

R61523

16,777,216–Color, 360x640-Dot Graphics LCD Controller Driver for $\alpha\textsc{-Si}$ TFT Panel

REJxxxxxxx-xxxx Rev.1.01 December 25, 2009

Description	6
Description	0
Features	6
Block Diagram	9
Block Function	10
Pin Function	13
Pad Coordinates	18
BUMP Arrangement/Alignment Mark	39
Recommended Resistance and Wiring Example	40
System Interface Configuration (MIPI-DSI)	41
(1) Basic DSI Specification	41
(2) DSI System Configuration	41
(3) Lane State Definition	42
(4) DSI-CLK Lane	42
1) Low Power Mode (LP-11: STOP)	
2) Ultra Low Power Mode (LP-00: ULPM)	
3) High-Speed Clock Mode	
4) High-Speed Clock Burst	
(5) DSI-D0 Data Lane	
1) Power On, HWREST, soft_reset → LP-11	
2) Escape mode	
3) Escape mode (Host>Client): Low Power Data Transmission (LPDT)	
4) Escape mode (Host>Client): Ultra Low Power State (ULPS)	
5) Escape mode (Host>Client): Remote Application Reset (RAR)	
6) Escape mode (Client>Host): TE-Reporting (TER)	
7) Escape mode (Client>Host): Acknowledge Trigger (ACKT)	
8) High-Speed Data Transmission (HST)	
9) Bus Turnaround (Host>Client) (BTA)	
10) Bus Turnaround (Client>Host) (BTA)	
(6) Packet Level Communication	
1) Short Packet (SPa) Structure	48

2) Long Packet (LPa) Structure	
3) Multiple Packet Sending	
(7) Data Identification (DI)	
1) Virtual Channel (VC)	
2) Data Type (DT)	
(8) Word Count (WC) on Long Packet (LPa)	
(9) Error Correction Code (ECC)	
(10) Packet Data (PD) – Pixel Data Format on Long Packet	
(11) Packet Footer on Long Packet (LPa)	
(12) Acknowledge with Error Report (AwER)	
(13) DCS, MCS, and Data Type List	55
System Interface Configuration (MIPI-DBI)	59
DBI Type B	
Write Cycle Sequence	59
Read Cycle Sequence	
Data Transfer Break	62
Data Transfer Pause (Command/Pause/Command)	
Data Transfer Pause (Command/Pause/Parameter)	
Data Transfer Pause (Parameter/Pause/Command)	
Data Transfer Pause (Parameter/Pause/Parameter)	
Data Transfer Mode	
DBI Data Format	
DBI Type B Data Format	67
BGR Register Setting and Write/Read Data in the Frame Memory	
Command List	60
(1) User Command	
(2) Manufacturer Command	/1
Command Accessibility	73
(1) User Command	
(2) Manufacturer Command	75
Default Modes and Values	77
(1) User Command	
(2) Manufacturer Command	80
User Command	86
nop: 00h	86
soft_reset: 01h	87
read_DDB_start: 04h	88
get_power_mode: 0Ah	90
get_address_mode: 0Bh	92
get_pixel_format: 0Ch	94
get_display_mode: 0Dh	96
get_signal_mode: 0Eh	98

get_diagnostic_result:0Fh	100
enter_sleep_mode: 10h	102
exit_sleep_mode: 11h	103
enter_partial_mode: 12h	104
enter_normal_mode: 13h	105
set_display_off: 28h	106
set_display_on: 29h	107
set_column_address: 2Ah	108
set_page_address: 2Bh	110
write_memory_start: 2Ch	112
read_memory_start: 2Eh	114
set_partial_area: 30h	115
set_tear_off: 34h	118
set_tear_on: 35h	119
set_address_mode: 36h	121
exit_idle_mode: 38h	124
enter_idle_mode: 39h	125
set_pixel_format: 3Ah	127
write_memory_continue: 3Ch	128
read_memory_continue: 3Eh	129
set_tear_scanline:44h	130
get_scanline: 45h	131
read_DDB_start: A1h	132
read_DDB_continue: A8h	134
Manufacturer Command	
Additional User Command	
MCAP: Manufacturer Command Access Protect (B0h)	
Low Power Mode Control (B1h)	
Frame Memory Access and Interface Setting (B3h)	
Read Checksum and ECC Error Counter (B5h)	
DSI Control (B6)	
Back Light Control 1 (B8h)	
Back Light Control 2 (B9h)	152
Back Light Control 3 (BAh)	156
Device Code Read (BFh)	157
Panel Control Command	
Panel Driving Setting (C0h)	
Display Timing Setting for Normal / Partial Mode (C1h)	
Display Timing Setting for Idle Mode (C3h)	165
Source/VCOM/Gate Driving Timing Setting (C4h)	169
Gamma Control	
Gamma Set A (C8h)	173
Gamma Set B (C9h)	175
Gamma Set C (CAh)	177
Power Control	179

K01523	Specification	
VCOM Setting (D1b)	101	
VCOM Setting (D1h) Power Setting for Normal/Partial Mode (D2h)		
· · · · · · · · · · · · · · · · · · ·		
Power Setting for Idle Mode (D4h)		
NVM A Control (FOL)		
NVM Access Control (E0h)		
set_DDB_write_control (E1h)	189	
Reset	190	
Initial state of command		
Initial state of Frame Memory data		
Initial state of irrame memory data Initial state of input/output pin		
тиш зине ој тригошри рт		
Frame Memory	191	
Normal Display On or Partial Mode On		
Write/Read Direction from/to Host Processor		
Self-Diagnostic Function	198	
Dynamic Backlight Control Function	199	
	Function 198 ght Control Function 199 ng 208 y Adjustment Function 210	
Scan Mode Setting	208	
Frame Frequency Adjustment Function	210	
Line Inversion AC Drive	211	
TE Pin Output Signal	212	
Liquid Crystal Panel Interface Timing	215	
State Transition Diagram	216	
Definitions of Display modes	216	
State and Command Sequence	218	
Example of Power and Display ON/OFF Sequence	219	
Default Register Settings	220	
Deep Standby Mode ON/OFF Sequence	221	
1) Enter Deep Standby Mode Sequence	221	
2) Exit Deep Standby Mode Sequence	221	
γ Correction Function	22.2	
,		
Power Supply Circuit	233	
Specifications of External Elements Connected to the Power Supp	ly Circuit 234	
Voltage Setting Pattern Diagram	235	

K01523	Specification
NVM Control	237
NVM Write Sequence	
Absolute Maximum Rating	239
Electrical Characteristics	240
DC characteristics	240
Step-up Circuit Characteristics	243
Internal Reference Voltage	243
Power Supply Voltage Range	243
Output Voltage Range	244
Clock Characteristics	244
Reset Timing Characteristics	245
1) Reset Timing when power is on	245
2) Reset Timing during operation	245
Liquid Crystal Driver Output Characteristics	246
MIPI-DBI Type B (16/8 Bits) Timing Characteristics	248
MIPI-DSI Interface DC Specifications	251
HS-RX Clock and Data-Clock Specifications	
LP-RX/TX Clock and Data-Clock Specifications	253
Timing Diagram	254
Revision Record	258

Description

The R61523 is liquid crystal controller driver LSI with internal frame memory for α -Si TFT panel sized 360RGB x 640-dot at maximum. The R61523 supports MIPI DBI Type B (16/8 bits) as system interface to microcomputer as well as high-speed frame memory write function, enabling efficient data transfer. It also supports MIPI DSI as high-speed interface.

The R61523 incorporates step-up and voltage follower circuits to generate drive voltage required for a-Si TFT panel and dynamic backlight control function to control backlight brightness depending on image data reducing power consumption at the backlight with slightest influence on the display quality.

Other features include 8-color display and power management functions, making the driver best suitable for small or mid sized portable devices such as digital mobile phones, small PDAs and mobile TV devices.

*MIPI: Mobile Industrial Processor Interface, DBI: Display Bus Interface, DSI: Display Serial Interface

Features

- Single chip driver for 16, 777, 216-color TFT 360RGB x 640-dot graphics (with internal gate and power supply circuits)
- Command set (Compliant with MIPI DCS Version 1.01.00) *DCS: Display Command Set
- System interface
 - MIPI-DBI (Compliant with MIPI DBI Version 2.00)

Type B 16/8 bits

– MIPI DSI 2 lanes (300Mbps/lane): 2 data lanes and 1 clock lane

MIPI DSI: Version 1.01.00r11 21-Feb-2008 MIPI D-PHY: Version 0.90.00 8-Oct-2007

- Video image display interface (see Note 1)
 - TE-I/F (MIPI DBI + TE synchronization signal output)
 - MIPI DSI TE-reporting
- Abundant color display and drawing functions
 - 16,777,216-color display
 - Partial display function
 - RGB-separate γ correction function
- Low-power consumption architecture (allowing direct input of interface I/O power supply)
 - Deep standby mode
 - 8-color mode (Idle Mode)
 - Input power supply voltage:

Logic power supply: IOVCC
MIPI D-PHY power supply: DPHYVCC
Liquid crystal analog circuit power supply: VCI

- Dynamic backlight control function
- Internal liquid crystal drive power supply circuit
 - Liquid crystal drive (source driver/VCOM): DDVDHA/DDVDHB, VREG1, VCL
 - Gate driver power supply: VGH, VGL

- VCOM drive (common VCOM method): VCOMH, VCOML
- RGB-separate γ correction function
- TFT display storage capacitance: Cst (common VCOM method)
- Internal frame memory: 691,200 bytes
- Liquid crystal display drive circuits: 1080 source signal lines and 640 gate signal lines
- One-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate
- Internal NVM (32 bits for user identification code, 12 bits for VCOM adjustment): Rewriting data is guaranteed up to 5 times.
- Dummy pins used to fix pin to VCC or GND (see Note 2)

Notes: 1. Japanese Patent No. 3,826,159

Korean Patent No. 747,636

United States Patent No. 7,176,870

2. Japanese Patent No. 3,980,066

Korean Patent No. 401,270

Taiwan Patent No. 175,413

United States Patent No. 6,323,930

Japanese Patent No. 4,226,627

United States Patent No. 6,924,868

Power Supply Specification

Table 1 R61523 Power Supply Specification

No.	Item		R61523		
1	TFT data line of	drive circuit	1080 outputs		
2	TFT gate line of	drive circuit	640 outputs		
3	TFT display ste	orage capacitance	Cst (common VCOM method)		
4	Liquid crystal	S1-1080	V0 ~ V255 grayscales		
	drive output	G1-640	VGH-VGL		
		VCOM	VCOMH = 3.0V ~ (DDVDH*-0.5V) (* = A, B) VCOML = (VCL+0.5V) ~ 0V		
5	Input voltages	IOVCC (interface voltage and logic regulator power supply)	1.65V ~ 3.60V (See note 1)		
		DPHYVCC (MIPI DSI-PHY power supply)	1.65V ~ 1.95V (See note 1) 1.65V ~ 3.60V (When DSI is not used)		
		VCI (LCD drive power supply)	2.60V ~ 3.00V		
6	System CSX, DCX, WRX, RDX, DB[15:0], TE, interface (MIPI DBI)		IOVCC-GND (See note 1)		
7	LED I/F	LEDPWM	IOVCC-GND		
8	LCD drive	DDVDHA, DDVDHB	5.6V (Typ.), VCI x 2		
	supply voltages	VGH	16.0V (Typ.), VCI2 x 4 (See note 2)		
	Tonagoo	VGL	-10.5V (Typ.), -(VCl2 x 2 + VCl3) (See note 2)		
		VGH-VGL	Max. 28V		
		VCL	-2.8V (Typ.), VCI x -1		
		VCI-VCL	Max. 6V		
9	Internal step-	DDVDH	VCI x 2		
	up circuit	VGH	VCI2 x 4		
		VGL	-1*(VCI2 x 2 + VCI3)		
		VCL	VCI x –1		

Notes: 1. Connect to IOVCC and DPHYVCC, or CSX, DCX, WRX, RDX, DB[15:0], TE, IM[2:0], and RESX on the FPC when the electrical potentials are the same.

- 2. VCI2 and VCI3 are the power supply of the voltages generated from the internal power supply circuit.
- 3. For voltage, see DC Characteristics in Electrical Characteristics.

Block Diagram

Figure 1

Block Function

(1) System Interface

The R61523 supports MIPI DSI and MIPI DBI Type B (16/8 bits). The interface is selected by setting IM[0:2] pin.

Table 2

IM2	IM1	IM0	Interface	Used pin	Available color number
0	0	0	Setting inhibited	_	_
0	0	1	Setting inhibited	_	_
0	1	0	DBI Type B 16 bits	DB[15:0]	65,536 / 262,144 / 16,777,216
0	1	1	DBI Type B 8 bits	DB[7:0]	65,536 / 262,144 / 16,777,216
1	0	0	DSI	D0, D1	65,536 / 262,144 / 16,777,216
1	0	1	Setting inhibited	_	_
1	1	0	Setting inhibited	_	_
1	1	1	Setting inhibited	_	_

Set the number of colors using set_pixel_format (3Ah).

(a) MIPI DBI Type B (16/8 Bits)

The R61523 supports MIPI DBI Type B (16/8 bits) that uses a command method which has 8-bit command registers and 8-bit parameter registers. Also, the R61523 has a 24-bit write register (WDR) and read register (RDR). The WDR is used to store data temporarily that is automatically written to the internal frame memory through internal operation of the chip. The RDR is used to temporarily store the data read out from the frame memory.

The WDR is used to temporarily store the data read out from the host processor to the frame memory. For this reason, invalid data is sent to the data bus at first and valid data is sent as the R61523 reads second and subsequent data from the frame memory via RDR.

Table 3 Register Selection

Fu	nc	:ti	on

DCX	RDX	WRX	_
0	1	1	Command
1	1	1	Read parameter
1	1	↑	Write parameter

(2) Video Image Interface (TE-signal, TE-reporting)

The R61523 supports TE as external display interface for video image.

When DBI is selected, display data is written in sync with TE signal which is generated from internal clock to prevent flicker on the panel.

When DSI is selected, display data is written in sync with the start of the frame period by TE-reporting function. This enables updating image data without flicker on the panel.

(3) Address Counter (AC)

The address counter (AC) gives an address to the frame memory. Address information defined by CDR and PR is transferred to the AC. The AC is automatically updated plus or minus 1 as the R61523 writes/reads data to/from the frame memory. Display data can be written only to the rectangular area defined in the frame memory.

(4) Frame Memory

The R61523 incorporates the frame memory that has a capacity of 691,200 bytes, which can store bit-pattern data of 360RGB x 640 graphics display at maximum using 24 bits to represent one pixel.

(5) Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltage according to the grayscale setting value in the γ correction register. RGB-separate γ correction setting enables the maximum of 16,777,216-color display.

(6) LCD Drive Power Supply Circuit

The LCD drive power supply circuit generates VREG1, VGH, VGL, VCL, and VCOM levels to drive the liquid crystal panel.

(7) Timing Generator

The timing generator is used to generate timing signals for the operation of internal circuits such as frame memory. The timing signals for display operation such as frame memory read and frame memory access by host processor are generated separately so that the two do not interfere with each other.

(8) Oscillator (OSC)

The R61523 incorporates an oscillator. The frame frequency can be adjusted by commands.

(9) LCD Driver Circuit

The LCD driver circuit consists of a 1080-channel source driver (S[1:1080]). The display pattern data is latched when 360RGB pixels of data are input. The voltage is output from the source driver according to the latched data. The shift direction of source output can be changed by setting SS bit (C0h). The gate driver circuit consists of a 640-channel gate driver (G[1:640]). The voltage at VGH level or VGL level is output from the gate driver. The shift direction of gate output can be changed by GS bit (C0h). The scan mode of the gate driver can be changed by SM bit (C0h) according to the mounting condition.

(10) Internal Logic Power Supply Regulator

The internal logic power supply regulator generates power supply for internal logic circuit.

(11) Backlight Control Circuit

Backlight control circuit adjusts backlight brightness according to histogram of the image to reduce power consumption at the backlight. Brightness of the backlight and display data is adjusted.

Pin Function

Table 4 External Power Supply Pins

Signal	I/O	Connect to	Function	Unused pin
IOVCC	ı	Power supply	Power supply to interface pins and internal VDD regulator.	-
GND	I	Power supply	GND for Internal logic and interface pins. GND=0V.	-
VCI	1	Power supply	Power supply to liquid crystal power supply analog circuit.	-
AGND	I	Power supply	Analog GND (logic regulator and liquid crystal power supply circuit). Connect to GND on the FPC to prevent noise in case of COG.	-
DPHYVCC	I	Power supply	Power supply to MIPI DSI D-PHY. Connect to power supply when DSI is not used.	-
DPHYGND	I	Power supply	GND for MIPI DSI D-PHY. Connect to GND on the FPC to prevent noise in case of COG.	-

Table 5 System Interface Pins (Amplitude: IOVCC - GND)

Signal	I/O	Connect to	Function	Unused pin
CSX	I	Host Processor	Chip select signal.	IOVCC
			Low: Select (Accessible) High: Not select (Inaccessible)	
			Make sure to connect to host processor. Follow AC timing to control the signal.	
DCX	I	Host Processor	Command/data select signal	IOVCC
			Low: Select command High: Select data	
WRX	I	Host Processor	Write strobe signal in DBI Type B operation. Write data when WRX is Low.	IOVCC
RDX	I	Host Processor	Read strobe signal. Read out data when RDX is Low.	IOVCC
DB[15:0]	I/O	Host Processor	16-bit bi-directional data bus in DBI Type B operation. 8-bit interface: Use DB [7:0] 16-bit interface: Use DB [15:0] Abnormal current (through current) does not occur when CSX is High and the data bus is Hi-z.	IOVCC or GND
TE	0	Host Processor	Tearing Effect output signal	Open
IM[2:0]	I	Host Processor	Interface select signal. Select interface from DBI Type B and DSI.	-
RESX	I	Host Processor or external RC oscillator	Reset pin. The R61523 is initialized when RESX is Low. Make sure to execute power-on reset when turning power on.	-

Table 6 MIPI DSI Pins

Signal	I/O	Connect to	Function	Unused pin
DSICLKPLVL	I	DSICLKP	DSI CLK+ signal. Connect to DSICLKP on the FPC in case of COG.	DPHYGND
DSICLKP	I	Host Processor	DSI CLK+ signal. Connect to DSICLKPLVL on the FPC in case of COG.	DPHYGND
DSICLKN	I	Host Processor	DSI CLK- signal. Connect to DSICLKNLVL on the FPC in case of COG.	DPHYGND
DSICLKNLVL	I	DSICLKN	DSI CLK- signal. Connect to DSICLKN on the FPC in case of COG.	DPHYGND
DSID0PLVL	I	DSID0P	DSI D0+ signal. Connect to DSID0P on the FPC in case of COG.	DPHYGND
DSID0P	I/O	Host Processor	DSI D0+ signal. Connect to DSID0PLVL on the FPC in case of COG.	DPHYGND
DSID0N	I/O	Host Processor	DSI D0- signal. Connect to DSID0NLVL on the FPC in case of COG.	DPHYGND
DSID0NLVL	I	DSID0N	DSI D0- signal. Connect to DSID0N on the FPC in case of COG.	DPHYGND
DSID1PLVL	I	DSID1P	DSI D1+ signal. Connect to DSID1P on the FPC in case of COG.	DPHYGND
DSID1P	I	Host Processor	DSI D1+ signal. Connect to DSID1PLVL on the FPC in case of COG.	DPHYGND
DSID1N	I	Host Processor	DSI D1- signal. Connect to DSID1NLVL on the FPC in case of COG.	DPHYGND
DSID1NLVL	I	DSID1N	DSI D1- signal. Connect to DSID1N on the FPC in case of COG.	DPHYGND

Table 7 LED Driver Control Pins (Amplitude: IOVCC-GND)

Signal	I/O	Connect to	Function	Unused pin
LEDPWM	0	LED driver	Control signal for brightness of LED backlight. PWM signal's width is selected from 256 values between 0% (Low) and 100% (High).	Open

Table 8 Power Supply Circuit Pins

Signal	I/O	Connect to	Function	Unused pin
VDD	0	Stabilizing capacitor	Output from internal logic regulator. Used for the internal logic power supply. Connect to stabilizing capacitor.	-
DDVDHA, DDVDHB	0	Stabilizing capacitor	Source driver liquid crystal and VCOM drive power supply. The output level from a step-up circuit, generated from VCI. The step-up factor is 2. Connect to stabilizing capacitor.	-
VGH	0	Stabilizing capacitor, liquid crystal panel	Liquid crystal drive power supply. The output level form a step-up circuit, generated from VCI2. The step-up factor is 4.	-
VGL	0	Stabilizing capacitor, liquid crystal panel	Liquid crystal drive power supply. The output level form a step-up circuit, generated from VCI2 and VCI3. The step-up factor is -(VCI2 x 2 + VCI3).	-
VCL	0	Stabilizing capacitor	VCOML drive power supply. Connect to stabilizing capacitor.	-
C11AP, C11AM, C11BP, C11BM, C12AP, C12AM, C12BP, C12BM, C13P, C13M, C21P, C21M, C22P, C22M, C3P, C23M, C31P, C31M	I/O	Step-up capacitor	Capacitor connection pins for a step-up circuit.	-

Table 9 LCD Drive Power Supply Pins

Signal	I/O	Connect to	Function	Unused pin
VREG1	0	Stabilizing capacitor	The output level generated from VCIR. The output level from the internal reference power supply is determined by the factor, which is set by instruction (VRH*). VREG serves as reference of (1) source driver grayscale, (2) VCOMH level, and (3) VCOM width. Connect a stabilizing capacitor to use this pin.	-
VCOM	0	TFT common electrode	Power supply to TFT panel's common electrode. VCOM output level alternates between VCOMH and VCOML. The alternating cycle is set by a register. Also, the VCOM output can be started and halted by register setting.	-
VCOMH	0	Stabilizing capacitor	VCOM High level, which is set by internal electronic volume (VCM).	-
VCOML	0	Stabilizing capacitor	VCOM Low level, which is set by instruction (VDV).	-
VGS	0	GND	Reference level of the grayscale voltage generating circuit.	-
S[1:1080]	0	Liquid crystal panel	Liquid crystal application voltages. The shift direction of segment signal output can be changed by setting the SS bit.	Open
			SS = 0: The data in the frame memory address "00000h" is outputted from S1. SS = 1: The data in the frame memory address "00000h" is outputted from S1080.	
G[1:640]	0	Liquid crystal	Gate line output signals.	Open
		panel	VGH: Gate line is selected. VGL: Gate line is not selected.	

Table 10 Other Pins (Test and Dummy)

Signal	I/O	Connect to	Function	Unused pin
VREFC	I	GND	Test pin. Fix to GND.	-
VREFD	0	Open	Test pin. Leave it open.	-
VREF	0	Open	Test pin. Leave it open.	-
VDDTEST	I	GND	Test pin. Fix to GND.	-
GNDDUM, AGNDDUM	О	-	Pins to fix electrical potential. Do not use them for other purposes. The electrical potential can be fixed by connecting unused interface pins and test pins to these dummy pins on the glass. Leave them open when they are not used.	
DPHYGNDDUM [1:2]	I	GND	Fix to GND on FPC. The electrical potential can be fixed by connecting unused interface pins and test pins to these dummy pins on the glass.	-
VMON	0	Open	Test pin. Leave it open.	-
TSC	I	GND	Test pin. Fix to GND.	-
TEST2	I	GND	Test pin. Fix to GND.	-
TEST4	I	GND	Test pin. Fix to GND.	-
VPP1	I	GND	Test pin. Leave it open or fix to GND. Do not make an ITO wiring when leaving it open.	Open/ GND
DUMMYR[1:4]	-	-	Short-circuited in the LSI to measure COG contact resistance. DUMMYR1 and DUMMYR2, DUMMYR3 and DUMMYR4 are short-circuited.	Open
DUMMY[1:2]	0	Open	Dummy pads. Leave them open.	-
TESTO[1:10]	0	Open	Dummy pads. Leave them open.	-

Patents of dummy pins used to fix pin to VCC or GND are granted as below.

PATENTS ISSUED: Japanese Patent No. 3,980,066

Korean Patent No. 401,270 Taiwan Patent No. 175,413

United States Patent No. 6,323,930 Japanese Patent No. 4,226,627 United States Patent No. 6,924,868

	T	1	(Unit: um)
Pad No.	Pad Name	X	Υ
1	DUMMY1	-13320.0	-449.0
2	DUMMYR1	-13240.0	-449.0
3	DUMMYR2	-13160.0	-449.0
4	VCOM	-13080.0	-449.0
5	VCOM	-13000.0	-449.0
6	VCOM	-12920.0	-449.0
7	VCOM	-12840.0	-449.0
8	AGND	-12760.0	-449.0
9	AGND	-12680.0	-449.0
10	AGND	-12600.0	-449.0
11	AGND	-12520.0	-449.0
12	AGND	-12440.0	-449.0
13	AGND	-12360.0	-449.0
14	GND	-12280.0	-449.0
15	GND	-12200.0	-449.0
16	GND	-12120.0	-449.0
17	GND	-12040.0	-449.0
18	GND	-11960.0	-449.0
19	GND	-11880.0	-449.0
20	DDVDHB	-11800.0	-449.0
21	DDVDHB	-11720.0	-449.0
22	DDVDHB	-11640.0	-449.0
23	DDVDHB	-11560.0	-449.0
24	DDVDHB	-11480.0	-449.0
25	DDVDHB	-11400.0	-449.0
26	C11BP	-11320.0	-449.0
27	C11BP	-11240.0	-449.0
28	C11BP	-11160.0	-449.0
29	C11BP	-11080.0	-449.0
30	C11BP	-11000.0	-449.0
31	C11BP	-10920.0	-449.0
32	C11BM	-10840.0	-449.0
33	C11BM	-10760.0	-449.0
34	C11BM	-10680.0	-449.0
35	C11BM	-10600.0	-449.0
36	C11BM	-10520.0	-449.0
37	C11BM	-10440.0	-449.0
38	AGND	-10360.0	-449.0
39	AGND	-10280.0	-449.0
40	AGND	-10200.0	-449.0
41	AGND	-10120.0	-449.0
42	AGND	-10040.0	-449.0
43	AGND	-9960.0	-449.0
44	C12BP	-9880.0	-449.0
45	C12BP	-9800.0	-449.0
46	C12BP	-9720.0	-449.0
47	C12BP	-9640.0	-449.0
48	C12BP	-9560.0	-449.0
49	C12BP	-9480.0	-449.0
50	C12BM	-9400.0	-449.0

		1	(Unit: um)
Pad No.	Pad Name	X	Υ
51	C12BM	-9320.0	-449.0
52	C12BM	-9240.0	-449.0
53	C12BM	-9160.0	-449.0
54	C12BM	-9080.0	-449.0
55	C12BM	-9000.0	-449.0
56	VCI	-8920.0	-449.0
57	VCI	-8840.0	-449.0
58	VCI	-8760.0	-449.0
59	VCI	-8680.0	-449.0
60	VCI	-8600.0	-449.0
61	VCI	-8520.0	-449.0
62	VCI	-8440.0	-449.0
63	VCI	-8360.0	-449.0
64	C12AM	-8280.0	-449.0
65	C12AM	-8200.0	-449.0
66	C12AM	-8120.0	-449.0
67	C12AM	-8040.0	-449.0
68	C12AM	-7960.0	-449.0
69	C12AM	-7880.0	-449.0
70	C12AP	-7800.0	-449.0
71	C12AP	-7720.0	-449.0
72	C12AP	-7640.0	-449.0
73	C12AP	-7560.0	-449.0
74	C12AP	-7480.0	-449.0
75	C12AP	-7400.0	-449.0
76	AGND	-7320.0	-449.0
77	AGND	-7240.0	-449.0
78	AGND	-7160.0	-449.0
79	AGND	-7080.0	-449.0
80	AGND	-7000.0	-449.0
81	AGND	-6920.0	-449.0
82	C11AM	-6840.0	-449.0
83	C11AM	-6760.0	-449.0
84	C11AM	-6680.0	-449.0
85	C11AM	-6600.0	-449.0
86	C11AM	-6520.0	-449.0
87	C11AM	-6440.0	-449.0
88	C11AP	-6360.0	-449.0
89	C11AP	-6280.0	-449.0
90	C11AP	-6200.0	-449.0
91	C11AP	-6120.0	-449.0
92	C11AP	-6040.0	-449.0
93	C11AP	-5960.0	-449.0
94	DDVDHA	-5880.0	-449.0
95	DDVDHA	-5800.0	-449.0
96	DDVDHA	-5720.0	-449.0
97	DDVDHA	-5640.0	-449.0
98	DDVDHA	-5560.0	-449.0
99	DDVDHA	-5480.0	-449.0
100	GNDDUM	-5400.0	-449.0
100		0.00.0	770.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
101	GNDDUM	-5320.0	-449.0
102	VDDTEST	-5240.0	-449.0
103	VREFC	-5160.0	-449.0
104	VREFD	-5080.0	-449.0
105	VREF	-5000.0	-449.0
106	TSC	-4920.0	-449.0
107	TEST2	-4840.0	-449.0
108	TEST4	-4760.0	-449.0
109	GND	-4680.0	-449.0
110	GND	-4600.0	-449.0
111	GND	-4520.0	-449.0
112	GND	-4440.0	-449.0
113	GND	-4360.0	-449.0
114	GND	-4280.0	-449.0
115	GND	-4200.0	-449.0
116	GND	-4120.0	-449.0
117	IOVCC	-4040.0	-449.0
118	IOVCC	-3960.0	-449.0
119	IOVCC	-3880.0	-449.0
120	IOVCC	-3800.0	-449.0
121	IOVCC	-3720.0	-449.0 -449.0
122			
	IOVCC	-3640.0	-449.0
123	IOVCC	-3560.0	-449.0
124	VDD	-3480.0	-449.0
125	VDD	-3400.0	-449.0
126	VDD	-3320.0	-449.0
127	VDD	-3240.0	-449.0
128	VDD	-3160.0	-449.0
129	VDD	-3080.0	-449.0
130	VDD	-3000.0	-449.0
131	VDD	-2920.0	-449.0
132	VDD	-2840.0	-449.0
133	VDD	-2760.0	-449.0
134	DPHYVCC	-2680.0	-449.0
135	DPHYVCC	-2600.0	-449.0
136	DPHYVCC	-2520.0	-449.0
137	DPHYVCC	-2440.0	-449.0
138	DSID0N	-2360.0	-449.0
139	DSID0N	-2280.0	-449.0
140	DSID0N	-2200.0	-449.0
141	DSID0NLVL	-2120.0	-449.0
142	DSID0PLVL	-2040.0	-449.0
143	DSID0P	-1960.0	-449.0
144	DSID0P	-1880.0	-449.0
145	DSID0P	-1800.0	-449.0
146	DPHYGNDDUM1	-1720.0	-449.0
147	DSICLKN	-1640.0	-449.0
148	DSICLKN	-1560.0	-449.0
149	DSICLKN	-1480.0	-449.0
150	DSICLKNLVL	-1400.0	-449.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
151	DSICLKPLVL	-1320.0	-449.0
152	DSICLKP	-1240.0	-449.0
153	DSICLKP	-1160.0	-449.0
154	DSICLKP	-1080.0	-449.0
155	DPHYGNDDUM2	-1000.0	-449.0
156	DSID1N	-920.0	-449.0
157	DSID1N	-840.0	-449.0
158	DSID1N	-760.0	-449.0
159	DSID1NLVL	-680.0	-449.0
160	DSID1PLVL	-600.0	-449.0
161	DSID1P	-520.0	-449.0
162	DSID1P	-440.0	-449.0
163	DSID1P	-360.0	-449.0
164	DPHYGND	-280.0	-449.0
165	DPHYGND	-200.0	-449.0
166	DPHYGND	-120.0	-449.0
167	DPHYGND	-40.0	-449.0
168	GND	40.0	-449.0
169	GND	120.0	-449.0
170	GND	200.0	-449.0
171	GND	280.0	-449.0
172	GND	360.0	-449.0
173	GND	440.0	-449.0
174	VGS	520.0	-449.0
175	AGND	600.0	-449.0
176	AGND	680.0	-449.0
177	AGND	760.0	-449.0
178	AGND	840.0	-449.0
179	AGND	920.0	-449.0
180	AGND	1000.0	-449.0
181	AGND	1080.0	-449.0
182	AGND	1160.0	-449.0
183	VPP1	1240.0	-449.0
184	AGNDDUM	1320.0	-449.0
185	LEDPWM	1400.0	-449.0
186	TE	1480.0	-449.0
187	DB15	1560.0	-449.0
188	DB14	1640.0	-449.0
189	DB13	1720.0	-449.0
190	DB12	1800.0	-449.0
191	DB11	1880.0	-449.0
192	DB10	1960.0	-449.0
193	DB9	2040.0	-449.0
194	DB8	2120.0	-449.0
195	IOVCC	2200.0	-449.0
196	IOVCC	2280.0	-449.0
197	IOVCC	2360.0	-449.0
198	IOVCC	2440.0	-449.0
199	IOVCC	2520.0	-449.0
200	IOVCC	2600.0	-449.0

Dad Na	Dad Nama		(Unit: um)
Pad No.	Pad Name DB7	X	Y
201	DB6	2680.0	-449.0
202	DB5	2760.0	-449.0
203		2840.0	-449.0
204	DB4	2920.0	-449.0
205	DB3	3000.0	-449.0
206	DB2	3080.0	-449.0
207	DB1	3160.0	-449.0
208	DB0	3240.0	-449.0
209	CSX	3320.0	-449.0
210	DCX	3400.0	-449.0
211	WRX	3480.0	-449.0
212	RDX	3560.0	-449.0
213	RESX	3640.0	-449.0
214	GND	3720.0	-449.0
215	GND	3800.0	-449.0
216	GND	3880.0	-449.0
217	GND	3960.0	-449.0
218	GND	4040.0	-449.0
219	GND	4120.0	-449.0
220	IM0	4200.0	-449.0
221	IM1	4280.0	-449.0
222	IM2	4360.0	-449.0
223	VMON	4440.0	-449.0
224	VMON	4520.0	-449.0
225	VREG1	4600.0	-449.0
226	VREG1	4680.0	-449.0
227	VCOMH	4760.0	-449.0
228	VCOMH	4840.0	-449.0
229	VCOML	4920.0	-449.0
230	VCOML	5000.0	-449.0
231	VCL	5080.0	-449.0
232	VCL	5160.0	-449.0
233	VCL	5240.0	-449.0
234	VCL	5320.0	-449.0
235	C13M	5400.0	-449.0
236	C13M	5480.0	-449.0
237	C13M	5560.0	-449.0
238	C13M	5640.0	-449.0
239	C13P	5720.0	-449.0
240	C13P	5800.0	-449.0
241	C13P	5880.0	-449.0
242	C13P	5960.0	-449.0 -449.0
242		6040.0	-449.0 -449.0
243	AGND		-449.0 -449.0
	AGND	6120.0	
245	AGND	6200.0	-449.0
246	AGND	6280.0	-449.0 440.0
247	AGND	6360.0	-449.0
248	VGH	6440.0	-449.0
249	VGH	6520.0	-449.0
250	VGH	6600.0	-449.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
251	VGH	6680.0	-449.0
252	VGH	6760.0	-449.0
253	VGH	6840.0	-449.0
254	C21P	6920.0	-449.0
255	C21P	7000.0	-449.0
256	C21P	7080.0	-449.0
257	C21P	7160.0	-449.0
258	C21P	7240.0	-449.0
259	C21P	7320.0	-449.0
260	C21P	7400.0	-449.0
261	C21M	7480.0	-449.0
262	C21M	7560.0	-449.0
263	C21M	7640.0	-449.0
264	C21M	7720.0	-449.0
265	C21M	7800.0	-449.0
266	C21M	7880.0	-449.0
267	C21M	7960.0	-449.0
268	C22P	8040.0	-449.0
269	C22P	8120.0	-449.0
270	C22P	8200.0	-449.0
271	C22P	8280.0	-449.0
272	C22P	8360.0	-449.0
273	C22P	8440.0	-449.0
274	C22P	8520.0	-449.0
275	C22M	8600.0	-449.0
276	C22M	8680.0	-449.0
277	C22M	8760.0	-449.0
278	C22M	8840.0	-449.0
279	C22M	8920.0	-449.0
280	C22M	9000.0	-449.0
281	C22M	9080.0	-449.0
282	C23P	9160.0	-449.0
283	C23P	9240.0	-449.0
284	C23P	9320.0	-449.0
285	C23P	9400.0	-449.0
286	C23P	9480.0	-449.0
287	C23P	9560.0	-449.0
288	C23P	9640.0	-449.0
289	C23M	9720.0	-449.0
290	C23M	9800.0	-449.0
291	C23M	9880.0	-449.0
292	C23M	9960.0	-449.0
293	C23M	10040.0	-449.0
294	C23M	10120.0	-449.0
295	C23M	10200.0	-449.0
296	C31P	10280.0	-449.0
297	C31P	10360.0	-449.0
298	C31P	10440.0	-449.0
299	C31P	10520.0	-449.0
300	C31P	10600.0	-449.0
-	·		-

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11-2
Pad No.	Pad Name	Х	(Unit: um) Y
301	C31P	10680.0	-449.0
302	C31P	10760.0	-449.0
303	C31M	10840.0	-449.0
304	C31M	10920.0	-449.0
305	C31M	11000.0	-449.0
306	C31M	11080.0	-449.0
307	C31M	11160.0	-449.0
308	C31M	11240.0	-449.0
309	C31M	11320.0	-449.0
310			
	VGL	11400.0	-449.0
311	VGL VGL	11480.0	-449.0 440.0
312		11560.0	-449.0 440.0
313	VGL	11640.0	-449.0 440.0
314	VGL	11720.0	-449.0
315	VGL	11800.0	-449.0
316	GND	11880.0	-449.0
317	GND	11960.0	-449.0
318	GND	12040.0	-449.0
319	GND	12120.0	-449.0
320	GND	12200.0	-449.0
321	GND	12280.0	-449.0
322	AGND	12360.0	-449.0
323	AGND	12440.0	-449.0
324	AGND	12520.0	-449.0
325	AGND	12600.0	-449.0
326	AGND	12680.0	-449.0
327	AGND	12760.0	-449.0
328	VCOM	12840.0	-449.0
329	VCOM	12920.0	-449.0
330	VCOM	13000.0	-449.0
331	VCOM	13080.0	-449.0
332	DUMMYR3	13160.0	-449.0
333	DUMMYR4	13240.0	-449.0
334	DUMMY2	13320.0	-449.0
335	TESTO1	13515.0	436.0
336	TESTO2	13500.0	326.0
337	G2	13485.0	436.0
338	G4	13470.0	326.0
339	G6	13455.0	436.0
340	G8	13440.0	326.0
341	G10	13425.0	436.0
342	G12	13410.0	326.0
343	G14	13395.0	436.0
344	G16	13380.0	326.0
345	G18	13365.0	436.0
346	G20	13350.0	326.0
347	G22	13335.0	436.0
348	G24	13320.0	326.0
349	G26	13305.0	436.0
			.00.0

13290.0

350

G28

326.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
351	G30	13275.0	436.0
352	G32	13260.0	326.0
353	G34	13245.0	436.0
354	G36	13230.0	326.0
355	G38	13215.0	436.0
356	G40	13200.0	326.0
357	G42	13185.0	436.0
358	G44	13170.0	326.0
359	G46	13155.0	436.0
360	G48	13140.0	326.0
361	G50	13125.0	436.0
362	G52	13110.0	326.0
363	G54	13095.0	436.0
364	G56	13080.0	326.0
365	G58	13065.0	436.0
366	G60	13050.0	326.0
367	G62	13035.0	436.0
368	G64	13020.0	326.0
369	G66	13005.0	436.0
370	G68	12990.0	326.0
371	G70	12975.0	436.0
372	G72	12960.0	326.0
373	G74	12945.0	436.0
374	G76	12930.0	326.0
375	G78	12915.0	436.0
376	G80	12900.0	326.0
377	G82	12885.0	436.0
378	G84	12870.0	326.0
379	G86	12855.0	436.0
380	G88	12840.0	326.0
381	G90	12825.0	436.0
382	G92	12810.0	326.0
383	G94	12795.0	436.0
384	G96	12780.0	326.0
385	G98	12765.0	436.0
386	G100	12750.0	326.0
387	G102	12735.0	436.0
388	G104	12720.0	326.0
389	G106	12705.0	436.0
390	G108	12690.0	326.0
391	G110	12675.0	436.0
392	G112	12660.0	326.0
393	G114	12645.0	436.0
394	G116	12630.0	326.0
395	G118	12615.0	436.0
396	G120	12600.0	326.0
397	G122	12585.0	436.0
398	G124	12570.0	326.0
399	G126	12555.0	436.0
400	G128	12540.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
401	G130	12525.0	436.0
402	G132	12510.0	326.0
403	G134	12495.0	436.0
404	G136	12480.0	326.0
405	G138	12465.0	436.0
406	G140	12450.0	326.0
407	G142	12435.0	436.0
408	G144	12420.0	326.0
409	G146	12425.0	436.0
410	G148	12390.0	326.0
		İ	
411	G150	12375.0	436.0
412	G152	12360.0	326.0
413	G154	12345.0	436.0
414	G156	12330.0	326.0
415	G158	12315.0	436.0
416	G160	12300.0	326.0
417	G162	12285.0	436.0
418	G164	12270.0	326.0
419	G166	12255.0	436.0
420	G168	12240.0	326.0
421	G170	12225.0	436.0
422	G172	12210.0	326.0
423	G174	12195.0	436.0
424	G176	12180.0	326.0
425	G178	12165.0	436.0
426	G180	12150.0	326.0
427	G182	12135.0	436.0
428	G184	12120.0	326.0
429	G186	12105.0	436.0
430	G188	12090.0	326.0
431	G190	12075.0	436.0
432	G192	12060.0	326.0
433	G194	12045.0	436.0
434	G196	12030.0	326.0
435	G198	12015.0	436.0
436	G200	12000.0	326.0
437	G202	11985.0	436.0
438	G204	11970.0	326.0
439	G206	11955.0	436.0
440	G208	11940.0	326.0
441	G210	11925.0	436.0
442	G212		326.0
442		11910.0	
	G214	11895.0	436.0
444	G216	11880.0	326.0
445	G218	11865.0	436.0
446	G220	11850.0	326.0
447	G222	11835.0	436.0
448	G224	11820.0	326.0
449	G226	11805.0	436.0
450	G228	11790.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
451	G230	11775.0	436.0
452	G232	11760.0	326.0
453	G234	11745.0	436.0
454	G236	11730.0	326.0
455	G238	11715.0	436.0
456	G240	11700.0	326.0
457	G242	11685.0	436.0
458	G244	11670.0	326.0
459	G246	11655.0	436.0
460	G248	11640.0	326.0
461	G250	11625.0	436.0
462	G252	11610.0	326.0
463	G254	11595.0	436.0
464	G256	11580.0	326.0
465	G258	11565.0	436.0
466	G260	11550.0	326.0
467	G262	11535.0	436.0
468	G264	11520.0	326.0
469	G266	11505.0	436.0
470	G268	11490.0	326.0
471	G270	11475.0	436.0
472	G272	11460.0	326.0
473	G274	11445.0	436.0
474	G276	11430.0	326.0
475	G278	11415.0	436.0
476	G280	11400.0	326.0
477	G282	11385.0	436.0
478	G284	11370.0	326.0
479	G286	11355.0	436.0
480	G288	11340.0	326.0
481	G290	11325.0	436.0
482	G292	11310.0	326.0
483	G294	11295.0	436.0
484	G296	11280.0	326.0
485	G298	11265.0	436.0
486	G300	11250.0	326.0
487	G302	11235.0	436.0
488	G304	11220.0	326.0
489	G306	11205.0	436.0
490	G308	11190.0	326.0
491	G310	11175.0	436.0
492	G312	11160.0	326.0
493	G314	11145.0	436.0
494	G316	11130.0	326.0
495	G318	11115.0	436.0
496	G320	11100.0	326.0
497	G322	11085.0	436.0
498	G324	11070.0	326.0
499	G326	11055.0	436.0
500	G328	11040.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
501	G330	11025.0	436.0
502	G332	11010.0	326.0
503	G334	10995.0	436.0
504	G336	10980.0	326.0
505	G338	10965.0	436.0
506	G340	10950.0	326.0
507	G342	10935.0	436.0
508	G344	10920.0	326.0
509	G346	10905.0	436.0
510	G348	10890.0	326.0
511	G350	10875.0	436.0
512	G352	10860.0	326.0
513	G354	10845.0	436.0
514	G356	10830.0	326.0
515	G358	10815.0	436.0
516	G360	10800.0	326.0
517	G362	10785.0	436.0
518	G364	10770.0	326.0
519	G366	10755.0	436.0
520	G368	10740.0	326.0
521	G370	10725.0	436.0
522	G372	10710.0	326.0
523	G374	10695.0	436.0
524	G376	10680.0	326.0
525	G378	10665.0	436.0
526	G380	10650.0	326.0
527	G382	10635.0	436.0
528	G384	10620.0	326.0
529	G386	10605.0	436.0
530	G388	10590.0	326.0
531	G390	10575.0	436.0
532	G392	10560.0	326.0
533	G394	10545.0	436.0
534	G396	10530.0	326.0
535	G398	10515.0	436.0
536	G400	10500.0	326.0
537	G402	10485.0	436.0
538	G404	10470.0	326.0
539	G406	10455.0	436.0
540	G408	10440.0	326.0
541	G410	10425.0	436.0
542	G412	10410.0	326.0
543	G414	10395.0	436.0
544	G416	10380.0	326.0
545	G418	10365.0	436.0
546	G420	10350.0	326.0
547	G422	10335.0	436.0
548	G424	10320.0	326.0
549	G426	10305.0	436.0

G428

10290.0

326.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
551	G430	10275.0	436.0
552	G432	10260.0	326.0
553	G434	10245.0	436.0
554	G436	10230.0	326.0
555	G438	10215.0	436.0
556	G440	10200.0	326.0
557	G442	10185.0	436.0
558	G444	10170.0	326.0
559	G446	10155.0	436.0
560	G448	10140.0	326.0
561	G450	10125.0	436.0
562	G452	10110.0	326.0
563	G454	10095.0	436.0
564	G456	10080.0	326.0
565	G458	10065.0	436.0
566	G460	10050.0	326.0
567	G462	10035.0	436.0
568	G464	10020.0	326.0
569	G466	10005.0	436.0
570	G468	9990.0	326.0
571	G470	9975.0	436.0
572	G472	9960.0	326.0
573	G474	9945.0	436.0
574	G476	9930.0	326.0
575	G478	9915.0	436.0
576	G480	9900.0	326.0
577	G482	9885.0	436.0
578	G484	9870.0	326.0
579	G486	9855.0	436.0
580	G488	9840.0	326.0
581	G490	9825.0	436.0
582	G492	9810.0	326.0
583	G494	9795.0	436.0
584	G496	9780.0	326.0
585	G498	9765.0	436.0
586	G500	9750.0	326.0
587	G502	9735.0	436.0
588	G504	9720.0	326.0
589	G506	9705.0	436.0
590	G508	9690.0	326.0
591	G510	9675.0	436.0
592	G512	9660.0	326.0
593	G514	9645.0	436.0
594	G516	9630.0	326.0
595	G518	9615.0	436.0
596	G520	9600.0	326.0
597	G522	9585.0	436.0
598	G524	9570.0	326.0
599	G526	9555.0	436.0
600	G528	9540.0	326.0
	· · · · · · · · · · · · · · · · · · ·		

Pad No.	Pad Name	Х	(Unit: um) Y
601	G530	9525.0	436.0
602	G532	9510.0	326.0
603	G534	9495.0	436.0
604	G536	9480.0	326.0
605	G538	9465.0	436.0
606	G540	9450.0	326.0
607	G542	9435.0	436.0
608	G544	9420.0	326.0
609	G546	9405.0	436.0
610	G548	9390.0	326.0
611	G550	9375.0	436.0
612	G552	9360.0	326.0
613	G554	9345.0	436.0
614	G556	9330.0	326.0
615	G558	9315.0	436.0
616	G560	9300.0	326.0
617	G562	9285.0	436.0
618	G564	9270.0	326.0
619	G566	9255.0	436.0
620	G568	9240.0	326.0
621	G570	9225.0	436.0
622	G572	9210.0	326.0
623	G574	9195.0	436.0
624	G576	9180.0	326.0
625	G578	9165.0	436.0
626	G580	9150.0	326.0
627	G582	9135.0	436.0
628	G584	9120.0	326.0
629	G586	9105.0	436.0
630	G588	9090.0	326.0
631	G590	9075.0	436.0
632	G592		
633	G594	9060.0	326.0
		9045.0	436.0
634 635	G596 G598	9030.0 9015.0	326.0 436.0
636	G600	9000.0	
			326.0
637 638	G602	8985.0 8970.0	436.0
	G604		326.0
639	G606	8955.0	436.0
640	G608	8940.0	326.0
641	G610	8925.0	436.0
642	G612	8910.0	326.0
643	G614	8895.0	436.0
644	G616	8880.0	326.0
645	G618	8865.0	436.0
646	G620	8850.0	326.0
647	G622	8835.0	436.0
648	G624	8820.0	326.0
649	G626	8805.0	436.0
650	G628	8790.0	326.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
651	G630	8775.0	436.0
652	G632	8760.0	326.0
653	G634	8745.0	436.0
654	G636	8730.0	326.0
655	G638	8715.0	436.0
656	G640	8700.0	326.0
657	TESTO3	8685.0	436.0
658	TESTO4	8445.0	436.0
659	S1080	8430.0	326.0
660	S1079	8415.0	436.0
661	S1078	8400.0	326.0
662	S1077	8385.0	436.0
663	S1076	8370.0	326.0
664	S1075	8355.0	436.0
665	S1074	8340.0	326.0
666	S1073	8325.0	436.0
667	S1072	8310.0	326.0
668	S1071	8295.0	436.0
669	S1070	8280.0	326.0
670	S1069	8265.0	436.0
671	S1068	8250.0	326.0
672	S1067	8235.0	436.0
673	S1066	8220.0	326.0
674	S1065	8205.0	436.0
675	S1064	8190.0	326.0
676	S1063	8175.0	436.0
677	S1062	8160.0	326.0
678	S1061	8145.0	436.0
679	S1060	8130.0	326.0
680	S1059	8115.0	436.0
681	S1058	8100.0	326.0
682	S1057	8085.0	436.0
683	S1056	8070.0	326.0
684	S1055	8055.0	436.0
685	S1054	8040.0	326.0
686	S1053	8025.0	436.0
687	S1052	8010.0	326.0
688	S1051	7995.0	436.0
689	S1050	7980.0	326.0
690	S1049	7965.0	436.0
691	S1048	7950.0	326.0
692	S1047	7935.0	436.0
693	S1046	7920.0	326.0
694	S1045	7905.0	436.0
695	S1044	7890.0	326.0
696	S1043	7875.0	436.0
697	S1042	7860.0	326.0
698	S1041	7845.0	436.0
699	S1040	7830.0	326.0
700	S1039	7815.0	436.0
-			-

			(Unit: um)
Pad No.	Pad Name	X	Υ
701	S1038	7800.0	326.0
702	S1037	7785.0	436.0
703	S1036	7770.0	326.0
704	S1035	7755.0	436.0
705	S1034	7740.0	326.0
706	S1033	7725.0	436.0
707	S1032	7710.0	326.0
708	S1031	7695.0	436.0
709	S1030	7680.0	326.0
710	S1029	7665.0	436.0
711	S1028	7650.0	326.0
712	S1027	7635.0	436.0
713	S1026	7620.0	326.0
714	S1025	7605.0	436.0
715	S1024	7590.0	326.0
716	S1023	7575.0	436.0
717	S1022	7560.0	326.0
718	S1021	7545.0	436.0
719	S1020	7530.0	326.0
720	S1019	7515.0	436.0
721	S1018	7500.0	326.0
722	S1017	7485.0	436.0
723	S1017	7470.0	326.0
724	S1015	7476.0	436.0
725	S1013	7440.0	326.0
726	S1013	7425.0	436.0
727	S1012	7423.0	326.0
728	S1012	7395.0	436.0
729	S1011	7380.0	326.0
730	S1009	7365.0	436.0
	S1009 S1008	7350.0	
731 732	S1006 S1007		326.0
733		7335.0	436.0 326.0
	S1006	7320.0	
734 735	S1005	7305.0	436.0 326.0
	S1004	7290.0	
736	S1003	7275.0	436.0
737	S1002	7260.0	326.0
738	S1001	7245.0	436.0
739	S1000	7230.0	326.0
740	S999 S000	7215.0	436.0
741	S998	7200.0	326.0
742	S997	7185.0	436.0
743	S996	7170.0	326.0
744	S995	7155.0	436.0
745	S994	7140.0	326.0
746	S993	7125.0	436.0
747	S992	7110.0	326.0
748	S991	7095.0	436.0
749	S990	7080.0	326.0
750	S989	7065.0	436.0

			(Offic. uffi)
Pad No.	Pad Name	Χ	Υ
751	S988	7050.0	326.0
752	S987	7035.0	436.0
753	S986	7020.0	326.0
754	S985	7005.0	436.0
755	S984	6990.0	326.0
756	S983	6975.0	436.0
757	S982	6960.0	326.0
758	S981	6945.0	436.0
759	S980	6930.0	326.0
760	S979	6915.0	436.0
761	S978	6900.0	326.0
762	S977	6885.0	436.0
763	S976	6870.0	326.0
764	S975	6855.0	436.0
765	S974	6840.0	326.0
766	S973	6825.0	436.0
767	S972	6810.0	326.0
768	S971	6795.0	436.0
769	S970	6780.0	326.0
770	S969	6765.0	436.0
771	S968	6750.0	326.0
772	S967	6735.0	436.0
773	S966	6720.0	326.0
774	S965	6705.0	436.0
775	S964	6690.0	326.0
776	S963	6675.0	436.0
777	S962	6660.0	326.0
778	S961	6645.0	436.0
779	S960	6630.0	326.0
780	S959	6615.0	436.0
781	S958	6600.0	326.0
782	S957	6585.0	436.0
783	S956	6570.0	326.0
784	S955	6555.0	436.0
785	S954	6540.0	326.0
786	S953	6525.0	436.0
787	S952	6510.0	326.0
788	S951	6495.0	436.0
789	S950	6480.0	326.0
790	S949	6465.0	436.0
791	S948	6450.0	326.0
792	S947	6435.0	436.0
793	S946	6420.0	326.0
794	S945	6405.0	436.0
795	S944	6390.0	326.0
796	S943	6375.0	436.0
797	S942	6360.0	326.0
798	S941	6345.0	436.0
799	S940	6330.0	326.0
800	S939	6315.0	436.0

(Unit: um)			
Υ	Х	Pad Name	Pad No.
326.0	6300.0	S938	801
436.0	6285.0	S937	802
326.0	6270.0	S936	803
436.0	6255.0	S935	804
326.0	6240.0	S934	805
436.0	6225.0	S933	806
326.0	6210.0	S932	807
436.0	6195.0	S931	808
326.0	6180.0	S930	809
436.0	6165.0	S929	810
326.0	6150.0	S928	811
436.0	6135.0	S927	812
326.0	6120.0	S926	813
436.0	6105.0	S925	814
326.0	6090.0	S924	815
436.0	6075.0	S923	816
326.0	6060.0	S922	817
436.0	6045.0		818
		S921	
326.0	6030.0	S920	819
436.0	6015.0	S919	820
326.0	6000.0	S918	821
436.0	5985.0	S917	822
326.0	5970.0	S916	823
436.0	5955.0	S915	824
326.0	5940.0	S914	825
436.0	5925.0	S913	826
326.0	5910.0	S912	827
436.0	5895.0	S911	828
326.0	5880.0	S910	829
436.0	5865.0	S909	830
326.0	5850.0	S908	831
436.0	5835.0	S907	832
326.0	5820.0	S906	833
436.0	5805.0	S905	834
326.0	5790.0	S904	835
436.0	5775.0	S903	836
326.0	5760.0	S902	837
436.0	5745.0	S901	838
326.0	5730.0	S900	839
436.0	5715.0	S899	840
326.0	5700.0	S898	841
436.0	5685.0	S897	842
326.0	5670.0	S896	843
436.0	5655.0	S895	844
326.0	5640.0	S894	845
436.0	5625.0	S893	846
326.0	5610.0	S892	847
436.0	5595.0	S891	848
326.0	5580.0	S890	849
436.0	5565.0	S889	850

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
851	S888	5550.0	326.0
852	S887	5535.0	436.0
853	S886	5520.0	326.0
854	S885	5505.0	436.0
855	S884	5490.0	326.0
856	S883	5475.0	436.0
857	S882	5460.0	326.0
858	S881	5445.0	436.0
859	S880	5430.0	326.0
860	S879	5415.0	436.0
861	S878	5400.0	326.0
862	S877	5385.0	436.0
863	S876	5370.0	326.0
864	S875	5355.0	436.0
865	S874	5340.0	326.0
866	S873	5325.0	436.0
867	S872	5310.0	326.0
868	S871	5295.0	436.0
869	S870	5280.0	326.0
870	S869	5265.0	436.0
871	S868	5250.0	326.0
872	S867	5235.0	436.0
873	S866	5220.0	326.0
874	S865	5205.0	436.0
875	S864	5190.0	326.0
876	S863	5175.0	436.0
877	S862	5160.0	326.0
878	S861	5145.0	436.0
879	S860	5130.0	326.0
880	S859	5115.0	436.0
881	S858	5100.0	326.0
882	S857	5085.0	436.0
883	S856	5070.0	326.0
884	S855	5055.0	436.0
885	S854	5040.0	326.0
886	S853	5025.0	436.0
887	S852	5010.0	326.0
888	S851	4995.0	436.0
889	S850	4980.0	326.0
890	S849	4965.0	436.0
891	S848	4950.0	326.0
892	S847	4935.0	436.0
893	S846	4920.0	326.0
894	S845	4905.0	436.0
895	S844	4890.0	326.0
896	S843	4875.0	436.0
897	S842	4860.0	326.0
898	S841	4845.0	436.0
899	S840	4830.0	326.0
900	S839	4815.0	436.0

		1	(Unit: um)
Pad No.	Pad Name	X	Υ
901	S838	4800.0	326.0
902	S837	4785.0	436.0
903	S836	4770.0	326.0
904	S835	4755.0	436.0
905	S834	4740.0	326.0
906	S833	4725.0	436.0
907	S832	4710.0	326.0
908	S831	4695.0	436.0
909	S830	4680.0	326.0
910	S829	4665.0	436.0
911	S828	4650.0	326.0
912	S827	4635.0	436.0
913	S826	4620.0	326.0
914	S825	4605.0	436.0
915	S824	4590.0	326.0
916	S823	4575.0	436.0
917	S822	4560.0	326.0
918	S821	4545.0	436.0
919	S820	4530.0	326.0
920	S819	4515.0	436.0
921	S818	4500.0	326.0
922	S817	4485.0	436.0
923	S816	4470.0	326.0
924	S815	4455.0	436.0
925	S814	4440.0	326.0
926	S813	4425.0	436.0
927	S812	4410.0	326.0
928	S811	4395.0	436.0
929	S810	4380.0	326.0
930	S809	4365.0	436.0
931	S808	4350.0	326.0
932	S807	4335.0	436.0
933	S806	4320.0	326.0
934	S805	4305.0	436.0
935	S804	4290.0	326.0
936	S803	4275.0	436.0
937	S802	4260.0	326.0
938	S801	4245.0	436.0
939	S800	4230.0	326.0
940	S799	4215.0	436.0
941	S798	4200.0	326.0
942	S797	4185.0	436.0
943	S796	4170.0	326.0
944	S795	4155.0	436.0
945	S794	4140.0	326.0
946	S793	4125.0	436.0
947	S792	4110.0	326.0
948	S791	4095.0	436.0
949	S790	4080.0	326.0
950	S789	4065.0	436.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
951	S788	4050.0	326.0
952	S787	4035.0	436.0
953	S786	4020.0	326.0
954	S785	4005.0	436.0
955	S784	3990.0	326.0
956	S783	3975.0	436.0
957	S782	3960.0	326.0
958	S781	3945.0	436.0
959	S780	3930.0	326.0
960	S779	3915.0	436.0
961	S778	3900.0	326.0
962	S777	3885.0	436.0
963	S776	3870.0	326.0
964	S775	3855.0	436.0
965	S774	3840.0	326.0
966	S773	3825.0	436.0
967	S772	3810.0	326.0
968	S771	3795.0	436.0
969	S770	3780.0	326.0
970	S769	3765.0	436.0
971	S768	3750.0	326.0
972	S767	3735.0	436.0
973	S766	3720.0	326.0
974	S765	3705.0	436.0
975	S764	3690.0	326.0
976	S763	3675.0	436.0
977	S762	3660.0	326.0
978	S761	3645.0	436.0
979	S760	3630.0	326.0
980	S759	3615.0	436.0
981	S758	3600.0	326.0
982	S757	3585.0	436.0
983	S756	3570.0	326.0
984	S755	3555.0	436.0
985	S754	3540.0	326.0
986	S753	3525.0	436.0
987	S752	3510.0	326.0
988	S751	3495.0	436.0
989	S750	3480.0	326.0
990	S749	3465.0	436.0
991	S748	3450.0	326.0
992	S747	3435.0	436.0
993	S746	3420.0	326.0
994	S745	3405.0	436.0
995	S744	3390.0	326.0
996	S743	3375.0	436.0
997	S742	3360.0	326.0
998	S741	3345.0	436.0
999	S740	3330.0	326.0
1000	S739	3315.0	436.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1001	S738	3300.0	326.0
1002	S737	3285.0	436.0
1003	S736	3270.0	326.0
1004	S735	3255.0	436.0
1005	S734	3240.0	326.0
1006	S733	3225.0	436.0
1007	S732	3210.0	326.0
1008	S731	3195.0	436.0
1009	S730	3180.0	326.0
1010	S729	3165.0	436.0
1011	S728	3150.0	326.0
1012	S727	3135.0	436.0
1013	S726	3120.0	326.0
1014	S725	3105.0	436.0
1015	S724	3090.0	326.0
1016	S723	3075.0	436.0
1017	S722	3060.0	326.0
1018	S721	3045.0	436.0
1019	S720	3030.0	326.0
1020	S719	3015.0	436.0
1021	S718	3000.0	326.0
1022	S717	2985.0	436.0
1023	S716	2970.0	326.0
1024	S715	2955.0	436.0
1025	S714	2940.0	326.0
1026	S713	2925.0	436.0
1027	S712	2910.0	326.0
1028	S711	2895.0	436.0
1029	S710	2880.0	326.0
1030	S709	2865.0	436.0
1031	S708	2850.0	326.0
1032	S707	2835.0	436.0
1033	S706	2820.0	326.0
1034	S705	2805.0	436.0
1035	S704	2790.0	326.0
1036	S703	2775.0	436.0
1037	S702	2760.0	326.0
1038	S701	2745.0	436.0
1039	S700	2730.0	326.0
1040	S699	2715.0	436.0
1041	S698	2700.0	326.0
1042	S697	2685.0	436.0
1043	S696	2670.0	326.0
1044	S695	2655.0	436.0
1045	S694	2640.0	326.0
1046	S693	2625.0	436.0
1047	S692	2610.0	326.0
1048	S691	2595.0	436.0
1049	S690	2580.0	326.0
1050	S689	2565.0	436.0

Pad No. Pad Name X Y 1051 \$688 2550.0 326.0 1052 \$687 2535.0 436.0 1053 \$686 2520.0 326.0 1054 \$685 2555.0 436.0 1055 \$684 2490.0 326.0 1056 \$683 2475.0 436.0 1057 \$682 2460.0 326.0 1058 \$681 2445.0 436.0 1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1070 \$669 2				(Unit: um)
1052 \$686 2535.0 326.0 1053 \$686 2520.0 326.0 1054 \$685 2505.0 436.0 1055 \$684 2490.0 326.0 1056 \$683 2475.0 436.0 1057 \$682 2460.0 326.0 1058 \$681 2445.0 436.0 1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1070 \$669 2265.0 436.0 1071 \$668 <td< td=""><td>Pad No.</td><td>Pad Name</td><td>Χ</td><td>Υ</td></td<>	Pad No.	Pad Name	Χ	Υ
1053 \$686 \$250.0 \$326.0 1054 \$685 \$2505.0 \$436.0 1055 \$684 \$2490.0 \$326.0 1056 \$683 \$2475.0 \$436.0 1057 \$682 \$2460.0 \$326.0 1058 \$681 \$2445.0 \$436.0 1059 \$680 \$2430.0 \$326.0 1060 \$679 \$2415.0 \$436.0 1061 \$678 \$2400.0 \$326.0 1062 \$677 \$2385.0 \$436.0 1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$667 \$2280.0 \$326.0 1070 \$668 \$2250.0 \$326.0 1071 <td>1051</td> <td>S688</td> <td>2550.0</td> <td>326.0</td>	1051	S688	2550.0	326.0
1054 \$685 \$2505.0 \$436.0 1055 \$684 \$2490.0 \$326.0 1056 \$683 \$2475.0 \$436.0 1057 \$682 \$2460.0 \$326.0 1058 \$681 \$2445.0 \$436.0 1059 \$680 \$2430.0 \$326.0 1060 \$679 \$2415.0 \$436.0 1061 \$6678 \$2400.0 \$326.0 1062 \$677 \$2385.0 \$436.0 1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$670 \$2280.0 \$326.0 1070 \$668 \$2250.0 \$326.0 1071 \$668 \$2250.0 \$326.0 1072 </td <td></td> <td>S687</td> <td>2535.0</td> <td>436.0</td>		S687	2535.0	436.0
1055 \$684 2490.0 326.0 1056 \$683 2475.0 436.0 1057 \$682 2460.0 326.0 1058 \$681 2445.0 436.0 1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$6675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$667 2280.0 326.0 1070 \$669 2265.0 436.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 <t< td=""><td>1053</td><td>S686</td><td>2520.0</td><td></td></t<>	1053	S686	2520.0	
1056 \$683 \$2475.0 \$436.0 1057 \$682 \$2460.0 \$326.0 1058 \$681 \$2445.0 \$436.0 1059 \$680 \$2430.0 \$326.0 1060 \$679 \$2415.0 \$436.0 1061 \$678 \$2400.0 \$326.0 1062 \$677 \$2385.0 \$436.0 1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$6672 \$2310.0 \$326.0 1068 \$6671 \$2295.0 \$436.0 1070 \$669 \$2265.0 \$436.0 1070 \$669 \$2225.0 \$436.0 1071 \$668 \$2250.0 \$326.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1075<	1054	S685	2505.0	436.0
1057 \$682 2460.0 326.0 1058 \$681 2445.0 436.0 1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$6672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$6670 2280.0 326.0 1070 \$669 2265.0 436.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 <	1055	S684	2490.0	326.0
1058 \$681 2445.0 436.0 1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$670 2280.0 326.0 1071 \$668 2250.0 326.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 <td< td=""><td>1056</td><td>S683</td><td>2475.0</td><td>436.0</td></td<>	1056	S683	2475.0	436.0
1059 \$680 2430.0 326.0 1060 \$679 2415.0 436.0 1061 \$678 2400.0 326.0 1062 \$677 2385.0 436.0 1063 \$676 2370.0 326.0 1064 \$675 2355.0 436.0 1065 \$674 2340.0 326.0 1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$670 2280.0 326.0 1071 \$668 2250.0 326.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 <td< td=""><td>1057</td><td>S682</td><td>2460.0</td><td>326.0</td></td<>	1057	S682	2460.0	326.0
1060 S679 2415.0 436.0 1061 S678 2400.0 326.0 1062 S677 2385.0 436.0 1063 S676 2370.0 326.0 1064 S675 2355.0 436.0 1065 S674 2340.0 326.0 1066 S673 2325.0 436.0 1067 S672 2310.0 326.0 1068 S671 2295.0 436.0 1069 S670 2280.0 326.0 1070 S669 2265.0 436.0 1071 S668 2250.0 326.0 1072 S667 2235.0 436.0 1073 S666 2220.0 326.0 1074 S665 2205.0 436.0 1075 S664 2190.0 326.0 1076 S663 2175.0 436.0 1077 S662 2160.0 326.0 1078 S661 <td< td=""><td>1058</td><td>S681</td><td>2445.0</td><td>436.0</td></td<>	1058	S681	2445.0	436.0
1061 \$678 \$2400.0 \$326.0 1062 \$677 \$2385.0 \$436.0 1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$670 \$2280.0 \$326.0 1070 \$669 \$2265.0 \$436.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$2205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 <td>1059</td> <td>S680</td> <td>2430.0</td> <td>326.0</td>	1059	S680	2430.0	326.0
1062 \$677 \$2385.0 \$436.0 1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$6670 \$2280.0 \$326.0 1070 \$668 \$2250.0 \$326.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$2205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$326.0 1079 \$660 \$2130.0 \$326.0 1080 </td <td>1060</td> <td>S679</td> <td>2415.0</td> <td>436.0</td>	1060	S679	2415.0	436.0
1063 \$676 \$2370.0 \$326.0 1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$667 \$2280.0 \$326.0 1070 \$669 \$2265.0 \$436.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$2205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$326.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 <td>1061</td> <td>S678</td> <td>2400.0</td> <td>326.0</td>	1061	S678	2400.0	326.0
1064 \$675 \$2355.0 \$436.0 1065 \$674 \$2340.0 \$326.0 1066 \$673 \$2325.0 \$436.0 1067 \$672 \$2310.0 \$326.0 1068 \$671 \$2295.0 \$436.0 1069 \$667 \$2280.0 \$326.0 1070 \$668 \$2250.0 \$326.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$2205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 <td>1062</td> <td>S677</td> <td>2385.0</td> <td>436.0</td>	1062	S677	2385.0	436.0
1065 S674 2340.0 326.0 1066 S673 2325.0 436.0 1067 S672 2310.0 326.0 1068 S671 2295.0 436.0 1069 S670 2280.0 326.0 1070 S669 2265.0 436.0 1071 S668 2250.0 326.0 1072 S667 2235.0 436.0 1073 S666 2220.0 326.0 1074 S665 2205.0 436.0 1075 S664 2190.0 326.0 1076 S663 2175.0 436.0 1077 S662 2160.0 326.0 1078 S661 2145.0 436.0 1079 S660 2130.0 326.0 1081 S659 2115.0 436.0 1082 S657 2085.0 436.0 1083 S656 2070.0 326.0 1084 S655 <td< td=""><td>1063</td><td>S676</td><td>2370.0</td><td>326.0</td></td<>	1063	S676	2370.0	326.0
1066 \$673 2325.0 436.0 1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$6670 2280.0 326.0 1070 \$669 2265.0 436.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 <t< td=""><td>1064</td><td>S675</td><td>2355.0</td><td>436.0</td></t<>	1064	S675	2355.0	436.0
1067 \$672 2310.0 326.0 1068 \$671 2295.0 436.0 1069 \$669 2265.0 436.0 1070 \$669 2265.0 436.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 <td< td=""><td>1065</td><td>S674</td><td>2340.0</td><td>326.0</td></td<>	1065	S674	2340.0	326.0
1068 \$671 2295.0 436.0 1069 \$670 2280.0 326.0 1070 \$669 2265.0 436.0 1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 <td< td=""><td>1066</td><td>S673</td><td>2325.0</td><td>436.0</td></td<>	1066	S673	2325.0	436.0
1069 \$670 \$280.0 \$326.0 1070 \$669 \$2265.0 \$436.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$2235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087	1067	S672	2310.0	326.0
1070 \$669 \$2265.0 \$326.0 1071 \$668 \$2250.0 \$326.0 1072 \$667 \$235.0 \$436.0 1073 \$666 \$2220.0 \$326.0 1074 \$665 \$205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087 \$662 \$2010.0 \$326.0 1088	1068	S671	2295.0	436.0
1071 \$668 2250.0 326.0 1072 \$667 2235.0 436.0 1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1099 \$649 <td< td=""><td>1069</td><td>S670</td><td>2280.0</td><td>326.0</td></td<>	1069	S670	2280.0	326.0
1072 \$666 2235.0 \$326.0 1073 \$666 2220.0 \$326.0 1074 \$665 2205.0 \$436.0 1075 \$664 2190.0 \$326.0 1076 \$663 2175.0 \$436.0 1077 \$662 2160.0 \$326.0 1078 \$661 2145.0 \$436.0 1079 \$660 2130.0 \$326.0 1080 \$659 2115.0 \$436.0 1081 \$658 2100.0 \$326.0 1082 \$657 2085.0 \$436.0 1083 \$656 2070.0 \$326.0 1084 \$655 2055.0 \$436.0 1085 \$654 2040.0 \$326.0 1086 \$653 2025.0 \$436.0 1087 \$652 2010.0 \$326.0 1088 \$651 1995.0 \$436.0 1090 \$649 1965.0 \$436.0 1091 \$64	1070	S669	2265.0	436.0
1073 \$666 2220.0 326.0 1074 \$665 2205.0 436.0 1075 \$664 2190.0 326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 <td< td=""><td>1071</td><td>S668</td><td>2250.0</td><td>326.0</td></td<>	1071	S668	2250.0	326.0
1074 \$665 \$2205.0 \$436.0 1075 \$664 \$2190.0 \$326.0 1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087 \$652 \$2010.0 \$326.0 1088 \$651 \$1995.0 \$436.0 1090 \$649 \$1965.0 \$436.0 1091 \$648 \$1950.0 \$326.0 1092 \$647 \$1935.0 \$436.0 1094 <td>1072</td> <td>S667</td> <td>2235.0</td> <td>436.0</td>	1072	S667	2235.0	436.0
1075 \$664 2190.0 \$326.0 1076 \$663 2175.0 436.0 1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1094 \$645 1905.0 436.0 1095 \$644 <t< td=""><td>1073</td><td>S666</td><td>2220.0</td><td>326.0</td></t<>	1073	S666	2220.0	326.0
1076 \$663 \$2175.0 \$436.0 1077 \$662 \$2160.0 \$326.0 1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087 \$652 \$2010.0 \$326.0 1088 \$651 \$1995.0 \$436.0 1089 \$650 \$1980.0 \$326.0 1090 \$649 \$1965.0 \$436.0 1091 \$648 \$1950.0 \$326.0 1092 \$647 \$1935.0 \$436.0 1094 \$645 \$1905.0 \$436.0 1095 <td>1074</td> <td>S665</td> <td>2205.0</td> <td>436.0</td>	1074	S665	2205.0	436.0
1077 \$662 2160.0 326.0 1078 \$661 2145.0 436.0 1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 <td< td=""><td>1075</td><td>S664</td><td>2190.0</td><td>326.0</td></td<>	1075	S664	2190.0	326.0
1078 \$661 \$2145.0 \$436.0 1079 \$660 \$2130.0 \$326.0 1080 \$659 \$2115.0 \$436.0 1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087 \$652 \$2010.0 \$326.0 1088 \$651 \$1995.0 \$436.0 1089 \$650 \$1980.0 \$326.0 1090 \$649 \$1965.0 \$436.0 1091 \$648 \$1950.0 \$326.0 1092 \$647 \$1935.0 \$436.0 1093 \$646 \$1920.0 \$326.0 1094 \$645 \$1905.0 \$436.0 1095 \$644 \$1890.0 \$326.0 1096 <td>1076</td> <td>S663</td> <td>2175.0</td> <td>436.0</td>	1076	S663	2175.0	436.0
1079 \$660 2130.0 326.0 1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 <td< td=""><td>1077</td><td>S662</td><td>2160.0</td><td>326.0</td></td<>	1077	S662	2160.0	326.0
1080 \$659 2115.0 436.0 1081 \$658 2100.0 326.0 1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 <td< td=""><td>1078</td><td>S661</td><td>2145.0</td><td>436.0</td></td<>	1078	S661	2145.0	436.0
1081 \$658 \$2100.0 \$326.0 1082 \$657 \$2085.0 \$436.0 1083 \$656 \$2070.0 \$326.0 1084 \$655 \$2055.0 \$436.0 1085 \$654 \$2040.0 \$326.0 1086 \$653 \$2025.0 \$436.0 1087 \$652 \$2010.0 \$326.0 1088 \$651 \$1995.0 \$436.0 1089 \$650 \$1980.0 \$326.0 1090 \$649 \$1965.0 \$436.0 1091 \$648 \$1950.0 \$326.0 1092 \$647 \$1935.0 \$436.0 1093 \$646 \$1920.0 \$326.0 1094 \$645 \$1905.0 \$436.0 1095 \$644 \$1890.0 \$326.0 1096 \$643 \$1875.0 \$436.0 1097 \$642 \$1860.0 \$326.0 1098 \$640 \$1830.0 \$326.0	1079	S660	2130.0	326.0
1082 \$657 2085.0 436.0 1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 1830.0 326.0 1099 \$640 1830.0 326.0	1080	S659	2115.0	436.0
1083 \$656 2070.0 326.0 1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 1830.0 326.0 1099 \$640 1830.0 326.0	1081	S658	2100.0	326.0
1084 \$655 2055.0 436.0 1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 1830.0 326.0	1082	S657	2085.0	436.0
1085 \$654 2040.0 326.0 1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1083	S656	2070.0	326.0
1086 \$653 2025.0 436.0 1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 1830.0 326.0	1084	S655	2055.0	436.0
1087 \$652 2010.0 326.0 1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$640 1830.0 326.0	1085	S654	2040.0	326.0
1088 \$651 1995.0 436.0 1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1086	S653	2025.0	436.0
1089 \$650 1980.0 326.0 1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1087	S652	2010.0	326.0
1090 \$649 1965.0 436.0 1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1088	S651	1995.0	436.0
1091 \$648 1950.0 326.0 1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1089	S650	1980.0	326.0
1092 \$647 1935.0 436.0 1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1090	S649	1965.0	436.0
1093 \$646 1920.0 326.0 1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1091	S648	1950.0	326.0
1094 \$645 1905.0 436.0 1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1092	S647	1935.0	436.0
1095 \$644 1890.0 326.0 1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1093	S646	1920.0	326.0
1096 \$643 1875.0 436.0 1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1094	S645	1905.0	436.0
1097 \$642 1860.0 326.0 1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1095	S644	1890.0	326.0
1098 \$641 1845.0 436.0 1099 \$640 1830.0 326.0	1096	S643	1875.0	436.0
1099 S640 1830.0 326.0	1097	S642	1860.0	326.0
	1098	S641	1845.0	436.0
1100 S639 1815.0 436.0	1099	S640	1830.0	326.0
	1100	S639	1815.0	436.0

		1	(Unit: um)
Pad No.	Pad Name	X	Υ
1101	S638	1800.0	326.0
1102	S637	1785.0	436.0
1103	S636	1770.0	326.0
1104	S635	1755.0	436.0
1105	S634	1740.0	326.0
1106	S633	1725.0	436.0
1107	S632	1710.0	326.0
1108	S631	1695.0	436.0
1109	S630	1680.0	326.0
1110	S629	1665.0	436.0
1111	S628	1650.0	326.0
1112	S627	1635.0	436.0
1113	S626	1620.0	326.0
1114	S625	1605.0	436.0
1115	S624	1590.0	326.0
1116	S623	1575.0	436.0
1117	S622	1560.0	326.0
1118	S621	1545.0	436.0
1119	S620	1530.0	326.0
1120	S619	1515.0	436.0
1121	S618	1500.0	326.0
1122	S617	1485.0	436.0
1123	S616	1470.0	326.0
1124	S615	1455.0	436.0
1125	S614	1440.0	326.0
1126	S613	1425.0	436.0
1127	S612	1410.0	326.0
1128	S611	1395.0	436.0
1129	S610	1380.0	326.0
1130	S609	1365.0	436.0
1131	S608	1350.0	326.0
1132	S607	1335.0	436.0
1133	S606	1320.0	326.0
1134	S605	1305.0	436.0
1135	S604	1290.0	326.0
1136	S603	1275.0	436.0
1137	S602	1260.0	326.0
1138	S601	1245.0	436.0
1139	S600	1230.0	326.0
1140	S599	1215.0	436.0
1141	S598	1200.0	326.0
1142	S597	1185.0	436.0
1143	S596	1170.0	326.0
1144	S595	1155.0	436.0
1145	S594	1140.0	326.0
1146	S593	1125.0	436.0
1147	S592	1110.0	326.0
1148	S591	1095.0	436.0
1149	S590	1080.0	326.0
1150	S589	1065.0	436.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
1151	S588	1050.0	326.0
1152	S587	1035.0	436.0
1153	S586	1020.0	326.0
1154	S585	1005.0	436.0
1155	S584	990.0	326.0
1156	S583	975.0	436.0
1157	S582	960.0	326.0
1158	S581	945.0	436.0
1159	S580	930.0	326.0
1160	S579	915.0	436.0
1161	S578	900.0	326.0
1162	S577	885.0	436.0
1163	S576	870.0	326.0
1164	S575	855.0	436.0
1165	S574	840.0	326.0
1166	S573	825.0	436.0
1167	S572	810.0	326.0
1168	S571	795.0	436.0
1169	S570	780.0	326.0
1170	S569	765.0	436.0
1171	S568	750.0	326.0
1172	S567	735.0	436.0
1173	S566	720.0	326.0
1174	S565	705.0	436.0
1175	S564	690.0	326.0
1176	S563	675.0	436.0
1177	S562	660.0	326.0
1178	S561	645.0	436.0
1179	S560	630.0	326.0
1180	S559	615.0	436.0
1181	S558	600.0	326.0
1182	S557	585.0	436.0
1183	S556	570.0	326.0
1184	S555	555.0	436.0
1185	S554	540.0	326.0
1186	S553	525.0	436.0
1187	S552	510.0	326.0
1188	S551	495.0	436.0
1189	S550	480.0	326.0
1190	S549	465.0	436.0
1191	S548	450.0	326.0
1192	S547	435.0	436.0
1193	S546	420.0	326.0
1194	S545	405.0	436.0
1195	S544	390.0	326.0
1196	S543	375.0	436.0
1197	S543	360.0	326.0
1197	S542 S541	345.0	436.0
1199	TESTO6	330.0	326.0
1200	TESTO6	-330.0	326.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1201	S540	-345.0	436.0
1202	S539	-360.0	326.0
1203	S538	-375.0	436.0
1204	S537	-390.0	326.0
1205	S536	-405.0	436.0
1206	S535	-420.0	326.0
1207	S534	-435.0	436.0
1208	S533	-450.0	326.0
1209	S532	-465.0	436.0
1210	S531	-480.0	326.0
1211	S530	-495.0	436.0
1212	S529	-510.0	326.0
1213	S528	-525.0	436.0
1214	S527	-540.0	326.0
1215	S526	-555.0	436.0
1216	S525	-570.0	326.0
1217	S525 S524	-570.0 -585.0	436.0
		-600.0	
1218	S523		326.0
1219	S522	-615.0	436.0
1220	S521	-630.0	326.0
1221	S520	-645.0	436.0
1222	S519	-660.0	326.0
1223	S518	-675.0	436.0
1224	S517	-690.0	326.0
1225	S516	-705.0	436.0
1226	S515	-720.0	326.0
1227	S514	-735.0	436.0
1228	S513	-750.0	326.0
1229	S512	-765.0	436.0
1230	S511	-780.0	326.0
1231	S510	-795.0	436.0
1232	S509	-810.0	326.0
1233	S508	-825.0	436.0
1234	S507	-840.0	326.0
1235	S506	-855.0	436.0
1236	S505	-870.0	326.0
1237	S504	-885.0	436.0
1238	S503	-900.0	326.0
1239	S502	-915.0	436.0
1240	S501	-930.0	326.0
1241	S500	-945.0	436.0
1242	S499	-960.0	326.0
1243	S498	-975.0	436.0
1244	S497	-990.0	326.0
1245	S496	-1005.0	436.0
1246	S495	-1020.0	326.0
1247	S494	-1035.0	436.0
1248	S493	-1050.0	326.0
1249	S492	-1065.0	436.0
1250	S491	-1080.0	326.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1251	S490	-1095.0	436.0
1252	S489	-1110.0	326.0
1253	S488	-1125.0	436.0
1254	S487	-1140.0	326.0
1255	S486	-1155.0	436.0
1256	S485	-1170.0	326.0
1257	S484	-1185.0	436.0
1258	S483	-1200.0	326.0
1259	S482	-1215.0	436.0
1260	S481	-1230.0	326.0
1261	S480	-1245.0	436.0
1262	S479	-1260.0	326.0
1263	S478	-1275.0	436.0
1264	S477	-1290.0	326.0
1265	S476	-1305.0	436.0
1266	S475	-1320.0	326.0
1267	S474	-1335.0	436.0
1268	S473	-1350.0	326.0
1269	S472	-1365.0	436.0
1270	S471	-1380.0	326.0
1271	S470	-1395.0	436.0
1272	S469	-1410.0	326.0
1273	S468	-1425.0	436.0
1274	S467	-1440.0	326.0
1275	S466	-1455.0	436.0
1276	S465	-1470.0	326.0
1277	S464	-1485.0	436.0
1278	S463	-1500.0	326.0
1279	S462	-1515.0	436.0
1280	S461	-1530.0	326.0
1281	S460	-1545.0	436.0
1282	S459	-1560.0	326.0
1283	S458	-1575.0	436.0
1284	S457	-1590.0	326.0
1285	S456	-1605.0	436.0
1286	S455	-1620.0	326.0
1287	S454	-1635.0	436.0
1288	S453	-1650.0	326.0
1289	S452	-1665.0	436.0
1290	S451	-1680.0	326.0
1291	S450	-1695.0	436.0
1292	S449	-1710.0	326.0
1293	S448	-1725.0	436.0
1294	S447	-1740.0	326.0
1295	S446	-1755.0	436.0
1296	S445	-1770.0	326.0
1297	S444	-1785.0	436.0
1298	S443	-1800.0	326.0
1299	S442	-1815.0	436.0
1300	S441	-1830.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
1301	S440	-1845.0	436.0
1302	S439	-1860.0	326.0
1303	S438	-1875.0	436.0
1304	S437	-1890.0	326.0
1305	S436	-1905.0	436.0
1306	S435	-1920.0	326.0
1307	S434	-1935.0	436.0
1308	S433	-1950.0	326.0
1309	S432	-1965.0	436.0
1310	S431	-1980.0	326.0
1311	S430	-1995.0	436.0
1312	S429	-2010.0	326.0
1313	S428	-2025.0	436.0
1314	S427	-2040.0	326.0
1315	S426	-2055.0	436.0
1316	S425	-2070.0	326.0
1317	S424	-2085.0	436.0
1318	S423	-2100.0	326.0
1319	S422	-2115.0	436.0
1320	S421	-2130.0	326.0
1321	S420	-2145.0	436.0
1322	S419	-2160.0	326.0
1323	S418	-2175.0	436.0
1324	S417	-2190.0	326.0
1325	S416	-2205.0	436.0
1326	S415	-2220.0	326.0
1327	S414	-2235.0	436.0
1328	S413	-2250.0	326.0
1329	S412	-2265.0	436.0
1330	S411	-2280.0	326.0
1331	S410	-2295.0	436.0
1332	S409	-2310.0	326.0
1333	S408	-2325.0	436.0
1334	S407	-2340.0	326.0
1335	S406	-2355.0	436.0
1336	S405	-2370.0	326.0
1337	S404	-2385.0	436.0
1338	S403	-2400.0	326.0
1339	S402	-2415.0	436.0
1340	S401	-2430.0	326.0
1341	S400	-2445.0	436.0
1342	S399	-2460.0	326.0
1343	S398	-2475.0	436.0
1344	S397	-2490.0	326.0
1345	S396	-2505.0	436.0
1346	S395	-2520.0	326.0
1347	S394	-2535.0	436.0
1348	S393	-2550.0	326.0
1349	S392	-2565.0	436.0
1350	S391	-2580.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
1351	S390	-2595.0	436.0
1352	S389	-2610.0	326.0
1353	S388	-2625.0	436.0
1354	S387	-2640.0	326.0
1355	S386	-2655.0	436.0
1356	S385	-2670.0	326.0
1357	S384	-2685.0	436.0
1358	S383	-2700.0	326.0
1359	S382	-2715.0	436.0
1360	S381	-2730.0	326.0
1361	S380	-2745.0	436.0
1362	S379	-2760.0	326.0
1363	S378	-2775.0	436.0
1364	S377	-2790.0	326.0
1365	S376	-2805.0	436.0
1366	S375	-2820.0	326.0
1367	S374	-2835.0	436.0
1368	S373	-2850.0	326.0
1369	S372	-2865.0	436.0
1370	S371	-2880.0	326.0
1371	S370	-2895.0	436.0
1372	S369	-2910.0	326.0
1373	S368	-2925.0	436.0
1374	S367	-2940.0	326.0
1375	S366	-2955.0	436.0
1376	S365	-2970.0	326.0
1377	S364	-2985.0	436.0
1378	S363	-3000.0	326.0
1379	S362	-3015.0	436.0
1380	S361	-3030.0	326.0
1381	S360	-3045.0	436.0
1382	S359	-3060.0	326.0
1383	S358	-3075.0	436.0
1384	S357	-3090.0	326.0
1385	S356	-3105.0	436.0
1386	S355	-3120.0	326.0
1387	S354	-3135.0	436.0
1388	S353	-3150.0	326.0
1389	S352	-3165.0	436.0
1390	S351	-3180.0	326.0
1391	S350	-3195.0	436.0
1392	S349	-3210.0	326.0
1393	S348	-3225.0	436.0
1394	S347	-3240.0	326.0
1395	S347	-3255.0	436.0
1396	S345	-3270.0	326.0
1397	S344	-3285.0	436.0
1398	S344	-3300.0	326.0
1399	S343	-3315.0	436.0
1400	S342 S341	-3310.0	326.0
1400	J J J J J J J J J J J J J J J J J J J	_ააა∪.∪	3Z0.U

			(Unit: um)
Pad No.	Pad Name	X	Υ
1401	S340	-3345.0	436.0
1402	S339	-3360.0	326.0
1403	S338	-3375.0	436.0
1404	S337	-3390.0	326.0
1405	S336	-3405.0	436.0
1406	S335	-3420.0	326.0
1407	S334	-3435.0	436.0
1408	S333	-3450.0	326.0
1409	S332	-3465.0	436.0
1410	S331	-3480.0	326.0
1411	S330	-3495.0	436.0
1412	S329	-3510.0	326.0
1413	S328	-3525.0	436.0
1414	S327	-3540.0	326.0
1415	S326	-3555.0	436.0
1416	S325	-3570.0	326.0
1417	S324	-3585.0	436.0
1418	S323	-3600.0	326.0
1419	S322	-3615.0	436.0
1420	S321	-3630.0	326.0
1421	S320	-3645.0	436.0
1422	S319	-3660.0	326.0
1423	S318	-3675.0	436.0
1424	S317	-3690.0	326.0
1425	S316	-3705.0	436.0
1426	S315	-3720.0	326.0
1427	S314	-3735.0	436.0
1428	S313	-3750.0	326.0
1429	S312	-3765.0	436.0
1430	S311	-3780.0	326.0
1431	S310	-3795.0	436.0
1432	S309	-3810.0	326.0
1433	S308	-3825.0	436.0
1434	S307	-3840.0	326.0
1435	S306	-3855.0	436.0
1436	S305	-3870.0	326.0
1437			
	S304	-3885.0	436.0
1438	S303	-3900.0 -3915.0	326.0 436.0
1439	S302 S301	-3915.0 -3930.0	436.0 336.0
1440			326.0
1441	S300	-3945.0	436.0
1442	S299	-3960.0	326.0
1443	S298	-3975.0	436.0
1444	S297	-3990.0	326.0
1445	S296	-4005.0	436.0
1446	S295	-4020.0	326.0
1447	S294	-4035.0	436.0
1448	S293	-4050.0	326.0
1449	S292	-4065.0	436.0
1450	S291	-4080.0	326.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
1451	S290	-4095.0	436.0
1452	S289	-4110.0	326.0
1453	S288	-4125.0	436.0
1454	S287	-4140.0	326.0
1455	S286	-4155.0	436.0
1456	S285	-4170.0	326.0
1457	S284	-4185.0	436.0
1458	S283	-4200.0	326.0
1459	S282	-4215.0	436.0
1460	S281	-4230.0	326.0
1461	S280	-4245.0	436.0
1462	S279	-4260.0	326.0
1463	S278	-4275.0	436.0
1464	S277	-4290.0	326.0
1465	S276	-4305.0	436.0
1466	S275	-4320.0	326.0
1467	S274	-4335.0	436.0
1468	S273	-4350.0	326.0
1469	S272	-4365.0	436.0
1470	S271	-4380.0	326.0
1471	S271	-4395.0	436.0
1472	S269	-4410.0	326.0
1472	S268	-4425.0	436.0
1473		-4440.0	
1474	S267 S266	-4440.0 -4455.0	326.0 436.0
1475		-4470.0	
	S265 S264		326.0
1477		-4485.0 4500.0	436.0
1478	S263	-4500.0	326.0
1479	S262	-4515.0	436.0
1480	S261	-4530.0	326.0
1481	S260	-4545.0	436.0
1482	S259	-4560.0	326.0
1483	S258	-4575.0	436.0
1484	S257	-4590.0	326.0
1485	S256	-4605.0	436.0
1486	S255	-4620.0	326.0
1487	S254	-4635.0	436.0
1488	S253	-4650.0	326.0
1489	S252	-4665.0	436.0
1490	S251	-4680.0	326.0
1491	S250	-4695.0	436.0
1492	S249	-4710.0	326.0
1493	S248	-4725.0	436.0
1494	S247	-4740.0	326.0
1495	S246	-4755.0	436.0
1496	S245	-4770.0	326.0
1497	S244	-4785.0	436.0
1498	S243	-4800.0	326.0
1499	S242	-4815.0	436.0
1500	S241	-4830.0	326.0

· · · · · · · · · · · · · · · · · · ·		,	(Unit: um)
Pad No.	Pad Name	Х	Υ
1501	S240	-4845.0	436.0
1502	S239	-4860.0	326.0
1503	S238	-4875.0	436.0
1504	S237	-4890.0	326.0
1505	S236	-4905.0	436.0
1506	S235	-4920.0	326.0
1507	S234	-4935.0	436.0
1508	S233	-4950.0	326.0
1509	S232	-4965.0	436.0
1510	S231	-4980.0	326.0
1511	S230	-4995.0	436.0
1512	S229	-5010.0	326.0
1513	S228	-5025.0	436.0
1514	S227	-5040.0	326.0
1515	S226	-5055.0	436.0
1516	S225	-5070.0	326.0
1517	S224	-5085.0	436.0
1518	S223	-5100.0	326.0
1519	S222	-5115.0	436.0
1520	S221	-5130.0	326.0
1521	S220	-5145.0	436.0
1522	S219	-5160.0	326.0
1523	S218	-5175.0	436.0
1524	S217	-5190.0	326.0
1525	S216	-5205.0	436.0
1526	S215	-5220.0	326.0
1527	S214	-5235.0	436.0
1528	S213	-5250.0	326.0
1529	S212	-5265.0	436.0
1530	S211	-5280.0	326.0
1531	S210	-5295.0	436.0
1532	S209	-5310.0	326.0
1533	S208	-5325.0	436.0
1534	S207	-5340.0	326.0
1535	S206	-5355.0	436.0
1536	S205	-5370.0	326.0
1537	S204	-5385.0	436.0
1538	S203	-5400.0	326.0
1539	S202	-5415.0	436.0
1540	S201	-5430.0	326.0
1541	S200	-5445.0	436.0
1542	S199	-5460.0	326.0
1543	S198	-5475.0	436.0
1544	S197	-5490.0	326.0
1545	S196	-5505.0	436.0
1546	S195	-5520.0	326.0
1547	S194	-5535.0	436.0
1548	S193	-5550.0	326.0
1549	S192	-5565.0	436.0
1550	S191	-5580.0	326.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1551	S190	-5595.0	436.0
1552	S189	-5610.0	326.0
1553	S188	-5625.0	436.0
1554	S187	-5640.0	326.0
1555	S186	-5655.0	436.0
1556	S185	-5670.0	326.0
1557	S184	-5685.0	436.0
1558	S183	-5700.0	326.0
1559	S182	-5715.0	436.0
1560	S181	-5730.0	326.0
1561	S180	-5745.0	436.0
1562	S179	-5760.0	326.0
1563	S178	-5775.0	436.0
1564	S177	-5790.0	326.0
1565	S176	-5805.0	436.0
1566	S175	-5820.0	326.0
1567	S174	-5835.0	436.0
1568	S173	-5850.0	326.0
1569	S172	-5865.0	436.0
1570	S171	-5880.0	326.0
1571	S170	-5895.0	436.0
1572	S169	-5910.0	326.0
1573	S168	-5925.0	436.0
1574	S167	-5940.0	326.0
1575	S166	-5955.0	436.0
1576	S165	-5970.0	326.0
1577	S164	-5985.0	436.0
1578	S163	-6000.0	326.0
1579	S162	-6015.0	436.0
1580	S161	-6030.0	326.0
1581	S160	-6045.0	436.0
1582	S159	-6060.0	326.0
1583	S158	-6075.0	436.0
1584	S157	-6090.0	326.0
1585	S156	-6105.0	436.0
1586	S155	-6120.0	326.0
1587	S154	-6135.0	436.0
1588	S153	-6150.0	326.0
1589	S152	-6165.0	436.0
1590	S151	-6180.0	326.0
1591	S150	-6195.0	436.0
1592	S149	-6210.0	326.0
1593	S148	-6225.0	436.0
1594	S147	-6240.0	326.0
1595	S146	-6255.0	436.0
1596	S145	-6270.0	326.0
1597	S144	-6285.0	436.0
1598	S143	-6300.0	326.0
1599	S142	-6315.0	436.0
1600	S141	-6330.0	326.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1601	S140	-6345.0	436.0
1602	S139	-6360.0	326.0
1603	S138	-6375.0	436.0
1604	S137	-6390.0	326.0
1605	S136	-6405.0	436.0
1606	S135	-6420.0	326.0
1607	S134	-6435.0	436.0
1608	S133	-6450.0	326.0
1609	S132	-6465.0	436.0
1610	S131	-6480.0	326.0
1611	S130	-6495.0	436.0
1612	S129	-6510.0	326.0
1613	S128	-6525.0	436.0
1614	S127	-6540.0	326.0
1615	S126	-6555.0	436.0
1616	S125	-6570.0	326.0
1617	S124	-6585.0	436.0
1618	S123	-6600.0	326.0
1619	S122	-6615.0	436.0
1620	S121	-6630.0	326.0
1621	S120	-6645.0	436.0
1622	S119	-6660.0	326.0
1623	S118	-6675.0	436.0
1624	S117	-6690.0	326.0
1625	S116	-6705.0	436.0
1626	S115	-6720.0	326.0
1627	S114	-6735.0	436.0
1628	S113	-6750.0	326.0
1629	S112	-6765.0	436.0
1630	S111	-6780.0	326.0
1631	S110	-6795.0	436.0
1632	S109	-6810.0	326.0
1633	S108	-6825.0	436.0
1634	S107	-6840.0	326.0
1635	S106	-6855.0	436.0
1636	S105	-6870.0	326.0
1637	S104	-6885.0	436.0
1638	S103	-6900.0	326.0
1639	S102	-6915.0	436.0
1640	S101	-6930.0	326.0
1641	S100	-6945.0	436.0
1642	S99	-6960.0	326.0
1643	S98	-6975.0	436.0
1644	S97	-6990.0	326.0
1645	S96	-7005.0	436.0
1646	S95	-7020.0	326.0
1647	S94	-7035.0	436.0
1648	S93	-7050.0	326.0
1649	S92	-7065.0	436.0
1650	S91	-7080.0	326.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
1651	S90	-7095.0	436.0
1652	S89	-7110.0	326.0
1653	S88	-7125.0	436.0
1654	S87	-7140.0	326.0
1655	S86	-7155.0	436.0
1656	S85	-7170.0	326.0
1657	S84	-7185.0	436.0
1658	S83	-7200.0	326.0
1659	S82	-7215.0	436.0
1660	S81	-7230.0	326.0
1661	S80	-7245.0	436.0
1662	S79	-7260.0	326.0
1663	S78	-7275.0	436.0
1664	S77	-7290.0	326.0
1665	S76	-7305.0	436.0
1666	S75	-7320.0	326.0
1667	S74	-7335.0	436.0
1668	S73	-7350.0	326.0
1669	S72	-7365.0	436.0
1670	S71	-7380.0	326.0
1671	S70	-7395.0	436.0
1672	S69	-7410.0	326.0
1673	S68	-7425.0	436.0
1674	S67	-7440.0	326.0
1675	S66	-7455.0	436.0
1676	S65	-7470.0	326.0
1677	S64	-7485.0	436.0
1678	S63	-7500.0	326.0
1679	S62	-7515.0	436.0
1680	S61	-7530.0	326.0
1681	S60	-7545.0	436.0
1682	S59	-7560.0	326.0
1683	S58	-7575.0	436.0
1684	S57	-7590.0	326.0
1685	S56	-7605.0	436.0
1686	S55	-7620.0	326.0
1687	S54	-7635.0	436.0
1688	S53	-7650.0	326.0
1689	S52	-7665.0	436.0
1690	S51	-7680.0	326.0
1691	S50	-7695.0	436.0
1692	S49	-7710.0	326.0
1693	S48	-7725.0	436.0
1694	S47	-7740.0	326.0
1695	S46	-7755.0	436.0
1696	S45	-7770.0	326.0
1697	S44	-7785.0	436.0
1698	S43	-7800.0	326.0
1699	S42	-7815.0	436.0
1700	S41	-7830.0	326.0

		1	(Unit: um)
Pad No.	Pad Name	Х	Υ
1701	S40	-7845.0	436.0
1702	S39	-7860.0	326.0
1703	S38	-7875.0	436.0
1704	S37	-7890.0	326.0
1705	S36	-7905.0	436.0
1706	S35	-7920.0	326.0
1707	S34	-7935.0	436.0
1708	S33	-7950.0	326.0
1709	S32	-7965.0	436.0
1710	S31	-7980.0	326.0
1711	S30	-7995.0	436.0
1712	S29	-8010.0	326.0
1713	S28	-8025.0	436.0
1714	S27	-8040.0	326.0
1715	S26	-8055.0	436.0
1716	S25	-8070.0	326.0
1717	S24	-8085.0	436.0
1718	S23	-8100.0	326.0
1719	S22	-8115.0	436.0
1720	S21	-8130.0	326.0
1721	S20	-8145.0	436.0
1722	S19	-8160.0	326.0
1723	S18	-8175.0	436.0
1724	S17	-8190.0	326.0
1725	S16	-8205.0	436.0
1726	S15	-8220.0	326.0
1727	S14	-8235.0	436.0
1728	S13	-8250.0	326.0
1729	S12	-8265.0	436.0
1730	S11	-8280.0	326.0
1731	S10	-8295.0	436.0
1732	S9	-8310.0	326.0
1733	S8	-8325.0	436.0
1734	S7	-8340.0	326.0
1735	S6	-8355.0	436.0
1736	S5	-8370.0	326.0
1737	S4	-8385.0	436.0
1738	S3	-8400.0	326.0
1739	S2	-8415.0	436.0
1740	S1	-8430.0	326.0
1741	TESTO7	-8445.0	436.0
1742	TESTO8	-8685.0	436.0
1743	G639	-8700.0	326.0
1744	G637	-8715.0	436.0
1745	G635	-8730.0	326.0
1746	G633	-8745.0	436.0
1747	G631	-8760.0	326.0
1748	G629	-8775.0	436.0
1749	G627	-8790.0	326.0
1750	G625	-8805.0	436.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
1751	G623	-8820.0	326.0
1752	G621	-8835.0	436.0
1753	G619	-8850.0	326.0
1754	G617	-8865.0	436.0
1755	G615	-8880.0	326.0
1756	G613	-8895.0	436.0
1757	G611	-8910.0	326.0
1758	G609	-8925.0	436.0
1759	G607	-8940.0	326.0
1760	G605	-8955.0	436.0
1761	G603	-8970.0	326.0
1762	G601	-8985.0	436.0
1763	G599	-9000.0	326.0
1764	G597	-9015.0	436.0
1765	G595	-9030.0	326.0
1766	G593	-9045.0	436.0
1767	G591	-9060.0	326.0
1768	G589	-9075.0	436.0
1769	G587	-9090.0	326.0
1770	G585	-9105.0	436.0
1771	G583	-9120.0	326.0
1772	G581	-9135.0	436.0
1773	G579	-9150.0	326.0
1774	G577	-9165.0	436.0
1775	G575	-9180.0	326.0
1776	G573	-9195.0	436.0
1777	G571	-9210.0	326.0
1778	G569	-9225.0	436.0
1779	G567	-9240.0	326.0
1780	G565	-9255.0	436.0
1781	G563	-9270.0	326.0
1782	G561	-9285.0	436.0
1783	G559	-9300.0	326.0
1784	G557	-9315.0	436.0
1785	G555	-9330.0	326.0
1786	G553	-9345.0	436.0
1787	G551	-9360.0	326.0
1788	G549	-9375.0	436.0
1789	G547	-9390.0	326.0
1790	G545	-9405.0	436.0
1791	G543	-9420.0	326.0
1792	G541	-9435.0	436.0
1793	G539	-9450.0	326.0
1794	G537	-9465.0	436.0
1795	G535	-9480.0	326.0
1796	G533	-9495.0	436.0
1797	G531	-9510.0	326.0
1798	G529	-9525.0	436.0
1799	G527	-9540.0	326.0
1800	G525	-9555.0	436.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1801	G523	-9570.0	326.0
1802	G521	-9585.0	436.0
1803	G519	-9600.0	326.0
1804	G517	-9615.0	436.0
1805	G515	-9630.0	326.0
1806	G513	-9645.0	436.0
1807	G511	-9660.0	326.0
1808	G509	-9675.0	436.0
1809	G507	-9690.0	326.0
1810	G505	-9705.0	436.0
1811	G503	-9720.0	326.0
1812	G501	-9735.0	436.0
1813	G499	-9750.0	326.0
1814	G497	-9765.0	436.0
1815	G495	-9780.0	326.0
1816	G493	-9795.0	436.0
1817	G491	-9810.0	326.0
1818	G489	-9825.0	436.0
1819	G487	-9840.0	326.0
1820	G485	-9855.0	436.0
1821	G483	-9870.0	326.0
1822	G481	-9885.0	436.0
1823	G479	-9900.0	326.0
1824	G477	-9915.0	436.0
1825	G475	-9930.0	326.0
1826	G473	-9945.0	436.0
1827	G471	-9960.0	326.0
1828	G469	-9975.0	436.0
1829	G467	-9990.0	326.0
1830	G465	-10005.0	436.0
1831	G463	-10020.0	326.0
1832	G461	-10035.0	436.0
1833	G459	-10050.0	326.0
1834	G457	-10065.0	436.0
1835	G455	-10080.0	326.0
1836	G453	-10095.0	436.0
1837	G451	-10110.0	326.0
1838	G449	-10125.0	436.0
1839	G447	-10140.0	326.0
1840	G445	-10155.0	436.0
1841	G443	-10170.0	326.0
1842	G441	-10185.0	436.0
1843	G439	-10200.0	326.0
1844	G437	-10215.0	436.0
1845	G435	-10230.0	326.0
1846	G433	-10245.0	436.0
1847	G431	-10260.0	326.0
1848	G429	-10200.0	436.0
1849	G429 G427	-10275.0	326.0
1850	G425	-10305.0	436.0

			(Offic. uffi)
Pad No.	Pad Name	Χ	Υ
1851	G423	-10320.0	326.0
1852	G421	-10335.0	436.0
1853	G419	-10350.0	326.0
1854	G417	-10365.0	436.0
1855	G415	-10380.0	326.0
1856	G413	-10395.0	436.0
1857	G411	-10410.0	326.0
1858	G409	-10425.0	436.0
1859	G407	-10440.0	326.0
1860	G405	-10455.0	436.0
1861	G403	-10470.0	326.0
1862	G401	-10485.0	436.0
1863	G399	-10500.0	326.0
1864	G397	-10515.0	436.0
1865	G395	-10530.0	326.0
1866	G393	-10545.0	436.0
1867	G391	-10560.0	326.0
1868	G389	-10575.0	436.0
1869	G387	-10590.0	326.0
1870	G385	-10605.0	436.0
1871	G383	-10620.0	326.0
1872	G381	-10635.0	436.0
1873	G379	-10650.0	326.0
1874	G377	-10665.0	436.0
1875	G375	-10680.0	326.0
1876	G373	-10695.0	436.0
1877	G371	-10710.0	326.0
1878	G369	-10725.0	436.0
1879	G367	-10740.0	326.0
1880	G365	-10755.0	436.0
1881	G363	-10770.0	326.0
1882	G361	-10785.0	436.0
1883	G359	-10800.0	326.0
1884	G357	-10815.0	436.0
1885	G355	-10830.0	326.0
1886	G353	-10845.0	436.0
1887	G351	-10860.0	326.0
1888	G349	-10875.0	436.0
1889	G347	-10890.0	326.0
1890	G345	-10905.0	436.0
1891	G343	-10920.0	326.0
1892	G341	-10935.0	436.0
1893	G339	-10950.0	326.0
1894	G337	-10965.0	436.0
1895	G335	-10980.0	326.0
1896	G333	-10995.0	436.0
1897	G331	-11010.0	326.0
1898	G329	-11025.0	436.0
1899	G327	-11040.0	326.0
1900	G325	-11055.0	436.0

			(Unit: um)
Pad No.	Pad Name	X	Υ
1901	G323	-11070.0	326.0
1902	G321	-11085.0	436.0
1903	G319	-11100.0	326.0
1904	G317	-11115.0	436.0
1905	G315	-11130.0	326.0
1906	G313	-11145.0	436.0
1907	G311	-11160.0	326.0
1908	G309	-11175.0	436.0
1909	G307	-11190.0	326.0
1910	G305	-11205.0	436.0
1911	G303	-11220.0	326.0
1912	G301	-11235.0	436.0
1913	G299	-11250.0	326.0
1914	G297	-11265.0	436.0
1915	G295	-11280.0	326.0
1916	G293	-11295.0	436.0
1917	G291	-11310.0	326.0
1918	G289	-11325.0	436.0
1919	G287	-11340.0	326.0
1920	G285	-11355.0	436.0
1921	G283	-11370.0	326.0
		-11370.0	
1922	G281		436.0
1923	G279	-11400.0	326.0
1924	G277	-11415.0	436.0
1925	G275	-11430.0	326.0
1926	G273	-11445.0	436.0
1927	G271	-11460.0	326.0
1928	G269	-11475.0	436.0
1929	G267	-11490.0	326.0
1930	G265	-11505.0	436.0
1931	G263	-11520.0	326.0
1932	G261	-11535.0	436.0
1933	G259	-11550.0	326.0
1934	G257	-11565.0	436.0
1935	G255	-11580.0	326.0
1936	G253	-11595.0	436.0
1937	G251	-11610.0	326.0
1938	G249	-11625.0	436.0
1939	G247	-11640.0	326.0
1940	G245	-11655.0	436.0
1941	G243	-11670.0	326.0
1942	G241	-11685.0	436.0
1943	G239	-11700.0	326.0
1944	G237	-11715.0	436.0
1945	G235	-11730.0	326.0
1946	G233	-11745.0	436.0
1947	G231	-11760.0	326.0
1948	G229	-11775.0	436.0
1949	G227	-11790.0	326.0
1950	G225	-11805.0	436.0

			(Unit: um)
Pad No.	Pad Name	Χ	Υ
1951	G223	-11820.0	326.0
1952	G221	-11835.0	436.0
1953	G219	-11850.0	326.0
1954	G217	-11865.0	436.0
1955	G215	-11880.0	326.0
1956	G213	-11895.0	436.0
1957	G211	-11910.0	326.0
1958	G209	-11925.0	436.0
1959	G207	-11940.0	326.0
1960	G205	-11955.0	436.0
1961	G203	-11970.0	326.0
1962	G201	-11985.0	436.0
1963	G199	-12000.0	326.0
1964	G197	-12015.0	436.0
1965	G195	-12030.0	326.0
1966	G193	-12045.0	436.0
1967	G191	-12060.0	326.0
1968	G189	-12075.0	436.0
1969	G187	-12090.0	326.0
1970	G185	-12105.0	436.0
1971	G183	-12120.0	326.0
1972	G181	-12135.0	436.0
1973	G179	-12150.0	326.0
1974	G177	-12165.0	436.0
1975	G175	-12180.0	326.0
1976	G173	-12195.0	436.0
1977	G171	-12210.0	326.0
1978	G169	-12225.0	436.0
1979	G167	-12240.0	326.0
1980	G165	-12255.0	436.0
1981	G163	-12270.0	326.0
1982	G161	-12285.0	436.0
1983	G159	-12300.0	326.0
1984	G157	-12315.0	436.0
1985	G155	-12330.0	326.0
1986	G153	-12345.0	436.0
1987	G151	-12360.0	326.0
1988	G149	-12375.0	436.0
1989	G147	-12390.0	326.0
1990	G145	-12405.0	436.0
1991	G143	-12420.0	326.0
1992	G141	-12435.0	436.0
1993	G139	-12450.0	326.0
1994	G137	-12465.0	436.0
1995	G135	-12480.0	326.0
1996	G133	-12495.0	436.0
1997	G131	-12510.0	326.0
1998	G129	-12525.0	436.0
1999	G127	-12540.0	326.0
2000	G125	-12555.0	436.0

(Unit: um)

326.0

436.0

			(Unit: um)
Pad No.	Pad Name	Х	Υ
2001	G123	-12570.0	326.0
2002	G121	-12585.0	436.0
2003	G119	-12600.0	326.0
2004	G117	-12615.0	436.0
2005	G115	-12630.0	326.0
2006	G113	-12645.0	436.0
2007	G111	-12660.0	326.0
2008	G109	-12675.0	436.0
2009	G107	-12690.0	326.0
2010	G105	-12705.0	436.0
2011	G103	-12720.0	326.0
2012	G101	-12735.0	436.0
2013	G99	-12750.0	326.0
2014	G97	-12765.0	436.0
2015	G95	-12780.0	326.0
2016	G93	-12795.0	436.0
2017	G91	-12810.0	326.0
2018	G89	-12825.0	436.0
2019	G87	-12840.0	326.0
2020	G85	-12855.0	436.0
2021	G83	-12870.0	326.0
2022	G81	-12885.0	436.0
2023	G79	-12900.0	326.0
2024	G77	-12915.0	436.0
2025	G75	-12930.0	326.0
2026	G73	-12945.0	436.0
2027	G71	-12960.0	326.0
2028	G69	-12975.0	436.0
2029	G67	-12990.0	326.0
2030	G65	-13005.0	436.0
2031	G63	-13020.0	326.0
2032	G61	-13035.0	436.0
2033	G59	-13050.0	326.0
2034	G57	-13065.0	436.0
2035	G55	-13080.0	326.0
2036	G53	-13095.0	436.0
2037	G51	-13110.0	326.0
2038	G49	-13125.0	436.0
2039	G47	-13140.0	326.0
2040	G45	-13155.0	436.0
2041	G43	-13170.0	326.0
2042	G41	-13185.0	436.0
2043	G39	-13200.0	326.0
2044	G37	-13215.0	436.0
2045	G35	-13230.0	326.0
2046	G33	-13245.0	436.0
2047	G31	-13260.0	326.0
2048	G29	-13275.0	436.0
2049	G27	-13290.0	326.0
2050	G25	-13305.0	436.0
2000	UZU	10000.0	₹50.0

Pad No.	Pad Name	Χ	Υ
2051	G23	-13320.0	326.0
2052	G21	-13335.0	436.0
2053	G19	-13350.0	326.0
2054	G17	-13365.0	436.0
2055	G15	-13380.0	326.0
2056	G13	-13395.0	436.0
2057	G11	-13410.0	326.0
2058	G9	-13425.0	436.0
2059	G7	-13440.0	326.0
2060	G5	-13455.0	436.0
2061	G3	-13470.0	326.0
2062	G1	-13485.0	436.0

TESTO9

TESTO10

2063

2064

		(Unit: um)
Alignment Mark	X	Υ
Cross	-13656.0	436.0
Gross	13656.0	436.0

-13500.0

-13515.0

BUMP Arrangement/Alignment Mark

Figure 2

System Interface Configuration (MIPI-DSI)

The DSI incorporated in the R61523 complies with the following standards.

MIPI DSI: Version 1.01.00r11 21-Feb-2008 MIPI D-PHY: Version 0.90.00 8-Oct-2007

MIPI DCS: Version 1.01.00

(1) Basic DSI Specification

• Number of data lanes: 1/2 data lane(s)

• Maximum data rate: 300Mbps/lane (Total: 600Mbps/2 lanes)

Only command mode supported

• Only 36h: set_address_mode command (B5 = 0, horizontal direction) supported

• Frame memory window address setting

2Ah: set_column_address SC[9:0] = 2n (n = 0, 1, 2, ...179) EC[9:0] = 2m - 1 (m = 1, 2, ...180)EC - SC > 2 pixels

(2) DSI System Configuration

Figure 3

(3) Lane State Definition

Table 11 Lane State Description

State code	Line voltage levels		High speed	Low	oower
	Dp-line	Dn-line	Burst mode	Control mode	Escape mode
HS-0	HS Low	HS High	Differential-0	1	1
HS-1	HS High	HS Low	Differential-1	1	1
LP-00	LP Low	LP Low	N/A	Bridge	Space
LP-01	LP Low	LP High	N/A	HS-Rqst	Mark-0
LP-10	LP High	LP Low	N/A	LP-Rqst	Mark-1
LP-11	LP High	LP High	N/A	Stop	2

Notes: 1. During high-speed transmission, the low power receivers observe LP-00 on the lines.

2. If LP-11 occurs during Escape mode, the Lane returns to Stop state (Control mode LP-11).

(4) DSI-CLK Lane

Figure 4 Clock Lane State Diagram

1) Low Power Mode (LP-11: STOP)

Figure 5 Switching the Clock Lane between Clock Transmission and Low Power Mode 1

2) Ultra Low Power Mode (LP-00: ULPM)

Figure 6 Switching the Clock Lane between Clock Transmission and Low Power Mode 2

3) High-Speed Clock Mode

Figure 7 Switching the Clock Lane between Clock Transmission and Low Power Mode 3

4) High-Speed Clock Burst

Figure 8 Switching the Clock Lane between Clock Transmission and Low Power Mode 4

(5) DSI-D0 Data Lane

Figure 9 DSI-D0 Data Lane State Diagram

Table 12 Data Lane Operating Modes

No.	Description	Operation code	Note
1	High-Speed Data Transmission Burst	LP-11 > LP-01 > LP-00	
2	Escape mode entry	LP-11 > LP-10 > LP-00 > LP-01 > LP-00	
3	Turnaround	LP-11 > LP-10 > LP-00 > LP-10 > LP-00	1
4	Exit Escape mode(Mark-1)	LP-10	
5	Deep Standby Mode	DSTB=1	2
6	Exit Deep Standby Mode	CSX × 6	3

Notes: 1. Before Turnaround operation, DBI Packet must be sent.

- 2. DSTB must be sent by Escape mode in Sleep mode.
- 3. After exiting from the Deep Standby Mode, all of commands are reset.

1) Power On, HWREST, soft_reset \rightarrow LP-11

Data lane and clock lane should be in LP-11 state during Power On, HWRESET, and soft_reset sequences.

2) Escape mode

- Escape mode entry
- Mark-1 (exit Escape mode)

Table 13 Escape Entry Code

		Escape Mode	Entry Command Pattern		_	523 entation	Note
No.	Symbol	Action	Туре	(first bit transmitted to last bit transmitted)	LP-RX	LP-TX	
1	LPDT	Low Power Data Transmission	mode	1110_0001	Yes	Yes	
2	ULPS	Ultra-Low Power State	mode	0001_1110	Yes	No	
3	UDF1	Undefined-1	mode	1001_1111	No	No	
4	UDF2	Undefined-2	mode	1101_1110	No	No	
5	RAR	Remote Application Reset	Trigger	0110_0010	Yes	No	1
6	TER	TE-Report	Trigger	0101_1101	No	Yes	
7	ACKT	Unkown-4 (Acknowledge Trigger)	Trigger	0010_0001	No	Yes	
8	UNK5	Unknown-5	Trigger	1010_0000	No	No	

Note: DSI circuit is reset by Remote Application Reset.

- 3) Escape mode (Host>Client): Low Power Data Transmission (LPDT)
- 4) Escape mode (Host>Client): Ultra Low Power State (ULPS)
- 5) Escape mode (Host>Client): Remote Application Reset (RAR)

6) Escape mode (Client>Host): TE-Reporting (TER)

This supports TE-reporting function. The procedures are as follows:

- Host to Client: Send set_tear_on of DCS.
- Host to Client: Send BTA.
- Client to Host: Send Acknowledge Trigger.
- Client to Host: Send BTA.
- Host: Check Error Report.
- Host to Client: Send BTA.
- Client to Host: Send TE Report when TE occurred at the line of set scan line.
- Client to Host: Send BTA.
- Host to Client: Send image data by HST.

Figure 10

- 7) Escape mode (Client>Host): Acknowledge Trigger (ACKT)
- 8) High-Speed Data Transmission (HST)
- 9) Bus Turnaround (Host>Client) (BTA)
- 10) Bus Turnaround (Client>Host) (BTA)

(6) Packet Level Communication

1) Short Packet (SPa) Structure

Figure 11 Example of Short Packet (SPa) (DCS WRITE, 1 Parameter)

2) Long Packet (LPa) Structure

Figure 12

3) Multiple Packet Sending

In the LP-11 state, multiple Short Packets (SPa) and Long Packets (LPa) can be received between SoT and EoT.

 $LP-11 \rightarrow SoT \rightarrow SPa \rightarrow SPa \rightarrow EoT$

 $LP-11 \rightarrow SoT \rightarrow SPa \rightarrow LPa \rightarrow EoT$

 $LP-11 \rightarrow SoT \rightarrow LPa \rightarrow LPa \rightarrow EoT$

 $LP-11 \rightarrow SoT \rightarrow LPa \rightarrow SPa \rightarrow EoT$

LP-11 \rightarrow SoT \rightarrow Combination of the above methods \rightarrow EoT

(7) Data Identification (DI)

1) Virtual Channel (VC)

The R61523 supports Virtual Channel only when VC = 00. Set VC = 00 during packet transmission. If a packet is received when VC is other than 00, the packet is regarded as invalid. This result is reflected on Error Report.

2) Data Type (DT)

If a Data Type not defined in MIPI DSI specification is received, the subsequent data cannot be received. Transmit data again after checking it is in the LP-11 state using Error Report. If a Data Type not supported in the R61523 is received, it is regarded as NOP, and the result is not reflected on Error Report.

Table 14

Data Identification (DI)							
Virtual Ch	Virtual Channel (VC) Data Type (DT)						
B7 (0)	B6 (0)	B5	B4	В3	B2	B1	В0

Table 15 R61523 Rx Data Type List

Data	Description	Packet size	DBI packet	DPI packet	R61523 (Rx)	Note
Туре	0 5 11/0 01 1	01 1			implementation	
01h	Sync Event, V Sync Start	Short		Yes	No	
11h	Sync Event, V Sync End	Short		Yes	No	
21h	Sync Event, H Sync Start	Short		Yes	No	
31h	Sync Event, H Sync End	Short		Yes	No	
08h	End of Transmission packet (EOT)	Short			Yes	
02h	Color Mode (CM) Off Command	Short		Yes	No	
12h	Color Mode (CM) On Command	Short		Yes	No	
22h	Shut Down Peripheral Command	Short		Yes	No	
32h	Turn On Peripheral Command	Short		Yes	No	
03h	Generic Short WRITE, no parameters	Short	Yes		No	
13h	Generic Short WRITE, 1 parameter	Short	Yes		Yes	1, 2
23h	Generic Short WRITE, 2 parameters	Short	Yes		Yes	1, 2
04h	Generic READ, no parameters	Short	Yes		No	
14h	Generic READ, 1 parameter	Short	Yes		Yes	
24h	Generic READ, 2 parameters	Short	Yes		Yes	1, 2
05h	DCS WRITE, no parameters	Short	Yes		Yes	1, 2
15h	DCS WRITE, 1 parameter	Short	Yes		Yes	1, 2
06h	DCS READ, no parameters	Short	Yes		Yes	1, 2
37h	Set Maximum Return Packet Size (default: 0001h)	Short	Yes		Yes	
09h	Null Packet, no data	Long			Yes	
19h	Blanking Packet, no data	Long		Yes	No	
29h	Generic Long Write	Long	Yes		Yes	
39h	DCS Long Write/Write_LUT Command Packet	Long	Yes		Yes	
0Eh	Packet Pixel Stream, 16-bit RGB, 5-6-5 Format	Long		Yes	No	
1Eh	Packet Pixel Stream, 18-bit RGB, 6-6-6 Format	Long		Yes	No	
2Eh	Loosely Packet Pixel Stream, 24-bit RGB, 8-8-8 Format	Long		Yes	No	
3Eh	Packet Pixel Stream, 24-bit RGB, 8-8-8 Format	Long		Yes	No	
Other	All unspecified codes are reserved.				-	

Table 16 R61523 LP-Tx Data Type List

Data Type	Description	Packet size	R61523 (LP-Tx) implementation	Note
00h-01h	Reserved	-	-	
02h	Acknowledge with Error Report	Short	Yes	
03h-07h	Reserved	-	-	
08h	End of Transmission packet (EoT)	Short	No	3
09h-10h	Reserved	-	-	
11h	Generic Short READ Response, 1 byte returned	Short	Yes	
12h	Generic Short READ Response, 2 bytes returned	Short	Yes	
13h-18h	Reserved	-	-	
1Ah	Generic Long READ Response	Long	Yes	
1Bh	Reserved	-	-	
1Ch	DCS Long READ Response	Long	Yes	
1Dh-20h	Reserved	-	-	
21h	DCS Short READ Response, 1 byte returned	Short	Yes	
22h	DCS Short READ Response, 2 bytes returned	Short	Yes	
23h-28h	Reserved	-	-	
29h-3Fh	Reserved	-	-	

Notes: 1. Generic Command is Manufacturer Command. DCS Command is User Command.

(8) Word Count (WC) on Long Packet (LPa)

Word Count (WC) = 2 bytes: The number of packet data on Long Packet (0 to 65,535 bytes)

(9) Error Correction Code (ECC)

ECC detects 1-bit errors or multiple-bit errors in each Packet Header. ECC is performed on the following:

- Short Packet: DI, Data0, Data1, and ECC
- Long Packet: DI, WC (2 bytes), and ECC

Generic XXX 1 parameter is Manufacturer Command + 1 byte (all "0"). Generic XXX 2 parameter is Manufacturer Command + 1 parameter. DCS XXX no parameter is User Command + 1 byte (all "0"). DCS XXX 1 parameter is User Command + 1 parameter.

^{3.} Defined in MIPI DSI (p.48) (used for HS transmission).

(10) Packet Data (PD) - Pixel Data Format on Long Packet

Figure 13 24bpp Pixel Data Format on Long Packet (set_pixel_format (3Ah): D[2:0] = 111)

Figure 14 18bpp Pixel Data Format on Long Packet (set_pixel_format (3Ah): D[2:0] = 110)

Figure 15 16bpp Pixel Data Format on Long Packet (set_pixel_format (3Ah): D[2:0] = 101)

(11) Packet Footer on Long Packet (LPa)

In Long Packet, Packet Footer is added next to Packet Data. Packet footer includes CRC calculated from Packet Data as checksum.

Checksum (2 bytes) = CRC (Packet Data): $CRC = X^{16} + X^{12} + X^5 + X^0$

(12) Acknowledge with Error Report (AwER)

Table 17

Bit	Description	R61523 implementation	Note
0	SoT Error	Yes	1
1	SoT Sync Error	Yes	1
2	EoT Sync Error	Yes	1
3	Escape Mode Entry Command Error	Yes	1
4	Low Power Transmit Sync Error	Yes	1
5	HS Receive Timeout Error	Yes	1
6	False Control Error	Yes	1
7	Reserved	-	
8	ECC Error, single-bit (detected, and corrected)	Yes	
9	ECC Error, multi-bit (detected, not corrected)	Yes	
10	Checksum Error (Long packet only)	Yes	
11	DSI Data Type Not Recognized	Yes	
12	DSI VC ID Invalid	Yes	
13	Invalid Transmission Length	Yes	1
14	Reserved	-	
15	DSI Protocol Violation	Yes	1

Note 1: Detailed error report condition is defined by R61523 (based on MIPI description).

(13) DCS, MCS, and Data Type List

The following table shows the available data type of each command (DCS and MCS).

Table 18 DCS and Data Type List

							Host to R61	523 Data Ty	pe (RX)			
		W/R			Wri	te Type				Read Type		Other
	DCS	Data Type	05'h	15'h	39'h	13'h	23'h	29'h	14'h	24'h	06'h	37'h
	Command/Parameter	Packet	Short	Short	Long	Short	Short	Long	Short	Short	Short	Short
			DCS no para	DCS 1 para	DCS -	Generic 1 para	Generic 2 para	Generic -	Generic 1 para	Generic 2 para	DCS no para	Set maximum return packet size
00h	nop	С	Yes	No	Yes	No	No	No	No	No	No	-
01h	soft_reset	С	Yes	No	Yes	No	No	No	No	No	No	-
04h	read_DDB_starrt	5	No	No	No	No	No	No	No	No	Yes	16'h5
0Ah	get_power_mode	1	No	No	No	No	No	No	No	No	Yes	16'h1
0Bh	get_address_mode	1	No	No	No	No	No	No	No	No	Yes	16'h1
0Ch	get_pixel_format	1	No	No	No	No	No	No	No	No	Yes	16'h1
0Dh	get_display_mode	1	No	No	No	No	No	No	No	No	Yes	16'h1
0Eh	get_signal_mode	1	No	No	No	No	No	No	No	No	Yes	16'h1
0Fh	get_diagnostic_mode	1	No	No	No	No	No	No	No	No	Yes	16'h1
10h	enter_sleep_mode	С	Yes	No	Yes	No	No	No	No	No	No	-
11h	exit_sleep_mode	С	Yes	No	Yes	No	No	No	No	No	No	-
12h	enter_partial_mode	С	Yes	No	Yes	No	No	No	No	No	No	-
13h	enter_normal_mode	С	Yes	No	Yes	No	No	No	No	No	No	-
28h	set_display_off	С	Yes	No	Yes	No	No	No	No	No	No	-
29h	set_display_on	С	Yes	No	Yes	No	No	No	No	No	No	-
2Ah	set_column_address	4	No	No	Yes	No	No	No	No	No	No	-
2Bh	set_page_address	4	No	No	Yes	No	No	No	No	No	No	-
2Ch	write_memory_start	N	No	No	Yes	No	No	No	No	No	No	-
2Eh	read_memory_start (type 1, 2)	N	No	No	No	No	No	No	No	No	Yes	N byte
30h	set_partial_area	4	No	No	Yes	No	No	No	No	No	No	-
34h	set_tear_off (type 1)	С	Yes	No	Yes	No	No	No	No	No	No	-
35h	set_tear_on (type 1)	1	No	Yes	Yes	No	No	No	No	No	No	-
36h	set_address_mode	1	No	Yes	Yes	No	No	No	No	No	No	-
38h	exit_idle_mode	С	Yes	No	Yes	No	No	No	No	No	No	-
39h	enter_idle_mode	С	Yes	No	Yes	No	No	No	No	No	No	-

Table 19 DCS and Data Type List (continued)

		• •					=		.=			
							Host to R61	523 Data Ty	/pe (RX)			
		W/R			Wr	ite Type				Read Type		Other
	DCS	Data Type	05'h	15'h	39'h	13'h	23'h	29'h	14'h	24'h	06'h	37'h
	Command/Parameter	Packet	Short	Short	Long	Short	Short	Long	Short	Short	Short	Short
			DCS no para	DCS 1 para	DCS -	Generic 1 para	Generic 2 para	Generic -	Generic 1 para	Generic 2 para	DCS no para	Set maximum
												return packet size
3Ah	set_pixel_format	1	No	Yes	Yes	No	No	No	No	No	No	-
3Ch	write_memory_continue	N	No	No	Yes	No	No	No	No	No	No	-
3Eh	read_memory_continue	N	No	No	No	No	No	No	No	No	Yes	N byte
44h	set_tear_scanline	2	No	Yes	Yes	No	No	No	No	No	No	-
45h	get_scanline	2	No	No	No	No	No	No	No	No	Yes	16'h2
A1h	read_DDB_start	5	No	No	No	No	No	No	No	No	Yes	16'h5
A8h	read_DDB_continue	N	No	No	No	No	No	No	No	No	Yes	16'h5

Table 20 MCS and Data Type List

	ic 20 MCS and Data						Host to R61	523 Data Ty	rpe (RX)			
		W/R			Wr	ite Type				Read Type		Other
	MCS	Data Type	05'h	15'h	39'h	13'h	23'h	29'h	14'h	24'h	06'h	37'h
	Command/Parameter	Packet	Short	Short	Long	Short	Short	Long	Short	Short	Short	Short
			DCS no para	DCS 1 para	DCS -	Generic 1 para	Generic 2 para	Generic -	Generic 1 para	Generic 2 para	DCS no para	Set maximum return packet size
B0h	Manufacturer Command Access Packet	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
B1h	Low Power Mode Control	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
B3h	Frame Memory Access and Interface Setting	2	No	No	No	No	No	Yes	Yes	No	No	16'h2
B5h	Read Checksum and ECC Error Counter	3	No	No	No	No	No	No	Yes	No	No	16'h3
B6h	DSI Control	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
B8h	Backlight Control 1	15	No	No	No	No	No	Yes	Yes	No	No	16'hF
B9h	Backlight Control 2	4	No	No	No	No	No	Yes	Yes	No	No	16'h4
BAh	Backlight Control 3	1	No	No	No	No	No	No	Yes	No	No	16'h1
BFh	Device Code Read	5	No	No	No	No	No	No	Yes	No	No	16'h5
C0h	Panel Driving Setting	7	No	No	No	No	No	Yes	Yes	No	No	16'h7
C1h	Display Timing Setting for Normal/Partial Mode	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
C3h	Display Timing Setting for Idle Mode	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
C4h	Source/VCOM/Gate Driving Timing Setting	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
C8h	Gamma Set A	18	No	No	No	No	No	Yes	Yes	No	No	16'h12
C9h	Gamma Set B	18	No	No	No	No	No	Yes	Yes	No	No	16'h12
CAh	Gamma Set C	18	No	No	No	No	No	Yes	Yes	No	No	16'h12
D0h	Power Setting for Common	10	No	No	No	No	No	Yes	Yes	No	No	16'hA
D1h	VCOM Setting	4	No	No	No	No	No	Yes	Yes	No	No	16'h4
D2h	Power Setting for Normal/Partial Mode	3	No	No	No	No	No	Yes	Yes	No	No	16'h3
D4h	Power Setting for Idle Mode	3	No	No	No	No	No	Yes	Yes	No	No	16'h3
D6h	Test Mode	4	No	No	No	No	No	Yes	Yes	No	No	16'h4
D7h	Test Mode	12	No	No	No	No	No	Yes	Yes	No	No	16'hC
D9h	Test Mode	2	No	No	No	No	No	Yes	Yes	No	No	16'h2

Table 21 MCS and Data Type List (Continued)

							Host to R61	523 Data Ty	rpe (RX)			
		W/R			Wr	ite Type				Read Type		Other
	MCS	Data Type	05'h	15'h	39'h	13'h	23'h	29'h	14'h	24'h	06'h	37'h
	Command/Parameter	Packet	Short	Short	Long	Short	Short	Long	Short	Short	Short	Short
			DCS no para	DCS 1 para	DCS -	Generic 1 para	Generic 2 para	Generic -	Generic 1 para	Generic 2 para	DCS no para	Set maximum return packet size
E0h	NVM Access Control	4	No	No	No	No	No	Yes	Yes	No	No	16'h4
E1h	set_DDB_write Control	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
E2h	Frame Memory Access and Interface Setting	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
E3h	Read Checksum and ECC Error Counter	12	No	No	No	No	No	Yes	Yes	No	No	16'hC
E4h	DSI Control	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
E5h	Backlight Control 1	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
E6h	Backlight Control 2	1	No	No	No	No	Yes	Yes	Yes	No	No	16'h1
F3h	Backlight Control 3	2	No	No	No	No	No	Yes	Yes	No	No	16'h2
FAh	Device Code Read	4	No	No	No	No	No	Yes	Yes	No	No	16'h4
FCh	Test Mode	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
FDh	Test Mode	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
FEh	Test Mode	5	No	No	No	No	No	Yes	Yes	No	No	16'h5
FFh	Reserved	-	No	No	No	No	No	No	No	No	No	-

System Interface Configuration (MIPI-DBI)

DBI Type B

The R61523 adopts 16-/8-bit bus display command interface to interface to high-performance host processor at high speed. The R61523 starts internal processing after storing control information of externally sent 16-/8-bit data in the command register (CDR) and the parameter register (PR). Since the internal operation of the R61523 is determined by signals sent from the host processor, command/parameter signal, read/write status signal (RDX/WRX), and internal 16-bit data bus signals (DB[15:0]) are called command.

Figure 16 Example: DBI Type B

Write Cycle Sequence

In the write cycle, data and/or command are written to the R61523 via the interface between the R61523 and the host processor. Each step of write cycle sequence (WRX high, WRX low, WRX high) comprises three control signals (DCX, RDX, WRX) and 16(DB[15:0])-bit data. The DCX bit indicates a signal that is used to select command or data sent on the data bus.

When DCX="1", data on DB[15:0] is image data or command parameter. When DCX = 0, data on DB[7:0] are command.

Setting RDX and WRX to "Low" simultaneously is prohibited. See the figure below for the write cycle sequence.

Note: WRX is not a synchronous signal (can be halted).

Figure 17 Write Cycle Sequence

Figure 18

Read Cycle Sequence

In the read cycle, data and/or commands are read from the R61523 via the interface between the R61523 and the host processor. The data (DB[15:0] or [7:0]) are transmitted from the R61523 to the host processor on the falling edge of RDX. The host processor reads the data on the rising edge of RDX. Setting RDX and WRX to Low simultaneously is prohibited. See below for the read cycle sequence.

Note: RDX is not a synchronous signal (can be halted).

Figure 19

Figure 20

Data Transfer Break

As shown in the figure below, in the transmission of parameter for command from the host processor to the R61523, the command parameters sent to the R61523 before a break occurs are stored in the register of the R61523 when the following two conditions are met. One is that a break occurs before the last parameter of the command is sent to the R61523. The other is that the host processor transmits the parameter(s) of a new command, not the parameters of the interrupted command, when a break occurs. However, those parameters sent after the break is disregarded, and the data in the register is not overwritten.

Figure 21

Note: A break occurs, for example, when another command is input.

Data Transfer Pause (Command/Pause/Command)

Figure 22

Data Transfer Pause (Command/Pause/Parameter)

Figure 23

Data Transfer Pause (Parameter/Pause/Command)

Figure 24

Data Transfer Pause (Parameter/Pause/Parameter)

Figure 25

Data Transfer Mode

Two methods are available for writing data to the frame memory in the R61523.

(1) Write Method 1 (Default)

One frame of image data is written to the frame memory. If over one frame of data is transmitted, all the data is disregarded. The write operation of the data to the frame memory is terminated when a command intervenes in the middle of the course. The R61523 writes the image data to the next frame when write_memory_start command (2Ch) is written. Set WEMODE = 0 (Frame Memory Access and Interface Setting (B3h)).

Start writing data to the frame memory (2Ch)	Image data for Frame 1	Any command	Start writing data to the frame memory (2Ch)	Image data for Frame 2	Any command
	Any command				

Figure 26

(2) Write Method 2

The image data are written consecutively to the frame memory. The frame memory pointer is reset to the start point when the frame memory becomes full and the driver starts writing the image data of the next frame. Set WEMODE =1 (Frame Memory Access and Interface setting (B3h)).

Figure 27

- Notes: 1. Two write methods are available for all data transfer color modes in 16-/8-bit bus display command interface.
 - 2. The number of pixels in one frame can be odd or even in both download methods. Only complete data sets are retained in the frame memory.
 - 3. The data write operation to the frame memory is terminated when a command intervenes in the middle of the course. In this case, if write_memory_continue (3Ch) is executed, the write operation can be started again from the address where the write operation is halted.

DBI Data Format

The R61523 supports color formats shown in the table below. At least one color format is supported by each of Type B 16-bit and DSI.

Table 22

Туре	IM2-0	Data pin	Color format	MIPI Spec.	R61523
Туре В	000	Setting inhibited	-	-	-
	010	DB[15:0]	8bpp	Yes	No
			12bpp	Yes	No
			16bpp	Yes	Yes
			18bpp (262,144-color Option1)	Yes	Yes
			18bpp (262,144-color Option2)	Yes	Yes
			18bpp (262,144-color Option 3)	No	Yes
			24bpp (16,777,216-color Option1)	Yes	Yes
			24bpp (16,777,216-color Option2)	Yes	Yes
	001	Setting inhibited	-	-	-
	011	DB[7:0]	8bpp	Yes	No
			12bpp	Yes	No
			16bpp	Yes	Yes
			18bpp	Yes	Yes
			24bpp	Yes	Yes
DSI	100	D0+/-, D1+/-	ЗЬРР	Yes	No
			8bpp	Yes	No
			12bpp	Yes	No
			16bpp	Yes	Yes
			18bpp	Yes	Yes
			24bpp	Yes	Yes

Yes: Supported No: Unsupported

■DBI Type B Data Forma

● Data Format for 16-Bit Interface (DB[15:0] is used. IM[2:0]=010)

	set_pixel_format	DFM	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Command/Parameter Write	*	*			$\overline{}$						D7	D6	D5	D4	D3	D2	D1	D0
Command Parameter Read	*	*						\setminus	/		D7	D6	D5	D4	D3	D2	D1	D0

		ſ							First	Trans	missio	n												Se	cond	Trans	missio	n						Third Transmission
	set_pixel_format	DFM	DB15	DB14	DB13	DB12	DB11	DB10 I	DB9 [DB8 [DB7 D	B6 DI	B5 D	B4 D	В3 [)B2	DB1	DB0	DB15	DB14D	B13DI	B12DE	311DE	10 DE	9 DE	38 DE	7 DB6	6 DB	35 DB4	DB3	DB2	DB1	DB0	0 DB15DB14DB13DB12DB11DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB
16bpp Frame Memory Write	3'h5	0	R[4]	R[3]	R[2]	R[1]	R[0]	G[5]	G[4] (3[3]	3[2] G	[1] G	[0] E	[4] B	[3] E	3[2]	B[1]	B[0]																
18bpp Frame Memory Write option1	3'h6	0	R1[5]	R1[4]	R1[3]	R1[2]F	R1[1]	R1[0]		<u> </u>	1[5]G	1[4]G1	[3]G	1[2]G	1[1]G	1[0]			31[5]	31[4]B	1[3] B	1[2]B1	1[1] B1	[0]		R2	5] R2[4	4] R2[[3] R2[2]R2[1	R2[0]			G2[5] G2[4] G2[3] G2[2] G2[1] G2[0] B2[5] B2[4] B2[3] B2[2] B2[1] B2[0]
option2		1			/						R[5] R	[4] R	[3] F	R[2] R	[1] F	R[0]	_		G[5]	G[4] G	[3] G	[2] G	[1] G	0]		B[B[4] B[3	3] B[2	B[1]	B[0]			
option3		2	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	G[5] C	3[4]	G[3] G	[2] G	[1] G	6[0] B	[5] E	3[4]	B[3]	B[2]	B[1]	B[0]	∕ レ		<u></u>	1	1	1	1	1	1	1/				
24bpp Frame Memory Write option1	3'h7	0	R1[7]	R1[6]	R1[5]	R1[4]F	R1[3]	R1[2]F	R1[1]R	1[0]G	1[7]G	1[6]G1	[5]G	1[4]G	1[3]G	1[2]0	61[1]0	31[0]	31[7]	31[6] B	1[5] B	1[4]B1	1[3] B1	[2] B1[1] B1	[0] R2	7] R2[6	6] R2[[5] R2[4]R2[3	R2[2]	R2[1]	R2[0]	<mark>] G2[7] G2[6] G2[5] G2[4] G2[3] G2[2] G2[1] G2[0] B2[7] B2[6] B2[5] B2[4] B2[3] B2[2] B2[1] B2[1</mark>
option2		1									R[7] R	[6] R	[5] F	R[4] R	[3] F	R[2] I	R[1]	R[0]	G[7]	G[6] G	6[5] G	[4] G	[3] G	2] G[1] G[0] B[] B[6] B[5	5] B[4]	B[3]	B[2]	B[1]	B[0]	
24bpp Frame Memory Read	*	0	r1[7]	r1[6]	r1[5]	r1[4] r	1[3]	r1[2] r	1[1] r	1[0] g	1[7] g1	I[6] g1	[5] g	1[4] g	1[3] g	1[2] g	1[1]	g1[0] I	01[7]	o1[6] b	1[5] b1	1[4] b1	[3] b1	[2] b1[1] b1	[0] r2[7] r2[6	i] r2[5] r2[4	r2[3]	r2[2]	r2[1]	r2[0]] g2[7] g2[6] g2[5] g2[4] g2[3] g2[2] g2[1] g2[0] b2[7] b2[6] b2[5] b2[4] b2[3] b2[2] b2[1] b2[1
		1	\nearrow	\nearrow			\nearrow				r[7] r	[6] r[5] r	[4] r	[3] [r[2]	r[1]	r[0]	g[7]	g[6] g	[5] g	[4] gl	[3] g[2] g[1] g[0] b[7] b[6]] b[5	5] b[4]	b[3]	b[2]	b[1]	b[0]	

● Data Format for 8-Bit Interface (DB[7:0] is used. IM[2:0]=011)

	set_pixel_format	DFM	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Command/Parameter Write	*	0	D7	D6	D5	D4	D3	D2	D1	D0
Command Parameter Read	*	0	D7	D6	D5	D4	D3	D2	D1	D0

					Fin	st Tra	nsmiss	sion					Seco	nd Tr	ansm	ission					Thi	rd Tra	ansmis	ssion		
	set_pixel_format	DFM	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
16bpp Frame Memory Write	3'h5	0	R[4]	R[3]	R[2]	R[1]	R[0]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[4]	B[3]	B[2]	B[1]	B[0]								
18bpp Frame Memory Write	3'h6	0	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]			G[5]	G[4]	G[3]	G[2]	G[1]	G[0]			B[5]	B[4]	B[3]	B[2]	B[1]	B[0]		u
24bpp Frame Memory Write	3'h7	0	R[7]	R[6]	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	G[7]	G[6]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
Frame Memory Read	*	0	r[7]	r[6]	r[5]	r[4]	r[3]	r[2]	r[1]	r[0]	g[7]	g[6]	g[5]	g[4]	g[3]	g[2]	g[1]	g[0]	b[7]	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0]

■Extended Format for 24bpp Data

											Fra	me N	lemor	y Data	(24b	pp)									
set_pixel_format	EPF	r7	r6	r5	r4	r3	r2	r1	r0	g7	g6	g5	g4	g3	g2	g1	g0	b7	b6	b5	b4	b3	b2	b1	b0
24bpp	*	R[7]	R[6]	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	G[7]	G[6]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
18bpp	2'h0	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	0	0	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	0	0	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]	0	0
	2'h1	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	1	1	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	1	1	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]	1	1
	2'h2	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	R[5]	R[4]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	G[5]	G[4]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]	B[5]	B[4]
16bpp	2'h0	R[4]	R[3]	R[2]	R[1]	R[0]	0	0	0	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	0	0	B[4]	B[3]	B[2]	B[1]	B[0]	0	0	0
	2'h1	R[4]	R[3]	R[2]	R[1]	R[0]	1	1	1	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	1	1	B[4]	B[3]	B[2]	B[1]	B[0]	1	1	1
	2'h2	R[4]	R[3]	R[2]	R[1]	R[0]	R[4]	R[3]	R[2]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	G[5]	G[4]	B[4]	B[3]	B[2]	B[1]	B[0]	B[4]	B[3]	B[2]

R[5:0], B[5:0] = 6'h3F \rightarrow r[7:0], b[7:0] = 8'hFF, G[5:0] = 6'h3F \rightarrow g[7:0] = 8'hFF, R[5:0], B[5:0] = 6'h00 \rightarrow r[7:0], b[7:0] = 8'h00, G[5:0] = 6'h00 \rightarrow g[7:0] = 8'h00

R[4:0], B[4:0] = 5'h1F \rightarrow r[7:0], b[7:0] = 8'hFF, G[5:0] = 6'h3F \rightarrow g[7:0] = 8'hFF, R[4:0], B[4:0] = 5'h00 \rightarrow r[7:0], b[7:0] = 8'h00, G[5:0] = 6'h00 \rightarrow g[7:0] = 8'h00

Note 1: The first Command Parameter Read and Frame Memory Read after read command is issued are invalid (dummy read).

Note 2: Data are written to the Frame Memory when data for one pixel are input. In 2-pixel 3- transfer operation (16-bit I/F 18bpp Option1), the first and second pixels are written in the 2nd and 3rd transfers respectively.

Note 3: If data transfer stops after 2nd transfer in 2-pixel 3-transfer operation, the first pixel data are written normally. This applies to the last address when number of pixel is odd according to window setting.

Note 4: This page shows example with BGR=0. If BGR=1, allocation of R and B in the frame memory is swapped.

BGR Register Setting and Write/Read Data in Frame Memory

System interface outputs write and read data in the same RGB order regardless of BGR register setting.

Example: 16-Bit Interface

_		_	_
	BG	iR=	:0

BGR=0																									
	First Transmission						Second Transmission																		
	DB15D	B14[DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7-0
Write Data	R[7] F	R[6]	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	G[7]	G[6]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]	*
•																									
									,	ļ															
													D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Frame Memory	R[7] F	R[6]	R[5]	R[4]	R[3]	R[2]	R[1]	R[0]	G[7]	G[6]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]	
									7	<u> </u>															
	First Transmission						Second Transmission																		
	DB15D	B14[DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7-0
Read Data	r[7]	r[6]	r[5]	r[4]	r[3]	r[2]	r[1]	r[0]	g[7]	g[6]	g[5]	g[4]	g[3]	g[2]	g[1]	g[0]	b[7]	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0]	*

Command List

(1) User Command

Table 23 User Command

Operational Code (Hex)	Command	Command(C) /Read(R) /Write(W)	Number of Parameter	MIPI DCS Type1 Requirement	R61523 Implementation	Note
00h	nop	С	0	Yes	Yes	
01h	soft_reset	С	0	Yes	Yes	
04h	read_DDB_start	R	5	No	Yes	
06h	get_red_channel	R	1	No	No	
07h	get_green_channel	R	1	No	No	
08h	get_blue_channel	R	1	No	No	
0Ah	get_power_mode	R	1	Yes	Yes	
0Bh	get_address_mode	R	1	Yes (Bit7-0)	Yes	
0Ch	get_pixel_format	R	1	Yes	Yes	
0Dh	get_display_mode	R	1	Yes	Yes	1
0Eh	get_signal_mode	R	1	Yes	Yes	
0Fh	get_diagnostic _result	R	1	Bit7/6: Yes Bit5/4: Optional	Yes (Bit6 Only)	
10h	enter_sleep_mode	С	0	Yes	Yes	
11h	exit_sleep_mode	С	0	Yes	Yes	
12h	enter_partial_mode	С	0	Yes	Yes	
13h	enter_normal_mode	С	0	Yes	Yes	
20h	exit_invert_mode	С	0	Yes	No	
21h	enter_invert_mode	С	0	Yes	No	
26h	set_gamma_curve	W	1	Yes	No	1
28h	set_display_off	С	0	Yes	Yes	
29h	set_display_on	С	0	Yes	Yes	
2Ah	set_column_address	W	4	Yes	Yes	
2Bh	set_page_address	W	4	Yes	Yes	

Table 24 User Command (Continued)

Operational Code (Hex)	Command	Command(C) /Read(R) /Write(W)	Number of Parameter	MIPI DCS Type1 Requirement	R61523 Implementation	Note
2Ch	write_memory_start	W	Variable	Yes	Yes	2
2Dh	wite_LUT	W	Variable	Optional	No	
2Eh	read_memory_start	R	Variable	Yes	Yes	2
30h	set_partial_area	W	4	Yes	Yes	
33h	set_scroll_area	W	6	Yes	No	
34h	set_tear_off	С	0	Yes	Yes	
35h	set_tear_on	W	1	Yes	Yes	
36h	set_address_mode	W	1	Yes (Bit7-0)	Yes	
37h	set_scroll_start	W	2	Yes	No	
38h	exit_idle_mode	С	0	Yes	Yes	
39h	enter_idle_mode	С	0	Yes	Yes	
3Ah	set_pixel_format	W	1	Yes	Yes	
3Ch	write_memory _continue	W	Variable	Yes	Yes	2
3Eh	read_memory _continue	R	Variable	Yes	Yes	2
44h	set_tear_scanline	W	2	Yes	Yes	
45h	get_scanline	R	2	Yes	Yes	
A1h	read_DDB_start	R	5	Yes	Yes	
A8h	read_DDB_continue	R	Variable	Yes	Yes	

Notes: 1. The R61523 supports one type of gamma curve specified by gamma adjustment register GC0. Therefore, D [2:0] bits (get_display_mode, 0Dh) are fixed at 0.

^{2.} See "DBI Data Format" for details on data write to the frame memory and data read from the frame memory.

(2) Manufacturer Command

Table 25 Manufacturer Command

Operational Code (Hex)	Function	Command(C) /Read(R) /Write(W)	Number of Parameter	Category
B0h	Manufacturer Command Access Protect	W/R	1	Additional User Command
B1h	Low Power Mode Control	W/R	1	Additional User Command
B3h	Frame Memory Access and Interface Setting	W/R	2	Additional User Command
B5h	Read Checksum and ECC Error Count	R	3	
B6h	DSI Control	W/R	1	
B8h	Backlight Control 1	W/R	15	
B9h	Backlight Control 2	W/R	4	
BAh	Backlight Control 3	R	1	
BFh	Device Code Read	R	4	
C0h	Panel Driving Setting	W/R	7	
C1h	Display Timing Setting for Normal/Partial Mode	W/R	5	
C3h	Display Timing Setting for Idle Mode	W/R	5	
C4h	Source/VCOM/Gate Driving Timing Setting	W/R	5	
C8h	Gamma Set A	W/R	18	
C9h	Gamma Set B	W/R	18	
CAh	Gamma Set C	W/R	18	
D0h	Power Setting for Common	W/R	10	
D1h	VCOM Setting	W/R	4	
D2h	Power Setting for Normal Mode	W/R	3	
D4h	Power Setting for Idle Mode	W/R	3	
D6h	Test Mode	N/A	4	Access prohibited
D7h	Test Mode	N/A	12	Access prohibited
D9h	Test Mode	N/A	2	Access prohibited

Table 26 Manufacturer Command (Continued)

Operational Code (Hex)	Function	Command(C) /Read(R) /Write(W)	Number Of Parameter	Category
E0h	NVM Access Control	W/R	4	
E1h	set_write_DDB Control	W/R	1	
E2h	Test Mode	N/A	1	Access prohibited
E3h	Test Mode	N/A	12	Access prohibited
E4h	Test Mode	N/A	5	Access prohibited
E5h	Test Mode	N/A	1	Access prohibited
E6h	Test Mode	N/A	1	Access prohibited
F3h	Test Mode	N/A	2	Access prohibited
FAh	Test Mode	N/A	4	Access prohibited
FCh	Test Mode	N/A	5	Access prohibited
FDh	Test Mode	N/A	5	Access prohibited
FEh	Test Mode	N/A	5	Access prohibited

Command Accessibility

In the initial state, only User Command and Manufacturer Command Access Protect command (B0h) are accessible. Other commands are treated as nop.

Of Manufacturer Command (B0h-FFh) defined in the table below, additional User Commands (B1h-BFh) are accessible only when MCAP=3'h2.

Other Manufacturer Commands are accessible only when MCAP=3'h0. See description on MCAP command for details.

(1) User Command

Table 27 User Command

		Command Accessibility					
Operational Code (Hex)	Command	Normal Mode On Idle Mode Off Sleep Mode Off	Normal Mode On Idle Mode On Sleep Mode Off	Partial Mode On Idle Mode Off Sleep Mode Off	Partial Mode On Idle Mode On Sleep Mode Off	Sleep Mode On	
00h	nop	Yes	Yes	Yes	Yes	Yes	
01h	soft_reset	Yes	Yes	Yes	Yes	Yes	
04h	read_DDB_start	Yes	Yes	Yes	Yes	Yes	
0Ah	get_power_mode	Yes	Yes	Yes	Yes	Yes	
0Bh	get_address_mode	Yes	Yes	Yes	Yes	Yes	
0Ch	get_pixel_format	Yes	Yes	Yes	Yes	Yes	
0Dh	get_display_mode	Yes	Yes	Yes	Yes	Yes	
0Eh	get_signal_mode	Yes	Yes	Yes	Yes	Yes	
0Fh	get_diagnostic _result	Yes	Yes	Yes	Yes	Yes	
10h	enter_sleep_mode	Yes	Yes	Yes	Yes	Yes	
11h	exit_sleep_mode	Yes	Yes	Yes	Yes	Yes	
12h	enter_partial_mode	Yes	Yes	Yes	Yes	Yes	
13h	enter_normal_mode	Yes	Yes	Yes	Yes	Yes	
20h	exit_invert_mode	N/A	N/A	N/A	N/A	N/A	
21h	enter_invert_mode	N/A	N/A	N/A	N/A	N/A	
28h	set_display_off	Yes	Yes	Yes	Yes	Yes	
29h	set_display_on	Yes	Yes	Yes	Yes	Yes	
2Ah	set_column_address	Yes	Yes	Yes	Yes	Yes	
2Bh	set_page_address	Yes	Yes	Yes	Yes	Yes	

Table 28 User Command (Continued)

		Command Acc	Command Accessibility						
Operational Code (Hex)	Command	Normal Mode On Idle Mode Off Sleep Mode Off	Normal Mode On Idle Mode On Sleep Mode Off	Partial Mode On Idle Mode Off Sleep Mode Off	Partial Mode On Idle Mode On Sleep Mode Off	Sleep Mode On			
2Ch	write_memory_start	Yes	Yes	Yes	Yes	Yes			
2Eh	read_memory_start	Yes	Yes	Yes	Yes	Yes			
30h	set_partial_area	Yes	Yes	Yes	Yes	Yes			
33h	set_scroll_area	N/A	N/A	N/A	N/A	N/A			
34h	set_tear_off	Yes	Yes	Yes	Yes	Yes			
35h	set_tear_on	Yes	Yes	Yes	Yes	Yes			
36h	set_address_mode	Yes	Yes	Yes	Yes	Yes			
37h	set_scroll_start	N/A	N/A	N/A	N/A	N/A			
38h	exit_idle_mode	Yes	Yes	Yes	Yes	Yes			
39h	enter_idle_mode	Yes	Yes	Yes	Yes	Yes			
3Ah	set_pixel_format	Yes	Yes	Yes	Yes	Yes			
3Ch	write_memory_ continue	Yes	Yes	Yes	Yes	Yes			
3Eh	read_memory_ continue	Yes	Yes	Yes	Yes	Yes			
44h	set_tear_scanline	Yes	Yes	Yes	Yes	Yes			
45h	get_scanline	Yes	Yes	Yes	Yes	No			
A1h	read_DDB_start	Yes	Yes	Yes	Yes	Yes			
A8h	read_DDB_continue	Yes	Yes	Yes	Yes	Yes			

(2) Manufacturer Command

Table 29 Manufacturer Command

		Command Ac	cessibility			
Operational Code (Hex)	Command	Normal Mode On Idle Mode Off Sleep Mode Off	Normal Mode On Idle Mode On Sleep Mode Off	Partial Mode On Idle Mode Off Sleep Mode Off	Partial Mode On Idle Mode On Sleep Mode Off	Sleep Mode On
B0h	Manufacturer Command Access Protect	Yes	Yes	Yes	Yes	Yes
B1h	Low Power Mode Control	No	No	No	No	Yes
B3h	Frame Memory Access and Interface Setting	Yes	Yes	Yes	Yes	Yes
B5h	Read Checksum and ECC Error Count	Yes	Yes	Yes	Yes	Yes
B6h	DSI Control	Yes	Yes	Yes	Yes	Yes
B8h	Backlight Control 1	Yes	Yes	Yes	Yes	Yes
B9h	Backlight Control 2	Yes	Yes	Yes	Yes	Yes
BAh	Backlight Control 3	Yes	Yes	Yes	Yes	No
BFh	Device Code Read	Yes	Yes	Yes	Yes	Yes
C0h	Panel Driving Setting	Yes	Yes	Yes	Yes	Yes
C1h	Display Timing Setting for Normal/Partial Mode	Yes	Yes	Yes	Yes	Yes
C3h	Display Timing Setting for Idle Mode	Yes	Yes	Yes	Yes	Yes
C4h	LTPS Interface Mode	Yes	Yes	Yes	Yes	Yes
C8h	Gamma Set A	Yes	Yes	Yes	Yes	Yes
C9h	Gamma Set B	Yes	Yes	Yes	Yes	Yes
CAh	Gamma Set C	Yes	Yes	Yes	Yes	Yes
D0h	Power Setting for Common	Yes	Yes	Yes	Yes	Yes
D1h	VCOM Setting	Yes	Yes	Yes	Yes	Yes
D2h	Power Setting for Normal Mode	Yes	Yes	Yes	Yes	Yes
D4h	Power Setting for Idle Mode	Yes	Yes	Yes	Yes	Yes
E0h	NVM Access Control	Yes	Yes	Yes	Yes	No
E1h	set_write_DDB Control	Yes	Yes	Yes	Yes	Yes

Table 30 Manufacturer Command (Continued)

		Command Accessibility					
Operational Code (Hex)	Command	Normal Mode On Idle Mode Off Sleep Mode Off	Normal Mode On Idle Mode On Sleep Mode Off	Partial Mode On Idle Mode Off Sleep Mode Off	Partial Mode On Idle Mode On Sleep Mode Off	Sleep Mode On	
D6h	Test Mode	No	No	No	No	No	
D7h	Test Mode	No	No	No	No	No	
D9h	Test Mode	No	No	No	No	No	
E2h	Test Mode	No	No	No	No	No	
E3h	Test Mode	No	No	No	No	No	
E4h	Test Mode	No	No	No	No	No	
E5h	Test Mode	No	No	No	No	No	
E6h	Test Mode	No	No	No	No	No	
F3h	Test Mode	No	No	No	No	No	
FAh	Test Mode	No	No	No	No	No	
FCh	Test Mode	No	No	No	No	No	
FDh	Test Mode	No	No	No	No	No	
FEh	Test Mode	No	No	No	No	No	
FFh	Test Mode	No	No	No	No	No	

Default Modes and Values

(1) User Command

Table 31 User Command

Operational	Command	Parameters	Default Modes and \	/alues (Hex)	
Code (Hex)	Command	rarameters	After Power-on	After SW Reset	After HW Reset
00h	nop	None	N/A	N/A	N/A
01h	soft_reset	None	N/A	N/A	N/A
		1st	MS byte of Supplier ID (Note2)	MS byte of Supplier ID (Note2)	MS byte of Supplier ID (Note2)
		2nd	LS byte of Supplier ID (Note2)	LS byte of Supplier ID (Note2)	LS byte of Supplier ID (Note2)
04h	read_DDB_start	3rd	MS byte of Supplier Elective Data (Note2)	MS byte of Supplier Elective Data (Note2)	MS byte of Supplier Elective Data (Note2)
		4th	LS byte of Supplier Elective Data (Note2)	LS byte of Supplier Elective Data (Note2)	LS byte of Supplier Elective Data (Note2)
		5th	FFh	FFh	FFh
0Ah	get_power_mode	1st	08h	08h	08h
0Bh	get_address_mode	1st	00h	No Change (Note1)	00h
0Ch	get_pixel_format	1st	07h	07h	07h
0Dh	get_display_mode	1st	00h	00h	00h
0Eh	get_signal_mode	1st	00h	00h	00h
0Fh	get_diagnostic _result	1st	00h	00h	00h
10h	enter_sleep_mode	None	Sleep Mode On	Sleep Mode On	Sleep Mode On
11h	exit_sleep_mode	None	Sleep Mode On	Sleep Mode On	Sleep Mode On
12h	enter_partial_mode	None	Normal Display Mode On	Normal Display Mode On	Normal Display Mode On
13h	enter_normal_mode	None	Normal Display Mode On	Normal Display Mode On	Normal Display Mode On
20h	exit_invert_mode	None	N/A	N/A	N/A
21h	enter_invert_mode	None	N/A	N/A	N/A
28h	set_display_off	None	Display Off	Display Off	Display Off
29h	set_display_on	None	Display Off	Display Off	Display Off

Table 32 User Command (Continued)

Operational	Command	Parameters	Default Modes and	Values (Hex)		
Code (Hex)	Command	Tarameters	After Power-on	After SW Reset	After HW Reset	
		1st/2nd SC[9:0]	000h	000h	000h	
2Ah	set_column_address	3rd/4th EC[9:0]	167h	If set_address_mode B5=0:167h B5=1:27Fh	167h	
		1st/2nd SP[9:0]	000h	000h	000h	
2Bh	set_page_address	3rd/4th EP[9:0]	27Fh	If set_address_mode B5=0 : 27Fh B5=1 : 167h	27Fh	
2Ch	write_memory_start	All	Random Values	Not Cleared	Not Cleared	
2Eh	read_memory_start	All	Random Values	Not Cleared	Not Cleared	
206	set_partial_area	1st/2nd SR[9:0]	000h	000h	000h	
30h		3rd/4th ER[9:0]	27Fh	27Fh	27Fh	
	set_scroll_area		1st/2nd TFA[9:0]	N/A	N/A	N/A
33h		3rd/4th VSA[9:0]	N/A	N/A	N/A	
		5th/6th BFA[9:0]	N/A	N/A	N/A	
34h	set_tear_off	None	TE line output Off	TE line output Off	TE line output Off	
35h	set_tear_on	1st	TE line output Off	TE line output Off	TE line output Off	
36h	set_address_mode	1st	00h	No Change (Note1)	00h	
37h	set_scroll_start	1st/2nd VSP[9:0]	N/A	N/A	N/A	
38h	exit_idle_mode	None	Idle Mode Off	Idle Mode Off	Idle Mode Off	
39h	enter_idle_mode	None	Idle Mode Off	Idle Mode Off	Idle Mode Off	
3Ah	set_pixel_format	1st	07h	07h	07h	
3Ch	write_memory _continue	All	Random Values	Not Cleared	Not Cleared	
3Eh	read_memory _continue	All	Random Values	Not Cleared	Not Cleared	

Table 33 User Command (Continued)

Operational	Command	Parameters	Default Modes and Values (Hex)			
Code (Hex)	Command	i didilieters	After Power-on	After SW Reset	After HW Reset	
44h	set_tear_scanline	1st/2nd STS[9:0]	000h	000h	000h	
45h	get_scanline	1st/2nd GTS[9:0]	000h (invalid)	000h (invalid)	000h (invalid)	
	read_DDB_start	1st	MS byte of Supplier ID (Note2)	MS byte of Supplier ID (Note2)	MS byte of Supplier ID (Note2)	
		2nd	LS byte of Supplier ID (Note2)	LS byte of Supplier ID (Note2)	LS byte of Supplier ID (Note2)	
A1h		3rd	MS byte of Supplier Elective Data (Note2)	MS byte of Supplier Elective Data (Note2)	MS byte of Supplier Elective Data (Note2)	
		4th	LS byte of Supplier Elective Data (Note2)	LS byte of Supplier Elective Data (Note2)	LS byte of Supplier Elective Data (Note2)	
		5th	FFh	FFh	FFh	
A8h	read_DDB_continue	-	See read_DDB_start	See read_DDB_start	See read_DDB_start	

Notes: 1. No Change from the value before soft_reset command.

Data are loaded from internal NVM. If the user writes VCM register value, Supplier ID, and Supplier Elective Data to the NVM, the values are set to default.

(2) Manufacturer Command

Table 34 Manufacturer Command

Operational	Command	Parameters	Default Modes and	d Values (Hex)	
Code (Hex)	Command	Parameters	After Power-on	After SW Reset	After HW Reset
B0h	Manufacturer Command Access Protect	1st	MCAP=3'h3	No Change (Note1)	MCAP=3'h3
B1h	Low Power Mode Control	1st	DSTB=0 Sleep Mode On	DSTB=0 Sleep Mode On	DSTB=0 Sleep Mode On
	Frame Mamoni Access	1st	WEMODE=0 SELDL=0	No Change (Note1)	WEMODE=0 SELDL=0
B3h	Frame Memory Access and Interface Setting	2nd	TEI=3'h0 DFM=2'h0 EPF=2'h0	No Change (Note1)	TEI=3'h0 DFM=2'h0 EPF=2'h0
		1st	CSOUT=8'h00	No Change (Note1)	CSOUT=8'h00
B5h	Read Checksum and ECC Error Count	2nd	DSIECP=8'h00	No Change (Note1)	DSIECP=8'h00
		3rd	DSIECE=8'h00	No Change (Note1)	DSIECE=8'h00
B6h	DSI Control	1st	DSITXDIV=2'h1	No Change (Note1)	DSITXDIV=2'h1
		1st	BLCM=0 BLCON=0	No Change (Note1)	BLCM=0 BLCON=0
		2nd	THREW0=5'h00	No Change (Note1)	THREW0=5'h00
		3rd	THREW1=5'h00	No Change (Note1)	THREW1=5'h00
		4th	ULMTW0=8'h00	No Change (Note1)	ULMTW0=8'h00
Doh	Doddight Control 1	5th	ULMTW1=8'h00	No Change (Note1)	ULMTW1=8'h00
B8h	Backlight Control 1	6th	LLMTW0=8'h00	No Change (Note1)	LLMTW0=8'h00
		7th	LLMTW1=8'h00	No Change (Note1)	LLMTW1=8'h00
		8th	PITCHW=4'h0	No Change (Note1)	PITCHW=4'h0
		9th	CGAPW=5'h00	No Change (Note1)	CGAPW=5'h00
		10th	COEFK0=5'h00	No Change (Note1)	COEFK0=5'h00

Table 35 Manufacturer Command (Continued)

Operational	Command	Parameters	Default Modes and	l Values (Hex)	
Code (Hex)	Communa	1 drameters	After Power-on	After SW Reset	After HW Reset
		11th	COEFK1=5'h00	No Change (Note1)	COEFK1=5'h00
		12th	TBL3=8'h00	No Change (Note1)	TBL3=8'h00
B8h	Backlight Control 1	13th	TBL4=8'h00	No Change (Note1)	TBL4=8'h00
		14th	TBL5=8'h00	No Change (Note1)	TBL5=8'h00
		15th	TBL6=8'h00	No Change (Note1)	TBL6=8'h00
		1st	PWMON=0	No Change (Note1)	PWMON=0
	Backlight Control 2	2nd	BDCV=8'h00	No Change (Note1)	BDCV=8'h00
B9h		3rd	PWMDIV=8'h00	No Change (Note1)	PWMDIV=8'h00
		4th	DIMON=0 LEDPWMPOL=0 LEDPWME=0 PWMWM=0	No Change (Note1)	DIMON=0 LEDPWMPOL=0 LEDPWME=0 PWMWM=0
BAh	Backlight Control 3	1st	RDPWM=8'h00	RDPWM=8'h00	RDPWM=8'h00
		1st	8'h01	8'h01	8'h01
DEL	Davies Cada Baad	2nd	8'h22	8'h22	8'h22
BFh	Device Code Read	3rd	8'h15	8'h15	8'h15
		4th	8'h23	8'h23	8'h23
		1st	SS=0,BGR=0 GS=0,SM=0 REV=0	No Change (Note1)	SS=0,BGR=0 GS=0,SM=0 REV=0
		2nd	NL=8'h9F	No Change (Note1)	NL=8'h9F
C0h	Panel Driving Setting	3rd	SCN=8'h00	No Change (Note1)	SCN=8'h00
		4th	NW=0	No Change (Note1)	NW=0
		5th	PTV=0 BLV=1	No Change (Note1)	PTV=0 BLV=1

Table 36 Manufacturer Command (Continued)

Operational	Command	Parameters	Default Modes and Values (Hex)			
Code (Hex)	Command	Parameters	After Power-on	After SW Reset	After HW Reset	
C0h	Panel Driving Setting	6th	PTS=3'h0 PTDC=0 NDL=0,BLS=0	No Change (Note1)	PTS=3'h0 PTDC=0 NDL=0,BLS=0	
		7th	ISC=4'h1 PTG=0	No Change (Note1)	ISC=4'h1 PTG=0	
		1st	BC0=1	No Change (Note1)	BC0=1	
		2nd	8'h00	No Change (Note1)	8'h00	
C1h	Display Timing Setting for Normal/Partial Mode	3rd	RTN0=5'h19	No Change (Note1)	RTN0=5'h19	
		4th	BP0=8'h08	No Change (Note1)	BP0=8'h08	
		5th	FP0=8'h08	No Change (Note1)	FP0=8'h08	
	Display Timing Setting for Idle Mode	1st	BC2=1	No Change (Note1)	BC2=1	
		2nd	8'h00	No Change (Note1)	8'h00	
C3h		3rd	RTN2=5'h19	No Change (Note1)	RTN2=5'h19	
		4th	BP2=8'h08	No Change (Note1)	BP2=8'h08	
		5th	FP2=8'h08	No Change (Note1)	FP2=8'h08	
		1st	NOW=3'h1 SDT=3'h1	No Change (Note1)	NOW=3'h1 SDT=3'h1	
		2nd	MCP=3'h1	No Change (Note1)	MCP=3'h1	
C4h	Source/VCOM/Gate Driving Timing Setting	3rd	VEM=2'h3 VEQW=3'h1	No Change (Note1)	VEM=2'h3 VEQW=3'h1	
		4th	SPCW=3'h1	No Change (Note1)	SPCW=3'h1	
		5th	8'h00	No Change (Note1)	8'h00	
C8h	Gamma Set A	1st-18th	All "0"	No Change (Note1)	All "0"	
C9h	Gamma Set B	1st-18th	All "0"	No Change (Note1)	All "0"	

Table 37 Manufacturer Command (Continued)

Operational			Default Modes an	d Values (Hex)	
Code (Hex)	Command	Parameters	After Power-on	After SW Reset	After HW Reset
CAh	Gamma Set C	1st-18th	All "0"	No Change (Note1)	All "0"
		1st	8'h00	No Change (Note1)	8'h00
		2nd	VC2=3'h4 VC3=3'h7	No Change (Note1)	VC2=3'h4 VC3=3'h7
		3rd	8'hC0	No Change (Note1)	8'hC0
		4th	VRH=5'h0F	No Change (Note1)	VRH=5'h0F
D0h	Power Setting for Common	5th	8'h01	No Change (Note1)	8'h01
		6th	8'h00	No Change (Note1)	8'h00
		7th	8'h00	No Change (Note1)	8'h00
		8th	8'h00	No Change (Note1)	8'h00
		9th	8'h07	No Change (Note1)	8'h07
		10th	8'h00	No Change (Note1)	8'h00
		1st	VCVCM=0 VCVDV=0	No Change (Note1)	VCVCM=0 VCVDV=0
D1h	VCOM Setting	2nd	8'h00	No Change (Note1)	8'h00
		3rd	NVM value	NVM value	NVM value
		4th	NVM value	NVM value	NVM value
		1st	AP0=2'h3	No Change (Note1)	AP0=2'h3
D2h	Power Setting for Normal Mode	2nd	DC00=3'h4 DC10=3'h2	No Change (Note1)	DC00=3'h4 DC10=3'h2
		3rd	DC30=3'h2	No Change (Note1)	DC30=3'h2

Table 38 Manufacturer Command (Continued)

Operational			Default Modes an	d Values (Hex)	
Code (Hex)	Command	Parameters	After Power-on	After SW Reset	After HW Reset
		1st	AP1=2'h3	No Change (Note1)	AP1=2'h3
D4h	Power Setting for Idle Mode	2nd	DC01=3'h4 DC11=3'h2	No Change (Note1)	DC01=3'h4 DC11=3'h2
		3rd	DC31=3'h2	No Change (Note1)	DC31=3'h2
		1st	8'h01 (Note3)	8'h01 (Note3)	8'h01 (Note3)
Deb	Toot Made	2nd	8'h30 (Note3)	8'h30 (Note3)	8'h30 (Note3)
D6h	Test Mode	3rd	8'h02 (Note3)	8'h02 (Note3)	8'h02 (Note3)
		4th	8'h16 (Note3)	8'h16 (Note3)	8'h16 (Note3)
		1st	8'h06 (Note3)	8'h06 (Note3)	8'h06 (Note3)
	Test Mode	2nd	8'h16 (Note3)	8'h16 (Note3)	8'h16 (Note3)
		3rd	8'h88 (Note3)	8'h88 (Note3)	8'h88 (Note3)
		4th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		5th	8'h66 (Note3)	8'h66 (Note3)	8'h66 (Note3)
		6th	8'hAA (Note3)	8'hAA (Note3)	8'hAA (Note3)
D7h		7th	8'h0A (Note3)	8'h0A (Note3)	8'h0A (Note3)
		8th	8'h88 (Note3)	8'h88 (Note3)	8'h88 (Note3)
		9th	8'h80 (Note3)	8'h80 (Note3)	8'h80 (Note3)
		10th	8'hCA (Note3)	8'hCA (Note3)	8'hCA (Note3)
		11th	8'h0A (Note3)	8'h0A (Note3)	8'h0A (Note3)
		12th	8'h0C (Note3)	8'h0C (Note3)	8'h0C (Note3)
DOL	TestMedi	1st	8'hFF (Note3)	8'hFF (Note3)	8'hFF (Note3)
D9h	Test Mode	2nd	8'h9F (Note3)	8'h9F (Note3)	8'h9F (Note3)
		1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
FOL	NIV/M A seese October	2nd	8'h18 (Note3)	8'h18 (Note3)	8'h18 (Note3)
E0h	NVM Access Control	3rd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		4th	8'h07 (Note3)	8'h07 (Note3)	8'h07 (Note3)
E1h	set_write_DDB Control	1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
E2h	Test Mode	1st	8'h00	No Change	8'h00

Table 39 Manufacturer Command (Continued)

			Default Modes and	Values	
Operational Code	Command	Parameters	(Hex)		
(Hex)			After Power-on	After SW Reset	After HW Reset
		1st	8'h00	No Change	8'h00
E3h	Test Mode	2nd	8'h00	No Change	8'h00
		3rd-12th	8'hFF	No Change	8'hFF
		1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		2nd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
E4h	Test Mode	3rd	8'hAA (Note3)	8'hAA (Note3)	8'hAA (Note3)
		4th	8'hAA (Note3)	8'hAA (Note3)	8'hAA (Note3)
		5th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
E5h	Test Mode	1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
E6h	Test Mode	1st	8'h00	No Change	8'h00
F3h	Test Mode	1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
F311	Test Mode	2nd	8'h20 (Note3)	8'h20 (Note3)	8'h20 (Note3)
		1st	8'h01 (Note3)	8'h01 (Note3)	8'h01 (Note3)
FAh	Test Mode	2nd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
FAII	rest wode	3rd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		4th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
FCh	Test Mode	1st-5th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		2nd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
FDh	Test Mode	3rd	8'h01 (Note3)	8'h01 (Note3)	8'h01 (Note3)
		4th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		5th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		1st	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		2nd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
FEh	Test Mode	3rd	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		4th	8'h00 (Note3)	8'h00 (Note3)	8'h00 (Note3)
		5th	8'h30 (Note3)	8'h30 (Note3)	8'h30 (Note3)

Notes: 1. Data are not changed by executing soft_reset command.

^{2.} If data are loaded from NVM, the loaded data become default values.

^{3.} These values are the register values when MCAP[2] is set to 0.

User Command

nop: 00h

00h	пор														
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1 ↑ X 0 0 0 0 0 0 0 0 0 0													
Parameter	None	one													
Description		e Frame	•	y comman Write or Ro		no effec	t on the	display	module.	Howe	er, it ca	n be use	ed to		
Restriction	-														
Flow Chart	-	-													

soft_reset: 01h

01H	soft_reset														
	DCX														
Command	0	1	1	Х	0	0	0	0	0	0	0	1	01h		
Parameter	None			l				I	I			II.			
Description	default v	/alues. (S	See "Defa	ms a softwult Modes	and Val	ues".)			neters ar	e writter	n with the	eir SW F	Reset		
	X = Don	= Don't care													
Restriction	milliseco	a soft_reset is sent when the display module is in Sleep Mode, the host processor must wait 120 illiseconds before sending an exit_sleep_mode command. b soft_reset shall be sent during exit_sleep_mode sequence.													
	_	oft_reset shall be sent during exit_sleep_mode sequence.													
		new command setting is allowed until the R61523 enters the Sleep Mode.													
	If a soft_	ee "State & Command sequence" for the sequence to enter Sleep Mode. a soft_reset is sent when the display module is in Sleep Mode, data in NVM are read. No new command tting is inhibited while data are read (5ms).													
Flow Chart															
	Bland	soft_rese	Device	>				(Act M	mand meter splay					

read_DDB_start: 04h

04h	read_DI	read_DDB_start													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	0	0	0	1	0	0	A8h		
Dummy parameter	1	1	1	х	х	х	х	х	х	х	х	х	XXh		
1 st Parameter	1	1	1	х	ID1 [15]	ID1 [14]	ID1 [13]	ID1 [12]	ID1 [11]	ID1 [10]	ID1 [9]	ID1 [8]	XXh		
2 nd Parameter	1	1	1	х	ID1 [7]	ID1 [6]	ID1 [5]	ID1 [4]	ID1 [3]	ID1 [2]	ID1 [1]	ID1 [0]	XXh		
3 rd parameter	1	1	1	х	ID2 [15]	ID2 [14]	ID2 [13]	ID2 [12]	ID2 [11]	ID2 [10]	ID2 [9]	ID2 [8]	XXh		
4 th parameter	1	1	1	х	ID2 [7]	ID2 [6]	ID2 [5]	ID2 [4]	ID2 [3]	ID2 [2]	ID2 [1]	ID2 [0]	XXh		
5 th parameter	1	1	1	х	1	1	1	1	1	1	1	1	04h		
Description	The con	nmand ret	urns info	rmation fro	m the di	splay m	odule as	follows:							
	1st para	meter: up	per byte	(ID1[15:8])	of Supp	lier ID									
	2nd para	ameter: lo	wer byte	(ID[7:0]) o	f Supplie	er ID									
	3rd para	meter: Su	ıpplier El	ective Data	a (ID2[15	5:8])									
	4th para	meter: Su	ipplier El	ective Data	(ID2[7:	0])									
	5th para	meter: Ex	it Code ((FFh)											
		pplier ID and Supplier Elective Data stored in internal NVM are read. Read values are the same as ones ad by read_DDB_start (A1h) command. read_DDB_continue (A8h) command is not affected.													
	X=Don't	X=Don't care													
Restriction	-														

get_power_mode: 0Ah

0Ah	get_pow	/er_mode)												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	0	0	1	0	1	0	0Ah		
Dummy parameter	1	1	1	Х	х	х	х	х	х	х	х	х	XXh		
1 st parameter	1	1	1 X 0 IDM ON module returns the current power mod-					SLP OUT	NOR ON	DSP ON	0	0	XXh		
Description	The disp	lay modul	e returns	the currer	nt powe	r mode.		•	•	•		•	•		
	Bit	Descr	iption			C	Commen	t	Cor	Command list Symbol					
	D7	Reser	ved			5	Set to "0"		-						
	D6	Idle M	ode On/0	Off					IDM	ION					
	D5	Partial	Mode O	n/Off					PTL	.ON					
	D4	Sleep	Mode Or	n/Off					SLF	OUT					
	D3	Displa	y Norma	Mode On	/Off				NORON						
	D2	Displa	y On/Off						DSI	PON					
	D1	Reser	ved			5	Set to "0"		-						
	D0	Reser	ved			5	Set to "0" -								

get_address_mode: 0Bh

0Bh	get_add	get_address_mode													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	0	0	1	0	1	1	0Bh		
Dummy parameter	0	1	1	х	x	x	x	х	х	х	x	х	XXh		
1 st parameter	1	1	1	Χ	В7	В6	B5	B4	В3	0	0	B0	XXh		

Description

The display module returns the current status of the display as described in the table below. This command setting depends on set_address_mode (36h). For B4, B3, and B0, please refer to "Appendix" for each mode.

Bit	Description	Comment	Command list symbol
D7	Page Address Order		B7
D6	Column Address Order		B6
D5	Page/Column Order		B5
D4	Line Address Order		B4
D3	RGB/BGR Order	Set to "0"	
D2	Display Data Latch Order	Set to "0"	
D1	Reserved	Set to "0"	
D0	Switching between Common outputs and Frame Memory		В0

Bit D7 - Page Address Order

'0' = Top to Bottom (When set_address_mode D7 = '0')

'1' = Bottom to Top (When set_address_mode D7 = '1')

• Bit D6 – Column Address Order

'0' = Left to Right (When set_address_mode D6 = '0')

'1' = Right to Left (When set address mode D6 = '1')

• Bit D5 – Page/Column Order

'0' = Normal Mode (When set_address_mode D5 = '0')

'1' = Reverse Mode (When set_address_mode D5 = '1')

Note: See "Host Processor to Memory Write/Read Direction" and "Memory Access Control: 36h" for D7 to D5 bits.

Bit D4 – Line Address Order

'0' = LCD Refresh Top to Bottom (When set_address_mode D4 = '0')

'1' = LCD Refresh Bottom to Top (When set_address_mode D4 = '1')

Note: See "Memory Access Control (36h)" for D4 bit.

Bit D3 – RGB/BGR Order

This bit is not applicable. Set to "0" (Not supported).

Note: See ""State Transition Diagram" for display mode transition.

get_pixel_format: 0Ch

0Ch	get_pixel_format													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	Х	0	0	0	0	1	1	0	0	0Ch	
Dummy parameter	1	1	1	Х	х	Х	х	х	Х	х	х	Х	XXh	
1 st parameter	1	1	1	Х	0	D6	D5	D4	0	D2	D1	D0	XXh	

Description

This command indicates the current status of the display as described in the table below. This command setting depends on set_pixel_format (3Ah).

Bit	Description	Comment
D7	DPI Pixel format	Set to "0"
D6	(RGB Interface Color Format)	Set to "0"
D5		Set to "0"
D4		Set to "0"
D3	DBI Pixel Format	Set to "0"
D2	(Control Interface Color Format)	D2
D1		D1
D0		D0

- Bit D[6:4] These bits are not applicable. Set to 3'h7.
- Bit D[2:0] DBI Pixel Format (Control Interface Color Format Selection)
- Bit D7 and D3 These bits are not applicable. Set to "0". See description of command set_pixel_format (3Ah).

Control Interface Color Format	D6/D2	D5/D1	D4/D0
Setting inhibited	0	0	0
Setting inhibited	0	0	1
Setting inhibited	0	1	0
Setting inhibited	0	1	1
Setting inhibited	1	0	0
16 bits/pixel (65,536 colors)	1	0	1
18 bits/pixel (262,144 colors)	1	1	0
24 bits/pixel (16,777,216 colors)	1	1	1

X = Don't care

get_display_mode: 0Dh

0Dh	get_di	splay_m	ode												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DE	35	DB4	DB3	DE	32	DB1	DB0	Hex
Command	0	1	1	Х	0	0	0		0	1	1		0	1	0Dh
Dummy parameter	1	1	1	х	х	х	x		x	х	х		х	x	XXh
1 st parameter	1	1	1	Х	0	0	0		0	0	0		0	0	XXh
Description	The di	splay mod	dule retui	ns the cur	rent stat	us of the	e di	splay	as desc	cribed in	the	table	below.		
	Bit	Descrip	otion					Con	nment			Con	nmand l	ist sym	bol
	D7	Vertical	Scrolling	Status				Set t	to "0"						
	D6	Reserve	ed					Set t	to "0"						
	D5	Inversio	n ON/OF	F				Set t	to "0"						
	D4	Reserve	ed					Set t	to "0"						
	D3	Reserve	ed					Set t	to "0"						
	D2	Gamma	Gamma Curve Selection Set to "0"												
	D1	Gamma	Gamma Curve Selection Set to "0"												
	D0	Gamma	Curve S	Selection				Set t	to "0"						
	This I This This This The	Bit D6 – s bit is not Bit D5 s bit is not Bit D4, D se bits ar Bit D2, D	Reserve t applicat t applicat 03 – Res e not app 01, D0 – e not app	ble. Set to	"0". "0". et to "0". Curve \$	Selectio	ÐΠ								
Restriction	-														

get_signal_mode: 0Eh

0Eh	get_si	gnal_mc	de												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	х	0	0	0	0	1	1	1	0	0Eh		
Dummy parameter	1	1	1	Х	х	Х	х	х	х	х	х	х	XXh		
1 st parameter	1	1	1	x	TE ON	TEL OM	0	0	0	0	0	0	XXh		
Description	The di	splay mo	dule retu	rns the Dis	play Sig	nal Mode	as des	cribed ir	the tab	le below					
	Bit	Descrip	otion												
	D7	Tearing	ring Effect line ON/OFF TEON												
	D6	Tearing	Effect lir	ne Output N	Иode					TELOM					
	D5	Reserve	ed				Set t	ю "0"		-					
	D4	Reserve	ed				Set t	ю "0"		-					
	D3	Reserve	ed				Set to "0" -								
	D2	Reserve	ed				Set t	o "0"		-					
	D1	Reserve	ed				Set t	o "0"		-					
	D0	Reserve	ed				Set t	o "0"		-					
	'0' = '1' = • ['0' = '1' =	Tearing Tearing	Effect Lii Effect Oi Tearing	n Effect Lir			(See '	"set_tea	ar_on: (35h").					

These bits are not applicable. Set to "0".

X = Don't care

Restriction

get_diagnostic_result:0Fh

0Fh	get_dia	gnostic	_result										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	0	0	1	1	1	1	0Fh
Dummy parameter	0	1	1	Х	Х	х	х	х	х	х	х	х	XXh
1 st Parameter	0	1	1	x	0	FUN CD	0	0	0	0	0	0	XXh
Description	 B This B Note B This B This 	Funct Chip Displa Resel	ter Load ionality E Attachme ay Glass rved rved rved rved tule retur Register t applical Functior Chip Att t applical Display C ot applica	ing Detection Detection Ent Detection Break Detection In the self- Loading Detection In the self- Loading Detection In the self- Company of the self- Compan	diagnos Detection con for Detection on for Detection on for Detection on for Detection on for Detection	on 6. on	s followi	ing the e	Set to	0 0 0 0 0 0	FUN	ICD	
	 Bit D3, D2, D1, D0 – Reserved Set to 0. X = Don't care												

Restriction

enter_sleep_mode: 10h

10h	enter_s	leep_mc	de											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	Х	0	0	0	1	0	0	0	0	10h	
Parameter	None													
Description	This con				dule to	enter the S	Sleep mod	le. In this	s mode,	the DC/DC	Converte	r, internal	oscillator	
	See "Sta	See "State & Command sequence" for Sleep In sequence.												
	DBI rem	DBI remains operational and the memory maintains its contents.												
	See "Sta	See "State Transition Diagram" for each stage of transition.												
	X = Don	C = Don't care												
Restriction		This command has no effect when the module is already in Sleep mode. Sleep mode can be exited only when the exit_sleep_mode (11h) is transmitted.												
	Sending	Sending a new command is prohibited while the R61523 performs either power supply OFF sequencer or blank scan.												
	Blan D	y Mode V		St	op Inter	nal			Act M Se	meter splay				

exit_sleep_mode: 11h

11h	exit_sleep_mode													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	Х	0	0	0	1	0	0	0	1	11h	
Parameter	None							-	-		-			
Description		This command causes the display module to exit Sleep mode. DC/DC converter, internal oscillation and panel scanning start.												
	See "Sta	See "State & Command sequence" for exit_sleep_mode sequence. See "State Transition Diagram" for each stage of transition. X = Don't care This command shall not cause any visual effect on display device when the display module is not in Sleep												
Restriction	mode. No new than 120 The hos an exit_s	This command shall not cause any visual effect on display device when the display module is not in Sleep												
Flow Chart	exit_s Sta	sleep_mo t Internal scillator art Power Supply	de	Bla	Power C Display Device ank Display Device Display	polay by ments				Pal	gend mmand rameter Display action Mode Sequent transfe)) ial		

enter_partial_mode: 12h

12h	enter_	enter_partial_mode: 12h												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	х	0	0	0	1	0	0	1	0	12h	
Parameter	None	None												
Description	by the To leav X = Do	This command causes the display module to enter the Partial mode. The Partial mode window is described by the set_partial_area command (30h). To leave Partial mode, the enter_normal_mode (13h) shall be written. X = Don't care Note: When a command breaks in the middle of frame period in Normal mode, the command is enabled from the next frame period.												
Restriction	This co	This command has no effect when the module is already in Partial mode.												
Flow Chart	See "s	et_partial	_area: 3	0h".		•	•		•	•	•		•	

enter_normal_mode: 13h

13h	enter_	enter_normal_mode												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	х	0	0	0	1	0	0	1	1	13h	
Parameter	None	None												
Description	off. X = Do Note: V	This command causes the display module to enter the Normal mode. Normal mode means Partial mode is												
Restriction	This co	This command has no effect when Normal mode is already active.												
Flow Chart	See the	e descrip	tions of c	ommands	set_part	ial_area	(30h) w	hen usin	g this co	ommand				

set_display_off: 28h

28h	set_dis	splay_of	f										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	х	0	0	1	0	1	0	0	0	28h
Parameter	None											•	
Description	The fra	memor	y Y	ne display rents remair (Exception)	unchar	ged. No	disp	olay			display d	evice.	
Restriction	This co	mmand I	nas no et	fect when t	he displ	ay pane	l is alrea	dy off.					
Flow Chart	set_	ay panel	off						Legend Comman Paramet Displ Action Mode Seque	er ay eential	>		

set_display_on: 29h

29h	set_dis	splay_or	1										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	0	0	0	1	0	1	0	0	1	29h
Parameter	None	•		•	•		•		•	•	•	•	•
Description			ory conte	ne display rents remair			status t				display d	evice.	
Restriction	This co	mmand I	has no e	ffect when	the displ	ay pane	is alrea	ıdy on.					
Flow Chart	Displ set_	ay panel	off					Lec Coo	egend mmand rameter Display Action Mode Sequent transfe	ial			

set_column_address: 2Ah

2Ah	set_colu	umn_add	ress										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	0	1	0	1	0	2Ah
1st parameter	1	1	1	Х	0	0	0	0	0	0	SC[9]	SC[8]	XXh
2nd parameter	1	1	↑	Х	SC[7]	SC[6]	SC[5]	SC[4]	SC[3]	SC[2]	SC[1]	SC[0]	XXh
3rd parameter	1	1	↑	Х	0	0	0	0	0	0	EC[9]	EC[8]	XXh
4th parameter	1	1	1	Х	EC[7]	EC[6]	EC[5]	EC[4]	EC[3]	EC[2]	EC[1]	EC[0]	XXh
Description	This con	This command defines the column extent of the frame memory accessed by the host processor.											
	comman	The values of SC[9:0] and EC[9:0] are referred when write_memory_start (2Ch) and read_memory_start (2Eh) commands are written. No status bits are changed.											
	X=Don't	SC[9:0]											
Restriction	SC [9:0]		equal to	or less tha	n EC[9:0]. Set th	ne 1 st pa	rameter	B5 in se	t_addres	ss_mode	(36h) ir	1
			eters are	disregarde	ed in the	followin	g cases.						
		•		e B5 = 0: S									
	• If s	set_addre	ss_mode	e B5 = 1: S	C[9:0] o	r EC[9:0] > 27Fh	l					

set_page_address: 2Bh

2Bh	set_pag	ge_addre	ss												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	1	0	1	0	1	1	2Bh		
1st parameter	1	1	1	Х	0	0	0	0	0	0	SP[9]	SP[8]	XXh		
2nd parameter	1	1	1	Х	SP[7]	SP[6]	SP[5]	SP[4]	SP[3]	SP[2]	SP[1]	SP[0]	XXh		
3rd parameter	1	1	↑	Х	0	0	0	0	0	0	EP[9]	EP[8]	XXh		
4th parameter	1	1	↑	Х	EP[7]	EP[6]	EP[5]	EP[4]	EP[3]	EP[2]	EP[1]	EP[0]	XXh		
Description	are cha	nged.		page exte											
		The values of SP[9:0] and EP[9:0] are referred when write_memory_start (2Ch) and read_memory_start (2Eh) ommands are written.													
	Exam	Example													
	SP[9:	0]	•												
Doctriction	_		wa ha aa	ual to or le	oo than	EDIO:01	Cot tho	1 St para	motor D	E in oot	addraga	mode /	26h) in		
Restriction	advance		ays de eq	juai to of le	ess than	EP[9:0].	set the	para	meter B	o in set_	_address	_mode (SOU) IU		
	Note: Ti	ne parame	eters are	disregarde	d in the	following	g cases.								
	• If	set_addre	ss_mode	e B5 = 0: S	P[9:0] oı	r EP[9:0]	> 27Fh								
	• If	set_addre	ss_mode	e B5 = 1: S	P[9:0] oı	r EP[9:0]	> 167h								

write_memory_start: 2Ch

2Ch	write_n	nemory_s	tart										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	0	1	1	0	0	2Ch
1st pixel data	1	1	1	D1 [15:8]	D1 [7]	D1 [6]	D1 [5]	D1 [4]	D1 [3]	D1 [2]	D1 [1]	D1 [0]	000h 3FFh
:	1	1	1	Dx [15:8]	Dx [7]	Dx [6]	Dx [5]	Dx [4]	Dx [3]	Dx [2]	Dx [1]	Dx [0]	000h 3FFh
Nth pixel data	1	1	1	Dn [15:8]	Dn [7]	Dn [6]	Dn [5]	Dn [4]	Dn [3]	Dn [2]	Dn [1]	Dn [0]	000h 3FFh
Description	No statu If this co (SP) res After pix 5, 6, 7 co If Frame If the nu If Frame When the register frame in Sending	us bits are ommand is spectively. A sel data 1 of set_add to the Memory of period Memory one number of period are set to nemory. The grant of the sel Data For the ommand of t	changed services received is stored ress_mo Access a ixels in the Access are of pixels the Starr comma	nage data d, the colu in frame r de (36h). S and Interfa ransfer dat and Interfa t Column a nd will sto DSI Data	mn and nemory See "Hos ce settir ta excee ce settir er data e and Star p writing	page real at (SC, Set Processing (B3h) and (EC-Sing (B3h)) exceed (Et Page real at the first to	gisters a SP), add ssor to M WEMOD C+1)*(E WEMOD EC-SC+1 espective	re set to ress cou Memory \ DE = 0: P-SP+1) DE = 1 I)*(EP-S elly. Ther	the Star nter's di Write/Re , the ext P+1), the	t Column rection of ad Direct ra pixels e column uent dat	n (SC) a differs de stion". s are igno n registe ta are wi	nd Start epending ored. r and the	on Bits e page
Restriction				re no restr garded as		n the ler	ngth of pa	aramete	rs. If dat	a is not t	transferr	ed in un	its of

read_memory_start: 2Eh

2Eh	read_m	emory_s	tart												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	1	0	1	1	1	0	2Eh		
Dummy parameter	1	1	1	х	х	х	х	х	х	х	х	х	XXh		
1st pixel data	1	↑	1	D1 [15:8]	D1 [7]	D1 [6]	D1 [5]	D1 [4]	D1 [3]	D1 [2]	D1 [1]	D1 [0]	000h 3FFh		
:	1	↑	1	Dx [15:8]	Dx [7]	Dx [6]	Dx [5]	Dx [4]	Dx [3]	Dx [2]	Dx [1]	Dx [0]	000h 3FFh		
Nth pixel data	1	↑	1	Dn [15:8]	Dn [7]	Dn [6]	Dn [5]	Dn [4]	Dn [3]	Dn [2]	Dn [1]	Dn [0]	000h 3FFh		
Description	changed If this co (SP) res After pix Bits 5, 6 If read co Any othe See DB DSI, res X = Don In all co	This command transfers image data from the frame memory to the host processor. No status bits are changed. If this command is received, the column and page registers are set to the Start Column (SC) and Start Page (SP) respectively. After pixel data are read from the frame memory at (SC, SP), address counter's direction differs depending on Bits 5, 6, 7 of set_address_mode (36h). See "Host Processor to Memory Write/Read Direction." If read operation continued after (EP, EC) data were read, the last data (EP, EC) continue to be read. Any other written command stops frame memory read. See DBI Data Format and DSI Data Format for read data formats in DBI Type B 16-/8-bit bus interface and DSI, respectively. X = Don't care.													
Flow Chart	1.	In all color modes, the Frame memory read is always 24 bits so there is no restriction on the length of parameters. If data is not transferred in units of pixels, the extra data is regarded as invalid. Legend Command Parameter Display Action Next Command Sequential transfer													

set_partial_area: 30h

30h	set_part	tial_area											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	х	0	0	1	1	0	0	0	0	30h
1st parameter	1	1	1	х	0	0	0	0	0	0	SR[9]	SR[8]	000h
2nd parameter	1	1	1	х	SR[7]	SR[6]	SR[5]	SR[4]	SR[3]	SR[2]	SR[1]	SR[0]	 35Fh
3rd parameter	1	1	1	х	0	0	0	0	0	0	ER[9]	ER[8]	000h
4th parameter	1	1	1	х	ER[7]	ER[6]	ER[5]	ER[4]	ER[3]	ER[2]	ER[1]	ER[0]	 35Fh

set_tear_off: 34h

34h	set_tea	r_off											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	1	0	1	0	0	34h
Parameter	None												
Description	This cor		ns off the	e Tearing	Effect ou	tput sigr	nal from	the TE s	ignal line	Э.			
Restriction	This cor	nmand ha	s no effe	ct when T	earing E	ffect out	put is alr	eady off					
Flow Chart	set_	tear_off						C Pa	egend ommand arameter Display Action Mode Sequen transfe	Tial Vision			

set_tear_on: 35h

35h	set_tear	_on											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	1	0	1	0	1	35h
Parameter	1	1	1	х	х	х	х	х	х	х	х	TEL OM	XXh
Description	This con	nmand tur	ns on the	e display n	nodule's	Tearing	Effect o	utput si	gnal on t	he TE si	gnal line		
	The TE	signal is n	ot affect	ed by char	nging se	t_addres	s_mode	(36h) b	it B4 (Lir	ne Refre	sh order).	
	The Tea mode.	ring Effec	t Line Or	n has one	paramet	er, TEL(OM, whic	ch descr	ibes the	Tearing	Effect O	utput Lir	ie
	See "TE	Pin Outp	ut Signal	" for detail	S.								
				ffect Outp line shall b						only.			
				-			t _{vdl}				t _{vdh}	-	
	TE -												_
	TELOM	= 1: The t	earing E	ffect Outpu	ut line co	onsists o	f both V-	·blankin	g and H-	blanking	informa	tion.	
	TE _					t _{hd}	t _{vdl}				t _{vdh}		_
	Vertic	al blankin	ıg period	: Non-lit di	splay pe	riod in (l	back por	ch + fro	nt porch	+ partial	mode)		
	tvdl	Nu	mber of I	ines set by	/ NL								
	tvdh	Nu	mber of I	ines set by	/ BP + N	lumber o	of lines s	et by FF)				
	thdl	3 c	locks (ba	sed on int	ernal op	eration o	clock)						
	thdh	Nu	mber of o	clocks set	by RTN	– 3 cloc	ks (base	d on inte	ernal ope	eration cl	ock)		
		. TELOM	•	ect pin goe DSI TE-re			el when 1	Tearing I	Effect Lir	ne is On	and Slee	ep mode	is On.
Restriction		nmand ha		ct when Tone period.	earing E	ffect out	put is alı	ready O	N. Chan	ges in p	aramete	r TELON	1 are

set_address_mode: 36h

36h	set_add	lress_mo	de													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex			
Command	0	1	1 0 0 0 1 1 0 1 0 36h													
1st parameter	1	1	1	Х	B7	B6	B5	B4	0	0	0	В0	XXh			
Description	This cor	nmand se	ts the rea	ad/write sc	anning o	direction	of frame	e memor	y. No st	atus bits	are cha	nged.	•			
	Bit	Descri	ption				С	omment		Symbo	ol					

Bit	Description	Comment	Symbol
D7	Page Address Order		B7
D6	Column Address Order		B6
D5	Page/Column Addressing Order		B5
D4	Display Device Line Refresh Order		B4
D3	RGB/BGR Order	Don't care	-
D2	Display Data Latch Data Order	Don't care	-
D1	Flip Horizontal	Don't care	-
D0	Flip Vertical		B0

Bit B7 - Page Address Order

'0' = Top to Bottom

'1' = Bottom to Top

exit_idle_mode: 38h

38h	exit_idle	e_mode											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	1	1	0	0	0	38h
Parameter	None												
Description		n display ι		display m				ff.					
Restriction	This con	nmand ha	s no effe	ct when th	e displa	y module	e is not i	n Idle mo	ode.				
Flow Chart	Exit_i	mode on dle_mode					<	Con Para	nmand nmand Display Ction Mode equentiatransfer				

enter_idle_mode: 39h

39h	enter_id	dle_mode													
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex		
Command	0	1	1	Х	0	0	1	1	1	0	0	1	39h		
Parameter	None		ı	•	ı				1	1					
Description	Eight co	lor depth	data are graysca	display m displayed le levels V nsumption	using M 0 and V	SB of ea	ich R, G	and B c	olor com	ponents	in the F	rame Me	emory.		
	It is pos	sible to re	duce pov	ver consur	nption b	y optimiz	zing setti	ngs for I	dle Mod	e.					
				igs of Gam dots, resp		, ,	, Gamma	a Set B ((C9h), ar	nd Gamr	na Set C	C(CAh) r	egisters		
				Men	nory				Display	Panel					
		Memory Contents vs. Display Color													
		M	emory C	ontents v	s. Displ	ay Colo	r								
				R[7:0]			G	[7:0]			B[7:0	0]			
	Black		0 X X	$X \times X \times X$	ХX	0 X	XXX	XXX		0 X X	XXX	хх			
	Blue		0 X X	XXXX	X X	0 X	XXX	XXX		1 X X	XXX	хх			
	Red		1 X X	XXXX	x x	0 X	XXX	XXX		0 X X	XXX	хх			
	Magen	nta	1 X X	XXXX	X X	0 X	XXX	XXX		1 X X	XXX	ХХ			
	Green		0 X X	XXXX	X X	1 X	XXX	XXX		0 X X	XXX	ХХ			
	Cyan		0 X X	XXXX	x x	1 X	XXX	XXX		1 X X	XXX	хх			
	Yellow	•	1 X X	XXXX	x x	1 X	XXX	XXX		0 X X	XXX	хх			
	White		1 X X	(X X X)	X X	1 X	XXX	XXX		1 X X	XXX	хх			
	X = Don	't care													
Restriction	This cor	nmand ha	s no effe	ct when th	e modul	e is alre	ady in Id	le mode	١.						

set_pixel_format: 3Ah

3Ah	set_pixe	el_format	t										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	0	1	1	1	0	1	0	3Ah
1st parameter	1	1	1	х	0	0	0	0	0	D2	D1	D0	XXh
Description				lefine the f			cture o	data, whic	h are to	be trans	sferred v	via the DE	BI/DSI.
	Bit D[2:	-	Pixel Fo	oited. ormat (Co bits are n					Selection	on), DS	il		
	Contro	ol Interfac	ce Color	Format		D2		D1		00			
	Setting	inhibited				0		0	C)			
	Setting	inhibited				0		0	1				
	Setting	inhibited			C	1							
	Setting	inhibited				0		1	1				
	I	inhibited				1		0	C	1			
		/pixel (65				1		0	1				
		/pixel (26				1		1	C				
		/pixel (16,				1		1	1				
				each data									
		Other se		ettings are an D[2:0] = ı.					_		-		
	X = Don	't care											
Restriction	There is	no visible	e effect u	ntil the fran	ne mer	nory is w	ritten.						
Flow Chart	Set_pixel_format Command Parameter Display Action Mode Sequential transfer												

write_memory_continue: 3Ch

3Ch	write_n	nemory_c	ontinue											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	х	0	0	1	1	1	1	0	0	3Ch	
1st pixel data	1	1	1	D1 [15:8]	D1 [7]	D1 [6]	D1 [5]	D1 [4]	D1 [3]	D1 [2]	D1 [1]	D1 [0]	000h FFFh	
ī	1	1	1	Dx [15:8]	Dx [7]	Dx [6]	Dx [5]	Dx [4]	Dx [3]	Dx [2]	Dx [1]	Dx [0]	000h FFFh	
Nth pixel data	1	1	1	Dn [15:8]	Dn [7]	Dn [6]	Dn [5]	Dn [4]	Dn [3]	Dn [2]	Dn [1]	Dn [0]	000h FFFh	
	from the pixel location following the previous write_memory_continue or write_memory_start command. Frame Memory Access and Interface setting (B3h): WEMODE = 0 If the number of pixels in the transfer data exceeds (EC-SC+1)*(EP-SP+1), the extra pixels are ignored. Frame Memory Access and Interface setting (B3h): WEMODE = 1 When the number of pixels in the transfer data exceeds (EC-SC+1)*(EP-SP+1), the column register and the page register are reset to the Start Column/Start Page positions, and the subsequent data are written to the frame memory. X=Don't care													
Restriction	set_pag	e_addres	s (2Bh),	command and set_ad is not trans	dress_n	node (36	3h), ther	e is no g	guarante	e that da	ata are c	-	written to	
Flow Chart	D1[mage Data 15:0],D2[15:0] wext Comma	(:0)					Pa	mmand rameter Display Action Mode Sequentitransfer					

read_memory_continue: 3Eh

3Eh	read_memory_continue												
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	х	0	0	1	1	1	1	1	0	3Eh
Dummy parameter	1	1	1	Х	х	х	х	х	х	х	х	х	XXh
1 st Pixel data	1	↑	1	D1 [15:8]	D1 [7]	D1 [6]	D1 [5]	D1 [4]	D1 [3]	D1 [2]	D1 [1]	D1 [0]	000h FFFh
:	1	1 Dx											
Nth Pixel data	1	1 Dn [15:8]											
Restriction	If read of After pix of set_a X = Don	operation i kel data 1 ddress_m i't care	s execut is written ode (36h	n following ed after (El to frame r n)'s Bits 5,	P. EC) is nemory 6, 7. Se	s read, tl (SC, SP e "Host l	he last d), addres Processo	ata (EP, ss count or to Me	EC) cor er's dire mory Wi	ntinue to	be outp	ut. ending o on."	n setting
Restriction	,				•	_	7—		•				
Flow Chart	on the length of parameter. If data is not transferred in units of pixels, the extra data is regarded as invalid. Legend Command Parameter Display Action Note: When this command is read via DSI, dummy read operation is not performed.) !	

set_tear_scanline:44h

44h	set_tea	ar_scanli	ne										
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	1	0	0	0	1	0	0	44h
1 st Parameter	1	1	1	х	0	0	0	0	0	0	STS [9]	STS [8]	0Xh
2 nd Parameter	1	1	1	х	STS [7]	STS [6]	STS [5]	STS [4]	STS [3]	STS [2]	STS [1]	STS [0]	XXh
Description	display TE line See "T	module is unaffe	reaches I cted by c	he display ine N defir change in I al" for the	ned by ST B4 bit of s	S [9:0]. et_addre	ss_mod	e comm	and.		-	when th	ie
Restriction	TE sigr current Setting	nal is outp ly scanne is disable	out accored frame.	ct on the f ding to the TELOM=1 \leq NL (nu	old set_t	ear_on a ar_on (3	nd set_t				Ū		dy ON,
Flow Chart		Send 1st	parameter TE Output the Nth li	STS[9:8] STS[7:0]	7				Co Pa	egend Immand Imm			

get_scanline: 45h

45h	get_sca	anline											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	0	1	0	0	0	1	0	1	45h
Dummy parameter	1	1	1	Х	х	х	х	х	х	х	х	х	XXh
1 st parameter	1	1	1	Х	0	0	0	0	0	0	GTS [9]	GTS [8]	0Xh
2 nd parameter	1	1	1	x	GTS [7]	GTS [6]	GTS [5]	GTS [4]	GTS [3]	GTS [2]	GTS [1]	GTS [0]	XXh
Description	The first In sleep X = Dor	t scan line mode, th i't care	e of back e value r	s the curre porch perio eturned by input, it tal	od is def get_sca	ined as l	ine 0. undefine	d.					
Restriction		RX		3us ,	ummy	Vila		N[7:0]	3u				
Flow Chart	get_scanline Host R61523 Command Parameter Display Action Mode Send 2nd parameter GTS[7:0] Note: When this command is read via DSI, dummy read operation is not performed.												

read_DDB_start: A1h

A1h	read_D	DB_start											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	0	0	0	0	1	A1h
Dummy parameter	1	1	1	х	х	х	х	х	х	х	х	х	XXh
1 st Parameter	1	1	1	х	ID1 [15]	ID1 [14]	ID1 [13]	ID1 [12]	ID1 [11]	ID1 [10]	ID1 [9]	ID1 [8]	XXh
2 nd Parameter	1	1	1	х	ID1 [7]	ID1 [6]	ID1 [5]	ID1 [4]	ID1 [3]	ID1 [2]	ID1 [1]	ID1 [0]	XXh
3 rd parameter	1	1	1	х	ID2 [15]	ID2 [14]	ID2 [13]	ID2 [12]	ID2 [11]	ID2 [10]	ID2 [9]	ID2 [8]	XXh
4 th parameter	1	1	1	х	ID2 [7]	ID2 [6]	ID2 [5]	ID2 [4]	ID2 [3]	ID2 [2]	ID2 [1]	ID2 [0]	XXh
5 th parameter	1	1	1	х	1	1	1	1	1	1	1	1	FFh
Description	1st para 2nd para 3rd para 4th para 5th para Supplier	The command returns information from the display module as follows: 1st parameter: MS byte of Supplier ID (ID1[15:8]) 2nd parameter: LS byte of Supplier ID (ID1[7:0]) 3rd parameter: Supplier Elective Data (ID2[15:8]) 4th parameter: Supplier Elective Data (ID2[7:0]) 5th parameter: Exit Code (FFh) Supplier ID stored in internal NVM is read. X=Don't care											
Restriction	-												

read_DDB_continue: A8h

A8h	read_D	read_DDB_continue											
	DCX	RDX	WRX	DB[15:8]	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	х	1	0	1	0	1	0	0	0	A8h
Dummy parameter	1	1	1	х	х	х	х	х	х	х	х	х	XXh
1 st Parameter	1	1	1	х	ID1 [15]	ID1 [14]	ID1 [13]	ID1 [12]	ID1 [11]	ID1 [10]	ID1 [9]	ID1 [8]	XXh
2 nd Parameter	1	1	1	х	ID1 [7]	ID1 [6]	ID1 [5]	ID1 [4]	ID1 [3]	ID1 [2]	ID1 [1]	ID1 [0]	XXh
3 rd parameter	1	1	1	х	ID2 [15]	ID2 [14]	ID2 [13]	ID2 [12]	ID2 [11]	ID2 [10]	ID2 [9]	ID2 [8]	XXh
4 th parameter	1	1	1	х	ID2 [7]	ID2 [6]	ID2 [5]	ID2 [4]	ID2 [3]	ID2 [2]	ID2 [1]	ID2 [0]	XXh
5 th parameter	1	1	1	х	1	1	1	1	1	1	1	1	FFh
Description Restriction	read_D (A1h). X=Don	DB_contir t care	ue or rea		tart. For	the pos	ition that	t informa	ation is re	eturned,	see read	eter read	i i
Flow Chart	returne	To fix the position that information is returned, execute read_DDB_start command and parameter read operation at least once before read_DDB_continue command is executed. If they are not executed, the value returned by read_DDB_continue command is invalid. Legend Command Parameter Display Note: When this command is read via DSI, dummy read operation is not performed. Sequential transfer]	

Manufacturer Command

Additional User Command

MCAP: Manufacturer Command Access Protect (B0h)

B0h	MCAP	MCAP (Manufacturer Command Access Protect)											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Χ	1	0	1	1	0	0	0	0	B0h
1st parameter	1	#A	#B	Х	0	0	0	0	0	MCA P[2]	MCA P[1]	MCA P[0]	XXh

Write #A="1" #B="↑"

Read #A="1" #B=" 1" & Insert dummy read

(Note: When this command is read via DSI, dummy read operation is not performed.)

MCAP[2:0]

The LCD driver is required to release Access Protect before inputting a Manufacturer Command. This command releases Protect parameters so that Manufacturer Command inputs are enabled. When the conditions to release Protect, tabulated below, are met, Manufacturer Command inputs are enabled.

Description	
Description	

	MCAP[2:0]					
Command	3'b000	3'b001	3'b010	3'b011 (default)	3'b100	3'b101-111
В0	Yes		Yes	Yes	Yes	
B1-BFh	Yes	Setting	Yes	No	Yes	Setting
C0-D4h	Yes	inhibited	No	No	Yes	inhibited
E0-E1h	Fixed		Fixed	Fixed	Yes	
D6-D9h	Fixed		Fixed	Fixed	Yes	
E2, E3, E6h	Yes		No	No	Yes	
E4, E5, F3-FEh	Fixed		Fixed	Fixed	Yes	

Yes: Access is enabled. (Protect Off) No: Access is disabled. (Protect On) Fixed: Fixed to the initial value.

Once the LCD driver enables Manufacturer Command inputs, it keeps the state until MCAP[2:0] is written so that the LCD driver enters Protect ON state again. D6h-D9h and E2h-FEh are test registers. Do not access this command via them.

Restriction

After H/W Reset or exiting Deep Standby Mode, accessing a Manufacturer Command is restricted so that Manufacture Commands B1h-BFh inputs are identified as nop command.

Low Power Mode Control (B1h)

B1h	Low Power Mode Control												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	0	0	0	1	B1h
1 st parameter	1	#A	#B	Х	0	0	0	0	0	0	0	DSTB	XXh
Description	Write #A	\="1" #B=	"↑"										
	Read #	\= "↑"#B	=" 1" & Ir	nsert dumr	ny read								
	(Note: V	Vhen this	comman	d is read v	via DSI, c	lummy r	ead oper	ation is	not perfo	ormed.)			
	This cor	nmand is	used to	enter the D	Deep Sta	ndby Mo	ode.						
	DSTB												
	enabling	low pow	er consu	is entered mption. In ed. Rewrite	the Deep	o Standb	y mode,	data st	ored in th	ne Frame	` ,		,
	Do not i	nput SW-	Reset or	other com	mands o	luring the	e Deep S	Standby	mode.				
	See "Sta	ate and C	ommand	Sequence	e" for De	ep Stand	dby Mode	e On/Off	Sequen	ce.			
Restriction	DSTB c	an be ent	ered only	from the	Sleep mo	ode.							
	Access	to DSTB	when the	Sleep mo	de is off	has no e	effect (tre	eated as	nop).				
Flow Chart				eep Mode	Control]				Legend Command Paramete Display Action Mode equentia			

Frame Memory Access and Interface Setting (B3h)

B3h	Frame	Frame Memory Access and Interface Setting											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	1	0	0	1	1	B3h
1 st parameter	1	#A	#B	х	1	0	0	SEL DL	0	0	WE MODE	0	XXh
2 nd parameter	1	#A	#B	х	EPF [1]	EPF [0]	DFM [1]	DFM [0]	0	TEI [2]	TEI [1]	TEI [0]	XXh
Description	Read #	Write #A="1" #B=" 1" & Insert dummy read (Note: When this command is read via DSI, dummy read operation is performed.)											

WEMODE

After frame memory write operation reaches the end of window address area, the next write start position is selected.

WEMODE = 0: The write start position is not reset to the start of window address, and the subsequent data are disregarded. (Default)

WEMODE = 1: The write start position is reset to the start of window address area to overwrite the subsequent data to the previous data.

TEI [2:0]

These bits are used to define interval between outputs of TE signal. Set in accordance with update cycle and transfer rate of the display data.

TEI[2]	TEI[1]	TEI[0]	Interval
0	0	0	Every frame
0	0	1	2 frames
0	1	1	4 frames
1	0	1	6 frames
(Other setting	g	Setting inhibited

EPF[1:0]

These bits are used to set data format when 16/18bpp (R, G, B) data are converted to 24bpp (r, g, b) stored in internal frame memory.

EPF[1:0]	16bpp(R,G,B) → 24bpp(r,g,b)	18bpp(R,G,B) \rightarrow 24bpp(r,g,b)
	"0" is written to the LSB.	"0" is written to the LSB.
	r[7:0]={ R[4:0], 3'h0 }	r[7:0]={ R[5:0], 2'h0 }
	g[7:0]={ G[5:0], 2'h0 }	g[7:0]={ G[5:0], 2'h0 }
	b[7:0]={ B[4:0], 3'h0 }	b[7:0]={ B[5:0], 2'h0 }
2'h0	Note that the data are converted as follows:	Note that the data are converted as follows:
	R[4:0], B[4:0]=5'h1F → r, b[7:0]=8'hFF	R[5:0], B[5:0]=6'h3F \rightarrow r, b[7:0]=8'hFF
	G[5:0]=6'h3F \rightarrow g[7:0]=8'hFF	G[5:0]=6'h3F \rightarrow g[7:0]=8'hFF
	"1" is written to the LSB.	"1" is written to the LSB.
	r[7:0]={ R[4:0], 3'h7 }	r[7:0]={ R[5:0], 2'h3 }
	g[7:0]={ G[5:0], 2'h3 }	g[7:0]={ G[5:0], 2'h3 }
	b[7:0]={ B[4:0], 3'h7 }	b[7:0]={ B[5:0], 2'h3 }
2'h1	Note that the data are converted as follows:	Note that the data are converted as follows:
	R[4:0], B[4:0]=5'h0 \rightarrow r, b[7:0]=8'h00	R[5:0], B[5:0]=6'h0 \rightarrow r, b[7:0]=8'h00
	G[5:0]=6'h0 \rightarrow g[7:0]=8'h00	G[5:0]=6'h0 \rightarrow g[7:0]=8'h00
	The MSB value is written to the LSB.	The MSB value is written to the LSB.
	r[7:0]={ R[4:0], R[4:2] }	r[7:0]={ R[5:0], R[5:4] }
2'h2	g[7:0]={ G[5:0], G[5:4] }	g[7:0]={ G[5:0], G[5:4] }
	b[7:0]={ B[4:0], B[4:2] }	b[7:0]={ B[5:0], B[5:4] }
2'h3	Setting inhibited	Setting inhibited

DFM[1:0]

The bit is used to define image data write/read format to the Frame Memory in DBI Type B 16 bit bus interface operation. See "DBI Data Format" for details.

SELDL

SELDL is used to adjust the number of DSI Data lanes when DSI is selected.

SELDL=0: DSI Data 2 lanes SELDL=1: DSI Data 1 lane

Connect to unused DSI pins (DSID1PLVL, DSID1NLVL, DSID1P, DSI1N)

When DSI is selected, access this command in the Escape mode.

How to change the number of DSI Data Lane

Change the number of DSI Data Lane right after a reset using SELDL.

Figure 28

Read Checksum and ECC Error Counter (B5h)

B5h	Read Checksum and ECC Error Counter												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	0	1	0	1	B5h
1 st parameter	1	#A	1	Х	CSO UT[7]	CSO UT[6]	CSO UT[5]	CSO UT[4]	CSO UT[3]	CSO UT[2]	CSO UT[1]	CSO UT[0]	XXh
2 nd parameter	1	#A	1	х	DSIE CP[7]	DSIE CP[6]	DSIE CP[5]	DSIE CP[4]	DSIE CP[3]	DSIE CP[2]	DSIE CP[1]	DSIE CP[0]	XXh
3 rd parameter	1	#A	1	Х	DSIE CE[7]	DSIE CE[6]	DSIE CE[5]	DSIE CE[4]	DSIE CE[3]	DSIE CE[2]	DSIE CE[1]	DSIE CE[0]	XXh
Description	Read #A=" ↑ " #B=" 1" & Insert dummy read												
	(Note: V	(Note: When this command is read via DSI, dummy read operation is not performed.)											

CSOUT[7:0]

These bits read checksum error count values. When checksum error occurs in DSI Long Packet reception, the value is counted up. When these bits are read, they are cleared to 8'h00.

DSIECP[7:0]

These bits read single-bit ECC error count values. When 1-bit ECC error occurs in DSI Packet Header reception, the value is counted up. When these bits are read, they are cleared to 8'h00.

DSIECE[7:0]

These bits read multi-bit ECC error count values. When 2-bit-or-more ECC error occurs in DSI Packet Header reception, the value is counted up. When these bits are read, they are cleared to 8'h00.

DSI Control (B6)

B6h	DSI Control												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	0	1	1	0	B6h
1 st parameter	1	#A	#B	х	0	0	0	0	0	0	DSIT XDIV [1]	DSIT XDIV [0]	XXh
Description	Write #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read (Note: No dummy read when a read operation is performed using DSI.)												

DSITXDIV[1:0]

The bits are used to define the division ratio to generate transmit clock in LP mode. If DSICLK stops, data is transmitted by using the internal oscillator (14MHz).

Table 40

DSITXDIV[1:0]	DSICLK division ratio
2'b00	fDSICLK/4
2'b01	fDSICLK/8 (default)
2'b10	fDSICLK/16
2'b11	fDSICLK/32

Table 41 DSITXDIV Setting Example

	Host to	R61523	R61523 to Host				
Status of Clock Lane	Bit Rate [Mbps]	fDSICLK [MHz]	Setting of DSITXDIV [1:0]	fTXCLK [MHz]	Bit rate [Mbps]		
Active	300	150	2'b01	9.375	4.69		
	200	100		12.5	6.25		
	160	80	2'b00	20	10.0		
	100	50		12.5	6.25		
Inactive (Stop)	-	-	-	14.0 (fOSCCLK)	7.0		

Back Light Control 1 (B8h)

B8h	Back Light Control 1												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	1	0	0	0	B8h
1 st parameter	1	#A	#B	Х	0	0	0	0	0	0	BLC M	BLC ON	XXh
2 nd parameter	1	#A	#B	Х	0	0	0	THRE W0[4]	THRE W0[3]	THRE W0[2]	THRE W0[1]	THRE W0[0]	XXh
3 rd parameter	1	#A	#B	Х	0	0	0	THRE W1[4]	THRE W1[3]	THRE W1[2]	THRE W1[1]	THRE W1[0]	XXh
4 th parameter	1	#A	#B	Х	ULMT W0[7]	ULMT W0[6]	ULMT W0[5]	ULMT W0[4]	ULMT W0[3]	ULMT W0[2]	ULMT W0[1]	ULMT W0[0]	XXh
5 th parameter	1	#A	#B	Х	ULMT W1[7]	ULMT W1[6]	ULMT W1[5]	ULMT W1[4]	ULMT W1[3]	ULMT W1[2]	ULMT W1[1]	ULMT W1[0]	XXh
6 th parameter	1	#A	#B	Х	LLMT W0[7]	LLMT W0[6]	LLMT W0[5]	LLMT W0[4]	LLMT W0[3]	LLMT W0[2]	LLMT W0[1]	LLMT W0[0]	XXh
7 th parameter	1	#A	#B	Х	LLMT W1[7]	LLMT W1[6]	LLMT W1[5]	LLMT W1[4]	LLMT W1[3]	LLMT W1[2]	LLMT W1[1]	LLMT W1[0]	XXh
8 th parameter	1	#A	#B	Х	0	0	0	0	PITC HW[3]	PITC HW[2]	PITC HW[1]	PITC HW[0]	XXh
9 th parameter	1	#A	#B	Х	0	0	0	CGAP W[4]	CGAP W[3]	CGAP W[2]	CGAP W[1]	CGAP W[0]	XXh
10 th parameter	1	#A	#B	Х	0	0	0	COEF K0[4]	COEF K0[3]	COEF K0[2]	COEF K0[1]	COEF K0[0]	XXh
11 th parameter	1	#A	#B	Х	0	0	0	COEF K1[4]	COEF K1[3]	COEF K1[2]	COEF K1[1]	COEF K1[0]	XXh
12 th parameter	1	#A	#B	Х	TBL3 [7]	TBL3 [6]	TBL3 [5]	TBL3 [4]	TBL3 [3]	TBL3 [2]	TBL3 [1]	TBL3 [0]	XXh
13 th parameter	1	#A	#B	Х	TBL4 [7]	TBL4 [6]	TBL4 [5]	TBL4 [4]	TBL4 [3]	TBL4 [2]	TBL4 [1]	TBL4 [0]	XXh
14 th parameter	1	#A	#B	Х	TBL5 [7]	TBL5 [6]	TBL5 [5]	TBL5 [4]	TBL5 [3]	TBL5 [2]	TBL5 [1]	TBL5 [0]	XXh
15 th parameter	1	#A	#B	Х	TBL6 [7]	TBL6 [6]	TBL6 [5]	TBL6 [4]	TBL6 [3]	TBL6 [2]	TBL6 [1]	TBL6 [0]	XXh
Description	Write	#A="1" #l	B="↑"										
		Read #A="↑" #B=" 1" & Insert dummy read (Note: When this command is read via DSL dummy read operation is not performed.)											
Restriction	Note:	(Note: When this command is read via DSI, dummy read operation is not performed.) Note: Make sure that BLC function is turned off (B8h: BLCON=0) when changing register values on the 1 st to 15 th parameters and switching BLC modes (B8h: BLCM).											

BLCM

The bit is used to select BLC mode. There are two sets for each of THREW, ULMTW, LLMTW, and COEFK registers, enabling different settings for different display images. Before changing BLCM value, turn BLC function off (B8h: BLCON=0).

Table 42

BLCM	BLC mode	Enabled register						
0	Mode 0	THREW0	ULMTW0	LLMTW0	COEFK0			
U		[4:0]	[7:0]	[7:0]	[4:0]			
1	Mode 1	THREW1	ULMTW1	LLMTW1	COEFK1			
1		[4:0]	[7:0]	[7:0]	[4:0]			

BLCON

The bit is used to turn the BLC function ON/OFF.

Table 43

BLCON	BLC function
0	OFF
1	ON

The BLC function is disabled when the Partial, Idle, or Display Invert mode is On. To use the BLC function (BLCON=1), make sure that the Normal mode is entered and the Idle and Display Invert modes are exited.

THREW0[4:0], THREW1[4:0]

These bits are used to specify percentage from the threshold to grayscale number 255 in the total of grayscale data. This is the ratio (percentage) of the maximum number of pixels that makes display image white (= data "255") to the total of pixels by image processing.

Percentage of pixels =

Number of pixels with the grayscale from the threshold to grayscale number 255/ Number of all pixels

THREW0 is enabled when BLCM=0.

THREW1 is enabled when BLCM=1.

Table 44

THREW0[4:0]	Percentage	THREW0[4:0]	Percentage of pixels		
THREW1[4:0]	of pixels	THREW1[4:0]			
5'h00	0%	5'h10	32%		
5'h01	2%	5'h11	34%		
5'h02	4%	5'h12	36%		
5'h03	6%	5'h13	38%		
5'h04	8%	5'h14	40%		
5'h05	10%	5'h15	42%		
5'h06	12%	5'h16	44%		
5'h07	14%	5'h17	46%		
5'h08	16%	5'h18	48%		
5'h09	18%	5'h19	50%		
5'h0A	20%	5'h1A	52%		
5'h0B	22%	5'h1B	54%		
5'h0C	24%	5'h1C	56%		
5'h0D	26%	5'h1D	58%		
5'h0E	28%	5'h1E	60%		
5'h0F	30%	5'h1F	62%		

ULMTW0[7:0], ULMTW1[7:0]

The possible maximum value of the threshold grayscale value (Dth) that makes display image white is set in units of one grayscale.

ULMTW0 is enabled when BLCM=0. ULMTW1 is enabled when BLCM=1.

Table 45

ULMTW0 [7:0] ULMTW1	Maximum grayscale level (Frame Memory	ULMTW0 [7:0] ULMTW1	Maximum grayscale level (Frame Memory	ULMTW0 [7:0] ULMTW1	Maximum grayscale level	ULMTW0 [7:0] ULMTW1	Maximum grayscale level (Frame Memory
[7:0]	1	[7:0]	data)	[7:0]	(Frame Memory data)	[7:0]	data)
	data)						
8'h00 8'h01	8'h00 8'h01	8'h40 8'h41	8'h40 8'h41	8'h80 8'h81	8'h80 8'h81	8'hC0 8'hC1	8'hC0 8'hC1
8'h02	8'h02	8'h42	8'h42	8'h82	8'h82	8'hC2	8'hC2
8'h03	8'h03	8'h43	8'h43	8'h83	8'h83	8'hC3	8'hC3
8'h04	8'h04	8'h44	8'h44	8'h84	8'h84	8'hC4	8'hC4
8'h05	8'h05	8'h45	8'h45	8'h85	8'h85	8'hC5	8'hC5
8'h06 8'h07	8'h06 8'h07	8'h46 8'h47	8'h46 8'h47	8'h86 8'h87	8'h86 8'h87	8'hC6 8'hC7	8'hC6 8'hC7
8'h08	8'h08	8'h48	8'h48	8'h88	8'h88	8'hC8	8'hC8
8'h09	8'h09	8'h49	8'h49	8'h89	8'h89	8'hC9	8'hC9
8'h0A	8'h0A	8'h4A	8'h4A	8'h8A	8'h8A	8'hCA	8'hCA
8'h0B 8'h0C	8'h0B 8'h0C	8'h4B 8'h4C	8'h4B 8'h4C	8'h8B 8'h8C	8'h8B 8'h8C	8'hCB 8'hCC	8'hCB 8'hCC
8'h0D	8'h0D	8'h4D	8'h4D	8'h8D	8'h8D	8'hCD	8'hCD
8'h0E	8'h0E	8'h4E	8'h4E	8'h8E	8'h8E	8'hCE	8'hCE
8'h0F	8'h0F	8'h4F	8'h4F	8'h8F	8'h8F	8'hCF	8'hCF
8'h10	8'h10	8'h50	8'h50	8'h90	8'h90	8'hD0	8'hD0
8'h11 8'h12	8'h11 8'h12	8'h51 8'h52	8'h51 8'h52	8'h91 8'h92	8'h91 8'h92	8'hD1 8'hD2	8'hD1 8'hD2
8'h13	8'h13	8'h53	8'h53	8'h93	8'h93	8'hD3	8'hD3
8'h14	8'h14	8'h54	8'h54	8'h94	8'h94	8'hD4	8'hD4
8'h15	8'h15	8'h55	8'h55	8'h95	8'h95	8'hD5	8'hD5
8'h16	8'h16	8'h56	8'h56	8'h96	8'h96	8'hD6	8'hD6
8'h17 8'h18	8'h17 8'h18	8'h57 8'h58	8'h57 8'h58	8'h97 8'h98	8'h97 8'h98	8'hD7 8'hD8	8'hD7 8'hD8
8'h19	8'h19	8'h59	8'h59	8'h99	8'h99	8'hD9	8'hD9
8'h1A	8'h1A	8'h5A	8'h5A	8'h9A	8'h9A	8'hDA	8'hDA
8'h1B	8'h1B	8'h5B	8'h5B	8'h9B	8'h9B	8'hDB	8'hDB
8'h1C	8'h1C	8'h5C	8'h5C	8'h9C	8'h9C	8'hDC	8'hDC
8'h1D 8'h1E	8'h1D 8'h1E	8'h5D 8'h5E	8'h5D 8'h5E	8'h9D 8'h9E	8'h9D 8'h9E	8'hDD 8'hDE	8'hDD 8'hDE
8'h1F	8'h1F	8'h5F	8'h5F	8'h9F	8'h9F	8'hDF	8'hDF
8'h20	8'h20	8'h60	8'h60	8'hA0	8'hA0	8'hE0	8'hE0
8'h21	8'h21	8'h61	8'h61	8'hA1	8'hA1	8'hE1	8'hE1
8'h22	8'h22	8'h62	8'h62	8'hA2	8'hA2	8'hE2	8'hE2
8'h23 8'h24	8'h23 8'h24	8'h63 8'h64	8'h63 8'h64	8'hA3 8'hA4	8'hA3 8'hA4	8'hE3 8'hE4	8'hE3 8'hE4
8'h25	8'h25	8'h65	8'h65	8'hA5	8'hA5	8'hE5	8'hE5
8'h26	8'h26	8'h66	8'h66	8'hA6	8'hA6	8'hE6	8'hE6
8'h27	8'h27	8'h67	8'h67	8'hA7	8'hA7	8'hE7	8'hE7
8'h28 8'h29	8'h28 8'h29	8'h68 8'h69	8'h68 8'h69	8'hA8 8'hA9	8'hA8 8'hA9	8'hE8 8'hE9	8'hE8 8'hE9
8'h2A	8'h2A	8'h6A	8'h6A	8'hAA	8'hAA	8'hEA	8'hEA
8'h2B	8'h2B	8'h6B	8'h6B	8'hAB	8'hAB	8'hEB	8'hEB
8'h2C	8'h2C	8'h6C	8'h6C	8'hAC	8'hAC	8'hEC	8'hEC
8'h2D	8'h2D	8'h6D	8'h6D	8'hAD	8'hAD	8'hED	8'hED
8'h2E 8'h2F	8'h2E 8'h2F	8'h6E 8'h6F	8'h6E 8'h6F	8'hAE 8'hAF	8'hAE 8'hAF	8'hEE 8'hEF	8'hEE 8'hEF
8'h30	8'h30	8'h70	8'h70	8'hB0	8'hB0	8'hF0	8'hF0
8'h31	8'h31	8'h71	8'h71	8'hB1	8'hB1	8'hF1	8'hF1
8'h32	8'h32	8'h72	8'h72	8'hB2	8'hB2	8'hF2	8'hF2
8'h33 8'h34	8'h33 8'h34	8'h73 8'h74	8'h73 8'h74	8'hB3 8'hB4	8'hB3 8'hB4	8'hF3 8'hF4	8'hF3 8'hF4
8'h35	8'h35	8'h75	8'h75	8'hB5	8'hB5	8'hF5	8'hF5
8'h36	8'h36	8'h76	8'h76	8'hB6	8'hB6	8'hF6	8'hF6
8'h37	8'h37	8'h77	8'h77	8'hB7	8'hB7	8'hF7	8'hF7
8'h38	8'h38	8'h78	8'h78	8'hB8	8'hB8	8'hF8	8'hF8
8'h39 8'h3A	8'h39 8'h3A	8'h79 8'h7A	8'h79 8'h7A	8'hB9 8'hBA	8'hB9 8'hBA	8'hF9 8'hFA	8'hF9 8'hFA
8'h3B	8'h3B	8'h7B	8'h7B	8'hBB	8'hBB	8'hFB	8'hFB
8'h3C	8'h3C	8'h7C	8'h7C	8'hBC	8'hBC	8'hFC	8'hFC
8'h3D	8'h3D	8'h7D	8'h7D	8'hBD	8'hBD	8'hFD	8'hFD
8'h3E	8'h3E	8'h7E	8'h7E	8'hBE	8'hBE	8'hFE	8'hFE
8'h3F	8'h3F	8'h7F	8'h7F	8'hBF	8'hBF	8'hFF	8'hFF

LLMTW0[7:0], LLMTW1[7:0]

The possible minimum value of the threshold grayscale value (Dth) that makes display image white is set in units of one grayscale.

LLMTW0 is enabled when BLCM=0. LLMTW1 is enabled when BLCM=1.

Table 46

LLMTW0	Minimum	LLMTW0	Minimum	LLMTW0	Minimum	LLMTW0	Minimum
[7:0] LLMTW1	grayscale level (Frame Memory	[7:0] LLMTW1	grayscale level (Frame Memory	[7:0] LLMTW1	grayscale level (Frame Memory	[7:0] LLMTW1	grayscale level (Frame Memory
[7:0]	data)	[7:0]	data)	[7:0]	data)	[7:0]	data)
8'h00	8'h00	8'h40	8'h40	8'h80	8'h80	8'hC0	8'hC0
8'h01	8'h01	8'h41	8'h41	8'h81	8'h81	8'hC1	8'hC1
8'h02	8'h02	8'h42	8'h42	8'h82	8'h82	8'hC2	8'hC2
8'h03	8'h03	8'h43	8'h43	8'h83	8'h83	8'hC3	8'hC3
8'h04	8'h04	8'h44	8'h44	8'h84	8'h84	8'hC4	8'hC4
8'h05	8'h05	8'h45	8'h45	8'h85	8'h85	8'hC5	8'hC5
8'h06	8'h06	8'h46	8'h46	8'h86	8'h86	8'hC6	8'hC6
8'h07	8'h07	8'h47	8'h47	8'h87	8'h87	8'hC7	8'hC7
8'h08	8'h08	8'h48	8'h48	8'h88	8'h88	8'hC8	8'hC8
8'h09	8'h09 8'h0A	8'h49 8'h4A	8'h49	8'h89	8'h89	8'hC9	8'hC9
8'h0A 8'h0B	8'h0B	8'h4B	8'h4A 8'h4B	8'h8A 8'h8B	8'h8A 8'h8B	8'hCA 8'hCB	8'hCA 8'hCB
8'h0C	8'h0C	8'h4C	8'h4C	8'h8C	8'h8C	8'hCC	8'hCC
8'h0D	8'h0D	8'h4D	8'h4D	8'h8D	8'h8D	8'hCD	8'hCD
8'h0E	8'h0E	8'h4E	8'h4E	8'h8E	8'h8E	8'hCE	8'hCE
8'h0F	8'h0F	8'h4F	8'h4F	8'h8F	8'h8F	8'hCF	8'hCF
8'h10	8'h10	8'h50	8'h50	8'h90	8'h90	8'hD0	8'hD0
8'h11	8'h11	8'h51	8'h51	8'h91	8'h91	8'hD1	8'hD1
8'h12	8'h12	8'h52	8'h52	8'h92	8'h92	8'hD2	8'hD2
8'h13	8'h13	8'h53	8'h53	8'h93	8'h93	8'hD3	8'hD3
8'h14	8'h14	8'h54	8'h54	8'h94	8'h94	8'hD4	8'hD4
8'h15	8'h15	8'h55	8'h55	8'h95	8'h95	8'hD5	8'hD5
8'h16	8'h16	8'h56	8'h56	8'h96	8'h96	8'hD6	8'hD6
8'h17	8'h17	8'h57	8'h57	8'h97	8'h97	8'hD7	8'hD7
8'h18	8'h18	8'h58	8'h58	8'h98	8'h98 8'h99	8'hD8	8'hD8
8'h19 8'h1A	8'h19 8'h1A	8'h59 8'h5A	8'h59 8'h5A	8'h99 8'h9A	8'h9A	8'hD9 8'hDA	8'hD9 8'hDA
8'h1B	8'h1B	8'h5B	8'h5B	8'h9B	8'h9B	8'hDB	8'hDB
8'h1C	8'h1C	8'h5C	8'h5C	8'h9C	8'h9C	8'hDC	8'hDC
8'h1D	8'h1D	8'h5D	8'h5D	8'h9D	8'h9D	8'hDD	8'hDD
8'h1E	8'h1E	8'h5E	8'h5E	8'h9E	8'h9E	8'hDE	8'hDE
8'h1F	8'h1F	8'h5F	8'h5F	8'h9F	8'h9F	8'hDF	8'hDF
8'h20	8'h20	8'h60	8'h60	8'hA0	8'hA0	8'hE0	8'hE0
8'h21	8'h21	8'h61	8'h61	8'hA1	8'hA1	8'hE1	8'hE1
8'h22	8'h22	8'h62	8'h62	8'hA2	8'hA2	8'hE2	8'hE2
8'h23	8'h23	8'h63	8'h63	8'hA3	8'hA3	8'hE3	8'hE3
8'h24	8'h24	8'h64	8'h64	8'hA4	8'hA4	8'hE4	8'hE4
8'h25 8'h26	8'h25 8'h26	8'h65 8'h66	8'h65 8'h66	8'hA5 8'hA6	8'hA5 8'hA6	8'hE5 8'hE6	8'hE5 8'hE6
8'h27	8'h27	8'h67	8'h67	8'hA7	8'hA7	8'hE7	8'hE7
8'h28	8'h28	8'h68	8'h68	8'hA8	8'hA8	8'hE8	8'hE8
8'h29	8'h29	8'h69	8'h69	8'hA9	8'hA9	8'hE9	8'hE9
8'h2A	8'h2A	8'h6A	8'h6A	8'hAA	8'hAA	8'hEA	8'hEA
8'h2B	8'h2B	8'h6B	8'h6B	8'hAB	8'hAB	8'hEB	8'hEB
8'h2C	8'h2C	8'h6C	8'h6C	8'hAC	8'hAC	8'hEC	8'hEC
8'h2D	8'h2D	8'h6D	8'h6D	8'hAD	8'hAD	8'hED	8'hED
8'h2E	8'h2E	8'h6E	8'h6E	8'hAE	8'hAE	8'hEE	8'hEE
8'h2F	8'h2F	8'h6F	8'h6F	8'hAF	8'hAF	8'hEF	8'hEF
8'h30	8'h30	8'h70	8'h70	8'hB0	8'hB0	8'hF0	8'hF0
8'h31 8'h32	8'h31 8'h32	8'h71 8'h72	8'h71 8'h72	8'hB1 8'hB2	8'hB1 8'hB2	8'hF1 8'hF2	8'hF1 8'hF2
8'h33	8'h33	8'h73	8'h73	8'hB3	8'hB3	8'hF3	8'hF3
8'h34	8'h34	8'h74	8'h74	8'hB4	8'hB4	8'hF4	8'hF4
8'h35	8'h35	8'h75	8'h75	8'hB5	8'hB5	8'hF5	8'hF5
8'h36	8'h36	8'h76	8'h76	8'hB6	8'hB6	8'hF6	8'hF6
8'h37	8'h37	8'h77	8'h77	8'hB7	8'hB7	8'hF7	8'hF7
8'h38	8'h38	8'h78	8'h78	8'hB8	8'hB8	8'hF8	8'hF8
8'h39	8'h39	8'h79	8'h79	8'hB9	8'hB9	8'hF9	8'hF9
8'h3A	8'h3A	8'h7A	8'h7A	8'hBA	8'hBA	8'hFA	8'hFA
8'h3B	8'h3B	8'h7B	8'h7B	8'hBB	8'hBB	8'hFB	8'hFB
8'h3C	8'h3C	8'h7C	8'h7C	8'hBC	8'hBC	8'hFC	8'hFC
8'h3D	8'h3D	8'h7D	8'h7D	8'hBD	8'hBD	8'hFD	8'hFD
8'h3E	8'h3E	8'h7E	8'h7E	8'hBE	8'hBE	8'hFE	8'hFE
8'h3F	8'h3F	8'h7F	8'h7F	8'hBF	8'hBF	8'hFF	8'hFF

PITCHW[3:0]

This parameter sets the amount of change of threshold grayscale value (Dth) that makes display image white per frame in units of one half of the grayscale. Make sure $CGAPW[4:0] \ge PITCHW[3:0]$ when setting.

Table 47

PITCHW [3:0]	Amount of change (grayscale)
4'h0	Setting inhibited
4'h1	1/2
4'h2	2/2
4'h3	3/2
4'h4	4/2
4'h5	5/2
4'h6	6/2
4'h7	7/2
4'h8	8/2
4'h9	9/2
4'hA	10/2
4'hB	11/2
4'hC	12/2
4'hD	13/2
4'hE	14/2
4'hF	15/2

CGAPW[4:0]

The difference of the two grayscales counted by the threshold counter is set in units of one half of the grayscale. Make sure $CGAPW[4:0] \ge PITCHW[3:0]$ when setting.

Table 48

CGAPW [4:0]	Grayscale difference
5'h00	Setting inhibited
5'h01	1/2
5'h02	2/2
5'h03	3/2
5'h04	4/2
5'h05	5/2
5'h06	6/2
5'h07	7/2
5'h08	8/2
5'h09	9/2
5'h0A	10/2
5'h0B	11/2
5'h0C	12/2
5'h0D	13/2
5'h0E	14/2
5'h0F	15/2

CGAPW [4:0]	Grayscale difference
5'h10	16/2
5'h11	17/2
5'h12	18/2
5'h13	19/2
5'h14	20/2
5'h15	21/2
5'h16	22/2
5'h17	23/2
5'h18	24/2
5'h19	25/2
5'h1A	26/2
5'h1B	27/2
5'h1C	28/2
5'h1D	29/2
5'h1E	30/2
5'h1F	31/2

COEFK0[4:0], COEFK1[4:0]

This register sets the range of the grayscale that prevents display image from turning white, according to the ratio of the grayscale listed below to the grayscale number that makes data white.

Table 49

COEFK0[4:0] COEFK1[4:0]	Range of grayscale preventing image from turning white	LLMTW x Min.	COEFK0[4:0] COEFK1[4:0]	Range of grayscale preventing image from turning white	LLMTW x Min.
5'h00	0%	8'h00	5'h10	100.00%	8'h80
5'h01	6.25%	8'h0F	5'h11	Setting inhibited	-
5'h02	12.50%	8'h1C	5'h12	Setting inhibited	-
5'h03	18.75%	8'h28	5'h13	Setting inhibited	-
5'h04	25.00%	8'h33	5'h14	Setting inhibited	-
5'h05	31.25%	8'h3D	5'h15	Setting inhibited	-
5'h06	37.50%	8'h46	5'h16	Setting inhibited	-
5'h07	43.75%	8'h4E	5'h17	Setting inhibited	-
5'h08	50.00%	8'h55	5'h18	Setting inhibited	-
5'h09	56.25%	8'h5C	5'h19	Setting inhibited	-
5'h0A	62.50%	8'h62	5'h1A	Setting inhibited	-
5'h0B	68.75%	8'h68	5'h1B	Setting inhibited	-
5'h0C	75.00%	8'h6D	5'h1C	Setting inhibited	-
5'h0D	81.25%	8'h72	5'h1D	Setting inhibited	-
5'h0E	87.50%	8'h77	5'h1E	Setting inhibited	-
5'h0F	93.75%	8'h7B	5'h1F	Setting inhibited	-

Note: LLMTW0[7:0] and LLMTW1[7:0] values are restricted as listed above according to COEFK0[4:0] and COEFK1[4:0] values. Make sure to follow the minimum LLMTW*[7:0] setting to each COEFK[4:0] value.

TBL3[7:0], TBL4[7:0], TBL5[7:0], TBL6[7:0]

The reference values used for interpolation calculation in gamma conversion table are set by TBL_*.

Table 50

TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value
8'h00	8'h00	8 'h20	8 'h20	8 'h40	8 'h40	8 'h60	8 'h60
8'h01	8'h01	8 'h21	8 'h21	8 'h41	8 'h41	8 'h61	8 'h61
8'h02	8'h02	8 'h22	8 'h22	8 'h42	8 'h42	8 'h62	8 'h62
8'h03	8'h03	8 'h23	8 'h23	8 'h43	8 'h43	8 'h63	8 'h63
8'h04	8'h04	8 'h24	8 'h24	8 'h44	8 'h44	8 'h64	8 'h64
8'h05	8'h05	8 'h25	8 'h25	8 'h45	8 'h45	8 'h65	8 'h65
8'h06	8'h06	8 'h26	8 'h26	8 'h46	8 'h46	8 'h66	8 'h66
8'h07	8'h07	8 'h27	8 'h27	8 'h47	8 'h47	8 'h67	8 'h67
8'h08	8'h08	8 'h28	8 'h28	8 'h48	8 'h48	8 'h68	8 'h68
8'h09	8'h09	8 'h29	8 'h29	8 'h49	8 'h49	8 'h69	8 'h69
8'h0A	8'h0A	8 'h2A	8 'h2A	8 'h4A	8 'h4A	8 'h6A	8 'h6A
8'h0B	8'h0B	8 'h2B	8 'h2B	8 'h4B	8 'h4B	8 'h6B	8 'h6B
8'h0C	8'h0C	8 'h2C	8 'h2C	8 'h4C	8 'h4C	8 'h6C	8 'h6C
8'h0D	8'h0D	8 'h2D	8 'h2D	8 'h4D	8 'h4D	8 'h6D	8 'h6D
8'h0E	8'h0E	8 'h2E	8 'h2E	8 'h4E	8 'h4E	8 'h6E	8 'h6E
8'h0F	8'h0F	8 'h2F	8 'h2F	8 'h4F	8 'h4F	8 'h6F	8 'h6F
8'h10	8'h10	8 'h30	8 'h30	8 'h50	8 'h50	8 'h70	8 'h70
8'h11	8'h11	8 'h31	8 'h31	8 'h51	8 'h51	8 'h71	8 'h71
8'h12	8'h12	8 'h32	8 'h32	8 'h52	8 'h52	8 'h72	8 'h72
8'h13	8'h13	8 'h33	8 'h33	8 'h53	8 'h53	8 'h73	8 'h73
8'h14	8'h14	8 'h34	8 'h34	8 'h54	8 'h54	8 'h74	8 'h74
8'h15	8'h15	8 'h35	8 'h35	8 'h55	8 'h55	8 'h75	8 'h75
8'h16	8'h16	8 'h36	8 'h36	8 'h56	8 'h56	8 'h76	8 'h76
8'h17	8'h17	8 'h37	8 'h37	8 'h57	8 'h57	8 'h77	8 'h77
8'h18	8'h18	8 'h38	8 'h38	8 'h58	8 'h58	8 'h78	8 'h78
8'h19	8'h19	8 'h39	8 'h39	8 'h59	8 'h59	8 'h79	8 'h79
8'h1A	8'h1A	8 'h3A	8 'h3A	8 'h5A	8 'h5A	8 'h7A	8 'h7A
8'h1B	8'h1B	8 'h3B	8 'h3B	8 'h5B	8 'h5B	8 'h7B	8 'h7B
8'h1C	8'h1C	8 'h3C	8 'h3C	8 'h5C	8 'h5C	8 'h7C	8 'h7C
8'h1D	8'h1D	8 'h3D	8 'h3D	8 'h5D	8 'h5D	8 'h7D	8 'h7D
8'h1E	8'h1E	8 'h3E	8 'h3E	8 'h5E	8 'h5E	8 'h7E	8 'h7E
8'h1F	8'h1F	8 'h3F	8 'h3F	8 'h5F	8 'h5F	8 'h7F	8 'h7F

Table 51

TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value	TBL_* [7:0]	8-bit reference value
8'h80	8'h80	8'hA0	8'hA0	8'hC0	8'hC0	8'hE0	8'hE0
8'h81	8'h81	8'hA1	8'hA1	8'hC1	8'hC1	8'hE1	8'hE1
8'h82	8'h82	8'hA2	8'hA2	8'hC2	8'hC2	8'hE2	8'hE2
8'h83	8'h83	8'hA3	8'hA3	8'hC3	8'hC3	8'hE3	8'hE3
8'h84	8'h84	8'hA4	8'hA4	8'hC4	8'hC4	8'hE4	8'hE4
8'h85	8'h85	8'hA5	8'hA5	8'hC5	8'hC5	8'hE5	8'hE5
8'h86	8'h86	8'hA6	8'hA6	8'hC6	8'hC6	8'hE6	8'hE6
8'h87	8'h87	8'hA7	8'hA7	8'hC7	8'hC7	8'hE7	8'hE7
8'h88	8'h88	8'hA8	8'hA8	8'hC8	8'hC8	8'hE8	8'hE8
8'h89	8'h89	8'hA9	8'hA9	8'hC9	8'hC9	8'hE9	8'hE9
8'h8A	8'h8A	8'hAA	8'hAA	8'hCA	8'hCA	8'hEA	8'hEA
8'h8B	8'h8B	8'hAB	8'hAB	8'hCB	8'hCB	8'hEB	8'hEB
8'h8C	8'h8C	8'hAC	8'hAC	8'hCC	8'hCC	8'hEC	8'hEC
8'h8D	8'h8D	8'hAD	8'hAD	8'hCD	8'hCD	8'hED	8'hED
8'h8E	8'h8E	8'hAE	8'hAE	8'hCE	8'hCE	8'hEE	8'hEE
8'h8F	8'h8F	8'hAF	8'hAF	8'hCF	8'hCF	8'hEF	8'hEF
8'h90	8'h90	8'hB0	8'hB0	8'hD0	8'hD0	8'hF0	8'hF0
8'h91	8'h91	8'hB1	8'hB1	8'hD1	8'hD1	8'hF1	8'hF1
8'h92	8'h92	8'hB2	8'hB2	8'hD2	8'hD2	8'hF2	8'hF2
8'h93	8'h93	8'hB3	8'hB3	8'hD3	8'hD3	8'hF3	8'hF3
8'h94	8'h94	8'hB4	8'hB4	8'hD4	8'hD4	8'hF4	8'hF4
8'h95	8'h95	8'hB5	8'hB5	8'hD5	8'hD5	8'hF5	8'hF5
8'h96	8'h96	8'hB6	8'hB6	8'hD6	8'hD6	8'hF6	8'hF6
8'h97	8'h97	8'hB7	8'hB7	8'hD7	8'hD7	8'hF7	8'hF7
8'h98	8'h98	8'hB8	8'hB8	8'hD8	8'hD8	8'hF8	8'hF8
8'h99	8'h99	8'hB9	8'hB9	8'hD9	8'hD9	8'hF9	8'hF9
8'h9A	8'h9A	8'hBA	8'hBA	8'1	8'I	8'hFA	8'hFA
8'h9B	8'h9B	8'hBB	8'hBB	8'hDB	8'hDB	8'hFB	8'hFB
8'h9C	8'h9C	8'hBC	8'hBC	8'hDC	8'hDC	8'hFC	8'hFC
8'h9D	8'h9D	8'hBD	8'hBD	8'hDD	8'hDD	8'hFD	8'hFD
8'h9E	8'h9E	8'hBE	8'hBE	8'hDE	8'hDE	8'hFE	8'hFE
8'h9F	8'h9F	8'hBF	8'hBF	8'hDF	8'hDF	8'hFF	8'hFF

Back Light Control 2 (B9h)

B9h	Back I	Light Co	ntrol 2										
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	1	0	0	1	B9h
1 st parameter	1	#A	#B	х	0	0	0	0	0	0	0	PWM ON	XXh
2 nd parameter	1	#A	#B	х	BDCV [7]	BDCV [6]	BDCV [5]	BDCV [4]	BDCV [3]	BDCV [2]	BDCV [1]	BDCV [0]	XXh
3 rd parameter	1	#A	#B	Х	PWM DIV [7]	PWM DIV [6]	PWM DIV [5]	PWM DIV [4]	PWM DIV [3]	PWM DIV [2]	PWM DIV [1]	PWM DIV [0]	XXh
4 th parameter	1	#A	#B	х	0	0	0	PWM WM	LED PWM E	LED PWM POL	0	DIM ON	XXh
Description	Read #	Write #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read (Note: When this command is read via DSI, dummy read operation is not performed.)											

PWMWM, PWMON

PWMWM = 0: Controls On/Off of the PWM output according to Display On/Off state.

PWMWM = 1: Controls On/Off of the PWM output according to PWMON setting. Note that LEDPWM is Off when the Sleep mode is On regardless of PWMON value.

LEDPWME

LEDPWM pin output enable bit. In the system configuration using no LEDPWM pin, set the bit to 0. In the system configuration using LEDPWM pin, set the bit to 1. This setting can be changed only when Sleep Mode is On.

Table 52

LEDPWME	PWMWM	PWMON	BLCON	RDPWM	LEDPWM output	
0	0	*	0	BDCV	0%	
			1	BLC*BDCV	0%	-
	1	0	0	0%	0%	-
			1	Setting inhibited	Setting inhibited	-
		1	0	BDCV	0%	•
			1	BLC*BDCV	0%	*2
1	0	*	0	BDCV	BDCV	*1
			1	BLC*BDCV	BLC*BDCV	*1
	1	0	0	0%	0%	-
			1	Setting inhibited	Setting inhibited	-
		1	0	BDCV	BDCV	•
			1	BLC*BDCV	BLC*BDCV	*2

Notes: 1. If PWMWM = 0, On/Off of the PWM output is automatically controlled according to display ON/Off state.

Display Off: Sleep Mode On + set_display_off

Display On: Sleep Mode Off + set_display_on

BDCV[7:0]

PWM signal's width is selected from 256 values between 8'hFF and 8'h00 when LED is adjusted externally.

When BLCON=0, PWM signals are output according to BDCV values.

When BLCON=1, PWM signals are output according to calculated values by BDCV*BLC.

Table 53

BDCV[7:0]	Amount of light
8'h00	None (0%)
8'h01	1/255
8'h02	2/255
8'h03	3/255
:	:
8'hFE	254/255
8'hFF	255/255 (100%)

^{2.} If PWMWM = 1, RDPWM and LEDPWM outputs cause BDCV value to be read during Display Off.

PWMDIV[7:0]

These bits are used to define frequency of PWM signal that is output from LEDPWM pin.

Table 54

PWMDIV[7:0]	LEDPWM frequency		PWMDIV[7:0]	LEDPWM frequency
8'h00	33.3KHz		8'h10-8'h1E	Setting inhibited
8'h01	27.4KHz		8'h1F	1.72KHz
8'h02	18.3KHz		8'h20-8'h3E	Setting inhibited
8'h03	13.7KHz		8'h3F	0.86KHz
8'h04-8'h06	Setting inhibited		8'h40-8'h7E	Setting inhibited
8'h07	6.86KHz		8'h7F	0.43KHz
8'h08-8'h0E	Setting inhibited		8'h80-8'hFE	Setting inhibited
8'h0F	3.43KHz		8'hFF	0.21KHz

Notes: 1. The values in the above table are typical ones. There shall be variance of maximum $\pm 7\%$ in the actual operation.

2. When PWMDIV is set to 8'h00 (33.3KHz), PWM signal's width is selected from maximum 210 values

LEDPWMPOL

The bit is used to define polarity of LEDPWM signal.

Table 55

LEDPWPOL	LEDPWM pin				
LLDF WF OL	Lit period	Non-lit period			
0	High	Low			
1	Low	High			

DIMON

DIMON bit is used to enable / disable LEDPWM's DIMMING function.

The bit is used to control change in brightness (change in LEDPWM signal) when BCDV register is rewritten or LEDPWM pin is turned on.

Table 56

DIMON	DIMMING function	Brightness
0	OFF	Changes immediately
1	ON	Changes gradually in approximately 500ms.

Note: This bit is applied to BDCV register setting and not to brightness change by the BLC function.

Figure 29

Back Light Control 3 (BAh)

BAh	Back I	Back Light Control 3 (Read PWM Data)											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	1	0	1	0	Bah
Dummy Parameter	1	1	1	х	x	х	х	х	х	х	х	х	XXh
1 st parameter	1	1	1	x	RD PWM [7]	RD PWM [6]	RD PWM [5]	RD PWM [4]	RD PWM [3]	RD PWM [2]	RD PWM [1]	RD PWM [0]	XXh
Description	RDPWM[7:0] The command is used to read LED brightness data for LEDPWM signal. X = Don't care												
Flow Chart	Read PWM Data Host Command Parameter Display Action Note: When this command is read via DSI, dummy read operation is not performed. Sequential transfer												
Restriction	Data r	ead is di	sabled w	hen Sleep	mode is	On.							

Device Code Read (BFh)

BFh	Device	Device Code Read											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	0	1	1	1	1	1	1	BFh
Dummy parameter	1	1	1	х	х	х	х	х	х	х	х	х	XXh
1 st parameter	1	1	1	х	0	0	0	0	0	0	0	1	01h
2 nd parameter	1	1	1	х	0	0	1	0	0	0	1	0	22h
3 rd parameter	1	1	1	х	0	0	0	1	0	1	0	1	15h
4 th parameter	1	1	1	х	0	0	1	0	0	0	1	1	23h
Description	1st para Allian 2nd par Allian 3rd para 4th para	The parameters are used to read the information as follows: 1st parameter: Returns the upper byte "01h" of Renesas Technology's Supplier ID decided by MIPI Alliance. 2nd parameter: Returns the lower byte "22h" of Renesas Technology's Supplier ID decided by MIPI Alliance. 3rd parameter: Returns the upper byte "15h" of product code of this LSI. 4th parameter: Returns the lower byte "23h" of product code of this LSI.											
Restriction	-	X = Don't care											
Flow Chart	Note :	Note : When this command is read via DSI, dummy read operation is not performed.											

Panel Control Command

Panel Driving Setting (C0h)

C0h	Panel	Panel Driving Setting											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	0	0	0	0	C0h
1 st parameter	1	#A	#B	х	0	0	0	REV	SM	GS	BGR	SS	XXh
2 nd parameter	1	#A	#B	х	NL [7]	NL [6]	NL [5]	NL [4]	NL [3]	NL [2]	NL [1]	NL [0]	XXh
3 rd parameter	1	#A	#B	х	SCN [7]	SCN [6]	SCN [5]	SCN [4]	SCN [3]	SCN [2]	SCN [1]	SCN [0]	XXh
4 th parameter	1	#A	#B	х	0	0	0	0	0	0	0	NW [0]	XXh
5 th parameter	1	#A	#B	х	0	0	0	0	0	0	BLV	PTV	XXh
6 th parameter	1	#A	#B	х	0	0	BLS	NDL	PTDC	PTS [2]	PTS [1]	PTS [0]	XXh
7 th parameter	1	#A	#B	х	0	0	0	PTG	ISC [3]	ISC [2]	ISC [1]	ISC [0]	XXh
Description	Read	Vrite #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read Note: When this command is read via DSI, dummy read operation is not performed.)											

REV

The grayscale is reversed by setting REV = 1. This enables the R61523 to display the same image from the same set of data on both normally black and white panels. The source output levels during the retrace period and non-lit display period are determined by register settings, BLS and NDL, respectively.

Table 57

REV	Frame memory data	Source output level in display area					
KEV	Frame memory data	Positive polarity	Negative polarity				
	24'h00000	V255	V0				
0	÷	:	÷				
	24'hFFFFF	V0	V255				
	24'h00000	V0	V255				
1	:	:	÷				
	24'hFFFFF	V255	V0				

SM

SM=0: Left/right interchanging scan SM=1: Left/right one-side scan

GS

GS=0: Forward scan GS=1: Reverse scan

The R61523 allows changing gate driver assignment and the scan mode by combination of SM and GS bits. Set these bits in accordance with the configuration of the module. For details, see "Scan Mode Setting."

BGR

The bit is used to reverse 18-bit write data in the Frame Memory from RGB to BGR. Set in accordance with arrangement of color filters.

BGR=0: Data are written to the Frame Memory in the order of RGB. (Default)

BGR=1: Data are written to the Frame Memory in the order of BGR.

SS

The bit is used to select the shifting direction of the source driver output. Set in accordance with mounting position of the R61523 to the panel.

SS=0: S1 to S1080 (Default)

SS=1: S1080 to S1

To change the RGB order, set SS and BGR bits.

SS=0, BGR=0: RGB SS=1, BGR=1: BGR

NL[7:0]

These bits select the number of lines to drive the LCD from 480 to 640 lines. The frame memory address mapping is not affected by the number of NL[7:0]. The number of lines shall be set according to the panel size.

Table 58

NL[7:0]	Number of drive lines
8'h00-8'h9E	Setting inhibited
8'h77	480 lines
8'h78	484 lines
8'h79	488 lines
8'h7A	492 lines
8'h7B	496 lines
8'h7C	500 lines
8'h7D	504 lines
8'h7E	508 lines
8'h7F	512 lines
8'h80	516 lines
8'h81	520 lines
8'h82	524 lines
8'h83	528 lines
8'h84	532 lines

NL[7:0]	Number of drive lines
8'h85	536 lines
8'h86	540 lines
8'h87	544 lines
8'h88	548 lines
8'h89	552 lines
8'h8A	556 lines
8'h8B	560 lines
8'h8C	564 lines
8'h8D	568 lines
8'h8E	572 lines
8'h8F	576 lines
8'h90	580 lines
8'h91	584 lines
8'h92	588 lines
8'h93	592 lines

NL[7:0]	Number of drive lines
8'h94	596 lines
8'h95	600 lines
8'h96	604 lines
8'h97	608 lines
8'h98	612 lines
8'h99	616 lines
8'h9A	620 lines
8'h9B	624 lines
8'h9C	628 lines
8'h9D	632 lines
8'h9E	636 lines
8'h9F	640 lines
8'hA0-8'hFF	Setting inhibited

SCN[7:0]

These bits are used to set the gate scanning start position.

Table 59

	Gate Scan Start Position							
SCN[7:0]	SM=	=0	SM=1					
	GS=0	GS=1	GS=0	GS=1				
8'h00	G1	G(N)	G1	G(2N-640)				
8'h01-8'hFF	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited				

N: Number of line(s) defined by NL[7:0].

To set SCN, follow the restriction below.

Table 60

SM	GS	Restriction
0	0	(Gate scan start position -1) + (Number of line set by NL) ≤ 640
0	1	Gate scan start position ≤ 640
1	0	Gate scan start position -1)/2 + (Number of line set by NL) ≤ 640
1	1	Gate scan start position ≤ 640

NW[0]

This bit sets the number of lines for inversion liquid crystal drive by line inversion waveform (BCn=1, Display Timing Setting for Normal Mode (C1h) and Display Timing Setting for Idle Mode (C3h)). The polarity of waveform inverts in every 1 or 2 line(s).

Table 61

NW[0]	Number of line(s)
0	1 line
1	2 lines

BLV

The bit selects line or frame inversion during the retrace period.

BLV=0: Line inversion is selected for the retrace period when line inversion is selected by BCn=1, C1h - C3h.

BLV=1: Frame inversion is selected for the retrace period.

Table 62

BCn	BLV	Retrace period
0	-	Frame inversion
1	0	Line inversion
	1	Frame inversion

PTV

The bit is used to define inversion in the non-lit display area.

PTV=1: Frame inversion is selected for the non-lit display area when line inversion is selected (BCn=1).

Table 63

BCn	PTV	Inversion in non-lit display area	
0	*	Frame inversion	
1	0	Line inversion	
	1	Frame inversion	

"Retrace period" indicates back and front porches.

"Non-lit display area" indicates:

Non-display area other than the Partial Area defined by SR[8:0] and ER[8:0].

Display area when Sleep mode is off and the display operation is off.

Figure 30

BLS

The bit is used to define source output level in the Retrace Period. The polarity of grayscale voltage in the Retrace period is inverted.

Table 64

	Retrace period			
BLS	Positive polarity	Negative polarity		
0	V255	V0		
1	V0	V255		

NDL

The bit is used to define source output level in the non-lit display area. The polarity of grayscale voltage is inverted.

Table 65

	Non-lit display area				
NDL	Positive polarity	Negative polarity			
0	V255	V0			
1	V0	V255			

PTS[2:0], **PTDC**

These bits are used to define low-power consumption operation. PTS[1:0] defines output level in the retrace period and the non-lit display area. PTS[2] defines the operation of the grayscale amplifier and the step-up clock frequency while PTDC defines step-up clock frequency.

Table 66

	PTS	PTS	Source of in the non-lit disp	•	Grayscale amplifier's	Step-up clock frequency in the
PTDC	[2]	[1:0]	Positive polarity	Negative polarity	operation in the non-lit display area	non-lit display area (DDVDHA and DDVDHB)
_	0	00	V255	V0	V0 to V255	Normal operation
		01	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
		10	10 Setting inhibited Setting inhibited		Setting inhibited	Setting inhibited
		11	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
0	1	00	V255	V0	V0,V255	Normal operation
		01	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
		10	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
		11	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
1	1	00	V255	V0	V0,V255	Low-speed operation
		01	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
		10	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited
		11	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited

The polarity of the source output level in non-lit display area is set by NDL (C0h). The polarity of the source output level during the retrace period is defined by BLS (C0h). If PTDC=1, step-up operation may not be executed properly depending on DC0n and RTNn values.

PTG

The bit is used to select gate scan mode in non-lit display area.

Table 67

PTG	Gate output in non-lit display area			
0	Normal scan			
1	Interval scan			

Note: Set BCn=0 and select frame inversion in interval scan operation.

ISC[3:0]

These bits are used to set gate interval scan when PTG bit sets interval scan in non-lit display area. The scan interval is always of odd number. The polarity of liquid crystal drive waveform is inverted in the same timing as the interval scan.

Table 68

ISC[3:0]	Scan cycle	
4'h0	Setting inhibited	
4'h1	3 frames	
4'h2	5 frames	
4'h3	7 frames	
4'h4	9 frames	
4'h5	11 frames	
4'h6	13 frames	
4'h7	15 frames	
4'h8	17 frames	
4'h9	19 frames	
4'hA	21 frames	
4'hB	23 frames	
4'hC	25 frames	
4'hD	27 frames	
4'hE	29 frames	
4'hF	31 frames	

Display Timing Setting for Normal / Partial Mode (C1h)

Display Timing Setting for Idle Mode (C3h)

C1h	Displa	Display Timing Setting for Normal / Partial Mode											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	0	0	0	1	C1h
1 st parameter	1	#A	#B	х	0	0	0	0	0	0	0	BC0	XXh
2 nd parameter	1	#A	#B	х	0	0	0	0	0	0	0	0	XXh
3 rd parameter	1	#A	#B	х	0	0	RTN0 [5]	RTN0 [4]	RTN0 [3]	RTN0 [2]	RTN0 [1]	RTN0 [0]	XXh
4 th	1	#A	#B	x	BP0	BP0	BP0	BP0	BP0	BP0	BP0	BP0	XXh
parameter	'	<i>,,,</i> (""	^	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	70011
5 th	1	#A	#B	X	FP0	FP0	FP0	FP0	FP0	FP0	FP0	FP0	XXh
parameter	'	#/~	#5	^	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	XXII
C3h	Displa	y Timin	g Setting	for Idle I	/lode								
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	0	0	1	1	C3h
1 st parameter	1	#A	#B	х	0	0	0	0	0	0	0	BC2	XXh
2 nd parameter	1	#A	#B	Х	0	0	0	0	0	0	0	0	XXh
3 rd parameter	1	#A	#B	х	0	0	RTN2 [5]	RTN2 [4]	RTN2 [3]	RTN2 [2]	RTN2 [1]	RTN2 [0]	XXh
4 th parameter	1	#A	#B	х	BP2 [7]	BP2 [6]	BP2 [5]	BP2 [4]	BP2 [3]	BP2 [2]	BP2 [1]	BP2 [0]	XXh
5 th parameter	1	#A	#B	х	FP2 [7]	FP2 [6]	FP2 [5]	FP2 [4]	FP2 [3]	FP2 [2]	FP2 [1]	FP2 [0]	XXh
Description	Write #	Write #A="1" #B=" ↑"											
•	Read #	Read #A=" ↑" #B=" 1" & Insert dummy read											
	(Note:	(Note: When these commands are read via DSI, dummy read operation is not performed.)											
		Timings can be defined separately for different modes. C1h: Enabled when Normal Mode is On and Idle Mode is Off, or when Partial Mode is On and Idle Mode is Off.											
	C3h: E	3h: Enabled when Normal Mode is On and Idle Mode is On, or when Partial Mode is On and Idle Mode is On.											

Restriction	Make sure to set BP	Make sure to set BP and FP so that the restriction below is satisfied.				
	BP ≥ 4 lines	$FP \geq 4 \ lines$	$FP+BP \leq 256 \text{ lines}$			

Display Mode and Valid Register

Display_Setting commands (C1h and C3h) can be set separately for different display modes.

Table 69

Display mode	Number of clock per 1H (RTN)	Back porch (BP)	Front porch (FP)	Liquid crystal alternating cycle (BC)	
(Normal / Partial mode) + Idle mode off	C1h:RTN0	C1h:BP0	C1h:FP0	C1h:BC0	
Idle mode on + (Normal / Partial mode)	C3h:RTN2	C3h:BP2	C3h:FP2	C3h:BC2	

BC0, BC2

These bits define liquid crystal drive waveform inversion.

BCn = 0: Frame inversion waveform is selected.

BCn = 1: Line inversion waveform is selected.

For details, see "Line Inversion AC Drive".

RTN0[5:0], RTN2[5:0]

These bits set the number of clocks in one line period.

Table 70

RTNn[5:0]	Number of clocks per line	RTNn[5:0]	Number of clocks per line	RTNn[5:0]	Number of clocks per line
6'h00-6'h0F	Setting inhibited	6'h20	32	6'h30	48
6'h10	Setting inhibited	6'h21	33	6'h31	49
6'h11	Setting inhibited	6'h22	34	6'h32	50
6'h12	18	6'h23	35	6'h33	51
6'h13	19	6'h24	36	6'h34	52
6'h14	20	6'h25	37	6'h35	53
6'h15	21	6'h26	38	6'h36	54
6'h16	22	6'h27	39	6'h37	55
6'h17	23	6'h28	40	6'h38	56
6'h18	24	6'h29	41	6'h39	57
6'h19	25	6'h2A	42	6'h3A	58
6'h1A	26	6'h2B	43	6'h3B	59
6'h1B	27	6'h2C	44	6'h3C	60
6'h1C	28	6'h2D	45	6'h3D	61
6'h1D	29	6'h2E	46	6'h3E	62
6'h1E	30	6'h2F	47	6'h3F	63
6'h1F	31				

FP0[7:0], FP2[7:0], BP0[7:0], BP2[7:0]

These parameters define the retrace period (i.e. front and back porches) which appears before and after the display area. FPn bits define the number of front porch lines while BPn bits define the number of back porch lines.

Table 71

FPn[7:0] BPn[7:0]	Font porch Number of lines	Back porch Number of lines
8'h00	Setting inhibited	Setting inhibited
8'h01	Setting inhibited	Setting inhibited
8'h02	Setting inhibited	Setting inhibited
8'h03	Setting inhibited	Setting inhibited
8'h04	4	4
8'h05	5	5
8'h06	6	6
8'h07	7	7
8'h08	8	8
8'h09	9	9
8'h0A	10	10
8'h0B	11	11
8'h0C	12	12
8'h0D	13	13
8'h0E	14	14
8'h0F	15	15
:	:	:
8'h7F	127	127
8'h80	128	128
8'h81	Setting inhibited	Setting inhibited
:	:	:
8'hFF	Setting inhibited	Setting inhibited

Figure 31

Source/VCOM/Gate Driving Timing Setting (C4h)

C4h	Sourc	Source/VCOM/Gate Driving Timing Setting												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	
Command	0	1	1	Х	1	1	0	0	0	1	0	0	C4h	
1 st parameter	1	#A	#B	х	0	SDT [2]	SDT [1]	SDT [0]	0	NOW [2]	NOW [1]	NOW [0]	XXh	
2 nd parameter	1	#A	#B	х	0	0	0	0	0	MCP [2]	MCP [1]	MCP [0]	XXh	
3 rd parameter	1	#A	#B	х	0	VEQ W [2]	VEQ W [1]	VEQ W [0]	0	0	VEM [1]	VEM [0]	XXh	
4 th parameter	1	#A	#B	x	0	0	0	0	0	SPC W [2]	SPC W [1]	SPC W [0]	XXh	
Description	Read #	Write #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read (Note: When this command is read via DSI, dummy read operation is not performed.)												
Restriction														

SDT [2:0]

These bits are used to set the source output alternating position in one line period.

Table 72

SDT[2:0]	Source output alternating position (clocks)
3'h0	Setting inhibited
3'h1	1
3'h2	2
3'h3	3
3'h4	4
3'h5	5
3'h6	6
3'h7	7

NOW[2:0]

These bits set the gate output start position (non-overlap period) in one line period.

Table 73

NOW[2:0]	Gate drive start position (clocks)
3'h0	Setting inhibited
3'h1	1
3'h2	2
3'h3	3
3'h4	4
3'h5	5
3'h6	6
3'h7	7

MCP [2:0]

These bits are used to set the VCOM output alternating position in one line period.

Table 74

MCP[2:0]	VCOM alternating position (clocks)
3'h0	Setting inhibited
3'h1	1
3'h2	2
3'h3	3
3'h4	4
3'h5	5
3'h6	6
3'h7	7

VEQW[2:0]

These bits define VCOM equalize period. Equalizing is performed during the period defined by VEQW[2:0] starting from the VCOM alternating position.

Table 75

VEQW[2:0]	VCOM equalize period (clocks)
3'h0	Setting inhibited
3'h1	1
3'h2	2
3'h3	3
3'h4	4
3'h5	5
3'h6	6
3'h7	7

VEM[1:0]

VEM[0]: VCOMH equalize switch

VEM[0] = 1: When VCOMH level falls from VCOMH to VCOML level, the level first falls to the GND level and then to the VCOML level.

VEM[1]: VCOML equalize switch

VEM[1] = 1: When VCOMH level rises from VCOML level to VCOMH level, the level first goes up to the VCI level and then to the VCOMH level.

These bits reduce power consumption during VCOM drive period.

Table 76

VEM[1:0]	Operation
2'h0	Setting inhibited
2'h1	Setting inhibited
2'h2	Setting inhibited
2'h3	VCOMH/VCOML equalize

Figure 32

SPCW[2:0]

These bits are used to set source pre-charge period in one line period. Pre-charge period is set by SPCW[2:0] starting from the source output alternating position defined by SDT [2:0]. Source output is precharged only on the line where liquid crystal waveform inverts.

This function realizes power consumption reduction depending on image data. Check actual image quality and effect on the panel.

Table 77

SPCW[2:0]	Source pre-charge period (clocks)
3'h0	Setting inhibited
3'h1	1
3'h2	2
3'h3	3
3'h4	4
3'h5	5
3'h6	6
3'h7	7

Gamma Control

Gamma Set A (C8h)

C8h	Gamma Set A												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	1	0	0	0	C8h
1st parameter	1	1	1	х	0	0	0	PR0P_ R[4]	PR0P_ R[3]	PR0P_ R[2]	PR0P_ R[1]	PR0P_ R[0]	XXh
2nd parameter	1	1	1	х	0	0	0	PR1P_ R[4]	PR1P_ R[3]	PR1P_ R[2]	PR1P_ R[1]	PR1P_ R[0]	XXh
3rd parameter	1	1	1	х	PR3P_ R[3]	PR3P_ R[2]	PR3P_ R[1]	PR3P_ R[0]	PR2P_ R[3]	PR2P_ R[2]	PR2P_ R[1]	PR2P_ R[0]	XXh
4th parameter	1	1	1	х	PR5P_ R[3]	PR5P_ R[2]	PR5P_ R[1]	PR5P_ R[0]	PR4P_ R[3]	PR4P_ R[2]	PR4P_ R[1]	PR4P_ R[0]	XXh
5th parameter	1	1	1	х	0	0	0	0	PR6P_ R[3]	PR6P_ R[2]	PR6P_ R[1]	PR6P_ R[0]	XXh
6th parameter	1	1	1	х	PR8P_ R[3]	PR8P_ R[2]	PR8P_ R[1]	PR8P_ R[0]	PR7P_ R[3]	PR7P_ R[2]	PR7P_ R[1]	PR7P_ R[0]	XXh
7th parameter	1	1	1	х	PR10P _R[3]	PR10P _R[2]	PR10P _R[1]	PR10P _R[0]	PR9P_ R[3]	PR9P_ R[2]	PR9P_ R[1]	PR9P_ R[0]	XXh
8th parameter	1	1	1	х	0	0	0	PR11P _R[4]	PR11P _R[3]	PR11P _R[2]	PR11P _R[1]	PR11P _R[0]	XXh
9th parameter	1	1	1	х	0	0	0	PR12P _R[4]	PR12P _R[3]	PR12P _R[2]	PR12P _R[1]	PR12P _R[0]	XXh
10th parameter	1	1	1	х	0	0	0	PR0N_ R[4]	PR0N_ R[3]	PR0N_ R[2]	PR0N_ R[1]	PR0N_ R[0]	XXh
11th parameter	1	1	1	х	0	0	0	PR1N_ R[4]	PR1N_ R[3]	PR1N_ R[2]	PR1N_ R[1]	PR1N_ R[0]	XXh
12th parameter	1	1	1	х	PR3N_ R[3]	PR3N_ R[2]	PR3N_ R[1]	PR3N_ R[0]	PR2N_ R[3]	PR2N_ R[2]	PR2N_ R[1]	PR2N_ R[0]	XXh
13th parameter	1	1	1	х	PR5N_ R[3]	PR5N_ R[2]	PR5N_ R[1]	PR5N_ R[0]	PR4N_ R[3]	PR4N_ R[2]	PR4N_ R[1]	PR4N_ R[0]	XXh
14th parameter	1	1	1	х	0	0	0	0	PR6N_ R[3]	PR6N_ R[2]	PR6N_ R[1]	PR6N_ R[0]	XXh
15th parameter	1	1	1	х	PR8N_ R[3]	PR8N_ R[2]	PR8N_ R[1]	PR8N_ R[0]	PR7N_ R[3]	PR7N_ R[2]	PR7N_ R[1]	PR7N_ R[0]	XXh
16th parameter	1	1	1	х	PR10N _R[3]	PR10N _R[2]	PR10N _R[1]	PR10N _R[0]	PR9N_ R[3]	PR9N_ R[2]	PR9N_ R[1]	PR9N_ R[0]	XXh

17th parameter	1	1	↑	x	0	0	0	PR11N _R[4]	PR11N _R[3]	PR11N _R[2]	PR11N _R[1]	PR11N _R[0]	XXh	
18th parameter	1	1	1	x	0	0	0	PR12N _R[4]	PR12N _R[3]	PR12N _R[2]	PR12N _R[1]	PR12N _R[0]	XXh	
Description		Gamma Set A registers are applied to source pins numbered S(3n + 1) (n=0, 1,, 359) when they output frame memory data [23:16].												
	See "γ C	See "γ Correction Function" for detailed description of the parameters.												

Gamma Set B (C9h)

C9h	Gamma Set B												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	1	0	0	1	C9h
1st parameter	1	1	1	х	0	0	0	PR0P_ G[4]	PR0P_ G[3]	PR0P_ G[2]	PR0P_ G[1]	PR0P_ G[0]	XXh
2nd parameter	1	1	1	х	0	0	0	PR1P_ G[4]	PR1P_ G[3]	PR1P_ G[2]	PR1P_ G[1]	PR1P_ G[0]	XXh
3rd parameter	1	1	1	х	PR3P_ G[3]	PR3P_ G[2]	PR3P_ G[1]	PR3P_ G[0]	PR2P_ G[3]	PR2P_ G[2]	PR2P_ G[1]	PR2P_ G[0]	XXh
4th parameter	1	1	1	х	PR5P_ G[3]	PR5P_ G[2]	PR5P_ G[1]	PR5P_ G[0]	PR4P_ G[3]	PR4P_ G[2]	PR4P_ G[1]	PR4P_ G[0]	XXh
5th parameter	1	1	1	х	0	0	0	0	PR6P_ G[3]	PR6P_ G[2]	PR6P_ G[1]	PR6P_ G[0]	XXh
6th parameter	1	1	1	х	PR8P_ G[3]	PR8P_ G[2]	PR8P_ G[1]	PR8P_ G[0]	PR7P_ G[3]	PR7P_ G[2]	PR7P_ G[1]	PR7P_ G[0]	XXh
7th parameter	1	1	1	х	PR10P _G[3]	PR10P _G[2]	PR10P _G[1]	PR10P _G[0]	PR9P_ G[3]	PR9P_ G[2]	PR9P_ G[1]	PR9P_ G[0]	XXh
8th parameter	1	1	1	х	0	0	0	PR11P _G[4]	PR11P _G[3]	PR11P _G[2]	PR11P _G[1]	PR11P _G[0]	XXh
9th parameter	1	1	1	х	0	0	0	PR12P _G[4]	PR12P _G[3]	PR12P _G[2]	PR12P _G[1]	PR12P _G[0]	XXh
10th parameter	1	1	1	х	0	0	0	PR0N_ G[4]	PR0N_ G[3]	PR0N_ G[2]	PR0N_ G[1]	PR0N_ G[0]	XXh
11th parameter	1	1	1	х	0	0	0	PR1N_ G[4]	PR1N_ G[3]	PR1N_ G[2]	PR1N_ G[1]	PR1N_ G[0]	XXh
12th parameter	1	1	1	х	PR3N_ G[3]	PR3N_ G[2]	PR3N_ G[1]	PR3N_ G[0]	PR2N_ G[3]	PR2N_ G[2]	PR2N_ G[1]	PR2N_ G[0]	XXh
13th parameter	1	1	1	х	PR5N_ G[3]	PR5N_ G[2]	PR5N_ G[1]	PR5N_ G[0]	PR4N_ G[3]	PR4N_ G[2]	PR4N_ G[1]	PR4N_ G[0]	XXh
14th parameter	1	1	1	х	0	0	0	0	PR6N_ G[3]	PR6N_ G[2]	PR6N_ G[1]	PR6N_ G[0]	XXh
15th parameter	1	1	1	х	PR8N_ G[3]	PR8N_ G[2]	PR8N_ G[1]	PR8N_ G[0]	PR7N_ G[3]	PR7N_ G[2]	PR7N_ G[1]	PR7N_ G[0]	XXh
16th parameter	1	1	1	х	PR10N _G[3]	PR10N _G[2]	PR10N _G[1]	PR10N _G[0]	PR9N_ G[3]	PR9N_ G[2]	PR9N_ G[1]	PR9N_ G[0]	XXh

17th parameter	1	1	↑	х	0	0	0	PR11N _G[4]	PR11N _G[3]	PR11N _G[2]	PR11N _G[1]	PR11N _G[0]	XXh	
18th parameter	1	1	1	х	0	0	0	PR12N _G[4]	PR12N _G[3]	PR12N _G[2]	PR12N _G[1]	PR12N _G[0]	XXh	
Description	data [15	Gamma Set B registers are applied to source pins numbered S(3n + 2) (n=0, 1,, 359) when they output frame memory data [15:8]. See "γ Correction Function" for detailed description of the parameters.												

Gamma Set C (CAh)

CAh	Gamma Set C												
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	0	1	0	1	0	CAh
1st parameter	1	1	1	х	0	0	0	PR0P_ B[4]	PR0P_ B[3]	PR0P_ B[2]	PR0P_ B[1]	PR0P_ B[0]	XXh
2nd parameter	1	1	1	х	0	0	0	PR1P_ B[4]	PR1P_ B[3]	PR1P_ B[2]	PR1P_ B[1]	PR1P_ B[0]	XXh
3rd parameter	1	1	1	х	PR3P_ B[3]	PR3P_ B[2]	PR3P_ B[1]	PR3P_ B[0]	PR2P_ B[3]	PR2P_ B[2]	PR2P_ B[1]	PR2P_ B[0]	XXh
4th parameter	1	1	1	х	PR5P_ B[3]	PR5P_ B[2]	PR5P_ B[1]	PR5P_ B[0]	PR4P_ B[3]	PR4P_ B[2]	PR4P_ B[1]	PR4P_ B[0]	XXh
5th parameter	1	1	1	х	0	0	0	0	PR6P_ B[3]	PR6P_ B[2]	PR6P_ B[1]	PR6P_ B[0]	XXh
6th parameter	1	1	1	х	PR8P_ B[3]	PR8P_ B[2]	PR8P_ B[1]	PR8P_ B[0]	PR7P_ B[3]	PR7P_ B[2]	PR7P_ B[1]	PR7P_ B[0]	XXh
7th parameter	1	1	1	х	PR10P _B[3]	PR10P _B[2]	PR10P _B[1]	PR10P _B[0]	PR9P_ B[3]	PR9P_ B[2]	PR9P_ B[1]	PR9P_ B[0]	XXh
8th parameter	1	1	1	х	0	0	0	PR11P _B[4]	PR11P _B[3]	PR11P _B[2]	PR11P _B[1]	PR11P _B[0]	XXh
9th parameter	1	1	1	х	0	0	0	PR12P _B[4]	PR12P _B[3]	PR12P _B[2]	PR12P _B[1]	PR12P _B[0]	XXh
10th parameter	1	1	1	х	0	0	0	PR0N_ B[4]	PR0N_ B[3]	PR0N_ B[2]	PR0N_ B[1]	PR0N_ B[0]	XXh
11th parameter	1	1	1	х	0	0	0	PR1N_ B[4]	PR1N_ B[3]	PR1N_ B[2]	PR1N_ B[1]	PR1N_ B[0]	XXh
12th parameter	1	1	1	х	PR3N_ B[3]	PR3N_ B[2]	PR3N_ B[1]	PR3N_ B[0]	PR2N_ B[3]	PR2N_ B[2]	PR2N_ B[1]	PR2N_ B[0]	XXh
13th parameter	1	1	1	х	PR5N_ B[3]	PR5N_ B[2]	PR5N_ B[1]	PR5N_ B[0]	PR4N_ B[3]	PR4N_ B[2]	PR4N_ B[1]	PR4N_ B[0]	XXh
14th parameter	1	1	1	х	0	0	0	0	PR6N_ B[3]	PR6N_ B[2]	PR6N_ B[1]	PR6N_ B[0]	XXh
15th parameter	1	1	1	х	PR8N_ B[3]	PR8N_ B[2]	PR8N_ B[1]	PR8N_ B[0]	PR7N_ B[3]	PR7N_ B[2]	PR7N_ B[1]	PR7N_ B[0]	XXh
16th parameter	1	1	1	х	PR10N _B[3]	PR10N _B[2]	PR10N _B[1]	PR10N _B[0]	PR9N_ B[3]	PR9N_ B[2]	PR9N_ B[1]	PR9N_ B[0]	XXh

17th parameter	1	1	↑	x	0	0	0	PR11N _B[4]	PR11N _B[3]	PR11N _B[2]	PR11N _B[1]	PR11N _B[0]	XXh
18th parameter	1	1	1	х	0	0	0	PR12N _B[4]	PR12N _B[3]	PR12N _B[2]	PR12N _B[1]	PR12N _B[0]	XXh
Description	Description Gamma Set C registers are applied to source pins numbered S(3n + 3) (n=0, 1,, 359) when they output frame memory data [7:0].												
	See " γ Correction Function" for detailed description of the parameters.												

Power Control

Power Setting for Common (D0h)

D0h	Power Setting for Common												
	DCX	RDX	WR X	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	1	0	0	0	0	D0h
1st parameter	1	#A	#B	х	0	0	0	0	0	0	0	0	XXh
2nd parameter	1	#A	#B	х	0	VC3 [2]	VC3 [1]	VC3 [0]	0	VC2 [2]	VC2 [1]	VC2 [0]	XXh
3rd parameter	1	#A	#B	х	1	1	0	0	0	0	0	0	XXh
4th parameter	1	#A	#B	х	1	0	0	VRH [4]	VRH [3]	VRH [2]	VRH [1]	VRH [0]	XXh
Description	Write #A="1" #B=" ↑"												
	Read #A=" ↑" #B=" 1" & Insert dummy read												
	(Note: When this command is read via DSI, dummy read operation is not performed.)												

VC2[2:0]

These bits are used to define VCI2 level using VCIR level. VCI2 is the reference voltage of VGH and VGL voltages.

Table 78

	VCI2 voltage					
VC2[2:0]	(Step-up output reference voltage)					
3'h0	Setting inhibited					
3'h1	VCIR × 1.36					
3'h2	VCIR × 1.44					
3'h3	VCIR × 1.52					
3'h4	VCIR × 1.60					
3'h5	VCIR × 1.68					
3'h6	Setting inhibited					
3'h7	Setting inhibited					
N. 1	4) (01 () (010 0 1) (010)					

Note: VGH=VCI2 x 4. VGL= -(VCI2 x 2+VCI3).

VC3[2:0]

These bits are used to define VCI3 level using VCIR level. VCI3 is the reference voltage of VGL.

Table 79

VC3[2:0]	VCI3 voltage (Step-up output reference voltage)
3'h0	Setting inhibited
3'h1	Setting inhibited
3'h2	Setting inhibited
3'h3	VCIR x 0.800
3'h4	Setting inhibited
3'h5	VCIR x 0.889
3'h6	Setting inhibited
3'h7	VCIR x 1.000

Note: $VGL = -(VCI2 \times 2 + VCI3)$

VRH[4:0]

Sets VREG1 voltage from 1.475 x VCIR to 1.875 x VCIR. VCIR is the internal reference power supply.

Table 80

VRH[4:0]	VREG1				
5'h00-5'h0A	Setting inhibited				
5'h0B	VCIR × 1.475				
5'h0C	VCIR × 1.500				
5'h0D	VCIR × 1.525				
5'h0E	VCIR × 1.550				
5'h0F	VCIR × 1.575				
5'h10	VCIR × 1.600				
5'h11	VCIR × 1.625				
5'h12	VCIR × 1.650				
5'h13	VCIR × 1.675				
5'h14	VCIR × 1.700				

VRH[4:0]	VREG1
5'h15	VCIR × 1.725
5'h16	VCIR × 1.750
5'h17	VCIR × 1.775
5'h18	VCIR × 1.800
5'h19	VCIR × 1.825
5'h1A	VCIR × 1.850
5'h1B	VCIR × 1.875
5'h1C	VCIR × 1.900
5'h1D	VCIR × 1.925
5'h1E	VCIR × 1.950
5'h1F	VCIR × 1.975

Note: Make sure that VREG1≦DDVDH*-0.5V(*=A,B).

VCOM Setting (D1h)

D1h	VCOM	Setting	l										
	DCX	RDX	WR X	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	1	0	0	0	1	D1h
1st parameter	1	#A	#B	x	0	0	0	0	0	0	WCV DV	WCV CM	XXh
2nd parameter	1	#A	#B	x	0	0	0	0	0	0	0	0	XXh
3rd parameter	1	#A	#B	x	1	VCM [6]	VCM [5]	VCM [4]	VCM [3]	VCM [2]	VCM [1]	VCM [0]	XXh
4th parameter	1	#A	#B	x	1	1	1	VDV [4]	VDV [3]	VDV [2]	VDV [1]	VDV [0]	XXh
Description	Read #	Write #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read (Note: When this command is read via DSI, dummy read operation is not performed.)											

WCVCM

WCVCM=1: Used to enable writing to 2nd parameter's VCM [6:0]. To set NVM write data, write WCVCM=1.

WCVCM=0: Used to disable writing to 2nd parameter's VCM [6:0]. Values loaded from NVM are retained even if this parameter is written.

WCVDV

WCVDC=1: Used to enable writing to the 3rd parameter's VDV[4:0]. To set NVM write data, write WCVDC=1.

WCVDC=0: Used to disable writing to the 3rd parameter's VDV[4:0]. Values loaded from NVM are retained even if this parameter is written.

VCM[6:0]

These bits are used to set the amplification factor of VCOMH using VREG1.

Table 81

VCM[6:0]	VCOMH voltage	VCM[6:0]	VCOMH voltage	VCM[6:0]	VCOMH voltage
7'h00	VREG1 x 0.492	7'h2B	VREG1 x 0.664	7'h56	VREG1 x 0.836
7'h01	VREG1 x 0.496	7'h2C	VREG1 x 0.668	7'h57	VREG1 x 0.840
7'h02	VREG1 x 0.500	7'h2D	VREG1 x 0.672	7'h58	VREG1 x 0.844
7'h03	VREG1 x 0.504	7'h2E	VREG1 x 0.676	7'h59	VREG1 x 0.848
7'h04	VREG1 x 0.508	7'h2F	VREG1 x 0.680	7'h5A	VREG1 x 0.852
7'h05	VREG1 x 0.512	7'h30	VREG1 x 0.684	7'h5B	VREG1 x 0.856
7'h06	VREG1 x 0.516	7'h31	VREG1 x 0.688	7'h5C	VREG1 x 0.860
7'h07	VREG1 x 0.520	7'h32	VREG1 x 0.692	7'h5D	VREG1 x 0.864
7'h08	VREG1 x 0.524	7'h33	VREG1 x 0.696	7'h5E	VREG1 x 0.868
7'h09	VREG1 x 0.528	7'h34	VREG1 x 0.700	7'h5F	VREG1 x 0.872
7'h0A	VREG1 x 0.532	7'h35	VREG1 x 0.704	7'h60	VREG1 x 0.876
7'h0B	VREG1 x 0.536	7'h36	VREG1 x 0.708	7'h61	VREG1 x 0.880
7'h0C	VREG1 x 0.540	7'h37	VREG1 x 0.712	7'h62	VREG1 x 0.884
7'h0D	VREG1 x 0.544	7'h38	VREG1 x 0.716	7'h63	VREG1 x 0.888
7'h0E	VREG1 x 0.548	7'h39	VREG1 x 0.720	7'h64	VREG1 x 0.892
7'h0F	VREG1 x 0.552	7'h3A	VREG1 x 0.724	7'h65	VREG1 x 0.896
7'h10	VREG1 x 0.556	7'h3B	VREG1 x 0.728	7'h66	VREG1 x 0.900
7'h11	VREG1 x 0.560	7'h3C	VREG1 x 0.732	7'h67	VREG1 x 0.904
7'h12	VREG1 x 0.564	7'h3D	VREG1 x 0.736	7'h68	VREG1 x 0.908
7'h13	VREG1 x 0.568	7'h3E	VREG1 x 0.740	7'h69	VREG1 x 0.912
7'h14	VREG1 x 0.572	7'h3F	VREG1 x 0.744	7'h6A	VREG1 x 0.916
7'h15	VREG1 x 0.576	7'h40	VREG1 x 0.748	7'h6B	VREG1 x 0.920
7'h16	VREG1 x 0.580	7'h41	VREG1 x 0.752	7'h6C	VREG1 x 0.924
7'h17	VREG1 x 0.584	7'h42	VREG1 x 0.756	7'h6D	VREG1 x 0.928
7'h18	VREG1 x 0.588	7'h43	VREG1 x 0.760	7'h6E	VREG1 x 0.932
7'h19	VREG1 x 0.592	7'h44	VREG1 x 0.764	7'h6F	VREG1 x 0.936
7'h1A	VREG1 x 0.596	7'h45	VREG1 x 0.768	7'h70	VREG1 x 0.940
7'h1B	VREG1 x 0.600	7'h46	VREG1 x 0.772	7'h71	VREG1 x 0.944
7'h1C	VREG1 x 0.604	7'h47	VREG1 x 0.776	7'h72	VREG1 x 0.948
7'h1D	VREG1 x 0.608	7'h48	VREG1 x 0.780	7'h73	VREG1 x 0.952
7'h1E	VREG1 x 0.612	7'h49	VREG1 x 0.784	7'h74	VREG1 x 0.956
7'h1F	VREG1 x 0.616	7'h4A	VREG1 x 0.788	7'h75	VREG1 x 0.960
7'h20	VREG1 x 0.620	7'h4B	VREG1 x 0.792	7'h76	VREG1 x 0.964
7'h21	VREG1 x 0.624	7'h4C	VREG1 x 0.796	7'h77	VREG1 x 0.968
7'h22	VREG1 x 0.628	7'h4D	VREG1 x 0.800	7'h78	VREG1 x 0.972
7'h23	VREG1 x 0.632	7'h4E	VREG1 x 0.804	7'h79	VREG1 x 0.976
7'h24	VREG1 x 0.636	7'h4F	VREG1 x 0.808	7'h7A	VREG1 x 0.980
7'h25	VREG1 x 0.640	7'h50	VREG1 x 0.812	7'h7B	VREG1 x 0.984
7'h26	VREG1 x 0.644	7'h51	VREG1 x 0.816	7'h7C	VREG1 x 0.988
7'h27	VREG1 x 0.648	7'h52	VREG1 x 0.820	7'h7D	VREG1 x 0.992
7'h28	VREG1 x 0.652	7'h53	VREG1 x 0.824	7'h7E	VREG1 x 0.996
7'h29	VREG1 x 0.656	7'h54	VREG1 x 0.828	7'h7F	VREG1 x 1.000
7'h2A	VREG1 x 0.660	7'h55	VREG1 x 0.832		

VDV[4:0]

These bits are used to set VCOM alternating amplitude as tabulated below.

Table 82

VDV[4:0]	VCOM amplitude	VDV[4:0]	VCOM amplitude
5'h00	VREG1×1.32	5'h10	VREG1×1.00
5'h01	VREG1×1.30	5'h11	VREG1×0.98
5'h02	VREG1×1.28	5'h12	VREG1×0.96
5'h03	VREG1×1.26	5'h13	VREG1×0.94
5'h04	VREG1×1.24	5'h14	VREG1×0.92
5'h05	VREG1×1.22	5'h15	VREG1×0.90
5'h06	VREG1×1.20	5'h16	VREG1×0.88
5'h07	VREG1×1.18	5'h17	VREG1×0.86
5'h08	VREG1×1.16	5'h18	VREG1×0.84
5'h09	VREG1×1.14	5'h19	VREG1×0.82
5'h0A	VREG1×1.12	5'h1A	VREG1×0.80
5'h0B	VREG1×1.10	5'h1B	VREG1×0.78
5'h0C	VREG1×1.08	5'h1C	VREG1×0.76
5'h0D	VREG1×1.06	5'h1D	VREG1×0.74
5'h0E	VREG1×1.04	5'h1E	VREG1×0.72
5'h0F	VREG1×1.02	5'h1F	VREG1×0.70

Note: Make sure that VCOM amplitude is 6.0V or less.

Power Setting for Normal/Partial Mode (D2h)

Power Setting for Idle Mode (D4h)

D2h	Power	Setting	for Norr	nal/Partia	al Mode								
	DCX	RDX	WR X	DB 15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	1	0	0	1	0	D2h
1st parameter	1	#A	#B	х	0	0	0	0	0	0	AP0 [0]	AP0 [0]	XXh
2nd parameter	1	#A	#B	х	0	DC10 [2]	DC10 [1]	DC10 [0]	0	DC00 [2]	DC00 [1]	DC00 [0]	XXh
3rd parameter	1	#A	#B	х	0	0	0	0	0	DC30 [2]	DC30 [1]	DC30 [0]	XXh
D4h	Power	Setting	for Idle	Mode									
	DCX	RDX	WR X	DB 15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	0	1	0	1	0	0	D4h
1st parameter	1	#A	#B	х	0	0	0	0	0	0	AP2 [0]	AP2 [0]	XXh
2nd parameter	1	#A	#B	х	0	DC12 [2]	DC12 [1]	DC12 [0]	0	DC02 [2]	DC02 [1]	DC02 [0]	XXh
3rd parameter	1	#A	#B	х	0	0	0	0	0	DC32 [2]	DC32 [1]	DC32 [0]	XXh
Description	Read # (Note: Power D2h is	Write #A="1" #B=" ↑" Read #A="↑" #B=" 1" & Insert dummy read (Note: When these commands are read via DSI, dummy read operation is not performed.) Power control is definable for each mode. D2h is enabled when Normal/Partial Mode is On and Idle Mode is Off. D4h is enabled when Normal/Partial Mode is On and Idle Mode is On.											

AP0[1:0] Normal/Partial mode

AP2[1:0] Idle mode

These bits adjust the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current will enhance the drivability of the LCD, however more current will be consumed. Adjust the constant current considering the trade-off between the display quality and the current consumption.

Table 83

AP0[1:0] AP2[1:0]	Constant current in operational amplifier in LCD power supply circuit
2'h0	Halt operational amplifier and step-up circuits
2'h1	0.5
2'h2	0.75
2'h3	1

Note: The values represent the ratios of constant current in respective APn[1:0] settings to the constant current when APn[1:0] is set to 2'h3.

DC00[2:0] Normal/Idle mode

DC02[2:0] Idle mode

These bits are used to set the step-up clock frequency of the step-up circuit that generates DDVDHA/DDVDHB.

Table 84

DC00[2:0]	Step-up clock frequency (f _{DCDC1})								
DC02[2:0]	PTDC=0 (Normal operation)	PTDC=1 (Low-speed operation)							
3'h0	f _{osc} /8	f _{osc} /10							
3'h1	f _{OSC} /10	f _{OSC} /12							
3'h2	fosc /12	f _{osc} /16							
3'h3	fosc /16	f _{osc} /20							
3'h4	f _{OSC} /20	f _{osc} /24							
3'h5	f _{OSC} /24	f _{osc} /32							
3'h6	The step-up circuit halts	The step-up circuit halts							
3'h7	f _{OSC} /32	f _{OSC} /32							

DC10[2:0]: Normal / Partial mode

DC12[2:0]: Idle mode

These bits are used to define the step-up clock frequency of the step-up circuit that generates VGH and VGL.

Table 85

DC10[2:0] DC12[2:0]	Step-up clock frequency (f _{DCDC2})
3'h0	Line frequency / 2
3'h1	Line frequency / 4
3'h2	Line frequency / 8
3'h3	Line frequency / 16
3'h4	Line frequency / 32
3'h5	Setting inhibited
3'h6	The step-up circuit halts
3'h7	Setting inhibited

DC30[2:0] Normal / Partial mode

DC32[2:0] Idle mode

These bits are used to define the step-up clock frequency of the step-up circuit that generates VCL.

Table 86

DC30[2:0]	Step-up clock frequency
DC32[2:0]	(f _{DCDC3})
3'h0	f _{osc} /16
3'h1	f _{osc} /20
3'h2	f _{osc} /24
3'h3	Frequency set by DC00/DC02
3'h4	Line frequency / 2
3'h5	Line frequency / 4
3'h6	The step-up circuit halts
3'h7	Line frequency / 8

NVM Control

NVM Access Control (E0h)

E0h	NVM A	NVM Access Control											
	DCX	RDX	WRX	DB15 -8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	1	0	0	0	0	0	E0h
1st parameter	1	#A	#B	х	0	0	0	0	0	0	0	NVAE	XXh
2nd parameter	1	#A	#B	Х	0	FTT	0	1	1	0	0	NVAD [0]	XXh
3rd parameter	1	#A	#B	Х	0	0	0	TEM [0]	0	0	VERIF LGWR	VERIF LGER	XXh
4th parameter	1	#A	#B	х	0	0	0	0	0	1	1	1	XXh
Description	Read #	Write #A="1" #B=" 1" & Insert dummy read (Note: When this command is read via DSI, dummy read operation is not performed.)											

NVAE:

The bit is used to enable access to NVM when NVAE=1.

FTT:

NVM control register. When FTT=1, NVM write/erase is triggered. The bit is set to 0 when NVM write and verify is finished.

NVAD[0]:

The bit decides which command is used to write data to NVM.

Table 87

NVAD[0]	Command used to write data to NVM
0	A1h: DDB0-DDB3[7:0]
1	D1h: VCM[6:0], VDV[4:0]

VERIFLGER

This bit is used for data read only. Writing data to this bit is ignored. Data erase and erase verify are executed before performing a data write. This bit is written according to the result of the erase verify.

If the result of erase verify is good: VERIFLGER=1 If the result of erase verify is not good: VERIFLGER=0

VERIFLGWR

This bit is used for data read only. Writing data to this bit is ignored. Data write and write verify are executed before performing a data erase. This bit is written according to the result of the write verify.

If the result of write verify is good: VERIFLGWR=1 If the result of write verify is not good: VERIFLGWR=0

Figure 33

TEM [0]

This bit is used to define TE output.

Table 88

TEM[0]	TE output
1'h0	Tearing Effect
	TE is used to output the result of automatic NVM write data verify. (VERIFLGWR)
1'h1	TE = 0 The write data was correct.
	TE = 1 The write data was not correct.

Note: The TE pin output is fixed at the low level when Sleep mode is on or Tearing Effect output is off.

set_DDB_write_control (E1h)

E1h	set_D	set_DDB_write_control											
	DCX	RDX	WRX	DB15-8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex
Command	0	1	1	Х	1	1	1	0	0	0	0	1	E1h
1st parameter	1	#A	#B	х	0	0	0	0	0	0	0	WCD DB	XXh
Description	Read	Write #A="1" #B=" ↑" Read #A=" ↑" #B=" 1" & Insert dummy read (Note: When reading by DSI, there is no dummy read.)											

WCDDB

WCDDB=1: Writing to A1h's ID1[15:0] and ID2[15:0] is enabled. The data written to A1h: ID1[15:0] and ID2[15:0] can be written to NVM. ID2[15:0]≠16'hFFFF shall be set. No data can be written using read_DDB_continue (A8h).

WCDDB=0: Writing data to A1h's ID1[15:0] and ID2[15:0] cannot be performed. Write WCDDB=0 except when writing to the NVM.

Reset

The R61523 internal initial setting is done with a RESET input. During the RESET period, no access, whether it is command write or frame memory data write operation, is accepted. The source driver unit and the power supply circuit unit are also reset to the respective initial states when RESET signal is inputted to the R61523.

Initial state of command

The initial state of command is shown in Default Modes and Values table in Command List. See "Default Modes and Values." The command setting is initialized to the default value when a Hardware Reset is executed.

Initial state of Frame Memory data

The Frame Memory data is not automatically initialized by inputting RESET. It needs to be initialized by software during Display Off period.

Initial state of input/output pin

Table 89

Pin name	After H/W reset	Pin name	After H/W reset
S1-1080	GND	C11AP/C11AM	Hi-Z/Hi-Z
G1-640	GND	C11BP/C11BM	Hi-Z/Hi-Z
VCOM	GND	C12AP/C12AM	Hi-Z/Hi-Z
VCOMH	VCI	C12BP/C12BM	Hi-Z/Hi-Z
VCOML	GND	C13P/ C13M	Hi-Z/Hi-Z
VCL	GND	C21P/C21M	VCI/GND
VGH	VCI	C22P/C22M	VCI/GND
VGL	GND	C23P/C23M	VCI/GND
VREG1	VGS	C31P/C31M	VCI/GND
DDVDHA	VCI		
DDVDHB	VCI	1	
TE	GND		
LEDPWM	GND]	
VDD	1.5V		

Frame Memory

The frame memory retains image data of up to 5,529,600 bits (640 x 360 x 24 bits).

Address Mapping from Memory to Display

Normal Display On or Partial Mode On

In this mode, a content of the frame memory within an area where column pointer is 0000h to 0167h and page pointer is 0000h to 027Fh is displayed.

Figure 34

Write/Read Direction from/to Host Processor

The figure below illustrates data stream from the host processor.

Figure 35

The data is written in the order illustrated above. The Counter which dictates write position on the physical memory is controlled by "set_address_mode (36h)" command Bits B5, B6, B7 as illustrated below.

Figure 36

Table 90

B5	В6	В7	Column Address	Page Address
0	0	0	Direct to Physical Column Pointer	Direct to Physical Page Pointer
0	0	1	Direct to Physical Column Pointer	Direct to (639-Physical Page Pointer)
0	1	0	Direct to (359-Physical Column Pointer)	Direct to Physical Page Pointer
0	1	1	Direct to (359-Physical Column Pointer)	Direct to (639-Physical Page Pointer)
1	0	0	Direct to Physical Page Pointer	Direct to Physical Column Pointer
1	0	1	Direct to (639-Physical Page Pointer)	Direct to Physical Column Pointer
1	1	0	Direct to Physical Page Pointer	Direct to (359-Physical Column Pointer)
1	1	1	Direct to (639-Physical Page Pointer)	Direct to (359-Physical Column Pointer)

For each image orientation, the controls on the columns and page counters apply as below.

Note: Data is always written to the Frame Memory in the same order, regardless of the Memory Write Direction set by set_address_mode (36h) bits B7, B6 and B5. The write order for each pixel unit is as follows:

Table 91

[D23	D22	D21	D20	D19	D18	D17	D16
	R7	R6	R5	R4	R3	R2	R1	R0

D15	D14	D13	D12	D11	D10	D9	D8
G7	G6	G5	G4	G3	G2	G1	G0

D7	D6	D5	D4	D3	D2	D1	D0
В7	B6	B5	B4	В3	B2	B1	В0

Table 92

Condition	Column counter	Page counter	Note
When commands write_memory_start (2Ch) and read_memory_start (2Eh) are received.	Back to Start Column	Back to Start Page	
Execute Pixel Read/Write	Increment by 1	No change	
When column counter value is larger than "End Column"	Back to Start Column	Increment by 1	
When column counter value is larger than "End Column" and page counter value is larger than "End Page"	STOP	STOP	Entry Mode(B3h) WEMODE=0
	Back to Start Column	Back to Start Page	Entry Mode(B3h) WEMODE=1

One pixel unit represents 1 column and 1 page counter value on the Frame Memory. See the next page for the resultant image for each orientation setting.

Figure 37

Figure 38

Figure 39

Self-Diagnostic Function

The R61523 supports the self-diagnostic functions. Set get_diagnostic_result (0Fh) 1st parameter's D6 bit according to the following flow chart.

Figure 40

Dynamic Backlight Control Function

The R61523 supports BLC (backlight control) function to control brightness of backlight and to process image dynamically. This function enables to reduce backlight power and minimize the effect of reduced power on the display image.

The display image is dynamically controlled by BLC function. The availability of this function ranges from moving picture such as TV image to still picture such as menu. The histogram of display data is analyzed by BLC function, according to the brightness range of backlight set by parameters. The brightness of backlight and image processing coefficient are calculated so that image data is optimized. Backlight power is reduced without changing display image.

Notes 1: The BLC function is enabled by BLCON bit setting (B8h: Back Light Control).

- 2: The effect of BLC function on power efficiency and display quality depends on image data and the setting. Check display quality on the panel.
- Control backlight dynamically according to the image histogram.
- PWM pin for LED backlight adjustment (LEDPWM)
- PWM signal control register set by the host processor. Backlight dimmer is adjusted by calculating internally decided PWM value and maximum PWM value from the host processor.

System Configuration

1. The PWM signal is used to directly connect the R61523 and LED driver IC. The LED driver IC is controlled entirely via the R61523.

Figure 41

2. The host processor reads LED brightness information internally generated by BLC processing from the R61523 via MIPI DBI. Then, the LED driver IC is controlled from the host processor. There is the time difference between brightness adjustment by PWM and displaying data processed from the R61523. Check the effect on the image.

Figure 42

BLC Parameter Setting

The backlight control function has the following two functions.

- Image processing and backlight control processing
- Processing for retaining the grayscale of the display image that has turned white

These functions are set by the following parameters.

- (1) BLC operating threshold (THREW)
- (2) Amount of change of threshold grayscale value (Dth) per frame (PITCHW)
- (3) Difference between two grayscale values counted by the histogram counter (CGAPW)
- (4) Backlight brightness adjustment range (ULMTW and LLMTW)
- (5) Gamma conversion table (TBL_MIN and TBLx[7:0])
- (6) Interpolation to prevent display image from turning white (COEFK)

(1) THREW[4:0]

This parameter sets the ratio (percentage) of the maximum number of pixels that makes display image white (= data "255") to the total of pixels by image processing. The ratio can be set from 0 to 62% in units of two percent. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (Dth) that makes display image white is set so that the number of the pixels set by this parameter does not change.

To reduce the power by about 30%, set the above ratio to 30% (THREW = 5'h0F). When the value set by this parameter exceeds the range of Dth to be stated later, the priority is given to the range of threshold grayscale value (Dth).

According to the relationship between threshold grayscale value (Dth) and gamma conversion table (see (5)), the rate of backlight brightness reduction (= the rate of power reduction) and image correction factor are set.

- The larger THREW value tends to enhance the effect of reducing backlight power, and increases the image correction factor. In this case, the effect on image quality tends to increase (see note 1).
- The smaller THREW value tends to reduce the effect of reducing backlight power, and decreases the image correction factor. In this case, the effect on image quality tends to decrease (see note 1).

Notes: 1. The tendency for backlight power reduction and the effect on image by BLC function depend on image data. Check actual display quality.

2. The results of the above histogram analysis are enabled from the next frame.

Figure 43

(2) PITCHW[3:0]

This parameter sets the amount of change of threshold grayscale value (Dth) that makes display image white per frame in units of one half of the grayscale. When the target (Dth_t) is changed by the histogram change of input image including video image, this parameter can adjust the amount of changing threshold grayscale value (Dth). So, this parameter is effective in reducing a sharp change of backlight brightness. Make sure CGAPW[4:0] \geq PITCHW[3:0] when setting.

Figure 44

(3) CGAPW[4:0]

The difference of the two grayscales (Dth_c1 and Dth_c2) counted by the present threshold counter is set in units of one half of the grayscale. This parameter is effective in slowing the change of threshold grayscale value (Dth). So, the speed of the change of Dth is adjusted to reduce subtle changes and flickers. Make sure $CGAPW[4:0] \ge PITCHW[3:0]$ when setting.

Figure 45

(4) ULMTW[7:0], LLMTW[7:0]

The possible range of the threshold grayscale value (Dth) that makes display image white is set in units of one grayscale. ULMTW and LLMTW set the maximum grayscale and the minimum grayscale, respectively. Dth can be changed within the range set by ULMTW and LLMTW.

When there is no effect on power saving due to a large number of pixels displaying white color, that is, in cases such as GUI, the R61523 can save power consumption by setting ULMTW lower than the maximum grayscale if saving power consumption precedes the display quality.

Figure 46

(5) TBL_*[7:0]

The reference values used for interpolation calculation in the gamma conversion table are set by 8-bit TBL_*[7:0]. Interpolation is performed as follows: First, four grayscale values are specified by TBL_*[7:0]. Then, the output data corresponding to the input data to 31 grayscale values specified at even interval between the adjacent two grayscale values of the four grayscale values specified by TBL_*[7:0] is calculated by linear interpolation.

Figure 47

The table setting value is calculated by the following formula according to panel gamma value.

Table setting value = 255 x (table input grayscale / 255) ^ gamma

As the input table grayscale, the above calculation formula is applied to the five grayscale values (grayscales 127, 159, 191, 223, and 255) to calculate the table values. The table value is set as TBL^* . The following table is applied to the case that gamma is set to 2.2.

Table 93

Register	TBL3	TBL4	TBL5	TBL6
Table input grayscale	127	159	191	223
Table setting value	55	90	135	190

(6) COEFK[4:0]

This register sets the range of the grayscale that prevents display image from turning white, according to the ratio of the grayscale stated here to the grayscale number that makes data white. The ratio can be set from 0% to 100%. The first grayscale (S) that starts grayscale interpolation to prevent display image from turning white is calculated by this register and Dth. Then, the number of grayscales between this grayscale (S) and the maximum grayscale is calculated by interpolation function, and it is used as image processing pixel value.

The larger COEFK[4:0] setting value increases the number of grayscales available in interpolation and relatively decreases the contrast between interpolation sections. As a result, the gamma value changes, and then, the brightness decreases. Also, the color of the section changes. In interpolation factor, there is a trade-off between contrast between interpolation section and the interpolation that the gamma value changes.

Figure 48

PWM Signal Setting

The PWM signal is output from the LEDPWM pin according to BDCV[7:0] bit settings and brightness information (8 bits) that is output from BLC control circuit.

PWM output specification (When LEDPWMPOL = 0)

Figure 49

Table 94

PWMDIV[7:0]	LEDPWM frequency (f _{PWM})
8'h00	33.3KHz
8'h01	27.4KHz
8'h02	18.3KHz
8'h03	13.7KHz
8'h07	6.86 KHz
8'h0F	3.43 KHz
8'h1F	1.72 KHz
8'h3F	0.86 KHz
8'h7F	0.43 KHz
8'hFF	0.21 KHz

Table 95

Dimming data	Duty _{PWM}	
8'h00	0(fixed Low)	
8'h01	1/255	
8'h02	2/255	
8'h03	3/255	
:	:	
:	:	
8'h0D	253/255	
8'h0E	254/255	
8'hFF	1(fixed High)	

Note: These are typical values. The maximum variance is $\pm 7\%$.

Scan Mode Setting

The relationship among driver arrangement, GS, SM, SS and BGR register settings and the Frame Memory Address

(1) Left/Right interchanging scan (SM=0): When the bits are written with their default values, the start address is left top (00, 000) and the scan direction is from top to bottom.

Figure 50 SM=0

(2) Left/Right one-side scan (SM=1): When the bits are written with their default values, the start address is left top (00, 000) and the scan direction is from top to bottom.

Figure 51 SM=1

Frame Frequency Adjustment Function

The R61523 supports a function to adjust frame frequency. The frame frequency for driving the LCD can be adjusted by setting Display Timing Setting (RTN bits) without changing the oscillation frequency.

It is possible to set a low frame frequency for saving power consumption when displaying a still picture and set a high frame frequency when displaying video image.

Also, the R61523 has frame-frequency adjustment parameters which can set frame frequency according to display modes (Normal, partial and Idle modes).

Relationship between the Liquid Crystal Drive Duty and the Frame Frequency

The relationship between the liquid crystal drive duty and the frame frequency is calculated by the following equation. The frame frequency can be changed by setting the number of clocks per line period (RTN).

Equation for calculating frame frequency

$$FrameFrequency[f_{FLM}] = \frac{fosc}{Number of Clocks / line \times (NL + FP + BP)}[Hz]$$

fosc: Internal operation clock frequency (1000kHz)

Number of clocks per line: RTN

Line: Number of lines to drive the LCD: NL

Number of lines for front porch: FP Number of lines for back porch: BP

Example of Calculation: when Maximum Frame Frequency = 60 Hz

fosc: 1000 kHz

Number of lines: 640 lines

1H period: 25 clock cycles (RTN = 6'h19)

Front porch: 4 lines Back porch: 4 lines

$$\therefore f_{\mathit{FLM}} = \frac{1000 \mathit{kHz}}{25 \mathit{clocks} \times (640 + 4 + 4)} \approx 60 \mathit{Hz}$$

Line Inversion AC Drive

The R61523, in addition to frame-inversion liquid crystal alternating current drive, supports line-inversion alternating current drive.

Figure 52

Alternating Timing

The following figure illustrates the liquid-crystal polarity inversion timing of different LCD driving methods.

Figure 53

TE Pin Output Signal

Tearing Effect Line signals can be output from TE pin as frame memory data transfer synchronous signals. The signals are the trigger for frame memory write operation to enable data transfer in sync with the scanning operation. They are turned on/off by set_tear_off (34h) and set_tear_on (35h) commands.

Table 96

TEON (represents status of 35h command)	TELOM (35h1st parameter)	TE pin output
0	*	GND
1	0	TE (Mode1)
1	1	TE (Mode2)

Tearing Effect signal mode is defined by TELOM, D0 parameter of set_tear_on (35h).

Write TELOM=0 when using DSI TE report function.

35h set_tear_on command

Note) TE wavaform depends on the SDT register setting.

44h set tear scanline command

STS[9:0] Setting (0~n)

Liquid Crystal Panel Interface Timing

Liquid Crystal Panel Interface Timing in Internal Clock Operation

The following figure shows the timing of DPI and liquid crystal panel interface signals in DPI operation.

Figure 54

VCOM and source output alternating positions can be defined separately.

Notes 1. The TE waveform has values M=0, set_tear_scanline STS[9:0]=1.

2. The VCOM waveform has values BCn=1, BLV=1.

Setting range

MCP[2:0]: 1 to 7clks SDT[2:0]: 1 to 7clks NOW[2:0]: 1 to 7clks

Units: 1clk

State Transition Diagram

Definitions of Display modes

The state transition diagram of the R61523 is compliant with MIPI DCS.

Figure 55

- Notes 1: When the status of the LSI changes, designated sequences are performed. For details, see descriptions for each sequence.
 - 2: Do not execute state transitions other than those illustrated above.

Table 97 Transition Sequences of Operation Modes

	0	0	Sta	State	
Sequence		Command	From	То	
(1)	Power On sequence	-	-	Sleep mode on	
(2)	HWRESET sequence	-	-	Sleep mode on	
(3)	exit_sleep_mode sequence	11h:exit_sleep_mode	Sleep mode on	Sleep out Display off	
(0.)			Sleep mode off	Sleep mode off	
(3-a)			Display off/on	Display off/on	
(3-b)	exit_sleep_mode+ display_on sequence	11h:exit_sleep_mode	Sleep mode on	Sleep mode off Display on	
(4)	act display on acquence	20haat dianlay an	Sleep mode off	Sleep mode off	
(4)	set_display_on sequence	29h:set_display_on	Display off	Display on	
(5)	set display off sequence	display off sequence 28h:set display off	Sleep mode off	Sleep mode off	
(3)	set_display_oil sequence	2011.Set_uispiay_011	Display on	Display off	
(6)	enter sleep mode sequence	10h:enter sleep mode	Sleep mode off	Sleep mode on	
(0)	enter_sieep_mode sequence	Ton.enter_sieep_mode	Display off/on	Sieep mode on	
(7)	soft reset sequence	01h:soft reset	Sleep out	Sleep mode on	
(1)	3011_1C3Ct 3Cqucilico	0 111.301t_1c3ct	Display off/on		
(7-a)			Sleep mode on	Sleep mode on	
(8)	Deep standby mode on sequence	B1h: DSTB	Sleep mode on	Deep standby on	
(9)	Deep standby mode off sequence	CSX x 6	Deep standby on	Sleep mode on	

Table 98 Transition Sequences of Display Modes

	Cognopo	Command	State		
Sequence		Command	From	То	
		12h:enter_partial_mode			
(10)	Display mode sequence	13h:enter_normal_mode	previous Display mode	target Display mode	
(10)	(10) Display mode sequence	39h:enter_idle_mode	(Normal/Partial/Idle)	(Normal/Partial/Idle)	
		38h:exit_idle_mode			

Example of Power and Display ON/OFF Sequence

The following figure illustrates the Power and Display ON sequence.

Figure 56

Command Manufacturer Command	Type	Value B0h	Comment	Restriction
Access Protect Low Power Mode Control	P1 C	XXh B1h	User Setting	
	P1	XXh	User Setting	
Frame Memory Access and Interface setting	C P1	B3h XXh	Manufacturer Setting	D7 must be "1"
Read Checksum and ECC	P2 C	XXh B5h	Read Only	
Error Count	P1 P2	-		
DSI Control	P3 C	B6h		
	P1	XXh	Manufacturer Setting	
Back Light Control 1	C P1	B8h XXh	User Setting	
	P2 P3	XXh XXh	Manufacturer Setting	
	P4 P5	XXh XXh		
	P6 P7	XXh XXh		
	P8 P9	XXh		
	P10	XXh		
	P11 P12	XXh XXh		
	P13 P14	XXh XXh		
Back Light Control 2	P15 C	XXh B9h		
	P1 P2	XXh XXh	User Setting	
	P3 P4	XXh XXh	Manufacturer Setting	
Back Light Control 3	С	BAh	Read Only	
Device Code Read	P1 C	BFh .	Read Only	
	P1 P2	-		
	P3 P4	-		
Panel Driving Setting	C P1	C0h XXh	Manufacturer Setting	
	P2 P3	XXh		
	P4	XXh		
	P5 P6	XXh XXh		
Display Timing Setting for	P7 C	XXh C1h		
Normal/Partial Mode	P1 P2	XXh 00h	Manufacturer Setting Test Mode	D7-0 must be 8'h00
	P3 P4	XXh XXh	Manufacturer Setting	
Display Timing Setting for	P5 C	XXh C3h		
Idle Mode	P1 P2	XXh	Manufacturer Setting	D7.0 11.01.00
	P3	00h XXh	Test Mode Manufacturer Setting	D7-0 must be 8'h00
	P4 P5	XXh XXh		
Source/VCOM/Gate Driving Timing Setting	C P1	C4h XXh	Manufacturer Setting	
	P2 P3	XXh XXh		
	P4 P5	XXh XXh		
Gamma Setting A set	C P1	C8h	Manufacture Catting	
	P2	XXh XXh	Manufacturer Setting	
	P3 P4	XXh XXh		
	P5 P6	XXh XXh		
	P7 P8	XXh XXh		
	P9 P10	XXh XXh		
	P11 P12	XXh XXh		
	P13	XXh		
	P14 P15	XXh XXh		
	P16 P17	XXh XXh		
Gamma Setting B set	P18	C9h		
	P1 P2	XXh XXh	Manufacturer Setting	
	P3 P4	XXh XXh		
	P5 P6	XXh XXh		
	P7	XXh	1	
	P8 P9	XXh		
	P10 P11	XXh XXh		
	P12 P13	XXh XXh		
	P14 P15	XXh XXh		
	P16 P17	XXh XXh		
Gamma Setting C set	P18	XXh CAh		
October 0 sec	P1 P2	XXh	Manufacturer Setting	
	P3	XXh		
	P4 P5	XXh XXh		
	P6 P7	XXh XXh		
	P8 P9	XXh XXh		
	P10 P11	XXh XXh		
	P12 P13	XXh XXh		
	P14	XXh		
	P15 P16	XXh XXh		
	P17 P18	XXh XXh		

			_	
Command	Туре	Value	Comment	Restriction
Power Setting for Common	C P1	D0h XXh	Manufacturer Setting	
Common	P2	XXh	Manufacturer Setting	
	P3	XXh		D7,D6 must be "1"
	P4	XXh		D7 must be "1"
	P5	01h	Test Mode	D7-0 must be 8'h01
	P6	00h		D7-0 must be 8'h01 D7-0 must be 8'h00
	P7	00h		D7-0 must be 8'h00
	P8	00h		D7-0 must be 8'h00
	P9	07h 00h		D7-0 must be 8'h07
VCOM Setting	P10	D1h		D7-0 must be 8'h00
VCOM Setting	P1	XXh	Manufacturer Setting	
	P2	00h	Test Mode	
	P3	XXh	Manufacturer Setting	D7 must be "1"
	P4	XXh		D7,D6,D5 must be "1"
Power Setting for	C	D2h		
Normal/Partial Mode	P1	XXh	Manufacturer Setting	
	P2 P3	XXh XXh		
Power Setting for Idle	C	D4h		
Mode	P1	XXh	Manufacturer Setting	
	P2	XXh	· ·	
	P3	XXh		
Test Mode	С	D6h		
	P1	01h		Fixed by MCAP=011
	P2	30h		Fixed by MCAP=011
	P3 P4	02h 16h		Fixed by MCAP=011 Fixed by MCAP=011
Test Mode	C C	D7h		TIXEG BY WIGHT-UTT
. oot mode	P1	06h		Fixed by MCAP=011
	P2	16h		Fixed by MCAP=011 Fixed by MCAP=011
	P3	88h		Fixed by MCAP=011
	P4	00h		Fixed by MCAP=011
	P5	66h		Fixed by MCAP=011
	P6	AAh		Fixed by MCAP=011
	P7 P8	0Ah 88h		Fixed by MCAP=011
	P8 P9	80h		Fixed by MCAP=011 Fixed by MCAP=011
	P10	CAh		Fixed by MCAP=011
	P11	0Ah		Fixed by MCAP=011
	P12	0Ch		Fixed by MCAP=011
Test Mode	С	D9h		
	P1	FFh		Fixed by MCAP=011
	P2	9Fh		Fixed by MCAP=011
NV Memory Access Control	P1	E0h	M	Fixed by MCAP=011
Control	P2	XXh	Manufacturer Setting	Fixed by MCAP=011 Fixed by MCAP=011, D4,D3 must be "1"
	P3	XXh		Fixed by MCAP=011
	P4	07h	Test Mode	Fixed by MCAP=011, D7-0 must be 8'h00
set_DDB write control	С	E1h		
	P1	XXh	Manufacturer Setting	Fixed by MCAP=011
Test Mode	C	E2h		
T+ M-J-	P1	00h		
Test Mode	C P1	E3h 00h		
	P2	00h		
	P3	FFh		
	P4	FFh		
	P5	FFh		
	P6	FFh		
	P7	FFh		
	P8 P9	FFh FFh		
	P10	FFh		
	P11	FFh		
	P12	FFh		
Test Mode	С	E4h		
	P1	00h		Fixed by MCAP=011
	P2	00h		Fixed by MCAP=011
	P3 P4	AAh AAh		Fixed by MCAP=011 Fixed by MCAP=011
	P5	00h		Fixed by MCAP=011 Fixed by MCAP=011
Test Mode	C	E5h		
	P1	00h		Fixed by MCAP=011
Test Mode	С	E6h		
	P1	00h		
Test Mode	C	F3h		Fired by MCAD=011
	P1	00h		Fixed by MCAP=011
	P2 C	20h FAh		Fixed by MCAP=011
Test Mode	10			
Test Mode	P1			Fixed by MCAP=011
Test Mode	P1 P2	01h 00h		Fixed by MCAP=011 Fixed by MCAP=011
Test Mode	P2 P3	00h 00h		Fixed by MCAP=011 Fixed by MCAP=011
	P2 P3 P4	00h 00h 00h		Fixed by MCAP=011
	P2 P3 P4 C	00h 00h 00h FCh		Fixed by MCAP=011 Fixed by MCAP=011 Fixed by MCAP=011
	P2 P3 P4 C P1	00h 00h 00h FCh 00h		Fixed by MCAP=011 Fixed by MCAP=011 Fixed by MCAP=011 Fixed by MCAP=011
	P2 P3 P4 C P1 P2	00h 00h 00h FCh 00h		Fixed by MCAP=011
	P2 P3 P4 C P1 P2 P3	00h 00h 00h FCh 00h 00h		Fixed by MCAP=011
	P2 P3 P4 C P1 P2	00h 00h 00h FCh 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5	00h 00h 00h FCh 00h 00h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C	00h 00h 00h FCh 00h 00h 00h 00h FDh		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3 P4	00h 00h 00h FCh 00h 00h 00h 00h 00h 00h 00h 10h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3 P4 P5	00h 00h 00h FCh 00h 00h 00h 00h 00h 00h 10h 00h 00h 00		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3 P4 P5 C	00h 00h 00h 00h FCh 00h 00h 00h 00h 00h 00h 00h 00h 00h 0		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3 P4 P5 C	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3	00h 00h 00h 00h FCh 00h 00h 00h 00h 00h 00h 00h 00h 00h 0		Fixed by MCAP=011
Test Mode Test Mode Test Mode	P2 P3 P4 C C P1 P2 P3 P4 P5	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h		Fixed by MCAP=011
Test Mode	P2 P3 P4 C P1 P2 P3 P4 P5 C P1 P2 P3	00h 00h 00h FCh 00h 00h 00h 00h 00h 00h 00h 00h 00h 0		Fixed by MCAP=011

Deep Standby Mode ON/OFF Sequence

1) Enter Deep Standby Mode Sequence

Figure 57

2) Exit Deep Standby Mode Sequence

Figure 58

γ Correction Function

γ Correction Function

The R61523 supports γ correction function to make optimal colors according to the characteristics of the LCD panel. The R61523 has registers for positive and negative polarities to allow different settings for R, G, and B dots.

γ Correction Circuit

The following figure shows the γ correction circuit. The voltage between VREG and VGS is divided into 10 grayscale voltages by the first ladder resistor, and the reference voltages (V0 and V255) are specified by selectors. The voltage between V0 and V255 is divided into 10 grayscale voltages by the second ladder resistor, and the grayscale reference voltages (V4, V8, V15, V32, V80, V172, V220, V240, V247, and V251) are specified. The other grayscale voltages are generated by setting the level at a certain interval between the reference voltages. For grayscale voltages, see "Grayscale Voltage Calculation Formula."

Figure 59

γ Correction Registers

The γ correction registers include 56-bit reference level adjustment registers per R, G, and B dots (positive polarity and negative polarity).

Reference level Adjustment Registers

Table 99 Reference Level Adjustment Registers

	Gamm	a Set A	Gamm	a Set B	Gamm	a Set C
Resistor	Positive polarity	Negative polarity	Positive polarity	Negative polarity	Positive polarity	Negative polarity
-	PR0P_R[4:0]	PR0N_R[4:0]	PR0P_G[4:0]	PR0N_G[4:0]	PR0P_B[4:0]	PR0N_B[4:0]
R1	PR1P_R[4:0]	PR1N_R[4:0]	PR1P_G[4:0]	PR1N_G[4:0]	PR1P_B[4:0]	PR1N_B[4:0]
R2	PR2P_R[3:0]	PR2N_R[3:0]	PR2P_G[3:0]	PR2N_G[3:0]	PR2P_B[3:0]	PR2N_B[3:0]
R3	PR3P_R[3:0]	PR3N_R[3:0]	PR3P_G[3:0]	PR3N_G[3:0]	PR3P_B[3:0]	PR3N_B[3:0]
R4	PR4P_R[3:0]	PR4N_R[3:0]	PR4P_G[3:0]	PR4N_G[3:0]	PR4P_B[3:0]	PR4N_B[3:0]
R5	PR5P_R[3:0]	PR5N_R[3:0]	PR5P_G[3:0]	PR5N_G[3:0]	PR5P_B[3:0]	PR5N_B[3:0]
R6	PR6P_R[3:0]	PR6N_R[3:0]	PR6P_G[3:0]	PR6N_G[3:0]	PR6P_B[3:0]	PR6N_B[3:0]
R7	PR7P_R[3:0]	PR7N_R[3:0]	PR7P_G[3:0]	PR7N_G[3:0]	PR7P_B[3:0]	PR7N_B[3:0]
R8	PR8P_R[3:0]	PR8N_R[3:0]	PR8P_G[3:0]	PR8N_G[3:0]	PR8P_B[3:0]	PR8N_B[3:0]
R9	PR9P_R[3:0]	PR9N_R[3:0]	PR9P_G[3:0]	PR9N_G[3:0]	PR9P_B[3:0]	PR9N_B[3:0]
R10	PR10P_R[3:0]	PR10N_R[3:0]	PR10P_G[3:0]	PR10N_G[3:0]	PR10P_B[3:0]	PR10N_B[3:0]
R11	PR11P_R[4:0]	PR11N_R[4:0]	PR11P_G[4:0]	PR11N_G[4:0]	PR11P_B[4:0]	PR11N_B[4:0]
-	PR12P_R[4:0]	PR12N_R[4:0]	PR12P_G[4:0]	PR12N_G[4:0]	PR12P_B[4:0]	PR12N_B[4:0]

Table 100 Reference Level (V4, V8, V15, V32, V80, V172, V220, V240, V247, and V251) Adjustment Registers and Resistors

Resistor	Reg	jister	Resistance	Resistor	Regis	ter	Resistance
Resistor	Name	Value	Resistance	Kesisioi	Name	Value	Resistance
		5'h00	0R			4'h0	4R
		5'h01	1R			4'h1	5R
R1	PR1*_*[4:0]	5'h02	2R	R7	PR7*_*[3:0]	4'h2	6R
		5'h1F	31R			4'hF	19R
		4'h0	1R			4'h0	1R
		4'h1	2R			4'h1	2R
R2	PR2*_*[3:0]	4'h2	3R	R8	PR8*_*[3:0]	4'h2	3R
		i					
		4'hF	16R			4'hF	16R
		4'h0	1R			4'h0	1R
		4'h1	2R			4'h1	2R
R3	PR3*_*[3:0]	4'h2	3R	R9	PR9*_*[3:0]	4'h2	3R
		:					
		4'hF	16R			4'hF	16R
		4'h0	1R			4'h0	1R
		4'h1	2R			4'h1	2R
R4	PR4*_*[3:0]	4'h2	3R	R10	PR10*_*[3:0]	4'h2	3R
		:					
		4'hF	16R			4'hF	16R
		4'h0	4R			5'h00	0R
		4'h1	5R			5'h01	1R
R5	PR5*_*[3:0]	4'h2	6R	R11	PR11*_*[4:0]	5'h02	2R
		į				•	
		4'hF	19R			5'h1F	31R
		4'h0	8R		•		•
		4'h1	9R				
R6	PR6*_*[3:0]	4'h2	10R				
		4'hF	23R				

Note: *_* indicates P_R/N_R, P_G/N_G, or P_B/N_B.

Table 101 Reference Levels (V0 and V255) and Adjustment Resisters

Grayscale	Regis	ter	Level	Grayscale	Regist	Level	
	Name	Value	Level	Grayscale	Name	Value	Level
V0		5'h00	VREG1 x 100%			5'h00	VREG1 x 0%
		5'h01	VREG1 x 99%			5'h01	VREG1 x 1%
	PR0*_*[4:0]	5'h02	VREG1 x 98%	V255	PR12*_*[4:0]	5'h02	VREG1 x 2%
		5'h1F	VREG1 x 69%			5'h1F	VREG1 x 31%

Note: $*_*$ indicates P_R/N_R, P_G/N_G, or P_B/N_B.

Grayscale Voltage Calculation Formulas

Table 102

Grayscale voltage	Calculation formula
V0	-
V1	V4 + (V0 – V4) x 3/4
V2	V4 + (V0 – V4) x 2/4
V3	V4 + (V0 – V4) x 1/4
V4	Δ V x Σ (R2~R11)/SUMR+V255
V5	V8 + (V4 – V8) x 3/4
V6	V8 + (V4 – V8) x 2/4
V7	V8 + (V4 – V8) x 1/4
V8	Δ V x Σ (R3~R11)/SUMR+V255
V9	V15 + (V8 – V15) x 6/7
V10	V15 + (V8 – V15) x 5/7
V11	V15 + (V8 – V15) x 4/7
V12	V15 + (V8 – V15) x 3/7
V13	V15 + (V8 – V15) x 2/7
V14	V15 + (V8 – V15) x 1/7
V15	ΔV x ∑ (R4~R11)/SUMR+V255
V16	V32 + (V15 – V32) x 16/17
V17	V32 + (V15 – V32) x 15/17
V18	V32 + (V15 – V32) x 14/17
V19	V32 + (V15 – V32) x 13/17
V20	V32 + (V15 – V32) x 12/17
V21	V32 + (V15 – V32) x 11/17
V22	V32 + (V15 – V32) x 10/17
V23	V32 + (V15 – V32) x 9/17
V24	V32 + (V15 – V32) x 8/17
V25	V32 + (V15 – V32) x 7/17
V26	V32 + (V15 – V32) x 6/17
V27	V32 + (V15 – V32) x 5/17
V28	V32 + (V15 – V32) x 4/17
V29	V32 + (V15 – V32) x 3/17
V30	V32 + (V15 – V32) x 2/17
V31	V32 + (V15 – V32) x 1/17

V32 Δ V x ∑ (R5~R11)/SUMR+V255 V33 V80 + (V32 − V80) x 47/48 V34 V80 + (V32 − V80) x 46/48 V35 V80 + (V32 − V80) x 44/48 V36 V80 + (V32 − V80) x 44/48 V37 V80 + (V32 − V80) x 42/48 V38 V80 + (V32 − V80) x 42/48 V39 V80 + (V32 − V80) x 40/48 V40 V80 + (V32 − V80) x 39/48 V41 V80 + (V32 − V80) x 39/48 V42 V80 + (V32 − V80) x 37/48 V43 V80 + (V32 − V80) x 37/48 V44 V80 + (V32 − V80) x 36/48 V45 V80 + (V32 − V80) x 34/48 V46 V80 + (V32 − V80) x 33/48 V47 V80 + (V32 − V80) x 31/48 V49 V80 + (V32 − V80) x 31/48 V50 V80 + (V32 − V80) x 29/48 V51 V80 + (V32 − V80) x 29/48 V52 V80 + (V32 − V80) x 26/48 V53 V80 + (V32 − V80) x 26/48 V54 V80 + (V32 − V80) x 26/48 V55 V80 + (V32 − V80) x 24/48 V56 V80 + (V32 − V80) x 24/48 V57 V80 + (Grayscale voltage	Calculation formula
V34 V80 + (V32 - V80) x 46/48 V35 V80 + (V32 - V80) x 45/48 V36 V80 + (V32 - V80) x 44/48 V37 V80 + (V32 - V80) x 42/48 V38 V80 + (V32 - V80) x 41/48 V39 V80 + (V32 - V80) x 40/48 V40 V80 + (V32 - V80) x 39/48 V41 V80 + (V32 - V80) x 39/48 V42 V80 + (V32 - V80) x 37/48 V43 V80 + (V32 - V80) x 36/48 V44 V80 + (V32 - V80) x 35/48 V45 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 29/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 29/48 V53 V80 + (V32 - V80) x 29/48 V54 V80 + (V32 - V80) x 29/48 V55 V80 + (V32 - V80) x 29/48 V55 V80 + (V32 - V80) x 29/48 V55 V80 + (V32 - V80) x 29/48 V57 V80 + (V32 - V80) x 29/48 V58 V80 + (V32	V32	Δ V x Σ (R5~R11)/SUMR+V255
V35	V33	V80 + (V32 – V80) x 47/48
V36 V80 + (V32 - V80) x 44/48 V37 V80 + (V32 - V80) x 42/48 V38 V80 + (V32 - V80) x 42/48 V39 V80 + (V32 - V80) x 40/48 V40 V80 + (V32 - V80) x 39/48 V41 V80 + (V32 - V80) x 38/48 V42 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 34/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 29/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 24/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 24/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V34	V80 + (V32 – V80) x 46/48
V37 V80 + (V32 - V80) x 43/48 V38 V80 + (V32 - V80) x 42/48 V39 V80 + (V32 - V80) x 40/48 V40 V80 + (V32 - V80) x 39/48 V41 V80 + (V32 - V80) x 38/48 V42 V80 + (V32 - V80) x 37/48 V43 V80 + (V32 - V80) x 36/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 33/48 V47 V80 + (V32 - V80) x 33/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 26/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V35	V80 + (V32 – V80) x 45/48
V38 V80 + (V32 - V80) x 42/48 V39 V80 + (V32 - V80) x 41/48 V40 V80 + (V32 - V80) x 40/48 V41 V80 + (V32 - V80) x 39/48 V42 V80 + (V32 - V80) x 37/48 V43 V80 + (V32 - V80) x 36/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 33/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 29/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 24/48 V56 V80 + (V32 - V80) x 23/48 V57 V80 + (V32 - V80) x 24/48 V58 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V36	V80 + (V32 – V80) x 44/48
V39 V80 + (V32 - V80) x 41/48 V40 V80 + (V32 - V80) x 40/48 V41 V80 + (V32 - V80) x 39/48 V42 V80 + (V32 - V80) x 37/48 V43 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 33/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V37	V80 + (V32 – V80) x 43/48
V40 V80 + (V32 - V80) x 40/48 V41 V80 + (V32 - V80) x 39/48 V42 V80 + (V32 - V80) x 37/48 V43 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 29/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V38	V80 + (V32 – V80) x 42/48
V41 V80 + (V32 - V80) x 39/48 V42 V80 + (V32 - V80) x 38/48 V43 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 33/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 26/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V39	V80 + (V32 – V80) x 41/48
V42 V80 + (V32 - V80) x 38/48 V43 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 32/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V40	V80 + (V32 – V80) x 40/48
V43 V80 + (V32 - V80) x 37/48 V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V41	V80 + (V32 – V80) x 39/48
V44 V80 + (V32 - V80) x 36/48 V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 31/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 29/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 27/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V42	V80 + (V32 – V80) x 38/48
V45 V80 + (V32 - V80) x 35/48 V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 32/48 V49 V80 + (V32 - V80) x 30/48 V50 V80 + (V32 - V80) x 29/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 26/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 24/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 19/48	V43	V80 + (V32 – V80) x 37/48
V46 V80 + (V32 - V80) x 34/48 V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 32/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 29/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 27/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V44	V80 + (V32 – V80) x 36/48
V47 V80 + (V32 - V80) x 33/48 V48 V80 + (V32 - V80) x 32/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 20/48 V60 V80 + (V32 - V80) x 19/48	V45	V80 + (V32 – V80) x 35/48
V48 V80 + (V32 - V80) x 32/48 V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 27/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 21/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V46	V80 + (V32 – V80) x 34/48
V49 V80 + (V32 - V80) x 31/48 V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V47	V80 + (V32 – V80) x 33/48
V50 V80 + (V32 - V80) x 30/48 V51 V80 + (V32 - V80) x 29/48 V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V48	V80 + (V32 – V80) x 32/48
V51	V49	V80 + (V32 – V80) x 31/48
V52 V80 + (V32 - V80) x 28/48 V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V50	V80 + (V32 – V80) x 30/48
V53 V80 + (V32 - V80) x 27/48 V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V51	V80 + (V32 – V80) x 29/48
V54 V80 + (V32 - V80) x 26/48 V55 V80 + (V32 - V80) x 25/48 V56 V80 + (V32 - V80) x 24/48 V57 V80 + (V32 - V80) x 23/48 V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V52	V80 + (V32 – V80) x 28/48
V55	V53	V80 + (V32 – V80) x 27/48
V56	V54	V80 + (V32 – V80) x 26/48
V57	V55	V80 + (V32 – V80) x 25/48
V58 V80 + (V32 - V80) x 22/48 V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V56	V80 + (V32 – V80) x 24/48
V59 V80 + (V32 - V80) x 21/48 V60 V80 + (V32 - V80) x 20/48 V61 V80 + (V32 - V80) x 19/48	V57	V80 + (V32 – V80) x 23/48
V60 V80 + (V32 – V80) x 20/48 V61 V80 + (V32 – V80) x 19/48	V58	V80 + (V32 – V80) x 22/48
V61 V80 + (V32 – V80) x 19/48	V59	V80 + (V32 – V80) x 21/48
. (V60	V80 + (V32 – V80) x 20/48
V62 V80 + (V32 – V80) x 18/48	V61	V80 + (V32 – V80) x 19/48
	V62	V80 + (V32 – V80) x 18/48
V63 V80 + (V32 – V80) x 17/48	V63	V80 + (V32 – V80) x 17/48

Table 103

Grayscale voltage	Calculation formula
V64	V80 + (V32 – V80) x 16/48
V65	V80 + (V32 – V80) x 15/48
V66	V80 + (V32 – V80) x 14/48
V67	V80 + (V32 – V80) x 13/48
V68	V80 + (V32 – V80) x 12/48
V69	V80 + (V32 – V80) x 11/48
V70	V80 + (V32 – V80) x 10/48
V71	V80 + (V32 – V80) x 9/48
V72	V80 + (V32 – V80) x 8/48
V73	V80 + (V32 – V80) x 7/48
V74	V80 + (V32 – V80) x 6/48
V75	V80 + (V32 – V80) x 5/48
V76	V80 + (V32 – V80) x 4/48
V77	V80 + (V32 – V80) x 3/48
V78	V80 + (V32 – V80) x 2/48
V79	V80 + (V32 – V80) x 1/48
V80	Δ V x ∑ (R6~R11)/SUMR+V255
V81	V172 + (V80 – V172) x 91/92
V82	V172 + (V80 – V172) x 90/92
V83	V172 + (V80 – V172) x 89/92
V84	V172 + (V80 – V172) x 88/92
V85	V172 + (V80 – V172) x 87/92
V86	V172 + (V80 – V172) x 86/92
V87	V172 + (V80 – V172) x 85/92
V88	V172 + (V80 – V172) x 84/92
V89	V172 + (V80 – V172) x 83/92
V90	V172 + (V80 – V172) x 82/92
V91	V172 + (V80 – V172) x 81/92
V92	V172 + (V80 – V172) x 80/92
V93	V172 + (V80 – V172) x 79/92
V94	V172 + (V80 – V172) x 78/92
V95	V172 + (V80 – V172) x 77/92

Grayscale voltage	Calculation formula
V96	V172 + (V80 – V172) x 76/92
V97	V172 + (V80 – V172) x 75/92
V98	V172 + (V80 – V172) x 74/92
V99	V172 + (V80 – V172) x 73/92
V100	V172 + (V80 – V172) x 72/92
V101	V172 + (V80 – V172) x 71/92
V102	V172 + (V80 – V172) x 70/92
V103	V172 + (V80 – V172) x 69/92
V104	V172 + (V80 – V172) x 68/92
V105	V172 + (V80 – V172) x 67/92
V106	V172 + (V80 – V172) x 66/92
V107	V172 + (V80 – V172) x 65/92
V108	V172 + (V80 – V172) x 64/92
V109	V172 + (V80 – V172) x 63/92
V110	V172 + (V80 – V172) x 62/92
V111	V172 + (V80 – V172) x 61/92
V112	V172 + (V80 – V172) x 60/92
V113	V172 + (V80 – V172) x 59/92
V114	V172 + (V80 – V172) x 58/92
V115	V172 + (V80 – V172) x 57/92
V116	V172 + (V80 – V172) x 56/92
V117	V172 + (V80 – V172) x 55/92
V118	V172 + (V80 – V172) x 54/92
V119	V172 + (V80 – V172) x 53/92
V120	V172 + (V80 – V172) x 52/92
V121	V172 + (V80 – V172) x 51/92
V122	V172 + (V80 – V172) x 50/92
V123	V172 + (V80 – V172) x 49/92
V124	V172 + (V80 – V172) x 48/92
V125	V172 + (V80 – V172) x 47/92
V126	V172 + (V80 – V172) x 46/92
V127	V172 + (V80 – V172) x 45/92

Table 104

Grayscale voltage	Calculation formula
V128	V172 + (V80 – V172) x 44/92
V129	V172 + (V80 – V172) x 43/92
V130	V172 + (V80 – V172) x 42/92
V131	V172 + (V80 – V172) x 41/92
V132	V172 + (V80 – V172) x 40/92
V133	V172 + (V80 – V172) x 39/92
V134	V172 + (V80 – V172) x 38/92
V135	V172 + (V80 – V172) x 37/92
V136	V172 + (V80 – V172) x 36/92
V137	V172 + (V80 – V172) x 35/92
V138	V172 + (V80 – V172) x 34/92
V139	V172 + (V80 – V172) x 33/92
V140	V172 + (V80 – V172) x 32/92
V141	V172 + (V80 – V172) x 31/92
V142	V172 + (V80 – V172) x 30/92
V143	V172 + (V80 – V172) x 29/92
V144	V172 + (V80 – V172) x 28/92
V145	V172 + (V80 – V172) x 27/92
V146	V172 + (V80 – V172) x 26/92
V147	V172 + (V80 – V172) x 25/92
V148	V172 + (V80 – V172) x 24/92
V149	V172 + (V80 – V172) x 23/92
V150	V172 + (V80 – V172) x 22/92
V151	V172 + (V80 – V172) x 21/92
V152	V172 + (V80 – V172) x 20/92
V153	V172 + (V80 – V172) x 19/92
V154	V172 + (V80 – V172) x 18/92
V155	V172 + (V80 – V172) x 17/92
V156	V172 + (V80 – V172) x 16/92
V157	V172 + (V80 – V172) x 15/92
V158	V172 + (V80 – V172) x 14/92
V159	V172 + (V80 – V172) x 13/92

Grayscale	
voltage	Calculation formula
V160	V172 + (V80 – V172) x 12/92
V161	V172 + (V80 – V172) x 11/92
V162	V172 + (V80 – V172) x 10/92
V163	V172 + (V80 – V172) x 9/92
V164	V172 + (V80 – V172) x 8/92
V165	V172 + (V80 – V172) x 7/92
V166	V172 + (V80 – V172) x 6/92
V167	V172 + (V80 – V172) x 5/92
V168	V172 + (V80 – V172) x 4/92
V169	V172 + (V80 – V172) x 3/92
V170	V172 + (V80 – V172) x 2/92
V171	V172 + (V80 – V172) x 1/92
V172	Δ V x ∑ (R7~R11)/SUMR+V255
V173	V220 + (V172 – V220) x 47/48
V174	V220 + (V172 – V220) x 46/48
V175	V220 + (V172 – V220) x 45/48
V176	V220 + (V172 – V220) x 44/48
V177	V220 + (V172 – V220) x 43/48
V178	V220 + (V172 – V220) x 42/48
V179	V220 + (V172 – V220) x 41/48
V180	V220 + (V172 – V220) x 40/48
V181	V220 + (V172 – V220) x 39/48
V182	V220 + (V172 – V220) x 38/48
V183	V220 + (V172 – V220) x 37/48
V184	V220 + (V172 – V220) x 36/48
V185	V220 + (V172 – V220) x 35/48
V186	V220 + (V172 – V220) x 34/48
V187	V220 + (V172 – V220) x 33/48
V188	V220 + (V172 – V220) x 32/48
V189	V220 + (V172 – V220) x 31/48
V190	V220 + (V172 – V220) x 30/48
V191	V220 + (V172 – V220) x 29/48

Table 105

Grayscale voltage	Calculation formula
V192	V220 + (V172 – V220) x 28/48
V193	V220 + (V172 – V220) x 27/48
V194	V220 + (V172 – V220) x 26/48
V195	V220 + (V172 – V220) x 25/48
V196	V220 + (V172 – V220) x 24/48
V197	V220 + (V172 – V220) x 23/48
V198	V220 + (V172 – V220) x 22/48
V199	V220 + (V172 – V220) x 21/48
V200	V220 + (V172 – V220) x 20/48
V201	V220 + (V172 – V220) x 19/48
V202	V220 + (V172 – V220) x 18/48
V203	V220 + (V172 – V220) x 17/48
V204	V220 + (V172 – V220) x 16/48
V205	V220 + (V172 – V220) x 15/48
V206	V220 + (V172 – V220) x 14/48
V207	V220 + (V172 – V220) x 13/48
V208	V220 + (V172 – V220) x 12/48
V209	V220 + (V172 – V220) x 11/48
V210	V220 + (V172 – V220) x 10/48
V211	V220 + (V172 – V220) x 9/48
V212	V220 + (V172 – V220) x 8/48
V213	V220 + (V172 – V220) x 7/48
V214	V220 + (V172 – V220) x 6/48
V215	V220 + (V172 – V220) x 5/48
V216	V220 + (V172 – V220) x 4/48
V217	V220 + (V172 – V220) x 3/48
V218	V220 + (V172 – V220) x 2/48
V219	V220 + (V172 – V220) x 1/48
V220	Δ V x ∑ (R8~R11)/SUMR+V255
V221	V240 + (V220 – V240) x 19/20
V222	V240 + (V220 – V240) x 18/20
V223	V240 + (V220 – V240) x 17/20

Grayscale voltage	Calculation formula
V224	V240 + (V220 – V240) x 16/20
V225	V240 + (V220 – V240) x 15/20
V226	V240 + (V220 – V240) x 14/20
V227	V240 + (V220 – V240) x 13/20
V228	V240 + (V220 – V240) x 12/20
V229	V240 + (V220 – V240) x 11/20
V230	V240 + (V220 – V240) x 10/20
V231	V240 + (V220 – V240) x 9/20
V232	V240 + (V220 – V240) x 8/20
V233	V240 + (V220 – V240) x 7/20
V234	V240 + (V220 – V240) x 6/20
V235	V240 + (V220 – V240) x 5/20
V236	V240 + (V220 – V240) x 4/20
V237	V240 + (V220 – V240) x 3/20
V238	V240 + (V220 – V240) x 2/20
V239	V240 + (V220 – V240) x 1/20
V240	Δ V x Σ (R9~R11)/SUMR+V255
V241	V247 + (V240 – V247) x 6/7
V242	V247 + (V240 – V247) x 5/7
V243	V247 + (V240 – V247) x 4/7
V244	V247 + (V240 – V247) x 3/7
V245	V247 + (V240 – V247) x 2/7
V246	V247 + (V240 – V247) x 1/7
V247	ΔV x ∑ (R10~R11)/SUMR+V255
V248	V251 + (V247 – V251) x 3/4
V249	V251 + (V247 – V251) x 2/4
V250	V251 + (V247 – V251) x 1/4
V251	Δ V x R11/SUMR+V255
V252	V255 + (V251 – V255) x 3/4
V253	V255 + (V251 – V255) x 2/4
V254	V255 + (V251 – V255) x 1/4
V255	-

Note: Make sure that

 $\Delta V = V0 - V255$

SUMR = Σ (R1 ~ R11) \geq 70R.

 $V255 \geq \ 0.2V$

Frame Memory Data and Grayscale Voltage

Table 106

	Grayscale voltage							
RAM data	RE	V = 1	RE\	/ = 0				
TO UNI GUIG	Positive polarity	Negative polarity	Positive polarity	Negative polarity				
8'h00	V0	V255	V255	V0				
8'h01	V1	V254	V254	V1				
8'h02	V2	V253	V253	V2				
8'h03	V3	V252	V252	V3				
8'h04	V4	V251	V251	V4				
8'h05	V5	V250	V250	V5				
8'h06	V6	V249	V249	V6				
8'h07	V7	V248	V248	V7				
8'h08	V8	V247	V247	V8				
8'h09	V9	V246	V246	V9				
8'h0A	V10	V245	V245	V10				
8'h0B	V11	V244	V244	V11				
8'h0C	V12	V243	V243	V12				
8'h0D	V13	V242	V242	V13				
8'h0E	V14	V241	V241	V14				
8'h0F	V15	V240	V240	V15				
8'h10	V16	V239	V239	V16				
8'h11	V17	V238	V238	V17				
8'h12	V18	V237	V237	V18				
8'h13	V19	V236	V236	V19				
8'h14	V20	V235	V235	V20				
8'h15	V21	V234	V234	V21				
8'h16	V22	V233	V233	V22				
8'h17	V23	V232	V232	V23				
8'h18	V24	V231	V231	V24				
8'h19	V25	V230	V230	V25				
8'h1A	V26	V229	V229	V26				
•				·				
•	•	•	•	•				
•								

Table 107 (Continued)

	Grayscale voltage								
RAM data	RE	/ = 1	RE\	/ = 0					
NAM data	Positive polarity	Negative polarity	Positive polarity	Negative polarity					
	•		•	•					
•	•	•	•	٠					
8'hE5	V229	V26	V26	V229					
8'hE6	V230	V25	V25	V230					
8'hE7	V231	V24	V24	V231					
8'hE8	V232	V23	V23	V232					
8'hE9	V233	V22	V22	V233					
8'hEA	V234	V21	V21	V234					
8'hEB	V235	V20	V20	V235					
8'hEC	V236	V19	V19	V236					
8'hED	V237	V18	V18	V237					
8'hEE	V238	V17	V17	V238					
8'hEF	V239	V16	V16	V239					
8'hF0	V240	V15	V15	V240					
8'hF1	V241	V14	V14	V241					
8'hF2	V242	V13	V13	V242					
8'hF3	V243	V12	V12	V243					
8'hF4	V244	V11	V11	V244					
8'hF5	V245	V10	V10	V245					
8'hF6	V246	V9	V9	V246					
8'hF7	V247	V8	V8	V247					
8'hF8	V248	V7	V7	V248					
8'hF9	V249	V6	V6	V249					
8'hFA	V250	V5	V5	V250					
8'hFB	V251	V4	V4	V251					
8'hFC	V252	V3	V3	V252					
8'hFD	V253	V2	V2	V253					
8'hFE	V254	V1	V1	V254					
8'hFF	V255	V0	V0	V255					

Power Supply Circuit

The following figure illustrates the configuration of R61523 LCD drive voltage generating circuit.

Figure 60

Note: Evaluate image quality on the panel to decide whether the stabilizing capacitances connected to VCOMH and VCOML may be removed.

Specifications of External Elements Connected to the Power Supply Circuit

The following table shows the specifications of external elements connected to the R61523 power supply circuit. The numbers of the connection pins correspond to the numbers shown in the Configuration of Power Supply Circuit.

Table 108 Capacitor Connected to LCD Power Supply Circuit

Capacity	Recommended voltage	Connection pins
	6V	(1)VREG1, (4)C11BP/M, (5) C12BP/M, (6)C12AM/P, (7)C11AP/M, (8)C13P/M, (15)VCL, (16)VDD
1μF (B characteristics)	10V	(2)DDVDHA, (3)DDVDHB, (9)C21P/M (10)C22P/M (11)C23P/M, (12) C31P/M, (17)VCOMH, (18)VCOML
	25V	(13)VGH, (14)VGL

Voltage Setting Pattern Diagram

The following are the diagrams of voltage generation in the R61523 and the relationship between TFT display application voltage waveforms and electrical potential.

Figure 61

Note: The DDVDH, VGH, VGL, VCL output voltages will become lower than their theoretical levels (ideal voltages) due to current consumption at respective outputs. When the alternating cycle of VCOM is high (e.g. polarity inverts every line cycle), current consumption will increase. In this case, check the voltage before use.

Figure 62 Voltage Application to TFT Display

NVM Control

The R61523 incorporates 44-bit NVM for user's use.

The following are read using read_DDB_start command.

- 16 bits for Supplier ID
- 16 bits for Supplier Elective Data
- 12 bits for VCOM adjustment (VCM[6:0] and VDV[4:0])

To write, read and erase data from/to the NVM, follow the sequences below. Data on the NVM is loaded to internal registers automatically when the following sequences are performed.

Power On sequence

HW RESET sequence

exit_sleep_mode sequence

soft_reset sequence

Deep Standby Mode Off sequence

Data stored in the NVM is retained permanently even if power is turned off.

Table 109

Operation	Power	Temperature		
Write/Erase	VCI	2.60~3.00V	400ms or more	+20°C~+30C°
Wille/Liase	IOVCC	1.65~3.60V	(after FFT (E0h) is set to 1)	+20 0 +300

Note: NVM data rewrite (erase-write) operation shall be performed up to 5 times per address.

NVM Write Sequence

The register values of User/Manufacturer Commands supposed to be stored in NVM are written to NVM. When "0" is written to an address, the bit of the address is set to "0". If the data is erased from the bit, the bit is returned to "1". The bit to which data is not written shall be set to "1".

Figure 63

Absolute Maximum Rating

Table 110

Item	Symbol	Unit	Ratings	Note
Power supply voltage 1	IOVCC,DPHYVCC	V	-0.3 ~ +4.6	1, 2
Power supply voltage 2	VCI – AGND	V	-0.3 ~ +4.6	1, 3
Power supply voltage 3	DDVDHA/B- AGND	V	-0.3 ~ +6.5	1, 4
Power supply voltage 4	AGND – VCL	V	-0.3 ~ +4.6	1
Power supply voltage 5	AGND- VGL	V	-0.3 ~ +13.0	1, 5
Power supply voltage 6	VGH– VGL	V	-0.3 ~ +30.0	1
Power supply voltage 7	VCI – VCL	V	-0.3 ~ +6.5	1, 6
Input voltage	Vt	V	-0.3 ~ IOVCC + 0.3	1
Operating Temperature	Topr	°C	-40 ~ +85	1, 7
Storage Temperature	Tstg	°C	-55 ~ +110	1

Notes: 1. If the LSI is used beyond the absolute maximum ratings, it may be destroyed. It is strongly recommended to use the LSI within the limits of its electrical characteristics during normal operation. The reliability of the LSI is not guaranteed if it is used in the conditions above the limits and it may lead to malfunction.

- 2. Make sure (High) IOVCC, DPHYVCC ≥ GND (Low).
- 3. Make sure (High) VCI ≥ AGND (Low).
- 4. Make sure (High) DDVDHA/B ≥ AGND (Low).
- 5. Make sure (High) AGND ≥ VGL (Low).
- 6. Make sure (High) VCI ≥ VCL (Low).
- 7. The DC/AC characteristics of die and wafer products are guaranteed at 85°C.

Electrical Characteristics

DC characteristics

Table 111 (VCI= 2.60V~3.00V, IOVCC=1.65V~3.60V, DPHYVCC=1.65V~1.95V, Ta=-40°C~+85°C)

Ite	m	Symbol	Unit	Test condition	Min.	Тур.	Max.	Note
Input "High" le (Except fo	•	V _{IH1}	V	IOVCC=1.65V~3.60V	0.80× IOVCC	_	IOVCC	1, 2
Input "Low" le (Except fo	-	V _{IL1}	V	IOVCC=1.65V~3.60V	0	_	0.20× IOVCC	1, 2
Input "High" le	•	V _{IH2}	V	IOVCC=1.65V~3.60V	0.90× IOVCC	_	IOVCC	1, 2
Input "Low" le	-	V _{IL2}	V	IOVCC=1.65V~3.60V	0	_	0.10× IOVCC	1, 2
Output "High" I (DB[15:0], TE	•	V _{OH1}	V	IOVCC=1.65V~3.60V, IOUT=-0.1mA	0.80× IOVCC	_	_	1
Output "Low" lo (DB[15:0], TE	-	V _{OL1}	V	IOVCC=1.65V~3.60V, IOUT=0.1mA	_	_	0.20× IOVCC	1
Input "High" I	evel current	I _{IH}	μA	Vin=IOVCC	_	_	10	4
Input "Low" I	evel current	I _{IL}	μA	Vin=0V	-10	_	_	4
Current	Normal Mode +Sleep out	I _{OPN}	mA	640-line drive, IOVCC=1.80V, VCI= 2.80V, fFLM=60Hz, Ta=25°C, Frame Memory Data:24'h000000, When DBI is used, BLCON=0, and frame is inverted.	-	1.0	1.4	5
Current consumption (IOVCC-GND)	Idle Mode +Sleep out	І _{ОРІ}	mA	120-line partial display, IOVCC=1.80V, VCI= 2.80V, fFLM=60Hz, Ta=25°C, Frame Memory Data: 24'h000000, When DBI is used, frame is inverted.	-	0.7	1.1	5
	Deep Sleep mode	I _{DST1}	μ A	IOVCC=1.80V, VCI= 2.80V, DPHYVCC = 1.80V, Ta=25°C	-	0.1	1.0	5

DSI current consumption (DPHYVCC-DPHYGND)	HS mode	I _{HS}	mA	IOVCC=1.80V, DPHYVCC=1.80V, VCI=2.80V, DSI 2lanes, DSICLK=120MHz, DSI Data:24'h000000	-	0.8	1.2	(5)
	LP mode	І _{ГР}	uA	IOVCC=1.80V, DPHYVCC=1.80V, VCI =2.80V, Clock lane=LP11, Data lane=LP11	-	0.1	1.0	(5)
	Deep Sleep Mode	I _{DST2}	uA	IOVCC=DPHYVCC =1.80V, VCI= 2.80V, Ta=25°C	-	0.1	1.0	(5)
LCD power supply current (VCI-GND)	Normal Mode +Sleep out	Icin	mA	IOVCC=1.80V, VCI=2.80V, 640-line drive, fFLM=60Hz, Ta=25°C, Frame Memory Data=24'h000000, BLCON = 0, frame is inverted, No load on the panel.	-	4.0	6.0	(5)
	Idle mode +Sleep out	I _{CII}	mA	IOVCC=1.80V, VCI=2.80V, 120-line partial display, fFLM=60Hz, Ta=25°C, Frame Memory Data=24'h000000, BLCON = 0, frame is inverted, No load on the panel.	-	1.4	2.5	(5)
	Deep Sleep Mode	I _{DST3}	uA	IOVCC=1.80V, VCI= 2.80V, DPHYVCC = 1.80V, Ta=25°C	-	0.10	1.0	(5)
Output voltage dispersion	V0~V80, V176~V255	∠Vo1	mV	-	-	-	40	(6)
	V81~V175	⊿Vo2	mV		-	-	30	(6)
Average output v	roltage variance	∠V∠	mV	-	-35	-	+35	(7)

Notes: 1. DC/AC electrical characteristics of bare die and wafer area guaranteed at +85°C.

2. The following figures illustrate the configurations of input, I/O, and output pins.

Figure 64

- 3. Fix pins as follows: TEST2, TEST4, VREFC, VDDTEST, and TSC to ground (GND), VPP1 to ground (AGND).
- 4. This excludes the current in the output drive MOS.
- 5. This excludes the current in the input/output units. Make sure that the input level is fixed because shoot-through current increases in the input circuit when the CMOS input level is at a mid-level. The current consumption is unaffected by whether the CSX pin is "high" or "low" while not accessing via interface pins.
- 6. This is the difference in voltage levels between two output pins placed side by side in the same display mode. The output voltage dispersion is for reference.
- 7. The average output voltage dispersion is the variance of average source-output voltage of different chips of the same product. The average source output voltage is measured for one chip with the same display data.

Step-up Circuit Characteristics

Table 112

Item Unit			Test condition	Min.	Тур.	Max.	Note
Step-up output voltage	DDVDH	V	VCI=2.80V, Ta=25°C, VC2=3'h4, VC3=3'h7, AP=2'h3, DC00=3'h4, DC10=3'h2, DC30=3'h2, I _{load} =-3[mA], No load on the panel, COG resistance=0Ω	5.30	5.45	-	(1)
Step-up output voltage	VGH	V	VCI=2.80V, Ta=25°C, VC2=3'h4, VC3=3'h7, AP=2'h3, DC00=3'h4, DC10=3'h2, DC30=3'h2, I _{load} =-100[uA], No load on the panel, COG resistance=0Ω	14.90	15.25	-	
Step-up output voltage	VGL	V	VCI=2.80V, Ta=25°C, VC2=3'h4, VC3=3'h7, AP=2'h3, DC00=3'h4, DC10=3'h2, DC30=3'h2, I_{load} =+100[uA], No load on the panel, COG resistance=0Ω	-	-9.90	-9.50	
Step-up output voltage	VCL	V	$ \begin{array}{c} \text{VCI=2.80V, Ta=25^{\circ}C, VC2=3'h4, VC3=3'h7,} \\ \text{AP=2'h3, DC00=3'h4, DC10=3'h2,} \\ \text{DC30=3'h2, I}_{\text{load}} = +1[\text{mA}], \\ \text{No load on the panel, COG resistance=0} \\ \end{array} $	-	-2.50	-2.30	

Internal Reference Voltage

Table 113 Internal Reference Voltage (Ta=-40°C \sim +85°C, GND=AGND=0V)

Item	Symbol	Unit	Min.	Тур.	Max.	Condition
Internal Reference Voltage	VCIR	V	_	2.53	_	

Power Supply Voltage Range

Table 114 Power Supply Voltage Range (Ta=-40°C \sim +85°C, GND=AGND=0V)

Item	Symbol	Unit	Min.	Тур.	Max.	Condition
Power supply voltage	IOVCC	V	1.65	1.80	3.60	-
Power supply voltage	DPHYV CC	V	1.65	1.80	1.95	
Power supply voltage	VCI	V	2.60	2.80	3.00	-

Output Voltage Range

Table 115 Output Voltage Range (Ta=-40°C ~ +85°C, GND=AGND=0V)

Item	Symbol	Unit	Min.	Тур.	Max.	Condition
Grayscale. VCOM reference voltage	VREG1	V	-	-	DDVDH- 0.5	-
Source driver		٧	GND+0.2	-	VREG1	-
VCOMH output	VCOMH	٧	-	-	VREG1	-
VCOML output	VCOML	٧	VCL+0.5	-	-	-
VCOM amplitude		٧	-	-	6.0	-
Step-up output voltage	DDVDH	٧	4.5	-	6.0	-
Step-up output voltage	VGH	٧	10.0	-	16.8	-
Step-up output voltage	VGL	٧	-10.9	-	-4.5	-
Step-up output voltage	VCL	٧	-3.0	-	-1.9	-
Voltage between VCI and VCL		٧	-	-	6.0	-
Voltage between VGH and VGL		٧	-	-	28.0	-

Clock Characteristics

Table 116 (Ta=-40°C \sim +85°C, VCI= 2.60V \sim 3.00V, IOVCC=1.65V \sim 3.60V)

Item	Symbol	Unit	Test condition	Min.	Тур.	Max.
Oscillation clock	fosc	KHz		930	1000	1070

Reset Timing Characteristics

Table 117 (VCI= 2.60V~3.00V, IOVCC=1.65V~3.60V, Ta=-40°C ~ +85°C)

Item	Symbol	Unit	Test condition	Min.	Max.
Reset "Low" level width 1	tRW1	ms	Power supply on	1	_
Reset "Low" level width 2	tRW2	us	In an operating mode	10	_
Reset time	tRT	ms		_	5

Reset Reject

1) Reset Timing when power is on

2) Reset Timing during operation

Figure 65

Liquid Crystal Driver Output Characteristics

Table 118

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
VCOM output delay time	tddv	us	IOVCC=1.8V, VCI=2.8V, Ta=25°C, BC0=1, FP=8'h08, BP=8'h08, VRH=5'h18, VCM=7'h3F, VDV=5'h15, AP=2'h3, DC00=3'h4, DC10=3'h2, DC30=3'h2, VEQW=3'h1, Time to reach the target voltage ± 35 mV from VCOM polarity inversion timing, load resistance R = 100Ω , load capacitance C = 20 nF	1	20	25	
Source driver output delay time	tdds	μs	IOVCC=1.8V, VCI=2.8V, Ta=25°C, BC0=1, FP=8'h08, BP=8'h08, VRH=5'h18, VCM=7'h3F, VDV=5'h15, AP=2'h3, DC00=3'h4, DC10=3'h2, DC30=3'h2, Transition time from the same grayscale at all source pins, Time to reach the target voltage level ± 35 mV when source output level alternates between V0 and V255, load resistance R = 10 kΩ, load capacitance C = 15 pF	1	15	25	See note

Note: LCD driver output delay time depends on load on the liquid crystal panel. Therefore, frame frequency and one line cycle need to be specified, checking image quality on the panel to be used.

Figure 66 LCD Driver Output Timing

Figure 67 LCD Driver Output Characteristics Test Circuit

MIPI-DBI Type B (16/8 Bits) Timing Characteristics

Table 119 16-Bit 1, 3/2, 2 Transfers (IOVCC=1.65V~3.60V, Ta=-40°C~+85°C)

Item	Sym	bol	Unit	Test condition	Min.	Max.
Address setup time	DCX	tast	ns		0	-
Address hold time (Write/Read)	DCX	taht	ns		10	-
Chip select setup time (Write)		tcs	ns		30	-
Chip select setup time (Read)	CSX	trcs	ns		170	-
Chip select wait time (Write/Read)		tcsf	ns		20	-
Write cycle time		twc	ns		60	-
Write control pulse "High" period	WRX	twrh	ns		22	-
Write control pulse "Low" period		twrl	ns		25	-
Read cycle time		trc	ns		450	-
Read control pulse "High" period	RDX	trdh	ns		250	-
Read control pulse "Low" period		trdl	ns		170	-
Write data setup time		twds	ns	CL	15	-
Write data hold time	DB[15:0]	twdh	ns	Max.30pF	20	-
Read access time	1 00[15.0]	tracc	ns	Min.8pF	10	150
Output disable time]	trod	ns	Wiii1.Opi	10	-
Rise/Fall time	-	tr/tf	ns		-	15

Table 120 8-Bit 2, 3 Transfers (IOVCC=1.65V~3.60V, Ta=-40°C~+85°C)

Item	Sym	bol	Unit	Test condition	Min.	Max.
Address setup time	DCX	tast	ns		0	-
Address hold time (Write/Read)	DCX	taht	ns		10	-
Chip select setup time (Write)		tcs	ns		30	-
Chip select setup time (Read)	CSX	trcs	ns		170	-
Chip select wait time (Write/Read)		tcsf	ns		20	-
Write cycle time		twc	ns		40	-
Write control pulse "High" period	WRX	twrh	ns		18	-
Write control pulse "Low" period		twrl	ns		18	-
Read cycle time		trc	ns		450	-
Read control pulse "High" period	RDX	trdh	ns		250	-
Read control pulse "Low" period		trdl	ns		170	-
Write data setup time		twds	ns	O.	15	-
Write data hold time	DD[4 <i>E</i> :0]	twdh	ns	CL May 20pF	20	-
Read access time	DB[15:0]	tracc	ns	- Max.30pF - Min.8pF	10	150
Output disable time	1	trod	ns	- IVIIII.OPF	10	-
Rise/Fall time	-	tr/tf	ns		-	15

Note: 1 transfer: (1)16bit-I/F 16bpp

3/2 transfer: (1)16bit-I/F 18bpp, (2)16bit-I/F 24bpp Option1

 $2\ transfer: (1)8bit\text{-I/F}\ 16bpp, (2)16bit\text{-I/F}\ 18bpp\ Option2, 3, (3)16bit\text{-I/F}\ 24bpp\ Option2$

3 transfer: (1)8bit-I/F 18bpp, (2) 8bit-I/F 24bpp

DBI Type B (16/8 bit) Timing

Figure 68

Note: Make sure to fix unused pins [15:0] to "IOVCC" or "GND".

MIPI-DSI Interface DC Specifications

Table 121 (DPHYVCC=1.65V~1.95V, Ta=-40°C ~ +85°C)

	Item	Symbol	Unit	Test condition	Min.	Тур.	Max.	Note
	Differential input high threshold	VIDTH	mV		-	-	70	
	Differential input low threshold	VIDTL	mV		-70	-	-	
HS-RX	Single-ended input low voltage	VILHS	mV		-40	-	-	
ns-kx	Single-ended input high voltage	VIHHS	mV		-	-	460	
	Common-mode voltage HS receive mode	VCMRX(DC)	mV		70	-	330	1
	Differential input impedance	ZID	Ω		-	(85)	-	2
LP-RX	Logic 0 input voltage not in ULP State	VIL	mV		-	-	550	
	Logic 1 input voltage	VIH	mV		880	-	-	
	Thevenin output low level	VOL	mV		-50	-	50	
LP-TX	Thevenin output high level	VOH	V		1.1	1.2	1.3	
	Output impedance of LP transmitter	ZOLP	Ω		(110)	-	-	2
CD-BX	Logic 0 contention threshold	VILCD	mV		-	-	200	
CD-RX	Logic 1 contention threshold	VIHCD	mV		450	-	-	

Notes: 1. VCMRX(DC) = (VDP+VDN)/2

^{2.} Excluding COG Resistance (Contact Resistance and ITO Wiring Resistance). The value is tentative.

HS-RX Clock and Data-Clock Specifications

Table 122 (DPHYVCC=1.65V~1.95V, Ta=-40°C~+85°C)

Item	Symbol	Unit	Timing diagram	Min.	Тур.	Max.	Note
DSICLK Frequency	fDSICLK	MHz	-	50	-	150	
DSICLK Cycle time	tCLKP	ns	Figure A	6.7	-	20	
DSI Data Transfer Rate	tDSIR	Mbps	-	100	-	300	
Data to Clock Setup Time	tSETUP	UI	Figure A	0.15	-	-	
Data to Glock Setup Time	ISETOI	ns	Figure A	0.50	-	-	
Clock to Data Hold Time	11101.5	UI	F: A	0.15	-	-	
Clock to Data Hold Time	tHOLD	ns	Figure A	0.50	-	-	

LP-RX/TX Clock and Data-Clock Specifications

Table 123 (DPHYVC=1.65V~1.95V, Ta=-40°C~+85°C)

Parameter	Description	Min	Тур	Max	Unit	Timing diagram	Note
T _{HS-PREPARE}	Time to drive LP-00 to prepare for HS transmission	40 ns + 4*UI	-	85ns + 6*UI	ns		
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + Time to drive HS-0 before the Sync sequence	145ns + 10*UI	ı	-	ns		
T _{HS-TRAIL}	Time to drive flipped differential state after last payload data bit of a HS transmission burst	max (n*8*UI, 60 ns + n*4*UI)	1	-	ns	Figure C	1,2
T _{HS-EXIT}	Time to drive LP-11after HS burst	100	-	-	ns		
T _{TA-GO}	Time to drive LP-00 after Turnaround Request		4*T _{LPTX}				
T _{TA-SURE}	Time-out before new TX side starts driving	1*T _{LPTX}	-	2*T _{LPTX}			
T _{TA-GET}	Time to drive LP-00 by new TX		5*T _{LPTX}				
T _{LPX}	Length of any Low-Power state period	50	-	-	ns	Figures C.	
Ratio T _{LPX}	Ratio of T _{LPX(MASTER)} /T _{LPX(SLAVE)} between Master and Slave side	2/3	-	3/2		D,and E	5
T _{CLK-POST}	Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	60 ns + 52UI	-	-	UI		3
T _{CLK-PREPARE} +T _{CLK-ZERO}	T _{CLK-PREPARE} +time for lead HS-0 drive period before starting Clock	300	-	-	ns		
T _{CLK-PRE}	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8	-	-	UI	Figure D	
T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS clock transmission	38	-	95	ns		
T _{CLK-TRAIL}	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns		
T _{EOT}	Time from start of T _{HS-TRAIL} period to start of LP-11 state	-	-	105 ns + n*12*Ul			2
T _{LPTX1}	Length of Low-Power TX state period in case of using DSI clock	-	n*DSITX	-	UI	Figure F	4
T_{LPTX2}	Length of Low-Power TX state period in case of using internal OSC clock	-	1/fosc	-	ns	Figure E	4

Notes: 1. If a > b then max (a, b) = a, otherwise max (a, b) = b

- 2. Where n = 1 for Forward-direction HS mode.
- 3. The R61523 operates as specified here although the last part of its internal process is left uncompleted when Clock Lane enters LP-11. However, it is favorable to have $T_{\text{CLK-POST}}$ period 256 UI or longer.
- 4. The R61523 uses DSI clock from the Host processor if Clock Lane is active, and internal oscillator clock if Clock Lane is disabled. Here, "fosc" is the frequency of oscillator clock, typical 14 MHz.
 - n*DSITX of T_{LPTX1} depends on DSIDIV setting.
- 5. The R61523 uses the frequency-divided DSI clock from the host processor for TX clock period.

Timing Diagram

Figure A Data to Clock Timing Definition

Figure B DSI LP Mode

Note: T_{HS-SYNC}: Proper match found for Sync sequence in HS stream, the following bits are payload data.

Figure C HS Data Transmission in Bursts

Figure D Switching the Clock Lane between Clock Transmission and LP mode

Figure E DSI LP Mode

Revision Record

Rev.	Date	Page No	Contents of Modification
0.03	February 27, 2009		First issue
0.04	April 15, 2009	6	VREG changed to VREG1.
		7	Number of VCOM adjustment bits changed from 13 to 12, description of rewriting data changed, and "Japanese Patent No. 4,226,627" added.
		9	VDDTEST1 connected to the internal logic power supply regulator deleted. (Error correction)
		11	VREG changed to VREG1.
		13	Description of DSI added in function of DPHYVCC.
		15	"step-up circuit 1" and "step-up circuit 2" changed to "step-up circuit."
		17	"on FPC" in function of DPHYGNDDUM[1:2] and description of patent added, and function and condition of unused pin of VPP1 changed.
		18-38	Pad coordinates (Rev.0.3) defined.
		39	Bump arrangement and alignment mark defined.
		40	Recommended resistance and wiring example revised.
		47	SP changed to Spa, and TEE changed to TER. (Error correction)
		48	"Start of Identification" changed to "Start of Transmission". (Error correction)
		55,69,73, 77	read_DDB_start (04h) command added.
		57-58	MCS and Data Type List defined.
		67	"*" changed to "0".
		71	The numbers of parameters defined.
		72	The numbers of parameters defined, and Test Mode (FFh) command deleted.
		78	"000h" changed to "N/A" (set_scroll_start (37h)).
		80-85	Default modes and values of Manufacturer Commands defined.
		88-89	read_DDB_start (04h) command added.
		91,93,95,9 7,99,101,1 29,131,13 3,134	Command name in note changed. (Error correction)
		114	Note added. (Error correction)
		121	"(See Appendix)" deleted from title.
		125	Table, "Memory Contents vs. Display Color", entirely changed.
		135	Note on dummy read operation, description of test registers added, and a table of test registers changed.
		136	Note on dummy read operation added.
		140	Description of dummy read operation added. (Error correction)
		143	ULMTW0/1[5:0] and LLMTW0/1[5:0] changed to ULMTW0/1[7:0] and LLMTW0/1[7:0].

Rev.	Date	Page No	Contents of Modification
		163	"(DDVDHA and DDVDHB)" added in a table, "DC0n,DC1n" changed to "Normal operation", and "DC0n x 1/2" changed to "Low-speed operation."
		166	Range of the number of lines set by BP and FP changed, and the equation of the total of lines set by BP and FP corrected.
		167	Settings inhibited. (RTNn[5:0]=6'h10-6'h11)
		168	Settings inhibited. (FPn[7:0]=8'h03, and BPn[7:0]=8'h02-8'h03)
		171	Settings inhibited. (VEQW[2:0]=3'h0, and VEM[1:0]=2'h0-2'h2)
		172	Setting inhibited. (SPCW[2:0]=3'h0)
		173-178	Register names and arrangements changed.
		179	Settings changed. (VC2[2:0]=3'h1-3'h5).
		180	Settings added. (VRH[4:0]=5'h1C-5'h1F)
		181	Title corrected to "VCOM Setting.", and the 2 nd parameters added, and "0" of the 3 rd and 4 th parameters changed to "1".
		184	Title changed from "Power Setting for Normal Mode (D2h)" to "Power Setting for Normal/Partial Mode (D2h)."
		185	DC0x settings newly defined. (PTDC=1)
		186	Japanese deleted.
		187	"0" of the 2 nd and 4 th parameters changed to "1", and description of NVAD[0] added.
		190	"Hi-Z/GND" changed to "Hi-Z/Hi-Z" (C13P/C13M), and "Hi-Z/GND" changed to "VCI/GND" (C31P/C31M).
		198	"(DCDC > DCDC x 0.7)" changed to "VGH > Setting value x 0.7)."
		204	"four grayscales" changed to "five grayscales", and "255" added in description. (Error correction)
		210	Unit of fosc changed from Hz to kHz. (Error correction)
		213-214	Line No. corrected.
		219	DPHYVCC added in the order of inputting power supply.
		220	Register default settings defined.
		222-232	"γ Correction Function" defined.
		233	VCOMH and VCOML numbered.
		234	VCOMH and VCOML added.
		235	VREG changed to VREG1.
		237	"45-bit" changed to "44-bit", "13 bits" changed to "12 bits", and NVM operating conditions defined.
		238	NVM write sequence defined.
		239	Note on the relationship between DDVDHA/B and VCL deleted, and note No. changed.
		242	"TEST1" deleted from a figure, "TEST2" and "TEST4" added in the figure, and connection of VREFC, VDDTEST, TSC, and VPP1 to ground (GND or AGND) corrected.
		244	Table of output voltage range added. (Error correction)
		246	Spec for VCOM output delay time and VCOM waveform added, and
			· · · · · · · · · · · · · · · · · · ·

Rev.	Date	Page No	Contents of Modification
			some specs of source driver output delay time and test circuits changed.
		247	tcs, tcsf, twds, twdh, and tr/tf changed.
		250	tSETUP and tHOLD changed. (Unit: ns)
0.05	June 8, 2009	8	IOVCC voltage range changed, and DPHYVCC voltage range (when DSI is not used) added.
		15	"C32P,C32M" changed to "C23P,C23M." (Error correction)
		39	Chip thickness changed.
		160	NL setting range changed.
		190	VDDPAD changed to VDD. (Error correction)
		237, 240, 243-245, 247	IOVCC voltage range changed.
		238	Parameters of D1h command corrected, ID2 changed to ID1, ID3 changed to ID2, and AD[0] changed to NVAD[0]. (Error correction)
		248	Specs of 8-bit transfer timing added.
		251-252	IOVCC changed to DPHYVCC.
1.00	September 29, 2009	All	"Preliminary Specification" changed to "Specification."
		8, 39, 234, 240	"[T.B.D.] deleted.
		140	"Write #A= "1 " #B= " ↑ "" deleted (error correction).
		142	A restriction added.
		143	"LNCOM" deleted from and a sentence regarding BLC function added in the description of BLCM.
		149	The table of COEFKn changed and a note added.
		154	Note 2 added.
		167	The table of RTNn setting changed.
		186	The setting of DC30 and DC32 (3'h3) changed.
		204	"nine grayscale value" changed to "four grayscale values."
		233	The note changed.
		240	The specs for current consumption changed.
		241	The specs for DSI current consumption, LCD power supply current, and average output voltage variance changed.
		243	The step-up circuit characteristics defined.
		244	The spec of temperature of the clock characteristics changed.
		246	The liquid crystal driver output characteristics defined.
		247	Min. of twrh changed from 25 to 22.
		251	The figure number defined and min. of tCLKP changed from 5.7 to 6.7.
		252	The figure numbers defined.
		253	Note 5 added.
1.01	December 25, 2009	10,66,94, 127,137	Setting disabled → Setting inhibited

Rev.	Date	Page No	Contents of Modification
		13	External power supply pins, GND, Function: "GND=0V" added.
		39	Chip thickness: (T.B.D.) deleted.
		69	0Bh, Note: 3 deleted.
		85	Note 2 corrected.
		91	Bit D7, D1 and D0: Not defined \rightarrow Reserved
		93	Bit D0: definitions of "0" and "1" corrected.
		112, 114, 128	Command: 1st parameter, Nth parameter \rightarrow 1st pixel data, Nth pixel data
		119	set_tear_on: 35h, Description: Notes corrected.
		122	Note on frame memory corrected.
		124	exit_idle_mode: 38h, Description corrected.
		127	Description, table: D6/D2 \rightarrow D2, D5/D1 \rightarrow D1, D4/D0 \rightarrow D0
		130	set_tear_scanline: Description corrected.
		136	Low power mode control: DSTB description corrected.
		138	$DFM \to DFM[1:0]$
		144	THREW0[4:0], THREW1[4:0]: grayscale number 63 → 255
		145	ULMTW0[5:0], ULMTW1[5:0] \rightarrow ULMTW0[7:0], ULMTW1[7:0]
			"ULMTW0 is enabled when BLCM=0. ULMTW1 is enabled when BLCM=1." added.
		146	LLMTW0[5:0], LLMTW1[5:0] \rightarrow LLMTW0[7:0], LLMTW1[7:0]
			"LLMTW0 is enabled when BLCM=0. LLMTW1 is enabled when BLCM=1." added.
		147, 148, 202	Restriction (CGAPW[4:0] \geq PITCHW[3:0]) added.
		152	PWMWM, PWMON: Note on PWMWN setting deleted.
		153	BDCV[7:0]: BLCON definitions corrected.
		158	Title "Panel Control Command" added.
		160	NL[7:0]:not affected by the number of NL[6:0] → NL[7:0]
			$SCN[7:0] table: SCN[6:0] \rightarrow SCN[7:0]$
		163	PTS[2*0], PTDC: Table note: CD0h → DC0n
		166	Title "Display Mode and Valid Register" added.
		171	VEM[1:0]: Restrictions (VCI < VCOMH, GND > VCOML) deleted.
			Note on display quality deleted from under the table.
		172	Source precharge position \rightarrow Source precharge period
		180	$VRH \rightarrow VRH[4:0]$
		182	VCM[6:0] description corrected.
		187	FTT: when NVM write/erase is finished \rightarrow when NVM write and verify is finished
		188	VERIFLGWR description added.
			TE output table: VERIFLGER&VERIFLGWR → VERIFLGWR

Rev.	Date	Page No	Contents of Modification
			Table note added.
		189	WCDDB=1: Restriction (ID2[15:0]≠16'hFFFF) added.
			WCDDB=0: Write WCDB=0 \rightarrow Write WCDDB=0
		200	(5) Gamma conversion table: TBL[7:0] → TBLx[7:0]
		208	Left/Right interchanging scan (SM=0) added after (1)
		209	Left/Right one-side scan(SM=1) added after (2)
		219	Under the title: Figure description added.
			Figure, 2^{nd} box from bottom: Power on and display on sequencers operate \rightarrow Power off and display off sequencers operate
		225, 226	Note: $P_B/P_N \rightarrow P_B/N_B$
		226	V0 Level: VREG x 100%, 99%, 98%, 69% → VREG1 x 100%, 99%, 98%, 69%
			V255 Level: VREG x 2%, 3%, 4%, 33% \rightarrow VREG1 x 0%, 1%, 2%, 31%
		237	Exit Deep Standby Mode Sequence → Deep Standby Mode Off sequence
		238	NVM Write Sequence:
			DDB data set (NVM Write Data) rearranged and corrected.
			VCOM setting register Set (NVM Write Data) corrected.
			Note in the center-bottom deleted.
		243	Internal reference voltage, Typ.: $2.50 \rightarrow 2.53$
		244	Step-up output voltage, Typ.: 5.6 deleted.
		248	MIPI-DBI Type B, 16bit, Write data hold time, Min.: $25 \rightarrow 20$
		253	Ratio T _{LPX} , Note: 5 added.

DS 免責事項の PDF