

Master on Industrial Electronics and Computers Engineering Specialization on Control, Automation and Robotics

Autonomous Intelligent Systems 2023/2024:

Project 2 Middle Evaluation 16/04/2024

Group 4: RIMA Robotics
José Vicente Pereira, PG53988
Matheus Costa, PG50649
Sérgio Fernandes, A95710
Susana Guimarães, PG54245

Professors:

Estela Bicho Erlhagen, <u>estela.bicho@dei.uminho.pt</u>
Sergio Monteiro, sergio@dei.uminho.pt
Luís Louro, l<u>louro@dei.uminho.pt</u>
Dept. of Industrial Electronics
University of Minho

- Timetable;
- Requirements and Constraints;
- System Overview Diagram;
- Subsystem Diagram
 - Mobile Robot;
 - Robotic Arm;
 - Conveyorin;
 - Parking System;

- State Machine Simplified;
- State Machine Detailed;
- Tests
 - Conveyor;
 - Mobile Robot;
 - Robotic Arm;
- Next Steps;

Timetable:

Requirements and Constraints:

Requirements:

1. Functional

- Development of an autonomous movement algorithm for a mobile robot;
- Development of a control algorithm for a robotic arm;
- Object detection system;
- Obstacle detection system;
- Integration of subsystems for the pick-andplace;

2. Non-Functional

- Movement optimization;
- Precision when grabbing/landing objects;
- Intuitive movements;

Restrictions:

1. Technical

- Use of the Coppelia simulation platform;
- Grasping only one box at a time;
- Utilization of Matlab as the programming language;
- Utilization of the mobile robot KUKA;
- Utilization of the robotic arm LBR iisy (6 DOF), UR10e (6 DOF), KUKA LBR iiwa (7 DOF);

2. Non-Technical

- Project design deadline until May 24, 2024;;
- Group of 4 members;

Conveyor Test:

- Conveyor control for sending and receiving boxes;
- Sensor system to assess the presence and identification of the box;

Mobile Robot Test

- Autonomously control omnidirectional movement of the robot;
- Obstacle avoidance;
- Stop for unloading and picking up objects;

Simulation Objects Test:

- Determine the behavior of the boxes with the other systems;
- Definition of the appearance of the boxes on the carpet;
- Definition of the disappearance of the boxes on the shelf;

Robotic Arm Test

- Definition of the movement to pick up a box from the carpet and deliver it to the shelf;
- Definition of the movement to pick up a box from the shelf and deliver it ti the carpet;
- Arm position for transportation;
- Define motion settings;
- Define resting position;

System Overview:

Subsystems Diagram:

Subsystems Diagram:

Subsystems Diagram:

State Machine (Simplified):

	Subtitle
box_available	- Check if there is a box to be picked
park_position_target	- Verify if robot is in the position to pick the target
box_picked_target	- Check if Robot picked the target
park_position_deliver	- Verify if robot is in the position to deliver target
box_placed_deliver	- Check if Robot delivered the target
park_position_default	- Verify if Robot is in the deafult position (standby)

State Machine (Detailed):

Mobile Robot Fluxogram:

Mobile Robot Fluxogram

target 1 - Deafult Position

target 2 - conveyorIn

target 3 - conveyorOut

target 5 - ShelfRight

target 4 - ShelfLeft

Robotic Arm Fluxogram:

Robotic Arm Fluxogram

Vision Algorithm Fluxogram:

Vision Algorithm Test:

Original Image

Conveyor Communication Test:

Robotic Arm Communication Test:

Initial Integration Test:

- Optimize speed control system;
- Conveyor controller implementation;
- Optimize Mobile Robot implementation;
- Begin parking algorithm implementation;
- Implementation of state machine (initial draft);
- Design and implementation of the image processing system;

Thank you!
Any questions?

May the force be with you!

