

🦒 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160603102

FCC REPORT

(WIFI)

Applicant: LigoWave LLC

Address of Applicant: 138 Mountain Brook Dr Canton, GA 30115 United States

Equipment Under Test (EUT)

Product Name: Broadband Digital Transmission System

Model No.: NFT 3ac

FCC ID: V2V-AC2800

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Jun., 2016

Date of Test: 13 Jun., to 27 Dec., 2016

Date of report issued: 27 Dec., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Dec., 2016 Original	

Tested by: Date: 27 Dec., 2016

Tesi Engineer

Reviewed by: Date: 27 Dec., 2016

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	
4	TEST SUMMARY	
5	GENERAL INFORMATION	5
5	5.1 CLIENT INFORMATION	5
5	5.2 GENERAL DESCRIPTION OF E.U.T	5
5	5.3 TEST ENVIRONMENT AND MODE	7
5	5.4 DESCRIPTION OF SUPPORT UNITS	7
5	5.5 LABORATORY FACILITY	
5	5.6 LABORATORY LOCATION	
5	5.7 MEASUREMENT UNCERTAINTY	
5	5.8 TEST INSTRUMENTS LIST	9
6	TEST RESULTS AND MEASUREMENT DATA	10
6	6.1 Antenna requirement	10
6	6.2 CONDUCTED EMISSION	11
6	6.3 CONDUCTED OUTPUT POWER	16
6	6.4 OCCUPY BANDWIDTH	30
6	6.5 Power Spectral Density	40
6	6.6 BAND EDGE	54
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
6	SPURIOUS EMISSION	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	103
7	TEST SETUP PHOTO	113
8	EUT CONSTRUCTIONAL DETAILS	115

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	LigoWave LLC
Address of Applicant:	138 Mountain Brook Dr Canton, GA 30115 United States
Manufacturer/ Factory:	LigoWave LLC
Address of Manufacturer/ Factory:	138 Mountain Brook Dr Canton, GA 30115 United States

5.2 General Description of E.U.T.

Product Name:	Broadband Digital Transmission System		
Model No.:	NFT 3ac		
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))		
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)		
Channel separation:	5MHz		
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)		
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)		
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	PIFA Antenna		
Antenna gain:	3 dBi,		
AC adapter :	Adapter 1 Model: GRT-POE20-480050A Input: AC100-240V 50/60Hz 0.5A Output: DC 48V, 500mA Adapter 2 Model: G0720-480-050 Input: AC100-240V 50/60Hz 0.75A Output: DC 48V, 0.5A		

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency						
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2 2417MHz 5 2432MHz 8 2447MHz 11 2462MHz						
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
	4 2427MHz 7 2442MHz							
	5 2432MHz 8 2447MHz							
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Peport No: CCISE160603102

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LigoWave	Passive Gigabit PSE	GRT-480050A	N/A	N/A

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PUP Report No: CCISE160603102

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The product is a professionally installed device which has PIFA antenna for the application. The best gain of antenna is 3 dBi.

3T3R MIMO

6.2 Conducted Emission

	•					
Test Requirement:	FCC Part 15 C Section	15.207				
Test Method:	ANSI C63.4: 2014 150 kHz to 30 MHz					
Test Frequency Range:						
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	·	Frequency range Limit (dBuV)				
LIIIII.	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	garithm of the frequency.				
Test procedure	50ohm/50uH coupl 2. The peripheral dev through a LISN tha	the main power coupling impedance plock diagram of the num conducted hission, the relative cables must be				
Test setup:	AUX Equipment Test table/Insula Remark E.U.T: Equipment Under LISN: Line Impedence St. Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.8 for	details				
Test mode:	Refer to section 5.3 for	details				
Test results:	Passed					

Measurement Data: Adapter 1 test mode

Neutral:

Over

Site

Condition

EUT

Model : NFT 3ac Test Mode : TX mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

: 2.4G WiFi(POE:GRT-POE20-480050A) Remark Read LISN Cable Limit

	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫₿	₫B	dBu∜	dBu₹	dB	
1	0.190	27.54	Carrier and a	10.76				Average
2	0.202	40.80	0.15	10.76	51.71	63.54	-11.83	QP
3	0.447	25.87	0.23	10.74	36.84	46.93	-10.09	Average
4	0.502	37.39	0.24	10.76	48.39	56.00	-7.61	QP
5	0.570	39.38	0.27	10.77	50.42	56.00	-5.58	QP
6		30.52			41.56	46.00	-4.44	Average
7	0.686	36.90	0.32	10.77	47.99	56.00	-8.01	QP
8	0.731	23.88						Average
1 2 3 4 5 6 7 8 9 10	18.232	29.21					-19.61	
10			0.27					Average
11	23.140						-19.83	
12	23.140	26.55		10.89	37.69			Average

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Line:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Adapter 2 test mode

Neutral:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Notes:

- An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

weasurement D			Conducted	Total power	Limit	
Mode	Test CH	Ant. Port	Output power	(dBm)	(dBm)	Result
		T)/0	(dBm)	` '	,	
		TX0	20.66			
	Lowest	TX1	20.01	24.93	30.00	Pass
		TX2	19.77			
		TX0	19.70			
802.11b	Middle	TX1	19.80	24.38	30.00	Pass
		TX2	19.30			
		TX0	19.32			
	Highest	TX1	19.20	23.79	30.00	Pass
		TX2	18.50			
		TX0	22.05			
	Lowest	TX1	21.04	26.11	30.00	Pass
		TX2	20.81			
	Middle	TX0	24.15			Pass
802.11g		TX1	24.10	29.02	30.00	
		TX2	24.49			
	Highest	TX0	22.36	27.02	30.00	Pass
		TX1	22.39			
		TX2	22.00			
	Lowest	TX0	18.85		30.00	Pass
		TX1	18.12	23.06		
		TX2	17.82			
		TX0	24.16		30.00	
802.11n(H20)	Middle	TX1	24.26	29.08		Pass
` ′		TX2	24.51			. 3.33
		TX0	22.38		30.00	Pass
	Highest	TX1	22.31	26.95		
	Ü	TX2	21.81			
		TX0	17.66			
	Lowest	TX1	17.68	22.52	30.00	Pass
		TX2	17.91		00.00	
		TX0	24.39			
802.11n(H40)	Middle	TX1	24.28	29.08	30.00	Pass
	MIGGIE	TX2	24.27	25.00		
		TX0	22.46			
	Highest	TX1	21.71	26.74	30.00	Pass
	riigilest					
Domonto	Highest	TX1 TX2	21.71 21.69	26.74	30.00	Pass

Remark:

^{1.} Because the transmit signals are completely uncorrelated, so the Directional gain = G_{ANT} .

^{2.} The directional Gain of antenna is less than 6 dBi, so the limit of power is 30 dBm.

Test plot as follows:

TX0

Lowest channel

Middle channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

TX2

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH		6dB Emission	Limit(kHz)	Result		
1001 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Ri 12)	
Lowest	10.24	16.64	17.76	36.80		
Middle	10.24	16.48	17.76	36.64	>500	Pass
Highest	10.24	16.48	17.76	36.64		
Test CH		99% Occupy	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)		rtosuit
Lowest	14.00	16.64	17.76	36.48		
Middle	13.92	16.64	17.76	36.32	N/A	N/A
Highest	13.92	16.64	17.76	36.32		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 28.JUN.2016 08:46:11

Lowest channel

Date: 28.JUN.2016 08:47:32

Middle channel

Date: 28.JUN.2016 08:48:42

Highest channel

Date: 15.JUN.2016 11:55:42

Lowest channel

Date: 15.JUN.2016 11:56:45

Middle channel

Date: 15.JUN.2016 11:58:37

Highest channel

Date: 15.JUN.2016 12:01:32

Lowest channel

Date: 15.JUN.2016 12:03:13

Middle channel

Date: 15.JUN.2016 12:06:21

Highest channel

Date: 15.JUN.2016 12:08:40

Lowest channel

Date: 15.JUN.2016 12:10:19

Middle channel

Date: 15.JUN.2016 12:11:50

Highest channel

99% **OBW**

Lowest channel

Date: 28.JUN.2016 08:50:08

Middle channel

Date: 28.JUN.2016 08:49:40

Highest channel

Date: 15.JUN.2016 13:41:00

Lowest channel

Date: 15.JUN.2016 13:41:48

Middle channel

Date: 15.JUN.2016 13:42:41

Highest channel

Date: 15.JUN.2016 13:45:49

Lowest channel

Date: 15.JUN.2016 13:44:37

Middle channel

Highest channel

Date: 15.JUN.2016 13:59:42

Lowest channel

Date: 15.JUN.2016 13:58:50

Middle channel

Date: 15.JUN.2016 13:58:03

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Mode	Test Channel	Ant. Port	PSD (dPm)	Total PSD	Limit (dBm)	Result
	Channel	TVO	(dBm)	(dBm)	(dBm)	
		TX0	-4.80	0.07	0.00	Dana
	Lowest	TX1	-4.46	-0.07	8.00	Pass
-		TX2	-5.30			
		TX0	-5.26	0.45	0.00	Davis
802.11b	Middle	TX1	-4.63	-0.15	8.00	Pass
-		TX2	-4.91			
		TX0	-7.00	- 444	0.00	Dana
	Highest	TX1	-5.35	-1.41	8.00	Pass
		TX2	-6.37			
		TX0	-6.36	4.05	0.00	D
	Lowest	TX1	-5.89	-1.25	8.00	Pass
-		TX2	-5.84			
		TX0	-4.47		0.00	_
802.11g	Middle	TX1	-4.31	0.26	8.00	Pass
-		TX2	-4.76			
		TX0	-5.20			_
	Highest	TX1	-3.51	-0.10	8.00	Pass
		TX2	-6.38			
		TX0	-9.09			_
	Lowest	TX1	-10.25	-4.82	8.00	Pass
		TX2	-9.50			
		TX0	-3.87	-		
802.11n(H20)	Middle	TX1	-3.43	1.32	8.00	Pass
		TX2	-3.09			
		TX0	-4.78			
	Highest	TX1	-4.08	0.48	8.00	Pass
		TX2	-4.05			
		TX0	-12.53			
	Lowest	TX1	-11.46	-7.60	8.00	Pass
		TX2	-13.33			
		TX0	-6.75]		
802.11n(H40)	Middle	TX1	-5.34	-1.27	8.00	Pass
(- / [TX2	-6.14			
		TX0	-6.52]		
	Highest	TX1	-5.87	-1.02	8.00	Pass
		TX2	-5.10			

Test plot as follows: TX0

Date: 28.JUN.2016 08:55:38

Lowest channel

Date: 28.JUN.2016 08:56:30

Middle channel

Date: 28.JUN.2016 08:57:26

Highest channel

Date: 28.JUN.2016 09:38:58

Lowest channel

Date: 28.JUN.2016 09:42:51

Middle channel

Date: 28.JUN.2016 09:43:28

Highest channel

Date: 15.JUN.2016 13:51:37

Lowest channel

Date: 15.JUN.2016 13:52:27

Middle channel

Date: 15.JUN.2016 13:53:14

Highest channel

Date: 15.JUN.2016 13:55:08

Lowest channel

Date: 15.JUN.2016 13:55:56

Middle channel

Date: 15.JUN.2016 13:57:25

Highest channel

TX1

Date: 28.JUN.2016 09:04:05

Lowest channel

Date: 28.JUN.2016 09:04:41

Middle channel

Date: 28.JUN.2016 09:05:14

Highest channel

Date: 28.JUN.2016 09:39:42

Lowest channel

Date: 28.JUN.2016 09:42:18

Middle channel

Date: 28.JUN.2016 09:44:11

Highest channel

Date: 15.JUN.2016 15:57:19

Lowest channel

Date: 15.JUN.2016 15:56:38

Middle channel

Date: 15.JUN.2016 15:55:54

Highest channel

Date: 15.JUN.2016 15:58:59

Lowest channel

Date: 15.JUN.2016 16:00:10

Middle channel

Date: 15.JUN.2016 16:01:00

Highest channel

TX2

Date: 28.JUN.2016 09:12:38

Lowest channel

Date: 28.JUN.2016 09:11:39

Middle channel

Date: 28.JUN.2016 09:10:59

Highest channel

Date: 28.JUN.2016 09:40:13

Lowest channel

Date: 28.JUN.2016 09:41:45

Middle channel

Date: 28.JUN.2016 09:44:39

Highest channel

Date: 15.JUN.2016 18:06:08

Lowest channel

Date: 15.JUN.2016 18:05:11

Middle channel

Date: 15.JUN.2016 18:04:15

Highest channel

Date: 15.JUN.2016 18:07:23

Lowest channel

Date: 15.JUN.2016 18:08:17

Middle channel

Date: 15.JUN.2016 18:09:17

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

TX0

Date: 28.JUN.2016 09:23:33

Lowest channel

Highest channel

Date: 28.JUN.2016 09:27:45

Date: 15.JUN.2016 14:39:56

Date: 15.JUN.2016 14:41:33

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

TX1

Date: 28.JUN.2016 09:24:13

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

TX2

Date: 28.JUN.2016 09:25:16

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.20	09 and 15.205		
Test Method:	ANSI C63.10: 20			05 section 12	.1
Test Frequency Range:	2.3GHz to 2.5Gl	Hz			
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value
Limit:	Frequency	y Lir	mit (dBuV/m @		Remark
	Above 1GF	łz —	54.00		Average Value
T 18			74.00		Peak Value
Test Procedure:	the ground to determin 2. The EUT w antenna, what tower. 3. The antennathe ground Both horizo make the make the make the maters and to find the material base of the EUT have 10dB	at a 3 meter e the position as set 3 meter hich was more to determine antal and vert heasurement uspected eminenthe rota table maximum reactiver system andwidth with sion level of the cified, then a would be repmargin would	camber. The camber. The first of the highesters away from unted on the total aried from one the maximum ical polarization. It is sion, the EUT in a was turned finding. In was set to Peth Maximum Hohe EUT in peatesting could boorted. Otherw	table was rot tradiation. the interference of a variable meter to four value of the ns of the anterest of the anterest of the arrange to heights from 0 degree eak Detect Fund Mode. k mode was e stopped and ise the emissione by one united to the control of the c	r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees unction and 10dB lower than ad the peak values sions that did not using peak, quasi-
Test setup:	150cm	AE EUT (Turntable)	Ground Reference Plane	orn Antenna Antenna T	Tower W
Test Instruments:	Refer to section	5.8 for detai	ls		
Test mode:	Refer to section	5.3 for detail	ls		
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 2.4GHz Module Condition

EUT Model : FWBD-2800 Test mode : 802.11b-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT Remark : 3dBi ANT Remark

CHIGA	190		Antenna Factor				Limit Line	Over Limit	
-	MHz	—dBu₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	dB	
1	2321.183	36.28	23.67	6.48	0.00	66.43	74.00	-7.57	Peak
2	2321.183	12.36	23.67	6.48	0.00	42.51	54.00	-11.49	Average
3	2330.874	39.50	23.67	6.51	0.00	69.68	74.00	-4.32	Peak
4	2330.874	12.63	23.67	6.51	0.00	42.81	54.00	-11.19	Average
5	2390.000	23.80	23.68	6.63	0.00	54.11	74.00	-19.89	Peak
6	2390.000	11.71	23.68	6.63	0.00	42.02	54.00	-11.98	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 2.4GHz Module EUT Model : FWBD-2800 Test mode : 802.11b-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT Remark : 3dBi ANT

(emai	: к	Read	mı Antenna	Cable	Preamp		Limit	Over	
	Freq	Level							Remark
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1	2321.622	30.39	23.67	6.48	0.00	60.54	74.00	-13.46	Peak
2	2321.622	13.59	23.67	6.48	0.00	43.74	54.00	-10.26	Average
3	2337.283	36.52	23.67	6.53	0.00	66.72	74.00	-7.28	Peak
4	2337.283	12.32	23.67	6.53	0.00	42,52	54.00	-11.48	Average
5	2390.000	25.93	23.68	6.63	0.00	56.24	74.00	-17.76	Peak
6	2390.000	13.60	23.68	6.63	0.00	43.91	54.00	-10.09	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: 2.4GHz Module EUT Model : FWBD-2800 Test mode : 802.11b-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Humi: 55%

Test Engineer: MT Remark : 3dBi ANT Remark

ıa		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	₫₿u₹	dB/m	dB	₫B	dBu√/m	$\overline{dBuV/m}$	dB	
	2483,500				0.00				Peak

Remark:

1

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 2.4GHz Module EUT Model : FWBD-2800 Test mode : 802.11b-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

: 3dBi ANT Remark

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBu∜/m	dBuV/m	₫B	******
1 2	2483, 500 2483, 500		23.70			57.22			
3	2487.768	28.65	23.70	6.85	0.00	59.20	74.00	-14.80	
4	2487.768	17.74	23.70	6.85	0.00	48.29	54.00	-5.71	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 2.4GHz Module
Model : FWBD-2800
Test mode : 802.11g-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark : 3dBi ANT

COMOLE	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∀	$\overline{-dB/\pi}$	dB	₫B	dBuV/m	dBuV/m	dB	
1	2320.963	39.32	23.67	6.48	0.00	69.47	74.00	-4.53	Peak
2	2320,963	12.25	23.67	6.48	0.00	42.40	54.00	-11.60	Average
2	2328.778	35.61	23.67	6.50	0.00	65.78	74.00	-8.22	Peak
4	2328.778	12.74	23.67	6.50	0.00	42.91	54.00	-11.09	Average
	2390.000	33.23	23.68	6.63	0.00		74.00		
6	2390.000	11.97	23.68	6.63	0.00				Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4GHz Module : FWBD-2800 Model Test mode : 802.11g-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT Remark : 3d : 3dBi ANT

cmari		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	d₿	dBuV/m	dBuV/m	dB	
1	2336.841	40.44	23.67	6.53				-3.36	
2	2336.841	12.39	23.67	6.53	0.00	42.59	54.00	-11.41	Average
3	2390.000	36.25	23.68	6.63	0.00	66.56	74.00	-7.44	Peak
4	2390.000	21.01	23.68	6.63	0.00	51.32	54.00	-2.68	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 2.4GHz Module Model : FWBD-2800 Test mode : 802.11g-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Test Engineer: MT Huni:55%

: 3dBi ANT Remark

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
2483.500	31,60	23.70	6.85	0.00	62.15	74.00	-11.85	Peak
2483, 500	12, 38	23, 70	6, 85	0.00	42.93	54.00	-11.07	Average

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Loss Factor Level Line Limit Remark

0.00 72.90 74.00 -1.10 Peak

0.00 47.98 54.00 -6.02 Average

dB

dB dBuV/m dBuV/m

Remark:

Freq Level Factor

dBuV

42.35 23.70

17.43 23.70

dB/m

MHz

2483.500

2483.500

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

dB

6.85

6.85

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 2.4GHz Module EUT Model : FWBD-2800 : 802.11n20-L mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Environment Test Engineer: MT : 3dBi ANT

Vewgii		Read	låntenna	Cable	Preamp		Limit	Over	
	Fre	q Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MH	z dBuV		dB	dB	dBuV/m	dBuV/m	d∄	
1	2321.29	2 36.53	23.67	6.48	0.00	66.68	74.00	-7.32	Peak
2	2321.29	2 12.27	23.67	6.48	0.00	42.42	54.00	-11.58	Average
3	2339.05	5 38.51	23.67	6.53	0.00	68.71	74.00	-5.29	Peak
4	2339.05	5 12.31	23.67	6.53	0.00	42.51	54.00	-11.49	Average
5	2390.00	26.16	23.68	6.63	0.00	56.47	74.00	-17.53	Peak
6	2390.00	0 13.36	23.68	6.63	0.00	43.67	54.00	-10.33	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4GHz Module : FWBD-2800 Model : 802.11n20-L mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT Remark : 3dBi ANT

Kema	10	Read	ReadAntenna				Limit		
	Free	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MH	dBuV	dB/n	dB	dB	dBuV/m	dBuV/m	dB	
1	2330.984	39.06	23.67	6.51	0.00	69.24	74.00	-4.76	Peak
2	2330.984	1 12.67	23.67	6.51	0.00	42.85	54.00	-11.15	Average
3	2333, 635	39.87	23.67	6.51	0.00	70.05	74.00	-3.95	Peak
4	2333.635	12.68	23.67	6.51	0.00	42.86	54.00	-11.14	Average
5	2390,000	35.01	23.68	6.63	0.00	65.32	74.00	-8.68	Peak
6	2390, 000	15, 26	23, 68	6, 63	0.00	45, 57	54.00	-8.43	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 2.4GHz Module
Model : FWBD-2800
Test mode : 802.11n20-H mode

Power Rating: AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark : 3dBi ANT

Freq	ReadAntenna Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	**********
2483.500 2483.500					61.63 44.09			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: 2.4GHz Module EUT : FWBD-2800 : 802.11n20-H mode Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% Environment Test Engineer: MT 3dBi ANT

ema	-		Antenna Factor				Limit Line		Remark
	MHz	dBu∀	$-\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500	7 - 2 (6.85			74.00		Peak Average
3	2483, 768 2483, 768	41.99	23.70	6.85	0.00	72.54	74.00	-1.46	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 2.4GHz Module : FWBD-2800 Model Test mode : 802.11n40-L mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark : 3dBi ANT

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∀	-dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2322.614	35.67	23.67	6.50	0.00	65.84	74.00	-8.16	Peak
2	2322.614	12.88	23.67	6.50	0.00	43.05	54.00	-10.95	Average
3	2339.064	36.82	23.67	6.53	0.00	67.02	74.00	-6.98	Peak
4	2339.064	12.09	23.67	6.53	0.00	42.29	54.00	-11.71	Average
5	2390.000	27.74	23.68	6.63	0.00	58.05	74.00	-15.95	Peak
6	2390.000	12.75	23.68	6.63	0.00	43.06	54.00	-10.94	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : 2.4GHz Module Model : FWBD-2800 : 802.11n40-L mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: MT

Rema	rk :	3dBi Al	NT Antenna	Coblo	Ducomo		Limit	Oman	
	Freq		Factor					Over Limit	Remark
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	2339.194	33.03	23.67	6.53	0.00	63.23	74.00	-10.77	Peak
2	2339.194	12.10	23.67	6.53	0.00	42.30	54.00	-11.70	Average
2	2389.247	38.36	23.68	6.63	0.00	68.67	74.00	-5.33	Peak
4	2389, 247	20.83	23.68	6.63	0.00	51.14	54.00	-2.86	Average
5	2390.000	34.62	23.68	6.63	0.00	64.93	74.00	-9.07	Peak
6	2390,000	20.68	23.68	6.63	0.00	50.99	54.00	-3.01	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 2.4GHz Module
Model : FWBD-2800
Test mode : 802.11n40-H mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark : 3dBi ANT

roma.		Freq		Antenna Factor						
		MHz	—dBu⊽	dB/m	dB	<u>d</u> B	dBu∇/m	dBuV/a	dB	
1 2 3 4	248 249		20.07 38.83	23.70 23.70 23.70 23.70	6.85 6.86	0.00	50.62 69.39	74.00	-3.38 -4.61	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

Condition

EUT Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: MT

temar	K		Read	Nı Antenna	Cable	Preamp		Limit	Over	
	Fre	pe		Factor						
	ME	Īz	₫BuV	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1	2483.50	00	40.13	23.70	6.85	0.00	70.68	74.00	-3.32	Peak
2	2483.50	00	21.57	23.70	6.85	0.00	52.12	54.00	-1.88	Average
3	2488.03	33	41.79	23.70	6.85	0.00	72.34	74.00	-1.66	Peak
4	2488, 03	33	21.84	23, 70	6, 85	0.00	52, 39	54,00	-1.61	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows: TX0

Test mode: 802.11b

Date: 28.JUN.2016 09:29:28

Start 30 MHz

30MHz~25GHz

2.497 GHz/

Stop 25 GHz

Date: 28.JUN.2016 09:33:51

30MHz~25GHz

Date: 28.JUN.2016 09:34:36

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 16.JUN.2016 10:03:42

30MHz~25GHz

Middle channel

Date: 16.JUN.2016 10:04:48

30MHz~25GHz

Date: 16.JUN.2016 10:06:02

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 16.JUN.2016 10:08:29

30MHz~25GHz

Date: 16.JUN.2016 10:09:34

30MHz~25GHz

Date: 16.JUN.2016 10:10:23

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 16.JUN.2016 10:11:08

30MHz~25GHz

Date: 16.JUN.2016 10:11:51

30MHz~25GHz

Date: 16.JUN.2016 10:12:32

30MHz~25GHz

TX1

Test mode: 802.11b

Date: 28.JUN.2016 09:30:25

30MHz~25GHz

Date: 28.JUN.2016 09:33:11

30MHz~25GHz

Date: 28.JUN.2016 09:35:23

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 16.JUN.2016 10:17:43

30MHz~25GHz

Middle channel

Date: 16.JUN.2016 10:17:04

30MHz~25GHz

Date: 16.JUN.2016 10:16:19

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 16.JUN.2016 10:18:36

30MHz~25GHz

Date: 16.JUN.2016 10:19:15

Start 30 MHz

30MHz~25GHz

Stop 25 GHz

Date: 16.JUN.2016 10:20:00

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 16.JUN.2016 10:20:50

30MHz~25GHz

Date: 16.JUN.2016 10:21:59

30MHz~25GHz

Date: 16.JUN.2016 10:22:45

30MHz~25GHz

TX2

Test mode: 802.11b

Date: 28.JUN.2016 09:31:18

30MHz~25GHz

Date: 28.JUN.2016 09:32:18

30MHz~25GHz

Date: 28.JUN.2016 09:36:19

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 16.JUN.2016 10:28:27

30MHz~25GHz

Date: 16.JUN.2016 10:27:48

30MHz~25GHz

Date: 16.JUN.2016 10:26:59

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 16.JUN.2016 10:29:16

30MHz~25GHz

Middle channel

Date: 16.JUN.2016 10:30:19

30MHz~25GHz

Date: 16.JUN.2016 10:30:57

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 16.JUN.2016 10:31:42

30MHz~25GHz

Date: 16.JUN.2016 10:32:28

30MHz~25GHz

Date: 16.JUN.2016 10:33:11

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20	013								
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement D	Distance: 3	3m							
Receiver setup:	Frequency	Detecto	or	RBW VB'		W	Remark			
·	30MHz-1GHz	Quasi-pe	eak 120KHz		300KHz		Quasi-peak Value			
	Above 1GHz	Peak		1MHz 3MH						
		RMS		1MHz	3MI	Hz	Average Value			
Limit:	Frequenc		Limi	it (dBuV/m @	3m)		Remark			
	30MHz-88M			40.0			luasi-peak Value			
	88MHz-216MHz 43.5 Quasi-p									
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value									
	Above 1GHz 54.0 Average Valu									
Test Procedure:	1. The EUT v		J = 4 -	74.0		4-1-1- 4	Peak Value 0.8m(below			
	The table was highest race. 2. The EUT wantenna, was tower. 3. The antennathe ground Both horizon make the race. 4. For each so case and the meters and to find the. 5. The test-resonance specified E. 6. If the emission the limit specified EUT have 10dB.	was rotate diation. was set 3 ryhich was a height in the determinant and was a hen the ard the rotate maximum eceiver system of the control of the rotate and was a hen the ard the rotate and width a sion level becified, the would be a margin was set in the control of the rotate and was a heart of the rota	meters mount is varied in the vertical ent. emissintenna table varied with Moof the en test report ould be	s away from ted on the to ed from one e maximum al polarization, the EU a was turned for a was set to Polarization.	the into op of a meter value ons of the T was a to heigh from 0 of eak De old Models we stopp rise the one by	ine the erference variable to four of the end and the error degree tect Fide. Was ped arremissione to the error one to the er	meter chamber. e position of the nce-receiving ble-height antenna r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees unction and 10dB lower than nd the peak values sions that did not using peak, quasi- orted in a data			

Below 1GHz

Adapter 1 test mode

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

Pro EUT : Broadband Digital Transmission System

Model : NFT 3ac

Test mode : 2.4G-Wifi TX mode Power Rating : AC120V/60Hz

Huni:55% Environment : Temp: 25.5°C

Test Engineer: MT

Remark : 3dBi ant(adapter:GRT-POE20-480050A) ReadAntenna Cable Preamp

Limit Over Loss Factor Level Line Limit Remark Freq Level Factor MHz dBuV dB/m dB dBuV/m dBuV/m dB dB 1.69 81.212 49.63 6.73 29.63 28.42 40.00 -11.58 QP 23 138, 387 50.32 11.81 2.38 29.28 35.23 43.50 -8.27 QP 2.61 52.00 35.37 162.611 9.87 29.11 43.50 -8.13 QP 42.66 28.68 4 375.939 15.09 32.16 46.00 -13.84 QP 5 28.96 46.00 -5.91 QP 501.179 48.62 16.80 3.63 40.09 6 625.078 50.82 18.64 3.90 28.86 44.50 46.00 -1.50 QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

Pro

: Broadband Digital Transmission System : NFT 3ac : 2.4G-Wifi TX mode EUT

Model

Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

r: mi : 3dBi ant(adapter:GRT-POE20-480050A) Remark

	Freq		Factor						Remark
	MHz	dBu∀	dB/n	−−−dB	d₿	dBuV/m	dBuV/m	d₿	
1	73.876	57.52	6.40	1.61	29.69	35.84	40.00	-4.16	QP
2	141.330	55.60	11.56	2.42	29.27	40.31	43.50	-3.19	QP
3	375.939	43.00	15.09	3.09	28.68	32,50	46.00	-13.50	QP
4	501.179	47.82	16.80	3.63	28.96	39.29	46.00	-6.71	QP
5	601.427	44.83	18.50	3.94	28.93	38.34	46.00	-7.66	QP
6	625.078	49.19	18.64	3.90	28.86	42.87	46.00	-3.13	QP

Adapter 2 test mode

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

Pro

EUT : Broadband Digital Transmission System

Model

: NFT 3ac : 2.4G-Wifi TX mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

: 3dBi ant (adapter :G0720-480-050)
ReadAntenna Cable Preamn Limit Remark

	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	46.666 90.220		16.83						
2		53.35	9.87	2.61	29.11	36.72	43.50	-6.78	QP
4 5 6	375.939 501.179								
6	625.078	50.58	18.64	3,90	28.86	44.26	46.00	-1.74	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

Pro

: Broadband Digital Transmission System EUT

Model

: NFT 3ac : 2.4G-Wifi TX mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

: 3dBi ant (adapter :G0720-480-050) Remark

	Freq		Factor						
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1	34.037	48.48	14.20	0.98	29.96	33.70	40.00	-6.30	QP
2	45.695	44.85	17.28	1.29	29.85	33.57	40.00	-6.43	QP
3	143.326	51.70	11.34	2.44	29.25	36.23	43.50	-7.27	QP
4	375.939	43.01	15.09	3.09	28.68	32.51	46.00	-13.49	QP
5	501.179	52.77	16.80	3.63	28.96	44.24	46.00	-1.76	QP
6	625.078	48.50	18.64	3,90	28.86	42.18	46.00	-3.82	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	55.09	36.12	10.60	40.22	61.59	74.00	-12.41	Vertical	
4824.00	44.62	36.12	10.60	40.22	51.12	74.00	-22.88	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.47	36.12	10.60	40.22	52.97	54.00	-1.03	Vertical	
4824.00	38.47	36.12	10.60	40.22	44.97	54.00	-9.03	Horizontal	

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	54.13	36.32	10.64	40.15	60.94	74.00	-13.06	Vertical	
4874.00	45.10	36.32	10.64	40.15	51.91	74.00	-22.09	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.31	36.32	10.64	40.15	52.12	54.00	-1.88	Vertical	
4874.00	38.54	36.32	10.64	40.15	45.35	54.00	-8.65	Horizontal	

Test mode: 8	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	53.10	36.58	10.70	40.08	60.30	74.00	-13.70	Vertical	
4924.00	47.62	36.58	10.70	40.08	54.82	74.00	-19.18	Horizontal	
Test mode: 8	02.11b		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.79	36.58	10.70	40.08	52.99	54.00	-1.01	Vertical	
4924.00	36.24	36.58	10.70	40.08	43.44	54.00	-10.56	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.12	36.12	10.60	40.22	54.62	74.00	-19.38	Vertical	
4824.00	45.13	36.12	10.60	40.22	51.63	74.00	-22.37	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	35.35	36.12	10.60	40.22	41.85	54.00	-12.15	Vertical	
4824.00	35.64	36.12	10.60	40.22	42.14	54.00	-11.86	Horizontal	

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.45	36.32	10.64	40.15	51.26	74.00	-22.74	Vertical	
4874.00	43.15	36.32	10.64	40.15	49.96	74.00	-24.04	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.65	36.32	10.64	40.15	41.46	54.00	-12.54	Vertical	
4874.00	33.65	36.32	10.64	40.15	40.46	54.00	-13.54	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.94	36.58	10.70	40.08	56.14	74.00	-17.86	Vertical	
4924.00	45.31	36.58	10.70	40.08	52.51	74.00	-21.49	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	37.00	36.58	10.70	40.08	44.20	54.00	-9.80	Vertical	
4924.00	35.69	36.58	10.70	40.08	42.89	54.00	-11.11	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.62	36.12	10.60	40.22	51.12	74.00	-22.88	Vertical	
4824.00	44.32	36.12	10.60	40.22	50.82	74.00	-23.18	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.25	36.12	10.60	40.22	40.75	54.00	-13.25	Vertical	
4824.00	34.10	36.12	10.60	40.22	40.60	54.00	-13.40	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.19	36.32	10.64	40.15	54.00	74.00	-20.00	Vertical	
4874.00	44.47	36.32	10.64	40.15	51.28	74.00	-22.72	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.52	36.32	10.64	40.15	43.33	54.00	-10.67	Vertical	
4874.00	34.21	36.32	10.64	40.15	41.02	54.00	-12.98	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.60	36.58	10.70	40.08	55.80	74.00	-18.20	Vertical	
4924.00	45.21	36.58	10.70	40.08	52.41	74.00	-21.59	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.80	36.58	10.70	40.08	44.00	54.00	-10.00	Vertical	
4924.00	36.78	36.58	10.70	40.08	43.98	54.00	-10.02	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.35	36.19	10.61	40.19	50.96	74.00	-23.04	Vertical	
4844.00	43.88	36.19	10.61	40.19	50.49	74.00	-23.51	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	35.26	36.19	10.61	40.19	41.87	54.00	-12.13	Vertical	
4844.00	34.63	36.19	10.61	40.19	41.24	54.00	-12.76	Horizontal	

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	43.50	36.25	10.64	40.17	50.22	74.00	-23.78	Vertical	
4874.00	43.94	36.25	10.64	40.17	50.66	74.00	-23.34	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	33.65	36.25	10.64	40.17	40.37	54.00	-13.63	Vertical	
4874.00	33.71	36.25	10.64	40.17	40.43	54.00	-13.57	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	44.68	36.51	10.69	40.10	51.78	74.00	-22.22	Vertical	
4904.00	44.13	36.51	10.69	40.10	51.23	74.00	-22.77	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	34.58	36.51	10.69	40.10	41.68	54.00	-12.32	Vertical	
4904.00	34.64	36.51	10.69	40.10	41.74	54.00	-12.26	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.