MITSUBISHI MICROCOMPUTERS

M5L8042-XXXP

6249828 MITSUBISHI(MICMPTR/MIPRC)

91D 11654 I

SLAVE MICROCOMPUTER

T-49-19-05

DESCRIPTION

The M5L8042-XXXP is a general-purpose programmable interface device designed for use with a variety of 8-bit microcomputer systems. The device is fabricated using n-channel silicon-gate ED-MOS technology.

FEATURES

- 18 programmable I/O pins
- Asynchronous data register for interface to master processor
- 8-bit CPU, ROM, RAM, I/O, timer, clock and low-power stand-by mode
- Single 5V power supply
- Alternative to custom LSI
- Interchangeable with i 8042

APPLICATION

Alternative to custom LSI for peripheral interfaces

6249828 MITSUBISHI(MICMPTR/MIPRC)

91D 11655 D SLAVE MICROCOMPUTER

T-49-19-05

FUNCTION

The M5L8042-XXXP is designed as an ordinary 8-bit CPU peripheral LSI chip and it contains a small stand-alone microcomputer. Although this microcomputer functions independently, when it is used as a peripheral controller, it is called the slave microcomputer in contrast to the master computer. These two devices can transfer the data alternatively through the buffer register between them. The

M5L8042-XXXP contains the buffer register to use this LSI as a slave microcomputer and it can be accessed in the same way as other standard peripheral devices. Since the M5L8042-XXXP is a complete microcomputer, it is easy to develop a user-oriented mask-programmed peripheral LSI only by changing the control software.

PIN DESCRIPTION

Pin	Name	Input or output	Function
Vss	Ground	_ "	Connected to a 0V supply (ground).
V _{CC}	Main power supply		Connected to a 5V supply.
			Connected to a 5V supply.
V _{DD}	Power supply	-	Used as a memory hold when V _{CC} is cut off.
To	Test pin 0	Input	Provides external control of conditional program jumps (JTO/JNTO Instructions).
X ₁ , X ₂	Crystal inputs	Input	An internal clock circuit is provided so that by connecting an RC circuit or crystal to these input pins, the clock frequency can be determined. X ₁ and X ₂ can also be used to input an external clock signal.
RESET	Reset	Input	CPU Initialization input.
SS	Single step	Input	Used to halt the execution of a command by the CPU. When used in combination with the SYNC signal, the command execution of the CPU can be halted every instruction to enable single step operation.
CS	Chip select input	Input	Chip select input for data bus control.
EA	External access	Input	Normally maintained at 0V.
R	Read enable signal	Input	Serves as the read signal when the master CPU is accepting data on the data bus from the M5L8042-XXXP.
Ao	Address input	Input	An address input used to indicate whether the signal on the data bus is data or a command.
w	Write enable signal	Input	Serves as the write signal when the master CPU is outputting data from the bus to the M5L8042-XXXP.
SYNC	Sync signal output	Output	Output I time for each machine cycle.
DQ ₀ ~DQ ₇	Data bus	Input/output	Three-state, bidirectional data bus. Data bus is used to interface the M5L8042-XXXP to a master system data bus.
		<u> </u>	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port.
P20~P27	Port 2	Input/output	After resetting, however, when not used afterwards as an output port, this is not necessary.
120 127		1	P2 ₀ ~P2 ₃ are used when the M5L8243P I/O expander is used.
PROG	Program	Output	Serves as the strobe signal when the M5L8243P I/O expander is used.
			Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port.
P1 ₀ ~P1 ₇	Port 1	Input/odtput	After resetting, however, when not used afterwards as an output port, this is not necessary.
		l=at	Provides external control of conditional program jumps (JT1/JNT1 instructions).
T ₁	Test pin 1	Input	Can serve as the input pin for the event counter (STRT CNT instruction).

6249828 MITSUBISHI(MICMPTR/MIPRC)

91D 11656 D

SLAVE MICROCOMPUTER

T-49-19-05

ABSOLUTE MAXIMUM RATINGS

Programme State St

Symbol	Parameter Conditions		Limits	Unit
V _{CC}	Supply voltage		-0,5~7	V
V _{DD}	Supply voltage		-0.5~7	T v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	'
Vo	Output voltage		-0.5~7	V
Pd	Power dissipation	T _B = 25℃	1500	mW
Topr	Operating temperature range		0~70	~ °C
T _{stq} _	Storage temperature range		-65~150	~ ~

RECOMMENDED OPERATING CONDITIONS

Şymbol	Parameter		Limits				
	1 Erameter	Min	Nom	Max	Unit		
V _{cc}	Supply voltage	4.5	5	5.5	V		
VDD	Supply voltage	4.5	5	5.5	V		
V _{SS} ·	Supply voltage		0		V		
V _{IH}	High-level input voltage	2.2			V		
VIL	Low-level input voltage			0.8	v		
f(ø)	Operating frequency	1		12	MHz		

ELECTRICAL CHARACTERISTICS ($\tau_a = 0 \sim 70 \, \text{C}$, $v_{co} = 5 \, \text{V} \pm 10 \, \text{W}$, unless otherwise noted)

Symbol	Parameter Test conditions	Test conditions	L	Limits		
	- Litariotes	rest conditions	Min	Тур	Max	Unit
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{IH1}	High-level input voltage (all except X ₁ , X ₂ , RESET)		2, 2		V _{CC}	v
V _{IH2}	High-level input voltage (X ₁ , X ₂ , RESET)		3.8		V _{CC}	
V _{OL1}	Low-level output voltage (DQ ₀ ~DQ ₇)	I _{OL} = 2mA			0.45	v
V _{OL2}	Low-level output voltage (P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , SYNC)	I _{OL} = 1.6 mA			0.45	v
Vola	Low-level output voltage (PROG)	I _{OL} = 1mA			0.45	v
V _{OH1}	High-level output voltage (DQ ₀ ~DQ ₇)	$I_{OH} = -400 \mu A$	2.4			
V _{OH2}	High-level output voltage (all other outputs)	$I_{OH} = -50\mu A$	2.4			v
l ₁	Input leakage current (T ₀ , T ₁ , R, W, CS, A ₀ , EA)	$V_{SS} \le V_1 \le V_{CC}$	-10		10	μΑ
lozL	High-impedance state output leakage current (DQ ₀ ~DQ ₇)	$V_{SS} + 0.45 \le V_0 \le V_{CC}$	-10		10	μA
I _{IL1}	Low-level input load current (P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇)	V _{IL} = 0.8V	-0.5		1	mA
l _{IL2}	Low-level input load current (RESET, SS)	V _{IL} = 0.8V	-0, 2		l	mA
l _{oo}	Supply current from V _{DD}		-		10	mA
lcc + lpt	Total supply current		1	-	145	mA

6249828 MITSUBISHI(MICMPTR/MIPRC)

No. William Programme Control

91D 11657 D

SLAVE MICROCOMPUTER

T-49-19-05

TIMING REQUIREMENTS ($T_a = 0 \sim 70^{\circ}$ C, $V_{cc} = 5V \pm 10^{\circ}$ K, unless otherwise noted) DBB Read

	1	Alternative	Test conditions	Limits			Unit
Symbol	Parameter	symbol		Min	Тур	Max	Olat
t _C (ø)	Cycle time	t _{CY}		1.25		15	μs
t _W (₽)	Read pulse width	t _{RR}	$t_{C(4)} = 1.25 \mu s$	160			ns
t _{su} (cs-R)	Chip select setup time before read	t _{AR}		0			ns
th (e.ce)	Chip select hold time after read	t _{RA}		0		L	ns

DBB Write

		Alternative			Limits		Unit
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	
tw (w)	Write pulse width	tww		160			ns
tsu (cs-w)	CS, A ₀ , setup time before write	t _{AW}		0			ns
th (w-cs)	CS, A ₀ , hold time after write	twa		0	-	ļ	ns
tsu (pg-w)	Data setup time before write	t _{DW}		130	<u> </u>	ļ <u>-</u>	ns
th (w-po)	Data hold time after write	t _{WD}		0	<u> </u>	<u> </u>	ns

Port 2

Symbol	T	Alternative			Unit		
	Parameter	symbol	Test conditions	Min	Тур	Max	
t _W (PR)	PROG pulse width	tpp		700			пѕ
tsu (PC-PR)	Port control setup time before PROG	t _{CP}	C _L = 80pF	80			ns
th (PR-PC)	Port control hold time after PROG	t _{PC}	$C_L = 20 pF$	60			ns
tsu (Q-PR)	Output data setup time before PROG	· t _{DP}	$C_L = 80pF$	200		ļl	ns
tsu (D-PR)	Input data hold time before PROG	ten	$C_L = 80 pF$	<u> </u>		650	ns
th (PR-D)	Input data hold time after PROG	tpF	$C_L = 20pF$	0_		150	ns

DMA

Symbol		Alternative symbol	Test conditions		Unit		
	Parameter			Min	Тур	Max	Olik
tsu (DACK-R)	DACK setup time before read	t _{ACC}		0			ns
th (R-DACK)	DACK hold time after read	toac	-	0			กร
tsu (DACK-W)	DACK setup time before write	t _{ACC}	·	0	 		ns
th (w-DACK)	DACK hold time after write	toac		0	Ļ		ns

Note 1: input voltage level $V_{iL}=0.45V$, $V_{iH}=2.4V$.

SWITCHING CHARACTERISTICS $(T_a = 0 \sim 70 \text{ C}, \ V_{CC} = 5 \text{V} \pm 10 \%, \text{ unless otherwise noted})$ DBB Read

		Alternative	Test conditions	Limits			Unit
Symbol	Parameter	symbol ·		Min	Тур	Max	Olik
t()	Data enable time after CS	t _{AD}	$C_L = 100 \text{ pF}$			130	ns
*PZX (03-DG)	Data enable time after address .	t _{AD}	C _L = 100 pF			130	ns
1 _{PZX} (A0-DQ) 1 _{PZX} (R-DQ)	Data enable time after read	t _{RD} ·	C _L = 100 pF			130	ns
texz (R-DO)	Data disable time after read	t _{DF}			L	85	ns

DMA

		Alternative	Test conditions	Limits			Unit
Symbol	Parameter	symbol	l est conditions	Min	Тур	Max	
	Data enable time after DACK	tACD	C _L = 150 pF			130	ns
4 ZK (DKOK-BU)	DRQ disable time after read	tono				90	ns
· · · · · · · · · · · · · · · · · · ·	DDO dischie time offer write	tono				90	ns
TPHL (W-DRQ)	DRQ disable lilite alter, write	Chu	<u> </u>				

Note 2: Output voltage discriminating levels, low and high, are 0.8V and 2.0V respectively.

DΕ

M5L8042-XXXP

6249828 MITSUBISHI (MICMPTR/MIPRC)

91D 11658 D SLAVE MICROCOMPUTER

6249828 MITSUBISHI(MICMPTR/MIPRC)

91D 11659

SLAVE MICROCOMPUTER

T-49-19-05

TYPICAL CHARACTERISTICS

HIGH-LEVEL OUTPUT CURRENT IOH(MA)

P₁, P₂ LOW-LEVEL INPUT VOLTÂGE VS. LOW-LEVEL INPUT CURRENT $V_{cc} = 5V$ Ta = 25℃ LOW-LEVEL INPUT VOLTAGE

LOW-LEVEL INPUT CURRENT I(mA)

-0.15

-0.2

- 0.25

-0.1

NORMARIZED SUPPLY CURRENT (Icc) VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta(C)

DATA BUS LOW-LEVEL

LOW-LEVEL OUTPUT CURRENT IoL(mA)

RESET LOW-LEVEL INPUT VOLTAGE VS. LOW-LEVEL

LOW-LEVEL INPUT CURRENT I(mA)

NORMARIZED SUPPLY CURRENT (IDD)

AMBIENT TEMPERATURE Ta(℃)

M5L8042-XXXP

6249828 MITSUBISHI (MICMPTR/MIPRC)

91D 11660

SLAVE MICROCOMPUTER

T-49-19-05

APPLICATION EXAMPLES

(1) Interface with M5L8085AP

(2) Interface with Series MELPS 8-48 Microcomputer and M5L8243P

