Problem solving seminar Test 1 - solutions

1. Let $P:\mathbb{C} \to \mathbb{C}$ be a polynomial with integer coefficients. Suppose that $|P(z)| \leq 2$ for every $z \in \mathbb{C}$ with |z| = 1. Prove that P has at most 4 nonzero coefficients.

Solution. Let $P(z) = a_n z^n + \ldots + a_1 z + a_0$. Note that

$$4 \ge \frac{1}{2\pi} \int_{|z|=1} |P(z)|^2 dz = \frac{1}{2\pi} \int_{|z|=1} P(z) P(z) dz = \sum_{k,l=0}^n a_k a_l \int_{|z|=1} z^k \bar{z}^l dz = \sum_{k=0}^n a_k^2.$$

Therefore only at most 4 a_k 's can be nonzero. \square

2. A standard parabola is the graph of a quadratic polynomial $y = x^2 + ax + b$ with leading coefficient 1. By its vertex we mean the point $(-a/2, -a^2/4 + b)$. Three standard parabolas with vertices V_1, V_2, V_3 intersect pairwise at points A_1, A_2, A_3 . Let $A \mapsto s(A)$ be the reflection of the plane with respect to the x-axis.

Prove that standard parabolas with vertices $s(A_1)$, $s(A_2)$, $s(A_3)$ intersect pairwise at the points $s(V_1)$, $s(V_2)$, $s(V_3)$.

Solution. First we show that the standard parabola with vertex V contains point A if and only if the standard parabola with vertex s(A) contains point s(V).

Let A = (a, b) and V = (v, w). The equation of the standard parabola with vertex V = (v, w) is $y = (x - v)^2 + w$, so it contains point A if and only if $b = (a - v)^2 + w$. Similarly, the equation of the parabola with vertex s(A) = (a, -b) is $y = (x - a)^2 - b$; it contains point s(V) = (v, -w) if and only if $-w = (v - a)^2 - b$. The two conditions are equivalent.

Now assume that the standard parabolas with vertices V_1 and V_2 , V_1 and V_3 , V_2 and V_3 intersect each other at points A_3 , A_2 , A_1 , respectively. Then, by the statement above, the standard parabolas with vertices $s(A_1)$ and $s(A_2)$, $s(A_1)$ and $s(A_3)$, $s(A_2)$ and $s(A_3)$ intersect each other at points V_3 , V_2 , V_1 , respectively, because they contain these points. \square