Notes for MATH 3210: Foundation of Analysis I

Jing Guo

August 23, 2017

Contents

1	Bas	ic Topology	1
	1.1	Metric Space M	1
	1.2	Open Sets	1
		1.2.1 Metric Spaces X	1
		1.2.2 Topological Spaces (X, U)	2
	1.3	Compact Sets	2

1 Basic Topology

Metric (distance function) of x_0 and x: $d(x_0, x) = |x - x_0|$

1.1 Metric Space M

$$d \colon M \times M \to \mathbb{R} \tag{1}$$

- 1. $d(x_0, x_1) \ge 0$ where $x_0, x_1 \in M$
- 2. $d(x_0, x_1) = 0 \iff x_0 = x_1$
- 3. $d(x_0, x_1) = d(x_1, x_0)$ (irrespective of order)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangular inequity)

Euclidean metric on \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Discrete metric: $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ Open ball of radius ϵ : $B_{\epsilon}(x_0) = B(x_0, \epsilon) = \{ y \in M \mid d(x_0, y) < \epsilon \}$

1.2 Open Sets

1.2.1 Metric Spaces X

 $U \subset X$ is open if for any $x \in U$ there exists $\epsilon > 0$ such that $B(x, \epsilon) \subset U$. Open interval is open set; closed interval is not open set.

1.2.2 Topological Spaces (X, U)

Let U be a family of all sets, X be a set. U is a **topology** on X if

- 1. \emptyset (Empty set) is always open; X is open. $\Leftrightarrow \emptyset$ and X itself belong to U.
- 2. F is a collection of open sets, then $\bigcup_{U \in F} U$ is open. \Leftrightarrow Any union of members of U still belongs to U. (Union)
- 3. F is a *finite* collection of open sets, then $\bigcap_{U \in F} U$ is open. \Leftrightarrow The intersection of any finite number of members of U belongs to U. (Intersection)

Finite case: $x \in \bigcap_{U \in F} U$, $x \in U$, hence $B(x, \epsilon_U) \subset U$

$$\delta = \min \epsilon_U > 0 \quad where \quad U \in F$$
$$B(x, \delta) \subset B(x, \epsilon_U) \subset U$$
$$\therefore B(x, \delta) \subset \bigcap_{U \in F} U$$

Infinite case: For example, the intersection of all intervals of $\left(-\frac{1}{n}, \frac{1}{n}\right)$, where n is a positive number, is the set $\{0\}$ which is not open in the real line.

1.3 Compact Sets

In metric space X, compact sets are <u>closed</u>.

Compact \Leftrightarrow closed and bounded (only for Euclidean metric, \mathbb{R}^n)