Tomasz Królikowski. Nr albumu: 153790

Repozytorium tego ćwiczenia na GitHub

https://github.com/krolikowski80/studia_WSB/tree/main/Wstep_do_AI/lab_1

Analiza zbioru danych California Housing

Celem tego zadania było zastosowanie regresji liniowej na danych dotyczących cen nieruchomości w Kalifornii. Miałem sprawdzić, jak dobrze model przewidywał medianę wartości domów na podstawie różnych cech, takich jak średni dochód mieszkańców, liczba pokoi czy wiek budynku.

(a) Wczytanie i analiza zbioru danych

Dane pobrałem z biblioteki **scikit-learn** i zapisałem w formie **DataFrame**.

```
# Wczytanie danych
california = fetch_california_housing()
X = pd.DataFrame(california.data, columns=california.feature_names)
y = california.target
```

Kilka pierwszych wierszy zbioru danych:

MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
8.3252	41	6.9841	1.0238	322	2.5556	37.88	-122.23	4.526
8.3014	21	6.2381	0.9719	2401	2.1098	37.86	-122.22	3.585
7.2574	52	8.2881	1.0734	496	2.8023	37.85	-122.24	3.521
5.6431	52	5.8174	1.0731	558	2.5479	37.85	-122.25	3.413
3.8462	52	6.2819	1.0811	565	2.1815	37.85	-122.25	3.422

(b). Wizualizacja danych

Aby zobaczyć wpływ poszczególnych cech na ceny domów, wygenerowałem wykresy zależności:

Trenowanie modelu regresji liniowej

(c) Podział danych na zbiór uczący i testowy (70% / 30%)

Rozmiary zbiorów:

• **X_train**: 14 448 próbek

• **X_test**: 6 192 próbek

(d) Nauka modelu regresji liniowej na zbiorze uczącym

(e) Obliczanie błędów MAE i MSE dla zbiorów uczącego i testowego

Wyniki błędów są następujące:

Zbiór	MAE (średni błąd bezwzględny)	MSE (średni błąd kwadratowy)		
Train	0.530969	0.523358		
Test	0.527247	0.530568		

Regresja dla każdej cechy osobno

(f) Trening modelu dla każdej z 8 cech osobno i analiza wyników

Przeprowadziłem analizę, w której trenowałem model regresji osobno dla każdej cechy. Pełna tabela wyników dla wszystkich cech:

Cecha	MAE (train)	MSE (train)	MAE (test)	MSE (test)
Wielowymiarowy	0.530969	0.523358	0.527247	0.530568
MedInc	0.627033	0.705137	0.623156	0.691798
HouseAge	0.908627	1.324487	0.901346	1.298525
AveRooms	0.899329	1.308700	0.888332	1.282406
AveBedrms	0.912082	1.336550	0.904754	1.310307
Population	0.914058	1.338904	0.906106	1.311698
AveOccup	0.914008	1.339107	0.905821	1.311583
Latitude	0.905495	1.312861	0.896702	1.282952
Longitude	0.910863	1.336434	0.902603	1.310834

Poniżej wykresy regresji dla każdej cechy:

Poniżej wykres rzeczywistych vs przewidywanych wartości dla modelu wielowymiarowego.

Analiza wyników

Porównując wyniki:

- **Model wielowymiarowy** osiągnął **mniejszy błąd** niż modele trenowane tylko na jednej cesze.
- **Najlepsza pojedyncza cecha** to MedInc (średni dochód), ale nadal dawała gorsze wyniki niż model uwzględniający wszystkie cechy.
- **Uczenie modelu na pojedynczych cechach zwiększa błąd**, co oznacza, że warto brać pod uwagę więcej informacji przy przewidywaniu cen nieruchomości.

Podsumowanie

- Model wielowymiarowy daje lepsze wyniki niż modele jednowymiarowe.
- Najlepiej przewidywać ceny domów na podstawie wszystkich cech naraz.