HWRS 505: Vadose Zone Hydrology

Lecture 16 10/17/2024

Today: HYDRUS-1D exercises

Review of Lecture 15

Numerical solution for transient Richards equation

- What is the difference (physically and numerically) between the three forms of the Richards equation?
- How did Celia et al (1990) solve the issue of mass balance error in the time derivative term of the Richards equation?

Examples

☐ Example 1

Boundary conditions: $\theta = \theta_0$ for x = 0, t > 0; $\theta = \theta_i$ for x = L, t > 0

Initial conditions: $\theta = \theta_i$ for $0 \le x \le L$, t = 0

Sample Parameters

Soil type: Loam (use the default soil properties in HYDRUS)

$$L = 100 \text{ cm}$$

$$\Delta x = 1 \text{ cm}$$

$$\theta_{i} = 0.15$$

$$\theta_0 = 0.4$$

Total simulation time: 10 days. Print the results every 1 day.

Questions to think about

- 1. Does the wetting front location $x_f \sim \sqrt{t}$?
- 2. Save the water pressure profile figure to a PowerPoint slide. Then, change θ_0 to 0.3. Compare the two simulated water pressure profiles. Which propagates faster? Why?

Examples

☐ Example 2

Boundary conditions for infinitesimally small ponding height:

Top:
$$\theta = \theta_0$$
 for $t > 0$

Top:
$$\theta = \theta_0$$
 for $t > 0$ Bottom: $\theta = \theta_i$ for $z = -L$

Initial conditions: $\theta = \theta_i$, $-L \le z \le 0$

Hydraulic head $\theta = \theta_0$

 \boldsymbol{Z}

Sample Parameters

Soil type: Loam (use the default soil properties in HYDRUS)

$$L = 200 \text{ cm}$$

$$\Delta x = 1 \text{ cm}$$

$$\theta_{i} = 0.15$$

$$\theta_0 = 0.4$$

Total simulation time: 10 days. Print the results every 1 day.

Questions to think about

- 1. Does the wetting front location $x_f \sim \sqrt{t}$ or $x_f \sim t$?
- 2. Given the soil properties, can you estimate the infiltration rate at t = 10 days?

Examples

☐ Example 3

Note:

- (1) The unit in HYDRUS for constant surface flux is cm/day
- (2) Positive denotes upward in a vertical column and denotes right to left for a horizontal column.

Initial conditions: $h = -(L + z), -L \le z \le 0, t = 0$

Boundary conditions: Constant infiltration (q = -1 cm/day) at top and h = 0 at the bottom.

Sample Parameters

Soil type: Loam (use the default soil properties in HYDRUS)

L = 200 cm

 $\Delta x = 1 \text{ cm}$

Total simulation time: 10 days. Print the results every 1 day.

Questions to think about

- 1. Given the soil properties, can you estimate θ_w ?
- 2. Can you sketch the steady-state solution?