Shrinkage Estimation for Causal Inference and Experimental Design

Evan T. R. Rosenman[†], Guillaume Basse, Mike Baiocchi, Art B. Owen, and Luke Miratrix

[†]Harvard University Data Science Initiative Incoming Assistant Professor, Claremont McKenna

June 5, 2023

Motivating Setting

Randomized Controlled Trials (RCT)

• Researcher controls assignment to treatment

Observational Databases (ODB)

• Treatment assignments observed, but not controlled

Motivating Setting

Randomized Controlled Trials (RCT)

- Researcher controls assignment to treatment
 - Relatively few assumptions for unbiasedness
 - Often costly, small

Observational Databases (ODB)

- Treatment assignments observed, but not controlled
 - ullet Confounding \Longrightarrow unverifiable assumptions for unbiasedness
 - Large, often inexpensive.

Randomized Controlled Trials (RCT)

- Researcher controls assignment to treatment
 - Relatively few assumptions for unbiasedness
 - Often costly, small
- "Unbiased but imprecise"

Observational Databases (ODB)

- Treatment assignments observed, but not controlled
 - Confounding \implies unverifiable assumptions for unbiasedness
 - Large, often inexpensive.
- "Precise. but biased"

Our Approach

We consider two problems:

- How to design shrinkage estimators to merge ODB and RCT data?
- How to improve experimental design using shrinkers?

Outline

- Assumptions and Loss Function
- 2 Inference
- 3 Experimental Design
- 4 Application to the WHI

Central Role of Stratification

- Work in a stratified setting, with K strata.
 - Characterize heterogeneity in treatment effect
 - Arise from subject matter expertise, modern ML method, etc.
- Each unit i in RCT + ODB has associated stratum indicator $S_i \in \{1, ..., K\}$
- (Unobserved) Conditional avg. stratum treatment effects:

$$au_{rk} = \mathbb{E}_R (Y_i(1) - Y_i(0) \mid S_i = k)$$

 $au_{ok} = \mathbb{E}_O (Y_i(1) - Y_i(0) \mid S_i = k)$

Central Role of Stratification

- Work in a stratified setting, with K strata.
 - Characterize heterogeneity in treatment effect
 - Arise from subject matter expertise, modern ML method, etc.
- Each unit i in RCT + ODB has associated stratum indicator $S_i \in \{1, \dots, K\}$
- (Unobserved) Conditional avg. stratum treatment effects:

$$au_{rk} = \mathbb{E}_R (Y_i(1) - Y_i(0) \mid S_i = k)$$

 $au_{ok} = \mathbb{E}_O (Y_i(1) - Y_i(0) \mid S_i = k)$

Transportability of CATEs: For $k=1,\ldots,K$, treatment effects $\tau_{ok}=\tau_{rk}$, and we call their common value τ_k . Define $\boldsymbol{\tau}=(\tau_1,\ldots,\tau_K)^{\mathsf{T}}$.

Setup

Collect our estimators into vectors:

$$\hat{\boldsymbol{\tau}}_{\boldsymbol{r}} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\boldsymbol{\tau}}_{\boldsymbol{o}} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Setup

Collect our estimators into vectors:

$$\hat{\tau}_{r} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\tau}_{o} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Under mild conditions, we have

$$\hat{ au}_{m{r}} \sim \mathcal{N}\left(m{ au}, m{\Sigma}_{m{r}}
ight), ~~\hat{ au}_{m{o}} \sim \left(m{ au} + m{\xi}, m{\Sigma}_{m{o}}
ight)$$

for bias ξ and covariance matrices Σ_r and Σ_o

- $\Sigma_r = \text{diag}(\sigma_{r1}^2, \dots, \sigma_{rK}^2)$ is estimable from the data
- ξ cannot be estimated

Setup

Collect our estimators into vectors:

$$\hat{\tau}_{r} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \quad \hat{\tau}_{o} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}).$$

Under mild conditions, we have

$$\hat{ au}_{m{r}} \sim \mathcal{N}\left(m{ au}, m{\Sigma}_{m{r}}
ight), ~~\hat{ au}_{m{o}} \sim \left(m{ au} + m{\xi}, m{\Sigma}_{m{o}}
ight)$$

for bias ξ and covariance matrices Σ_r and Σ_o

- $\Sigma_r = \text{diag}(\sigma_{r1}^2, \dots, \sigma_{rK}^2)$ is estimable from the data
- ξ cannot be estimated
- Seek to design shrinkage estimator $\hat{\tau} = f(\hat{\tau}_r, \hat{\tau}_o)$ to minimize expected (weighted) squared error loss,

$$\mathcal{L}(\hat{\boldsymbol{\tau}}, \boldsymbol{\tau}) = \sum_{k} w_k (\hat{\tau}_k - \tau_k)^2.$$

Useful Prior Work

- Shrinkage estimation: a rich literature stretching back to multivariate normal mean estimation work of Stein (1956)
- Green and Strawderman (1991) and Green et al. (2005) propose estimators for shrinkage between ...
 - ullet a normal, unbiased estimator (like $\hat{ au}_r$), and
 - a biased estimator (like $\hat{\tau}_o$)

Experimental Design

Outline

- Assumptions and Loss Function
- 2 Inference

Posit a structure for the shrinkage estimator

$$f(\hat{ au}_{r},\hat{ au}_{o}) = \hat{ au}_{r} - g(\hat{ au}_{r},\hat{ au}_{o})$$

for any differentiable g satisfying $E(||\boldsymbol{g}||^2) < \infty$.

recipe for Estimators

Posit a structure for the shrinkage estimator

Inference

$$f(\hat{ au}_{m{r}},\hat{ au}_{m{o}}) = \hat{ au}_{m{r}} - m{g}(\hat{ au}_{m{r}},\hat{ au}_{m{o}})$$

for any differentiable g satisfying $E(||\boldsymbol{g}||^2) < \infty$.

Pollowing common precedent (Li et al., 1985; Xie et al., 2012), minimize unbiased risk estimate,

$$\mathsf{URE} = \frac{1}{K} \left(\mathsf{Tr} \left(\Sigma_r \mathbf{W} \right) + \sum_{k=1}^K w_k \left(g_k^2 (\hat{\tau}_r, \hat{\tau}_o) - 2\sigma_{rk}^2 \frac{\partial g_k (\hat{\tau}_r, \hat{\tau}_o)}{\hat{\tau}_{rk}} \right) \right)$$

over hyperparameters to obtain the estimator.

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Then, URE evaluates to

$$\mathsf{URE}(\lambda) = \mathsf{Tr}\left(\Sigma_r \boldsymbol{W}\right) + \lambda^2 \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^\mathsf{T} \boldsymbol{W} \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right) - 2\lambda \mathsf{Tr}(\Sigma_r \boldsymbol{W})$$

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage factor λ across components. Denote generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Then, URE evaluates to

$$\mathsf{URE}(\lambda) = \mathsf{Tr}\left(\Sigma_r \boldsymbol{W}\right) + \lambda^2 \left(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}}\right)^\mathsf{T} \boldsymbol{W} \left(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}}\right) - 2\lambda \mathsf{Tr}(\Sigma_r \boldsymbol{W})$$

which has minimizer in λ ,

$$\lambda_1^{\mathsf{URE}} = \frac{\mathsf{Tr}(\boldsymbol{\Sigma_r} \boldsymbol{W})}{(\hat{\boldsymbol{\tau_o}} - \hat{\boldsymbol{\tau_r}})^\mathsf{T} \boldsymbol{W} (\hat{\boldsymbol{\tau_o}} - \hat{\boldsymbol{\tau_r}})} \,.$$

Useful Properties of λ_1^{URE} (I)

Define

$$oldsymbol{\kappa}_1 = \hat{oldsymbol{ au_r}} - \lambda_1^{\mathsf{URE}} \left(\hat{oldsymbol{ au_r}} - \hat{oldsymbol{ au_o}}
ight)$$

Lemma (κ_1 Risk Guarantee)

Suppose $4 \max_k w_k \sigma_{rk}^2 < \sum_k w_k \sigma_{rk}^2$. Then κ_1 has risk strictly less than that of $\hat{\tau}_r$.

- Requires a dimension of at least K = 5.
- May require substantially larger *K* if high heteroscedasticity or non-uniform weights.

Its positive part analogue,

$$oldsymbol{\kappa}_{1+} = \hat{oldsymbol{ au}_{oldsymbol{r}}} - \left\{ \lambda_1^{\mathsf{URE}}
ight\}_{[0,1]} \left(\hat{oldsymbol{ au}_{oldsymbol{r}}} - \hat{oldsymbol{ au}_{oldsymbol{o}}}
ight) \, ,$$

where

$$\{u\}_{[0,1]} = \min(\max(u,0),1),$$

satisfies the following notion of optimality:

Useful Properties of λ_1^{URE} (III)

Theorem $(\kappa_{1+}$ Asymptotic Risk)

Suppose

$$\begin{split} &\limsup_{K\to\infty}\frac{1}{K}\sum_k w_k^2\sigma_{rk}^2\xi_k^2<\infty\,,\quad \limsup_{K\to\infty}\frac{1}{K}\sum_k w_k^2\sigma_{rk}^2\sigma_{ok}^2<\infty\,,\\ &\text{and}\quad \limsup_{K\to\infty}\frac{1}{K}\sum_k w_k^2\sigma_{rk}^4<\infty\,. \end{split}$$

Then, in the limit $K \to \infty$, κ_{1+} has the lowest risk among all estimators with a shared shrinkage factor across components.

Case 2: Variance-Weighted Shrinkage Factor

This procedure is general purpose. For example, may instead want an estimator that shrinks each component proportionally to σ_{rk}^2 .

Easy to solve for

$$\kappa_2 = \kappa(\lambda_2^{\mathsf{URE}}, \hat{\tau}_{\boldsymbol{r}}, \hat{\tau}_{\boldsymbol{o}}) = \hat{\tau}_{\boldsymbol{r}} - \frac{\mathsf{Tr}(\Sigma_r^2 \boldsymbol{W}) \Sigma_r}{(\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})^\mathsf{T} \Sigma_r^2 \boldsymbol{W} (\hat{\tau}_{\boldsymbol{o}} - \hat{\tau}_{\boldsymbol{r}})} (\hat{\tau}_{\boldsymbol{r}} - \hat{\tau}_{\boldsymbol{o}})$$

and its positive-part improvement,

$$\kappa_{2+} = \hat{\tau}_{\textbf{r}} - \left\{ \frac{\text{Tr}(\boldsymbol{\Sigma}_{\textbf{r}}^2 \textbf{\textit{W}})\boldsymbol{\Sigma}_{\textbf{\textit{r}}}}{(\hat{\tau}_{\textbf{\textit{o}}} - \hat{\tau}_{\textbf{\textit{r}}})^{\mathsf{T}}\boldsymbol{\Sigma}_{\textbf{\textit{r}}}^2 \textbf{\textit{W}}(\hat{\tau}_{\textbf{\textit{o}}} - \hat{\tau}_{\textbf{\textit{r}}})} \right\}_{[0,1]} (\hat{\tau}_{\textbf{\textit{r}}} - \hat{\tau}_{\textbf{\textit{o}}}) \; .$$

Simulated Data Visualization

Figure 1: Simulated shrinkage between $\hat{\tau}_r$ and $\hat{\tau}_o$ with ten strata. 90% conf. sets for $\hat{\tau}_r$ in red, with κ_{1+} and κ_{2+} shown in circles.

Outline

- Assumptions and Loss Function
- 2 Inference
- 3 Experimental Design
- Application to the WHI

A New Setting: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{ au}_{m{o}}$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Can these insights inform the design of a prospective RCT?

- Observational study already completed, $\hat{ au}_o$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Goal: choose an RCT allocation of treated and control counts per stratum, $\mathbf{d} = \{(n_{rkt}, n_{rkc})\}_{k=1}^{K}$, s.t. $\sum_{k} n_{rkt} + n_{rkc} = n_r$:

- implies how to recruit ...
- and assign treatment

tilliator allu Misk

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{r} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W}) \boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{o} - \hat{\tau}_{r})^{\mathsf{T}} \boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W} (\hat{\tau}_{o} - \hat{\tau}_{r})} \right\}_{[0,1]} (\hat{\tau}_{r} - \hat{\tau}_{o})$$

Estimator and Risk

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{r} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W}) \boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{o} - \hat{\tau}_{r})^{\mathsf{T}} \boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W} (\hat{\tau}_{o} - \hat{\tau}_{r})} \right\}_{[0,1]} (\hat{\tau}_{r} - \hat{\tau}_{o})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{\textit{r}} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{\textit{r}}^2 \textit{W}) \boldsymbol{\Sigma}_{\textit{r}}}{(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})^\mathsf{T} \boldsymbol{\Sigma}_{\textit{r}}^2 \textit{W} (\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}})} \right\}_{[0,1]} (\hat{\tau}_{\textit{r}} - \hat{\tau}_{\textit{o}})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

• design **d**

Estimator and Risk

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{r} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2}\boldsymbol{W})\boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{o} - \hat{\tau}_{r})^{\mathsf{T}}\boldsymbol{\Sigma}_{r}^{2}\boldsymbol{W}(\hat{\tau}_{o} - \hat{\tau}_{r})} \right\}_{[0,1]} (\hat{\tau}_{r} - \hat{\tau}_{o})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{a}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{\iota \iota}^2, \hat{\sigma}_{\iota c}^2)\}_{\iota=1}^K$

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{r} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W}) \boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{o} - \hat{\tau}_{r})^{\mathsf{T}} \boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W} (\hat{\tau}_{o} - \hat{\tau}_{r})} \right\}_{[0,1]} (\hat{\tau}_{r} - \hat{\tau}_{o})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector ξ.

We proceed with our estimator κ_{2+} from the prior section:

$$\kappa_{2+} = \hat{\tau}_{r} - \left\{ \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W}) \boldsymbol{\Sigma}_{r}}{(\hat{\tau}_{o} - \hat{\tau}_{r})^{\mathsf{T}} \boldsymbol{\Sigma}_{r}^{2} \boldsymbol{W} (\hat{\tau}_{o} - \hat{\tau}_{r})} \right\}_{[0,1]} (\hat{\tau}_{r} - \hat{\tau}_{o})$$

Optimize experimental design over $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_{2+} under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector $\boldsymbol{\xi}$.

Can compute this efficiently via numerical integration (Bao and Kan, 2013), as long as \boldsymbol{V} and $\boldsymbol{\xi}$ are known.

1. Naïve Optimization Assuming $\boldsymbol{\xi}=0$

Under enhanced transportability assumption, can estimate $\hat{\pmb{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\mathrm{var}}\left(Y(1) \mid S = k\right) \quad \text{ and } \quad \hat{\sigma}_{kc}^2 = \widehat{\mathrm{var}}\left(Y(0) \mid S = k\right) \,.$$

Under enhanced transportability assumption, can estimate $\hat{\pmb{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right) \quad \text{ and } \quad \hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right).$$

Use a simple heuristic: assume $\xi = 0$.

Minimize $\mathcal{R}_2(\mathbf{d}, \hat{\mathbf{V}}, \boldsymbol{\xi} = 0)$ over \mathbf{d} , via greedy swap algorithm.

- Swap units across strata, treatment statuses until no improvement in $\mathcal{R}_2(\boldsymbol{d}, \hat{\boldsymbol{V}}, 0)$
- Non-convexity: run from several starting points.

2. Heuristic Optimization Assuming Worst-Case Error Under Γ-Level Unmeasured Confounding

- Can take a more pessimistic approach using marginal sensitivity model of Tan (2006)
- For a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - can obtain associated $\hat{\sigma}_{kt}^2$ and $\hat{\sigma}_{kc}^2$.

2. Heuristic Optimization Assuming Worst-Case Error Under Γ-Level Unmeasured Confounding

- Can take a more pessimistic approach using marginal sensitivity model of Tan (2006)
- For a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - can obtain associated $\hat{\sigma}_{kt}^2$ and $\hat{\sigma}_{kc}^2$.

```
posit a value of \Gamma \Longrightarrow collect results into \boldsymbol{V}_{\Gamma} and \boldsymbol{\xi}_{\Gamma} \Longrightarrow run greedy algorithm on \mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}_{\Gamma}, \boldsymbol{\xi}_{\Gamma}) instead of \mathcal{R}_2(\boldsymbol{d}, \hat{\boldsymbol{V}}, 0)
```

Outline

- Assumptions and Loss Function
- 2 Inference
- 3 Experimental Design
- Application to the WHI

Dataset Overview

- Study of postmenopausal women initiated in 1991
- RCT of hormone therapy (HT) w/ 16k enrollees
- ODB w/ 50k comparable enrollees

Consider the effect of HT on coronary heart disease (CHD)

Results

Subgroup	# of	Loss as %	of $\hat{ au}_r$ Loss
Variable(s)	Strata	$oldsymbol{\kappa}_{1+}$	κ_{2+}
Cardiovascular disease (CVD)	2	37.6%	36.9%
Age	3	37.3%	30.1%
Solar	5	29.4%	23.5%
Age, CVD	6	<u>38.0%</u>	38.2%
CVD, Solar	10	<u>30.6%</u>	32.5%
Age, Solar	15	<u>22.4%</u>	23.0%
Age, CVD, Solar	30	50.3%	50.3%

Table 1: Empirical avg. loss using bootstrap samples of size 1,000 from RCT.

Designs

Figure 2: Allocations of $n_r = 1,000$ units in WHI with strata defined by history of CVD and age, under different design heuristics.

Acknowledgments

Thank you to my collaborators on this work:

- Guillaume Basse
- Mike Baiocchi

- Art Owen
- Luke Miratrix

Inference paper out in Biometrics
Design paper available at arXiv:2204.06687

Application to the WHI

000000

Thanks!

- Bao, Y. and Kan, R. (2013). On the moments of ratios of quadratic forms in normal random variables. *Journal of Multivariate Analysis*, 117:229–245.
- Green, E. J. and Strawderman, W. E. (1991). A James-Stein type estimator for combining unbiased and possibly biased estimators. *Journal of the American Statistical Association*, 86(416):1001–1006.
- Green, E. J., Strawderman, W. E., Amateis, R. L., and Reams, G. A. (2005). Improved estimation for multiple means with heterogeneous variances. Forest Science, 51(1):1–6.
- Li, K.-C. et al. (1985). From Stein's unbiased risk estimates to the method of generalized cross validation. The Annals of Statistics, 13(4):1352–1377.
- Roehm, E. (2015). A reappraisal of Women's Health Initiative estrogen-alone trial: long-term outcomes in women 50–59 years of age. *Obstetrics and Gynecology International*, 2015.
- Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched observational studies. Biometrika, 74(1):13–26.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Technical report, Stanford University Stanford United States.
- Tan, Z. (2006). A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637.
- Xie, X., Kou, S., and Brown, L. D. (2012). Sure estimates for a heteroscedastic hierarchical model. Journal of the American Statistical Association, 107(500):1465–1479.
- Zhao, Q., Small, D. S., and Bhattacharya, B. B. (2019). Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*.

Appendices

Practical Considerations

• Variance estimation: In practice, Σ_r not known. Must be estimated from data.

Propensity score adjustment

- No unconfoundedness ⇒
 propensity score adjustment can't remove all bias
- If ODB is large, adjusting will typically be good practice. We suggest stabilized IPTW adjustments.

Sensitivity analysis

- Marginal sensitivity model of Tan (2006) summarizes degree of unmeasured confounding by a single value, $\Gamma \geq 1$
- Can "reverse engineer" implied confounding value Γ_{imp} when using a shrinker, via work of Zhao et al. (2019)
- Evaluate Γ_{imp} to obtain a $\sqrt{\ }$ or X for using shrinker

A Note on λ_1^{URE}

The true risk-minimizing shrinkage weight is given by

$$\lambda_{
m opt} = rac{{
m Tr}(\Sigma_r oldsymbol{W})}{{
m Tr}(\Sigma_r oldsymbol{W}) + {
m Tr}(\Sigma_o oldsymbol{W}) + \underbrace{oldsymbol{\xi}^{
m T} oldsymbol{W}^2 oldsymbol{\xi}}_{
m Not \ estimable \ from \ data},$$

but observe that

$$E\left(\left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}}-\hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^{\mathsf{T}}\boldsymbol{W}\left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}}-\hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)\right)=\mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{r}}\boldsymbol{W})+\mathsf{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{o}}\boldsymbol{W})+\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{W}^{2}\boldsymbol{\xi}\,.$$

 λ_1^{URE} substitutes the quadratic form for its expectation,

$$\lambda_1^{\mathsf{URE}} = \frac{\mathsf{Tr}(\Sigma_r \mathbf{W})}{(\hat{\tau}_o - \hat{\tau}_r)^\mathsf{T} \mathbf{W} (\hat{\tau}_o - \hat{\tau}_r)}.$$

Guardrails

Simplicity of Algorithm 2 makes it easy to impose guardrails \Longrightarrow for any invalid design, just set objective value to ∞ .

Recommend simple guardrails for designs:

Sample size: to retain CLT, enforce

$$\min_{k} n_{rkt} \ge SS_{\min}, \quad \min_{k} n_{rkc} \ge SS_{\min}$$

2 Detachability: for default design $\tilde{\mathbf{d}} = \{\tilde{n}_{rkt}, \tilde{n}_{rkc}\}_k$ and tolerance parameter $\delta_d \geq 1$, enforce

$$\sum_{k} \frac{\hat{\sigma}_{kt}^2}{n'_{rkt}} + \frac{\hat{\sigma}_{kc}^2}{n'_{rkc}} \ge \delta_d \sum_{k} \frac{\hat{\sigma}_{kt}^2}{\tilde{n}_{rkt}} + \frac{\hat{\sigma}_{kc}^2}{\tilde{n}_{rkc}},$$

for any proposed design $\mathbf{d'} = \{n'_{rkt}, n'_{rkc}\}_k$.

3 Risk reduction: for proposed $d' = \{n'_{rkt}, n'_{rkc}\}_k$, enforce

$$4\max_{k}\left(\frac{\hat{\sigma}_{kt}^{2}}{n'_{rkt}}+\frac{\hat{\sigma}_{kc}^{2}}{n'_{rkc}}\right)^{2}>\sum_{k}\left(\frac{\hat{\sigma}_{kt}^{2}}{n'_{rkt}}+\frac{\hat{\sigma}_{kc}^{2}}{n'_{rkc}}\right)^{2}.$$

Application to the WHI

- Split RCT data into "gold" and "silver" subsets
- Gold dataset: used to obtain "gold standard" estimates of stratum treatment effects
- Repeat 1,000 times:
 - Draw bootstrap samples:
 - 1,000 RCT units (from silver data)
 - Observational sample (50K units)
 - Compute L_2 loss for $\hat{\tau}_{\mathbf{r}}, \kappa_{1+}, \kappa_{2+}, \delta_1, \delta_2$.
- Average loss over draws

Stratification Variables

Stratify on two variables from WHI protocol (Roehm, 2015): **Age** + **CVD** (history of cardiovascular disease)

Also include a variable unassociated with potential outcomes: **Langley** (solar irradiance)

Results

<u> </u>	<i>"</i> •	•		0/ 6 D 6	· -		
Subgroup	# of	Avg. $\hat{ au}_{ extbf{ extit{r}}}$	Loss as % of RCT-Only Loss				
Variable(s)	Strata	Loss	$\boldsymbol{\kappa}_{1+}$	$\boldsymbol{\kappa}_{2+}$	$oldsymbol{\delta}_1$	$oldsymbol{\delta}_2$	
Age	3	0.00064	40.1%	34.3%	63.3%	74.8%	
Cardiovascular disease (CVD)	2	0.00149	40.6%	39.6%	100%	100%	
Solar	5	0.00094	29.1%	18.2%	43.1%	52.9%	
Age, CVD	6	0.00574	25.0%	14.0%	30.6%	85.6%	
CVD, Solar	10	0.00803	20.9%	21.2%	21.0%	88.4%	
Age, Solar	15	0.00398	31.2%	30.4%	28.4%	58.4%	
Age, CVD, Solar	30	0.02901	15.8%	16.1%	15.7%	88.3%	

Table 2: Empirical risk using bootstrap samples of size 1,000 from RCT data.

Simulations Set-Up (I)

- ODB has 20K units $(j \in \mathcal{O})$. RCT has 1,000 $(i \in \mathcal{E})$
- Untreated potential outcomes $Y_\ell \in \{0,1\}$ for $\ell \in \mathcal{O} \cup \mathcal{E}$ sampled as indep. Bernoullis with

$$\Pr(Y_{\ell}(0) = 1 \mid \mathbf{x}_{\ell}) = \frac{1}{1 + e^{-\alpha - \beta^{\mathsf{T}} \mathbf{x}_{\ell} + \varepsilon_{\ell}}}, \quad \text{for } \beta = (1, 1, 1, 1, 1)^{\mathsf{T}}$$

for covariates $X_{\ell} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, I_5)$, α chosen s.t. mean is 10%.

• Treatment variables W_j for $j \in \mathcal{O}$ sampled via

$$\Pr(W_j = 1 \mid \mathbf{x}_j) = \frac{1}{1 + e^{-\gamma^T \mathbf{x}_j}}, \text{ for } \gamma = (\sqrt{2}, \sqrt{2}, \sqrt{2}, 0, 0)^T.$$

Simulations Set-Up (II)

- Treatment effects
 - Define k = 1, ..., 12 strata based on first + second covariate
 - Assign τ_k , stratum CATEs, via 3 treatment effect models:

$$au_k = T, \quad au_k = -T imes rac{k}{K}, \quad ext{and} \quad au_k = T imes \left(rac{k}{K}
ight)^2$$

- T chosen so that Cohen's D in ODB equals 0.5
- Simulation structure
 - Sample ODB data a single time. Correct via SIPW.
 - Compute RCT designs under different heuristics
 - Resample RCT units 5,000 times. For each sample, compute L_2 error in estimating τ using $\hat{\tau}_r, \kappa_2$, and κ_{2+}

Idealized Case: All Covariates Measured

					Max Bias, Γ Value				
Est	Trt	Eq.	Ney.	Naïve	1.0	1.1	1.2	1.5	Oracle
$\hat{ au}_{r}$		100%	87%	91%	100%	96%	94%	94%	96%
κ_2	С	82%	48%	44%	52%	48%	47%	50%	42%
κ_{2+}		38%	28%	26%	26%	26%	26%	28%	23%
$\hat{ au}_{r}$		100%	89%	92%	95%	94%	95%	97%	104%
κ_2	ℓ	93%	66%	58%	58%	57%	60%	64%	50%
κ_{2+}		59%	51%	45%	43%	45%	47%	49%	33%
$\hat{ au}_{r}$		100%	86%	91%	95%	98%	94%	92%	91%
κ_2	q	81%	47%	45%	52%	52%	50%	48%	41%
κ_{2+}		37%	29%	27%	28%	28%	30%	29%	25%

Table 3: Risk over 5,000 iterations of $\hat{\tau}_r$, κ_2 , and κ_{2+} in the case of no unmeasured confounding in the observational study. Risks are expressed as a percentage of the risk of $\hat{\tau}_r$ using an equally allocated experiment, for each of the three treatment effect models.

Realistic Case: Third Covariate Missing

					Max Bias, Г Value				
Est	Trt	Eq.	Ney.	Naïve	1.0	1.1	1.2	1.5	Oracle
$\hat{ au}_{ extbf{r}}$		100%	90%	90%	90%	92%	93%	95%	102%
κ_2	С	102%	81%	74%	72%	72%	72%	77%	69%
κ_{2+}		96%	80%	74%	71%	72%	72%	76%	67%
$\hat{ au}_{ extbf{r}}$		100%	93%	93%	94%	95%	96%	96%	104%
κ_2	ℓ	102%	85%	77%	75%	76%	77%	79%	73%
κ_{2+}		98%	84%	77%	75%	76%	76%	79%	71%
$\hat{ au}_{ extbf{r}}$		100%	89%	90%	93%	92%	91%	96%	96%
κ_2	q	101%	74%	69%	68%	68%	67%	73%	66%
κ_{2+}		88%	72%	67%	66%	66%	65%	71%	63%

Table 4: Risk over 5,000 iterations of $\hat{\tau}_r$, κ_2 , and κ_{2+} under various experimental designs, in the case of unmeasured confounding in the observational study via failure to measure the third covariate.

1. Neyman Allocation

Using stronger form of Assumption 3 (shared variances), we can estimate from the ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right) \quad \text{and} \quad \hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right).$$

Simplest design heuristic: use a Neyman allocation without a cost constraint, e.g.

$$n_{rkt} = \frac{n_r \cdot \hat{\sigma}_{kt}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2} \quad \text{and} \quad n_{rkc} = \frac{n_r \cdot \hat{\sigma}_{kc}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2}.$$

Optimizes over only the non-shrinkage portion of the risk, but reasonable in many practical settings.

Improving Interpretability of κ_{1+}

• Recall: λ_1^{URE} can be interpreted as an estimate of

$$\lambda_{\text{opt}} = \frac{\text{Tr}(\Sigma_r \boldsymbol{W})}{\text{Tr}(\Sigma_r \boldsymbol{W}) + \text{Tr}(\Sigma_o \boldsymbol{W}) + \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{W}^2 \boldsymbol{\xi}},$$

true MSE-minimizing weight on $\hat{ au}_{m{o}}$ in a convex combination

- ullet We can use this idea to improve interpretability of $\kappa_{1+}!$
- Key idea: frame in context of sensitivity model of Tan (2006)

Prior Work

- Marginal sensitivity model of Tan (2006) summarizes degree of unmeasured confounding by a single value, $\Gamma \ge 1$
 - Γ bounds odds ratio of treatment prob. conditional on potential outcomes + covariates vs. covariates only
 - Related to the famous model of Rosenbaum (1987), but extends to the setting of inverse probability weighting
- Zhao et al. (2019) derive valid confidence intervals for causal estimates under the set of models indexed by any choice of Γ
 - Implicitly maps Γ to a worst-case bias $\xi(\Gamma)$ and variance $\Sigma_O(\Gamma)$
 - Under some assumptions, allows us to obtain worst-case estimate of λ_{opt} as a function of Γ , which we call $\lambda(\Gamma)$

Relating the Models

- Intuition: larger Γ (confounding parameter) \Longrightarrow optimal weight λ_{opt} is smaller
- Let $\Gamma_{imp} = \sup\{\Gamma : \lambda(\Gamma) > \lambda_1^{URE}\}$
 - Largest value Γ for which the optimal shrinkage factor $\lambda(\Gamma)$ is greater than our shrinkage parameter λ_1^{URE} .
- \bullet Γ_{imp} can be used to evaluate level of shrinkage
 - If we believe true confounding level $\Gamma < \Gamma_{imp},$ then

$$\lambda_1^{\mathsf{URE}} pprox \lambda(\Gamma_{\mathsf{imp}}) \leq \lambda_{\mathsf{opt}} = \lambda(\Gamma)$$

Hence the shrinkage level is conservative. \checkmark

• If we believe $\Gamma > \Gamma_{imp}$, then estimator is overshrinking, relies too much on the observational estimate. X

1. Naïve Optimization Assuming $\xi = 0$ (I)

Using stronger Assumption 3 (shared var), can estimate from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right) \quad \text{and} \quad \hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right).$$

Define $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi}) = \mathcal{R}(\kappa_2)$ analyzed under design \boldsymbol{d} , potential outcome variances $\boldsymbol{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kt}^2)\}_{k=1}^K$, and error $\boldsymbol{\xi}$.

Simple heuristic: assume $\xi = 0$. Then solve:

minimize
$$\mathcal{R}_{2}(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$$

subject to $\boldsymbol{\xi} = 0, \boldsymbol{V} = \{(\hat{\sigma}_{kt}^{2}, \hat{\sigma}_{kc}^{2})\}_{k=1}^{K},$
 $0 < n_{rkt}, n_{rkc}, , k = 1, ..., K,$ (1)
 $n_{r} = \sum_{k} n_{rkt} + n_{rkc}.$

But $\mathcal{R}_2(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$ is not convex in the design \boldsymbol{d} ...

1. Naïve Optimization Assuming $\xi = 0$ (II)

A practical approach: **greedy algorithm**. Define d_j as design on j^{th} iteration, and define

 $\mathcal{D}_j = \{ \boldsymbol{d'} \mid \ \boldsymbol{d'} \text{ changes one unit across strata/treatment level from } \boldsymbol{d}_j \} \,.$

Run Algorithm 2 from several values of d_0 and take minimum:

Start with design
$$\mathbf{d}_0 = \{(n_{rkt}^{(0)}, n_{rkc}^{(0)})\}_k$$
.
For iteration $j = 1, 2, \dots$:

For each design \mathbf{d}' in \mathcal{D}_{j-1} :

Compute $\mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0)$.

Set $\mathbf{d}_j = \underset{\mathbf{d}' \in \mathcal{D}_{j-1}}{\operatorname{argmin}} \mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0)$

If $\mathcal{R}_2(\mathbf{d}_j, \mathbf{V}, 0) >= \mathcal{R}_2(\mathbf{d}_{j-1}, \mathbf{V}, 0)$

Return \mathbf{d}_{j-1} .