Computational and Asymptotic Complexity

Lesson 3.1

Learning Objectives

- LO 3.1.1 **Define** Big O (O), Omega (Ω), Theta (Θ) notations
- LO 3.1.2 **Differentiate** computational from asymptotic complexity
- LO 3.1.3 **Prove/disprove** asymptotic complexity assumptions of a function/algorithm

Computational Complexity

- Developed by Juris Hartmanis and Richard Stearns
- Used to measure the degree of difficulty of an algorithm

Computational Complexity

To evaluate an algorithm's efficiency, real-time units such as microseconds and nanoseconds should not be used.

Rather, logical units that express a relationship between the size n of a file or an array and the amount of time t required to process the data should be used.

Computational Complexity

If there is a linear relationship between the size n and time t, i.e., t_1 = cn_1 , then an increase of data by a factor of 5 results in the increase of the execution time by the same factor; if n_2 = $5n_1$, then t_2 = $5t_1$.

Similarly, if $t_1 = \log_2 n$, then doubling n increases t by only one unit of time.

Therefore, if $t_2 = \log_2(2n)$, then $t_2 = t_1 + 1$.

Asymptotic Complexity

A function expressing the relationship between n and t is usually much more complex, and calculating such a function is important only in regard to large bodies of data.

A measure of efficiency called **asymptotic complexity** is used when disregarding certain terms of a function to express the efficiency of an algorithm or when calculating a function is difficult or impossible and only approximations can be found.

Asymptotic Complexity

The growth rate of all terms of function $f(n) = n^2 + 100n + \log_{10} n + 1{,}000$

n	f(n)	n²		100n		log ₁₀ n		1000	
	Value	Value	%	Value	%	Value	%	Value	%
1	1,101	1	0.1	100	9.100	9	0.000	1,000	90.830
10	2,101	100	4.76	1,000	47.600	1	0.050	1,000	47.600
100	21,002	10,000	47.6	10,000	47.600	2	0.001	1,000	4.760
1,000	1,101,003	1,000,000	90.8	100,000	9.100	3	0.000	1,000	0.090
10,000	101,001,004	100,000,000	99.0	1,000,000	0.990	4	0.000	1,000	0.001
100,000	10,010,001,005	10,000,000,000	99.9	10,000,000	0.099	5	0.000	1,000	0.000

Definition

f(n) is O(g(n)) if there exist positive numbers c and N such that $f(n) \leq c \cdot g(n)$ for all $n \geq N$.

The relationship between f and g can be expressed by stating either

- $c \cdot g(n)$ is an upper bound on the value of f(n)
- in the long run, f grows at most as fast as g.

Example: Is $3n^2 + 5n + 100$, $O(n^2)$?

Definition

f(n) is O(g(n)) if there exist positive numbers c and N such that $f(n) \leq c \cdot g(n)$ for all $n \geq N$.

Solution

Let
$$N = 15$$
, $c = 4, 5, 6, 7, ...$

$$3n^2 + 5n + 100 \le 4n^2$$
 $3n^2 + 5n + 100 \le 6n^2$ and so on...

$$3n^2 + 5n + 100 \le 5n^2$$
 $3n^2 + 5n + 100 \le 7n^2$

Example:

$$3n^2 + 5n + 100 \text{ is } O(n^2)$$

$$f(n) = 3n^2 + 5n + 100$$

$$g(n) = n^2$$

 $c \cdot g(n)$ always upper bounds f(n)

$$f(n)$$
 is $O(n^2)$

Big Ω Notation

Definition

f(n) is $\Omega(g(n))$ if there exist positive numbers c and N such that $f(n) \geq c \cdot g(n)$ for all $n \geq N$.

The relationship between f and g can be expressed by stating either

- $c \cdot g(n)$ is a lower bound on the size of f(n)
- in the long run, f grows at least the rate of g.

Big Ω Notation

Example: Is $3\log(n)+10$, $\Omega(\log(n))$?

Definition

f(n) is $\Omega(g(n))$ if there exist positive numbers c and N such that $f(n) \geq c \cdot g(n)$ for all $n \geq N$.

Solution

Let
$$N = 20$$
, $c = 1, 2, 3$

$$3\log(n) + 10 \ge 3\log(n) \qquad 3\log(n) + 10 \ge \log(n)$$

$$3\log(n) + 10 \ge 2\log(n)$$

Big Ω Notation

Example:

$$3\log(n)+10 \text{ is } \Omega(\log(n))$$

$$f(n) = 3\log(n) + 10$$

$$g(n) = \log(n)$$

 $c \cdot g(n)$ lower bounds f(n)

 $\therefore f(n) \text{ is } \Omega(\log(n))$

Definition

f(n) is $\Theta(g(n))$ if there exist positive numbers c_1 , c_2 , and N such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq N$.

The relationship between f and g can be expressed by stating either

- f has an order of magnitude g
- in the long run, f grows at the same rate as g.

Example: Is $3 \cdot 2^n + 3n^3 + 5000$, $\Theta(2^n)$? $\Theta(n^3)$?

Definition

f(n) is $\Theta(g(n))$ if there exist positive numbers c_1 , c_2 , and N such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq N$.

Solution

Let
$$N = 14$$
, $c_1 = 3$, $c_2 = 4$

$$3 \cdot 2^n \le 3 \cdot 2^n + 3n^3 + 5000$$

$$3n^3 \le 3 \cdot 2^n + 3n^3 + 5000$$

$$3 \cdot 2^n + 3n^3 + 5000 \le 4 \cdot 2^n$$

$$3 \cdot 2^n + 3n^3 + 5000 \nleq 4n^3$$

Example:

$$3 \cdot 2^n + 3n^3 + 5000 \text{ is } \Theta(2^n)$$

$$3 \cdot 2^n + 3n^3 + 5000 \text{ is } \Theta(n^3)$$

$$f(n) = 3n^2 + 5n + 100$$

$$g(n) = 2^n$$

- $\therefore f(n) \text{ is } \Theta(2^n)$
- f(n) is not $\Theta(n^3)$

Strengthening the the Learning Objectives

LO 3.1.1 Define Big O (0), Omega (Ω), Theta (Θ) notations

Match the following in column A with the definitions in column B:

\mathbf{A}			В

- 1. f(n) is O(g(n))
- 2. f(n) is $\Omega(g(n))$
- 3. f(n) is $\Theta(g(n))$

- if there exist positive numbers c_1 , c_2 , and N such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq N$.
- if there exist positive numbers c and N such that $f(n) \ge c \cdot g(n)$ for all $n \ge N$.
- if there exist positive numbers c and N such that $f(n) \leq c \cdot g(n)$ for all $n \geq N$.

LO 3.1.2 Differentiate computational from asymptotic complexity

Example:

- 1. Proving an algorithm runs on linear time in any case of n.
- 2. Modeling the exact space requirements that needs to be allocated for a procedure processing n items.
- 3. Finding the worst case time complexity of a function.

LO 3.1.3 Prove/disprove asymptotic complexity assumptions of a function/algorithm

Example:

1.
$$7n^2 + 4n \text{ is } O(n)$$

2.
$$n! + 2^n$$
 is $\Omega(n!)$

3.
$$8n^2 + 4n + 2$$
 is $\Theta(n^3)$.

4.
$$f(n) + g(n)$$
 is $\Theta(\min(f(n), g(n)))$