Optimización

FAMAF, UNC - 2020

Guía de Ejercicios 1: problemas de minimización y condiciones de optimalidad

- Analizar, con ejemplos, que ocurre cuando se eliminan de las hipótesis de continuidad o compacidad en el teorema de Bolzano-Weierstrass.
- 2. Encontrar un ejemplo donde todos los puntos de Ω sean minimizadores locales pero $f(x) \neq f(y)$ para $x \neq y$.
- 3. Probar que si f es continua en \mathbb{R}^n y $\lim_{\|x\| \to \infty} f(x) = \infty$, entonces f tiene un minimizador global en \mathbb{R}^n
- 4. Sea $g: \mathbb{R} \to \mathbb{R}$ una función estrictamente creciente y $f: \mathbb{R}^n \to \mathbb{R}$. Probar que minimizar f es equivalente a minimizar g(f(x)).
- 5. Dados los números reales $a_1 \leq a_2 \leq \dots a_n$. Hallar la solución de los siguientes problemas.
 - a) Minimizar $\sum_{i=1}^{n} |x a_i|$;
 - b) Minimizar Máximo $\{|x a_i|, i = 1, \dots, n\};$
 - c) Minimizar $\sum_{i=1}^{n} |x a_i|^2$;
 - d) Maximizar $\prod_{i=1}^{n} |x a_i|$.
- 6. Graficar la función $f(x) = (x+1)x(x-2)(x-5) = x^4 6x^3 + 3x^2 + 10x$. Graficar esta función y localizar (aproximadamente) los minimizadores/maximizadores locales y globales.
- 7. Encontrar los puntos estacionarios de $f(x) = 2x_1^3 3x_1^2 6x_1x_2(x_1 x_2 1)$. Cuáles de tales puntos son minimizadores, maximizadores, locales o globales?
- 8. Calcular los puntos críticos y sus Hessianas correspondientes de las siguientes funciones $f(x,y) = xe^{-y^2} + x^2$, $g(x,y) = x^2 + y^4$, $h(x,y) = x^4 + y^4$, w(x,y) = xy. Son maximizadores, minimizadores, puntos de silla?
- 9. Sea f 2 veces continuamente diferenciable en \mathbb{R}^n tal que tiene un extremo estricto en $a \in \mathbb{R}^n$. Su matriz Hessiana es necesariamente definida positiva o negativa?
- 10. Dar ejemplos de funciones que satisfagan las siguientes propiedades:
 - a) x_* es un minimizador local de f en Ω pero $\nabla f(x_*) \neq 0$;
 - b) x_* es un minimizador local de f en Ω pero $\nabla^2 f(x_*)$ no es semidefinida positiva;
 - c) $x_* \in \Omega, \Omega$ abierto, $\nabla f(x_*) = 0$ pero x_* no es un minimizador local de f;
 - d) $x_* \in \Omega, \Omega$ abierto, $\nabla f(x_*) = 0, \nabla^2 f(x_*) \ge 0$ pero x_* no es un minimizador local;
 - e) $x_* \in \Omega, \Omega$ abierto, x_* minimizador local estricto, pero $\nabla^2 f(x_*)$ no es definida positiva.
- 11. Sea $f(x) = (x_1 x_2^2)(x_1 \frac{1}{2}x_2^2)$. Verificar que $\hat{x} = (0,0)$ es un minimizador local de $\phi(\lambda) = f(\hat{x} + \lambda d)$ para todo $d \in \mathbb{R}^2$ pero \hat{x} no es un minimizador local de f.

12. Considere el sistema no lineal

$$f_i(x) = 0, \quad f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m.$$

Cómo resolvería el sistema con técnicas de minimización irrestricta?

- 13. Sea $F: \mathbb{R}^n \to \mathbb{R}^n$ con derivadas continuas. Sea $f: \mathbb{R}^n \to \mathbb{R}$ dada por $f(x) = ||F(x)||_2^2$. Sea x_* un minimizador local de f tal que $J_F(x_*)$ es no singular. Probar que x_* es solución del sistema F(x) = 0.
- 14. Considerar la función $f(x) = (x_1 1)^2 x_2$ y puntos de la forma $\hat{x} = (1, x_2)$.
 - a) Analizar las condiciones de optimalidad de primer y segundo orden para esos puntos;
 - b) qué se puede afirmar sobre \hat{x} utilizando tales condiciones?;
 - c) usar la expresión de la función para obtener afirmaciones más concluyentes sobre los puntos \hat{x} .
- 15. Considerar el problema

Minimize
$$f(x) = x_1$$

s. a $x_1^2 + x_2^2 \le 4$
 $x_1^2 \ge 1$.

Graficar el conjunto factible. Usar el grġfico para encontrar todos los minimizadores locales. Determinar si también son minimizadores globales.

- 16. En \mathbb{R}^2 considere las siguientes restricciones: $x_1 \ge 0, x_2 \ge 0, x_2 (x_1 1)^2 \le 0$. Probar que (1, 0) es un punto factible pero no es un punto regular.
- 17. Considere el problema

Maximizar
$$x_2^3$$

s. a $(x_1 - x_2)^3 \ge 0$
 $(x_1 + x_2 - 2)^3 \le 0$.

Resuelva y analice las condiciones de optimalidad.

18. Encuentre todas las soluciones globales del problema de maximizar x_1 sujeta a las restricciones:

$$\begin{array}{rcl}
 x_2 - \sin x_1 & = & 0 \\
 x_2^2 - 1 & = & 0 \\
 -10 \le x_1 & \le & 10.
 \end{array}$$

19. Considere el problema

Minimizar
$$x_1$$

s. a $x_2 \ge 0$
 $x_2 \le x_1^3$.

Cual es la solución? Se verifican las condiciones KKT? Por qué?

20. Resolver el problema

Minimizar
$$c^T x$$

s. a $\sum_{i=1}^n x_i = 0$
 $\sum_{i=1}^n x_i^2 = 1$.

21. Considerar el problema

2

donde Q es una matriz simétrica y definida positiva.

- a) Resolver el problema y determinar cual es el valor objetivo óptimo.
- b) Resolver el problema cambiando maximizar por minimizar.
- 22. Determinar los minimizadores/maximizadores de los siguientes problemas usando las condiciones KKT. Ayuda: graficar los respectivos conjuntos factibles.

a)
$$f(x_1, x_2) = x_2$$
, sujeto a $x_1^2 + x_2^2 \le 1, -x_1 + x_2^2 \le 0, x_1 + x_2 \ge 0$.

b)
$$f(x_1, x_2) = x_1^2 + 2x_2^2$$
, sujeto a $x_1^3 + x_2^3 \le 1, x_1^2 + x_2^2 \ge 1$.

23. Resuelva los siguientes problemas usando las condiciones KKT:

a) Minimizar
$$\sum_{i=1}^{n} (1/x_i)$$
 s. a $\sum_{i=1}^{n} x_i^2 = n, x_i \ge 0, i = 1, ..., n;$

b) Maximizar
$$\prod_{i=1}^{n} x_i$$
 s. a $\sum_{i=1}^{n} x_i^2 = n$.