Cuadrados mínimos lineales

Presentación TP3

Regresiones lineales

- En el TP2 resolvimos un problema de clasificación
- En el TP3 vamos a resolver un problema de regresión.

Las regresiones nos pueden ayudar en diferentes contextos:

- Sabemos exactamente a qué familia de funciones responden los datos, pero no podemos confiar completamente en los datos.
- No sabemos qué familia de funciones explica la naturaleza de los datos y queremos encontrar la mejor manera de explicarlos con alguna familia en particular.

Regresiones lineales

Un caso donde ya sabemos la familia de funciones:

Órbitas elípticas de los planetas.

Un caso donde no tenemos ni idea la familia:

Predicción de precios inmobiliarios

Objetivo

El objetivo del TP3 será utilizar cuadrados mínimos lineales para generar regresiones que expliquen diversas características (principalmente el precio) en un dataset de avisos inmobiliarios

Dataset

```
In [3]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 240000 entries, 0 to 239999
Data columns (total 23 columns):
     Column
                                  Non-Null Count
                                                   Dtype
     id
                                  240000 non-null
                                                   int64
     titulo
                                                   object
                                  234613 non-null
     descripcion
                                  238381 non-null
                                                   object
     tipodepropiedad
                                  239954 non-null
                                                   object
     direccion
                                  186928 non-null
                                                   object
     ciudad
                                  239628 non-null
                                                   object
     provincia
                                  239845 non-null
                                                   object
     antiquedad
                                  196445 non-null
                                                   float64
     habitaciones
                                  217529 non-null
                                                   float64
                                  202235 non-null
                                                   float64
     garages
 10
     banos
                                  213779 non-null
                                                   float64
     metroscubiertos
                                  222600 non-null
                                                   float64
     metrostotales
                                  188533 non-null
                                                   float64
 13
     idzona
                                  211379 non-null float64
 14
     lat
                                  116512 non-null float64
 15
     lna
                                  116512 non-null float64
 16
     fecha
                                  240000 non-null
                                                   object
 17
     gimnasio
                                  240000 non-null float64
     usosmultiples
                                  240000 non-null float64
     piscina
                                  240000 non-null float64
 19
     escuelascercanas
                                  240000 non-null
                                                   float64
     centroscomercialescercanos
                                  240000 non-null
                                                   float64
     precio
                                  240000 non-null float64
dtypes: float64(15), int64(1), object(7)
memory usage: 42.1+ MB
```

Preguntas a responder

Si bien queremos explicar el precio como objetivo principal, hay muchas otras relaciones entre variables que podríamos analizar.

• ¿Podemos aproximar la cantidad de baños según la antigüedad y el tamaño en metros cuadrados del inmueble?

• ¿Podemos explicar la cantidad de piscinas según la latitud del inmueble?

 ¿Podemos aproximar la antigüedad de un inmueble según su ciudad y zona?

Variables categóricas

- Solo toman ciertos valores predeterminados.
- No tienen una noción de distancia entre valores.
- No las usamos en cuadrados mínimos, pero sí en el algoritmo.

df['tipodepropiedad'].value_counts()

df['metroscubiertos'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f27f2192e80>

df['banos'].value_counts()

2.0 87683 1.0 58173 3.0 49365 4.0 18558

Name: banos, dtype: int64

RMSE vs RMSLE

Una vez hecha la regresión, necesitamos poder medir la calidad del algoritmo.

$$RMSE(\hat{f}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} e_{(i)}^2}$$

Para el precio utilizaremos RMSE y RMSLE.

Diferencias:

- Ponderación de muestras (proporcionalidad).
- Ponderación de aproximación.

$$RMSLE(\hat{f}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_{(i)} + 1) - \log(\hat{y}_{(i)} + 1))^2}$$

Segmentación del dataset

Es muy complejo intentar explicar todo el dataset con una única función.

Podemos segmentar el dataset para aplicar CML.

Algunas segmentaciones posibles:

- Por variables categóricas.
- Por variables numéricas cuantizadas.
- Incluso por la variable que se quiere predecir aunque no la sepamos.

Feature Engineering

Feature engineering se le llama a producir nuevas características para utilizar en las regresiones lineales.

Posibles formas hacer feature engineering:

- Combinación de características: copado para el verano sí y solo sí el inmueble tiene pileta o se encuentra al norte del paralelo 26.
- Extracción de información de los campos de texto: Tomar la descripción del aviso y ver qué palabras aparecen.
- Características de fuentes externas: Utilizar fuentes externas como indicadores socioeconómicos.

Enunciado

Vamos al enunciado!