Datawarehousing: fundamentos

Business Intelligence

"Es un paraguas bajo el que se incluye un conjunto de conceptos y metodologías cuya misión consiste en mejorar el proceso de toma de decisiones en los negocios basándose en hechos y sistemas que trabajan con hechos"

Howard Dresner (Gartner Group),1989

B.I.: recursos y herramientas

- Fuentes de datos : warehouses, data marts, etc
- Herramientas de administración de datos
- Herramientas de extracción y consulta
- Herramientas de modelización (Data Mining)

Evolución: Business Data to Business Information

Etapa	Pregunta de Negocio	Tecnología disponible	Proveedores	Características
Data Collection (1960)	¿Cuál fue el total de ventas en Capital Federal y GBA?	Computadoras, cintas, discos	IBM, NCR, etc	Retrospectivo Estático
Data Access (1980)	¿Cuáles fueron las ventas por sucursal en Capital Federal y GBA?	RDBMS SQL	Oracle, Informix, Sybase, etc	Retrospectivo Dinámico

Evolución: Business Data to Business Information

Etapa	Pregunta de Negocio	Tecnología disponible	Proveedores	Características
Data Navigation (1990)	¿Cuál fue el total de ventas en Capital Federal? Drill down a GBA	OLAP DW	Pilot, Discoverer, Arbor, etc	Retrospectivo Dinámico Niveles múltiples
Data Mining (2000)	¿Cómo evolucionarán las ventas en el próximo año?	Algoritmos avanzados Multiprocesado res	Intelligent Miner (IBM) SGI SAS, etc	Prospectivo. Proactivo

Data Warehouse

Data Warehouse is a subject-oriented, integrated, timevariant, non volatile collection of data in support of management decisions

Bill Inmon (1990)

Subject oriented

Los datos almacenados en el DataWarehouse proveen información sobre un tema en particular en vez de atender la operatoria de gestión de la compañía.

Integrated

Los datos son volcados al DataWarehouse desde diferentes fuentes e integrados en un todo consistente.

Time-variant

Todos los datos del datawarehouse refieren a un particular momento en el tiempo (como una "foto" o "snapshot").

Non volatile

Los datos son estables. En general siempre se agregan datos pero no se quitan. Esto permite análisis retrospectivos sobre la marcha del negocio.

Data Warehouse

"A copy of transaction data specifically structured for query and analysis".

Ralph Kimball

Datos operacionales y Data Warehouse

	Datos	Data Wareh <mark>ouse</mark>
	operacionales	
Contenido	Valores elementales	Datos sumarizados, derivados
Organización	Por aplicación	Por tema
Estabilidad	Dinámicos	Estáticos hasta su actualización

Datos operacionales y Data Warelouse

	Datos	Data Warehouse
	operacionales	
Estructura	Optimizada para uso transaccional (NORMALIZADA)	Optimizada para querys complejos (DESNORMALIZADA)
Frecuencia de acceso	Alta	Media y baja
Tipo de acceso	Lectura / escritura Actualización campo por campo	Lectura Sumarización

Datos operacionales y Data Warelouse

	Datos	Data
	operacionales	Warehouse
Uso	Predecible Repetitivo	Ad hoc Heurístico
Tiempo de respuesta	Segundos	Segundos a minutos
Cantidad de registros involucrados	A lo sumo decenas	Cientos - miles

Problemas con los datos

- Demasiados datos
 - datos corruptos o con ruido
 - datos redundantes (requieren factorización)
 - datos irrelevantes
 - excesiva cantidad de datos

Problemas con los datos

- Pocos datos
 - valores perdidos
 - poca cantidad de datos
- Datos fracturados
 - datos incompatibles
 - múltiples fuentes de datos

¿Cuántos datos son necesarios?

- ¿Cuántas filas?.
- ¿Cuántas columnas?.
- ¿Cuánta historia?
- Regla general : cuanto más datos, mejor
- En la práctica : condicionado a los recursos de obtención y procesamiento.

Explotación del Datawarehouse

Extracción, clean up y carga de datos

Datos operacionales y externos

Componentes del DW

- Fuentes de datos
- Procedimientos de Extracción
- Procedimientos de Transformación
- Procedimientos de carga (Loading)
- Soporte físico de los datos (DBMS)
- Herramientas de explotación : OLAP, reporting, Data Mining, etc.

Adquisición y limpieza Objetivos

- Remover datos no necesarios de las fuentes operacionales
- Consolidar representaciones de datos de diferentes fuentes
- Calcular sumarizaciones y variables derivadas
- Resolver problemas de missings y outliers

Metadata

Provee a los usuarios de información para facilitarles el acceso e interpretación del contenido del DW

Metadata

- Información sobre los datos:
 - Fuentes de datos
 - Descripción de operaciones de transformación
 - Estructura de datos del DW
 - Reglas de clean up
 - Referencias históricas y temporales, etc

La importancia de los metadatos

- Los metadatos proveen la vinculación entre los datos y los usuarios de negocio. Describen los datos
- Incluyen los modelos lógicos de datos, el mapeo de los datos a los sistemas transaccionales, el esquema físico de los datos, información de carga, actualización y seguridad, etc.

ETL

Procedimientos (herramientas) destinados a obtener los datos de las fuentes operacionales, limpiarlos, convertirlos a los formatos de utilización y cargarlos en el repositorio final.

Integridad de datos

- Los datos cumplen condiciones de integridad cuando se ajustan a todos los stándares de valor y completitud.
- Todos los datos del DW son correctos
- El DW está completo (no existen más datos fuera de él).

Integridad de datos

- La credibilidad del DW depende de la integridad de sus datos
- El uso del DW depende de la percepción de los usuarios y de la confianza que tengan en su contenido.
- De la integridad de datos depende el éxito del proyecto.

Controles de Integridad

- Controles de Prevención : controlan la integridad antes de cargar los datos en el DW.
- Controles de Detección : aseguran la exactitud y completitud de la información una vez cargada en el DW.

Data Process Flow

Etapas del proceso ETL

- Migración de datos
- Limpieza
- Transformación (cálculos, agregados, sumarizaciones, denormalización).
- Carga
- Conciliación Validación

Migración

- Staging area : área de trabajo fuera del DW.
- El propósito de la migración es mover los datos de los sistemas operacionales a las áreas de trabajo (staging areas).
- NO se debe mover datos innecesarios (control preventivo).

Limpieza (Data cleaning)

- Corregir, estandarizar y completar los datos.
- Identificar datos redundantes
- Identificar valores atípicos (outliers)
- Identificar valores perdidos (missings)

Limpieza (ejemplo)

FIRST_NAME	LAST_NAME	COMPANY_NAME	AREA_CODE PHONE	STATE
sAM	Adams	boston beer co.	617 3	685000 MA
Sam	Adams	Boston beer co,.	617 3	685000 MA
Samuel	Adams	Boston Beer Co.	617 3	685000 MA
SAMUEL	ADAMS	BOSTON BEER	617 3	685000 MA
Samuel	Adams	Boston Beer Co.	617	3685000 MA

Limpieza (otros ejemplos)

- Eliminar transacciones con monto = 0 (promociones, regalos)
- Eliminar transacciones anuladas (balance = 0).
- Normalizar nombres de marcas de auto, de direcciones, etc.
- Eliminar fechas de nacimiento inválidas (edad > 100 años o negativa)

Limpieza (actividades)

- Las denominaciones de los sistemas operacionales deben uniformarse y referenciarse con nombres propios de los sistemas de negocios (autodocumentados)
- Cust
- Cust_id
- Cust_nro

Nro de Cliente

Limpieza (actividades)

Los tipos de dato asociados a cada atributo deben standarizarse y consolidarse para las diferentes fuentes.

Nombre (A20) Nombre

Nombre (A25) A(25)

Limpieza (actividades)

- Se debe uniformar las tablas de códigos de los sistemas operacionales y simplificar esquemas de codificación
- Datos complejos, que representan varios atributos a la vez, deben ser particionados.

Transformación

- Son procesos destinados a adaptar los datos al modelo lógico del DW
- Se generan "reglas de transformación".
- Las reglas deben validarse con los usuarios del DW

Transformación

- Generalmente el DW no contiene información de las entidades que - en los sistemas operacionales - son muy dinámicas y sufren frecuentes cambios.
- Si es necesario se utilizan Snapshots (fotos instantáneas)

Transformación

- La des-normalización de los datos tiene como propósito mejorar la performance.
- Otro propósito es el de reflejar relaciones estáticas, es decir, que no cambian en una perspectiva histórica. Por ejemplo: producto - precio vigente al momento de facturación.

Transformación (sumarizaciones)

- Los datos sumarizados aceleran los tiempos de análisis.
- Las sumarizaciones también ocultan complejidad de los datos.
- Las sumarizaciones pueden incluir joins de múltiples tablas
- Las sumarizaciones proveen múltiples vistas del mismo conjunto de datos detallados (dimensiones).

Sumarizaciones (mantenimiento)

- El mantenimiento de las sumarizaciones es una tarea crítica.
- El DW debe actualizarlas a medida que se cargan nuevos datos.
- Debe existir alguna forma de navegar los datos hasta el nivel de detalle (drill down).
- La definición de la granularidad es un problema serio de diseño.

El nivel de granularidad: problema de diseño del DW

- Cúal es la unidad de tratamiento (fila)
- ¿Qué es un cliente? Una cuenta, un individuo, una familia
- ¿Cómo se sumariza la dimensión tiempo? Días, semanas, meses ...?

Controles de detección

- La validación de la carga del DW identifica problemas en los datos no detectados en las etapas anteriores.
- Existen dos maneras de hacer la validación:
 - completa (al final del proceso)
 - por etapas a medida que se cargan los datos

Controles de detección

- Los controles incluyen reportes que comparan los datos del DW con las fuentes operacionales a través de:
 - totales de control
 - número de registros cargados
 - valores originales vs valores limpios (transformados), etc.

Herramientas ETL

- Pueden ser procesos manuales diseñados a medida (querys SQL, programas, etc).
- Existen herramientas que proporcionan interfaces visuales para definir joins, transformaciones, agregados, etc. sobre las plataformas mas comunes.

Modelado de datos

La pregunta central

¿De qué modo deben diseñarse las bases de datos que conforman un Data Warehouse para soportar eficientemente los requerimientos de los usuarios?

¿Por qué es importante?

- Visualización del universo del negocio
- Modelo de abstracción de las "preguntas" que los usuarios necesitan responder
- Diseño del plan de implantación del Data Warehouse

Dos técnicas

Modelo E-R

- Entidades
- Atributos
- Relaciones

Modelo dimensional

- Hechos
- Dimensiones
- Medidas

Modelo E-R

Figure 12. A Sample ER Model. Entity, relationship, and attributes in an ER diagram.

Modelo dimensional: HECHOS

- Hechos: colección de items de datos y datos de contexto. Cada hecho representa un item de negocio, una transacción o un evento
- Los hechos se registran en las tablas CENTRALES del DW

Modelo dimensional: DIMENSION

- Una dimensión es una colección de miembros o unidades o individuos del mismo tipo
- Cada punto de entrada de la tabla de HECHOS está conectado a una DIMENSION
- Determinan el contexto de los HECHOS

Modelo dimensional: DIMENSIONES

- Se utilizan como parámetros para los análisis OLAP
- Dimensiones habituales son:
 - Tiempo
 - Geografía
 - Cliente
 - Vendedor

Modelo dimensional: DIMENSIONES - Miembros

Dimensión	Miembro
Tiempo	Meses, Trimestre, Años
Geografía	País, Región, Ciudad
Cliente	Id Cliente
Vendedor	ld Vendedor

Modelo dimensional DIMENSIONES - Jerarquía

Figure 14. Multiple Hierarchies in a Time Dimension

Modelo dimensional DIMENSIONES : Medidas

- Medida : es un atributo numérico de un hecho que representa la performance o comportamiento del negocio relativo a la dimensión
- Ejemplos:
 - Ventas en \$\$
 - Cantidad de productos
 - Total de transacciones, etc.

Visualización de un modelo dimensional

Figure 15. The Cube: A Metaphor for a Dimensional Model

DW - OLAP

El modelo dimensional es ideal para soportar las 4 operaciones básicas de la tecnología OLAP:

- ▶ Relacionadas con la granularidad: ROLL UP DRILL DOWN
- Navegación por las dimensiones : SLICE DICE

Example: Roll Up and Drill Down

\$ of Anheuser-Busch by drinker/bar

	Jim	Bob	Mary
Joe's	45	33	30
Bar			
Nut-	50	36	42
House			
Blue Chalk	38	31	40

\$ of A-B / drinker

Roll up by Bar

\$ of A-B Beers / drinker

	Jim	Bob	Mary
Bud	40	29	40
M'lob	45	31	37
Bud	48	40	35
Light			

Slice and Dice

- Slice: es un subconjunto del "array multidimensional" que tiene un único valor para una o más dimensiones. Es una "rebanada" del cubo
- Dice: es como el "slice" pero para 2 ó más valores de una o más dimensiones

Modelos básicos dimensionales

Star

Figure 18. Star Model.

SnowFlake

Fact constellation schema

Maestría en Data Mining 64

E-R - Modelo dimensional

- El modelo dimensional puede verse como un caso particular del modelo de ER
- Foreing keys
 Dimension
- ► Hecho Entidad

Presentación

- Esta presentación fue armada utilizando, además de material propio, material contenido en los manuales de Oracle y material provisto por los siguientes autores
- Siblberschat, Korth, Sudarshan Database Systems Concepts, 6th Ed., Mc Graw Hill, 2010
- García Molina/Ullman/Widom Database Systems: The Complete Book, 2nd Ed., Prentice Hall, 2009
- Elmasri/Navathe Fundamentals of Database Systems, 6th Ed., Addison Wesley, 2011