GEOMETRÍA DEL GRUPO DE UNA CÚBICA PLANA

FELIPE INOSTROZA

ÍNDICE

1.	Grupo de una cúbica	1
2.	Configuración de Hesse	2
Ref	ferencias	3

1. Grupo de una cúbica

Teorema 1.1 (Bézout). Sean F, G curvas no-singulares de grado m, n respectivamente con componentes distintos, entonces

$$\#F \cap G \leq mn$$

Si consideramos una cúbica C y una linea L, entonces $\#L \cap C \leq 3$.

Definición 1. Sea C una cúbica, y L una recta.

- Si $L \cap C = \{P, Q, R\}$, entonces definimos $\varphi(P, Q) = R$.
- Si $L \cap C = \{P, Q\}$ y L es tangente a C en P, entonces definimos $\varphi(P, P) = Q$.
- Si $L \cap C = \{P\}$ con L tangente, definimos $\varphi(P, P) = P$.

Proposición 1.2. Toda cúbica planar no-singular definida sobre un cuerpo algebraicamente cerrado tiene 9 puntos de inflexión. Para estos puntos se tiene que $\varphi(P,P) = P$.

Definición 2. Dada una cúbica C, fijamos un punto 0 tal que $\varphi(0,0)=0$. Definimos la operación $+: E \times E \to E$ de la forma

$$P+Q=\varphi(0,\varphi(P,Q))$$

Proposición 1.3. Si $R = \varphi(P,Q)$, entonces P + Q + R = 0.

Demostración.

$$\begin{split} P + Q &= \varphi(0, \varphi(P, Q)) \\ &= \varphi(0, R) \\ \Longrightarrow P + Q + R &= R + \varphi(0, R) \\ &= \varphi(0, \varphi(R, \varphi(0, R))) \\ &= \varphi(0, 0) = 0 \end{split}$$

Teorema 1.4. (C, +, 0) es un grupo abeliano.

Teorema 1.5. Si E es una curva elíptica, entonces $E \cong \mathbb{C}/\Lambda$, con Λ un reticulado.

Date: 12 de septiembre de 2024.

Proposición 1.6. Si P,Q son puntos de 3-torsión, entonces $\varphi(P,Q)$ también lo es. Además, si $P \neq Q$, entonces $P \neq \varphi(P,Q) \neq Q$.

$$\begin{array}{ll} \textit{Demostraci\'on.} \ P+Q+\varphi(P,Q)=0 \implies 3P+3Q+3\varphi(P,Q)=0 \implies 3\varphi(P,Q)=0. \ \text{Luego si } \varphi(P,Q)=P, \ \text{entonces} \ P=Q, \ \text{ya que} \ P \ \text{es 3-torsi\'on.} \end{array}$$

2. Configuración de Hesse

Proposición 2.1. Dada una cúbica $C \subseteq \mathbb{P}^2$ dada por F = 0, existen 9 puntos de inflexión, dados por $C \cap H$, con H la curva dada por el determinante del Hessiano de F iqual a 0.

Definición 3. El pencil de Hesse es el sistema de cúbicas planas dado por

$$E_{\lambda,\mu}$$
: $\lambda(x^3 + y^3 + z^3) + \mu xyz = 0$, $[\lambda, \mu] \in \mathbb{P}^1$

Observación. Si $E_{\lambda,\mu} = \{F = 0\}$, entonces $\exists [\lambda',\mu'] \in \mathbb{P}^1$ tal que $E_{\lambda',\mu'} = \{\det(H(F)) = 0\}$.

Demostración. Sea $F(x, y, z) = \lambda(x^3 + y^3 + z^3) + \mu xyz$, entonces su Hessiano es:

$$H(F) = \begin{pmatrix} 6\lambda x & \mu z & \mu y \\ \mu z & 6\lambda y & \mu x \\ \mu y & \mu x & 6\lambda z \end{pmatrix}$$

$$\implies \det(H(F)) = -6\lambda\mu^2(x^3 + y^3 + z^3) + (216\lambda^2 + 2\mu^3)xyz$$

el cual es un polinomio que define la curva $E_{\lambda',\mu'}$, con $\lambda' = -6\lambda\mu^2$, $\mu' = 216\lambda^2 + 2\mu^3$.

Ahora quisiéramos saber como se ven los puntos de inflexión de una curva $E_{\lambda,\mu}$. Para esto, podemos ver si existen puntos que anulen a todos los polinomios de la forma

$$\lambda(x^3 + y^3 + z^3) + \mu xyz$$

Para esto, queremos que los puntos no dependan de λ, μ , por lo que podemos buscar puntos $[x_0,y_0,z_0]$ tales que $x_0^3+y_0^3+z_0^3=x_0y_0z_0=0$. Primero notemos que si $x_0=0$, entonces $x_0y_0z_0=0$. Luego queremos y_0,z_0 tales que $y_0^3+z_0^3=0$. Si $y_0\neq 0$, podemos asumir $y_0=1$ ya que $[x_0,y_0,z_0]\in \mathbb{P}^2$. Entonces $-z_0^3=1$, por lo que podemos considerar $z_0=-\zeta$, donde $\zeta^3=1$. Luego $[0,1,-\zeta]\in E_{\lambda,\mu}$ para todo $[\lambda,\mu]\in \mathbb{P}^1$.

Notemos que todos los puntos tales que sus entradas son permutaciones de $0, 1, -\zeta$ pertenecen a todo $E_{\lambda,\mu}$:

$$[0,1,-\zeta], \quad [0,-\zeta,1], \quad [1,0,-\zeta],$$

$$[1, -\zeta, 0], \quad [-\zeta, 0, 1], \quad [-\zeta, 1, 0]$$

También podemos usar $-\zeta^2$ y -1 en vez de $-\zeta$, por lo que tenemos en total 18 posibles puntos, pero eliminando los repetidos nos quedan 9 puntos distintos:

$$p_0 = [0, 1, -1],$$
 $p_1 = [0, 1, -\zeta],$ $p_2 = [0, 1, -\zeta^2]$
 $p_3 = [1, 0, -1],$ $p_4 = [1, 0, -\zeta^2],$ $p_5 = [1, 0, -\zeta]$
 $p_6 = [1, -1, 0],$ $p_7 = [1, -\zeta, 0],$ $p_8 = [1, -\zeta^2, 0]$

Todos estos puntos pertenecen a todas las curvas del pencil de Hesse, y entonces son puntos de inflexión.

Consideremos $E[3] = \{p_0, \dots, p_8\}$, entonces $(E[3], +, p_0)$ es un grupo abeliano isomorfo a $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, dado por el isomorfismo

$$E[3] \longrightarrow \frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{3\mathbb{Z}}$$
$$[0, 1, -\zeta] \longmapsto (1, 0)$$
$$[1, 0, -1] \longmapsto (0, 1)$$

Sabemos que si dos puntos P,Q son 3-torsión, entonces $\varphi(P,Q)$ nos da otro punto 3-torsión, por lo que podemos estudiar $\varphi(p_i,p_j)$, y ver la configuración de rectas que quede.

Figura 1. Los puntos de E[3] ordenados de izquierda a derecha, de arriba hacia abajo, y las rectas que los unen.

Esto es lo que se conoce como la configuración de Hesse, y está compuesto por 9 puntos por los que pasan 4 rectas, y 12 rectas que contienen a 3 de estos puntos. Se denota $(9_4, 12_3)$. El dual de esta configuración es $(12_3, 9_4)$, el cual está formado por 12 puntos que son intersección de 3 rectas, y 12 rectas que contienen a 4 de estos puntos. Esta última es la configuración dual de Hesse.

Referencias

 $[{\rm AD08}] \ \ {\rm Michela\ Artebani\ and\ Igor\ Dolgachev},\ The\ hesse\ pencil\ of\ plane\ cubic\ curves,\ 2008.$

[Ful] William Fulton, Algebraic curves, an introduction to algebraic geometry, 2008.