Linear Programming Problem

Type I: Basic solutions of L.P.P.

Determine all basic solutions to the following problem. Which of them are basic feasible, degenerate, infeasible basic and optimal basic feasible

solutions? Ans.
$$x_1=1, x_2=0, x_3=2, z_{max}=9$$
 Maximise $z=x_1-2x_2+4x_3$ subject to $x_1+2x_2+3x_3=7$ $3x_1+4x_2+6x_3=15$ $x_1,x_2,x_3\geq 0$

Determine all basic solutions to the following problem. Which of them are 2. basic feasible, degenerate, infeasible basic and optimal basic feasible solutions?

Maximise
$$z = x_1 + 3x_2 + 3x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 4$
 $2x_1 + 3x_2 + 5x_3 = 7$
 $x_1, x_2, x_3 \ge 0$

[N15/CompIT/5M][M18/Comp/5M][N18/AutoMechCivil/5M] [N19/Comp/5M]

	Non-basic	Basic	Equations	Is the	Is the	Value	Is the
No	o var = 0 var		&	solution	solution	of	solution
	Val – U	Val	solutions	feasible?	degenerate?	Z	optimal?
1	$x_3=0$	x_1, x_2	$x_1 + 2x_2 = 4$ $2x_1 + 3x_2 = 7$ $x_1 = 2, x_2 = 1$	Yes	No	5	Yes
			$x_1 - 2, x_2 - 1$ $x_1 + 3x_3 = 4$				
2	$x_2 = 0$	x_1, x_3	$2x_1 + 5x_3 = 7$	Yes	No	4	No
			$x_1 = 1, x_3 = 1$				
			$2x_2 + 3x_3 = 4$				
3	$x_1 = 0$	x_2, x_3	$3x_2 + 5x_3 = 7$	No	No	3	No
			$x_2 = -1, x_3 = 2$				

Determine all basic solutions to the following problem. Which of them are 3. basic feasible, degenerate, infeasible basic and optimal basic feasible solutions?

Maximise
$$z = 2x_1 - 2x_2 + 4x_3 - 5x_4$$

subject to $x_1 + 4x_2 - 2x_3 + 8x_4 \le 2$
 $-x_1 + 2x_2 + 3x_3 + 4x_4 \le 1$
 $x_1, x_2, x_3, x_4 \ge 0$

[N19/AutoMechCivil/5M]

	Non basis	Pacie	Equations	Is the	Is the	Value	Is the
No	Non-basic	Basic	&	solution	solution	of	solution
	var = 0	var	Solutions	feasible?	degenerate?	Z	optimal?
1	$x_3 = 0$ $x_4 = 0$	x_1, x_2	$x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 0.5$	Yes	Yes	-1	No
2	$x_2 = 0$ $x_4 = 0$	x_1, x_3	$x_1 - 6, x_2 = 6.5$ $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$	Yes	No	28	Yes
3	$x_1 = 0$ $x_4 = 0$	x_2, x_3	$4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_2 = 0.5, x_3 = 0$	Yes	Yes	-1	No
4	$x_2 = 0$ $x_3 = 0$	x_1, x_4	$x_1 + 8x_4 = 2$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = \frac{1}{4}$	Yes	Yes	$-\frac{5}{4}$	No
5	$x_1 = 0$ $x_3 = 0$	x_2, x_4	$4x_2 + 8x_4 = 2$ $2x_2 + 4x_4 = 1$ Unbounded soln	-	-	ı	-
6	$x_1 = 0$ $x_2 = 0$	x_3, x_4	$-2x_3 + 8x_4 = 2$ $3x_3 + 4x_4 = 1$ $x_3 = 0, x_4 = \frac{1}{4}$	Yes	No	$-\frac{5}{4}$	No

Find all basic solutions to the following problem 4.

Maximise
$$z = x_1 + x_2 + 3x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 9$
 $3x_1 + 2x_2 + 2x_3 = 15$
 $x_1, x_2, x_3 \ge 0$

[N18/Comp/5M]

Solution:

	Non-basic	Basic	Equations	Is the	Is the	Value
No	var = 0		&	solution	solution	of
	vai – U	var	solutions	feasible?	degenerate?	Z
1	$x_3 = 0$	x_1, x_2	$x_1 + 2x_2 = 9$ $3x_1 + 2x_2 = 15$	Yes	No	6
	3	17.12	$x_1 = 3, x_2 = 3$			
			$x_1 + 3x_3 = 9$			
2	$x_2 = 0$	x_{1}, x_{3}	$3x_1 + 2x_3 = 15$	Yes	No	9
			$x_1 = \frac{27}{7}, x_3 = \frac{12}{7}$			
			$2x_2 + 3x_3 = 9$			
3	$x_1 = 0$	x_2, x_3	$2x_2 + 2x_3 = 15$	No	No	-9/2
			$x_2 = \frac{27}{2}, x_3 = -6$			

Find all basic feasible solutions of the following system of equations 5.

$$2x_1 + x_2 - x_3 = 2$$
$$3x_1 + 2x_2 + x_3 = 3$$

Find all the basic feasible solutions to the following system of equations. 6.

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

 $6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$

[M19/Comp/5M]

Solution:

No	Non-basic var = 0	Basic var	Equations & solutions	Is the solution feasible?
1	$x_3 = 0$ $x_4 = 0$	x_1, x_2	$2x_1 + 6x_2 = 3$ $6x_1 + 4x_2 = 2$ $x_1 = 0, x_2 = 0.5$	Yes
2	$x_2 = 0$ $x_4 = 0$	x_1, x_3	$2x_1 + 2x_3 = 3$ $6x_1 + 4x_3 = 2$ $x_1 = -2, x_3 = 3.5$	No
3	$x_1 = 0$ $x_4 = 0$	x_2, x_3	$6x_2 + 2x_3 = 3$ $4x_2 + 4x_3 = 2$ $x_2 = 0.5, x_3 = 0$	Yes
4	$x_2 = 0$ $x_3 = 0$	x_1, x_4	$2x_1 + x_4 = 3$ $6x_1 + 6x_4 = 2$ $x_1 = \frac{8}{3}, x_4 = -\frac{7}{3}$	No
5	$x_1 = 0$ $x_3 = 0$	x_2, x_4	$6x_2 + x_4 = 3$ $4x_2 + 6x_4 = 2$ $x_2 = 0.5, x_4 = 0$	Yes
6	$x_1 = 0$ $x_2 = 0$	x_3, x_4	$2x_3 + x_4 = 3$ $4x_3 + 6x_4 = 2$ $x_3 = 2, x_4 = -1$	No

Find all basic feasible solutions of the following system of equations 7.

$$x_1 + 2x_2 + 4x_3 + x_4 = 7$$

$$2x_1 - x_2 + 3x_3 - 2x_4 = 4$$

Type II: Simplex Method

Solve by using Simplex method.

 $z = 3x_1 + 2x_2$ Maximise

subject to $x_1 + x_2 \le 4$

 $x_1 - x_2 \le 2$

 $x_1, x_2 \ge 0$

[M17/ComplT/6M]

Solution:

The standard form,

$$Max z - 3x_1 - 2x_2 + 0s_1 + 0s_2 = 0$$

 $x_1 + x_2 + s_1 + 0s_2 = 4$ s.t.

 $x_1 - x_2 + 0s_1 + s_2 = 2$

 $x_1,x_2,s_1,s_2\geq 0$

Simplex table.

ipick tabic,									
Iteration No.	Basic	С	oeffi	cien	t of	RHS	Ratio	Formula	
iteration No.	Var	x_1	x_2	s_1	s_2	MIIS	Natio	Torritala	
0	Z	-3	-2	0	0	0	0	X + 3Y	
s_2 leaves	s_1	1	1	1	0	4	$\frac{4}{1} = 4$	X - Y	
x_1 enters	s_2	1	-1	0	1	2	$\frac{2}{1} = 2$	-	
1	Z	0	-5	0	3	6	1	$X + \frac{5}{2}Y$	
s_1 leaves	s_1	0	2	1	-1	2	$\frac{2}{2} = 1$	$\frac{Y}{2}$	
x_2 enters	x_1	1	-1	0	1	2	-	$X + \frac{1}{2}Y$	
				-					
2	Z	0	0	<u>5</u> 2	$\frac{1}{2}$	11			
	x_2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	1			
	x_1	1	0	$\frac{1}{2}$	$\frac{1}{2}$	3			

$$x_1 = 3, x_2 = 1, z_{max} = 11$$

Solve by using Simplex method. 2.

Maximise
$$z = x_1 + 4x_2$$

subject to $2x_1 + x_2 \le 3$
 $3x_1 + 5x_2 \le 9$
 $x_1 + 3x_2 \le 5$
 $x_1, x_2 \ge 0$

[N14/ComplT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z-x_1-4x_2+0s_1+0s_2+0s_3=0\\ \text{s.t.} & 2x_1+x_2+s_1+0s_2+0s_3=3\\ & 3x_1+5x_2+0s_1+s_2+0s_3=9\\ & x_1+3x_2+0s_1+0s_2+s_3=5\\ & x_1,x_2,s_1,s_2,s_3\geq 0 \end{array}$$

Simplex table,

omplex table,										
Iteration No.	Basic		Coef	ficie	nt o	f	RHS	Ratio	Formula	
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	INITO	Natio	TOTTIUIA	
0	Z	-1	-4	0	0	0	0	-	$X + \frac{4}{3}Y$	
	s_1	2	1	1	0	0	3	$\frac{3}{1} = 3$	$X-\frac{1}{3}Y$	
s_3 leaves x_2 enters	s_2	3	5	0	1	0	9 $\frac{9}{5} = 1.8$		$X-\frac{5}{3}Y$	
n ₂ circus	s_3	1	3	0	0	1	5	$\frac{5}{3} = 1.67$	$\frac{Y}{3}$	
1	Z	1/3	0	0	0	4/3	20/3			
	S_1	5/3	0	1	0	-1/3	4/3			
	s_2	4/3	0	0	1	-5/3	2/3			
	x_2	1/3	1	0	0	1/3	5/3			

$$x_1 = 0, x_2 = \frac{5}{3}, z_{max} = \frac{20}{3}$$

3. Solve by using Simplex method.

Maximise
$$z = 5x_1 + 4x_2$$

subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

Ans.
$$x_1 = 3$$
, $x_2 = \frac{3}{2}$, $z_{max} = 21$

Solve the following L.P.P. by simplex method 4.

$$\begin{array}{ll} \text{Maximise} & z = 10x_1 + x_2 + x_3 \\ \text{subject to} & x_1 + x_2 - 3x_3 \leq 10 \\ & 4x_1 + x_2 + x_3 \leq 20 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

[N17/CompIT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z-10x_1-x_2+x_3+0s_1+0s_2=0\\ \text{s.t.} & x_1+x_2-3x_3+s_1+0s_2=10\\ & 4x_1+x_2+x_3+0s_1+s_2=20\\ & x_1,x_2,x_3,s_1,s_2\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coe	efficien	t of		RHS	Ratio	Formula
iteration no.	Var	x_1	x_2	x_3	s_1	s_2	KIIS	Natio	
0	Z	-10	-1	1	0	0	0	-	$X + \frac{10}{4}Y$
s_2 leaves	s_1	1	1	-3	1	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{4}Y$
x_1 enters	s_2	4	1	1	0	1	20	$\frac{20}{4} = 5$	$\frac{Y}{4}$
1	Z	0	3 2	7 2	0	<u>5</u> 2	50		
	s_1	0	3 4	$-\frac{13}{4}$	1	$-\frac{1}{4}$	5		
	x_1	1	$\frac{1}{4}$	$\frac{1}{4}$	0	$\frac{1}{4}$	5		

$$x_1 = 5, x_2 = 0, x_3 = 0, z_{max} = 50$$

Solve the following L.P.P. by simplex method 5.

Minimise
$$z = x_1 - 3x_2 + 3x_3$$

subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 + 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$ Ans. $x_1 = 4, x_2 = 5, x_3 = 0, z_{min} = -11$

Solve the following L.P.P. by simplex method 6.

Maximise
$$z = 15x_1 + 6x_2 + 9x_3 + 2x_4$$

subject to $2x_1 + x_2 + 5x_3 + 6x_4 \le 20$
 $3x_1 + x_2 + 3x_3 + 25x_4 \le 24$
 $7x_1 + x_4 \le 70$
 $x_1, x_2, x_3, x_4 \ge 0$

[M14/CompIT/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 15x_1 - 6x_2 - 9x_3 - 2x_4 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + x_2 + 5x_3 + 6x_4 + s_1 + 0s_2 + 0s_3 = 20 \\ & 3x_1 + x_2 + 3x_3 + 25x_4 + 0s_1 + s_2 + 0s_3 = 24 \\ & 7x_1 + 0x_2 + 0x_3 + x_4 + 0s_1 + 0s_2 + s_3 = 70 \\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic			Co	efficient o	of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	x_4	s_1	s_2	s_3	KHIS	Natio	
0	Z	-15	-6	-9	-2	0	0	0	0	-	X + 5Y
	s_1	2	1	5	6	1	0	0	20	$\frac{20}{2} = 10$	$X-\frac{2}{3}Y$
s_2 leaves x_1 enters	s_2	3	1	3	25	0	1	0	24	$\frac{24}{3} = 8$	$\frac{Y}{3}$
<i>M</i> 1 ee.	s_3	7	0	0	1	0	0	1	70	$\frac{70}{7} = 10$	$X-\frac{7}{3}Y$
				_							
1	\boldsymbol{z}	0	-1	6	123	0	5	0	120	-	X + 3Y
CK	s_1	0	1/3	3	-32/3	1	-2/3	0	4	$\frac{4}{\frac{1}{3}} = 12$	3 <i>Y</i>
s_1 leaves x_2 enters	<i>x</i> ₁	1	1/3	1	25/3	0	1/3	0	8	$\frac{8}{\frac{1}{3}} = 24$	X - Y
	s_3	0	-7/3	-7	-172/3	0	-7/3	1	14	-	X + 7Y
		,									
2	Z	0	0	15	91	3	3	0	132		
	x_2	0	1	9	-32	3	-2	0	12		
	x_1	1	0	-2	19	-1	1	0	4		
	s_3	0	0	14	-132	7	-7	1	42		

Thus, the solution is

$$x_1 = 4, x_2 = 12, x_3 = 0, x_4 = 0, z_{max} = 132$$

Solve by using Simplex method. 7.

Maximise
$$z = 4x_1 + 10x_2$$

subject to $2x_1 + x_2 \le 10$
 $2x_1 + 5x_2 \le 20$
 $2x_1 + 3x_2 \le 18$
 $x_1, x_2 \ge 0$

[N19/Comp/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 4x_1 - 10x_2 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + x_2 + s_1 + 0s_2 + 0s_3 = 10 \\ & 2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 = 20 \\ & 2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 = 18 \\ & x_1, x_2, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	S_3	11113	Natio	TOTTIGIA
0	Z	-4	-10	0	0	0	0	-	X + 2Y
	s_1	2	1	1	0	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{5}Y$
s_2 leaves x_2 enters	s_2	2	5	0	1	0	20	$\frac{20}{5} = 4$	<u>Y</u> 5
nz circus	s_3	2	3	0	0	1	18	$\frac{18}{3} = 6$	$X-\frac{3}{5}Y$
				_'					
1	Z	0	0	0	2	0	40		
N	s_1	8 5	0	1	$-\frac{1}{5}$	0	6		
	x_2	2 5	1	0	1 5	0	4		
	s_3	4 5	0	0	$-\frac{3}{5}$	1	6		

$$x_1 = 0$$
, $x_2 = 4$, $z_{max} = 40$

Solve the following L.P.P. by simplex method 8.

$$z = 3x_1 + 2x_2$$

subject to

$$3x_1 + 2x_2 \le 18$$

$$0 \le x_1 \le 4$$

$$0 \le x_2 \le 6$$

$$x_1, x_2 \ge 0$$

[N16/CompIT/6M][N18/AutoMechCivil/8M] **Solution:**

$$\text{Max} \quad z - 3x_1 - 2x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t.
$$3x_1 + 2x_2 + s_1 + 0s_2 + 0s_3 = 18$$

$$x_1 + 0x_2 + 0s_1 + s_2 + 0s_3 = 4$$

$$0x_1 + x_2 + 0s_1 + 0s_2 + s_3 = 6$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

Simplex table.

Simplex table,												
Iteration No.	Basic		Со	efficie	nt of		RHS	Ratio	Formula			
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	MIS	Natio	TOTTIUIA			
0	Z	-3	-2	0	0	0	0	-	X + 3Y			
	s_1	3	2	1	0	0	18	$\frac{18}{3} = 6$	X-3Y			
s_2 leaves x_1 enters	s_2	1	0	0	1	0	4	$\frac{4}{1} = 4$	-			
_	s_3	0	1	0	0	1	6	-	-			
1	Z	0	-2	0	3	0	12	-	X + Y			
	s_1	0	2	1	-3	0	6	$\frac{6}{2} = 3$	$\frac{Y}{2}$			
s_1 leaves x_2 enters	x_1	1	0	0	1	0	4	-	-			
λ_2 enters	s_3	0	1	0	0	1	6	$\frac{6}{1} = 6$	$X-\frac{1}{2}Y$			
2	Z	0	0	1	0	0	18					
	x_2	0	1	1/2	-3/2	0	3					
	x_1	1	0	0	1	0	4					
	s_3	0	0	-1/2	3/2	1	3					

$$x_1 = 4, x_2 = 3, z_{max} = 18$$

Use Simplex method to 9.

$$\begin{array}{ll} \text{Maximize} & z=3x_1+5x_2\\ \text{Subject to} & 3x_1+2x_2\leq 18\\ & x_1\leq 4\\ & x_2\leq 6\\ & x_1,x_2\geq 0 \end{array}$$

[N18/Comp/8M][M19/Comp/6M]

Solution:

Max
$$z - 3x_1 - 5x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $3x_1 + 2x_2 + s_1 + 0s_2 + 0s_3 = 18$
 $x_1 + 0x_2 + 0s_1 + s_2 + 0s_3 = 4$
 $0x_1 + x_2 + 0s_1 + 0s_2 + s_3 = 6$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Simplex table,

Iteration No.	Basic		Coe	fficier	it of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	KHS	Natio	TOTTIGIA
0	Z	-3	-5	0	0	0	0	-	X + 5Y
	s_1	3	2	1	0	0	18	$\frac{18}{2} = 9$	X-2Y
s_3 leaves	s_2	1	0	0	1	0	4	ı	ı
x_2 enters	s_3	0	1	0	0	1	6	$\frac{6}{1} = 6$	-
1	Z	-3	0	0	0	5	30	1	X + Y
a leaves	s_1	3	2	1	0	-2	6	$\frac{6}{3} = 2$	$\frac{Y}{3}$
s_1 leaves x_1 enters	S_2	1	0	0	1	0	4	$\frac{4}{1} = 4$	$X-\frac{1}{3}Y$
	x_2	0	1	0	0	1	6	I	ı
2	Z	0	2	1	0	3	36		
	x_1	1	2 3	1 3	0	$-\frac{2}{3}$	2		
	s_2	0	$-\frac{2}{3}$	$-\frac{1}{3}$	1	$\frac{2}{3}$	2		
	x_2	0	1	0	0	1	6		

$$x_1 = 2$$
, $x_2 = 6$, $z_{max} = 36$

10. Solve the following L.P.P. by simplex method

 $z = 6x_1 - 2x_2 + 3x_3$ Maximise subject to $2x_1 - x_2 + 2x_3 \le 2$ $x_1 + 4x_3 \le 4$ $x_1, x_2, x_3 \ge 0$

[N15/ComplT/6M][M18/Comp/8M]

Solution:

The standard form,

Max
$$z - 6x_1 + 2x_2 - 3x_3 + 0s_1 + 0s_2 = 0$$

s.t. $2x_1 - x_2 + 2x_3 + s_1 + 0s_2 = 2$
 $x_1 + 0x_2 + 4x_3 + 0s_1 + s_2 = 4$
 $x_1, x_2, x_3, s_1, s_2 \ge 0$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt of		RHS	Ratio	Formula	
iteration no.	Var	x_1	x_2	x_3	s_1	s_2	KIIS	Natio	Torritala	
0	Z	-6	2	-3	0	0	0	-	X + 3Y	
s_1 leaves	S_1	2	-1	2	1	0	2	$\frac{2}{2} = 1$	$\frac{Y}{2}$	
x_1 enters	s_2	1	0	4	0	1	4	$\frac{4}{1} = 4$	$X-\frac{1}{2}Y$	
1	\boldsymbol{Z}	0	-1	თ	3	0	6	ı	X + 2Y	
s_2 leaves	x_1	1	-1/2	1	1/2	0	1	ı	X + Y	
x_2 enters	s_2	0	1/2	3	-1/2	1	3	$\frac{3}{\frac{1}{2}} = 6$	2 <i>Y</i>	
2	Z	0	0	9	2	2	12			
	x_1	1	0	4	0	1	4			
	x_2	0	1	6	-1	2	6	_		

Thus, the solution is

$$x_1 = 4$$
, $x_2 = 6$, $x_3 = 0$, $z_{max} = 12$

11. Solve by using Simplex method.

Maximise
$$z = 3000x_1 + 2500x_2$$
 subject to $2x_1 + x_2 \le 40$ $x_1 + 3x_2 \le 45$ $x_1 \le 12$ $x_1, x_2 \ge 0$ Ans. $x_1 = 12, x_2 = 11, z_{max} = 63500$

12. Solve the following LPP by simplex method

Maximize
$$z = 1000x_1 + 4000x_2 + 5000x_3$$
 Subject to
$$x_1 + 2x_2 + 3x_3 \le 14$$

$$3x_1 + 2x_2 \le 14$$

$$x_1, x_2, x_3 \ge 0$$
 Ans. $x_1 = 0, x_2 = 7, x_3 = 0, z_{max} = 28000$

13. Solve the following L.P.P. by simplex method

Maximise
$$z = 4x_1 + 3x_2 + 6x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 440$
 $4x_1 + 3x_3 \le 470$
 $2x_1 + 5x_2 \le 430$
 $x_1, x_2, x_3 \ge 0$

[M15/CompIT/6M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 4x_1 - 3x_2 - 6x_3 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + 3x_2 + 2x_3 + s_1 + 0s_2 + 0s_3 = 440 \\ & 4x_1 + 0x_2 + 3x_3 + 0s_1 + s_2 + 0s_3 = 470 \\ & 2x_1 + 5x_2 + 0x_3 + 0s_1 + 0s_2 + s_3 = 430 \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		C	oeffi	cient c	f		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	s_3	ипэ	Natio	Formula
0	Z	-4	-3	-6	0	0	0	0	-	X + 2Y
	s_1	2	3	2	1	0	0	440	$\frac{440}{2} = 220$	$X-\frac{2}{3}Y$
s_2 leaves x_3 enters	s_2	4	0	3	0	1	0	470	$\frac{470}{3} = 156.67$	<u>Y</u> 3
	s_3	2	5	0	0	0	1	430	-	-
1	Z	4	-3	0	0	2	0	940	-	X + Y
	s_1	-2/3	3	0	1	-2/3	0	380/3	$\frac{380}{9} = 42.22$	$\frac{Y}{3}$
s_1 leaves x_2 enters	χ_3	4/3	0	1	0	1/3	0	470/3	-	-
λ_2 enters	s_3	2	5	0	0	0	1	430	$\frac{430}{5} = 86$	$X-\frac{5}{3}Y$
2	Z	10/3	0	0	1	4/3	0	3200/3		
	x_2	-2/9	1	0	1/3	-2/9	0	380/9		
	x_3	4/3	0	1	0	1/3	0	470/3		
	s_3	28/9	0	0	-5/3	10/9	1	1970/9		

$$x_1 = 0$$
, $x_2 = \frac{380}{9}$, $x_3 = \frac{470}{3}$, $z_{max} = \frac{3200}{3}$

14. Solve the following L.P.P. by simplex method

Maximise
$$z = 3x_1 + 2x_2 + 5x_3$$
 subject to $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$ $x_1, x_2, x_3 \ge 0$ Ans. $x_1 = 0, x_2 = 100, x_3 = 230, z_{max} = 1350$

15. Solve the following L.P.P. by simplex method

Maximise
$$z=3x_1+5x_2+4x_3$$
 subject to $2x_1+3x_2\leq 8$ $2x_2+5x_3\leq 10$ $3x_1+2x_2+4x_3\leq 15$ $x_1,x_2,x_3\geq 0$ Ans. $x_1=\frac{89}{41},x_2=\frac{50}{41},x_3=\frac{62}{41},z_{max}=\frac{765}{41}$

16. Solve the following LPP by simplex method

Maximize
$$z = x_1 - x_2 + 3x_3$$

Subject to $x_1 + x_2 + x_3 \le 10$
 $2x_1 - x_3 \le 3$
 $2x_1 - 2x_2 + 3x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$
Ans. $x_1 = 0, x_2 = 4, x_3 = 6, z_{max} = 14$

17. Solve the following L.P.P. by simplex method

Maximise
$$z = 4x_1 + 2x_2 + 5x_3$$

subject to $12x_1 + 7x_2 + 9x_3 \le 1260$
 $22x_1 + 18x_2 + 16x_3 \le 19008$
 $2x_1 + 4x_2 + 3x_3 \le 396$
 $x_1, x_2, x_3 \ge 0$
Ans. $x_1 = 12, x_2 = 0, x_3 = 124, z_{max} = 668$

18. Solve the following L.P.P. by simplex method

Maximise
$$z = 4x_1 + x_2 + 3x_3 + 5x_4$$

subject to $4x_1 - 6x_2 - 5x_3 - x_4 \le 2$
 $-3x_1 - 2x_2 + 4x_3 + x_4 \le 10$
 $-8x_1 - 3x_2 + 3x_3 + 2x_4 \le 20$
 $x_1, x_2, x_3, x_4 \ge 0$

Ans. unbounded solution

19. Solve the following L.P.P. by simplex method

Maximise
$$z = 4x_1 + x_2 + 3x_3 + 5x_4$$
 subject to
$$-4x_1 + 6x_2 + 5x_3 + 4x_4 \le 20$$

$$-3x_1 - 2x_2 + 4x_3 + x_4 \le 10$$

$$-8x_1 - 3x_2 + 3x_3 + 2x_4 \le 20$$

$$x_1, x_2, x_3, x_4 \ge 0$$

[M16/CompIT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z - 4x_1 - x_2 - 3x_3 - 5x_4 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & -4x_1 + 6x_2 + 5x_3 + 4x_4 + s_1 + 0s_2 + 0s_3 = 20 \\ & -3x_1 - 2x_2 + 4x_3 + x_4 + 0s_1 + s_2 + 0s_3 = 10 \\ & -8x_1 - 3x_2 + 3x_3 + 2x_4 + 0s_1 + 0s_2 + s_3 = 20 \\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic			Coeffi	cient	of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	x_4	s_1	s_2	s_3	INITO	Natio	
0	Z	-4	-1	-3	-5	0	0	0	0	1	$X + \frac{5}{4}Y$
	s_1	-4	6	5	4	1	0	0	20	$\frac{20}{4} = 5$	$\frac{Y}{4}$
s_1 leaves x_4 enters	s_2	-3	-2	4	1	0	1	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{4}Y$
4	s_3	-8	-3	3	2	0	0	1	20	$\frac{20}{2} = 10$	$X-\frac{1}{2}Y$
1	Z	-9	13/2	13/4	0	5/4	0	0	25	-	
	x_4	-1	3/2	5/4	1	1/4	0	0	5	-	
	s_2	-2	-7/2	11/4	0	-1/4	1	0	5	-	
	s_3	-6	-6	1/2	0	-1/2	0	1	10	-	

Since, there are no positive ratio obtained and the coefficient is still negative the solution is unbounded.

Type III: Big M Method

Using Penalty (Big-M or Charne's) method to solve the following L.P.P.

Minimise
$$z = 2x_1 + 3x_2$$

subject to $x_1 + x_2 \ge 5$
 $x_1 + 2x_2 \ge 6$
 $x_1, x_2 \ge 0$

[N16/CompIT/8M]

Solution:

The standard form,

Max
$$z' = -z = -2x_1 - 3x_2$$

Max $z' + 2x_1 + 3x_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0$ (1)
s.t. $x_1 + x_2 - s_1 + 0s_2 + A_1 + 0A_2 = 5$ (2)
 $x_1 + 2x_2 + 0s_1 - s_2 + 0A_1 + A_2 = 6$ (3)

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (2 - 2M)x_1 + (3 - 3M)x_2 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -11M$ Simplex table,

Simplex		,								
Iteration No.	Basic		Со	effici	ent of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	A_1	A_2	кпэ	Natio	FOITIIUIA
0	z'	2-2M	3-3M	М	М	0	0	-11M	-	$X - \frac{(3-3M)}{2}Y$
A_2 leaves	A_1	1	1	-1	0	1	0	5	$\frac{5}{1} = 5$	$X-\frac{1}{2}Y$
x_2 enters	A_2	1	2	0	-1	0	1	6	$\frac{6}{2} = 3$	$\frac{Y}{2}$
	•								•	
1	z'	1/2-M/2	0	М	3/2 -M/2	0		-9-2M	-	X-(1-M)Y
A_1 leaves	A_1	1/2	0	-1	1/2	1		2	$\frac{2}{\frac{1}{2}} = 4$	2 <i>Y</i>
x_1 enters	x_2	1/2	1	0	-1/2	0		3	$\frac{3}{\frac{1}{2}} = 6$	X - Y
			-							
2	z'	0	0	1	1			-11		
	x_1	1	0	-2	1			4		
	x_2	0	1	1	-1			1		

$$x_1 = 4, x_2 = 1, z'_{max} = -11, \therefore z_{min} = 11$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 2.

Minimise
$$z = 10x_1 + 3x_2$$

subject to $x_1 + 2x_2 \ge 3$
 $x_1 + 4x_2 \ge 4$
 $x_1, x_2 \ge 0$

[M18/AutoMechCivil/6M]

Solution:

The standard form,

Max
$$z' = -z = -10x_1 - 3x_2$$

Max $z' + 10x_1 + 3x_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0$ (1)
s.t. $x_1 + 2x_2 - s_1 + 0s_2 + A_1 + 0A_2 = 3$ (2)
 $x_1 + 4x_2 + 0s_1 - s_2 + 0A_1 + A_2 = 4$ (3)

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (10 - 2M)x_1 + (3 - 6M)x_2 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -7M$ Simplex table,

Iteration	Basic	,	Сс	efficie	nt of			DLIC	Datia	Farmenda
No.	Var	x_1	x_2	s_1	s_2	A_1	A_2	RHS	Ratio	Formula
0	z'	10-2M	3- 6M	Μ	M	0	0	-7M	-	$X - \frac{(3-6M)}{4}Y$
A_2 leaves	A_1	1	2	-1	0	1	0	3	$\frac{\frac{3}{2}}{1.5}$	$X-\frac{1}{2}Y$
x_2 enters	A_2	1	4	0	-1	0	1	4	$\frac{4}{4} = 1$	$\frac{Y}{4}$
	1									
1	z'	37/4- M/2	0	Μ	3/4 – M/2	0		-M- 3	-	X - (3/2 - M)Y
A_1 leaves	A_1	1/2	0	-1	1/2	1		1	$\frac{1}{\frac{1}{2}} = 2$	2 <i>Y</i>
s_2 enters	x_2	1/4	1	0	-1/4	0		1	-	$X + \frac{1}{2}Y$
2	z'	17/2	0	3/2	0			-9/2	-	
	s_2	1	0	-2	1			2	-	
	x_2	1/2	1	- 1/2	0			3/2	-	

$$x_1 = 0, x_2 = \frac{3}{2}, z'_{max} = -\frac{9}{2}, \therefore z_{min} = \frac{9}{2}$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 3.

Maximise
$$z = 3x_1 - x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$

$$x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Ans.
$$x_1 = 3$$
, $x_2 = 0$, $z_{max} = 9$

Use Penalty method (Big M) to solve 4.

$$z = 4x + y$$

Subject to
$$3x + y = 3$$

$$4x + 3y \ge 6$$
$$x + 2y \le 4$$

$$x, y \ge 0$$

Ans.
$$x = \frac{2}{5}$$
, $y = \frac{9}{5}$, $z_{min} = \frac{17}{5}$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 5.

$$z = x_1 + 4x_2$$

$$3x_1 + x_2 \le 3$$

$$2x_1 + 3x_2 \le 6$$

$$4x_1 + 5x_2 \ge 20$$

$$x_1, x_2 \ge 0$$

Ans. No solution

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 6.

Minimise
$$z = 2x_1 + x_2$$
subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

$$x_1, x_2 \ge 0$$

[N17/CompIT/8M][M19/AutoMechCivil/6M]

Solution:

The standard form,

Max
$$z' = -z = -2x_1 - x_2$$

Max $z' + 2x_1 + x_2 + 0s_2 + 0s_3 + MA_1 + MA_2 = 0$ (1)
s.t. $3x_1 + x_2 + A_1 = 3$ (2)
 $4x_1 + 3x_2 - s_2 + A_2 = 6$ (3)
 $x_1 + 2x_2 + s_3 = 3$

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (2 - 7M)x_1 + (1 - 4M)x_2 + Ms_2 + 0s_3 + 0A_1 + 0A_2 = -9M$ Simplex table,

Jimpick tak	nc,									
Iteration No.	Basic		Coe	fficien	t of			RHS	Ratio	Formula
recrution no.	Var	x_1	x_2	S_2	S_3	A_1	A_2	11113	racio	
0	z'	2-7M	1-4M	М	0	0	0	-9M	-	$X - \frac{(2-7M)}{3}Y$
	A_1	3	1	0	0	1	0	3	$\frac{3}{3} = 1$	$\frac{Y}{3}$
A_1 leaves x_1 enters	A_2	4	3	-1	0	0	1	6	$\frac{6}{4} = 1.5$	$X - \frac{4}{3}Y$
1	s_3	1	2	0	1	0	0	3	$\frac{3}{1} = 3$	$X-\frac{1}{3}Y$
1	z'	0	$\frac{1-5M}{3}$	Μ	0		0	-2-2M	1	$X - \frac{1 - 5M}{5}Y$
	x_1	1	$\frac{1}{3}$	0	0		0	1	3	$X-\frac{1}{5}Y$
A_2 leaves x_2 enters	A_2	0	5 3	-1	0		1	2	1.2	$\frac{3}{5}Y$
	s_3	0	<u>5</u> 3	0	1		0	2	1.2	X - Y
2	z'	0	0	1 5	0			$-\frac{12}{5}$		
	x_1	1	0	1 5	0			3 5 6 5		
	x_2	0	1	$-\frac{3}{5}$	0			6 5		
	s_3	0	0	1	1			0		

$$x_1 = \frac{3}{5}, x_2 = \frac{6}{5}, z'_{max} = -\frac{12}{5}, \therefore z_{min} = \frac{12}{5}$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 7.

Minimise
$$z = 6x_1 + 4x_2$$

subject to $2x_1 + 3x_2 \le 30$
 $3x_1 + 2x_2 \le 24$
 $x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

[N18/AutoMechCivil/8M]

Solution:

The standard form,

Max
$$z' = -z = -6x_1 - 4x_2$$

Max $z' + 6x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + MA_3 = 0$ (1)
s.t. $2x_1 + 3x_2 + s_1 = 30$
 $3x_1 + 2x_2 + s_2 = 24$
 $x_1 + x_2 - s_3 + A_3 = 3$ (2)

Multiplying eqn (2) by M and subtracting with eqn (1), we get

$$z' + (6 - M)x_1 + (4 - M)x_2 + 0s_1 + 0s_2 + Ms_3 + 0A_3 = -3M$$

Simplex table,

Iteration No.	Basic		Coe	fficie	ent o	f		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	A_3	NIIO	Natio	Formula
0	z'	6-M	4-M	0	0	М	0	-3M	-	X-(4-M)Y
	s_1	2	3	1	0	0	0	30	$\frac{30}{3} = 10$	X - 3Y
A_3 leaves x_2 enters	s_2	3	2	0	1	0	0	24	$\frac{24}{2} = 12$	X-2Y
n ₂ criters	A_3	1	1	0	0	-1	1	3	$\frac{3}{1} = 3$	-
1	z'	2	0	0	0	4		-12		
	s_1	-1	0	1	0	3		21		
	s_2	1	0	0	1	2		18		_
	x_2	1	1	0	0	-1		3		_

Thus, the solution is

$$x_1 = 0, x_2 = 3, z'_{max} = -12, : z_{min} = 12$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 8.

Minimise
$$z = x_1 + 2x_2 + x_3$$

subject to $x_1 + \frac{x_2}{2} + \frac{x_3}{2} \le 1$
 $\frac{3}{2}x_1 + 2x_2 + x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$ Ans. No solution

Type IV: Dual Simplex Method

Use Dual simplex method to solve the following LPP

 $z = 6x_1 + x_2$ Minimize Subject to $2x_1 + x_2 \ge 3$

 $x_1 - x_2 \ge 0$ $x_1, x_2 \ge 0$

[M17/ComplT/6M]

Solution:

The standard form,

 $z = 6x_1 + x_2$ Min $z - 6x_1 - x_2 + 0s_1 + 0s_2 = 0$ $-2x_1 - x_2 + s_1 = -3$ s.t. $-x_1 + x_2 + s_2 = 0$

Simplex table,

Iteration No.	Basic	Со	efficient o	of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	ипэ	FUIIIIIII
0	Z	-6	-1	0	0	0	X - Y
s_1 leaves	s_1	-2	-1	1	0	-3	-Y
x_2 enters	s_2	-1	1	0	1	0	X + Y
Ratio		$\frac{-6}{-2} = 3$	$\frac{-1}{-1} = 1$	-	ı	-	
1	\boldsymbol{z}	-4	0	-1	0	3	$X-\frac{4}{3}Y$
s_2 leaves	x_2	2	1	-1	0	3	$X + \frac{2}{3}Y$
x_1 enters	s_2	-3	0	1	1	-3	$-\frac{Y}{3}$
Ratio		$\frac{-4}{-3} = 1.33$	-	-	-	-	
2	Z	0	0	$-\frac{7}{3}$	$-\frac{4}{3}$	7	
	x_2	0	1	$-\frac{1}{3}$	2 3	1	
	x_1	1	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1	

The solution is

$$x_1 = 1, x_2 = 1, z_{min} = 7$$

Use Dual simplex method to solve the following LPP 2.

Minimize

$$z = 6x_1 - x_2$$

Subject to

$$2x_1 + x_2 \ge 3$$

$$x_1 - x_2 \ge 0$$

$$x_1, x_2 \ge 0$$

[N19/AutoMechCivil/6M]

Solution:

The standard form,

Min
$$z = 6x_1 - x_2$$

$$z - 6x_1 + x_2 + 0s_1 + 0s_2 = 0$$

s.t.
$$-2x_1 - x_2 + s_1 = -3$$
$$-x_1 + x_2 + s_2 = 0$$

$$-x_1 + x_2 + s_2$$

Simplex table,

ick table,							
Iteration No.	Basic	Coef	ficie	nt of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	S_2	MIIS	TOTTIGIA
0	Z	-6	1	0	0	0	X - 3Y
s_1 leaves	s_1	-2	-1	1	0	-3	$\frac{Y}{-2}$
x_1 enters	s_2	-1	1	0	1	0	$X-\frac{1}{2}Y$
Ratio		$\frac{-6}{-2} = 3$	-	-	-	-	
1	Z	0	4	-3	0	9	
	x_1	1	1 2	$-\frac{1}{2}$	0	3 2	
	s_2	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	$\frac{3}{2}$	

The solution is

$$x_1 = \frac{3}{2}$$
, $x_2 = 0$, $z_{min} = 9$

Use the dual simplex method to solve the following L.P.P. 3.

Minimise
$$z = 6x_1 + 3x_2 + 4x_3$$

subject to

$$x_1 + 6x_2 + x_3 = 10$$

$$2x_1 + 3x_2 + x_3 = 15$$

$$x_1, x_2, x_3 \ge 0$$

[N18/Comp/8M]

Min
$$z = 6x_1 + 3x_2 + 4x_3$$

s.t.
$$x_1 + 6x_2 + x_3 \le 10$$

 $x_1 + 6x_2 + x_3 \ge 10$ i.e. $-x_1 - 6x_2 - x_3 \le -10$
 $2x_1 + 3x_2 + x_3 \le 15$
 $2x_1 + 3x_2 + x_3 \ge 15$ i.e. $-2x_1 - 3x_2 - x_3 \le -15$

Standard form:

$$\begin{array}{lll} \text{Min} & z = 6x_1 + 3x_2 + 4x_3 + 0s_1 + 0s_2 + 0s_3 + 0s_4 \\ z - 6x_1 - 3x_2 - 4x_3 + 0s_1 + 0s_2 + 0s_3 + 0s_4 = 0 \\ \text{s.t.} & x_1 + 6x_2 + x_3 + s_1 + 0s_2 + 0s_3 + 0s_4 = 10 \\ & -x_1 - 6x_2 - x_3 + 0s_1 + s_2 + 0s_3 + 0s_4 = -10 \\ 2x_1 + 3x_2 + x_3 + 0s_1 + 0s_2 + s_3 + 0s_4 = 15 \\ & -2x_1 - 3x_2 - x_3 + 0s_1 + 0s_2 + 0s_3 + s_4 = -15 \end{array}$$

Simplex Table.

Simplex		,								
Iteration	Basic		С	oefficient	of				RHS	Formula
No.	Var	x_1	x_2	x_3	s_1	s_2	S_3	S_4	KIIS	Torrida
0	Z	-6	-3	-4	0	0	0	0	0	X - Y
	s_1	1	6	1	1	0	0	0	10	X + 2Y
s_4 leaves	s_2	-1	-6	-1	0	1	0	0	-10	X-2Y
x_2 enters	s_3	2	3	1	0	0	1	0	15	X + Y
2	S_4	-2	-3	-1	0	0	0	1	-15	$\frac{Y}{-3}$
Ratio		$\frac{-6}{-2} = 3$	$\frac{\frac{-3}{-3}}{1} =$	$\frac{-4}{-1} = 4$	-	-	-	-	-	
						1				
1	Z	-4	0	-3	0	0	0	-1	15	$X - \left(\frac{4}{3}\right)Y$
	s_1	-3	0	-1	1	0	0	2	-20	$\frac{Y}{-3}$
s_1 leaves	s_2	3	0	1	0	1	0	-2	20	X + Y
x_1 enters	s_3	0	0	0	0	0	1	1	0	-
	x_2	2/3	1	1/3	0	0	0	-1/3	5	$X + \frac{2}{9}Y$
Ratio		$\frac{-4}{-3} = 1.33$	1	$\frac{-3}{-1} = 3$	-	1	-	-	-	
				T	ı		1	1	1	
2	Z	0	0	-5/3	- 4/3	0	0	- 11/3	125/3	
			0	1/3	-	0	0	-2/3	20/3	
	x_1	1	0	1/3	1/3					
	x_1 s_2	0	0	0	1/3	1	0	0	0	
						1	0	0	0	
	<i>s</i> ₂	0	0	0	1					

Thus the solution is
$$x_1 = \frac{20}{3}$$
, $x_2 = \frac{5}{9}$, $x_3 = 0$, $z_{min} = \frac{125}{3}$

Use Dual simplex method to solve the following LPP 4.

Minimize
$$z = x_1 + x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $-x_1 - x_2 \ge 1$
 $x_1, x_2 \ge 0$

[N18/AutoMechCivil/8M][M19/Comp/8M]

Solution:

The standard form,

Min
$$z = x_1 + x_2$$

 $z - x_1 - x_2 + 0s_1 + 0s_2 = 0$
s.t. $-2x_1 - x_2 + s_1 = -2$
 $x_1 + x_2 + s_2 = -1$

Simplex table,

Iteration No.	Basic	C	oefficient	of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	инэ	Formula
0	Z	-1	-1	0	0	0	$X-\frac{1}{2}Y$
s_1 leaves	s_1	-2	-1	1	0	-2	$\frac{Y}{-2}$
x_1 enters	s_2	1	1	0	1	-1	$X + \frac{1}{2}Y$
Ratio		$\frac{-1}{-2} = \frac{1}{2}$	$\frac{-1}{-1} = 1$	1	ı	1	
1	Z	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1	
s_2 leaves	x_2	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	
x_1 enters	s_2	0	$\frac{1}{2}$	$\frac{1}{2}$	1	-2	
Ratio		-	-	-	-	-	

Since, there are no positive ratios obtained, the problem has no solution

Use the dual simplex method to solve the following L.P.P. 5.

Minimise
$$z = 2x_1 + x_2$$
subject to
$$3x_1 + x_2 \ge 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

$$x_1, x_2 \ge 0$$

[M18/Comp/8M][M18/AutoMechCivil/8M][N19/Comp/8M]

Solution:

The standard form,

Min
$$z - 2x_1 - x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $-3x_1 - x_2 + s_1 + 0s_2 + 0s_3 = -3$
 $-4x_1 - 3x_2 + 0s_1 + s_2 + 0s_3 = -6$
 $x_1 + 2x_2 + 0s_1 + 0s_2 + s_3 = 3$

Simplex table,

Iteration No.	Basic		Coeffi	cient c	of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	S_3	ипэ	Formula
0	Z	-2	-1	0	0	0	0	$X-\frac{1}{3}Y$
	s_1	-3	-1	1	0	0	-3	$X-\frac{1}{3}Y$
s_2 leaves x_2 enters	s_2	-4	-3	0	1	0	-6	$\frac{Y}{-3}$
	s_3	1	2	0	0	1	3	$X + \frac{2}{3}Y$
Ratio		$\frac{-2}{-4} = \frac{1}{2}$	$\frac{-1}{-3} = \frac{1}{3}$	-		1	-	-
1	Z	-2/3	0	0	-1/3	0	2	$X-\frac{2}{5}Y$
a leeves	s_1	-5/3	0	1	-1/3	0	-1	$-\frac{3}{5}Y$
s_1 leaves x_1 enters	x_2	4/3	1	0	-1/3	0	2	$X + \frac{4}{5}Y$
_	s_3	-5/3	0	0	2/3	1	-1	X - Y
Ratio		$\frac{\frac{2}{-\frac{3}{3}}}{\frac{5}{-\frac{3}{3}}} = \frac{2}{5}$	1	ı	$\frac{-\frac{1}{3}}{-\frac{1}{3}} = 1$	1	-	-
2	Z	0	0	-2/5	-1/5	0	12/5	
	χ_2	1	0	-3/5	1/5	0	3/5	
	x_1	0	1	4/5	-3/5	0	6/5	
	s_3	0	0	-1	1	1	0	

$$x_1 = \frac{6}{5}, x_2 = \frac{3}{5}, z_{min} = \frac{12}{5}$$

Use Dual simplex method to solve the following LPP 6.

Minimize
$$z = 20x_1 + 16x_2$$

Subject to $x_1 + x_2 \ge 12$
 $2x_1 + x_2 \ge 17$
 $x_1 \ge 2.5$
 $x_2 \ge 6$
 $x_1, x_2 \ge 0$ Ans. $x_1 = 5, x_2 = 7, z_{min} = 212$

Use the dual simplex method to solve the following L.P.P. 7.

Minimise
$$z = 2x_1 + 2x_2 + 4x_3$$

subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 \le 3$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

[N15/CompIT/8M]

Solution:

The standard form,

Min
$$z - 2x_1 - 2x_2 - 4x_3 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $-2x_1 - 3x_2 - 5x_3 + s_1 + 0s_2 + 0s_3 = -2$
 $3x_1 + x_2 + 7x_3 + 0s_1 + s_2 + 0s_3 = 3$
 $x_1 + 4x_2 + 6x_3 + 0s_1 + 0s_2 + s_3 = 5$

Simplex table,

Iteration No.	Basic		Coef	ficient of				RHS	Formula
iteration No.	Var	x_1	χ_2	χ_3	s_1	S_2	S_3	ипэ	
0	Z	-2	-2	-4	0	0	0	0	$X-\frac{2}{3}Y$
	s_1	-2	-3	-5	1	0	0	-2	$\frac{Y}{-3}$
s_1 leaves x_2 enters	s_2	3	1	7	0	1	0	3	$X + \frac{1}{3}Y$
	s_3	1	4	6	0	0	1	5	$X + \frac{4}{3}Y$
Ratio		$\frac{-2}{-2} = 1$	$\frac{-2}{-3} = 0.67$	$\frac{-4}{-5} = 0.8$	-	-	-	-	
1	Z	-2/3	0	-2/3	-2/3	0	0	4/3	
	x_2	2/3	1	5/3	-1/3	0	0	2/3	
	s_2	7/3	0	16/3	1/3	1	0	7/3	
	s_3	-5/3	0	-2/3	4/3	0	1	7/3	

The solution is,
$$x_1 = 0$$
, $x_2 = \frac{2}{3}$, $x_3 = 0$, $z_{min} = \frac{4}{3}$

Use Dual simplex method to solve the LPP 8.

Minimise
$$z=6x_1+7x_2+3x_3+5x_4$$
 Subject to
$$5x_1+6x_2-3x_3+4x_4\geq 12$$

$$x_2+5x_3-6x_4\geq 10$$

$$2x_1+5x_2+x_3+x_4\geq 8$$

$$x_1,x_2,x_3,x_4\geq 0$$
 Ans.
$$x_1=0,x_2=\frac{30}{11},x_3=\frac{16}{11},x_4=0,z_{min}=\frac{258}{11}$$

Minimise
$$z=3x_1+2x_2+x_3+4x_4$$
 Subject to
$$2x_1+4x_2+5x_3+x_4\geq 10$$

$$3x_1-x_2+7x_3-2x_4\geq 2$$

$$5x_1+2x_2+x_3+6x_4\geq 15$$

$$x_1,x_2,x_3,x_4\geq 0$$
 Ans.
$$x_1=\frac{65}{23},x_2=0,x_3=\frac{20}{23},x_4=0,z_{min}=\frac{215}{23}$$

10. Use the dual simplex method to solve the following L.P.P.

Maximise
$$z = -3x_1 - 2x_2$$
 subject to
$$x_1 + x_2 \ge 1$$

$$x_1 + x_2 \le 7$$

$$x_1 + 2x_2 \le 10$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

[M16/CompIT/8M]

Min
$$z' = -z = 3x_1 + 2x_2$$

 $z' - 3x_1 - 2x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4 = 0$
s.t. $-x_1 - x_2 + s_1 + 0s_2 + 0s_3 + 0s_4 = -1$
 $x_1 + x_2 + 0s_1 + s_2 + 0s_3 + 0s_4 = 7$
 $-x_1 - 2x_2 + 0s_1 + 0s_2 + s_3 + 0s_4 = -10$
 $0x_1 + x_2 + 0s_1 + 0s_2 + 0s_3 + s_4 = 3$

	Basic		DLIC	F l .					
Iteration No.	Var	x_1	Coeffice x_2	S_1	s_2	s_3	S_4	RHS	Formula
0	z'	-3	-2	0	0	0	0	0	X - Y
	s_1	-1	-1	1	0	0	0	-1	$X - \frac{1}{2}Y$
s_3 leaves	s_2	1	1	0	1	0	0	7	$X + \frac{1}{2}Y$
x_2 enters	s_3	-1	-2	0	0	1	0	-10	$\frac{Y}{-2}$
	S_4	0	1	0	0	0	1	3	$X + \frac{1}{2}Y$
Ratio		$\frac{-3}{-1} = 3$	$\frac{-2}{-2} = 1$	-	-	-	-		
1	Z	-2	0	0	0	-1	0	10	X-4Y
	s_1	-1/2	0	1	0	-1/2	0	4	X - Y
s_4 leaves	s_2	1/2	0	0	1	1/2	0	2	X + Y
x_1 enters	x_2	1/2	1	0	0	-1/2	0	5	X + Y
	S_4	-1/2	0	0	0	1/2	1	-2	-2Y
Ratio		$\frac{-2}{\frac{1}{2}} = 4$	-	-	-	-		-	
2	z'	0	0	0	0	-3	-4	18	
	s_1	0	0	1	0	-1	-1	6	
	s_2	0	0	0	1	1	1	0	
	x_2	0	1	0	0	0	1	3	
	x_1	1	0	0	0	-1	-2	4	

Thus the solution is $x_1 = 4$, $x_2 = 3$, $z'_{min} = 18$, $\therefore z_{max} = -18$

11. Use dual simplex method, solve

Maximise
$$z = -2x_1 - x_3$$

Subject to $x_1 + x_2 - x_3 \ge 5$
 $x_1 - 2x_2 + 4x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$

[M14/ComplT/8M]

Solution:

The standard form,

Min
$$z' = -z = 2x_1 + x_3$$

 $z' - 2x_1 + 0x_2 - x_3 + 0s_1 + 0s_2 = 0$
s.t. $-x_1 - x_2 + x_3 + s_1 + 0s_2 = -5$
 $-x_1 + 2x_2 - 4x_3 + 0s_1 + s_2 = -8$

Simplex table,

Iteration No.	Basic		RHS	Formula							
iteration No.	Var	x_1	x_2	χ_3	S_1	s_2	ипэ	Formula			
0	z'	-2	0	-1	0	0	0	$X-\frac{1}{4}Y$			
s_2 leaves	s_1	-1	-1	1	1	0	-5	$X + \frac{1}{4}Y$			
x_3 enters	s_2	-1	2	-4	0	1	-8	$\frac{Y}{-4}$			
Ratio	Ratio		-	$\frac{-1}{-4} = 0.25$	-	-	-				
1	z'	-7/4	-1/2	0	0	-1/4	2	X - Y			
s_1 leaves	S_1	-5/4	-1/2	0	1	1/8	-7	-2Y			
x_2 enters	x_3	1/4	-1/2	1	0	-1/4	2	X - Y			
Ratio		$\frac{7}{5}$ 1		-	-	-	-				
2	z'	-1/2	0	0	-1	-3/8	9				
	x_2	5/2	1	0	-2	-1/4	14				
	χ_3	3/2	0	1	-1	-3/8	0				

The solution is

The solution is
$$x_1 = 0, x_2 = 14, x_3 = 9, z'_{min} = 9, \therefore z_{max} = -9$$

12. Use the dual simplex method to solve the following L.P.P.

Maximise
$$z = -2x_1 - 2x_2 - 4x_3$$
 subject to $2x_1 + 3x_2 + 5x_3 \ge 2$ $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$ $x_1, x_2, x_3 \ge 0$

Ans.
$$x_1 = 0$$
, $x_2 = \frac{2}{3}$, $z_{min} = \frac{4}{3}$

Type V: Duality

Write the dual of the following L.P.P.

Maximise
$$z = 2x_1 - x_2 + 4x_3$$

subject to $x_1 + 2x_2 - x_3 \le 5$
 $2x_1 - x_2 + x_3 \le 6$
 $x_1 + x_2 + 3x_3 \le 10$
 $4x_1 + x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

[N17/ComplT/5M]

Solution:

Primal,

Max
$$z = 2x_1 - x_2 + 4x_3$$
 s.t.
$$x_1 + 2x_2 - x_3 \le 5$$

$$2x_1 - x_2 + x_3 \le 6$$

$$x_1 + x_2 + 3x_3 \le 10$$

$$4x_1 + 0x_2 + x_3 \le 12$$

$$x_1, x_2, x_3 \ge 0$$

Its dual,

Min
$$w = 5y_1 + 6y_2 + 10y_3 + 12y_4$$
 s.t.
$$y_1 + 2y_2 + y_3 + 4y_4 \ge 2$$

$$2y_1 - y_2 + y_3 + 0y_4 \ge -1$$

$$-y_1 + y_2 + 3y_3 + y_4 \ge 4$$

$$y_1, y_2, y_3 \ge 0$$

Write the dual of the following L.P.P. 2.

Maximise
$$z = 4x_1 + 9x_2 + 2x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 7$
 $3x_1 - 2x_2 + 4x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

[M19/AutoMechCivil/5M]

Solution:

Primal,

Max
$$z = 4x_1 + 9x_2 + 2x_3$$

s.t. $2x_1 + 3x_2 + 2x_3 \le 7$
 $3x_1 - 2x_2 + 4x_3 \le 5$
 $3x_1 - 2x_2 + 4x_3 \ge 5$ i.e. $-3x_1 + 2x_2 - 4x_3 \le -5$
 $x_1, x_2, x_3 \ge 0$

Its dual,

Min
$$w = 7y_1 + 5y_2' - 5y_2''$$
s.t.
$$2y_1 + 3y_2' - 3y_2'' \ge 4$$

$$3y_1 - 2y_2' + 2y_2'' \ge 9$$

$$2y_1 + 4y_2' - 4y_2'' \ge 2$$

$$y_1, y_2', y_2'' \ge 0$$

Its dual,

Min
$$w = 7y_1 + 5y_2$$

s.t. $2y_1 + 3y_2 \ge 4$
 $3y_1 - 2y_2 \ge 9$
 $2y_1 + 4y_2 \ge 2$
 $y_1 \ge 0, y_2$ unrestricted

3. Construct dual of the following LPP:

Maximise
$$z = 8x_1 + 3x_2$$

Subject to $x_1 - 6x_2 \ge 2$
 $5x_1 + 7x_2 = -4$
 $x_1, x_2 \ge 0$

4. Construct the dual of the following LPP:

Maximize
$$z = x_1 + 3x_2 - 2x_3 + 5x_4$$

Subject to $3x_1 - x_2 + x_3 - 4x_4 = 6$
 $5x_1 + 3x_2 - x_3 - 2x_4 = 4$
 $x_1, x_2 \ge 0, x_3, x_4$ unrestricted

5. Write the dual of the following L.P.P.

Maximise
$$z = 2x_1 - x_2 + 3x_3$$

subject to $x_1 - 2x_2 + x_3 \ge 4$
 $2x_1 + x_3 \le 10$
 $x_1 + x_2 + 3x_3 = 20$
 $x_1, x_3 \ge 0, x_2$ unrestricted

[M15/ComplT/5M]

Solution:

Primal,

Max
$$z = 2x_1 - x_2' + x_2'' + 3x_3$$

s.t. $x_1 - 2x_2' + 2x_2'' + x_3 \ge 4$
 $2x_1 + 0x_2' + 0x_2'' + x_3 \le 10$
 $x_1 + x_2' - x_2'' + 3x_3 \ge 20$
 $x_1 + x_2' - x_2'' + 3x_3 \le 20$
 $x_1, x_2', x_2'', x_3 \ge 0$

Primal,

$$\begin{array}{ll} \text{Max} & z = 2x_1 - x_2' + x_2'' + 3x_3 \\ \text{s.t.} & -x_1 + 2x_2' - 2x_2'' - x_3 \leq -4 \\ & 2x_1 + 0x_2' + 0x_2'' + x_3 \leq 10 \\ & -x_1 - x_2' + x_2'' - 3x_3 \leq -20 \\ & x_1 + x_2' - x_2'' + 3x_3 \leq 20 \\ & x_1, x_2', x_2'', x_3 \geq 0 \end{array}$$

Its dual.

$$\begin{array}{ll} \text{Min} & w = -4y_1 + 10y_2 - 20y_3' + 20y_3'' \\ \text{s.t.} & -y_1 + 2y_2 - y_3' + y_3'' \geq 2 \\ & 2y_1 + 0y_2 - y_3' + y_3'' \geq -1 \\ & -2y_1 + 0y_2 + y_3' - y_3'' \geq 1 \\ & -y_1 + y_2 - 3y_3' + 3y_3'' \geq 3 \\ & y_1, y_2', y_2'', y_3 \geq 0 \end{array}$$

Its dual.

Min
$$w = -4y_1 + 10y_2 - 20y_3$$

s.t. $-y_1 + 2y_2 - y_3 \ge 2$
 $2y_1 + 0y_2 - y_3 \ge -1$
 $-2y_1 + 0y_2 + y_3 \ge 1$
 $-y_1 + y_2 - 3y_3 \ge 3$
 $y_1, y_2 \ge 0, y_3$ unretsricted

Its dual,

$$\begin{array}{ll} \text{Min} & w = -4y_1 + 10y_2 - 20y_3 \\ \text{s.t.} & -y_1 + 2y_2 - y_3 \geq 2 \\ & 2y_1 + 0y_2 - y_3 = -1 \\ & -y_1 + y_2 - 3y_3 \geq 3 \\ & y_1, y_2 \geq 0, y_3 \text{ unretsricted} \end{array}$$

Find dual of the following LP model

Maximise
$$z = 2x_1 + 3x_2 + 5x_3$$

Subject to $x_1 + x_2 - x_3 \ge -5$
 $x_1 + x_2 + 4x_3 = 10$
 $-6x_1 + 7x_2 - 9x_3 \le 4$
 $x_1, x_2 \ge 0, x_3$ unrestricted

[M14/CompIT/5M]

Primal,

$$\begin{array}{ll} \text{Max} & z = 2x_1 + 3x_2 + 5x_3' - 5x_3'' \\ \text{s.t.} & x_1 + x_2 - x_3' + x_3'' \geq -5 \\ & x_1 + x_2 + 4x_3' - 4x_3'' \leq 10 \\ & x_1 + x_2 + 4x_3' - 4x_3'' \geq 10 \\ & -6x_1 + 7x_2 - 9x_3' + 9x_3'' \leq 4 \\ & x_1, x_2, x_3', x_3'' \geq 0 \end{array}$$

Primal.

Max
$$z = 2x_1 + 3x_2 + 5x_3' - 5x_3''$$

s.t. $-x_1 - x_2 + x_3' - x_3'' \le 5$
 $x_1 + x_2 + 4x_3' - 4x_3'' \le 10$
 $-x_1 - x_2 - 4x_3' + 4x_3'' \le -10$
 $-6x_1 + 7x_2 - 9x_3' + 9x_3'' \le 4$

Its dual,

Min
$$w = 5y_1 + 10y_2' - 10y_2'' + 4y_3$$

s.t. $-y_1 + y_2' - y_2'' - 6y_3 \ge 2$
 $-y_1 + y_2' - y_2'' + 7y_3 \ge 3$
 $y_1 + 4y_2' - 4y_2'' - 9y_3 \ge 5$
 $-y_1 - 4y_2' + 4y_2'' + 9y_3 \ge -5$
 $y_1, y_2', y_2'', y_3 \ge 0$

Its dual,

Min
$$w = 5y_1 + 10y_2 + 4y_3$$

s.t. $-y_1 + y_2 - 6y_3 \ge 2$
 $-y_1 + y_2 + 7y_3 \ge 3$
 $y_1 + 4y_2 - 9y_3 \ge 5$
 $-y_1 - 4y_2 + 9y_3 \ge -5$
 $y_1, y_3 \ge 0, y_2$ is unrestricted

Its dual,

Min
$$w = 5y_1 + 10y_2 + 4y_3$$

s.t. $-y_1 + y_2 - 6y_3 \ge 2$
 $-y_1 + y_2 + 7y_3 \ge 3$
 $y_1 + 4y_2 - 9y_3 = 5$
 $y_1, y_3 \ge 0, y_2$ is unrestricted

7. Construct the dual of the following LPP

Maximise
$$z = 3x_1 + 17x_2 + 9x_3$$

Subject to $x_1 - x_2 + x_3 \ge 3$
 $-3x_1 + 2x_3 \le 1$
 $2x_1 + x_2 - 5x_3 = 1$
 $x_1, x_2x_3 \ge 0$

[M17/CompIT/5M]

Solution:

Primal,

$$\begin{array}{ll} \text{Max} & z = 3x_1 + 17x_2 + 9x_3 \\ \text{s.t.} & -x_1 + x_2 - x_3 \leq -3 \\ & -3x_1 + 0x_2 + 2x_3 \leq 1 \\ & 2x_1 + x_2 - 5x_3 \leq 1 \\ & -2x_1 - x_2 + 5x_3 \leq -1 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

Its dual,

Min
$$w = -3y_1 + y_2 + y_3' - y_3''$$
 s.t.
$$-y_1 - 3y_2 + 2y_3' - 2y_3'' \ge 3$$

$$y_1 + 0y_2 + y_3' - y_3'' \ge 17$$

$$-y_1 + 2y_2 - 5y_3' + 5y_3'' \ge 9$$

$$y_1, y_2, y_3', y_3'' \ge 0$$

Its dual,

Min
$$w = -3y_1 + y_2 + y_3$$
 s.t.
$$-y_1 - 3y_2 + 2y_3 \ge 3$$

$$y_1 + 0y_2 + y_3 \ge 17$$

$$-y_1 + 2y_2 - 5y_3 \ge 9$$

$$y_1, y_2 \ge 0 \text{ and } y_3 \text{ unrestricted}$$

Write dual of the given LPP 8.

Minimize
$$z = 2x_1 + 3x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 = 3$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_3 \ge 0$ and x_2 is unrestricted

[M18/AutoMechCivil/5M]

Primal,

Minimize
$$z = 2x_1 + 3(x_2' - x_2'') + 4x_3$$
 Subject to
$$2x_1 + 3(x_2' - x_2'') + 5x_3 \ge 2$$

$$3x_1 + (x_2' - x_2'') + 7x_3 \ge 3$$

$$3x_1 + (x_2' - x_2'') + 7x_3 \le 3$$

$$x_1 + 4(x_2' - x_2'') + 6x_3 \le 5$$

$$x_1, x_3, x_2', x_2'' \ge 0$$

Primal.

Minimize
$$z = 2x_1 + 3x_2' - 3x_2'' + 4x_3$$
 Subject to
$$2x_1 + 3x_2' - 3x_2'' + 5x_3 \ge 2$$

$$3x_1 + x_2' - x_2'' + 7x_3 \ge 3$$

$$-3x_1 - x_2' + x_2'' - 7x_3 \ge -3$$

$$-x_1 - 4x_2' + 4x_2'' - 6x_3 \ge -5$$

$$x_1, x_3, x_2', x_2'' \ge 0$$

Its dual,

$$\begin{array}{ll} \text{Maximise} & w = 2y_1 + 3y_2' - 3y_2'' - 5y_3 \\ \text{Subject to} & 2y_1 + 3y_2' - 3y_2'' - y_3 \leq 2 \\ & 3y_1 + y_2' - y_2'' - 4y_3 \leq 3 \\ & -3y_1 - y_2' + y_2'' + 4y_3 \leq -3 \\ & 5y_1 + 7y_2' - 7y_2'' - 6y_3 \leq 4 \\ & y_1, y_2', y_2'', y_3 \geq 0 \end{array}$$

Its dual,

Maximise
$$w = 2y_1 + 3y_2 - 5y_3$$

Subject to $2y_1 + 3y_2 - y_3 \le 2$
 $3y_1 + y_2 - 4y_3 = 3$
 $5y_1 + 7y_2 - 6y_3 \le 4$
 $y_1, y_3 \ge 0$ and y_2 is unrestricted

Construct dual of the following LPP and solve its dual 9.

Minimise
$$z = 0.7x_1 + 0.5x_2$$

Subject to $x_1 \ge 4$
 $x_2 \ge 6$
 $x_1 + 2x_2 \ge 20$
 $2x_1 + x_2 \ge 18$
 $x_1, x_2 \ge 0$

[M19/AutoMechCivil/8M]

Its dual,

Max
$$z = 4y_1 + 6y_2 + 20y_3 + 18y_4$$

s.t. $y_1 + 0y_2 + y_3 + 2y_4 \le 0.7$
 $0y_1 + y_2 + 2y_3 + y_4 \le 0.5$
 $y_1, y_2 \ge 0$

Standard form,

Max
$$z = 4y_1 + 6y_2 + 20y_3 + 18y_4 + 0s_1 + 0s_2$$
$$z - 4y_1 - 6y_2 - 20y_3 - 18y_4 + 0s_1 + 0s_2 = 0$$
s.t.
$$y_1 + 0y_2 + y_3 + 2y_4 + s_1 + 0s_2 = 0.7$$
$$0y_1 + y_2 + 2y_3 + y_4 + 0s_1 + s_2 = 0.5$$

Simplex table,

omplex														
Iteration No.	Basic		(Coeffi	RHS	Ratio	Formula							
itteration No.	Var	y_1	y_2	y_3 y_4		$s_1 \qquad s_2$		MIIS	Natio	Torritua				
0	Z	-4	-6	-20	-18	0	0	0		X + 10Y				
s_2 leaves	s_1	1	0	1	2	1	0	0.7	$\frac{0.7}{1} = 0.7$	$X-\frac{1}{2}Y$				
y_3 enters	s_2	0	1	2	1	0	1	0.5	$\frac{0.5}{2} = 0.25$	$\frac{Y}{2}$				
1	Z	-4	4	0	-8	0	10	5		$X + \frac{8}{1.5}Y$				
s_1 leaves	s_1	1	-0.5	0	1.5	1	-0.5	0.45	$\frac{0.45}{1.5} = 0.3$	<u>Y</u>				
y_4 enters	y_3	0	0.5	1	0.5	0	0.5	0.25	$\frac{0.25}{0.5} = 0.5$	$X - \frac{0.5}{1.5}Y$				
	1.3													
2	Z	$\frac{4}{3}$	$\frac{4}{3}$	0	0	16 3	22 3	7.4						
	y_4	2 3	$-\frac{1}{3}$	0	1	2 3	$-\frac{1}{3}$	0.3						
	y_3	$-\frac{1}{3}$	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	0.1						

Thus, the solution is

$$x_1 = \frac{16}{3}$$
, $x_2 = \frac{22}{3}$, $z_{min} = 7.4$

10. Using Duality solve the following L.P.P.

Minimize
$$z = 4x_1 + 3x_2 + 6x_3$$
 subject to $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_1, x_2, x_3 \ge 0$ Ans. $x_1 = 0, x_2 = 3, x_3 = 2, z_{min} = 21$

11. Using Duality to solve

Minimise
$$z=4x_1+14x_2+3x_3$$

Subject to $x_1-3x_2-x_3\leq -3$
 $2x_1+2x_2-x_3\geq 2$
 $x_1,x_2,x_3\geq 0$ Ans. $x_1=0,x_2=1,x_3=0,z_{min}=14$

12. Using Duality solve the following L.P.P.

Maximise
$$z = 5x_1 + 8x_2$$

subject to $x_1 + x_2 \le 2$
 $x_1 + 2x_2 \ge 0$
 $-x_1 + 4x_2 \le 1$
 $x_1, x_2 \ge 0$ Ans. $x_1 = \frac{7}{5}, x_2 = \frac{3}{5}, z_{max} = \frac{59}{5}$

13. Using Duality to solve

Maximise
$$z=3x_1+4x_2$$

Subject to $x_1-x_2 \leq 1$
 $x_1+x_2 \geq 4$
 $x_1-3x_2 \leq 3$
 $x_1,x_2 \geq 0$ Ans. no solution

14. Using Duality to solve

Maximise
$$z = 3x_1 + 4x_2$$

Subject to $2x_1 + x_2 \le 5$
 $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

[N19/AutoMechCivil/8M]

Solution:

The standard form,

Max
$$z = 3x_1 + 4x_2$$

s.t. $2x_1 + x_2 \le 5$
 $x_1 + x_2 \le 3$

Its dual,

Min
$$w = 5y_1 + 3y_2$$

s.t. $2y_1 + y_2 \ge 3$
 $y_1 + y_2 \ge 4$
Max $w' = -w = -5y_1 - 3y_2$
 $w' + 5y_1 + 3y_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0$ (1)
s.t. $2y_1 + y_2 - s_1 + 0s_2 + A_1 + 0A_2 = 3$ (2)
 $y_1 + y_2 + 0s_1 - s_2 + 0A_1 + A_2 = 4$ (3)
Multiplying eqn (2) & (3) by M and subtracting from eqn (1),

Simplex table,

Iteration No.	Basic		Coef	ficient o	f	RHS	Ratio	Formula			
iteration No.	Var	y_1	y_2	s_1	s_2	A_1	A_2	KIIS	Natio	Torritula	
0	w'	5–3M	3 – 2M	М	М	0	0	-7M	-	$X - \frac{5-3M}{2}Y$	
A_1 leaves	A_1	2	1	-1	0	1	0	3	1.5	$\frac{Y}{2}$	
y_1 enters	A_2	1	1	0	-1	0	1	4	4	$X - \frac{Y}{2}$	
1	w'	0	$\frac{1}{2} - \frac{M}{2}$	$\frac{5}{2} - \frac{M}{2}$	М		0	$-\frac{15}{2}-\frac{5M}{2}$	ı	X-(1-M)Y	
y_1 leaves	y_1	1	$\frac{1}{2}$	$-\frac{1}{2}$	0		0	$\frac{3}{2}$	3	2 <i>Y</i>	
y_2 enters	A_2	0	$\frac{1}{2}$	$\frac{1}{2}$	-1		1	<u>5</u> 2	5	X - Y	
2	w'	-1+M	0	3-M	М		0	-9-M	-	X-(3-M)Y	
A_2 leaves	y_2	2	1	-1	0		0	3	-	X + Y	
s_1 enters	A_2	-1	0	1	-1		1	1	1	-	
										7	
3	w'	2	0	0	3			-12			
	y_2	1	1	0	-1			4			
	s_1	-1	0	1	-1			1			

The solution,

$$s_1 = 0, s_2 = 3, w'_{max} = -12, w_{min} = 12$$

$$\therefore x_1 = 0, x_2 = 3, z_{max} = 12$$

15. Using Duality solve the following L.P.P

Minimise
$$z=430x_1+460x_2+420x_3$$

Subject to $x_1+3x_2+4x_3\geq 3$
 $2x_1+4x_3\geq 2$
 $x_1+2x_2\geq 5$
 $x_1,x_2,x_3\geq 0$ Ans. $x_1=1,x_2=2,x_3=0,z_{min}=1350$

16. Using Duality solve the following L.P.P.

Maximise
$$z = 2x_1 + x_2$$

subject to $2x_1 - x_2 \le 2$
 $x_1 + x_2 \le 4$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

[N14/CompIT/6M]

The standard form,

Max
$$z = 2x_1 + x_2$$

s.t. $2x_1 - x_2 \le 2$
 $x_1 + x_2 \le 4$
 $x_1 + 0x_2 \le 3$

Its dual,

Min
$$w = 2y_1 + 4y_2 + 3y_3$$

s.t. $2y_1 + y_2 + y_3 \ge 2$
 $-y_1 + y_2 + 0y_3 \ge 1$
Max $w' = -w = -2y_1 - 4y_2 - 3y_3$
 $w' + 2y_1 + 4y_2 + 3y_3 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0$ (1)
s.t. $2y_1 + y_2 + y_3 - s_1 + 0s_2 + A_1 + 0A_2 = 2$ (2)

 $-y_1 + y_2 + 0y_3 + 0s_1 - s_2 + 0A_1 + A_2 = 1$(3)

Multiplying eqn (2) & (3) by M and subtracting from eqn (1),

$$w' + (2 - M)y_1 + (4 - 2M)y_2 + (3 - M)y_3 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -3M$$

Simplex table,

Iteration No.	Basic			Coeffi	cient o	f	RHS	Ratio	Formula			
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	A_1	A_2	KH3	Natio	romula	
0	w'	2-M	4-2M	3-M	М	М	0	0	-3M	ı	X - (4 - 2M)Y	
A_2 leaves	A_1	2	1	1	-1	0	1	0	2	2	X - Y	
y_2 enters	A_2	-1	1	0	0	-1	0	1	1	1	-	
1	w'	6-3M	0	3-M	М	4-M	0		-4-M	1	$X - \frac{(6-3M)}{3}Y$	
A_1 leaves	A_1	3	0	1	-1	1	1		1	0.33	$\frac{Y}{3}$	
y_1 enters	y_2	-1	1	0	0	-1	0		1	1	$X + \frac{1}{3}Y$	
2	w'	0	0	1	2	2			-6			
	y_1	1/3	0	1/3	-1/3	1/3			1/3			
	y_2	0	1	1/3	-1/3	-2/3			4/3			

the solution is

$$s_1 = 2, s_2 = 2, w'_{max} = -6, w_{min} = 6$$

$$\therefore x_1 = 2, x_2 = 2, z_{max} = 6$$

17. Using Duality solve the following L.P.P.

Maximise
$$z = 5x_1 - 2x_2 + 3x_3$$

Subject to $2x_1 + 2x_2 - x_3 \ge 2$
 $3x_1 - 4x_2 \le 3$
 $x_1 + 3x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

[M15/CompIT/6M]

The standard form,

Max
$$z = 5x_1 - 2x_2 + 3x_3$$

s.t. $-2x_1 - 2x_2 + x_3 \le -2$
 $3x_1 - 4x_2 + 0x_3 \le 3$
 $x_1 + 0x_2 + 3x_3 \le 5$

Its dual,

$$\begin{array}{ll} \text{Min} & w = -2y_1 + 3y_2 + 5y_3 \\ \text{s.t.} & -2y_1 + 3y_2 + y_3 \geq 5 \\ & -2y_1 - 4y_2 + 0y_3 \geq -2 \text{ i.e. } 2y_1 + 4y_2 + 0y_3 \leq 2 \\ & y_1 + 0y_2 + 3y_3 \geq 3 \\ \text{Max} & w' = -w = 2y_1 - 3y_2 - 5y_3 \end{array}$$

w' =
$$-w = 2y_1 - 3y_2 - 5y_3$$

w' - $2y_1 + 3y_2 + 5y_3 + 0s_1 + 0s_2 + 0s_3 + MA_1 + MA_3 = 0....(1)$
s.t. $-2y_1 + 3y_2 + y_3 - s_1 + 0s_2 + 0s_3 + A_1 + 0A_3 = 5$(2)

s.t.
$$-2y_1 + 3y_2 + y_3 - s_1 + 0s_2 + 0s_3 + A_1 + 0A_3 = 5 \dots (2)$$
$$2y_1 + 4y_2 + 0y_3 + 0s_1 + s_2 + 0s_3 + 0A_1 + 0A_3 = 2 \dots (3)$$
$$y_1 + 0y_2 + 3y_3 + 0s_1 + 0s_2 - s_3 + 0A_1 + A_3 = 3 \dots (4)$$

Multiplying eqn (2) & (4) by M and subtracting from eqn (1),

$$w' + (-2 + M)y_1 + (3 - 3M)y_2 + (5 - 4M)y_3 + Ms_1 + 0s_2 + Ms_3 + 0A_1 + 0A_3 = -8M$$

Simplex table,

Jiiiipiez		• • • • • • • • • • • • • • • • • • • •										
Iteration No.	Basic									RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	s_3	A_1	A_3	IVIIO	Natio	
0	w'	-2+M	3-3M	5-4M	M	0	М	0	0	-8M	-	$\frac{X - \frac{5 - 4M}{3}Y}{X - \frac{1}{3}Y}$
4 1	A_1	-2	3	1	-1	0	0	1	0	5	5	$X-\frac{1}{3}Y$
A_3 leaves	s_2	2	4	0	0	1	0	0	0	2	-	-
y_3 enters	A_3	1	0	3	0	0	-1	0	1	3	1	$\frac{Y}{3}$
1	w'	$\frac{-11+7M}{3}$	3-3M	0	М	0	$\frac{5-M}{3}$	0		-5-4M	-	$X - \frac{3 - 3M}{4}Y$
- 1	A_1	-7/3	3	0	-1	0	1/3	1		4	1.33	$X-\frac{3}{4}Y$
s_2 leaves y_2 enters	s_2	2	4	0	0	1	0	0		2	0.5	$\frac{Y}{4}$
	y_3	1/3	0	1	0	0	-1/3	0		1	-	-
2	w'	<u>-31+23<i>M</i></u> 6	0	0	М	$\frac{-3+3M}{4}$	$\frac{5-M}{3}$	0		$\frac{-13-5M}{2}$	-	X - (5 - M)Y
	A_1	-23/6	0	0	-1	-3/4	1/3	1		5/2	7.5	3 <i>Y</i>
A_1 leaves s_3 enters	s_2	1/2	1	0	0	1/4	0	0		1/2	-	-
3 ₃ enters	y_3	1/3	0	1	0	0	-1/3	0		1	-	X + Y
3	w'	14	0	0	5	3	0			-19	-	
	s_3	-23/2	0	0	-3	-9/4	1			15/2	-	
	s_2	1/2	1	0	0	1/4	0			1/2	1	
	y_3	-7/2	0	1	-1	-3/4	0			7/2	-	

The solution is

$$s_1 = 5, s_2 = 3, s_3 = 0, w'_{max} = -19, w_{min} = 19$$

$$\therefore x_1 = 5, x_2 = 3, x_3 = 0, z_{max} = 19$$

