Consequently we have the following commutative diagrams:

However, $\mathrm{id}_{\widehat{E}_1}$ and $\mathrm{id}_{\widehat{E}_2}$ are uniformly continuous functions making the following diagrams commute

so by the uniqueness of extensions we must have

$$\widehat{\varphi_1}\circ\widehat{\varphi_2}=\mathrm{id}_{\widehat{E}_1}\quad\text{and}\quad \widehat{\varphi_2}\circ\widehat{\varphi_1}=\mathrm{id}_{\widehat{E}_2}.$$

This proves that $\widehat{\varphi}_1$ and $\widehat{\varphi}_2$ are mutual inverses. Now, since $\varphi_2 = \widehat{\varphi}_2 \circ \varphi_1$, we have

$$\widehat{\varphi_2}|\varphi_1(E)=\varphi_2\circ\varphi_1^{-1},$$

and since φ_1^{-1} and φ_2 are isometries, so is $\widehat{\varphi_2}|\varphi_1(E)$. But we saw earlier that $\widehat{\varphi_2}$ is the uniform continuous extension of $\widehat{\varphi_2}|\varphi_1(E)$ and $\varphi_1(E)$ is dense in \widehat{E}_1 , so for any two elements $\alpha, \beta \in \widehat{E}_1$, if (a_n) and (b_n) are sequences in $\varphi_1(E)$ converging to α and β , we have

$$\widehat{d}_2((\widehat{\varphi}_2|\varphi_1(E))(a_n),((\widehat{\varphi}_2|\varphi_1(E))(b_n)) = \widehat{d}_1(a_n,b_n),$$

and by passing to the limit we get

$$\widehat{d}_2(\widehat{\varphi_2}(\alpha), \widehat{\varphi_2}(\beta)) = \widehat{d}_1(\alpha, \beta),$$

which shows that $\widehat{\varphi_2}$ is an isometry (similarly, $\widehat{\varphi_1}$ is an isometry).

Remarks:

- 1. Except for Step 8 and Step 9, the proof of Theorem 37.53 is the proof given in Schwartz [149] (Chapter XI, Section 4, Theorem 1), and Kormogorov and Fomin [105] (Chapter 2, Section 7, Theorem 4).
- 2. The construction of \widehat{E} relies on the completeness of \mathbb{R} , and so it cannot be used to construct \mathbb{R} from \mathbb{Q} . However, this construction can be modified to yield a construction of \mathbb{R} from \mathbb{Q} .

We show in Section 37.12 that Theorem 37.53 yields a construction of the completion of a normed vector space.