Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de abril de 2018

Plano de Aula

- Revisão
 - Máquina de Turing

2 Definição de algoritmo

Sumário

- Revisão
 - Máquina de Turing

Definição de algoritmo

Problema

Problema 3.16 (b)

Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação.

Problema

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{\rm aux} =$ "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite"

Como é possível construir M_{aux} , então $A \circ B$ é TR (pois toda MTN tem uma MT equivalente). Logo, a classe de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação

Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

Quem?

David Hilbert (1862-1943)

Matemático alemão

Sumário

- Revisão
 - Máquina de Turing

2 Definição de algoritmo

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Polinômio[']

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Curioso

Não existe algoritmo que execute esta tarefa.

Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.

Noção intuitiva é igual a algoritmos de de algoritmos é igual a máquina de Turing

FIGURA **3.22** A Tese de Church–Turing

Noção intuitiva de algoritmos de de algoritmos de igual a algoritmos de máquina de Turing

FIGURA 3.22

A Tese de Church-Turing

Conclusão

Existem problemas que são algoritmicamente insolúveis.

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Resposta

Não é decidível. Mas é Turing-reconhecível.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

$MT M_1$ que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Considerações

 M_1 reconhece D_1 , mas não a decide.

Resultado obtido por Matijasevich

É possível construir um decisor para \mathcal{D}_1 . Mas não para $\mathcal{D}.$

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

em que

- k é o número de termos do polinômio,
- c_{max} é o coeficiente com maior valor absoluto, e
- c₁ é o coeficiente do termo de mais alta ordem.

Níveis de descrição

 Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;

Níveis de descrição

 Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;

Níveis de descrição

 Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Níveis de descrição

- Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;
- Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita:
- Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$

Descrição de alto nível

 $M = \text{``Sobre a entrada } \langle G \rangle$, a codificação de um grafo G:

- Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados. Se eles estão, aceite; caso contrário, rejeite".

Exemplo

Pergunta

Como seria a descrição de M no nível de implementação?

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de abril de 2018

