A) Sintaxe Semântica

PilhaOutput op; {op} <= topo PilhaInput op; topo <= {op} PilhaInputVar op; topo <= op

Sum; topo <= topo + topo-1
Subtract; topo <= topo - topo-1
Multiply; topo <= topo * topo-1
Division; topo <= topo / topo-1
Exponent; topo <= topo ^ topo-1

$$S=rac{(C-A^3)}{(B-5) imes (A+2)}$$

OBS: {op} indica acesso a memória

B) Execução Comentários sobre a execução

PilhaInputVar 2; 2
PilhaInput A; A
Sum; A+2

PilhaInputVar 5; 5
PilhaInput B; B
Subtract; B-5

Multiply; (B-5) * (A+2)

PilhaInputVar 3; 3
PilhaInput A; A
Exponent; A³

PilhaInput C; C

Subtract; (C-A³)

Division; $(C-A^3)/(B-5)*(A+2)$

PilhaOutput S; $S = (C-A^3) / (B-5) * (A+2)$

A)	Sintaxe	Semântica	
	WOutput op;	$\{op\} \le w$	
	WInput op;	$\mathbf{w} \leq \{op\}$	
	WInputVar op;	$W \le op$	
	Sum op;	$\mathbf{w} \leq \mathbf{w} + \{op\}$	$S = rac{-B + \sqrt{B^2 - (4 imes A imes C)}}{2 imes A}$
	Subtract op;	$w \le w - \{op\}$	
	Multiply op;	$w \le w * \{op\}$	
	Division op;	$w \le w / \{op\}$	
	Exponent op;	$w \le w \land \{op\}$	
	SquareRoot;	$W \le \sqrt{W}$	
	Squarer coot,	** - * **	

OBS: {op} indica acesso a memória

B)	Execução	Comentários sobre a execução
	WInputVar 2;	2
	Multiply A;	2 * A
	WOutput X;	X = 2 * A
	WInputVar 4;	4
	Multiply A;	4 * A
	Multiply C	4 * A * C
	WOutput Y;	Y = 4 * A * C
	WInputVar 2;	2
	WOutput Z;	Z=2
	WInput B;	В
	Exponent Z;	B^2
	Subtract Y;	$B^2 - (4 * A * C)$
	SquareRoot;	$\sqrt{B^2 - (4 * A * C)}$
	WOutput Y;	$Y = \sqrt{B^2 - (4 * A * C)}$
	WInput B;	В
	Sum Y;	$B + \sqrt{B^2 - (4 * A * C)}$
	WOutput Y;	$Y = B + \sqrt{B^2 - (4 * A * C)}$
	WInputVar 0;	0
	Subtract Y;	$0 - B + \sqrt{B^2 - (4 * A * C)}$
	Division X;	$(-B + \sqrt{B^2} - (4 * A * C)) / 2 * A$
	WOutput S;	$S = (-B + \sqrt{B^2 - (4 * A * C)}) / (2 * A)$