1

GATE 2022 IN.53

EE23BTECH11010 - VENKATESH BANDAWAR*

Question: In a unity-gain feedback control system, the plant $P(s) = \frac{0.001}{s(2s+1)(0.01s+1)}$ is controlled by a lag compensator $C(s) = \frac{s+10}{s+0.1}$ The slope (in dB/decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega = 3$ rad/s is _____ (in integer) (GATE 2022 IN)

Solution:

Parameter	Description	Value
P(s)	Plant Transfer Function	$\frac{0.001}{s(\frac{s}{0.5}+1)(\frac{s}{100}+1)}$
C(s)	Lag Compensator	$\frac{100(\frac{s}{10}+1)}{\frac{s}{0.1}+1}$
L(s)	Loop gain= $P(s)C(s)$	$\frac{0.1\left(\frac{s}{10}+1\right)}{s\left(\frac{s}{0.5}+1\right)\left(\frac{s}{100}+1\right)\left(\frac{s}{0.1}+1\right)}$
ω	Angular Frequency	3rad/s

TABLE I: Given Parameters list

Parameter	Range	Equation
$ L(\omega) $	$\omega < 0$	0
	$0 < \omega < 0.1$	$-20.0 * log_{10}(w)$
	$0.1 < \omega < 0.5$	$-20.0*(2log_{10}(w) - 0.1)$
	$0.5 < \omega < 10$	$-20.0*(3log_{10}-0.1+log_100.5)$
	$10 < \omega < 100$	$-20.0*(2log_{10} + 0.9 + log_100.5)$
	$\omega > 100$	$-20.0*(3log_{10}-1.9+log_100.5)$

TABLE III: Caption

$$Gain(K) = \lim_{s \to 0} L(s) \tag{1}$$

Excluding s and $\frac{1}{s}$, From Table Table I

$$K = 0.1 \tag{2}$$

$$|L(s)| = 20\log_{10}K\tag{3}$$

$$= -20dB \tag{4}$$

Here, 10, 0, 0.5, 100, 0.1 are corner frequencies of loop gain L(s)

Corner		
Frequency	Description	Equation
10	Zero	$ L(\omega) = 20.0 * (log_{10}(w) - 1.0)$
0	Pole	$ L(\omega) = -20.0 * log_{10}(w)$
0.1	Pole	$ L(\omega) = -20.0 * (log_{10}(w) - 0.1)$
0.5	Pole	$ L(\omega) = -20.0 * (log_{10}(w) + log_{10}(0.5))$
100	Pole	$ L(\omega) = -20.0 * (log_{10}(w) - 2.0)$

TABLE II: Caption

Slope of Bode magnitude plot (at $\omega = 3$) = -60 dB/decade

Fig. 1: Pink Line = Bode magnitude plot of loop gain