Imperial College London

M4/5P6

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May-June 2017

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science

Probability Theory

Date: Tuesday 23 May 2017

Time: 10:00 - 12:30

Time Allowed: 2.5 Hours

This paper has 5 Questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

All required additional material will be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers to each question as per the table below.

Raw Mark	Up to 12	13	14	15	16	17	18	19	20
Extra Credit	0	1/2	1	1 ½	2	2 ½	3	3 ½	4

- Each question carries equal weight.
- Calculators may not be used.

- 1. (i) Give the definition of a random variable, its distribution and distribution function.
 - (ii) Let F(x) be the distribution function of a random variable. Let $a \in \mathbb{R}$. Is it possible that the limit $\lim_{x\to a} F(x)$ exists but is not equal to F(a)? Give a reason for your answer.
 - (iii) Formulate the central limit theorem for independent identically distributed random variables.
- 2. (i) Give any two definitions of what it means that a sequence of random variables ζ_n converges to a random variable ζ in distribution.
 - (ii) Are $f_1(t) = \cos(t/2)$, $f_2(t) = \cos^6(t)$, $f_3(t) = \exp\{-t^6\}$ characteristic functions of some random variables? In each case, if yes: (a) describe this random variable, for example, by providing its distribution; (b) find its expectation and variance.
- 3. (i) Let \mathcal{P} be a family of probability measures on \mathbb{R} which is relatively compact with respect to weak convergence. Prove that \mathcal{P} is tight.
 - (ii) Let ζ_n , $n=1,2,\ldots$, be independent Bernoulli random variables with parameters $1/n^2$, namely $P(\zeta_n=1)=1/n^2$, $P(\zeta_n=0)=1-1/n^2$. Prove or disprove that $\zeta_n\to 0$ a.s.
- 4. Let X_k , $k=1,2,\ldots$ be positive independent identically distributed random variables, $Y_k=\frac{X_{2k-1}}{X_{2k-1}+X_{2k}}$, and $S_n=Y_1+\cdots+Y_n$. Is it true that $\frac{S_n}{n}\to a$ a.s. for some constant a? If yes, what is the value of a? Justify your answers.

- 5. (i) Let $\zeta_n, \ n=1,2,\ldots$, be independent identically distributed random variables such that $E\zeta_1=0,\ 0< E\zeta_1^2<\infty.$ Let $S_n=\zeta_1+\cdots+\zeta_n.$ Show that $\lim_{n\to\infty}E\frac{|S_n|}{n}=0.$
 - (ii) Let ζ , η be independent identically distributed random variables such that $\zeta + \eta$ has the same distribution as $\zeta + 1$. What can be said about the distribution of ζ ? Justify your answer.

	EXAMINATION SOLUTIONS 2016-17	Prob.
Question 1		Marks & seen/unseen
Parts	Let (P, F, P) be a probabi- lity space. A function 3: P-> R is called random variable if 5'(B) & F for any B & B(R) - Borel sets. The distribution P3 of 3 is a probability measure on (R, B(R)) given by	2 seen
	$P_3(B) = P(\bar{3}'(B)) \forall B \in B(R)$ The distribution function $F_3(x) = P_3(-\infty, x] \forall x \in R$	geen
	$F_3(x) = P_3(-\infty, x) \forall x \in K$	seen
îi	No, since distribution function is nondecreasing	6 ижеец
	Setter's initials Checker's Initials	Page number

;	EXAMINATION SOLUTIONS 2016-17	Course Preob
Question		Marks & seen/unseen
Parts Liù	Let $5., 5_2,$ be i.i.d. $7.V$. with $0 < E 5^2 <; V 5. \neq 0;$ $S_n = 5. + 5_2 + + 5_n$.	2. seen
	Then $P\left(\frac{S_n - ES_n}{\sqrt{VS_n}} < x\right) \xrightarrow{N \to \infty}$ $\Rightarrow \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^2/2} du$ $\forall x \in \mathbb{R}$	6 secn
	i.e. $\frac{S_n - ES_n}{\sqrt{VS_n}} \xrightarrow{d} \mathcal{N}(o_{i1}).$	
	Setter's initials L.V. Checker's initials	Page number 2

	EXAMINATION SOLUTIONS 2016-14	Course
		Prob
Question 2		Marks & seen/unseen
Parts		
i	Sn dy if	
	$Ef(s_n) \rightarrow Ef(s)$	2
	for any bounded continuous	seen
	function f(x).	
	Equivalently, if	
;	the distribution functions	
	$F_{s}(x) \rightarrow F_{s}(x)$ at any	2
	point of continuity of F3(x).	seen
Li	f.(t) = Cost/2 is the charac.	
	teristic function of Bernoulli	
	r.v. y such that	6
	P(3=1/2) = P(3=-1/2)=1/2	unsen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-14	Course Prob
Question 2		Marks & seen/unseen
Parts	Ey=0, $Vy=Ey^2=Vy$. $f_2(t)=Cost$ is the chanac- teristic function of the sum of 6 i.id. Beapulli 2.v. such that $P(y=1)=P(y=-1)=V_2$; $E(\frac{6}{2}y_i)=0$,	6 unscen
	$V(\frac{5}{5}) = \frac{5}{5}, V_5 = \frac{5}{5}$ $= 6 \cdot 1 = 6 (by independence)$ $f_3(t) = e^{-t6} \text{ is not a charace}$ $teristic function by$	1
	Marcinkiewicz theorem. Setter's initials L.Y. R.	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prob
Question 3		Marks & seen/unseen
Parts	Suppose S is not tight, i.e. $\exists E > 0$ s.t. for any compact $K \subset \mathbb{R}$, sup $P_{\alpha}(\mathbb{R} \setminus K) > E$, where $P = \{P_{\alpha}\}$. Take $K = [-n, n]$. Therefore, for any n $\exists P_{\alpha} \in P$ s.t. $P_{\alpha}(\mathbb{R} \setminus (-n, n)) > E$. (1) By relative compactness, there exists a subsequence $P_{\alpha}(\mathbb{R} \setminus (-n, n)) = \mathbb{R}$ a probability measure \mathbb{R} .	10 seen
	Setter's initials Checker's initials L.V.,	Page number

	EXAMINATION SOLUTIONS 2016-17	Prob.
Question 3		Marks & seen/unseen
Parts	By one of the definitions of weak convergence, limsup Pank (RI(-n,n)) R(RI(-n,n)) But R(RI(-n,n)) one of the definitions of weak convergence, R(RI(-n,n)) one of the definitions of weak of the convergence, R(RI(-n,n)) one of the definitions of weak convergence, R(RI(-n,n)) one of the definition of weak convergence, R(RI(-n,n)) one of the definition of weak convergence, R(R	
	Setter's initials Checker's initials	Page number

— т	TWO WINDS COLUTIONS COLUMN	
	EXAMINATION SOLUTIONS 201(-17)	Course Prob
Question 3		Marks & seen/unseen
Parts	We have that $\sum_{n=1}^{\infty} P(s_n=1) = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ Therefore, by Borel-Gantelli lemma, $P(s_n=1 \ i.o.) = 0$ The probability of the complement event $P(s_n=0 \ ev.) = 1$ i.e. $s_n \to 0$ a.s.	10 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course
Question 4		Marks & seen/unseen
Parts	1) Y's one identically distributed, in deed	()
	P(YEB)= JZ { to B} dP(x	X _{zk})
	= (2 Etis & B] d P(+) dP(s)	
	since X's are independent, identically distributed.	
	2) Yn's are independent, since, similarly,	
	$P(y_{\kappa} \in B_{\kappa}, y_{j} \in B_{j}) =$	
	$= \int \chi_{\{\frac{t}{t+s} \in B_{k}\}} \chi_{\{\frac{u}{u+v} \in B_{j}\}} \chi_{z_{j-1}, \chi_{z_{j-1}}}$	د, ن)
	= P(YRFBR) P(YjFBj)	
	×≠j.	
	Setter's initials Checker's initials L. K	Page number

.

4	EXAMINATION SOLUTIONS 2016-17	Course Prob
Question 4		Marks & seen/unseen
Parts	3) $E Y_{R} = E\left \frac{X_{2R-1}}{X_{2R-1}+X_{2R}}\right \leq$	umseen
	≤ E(1) = 1 < ∞	
	Therefore, by Kolmogorov's strong LLN,	
	Strong ZZN , $S_n \rightarrow EY$, a.s.	12
	$2EY_1 = 2\int \frac{t}{t+s} dP(t) dP(s)$	
:	$= \int \frac{t}{t+s} dP(t) dP(s) +$	41 1 1 1 1 1 1 1 1
	+ S = dP(t)dP(s)	
	= 1	
	\Rightarrow $Ey_1 = \frac{1}{2}$.	8
	Setter's initials L.K. Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course Prol Masters, V.
Question 5		Marks & seen/unseen
Parts		
i	3,32, i.i.d.	
	$E_{5,=0}$, $0 < E_{5,}^{2} < \infty$.	
	Sn = 5,++ 5n	
	By Lyapunov inequality,	
	$\left(E\frac{ S_n }{n}\right)^2 \leqslant E\frac{ S_n ^2}{n^2} =$	
:	$=\frac{1}{n^2}E\left(\sum_{j=1}^n J_j^2 + \sum_{j\neq k} J_j J_k\right)$	
	$= \frac{1}{n^2} \left(n E S_i^2 + \sum_{j \neq k} E S_j \cdot E J_k \right)$	
	(by independence)	
	= $\frac{1}{n} E S_i^2$, (since $E S_j = 0$)	
	-> 0, as n→∞	
	Thus, $E^{\lfloor \frac{S_n}{h} \rfloor} \rightarrow 0$, $n \rightarrow \infty$.	12 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2016-17	Course, Prob masterisa
Question 5		Marks & seen/unseen
1	We have for the characte- zistic functions: $(t) = (t) = (t) = (t) = (t)$ $= e^{it}(t) = (t)$ Therefore for any t , either $(t) = e^{it}(t) = (t) = 0$ But since $(t) = e^{it}(t) = (t) = 0$ But since $(t) = (t) = (t) = (t) = 0$ and since $(t) = (t) = (t) = (t) = 0$ ity of characteristic function in the implies that $(t) = (t) = (t) = (t) = 0$	Seen/unseen S UM Seen
	Hence, by uniqueness of charac- teristic punctions, 5=1 a.s.	
	Setter's initials Checker's initials L.K.	Page number

Imperial College London Department of Mathematics

Examiner's Comments

	robability	· · · · · · · · · · · · · · · · · · ·	Session:
2016-2107			
Question 1	-la to -a		
		n the candidates' overall p mon mistakes and parts o	
badly (or well) is suffici	ent. Do not refer to	individual candidates. Th	e purpose of this
exercise is to provide	guidance to the e	xternal examiners, and t	o the candidates
themselves, on how you	ou teel the cohort t	aired. Your comments wi	ll be available to
Generally well done			
			İ
			-
Marker:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Signature:		Date:	

Imperial College London Department of Mathematics

Examiner's Comments

Session:

Exam:	Probability		Session:
2016-2107			
Question 2			
exam. A brief para badly (or well) is s exercise is to pro	agraph highlighting comn sufficient. Do not refer to vide guidance to the ex	the candidates' overall p non mistakes and parts of individual candidates. The dernal examiners, and t aired. Your comments wi	of questions done ne purpose of this to the candidates
There were someting with part 2(ii)	mes difficulties		- , , ,
, , (,)			
-			
I		· · · · · · · · · · · · · · · · · · ·	
Marker: Signature:		Date:	

Imperial College London Department of Mathematics

Examiner's Comments

Exam: probability	· · · · · · · · · · · · · · · · · · ·
Session: 2016-2107	
Question 3	
Please use the space below to comment on exam. A brief paragraph highlighting commbadly (or well) is sufficient. Do not refer to exercise is to provide guidance to the exthemselves, on how you feel the cohort fastudents online.	on mistakes and parts of questions done individual candidates. The purpose of this ternal examiners, and to the candidates
Part 3(i) is the class material. Some difficulties with part 3(ii)	
Marker:	
Signature:	Date:

Imperial College London Department of Mathematics

Examiner's Comments

Exam: probability	
Session: 2016-2107	
Question 4	
Please use the space below to comment on the exam. A brief paragraph highlighting common badly (or well) is sufficient. Do not refer to indi exercise is to provide guidance to the extern themselves, on how you feel the cohort faired students online.	mistakes and parts of questions done vidual candidates. The purpose of this hal examiners, and to the candidates
Often the value of a was guessed, a complete proof was rarely done.	
a complete proof was raiety doffe.	
Marker:	
Signature: Da	te:

Imperial College London Department of Mathematics

Examiner's Comments

Exam: probability	
Session: 2016-2107	
Question 5	
exam. A brief paragraph highlighting commodadly (or well) is sufficient. Do not refer to exercise is to provide guidance to the example.	the candidates' overall performance in the non mistakes and parts of questions done individual candidates. The purpose of this xternal examiners, and to the candidates aired. Your comments will be available to
This was less well done than the other questi	ions
4	
Marker:	•
Signature:	Date: