

코로나 19의 영향으로 재활용 폐기물 급증

배달문화의 확산, 택배 물동량 증가 등의 요인으로 품목별 재활용 폐기물 증가

코로나 19전후 재활용 폐기물 발생량 변화

Source l 환경부

코로나 19의 영향으로 재활용 폐기물 급증

배달문화의 확산, 택배 물동량 증가 등의 요인으로 품목별 재활용 폐기물 증가

<국내 택배시장 물동량 추이>

Source | 국가물류통합정보센터

<2020년 온라인쇼핑동향>

Source | 통계청

- 음식서비스 거래액 -1조 6,730억원 (11.6%)

전년 동월대비 7,587억원

약 83% 증가

재활용 폐기물 재활용률 개선이 필요한 「서울시」

(1) 면적대비 재활용 폐기물 배출량 1위

Source | 자원순환정보시스템

전국 각 지역의 면적 대비 재활용 폐기물 배출량을 시각화하여 나타냈을 때 서울시가 가장 밀도가 높게 나타남 서울특별시의 면적은 605.23km², 재활용 폐기물 일일 배출량은 3208.6톤, 면적당 배출량 5.3으로 가장 높은 수치를 보임

*재활용 폐기물 : 선별과 정제 과정을 거쳐 재활용할 수 있는 폐기물

재활용 폐기물 재활용률 개선이 필요한 「서울시」

(2) 수도권 쓰레기 매립지 종료선언

서울 경기권 쓰레기가 모이는 **인천의 수도권** 쓰레기 매립지가 2025년 종료 예정이며 대체 매립지 공모 중

재활용 폐기물은 올바르게 분리배출 되지 않으면 일반 쓰레기 취급되어 매립되거나 소각됨 매립지 공모에 지원하는 지자체가 없는 실정에서 재활용 폐기물이 올바르게 분리 배출되어 소각 매립되는 일이 없도록 재활용률 개선이 필요해짐

재활용 폐기물 재활용률 개선이 필요한 「서울시」

(3) 서울시 재활용 처리 집하장 처리용량 초과

Source I 이명수 의원실

구분	동대문구	성북구	은평구	영등포구	관악구
처리 용량(A)	20	32	30	28	60
일평균 수용량 (B)	35	36	46	34	80
В/А	175%	113%	153%	121%	133%

* 강서구, 동작구 생략되었음

서울시 내 25개 자치구 중 동대문구, 성북구, 은평구, 영등포구, 관악구, 강서구, 동작구는 **재활용폐기물 일평균 수용량이** 처리용량을 초과하는 것으로 나타나고 있음

Source | 조선일보 "코로나로 쓰레기 늘자 재활용단가 하락…"

> 선별장에 도착하는 폐기물 재활용 가능한 쓰레기 비율 낮아

은평구청에 따르면 작년 이 선별장에 들어온 재활용품 중 돈을 받고 판 쓰들이는 24%. 우리가 집 앞에 내놓는 생활 폐기물 중 '진짜'는 4분의 1에 불과하다는 뜻이다. 나머지는 돈을 주고고형 폐기물 연료(SRF)로 바꿔 쓰거고형 폐기물 연료(SRF)로 바꿔 쓰거나(67%), 그대로 소각했다(9%)

. . .

재활용률 개선의 단추가 되어 줄 자원순환가게

깨끗이 비우고 헹군 양질의 재활용 폐기물을 가져오면 유가보상을 해주는 서비스

양질의 재활용 폐기물을 수거함으로써 실질 재활용률을 극대화하여 소각,매립의 최소화 및 폐기물 처리비용 예산 절감 효과를 거둘 수 있음

2019년 성남시 자원순환가게 re100을 시작으로 전국적인 확대를 목표로 하고 있음. 지난해 성남시는 재활용 가능한 **양질의 재활용 폐기물 총 40톤을 수거** 했으며 유가 보상액 1천 69만 6천원을 지급했음

Source | 성남시 자원순환과

Raw HOIE

활용데이터

	활용 데이터	데이터 형식	생성주기		
	구별 생활폐기물 배출량 및 재활용률	csv 파일	년단위		
	서울시 주민등록인구 (동별) 통계	csv 파일	분기		
서 <u>울</u> 시	서울시 가구원수별 가구수 (동별) 통계	txt 파일	こ こう		
특성	동별 소득분위, 가구수	CSV 파일	분기		
	서울특별시 자치구별 주거인구	txt 파일	۳۷۱		
	기초생활수급자 가구수	txt파일	년단위		
	연속수치지형도 행정경계	shp II일	년단위		
서 <u>울</u> 시 지형	구별 건물정보 및 위치	shp II일	년단위		
	Open Route Service API	json II일	실시간		
설문조사	자원순환가게 입지 선정 관련 설문조사	csv 파일	일회성		

● 분석에 활용할 데이터

서울시 **자치구 구분 데이터**서울시 **행정동 구분 데이터**서울시 행정동별 **인구수**서울시 행정동별 **가구수**서울시 행정동별 **세대당 인구수**서울시 행정동별 **1인 가구수**서울시 행정동별 **기초수급 가구수**서울시 행정동별 **소득분위**

● 추가로 필요한 데이터

서울시 행정동별 쓰레기 발생량 서울시 행정동별 재활용량 서울시 행정동별 상업용 건물 수 서울시 행정동별 주거용 건물 수 서울시 행정동별 분리수거함 수

* 쓰레기 발생량 = 생활폐기물 발생량

Raw HOIE

활용데이터

	활용 데이터	데이터 형식	생성주기	
	구별 생활폐기물 배출량 및 재활용률	csv 파일	년단위	
	서울시 주민등록인구 (동별) 통계	csv 파일	분기	
서 <mark>울</mark> 시	서울시 가구원수별 가구수 (동별) 통계	txt 파일	는 건기 	
특성	동별 소득분위, 가구수	CSV 파일	분기	
	서울특별시 자치구별 주거인구	txt 파일	دے۔ ا	
	기초생활수급자 가구수	txt파일	년단위	
	연속수치지형도 행정경계	shp II일	년단위	
서 <u>울</u> 시 지형	구별 건물정보 및 위치	shp II일	년단위	
	Open Route Service API	json II일	실시간	
설문조사	자원순환가게 입지 선정 관련 설문조사	csv 파일	일회성	

● 분석에 활용할 데이터

서울시 **자치구 구분 데이터**서울시 **행정동 구분 데이터**서울시 행정동별 **인구수**서울시 행정동별 **가구수**서울시 행정동별 **세대당 인구수**서울시 행정동별 **1인 가구수**서울시 행정동별 **기초수급 가구수**서울시 행정동별 **소득분위**

● 추가로 필요한 데이터

서울시 행정동별 쓰레기 발생량 서울시 행정동별 재활용량 서울시 행정동별 상업용 건물 수 서울시 행정동별 주거용 건물 수 서울시 행정동별 분리수거함 수

* 쓰레기 발생량 = 생활폐기물 발생량

<데이터 전처리>

● 추가로 필요한 데이터

서울시 행정동별 쓰레기 발생량 서울시 행정동별 재활용량 서울시 행정동별 상업용 건물 수 서울시 행정동별 주거용 건물 수 서울시 행정동별 분리수거함 수

* 쓰레기 발생량 = 생활폐기물 발생량

● Raw 데이터를 활용하여 데이터 가공

서울시 구별 쓰레기 발생량을 구별 인구수로 나는 값 서울시 구별 재활용량을 구별 인구수로 나는 값 서울시 구별 건물정보 데이터에서 동별 상업용 건물수를 추출한 값 서울시 구별 건물정보 데이터에서 동별 주거용 건물수를 추출한 값 서울시 구별 건물정보 데이터에서 **법적으로 분리수거함을 설치해야** 하는 아파트, 연립주택 개수 파악

<최종 데이터>

서울시 **자치구 구분 데이터** 서울시 **행정동 구분 데이터** 서울시 행정동별 **인구수** 서울시 행정동별 **가구수** 서울시 행정동별 **세대당 인구수** 서울시 행정동별 **1인 가구수** 서울시 행정동별 **기초수급 가구수** 서울시 행정동별 **소득분위**

서울시 행정동별 쓰레기 발생량 서울시 행정동별 재활용량 서울시 행정동별 상업용 건물 수 서울시 행정동별 주거용 건물 수 서울시 행정동별 분리수거함 수

<최종 데이터 셋>

시군구	행정구역	인구수	가구수 .	세대당 인구수		기초수급 가구수	소득분위	재활용량				분리수거함 개수
종로구	청운효자동	12024	5345	2.31	1378	131	8	10.25130625	20.1567853	277	1356	82
종로구	사직동	9371	4577	1.99	1487	109	9	7.98943703	15.70935088	492	689	27
종로구	삼청동	2498	1388	2.01	380	31	7	2.129720809	4.187595615	340	527	3
종로구	부암동	9703	4268	2.29	1129	114	7	8.272490396	16.26590883	186	1093	102
강동구	성내3동	23377	10286	2.2	3134	483	6	8.316463138	15.19073599	228	967	78
강동구	길동	46019	20473	2.13	6909	1083	6	16.37144703	29.90385762	352	1396	181
강동구	둔촌1동	134	164	1.65	6	1	7	0.047671047	0.087075272	5	3	0
강동구	둔촌2동	24995	11207	2.37	2389	391	7	8.89207324	16.2421374	201	816	86

^{* 424} rows

<표준화 된 데이터 셋>

데이터 분석을 위해 데이터 스케일링 진행 Robust Scaler 사용

시군구	행정구역	인구수	가구수	세대당 인구수	1인 가구수	기초수급 가구수	소득분위	재활용량	쓰레기 발생량	상업용 건물 수	주거용 건물 수	분리수거함 개수
종로구	청운효자동	-0.90094	-0.827648	0.252874	-0.642254	-0.697011	0.5	0.399254	20.156785	0.409857	0.641932	0.338028
종로구	사직동	-1.144108	-0.971799	-0.482759	-0.596243	-0.737471	1.0	-0.030540	15.709351	1.525292	-0.143698	-0.694836
종로구	삼청동	-1.774066	-1.570363	-0.436782	-1.063529	-0.880920	0.0	-1.143986	4.187596	0.736706	-0.334511	-1.145540
종로구	부암동	-1.113678	-1.029797	0.206897	-0.747362	-0.728276	0.0	0.023245	16.265909	-0.062257	0.332155	0.713615
강동구	성내3동	0.139639	0.099761	0.000000	0.098987	-0.049655	-0.5	0.031601	15.190736	0.155642	0.183746	0.262911
강동구	길동	2.214935	2.011825	-0.160920	1.692486	1.053793	-0.5	1.562185	29.903858	0.798962	0.689046	2.197183
강동구	둔촌1동	-1.990743	-1.800103	-1.264368	-1.221401	-0.936092	0.0	-1.539611	0.087075	-1.001297	-0.951710	-1.201878
강동구	둔촌2동	0.287940	0.272629	0.390805	-0.215492	-0.218851	0.0	0.140976	16.242137	0.015564	0.005889	0.413146

^{* 424} rows

데이터 수집 및 정제

분석 과정

모델 적용

구별 생활폐기물 배출량 및 재활용량

> 구별 정보 데이터

동별 정보 데이터

연속수치지형도 행정경계

구별 건물정보 및 위치

상 관 본 석

석

수후 보 군 도 출 기 분

최종변수도출

클러 스터 링 반 복 진 행

자형태구&입지후보군

적 경 로 알 고 리 즘 이 용 M C L P 모 델 이 용 주요 변수 도출

상관분석 및 회귀분석으로 분석에 사용할 변수 도출

<회귀분석>

쓰레기 발생량이 많은 지역에 자원순환가게가 꼭 필요하다고 가정

쓰레기 발생량을 종속변수로 두고 나머지 변수들을 독립변수로 둔 후다중 회귀분석을 실시하였을 때 p-value 값이 높은 변수를 제거유의미한 변수만 남을 때까지 차례로 회귀분석 실시 [가구수」 [세대당 인구수] [기초수급 가구수] 변수 제외

상관분석을 통해 **변수간 상관관계 확인** 후 회귀분석 실시

회귀분석에서 VIF 계수를 통해 **다중공선성 확인**

클러스터링을 위한 가설 설정

클러스터링을 위한 자원순환가게 관련 가설 설정

클러스터링 가설 1	인구수 대비 쓰레기 발생량이 많은 지역에 자원순환가게가 필요할 것이다
클러스터링 가설 2	주거용 건물 대비 분리수거함 개수가 적은 지역에 자원순환가게가 필요할 것이다
클러스터링 가설 3	인구수 대비 1인 가구수 비율이 높은 지역에 자원순환가게가 필요할 것이다

가설 기준 변수 행정동 산점도 그래프

클러스터링 가설 기준 변수를 산점도 그래프로 그려 행정동 분포 확인

클러스터링 가설1

X축 = 인구수 Y축 = 쓰레기 발생량

클러스터링 가설2

X축 = 주거용 Y축 = 분리수거함 개수

클러스터링 가설3

X축 = 인구수 Y축 = 1인 가구수

클러스터링 개수 선정

클러스터링 가설 별 최적 클러스터 개수 선정

1) 클러스터 [1] 개수 선정

*실루엣 계수 : 데이터가 같은 군집 내의 데이터와 얼마나 가까운지, 다른 군집에 속한 데이터와는 얼마나 멀리 위치한지를 나타내는 지표

클러스터 개수에 따른 각 클러스터 내 오차제곱합(SSE)을 시각화하여 ElbowPlot을 그렸을 때 기울기가 완만해지는 지점 평균 실루엣 계수가 1에 가깝고 개별 데이터 값의 실루엣 계수들의 편차가 작을수록 최적의 군집을 확보할 수 있음

2) 클러스터 [2] 개수 선정

Elbow Plot의 기울기가 완만해지는 4-6개 구간을 클러스터 개수 후보군으로 선정 후 평균 실루엣 계수 및 개별 관측치의 실루엣 계수 편차가 작은 4개를 클러스터 개수로 선정

3) 클러스터 [3] 개수 선정

클러스터 행정동 리스트 추출

클러스터링 가설1 에 적합한 클러스터 선정

첫 번째 클러스터 선정

인구수와 쓰레기 발생량이 많은 0번 클러스터 인구수 대비 쓰레기 발생량이 많은 2번 클러스터

0번과 2번 클러스터에 해당하는 행정동 리스트 결합하여 반환

[행정동 반환]

: 이촌 1동 외 71개 행정동 반환

```
for idx in range(len(dong0)):
    if idx ==len(dong0)-1:
        print(dong0[idx])
    else :
        print(dong0[idx], end=", ")
```

이촌1동, 광장동, 용신동, 전농1동, 답십리1동, 답십리2동, 장안1동, 장안2동, 면목본동, 묵1동, 신내1동, 길음1동, 종암동, 석관동, 창2동, 녹 번동, 불광1동, 역촌동, 진관동, 연희동, 공덕동, 성산2동, 상암동, 목5동, 신정3동, 염창동, 등촌3동, 화곡1동, 화곡본동, 가양1동, 발산1동, 우장산동, 공항동, 방화1동, 신도림동, 오류2동, 독산1동, 시흥1동, 여의동, 당산2동, 문래동, 상도1동, 대방동, 청룡동, 은천동, 서초3동, 서 초4동, 반포1동, 양채1동, 삼성2동, 대치2동, 역삼1동, 역삼2동, 도곡2동, 세곡동, 오금동, 잠실2동, 잠실3동, 강일동, 상일동, 암사1동, 천호2 동, 길동, 평창동, 혜화동, 다산동, 약수동, 청구동, 신당5동, 동화동, 황화동, 중림동 클러스터 행정동 리스트 추출

클러스터링 가설2 에 적합한 클러스터 선정

두 번째 클러스터 선정

주거용 건물 수 대비 분리수거함 개수가 적은 0번 클러스터 0번 클러스터에 해당하는 행정동 리스트 반환

[행정동 반환]

: 청운효자동 외 121개 행정동 반환

```
for idx in range(len(dong1)):
    if idx ==len(dong1)-1:
        print(dong1[idx])
    else :
        print(dong1[idx],end=", ")
```

청운효자동, 혜화동, 후암동, 용산2가동, 청파동, 이태원2동, 보광동, 마장동, 금호2·3가동, 성수2가1동, 용답동, 화양동, 군자동, 중곡1동, 중곡2동, 중곡3동, 중곡4동, 자양1동, 자양2동, 자양4동, 구의1동, 구의2동, 용신동, 제기동, 전농1동, 이문1동, 이문2동, 면목4동, 면목4동, 면목4동, 연목7동, 면목3·8동, 중화2동, 북2동, 망우2동, 망우3동, 성북동, 삼선동, 동선동, 안암동, 정흥2동, 정흥3동, 월곡2동, 장위1동, 장위2동, 석관동, 삼양동, 미아동, 송중동, 송천동, 법1동, 수유1동, 수유3동, 우이동, 창3동, 도탁1동, 쌍문1동, 방학1동, 방학2동, 상계5동, 녹변동, 불광2동, 강현1동, 강현2동, 대조동, 응암3동, 역촌동, 신사2동, 충현동, 신촌동, 남가좌2동, 북가좌2동, 공덕동, 서교동, 합정동, 망원1동, 연남동, 성산1동, 신월1동, 신월3동, 화곡4동, 화곡보동, 화곡8동, 공항동, 방화2동, 구로2동, 고척2동, 개봉1동, 독산2동, 독산8동, 독산4동, 시흥1동, 시흥4동, 시흥5동, 영등포본동, 도림동, 신일1동, 대림2동, 대림3동, 노량진2동, 상도3동, 상도4동, 흑석동, 사당1동, 보라배동, 행순동, 서원동, 신원동, 서림동, 관악구_신사동, 마천1동, 마천2동, 송파1동, 석촌동, 삼전동, 잠실본동, 암사1동, 천호1동, 천호3동, 성내2동

클러스터 행정동 리스트 추출

클러스터링 가설3 에 적합한 클러스터 선정

세 번째 클러스터 선정

인구수 대비 1인 가구수 많은 2번 클러스터

2번 클러스터에 해당하는 행정동 리스트 반환

[행정동 반환]

: 화양동 외 36개 행정동 반환

```
for idx in range(len(dong2)):
    if idx ==len(dong2)-1:
        print(dong2[idx])
    else:
        print(dong2[idx],end=", ")
```

화양동, 용신동, 전농1동, 면목본동, 공흥1동, 신촌동, 연희동, 공덕동, 서교동, 성산2동, 등촌1동, 화곡1동, 가양1동, 구로3동, 가산동, 독산1동, 영등포동, 당산2동, 상도1동, 사당1동, 행운동, 청룡동, 인헌동, 서원동, 서림동, 관악구_신사동, 신림동, 대학동, 논현1동, 역삼1동, 방이2동, 석촌동, 삼전동, 문정2동, 잠실본동, 천호2동, 길동

변수 도출 클러스터링 최적입지 선정 최적경로 도출

각 클러스터에 교차되는 행정동 리스트 추출

교집합 행정동이 다수 위치한 자치구 선정

```
교집합 행정동 |
             최종동 list = set(dong0) & set(dong1) & set(dong2)
              print(최종동_list)
              {'전농1동', '면목본동', '천호2동', '공덕동', '용신동'}
 자치구 선정
              gu_list = []
              for dong in 최종동_list:
                 temp_gu = df.loc[df['행정구역']==dong]['시군구'].values[0]
                 gu_list.append(temp_gu)
              gu_df = pd.DataFrame(gu_list,columns=['시군구'])
              gu df['count'] = 1
              gu_df.groupby(by='시군구').count().sort_values(by='count',ascending=False)
                     count
                시군구
               동대문구
                                     교집합 행정동이 가장 많이 위치해 있는 자치구 선정
                강동구
                                     동대문구를 선정하고 MCLP기법을 적용하여 최적입지 선정 진행
                마포구
                중랑구
```

각 클러스터에 교차되는 행정동 리스트 추출

MCLP 모델 (Maximal Covering Location Problem)

최대커버링 모델을 일컫는 말로써 **주어진 시설물의 개수로 지역 수요를 최대한 커버할 수 있도록 하는 기법** ; 제한된 시설물의 개수로 지역 수요를 최대한 커버할 수 있는지 파악하기 위한 입지 선정 모델링 방법

주요 내용

서울시 동대문구에 50*50 형태의 그리드를 생성하여 해당 격자 내에서 중심점을 찍은 후 **분리수거함 존재** 건물수, 분리수거함 미존재 건물수, 격자별 인구수라는 새로운 변수 산출

<변수 산출>

격자별 인구수	건물 폴리곤 안에 5m 간격의 포인트들을 나열 후 동별 인구 수를 동별 연면적으로 나는 후 포인트 당 연면적을 곱하여 포인트당 인구수를 구함. 그 후 포인트당 인구수와 격자별 포인트 개수를 활용해 격자별 인구수를 계산
분리수거함 존재 건물수	각 격자의 중심점에 분리수거함이 법적으로 존재하는 아파트와 연립주택의 수를 합해서 '분리수거함 존재건물' 이라는 새로운 변수를 생성
분리수거함 미존재 건물수	법적 기준이 없는 다가구, 다세대, 단독 주택의 건물 수를 합하여 '분리수거함 미존재건물' 이라는 새로운 변수를 생성

(분리수거함존재건물수 x 가중치), (분리수거함미존재건물수 x 가중치), 격자별 인구수를 입지 후보지 중심점에 할당하여 MCLP 모델을 통해 목적함수를 최대화할 수 있는 최적 입지 도출

<MCLP 모델 수식>

 $x_i, y_i \in \{0,1\}$

$$\sum_{i \in I} w_i y_i \qquad \dots (1)$$

$$s.t. \quad y_i \leq \sum_{i \in N_i} x_j \qquad for \quad all \quad i \in I \quad \dots (2)$$

$$\sum_{i \in I} x_j = K \qquad \dots (3)$$

for all $i \in J, j \in J$

<변수 값 정의>

i = 수요 Point index
j = 설치 후보지역 index
I = 수요 Point 집합
J = 설치 후보지역 집합
x = 설비 후보 지역 중 위치 j에 설비가 설치되면 1,
그렇지 않으면 0
y = 적어도 하나의 설비로 그 포인트가 커버되면 1,
그렇지 않으면 0
k = 고정식 및 이동식 자원순환가게 설치 대수
w = {(분리수거함 존재 건물수 ×α)+(분리수거함 미존재
건물수 ×β)}× 인구수

주거건물개수대비 분리수거함 개수가 적은 지역에 자원순환가게를 우선적으로 설치해야 한다고 클러스터링 가설을 세웠으므로 **가중치를 α(연립주택 + 아파트)에 0.2, β(다세대, 다가구, 단독 주택) 에 0.8로 설정**

자원순환가게 설치 대수(k)를 10으로 설정 (고정식 5개, 이동식 5개) / 설비 후보 지역 중 위치(j)에 설비가 설치되면 1, 그렇지 않으면 0으로 설정 / 적어도 하나의 설비로 그 포인트가 커버되면 1, 그렇지 않으면 0으로 설정

< 10개 거점 버퍼별 시각화 >

Seokgwan-dong Seokgwan-dong Wyongman Seokgwan-dong Seokgwan-dong Seokgwan-dong Seokgwan-dong Kyung ke University Myeonmok dong Myeonmok dong Myeonmok dong Myeonmok dong Myeonmok dong Majang-ro Jhak-dong Sageun-dong Sageun-dong Sageun-dong

10개 거점 버퍼 시각화

150m를 기준으로 설치할 경우 자원순환가게의 위치가 동일한 지역에 밀집되는 현상을 확인하여 500m 버퍼까지 시각화를 진행

버퍼의 구간이 커질수록 밀집 정도가 완화되는 것을 확인하였고 자체 설문조사 결과 300m 반경에 위치 시 이용 의사가 있다는 것을 감안하여 **최종 입지 선정에는 300m 버퍼를 적용**함

귀하의 거주지 근처에 자원순환가게가 설치된다면, 본인이 거주하고 있는 곳 기준 '최대' 어느 정도 거리에 설치 되면 이용하시겠습니까?

응답 52개

<자원순환가게 입지선정 관련 설문조사>

<최종 선정 고정식/이동식 자원순환가게 입지>

고정식 300m

이동식 300m

최종 300m 고정식, 이동식 자원순환가게 입지

obj_func	geometry	lat	Ion	
4.762179e+06	POINT (127.0420141143 37.5869390055)	37.586939	127.042014	0
4.135337e+06	POINT (127.0656787526 37.599671083)	37.599671	127.065679	1
3.215165e+06	POINT (127.0639884213 37.5942144784)	37.594214	127.063988	2
2.592072e+06	POINT (127.0634249775 37.56647673820001)	37.566477	127.063425	3
2.258533e+06	POINT (127.0561002085 37.5701144746)	37.570114	127.056100	4

obj_func
388e+06
621e+06
710e+06
859e+06
'116e+05

고정식/이동식 최종 입지 선정

이동식300m[['lon','lat','geometry','obj_func']]

고정식 자원순환가게 최종 입지

이동식 자원순환가게 최종 입지

이동식 자원순환가게 최적경로 설정

MCLP를 통해 도출한 이동식 자원순환가게 입지에 **예상쓰레기** 배출량과 각 거점별 거리를 고려하여 최적경로를 찾는 알고리즘을 설계 각 거점에 도착할 때마다 우선순위가 갱신되는 것이 핵심

가설 설정

쓰레기차의 수용량을 초과할 경우 그 시점에서 운영을 종료 이동식 자원순환가게는 한 거점을 두 번 이상 거칠 수 없음

주요 내용

예상쓰레기 배출량 변수를 산출하고 매 이동 노드마다 다음 대상 노드들까지의 거리를 구함 *{(격자별 인구수) + (분리수거함 존재 건물수 * 가중치) + (미존재 건물수* 가중치)} = 예상 쓰레기 배출량

예상 쓰레기 배출량과 이동해야 하는 거점 사이의 거리에 일정 마이너스 가중치를 곱해서 한 지점에서 다른 지점을 정할 때 우선순위점수를 생성 * 임의로 설정한 동대문 구청에서 출발하여 첫 번째 노드를 정할 때부터 우선순위 점수에 따라 경로를 찾음

모든 노드를 지날 때까지 각 이동지점에서 다음에 이동할 지점을 선택할 우선순위점수를 계산하면서 우선순위점수가 높은 거점을 각 시점의 최적해로 선택하여 이동

	DIST_KM	DURATION_H	PROFILE	PREF	OPTIONS	FROM_ID	
1	8.933	0.282	driving-car	fastest	None	NULL	

이동식 자원순환가게 최적경로

모든 노드를 지날 때까지 **매 이동 시점마다 우선순위** 점수를 갱신하며 우선순위 점수가 가장 높은 거점으로 이동

해당 경로를 모두 지날 때의 총 거리는 8.933km이며 소요되는 시간은 약 17분으로 해당 경로가 최적 경로이자 최단 경로임을 알 수 있음

서울시 내 후보군으로 선정된 동대문구에 우선적으로 도입하고, 추후 서울시 전역으로 확대함으로써 장기적인 관점에서 **서울시 재활용 폐기물의 재활용률 개선**을 기대

수도권 쓰레기 매립지 종료에 대한 새로운 대안을 제시함과 동시에 근본적으로 폐기물 매립양을 최소화할 수 있는 효과 기대 자원순환가게 설치로 **재활용폐기물의 올바른 분리배출에 대한 시민들의 올바른 인식을 제고**하여 점진적인 재활용률 개선 기대

자원순환가게 유가보상 기준을 서울시 특성에 맞게 가격을 조정하여 지급 이때 현금 이외에 **지역화폐 선택을** 가능하도록 하여 지역경제 활성화

본 분석에서 제시한 최적입지 및 최적경로 선정 방법을 활용하여 서울시 여러 자치구에 확대 설치 궁극적으로 **자원순환가게의 전국적** 확대 가능성을 제시함

