$$\therefore T(n) = \sum_{k=0}^{m} O(1), \text{ where } n \text{ is the largest integer such that } 2^{2n} < n.$$

$$2^{2^{m}} \approx n \implies m = \log_{2}(\log_{2} n)$$

$$I(u) = \sum_{k=0}^{k=0} O(1)$$

$$= O(\log(\log n))$$

$$\therefore T(n) = O(\log(\log n))$$

b). Inner loop:
$$k=0$$
 to $k < i^3$

$$\vdots \sum_{k=0}^{3-1} \theta(1)$$

outer loop: i=1 to $i \leq n$

$$\sum_{i=1}^{n} (inner chunk)$$

$$\therefore T(n) = \sum_{i=1}^{n} \left(\theta(i) + 0 \left(\sum_{k=0}^{i} \theta(i) \right) \right)$$

If statement: i % In = 0

let X be the number of iterations when the if statement is time:

:. stops when
$$i = n = m \cdot In$$

$$w = 2v$$

$$T(n) = \sum_{i=1}^{n} \theta(i) + \sum_{x=1}^{n} \sum_{k=0}^{n-1} \theta(i)$$

Since code only runs when
$$i = x \cdot \sqrt{n}$$

= $\theta(n) + \sum_{x=1}^{\infty} \theta((x \cdot \sqrt{n})^3)$

$$= \Theta(n) + \sqrt{n^3} \sum_{x=1}^{n} \Theta(x^3)$$

$$\leq \operatorname{ince} \sum_{i=1}^{n} \Theta(i^p) = \Theta(n^{p+1})$$

$$= \Theta(n) + O(n^{\frac{3}{2}} \cdot n^{\frac{1}{2}})$$

$$= \Theta(n) + O(n^{\frac{3}{2}} \cdot n^{\frac{1}{2}})$$

$$= O(n) + O(n^{\frac{3}{2}} \cdot n^{\frac{1}{2}})$$

$$= O(n) + O(n^{\frac{3}{2}} \cdot n^{\frac{1}{2}})$$

$$= O(n) + O(n^{\frac{3}{2}} \cdot n^{\frac{1}{2}})$$

C). inner loop: From m=1 to $m \leq N$, M+m each iteration.

k 1 2 3 4 5 \times m 1 2 4 8 16 2^{x-1} 2^{x} 2^{x} 2^{x} 2^{x} 2^{x} 2^{x}

 $\sum_{m=1}^{\infty} \theta(1) , \quad \text{where } 2^{\times -1} \leqslant N$

 $\times \approx \log_2 n - 1$

 $\overline{I}(N) = \sum_{N=1}^{\log N-1} \Theta(I) = \Theta(\log N)$

middle loop: from K=1 to K < N K +t

 $\sum_{K=1}^{N}$ (inner chunk)

outer loop: from i=1 to $i \leqslant n$, i+t

n \(\sum_{i=1} \) (\(\text{code} \) \(\text{Ununk} \) \)

 $T(n) = \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\theta(i) + 0 \right) \left(\theta(\log_2 n) \right)$

If statement true when the k^{th} elevent in the array is equal to i. - Worst case \rightarrow every element in the array anoth with one (i, k) pair.

- best case -> No mentches

$$T(n) = \Theta(n^2)$$

d). Note loop from
$$j \in 0$$
 to $j \in 0$ and $j \in 0$ to $j \in 0$ and $j \in 0$ to $j \in 0$. Then $j \in 0$ to $j \in 0$

```
T(n) = \theta(n) + \theta(n) + \theta(\log n)
       \therefore T(n) = \theta(n)
Q2. Recursion tracing
   struct Node {
     Node* llrec(Node* in1, Node* in2)
        if(in1 == nullptr) {
       else {

in1->next = llrec(in2, in1->next);

return in1;
}

(15,26,34)
    llrec (in1, in2)
                                         5, 2, 6, 3, 4
        Mec (1, 5)
           Mrec (in2 in1 -> next)
                                                           2, 6, 3,4
               Mrec (5, 2)
                 Thee (in1 -> next, in2 -> next
                                                                      6, 3,4
                      11rec (2,6)
                        Hrec (in 2 -> next, in/ -> next -> next
                                                                          6
                                                                                      3,4
                            Hec (6, 3)
                              HIEC ( in ) next > next , in 2 > next > next)
                                 Hec (3, nullptr)
               : Fired output: 1,5,2,6,3,4
```

 $= \theta(n) + 10 - \frac{n}{10 \cdot \frac{3}{2}} - 1 + \theta(\log n)$

6).	llrec (nullptr, 2)
	2
	· output: 2