

10/502270

22 JUL 2004

DT15 Rec'd PCT/PTO 22 JUL 2004

Courtesy Copies of:

International Application No. PCT/SE02/02401
International Search Report
International Preliminary Examination Report

Attorney Docket No. 6485-0041WOUS

AN APPARATUS FOR SIMULTANEOUS CLEANING
OF A LIQUID AND A GAS

"EXPRESS MAIL" MAILING LABEL

NUMBER EV 331997788 US

DATE OF DEPOSIT July 22, 2004

I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING
DEPOSITED WITH THE UNITED STATES POSTAL SERVICE
"EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE
UNDER 37 CFR 1.10 ON THE DATE INDICATED ABOVE
AND IS ADDRESSED TO THE COMMISSIONER FOR
PATENTS, P.O. BOX 1450, ALEXANDRIA, VA 22313

Ana R. Rivera

(TYPED OR PRINTED NAME OF PERSON MAILING
PAPER OR FEE)

(SIGNATURE OF PERSON MAILING PAPER OR FEE)

THIS PAGE BLANK (USPTO)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 July 2003 (31.07.2003)

PCT

(10) International Publication Number
WO 03/061838 A1

(51) International Patent Classification⁷: **B04B 1/00**

(21) International Application Number: **PCT/SE02/02401**

(22) International Filing Date:
19 December 2002 (19.12.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0200204-6 25 January 2002 (25.01.2002) SE

(71) Applicant (*for all designated States except US*): **ALFA LAVAL CORPORATE AB [SE/SE]**; Rudeboksvägen 3, S-221 00 Lund (SE).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **FRANZÉN, Peter [SE/SE]**; Måntorpsvägen 22, S-145 45 Tullinge (SE).

LAGERSTEDT, Torgny [SE/SE]; Döbelnsgatan 89, S-113 52 Stockholm (SE).

(74) Agent: **CLIVEMO, Ingemar**; Alfa Laval Corporate AB, Hans Stahles väg, S-147 80 Tumba (SE).

(81) Designated States (*national*): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM).

[Continued on next page]

(54) Title: AN APPARATUS FOR SIMULTANEOUS CLEANING OF A LIQUID AND A GAS

(57) Abstract: In an apparatus for simultaneous cleaning of a liquid and a gas a centrifugal rotor (11) for cleaning of the liquid is connected with a device (13) for cleaning of the gas. The centrifugal rotor (11) is contained in a stationary housing (1), and this housing delimits a supply passage (6) for gas to be cleaned and on its way to the cleaning device (13). The gas cleaning device (13) comprises a stack of conical separation discs (37) surrounding a gas inlet chamber (39) and surrounded by a receiving chamber (7) that is delimited by a surrounding stationary casing (2).

WO 03/061838 A1

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— *with international search report*

AN APPARATUS FOR SIMULTANEOUS CLEANING OF A LIQUID AND
A GAS

The present invention relates to an apparatus for simultaneous cleaning
5 of a liquid from first particles suspended therein and cleaning of a gas
from second particles suspended therein, in which apparatus a centrifugal
rotor is rotatable about a rotational axis and arranged for through flow and
cleaning of said liquid, a driving device is arranged for rotation of the
centrifugal rotor about said rotational axis, a gas cleaning device is
10 connected with the centrifugal rotor for rotation together therewith and is
arranged for through flow and cleaning of said gas, a stationary housing
surrounds the centrifugal rotor and delimits a passage for conducting said
gas to a gas inlet of the gas cleaning device and the gas cleaning device
includes a stack of conical separation discs, which are arranged coaxially
15 with said rotational axis and between themselves delimit flow passages
for the gas to be cleaned.

WO 99/56883 shows (in Fig. 5) and describes an apparatus of this kind,
in which the gas cleaning device includes firstly a number of conical
20 separation discs rotatable with the centrifugal rotor and secondly a
number of stationary conical separation discs. The stationary separation
discs are arranged between the rotatable separation discs. The gas
cleaning device further comprises a housing rotatable with said
centrifugal rotor, said housing being provided with a gas inlet for the gas
25 to be cleaned and supporting on its inside the rotatable separation discs,
and a stationary central tube forming a gas outlet for cleaned gas and
supporting on its outside the aforementioned stationary separation discs.
A gas cleaning device designed in this way is relatively expensive to
manufacture and, moreover, it requires a certain overpressure of the gas

to be cleaned, if the gas shall be able to flow through the gas cleaning device.

WO 99/56883 also shows (in Fig. 7) an alternative embodiment of a gas
5 cleaning device having conical separation discs. Also this gas cleaning device is relatively expensive to manufacture. Furthermore, a separate gas supply device is required, since the housing surrounding the centrifugal rotor for the cleaning of liquid, in this case, does not delimit any gas supply passage leading to the gas cleaning device.

10

The object of the present invention is to provide an apparatus for simultaneous cleaning of both a liquid and a gas, said apparatus being compact and relatively inexpensive to manufacture and, moreover, enabling cleaning of gas without the gas being subjected to a pressure drop on its passage through the gas cleaning device.
15

According to the invention, this object may be obtained by an apparatus of the initially defined kind, which is characterized in that the stack of separation discs delimits a central space in communication on one hand
20 with said passage in the stationary housing, through the inlet of the gas cleaning device, and on the other hand with radially inner parts of the flow passages between the conical discs, and that the stack of separation discs is surrounded by a stationary casing delimiting around the separation discs a receiving space, in which radial outer parts of the flow
25 passages between the conical discs open.

An apparatus constructed in this way becomes inexpensive to manufacture, since essentially the whole rotatable gas cleaning device may be constituted by a stack of conical separation discs supported by
30 one and the same support device, which in turn is supported by said

centrifugal rotor. Furthermore, the gas cleaning device during operation will actively pump the gas to be cleaned through the gas cleaning device, instead of creating a flow resistance for the gas. The apparatus in its entirety may be made very compact due to the fact that the stationary 5 housing surrounding the centrifugal rotor is used to form a supply passage for the gas to be cleaned.

To become as compact as possible the apparatus is preferably designed such that the stationary housing around the centrifugal rotor and the 10 stationary casing around the stack of separation discs are formed of a common house. Then, if desired, a supply channel for gas to be cleaned may be formed completely separate in said house, the gas inlet to the gas cleaning device being situated at any end of the gas cleaning device. For instance, the stationary housing around the centrifugal rotor – and 15 possibly even the stationary casing around the gas cleaning device – may have two surrounding walls, which between themselves delimit said supply channel. However, it is preferred that said gas inlet is situated at the end of the gas cleaning device, facing the centrifugal rotor, and that the supply channel for gas to be cleaned is formed by a space 20 surrounding the centrifugal rotor and formed between this and the stationary housing. Of course, a space of this kind may constitute a part of the supply passage for gas to be cleaned, a separate channel being formed in the casing around the separation discs and being arranged to conduct the gas further to said gas inlet, independent of at which end of 25 the gas cleaning device the gas inlet is situated.

In the case the gas inlet is facing the centrifugal rotor and a common house surrounds the centrifugal rotor as well as the separation discs, preferably an annular partition is arranged between the centrifugal rotor 30 and the gas cleaning device for conducting the gas to be cleaned from

the aforementioned space around the centrifugal rotor radially inwards to the gas inlet of the gas cleaning device.

For practical reasons and for obtaining the best possible balance of the
5 rotatable parts of the apparatus, the apparatus advantageously is arranged so that said rotational axis extends vertically, the gas cleaning device preferably being placed above the centrifugal rotor. An arrangement of this kind is especially suitable in the case the centrifugal rotor is reaction driven by means of pressurized liquid, i.e. when the
10 centrifugal rotor has a centrally situated inlet for such liquid and at least one liquid outlet spaced from the rotational axis and directed tangentially to accomplish a reaction drive of the centrifugal rotor. However, any suitable driving device may be used for the rotation of the centrifugal rotor. Thus, it may be driven by means of an electrical, hydraulical or
15 pneumatic motor. Advantageously it may be driven by means of a so-called Pelton-turbine.

An apparatus according to the present invention is especially suitable for use with a combustion engine for cleaning of both the lubricating oil of the
20 engine, which is circulated inside the engine, and crankcase gas leaving the engine at a relatively low overpressure.

The invention is described in the following with reference to the accompanying drawing, which shows a longitudinal section through an
25 apparatus for simultaneous cleaning of a liquid and a gas, e.g. lubricating oil and crankcase gas.

The apparatus in the drawing comprises a stationary house consisting of a housing 1, which is essentially cylindrical, and on top thereof a casing

2, which also is essentially cylindrical and which at the top has an end wall 3. The house 1, 2 rests on a foundation 4.

A frusto-conical partition 5 is fixedly arranged between the housing 1 and the casing 2 and divides the interior of the house into a lower chamber 6 and an upper chamber 7. The partition 5 has a central through opening 8. Gas to be cleaned may be conducted into the lower chamber 6 through an opening 9 in the foundation 4, and cleaned gas may leave the upper chamber 7 through an outlet opening 10 in the end wall 3 of the casing 2.

10

A centrifugal rotor 11 for cleaning of said liquid is arranged in the lower chamber 6 and is rotatable around a vertical axis 12. The centrifugal rotor 11 supports, on its upper side, a gas cleaning device 13 for cleaning of said gas. The gas cleaning device is situated in the upper chamber 7 and is arranged to rotate together with the centrifugal rotor 11.

The main parts of the centrifugal rotor 11 will be described below, but for a more detailed description of the centrifugal rotor reference is made to WO 99/51353. Therein, a substantially similarly designed centrifugal rotor 20 is described and shown (see especially figures 3-5). Thus, the detailed configuration of the centrifugal rotor 11 constitutes no part of the present invention.

A stationary shaft 14 extends vertically and centrally through the entire house 1, 2. The shaft 14 is at its lower end connected with a diagrammatically shown stationary member 15 and is at its upper end connected with said end wall 3. The shaft 14 is surrounded by a tubular supporting member 16, which extends through both of the chambers 6 and 7 and is journalled on the shaft 14 through a lower bearing 17 and an upper bearing 18. In the lower chamber 6 the member 16 supports said

centrifugal rotor 11, and in the same way the member 16 supports said cleaning device 13 in the upper chamber 7.

The centrifugal rotor 11 comprises a casing 19 and an end wall 20, which

5 together delimit a separation chamber 21. Both the casing 19 and the end wall 20 are connected with the tubular member 16 in a way so that they may rotate together therewith relative to the central shaft 14. A ring of separation discs 22 is arranged around the member 16 within the separation chamber 21. Every separation disc 22 extends both axially

10 and radially relative to the rotational axis 12. Preferably, the disc extends arcuately from a first to a second distance from the rotational axis 12 (see figure 5 in WO 99/51353). Axial flow channels are formed between the separation discs 22, evenly distributed around the rotational axis 12.

15 The separation discs 22 are connected with the tubular member 16 by means of an only diagrammatically shown supporting device 23. The supporting device 23 comprises a number of radially extending wings 24 situated above the separation discs 22 and evenly distributed around the rotational axis 12.

20 Below the separation discs a number of wings 25 are arranged in a similar way around the rotational axis 12. The wings 25 may extend either radially or arcuately from their radially innermost to their radially outermost edges. The wings 25 are supported by an essentially plane,

25 annular partition 26, which in turn is supported at its radially outermost part by the end wall 20 of the centrifugal rotor.

The end wall 20 is formed with two recesses situated diametrically on each side of the rotational axis 12 and forming between the end wall 20

30 and the partition 26 two outlet chambers 27 and 28 for liquid having been

cleaned in the centrifugal rotor. These outlet chambers communicate with the separation chamber 21 through passages formed between a central part of the end wall 20 and the radially innermost part of the partition 26. Each of the outlet chambers 27 and 28 communicates with a liquid outlet 5 29 and 30, respectively (merely indicated by a dashed circular line), which extends through the end wall 20 at a distance from the rotational axis 12 and is directed tangentially relative to the rotational axis.

Between the stationary central shaft 14 and the rotatable tubular supporting member 16 there is formed an annular channel 31. At its lower end this channel 31 communicates, through holes 32 in the central shaft 14, with a central inlet channel 33 in the lower part of the central shaft. The inlet channel 33, in turn, communicates with a source of pressurized liquid to be cleaned in the centrifugal rotor. At its upper end the annular 15 channel 31 communicates, through holes 34 in the tubular member 16, with the upper part of the separation chamber 21.

The gas cleaning device 13 in the upper chamber 7 comprises a lower conical end wall 35 and an upper conical end wall 36. Between these end 20 walls 35 and 36 there is arranged a stack of frusto-conical separation discs 37, which between themselves delimit flow passages for gas to be cleaned therein. The end walls 35 and 36 as well as the separation discs 37 are connected with the tubular member 16 in a way so that they are rotatable together therewith.

25

In a central part, the lower end wall 35 has a number of through holes 38 distributed around the rotational axis 12, whereas the upper end wall 36 has no such holes. Centrally in the stack of separation discs 37 a space is delimited between the end walls, forming an inlet chamber 39 for gas to 30 be cleaned. This inlet chamber may be formed, alternatively, by all of the

separation discs in their central parts having through holes similar to the holes 38 in the lower end wall 35. The inlet chamber 39 communicates both with the aforementioned central opening 8 in the conical partition 5, through the openings 38 in the lower end wall 35, and with the chamber 5 7, in which the cleaning device 13 is situated, through said flow passages between the separation discs 37.

In the cleaning device 13 the separation discs 37 are kept at a distance from each other by means of elongated spacing members (not shown), 10 which between themselves delimit the aforementioned flow passages. Such spacing members may be completely straight and extend either radially or form an angle with radii starting from the rotational axis 12. Alternatively, the spacing members may have a curved or some other suitable shape. A closer description of a cleaning device of the kind here 15 in question can be found in WO 01/36103.

The aforementioned conical partition 5 has a plurality of small through holes 40 at its radially outermost part, evenly distributed around the rotational axis 12.

20 The above described cleaning device operates as follows when used for cleaning of lubricating oil, circulating under pressure in a combustion engine, and for cleaning of crankcase gas leaving the same combustion engine.

25 Lubricating oil to be cleaned from solid particles, such as soot and possible metal particles, is supplied with an overpressure into the separation chamber 21 of the centrifugal rotor 11 through the inlet channels 33 and 31. As illustrated by means of arrows in the drawing, the 30 lubricating oil flows further substantially axially downwardly in the spaces

between the separation discs 22 and further to the two outlet chambers 27 and 28. The pressurized lubricating oil leaves the centrifugal rotor through the tangentially directed outlets 29 and 30, whereby a reaction force arises causing the centrifugal rotor to rotate around the rotational axis 12.

Lubricating oil entering the upper part of the separation chamber 21 through the openings 34 is brought into rotation by means of the wings 24 rotating with the centrifugal rotor. During its through flow of the spaces 10 between the separation discs 22 the lubricating oil is freed from particles suspended therein, which deposit onto the separation discs and then slide thereon radially outwards. When the particles have reached the outer edges of the separation discs 22 they are thrown radially outwards and deposit onto the inside of the rotor casing 11.

15 The lubricating oil freed from particles continues downwards between the separation discs and leaves the centrifugal rotor through the outlet openings 29 and 30, as earlier described. The cleaned lubricating oil is returned to the combustion engine through the opening 9 in the foundation 4.

20 Entering the cleaning device through the same opening 9 in the foundation 4 is crankcase gas to be cleaned from a mist of lubricating oil and possible accompanying solid particles. The contaminated crankcase 25 gas firstly flows upwards through the chamber 6 between the centrifugal rotor 11 and the stationary housing 1 and is then conducted towards and through the central opening 8 in the conical partition 5. The housing 1 for the centrifugal rotor 11 thus delimits a supply passage (6), leading to the gas cleaning device, for gas to be cleaned.

The main part of the crankcase gas is then conducted into the central inlet camber 39 in the gas cleaning device 13 and from there further through the flow passages between the separation discs 37. In these flow passages the crankcase gas is brought into rotation, particles suspended therein being deposited onto the separation discs 37. Separated liquid particles coalesce to a liquid, i.e. lubricating oil in this case, which as a consequence of centrifugal forces flows on the separation discs to their radially outer edges. The lubricating oil is thrown therefrom out in the chamber 7 and deposit on the inside of the casing 2 surrounding the cleaning device 13. The lubricating oil runs downwards on the casing 2 and through the holes 40 in the partition 5 into the chamber 6. Herein the lubricating oil runs further downwards on the inside of the housing 1 and is conducted through the opening 9 in the foundation 4 back to the combustion engine.

15

The cleaned crankcase gas flows out of the chamber 7 through the outlet 10 and may, if desired, be returned to the combustion engine through its air intake or be conducted to the surrounding atmosphere.

20 Due to the fact that the crankcase gas is brought into rotation between the separation discs 37, the rotating cleaning device will operate as a fan creating an underpressure at the central opening 8 in the partition 5. Crankcase gas will thus be sucked upwards through the chamber 6 around the centrifugal rotor 11 and does not have to be supplied to the 25 cleaning device 13 with an overpressure. However, this requires that the interspace between the rotating lower end wall 35 of the cleaning device 13 and the stationary partition 5 is not too large. By proper dimensioning of this interspace conditions may be created for a minimum of flow of crankcase gas between the cleaning device 13 and the partition 5.

30

Possibly, a sealing means, e.g. a labyrinth seal, may be arranged between the stationary partition 5 and the rotatable lower end wall 35, which is not desirable, though.

- 5 In the embodiment of the invention described above gas to be cleaned is conducted in direct contact with the outside of the centrifugal rotor 11 on its way to the cleaning device 13. Alternatively a separate passage may be formed in or through the housing 1 for the gas to be cleaned. Thus, for instance, the surrounding wall of the housing 1 and the stationary partition 5 may be made double-walled, so that a flow passage is formed between the walls. It is also possible to arrange a separate passage of this kind only at a part or at certain parts of the circumference of the housing 1.
- 10
- 15 In the described embodiment of the invention the centrifugal rotor 11, further, is arranged to be driven by means of reaction force from pressurized liquid released from the centrifugal rotor through tangentially directed outlets 29 and 30. Alternatively, any suitable driving device may be used to drive the centrifugal rotor and, thereby, the cleaning device 13.

CLAIMS

1. An apparatus for simultaneous cleaning of a liquid from first particles suspended therein and cleaning of a gas from second particles suspended therein, in which apparatus
 - 5 - a centrifugal rotor (11) is rotatable about a rotational axis (12) and arranged for through flow and cleaning of said liquid,
 - a driving device (29, 30) is arranged for rotation of the centrifugal rotor (11) about said rotational axis (12),
- 10 - a gas cleaning device is connected with the centrifugal rotor (11) for rotation together therewith and is arranged for through flow and cleaning of said gas,
 - a stationary housing (1) surrounds the centrifugal rotor (11) and delimits a passage for conducting said gas to a gas inlet (38) of the gas cleaning device (13) and
 - 15 - the gas cleaning device (13) includes a stack of conical separation discs (37), which are arranged coaxially with said rotational axis (12) and between themselves delimit flow passages for the gas to be cleaned,
- 20 characterized in
 - that the stack of separation discs (37) delimits a central space (39) in communication on one hand with said passage in the stationary housing (1), through the inlet (38) of the gas cleaning device (13), and on the other hand with radially inner parts of the flow passages between the conical discs (37), and
 - 25 - that the stack of separation discs (37) is surrounded by a stationary casing (2) delimiting around the separation discs a receiving space (7), in which radial outer parts of the flow passages between the conical discs (37) open.

2. An apparatus according to claim 1, in which the stationary housing (1), surrounding the centrifugal rotor (11), and the stationary casing (2), surrounding the stack of separation discs (37), are formed of a common house.

5

3. An apparatus according to claim 1 or 2; in which the gas cleaning device (13) is situated at one axial end of the centrifugal rotor (11) and said gas inlet (38) is situated at the end of the gas cleaning device (13), facing the centrifugal rotor (11).

10

4. An apparatus according to claim 3, in which said passage is constituted by a space (6) surrounding the centrifugal rotor (11) and formed between this and the stationary housing (1).

15

5. An apparatus according to claim 4, in which an annular partition (5) is arranged between the centrifugal rotor (11) and the gas cleaning device (13) and is arranged to conduct gas to be cleaned from the aforementioned space (6) towards the gas inlet (38) of the gas cleaning device (13).

20

6. An apparatus according to any one of the preceding claims, in which said rotational axis (12) extends substantially vertically and the gas cleaning device (13) is placed above the centrifugal rotor (11).

25

7. An apparatus according to any one of the preceding claims, in which the centrifugal rotor (11) has a central inlet (31-34) for a pressurized liquid and at least one liquid outlet (29, 30) spaced from said rotational axis and directed tangentially to accomplish a reaction drive of the centrifugal rotor (11).

30

-
-
-
-
-
-
-
8. An apparatus according to any one of the preceding claims, which for receiving said liquid to be cleaned communicates with a space that contains lubricating oil coming from a combustion engine, and for receiving said gas to be cleaned communicates with a space that
- 5 contains crankcase gas coming from the said combustion engine.

1/1

DT15 Rec'd PCTO 22 JUL 2004

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 02/02401

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: B04B 1/00, B04B 5/00, F01M 11/03, F01M 13/04 // B01D 45/12
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: B04B, F01M, B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI DATA, PAJ, EPO-INTERNAL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 9956883 A1 (ALFA LAVAL AB), 11 November 1999 (11.11.99), page 9, line 5 - page 12, line 25, figure 5, abstract --	1-8
A	DE 19914166 A1 (DEUTZ AG), 5 October 2000 (05.10.00), figure 1, claim 7, abstract --	1-8
P,A	EP 1217183 A1 (FILTERWERK MANN & HUMMEL GMBH), 26 June 2002 (26.06.02), abstract -----	1-8

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 March 2003

11-03-2003

Name and mailing address of the ISA/
 Swedish Patent Office
 Box 5055, S-102 42 STOCKHOLM
 Facsimile No. +46 8 666 02 86

Authorized officer
 ULF NYSTRÖM/BS
 Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

30/12/02

PCT/SE 02/02401

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9956883 A1	11/11/99	AU	4302199 A	23/11/99
		AU	4402299 A	23/11/99
		AU	9099898 A	29/03/99
		BR	9910188 A	02/01/01
		CN	1096889 B	25/12/02
		CN	1300240 T	20/06/01
		EP	1085945 A	28/03/01
		JP	2002513879 T	14/05/02
		NO	20005536 A	02/11/00
		PL	344361 A	05/11/01
		SE	9801567 D	00/00/00
		WO	9956882 A	11/11/99
DE 19914166 A1	05/10/00	NONE		
EP 1217183 A1	26/06/02	DE	10063903 A	04/07/02
		US	2002088445 A	11/07/02