

Tape and Reel Packaging Standards

BRD8011/D Rev. 16, August–2014

Micro8 is a trademark of International Rectifier.

PowerFLEX is a trademark of Texas Instruments Incorporated.

POWERMITE is registered trademark of and used under a license from Microsemi Corporation.

MicroLeadless is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regardi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor Tape and Reel Packaging Standards

In Brief . . .

This booklet has been offered to assist those looking to coordinate packaging specifications with assembly line requirements. Additionally, dimensional and ordering information is supplied for those discrete devices that take the form of axial-leaded parts.

Page
Surface Mount
Packaging Standards 4
Ordering Information 7
Former CMD Tape and Reel Standards 10
Product Orientation
Dimension Standards
Thru Hole
TO-92 Radial Tape Specifications 28
(Fan Fold Box and on Reel)
Axial-Leaded
Lead Tape Standards for Axial-Lead
Components
Information for Using
Surface Mount Packages
Humidity Indicator Card 40

Tape and Reel Packaging Standards

Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the "peel-back" cover tape.

- Two Reel Sizes Available (7" and 13")
- Used for Automatic Pick and Place Feed Systems
- Minimizes Product Handling
- EIA 481, -1, -2 Series
- DFN/QFN covers all other Thickness Designators for these packages; i.e. WDFN, UDFN, XDFN, etc..
- 8 mm Tape: 6-Bump, 9-Bump, 10-Bump, MicroLeadless[™], ChipFET, DFN/QFN packages ≤ 3.3x3.3, DSN, Flip-Chip, SOD-123, SC-59, SC-70, SC-74, SC-74A, SC-75, SC-82, SC-82AB, SC-88, SC-88A, SC-89, SOD-123, SOD-323, SOD-523, SOD-723, SOD-923, SOT-143, SOT-23, SOT-23L, SOT-323, SOT-353, SOT-553/563, SOT-723, SOT-883, SOT-1123, TSOP-5, TSOP-6, US8, WLCSP-4, WLCSP-5, XDFN2, X3DFN, XLLGA
- 12 mm Tape: DFN/QFN packages > 3.3x3.3 and ≤ 7x7, FCBGA-16, Micro10, Micro8[™], PowerFLEX[™], POWERMITE [™], QSOP-16, SMA, SMB, SO-8 (SOIC 8), SOT-223, SOT-89, SSOP-8, TSSOP-8, TSSOP-10, TSSOP-14, TSSOP-16
- 16 mm Tape: DFN/QFN packages > 7x7, DPAK, FCBGA-16, PLCC-20, QSOP-24, SMC, SO-14 (SOIC 14), SO-16 (SOIC 16), SO-16 Wide (SOIC 16W), SOIC-EIAJ8, SOIC-EIAJ14, SOIC-EIAJ16, SOP-16, SSOP-14 Wide, SSOP36-EP, TQFP-32, TSSOP-20
- 24 mm Tape: D²PAK, FCBGA-81, LQFP-52, LQFP-64, PLCC-28, SO-18 Wide (SOIC 18W), SO-20 Wide (SOIC 20W), SO-24 Wide (SOIC 24W), SOEIAJ-20, SSOP36-EP (Non-standard), TQFP-52, TQFP-64, TSSOP-48
- 32 mm Tape: PLCC-44, PLCC-52, SO-28L Wide (SOIC 28W), SO-28 Wide (SOIC 28W), SO-32 Wide (SOIC 32W),
- 44 mm Tape: PLCC-98, PLCC-84
- For Leadless Package Pin 1 Orientation, please see Figure 40 (Effective January 2007).

Use the standard device title and add the required suffix as listed in the option table on the following page. Note that the individual reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.

Package	Tape Width	Pitch mm (Dimension P₁)	Reel	Size	Devices Per Reel and Min	Tape and Reel Suffix	Fig	Page
i dokage	mm	(inch)	(mm)	(in)	Order Quantity	Tupe and Reel Camx	No	No
6-Bump (1.489x0.989)	8	$4.0 \pm 0.1 \; (0.158 \pm 0.004)$	178	7	3,000	T1 - TMOS	7	14
9-Bump (1.489x1.489)	8	$4.0 \pm 0.1 \; (0.158 \pm 0.004)$	178	7	3,000	T1 - TMOS	7	14
10-Bump	8	4.0 ± 0.1 (0.158 ± 0.004)	178	7	3,000	T1 – Discrete	7	14
Axial Leaded		See Axial	Leaded	packa	ge standards begir	nning on page 28		
ChipFET	8	$4.0 \pm 0.1 \; (0.158 \pm 0.004)$	178	7	3,000	T1 - TMOS	11	15
D ² PAK 3 Lead	24	16.0 ± 0.1 (0.630 ± 0.004)	330	13	800	R4 Analog T4 – Discrete	1	13
D ² PAK 5 Lead	24	16.0 ± 0.1 (0.630 ± 0.004)	330	13	800	R4 – Analog T4 – Discrete	1	13
D ² PAK 7 Lead	24	16.0 ± 0.1 (0.630 ± 0.004)	330	13	750	R7 – Analog	1	13
DFN/QFN ≤ 1.2x1.6x0.9	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	8000	N/A	37	19
DFN/QFN ≤ 1.4x1.4mm	8	$2.0 \pm 0.1 \; (0.079 \pm 0.004)$	178	7	See Data Sheet	Various	37–40	19,20
DFN/QFN ≤ 3.3x3.3mm	8 8	4.0 ± 0.1 (0.158 ± 0.004) 4.0 ± 0.1 (0.158 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DFN/QFN ≥ 3.0x3.0mm and ≤ 7x7mm	12 12	8.0 ± 0.1 (0.315 ± 0.004) 8.0 ± 0.1 (0.315 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DFN/QFN 7x7mm	12 12	16.0 ± 0.1 (0.630 ± 0.004) 16.0 ± 0.1 (0.630 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DFN/QFN 9x9mm	16 16	12.0 ± 0.1 (0.471 ± 0.004) 12.0 ± 0.1 (0.471 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DFN/QFN 10x10mm	16 16	16.0 ± 0.1 (0.630 ± 0.004) 16.0 ± 0.1 (0.630 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DFN/QFN 10.5x10.5mm	16 16	16.0 ± 0.1 (0.630 ± 0.004) 16.0 ± 0.1 (0.630 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	See Data Sheet See Data Sheet	37–40	19,20
DO-41	79	5.08 ± 0.508	356	14	5,000	RL – Discrete	N/A	33
DPAK	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,800	RL – Discrete	4	13
DPAK	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500	T4, T5 – Discrete RK, T5 – Analog	2, 3	13
DSN	8	$2.0 \pm 0.05 \; (0.079 \pm 0.002)$	178	7	5,000	T5 – Discrete	6	14
FCBGA-16	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500/500	R2 – Clock & Data Mgmt	36	19
FCBGA-49	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	2,000/500	R2 – Clock & Data Mgmt	36	19
FCBGA-81	24	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	1,500/500	R2 – Clock & Data Mgmt	36	19
Flip-Chip	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	3,000	T1 – Discrete	N/A	N/A
LGA17 5.97x3.43	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	178	7	250	XTP	45	27
LQFP – 48	16	$12.0 \pm 0.1 \ (0.471 \pm 0.004)$	330	13	2,000	R48 – Analog	8	14
LQFP-32	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1800 or 2000	R2 – Analog, Clock & Data Mgmt	8	14
LQFP-52	24	$16.0 \pm 0.1 \; (0.630 \pm 0.004)$	330	13	1,500	R2 – Clock & Data Mgmt	8	14
LQFP-64	24	$16.0 \pm 0.1 \; (0.630 \pm 0.004)$	330	13	1,500	R2 – Clock & Data Mgmt	8	14
Micro10	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	4,000	R2 – Analog, Discrete	32	18
Micro8™	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500	R2, T – Analog	32	18
Micro8	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	4,000	R2 – Analog, Discrete	32	18

Dealeana	Tape Width	Pitch mm (Dimension P₁)	Reel	Size	Devices Per Reel and Min	Towns and Book Cuffin	Fig	Page
Package	mm	(inch)	(mm)	(in)	Order Quantity	Tape and Reel Suffix	No	No
PLCC-20	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R2 – Clock & Data Mgmt	9	14
PLCC-28	24	16.0 ± 0.1 (0.630 ± 0.004)	330	13	500	R2 – Clock & Data Mgmt	9	14
PLCC-44	32	24.0 ± 0.1 (0.942 ± 0.004)	330	13	500	R2 – Clock & Data Mgmt, Analog	9	14
PLCC-44	32	24.0 ± 0.1 (0.942 ± 0.004)	330	13	500	R44 – Analog	9	14
PLCC-52	32	24.0 ± 0.1 (0.942 ± 0.004)	330	13	500	R2 – Clock & Data Mgmt, Analog	9	14
PLCC-68	44	32.0 ± 0.1 (1.256 ± 0.004)	330	13	250	R2 – Clock & Data Mgmt, Analog	9	14
PLCC-84	44	36.0 ± 0.1 (1.418 ± 0.004)	330	13	250	R2 – Clock & Data Mgmt, Analog	9	14
PowerFLEX™	12	$24.0 \pm 0.1 \; (0.942 \pm 0.004)$	330	13	2,000	R7 – Analog	1	13
POWERMITE®	12	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, TR7 – Discrete	20	16
POWERMITE	12	4.0 ± 0.1 (0.157 ± 0.004)	330	13	12,000	T3, TR13 – Discrete	20	16
SC-59	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2 – Discrete	13	15
SC-59	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Discrete	13	15
SC-70	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	3,000	T1 – Discrete	13	15
SC-70	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Discrete	13	15
SC-70 5 Lead	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Analog	15	15
SC-70 6 Lead	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Analog	22	17
SC-70 6 Lead	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Analog	22	17
SC-74	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Discrete	14	15
SC-74A	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Discrete	12	15
SC-75	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Discrete	13	15
SC-82	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	TR – Analog	10	15
SC-82AB	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Analog, Discrete	10	15
SC-88	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Discrete	22	17
SC-88	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2 – Discrete T1 – Analog	22	17
SC-88A	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	3,000	T1, T2 – Discrete	15	15
SC-88A	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	330	13	10,000	T3, T4 – Discrete	15	15
SC-89	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	3,000	T1 – Discrete	13	15
SC-89	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	330	13	10,000	T3 – Discrete	13	15
SIP21 3.10x5.08	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	178	7	250	Т	45	27
SIP33 3.10x4.75	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	178	7	250		45	27
SMA	12	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	1,500	T1 – Discrete	21	16
SMA	12	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	330	13	5,000	T3 – Discrete	21	16
SMB	12	$8.0 \pm 0.1 \ (0.315 \pm 0.004)$	178	7	1,000	T1 – Discrete	21	16
SMB	12	$8.0 \pm 0.1 \ (0.315 \pm 0.004)$	330	13	2,500	T3 – Discrete	21	16
SMC	16	$8.0 \pm 0.1 \ (0.315 \pm 0.004)$	330	13	2,500	T3 – Discrete	21	16
SO-8 (SOIC 8)	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500 / 3,000	R8 – Analog E.G.*	32	18
SO-8 (SOIC 8)	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500 / 3,000	R2 – TMOS, Analog, Clock & Data Mgmt	32	18
SO-8 (SOIC 8)	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500 / 3,000	T3 – EEPROM	32	18
SO-14 (SOIC 14)	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	R14 – Analog E.G.*	32	18
SO-14 (SOIC 14)	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	R2 – Clock & Data Mgmt, Logic, Analog	32	18
SO-16 (SOIC 16)	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	R2 – Clock & Data Mgmt, Logic, Analog	32	18

^{*} Applies to Analog devices manufactured at the East Greenwich, Rhode Island, USA facility.

Packago	Tape Width	Pitch mm (Dimension P₁)	Reel	Size	Devices Per Reel and Min	Tana and Bool Suffix	Fig	Page
Package	mm	(inch)	(mm)	(in)	Order Quantity	Tape and Reel Suffix	No	No
SO-16 (SOIC 16)	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	R16 – Analog E.G.*	32	18
SO-16 Wide (SOIC 16W)	16	8.0 ± 0.1 (0.315 ± 0.004)	330	13	1,500	R2 – Clock & Data Mgmt, Logic, Analog	32	18
SO-16 Wide (SOIC 16W)	16	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	1,500	R16 – Analog E.G.*	32	18
SO-18 Wide (SOIC 18W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R2 – Clock & Data Mgmt	32	18
SO-18 Wide (SOIC 18W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R18 – Analog E.G.*	32	18
SO-20 Wide (SOIC 20W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,500	R2 – Analog, Clock & Data Mgmt	32	18
SO-20 Wide (SOIC 20W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,500	R20 – Analog E.G.*	32	18
SO-24 Wide (SOIC 24W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,500	R2 – Analog, Clock & Data Mgmt	32	18
SO-24 Wide (SOIC 24W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,500	R24 – Analog E.G.*	32	18
SO-28 Wide (SOIC 28W)	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R2 – Analog, Clock & Data Mgmt	33	18
SO-28L Wide (SOIC 28W)	32	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R3 – Analog	33	18
SO-28 Wide (SOIC 28W)	32	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R28- Analog E.G.*	33	18
SO-32 Wide (SOIC 32W)	32	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,000	R32- Analog E.G.*	32	18
SOIC-EIAJ8	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	2,000	T2 – EEPROM	32	18
SOIC-EIAJ14	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	2,000	EL – Logic	32	18
SOIC-EIAJ16	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	2,000	EL – Logic	32	18
SOIC-EIAJ20	24	$12.0 \pm 0.1 \ (0.471 \pm 0.004)$	330	13	2,000	EL – Logic	32	18
SOD-123	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	3,000	T1, T2 – Discrete	26	17
SOD-123	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	330	13	10,000	T3 – Discrete	26	17
SOD-323	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	3,000	T1 – Discrete	26	17
SOD-323	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	330	13	10,000	T3 – Discrete	26	17
SOD-523	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	3,000	T1 – Discrete	29	18
SOD-523	8	$2.0 \pm 0.05 \ (0.079 \pm 0.002)$	178	7	8,000	T5 – Discrete	29	18
SOD-723	8	2.0 ± 0.05 (0.079 ± 0.002)	178	7	8,000	T5 – Discrete	30	18
SOD-923	8	2.0 ± 0.05 (0.079 ± 0.002)	178	7	8,000	T5 – Discrete	30	18
SON-6	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	3,000	T1 – Analog	27	17
SON-8	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	178	7	3,000	T1 – Analog	N/A	N/A
SOP-16	16	$8.0 \pm 0.1 \ (0.315 \pm 0.004)$	330	13	2,500	R2 – Analog	32	18
SOT-143	8	$4.0 \pm 0.1 \ (0.157 \pm 0.004)$	330	13	10,000	T3, T4 – Discrete	25	17
SOT-143	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2, Discrete T – Analog	25	17
SOT-223	12	$8.0 \pm 0.1 \ (0.315 \pm 0.004)$	178	7	1,000	T1 – Discrete, Analog	31	18
SOT-223	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500	R3 or T3 – Analog E.G.*	31	18
SOT-223	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	4,000	T3 – Discrete, TMOS T3 – Analog	31	18
SOT-23	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	3,000	T1, – Discrete TR, T1 – Analog	13	15
SOT-23	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	330	13	10,000	T3 – Discrete	13	15

^{*} Applies to Analog devices manufactured at the East Greenwich, Rhode Island, USA facility.

Package	Tape Width	Pitch mm (Dimension P₁)	Reel	Size	Devices Per Reel and Min	Tape and Reel Suffix	Fig	Page
1 ackage	mm	(inch)	(mm)	(in)	Order Quantity	Tape and Reel Gamx	No	No
SOT-23 5 Lead	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, TR, T – Analog	12	15
SOT-23 6 Lead	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, R1 – Analog	14	15
SOT-23L	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4,000	R2- Analog	13	15
SOT-323	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1 – Discrete	13	15
SOT-323	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Discrete	13	15
SOT-353	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2 – Discrete	15	15
SOT-353	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3, T4 – Discrete	15	15
SOT-553/563	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4,000	T1 – Discrete, Logic	16,17	16
SOT-553/563	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4,000	T2 – Discrete, Logic, Analog	16,17	16
SOT-553/563	8	$2.0 \pm 0.05 \ (0.079 \pm 0.002)$	178	7	8,000	T5 – Discrete, Logic	16,17	16
SOT-553/563	8	$2.0 \pm 0.05 \ (0.079 \pm 0.002)$	178	7	8,000	T6 – Discrete, Logic	16,17	16
SOT-723	8	$2.0 \pm 0.05 \ (0.079 \pm 0.002)$	178	7	8,000	T5 – Discrete	13	15
SOT-89	12	8.0 ± 0.1 (0.315 ± 0.004)	178	7	1,000	T1, R1 – Discrete T1 – Analog	23	17
SOT-883	8	2.0 ± 0.1 (0.158 ± 0.004)	178	7	8,000	T5 – Discrete	5	14
SOT-953/963	8	$2.0 \pm 0.05 \ (0.079 \pm 0.002)$	178	7	8,000	T5 – Discrete, Logic	18,19	16
SOT-1123	8	2.0 ± 0.1 (0.158 ± 0.004)	178	7	8,000	T5 – Discrete	28	17
SSOP-8	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	T1- Analog	32	18
SSOP-14	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	2,000	R14 – Analog E.G.*	32	18
SSOP-16	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	2,000	R16 – Analog E.G.*	32	18
SSOP-20	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	2,000	R20 – Analog E.G.*	32	18
SSOP-24 Wide	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	2,000	R24 – Analog E.G.*	32	18
SSOP-36 EP	16	$12.0 \pm 0.1 \; (0.471 \pm 0.004)$	330	13	1,500	R2 – Analog	32	18
SSOP-36 EP	24*	12.0 ± 0.1 (0.471 ± 0.004)	330	13	1,500	R2 – Analog (*Non-standard)	32	18
TO-92		See TO-92 and oth	er Axial l	_eaded	package specifica	tions beginning on page 28		
TQFP-32	16	12.0 ± 0.1 (0.471 ± 0.004)	330	13	2,000	R2 – Analog, Clock & Data Mgmt	8	14
TQFP-52	24	$16.0 \pm 0.1 \; (0.630 \pm 0.004)$	330	13	1,500	R2 – Clock & Data Mgmt	8	14
TQFP-64	24	$16.0 \pm 0.1 \; (0.630 \pm 0.004)$	330	13	1,500	R2 – Clock & Data Mgmt	8	14
TSOP-5	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2 – Discrete T1, T2, TR – Analog	12	15
TSOP-5	8	4.0 ± 0.1 (0.157 ± 0.004)	330	13	10,000	T3 – Discrete	12	15
TSOP-6	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	T1, T2 – Analog, Discrete	14	15
TSOP-6	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	330	13	10,000	T3 – Analog, Discrete	14	15
TSSOP-10	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500	R2 – Clock & Data Mgmt	32	18
TSSOP-14	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	2,500	R2 – Analog, Clock & Data Mgmt	32	18
TSSOP-16	12	8.0 ± 0.1 (0.315 ± 0.004)	330	13	2,500	R2 – Analog, Clock & Data Mgmt	32	18
TSSOP-20	16	8.0 ± 0.1 (0.315 ± 0.004)	330	13	2,500	R2 – Analog, Clock & Data Mgmt	32	18
TSSOP-24	16	8.0 ± 0.1 (0.315 ± 0.004)	330	13	2,500	R2 – Analog, Clock & Data Mgmt	32	18
TSSOP-48	24	12.0 ± 0.1 (0.471 ± 0.004)	330	13	2,500	R2 – Clock & Data Mgmt	32	18
TSSOP-8	12	8.0 ± 0.1 (0.315 ± 0.004)	330	13	2,500	R2 – Analog, Clock & Data Mgmt	32	18
TSSOP-8	12	8.0 ± 0.1 (0.315 ± 0.004)	330	13	4,000	R2 – Discrete, MOS	32	18
TSSOP-8	12	$8.0 \pm 0.1 \; (0.315 \pm 0.004)$	330	13	3,000	R3 – Discrete, MOS	32	18
US8	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	3,000	US – Logic	24	17

WLCSP 8-Bump 0.652x0.834mm	8	$4.0 \pm 0.1 \; (0.157 \pm 0.004)$	178	7	4000	N/A	39	19
WLCSP 12–Bump 0.652x1.134mm	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4000	N/A	39	19
WLCSP 8-Bump 0.722x0.879mm	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4000	N/A	39	19
WLCSP 10-Bump 0.722x1.029mm	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4000	N/A	39	19
WLCSP 12–Bump 0.722x1.179mm	8	4.0 ± 0.1 (0.157 ± 0.004)	178	7	4000	N/A	39	19
WLCSP ≤ 0.86x0.84mm	8	2.0 ± 0.1 (0.079 ± 0.004)	178	7	5000	TR	37–40	19,20
WLCSP ≤ 1.4x1.4mm	8	2.0 ± 0.1 (0.079 ± 0.004)	178	7	See Data Sheet	Various	37–40	19,20
WLCSP ≤ 3.3x3.3mm	8	$4.0 \pm 0.1 \ (0.158 \pm 0.004) \ 4.0 \pm 0.1 \ (0.158 \pm 0.004)$	178 330	7 13	See Data Sheet See Data Sheet	Various Various	37–40	19,20
WLCSP > 3.3x3.3mm and ≤ 7x7mm	12 12	$8.0 \pm 0.1 \; (0.315 \pm 0.004) \ 8.0 \pm 0.1 \; (0.315 \pm 0.004)$	178 330	7 13	See Data Sheet See Data Sheet	Various Various	37–40	19,20
WLCSP > 7x7mm and ≤ 8x8mm	12 12	16.0 ± 0.1 (0.630 ± 0.004) 16.0 ± 0.1 (0.630 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	Various Various	37–40	19,20
WLCSP> 8x8mm and ≤ 10.5x10.5mm	16 16	12.0 ± 0.1 (0.471 ± 0.004) 12.0 ± 0.1 (0.471 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	Various Various	37–40	19,20
WLCSP >10.5x10.5mm	16 16	16.0 ± 0.1 (0.630 ± 0.004) 16.0 ± 0.1 (0.630 ± 0.004)	178 330	7 13	See Data Sheet See Data Sheet	Various Various	37–40	19,20
XDFN2	8	$2.0 \pm 0.1 \; (0.158 \pm 0.004)$	178	7	8,000	T5 – Discrete	5	14
XLLGA	8	$2.0 \pm 0.1 \; (0.158 \pm 0.004)$	178	7	8,000	T5 – Discrete	35	19

^{*} Applies to Analog devices manufactured at the East Greenwich, Rhode Island, USA facility.

Former CMD Tape & Reel Standards, by Package

Former CMD Tape and Reel Standards by Package

Package	Package Size (mm)	Tape Width	Reel Diameter	Quantity per Reel	P ₀	P ₁	Orientation Quadrant
CSP, 2-Bump	0.60 x 0.30 x 0.275	8 mm	178 mm (7")	15,000	4 mm	4 mm	Тор
CSP, 4-Bump	0.8 x 0.8 x 0.50	8 mm	178 mm (7")	10,000	4 mm	2 mm	В
CSP, 4-Bump	0.8 x 0.8 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 4-Bump	0.96 x 0.96 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 4-Bump	0.96 x 0.96 x 0.65	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 5-Bump	1.05 x 0.76 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 5-Bump	1.20 x 0.80 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 5-Bump	1.33 x 0.96 x 0.606	8 mm	178 mm (7")	3500	4 mm	4 mm	А
CSP, 5-Bump	1.33 x 0.96 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	А
CSP, 5-Bump	1.41 x 0.93 x 0.606	8 mm	178 mm (7")	3500	4 mm	4 mm	А
CSP, 5-Bump	1.41 x 0.95 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	А
CSP, 5-Bump	1.59 x 1.22 x 0.64	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 6-Bump	1.46 x 0.96 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 6-Bump	1.72 x 1.22 x 0.64	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 6-Bump	1.804 x 1.154 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 8-Bump	1.16 x 1.16 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 8-Bump	1.20 x 1.20 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 8-Bump	1.43 x 1.41 x 0.605	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 8-Bump	1.60 x 1.60 x 0.65	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 9-bump	2.470 x 0.970 x 0.606	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 9-bump	2.470 x 0.970 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	1.56 x 1.053 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	1.67 x 1.11 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	1.67 x 1.14 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	1.96 x 1.33 x 0.606	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	1.96 x 1.33 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	А
CSP, 10-Bump	2.46 x 0.96 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 10-Bump	3.104 x 1.154 x 0.682	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 11-Bump	1.46 x 1.96 x 0.65	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 11-Bump	2.05 x 1.44 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 14-Bump	2.00 x 1.10 x 0.58	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.36 x 1.053 x 0.262	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.36 x 1.053 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.36 x 1.053 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.47 x 1.11 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.47 x 1.14 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.96 x 1.33 x 0.605	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	2.96 x 1.33 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В

For orientation and dimension standards, see diagrams on page 21.

Former CMD Tape and Reel Standards by Package

Package	Package Size (mm)	Tape Width	Reel Diameter	Quantity per Reel	P ₀	P ₁	Orientation Quadrant
CSP, 15-Bump	2.96 x 1.33 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	3.16 x 1.053 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	3.006 x 1.376 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 15-Bump	3.01 x 1.38 x 0.644	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 18-Bump	1.96 x 1.56 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 20-Bump	3.16 x 1.053 x 0.615	8 mm	178 mm (7")	3500	4 mm	4 mm	В
CSP, 20-Bump	3.27 x 1.11 x 0.615	12 mm	330 mm (13")	3500	4 mm	4 mm	В
CSP, 20-Bump	3.96 x 1.33 x 0.644	8 mm	178 mm (7")	3500	4 mm	8 mm	В
CSP, 20-Bump	3.96 x 1.586 x 0.640	12 mm	330 mm (13")	3500	4 mm	4 mm	В
CSP, 20-Bump	4.00 x 1.46 x 0.605	12 mm	330 mm (13")	3500	4 mm	4 mm	В
CSP, 20-Bump	4.00 x 1.46 x 0.606	12 mm	330 mm (13")	3500	4 mm	8 mm	В
CSP, 20-Bump	4.00 x 1.46 x 0.644	12 mm	330 mm (13")	3500	4 mm	8 mm	В
CSP, 20-Bump	4.006 x 1.376 x 0.644	12 mm	330 mm (13")	3500	4 mm	4 mm	В
CSP, 24-Bump	1.96 x 1.96 x 0.60	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 24-Bump	2.06 x 2.06 x 0.6	8 mm	178 mm (7")	5000	4 mm	4 mm	В
CSP, 24-Bump	2.60 x 2.60 x 0.65	8 mm	178 mm (7")	500	4 mm	4 mm	В
CSP, 25-Bump	2.00 x 2.00 x 0.60	8 mm	178 mm (7")	500	4 mm	4 mm	В
CSP, 49-Bump	2.80 x 2.80 x 0.50	8 mm	178 mm (7")	500	4 mm	4 mm	В
CSP, 49-Bump	2.80 x 2.80 x 0.60	8 mm	178 mm (7")	500	4 mm	4 mm	В
MSOP-8	3.00 x 3.00 x 0.85	12 mm	330 mm (13")	4000	4 mm	8 mm	А
MSOP-10	3.00 x 3.00 x 0.85	12 mm	330 mm (13")	4000	4 mm	8 mm	А
QSOP-16	4.90 x 3.89 x 1.55	12 mm	330 mm (13")	2500	4 mm	8 mm	А
QSOP-24	8.65 x 3.90 x 1.35	16 mm	178 mm (7")	1000	4 mm	8 mm	А
QSOP-24	8.65 x 3.90 x 1.35	16 mm	330 mm (13")	2500	4 mm	8 mm	А
SC70-3	2.05 x 1.25 x 0.95	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SC70-5	2.05 x 1.25 x 0.95	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SC70-5	2.05 x 1.25 x 0.95	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SC70-6	2.05 x 1.25 x 0.95	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOD-882	1.00 x 0.60 x 0.50	8 mm	178 mm (7")	5000	4 mm	4 mm	А
SOIC-8	4.90 x 3.99 x 1.55	12 mm	330 mm (13")	2500	4 mm	8 mm	А
SOIC-8	4.90 x 6.00 x 1.55	12 mm	330 mm (13")	2500	4 mm	8 mm	Α
SOT143	2.92 x 2.37 x 1.01	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOT143-4	2.92 x 2.37 x 1.01	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOT23-3	2.92 x 2.37 x 1.01	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOT23-5	2.92 x 2.79 x 1.24	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOT23-6	2.90 x 2.80 x 1.45	8 mm	178 mm (7")	3000	4 mm	4 mm	С
SOT-553	1.60 x 1.60 x 0.55	8 mm	178 mm (7")	5000	4 mm	4 mm	С
SOT-563	1.60 x 1.60 x 0.55	8 mm	178 mm (7")	5000	4 mm	4 mm	С
SOT-593	1.00 x 0.80 x 0.45	8 mm	178 mm (7")	8000	4 mm	4 mm	В
CUDFN-6	1.60 x 1.60 x 0.60	8 mm	178 mm (7")	2500	4 mm	4 mm	А

For orientation and dimension standards, see diagrams on page 21.

Former CMD Tape and Reel Standards by Package

Package	Package Size (mm)	Tape Width	Reel Diameter	Quantity per Reel	P ₀	P ₁	Orientation Quadrant
CUDFN-6	2.00 x 2.00 x 0.65	8 mm	178 mm (7")	2500	4 mm	4 mm	Α
TDFN-8	1.70 x 1.35 x 0.75	8 mm	178 mm (7")	3000	4 mm	4 mm	Α
TDFN-8	2.00 x 2.00 x 0.75	8 mm	178 mm (7")	3000	4 mm	4 mm	Α
TDFN-8	3.00 x 3.00 x .075	12 mm	330 mm (13")	3000	4 mm	8 mm	Α
TDFN-12	3.00 x 1.35 x 0.75	8 mm	178 mm (7")	3000	4 mm	4 mm	Α
TDFN-16	4.00 x 1.60 x 0.75	12 mm	178 mm (7")	3000	4 mm	4 mm	Α
TDFN-16	4.00 x 1.70 x 0.75	12 mm	330 mm (13")	3000	4 mm	8 mm	Α
TDFN-16	6.00 x 4.00 x 0.75	12 mm	330 mm (13")	3000	4 mm	8 mm	А
TSSOP-8	3.00 x 6.38 x 1.10	12 mm	330 mm (13")	2500	4 mm	8 mm	А
TSSOP-38	9.70 x 6.40 x 1.20	16 mm	330 mm (13")	2500	4 mm	12 mm	Α
UDFN-6	1.25 x 1.0 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-8	1.70 x 1.35 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-8	1.70 x 1.35 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-8	2.00 x 2.00 x 0.55	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-12	2.50 x 1.20 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-12	2.50 x 1.35 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
UDFN-16	3.30 x 1.35 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
uUDFN-10	2.50 x 1.00 x 0.50	8 mm	178 mm (7")	3000	4 mm	4 mm	А
X3DFN	0.62 x 0.62 x 0.32	8 mm	178 mm (7")	15,000	2 mm	2 mm	Тор

For orientation and dimension standards, see diagrams on page 21.

Product Orientation

Direction of Feed

Figure 1. D²PAK

24 mm (Tape Width, Typical)

5 Lead – T4 Discrete R4, R5 Analog 7 Lead – R7 Analog PowerFLEX-7 – R7 Analog

3 Lead – T4 Discrete R3, R4 Analog

Figure 2. DPAK

16 mm

Discrete Suffix – T4 Analog Suffix – R or RK

Figure 3. DPAK

16 mm

Discrete, Analog Suffix – T5

Figure 4. DPAK

16 mm

Discrete Suffix - RL

Direction of Feed

"T5" Pin One Opposing Sprocket Hole (8k Reel)

Figure 6. DSN

Die orientation in tape with pads down "T5" Pin One Towards Sprocket Hole (5k Reel)

Figure 7. 6-Bump, 9-Bump, 10-Bump Flip-Chip/DCA

Option 1, 3

Pin 1 (Upper Right)

Die orientation in tape with bumps down "T1" Pin One Towards Sprocket Hole (3k Reel) "T3" Pin One Towards Sprocket Hole (10k Reel)

Option 2, 4

Pin 1 (Upper Left)

Die orientation in tape with bumps down "T2" Pin One Towards Sprocket Hole (3k Reel) "T4" Pin One Towards Sprocket Hole (10k Reel)

Figure 8. LQFP, TQFP

Pin 1 (Upper Right)

R2, R48 – Analog R2 – Clock & Data Mgt.

Figure 9. PLCC

Pin 1 (Upper Center)

R2, R28, R44 – Analog R2 – Clock & Data Mgt.

Direction of Feed

Figure 10. SC82 / SC82-AB

"TR" Suffix - Option 1, 3

"T1" Pin One Opposing Sprocket Hole (3k Reel)
"T3" Pin One Opposing Sprocket Hole (10k Reel)

\longrightarrow

Figure 11. ChipFET (8-Lead)

"T1" Suffix - Option 1

"T1" Pin One Opposing Sprocket Hole (3k Reel)

Figure 12. TSOP-5 / SOT23-5 / SC-74A

"T" or "TR" Suffix - Option 1, 3

"T1" Pin One Opposing Sprocket Hole (3k Reel)
"T3" Pin One Opposing Sprocket Hole (10k Reel)

Option 2

"T2" Pin One Toward Sprocket Hole (3k Reel)

Figure 13. SOT-23 / SOT-23L / SOT-323 / SC-59 / SC-70 / SC-75 / SC-89

"T5", "TR" or "R2" Suffix - Option 1, 3

- "T1" Single Lead Toward Sprocket Hole (3k Reel)
- "T5" Single Lead Toward Sprocket Hole (8k Reel)
- "T3" Single Lead Toward Sprocket Hole (10k Reel)

Option 2

"T2" Single Lead Opposing Sprocket Hole (3k Reel) (This Orientation Applies to SC-59 Only)

Figure 14. TSOP-6 / SOT23-6 / SC-74

"T" or "TR" Suffix - Option 1, 3

"T1" Pin One Opposing Sprocket Hole (3k Reel)
"T3" Pin One Opposing Sprocket Hole (10k Reel)

Option 2

"T2" Pin One Toward Sprocket Hole (3k Reel)

Figure 15. SC-88A / SC70-5 / SOT-353 Option 1, 3

"T1" Pin One Toward Sprocket Hole (3k Reel)
"T3" Pin One Toward Sprocket Hole (10k Reel)

Option 2, 4

"T2" Pin One Opposing Sprocket Hole (3k Reel)
"T4" Pin One Opposing Sprocket Hole (10k Reel)

Direction of Feed

Figure 16. SOT-553 Option 1

"T1" Pin One Toward Sprocket Hole (4k Reel)

"T2" Pin One Opposing Sprocket Hole (4k Reel)

"T5" Pin One Toward Sprocket Hole (8k Reel)

"T6" Pin One Opposing Sprocket Hole (8k Reel)

Figure 18. SOT-953

"T5" Pin One Toward Sprocket Hole (8k Reel)

Figure 20. POWERMITE®

"T1" Suffix - Option 1

Figure 17. SOT-563 Option 1

"T1" Pin One Toward Sprocket Hole (4k Reel)

"T2" Pin One Opposing Sprocket Hole (4k Reel)

"T5" Pin One Toward Sprocket Hole (8k Reel)

Figure 19. SOT-963 Option 5

"T5" Pin One Toward Sprocket Hole (8k Reel)

Figure 21. SMA, SMB, SMC

"TR" or "R2" Suffix - Option 1, 3

Unidirectional

SMA: "T1" Cathode Toward Sprocket Hole (1.5k Reel)

"T3" Cathode Toward Sprocket Hole (5k Reel)

SMB/SMC: "T1" Cathode Toward Sprocket Hole (1k Reel)

"T3" Cathode Toward Sprocket Hole (2.5k Reel)

Bidirectional

Same as above except no orientation

Direction of Feed

Figure 22. SC-88 / SC70-6 / SOT-363 Option 1, 3

"T1" Pin One Toward Sprocket Hole (3k Reel)
"T3" Pin One Toward Sprocket Hole (10k Reel)

Option 2

"T2" Pin One Opposing Sprocket Hole (3k Reel)

Figure 24. ULTRA SMALL 8

Pin One Opposing Sprocket Hole (3k Reel)

Figure 25. SOT-143 "T" or "TR" Suffix – Option 1, 3

"T1" Wide Lead Tape Opposing Sprocket Hole (3k Reel) "T3" Wide Lead Tape Opposing Sprocket Hole (10k Reel)

Option 2, 4

"T2" Wide Lead Tape Toward Sprocket Hole (3k Reel) "T4" Wide Lead Tape Toward Sprocket Hole (10k Reel)

Figure 27. SON-6

Figure 23. SOT-89 "R1" Suffix

"R1" Pin One Opposing Sprocket Hole (1k Reel)

"T1" Suffix

"T1" Single Lead Toward Sprocket Hole (1k Reel)

"T2" Suffix

"T2" Single Lead Opposing Sprocket Hole (1k Reel)

Figure 26. SOD-123 / SOD-323 Option 1, 3

"T1" Cathode Lead Toward Sprocket Hole (3k Reel)
"T3" Cathode Lead Toward Sprocket Hole (10k Reel)

Option 2

"T2" Cathode Lead Opposing Sprocket Hole (3k Reel)

Figure 28. SOT-723 / SOT-1123

"T5" Single Lead Toward Sprocket Hole (8k Reel)

Direction of Feed

Figure 29. SOD-523

Option 1

"T1" Cathode Lead Toward Sprocket Hole (3k Reel)
Option 5

"T5" Cathode Lead Toward Sprocket Hole (8k Reel)

Figure 30. SOD-723, SOD-923

Option 5

"T5" Cathode Lead Toward Sprocket Hole (8k Reel)

Figure 31. SOT-223

"T1" Single Lead Toward Sprocket Hole (1k Reel)

"T3" Single Lead Toward Sprocket Hole (4k Reel)

"R3" Single Lead Toward Sprocket Hole (2.5k Reel)

Figure 32. Micro8™ / Micro10 / SO / SOIC / SOIC-EIAJ / SOP / SSOP / TSSOP

Pin 1 (Upper Left)

EL – Logic R2 – Clock & Data Mgt. R or R2 – Analog T2 or T3 – EEPROM

Figure 33. SO-28W 32 mm

R3 - Analog

Direction of Feed

Leadless Packages

Pin 1 (Upper

Figure 34. X3DFN

T5 - Cathode Band Toward Sprocket Hole (15k Reel)

Figure 36. FCBGA (BGA)

Figure 38. DFN/QFN (LPCC)/ WLCSP-4/XDFN2

TB, TX, TR, T5

Figure 35. XLLGA

T5 - Pin One Opposing Sprocket Hole (8k Reel)

Figure 37. DFN/QFN/WLCSP-5

TA, TW, TR

Figure 39. WLCSP 8-Bump, 10-Bump, 12-Bump

Package	Pre Jan 2007	Post Jan 2007
DFN / QFN Square (LPCC)	T1	TB, TX
	T4	TB, TX
	R2	TB, TX
DFN / QFN Rectangular (LPCC)	T1	TA, TW
	R2	TA, TW
DFN / QFN	T2	TA, TW
	R2	TA, TW
FCBGA / BGA	R2	TA, TW
WLCSP	-	TR

Leadless Package Pin 1 Orientation for Tape and Reel (QFN, DFN, FCBGA, BGA, LPCC)

Figure 40. Leadless Package Pin 1 Orientation for Tape and Reel (Effective January 2007)

	Part Number Suffi	х		
Shipping Type*	Pin1 Location	Blank or Pb-Free	Remark:	Reel Size (mm) diameter
Т	А	G	Quadrant 1-upper left	177
Т	В	G	Quadrant 2upper right	178
Т	С	G	Quadrant 3—lower left	178
Т	D	G	Quadrant 4—lower right	178
Т	W	G	Quadrant 1-upper left	330
Т	Х	G	Quadrant 2upper right	330
Т	Y	G	Quadrant 3—lower left	330
Т	Z	G	Quadrant 4—lower right	330
Т	N	G	North (upper center)	178
Т	S	G	South (lower center)	178
Т	Т	G	Top (upper center)	330
Т	U	G	Under (lower center)	330
Т	L	G	Left center	178
Т	R	G	Right center	178
Т	E	G	Left center	330
T	F	G	Right center	330

^{*}T = Tape

Tape and Reel Dimensions and Orientation for Former CMD Devices

Embossed Tape and Reel Data Carrier Tape Standards

DIMENSIONS

Tape Size (W)	B ₁ Max (Note 1)	D	D ₁	E	F	к	P ₀	P ₂	R Min	T Max	W Max
8 mm	4.55 mm (0.179")	1.5 + 0.1 mm - 0.0 (0.059 + 0.004" - 0.0)	1.0 Min (0.039") or 0.5 mm Min (0.020") or 0.2 mm Min (0.008")	$\begin{array}{c} 1.75 \pm 0.1 \text{ mm} \\ (0.069 \pm \\ 0.004 '') \end{array}$	3.5 ± 0.05 mm $(0.138 \pm 0.002'')$	2.4 mm Max (0.094")	4.0 ± 0.1 mm (0.157 ± 0.004")	2.0 ± 0.1 mm (0.079 ± 0.002")	25 mm (0.98")	0.6 mm (0.024")	8.3 mm (0.327″)
12 mm	8.2 mm (0.323")		1.5 mm Min (0.060")		5.5 ± 0.05 mm (0.217 ± 0.002")	6.4 mm Max (0.252")			30 mm (1.18")		12 ± 0.30 mm (0.470 ± 0.012")
16 mm	12.1 mm (0.476")				7.5 ± 0.10 mm (0.295 ± 0.004")	7.9 mm Max (0.311")					16.3 mm (0.642")
24 mm	20.1 mm (0.791)				11.5 ± 0.1 mm (0.453 ± 0.004")	11.9 mm Max (0.468")					24.3 mm (0.957")

Metric dimensions govern - English are in parentheses for reference only.

- 1. Pitch information (dimension P₁) is contained in the embossed tape and reel ordering information beginning on Page 5.
- 2. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity.

Tape Ends for Finished Goods

Leader and Trailer

The TRAILER is a minimum of 160 mm in length and it consists of empty cavities with sealed cover tape. The LEADER is a minimum of 400 mm in length and it consists of empty cavities with sealed cover tape.

Reel Dimensions

Reel	Tape	A mm (inches)		B mm (inches)		C mm (inches)		D	E
Diameter	Size	Min	Max	Min	Max	Min	Max	(Max)	(Max)
178.0 (7.01)	16.0 (0.63)		50.0 (1.97)	6.5 (0.26)	7.5 (0.30)	16.4 (0.65)	18.4 (0.72)	22.4 (0.88)	19.4 (0.76)
330.0 (12.99)	12.0 (0.47)	178.0 (7.01)		4.5 (0.18)	5.5 (0.22)	12.4 (0.49)	14.4 (0.57)	18.4 (0.72)	15.4 (0.61)
330.0 (12.99)	56.0 (2.20)	150.0 (5.91)		10.0 (0.39)	11.0 (0.43)	56.4 (2.22)	58.4 (2.30)	62.4 (2.46)	59.4 (2.34)
330.0 (12.99)	44.0 (1.73)	100.0 (3.94)		10.0 (0.39)	11.0 (0.43)	44.4 (1.75)	46.4 (1.83)	62.4 (2.46)	47.4 (1.87)
330.0 (12.99)	32.0 (1.26)	100.0 (3.94)		10.0 (0.39)	11.0 (0.43)	32.4 (1.28)	34.4 (1.35)	38.4 (1.51)	35.4 (1.39)
330.0 (12.99)	24.0 (0.94)	60.0 (2.36)		9.5 (0.37)	10.5 (0.41)	24.4 (0.96)	26.4 (1.04)	30.4 (1.51)	27.4 (1.08)
330.0 (12.99)	16.0 (0.63)			6.5 (0.26)	7.5 (0.30)	16.4 (0.65)	18.4 (0.72)	22.4 (0.88)	19.4 (0.76)
330.0 (12.99)	12.0 (0.47)			4.5 (0.18)	5.5 (0.22)	12.4 (0.49)	14.4 (0.57)	18.4 (0.72)	15.4 (0.61)
330.0 (12.99)	8.0 (0.31)	50.0 (1.97)		2.5 (0.10)	3.5 (0.14)	8.4 (0.33)	9.9 (0.39)	14.4 (0.57)	10.9 (0.43)
178.0 (7.01)	12.0 (0.47)	50.0 (1.97)		4.5 (0.18)	5.5 (0.22)	12.4 (0.49)	14.4 (0.57)	18.4 (0.72)	15.4 (0.61)
178.0 (7.00)	8.0 (0.31)	50.0 (1.97)		2.5 (0.10)	3.5 (0.14)	8.4 (0.33)	9.9 (0.39)	14.4 (0.47)	10.9 (0.43)
330.0 (12.99)	8.0 (0.31)	50.0 (1.97)		4.0 (0.16)	5.0 (0.20)	8.4 (0.33)	9.9 (0.39)	14.4 (0.57)	10.9 (0.43)
178.0 (7.00)	8.0 (0.31)	50.0 (1.97)		4.0 (0.16)	5.0 (0.20)	8.4 (0.33)	9.9 (0.39)	14.4 (0.57)	10.9 (0.43)

Reel Dimensions (continued)

Figure 41. Front View of 178 mm (7.0 in) Reel

Figure 42. Front View of 330 mm (12.99 in) Reel

NOTES:

1. LABEL PLACEMENT AREA:

- All reels must have flat area on the front flange of the reel that will fit two 41.3 mm (1.65 in) by 125 mm (4.90 in) ON Semiconductor barcode labels.
- If there are any flange openings on the front side of the 178 mm (7.00 in) reel they must be designed in locations so that two of the 41.3 mm (1.65 in) ON Semiconductor barcode labels can be applied parallel to each other as in Figure 41.
- If there are any flange opening on the front flange of the 330 mm (13.0 in) reel they must be designed in locations so that two of the 41.3 mm (1.65 in) by 125 mm (4.90 in) ON Semiconductor barcode labels can be applied parallel to each other as in Figure 42.

2. FLANGE OPENINGS

- Flange opening on the front and the back of the reel are a supplier option but must meet all of the requirements in Note 1. The preferred size for the 176 mm (7.0 in) reel is shown in Figure 41.
- The tape loading opening must be as in Detail A.

3. GRAPHICS:

- The letters MPN and CPN are a option. The size and thickness of the letters are the manufacturer's option and are not to be used for inspection criteria.
- The embossed lines on the reel are a option. If the lines are used they must be located as in Figure 41 and 42. They
 must be a minimum 38 mm (1.50 in) long. The thickness is a manufacturer's option and not to be used for
 inspection criteria.

Reel Labeling

Place the reel on an ESD protective surface so that the round sprocket holes are on the bottom. The direction of travel when unwound should be from the top right quadrant. See illustration below.

REEL WINDING DIRECTION

Figure 43. Round and Oval Sprocket Holes Used with 32 mm, 42 mm, 44 mm and 52 mm Tape (holes on both sides)

Figure 44. Round Sprocket Holes Used with 8 mm, 12 mm,16 mm and 24 mm Tape (holes on one side only)

REEL ORIENTATION FOR LGA17, SIP21 AND SIP33 PACKAGES

MASKING TAPE APPLIED IN 6 LOCATIONS:
1) SECURE CARRIER TAPE
2) SECURE REELWRAP
3-6) 4 LOCATIONS AROUND REEL TO FURTHER
SECURE REELWRAP

Figure 45. REEL ORIENTATION FOR LGA17, SIP21 AND SIP33 PACKAGES

TO-92 EIA, IEC, EIAJ Radial Tape in Fan Fold Box or On Reel

Radial tape in fan fold box or on reel of the reliable TO-92 package are the best methods of capturing devices for automatic insertion in printed circuit boards. These methods of taping are compatible with various equipment for active and passive component insertion.

- Available in Fan Fold Box
- Available on 365 mm Reels
- Accommodates All Standard Inserters
- Allows Flexible Circuit Board Layout
- 2.5 mm Pin Spacing for Soldering
- EIA-468, IEC 286-2, EIAJ RC1008B

Ordering Notes:

When ordering radial tape in fan fold box or on reel, specify the style per Figures 47, 48, 54 and 55. Add the suffix "RLR" and "Style" to the device title, i.e. 2N5060RLRA. This will be a standard 2N5060 radial taped and supplied on a reel. Some products only utilize the last 2 digits. Please refer to the ON Semiconductor device data sheet for exact ordering information.

- Fan Fold Box Information Minimum order quantity 1 Box. Order in increments of 2000.
- Reel Information Minimum order quantity 1 Reel. Order in increments of 2000.

US/EUROPEAN SUFFIX CONVERSIONS

U.S.	Europe	Package Style
RLRA, RA	RL	Reel
RLRE, RE	RL1	Reel
RLRM, RM	ZL1	Fan Fold
RLRP, RP	-	Fan Fold

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX **OR ON REEL**

Figure 46. Device Positioning on Tape

			Specification				
		Inc	hes	Millimeter			
Symbol	Item	Min	Max	Min	Max		
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2		
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51		
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8		
Н	Bottom of Component to Seating Plane	0.059	0.156	1.5	4.0		
H1	Feedhole Location	0.3346	0.3741	8.5	9.5		
H2A	Deflection Left or Right	0	0.039	0	1.0		
H2B	Deflection Front or Rear	0	0.051	0	1.0		
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5		
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5		
L	Defective Unit Clipped Dimension	0.3346	0.433	8.5	11		
L1	Lead Wire Enclosure	0.09842	-	2.5	_		
Р	Feedhole Pitch	0.4921	0.5079	12.5	12.9		
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75		
P2	First Lead Spacing Dimension	0.1397	0.1556	3.55	3.95		
Т	Adhesive Tape Thickness	0.06	0.08	0.15	0.20		
T1	Overall Taped Package Thickness	-	0.0567	-	1.44		
T2	Carrier Strip Thickness	0.014	0.027	0.35	0.65		
W	Carrier Strip Width	0.6889	0.7481	17.5	19		
W1	Adhesive Tape Width	0.2165	0.2841	5.5	6.3		
W2	Adhesive Tape Position	0.0059	0.01968	0.15	0.5		

- 3. Maximum alignment deviation between leads not to be greater than 0.2 mm.4. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
- 5. Component lead to tape adhesion must meet the pull test requirements established in Figures 50, 51 and 52.
- 6. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- Hold down tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- No more than 1 consecutive missing component is permitted.
 A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
- 10. Splices will not interfere with the sprocket feed holes.

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

FAN FOLD BOX STYLES

Style M fan fold box is equivalent to styles E and F of reel pack dependent on feed orientation from box.

Figure 47. Style RLRM, RM

Style P fan fold box is equivalent to styles A and B of reel pack dependent on feed orientation from box.

Figure 48. Style RLRP, RP

Figure 49. Fan Fold Box Dimensions

The component shall not pull free with a 300 gram load applied to the leads for 3 ± 1 second.

Figure 50. Test #1

ADHESION PULL TESTS

The component shall not pull free with a 70 gram load applied to the leads for 3 ± 1 second.

Figure 51. Test #2

There shall be no deviation in the leads and no component leads shall be pulled free of the tape with a 500 gram load applied to the component body for 3 \pm 1 second.

Figure 52. Test #3

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL: REEL STYLES

Material used must not cause deterioration of components or degrade lead solderability

Figure 53. Reel Specifications

Figure 54. Style RLRA, RA

Figure 55. Style RLRE, RE

Lead Tape Packaging Standards for Axial-Lead Components

1.0 SCOPE

This section covers packaging requirements for the following axial-lead component's use in automatic testing and assembly equipment: ON Semiconductor Case 17-02, Case 41A-02, Case 51-02 (DO-7), Case 59-03 (DO-41), Case 59-04, Case 194-04 and Case 299-02 (DO-35). Packaging, as covered in this section, shall consist of axial-lead components mounted by their leads on pressure sensitive tape, wound onto a reel.

2.0 PURPOSE

This section establishes ON Semiconductor standard practices for lead-tape packaging of axial-lead components and meets the requirements of EIA Standard RS-296-D "Lead-taping of Components on Axial Lead Configuration for Automatic Insertion," level 1.

3.0 REQUIREMENTS

3.1 Component Leads

- **3.1.1** Component leads shall not be bent beyond dimension E from their normal position. See Figure 57.
- **3.1.2** The "C" dimension shall be governed by the overall length of the reel packaged component. The distance between flanges shall be 0.059 inch to 0.315 inch greater than the overall component length. See Figures 57 and 58.
- **3.1.3** Cumulative dimension "A" tolerance shall not exceed 0.059 over 6 in consecutive components.

3.2 Orientation

All polarized components must be oriented in one direction. The cathode lead tape shall be any color except white and the anode tape shall be white. See Figure 56.

3.3 Reeling

- **3.3.1** Components on any reel shall not represent more than two date codes when date code identification is required.
- **3.3.2** Component's leads shall be positioned perpendicularly between pairs of 0.250 inch tape. See Figure 57.
- **3.3.3** A minimum 12 inch leader of tape shall be provided before the first and last component on the reel.

- **3.3.4** 50 lb. Kraft paper is wound between layers of components as far as necessary for component protection.
- **3.3.5** Components shall be centered between tapes such that the difference between D1 and D2 does not exceed 0.055.
- **3.3.6** Staples shall not be used for splicing. No more than four layers of tape shall be used in any splice area and no tape shall be offset from another by more than 0.031 inch noncumulative. Tape splices shall overlap at least 6 inches for butt joints and at least 3 inches for lap joints and shall not be weaker than unspliced tape.
- **3.3.7** Quantity per reel shall be as indicated in Table 1. Orders for tape and reeled product will only be processed and shipped in full reel increments. Scheduled orders must be in releases of full reel increments or multiples thereof.
- **3.3.8** A maximum of 0.25% of the components per reel quantity may be missing without consecutive missing per level 1 of RS-296-D.
- **3.3.9** The single face roll pad shall be placed around the finished reel and taped securely. Each reel shall then be placed in an appropriate container.

3.4 Marking

Minimum reel and carton marking shall consist of the following (see Figure 58):

ON Semiconductor part number

Quantity

Manufacturer's name

Date codes (when applicable; see note 3.3.1)

4.0

Requirements differing from this ON Semiconductor standard shall be negotiated with the factory.

The packages indicated in the following table are suitable for lead tape packaging. Table 1 indicates the specific devices (transient voltage suppressors and/or Zeners) that can be obtained from ON Semiconductor in reel packaging and provides the appropriate packaging specification.

Lead Tape Packaging Standards for Axial-Lead Components

Table 1. PACKAGING DETAILS (all dimensions in inches)

Case Type	Product Category	Device Title Suffix	MPQ Quantity Per Reel	Component Spacing A Dimension	Tape Spacing B Dimension	Reel Dimension C	Reel Dimension D (Max)	Max Off Alignment E
Case 17	Surmetic 40 & 600 Watt TVS	RL	4000	0.2 ± 0.015	2.062 ± 0.059	3	14	0.047
Case 41A	1500 Watt TVS	RL4	1500	0.4 ± 0.02	2.062 ± 0.059	3	14	0.047
Case 59	DO-41 Glass & DO-41 Surmetic 30	RL	6000	0.2 ± 0.015	2.062 ± 0.059	3	14	0.047
	Rectifier							
Case 59	500 Watt TVS	RL	500	0.2 ± 0.02	2.062 ± 0.059	3	14	0.047
	Rectifier							
Case 194	110 Amp TVS (Automotive)	RL	800	0.4 ± 0.02	1.875 ± 0.059	3	14	0.047
	Rectifier							
Case 267	Rectifier	RL	1500	0.4 ± 0.02	2.062 ± 0.059	3	14	0.047
Case 299	DO-35 Glass	RL	5000	0.2 ± 0.02	2.062 ± 0.059	3	14	0.047
Case 267	Schottky & Ultrafast Rectifiers	RL	1500	0.4 ± 0.02	2.062 ± 0.059	3	14	0.047
Case 267	Fast Recovery & General Purpose Rectifiers	RL	1200	0.4 ± 0.02	2.062 ± 0.059	3	14	0.047

Figure 56. Reel Packing

Figure 57. Component Spacing

Figure 58. Reel Dimensions (Item references appear on Page 32)

INFORMATION FOR USING SURFACE MOUNT PACKAGES

RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

POWER DISSIPATION FOR A SURFACE MOUNT DEVICE

The power dissipation for a surface mount device is a function of the drain/collector pad size. These can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating ambient temperature, T_A . Using the values provided on the data sheet, P_D can be calculated as follows:

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device. For example, for a SOT–223 device, P_D is calculated as follows.

$$P_D = \frac{150^{\circ}C - 25^{\circ}C}{156^{\circ}C/W} = 800 \text{ milliwatts}$$

The 156°C/W for the SOT–223 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 800 milliwatts. There are other alternatives to achieving higher power dissipation from the surface mount packages. One is to increase the area of the drain/collector pad. By increasing the area of the drain/collector pad, the power dissipation can be increased. Although the power dissipation can almost be doubled with this method, area is taken up on the printed circuit board which can defeat the purpose of using surface mount technology. For example, a graph of $R_{\theta \rm JA}$ versus drain pad area is shown in Figures 59, 60 and 61.

Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal CladTM. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

Figure 59. Thermal Resistance versus Drain Pad Area for the SOT-223 Package (Typical)

Figure 60. Thermal Resistance versus Drain Pad Area for the DPAK Package (Typical)

Figure 61. Thermal Resistance versus Drain Pad Area for the D²PAK Package (Typical)

SOLDER STENCIL GUIDELINES

Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. Solder stencils are used to screen the optimum amount. These stencils are typically 0.008 inches thick and may be made of brass or stainless steel. For packages such as the SC-59, SC-70/SOT-323, SOD-123, SOT-23, SOT-143, SOT-223, SO-8, SO-14, SO-16, and SMB/SMC diode packages, the stencil opening should be the same as the pad size or a 1:1 registration. This is not the case with the DPAK and D2PAK packages. If a 1:1 opening is used to screen solder onto the drain pad, misalignment and/or "tombstoning" may occur due to an excess of solder. For these two packages, the opening in the stencil for the paste should be approximately 50% of the tab area. The opening for the leads is still a 1:1 registration. Figure 62 shows a typical stencil for the DPAK and D²PAK packages. The pattern of the opening in the stencil for the drain pad is not critical as long as it allows approximately 50% of the pad to be covered with paste.

Figure 62. Typical Stencil for DPAK and D²PAK Packages

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.
- For wave soldering, the soldering temperature and time should not exceed 260°C for more than 10 seconds. For other reflow methods such as convection and IR ovens, refer to the reflow profiles on the following pages.

- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
 Gradual cooling should be used since the use of forced cooling will increase the temperature gradient and will result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
- * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.
- * Due to shadowing and the inability to set the wave height to incorporate other surface mount components, the D²PAK is not recommended for wave soldering.

TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 63 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the

actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

Figure 63. Typical Tin Lead (SnPb) Solder Heating Profile

TYPICAL SOLDER HEATING PROFILE (continued)

Figure 64. Typical Pb-Free Solder Heating Profile

Profile Feature	Pb-Free Assembly
Average Ramp–Up Rate (Ts _{max} to Tp)	3°C/second max
Preheat Temperature Min (Ts _{min}) Temperature Max (Ts _{max}) Time (ts _{min} to ts _{max})	150°C 200°C 60–180 seconds
Time maintained above Temperature (T _T) Time (t _T)	217°C 60–150 seconds
Peak Classification Temperature (Tp)	260°C +5/-0
Time within 5°C of actual Peak Temperature (tp)	20-40 seconds
Ramp-Down Rate	6°C/second max
Time 25°C to Peak Temperature	8 minutes max

AMBIENT MOUNTING DATA

Data shown for thermal resistance junction—to—ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta \text{JA}}$ IN STILL AIR

Mounti	Lead Length, L (IN)					
Metho	d	1/8	1/4	1/2	3/4	Units
1		50	51	53	55	°C/W
2	$R_{\theta JA}$	58	59	61	63	°C/W
3			2	28		°C/W

MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.

MOUNTING METHOD 2

Vector Push-In Terminals T-28

MOUNTING METHOD 3

P.C. Board with 1–1/2 $^{\prime\prime}$ x 1–1/2 $^{\prime\prime}$ Copper Surface

Humidity Indicator Card: Type HIC-0560

Objective

The objective of this information brief is to provide the customer with a general understanding of the humidity indicator cards (HIC) basic functions and a reaction plan based on the level of dryness as indicated on the card.

Introduction

The HIC is printed with moisture sensitive spots which will respond to variations of different levels of humidity with perceptible change in color typically from blue (dry) to pink (wet). The HIC is packed inside moisture barrier bags, which monitor the moisture inside the barrier bag. When the bag is opened, the HIC can be examined to determine the degree of dryness of the parts inside the bag.

Humidity Indicator Cards: HIC-0515 and HIC-0560

Excess humidity in the dry pack is noted by the HIC. It can occur due to misprocessing (e.g. missing or inadequate desiccant), mishandling (e.g. tears or rips in the moisture barrier bag) or improper storage.

The HIC should be read immediately upon removal from the moisture barrier bag. For best accuracy, the HIC should be read at 23±5°C. The following conditions apply regardless of the storage time (whether or not the shelf life has exceeded).

New HIC (HIC-0560)

Figure 65. Humidity Indicator Card

Table 2: HIC Conditions and Corresponding Actions for HIC-0560

HIC Conditions	5%	10%	60%	Action	Remarks
Condition 1	Blue	Blue	Blue	No bake	Parts are dry
Condition 2	Pink	Blue	Blue	No bake	Only indicates that parts have 5% level of moisture
Condition 3	Pink	Pink	Blue	Bake required, refer to Table 2	Bake parts MSL levels 2a, 3, 4, 5, and 5a No need to bake MSL level 2
Condition 4	Pink	Pink	Pink	Bake required, refer to Table 2	All were parts were affected by moisture

Bake Duration for Exposed Parts

AMIS recommends that bake duration of exposed parts should comply with the existing provisions as mandated by Joint Industry Standard <u>IPC/JEDEC-STD-033B</u> entitled

"Handling, Packing and Use of Moisture/Reflow Sensitive Surface Mount Devices" Bake Duration for Exposed Parts as shown in Table 3.

Table 3: Reference Conditions for Drying Mounted or Unmounted SMD Packages (User bake: floor life beings counting at time = 0 after bake)

		Bake @	Bake @ 125°C		@ 90°C % RH	Bake @ 40°C ≤ 5% RH	
Package Body	Level	Exceeding Floor Life by > 72 h	Exceeding Floor Life by > 72 h	Exceeding Floor Life by > 72 h	Exceeding Floor Life by > 72 h	Exceeding Floor Life by > 72 h	Exceeding Floor Life by > 72 h
Thickness	2	5 hours	3 hours	17 hours	11 hours	8 days	5 days
≤ 1.4mm	2a	7 hours	5 hours	23 hours	13 hours	9 days	7 days
	3	9 hours	7 hours	33 hours	23 hours	13 days	9 days
	4	11 hours	7 hours	37 hours	23 hours	15 days	9 days
	5	12 hours	7 hours	41 hours	24 hours	17 days	10 days
	5a	16 hours	10 hours	54 hours	24 hours	22 days	10 days
Thickness	2	18 hours	15 hours	63 hours	2 days	25 days	20 days
> 1.4mm ≤ 2.0mm	2a	21 hours	16 hours	3 days	2 days	29 days	22 days
	3	27 hours	17 hours	4 days	2 days	37 days	23 days
	4	34 hours	20 hours	5 days	3 days	47 days	28 days
	5	40 hours	25 hours	6 days	4 days	57 days	35 days
	5a	48 hours	40 hours	8 days	6 days	79 days	56 days
Thickness	2	48 hours	48 hours	10 days	7 days	79 days	67 days
> 2.0mm ≤ 4.5mm	2a	48 hours	48 hours	10 days	7 days	79 days	67 days
	3	48 hours	48 hours	10 days	8 days	79 days	67 days
	4	48 hours	48 hours	10 days	10 days	79 days	67 days
	5	48 hours	48 hours	10 days	10 days	79 days	67 days
	5a	48 hours	48 hours	10 days	10 days	79 days	67 days
BGA package > 17mm x 17mm or any stacked die package (Note 12)	2-6	96 hours	As above per package thickness and moisture level	Not applicable	As above per package thickness and moisture level	Not applicable	As above per package thickness and moisture level

NOTES:

^{11.} Table 3 is based on worst-case molded lead frame SMD packages. Users may reduce the actual back time if technically justified (e.g. absorption/desorption data, etc.). In most cases it is applicable to other nonhermetic surface mount SMD packages.

^{12.} For BGA packages > 17mm x > 17 mm that do not have internal planes that block the moisture diffusion path in the substrate they may use bake times based on the thickness/moisture level portion of the table.

Sales and Design Assistance from ON Semiconductor

ON Semiconductor	Distribution Partners	
Allied Electronics	www.alliedelec.com	(800) 433-5700
Arrow Electronics	www.arrow.com	(800) 777-2776
Avnet	www.em.avnet.com	(800) 332-8638
Chip One Stop, Inc.	www.chip1stop.com/maker/on	(81) 45 470 8771
Daiwa Distribution Ltd.	www.daiwahk.com	(852) 2341 3351
Digi-Key	www.digikey.com	(800) 344-4539
EBV Elektronik	www.ebv.com/en/locations.html	(49) 8121 774-0
Fuji Electronics Co., Ltd.	www.fujiele.co.jp	(81) 3 3814 1770
Future & FAI Electronics	www.futureelectronics.com/contact	1-800-FUTURE1 (388-8731)
Mouser Electronics	www.mouser.com	(800) 346-6873
Newark/Farnell	www.farnell.com/onsemi	(800) 4-NEWARK
OS Electronics Co., Ltd.	www.oselec.jp	Japanese: (81) 3 3255 5985 Other Languages: (81) 3 3255 6066
Promate Electronic Co.	www.promate.com.tw	(886) 2 2659 0303
RinnoVent Co., Ltd. (Ryosan Group)	www.ryosan.co.jp	(81) 3 3862 2440
RS Components KK	jp.rs-online.com	(81) 45 335 8550
Segyung Britestone Co.	www.britestone.com	(82) 2 3218 1511
Serial AMSC	www.serialsystem.jp	(81) 3 5795 1635
Serial Microelectronics, HK	www.serialsys.com.hk	(852) 2790 8220
World Peace Industries Co.	www.wpi-group.com	(852) 2365 4860
WT Microelectronics Co.	www.wtmec.com	(852) 2950 0820
Yosun Electronics	www.yosun.com.tw	(886) 2 2659 8168

INTERNATIONAL		
GREATER CHINA	Beijing	86-10-8577-8200
	Hong Kong	852-2689-0088
	Shenzhen	86-755-8209-1128
	Shanghai	86-21-5131-7168
	Taipei, Taiwan	886-2-2377-9911
FRANCE	Paris	33 (0)1 39-26-41-00
GERMANY	Munich	49 (0) 89-93-0808-0
INDIA	Bangalore	91-98-808-86706
ISRAEL	Raanana	972 (0) 9-9609-111
ITALY	Milan	39 02 9239311
JAPAN	Tokyo	81-3-5817-1050
KOREA	Seoul	82-31-786-3700
MALAYSIA	Penang	60-4-6463877
SINGAPORE	Singapore	65-6484-8603
SLOVAKIA	Piestany	421 33 790 2450
UNITED KINGDOM	Windsor	44 1753 62 6718

For a comprehensive listing of **ON Semiconductor Sales Offices, please visit:** www.onsemi.com/salessupport

AMERICAS REI	P FIRMS		
Alabama	Huntsville	e-Components	(256) 533-2444
Brazil	Countrywide	Ammon & Rizos	(+55) 11-4688-1960
California	Bay Area	Electec	(408) 496-0706
	Southern California	Tech Coast Sales	(949) 305-6869
Canada	Eastern Canada	Astec	(905) 607-1444
Connecticut	Statewide	Paragon Electronic Systems	(603) 645-7630
Florida	Statewide	e-Components	(888) 468-2444
Georgia	Atlanta	e-Components	(888) 468-2444
Illinois	Hoffman Estates	Stan Clothier Company	(847) 781-4010
Indiana	Fishers	Bear VAI	(317) 570-0707
Kansas	Overland Park	Stan Clothier Company	(913) 894-1675
Maine	Statewide	Paragon Electronic Systems	(603) 645-7630
Maryland	Columbia	Third Wave Solutions	(410) 290-5990
Massachusetts	Statewide	Paragon Electronic Systems	(603) 645-7630
Mexico	Countrywide	Ammon & Rizos	(+55) 11-4688-1960
Michigan	St. Joseph	Bear VAI	(440) 526-1991
Minnesota	Eden Prairie	Stan Clothier Company	(952) 944-3456
Missouri	St. Charles	Stan Clothier Company	(636) 916-3777
New Hampshire	Statewide	Paragon Electronic Systems	(603) 645-7630
New Jersey	Statewide	S.J. Metro	(516) 942-3232
New York	Binghamton	TriTech - Full Line Rep	(607) 722-3580
	Jericho	S.J. Metro	(516) 942-3232
	Rochester	TriTech - Full Line Rep	(585) 385-6500
North Carolina	Raleigh	e-Components	(888) 468-2444
Ohio	Brecksville	Bear VAI Technology	(440) 526-1991
Puerto Rico	Countrywide	e-Components	(888) 468-2444
Rhode Island	Statewide	Paragon Electronic Systems	(603) 645-7630
Vermont	Statewide	Paragon Electronic Systems	(603) 645-7630
Wisconsin	Evansville	Stan Clothier Company	(608) 882-0686
	Oconomowoc	Stan Clothier Company	(608) 882-0686

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

N. American Technical Support: 800-282-9855 Toll Free

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

BRD8011/D