MEM6804 物流与供应链建模与仿真

案例 软件

第六讲: 仿真输出分析

沈海辉

中美物流研究院 上海交通大学

- ★ shenhaihui.github.io/teaching/mem6804p
- shenhaihui@sjtu.edu.cn

2021年春 (MEM非全日制)

董浩云航运与物流研究院 CYTUNG institute of Maritime and Logistics 中美物流研究院 (工程系统管理研究院

目录

- 1 引言
 - ▶ 仿真类别
- 2 点估计和区间估计
 - ▶ 基础
 - ▶ 指定精度
 - ▶ 示例
- 3 终止型仿真
 - ▶ 离散的输出
 - ▶ 连续的输出
- 4 稳态仿真
 - ▶ 初始化偏差
 - ▶ 预热期删除
 - ▶ 基于多运行的估计

- 1 引言
 - ▶ 仿真类别
- 2 点估计和区间估计
 - ▶ 基础
 - ▶ 指定精度
 - ▶ 示例
- 3 终止型仿真
 - ▶ 离散的输出
 - ▶ 连续的输出
- 4 稳态仿直

- ▶ 初始化偏差
- ▶ 预热期删除
- ▶ 基于多运行的估计

引言

- 输出分析是对运行仿真得到的数据进行检查和分析.
- 输出分析是必要的,因为来自随机仿真的输出数据同样具有 随机性。
 - 每运行一次仿真模型 (使用不同的随机数序列), 我们会观察 到一些输出, 就像采集了一些随机的样本.
- 假设仿真系统的一个真实的性能度量为 θ .
 - 通过一系列的仿真运行, 我们可以得到 θ 的一个估计量, 记为 $\hat{\theta}$.
- 对仿真输出进行统计分析的目的:
 - 估计真实性能度量 θ .
 - 控制估计的精度.
- 就输出分析而言, 仿真可以分为以下两类:
 - 终止型 vs. 非终止型.

引言

- 终止型仿真是指那些运行时间 (记为 T_E) 有明确定义的仿真.
 - E 是指定的事件 (或事件集), 它使仿真运行停止.
 - 在 0 时刻, 仿真从一个明确指定的初始条件开始运行, 直到时间 T_E 时结束.
 - T_E 可以是确定的或者随机的.
- 例子: 一个银行在早上 9 点 (仿真 0 时刻) 开门, 开门的时候没有客户并且 11 名柜员中的 8 名到位 (初始条件), 在下午 5 点关门 (仿真时长 T_E = 8 小时).
 - $E = \{8 \text{ hrhorouphile} \}$.
- 实际上,银行可能需要等下午5点前进入银行的所有客户办 完业务离开才能真的结束营业.
 - E = {至少 8 小时的仿真时间已经过去, 且系统内无客户}
 - T_E 是随机的.

引言

- **非终止型仿真**是指那些一直运行下去,没有一个自然的事件 *E* 使其停止的仿真.
 - 初始条件是由分析者自行指定的, 但是它的影响将随着仿真时间的增长而逐渐消失.
 - 仿真时间从理论上来说是无限长; 在实际中, 它由分析者根据精度要求来指定.
- 例子: 24×7 运转的生产线, 医院急诊室, 持续运作的计算机 网络, 等等.
- 对于一个以非终止型方式运行,并且具有稳态分布 (steady-state distribution) 的仿真模型:
 - 目标经常是研究长期的 (或称为稳态的) 系统表现, 它不受初始条件的影响.
 - 这种非终止型仿真也被称为**稳态仿真** (steady-state simulation).

- 1 引言
 - ▶ 仿真类别
- 2 点估计和区间估计
 - ▶ 基础
 - ▶ 指定精度
 - ▶ 示例
- 3 终止型仿真
 - ▶ 离散的输出
 - ▶ 连续的输出
- 4 稳态仿真

- ▶ 初始化偏差
- ▶ 预热期删除
- ▶ 基于多运行的估计

- 假设有一个分布 (对应于随机变量 X), 它的期望为 $\theta = \mathbb{E}[X]$, 我们想通过独立同分布的样本 $\{X_1, \ldots, X_n\}$ 来估计 θ .
- θ 的点估计为

$$\widehat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- θ̂ 是一个随机变量.
- 点估计无法告诉我们, 在样本量 n 为有限时, 估计误差是多少.
 - 小的估计误差意味着高的估计精度.

• 如果 $X \sim \mathcal{N}(\theta, \sigma^2)$, 那么

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \sim \mathcal{N}(0, 1).$$

• 如果 $X \sim$ 任意的分布, $\sigma^2 = \text{Var}(X) \in (0, \infty)$, 那么根据中心极限定理, 当 n 较大时,

$$\sqrt{n}\Big(rac{\widehat{ heta}- heta}{\sigma}\Big) \ \stackrel{ ext{\tiny iffly}}{\sim} \ \mathcal{N}(0,1).$$

• σ^2 通常也未知, 我们需要用样本方差 S^2 来估计它

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

• 如果 $X \sim \mathcal{N}(\theta, \sigma^2)$, 那么

$$\sqrt{n} \Big(\frac{\widehat{\theta} - \theta}{S} \Big) \sim t_{n-1}$$
,

其中 t_p 表示自由度为 p 的 t 分布.

 如果 X ~ 任意的分布, σ² = Var(X) ∈ (0, ∞), 那么根据中 心极限定理, 当 n 较大时, 依然有

$$\sqrt{n}\Big(rac{\widehat{ heta}- heta}{S}\Big) \ \stackrel{ ext{\tiny if (i)}}{\sim} \ \mathcal{N}(0,1).$$

- 实际中人们也常用 t_{n-1} 作为近似分布, 即, $\sqrt{n}(\frac{\hat{\theta}-\theta}{S})$ 类 t_{n-1} .
- 以上结果是对 θ 作置信区间估计的理论基础.

• 给定 $\alpha \in (0,1)$, 对 θ 的 $1-\alpha$ 置信区间 (confidence interval, CI) 估计为

$$\left[\widehat{\theta} - t_{n-1,\, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1,\, 1-\alpha/2} \frac{S}{\sqrt{n}}\right],$$

其中 $t_{n-1,\,1-\alpha/2}$ 是 t_{n-1} 分布的 $(1-\alpha/2)$ -分位点,即,对 $T\sim t_{n-1}$, $\mathbb{P}(T\leq t_{n-1,\,1-\alpha/2})=1-\alpha/2$.

• 如果 $X \sim \mathcal{N}(\theta, \sigma^2)$, 那么

$$\mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1, 1-\alpha/2} S / \sqrt{n}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} S / \sqrt{n}\right]\right\} = 1 - \alpha.$$

如果 X ~ 任意的分布, 那么

$$\mathbb{P}\left\{\theta\in\left[\widehat{\theta}-t_{n-1,\,1-\alpha/2}S/\sqrt{n},\;\widehat{\theta}+t_{n-1,\,1-\alpha/2}S/\sqrt{n}\right]\right\}\approx1-\alpha.$$

• 置信区间的解读:

• 如果对于 θ , 我们建立了很多的 $1-\alpha$ 置信区间 (每个都是基于大小为 n 的独立样本计算得到), 那么真正能覆盖 θ 的置信区间的比例为 $1-\alpha$.

- 注意: 当数据被观测到、置信区间被计算出来之后,例如, [1.1, 2.4],概率已经不复存在.
- 试一下! http://www.rossmanchance.com/applets/ConfSim.html

• 对于前述 $1-\alpha$ 置信区间, 它的半长 (half length) 为

$$H = t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}.$$

- 半长 H 刻画了我们用 $\hat{\theta}$ 估计 θ 时的精度 (或误差).
- 我们有时候希望 H 足够小以做出正确的决策, 例如, 希望当置信度为 $1-\alpha$ 的时候 $H < \epsilon$, 其中 ϵ 为一个指定的正数.

- 通常我们会取一个大小为 n_0 的初始样本, 以得到 σ^2 的一个估计, 记为 S_0^2 .
 - 假设当样本量增大时, σ^2 的估计不会明显地偏离 S_0^2 .
- 对于前述置信区间, 为了使 $H \le \epsilon$ 的总样本量可通过下式近似计算:

$$n^* = \min \left\{ \frac{n}{n} \ge n_0 : t_{n-1, 1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon \right\}.$$

• 在实际中, 为了使计算简单, 也会直接使用下式近似计算 (因为当 n 较大时, $t_{n-1,1-\alpha/2}\approx z_{1-\alpha/2}$):

$$n^* = \min\left\{\frac{n}{\epsilon} \ge n_0: \ z_{1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon\right\} = \left\lceil \left(\frac{z_{1-\alpha/2} S_0}{\epsilon}\right)^2 \right\rceil.$$

• 然后取 $n^* - n_0$ 个额外的样本点, 或从头开始取一个大小为 n^* 的样本, 建立 $1 - \alpha$ 置信区间 (S 重新计算).

• 假如我们取了一组独立同分布的样本, 样本点的值如下:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• 对于 $\theta = \mathbb{E}[X]$, 建立 95% 和 99% 的置信区间.

$$n=50$$
, $\widehat{\theta}=\bar{X}=11.894$, $S=24.953$. 通过查表或者数值计算得到 $t_{49,0.975}=2.010$, $t_{49,0.995}=2.680$. 于是,

95% CI:
$$11.894 \pm 2.010 \times \frac{24.953}{\sqrt{50}} = 11.894 \pm 7.093 = [4.801, 18.987];$$

99% CI:
$$11.894 \pm 2.680 \times \frac{24.953}{\sqrt{50}} = 11.894 \pm 9.457 = [2.437, 21.351].$$

希望在 95% 置信度下, 使半长 H ≤ 2.

通过查表或者数值计算得到
$$z_{0.975}=1.960,\,S_0=24.953,\,\epsilon=2.$$
 于是, $n^*=\left[\left(\frac{1.960\times 24.953}{2}\right)^2\right]=\lceil 597.995\rceil=598.$

取 598 - 50 = 548 个额外的样本点, 然后重新建立 95% 置信区间.

- 1 引言
 - ▶ 仿真类别
- 2 点估计和区间估计
 - ▶ 基础
 - ▶ 指定精度
 - ▶ 示例
- 3 终止型仿真
 - ▶ 离散的输出
 - ▶ 连续的输出
- 4 稳态仿直

- ▶ 初始化偏差
- ▶ 预热期删除
- ▶ 基于多运行的估计

终止型仿真

- 一个终止型仿真在时间区间 [0, T_E] 内运行, 并且产生观测值 (输出).
- 离散的输出: $\{Y_1, Y_2, \ldots, Y_n\}$.
 - n 可能是确定的或随机的, 这取决于 T_E 是如何指定的.
 - 例如, 每一个顾客的等待时长.
 - 通常我们想要估计 $\theta := \mathbb{E}[\frac{1}{n}\sum_{i=1}^{n}Y_{i}]$, 即, 平均等待时间的期望.
- 连续的输出: $\{Y(t): 0 \le t \le T_E\}$.
 - T_E 可能是确定的或随机的.
 - 例如, 队列中的人数随时间 t 的变化, $0 \le t \le T_E$.
 - 通常我们想要估计 $\theta \coloneqq \mathbb{E}\left[\frac{1}{T_E}\int_0^{T_E}Y(t)\mathrm{d}t\right]$, 即, 平均队列长度的期望.
- 一般情况下,我们会进行多次独立的仿真运行,每次运行使用的随机数序列是不同的.

• 一次运行内的数据 vs. 不同运行的数据:

重复	一次运行内的数据 (每行)	不同运行的数据
1	$Y_{11}, Y_{12}, \dots, Y_{1n_1}$	$\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}$
2	$Y_{21}, Y_{22}, \dots, Y_{2n_2}$	$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i}$
:	:	:
R	Y_{R1} , Y_{R2} ,, Y_{Rn_R}	$\bar{Y}_R = \frac{1}{n_R} \sum_{i=1}^{n_R} Y_{Ri}$

- 在相同的初始条件和不同的随机数序列下,不同运行的数据 是独立同分布的。
- 一次运行内的数据,通常既不独立也不同分布:
 - 前后顾客的等待时长是高度相关的:
 - 高峰和低谷时间的等待时长的分布是不同的.
- 一定要使用不同运行的数据来做点估计和区间估计!

- 例子: $[0, T_E]$ 时间段内顾客的平均等待时长的期望是多少?
 - 使用 $\{\bar{Y}_1,\ldots,\bar{Y}_R\}$ 作为一组大小为 R 的独立同分布的样本.
- 点估计:

$$\bar{Y} = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r.$$

1 − α 置信区间:

$$\left[\bar{Y}-t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}},\ \bar{Y}+t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}}\right],$$

其中
$$S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_r - \bar{Y})^2$$
.

• 在 $1-\alpha$ 置信度下为使 $H \le \epsilon$ 的 R 值可通过第 13 页上的方法计算得到.

• 一次运行内的数据 vs. 不同运行的数据:

重复	一次运行内的数据 (每行)	不同运行的数据
1	$\{Y_1(t): 0 \le t \le T_{E_1}\}$	$\tilde{Y}_1 = \frac{1}{T_{E_1}} \int_0^{T_{E_1}} Y_1(t) dt$
2	$\{Y_2(t):\ 0 \le t \le T_{E_2}\}$	$\tilde{Y}_2 = \frac{1}{T_{E_2}} \int_0^{T_{E_2}} Y_2(t) dt$
:	:	:
R	$\{Y_R(t):\ 0\leq t\leq T_{E_R}\}$	$\tilde{Y}_R = \frac{1}{T_{E_R}} \int_0^{T_{E_R}} Y_R(t) dt$

- 在相同的初始条件和不同的随机数序列下,不同运行的数据 是独立同分布的.
- 例子: 在 $[0, T_E]$ 期间平均队列长度的期望是多少?
 - 使用 $\{\tilde{Y}_1,\ldots,\tilde{Y}_R\}$ 作为一组大小为 R 的独立同分布的样本,剩下的计算和前面一样.

- 1 引言
 - ▶ 仿真类别
- 2 点估计和区间估计
 - ▶ 基础
 - ▶ 指定精度
 - ▶ 示例
- 3 终止型仿真
 - ▶ 离散的输出
 - ▶ 连续的输出
- 4 稳态仿真

- ▶ 初始化偏差
- ▶ 预热期删除
- ▶ 基于多运行的估计

- 考虑一个仿真模型的这样一次运行,它的目的是估计系统的一个稳态的,或长期的,性能度量。
 - 从理论上说, 这种稳态的性能度量和初始条件没有任何关系,
- 离散的输出: {Y₁, Y₂, ...}.
 - 通常我们想要估计 $\phi := \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i$.
- 连续的输出: $\{Y(t): t \geq 0\}$.
 - 通常我们想要估计 $\phi \coloneqq \lim_{T_E \to \infty} \frac{1}{T_E} \int_0^{T_E} Y(t) dt$.
- 但是,实际上我们无法真的运行一个仿真模型无穷长时间, 我们必须在某个时候停下来.
 - 运行的长度 $(n ext{ od } T_E)$ 需要由分析者来决定, 而不是由问题本身自然地决定.

- 稳态仿真的运行长度需要小心地选取,通常需要考虑以下几点:
 - 由人为的或任意的初始条件带来的偏差 (bias);
 - 当运行长度太短时它可能会很严重
 - 通常当运行长度增大时候偏差会减小
 - 点估计的精度要求;
 - 由置信区间的半长刻画
 - 运行仿真的时间预算.

- 在有限的运行时间下,初始条件的影响是持续的,它不会消 失.
 - 除非将初始条件设为系统的稳态分布, 但是这在实际中是未 知的 (仿真就是为了估计它).
- 事实 1: 基于有限时间仿真 (有限的 n 或 T_E) 的估计量是有 偏的:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right] \neq \phi, \quad \mathbb{E}\left[\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)\mathrm{d}t\right] \neq \phi.$$

事实 2: 这个偏差无法通过增加重复运行消除:

$$\lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r \neq \phi, \quad \lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \tilde{Y}_r \neq \phi.$$

- 随着重复运行的增加, 我们将得到一个关于错误数值的更加 精确的估计量.
 - 置信区间会更窄, 但是它居中在一个错误的位置. (金) 上海ズ瓜大学

- M/M/1 的例子: https://xiaoweiz.shinyapps.io/MM1queue
 - 如果 λ < μ, 系统是稳定的, 等待时长的稳态期望 (或长期均值)为

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\lambda/\mu}{\mu - \lambda}.$$

- 选择不同的初始条件 (在这个例子中, 站点中的人数, 也称初始状态) 将使样本路径看起来不同 (在有限的时间内).
- 减小初始化偏差的一个有效方法就是做预热期删除 (warm-up period deletion).

- 初始条件的影响随着运行时长的增加逐渐减弱.
- 因此我们将仿真运行分成两个时期:
 - 预热期 (warm-up period): 从 0 时刻到 T₀ 时刻;
 - 数据收集期 (data-collection period): 从 T_0 时刻到 T_E 时刻.

图: 预热期删除 (from Banks et al. (2010))

• T_0 应该足够大, 使得在 T_0 时刻初始条件的影响非常弱, 系统的表现近似地像在稳态中一样.

如何选取 T₀?

- 目前没有广泛被接受的成熟的方法.
- 经常通过图像来辅助选取.
- 来自于一次仿真运行的原始输出数据通常过于波动, 无法用以识别趋势. 无帮助
- 我们不直接画出原始的输出数据,而是采用一些更加光滑的 图去看曲线何时趋于"稳定":
 - 累积均值 (cumulative average); 还可以
 - 总体均值 (ensemble average). 推荐

图: M/M/1 系统中每个顾客的等待时间的原始输出, $\lambda=0.962$, $\mu=1$

(from ZHANG Xiaowei)

- 累积均值 (cumulative average): 对于一次运行, 如, 运行 1, 画出从 0 时刻到现在的均值.
 - 离散的输出: 画出 $\bar{Y}_1(n) = \frac{1}{n} \sum_{i=1}^n Y_{1i}$ 相对于 n;
 - 连续的输出: 画出 $\tilde{Y}_1(T) = \frac{1}{T} \int_0^T Y_1(t) dt$ 相对于 T.
- 对于每一次运行,我们都可以画一次图,因此对于不同的运行我们通常会找出不同的预热期长度.
- 累积均值的图像通常比较保守,即,由它识别出的预热期通常会比必要的更长一些。
 - 因为它保留了所有的数据 (包括预热期的), 因此需要更长的时间去消除偏差.

图: M/M/1 系统中顾客的等待时间的累积均值, $\lambda=0.962, \mu=1$

(from ZHANG Xiaowei)

- 总体均值 (ensemble average): 对于多次运行 1,..., R, 计算不同次运行下的平均值并且画出图像.
 - 离散的输出: 画出 $\bar{Y}(n) = \frac{1}{R} \sum_{r=1}^{R} Y_{nr}$ 相对于 n;
 - 连续的输出: 将运行 r 的原始数据分成小批 (small batches), 即, $\{Y_r(t): (j-1)m \le t < jm\}$, $j=1,2,\ldots$; 画出 $\tilde{Y}(j)=\frac{1}{R}\sum_{r=1}^{R}\left[\frac{1}{m}\int_{(j-1)m}^{jm}Y_r(t)\mathrm{d}t\right]$ 相对于 j.
- 对于多次运行, 我们只识别出一个预热期长度.
- 通过跨运行之间的平均, 一些波动被消除了.
 - 它使得预热期的识别更加准确.

图: M/M/1 系统中顾客的等待时间的总体均值, $\lambda=0.962$, $\mu=1$

(from ZHANG Xiaowei)

- 对于稳态仿真, 我们只运行一次 (足够长) 便可以作出 ϕ 的点估计, 但无法建立置信区间.
- 想法: 进行多次仿真运行 (足够长), 为每一次删掉预热期, 然后像在终止型仿真中一样进行计算.
- **小心**: 需要确保点估计中的初始化偏差已经被减小至可忽略的程度.
 - 否则估计量将会具有误导性.
- 注意: 初始化偏差不受运行次数的影响.
 - 它只能通过删掉更多数据 (即, 增大 T_0) 或者增加仿真长度 (即, 增大 T_E) 来减弱.
 - 单纯增加运行次数只会给我们一个错误值附近的更窄的置信 区间。

- 离散的输出:
 - 假设我们决定将一次运行中总共 n 个观测值的前 d 个删除.[†]
 - 来自 R 次运行的数据为

$$\bar{Y}_1 = \frac{1}{n-d} \sum_{i=d+1}^n Y_{1i}$$
, ..., $\bar{Y}_R = \frac{1}{n-d} \sum_{i=d+1}^n Y_{Ri}$.

- 连续的输出:
 - 假设我们决定将一次运行中 $[0,T_0]$ 期间的数据删除, 只使用 $[T_0,T_E]$ 期间的数据.
 - 来自 R 次运行的数据为

$$\tilde{Y}_1 = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y_1(t) dt$$
, ..., $\tilde{Y}_R = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y_R(t) dt$.

• 关于 d 和 n, 或 T_0 和 T_E 的一个粗略的选取准则:

$$(n-d) \ge 10d$$
, $(T_E - T_0) \ge 10T_0$.

 $^{^{\}dagger}_{d}$ 和 n 在不同运行中的值可能不同, 在这种情况下, 它们将分别被记为 d_{r} 和 n_{r} .

- 假如分析发现, 在 R_0 次运行之后, 我们还需要 $R R_0$ 次额外的运行才能使估计达到指定的精度.
- 除了真的增加运行次数之后,我们也可以考虑为每一次运行增大运行长度 T_E .
 - 将运行长度 T_E 以相同的比例 (R/R_0) 增大至一个新的长度 $(R/R_0)T_E$..
 - 更多数据将被删除, 从 0 时刻到 $(R/R_0)T_0$ 时刻.
 - 更多数据将用以计算估计量, 从 $(R/R_0)T_0$ 时刻到 $(R/R_0)T_E$ 时刻.
 - 总的仿真运行量和简单地增加运行次数的仿真运行量是相当的.

图: 增大运行长度以实现指定的仿真精度 (from Banks et al. (2010))

- 优点: 点估计中的偏差可以被进一步降低.
- 缺点: 必须要将 T_E 时刻模型的状态存储下来, 并且能够接着往下运行.
 - 否则, 仿真需要从头重新运行, 对于复杂的模型来说, 这可能会很耗时.