Leçon 245. Fonctions d'une variable complexe. Exemples et applications

I. Holomorphie et analyticité

I.1. Dérivabilité complexe et holomorphie

1. DÉFINITION. Soit $\Omega \subset \mathbf{C}$ un ouvert fixé. Une fonction $f \colon \Omega \longrightarrow \mathbf{C}$ est \mathbf{C} -dérivable en un point $a \in \Omega$ si la quantité

$$\frac{f(z) - f(a)}{z - a}$$

admet une limite lorsque le complexe z tend vers le point a. Dans ce cas, la limite sera notée f'(a). Si la fonction f est \mathbf{C} -dérivable en tout point de l'ouvert Ω , alors elle est dite \mathbf{C} -dérivable sur l'ouvert Ω et la fonction $f' \colon \Omega \longrightarrow \mathbf{C}$ est sa dérivée.

- 2. EXEMPLE. La fonction $z \longmapsto z$ est **C**-dérivable sur **C** et sa dérivée est la fonction constante $z \longmapsto 1$. Plus généralement, toute fonction polynomiale est **C**-dérivable sur **C**. Cependant, la fonction $z \longmapsto \overline{z}$ n'est **C**-dérivable en aucun point.
- 3. Remarque. La somme, le produit, l'inverse et la composée de fonctions ${\bf C}$ -dérivables sont encores ${\bf C}$ -dérivables.
- 4. DÉFINITION. Une fonction $f \colon \Omega \longrightarrow \mathbf{C}$ est holomorphe sur l'ouvert Ω si elle est \mathbf{C} -dérivable en tout point de ce dernier. On note $\mathscr{H}(\Omega)$ l'ensemble des fonctions holomorphes sur Ω .
- 5. Proposition. Soient $f: \Omega \longrightarrow \mathbf{C}$ une fonction et $a \in \Omega$ un point. Alors les points suivants sont équivalents :
 - la fonction f est \mathbf{C} -dérivable au point a;
 - elle est différentiable au point a et a différentielle df(a) est une similitude directe, c'est-à-dire la multiplication par un nombre complexe;
 - elle est différentiable au point a et a différentielle df(a) est C-linéaire.
- 6. COROLLAIRE. Toute fonction C-dérivable sur Ω est différentiable sur $\Omega.$
- 7. Contre-exemple. La réciproque est fausse : la conjugaison $z \longmapsto \overline{z}$ est différentiable sur C mais elle n'est C-dérivable en aucun point.
- 8. COROLLAIRE. Une fonction $f: \Omega \longrightarrow \mathbf{C}$ est \mathbf{C} -dérivable en un point $a \in \Omega$ si et seulement si elle vérifie les équations de Cauchy-Riemann en ce point a

$$\partial_x u(a) = \partial_y v(a)$$
 et $\partial_y u(a) = -\partial_x v(a)$

où $u:=\operatorname{Re} f\colon \mathbf{R}^2\longrightarrow \mathbf{R}$ et $v:=\operatorname{Im} f\colon \mathbf{R}^2\longrightarrow \mathbf{R}.$

I.2. Séries entières

- 9. DÉFINITION. Une série entière est une série $\sum f_n$ de fonctions $f_n \colon \mathbf{C} \longrightarrow \mathbf{C}$ de la forme $f_n(z) = a_n z^n$ pour tout $z \in \mathbf{C}$ et un complexe $a_n \in \mathbf{C}$. On la note $\sum a_n z^n$.
- 10. PROPOSITION (lemme d'Abel). Soit $(a_n)_{n \in \mathbb{N}}$ une suite complexe. On suppose que la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée pour un réel r > 0. Alors la série entière $\sum a_n z^n$ converge normalement sur tout disque $\overline{\mathbb{D}}(0,s) \subset \mathbb{C}$ avec s < r.
- 11. DÉFINITION. Le rayon de convergence d'une série entière $\sum a_n z^n$ est le réel

$$R := \sup\{r \ge 0 \mid \text{la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ est born\'ee}\} \in \mathbf{R} \cup \{+\infty\}.$$

12. COROLLAIRE. Sous les mêmes notations, la série entière $\sum a_n z^n$ converge norma-

lement sur tout compact du disque D(0,R)

- 13. EXEMPLE. La fonction $z \in \mathbf{C} \longmapsto e^z \in \mathbf{C}$ est la somme de la série entière $\sum z^n/n!$ qui est de rayon de convergence infini. De même, la fonction $z \in \mathrm{D}(0,1) \longmapsto 1/(1-z)$ est la somme de la série entière $\sum z^n$ qui est de rayon de converge 1.
- 14. Proposition (formule d'Hadamard). La rayon de convergence $R \ge 0$ d'une série entière $\sum a_n z^n$ est donné par la formule

$$\frac{1}{R} = \limsup_{n \to +\infty} |a_n|^{1/n}.$$

- 15. COROLLAIRE. Une série entière $\sum a_n z^n$ et sa série dérivée $\sum (n+1)a_{n+1}z^n$ ont le même rayon de convergence.
- 16. PROPOSITION. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors sa somme $f \colon D(0,R) \longrightarrow \mathbf{C}$ est infiniment \mathbf{C} -dérivable sur le disque ouvert D(0,1).

I.3. Fonctions analytiques

17. DÉFINITION. Une fonction $f: \Omega \longrightarrow \mathbf{C}$ est développable en série entière en un point $a \in \Omega$ s'il existe une suite complexe $(c_n)_{n \in \mathbf{N}}$ et un réel r > 0 tels que

$$\forall z \in D(a, r), \qquad f(z) = \sum_{n=0}^{+\infty} a_n (z - a)^n.$$

Elle est analytique si elle est développable en série entière en tout point de l'ouvert $\Omega.$

- 18. Proposition. Toute fonction analytique est holomorphe.
- 19. EXEMPLE. La fonction $z \mapsto \cos z$ est analytique sur C.
- 20. Théorème (des zéros isolés). Soient $\Omega \subset \mathbf{C}$ un ouvert connexe et $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction analytique non nulle. Alors l'ensemble de ses zéros n'admet aucun point d'accumulation dans l'ouvert Ω .
- 21. Théorème (principe du prolongement analytique). Soient $\Omega \subset \mathbf{C}$ un ouvert connexe et $f,g \colon \Omega \longrightarrow \mathbf{C}$ deux fonctions analytiques. Si $\{z \in \Omega \mid f(z) = g(z)\}$ admet un point d'accumulation dans l'ouvert Ω , alors f = g sur Ω .
- 22. EXEMPLE. La fonction identité est la seule fonction analytique $f: \mathbf{C} \longrightarrow \mathbf{C}$ telle que f(1/n) = 1/n pour tout entier $n \in \mathbf{N}^*$.
- 23. Contre-exemple. Il est nécessaire que le point d'accumulation soit dans l'ouvert Ω . En effet, la fonction $z \in \{\text{Re} > 0\} \longmapsto \sin(\pi/z)$ s'annule en chaque point 1/n avec $n \in \mathbb{N}^*$, mais elle n'est pas nulle.

II. La théorie de Cauchy

II.1. Intégrale curviligne

- 24. DÉFINITION. Un *chemin* dans l'ouvert Ω est une fonction continue $\gamma \colon [a,b] \longrightarrow \Omega$ de classe \mathscr{C}^1 par morceaux. On dit que c'est un *lacet* lorsque $\gamma(a) = \gamma(b)$.
- 25. Exemple. Pour un complexe $a \in \mathbf{C}$ et un réel r > 0, la fonction

$$t \in [0,1] \longrightarrow a + Re^{2i\pi t}$$

décrit positivement le cercle de centre a et de rayon r.

26. DÉFINITION. L'intégrale curviligne d'une fonction continue $f:\Omega\longrightarrow {\bf C}$ le long d'un chemin $\gamma\colon [a,b]\longrightarrow \Omega$ est la quantité

$$\int_{\gamma} f(z) dz := \int_{0}^{1} f(\gamma(t)) \gamma'(t) dt.$$

27. Exemple. Soit r > 0 un réel. On note $\gamma : t \in [a, b] \longrightarrow Re^{it} \in \mathbb{C}$. Alors

$$\int_{\gamma} \frac{\mathrm{d}z}{z} = i(b - a).$$

28. DÉFINITION. L'indice d'un lacet $\gamma\colon [0,1] \longrightarrow {\bf C}$ par rapport à un point $a \in {\bf C} \backslash {\rm Im}\, \gamma$ est la quantité

$$\operatorname{Ind}_{\gamma}(a) := \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z - a}.$$

29. Proposition. La fonction $\operatorname{Ind}_{\gamma}$ est à valeurs entières, continue, constante sur chaque composante connexe de l'ouvert $\mathbb{C} \setminus \operatorname{Im}_{\gamma}$ et nulle sur celle non bornée.

II.2. Le théorème de Cauchy sur un convexe

- 30. Théorème. Soit $f: \Omega \longrightarrow \mathbf{C}$ une fonction continue sur un ouvert $\Omega \subset \mathbf{C}$. Alors elle possède une primitive sur l'ouvert Ω si et seulement si, pour tout lacet γ dans l'ouvert Ω , on a $\int_{\mathbb{R}} f(z) \, \mathrm{d}z = 0$.
- 31. Théorème (Goursat). Soient $\Omega \subset \mathbf{C}$ un ouvert convexe et $w \in \Omega$ un point. Soit $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction continue sur Ω et holomorphe sur $\Omega \setminus \{w\}$. Pour tout triangle $\Delta \subset \Omega$, on a $\int_{\partial \Delta} f(z) \, \mathrm{d}z = 0$.
- 32. Théorème (Cauchy). Sous les mêmes hypothèses, la fonction f possède une primitive sur l'ouvert Ω .
- 33. Théorème (formule de Cauchy). Soient $\gamma \colon [0,1] \longrightarrow \Omega$ un lacet et $a \in \Omega \setminus \operatorname{Im} \gamma$ un point. Soit $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe. Alors

$$\operatorname{Ind}_{\gamma}(a)f(a) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z-a} dz.$$

34. COROLLAIRE. Soit $n \in \mathbb{N}$. Sous les mêmes hypothèses, on a

$$\operatorname{Ind}_{\gamma}(a)f^{(n)}(a) = \frac{n!}{2i\pi} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz.$$

II.3. Conséquences générales

- 35. THÉORÈME. Toute fonction holomorphe est analytique.
- 36. Théorème (Morera). Soit $f:\Omega\longrightarrow {\bf C}$ une fonction continue telle que, pour tout triangle $\Delta\subset\Omega$, on ait $\int_{\partial\Delta}f(z)\,\mathrm{d}z=0$. Alors elle est holomorphe sur l'ouvert Ω .
- 37. PROPOSITION (inégalité de Cauchy). Soient $f \colon D(0,R) \longrightarrow \mathbf{C}$ une fonction holomorphe et $r \in]0,R[$ un réel. Pour tout entier $n \in \mathbf{N},$ on a

$$\frac{|f^{(n)}(0)|}{n!} \leqslant \frac{M(r)}{r^n} \quad \text{avec} \quad M(r) := \sup_{|z|=r} |f(z)|.$$

- 38. COROLLAIRE (théorème de Liouville). Toute fonction entière bornée est constante.
- 39. Théorème (d'Alembert-Gauss). Tout polynôme à coefficient complexe admet au moins une racine complexe.

- 40. Théorème. Soient (T, \mathcal{T}, μ) un espace mesuré et $F: \Omega \times T \longrightarrow \mathbf{C}$ une fonction vérifiant les points suivants :
 - pour tout $z \in \Omega$, la fonction $F(z, \cdot)$ est mesurable;
 - pour tout $t \in T$, la fonction $F(\cdot, t)$ est holomorphe sur l'ouvert Ω ;
 - pour tout compact $K \subset \Omega$, il existe une fonction $u_K \in L^1(T)$ telle que

$$\forall (z,t) \in K \times T, \qquad |F(z,t)| \leq u_K(t).$$

Alors la fonction

$$z \in \Omega \longmapsto \int_T F(z,t) \,\mathrm{d}\mu(t)$$

est holomorphe sur l'ouvert Ω .

41. THÉORÈME (principe du maximum). Soient $\Omega \subset \mathbf{C}$ un ouvert borné et $f : \overline{\Omega} \longrightarrow \mathbf{C}$ une fonction continue sur $\overline{\Omega}$ et holomorphe sur Ω . Alors

$$\forall z \in \overline{\Omega}, \qquad |f(z)| \leqslant \sup_{z \in \partial\Omega} |f(z)|.$$

42. Théorème (de l'application ouverte). Une fonction holomorphe non constante sur un ouvert connexe est une application ouverte.

III. Topologie du plan complexe et des fonctions holomorphes

III.1. L'ensemble des fonctions holomorphes

43. DÉFINITION. L'ensemble $\mathcal{H}(\Omega)$ est muni de la topologie de la convergence uniforme sur tout compact de l'ouvert Ω , c'est-à-dire celle engendrée par les semi-normes

$$p_K \colon f \in \mathscr{H}(\Omega) \longrightarrow \sup_{z \in K} |f(z)|$$

pour un compact $K \subset \Omega$.

- 44. Théorème (Weierstrass). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions holomorphes sur l'ouvert Ω qui converge uniformément sur tout compact de l'ouvert Ω vers une fonction f. Alors cette dernière est holomorphe et la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur tout compact de l'ouvert Ω vers la fonction f'.
- 45. EXEMPLE. La fonction $\zeta : s \in \{\text{Re} > 1\} \longmapsto \sum_{n=0}^{+\infty} 1/n^s$ est holomorphe.
- 46. Théorème (Montel). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions holomorphes sur l'ouvert Ω qui est uniformément bornée sur les compacts de l'ouvert Ω . Alors elle admet une sous-suite qui converge uniformément sur les compacts de l'ouvert Ω vers une fonction holomorphe.
- 47. THÉORÈME. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions holomorphes sur l'ouvert Ω . On suppose que la série $\sum_{n=0}^{+\infty} (1-f_n)$ converge normalement sur tout compact de l'ouvert Ω . Alors la fonction $\prod_{n=0}^{+\infty} f_n$ est holomorphe sur l'ouvert Ω
- 48. Proposition. La fonction gamma d'Euler

$$\Gamma : \left| \{ \operatorname{Re} > 0 \} \longrightarrow \mathbf{C}, \atop z \longmapsto \int_0^{+\infty} e^{-t} t^{z-1} \, \mathrm{d}t \right|$$

s'étend en une fonction holomorphe sur $\mathbf{C} \setminus \mathbf{Z}_{-}$.

49. DÉFINITION. Un biholomorphisme entre deux ouverts Ω et Ω' de \mathbf{C} est une fonction holomorphe bijective $f \colon \Omega \longrightarrow \Omega'$ telle que sa réciproque f^{-1} soit holomorphe. On dit que la fonction f est un automorphisme lorsque $\Omega = \Omega'$ et que les ouverts Ω et Ω' sont conformément équivalents.

50. Théorème. Soit $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe injective. Alors sa dérivée f' ne s'annule pas et l'inverse $f^{-1} \colon f(\Omega) \longrightarrow \Omega$ est holomorphe.

51. Théorème (lemme de Schwarz). Soit $f: \mathbf{D} \longrightarrow \mathbf{C}$ une fonction holomorphe sur le disque $\mathbf{D} \coloneqq \mathrm{D}(0,1)$ telle que

$$f(0) = 0$$
 et $\forall z \in \mathbf{D}, |f(z)| \le 1.$

Alors

- pour tout $z \in \mathbf{D}$, on a $|f(z)| \leq |z|$;

- on a $|f'(0)| \leq 1$.

Si une des deux dernières inégalités en atteinte en un point $a \in \mathbf{D}$, alors la fonction f est de la forme $f(z) = \lambda z$ pour une constante $\lambda \in \mathbf{U} \coloneqq \partial \mathbf{D}$.

52. THÉORÈME. Les automorphismes du disque D sont de la forme

$$z \in \mathbf{D} \longmapsto \lambda \frac{a-z}{1-\overline{a}z} \in \mathbf{D}$$

avec $a \in \mathbf{D}$ et $\lambda \in \mathbf{U}$.

53. DÉFINITION. Un ouvert $\Omega \subset \mathbf{C}$ est simplement connexe si tout lacet de cet ouvert est homotope à un lacet constant.

54. Théorème (*Riemann*). Soit $\Omega \subset \mathbf{C}$ un ouvert simplement connexe et distincts du plan \mathbf{C} tout entier. Alors il est conformément équivalent au disque \mathbf{D} .

55. Exemple. L'homographie $z\in \mathbf{H}\longmapsto (z-i)/(z+i)\in \mathbf{D}$ envoie le demi-plan supérieur $\mathbf{H}\coloneqq \{\mathrm{Im}>0\}$ sur le disque \mathbf{D} .

^[1] Éric Amar et Étienne Matheron. Analyse complexe. Cassini, 2004.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

^[3] Patrice Tauvel. Analyse complexe pour la licence 3. Dunod, 2006.