∽ Corrigé de l'interrogation sur la divisibilité du 22/10/2021 ∾

Questions de cours.

- 1. Soient a et b deux entiers avec a non nul. « a divise b » donc il existe un entier k tel que b = ka.
- **2.** Soient *a* et *b* deux entiers non nuls.

Si a divise c alors il existe un entier k tel que c = ka.

De même si b divise c alors il existe un entier k' tel que c = k'b.

On a alors $c^2 = ka \times k'b = kk'ab$ avec $kk' \in \mathbb{Z}$. Comme a et b sont non nuls, ab l'est également et par suite ab divise c^2 .

Exercice 1.

Soit n un entier relatif différent de -5.

Si n + 5|3n + 2 alors étant donné que n + 5|n + 5, on a n + 5|3(n + 5) - (3n + 2) soit n + 5|13.

Le diviseurs de 13 sont -13, -1, 1 et 13.

 $-1^{\text{er}} \operatorname{cas}: n+5=-13 \Longleftrightarrow n=-18 \in \mathbb{Z}$

 -2^{e} cas: $n+5=-1 \iff n=-6 \in \mathbb{Z}$

 -3^{e} cas: $n+5=1 \iff n=-4 \in \mathbb{Z}$

 -4^{e} cas: $n+5=13 \iff n=8 \in \mathbb{Z}$

Je vous laisse vérifier que ces valeurs de n conviennent.

$$S = \{-18; -6; -4; 8\}$$

Exercice 2.

Pour tout entier naturel n, on pose $u_n = 4^n + 15n - 1$.

- 1. $u_0 = 0 = 9 \times 0$, $u_1 = 18 = 9 \times 2$ et $u_2 = 45 = 9 \times 5$ ce qui montre que ces trois entiers sont tous divisibles par 9.
- **2.** Pour tout entier naturel *n*

$$u_{n+1} - 4u_n = 4^{n+1} + 15(n+1) - 1 - 4(4^n + 15n - 1)$$

= 4^{n+1} + 15n + 15 - 1 - 4^{n+1} - 60n + 4
= -45n + 18

Donc pour tout entier naturel n, $u_{n+1} - 4u_n = -45n + 18$ soit $u_{n+1} = 4u_n - 45n + 18$.

- **3.** Démontrons par récurrence que pour tout entier naturel n, u_n est divisible par 9.
 - *Initialisation*: On a vu que $u_0 = 0$ et que u_0 est divisible par 9 ce qui prouve que \mathscr{P}_0 est bien vraie.
 - *Hérédité*: supposons \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire u_k est divisible par 9 et montrons que \mathscr{P}_{k+1} est vraie c'est-à-dire u_{k+1} est aussi divisible par 9. Par hypothèse de récurrence, u_k est divisible par 9.

Il existe alors un entier K tel que $u_k = 9K$.

Or $u_{k+1} = 4u_k - 45k + 18$ donc $u_{k+1} = 4 \times 9K - 9 \times 5k + 9 \times 2 = 9(4K - 5k + 2)$ avec $4K - 5k + 2 \in \mathbb{Z}$ ce qui prouve que u_{k+1} est divisible par 9 et que \mathscr{P}_{k+1} est vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n = 0. On en déduit que \mathcal{P}_n est vraie pour tout entier naturel n, c'est-à-dire, u_n est divisible par 9.

∽ Corrigé de l'interrogation sur la divisibilité du 22/10/2021 ∾

Questions de cours.

- 1. Soient a et b deux entiers avec a non nul. « a divise b » donc il existe un entier k tel que b = ka.
- **2.** Soient *a* et *b* deux entiers non nuls.

Si a divise c alors il existe un entier k tel que c = ka.

De même si b divise c alors il existe un entier k' tel que c = k'b.

On a alors $c^2 = ka \times k'b = kk'ab$ avec $kk' \in \mathbb{Z}$. Comme a et b sont non nuls, ab l'est également et par suite ab divise c^2 .

Exercice 1.

Soit n un entier relatif différent de -2.

Si n + 2|3n - 1 alors étant donné que n + 2|n + 2, on a n + 2|3(n + 2) - (3n - 1) soit n + 2|7.

Le diviseurs de 7 sont -7, -1, 1 et 7.

 $-1^{\text{er}} \operatorname{cas}: n+2=-7 \Longleftrightarrow n=-9 \in \mathbb{Z}$

 -2^{e} cas: $n+2=-1 \iff n=-3 \in \mathbb{Z}$

 -3^{e} cas: $n+2=1 \iff n=-1 \in \mathbb{Z}$

 -4^{e} cas: $n+2=7 \iff n=5 \in \mathbb{Z}$

Je vous laisse vérifier que ces valeurs de n conviennent.

$$S = \{-9; -3; -1; 5\}$$

Exercice 2.

Soit *a* un entier naturel non nul et on considère la suite (u_n) définie sur \mathbb{N} par :

$$u_n = (a+1)^n - an - 1.$$

- 1. On a $u_0 = 0 = 0 \times a^2$, $u_1 = 0 = 0 \times a^2$ et $u_2 = a^2 = 1 \times a^2$ avec a^2 non nul donc les trois premiers termes de la suite (u_n) sont divisibles par a^2 .
- **2.** Pour tout entier naturel n

$$u_{n+1} - (a+1)u_n = (a+1)^{n+1} - a(n+1) - 1 - (a+1)[(a+1)^n - an - 1]$$

$$= (a+1)^{n+1} - an - a - 1 - (a+1)^{n+1} + na(a+1) + a + 1$$

$$= -an - a - 1 + na(a+1) + a + 1$$

$$= -an - a - 1 + na^2 + na + a + 1$$

$$= na^2$$

- **3.** Démontrons par récurrence que pour tout entier naturel n, u_n est divisible par a^2 .
 - *Initialisation*: On a vu que $u_0 = 0$ et que u_0 est divisible par a^2 ce qui prouve que \mathcal{P}_0 est bien *vraie*.
 - *Hérédité*: supposons \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire u_k est divisible par a^2 et montrons que \mathscr{P}_{k+1} est vraie c'est-à-dire u_{k+1} est aussi divisible par a^2 . Par hypothèse de récurrence, u_k est divisible par a^2 .

Il existe alors un entier K tel que $u_k = Ka^2$.

Or $u_{k+1} - (a+1)u_k = ka^2$ donc $u_{k+1} = (a+1)u_k + ka^2$. On remplace alors u_k par Ka^2 il vient $u_{k+1} = (a+1)Ka^2 + ka^2$ soit $u_{k+1} = a^2(aK+K+k)$ avec $aK+K+k \in \mathbb{Z}$ ce qui prouve que u_{k+1} est divisible par a^2 et que \mathcal{P}_{k+1} est vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n = 0. On en déduit que \mathcal{P}_n est vraie pour tout entier naturel n, c'est-à-dire, u_n est divisible par a^2 .