UNIVERSIDADE DE ÉVORA

ANÁLISE MATEMÁTICA II -2023/24

EER, EGI, EI, EM, FQ, IACD, M, MAEG

3.^a Frequência

07/06/2024

Observação: Justifique cuidadosamente todos os passos que efectuar nas resoluções.

- 1) Considere a região M de \mathbb{R}^3 limitada superiormente por $x^2+y^2+z^2=4$ e inferiormente por $z=\sqrt{x^2+y^2}$.
- a) Indique, em coordenadas cartesianas, um integral triplo que define o volume de M (com indicação dos extremos do integral e função integranda).
- b) Indique, em coordenadas cilíndricas, um integral triplo que define o volume de M (com indicação dos extremos do integral e função integranda).
- c) Indique, em coordenadas esféricas, um integral triplo que define a massa de M (com indicação dos extremos do integral e função integranda), sabendo que a densidade é dada por $\rho(x, y, z) = x$.

2) Considere as curvas

$$C_1 = \{(x,y) \in \mathbb{R}^2 : y = x^2 - 1 \land -1 \le x \le 2\} \ \text{e } C_2 = \{(x,y) \in \mathbb{R}^2 : y = x + 1 \land -1 \le x \le 2\}.$$

- a) Calcule, usando integrais de linha, o comprimento de C_2 .
- b) Indique um integral de linha que define a área da superfície limitada inferiormente por C_1 e superiormente por $f(x,y) = x^2y^4$ (com indicação dos extremos do integral e função integranda).
- c) Mostre que o campo vectorial definido por $\mathbf{F}(x,y)=\left(3yx^2-2x,2y+x^3\right)$ é conservativo e determine uma função potencial de \mathbf{F} .
- d) Calcule o trabalho realizado por ${\bf F}$ ao longo de ${\cal C}_2$ orientada da esquerda para a direita.
- e) Sem calcular, diga, justificando, se a afirmação seguinte é verdadeira ou falsa: "Seja $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$ orientada no sentido indirecto, então $\int_{\mathcal{C}} \mathbf{F} | ds = 0$ ".

3) Seja $\mathcal S$ a superfície cilíndrica $y^2+z^2=9$ entre os planos x=2 e x=3. Considerando a parametrização definida por

$$\phi(u,v) = (\dots, \dots, \dots, \dots, \dots, \dots, \dots),$$

a área da superfície é dada por

4) Determine o integral de superfície $\iint_{\mathcal{S}} \mathbf{F}|dS$, onde $\mathbf{F}(x,y,z) = (x,y,z)$ e \mathcal{S} é a superfície esférica de centro (0,0,0) e raio 1 e orientada para o exterior.