SEQUENCE LISTING

<130> 00415-02

<140>

WO 01/07083

15 <141>

<150> 60/145,512 <151> 1999-07-23

20 <160> 18

<170> PatentIn Ver. 2.1

<210> 1
25 <211> 116
<212> PRT

<213> Mus musculus

<400> 1

30 Asp Ile Glu Leu Thr Gln Ser Pro Phe Ser Leu Pro Val Ser Leu Gly
1 5 10 15

Gly Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30

35

Asn Arg Asp Thr Tyr Leu His Trp Phe Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Glu Leu Leu Ile Tyr Arg Val Ser Asn Arg Phe Ser Gly Val Pro 40 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

-2-

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95

Thr His Val Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys

100 105 110

Arg Ala Ala Ala 115

10

<210> 2

<211> 348

<212> DNA

<213> Mus musculus

15

14

IJ

for the true and the control of

Least

<400> 2

gacatcgagc tcactcagtc tccattctcc ctgcctgtca gtcttggagg tccagcctcc 60

atctcttgca gatctagtca gagtcttgta cacagtaata gagacactta tttacattgg 120

20

ttcctgcaga agccaggcca gtctccagag ctcctgatct acagagtttc caaccgattt 180

tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc 240

25 agcagagtgg aggctgagga tctgggagtt tatttctgtt ctcaaagtac acatgttcca 300

ttcacgttcg gctcggggac caagctggaa atcaaacggg cggccgca 348

30

<210> 3

<211> 118

<212> PRT

<213> Mus musculus

35

<400> 3

Gln Val Lys Leu Gln Gln Pro Gly Ser Glu Pro Val Arg Pro Gly Ala 1 5 10 15

40 Ser Val Lys Val Ser Cys Arg Ala Ser Gly Tyr Lys Phe Thr Thr Tyr
20 25 30

Trp Met His Trp Val Arg Gln Arg Pro Gly Gln Gly Pro Glu Trp Ile 35 40 45

		Gly Asp lie Tyr Pro Gly Ser Gly Asp Ser Asn Tyr Asp Val Lys Phe 50 55 60
	5	Lys Asn Lys Ala Thr Leu Thr Val Asp Thr Ser Ser Ser Thr Val Tyr 65 70 75 80
		Ile Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95
	10	Ala Arg Gly Asp Tyr Gly Cys Pro Phe Val Tyr Trp Gly Gln Gly Thr 100 105 110
	15	Thr Val Thr Val Ser Ser 115
	•	<210> 4 <211> 354 <212> DNA
: L	20	<213> Mus musculus <400> 4
	25	caggtgaaac tgcagcaacc tgggtctgaa ccggtgaggc ctggagcttc agtgaaggtg 60 tcctgcaggg cttctggcta caaattcacc acctactgga tgcactgggt gaggcagagg 120
		cctggacaag gccctgagtg gattggagat atttatcctg gtagtggtga ttctaactac 180
	30	gatgtgaagt tcaagaacaa ggccacactg actgtagaca catcctccag cacagtttac 240
		atacaactca gcagectgac atetgaggac teegeggtet attactgtge aagaggggac 300

35

<210> 5

<211> 15

<212> PRT

40 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:peptide linker

tatggttgcc cttttgttta ctggggccaa ggcaccacgg tcaccgtctc cagt

354

-4-

```
<400> 5
    Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                       5
                                          10
5
     <210> 6
     <211> 100
     <212> DNA
     <213> Artificial Sequence
10
     <220>
     <223> Description of Artificial Sequence:PCR primer
     <400> 6
15
    ggcaccacgg tcaccgtctc cagtggcggc ggcggcagcg gtggtggtgg ttctgggggc 60
     ggcggcagcg acatcgagct cactcagtct ccattctccc
                                                                        100
20
     <210> 7
     <211> 100
     <212> DNA
     <213> Artificial Sequence
25
     <220>
     <223> Description of Artificial Sequence:PCR primer
     <400> 7
30
     gggagaatgg agactgagtg agctcgatgt cgctgccgcc gcccccagaa ccaccaccac 60
     cgctgccgcc gccgccactg gagacggtga ccgtggtgcc
                                                                        100
35
     <210> 8
     <211> 264
     <212> PRT
     <213> Mus musculus
40
     <400> 8
     Met Ala Gln Val Lys Leu Gln Gln Pro Gly Ser Glu Pro Val Arg Pro
       1
                       5
                                          10
                                                              15
```

									_							
	Gly	Ala	Ser	Val 20	Lys	Val	Ser	Сув	Arg 25	Ala	Ser	Gly	Tyr	Lys 30	Phe	Thr
5	Thr	Tyr	Trp 35	Met	His	Trp	Val	Arg 40	Gln	Arg	Pro	Gly	Gln 45	Gly	Pro	Glu
	Trp	Ile 50	Gly	Asp	Ile	Tyr	Pro 55	Gly	Ser	Gly	Asp	Ser 60	Asn	Tyr	Asp	Val
10	Lys 65	Phe	Lys	Asn	Lys	Ala 70	Thr	Leu	Thr	Val	Asp 75	Thr	Ser	Ser	Ser	Thr 80
15	Val	Tyr	Ile	Gln	Leu 85	Ser	Ser	Leu	Thr	Ser 90	Glu	Ąsp	Ser	Ala	Val 95	Tyr
	Tyr	Сув	Ala	Arg 100	Gly	Asp	Tyr	Gly	Сув 105	Pro	Phe	Val	Tyr	Trp 110	Gly	Gln
20	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
	Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Asp	Ile	Glu	Leu	Thr 140	Gln	Ser	Pro	Phe
25	Ser 145	Leu	Pro	Val	Ser	Leu 150	Gly	Gly	Pro	Ala	Ser 155	Ile	Ser	Cys	Arg	Ser 160
30	Ser	Gln	Ser	Leu	Val 165	His	Ser	Asn	Arg	Asp 170	Thr	туг	Leu	His	Trp 175	Phe
	Leu	Gln	Lys	Pro 180	Gly	Gln	Ser	Pro	Glu 185	Leu	Leu	Ile	Tyr	Arg 190	Val	Ser
35	Asn	Arg	Phe 195	Ser	Gly	Val	Pro	Asp 200	Arg	Phe	Ser	Gly	Ser 205	Gly	Ser	Gly
	Thr	Asp 210		Thr	Leu	Lys	Ile 215		Arg	Val	Glu	Ala 220	Glu	Asp	Leu	Gly
40	Val 225		Phe	Сув	Ser	Gln 230		Thr	His	Val	Pro 235	Phe	Thr	Phe	Gly	Ser 240
45	Gly	Thr	Lys	Leu	Glu 245		Lys	Arg	Ala	Ala 250	Ala	Gly	Ala	Pro	Val 255	Pro

Tyr Pro Asp Pro Leu Glu Pro Arg 260

5	<210>	_	
	<211><212>		
			musculus

10 <400> 9 atggcccagg tgaaactgca gcaacctggg tctgaaccgg tgaggcctgg agcttcagtg 60 aaggtgtcct gcagggcttc tggctacaaa ttcaccacct actggatgca ctgggtgagg 120 15 cagaggcctg gacaaggccc tgagtggatt ggagatattt atcctggtag tggtgattct 180 aactacgatg tgaagttcaa gaacaaggcc acactgactg tagacacatc ctccagcaca 240 gtttacatac aactcagcag cctgacatct gaggactccg cggtctatta ctgtgcaaga 300 20 ggggactatg gttgcccttt tgtttactgg ggccaaggca ccacggtcac cgtctccagt 360 ggcggcggcg gcagcggtgg tggtggttct gggggcggcg gcagcgacat cgagctcact 420 25 cagtetecat tetecetgee tgteagtett ggaggtecag cetecatete ttgcagatet 480 agtcagagtc ttgtacacag taatagagac acttatttac attggttcct gcagaagcca 540 ggccagtctc cagagetect gatetacaga gtttccaacc gattttctgg ggtcccagac 600 30 aggttcagtg gcagtggatc agggacagat ttcacactca agatcagcag agtggaggct 660 gaggatctgg gagtttattt ctgttctcaa agtacacatg ttccattcac gttcggctcg 720 35 gggaccaagc tggaaatcaa acgggcggcc gcaggtgcgc cggtgccgta tccggatccg 780 ctggaaccgc gt 792

40
<210> 10
<211> 792
<212> DNA
<213> Artificial Sequence

-7-

<220>
<223> Description of Artificial Sequence: synthetic
 sequence substituting bacterial codons for mouse
 codons

5

<400> 10 atggcccagg tgaaactgca gcaacctggg tctgaaccgg tgcgccctgg cgcttcagtg 60 aaggtgtcct gccgcgcttc tggctacaaa ttcaccacct actggatgca ctgggtgcgc 120 10 cagegeeetg gecaaggeee tgagtggatt ggegatattt ateetggtag tggtgattet 180 aactacgatg tgaagttcaa gaacaaggcc acactgactg tagacacatc ctccagcaca 240 gtttacatcc aactcagcag cctgacatct gaggactccg cggtctatta ctgtgcaaga 300 15 ggggactatg gttgcccttt tgtttactgg ggccaaggca ccacggtcac cgtctccagt 360 9909909909 gcagcggtgg tggtggttct gggggcggcg gcagcgacat cgagctcact 420 20 cagtetecat tetecetgee tgteagtett ggegatecag cetecatete ttgeegetet 480 agtcagagtc ttgtacacag taatcgcgac acctatctgc attggttcct gcagaagcca 540 25 ggccagtctc cagagctcct gatctaccgc gtttccaacc gcttttctgg ggtcccagac 600 cgcttcagtg gcagtggctc agggacagat ttcacactca agatcagcag cgtggaggct 660 gaggatctgg gcgtttattt ctgttctcaa agtacacatg ttccattcac gttcggctcg 720 30 gggaccaagc tggaaatcaa acgggcggcc gcaggtgcgc cggtgccgta tccggatccg 780 ctggaaccgc gt 792

35

45

<210> 11

<211> 251

<212> PRT

40 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic sequence substituting amino acids in the natural mouse protein to "humanize" the protein

	<400)> 13	L													
<u>_</u>	Met 1	Ala	Gln	Val	Gln 5	Leu	Gln	Gln	Ser	Gly 10	Ala	Glu	Val	Lys	Lys 15	Pro
5	Gly	Ala	Ser	Val 20	Lys	Val	Ser	Cys	Lys 25	Ala	Ser	Gly	Tyr	Thr 30	Phe	Thr
10	Thr	Tyr	Trp 35	Met	His	Trp	Val	Arg 40	Gln	Ala	Pro	Gly	Gln 45	Gly	Leu	Glu
	Trp	Ile 50	Gly	Asp	Ile	туг	Pro 55	Gly	Ser	Gly	Asp	Ser 60	Asn	Tyr	Asp	Val
15	Lys 65	Phe	Lys	Asn	Arg	Val 70	Thr	Ile	Thr	Ala	Asp 75	Thr	Ser	Thr	Ser	Thr 80
20	Ala	Туг	Met	Gln	Leu 85	Ser	Ser	Leu	Arg	Ser 90	Glu	Asp	Thr	Ala	Val 95	Tyr
20	Tyr	Сув	Ala	Arg 100	Gly	Asp	Tyr	Gly	Cys 105	Pro	Phe	Val	Tyr	Trp 110	Gly	Gln
25	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
	Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Asp	Ile	Val	Met	Thr 140	Gln	Ser	Pro	Ser
30	Ser 145	Leu	Pro	Val	Ser	Val 150	Gly	Asp	Pro	Ala	Ser 155	Ile	Ser	Сув	Arg	Ser 160
25	Ser	Gln	Ser	Leu	Val 165	His	Ser	Asn	Arg	Asp 170	Thr	Tyr	Leu	His	Trp 175	Tyr
35	Leu	Gln	Lys	Pro 180	Gly	Gln	Ser	Pro	Gln 185	Leu	Leu	Ile	Туг	Arg 190	Val	Ser
40	Asn	Arg	Phe 195		Gly	Val	Pro	Asp 200	Arg	Phe	Ser	Gly	Ser 205	Gly	Ser	Gly
	Thr	Asp 210		Thr	Leu	Lys	Ile 215	Ser	Arg	Val	Glu	Ala 220	Glu	Asp	Val	Gly

Val Tyr Tyr Cys Ser Gln Ser Thr His Val Pro Phe Thr Phe Gly Gln 225 230 235 240

Gly Thr Lys Val Glu Ile Lys Arg Ala Ala Ala 5 245 250

<210> 12

<211> 753

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic 15 sequence substituting human codons for mouse codons

<400> 12

20

25

30

35

40

atggcacaag ttcagttaca acagtctggt gcagaagtta aaaaacctgg tgcttctgtt 60

aaagtttctt gcaaagcttc tggttatacc tttaccacgt attggatgca ttgggttcgt 120

caagctcctg gtcaaggtct ggaatggatt ggtgatattt atcctggttc tggtgattct 180

aattatgatg ttaaatttaa aaatcgtgtt accattaccg ctgatacctc tacctctacc 240

gcttatatgc aattatctag cttacgttct gaagataccg cagtttatta ttgtgcacgt 300

ggtgattatg gttgtccttt tgtttattgg ggtcaaggca ccacggttac cgtttctagc 360

ggtggcggcg gttctggcgg tggcggtagc ggcggtggtg gctctgatat tgttatgacc 420

caatctcctt ctagcttacc tgtttctgtt ggtgatcctg ctagcattc ttgtcgttct 480

agccaatctt tagttcatag caatcgtgat acctatttac attggtatct gcagaaacct 540

ggtcaaagcc ctcaattact gattatcgt gttagcaatc gttttagcgg tgttcctgat 600

cgttttctg gtagcggttc tggtaccgat tttacgttaa aaattctcg tgttgaagct 660

gaggatgttg gtgtttatta ttgttctcaa agcacccatg ttcctttac gttcggtcaa 720

ggtaccaaag ttgaaattaa acgtgctgca gct 753

WO 01/07083

```
<210> 13
    <211> 45
    <212> DNA
5
    <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: nucleic acid
           linker
10
     <400> 13
    ggcggcggcg gcagcggtgg tggtggttct gggggcggcg gcagc
                                                                         45
15
     <210> 14
     <211> 13
     <212> PRT
     <213> Artificial Sequence
20
     <220>
     <223> Description of Artificial Sequence:commercially
           available petide antigen
25
     <400> 14
     Gly Ala Pro Val Pro Tyr Pro Asp Pro Leu Glu Pro Arg
                        5
       1
                                           10
30
     <210> 15
     <211> 251
     <212> PRT
     <213> Mus musculus
35
     <400> 15
     Met Ala Gln Val Lys Leu Gln Gln Pro Gly Ser Glu Pro Val Arg Pro
                        5
       1
                                           10
                                                                15
     Gly Ala Ser Val Lys Val Ser Cys Arg Ala Ser Gly Tyr Lys Phe Thr
40
                   20
                                                            30
                                       25
     Thr Tyr Trp Met His Trp Val Arg Gln Arg Pro Gly Gln Gly Pro Glu
```

40

45

Ш

11.

Trp Ile Gly Asp Ile Tyr Pro Gly Ser Gly Asp Ser Asn Tyr Asp Val 50 55 Lys Phe Lys Asn Lys Ala Thr Leu Thr Val Asp Thr Ser Ser Ser Thr 5 65 70 75 Val Tyr Ile Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr 85 10 Tyr Cys Ala Arg Gly Asp Tyr Gly Cys Pro Phe Val Tyr Trp Gly Gln 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 15 Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Phe 135 Ser Leu Pro Val Ser Leu Gly Gly Pro Ala Ser Ile Ser Cys Arg Ser 20 150 155 Ser Gln Ser Leu Val His Ser Asn Arg Asp Thr Tyr Leu His Trp Phe 25 Leu Gln Lys Pro Gly Gln Ser Pro Glu Leu Leu Ile Tyr Arg Val Ser 185 Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly 30 Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly 210 215 220 Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Phe Thr Phe Gly Ser 35 225 230 235 240 Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala Ala 245 250 40

<210> 16 <211> 753 <212> DNA <213> Mus musculus

-12-

	<400> 16						
	atggcccagg	tgaaactgca	gcaacctggg	tctgaaccgg	tgaggcctgg	agcttcagtg	60
5	aaggtgtcct	gcagggcttc	tggctacaaa	ttcaccacct	actggatgca	ctgggtgagg	120
	cagaggcctg	gacaaggccc	tgagtggatt	ggagatattt	atcctggtag	tggtgattct	180
	aactacgatg	tgaagttcaa	gaacaaggcc	acactgactg	tagacacatc	ctccagcaca	240
10	gtttacatac	aactcagcag	cctgacatct	gaggactccg	cggtctatta	ctgtgcaaga	300
	ggggactatg	gttgcccttt	tgtttactgg	ggccaaggca	ccacggtcac	cgtctccagt	360
15	ggcggcggcg	gcagcggtgg	tggtggttct	gggggcggcg	gcagcgacat	cgagctcact	420
	cagtetecat	tctccctgcc	tgtcagtctt	ggaggtccag	cctccatctc	ttgcagatct	480
	agtcagagtc	ttgtacacag	taatagagac	acttatttac	attggttcct	gcagaagcca	540
20	ggccagtctc	cagageteet	gatctacaga	gtttccaacc	gattttctgg	ggtcccagac	600
	aggttcagtg	gcagtggatc	agggacagat	ttcacactca	agatcagcag	agtggaggct	660
25	gaggatctgg	gagtttattt	ctgttctcaa	agtacacatg	ttccattcac	gttcggctcg	720
	gggaccaagc	tggaaatcaa	acgggcggcc	gca	•		753

- 30 <210> 17 <211> 786 <212> DNA <213> Artificial Sequence
- 35 <220>
 <223> Description of Artificial Sequence: synthetic
 sequence substituting bacterial codons for mouse
 codons
- 40 <400> 17 caggtgaaac tgcagcaacc tgggtctgaa ccggtgcgcc ctggcgcttc agtgaaggtg 60 tcctgccgcg cttctggcta caaattcacc acctactgga tgcactgggt gcgccagcgc 120

-13-

	cctggccaag	gccctgagtg	gattggcgat	atttatcctg	gtagtggtga	ttctaactac	180
	gatgtgaagt	tcaagaacaa	ggccacactg	actgtagaca	catcctccag	cacagtttac	240
5	atccaactca	gcagcctgac	atctgaggac	teegeggtet	attactgtgc	aagagggac	300
	tatggttgcc	cttttgttta	ctggggccaa	ggcaccacgg	tcaccgtctc	cagtggcggc	360
10	ggcggcagcg	gtggtggtgg	ttctgggggc	ggcggcagcg	acatcgagct	cactcagtct	420
10	ccattctccc	tgcctgtcag	tettggegat	ccagcctcca	tctcttgccg	ctctagtcag	480
	agtcttgtac	acagtaatcg	cgacacctat	ctgcattggt	tcctgcagaa	gccaggccag	540
15	tctccagagc	tcctgatcta	ccgcgtttcc	aaccgctttt	ctggggtccc	agaccgcttc	600
	agtggcagtg	gctcagggac	agatttcaca	ctcaagatca	gcagcgtgga	ggctgaggat	660
20	ctgggcgttt	atttctgttc	tcaaagtaca	catgttccat	tcacgttcgg	ctcggggacc	720
20	aagctggaaa	tcaaacgggc	ggccgcaggt	gcgccggtgc	cgtatccgga	tccgctggaa	780
	ccgcgt						786

25

35

<210> 18

<211> 7

<212> PRT

30 <213> Homo sapiens

<400> 18

Gly Gln Asn Asp Thr Ser Gln

1