B.M.S. COLLEGE OF ENGINEERING BENGALURU

Autonomous Institute, Affiliated to VTU

Lab Record

Machine Learning

Submitted in partial fulfillment for the 6th Semester Laboratory

Bachelor of Technology in Computer Science and Engineering

Submitted by:

NILANSHU RANJAN 1BM18CS062

Department of Computer Science and Engineering B.M.S. College of Engineering Bull Temple Road, Basavanagudi, Bangalore 560 019 Mar-June 2021

B.M.S. COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the Machine Learning (20CS6PCMAL) laboratory has been carried out by NILANSHU RANJAN (1BM18CS062) during the 6th Semester Mar-June-2021.

Signature of the Faculty Incharge: Dr. Asha G R Department of Computer Science and Engineering B.M.S. College of Engineering, Bangalore

Program 1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

DATASET

1	Sunny	Mild	High	Strong	Same	Yes
2	Rainy	Hot	High	Normal	Same	No
3	Sunny	Mild	Normal	Strong	Change	Yes
4	Sunny	Hot	High	Strong	Change	Yes
5	Sunny	Cool	Normal	Normal	Change	No
6	Overcast	Cool	Normal	Normal	Same	No
7	Rainy	Hot	Normal	Strong	Same	Yes

```
import numpy as np
import pandas as pd
def get_input(input_type, path):
  if input type == "csv":
     df = pd.read_csv(path, header=None)
     print(df)
     train_set = df.values
     return train_set
  else:
     n = int(input("Enter the number of training examples: "))
     attr_no = int(input("Enter the number of attributes: "))
     train_set = [["" for _ in range(attr_no)] for __ in range(n)]
     for i in range(n):
       for j in range(attr_no):
          train_set[i][j] = input()
     return train_set
def find_s(train_set):
  hypo = ["phi" for _ in range(len(train_set[0])-1)]
  for i in range(len(train_set)):
     if train_set[i][-1] == "Yes":
       for j in range(len(train_set[0])-1):
          if hypo[i] != train_set[i][i] and hypo[i] == "phi":
```

```
hypo[j] = train_set[i][j]
elif hypo[j] != train_set[i][j] and hypo[j] != "phi":
    hypo[j] = "?"
return hypo

train_set = get_input("csv", "../input/dataset/dataset.csv")
hypothesis = find_s(train_set)
print(hypothesis)
```

```
0 1 2 3 4 5 6
0 Sunny Warm Normal Strong Warm Same Yes
1 Sunny Warm High Strong Warm Same Yes
2 Rainy Cold High Strong Warm Change No
3 Sunny Warm High Strong Cool Change Yes
['Sunny', 'Warm', 'que', 'Strong', 'que', 'que']
```

Program 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

DATASET

1	Outlook	Temperature	Humidity	Wind	Forecast	Enjoy sport
2	Sunny	Mild	High	Strong	Same	Yes
3	Rainy	Hot	High	Normal	Same	No
4	Sunny	Mild	Normal	Strong	Change	Yes
5	Sunny	Hot	High	Strong	Change	Yes
6	Sunny	Cool	Normal	Normal	Change	No
7	Overcast	Cool	Normal	Normal	Same	No
8	Rainy	Hot	Normal	Strong	Same	Yes

CODE

```
import numpy as np
import pandas as pd
data = pd.read_csv('../input/datasetforcea/data.csv', header=None)
```

train_data = np.array(data.iloc[:,0:-1])

```
target = np.array(data.iloc[:,-1])
print("\nTarget Values : ",target)
def learn(train_data, target):
  s_h = train_data[0].copy()
  print("\nSpecific Boundary: ", s_h)
  g_h = [["?" for i in range(len(s_h))] for i in range(len(s_h))]
  print("\nGeneric Boundary: ",g_h)
  for i, h in enumerate(train_data):
     print("\nData instance", i+1 , "is ", h)
     if target[i] == "yes":
       for x in range(len(s_h)):
          if h[x]!=s_h[x]:
             s_h[x] = '?'
             g_h[x][x] = '?'
     if target[i] == "no":
       for x in range(len(s_h)):
          if h[x]!=s_h[x]:
             g_h[x][x] = s_h[x]
          else:
             g_h[x][x] = '?'
     print("Specific Bundary after ", i+1, "Instance is ", s_h)
     print("Generic Boundary after ", i+1, "Instance is ", g_h)
     print("\n")
  indices = [i for i, val in enumerate(g_h) if val == ['?', '?', '?', '?', '?', '?']]
```

print("Data :\n",train_data)

```
for i in indices:

g_h.remove(['?', '?', '?', '?', '?', '?'])

return s_h, g_h

s_final, g_final = learn(train_data, target)

print("Final Specific hypothesis: ", s_final)

print("Final General hypothesis: ", g_final)
```

```
\Data : [['sunny' 'warm' 'normal' 'strong' 'warm' 'same'] ['sunny' 'warm' 'high' 'strong' 'warm' 'same'] ['rainy' 'cold' 'high' 'strong' 'warm' 'change']

Target Values : ['yes' 'yes' 'no' 'yes']

Specific Boundary: [['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?
```

Program 3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

DATASET

1	outlook	temperature	humidity	wind	answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no

```
import pandas as pd
import math
import numpy as np
import pprint
```

```
data=pd.read_csv("/id3_dataset.csv")
print("\n Input Data Set is:\n", data)
features = [f for f in data]
features.remove("answer")
```

```
class Node:
```

```
def __init__(self):
    self.children = []
    self.value = ""
    self.isLeaf = False
    self.pred = ""
```

```
def find_entropy(examples):
  pos = 0.0
  neg = 0.0
  for _, row in examples.iterrows():
     if row["answer"] == "yes":
       pos += 1
     else:
       neg += 1
  if pos == 0.0 or neg == 0.0:
     return 0.0
  else:
     p = pos / (pos + neg)
     n = neg / (pos + neg)
     return -(p * math.log(p, 2) + n * math.log(n, 2))
def info_gain(examples, attr):
  uniq = np.unique(examples[attr])
  gain = find_entropy(examples)
  for u in uniq:
     subdata = examples[examples[attr] == u]
     sub_e = find_entropy(subdata)
     gain -= (float(len(subdata)) / float(len(examples))) * sub_e
  return gain
def id3(examples, attrs):
 root = Node()
 max_gain = 0
```

```
max_feat = ""
 for feature in attrs:
   gain = info_gain(examples, feature)
   if gain > max_gain:
      max_gain = gain
      max_feat = feature
 root.value = max_feat
 uniq = np.unique(examples[max_feat])
 for u in uniq:
   subdata = examples[examples[max_feat] == u]
   if find_{entropy}(subdata) == 0.0:
      newNode = Node()
      newNode.isLeaf = True
      newNode.value = u
      newNode.pred = np.unique(subdata["answer"])
     root.children.append(newNode)
   else:
      tempNode = Node()
      tempNode.value = u
      new_attrs = attrs.copy()
      new_attrs.remove(max_feat)
      child = id3(subdata, new_attrs)
      tempNode.children.append(child)
      root.children.append(tempNode)
 return root
def printTree(root: Node, depth=0):
  for i in range(depth):
    print("\t", end="")
```

```
print(root.value, end="")
  if root.isLeaf:
    print(":", root.pred)
  print()
  for child in root.children:
    printTree(child, depth + 1)
root = id3(data, features)
print("Final decision tree:\n")
printTree(root)
OUTPUT
  Input Data Set is:
       outlook temperature humidity
                                          wind answer
 0
        sunny
                       hot
                                high
                                         weak
                                                  no
                       hot
                                high strong
 1
        sunny
                                                  no
 2
                                high
     overcast
                       hot
                                         weak
                                                 yes
                      mild
 3
         rain
                                high
                                         weak
                                                 yes
 4
                      cool
                              normal
                                         weak
          rain
                                                 yes
 5
         rain
                      cool
                              normal
                                     strong
                                                  no
 6
                      cool
                              normal strong
     overcast
                                                 yes
 7
                      mild
                                high
        sunny
                                        weak
                                                  no
 8
        sunny
                      cool
                              normal
                                         weak
                                                 yes
 9
                      mild
                              normal
         rain
                                        weak
                                                 yes
                      mild
 10
                              normal strong
        sunny
                                                 yes
 11 overcast
                      mild
                                high strong
                                                 yes
 12 overcast
                       hot
                              normal
                                         weak
                                                 yes
                      mild
                                high strong
 13
         rain
                                                  no
 Final decision tree:
 outlook
          overcast : ['yes']
          rain
                  wind
                           strong : ['no']
                           weak : ['yes']
          sunny
                  humidity
                           high: ['no']
                           normal : ['yes']
```

Program 4. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

DATASET

1	num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
2		148		35	0	33.6	0.627	50	
3		85	66	29	0	26.6	0.351	31	
4		183	64			23.3	0.672	32	
5		89	66		94	28.1	0.167	21	
6		137	40		168	43.1	2.288	33	
7		116	74		0	25.6	0.201	30	
8		78	50	32	88	31	0.248	26	
9		115				35.3	0.134	29	
10		197	70	45	543	30.5	0.158	53	
11		125	96			0	0.232	54	
12		110	92		0	37.6	0.191	30	
13	10	168	74		0	38	0.537	34	
14	10	139	80		0	27.1	1.441	57	
15		189	60		846	30.1	0.398	59	
16		166			175	25.8	0.587	51	
17		100				30	0.484	32	
		118	84	47	230	45.8	0.551	31	
19		107	74			29.6	0.254	31	
20		103	30	38	83	43.3	0.183	33	
21		115	70	30	96	34.6	0.529	32	
22		126	88	41	235	39.3	0.704	27	
23	g	00	84	0	0	35.4	U 388	50	n

```
import csv
import random
import math

def load_csv(filename):
    lines = csv.reader(open(filename, "r"));
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset

def split_dataset(dataset, splitratio):
    trainsize = int(len(dataset) * splitratio);
```

```
trainset = []
  copy = list(dataset);
  while len(trainset) < trainsize:
     index = random.randrange(len(copy));
     trainset.append(copy.pop(index))
  return [trainset, copy]
def separate_by_class(dataset):
  separated = \{\}
  for i in range(len(dataset)):
     vector = dataset[i]
     if (vector[-1] not in separated):
       separated[vector[-1]] = []
     separated[vector[-1]].append(vector)
  return separated
def mean(numbers):
  return sum(numbers)/float(len(numbers))
def std_dev(numbers):
  avg = mean(numbers)
  variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
  return math.sqrt(variance)
def summarize(dataset):
  summaries = [(mean(attribute), std_dev(attribute)) for attribute in zip(*dataset)];
  del summaries[-1]
  return summaries
def summarize_by_class(dataset):
```

```
separated = separate_by_class(dataset);
  summaries = \{\}
  for classvalue, instances in separated.items():
     summaries[classvalue] = summarize(instances)
  return summaries
def calculate_probability(x, mean, stdev):
  exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
  return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculate_class_probabilities(summaries, inputvector):
  probabilities = {}
  for classvalue, classsummaries in summaries.items():
     probabilities[classvalue] = 1
  for i in range(len(classsummaries)):
     mean, stdev = classsummaries[i]
     x = inputvector[i]
     probabilities[classvalue] *= calculate_probability(x, mean, stdev)
  return probabilities
def predict(summaries, inputvector):
  probabilities = calculate_class_probabilities(summaries, inputvector)
  bestLabel, bestProb = None, -1
  for classvalue, probability in probabilities.items():
     if bestLabel is None or probability > bestProb:
       bestProb = probability
       bestLabel = classvalue
  return bestLabel
def get_predictions(summaries, testset):
```

```
predictions = []
  for i in range(len(testset)):
     result = predict(summaries, testset[i])
     predictions.append(result)
  return predictions
def get_accuracy(testset, predictions):
  correct = 0
  for i in range(len(testset)):
     if testset[i][-1] == predictions[i]:
       correct += 1
  return (correct/float(len(testset))) * 100.0
splitratio = 0.67
dataset = load_csv('../input/diabetes-data/Lab 4/pima-indians-diabetes.csv');
trainingset, testset = split_dataset(dataset, splitratio)
print(f'Split {len(dataset)} rows into train={len(trainingset)} and test={len(testset)} rows')
summaries = summarize_by_class(trainingset);
predictions = get_predictions(summaries, testset)
accuracy = get_accuracy(testset, predictions)
print(f'Accuracy of the classifier is :{accuracy}%')
OUTPUT
 Split 768 rows into train=514 and test=254 rows
```

Accuracy of the classifier is :67.71653543307087%

Program 5. Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

DATASET

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63			145	233			150		2.3		0	6	
3			4	160	286			108		1.5		3		
4			4	120	229			129		2.6		2		
5			3	130	250			187		3.5		0		
6	41		2	130	204	0				1.4		0	3	
	56		2	120	236			178		0.8		0		
	62		4	140	268			160		3.6		2		
9			4	120	354			163		0.6		0		
10	63		4	130	254	0		147		1.4		1		
11			4	140	203					3.1		0		
12			4	140	192			148		0.4		0	6	
13	56		2	140	294					1.3		0		
14	56		3	130	256			142		0.6		1	6	
15	44		2	120	263					0		0		
16			3		199			162		0.5		0		
17			3	150	168			174		1.6		0		
18	48		2	110	229	0		168				0		
19	54		4	140	239			160		1.2		0		
20	48		3	130				139		0.2		0		
21	49		2	130	266					0.6		0		
22	64		1	110		0		144		1.8		0		
22	50	0	4	150	202	4	,	163	0	1	1	_	,	

BayesianModel([('age', 'heartdisease'), ('sex', 'heartdisease'), ('exang', 'heartdisease'), ('cp', 'heartdisease')

CODE

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
trainingData = pd.read_csv('/content/bayesian-dataset.csv')
trainingData = trainingData.replace('?',np.nan)
print('The sample instances from the dataset are:')
print(trainingData.head())
print('\n Attributes and datatypes: ')
print(trainingData.dtypes)
model =
```

ease'),('heartdisease','restecg'),('heartdisease','chol')])

```
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(trainingData,estimator=MaximumLikelihoodEstimator)

print('\n Inferencing with Bayesian Network:')

HeartDiseasetest_infer = VariableElimination(model)

print('\n 2.Probability of HeartDisease given evidence = chol (Cholestorol): 100 ')

q2 = HeartDiseasetest_infer.query(variables = ['heartdisease'], evidence={'chol':100})

print(q2)
```

+----+

| heartdisease(4) | 0.0000 | +-----

Program 6. Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9		1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5		3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8		3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8		1.4	0.1	Iris-setosa
14	4.3		1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1		1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa
20	5.1	3.8	1.5	0.3	Iris-setosa
21	5.4	3.4	1.7	0.2	Iris-setosa
22	5.1	3.7	1.5	0.4	Iris-setosa
23	46	36	1	0.2	Iris-setosa

DATASET

```
CODE
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X. columns = ['Sepal\_Length', 'Sepal\_Width', 'Petal\_Length', 'Petal\_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
model = KMeans(n_clusters=3)
model.fit(X)
plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
```

```
plt.subplot(1, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrix of K-Mean: ',sm.confusion_matrix(y, model.labels_))
```


Program 7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

DATASET

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5		3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8		3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3	1.4	0.1	Iris-setosa
14	4.3	3	1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1	3.5	1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa
20	5.1	3.8	1.5	0.3	Iris-setosa
21	5.4	3.4	1.7	0.2	Iris-setosa
22	5.1	3.7	1.5	0.4	Iris-setosa
23	46	36	1	0.2	Iris-setosa

CODE

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
```

import pandas as pd

import numpy as np

 $iris = datasets.load_iris()$

X = pd.DataFrame(iris.data)

 $X. columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']$

y = pd.DataFrame(iris.target)

y.columns = ['Targets']

model = KMeans(n_clusters=3)

model.fit(X)

plt.figure(figsize=(14,7))

```
colormap = np.array(['red', 'lime', 'black'])
plt.subplot(1, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrix of K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('GMM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
OUTPUT
```

```
The accuracy score of K-Mean: 0.44
The Confusion matrixof K-Mean: [[50 0 0]
[ 0 2 48]
[ 0 36 14]]

K Mean Classification

2.5
2.0
4
Petal Length
```


Program 8. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

CODE

import numpy as np

import pandas as pd

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn import metrics

```
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
# Read dataset to pandas dataframe
dataset = pd.read_csv("/gdrive/MyDrive/8-dataset.csv", names=names)
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
print(X.head())
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.10)
classifier = KNeighborsClassifier(n_neighbors=5).fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
i = 0
print ("\n-----")
print ('%-25s %-25s %-25s' % ('Original Label', 'Predicted Label', 'Correct/Wrong'))
print ("-----")
for label in ytest:
  print ('%-25s %-25s' % (label, ypred[i]), end="")
  if (label == ypred[i]):
    print (' %-25s' % ('Correct'))
  else:
    print (' %-25s' % ('Wrong'))
  i = i + 1
print ("-----")
print("\nConfusion Matrix:\n",metrics.confusion_matrix(ytest, ypred))
print ("-----")
print("\nClassification Report:\n",metrics.classification_report(ytest, ypred))
print ("-----")
print('Accuracy of the classifer is %0.2f' % metrics.accuracy_score(ytest,ypred))
```

sepal-length		petal-le	_	
5.1	3.5		1.4	0.2
1 4.9	3.0		1.4	0.2
2 4.7	3.2		1.3	0.2
3 4.6	3.1		1.5	0.2
4 5.0	3.6		1.4	0.2
Original Label		dicted La		Correct/Wrong
Iris-versicolor		s-versico		Correct
Iris-virginica	Iris	s-virgini	ca	Correct
Iris-virginica	Iris	s-virgini	ca	Correct
Iris-setosa		s-setosa		Correct
Iris-versicolor		s-virgini	ca	Wrong
Iris-setosa		s-setosa		Correct
Iris-versicolor		s-versico	lor	Correct
Iris-setosa		s-setosa		Correct
Iris-secosa Iris-versicolor		s-secosa s-versico	lor	Correct
Iris-versicolor Iris-versicolor		s-versico s-versico		Correct
Iris-versicolor Iris-versicolor		s-versico s-versico		Correct
Iris-versicolor		s-versico ·		Correct
Iris-versicolor		s-versico	ior	Correct
Iris-setosa		s-setosa		Correct
Iris-virginica	Iri	s-virgini	.ca	Correct
Confusion Matrix [[4 0 0] [0 7 1] [0 0 3]]	:			
Classification R	eport:			
	precision	recall	f1-scor	e support
Iris-setosa	1.00	1.00	1.00	4
Iris-versicolor	1.00	0.88	0.93	8
Iris-virginica	0.75	1.00	0.86	3
			0.93	15
accuracy	0.92	0.96	0.93	
accuracy macro avg				
macro avg weighted avg		0.93	0.94	15
macro avg		0.93	0.94	15
macro avg	0.95		0.94	

Program 9. Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

DATASET

1	YearsExperience	Salary
2	1.1	39343
3	13	46205
4	1.5	37731
5	2.0	43525
6	2.2	39891
7	2.9	56642
8	3.0	60150
9	3.2	54445
10	3.2	64445
11	3.7	57189
12	3.9	63218
13	4.0	55794
14	4.0	56957
15	4.1	57081
16	4.5	61111
17	4.9	67938
18	5.1	66029
19	5.3	83088
20		81363
21	6.0	93940
22	6.8	91738
23	71	98273

```
CODE
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
dataset = pd.read_csv('/salary_dataset.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
viz_train = plt
viz_train.scatter(X_train, y_train, color='red')
viz_train.plot(X_train, regressor.predict(X_train), color='blue')
viz_train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
```

```
viz_train.ylabel('Salary')
viz_train.show()
viz_test = plt
viz_test.scatter(X_test, y_test, color='red')
viz_test.plot(X_train, regressor.predict(X_train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
```


Program 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

DATASET

1	total_bill	tip	sex	smoker	day	time	size
2	16.99	1.01	Female	No	Sun	Dinner	
3	10.34	1.66	Male	No	Sun	Dinner	
4	21.01		Male	No	Sun	Dinner	
5	23.68	3.31	Male	No	Sun	Dinner	
6	24.59	3.61	Female	No	Sun	Dinner	4
7	25.29	4.71	Male	No	Sun	Dinner	4
8	8.77	2.0	Male	No	Sun	Dinner	
9	26.88	3.12	Male	No	Sun	Dinner	4
10	15.04	1.96	Male	No	Sun	Dinner	
11	14.78	3.23	Male	No	Sun	Dinner	
12	10.27	1.71	Male	No	Sun	Dinner	
13	35.26	5.0	Female	No	Sun	Dinner	4
14	15.42	1.57	Male	No	Sun	Dinner	
15	18.43	3.0	Male	No	Sun	Dinner	4
16	14.83	3.02	Female	No	Sun	Dinner	
17	21.58	3.92	Male	No	Sun	Dinner	
18	10.33	1.67	Female	No	Sun	Dinner	
19	16.29	3.71	Male	No	Sun	Dinner	
20	16.97		Female	No	Sun	Dinner	
21	20.65	3.35	Male	No	Sat	Dinner	
22	17.92	4.08	Male	No	Sat	Dinner	
22	20.20	2.75	Fomale	No	Sat	Dinner	2

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

def kernel(point, xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

def localWeight(point, xmat, ymat, k):
```

```
wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
     ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
data = pd.read_csv('/gdrive/MyDrive/10-dataset.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T))
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add\_subplot(1,1,1)
ax.scatter(bill,tip, color='green')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
```

```
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show()
```

