第35届全国青少年信息学奥林匹克竞赛

模拟赛二

第一试

时间: 2018 年 7 月 4 日 08:00 ~ 13:00

题目名称	Cube	Divide	Magi c
英文名称	cube	divide	magic
输入文件	cube .in	divide.in	magic .in
输出文件	cube .out	divide.out	magic.out
时间限制	2s	2s	3s
内存限制	512MB	512MB	512MB
比较方式	全文比较	全文比较	全文比较
题目类型	传统	传统	传统

提交源程序文件名

对于 C++ 语言	cube.cpp	divide.cpp	magic.cpp
对于 C 语言	cube.c	di vi de.c	magic.c
对于 Pascal 语言	cube.pas	di vi de.pas	magic.pas

编译选项

对于 C++ 语言	-02 -1m	-02 -1m	-02 -1m
对于 C 语言	-02 -lm	-02 -1m	-02 -1m
对于 Pascal 语言	-02	-02	-02

注意: 栈空间上限与内存限制相同。

1 Cube

1.1 Background

不要回答!不要回答!不要回答!

---1937 号观察员

1.2 Description

危机纪元 10 年

面对三体危机,人类为了保证存活下来,只好拼命发展科技以避免在末日战役中灭亡 所以现在高维数学进入了小学教材...

于是你现在需要解一道未来小学三年级数学题:

众所周知,正方形有 4 个点,4 条边;正方体有 8 个点,12 条边,6 个面,定义点为零维基础图形,线段为一维基础图形,正方形为二维基础图形,正方体为三维基础图形…,那么请问,一个n 维基础图形包含多少个m 维基础图形呢($m \le n$)

多次询问,输出对 998244353 取模

1.3 Input Format

第一行一个正整数 T 表示数据组数 下接 T 行,每行两个自然数 n, m 如题所示

1.4 Output Format

输出 T 行,每行一个数字表示答案

1.5 Sample Input

7

3 0

3 1

3 2

3 3

48545 1

77625 77624

93574 83513

1.6 Sample Output

8

12

424453971

1.7 Constraints

对于 100% 的数据满足 $T \leq 10^5, 0 \leq m \leq n \leq 10^5$

另有 10% 的数据满足 m=1

另有 10% 的数据满足 m = n - 1

另有 10% 的数据满足 m=2

另有 10% 的数据满足 m=n-2

2 Divide

2.1 Background

第一,生存是文明的第一需要;第二,文明不断增长和扩张,但宇宙中的物质总量保持不变。

——叶文洁

2.2 Description

危机纪元 205 年

经历过惨绝人寰的大低谷后,人类,又一次站了起来,全面解放实现技术暴涨,进入全息社会 阶段,并建立起了庞大的宇宙舰队

今天对于三大舰队而言,又是一如既往的军事演练

共有 n 艘飞船参与演练,每艘飞船都有一个武力值 w_i

你需要把它们分成两队: 队与 队,每队飞船数目任意

我们发现,如果两艘飞船 i 与 j 的武力值相加不小于 m 且不在同一队,那么这两艘飞船就能配合默契

请问最多能有多少对飞船配合默契,同时还需算出有多少种分队方案可以达到此效果

2.3 Input Format

第一行两个正整数 n, m第二行 n 个自然数,第 i 个表示 w_i

2.4 Output Format

一行两个整数,用空格隔开,分别表示最多的配合默契对数与可以达到此效果的方案数

2.5 Sample Input

2 10

5 5

2.6 Sample Output

1 2

2.7 Constraints

对于 30% 的数据满足 $n \le 18$

另有 20% 的数据满足 w_i 排序后是等差数列

对于 100% 的数据满足 $n \le 2000, m \le 2 * 10^6, w_i \le 10^6$

3 Magic

3.1 Background

前进! 前进! 不择手段地前进!

——托马斯·维德

3.2 Description

魔法纪元元年

1453年5月3日16时,高维碎片接触地球

1453年5月28日21时,碎片完全离开地球

1453 年,君士坦丁堡被围城,迪奥娜拉接触到四维泡沫空间,成为魔法师,最终因高维碎片消失失去魔力而身死

为了改写这段历史,你不惜耗费你珍藏已久的魔术卡来回到魔法纪元元年

在使用这些魔术卡之前,你却对它们的排列起了兴趣...

桌面上摆放着 m 种魔术卡, 共 n 张, 第 i 种魔术卡数量为 a_i ,魔术卡顺次摆放,形成一个长度为 n 的魔术序列,在魔术序列中,若两张相邻魔术卡的种类相同,则它们被称为一个魔术对

两个魔术序列本质不同,当且仅当存在至少一个位置,使得两个魔术序列这个位置上的魔术卡的种类不同,求本质不同的恰好包含 k 个魔术对的魔术序列的数量,答案对 998244353 取模

3.3 Input Format

第一行三个整数 m,n,k第二行 m 个正整数,第 i 个正整数表示 a_i

3.4 Output Format

一行一个整数表示答案

3.5 Sample Input 1

3 5 1

2 2 1

3.6 Sample Output 1

12

3.7 Sample 1 Explanation

设三种颜色分别为 A,B,C,则合法的 12 种方案分别为: (AABCB)(ABBAC)(ABBCA) (ACABB)(ACBBA)(BAABC)(BAACB)(BBACA)(BCAAB)(BCBAA)(CABBA)(CBAAB)

3.8 Sample Input 2

3 6 0

1 2 3

3.9 Sample Output 2

10

3.10 Sample Input 3

2 100 20

50 50

3.11 Sample Output 3

164333748

3.12 Sample Input 4

5 2333 666

300 1000 233 200 600

3.13 Sample Output 4

119409616

3.14 Sample Input 5

5 30000 0

4000 5000 6000 7000 8000

3.15 Sample Output 5

522962185

3.16 Sample Input 6

6 50000 12345

9896 104 15000 13000 8000 4000

3.17 Sample Output 6

940147981

3.18 Constraints

测试点编号	m	n	k	特殊性质
1	= 2	≤ 300	= 1	
2	= 2	≤ 300	= 2	
3	= 2	≤ 300		
4	= 2	≤ 300		
5	= 3	≤ 16		
6	= 3	≤ 16		
7	= 3	≤ 80		
8	= 3	≤ 80		
9	= 3	≤ 80		
10	≤ 100	≤ 100	= 0	m = n
11	≤ 2000	≤ 5000	=0	
12	≤ 2000	≤ 5000	=0	
13	≤ 2000	≤ 5000	=0	
14	≤ 2000	≤ 5000		
15	≤ 2000	≤ 5000		
16	≤ 2000	≤ 5000		
17	≤ 20000	≤ 100000	=0	a_i 均相等且 ≤ 20
18	≤ 20000	≤ 100000	= 0	a_i 均相等且 ≤ 20
19	≤ 20000	≤ 100000	=0	a_i 均相等且 ≤ 20
20	≤ 20000	≤ 100000	=0	
21	≤ 20000	≤ 100000	=0	
22	≤ 20000	≤ 100000		
23	≤ 20000	≤ 100000		
24	≤ 20000	≤ 100000		
25	≤ 20000	≤ 100000		

对于 100% 的数据满足 $1 \leq m \leq 20000, 0 \leq k \leq n \leq 100000, \sum_{i=1}^m a_i = n$