Lycée Thiers

Mini-Cours MPSI-MPII

QUELQUES CONNAISSANCES SUR LES SUITES

Le logo 🎄 apparaîtra de temps en temps : il vous invite à pousser un peu plus loin votre réflexion, à échaffauder une démonstration, à détailler un calcul...

Ce document est une introduction à l'étude des suites réelles : il permet un premier contact avec ces objets centraux dans notre pratique du programme de MPSI. Certains aspects fondamentaux, comme la convergence, ne sont pas abordés ici (ou à peine effleurés) mais le seront bien sûr pendant l'année!

- Présentation rapide -

Une suite de nombres réels est, pour le dire vite, une liste infinie de nombres réels numérotés généralement à partir du numéro 0.

Si la suite est nommée u, son terme numéro n est noté u_n .

Quelques exemples pour illustrer le propos :

Exemple 1. La suite v définie par $v_n = \sqrt{n^2 + 1}$ pour tout $n \in \mathbb{N}$.

Exemple 2. Je place une somme a qui me rapporte dix pour cent par an. Je note S_n la somme dont je dispose au bout de n années. La suite S ainsi définie vérifie $S_{n+1}=1, 1\times S_n$ pour tout $n\in\mathbb{N}$. On a alors (suite géométrique...) $S_n = (1, 1)^n \times a$ pour tout $n \in \mathbb{N}$.

Exemple 3. La suite $(F_n)_{n\in\mathbb{N}}$ (suite de Fibonacci) définie par : $F_0=0$, $F_1=1$ et pour tout $n\in\mathbb{N}$,

 $F_{n+2} = F_{n+1} + F_n$.

On sait montrer que $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$ pour tout $n \in \mathbb{N}$. On peut au passage en déduire que pour tout $n \in \mathbb{N}$, $\frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$ est un entier naturel (ce qui n'est pas évident au premier abord).

Exemple 4. La suite $(p_n)_{n\geqslant 1}$ où p_n désigne le n-ème nombre premier. On a : $p_1=2$, , $p_2=3$, , $p_3=5$,...

Que vaut p_{12} ? Le nombre (de Mersenne) $M_7 = 2^7 - 1$ est-il un terme de la suite? Si oui quel est son rang? Mêmes questions pour $M_{11} = 2^{11} - 1$.

Exemple 5. Si je pars de $v_0 = 2$ et que je construis une liste de nombres en élevant à chaque fois le dernier résultat au carré, j'obtiens une suite de nombres définie par $v_0=2, \forall n\in\mathbb{N}: v_{n+1}=v_n^2$ dont on peut montrer que $\forall n \in \mathbb{N} : v_n = 2^{(2^n)}$.

Exemple 6. Si je modifie un peu l'exemple précédent en prenant $v_0 = 2$ et $\forall n \in \mathbb{N} : v_{n+1} = v_n^2 + 1$, je crains de ne pas pouvoir trouver une expression explicite du terme général.

- Quelques définitions -

Définition 1. Une suite réelle u est une fonction de \mathbb{N} dans \mathbb{R} .

L'image de $n \in \mathbb{N}$ est notée u_n .

On distinguera soigneusement:

- *u* qui est une suite,
- u_n qui, pour chaque $n \in \mathbb{N}$, est un réel,
- $\{u_n; n \in \mathbb{N}\}$ qui est une partie de \mathbb{R} .

La suite u peut être notée $(u_n)_{n\in\mathbb{N}}$, ou encore $(u_n)_{n\geqslant 0}$. Le réel u_n est appelé « terme d'indice n » de la suite. $\{u_n; n\in\mathbb{N}\}$ est ainsi l'ensemble des termes de la suite (c'est-à-dire l'ensemble des valeurs u_n , lorsque n parcourt \mathbb{N}).

Notons que deux suites u et v sont égales lorsque pour tout $n \in \mathbb{N}$ on a $u_n = v_n$.

Exemple 7. Posons, pour tout $n \in \mathbb{N}$:

$$u_n = (-1)^n$$

La suite *u* est ici la fonction :

$$\mathbb{N} \to \mathbb{R}, n \mapsto (-1)^n$$

c'est-à-dire la fonction qui, à chaque n ∈ \mathbb{N} associe 1 si n est pair et −1 sinon.

Quant à l'ensemble $\{u_n; n \in \mathbb{N}\}$ il se réduit ici à $\{-1, 1\}$.

Exercice 1. Soient u et v les suites respectivement définies par :

- $u_0 = 4$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n 5$
- $v_n = 5 2^n$ pour tout $n \in \mathbb{N}$

Montrer que u = v.

Exercice 2. Pour n entier naturel non nul, d_n désigne le nombre de nombres entiers naturels possédant exactement n chiffres dans leur écriture décimale. Calculer d_n .

Exercice 3. Pour n entier naturel, D_n désigne le nombre de façons de ranger n personnes l'une derrière l'autre. Donner pour tout n une expression de D_n .

Exercice 4. Peut-on définir une suite par $u_0 = 10$ et $\forall n \in \mathbb{N} : u_{n+1} = \ln(u_n)$?

Exercice 5. $p = (p_n)_{n \ge 1}$ désigne la suite des nombres premiers rangés dans l'ordre croissant. Prouver que, pour tout $n \ge 1$:

$$p_{n+1} \leq 1 + p_1 \times \ldots \times p_n$$

- Visualisation des termes d'une suite -

On peut représenter graphiquement une suite réelle u en plaçant dans le plan, muni d'un repère orthonormal, les points de coordonnées (n, u_n) .

Le graphe de la suite u est composé de points isolés : les segments qui apparaissent ci-dessous n'en font pas partie et ne sont là que pour aider à la visualisation.

Un tel graphe pourra permettre une meilleure compréhension du comportement de la suite.

Attention toutefois:

- Seuls quelques points apparaissent, alors que le gaphe en comporte une infinité,
- Les informations que l'on pourra tirer de la lecture de ce graphique n'ont pas valeur de preuve.

- Quelques notions incontournables: monotonie et majoration -

Etant donnée une suite réelle *u* :

- u est **constante** lorsqu'il existe $a \in \mathbb{R}$ tel que $\forall n \in \mathbb{N} : u_n = a$
- u est **stationnaire** lorsqu'il existe $N \in \mathbb{N}$ et $a \in \mathbb{R}$ tels que $\forall n \ge N : u_n = a$
- u est **périodique** lorsqu'il existe $N \in \mathbb{N}^*$ tel que $\forall n \in \mathbb{N} : u_{n+N} = u_n$
- u est **croissante** lorsque $\forall n \in \mathbb{N} : u_{n+1} \ge u_n$
- u est **décroissante** lorsque $\forall n \in \mathbb{N} : u_{n+1} \leq u_n$
- *u* est **monotone** lorsque *u* est croissante ou décroissante
- u est **strictement croissante** lorsque $\forall n \in \mathbb{N} : u_{n+1} > u_n$
- u est strictement décroissante lorsque $\forall n \in \mathbb{N} : u_{n+1} < u_n$
- *u* est **strictement monotone** lorsque *u* est strictement croissante ou strictement décroissante
- u est **majorée** lorsqu'il existe $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N} : u_n \leq M$
- u est **minorée** lorsqu'il existe $m \in \mathbb{R}$ tel que $\forall n \in \mathbb{N} : u_n \ge m$
- *u* est **bornée** lorsque *u* est à la fois majorée et minorée

Exercice 6. Prouver que la suite u définie par $u_n = (-1)^n$ est bornée.

Exercice 7. Prouver qu'une suite majorée à termes dans $\mathbb N$ n'est pas strictement croissante.

Exercice 8. Prouver que la suite $u = \left(\frac{n}{2} + (-1)^n\right)_{n \in \mathbb{N}}$:

- (1) n'est pas croissante,
- (2) n'est pas décroissante,
- (3) n'est pas monotone à partir du rang 1201,
- (4) n'est monotone à partir d'aucun rang.

Exercice 9. Prouver que la suite v définie par $\forall n \in \mathbb{N} : v_n = \int_0^1 \frac{t^n}{1+t^2} dt$ converge vers 0.

Exercice 10. Soit u une suite réelle. On note |u| la suite de terme général $|u_n|$. Montrer que :

 $(u \text{ est born\'ee}) \Leftrightarrow (|u| \text{ est major\'ee})$

- Correction des exercices -

Exercice 1. Soient u et v les suites respectivement définies par :

- $u_0 = 4$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n 5$
- $v_n = 5 2^n$ pour tout $n \in \mathbb{N}$

Montrer que u = v.

On montre par récurrence que pour tout $n \in \mathbb{N}$: $u_n = v_n$.

On constate que $u_0=4=5-2^0=v_0$, ce qui initialise la récurrence. Passons à la preuve de l'hérédité.

Si $u_n = v_n$ pour un certain $n \in \mathbb{N}$, alors :

$$u_{n+1} = 2u_n - 5 = 2(5 - 2^n) - 5 = 5 - 2^{n+1} = v_{n+1}$$

Exercice 2. Pour n entier naturel non nul, d_n désigne le nombre de nombres entiers naturels possédant exactement n chiffres dans leur écriture décimale. Calculer d_n .

D'abord $d_1 = 10$ de façon évidente. Rappelons ensuite que pour tout nombre entier $N \ge 2$, existent un entier p et des chiffres a_0, \ldots, a_p éléments de $\{0, \ldots, 9\}$ tels que $a_p \ne 0$ et $N = a_p \times 10^p + \ldots + a_0 \times 10^0$. C'est ce qu'on appelle *l'écriture décimale* de $N: a_0$ est le chiffre des unités, a_1 celui des dizaines etc ... La condition pour que N possède exactement n chiffres dans son écriture décimale est donc que p soit égal à n-1, ce qui laisse p choix pour p et dix choix pour chacun des autres p (il y en a p 1). Pour p 2, il y a donc p 1 nombres possèdant une écriture décimale à p chiffres.

Exercice 3. Pour n entier naturel, D_n désigne le nombre de façons de ranger n personnes l'une derrière l'autre. Donner pour tout n une expression de D_n .

On commence par choisir celui qu'on mettra devant puis il reste n-1 choix pour celui qui prendra la seconde place et ainsi de suite. Le nombre de configurations différentes ainsi trouvées est donc :

$$D_n = n \times \ldots \times 1 = n!$$

Exercice 4. Peut-on définir une suite par $u_0 = 10$ et $\forall n \in \mathbb{N} : u_{n+1} = \ln(u_n)$?

Non, cette relation ne définit pas une suite. En effet, on peut calculer successivement :

$$u_1 = \ln{(10)} \simeq 2,30$$

$$u_2 = \ln(u_1) \simeq 0.83$$

$$u_3 = \ln(u_2) \simeq -0.18$$

mais, vu que $u_3 < 0$, on constate que u_4 n'est pas défini et l'histoire s'arrête donc là!

Exercice 5. $p = (p_n)_{n \ge 1}$ désigne la suite des nombres premiers rangés dans l'ordre croissant. Prouver que, pour tout $n \ge 1$:

$$p_{n+1} \leq 1 + p_1 \times \ldots \times p_n$$

Considérons le nombre entier naturel supérieur à $2: N = 1 + p_1 \times ... \times p_n$. Comme tout nombre entier plus grand que 2, il possède un diviseur premier p. Ce dernier ne peut pas faire partie de la liste $p_1, ..., p_n$ sans quoi il diviserait $1 = N - p_1 \times ... \times p_n$ ce qui est impossible. On a donc à la fois $p \le N$ et $p \ge p_{n+1}$, d'où l'inégalité :

$$p_{n+1} \leq 1 + p_1 \times \ldots \times p_n$$

Exercice 6. Prouver que la suite u définie par $u_n = (-1)^n$ est bornée .

On a pour tout $n \in \mathbb{N}$: $-1 \le (-1)^n \le 1$. La suite u est donc bornée.

Exercice 7. Prouver qu'une suite majorée à termes dans $\mathbb N$ n'est pas strictement croissante.

Version 1 : Soit u une suite d'entiers naturels majorée et $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N} : u_n \leq M$. Supposons u strictement croissante. On a $u_0 \geq 0$ et si pour $n \in \mathbb{N}$, on a $u_n \geq n$ alors par hypothèse $u_{n+1} > u_n$ c'est-à-dire $u_{n+1} \geq u_n + 1$ (car ces deux nombres sont entiers). Ainsi $u_{n+1} \geq n + 1$. Ceci montre, par récurrence, que $\forall n \in \mathbb{N} : u_n \geq n$. En particulier, si N est un entier tel que $N \geq M + 1$ on a $u_N > M$, une contradiction. Ainsi $u \in \mathbb{N}$ une strictement croissante.

Version 2 (qui utilise la convergence): Si notre suite majorée u constituée d'entiers était strictement croissante, elle serait convergente. Notant $l \in \mathbb{R}$ sa limite, on aurait aussi $\lim_{n \to +\infty} u_{n+1} = l$ et donc $\lim_{n \to +\infty} (u_{n+1} - u_n) = 0$. Or, par construction $u_{n+1} - u_n$ est toujours un entier naturel non nul donc $\forall n \in \mathbb{N} : u_{n+1} - u_n \geqslant 1$. Une contradiction. Ainsi u n'est pas strictement croissante.

Exercice 8. Prouver que la suite $u = \left(\frac{n}{2} + (-1)^n\right)_{n \in \mathbb{N}}$:

- (1) n'est pas croissante,
- (2) n'est pas décroissante,
- (3) n'est pas monotone à partir du rang 1201,
- (4) n'est monotone à partir d'aucun rang.
- (1) On a $u_1 = -\frac{1}{2} < u_0 = 1$ donc u n'est pas croissante.
- (2) On a $u_2 = 3 > u_1 = -\frac{1}{2}$ donc u n'est pas décroissante
- (3) On a $u_{1202} = \frac{1204}{2} > u_{1201} = \frac{\overline{1199}}{2}$ donc u n'est pas décroissante à partir du rang 1201 et $u_{1203} = \frac{1201}{2} < u_{1202} = \frac{1204}{2}$ donc u n'est pas croissante à partir du rang 1201.

(4) Soit N un entier et $m \ge N$ un entier impair.

On a
$$u_{m+1} = \frac{m+3}{2} > u_m = \frac{m-2}{2}$$
 donc u n'est pas décroissante à partir du rang N et $u_{m+2} = \frac{m}{2} < u_{m+1} = \frac{m+3}{2}$ donc u n'est pas croissante à partir du rang N .

Exercice 9. Prouver que la suite v définie par $\forall n \in \mathbb{N} : v_n = \int_0^1 \frac{t^n}{1+t^2} dt$ converge vers 0.

On commence par rappeler la propriété vue en terminale (portant le nom de "propriété de croissance de l'intégrale"). Si f et g sont des fonctions continues sur un segment [a,b] et si $\forall t \in [a,b]: f(t) \leq g(t)$ alors

$$\int_{a}^{b} f(t) dt \le \int_{a}^{b} g(t) dt$$

Pour tout entier naturel n, la fonction $t \mapsto \frac{t^n}{1+t^2}$ est continue sur [0,1] et on dispose des inégalités

$$\forall t \in [0,1] : 0 \le \frac{t^n}{1+t^2} \le t^n$$

d'où, par croissance de l'intégrale :

$$0 \le v_n \le \int_0^1 t^n dt = \left[\frac{t^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$$

Il en résulte, d'après le théorème d'encadrement que v converge vers v

Exercice 10. Soit u une suite réelle. On note |u| la suite de terme général $|u_n|$. Montrer que :

$$(u \text{ est born\'ee}) \Leftrightarrow (|u| \text{ est major\'ee})$$

Supposons *u* bornée et soient *A*, *B* des réels tels que :

$$\forall n \in \mathbb{N}, A \leq u_n \leq B$$

Notons $M = \max\{|A|, |B|\}$; alors :

$$-A \le |A| \le M$$
 d'où $-M \le A$

et:

$$B \le |B| \le M$$

donc:

$$\forall n \in \mathbb{N}, -M \leq u_n \leq M$$

Autrement dit:

$$\forall n \in \mathbb{N}, |u_n| \leq M$$

Réciproquement, supposons |u| majorée et soit $M \ge 0$ tel que :

$$\forall n \in \mathbb{N}, |u_n| \leq M$$

Alors (cf début du mini-cours valeur absolue) :

$$\forall n \in \mathbb{N}, -M \leq u_n \leq M$$

et donc u est bornée.