Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

Inhalt

- 1. Einleitung
- 2. Task I: Data Rate Prediction

Gradient Boosted Trees

ARIMA

Validierung

3. TaskII

DatentransformationTaskII

XGboostTaskII

Einleitung

Einleitung

Hier stehen ein paar Dinge über die Einleitung:

- Dies
- und
- das

hallo

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [?]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Implementierung: XGBoost

- Liefert state-of-the-art Performance in einer Vielzahl von ML-Problemen
- In 2015 haben 19/25 Gewinner von Kaggle-Competitions XGBoost eingesetzt
- Kann problemlos auf mehrere Milliarden Training Samples skaliert werden
- Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [?]

ARIMA

Figure 1: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

- Zeitreihe $y_1, ..., y_n$ (Zielvariable)
- k Zeitreihen $x_{i,1},...,x_{i,n}$ für i=1,...,k (Einflussvariablen)

Lineares Regressionsmodell

$$y_t = c + \beta_1 x_{1,t} + ... + \beta_k x_{k,t} + \epsilon_t$$
 mit Fehler ϵ_t und Konstante c

Annahmen an Fehler:

- $\forall t \in \{1, ..., n\} : E(\epsilon_t) = 0$
- $\forall s, t \in \{1, ..., n\} s \neq t : Cov(\epsilon_s, \epsilon_t) = 0$
- $Cov((\epsilon_1, ..., \epsilon_n)^T) = \sigma^2 \mathbb{1}_n$

Annahmen sind in unserer Situation nicht einhaltbar!

ARMA(p, q) Zusammengesetzes Modell aus

- AR(p) (Auto Regressive): $y_t = c + \phi_1 y_{t-1} + ... + \phi_p y_{t-p} + e_t$ mit Fehler e_t und Konstantec
- MA(q) (Moving Average): $y_t = c + e_t + \theta_1 e_{t-1} + ... + \theta_q e_{t-q}$ mit White Noise $e_t, e_{t-1}, ..., e_{t-q}$ und Konstante c

Zusammengesetzt:

$$y_t = c + \underbrace{\phi_1 y_{t-1} + \ldots + \phi_p y_{t-p}}_{AR(p)} + \underbrace{\theta_1 e_{t-1} + \ldots + \theta_q e_{t-q}}_{MA(q)} + e_t$$

9

Anwendung auf Regressionsfehler

<u>Erinnerung</u>: Fehler ϵ_t des linearen Modells sind autokorreliert \Rightarrow erfüllen Voraussetzungen nicht

Lösung: Wende ARMA-Modell auf Fehler an

$$\epsilon_t = c + \phi_1 \epsilon_{t-1} + \dots + \phi_p \epsilon_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t$$

Modellgleichung Regression mit ARMA-Fehlern:

$$y_t = c + \sum_{i=1}^k \beta_i x_{i,t} + \sum_{j=1}^p \phi_j \epsilon_{t-j} + \sum_{\substack{k=1 \ \text{vergangene Fehler LM}}}^q \theta_k e_{t-k} + e_t$$

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$\begin{aligned} y_t &= c + \beta_1 x_t + \epsilon_t \text{ mit } & \epsilon_t &= \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t \\ \widehat{y_{t+1}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} &= \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \underbrace{\widehat{e_{t+1}}}_{=0} \\ \widehat{y_{t+2}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \text{ mit } \widehat{\epsilon_{t+2}} &= \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta\underbrace{\widehat{e_{t+1}}}_{=0} + \theta e_t + \underbrace{\widehat{e_{t+2}}}_{=0} \end{aligned}$$

Validierung

k-fache Kreuzvalidierung

- beachtet Abhängigkeit der Datenpunkte nicht
- zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- ⇒ Kreuzvalidierung für Zeitreihen

Validierung

Task I: Data Rate Prediction

frame

hallo

TaskII

frame

hallo

TaskII

DatentransformationTaskII

frame

hallo

TaskII

XGboostTaskII

frame

hallo

Literatur i

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN).

TUGBoat, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

Literatur ii

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.