## Questions on mfs

- 1. Is mfs a state-of-the-art method for logic synthesis with EXDCs?
- 2. Is mfs only designed for FPGAs? Does it also work for ASICs?

## Questions on my research with mfs

The idea is to generate approximate circuits by approximating its EXDCs with logic simulation. I start from the *mfs* method in the paper *Scalable Don't-Care-Based Logic Optimization* and *Resynthesis*. The **only** change is the structure of miter in Figure 1 (the Figure 4.2.1 in the *mfs* paper).



Figure 1: Original miter for care set computation

Instead of constructing such a miter in Figure 1 to represent the care set, I simulate the circuit for N rounds and generate a set of patterns for window inputs  $\mathbf{x}$ . Those patterns are treated as the **approximate care set** and used to synthesize the approximate circuit.

For example, the window inputs are A, B and C, and three rounds simulation patterns for ABC are 010, 111, 101. Then I use  $O(x) = \overline{ABC} + ABC + A\overline{B}C$  to represent the approximate care set.

- 1. Is the modification on *mfs* reasonable to generate approximate designs?
- 2. I have an interesting observation on c880 with my idea:
  - (a) In most cases, for some values of N within a continuous interval, the final approximate circuit does not change. For example, I increase N from 192 to 256, the results are same.
  - (b) But the error rate of the approximate circuit might change dramatically due to the addition of one simulation frame. For example, when N change from 256 to 257 (the first 256 inputs patterns for simulation are same), the error rate of the final circuit changes greatly (from 0.2% to 5%).

Is the observation caused by the property of mfs?