Teoría de números algebraicos Examen final

Alexey Beshenov (alexey.beshenov@cimat.mx)

9 de diciembre de 2020

Fecha límite: 16 de diciembre de 2020.

Ejercicio 1. Consideremos el polinomio $f = x^3 + 5x^2 - x - 4$.

- 0) Demuestre que f es irreducible en $\mathbb{Q}[x]$. Sea $K = \mathbb{Q}[x]/(f)$.
- 1) Calcule el anillo de enteros \mathcal{O}_K y discriminante Δ_K .
- 2) Demuestre que $u_1 = \alpha + 1$ y $u_2 = \alpha 1$, donde $\alpha = x \mod f$, son unidades en \mathcal{O}_K^{\times} . Asumiendo que u_1 y u_2 generan la parte libre de \mathcal{O}_K^{\times} , calcule el regulador.
- 3) Calcule el grupo de clases Cl(K).
- 4) Usando la fórmula analítica del número de clases * , compruebe que u_1 y u_2 son efectivamente unidades fundamentales.

Ejercicio 2. Para un campo de números K/\mathbb{Q} demuestre que la cerradura de Galois L/K contiene como subcampo $\mathbb{Q}(\sqrt{\Delta_K})$. Dé un ejemplo particular cuando Δ_K no es un cuadrado y $K \neq \mathbb{Q}(\sqrt{\Delta_K})$.

Ejercicio 3. Sea k>0 un entero positivo libre de cuadrados. Supongamos que $k\equiv 1,2\pmod 4$ y k no tiene forma $3a^2\pm 1$ para $a\in\mathbb{Z}$. Demuestre que si $3\nmid h_{\mathbb{Q}(\sqrt{-k})}$, entonces la ecuación $y^2=x^3-k$ no tiene soluciones enteras.

Punto extra: encuentre un contraejemplo para $3 \mid h_{\mathbb{Q}(\sqrt{-k})}$.

Ejercicio 4. Dada una extensión ciclotómica $\mathbb{Q}(\zeta_m)$, sean $X\subseteq \widehat{(\mathbb{Z}/m\mathbb{Z})}^{\times}$ un grupo de caracteres de Dirichlet y $K\subseteq \mathbb{Q}(\zeta_m)$ el subcampo correspondiente. Demuestre que K es un campo real (es decir, $r_2=0$) si y solamente si $\chi(-1)=+1$ para todo $\chi\in X$.

Ejercicio 5. Consideremos el campo cuadrático real $K = \mathbb{Q}(\sqrt{3})$.

- 1) Calcule el residuo de $\zeta_K(s)$ en s=1.
- 2) Exprese $\zeta_K(s)$ como un producto de series L de Dirichlet.
- 3) Calcule los valores $\zeta_K(0)$, $\zeta_K(-1)$, $\zeta_K(-2)$, $\zeta_K(-3)$.
- 4) Calcule los valores $\zeta_K(2)$ y $\zeta_K(4)$.

^{*}El residuo de $\zeta_K(s)$ en s=1 puede ser calculado en PARI/GP.