北京工业大学 2010-2011 学年第一学期期末 复变函数与积分变换 课程试卷

考试方式: 闭卷		考试时间。2010年1月10日			
79	#8	性名			
生: 本试卷其八大题, 满 得分登记(由阅卷教师填	13)				
題号	E PU	h K	1	12年前	
分数					
一、填空题(每空	3分, 共30	分)	,	n. h. si	
一、 填空题(每空 $1, z = -1 + i$. 则 $Re(z) =$	-1	Arg z =	辛ん 十	162	
z = -1 + 1, where $z = -1$	60 M	- V +	c. b. 13-44	2卷7	
2、设函数 $\lim_{z \to (1+\epsilon)} \frac{bz}{az - 1} =$	2-2/解析, 原	la l b		- 7	
$\lim_{z \to (1+\epsilon)} az - 1$	2 21 31 71 7		0 3	12	
3、解析函数 f(z)= y³-	$3x^2y + i(x^3 - 3)$	3xv2). WI f'(z	, D-bxy+	1(3x2-34)	
35 4F11111 4C J (2 J - J					
4、幂级数 $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$ 的	收敛区域为	0.2)			
5、 $z=0$ 是函数 $f(z)=$	$\frac{1}{z^2(e^t+1)}(t)$	2 级股点。			
6. $\int_{3\pi}^{2\pi} e^{\frac{2z}{3}} dz = 0$		32e36) Vigo	(1)	
7. 积分 ∫ δ(t)costdt					
$8 $ 南数 $f(t) = \begin{cases} 1, & t \le \\ 0, & t \end{cases}$	1 的經濟函数为 也	3. Sin VV	w 6		

二、计算题 (每题5分, 共25分)

$$W_2 = 6\frac{5}{3}\lambda + i\sin\frac{5}{3}\lambda = \frac{1}{2} - \frac{13}{2}i - -15$$

3. 解方称
$$\cos z = 1$$
4. 求函数 $w = x^2 + ixy$ 的可导点。

解: $C_{\cos x} = \frac{e^{ix} + e^{-ix}}{2} = 133$

事代 f_{i} : $C_{\cos x} = \frac{e^{ix} + e^{-ix}}{2} = 133$

事代 f_{i} : $C_{\cos x} = \frac{e^{ix} + e^{-ix}}{2} = 133$

事代 f_{i} : $C_{\cos x} = \frac{e^{ix} + e^{-ix}}{2} = 133$
 f_{i} : f_{i}

$$= -i \ln(1+41^2-1)$$
=-i \ln 1

Z = Arc (S) $= -i Ln (1+A)^{2}-1$ = 23 $= -i Ln (1+A)^{2}-1$ $= -i Ln (1+A)^{2}-1$

=-i(ln0+2xi)=22(k=0,以北山) 于是主数权在(0,0)列子。 5、求例数 f(z)= 21 的分点、并判断以类型、若是极点指出它的级。 (A) 星生 f(z) f(z) f(z) を わヌ = 0 251

$$\frac{2 - \sin x}{x^{2}} = \frac{2 - (x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \frac{1}{1!}x^{2} + \frac{1}{3!}x^{5} + \cdots)}{x^{2}}$$

$$= \frac{1}{3!} 2^{-4} - \frac{1}{5!} 2^{-2} + \frac{1}{7!} - \frac{1}{3!} 2^{-2} + \cdots + 2 \le 1$$

① 18-5 mx = g(x) 0月 g(0)=0. g"(0)=1-B0=0351 9"(0)= Sin 0=0. 9"(0)= Coso=1· 以=0的分(2)=後原生, はるか(2) 内所

設商数 $f_1(t) = \begin{cases} 0, t < 0 \\ e^{-\beta t}, t \ge 0 \end{cases}$, $f_2(t) = \begin{cases} 1, |t| \le 1 \\ 0, |t| t \end{cases}$, 来 $f_1(t) * f_2(t)$ 的数据。 $= \frac{e^{-t(sw+\beta)}}{-(iw+\beta)} = \int_{-\infty}^{+\infty} f_i(t) e^{iwt} dt = \int_{0}^{+\infty} e^{t(iw+\beta)} dt$ $= \frac{e^{-t(sw+\beta)}}{-(iw+\beta)} = \frac{e^{-tiw} e^{t\beta}}{-(iw+\beta)} = \frac{e^{-tiw} e^{-t\beta}}{e^{-tiw} e^{-t\beta}} = \frac{e^{-tiw}}{e^{-t\beta}} = \frac{e^{-tiw}}{e^{-t\beta}}$ Fif2(+)] = | the falt) = int dt = | e-int dt = eint | 1 = 2800 251 · Fifith fitt) = Fifitt) of ifitt) = B-DW 2 Sinw W $=\frac{2 \operatorname{SinW}(\beta-\widehat{\nu}N)}{\operatorname{W}(W^2+\beta^2)}$ [2] 四、把函数 $f(z)=\frac{2^2(1+z)^2}{z^2(1+z)^2}$ 在指定圆环域内展开成洛朗级数。(10 分) $f(x) = \frac{1}{x^2} \cdot \frac{1}{(+x)^2} = \frac{1}{x^2} \cdot$ 2. 0 2 1 2 +1 | 2 | $f(x) = \frac{1}{(x+1)^2 \left[1-(x+1)\right]^2} = \frac{1}{(x+1)^2} \left[\frac{1}{1+(x+1)}\right]$ $= \frac{1}{(2+1)^2} \left(\sum_{n=0}^{\infty} (2+1)^n \right)^n = \frac{1}{(2+1)^2} \sum_{n=1}^{\infty} \Lambda (2+1)^{n-1}$ $=\frac{10}{5} n (2+1)^{n-\frac{1}{2}}$

五、设施线C:|z|=2、计算下列积分。(10分)

1.
$$\iint z \, dz$$

2.
$$\iint_{C} \frac{e^{\frac{1}{z}}}{(z-i)(z-1)^{s}} dz$$

$$AF = 1$$
 C: $X = 269$ ($0 \le \theta \le 22$) 251

$$= \int_{0}^{2\pi} (268 - 2i5\pi\theta) \cdot 2 \cdot (-5\pi\theta + i6\pi\theta) d\theta$$

$$= 4i \int_{0}^{2\pi} (268 - 2i5\pi\theta) \cdot 2 \cdot (-5\pi\theta + i6\pi\theta) d\theta$$

$$= 4i \int_{0}^{2\pi} (268 - 2i5\pi\theta) \cdot 2 \cdot (-5\pi\theta + i6\pi\theta) d\theta$$

$$=4i \int_{C} \frac{d\theta}{(8-i)^{(2-1)^{3}}} dx$$

=
$$2\pi i \text{ Res} \left[\frac{e^{3} \cdot \frac{1}{2^{2}}}{(\frac{1}{2} - i)(\frac{1}{2} - 1)^{8}} \cdot 0 \right]$$

=
$$2\pi i \text{ Res } \left[\frac{e^2 g^7}{(1-ig)(1-2)^5}, 0 \right]$$
 15

六、计算定积分 $\int_{-\infty}^{+\infty} \frac{1}{\left(x-ai\right)^n \left(x-i\right)} dx$, 其中 a 为不为零的实数, n 为正整 解: 被积少数 f(2)= (次-ai) (汉-i) 共有两个为点,分别为 x,=ai, x=i 13° 其中》一一的为的被极点, 》二十分一份本版点 当何知么的时。 in [rain (x-ai) (x-i) dx = 2 m Res [(x-ai) (x-i) , i] 151 = $2\pi i \lim_{8 \to i} (8-i) \frac{1}{(8-ai)(8-i)} = \frac{2\pi}{(1-a)^n} i^{(1-n)} 15$ 当 0,20 时,2,522 13在上半平面 成 (** 1 (** ai) (x-i) dx = > 2 (** Rest (** ai) (**) , en] + (**) [** - (**) (**) (**) (**) = ->ni Rest (2-ai)" (2-t) 1 x5] = 22 Rest (1-aix)"(1-ix), 0] 151. ** 121, 板 n-1 >0 PP 8=0 不是 (1925/11/2) 16 公文と #x (= 0 (x-ai) (x-i) dx = 0

七、证明商豐u=2x(y-1)是調和函數,并求解析函数f(z)=u+iv。(8分 唐: iday: Ux=2(y-1) , Uxx=0 Uy = 2x 1/37 Uyy = 0 :. uxx + uyy = 0 故 u为 调和土板 解: 改一出 =一次 两边对 从求积分 2分 b=-x2+gig) => == g'(y) カリーフス+g'(な) カリーフス+g'(な) 大 g'(y)=2(y-1) 方文 $\mathcal{V} = \mathcal{Y}^2 - 2\mathcal{Y} + C$ 证明,设f(z) 作 f(z) 所 级 f(z) 的 $f^{(n)}(z_0) = 0, (n = 1, 2, \dots m - 1), f^{(m)}(z_0) \neq 0, (5\%)$ id明: → 于20分f(2)的加热原色、2) 目在20解析的去数(4(2))液是 (20) = 使得 (21= (2-20) 131 及 (2) 在20万度形が (12)= でして(2=20)+ ら(2-21)2+・・・世中でも 提 fx= Co(2-2) 1 + C, (2-20) + C, (2-80) + + C, (2-80) + C, 7Pfor在son本等力展前的例如於系数为零 $C_{n} = \frac{f^{(n)}(Q_{0})}{n!} \quad \exists \exists f^{(n)}(Q_{0}) = n! C_{n} = 0 \quad |S| \\ f^{(m)}(Q_{0}) = m! C_{0} \neq 0$ ← 減升以的動泰勒處式为 $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(20) (220)^n /3$ $f^{(n)}(20) = 0, \quad (n=1,2,\dots m-1) + f^{(n)}(20) \neq 0$ $f(x) = \frac{1}{m!} f^{(m)}(20) (2-20)^m + \frac{1}{(m+1)!} f^{(m+1)}(20) (2-20)^{m+1} + 1.57$