7: ARCH og GARCH modeller, herunder specielt ARCH(1) og GARCH(1,1)

Tidsrækkeanalyse

Kasper Rosenkrands

Afkast definitioner

Først vil jeg definere forskellige former for afkast. Vi starter med at lade p_t være prise til tid t af et aktiv.

Det simple **netto** afkast fra tid t-1 til tid t givet ved

$$R_t = \frac{p_t - p_{t-1}}{p_{t-1}}$$
 (Procentændring i p_t).

Bemærk at vi kan lave omskrivningen

$$\frac{p_t - p_{t-1}}{p_{t-1}} = \frac{p_t}{p_{t-1}} - 1,$$

for at få det simple brutto afkast der er defineret ved

$$1+R_t=\frac{p_t}{p_{t-1}}.$$

Log afkast

Hvis R_t er defineret som på forrige slide, så er \log afkastet defineret som

$$r_t = \log(1+R_t) = \log\left(\frac{p_t}{p_{t-1}}\right) = \log p_t - \log p_{t-1} = \nabla \log p_t.$$

Finansielle tidsrækker

Lader vi prisen for et aktiv være x_t og afkastet være y_t så gælder den følgende relation

$$y_t = \frac{x_t - x_{t-1}}{x_{t-1}}$$
 eller $y_t = \nabla \log x_t$.

Empirien for afkast-tidsrækker fortæller os at:

- 1. Fravær af autokorrelation i y_t
- 2. Signifikant autokorrelaion i y_t^2 og $|y_t|$
- 3. Tunge haler
- 4. Volatilitets klyngning

Topstejlhed

Topstejlhed eller **kurtosis** er det 4. moment og er defineret som

$$\kappa = \frac{\mathbb{E}\left[X - \mu\right]^4}{\left(\mathbb{E}\left[X - \mu\right]^2\right)^2} - 3.$$

ARCH(1)

Hvis vi lader $\varepsilon_t \sim \mathit{N}(0,1)$ være i.i.d. og $\alpha_0 > 0, \alpha_1 > 0$. Så kaldes

$$y_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 y_{t-1}^2$$

for en ARCH(1) model.

De betingede fordelinger er Gaussiske

$$y_t|y_{t-1} \sim N(0, \alpha_0 + \alpha_1 y_{t-1}^2).$$

Middelværdi og varians

Fra law of total expectation har vi

$$E[y_t] = E[E[y_t|y_{t-1}]] = 0.$$

Fra variansen af den betingede fordeling fås

$$E[y_t^2] = E[E[y_t^2|y_{t-1}]] = E[\alpha_0 + \alpha_1 y_{t-1}^2] = \alpha_0 + \alpha_1 E(y_{t-1}^2)$$

Dette er en determistisk første ordensdifferensligning for variansen. Hvis denne antages endelig er den eneste løsning konstanten

$$E[y_t^2] = \frac{\alpha_0}{1 - \alpha_1}$$

hvor det kræves at $\alpha_1 < 1$.

Autokovarians

Vi kan vise y_t er en ukorreleret følge for h > 0, i det

$$Cov(y_{t+h}, y_t) = E[y_{t+h}y_t]$$

$$= E[E[y_{t+h}y_t|y_{t+h-1}]]$$

$$= E\left[y_t E[y_{t+h}|y_{t+h-1}]\right]$$

$$= 0$$

Dette afhænger ikke af t og dermed er en ARCH(1) stationær for $\alpha_1 < 1$.

ARCH(1) eksempel

ACF eksempel

ACF of squared timeseries

ACF of absolute timeseries

GARCH(1,1)

Vi kan lave en udvidelse fra ARCH(1) til GARCH(1,1) ved at inkludere et reelt autoregressivt led af variansen

$$\sigma_t^2 = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \text{ for } \alpha_1 + \beta_1 < 1.$$

GARCH(1,1) betyder at

$$y_t|y_{t-1} \sim N(0, \sigma_t^2),$$

hvor

$$\sigma_t^2 = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

ARMA-(G)ARCH

Man kan udvide den sædvanlige ARMA model til at tage højde for volatility clustering ved blot at kombinere de to.

Lad z_t være en ARMA proces og y_t være en (G)ARCH, da vil x_t være en **ARMA-GARCH** hvis det gælder at

$$x_t = z_t + y_t$$
.