

# Boosting Power System Operation Economics via Closed-Loop Predict-and-Optimize (C-PO)

Xianbang Chen, Stevens Institute of Technology Yikui Liu, Sichuan University Lei Wu, Stevens Institute of Technology

June 5, 2024



Boosting
Power System
Operation Economics
via
Closed-Loop
Predict-and-Optimize
(C-PO)

**Background** 

Approach 1: Feature-Driven C-PO

Approach 2: Bilevel C-PO

(IV

**Takeaways** 

## Background: Power System Operations

Operations in Open-Loop Predict-then-Optimize (O-PO)



Lower Operation Cost Better Operation Economics

## Motivation: Flaw in Open-Loop Process

## More Accurate Prediction Lower Operation Cost

**MAPE:** Mean absolute percentage error



#### Point A vs Point B

Worse error enables better operation economics.

#### Why?

Systems are complex.

The accuracy-economics relationship is nonlinear.

O-PO ignores this.

"In many real-world applications, the **ultimate goal** is not to make good predictions, but rather to use the often noisy predictions to **make good decisions**."

---- Yoshua Bengio in Using a Financial Training Criterion Rather than a Prediction Criterion, 1997

## Our Idea: Closed-Loop Predict-and-Optimize

# Open-Loop Predict-then-Optimize (O-PO)



Closed-Loop Predict-and-Optimize (C-PO)



- Train predictor with accuracy criterion | Train predictor with cost criterion
- Open-loop and accuracy-oriented

- Closed-loop and cost-oriented

## C-PO.v1: Train Cost-Oriented Predictor H

$$\min_{H} \frac{1}{k} \sum_{k=1}^{K} SPO \, \ell oss_k$$

- $\circ$  SPO  $\ell$ oss =  $\left| Operation\ Cost(\mathbf{H}) Operation\ Cost^{Perfect} \right|$  Operation  $Cost^{Perfect}$  is resulted by error-free prediction.
- $\circ$  Measure operation cost increment caused by predictor H.
- Predictor *H* learns to generate cost-oriented predictions that can make the operation cost lower.

# C-PO.v2: Bilevel Training for Predictor H

Prediction  $\widehat{\boldsymbol{w}}_k$ 

Day-Ahead Operation Plan  $x_k$ 

Upper Level (Predictor Training)  $\min_{\mathbf{H}} \frac{1}{K} \sum_{k=1}^{K} (\mathbf{a}^{\mathsf{T}} \mathbf{x}_k + \mathbf{b}^{\mathsf{T}} \mathbf{y}_k)$ 

$$\widehat{\boldsymbol{w}}_{k} = \boldsymbol{H}\boldsymbol{f}_{k}; \ \forall k$$

Lower Level 1 (Day-Ahead Operation)

$$\mathbf{x}_k \in \underset{\mathbf{x}_k \in \mathcal{X}(\widehat{\mathbf{w}}_k)}{\operatorname{argmin}} \mathbf{c}^{\mathsf{T}} \mathbf{x}_k \; ; \; \forall k$$

Lower Level 2 (Real-Time Operation)

$$\mathbf{y}_k \in \operatorname{argmin} \ \mathbf{d}^{\mathsf{T}} \mathbf{y}_k ; \ \forall k$$

$$y_k \in \mathcal{Y}(\mathbf{x}_k, \widetilde{\mathbf{w}}_k)$$

**Total Operation Cost** 

Day-Ahead Operation Cost  $\boldsymbol{a}^{\mathsf{T}}\boldsymbol{x}_k$ 

Real-Time Operation Cost  $\boldsymbol{b}^{\mathsf{T}}\boldsymbol{y}_k$ 

## C-PO vs O-PO on Real-World Dataset



| Type of Prediction | Mean Absolute Percentage Error (MAPE) | Root Mean Square Error<br>(RMSE) |
|--------------------|---------------------------------------|----------------------------------|
| Accuracy-Oriented  | 39%                                   | 130MW                            |
| Cost-Oriented      | 34% (Better)                          | 149MW (Worse)                    |

### C-PO vs O-PO on Real-World Dataset



## Takeaways

## Key Points

Prediction is to improve the operation performance instead of accuracy.

## Thinking

- Use reinforcement/deep learning to do closed-Loop predict-and-optimize?
- Reliability-oriented prediction?

## References and Codes



"Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework," IEEE Transactions on Power Systems, 2022.



"Towards Improving Operation Economics: A Bilevel MIP-Based Closed-Loop Predictand-Optimize Framework for Prescribing Unit Commitment," *Third-Round Review under IEEE Transactions on Sustainable Energy*.