Билет 15

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	билет 15: Замкнутые мно	жества:	опреде	еление и	своиства.	Замыкание	з множества,	
	связь со внутренностью.							. 1

0.1. Билет 15: Замкнутые множества: определение и свойства. Замыкание множества, связь со внутренностью.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

A называется замкнутым, если $X \setminus A$ - открыто.

Свойства.

- 1. \varnothing, X замкнуты.
- 2. Пересечение любого количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

Так как $\forall \alpha \quad X \setminus A_\alpha$ - открытое, то $\bigcup_{\alpha \in I} A_\alpha$ - открытое, значит $\bigcap_{\alpha \in I} A_\alpha$ - замкнутое.

3. Объединение конечного количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (X \setminus A_k)$$

 $X\setminus A_k$ открыто, значит их конечное пересечение открыто, значит $\bigcup_{k=1}^n A_k$ - замкнуто.

4. $\forall a \in X \quad \forall r > 0 \quad \overline{B}_r(a)$ - замкнутое множество.

Доказательство.

Покажем что $X\setminus \overline{B}_r(a)=\{x\in X\mid \rho(x,a)>r\}$ - открыто.

Пусть $x \in X \setminus \overline{B}_r(a)$. $\tilde{r} = \rho(x,a) - r$. Тогда докажем что $B_{\tilde{r}}(x) \cap B_r(a) = \varnothing$:

Пусть $y \in B_{\tilde{r}}(x) \cap \overline{B}_r(a)$, тогда $\rho(x,y) < \tilde{r}, \, \rho(y,a) < r.$

$$\rho(x,a) \stackrel{\triangle}{\leqslant} \rho(x,y) + \rho(y,a) < \tilde{r} + r = \rho(x,a).$$

Получили противоречие, значит $B_{\tilde{r}}(x) \cap B_r(a) = \emptyset \implies B_{\tilde{r}}(x) \subset X \setminus \overline{B}_r(a)$, значит $X \setminus \overline{B}_r(a)$ - открытое.

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Замыкание множества $A\subset X$ - пересечение всех замкнутых множеств, содержащих A. Обозначается $\operatorname{Cl} A$ или $\overline{A}.$

Теорема 0.1.

$$\operatorname{Cl} A = X \setminus \operatorname{Int}(X \setminus A).$$

1

Билет 15 СОДЕРЖАНИЕ

Доказательство.

Будем доказывать в виде $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$:

Знаем, что ${\rm Int}(X\setminus A)=\bigcup_{\alpha}U_{\alpha}$ по всем U_{α} таким, что $U_{\alpha}\subset (X\setminus A)$ и U_{α} открыто.

Пусть C - замкнутое множество, такое, что $A\subset C$. Тогда $X\setminus C$ - открытое, и $(X\setminus A)\subset (X\setminus C)\implies \exists \alpha\quad U_\alpha=X\setminus C.$

Аналогично в другую сторону - $\forall \alpha \quad X \setminus U_{\alpha}$ - замкнутое надмножество A.

Пусть $C_{\alpha} = X \setminus U_{\alpha}$.

$$X \setminus \operatorname{Cl} A = X \setminus \bigcap_{\alpha} C_{\alpha} = \bigcup_{\alpha} (X \setminus C_{\alpha}) = \bigcup_{\alpha} U_{\alpha} = \operatorname{Int}(X \setminus A).$$