

DATA DICTIONARY

Level of information : Layer and attribute table

A.Dourdain (UMR EcoFoG - CIRAD) Septembre-2017

Title: Geographic platform of Paracou

Summary:

Paracou research station is a large scale forest disturbance experiment set up by Cirad in 1982 that has become over time a unique research site for the international scientific community in tropical forest ecology. This geographical online portal provides access to a broad collection of environmental and biodiversity datasets on Paracou. This data dictionary covers all information. Here you will find an overview of metadata on spatial data relating to:

- data source and contact (see Annex 5);
- access rights;
- data description;
- geometric accuracy;

Some spatial layers are downloadable online (Geojson format) and can be used with QuantumGIS.;

Scientific coordinator : Dr Géraldine Derroire

Cirad – Unité Mixte de Recherche Ecologie des forêts de Guyane

Geraldine.Derroire@cirad.fr

Technical coordinator and GIS specialist: Aurélie Dourdain Cirad – Unité Mixte de Recherche Ecologie des forêts de Guyane <u>Aurelie.Dourdain@ecofog.gf</u>

Research engineer / data manager: Gaëlle Jaouen

AgroParisTech - Unité Mixte de Recherche Ecologie des forêts de Guyane

Gaelle.Jaouen@ecofog.gf

Web developer: Elie guedi

Cirad – Unité Mixte de Recherche Ecologie des forêts de Guyane

Elie.Guedj@ecofog.gf

Paracou research station: https://paracou.cirad.fr/

Unité Mixte de Recherche Ecologie des Forêts de Guyane : http://www.ecofog.gf/

Cirad: http://www.cirad.fr **Projection:** EPSG:3857

Emprise: -5900718.8495098, 584319.5880102, -5883349.0348307, 593614.25165248

TOPIC: GEO units

Source: Forest CIRAD team - Dourdain, A., 2017

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Dourdain, A. – CIRAD, UMR EcoFoG

		Ent	ity	
Name	Resume	Spatial format	Number	Description
taCIRADConcession.shp	This spatial layer shows the boundaries of the CIRAD concession on Guyanese Space Center land in Sinnamary village. The station is located in the coastal part of French Guiana approximately 50 km NW of the European Space Center at Kourou. The site is part of a private domain of about 40,000ha, owned by the Centre National d'Etudes Spatiales, granted to Cirad		1	

Name variable	Туре	Description	Attributes of the variable
idConc	Integer	A unique identifier object	1
NameConc	Varchar	Name object	CIRADConcession
Geom	Geometry	Geometry object	POLYGON

Source: INRA Monpied, P., 1992- Jounieaux, M., 2016 Right to use: Conditions

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Traissac, S. – AgroParisTech, UMR EcoFoG

		Ent	ity		
Name	Resume	Spatial format	Number	D	Description
taRegenerationPlots.shp	This spatial layer shows the natural regeneration plots for trees ≥10cm DBH at Paracou experimental station. Inside each of the 12 plots of 6.25ha, 64 circular plots of 4m radius were delineated. Distance between circular plots is 20 m, and there is a distance of 55m between outer circular plots and the edges of the 6.25ha. Eight inventories of 25 tree species have been carried out in these circular plots since 1992: in 1992, 1993, 1995, 2002, 2005, 2008, 2013 and 2016. The 25 selected species correspond to a set of tropical tree species of interest for both potential exploitation and for impact on overall ecosystem dynamics: Dicorynia guianensis (Fabaceae), Bocoa prouacensis (Fabaceae), Carapa surinamensis (Meliaceae), Tachigali melinonii (Fabaceae), Eperua falcata (Fabaceae), Eperua grandiflora (Fabaceae), Goupia glabra (Goupiaceae), Qualea rosea (Vochysiaceae), Sextonia rubra (Lauraceae), Jacaranda copaia (Bignoniaceae), Pradosia cochlearia (Sapotaceae), Sterculia pruriens (Malvaceae), Sterculia multiovula (Malvaceae), Moronobea coccinea (Clusiaceae), Platonia insignis (Clusiaceae), Schefflera decaphylla (Araliaceae), Symphonia globulifera (Clusiaceae), Andira coriacea (Fabaceae), Symphonia sp. 1 (Clusiaceae), Iryanthera hostmannii (Myristicaceae), Iryanthera	POINT	1535		

Name variable	Туре	Description	Attributes of the variable
idReg	Integer	Unique identifier object	1-1535
TypeReg	Varchar	Type of visualization (2 attributes)	absolute coordinates and relative coordinates
Plot	Integer	Number or name of plot	See Annex 2
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Column	Integer	Plot column number (9 attributes)	0, 3, 4, 5, 6, 7, 8, 9, 10
Line	Integer	Plot line number (9 attributes)	0 3 , 4, 5, 6, 7, 8, 9, 10
Geom	Geometry	Geometry object	POINT

Source: Equipe CIRAD foret - Petronelli, P., Laroussinie O., Bergonzini, J.C., Schmitt, L., 1985
Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

> Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

		Ent	tity	
Name	Resume	Spatial format	Number	Description
taOverallPlots.shp	This spatial layer shows the boundaries of the plots, subplots and buffer zones (25m) at Paracou research station. The boundaries of plots have been positioned with topographical survey instruments (compass, clinometer, measuring tape). There are differents experiments/plots: • Disturbance experiment: In 1984, the Cirad team set up 12 square 9ha plots, among which 9 were subjected to logging induced disturbances in 1986-1988. • Guyaflux plots: Guyaflux tower and plots have been generating data since 2003 to determine the ecosystem CO2 source or sink strengths. The eddy covariance system is used to measure gas fluxes in real time in situ. Continuing monitoring has been carried out since 2003 to analyze the impact of changing climate to ecosystem carbon balance. Guyaflux is managed by INRA. • Biodiversity plots: In 1990-1992, four new plots (3 * 6.25ha + 1 * 25ha) were set up for biodiversity monitoring. No destructive sampling have been authorized at all in these plots. • Fertilization plots: In 2015, 12 new 50*50m plots were set up to test the effect of effects of nutrient enrichment on ecosystem processes.	POLYGON	122	

Name variable	Type	Description	Attributes of the variable
idAllPlot	Integer	A unique identifier object	1-122
Project	varchar	The project name (3 attributes)	ParacouCIRAD, Guyaflux, ImbalanceP
Plot	varchar	Number or name of plot	1 - 16 ImbXX, GfxX
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
TypePlot	varchar	Type of plot (4 attributes)	BiodiversityPlots, DisturbancesPlots, FertilizationPlots, Guyaflux
Treatment	varchar	Silvicultural treatment type applied or type of topography (7 modalities) See Annex 3	Bottom, Slope, Top, T0: control, T1: selective logging, T2: selective logging + Timber Stand Improvement (TSI), T3: selective logging + TSI + fuelwood
Subplot	Integer	Subplot number or name	See Appendix 2
idSubplot	Integer	Unique subplot identifier (Guyafor network)	See Annex 2
TypeSub	varchar	Type of polygon (5 attributes)	SubplotsP16, Subplots, PlotsImbP, PlotsGuyaflux, Buffer25m
Geom	Geometry	Geometry object	POLYGONE

TOPIC: INFRASTRUCTURES

Source: CIRAD forest team - Dourdain, A., 2016

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Dourdain, A. – CIRAD, UMR EcoFoG

Nama	Doguma	Entity	7	Description
Name	Name Resume		Number	Description
taFacilities.shp	This spatial layer shows the points locate the infrastructure (open shelter, Guyaflux tower, weather station) at Paracou.	POINT	3	

Field	Type	Description	Terms
idFacility	Integer	A unique identifier object	3
NameFacility	varchar	Name object (3 attributes)	BaseCamp, GuyafluxTower, Agroclim
Geom	Geometry	Geometry object	POINT

Source: CIRAD forest team - Petronelli, P., Laroussinie

O., Bergonzini, J.C., Schmitt, L., 1985
Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

		Entity	y	
Name	Resume	Spatial format	Number	Description
taRoadPaths.shp	This spatial layer illustrates the main access road to the station, and the tracks around the entire perimeters of the plots. The tracks around plots were positioned with topographical survey instruments (compass, clinometer, measuring tape) in 1996 by a surveyor.	LINESTRING	49	

Field	Туре	Description	Terms
idRoad	Integer	A unique identifier object	49
TypeRoad	varchar	Name object (3 attributes)	Main road, Plot Path, Forest path
Geom	Geometry	Geometry object	LINESTRING

TOPIC: Inventory

Source:: UMR EcoFog, 2017 Right to use: Conditions

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Jaouen, G. – AgroParisTech, UMR EcoFoG

Nama	Name Degume		7	Decoriation
Name	Resume	Spatial format	Number	Description
talastinventory.shp	This spatial layer shows the latest tree circumference inventory conducted at Paracou in 2015. Either relative or absolute coordinates can be selected.		84199	

Name variable	Туре	Description	Attributes of the variable
idMeas	Integer	Unique measurement identifier	84199
Forest	Text	Forest name	Paracou
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name plot	See Annex 2
subplot	Integer	Subplot number or name	See Annex 2
NumTree	Double precision	Tree number in the subplot	-
idTree	Integer	Unique tree identifier	-
Xutm	Double precision	Coordinate X for the tree in UTM 22 N (EPSG: 32 622)	-
Yutm	Double precision	Coordinate Y for the tree in UTM 22 N (EPSG: 32 622)	-
Lat	Doubleprecision	Tree latitude	-
Lon	Double precision	Tree longitude	-
X	Double precision	Euclidean position (X) of the tree in the subplot from Southwest	0 to 250m
Y	Double precision	Euclidean position (Y) of the tree in the subplot from Southwest	0 to 250m

Year	Integer	Inventory year	2014 to 2017
Circ	Double precision	Circumference (cm) of the tree at 1.30m (DBH level) (estimated if CodeMeas = 4-Living)	-
CodeAlive	Inte ger	Vitalityof the tree at moment of inventory	TRUE / FALSE (see Table)
CodeMeas	Integer	Measurement information	0 to 12 (see Table 1)
CircCompl	Double precision	Measured circumference (cm) for living trees, non-circular (CodeMeas 4)	-
CircCorr	Double precision	Corrected circumference (cm)	-
CodeCorr	Text	Correction applied to the circumference	0-6 (see table 2)
Vern	Text	Vernacular name	-
Family	Text	Botanical family	-
Genus	Text	Botanical genus	-
Species	Text	Botanical specie	-
BotaSource	Text	Source for the botanical name	Vern / Bota (see table 3)
InsurIndex	Double precision	Level of certainty about botanic identification	1 to 4 (see table 3)
WoodDensity	Double precision	Wood density for the taxon (g.cm ⁻ 3)	-
Geom	Geometry	Geometic object	POINT

> Inventory - Table 1 - Tree Status

CodeAlive	CodeMeas	Description
TRUE (alive)	0	Circumference (cm) of the tree at 1.30m (DBH level)
TRUE (alive)	1	Measurement greater than 0.5 m
TRUE (alive)	4	Elevated measure of 1 m
TRUE (alive)	5	Elevated measure of 1.5 m
TRUE (alive)	6	Species with irregular trunk
TRUE (alive)	7	Damaged tree (logging)
TRUE (alive)	8	Death following treatment (wood exploitation, breakage, devitalization), but not exploited
		commercially
TRUE (alive)	9	Poisoned tree
FALSE (dead)	0	Natural death : standing
FALSE (dead)	1	death during logging: standing
FALSE (dead)	2	Logged tree

FALSE (dead)	3	destroyed tree (logging)
FALSE (dead)	4	Natural death: fallen (primary windfall)
FALSE (dead)	7	Natural death: fallen (secondary windfall)
FALSE (dead)	9	Death following logging treatment
FALSE (dead)	11	Poisoned tree
FALSE (dead)	12	Natural death : standing

Inventory - Table 2 - Corrected circumferences

CodeCorr	Description
0	No correction
1	Annual growth > 5cm, points realigned by linear regression
2	Growth gap > 5cm, the shortest series is aligned with the longest
3	Annual decrease punctually> 2cm points realigned by line regression.
4	Annual decrease > 2cm, the shortest series is aligned with the longest
5	Correction of Nogueira on Cathedral Wood: circ x 0.53
6	Very large trees and non-compliant, the circumference is replaced by empirical maximum circ.

> Inventory - Table 3 - Botanical determination

Code	Attributes	Description	
BotaSource	Bota	Tee identified by a botanist	
BotaSource	Vern	Botanical name of tree deducted from vernacular name	
InsurIndex	-1	No validation guaranteed	
InsurIndex	0	Indeterminate botanical family	
InsurIndex	1	Indeterminate botanical genus	
InsurIndex	2	Indeterminate botanical species	
InsurIndex	3	Identification not validated	
InsurIndex	4	Validated identification	

TOPIC: LIDAR (Raster)

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Name	Resume	Provider	Date	Right of use	Referent contact	Miscellaneous
DEM2004.tif	DEM, DSM and DCM of Paracou in 2004 The aerial laser scanning (ALS) dataset, acquired on October 2004, covers the experimental station Paracou in French Guiyana. More precisely, the dataset covers all Paracou plots totally except of plot 15 that is only covered partly. The area includes exploited and non-exploited forest and Pinot palm. Ground echoes are available as well as a digital terrain model (DTM), a digital surface model (DSM), and a digital canopy model (DCM) with a 1 meter resolution. These lidar data was acquired as part of the program CAREFOR (ERDF) under the aegis of Daniel Sabatier.	Sabatier, D.	2005	Open data	Vincent, G IRD	Pixel size: 1 -1 m Dimension X: 2339, Y: 2809 Band: 1 Min value: 6.25 Max value: 39.7
DSM2004.tif		Sabatier, D.	2005	Open data	Vincent, G IRD	Pixel size:: 1-1 m Dimension : X: 2339;Y: 2809 Band: 1 Min value : 19.16 Max value : 66.80
DCM2004.tif		Sabatier, D.	2005	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X: 2339;Y: 2809 Band: 1 Min value: 3.45 Max value: 36.4
DEM2009.tif	DEM, DSM and DCM of Paracou in 2009 The aerial laser scanning (ALS) dataset, acquired on 11 September 2009, covers the experimental station Paracou in French Guiana. More precisely, the dataset covers 9 plots totally (Paracou 4, Paracou 5, Paracou 7, Paracou 8, Paracou 9 - Paracou 12, and Paracou 14) and 4 plots partly (Paracou 3, Paracou 6, Paracou 13, and Paracou 15). The area includes logged-over and unlogged forest, various forest heights and Pinot palm swamp forest.	Altoa	2009	Open data	Vincent, G IRD	Pixel size: 5-5 m Dimension: X: 591; Y: 875 Band: 1 Min value: 0 Max value: 36.56
DSM2009.tif		Altoa	2009	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X: 2996; Y:4384 Band: 1 Min value: 0 Max value: 69.06
DCM2009.tif		Altoa	2009	Open data	Vincent, G IRD	Pixel size : 1 -1 m Dimension : X: 2996; Y:4384 Band: 1 Min value : 0.057

						Max value: 40.52
DEM2013.tif	DEM, DSM and DCM of Paracou in 2013 The aerial laser scanning (ALS) dataset acquired on 23 September 2013 covers the experimental station Paracou in French Guiana. The coverage includes all Guyafor and Guyaflux plots completely with logged-over, unlogged and swamp forest	Altoa	2013	Open data	Vincent, G IRD	Pixel size: 1,-1 m Dimension: X: 4313; Y:4577 Band: 1 Valeur min: 2.42 Valeur max: 36.77
DSM2013.tif		Altoa	2013	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X: 4313; Y:4577 Band: 1 Min value: 20.73 Max value: 69.84
DCM2013.tif	("Pinot" or "Açai").	Altoa	2013	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X: 4313; Y:4577 Band: 1 Min value: 3.59 Max value: 40.77
DEM2015.tif	DEM, DSM and DCM of Paracou in 2015 The aerial laser scanning (ALS) dataset acquired on 20 October 2015 covers the experimental station Paracou in French Guiana. The coverage includes all Guyafor and Guyaflux plots completely with logged-over, unlogged and swamp forest ("Pinot" or "Açai").	Altoa	2015	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X:3008; Y:3499 Band: 1 Min value: 2.68 Max value: 37.01
DSM2015.tif		Altoa	2015	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X:3008; Y:3499 Band: 1 Min value: 21.32 Max value: 69.54
DCM2015.tif		Altoa	2015	Open data	Vincent, G IRD	Pixel size: 1-1 m Dimension: X:3008; Y:3499 Band: 1 Min value: 2.93 Max value: 40.37

<u>LIDAR</u>:Remote sensing by laser or LIDAR (light detection and ranging or laser detection and ranging) is a long distance, active remote sensing technique based on the analysis of a coherent laser beam effected back towards its emittor. Lidar has applications in topography (geomorphology, altimetry and

bathymetry) geosciences (seismic risk, meteorology, atmospheric physics) and environmental sciences (atmospheric pollution studies, agronomy and forestry), not to mention in archaeology, meteorology, air traffic control, automatic guidance of terrestrial or aerial vehicles, road safety, or defense.

<u>Digital terrain model (DTM)</u>: A DTM is a 3D representation of the topography of a terrain, not including surface objects such as plants and buildings, created using altitude data. DTMs do not take into account objects on the surface of the terrain, such as plants and buildings.

<u>Uses of DTMs</u>: Topography: DTMs are mainly used to represent the topography of a site. A 3D layout of the ground surface, without construction or vegetation, is a very precise topographic reference tool. **Hydrology**: DTMs are a reliable tool for understanding hydrological forms and movements. They can be used to identify watercourses, wetlands, talwegs, ditches, etc. They can also be used to create Flood Risk Management Plans (FRMP), by identifying watersheds, the direction of water flows, hydraulic modeling, and flood simulations. **Geology**: DTMs can be used to characterize open-pit geological zones such as quarries, mining and gold-bearing areas, etc. Topographic data analysis allows operators to calculate extraction volumes and create development strategies for these areas. **Archeology**: DTMs can highlight microreliefs related to ancient human activities (old roads, walls, remains of buildings ...)

Digital surface model (DSM): A DSM is a 3D representation of a terrain and its supersurface, namely vegetation and buildings.

<u>Uses of DSM</u>: Forest management: DSMs enable precise characterization of the surface of canopies. Using both DTM and DSM a digital canopy model (DCM) can be created (DCM = DSM-DTM). DCMS allow for calculations of forest populations and biomass volumes. These tools are becoming more and more central to the work of environmental and agroforesry professionals. **Urban planning**: DSMs can equally be used to identify anthropogenic features of a landscape. The creation of models of urban landscapes and their surrounding environments can be useful to urban planners for analyzing the existing urban fabric and planning future developments (e.g. road building, town planning). **Telecommunications**: DSMs are used in the management of aerial networks (electric pylons, antennas ...). By identifying physical or aesthetic obstacles, DSMs are a suitable tool in the planning and development of networks.

Formats and resolution: DTMs and DSMs can have many file extensions. Vectorial, e.g. .xyz, .dwg, .dxf, .shp, .las. Or raster, e.g. ASCII Grid, Mapinfo Grid, .tif, .kmz, .png.

TOPIC: Logging

Source: : Forest CIRAD team - Petronelli, P., 1987

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

		Entity	y	
Name	Resume	Spatial format	Number	Description
taDisturbedAreas.shp	This spatial layer shows the 1987 disturbance area at Paracou.	POLYGON	405	14 15 6 8 16

Name variable	Type	Description	Attributes of the variable
idDist	integer	Unique identifier object	1-405
TypeDist	varchar	Type of object	DisturbedAreas
idPlot	integer	Unique plot identifier (Guyafor network)	See Annex 2
plot	Integer	Number or name of plot	See Annex 2
Geom	Geometry	Geometry object	POLYGON

Source: : Forest CIRAD team - Petronelli, P., 1987 Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

		Entity		
Name	Resume	Spatial format	Number	Description
taLoggingDirection.shp	This spatial layer shows the logging direction on plot 9 during the 1987 logging operation at Paracou	LINESTRING	59	9

Name variable	Туре	Description	Attributes of the variable
idDirection	Integer	Unique direction identifier	1 - 59
idTree	Integer	Unique tree identifier	-
Tree	Integer	Number of felled trees (per subplot)	0 - 2004
idPlot	Integer	Unique plot identifier (Guyafor network)	99 (see Appendix 2)
plot	Integer	Number or name of plot	9 (see Appendix 2)
Geom	Geometry	Geometry object	LINESTRING

Source: Forest CIRAD team - Petronelli, P., 1987

Right to use: Open data

Projection: EPSG: 32622 - WGS 1984 UTM 22N
 Referent contact: Petronelli, P. - CIRAD, UMR EcoFoG

Name	Resume	Entity Spatial format	Number	Description
taSkidTrails.shp	This spatial layer shows the skid trails created during the 1987 logging operation at Paracou	POLYGON	42	14 14 15 6 8

Name variable	Type	Description	Attributes of the variable
idSkid	Integer	A unique identifier object	1-42
type	varchar	Type of object	SkidTrails
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name of plot	See Appendix 2
Geom	Geometry	Geometry object	POLYGONE

Source:: CIRAD forest Team - Petronelli, P., 1987 Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

Nama	Dogumo	Entity	7	Description
Name	Name Resume		Number	Description
taGaps.shp	This spatial layer shows the gaps created during the 1987 logging operation at Paracou	POLYGON	412	14 2 3 7 8 10 10

Name variable	Type	Description	Attributes of the variable
idGap	Integer	Unique identifier object	1-42
TypeGap	varchar	Type of object	SkidTrails
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name of plot	See Appendix 2
Geom	Geometry	Geometry object	POLYGON

TOPIC: Pedology

Since the creation of Paracou, ecologists have regularly expressed the need for a soil map of the site. Soils are known to have a role in forest dynamics and / or species distribution (eg Paoli et al., 2006, Baribault et al., 2012). The soil map was begun in 1991 and completed in 2012 (Annex 4). However, to date, no synthesis or reference article has been written on this soil mapping, unlike other tropical forest systems (e.g. the Piste de St Elie (Sabatier et al., 1997)).

There were several stages in the creation of the Paracou soil map: (i) soil mapping in the field to delineate soil units according to the type of drainage; (ii) soil sampling for physio-chemical analysis; (iii) digitization of this soil mapping within the Paracou Geographic Information System (GIS).

Source: Soucemarianadin, L., 2004, Weigel, J., 2006,

2009, Roelens, J.B., 2007

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Freycon, V. - CIRAD

		Enti	ty	
Name	Resume	Spatial format	Number	Description
taDrainages.shp	This spatial layer shows the different types of drainage according to IRD classification (Sabatier et al. 1997) for plots 1 to 15. This map is version 3.		195	

Name variable	Туре	Description	Attributes of the variable
idDrainage	Integer	Unique identifier object	1 - 195
TypeDrainage	Varchar	Type of drainage : 6 attributes Alt : vertical mode engaged ;	Alt, DhS, DVD, SH, SLD, UhS
TypeDrainageEN	Varchar	SLD: Superficial Lateral Drainage; DVD: Deep Vertical drainage; UhS: Uphill System; DhS: Downhill System; SH: hydromorph soil	
idPlot	Integer	Unique plot identifier (Guyafor network)	Voir annexe 2
Plot	Integer	Number or name of plot	Voir annexe 2
Geom	Geometry	Geometry object	POLYGON

- <u>Alt: Slow vertical drainage:</u> the appearance of this soil is characterized by a silty red alloterite to a depth greater than 1.2m. This is a transitional soil between DVD and SLD soil types. Water circulation is slow and always vertical. It can be found at the top of low slopes.
- <u>DLS ou **SLD (Superficial Lateral Drainage)**</u>: <u>Drainage latéral superficiel</u>: the appearance of this soil is characterized by silty alloterite to a depth of less than 1.2m. The alloterite characteristically seems 'dry to the touch'. Water circulation is lateral.
- <u>DVL ou **DVD (Deep Vertical drainage)**</u>: <u>Drainage vertical libre</u>: This soil is characterized by a thick horizon (greater than 2 m) by red clay, with microaggregated structure, ensuring good infiltration and water retention. Rainwater seeps vertically and deeply; This soil corresponds to the initial ferralitic cover.
- SAm or **UhS (Uphill System)**: Uphill hydromorphic system: in these soils, the dark red horizon of the alloterite becomes pale red. This system has a perched water table that generally corresponds to a top layer that promotes the accumulation of water, inducing hydromorphic conditions.
- SAv or DhS (Downhill System): Downhill hydromorphic system: this soil is characterized by the appearance of a mottled horizon less than 1.2 m deep. It is a 'a battement' water table system found at the bases of slopes, near the permanent water table of lowlands.
- SH or HS: Lowland hydromorphic Soils: this soil is characterized by a gray and often sandy surface horizon. It corresponds more or less to lowlands.

Commentaire [TC1]: Is it an alloterite or an alterite ?

Commentaire [TC2]: Had difficulty translating this phrase, is this okay?

Commentaire [TC3]: Amont translates to both downhill and downstream, and aval translates to both uphill and upstream. Uphill/downhill seem more likely given that these are included in the names of the soil types, and given that when I searched online for these terms they appeared in relevant sources. However, just to let you know I am not 100% sure for these translations so rely on your technical knowledge

Commentaire [TC4]: I don't know how to translate this – should it be re/rabattement? In which case it could be 'a lowering of the water table' or 'a lowered water table'...?

Source: Soucemarianadin, L., 2004, Weigel, J., 2006,

2009, Roelens, J.B., 2007

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Freycon, V. - CIRAD

		Enti	ty	
Name	Resume	Spatial format	Number	Description
taCoarseElements .shp	This spatial layer shows the spatial distribution of coarse material (duricrust, remnant of rock, pegmatite) and saprolite soils.	POLYGON	59	

> Attribute Table

Name variable	Type	Description	Attributes of the variable
idElement	Integer	A unique identifier object	1-59
TypeElement	varchar	Type of coarse elements in french: 3 attributes	Breastplate / Lithorélique pegmatite
			Saprolite
			duricrust / Remnant of rock
TypeElementEN	varchar	Type of coarse elements in english: 3 attributes	pegmatite
			Saprolite
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
plot	Integer	Number or name of plot	See Annex 2
Geom	Geometry	Geometry object	POLYGONE

Commentaire [U5]: To confirm Freycon

Source: Soucemarianadin, L., 2004, Weigel, J., 2006, 2009, Roelens, J.B., 2007

Right to use: Open data

► **Projection**: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Freycon, V. - CIRAD

		Enti	ty	
Name	Resume	Spatial format	Number	Description
taThalwegs.shp	This spatial layer shows thalwegs and Djougoungs-Petes (Extension small depressions orbicularis and temporarily waterlogged, Blancaneaux 1973). Additional topographic Paracou.		18	

> Attribute Table

Name variable	Туре	Description	Attributes of the variable
idThalweg	Integer	A unique identifier object	1-18
TymoTholygog	varchar	Topographic type (2 attributes and no English translation for Djougoung	Thalweg
TypeThalweg		Pété (Saramaka language)	Djougoung Pété
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name of plot	See Annex 2
Geom	Geometry	Geometry object	POLYGONE

Commentaire [TC6]: Modern spelling is Talweg but I have seen both spellings in the literature. Up to you which one is best to use.

Commentaire [TC7]: Orbicular – ring, disk, or sphere-shaped. Orbicularis - Latin

Commentaire [TC8]: Small, temporarly waterlogged, circular extensions of depressions ????

Commentaire [TC9]: ?

Source: Cantet, 2004 Right to use: Open data

Projection: EPSG: 32622 - WGS 1984 UTM 22N
 Referent contact: Ferry, B. - AgroParisTech

		Enti	ty		
Name	Resume	Spatial format	Number	Description	
taWaterlogging.shp	This spatial layer shows the waterlogged surface of the control plots:1, 6, 11, 13, 14, and 15 at Paracou. Soil color at 20 cm depth was evaluated with the Munsell color system. The link between soil color and level of waterlogging uses the 1st axis of a correspondence factor analysis of tree species and topography. There are five classes of waterlogged surface: from the driest soil (class 1) to the most waterlogged soil (class 5). 130 samples were taken per plot.	POLYGONE	91	Swamping	

> Attribute Table

Name variable	Type	Description	Attributes of the variable
idWaterLog	Integer	A unique identifier object	1-91
<mark>idPlot</mark>	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name of plot	See Annex 2
LevelWater	Integer	Waterlogging gradient (5 attributes)	Class 1 : driest soil Class 5: the most clogged soil
<mark>hue</mark>	varchar	Munsell hue. The dominant color, usually a mixture of yellow (Y) and red (R) (4 attributes)	5Y, 2.5Y , 10YR, 7.5YR
Value	Integer	Munsell value (lightness) The darker or lighter color. (4 attributes)	4, 5, 6, 7
Chroma	Integer	Munsell saturation (chroma). The colorbrightness (8 attributes)	1-8
Geom	Geometry	Geometry object	POLYGON

> Munsell color system

Commentaire [TC10]: This is US English

Commentaire [TC11]: Shade ??
OR
Intensity ??

A.Dourdain (UMR EcoFoG - CIRAD)

Septembre-2017

Source: Soucemarianadin, L., 2004, Weigel, J., 2006,

2009, Roelens, J.B., 2007

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Freycon, V. - CIRAD

			ity	
Name	Resume	Spatial format	Number	Description
taSpecificSoils.shp	This spatial layer represents specific soils: Colluviosol or Soil with quartz	POLYGON	18	

Name variable	Type	Description	Attributes of the variable
idSpecSoil	Integer	A unique identifier object	1-18
TypeSpecSoil	varchar	Type of specific soil in french : 2 attributes	Soil contribution, Sol quartz
TypeSpecSoilEN	varchar	Type of specific soil in english : 2 attributes	Colluviosol, with Soil quartz
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
plot	Integer	Number or name of plot	See Annex 2
Geom	Geometry	Geometry object	POLYGON

Source: Soucemarianadin, L., 2004, Weigel, J., 2006,

2009, Roelens, J.B., 2007

Right to use: Conditions

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Freycon, V. - CIRAD

		Entity		
Name	Resume	Spatial format	Number	Description
taSoilSurvey.shp	This spatial layer shows the auger survey, which identified soils, their position, and their characteristics.	POINT	1094	

Name variable	Туре	Description	Attributes of the variable
idSurvey	Integer	A unique identifier object	1 - 419
idPlot	Integer	Unique plot identifier (Guyafor network)	See Annex 2
Plot	Integer	Number or name of plot	See Annex 2
0-10	Integer	Charcoal, Depth = 0-100 cm	0=no presence ; 1=presence
10-20	Integer	Charcoal, Depth = 10-20 cm	0=no presence ; 1=presence

20.40	Integer	Charcoal, Depth = 20-40 cm	0=no presence ;
20-40	Integer		1=presence
40-60	Integer	Charcoal, Depth = 40-60 cm	0=no presence ;
40-00	integer		1=presence
60-80	Integer	Charcoal, Depth = 60-80 cm	0=no presence ;
00-00	integer		1=presence
80-100	Integer	Charcoal, Depth = 80-100 cm	0=no presence ;
00-100	Integer		1=presence
Coal	Integer	Charcoal, Depth = 0-100 cm	0=no presence ;
			1=presence
NumSurvey	Varchar	Number of the auger survey in the form: <plot>-<n° auger="" survey=""></n°></plot>	Ex. 8-28
		Unique sampling identifier from fieldwork. This variable matches	-
idFieldWk	Varchar	NUM_SONDAG in order to understand the link between the spatial data	
		and the attribute table of the chemical analyses. s.	
Refus	Float	Coarse element (%)	0 - 9.54
MO	Float	Organic matter (%)	0.62 - 7.84
С	Float	Organic Carbon (%)	0.36 - 4.55
N	Float	Nitrogen (‰)	0.24 - 3.22
C_N	Float	C/N ratio	12.02 - 20.44
Polsen	Float	Phosphorus (mg/kg) extracted using Olsen method	1.06 - 11.4
PBray2	Float	Phosphorus (mg/kg) extracted using Bray2 method	0.66 - 25.78
Al_KCl	Float	Al exchangeable in KCl (cmolc+/kg)	0.04 - 2.79
H_KCl	Float	H exchangeable in KCl (cmolc+/kg)	0
Ca_ech	Float	Ca exchangeable i by Metson method (cmolc+/kg)	0.03 - 4.66
Mg_ech	Float	Mg <mark>exchangeable</mark> by Metson method (cmolc + / kg)	0.04 - 0.89
K_ech	Float	K exchangeable by Metson method (cmolc + / kg)	0.02 - 0.37
Na_ech	Float	Na exchangeable by Metson method (cmolc + / kg)	0.01 - 0.18
S	Float	Sum of exchangeable bases by Metson method (cmolc + / kg)	0.14 - 5
CEC	Float	cation exchange capacity by method Metson (cmolc + / kg)	1.52 - 12.65
TS	Float	Saturation rate (%)	2.16 - 93.4
Geom	Geometry	Geometry object	POINT

TOPIC: Hydrography / Topography

Source: Unknown, 1983-1984

Right to use: Open data

Projection: EPSG: 32622 - WGS 1984 UTM 22N
 Referent contact: Petronelli, P. - CIRAD, UMR EcoFoG

			y	
Name	Resume	Spatial format	Number	Description
taCreek.shp	This spatial layer shows the various creeks for plot 1 to 12 in Paracou.	LINESTRING	46	

Name variable	Type	Description	Attributes of the variable
idCreek	Integer	A unique identifier object	1 - 46
idPlot	Integer	Unique plot identifier (Guyafor network)	See annex 2
Plot	Integer	Number or name of plot	See annex 2
Geom	Geometry	Geometry object	LINESTRING

Source: Gourlet-Fleury S., Ferry B., Molino J.-F., Petronelli P., Schmitt L., 2004 "Experimental Plots: Key Features." In: S. Gourlet-Fleury, J.-M. Guehl and O. Laroussinie (Eds). Ecology and Management of a Neotropical Rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris, 3-60

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Ferry, B. - AgroParisTech

None	Dogues a	Enti	ty	Description
Name	Resume	Spatial format	Number	Description
	This spatial layer shows:			
taWaterTable.shp (Water tables which	The "lowland" mapping, undertaken and supervised by B. Ferry between 1999 and 2002, in the course of the ENGREF FTH teaching module (Janet et al., 1999), classified soils with the lowering of the water table			
accompany	aquifer between 0 - 0.6 - 1 m in the dry season			
watercourses)	on all plots. Note: this relates to water tables which accompany rivers or creeks not "underground" groundwater, which would be	POLYGON	99	
	much deeper.	TOLITON		

Commentaire [TC12]: Battement – see previous comment about this translation.

Commentaire [TC13]: This is a literal translation, but I believe that water table and aquifer are 2 different things...?

Commentaire [TC14]: You need to break up this sentence in order for it to make sense. After a while reading it I am not able to

Commentaire [TC15]: See earlier comment about this translation

Commentaire [TC16]: Another possible translation of nappe in English – now you have groundwater, water table, and aquifer... sorry.

Name variable	Туре	Description	Attributes of the variable
idWaterTable	Integer	A unique identifier object	1 -99
TypeWater	Varchar	Water-table depth at the beginning of the dry season (in French) 4 attributes	0 : nappe d'accompagnement du cours d'eau Nappe entre 0 et 60 cm Nappe entre 60 et 100 cm Nappe au-delà de 100 cm
TypeWaterEN	Varchar	Water table depth at the beginning of the dry season (in English) 4 attributes	0 : water table equal to the stream Water table 0 and 60 cm deeper Water table 60 and 100 cm deeper Water table deeper than 100 cm
idPlot	Integer	Unique plot identifier (Guyafor network)	See annexe 2
Plot	Integer	Number or name of plot	See annexe 2
Geom	Geometry	Geometry object	POLYGON

Source: F.Morneau (2007) + méthode de délimitation est également expliquée dans: Ferry, B., Morneau, F., Bontemps, J.D., Blanc, L. & Freycon, V., 2010. "Higher treefall rates on slopes and waterlogged soils.

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Ferry, B. - AgroParisTech

		Enti	ty	
Name	Resume	Spatial format	Number	Description
taTopographicLevels.shp	This spatial layer shows a topographic survey of Paracou was carried out at its inception. Three general terrain types were established according to altitude and slope. Plateau: highest relative altitude and low to 0 incline. Slope: medium to strong incline. Low zone: low altitude, generally less than 10m, and low to zero slope.	POLYGON	52	

1100110 0100 1			
Name variable	Type	Description	Attributes of the variable
idTopo	Integer	A unique identifier object	1 - 52
ТуреТоро	Varchar	Topographic type in french (3 attributes)	Bas-fond, Pente, Plateau
TypeTopoEN	Varchar	Topographic type in english (3 attributes)	Bottomland, Slope, Plateau
idPlot	Integer	Unique plot identifier (Guyafor network)	<mark>Voir annexe</mark> 2
Geom	Geometry	Geometry object	POLYGONE

Source: Forest CIRAD team - Petronelli, P., 1983-84

Right to use: Open data

Projection: EPSG: 32622 – WGS 1984 UTM 22N

Referent contact: Petronelli, P. – CIRAD, UMR EcoFoG

		Enti	ty	
Name	Resume	Spatial format	Number	Description
taContourLinePlots .shp	The base map includes contour lines, equidistant from 2.5m elevation, calculated from side points at the rate of 1 per 100m². The contour lines are calculated relative to the lowest elevation of the plot. The topographic survey was made at the inauguration of Paracou. A topographer surveyed the perimeter of the plots; the plots, 100m on each side, were divided into 10x10 squares of 10m to a side (100m² each), oriented N/S. Altitude was measured using a clismeter at the NE corner of each square. Thus the topographic map was created using one altitude point per 100 m², calculated manually by elevation relative to the preceding point, taken at the perimeter of the plot or the corner of a square. The map support used is the basis of the map of Paracou GIS (CIRAD -Forest) on a scale of about 1/500.	POLYGONE	462	

Commentaire [TC17]: This is unclear – EITHER the contour lines are 2.5m apart, but given they are contour lines there is no need to say they are equidistant, no? - OR the contour lines begin at an altitude of 2.5m, and after which they are equidistant, but you need to say equidistant by how much

Commentaire [TC18]: Not sure what you mean by this

Commentaire [TC19]: The individual plot, or the whole plot of PAracou?

Commentaire [TC20]: Is the implication here that this is the moment that a topographer delimited the parcels?

Commentaire [TC21]: What do you mean by manually? I think this is implied by the tool you have said was used.

Commentaire [TC22]: This is not clear. I cannot understand the process you describe.

Commentaire [TC23]: Repetition ?

> Attribute Table

Name variable	Туре	Description	Attributes of the variable
idCurve	Integer	A unique identifier object	1 - 462
idPlot	Integer	Unique plot identifier (Guyafor network)	Voir annexe 2
Plot	Integer	Number or name of plot	Voir annexe 2
idCurvPlot	Integer	Unique curve identifier	0 - 36
CoteRelat	Float	Relative altitude (relative to the lowest point in the plot).	0 – 32.5 m
CoteReel	Float	Real altitude above sea level	3.05 à 40.2 m
CoteAbs	Float	Absolute altitude (see JB Roelens)	11.5 à 39 m
Geom	Geometry	Geometry object	POLYGONE

Commentaire [TC24]: Date

Source: Forest CIRAD team - Petronelli, P., 1983-84

Right to use: Open data

Projection: EPSG: 32622 - WGS 1984 UTM 22N
 Referent contact: Petronelli, P. - CIRAD, UMR EcoFoG

			ntity	
Name	Resume	Spatial format	Number	Description
taAltitude.shp	The basemap includes level set equidistant 2.5 m in height difference, which have been calculated from sides points at 1 per are. Each curve is characterized by its relative altitude with respect to the lowest point of the plot. The topographical survey was made to install the device and was based on: a survey by a surveyor of the perimeter of the plots; installing strips of 10 m wide, limited to the cords and oriented N / S. The strips were subdivided into square every 10 m, which creates a 10 mesh * 10m; readings at clinometer, measure stalled in the NE corner of each mesh. The data therefore comprise an elevation point 100 m², calculated manually by elevation relating to point above, taken on the perimeter or mesh. The cartographic support used is the GIS base map Paracou (CIRAD -Forest) at a scale of about 1/500.	POINT	1026	

- Ittiibu	tte rabit		
Name variable	Туре	Description	Attributes of the variable
idAltitude	Integer	A unique identifier object	1 - 1026
Xutm	Double	Longitude : geographic and projected coordinates (in meters) (projection : WGS84, UTM22N)	28 5015 - 28 7606
Yutm	Double	Latitude: geographic and projected coordinates (in meters) (projection: WGS84, UTM22N)	58 1174 - 584074
Altitude	Double	Elevation	2.60 - 39 m
Geom	Geometry	Geometry object	POINT

ANNEXES

Annex 1: Model of the database

A.Dourdain (UMR EcoFoG - CIRAD) Septembre-2017

Forest	Plot	idPlot	Subplot	idSubplot
Paracou	1	91	1	9101
Paracou	1	91	2	9102
Paracou	1	91	3	9103
Paracou	1	91	4	9104
Paracou	2	92	1	9201
Paracou	2	92	2	9202
Paracou	2	92	3	9203
Paracou	2	92	4	9204
Paracou	3	93	1	9301
Paracou	3	93	2	9302
Paracou	3	93	3	9303
Paracou	3	93	4	9304
Paracou	4	94	1	9401
Paracou	4	94	2	9402
Paracou	4	94	3	9403
Paracou	4	94	4	9404
Paracou	5	95	1	9501
Paracou	5	95	2	9502
Paracou	5	95	3	9503
Paracou	5	95	4	9504
Paracou	6	96	1	9601
Paracou	6	96	2	9602
Paracou	6	96	3	9603
Paracou	6	96	4	9604
Paracou	7	97	1	9701
Paracou	7	97	2	9702
Paracou	7	97	3	9703
Paracou	7	97	4	9704
Paracou	8	98	1	9801
Paracou	8	98	2	9802
Paracou	8	98	3	9803
Paracou	8	98	4	9804
Paracou	9	99	1	9901
Paracou	9	99	2	9902
Paracou	9	99	3	9903
Paracou	9	99	4	9904

Forest	Dlas	: JDI - 4	Cookeelek	: dC-dd-a
Forest	Plot	idPlot	Subplot	idSubplot
Paracou	10	910	1	91001
Paracou	10	910	2	91002
Paracou	10	910	3	91003
Paracou	10	910	4	91004
Paracou	11	911	1	91101
Paracou	11	911	2	91102
Paracou	11	911	3	91103
Paracou	11	911	4	91104
Paracou	12	912	1	91201
Paracou	12	912	2	91202
Paracou	12	912	3	91203
Paracou	12	912	4	91204
Paracou	13	913	1	91301
Paracou	13	913	2	91302
Paracou	13	913	3	91303
Paracou	13	913	4	91304
Paracou	14	914	1	91401
Paracou	14	914	2	91402
Paracou	14	914	3	91403
Paracou	14	914	4	91404
Paracou	15	915	1	91501
Paracou	15	915	2	91502
Paracou	15	915	3	91503
Paracou	15	915	4	91504
Paracou	16	916	1	91601
Paracou	16	916	2	91602
Paracou	16	916	3	91603
Paracou	16	916	4	91604
Paracou	16	916	5	91605
Paracou	16	916	6	91606
Paracou	16	916	7	91607
Paracou	16	916	8	91608
Paracou	16	916	9	91609
Paracou	16	916	10	91610
Paracou	16	916	11	91611
Paracou	16	916	12	91612

Forest	Plot	idPlot	Subplot	idSubplot
Paracou	16	916	13	91613
Paracou	16	916	14	91614
Paracou	16	916	15	91615
Paracou	16	916	16	91616
Paracou	16	916	17	91617
Paracou	16	916	18	91618
Paracou	16	916	19	91619
Paracou	16	916	20	91620
Paracou	16	916	21	91621
Paracou	16	916	22	91622
Paracou	16	916	23	91623
Paracou	16	916	24	91624
Paracou	16	916	25	91625
Paracou	18 Guyaflux)	918	1	91801
Paracou	18 Guyaflux)	918	2	91802
Paracou	18 Guyaflux)	918	3	91803
Paracou	18(Guyaflux)	918	4	91804
Paracou	18 Guyaflux)	918	5	91805
Paracou	18(Guyaflux)	918	6	91806
Paracou	18(Guyaflux)	918	7	91807
Paracou	18(Guyaflux)	918	8	91808
Paracou	18(Guyaflux)	918	9	91809
Paracou	18(Guyaflux)	918	10	91810
Paracou	ImbalanceP	920	0	920

Annex 2: conversion table between Guyafor BD & GIS BD

Annex 3: Silviculture treatments in Paracou

Treatment 1 : logging

Treatment 2 : logging + thinning

Treatment 3 : logging + logging for fuelwood + thinning

	Treatment 1	Treatment 2	Treatment 3
Logging for timber	Nb trees / ha : 10	11 trees	10 trees
	Basal area (m²/ha): 3,3	3.8	3.3
Thinning		21 trees 5.2	11 trees 3.6
Logging for fuel wood			19 trees 3
Total	10 trees	32 trees	40 trees
	3.3	9	9. 9
Damage	78 trees	85 trees	148 trees
	2.3	8.2	4.2

Annex 4: Inventory of soil mapping studies on Paracou and related studies (geomorphology, ...) - (adapted from Weigel 2006, simplified and completed)

Study	Referent	Plot	Commentaires
Boulet & Brunet 1983			Prospection pédologique pour implanter le
			dispositif -Soil sampling to impliment the site
Barthes 1991		P1, P6, P11	Soils mapping
Lhériteau 1994	B. Ferry	P16	Soils mapping
Ferry 1998 à 2001		All	Carte des bas-fonds d'après profondeur de la
			nappe
			-Map of bottomlands according to water table depth
Le-Fol 2002	V. Freycon	All	Geomorphological survey
Malherbe 2002	V. Freycon		Geomorphological survey (toposequences)
Soucémarianadin 2004	V. Freycon		Description of 15 reference profiles
Soucémarianadin 2004	V. Freycon	P1, P6	Soils mapping
Cantet 2004	B. Ferry	Control plots	Map of water logging based on color
		(P1, P6, P11 à	
		P15)	
Weigel 2005-2006	V. Freycon	P11, P13, P14,	Soils mapping
		P15	
Roelens 2006-2007	V. Freycon	P4, P5, P7, P9,	Soils mapping
		P10, P12	
Weigel 2009	V. Freycon	P2, P3, P8	Soils mapping
Weigel & Freycon 2010		All	A printed synthesis report on soil mapping

Commentaire [TC25]: Nappe is a word we need to discuss

Annex 5: List contacts

Name	Surname	Institute	Mail
Aurélie	Dourdain	CIRAD - EcoFoG	Aurelie.Dourdain@ecofog.gf
Bruno	Ferry	AgroParisTech	bruno.ferry@agroparistech.fr
Vincent	Freycon	CIRAD	vincent.freycon@cirad.fr
Gaëlle	Jaouen	AgroParisTech - EcoFoG	Gaelle.Jaouen@ecofog.gf
Pascal	Petronelli	CIRAD - EcoFoG	pascal.petronelli@cirad.fr
Stéphane	Traissac	INRA - EcoFoG	Stephane.Traissac@ecofog.gf
Grégoire	Vincent	IRD	gregoire.vincent@ird.fr