Méthodes statistiques pour la comparaison de spectres de masse

Malo Hillairet

Tuteur: Guillaume Obozinski

Lausanne, Suisse

Introduction

Le projet MSEI : Molecular Structure Elucidation

- Sasa Bjelić, Lilian Gasser, Eliza Harris, Guillaume Obozinski
- Identifier et classifier des molécules
- Chimie, Sciences des Données, et dans notre cas Statistiques

Plan

- Cadre mathématique et notations
- Modèle multinomial et test de vraisemblance
- Surdispersion et distribution Dirichlet-multinomiale
- Modèle Dirichlet-multinomial et statistique test
- Quelques résultats

Cadre mathématique et notations

Modèle statistique

$$\mathcal{M} = \{ \mathbb{P}_{\theta}, \, \theta \in \Theta \}$$

- \bullet θ : paramètre inconnu
- ullet $\mathbb{P}_{ heta}$: distribution des données sous le paramètre heta
- X : données observées $(X \sim \mathbb{P}_{\theta})$

Fonction de vraisemblance

$$L(x, \theta) = \mathbb{P}_{\theta}(X = x)$$

- Inférence statistique : estimation d'une quantité $g(\theta)$
- ullet Test d'hypothèse : accepter ou rejeter une hypothèse sur heta

$$\mathcal{H}_0 = "\theta \in \Theta_0"$$
 , où $\Theta_0 \subset \Theta$

Cadre mathématique et notations

Distribution multinomiale

- Généralise la loi binomiale à la dimension $d \ge 2$
- ullet Paramètre $oldsymbol{p} \in \Delta^{d-1} = \{oldsymbol{p} \in (\mathbb{R}_+)^d \, | \, \sum_j
 ho_j = 1\}$
- Si $X \sim \text{Multi}(n, \mathbf{P})$ et $k_1 + \cdots + k_d = n$,

$$\mathbb{P}(X=(k_1,\ldots,k_d))=\binom{n}{(k_1,\ldots,k_d)}\prod_{j=1}^d p_j^{k_j}$$

Espérance et variance

$$\mathbb{E}[X] = n \cdot \mathbf{p}$$

$$\operatorname{Cov}(X_i, X_j) = \begin{cases} np_i(1 - p_i) & \text{si} \quad i = j \\ -np_i \cdot p_j & \text{si} \quad i \neq j \end{cases}$$

Cadre mathématique et notations

Table de contingence

	Colonne 1	Colonne 2	 Colonne d	Somme
Ligne 1	n _{1,1}	n _{1,2}	 n_{1d}	n_{1+}
Ligne 2	n _{2,1}	n _{2,2}	 n _{2d}	<i>n</i> ₂₊
Somme	n_{+1}	n_{+2}	 n_{+d}	Ν

ullet n_{ij} : nombre d'observations rentrant dans la catégorie (i,j)

Modèle multinomial

$$\mathcal{M}_{MN} = \{ \operatorname{Multi}((n_{1+}, \mathbf{p_1}) \otimes \operatorname{Multi}(n_{2+}, \mathbf{p_2}), (\mathbf{p_1}, \mathbf{p_2}) \in (\Delta^{d-1})^2 \}$$

- d : nombre de colonnes
- ullet paramètres : $oldsymbol{p_i} = (p_{i1}, \dots, p_{id}) \in \Delta^{d-1}$, i=1,2
- ullet données : $(\mathbf{n_1},\mathbf{n_2})\in\mathbb{N}^d imes\mathbb{N}^d$ où $\sum_{i=1}^d n_{ij}=n_{i+1}$

Test de vraisemblance pour le modèle multinomial

Modèle multinomial

$$\mathcal{M}_{MN} = \{ \operatorname{Multi}((n_{1+}, \boldsymbol{p_1}) \otimes \operatorname{Multi}(n_{2+}, \boldsymbol{p_2}), \, (\boldsymbol{p_1}, \boldsymbol{p_2}) \in (\Delta^{d-1})^2 \}$$

- d : nombre de colonnes
- ullet paramètres : $oldsymbol{\mathsf{p_i}} = (p_{i1}, \dots, p_{id}) \in \Delta^{d-1}$, i=1,2
- ullet données : $(\mathbf{n_1},\mathbf{n_2})\in\mathbb{N}^d imes\mathbb{N}^d$ où $\sum_{j=1}^d n_{ij}=n_{i+1}$

Le problème

À partir des données, accepter \mathcal{H}_0 ou la rejeter pour \mathcal{H}_1 , où

$$\mathcal{H}_0$$
 : " $p_1 = p_2$ " \mathcal{H}_1 : " $p_1 \neq p_2$ "

Test de vraisemblance pour le modèle multinomial

Statistique de log-vraisemblance

$$T_{LL} = 2 \log \left(\frac{L(\mathbf{n}, \mathbf{p}^{(1)})}{L(\mathbf{n}, \mathbf{p}^{(0)})} \right)$$
 où $p_{ij}^{(1)} = \frac{n_{ij}}{n_{i+}}$ et $p_{ij}^{(0)} = \frac{n_{+j}}{N}$

- $L(\mathbf{n}, \mathbf{p})$: fonction de vraisemblance de \mathcal{M}_{MN}
- $\bullet \ n : \ \text{données} \ (n_1,n_2)$
- ullet ${f p}^{(lpha)}$: estimateur du maximum de vraisemblance sous ${\cal H}_lpha$

Interprétation

- T_{LL} grande \Leftrightarrow faible pertinence de \mathcal{H}_0 en comparaison à \mathcal{H}_1
- divergence de Kullback-Leibler :

$$T_{LL} = 2 \left(n_{1+} \cdot \text{KL}(\mathbf{p_1}^{(1)}, \mathbf{p_1}^{(0)}) + n_{2+} \cdot \text{KL}(\mathbf{p_2}^{(1)}, \mathbf{p_2}^{(0)}) \right)$$

Surdispersion et distribution Dirichlet-multinomiale

Distribution composée

Variable aléatoire X définie par

- La loi d'une variable aléatoire p
- La loi conditionnelle de X sachant p

Expression si X est discrète :

$$\mathbb{P}(X=x) = \int_{p} \mathbb{P}(X=x|p) \mathrm{d}\,\mathbb{P}(p)$$

Décomposition de la variance

$$\operatorname{Var}(X) = \mathbb{E}_{p}(\operatorname{Var}(X|p)) + \operatorname{Var}_{p}(\mathbb{E}[X|p])$$

Surdispersion et distribution Dirichlet-multinomiale

Distribution de Dirichlet

- Famille de distributions indexée par $heta \in \Delta^{d-1}$ et arphi > 0 (choix)
- Généralise les lois Beta (cas d=2)
- ullet Définie sur le simplexe Δ^{d-1} , de densité

$$f_{\mathrm{Dir}(oldsymbol{ heta},arphi)}(\mathbf{p}) = rac{1}{\mathrm{B}(arphi^{-1}oldsymbol{ heta})} \prod_{j=1}^d p_j^{(arphi^{-1}oldsymbol{ heta}_j-1)}$$

où B est la fonction beta multivariée (coefficient de normalisation).

A priori conjugué pour le modèle multinomial

Espérance et variance

- ullet $\mathbb{E}[\mathsf{p}] = oldsymbol{ heta}$
- $\operatorname{Cov}(p_i, p_j) = (\delta_{ij}\theta_i \theta_i\theta_j)\frac{1}{1+\varphi^{-1}}$

Surdispersion et distribution Dirichlet-multinomiale

Distribution Dirichlet-multinomiale

- Paramètres $n \in \mathbb{N}^*, \theta \in \Delta^{d-1}, \varphi > 0$
- $X \sim \text{DMN}(n; (\theta, \varphi))$ si

$$\mathbf{p} \sim \operatorname{Dir}(\boldsymbol{\theta}, \varphi)$$

 $X|p \sim \operatorname{Multi}(n, \mathbf{p})$

• Distribution multinomiale surdispersée

Analogie avec la distribution multinomiale

Distribution	Paramètres	Espérance	Coefficients de covariance
Multi	N, p	Np	$N(\delta_{i,j}p_i-p_ip_j)$
DMN	$N,oldsymbol{ heta},arphi$	$N\theta$	$N^2(\delta_{i,j}\theta_i-\theta_i\theta_j)\frac{1+(N\varphi)^{-1}}{1+\varphi^{-1}}$

Modèle Dirichlet-multinomial et statistique de test

Le modèle Dirichlet-multinomial

$$\mathcal{M}_{DMN} = \{ \text{DMN}((\textit{n}_{1+}, \theta_{1}, \varphi) \otimes \text{DMN}(\textit{n}_{2+}, \theta_{2}, \varphi), (\theta_{1}, \theta_{2}) \in (\Delta^{d-1})^{2} \}$$

- paramètres : $\theta_i = (\theta_{i1}, \dots, \theta_{id}) \in \Delta^{d-1}$, i = 1, 2 (seulement!)
- données (n_1, n_2)

Hypothèses du test

Comme dans le modèle multinomial, avec heta au lieu de $extbf{p}$

$$\mathcal{H}_0$$
 : " $\theta_1 = \theta_2$ " \mathcal{H}_1 : " $\theta_1 \neq \theta_2$ "

Modèle Dirichlet-multinomial et statistique de test

Statistique de test

$$T_{DMN} = \log \left(\frac{L(\mathbf{n}, \boldsymbol{\theta}^{(1)})}{L(\mathbf{n}, \boldsymbol{\theta}^{(0)})} \right)$$
 où $\theta_{ij}^{(1)} = \frac{n_{ij}}{n_{i+}}$ et $\theta_{ij}^{(0)} = \frac{n_{+j}}{N}$

Remarque importante

Construction par **analogie** avec T_{LL} , mais ce **n'est pas** la statistique de log-vraisemblance de \mathcal{M}_{DMN} .

- T_{DMN} dépend aussi de φ , à **ajuster**
- Sous-estime la log-vraisemblance
- Peut être négative

Quelques résultats

Un spectre de fragmentation

- m/z : masse moléculaire
- Intensité : quantité de fragments à ce m/z

Table de contingence

Spectre	Intensité 1	Intensité 2	 Intensité d	Somme
1	n ₁₁	n ₁₂	 n _{1d}	n_{1+}
2	n ₂₁	n ₂₂	 n _{2d}	n_{2+}

Quelques résultats

Test de puissance 90 %

rouge : apprentissage de t_0

vert : estimation de l'erreur de type 1

Quelques résultats

Conclusion et perspectives

- La vraisemblance : un outil pour construire des tests
- Asymétrie de \mathcal{H}_0 et \mathcal{H}_1
- Distribution composée : modélise une surdispersion
- Meilleurs modèles (bayésiens, plus de paramètres, ...)
- Machine learning
- Autres données

Merci pour votre attention

- Böcker, S. (2017). Searching molecular structure databases using tandem MS data: are we there yet?
- Cochran, W. G. (1952). The χ^2 Test of Goodness of Fit.
- Lydersen, S., Fagerland, M. W. & P. Laake (2009). Recommended tests for association in 2×2 tables.
- Mehrotra, D. V., Chan, I. S. F. & Berger, R. L. (2003). A Cautionary Note on Exact Unconditional Inference for a Difference between Two Independent Binomial Proportions.
- Wilks, S. S. (1938). The Large-sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses