ER to Relational Mapping (Part II)

Announcement

- Assignment 2 is available in Canvas
 - Design ER diagram, and convert the ER diagram into relational tables
 - Due time: 11:59pm, Friday, Oct 7

What We have Learned?

E/R diagram

Relational schema, e.g. account=(bname, acct_no, bal)

$$E = (a_1, ..., a_n)$$

Many-to-many relationship:

R1= $(\underline{a}_1, \underline{b}_1, c_1, ..., c_k)$

Fk1: a1 references E1(a1)

Fk2: b1 references E2(b1)

E/R to Relational

Weak entity set

$$E1 = (\underline{a}_1, ..., a_n)$$

$$E2 = (\underline{a}_1, \underline{b}_1, ..., \underline{b}_m)$$

Foreign key: a1 references E1(a1)

No table for R

More on relationships

1-many relationship:

• Solution 1: R1= $(a_1, \underline{b_1}, c_1, ..., c_k)$

Foreign key1: a1 references E1(a1)

Foreign key2: b1 references E2(b1)

- Solution 2:
 - Don't construct a table for R1
 - Add a1, c1,, ck to E2 instead
 - E2= $(\underline{b}_1,, b_m, a_1, c_1, ..., c_k)$ Foreign key: a1 references E1(a1)

Today's lecture

- Translate IsA relationship to relation
- Translate aggregation relationship to relation
- In-class exercise

Translating IsA to Relations

Method 1:

• E1 =
$$(\underline{a}_1, ..., a_n)$$

• S1 =
$$(\underline{a}_1, b_1, ..., b_m)$$

Foreign key: a1 reference E1(a1)

• S2 = $(\underline{a}_1, c_1 ..., c_k)$

Foreign key: a1 reference E1(a1)

Method 2:

• S1 =
$$(\underline{a}_1,..., a_n, b_1, ..., b_m)$$

• S2 =
$$(\underline{a}_1, ..., a_n, c_1 ..., c_k)$$

No foreign key for S1 & S2

No table for E1

Q: When will Method 2 be wrong?

A: Method 2 is wrong if IsA relationship does not have the *covering constraint*

Example: Translating IsA Hierarchies to Relations

- Approach 1:
 - 3 relations: Employees, Hourly_Emps and Contract_Emps.
 - Employees (<u>ssn</u>, name, lot)
 - Hourly_emps (<u>ssn</u>, hourly_wages, hours_worked)
 - FK: ssn references Employees (ssn)
 - Contract_emps (<u>ssn</u>, contractid)
 - FK: ssn references Employees (ssn)
- Approach 2: Just Hourly_Emps and Contract_Emps (if there is a covering constraint on ISA relationship).
 - Hourly_emps (<u>ssn</u>, name, lot, hourly_wages, hours_worked)
 - Contract_emps (<u>ssn</u>, name, lot, contractid)

Describes relationship among relationships

Translate Aggregation Relationship to Relation

Aggregation

Step 1: Generate tables for E1, R1, E2, E3 as discussed before

- •E1(<u>a</u>_{1,...} a_n)
- •E2(<u>b</u>_{1...} b_m)
- •E3(<u>c</u>_{1,...} c_k)
- •R1(<u>a₁, b₁</u>)

Foreign keys of R1:

- \underline{a}_1 reference table E1(a1)
- <u>b</u>₁ reference table E2(b1)

Step 2: Generate a table for the aggregation relationship R2

R2 =
$$(\underline{c_1}, \underline{a_1}, \underline{b_1}, d_1, ..., d_j)$$

Foreign keys of R2:

- <u>a</u>₁ reference table E1(a1),
- \underline{b}_1 reference table E2(b1),
- \underline{c}_1 reference table E3(c1)
- (a1, b1) reference table R1

Example: Translating Aggregation to Relation

What's the schema of the *Monitors* table?

Monitors (pid, did, ssn, until) Foreign keys:

- ssn references Employees,
- pid references Projects,
- did references Departments
- (pid, did) references Sponsors

ER to Relational In-class Exercise

A university registrar's office maintains data about the following entities:

- Courses: include number, title, credits, syllabus, and prerequisites;
- Course offerings: include course number, year, semester, section number, instructor(s), time, and classroom;
- **Students:** include student ID, name, and program;
- **Instructors:** include identification number, name, department, and title.

Further, the following information must be appropriately modeled:

- (1) The offering courses entirely depend on the courses.
- (2) For each semester, the students enrolled in the offered courses.
- (3) Each student gets a grade for each course he/she enrolled.
- (4) Each offered course can have more than one instructor.
- (5) Each course can be offered in more than one semester, and in multiple years. Each offered course may have multiple sections.

Q1: Construct an E-R diagram for the registrar's office. Specify the key and participation constraints for each relationship set. Specify the weak entity set if there is any.

Q2: Convert the constructed ER diagram into relations