

LAB REPORT

COURSE TITLE : Database Systems Lab

COURSE CODE : CSE 208

LAB REPORT NO. : 02

SUBMISSION DATE : 13-08-2025

SUBMITTED TO

NAME: Farha Akhter Munmun

DEPT. OF: Computer Science and Engineering (CSE)

Bangladesh University of Business &

Technology (BUBT)

SUBMITTED BY

NAME : Shadman Shahriar

ID NO. : 20245103408

INTAKE : 53

SECTION: 1

PROGRAM: B.Sc. Engg. in CSE

Database Systems Lab

Prerequisites

Creating a new database:

```
CREATE DATABASE bank_408;

Creating six tables: account , branch , depositor , customer , loan and borrower

CREATE TABLE account (account_number char(5), branch_name varchar(32), balance int(7));
CREATE TABLE branch (branch_name varchar(32), branch_city varchar(32), assets int(8));
CREATE TABLE depositor (customer_name varchar(32), account_number char(5));
CREATE TABLE customer (customer_name varchar(32), customer_street varchar(32), customer_city varchar(32));
CREATE TABLE loan (loan_number char(5), branch_name varchar(32), amount int(8));
CREATE TABLE borrower (customer_name varchar(32), loan_number char(8));
```

Inserting data to the tables:

```
-- Inserting data into `account`
INSERT INTO account VALUES("A-101", "Downtown", 500);
INSERT INTO account VALUES("A-102", "Perryridge", 400);
INSERT INTO account VALUES("A-201", "Brighton", 900);
INSERT INTO account VALUES("A-215", "Mianus", 700);
```

```
INSERT INTO account VALUES("A-217", "Brighton", 750);
INSERT INTO account VALUES("A-222", "Redwood", 700);
INSERT INTO account VALUES("A-305", "Round Hill", 350);
-- Inserting data into `branch`
INSERT INTO branch VALUES("Brighton", "Brooklyn", 7100000);
INSERT INTO branch VALUES("Downtown", "Brooklyn", 9000000);
INSERT INTO branch VALUES("Mianus", "Horseneck", 400000);
INSERT INTO branch VALUES("North Town", "Rye", 3700000);
INSERT INTO branch VALUES("Perryridge", "Horseneck",
1700000);
INSERT INTO branch VALUES("Pownal", "Bennington", 300000);
INSERT INTO branch VALUES("Redwood", "Palo Alto", 2100000);
INSERT INTO branch VALUES("Round Hill", "Horseneck",
8000000);
-- Inserting data into `depositor`
INSERT INTO depositor VALUES("Hayes", "A-102");
INSERT INTO depositor VALUES("Johnson", "A-101");
INSERT INTO depositor VALUES("Johnson", "A-201");
INSERT INTO depositor VALUES("Jones", "A-217");
INSERT INTO depositor VALUES("Lindsay", "A-222");
INSERT INTO depositor VALUES("Smith", "A-215");
INSERT INTO depositor VALUES("Turner", "A-305");
-- Inserting data into `customer`
INSERT INTO customer VALUES("Adams", "Spring",
"Pittsfield");
INSERT INTO customer VALUES("Brooks", "Senator",
"Brooklyn");
INSERT INTO customer VALUES("Curry", "North", "Rye");
INSERT INTO customer VALUES("Glenn", "Sand Hill",
"Woodside");
INSERT INTO customer VALUES("Green", "Walnut", "Stamford");
INSERT INTO customer VALUES("Hayes", "Main", "Harrison");
INSERT INTO customer VALUES("Johnson", "Alma", "Palo
Alto");
INSERT INTO customer VALUES("Jones", "Main", "Harrison");
```

```
INSERT INTO customer VALUES("Lindsay", "Park",
"Pittsfield");
INSERT INTO customer VALUES("Smith", "North", "Rye");
INSERT INTO customer VALUES("Turner", "Putnam",
"Stamford");
INSERT INTO customer VALUES("Williams", "Nassau",
"Princeton");
-- Inserting data into `loan`
INSERT INTO loan VALUES("L-11", "Round Hill", 900);
INSERT INTO loan VALUES("L-14", "Downtown", 1500);
INSERT INTO loan VALUES("L-15", "Perryridge", 1500);
INSERT INTO loan VALUES("L-16", "Perryridge", 1300);
INSERT INTO loan VALUES("L-17", "Downtown", 1000);
INSERT INTO loan VALUES("L-23", "Redwoord", 2000);
INSERT INTO loan VALUES("L-93", "Mianus", 500);
-- Inserting data into `borrower`
INSERT INTO borrower VALUES("Adams", "L-16");
INSERT INTO borrower VALUES("Curry", "L-93");
INSERT INTO borrower VALUES("Hayes", "L-15");
INSERT INTO borrower VALUES("Johnson", "L-14");
INSERT INTO borrower VALUES("Jones", "L-17");
INSERT INTO borrower VALUES("Smith", "L-11");
INSERT INTO borrower VALUES("Smith", "L-23");
INSERT INTO borrower VALUES("Williams", "L-17");
```

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Figure - 1.1. account relation

branch_name	branch_city	assets
Brighton	Brooklyn	7100000
Downtown	Brooklyn	9000000
Mianus	Horseneck	400000
North Town	Rye	3700000
Perryridge	Horseneck	1700000
Pownal	Bennington	300000
Redwood	Palo Alto	2100000
Round Hill	Horseneck	8000000

Figure - 1.2. branch relation

customer_name	account_number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

Figure - 1.3. depositor relation

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

Figure - 1.4. customer relation

loan_number	branch_name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwoord	2000
L-93	Mianus	500

Figure - 1.5. loan relation

customer_name	loan_number
Adams	L-16
Curry	L-93
Hayes	L-15
Johnson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17

Figure - 1.6. borrower relation

1. Primary Key Definition

Primary key while table creation:

```
CREATE TABLE customer(customer_name varchar(30) PRIMARY
KEY, c_street varchar(20), c_city varchar(30));
```

Primary key after table creation:

```
ALTER TABLE customer ADD PRIMARY KEY(customer_name);
```

A table can only contain **one primary key**. The column that has unique values can become the primary key.

2. Composite Primary Key Definition

When we construct a primary key using multiple columns, it is referred to as a **Composite Primary Key**. This is demonstrated in the **borrower** table.

Composite primary key while table creation:

```
CREATE TABLE borrower(customer_name varchar(30),
loan_number varchar(10), PRIMARY KEY(customer_name,
loan_number));
```

Composite primary key **after** table creation:

```
ALTER TABLE customer ADD PRIMARY KEY(customer_name, loan_number);
```

3. Primary Key Definition of Multiple Tables

Definition of Primary Key in the given six tables:

```
ALTER TABLE account ADD PRIMARY KEY(account_number);
ALTER TABLE branch ADD PRIMARY KEY(branch_name);
ALTER TABLE depositor ADD PRIMARY KEY(customer_name, account_number);
```

```
ALTER TABLE customer ADD PRIMARY KEY(customer_name);
ALTER TABLE loan ADD PRIMARY KEY(loan_number);
ALTER TABLE borrower ADD PRIMARY KEY(customer_name,
loan_number);
```

←T	− →		\triangledown	account_number	branch_name	balance
	Edit	≩ Copy	Delete	A-101	Downtown	500
	Edit	≩ Copy	Delete	A-102	Perryridge	400
	Edit	≩ Copy	Delete	A-201	Brighton	900
	Edit	≩ Copy	Delete	A-215	Mianus	700
	Edit	≩ Copy	Delete	A-217	Brighton	750
	Edit	≩ Copy	Delete	A-222	Redwood	700
	Edit	≩ € Copy	Delete	A-305	Round Hill	350

Figure - 1.7. account relation

←T→		∇	branch_name	branch_city	assets
☐ <i>⊘</i> Edit	≩ Copy	Delete	Brighton	Brooklyn	7100000
☐ Ø Edit	Copy	Delete	Downtown	Brooklyn	9000000
☐ <i>⊘</i> Edit	≩ Copy	Delete	Mianus	Horseneck	400000
☐ Ø Edit	Copy	Delete	North Town	Rye	3700000
☐ <i>⊘</i> Edit	≩ Copy	Delete	Perryridge	Horseneck	1700000
☐ Ø Edit	Copy	Delete	Pownal	Bennington	300000
☐ <i>⊘</i> Edit	≩ Copy	Delete	Redwood	Palo Alto	2100000
☐ Ø Edit	≩ Copy	Delete	Round Hill	Horseneck	8000000

Figure - 1.8. branch relation

Figure - 1.9. depositor relation

Figure - 1.10. customer relation

Figure - 1.11. loan relation

$\leftarrow T$	→		\triangledown	customer_name	loan_number
		≩ Сору	Delete	Adams	L-16
	Edit	≩ Copy	Delete	Curry	L-93
	Edit	≩ Copy	Delete	Hayes	L-15
	Edit	≩ Copy	Delete	Johnson	L-14
	Edit	≩ Copy	Delete	Jones	L-17
	Edit	≩ Copy	Delete	Smith	L-11
		≩ Copy	Delete	Smith	L-23
	Edit	≩ Copy	Delete	Williams	L-17

Figure - 1.12. borrower relation

Lab Tasks

1. Find the names of all branches in the loan relation

SELECT DISTINCT branch_name FROM loan;

Figure - 1.13. Task 1

2. Find all loan numbers for loans made at the

Perryridge branch with loan amounts greater than
300

```
SELECT loan_number FROM loan WHERE branch_name="Perryridge"
AND amount > 300;
```


<u>Figure - 1.14. Task 2</u>

3. Find all the loan numbers of the customers who has loan either Perryridge branch or Downtown branch

SELECT loan_number FROM loan WHERE branch_name
IN("Perryridge", "Downtown");

Loan_number

Loan

Figure - 1.15. Task 3

4. Find all the loan numbers of the customers who has loan either **Perryridge** branch or **Downtown** branch or **Mianus** branch

SELECT loan_number FROM loan WHERE branch_name
IN("Perryridge", "Downtown", "Mianus");

Figure - 1.16. Task 4

5. Find the names of all customers who are not from Stamford or Princeton or Harrison city

```
SELECT customer_name FROM customer WHERE customer_city
NOT IN("Stamford", "Princeton", "Harrison");
```


Figure - 1.17. Task 5

6. Find the largest, minimum, and average account balance in the **account** relation

```
SELECT Max(balance) "Maximum", Min(balance) "Minimum",
Avg(balance) "Average" FROM account;
```

Maximum	Minimum	Average
900	350	614.2857

Figure - 1.18. Task 6

7. Find the total number of customer from **customer** relation

```
SELECT Count(customer_name) "Total no. of Customers" FROM
customer;
```

Total no. of Customers

12

<u>Figure - 1.19. Task 7</u>

8. Find the loan number of those loans with loan amounts between 400 and 800 (inclusive)

```
SELECT loan_number FROM loan WHERE amount \geqslant 400 AND amount \leqslant 800;
```

Alternative approach:

SELECT loan_number FROM loan WHERE amount BETWEEN 400 AND 800;

Figure - 1.20. Task 8

9. Find the names of all customers whose name start with **G**

SELECT customer_name FROM customer WHERE customer_name LIKE
"G%";

Figure - 1.21. Task 9

10. Find the names of all customers whose name ends with s

SELECT customer_name FROM customer WHERE customer_name LIKE
"%s";

Figure - 1.22. Task 10

11. Find the names of all customers whose name has ao in 2nd position

SELECT customer_name FROM customer WHERE customer_name LIKE
"_o%";

Figure - 1.23. Task 11

12. Find the names of all customers whose name has a in any position except 1st and last letter

SELECT customer_name FROM customer WHERE customer_name LIKE
"%o%";

Figure - 1.24. Task 12

13. Find the length of the name of all customers from customer relation

SELECT customer_name, Length(customer_name) "Length" FROM
customer;

Figure - 1.25. Task 13

14. Find 1st three characters of each customer name from customer relation

```
SELECT customer_name, SUBSTR(customer_name, 1, 3) "Name
Initials" FROM customer;
```


Figure - 1.26. Task 14

SUBSTR function definition:

SUBSTR(column_name, start_position, length_of_substring)

