quantitative Real Time PCR - SYBR Green

Organismus:	*Gen:
Gewebe:	Run:

		iε				

etherter scu	ellia.							
1 ntc	9	17	25	33	41	49	57	65
2 ntc	10	18	26	34	42	50	58	66
3 ntc	11	19	27	35	43	51	59	67
4 Cal	12	20	28	36	44	52	60	68
			•					
5 Cal	13	21	29	37	45	53	61	69
6 Cal	14	22	30	38	46	54	62	70
7	15	23	31	39	47	55	63	71
8	16	24	32	40	48	56	64	72

Mastermix ansetzen

•			
	je Ansatz	Mastermix (75	Reaktionen)
	10 µl	750 µl 2>	qPCR S'Green BlueMix (Biozym)
	0.4 µl	30 µl 20) μM Primer
	0.4 µl	30 µl 20) μM Primer
	4.2 µl	315 µl	DEPC-H ₂ O
	15 µl	1125 µl	gesamt

• je Ansatz 15 μl Mastermix pipettieren

DNA zugeben

- je Ansatz 5 μl

 - 1) ntc's pipettieren und verschließen
 2) SL5 pipettieren und verschließen
 3) Cal pipettieren und verschließen

 - 4) restliche cDNAs pipettieren und verschließen

Rotor-Gene-Q beladen und Programm ausführen

1) Hold 95°C | 2 min

2) Cycling 40x

95°C | 5 sek

a) Denaturie Rungb) Annealing/Extension 60°C | 30 sek | green

3) Melt

Rampe Range $60\,^{\circ}\text{C}$ - $95\,^{\circ}\text{C}$ | Inkrement $1\,^{\circ}\text{C}$, 5 sek | Acquisition green