Greedy algorithm

Fall 2024

- Method for solving optimization problems.
 - o Problems which requires a minimum result or maximum result.
- For a given problem P, there may be multiple solutions: S1, S2, S3...
- Suppose you want to go from A to B.
 - Multiple ways to solve this.
 - Walk, run, bus, fly, etc.
- There are multiple solutions, but every solution has some time.
 - Some are faster, some are comfortable, etc.
- Sometimes (often) there is a constraint
 - I need to cover the journey in x hours.
 - Some solutions are not available any more.

- Sometimes there is a constraint
 - Some solutions satisfy this constraint.
 - Some solutions do not.
- The solutions which satisfy the constraint is called: Feasible solutions
 - Solutions satisfying the constraint.
- What if we want to complete this journey in minimum cost?
 - Now, it becomes a minimization problem → Optimization problem
 - Out of feasible solutions one of them can be minimum.
 - Train vs plane
 - If train is the minimum solution → we call it optimum solution
- Optimum solution:
 - Solution which is already feasible and also satisfies the objective given (minimum cost).
- There is only one optimal solution.
 - One minimum cost.

Greedy method is used to solve optimization problems

- If a problem requires either **minimum** or **maximum** results,
- Those kind of problems are called
 - Optimization problem
- Summary
 - There are multiple solutions to a problem.
 - Sometimes there is a constraint. Now, the solution set becomes smaller.
 - The solutions which satisfies that constraint are called **feasible solutions**
 - In addition, we may have an objective
 - That objective is usually looking for something min or max
 - Minimum cost, maximum profit, minimum time, etc.
 - Out of those solutions, if a solution satisfies this **objective** → That is called the optimal solution.
 - The problem with a constraint and an objective is called an optimization problem

- There are several strategies to solve optimization problems.
 - Greedy method
 - Dynamic programming
 - Branch and bound
- Some problems are suitable for some methods.

Greedy method

- In greedy method, a problem is solved in stages
- In each stage, we consider one input of a problem.
 - If that input is *feasible* we include it in the solution
 - After including all feasible inputs, we will get an optimal solution.
- We use it in daily life!

- Coin change
 - Give customer change, using minimum number of coins
 - 0 1, 5, 10, 20, 50
 - You will start by giving the largest first. (strategy)
 - Amount: 87
 - **50**, 20, 10, 5, 1
- Buying items
 - Fixed budget, but want to buy as many items as possible
 - So, since the objective is to buy *maximum number of items* you start with cheapest goods. (strategy)
- Packing
 - You have a bag (limited space) but must pack items.
 - Go for the importance. (strategy)
- Charging
 - You have multiple devices with varying battery percentages and limited time.
 - Go for lowest battery first or the one you need (strategy)

Constraint & Objective

Task	Constraint	Objective
Coin change	value = required amount	Minimum number of coins&bills
Buying items	Total cost <= budget	Maximize the # of items
Packing	weight <= desired weight	maximize the importance or value of items
Charging devices	limited time or ports	Max. the number of ready devices

Objects:	1	2	3	4	5	6	7
Profits:	10	5	15	7	6	18	3
Weights:	2	3	5	7	1	4	1

- Knapsack problem is a bag problem.
 - There is a bag and we want to fill it with items.
 - There is a **limit** \rightarrow 15 kg. (constraint)
 - We want to **maximize** the profit. (objective)
- Imagine that we are filling the bag and going to another city, to sell those items.
 - o Profits are those.
 - Weights are weights.
- Container loading problem.
 - An optimization problem.
- There are multiple solutions.
 - o I can just put items 1 and 2.
 - \circ It is a solution, and a *feasible* solution \rightarrow but not the optimal solution.
 - Our aim is to find the optimal solution.

Objects:	1	2	3	4	5	6	7
Profits:	10	5	15	7	6	18	3
Weights:	2	3	5	7	1	4	1

- What is going to be our strategy?
 - Someone can say let's start with highest profits!
 - o Some other person can say; let's start with the **lightest** objects. So we can get more stuff it.
- Both are valid.
 - However, we need a strategy.
 - What about **profit per kg** (imagine that weight is in kg's. not important)
- So we need to calculate profit per kg

Objects:	1	2	3	4	5	6	7
Profits:	10	5	15	7	6	18	3
Weights:	2	3	5	7	1	4	1
P/W:	5	1,67	3	1	6	4,5	3

- Now, we have a P/W.
 - We can use it to put items in the knapsack.
- This problem is not a 0/1 knapsack problem.
 - o In that problem, we cannot use fractions.
 - o But here we can use fractions. Maybe I am going to use half of object 3.
 - I can choose to buy half kg of something right?
- So, we start by selecting the object with **highest** P/W.
- Which element has the best PW?
 - Object 5.
 - o I add it to the bag.
 - I had a constraint of 15 kg. Object 5 is 1 kg \rightarrow 15-1 = 14.
 - o I now have 14 kg remaining in the bag.

Objects:	1	2	3	4	5	6	7
Profits:	10	5	15	7	6	18	3
Weights:	2	3	5	7	1	4	1
P/W:	5	1,67	3	1	6	4,5	3

- Bag: [Object 5]
- I look at the next highest PW.
 - It is object 1.
 - I add it to the bag.
 - Bag weight was 14 kg. 14 2 = $12 \rightarrow$ new weight
- Bag: [05, 01]
- Next highest?
 - Object 6.
 - Add it to bag.
 - Weight was 12.12 $4 = 8 \rightarrow \text{new weight}$
- Bag: [05, 01, 06]

- Next highest?
 - O3 and O7. (Choose 1) → O3
 - $8 5 = 3 \rightarrow \text{new weight}$
- Bag: [05, 01, 06, 03]
- Next highest?
 - o **07.**
 - $3 1 = 2 \rightarrow \text{new weight}$
- Bag: [05, 01, 06, 03, 07]
- Next? → 02
 - 2 3 ?? → can't do it.
 - O But we can do fractions
 - We use 2 kg of O2.
- Bag: [05, 01, 06, 03, 07, ⅔ 02]

Knapsack problem (Profit)

Objects:	1	2	3	4	5	6	7
Profits:	10	5	15	7	6	18	3
Weights:	2	3	5	7	1	4	1
P/W:	5	1,67	3	1	6	4,5	3

- Bag: [05, 01, 06, 03, 07, 1/3 02]
 - I used $05 \rightarrow 6$ profits
 - I used O1 → 10 profits
 - I used $06 \rightarrow 18$ profits
 - I used $03 \rightarrow 15$ profits
 - I used O7 → 3 profits
 - I used $\frac{2}{3}$ O2 \rightarrow 5* $\frac{2}{3}$ profits
- Total:
 - o 6+10+18+15+3+10/3
 - o 55,3 total profit

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- Imagine that you are working an in the morning there are multiple jobs waiting for you.
 - We can change the question so that it is more meaningful.
 - Let's say you are a typist. These are the jobs. You start the day at 0900 am.
 - \circ Job 1 tells you that they will come at 11.00 \rightarrow They will pay you 20.
 - \circ Job 2 tells you that they will come at 11.00 → They will pay you 15.
 - Job 3 will come at 1000 → Pay you 10
 - Job 4 will come at 1200 → Pay you 5.
 - Job 5 will come at 1200 → Pay you 1.
- For simplicity, let's imagine all jobs will take an hour \rightarrow 1 unit time.
- Which jobs you need to choose in which order to maximize your profit?

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- We don't have any customer who will come at 1300 to get the work. So, we have 3 times.
 - 0900 1000
 - 0 1000 1100
 - 0 1100 1200
- These are the time slots.
- What is the strategy?
 - We are going to select the max profit.
 - \circ Max profit is Job 1. The deadline is 2 → They will come at 11.
- Where should I put this?
 - Since they will come at 1100, I don't need to do it between 09-10.
 - o I will put it between 10-11.

09:00 - 10:00	
10:00 - 11:00	Job 1
11:00 - 12:00	

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- Next, the highest profit is Job 2.
 - o I also have 2 hours.
 - o I can put it between 10-11.
 - But it is full!
 - I cannot put it between $11-12 \rightarrow$ Because they will come at 11.
 - o I will put it on the left, if I have any place.
- Add it between 09-10.

09:00 - 10:00	
10:00 - 11:00 Jo	bb 1
11:00 - 12:00	

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- Next, the highest profit is Job 2.
 - o I also have 2 hours.
 - o I can put it between 10-11.
 - But it is full!
 - I cannot put it between $11-12 \rightarrow$ Because they will come at 11.
 - o I will put it on the left, if I have any place.
- Add it between 09-10.

09:00 - 10:00	Job 2
10:00 - 11:00	Job 1
11:00 - 12:00	

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- Next, the highest profit is Job 3.
 - Deadline is 1.
 - I need to put it in 9-10.
 - The slot is full.
 - I can't go right → They won't come
 - I need to go left, but I dont have any more spaces left.
 - I discard this job.
- Next, Job 4.
 - Deadline is 3.
 - o Good, I can put it between 11-12.
 - \circ It is empty, so I put it there.

09:00 - 10:00	Job 2
10:00 - 11:00	Job 1
11:00 - 12:00	

	Job 1	Job 2	Job 3	Job 4	Job 5
Profit	20	15	10	5	1
Deadline	2	2	1	3	3

- Next, the highest profit is Job 3.
 - Deadline is 1.
 - o I need to put it in 9-10.
 - The slot is full.
 - I can't go right → They won't come
 - I need to go left, but I dont have any more spaces left.
 - I discard this job.
- Next, Job 4.
 - Deadline is 3.
 - o Good, I can put it between 11-12.
 - It is empty, so I put it there.
- I now will do Job 2, Job 1 and Job $4 \rightarrow$ Will have 20 + 15 + 5 = 40 profit.

09:00 - 10:00	Job 2
10:00 - 11:00	Job 1
11:00 - 12:00	Job 4

Optimal Merge Pattern

- Imagine there are two lists A and B.
 - These are sorted.
 - o A: 3,8,12,10
 - o B: 5,9,11,16
- How do we combine them into C?
 - We compare step by step and take the minimum.
 - min (A[i], B[j])
 - i++ or j++
- We will have i + j steps.
 - Can we make it less?

Optimal Merge Pattern

- Imagine that we have multiple lists.
 - We only have their sizes.
- Data
 - \circ Lists \rightarrow A, B, C, D
 - \circ Sizes \rightarrow 6, 5, 2, 3
- How do we combine (merge) them into a single list?

A B C D We can first merge A and B

We can merge 11 with C.

We can merge 11 with C.

We merge it with D and done.

We merge it with D and done.

11 steps
13 steps
16 steps
40 steps

can we make it in less steps?

A B C D Lets try to merge A, B

Then C,D

Merge them!

11 steps5 steps16 steps32 steps!

can we do in less?

A B C D
6 5 2 3

Lets start merging from the left now.

Lets start merging from the left now.

carry on with B.

carry on with A

Optimal Merging

- So, we actually found a strategy.
 - If we start merging those with **smallest** sizes, we get the minimum number of steps.
- This will come handy in Huffman Coding

we want to minimize the merging steps

- We saw that we should start with lists having the least number of elements.
 - We will reorder them in that order.
- D C A B E

Merge D and C

D C A B E 5 10 20 30 30

Merge D and C

Merge with A

Merge with A

Merge B and E (smaller)

Merge B and E (smaller)

Merge remaining

Merge remaining

Huffman Coding

- Before huffman coding, lets talk about encoding messages.
- Previously, we said that each symbol can be represented with ASCII.
 - o ASCII is 8 bits.
 - 1 bit is extra \rightarrow 7 bits \rightarrow 2^7 \rightarrow can represent 128 symbols.
- _ bit → can be 0 or 1 → 2 symbols (2^1)
- __ bit → can be 00, 01, 10, 11 → 4 symbols (2 ^ 2)

- The message is:
 - BCCABBDDAECC
 - Message size is 12 characters.
 - If we use ASCII encoding it is going to be 96 bits.
- If we want to send this message over any line, we are going to use 96 bits.
 - This is a simplification.
 - We normally use additional bits for error detection etc.
- So, can we decrease the number of bits we use here?
 - If so, how?

- Remember that we can use a slot to represent two symbols.
- ASCII represents 127 symbols.
 - O Do we need that many here?
 - We are only sending A, B, C, D and E.
 - There are 5 symbols here!
 - How many digits we need to represent 5 digits?
 - If we use 2 digits, we can represent 4.
 - If we use 3 digits, we can represent 8.
 - Apparently, we will use 3 digits.
- So, lets define our symbols now.
 - \circ A \rightarrow 000
 - \circ B \rightarrow 001
 - o C → 010
 - \circ D \rightarrow 011
 - E → 100

Now, instead of using 8 bits per symbol, we are going to use 3 bits per symbol

- \circ A \rightarrow 000
- o B → 001
- \circ C \rightarrow 010
- o D → 011
- \circ E \rightarrow 100

We had 12 characters → 12 * 3 = 36 bits. We have a lot of decrease in size!

- However, there is a problem.
- The problem is, we created our own encoding. The destination doesn't know this!
- We need to send our table.
 - They know ascii. So, we are going to send A to E in ASCII (5 * 8 = 40 bits)
 - We are going to send our own encoding \rightarrow 5 * 3 = 15 bits
 - In total = 55 bits.
 - The size increased, but still it is less compared to 96.

This is called Fixed Encoding

- Now, instead of using 8 bits per symbol, we are going to use 3 bits per symbol
 - \circ A \rightarrow 000
 - o B → 001
 - \circ C \rightarrow 010
 - o D → 011
 - \circ E \rightarrow 100
- We had 12 characters → 12 * 3 = 36 bits. We have a lot of decrease in size!
 - However, there is a problem.
 - The problem is, we created our own encoding. The destination doesn't know this!
 - We need to send our table.
 - They know ascii. So, we are going to send A to E in ASCII (5 * 8 = 40 bits)
 - We are going to send our own encoding \rightarrow 5 * 3 = 15 bits
 - In total = 55 bits.
 - 36 + 55 = **91 bits**
 - The size increased, but still it is less compared to 96.
 - As the message length increases, the difference will be significant.

- We can also have variable encoding
 - Now, we will see Huffman coding.
- We actually saw that by using 3 digits, we wasted some.
 - It can still get smaller.
 - O How?
- Can we give 2 digits to those symbols which are used frequently?
 - And maybe give 3 digits to those who are not that frequently used?
- Let's try it.
 - First we need to do a frequency analysis for the symbols.

- Message
 - BCCABBDDAECC

Symbol	Freq.
В	
С	
С	
Α	
В	
В	
D	
D	
Α	
Е	
С	
С	

- Message
 - BCCABBDDAECC
- Now, it actually looks like a problem we solved before.
 - o Optimal Merging Problem
- Let's write them in increasing order and try to merge them all. Maybe it will help!

Symbol	Freq.
В	3
С	4
A	2
D	2
Е	1

Symbol	Freq.
В	3
С	4
А	2
D	2
Е	1

E 1 **A** 2

D 2 B 3

C

Symbol	Freq.
В	3
С	4
A	2
D	2
E	1

Symbol	Freq.
В	3
С	4
A	2
D	2
Е	1

Symbol	Freq.
В	3
С	4
A	2
D	2
E	1

Symbol	Freq.
В	3
С	4
Α	2
D	2
Е	1

We will put 0 and 1 from left to right for all edges

Symbol	Freq.
В	3
С	4
A	2
D	2
E	1

We will put 0 and 1 from left to right for all edges

Symbol	Freq.
В	3
С	4
Α	2
D	2
E	1

Symbol	Freq.	Code
Е	1	
Α	2	
D	2	
В	3	
С	4	

	Symbol	Freq.	Code
•	Е	1	000
	Α	2	
	D	2	
	В	3	
	С	4	

	Symbol	Freq.	Code
	E	1	000
•	Α	2	001
	D	2	
	В	3	
	С	4	

Symbol	Freq.	Code
Е	1	000
A	2	001
D	2	01
В	3	
С	4	

Let's start writing codes!

Symbol	Freq.	Code
E	1	000
Α	2	001
D	2	01
В	3	10
С	4	

Let's start writing codes!

Symbol	Freq.	Code
E	1	000
А	2	001
D	2	01
В	3	10
С	4	11

Codes are done!

Symbol	Freq.	Code
E	1	000
А	2	001
D	2	01
В	3	10
С	4	11

Let's calculate the message length again

- Originally, we were supposed to send 12 * 8 = 96 bits
- Now we will send
 - \circ E for 1 time \rightarrow 3 bits
 - \circ A for 2 times \rightarrow 3 * 2 = 6 bits
 - D for 2 times \rightarrow 2 * 2 = 4 bits
 - O B for 3 times \rightarrow 2 * 3 = 6 bits
 - \circ C for 4 times \rightarrow 2 * 4 = 8 bits
 - Total = 27 bits
- Let's not forget we need to send the table too!
 - o 5 chars, each 8 bits → 40 bits
 - \circ 3,3,2,2,2 \rightarrow 12 bits
 - Total → 52 bits
- 27 + 52 = 77 bits in total!

Symbol	Freq.	Code
Е	1	000
Α	2	001
D	2	01
В	3	10
С	4	11

Minimum Cost Spanning Tree

this is a graph.

$$G = (V,E)$$

$$V = \{A,B,C,D,E,F\}$$

$$E = \{ (A,B), (B,C), ... \}$$

this is a spanning tree no cycles

this is a spanning tree we have the same vertices, but the number of edges are V - 1

There are multiple.

How many are possible?

of spanning trees

- We have 6 vertices.
 - In a spanning tree, we are going to use V-1 edges.
 - What are the possibilities?

$$\begin{pmatrix} 6 \\ 5 \end{pmatrix}$$

Let's do it with a weighted graph

Again, we can draw spanning trees here too.

Let's do it with a weighted graph

Again, we can draw spanning trees here too.

Let's do it with a weighted graph

For each spanning tree there is a **cost**

Minimum Cost Spanning Tree

- Can we find the spanning tree with the minimum cost?
 - Yes. We can find every spanning tree and choose the one with min cost.
 - Not effective.
 - O Do we have a greedy method?
 - Yes!
 - So, we can find it without creating all spanning trees.
 - 2 algorithms:
 - Prim's Algorithm & Kruskal's Algorithm

Prim's Algorithm

- You select minimum edge.
 - o 1 to 6.
- You select the next minimum edge, but make sure that it is connected to previously selected edge.
 - 3,4 is the next (12)
 - But not connected to what we chose.
 - Always maintain a tree
- What are connected? 1,2 (28) and 6,5 (25)
 - Choose 6,5.
- Now, we have multiple
 - 5,7 (24); 5,4 (22) → choose 5,4
- We go on like this.

cost is 99. sum all weights

Kruskal

- Always select a minimum cost edge.
 - o 1,6 → min
- Next, choose the minimum again. Now we don't need any connections like Prim.
 - \circ 3,4 \rightarrow 12. min.
- Next:
 - $0 2.7 \rightarrow 14$
 - 2.3 → 16
 - $7,4 \rightarrow 18 \rightarrow \text{oops. a cycle.}$
- If there is a cycle, don't include it!
- So in Kruskal, we select the minimum edge cost as long as it is not forming a cycle!

