

STATISTICAL MODELLING: Theory and practice

Project 1: Wind power data

GOALS: ASSIGNMENT 1

- Descriptive statistics
- Compute simple models
 - 1. **Fit** different **probability density models** to wind power, wind speed and wind direction data.
 - Select better model for each variable.
 - 3. **Report parameters** including assessment of their **uncertainty**.

Descriptive statistics

	Power production
Min	0.123
1st Qu	254.158
Median	964.123
Mean	1381.196
3rd Qu	2196.579
Max	4681.062
	Wind speed
Min	1.139
1st Qu	5.779
Median	8.498
Mean	9.112
3rd Qu	11.202
Max	24.950
	Wind Direction
Min	0.000095
1st Qu	2.474999
Median	4.079297
Mean	3.602390
3rd Qu	4.945443
Max	6.274642

Wind power production (kW)

Wind speed (m/s)

Wind direction (rad)

DTU Descriptive statistics

Data correlation and variable frequencies

Wind power production over time

Normalization and data distribution

Normalization of power production:

$$power^* = \frac{power - min(power)}{max(power) - min(power)}$$

The normalization is based on the installed capacity, which maximum is 5000 kW.

Values that from 0 to 1 for power production.

Checking for normality of the data:

Non-normal models

Beta

(dbeta)

log-normal

(dlnorm)

Gamma

(dgamma)

Circular

(vonMises)

Negative log-likelihood function

Parameter estimation

Extract parameters and uncertainty

AIC

Normal model

Box-Cox Transformation

Transformation 1

Transformation 2

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda}_{i} - 1}{\lambda} & \lambda \neq 0 \\ \log(y_{i}) & \lambda = 0 \end{cases}$$

$$y^{(\lambda)} = \frac{1}{\lambda} \log \left(\frac{y^{\lambda}}{1 - y^{\lambda}} \right); \quad \lambda > 0$$

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda}_{i} - 1}{\lambda} & \lambda \neq 0 \\ \log(y_{i}) & \lambda = 0 \end{cases}$$

$$y^{(\lambda)} = \frac{1}{\lambda} \log\left(\frac{y^{\lambda}}{1 - y^{\lambda}}\right); \quad \lambda > 0 \qquad y^{(\lambda)} = 2\log\left(\frac{y^{\lambda}}{(1 - y)^{1 - \lambda}}\right); \quad \lambda \in (0, 1)$$

Project 1: Wind power data

POWER PRODUCTION:

Non-normal models

Model	Parameter 1	CI	Parameter 2	CI
Gamma	0.6926	[0.6246 , 0,7606]	2.5073	[2.1594 , 2.8553]
Beta	0.5571	[0.4952 , 0.6189]	1.4918	[1.2863 , 1.6973]
VonMises	0.2738	[0.2443 , 0.3034]	15.7607	[13.2307 , 18.2907]
Log-normal	0.00	[-0.3335, 0.3335]	2.8880	[2.6522 , 3.1239]

Model	AIC
Gamma	-190.7635
Beta	-239.3236
VonMises	36.7573
Log-normal	187.8728

$$\mathrm{B}(lpha,eta) = rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}$$

POWER PRODUCTION:

Non-normal models

Profile likelihood:

$$\log L(\lambda, \mu, \sigma^2) = -\frac{1}{2} \log \sigma^2 - \frac{(y_\lambda - \mu)^2}{2\sigma^2} + (\lambda - 1) \log y$$

Transformation	λ
Вохсох	0.3467
1	0.2620
2	0.2523

Box Cox

Transformation 1 Transformation 2

Normal Q-Q Plot

Theoretical Quantiles

Histogram of Transformed Wind Power

AIC = 8.94

WIND SPEED:

Non-normal models

Log norm model		
μ	2.0844793	
CIμ	[2.024706, 2.144253]	
σ	0.5175574	
CΙ σ	[0.4752910, 0.5598238]	

AIC = 1642

Lognorm is the most appropriate model for wind speed

Box-Cox Transformation

Lambda estimation

 $\lambda = 0.2621765$

Histogram of Wind Direction

Von Mises model		
μ	4.696011	
Clμ	[4.474360, 4.917661]	
К	1.000000	
СIк	[0.8059838, 1.1940162]	
AIC	1042.121	

GOALS: ASSIGNMENT 2

Formulate model for predicting wind power

- 1. Formulate normal regression model
- 2. Present parameters of the final model and their uncertainty.
- 3. Interpretation of parameters and series expansions.
- 4. Consider **non-normal models**.
- 5. Graphical representation of predictions.

15 December 2020 DTU Compute Project 1: Wind power data

12

Normal model:

$$\widehat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2; \quad \lambda = 0.2620668$$

Coefficients:

	Estimate	Std. Error	t value Pr(> t)
β_0	-7.454787	0.735443	-10.136 < 2e-16 ***
β_1	1.410711	0.138145	10.212 < 2e-16 ***
β_2	-0.027604	0.005685	-4.855 1.98e-06 ***

Normal model: $\lambda = 0.2620668$

(1)
$$\hat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2$$

(2)
$$\hat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \beta_3 ws^3$$

Series of expansions
$$\begin{cases} (2) \ \widehat{y}^{\,(\,\lambda)} = \beta_{\,0} + \, \beta_{\,1}ws + \, \beta_{\,2}ws^{\,2} + \, \beta_{\,3}ws^{\,3} \\ (3) \ \widehat{y}^{\,(\,\lambda)} = \beta_{\,0} + \, \beta_{\,1}ws + \, \beta_{\,2}ws^{\,2} + \, \beta_{\,3}ws^{\,3} + \, \beta_{\,4}ws^{\,4} \end{cases}$$

Model	AIC
1	1461.802
2	1463.800
3	1465.755

14

Analysis of Variance Table

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi
1	285	2625.4	ļ		
2	284	2625.4	1	0.01904	0.9639
3	283	2625.0	1	0.41022	0.8334

Best model parameters (model (1))

Parameter	Estimate	CI
β_0	-7.4547	[-8.9023 , -6.0023]
β ₁	1.4110	[1.1387, 1.6826]
β_2	-0.0276	[-0.0387 , - 0.0164]

Normal model:

Including variable Wind direction

Significative p-value when chisq test

```
\widehat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \beta_3 wd
```

```
Call:

Im(formula = y.trans ~ dat$ws30 + I(dat$ws30^2) + dat$wd30,

data = dat,

family = "Gaussian")
```

Residuals:

Min 1Q Median 3Q Max -9.5542 -1.4635 0.0329 1.7768 11.5957

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.501578 0.796976 -9.413 < 2e-16 ***
dat$ws30 1.409471 0.138616 10.168 < 2e-16 ***
I(dat$ws30^2) -0.027616 0.005696 -4.849 2.05e-06 ***
dat$wd30 0.016457 0.106935 0.154 0.878
---
```

Residual standard error: 3.04 on 284 degrees of freedom Multiple R-squared: 0.5871, Adjusted R-squared: 0.5827 F-statistic: 134.6 on 3 and 284 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC = 1463.778

$$\widehat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \beta_3 wd + \beta_4 wd^2$$

Call:

 $Im(formula = y.trans \sim dat$ws30 + I(dat$ws30^2) + dat$wd30 + I(dat$wd30^2), data = dat, family = "Gaussian")$

Residuals:

Min 1Q Median 3Q Max -9.8995 -1.6671 0.0294 1.7429 10.9922

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.648971 0.867302 -9.972 < 2e-16 ***
dat$ws30 1.382843 0.136811 10.108 < 2e-16 ***
I(dat$ws30^2) -0.026749 0.005617 -4.762 3.07e-06 ***
dat$wd30 1.250221 0.410146 3.048 0.00252 **
I(dat$wd30^2) -0.197036 0.063304 -3.113 0.00204 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.995 on 283 degrees of freedom Multiple R-squared: 0.6007, Adjusted R-squared: 0.5951 F-statistic: 106.5 on 4 and 283 DF, p-value: < 2.2e-16

AIC = 1456.084

Project 1: Wind power data

Normal model: Parameter uncertainty of the two best normal models

	Model 1 (without wd)	Model 2 (with wd)
β0	-7. 45478717	-8.6489713
СІ ВО	[-8.90237687, -6.00719746]	[-10.35615292, -6.94178972]
β1	1.41071121	1.3828433
CI β1	[1.13879808, 1.68262433]	[1.11354616, 1.65214036]
β2	-0.02760426	-0.0267491
CI β2	[-0.03879467, -0.01641385]	[-0.03780599, -0.01569222]
β3	-	1.2502209
СІ βЗ	-	[0.44289656, 2.05754528]
B4	-	-0.1970357
СІ β4	-	[-0.32164310, -0.07242825]

$$\hat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2; \quad \lambda = 0.2620668$$

$$\widehat{y}^{(\lambda)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \beta_3 wd + \beta_4 wd^2$$

Non-normal model: Beta regression

	Estimate value	CI
βΟ	-4.418622074	[-4.98896968, -3.84827447]
β1	0.402275796	[0.31733284, 0.48721875]
β2	-0.007969534	[-0.01135872, -0.00458035]
β3	0.349155870	[0.10717155, 0.59114020]
B4	-0.052658876	[-0.08983082, -0.01548693]
Φ	5.298284	[4.42934017, 6.16722725]

Best model : AIC = -484.3728

$$y = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \beta_3 wd + \beta_4 wd^2$$

GOALS: ASSIGNMENT 3

Analysis of autocorrelation AR(1)

- Extract the residuals from the previous model
- **Fit parameters** in the model $[e_i, e_{i+1}] T \sim N(0, \Sigma)$ and report:
 - · Parameter estimates and Wald intervals
 - Contour plot of the likelihood
 - · Likelihood ratio test and wald test $(H_0: p = 0)$
- Compare the $I(\sigma^2, \rho)$ calculated by numerical methods with the algebraric form
- Estimate the parameters of the AR(1)
- Discuss the effect of short and long term on AR(1)

Are our observations iid?

Extract the residuals

$$Y^{(\,0.2)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \varepsilon \quad ; \ \varepsilon \sim N\!\!\left(\,0,\ \sigma^2\right)$$
 Extract residuals
$$\varepsilon = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 \\ . & . \\ \varepsilon_{n-1} & \varepsilon_n \end{bmatrix}$$

Fit to the model

$$\left[\varepsilon_{i},\ \varepsilon_{i+1}\right]^{T} \sim N(\ 0,\ \Sigma); \quad \Sigma = \sigma^{2} \left[\begin{array}{c} 1 & p \\ p & 1 \end{array}\right]$$
 p is the covariance between $\left[\mathbf{e}_{i};\ \mathbf{e}_{i+1}\right]$

Autocorrelation function plot

AR(1) model:
$$\varepsilon_i = \phi \varepsilon_{i-1} + u_i$$
; $u_i \sim N(0, \sigma_u^2)$

Extract residuals

Fit to the model

AR model estimates

Parameter	Estimate value	CI
σ^2	13.93593	[12.24160 , 15.63025]
р	0.3222538	[0.2185932, 0.4259144]

Hypothesis testing: $H_0: \rho = 0$

Wilk's likelihood ratio statistic

$$V = 2\log\left(\frac{L(\rho_0)}{L(\widehat{\rho})}\right) \longrightarrow X^2 \qquad \text{p-value = 1.468168e-0}$$

Wald test

$$z = \frac{\widehat{\rho} - \rho_0}{se(\widehat{\rho})} \longrightarrow N(0,1) \longrightarrow p\text{-value} = 9.658089e-09$$

Reject null hypothesis

There is a correlation between $[e_i, e_{i+1}]$

$$\left[\varepsilon_{i}, \ \varepsilon_{i+1}\right]^{T} \sim N(0, \Sigma); \quad \Sigma = \sigma^{2} \left[\begin{array}{c} 1 & p \\ p & 1 \end{array}\right]$$

Analytical method

$$I(\sigma^{2}, \rho) = \begin{pmatrix} \frac{n}{\sigma^{4}} & -\frac{n\rho}{\sigma^{2}(1-\rho^{2})} \\ -\frac{n\rho}{\sigma^{2}(1-\rho^{2})} & \frac{n(1+\rho^{2})}{(1-\rho^{2})^{2}} \end{pmatrix} \longrightarrow \begin{bmatrix} 1.477781 & -7.405631 \\ -7.405631 & 394.481927 \end{bmatrix}$$

Numerical method

Profile likelihood and quadratic approximation

$$l(\theta) - l(\hat{\theta}) \approx -\frac{1}{2}I(\hat{\theta})(\theta - \hat{\theta})^2$$

Normal model: $Y^{(0.2)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \varepsilon$; $\varepsilon \sim N(0, \sigma^2)$

AR(1) model: $\varepsilon_i = \phi \varepsilon_{i-1} + u_i$; $u_i \sim N(0, \sigma_u^2)$

Combined model: $y^{\lambda} = \beta_0 + \beta_1 ws + \beta_2 ws2 + \varepsilon_{AR}$

ARIMA(1,0,0) = first-order autoregressive model

Call:

arima(x = y.trans, order = c(1, 0, 0), xreg = xreg)

Coefficients:

ar1 intercept ws30 ws30sq 0.3252 -6.7491 1.6170 -0.0282 s.e. 0.0559 0.9351 0.1731 0.0074

sigma^2 estimated as 12.44: log likelihood = -771.69, aic = 1553.39

2.5 % 97.5 % ar1 0.21558497 0.4347553 Intercept -8.58184971 -4.9163993 ws30 1.27766793 1.9563241 ws30sq -0.04262742 -0.0138018

AIC linear model: 1583.305

AIC combined model: 1553.390

22

Better fit than linear model!

Normal model: $Y^{(0.2)} = \beta_0 + \beta_1 ws + \beta_2 ws^2 + \varepsilon$; $\varepsilon \sim N(0, \sigma^2)$

AR(1) model: $\varepsilon_i = \phi \varepsilon_{i-1} + u_i$; $u_i \sim N(0, \sigma_u^2)$

Combined model: $y^{\lambda} = \beta_0 + \beta_1 ws + \beta_2 ws2 + \varepsilon_{AR}$

Mean Absolute error	Linear model	Combined model
Long term	2.7969	2.8448
Short term (3 days)	10.8596	9.8045

AR(1) model more suitable for short term and Linear model more suitable for long term.

References

Pawitan Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood. OUP Oxford; 2001. (Oxford science publications)

Code for the project can be found at <u>Statistical Modelling</u>

DTU