Funktionalanalysis - Übungsblatt 4

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 17. November 2023, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 4.1

3 Punkte

(a) Beweisen Sie Lemma 2.16 aus der Vorlesung: Ist $C \subset V$ eine konvexe Teilmenge eines normierten linearen Raums V, so sind der Abschluss \bar{C} und für jedes r > 0 die r-Umgebung

$$U_r(C) = \{v \in V : \|v - w\| < r \text{ für ein } w \in C\} \equiv \bigcup_{w \in C} B_r(w)$$

von C auch konvex.

(b) Sei $A \subset V$ eine abgeschlossene Teilmenge eines \mathbb{K} -Vektorraums V. Zeigen Sie, dass A genau dann konvex ist, wenn für alle $x, y \in A$ bereits $\frac{1}{2}(x+y) \in A$. Hinweis: Zeigen Sie zunächst per Induktion, dass für $x, y \in A$ der Ausdruck $\lambda x + (1-\lambda)y$ für alle $\lambda \in [0,1]$ mit $2^n\lambda \in \mathbb{N}$ ebenfalls in A liegt.

Aufgabe 4.2 3 Punkte

Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbert Raum und $A \subset H$ eine Teilmenge. Zeigen Sie

- (a) A^{\perp} ist ein abgeschlossener Unterraum von H.
- (b) $A^{\perp} = (\overline{\langle A \rangle})^{\perp}$.
- (c) Sei nun $V \subset H$ ein abgeschlossener Teilraum. Zeigen Sie, dass dann $\left(V^{\perp}\right)^{\perp} = V$.

Aufgabe 4.3 3 Punkte

Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum.

- (a) Sei $A \subset H$ eine nicht-leere, abgeschlossene und konvexe Menge und $x \in H$. Zeigen Sie, dass dann für eine Abbildung $P: H \to A$ die folgenden Aussagen äquivalent sind
 - (i) $||x P(x)|| = \inf_{a \in A} ||a x||$.
 - (ii) Re $\langle x P(x), a P(x) \rangle \le 0 \quad \forall a \in A$.
- (b) Sei nun $Y \subset H$ ein abgeschlossener Unterraum und sei $P : H \to Y$ die durch Lemma 2.15 eindeutig definierte **Projektionsabbildung** auf Y, d.h. $P(v) = w_0$ mit

$$||v - P(v)|| = ||v - w_0|| = \operatorname{dist}(v, Y) = \inf_{w \in Y} ||v - w||.$$

Zeigen Sie, dass die Abbildung P linear ist und äquivalent charakterisiert durch

$$\langle x - P(x), y \rangle = 0 \quad \forall y \in Y.$$
 (1)

Bitte wenden!

Aufgabe 4.4 3 Punkte

Sei $(X, \|\cdot\|)$ ein normierter Raum und $M \subset X$ abgeschlossen und konvex mit $0 \in M$ (Inneres von M). Definiere für $x \in X$

$$p(x) := \inf \left\{ \lambda > 0 \mid \frac{x}{\lambda} \in M \right\}.$$

- (a) Zeigen Sie $0 \le p(x) < \infty$ für $x \in X$ und dass p sublineares Funktional ist.
- (b) Beweisen Sie $M = p^{-1}([0, 1])$.
- (c) Weisen Sie für $M = \overline{B_1(0)}$ die Gleichheit p(x) = ||x|| für alle $x \in X$ nach.

In dieser Aufgabe wollen wir näher auf die Bemerkung zur Notwendigkeit der Vollständigkeit im Satz von Riesz-Fréchet eingehen.

Aufgabe 4.5 4 Punkte

Betrachten Sie den Raum der abbrechenden reellen Nullfolgen $c_{00} \subset \ell_2$ ausgestattet mit dem ℓ_2 Skalarprodukt $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$. Wir definieren den Unterraum

$$W = \left\{ x \in c_{00} \mid \sum_{n=1}^{\infty} \frac{x_n}{n} = 0 \right\}.$$

- (a) Vergewissern Sie sich, dass $(c_{00}, \langle \cdot, \cdot \rangle)$ nicht vollständig ist.
- (b) Beweisen Sie, dass das Funktional $L: c_{00} \to \mathbb{R}, x \mapsto \sum_{n=1}^{\infty} \frac{x_n}{n}$ linear und stetig ist.
- (c) Zeigen Sie, dass W abgeschlossen ist und dass das orthogonale Komplement

$$W^{\perp} = \{ y \in c_{00} \mid \langle y, x \rangle = 0 \text{ für alle } x \in W \}$$

in c_{00} trivial ist.

(d) Zeigen Sie, dass L keine Darstellung der Form $Lx = \langle y, x \rangle$ für ein $y \in c_{00}$ und alle $x \in c_{00}$ besitzt.