《复变函数论》试题库

《复变函数》考试试题(一)

《夏受图数》考试试题(一)			
一、 判断题 $(20 f)$: 1. 若 $f(z)$ 在 z_0 的某个邻域内可导,则函数 $f(z)$ 在 z_0 解析. 2. 有界整函数必在整个复平面为常数 $2 4$ 一起看下	() (`,
z_n $\{z_n\}$ 收敛,则 $\{\operatorname{Re} z_n\}$ 与 $\{\operatorname{Im} z_n\}$ 都收敛.	()	
4. 若 f(z)在区域 D 内解析,且 $f'(z) \equiv 0$,则 $f(z) \equiv C$ (常数).	()	
5. 若函数 $f(z)$ 在 z_0 处解析,则它在该点的某个邻域内可以展开为幂级数.	()	
6. 若 z_0 是 $f(z)$ 的 m 阶零点,则 z_0 是 $1/f(z)$ 的 m 阶极点.	()	
$\lim_{z \to z_0} f(z)$ 7. 若 $z \to z_0$ 存在且有限,则 z_0 是函数 $f(z)$ 的可去奇点.	()	
8. 若函数 $f(z)$ 在是区域 D 内的单叶函数,则 $f'(z) \neq 0 (\forall z \in D)$.	()	
9. 若 $f(z)$ 在区域 D 内解析,则对 D 内任一简单闭曲线 $C\int_C f(z)dz = 0$.			
	()
10. 若函数 $f(z)$ 在区域 D 内的某个圆内恒等于常数,则 $f(z)$ 在区域 D 内恒等于二. 填空题(20 分) $ 1, \int_{ z-z_0 =1} \frac{dz}{\left(z-z_0\right)^n} = \underbrace{\qquad \qquad }_{n \text{ heave}} . (n \text{ heave}) $	-常数.	(
$\sin^2 z + \cos^2 z = $			
3. 函数 sin z 的周期为			
$f(z) = \frac{1}{z^2 + 1}$,则 $f(z)$ 的孤立奇点有			
5. 幂级数 $\sum_{n=0}^{\infty} nz^n$ 的收敛半径为			
6. 若函数 f(z)在整个平面上处处解析,则称它是			
$\lim_{n \to \infty} z_n = \xi \lim_{n \to \infty} \frac{z_1 + z_2 + \dots + z_n}{n} = \underline{\qquad}.$			

Re
$$s(\frac{e^z}{z^n},0) = ____,$$
 其中 n 为自然数.

$$\lim_{10. \ \text{\frac{1}{2}}} z_0 = \lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z) = 1$$

三. 计算题 (40分):

$$f(z) = \frac{1}{(z-1)(z-2)}$$
, 求 $f(z)$ 在 $D = \{z: 0 < |z| < 1\}$ 内的罗朗展式.

$$\int_{|z|=1} \frac{1}{\cos z} dz.$$

3. 设
$$f(z) = \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda$$
, 其中 $C = \{z : |z| = 3\}$, 试求 $f'(1+i)$.

$$w = \frac{z-1}{z+1}$$
4. 求复数 $z+1$ 的实部与虚部.

四. 证明题. (20分)

- 1. 函数 f(z)在区域 D 内解析. 证明: 如果 |f(z)| 在 D 内为常数,那么它在 D 内为常数.
- 2. 试证: $f(z) = \sqrt{z(1-z)}$ 在割去线段 $0 \le \text{Re } z \le 1$ 的 z 平面内能分出两个单值解析分支,并求出支割线 $0 \le \text{Re } z \le 1$ 上岸取正值的那支在 z = -1 的值.

《复变函数》考试试题(二)

一. 判断题. (20分)

1.	若函数 $f(z) = u(x, y)$	+iv(x,y)在 D 内连续,	则 $u(x,y)$ 与 $v(x,y)$	(y)都在 D 内连续.
----	----------------------	--------------------	-----------------------	----------------

2.
$$\cos z$$
 与 $\sin z$ 在复平面内有界. ()

5. 如
$$z_0$$
 是函数 $f(z)$ 的本性奇点,则 $\lim_{z \to z_0} f(z)$ 一定不存在. ()

7. 若
$$f(z)$$
在区域 D 内解析,则对 D 内任一简单闭曲线 $C\int_{C}f(z)dz=0$.

8. 若数列
$$\{z_n\}$$
收敛,则 $\{\text{Re }z_n\}$ 与 $\{\text{Im }z_n\}$ 都收敛. ()

9. 若
$$f(z)$$
在区域 D 内解析,则 $f(z)$ |也在 D 内解析. ()

10. 存在一个在零点解析的函数
$$f(z)$$
使 $f(\frac{1}{n+1}) = 0$ 且 $f(\frac{1}{2n}) = \frac{1}{2n}, n = 1, 2, \dots$

二. 填空题.(20分)

1. 设
$$z = -i$$
,则 $|z| = ___, \arg z = ___, \bar{z} = ___$

2.
$$\forall f(z) = (x^2 + 2xy) + i(1 - \sin(x^2 + y^2), \forall z = x + iy \in C, \quad \iiint_{z \to 1 + i} f(z) = \underline{\qquad}$$

3.
$$\int_{|z-z_0|=1} \frac{dz}{(z-z_0)^n} = \underline{\qquad}. (n \text{ head})$$

4. 幂级数
$$\sum_{n=0}^{\infty} nz^n$$
 的收敛半径为______.

- 若 z_0 是 f(z)的 m 阶零点且 m>0,则 z_0 是 f'(z)的_____零点.
- 函数 e^z 的周期为_____.

7. 方程
$$2z^5 - z^3 + 3z + 8 = 0$$
 在单位圆内的零点个数为______.

8. 设
$$f(z) = \frac{1}{1+z^2}$$
,则 $f(z)$ 的孤立奇点有______.

9. 函数
$$f(z) = |z|$$
的不解析点之集为______.

10.
$$\operatorname{Res}(\frac{z-1}{z^4},1) = \underline{\hspace{1cm}}$$

- 三. 计算题. (40分)
- 1. 求函数 $\sin(2z^3)$ 的幂级数展开式.
- 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数 \sqrt{z} 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z = i 处的值.
- 3. 计算积分: $I = \int_{-i}^{i} |z| \, \mathrm{d}z$,积分路径为(1)单位圆(|z|=1)的右半圆.

$$\oint_{|z|=2} \frac{\sin z}{\left(z - \frac{\pi}{2}\right)^2} dz$$

四. 证明题. (20分)

- 1. 设函数 f(z)在区域 D 内解析, 试证: f(z)在 D 内为常数的充要条件是 $\overline{f(z)}$ 在 D 内解析.
- 2. 试用儒歇定理证明代数基本定理.

《复变函数》考试试题 (三)

→.	判断题.	(20分).
•	7 1 1 1 1 1 1 1 1 1 1	(40 /1)

1.
$$\cos z$$
与 $\sin z$ 的周期均为 $2k\pi$. ()

3. 若函数
$$f(z)$$
在 z_0 处解析,则 $f(z)$ 在 z_0 连续. ()

4. 若数列
$$\{z_n\}$$
收敛,则 $\{\operatorname{Re} z_n\}$ 与 $\{\operatorname{Im} z_n\}$ 都收敛. ()

5. 若函数
$$f(z)$$
 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 $f(z)$ 在区域 D 内为常数. ()

6. 若函数
$$f(z)$$
在 z_0 解析,则 $f(z)$ 在 z_0 的某个邻域内可导. ()

7. 如果函数
$$f(z)$$
在 $D = \{z: |z| \le 1\}$ 上解析, 且 $|f(z)| \le 1(|z| = 1)$, 则

$$|f(z)| \le 1(|z| \le 1). \tag{}$$

8. 若函数
$$f(z)$$
在 z_0 处解析,则它在该点的某个邻域内可以展开为幂级数.

9. 若
$$z_0$$
 是 $f(z)$ 的 m 阶零点,则 z_0 是 $1/f(z)$ 的 m 阶极点. ()

10. 若
$$z_0$$
是 $f(z)$ 的可去奇点,则 $\operatorname{Res}(f(z), z_0) = 0$. ()

1. 设
$$f(z) = \frac{1}{z^2 + 1}$$
,则 $f(z)$ 的定义域为_____.

2. 函数
$$e^{z}$$
 的周期为_____.

4.
$$\sin^2 z + \cos^2 z =$$

5.
$$\int_{|z-z_0|=1} \frac{dz}{(z-z_0)^n} = \underline{\qquad} (n \text{ head})$$

6. 幂级数
$$\sum_{n=0}^{\infty} nx^n$$
 的收敛半径为______.

7. 设
$$f(z) = \frac{1}{z^2 + 1}$$
,则 $f(z)$ 的孤立奇点有_____.

8. 设
$$e^z = -1$$
,则 $z = ____$.

9. 若
$$z_0$$
是 $f(z)$ 的极点,则 $\lim_{z \to z_0} f(z) = ____.$

10.
$$\operatorname{Res}(\frac{e^z}{z^n}, 0) = \underline{\hspace{1cm}}.$$

- 三. 计算题. (40分)
- 1. 将函数 $f(z) = z^2 e^{\frac{1}{z}}$ 在圆环域 $0 < |z| < \infty$ 内展为 Laurent 级数.
- 2. 试求幂级数 $\sum_{n=1}^{+\infty} \frac{n!}{n^n} z^n$ 的收敛半径.
- 3. 算下列积分: $\int_C \frac{e^z dz}{z^2(z^2-9)}$, 其中C是|z|=1.
- 4. 求 $z^9 2z^6 + z^2 8z 2 = 0$ 在|z| < 1内根的个数.
- 四. 证明题. (20分)
- 1. 函数 f(z) 在区域 D 内解析. 证明: 如果 |f(z)| 在 D 内为常数,那么它在 D 内为常数.
- 2. 设f(z)是一整函数,并且假定存在着一个正整数 n,以及两个正数 R Q M,使得当 $|z| \ge R$ 时

$$|f(z)| \leq M |z|^n,$$

证明f(z)是一个至多n次的多项式或一常数。

《复变函数》考试试题(四)

一. 1. 2. 3.	判断题. $(20 分)$ 若 $f(z)$ 在 z_0 解析,则 $f(z)$ 在 z_0 处满足柯西-黎曼条件. 若函数 $f(z)$ 在 z_0 可导,则 $f(z)$ 在 z_0 解析. 函数 $\sin z$ 与 $\cos z$ 在整个复平面内有界.	(())
4.	若 $f(z)$ 在区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 $\int_C f(z) dz$	lz =	0.
		()
5.	若 $\lim_{z \to z_0} f(z)$ 存在且有限,则 z_0 是函数的可去奇点.	()
6.	若函数 $f(z)$ 在区域 D 内解析且 $f'(z)=0$,则 $f(z)$ 在 D 内恒为常数.	()
7.	如果 z_0 是 $f(z)$ 的本性奇点,则 $\lim_{z\to z_0} f(z)$ 一定不存在.	()
8.	若 $f(z_0) = 0, f^{(n)}(z_0) = 0$,则 z_0 为 $f(z)$ 的 n 阶零点.	()
9.	若 $f(z)$ 与 $g(z)$ 在 D 内解析,且在 D 内一小弧段上相	等,	则
f	$(z) \equiv g(z), z \in D.$	()
10.	若 $f(z)$ 在 $0 < z < + \infty$ 内解析,则		
]	$Res(f(z),0) = -Res(f(z),\infty).$	()
	填空题. (20分)		
1.	设 $z = \frac{1}{1-i}$,则 $\text{Re } z = ___$, $\text{Im } z = ___$.		
2.	若 $\lim_{n\to\infty} z_n = \xi$,则 $\lim_{n\to\infty} \frac{z_1+z_2++z_n}{n} = \underline{\qquad}$.		
3.	函数 e^z 的周期为		
4.	函数 $f(z) = \frac{1}{1+z^2}$ 的幂级数展开式为		
5. 6.	*	D	内的
7.	$\overline{C}: z =1$,则 $\int_C (z-1)dz=$		

8.
$$\frac{\sin z}{z}$$
的孤立奇点为_____.

9. 若
$$z_0$$
是 $f(z)$ 的极点,则 $\lim_{z \to z_0} f(z) = ____$.

10.
$$\operatorname{Res}(\frac{e^z}{z^n}, 0) = \underline{\hspace{1cm}}$$

- 三. 计算题. (40分)
- 1. 解方程 $z^3 + 1 = 0$

2. 设
$$f(z) = \frac{e^z}{z^2 - 1}$$
,求 $\operatorname{Re} s(f(z), \infty)$.

3.
$$\int_{|z|=2} \frac{z}{(9-z^2)(z+i)} dz.$$

- 4. 函数 $f(z) = \frac{1}{e^z 1} \frac{1}{z}$ 有哪些奇点? 各属何类型(若是极点,指明它的阶数).
- 四. 证明题. (20分)
- 1. 证明: 若函数 f(z)在上半平面解析,则函数 $\overline{f(\bar{z})}$ 在下半平面解析.
- 2. 证明 $z^4 6z + 3 = 0$ 方程在1 < |z| < 2内仅有 3 个根.

《复变函数》考试试题(五)

一.	判断题.	(20分)

- 1. 若函数 f(z)是单连通区域 D 内的解析函数,则它在 D 内有任意阶导数. ()
- 2. 若函数 f(z)在区域 D 内的解析,且在 D 内某个圆内恒为常数,则在区域 D 内恒等于常数.
- 4. 若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析. ()
- 5. 若函数 *f*(*z*)在 *z*₀ 处满足 Cauchy-Riemann 条件,则 *f*(*z*)在 *z*₀ 解析. ()
- 6. 若 $\lim_{z \to z_0} f(z)$ 存在且有限,则 z_0 是 f(z)的可去奇点.
- 7. 若函数 f(z)在 z_0 可导,则它在该点解析. ()
- 8. 设函数 f(z) 在复平面上解析,若它有界,则必 f(z) 为常数. ()
- 9. 若 z_0 是f(z)的一级极点,则

$$Res(f(z), z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$
 ()

10. 若 f(z) 与 g(z) 在 D 内解析,且在 D 内一小弧段上相等,则

$$f(z) \equiv g(z), z \in D. \tag{}$$

- 二. 填空题. (20分)
- 1. 设 $z = 1 \sqrt{3}i$,则 $|z| = ___, \arg z = ___, \bar{z} = ___.$
- 2. 当z =____时, e^z 为实数.
- 3. 设 $e^z = -1$,则 $z = ____$.
- 4. e^z 的周期为___.
- 5. 设C:|z|=1,则 $\int_C (z-1)dz = ____.$
- 6. $\operatorname{Res}(\frac{e^z 1}{z}, 0) = \underline{\hspace{1cm}}$
- 7. 若函数 f(z)在区域 D 内除去有限个极点之外处处解析,则称它是 D 内的
- 8. 函数 $f(z) = \frac{1}{1+z^2}$ 的幂级数展开式为______.

9.
$$\frac{\sin z}{z}$$
的孤立奇点为_____.

10. 设
$$C$$
 是以为 a 心, r 为半径的圆周,则 $\int_C \frac{1}{\left(z-a\right)^n} dz = ____.$ (n 为自

然数)

三. 计算题. (40分)

2. 计算积分:

$$I = \int_{L} \operatorname{Re} z dz$$
,

在这里L表示连接原点到1+i的直线段.

3. 求积分:
$$I = \int_0^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}$$
, 其中 $0 < a < 1$.

- 4. 应用儒歇定理求方程 $z=\varphi(z)$, 在|z|<1 内根的个数, 在这里 $\varphi(z)$ 在 $|z|\leq 1$ 上解析, 并且 $|\varphi(z)|<1$.
- 四. 证明题. (20分)
- 1. 证明函数 $f(z) = |z|^2$ 除去在 z = 0外,处处不可微.
- 2. 设f(z)是一整函数,并且假定存在着一个正整数n,以及两个数R及M,使得当 $|z| \ge R$ 时

$$|f(z)| \leq M |z|^n,$$

证明: f(z)是一个至多 n 次的多项式或一常数.

	《复受函数》考试试题(六)
→,	判断题 (30分):
1.	若函数 $f(z)$ 在 z_0 解析,则 $f(z)$ 在 z_0 连续. ()
2.	若函数 $f(z)$ 在 z_0 处满足 Caychy-Riemann 条件,则 $f(z)$ 在 z_0 解析. ()
3.	若函数 $f(z)$ 在 z_0 解析,则 $f(z)$ 在 z_0 处满足 Caychy-Riemann 条件. (
4.	若函数 $f(z)$ 在是区域 D 内的单叶函数,则 $f'(z) \neq 0$ ($\forall z \in D$). ()
5.	若 $f(z)$ 在单连通区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 $\int_C f(z)dz = 0$
6.	若 $f(z)$ 在区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 $\int_C f(z)dz = 0$. ()
7.	若 $f'(z) \neq 0 (\forall z \in D)$, 则函数 $f(z)$ 在是 D 内的单叶函数. ()
8.	若 z_0 是 $f(z)$ 的 m 阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的 m 阶极点.()
9.	如果函数 $f(z)$ 在 $D = \{z: z \le 1\}$ 上解析,且 $ f(z) \le 1(z = 1)$,则 $ f(z) \le 1(z \le 1)$
	()
10.	$\left \sin z\right \le 1(\forall z \in C). ()$
	填空题(20分)
	若 $z_n = \frac{n+2}{1-n} + i(1+\frac{1}{n})^n$,则 $\lim z_n = \underline{\hspace{1cm}}$.
2.	设 $f(z) = \frac{1}{z^2 + 1}$,则 $f(z)$ 的定义域为
3.	函数 sin z 的周期为
4.	$\sin^2 z + \cos^2 z = \underline{\qquad}.$
5.	幂级数 $\sum_{n=0}^{+\infty} nz^n$ 的收敛半径为
6.	若 z_0 是 $f(z)$ 的 m 阶零点且 $m>1$,则 z_0 是 $f'(z)$ 的零点.
7.	若函数 $f(z)$ 在整个复平面处处解析,则称它是
8.	函数 $f(z) = z $ 的不解析点之集为

9. 方程 $2z^5 - z^3 + 3z + 8 = 0$ 在单位圆内的零点个数为______.

10. 公式
$$e^{ix} = \cos x + i \sin x$$
 称为______.

三、计算题(30分)

$$1 \cdot \lim_{n \to \infty} \left(\frac{2-i}{6} \right)^n.$$

2、设
$$f(z) = \int_{C} \frac{3\lambda^{2} + 7\lambda + 1}{\lambda - z} d\lambda$$
, 其中 $C = \{z : |z| = 3\}$, 试求 $f'(1+i)$.

3、设
$$f(z) = \frac{e^z}{z^2 + 1}$$
,求 $\operatorname{Re} s(f(z), i)$.

4、求函数
$$\frac{\sin z^3}{z^6}$$
 在 $0 < |z| < \infty$ 内的罗朗展式.

5、求复数
$$w = \frac{z-1}{z+1}$$
 的实部与虚部.

6、求
$$e^{-\frac{\pi}{3}i}$$
的值.

四、证明题(20分)

1、方程
$$z^7 + 9z^6 + 6z^3 - 1 = 0$$
在单位圆内的根的个数为 6.

- 2、若函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内解析,v(x, y) 等于常数,则 f(z) 在D 恒等于常数.
- 3、若 z_0 是f(z)的m阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的m阶极点.

《复变函数》考试试题(七)

	判断题	(24	4
_,	刑断諛	(24	71

1. 若函数
$$f(z)$$
 在 z_0 解析,则 $f(z)$ 在 z_0 的某个领域内可导. ()

2. 若函数
$$f(z)$$
 在 z_0 处解析,则 $f(z)$ 在 z_0 满足 Cauchy-Riemann 条件. ()

3. 如果
$$z_0$$
 是 $f(z)$ 的可去奇点,则 $\lim_{z \to z_0} f(z)$ 一定存在且等于零. ()

4. 若函数
$$f(z)$$
是区域 D 内的单叶函数,则 $f'(z) \neq 0 (\forall z \in D)$. ()

5. 若函数
$$f(z)$$
 是区域 D 内的解析函数,则它在 D 内有任意阶导数. ()

6. 若函数 f(z) 在区域 D 内的解析,且在 D 内某个圆内恒为常数,则在区域 D 内恒等于常数. ()

二、填空题(20分)

3. 函数
$$e^z$$
的周期为______.

4.
$$\sin^2 z + \cos^2 z =$$
_____.

5. 幂级数
$$\sum_{n=0}^{+\infty} n^2 z^{n^2}$$
 的收敛半径为______.

7. 若函数
$$f(z)$$
 在整个复平面处处解析,则称它是_____.

8. 函数
$$f(z) = |z|$$
 的不解析点之集为_____.

9. 方程
$$3z^8 - z^3 + 3z + 8 = 0$$
 在单位圆内的零点个数为______.

10.
$$\operatorname{Re} s(\frac{e^z}{z^n}, 0) = \underline{\hspace{1cm}}$$

$$1, \quad \dot{\Re}\left(\frac{1+i}{\sqrt{2}}\right)^2 + \left(\frac{1-i}{\sqrt{2}}\right)^2.$$

2、设
$$f(z) = \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda$$
, 其中 $C = \{z : |z| = 3\}$, 试求 $f'(1+i)$.

3、设
$$f(z) = \frac{e^z}{z^2}$$
,求 $\text{Re } s(f(z), 0)$.

- 4、求函数 $\frac{z}{(z-1)(z+1)}$ 在1<|z|<2 内的罗朗展式.
- 5、求复数 $w = \frac{z-1}{z+1}$ 的实部与虚部.
- 6、利用留数定理计算积分: $\int_0^{2\pi} \frac{dx}{a + \cos x}, \quad (a > 1).$

四、证明题(20分)

- 1、方程 $24z^7 + 9z^6 + 6z^3 + z^3 + 1 = 0$ 在单位圆内的根的个数为 7.
- 2、若函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内解析, |f(z)| 等于常数,则 f(z) 在 D 恒等于常数.
- 3、若 z_0 是f(z)的m阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的m阶极点.

五、计算题(10分)

求一个单叶函数,去将 z 平面上的上半单位圆盘 $\{z:|z|<1, {\rm Im}\,z>0\}$ 保形映射为 w 平面的单位圆盘 $\{w:|w|<1\}$

《复变函数》考试试题(八)

- 一、判断题(20分)
- 1、若函数 f(z) 在 z_0 解析,则 f(z) 在 z_0 连续. ()
- 2、若函数 f(z) 在 z_0 满足 Cauchy-Riemann 条件,则 f(z) 在 z_0 处解析. ()
- 3、如果 z_0 是 f(z) 的本性奇点,则 $\lim_{z \to z_0} f(z)$ 一定不存在. ()
- 4、若函数 f(z)是区域 D 内解析,并且 $f'(z) \neq 0$ ($\forall z \in D$),则 f(z) 是区域 D 的单叶函数.
- 5、若函数 f(z)是区域 D 内的解析函数,则它在 D 内有任意阶导数. ()
- 6、若函数 f(z) 是单连通区域 D 内的每一点均可导,则它在 D 内有任意阶导数. ()
- 7、若函数 f(z) 在区域 D 内解析且 f'(z) = 0,则 f(z) 在 D 内恒为常数. ()
- 8. 存在一个在零点解析的函数 f(z) 使 $f(\frac{1}{n+1}) = 0$ 且 $f(\frac{1}{2n}) = \frac{1}{2n}, n = 1, 2, \dots$ ()
- 9. 如果函数 f(z) 在 $D = \{z: |z| \le 1\}$ 上解析,且 $|f(z)| \le 1(|z| = 1)$,则 $|f(z)| \le 1(|z| \le 1)$.
- 10. sin z 是一个有界函数. ()
- 二、填空题(20分)
- 2、设 $f(z) = \ln z$,则 f(z)的定义域为_______
- 3、函数 sin z 的周期为_____
- 4、若 $\lim_{n\to\infty} z_n = \xi$,则 $\lim_{n\to\infty} \frac{z_1+z_2+\cdots+z_n}{n} = \underline{\qquad}$.

- 7、若C是单位圆周,n是自然数,则 $\int_{C} \frac{1}{(z-z_0)^n} dz = _____.$
- 8、函数 f(z) = |z| 的不解析点之集为_____.
- 9、方程 $15z^5 z^3 + 4z^2 + 8 = 0$ 在单位圆内的零点个数为______.

10、若
$$f(z) = \frac{1}{1+z^2}$$
,则 $f(z)$ 的孤立奇点有______.
三、计算题(30 分)

$$1 \cdot \Re \int_{|z|=1} e^{z+1} \sin z dz + \frac{1}{2\pi i} \int_{|z|=3} \frac{dz}{(z-1)(z-4)}$$

2、设
$$f(z) = \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda$$
, 其中 $C = \{z : |z| = 3\}$, 试求 $f'(1+i)$.

3、设
$$f(z) = \frac{e^z}{z^2 - 1}$$
,求 $\operatorname{Re} s(f(z), \infty)$.

4、求函数
$$\frac{z+10}{(z-1)(z^2-2)}$$
 在 $\sqrt{2} < |z| < +\infty$ 内的罗朗展式.

5、求复数
$$w = \frac{z-1}{z+1}$$
 的实部与虚部.

四、证明题(20分)

1、方程
$$15z^7 + 5z^6 + 6z^3 - 1 = 0$$
在单位圆内的根的个数为 7.

- 2、若函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内连续,则二元函数 u(x, y) 与 v(x, y) 都在 D 内连续.
- 4、若 z_0 是f(z)的m阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的m阶极点.

五、计算题(10分)

求一个单叶函数,去将 z 平面上的区域 $\left\{z:0<\arg z<\frac{4}{5}\pi\right\}$ 保形映射为 w 平面的单位圆盘 $\left\{w:|w|<1\right\}$.

《复受函数》考试试题(几)
一、判断题(20分)
1、若函数 $f(z)$ 在 z_0 可导,则 $f(z)$ 在 z_0 解析. ()
2、若函数 $f(z)$ 在 z_0 满足 Cauchy-Riemann 条件,则 $f(z)$ 在 z_0 处解析. ()
3、如果 z_0 是 $f(z)$ 的极点,则 $\lim_{z \to z_0} f(z)$ 一定存在且等于无穷大. ()
4、若函数 $f(z)$ 在单连通区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 $\int_C f(z)dz = 0$
5、若函数 $f(z)$ 在 z_0 处解析,则它在该点的某个领域内可以展开为幂级数. ()
6、若函数 $f(z)$ 在区域 D 内的解析,且在 D 内某一条曲线上恒为常数,则 $f(z)$ 在区域 D 下
恒为常数.()
7、若 z_0 是 $f(z)$ 的 m 阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的 m 阶极点. ()
8、如果函数 $f(z)$ 在 $D = \{z: z \le 1\}$ 上解析,且 $ f(z) \le 1(z = 1)$,则 $ f(z) \le 1(z \le 1)$.
$9, \lim_{z\to\infty}e^z=\infty. $ ()
10、如果函数 $f(z)$ 在 $ z \le 1$ 内解析,则 $\max_{ z \le 1} \{ f(z) \} = \max_{ z = 1} \{ f(z) \}.$ ()
二、填空题(20分)
1、
2、设 $f(z) = \frac{1}{\sin z}$,则 $f(z)$ 的定义域为
3、函数 sin z 的周期为
$4 \sin^2 z + \cos^2 z = $
5 、幂级数 $\sum_{n=0}^{+\infty} nz^n$ 的收敛半径为
6、若 z_0 是 $f(z)$ 的 m 阶零点且 $m > 1$,则 z_0 是 $f'(z)$ 的零点.
7、若函数 $f(z)$ 在整个复平面除去有限个极点外,处处解析,则称它是
8、函数 $f(z) = \overline{z}$ 的不解析点之集为

9、方程 $20z^8 - 11z^3 + 3z + 5 = 0$ 在单位圆内的零点个数为______.

10. Re
$$s(\frac{e^z}{z^2-1},1) = \underline{\hspace{1cm}}$$

三、计算题(30分)

$$1, \lim_{n\to\infty}\left(\frac{2-i}{6}\right)^n$$

2、设
$$f(z) = \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda$$
, 其中 $C = \{z : |z| = 3\}$, 试求 $f'(1+i)$.

3、设
$$f(z) = \frac{e^z}{z^2 + 1}$$
, 求 $\operatorname{Re} s(f(z), \pm i)$.

4、求函数
$$\frac{z}{(z-1)(z-2)}$$
 在1< $|z|$ <2 内的罗朗展式.

5、求复数
$$w = \frac{z-1}{z+1}$$
 的实部与虚部.

6、利用留数定理计算积分
$$\int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$
.

四、证明题(20分)

1、方程
$$z^7 + 9z^6 + 6z^3 - 1 = 0$$
在单位圆内的根的个数为 6.

- 2、若函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内解析,u(x, y) 等于常数,则 f(z) 在D 恒等于常数.
- 7、若 z_0 是f(z)的m阶零点,则 z_0 是 $\frac{1}{f(z)}$ 的m阶极点.

五、计算题(10分)

求一个单叶函数,去将 z 平面上的带开区域 $\left\{z:\frac{\pi}{2}<\operatorname{Im}z<\pi\right\}$ 保形映射为 w 平面的单位圆盘 $\left\{w:|w|<1\right\}$.

《复变函数》考试试题(十)

- 一、判断题(40分):
- 1、若函数 f(z) 在 z_0 解析,则 f(z) 在 z_0 的某个邻域内可导. ()
- 2、如果 z_0 是 f(z)的本性奇点,则 $\lim_{z\to z_0} f(z)$ 一定不存在. ()
- 3、若函数 f(z) = u(x, y) + iv(x, y) 在 D 内连续,则 u(x, y) 与 v(x, y) 都在 D 内连续. ()
- $4 \times \cos z = \sin z$ 在复平面内有界. ()
- 5、若 z_0 是f(z)的m阶零点,则 z_0 是1/f(z)的m阶极点. ()
- 6、若f(z)在 z_0 处满足柯西-黎曼条件,则f(z)在 z_0 解析. ()
- 7、若 $\lim_{z \to z_0} f(z)$ 存在且有限,则 z_0 是函数的可去奇点. ()
- 8、若 f(z) 在单连通区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 $\int_C f(x)dz = 0$. ()
- 9、若函数 f(z) 是单连通区域 D 内的解析函数,则它在 D 内有任意阶导数. ()
- 10、若函数 f(z) 在区域 D 内解析,且在 D 内某个圆内恒为常数,则在区域 D 内恒等于常数. ()
- 二、填空题 (20分):
- 1、函数 e^z 的周期为______.
- 2、幂级数 $\sum_{n=0}^{+\infty} nz^n$ 的和函数为______.
- 3、设 $f(z) = \frac{1}{z^2 + 1}$,则 f(z)的定义域为______.
- 4、 $\sum_{n=0}^{+\infty} nz^n$ 的收敛半径为______.
- 5. Re $s(\frac{e^z}{z^n}, 0) =$ ______.
- 三、计算题(40分):
- 1. $\int_{|z|} \frac{z}{(9-z^2)(z+i)} dz$.
- 2. $Res(\frac{e^{iz}}{1+z^2}, -i)$.

$$3, \left(\frac{1+i}{\sqrt{2}}\right)^n + \left(\frac{1-i}{\sqrt{2}}\right)^n.$$

4、设 $u(x,y) = \ln(x^2 + y^2)$. 求v(x,y),使得f(z) = u(x,y) + iv(x,y)为解析函数,且满足 $f(1+i) = \ln 2$ 。其中 $z \in D$ (D为复平面内的区域).

5、求 $z^4-5z+1=0$,在|z|<1内根的个数.

《复变函数》考试试题(十一)

—、	判断题.	(正确者在括号内打 √,	错误者在括号内打×,	每题2分)

1. 当复数
$$z=0$$
时,其模为零,辐角也为零. ()

2. 若
$$z_0$$
 是多项式 $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 \ (a_n \neq 0)$ 的根,则 $\overline{z_0}$ 也 $P(z)$ 是的根. ()

3. 如果函数
$$f(z)$$
为整函数,且存在实数 M ,使得 $\operatorname{Re} f(z) < M$,则 $f(z)$ 为一常数. ()

4. 设函数
$$f_1(z)$$
 与 $f_2(z)$ 在区域内 D 解析, 且在 D 内的一小段弧上相等, 则对任意的 $z \in D$,

有
$$f_1(z) \equiv f_2(z)$$
. ()

5. 若
$$z = \infty$$
 是函数 $f(z)$ 的可去奇点,则 $\operatorname{Res}_{z=\infty} f(z) = 0$. ()

二、填空题. (每题2分)

1.
$$i^2 \cdot i^3 \cdot i^4 \cdot i^5 \cdot i^6 =$$

2. 设
$$z = x + iy \neq 0$$
, 且 $-\pi < \arg z \leq \pi$, $-\frac{\pi}{2} < \arctan \frac{y}{x} < \frac{\pi}{2}$, 当 $x < 0, y > 0$ 时,

$$\arg = \arctan \frac{y}{x} + \underline{\hspace{1cm}}.$$

3. 函数
$$w = \frac{1}{z}$$
 将 z 平面上的曲线 $(x-1)^2 + y^2 = 1$ 变成 w 平面上的曲线 ______.

4. 方程
$$z^4 + a^4 = 0$$
($a > 0$)的不同的根为_____.

5.
$$(1+i)^i$$

6. 级数
$$\sum_{n=0}^{\infty} [2 + (-1)^n] z^2$$
 的收敛半径为______.

7.
$$\cos nz$$
 在 $|z|$ < n (n 为正整数) 内零点的个数为______.

8. 函数
$$f(z) = 6\sin z^3 + z^3(z^6 - 6)$$
 的零点 $z = 0$ 的阶数为______.

9. 设
$$a$$
为函数 $f(z) = \frac{\varphi(z)}{\psi(z)}$ 的一阶极点,且 $\varphi(a) \neq 0$, $\psi(a) = 0$, $\psi'(a) \neq 0$,则

$$\operatorname{Re}_{z=a} \frac{f'(z)}{f(z)} = \underline{\hspace{1cm}}.$$

- 1. 设 $u(x,y) = \frac{1}{2}\ln(x^2 + y^2)$ 。求v(x,y),使得f(z) = u(x,y) + iv(x,y)为解析函数,且 满足 $f(1+i) = \frac{1}{2}\ln 2$.其中 $z \in D$ (D为复平面内的区域).(15 分)
- 2. 求下列函数的奇点,并确定其类型(对于极点要指出它们的阶).(10分)

(1)
$$\tan^2 z$$
; (5 $\%$) (2) $\frac{e^{\frac{1}{z-1}}}{e^z-1}$. (5 $\%$)

3. 计算下列积分. (15分)

(1)
$$\int_{|z|=4} \frac{z^{19}}{(z^2+1)^4(z^4+2)^3} dz \qquad (8 \%),$$

$$(2) \int_0^\pi \frac{d\theta}{1 + \cos^2 \theta} \tag{7分}.$$

- 4. 叙述儒歇定理并讨论方程 $z^7 5z^4 + z^2 2 = 0$ 在 |z| < 1 内根的个数. (10 分) 四、证明题(20 分)
- 1. 设 f(z) = u(x, y) + iv(x, y) 是上半复平面内的解析函数,证明 $\overline{f(z)}$ 是下半复平面内的解析函数. (10 分)
- 2. 设函数 f(z)在|z| < R 内解析,令 $M(r) = \max_{|z|=r} |f(z)|$,(0 ≤ r < R)。证明: M(r) 在区间 [0,R) 上是一个上升函数,且若存在 r_1 及 r_2 (0 ≤ r_1 < r_2 < R),使 $M(r_1) = M(r_2)$,则 f(z) = 常数. (10 分)

《复变函数》考试试题(十二)

- 二、判断题。(正确者在括号内打 √,错误者在括号内打×,每题 2 分)
- 1. 设复数 $z_1 = x_1 + iy_1$ 及 $z_2 = x_2 + iy_2$, 若 $x_1 = x_2$ 或 $y_1 = y_2$, 则称 z_1 与 z_2 是相等的复数。
- 2. 函数 f(z) = Re z 在复平面上处处可微。
- 3. $\sin^2 z + \cos^2 z = 1 \pm |\sin z| \le 1$, $|\cos z| \le 1$.
- 4. 设函数 f(z) 是有界区域 D 内的非常数的解析函数,且在闭域 $\overline{D}=D+\partial D$ 上连续,则存在 M>0 ,使得对任意的 $z\in D$,有 |f(z)|< M 。 ()
- 5. 若函数 f(z) 是非常的整函数,则 f(z) 必是有界函数。()
- 二、填空题。(每题2分)
- 1. $i^2 \cdot i^3 \cdot i^4 \cdot i^5 \cdot i^6 =$ _______
- 2. 设 $z=x+iy\neq 0$, 且 $-\pi < \arg z \leq \pi$, $-\frac{\pi}{2} < \arctan \frac{y}{x} < \frac{\pi}{2}$, 当 x < 0, y > 0 时, $\arg = \arctan \frac{y}{x} + \underline{\qquad}$
- 3. 若已知 $f(z) = x(1 + \frac{1}{x^2 + y^2}) + iy(1 \frac{1}{x^2 + y^2})$,则其关于变量 z 的表达式为_____。
- 4. *∜z* 以 *z* = _____为支点。
- 5. 若 $\ln z = \frac{\pi}{2}i$,则 z =______。
- $6. \quad \int_{|z=1|} \frac{dz}{z} = \underline{\qquad}$
- 7. 级数 $1+z^2+z^4+z^6+\cdots$ 的收敛半径为_____。
- 8. $\cos nz$ 在 |z| < n (n 为正整数) 内零点的个数为_____。
- 9. 若z=a为函数f(z)的一个本质奇点,且在点a的充分小的邻域内不为零,则z=a是

10. 设a为函数 f(z)的n阶极点,则 $\mathop{\mathrm{Re}}_{z=a} s \frac{f'(z)}{f(z)} =$ _______。

三、计算题(50分)

- 1. 设区域 D 是沿正实轴割开的 z 平面,求函数 $w = \sqrt[3]{z}$ 在 D 内满足条件 $\sqrt[3]{-1} = -1$ 的单值 连续解析分支在 z = 1 i 处之值。 (10 分)
- 2. 求下列函数的奇点,并确定其类型(对于极点要指出它们的阶),并求它们留数。(15分)
- (1) $f(z) = \frac{Lnz}{z^2-1}$ 的各解析分支在 z=1 各有怎样的孤立奇点,并求这些点的留数 (10 分)

(2) 求 Res_{z=0}
$$\frac{e^z}{z^{n+1}}$$
。 (5 分)

3. 计算下列积分。(15分)

(1)
$$\int_{|z|=2} \frac{z^7}{(z^2-1)^3(z^2+2)} dz \qquad (8 \%),$$

(2)
$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + a^2)^2} \quad (a > 0)$$
 (7 \(\frac{\(\frac{1}{2}\)}{1}\)).

4. 叙述儒歇定理并讨论方程 $z^6 + 6z + 10 = 0$ 在 |z| < 1 内根的个数。(10 分)

四、证明题(20分)

- 1. 讨论函数 $f(z) = e^{\overline{z}}$ 在复平面上的解析性。 (10 分)
- 2. 证明:

$$\frac{1}{2\pi i} \int_C \frac{z^n e^{z\xi}}{n! \xi^n} \cdot \frac{d\xi}{\xi} = \left(\frac{z^n}{n!}\right)^2.$$

此处C是围绕原点的一条简单曲线。(10分)

《复变函数》考试试题(十三)

- 一、填空题. (每题2分)
- 2. 设函数 f(z) = u(x,y) + iv(x,y), $A = u_0 + iv_0$, $z_0 = x_0 + iy_0$, 则 $\lim_{z \to z_0} f(z) = A$ 的充要条件是
- 3. 设函数 f(z) 在单连通区域 D 内解析,则 f(z) 在 D 内沿任意一条简单闭曲线 C 的积分 $\int_C f(z) dz = \underline{\hspace{1cm}}.$
- 4. 设z = a为f(z)的极点,则 $\lim_{z \to a} f(z) =$ ______.
- 5. 设 $f(z) = z \sin z$,则 z = 0是 f(z)的_______阶零点.
- 6. 设 $f(z) = \frac{1}{1+z^2}$,则f(z)在z = 0的邻域内的泰勒展式为______.
- 7. 设|z-a|+|z+a|=b, 其中a,b为正常数,则点z的轨迹曲线是_____.
- 8. 设 $z = -\sin\frac{\pi}{6} i\cos\frac{\pi}{6}$,则z的三角表示为______.
- 9. $\int_0^{\frac{\pi}{4}} z \cos z dz =$ _____.
- 1 0. 设 $f(z) = \frac{e^{-z}}{z^2}$,则f(z)在z = 0处的留数为______.
- 二、计算题.
- 1. 计算下列各题. (9分)
- (1) $\cos i$; (2) $\ln(-2+3i)$; (3) 3^{3-i}
- 2. 求解方程 $z^3 + 8 = 0$. (7分)
- 3 . 设 $u = x^2 y^2 + xy$, 验证 u 是调和函数,并求解析函数 f(z) = u + iv , 使之 f(i) = -1 + i . (8分)
- 4. 计算积分. (10分)
- (1) $\int_C (x^2 + iy)dz$, 其中C是沿 $y = x^2$ 由原点到点z = 1 + i的曲线.
- (2) $\int_0^{1+i}[(x-y)+ix^2]dz$, 积分路径为自原点沿虚线轴到i, 再由i沿水平方向向右到1+i.
- 5. 试将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在圆环域 0 < |z| < 1 和 1 < |z| < 2 内展开为洛朗级

数.(8分)

6. 计算下列积分. (8分)

(1)
$$\iint_{|z|=2} \frac{5z-2}{z(z-1)^2} dz;$$
 (2)
$$\iint_{|z|=4} \frac{\sin^2 z}{z^2(z-1)} dz.$$

7. 计算积分
$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx$$
. (8分)

8. 求下列幂级数的收敛半径. (6分)

(1)
$$\sum_{n=1}^{\infty} nz^{n-1}$$
; (2) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} z^n$.

- 9. 讨论 $f(z) = |z|^2$ 的可导性和解析性. (6分)
- 三、证明题.
- 1. 设函数 f(z) 在区域 D 内解析, |f(z)| 为常数,证明 f(z) 必为常数. (5分)
- 2. 试证明 $\overline{az} + a\overline{z} + b = 0$ 的轨迹是一直线,其中 a 为复常数,b 为实常数. (5分)

《复变函数》考试试题(十四)

	植空縣	(毎题2分	(4
•	块工 迟.	(母皮4)	1 /

1. 设
$$z = r(\cos\theta + i\sin\theta)$$
,则 $z^n =$ ______.

2. 设函数
$$f(z) = u(x,y) + iv(x,y)$$
, $A = u_0 + iv_0$, $z_0 = x_0 + iy_0$, 则 $\lim_{z \to z_0} f(z) = A$ 的充要条件

3. 设函数 f(z) 在单连通区域 D 内解析,则 f(z) 在 D 内沿任意一条简单闭曲线 C 的积分

$$\int_C f(z)dz = \underline{\qquad}.$$

4. 设
$$z = a$$
为 $f(z)$ 的可去奇点, $\lim_{z \to a} f(z) =$ _______.

5. 设
$$f(z) = z^2(e^{z^2} - 1)$$
,则 $z = 0$ 是 $f(z)$ 的________阶零点.

6. 设
$$f(z) = \frac{1}{1-z^2}$$
,则 $f(z)$ 在 $z = 0$ 的邻域内的泰勒展式为______.

7. 设
$$|z-a|+|z+a|=b$$
, 其中 a,b 为正常数,则点 z 的轨迹曲线是_____.

8. 设
$$z = \sin \alpha + i \cos \alpha$$
,则 z 的三角表示为______.

9.
$$\int_0^{1+i} ze^z dz =$$
______.

二、计算题.

1. 计算下列各题. (9分)

(1)
$$Ln(-3+4i)$$
; (2) $e^{-1+\frac{\pi i}{6}}$; (3) $(1-i)^{1+i}$

2. 求解方程
$$z^3 + 2 = 0$$
. (7分)

3. 设u = 2(x-1)y, 验证u 是调和函数, 并求解析函数 f(z) = u + iv, 使之 f(2) = -i. (8分)

4. 计算积分
$$\int_0^{1+i} [(x-y)+ix^2] dz$$
, 其中路径为(1)自原点到点 $1+i$ 的直线段;

(2)自原点沿虚轴到i, 再由i沿水平方向向右到1+i. (10分)

5. 试将函数
$$f(z) = \frac{1}{(z-2)}$$
 在 $z = 1$ 的邻域内的泰勒展开式. (8分)

6. 计算下列积分. (8分)

(1)
$$\iint_{|z|=2} \frac{\sin z}{(z-\frac{\pi}{2})^2} dz ;$$
 (2)
$$\iint_{|z|=4} \frac{z^2-2}{z^2(z-3)} dz .$$

7. 计算积分
$$\int_0^{2\pi} \frac{d\theta}{5+3\cos\theta}$$
. (6分)

8. 求下列幂级数的收敛半径. (6分)

(1)
$$\sum_{n=1}^{\infty} (1+i)^n z^n$$
; (2) $\sum_{n=1}^{\infty} \frac{(n!)^2}{n^n} z^n$.

- 9. 设 $f(z) = my^3 + nx^2y + i(x^3 + lxy^2)$ 为复平面上的解析函数, 试确定 l , m , n 的值. (6分)
- 三、证明题.
- 1. 设函数 f(z) 在区域 D 内解析, $\overline{f(z)}$ 在区域 D 内也解析,证明 f(z) 必为常数. (5分)
- 2. 试证明 $\overline{az} + a\overline{z} + b = 0$ 的轨迹是一直线,其中 a 为复常数,b 为实常数. (5分)

试卷一至十四参考答案

《复变函数》考试试题(一)参考答案

- 1. \times 2. \checkmark 3. \checkmark 4. \checkmark 5. \checkmark 6. \checkmark 7. \times 8. \times 9. \times 10. \times
- 一. 填空题
- 1. $\begin{cases} 2\pi i & n=1 \\ 0 & n \neq 1 \end{cases}$; 2. 1; 3. $2k\pi$, $(k \in z)$; 4. $z = \pm i$; 5. 1
- 6. 整函数;
- 7. ξ ; 8. $\frac{1}{(n-1)!}$;
- 9. 0; 10. ∞.

- 三. 计算题.
- 1. 解 因为0 < |z| < 1,所以0 < |z| < 1

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{1-z} - \frac{1}{2(1-\frac{z}{2})} = \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} (\frac{z}{2})^n.$$

2. 解 因为

Re
$$_{z=\frac{\pi}{2}} f(z) = \lim_{z \to \frac{\pi}{2}} \frac{z + \frac{\pi}{2}}{\cos z} = \lim_{z \to \frac{\pi}{2}} \frac{1}{-\sin z} = -1,$$

所以
$$\int_{|z|=2} \frac{1}{\cos z} dz = 2\pi i (\operatorname{Re} s f(z) + \operatorname{Re} s f(z) = 0.$$

3. 解 令 $\varphi(\lambda) = 3\lambda^2 + 7\lambda + 1$,则它在z平面解析,由柯西公式有在|z| < 3内,

$$f(z) = \int_{c} \frac{\varphi(\lambda)}{\lambda - z} dz = 2\pi i \varphi(z) .$$

所以
$$f'(1+i) = 2\pi i \, \varphi'(z) \Big|_{z=1+i} = 2\pi i (13+6i) = 2\pi (-6+13i)$$
.

$$w = \frac{z-1}{z+1} = 1 - \frac{2}{z+1} = 1 - \frac{2(a+1-bi)}{(a+1)^2 + b^2} = 1 - \frac{2(a+1)}{(a+1)^2 + b^2} + \frac{2b}{(a+1)^2 + b^2}.$$

故
$$\operatorname{Re}(\frac{z-1}{z+1}) = 1 - \frac{2(a+1)}{(a+1)^2 + b^2}$$
, $\operatorname{Im}(\frac{z-1}{z+1}) = \frac{2b}{(a+1)^2 + b^2}$.

四. 证明题.

1. 证明 设在D内|f(z)|=C.

$$\Leftrightarrow f(z) = u + iv$$
, $\mathbb{I}[f(z)]^2 = u^2 + v^2 = c^2$.

两边分别对
$$x, y$$
 求偏导数, 得
$$\begin{cases} uu_x + vv_x = 0 & (1) \\ uu_y + vv_y = 0 & (2) \end{cases}$$

因为函数在D内解析,所以 $u_x = v_y, u_y = -v_x$.代入(2)则上述方程组变为

- 1) 若 $u^2 + v^2 = 0$,则 f(z) = 0 为常数.
- 2) 若 $v_x = 0$, 由方程 (1)(2) 及 C.-R.方程有 $u_x = 0$, $u_y = 0$, $v_y = 0$.

所以
$$u = c_1, v = c_2$$
. (c_1, c_2) 为常数).

所以 $f(z) = c_1 + ic_2$ 为常数.

2. 证明 $f(z) = \sqrt{z(1-z)}$ 的支点为 z = 0,1. 于是割去线段 $0 \le \text{Re } z \le 1$ 的 z 平面内变点就不可能单绕 0 或 1 转一周,故能分出两个单值解析分支.

由于当 $_z$ 从支割线上岸一点出发,连续变动到 $_z=0,1$ 时,只有 $_z$ 的幅角增加 $_\pi$. 所以 $f(z)=\sqrt{z(1-z)}$ 的幅角共增加 $\frac{\pi}{2}$. 由已知所取分支在支割线上岸取正值,于是可认为该分

支在上岸之幅角为 0,因而此分支在 z=-1 的幅角为 $\frac{\pi}{2}$,故 $f(-1)=\sqrt{2}e^{\frac{\pi}{2}i}=\sqrt{2}i$.

《复变函数》考试试题 (二)参考答案

一. 判断题.

1. $\sqrt{2} \times 3$. $\sqrt{4} \times \sqrt{5} \times 6$. $\times 7$. $\times 8$. $\sqrt{9} \times 10$. \times .

二. 填空题

1.1,
$$-\frac{\pi}{2}$$
, i ; 2. $3+(1-\sin 2)i$; 3.
$$\begin{cases} 2\pi i & n=1\\ 0 & n\neq 1 \end{cases}$$
; 4.1; 5. $m-1$.

6. $2k\pi i$, $(k \in z)$.

7.0;

8. $\pm i$;

9. R;

10. 0.

三. 计算题

1.
$$\Re \sin(2z^3) = \sum_{n=0}^{\infty} \frac{(-1)^n (2z^3)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} z^{6n+3}}{(2n+1)!}$$
.

2. 解 令 $z = re^{i\theta}$.

则
$$f(z) = \sqrt{z} = \sqrt{r}e^{i\frac{\theta + 2k\pi}{2}}$$
, $(k = 0,1)$.

又因为在正实轴去正实值,所以k=0.

所以
$$f(i) = e^{i\frac{\pi}{4}}$$
.

3. 单位圆的右半圆周为 $z = e^{i\theta}$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

所以
$$\int_{-i}^{i} \left| z \right| dz = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} de^{i\theta} = e^{i\theta} \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2i$$
.

4. 解

$$\oint_{|z|=2} \frac{\sin z}{(z - \frac{\pi}{2})^2} dz = 2\pi i (\sin z)' \bigg|_{z = \frac{\pi}{2}} = 2\pi i \cos z \bigg|_{z = \frac{\pi}{2}} = \frac{\pi}{2}$$

四. 证明题.

1. 证明(必要性)令 $f(z) = c_1 + ic_2$,则 $\overline{f(z)} = c_1 - ic_2$.(c_1, c_2 为实常数).

$$\diamondsuit u(x,y) = c_1, v(x,y) = -c_2 \ . \ \ \bigcup u_x = v_y = u_y = v_x = 0 \ .$$

即u,v满足C.-R.,且 u_x,v_y,u_y,v_x 连续,故 $\overline{f(z)}$ 在D内解析.

(充分性) 令
$$f(z) = u + iv$$
, 则 $\overline{f(z)} = u - iv$,

因为f(z)与 $\overline{f(z)}$ 在D内解析, 所以

$$u_x = v_y$$
, $u_y = -v_x$, $\perp u_x = (-v)_y = -v_y$, $u_y = -(-v_x) = -v_x$.

比较等式两边得 $u_x = v_y = u_y = v_x = 0$. 从而在 D 内 u,v 均为常数,故 f(z) 在 D 内为常数.

2. 即要证"任一 n 次方程 $a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$ $(a_0 \neq 0)$ 有且只有 n 个根".

证明 令
$$f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$
,取 $R > \max \left\{ \frac{\left|a_1\right| + \dots + \left|a_n\right|}{\left|a_0\right|}, 1 \right\}$,当 z

在 C: |z| = R 上时,有 $|\varphi(z)| \le |a_1| R^{n-1} + \dots + |a_{n-1}| R + |a_n| < (|a_1| + \dots + |a_n|) R^{n-1} < |a_0| R^n$. = |f(z)|.

由儒歇定理知在圆 |z| < R 内,方程 $a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n = 0$ 与 $a_0 z^n = 0$ 有相 同个数的根. 而 $a_0 z^n = 0$ 在 |z| < R 内有一个 n 重根 z = 0. 因此 n 次方程在 |z| < R 内有 n 个根.

《复变函数》考试试题(三)参考答案

- 一. 判断题
- 1. \times 2. \times 3. \checkmark 4. \checkmark 5. \checkmark 6. \checkmark 7. \checkmark 8. \checkmark 9. \checkmark 10. \checkmark .
- 1. $\{z \mid z \neq \pm i, \exists z \in C\}$; 2. $2k\pi i \quad (k \in z)$; 3. -1 + ei; 4. 1; 5. $\begin{cases} 2\pi i & n = 1 \\ 0 & n \neq 1 \end{cases}$;
- 6. 1:
- 7. $\pm i$;

- 8. $z = (2k+1)\pi i$; 9. ∞ ; 10. $\frac{1}{(n-1)!}$

三. 计算题.

2. 解
$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n!}{n^n} \cdot \frac{(n+1)^{n+1}}{(n+1)!} \right| = \lim_{n \to \infty} (\frac{n+1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$
. 所以收敛半径为 e

3.
$$\Re \Leftrightarrow f(z) = \frac{e^z}{z^2(z^2 - 9)}, \ \mathbb{M} \ \underset{z=0}{\text{Res}} f(z) = \frac{e^z}{z^2 - 9} \bigg|_{z=0} = -\frac{1}{9}.$$

故原式 =
$$2\pi i \operatorname{Re}_{z=0} s f(z) = -\frac{2\pi i}{9}$$
.

4.
$$\Re \Leftrightarrow f(z) = z^9 - 2z^6 + z^2 - 2, \ \varphi(z) = -8z$$
.

则在
$$C: |z|=1$$
上 $f(z)$ 与 $\varphi(z)$ 均解析,且 $|f(z)| \le 6 < |\varphi(z)|=8$,故由儒歇定理有 $N(f+\varphi,C)=N(f+\varphi,C)=1$. 即在 $|z|<1$ 内,方程只有一个根.

四. 证明题.

证明 设在D内|f(z)|=C. 1. 证明

$$\Leftrightarrow f(z) = u + iv$$
, $\mathbb{I}[f(z)]^2 = u^2 + v^2 = c^2$.

两边分别对
$$x, y$$
 求偏导数, 得
$$\begin{cases} uu_x + vv_x = 0 & (1) \\ uu_y + vv_y = 0 & (2) \end{cases}$$

因为函数在D内解析,所以 $u_x = v_y, u_y = -v_x$. 代入 (2) 则上述方程组变为

$$\begin{cases} uu_{x} + vv_{x} = 0 \\ vu_{x} - uv_{x} = 0 \end{cases} \quad \text{if } \pm u_{x} \, \text{θ, } (u^{2} + v^{2})v_{x} = 0.$$

1)
$$u^2 + v^2 = 0$$
, 则 $f(z) = 0$ 为常数.

2) 若
$$v_x = 0$$
, 由方程 (1)(2)及 $C.-R.$ 方程有 $u_x = 0$, $u_y = 0$, $v_y = 0$.

所以
$$u = c_1, v = c_2$$
. (c_1, c_2) 为常数).

所以
$$f(z) = c_1 + ic_2$$
 为常数.

2. 证明 取 r > R,则对一切正整数 k > n 时, $\left| f^{(k)}(0) \right| \le \frac{k!}{2\pi} \int_{|z|=r} \left| \frac{f(z)}{z^{k+1}} \right| |dz| \le \frac{k! M r^n}{r^k}$. 于是由r的任意性知对一切k > n均有 $f^{(k)}(0) = 0$. 故 $f(z) = \sum_{k=0}^n c_n z_n$,即f(z)是一个至多n次多项式或常数.

《复变函数》考试试题(四)参考答案

1.
$$\checkmark$$
 2. \times 3. \times 4. \times 5. \times 6. \checkmark 7. \times 8. \times 9. \checkmark 10. \checkmark .

1.
$$\frac{1}{2}$$
, $\frac{1}{2}$; 2. ξ ; 3. $2k\pi i$ $(k \in z)$; 4. $\sum_{n=0}^{\infty} (-1)^n z^{2n}$ $(|z| < 1)$; 5. $2k\pi i$

6. 亚纯函数; 7.0; 8.
$$z = 0$$
; 9. ∞ ; 10. $\frac{1}{(n+1)!}$.

三. 计算题.

解:
$$z^3 = -1 \Rightarrow z = \cos\frac{2k\pi + \pi}{3} + i\sin\frac{2k\pi + \pi}{3}$$
 $k = 0,1,2$
 $z_1 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

$$z_2 = \cos \pi + i \sin \pi = -1$$

$$z_3 = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

2.
$$\text{ \mathbb{R} $ $\operatorname{Re} s f(z) = \frac{e^z}{z+1} \Big|_{z=1} = \frac{e}{2}, \ \, \underset{z=-1}{\operatorname{Re} s f(z) = \frac{e^z}{z+1} \Big|_{z=-1} = \frac{e^{-1}}{-2} \,. }$$

$$\text{ $\mathbb{E} s f(z) + \operatorname{Re} s f(z) = \pi i (e - e^{-1}) \,. }$$

3.
$$\Re \mathbb{R} = 2\pi i \operatorname{Res}_{z=-i} f(z) = 2\pi i \frac{z}{9-z^2} \bigg|_{z=-i} = \frac{\pi}{5}$$
.

四. 证明题,

1. 证明 设 $F(z) = \overline{f(\overline{z})}$,在下半平面内任取一点 z_0 ,z是下半平面内异于 z_0 的点,考虑

$$\lim_{z\to z_0} \frac{F(z)-F(z_0)}{z-z_0} = \lim_{z\to z_0} \frac{\overline{f(\overline{z})}-\overline{f(\overline{z_0})}}{z-z_0} = \lim_{z\to z_0} \frac{\overline{f(\overline{z})}-\overline{f(\overline{z_0})}}{z-z_0}.$$

而 $\overline{z_0}$, \overline{z} 在上半平面内,已知f(z)在上半平面解析,因此 $F'(z_0)=f'(\overline{z_0})$,从而 $F(z) = f(\overline{z})$ 在下半平面内解析.

2. 证明 令
$$f(z) = -6z + 3$$
, $\varphi(z) = z^4$, 则 $f(z) = \varphi(z)$ 在全平面解析,

且在 $C_1: |z| = 2$ 上, $|f(z)| \le 15 < |\varphi(z)| = 16$,

故在|z| < 2 内 $N(f + \varphi, C_1) = N(\varphi, C_1) = 4$.

在 $C_2: |z|=1$ 上, $|f(z)| \ge 3 > |\varphi(z)|=1$,

故在|z|<1内 $N(f+\varphi,C_2)=N(f,C_2)=1$.

所以 $f+\varphi$ 在1<|z|<2 内仅有三个零点,即原方程在1<|z|<2 内仅有三个根.

《复变函数》考试试题(五)参考答案

- 1. $\sqrt{2}$. $\sqrt{3}$. $\times 4$. $\sqrt{5}$. $\times 6$. \times 7. \times 8. $\sqrt{9}$. $\sqrt{10}$. $\sqrt{.}$
- 二. 填空题.

1.2,
$$-\frac{\pi}{3}$$
, $1+\sqrt{3}i$;

2. $a+2k\pi i$ $(k \in \mathbb{Z}, a$ 为任意实数);

3.
$$(2k+1)\pi i$$
, $(k \in z)$; 4. $2k\pi i$, $(k \in z)$;

7. 亚纯函数; 8.
$$\sum_{n=0}^{\infty} (-1)^n z^{2n}$$
 ($|z| < 1$); 9. 0; 10. $\begin{cases} 2\pi i & n=1 \\ 0 & n \neq 1 \end{cases}$

- 三. 计算题.

$$w = \frac{z-1}{z+1} = 1 - \frac{2}{z+1} = 1 - \frac{2(a+1-bi)}{(a+1)^2 + b^2} = 1 - \frac{2(a+1)}{(a+1)^2 + b^2} + \frac{2b}{(a+1)^2 + b^2}.$$

故
$$\operatorname{Re}(\frac{z-1}{z+1}) = 1 - \frac{2(a+1)}{(a+1)^2 + b^2}, \operatorname{Im}(\frac{z-1}{z+1}) = \frac{2b}{(a+1)^2 + b^2}.$$

2. 解 连接原点及1+i的直线段的参数方程为 z=(1+i)t

故
$$\int_{c} \operatorname{Re} z dz = \int_{0}^{1} \left\{ \operatorname{Re}[(1+i)t] \right\} (1+i) dt = (1+i) \int_{0}^{1} t dt = \frac{1+i}{2}.$$

3. 令
$$z = e^{i\theta}$$
,则 $d\theta = \frac{dz}{iz}$. 当 $a \neq 0$ 时

$$1 - 2a\cos\theta + a^2 = 1 - a(z + z^{-1}) + a^2 = \frac{(z - a)(1 - az)}{z},$$

故
$$I = \frac{1}{i} \int_{|z|=1} \frac{dz}{(z-a)(1-az)}$$
,且在圆 $|z| < 1$ 内 $f(z) = \frac{1}{(z-a)(1-az)}$ 只以 $z = a$ 为一级极点,

在
$$|z|=1$$
上无奇点,故 $\mathop{\rm Res}_{z=a} f(z) = \frac{1}{1-az} = \frac{1}{1-a^2}, (0<|a|<1)$,由残数定理有

$$I = \frac{1}{i} 2\pi i \operatorname{Re}_{z=a} f(z) = \frac{2\pi}{1 - a^2}, (0 \le |a| < 1).$$

4. 解 令 f(z) = -z, 则 f(z), $\varphi(z)$ 在 $|z| \le 1$ 内解析,且在 C: |z| = 1 上, $|\varphi(z)| < 1 = |f(z)|$, 所以在|z|<1内, $N(f+\varphi,C)=N(f,C)=1$,即原方程在|z|<1内只有一个根. 四. 证明题.

- 1. 证明 因为 $u(x, y) = x^2 + y^2, v(x, y) \equiv 0$, 故 $u_x = 2x, u_y = 2y, v_x = v_y = 0$. 这四个偏导数在 z 平面上处处连续, 但只在 z=0 处满足 C.-R. 条件, 故 f(z) 只在除了 z=0外处处不可微.
- 2. 证明 取 r > R, 则对一切正整数 k > n 时, $\left| f^{(k)}(0) \right| \le \frac{k!}{2\pi} \int_{|z|=r} \left| \frac{f(z)}{z^{k+1}} \right| |dz| \le \frac{k! M r^n}{r^k}$. 于是由r的任意性知对一切k > n均有 $f^{(k)}(0) = 0$.

故
$$f(z) = \sum_{n=0}^{n} c_n z_n$$
, 即 $f(z)$ 是一个至多 n 次多项式或常数.

《复变函数》考试试题(六)参考答案

三、计算题:

1. 解: 因为
$$\left| \frac{2-i}{6} \right| = \sqrt{\frac{1}{9} + \frac{1}{36}} = \frac{\sqrt{5}}{6} < 1,$$
 故 $\lim_{n \to \infty} (\frac{2-i}{6})^n = 0.$

2.
$$\text{M}: : |1+i| = \sqrt{2} < 3,$$

$$\therefore f(z) = \frac{1}{2\pi i} \int_C \frac{f(\lambda)}{\lambda - z} d\lambda$$
$$= \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda.$$

因此
$$f(\lambda) = 2\pi i (3\lambda^2 + 7\lambda + 1)$$

故
$$f(z) = 2\pi i(3z^2 + 7z + 1)$$

$$f'(1+i) = 2\pi i(6z+7)\Big|_{1+i} = 2\pi i(13+6i) = 2\pi(-6+13i)$$
.

3.
$$M$$
: $\frac{e^z}{z^2+1} = \frac{e^z}{2} \cdot (\frac{1}{z+i} + \frac{1}{z-i})$

$$\therefore \operatorname{Re} s(f(z), i) = \frac{e^{i}}{2}.$$

4.#:
$$\sin z^3 = \sum_{n=0}^{\infty} \frac{(-1)^n (z^3)^{2n+1}}{(2n+1)!},$$

$$\therefore \frac{\sin z^3}{z^6} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{6n-3}.$$

5.
$$M: \ \ \mathcal{U} z = x + iy, \ \ \mathcal{U} w = \frac{z-1}{z+1} = \frac{x-1+iy}{z+1+iy} = \frac{(x^2+y^2-1)+2yi}{(x+1)^2+y^2}.$$

$$\therefore \operatorname{Re} w = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2}, \quad \operatorname{Im} w = \frac{2y}{(x+1)^2 + y^2}.$$

6.
$$\text{ #: } e^{-\frac{\pi}{3}i} = \cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3}) = \frac{1}{2}(1 - \sqrt{3}i).$$

四、1. 证明: 设 $f(z) = 9z^6$, $\varphi(z) = z^7 + 6z^3 - 1$,

则在|z|=1上,|f(z)|=9, $|\varphi(z)| \le 1+6+1=8$,即有 $|f(z)| > |\varphi(z)|$.

根据儒歇定理, f(z)与 $f(z)+\varphi(z)$ 在单位圆内有相同个数的零点,而 f(z)的零点个数为 6,故 $z^7+9z^6+6z^3-1=0$ 在单位圆内的根的个数为 6.

2.证明: 设 v(x,y) = a + bi, 则 $v_x = v_y = 0$, 由于 f(z) = u + iv 在内 D 解析,因此 $\forall (x,y) \in D$ 有 $u_x = v_y = 0$, $u_y = -v_x = 0$.

于是 $u(x,y) \equiv c + di$ 故 f(z) = (a+c) + (b+d)i, 即 f(z) 在内 D 恒为常数.

3.证明:由于 z_0 是f(z)的m阶零点,从而可设

$$f(z) = (z - z_0)^m g(z)$$
,

其中 g(z) 在 z_0 的某邻域内解析且 $g(z_0) \neq 0$,

于是
$$\frac{1}{f(z)} = \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)}$$

由 $g(z_0) \neq 0$ 可知存在 z_0 的某邻域 D_1 , 在 D_1 内恒有 $g(z) \neq 0$, 因此 $\frac{1}{g(z)}$ 在内 D_1 解析, 故

$$z_0$$
为 $\frac{1}{f(z)}$ 的 m 阶极点.

《复变函数》考试试题(七)参考答案

一、判断题: 1. √ 2. √ 3. × 4. √ 5. √ 6. √ 7. √ 8. ×

二、填空题: 1. ei 2. $z \neq \pm 1$ 3. $2\pi i$ 4. 1 5. 1

6. m-1阶 7. 整函数 8. \square 9. 0 10. $\frac{1}{(n-1)!}$

三、计算题:

1.
$$\Re: (\frac{1+i}{\sqrt{2}})^2 + (\frac{1-i}{\sqrt{2}})^2 = i - i = 0.$$

2.
$$\text{M}: : |1+i| = \sqrt{2} < 3,$$

$$\therefore f(z) = \frac{1}{2\pi i} \int_C \frac{f(\lambda)}{\lambda - z} d\lambda$$
$$= \int_C \frac{3\lambda^2 + 7\lambda + 1}{\lambda - z} d\lambda.$$

因此
$$f(\lambda) = 2\pi i(3\lambda^2 + 7\lambda + 1)$$

故
$$f(z) = 2\pi i(3z^2 + 7z + 1)$$

$$f'(1+i) = 2\pi i(6z+7)\Big|_{1+i} = 2\pi i(13+6i) = 2\pi(-6+13i)$$
.

3.
$$\text{AF:} \quad \frac{e^z}{z^2} = \frac{\sum_{n=0}^{\infty} \frac{z^n}{n!}}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2} + \cdots,$$

因此 Re s(f(z), 0) = 1.

4.
$$mathref{H}$$
: $\frac{z}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{2}{z-2} = \frac{-1}{z(1-\frac{1}{z})} - \frac{1}{1-\frac{z}{2}}$

由于
$$1 < |z| < 2$$
,从而 $\left| \frac{1}{z} \right| < 1$, $\left| \frac{z}{2} \right| < 1$.

因此在1 < |z| < 2内

有
$$\frac{z}{(z-1)(z-2)} = -\frac{1}{z} \sum_{n=0}^{\infty} (\frac{1}{z})^n - \sum_{n=0}^{\infty} (\frac{z}{2})^n = -\sum_{n=0}^{\infty} [(\frac{1}{z})^{n+1} + (\frac{z}{2})^n].$$

$$\therefore \text{Re } w = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2}, \quad \text{Im } w = \frac{2y}{(x+1)^2 + y^2}.$$

6.
$$mathref{M}$$
: $abla z = e^{i\theta}$, $abla d\theta = \frac{dz}{iz}$, $abla s \theta = \frac{1}{2}(z + \frac{1}{z})$,
$$\int_{0}^{2\pi} \frac{d\theta}{a + \cos \theta} = \int_{|z|=1}^{2\pi} \frac{dz}{iz} \cdot \frac{2}{2a + z + \frac{1}{z}} = \int_{|z|=1}^{2\pi} \frac{2idz}{z^{2} + 2az + 1}$$

$$:: a > 1$$
, 故奇点为 $z_0 = \sqrt{a^2 - 1} - a$

$$\int_0^{2\pi} \frac{d\theta}{a + \cos \theta} = 4\pi \cdot \text{Re}_{z=z_0} sf(z) = 4\pi \cdot \frac{1}{2\sqrt{a^2 - 1}} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

四、证明题:

1. 证明: 设
$$f(z) = 24z^7$$
, $g(z) = 9z^6 + 6z^3 + z^2 + 1$,

则在
$$|z|=1$$
上, $|f(z)|=24$, $|g(z)| \le 9+6+1+1=17$,即有 $|f(z)| > |g(z)|$.

根据儒歇定理知在|z|<1内 f(z)与 f(z)+ g(z) 在单位圆内有相同个数的零点,而在|z|<1 内 f(z)的零点个数为 7,故 $24z^7$ + $9z^6$ + $6z^3$ + z^2 +1=0 在单位圆内的根的个数为 7.

2.证明: 设
$$|f(z)| = u^2 + v^2 \equiv c$$
, 则
$$2u \cdot u_x + 2v \cdot v_x = 0,$$

$$2u \cdot u_y + 2v \cdot v_y = 0.$$

已知 f(z) 在区域 D 内解析, 从而有 $u_x = v_y$, $u_y = -v_x$

将此代入上上述两式得

$$uu_x - vu_y = 0,$$

$$uu_y + vu_x = 0.$$

因此有 $u_x = 0, u_y = 0$, 于是有 $v_x = 0, v_y = 0$.

即有
$$u \equiv c_1, v \equiv c_2, f(z) = c_1 + ic_2$$

故 f(z) 在区域 D 恒为常数.

3.证明:由于 z_0 是f(z)的m阶零点,从而可设

$$f(z) = (z - z_0)^m g(z)$$
,

其中 g(z)在 z_0 的某邻域内解析且 $g(z_0) \neq 0$,

于是
$$\frac{1}{f(z)} = \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)}$$

由 $g(z_0) \neq 0$ 可知存在 z_0 的某邻域 D_1 ,在 D_1 内恒有 $g(z) \neq 0$,因此 $\frac{1}{g(z)}$ 在内 D_1 解析,故

$$z_0$$
为 $\frac{1}{f(z)}$ 的 m 阶极点.

五、计算题

解: 根据线性变换的保对称点性知i关于实轴的对称点-i应该变到w=0关于圆周的对称点 $w=\infty$,故可设 $w=k\frac{z-i}{z+i}$

《复变函数》考试试题(八)参考答案

一、判断题: 1. √ 2. × 3. √ 4. × 5. √ 6. √ 7. √ 8. × 9. √ 10. ×

二、填空题: 1.
$$-1+ei$$
 2. $z \neq 0$, ∞ 3. 2π 4. ξ 5. 1

6.
$$\sum_{k=0}^{\infty} (iz)^{2k} \quad 7. \begin{cases} 0, & n \neq 1 \\ 2\pi i, n = 1 \end{cases} \quad 8. \quad \Box \quad 9. \quad 5 \quad 10. \quad z \neq \pm 1$$

三、计算题:

1. 解:由于 $e^{z+1}\sin z$ 在 $|z| \le 1$ 解析,

所以
$$\int_{|z|=1} e^{z+1} \sin z dz = 0$$

$$\overline{m} \frac{1}{2\pi i} \int_{|z|=3} \frac{dz}{(z-1)(z-4)} = \frac{1}{2\pi i} \int_{|z|=3} \frac{\frac{1}{(z-4)} dz}{(z-1)} = -\frac{1}{3}$$

因此
$$\int_{|z|=1} e^{z+1} \sin z dz + \frac{1}{2\pi i} \int_{|z|=3} \frac{dz}{(z-1)(z-4)} = -\frac{1}{3}$$
.

2.
$$\Re: : |1+i| = \sqrt{2} < 3,$$

$$\therefore f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(\lambda)}{\lambda - z} d\lambda$$
$$= \int_{C} \frac{3\lambda^{2} + 7\lambda + 1}{\lambda - z} d\lambda.$$

因此
$$f(\lambda) = 2\pi i (3\lambda^2 + 7\lambda + 1)$$

故
$$f(z) = 2\pi i(3z^2 + 7z + 1)$$

$$f'(1+i) = 2\pi i(6z+7)\Big|_{1+i} = 2\pi i(13+6i) = 2\pi(-6+13i)$$
.

3.
$$\Re$$
: $f(z) = \frac{e^z}{z^2 - 1} = \frac{e^z}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right)$

Re
$$s(f(z),1) = \frac{e}{2}$$
, Re $s(f(z),-1) = -\frac{e^{-1}}{2}$,

因此 Re
$$s(f(z), \infty) = -(\frac{e}{2} - \frac{e^{-1}}{2}) = \frac{e^{-1} - e}{2}$$
.

4.#:
$$\frac{z+10}{(z-1)(z^2-2)} = -\frac{11}{z-1} + \frac{11z+12}{z^2-2} = -\frac{11}{z} \cdot \frac{1}{1-\frac{1}{z}} + \frac{11z+12}{z^2} \cdot \frac{1}{1-\frac{2}{z^2}}$$

由于
$$\sqrt{2}$$
< $|z|$ <+ ∞ ,从而 $\left|\frac{1}{z}\right|$ <1, $\left|\frac{2}{z^2}\right|$ <1

因此在 $\sqrt{2} < |z| < +\infty$ 内有

$$\frac{z+10}{(z-1)(z^2-2)} = -\frac{11}{z} \cdot \sum_{n=0}^{\infty} (\frac{1}{z})^n + \frac{11z+12}{z^2} \cdot \sum_{n=0}^{\infty} (\frac{2}{z^2})^n = \sum_{n=0}^{\infty} (\frac{1}{z})^{2(n+1)} [2^n \cdot (11z+12) - 11z^{n+1}]$$

$$\therefore \text{Re } w = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2}, \quad \text{Im } w = \frac{2y}{(x+1)^2 + y^2}.$$

6. 解: 设 $z = e^{ix}$,则 $dz = ie^{ix}dx = izdx$

$$\sin x = \frac{1}{2i}(z - \frac{1}{z})$$

$$\int_0^{\pi} \frac{dx}{2 + \sin^2 x} = \frac{1}{2} \int_0^{2\pi} \frac{dx}{2 + \sin^2 x}$$

$$= \frac{1}{2} \int_{|z|=1} \frac{1}{iz} \cdot \frac{2iz}{z^2 + 4iz - 1} dz = \int_{|z|=1} \frac{dz}{z^2 + 4iz - 1}$$
在 | z | < 1 内 $\frac{1}{z^2 + 4iz - 1}$ 只有 $z = (\sqrt{3} - 2)i$ 一个一级极点

Re
$$s[f(z), (\sqrt{3}-2)i] = -\frac{i}{2\sqrt{3}}$$

因此
$$\int_0^{\pi} \frac{dx}{2 + \sin^2 x} = 2\pi i \cdot \frac{-i}{2\sqrt{3}} = \frac{\pi}{\sqrt{3}}.$$

四、证明:

1. 证明: 设
$$f(z) = 15z^7$$
, $g(z) = 5z^6 + z^5 + 6z^3 - 1$,

则在|z|=1上,|f(z)|=15, $|g(z)|\leq 13$,即有|f(z)|>|g(z)|.

根据儒歇定理知在|z|<1内f(z)与f(z)+g(z)在单位圆内有相同个数的零点,而在|z|<1

内 f(z) 的零点个数为 7,故 $15z^7 + 5z^6 + z^5 + 6z^3 - 1 = 0$ 在单位圆内的根的个数为 7

2. 证明: 因为f(z) = u(x,y) + iv(x,y), 在D内连续, 所以 $\forall (x_0,y_0) \in D$,

 $\forall \varepsilon > 0, \exists \delta > 0.$

当
$$|x-x_0|<\delta$$
, $|y-y_0|<\delta$ 时有

$$|f(x, y) - f(x_0, y_0)| = |u(x, y) - u(x_0, y_0) + i[v(x, y) - v(x_0, y_0)]|$$

$$= \{ [u(x, y) - u(x_0, y_0)]^2 + [v(x, y) - v(x_0, y_0)]^2 \}^{\frac{1}{2}} < \varepsilon,$$

从而有 $|u(x,y)-u(x_0,y_0)|<\varepsilon$,

$$|v(x, y) - v(x_0, y_0)| < \varepsilon.$$

即与在连续,由 $(x_0, y_0) \in D$ 的任意性知u(x, y)与v(x, y)都在D内连续

3.证明:由于 z_0 是f(z)的m阶零点,从而可设

$$f(z) = (z - z_0)^m g(z) ,$$

其中 g(z) 在 z_0 的某邻域内解析且 $g(z_0) \neq 0$,

于是
$$\frac{1}{f(z)} = \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)}$$

由 $g(z_0) \neq 0$ 可知存在 z_0 的某邻域 D_1 ,在 D_1 内恒有 $g(z) \neq 0$,因此 $\frac{1}{g(z)}$ 在内 D_1 解析,故

$$z_0$$
为 $\frac{1}{f(z)}$ 的 m 阶极点.

五、解: 1.设 $\xi=z^{\frac{5}{4}}$,则 ξ 将区域 $\{z:0<\arg z<\frac{4}{5}\pi\}$ 保形映射为区域 $\{z:0<\arg \xi<\pi\}$

2.设
$$w = e^{i\theta} \frac{\xi - i}{\xi + i}$$
,则 w 将上半平面保形变换为单位圆 $|w| < 1$.

因此所求的单叶函数为

$$w = e^{i\theta} \frac{z^{\frac{5}{4}} - i}{z^{\frac{5}{4}} + i}.$$

《复变函数》考试试题(九)参考答案

一、判断题(20分)

 $1, \times 2, \times 3, \checkmark 4, \checkmark 5, \checkmark 6, \checkmark 7, \checkmark 8, \checkmark 9, \times 10, \checkmark$

二、填空题(20分)

1, $e^{-z}i$ 2, $z \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$ 3, 2π 4, 1 5, 1

6、*m*−1 7、整函数 8、*c* 9、8 10、*e*

三、计算题(30)

1.
$$\mathbb{M}$$
: $\therefore \left| \frac{2-i}{6} \right| < \frac{5}{6} < 1$, $\therefore \lim_{n \to \infty} (\frac{2-i}{6})^n = 0$.

2、解: :: $|1+i| = \sqrt{2} < 3$,

$$\therefore f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(\lambda)}{\lambda - z} d\lambda$$
$$= \int_{C} \frac{3\lambda^{2} + 7\lambda + 1}{\lambda - z} d\lambda.$$

因此
$$f(\lambda) = 2\pi i (3\lambda^2 + 7\lambda + 1)$$

故
$$f(z) = 2\pi i(3z^2 + 7z + 1)$$

$$f'(1+i) = 2\pi i(6z+7)\Big|_{1+i} = 2\pi i(13+6i) = 2\pi(-6+13i)$$
.

3、解:

$$f(z) = \frac{e^z}{z^2 + 1} = \frac{e^z}{(z+i)(z-i)}.$$

Re
$$s(f(z),i) = \frac{-ie^{i}}{2}$$
, Re $s(f(z),-i) = \frac{ie^{i}}{2}$.

4.
$$\Re: \frac{z}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{2}{z-2} = \frac{-1}{z(1-\frac{1}{z})} - \frac{1}{1-\frac{z}{2}}$$

由于
$$1 < |z| < 2$$
,从而 $\left|\frac{1}{z}\right| < 1$, $\left|\frac{z}{2}\right| < 1$.

因此在1 < |z| < 2内

有
$$\frac{z}{(z-1)(z-2)} = -\frac{1}{z} \sum_{n=0}^{\infty} (\frac{1}{z})^n - \sum_{n=0}^{\infty} (\frac{z}{2})^n = -\sum_{n=0}^{\infty} [(\frac{1}{z})^{n+1} + (\frac{z}{2})^n].$$

$$\therefore \text{Re } w = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2}, \quad \text{Im } w = \frac{2y}{(x+1)^2 + y^2}.$$

6、解: 设 $f(z) = \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$,则 f(z)在 Im z > 0 内有两个一级极点 $z_1 = 3i$, $z_2 = i$,

Re
$$s(f(z), 3i) = \frac{3+7i}{48}$$
, Re $s(f(z), i) = -\frac{1+i}{16}$,

因此,根据留数定理有

$$\int_{-\infty}^{+\infty} \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} dz = 2\pi i \left(\frac{3 + 7i}{48} - \frac{1 + i}{16}\right) = -\frac{\pi}{6}.$$

四、证明题(20分)

1、证明: 设
$$f(z) = 9z^6$$
, $\varphi(z) = z^7 + 6z^3 - 1$,

则在|z|=1上,|f(z)|=9, $|\varphi(z)| \le 1+6+1=8$,即有 $|f(z)| > |\varphi(z)|$.

根据儒歇定理, f(z)与 $f(z)+\varphi(z)$ 在单位圆内有相同个数的零点,而 f(z)的零点个数为 6,故 $z^7+9z^6+6z^3-1=0$ 在单位圆内的根的个数为 6.

2、证明: 设u(x,y) = a + bi,则 $u_x = u_y = 0$,由于f(z) = u + iv在内D解析,因此 $\forall (x,y) \in D$ 有 $u_x = v_y = 0$, $u_y = -v_x = 0$.

于是 $v(x,y) \equiv c + di$ 故 f(z) = (a+c) + (b+d)i, 即 f(z) 在内 D 恒为常数.

3、证明:由于 z_0 是f(z)的m阶零点,从而可设

$$f(z) = (z - z_0)^m g(z)$$
,

其中 g(z) 在 z_0 的某邻域内解析且 $g(z_0) \neq 0$,

于是
$$\frac{1}{f(z)} = \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)}$$

由 $g(z_0) \neq 0$ 可知存在 z_0 的某邻域 D_1 ,在 D_1 内恒有 $g(z) \neq 0$,因此 $\frac{1}{g(z)}$ 在内 D_1 解析,故

$$z_0$$
为 $\frac{1}{f(z)}$ 的 m 阶极点.

五、计算题(10分)

解: 1、设 $\xi = z - \frac{\pi}{2}i$,则 ξ 将区域 $\{z : \frac{\pi}{2} < \text{Im } z < \pi\}$ 保形变换为区域 $\{\xi : 0 < \text{Im } z < \frac{\pi}{2}\}$.

2、设
$$t = e^{\xi}$$
,则 t 将区域 $\{\xi: 0 < \text{Im } z < \frac{\pi}{2}\}$ 保形变换为区域 $D\{t: 0 < \text{arg } t < \frac{\pi}{2}\}$.

3、设 $s=t^2$,则s将D保形变换为上半平面,因此,所求的单叶函数为

$$w = e^{i\theta} \cdot \frac{s - i}{s + i} = e^{i\theta} \cdot \frac{t^2 - i}{t^2 + i} = e^{i\theta} \cdot \frac{e^{2\xi} - i}{e^{2\xi} + i} = e^{i\theta} \cdot \frac{-e^{2z} - i}{-e^{2z} + i}.$$

《复变函数》考试试题(十)参考答案

一、判断题(40分):

 $1. \checkmark \quad 2. \quad \checkmark \quad 3. \checkmark \quad 4. \quad \times \quad 5. \quad \checkmark \quad 6. \quad \times \quad 7. \quad \checkmark \quad 8. \quad \checkmark \quad 9. \quad \checkmark \quad 10. \quad \checkmark$

二、填空题(20分):

1. $2\pi i$ 2. $\frac{z}{(1-z)^2}$ 3. $z \neq \pm i$ 4. 1 5. $\frac{1}{(n-1)!}$

三、计算题(40分)

1. 解: $f(z) = \frac{z}{9-z^2}$ 在 $|z| \le 2$ 上解析,由 *cauchy* 积分公式,有

$$\int_{|z|=2} \frac{2}{(9-z^2)(z+i)} dz = \int_{|z|=2} \frac{\frac{z}{9-z^2}}{z+i} dz = 2\pi i \cdot \frac{z}{9-z^2} \bigg|_{z=-i} = \frac{\pi}{5}$$

2. 解: 设
$$f(z) = \frac{e^{iz}}{1+z^2}$$
,有 $\operatorname{Re} s(f,-i) = \frac{e^{-i^2}}{-2i} = \frac{i}{2}e$

3.
$$\Re : \left(\frac{1+i}{\sqrt{2}}\right)^{n} + \left(\frac{1-i}{\sqrt{2}}\right)^{n} = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{n} + \left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)^{n}$$
$$= \cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4} + \cos\frac{n\pi}{4} - i\sin\frac{n\pi}{4} = 2\cos\frac{n\pi}{4}$$

4.
$$\Re$$
: $\frac{\partial u}{\partial x} = \frac{2x}{x^2 + y^2}$, $\frac{\partial u}{\partial y} = \frac{2y}{x^2 + y^2}$

$$v(x,y) = \int_{(0,0)}^{(x,y)} -u_y dx + u_x dy + c = \int_{(0,0)}^{(x,y)} \frac{-2y}{x^2 + y^2} dx + \frac{2x}{x^2 + y^2} dy + c$$

$$= \int_0^y \frac{2x}{x^2 + y^2} \, dy + c = 2 \arctan \frac{y}{x} + c$$

$$f(1+i) = u(1,1) + iv(1,1) = \ln 2 + i(2\arctan 1 + c) = \ln 2$$

故
$$c = -\frac{\pi}{2}$$
, $v(x, y) = 2 \arctan \frac{y}{x} - \frac{\pi}{2}$

5. 解: 令 f(x) = -5z, $g(z) = z^4 + 1$ 则 f(x), g(z) = |z| < 1 内均解析, 且当 |z| = 1 时

$$|f(z)| = 5 > |z^4| + 1 \ge |z^4| + 1| = |g(z)|$$

由 *Rouche* 定理知 $z^4 - 5z + 1 = 0$ 根的个数与-5z = 0 根的个数相同.

故
$$z^4 - 5z + 1 = 0$$
 在 $|z| < 1$ 内仅有一个根.

《复变函数》考试试题(十一)参考答案

$$\equiv$$
 1. 1 2. π 3. $u = \frac{1}{2}$ 4. $u = \frac{1}{2}$

5.
$$z_k = \sqrt[4]{a} \left(\cos \frac{2k\pi + \pi}{4} + i\sin \frac{2k\pi + \pi}{4}\right)$$
 $(k = 0, 1, 2, 3)$

6.
$$\frac{1}{3}$$
 7. $\frac{2n^2}{\pi}$ -1 8. 15

9.
$$\frac{\varphi(a)}{\psi'(a)}$$
 10. $-m$

三、1. 解:
$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2}$$
, $\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2}$

$$v(x, y) = \int_{(0,0)}^{(x,y)} -u_y dx + u_x dy + C$$
$$= \int_{(0,0)}^{(x,y)} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy + C$$

$$= \int_0^y \frac{x}{x^2 + y^2} dy + C = \arctan \frac{y}{x} + C.$$

$$= \frac{1}{2} \ln 2 + i(\arctan 1 + C) = \frac{1}{2} \ln 2.$$

故
$$C = -\frac{\pi}{4}$$
, $v(x, y) = \arctan \frac{y}{x} - \frac{\pi}{4}$.

2.解: (1)
$$\tan^2 z = \frac{\sin^2 z}{\cos^2 z}$$
 奇点为 $z = (2k + \frac{1}{2})\pi$, $k = 0, \pm 1 \cdots$ 对任意整数 k ,

$$z = (2k + \frac{1}{2})\pi$$
 为二阶极点, $z = \infty$ 为本性奇点.

(2) 奇点为
$$z_0 = 1$$
, $z_k = 2k\pi i$, $(k = 0, \pm 1\cdots)$

z=1为本性奇点,对任意整数k, z_k 为一级极点, $z=\infty$ 为本性奇点.

3. (1)解:
$$f(z) = \frac{z^{19}}{(z^2+1)^4(z^4+2)^3}$$
 共有六个有限奇点,且均在内 $C: |z| = 4$,

由留数定理,有

$$\int_{|z|=4} f(z)dz = 2\pi i [-\operatorname{Re} s(f,\infty)]$$

将 f 在 $z = \infty$ 的去心邻域内作 Laurent 展开

$$f(z) = \frac{z^{19}}{z^8 (1 + \frac{1}{z^2})^4 \cdot z^{12} (1 + \frac{2}{z^4})^3}$$

$$= \frac{1}{z} \cdot \frac{1}{(1 + \frac{1}{z^2})^4 (1 + \frac{2}{z^4})^3}$$

$$= \frac{1}{z} (1 - \frac{4}{z^2} + \frac{10}{z^4} - \dots) (1 - \frac{6}{z^4} + \frac{z^4}{z^8} + \dots)$$

$$= \frac{1}{z} - \frac{4}{z^3} + \dots$$

所以 Re $s(f, \infty) = -C_{-1} = -1$

$$\int_{|z|=4} f(z)dz = 2\pi i.$$

(2)解: 令 $z = e^{i\theta}$,则

$$I = \int_0^{\pi} \frac{d\theta}{1 + \cos^2 \theta} = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{1 + \cos^2 \theta}$$
$$= \frac{1}{2} \int_{C|z|=1}^{2\pi} \frac{4zdz}{i(z^4 + 6z^2 + 1)}$$

再令
$$z^2 = u 则 \frac{4zdz}{i(z^4 + 6z^2 + 1)} = \frac{2du}{i(u^2 + 6u + 1)}$$
,故

$$I = \frac{1}{2} \cdot 2 \int_{C|z|=1} \frac{2du}{i(u^2 + 6u + 1)} = \frac{2}{i} \int_C \frac{du}{u^2 + 6u + 1}$$

由留数定理,有

$$I = \frac{2}{i} \cdot 2\pi i \operatorname{Re} s(f, -3 + \sqrt{8}) = 4\pi \cdot \frac{1}{4\sqrt{2}} = \frac{\pi}{\sqrt{2}}$$

4.解: 儒歇定理: 设c为一条围线, 若函数f与 φ 均在c内部及c上解析且

 $|\varphi(z)| < |f(z)|$, $z \in c$, 则 $f(z) + \varphi(z)$ 与 f(z) 在 c 内部的零点个数相同.

令
$$f(z) = -5z^4$$
, $g(z) = z^7 + z^2 - 2$ 则 $f(z)$, $g(z)$ 在 $|z|$ <1內解析且

$$||z|| = 1$$
 时 $||f(z)|| = 5 > ||z^7|| + ||z^2|| + 2 ≥ ||z^7|| + ||z^2|| + 2 ≥ ||z|||$

由儒歇定理 $z^7 - 5z^4 + z^2 - 2 = 0$ 的根个数与 $-5z^4 = 0$ 根个数相同

故 $z^7 - 5z^4 + z^2 - 2 = 0$ 在 |z| < 1 内有 4 个根.

四、1.证明:
$$\overline{f(z)} = u(x, -y) - iv(x, -y) = u^* + iv^*$$

$$u^* = u(x, -y), \quad v^* = -v(x, -y)$$

$$u_x^* = u_x, \quad u_y^* = -u_y, \quad v_x^* = -v_x, \quad v_y^* = v_y$$

由 f(z) = u(x, y) + iv(x, y) 在上半平面内解析,从而有

$$u_x = v_y$$
, $u_y = -v_x$.

因此有
$$u_x^* = v_y^*$$
, $u_y^* = -v_x^*$

故 f(z) 在下半平面内解析.

2.证明: (1) $\forall r_1 < r_2$, $0 \le r_1 < r_2 < R$ 则

$$M(r_1) = \max_{|z|=r_1} |f(z)| = \max_{|z|\le r_1} |f(z)|$$

$$M(r_2) = \max_{|z|=r_2} |f(z)| = \max_{|z| \le r_2} |f(z)|$$

故 $M(r_2)$ ≥ $M(r_1)$,即M(r)在[0,R)上为r的上升函数.

(2)如果存在
$$r_1$$
及 r_2 ($0 \le r_1 < r_2 < R$) 使得 $M(r_1) = M(r_2)$

则有
$$\max_{|z| \le r_j} |f(z)| = \max_{|z| = r_j} |f(z)|$$

于是在 $r_1 \le |z| \le r_2$ 内f(z)恒为常数,从而在|z| < R内f(z)恒为常数.

《复变函数》考试试题(十二)参考答案

一、判断题.

二、填空题.

2.
$$(-\pi)^{-1}$$

1.
$$-1$$
 2. $(-\pi)$ 3. $f(z) = z + \frac{1}{z}$ 4. $0, \infty$

6.
$$2\pi$$

5.
$$i$$
 6. 2π 7. 1 8. $\frac{2n^2}{\pi}-1$

三、计算题.

1.
$$M_k = |z|^{\frac{1}{5}} e^{\frac{\arg z + 2k\pi}{5}i}$$
 $k = 0, 1, 2, 3, 4$

$$k = 0, 1, 2, 3, 4$$

由
$$\sqrt[5]{-1} = -1$$
 得 $-1 = e^{\frac{\pi + 2k\pi}{5}i}$ 从而有 $k = 2$

$$w_2(1-i) = 2^{\frac{1}{10}} \cdot e^{\frac{-\frac{\pi}{4} + 4\pi}{5}} i = 2^{\frac{1}{10}} (\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}) = \frac{1-i}{\sqrt[5]{4}}$$

2.解: (1)
$$f(z) = \frac{Lnz}{z^2 - 1}$$
的各解析分支为 $f_k(z) = \frac{\ln z + 2k\pi}{z^2 - 1}$, $(k = 0, \pm 1, \cdots)$.

$$z=1$$
为 $f_0(z)$ 的可去奇点,为 $f_k(z)$ 的一阶极点 $(k=0,\pm 1,\cdots)$ 。

Re
$$s(f_0(z), 1) = 0$$
 Re $s(f_k(z), 1) = k\pi i$. $(k = \pm 1, \pm 2, \cdots)$

(2)
$$\underset{z=0}{\text{Re }} s \frac{e^z}{z^{n+1}} = \underset{z=0}{\text{Re }} s \left[\frac{1}{z^{n+1}} \cdot \sum_{n=0}^{\infty} \frac{z^n}{n!} \right] = \frac{1}{n!}$$

3.计算下列积分

解: (1)
$$f(z) = \frac{z^7}{(z^2 - 1)^3 (z^2 + 2)} = \frac{1}{z(1 - \frac{1}{z^2})^3 (1 + \frac{2}{z^2})}$$

Re
$$s(f, \infty) = -C_{-1} = -1$$

$$\int_{|z|=2} f(z) dz = 2\pi i [-\text{Re } s(f, \infty)] = 2\pi i$$

$$\Leftrightarrow \varphi(z) = \frac{z^2}{(z+ai)^2}, \qquad \varphi'(z) = \frac{2aiz}{(z+ai)^3}$$

$$\varphi'(z) = \frac{2aiz}{(z+ai)^3}$$

則
$$\operatorname{Re} s(f, ai) = \frac{\varphi'(ai)}{1!} = \frac{2(ai^2)}{(2ai)^3} = -\frac{1}{4a}i$$

$$\int_{\operatorname{Im} z>0} f(z)dz = 2\pi i \operatorname{Re} s(f, ai) = \frac{\pi}{2a}$$

$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + a^2)^2} = \frac{\pi}{2a}$$

- 4.儒歇定理: 设c是一条围线, f(z)及 $\varphi(z)$ 满足条件:
 - (1) 它们在c的内部均解析,且连续到c;
 - (2) 在c上, $|f(z)| > |\varphi(z)|$

则 $f = f + \varphi$ 在 c 的内部有同样多零点,

即
$$f(z) = 10$$
 $g(z) = z^6 + 6z$ 有 $|f(z)| > |g(z)|$

由儒歇定理知 $z^6 + 6z + 10 = 0$ 在|z| < 1没有根。

四、证明题

1 证明: .设
$$z = x + iy$$
 有 $f(z) = e^{\overline{z}} = e^x(\cos y - i\sin y)$
 $u(x, y) = e^x \cos y, \quad v(x, y) = -e^x \sin y$
 $\frac{\partial u}{\partial x} = e^x \cos y, \quad \frac{\partial u}{\partial y} = -e^x \sin y, \quad \frac{\partial v}{\partial x} = -e^x \cos y$

易知u(x,y),v(x,y)在任意点都不满足C-R条件,故f在复平面上处处不解析。

2.证明:于高阶导数公式得
$$(e^{z\xi})^{(n)}\Big|_{\xi=0} = \frac{n!}{2\pi i} \int_{|\xi|=1} \frac{e^{z\xi}}{\xi n+1} d\xi$$

$$\mathbb{E} z^n = \frac{n!}{2\pi i} \int_{|\xi|=1} \frac{e^{z\xi}}{\xi n+1} d\xi$$

故
$$\frac{z^n}{n!} = \frac{1}{2\pi i} \int_{|\xi|=1} \frac{e^{z\xi}}{\xi n+1} d\xi$$
 从而 $\left(\frac{z^n}{n!}\right)^2 = \frac{1}{2\pi i} \int_{C:|\xi|=1} \frac{z^n}{n!} \cdot \frac{e^{z\xi}}{\xi n+1} d\xi$

《复变函数》考试试题(十三)参考答案

一、填空题. (每题2分)

1.
$$\frac{1}{r}e^{-i\theta}$$
 2. $\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0 \not \boxtimes \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0$ 3. 0 4. ∞

5. 2 6.
$$1-z^2+z^4-z^6+\cdots(-1)^nz^{2n}+\cdots$$
 7. 椭圆

8.
$$-\frac{1}{2}(1+\sqrt{2}i)$$
 9. $\frac{\sqrt{2}}{2}(1+\frac{\pi}{4})-1$ 10. -1

二、计算题.

1. 计算下列各题. (9分)

$$\Re: (1) \cos i = \frac{1}{2} (e + e^{-1})$$

(2)
$$\ln(-2+3i) = \ln|-2+3i| + i \arg(-2+3i)$$

= $\frac{1}{2} \ln 13 + i(\pi - \arctan \frac{3}{2})$

(3)
$$3^{3-i} = e^{(3-i)\ln 3} = e^{(3-i)(\ln 3 + i \cdot 2k\pi)} = e^{3\ln 3 + 2k\pi + i(6k\pi - \ln 3)}$$

= $27e^{2k\pi} [\cos(\ln 3) - i\sin(\ln 3)]$

3.
$$\Re: \ u = x^2 - y^2 + xy \Rightarrow u_x = 2x + y, u_y = -2y + x$$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2 - 2 = 0 \Rightarrow u$$
 是调和函数.

$$v(x,y) = \int_{(0,0)}^{(x,y)} (-u_y) dx + u_x dy + c = \int_{(0,0)}^{(x,y)} (2y - x) dx + (2x + y) dy + c$$

$$= \int_0^x (-x) dx + \int_0^y (2x + y) dy + c$$

$$= -\frac{x^2}{2} + 2xy + \frac{y^2}{2} + c$$

$$\Rightarrow f(z) = u + iv = (x^2 - y^2 + xy) + i(-\frac{x^2}{2} + 2xy + \frac{y^2}{2} + \frac{1}{2})$$

$$= \frac{1}{2}(2-i)z^2 + \frac{1}{2}i$$

4.
$$\Re (1) \int_{c} (x^{2} + iy)dz = \int_{0}^{1} (x^{2} + ix^{2})d(x + ix^{2}) = -\frac{1}{6} + \frac{5}{6}i$$

(2)
$$\int_0^{1+i} [(x-y) + ix^2] dz = i \int_0^1 (-y) dy + \int_0^1 [(x-1) + ix^2] dx$$
$$= -\frac{i}{2} + \frac{i}{3} - \frac{1}{2} = -\frac{1}{6} (3+i)$$

5.
$$\Re: 0 < |z| < 1 \, \text{ff}(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n + \sum_{n=0}^{\infty} z^n$$

$$= \sum_{n=0}^{\infty} (1 - \frac{1}{z^{n+1}}) z^n$$

$$1 < |z| < 2 \text{ ff } f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = \frac{-1}{2(1-\frac{z}{2})} - \frac{1}{z(1-\frac{1}{z})}$$

$$= -\sum_{n=0}^{+\infty} \frac{z_n}{2n+1} - \sum_{n=0}^{+\infty} \frac{1}{z^n}$$

6.
$$\Re$$
: (1) $\iint_{c=|z|=2} \frac{5z-2}{z(z-1)^2} dz = 2\pi i [-\operatorname{Re} s(f,\infty)] = -4\pi i$

(2)
$$\iint_{z=4} \frac{\sin^2 z}{z^2(z-1)} dz = 2\pi i [-\operatorname{Re} s(f,\infty)] = 0$$

7.解:设
$$f(z) = \frac{z^2}{1+z^4}$$
 $z_1 = \frac{\sqrt{2}}{2}(1+i)$ 和 $z_2 = \frac{\sqrt{2}}{2}(-1+i)$ 为上半平面内的两个一级极点,

$$\mathbb{E} \operatorname{Re} s[f(z), z_1] = \lim_{z \to z_1} \frac{z^2}{[z - \frac{\sqrt{2}}{2}(-1 - i)](z^2 + i)} = \frac{1 + i}{4\sqrt{2}i}$$

Re
$$s[f(z), z_2] = \lim_{z \to z_2} \frac{z^2}{[z - \frac{\sqrt{2}}{2}(-1 - i)](z^2 + i)} = \frac{1 - i}{4\sqrt{2}i}$$

$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx = 2\pi i \left(\frac{1+i}{4\sqrt{2}i} + \frac{1-i}{4\sqrt{2}i}\right) = \frac{\pi}{2}$$

8. (1)
$$R = 1$$
 (2) $R = 9$

9.
$$\text{M}: \ \exists z = x + iy, \ \exists |f(z)| = |z|^2 = x^2 + y^2 \qquad u_x = 2x, u_y = 2y, v_x = v_y = 0$$

当且仅当x = y = 0时,满足C - R条件,故 f(z)仅在z = 0可导,在z平面内处处不解析.

1. 证明:设f = u + iv,因为|f(z)|为常数,不妨设 $u^2 + v^2 = C$ (C为常数)

则
$$u \cdot u_x + v \cdot v_y = 0$$
 $u \cdot u_y + v \cdot v_y = 0$

由于 f(z) 在 D 内解析,从而有 $u_x = v_y$, $u_y = -v_x$

将此代入上述两式可得
$$u_x = u_y = v_x = v_y = 0$$

于是 $u \equiv C_1, v \equiv C_2$ 因此f(z)在D内为常数.

2. 解: 设z = x + iy, a = A + Bi (A, B为实常数)

则
$$\overline{az} = (A - Bi)(x + iy) = (Ax + By) + i(Ay - Bx)$$

$$- - - - - = 0$$

$$az + az + b = az + az + b = 0 \Leftrightarrow 2(Ax + By) + b = 0$$

故
$$\overline{az} + \overline{az} + b = 0$$
 的轨迹是直线 $2Ax + 2By$) $+ b = 0$

《复变函数》考试试题(十四)参考答案

$$1, \quad r^n \left(\cos n\theta + i\sin n\theta\right)$$

$$2 \cdot \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0 \coprod \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0$$

4、有限值 5、4 6、 $1+z^2+z^4+\cdots+z^{2n}+\cdots$

8.
$$\cos\left(\frac{\pi}{2} - \alpha\right) + i\sin\left(\frac{\pi}{2} - \alpha\right)$$
 9. ie^{1+i} 10. $-\frac{1}{6}$

二、计算题。

1、
$$\mu$$
 (1) $\ln(-3+4i)$

$$= \ln 5 + i \left[\pi - \arg \tan \frac{4}{3} + 2n\pi \right]$$

$$= \ln 5 + i \left[-\arg \tan \frac{4}{3} + (2n+1)\pi \right] (n = 0, \pm 1, \pm 2, \cdots)$$

(2)
$$ie^{-1+\frac{\pi i}{6}} = \frac{1}{e} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = \frac{1}{e} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$$

$$(3) \left(1-i\right)^{1+i} = e^{(1+i)\ln(1-i)} = e^{(1+i)\left[\ln\sqrt{2}+i\left(-\frac{\pi}{4}+2k\pi\right)\right]} = e^{\left(\ln\sqrt{2}+\frac{\pi}{4}-2k\pi\right)+i\left(-\frac{\pi}{4}+2k\pi+\ln\sqrt{2}\right)}$$
$$= = \sqrt{2}e^{\frac{\pi}{4}-2k\pi} \left[\cos\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)+i\sin\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)\right]$$

2.
$$\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } z^3 = -2 = 2e^{i\pi} \qquad \qquad z = \sqrt[3]{2}e^{i\frac{\pi+2n\pi}{3}} \left(n = 0, 1, 2\right)$$

故: 方程
$$z^3 + 2 = 0$$
 共有三个根,分别为: $\frac{\sqrt[3]{2}}{2} (1 \pm \sqrt{3}i), -\sqrt[3]{2}$

$$3, \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } u_x = 2y, u_y = 2(x-1)$$

$$\frac{\partial^2 u}{\partial x^2} = 0 = \frac{\partial^2 u}{\partial y^2}$$

故u是调和函数。

$$v(x, y) = \int_{(0,0)}^{(x,y)} -u_y dx + u_x dy + c$$

4.
$$\Re: (1) \int_0^{1+i} \left[(x-y) + ix^2 \right] dz = \int_0^1 \left(ix^2 \right) d(x+ix)$$

$$=i(1+i)\cdot\frac{x^3}{3}\bigg|_0^1=\frac{1}{3}(i-1)$$

(2)
$$\int_0^{1+i} \left[(x-y) + ix^2 \right] dz = \frac{1}{3} (i-1)$$

5.
$$\text{AFI:} \quad f(z) = \frac{1}{z-2} = -\frac{1}{3\left(1 - \frac{z+1}{3}\right)} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{(z+1)^n}{3^n}$$

$$= -\sum_{n=0}^{\infty} \frac{(z+1)^n}{3^{n+1}}$$

6.
$$\text{ME:} (1) \quad \iint_{|z|=2} \frac{\sin z}{(z-\frac{\pi}{2})^2} dz = 2\pi i \cdot \cos(\frac{\pi}{2}) = 0$$

(2)
$$f(z) = \frac{z^2 - 2}{z^2(z - 3)} = \frac{1}{z}(1 + \frac{3}{z} + \cdots)$$

$$\operatorname{Re} s(f, \infty) = -C_{-1} = -1$$

$$\iint_{|z|=4} f(z)dz = 2\pi i \left[-\operatorname{Re} s(f,\infty) \right] = 2\pi i$$

7. 解: 设
$$z = e^{i\theta}$$
 则 $d\theta = \frac{dz}{iz}$, $\sin \theta = \frac{z^2 - 1}{2iz}$

$$\int_0^{2\pi} \frac{d\theta}{5 + 3\sin\theta} = \iint_{|z|=1} \frac{2dz}{3z^2 + 10iz - 3} = \iint_{|z|=1} \frac{2}{3(z + 3i)(z + \frac{i}{3})} dz$$

令
$$f(z) = \frac{2}{3(z+3i)(z+\frac{i}{3})}$$
, 则 f 在 $|z| = 1$ 内只有一级权点, $z = -\frac{i}{3}$,依离数定理有

$$\int_0^{2\pi} \frac{d\theta}{5 + 3\sin\theta} = 2\pi i \operatorname{Re} s \left[f(z), -\frac{i}{3} \right] = 2\pi i \left(-\frac{i}{4} \right) = \frac{\pi}{2}$$

8.
$$\Re: (1) \ \left| \left(1+i \right) z \right| < 1 \ \ \ \, |z| < \frac{1}{\sqrt{2}} \ . \ \ \ \, \text{th} \ R = \frac{1}{\sqrt{2}}$$

$$(2) \quad C_n = \frac{(n!)^2}{n^n}$$

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_n + 1} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \frac{1}{n + 1} = 0$$

9.解 设
$$u(x,y) = my^3 + nx^2y, v(x,y) = x^3 + lxy^2,$$
则 $\frac{\partial u}{\partial x} = 2nxy, \frac{\partial u}{\partial y} = 3my^2 + nx^2,$

$$\frac{\partial v}{\partial x} = 3x^2 + ly^2, \frac{\partial v}{\partial y} = 2lxy, \, \text{因} f(z) 解析, \, \text{由} C - R 条件有 \begin{cases} 2nxy = 2lxy \\ 3my^2 + nx^2 = -3x^2 - ly^2 \end{cases}, 解得$$

$$l = -3, m = 1, n = -3.$$

三 1. 证明 设
$$f = u + iv$$
,由 $f \in H(D)$ 有 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$,(1)

又
$$\overline{f(z)} = u - iv$$
 也在 D 也解析,有 $\frac{\partial u}{\partial x} = \frac{\partial (-v)}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial (-v)}{\partial x}$, (2)

由(1)与(2)得
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = -\frac{\partial v}{\partial x} = 0$$

故 f 在 D 内为常数.

2. 证明,设
$$z = x + iy$$
, $a = A + iB$, 有 $az = (A - iB)(x + iy) = (Ax + By) + i(Ay - Bx)$

$$-az + az + b = az + az + b = 2(Ax + By) + b = 0$$

即点 z 在直线 2Ax + 2By + b = 0 上 A, B, b 为实常数.