Chapter 02 Modeling

IR Models

เซตแบบต้นฉบับ (Crisp Set)

- กำหนดค่าความเป็นสมาชิกตามแนวคิดเลขฐานสอง
- เซตที่มีค่าความเป็นสมาชิกเป็น 0 หรือ 1 เท่านั้น
- ขอบเขตของเซตที่ตัดขาดจากกันแบบทันทีทันใด ไม่มีความต่อเนื่อง

$$\mu_A(x) = \begin{cases} 0, & x \notin A \\ 1, & x \in A \end{cases}$$

เซตแบบตันฉบับ (ต่อ)

ตัวอย่าง Crisp Set (Classical Set)

ตัวอย่างการแสดงค่าความเป็นสมาชิกของผู้ที่ยังไม่ได้แต่งงาน

"ทุกสิ่งบนโลกแห่งความเป็นจริง มิได้มีเฉพาะสิ่งที่ มีความแน่นอนเท่านั้น แต่มีหลายสิ่ง หลายอย่าง หลายเหตุการณ์เกิดขึ้นอย่างไม่เที่ยงตรง อาจเป็น สิ่งที่คลุมเครือและไม่แน่นอน"

Fuzzy Set

Example

เซตของอายุคน อาจแบ่งเป็น วัยทารก วัยเด็ก วัยรุ่น วัยกลางคนและวัย ชรา แต่ละช่วงอายุคนไม่สามารถระบุได้แน่ชัดว่าวัยทารกกับวัยเด็กแยกจากกัน แน่ชัดช่วงใด วัยทารกอาจถูกตีความว่าเป็นอายุระหว่าง 0 ถึง 1 ปี บางคนอาจ ตีความว่าวัยทารกอยู่ในช่วงอายุ 0 ถึง 2 ปี เซตของเหตุการณ์ที่ไม่แน่นอน เช่นนี้เรียกว่า "ฟัซซีเซต" (Fuzzy Set)

• ฟัชซี่ลอจิกมีลักษณะที่พิเศษกว่าตรรกะแบบจริงเท็จ (Boolean logic) โดยมีการเพิ่มแนวคิด**ความจริงบางส่วน (partial true)** เข้ามา ซึ่งจะ มีค่าความจริงอยู่ในช่วงระหว่างจริง (completely true) กับเท็จ (completely false)

Fuzzy set

- ถูกนำเสนอในรูปแบบของค่าขอบเขตที่คลุมเครือ
- ยอมให้มีค่าความเป็นสมาชิกของเซตมีได้มากกว่า 2 ค่า
 - ความเป็นสมาชิกจะมีค่าระหว่าง 0-1 [0,1]
 - โดย 0 หมายถึง ไม่มีความเป็นสมาชิกเลย
 - 1 หมายถึง ความเป็นสมาชิกโดยสมบูรณ์
 - ระหว่าง 0-1 หมายถึง ความเป็นสมาชิกแค่บางส่วน
 - ดังนั้น ความเป็นสมาชิกของฟัชซี่จะมีความต่อเนื่อง

Fuzzy set

ฟ้ซซี่เซต A ของเอกภพ U ถูกกำหนดโดยฟังก์ชั่นความเป็นสมาชิก

$$\mu_A:U\rightarrow [0,1]$$

กำหนดสมาชิกแต่ละตัว u ของเอกภพ คือ $\left\lfloor \frac{\mu_{_A}\left(u\right)}{2} \right\rfloor$ โดยมีค่าอยู่ในช่วง

Query = "cat and dog"
$$d_1 = \{dog, cat, bird, zebra, zoo\}$$

$$d_2 = \{cat, kitty, fish\}$$

$$d_3 = \{dog, puppy, house, robber\}$$

$$d_4 = \{ant, sugar\}$$

Fuzzy set

ตัวดำเนินการหลัก ๆ ของฟัชซี่เซต

Complement

$$\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$$

Intersection

$$\mu_{A \cap B} = \mu_A(x) \wedge \mu_B(x) = \min(\mu_A(x), \mu_B(x))$$

Union

$$\mu_{A \cup B} = \mu_A(x) \lor \mu_B(x) = \max(\mu_A(x), \mu_B(x))$$

Complement

$$\mu_{\overline{Dog}}(x) = (1 - \mu_{Dog}(x))$$

Intersection

$$\mu_{Dog \cap Cat \cap Tiger}(x) = \mu_{Dog}(x).\mu_{Cat}(x).\mu_{Tiger}(x)$$

Union

$$\mu_{Dog \cup Cat \cup Tiger}(x) = 1 - (1 - \mu_{Dog}(x)).(1 - \mu_{Cat}(x)).(1 - \mu_{Tiger}(x))$$

Dog OR Cat OR Tiger

$$(1-\mu_{Dog}(x)).(1-\mu_{Cat}(x)).(1-\mu_{Tiger}(x))$$

$$\mu_{Dog \cup Cat \cup Tiger}(x) = 1 - (1 - \mu_{Dog}(x)).(1 - \mu_{Cat}(x)).(1 - \mu_{Tiger}(x))$$

Index Term Relationship

$$c_{i,j} = \frac{n_{i,j}}{n_i + n_j - n_{i,j}}$$

 $c_{i,j}$ คือ ความสัมพันธ์ของคีย์เวิร์ค \mathbf{i} กับ คีย์เวิร์ค \mathbf{j}

 $n_{i,j}$ คือ จำนวนเอกสารที่มีทั้งคีย์เวิร์ค old i และคีย์เวิร์ค old j

 n_i คือ จำนวนเอกสารที่มีคีย์เวิร์ด ${f i}$

 n_j คือ จำนวนเอกสารที่มีคีย์เวิร์ด \mathbf{j}

Query = "I would like *cat* and have *dog*"

$$d_1 = \{dog, cat, bird, zebra, zoo\}$$

$$d_2 = \{cat, kitty, fish\}$$

$$d_3 = \{dog, puppy, house, robber\}$$

$$d_4 = \{ant, sugar\}$$

Query = "I would like cat and have dog"

หาความสัมพันธ์ของคีย์เวิร์ดแต่ละตัว "cat", "dog"

$$c_{i,j} = rac{n_{i,j}}{n_i + n_j - n_{i,j}}$$
 $c_{i,j}$ คือ ความสัมพันธ์ของคีย์เวิร์ด i กับ คีย์เวิร์ด j
 $n_{i,j}$ คือ จำนวนเอกสารที่มีทั้งคีย์เวิร์ด i และคีย์เวิร์ด j
 n_i คือ จำนวนเอกสารที่มีคีย์เวิร์ด i
 n_j คือ จำนวนเอกสารที่มีคีย์เวิร์ด i

cat -> dog, bird, zebra, zoo, kitty, fish

$$c_{cat,dog} = \frac{n_{cat,dog}}{n_{cat} + n_{dog} - n_{cat,dog}} = \frac{1}{2 + 2 - 1} = \frac{1}{3} \approx 0.33$$

$$c_{cat,bird} = \frac{n_{cat,bird}}{n_{cat} + n_{bird} - n_{cat,bird}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{cat,zebra} = \frac{n_{cat,zebra}}{n_{cat} + n_{zebra} - n_{cat,zebra}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{cat,zoo} = \frac{n_{cat,zoo}}{n_{cat} + n_{zoo} - n_{cat,zoo}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{cat,kitty} = \frac{n_{cat,kitty}}{n_{cat} + n_{kitty} - n_{cat,kitty}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{cat,fish} = \frac{n_{cat,fish}}{n_{cat} + n_{fish} - n_{cat,fish}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

dog -> cat, bird, zebra, zoo, puppy, house, robber

$$c_{dog,cat} = \frac{n_{dog,cat}}{n_{dog} + n_{cat} - n_{dog,cat}} = \frac{1}{2 + 2 - 1} = \frac{1}{3} \approx 0.33$$

$$c_{dog,bird} = \frac{n_{dog,bird}}{n_{dog} + n_{bird} - n_{dog,bird}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{dog,zebra} = \frac{n_{dog,zebra}}{n_{dog} + n_{zebra} - n_{dog,zebra}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{dog,zoo} = \frac{n_{dog,zoo}}{n_{dog} + n_{zoo} - n_{dog,zoo}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{dog,puppy} = \frac{n_{dog,puppy}}{n_{dog} + n_{puppy} - n_{dog,puppy}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{dog,house} = \frac{n_{dog,house}}{n_{dog} + n_{house} - n_{dog,house}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

$$c_{dog,robber} = \frac{n_{dog,robber}}{n_{dog} + n_{robber} - n_{dog,robber}} = \frac{1}{2 + 1 - 1} = \frac{1}{2} = 0.5$$

Index1	Index2	Relationship
Cat	Dog	0.33
Cat	Bird	0.5
Cat	Zebra	0.5
Cat	Zoo	0.5
Cat	Kitty	0.5
Cat	Fish	0.5

Index1	Index2	Relationship
Dog	Cat	0.33
Dog	Bird	0.5
Dog	Zebra	0.5
Dog	Zoo	0.5
Dog	Puppy	0.5
Dog	House	0.5
Dog	Robber	0.5

ระดับความเป็นสมาชิกของ index term กับแต่ละเอกสารในระบบ

$$cat = \{d_1 \rightarrow 1, d_2 \rightarrow 1, d_3 \rightarrow 0.33, d_4 \rightarrow 0\}$$

$$dog = \{d_1 \rightarrow 1, d_2 \rightarrow 0.33, d_3 \rightarrow 1, d_4 \rightarrow 0\}$$

$$d1 = \{dog, cat, bird, zebra, zoo\}$$

$$d2 = \{cat, kitty, fish\}$$

$$d3 = \{dog, puppy, house, robber\}$$

$$d4 = \{ant, sugar\}$$

Union

$$\mu_{dog \cup cat}(x) = 1 - (1 - \mu_{dog}(x)) \cdot (1 - \mu_{cat}(x))$$

$$\mu_{dog \cup cat}(d_1) = 1 - (1 - \mu_{dog}(d_1)) \cdot (1 - \mu_{cat}(d_1)) = 1 - (1 - 1)(1 - 1) = 1$$

$$\mu_{dog \cup cat}(d_2) = 1 - (1 - \mu_{dog}(d_2)) \cdot (1 - \mu_{cat}(d_2)) = 1 - (1 - 0.33)(1 - 1) = 1$$

$$\mu_{dog \cup cat}(d_3) = 1 - (1 - \mu_{dog}(d_3)) \cdot (1 - \mu_{cat}(d_3)) = 1 - (1 - 1)(1 - 0.33) = 1$$

$$\mu_{dog \cup cat}(d_4) = 1 - (1 - \mu_{dog}(d_4)) \cdot (1 - \mu_{cat}(d_4)) = 1 - (1 - 0)(1 - 0) = 0$$

$$\mu_{dog \cup cat} = \left\{ d_1 \rightarrow 1, d_2 \rightarrow 1, d_3 \rightarrow 1, d_4 \rightarrow 0 \right\}$$

$$d_1 = \left\{ dog, cat, bird, zebra, zoo \right\}$$

$$d_2 = \left\{ cat, kitty, fish \right\}$$

$$d_3 = \left\{ dog, puppy, house, robber \right\}$$

$$d_4 = \left\{ ant, sugar \right\}$$

Intersection

$$\mu_{dog \cap cat}(x) = \mu_{dog}(x) \cdot \mu_{cat}(x)$$

$$\mu_{dog \cap cat}(d_2) = \mu_{dog}(d_2) \cdot \mu_{cat}(d_2) = 0.33 \cdot 1 = 0.33$$

$$\mu_{dog \cap cat}(d_3) = \mu_{dog}(d_3) \cdot \mu_{cat}(d_3) = 1 \cdot 0.33 = 0.33$$

$$\mu_{dog \cap cat}(d_4) = \mu_{dog}(d_4) \cdot \mu_{cat}(d_4) = 0 \cdot 0 = 0$$

$$\mu_{dog \cap cat} = \{d_1 \to 1, d_2 \to 0.33, d_3 \to 0.33, d_4 \to 0\}$$

$$d_1, d_2, d_3, d_4$$

$$d_1 = \{dog, cat, bird, zebra, zoo\}$$

$$d_2 = \{cat, kitty, fish\}$$

$$d_3 = \{dog, puppy, house, robber\}$$

$$d_4 = \{ant, sugar\}$$

Complement

$$\mu_{\overline{dog} \, \cap \, \overline{cat}}(x) = (1 - \mu_{dog}(x)) \cdot (1 - \mu_{cat}(x))$$

$$\mu_{\overline{dog} \, \cap \, \overline{cat}}(d_3) = (1 - \mu_{dog}(d_3)) \cdot (1 - \mu_{cat}(d_3)) = (1 - 1) \cdot (1 - 0.33) = 0$$

$$\mu_{\overline{dog} \, \cap \, \overline{cat}}(d_4) = (1 - \mu_{dog}(d_4)) \cdot (1 - \mu_{cat}(d_4)) = (1 - 0) \cdot (1 - 0) = 1$$

$$\mu_{\overline{dog} \, \cap \, \overline{cat}} = \left\{ d_1 \to 0, d_2 \to 0, d_3 \to 0, d_4 \to 1 \right\}$$

$$d_1 = \left\{ dog, cat, bird, zebra, zoo \right\}$$

$$d_2 = \left\{ cat, kitty, fish \right\}$$

$$d_3 = \left\{ dog, puppy, house, robber \right\}$$

$$d_4 = \left\{ ant, sugar \right\}$$

Union

$$d_1, d_2, d_3$$

Complement

$$d_4$$

Extended Boolean Model

Boolean Model

เอกสาร	เนื้อหาของเอกสาร	ศัพท์ครรชนีของเอกสาร
D ₁	สุนัขาในเหมือนกับที่แมวกิน	"สุนัข" "กิน" "แมว" "co"ง" "***"
D_{2} D_{3}	สุนัขไม่ใช่หนู หนูกินไม่มากนัก	"สุนัข" "หนู" "หนู" "กิน"
D_4	แมวชอบเล่นกับงูและหนู แมวชอบเล่น แต่ไม่กับแมวด้วยกัน	"แมว" "เล่น" "งู" "หนู" "แมว" "เล่น"

ถ้าต้องการค้น (แมว AND สุนัข) จะได้ผลการค้นเป็น D₁ เท่านั้น

Boolean Model

- เนื่องจาก Boolean Model มีข้อเสียคือการไม่สนใจน้ำหนักของ Keyword
- Vector Space Model มีข้อเสียคือการเชื่อมต่อทางตรรกะทำ ได้ยาก

จึงได้มีความพยายามที่นำข้อดีของทั้งสองมารวมกัน ทำเป็นModel ใหม่ขึ้นมา เรียกว่า Extended Boolean Model

$$w_{i, j} = t f_{normi, j} * idf_{normi}$$

normalized IDF ของ Keyword "i" ในเอกสารทั้งหมด

$$w_{i, j} = t f_{normi, j} * i d f_{normi}$$

$$tf_{normi, j} = \frac{tf_{i, j}}{tf_{max i, j}}$$

$$idf_{normi} = \frac{idf_i}{idf_{\max g}}$$

tf คือจำนวนครั้งที่ Keyword นั้นปรากฎเอกสารที่สนใจ

tf ของ Keyword "i" ในเอกสาร "j"

ค่าสูงสุดที่หาได้ของ tf ของ Keyword ในเอกสาร "j"

idf คือภาพรวมของการพบ Keyword ที่สนใจ โดยพิจารณาจากเอกสารทั้งหมดในระบบ

idf ของ Keyword "i" ในเอกสารทั้งหมด

ค่าสูงสุดที่หาได้ของ idf ของ Keyword ในเอกสารทั้งหมด

Relevance

จุด (0,0) คือจุดที่มีความตรงประเด็นน้อยที่สุด จุด (1,1) คือจุดที่มีความตรงประเด็นมากที่สุด

ระยะห่างสูงสุดของความตรงประเด็น (Relevance)

OR

คำนวณระยะหางจากจุด(0,0) ไปที่ ($\mathbf{W}_1,\mathbf{W}_2$) ของเอกสารที่สนใจ

$$dis_{or} = \sqrt{(W_{1,j} - 0)^2 + (W_{2,j} - 0)^2}$$

AND

คำนวณระยะห่างจากจุด(1,1) ไปที่ $(\mathbf{W}_1, \mathbf{W}_2)$ ของเอกสารที่สนใจ

ความตรงประเด็นของ Query

OR

$$dis_{or} = \sqrt{\left(W_{1,j}^{}\right)^2 + \left(W_{2,j}^{}\right)^2}$$
 ระยะห่าง dis ตรงประเด็น $\frac{dis}{\sqrt{2}}$

$$sim(q_{or}, dj) = \sqrt{\frac{W_{1,j}^2 + W_{2,j}^2}{2}}$$

ความตรงประเด็นของ Query

AND

$$dis_{and} = \sqrt{2} - \sqrt{(1-W_{1,j})^2 + (1-W_{2,j})^2}$$
 ระยะห่าง $\sqrt{2}$ ตรงประเด็น 1.00 ระยะห่าง dis ตรงประเด็น $\frac{dis}{\sqrt{2}}$

$$sim(q_{and}, dj) = 1 - \sqrt{\frac{(1 - W_{1,j})^2 + (1 - W_{2,j})^2}{2}}$$

Question

Q = Cat OR Not dog ???

$$sim(q_{or}, dj) = \sqrt{\frac{W_{cat,j}^2 + (1 - Wdog_{j})^2}{2}}$$

Q = (Dog AND Cat) OR Tiger ???

$$sim(q_{or}, dj) = \sqrt{\frac{W_{1,j}^2 + W_{tiger,j}^2}{2}}$$

$$sim(q_{or}, dj) = \sqrt{\frac{\left(1 - \sqrt{\frac{(1 - Wdo_{g,j})^2 + (1 - Wca_{t,j})^2}{2}}\right)^2 + W_{tiger,j}^2}{2}}$$

EXAMPLE

```
ข้อ 2. สมมติในระบบมีเอกสาร 10 เอกสารดังนี้ (bird, cat, dog, tiger คือ Keyword ซึ่งไม่สัมพันธ์กัน)
D1: {bird, cat, bird, cat, dog, dog, bird}
D2: {cat, tiger, cat, dog}
D3: {dog, bird, bird}
D4: {cat, tiger}
D5: {tiger, tiger, dog, tiger, cat}
D6: {bird, cat, bird, cat, tiger, tiger, bird}
D7: {bird, tiger, cat, dog}
D8: {dog, cat, bird}
D9: {cat, dog, tiger}
```

เด็กหญิงดาวิกาส่งคำเรียกค้น "**รักแมวและสุนัข แต่ไม่รักเสือ**" เข้าไปในระบบ จงตอบคำถาม

- 2.1 เพื่อให้ได้คำตอบในคำถาม 2.2 เด็กหญิงดาวิกา**ควรเลือกใช้โมเดลใดเพราะอะไร** (เลือกได้เฉพาะตัวเลือกที่ให้มา)
- A) Probabilistic Model B) Fuzzy Model C) Extend Boolean Model D) Vector Model
- 2.2 ให้นักศึกษาแสดงวิธีคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ ตามที่เด็กหญิงดาวิกาต้องการ

(33 คะแนน) <u>ช้อสอบ 1/2559</u>

D10: {tiger, tiger, tiger}

Answer

2.1 เลือกใช้ Extend Boolean Model เนื่องจากลักษณะของ Query เป็นแบบ Boolean และ โจทย์กำหนดให้ Keyword ไม่สัมพันธ์กัน

ข้นตอนที่ 1

```
เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้
D1: {bird,cat,bird,cat,dog,dog,bird}
D2: {cat,tiger,cat,dog}
D3: {dog,bird,bird}
D4: {cat,tiger}
D5: {tiger,tiger,dog,tiger,cat}
D6: {bird,cat,bird,cat,tiger,tiger,bird}
D7: {bird,tiger,cat,dog}
D8: {dog,cat,bird}
D9: {cat,dog,tiger}
D10: {tiger,tiger,tiger}
```

	Bird	Cat	Dog	Tiger	Max
Doc1	3	2	2	0	3
Doc2	0	2	1	1	2
Doc3	2	0	1	0	2
Doc4	0	1	0	1	1
Doc5	0	1	1	3	3
Doc6	3	2	0	2	3
Doc7	1	1	1	1	1
Doc8	1	1	1	0	1
Doc9	0	1	1	1	1
Doc10	0	0	0	3	3
n	5	8	7	7	

Query = รักแมวและสุนัข แต่ไม่รักเสือ

Query = (Cat AND Dog) AND NOT Tiger

Ranking

Doc8 Doc1

. . .

ข้นตอนที่ 1

$$tf_{bird} = \frac{3}{3} = 1.000$$

$$tf_{cat} = \frac{2}{3} = 0.667$$

$$tf_{dog} = \frac{2}{3} = 0.667$$

$$tf_{tiger} = \frac{0}{3} = 0.000$$

Only Doc1

	Bird	Cat	Dog	Tiger	Max	
Doc	1 3	2	2	0	3	
Doc	2 0	2	1	1	2	
Doc	3 2	0	1	0	2	
Doc	4 0	1	0	1	1	
Doc	5 0	1	1	3	3	
Doc	6 3	2	0	2	3	
Doc	7 1	1	1	1	1	
Doc	8 1	1	1	0	1	
Doc	9 0	1	1	1	1	
Doc1	0	0	0	3	3	
n	5	8	7	7		

$$idf_{bird} = \log(\frac{10}{5}) = 0.301$$
 $idf_{norm, bird} = \frac{0.301}{0.301} = 1.000$ $idf_{cat} = \log(\frac{10}{8}) = 0.097$ $idf_{norm, cat} = \frac{0.301}{0.097} = 0.322$ $idf_{dog} = \log(\frac{10}{7}) = 0.155$ $idf_{norm, dog} = \frac{0.155}{0.301} = 0.515$ $idf_{tiger} = \log(\frac{10}{7}) = 0.155$ $idf_{norm, tiger} = \frac{0.301}{0.301} = 0.515$

$$w_{bird} = 1.000 * 1.000 = 1.000$$
 $w_{cat} = 0.667 * 0.322 = 0.215$
 $w_{dog} = 0.667 * 0.515 = 0.343$
 $w_{tiger} = 0.000 * 0.515 = 0.000$

ขั้นตอนที่ 1

น้ำหนักของแต่ละ Keyword ในแต่ละเอกสาร

	Bird	Cat	Dog	Tiger
Doc1	1.000	0.215	0.343	0.000
Doc2	0.000	0.322	0.257	0.257
Doc3	1.000	0.000	0.257	0.000
Doc4	0.000	0.322	0.000	0.515
Doc5	0.000	0.107	0.172	0.515
Doc6	1.000	0.215	0.000	0.343
Doc7	1.000	0.322	0.515	0.515
Doc8	1.000	0.322	0.515	0.000
Doc9	0.000	0.322	0.515	0.515
Doc10	0.000	0.000	0.000	0.515

ขั้นตอนที่ 2

Query = รักแมวและสุนัข แต่ไม่รักเสือ

Query = (Cat AND Dog) AND NOT Tiger

$$sim(q_{and}, dj) = 1 - \sqrt{\frac{(1 - W_{1,j})^2 + (1 - W_{2,j})^2}{2}}$$

	Bird	Cat	Dog	Tiger
Doc1	1.000	0.215	0.343	0.000
Doc2	0.000	0.322	0.257	0.257
Doc3	1.000	0.000	0.257	0.000
Doc4	0.000	0.322	0.000	0.515
Doc5	0.000	0.107	0.172	0.515
Doc6	1.000	0.215	0.000	0.343
Doc7	1.000	0.322	0.515	0.515
Doc8	1.000	0.322	0.515	0.000
Doc9	0.000	0.322	0.515	0.515
Doc10	0.000	0.000	0.000	0.515

$$sim(q_{and}, dj) = 1 - \sqrt{\frac{\left(1 - WCa_{t,j})^2 + (1 - Wdo_{g,j})^2}{2}\right)^2 + (1 - (1 - W_{Tiger_{,j}}))^2}{2}}$$

$$sim(q_{and},d_1) = 1 - \sqrt{\frac{\left(1 - \left(1 - \sqrt{\frac{(1 - 0.215)^2 + (1 - 0.343)^2}{2}}\right)\right)^2 + (1 - (1 - 0.000))^2}{2}}$$

$$sim(q_{and}, d_1) = 0.488$$

ขั้นตอนที่ 3

Query = รักแมวและสุนัข แต่ไม่รักเสือ

Query = (Cat AND Dog) AND NOT Tiger

	Sim
Doc1	0.488
Doc2	0.465
Doc3	0.377
Doc4	0.295
Doc5	0.291
Doc6	0.320
Doc7	0.447
Doc8	0.583
Doc9	0.447
Doc10	0.205

Ranking	Sim
Doc8	0.583
Doc1	0.488
Doc2	0.465
Doc7	0.447
Doc9	0.447
Doc3	0.377
Doc6	0.320
Doc4	0.295
Doc5	0.291
Doc10	0.205

```
เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้
```

D10: {tiger, tiger, tiger}

D1: {bird,cat,bird,cat,dog,dog,bird}
D2: {cat,tiger,cat,dog}
D3: {dog,bird,bird}
D4: {cat,tiger}
D5: {tiger,tiger,dog,tiger,cat}
D6: {bird,cat,bird,cat,tiger,tiger,bird}
D7: {bird,tiger,cat,dog}
D8: {dog,cat,bird}
D9: {cat,dog,tiger}

Rank → Doc8,Doc1,Doc2,Doc7,Doc9,Doc3,Doc6,Doc4,Doc5,Doc10

Generalizes Vector Space Model (GVSM)

Basic Vector Space Model

Example

$$D1 = (2, 1, 0, 0)$$

$$D2 = (5, 1, 0, 0)$$

$$D3 = (1, 1, 1, 1)$$

$$D4 = (0, 0, 2, 2)$$

$$D5 = (0, 1, 1, 2)$$

$$D6 = (0, 0, 1, 1)$$

$$D7 = (0, 0, 1, 0)$$

$$D8 = (1, 1, 0, 0)$$

$$D9 = (2, 1, 1, 1)$$

$$D10=(0, 2, 2, 2)$$

$$D11=(1, 0, 2, 0)$$

$$D12=(0, 0, 2, 1)$$

$$q = 2k_1 + 3k_2 - k_3$$

$$W_{ij} = tf_{ij} * idfi = tfij * log\left(\frac{N}{n_i}\right)$$

$$W_{iq} = \left(0.5 + \frac{0.5 * freqi_{q}}{Max(freqi_{q})}\right) * log\left(\frac{N}{n_{i}}\right)$$

$$sim(q, dj) = \frac{\sum_{i=1}^{t} (w_{ij} * wiq)}{\sqrt{\sum_{i=1}^{t} w^{2}_{ij} * \sum_{i=1}^{t} w^{2}_{iq}}}$$

Generalizes Vector Space Model

$$D1 = (2, 1, 0, 0)$$

$$D2 = (5, 1, 0, 0)$$

$$D3 = (1, 1, 1, 1)$$

$$D4 = (0, 0, 2, 2)$$

$$D5 = (0, 1, 1, 2)$$

$$D6 = (0, 0, 1, 1)$$

$$D7 = (0, 0, 1, 0)$$

$$D8 = (1, 1, 0, 0)$$

$$D9 = (2, 1, 1, 1)$$

$$D10=(0, 2, 2, 2)$$

$$D11=(1, 0, 2, 0)$$

$$D12=(0, 0, 2, 1)$$

$$q = 2k_1 + 3k_2 - k_3$$

$$D1 = (2, 1, 0, 0)$$

$$D2 = (5, 1, 0, 0)$$

$$D8 = (1, 1, 0, 0)$$

$$D3 = (1, 1, 1, 1)$$

$$D9 = (2, 1, 1, 1)$$

$$D4 = (0, 0, 2, 2)$$

$$D6 = (0, 0, 1, 1)$$

$$D12=(0, 0, 2, 1)$$

$$D5 = (0, 1, 1, 2)$$

$$D10=(0, 2, 2, 2)$$

$$D7 = (0, 0, 1, 0)$$

$$D11=(1, 0, 2, 0)$$

ข้อเสียของ Vector Space Model

- Keyword บางส่วนอาจจะเป็นอิสระต่อกัน บางส่วนอาจจะ เกี่ยวข้องกันและบางส่วนอาจจะเกี่ยวข้องกันมาก
- การอนุมานว่า Keyword เป็นอิสระจากกัน จึงเป็นการกระทำ ไม่ได้สอดคล้องกับความเป็นจริง
- Keyword ที่มีความหมายเคียวกัน จัดอยู่ในกลุ่มเคียวกัน

Generalizes Vector Space Model (GVSM)

- Keyword จะไม่ได้เป็นอิสระต่อกัน แต่จะเกี่ยวข้องกันในลักษณะใด ลักษณะหนึ่ง โดยสังเกตจากการปรากฏร่วมกัน
- การปรากฏของ Keyword จะนำมาซึ่งการเปรียบเทียบความคล้ายหรือ ความต่างของเอกสารกับคำเรียกค้นที่เข้ามา
- GVSM ใช้หลักการเดียวกับ VSM ด้วยการคำนวณหาค่าความ สอดคล้องของคำเรียกค้นกับเอกสารในระบบ แต่บน Vector Space ใหม่

Definition Given the set {k₁, k₂,...,k_t} of index terms in a collection, as before, let w_{i,j} be the weight associated with the term-document pair [k_i,d_j]. If the w_{i,j} weights are all binary, then all possible patterns of term co-occurrence (inside documents) can be represented by a set of 2^t minterms given by

$$m_1 = (0,0,...,0),$$
 $m_2 = (1,0,...,0)$
 $\dots,$
 $m_2^t = (1,1,...,1)$

Let $g_i(m_j)$ return the weight $\{0,1\}$ of the index term k_i in the minterm m_i

Definition Let us define the following set of vectors

$$m_1 = (0, 0, ..., 1)$$

 $m_2 = (0, 0, ..., 1, 0)$
....
 $m_2^{t-1} = (1, 1, ..., 1)$

where each vector m_i is associated with the respective minterm m_i .

$$c_{i,r} = \sum_{\substack{d_j | g_l(d_j) = g_l(m_r), for. all. l}} w_{i,j}$$

$$k_i = \frac{\sum \forall r, g_i(m_r)^c_{i,r} m_r}{\sqrt{\sum \forall r, g_i(m_r)^c_{i,r}^2}}$$

$$k_{i} \bullet k_{j} = \sum_{\forall r \mid g_{i}(m_{r}) = 1 \land g_{j}(m_{r}) = 1} c_{i,r} \times c_{j,r}$$

$$d_{j} = \sum_{i} w_{i,j} k_{i}$$

$$d_{j} = \sum_{r} s_{j,r} m_{r}$$

$$q_{j} = \sum_{i} w_{i,q} k_{i}$$

$$q_{j} = \sum_{r} s_{q,r} m_{r}$$

$$\sum_{r} w_{i,q} k_{i}$$

$$sim(q, d_{j}) = \frac{\sum_{i=1}^{t} W_{i, j} \cdot W_{i, q}}{\sqrt{\sum_{i=1}^{t} W_{i, j}^{2} \cdot \sum_{i=1}^{t} W_{i, q}^{2}}}$$

Example

$$D1 = (2, 1, 0, 0) \mathbf{m1}$$

$$D2 = (5, 1, 0, 0)$$
m1

$$D3 = (1, 1, 1, 1) m2$$

$$D4 = (0, 0, 2, 2) \text{ m}$$

$$D5 = (0, 1, 1, 2)m4$$

$$D6 = (0, 0, 1, 1)$$
m3

$$D7 = (0, 0, 1, 0) \text{ m5}$$

$$D8 = (1, 1, 0, 0) \mathbf{m1}$$

$$D9 = (2, 1, 1, 1) m2$$

$$D11=(1, 0, 2, 0)$$
m6

$$D12=(0, 0, 2, 1)$$
m3

$$q = 2k_1 + 3k_2 - k_3$$

Minterms: 6 minterms

$$k_i = \frac{\sum_{\forall r, g_i(m_r)} c_{i,r}^m m_r}{\sqrt{\sum_{\forall r, g_i(m_r)} c_{i,r}^2}}$$

$$k_{1} = \frac{c_{1,1}m_{1} + c_{1,2}m_{2} + c_{1,6}m_{6}}{\sqrt{c_{1,1}^{2} + c_{1,2}^{2} + c_{1,6}^{2}}}$$

$$k_{1} = \frac{8m_{1} + 3m_{2} + m_{6}}{\sqrt{64 + 9 + 1}}$$

$$= \frac{8m_{1} + 3m_{2} + m_{6}}{\sqrt{74}}$$

$$k_{2} = \frac{c_{2,1}m_{1} + c_{2,2}m_{2} + c_{2,4}m_{4}}{\sqrt{c_{2,1}^{2} + c_{2,2}^{2} + c_{2,4}^{2}}}$$
$$k_{2} = \frac{3m_{1} + 2m_{2} + 3m_{4}}{\sqrt{22}}$$

$$c_{i,r} = \sum_{d_j | g_l(d_j) = g_l(m_r), for.all.l} w_{i,j}$$

$$c_{1,1} = w_{1,1} + w_{1,2} + w_{1,8} = 2 + 5 + 1 = 8$$

$$c_{1,2} = w_{1,3} + w_{1,9} = 1 + 2 = 3$$

$$c_{1,6} = w_{1,11} = 1$$

$$c_{2,1} = w_{2,1} + w_{2,2} + w_{2,8} = 1 + 1 + 1 = 3$$

$$c_{2,2} = w_{2,3} + w_{2,9} = 1 + 1 = 2$$

$$c_{2,4} = w_{2,5} + w_{2,10} = 1 + 2 = 3$$

$$k_{3} = \frac{c_{3,2}m_{2} + c_{3,3}m_{3} + c_{3,4}m_{4} + c_{3,5}m_{5} + c_{3,6}m_{6}}{\sqrt{c_{3,2}^{2} + c_{3,3}^{2} + c_{3,4}^{2} + c_{3,5}^{2} + c_{3,6}^{2}}}$$

$$c_{3,2} = w_{3,3} + w_{3,9} = 1 + 1 = 2$$

$$c_{3,3} = w_{3,4} + w_{3,6} + w_{3,12} = 2 + 1 + 2 = 5$$

$$c_{3,4} = w_{3,5} + w_{3,10} = 1 + 2 = 3$$

$$c_{3,5} = w_{3,7} = 1$$

$$c_{3,6} = w_{3,11} = 2$$

$$k_3 = \frac{2m_2 + 5m_3 + 3m_4 + m_5 + 2m_6}{\sqrt{43}}$$

$$k_4 = \frac{c_{4,2}m_2 + c_{4,3}m_3 + c_{4,4}m_4}{\sqrt{c_{4,2}^2 + c_{4,3}^2 + c_{4,4}^2}}$$

$$k_4 = \frac{2m_2 + 4m_3 + 4m_4}{6}$$

$$k_4 = \frac{c_{4,2}m_2 + c_{4,3}m_3 + c_{4,4}m_4}{\sqrt{c_{4,2}^2 + c_{4,3}^2 + c_{4,4}^2}} \quad c_{4,3} = w_{4,4} + w_{4,6} + w_{4,12} = 2 + 1 + 1 = 4$$

$$c_{4,2} = w_{4,3} + w_{4,9} = 1 + 1 = 2$$

$$c_{4,3} = w_{4,4} + w_{4,6} + w_{4,12} = 2 + 1 + 1 = 4$$

$$c_{4,4} = w_{4,5} + w_{4,10} = 2 + 2 = 4$$

$$q = 2k_1 + 3k_2 - k_3$$

$$q = 2*(\frac{8m_1 + 3m_2 + m_6}{\sqrt{74}}) + 3*(\frac{3m_1 + 2m_2 + 3m_4}{\sqrt{22}}) - (\frac{2m_2 + 5m_3 + 3m_4 + m_5 + 2m_6}{\sqrt{43}})$$

$$q = 3.779m_1 + 1.672m_2 - 0.762m_3 + 1.461m_4 - 0.152m_5 - 0.073m_6$$

$$d_1 = 2k_1 + k_2$$

$$d_1 = 2*(\frac{8m_1 + 3m_2 + m_6}{\sqrt{74}}) + (\frac{3m_1 + 2m_2 + 3m_4}{\sqrt{22}})$$

$$d_1 = 2.50m_1 + 1.124m_2 + 0.640m_4 + 0.232m_6$$

$$sim(q, d_j) = \frac{\sum_{r} S_{d,r}.S_{q,r}}{\sqrt{\sum_{r} S_{d,r}^2.\sum_{r} S_{q,r}^2}}$$

$$sim(q, d_1) = \frac{2.50*3.779 + 1.124*1.672 + 0.640*1.461 - 0.232*0.073}{\sqrt{(2.50^2 + 1.124^2 + 0.640^2 + 0.232^2)*(3.779^2 + 1.672^2 + 0.762^2 + 1.461^2 + 0.152^2 + 0.073^2)}} = 0.974$$

D12=(0, 0, 2, 1) m3

$$q = 3.779 m_1 + 1.672 m_2 - 0.762 m_3 + 1.461 m_4 - 0.152 m_5 - 0.073 m_6$$

$$d_4 = 2k_3 + 2k_4$$

$$d_4 = 2*\left(\frac{2m_2 + 5m_3 + 3m_4 + m_5 + 2m_6}{\sqrt{43}}\right) + 2*\left(\frac{2m_2 + 4m_3 + 4m_4}{6}\right)$$

$$d_4 = 1.277m_2 + 2.858m_3 + 2.248m_4 + 0.305m_5 + 0.610m_6$$

$$sim(q, d_j) = \frac{\sum_{r} S_{d,r}.S_{q,r}}{\sqrt{\sum_{r} S_{d,r}^2.\sum_{r} S_{q,r}^2}}$$

$$sim(q,d_4) = \frac{1.277*1.672 - 2.858*0.762 + 2.248*1.461 - 0.305*0.152 - 0.610*0.073}{\sqrt{(1.277^2 + 2.858^2 + 2.248^2 + 0.305^2 + 0.610^2)*(3.779^2 + 1.672^2 + 0.762^2 + 1.461^2 + 0.152^2 + 0.073^2)}} = 0.181$$

Degree of similarity

Doc	Sim
D1	0.974
D2	0.952
D3	0.697
D4	0.181
D5	0.419
D6	0.181
D7	0.124
D8	0.981
D9	0.806
D10	0.485
D11	0.494
D12	0.162

Rank

$$q = 2k_1 + 3k_2 - k_3$$

Generalizes Vector Space Model (GVSM)

Conclusions

- เอกสารที่มี minterm เคียวกันจะมีความตรงประเด็นใกล้เคียงกัน เนื่องจากลักษณะการปรากฏของ Keyword มีความคล้ายกัน
- Keyword อาจมีความเกี่ยวข้องกันได้ เช่น Cat และ Tiger (มีโอกาส
 เป็นไปได้สูงที่เอกสารที่มี Cat อาจมี Tiger อยู่ด้วย) ซึ่งหากมีการเรียก
 ค้น Keyword ใด Keyword หนึ่ง เอกสารที่มีอีก Keyword หนึ่งก็จะ
 ตรงประเด็นด้วย