Robô para Reconstrução Tridimensional: Uma aplicação didático-pedagógica do protótipo no âmbito da Engenharia e Computação

João L. de S. Silva¹, Michelle M. Cavalcante¹, Fabiano A. Vaz², Esdriane C. Viana¹

¹Departamento de Engenharia Elétrica – Instituto Federal da Bahia (IFBA) Caixa Postal 15.064 – 91.501-970 – Paulo Afonso – BA – Brasil

²Centro de Informática – Universidade Federal de Pernambuco (UFPE) – Recife, PE – Brasil

{jlucas.silva, michellemelo.c, esdriane}@ifba.edu.br, fav2@cin.ufpe.br

Abstract. This study aims to show the educational application of a robot prototype to assist in three-dimensional reconstruction. For this, we used the Arduino platform and through this was set up a controlled robot for a notebook with a Kinect. The tool presented potentialities that are considered relevant in the teaching-learning process, especially in multidisciplinary areas, ensuring an incentive to learning according to the students, as well as providing the three-dimensional reconstruction, that also be used in the teaching process, as example, the use of 3D reconstructions of electrical insulators.

Keywords. Robotics, Education, RecArd, Arduino.

Resumo. O presente trabalho tem por finalidade mostrar a aplicação educacional de um protótipo de Robô para auxiliar na reconstrução tridimensional. Para tanto, utilizou-se a plataforma Arduino e através desta montou-se um robô controlado por um notebook junto a um Kinect. A ferramenta apresentou potencialidades que são consideradas relevantes no processo de ensino-aprendizagem, principalmente, em áreas multidisciplinares, o que garantiu um incentivo ao aprendizado de acordo com os estudantes, além de propiciar a reconstrução tridimensional que também pode ser utilizada no processo de ensino, a exemplo do uso de reconstruções 3D de isoladores elétricos.

Palavras-chaves. Robótica, Educação, RecArd, Arduino.

1. Introdução

A Robótica Educacional é uma importante ferramenta multidisciplinar, motivacional e lúdica, o que torna um exímio método para auxiliar no processo de ensino-aprendizagem, pois possibilita a inserção do estudante na cultura digital e transforma a informação em conhecimento das mais variadas áreas da ciência.

No mundo atual, a necessidade de renovação é um fenômeno social que ocorre em escala global. Dentro da área pedagógica, seguindo o paradigma de mudança defendido por Cassol (2000), a educação também está acompanhando essa evolução tecnológica, o

que proporcionou o surgimento do conceito de "novas tecnologias educacionais" [Levy & da Costa 1993]. Essas tecnologias educacionais mais atuais e o uso de robôs em sala de aula, recebe uma nova denominação: robótica educacional. Essa pratica constitui-se numa ferramenta investigativa e lúdica onde se emprega a criatividade do discente na criação de soluções de hardware e software visando a resolução de um desafio. [Barros et al. 2014].

Alinhado com a teoria construcionista defendida por Piaget, Papert (2008) propõe a ideia de que os seres humanos aprendem melhor quando são envolvidos no planejamento e na construção dos objetos. Nessa circunstância, a Robótica Educacional ganha força por se tratar da aplicação da robótica na área pedagógica, com o objetivo de disponibilizar aos alunos a oportunidade de criar soluções voltadas ao mundo real, possibilitando o aprendizado de forma dinâmica e estimulante. Tal aplicação é capaz de unir atividades de mecânica, como, por exemplo, a construção dos objetos controlados e atividades de raciocínio lógico, que envolvem cálculos de circuitos eletrônicos e desenvolvimento de programas que visam fazer com que determinado circuito eletrônico cumpra as atividades especificadas. [Santos et al. 2010]

Desta forma, percebe-se o grande potencial da robótica educacional como ferramenta multidisciplinar, visto que, a construção de protótipos em geral faz com que o aluno questione e seja capaz de relacionar diferentes conhecimentos e aptidões de forma a solucionar um problema. A busca por soluções estimula o espírito investigativo, fortemente motivado pela curiosidade, e permite que o aluno extrapole os conhecimentos individuais de cada disciplina. Assim a robótica assume o papel de uma ponte de ligação interdisciplinar visando a construção do conhecimento coletivo através da aplicação com a realidade. [Santos *et al.* 2010. Adaptado]

Frente a este cenário, o presente trabalho montou um Robô para reconstrução tridimensional a partir da plataforma de prototipagem Arduino e aplicou o protótipo como um método para auxiliar e complementar o ensino-aprendizagem. O trabalho mostrou aos discentes de forma mais ampla assuntos voltados para computação e engenharia para que estes associassem a disciplina com o seu cotidiano. Para mais, o projeto pretende estimular o estudante a pensar, a aguçar a sua curiosidade científica e a perceber os benefícios da robótica educacional para o desenvolvimento e aprimoramento da sua capacidade de memorização, raciocínio, concentração e atenção.

O restante do trabalho está organizado como segue. A seção 2 apresenta conceitos e informações do projeto e ferramentas, a seção 3 aborda os materiais e métodos, a seção 4 expõe uma discussão acerca do assunto, apresenta e analisa resultados, por fim, a seção 5 apresenta as conclusões obtidas com o projeto.

2. Arduino, RecArd e Reconstrução 3D

Este capítulo traz uma visão geral do projeto Arduino, sua história e informações sobre licença e funcionamento, além do RecArd, um robô criado com o intuito de demostrar a facilidade de se trabalhar com esse tipo de projeto e como forma de incentivar alunos do ensino técnico e superior, e o funcionamento da Reconstrução Tridimensional.

2.1 Arduino

A plataforma Arduino surgiu com o objetivo de criar um dispositivo para controlar projetos construídos de uma forma mais acessível e simples do que outros sistemas disponíveis no mercado [Silva *et al.* 2014a]. A plataforma Arduino, é *open-source* baseada em hardware e software para as áreas de automação e robótica. Ou seja, pode-se utilizar comercialmente e pessoalmente, além de permitir obras derivadas [Cavalcante *et al.* 2014].

O Arduino utiliza um Microcontrolador ATMEGA (chip controlador gravável) com a função de receber e entregar o fluxo de informações com o controle por software [Silva et al. 2014a].

2.2 RecArd

O RecArd é um Robô com um ambiente computacional cujo objetivo é realizar reconstruções tridimensionais de forma fácil, lúdica e interativa. O sistema desenvolvido é um protótipo capaz de encontrar objetos que se deseja reconstruir tridimensionalmente de forma automática, sendo ideal para exploração de lugares de difícil acesso.

No protótipo atual, a exploração de ambientes pelo Robô como cavernas com solo desnivelado e com obstáculos ainda não é completamente aplicável e eficaz devido à fraca potência dos motores e a ausência de suspensão nas rodas, pois são fatores de aumento no custo do protótipo. Entretanto, tais fatores não são limitantes para a continuação do projeto.

Ciente de que o foco principal deve ser o conteúdo e as possibilidades que o projeto demonstra, o Robô foi elaborado e testado em residências e laboratórios, e assim, coletado resultados do algoritmo no protótipo de baixo custo. Vale destacar a aplicação educacional que se conseguiu antes de inserir o Kinect¹ [Silva *et al.* 2014b].

A aplicação educacional do Robô foi algo destaque, pois pode-se ensinar eletrônica, linguagem de programação, mecânica, além de outros conceitos com o protótipo, fora a possibilidade de reconstruir objetos tridimensionalmente para mostrar em sala de aulas, como isoladores e máquinas elétricas.

2.3 Reconstrução 3D

A reconstrução de modelos tridimensionais (3D) consiste na criação de uma superfície ou malha poligonal, obtida através da interpolação de pontos amostrados, no caso do kinect, é obtida as informações de profundidade contidas nas imagens e elaborado uma matriz de pontos (nuvem de pontos), conforme a Figura 1, processo feito pelo algoritmo ICP (*Iterative Closest Point*) e o uso do Kinect Fusion [Silva *et al.* 2014a].

¹ Kinect: Dispositivo da Microsoft confeccionado com o objetivo de melhorar a interação homem-máquina destinado, inicialmente, ao console de jogos *Xbox 360*.

Figura 1. Exemplo de uma Matriz formada com o Emissor IR e Sensor IR.

O hardware do kinect é constituído por uma câmera RGB (Sensor RGB), emissor infravermelho (Emissor IR), câmera de infravermelho (Sensor IR) e microfones. A câmera e o sensor funcionam na frequência de 30 Hz, com resolução de 640 x 480 pontos, conforme a Figura 2. São localizados os pontos cuja distância disposta está entre 70 centímetros até 6 metros.

Figura 2. Hardware do Kinect [Cardoso 2013].

Ao terminar o tempo (delay) destinado e configurado para reconstrução 3D, o objeto é salvo e o Robô pode voltar para o ponto inicial, antes do processo de localização do objeto ou tentar localizar outro item.

3. Materiais e métodos

O Robô foi desenvolvido para funcionar integrado entre um conjunto de tecnologias. O ambiente é composto por um pequeno chassi controlado de dois modos: à distância pelo usuário via acesso remoto ou no modo automático com a atuação de sensores ultrassônicos. Com a ajuda do sensor de profundidade e o sensor RGB do Kinect, o Robô consegue localizar um objeto quando adicionado um modelo em sua biblioteca e depois que encontrá-lo, realiza a reconstrução 3D do mesmo com um algoritmo ICP (Iterative Closest Point).

Os materiais utilizados para construção do robô estão relacionados na Tabela 1. Além do Arduino, destaca-se o uso do Motor *Shield* L293d que serviu para possibilitar o uso dos motores DC (Motor de Corrente Contínua) para realizar o giro das rodas para frente e para trás.

Tabela 1 - Materiais para a elaboração do RecArd.

QUANTIDADE	MATERIAIS
01	Placa Arduino UNO R3
01	Mini-Protoboard
04	Motores DC com caixa de Redução
04	Rodas de Plástico
01	Chassi composto por três placas de Acrílico
01	LED amarelo
01	Shield Ardafruit L293D (Ponte H)
01	Resistor de 330 Ω
01	Módulo <i>Bluetooth</i> HC-06
01	Sensor Ultrassônico
01	Cabo USB para alimentar Arduino
01	Conjunto de 8 pilhas AA para alimentar motores
01	Bateria Estacionária 12V
01	Kinect Xbox360
01	Notebook (Core i3 2377M e 8GB de RAM)

Na Figura 3 é apresentado o RecArd. O mesmo é constituído de três plataformas de acrílico: A maior e primeira (chassis 1), de cima para baixo, contém o notebook e Kinect; a segunda plataforma de acrílico (chassis 2, na cor preta), fica as baterias e módulo bluetooth; e na terceira e última (chassis 3), fica o circuito principal, composto pelo Arduino e Shield, além das rodas que são parafusadas neste último chassi.

Figura 3. (A) Robô RecArd e (B) Kinect com Bateria 12V.

É válido destacar que o robô pode ser conectado via *bluetooth* com o módulo HC-06 e através do aplicativo BT Terminal do Windows Phone pode ser controlado por

comandos. O comando "w" desloca o robô para frente, "s" desloca para trás, "a" para esquerda, "d" para direita e "x" interrompe os motores. Ressalta-se também que a conexão do robô pode ser feita com outros modelos de *smartphone*, inclusive com outros sistemas, como o Android e iOS. Este modo de operação foi utilizado durante as apresentações de minicursos e em sala de aula para interação do estudante com o projeto.

Após a construção deste protótipo, foi iniciada a fase da análise do projeto. A análise foi realizada em duas etapas: A primeira consistiu na utilização do prótotipo em ambiente fechado para avaliar seu desemprenho quanto a reconstrução de objetos. Já a segunda etapa, utilizou-se a Escala de Concordância Likert de um a cinco, em que a ordem crescente desses numeros indicam de péssimo à excelente, respectivamente. Esta ultima foi preenchida por estudantes e professores após as apresentações do protótipo.

4. Resultados e Discussão

A presente seção aborda a inserção da Reconstrução 3D e o uso da robótica na educação bem como sua importância para, posteriormente, relatar e apresentar os resultados coletados com o projeto a partir das atuais pesquisas e debates em sala de aula.

4.1 Reconstrução 3D voltado à Educação

Durante a realização do projeto, percebeu-se que a Reconstrução 3D poderia ser aplicada para o estudo de conteúdos ministrados em sala de aula no curso de Engenharia Elétrica. Neste caso, foi realizado a reconstrução tridimensional de isoladores elétricos, ora em desuso, pertencentes a Companhia Hidrelétrica do São Francisco (CHESF).

Para a realização da reconstrução, os isoladores foram colocados em uma base e foi realizado a reconstrução normalmente usando o robô com o Kinect. Após o processo, foi feito a edição das imagens 3D para remover a base colocada, utilizando o *Meshlab*. A Figura 4 mostra os isoladores reconstruídos tridimensionalmente.

Figura 4. Reconstrução de isolador tipo (A) Pedal, (B) Singelo e (C) Bujão.

Com o uso das Reconstruções pode-se mostrar, de uma melhor forma, alguns equipamentos usados na área de Engenharia Elétrica. Logo, a reconstrução 3D permite a visualização de equipamentos e instrumentos, de forma geral, de uma maneira interativa e construtiva. Isso proporciona, consequentemente, um ambiente mais divertido e mais compreensivel aos estudantes, visto que os mesmo tem o contato com isoladores de forma virtual.

4.2 Utilização do Protótipo em um ambiente fechado

Para realização de outro teste, neste caso envolvendo a localização de objetos, o protótipo foi colocado dentro de uma sala com dimensão de 25m² e com obstáculos dispersos para dificultar a movimentação do robô. Em determinado lugar da sala foi colocado um jarro, onde o mesmo possui diversos detalhes em sua forma - o que dificulta a atuação do Kinect na reconstrução 3D. Antes do teste, também foi adicionado uma foto do objeto na biblioteca do *Find-Object*, que pode ser definida como uma interface QT designada a implementações OpenCV para detectar características de forma rápida [Labbé 2015].

O Robô conseguiu desviar dos obstáculos com a ajuda dos sensores ultrassónicos até chegar ao objeto e localiza-lo com o *Find-Object*. Após isso, fez-se uma reconstrução 3D parcial do objeto como apresentada na Figura 5. Foi realizado acesso remoto para acompanhar e obter as telas, a Figura 5 (b) já é a reconstrução editada no *MeshLab*.

Figura 5. Objeto (a) Real sendo localizado e (b) Reconstruído tridimensionalmente.

Ressalta-se que o Kinect possui limitações e dificuldades para reconstruir detalhes. No caso do vaso, o mesmo, que apesar de ter um contorno que facilita a reconstrução 3D, ele tem linhas e desenhos em sua estrutura que dificulta bastante a reconstrução. Além disso, deve-se levar em consideração seu pequeno tamanho (28cm de altura). Entretanto, o principal fator limitador da reconstrução foi a configuração do notebook, visto que, sua placa de vídeo dificultou ainda mais o processo.

4.3 Análise dos Resultados obtidos com a aplicação educacional

O protótipo do robô foi apresentado na forma de minicurso, para avaliação do desempenho do mesmo quanto ao seu uso educacional. Para tanto, foi ativado o controle por *bluetooth* e removido o Kinect, deixando assim ele mais interativo para os estudantes controlar, já que o objetivo principal era ensinar programação, eletrônica e mecânica com o protótipo, e não a captura de objetos pelos alunos, inicialmente.

Em primeira análise, percebeu-se o potencial atrativo que experimentos como esse pode vim a trazer para alunos de diversas áreas, não contando somente, neste caso, áreas especificas como o que pretende-se avaliar no presente trabalho, sendo elas engenharia e computação.

Com o desenvolvimento do Robô e com o material para o minicurso, foi perceptível que o projeto poderia discutir diversas questões como: "Definir sensores e atuadores e qual a diferença entre eles?", "O que é e qual importancia de usar a Ponte H?", "Por que o LED necessita de um resistor?", "Como funciona o sensor ultrassônico?", "Como é possível o RecArd obedecer aos comandos?", "Como determinar a voltagem para alimentar o robô?", entre outros.

Outro fato marcante na análise educacional do projeto foi o nível de questionamentos e direcionamentos a áreas, principalmente, de engenharia e computação, levantados em questão, principalmente pelos alunos de Engenharia Elétrica e Curso Técnico em Informática, pois, professores e curiosos também participaram do minicurso e tiveram suas contribuições quanto ao projeto.

Em um dos depoimentos um aluno afirmou "O projeto diminui a distância entre o aluno e a tecnologia aplicada fazendo com que ele se sinta ambientado com tal, além de diminuir a abstração de diversos assuntos". Outro aluno declarou "A robótica educacional ajuda a levar o aluno a questionar, pensar e procurar soluções, a sair da rotina de sempre teoria e ir para a prática. Desperta curiosidade e um grande interesse". Ambos comentários confirmaram, mesmo que não provasse de forma concreta, o idealizado e esperado pelo projeto.

Ademais, um comentário relatou também a importância da robótica para o estudante, pois a mesma faz com que o discente obtenha conhecimentos diversificados: "Para se entender o que está "por trás da robótica" é necessário aprender e entender conceitos voltados para diversas áreas de exatas, como programação, engenharia elétrica e mecânica, entre outras. Desta forma, um estudante que busque essas áreas, terá conhecimentos vastos e diversificados".

Em suma, a pesquisa indicou que os discentes (público alvo da pesquisa), em sua grande maioria, consideraram a robótica (o robô) como um estímulo de estudo e como um mecanismo positivo para auxiliar na didática dos professores. Além disso, foi mencionado que o projeto poderia levar os discentes a se distraírem, tirando o foco do ensino.

Entretanto, com um levantamento mais apurado e com o objetivo de averiguar o nível de concordância e aceitação dos estudantes sobre a implantação do projeto, obteve-se resultados positivos como mostrado na Figura 6, ilustrada de acordo com a escala de concordância, chamada de Escala Likert, com 5 notas no formato ordinal: (5) Excelente, (4) Bom, (3) Regular, (2) Ruim e (1) Péssimo. Resultados obtidos através de um questionário eletrônico enviado aos alunos, e respondido por 43 destes.

Figura 6. Resultados na escala de concordância para o projeto

O gráfico foi montado com os seguintes resultados: 60.46% (26 pessoas) dos participantes atribuíram a pontuação máxima ao projeto, 27.91% (12 pessoas) nota quatro, 9.30% (4 pessoas) nota três e 2.33% (1 pessoa) atribuíram nota dois. Além disso, foi recolhido e considerado diversas opiniões a respeito do projeto, a ser levada em consideração na melhoria do protótipo inicial.

5. Considerações finais

Com o projeto pode-se acrescentar outras habilidades e competências que permite que os alunos compreendam melhor as disciplinas nas áreas de eletrônica e computação principalmente, e, assim, obtenham um melhor desempenho nas mesmas. Foi possível sentir um estímulo maior na busca do conhecimento quando conhece a aplicação prática de determinados conteúdo, isto é, o estudo une a teoria e a prática e assim faz com que dúvidas sejam solucionadas, além mostrar a união do hardware e software e do uso dos componentes eletrônicos, o que torna o protótipo algo multidisciplinar.

No aspecto da reconstrução tridimensional percebeu-se que existe a necessidade de utilizar um notebook com uma melhor placa de vídeo, como também é necessário um chassi com motores mais potentes e com uma roda livre e duas com motores, ao invés das quatro rodas. Desta forma, tem-se um protótipo com mais agilidade na realização de curvas, o que é importante para contornar objetos durante a reconstrução tridimensional. É ainda necessário relatar que o uso de realidade virtual e aumentada em educação é um desafio a ser superado, devido principalmente as dificuldades em usar recursos computacionais por parte dos docentes [Martins 2012].

Foi perceptível também a importância dos modelos 3D, quando utilizados de forma educacional, a reconstrução 3D permite a visualização de equipamentos e instrumentos, de forma geral, o que permite o aluno ter contato mais próximo de equipamentos que só poderia ser vistos por fotos, assim tem-se uma maneira mais lúdica e interativa de mostrar diversos materiais.

Como trabalhos futuros, pretende-se aprimorar o robô e deixá-lo mais interativo, incluindo a ele outros sensores e equipamentos, destinando o foco a educação,

planejando-se ministrar palestras e minicursos para divulgar o trabalho e para estender o conhecimento e atividades multidisciplinares a comunidade. Em conjunto, pretende-se buscar formas de melhorar o aspecto da reconstrução tridimensional, buscando corrigir os problemas e aspectos vistos com a pesquisa no protótipo.

Referências

- Barros R. P.; Torres V. P.; Burlamaqui A. M. F. (2014) "CardBot: Tecnologias assistivas para imersão de deficientes visuais na robótica educacional", In: Workshop de Robótica Educacional. Anais do 5º Workshop de Robótica Educacional WRE 2014, São Carlos SP, 2014.
- Cardoso, G. S. (2013) "Microsoft Kinect: Crie aplicações interativas", Edição 1ª. Local de publicação: Editora Casa do Código,p. 167, 2013.
- Cassol, P. B. (2000) "Globalização e educação: elementos para repensar a atuação do professor face as mudanças tecnológicas no atual context", 2000.
- Cavalcante, M.M; Silva, J. L. S.; Cabral, E. V.; Dantas, J. R. A. (2014) "Plataforma Arduino pra fins didáticos: Estudo de caso com recolhimento de dados a partir do PLX-DAQ", In: Congresso da Sociedade Brasileira de Computação, 2014, Brasília. Anais. Brasília: Sociedade Brasileira de Computação, p.1655-1664.
- Labbé, M. (2015) "Find-Object Project", https://code.google.com/p/find-object/, Fevereiro.
- Lévy, P.; Da Costa, (1993) C. I. tecnologias da inteligência, As. Editora 34, 1993.
- Martins, V. F.; Guimarães, M. P. (2012) "Desafios para o usode Realidade Virtual e Aumentada de maneira efetiva noensino", In: DEsafIE! I Workshop de Desafios da Computação Aplicada à Educação XXXII Congresso da Sociedade Brasileira de Computação, 2012, Curitiba. Anais do DEsafIE!.
- Parpet, S. A. (2008) "Máquina das crianças: repensando a escola na era da informática", Tradução de Sandra Costa. Porto Alegre: Artes Médicas, 2008. p.210.
- Santos, F.L.; Nascimento, F. M. & Bezerra, R. A. (2010) "Robótica Educacional como Abordagem de Baixo Custo para o Ensino de Computação em Cursos Técnicos e Tecnológicos", In: Congresso da Sociedade Brasileira de Computação, 2010, Belo Horizonte. Anais. Belo Horizonte: Sociedade Brasileira de Computação, p.1304-1313.
- Silva, J. L. S.; Cavalcante, M. M.; Vaz, F. A.; Dantas, J. R.; Cabral, E. V. (2014a) RecArd: Robô baseado na plataforma Arduino como facilitador no processo de ensino-aprendizagem multidisciplinar. Revista Novas Tecnologias na Educação (RENOTE). vol. 12, n. 2, 2014a.
- Silva, J. L. S.; Santos, R. S.; Vaz, F. A. (2014b) "O Kinect Fusion como técnica de reconstrução tridimensional de objetos em tempo real visando a construção de ambientes virtuais multissensoriais", In: IX Congresso Norte Nordeste de Pesquisa e Inovação (Connepi), 2014, São Luís MA. Anais do IX Congresso Norte Nordeste de Pesquisa e Inovação (Connepi), 2014b.