Unsupervised Language Learning

Tran Cong Nguyen, Lautaro Quiroz, Roger Wechsler

Outline

- Overview and goals
- Implementation
- Results

<u>Goal</u>: Find the best Tree Substitution Grammar (TSG) for the "numerical" data

Procedure:

- Define a simple CFG that generates numbers
- Parse the corpus, randomly extract elementary trees and create an initial **TSG**
- Make small changes to the data and check if data likelihood improves in order to find best TSG

Extract numeral data from the Penn WSJ Treebank.

Procedure:

- Look for tags "CD".
- Extract the values inside this tag.
- If in alphabetic form, translate to number form.

Examples:

- "12" \rightarrow 12.
- "two hundred" \rightarrow 200.
- "1.45 million" \rightarrow 1,450,000.
- "early-1980s" \to 1980.
- etc.

<u>Total number of numbers</u>:

• Number form: 9.392

• Alphabetic form: 3.728

• Both forms: 13.120

Extension: instead of using the probability of the best derivation of a string, use the **actual likelihood** of a string

p(derivation): p(string):

$$P_G(\psi) = \prod_{r \in R} p(r)^{f_r(\psi)} \qquad P_G(w) = \sum_{\psi \in \Psi_G(w)} P_G(\psi)$$

p(best derivation): $\max_{\psi \in \Psi_G(w)} P_G(\psi)$

Expectation: Using the exact data likelihood while sampling leads to a better TSG than using an approximated data likelihood.

Problems:

- Fast implementation is indispensable
- How to measure differences between two approaches

CDEC Decoder

- Cdec is a decoder and aligner used in Machine Translation
- It translates sentences while deriving syntax trees for both the target and source language.
- CFG for source and target required.
- in C++ and Python-wrapper
- provides inside probability of root symbol

Example PCFG

root	Sourc	Source language		Target language		Probability	
[S]	[D,1]			[D,1]			LogProb=-0.69314
[S]	[S1,	L] [S2,2]		[S1,1]	[S2,2]	111	LogProb=-0.69314
[S1]	[NZ,	L] [S2,2]		[NZ,1]	[S2,2]	111	LogProb=-0.69314
[S1]	[NZ,	L]		[NZ,1]		111	LogProb=-0.69314
[S2]	[D,1]	[S2,2]		[D,1]	[S2,2]	111	LogProb=-0.69314
[S2]	[D,1]			[D,1]		111	LogProb=-0.6931
[D]	1			1		111	LogProb=-2.3025850

. . .

Metropolis-Hastings Sampling

Repeat:

- Generate a random candidate change
 - Remove or add substitution site marker
- Compute new likelihood L_{new} of the data with change
- Accept candidate change in two cases:
 - if L_{new} > L_{old} always accept
 - otherwise accept with probability L_{new} / L_{old}

Grammars for Numerals

Deterministic:

Grammars for Numerals

Half ambiguous:

```
[S] \rightarrow [D] [D] | [S1] [S2]
[S1] \rightarrow [NZ] [S2] | [NZ]
[S2] \rightarrow [D] [S2] | [D]
[NZ] \rightarrow [1] | [2] | [3] | ... | [9]
[D] \rightarrow [0] | [1] | [2] | ... | [9]
```

Not deterministic

Grammars for Numerals

Highly ambiguous:

Likelihood

Count of used rules

Grammar size

Acceptance rate

Comparison: viterbi vs inside

Experiment: use same data set and sample

- using inside probability
- using viterbi probability

What are the differences?

Comparison: viterbi vs inside

Questions & Answers

Thank you for your attention