

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
a _{MINI} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.73	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applica array ironi are samaser

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>109.50</u>	<u>5754.93</u>	k
Compressive Load =	3728.58	<u>4775.15</u>	k
Lateral Load =	24.35	3595.29	k
Moment (Weak Axis) =	0.05	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 162671.4 in-lbs Resisting Force Required = 2275.12 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3791.87 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 864.02 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2160.04 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 864.02 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs

ASD LC	1.0D + 1.0S 1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W									
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1230 lbs	1230 lbs	1230 lbs	1230 lbs	1825 lbs	1825 lbs	1825 lbs	1825 lbs	-46 lbs	-46 lbs	-46 lbs	-46 lbs
F _B	1394 lbs	1394 lbs	1394 lbs	1394 lbs	2022 lbs	2022 lbs	2022 lbs	2022 lbs	2418 lbs	2418 lbs	2418 lbs	2418 lbs	-2761 lbs	-2761 lbs	-2761 lbs	-2761 lbs
F _V	207 lbs	207 lbs	207 lbs	207 lbs	1577 lbs	1577 lbs	1577 lbs	1577 lbs	1318 lbs	1318 lbs	1318 lbs	1318 lbs	-1728 lbs	-1728 lbs	-1728 lbs	-1728 lbs
P _{total}	10352 lbs	10568 lbs	10784 lbs	11000 lbs	10812 lbs	11028 lbs	11244 lbs	11460 lbs	11802 lbs	12018 lbs	12234 lbs	12450 lbs	1730 lbs	1859 lbs	1989 lbs	2118 lbs
M	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3000 lbs-ft	3000 lbs-ft	3000 lbs-ft	3000 lbs-ft	4612 lbs-ft	4612 lbs-ft	4612 lbs-ft	4612 lbs-ft	5208 lbs-ft	5208 lbs-ft	5208 lbs-ft	5208 lbs-ft
е	0.35 ft	0.35 ft	0.34 ft	0.33 ft	0.28 ft	0.27 ft	0.27 ft	0.26 ft	0.39 ft	0.38 ft	0.38 ft	0.37 ft	3.01 ft	2.80 ft	2.62 ft	2.46 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft
f _{min}	244.8 psf	244.0 psf	243.3 psf	242.6 psf	267.6 psf	266.2 psf	264.9 psf	263.7 psf	272.8 psf	271.2 psf	269.8 psf	268.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	350.9 psf	347.2 psf	343.7 psf	340.4 psf	354.5 psf	350.7 psf	347.1 psf	343.7 psf	406.4 psf	401.1 psf	396.2 psf	391.5 psf	134.1 psf	130.9 psf	128.8 psf	127.4 psf

Maximum Bearing Pressure = 406 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1208.3 \text{ ft-lbs}$

Resisting Force Required = 828.53 lbs S.F. = 1.67

Weight Required = 1380.88 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		35 in			35 in		35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	288 lbs	720 lbs	288 lbs	851 lbs	2344 lbs	851 lbs	84 lbs	211 lbs	84 lbs	
F _V	3 lbs	0 lbs	3 lbs	10 lbs	0 lbs	10 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	9647 lbs	7560 lbs	9647 lbs	9760 lbs	7560 lbs	9760 lbs	2821 lbs	7560 lbs	2821 lbs	
М	10 lbs-ft	0 lbs-ft	10 lbs-ft	33 lbs-ft	0 lbs-ft	33 lbs-ft	3 lbs-ft	0 lbs-ft	3 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	276.9 psf	217.5 psf	276.9 psf	278.9 psf	217.5 psf	278.9 psf	81.0 psf	217.5 psf	81.0 psf	
f _{max}	278.2 psf	217.5 psf	278.2 psf	282.8 psf	217.5 psf	282.8 psf	81.4 psf	217.5 psf	81.4 psf	

Maximum Bearing Pressure = 283 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.868 k	Maximum Axial Load =	3.866 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>39%</u>	Utilization =	<u>52%</u>
Diagonal Strut			
Maximum Axial Load =	2.436 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	r double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>33%</u>		
		Struts under compression are	ahayya ta damar
I 3 I	0	Surus under compression are	SHOWLL TO DELLIOT

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.066 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 120 \\ \mathsf{J} &= & 0.432 \\ & & 211.117 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 28.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b [Bbr-mDbr^*h/t]$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
S1 = 36.9
m = 0.65
C₀ = 45.5
Cc = 45.5

$$S2 = \frac{k_1Bbr}{mDbr}$$
S2 = 77.3

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{split} \phi F_L W k &= & 23.1 \text{ ksi} \\ ly &= & 446476 \text{ mm}^4 \\ & & 1.073 \text{ in}^4 \\ x &= & 45.5 \text{ mm} \\ Sy &= & 0.599 \text{ in}^3 \\ M_{max} W k &= & 1.152 \text{ k-ft} \end{split}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = <u>BF0</u>

Strong Axis:

3.4.14 $L_{b} = 104.56 \text{ in}$ J = 1.08 179.85 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56 $\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$ $\phi F_{I} = 29.0 \text{ ksi}$

Weak Axis:

$L_{b} = 104.56$ J = 1.08 190.335 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56 $\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$

28.9

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

3.4.16

 $\phi F_1 =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

3.4.16.1 N/A for Weak Direction (2y) (b/t)]

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_h} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_{y}}{2}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\varphi F_L = 31.4 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.1 & 1.1 \\ 1.1 & 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3 Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$SZ = \frac{mDbr}{mDbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

Sy=

 $M_{max}Wk =$

27.5 mm

0.621 in³

1.460 k-ft

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 29.8 \text{ ksi}$ 29.8

3.4.16

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$φF_L$$
= 1.17 $φyFcy$
 $φF_L$ = 38.9 ksi

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$y = 27.5 \text{ mm}$$

Sx = 0.621 in³

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.8125$$
 $r = 0.81 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$\pi \sqrt{1097}$$

S2^{*} = 1.23671

$$\phi cc = 0.83375$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 8.88278 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_1 Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$x = 27.5 \text{ mm}$$

Sy = 0.621 in³

$$M_{max}Wk = 1.460 \text{ k-ft}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{\mathcal{Y}}}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-47.984	-47.984	0	0
2	M14	V	-47.984	-47.984	0	0
3	M15	V	-77.191	-77.191	0	0
4	M16	V	-77.191	-77.191	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	108.485	108.485	0	0
2	M14	V	83.45	83.45	0	0
3	M15	V	45.897	45.897	0	0
4	M16	V	45 897	45 897	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	В	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	707.714	2	1144.665	2	.907	1	.004	1	Ö	1	Ó	1
2		min	-886.988	3	-1369.224	3	.05	15	0	15	0	1	0	1
3	N7	max	.046	9	1123.473	1	898	15	002	15	0	1	0	1
4		min	198	2	6.282	3	-18.728	1	036	1	0	1	0	1
5	N15	max	.01	9	2868.136	1	0	11	0	11	0	1	0	1
6		min	-2.147	2	-84.23	3	0	9	0	14	0	1	0	1
7	N16	max	2592.713	2	3673.189	2	0	3	0	3	0	1	0	1
8		min	-2765.608	3	-4426.867	3	0	14	0	14	0	1	0	1
9	N23	max	.046	9	1123.473	1	18.728	1	.036	1	0	1	0	1
10		min	198	2	6.282	3	.898	15	.002	15	0	1	0	1
11	N24	max	707.714	2	1144.665	2	05	15	0	15	0	1	0	1
12		min	-886.988	3	-1369.224	3	907	1	004	1	0	1	0	1
13	Totals:	max	4005.6	2	10723.74	1	0	3						
14		min	-4539.664	3	-7236.981	3	0	9						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.087	1	424.965	1	-9.83	15	0	3	.304	1	0	1
2			min	5.05	15	-630.83	3	-211.511	1	015	2	.014	15	0	3
3		2	max	108.087	1	297.055	1	-7.547	15	0	3	.096	1	.597	3
4			min	5.05	15	-443.994	3	-162.288	1	015	2	.005	15	401	1
5		3	max	108.087	1	169.146	1	-5.265	15	0	3	0	12	.987	3
6			min	5.05	15	-257.157	3	-113.065	1	015	2	057	1	66	1
7		4	max	108.087	1	41.236	1	-2.983	15	0	3	006	12	1.169	3
8			min	5.05	15	-70.321	3	-63.841	1	015	2	155	1	777	1
9		5	max	108.087	1	116.515	3	701	15	0	3	009	12	1.143	3
10			min	5.05	15	-86.674	1	-14.618	1	015	2	199	1	752	1
11		6	max	108.087	1	303.352	3	34.606	1	0	3	009	15	.91	3
12			min	5.05	15	-214.584	1	.771	12	015	2	188	1	584	1
13		7	max	108.087	1	490.188	3	83.829	1	0	3	006	15	.469	3
14			min	5.05	15	-342.494	1	3.09	12	015	2	122	1	275	1
15		8	max	108.087	1	677.024	3	133.053	1	0	3	.002	2	.177	1
16			min	5.05	15	-470.404	1	5.41	12	015	2	004	3	18	3
17		9	max	108.087	1	863.86	3	182.276	1	0	3	.174	1	.77	1
18			min	5.05	15	-598.314	1	7.729	12	015	2	.005	12	-1.036	3
19		10	max	108.087	1	726.224	1	-10.048	12	0	12	.404	1	1.506	1
20			min	5.05	15	-1050.697	3	-231.499	1	015	2	.015	12	-2.099	3
21		11	max	108.087	1	598.314	1	-7.729	12	.015	2	.174	1	.77	1
22			min	5.05	15	-863.86	3	-182.276	1	0	3	.005	12	-1.036	3
23		12	max	108.087	1	470.404	1	-5.41	12	.015	2	.002	2	.177	1
24			min	5.05	15	-677.024	3	-133.053	1	0	3	004	3	18	3
25		13	max	108.087	1	342.494	1	-3.09	12	.015	2	006	15	.469	3
26			min	5.05	15	-490.188	3	-83.829	1	0	3	122	1	275	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	108.087	1	214.584	1_	771	12	.015	2	009	15	.91	3
28		4.5	min	5.05	15	-303.352	3	-34.606	1	0	3	188	1	584	1
29		15	max	108.087	1	86.674	1	14.618	1	.015	2	009	12	1.143	3
30		40	min	5.05	15	-116.515	3	.701	15	0	3	199	1	752	1
31		16	max	108.087	1	70.321	3_	63.841	1	.015	2	006	12	1.169	3
32		4-7	min	5.05	15	-41.236	1_	2.983	15	0	3	1 <u>55</u>	1	777	1
33		17	max	108.087	1	257.157	3	113.065	1	.015	2	0	12	.987	3
34			min	5.05	15	-169.146	_1_	5.265	15	0	3	057	1	66	1
35		18	max	108.087	1	443.994	3	162.288	1	.015	2	.096	1	.597	3
36			min	5.05	15	-297.055	1_	7.547	15	0	3	.005	15	401	1
37		19	max	108.087	1	630.83	3	211.511	1	.015	2	.304	1	0	1
38			min	5.05	15	-424.965	_1_	9.83	15	0	3	.014	15	0	3
39	M14	1	max	58.598	1	462.578	_1_	-10.181	15	.01	3	.354	1	0	1
40			min	2.746	15	-502.553	3	-219.078	1	013	2	.017	15	0	3
41		2	max	58.598	1	334.668	_1_	-7.899	15	.01	3	.138	1	.479	3
42			min	2.746	15	-360.224	3	-169.855	1	013	2	.006	15	443	1
43		3	max	58.598	1	206.758	<u>1</u>	-5.616	15	.01	3	.002	3	.8	3
44			min	2.746	15	-217.894	3	-120.631	1	013	2	024	1	744	1
45		4	max	58.598	1	78.848	1	-3.334	15	.01	3	005	12	.964	3
46			min	2.746	15	-75.565	3	-71.408	1	013	2	13	1	902	1
47		5	max	58.598	1	66.765	3	-1.052	15	.01	3	008	12	.968	3
48			min	2.746	15	-49.062	1	-22.184	1	013	2	182	1	919	1
49		6	max	58.598	1	209.095	3	27.039	1	.01	3	008	15	.815	3
50			min	2.746	15	-176.972	1	.42	12	013	2	179	1	793	1
51		7	max	58.598	1	351.424	3	76.262	1	.01	3	006	15	.504	3
52			min	2.746	15	-304.881	1	2.739	12	013	2	122	1	526	1
53		8	max	58.598	1	493.754	3	125.486	1	.01	3	0	10	.034	3
54			min	2.746	15	-432.791	1	5.058	12	013	2	01	1	128	2
55		9	max	58.598	1	636.084	3	174.709	1	.01	3	.157	1	.436	1
56			min	2.746	15	-560.701	1	7.378	12	013	2	.004	12	593	3
57		10	max	58.598	1	688.611	1	-9.697	12	.01	3	.378	1	1.13	1
58			min	2.746	15	-778.413	3	-223.933	1	013	2	.014	12	-1.379	3
59		11	max	58.598	1	560.701	1	-7.378	12	.013	2	.157	1	.436	1
60			min	2.746	15	-636.084	3	-174.709	1	01	3	.004	12	593	3
61		12	max	58.598	1	432.791	1	-5.058	12	.013	2	0	10	.034	3
62			min	2.746	15	-493.754	3	-125.486	1	01	3	01	1	128	2
63		13	max	58.598	1	304.881	1	-2.739	12	.013	2	006	15	.504	3
64			min	2.746	15	-351.424	3	-76.262	1	01	3	122	1	526	1
65		14	max	58.598	1	176.972	1	42	12	.013	2	008	15	.815	3
66			min	2.746	15	-209.095	3	-27.039	1	01	3	179	1	793	1
67		15			1	49.062	1	22.184	1	.013	2	008	12	.968	3
68		'	min	2.746	15	-66.765	3	1.052	15	01	3	182	1	919	1
69		16	max	58.598	1	75.565	3	71.408	1	.013	2	005	12	.964	3
70		10	min	2.746	15	-78.848	1	3.334	15	01	3	13	1	902	1
71		17	max	58.598	1	217.894	3	120.631	1	.013	2	.002	3	.8	3
72		17	min	2.746	15	-206.758	1	5.616	15	01	3	024	1	744	1
73		18	max	58.598	1	360.224	3	169.855	1	.013	2	.138	1	.479	3
74		10	min	2.746	15	-334.668	1	7.899	15	01	3	.006	15	443	1
75		19			1	502.553	3	219.078	1	.013	2	.354	1	0	1
		19	max	58.598											
76	NAF	1	min	2.746	15	-462.578	1	10.181	15	01	3	.017	15	0	3
77	M15	1	max	-2.947	15	615.085	2	-10.176	15	.014	2	.353	1	0	2
78			min	-62.859	1	-277.614	3	-219.003	1_	009	3	.016	15	0	3
79		2	max	-2.947	15	442.206	2	-7.894	15	.014	2	.137	1	.266	3
80			min	-62.859	1_	-202.045	3	-169.78	1_	009	3	.006	15	587	2
81		3	max	-2.947	15	269.327	2	-5.611	15	.014	2	.002	3	.449	3
82			min	-62.859	1_	-126.476	3	-120.556		009	3	024	1	983	2
83		4	max	-2.947	15	96.447	2	-3.329	15	.014	2	005	12	.548	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]					LC
84			min	-62.859	<u>1</u>	-50.908	3	-71.333	1	009	3	131	1	-1.186	2
85		5	max	-2.947	15	24.661	3	-1.047	15	.014	2	008	12	.562	3
86			min	-62.859	<u> 1</u>	-76.432	2	-22.11	1	009	3	182	1	-1.197	2
87		6	max	-2.947	15	100.23	3	27.114	1	.014	2	008	15	.493	3
88			min	-62.859	1	-249.312	2	.495	12	009	3	18	1	-1.016	2
89		7	max	-2.947	15	175.799	3	76.337	1	.014	2	006	15	.339	3
90			min	-62.859	1	-422.191	2	2.815	12	009	3	122	1	643	2
91		8	max	-2.947	15	251.367	3	125.561	1	.014	2	0	10	.102	3
92			min	-62.859	1	-595.07	2	5.134	12	009	3	01	1	09	1
93		9	max	-2.947	15	326.936	3	174.784	1	.014	2	.157	1	.679	2
94			min	-62.859	1	-767.95	2	7.453	12	009	3	.004	12	219	3
95		10	max	-2.947	15	940.829	2	-9.773	12	.014	2	.378	1	1.629	2
96			min	-62.859	1	-402.505	3	-224.007	1	009	3	.014	12	624	3
97		11	max	-2.947	15	767.95	2	-7.453	12	.009	3	.157	1	.679	2
98			min	-62.859	1	-326.936	3	-174.784	1	014	2	.004	12	219	3
99		12	max	-2.947	15	595.07	2	-5.134	12	.009	3	0	10	.102	3
100			min	-62.859	1	-251.367	3	-125.561	1	014	2	01	1	09	1
101		13	max	-2.947	15	422.191	2	-2.815	12	.009	3	006	15	.339	3
102		'	min	-62.859	1	-175.799	3	-76.337	1	014	2	122	1	643	2
103		14	max	-2.947	15	249.312	2	495	12	.009	3	008	15	.493	3
104			min	-62.859	1	-100.23	3	-27.114	1	014	2	18	1	-1.016	2
105		15	max	-2.947	15	76.432	2	22.11	1	.009	3	008	12	.562	3
106		10	min	-62.859	1	-24.661	3	1.047	15	014	2	182	1	-1.197	2
107		16	max	-2.947	15	50.908	3	71.333	1	.009	3	005	12	.548	3
108		10	min	-62.859	1	-96.447	2	3.329	15	014	2	131	1	-1.186	2
109		17	max	-2.947	15	126.476	3	120.556	1	.009	3	.002	3	.449	3
110		- ' '	min	-62.859	1	-269.327	2	5.611	15	014	2	024	1	983	2
111		18	max	-2.947	15	202.045	3	169.78	1	.009	3	.137	1	.266	3
112		10	min	-62.859	1	-442.206	2	7.894	15	014	2	.006	15	587	2
113		19	max	-2.947	15	277.614	3	219.003	1	.009	3	.353	1	0	2
114		13	min	-62.859	1	-615.085	2	10.176	15	014	2	.016	15	0	3
115	M16	1	max	-5.698	15	577.868	2	-9.847	15	.012	1	.307	1	0	2
116	IVITO		min	-121.647	1	-248.921	3	-212	1	012	3	.014	15	0	3
117		2	max	-5.698	15	404.989	2	-7.565	15	.012	1	.098	1	.235	3
118			min	-121.647	1	-173.352	3	-162.777	1	012	3	.005	15	546	2
119		3	max	-5.698	15	232.11	2	-5.283	15	.012	1	001	12	.385	3
120			min	-121.647	1	-97.784	3	-113.554	1	012	3	055	1	9	2
121		4	max	-5.698	15	59.23	2	-3.001	15	.012	1	006	12	.452	3
122		_		-121.647	1	-22.215	3	-64.33	1	012	3	154	1	-1.062	2
123		5	max	-5.698	15	53.354	3	719	15	.012	1	009	12	.435	3
		3			-	-113.649							1	-1.032	
124 125		6		-121.647 -5.698	15	128.923		-15.107 34.117	1	012 .012	1	198 009		.333	3
126		0	max	-121.647	<u>15</u>	-286.529	<u>3</u>	.997	12	012	3	188	1 <u>5</u>	809	2
126		7			<u>1</u> 15	204.491		83.34	1	.012	1	006	15	809 .148	3
128			max	-5.698 -121.647	1	-459.408	2	3.316	12	012	3	122	15	395	2
129		8	max		15	280.06	3	132.564	1	.012	1	.001	10	.212	2
130		0		-121.647		-632.288	2	5.635	12	012	3	003	3	121	3
131		9			1_	355.629	3	181.787	1	.012	1	.172	1	1.01	2
132		9	max	-121.647	<u>15</u> 1	-805.167	2	7.955	12	012	3	.006	12	474	3
		10						-10.274				.402			
133		10	max	-5.698 -121.647	<u>15</u>	978.046 -431.198	2		12	.012 012	3		1	2.001	3
134		11			15		3	-231.01 -7.055	12		3	.016 .172	12 1	911 1.01	2
135		11	max	-5.698 -121.647	<u>15</u>	805.167	2	-7.955	12	.012	1		12	1.01	3
136		10			1_	-355.629	3	<u>-181.787</u>	12	012	3	.006		474 .212	2
137		12	max		<u>15</u>	632.288	2	-5.635	12	.012	1	.001	10		
138 139		12		-121.647 -5.608	15	-280.06 459.408	2	-132.564 -3.316	12	012	3	003 006	15	121	3
140		13	max		<u>15</u>		3		12	.012	1	006	1 <u>5</u>	.148	2
140			1111111	-121.647	<u> </u>	-204.491	<u>ა</u>	-83.34		012		122		395	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

141		Member	Sec		Axial[lb]			LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
143			14													
144				min		1_				+						
145			15	max		15						3		12		
146	144			min	-121.647	1		3	.719	15	012		198	1	-1.032	2
148	145		16	max	-5.698	15	22.215	3	64.33	1	.012	3	006	12	.452	3
148	146			min	-121.647	1	-59.23	2	3.001	15	012	1	154	1	-1.062	2
148	147		17	max	-5.698	15	97.784	3	113.554	1	.012	3	001	12	.385	3
149	148			min						15	012					
150			18	max		15						3		1	.235	
151										15				15		
152			19			-						•				
153																
155		M2	1													
155		IVIZ														
156			2													-
157																
158			2										_			-
159			3													
160												•				
161			4												_	
162			_			_						_	_			
163			5												_	
164													_			
165			6	max		1_									_	
166						3		15		15	0			15	003	
167	165		7	max		1	1.596		.605	1	0	5	.001		0	15
168	166			min	-1193.562	3	.375	15	.028	15	0	1	0	15	004	4
169	167		8	max	1014.087	1	1.525	4	.605	1	0	5	.002	1	001	15
169	168			min	-1193.166	3	.359	15	.028	15	0	1	0	15	004	4
170			9	max	1014.616	1	1.454	4	.605	1	0	5	.002	1	001	15
171						3		15		15				15		
172			10			1					0	5	.002			
173						3		15		15				15	005	
174			11										_			
175																
176			12										_			
177			12													
178			13									_				
179 14 max 1017.263 1 1.099 4 .605 1 0 5 .003 1 002 15 180 min -1190.784 3 .259 15 .028 15 0 1 0 15 007 4 181 15 max 1017.792 1 1.028 4 .605 1 0 5 .003 1 002 15 182 min -1190.387 3 .242 15 .028 15 0 1 0 15 .008 4 183 16 max 1018.321 1 .957 4 .605 1 0 5 .003 1 002 15 184 min -1189.99 3 .219 12 .028 15 0 1 0 15 .008 4 185 17 max 1018.851 1 <			13													
180 min -1190.784 3 .259 15 .028 15 0 1 0 15 007 4 181 15 max 1017.792 1 1.028 4 .605 1 0 5 .003 1 002 15 182 min -1190.387 3 .242 15 .028 15 0 1 0 15 008 4 183 16 max 1018.321 1 .957 4 .605 1 0 5 .003 1 002 15 184 min -1189.99 3 .219 12 .028 15 0 1 0 15 008 4 185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.93 3 .163			1.1										_			
181 15 max 1017.792 1 1.028 4 .605 1 0 5 .003 1 002 15 182 min -1190.387 3 .242 15 .028 15 0 1 0 15 008 4 183 16 max 1018.321 1 .957 4 .605 1 0 5 .003 1 002 15 184 min -1189.99 3 .219 12 .028 15 0 1 0 15 008 4 185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1<			14													
182 min -1190.387 3 .242 15 .028 15 0 1 0 15 008 4 183 16 max 1018.321 1 .957 4 .605 1 0 5 .003 1 002 15 184 min -1189.99 3 .219 12 .028 15 0 1 0 15 008 4 185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 002 15 188 min -1189.196 3 .163			15			3					_		_			
183 16 max 1018.321 1 .957 4 .605 1 0 5 .003 1 002 15 184 min -1189.99 3 .219 12 .028 15 0 1 0 15 008 4 185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 002 15 188 min -1189.196 3 .163 12 .028 15 0 1 0 15 009 4 189 19 max 1019.909 1 .758			10			-										
184 min -1189.99 3 .219 12 .028 15 0 1 0 15 008 4 185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 002 15 188 min -1189.196 3 .163 12 .028 15 0 1 0 15 009 4 189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1 002 15 190 min -1188.799 3 .136			40													-
185 17 max 1018.851 1 .886 4 .605 1 0 5 .003 1 002 15 186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 002 15 188 min -1189.196 3 .163 12 .028 15 0 1 0 15 009 4 189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1 002 15 190 min -1188.799 3 .136 12 .028 15 0 1 0 15 009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 193 2 max 624.444 <td< td=""><td></td><td></td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			16													
186 min -1189.593 3 .191 12 .028 15 0 1 0 15 008 4 187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 002 15 188 min -1189.196 3 .163 12 .028 15 0 1 0 15 009 4 189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1 002 15 190 min -1188.799 3 .136 12 .028 15 0 1 0 15 009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.			4-										_			
187 18 max 1019.38 1 .815 4 .605 1 0 5 .004 1 1002 15 188 min -1189.196 3 .163 12 .028 15 0 1 0 15009 4 189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1002 15 190 min -1188.799 3 .136 12 .028 15 0 1 0 15009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 0 15 0 3 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 15 0 3			17													
188 min -1189.196 3 .163 12 .028 15 0 1 0 15 009 4 189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1 002 15 190 min -1188.799 3 .136 12 .028 15 0 1 0 15 009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882<			4.0													
189 19 max 1019.909 1 .758 2 .605 1 0 5 .004 1 002 15 190 min -1188.799 3 .136 12 .028 15 0 1 0 15 009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678			18		1019.38											
190 min -1188.799 3 .136 12 .028 15 0 1 0 15 009 4 191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678											_					
191 M3 1 max 624.614 2 8.874 4 .472 1 0 15 0 1 .009 4 192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3			19													
192 min -785.835 3 2.086 15 .022 15 0 1 0 15 .002 15 193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3						3										
193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3		M3	1	max		2					0	<u>15</u>	0		.009	-
193 2 max 624.444 2 8.005 4 .472 1 0 15 0 1 .005 4 194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3	192			min	-785.835	3	2.086	15	.022	15	0		0	15	.002	15
194 min -785.962 3 1.882 15 .022 15 0 1 0 15 0 12 195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3			2	max		2	8.005	4	.472	1	0	15	0	1	.005	4
195 3 max 624.273 2 7.136 4 .472 1 0 15 0 1 .002 2 196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3						3		15	.022	15		1	0	15		
196 min -786.09 3 1.678 15 .022 15 0 1 0 15 0 3			3									15			.002	
														15		
			4	_												

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-786.218	3	1.473	15	.022	15	0	1	0	15	002	3
199		5	max	623.933	2	5.398	4	.472	1	0	15	.001	1	001	15
200			min	-786.346	3	1.269	15	.022	15	0	1	0	15	005	4
201		6	max	623.762	2	4.53	4	.472	1	0	15	.002	1	002	15
202			min	-786.473	3	1.065	15	.022	15	0	1	0	15	007	4
203		7	max	623.592	2	3.661	4	.472	1	0	15	.002	1	002	15
204			min	-786.601	3	.861	15	.022	15	0	1	0	15	009	4
205		8	max	623.422	2	2.792	4	.472	1	0	15	.002	1	002	15
206			min	-786.729	3	.656	15	.022	15	0	1	0	15	01	4
207		9	max	623.251	2	1.923	4	.472	1	0	15	.002	1	003	15
208			min	-786.857	3	.452	15	.022	15	0	1	0	15	011	4
209		10	max	623.081	2	1.054	4	.472	1	0	15	.002	1	003	15
210			min	-786.984	3	.248	15	.022	15	0	1	0	15	012	4
211		11	max	622.911	2	.281	2	.472	1	0	15	.003	1	003	15
212			min	-787.112	3	08	3	.022	15	0	1	0	15	012	4
213		12	max	622.74	2	16	15	.472	1	0	15	.003	1	003	15
214			min	-787.24	3	684	4	.022	15	0	1	0	15	012	4
215		13	max	622.57	2	365	15	.472	1	0	15	.003	1	003	15
216			min	-787.368	3	-1.553	4	.022	15	0	1	0	15	012	4
217		14	max	622.4	2	569	15	.472	1	0	15	.003	1	003	15
218			min	-787.495	3	-2.422	4	.022	15	0	1	0	15	011	4
219		15	max	622.229	2	773	15	.472	1	0	15	.004	1	002	15
220			min	-787.623	3	-3.29	4	.022	15	0	1	0	15	009	4
221		16	max	622.059	2	977	15	.472	1	0	15	.004	1	002	15
222			min	-787.751	3	-4.159	4	.022	15	0	1	0	15	008	4
223		17	max	621.888	2	-1.182	15	.472	1	0	15	.004	1	001	15
224			min	-787.879	3	-5.028	4	.022	15	0	1	0	15	006	4
225		18	max	621.718	2	-1.386	15	.472	1	0	15	.004	1	0	15
226			min	-788.006	3	-5.897	4	.022	15	0	1	0	15	003	4
227		19	max	621.548	2	-1.59	15	.472	1	0	15	.004	1	0	1
228			min	-788.134	3	-6.766	4	.022	15	0	1	0	15	0	1
229	M4	1	max	1120.407	1	0	1	899	15	0	1	.004	1	0	1
230			min	3.982	3	0	1	-19.321	1	0	1	0	15	0	1
231		2	max	1120.577	1	0	1	899	15	0	1	.001	1	0	1
232			min	4.11	3	0	1	-19.321	1	0	1	0	15	0	1
233		3	max	1120.748	1	0	1	899	15	0	1	0	15	0	1
234			min	4.238	3	0	1	-19.321	1	0	1	0	1	0	1
235		4	max	1120.918	1	0	1	899	15	0	1	0	15	0	1
236			min	4.366	3	0	1	-19.321	1	0	1	003	1	0	1
237		5	max	1121.088	1	0	1	899	15	0	1	0	15	0	1
238			min	4.493	3	0	1	-19.321	1	0	1	005	1	0	1
239		6	max	1121.259	1	0	1	899	15	0	1	0	15	0	1
240			min	4.621	3	0	1	-19.321	1	0	1	008	1	0	1
241		7	max	1121.429	1	0	1	899	15	0	1	0	15	0	1
242			min	4.749	3	0	1	-19.321	1	0	1	01	1	0	1
243		8	max	1121.599	1	0	1	899	15	0	1	0	15	0	1
244			min	4.877	3	0	1	-19.321	1	0	1	012	1	0	1
245		9	max		1	0	1	899	15	0	1	0	15	0	1
246			min	5.004	3	0	1	-19.321	1	0	1	014	1	0	1
247		10	max	1121.94	1	0	1	899	15	0	1	0	15	0	1
248			min	5.132	3	0	1	-19.321	1	0	1	016	1	0	1
249		11	max		1	0	1	899	15	0	1	0	15	0	1
250			min	5.26	3	0	1	-19.321	1	0	1	019	1	0	1
251		12		1122.281	1	0	1	899	15	0	1	0	15	0	1
252			min	5.388	3	0	1	-19.321	1	0	1	021	1	0	1
253		13		1122.451	1	0	1	899	15	0	1	001	15	0	1
254			min	5.516	3	0	1	-19.321	1	0	1	023	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			1 1
255 256		14	min	1122.621 5.643	<u>1</u> 3	0	1	899 -19.321	<u>15</u> 1	0	<u>1</u> 1	001 025	1 <u>5</u>	0	1
257		15		1122.792	<u> </u>	0	1	899	15	0	+	025	15	0	1
258		10	min	5.771	3	0	1	-19.321	1	0	1	028	1	0	1
259		16		1122.962	1	0	1	899	15	0	1	001	15	0	1
260			min	5.899	3	0	1	-19.321	1	0	1	03	1	0	1
261		17	_	1123.132	1	0	1	899	15	0	1	001	15	0	1
262			min	6.027	3	0	1	-19.321	1	0	1	032	1	0	1
263		18	max	1123.303	1	0	1	899	15	0	1	002	15	0	1
264			min	6.154	3	0	1	-19.321	1	0	1	034	1	0	1
265		19	max	1123.473	1	0	1	899	15	0	1	002	15	0	1
266			min	6.282	3	0	1	-19.321	1	0	1	036	1	0	1
267	M6	1	max	3199.622	1	2.211	2	0	1	0	1	0	1	0	1
268			min	-3865.904	3	.301	12	0	1	0	1	0	1	0	1
269		2	max	3200.151	1	2.156	2	0	1	0	1	0	1	0	12
270			min	-3865.507	3	.273	12	0	1	0	1	0	1	0	2
271		3	max	3200.68	<u>1</u>	2.1	2	0	1	0	_1_	0	1_	0	12
272			min	-3865.11	3	.246	12	0	1	0	1	0	1	002	2
273		4	max		_1_	2.045	2	0	1	0	1	0	1_	0	12
274			min	-3864.713	3	.218	12	0	1_	0	1	0	1	002	2
275		5		3201.739	1_	1.99	2	0	1	0	1	0	1	0	12
276			min	-3864.316	3	.19	12	0	1_	0	<u>1</u>	0	1	003	2
277		6		3202.268	_1_	1.934	2	0	1	0	1	0	1	0	12
278		_	min	-3863.919	3	.163	12	0	1	0	1	0	1	004	2
279		7		3202.797	1_	1.879	2	0	1	0	1	0	1	0	12
280			min	-3863.523	3	.135	12	0	1_	0	1_	0	1	004	2
281		8		3203.327 -3863.126	1	1.824	2	0	1	0	1	0	1	0	12
282		_			3	.107	12	0	1	0	<u>1</u> 1	0	1	005	2
283		9		3203.856 -3862.729	<u>1</u> 3	1.768 .07	3	0	1	0	1	0	1	0	12
284 285		10	min	3204.385	<u>ာ</u> 1	1.713	2	0	1	0	1	0	1	006 0	12
286		10	min	-3862.332	3	.029	3	0	1	0	1	0	1	006	2
287		11		3204.915	1	1.658	2	0	1	0	1	0	1	0	12
288			min	-3861.935	3	013	3	0	1	0	1	0	1	007	2
289		12		3205.444	1	1.602	2	0	1	0	1	0	1	0	12
290		- '-	min		3	054	3	0	1	0	1	0	1	008	2
291		13	_	3205.973	1	1.547	2	0	1	0	1	0	1	0	12
292			min		3	096	3	0	1	0	1	0	1	008	2
293		14		3206.502	1	1.492	2	0	1	0	1	0	1	0	12
294				-3860.744	3	137	3	0	1	0	1	0	1	009	2
295		15		3207.032	1	1.436	2	0	1	0	1	0	1	0	12
296			min	-3860.347	3	179	3	0	1	0	1	0	1	009	2
297		16	max	3207.561	1	1.381	2	0	1	0	1	0	1	0	3
298			min	-3859.95	3	22	3	0	1	0	1	0	1	01	2
299		17	max	3208.09	1_	1.326	2	0	1	0	1	0	1	0	3
300			min		3	262	3	0	1	0	1	0	1	01	2
301		18		3208.62	1_	1.27	2	0	1	0	1	0	1	0	3
302				-3859.156	3	303	3	0	1	0	1	0	1	011	2
303		19		3209.149	_1_	1.215	2	0	1	0	1	0	1	0	3
304				-3858.759	3	345	3	0	1	0	1_	0	1	011	2
305	<u>M7</u>	1_		2341.805	2	8.909	4	0	1	0	1	0	1	.011	2
306			min	-2434.069	3_	2.091	15	0	1_	0	1	0	1	0	3
307		2		2341.634	2	8.04	4	0	1	0	1	0	1	.008	2
308				-2434.196	3_	1.887	15	0	1	0	1	0	1	002	3
309		3		2341.464	2	7.171	4	0	1	0	1	0	1	.005	2
310				-2434.324	3	1.683	15	0	1_	0	1	0	1	004	3
311		4	max	2341.294	2	6.302	4	0	1	0	_1_	0	1	.002	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2434.452	3	1.479	15	0	1	0	1	0	1	005	3
313		5	max	2341.123	2	5.433	4	0	1	0	_1_	0	_1_	0	2
314			min	-2434.58	3	1.274	15	0	1	0	1	0	1_	007	3
315		6		2340.953	2	4.564	4	0	1	0	1	0	_1_	002	15
316			min	-2434.707	3	1.07	15	0	1	0	1	0	1	008	3
317		7		2340.783	2	3.695	4	0	1	0	_1_	0	_1_	002	15
318			min	-2434.835	3	.866	15	0	1	0	1	0	1_	009	4
319		8	max	2340.612	2	2.826	4	0	1	0	_1_	0	_1_	002	15
320			min	-2434.963	3	.662	15	0	1	0	1	0	1_	01	4
321		9		2340.442	2	1.983	2	0	1	0	_1_	0	_1_	003	15
322			min	-2435.091	3	.378	12	0	1	0	1	0	1_	011	4
323		10	max	2340.272	2	1.306	2	0	1	0	_1_	0	_1_	003	15
324			min	-2435.218	3	.022	3	0	1	0	1	0	1_	012	4
325		11	max	2340.101	2	.629	2	0	1	0	1	0	_1_	003	15
326			min	-2435.346	3	486	3	0	1	0	1	0	1_	012	4
327		12	max	2339.931	2	048	2	0	1	0	_1_	0	_1_	003	15
328			min	-2435.474	3	994	3	0	1	0	1	0	1_	012	4
329		13	max	2339.761	2	359	15	0	1	0	_1	0	_1_	003	15
330			min	-2435.602	3	-1.518	4	0	1	0	1	0	1	012	4
331		14	max	2339.59	2	564	15	0	1	0	1	0	1	003	15
332			min	-2435.73	3	-2.387	4	0	1	0	1	0	1	011	4
333		15	max	2339.42	2	768	15	0	1	0	1	0	1_	002	15
334			min	-2435.857	3	-3.256	4	0	1	0	1	0	1	009	4
335		16	max	2339.25	2	972	15	0	1	0	1	0	1	002	15
336			min	-2435.985	3	-4.125	4	0	1	0	1	0	1	008	4
337		17	max	2339.079	2	-1.176	15	0	1	0	1	0	1	001	15
338			min	-2436.113	3	-4.994	4	0	1	0	1	0	1	006	4
339		18	max	2338.909	2	-1.381	15	0	1	0	1	0	1	0	15
340			min	-2436.241	3	-5.863	4	0	1	0	1	0	1	003	4
341		19	max	2338.739	2	-1.585	15	0	1	0	1	0	1	0	1
342			min	-2436.368	3	-6.732	4	0	1	0	1	0	1	0	1
343	M8	1	max	2865.07	1	0	1	0	1	0	1	0	1	0	1
344			min	-86.529	3	0	1	0	1	0	1	0	1	0	1
345		2	max	2865.24	1	0	1	0	1	0	1	0	1	0	1
346			min	-86.402	3	0	1	0	1	0	1	0	1	0	1
347		3	max	2865.411	1	0	1	0	1	0	1	0	1	0	1
348			min	-86.274	3	0	1	0	1	0	1	0	1	0	1
349		4	max	2865.581	1	0	1	0	1	0	1	0	1	0	1
350			min	-86.146	3	0	1	0	1	0	1	0	1	0	1
351		5	max	2865.751	1	0	1	0	1	0	1	0	1	0	1
352			min	-86.018	3	0	1	0	1	0	1	0	1	0	1
353		6	max	2865.922	1	0	1	0	1	0	1	0	1	0	1
354			min	-85.891	3	0	1	0	1	0	1	0	1	0	1
355		7	max	2866.092	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8	max	2866.262	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9	max	2866.433	1	0	1	0	1	0	1	0	1	0	1
360				-85.507	3	0	1	0	1	0	1	0	1	0	1
361		10		2866.603	1	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11	max	2866.773	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		2866.944	1	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	0	1	0	1	0	1	0	1
367		13		2867.114	1	0	1	0	1	0	1	0	1	0	1
368			min		3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
369		14	max	2867.284	1	0	1	0	1	0	1	0	1	0	1
370			min	-84.869	3	0	1	0	1	0	1	0	1	0	1
371		15	max	2867.455	1	0	1	0	1	0	1	0	1	0	1
372			min	-84.741	3	0	1	0	1	0	1	0	1	0	1
373		16	max	2867.625	1	0	1	0	1	0	1	0	1	0	1
374			min	-84.613	3	0	1	0	1	0	1	0	1	0	1
375		17	max	2867.795	1	0	1	0	1	0	1	0	1	0	1
376			min	-84.485	3	0	1	0	1	0	1	0	1	0	1
377		18	max	2867.966	1	0	1	0	1	0	1	0	1	0	1
378			min	-84.357	3	0	1	0	1	0	1	0	1	0	1
379		19	max	2868.136	1	0	1	0	1	0	1	0	1	0	1
380			min	-84.23	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1010.382	1	2.022	4	028	15	0	1	0	1	0	1
382			min	-1195.944	3	.476	15	605	1	0	5	0	3	0	1
383		2		1010.911	1	1.951	4	028	15	0	1	0	15	0	15
384			min	-1195.547	3	.459	15	605	1	0	5	0	1	0	4
385		3	max	1011.441	1_	1.88	4	028	15	0	1	0	15	0	15
386			min	-1195.15	3	.442	15	605	1	0	5	0	1	001	4
387		4	max		1	1.809	4	028	15	0	1	0	15	0	15
388			min	-1194.753	3	.426	15	605	1	0	5	0	1	002	4
389		5	max	1012.499	1_	1.738	4	028	15	0	1	0	15	0	15
390			min	-1194.356	3	.409	15	605	1	0	5	0	1	003	4
391		6		1013.028	_1_	1.667	4	028	15	0	1	0	15	0	15
392			min	-1193.959	3	.392	15	605	1	0	5	001	1	003	4
393		7		1013.558	_1_	1.596	4	028	15	0	1	0	15	0	15
394			min	-1193.562	3	.375	15	605	1	0	5	001	1	004	4
395		8		1014.087	1_	1.525	4	028	15	0	1	0	15	001	15
396			min	-1193.166	3	.359	15	605	1	0	5	002	1	004	4
397		9		1014.616	1	1.454	4	028	15	0	1	0	15	001	15
398			min	-1192.769	3	.342	15	605	1	0	5	002	1	005	4
399		10		1015.146	1_	1.383	4	028	15	0	1	0	15	001	15
400			min	-1192.372	3	.325	15	605	1	0	5	002	1	005	4
401		11		1015.675	1_	1.312	4	028	15	0	1	0	15	001	15
402			min	-1191.975	3	.309	15	605	1	0	5	002	1	006	4
403		12		1016.204	1	1.241	4	028	15	0	1	0	15	002	15
404			min	-1191.578	3	.292	15	605	1	0	5	002	1	006	4
405		13		1016.733	1	1.17	4	028	15	0	1	0	15	002	15
406			min	-1191.181	3	.275	15	605	1_	0	5	003	1_	007	4
407		14		1017.263	1	1.099	4	028	15	0	1	0	15	002	15
408			min		3	.259	15	605	1_	0	5	003	1_	007	4
409		15		1017.792	1	1.028	4	028	15	0	1	0	15	002	15
410		1.0	min		3	.242	15	605	1_	0	5	003	1	008	4
411		16		1018.321	1	.957	4	028	15	0	1	0	15	002	15
412		4-7	min		3	.219	12	605	1_	0	5	003	1_	008	4
413		17		1018.851	1	.886	4	028	15	0	1	0	15	002	15
414		10	min	-1189.593	3	.191	12	605	1_	0	5	003	1_	008	4
415		18		1019.38	1	.815	4	028	15	0	1	0	15	002	15
416		40	min		3	.163	12	605	1_	0	5	004	1_	009	4
417		19		1019.909	1	.758	2	028	15	0	1	0	15	002	15
418	N/4.4		min		3	.136	12	605	1_	0	5	004	1	009	4
419	<u>M11</u>	1	max		2	8.874	4	022	15	0	1	0	15	.009	4
420			min		3	2.086	15	472	1_	0	15	0	1_	.002	15
421		2	max		2	8.005	4	022	15	0	1	0	15	.005	4
422			min	-785.962	3	1.882	15	472	1_	0	15	0	1_	0	12
423		3	max		2	7.136	4	022	15	0	1	0	15	.002	2
424			min		3	1.678	15	472	1_	0	15	0	1 1 5	0	3
425		4	max	624.103	2	6.267	4	022	15	0	1	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-786.218	3	1.473	15	472	1	0	15	001	1	002	3
427		5	max	623.933	2	5.398	4	022	15	0	1	0	15	001	15
428			min	-786.346	3	1.269	15	472	1	0	15	001	1	005	4
429		6	max	623.762	2	4.53	4	022	15	0	1	0	15	002	15
430			min	-786.473	3	1.065	15	472	1	0	15	002	1	007	4
431		7	max	623.592	2	3.661	4	022	15	0	1	0	15	002	15
432			min	-786.601	3	.861	15	472	1	0	15	002	1	009	4
433		8	max	623.422	2	2.792	4	022	15	0	1	0	15	002	15
434			min	-786.729	3	.656	15	472	1	0	15	002	1	01	4
435		9	max	623.251	2	1.923	4	022	15	0	1	0	15	003	15
436			min	-786.857	3	.452	15	472	1	0	15	002	1	011	4
437		10	max	623.081	2	1.054	4	022	15	0	1	0	15	003	15
438			min	-786.984	3	.248	15	472	1	0	15	002	1	012	4
439		11	max	622.911	2	.281	2	022	15	0	1	0	15	003	15
440			min	-787.112	3	08	3	472	1	0	15	003	1	012	4
441		12	max	622.74	2	16	15	022	15	0	1	0	15	003	15
442			min	-787.24	3	684	4	472	1	0	15	003	1	012	4
443		13	max	622.57	2	365	15	022	15	0	1	0	15	003	15
444			min	-787.368	3	-1.553	4	472	1	0	15	003	1	012	4
445		14	max	622.4	2	569	15	022	15	0	1	0	15	003	15
446			min	-787.495	3	-2.422	4	472	1	0	15	003	1	011	4
447		15	max	622.229	2	773	15	022	15	0	1	0	15	002	15
448			min	-787.623	3	-3.29	4	472	1	0	15	004	1	009	4
449		16	max	622.059	2	977	15	022	15	0	1	0	15	002	15
450			min	-787.751	3	-4.159	4	472	1	0	15	004	1	008	4
451		17	max	621.888	2	-1.182	15	022	15	0	1	0	15	001	15
452			min	-787.879	3	-5.028	4	472	1	0	15	004	1	006	4
453		18	max	621.718	2	-1.386	15	022	15	0	1	0	15	0	15
454			min	-788.006	3	-5.897	4	472	1	0	15	004	1	003	4
455		19	max	621.548	2	-1.59	15	022	15	0	1	0	15	0	1
456			min	-788.134	3	-6.766	4	472	1	0	15	004	1	0	1
457	M12	1	max	1120.407	1	0	1	19.321	1	0	1	0	15	0	1
458			min	3.982	3	0	1	.899	15	0	1	004	1	0	1
459		2	max	1120.577	1	0	1	19.321	1	0	1	0	15	0	1
460			min	4.11	3	0	1	.899	15	0	1	001	1	0	1
461		3	max	1120.748	1	0	1	19.321	1	0	1	0	1	0	1
462			min	4.238	3	0	1	.899	15	0	1	0	15	0	1
463		4	max	1120.918	1	0	1	19.321	1	0	1	.003	1	0	1
464			min	4.366	3	0	1	.899	15	0	1	0	15	0	1
465		5	max	1121.088	1	0	1	19.321	1	0	1	.005	1	0	1
466			min	4.493	3	0	1	.899	15	0	1	0	15	0	1
467		6	max	1121.259	1	0	1	19.321	1	0	1	.008	1	0	1
468			min	4.621	3	0	1	.899	15	0	1	0	15	0	1
469		7	max	1121.429		0	1	19.321	1	0	1	.01	1	0	1
470			min	4.749	3	0	1	.899	15	0	1	0	15	0	1
471		8	max	1121.599	1	0	1	19.321	1	0	1	.012	1	0	1
472			min	4.877	3	0	1	.899	15	0	1	0	15	0	1
473		9	max	1121.77	1	0	1	19.321	1	0	1	.014	1	0	1
474			min	5.004	3	0	1	.899	15	0	1	0	15	0	1
475		10	max	1121.94	1	0	1	19.321	1	0	1	.016	1	0	1
476			min	5.132	3	0	1	.899	15	0	1	0	15	0	1
477		11	max	1122.11	1	0	1	19.321	1	0	1	.019	1	0	1
478			min	5.26	3	0	1	.899	15	0	1	0	15	0	1
479		12		1122.281	1	0	1	19.321	1	0	1	.021	1	0	1
480			min	5.388	3	0	1	.899	15	0	1	0	15	0	1
481		13		1122.451	1	0	1	19.321	1	0	1	.023	1	0	1
482			min	5.516	3	0	1	.899	15	0	1	.001	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1122.621	1	0	1	19.321	1	0	1	.025	1	0	1
484			min	5.643	3	0	1	.899	15	0	1	.001	15	0	1
485		15	max	1122.792	1	0	1	19.321	1	0	1	.028	1	0	1
486			min	5.771	3	0	1	.899	15	0	1	.001	15	0	1
487		16	max	1122.962	1	0	1	19.321	1	0	1_	.03	1	0	1
488			min	5.899	3	0	1	.899	15	0	1	.001	15	0	1
489		17	max	1123.132	1	0	1	19.321	1	0	1	.032	1	0	1
490			min	6.027	3	0	1	.899	15	0	1	.001	15	0	1
491		18	max	1123.303	1	0	1	19.321	1	0	1	.034	1	0	1
492			min	6.154	3	0	1	.899	15	0	1	.002	15	0	1
493		19		1123.473	1	0	1	19.321	1	0	1	.036	1	0	1
494			min	6.282	3	0	1	.899	15	0	1	.002	15	0	1
495	M1	1	max	211.519	1	630.773	3	-5.05	15	0	1	.304	1	0	3
496			min	9.83	15	-422.592	1	-107.869	1	0	3	.014	15	015	2
497		2	max	212.362	1	629.679	3	-5.05	15	0	1	.237	1	.249	1
498			min	10.084	15	-424.051	1	-107.869	1	0	3	.011	15	391	3
499		3	max	505.239	3	492.925	1	-5.022	15	0	3	.17	1	.502	1
500			min	-308.778	2	-467.367	3	-107.597	1	0	1	.008	15	77	3
501		4	max	505.871	3	491.466	1	-5.022	15	0	3	.103	1	.197	1
502		-	min	-307.936	2	-468.461	3	-107.597	1	0	1	.005	15	479	3
503		5	max		3	490.007	1	-5.022	15	0	3	.036	1	005	15
504				-307.093	2	-469.555	3	-107.597	1	0	1	.002	15	188	3
505		6	max		3	488.548	1	-5.022	15	Ö	3	001	15	.104	3
506			min	-306.251	2	-470.65	3	-107.597	1	0	1	031	1	433	2
507		7	max	507.766	3	487.089	1	-5.022	15	0	3	005	15	.396	3
508		,	min	-305.408	2	-471.744	3	-107.597	1	0	1	097	1	733	2
509		8	max	508.398	3	485.63	1	-5.022	15	0	3	008	15	.689	3
510			min	-304.566	2	-472.838	3	-107.597	1	0	1	164	1	-1.032	2
511		9	max	525.877	3	44.507	2	-7.768	15	0	9	.101	1	.805	3
512				-212.929	2	.446	15	-166.265	1	0	3	.005	15	-1.181	2
513		10	max		3	43.048	2	-7.768	15	0	9	0	15	.785	3
514		10		-212.086	2	.006	15	-166.265	1	0	3	002	1	-1.209	2
515		11	max	527.14	3	41.589	2	-7.768	15	0	9	002	15	.766	3
516		11	min	-211.244	2	-1.733	4	-166.265	1	0	3	105	1	-1.235	2
517		12	max	544.5	3	311.508	3	-4.822	15	0	2	.161	1	.669	3
518		12	min	-125.271	10	-573.573	2	-103.493	1	0	3	.007	15	-1.094	2
519		13			3	310.414	3	-4.822	15	0	2	.007	1	.476	3
		13	max				2		1	0	3		15	738	2
520		1.1		-124.569	10	-575.033 309.319		-103.493 -4.822	-			.004			
521		14	max	545.764	3		2		<u>15</u>	0	3		15	.283	3
522		15		-123.867	10	-576.492 308.225		-103.493	-	_		.002		385	-
523		15		546.395	3		3	-4.822	15	0	2	001	15	.092	3
524		16		-123.165	<u>10</u>	-577.951	2	-103.493		0	3	032	1 1 5	051	1
525		16		547.027	3	307.131	3	-4.822	15	0	2	004	15	.337	2
526		47		-122.463	10	-579.41	2	-103.493	1_	0	3	096	1	099 07	3
527		17		547.659	3_	306.036	3	-4.822	15	0	2	007	15	.697	2
528		40		-121.761	10	-580.869	2	-103.493	1_	0	3	16	1	29	3
529		18		-10.101	<u>15</u>	580.234	2	-5.698	15	0	3	011	15	.349	2
530				-212.836	_1_	-247.946	3	-121.853		0	2	231	1	142	3
531		19	max		<u>15</u>	578.775	2	-5.698	15	0	3_	014	15	.012	3
532				-211.994	1_	-249.04	3	-121.853	1	0	2	307	1	012	1
533	<u>M5</u>	1		462.983	1_	2101.231	3	0	1	0	1	0	1	.03	2
534				20.098	12	-1440.176	1_	0	1	0	<u>1</u>	0	1	0	3
535		2	max		_1_	2100.136	3	0	1	0	1	0	1	.922	1
536			min	20.519	12	-1441.635	1_	0	1	0	1_	0	1	-1.304	3
537		3		1603.788	3_	1440.629	1_	0	1	0	1_	0	1	1.786	1
538				-1065.51	2	-1467.071	3	0	1	0	1	0	1	-2.568	3
539		4	max	1604.42	3	1439.17	1_	0	1	0	1	0	1	.892	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
540			min	-1064.667	2	-1468.165	3	0	1	0	1	0	1	-1.657	3
541		5	max	1605.052	3	1437.711	1	0	1	0	1	0	1	.024	9
542			min	-1063.825	2	-1469.26	3	0	1	0	1	0	1	745	3
543		6	max	1605.683	3	1436.252	1	0	1	0	1	0	1	.167	3
544				-1062.982	2	-1470.354	3	0	1	0	1	0	1	939	2
545		7		1606.315	3	1434.793	1	0	1	0	1	0	1	1.08	3
546				-1062.14	2	-1471.448	3	0	1	0	1	0	1	-1.817	2
547		8		1606.947	3	1433.334	1	0	1	0	1	0	1	1.993	3
548				-1061.298	2	-1472.543	3	0	1	0	1	0	1	-2.695	2
549		9		1636.508	3	149.056	2	0	1	0	1	0	1	2.295	3
550		3		-871.55	2	.445	15	0	1	0	1	0	1	-3.076	2
551		10		1637.14	3	147.597	2	-	1	_	1	0	1	2.223	3
		10						0		0					
552		4.4		-870.707	2	.005	15	0	1	0	1_	0	1	-3.168	2
553		11		1637.772	3_	146.138	2	0	1	0	1_	0	1	2.152	3
554		4.0		-869.865	2	-1.459	4	0	1	0	1_	0	1	-3.259	2
555		12		1667.571	3	957.736	3	0	1	0	1_	0	1	1.889	3
556				-680.143	2	-1713.882	2	0	1	0	_1_	0	1	-2.914	2
557		13	max	1668.202	3_	956.641	3	0	1	0	_1_	0	1	1.295	3
558			min	-679.3	2	-1715.341	2	0	1	0	1	0	1	-1.85	2
559		14	max	1668.834	3	955.547	3	0	1	0	1	0	1	.702	3
560			min	-678.458	2	-1716.8	2	0	1	0	1	0	1	812	1
561		15	max	1669.466	3	954.453	3	0	1	0	1	0	1	.281	2
562			min	-677.616	2	-1718.259	2	0	1	0	1	0	1	0	13
563		16		1670.098	3	953.359	3	0	1	0	1	0	1	1.348	2
564				-676.773	2	-1719.718	2	0	1	0	1	0	1	483	3
565		17		1670.73	3	952.264	3	0	1	0	<u> </u>	0	1	2.416	2
566		- ' '		-675.931	2	-1721.177	2	0	1	0	1	0	1	-1.074	3
567		18	max		12	1961.981	2	0	1	0	1	0	1	1.238	2
568		10		-462.877	1	-861.949	3	0	1	0	1	0	1	56	3
569		19		-20.547	12	1960.522	2	0	1	0	1	0	1	.023	1
570		19		-462.034	1	-863.043	3	0	1	0	1	0	1	024	3
	MO	1							•	_	3				_
571	<u>M9</u>	1	max		1_	630.773	3	107.869	1	0		014	15	0	3
572			min	9.83	<u>15</u>	-422.592	1_	5.05	15	0	1_	304	1	015	2
573		2	max		1_	629.679	3	107.869	1	0	3_	011	15	.249	1
574			min	10.084	<u>15</u>	-424.051	1_	5.05	15	0	1_	237	1	<u>391</u>	3
575		3	max		3	492.925	1_	107.597	1	0	1_	008	15	.502	1
576				-308.778	2	-467.367	3	5.022	15	0	3	17	1	77	3
577		4		505.871	3_	491.466	_1_	107.597	1	0	_1_	005	15	.197	1
578			min	-307.936	2	-468.461	3	5.022	15	0	3	103	1	479	3
579		5		506.503	3	490.007	1	107.597	1	0	1	002	15	005	15
580			min	-307.093	2	-469.555	3	5.022	15	0	3	036	1	188	3
581		6	max	507.134	3	488.548	1	107.597	1	0	1	.031	1	.104	3
582			min	-306.251	2	-470.65	3	5.022	15	0	3	.001	15	433	2
583		7		507.766	3	487.089	1	107.597	1	0	1	.097	1	.396	3
584				-305.408	2	-471.744	3	5.022	15	0	3	.005	15	733	2
585		8		508.398	3	485.63	1	107.597	1	0	1	.164	1	.689	3
586		Ŭ		-304.566	2	-472.838	3	5.022	15	0	3	.008	15	-1.032	2
587		9		525.877	3	44.507	2	166.265	1	0	3	005	15	.805	3
588				-212.929	2	.446	15	7.768	15	0	9	101	1	-1.181	2
589		10		526.508	3	43.048	2	166.265	1	0	3	.002	1	.785	3
		10							15						2
590		4.4		-212.086	2	.006	15	7.768		0	9	105	15	<u>-1.209</u>	_
591		11	max		3_	41.589	2	166.265	1	0	3_	.105	1	.766	3
592		40		-211.244	2	-1.733	4	7.768	15	0	9	.005	15	-1.235	2
593		12	max	544.5	3_	311.508	3_	103.493	1	0	3	007	15	.669	3
594				-125.271	10	-573.573	2	4.822	15	0	2	161	1	-1.094	2
595		13		545.132	3	310.414	3	103.493	1	0	3	004	15	.476	3
596			min	-124.569	10	-575.033	2	4.822	15	0	2	096	1	738	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	545.764	3	309.319	3	103.493	1	0	3	002	15	.283	3
598			min	-123.867	10	-576.492	2	4.822	15	0	2	032	1	385	1
599		15	max	546.395	3	308.225	3	103.493	1	0	3	.032	1	.092	3
600			min	-123.165	10	-577.951	2	4.822	15	0	2	.001	15	051	1
601		16	max	547.027	3	307.131	3	103.493	1	0	3	.096	1	.337	2
602			min	-122.463	10	-579.41	2	4.822	15	0	2	.004	15	099	3
603		17	max	547.659	3	306.036	3	103.493	1	0	3	.16	1	.697	2
604			min	-121.761	10	-580.869	2	4.822	15	0	2	.007	15	29	3
605		18	max	-10.101	15	580.234	2	121.853	1	0	2	.231	1	.349	2
606			min	-212.836	1	-247.946	3	5.698	15	0	3	.011	15	142	3
607		19	max	-9.847	15	578.775	2	121.853	1	0	2	.307	1	.012	3
608		, and the second	min	-211.994	1	-249.04	3	5.698	15	0	3	.014	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
1	M13	1	max	.001	1	.176	2	.01	3	1.213e-2	2	NC	_1_	NC	1
2			min	0	15	035	3	005	2	-2.475e-3	3	NC	1_	NC	1
3		2	max	0	1	.264	3	.051	1_	1.36e-2	2	NC	5_	NC	2
4			min	0	15	01	9	.002	10		3	803.159	3	4782.15	1
5		3	max	0	1	.506	3	.121	1	1.508e-2	2	NC	5	NC	3
6			min	0	15	142	1	.006	15		3	443.757	3	1997.315	1
7		4	max	0	1	.653	3	<u>.181</u>	1_	1.655e-2	2	NC	5	NC	3
8			min	0	15	214	1	.009	15	-2.469e-3	3	348.894	3	1334.734	1
9		5	max	0	1	.687	3	.211	1	1.802e-2	2	NC	5	NC	5
10			min	0	15	212	1	.01	15	-2.467e-3	3	332.341	3	1144.005	1
11		6	max	0	1	.611	3	.203	1_	1.949e-2	2	NC	5_	NC	5
12			min	0	15	137	1	.01	15	-2.465e-3	3	371.438	3	1190.975	1
13		7	max	0	1	.448	3	.158	1	2.096e-2	2	NC	5	NC	5
14			min	0	15	016	9	.008	15	-2.463e-3	3	497.202	3	1526.955	1
15		8	max	0	1	.24	3	.091	1	2.243e-2	2	NC	1_	NC	5
16			min	0	15	.005	15	0	10	-2.461e-3	3	872.621	3	2674.933	1
17		9	max	0	1	.311	2	.032	3	2.39e-2	2	NC	4	NC	1
18			min	0	15	.009	15	009	10	-2.459e-3	3	1784.908	2	NC	1
19		10	max	0	1	.369	2	.03	3	2.537e-2	2	NC	3	NC	1
20			min	0	1	034	3	021	2	-2.457e-3	3	1242.86	2	NC	1
21		11	max	0	15	.311	2	.032	3	2.39e-2	2	NC	4	NC	1
22			min	0	1	.009	15	009	10	-2.459e-3	3	1784.908	2	NC	1
23		12	max	0	15	.24	3	.091	1	2.243e-2	2	NC	1	NC	5
24			min	0	1	.005	15	0	10	-2.461e-3	3	872.621	3	2674.933	1
25		13	max	0	15	.448	3	.158	1	2.096e-2	2	NC	5	NC	5
26			min	0	1	016	9	.008	15	-2.463e-3	3	497.202	3	1526.955	1
27		14	max	0	15	.611	3	.203	1	1.949e-2	2	NC	5	NC	5
28			min	0	1	137	1	.01	15	-2.465e-3	3	371.438	3	1190.975	1
29		15	max	0	15	.687	3	.211	1	1.802e-2	2	NC	5	NC	5
30			min	0	1	212	1	.01	15	-2.467e-3	3	332.341	3	1144.005	1
31		16	max	0	15	.653	3	.181	1	1.655e-2	2	NC	5	NC	3
32			min	0	1	214	1	.009	15		3	348.894	3	1334.734	1
33		17	max	0	15	.506	3	.121	1	1.508e-2	2	NC	5	NC	3
34			min	0	1	142	1	.006	15		3	443.757	3	1997.315	1
35		18	max	0	15	.264	3	.051	1	1.36e-2	2	NC	5	NC	2
36			min	0	1	01	9	.002	10	-2.473e-3	3	803.159	3	4782.15	1
37		19	max	0	15	.176	2	.01	3	1.213e-2	2	NC	1	NC	1
38			min	001	1	035	3	005	2	-2.475e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.333	3	.009	3	7.027e-3	2	NC	1	NC	1
40			min	0	15	544	2	005	2	-5.037e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC				
41		2	max	0	1	.657	3	.034	1 8.29e-3	2	NC .	5	NC	2
42			min	0	15	876	2	0	10 -6.06e-3	3		1	7326.386	1
43		3	max	0	1	.936	3	.095	1 9.553e-3	2	NC 1	15	NC	3
44			min	0	15	-1.167	2	.005		3	376.929	1	2565.313	1
45		4	max	0	1	1.137	3	.152	1 1.082e-2	2		15	NC	3
46			min	0	15	-1.39	2	.007	15 -8.107e-3	3			1593.366	
47		5	max	0	1	1.245	3	.184	1 1.208e-2	2		15	NC	3
48		Ť	min	0	15	-1.53	2	.009	15 -9.13e-3	3			1311.742	1
49		6	max	0	1	1.26	3	.182	1 1.334e-2	2		15	NC	3
50			min	0	15	-1.585	2	.009	15 -1.015e-2	3		1	1330.857	1
51		7		0	1	1.196	3	.145	1 1.46e-2	2		15	NC	3
		-	max											
52		_	min	0	15	<u>-1.566</u>	2	.007	15 -1.118e-2	3		1	<u>1675.133</u>	
53		8	max	0	1	1.085	3	.084	1 1.587e-2	2		15	NC_	3
54			min	0	15	-1.497	2	0	10 -1.22e-2	3		2	2889.077	1
55		9	max	0	1	.971	3	.028	3 1.713e-2	2		15	NC	1_
56			min	0	15	-1.418	2	008	10 -1.322e-2	3		2	NC	1
57		10	max	0	1	.916	3	.027	3 1.839e-2	2	NC 1	15	NC	1
58			min	0	1	-1.377	2	019	2 -1.425e-2	3	288.07	2	NC	1
59		11	max	0	15	.971	3	.028	3 1.713e-2	2	9734.283	15	NC	1
60			min	0	1	-1.418	2	008	10 -1.322e-2	3		2	NC	1
61		12	max	0	15	1.085	3	.084	1 1.587e-2	2		15	NC	3
62			min	0	1	-1.497	2	0	10 -1.22e-2	3			2889.077	1
63		13	max	0	15	1.196	3	.145	1 1.46e-2	2		15	NC	3
64		10	min	0	1	-1.566	2	.007	15 -1.118e-2	3		1	1675.133	
65		14	max	0	15	1.26	3	.182	1 1.334e-2	2		15	NC	3
66		14	min	0	1	-1.585	2	.009		3			1330.857	1
		4.5							15 -1.015e-2					
67		15	max	0	15	1.245	3	.184	1 1.208e-2	2		15	NC 1011	3
68			min	0	1	<u>-1.53</u>	2	.009	15 -9.13e-3	3			1311.742	1
69		16	max	0	15	1.137	3	.152	1 1.082e-2	2		15	NC	3
70			min	0	1	-1.39	2	.007	15 -8.107e-3	3		1	1593.366	
71		17	max	0	15	.936	3	.095	1 9.553e-3	2		15	NC	3
72			min	0	1	-1.167	2	.005	15 -7.083e-3	3		1	2565.313	1
73		18	max	0	15	.657	3	.034	1 8.29e-3	2	NC .	5	NC	2
74			min	0	1	876	2	0	10 -6.06e-3	3	706.968	1	7326.386	1
75		19	max	0	15	.333	3	.009	3 7.027e-3	2	NC	1	NC	1
76			min	0	1	544	2	005	2 -5.037e-3	3		1	NC	1
77	M15	1	max	0	15	.34	3	.008	3 4.285e-3	3		1	NC	1
78			min	0	1	543	2	004	2 -7.31e-3	2		1	NC	1
79		2	max	0	15	.56	3	.034	1 5.158e-3	3		5	NC	2
80			min	0	1	957	2	0	10 -8.63e-3	2		2	7263.65	1
81		3	max	0	15	<u>957</u> .754	3	.095	1 6.03e-3	3		15	NC	3
		J		_			2	.005		2				
82		1	min	0	1 1 5	<u>-1.316</u>			15 -9.95e-3				2552.455 NC	
83		4	max	0	15	.905	3	.153	1 6.903e-3	3		15	NC 4507 220	3
84		-	min	0	1	-1.58	2	.007	15 -1.127e-2	2		2	1587.239	
85		5_	max	0	15	1.003	3	.185	1 7.775e-3	3_		15	NC 1007.011	3
86			min	0	1	-1.729	2	.009	15 -1.259e-2	2		2	1307.244	
87		6	max	0	15	1.046	3	.182	1 8.648e-3	3_		15	NC	3
88			min	0	1	-1.762	2	.009	15 -1.391e-2	2		2	1326.206	
89		7	max	0	15	1.042	3	.145	1 9.52e-3	3		15	NC	3
90			min	0	1	-1.697	2	.007	15 -1.523e-2	2	207.928	2	1668.078	1
91		8	max	0	15	1.005	3	.085	1 1.039e-2	3		15	NC	3
92			min	0	1	-1.571	2	0	10 -1.655e-2	2			2869.498	
93		9	max	0	15	.959	3	.026	3 1.127e-2	3		<u>-</u> 15	NC	1
94		Ť	min	0	1	-1.439	2	008	10 -1.787e-2	2		2	NC	1
95		10	max	0	1	.936	3	.025	3 1.214e-2	3		15	NC	1
96		10	min	0	1	-1.375	2	018	2 -1.919e-2	2		2	NC NC	1
		11								_		_		
97		11	max	0	1	.959	3	.026	3 1.127e-2	3_	9769.47	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
98		40	min	0	15	-1.439	2	008	10 -1.787e-2	2	267.817	2	NC NC	1
99		12	max	0	1	1.005	3	.085	1 1.039e-2	3_	8767.045	<u>15</u>	NC	3
100		40	min	0	15	<u>-1.571</u>	2	0	10 -1.655e-2	2	233.413	2	2869.498	
101		13	max	0	1	1.042	3	.145	1 9.52e-3	3_	8019.73	<u>15</u>	NC	3
102		4.4	min	0	15	<u>-1.697</u>	2	.007	15 -1.523e-2	2	207.928	2	1668.078	1
103		14	max	0	1	1.046	3	.182	1 8.648e-3	3_	7749.339	<u>15</u>	NC 4000 000	3
104		4.5	min	0	15	<u>-1.762</u>	2	.009	15 -1.391e-2	2	196.907	2	1326.206	1
105		15	max	0	1	1.003	3	.185	1 7.775e-3	3	8083.729	15	NC	3
106		40	min	0	15	-1.729	2	.009	15 -1.259e-2	2	202.449	2	1307.244	1
107		16	max	0	1	.905	3	.153	1 6.903e-3	3	9340.497	<u>15</u>	NC 4507.000	3
108			min	0	15	<u>-1.58</u>	2	.007	15 -1.127e-2	2	231.567	2	1587.239	1
109		17	max	0	1	<u>.754</u>	3	.095	1 6.03e-3	3	NC .	<u>15</u>	NC	3
110		10	min	0	15	<u>-1.316</u>	2	.005	15 -9.95e-3	2	310.583	2	2552.455	
111		18	max	0	1	.56	3	.034	1 5.158e-3	3	NC	_5_	NC	2
112		10	min	0	15	<u>957</u>	2	0	10 -8.63e-3	2	579.209	2	7263.65	1
113		19	max	0	1	.34	3	.008	3 4.285e-3	3_	NC	_1_	NC	1
114			min	0	15	543	2	004	2 -7.31e-3	2	NC	1_	NC	1
115	<u>M16</u>	1	max	0	15	.161	1	.007	3 7.775e-3	3	NC	_1_	NC	1
116			min	001	1	115	3	004	2 -1.045e-2	1_	NC	1_	NC	1
117		2	max	0	15	.003	13	.051	1 8.967e-3	3_	NC	5_	NC	2
118			min	001	1	094	2	.003	15 -1.158e-2	1_	956.741	2	4846.638	1
119		3	max	0	15	.05	3	.12	1 1.016e-2	3	NC	5	NC	3
120			min	0	1	293	2	.006	15 -1.271e-2	1_	533.597	2	2011.648	
121		4	max	0	15	.084	3	.18	1 1.135e-2	3	NC	5	NC	3
122			min	0	1	405	2	.009	15 -1.384e-2	1	426.967	2	1339.743	1
123		5	max	0	15	.074	3	.211	1 1.254e-2	3	NC	5	NC	3
124			min	0	1	415	2	.01	15 -1.497e-2	1	419.6	2	1145.222	1
125		6	max	0	15	.023	3	.203	1 1.373e-2	3	NC	5	NC	3
126			min	0	1	326	2	.01	15 -1.61e-2	1	497.568	2	1188.705	1
127		7	max	0	15	.002	13	.159	1 1.493e-2	3	NC	5	NC	3
128			min	0	1	158	2	.008	15 -1.723e-2	1	761.894	2	1516.878	1
129		8	max	0	15	.093	1	.092	1 1.612e-2	3	NC	4	NC	3
130			min	0	1	157	3	.003	10 -1.836e-2	1	2171.012	2	2626.691	1
131		9	max	0	15	.257	1	.026	1 1.731e-2	3	NC	4	NC	2
132			min	0	1	242	3	006	10 -1.949e-2	1	1891.604	3	9614.634	1
133		10	max	0	1	.33	1	.021	3 1.85e-2	3	NC	5	NC	1
134			min	0	1	279	3	016	2 -2.062e-2	1	1425.405	1	NC	1
135		11	max	0	1	.257	1	.026	1 1.731e-2	3	NC	4	NC	2
136			min	0	15	242	3	006	10 -1.949e-2	1	1891.604	3	9614.634	1
137		12	max	0	1	.093	1	.092	1 1.612e-2	3	NC	4	NC	3
138			min	0	15	157	3	.003	10 -1.836e-2	1	2171.012	2	2626.691	1
139		13	max	0	1	.002	13	.159	1 1.493e-2	3	NC	5	NC	3
140			min	0	15	158	2	.008	15 -1.723e-2	1	761.894	2	1516.878	1
141		14	max	0	1	.023	3	.203	1 1.373e-2	3	NC	5	NC	3
142			min	0	15	326	2	.01	15 -1.61e-2	1	497.568	2	1188.705	1
143		15	max	0	1	.074	3	.211	1 1.254e-2	3	NC	5	NC	3
144			min	0	15	415	2	.01	15 -1.497e-2	1	419.6	2	1145.222	1
145		16	max	0	1	.084	3	.18	1 1.135e-2	3	NC	5	NC	3
146			min	0	15	405	2	.009	15 -1.384e-2	1	426.967	2	1339.743	
147		17	max	0	1	.05	3	.12	1 1.016e-2	3	NC	5	NC	3
148			min	0	15	293	2	.006	15 -1.271e-2	1	533.597	2	2011.648	
149		18	max	.001	1	.003	13	.051	1 8.967e-3	3	NC	5	NC	2
150			min	0	15	094	2	.003	15 -1.158e-2	1	956.741	2	4846.638	
151		19	max	.001	1	.161	1	.007	3 7.775e-3	3	NC	1	NC	1
152			min	0	15	115	3	004	2 -1.045e-2	1	NC	1	NC	1
153	M2	1	max	.008	1	.009	2	.014	1 -1.553e-5	15	NC	1	NC	2
154			min	009	3	015	3	0	15 -3.33e-4	1	8686.98		5469.957	1
IUT				.000	U	.010	J		10 0.000 4		0000.00		5 100.001	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
155		2	max	.007	1	.007	2	.013	1	-1.474e-5	<u>15</u>	NC	_1_	NC	2
156			min	008	3	014	3	0	15	-3.161e-4	1_	NC	1_	5961.094	1
157		3	max	.007	1	.006	2	.012	1	-1.395e-5	<u>15</u>	NC	_1_	NC	2
158			min	008	3	014	3	0	15	-2.992e-4	1_	NC	1_	6545.426	1
159		4	max	.006	1	.005	2	.011	1	-1.317e-5	<u>15</u>	NC	1_	NC	2
160			min	007	3	014	3	0	15	-2.823e-4	1	NC	1	7247.383	1
161		5	max	.006	1	.003	2	.01	1	-1.238e-5	15	NC	1	NC	2
162			min	007	3	013	3	0	15	-2.653e-4	1	NC	1	8100.205	1
163		6	max	.005	1	.002	2	.008	1	-1.159e-5	15	NC	1	NC	2
164			min	006	3	013	3	0	15	-2.484e-4	1	NC	1	9150.058	1
165		7	max	.005	1	0	2	.007	1	-1.08e-5	15	NC	1	NC	1
166			min	006	3	012	3	0	15	-2.315e-4	1	NC	1	NC	1
167		8	max	.005	1	0	2	.006	1	-1.001e-5	15	NC	1	NC	1
168			min	005	3	012	3	0	15	-2.146e-4	1	NC	1	NC	1
169		9	max	.004	1	001	2	.005	1	-9.226e-6	15	NC	1	NC	1
170			min	005	3	011	3	0	15	-1.977e-4	1	NC	1	NC	1
171		10	max	.004	1	002	15	.005	1	-8.438e-6	15	NC	1	NC	1
172			min	004	3	01	3	0	15	-1.808e-4	1	NC	1	NC	1
173		11	max	.003	1	002	15	.004	1	-7.65e-6	15	NC	1	NC	1
174			min	004	3	01	3	0	15	-1.639e-4	1	NC	1	NC	1
175		12	max	.003	1	002	15	.003	1	-6.863e-6	15	NC	1	NC	1
176			min	003	3	009	3	0	15	-1.47e-4	1	NC	1	NC	1
177		13	max	.003	1	002	15	.002	1	-6.075e-6	15	NC	1	NC	1
178			min	003	3	008	3	0	15	-1.3e-4	1	NC	1	NC	1
179		14	max	.002	1	002	15	.002	1	-5.287e-6	15	NC	1	NC	1
180			min	002	3	007	3	0	15	-1.131e-4	1	NC	1	NC	1
181		15	max	.002	1	001	15	.001	1	-4.499e-6	15	NC	1	NC	1
182			min	002	3	006	4	0	15	-9.622e-5	1	NC	1	NC	1
183		16	max	.001	1	001	15	0	1	-3.711e-6	15	NC	1	NC	1
184			min	001	3	005	4	0	15	-7.93e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-2.923e-6	15	NC	1	NC	1
186			min	0	3	003	4	0	15	-6.239e-5	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	-2.135e-6	15	NC	1	NC	1
188			min	0	3	002	4	0	15	-4.548e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	-1.347e-6	15	NC	1	NC	1
190		-10	min	0	1	0	1	0	1	-2.856e-5	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	5.413e-6	1	NC	1	NC	1
192	1410		min	0	1	0	1	0	1	2.561e-7	15	NC	1	NC	1
193		2	max	0	3	0	15	0	15	4.177e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	1	1.947e-6	15	NC	1	NC	1
195		3	max	0	3	001	15	0		7.813e-5	1	NC	1	NC	1
196			min	0	2	006	4	0	1	3.637e-6	15	NC	1	NC	1
197		4	max	.001	3	002	15	0	15	1.145e-4	1	NC	1	NC	1
198			min	001	2	002	4	0	1	5.328e-6	15	NC	1	NC	1
199		5	max	.002	3	003	15	0	15		1	NC	1	NC	1
200			min	001	2	003 012	4	0	1	7.018e-6		8382.304	4	NC	1
201		6	max	.002	3	004	15	0	15	1.872e-4	1	NC	5	NC	1
202		U	min	002	2	004 015	4	0	1	8.709e-6		6802.371	4	NC NC	1
203		7		.002	3	015 004	15	0	15		<u>15</u> 1	NC	_ 4 _	NC NC	1
		/	max							1.04e-5			<u>5</u>		1
204		0	min	002	2	018	15	0	1	2.599e-4		5850.387		NC NC	
205		8	max	.003	3	005	15	0	1		1_	NC F262.42	5_4	NC NC	1
206		_	min	002	2	02	4	0	12	1.209e-5	<u>15</u>	5263.42	4_	NC NC	1
207		9	max	.003	3	005	15	0	1	2.963e-4	1_	NC	5_4	NC NC	1
208		40	min	003	2	021	4	0	12	1.378e-5		4917.683	4_	NC NC	1
209		10	max	.004	3	005	15	.001	1	3.327e-4	1_	NC	5	NC NC	1
210		4.4	min	003	2	022	4	0	15		-	4753.226	4_	NC NC	1
211		11	max	.004	3	005	15	.002	1	3.69e-4	<u>1</u>	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	LC
212			min	003	2	022	4	0	15	1.716e-5		4745.913	4	NC	1
213		12	max	.005	3	005	15	.002	1	4.054e-4	_1_	NC	5	NC	1
214			min	004	2	021	4	0	15	1.885e-5	15	4898.163	4	NC	1
215		13	max	.005	3	005	15	.003	1	4.417e-4	_1_	NC	5	NC	1
216			min	004	2	02	4	0	15	2.054e-5	15	5241.08	4	NC	1
217		14	max	.006	3	004	15	.004	1	4.781e-4	_1_	NC	5	NC	1
218			min	004	2	018	4	0	15	2.223e-5	15	5850.451	4	NC	1
219		15	max	.006	3	004	15	.006	1	5.145e-4	_1_	NC	3	NC	1
220			min	005	2	015	4	0	15	2.392e-5	15	6893.779	4	NC	1
221		16	max	.006	3	003	15	.007	1	5.508e-4	1	NC	1_	NC	1
222			min	005	2	012	4	0	15	2.562e-5	15	8776.38	4	NC	1
223		17	max	.007	3	002	15	.009	1	5.872e-4	1	NC	1	NC	1
224			min	005	2	009	4	0	15	2.731e-5	15	NC	1_	NC	1
225		18	max	.007	3	001	15	.011	1	6.235e-4	1	NC	1	NC	2
226			min	006	2	005	1	0	15	2.9e-5	15	NC	1	9284.565	1
227		19	max	.008	3	0	10	.013	1	6.599e-4	1	NC	1	NC	2
228			min	006	2	002	1	0	15	3.069e-5	15	NC	1	7746.103	1
229	M4	1	max	.003	1	.006	2	0	15	2.336e-4	1	NC	1	NC	3
230			min	0	3	008	3	013	1	1.09e-5	15	NC	1	1889.998	1
231		2	max	.003	1	.005	2	0	15	2.336e-4	1	NC	1	NC	3
232			min	0	3	007	3	012	1	1.09e-5	15	NC	1	2050.998	1
233		3	max	.002	1	.005	2	0	15	2.336e-4	1	NC	1	NC	3
234			min	0	3	007	3	011	1	1.09e-5	15	NC	1	2242.877	1
235		4	max	.002	1	.005	2	0	15	2.336e-4	1	NC	1	NC	3
236			min	0	3	007	3	01	1	1.09e-5	15	NC	1	2473.611	1
237		5	max	.002	1	.004	2	0	15	2.336e-4	1	NC	1	NC	3
238			min	0	3	006	3	009	1	1.09e-5	15	NC	1	2754.042	1
239		6	max	.002	1	.004	2	0	15	2.336e-4	1	NC	1	NC	3
240			min	0	3	006	3	008	1	1.09e-5	15	NC	1	3099.203	1
241		7	max	.002	1	.004	2	0	15	2.336e-4	1	NC	1	NC	3
242			min	0	3	005	3	007	1	1.09e-5	15	NC	1	3530.439	
243		8	max	.002	1	.004	2	0	15	2.336e-4	1	NC	1	NC	3
244			min	0	3	005	3	006	1	1.09e-5	15	NC	1	4078.869	
245		9	max	.001	1	.003	2	0	15	2.336e-4	1	NC	1	NC	2
246			min	0	3	004	3	005	1	1.09e-5	15	NC	1	4791.337	1
247		10	max	.001	1	.003	2	0	15	2.336e-4	1	NC	1	NC	2
248			min	0	3	004	3	004	1	1.09e-5	15	NC	1	5741.052	1
249		11	max	.001	1	.003	2	0	15	2.336e-4	1	NC	1	NC	2
250			min	0	3	004	3	004	1	1.09e-5	15	NC	1	7047.74	1
251		12	max	.001	1	.002	2	0	15	2.336e-4	1	NC	1	NC	2
252		1-	min	0	3	003	3	003		1.09e-5			1	8918.438	
253		13	max	0	1	.002	2	0	15		1	NC	1	NC	1
254			min	0	3	003	3	002	1	1.09e-5	15	NC	1	NC	1
255		14	max	0	1	.002	2	0	15		1	NC	1	NC	1
256		17	min	0	3	002	3	002	1	1.09e-5	15	NC	1	NC	1
257		15	max	0	1	.002	2	0	15	2.336e-4	1	NC	1	NC	1
258		10	min	0	3	002	3	001	1	1.09e-5	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	2.336e-4	1	NC	1	NC	1
260		10	min	0	3	001	3	0	1	1.09e-5	15	NC	1	NC	1
261		17	max	0	1	<u>001</u> 0	2	0	15	2.336e-4	1	NC	1	NC	1
262		17	min	0	3	0	3	0	1	1.09e-5	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	2.336e-4	1 <u>15</u>	NC NC	1	NC	1
264		10	min	0	3	0	3	0	1	1.09e-5	15	NC NC	1	NC NC	1
265		10		0	1	0	1	0	1	2.336e-4	<u>15</u> 1	NC NC	1	NC NC	1
		19	max	0	1	0	1	0	1	1.09e-5	15	NC NC	1	NC NC	1
266 267	M6	1	min	.024	1	.033	2	0	1		<u>15</u> 1	NC NC	3	NC NC	1
	IVIO		max	024 029	3		3		1	0	1	2317.09			1
268			min	029	3	046	<u> </u>	0		U		2317.09	2	NC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

270		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
271	269		2	max			.03	2	0	1	0	1		3	NC	1
272				min					0			1				1
273			3													1
274												•				
275			4			-						_				-
276			_							•		•				
277			5													
278												-				
279			ь													
280			7									•				
281												_				
282			0													
283			0													1
284			0									•		_		1
285			-			-										-
286			10							•		•				
288			10													
288			11									-				
289														_		
290			12							1		_				
13 max			· -							1		_				
292			13						0	1		1		1		1
14									0	1		1		1		1
294			14						0	1	0	1		1		1
296						3		3	0	1		1		1		1
16 max	295		15	max	.005	1	0	2	0	1	0	1	NC	1	NC	1
298	296			min	006	3	011	3	0	1	0	1	NC	1	NC	1
17 max	297		16	max	.004		0	2	0	1	0	1	NC	1		1
300				min		3	008		0	1		1		1		1
301			17	max								_				
302				min												
303			18											_		1
304												•		-		1
305 M7			19			-		-				_				-
306										•						
307 2 max .001 3 0 15 0 1 0 1 NC 1 NC 1 308 min 001 2 004 3 0 1 0 1 NC 1 NC 1 309 3 max .003 3 001 15 0 1 0 1 NC 1 NC 1 310 min 003 2 007 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 <t< td=""><td></td><td><u> M7</u></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>		<u> M7</u>	1		-									_		
308 min 001 2 004 3 0 1 0 1 NC 1 NC 1 309 3 max .003 3 001 15 0 1 0 1 NC 1 NC 1 310 min 003 2 007 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0																
309 3 max .003 3 001 15 0 1 0 1 NC 1 NC 1 310 min 003 2 007 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 </td <td></td> <td></td> <td>2</td> <td></td> <td>_</td> <td></td> <td>_</td>			2											_		_
310 min 003 2 007 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 0 1 NC 1 NC 1 316 min 006 2 016 3 0 1 0 </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>1<i>E</i></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2					1 <i>E</i>								
311 4 max .004 3 002 15 0 1 0 1 NC 1 NC 1 312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 0 1 8575.994 4 NC 1 316 min 006 2 016 3 0 1 0 1 6945.511 4 NC 1 317 7 max .008 3 004 15 0			3													
312 min 004 2 01 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 0 1 NC 1 NC 1 316 min 006 2 016 3 0 1 0 1 NC 1 NC 1 317 7 max .008 3 004 15 0 1 0 1 NC 1 318 min 008 2 018 3 0 1 0 1 NC </td <td></td> <td></td> <td>1</td> <td></td>			1													
313 5 max .005 3 003 15 0 1 0 1 NC 1 NC 1 314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 0 1 NC 1 NC 1 316 min 006 2 016 3 0 1 0 1 6945.511 4 NC 1 317 7 max .008 3 004 15 0 1 0 1 6945.511 4 NC 1 318 min 008 2 018 3 0 1 0 1 5963.699 4 NC 1 319 8 max .009 3 005 15 0 </td <td></td> <td></td> <td>4</td> <td></td> <td>_</td> <td></td> <td></td>			4											_		
314 min 005 2 013 3 0 1 0 1 8575.994 4 NC 1 315 6 max .007 3 004 15 0 1 0 1 NC 1 NC 1 316 min 006 2 016 3 0 1 0 1 6945.511 4 NC 1 317 7 max .008 3 004 15 0 1 0 1 6945.511 4 NC 1 318 min 008 2 018 3 0 1 0 1 NC 2 NC 1 318 min 008 2 018 3 0 1 0 1 NC 1 319 8 max .009 3 005 15 0 1 0 1			-									•		•		
315 6 max .007 3 004 15 0 1 0 1 NC 1 NC 1 316 min 006 2 016 3 0 1 0 1 6945.511 4 NC 1 317 7 max .008 3 004 15 0 1 0 1 NC 2 NC 1 318 min 008 2 018 3 0 1 0 1 5963.699 4 NC 1 319 8 max .009 3 005 15 0 1 0 1 NC 5 NC 1 320 min 009 2 02 4 0 1 0 1 NS 1 NC 1 321 9 max .011 3 005 15 0 <			- 5											_		
316 min 006 2 016 3 0 1 0 1 6945.511 4 NC 1 317 7 max .008 3 004 15 0 1 0 1 NC 2 NC 1 318 min 008 2 018 3 0 1 0 1 5963.699 4 NC 1 319 8 max .009 3 005 15 0 1 0 1 5963.699 4 NC 1 320 min 009 2 02 4 0 1 0 1 588.107 4 NC 1 321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1			6									•				
317 7 max .008 3 004 15 0 1 0 1 NC 2 NC 1 318 min 008 2 018 3 0 1 0 1 5963.699 4 NC 1 319 8 max .009 3 005 15 0 1 0 1 NC 5 NC 1 320 min 009 2 02 4 0 1 0 1 5358.107 4 NC 1 321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1 0 1 500.504 4 NC 1 323 10 max .012 3 005 15 0																
318 min 008 2 018 3 0 1 0 1 5963.699 4 NC 1 319 8 max .009 3 005 15 0 1 0 1 NC 5 NC 1 320 min 009 2 02 4 0 1 0 1 5358.107 4 NC 1 321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1 0 1 5000.504 4 NC 1 323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1			7									-				
319 8 max .009 3 005 15 0 1 0 1 NC 5 NC 1 320 min 009 2 02 4 0 1 0 1 5358.107 4 NC 1 321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1 0 1 5000.504 4 NC 1 323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1 0 1 4828.698 4 NC 1														_		
320 min 009 2 02 4 0 1 0 1 5358.107 4 NC 1 321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1 0 1 5000.504 4 NC 1 323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1 0 1 4828.698 4 NC 1			8									-		_		
321 9 max .011 3 005 15 0 1 0 1 NC 5 NC 1 322 min 01 2 021 4 0 1 0 1 5000.504 4 NC 1 323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1 0 1 4828.698 4 NC 1																
322 min 01 2 021 4 0 1 0 1 5000.504 4 NC 1 323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1 0 1 4828.698 4 NC 1			9													
323 10 max .012 3 005 15 0 1 0 1 NC 5 NC 1 324 min 011 2 022 4 0 1 0 1 4828.698 4 NC 1			Ť													
324 min011 2022 4 0 1 0 1 4828.698 4 NC 1			10							1		•				
										1						
020 1	325		11	max	.013	3	005	15	0	1	0	1	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	013	2	022	4	0	1	0	1	4817.415	4	NC	1
327		12	max	.015	3	005	15	0	1	0	_1_	NC	5_	NC	1
328			min	014	2	021	4	0	1	0	1	4968.602	4	NC	1
329		13	max	.016	3	005	15	0	1	0	1	NC	5	NC	1
330			min	015	2	02	4	0	1	0	1	5313.433	4	NC	1
331		14	max	.017	3	004	15	0	1	0	1_	NC	5	NC	1
332			min	017	2	018	4	0	1	0	1	5928.415	4	NC	1
333		15	max	.019	3	004	15	0	1	0	1	NC	1	NC	1
334			min	018	2	016	3	0	1	0	1	6982.951	4	NC	1
335		16	max	.02	3	003	15	0	1	0	1	NC	1	NC	1
336			min	019	2	014	3	0	1	0	1	8887.204	4	NC	1
337		17	max	.021	3	002	15	0	1	0	1	NC	1	NC	1
338			min	02	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.022	3	001	15	0	1	0	1	NC	1	NC	1
340		1.0	min	022	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.024	3	0	10	0	1	0	1	NC	<u> </u>	NC	1
342		10	min	023	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.022	2	0	1	0	1	NC	1	NC	1
344	IVIO		min	0	3	025	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	1	.023	2	0	1	0	1	NC	1	NC	1
346			min	0	3	023	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.023	2	0	1	0	1	NC	1	NC	1
		3		0	3	022	3	0	1	0	1	NC	1	NC	1
348		4	min						1		•		_		1
349		4	max	.006	1	.018	2	0	1	0	<u>1</u> 1	NC	1	NC NC	1
350		-	min	0	3	02	3	0	-	0	_	NC NC		NC NC	-
351		5	max	.005	1	.017	2	0	1	0	1	NC	1	NC NC	1
352			min	0	3	019	3	0	1	0	1_	NC NC	1_	NC NC	1
353		6	max	.005	1	.016	2	0	1	0	1_	NC	1_	NC	1
354		_	min	0	3	018	3	0	1	0	1_	NC	1_	NC	1
355		7	max	.005	1	.015	2	0	1	0	1_	NC	_1_	NC	1
356			min	0	3	016	3	0	1	0	1_	NC	1_	NC	1
357		8	max	.004	1	.014	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	015	3	0	1	0	_1_	NC	_1_	NC	1
359		9	max	.004	1	.012	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	014	3	0	1	0	1	NC	1_	NC	1
361		10	max	.003	1	.011	2	0	1	0	_1_	NC	_1_	NC	1
362			min	0	3	012	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
364			min	0	3	011	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
366			min	0	3	01	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
368			min	0	3	008	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	007	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
374		1.0	min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.004	2	0	1	0	1	NC	1	NC	1
376			min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	001	3	0	1	0	1	NC NC	1	NC NC	1
		10			1				1		1	NC NC	1	NC NC	
379		19	max	0	1	0	1	0	1	0	1		1		1
380	N44.0	4	min			0		0				NC NC		NC NC	
381	M10	1	max	.008	1	.009	2	0	15	3.33e-4	1_	NC	1	NC F4C0 0F7	2
382			min	009	3	015	3	014	1	1.553e-5	15	8686.98	2	5469.957	1

Model Name

Schletter, Inc. HCV

.
Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.007	1	.007	2	0	15	3.161e-4	_1_	NC	_1_	NC	2
384			min	008	3	<u>014</u>	3	013	1	1.474e-5	15	NC	1_	5961.094	1
385		3	max	.007	1	.006	2	0	15	2.992e-4	_1_	NC	_1_	NC	2
386			min	008	3	014	3	012	1	1.395e-5	15	NC	1	6545.426	
387		4	max	.006	1	.005	2	0	15	2.823e-4	1_	NC	_1_	NC	2
388			min	007	3	014	3	011	1	1.317e-5	15	NC	1_	7247.383	1
389		5	max	.006	1	.003	2	0	15	2.653e-4	_1_	NC	_1_	NC	2
390			min	007	3	<u>013</u>	3	01	1	1.238e-5	15	NC	1_	8100.205	
391		6	max	.005	1	.002	2	0	15	2.484e-4	1_	NC	1_	NC	2
392			min	006	3	013	3	008	1	1.159e-5	15	NC	1_	9150.058	1
393		7	max	.005	1	0	2	0	15	2.315e-4	_1_	NC	_1_	NC	1
394			min	006	3	012	3	007	1	1.08e-5	15	NC	1	NC	1
395		8	max	.005	1	0	2	0	15	2.146e-4	_1_	NC	_1_	NC	1
396			min	005	3	012	3	006	1	1.001e-5	15	NC	1	NC	1
397		9	max	.004	1	001	2	0	15	1.977e-4	1_	NC	_1_	NC	1
398			min	005	3	011	3	005	1	9.226e-6	15	NC	1	NC	1
399		10	max	.004	1	002	15	0	15	1.808e-4	<u>1</u>	NC	_1_	NC	1
400			min	004	3	01	3	005	1	8.438e-6	15	NC	1_	NC	1
401		11	max	.003	1	002	15	0	15	1.639e-4	1_	NC	1_	NC	1
402			min	004	3	01	3	004	1	7.65e-6	15	NC	1	NC	1
403		12	max	.003	1	002	15	0	15	1.47e-4	_1_	NC	_1_	NC	1
404			min	003	3	009	3	003	1	6.863e-6	15	NC	1_	NC	1
405		13	max	.003	1	002	15	0	15	1.3e-4	_1_	NC	_1_	NC	1
406			min	003	3	008	3	002	1	6.075e-6	15	NC	1	NC	1
407		14	max	.002	1	002	15	0	15	1.131e-4	1	NC	1_	NC	1
408			min	002	3	007	3	002	1	5.287e-6	15	NC	1	NC	1
409		15	max	.002	1	001	15	0	15	9.622e-5	1_	NC	1	NC	1
410			min	002	3	006	4	001	1	4.499e-6	15	NC	1	NC	1
411		16	max	.001	1	001	15	0	15	7.93e-5	1	NC	1	NC	1
412			min	001	3	005	4	0	1	3.711e-6	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	6.239e-5	1	NC	1	NC	1
414			min	0	3	003	4	0	1	2.923e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	4.548e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	2.135e-6	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.856e-5	1	NC	1	NC	1
418			min	0	1	0	1	0	1	1.347e-6	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-2.561e-7	15	NC	1	NC	1
420			min	0	1	0	1	0	1	-5.413e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-1.947e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	15	-4.177e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	1	-3.637e-6	15	NC	1	NC	1
424			min	0	2	006	4	0	15	-7.813e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	1	-5.328e-6	15	NC	1	NC	1
426			min	001	2	009	4	0	15	-1.145e-4	1	NC	1	NC	1
427		5	max	.002	3	003	15	0	1	-7.018e-6	15	NC	1	NC	1
428			min	001	2	012	4	0	15	-1.509e-4	1	8382.304	4	NC	1
429		6	max	.002	3	004	15	0	1	-8.709e-6	15	NC	5	NC	1
430			min	002	2	015	4	0	15	-1.872e-4	1	6802.371	4	NC	1
431		7	max	.003	3	004	15	0	1	-1.04e-5	15	NC	5	NC	1
432			min	002	2	018	4	0	15	-2.236e-4	1	5850.387	4	NC	1
433		8	max	.003	3	005	15	0		-1.209e-5	15	NC	5	NC	1
434			min	002	2	02	4	0	1	-2.599e-4	1	5263.42	4	NC	1
435		9	max	.003	3	005	15	0	12		15	NC	5	NC	1
436			min	003	2	021	4	0	1	-2.963e-4	1	4917.683	4	NC	1
437		10	max	.004	3	005	15	0		-1.547e-5	•	NC	5	NC	1
438			min	003	2	022	4	001	1	-3.327e-4	1	4753.226	4	NC	1
439		11	max	.004	3	005	15	0		-1.716e-5	_	NC	5	NC	1
		<u> </u>													$\overline{}$

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I.C.	(n) I /v Ratio	I.C.	(n) I /z Ratio	I.C.
440	WICHIDO		min	003	2	022	4	002	1	-3.69e-4	1	4745.913	4	NC NC	1
441		12	max	.005	3	005	15	0	15	-1.885e-5	15	NC	5	NC	1
442			min	004	2	021	4	002	1	-4.054e-4	1	4898.163	4	NC	1
443		13	max	.005	3	005	15	0	15	-2.054e-5	15	NC	5	NC	1
444			min	004	2	02	4	003	1	-4.417e-4	1	5241.08	4	NC	1
445		14	max	.006	3	004	15	0	15	-2.223e-5	15	NC	5	NC	1
446			min	004	2	018	4	004	1	-4.781e-4	1	5850.451	4	NC	1
447		15	max	.006	3	004	15	0	15	-2.392e-5	<u>15</u>	NC	3	NC	1
448			min	005	2	015	4	006	1	-5.145e-4	1	6893.779	4	NC	1
449		16	max	.006	3	003	15	0	15	-2.562e-5	<u>15</u>	NC	1	NC	1
450			min	005	2	012	4	007	1	-5.508e-4	1_	8776.38	4	NC	1
451		17	max	.007	3	002	15	0	15	-2.731e-5	15	NC	1_	NC	1
452			min	005	2	009	4	009	1	-5.872e-4	_1_	NC	1_	NC	1
453		18	max	.007	3	001	15	0	15	-2.9e-5	<u>15</u>	NC	1_	NC	2
454		10	min	006	2	005	1	011	1	-6.235e-4	1_	NC	1_	9284.565	1
455		19	max	.008	3	0	10	0	15	-3.069e-5	<u>15</u>	NC	1	NC	2
456	1440	4	min	006	2	002	1	013	1	-6.599e-4	1_	NC NC	1_	7746.103	1
457	M12	1	max	.003	1	.006	2	.013	1	-1.09e-5	<u>15</u>	NC NC	1	NC	3
458		2	min	0	3	008	3	0	15	-2.336e-4	1_	NC NC	<u>1</u> 1	1889.998	1
459 460		2	max min	.003	3	.005 007	3	.012 0	1 15	-1.09e-5 -2.336e-4	<u>15</u> 1	NC NC	1	NC 2050.998	3
461		3	max	.002	1	.005	2	.011	1	-1.09e-5	15	NC	1	NC	3
462		<u> </u>	min	0	3	007	3	0	15	-2.336e-4	1	NC	1	2242.877	1
463		4	max	.002	1	.005	2	.01	1	-1.09e-5	15	NC	1	NC	3
464			min	0	3	007	3	0	15	-2.336e-4	1	NC	1	2473.611	1
465		5	max	.002	1	.004	2	.009	1	-1.09e-5	15	NC	1	NC	3
466			min	0	3	006	3	0	15	-2.336e-4	1	NC	1	2754.042	1
467		6	max	.002	1	.004	2	.008	1	-1.09e-5	15	NC	1	NC	3
468			min	0	3	006	3	0	15	-2.336e-4	1	NC	1	3099.203	1
469		7	max	.002	1	.004	2	.007	1	-1.09e-5	15	NC	1	NC	3
470			min	0	3	005	3	0	15	-2.336e-4	1	NC	1	3530.439	1
471		8	max	.002	1	.004	2	.006	1	-1.09e-5	15	NC	1	NC	3
472			min	0	3	005	3	0	15	-2.336e-4	1	NC	1	4078.869	1
473		9	max	.001	1	.003	2	.005	1	-1.09e-5	15	NC	1	NC	2
474			min	0	3	004	3	0	15	-2.336e-4	1	NC	1	4791.337	1
475		10	max	.001	1	.003	2	.004	1	-1.09e-5	<u>15</u>	NC	_1_	NC	2
476			min	0	3	004	3	0	15	-2.336e-4	1_	NC	1_	5741.052	1
477		11	max	.001	1	.003	2	.004	1	-1.09e-5	15	NC	_1_	NC	2
478			min	0	3	004	3	0	15	-2.336e-4	1_	NC	1	7047.74	1
479		12	max	.001	1	.002	2	.003	1	-1.09e-5	<u>15</u>	NC	1	NC	2
480			min	0	3	003	3	0		-2.336e-4	_1_	NC	1_	8918.438	
481		13	max	0	1	.002	2	.002	1	-1.09e-5	<u>15</u>	NC	1	NC NC	1
482		4.4	min	0	3	003	3	0	15		1_	NC NC	1_	NC NC	1
483		14	max	0	1	.002	2	.002	1	-1.09e-5	<u>15</u>	NC NC	1	NC NC	1
484		4.5	min	0	3	002	3	0	15		1_	NC NC	1_	NC NC	1
485		15	max	0	1	.001	2	.001	1	-1.09e-5	<u>15</u>	NC NC	1	NC	1
486		16	min	0	3	<u>002</u>	2	0	15	-2.336e-4	1_	NC NC	<u>1</u> 1	NC NC	1
487		16	max	0	3	0		<u> </u>	1	-1.09e-5	<u>15</u>		1		1
488		17	min		1	001	3		15	-2.336e-4 -1.09e-5	1_	NC NC		NC NC	
489 490		17	max min	0	3	<u>0</u> 	3	0	1 15	-1.09e-5 -2.336e-4	<u>15</u> 1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-2.336e-4 -1.09e-5	15	NC NC	1	NC NC	1
491		10	min	0	3	0	3	0	15		1	NC NC	1	NC NC	1
492		19		0	1	0	1	0	1	-2.336e-4 -1.09e-5	15	NC NC	1	NC NC	1
494		18	max min	0	1	0	1	0	1	-1.09e-5 -2.336e-4	1 <u>1</u>	NC NC	1	NC NC	1
495	M1	1	max	.01	3	.176	2	.001	1	1.363e-2	1	NC NC	1	NC NC	1
496	1VI I		min	005	2	035	3	0		-2.325e-2	3	NC NC	1	NC NC	1
430			1111111	005		035	J	U	10	-2.5256-2	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
497		2	max	.01	3	.085	2	0	15	6.563e-3	_1_	NC	5	NC	1
498			min	005	2	016	3	01	1	-1.154e-2	3	1492.897	2	NC	1
499		3	max	.01	3	.015	3	0	15	-2.868e-7	10	NC	5	NC	2
500			min	005	2	012	2	014	1	-2.973e-4	1	720.457	2	8954.789	1
501		4	max	.01	3	.065	3	0	15	4.653e-3	2	NC	15	NC	2
502			min	005	2	121	2	013	1	-4.722e-3	3	456.103	2	9643.041	1
503		5	max	.009	3	.128	3	0	15	9.467e-3	1	9864.306	15	NC	1
504			min	005	2	235	2	009	1	-9.326e-3	3	329.798	2	NC	1
505		6	max	.009	3	.196	3	0	15	1.435e-2	1	7783.457	15	NC	1
506			min	005	2	345	2	004	1	-1.393e-2	3	260.094	2	NC	1
507		7	max	.009	3	.261	3	0	1	1.923e-2	1	6556.288	15	NC	1
508			min	005	2	443	2	0	3	-1.853e-2	3	218.905	2	NC	1
509		8	max	.009	3	.316	3	.001	1	2.411e-2	1	5830.806	15	NC	1
510			min	005	2	521	2	0	15	-2.314e-2	3	194.53	2	NC	1
511		9	max	.009	3	.351	3	0	15	2.667e-2	1	5451.695	15	NC	1
512			min	004	2	57	2	0	1	-2.346e-2	3	181.823	2	NC	1
513		10	max	.008	3	.364	3	0	1	2.867e-2	2	5335.936	15	NC	1
514			min	004	2	586	2	0	15	-2.091e-2	3	178.095	2	NC	1
515		11	max	.008	3	.356	3	0	1	3.068e-2	2		15	NC	1
516			min	004	2	57	2	0	15	-1.836e-2	3	182.45	2	NC	1
517		12	max	.008	3	.326	3	0	15	2.955e-2	2	5830.307	15	NC	1
518		12	min	004	2	518	2	001	1	-1.558e-2	3	196.406	2	NC	1
519		13	max	.008	3	.277	3	0	15	2.372e-2	2	6555.428	15	NC	1
520		10	min	004	2	437	2	0	1	-1.246e-2	3	223.409	2	NC	1
521		14	max	.008	3	.216	3	.003	1	1.79e-2	2	7782.018	15	NC	1
522		17	min	004	2	335	2	0	15	-9.346e-3	3	269.64	2	NC	1
523		15	max	.007	3	.146	3	.008	1	1.207e-2	2	9861.841	15	NC	1
524		10	min	004	2	223	2	0	15	-6.227e-3	3	349.307	2	NC	1
525		16	max	.007	3	.074	3	.012	1	6.24e-3	2	NC	15	NC	1
526		10	min	004	2	11	2	0	15	-3.109e-3	3	496.91	2	NC	1
527		17	max	.007	3	.005	3	.013	1	8.497e-4	1	NC	5	NC	2
528		17	min	004	2	006	2	0	15	8.591e-6	12	804.887	1	9539.203	1
529		18	max	.007	3	.083	1	.009	1	9.861e-3	2	NC	5	NC	1
530		10	min	004	2	057	3	0	15	-3.607e-3	3	1696.958	1	NC	1
531		19	max	.007	3	.161	1	0	15	1.958e-2	2	NC	1	NC	1
532		19	min	004	2	115	3	001	1	-7.345e-3	3	NC NC	1	NC	1
533	M5	1	max	.03	3	.369	2	0	1	0	<u> </u>	NC	1	NC	1
534	IVIO	I	min	021	2	034	3	0	1	0	1	NC NC	1	NC NC	1
535		2		.03	3	<u>034</u> .177	2	0	1	0	1	NC NC	5	NC	1
536			max	021	2	012	3	0	1	0	1	710.862	2	NC NC	1
		2							1		1				1
537 538		3	max	.03 021	2	.047 039	3	0	1	0	1	NC 333.836	<u>15</u> 2	NC NC	1
		4	min	.021	3	<u>039</u> .17	3	0	1	0	1		15	NC NC	1
539 540		4	max	029	2	298	2	0	1	0	1	6861.773 204.099	2	NC NC	1
541		E			3		3		1		1				1
541		5	max	.029 02	2	.339	2	0	1	0	1	4786.935 143.414	<u>15</u> 2	NC NC	1
		6	min		3	579	3	0	1		1		15	NC NC	1
543 544		O	max	.028 02	2	.528 858	2	0	1	0	1	110.695	2	NC NC	1
545		7	min	.028	3	<u>858 </u>	3		1	0	1		15	NC NC	1
		/	max		2		2	0	1		1				1
546		0	min	019		<u>-1.112</u>		0	1	0	•	91.733 2665.339	15	NC NC	
547		8	max	.027	3	.868	3	0	1	0	1		<u>15</u>	NC NC	1
548		0	min	019	2	<u>-1.315</u>	2	0		0	1	80.684	2	NC NC	1
549		9	max	.026	3	.968	3	0	1	0	1_1		<u>15</u>	NC NC	1
550		10	min	019	2	<u>-1.445</u>	2	0		0	1_1	75.004	2	NC NC	
551		10	max	.026	3	1.004	3	0	1	0	1	2417.612	15	NC NC	1
552		4.4	min	018	2	<u>-1.488</u>	2	0		0	1	73.344	<u>2</u>	NC NC	1
553		11	max	.025	3	.979	3	0	1	0	_1_	2475.1	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

5555 12 max 024 3		Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio Lo		
See	554			min	018	2	-1.444	2	0	1	0	1_			1
557			12	max					_						
558				min					0	1	0	1_			1
559			13	max	.024			3	0	1	0	_1_		5 NC	1
Secondary Seco	558			min	017	2	-1.095	2	0	1	0	1	94.073 2	NC NC	1
561	559		14	max	.023	3	.585	3	0	1	0	1	3677.486 1	5 NC	1
F662	560			min	017	2	83	2	0	1	0	1	115.976 2	NC NC	1
562 min .017 2 .542 2 0 1 0 1 154,768 1 NC 1 563 max .022 3 .177 3 0 1 0 1 2666 1 NC 1 565 17 max .021 3 .015 3 0 1 0 1 227,006 1 NC 1 566 min .016 2 .02 2 0 1 0 1 NC 15 NC 1 566 min .016 2 .022 0 1 0 1 NC 1 <t< td=""><td>561</td><td></td><td>15</td><td>max</td><td>.022</td><td>3</td><td>.392</td><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td><td>4788.972 1</td><td>5 NC</td><td>1</td></t<>	561		15	max	.022	3	.392	3	0	1	0	1	4788.972 1	5 NC	1
F664	562			min	017	2	542	2	0	1	0	1	154.768 1	NC	1
F664			16	max	.022	3	.197	3	0	1	0	1	6866.079 1	5 NC	1
Feb										1		1			1
Fee6			17					3	0	1	0	1			1
567									_						
F668			18												
F669			10												
S70			10							_	_	_			-
For Mg			13					_	_	-	_				
S72		MO	1								•	•			
573		IVI9										-			
For the first color For the first color												•			
S75										-					
S76						_									
577			3												
578															
579			4						.013						2
S80				min						15		2			1
581 6 max .009 3 .196 3 .004 1 1.393e-2 3 .7783.457 15 NC 1 582 min 005 2 345 2 0 15 -1.435e-2 1 260.094 2 NC 1 583 7 max .009 3 .261 3 0 3 1.853e-2 3 6556.288 15 NC 1 584 min 005 2 443 2 0 1 -1.923e-2 1 218.905 2 NC 1 585 8 max .009 3 .316 3 0 15 2.314e-2 3 5830.806 15 NC 1 586 min 005 2 521 2 001 1 -2.411e-2 3 5830.806 15 NC 1 587 9 max .008 3<			5	max	.009		.128		.009	1		3			1
S82	580			min			235		0	15		1			1
583	581		6	max	.009	3	.196	3	.004	1		3	7783.457 1	5 NC	1
584 min 005 2 443 2 0 1 -1.923e-2 1 218.905 2 NC 1 585 8 max .009 3 .316 3 0 15 2.314e-2 3 5830.806 15 NC 1 587 9 max .009 3 .351 3 0 1 2.346e-2 3 5451.695 15 NC 1 588 min 004 2 57 2 0 15 2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .364 3 0 15 2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 2.867e-2 2 178.095 2 NC 1 591 11 max .008 3	582			min	005	2	345	2	0	15	-1.435e-2	1	260.094 2	NC NC	1
585 8 max .009 3 .316 3 0 15 2.314e-2 3 5830.806 15 NC 1 586 min 005 2 521 2 001 1 -2.411e-2 1 194.53 2 NC 1 587 9 max .009 3 .351 3 0 1 2.346e-2 3 5451.695 15 NC 1 588 min -004 2 57 2 0 15 2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .366 2 0 1 2.867e-2 2 178.095 2 NC 1 590 min 004 2 57 2 0 1 -3.068e-2 2 178.095 2 NC 1 592 12 min 004 2	583		7	max	.009	3	.261	3	0	3	1.853e-2	3	6556.288 1	5 NC	1
585 8 max .009 3 .316 3 0 15 2.314e-2 3 5830.806 15 NC 1 586 min 005 2 521 2 001 1 -2.411e-2 1 194.53 2 NC 1 587 9 max .009 3 .351 3 0 1 2.346e-2 3 5451.695 15 NC 1 588 min 004 2 57 2 0 15 2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .364 3 0 15 2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 min 004 2	584			min	005	2	443	2	0	1	-1.923e-2	1	218.905 2	NC NC	1
586 min 005 2 521 2 001 1 -2.411e-2 1 194.53 2 NC 1 587 9 max .009 3 .351 3 0 1 2.346e-2 3 5451.695 15 NC 1 588 min 004 2 57 2 0 15 -2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .364 3 0 15 -2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 max .008 3 .356 3 0 15 1.836e-2 3 5451.455 15 NC 1 592 min 004 2 57 2 0 1 1.558e-2 <td></td> <td></td> <td>8</td> <td></td> <td>.009</td> <td>3</td> <td>.316</td> <td>3</td> <td>0</td> <td>15</td> <td></td> <td>3</td> <td></td> <td>5 NC</td> <td>1</td>			8		.009	3	.316	3	0	15		3		5 NC	1
587 9 max .009 3 .351 3 0 1 2.346e-2 3 5451.695 15 NC 1 588 min 004 2 57 2 0 15 -2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .364 3 0 15 2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 max .008 3 .356 3 0 15 1.836e-2 2 178.095 2 NC 1 592 min 004 2 57 2 0 1 -3.068e-2 2 182.45 2 NC 1 593 12 max .008 3 .2277									001			1			1
588 min 004 2 57 2 0 15 -2.667e-2 1 181.823 2 NC 1 589 10 max .008 3 .364 3 0 15 2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 max .008 3 .356 3 0 15 1.836e-2 2 158.1455 15 NC 1 592 min 004 2 57 2 0 1 3.068e-2 2 158.1455 15 NC 1 593 12 max .008 3 .326 3 .001 1 1.558e-2 3 583.03307 15 NC 1 594 min 004 2 51			9							1		3			1
589 10 max .008 3 .364 3 0 15 2.091e-2 3 5335.936 15 NC 1 590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 max .008 3 .356 3 0 15 1.836e-2 3 5451.455 15 NC 1 592 min 004 2 57 2 0 1 -3.068e-2 2 182.45 2 NC 1 593 12 max .008 3 .236 3 .001 1 1.558e-2 3 5830.307 15 NC 1 594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3															
590 min 004 2 586 2 0 1 -2.867e-2 2 178.095 2 NC 1 591 11 max .008 3 .356 3 0 15 1.836e-2 3 5451.455 15 NC 1 592 min 004 2 57 2 0 1 -3.068e-2 2 182.45 2 NC 1 593 12 max .008 3 .326 3 .001 1 1.558e-2 3 5830.307 15 NC 1 594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 </td <td></td> <td></td> <td>10</td> <td></td> <td>1</td>			10												1
591 11 max .008 3 .356 3 0 15 1.836e-2 3 5451.455 15 NC 1 592 min 004 2 57 2 0 1 -3.068e-2 2 182.45 2 NC 1 593 12 max .008 3 .326 3 .001 1 1.558e-2 3 5830.307 15 NC 1 594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3			1.0						_						
592 min 004 2 57 2 0 1 -3.068e-2 2 182.45 2 NC 1 593 12 max .008 3 .326 3 .001 1 1.558e-2 3 5830.307 15 NC 1 594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3 .216 3 0 15 9.346e-3 3 .7782.018 15 NC 1 598 min 004 2 335			11												
593 12 max .008 3 .326 3 .001 1 1.558e-2 3 5830.307 15 NC 1 594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3 .216 3 0 15 9.346e-3 3 7782.018 15 NC 1 598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3<															
594 min 004 2 518 2 0 15 -2.955e-2 2 196.406 2 NC 1 595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3 .216 3 0 15 9.346e-3 3 7782.018 15 NC 1 598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 22			12				_			-					
595 13 max .008 3 .277 3 0 1 1.246e-2 3 6555.428 15 NC 1 596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3 .216 3 0 15 9.346e-3 3 7782.018 15 NC 1 598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 max .007 3 .0			12						•		-2.0550-2	2			1
596 min 004 2 437 2 0 15 -2.372e-2 2 223.409 2 NC 1 597 14 max .008 3 .216 3 0 15 9.346e-3 3 7782.018 15 NC 1 598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			12						_						1
597 14 max .008 3 .216 3 0 15 9.346e-3 3 7782.018 15 NC 1 598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3			13						_						
598 min 004 2 335 2 003 1 -1.79e-2 2 269.64 2 NC 1 599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 013			4.4												
599 15 max .007 3 .146 3 0 15 6.227e-3 3 9861.841 15 NC 1 600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 <td></td> <td></td> <td>14</td> <td></td>			14												
600 min 004 2 223 2 008 1 -1.207e-2 2 349.307 2 NC 1 601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 006 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057			4.5							_					•
601 16 max .007 3 .074 3 0 15 3.109e-3 3 NC 15 NC 1 602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 006 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3			15						_						
602 min 004 2 11 2 012 1 -6.24e-3 2 496.91 2 NC 1 603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 006 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1															
603 17 max .007 3 .005 3 0 15 -8.591e-6 12 NC 5 NC 2 604 min 004 2 006 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1			16						_						
604 min 004 2 006 2 013 1 -8.497e-4 1 804.887 1 9539.203 1 605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1															•
605 18 max .007 3 .083 1 0 15 3.607e-3 3 NC 5 NC 1 606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1			17							15		12			2
606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1				min				2	013	1		1			1
606 min 004 2 057 3 009 1 -9.861e-3 2 1696.958 1 NC 1 607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1	605		18	max	.007		.083	1	0	15	3.607e-3	3	NC 5	NC	1
607 19 max .007 3 .161 1 .001 1 7.345e-3 3 NC 1 NC 1	606				004		057	3	009	1	-9.861e-3	2	1696.958 1	NC	1
			19						.001	1					_1
										15					

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av\infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.