19日本国特許庁(JP)

①特許出願公告

⑩特 許 公 報(B2)

平2-44345

®Int. Cl. 5	識別配号	庁内整理番号	2949公告	平成 2 年(1990	0)10月3日
C 09 J 4/	02 JBL	8620-4 J 8620-4 J			
# C 08 F 4/ 20/ 20/	28 MM L	6779-4 J 8620-4 J 8620-4 J			
				発明の数 1	(全9頁)

②発明の名称 速硬性を有する嫌気性接着剤組成物

②特 願 昭58-16885

每公 開 昭59-145268

②出 願 昭58(1983) 2月5日

43昭59(1984)8月20日

則 香川県仲多度郡多度津町若葉町6-33 @発 明 岡 孝 @発 明 森 香川県三豊郡三野町大見甲1404-1 久 個発 明 大 西 孝 治 香川県丸亀市津森町892-7 @発 明 田 英 明 香川県丸亀市津森町738-2 者 勿出 願 大倉工業株式会社 香川県丸亀市中津町1515番地 個代 理 弁理士 小川 一美

19代理 人 并理士 小川 一美審 査 官 橋 本 栄 和

窗参考文献 特開 昭51-63837 (JP, A)

P, A) 特開 昭57-83572(JP, A)

1

切特許請求の範囲

1 重合性メタクリル酸エステル100重量部と下記(a), (b), (c), (d), (e)からなる速硬性を有する嫌気性接着剤組成物

(a) 0-ペンゾイツクスルフイミド 0.1~5重量部 5

(但し、式中RはHまたはCH3を示す。)

(c) 有機アミンまたはジシアンジ アミド 0.05~3重量部 *(d) ハイドロパーオキサイド

0.05~1重量部

(e) 水 0.5~4重量部

2

2 重合性メタクリル酸エステルが一般式(1)

$$\begin{array}{cccc}
CH_3 & CH_3 \\
CH_2=C-C-(OR_1-)_{10}-O-C-C=CH_2 & (1) \\
O & O
\end{array}$$

(但し、式中R₁は炭素数 2~4個のアルキレン 基、nは3~5の整数を示す。)

10 の化合物または一般式(1)の化合物と次の一般式(2)

(但し、式中R₂, R₃は炭素数 2~4個のアルキレン基、1, mは 1または 2で1+m≤3を示す。)

の化合物との混合物であり、該混合物における— 20 般式(2)の化合物の配合割合は90重量%以下であることを特徴とする特許請求の範囲第1項記載の組成物。

3 重合性メタクリル酸エステルが一般式(3)

$$\begin{array}{c}
CH_3\\
CH_2=C-C-(OR_4)_{\overline{P}}OH\\
0
\end{array}$$
(3)

(但し、式中R4は炭素数2~4個のアルキレン基またはハロゲン化アルキレン基、pは1~8

の整数を示す。)

の化合物10~70重量%と一般式(2)の化合物90~30 重量%からなる特許請求の範囲第1項記載の組成

発明の詳細な説明

本発明は隣接二表面間、特に金属の微細な隙間 において室温で極めて短時間に硬化して接着及び シール効果を呈することを特徴とする速硬性を有 する嫌気性接着剤組成物に関するものである。す ては1分以内に固着し、その後、数分~数十分で 実用強度に達する性能を有する接着剤を提供する ものである。

近年、電機、機械などの諸工業においてアクリ ル系の無溶剤型接着剤を用いて部品の組み立てや 15 果、本発明に至つたものである。以下、本発明の シールを行うことが広く行なわれるようになり、 機械的方法にかわつて作業の簡素化やコストダウ ンに役立つているが更に能率をあげるために作業 全体をライン化する傾向が強くなつている。

アクリル系接着剤を使用してライン化する場 20 (a) 0-ベンゾイツクスルフイミド 0.1~5重量部 合、充分な接着強度が要求されることはもちろん であるが、その上に接着作業が簡便であること、 硬化速度が非常に速いこと、および大量に接着剤 を使用しても眼、鼻、等に対して刺激性のないこ とが重要な条件となつている。しかしながら、代 25 (c) 有機アミンまたはジシアンジ 表的なアクリル系無溶剤型接着剤であるシアノア クリレート系接着剤や嫌気性接着剤は前記の条件 を充分満足しているとはいえない。すなわち、シ アノアクリレート系接着剤の場合は硬化速度の点 合、眼、鼻等の粘膜を刺激するため換気装置を必 要とし、耐熱性や耐水性も悪く構造用には使用で きない。嫌気性接着剤の場合はポリアクリレート を主成分とし、硬化物は三次元樹脂であるため接 すが、硬化速度が遅くそのままではライン作業に 組みこむことができない。日特公昭43-6545、同 44-7541、同45-15640、同45-33664、同47-26659、同48-13717号公報等に種々の嫌気性接着 タイムと実用強度に達するのに数時間を要するも のであり、これらの接着剤を速硬性にするために は髙温で加熱したり、プライマーを併用するなど の繁雑さを伴なつている。また、ラインで大量に

使用した場合、硬化剤の有機過酸化物等が刺激臭 を発生し、眼、鼻、皮膚刺激の原因ともなるため 作業環境上好ましくない。一般に、嫌気性接着剤 はポリメタクリレート単鼠体を主成分とし、これ 5 に硬化剤、硬化促進剤および安定剤を添加し、硬 化速度と貯蔵安定性をうまくバランスさせて一液 化したものであり、強力な硬化促進剤を用いて速

硬性のものを得ようとしても保存安定性が悪くな つて成功しない。使用直前に強力な硬化促進剤を なわち、本発明は清浄で微細な金属の隙間におい 10 混合する方法も一部とられているが、作業性が悪 いだけでなく、混合後の効果の持続性、保存性に 問題が残つている。本発明者等は一液性で刺激性 が少なく、長期保存安定性に優れ、しかも極めて 速硬性の接着剤を開発する目的で鋭意研究の結

> 本発明は重合性メタクリル酸エステル100重量 部と下記(a)~(e)からなる速硬性を有する嫌気性接 着剤組成物に関するものである。

組成上の特徴及び性能について詳述する。

(但し、式中RはHまたはCH₃)

0.05~3重量部

(d) ハイドロパーオキサイド

0.05~1重量部

(e) 水

0.5~4重量部

O-ベンゾイックスルフイミドおよびペンゼン では充分であるが、ライン作業で大量に用いた場 30 スルホニルヒドラジドまたはトルエンスルホニル ヒドラジド(以下アリールスルホニルヒドラジド と略記する。) はそれぞれ嫌気性接着剤の硬化促 進剤として公知であるが、有機過酸化物を含有す る重合性メタクリル酸エステルにこれらを単独で 着強度、耐熱、耐水、耐油性等に優れた物性を示 35 添加しただけでは通常の接着速度のものしか得ら れず、固着に10分以上を要し、実用強度には数時 間を要する。本発明者等はOーベンゾイツクスル フイミドとアリールスルホニルヒドラジドを共存 させた場合に比較的接着速度の速いものが得られ 剤が提案されているが、いずれも数十分のセット 40 ることを見い出し、更にこの系に水を適量加えた ものが驚くべき速硬性を示すことを発見した。す なわち、よく磨いた鉄ブロックを用いて平面接着 する場合、ハイドロパーオキサイドを含有する重 合性メタクリル酸エステルにOーベンゾイツクス

ルフイミド単独添加系が固碧に約20分、アリール

*たものである。 本発明に用いられる重合性メタクリル酸エステ ルとしては、次に示す(A)または(B)の系が特に好ま しい。

$$\begin{array}{cccc}
CH_3 & CH_3 \\
CH_2=C-C-(OR_1)_{11}O-C-C=CH_2 & (1) \\
O & O
\end{array}$$

6

(但し、式中Riは炭素数2~4個のアルキレ ン基、nは3~5の整数を示す。) の化合物または一般式(1)の化合物90~10重量%と 次の一般式(2)

$$\begin{array}{c} CH_{3} \\ CH_{2}=C-C-C+OR_{2})-O-C \\ O \\ CH_{3} \\ CH_{3} \\ O \\ CH_{3} \\ O \\ CH_{3} \\ O \\ O \end{array} = \begin{array}{c} CH_{3} \\ C-C=CH_{2} \\ O \\ O \\ O \\ O \end{array} \tag{2}$$

(3)

(但し、式中R2, R1は炭素数2~4個のアル 示す。)

の化合物10~90重量%の混合物

(B) 一般式(3)

$$CH_{2}=C-C+OR_{4})_{\overline{p}}OH$$
O
(3)

(但し、式中R4は炭素数2~4個のアルキレ ン基またはハロゲン化アルキレン基、pは1~ 8の整数を示す。)

の化合物10~70重量%と前記一般式(2)の化合物90 ~30重量%の混合物。

(A)の混合系における一般式(1)の化合物はアルキ レングリコールまたはポリアルキレングリコール 成分である水を均一に溶解させるのに好適であ る。 nが 2以下になれば水が均一に溶解しない。 また、一般式(2)の化合物は単独では水が溶解しな いが(A)の組成比で配合された場合は均一に溶解ま ピスフエノールAのアルキレンオキサイド付加物 をメタクリル酸で常法によりジェステル化するこ とによつて容易に得ることができる。本発明の組 成においては1+m≤3の場合に特に速硬性とな

り1+m>3ではやや接着速度が遅い。(B)の混合 キレン基、1, mは1または2で1+m≤3を 20 系における一般式(3)の化合物はヒドロキシアルキ ルメタクリレートまたはポリアルキレングリコー ルのモノメタクリレートであり、一般式(1)の化合 物と同様の理由で使用される。

一般式(1)の化合物としては、トリエチレングリ 25 コールジメタクリレート、テトラエチレングリコ ールジメタクリレート、ペンタエチレングリコー ルジメタクリレート、トリプロピレングリコール ジメタクリレート等があげられる。一般式(2)の化 合物としてはピスフエノールAエチレンオキサイ 30 ド2モル付加物のジメタクリレート、ピスフエノ ールAエチレンオキサイド3モル付加物のジメタ クリレート、ピスフエノールAプロピレンオキサ イド2モル付加物のジメタクリレート、ピスフエ ノールAブチレンオキサイド2モル付加物のジメ のジメタクリレートであり、本発明に於ける必須 35 タクリレート等があげられる。一般式(3)の化合物 としてはヒドロキシエチルメタクリレート、ヒド ロキシプロピルメタクリレート、ヒドロキシクロ ルプロピルメタクリレート、ヒドロキシブチルメ タクリレート、ジエチレングリコールモノメタク たは分散することができる。一般式(2)の化合物は 40 リレート、トリエチレングリコールモノメタクリ レート等があげられる。

> 以上、(A)または(B)の組成で示された重合性メタ クリル酸エステルの系が特に有利であるが、他の 重合性メタクリル酸エステル、たとえばトリメチ

ロールプロパントリメタクリレート、トリメチロ ールエタントリメタクリレート、グリセリントリ メタクリレート、ネオペンチルグリコールジメタ クリレート、エチレングリコールジメタクリレー ト、ジエチレングリコールジメタクリレート等の 5 多価アルコールのポリメタクリレート類、テトラ ヒドロフルフリルメタクリレート、シクロヘキシ ルメタクリレート、メトキシポリエチレングリコ ールメタクリレート、ラウリルメタクリレート等 リル酸を付加して得られるエポキシメタクリレー ト及びウレタンポリメタクリレート類等も本発明 においては使用することができる。これらの重合 性メタクリル酸エステルはメトキシポリエチレン 解させることができないため、一般式(1)または(3) の化合物との混合系で使用することが好ましい。

Oーペンゾイツクスルフイミドは重合性メタク リル酸エステル100重量部に対して0.1~5重量 ゼンスルホニルヒドラジドまたはトルエンスルホ ニルヒドラジドは重合性メタクリル酸エステル 100重量部に対して0.1~5 重量部好ましくは、 0.3~3 重量部があり、〇一ペンゾイツクスルフ

有機アミンまたはジシアンジアミドは本発明に おいてゲル化安定剤として作用するものであり、 種類によつて添加量は異なるが、重合性メタクリ ル酸エステル100重量部に対して0.05~3重量部 30 ない。 添加される。アミンの種類としては一級、二級、 三級アミンのいずれも使用可能であり、たとえば nープチルアミン、nーヘキシルアミン、ラウリ ルアミン、モノエタノールアミン、ジエタノール アミン、トリエチルアミン、N, Nージメチルア ニリン、N, Nージメチルーpートルイジンなど があげられる。これらのアミンのうち、過酸化物 とレドツクスを形成して通常は重合性単量体のゲ 成においては良好なゲル化防止剤として使用する ことができ特異的である。

有機過酸化物として本発明においてはハイドロ パーオキサイドが使用される。他の有機過酸化物

も使用することができるが、接着速度、安定性の 点でハイドロパーオキサイドが最適である。添加 量は重合性メタクリル酸エステル100重量部に対 して0.05~1重量部、好ましくは0.1~0.6重量部 である。本発明においては、このように少量のハ イドロパーオキサイドで充分であり、従来の嫌気 性接着剤にみられるように2%以上の多量に添加 する必要は全くない。有機過酸化物の添加量が2 %を超えると臭気が強くなるだけでなく、人体の のモノメタクリレート類、エポキシ樹脂にメタク 10 眼、鼻、皮膚に対して強い刺激を生じるため、従 来有機過酸化物の添加量はできるだけ少量、特に 1%以下にあることが望ましいとされていた。し かしながら、有機過酸化物の添加量を減少すると 従来の組成においては接着速度、接着強度に悪影 グリコールメタクリレートを除いて水を均一に溶 15 響を及ぼすことが問題となつていた。本発明にお いては0.5%以下の少量でも超速硬性で良好な接 着強度を有するもので、労働衛生上からも非常に 有利である。ハイドロパーオキサイドとしては t ープチルハイドロパーオキサイド、pーメンタン 部、好ましくは0.3~3重量部添加される。ベン 20 ハイドロパーオキサイド、クメンハイドロパーオ キサイド、ジイソプロピルベンゼンハイドロパー オキサイド等があげられる。

水は本発明において、重合性メタクリル酸エス テル100重量部に対して0.5~4重量部添加される イミドとほぼ同重量の場合に良好な結果を与え 25 が、このようにかなり多量の水の添加が本発明の 組成に秒単位の速硬性を与えるものである。添加 量が4重量部を超えても特に接着速度は速くなら ず、逆に接着強度が悪くなる傾向があり、また 0.5重量部より少ないと秒単位の速硬性は得られ

以上の如く、本発明で得られた接着剤は一液で 非常に速硬性であり、清浄で密接した金属二表面 間ではシアノアクリレート系接着剤に匹敵する速 硬性を有する。例えば、磨いた金属平面同士、ベ アミン、トリエタノールアミン、シクロヘキシル 35 ヤリングとシヤフト、ロータとシヤフト等の接着 においては室温で1分以内に固着し、5~15分で 最終強度に達する瞬間接着性を有する。また比較 的クリヤランスの大きいネジ部に対しても、従来 の嫌気性接着剤と比較すると、著しく速硬性であ ル化を促進するような三級アミンでも本発明の組 40 り、メツキ材質やステンレス等プライマーなしで は接着困難とさされていた材質に対しても極めて 短時間で強力に接着することができる。また、こ のような超速硬性にもかかわらず保存安定性が非 常に良好であり、着色して遮光できるポリエチレ

ン製容器に1/2量程度入れておくだけで性能の変 化なしに長期の保存に耐えることができ有利であ る。更に硬化した接着剤は耐熱、耐水、耐油、耐 候性にも優れたものであり、斯業の発展に大きく ては着色剤、増粘剤、チクソトロピツク剤及び可 塑剤等を適量添加することも可能である。

次に本発明を実施例、応用例、比較例によって 更に詳しく説明する。但し、部は全て重量部を示 す。

実施例 1

テトラエチレングリコールジメタクリレート (以下TEDMと略記する。) 100部にOーベンゾイ ツクスルフイミド10部、ベンゼンスルホニルヒド 解した。次いで室温に冷却し、水2.0部、クメン ハイドロパーオキサイド0.3部およびゲル化安定 剤として有機アミンまたはジシアンジアミドを所 定量添加し、充分攪拌して嫌気性接着剤を調製*

*し、初期セツトタイム、実用強度に違する時間、 接着強度および50℃ゲル化日数を測定した。結果 を表 I に示す。初期セツトタイムは脱脂した15mm 径の鉄製シヤフトに接着剤を塗布し、脱脂したべ 資献するものである。尚、本発明の組成物に対し 5 ヤリング (NTN6202) に挿入して固定した後、 23℃で放置し、シャフトが手で容易にぬけなくな るまでの時間を測定したもので、接着の開始時間 を表わす。実用強度に達する時間は、接着後、接 着強度がほぼ平衡になるまでの時間を示し、接着 10 強度は平衡になった時の値を示したものである。 接着強度の測定は島津製作所製オートグラフISー 5000を用い、打ち抜き速度100mm/minで行なつ た。50℃ゲル化日数は、接着剤を100元ポリエチ レン容器に50分入れ、50℃の熱風乾燥器に放置し ラジド1.0部を添加し、80℃で10分間加熱して溶 15 て接着剤が増粘もしくはゲル化するまでの日数を 測定したもので、14日以上異常がなければその接 着剤は室温で半年~1年以上安定であることを本 発明者等は確認している。

I

	ゲル化安定剤の添		物	性	
ゲル化安定剤の種類	加量	初期セツトタイム	実用強度に達する時間	接着強度	50℃ゲル 化日数
	(部)	(秒)	(分)	(kg∕cant)	(日)
N·N-ジメチルアニリン	0.3	20	10	131	>14
nープチルアミン	0.1	45	12	116	>14
トリエチルアミン	0.1	30	15	106	>14
シクロヘキシルアミン	0, 1	50	15	175	>14
N·Nージメチルーpートルイジン	0.3	30	13	134	>14
ラウリルアミン	0.5	40	15	103	>14
モノエタノールアミン	0.1	45	15	140	>14
ジシアンジアミド	0.3	20	20	124	>14

実施例 2

TEDM100部にOーベンゾイックスルフイミド 1.0部、トルエンスルホニルヒドラジド1.0部を添 加し、80℃で20分間加熱して溶解した。次いで、 室温に冷却し、水2.0部、クメンハイドロパーオ

35 キサイド0.3部および有機アミンまたはジシアン ジアミドをゲル化安定剤として所定量添加して嫌 気性接着剤を調製し、実施例1と同様に物性を測 定した結果を表Ⅱに示す。

表

	ゲル化安		物	性	
ゲル化安定剤の種類	定剤の添 加量	初期セツ トタイム	実用強度に達する時間	接着強度	50℃ゲル 化日数
	(部)	(秒)	(分)	(kg∕cant)	16 E XX
N·N-ジメチルアニリン	0.3	30	20	155	>14
nープチルアミン	0.1	15	15	143	>14
トリエチルアミン	0.1	30	20	207	>14
シクロヘキシルアミン	0, 1	45	25	139	>14
N·N-ジメチル-p-トルイジン	0.3	30	20	197	>14
ラウリルアミン	0.3	15	15	123	>14
モノエタノールアミン	0, 1	15	15	205	>14
ジシアンジアミド	0.3	20	20	135	>14

実施例 3

TEDM30部と表面の重合性メタクリル酸エス テル70部の混合物にOーベンゾイツクスルフイミ ド1.0部、トルエンスルホニルヒドラジド1.0部を 添加し、80℃で15分間加熱して溶解した。次いで* *室温に冷却した後、モノエタノールアミン0.05 部、水2.0部、クメンハイドロパーオキサイド0.3 部を添加し充分に攪拌して嫌気性接着剤を調製 し、実施例1と同様に物性を測定した結果を表Ⅲ に示す。

表

Ш

П

		物	性	
重合性メタクリル酸エステル	初期セツ トタイム	実用強度に達する時間	接着強度	50℃ゲル 化日数
	(秒)	(分)	(kg ∕ca≹)	(日)
エチレングリコールジメタクリレート	37	25	77	>14
ジエチレングリコールジメタクリレート	22	25	142	>14
トリエチレングリコールジメタクリレート	22	15	234	>14
ポリエチレングリコール#400ジメタクリレート	50	18	99	>14
トリメチロールプロパントリメタクリレート	15	15	80	>14
トリメチロールエタントリメタクリレート	23	15	96	>14
ネオペンチルグリコールジメタクリレート	23	15	110	>14
ビスフエノールA・エチレンオキサイド4モル付加物 のジメタクリレート	40	30	83	>14

実施例 4

TEDM10~90部と一般式(2)の重合性メタクリ ル酸エステル90~10部の混合物にOーベンゾイツ 40 製し、実施例1と同様に物性を測定した結果を表 クスルフイミド1.0部、ペンゼンスルホニルヒド ラジド1.0部を添加し、80℃で15分間加熱して溶 解した。次いで室温に冷却し、ラウリルアミン

0.5部、水2.0部、クメンハイドロパーオキサイド 0.3部を添加し充分に攪拌して嫌気性接着剤を調 Ⅳに示す。一般式(2)の化合物は高粘度であり、得 られた接着剤は組成によって23℃における粘度が 30cps~500cpsであった。

表

ľV

	重合性メタクリル酸エステルの組成		物	性		
TEDM	一般式(2)の化合物			実用強度に 達する時間	接着強度	50℃ゲル 化日数
(部)	種類	部	トタイム (砂)	(分)	(kg∕cafi)	
35	ピスフエノールAエチレンオキサイド2モ ル付加物のジメタクリレート	65	15	15	222	>14
35	ピスフエノールAエチレンオキサイド2.6 モル付加物(平均付加量)のジメタクリレ ート	65	15	15	160	>14
35	ピスフエノールAブチレンオキサイド2モ ル付加物のジメタクリレート	65	23	25	140	>14
35	ピスフェノールAプロピレンオキサイド2 モル付加物のジメタクリレート	65	15	27	186	>14
10	ピスフエノールAエチレンオキサイド2.6 モル付加物(平均付加量)のジメタクリレート	90	15	20	259	>14
90	ピスフェノールAエチレンオキサイド2.6 モル付加物(平均付加量)のジメタクリレ ート	10	15	15	110	>14

実施例 5

ピスフエノールAエチレンオキサイド2モル付 加物のジメタクリレート50部と表Vの水酸基含有 重合性メタクリル酸エステル50部の混合物に〇一 ベンゾイツクスルフイミド1部、ベンゼンスルホ 25 例1と同様に物性を測定した結果を表Vに示す。 ニルヒドラジド1部を添加し、80℃で5分間攪拌*

*して溶解した。次いで室温に冷却した後、シクロ ヘキシルアミン0.05部、水2.0部、ジイソプロピ ルペンゼンハイドロパーオキサイド0.5部を添加 し、充分に攪拌して嫌気性接着剤を調製し、実施

		物	性	
水酸基含有重合性メタクリル酸エステルの種類	初期セツ	実用強度に	接着強度	50℃ゲル 化日数
	(秒)	達する時間 (分)	(kg ∕cdi)	(日)
2・ヒドロキシエチルメタクリレート	15	15	130	>14
2・ヒドロキシプロピルメタクリレート	15	15	220	>14
2・ヒドロキシブチルメタクリレート	20	20	117	>14
ポリプロピレングリコールモノメタクリレート	15	20	177	>14

応用例

実施例5において水酸基含有重合性メタクリル 酸エステルが2・ヒドロキシプロピルメタクリレ 40 らなくなるまでの時間を示す。破壊トルクは24時 ートである組成について各種材質のポルト・ナツ トの接着性を測定した結果が表VIである。M10の ポルト・ナツトを使用して23℃における初期セツ トタイムと24時間後の破壊トルク及び脱出トルク

を測定した。初期セツトタイムは接着剤を塗布し ポルト・ナツトを組みたてた後ナツトが指でまわ 間後トルクレンチで戻しトルクを測定し、最初に 接着が破壊される時の強度を示し、脱出トルクは その後1/4, 1/2, 3/4, 1回転時のトルクの平均 値を示す。表で明らかなようにステンレス、亜鉛

メッキ、ユニクロメート等、従来プライマーなし では接着困難であつた材質に対しても短時間で強 力に接着している。

麦	

		物性	
ボルト・ナツ トの種類	初期セットタ	破壊トル ク	脱出トル ク
	イム (分)	(kg-cm)	(kg — cm)
鉄	3, 5	290	205
ステンレス	3.0	140	189
アルミニウム	2.0	切断	_
黄銅	1.0	切断	_
亜鉛メツキ	2.0	255	202
クロムメツキ	1.5	280	293
ニツケルメツ キ	2, 0	270	264
パーカライジ ング	2, 0	285	269
ユニクロメー ト	4.0	250	424

* 本発明の組成からそれぞれ一成分を除いた接着 剤を調製し、実施例1と同様に物性を測定した。 表VIIに組成、表VIIに物性を示す。表VIIで明らかな 如く本発明の組成から一成分でも欠けると目的に 5 かなつた接着剤は得られなかつた。即ち、〇ーベ ンゾイツクスルフイミドのない系およびベンゼン スルホニルヒドラジドのない系は初期セットタイ ムが5分以上であり、アミンのない系は接着性は 良好であるが、ゲル化安定性が非常に悪い。水の 10 ない系は初期セットタイム、安定性共不良でああ る。また、ハイドロパーオキサイドのない系は接 着性が非常に悪くなつている。

比較例 1

表 VII 組 成

20

15

成分接着利No	TEDM (部)	0ーベンゾ イツクスル フイミド (部)	ベンゼンス ルホニルヒ ドラジド (部)	モノエタ ノールア ミン (部)	水 (部)	クメンハイ ドロパーオ キサイド (部)
1	100	0	1	0.1	2	0.3
2	100	1	0	0.1	2	0.3
3	100	1	1	0	2	0.3
4	100	1	1	0.1	0	0.3
5	100	1	1	0.1	2	0

物性

接		物	性	
割	初期セットタ	実用強度に達する	接着強度	50℃ゲル ルロ数
MI	イム	時間(分)	(kg ∕c#i)	化日数 (日)
1	>5分	>120	132	>14
2	>5分	>120	154	1
3	45秒	20	198	1
4	>5分	120	185	2
5	>5分	>120	5	>14

比較例 2

従来よく知られている組成の下記嫌気性接着剤*

*(比較接着剤)を調製し本発明の組成と比較した 結果、以下の如く本発明の組成が著しく速硬性で あつた。

18

比較接着剤の組成

IX

(TEDM	100部
N・Nージメチルーpートルイジ	ン 1.0部
Oーベンゾイツクスルフイミド	0.2部
クメンハイドロパーオキサイド	2.0部
pーペンゾモノン	300ppm)

実施例1と同じベヤリング・シヤフトを用いて 所定時間毎に接着強度を測定した結果が表IXであ る。尚、本発明の接着剤は実施例2において、モ ノエタノールアミンを使用した組成で行つた。

10 0 ベヤリングとシャフトの接着性

	接着時間と接着強度(kg/cm²)						
接着剤	1分	3分	5分	15分	1時間	4時間	24時間
本発明の接着剤	5	20	63	195	190	200	205
比較接着剤	0	0	0	9	30	220	210

30

35

o 平面接着

ASTM D1062-51に準じて240番サンドペー パーで磨き、脱脂したSS41鉄製割裂試験片を23 ℃で接着し、所定時間毎に割裂強度を測定した結 25 果を表Xに示す。尚、本発明の接着剤は実施例5 において水酸基含有メタクリル酸エステルが2-ヒドロキシエチルメタクリレートである組成で行 つた。表で明らかな如く、本発明の接着剤は非常 に速硬性である。

> 表 X

	接着時間と割裂強度(kg/25・4mm)						
	1分	5分	15分	30分	4時間	24時間	
本発明 の接着 剤	8	26	43	55	79	76	
比較接 着剤	0	0	0	30	38	25	

o ポルト・ナットの接着

応用例と同様に比較接着剤を用いてポルト・ナ

ツトの初期セツトタイムと接着強度を測定した結 果が表XIである。表VIと比較して明らかなように 本発明の組成が非常に速硬性である。

> 表 XI

	物性			
ポルト・ナツ トの種類	初期セットタ	破壊トル ク	脱出トル ク	
	イム (分)	(kg - cm)	(kg - cm)	
鉄	· 30	70	145	
ステンレス	60	60	170	
アルミニウム	40	60	120	
黄銅	2	60	130	
亜鉛メツキ	100	70	90	
クロムメツキ	90	80	205	
ニツケルメツ キ	40	90	245	