Metaheurísticas Optimización Multiobjetivo

- •La mayoría de los problemas que se intentan resolver se caracterizan por la existencia de múltiples medidas de actuación
- Necesitamos optimizar distintas dimensiones, o al menos menos satisfacerlas de forma simultánea
- •Lo normal es que los objetivos o dimensiones estén en conflicto, lo que dificulta mucho la resolución del problema

ejemplo: optimización de un SI para un hogar con generación de energía fotovoltaica y baterías de almacenamiento

Es necesaria la optimización de un conjunto de parámetros del sistemas de control:

- Minimizar el contrato de potencia
- Minimizar la diferencia entre la curva de consumo y la curva de energía generada
- Maximizar la estabilidad del sistema de control

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

(1 2 4 3 8 5 7 6) Minimizar distancia Minimizar tiempo (1 4 8 2 6 5 7 3)

ejemplo: viajante de comercio para minimizar la distancia también el tiempo

(12438576) **S**₁

Minimizar distancia

Minimizar tiempo

(14826573) 52

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

ejemplo: viajante de comercio para minimizar la distancia también el tiempo

(12438576) **S**₁

Minimizar distancia

Minimizar tiempo

(1 4 8 2 6 5 7 3)

ejemplo: viajante de comercio para minimizar la distancia y también el tiempo

(1 2 4 3 8 5 7 6)

51

Minimizar distancia

Minimizar tiempo

(1 4 8 2 6 5 7 3)

S₂

Soluciones NO dominadas

definición del problema

Un problema multiobjetivo consiste en:

•Dado un espacio X compuesto por vectores n-dimensional de variables $x=\{x_1,x_2,...,x_n\}$ encontrar un vector x^* que minimice (maximice) un conjunto de k funciones objetivo z(x) = $\{f_1(x), ..., f_n(x)\} \in Y$

Max o Min
$$z(x) = (f_1(x), f_2(x), ..., f_K(x))$$

definición del problema

Un problema multiobjetivo consiste en:

Max o Min
$$z(x) = (f_1(x), f_2(x), ..., f_K(x))$$

- •X es el <u>espacio de decisión</u> (soluciones)
- •Y es el <u>espacio objetivo</u>. Normalmente $Y \subseteq R^K$
- •z(x) es el conjunto de funciones objetivo
- Puede contar con restricciones:
 - Desigualdades
 - Igualdades
 - Otras

definición del problema en el viajante de comercio

$$\bullet X = C^n$$

- C es el conjunto de ciudades
- n es el número de ciudades
- $\bullet Y \subseteq \mathbb{R}^2$
- Funciones objetivo: $f_1(x) = Longitud y f_2(x) = Tiempo$
- •Restricciones: $x_i \neq x_j$ 0≤ i, j≤ n i≠j

concepto de dominancia

Max o Min
$$z(x) = (f_1(x), f_2(x), ..., f_K(x))$$

•Soluciones pareto-optimales o no-dominadas: Se dice que un vector a domina a otro b (a π = b) si, y sólo si (maximización):

$$\forall i \in \{1, 2, ..., K\} \mid f_i(a) \ge f_i(b) \land \exists j \in \{1, 2, ..., K\} \mid f_j(a) > f_j(b)$$

concepto de dominancia

Max o Min
$$z(x) = (f_1(x), f_2(x), ..., f_K(x))$$

•Soluciones pareto-optimales o no-dominadas: Se dice que un vector a domina a otro b (a π = b) si, y sólo si (maximización):

$$\forall i \in \{1, 2, ..., K\} | f_i(a) \ge f_i(b) \land \exists j \in \{1, 2, ..., K\} | f_j(a) > f_j(b)$$

es decir, una solución domina a otra si es mejor o igual en todos los objetivos y mejor en al menos uno de ellos

- S₁ domina a S₂ con respecto a distancia
- S₂ domina a S₁ con respecto al tiempo

- S₁ domina a S₂ con respecto a distancia
- S₁ domina a S₂ con respecto al tiempo

concepto de dominancia

- S₁ domina a S₂ con respecto a distancia
- S₁ domina a S₂ con respecto al tiempo

 S_2 está dominada por S_1 es decir que S_1 es mejor que S_2

concepto de dominancia

¿S₃ con respecto a S_{2?}

¿S₃ con respecto a S_{1?}

concepto de dominancia

 ${}_{\mathcal{S}_3}$ con respecto a $S_{2?}$ DOMINA ${}_{\mathcal{S}_3}$ con respecto a $S_{1?}$

concepto de dominancia

¿S₃ con respecto a S_{2?} **DOMINA** ¿S₃ con respecto a S_{1?} NO-DOMINADA

- •Una solución es Pareto-optimal si no es dominada por ninguna otra solución del espacio
- •El conjunto de todas las soluciones no dominadas se denominan conjunto Pareto-optimal y compone la solución óptima del problema multiobjetivo
- •Los vectores de valores de la función objetivo del conjunto Pareto-optimal forman la frontera o **Frente de Pareto**

- soluciones no-dominadas
- soluciones dominadas

- •El objetivo es encontrar una aproximación del Pareto de la mayor calidad
 - Tan cerca del óptimo como sea posible
 - Soluciones uniformemente distribuidas
 - Aproximación que capture todo el Pareto, incluidos los extremos

resolución de problemas multiobjetivo

- ¿Qué necesitamos para resolver este problema?
 - Un método de búsqueda basado en los objetivos
 - Una política de equilibrio entre los objetivos
 - Un orden para proceso de optimización
- Distintos modelos para resolver el problema

resolución de problemas multiobjetivo **AGREGACIÓN**

Se agregan los objetivos en una única función o se considera un orden entre ellos dando lugar a una función adecuada para el algoritmo mono-objetivo que se aplica

resolución de problemas multiobjetivo **AGREGACIÓN**

Se agregan los objetivos en una única función o se considera un orden entre ellos dando lugar a una función adecuada para el algoritmo mono-objetivo que se aplica

resolución de problemas multiobjetivo **AGREGACIÓN**

Función de agregación: Se agregan todos los objetivos en una única función

Orden lexicográfico: Orden jerárquico entre objetivos

resolución de problemas multiobjetivo **AGREGACIÓN**

Si un frente de Pareto tiene N soluciones, y aquí obtenemos una solución agregada, ¿cómo conseguimos N soluciones?

resolución de problemas multiobjetivo **BÚSQUEDA ALTA DIMENSIÓN**

Se analizan todos los objetivos para obtener el frente de las soluciones no-dominadas o Frente de Pareto

resolución de problemas multiobjetivo **BÚSQUEDA ALTA DIMENSIÓN**

Se analizan todos los objetivos para obtener el frente de las soluciones no-dominadas o Frente de Pareto

Metaheurísticas para problemas multiobjetivo

- •En la actualidad, hay unas 30 técnicas clásicas de programación matemática para resolver problemas de optimización multiobjetivo (MO)
- •Sin embargo, estas técnicas <u>suelen generar los elementos de</u> <u>uno en uno</u>, requiriendo de múltiples ejecuciones
- Además, muchas de ellas son muy sensibles a la forma del frente de Pareto. Por ejemplo, no funcionan con frentes cóncavos o desconectados

Metaheurísticas Grado en Ingeniería Informática Universidad de Jaén Cristóbal J. Carmona Curso 2019/2020

Esta obra está protegida con licencia Creative Commons Atribución-NoComercial 4.0 Internacional

