially Expressed Genes

 $\frac{G \cap P}{min(G,P)} + net = \frac{2}{5} + net$

Pathway

$$D(G \to P) = \omega \cdot \left(\frac{|G \cap P|}{|G|}\right) + (1 - \omega) \cdot \left(\frac{\alpha}{|T|} \sum_{x \in G - P} AI(x, P)^{\beta} \cdot RI(x, P)^{1 - \beta}\right)$$

$$AI(x, P) = \frac{1}{|P|} \sum_{y \in P} I(x, y), RI(x, P) = \frac{1}{|N(x)|} \sum_{y \in P} I(x, y)$$

How can I use?

- Install R, netGO package via Github (https://github.com/unistbig/netGO)
- Run netGO with own Data. (Also, example data is prepared)
- Get insight!

─ How can I use?

> 001	3[1:50,]			- 4	- 25	10
	gene-set				OverlapScore	
1139	TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN				0.30000000	0.06101461
1141	TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN				0.13333333	0.04834635
1225	VECCHI_GASTRIC_CANCER_EARLY_DN				0.20000000	0.04940671
1327	SABATES_COLORECTAL_ADENOMA_DN				0.16666667	0.05279270
2051	SANA_TNF_SIGNALING_DN				0.10000000	0.05052787
2882	SMID_BREAST_CANCER_NORMAL_LIKE_UP				0.23333333	0.07457959
2932	BOQUEST_STEM_CELL_UP				0.20000000	0.08784530
3104	SWEET_LUNG_CANCER_KRAS_DN				0.30000000	0.10019266
3723	LIM_MAMMARY_STEM_CELL_UP				0.36666667	0.09553468
2153	YAO_HOXA1O_TARGETS_VIA_PROGESTERONE_UP				0.10000000	0.04425761
2493	BROWNE_HCMV_INFECTION_18HR_DN				0.10000000	0.06359878
3721	ACEVEDO_FGFR1_TARGETS_IN_PROSTATE_CANCER_MODEL_DN				0.13333333	0.06049468
2346	WESTON_VEGFA_TARGETS_6HR				0.06666667	0.05644747
3198	VALK_AML_CLUSTER_9				0.06666667	0.02465827
2879	SMID_BREAST_CANCER_LUMINAL_A_UP				0.06666667	0.05252725
682	REACTOME_GLYCOSAMINOGLYCAN_METABOLISM				0.10000000	0.07210894
1144	TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_DN				0.06666667	0.04564789
3556	MIYAGAWA_TARGETS_OF_EWSR1_ETS_FUSIONS_DN				0.10000000	0.05291238
2633	WANG_SMARCE1_TARGETS_UP				0.10000000	0.06535960
1145	TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL_UP				0.06666667	0.04647504
1397	DELYS_THYROID_CANCER_DN				0.10000000	0.06798274
1946	LEE_TARGETS_OF_PTCH1_AND_SUFU_UP				0.06666667	0.02726989
2017	ROSS_AML_WITH_CBFB_MYH11_FUSION				0.06666667	0.02256462
2934 3276	BOQUEST_STEM_CELL_CULTURED_VS_FRESH_UP				0.13333333	0.09225607
3519	MIKKELSEN_IPS_ICP_WITH_H3K4ME3_AND_H327ME3				0.06666667	0.04208265
3318	PANGAS_TUMOR_SUPPRESSION_BY_SMAD1_AND_SMAD5_UP				0.03333333	0.04310033
	KORKOLA_EMBRYONIC_CARCINOMA_VS_SEMINOMA_UP WARTERS_IR_RESPONSE_5GY				0.06666667	0.03483580
3738 2439	WARTERS_IR_RESPONSE_SGY NIELSEN LIPOSARCOMA UP				0.03333333	0.02339494
2452	WESTON VEGFA TARGETS				0.0333333	0.06738126
2841	RIGGI EWING SARCOMA PROGENITOR DN				0.06666667	0.05853074
3212	POOLA_INVASIVE_BREAST_CANCER_DN				0.06666667	0.05517289
1853	SCHAEFFER_PROSTATE_DEVELOPMENT_6HR_UP				0.10000000	0.03657326
2712	SCHAEFFEK_PROSTATE_DEVELOPMENT_BHK_UP LEIN CHOROID PLEXUS MARKERS				0.06666667	0.03102362
3265	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3				0.133333333	0.07089955
3389	YAO TEMPORAL RESPONSE TO PROGESTERONE CLUSTER 1				0.06666667	0.03453843
3752	NABA COLLAGENS				0.06666667	0.08224751
989	REACTOME_METABOLISM_OF_CARBOHYDRATES				0.10000000	0.08224731
1539	WONG_ENDMETRIUM_CANCER_DN				0.03333333	0.04578543
2390	BROWNE_HCMV_INFECTION_24HR_DN				0.06666667	0.06627858
3655	PLASARI_TGFB1_TARGETS_10HR_DN				0.10000000	0.05209529
3758	NABA CORE MATRISOME				0.10000000	0.08268774
3792	HOLLERN_SOLID_NODULAR_BREAST_TUMOR_DN				0.03333333	0.03191635
1807	INGRAM_SHH_TARGETS_DN				0.03333333	0.04165000
2173	WANG_IMMORTALIZED_BY_HOXA9_AND_MEIS1_DN				0.03333333	0.02428975
3087	SCHRAETS_MLL_TARGETS_UP				0.03333333	0.04255129
107	KEGG ECM RECEPTOR INTERACTION				0.06666667	0.10727309
1076	NAKAMURA_CANCER_MICROENVIRONMENT_UP				0.03333333	0.03799837
1150	WILCOX_RESPONSE_TO_PROGESTERONE_DN				0.03333333	0.05834571
2960	LU TUMOR ENDOTHELIAL MARKERS UP				0.03333333	0.02734533
2300	EO_TOMOR_ENDOTHELIAL_MAKKERS_OF	0.1243433	0.10322370	1.000000000	0.0333333	0.02/34333

Example Run

- Breast tumor data set (GSE3744)
- 40 Tumor vs 7 Normal
- DEG calculated with default GEO2R and 30 genes selected.

Result

- Based on Q value
- netGO found 26 gene-sets as significant (Qvalue <0.25)
 And 6 gene-sets of them are intersect with Breast tumor related gene-sets
- Where, Fisher Exact Test (traditional method) found 11 gene-sets (Qvalue < 0.25)
 And 3 gene-sets of them are intersect with Breast tumor related gene-sets
- Based on Rank
- In netGO's top 50 gene-sets,
 8 gene-sets of them are intersect with Breast tumor related gene-sets
- and, Fisher Exact Test's top 50 gene-sets,
 And 6 gene-sets of them are intersect with Breast tumor related gene-sets

Result

ACEVEDO_FGFR1_TARGETS_IN_PROSTATE_CANCER_MODEL_DN	SANA_TNF_SIGNALING_DN
BOQUEST_STEM_CELL_CULTURED_VS_FRESH_UP	SMID_BREAST_CANCER_LUMINAL_A_UP
BOQUEST_STEM_CELL_UP	SMID_BREAST_CANCER_NORMAL_LIKE_UP
BROWNE_HCMV_INFECTION_18HR_DN	SWEET_LUNG_CANCER_KRAS_DN
DELYS_THYROID_CANCER_DN	TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN
LEE_TARGETS_OF_PTCH1_AND_SUFU_UP	TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN
LIM_MAMMARY_STEM_CELL_UP	TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_DN
MIKKELSEN_IPS_ICP_WITH_H3K4ME3_AND_H327ME3	TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL_UP
MIYAGAWA_TARGETS_OF_EWSR1_ETS_FUSIONS_DN	VALK_AML_CLUSTER_9
PANGAS_TUMOR_SUPPRESSION_BY_SMAD1_AND_SMAD5_UP	VECCHI_GASTRIC_CANCER_EARLY_DN
REACTOME_GLYCOSAMINOGLYCAN_METABOLISM	WANG_SMARCE1_TARGETS_UP
ROSS_AML_WITH_CBFB_MYH11_FUSION	WESTON_VEGFA_TARGETS_6HR
SABATES_COLORECTAL_ADENOMA_DN	YAO_HOXA10_TARGETS_VIA_PROGESTERONE_UP

 Evidence with overlap is not good, but Strong in network score

Thanks for listening