Question Number	Answer		Mark
21(a)(i)	Use of $\lambda_{max}T = 2.898 \times 10^{-3}$	(1)	
	Use of $L = \sigma A T^4$ and $A = 4\pi r^2$ Or Use of $L = \sigma A T^4$ to calculate A and $A \propto r^2$	(1)	
	$\frac{r_B}{r_S} = 990$	(1)	
	[Probable values for r : $r_{\rm B} = 6.831 \times 10^{11} \rm m$ and $r_{\rm S} = 6.892 \times 10^8 \rm m$] Watch out for variation due to rounding, particularly for T]		
	$\frac{r_B}{r_S}$ is approximately equal to 1000, so claim is accurate		
	$\mathbf{Or} \frac{r_B}{r_S}$ is less than 1000, so claim is inaccurate		
	$\mathbf{Or} \frac{r_B^2}{r_s}$ is not equal to 1000, so claim is inaccurate	(1)	4
	(Allow use of calculated ratio with consistent conclusion)		
	$\frac{\text{Example of calculation}}{T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$ $\frac{L_B}{L_S} = \frac{4\pi \sigma r_B^2 T_B^4}{4\pi \sigma r_S^2 T_S^4}$		
	$\frac{r_B}{r_S} = \sqrt{\frac{L_B}{L_S} \times \frac{T_S^4}{T_B^4}} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{3.83 \times 10^{26} \text{ W}}} \times \left(\frac{5800 \text{ K}}{3410 \text{ K}}\right)^4} = 991$		
21(a)(ii)	Sun in correct position Betelgeuse in correct position	(1) (1)	2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	10-2		
	10-4		
	10-6		
	40 000 20 000 10 000 5000 2500 T/K		
21(a)(iii)	A main sequence star is a star that is fusing <u>hydrogen</u> in its <u>core</u> [Accept "burning" for "fusing"]	(1)	1

21(b)	Use of $\omega = \frac{2\pi}{T}$	(1)	
	Use of $v = r\omega$	(1)	
	Use of $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$	(1)	
	Determines range by taking 91.2 nm $\pm \Delta \lambda$ [$\Delta \lambda$ is their calculated value]	(1)	
	[This may be awarded by seeing two substitutions into the Doppler equation. Once with $\Delta\lambda = (91.2 - \lambda)$ and once with $\Delta\lambda = (\lambda - 91.2)$]		
	Maximum wavelength = 91.8 (nm)	(1)	
	Minimum wavelength = 90.6 (nm)	(1)	6
	Example of calculation $\omega = \frac{2\pi}{T} = \frac{2\pi \text{ rad}}{33.5 \times 10^{-3} \text{s}} = 187.6 \text{ rad s}^{-1}$ $v = 10.25 \times 10^3 \text{ m} \times 187.6 \text{ rad s}^{-1} = 1.922 \times 10^6 \text{ m s}^{-1}$		
	$\frac{\Delta \lambda}{91.2 \times 10^{-9} \mathrm{m}} = \frac{1.922 \times 10^6 \mathrm{m s^{-1}}}{3.00 \times 10^8 \mathrm{m s^{-1}}}$		
	$\Delta \lambda = 6.408 \times 10^{-3} \times 91.2 \times 10^{-9} \text{ m} = 5.84 \times 10^{-10} \text{ m}$		

13

Total for question 21