ESMA 5015: Examen 2

Due on Abril 10, 2025

Damaris Santana

Alejandro Ouslan

Contents

1	Acc	ept-Reject	3
	1.1	Por que es necesario que $a < \alpha$ y $b > \beta$	3
	1.2	Para $a = \lfloor \alpha \rfloor$, demuestre que M ocurre en $x = \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{\beta} - \frac{1}{\hbar}} \dots \dots \dots \dots \dots \dots \dots \dots$	3
	1.3	Para $a = \lfloor \alpha \rfloor$, encuentre el valor optimo de b	3
2	Imp	plementación del algoritmo	4
	2.1	Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribución	
		Gamma(3/2,1)	4
	2.2	Algoritmo en Python	4
	2.3	Grafique el histograma de la distribución obtenida sobreponiendo la distribución deseada	5
	2.4	Estime $E[X^2]$ y construya la gráfica de la convergencia de los running means	6
3	Imp	portanc ee Sampling	7
	3.1	Estimador importance Sampling	7
		3.1.1 $Cauchy(0,1)$	7
		3.1.2 $Normal(0, \frac{v}{v-2})$	8
		3.1.3 $Exponencial(\lambda = 1)$	8
	3.2	Estimador Monte Carlo	8
	3.3	Implementacion	8
		3.3.1 Codigo para Monte Carlos	8
		3.3.2 Codigo para $Cauchy(0,1)$	8
		3.3.3 Codigo para $Normal(0, \frac{v}{v-2})$	9
		y =	10
	3 4		10

1 Accept-Reject

Suponga que desea general variables aleatorias de una distribución $Gamma(\alpha, \beta)$ donde α no es necesariamente un entero. Decide usar el algoritmo **Accept-Reject** con la función candidata Gamma(a, b).

1.1 Por que es necesario que $a < \alpha$ y $b > \beta$

Esto es para asegurar un buen candidato que se asurque lo mas posible a la función objetivo, esto es con el propósito de hacer el algoritmo mas eficiente.

1.2 Para $a = \lfloor \alpha \rfloor$, demuestre que M ocurre en $x = \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{3} - \frac{1}{h}}$

$$\begin{split} x &= \sup \frac{f(x)}{g(x)} \\ &= \sup \frac{Gamma(\alpha,\beta)}{Gamma(a,b)} \\ &= \sup \frac{\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\frac{1}{\Gamma(a)b^{a}}x^{a-1}e^{-\frac{x}{b}}} \\ &= \left(\frac{\frac{1}{\Gamma(\alpha)\beta^{\alpha}}}{\frac{1}{\Gamma(a)b^{a}}} \cdot \frac{x^{\alpha-1}}{x^{a-1}} \cdot \frac{e^{-\frac{x}{\beta}}}{e^{-\frac{x}{b}}}\right) \frac{d}{dx} \\ &= \left(x^{\alpha-a} \cdot e^{\frac{x}{b} - \frac{x}{\beta}}\right) \frac{d}{dx} \\ &= \left(x^{\alpha-1}e^{\frac{x}{b} - \frac{x}{\beta}}\right) \left(\left[\frac{1}{\beta} - \frac{1}{\beta}\right] + (\alpha - a)x^{-1}\right) = 0 \\ &= \left[\frac{1}{\beta} - \frac{1}{\beta}\right] + (\alpha - a)x^{-1} = 0 \\ &= \left[\frac{\alpha - a}{\frac{1}{\beta} - \frac{1}{b}}\right]_{a = \lfloor \alpha \rfloor} \\ &= \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{\beta} - \frac{1}{b}} \end{split}$$

1.3 Para $a = |\alpha|$, encuentre el valor optimo de b

$$Mode_{target} = Mode_{candidate}$$

$$(\alpha - 1)\beta = (a - 1)b$$

$$b = \frac{(\alpha - 1)\beta}{a - 1}$$
 Como $\alpha - 1 \approx \alpha$ y $a - 1 \approx a$
$$b = \frac{\alpha\beta}{a}$$

2 Implementación del algoritmo

2.1 Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribución Gamma(3/2, 1)

$$M = \frac{f(x)}{f(x)}$$

$$= \frac{f(x)}{g(x)} = \frac{\frac{2}{\sqrt{\pi}}x^{\frac{1}{2}}e^{-x}}{xe^{-x}}$$

$$= \frac{2}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{x}}$$

$$= \frac{2}{\pi}$$

- 1. Genrar un numero Y de la distribución Gamma(2,1).
- 2. Generar un numero uniiforme $U \sim U(0,1)$
- 3. Si $U \ge \frac{Y}{Mg(Y)}$
- 4. Repetir el proceso hasta aceptar un valor

2.2 Algoritmo en Python

Implementacion de python

```
import numpy as np
# Función de densidad de la distribución objetivo (Gamma(3/2, 1))
def f(x):
   return (2 / np.sqrt(np.pi)) * np.sqrt(x) * np.exp(-x)
# Función de densidad de la distribución candidata (Gamma(1, 2))
def g(x):
   return x * np.exp(-x)
# Algoritmo de aceptación y rechazo
def accept_reject(n, seed=787):
    # Semilla para la generación de números aleatorios
   rng = np.random.default_rng(seed=seed)
   samples = []
   M = 2 / np.sqrt(np.pi)
   while len(samples) < n:</pre>
        # Paso 1: Generar una muestra de la distribución candidata (Gamma(1, 2))
        Y = rng.gamma(1, 2)
        # Paso 2: Generar una variable aleatoria uniforme U
        U = rng.uniform(0, 1)
        # Paso 3: Aceptar o rechazar
```

2.3 Grafique el histograma de la distribución obtenida sobreponiendo la distribución deseada

Implementacion de python

```
from accept import *
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma
def main(n: int):
    samples = accept_reject(n)
    # Traficar el histograma
    x = np.linspace(0, 10, 1000)
    plt.hist(
        samples,
        bins=50,
        density=True,
        alpha=0.6,
        color="b",
        label="Histograma (muestras)",
    plt.plot(x, gamma.pdf(x, 3/2, scale=1), 'r-', label='Distribución Gamma(3/2, 1)')
    plt.xlabel("x")
    plt.ylabel("Densidad")
    plt.legend()
    plt.title("Histograma de la Distribución Generada vs. Distribución Objetivo")
    plt.show()
if __name__ == "__main__":
    n_samples = 10000
    main(n_samples)
```


Figure 1: Histograma de la la gama simulada

2.4 Estime $E[X^2]$ y construya la gráfica de la convergencia de los running means.

$$E[X^{2}] = \alpha(\alpha + 1)\beta^{2}$$
$$= \frac{3}{2}(\frac{3}{2}1) = 3.75$$

```
# Estimar E[X^2] y construir la gráfica de la convergencia de los "running means"
running_means = np.cumsum(samples) / np.arange(1, n_samples + 1)

# Graficar la convergencia
plt.plot(running_means, label="Running Mean")
plt.axhline(y=np.mean(samples), color="r", linestyle="--", label="Media Estimada")
plt.xlabel("Número de Muestras")
plt.ylabel("Running Mean")
plt.legend()
plt.title("Convergencia del Running Mean a la Media Estimada")
plt.show()

# Estimación de E[X^2]
E_X2_estimated = np.mean(samples) + np.mean(samples) ** 2
print("Estimación de E[X^2]:", E_X2_estimated)
```


Figure 2: Histograma de la variable aleator

3 Importanc ee Sampling

Usando Importance Sampling estime $E_f\left[\frac{X^5}{1+(X-3)^2}I[X\geq 0]\right]$, donde f es la distribución t con v=12 Utilice las siguientes g:

3.1 Estimador importance Sampling

Para cada una de estas distribuciones presente el estimador que corresponde a la summatoria definida por el metodo de **Importance Sampling** y que converge al valor esperado de interes

3.1.1 Cauchy(0,1)

$$E_f\left[\frac{f(x)}{g(x)}p(x)\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{g(x)}p(x); \text{ where } x \sim cauchy(0,1)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{\frac{X^5}{1+(X-3)^2}I[X \ge 0]}{\frac{1}{\pi(1+x^2)}} \cdot student(12)$$

3.1.2 $Normal(0, \frac{v}{v-2})$

$$E_f\left[\frac{f(x)}{g(x)}p(x)\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{g(x)}p(x); \text{ where } x \sim normal(0, \frac{12}{12 - 2})$$
$$= \frac{1}{N} \sum_{i=1}^{N} \frac{\frac{X^5}{1 + (X - 3)^2}I[X \ge 0]}{student(12)}$$

3.1.3 Exponencial $(\lambda = 1)$

$$E_f\left[\frac{f(x)}{g(x)}p(x)\right] = \frac{1}{N} \sum_{i=1}^N \frac{f(x)}{g(x)}p(x); \text{ where } x \sim exponential(1)$$
$$= \frac{1}{N} \sum_{i=1}^N \frac{\frac{X^5}{1+(X-3)^2}I[X \ge 0]}{g(x)} student(12)$$

3.2 Estimador Monte Carlo

Para cada uno presente el estimador que corresponde a la sumatoria definida por el metodo de Integracion Monte Carlos y que converge al valor esperado de interes.

$$MC = \frac{1}{N} \sum_{i=1}^{N} f(x); \text{ where } x \sim student(12)$$

= $\frac{1}{N} \sum_{i=1}^{N} f \frac{X^5}{1 + (X - 3)^2} I[X \ge 0]$

3.3 Implementacion

3.3.1 Codigo para Monte Carlos

Implementacion de Monte Carlos

```
import numpy as np
import scipy.stats as stats

def h(X):
    return (X**5) / (1 + (X - 3) ** 2) * (X >= 0)

if __name__ == "__main__":
    samples = stats.t.rvs(df=12, size=1000)
    monte_carlo_estimate = np.mean(h(samples))
```

3.3.2 Codigo para Cauchy(0,1)

Implementacion de distribución cauchy

```
import numpy as np
import scipy.stats as stats
```

```
def h(X):
    return (X**5) / (1 + (X - 3) ** 2) * (X >= 0)

def g_cauchy(x):
    return 1 / (np.pi * (1 + x**2))

def importance_sampling_cauchy(samples, v):
    f_samples = stats.t.pdf(samples, df=v)
    g_samples = g_cauchy(samples)
    weights = f_samples / g_samples
    h_values = h(samples)

    estimate = np.mean(weights * h_values)

    return estimate

if __name__ == "__main__":
    samples_cauchy = np.random.standard_cauchy(size=1000)
    cauchy_estimate = importance_sampling_cauchy(samples_cauchy, 12)
    print(cauchy_estimate)
```

3.3.3 Codigo para $Normal(0, \frac{v}{v-2})$

Implementacion de distribución normal

```
import numpy as np
import scipy.stats as stats

def h(X):
    return (X**5) / (1 + (X - 3) ** 2) * (X >= 0)

def g_normal(x, v):
    return stats.norm.pdf(x, loc=0, scale=np.sqrt(v / (v - 2)))

def importance_sampling_normal(samples, v):
    f_samples = stats.t.pdf(samples, df=v)
    g_samples = g_normal(samples, v)

    weights = f_samples / g_samples
    h_values = h(samples)
    return np.mean(weights * h_values)

if __name__ == "__main__":
```

```
samples_normal = np.random.normal(0, np.sqrt(12 / (12 - 2)), size=100)
normal_estimate = importance_sampling_normal(samples_normal, 12)
print(normal_estimate)
```

3.3.4 Codigo para $Exponencial(\lambda = 1)$

Implementacion de distribución Exponencial

```
import numpy as np
import scipy.stats as stats
def h(X):
    return (X**5) / (1 + (X - 3) ** 2) * (X >= 0)
def g_exponential(x):
    return np.exp(-x) * (x >= 0)
def importance_sampling_exponential(samples):
    f_samples = stats.t.pdf(samples, df=12)
    g_samples = g_exponential(samples)
    weights = f_samples / g_samples
    h_values = h(samples)
    estimate = np.mean(weights * h_values)
    return estimate
if __name__ == "__main__":
    samples_exponential = np.random.exponential(1, size=1000)
    exponential_estimate = importance_sampling_exponential(samples_exponential)
    print(exponential_estimate)
```

3.4 Graficas

Construya un asola graica y presente la convergencia de los running menas para los cuatro estimadores. Compare la varianza empirica de los cuatro estimadores

Implementacion de distribución Exponencial

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

normal_samples = []
```

```
cauchy_samples = []
exp_samples = []
mc_samples = []
for i in range(1000):
    samples_cauchy = np.random.standard_cauchy(size=1000)
    cauchy_samples.append(importance_sampling_cauchy(samples_cauchy, 12))
    samples_exponential = np.random.exponential(1, size=1000)
    exp_samples.append(importance_sampling_exponential(samples_exponential))
    samples = stats.t.rvs(df=12, size=1000)
    mc_samples.append(np.mean(h(samples)))
    samples_normal = np.random.normal(0, np.sqrt(12 / (12 - 2)), size=100)
    normal_samples.append(importance_sampling_normal(samples_normal, 12))
normal_data = np.array(normal_samples)
cauchy_data = np.array(cauchy_samples)
mc_data = np.array(mc_samples)
exp_data = np.array(exp_samples)
# Estimar E[X^2] y construir la gráfica de la convergencia de los "running means"
running_normal = np.cumsum(normal_data) / np.arange(1, 1000 + 1)
running_cauchy = np.cumsum(cauchy_data) / np.arange(1, 1000 + 1)
running_exp = np.cumsum(exp_data) / np.arange(1, 1000 + 1)
running_mc = np.cumsum(mc_data) / np.arange(1, 1000 + 1)
# Graficar la convergencia
plt.plot(running_normal, label="Running normal")
plt.plot(running_cauchy, label="Running cauchy")
plt.plot(running_exp, label="Running exp")
plt.plot(running_mc, label="Running mc")
plt.axhline(y=4.64, color="r", linestyle="--", label="Media Real")
plt.xlabel("Número de Muestras")
plt.ylabel("Running Mean")
plt.legend()
plt.title("Convergencia del Running Mean a la Media Estimada")
plt.savefig("running_all.png")
```


Figure 3: Histograma de la variable aleator