Unit III - MOS Introduction

Prepared by Dr. A. Maria Jossy & Dr. J.Selvakumar

MOS Transistors

- MOS transistors are extremely useful devices
 - Almost all of your electronics uses them on the inside
 - Including your phone, laptop, WiFi and Bluetooth, and your Arduino
- Come in two "flavors"
 - nMOS
 - · It is a switch which connects source to drain
 - If the gate-to-source voltage is greater than V_{th} (around 1 V)
 - Positive gate-to-source voltages turn the device on.
 - pMOS
 - · It is a switch which connects source to drain
 - If the gate-to-source voltage is less than V_{th} (around -1 V)
 - Negative gate-to-source voltages turn the device on

MOS Transistor Physical Structure

- ☐ The above image shows the **N channel MOSFET transistor** physical structure with its four terminals: Gate, Drain, Source and Substrate. Normally the Source and the substrate are connected together.
- ☐ The Gate with W and L dimensions is separated from the substrate by a dielectric (SiO₂), creating a similar structure of the capacitor plates.
- ☐ If a positive voltage is applied to the gate, negative charges are induced (inversion layer) on the substrate surface and they create a conduction path between the Drain and Source terminals.
- The minimum voltage needed to create the inversion layer is called **threshold voltage** (V_{τ}) . This is a characteristic feature of the transistor.
- ☐ If VGS < VT, the drain-source current is zero. Typical values for this voltage are between 0.5 and 3 volts.

Types of MOS Transistors

FIGURE: nMOS transistor (a) and pMOS transistor (b)

Types of MOS Transistor

- Enhancement mode Transistor the Channel which is NOT existing is Created between
 Drain and Source with application of Gate-Source Voltage
 - nMOS Enhancement mode
 - pMOS Enhancement mode
- 2. **Depletion mode Transistor** In *depletion mode* the already **existing Channel width between Drain and source is reduced** with application of Gate Source Voltage
 - nMOS Depletion mode
 - pMOS Depletion mode

Enhancement Mode vs. Depletion Mode

Circuit Symbols for MOS Transistor

(a) NMOS transistor as 4-terminal device

(b) NMOS transistor as 3-terminal device

(a) PMOS transistor as 4-terminal device

(d) PMOS transistor as 3-terminal device

If the fourth terminal is not shown, it is assumed that the body is connected to the appropriate supply.

MOS structure demonstrating - Accumulation, Depletion and Inversion

- A negative voltage is applied to the gate, so there is negative charge on the gate.
- The mobile positively charged holes are attracted to the region beneath the gate. This is called the accumulation mode.

- A small positive voltage is applied to the gate, resulting in some positive charge on the gate.
- The holes in the body are repelled from the region directly beneath the gate, resulting in a *depletion* region forming below the gate.

- A higher positive potential exceeding a critical threshold voltage *Vt* is applied, attracting more positive charge to the gate.
- The holes are repelled further and some free electrons in the body are attracted to the region beneath the gate.
- This conductive layer of electrons in the p-type body is called the *inversion* layer.

The threshold voltage depends on the number of dopants in the body and the thickness *t*ox of the oxide. It is usually positive,

MOS Transistor Demonstrating – Cut-off Region, Linear Region & Saturation Region

1. Cut-off Region : (
$$V_{GS} > V_{T}, V_{DS} = 0V$$
)

- The transistor consists of the MOS stack between two n-type regions called the source and drain. The inversion layer / channel is formed as $V_{GS} > V_T$, but there is no current flow as $V_{ds} = 0$ V.
- We say the transistor is OFF, and this mode of operation is called *cutoff*.
- It is often convenient to approximate the current through an OFF transistor as zero, especially incomparison to the current through an ON transistor.
- However, that small amounts of current leaking through OFF transistors can become significant, especially when multiplied by millions or billions of transistors on a chip.

$$I_D = 0$$

2.. Non-saturation Region: ($V_{GS} > V_{T}$; $\mathbf{0}V < V_{DS} < V_{sat}$)

- Assume now that $V_{GS} > V_T$ and that a small voltage, V_{DS} , is applied between drain and source.
- The voltage difference causes a current I_D to flow from drain to source
- Using a simple analysis, a first-order expression of the current as a function of V_{GS} and V_{DS} can be obtained.

- At a point x along the channel, the voltage is V(x), and the gate-to-channel voltage at that point equals $V_{GS} V(x)$. Under the assumption that this voltage exceeds the threshold voltage all along the channel, the induced channel charge per unit area at point x can be computed as $Q_{channel}$.
- The magnitude of current increases linearly with increasing drain voltage till a particular drain voltage determined by the following relations:

$$V_{GS} \ge V_{th}$$
 and $V_{DS} < V_{sat} = V_{GS} - V_{th}$

• The magnitude of current is the charge flowing through the channel and the time taken to drift across the channel.

$$I_{ds} = \frac{Q_{channel}}{t} = \frac{Charge\ flowing\ through\ the\ channel}{time\ taken\ to\ drift\ acorss\ the\ channel} ---- -(1)$$

2. Non-saturation Region(Cont.)

Time taken to drift acorss the channel

$$t = \frac{L_{channel}}{Velocity\ of\ electron} = \frac{L}{\mu_n E} = \frac{L}{\mu_n \frac{V_{ds}}{L}} = \frac{L^2}{\mu_n V_{ds}} -----(2)$$

Charge flowing through the channel

$$Q_{channel} = C_g V \qquad ---- (3)$$

where, C_g – gate capacitance, V – applied Vds for the current flow

$$Q_{channel} = C_g \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right) \qquad -----(4)$$

where $V_{gs} - V_t$ is the effective voltage

The magnitude of the drain current in non – saturation region is given by (1)

$$I_{ds} = \frac{C_g \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right)}{\frac{L^2}{\mu_n V_{ds}}}$$
 --- (5)

2. Non-saturation Region(Cont.)

In equation (5) where
$$C_g = \frac{\varepsilon A^2}{d} = \frac{\varepsilon_{ox} W.L}{t_{ox}} - - - - (6)$$

Substituting (6) in (5), I_{ds} is given as

$$I_{ds} = \frac{\frac{\varepsilon_{ox} W. L}{t_{ox}} \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right)}{\frac{L^2}{\mu_n V_{ds}}} ----(7)$$

 $\frac{\mu_n V_{ds}}{I}$ is called as Aspect Ratio

 $\vec{k_n} = \frac{\mu_n \, \varepsilon_{ox}}{t_{ox}} \text{ is called as transconductance parameter}$ $\beta_n = k_n \cdot \frac{W}{L} - MOS \text{ transistor gain factor}$

$$\beta_n = k_n \cdot \frac{W}{L} - MOS$$
 transistor gain factor

Therefore,

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right) V_{ds} - - - (8) ; V_{GS} \ge V_{th} \text{ and } V_{DS} < V_{Sat} = V_{GS} - V_{th}$$

3. Saturation Region

$$V_{gs} > V_t$$
; $0V < V_{ds} \ge V_{gs} - Vt$ or $0V < V_{ds} = V_{SAT}$

- As the value of the drain-source voltage is further increased, the assumption that the channel voltage is larger than the threshold all along the channel ceases to hold. This happens when V_{GS} V(x) < V_{T} .
- At that point, the induced charge is zero, and the conducting channel disappears or is pinched off.

Beyond a certain point, the surface concentration is like $\left(\ln\frac{n_s}{n_B}\right)$ and therefore stop increasing and the surface potential is pinned of f when $n_s \cong N_A$

where, surface potential,
$$\psi_s = \frac{KT}{q} \ln \left(\frac{n_s}{n_B} \right)$$

3. Saturation Region (Cont.)

$$V_{gs} > V_t$$
; $0V < V_{ds} \ge V_{gs} - Vt$ or $0V < V_{ds} = V_{SAT}$

Substitute $V_{ds} = V_{gs} - V_t$ in equation (8)

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{1}{2} (V_{gs} - V_t) \right) V_{gs} - V_t$$

$$I_{ds} = \beta \left(\frac{\left[V_{gs} - V_t \right]^2}{2} \right)$$

$$I_{ds} = \beta \left[\frac{V_{ds}^2}{2} \right] --- (9)$$

MOS Transistor Demonstrating – Cut-off Region, Linear Region & Saturation Region

$$I_{D} = 0; \textit{Cut} - \textit{off Region}$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left(V_{gs} - V_{t} - \frac{1}{2} V_{ds} \right) V_{ds} = \beta \left(V_{gs} - V_{t} - \frac{1}{2} V_{ds} \right) V_{ds}; \text{ Linear Region}$$

$$I_{ds} = I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[V_{gs} - V_{t} \right]^{2} = \beta \left(\frac{\left[V_{gs} - V_{t} \right]^{2}}{2} \right); \textit{Saturation Region}$$