Problem 1 (8.5). Let $R = \mathbb{Z}[\sqrt{-5}]$. Show that $2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducibles of R and no two of which are associate in R, and that $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in R. So R is not a UFD.

Proof.

Problem 2 (9.1). Prove that every irreducible element of a UFD is a prime.

Proof. Let R be a UFD and $r \in R$ irreducible. Then consider $a, b \in R$ such that r|ab. This implies that cr = ab for some $c \in R$. As R is a UFD take the factorization for both sides and we get $t_1 \cdots t_s r = p_1 \cdots p_n q_1 \cdots q_m$. As r is irreducible and factorizations are unique it must be that r is an associate of something on the right. Thus either $r|p_i$ or $r|q_j$ it then follows that r|a or r|b respectively which implies that r is in fact prime.

Problem 3 (9.3). Give an example of a UFD which is not a PID.

Proof. Consider $\mathbb{Z}[x]$. This is a UFD because \mathbb{Z} is a UFD. However the ideal $\langle x^2 - 1, x \rangle$ cannot be generated by a single polynomial. Therefore $\mathbb{Z}[x]$ is a PID which is not a UFD.

Problem 4 (9.4). 1. Determine whether the following polynomials are irreducible in the rings indicated and prove your assertions. For those that are reducible, determine their factorization into irreducibles.

- (a) $x^3 + x + 1$ in $\mathbb{Z}_3[x]$.
- (b) $x^4 + 1$ in $\mathbb{Z}_5[x]$.
- (c) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.
- (d) $x^4 4x^3 + 6$ in $\mathbb{Z}[x]$.
- (e) $x^6 + 30x^5 15x^3 + 6x 120$ in $\mathbb{Z}[x]$.
- (f) $x^2 + y^2 + xy + 1$ in $\mathbb{Q}[x, y]$.
- 2. Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$.
 - (a) $x^4 + 4x^3 + 6x^2 + 2x + 1$ (Substitute x 1 for x).
 - (b) $\frac{(x+2)^p-2^p}{x}$ where p is an odd prime.
 - (c) $\prod_{1}^{n}(x-i)-1$, where $n \in \mathbb{Z}_{>0}$
- 3. Find all irreducible polynomials of degree ≤ 3 in $\mathbb{Z}_2[x]$, and the same for $\mathbb{Z}_3[x]$.
- 4. Prove that if n is composite number, then $\sum_{0}^{n-1} x^{n-1}$ is reducible over \mathbb{Z} .

 \square

Problem 5 (9.5). Let R be a PID and $a, b \in R$. Prove that if a, b are relatively prime, then (a) + (b) = R, and a^i, b^j are relatively prime for all $i, j \in \mathbb{Z}_{>0}$.

Proof.
Problem 6 (9.6). 1. Let F be a finite field of order q and $f(x)$ a polynomial of degree n . Prove that the quotient ring $F[x]/(f(x))$ has q^n elements.
2. Show that $f(x) = x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ and that $K = \mathbb{Z}_2/(f(x))$ is a field. Find a generator of the cyclic group K^X .
Proof.
Problem 7 (G4). Let $G = GL(2, \mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is prime.
1. Show that G has order $(p^2 - 1)(p^2 - p)$.
2. Show that for $p=2$ the group G is isomorphic to the symmetric group S_3 .
Proof.
Problem 8 (G5). Let G be the group of units of the ring $\mathbb{Z}/247\mathbb{Z}$.
1. Determine the order of G .
2. Determine the structure of G (as in the classification theorem for finitely generated abelian groups). (Hint: Use the Chinese Remainder Theorem).
Proof.
Problem 9 (G8). List all abelian groups of order 8 up to isomorphism. Identify which groups on your list is isomorphic to each of the following groups of order 8. Justify your answer.
1. $(\mathbb{Z}/15\mathbb{Z})^* = the \ group \ of \ units \ of \ the \ ring \ \mathbb{Z}/15\mathbb{Z}$.
2. The roots of the equation $z^8 - 1 = 0$ in \mathbb{C} .
3. \mathbb{F}_8^+ = the additive group of the field \mathbb{F}_8 with eight elements.
Proof.

Problem 10 (R4). Let \mathbb{F} be a field and let $R = \mathbb{F}[X,Y]$ be the ring of polynomials in X and Y with coefficients from \mathbb{F} .

- 1. Show that $M=\langle X+1,Y-2\rangle$ is a maximal ideal of R.
- 2. Show that $P = \langle X + Y + 1 \rangle$ is a prime ideal of R.
- 3. Is P a maximal ideal of R. Justify your answer.

Problem 11 (R6). Let R be a commutative ring with identity and let I and J be ideals of R.
1. Define
$(I:J) = \{r \in R rx \in I, \forall x \in J\}$
Show that $(I:J)$ is an ideal of R containing I .
2. Show that if P is a prime ideal of R and $x \notin P$, then $(P : \langle x \rangle) = P$, where $\langle x \rangle$ denotes the principal ideal generated by x.
Proof.
Problem 12 (R7). Let R be a commutative ring with identity, and let I and J be ideals of R .
1. Define what is meant by the sum $I + J$ and the product IJ of the ideals I and J .
2. If I and J are distinct maximal ideals, show that $I + J = R$ and $I \cap J = IJ$.
Proof.

Proof.