1644 IFW

Application Number 08/838,486 TRANSMITTAL Filing Date April 7, 1997 **FORM** First Named Inventor Baekkeskov Art Unit 1644 **Examiner Name** Gerald R. Ewoldt (to be used for a processondence after initial filing) Attorney Docket Number 2307AA-031220US Pages in This Submission **ENCLOSURES** (Check all that apply) After Allowance Communication to TC Fee Transmittal Form Drawing(s) Appeal Communication to Board Fee Attached Licensing-related Papers of Appeals and Interferences Appeal Communication to TC Petition Amendment/Reply (Appeal Notice, Brief, Reply Brief) Petition to Convert to a After Final **Proprietary Information** Provisional Application Power of Attorney, Revocation Affidavits/declaration(s) Status Letter Change of Correspondence Address Other Enclosure(s) (please identify **Extension of Time Request** Terminal Disclaimer below): Response to notice of non-compliant appeal **Express Abandonment Request** Request for Refund brief (2 pgs) Return Postcard Information Disclosure Statement CD, Number of CD(s)_ Landscape Table on CD Remarks The Commissioner is authorized to charge any additional fees to Deposit Certified Copy of Priority Account 20-1430. Document(s) Reply to Missing Parts/ Incomplete Application Reply to Missing Parts under 37 CFR 1.52 or 1.53 SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT Firm Name Townsend and Townsend and Crew LLP Signature Printed name Joe Liebeschuetz Date Reg. No. 37,505 CERTIFICATE OF TRANSMISSION/MAILING I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below. Signature Susan J. Johnson Date Typed or printed name

AUG 1 4 2006

I have certify that this correspondence is being de

Postal Service as first class mail in an envelope addressed to:

PATENT

Attorney Docket No.: 2307AA-031220US

Client Ref. No.: 90-160-5

Mail Stop Amendment Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

TOWNSEND and TOWNSEND and CREW LLE

Sugar I

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Steinunn Baekkeskov et al.

Application No.: 08/838,486

Filed: April 7, 1997

For: IMPROVED METHODS FOR THE

DIAGNOSIS AND TREATMENT OF

DIABETES

Customer No.: 20350

Confirmation No. 8923

Examiner:

Gerald R. Ewoldt

Technology Center/Art Unit: 1644

Response to notice of non-compliant appeal

brief

Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

In response to the notice of noncompliant appeal brief mailed July 28, 2006, applicants attach a third revised appeal brief.

In reply to the comments regarding point 4 in the notification of noncompliant appeal brief, applicants have provided further details of page and line numbers in the summary of claimed subject matter, such that every claim is mapped to the specification.

Applicants also note that point is checked in the notification of noncompliant appeal brief. However, no indication is provided what is missing from the appeal brief other

Appl. No. 08/838,486 Amdt. dated August 7, 2006 Second Response to PTO Communication

than the items referred to in point 4 above. Accordingly, applicants assume nothing else is required.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 650-326-2400.

Respectfully submitted,

Joe Liebeschuetz Reg. No. 37,505

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, Eighth Floor San Francisco, California 94111-3834

Tel: 650-326-2400 Fax: 415-576-0300 Attachments

JOL:sjj 60839936 v1 I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commission... P.O. Box 1450 Commissioner for Patents

Alexandria, VA 22313-1450

OWNSEND and TOWNSE

Docket No.: 2307AA-031220US

Client Ref. No.: 90-160-5

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

In re application of:

Steinunn Baekkeskov et al.

Application No.: 08/838,486

Filed: April 7, 1997

IMPROVED METHODS FOR THE For: DIAGNOSIS AND TREATMENT OF

DIABETES

Examiner: Gerald R. Ewoldt

Art Unit: 1644

APPELLANTS' BRIEF (THIRD REVISON)

<u>UNDER 37 CFR § 41.37</u>

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

In response to the final office action of July 29, 2003 and further to the notice of appeal filed December 29, 2003, appellants submit the following brief.

TABLE OF CONTENTS

	REAL PARTY IN INTEREST	3
II.	RELATED APPEALS AND INTERFERENCES	3
III.	STATUS OF CLAIMS	4
IV.	STATUS OF AMENDMENTS	4
V./	SUMMARY OF THE CLAIMED SUBJECT MATTER	4
VI	GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL	5
VII.	ARGUMENT	5
VIII	. CONCLUSION	. 16
IX.	CLAIM APPENDIX	. 18
X.	EVIDENCE APPENDIX	. 20
VI	DELATED DECCEPTINGS APPENDIY	21

Page 3

I. REAL PARTY IN INTEREST

The Regents of the University of California and Yale University, jointly.

II. RELATED APPEALS AND INTERFERENCES

USSN 08/452,053 ('053 application), the parent of the present case contains claims to methods of diagnosing insulin dependent diabetes mellitus (IDDM) using glutamic acid decarboxylase (GAD). Applicants have requested an interference between the '053 application and US 5,645,998 ('998 patent) assigned to the University of Florida, which has substantially corresponding claims. The '053 application has been allowed and prosecution suspended pending declaration of the requested interference. The present case, which is directed to methods of treatment and pharmaceutical compositions substantially corresponds at least in part to claims to two other patents assigned to the University of Florida, US 6,001,360 ('360 patent), and US 5,762,937 ('937 patent). The '360 and '937 patents are in the same priority lineage as the Florida '998 patent. The disclosure of these patents is substantially similar to that of the present case, and as noted in the request for interference filed May 5, 2003, the earliest conceivable effective filing date of the '360 and '937 patents and that of the present application are only three weeks apart. The '937 Florida patent is cited by the Examiner as anticipating many of the claims present in the present case. An exemplary claim from the '360 Florida patent appears below.

1. A method for preventing or delaying the development of clinical symptoms of insulin dependent diabetes wherein said method comprises administering to an animal an essentially pure GAD protein or a fragment thereof which, when administered to an animal, prevents or delays the development of clinical symptoms of insulin dependent diabetes.

Applicants have requested that an interference be declared between the present application and US 6,001,360, and US 5,762,937 under 37 CFR 1.607 and 1.608 (see paper no. filed May 5, 2003). The Examiner has declined to consider this request pending resolution of the issues posed by this appeal. The priority issues for the diagnostic claims in the parent and therapeutic claims and therapeutic claims in the present case involve the same underlying facts vis a vis the University of Florida patents. Therefore, in the interest of judicial economy, it is requested that the relative priority between the present case and the Florida '360 and '937 patents

Page 4

and the relative priority between the '053 parent of the present case, and Florida '998 be resolved as first and second counts of the same interference.

III. STATUS OF CLAIMS

Claims 31, 35, 50-57, 59 and 62-67 are pending and rejected. Claims 1-30, 32-34, 36-49, 58, and 60-61 are cancelled. All rejected claims are appealed.

IV. STATUS OF AMENDMENTS

An amendment after final was filed canceling claims 49 and 58 and has been entered. All previous amendments have been entered.

V. SUMMARY OF THE CLAIMED SUBJECT MATTER

The invention is premised in large part on the discovery that glutamic acid decarboxylase (GAD) is a component of a pancreatic beta cell 64 kDa antigen that is a major autoantigen in insulin dependent diabetes mellitus (IDDM) (also known as type 1 diabetes) (specification at p. 8, lines 32-37). Whereas the pancreatic beta cell 64 kDa antigen is present in pancreatic islets in only minute amounts (specification at p. 3, lines 25-3)), GAD is present in large amounts in the CNS (p. 8, line 36). The discovery of the relationship between GAD and the pancreatic 64 kDa and consequent availability of large amounts of autoantigenic protein gave rise to diagnostic and therapeutic methods of detecting and treating IDDM using GAD (see specification at p. 9, lines 9-14). The diagnostic methods are claimed in the '053 parent application. The therapeutic methods and pharmaceutical compositions are claimed in the present case.

Specifically, independent claim 31 is directed to a method for inhibiting the development of insulin dependent diabetes mellitus by administering to a patient a therapeutically effective dosage of GAD (specification at, e.g., page 19, line 16 to p. 21, line 33). Administration of GAD to a patient induces tolerance to the 64 kDa pancreatic autoantigen, thereby inhibiting further destruction of beta pancreatic cells and the clinical symptoms of IDDM that eventually result from this destruction.

Independent claim 62 recites a similar method of treatment except that the wording and format of claim 62 was specifically chosen to follow that of claim 1 from the

Page 5

Florida '360 patent as closely as possible for purposes of interference (see specification at, e.g., page 19, line 16 to p. 21, line 33).

Independent claim 35 recites a composition comprising GAD, which is at least 99% w/w pure, in a pharmaceutically acceptable carrier for parenteral administration to a human patient (specification at page 19, line 16 to p. 21, line 33 and p14, line 13).

Dependent claims 54 and 59 specify that the GAD used is lower molecular weight GAD. GAD exists in two forms known as lower and high molecular weight forms, now known as GAD65 and GAD67 respectively (see e.g., specification at p. 37, lines 17-23).

VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

- 1. Whether claims 31, 50-53, 62-67 lack enablement under 35 USC 112, first paragraph.
- 2. Whether claims 31, 64 and 65 are anticipated by US 5,762,937 under 35 USC 102(e).
- 3. Whether claims 35, and 54-57 are anticipated by US 5,762,937 under 35 USC 102(e).
- 4. Whether claims 50-53, 59, 66 and 67 would have been obvious under 35 USC 103(a) over US 5,762,937.
- 5. Whether claims 35 and 54-57 would have been obvious under 35 USC 103(a) over US 4,086,142 in view of US 4,736,020.

VII. ARGUMENT

1. Claims 31, 50-53, 62-67 are enabled under 35 USC 112, first paragraph

a. Summary of Claimed Methods and Evidence Supporting their

Enablement

The therapeutic method of the present claims is a simple one involving a single step of administering a therapeutically effective dosage of GAD to a patient. Several references published subsequent to the invention show that administration of GAD to an animal model of IDDM, a NOD mouse, is effective to inhibit IDDM (see Baekkeskov declaration filed July 22, 2003 at paragraph (5) citing Tisch *et al.*, *Nature* 366, 71-75 (1993); Kaufman, *Nature* 366, 69-71

Page 6

(1993), Tian et al., Nature Medicine 12, 1348 (1996), Peterson et al., Diabetes 44, 1478 (1994), and Harrison, Molecular Medicine 1, 722-727 (1994)). A phase-I clinical trials has demonstrated that GAD can safely be administered to humans (see Press Release attached to response of January 5, 2001). A phase-II clinical trial has confirmed safety and shown statistically significant evidence of efficacy in a patients with Late Autoimmune Disease in Adults (LADA), a subset of diabetes masquerading as type II on account of its late onset but which is now regarded as a form of Type 1 diabetes (see Baekkeskov declaration at paragraph (6) and Press Release attached to supplemental communication of July 22, 2003).

(b) Summary of Examiner's Rationale

The Examiner acknowledges that the claimed methods are enabled with respect to their use in a NOD mouse (final office action of July 29, 2003, at p. 2). However, the Examiner denies that the methods are enabled for a patient, notwithstanding the above evidence, on several grounds. First, the Examiner says that although the NOD mouse model may be the best available model, results obtained from it are not predictive of efficacy in humans (final office action at p. 4). Second, the Examiner alleges that the results of a successful phase I safety study is insufficient to support the enablement of the present claims (office action of November 4, 2002 at p. 4). Third, the Examiner discounts the results from a successful phase II trial on the basis that these results were obtained on a related pathology of non-autoimmune origin (final office action at p. 4). Fourth, the Examiner takes the view that the general field of tolerance-inducing therapies was unpredictable at the effective filing date of the application based in part on lack of a successful therapy in the 13 years post filing (office action at p. 4, 3rd paragraph) and the teaching of the specification that care should be taken that administration of compositions does not potentiate the autoimmune response (p. 20, lines 16-19). Fifth, the Examiner cites two articles (Goodnow and Marketletter) as evidence that methods of inducing tolerance that worked in animal models have not proved successful in human in two diseases other than IDDM (final office action at p. 3, last paragraph). Finally, the Examiner raises additional issues with respect to the recitation of "preventing" and "fragment" in claim 62 (office action of February 4, 2003 at pp. 4-5).

Page 7

(c) The legal standard

The leading case regarding the sufficiency of animal trial to support enablement of treatment in humans under 35 USC 112, first paragraph is *In re Brana*, 34 USPQ2d 1436 (Fed. Cir. 1995). The *Brana* court reversed a rejection under 35 USC § 112, first paragraph based on the PTO's refusal to accept data from testing compounds in an animal model of cancer (id. at 1444). The animal model at issue in *Brana* was formed by injecting cancer cells into mice. The PTO took the position that the model was not fully representative of human cancers because the mice did not naturally develop cancers (id. at 1440). The PTO argued that "in vivo tests in animals are only preclinical tests to determine whether a compound is suitable for processing in the second stage of testing, [meaning] in vivo testing in humans, and therefore are not reasonably predictive of the success of the claimed compounds for treating cancer in humans" (id. at 1142). The Federal Circuit reversed the rejection as "arbitrary and capricious." The Federal Circuit held that "Title 35 does not demand that such human testing occur within the confines of Patent and Trademark Office (PTO) proceedings" (id. at 1442).

(d) Analysis

Here, it is not disputed by the Examiner that the presently claimed methods are enabled for an animal model of IDDM, namely, the NOD mouse. The remaining issue is whether the NOD mouse is reasonably predictive of similar results in treating IDDM in other patients, including humans. There is abundant evidence that such is the case. As explained in the declaration of Dr. Baekkeskov submitted July 21, 2003 (Baekkeskov declaration), the NOD mouse is a good model of IDDM in human because both humans and mice develop the same pathological characteristics of autoantibodies and T-cells to GAD (Baekkeskov declaration at paragraph 6). Moreover, positive results in the NOD mouse have been used as evidence to support human clinical trials of a number of drugs to treat IDDM, including humanized OKT3, alpha interferon, and most importantly GAD (see Baekkeskov declaration at paragraph 6). In the case of GAD, both phase I and phase II clinical trials have been conducted. The phase I trial has provided evidence of safety, and the phase II trial has provided statistically significant evidence of efficacy. In the aggregate, the above evidence abundantly supports the conclusion that results

Page 8

in the NOD mouse are reasonably predictive of similar success in humans. Even the Examiner acknowledges, the NOD mouse may be the "best available model" (final office action at p. 4).

The Examiner criticizes reliance on the phase I trial of GAD on the basis that a phase I trial cannot show freedom from long-term side effects or establish efficacy (office action of November 4, 2002 at p. 4). Appellants acknowledge that a phase I trial cannot preclude the possibility of long term side effects, nor establish efficacy. Nevertheless, the fact that a phase I trial has been allowed to occur is an indication that a disinterested body of experts (i.e., the FDA or equivalent in other countries) has concluded from the relevant preclinical data including animal models, such as those in the references cited in the Baekkeskov declaration at paragraph (5)), that the trial has a reasonable chance of success. This unsolicited and disinterested opinion of experts in the field stands in opposition to the office action's own assessment of the animal models. The Examiner dismisses these comments regarding the opinion of a disinterested body of experts as mere attorney argument (office action of February 4, 2003 at p. 3). However, in fact appellants' comments regarding the significance of a phase I trial mirror those in the MPEP:

Before a drug can enter human clinical trials, the sponsor, often the applicant must provide a convincing rationale to those <u>especially</u> skilled in the art (e.g., the Food and Drug Administration) that the investigation may be successful. Such a rationale would provide a basis for the sponsor's expectation that the investigation may be successful. In order to determine a protocol for phase I testing, the first phase of clinical investigation, some credible rationale of how the drug might be effective or could be effective would be necessary.

MPEP 21707.03.

In view of the corroboration provided by the MPEP, a declaration should not be required for acceptance of appellants' position that the fact that a phase I trial has been allowed to occur is an indication that a body of experts has concluded from the relevant preclinical data including animal models that treatment in humans has a reasonable chance of success

The Examiner discounts the successful phase II trial employing GAD on the basis that it was conducted on a related pathology of non-autoimmune origin (final office action at p. 4). The notion that anyone would conduct a phase II clinical trial of GAD on patients not suffering from autoimmune attack of GAD to whom the treatment would be of no apparent

Page 9

benefit is implausible, and in fact mistaken. The phase II trial was conducted on a subclass of diabetes patients termed LADA. LADA is an acryonym for Late *Autoimmune* Disease in Adults, a term that unmistakably refers to an autoimmune disease. As was stated in the materials describing the phase II trial and the Baekkeskov declaration, the patients of this subclass of patients are suffering from autoimmune attack and do have autoantibodies to GAD, as in type I patients.

Next the Examiner points to general unpredictability in the field of inducing immunotolerance based in part in part on lack of a successful therapy in the 13 years post filing (final office action at p. 4, 3rd paragraph) and the teaching of the specification that care should be taken that administration of compositions does not potentiate the autoimmune response (p. 20, lines 16-19). Appellants initially note that the issue at hand is the enablement of claims containing a single step of administering a therapeutically effective amount of GAD to a patient. Practice of such a method is not dependent on an understanding of the entire field of immunotolerance. Second, a period of 13 years or more between the appearance of a drug in the laboratory and its final approval for use by the FDA or similar body is not unusual. Patent applications are by necessity filed at an early date in this process before public disclosure. Third, although the Examiner is correct that the present specification does indicate that care should be taken not to potentiate an immune response, general principles for achieving a tolerogenic response rather than an immunogenic response were within the state of the art at the date of the invention (see Baekkeskov declaration at paragraph (4)). For example, a standard immunology textbook available at he priority date of the invention indicates that either low or high dosages of antigen favor a tolerogenic response, whereas intermediate dosages favor an immunogenic response (Benjamini & Leskowitz, Immunology: A Short Course (Liss, 1988) at p. 256).

The Examiner's criticism that the materials describing the phase II clinical trial do not describe the dosage as being "high" or "low" (final office action at p. 4) is oversimplistic. A dosage is not described as "high" or "low" in isolation. Rather, guidance that the desired tolerogenic effect can be achieved at high or low dosage represents a principle that if the desired effect is not achieved by the initially chosen dosage, it can likely be achieved by varying the dosage. Performing clinical trials at varying dosage is standard practice in the art. As the Examiner has acknowledged "[i]t would have been prima facie obvious to one of ordinary skill at

Page 10

the time the invention was made to optimize the dosage of the GAD administered in the method of the reference [US 5,762,947], said optimization falling well within the purview of one of skill in the art at the time of the invention" (office action of November 4, 2000 at p. 7).

Next, the Examiner cites Goodnow and a Marketletter article, as evidence that methods of inducing tolerance that worked in animal models were a complete failures in treatment of humans with multiple sclerosis and rheumatoid arthritis (final office action at p. 3, last paragraph). Results reported for other diseases are less significant and do nothing to change the undisputed evidence that is directly applicable to insulin dependent diabetes. That is, treatment of GAD has been showed to induce tolerance in numerous independent studies on a NOD mouse model, and successful phase I and II human clinical trials have been completed. Also, it is noted that the Examiner omits to mention parts of the articles that do not support his positions. For example, the Marketletter article reports that "substantial improvements" above baseline were observed in the Collerol trial and that Autoimmune still "firmly believes in its technology."

The Examiner's allegation of inconsistency between remarks in paragraph (4) of the first Baekkeskov declaration regarding animal models and appellants' above position regarding the alleged failures in clinical trials of multiple sclerosis and rheumatoid arthritis is incorrect and an obfuscation of the real issues. It is undisputed that the presently claimed methods are enabled in an animal model. It is common sense that alleged failures in clinical trials of multiple sclerosis and rheumatoid arthritis using agents unrelated to GAD are less relevant to the claimed methods than the successful clinical trials using GAD in a subset of patients undergoing autoimmune attack of GAD.

Finally, the Examiner comments on two issues specifically applicable to claim 62, namely the recitation of "preventing" and "fragment" of GAD. Initially, it is noted that claim 62 substantially corresponds to claim 1 of US 6,001,360 from which it was copied for purposes of provoking an interference. Claim 1 of '360 also contains the offending terms "preventing" and "fragment." Thus, the USPTO has allowed a substantially similar claim to others.

The Examiner objects to the term "preventing" on the basis that it implies "absolute prevention" which in the Examiner's view cannot be achieved (office action of November 4, 2002, sentence bridging pp. 4-5). In response, it is submitted that in the context of

Page 11

preventive medicine the term "preventing" is used more generally than to imply absolute prevention. Few if any preventive measures achieve absolute prevention in every patient. In any event, it is not implausible that treatment of GAD can prevent onset of clinical symptoms of IDDM at least in some patients. Clinical symptoms of IDDM do not start until the majority of β -pancreatic islet cells have been destroyed. Onset of clinical disease is preceded by a long prodromal period in which progressive destruction of β -pancreatic cells occurs and autoantibodies to GAD are present (see specification at paragraph bridging pp. 1-2 and also Tian, *Nature Medicine* 12, 1348 (1996), of record, at p. 1348). If autoantibodies are detected early in the prodromal period (using the diagnostic methods disclosed in the application) and GAD is then administered, it will not restore any pancreatic destruction that has already occurred, but will stop or inhibit further destruction. If administration of GAD is successful in preventing further destruction, and the patient does not reach the point at which sufficient β -pancreatic cells have been destroyed for clinical symptoms then diabetes has been prevented.

With respect to fragments, the Examiner alleges that claim 62 encompasses administration of fragments having only a single amino acid, which the Examiner says would be highly unpredictable (Office action of February 4, 2003 at p. 5, first paragraph). In response, it is not reasonable to construe the claims as encompassing administering "fragments" consisting of only a single amino acid. Claim 62 specifies a fragment which "when administered to the patient, prevents or inhibits the development of insulin dependent diabetes." The recital of a specific function for a fragment implies that the fragment has sufficient structure to provide that function. Therefore, claim 62 does not encompass single amino acids or other short fragments too small to achieve the desired function of preventing or inhibiting development of insulin dependent diabetes.

In conclusion, the Examiner has not met his burden of proving that successful results obtained in a mouse model (which the Examiner acknowledges is enabled by the specification) are not predictive of similar results in other patients, including humans, particularly given the evidence from clinical trials of GAD at discussed above. At most, the Examiner argues that the NOD mouse is not a perfect model of IDDM in humans. That the NOD mouse does not mimic the human disease in every respect was also true of the mouse

Page 12

model in *Brana* and probably every other mouse model of human disease. As *Brana* made clear, rejection of data from a mouse model for this reason is arbitrary and capricious.

2. Alleged Anticipation of Claims 31, 64 and 65 by US 5,762,937 under 35 USC 102(e) should be Determined by Interference

For purposes of this appeal, appellants do not dispute the merits of the rejection. However, appellants do allege that they invented the above claims before the inventors of the '937 patent. Because the rejection is made at least in part over the claims of the '937 patent (final office action at paragraph 7), this issue can be resolved only by interference. Appellants have formally requested an interference with the '937 patent, as noted above.

3. Alleged Anticipation of Claims 35 and 55-57 under 35 USC 102(e) should be Determined by Interference; Claim 54 is not Anticipated by US 5,762,937

For purposes of this appeal, appellants do not dispute the merits of the rejection with respect to claims 35 and 55-57. However, appellants do allege that they invented the above claims before the inventors of the '937 patent. Because the rejection is made at least in part over the claims of the '937 patent (final office action at paragraph 7), this issue can be resolved only by interference. Appellants have formally requested as interference with the '937 patent, as noted above.

Appellants deny that claim 54 is anticipated by the '937 patent. The Examiner's rationale is summarized in the office action of February 4, 2003 at paragraph 15. The Examiner relies particularly on Example 14 of the '937 patent as teaching a composition comprising GAD. The Examiner says that lower molecular weight GAD is the only molecular weight GAD taught by the reference and that lower molecular weight GAD would thus inherently be present. In the final rejection, the Examiner adds that the specification refers repeatedly to the lower molecular weight antigen (the 64 kDa antigen) (final office action at paragraph 9).

In response, it is submitted that the '937 patent does not teach either expressly or under principles of inherency a composition comprising lower molecular weight GAD in at least 99% purity, as specified by claim 54 (including the elements from antecedent claim 35).

Anticipation is established only when a single prior art reference discloses, expressly or under

Page 13

principles of inherency, each and every element of a claimed invention," RCA Corp v. Applied Digital Data Sys. Inc., 2212 USPQ 385, 388 (Fed. Cir. 1984). Inherent anticipation cannot be found unless the "prior art necessarily functions in accordance with limitations of a process or method claim" (In re King, 23 USPQ 136, 138 (Fed. Cir. 1986)). "Inherency ... may not be established by probabilities or possibilities." Mehl/Biophile v. Milgraum, 52 USPQ2d 1303, 1305 (Fed. Cir. 1999) (emphasis supplied). Here, Example 14, on which, the Examiner relies, refers merely to a "purified form of the 64 K antigen" (col. 25, line 54-55). The '937 patent does not indicate that the 64 K antigen has been purified to such an extent as to give 99% pure lower molecular weight GAD.

If one were to attempt to obtain a "purified form of the 64 K antigen" from pancreatic islet cells, the Examiner has not show that one would necessarily obtain 99% purity. In fact, one would be most unlikely to do so for several reasons. One difficulty limiting purification was the small quantities of pancreatic islet cells available and the fact that of this small amount of material, that 64 kDa antigen was known to constitute less than 0.1% of total islet proteins (Baekkeskov et al., *Diabetes* 38, 1133-1141 (1989)). A second difficulty was the absence in the '937 patent of a simple and specific assay by which the yield of antigen could be assessed at each step in a purification procedure. A third difficulty was the need to achieve purification without impairing the 64 kDa antigen for subsequent use of the antigen in a pharmaceutical composition. In any event, regardless of the degree of difficulty of purifying the 64 kDa antigen from pancreatic cells, the Examiner has not met his burden of proving that a "purified form of the 64 K antigen" from pancreatic cells is necessarily at least 99% pure lower molecular weight GAD.

If one were to purify a form of the 64 kDa autoantigen from the CNS or from cells expressing recombinant GAD, one would not, based on the teaching of the patent, necessarily obtain lower molecular weight GAD rather than higher molecular weight GAD or a mixture thereof. The two forms naturally exist as a mixture in the CNS (see specification at p. 5, lines 26-28) and one would thus naturally purify a mixture of GAD unless taught to do otherwise. The '937 patent does not provide any such teaching. If one sought to purify GAD from cells expressing GAD recombinantly one would obtain whatever form of GAD was being expressed. The '937 patent does not provide any teaching to express the lower molecular weight

Page 14

form of GAD recombinantly. In fact, it provides the sequence of the higher molecular weight form (see Figs. 1A, B, and C)¹.

Therefore, regardless of whether one sought to purify the 64 kDa antigen from the pancreas, or obtain GAD from its natural source or by recombinant expression, one would not following the teaching of the '937 patent necessarily arrive at a pharmaceutical composition containing at least 99% w/w pure lower molecular weight GAD.

4. Alleged Obviousness of Claims 50-53, 66 and 67 Should be Determined by Interference; Claim 59 Would Not Have Been Obvious Over US 5,762,937

For purposes of this appeal, appellants do not dispute the substance of the rejection with respect to claims 50-53, 66 and 67. However, appellants do allege that they invented the above claims before the inventors of the '937 patent. Because the rejection is made at least in part over the claims of the '937 patent (final office action at paragraph 10), this issue can be resolved only by interference. Appellants have formally requested as interference with the '937 patent, as noted above.

Claims 59 would not have been obvious over the '937 patent for analogous reasons that claim 54 is not anticipated by the above patent. Claim 59 requires that the GAD used in therapeutic methods or compositions is human GAD65 at a purity of at least 99% w/w. As discussed in connection with claim 54, such a level of purity of lower molecular weight GAD is not inherent in the reference to a purified form of the 64 kDa antigen. It would not have been obvious to purify lower molecular weight GAD to 99% purity from pancreatic cells for the reasons discussed above in connection with claim 54. It would not have been obvious to purify lower molecular weight GAD from the CNS or cells recombinantly expressing GAD based on the teachings of the '937 patent also for the same reasons discussed for claim 54. That is, the '937 patent does not provide any teaching that there are two forms of GAD much less that one should purify the lower form from the higher form in the mixture that naturally occurs in the

That Fig. 1 represents the sequence of higher molecular weight GAD can be determined as follows. The '937 patent references Kobayashi et al., *J. Neuroscience* 7, 2768-2772 (1987) as the source of the sequence (see col. 18, lines 59-64). GenBank entry P14748 corresponding to the cited Kobayashi paper characterizes the sequence described by Kobayashi as GAD67.

Page 15

CNS. The '937 patent also does not provide any teaching to recombinantly express the lower molecular weight form as distinct from the higher molecular weight form for which it provides the sequence.

For these reasons, it is respectfully submitted that it would not have been obvious to prepare a composition comprising human lower molecular weight GAD of at least 99% purity with a pharmaceutical carrier as claimed.

5. Claims 35 and 54-57 Would Not Have Been Obvious Under 35 USC 103(a) over US 4,086,142 in view of US 4,736,020

The '142 patent is cited as teaching a composition in pharmaceutically acceptable carrier comprising GAD (citing to col. 14, lines 14-16). The Examiner acknowledges that the reference does not each that the composition is at least 99% w/w pure. The '020 patent is cited as teaching purity of a polypeptide to at least 99%. The Examiner takes the view that it would have been obvious to combine the teachings of the references in that purification of polypeptides to the desired purity was well-known in the art, and it would generally be preferable to use more pure reagents.

It is respectfully submitted that neither the feasibility of purifying proteins to 99% nor the general preference for use of pure reagents would have provided sufficient motivation to combine the teachings of the references. The motivation must have sufficient "force" to "impel persons skilled in the art to do what applicant has done." *Ex parte Levengood*, 28 USPQ2d 1300, 1302 (BPAI 1993). An "assertion that one of ordinary skill in the relevant art would have been able to arrive at applicant's invention because he had the necessary skills to carry out the requisite process steps" is an "inappropriate standard for obviousness." *Orthokinetics Inc. vs. Safety Travel Chairs Inc.*, 1 USPQ2d 1081 (Fed. Cir. 1986). Here, the '020 patent purified TNF to at least 99% purity because it was intended for a pharmaceutical use (see col. 2, lines 10-12). The '142 patent does not disclose a pharmaceutical use for GAD, but rather proposes to use GAD as a chemical reagent to remove serum glutamate from serum as part of an in vitro analysis. Whereas it is advantageous for a pharmaceutical agent to be purified to at least 99% purity to avoid possible side effects from contaminating materials, such a level of purity is not necessary in an in vitro reagent whose use involves no possibility of side effects. It is well known that

Page 16

increasing the degree of purity involves tradeoffs in terms of reduction in yield, and time and expense to effect the production. In the circumstances, it is submitted that the skilled artisan would not be impelled to perform additional steps to purify the GAD of the '142 patent to a level suitable for pharmaceutical use when no pharmaceutical use for GAD is disclosed by the '142 patent.

Moreover, the '142 patent does not disclose a composition suitable for parenteral use to a human as claimed. Claim 35 is directed to a composition comprising glutamic acid decarboxylase in a pharmaceutically acceptable carrier for parenteral administration to a human patient. The recitation "for parenteral administration to a human patient" is not merely a statement of intended use but also an implied constraint on the nature of the composition. For example, Remington's Pharmaceutical Sciences (of record and cited at p. 21, line 4 of the specification) in connection with preparation of parenteral compositions states at p. 1546 that:

An inherent requirement for parenteral preparations is they be of the very best quality and provide the maximum safety for the patient....Even the thought of using inferior techniques or ingredients in a manufacturing process must not be countenanced.

Thus, a composition for parenteral administration to a human must be *inter alia* sterile and substantially free of pyrogens and particulate matter (*id* at p. 1567). By contrast, a laboratory preparation of a protein is not typically sterile, and also usually contains impurities that would have been removed by sterilization and manufacture under GMP conditions.

Here, the preparation discussed by the '142 patent is disclosed as being "crude" and dissolved in a buffer of 20 mM acetate and pH 5.5 (col. 14, lines 14-16). This is a laboratory preparation suitable only for analytical use. The '142 patent does not disclose that the preparation was sterilized, free of pyrogens or particulate matter, or otherwise prepared in accordance with good manufacturing practices. In these circumstances, it would have been, at the very least, grossly irresponsible, and probably, illegal to administer parenterally the preparation of the '142 patent to a human patient. Accordingly, the '142 preparation cannot be considered to have been a composition for parenteral administration to a human patient.

Claims 54-57 are distinguished over the combination of cited references on additional grounds. The reference does not disclose lower molecular weight GAD, as recited in

Page 17

claim 54, recombinant GAD, as recited in claim 55, GAD synthesized on a peptide synthesizer as recited in claim 56, or GAD purified from the central nervous system, as recited in claim 57.

VIII. CONCLUSION

For the above reasons, appellants respectfully request that all rejections be reversed, and remanded for allowance of claims 54 and 59, and declaration of an interference between the present application and University of Florida, US 6,001,360 and US 5,762,937 for the remaining claims.

Respectfully submitted,

Thehes due to

Joe Liebeschuetz

Reg. No. 37,505

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, Eighth Floor San Francisco, California 94111-3834 (415) 576-0200 Fax (415) 576-0300 JOL/sjj 60839436 v1

Page 18

IX. CLAIM APPENDIX

Claim 31 A method for inhibiting the development of insulin dependent diabetes mellitus, said method comprising administering to a patient a therapeutically effective dosage of glutamic acid decarboxylase (GAD).

Claim 35 A composition comprising glutamic acid decarboxylase, which is at least 99% w/w/ pure, in a pharmaceutically acceptable carrier for parenteral administration to a human patient.

Claim 50 The method of claim 31, wherein the GAD is recombinant GAD.

Claim 51 The method of claim 31, wherein the GAD is synthesized on a peptide synthesizer.

Claim 52 The method of claim 31, wherein the GAD is purified from the central nervous system tissue.

Claim 53 The method of claim 31, wherein the patient is a prediabetic patient having autoantibodies to GAD.

Claim 54 The composition of claim 35, wherein the GAD is lower molecular weight (GAD65).

Claim 55 The composition of claim 35, wherein the GAD is recombinant GAD.

Claim 56 The composition of claim 35, wherein the GAD is synthesized on a peptide synthesizer.

Claim 57 The composition of claim 35, wherein the GAD is purified from the central nervous system tissue.

Page 19

Claim 59 The composition of claim 54, wherein the GAD65 is human GAD65.

Claim 62 A method of preventing or inhibiting the development of insulin dependent diabetes, wherein said method comprises administering to a patient at least 99% w/w pure GAD protein or a fragment thereof, which, when administered to the patient, prevents or inhibits the development of insulin dependent diabetes.

Claim 63 The method of claim 62, wherein the GAD protein or fragment thereof is a recombinant protein.

Claim 64 The method of claim 31, wherein the GAD is administered intravenously.

Claim 65 The method of claim 62, wherein the GAD or fragment is administered intravenously.

Claim 66 The method of claim 31, wherein the GAD is administered subcutaneously.

Claim 67 The method of claim 62, wherein the GAD is administered subcutaneously.

Page 20

X. EVIDENCE APPENDIX

Baekkeskov declaration filed May 20, 2003, and resubmitted July 22, 2003, entered by office action of July 29, 2003.

Tisch et al., Nature 366, 71-75 (1993), cited in Information Disclosure Statement submitted August 5, 1997, entered by office action of April 28, 1998.

Kaufman, *Nature* 366, 69-71 (1993), cited in Information Disclosure Statement submitted August 5, 1997, entered by office action of April 28, 1998.

Tian et al., Nature Medicine 12, 1348 (1996), cited in appellants' communications of October 28, and October 30, 1998, entered by office action of January 22, 1999.

Peterson et al., Diabetes 44, 1478 (1994), cited in appellants' communications of October 28 and October 30, 1998, entered by office action of January 22, 1999.

Harrison, *Molecular Medicine* 1, 722-727 (1994), cited and entered by office action of April 28, 1998.

(Benjamini & Leskowitz, *Immunology: A Short Course* (Liss, 1988) at p. 256), cited in communication submitted October 28, 1998, entered by office action of January 22, 1999. Press Release attached to response of January 5, 2001, entered by office action of April 24, 2001. Press Release filed July 22, 2003, resubmitted December 8, 2004, entered by advisory action of April 21, 2004.

Page 21

XI. RELATED PROCEEDINGS APPENDIX

An interference is expected to be declared between USSN 08/452,053, the parent of the present US 5,645,998. However, the interference has not yet been declared and no Decision of the Board or a court exists.