1. A radio receiver comprising 1 2 first and second antennas connected to RF processing circuitry by an RF switch; 3 an RF switch control switched incrementally in response to a sequence of scheduled 5 6 packet bursts. 2. The radio receiver of claim 1, wherein: 1 2 the RF switch control schedules sequence bursts prescribed by a QoS defined by a MAC protocol. 3. The radio receiver of claim 2, wherein: a MAC processor is synchronized with transmission of a base station. ij<u>"</u>į **.** 4. The radio receiver of claim 1, wherein: ļ., P. the antennas are switched so that each antenna receives a related packet burst. Ļ. 1 5. A method of maintaining a controlled QoS in a wireless communication system, 2 comprising steps of: receiving communications from a transceiver at a transmission station by wireless 3 transceivers at receiving stations having switched protocol diversity reception operational modes; 4 communications being formatted as multiple packet bursts; 5

What is claimed is:

enabling a first antenna to receive a first packet burst;

6

7	enabling a second antenna to receive a second packet burst;
8	recording the received bursts as soft information in a storage medium;
9	combining the soft information from the first and second bursts into a single message.
1	6. The method of claim 5 wherein:
2	each packet burst contains a same complete message.
1	7. The method of claim 5 wherein:
2	each packet burst contains a portion of a space-time coded message spread across the first and second packet bursts.
1 2	8. A method of achieving a QoS control in a wireless LAN communication system, comprising steps of:
3	transmitting a message contained within a plurality of packet bursts occurring at spaced time intervals;
5	receiving the packet burst individually at a plurality of antennas.
1	9. The method of claim 8 wherein;
2	anch of the plurality of the antennes is connected to a radio receiver at separate times
3	each of the plurality of the antennas is connected to a radio receiver at separate times relative to other receiving antennas.
1	10. The method of claim 8, wherein:

	2	including a complete message within each packet burst.
	1	11. The method of claim 8 wherein:
	2	a message is spread across the plurality of packet bursts by space-time coding.
. uff (first)	ì	12. The method of claim 8 wherein:
	2	the process of signal transmitting combines a protocol with signal processing.
	.1	13. A communication system for coupling a transmitter and a receiver adapted for
	2	receiving at least first and second signal bursts by first and second antennas respectively, and
F()	3	responding to the two signal bursts to communicate a single unified message at the receiver;
	4	whereby:
"Her approved the time of the thing the time the terms that the time.	5	the first and second signal bursts are sequentially separated in time;
F" FIJ	6	the first and second antennas are sequentially enabled to communicate to storage at the
Harm that that allo	7	receiver;
	8	enabling a representation of the unified message by responding to the first and second
	9	signals.
	1	14. The communication system of claim 13, wherein:
	2	the first and second signal bursts are identical packets of a common message.
	1	15. The communication system of claim 13, wherein:

1

- 21. The method of claim 8, including a further step of:
- 2 upon reconstruction of a received message sending a message to the transmitting end to
- 3 cease further message bursts.