Logistic regression assumptions and diagnostics

Class activity, Part I

https://sta214-s23.github.io/class_activities/ca_lecture_12.html

- Simulate data with a potential outlier
- Assess the impact on estimated coefficients

Class activity

How does an outlier influence the fitted regression model?

- extreme attiers in the data commake our BS

 quite different from BS (bias!)

 outliers have more potential influence in Small samples

Cook's distance

now nuch influence oces fitted model?

in observation)

oces each observation

nobservation have on 141= # BS

 $D_{i} = \frac{(\forall_{i} - \hat{\eta}_{i})^{2}}{(K+i)\hat{\eta}_{i}(l-\hat{\eta}_{i})} \cdot \frac{h_{i}}{(l-n_{i})^{2}}$ (cooks distance

hi= leverage Chavunusvalis

en absenation in X airection

Intertion: a point is influential if both ti is far from it; , and the values of the explanatory

variables are unusual

Thresholds: concerned if D: > 0.5 or 1

Cook's distance in R

```
x1 \leftarrow c(x, -2)

y1 \leftarrow c(y, 1)

m1 \leftarrow glm(y1 \sim x1, family = binomial)

plot(x1, cooks.distance(m1))
```


Cook's distance in R

```
x1 \leftarrow c(x, -5)

y1 \leftarrow c(y, 1)

m1 \leftarrow glm(y1 \sim x1, family = binomial)

plot(x1, cooks.distance(m1))
```


Addressing model issues

How should we handle outliers and influential points? Discuss with a neighbor for a few minutes, then we will discuss as a group.

```
remove outliers if is a clear error

remove outliers, report results with and without attiers

(product,

CIS)

try transformations for snewed explanatory variables
```

Summary

- Shape assumption
 - Diagnostics: empirical logit plots, quantile residual plots
 - Addressing violations: transformations
- Multicollinearity
 - Diagnostics: correlation matrix, scatterplot matrix, VIFs
 - Addressing violations: remove or combine some variables
- Outliers and influential points
 - Diagnostics: Cook's distance
 - Addressing violations: remove clear errors; otherwise report conclusions (p-values, confidence intervals, etc.) with and without potential outliers

Class activity, Part II

https://sta214-s23.github.io/class_activities/ca_lecture_12.html

- Explore a dataset on small business loans
- Perform diagnostics and build a model

Work with a neighbor on the class activity questions. We will discuss as a group towards the end of the class period. Note: some of the questions are open-ended, with multiple reasonable answers

Correlation

How should we handle correlation in these variables?

Empirical logit plots

How does the shape assumption look?

Trying some transformations

Model output

```
New Exist 1
                                                                        New Exist 2
m1 <- glm(Default ~ log(DisbursementGross) + Term +</pre>
        sqrt(NoEmp) + as.factor(NewExist) + as.factor(UrbanRural),
```

```
summary(m1)
##
  Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
                        -13.165174 287.140564
                                                     0.96343
  (Intercept)
                                              -0.046
  log(DisbursementGross)
                          0.100402
                                    0.038974
                                              2.576 0.00999 **
## Term
                                    0.001192 -18.396
                                                     < 2e-16 ***
                         -0.021929
## sqrt(NoEmp)
                         -0.101943
                                    0.029505
                                             -3.455 0.00055 ***
## as.factor(NewExist)1
                         11.656026/287.140216
                                              0.041
                                                     0.96762
## as.factor(NewExist)2
                         ## as.factor(UrbanRural)1
                        1.145921
                                    0.109647
                                             10.451
                                                     < 2e-16 ***
## as.factor(UrbanRural)2
                          0.870859
                                    0.145871
                                              5.970 2.37e-09 ***
```

Why are the standard errors for NewExist so large?

data = sba, family = binomial)