Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислите	ельной техники
Кафедра электронных вычислите	льных машин
Синтез системы оперативной	обработки
Отчет по лабораторной работе № «Высокопроизводительные вычислите	
Вариант 6	
Выполнил студент группы ИВТ-41 Проверил	/Крючков И. С./ /Мельцов В. Ю./

1. Задание №1-3

Синтез СОО с заданным временем пребывания задач U*.

Рассчитать V[1]min, V[2]min, V[3]min.

Исходные данные:

Лямда0 = 0,2

Среднее кол-во обращений к устройствам:

Альфа
$$[1] = 60$$
; Альфа $[2] = 40$; Альфа $[3] = 1$;

Среднее кол-во операций на устройстве[оп]:

$$Q[1] = 16000; Q[2] = 5; Q[3] = 1;$$

Стоимостные коэффициенты пребывания задачи:

$$K[1] = 1$$
; $K[2] = 5000$; $K[3] = 100000$;

Предельная время пребывания задачи $U^* = 20[c]$

Предельная стоимость $S^* = 400000[$ руб.]

Расчетные формулы:

$$V_{i min} = \lambda_0 * \alpha * Q_i$$

Решение:

$$V[1]_{min} = 0.2 * 60 * 16000 = 192000$$

 $V[2]_{min} = 0.2 * 40 * 5 = 40$
 $V[3]_{min} = 0.2 * 1 * 1 = 0.2$

2. Задание №4-6

Рассчитать S[1]min, S[3]min, S[3]min.

Расчетные формулы:

$$S_{i min} = k_i * V_{i min}$$

Решение:

$$S[1]_{min} = 1 * 192000 = 192000$$

 $S[2]_{min} = 5000 * 40 = 200000$
 $S[3]_{min} = 100000 * 0.2 = 20000$
 $S_{min} = 192000 + 200000 + 20000 = 412000$

3. Задание №7-9

Рассчитать V[1], V[2], V[3].

Расчетные формулы:

$$V_i = \lambda_0 * \alpha_i * \theta_i + \frac{1}{\lambda_0 * U^*} * \sqrt{\frac{\lambda_i * \theta_i}{k_i}} * \sum_{j=1}^n \sqrt{\lambda_j * \theta_j * k_j}$$

Решение:

$$V[1] = 304481,7282$$

$$V[2] = 62,9602$$

$$V[3] = 0,5630$$

4. Задание №10

Рассчитать S.

Расчетные формулы:

$$S = \lambda_0 * \sum_{i=1}^{n} k_i * \alpha_i * \theta_i + \frac{1}{U^*} * (\sum_{i=1}^{n} k_i * \alpha_i * \theta_i)^2$$

Решение:

$$S = 675586,2330$$

5. Задание №11

Рассчитать S0.

Расчетные формулы:

$$S_0 = S - S_{min}$$

3

Решение:

$$S0 = 675586,2330 - 412000 = 263586,2330$$

График зависимости $S = f(U^*)$ представлен на рисунке 1.

Рисунок $1 - \Gamma$ рафик зависимости $S = f(U^*)$

6. Задание №12-14

Синтез СОО с заданной стоимостью S*.

Paccчитать V[1]min, V[2]min, V[3]min.

Расчетные формулы:

$$V_{i min} = \lambda_0 * \alpha * Q_i$$

Решение:

$$V[1]_{min} = 0.2 * 60 * 16000 = 192000$$

 $V[2]_{min} = 0.2 * 40 * 5 = 40$
 $V[3]_{min} = 0.2 * 1 * 1 = 0.2$

7. Задание №15

Рассчитать Smin.

Расчетные формулы:

$$S_{min} = \sum k_i * V_{i min}$$

Решение:

$$S_{min} = 1 * 192000 + 5000 * 40 + 100000 * 0.2 = 412000$$

8. Задание №16-18

Рассчитать V[1], V[2], V[3].

Расчетные формулы:

$$V_i = \lambda_0 * \alpha_i * \theta_i + \frac{1}{\lambda_0 * U^*} * \sqrt{\frac{\lambda_i * \theta_i}{k_i}} * \sum_{j=1}^n \sqrt{\lambda_j * \theta_j * k_j}$$

Решение:

$$V[1] = 362694,3901$$

$$V[2] = 74,8428$$

$$V[3] = 0.7509$$

9. Задание №19

Рассчитать S0.

Расчетные формулы:

$$S_0 = S - S_{min}$$

Решение:

$$S_0 = 400000 - 412000 = -12000$$

10. Задание №20

Рассчитайте U.

Решение:

Так как S0 < 0, средств для построения системы недостаточно. Расчет времени выполнения не имеет смысла.

График зависимости $U = g(S^*)$ представлен на рисунке 2.

Рисунок $2 - \Gamma$ рафик зависимости $U = g(S^*)$

Выводы

1) Синтез системы оперативной обработки (СОО) при заданном среднем времени пребывания заявки в системе.

Предельное время пребывания задачи в системе по условию $U^* = 20$ с.

По результатам расчетов была получена минимальная стоимость теоретически работоспособной системы Smin = 412000 руб и стоимость системы, удовлетворяющей заданному условию ($U^* = 20$ с) S = 675586,23. Следовательно, чтобы уложиться по времени обработки заявки нужно добавить 263586,23 к минимальной стоимости системы.

2) Синтез СОО с заданной стоимостью системы

Минимальная сумма, необходимая для построения теоретически работоспособной системы Smin = 412000 руб. Однако по условию предельная стоимость равняется 400000 руб. Для уменьшения минимально необходимой стоимости можно рассмотреть устройства с меньшими стоимостными коэффициентами.

По условию СОО состоит из устройств с коэффициентами 1, 5000, 100000, к которым происходит в среднем 16000, 5 и 1 обращений соответственно. Для уменьшения минимальной стоимости системы целесообразно уменьшать стоимостные коэффициенты устройств 2 и 3, так как в среднем к ним происходит больше обращений. Например, можно заменить 2 устройство на устройство со стоимостным коэффициентом 4700 (меньше на 6%) и получить стоимость системы 400000 руб.

3) Синтез оптимальной СОО

Требуется построить оптимальную систему с точки зрения ее производительности и стоимости. Для определения эффективности следует воспользоваться формулой:

$$K_{\ni \phi} = \frac{1}{U * S} = \frac{1}{\frac{1}{S_0} * \left(\sum_{i=1}^n \sqrt{k_i * \alpha_i * \theta_i}\right)^2 * S} = \frac{S_0}{\left(\sum_{i=1}^n \sqrt{k_i * \alpha_i * \theta_i}\right)^2 * S}$$

$$= \frac{S - S_{min}}{\left(\sum_{i=1}^n \sqrt{k_i * \alpha_i * \theta_i}\right)^2 * S}$$

$$= \frac{1}{\left(\sum_{i=1}^n \sqrt{k_i * \alpha_i * \theta_i}\right)^2} - \frac{S_{min}}{\left(\sum_{i=1}^n \sqrt{k_i * \alpha_i * \theta_i}\right)^2 * S}$$

Отсюда следует, что при увеличении стоимости системы коэффициент эффективности будет постоянно возрастать, стремясь к $\frac{1}{\left(\sum_{i=1}^{n} \sqrt{k_i * \alpha_i * \theta_i}\right)^2}$.

Поэтому построить оптимальную системы не представляется возможным. Можно лишь рассчитать рентабельность вложения денежных средств.

Вложение денежных средств будет рентабельным, если при увеличении стоимости на 1%, уменьшение среднего времени пребывания заявки в системе будет более 1%.

В качестве начальной стоимости системы примем S=675586 руб., U=20 сек. Отсюда 1% от стоимости dS=6756 руб, а 1% времени равен 0.2 сек.

Расчет рентабельности представлен в таблице 1.

Таблица 1 – Расчет рентабельности

N	U, сек	dU	S, руб
1	20.0	0	675586
2	19.500206	0.499812	682342
3	19.024766	0.47544	689098
4	18.571958	0.452808	695854
5	18.140204	0.431754	702610
6	17.728068	0.412136	709366
7	17.334243	0.393825	716122
8	16.957535	0.376708	722878
9	16.596853	0.360683	729634
10	16.251194	0.345659	736390

11	15.919639	0.331555	743146
12	15.601342	0.318297	749902
13	15.295524	0.305818	756658
14	15.001465	0.294059	763414
15	14.718499	0.282966	770170
16	14.44601	0.272489	776926
17	14.183427	0.262583	783682
18	13.93022	0.253207	790438
19	13.685895	0.244325	797194
20	13.449993	0.235902	803950
21	13.222085	0.227908	810706
22	13.001772	0.220313	817462
23	12.788681	0.213091	824218
<u>24</u>	12.582463	0.206219	<u>830974</u>
25	12.382789	0.199674	837730
26	12.189353	0.193435	844486
27	12.001868	0.187485	851242
28	11.820063	0.181805	857998

В результате расчетов получили систему со стоимостью 830974 руб со средним временем пребывания заявки в системе U = 12.58 сек. Последующее вложение денежных средств будет неоправданно, так как при дальнейшем увеличении стоимости системы на 1% среднее время пребывания заявки в системе уменьшится меньше, чем на 1%.