HMMT February 2022

February 19, 2022

Team Round

1. [20] Let (a_1, a_2, \ldots, a_8) be a permutation of $(1, 2, \ldots, 8)$. Find, with proof, the maximum possible number of elements of the set

$$\{a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_8\}$$

that can be perfect squares.

Proposed by: Akash Das

Answer: 5

Solution: We claim the maximum is 5, achieved by the sequence (1, 3, 5, 7, 2, 4, 6, 8). Now we prove that we cannot do better.

Since $a_1 + a_2 + \ldots + a_8 = 1 + 2 + \ldots + 8 = 36$, then there are at most 6 squares in

$${a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_8}.$$

Note that if $a_1 + \cdots + a_k = n^2$ and $a_1 + \cdots + a_j = (n+1)^2$, then $a_{k+1} + \cdots + a_j = 2n+1$. Since 2n+1 is odd, a_m must be odd for some $m \in [k+1,j]$.

Thus, if all of 1, 4, 9, 16, 25, and 36 are in

$${a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_8},$$

then $a_1 = 1$, and there are five more odd values in $\{a_1, a_2, \dots, a_8\}$, which is a contradiction because there are only four odd numbers in $\{1, 2, \dots, 8\}$.

2. [25] Find, with proof, the maximum positive integer k for which it is possible to color 6k cells of 6×6 grid such that, for any choice of three distinct rows R_1, R_2, R_3 and three distinct columns C_1, C_2, C_3 , there exists an uncolored cell c and integers $1 \le i, j \le 3$ so that c lies in R_i and C_j .

Proposed by: Saba Lepsveridze

Answer: 4

Solution: The answer is k = 4. This can be obtained with the following construction:

It now suffices to show that k=5 and k=6 are not attainable. The case k=6 is clear. Assume for sake of contradiction that the k=5 is attainable. Let r_1, r_2, r_3 be the rows of three distinct uncolored cells, and let c_1, c_2, c_3 be the columns of the other three uncolored cells. Then we can choose R_1, R_2, R_3 from $\{1, 2, 3, 4, 5, 6\} \setminus \{r_1, r_2, r_3\}$ and C_1, C_2, C_3 from $\{1, 2, 3, 4, 5, 6\} \setminus \{c_1, c_2, c_3\}$ to obtain a contradiction.

3. [25] Let triangle ABC be an acute triangle with circumcircle Γ . Let X and Y be the midpoints of minor arcs \widehat{AB} and \widehat{AC} of Γ , respectively. If line XY is tangent to the incircle of triangle ABC and the radius of Γ is R, find, with proof, the value of XY in terms of R.

Proposed by: Akash Das

Answer: $\sqrt{3}R$

Solution: Note that X and Y are the centers of circles (AIB) and (AIC), respectively, so we have XY perpendicularly bisects AI, where I is the incenter. Since XY is tangent to the incircle, we have AI has length twice the inradius. Thus, we get $\angle A = 60^{\circ}$. Thus, since $\widehat{XY} = \frac{\widehat{BAC}}{2}$, we have \widehat{XY} is a 120° arc. Thus, we have $XY = R\sqrt{3}$.

4. [30] Suppose $n \ge 3$ is a positive integer. Let $a_1 < a_2 < \cdots < a_n$ be an increasing sequence of positive real numbers, and let $a_{n+1} = a_1$. Prove that

$$\sum_{k=1}^{n} \frac{a_k}{a_{k+1}} > \sum_{k=1}^{n} \frac{a_{k+1}}{a_k}.$$

Proposed by: Akash Das

Solution 1: We will use induction. The base case is n=3. In this case, we want to show that

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} > \frac{a_2}{a_1} + \frac{a_3}{a_2} + \frac{a_1}{a_3}$$
.

Equivalently, we want to show

$$a_1^2 a_3 + a_2^2 a_1 + a_3^2 a_2 > a_1^2 a_2 + a_2^2 a_3 + a_3^2 a_1 \iff a_1^2 (a_3 - a_2) + a_3^2 (a_2 - a_1) > a_2^2 (a_3 - a_1)$$

$$\iff (a_3^2 - a_2^2)(a_2 - a_1) > (a_2^2 - a_1^2)(a_3 - a_2)$$

$$\iff a_3 + a_2 > a_2 + a_1,$$

which is true.

Now assume the claim is true for $n \geq 3$. Then, we have that

$$\frac{a_1}{a_3} + \frac{a_3}{a_4} + \dots + \frac{a_n}{a_{n+1}} + \frac{a_{n+1}}{a_1} > \frac{a_3}{a_1} + \frac{a_4}{a_3} + \dots + \frac{a_{n+1}}{a_n} + \frac{a_1}{a_{n+1}}.$$

We also have that

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} > \frac{a_2}{a_1} + \frac{a_3}{a_2} + \frac{a_3}{a_1}.$$

Adding the two inequalities and simplifying gives the desired result.

Solution 2: The points $(a_1, \frac{1}{a_1}), (a_2, \frac{1}{a_2}), (a_3, \frac{1}{a_3}), \dots, (a_n, \frac{1}{a_n})$ form a counter-clockwise oriented polygon. Thus, we have the area, A, which must be positive, can be calculated by Shoelace theorem:

$$A = \frac{1}{2} \left(\sum_{k=1}^{n} \frac{a_k}{a_{k+1}} - \sum_{k=1}^{n} \frac{a_{k+1}}{a_k} \right).$$

Since A is positive, we are done.

Solution 3: For $1 \le i \le n-1$, let $r_i = a_{i+1}/a_i$. Then the inequality becomes

$$r_1r_2\cdots r_{n-1} + \frac{1}{r_1} + \cdots + \frac{1}{r_{n-1}} > \frac{1}{r_1r_2\cdots r_{n-1}} + r_1 + \cdots + r_{n-1}.$$

If we let $s_i = \log r_i$ and $f(s) = e^s - e^{-s}$, this is the same as

$$f(s_1 + \dots + s_{n-1}) > f(s_1) + \dots + f(s_{n-1}).$$

This follows from the convexity of f and the fact that f(0) = 0.

5. [40] Let ABC be a triangle with centroid G, and let E and F be points on side BC such that BE = EF = FC. Points X and Y lie on lines AB and AC, respectively, so that X, Y, and G are not collinear. If the line through E parallel to XG and the line through F parallel to YG intersect at $P \neq G$, prove that GP passes through the midpoint of XY.

Proposed by: Eric Shen

Solution: Let CG intersect AB at N. Then N is the midpoint of AB and it is known that $\frac{CG}{AB} = 2 = \frac{CE}{EB}$, so $EG \parallel AB$. Moreover, since FE = EB, we have [EFG] = [EXG]. Similarly, [EFG] = [FYG]. Now we have [PXG] = [EXG] = [EFG] = [FYG] = [PYG], so PG bisects XY, as desired.

6. [45] Let $P(x) = x^4 + ax^3 + bx^2 + x$ be a polynomial with four distinct roots that lie on a circle in the complex plane. Prove that $ab \neq 9$.

Proposed by: Akash Das

Answer:

Solution: If either a=0 the problem statement is clearly true. Thus, assume that $a \neq 0$. Let the roots be $0, z_1, z_2, z_3$, and let the circle through these points be C. Note that we have

$$\frac{3}{z_1 + z_2 + z_3} = -\frac{3}{a},$$
$$\frac{\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}}{3} = -\frac{b}{3}.$$

Note that the map $z \to \frac{1}{z}$ maps C to some line L. Thus, the second equation represents the average of three points on L, which must be a point on L, while the second equation represents the reciprocal of the centroid of z_1, z_2, z_3 . Since this centroid doesn't lie on C, we must have its reciprocal doesn't lie on L. Thus, we have

$$-\frac{3}{a} \neq -\frac{b}{3} \implies ab \neq 9.$$

7. **[50]** Find, with proof, all functions $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ such that

$$f(x)^{2} - f(y)f(z) = x(x+y+z)(f(x) + f(y) + f(z))$$

for all real x, y, z such that xyz = 1.

Proposed by: Akash Das

Answer:
$$f(x) = 0 \text{ or } f(x) = x^2 - \frac{1}{x}.$$

Solution 1: The answer is either f(x) = 0 for all x or $f(x) = x^2 - \frac{1}{x}$ for all x. These can be checked to work.

Now, I will prove that these are the only solutions. Let P(x, y, z) be the assertion of the problem statement.

Lemma 1. $f(x) \in \{0, x^2 - \frac{1}{x}\}$ for all $x \in \mathbb{R} \setminus \{0\}$.

Proof. P(1,1,1) yields f(1)=0. Then, $P(x,1,\frac{1}{x})$ and $P(1,x,\frac{1}{x})$ yield

$$f(x)^{2} = x\left(x + \frac{1}{x} + 1\right)(f(x) + f(\frac{1}{x})),$$

$$-f(x)f(\frac{1}{x}) = \left(x + \frac{1}{x} + 1\right)(f(x) + f(\frac{1}{x})).$$

Thus, we have $f(x)^2 = -xf(x)f(\frac{1}{x})$, so we have f(x) = 0 or $f(\frac{1}{x}) = -\frac{f(x)}{x}$. Plugging in the latter into the first equation above gives us

$$f(x)^2 = x(x + \frac{1}{x} + 1)(f(x) - \frac{f(x)}{x}),$$

which gives us f(x) = 0 or $f(x) = x^2 - \frac{1}{x}$. This proves Lemma 1.

Lemma 2. If f(t) = 0 for some $t \neq 1$, then we have f(x) = 0 for all x.

Proof. $P(x,t,\frac{1}{tx})$ and $P(t,x,\frac{1}{tx})$ give us

$$f(x)^{2} = x(x + \frac{1}{tx} + t)(f(x) + f(\frac{1}{tx})),$$

$$-f(x)f(\frac{1}{tx}) = t(x + \frac{1}{tx} + t)(f(x) + f(\frac{1}{tx})).$$

Thus we have $tf(x)^2 = -xf(x)f(\frac{1}{tx})$, so f(x) = 0 or $f(\frac{1}{tx}) = -\frac{t}{x}f(x)$. Plugging in the latter into the first equation gives us

$$f(x)^2 = x(x + \frac{1}{tx} + t)(f(x) - \frac{tf(x)}{x}),$$

which gives us either f(x)=0 or $f(x)=x(x+t+\frac{1}{tx})(1-\frac{t}{x})=x^2-\frac{1}{x}-(t^2-\frac{1}{t})$. Note that since the ladder expression doesn't equal $x^2-\frac{1}{x}$, since $t\neq 1$, we must have that f(x)=0. Thus, we have proved lemma 2.

Combining these lemmas finishes the problem.

Solution 2: Suppose xyz = 1 and $x + y + z \neq 0$ and that x, y, z are not all the same. Then we have

$$f(x)^{2} - f(y)f(z) = x(x+y+z)(f(x)+f(y)+f(z)),$$

$$f(y)^{2} - f(z)f(x) = y(x+y+z)(f(x)+f(y)+f(z)),$$

$$f(z)^{2} - f(x)f(y) = z(x+y+z)(f(x)+f(y)+f(z)).$$

Squaring the first equation and subtracting the second equation times the third gives us: $f(x)F(x,y,z) = (x^2 - yz)G(x,y,z)^2$, where $F(x,y,z) = f(x)^3 + f(y)^3 + f(z)^3 - 3f(x)f(y)f(z)$ and G(x,y,z) = (x+y+z)(f(x)+f(y)+f(z)). If F(x,y,z)=0, it is not too hard to see that we get f(x)=f(y)=f(z)=0. If not, then we can let $K=\frac{G^2}{F}$ and we substitute $(f(x),f(y),f(z))=(K(x^2-yz),K(y^2-xz),K(z^2-xy))$ into the first equation to get $K^2x(x^3+y^3+z^3-3xyz)=Kx(x^3+y^3+z^3-3xyz)$. Thus, we have K=0 or K=1. Thus, we have either (f(x),f(y),f(z))=(0,0,0) or $(f(x),f(y),f(z))=(x^2-yz,y^2-zx,z^2-xy)$.

Thus, f(0.5) = 0 or $f(0.5) = 0.5^2 - \frac{1}{0.5}$. If the former is true, then for all y and z such that yz = 2 and $y + z \neq 0.5$, we have f(y) = 0. However, this gives that f(y) = 0 for all y. Likewise, if the latter were true, we would have $f(y) = y^2 - \frac{1}{y}$ for all y, so we are done.

8. [50] Let $P_1P_2\cdots P_n$ be a regular n-gon in the plane and a_1,\ldots,a_n be nonnegative integers. It is possible to draw m circles so that for each $1 \leq i \leq n$, there are exactly a_i circles that contain P_i on their interior. Find, with proof, the minimum possible value of m in terms of the a_i .

Proposed by: Daniel Zhu

Answer:
$$\max(a_1, ..., a_n, \frac{1}{2} \sum_{i=1}^n |a_i - a_{i+1}|)$$

Solution: For convenience, we take all indices modulo n. Let [n] be the set $\{1, 2, ..., n\}$. Also, let $M = \max(a_1, ..., a_n)$, $d = \frac{1}{2} \sum_i |a_i - a_{i+1}|$, and $M' = \max(M, d)$. We claim that M' is the answer.

Let Ω be the circumcircle of the polygon.

First let's prove that $m \geq M'$. Obviously $m \geq M$. Also, there must be at least $|a_i - a_{i+1}|$ circles crossing Ω between P_i and P_{i+1} , and a circle can cross Ω at most twice. Thus $m \geq d$.

We will present two ways to arrive at a construction.

Inductive construction. We use induction on $\sum_i a_i$. If all the a_i are zero, then the problem is trivial. Now assume that not all the a_i are zero the idea is that we are going to subtract 1 from a consecutive subset of the a_i so that the value of M' goes down by 1.

There are two cases. First of all, if $a_i = 0$ for some i, then we can choose such an i so that $a_{i+1} > 0$. Then, let j be the minimal positive integer so that $a_{i+j} = 0$. Then subtract 1 from $a_{i+1}, \ldots, a_{i+j-1}$. It is clear that d decreases by 1. If $a_{i+j} = a_{i+j+1} = \cdots = a_i = 0$, then M also goes down by 1. If not, then M < d, so M' goes down by 1 anyway.

The second case is when $a_i > 0$ for all i. If all the a_i are the same then we are done by subtracting 1 from everything. If not, we can find i, j with j > i+1 so that $a_i = M$, $a_j = M$, and $a_{i+1}, a_{i+2}, \ldots, a_{j-1} < M$. Then subtract 1 from the complement of $a_j, a_{j+1}, \ldots, a_{i-1}$. Then M goes down by 1 and d goes down by 1.

Non-inductive construction. We will prove that if $M \leq d$, then we may choose m = d. If M > d, then since $d \geq M - \min(a_1, \ldots, a_n)$ we can subtract M - d from every a_i , draw M - d circles containing every point, and apply the below construction.

Let $a_i' = a_i - \min_j(a_j)$, $A_h = \{i \mid a_i' < h, a_{i+1}' \ge h\}$, $B_h = \{i \mid a_i' \ge h, a_{i+1}' < h\}$. Also, let $s_h = |A_h| = |B_h|$. Note that $d = \sum_h s_h$ and that $s_h > 0 \iff h \le \max(a_i')$.

For $h \leq \max(a'_i)$ and $1 \leq j \leq s_h$, define an arrangement of circles $C_h^{(j)}$ as follows: let the elements of A_h and B_h be $a_1, b_1, a_2, b_2, \ldots$ in order. Then for each $i \leq s_h$ add a circle covering the points in the interval $(a_i, b_{i+j}]$. One can show that point P_i is covered by circles j times if $a'_i \geq h$ and j-1 times otherwise.

Now, for some choice of j_h for all h, consider taking $\bigcup_h C_h^{(j_h)}$. Then, P_i is covered by circles $\sum_h j_h + a_i - M$ times. If we choose the j_h so that $\sum_h j_h = M$, which can be shown to be possible, we are done.

9. [55] Let Γ_1 and Γ_2 be two circles externally tangent to each other at N that are both internally tangent to Γ at points U and V, respectively. A common external tangent of Γ_1 and Γ_2 is tangent to Γ_1 and Γ_2 at P and Q, respectively, and intersects Γ at points X and Y. Let M be the midpoint of the arc \widehat{XY} that does not contain U and V. Let Z be on Γ such $MZ \perp NZ$, and suppose the circumcircles of QVZ and PUZ intersect at $T \neq Z$. Find, with proof, the value of TU + TV, in terms of R, r_1 , and r_2 , the radii of Γ , Γ_1 , and Γ_2 , respectively.

Proposed by: Akash Das

Answer:
$$\frac{(Rr_1 + Rr_2 - 2r_1r_2)2\sqrt{r_1r_2}}{|r_1 - r_2|\sqrt{(R - r_1)(R - r_2)}}$$

Solution: By Archimedes lemma, we have M, Q, V are collinear and M, P, U are collinear as well. Note that inversion at M with radius MX shows that PQUV is cyclic. Thus, we have $MP \cdot MU = MQ \cdot MV$, so M lies on the radical axis of (PUZ) and (QVZ), thus T must lie on the line MZ. Thus, we have $MZ \cdot MT = MQ \cdot MV = MN^2$, which implies triangles MZN and MNT are similar. Thus, we have $NT \perp MN$. However, since the line through O_1 and O_2 passes through N and is perpendicular to MN, we have T lies on line O_1O_2 . Additionally, since $MZ \cdot MT = MN^2 = MX^2$, inversion at M with radius MX swaps Z and T, and since (MXY) maps to line XY, this means T also lies on XY.

Therefore, T is the intersection of PQ and O_1O_2 , and thus by Monge's Theorem, we must have T lies on UV.

Now, to finish, we will consider triangle OUV. Since O_1O_2T is a line that cuts this triangle, by Menelaus, we have

$$\frac{OO_1}{O_1U} \cdot \frac{UT}{VT} \cdot \frac{VO_2}{O_2O} = 1.$$

Using the values of the radii, this simplifies to

$$\frac{R-r_1}{r_1} \cdot \frac{UT}{VT} \cdot \frac{r_2}{R-r_2} = 1 \implies \frac{UT}{VT} = \frac{r_1(R-r_2)}{r_2(R-r_1)}.$$

Now, note that

$$TU \cdot TV = TP \cdot TQ = \frac{4r_1^2 r_2^2}{(r_1 - r_2)^2}.$$

Now, let $TU = r_1(R - r_2)k$ and $TU = r_2(R - r_1)k$. Plugging this into the above equation gives

$$r_1 r_2 (R - r_1)(R - r_2)k^2 = \frac{4(r_1 r_2)^2}{(r_1 - r_2)^2}.$$

Solving gives

$$k = \frac{2\sqrt{r_1 r_2}}{|r_1 - r_2|\sqrt{(R - r_1)(R - r_2)}}.$$

To finish, note that

$$TU + TV = k(Rr_1 + Rr_2 - 2r_1r_2) = \frac{2(Rr_1 + Rr_2 - 2r_1r_2)\sqrt{r_1r_2}}{|r_1 - r_2|\sqrt{(R - r_1)(R - r_2)}}$$

10. [60] On a board the following six vectors are written:

$$(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1).$$

Given two vectors v and w on the board, a move consists of erasing v and w and replacing them with $\frac{1}{\sqrt{2}}(v+w)$ and $\frac{1}{\sqrt{2}}(v-w)$. After some number of moves, the sum of the six vectors on the board is u. Find, with proof, the maximum possible length of u.

Proposed by: Daniel Zhu

Answer: $2\sqrt{3}$

Solution: For a construction, note that one can change

$$(1,0,0), (-1,0,0) \to (\sqrt{2},0,0), (0,0,0) \to (1,0,0), (1,0,0)$$

and similarly for (0,1,0), (0,-1,0) and (0,0,1), (0,0,-1). Then u=(2,2,2).

For the bound, argue as follows: let the vectors be $v_1, \ldots, v_6, n = (x, y, z)$ be any unit vector, and $S = \sum_i (n \cdot v_i)^2$, where the sum is over all vectors on the board. We claim that S is invariant. Indeed, we have

$$\left(n \cdot \frac{1}{\sqrt{2}} (v + w) \right)^2 + \left(n \cdot \frac{1}{\sqrt{2}} (v - w) \right)^2 = \left(\frac{n \cdot v + n \cdot w}{\sqrt{2}} \right)^2 + \left(\frac{n \cdot v - n \cdot w}{\sqrt{2}} \right)^2$$

$$= \frac{2(n \cdot v)^2 + 2(n \cdot w)^2}{2}$$

$$= (n \cdot v)^2 + (n \cdot w)^2.$$

Also, at the beginning we have $S = 2x^2 + 2y^2 + 2z^2 = 2$. Therefore we must always have S = 2. Thus, by the Cauchy-Schwarz inequality we have

$$n \cdot u = \sum_{i} n \cdot v_i \le \sqrt{\sum_{i} (n \cdot v_i)^2} \sqrt{6} = \sqrt{12} = 2\sqrt{3}.$$

But since n is arbitrary, this implies that $|u| \le 2\sqrt{3}$; otherwise we could pick n = u/|u| and reach a contradiction.