实验十九:分光计的调节与掠入射法测量玻璃折射率

朱寅杰 1600017721

2017年11月17日

0.1 测量三棱镜的顶角

分别将望远镜对准三棱镜的两个光学面的法向,记录两个游标盘上角度的读数,有顶角 $A=\pi-(\frac{\theta_2'+\theta_2}{2}-\frac{\theta_1''+\theta_1}{2})$ 。

编号	θ_1	θ_1'	θ_2	$ heta_2'$	顶角A
1	181°14′	1°15′	301°14′	121°15′	60°0′0″
2	177°53′	$357^{\circ}53'$	297°51′	$117^{\circ}52'$	60°1′30″
3	311°55′	$131^{\circ}53'$	71°56′	$251^{\circ}57'$	59°57′30″

取平均算出 $\bar{A}=59^{\circ}59'40''$, $\sigma_{\bar{A}}=1'10''$ 。游标盘的允差取为1',对应一个35''的不确定度。二者合成,得 $\sigma_{A}=1'18''$,故 $A=1.0471\pm0.0004$ 。

0.2 掠入射法测量三棱镜玻璃的折射率

使用钠黄光(波长为5893 nm)的扩展光源从接近切向的方位入射到棱镜,分别读取出射光学面的法向 $\frac{\theta_2'+\theta_2}{2}$ 与视野中明暗分解位置 $\frac{\theta_1'+\theta_1}{2}$,则出射的极限角等于 $\phi=\pi-(\frac{\theta_2'+\theta_2}{2}-\frac{\theta_1'+\theta_1}{2})$ 。从这个极限角可以计算出折射率。

编号	θ_1	$ heta_1'$	θ_2	$ heta_2'$	极限出射角 ϕ
1	202°15′	$22^{\circ}16'$	340°47′	160°47′	41°38′30″
2	154°7′	$334^{\circ}8'$	292°43′	112°32′	41°30′0″
3	260°55′	$80^{\circ}55'$	39°31′	219°32′	41°23′30″

取平均算出 $\bar{\phi}=41^{\circ}30'40''$, $\sigma_{\bar{\phi}}=4'21''$ 。游标盘的允差取为1',对应一个35''的不确定度。二者合成,得 $\sigma_{\phi}=4'23''$,故 $\phi=0.7245\pm0.0013$ 。

$$n = \sqrt{1 + (\frac{\cos A + \sin \phi}{\sin A})^2} = 1.674263936$$

$$\sigma_n = \frac{\sqrt{n^2 - 1}}{n} \sqrt{(\frac{\sigma_A}{\sin^2 A})^2 + (\sigma_\phi \frac{\cos \phi}{\sin A})^2} = 9.5 \times 10^{-4}$$

故有 $n = 1.6742 \pm 0.0009$ 。

0.3 最小偏向角法测量三棱镜玻璃折射率

将汞灯通过平行光管从切向入射棱镜,用望远镜找到折射色散出的分立谱线。缓缓转过棱镜的角度,同时望远镜紧跟视野中所测量的那条谱线,捕捉谱线在视野中由左而右再转向左中间转折的位置,读出其角度 $\frac{\theta_1'+\theta_1}{2}$,再测出未经折射的白光的位置 $\frac{\theta_2'+\theta_2}{2}$,则有最小偏向角 $\delta=\pi-(\frac{\theta_2'+\theta_2}{2}-\frac{\theta_1'+\theta_1}{2})$ 。由各色光的最小偏向角即可计算出玻璃对各色光的折射率。

谱线波长	θ_1	θ_1'	θ_2	$ heta_2'$	最小偏向角δ	折射率计算值n
407.78 nm(紫)	109°31′	289°31′	232°59′	52°58′	56°32′30″	1.7012
435.84 nm(蓝)	118°30′	$298^{\circ}31'$	242°6′	$62^{\circ}5'$	56°25′0″	1.7000
546.07 nm (绿)	117°37′	$297^{\circ}40'$	243°25′	$63^{\circ}24'$	54°14′0″	1.6796
	224°21′	$44^{\circ}20'$	350°5′	170°6′	54°15′0″	1.6798
	277°30′	$97^{\circ}33'$	43°18′	$223^{\circ}17'$	54°14′0″	1.6796
579.07 nm(黄)	286°50′	$106^{\circ}48'$	53°8′	233°8′	53°41′0″	1.6744
612.33 nm (红)	286°25′	$106^{\circ}25'$	53°14′	233°15′	53°10′30″	1.6695

对546.07 nm的绿线我们测了三次,以检验我们测量结果的可靠性。三次最小偏向角的平均值为 $\bar{\delta}=54^{\circ}14'20''$,此平均值的统计不确定度为 $\sigma_{\bar{\delta}}=24''$,再计入游标盘1'的允差折算成的不确定度35'',得 δ 的不确定度 $\sigma_{\delta}=42''$,有 $\delta=0.9466\pm0.0002$ 。得

$$n = \sin((A+\delta)/2/\sin(A/2)) = 1.67970$$

$$\sigma_n = \frac{1}{2\sin(A/2)} \sqrt{(\sigma_A \frac{\sin(\delta/2)}{\sin(A/2)})^2 + (\sigma_\delta \cos\frac{A+\delta}{2})^2} = 3.6 \times 10^{-4}$$

故对绿线 $n = 1.6797 \pm 0.0004$ 。我们测量的精度还是比较好的。

将不同波长下折射率的数值按书上给出的正常色散的柯西公式拟合,得到

$$n = (1.602 \pm 0.008) + (3.2 \pm 0.4) \times 10^4 \, \mathrm{nm}^2 / \lambda^2 - (2.5 \pm 0.5) \times 10^9 \, \mathrm{nm}^4 / \lambda^4$$

拟合的曲线见下图。几个系数的统计不确定度(由软件自动算出标准偏差)还是相当大的,固然有所测波长范围较窄、数据点较少的原因,但是主要还是测量不够精细导致。做的时候时间比较紧,所以各条线测得都比较仓促,其他几条线也没有像绿线一样重复测三次,可能会有游标读数不准,或者螺丝锁得不完全紧之类的情况。还请老师包涵。

