

Fizyka 3.1 Pomiar zależności oporu metali i półprzewodników od temperatury (ćwiczenie 44a)

Sprawozdanie z Labolatorium

23 października 2023

Wydział i kierunek studiów

W12N, Automatyka i Robotyka

Termin zajęć

każdy wtorek, 15:15 - 16:55

Prowadzący

dr Krzysztof Gałkowski

Numer i temat ćwiczenia

44a Pomiar zależności oporu metali i półprzewodników od temperatury

Data ćwiczenia, termin oddania sprawozdania

17.10.2023, 24.10.2023

Skład grupy

Adam Prystupa, Jakub Wilczyński

1 Cel ćwiczenia

- Pomiar oporu elektrycznego metalu i półprzewodnika w funkcji temperatury.
- Wyznaczenie temperaturowego współczynnika oporu (rezystancji) metalu.
- Wyznaczenie szerokości pasma wzbronionego półprzewodnika (tzw. przerwy wzbronionej).

1.1 Opis wykonania ćwiczenia

Ćwiczenie polegało na:

- 1. Podłączeniu układu pomiarowego.
- 2. Zmierzeniu rezystancji próbek w temperaturze pokojowej.
- 3. Rozgrzenie próbek do $100^{\circ}C$.
- 4. Stopniowe schładzanie próbek i wykonywanie pomiarów co $5^{\circ}C$.
- 5. Opracowanie wyników (na podstawie dwóch wybranych próbek).

1.2 Przedstawienie układu pomiarowego i narzędzi pomiarowych wraz z ich dokładnością.

Pomiary, których wyniki wykorzystano do obliczeń w dalszej części sprawozdania, zostały dokonane w układzie pomiarowym przedstawionym na poniższym rysunku.

Jako niepewność temperatury przyjeliśmy dla wartości dużych 0,2 °C biorąc pod uwagę dokładność miernika temperatury czyli jego rozdzielczość tj.0,1°C plus bąłd mierzącego również 0,1°C ze względu na nieliniowość zmiany temperatury i jej szybką zmianę dla większych wartości. Dla mniejszych temperatur ze względu na bardzo powolną zmianę jako niepewność przyjeliśmy tylko 0,1°C gdyż powolna zmiana pozwalała na wyeliminowanie błędu związanego z ludzką reakcją.

Rysunek 1: Schemat układu pomiarowego.

Rezystancja M-3850, M-3860D	400 Ω 4 kΩ 40 kΩ 400 kΩ 4 MΩ	± 0,5 % rdg + 1 dgt	0,1 Ω 1 Ω 10 Ω 100 Ω 1 kΩ
	$40~\mathrm{M}\Omega$	± 1,0 % rdg + 2 dgt	10 kΩ

Rysunek 2: Dokładność miernika METEX M-3850

2

2 Opracowanie wyników

2.1 Metal (próbka nr.3)

Pewność tego, że mamy w tym przpadku z metalem jest uzasadniona znanymi nam właściwościami rezystancji w metalach gdzie wraz ze wzrostem temperatury ona również rośnie.

D 1.2	TD 1 1 1 1	. , .	1 1' /	11 , 1
Ryslinek 3:	Tabela zbiorcza	nomiarow i	obliczen	dia metalii

Lp.	t	Rm	u(t)	u(Rm)	а	u(a)	b	u(b)	α	u(α)
	°C	Ω	°C	Ω	Ω/°C	Ω/°C	Ω	Ω	°C ⁻¹	°C ⁻¹
1	100	133,80	0,2	0,45		0,0036	101,77	0,24	0,003211	0,000037
2	95	132,50	0,2	0,45						
3	90	131,00	0,2	0,44						
4	85	129,70	0,2	0,44						
5	80	128,10	0,2	0,43						
6	75	126,60	0,2	0,43						
7	70	125,10	0,2	0,42						
8	65	123,40	0,2	0,42	0,3268					
9	60	121,60	0,2	0,41	0,3208					
10	55	119,90	0,2	0,41						
11	50	118,20	0,2	0,40						
12	45	116,60	0,1	0,40						
13	40	114,80	0,1	0,39						
14	35	113,10	0,1	0,39						
15	30	111,30	0,1	0,38						
16	26	109,80	0,1	0,38						

Rysunek 4: Wykres zależności rezystancji od temperatury dla metalu

2.2 Półprzewodnik (próbka nr.2)

Pewność tego, że mamy w tym przpadku z półprzewodnikiem jest uzasadniona znanymi nam właściwościami rezystancji w półprzewodnikach gdzie wraz ze wzrostem temperatury rezystancja maleje.

					1			1 1				
	Lp.	T(K)	1000/T	u(1000/T)	In(R)	u(ln(R))	А	u(a)	Eg	u(Eg)	Eg	u(Eg)
		[K]	[1/K]	[1/K]	[-]	[-]	K	K	J	J	eV	eV
	1	373	2,6810	0,0015	2,6741	0,0069						
	2	368	2,7174	0,0015	2,6810	0,0069						
	3	363	2,7548	0,0016	2,7014	0,0074						
	4	358	2,7933	0,0016	2,7663	0,0070						
	5	353	2,8329	0,0017	2,8154	0,0066						
	6	348	2,8736	0,0017	2,8848	0,0062						
	7	343	2,9155	0,0017	2,9601	0,0063						
	8	338	2,9586	0,0018	3,0587	0,0057	2.025	0.066	E E01E 20	1 00E 31	0.240	0.012
	9	333	3,0030	0,0019	3,1612	0,0056	2,025	0,066	5,591E-20	1,90E-21	0,349	0,012
	10	328	3,0488	0,0019	3,2619	0,0054						
	11	323	3,0960	0,0020	3,3673	0,0052						
	12	318	3,1447	0,0020	3,4720	0,0050						
	13	313	3,1949	0,0021	3,5946	0,0047						
	14	308	3,2468	0,0022	3,7038	0,0045						
	15	303	3,3003	0,0022	3,8459	0,0043						
1	16	299	3,3445	0,0023	3,9627	0,0040						

Rysunek 5: Tabela zbiorcza pomiarów i obliczeń dla półprzewodnika.

Rysunek 6: Wykres zależności $lnR = f(\frac{1000}{T})$

3 Użyte wzory i przykładowe obliczenia.

Współczynniki a i b oraz A prostej najlepiej dopasaowanej do punktów pomiarowych zostały wyznaczone za pomoca regresji liniowej. W tym przypadku wykorzystaliśmy funkcję wbudowaną programu Microsoft Excel pod nazwą REGLINP.

3.1 Niepewność standardowa pomiaru rezystancji.

$$\Delta R = 0.5\% rdg + 1dgt$$

$$u(R) = \frac{\Delta R}{\sqrt{3}} = \frac{0,005 \cdot 133,8 + 0,1}{\sqrt{3}} \approx 0,443982357 \approx 0,45\Omega$$

3.2 Temperaturowy współczynnik rezystancji

$$\alpha = \frac{a}{b} = \frac{0.3268}{101.77} \approx 0.003212 \frac{1}{{}^{o}C}$$

3.3 Niepewność złożona temperaturowego współczynnika rezystancji

$$u_c(\alpha) = \sqrt{(\frac{\partial \alpha}{\partial a})^2 \cdot u^2(a) + (\frac{\partial \alpha}{\partial b})^2 + u^2(b)} = \sqrt{(\frac{1}{b} \cdot u(a))^2 + (\frac{-a}{b^2} \cdot u(b))^2} = \sqrt{(\frac{1}{101,77} \cdot 0,0036)^2 + (-\frac{0,3268}{101,77^2} \cdot 0,24)^2} \approx 0,000037 \frac{1}{{}^oC}$$

3.4 Niepewność $\frac{1000}{T}$

$$u(\frac{1000}{T}) = \sqrt{(\frac{\partial \frac{1000}{T}}{T} \cdot u(T))^2} = \sqrt{(-\frac{1000}{T^2} \cdot u(T))^2} = \sqrt{(-\frac{1000}{139129} \cdot 0, 2)^2} \approx 0,0015 \frac{1}{K}$$

3.5 Niepewność lnR

$$u(lnR) = \frac{u(R)}{R} = \frac{0,20}{14,50} \approx 0,0069$$

3.6 Przerwa wzbroniona

$$E_g = 2000 \cdot A \cdot k = 2000 \cdot 2,025 \cdot 1,3806 \cdot 10^{-23} \approx 5,59 \cdot 10^{-20} J = 0,349 eV$$
k - stała Boltzmana (1,3806 · 10^{-23} $\frac{J}{\nu}$)

3.7 Niepewność przewy wzbronionej

$$u(E_g) = \sqrt{(\frac{\partial E_g}{A} \cdot u(A))^2} = \sqrt{(2000 \cdot k \cdot u(A))^2} = \sqrt{2000 \cdot 1,3806 \cdot 10^{-23} \cdot 0,066} = 1,9 \cdot 10^{-21} J = 0,012eV$$

4 Wnioski

- Na podstawie wzrostu lub spadku rezystancji w zależności od wzrostu temperatury możemy wywnioskować, że próbki nr: 1, 2, 4 to półprzewodniki a próbka nr.3 to metal.
- Obliczając przerwę wzbronioną półprzewodnika można ustalić konkretnie z jakiego materiału jest on W przypadku próbki nr. 2 był to najprawdopodobniej arsenek indu, którego przerwa wzbroniona wynosi 0, 36eV.
- Analogicznie znając temperaturowy współczynnik rezystancji możemy z doscyć dużą dokładnością określić z jakiego materiału została wykonana próbka nr. 3, była to najprawdopodobniej miedź lub platyna, kótrych współczynnik temperaturowy wynosi 3,9 * 10⁻³ 1/10⁻².
- Zaobserwowaliśmy, że rezystancja dla temperatury pokojowej zmierzona przed rozpoczęciem pomiarów jest niższa niż wynikałoby to z pózniejszych pomiarów przy obniżaniu stopniowym temperatury. Wynikać to może z zakłóceń pomiarów spowodowanych między innymi nagrzewaniem się całego układu pomiarowego oraz ułomności działania termometru. Aby zachować przejrzystość i jak najlepszą dkoładnosc pomiary kontrolne nie zostały uwzględnione w obliczeniach i sporządzonych charakterystykach.

5 Źródła

- $\bullet \ \ https://lpf.wppt.pwr.edu.pl/pomoce/niedokladnosc-miernikow-lpf.pdf$
- https://lpf.wppt.pwr.edu.pl/instrukcje/cwn100b.pdf
- https://lpf.wppt.pwr.edu.pl/pomoce-dydaktyczne.php
- https://lpf.wppt.pwr.edu.pl/opisy/cw044.pdf