

NAVY EXPERIMENTAL DIVING UNIT

19960904 029

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT

PANAMA CITY, FLORIDA 32407-5001

IN REPLY REFER TO:

NAVSEA TASK 92-002 & 92-003

NAVY EXPERIMENTAL DIVING UNIT

REPORT NO. 1-92

EVALUATION OF MAKO 5415 HIGH PRESSURE BREATHING AIR COMPRESSOR

> GEORGE D. SULLIVAN MARCH 1992

Approved for public release; distribution unlimited

Submitted by:

G. D. SULLIVAN

GS-11

Test Director

Reviewed by

W. MCCARTHY

GM-14

yperbaric Engineer

BERT MARSH

CDR, USN

Commanding Officer

LT. USN

Senior Projects Officer

GM-15

Scientific Director

2 Dark M.V. LINDSTROM

LCDR, USN

Executive Officer

	REPORT DOCU	MENTATION	PAGE				
1a. REPORT SECURITY CLASSIFICA UNCLASSIFIED	TION	1b. RES	TRICT	IVE MARKINGS			
2a. SECURITY CLASSIFICATION AL	THORITY			TION/AVAILABIL			
2b. DECLASSIFICATION/DOWNGRADI	NG SCHEDULE	DIS rel	TRIBU ease;	TION STATEMENT distribution	'A: App is unlim	orove nited	d for public
4. PERFORMING ORGANIZATION RENEDU Report #1-92	PORT NUMBER(S)	5. MON	ITORII	NG ORGANIZATIO	N REPORT	NUM	BER(S)
6a. NAME OF PERFORMING ORGANIZ Navy Experimental Diving Unit	. 6b. OFFICE SYMBOL (If applicable)	7a. NAM	E OF I	MONITORING ORG	SANIZATIO	ON	
6c. ADDRESS (City, State, and Panama City, Florida 32407-500	ZIP Code) 1	7b. ADD	RESS	(City, State,	and ZIP	Code)
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Sea Systems Command	6b. OFFICE SYMBOL (If applicable) OOC		CUREM	ENT INSTRUMENT	IDENTIF	ICAT	ION NUMBER
8c. ADDRESS (City, State, and Washington, D.C. 20362-5101	ZIP Code)	10. SOU PROGRAM ELEMENT		F FUNDING NUME PROJECT NO.	BERS TASK NO. 92-002 92-003		WORK UNIT ACCESSION NO.
11. TITLE (Include Security C Evaluation of MAKO 5415 High F	assification) ressure Breathing Air	Compress	or				
12. PERSONAL AUTHOR(S) Mr. David Sullivan							
FINAL	TIME COVERED		DATE h 199		ar,Month,	,Day)	15. PAGE COUNT
16. SUPPLEMENTARY NOTATION				- A.H W /			
17. COSATI CODES FIELD GROUP SUB-GROUP	-	oer)		reverse if ne	•		
19. ABSTRACT (Continue on rev. In response to NAVSEA taskin Powered High Pressure, Breath thru 16 Dec 1991. The object system functioned as specified The MAKO 5415 compressor and of air produced and met or exadequate. The MAKO 5415 comp USN requirements for divers b	ng, Navy Experimental ng Air Compressor and ve of this testing was and was suitable for MK-10-C purification seeded purity standard ressor and MK-10-C puri	Diving Urd the MAKO as to deter addition system met ds. The or	nit (N) MK-1 ermine n to t : manu design n syst	EDU) tested to 0-C Purificat if the comprehe Approved for facturer's spended engineer em is conside	ion systo essor and or Navy O ecificat ing were	em fr d the Use (ions dete	om 27 Nov 1991 purification ANU) List. for quantity ermined to be
20. DISTRIBUTION/AVAILABILITY UNCLASSIFIED/UNLIMITED	OF ABSTRACT SAME AS RPT. D	TIC USERS	21.	ABSTRACT SECU	RITY CLAS	SSIFI	CATION
22a. NAME OF RESPONSIBLE INDI	/IDUAL	22b. TELI	PHONE	(Include Are	a Code)	22c.	OFFICE SYMBOL

.... ...

CONTENTS

			<u>Page</u>
I.	INTRO	DDUCTION	.1
II.	EQUII	PMENT DESCRIPTION	.1
III.	TEST	PROCEDURE RESULTS	.5
·	Α.	ENDURANCE TEST	.5
	В.	CHARGE RATES	7
	C.	OIL CONSUMPTION	. 7
	D.	AIR SAMPLING	. 8
	Ε.	MAINTENANCE	8
IV.	CONC	LUSIONS	8
٧.	REFE	RENCES	9
APPENI	DIX A	- Test Log	A-13
APPENI	DIX B	- Air Sample ResultsB-1 thru B	3-3
APPENI	DIX C	- Manufacture's Specifications	C-4

ILLUSTRATIONS

Figure No.		<u>Page No</u> .
1	Mako 5415 Compressor Description	2
2	The Air Purification System	4
3	NEDU test 91-50 Equipment Configuration	6

I. INTRODUCTION

In response to NAVSEA tasking¹⁻² a MAKO 5415 Electric Powered High Pressure, Breathing Air Compressor equipped with a MAKO MK-10-C purification system was delivered to the Navy Experimental Diving Unit (NEDU) and tested³ from 27 Nov 1991 thru 16 Dec 1991. The objective of this testing was to determine if the compressor and the purification system functioned as specified and was suitable for addition to the Approved for Navy Use (ANU) List⁴.

There are various methods of testing compressor capacities. For the purposes of this compressor test³ NEDU chose a test which consisted of charging four 36.87 liter (2250 cubic inch) (floodable volume) cylinders from 68.94 to 137.9 bars (1000 to 2000 psig) to determine charge rates. The unit was run daily, vented to atmosphere and adjusted to create a final discharge pressure ranging from 103.42 to 344.73 bars (1500 to 5000 psig) to simulate actual service use. The testing³ included subjective evaluation of the compressor and purification system operation, but did not include detailed mechanical review of the individual components of the system.

II. EQUIPMENT DESCRIPTION

A. GENERAL

The MAKO 5415 compressor (Figure 1) is a four stage, single acting, 90 degree Vee configuration, which provides complete primary balance.

Air enters the unit through a filter/silencer and is compressed by the first stage piston. It then passes through cooler tubes enroute to the second stage for further compression. This process is repeated through the third and fourth stages of compression. Cooling is accomplished by water flowing from the self-contained radiator system through the jackets and passages. After final cooling the air is delivered at the designed pressure to the system.

For this particular unit the prime mover was a Baldor 55.9 KW (75 horsepower), three phase 460/220 volt, electric motor. Rotational torque was transferred to the compressor by 2 V-belts. First and second stage pistons were of conventional design and, the third and fourth stages were of the crosshead type. Main bearings bushings, big end bearing halves and small end bearings were all replaceable.

Multi-stage coolers are fitted after each compression stage and are maintained through four access doors. First, second and third stage coolers are fixed, while the fourth stage has a removable tubestack.

Figure 1

All stage valves are of the flat plate, low lift, multi-ported type and combine both suction and delivery functions. Ease of access, by having one valve cover per cylinder, and good flow characteristics are features of this valve design.

B. LUBRICATION

The manufacturer recommends the compressor be "run-in" on normal mineral type oils (i.e. 2190 TEP) for approximately 100 hours before changing to a synthetic oil. One of the recommended synthetic oils is Anderol 500, which is stocked in the Federal Supply System.

A forced lubrication system is used to convey oil to the large end and main bearings via a filter and crankshaft passages. The connecting rods are drilled to supply oil to the smaller end bearings/bushings. Oil is forced through the bearing clearance and thrown off the rotating crankshaft to ensure an adequate supply to cylinders, pistons and small end bearings. Return flow oil is drawn through a strainer and excess pressure regulated by a spring loaded relief valve. Oil pressure is gauge indicated for the unit and sight feed glasses allow observation of the feed rate of the third and fourth stage mechanical lubricator.

The crankcase is filled through the filler plug on the main bearing housing and the oil level is indicated in a sight glass on the crankcase end plate. The cylinder lubricator tank has a lifting cap on top for filling purposes, except when an automatic top-up system is installed.

C. CONTROLS

For starting purposes, automatic or manual unloaders/drains are fitted to all stages. Automatic unloaders provide initial venting when starting and close as the compressor attains operational speed, opening again for condensate draining when the unit is shut down. A timer may be incorporated in the unloading circuit to effect timed drainage (compatible with environmental and operating conditions). High humidity requires more frequent draining. Pressure safety valves are fitted at each stage. An oil pressure gauge and air pressure gauges for each stage are mounted on a common panel. Low oil pressure and high temperature switches are standard equipment.

A bursting disc is installed to relieve excessive pressure build up or freezing water in the water passages. Excessive pressure or freezing will rupture the specified pressure disc to relieve internal pressure. The internal pressure

D. PURIFICATION SYSTEM

The air purification system consists of three cylinders that use replaceable cartridges (figure 2). After compression, air passes through

FIGURE 2

the separator and enters the dryer section of the purification process. Within the dryer, long chain hydrocarbons, moisture and vapors are removed by a chemical. Further processing removes objectionable odors and taste before the air enters a catalyst bed that converts carbon monoxide (CO) to carbon dioxide (CO_2) .

TII. TEST PROCEDURE RESULTS

The compressor and ancillary equipment were set up in accordance with the NEDU test plan³ and the Mako compressor and purification system manufacturer's publication⁶⁻⁷. A line diagram of the test configuration is depicted in (Figure 3). The unit was placed in an exterior work area, open to ambient temperature but protected by an awning from direct weather. A Digitech HT series, model 5820 temperature monitor and two Yellow Springs Instruments 700 series thermistor probes were attached to measure compressor discharge and ambient temperatures. An Ideal Humidity indicator, model 3310-20 was mounted near the compressor unit and the ambient humidity recorded. An MSA Toxgard carbon monoxide monitor with a flow range from 350 to 900 cc per minute was used to analyze compressor discharge air samples before and after the purification system. Nitrogen (100% N_2) and carbon monoxide (CO) 99.9 parts per million (ppm) in air were used to calibrate the monitor on a daily basis. The gases were fed through a Victor Equip Co. 4000 psig manual regulator to a Fischer and Porter flow meter. The introduction of CO was adjusted to maintain 50 PPM of CO at the entrance of the filtration system. Appendix A is the test log and contains the recorded data.

The Mako Compressor Maintenance Manual⁶ was used to conduct an initial receipt and inspection of the equipment to ensure that all parts and material were received. Main panel instruments and controls were clearly and permanently marked and easily viewed by the operator. Cooling water indicators were not identified.

A. ENDURANCE TEST

The compressor test was completed at 50 hours of operation. The unit continued to run for 75 hours to complete the purification system test. At the end of day 1 (5 hours) of operation the unit was secured with 172.4 bar (2500 psig) in the volume tanks. All vents, flowmeters, and blowdown valves were closed. The unit remained secured until 0630 the following day. The pressure drop was minimal, less than 13.8 bars (200 psig), and insignificant when temperature differentials were considered.

The compressor was operated daily with the discharge venting to atmosphere. The charge rate was verified by charging from 68.9 to 137.9 bar (1000 to 2000 137.9 bar (1000 to 2

FIGURE 3: NEDU TEST 91-50 EQUIPMENT CONFIGURATION

analyzed. Samples were taken before and after the purification system. These readings are located in Appendix A. A total of 50 hours of operation was logged.

The following parameters were recorded:

- 1. Date.
- 2. Time.
- 3. Total Meter Hours.
- 4. Total Test Hours.
- 5. Ambient Humidity.
- 6. Ambient Temperature.
- 7. Compressor Oil Pressure.
- 8. Stage pressures 1 thru 4.
- 9. Discharge line temperature.
- 10. Carbon Monoxide Before Filter.
- 11. Carbon Monoxide After Filter.
- 12. Water Pressure
- 13. Water Temperature Inlet.
- 14. Water Temperature 3rd Stage.

Oil and water levels were checked each morning prior to start up.

B. CHARGE RATES

The volume of air delivered and the time to achieve that volume was logged. The data collected provided a complete operational and maintenance log for this test and was the basis for computing and evaluating all the test results. Compressor charge rate for the air flasks used during the test is as follows:

	<u> TIME</u>	TOTAL VOLUME	CHARGE RATE
MINIMUM:	11.06 MINUTES	10.2 METER ³ (359 FEET ³)	0.920 ACM/M (32.45 ACFM)
MAXIMUM:	12.11 MINUTES	10.2 METERS ³ (359 FEET ³)	0.839 ACM/M (29.64 ACFM)
AVERAGE:	11.58 MINUTES	10.2 METERS ³ (359 FEET ³)	0.878 ACM/M (31.00 ACFM)

C. OIL CONSUMPTION

The unit had been operated by the manufacturer for 1.4 hours prior to shipment.

The NEDU evaluation was conducted with the oil as delivered in the crankcase was discussed in the oil level was checked daily prior to start up. At 50 hours 1 quart of oil was added to the unit.

D. AIR SAMPLING

All samples for the 50 hour compressor test were within established limits⁵. The results of air samples taken after 5, 25, and 50 hours of operation are shown in Appendix B. These samples were taken from the downstream side of the Mk-10-C purification system while CO was being introduced into the inlet of the compressor. A final sample taken at 75 hours of operation revealed that the purification system catalyst had broken-down (results are shown in Apppendix B).

E. MAINTENANCE

Scheduled maintenance was performed in accordance with the manufacturer's instructions and consisted of a normal adjustment of new drive belts after the initial 24 hours of operation. The MAKO 5415 compressor unit was easily maintained. The maintenance manual for the compressor provides a very good breakdown of the 5415 block components. It does not provide additional information concerning control components.

IV. CONCLUSIONS

Evaluation of the MAKO 5415 compressor revealed the following:

- 1. The MAKO 5415 compressor delivers acceptable breathing air at a charge rate and volume which meets or exceeds the manufacturer's specifications.
- 3. The Mk-10C purification system in conjunction with the Mako 5415 compressor produced 143,300.4 cubic feet of clean compressed air for 138% of its expected life.
- The unit is sturdy, reliable and readily maintained.
- 3. The operating and maintenance manuals for the compressor are lacking information for complete maintenance and setting of control components.
- 4. The MAKO 5415 compressor is suitable for use by the US. NAVY.

V. REFERENCES

- 1. NAVSEA Task 91-002; Evaluation of commercially available divers air compressors. Navy Experimental Diving Unit
- 2. NAVSEA Task 92-003; Evaluation of commercially available filters for H.P. and L.P. breathing air. Navy Experimental Diving Unit
- 3. Navy Experimental Diving Unit Test Plan Number 91-50; Mako 5415 Electric Drive High Pressure Air Compressor and MK-10-C Purification System Evaluation (unmanned), Nov 91
 - 4. Authorized for Navy Use, NAVSEAINST 10560.2B
- 5. NAVSEA 0994-LP001-9010, U. S. Navy Diving Manual V.1 Rev 2, Para 5.3.2 Air Purity Standards, Dec 88
- 6. MAKO publication number VHP15, 5415,5415BA for Model 5415 Electric Drive High Pressure Air Compressor. Mako 1634 S.W. 17th street P.O. Drawer 1630 Ocala, Florida 32678 (904) 732-2268
- 7. MAKO publication, Purification parts and instruction manual. Mako 1634 S.W. 17th street P.O. Drawer 1630 Ocala, Florida 32678 (904) 732-2268

DATE NOV 27, 1991

			COOL	COOLING WA	TER	ST?	STAGE PR	PRESSURES	ES	OIL	TEMPS	S. F.	PPM CC	ပ္ပ	
REAL TIME	TEST	METER	TEMP	TEMP	PRES	1	2	8	4	PRES	AMBI	DSCHG	FIL AFT	PRE	HUMD
0830	00	01.4	50	50	24	50	250	1000	3200	45	53.4°	65.7°	-1	44	809
0830	01	02.4	72	108	27	54	275	1100	4300	45	55.9°	95.3°	-2	52	58%
1030	02	03.4	74	108	28	52	275	1100	4700	45	.9.09	.8.86	0	52	50%
1130	03	04.4	74	108	28	52	275	1100	5000	45	60.2°	96.2°	0	20	54%
1230	04	05.4	78	110	28	52	275	1100	5000	45	59.6°	100.5°	0	48	55%
1330	05	06.4	80	110	28	52	275	1100	4800	45	69.4°	101.1°	-2	47	52%
			٠.												
			pa i												
						REM	ARKS 1	REMARKS AND COMMENTS	MMEN	r _S					
CHECK 0930	OIL	CHECK OIL AND WATER LEVELS PRIOR TO STARTUP 0930 TOOK A CHARGE RATE FROM 1000 TO 2000PSIG 12.30 MINUTES	TER L	EVELS TE FRO	PRIOR OM 1000	10 TO	TO STARTUP TO 2000PS	JP PSIG 1	12.30	MINU	0	29.11 CFM			
TOOK ALK AVERAGE	ALK SE	TOOK AIK SAMPLE AT 5 HOOK AVERAGE AIR TEMP 11-27-91	AT 5 11-2	,,,	5.	Ħ	59.85°F		DISCHARGE	H	92.93°F				
AVERAGE FINAL AIR PROCESSED	ROCES	SED 11.	7KESSUKE 11-27-91	1 29.1	LICFM X	x 60	X 51	= 8,73	8,733 TOTAL		CUBIC FEET	H.			:

A-1

DATE NOV 29 1991

	HUMD	99 %	95%	89%	8 22 %	8 22 82	80%	74%	75%	78%	
00 6	AFT PRE	44	54	51	50	52	46	48	51	48	
PPM CO	AFT PR	0	0	-1	0	-1	0	0	-1	0	
S: F	DHOSO	63.0°	96.5°	97.3°	94.8°	96.4°	°6.86	107.1°	105.8°	104.4	
TEMPS	AMBI	.0.65	60.3°	63.1°	64.8°	.0.07	. 2. 19	72.8°	75.4°	74.6°	
OIL	PRES	45	45	45	45	45	45	45	45	45	נֵי
	4	4200	3400	4500	4500	4900	4850	5000	5000	3400	MMENT
PRESSURES	3	1200	1160	1160	1090	1090	1090	1090	1050	1090	טט טאין
	2	275	275	275	275	275	275	275	260	275	REMARKS AND COMMENTS
STAGE	П	50	52	52	52	5.2	52	52	52	52	PEM
TER	PRES	24	26	26	26	26	26	26	28	28	
NG WA	TEMP	09	110	110	110	110	112	112	114	114	
COOLI	TEMP	09	80	80	80	84	86	06	92	92	
TOTAL COOLING WATER	TEST METER IN OUT HOUR HOUR TEMP	06.4	07.4	08.4	09.4	10.4	11.4	12.4	13.4	13.9	
	TEST H	05	90	07	80	60	10	11	12	12.5	
	REAL TIME	0630	0730	0830	0830	1030	1130	1230	1330	1400	

REMARKS AND COMMENTS

0935 TOOK CHARGE RATE FROM 1000 PSI TO 2000 PSI 12.12 MINUTES = 29.53 CFM AVERAGE AIR TEMPERATURE 11-29-91 AMBIENT = 67.52°F DISCHARGE = 96.02°F CHECK OIL AND WATER LEVELS PRIOR TO STARTUP AVERAGE FINAL PRESSURE 4416 PSIG

AIR PROCESSED FOR 11-29-91 = 29.53CFM X 60 X 7.5 = 13,288.5 CUBIC FEET AIR PROCESSED TO DATE = 8,733 + 13,288.5 = 22,021.5 TOTAL CUBIC FEET

DATE DEC 02 1991

	1		COOL	COOLING WATER	TER	ST	STAGE PF	PRESSURES	ES	OIL	TEMPS	S ° F	PPM CO	8 5	
REAL	TEST	METER	TEMP	TEMP	PRES	1	2	3	4	PRES	AMBI	DSCHG	AFT PR	FILTER AFT PRE	HUMD
1000	12.5	13.9	71	82	26	52	265	1000	3200	45	73.4°	95.2°	-2	48	806
1100	13.5	14.9	06	112	26	52	270	1500	3200	45	73.0°	103.4°	0	52	86%
1200	14.5	15.9	06	112	26	52	275	1500	3200	45	74.9°	106.0°	0	49	76%
1300	15.5	16.9	94	116	26	52	270	1020	4500	45	74.2°	106.3°	-1	50	768
1400	16.5	17.9	94	116	26	52	270	1020	5000	45	75.1°	105.2°	0	49	83%
			:												
			:			REM	ARKS ;	REMARKS AND COMMENTS	MMEN	LS					
CHECK 1130 ' AVERAC	OIL COOK (SE AII)	CHECK OIL AND WATER LEVELS 1130 TOOK CHARGE RATE 1000 AVERAGE AIR TEMPERATURE 12 AVERAGE FINAL PRESSURE 382	rer li RATE ERATUI	:> cl Ш	ELS PRIOR 100 PSI TO 12-02-91 3820 PSIG	TO 200	TO STARTUP 2000 PSI AMBIENT =	TO STARTUP) 2000 PSI IT TOOK AMBIENT = 74.12°F		12.03)ISCH2	MINUTES ARGE = 1	12.03 MINUTES = 29.75 DISCHARGE = 103.22°F	CFM		
AIR P. TOTAL	ROCES	AIR PROCESSED 12-02-91 TOTAL AIR PROCESSED TO	-02-9 SED T		= 29.75CFM X 60 X DATE = 22,021.5 +	CFM X 60 22,021.5	. +	4 = 7,	142.4	4 CUB. 29,163	4 = 7,142.4 CUBIC FEET 7,142.4 = 29,163.9 TOTA	AL CUBIC	FEET		

MAKO DIVERS AIR COMPRESSOR MODEL 5415

DATE DEC 03 1991

												
		HUMD	100%	100%	896	896	88%	86%	%06	78%	78%	
r	CO Fi	PRE	44	47	51	49	48	46	50	48	44	
	PPM CO	AFT PRE	-1	0	0	-2	0	-1	0	0	-1	
	S °F	DSCHG	80.2°	94.6°	107.2°	103.4°	106.2°	106.4°	86.4°	99.2°	97.6°	
	TEMPS	AMBI	.9.02	68.2°	67.1°	68.2°	68.4°	67.2°	62.3°	64.9°	62.0°	
	OIL	PRES	45	45	45	45	45	45	45	45	45	
		4	2200	3100	3200	3200	5000	4800	4800	5000	3250	
	ESSURI	3	006	1090	1090	1050	1050	1090	1020	1020	1030 3250	
	STAGE PRESSURES	2	240	270	275	270	270	275	270	270	275	
	STA	1	50	52	52	52	52	52	52	52	52	
	TER	PRES	28	26	26	26	26	26	26	25	24	
	COOLING WAT		70	110	110	110	110	110	98	108	108	
	COOLI	TEMP TEMP	70	80	80	80	82	82	64	76	72	
			17.9	18.9	19.9	20.9	21.9	22.4	22.4	23.4	24.4	
		TEST METER HOUR HOURS	16.5	17.5	18.5	19.5	20.5 21.9	21.0	21.0	22.0 23.4	23.0	A
	1	REAL TIME	0020	0800	0060	1000	1100	1130	1300	1400	1500	

REMARKS AND COMMENTS

CHECK OIL AND WATER LEVEL PRIOR TO STARTUP

UNIT WAS SECURED AT 1130 AND RESTARTED AT 1300 1305 TOOK CHARGE RATE IT TO 11.53 MINUTES TO CHARGE FROM 1000 TO 2000 PSI = 31.05 CFM AVERAGE AIR TEMPERATURE 12-03-91 AMBIENT = 66.54°F DISCHARGE = 97.91°F

AVERAGE FINAL PRESSURE 3838 PSIG

TOTAL AIR PROCESSED TO DATE = 29,163.9 + 12,109.5 = 41,273.4 TOTAL CUBIC FEET = 31.05 X 60 X 6.5 = 12,109.5 CUBIC FEET AIR PROCESSED 12-03-91

A-4

DATE DEC 04 1991

			COOL	ING WA	ATER	ST2	AGE PI	STAGE PRESSURES	(ES	OIL	TEMPS	Sc °F	PPM CO	8	
REAL TIME	TEST	TEST METER HOUR HOURS	IN	TEMP	PRES	н	2	3	4	PRES	AMBI	DSCHG	AFT PR	PRE	HUMD
0630	23.0	24.4	40	40	25	52	260	1030	3500	45	40.1°	47.2°	0	54	84%
0730	24.0	25.4	58	102	26	52	275	1050	3400	45	45.5°	91.4°	-1	52	808
0830	25.0	26.4	58	104	26	52	275	1050	3300	45	45.0°	91.8°	0	48	78%
0860	26.0	27.4	09	104	25	52	275	1060	3300	45	48.2°	.9.96	-1	46	62%
1030	27.0	28.4	62	104	25	52	275	1050	3300	45	49.8°	93.6°	0	50	58%
1130	28.0	29.4	64	104	28	52	270	980	2500	45	53.3°	92.1°	+1	51	52%
1230	29.0	30.4	68	106	28	52	275	1150	4500	45	51.6°	95.0°	-1	48	48%
1330	30.0	31.4	7.0	106	28	52	275	1110	4200	45	. 22.3	96.5°	+2	50	46%
1400	30.5	31.9	7.0	106	28	52	275	1110	4500	45	.6*89	.8.86	+1	52	46%
			.			REM	REMARKS /	AND COMMENTS	MMEN	LS.					

IT TOOK 11.06 MINUTES TO CHARGE FROM 1000 PSI TO 2000 PSI = 32.37 CFM CHECK OIL AND WATER? LEVEL PRIOR TO STARTUP ADJUSTED DRIVE BELTS 0830 TOOK 25 HR AIR SAMPLE CHARGE RATE

AVERAGE AIR TEMPERATURE 12-04-91 AMBIENT = 49.74°F DISCHARGE = 89.22°F

14,566.5 = 55,839.9 TOTAL CUBIC FEET AVERAGE FINAL PRESSURE 3277 PSIG AIR PROCESSED 12-04-91 = 32.37CFM X 60 X 7.5 = 14,566.5 CUBIC FEET + TOTAL AIR PROCESSED TO DATE = 41,273.4

DATE DEC 05 1991

		TOTAL	COOL	TOTAL COOLING WATER	ATER	ST	AGE PI	STAGE PRESSURES		OIL	TEMPS	PS ° F	PPM CO	0 1	
REAL TIME	TEST	TEST METER HOUR HOURS	IN	OUT	PRES	1	2	8	4	PRES	AMBI	DSCHG	AFT PR	PRE	HUMD
0020	30.5	31.9	40	40	25	52	270	1000	3400	45	38.2°	52.0°			88%
0800	31.5	32.9	56	102	26	52	280	1100	3600	45	40.8°	86.3°	+5	09	868
0060	32.5	33.9	58	104	26	52	280	1100	3600	45	44.4°	88.2°	+4	58	74%
1000	33.5	34.9	62	104	26	52	260	1090	4300	45	47.3°	91.4°	+4	52	61%
1100	34.5	35.9	99	104	28	52	280	1110	4400	45	50.3°	92.2°	+5	50	52%
1200	35.5	36.9	99	104	26	52	280	1150	5050	45	51.4°	96.1°	+4	44	48%
1300	36.5	37.9	89	108	26	52	285	1180	4200	45	61.2°	.8.86	+5	46	47%
			; ;:												
						DEW	ADVC	SHAPEN AND COMMENTS	DMMEN	U.					

REMARKS AND COMMENTS

= 31.05 CFM TOOK CHARGE RATE IT TOOK 11.53 MINUTES TO CHARGE FROM 1000 PSI TO 2000 PSI AVERAGE AIR TEMPERATURE 12-05-91 AMBIENT = 46.66°F DISCHARGE = 86.43°F CHECK OIL AND WATER LEVEL PRIOR TO STARTUP AVERAGE FINAL PRESSURE 4078 PSIG

AIR PROCESSED 12-05-91 = 31.05 X 60 X 6 = 11,178 CUBIC FEET TOTAL AIR PROCESSED TO DATE = 55,839.9 + 11,178 = 67,017.9 TOTAL CUBIC FEET

DATE DEC 06 1991

t F	E E		COOL	ING WA	TER	ST	GE PF	STAGE PRESSURES	ES	OIL	TEMPS	PS °F	PPM CO	S ရှိ	
TIME	TEST	METER		TEMP TEMP	PRES	1	2	3	4	PRES	AMBI	DSCHG	PRE	AFT	HUMD
0860	36.5	37.9	52	52	26	52	275	οτττ	4000	45	54.3°	52.3°			76%
1030	37.5	38.9	72	108	26	52	275	0601	3500	45	58.8°	91.1°	0	45	59%
1130	38.5	39.9	72	108	26	52	275	0601	3500	45	63.3°	.9.66	+1	46	809
1230	39.5	40.9	78	110	27	52	275	1080	3400	45	61.6°	101.6°	+1	48	568
1330	40.5	41.9	80	110	27	52	275	0111	3600	45	63.3°	104.8°	+1	47	55%
1430	41.5	42.9	82	110	27	52	275	1150	3900	45	64.8°	104.6°	+4	548	
			:												
			: ,												
			i p			REM	ARKS 1	REMARKS AND COMMENTS	MMENT	SI.					
CHECK	OTT.	CHECK OII, AND WATER LEVELS	TER I	FVELS	PRIOR TO STARTUP	TO T	START	J.P							

TOOK CHARGE RATE IT TOOK 11.43 MINUTES TO CHARGE FROM 1000 PSI TO 2000 PSI AVERAGE AIR TEMPERATURE 12-06-91 AMBIENT = 61.02°F DISCHARGE = 92.3°F CHECK OIL AND WATER LEVELS PRIOR TO STARTUP

AVERAGE FINAL PRESSURE 3650 PSIG

31.32 CFM

11

5 = 9,396 CUBIC FEET 9,396 = 76,413.9 TOTAL CUBIC FEET = 31.32CFM X 60 X TOTAL AIR PROCESSED TO DATE = 67,017.9 + AIR PROCESSED 12-06-91

DATE DEC 09 1991

	HUMD	100%	%06	92%	86%	84%	% 88 %	87%		
88		, ,	53	51	48	49	52	51		
PPM CO	PRE AFT		-2	-1	+2	0	-2	0		
S ° F	DSCHG	65.3°	105.5°	110.8°	112.6°	110.0°	108.2°	110.3°		
TEMPS	AMBI	65.6°	74.8°	76.5°	78.1°	.8.92	78.6°	77.4°		
OIL	PRES	45	45	45	45	45	45	45		
	4	3000	3500	3500	4500	5000	5000	4900		
ESSUR	8	1000	1100	1100	1100	1100	1100	1100		
STAGE PRESSURES	2	250	270	275	275	275	275	275		
STA	1	52	52	52	52	52	52	52		
TER	PRES	26	26	26	26	26	26	26		
NG WA	OUT	64	110	112	114	114	114	114		
COOLI	IN	64	84	84	06	90	9.0	06	 	
TOTAL COOLING WATER		42.9	43.9	44.9	45.9	46.9	47.9	48.9		
	TEST METER HOUR HOURS	41.5	42.5	43.5	44.5	45.5	46.5	47.5		
	REAL	0020	0800	0060	1000	1100	1200	1300		

REMARKS AND COMMENTS

= 29.64 CFMTOOK CHARGE RATE IT TOOK 12.08 MINUTES TO CHARGE FROM 1000 PSI TO 2000 PSI AVERAGE AIR TEMPERATURE 12-09-91 AMBIENT = 75.4°F DISCHARGE = 103.24°F CHECK OIL AND WATER LEVELS PRIOR TO STARTUP AVERAGE FINAL PRESSURE 4200 PSIG

10,670.4 = 87,084.3 TOTAL CUBIC FEET 6 = 10,670.4 CUBIC FEET AIR PROCESSED 12-09-91 = 29.64CFM X 60 X TOTAL AIR PROCESSED...TO DATE = 76,413.9 +

DATE DEC 10 1991

														-	
t .	E		COOL	TOTAL COOLING WATER	ATER	ST	AGE PI	STAGE PRESSURES	RES	OIL	TEMPS	PS ° F	PPM CO	<u> </u>	
KEAL	HOUR	TEST METER HOUR HOURS		TEMP TEMP	PRES	1	2	3	4	PRES	AMBI	DSCHG	PRE 7	AFT	HUMD
0020	47.5	48.9	0.9	09	26	52	260	800	1500	45	60.4°	60.5°			93%
0800	48.5	49.9	92	108	26	52	275	1060	3400	45	65.3°	.8.66	+2	54	928
0060	49.5	50.9	78	110	26	52	280	1100	3450	45	63.3°	98.7°	+4	56	83%
0860	50.0	51.4	78	110	26	52	280	1100	3500	45	63.9°	98.7°	+2	55	808
1000	50.5	51.9	80	110	26	52	280	1110	3500	45	66.3°	102.6°	+3	53	76%
1100	51.5	52.9	80	110	26	52	280	1110	3700	45	69.1°	102.4°	+2 4	49	70%
1200	52.5	53.9	Ó8	110	26	52	280	1110	3700	45	.9.07	105.2°	+3	50	68%
1300	53.5	54.9	84	112	24	52	280	1100	3600	45	73.8°	107.6°	+2	51	58%
1330	54.0	55.4	98	114	24	52	275	1100	3600	45	76.7°	111.9°	+6	53	55%
			i ox			REM	REMARKS 1	AND COMMENTS	MMEN	LS					

TOOK CHARGE RATE IT TOOK 12.06 MINUTES TO CHARGE FROM 1000 PSI TO 2000 PSI AVERAGE AIR TEMPERATURE 12-10-91 AMBIENT = 67.71°F DISCHARGE = 98.54°F CHECK OIL AND WATER; LEVELS PRIOR TO STARTUP

= 29.68 CFM

0930 THE COMPRESSOR TEST WAS COMPLETE, CONTINUED THE PURIFICATION SYSTEM TEST. AVERAGE FINAL PRESSURE 3327 PSIG

TOTAL AIR PROCESSED TO DATE = 87,084.3 + 11,575.2 = 98,659.5 TOTAL CUBIC FEET AIR PROCESSED 12-10-91 29 = 29.68 CFM X 60 X 6.5 = 11,575.2 CUBIC

A-9

Ö

DATE DEC 11 1991

	TOTAL	TOTAL COOLING WATER	ING WA	TER	STZ	GE PF	STAGE PRESSURES	ES	OIL	TEMPS	S: °F	PPM CO	ပ္ပ	
TEST MI	METER HOURS	IN	OUT	PRES	н	2	е	4	PRES	AMBI	DSCHG	FILTER AFT PRE	PRE	HUMD
54.0	55.4	58	58	25	52	275	1050	3600	45	55.1°	61.2°	+4		866
55.0	56.4	80	110	25	52	280	1120	3750	45	66.5°	102.1°	+4	58	78%
56.0	57.4	84	112	25	52	285	1150	4000	45	72.5°	109.7°	+4	99	70%
57.0	58.4	84	112	25	52	285	1190	4100	45	.8.94	107.4	+2	57	%99
58.0	59.4	88	116	25	52	285	1160	4100	45	71.2°	106.6°	+3	58	67%
59.0	60.4	88	116	25	52	285	1160	4100	45	.8.67	109.1°	+3	56	61%
0.09	61.4	88	116	25	52	285	1160	4000	45	80.7°	111.0°	+5	58	819
		: 												
					REM	ARKS	REMARKS AND COMMENTS	OMMEN	LS					

II AVERAGE AIR TEMPERATURE 12-11-91 AMBIENT = 71.8°F DISCHARGE = 101.01°F CHARGE RATE IT TOOK 11 16 MINUTE TO CHARGE FROM 1000 PSI TO 2000 PSI CHECK OIL AND WATER LEVELS PRIOR TO STARTUP AVERAGE FINAL PRESSURE 3950 PSIG

32.08 CFM

AIR PROCESSED 12-11-91 = 32.08 CFM X 60 X 6 = 11,548.8 CUBIC FEET TOTAL AIR PROCESSED TO DATE = 98,659.5 + 11,548.8 = 110,208.3 TOTAL CUBIC FEET

DATE DEC 12 1991

										-					
	, , , , , , , , , , , , , , , , , , ,		COOL	ING WA	ATER	ST	AGE PE	STAGE PRESSURES		OIL	TEMPS	PS ° F	PPM CO	0 6	
KEAL	HOUR	HOURS	TEMP	TEMP	PRES	1	2	3	4	PRES	AMBI	DSCHG	AFT PRE	PRE	HUMD
0730	60.0	61.4	09	09	25	52	270	1080	3700	45	58.4°	64.5°			100%
0830	61.0	62.4	80	110	25	52	280	1100	3750	45	60.7°	97.2°	+1	44	896
0830	62.0	63.4	80	112	25	52	280	1120	3750	45	62.4°	97.3°	+7	46	94%
1030	63.0	64.4	82	112	25	52	280	1120	3700	45	65.8°	102.8°	+5	48	8 22 %
1130	64.0	65.4	84	112	25	52	280	1100	3600	45	66.3°	102.1°	+7	48	84%
1230	65.0	66.4	86	112	25	52	275	1100	3600	45	.9•99	104.3°	8+	50	86%
1330	0.99	67.4	86	112	25	52	275	1110	3650	45	68.4°	101.7°	+2	46	82%
1430	67.0	68.4	98	114	25	52	175	1100	3500	45	68.6°	103.6°	9+	44	85%
						REM	ARKS A	REMARKS AND COMMENTS	OMMENT	Si					
					1	i									

11.75 MINUTES TO CHARGE FORM 1000 TO 2000 = 30.47 CFM AVERAGE AIR TEMPERATURE 12-12-91 AMBIENT = 64.65°F DISCHARGE = 96.69°F CHECK OIL AND WATER LEVEL PRIOR TO START UP AVERAGE FINAL PRESSURE 3656 PSIG TOOK CHARGE RATE IT TOOK

+ 12,797.4 = 123,005.7 TOTAL CUBIC FEET AIR PROCESSED 12-12-91 = 30.47 CFM X 60 X 7 = 12,797.4 CUBIC FEET TOTAL AIR PROCESSED TO DATE = 110,208.3 + 12,797.4 = 123,005.7 TOTAL

A-11

DATE DEC 13 1991

,	[[TOTAL COOLING WATER	COOL	ING W	ATER	STZ	AGE PI	STAGE PRESSURES	ES	OIL	TEMPS	S ° F	PPM CO	0 6	
KEAL TIME	HOUR	HOUR HOURS		TEMP TEMP	PRES	н	2	е	4	PRES	AMBI	DSCHG	AFT	PRE	HUMD
0020	67.0	68.4	09	09	25	52	260	1050	3700	45	59.8°	.6.63	1	ı	100%
0800	68.0	69.4	80	110	25	52	275	1080	4500	45	.2.99	100.4°	8+	48	100%
0060	0.69	70.4	80	110	25	52	275	1080	5050	45	.2.59	101.3°	6+	42	96%
1000	70.0	71.4	82	110	25	52	275	1080	5000	45	.9.07	103.6°	+5	49	948
1100	71.0	72.4	98	112	25	52	275	1080	4850	45	71.8°	106.1°	+4	51	85%
1200	72.0	72.0 73.4	98	112	25	52	275	1080	4800	45	.6.07	105.8°	+4	49	82%
			() 32.1												
			0												
			<u>ن</u> اب												
									Hittigatoo	Ç					

REMARKS AND COMMENTS

11.50 MINUTES TO CHARGE FORM 1000 TO 2000 = 31.13 CFM 96.18°F AVERAGE AIR TEMPERATURE 12-13-91 AMBIENT = 67.21°F DISCHARGE = CHECK OIL AND WATER LEVEL PRIOR TO STARTUP AVERAGE FINAL PRESSURE 4650 PSIG TOOK CHARGE RATE IT TOOK

AIR PROCESSED 12-13-91 = 31.13 CFM X 60 X 5 = 9,339 CUBIC FEET TOTAL AIR PROCESSED-TO DATE = 123,005.7 + 9,339 = 132,344.7 TOTAL CUBIC FEET

A-12

DATE DEC 16 1991

PPM CO	AFT DRE HIMD	7 17		52	5 2 5 4 9	52 4 4 9 4 8	25 52 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 5 2 4 4 8 4 4 8 4 4 9 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	52 52 52 52 52 52 52 52 52 52 52 52 52 5	5 5 2 4 4 4 8 4 4 8 4 4 9 4 4 9 4 4 9 4 9 4 9
TEMPS °F	I DSCHG	5° 44.7°		0° 92.8°	0° 92.8 3° 91.7	0° 92.8 3° 91.7 9° 91.7	0° 92.8 3° 91.7 9° 91.7 2° 91.9	0° 92.8 3° 91.7 9° 91.9 2° 91.8 6° 97.8	0° 92.8 3° 91.7 9° 91.9 6° 97.8 0° 98.2	92.8	92.8
OIL	PRES AMBI	45 44.		45 49.	5 49 5 53	5 53 52 52	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 3 6 8 6 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	5 5 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	53 53 59 60 60 60	52 53 60 60
	4	0 3200		0 3400			 				
PRESSURES	3	0001 0	_	0 1000							
STAGE	1 2	52 260		52 280	2 2						
ATER	PRES	24		25		25 25 25 25	25 25 25 25 25	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2
COOLING WATER		46		104	104	104					
	H	46		09	60	64 68	64 64 68 70.	66 64 68 721	64 68 68 70 72 74	64 64 68 68 72 72 72	64 64 65 68 68 68 68 68 68 68 68 68 68 68 68 68
TOTAL		73.4		74.4	74.	74 75 76	74 75 75 76 77	74 75 77 77 78	74 75 77 77 78 79	74 75 75 77 77 77 78 78 79 79	74 77 77 77 77 78 77 79 79 79 79 79 79 79 79 79 79 79 79
E G E	HOUR	72.0		73.0	73.0	73.0	73.0 74.0 75.0 76.0	73.0 74.0 75.0 75.0 76.0 77.0	73.0 74.0 75.0 76.0 77.0 77.5	73.0	73.0 74.0 75.0 76.0 77.0 77.5
T K G C	TIME	0020		0800	00800	0800	0800 0900 1000 1100	0800 0900 1000 1100 1200	0800 0900 1000 1100 1200	0800 0900 1000 1100 1200	0800 0900 1000 1200 1250

A-13

2.000 2.000 2.000 3.000 5.000

Memorandum

To: Dave Sullivan, EDU

From: G. Deason, Code 5130

Subject: Analysis of air samples from NEDU test #91-50. Mako

5415 compressor evaluation.

1. In accordance with your request, the air samples delivered to the gas analysis lab were analyzed, and found to contain the following:

Component	5 Hr. Test	25 Hr. Test
Oxygen	21%	21%
Nitrogen	78.1%	78.1%
Argon	0.9%	0.9%
Carbon Dioxide	389 PPM	366 PPM
Carbon Monoxide	4.4 PPM	4.7 PPM
Total Hydrocarbons*	1.4 PPM	1.4 PPM
Total Halogens**	<0.5 PPM	<0.5 PPM
Methane	1.4 PPM	1.4 PPM
Acetylene	<0.1 PPM	<0.1 PPM
Freon 113	<0.1 PPM	<0.1 PPM
Methyl Ethyl Ketone	<0.1 PPM	<0.1 PPM
Benzene	<0.1 PPM	<0.1 PPM
Toluene	<0.1 PPM	<0.1 PPM
Methylchloroform	<o.1 ppm<="" td=""><td><0.1 PPM</td></o.1>	<0.1 PPM
C4+	<0.1 PPM	<0.1 PPM

^{*}Expressed as methane equivalents

2. The above samples showed no appreciable contamination; all components were within the acceptable range (as per the U.S. Navy Diving Air Handbook).

Glen Deason Chemist

^{**} Expressed as methyl chloride equivalents.

10 December 1991

Memorandum

To: Dave Sullivan, NEDU

From: G. Deason, Code 5130

Subject: Analysis of air sample from Mako 5415 compressor,

50 hour sample.

1. In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Component	Sample
Oxygen Nitrogen Argon	21% 78.1% 0.9%
Carbon Dioxide	372 PPM
Carbon Monoxide	9.4 PPM
Total Hydrocarbons*	1.6 PPM
Total Halogens**	<0.5 PPM
Methane	1.6 PPM
Acetylene	<0.1 PPM
Acetone	<0.1 PPM
Freon 113	<0.1 PPM
Methyl Ethyl Ketone	<0.1 PPM
Ethylene	<0.1 PPM
Toluene	<0.1 PPM
Benzene	<0.1 PPM
Formaldehyde	<0.1 PPM
C4+	<0.1 PPM

^{*}Expressed as methane equivalents.

Glen Deason Chemist

^{**}Expressed as methyl chloride equivalents.

^{2.} The above sample showed no appreciable contamination; all components were within the acceptable range of the U.S. Navyon Diver's Air Purity ShandardsAir Furity Shandards.

17 December 1991

Memorandum

To: Dave Sullivan, NEDU

From: Glen Deason, Code 5130

Subject: Analysis of air sample from Mako 5415 compressor

purification system, 75 hr. test.

1. In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Component	Results
Oxygen	21%
Nitrogen	78.1%
Argon	0.9%
Carbon Dioxide	303 PPM
Carbon Monoxide	31.4 PPM
Total Hydrocarbons*	1.9 PPM
Total Halogens	<0.5 PPM
Methane	1.9 PPM
Ethane	<0.1 FFM
Acetone	<0.1 PPM
Acetylene	<0.1 PPM
Methyl Ethyl Ketone	<0.1 PPM
Freon 113	<0.1 PPM
Benzene	<0.1 PPM
Toluene	<0.1 PPM
C4+	<0.1 PPM

^{*}Expressed as methane equivalents

2. The above sample showed appreciable contamination; all components were not within the acceptable range of the USN Diver's Air Purity Standards.

Glen Deason Chemist

LEADING PARTICULARS

1.1 <u>DESIGN DESIGNATION</u>
Flange coupled motor driven machine5415
V-belt driven machine, electric or internal combustion powered5415
1.2 <u>TECHNICAL DATA - GENERAL</u>
TypeSingle acting, four stage, 90° Vee
Cooling
Direction of rotation viewed from drive endAnti-clockwise
Number of valvesOne combined suction and delivery per stage
Type of valveFlat plate, low lift
Mounting
Lifting points
<u>TEMPERATURES</u>
Minimum ambient temperature0°C (32°F)
Maximum compressor air intake temperature
Maximum cooling air temperature (Radiator Sets)
Maximum water inlet temperature
Temperature rise across machine
SPEEDS
Maximum speed
Minimum speed725 rev/min
PRESSURES COMMUNICACIÓN DE COMUNICACIÓN DE COMMUNICACIÓN DE COMUNICACIÓN DE COMUNICACIÓN DE COMUNICACIÓN DE COMUNICACIÓN DE COMUNICACIÓN DE COMUNICACIÓN DE COM
Minimum working pressure
Maximum working pressure
Maximum water pressure
Oil pressure

LUBRICATION Cylinder lubricator capacity...... litre (1.7 U.K. pints) Cylinder lubricator feed rate (3 & 4 stages).....1 rev every 60 secs. ± 10 sec Recommended oil......Shell Turbo T78 Recommended grease (for assembly)......Shell Alvania R3 Synthetic lubricants......See: separate section COOLING Water.....Mains or water pump circulation INTERNAL DIMENSIONS CONNECTIONS Water inlet......Rp 3/4 (3/4" bsp) WATER TEST PRESSURES Second stage cooler......42 bar (610 psig)

Fourth stage cooler525 l	bar (7600	psig)
Water jacket7.6	bar	(110	psig)
UNIT WEIGHT (Approx)			
Bare machine520	Kgf	(1140	lbs)
Flange mounted machine819	Kgf	(1806	lbs)
Radiator set on bedplate983	Kgf	(2168	lbs)

5000 SERIES Watercooled Performance 10-75 HP

MEDIUM PRESSURE 200-500 PSIG

INTERMEDIATE PRESSURE 600-1235 PSIG

HIGH PRESSURE 2000 - 5000 PSIG

MODEL	НР	RPM	PSIG	FAD -
	10	1184	500	21.6
5212	15	1435	500	26.8
٠	20	1742	500	33.3
	20	1184	500	45.1
5215	30	1742	500	66.6
	50	1184	500	116.5
5236	75	1742	500	170.3
	15	990	1235	19.6
5315	20	1435	1235	28.1
	40	990	1235	52.4

H ill-iti	rukküki	20	990	5000	20 18.9
	5415	25	1184	5000	22.4
		30	1435	5000	27.1
	5.407	50	1184	5000	60.7
	5436	60	1435	5000	73.6

1435

50

75.2

990

1235

5336

We reserve the right to after details and specifications without notice.