UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2002

Surname:	
First Name:	
Id.#:	

Course Number	MATH 239						
Course Title	Introduction to Combinatorics						
Instructor	01 Goulden 2:30 □ 03 Wagner 1:30 □ 04 Wagner 10:30 □ 05 Schellenberg 9:30 □						
Date of Exam	December 14, 2002						
Time Period	7-10 p.m.						
Number of Exam Pages (including this cover sheet)	13 pages						
Exam Type	Closed Book						

ADDITIONAL INSTRUCTIONS:

- 1. Write your name and Id.# in the blanks above. Put a check mark in the box next to your instructor's name and lecture time.
- 2. There are 13 pages to this exam including the cover page. Please be sure you have all 13 pages.
- 3. Answer each of the problems in the space provided; use the back of the previous page for additional space.

4. You may only use a non-programmable calculator. Show the reasoning used in any calculation.

Problem	Value	Mark Awarded	Problem	Value	Mark Awarded
1	10		6	10	
2	12		7	10	
3	8		8	16	
4	14		9	10	
5	10		TOTAL	100	

- 1. Let a_n , $n \ge 0$, be the number of compositions of n in which all parts are at least equal to 4, and all parts are congruent to 1 (modulo 3).
- [7] (a) Prove that

$$\sum_{i \ge 0} a_i x^i = \frac{1 - x^3}{1 - x^3 - x^4}.$$

(b) Give a linear recurrence equation for the sequence $\{a_n : n \geq 0\}$, and enough initial conditions to determine the sequence uniquely.

[8] **2(a)** Let b_n , $n \ge 0$, be the number of $\{0,1\}$ -strings of length n in which every block of 0s has odd length, and every block of 1s has length exactly equal to 1. Prove that

$$\sum_{i \ge 0} b_i x^i = \frac{1 + 2x - x^3}{1 - 2x^2}.$$

[4] **(b)** Prove that $2b_{2m+1} = 3b_{2m}, m \ge 1$.

[8] **3.** Solve the recurrence equation $c_n = 2c_{n-1} + 4c_{n-2} - 8c_{n-3}$, with initial conditions $c_0 = 1$, $c_1 = 1$, $c_2 = 1$.

- **4.** Let A_n , $n \ge 1$, be the graph whose vertices are the subsets of size n chosen from the set $\{1, 2, \ldots, 2n + 2\}$, where two subsets are adjacent if they are disjoint (i.e., their intersection is the empty set).
- [2] (a) Draw the graph A_1 .
- [3] **(b)** Determine the number of vertices and the number of edges in A_n , $n \ge 1$.

- [4] (c) Determine all values of $n \ge 1$ for which A_n has cycles of length 3.
- [5] (d) Determine all values of $n \ge 1$ for which A_n is planar.

[10] **5.** Consider the graphs G_1 , G_2 , and G_3 drawn below. Determine which, if any, of these graphs are isomorphic. If a pair of graphs is isomorphic, give an isomorphism; if a pair of graphs is not isomorphic, prove that they are not.

- [7] **6(a)** Prove that if G is a graph on $p \ge 1$ vertices, in which every vertex has degree $\ge \frac{p}{2}$, then G must be connected.
- [3] **(b)** For each $p \ge 4$, give an example of a graph on p vertices that is not connected, in which exactly one vertex has degree $< \frac{p}{2}$.

- [7] **7(a)** Construct a breadth-first search tree for the graph H below, using vertex labelled 1 as the root vertex. When considering the vertices adjacent to the vertex being examined, add them to the tree in increasing order of label. Give a list of the vertices in the order that they join the tree.
- [3] **(b)** Use the breadth-first search tree from (a) to determine whether H is bipartite or not. If H is bipartite, find a bipartition; if H is not bipartite, find an odd cycle.

- [2] **8(a)** State Euler's formula for a planar embedding of a connected graph.
- [4] **(b)** Prove that a connected planar embedding with all faces of degree 4, and all vertices of degree either 2 or 3, can have at most s = 6 faces.
- [2] (c) Draw a connected planar embedding with all faces of degree 4, and all vertices of degree either 2 or 3, with exactly s = 6 faces.

[8] (d) Determine whether the graph B below is planar or not.

[10] **9.** Determine a maximum matching and a minimum cover in the graph G below, by applying the maximum matching algorithm, beginning with the matching indicated by the tripled edges in G. You may find the extra drawings of G helpful in any iterations of the matching algorithm that are required.