

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift ₁₀ DE 198 28 591 A 1

(21) Aktenzeichen:

198 28 591.4

(22) Anmeldetag: 26. 6.98

(43) Offenlegungstag: 7. 1.99 (51) Int. CI.6:

G 02 F 1/1333

G 02 F 1/136 G 02 F 1/135 // G09F 9/35

(30) Unionspriorität:

97-27642

26.06.97 KR

(71) Anmelder:

Hyundai Electronics Industries Co., Ltd., Ichon, Kyoungki-Do, KR

(74) Vertreter:

Schwabe, Sandmair, Marx, 81677 München

(72) Erfinder:

Jun, Jung-Mok, Seoul/Soul, KR; Lee, Deuk Su, Kyoungki, KR; Ryu, Bong Yeol, Wonju, KR

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Silverigen bei Britanische Britanische

Flüssigkristallanzeige, die folgendes umfaßt: ein transparentes isolierendes Substrat; eine Anzahl von Gate-Bus-Leitungen und eine Anzahl von Daten-Bus-Leitungen, die normal zu der Anzahl von Gate-Bus-Leitungen auf dem transparenten isolierenden Substrat angeordnet sind, wobei ein Einheitspixelbereich durch einen Bereich festgelegt ist, der durch ein Gate-Bus-Leitungen-Paar und ein Daten-Bus-Leitungen-Paar begrenzt ist; eine erste Elektrode, die parallel zu der Gate-Bus-Leitung innerhalb des Einheitspixelbereichs angeordnet ist; eine erste Isolierschicht, die auf der ersten Elektrode ausgebildet ist; eine zweite Elektrode, die bei einem ausgewählten Abschnitt der oberen Oberfläche der ersten Isolierschicht ausgebildet ist; eine transparente Elektrode, die innerhalb des Einheitspixelbereichs ausgebildet ist, wobei die erste transparente Elektrode um einen ausgewählten Abstand von der zweiten Elektrode beabstandet ist und in Kontakt mit der ersten Elektrode ist; eine zweite Isolierschicht, die auf der oberen Oberfläche der ersten Isolierschicht ausge bildet ist die die erste transparente Elektrode und die weite Élektrode enthalt, eine zweite transparente Élektro de, die auf der zweiten Isolierschicht ausgebildet ist, wo be, die zweite transparente Elektrode teilweise im Über lanp mit dem Gate-Bus-Leitungen-Paar und dem Daten Bus-Leitungen-Paar ist und in Kontakt mit der zweiten Elektrode durch die zweite Isolierschicht ist; und ein Schaltelement, das elektrisch mit der ...

Beschreibung

Die vorliegende Erfindung betrifft im allgemeinen eine Anzeige. Genauer betrifft die vorliegende Erfindung eine Flüssigkristallanzeige, die transparente Pixel-Elektroden mit einer Doppelschichtstruktur aufweist, wodurch sie ein hohes Öffnungsverhältnis zeigt. Die vorliegende Erfindung stellt ein Vertahren zur Herstellung derselben bereit.

Bei vielen Anwendungen haben Flüssigkristallanzeigen ("LCDs") Kathodenstrahlröhren ersetzt, die im allgemeinen 10 als "CRTs" bekannt sind, und zwar aufgrund einer Vielfalt von Gründen. Insbesondere sind die LCDs viel dünner und im allgemeinen leichter als herkömmliche CRTs. Breitere Anwendungen, die LCDs verwenden, erfordern eine Vielfalt von Eigenschaften, z. B. soll die Tafelgröße bzw. Schirm- 15 größe erhöht werden, die Transmittanz des einfallenden Lichts verbessert werden, das Kontrastverhältnis verbessert werden, der Sichtwinkel bzw. Betrachtungswinkel aufgeweitet werden und die Ansprech- bzw. Reaktionszeit redu-

Es werden drei Verfahren zur Verbesserung der Transmittanz des einfallenden Lichts bereitgestellt. Als erstes wird das Öffnungsverhältnis verbessert. Zweitens wird eine polarisierende Platte mit hoher Transmittanz verwendet. Drittens wird ein Farbfilter mit hoher Transmittanz verwendet. Unter 25 diesen drei Verfahren ist das erste Verfahren zur Verbesserung des Öffnungsverhältnis das am weitestens verbreitete.

Fig. 1 zeigt eine herkömmliche Flüssigkristallanzeige, die einen Dünnfilmtransistor als ein Schaltelement hat, um Datensignale zu schalten, die an eine Pixel-Elektrode angelegt 30

Nimmt man Bezug auf Fig. 1, so ist ein transparentes isolierendes Substrat 1 bereitgestellt, obwohl es in der Zeichnung nicht gezeigt ist, liegt ein anderes transparentes isolierendes Substrat dem transparenten isolierenden Substrat 1 35 gegenüber, wobei eine Flüssigkristallschicht dazwischen liegt. Eine Gate-Bus-Leitung 10 und eine Daten-Bus-Leitung 20 sind auf der inneren Oberfläche des transparenten isolierenden Substrats 1 angeordnet und die Leitungen 10 und 20 sind zueinander orthogonal. Auf dem Kreuzungs- 40 punkt der Leitungen 10 und 20 gibt es einen Dünnfilmtransistor 30. Der Dünnfilmtransistor 30 beinhaltet eine Gate-Elektrode 31 die sich von der Gate-Bus-Leitung 10 erstreckt, eine source-Elektrode 36, die sich von der Daten-Bus-Leitung 20 erstreckt, eine Drain-Elektrode 37. die um 45 einen ausgewählten Abstand von der Source-Elektrode 36 beabstandet ist, und eine Kanalschicht 33, die als ein Pfad für die Trägertransmission bzw. Lädungsträgerübertragung von der Source-Elektrode 36 zu der Drain-Elektrode 37 und umgekehrt wirkt. Hier ist ein Einheitspixelbereich als ein 50 Bereich festgelegt, der durch die Gate-Bus-Leitung 10 und die Daten-Bus-Leitung 20 begrenzt ist. Eine transparente Pixel-Elektrode 40 ist innerhalb des Einheitspixelbereichs ausgebildet. Die transparente Pixel-Elektrode 40 ist um einen ausgewählten Abstand von der Gate-Bus-Leitung 10 55 und der Daten-Bus-Leitung 20 beabstandet. Die transparente Pixel-Elektrode 40 ist mit der Drain-Elektrode 37 des Dünnfilmtransistors 30 verbunden. Eine Speicherelektrode 31b ist parallel zu der Gate-Bus-Leitung 10 angeordnet und zwischen einem Paar von Gate-Bus-Leitungen angeordnet, 60 lierschicht, die auf der ersten Elektrode ausgebildet ist; eine Fig. 2 ist eine vereinfachte Schnittansicht, die entlang einer Linie 202/202' der Fig. 1 genommen ist. Nimmt man Bezug auf Fig. 2, so ist die Gate-Elektrode 31a über dem transparenten isolierenden Substrat 1 angeordnet, auf dem eine erste Isolierschicht 2 ausgebildet ist. Eine zweite Isolier- 65 schicht oder eine Gate-Isolierschicht 32 ist auf der ganzen Oberfläche eines ersten sich ergebenden Substrats ausgebildet, auf dem die erste Isolierschicht 2 und die Gate-Elek-

trode 31a ausgebildet sind. Auf einem ausgewählten Abschnitt der oberen Oberfläche der Gate-Isolierschicht 32 ist eine Halbleiterschicht 33 angeordnet, die als die Kanalschicht wirkt. Eine Ätz-Stopeinrichtung zum Verhindern eines Ätzens der Halbleiterschicht 33 ist auf einem ausgewählten Abschnitt einer oberen Oberfläche der Halbleiterschicht 33 vorgesehen und schützt die darunter liegende Halbleiterschicht 33 vor äußeren Einflüssen bzw. vor der Umgebung. Die Source-Elektrode 36 und die Drain-Elektrode 37 sind auf der Halbleiterschicht 33 angeordnet. Zwischen der Source-Elektrode 36 und der Halbleiterschicht 33 und zwischen der Drain-Elektrode 37 und der Halbleiterschicht 33 ist eine ohmsche Kontaktschicht aus dotierten amorphen Silicium zum ohmschen Kontakt mit der Sourceund Drain-Elektrode 36 und 37 angeordnet.

Fig. 3 ist eine vereinfachte Schnittansicht, die entlang der Linie 203/203' der Fig. 1 genommen ist. Nimmt man Bezug auf Fig. 3 und Fig. 1, so bildet die Speicher-Elektrode 31b einen Speicherkondensator 50 mit der darüberliegenden transparenten Pixel-Elektrode 40 und der Gate-Isolierschicht 32, die dazwischen zwischengeschichtet ist.

Kehrt man zurück zur Fig. 1, so dient die Trennung zwischen der transparenten Pixel-Elektrode 40 und der Daten-Bus-Leitung 20, die dazu benachbart ist, dazu, ein horizontales Übersprechen zwischen diesen zu verhindern. Mit einem derartigen Aufbau ist es jedoch häufig schwierig, sowohl die Speicherkapazität als auch das Öffnungsverhältnis ausreichend zu gewährleisten. Um eine derartige Beschränkung zu beseitigen, wird eine überlappte Struktur bereitgestellt, bei der die transparente Pixel-Elektrode 40 sich mit der Daten-Bus-Leitung 20 überlappt, wie durch die gestrichelten Linien der Fig. 1 gezeigt ist. Die überlappte Struktur ermöglicht es, ein hohes Öffnungsverhältnis von 80% oder mehr zu erreichen, aber sie hat immer noch den Nachteil, daß ein vertikales Übersprechen zwischen einem überlapptem Abschnitt der transparenten Pixel-Elektrode 40 und der Daten-Bus-Leitung 20 besteht. Zusätzlich wird weiter eine Struktur bereitgestellt, die ein Material, das eine vergleichsweise niedrige Dielektrizitätskonstante aufweist, als die dazwischenliegende Isolierschicht verwendet, jedoch hat die Struktur den Nachteil, daß die Speicherkapazität abnimmt.

Dementsprechend ist es Aufgabe der vorliegenden Erfindung ein hohes Öffnungsverhältnis zu erzielen, ohne die Speicherkapazität zu vermindern.

Die Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen gehen aus den Unteransprüchen hervor.

Gemäß einem Aspekt der Erfindung wird eine Flüssigkristallanzeige bereitgestellt. Die Flüssigkristallanzeige um-

ein transparentes isolierendes Substrat; eine Anzahl von Gate-Bus-Leitungen und eine Anzahl von Daten-Bus-Leitungen, die normal zu der Anzahl von Gate-Bus-Leitungen auf dem transparenten isolierenden Substrat angeordnet sind, wobei ein Einheitspixelbereich durch einen Bereich festgelegt ist, der durch ein Paar von Gate-Bus-Leitungen und ein Paar von Daten-Bus-Leitungen begrenzt ist; eine erste Elektrode, die parallel zu der Gate-Bus-Leitung innerhalb des Einheitspixelbereichs angeordnet ist; eine erste Isozweite Elektrode, die bei einem ausgewählten Abschnitt der oberen Oberfläche der ersten Isolierschicht ausgebildet ist; eine erste transparente Elektrode, die innerhalb des Einheitspixelbereichs ausgebildet ist, wobei die erste transparente Elektrode um einen ausgewählten Abstand von der zweiten Elektrode beabstandet ist und in Kontakt mit der ersten Elektrode ist; eine zweite isolierende Schicht, die auf der oberen Oberfläche der ersten isolierenden Schicht ausgebil-

1

det ist, die die erste transparente Elektrode und die zweite Elektrode enthält; eine zweite transparente Elektrode, die auf der zweiten Isolierschicht ausgebildet ist, wobei die zweite transparente Elektrode teilweise im Überlapp mit dem Paar von Gate-Bus-Leitungen und dem Paar von Daten-Bus-Leitungen ist und in Kontakt mit der zweiten Elektrode durch die zweite Isolierschicht ist; und ein Schaltelement, das elektrisch mit der zweiten transparenten Elektrode hindurch verbunden ist.

Gemäß einem weiteren Aspekt umfaßt eine Flüssigkri- 10 stallanzeige folgendes:

Ein transparentes isolierendes Substrat; eine Anzahl von Gate-Bus-Leitungen und eine Anzahl von Daten-Bus-Leitungen, die normal zu der Anzahl von Gate-Bus-Leitungen auf dem transparenten isolierenden Substrat angeordnet 15 sind, wobei ein Einheitspixelbereich durch einen Bereich festgelegt ist, der durch ein Paar von Gate-Bus-Leitungen und ein Paar von Daten-Bus-Leitungen begrenzt ist; eine erste Elektrode, die parallel zu der Gate-Bus-Leitung innerhalb des Einheitspixelbereich angeordnet ist, wobei die erste 20 Elektrode einen ersten Abschnitt mit einer ersten Breite und einen zweiten Abschnitt mit einer zweiten Breite, die größer ist, als die erste Breite, umfaßt; eine erste Isolierschicht, die auf der ersten Elektrode ausgebildet ist; eine zweite Elektrode, die bei einem ausgewählten Abschmtt einer oberen 25 Oberfläche der ersten Isolierschicht ausgebildet ist; eine transparenté Elektrode, die innerhalb des Einheitspixelbereichs ausgebildet ist, wobei die erste transparente Elektrode um einen ausgewählten Abstand von der zweiten Elektrode beabstandet ist und in Kontakt mit der ersten Elektrode ist; 30 eine zweite Isolierschicht, die auf einer oberen Oberfläche der ersten isolierenden Schicht ausgebildet ist, die die erste transparente Elektrode und die zweite Elektrode enthält; eine zweite transparente Elektrode, die auf der zweiten isolierenden Schicht ausgebildet ist, wobei die zweite transparente Elektrode teilweise im Überlapp mit dem Paar von Gate-Bus-Leitungen und dem Paar von Daten-Bus-Leitungen ist und in Kontakt mit der zweiten Elektrode durch die zweite Isolierschicht hindurch ist; und ein Schaltelement. das elektrisch mit der zweiten transparenten Elektrode im 40 Kontakt ist.

Gemäß einem weiteren Aspekt wird ein Verfahren für eine Flüssigkristallanzeige bereitgestellt, die einen ersten Kondensator umfaßt, der durch transparente Pixel-Elektroden mit Doppelschichtstruktur ausgebildet ist, die auf einem 45 transparenten isolierenden Substrat ausgebildet sind; und einen zweiten Kondensator umfaßt, der durch die erste und zweite Elektrode mit Doppelschichtstruktur ausgebildet ist. wobei der erste und zweite Kondensator elektrisch mit einem Dünnfilmtransistor in Kontakt ist, der Source-, Drain- 50 und Gate-Elektroden umfaßt. Das Verfahren umfaßt folgende Schritte: Die erste Elektrode, eine Gate-Bus-Leitung und die Gate-Elektrode wird auf einem transparenten isolierenden Substrat ausgebildet, wobei die erste Elektrode parallel zu der Gate-Bus-Leitung angeordnet ist, und zwar um 55 ein erstes Intervall von der Gate-Bus-Leitung beabstandet: eine erste Isolierschicht wird auf einem ersten sich ergebenden Substrat ausgebildet, das die Gate-Bus-Leitung und die John de generale

rem ausgewählten Abschmit einer oberen Oberfläche der Gisten soherschicht der Cate Frektrost, ausgebildet ein erstes Durchgangsloch wird in der ersten isoherenden Schieht derartig ausgebildet, daß ein ausgewählter Absehnitt der ersten Elektrode, der unter der ersten Isolierschicht liegt freigelegt ist; eine erste transparente Elektrode 68 ist in Kontakt mit der ersten Elektrode durch das erste Durchgangsloch auf der ersten Elektrode durch das erste biektrode, eine Dater-Buss Leitang senkrecht zu der Gate-

Bus-Leitung und beabstandet von der ersten transparenten Elektrode und Source- und Drain-Elektroden beabstandet voneinander werden auf den ausgewählten Abschnitten der oberen Oberfläche der ersten Isolierschicht gleichzeitig ausgebildet;

eine zweite Isolierschicht wird auf einem zweiten sich ergebenden Substrat, das wenigstens die Drain-Elektrode und die zweite Elektrode enthält, ausgebildet; ein zweites Durchgangsloch, das einen ausgewählten Abschnitt der Drain-Elektrode freilegt, und ein drittes Durchgangsloch, das einen ausgewählten Abschnitt der zweiten Elektrode freilegt, wird in der zweiten Isolierschicht ausgebildet; und eine zweite transparente Elektrode in Kontakt mit der Drain-Elektrode wird durch das zweite Durchgangsloch und die zweite Elektrode durch das dritte Durchgangsloch auf der zweiten Isolierschicht ausgebildet, wobei die zweite transparente Elektrode teilweise im Überlapp mit der Gate-Bus-Leitung und der Daten-Bus-Leitung ist.

Die beigefügten Zeichnungen zeigen bevorzugte Ausführungsformen der Erfindung. Bei der folgenden Beschreibung verschiedener Ausführungsformen werden weitere Merkmale offenbart. Dabei können verschiedene Merkmale unterschiedlicher Ausführungsformen miteinander kombiniert werden.

Fig. 1 ist eine vereinfachte Draufsieht einer herkömmlichen Flüssigkristallanzeige.

Fig. 2 ist eine vereinfachte Schnittansicht, die entlang der Linie 202-202' der Fig. 1 genommen ist.

Fig. 3 ist eine vereinfachte Schnittansicht, die entlang einer Linie 203-203' der Fig. 1 genommen ist.

Fig. 4 ist eine vereinfachte Draufsicht des Einheitspixelbereichs in einer Flüssigkristallanzeige der vorliegenden Erfindung.

Fig. 5 ist eine vereinfachte Schnittansicht, die entlang einer Linie 205-205' der Fig. 4 genommen ist.

Fig. 6 ist eine vereinfachte Schnittansicht, die entlang einer Linie 206-206' der Fig. 4 genommen ist.

Fig. 7 ist ein Ersatzschaltbild.

Im folgenden werden ausgewählte Ausführungsformen der vorliegenden Erfindung detailliert unter Bezugnahme auf die beigefügten Zeichnungen beschrieben.

Fig. 4 ist eine vereinfachte Draufsicht eines Einheitspixelbereichs in einer Flüssigkristallanzeige der vorliegenden Erfindung.

Nimmt man Bezug auf Fig. 4, so sind eine Gate-Bus-Leitung 60 und eine Daten-Bus-Leitung 70, die senkrecht zu der Gate-Bus-Leitung 60 angeordnet ist, auf einem transparenten isolierenden Substrat 200, wie z. B. einem Glassubstrat angeordnet. Auf einem Kreuzungspunkt bzw. Schnittpunkt der Gate-Bus-Leitung 60 und der Daten-Bus-Leitung 70 bzw. in der Nähe davon ist ein Dünnfilmtransistor 80 angeordnet. Hier ist ein Einheitspixelbereich als ein Bereich festgelegt, der durch die Gate-Bus-Leitung 60 und die Daten-Bus-Leitung 70 begrenzt ist. Bei einem zentralen Abschnitt des Einheitspixelbereichs ist eine erste Elektrode 81b oder eine untere Elektrode parallel zu der Gate-Bus-Leitung 60 angeordnet. Die erste Elektrode 81b besteht aus einem ersten Abschnitt und einem zweiten Abschnitt mit zueinan-

um der Daten-Bus-Leiturg 70, woningegen der zweite Anmittlich einen Abstand von der Daten-Bus-Leitung 70 is.
Der erste Abschnitt ist hinsichtlich der Breite großer als der
zweite Abschnitt. Der erste Abschnitt hat eine vierecktige
Plattenstruktur. Auf dem zweiten Abschnitt der ersten Elektrode 81b ist eine zweite Elektrode oder eine obere Elektrode 87 einer viereckigen Plattenstruktur mit einer Isolierschicht, die dazwischen liegt, angeordnet. Eine erste transparen e Progebiektrode oblier dritte blektrode. 91 ist inner-

halb des Einheitspixelbereichs ausgebildet. Die erste transparente Pixel-Elektrode 91 ist um einen ausgewählten Abstand von der Gate-Bus-Leitung 60. der Daten-Bus-Leitung 70, dem zweiten Abschnitt der ersten Elektrode 81b und deni Dünnfilmtransistor 80 beabstandet. Die erste transparente Pixel-Elektrode 91 überlappt sich mit dem ersten Abschnitt der ersten Elektrode 81b. Auf der ersten transparenten Pixel-Elektrode 91 ist eine zweite transparente Pixel-Elektrode 93 (oder vierte Elektrode) mit einer dazwischenliegenden Isolierschicht angeordnet. Die zweite transparente 10 Pixel-Elektrode 93 überlappt sich vollständig mit der ersten Elektrode **81**b und der ersten transparenten Pixel-Elektrode 91 und sie ist teilweise mit der Gate-Bus-Leitung 60 und der Daten-Bus-Leitung 70 überlappt. Der erste Abschnitt der ersten Elektrode 81b ist in Kontakt mit der darüberliegenden 15 ersten transparenten Pixel-Elektrode 91 bei C1 und der zweite Abschnitt der ersten Elektrode 81b ist in Kontakt mit der darüberliegenden zweiten Elektrode 87 bei C2. Der Dünnfilmtransistor beinhaltet eine Source-Elektrode 84, die sich von der Daten-Bus-Leitung 70 erstreckt. Eine Drain-Elektrode 85. die um einen ausgewählten Abstand von der Source-Elektrode 84 beabstandet ist, eine Gate-Elektrode 81a, die sich von der Gate-Bus-Leitung 60 aus erstreckt, und eine Kanalschicht 83 einer Halbleiterschicht, wie z.B. amorphes Silizium. Die Kanalschicht 83 liefert einen Pfad 25 für den Fluß von Trägern von der Source-Elektrode 84 zu der Drain-Elektrode 85 oder umgekehrt. Die Drain-Elektrode 85 des Dünnfilmtransistors 80 ist in Kontakt mit der darüberliegenden zweiten transparenten Pixel-Elektrode 93

Fig. 5 ist eine vereinfachte Schnittansicht, die entlang der Linie 205-205' der Fig. 4 genommen ist. Nimmt man Bezug auf Fig. 5, so ist eine erste isolierende Schicht 82 mit einer hohen dielektrischen Konstante auf einer oberen Oberfläche der ersten Elektrode 81b ausgebildet. Ein erstes Durchgangsloch 102 ist bei einem ausgewählten Abschnitt der ersten Isolierschicht 82 ausgebildet. Die erste transparente Pixel-Elektrode 91 ist in Kontakt mit der ersten Elektrode 81b durch das erste Durchgangsloch 102 bei C1. Die zweite Elektrode 87 ist auf einem ausgewählten Abschnitt der ersten Isolierschicht 82 ausgebildet. Auf der ersten Isolierschicht 82, die die erste transparente Pixel-Elektrode 91 und die zweite Elektrode 87 enthält, ist eine zweite Isolierschicht 92 mit einer relativ niedrigen Dielektrizitätskonstante von 2,5-3,6 ausgebildet. Die zweite transparente Pixel-Elek- 45 trode 93 ist auf der zweiten Isolierschicht 92 ausgebildet und in Kontakt mit der darunterliegenden zweiten Elektrode 87 durch das zweite Durchgangsloch 104 C2. Ausgehend von der obigen Struktur wird ein erster Speicherkondensator SC1 durch die erste transparente Pixel-Elektrode 91, die zweite transparente Pixel-Elektrode 93 und die zweite Isolierschicht 92, die dazwischen liegt, ausgebildet. Ein zweiter Speicherkondensator SC2 wird durch die erste Elektrode 81b, die zweite Elektrode 87 und die erste Isolierschicht 82, die dazwischen liegt, ausgebildet. Bei der vorliegenden 55 Ausführungsform sind der erste und der zweite Speicherkondensator SC1 und SC2 parallel mit dem Flüssigkristallkondensator CLC geschaltet, wie in Fig. 7 gezeigt ist.

Fig. 6 ist eine vereinfachte Schnittansicht, die entlang einer Linie 206-206' der Fig. 4 genommen ist und zeigt den 60 Dünnfilmtransistor und einen benachbarten Abschnitt davon.

Nimmt man Bezug auf Fig. 6, so wird, wie in Fig. 4 beschrieben ist, die Gate-Elektrode 81a und die erste Elektrode 81b auf dem transparenten isolierenden Substrat 200 ausgebildet, und sie sind um einen ausgewählten Abstand voneinander beabstandet. Die erste Isolierschicht 82 ist auf dem Substrat 200 ausgebildet, das die Gate-Elektrode 81a und

die erste Elektrode 81b enthält. Die Halbleiterschicht 83 des amorphen Siliziums ist bei einem ausgewählten Abschnitt der oberen Oberfläche der ersten Isolierschicht über der Gate-Elektrode 81a ausgebildet. Die Source-Elektrode 84 und die Drain-Elektrode 85 sind auf der Halbleiterschicht 83 und der ersten Isolierschicht 82 ausgebildet und sie sind voneinander um einen ausgewählten Abstand beabstandet. Die Drain-Elektrode 85 ist in Kontakt mit der zweiten transparenten Pixel-Elektrode 93, und zwar durch ein drittes Durchgangsloch 106 bei C3. Die Drain-Elektrode 85 ist um einen ausgewählten Abstand von der Source-Elektrode 84 beabstandet. Die Kanalschicht 83 stellt einen Pfad für den Fluß von Trägern von der Source-Elektrode 84 zu der Drain-Elektrode 85 oder umgekehrt bereit. Die Drain-Elektrode 85 des Dünnfilmtransistors 80 ist in Kontakt mit der darüberliegenden zweiten transparenten Pixel-Elektrode 93 bei C3. Wie in Fig. 5 beschrieben ist, ist die zweite transparente Pixel-Elektrode 93 cbenso in Kontakt mit der zweiten Elektrode und zwar durch das zweite Durchgangsloch 104.

Obwohl es in Fig. 6 nicht gezeigt ist, kann ein Material für einen Ätzstopper bzw. eine Ätz-Stoppeinrichtung auf der Halbleiterschicht 93 ausgebildet werden, wie in Fig. 2 gezeigt ist, und eine dotierte amorphe Siliziumschicht, z. B. eine N+amorphe Silizium-("a-Si") Schicht für einen ohmschen Kontakt mit Source- und Drain-Elektroden 84 und 85 kann jeweilig zwischen der Halbleiterschicht 83 und den Source- und Drain-Elektroden 84 und 85 liegen.

Wie in der Ersatzschaltung der Fig. 7 gezeigt ist, ist der erste Speicherkondensator SC1 und der zweite Speicherkondensator SC2 parallel bezüglich des Flüssigkristallkondensators CLC bzw. der Flüssigkristall-Kapazität CLC geschaltet. Deshalb kann die vorliegende LCD eine ausreichende Kapazität für ein hohes Öffnungsverhältnis gewährleisten. Da die erste transparente Pixel-Elektrode 91 nicht mit der Daten-Bus-Leitung 70 überlappt, wie in Fig. 4 gezeigt ist, wird ein Übersprechen dazwischen verhindert.

Als nächstes wird unter Bezugnahme auf die beigefügten Zeichnungen ein Verfahren zur Herstellung einer Flüssigkristallanzeige mit der oben beschriebenen Struktur beschrieben

Ein erster Leiter aus opaken Metall, wie z. B. Titan ("Ti"), Tantal ("Ta"), Aluminium ("Al") oder MoW wird auf dem transparenten isolierenden Substrat 200 abgeschieden und dann mit einem Muster versehen, um die Gate-Elektrode 81a, die erste Elektrode 81b, die als die untere Elektrode des zweiten Speicherkondensators SC2 wirkt, und die Gate-Bus-Leitung 60 auszubilden. Mittlerweile kann als der erste Leiter die transparente Elektrode, wie z. B. Indiumzinnoxid ebenso zur Vereinfachung des Herstellungsprozesses verwendet werden. Danach wird die erste Isolierschicht 82 oder die Gate-Isolierschicht mit einer vergleichsweise hohen Dielektrizitätskonstante auf der gesamten Oberfläche eines ersten sich ergebenden Substrats ausgebildet, auf dem die Gate-Elektrode 81a, die erste Elektrode 81b und die Gate-Bus-Leitung 60 ausgebildet wurden. Danach wird die Halbleiterschicht 83 aus amorphen Silizium auf einem ausgewählten Abschnitt der ersten Isolierschicht 82 ausgebildet. Das erste Durchgangsloch 102 wird durch Ätzen eines ausgewählten Abschnitts der ersten Isolierschicht 82 ausgebildet, so daß eine obere Oberfläche der ersten Elektrode 81b freigelegt wird. Danach wird ein transparentes leitendes Material, wie z. B. Indiumzinnoxid auf der gesamten Oberfläche eines zweiten sich ergebenden Substrats, das das erste Durchgangsloch 102 enthält, abgeschieden und dann mit einem Muster versehen, um dadurch die erste transparente Pixel-Elektrode 91 auszubilden, die in Kontakt mit der darunterliegenden ersten Elektrode 81b bei C1 ist, wie in Fig. 5 gezeigt ist. Als nächstes wird ein zweiter Leiter aus einem opaken Metall, wie z. B. Titan ("Ti"), Tantal ("Ta"). Aluminium ("Al") oder MoW auf einem dritten sich ergebenden Substrat ausgebildet, auf dem die erste transparente Pixel-Elektrode 91 abgeschieden wurde, und wird dann mit einem Muster versehen, um die Daten-Bus-Leitung 70 beabstandet um einen ausgewählten Abstand von der ersten transparenten Pixel-Elektrode 91, die Source-Elektrode 94, die Drain-Elektrode 85 und die zweiten Elektrode 87 auszubilden. Danach wird ein Fotoresistfilm bzw. ein Fotowiderstandsfilm mit einer vergleichsweise niedrigen Dielektrizitätskonstante 10 von ungefähr 2.5 bis ungefähr 3.6 bis zu einer Dicke von ungefähr 1 µm bis ungefähr 3 µm schleuderbeschichtet und dann ausgehärtet, um dadurch eine zweite isolierende Schicht **92** auszubilden. Danach wird die zweite isolierende Schicht 92 durch ein herkönimliches Fotolitographieverfah- 15 ren mit einem Muster versehen, so daß die zweite Elektrode 87 und die Drain-Elektrode 85 freigelegt werden, wodurch das zweite Durchgangsloch 104 und das dritte Durchgangsloch 106 ausgebildet werden. Als nächstes wird ein transparenter Leiter, wie z. B. Indiumzinnoxid auf der gesamten 20 Oberfläche eines vierten sich ergebenden Substrats abgeschieden, auf den das Durchgangsloch 104 und das dritte Durchgangsloch 106 ausgebildet sind, und mit einem Moster versehen, um die zweite transparente Pixel-Elektrode 93 auszubilden, die in Kontakt mit der zweiten Elektrode 87 25 durch das zweite Durchgangsloch 104 bei C2 und der Drain-Elektrode 85 des Dünnfilmtransistors 80 durch das dritte Durchgangsloch 106 bei C3 ist. Zu dieser Zeit wird die zweite transparente Pixel-Elektrode 93 derartig ausgebildet, daß sie sich teilweise mit der Daten-Bus-Leitung 70 und der 30 Gate-Bus-Leitung 60 überlappt.

Wie oben beschrieben wurde, kann gemäß der vorliegenden Erfindung, da zwei Speicherkondensatoren für einen Einheitspixel der Flüssigkristallanzeige bereitgestellt sind, ausreichend Speicherkapazität gewährleistet werden. Infolgedessen wird die Bildqualität verbessert.

Da weiter die Pixel-Elektrode aus transparenten Elektroden mit Doppelschichtstruktur von unteren und oberen transparenten Elektroden besteht und die untere transparente Elektrode um einen großen Abstand von der Daten-Bus-Lei- 40 tung aufgrund der Existenz der oberen transparenten Elektrode beabstandet werden kann, kann ein horizontales Übersprechen zwischen der Daten-Bus-Leitung und der Pixel-Elektrode verhindert werden. Darüberhinaus, da ein Material mit vergleichsweise niedriger Dielektrizitätskonstante 45 für einen Speicherkondensator in dem sich überlappenden Abschnitt eines erstreckten Abschnitts der oberen Pixel-Elektrode und der Daten-Bus-Leitung verwendet wird, kann ein vertikales Übersprechen verhindert werden. Darüberhinaus kann, da die obere transparente Elektrode sich zu ausge- 50 wählten Abschnitten der Daten-Bus-Leitung und der Gate-Bus-Leitung erstreckt, die hohe Öffnung gewährleistet werden.

Patentansprüche

1. Flüssigkristallanzeige, die tolgendes umfaßt: ein transparentes isolierendes Substrat;

mon Anabasis of Care by a Lenguege and a company of the Anabasis of the gradual transparantee assessing the neutral angeorateet sind, wober ein frinnertspixelbereich durch einen Bereich testgetegt ist, der durch ein Paar von Gate-Bus-Leitungen und ein Paar von Daten-Bus-Leitungen begrenzt ist; eine erste Elektrode, die parallel zu der Gate-Bus-Leitung innerhalb des Einheitspixelbereichs angeordnet

eine erste Isolierschicht, die auf der ersten Elektrode ausgebildet ist:

eine zweite Elektrode, die bei einem ausgewählten Abschnitt einer oberen Oberfläche der ersten Isolierschicht ausgebildet ist;

eine erste transparente Elektrode, die innerhalb des Einheitspixelbereichs ausgebildet ist, wobei die erste transparente Elektrode um einen ausgewählten Abstand von der zweiten Elektrode beabstandet ist und in Kontakt mit der ersten Elektrode ist;

eine zweite Isolierschicht, die auf der oberen Oberfläche der ersten Isolierschicht ausgebildet ist, die die erste transparente Elektrode und die zweite Elektrode enthält:

eine zweite transparente Elektrode, die auf der zweiten Isolierschicht ausgebildet ist, wobei die zweite transparente Elektrode teilweise im Überlapp mit dem Paar von Gate-Bus-Leitungen und dem Paar von Daten-Bus-Leitungen ist und in Kontakt mit der zweiten Elektrode durch die zweite Isolierschicht hindurch ist; und ein Schaltelement, das elektrisch mit der zweiten transparenten Elektrode verbunden ist.

? Flüssigkristallanzeige nach Anspruch 1, bei welcher die erste und die zweite Elektrode aus demselben Material ausgebildet ist.

- 3. Flüssigkristallanzeige nach Anspruch 2, bei welcher die erste und die zweite transparente Elektrode Indiumzinnoxid ist.
- 4. Flüssigkristallanzeige nach Anspruch 1, bei welcher die erste Elektrode aus demselben Material wie die Daten-Bus-Leitung ist.
- 5. Flüssigkristallanzeige nach Anspruch 1, bei welcher das transparente isolierende Substrat ein Glassubstrat ist.
- 6. Flüssigkristallanzeige nach Anspruch 1, bei welcher das Schaltelement ein Dünnfilmtransistor ist.
- 7. Flüssigkristallanzeige nach Anspruch 1, bei welcher die zweite isolierende Schicht hinsichtlich der Dielektrizitätskonstante kleiner ist, als die erste isolierende Schicht.
- 8 Flüssigkristallanzeige nach Anspruch 7, bei welcher die zweite isolierende Schicht dielektrisch ist und eine Dielektrizitätskonstante von ungefähr 2,5 bis etwa 3,6 aufweist.
- 9 Flüssigkristallanzeige mit einem hohen Öffnungsverhältnis, die folgendes umfaßt:

ein transparentes isolierendes Substrat;

eine Anzahl von Gate-Bus-Leitungen und eine Anzahl von Daten-Bus-Leitungen, die normal bzw. senkrecht zu der Anzahl von Gate-Bus-Leitungen auf dem transparenten isolierenden Substrat angeordnet sind, wobei ein Einheitspixelbereich durch einen Bereich festgelegt ist, der durch ein Paar von Gate-Bus-Leitungen und ein Paar von Daten-Bus-Leitungen begrenzt ist:

the erste (supersement in the ersten electrists ausgebildet ist).

eine Zweite Elektrode, die bei einem ausgewahlten Abschnitt einer oberen Oberflache der ersten Isolierschicht ausgebildet ist:

eine erste transparente Elektrode, die innerhalb des Einheitspixelbereichs ausgebildet ist, wobei die erste transparente Fiektrode an einen ausgewählten Ab-

NSDOCID < DE 19828591A1 ::

stand von der zweiten Elektrode beabstandet ist und in Kontakt mit der ersten Elektrode ist;

eine zweite Isolierschicht, die auf einer oberen Oberfläche der ersten Isolierschicht ausgebildet ist, die die erste transparente Elektrode und die zweite Elektrode 5 enthält;

eine zweite transparente Elektrode, die auf der zweiten Isolierschicht ausgebildet ist, wobei die zweite transparente Elektrode teilweise von dem Paar von Gate-Bus-Leitungen und von dem Paar von Daten-Bus-Leitungen überlappt ist und in Kontakt mit der zweiten Elektrode durch die zweite Isolierschicht hindurch ist; und ein Schaltelement, das elektrisch mit der zweiten transparenten Elektrode verbunden ist.

- 10. Flussigkristallanzeige nach Anspruch 9, bei wel- 15 cher die erste und die zweite transparente Elektrode aus demselben Material hergestellt sind.
- 11. Flüssigkristallanzeige nach Anspruch 10, bei welcher die erste und die zweite Elektrode aus Indiumzinnoxid sind.
- 12. Flussigkristallanzeige nach Anspruch 10, bei welcher die Dielektrizitätskonstante der zweiten Isolierschicht kleiner ist als jene der ersten Isolierschicht.
- 13. Flussigkristallanzeige nach Anspruch 12, bei welcher die zweite Isolierschicht dielektrisch ist und eine 25 Dielektrizitätskonstante von ungefähr 2,5 bis ungefähr 3,6 hat.
- 14. Flussigkristallanzeige nach Anspruch 13, bei welcher die zweite Isolierschicht ein Fotowiderstandsfilm ist.
- 15. Flussigkristallanzeige nach Anspruch 14, bei welcher der Fotowiderstandsfilm eine Dicke von ungefähr 1 μm bis ungefähr 3 μm hat.
- 16. Flussigkristallanzeige nach Anspruch 9, bei welcher das transparente isolierende Substrat ein Glassubstrat ist.
- 17. Flüssigkristallanzeige nach Anspruch 9, bei welcher das Schalielement ein Dünnfilmtransistor ist.
- 18. Flüssigkristallanzeige nach Anspruch 9, bei welcher der zweite Abschnitt der ersten Elektrode eine 40 viereckige Platte ist.
- 19. Flussigkristallanzeige nach Anspruch 18, bei welcher die zweite Elektrode hinsichtlich der Fläche kleiner ist, als die erste Elektrode und innerhalb der ersten Eiektrode angeordnet ist.
- 20. Verfahren zur Herstellung einer Flüssigkristallanzeige, die einen ersten Kondensator umfaßt, der durch transparente Pixel-Elektroden mit Doppelschichtstruktur ausgebildet ist, die auf einem transparenten isolierenden Substrat ausgebildet sind; und

einen zweiten Kondensator umfaßt, der durch erste und zweite Elektroden mit Doppelschichtstruktur ausgebildet ist, wobei die ersten und zweiten Kondensatoren elektrisch mit einem Dünnfilmtransistor verbunden sind, der Source-, Drain- und Gate-Elektroden umfaßt, 55 wobei das Verfahren folgende Schritte umfaßt:

die erste Elektrode, eine Gate-Bus-Leitung und die Gate-Elektrode wird auf einem transparenten isolierenden Substrat ausgebildet, wobei die erste Elektrode parallel zu der Gate-Bus-Leitung beabstandet ist, und 60 zwar um einen ersten Abstand von der Gate-Bus-Leitung beabstandet:

eine erste Isolierschicht wird auf dem ersten sich ergebenden Substrat ausgebildet, das die Gate-Bus-Leitung und die erste Elektrode enthält;

eine zweite Isolierschicht wird auf einem ausgewählten Abschnitt einer oberen Oberfläche der ersten Isolierschicht über der Gate-Elektrode ausgebildet: ein erstes Durchgangsloch in der ersten Isolierschicht wird derartig ausgebildet, daß ein ausgewählter Abschnitt der ersten Elektrode, der unter der ersten Isolierschicht liegt, freigelegt wird;

eine erste transparente Elektrode wird in Kontakt mit der ersten Elektrode durch das erste Durchgangsloch

auf der ersten Isolierschicht ausgebildet;

gleichzeitig wird eine zweite Elektrode, eine Daten-Bus-Leitung senkrecht zu der Gate-Bus-Leitung und beabstandet von der ersten transparenten Elektrode, und Source- und Drain-Elektroden beabstandet voneinander auf den ausgewählten Abschnitten der oberen Oberfläche der ersten Isolierschicht ausgebildet;

eine zweite Isolierschicht wird auf dem zweiten sich ergebenden Substrat, das wenigstens die Drain-Elektrode und die zweite Elektrode enthält, ausgebildet;

ein zweites Durchgangsloch, das einen ausgewählten Abschnitt der Drain-Elektrode freilegt, und ein drittes Durchgangsloch, das einen ausgewählten Abschnitt der zweiten Elektrode freilegt, wird in der zweiten Isolierschicht ausgebildet;

eine zweite transparente Elektrode, die in Kontakt mit der Drain-Elektrode ist, wird durch das zweite Durchgangsloch und die zweite Elektrode durch das dritte Durchgangsloch auf der zweiten Isolierschicht ausgebildet, wobei die zweite transparente Elektrode sich teilweise mit der Gate-Bus-Leitung und der Daten-Bus-Leitung überlappt.

21. Verfahren nach Anspruch 20, bei welchem die zweite Isolierschicht eine kleinere Dielektrizitätskonstante aufweist, als die erste Isolierschicht.

22. Verfahren nach Anspruch 20, bei welchem die zweite Isolierschicht eine Dielektrizitätskonstante von ungefähr 2,5 bis ungefähr 3,6 aufweist.

- 23. Verfahren nach Anspruch 20, bei welchem die zweite Isolierschicht durch Schleuderbeschichten bzw. "spin-coating" eines Fotowiderstandsfilms mit einer Dicke von ungefähr 1 bis 3 µm ausgebildet wird.
- 24. Verfahren nach Anspruch 20, bei welchem die erste Elektrode dasselbe Material aufweist, wie die erste und zweite transparente Elektrode.
- 25. Verfahren nach Anspruch 24, bei welchem die erste Elektrode, die erste und die zweite transparente Elektrode aus Indiumzinnoxid ausgebildet sind.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

DE 198 28 591 A1 G 02 F 1/13337. Januar 1999

FIG.1

(Stand der Technik)

DE 198 28 591 A1 G 02 F 1/13337. Januar 1999

FIG.2

(Stand der Technik)

FIG.3

(Stand der Technik)

DE 198 28 591 A1 G 02 F 1/1333 7. Januar 1999

FIG.4

DE 198 28 591 A1 G 02 F 1/13337. Januar 1999

FIG.6

DE 198 28 591 A1 G 02 F 1/1333 7. Januar 1999

FIG.7

