Diseño y Verificación de Dispositivo Portable para la Adquisición de ECG Abdominal y Materno

Autor:

Álvaro García Ávila

Directores:

Almudena Rivadeneyra Torres Víctor Toral López

Contenidos 1/15

Bloque 1. Introducción	Motivación del proyecto	Objetivos He	erramientas <i>software</i> usadas	
Bloque 2. Instrumento	Esquema lógico	Integrados más relevantes	Diseño físico sobre	PCB Firmware
Bloque 3. Kit Expansión	Fundamentos SpO ₂	Diseño hardware	Firmware adicional	Relación con BP
Bloque 4. Aplicación Python	Control del instrumento Tratamiento y vis		ilización de muestras	
Bloque 5. Conclusiones	Objetivos logrados	Líneas de trabajo futuras		

Motivación del proyecto

Fig 1. Ejemplo de sistema de correas típico empleado en un hospital.

Planteamiento de los objetivos

Herramientas software utilizadas

Software EDA

Control, procesado de muestras y representación

Diseño firmware

Simulación de circuitos

Copias de seguridad y gestión de versiones

Esquema lógico del instrumento planteado

Vistazo al frontend ADS1299

PCB del instrumento diseñado

Fig 6. Modelo 3D de la PCB del instrumento.

Fig 7. Planos de cobre de las caras inferior y superior.

Diseño firmware FECG: Implementación PSoC Creator

Fig 8. Esquemático de PSoC Creator con los componentes necesarios para las comunicaciones.

Fig 9. Esquemático de PSoC Creator con los bloques necesarios para la adquisición del SoC, depuración, control del ADS1299.

Control y visualización mediante Python

Fig 10. Diagrama de interacción entre los programas de Python y el resto del proyecto.

43 45 49 52 53 55 56 59 60 62 63 66 75 82 91 97

Verificación de funcionamiento: Firmware y Python

Fig 11. Señales de ECG capturadas desde generador de señales y procesadas mediante *scripts* de Python desarrollados.

Kit de expansión SpO₂: Fundamentos y *hardware*

Fig 13. Diagrama de bloques del hardware necesario para realizar la adquisición del SpO₂.

Fig 14. Variación en la absorción lumínica debido a la sístole y la diástole.

Fig 15. Desfase entre el piro R del ECG y la llegada de la sangre a las extremidades del cuerpo.

Kit de expansión SpO₂: Implementación en PSoC Creator

Fig 17. ADC para muestreo de tensión del fotodiodo.

Kit de expansión SpO₂: Control con FreeRTOS

Fig 19. Diagrama de la comunicación entre las tareas de FreeRTOS para adquisición de SpO₂.

Conclusiones y trabajo futuro

Objetivos logrados

Diseñado instrumento para adquisición de FECG

Desarrollado *firmware* para adquisición de FECG (sin SO)

Diseñado kit de expansión con electrónica necesaria adquisición de SpO₂

Desarrollado *firmware* para adquisición de SpO₂ (sin y con SO)

Implementado control y procesado remoto en PC mediante Python

Líneas de trabajo futuras

Depuración y verificación del instrumento físico

Diseño de encapsulado para PCB del instrumento

Aglutinar *firmware* para realizar adquisición simultánea de FECG y SpO₂

Desarrollar *firmware* para guardado de respaldo de las muestras en microSD

Diseñar y construir PCB del kit de expansión para la medida del SpO₂

Diseñar interfaz gráfica para el manejo de los *scripts* de Python para control y procesado

Implementar librería de Python para cálculo de la presión sanguínea a partir de ECG y SpO₂

Coste material del proyecto

#	Item	Qty	Rate	Total
1	Assembled PCBs (Simple) Amazing Assembly with simple board configuration	3x	€ 241,66	€ 724,98
	Project: ELHJDSVJ Our Order No: 2024-22963			
2	Tracked Shipping Tracked Shipping Project: ELHJDSVJ Our Order No: 2024-22963	1x	€ 14,99	€ 14,99
			Net Total	€ 739,97

¡Gracias por su atención! ¿Preguntas, cuestiones?