1 Zusammenfasung Chemie - Allgemeines, Gase und elektronische Strukturen

1.1 Allgemeines

	Perioden – horizontale Reihen							Gruppen – senkrechte Spalte enthalten Elemente mit ähnlichen Eigenschaften										
1	1A 1 1 H	2A		aufstei				Stufena	Me	talle vo	n	•	3A	4A	5A	6A	7A	8A 18 2 He
2	3 Li	2 4 Be		Ordnun	ngszahl					hmetal	le		13 5 B	14 6 C	15 7 N	16 8 O	17 9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 C l	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 R f	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114	115	116	117	118
	Metalle			57	58	59	60	61	62	63	61	65	66	67	68	69	70	
Halbmetalle			La	Ce	Pr	60 Nd	61 Pm	Sm	Eu	64 Gd	Tb	66 Dy	Ho	Er	Tm	Yb		
■ Nichtmetalle			89 Ac	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Wichtige Begriffe

Besteht aus einem Kern, welcher von Elektronen umkreist wird. Dieser Kern besteht wiederum aus Protonen und Neutronen.					
\rightarrow Atome sind die Bausteine eines <i>Elements</i> .					
\rightarrow Atome sind die Dausteine eines Elements.					
Anzahl Protonen (bzw. Elektronen).					
Anzahl Protonen und Neutronen aufsummiert.					
Die Anzahl an Neutronen varriiert bei den meisten Elementen.					
Isotope sind Atome mit gleicher Anzahl Protonen, jedoch einer					
unterschiedlichen Anzahl an Neutronen.					
unterschiedlichen Anzani an Neutronen.					
$^{12}_{6}\mathrm{C} \rightarrow 6$ Protonen, 6 Elektronen, 6 Neutronen, OZ: 6, MZ: 12					
Gewicht einer chemischen Formel - Einheit $[g mol^{-1}]/[amu]$					
Fin Moligt gloigh dor Anghal an C Atoma in ganay 12 g igotopon					
Ein Mol ist gleich der Anzhal an C Atome in genau 12 g isotopen-					
reinem ¹² C Kohlenstoff - auch gennant Avogadroszahl N_A ([mol ⁻¹])					

Bemerkungen:

- Atommasse im PSE - durchschnittliche Atommasse aller natürlich vorkommenden Isotopen eines Elements.

- Elemente einer Gruppe weisen ein ähnliches chemisches Reaktionsverhalten auf.
- Wichtige Hauptgruppen:
 - i. Gruppe 1A: Alkalimetalle (ohne Wasserstoff)
 - ii. Gruppe 2A: Erdalkalimetalle
 - iii. Gruppe 6A: Chalcogene
 - iv. Gruppe 7A: Halogene
 - v. Gruppe 8A: Edelgase

1.2 Darstellung chemischer Verbindungen

Folgende Darstellungen werden häufig verwendet:

Bezeichnung	Darstellung - Methanol					
Molekülformel	hoCH ₄					
Strukturformel	H — C — H 					
Keil-Strich Formel	gestrichelte Keil Bindung hinter der Papierebene I H H H H H Keil Bindung vor der Papierebene					

1.3 Chemische Reaktionen

Moleküle entstehen durch Reaktionen zwischen Atomen, dabei bleibt die Anzahl an Protonen und Neutronen der einzelnen Kernen unverändert. Lediglich die Konfiguration der Elektronen auf den äusseren Schalen der Atome wird verändert.

Grund:

Atome möchten die *Edelgaskonfiguration*¹ erreichen - die äusserste Elektronenschale sollte gar nicht, bzw. voll besetzt sein. Dies wird erreicht, indem Elektronen während einer chemischen Reaktion aufgenommen bzw. abgegeben werden.

Bsp.:

a. Kation: Na \longrightarrow Na⁺ + 1e⁻

b. Anion: $Cl + 1e^{-} \longrightarrow Cl^{-}$

Terminologie:

$$\nu_{A}A + \nu_{B}B + \dots \longrightarrow \nu_{C}C + \nu_{D}D + \dots$$
Edukte Produkte

wobei:

 ν_i : stöchiometrische Koeffizienten

A, B...: Elemente oder Moleküle

Arten chemischer Reaktionen:

1. Verbrennungsreaktion:

Eine Kohlenwasserstoffverbindung wird zu Sauerstoff und Wasser oxidiert (verbrannt). $(2 C_3 H_6 + 9 O_2 \longrightarrow 6 CO_2 + 6 H_2 O)$

2. Kombinationsreaktion:

Mindestens zwei Arten von Atomen werden zu einer Art Molekül kombiniert.

$$(A + B \longrightarrow C)$$

3. Zersetzungsreaktion:

Ein Molekül wird in mindestens zwei Spezies zersetzt. (A \longrightarrow B + C)

Ausgleichen chemischer Reaktionen - Betrachten der Stöchiometrie:

Kurz gesagt, auf beiden Seiten der Reaktionsgleichung muss die gleiche Anzhal an Atomen auftauchen, da bei einer chemischen Reaktion keine Atome zerstört bzw. erschaffen werden können.

Wichtig: Beim Ausgleichen werden keine Indizes verändert!

 $^{^{1}}$ Edelgase sind besonders reaktionsträge \rightarrow die Elektronenkonfiguration eines Edelgases ist besonders stabil.

1.4 Gase

Ideales Gas - Folgende Annahmen wurden getroffen:

- 1. Die Moleküle in einem idealen Gas wechselwirken nicht.
- 2. Das gesamte Volumen von Molekülen in einem Gas ist deutlich kleiner, als das von dem Gas eingenommene Volumen. (Das Gas hat also quasi kein Volumen.)

Boyle'sches Gesetz:
$$V \propto \frac{1}{P}$$
 (n, T konstant)

Charles'sches Gesetz: $V \propto T$ (n, P konstant)

Satz von Avogadro: $V \propto n$ (P, T konstant)

 $V \propto \frac{nT}{P}$
 $V = R \frac{nT}{P}$ \Rightarrow $PV = nRT$
 $V = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1} = 8.31 \text{ kg m}^2 \text{ s}^{-2} \text{ mol}^{-1} \text{ K}^{-1}$

(Gase) (Thermodynamik)

Reales Gas - Die intermolekularen Wechselwirkungen dürfen nicht mehr vernachlässigt werden. \Rightarrow Verwendung der Van-der-Waals Gleichung.

1.5 Formeln - Übung 1

Berechnung	Gleichung	Einheit
Molekulargewicht (MW)	$MW = \frac{m}{n}$	$[\mathrm{g}\mathrm{mol}^{-1}]$
Ideales Gas	pV = nRT	
Van-der-Waals-Gleichung	$\left(P + \frac{n^2 a}{V^2}\right)\left(V - nb\right) = nRT$	
Molenbruch	$x_i = \frac{n_i}{n_{tot}}$	[-]
Partialdruck einer Spezies i	$x_i = \frac{n_i}{n_{\text{tot}}}$ $P_i = n_i \frac{RT}{V} = x_i P_{\text{tot}}$	[Pa]