Homework 1: Problem formulation, graphical optimization, and optimality conditions **DUE DATE:** 9/13/18

1. Given the following constrained optimization problem:

Minimize:
$$F = x_1^2 + x_2^2 + x_3^2$$
 Subject to:
$$g_1: x_1 + x_2 + x_3 \ge 5$$

$$g_2: 2 - x_2 x_3 \le 0$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 2$$

For the two design space locations below, solve for the values of the Lagrange multipliers. Then, determine whether each point satisfies the KKT conditions for an optimum design. *Hint: Remember to put the problem in standard form – this includes normalizing constraints.*

Candidate design
$$1 = {3/2}$$
 $3/2$ 2

Candidate design $2 = \{2 \ 1 \ 2\}$

2. Given the following constrained optimization problem:

Minimize
$$F = 2x_1 + 3x_2 - x_1^3 - 2x_2^2$$

Subject to:
$$x_1 + 3x_2 \le 8$$

 $5x_1 + 2x_2 \le 12$
 $x_1 \ge 0, x_2 \ge 0$

- a) normalize the constraints and put the problem into standard form
- b) using the Matlab file 'hw1problem2contour.m' provided on Moodle, print out the contour plot for this problem, then draw the constraints and identify the optimal point graphically
- c) demonstrate analytically that the point you identified satisfies the optimality conditions

3. A manufacturer produces two types of machine parts, P_1 and P_2 , using lathes and milling machines. The machining times required by each part on the lathe and the milling machine and the profit per unit of each part are given by:

	Machine time (hr) ı		
Machine part	Lathe	Milling machine	Profit per unit
P ₁	5	2	\$200
P_2	4	4	\$300

The total machining times available in a week are 500 hours on lathes and 400 hours on milling machines.

- a) formulate a formal optimization problem statement if the goal is to maximize profit by producing units of P_1 and P_2
- b) create a contour plot for this problem using Matlab
- c) plot the constraints and identify the optimal point graphically on your contour plot
- d) demonstrate analytically that the point you identified satisfies the optimality conditions
- 4. Consider the slider-crank mechanism shown below with the crank rotating at a constant angular velocity ω . The mechanism has to satisfy Groshof's criterion $l \ge 2.5r$ to ensure 360° rotation of the crank. Additional constraints on the mechanism are given by $0.5 \le r \le 10$, $2.5 \le l \le 25$, and $10 \le x \le 20$. When the system is at $\theta = 40$ for $\omega = 70$ rad/s:
 - a) derive an expression for the velocity of the slider
 - hint 1: derive an expression for a and b in terms of the design variables r and l, and the constant θ .
 - hint 2: use geometry to relate position (x) and the expressions that you have derived for a and b
 - hint 3: think about how velocity (v) can be determined from position (x) with respect to changes in time
 - b) formulate an optimization problem in standard form to maximize the speed of the slider; your goal is to find the lengths of the crank and connecting rod that correspond to this velocity (hint: speed can be assumed to be the absolute value of velocity)
 - b) plot, using Matlab, the two-variable design space, showing performance contours and constraint boundaries (you can draw the constraints by hand)
 - c) identify the constrained minimum on the figure
 - d) at the minimum you identified, what are the Lagrange multipliers? Demonstrate that optimality conditions hold.

