

GAS SENSOR X PRO

General Features

- · Low-power gas sensor
- Power supplied at 3.3V
- · Analog output
- · High sensitivity and Fast response
- Stable and long life
- · Small footprint
- · Easy to integrate on PCB or breadboard
- · Detection of many gases
 - Carbon Monoxide CO₂
 - Dihydrogen H₂
 - Methane CH₄
 - Alchohol C₂H₅OH
 - Nitrogen dioxide NO₂

1 Description

Developped at the *Interuniversity Workshop of Micro-nano Electronics* (AIME) of INSA Toulouse, the TGS5001 gas sensor is based on tungsten trioxide nanoparticles interdigitated into aluminium combs. This technology allows a high precision of measurement for different types of gas. Being in contact with gas molecules, the nanoparticles WO₃ will change the conductivity of the sensor according to the applied gas concentration.

As a complement, a temperature sensor (through an aluminium resistor) and a heater (formed on a wide Ndoped poly-silicon layer) are added inside of the component to have a full control on the sensor. Its pinout is Breadboard compatible and can be easily implemented on PCB thanks to a TO-5 package.

Applications

- · Environnement analysis
- Pollution observation
- · Detection of fire
- Gas leakage detection
- · Household CO sensing
- Building Technology and Comfort

2 Pin Description

Pin Number	Usage
1 & 3	Gaz sensor (1) - WO3 nanoparticles interdigitated into aluminium combs
2 & 7	Heater (Polysilicon resistor)
4 & 9	Temperature sensor (aluminium resistor)
5 & 10	NC
6 & 8	Gaz sensor (2) - WO ₃ nanoparticles interdigitated into aluminium combs

Physical pinout

3 Specifications

Туре	Nanoparticle based gas sensor	
Material	 Silicon N-doped poly-silicon Aluminum Tungsten trioxide WO₃ nanorods 	
Type of sensor	Active	
Gas measurement method	Resistive	
Temperature measurement method	Resistive	
Type of detectable gases	 Carbon Monoxide Dihydrogen Methane Alchohol Nitrogen dioxide 	
Package	10-Lead TO-5 metal	
Diameter	9.5mm	

4 Standard use conditions

	Minimal Value	Maximal value	Unit
Température	-15	50	°C
Humidity	45	75	%
Voltage Input	2.8	3.6	V

5 Electrical characteristics

	Voltage (max)	Current (max)
Nominal Domain	$\pm 10V$	100 mA
Non-Deterioration Domain	$\pm 20V$	200 mA

5.1 Temperature sensor characterization

5.2 Heater characterization

5.3 Gas sensor characterization

5.3.1 Variation with the voltage

Variation of the current of the sensitive layer as a function of the voltage

5.3.2 Variation with the Ethanol debit (D)

T = 300°K	D = 0.5	D = 1,5	D = 2,5
R (kohms)	11,618	34,001	34,637

6 Dimensions

^{**}FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) III0(10-6) (RR

7 Typical Application

It is possible to have a complete system to retrieve the gas sensor data through an operational amplifier. This system could be implemented on a board (like Arduino shield) and according to this schematic, the output is analogic.

