Daniel Ruelas-Petrisko

Q dpetrisko | in dpetrisko | ≥ dan.petrisko@openasicconsulting.com | | +1 708 207 7456 | 10 0000-0002-0555-6919

Summary

I am a full-stack computer engineer with broad experience developing ASIC flows; from architectural specification to RTL, physical design, and EDA tooling. My research explores leveraging open-source tools and IP to minimize iteration time, without sacrificing design quality. I have experience leading multiple tapeouts in TSMC 28nm and GlobalFoundries 12nm, as well as prototyping designs in Skywater 130nm, TSMC 40nm and advanced FPGA prototypes.

EDUCATION

Ph.D., M.S. University of Washington, Seattle

Computer Science & Engineering (2025, 2023)

A Qualitative Approach to Aqile Hardware Design, advised by Professors Michael Taylor, Mark Oskin

M.S., B.S. University of Illinois at Urbana-Champaign Electrical & Computer Engineering (2018, 2016) Architectural Exploration of Si-IF Many-Die Processors, advised by Professor Rakesh Kumar

EXPERIENCE

Organization Director

Nov 2022 - present

Free and Open-Source Silicon (FOSSi) Foundation

London, UK

- Advocates and provides stewardship for various open-source silicon tools, standards, and IP
- Organizes premiere conferences in the open-source silicon community, including LatchUp and ORConf

ASIC Design Consultant

Jan 2023 - present

OpenASIC Consulting, LLC

Seattle, WA

- Provides full-stack support for specification, implementation and verification across RTL2GDS flow
- Specializes in open-source IP integration, commercial/open hybrid CAD flows and rapid-design, N=1 test chips

Research Assistant

Sep 2018 - August 2025

University of Washington

- Seattle, WA
- Collaborated on agile tapeouts of complex, record-breaking 12nm chips, hacking from RTL through GDS
- Created and maintained plethora of IP and tooling across the open-source BaseJump ASIC development ecosystem
- Mentored 20+ masters and undergrad projects, resulting in dozens of contributions to major research projects

Lead Digital Chip Architect - MaxSDR ASIC

Mar 2021 - Dec 2022

MaXentric Technologies, LLC

San Diego, CA

- Architected 3 Mgate TSMC 28nm mixed signal design with 192-core manycore and 3 Linux-capable cores
- Oversaw full RTL2GDS flow, including RTL, synthesis, floorplanning, verification, GLS and ECOs
- Pioneered source-synchronous link topology for rapid convergence of blocks, reducing iteration from 1 week to 1 day

Research Assistant

August 2014 - May 2018

University of Illinois

Champaign, IL

- Developed novel large-scale parallel simulation framework to approximate waferscale GPU system performance
- Applied novel ILP-based PPA optimization framework for multi-system architectural DSE of chiplets
- Implemented classical and novel ECC schemes in RTL to evaluate EDP tradeoffs for subthreshold operation

Logic Design Co-op IBM

Spring 2018; Summer 2018

- Designed and implemented VHDL for the POWER10 fetch unit, including branch prediction and issue logic

Triaged core-level functional failures and power regressions alongside verification and integration teams

SoC Design Verification Intern

Summer 2017 Cupertino, CA

Austin, TX

- Developed testbenches and verification flows for large-scale gate-level simulations, reducing build and run times

Analysed coverage trade-offs between emulation and simulation flows, balancing developer and iteration time

Device Design Intern; Systems Validation Intern

Summer 2016; Summer 2015

Intel

Portland, OR

Converged static timing and electrical quality for structurally designed circuits in embedded DRAM circuits

- Triaged hardware failures on prototype processors in lab, suggesting fix or debug directions to the design team

Embedded Software Intern; Test Automation Intern John Deere

Summer 2014; Summer 2013 Des Moines, IA

- Automated embedded display testing equipment, eliminating costly manual programming and verification

Created continuous build, test and deployment pipelines for production webapps

SKILLS Hardware Synopsys DC, ICC2, Primetime; Cadence Genus, Innovus, Tempus; Yosys, Verilator, Surelog Software System Verilog, C, C++, Python, TCL, Make, Git Other Logic Design, VLSI, Continuous Integration (CI), Agile Development, Architectural Simulation Projects BlackParrot (Lead Architect) black-parrot Heterogeneously tiled application-class multicore with custom cache coherence for accelerator integration ZynqParrot (Lead Architect) 😯 zynq-parrot Cycle-accurate, Scale-Down, FPGA-accelerated co-emulation platform for generic RTL prototyping BSG Pearls (Lead Architect) • bsg_pearls Modular RTL and collateral library for hierarchy-insensitive hardware design HammerBlade (Maintainer) • bsg_manycore Highly scalable RISC-V manycore fabric for bulk-synchronous parallel workloads • basejump_stl BaseJump STL (Maintainer) Standard Template Library for latency-insensitive hardware design Publications "A 12nm FinFET Implementation of Ruche Networks on a 99mm² 2048-Core HammerBlade RISC-V Manycore SoC" P. Gao, D. Jung, S. Davidson, D. Ruelas-Petrisko, et al. TVLSI 2025* "A Qualitative Approach to Agile Hardware Design" D. Ruelas-Petrisko PhD Dissertation, ProQuest 2025* "ZynqParrot: A Scale-Down Approach to Cycle-Accurate, FPGA-Accelerated Co-Emulation" D. Ruelas-Petrisko, et al. arXiv 2025* "Scalable, Programmable and Dense: Open-Source RISC-V Manycore with Scalable Resource Organization" D. Jung, M. Ruttenberg, P. Gao, S. Davidson, D. Ruelas-Petrisko, et al. ISCA 2024 "Scaling Program Synthesis Based Technology Mapping with Equality Saturation" G. Smith, C. Knizek, D. Ruelas-Petrisko, et al. WOSET 2024 "RISE: RISC-V SoC for En/decryption Acceleration on the Edge for Homomorphic Encryption" Z. Azad, G. Yang, R. Agrawal, D. Ruelas-Petrisko, et al. IEEE TVLSI "RACE: RISC-V SoC for En/decryption Acceleration on the Edge for Homomorphic Computation" Z. Azad, G. Yang, R. Agrawal, D. Ruelas-Petrisko, et al. ISLPED 2022 "BlackParrot: An Agile Open Source RISC-V Multicore for Accelerator SoCs" IEEE Micro July/August 2020 D. Ruelas-Petrisko, et al. "NoC Symbiosis (Invited Paper)" D. Ruelas-Petrisko, et al. NOCS 2020 "Architectural Exploration of Si-IF Many-die Processors" D. Ruelas-Petrisko MS Dissertation, ProQuest 2018 "Design Space Exploration for Chiplet-Assembly-Based Processors" S. Pal, **D. Ruelas-Petrisko**, et al. IEEE VLSI April 2020 "Rethinking Waferscale Processors - A GPU Case Study"

S. Pal, **D. Ruelas-Petrisko**, et al.

"A Case for Packageless Processors'

S. Pal, **D. Ruelas-Petrisko**, et al.

H. Duwe, X. Jian, **D. Ruelas-Petrisko**, et al.

HPCA 2019

HPCA 2018

"Transforming Error Patterns to Enable Deeper Voltage Scaling in On-chip Memories"

ISCA 2016

Workshop & Tutorials

FOSSi Latchup 2025 Introduced BSG Pearls as a modular library for hierarchy-insensitive hardware design FOSSi LatchUp 2022 Introduced BSG Tag as an flexible, robust and minimal ASIC configuration bus RISC-V Summit 2020 Tutorial to get up and running with BlackParrot and accelerators

Supercomputing 2020 Described integration BlackParrot into HPC systems

FOSDEM 2020 Announced the BlackParrot processor to the open-source hardware community FOSSi LatchUp 2019 Pitched BaseJump STL as standard library for latency-insensitive hardware design

Chip Gallery

BP0	4-core BlackParrot	GF12 3x3mm
BP1	4-core BlackParrot	TSMC40 4x6mm*
$\mathbf{BigBlade}$	16 x (2 unicore + CGRA + 128-core manycore)	$GF12\ 10x10mm$
MaxSDRv1	1 big, 2 little cores, 192-core manycore, high-speed I/O	TSMC28 4x6mm
TT-DLL	All-digital delay-locked-loop	$Sky130\ 160x100um$
MaxSDRv2	1 big, 2 little cores, 192-core manycore, high-speed I/O, LPDDR1	TSMC28 4x6mm
MiniBlade	DBI testing infrastructure, scalable clock generator	GF12 1x1mm*