Multi-Period Optimal Power Flow based on Spatially Distributed Computing

Aryan Ritwajeet Jha*, Student Member, IEEE, Subho Paul*, Member, IEEE, Anamika Dubey*, Senior Member, IEEE

*School of Electrical Engineering & Computer Science

Washington State University

*ngton State Universit*y Pullman, WA

{aryan.r.jha, subho.paul, anamika.dubey}@wsu.edu

Abstract—This document is a model and instructions for LaTeX. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

I. Introduction

This document is a model and instructions for LaTeX. Please observe the conference page limits.

II. EASE OF USE

[1]–[5]

A. Maintaining the Integrity of the Specifications

REFERENCES

- [1] M. Farivar and S. H. Low, "Branch flow model: Relaxations and convexification," 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3672–3679, Dec. 2012.
- [2] N. Nazir and M. Almassalkhi, "Receding-Horizon Optimization of Unbalanced Distribution Systems with Time-Scale Separation for Discrete and Continuous Control Devices," pp. 1–7, Jun. 2018.
- [3] N. Nazir, P. Racherla, and M. Almassalkhi, "Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders," Jun. 2019.
- [4] A. Agarwal and L. Pileggi, "Large Scale Multi-Period Optimal Power Flow With Energy Storage Systems Using Differential Dynamic Programming," pp. 1750–1759, Sep. 2021.
- [5] X. Qian and Y. Zhu, "Differential Dynamic Programming for Multistage Uncertain Optimal Control," pp. 88–92, Jul. 2014.