OPERATING SYSTEM

CH01 운영체제소개

Jae-Hwan Bae, Professor(Ph.D)

Department of Game Engineering TONGMYONG UNIVERSITY

학습목표

- 01 운영체제소개
- 02 운영체제란무엇인가
- 소기역사: 1940, 1950년대
- 04. 1960년대
- 05 1970년대
- 06 1980년대
- 07 인터넷과월드와이드웹의역사
- 08 1990년대

학습목표

- 109 2000년이후
 - 10 응용프로그램기반
- 11 운영체제환경
- 12 운영체제의구성요소와목표
- 13 운영체제 아키텍처

Computer Game Server & Client

Computer Game Server & Client

Network Game 개발사례

게임개발흐름도

게임개발흐름도

게임 프로그래머 (클라이언트)

수행직무

게임 제작의 전반적인 개념 이하를 토대로 게임 동작을 구현하는 프로그래밍을 작성하는 직무수행

클라이언트

Visual c++, java, c#에 대한 깊은 이해 및 코딩 능력, 게임 동작을 구현하는 프로그래밍을 작성하는 직무수행

- ❷ 클라이언트 프로그래밍
- 🥑 모바일(스마트폰)게임 프로그래밍
- ❷ 웹 게임 프로그래밍
- ❤ 시스템, HW 프로그래밍

클라이언트 기술

그래픽 엔진

20

30

스테레오 그래픽 사운드 엔진

음향효과

3D Sound 사용자 인터페이스

기본형 (키보드,마우스)

체감형 (조이스틱, 포스피드백장치)

게임 시스템

> 게임Play 처리기술

이벤트 처리기술

게임 Physics

인공지능

게임개발흐름도

졸업 후 진로 2

게임 프로그래머 (서버)

수행직무

게임 제작의 전반적인 거념 이하를 토대로 게임서비스에 필요한 서버 프로그래밍을 작성하는 직무수행

서버

c/c++ 프로그래밍 능력, DB / Network, Script Language, Multi-Thread Programming

서버 기술

인증/과금 기술

> 인증보안 기술

과금기술

빌링기술

게임서버

메시지 처리기술

자원 처리기술

다중 처리기술

분산 처리기술

세션 처리기술

> 무정지 기술

서버관리 기술

모니터링 기술

로깅기술

시스템 보안기술 네트워크[`] 기술

모니터링 기술

로깅기술

시스템 보안기술

01 게임 운영체제 소개

- **৩** 수십 년 동안 빠르게 진화해온 컴퓨터 분야
- 사용자 워크스테이션 BIPS
 (Billions of Instructions per second)의 처리 속도
- **৩** 일상 생활의 모든 영역에 컴퓨터 사용
 - 운영체제의 역할과 책임 변화
 - 문서, 게임, 음악, 비디오, 자산 관리
 - ▶ 노트북, PDA, 휴대폰, MP3
- **७** 다룰 내용
 - 운영 체제의 원리
 - 운영 체제의 구조와 책임
 - 운영 체제 설계 시 고려사항
 - 분산 컴퓨팅과 관련하여 운영 체제 설계 이슈

02 운영체제란무엇인가

1960년대 운영 체제는 하드웨어를 제어하기 위한 소프트웨어

응용 프로그램이 하드웨어와 상호 작용할 수 있는 해주는 소프트웨어

✔ 주어진 입력에 맞는 결과를 보장하도록 소프트웨어와 하드웨어 조작

운영체제는 기본적으로 자원 관리자

소프트웨어

- ❤ 하드웨어
 - 프로세서
 - 메모리
 - 입출력 장치
 - 통신 장치

03 초기역사: 1940, 1950년대

<u>뚜렷한 변화를 보이며 발전한 운영체제</u>

- 1940년대
- ❷ 초기 디지털 컴퓨터는 운영체제를 포함하지 않음
- 1
 - 1940년대
 - ਂ 한번에 한가지 작업만 수행

 - ✓ 시스템 자원을 직접 제어

배치 처리 시스템

- 운영 체제는 여러 작업을 동시에 처리하는 방향으로 발전
- 1964년 IBM System/360 발표
- 대화식 사용자 (interactive user)

배치 처리 시스템

시분할 시스템

- ❷ 대화식 컴퓨팅 지원, 프로그램과 데이터 공유
 - MIT의 CTSS (compatible Time-sharing System)
 - IBM♀| TSS (time sharing System)
 - CTSS, CP/CMS (control program/conversational System)
 - 멀틱스(multics)

배치 처리 시스템

- ☑ 배치 처리와 시분할, 실시간 응용 프로그램 지원
- ☑ 1970년 후반에는 개인 컴퓨터 혁명 시작
- O TCP/IP 통신 표준 활성화
 - ❷ 인터넷의 등장으로 근거리 통신망 환경 발전
 - ✓ 보안 문제 등장- 암호 작성/해독 기술 주목
- 운영체제가 네트워크와 보안을 아우르는 수준으로 발전

- ☑ 소형 컴퓨터 중앙 처리 장치인 마이크로프로세스 기술 발전
- **✓ 소프트웨어의 발전**: 스프레드시트, 워드프로세서, 데이터베이스, 그래픽 패키지
- ☑ 그래픽 사용자 인터페이스(graphical user interface) 등장
- 🥑 네트워크 기술의 발전
 - ❷ 컴퓨터간 정보 전송 경제적이고 현실적 수준의 전환
 - 글라이언트/서버 컴퓨팅 모델의 널리 보급
 :분산 컴퓨팅 환경 제공
- 소프트웨어 공학 분야의 발전

07 인터넷과 월드 와이드 웹의 역사

ARPA (Advanced Research Project Agency)

- **⊘** ARPAnet 구현
 - -오늘날 인터넷의 시조
 - -빠르고 쉬운 통신 능력
 - -중앙 집중적인 통제 없이 작동
 - : 네트워크의 일부가 고장나더라도 남은 부분은 다른 경로로 전송
- ✓ TCP/IP 프로토콜
 - 오류 없는 전송 보장

07 인터넷과월드와이드웹의역사

- - 대역폭증가
 - 하드웨어와 통신비용 감소
- World Wide Web(WWW)
 - ❷ 사용자는 모든 주제에 대해 멀티미디어 기반 문서 조회
 - ☑ 1989년 CERN에서 하이퍼링크 기반 문서 공유 방법 개발 시작

1990년대 특성

- ❷ 프로세싱 파월과 저장 공간의 증가
- 월드 와이드 웹의 탄생으로 분산 컴퓨팅의 증가
 - ☑ 개인 컴퓨터간에도 분산 컴퓨팅이 일반적인 일

 - 네트워크 속도가 컴퓨터의 처리 속도에 미치지 못한 한계

1990년대 특성

Microsoft의 성장

- ✓ Windows 운영체제
- ❷ 데스크탑 운영체제 잠식
- ✓ 기업용 운영체제 Window NT 출시

0 2

객체 기술

1990년대 특성

오픈 소스 운동

✓ 오픈 소스 소프트웨어를 지향하는 운동: 리눅스, 아파치 등

- ☑ 네트워크를 통해 독립적인 응용 프로그램을 서로 연결하는 소프트웨어
- 🌘 웹 서비스
 - ❷ 분산 컴퓨팅으로 전환 촉진
- 멀티프로세스와 네트워크 아키텍처
 - ❷ 새로운 하드웨어와 소프트웨어 설계 기술 개발 기회 제공
- **②** 고도 병렬성(massive parallelism)
 - ❷ 프로세서를 다수 보유해 여러 독립적인 계산으로 병렬로 수행

🌒 운영체제 인터페이스 표준화

- - : Windows xp 운영체제의 전문가와 사용자 집단 흡수
 - : MS 차세대 운영체제 롱혼(longhorn)에서는 다른 유형 파일 포맷 통합 계획

- IBM 개인용 컴퓨터는 거대한 소프트웨어 산업을 활성화
 - ☑ ISV (independent software vendors) DOS에서 동작하는 IBM PC용 응용 발표
- 응용 프로그램 기반
 - - : API 제공으로 하드웨어 조작을 간단히 해결
- 응용 프로그램 개발자는 특정 루틴만을 호출

- ❷ 대용량 메모리와 디스크, 고속 프로세서, 주변 장치로 구성
- ❷ 개인용 컴퓨터나 웨크스테이션으로 사용
- ❷ 고성능 하드웨어를 갖춘 고사양 웹 서버와 데이터베이스 서버에 적용 가능
- ❷ 대용량 메모리와 특수 목적 하드웨어, 여러 프로세스를 지원

- ਂ 효율적인 자원 관리 요구
- ❷ 적은 코드로 서비스 제공
- ✓ 전력관리

○ 응용 프로그램 기반

● 실시간 시스템

- ⊘ 정해진 시간 안에 특정 작업 완료
 - : 소프트 실시간 시스템
 - : 하드 실시간 시스템

11 운영체제환경

- 가상 머신 운영 체제
- 가상 머신의 응용 프로그램

 - **⊘ 에뮬레이션**: 시스템에 존재하지 않는 하드웨어나 소프트웨어 가능 흉내

11 운영체제환경

11 운영체제환경

NO. N. THE

운영 체제

가상머신

소프트웨어

물리적 하드웨어 계층

응용 프로그램

프로세서

메모리

응용 프로그램

디스크

12 운영체제의 구성 요소와 목표

운영체제의 핵심 구성 요소

- ❷ 프로세스 스케줄러
- ❷ 메모리 관리자
- ❷ 입출력 관리자
- **※** 프로세스 간 통신 관리자

운영체제의 목표

- 이식성 (portability)

- 모놀리식 아키텍처
 - ❷ 모든 컴포넌트 커널에 포함
 - ❷ 호출 기능만으로 다른 구성 요소와 통신 가능
 - ⊘ 컴퓨터 시스템에 제한 없이 접근

 - ❷ 오류나 악성 코드에 취약

- ❷ 운영체제의 구조화와 일관성 부여
- ❷ 소프트웨어 검증과 디버깅 및 수정 과정 간편

- ✓ 소수의 서비스만 제공
 - : 커널 규모 감소, 규모 확장성 향상
- ❷ 저수준 메모리 관리, 프로세스 간 통신, 프로세스 간 협력을 위한 동기화 기능
- → 구성 요소를 낮은 수준의 권한으로 커널 외부에서 실행
- ❷ 확장성, 이식성, 규모 확장성 향상
- ❷ 모듈 간의 통신이 많아 성능 감소 우려

- ❷ 네트워크 운영체제
 - : 네트워크에 있는 다른 컴퓨터의 자원에 접근 가능
 - : 네트워크 파일 시스템

- ❷ 한 대 이상의 컴퓨터에 있는 자원을 관리하는 특별한 운영체제
- ❷ 구현 복잡
- ❷ 프로세스가 공유 데이터에 접근하기 때문에 복잡한 알고리즘 요구

참고문헌

- 2. Windows Server 2003 Martin S. Matthews 저 | Osborne/McGraw-Hill | 2003.04.01
- 3. IT CookBook, 운영체제론 : Operating Systems, 3rd Ed 하비 디텔, 폴 디텔, 데이빗 쇼픈스 지음 | 송경희 옮김 | 2009년 09월 | 860쪽
- 4. 운영체제 (그림으로 배우는 원리와 구조) 구현회 저 | 한빛미디어 | 2013.07.30
- 5. 운영체제 Abraham Silberschatz, Peter B. Galvin 외 1명 저 | 조유근 외 2명 역 | 교보문고 | 2014.09.15
- 6. 응용 운영체제 개념 Abraham Silberschatz, Peter B. Galvin 외 1명 저 | 조유근 외 2명 역 | 홍릉과학출판사 | 2013.02.15
- 7. MASTERING WINDOWS SERVER 2003 마크 미나시 저 | 송원석 역 | 정보문화사 | 2003.11.05
- 8. WINDOWS SERVER 2003 ENVIRONMENT (MCSA/MCSE Self-Paced Training Kit, Exam 70~290) Dan Holme 저 | 홍필천 역 | 사이텍미디어 | 2004.05.24
- 9. IT CookBook WINDOWS SEVER 2003 (기본 이론에서 관리 실습까지) 송성훈 저 | 한빛미디어 | 2004.10.10

10. 페도라 리눅스 (시스템 네트워크) 이종원 저 | 한빛아카데미 | 2013.11.30

OPERATING SYSTEM

Jae-Hwan Bae, Professor(Ph.D)
Department of Game Engineering TONGMYONG UNIVERSITY