Operační paměť

Operační paměť je vnitřní elektronická paměť počítače, která je určena pro dočasné uložení zpracovávaných dat a běžících aplikací. Tato paměť má obvykle rychlejší přístup než vnější paměť (např. pevný disk).

Z hlediska druhů použité operační paměti v počítači můžeme paměť rozdělit na:

- 1.) Cache nebo-li vyrovnávací paměť, jde o velice rychlou paměť. Která se vkládá jako "zásobník" dat mezi dvě rozdílně rychlé komponenty v počítači. Např. mezi procesor a operační paměť, pevný disk má též svojí vyrovnávací paměť....
- 2.) Operační paměť s přímým přístupem jde o paměť, která je určena pro právě zpracovávaná data. Tuto paměť může procesor adresovat přímo, pomocí podpory ve své instrukční sadě.
- 3.) SWAP nebo-li odkládací paměť či též označovaná někdy označována ne zcela správně jako paměť virtuální fyzicky se jedná o místo na nějakém paměť ovém médiu a protože klasické operační paměti nikdy není v počítači dost pro všechny spouštěné programy, tak do tohoto prostoru jsou z operační paměti odkládány právě nepoužívané spuštěné programy a data.

Operační paměť brána jako vnitřní elektronické paměť počítače z hlediska její struktury tvořena maticí miniaturních elektronických prvků. Každý z těchto může nabývat stavu 0 nebo 1, a je tak nositelem informace o jednom bitu. Osm prvků pak vytváří jeden bajt. Paměť ové prvky jsou spojeny řádkovými a sloupcovými vodiči. Těmito dráty je možné prvky elektronicky ovládat - zapisovat do nich nové hodnoty a číst dříve uložená data. Typ elektronické součástky tvořící paměť ový prvek definuje vlastnosti celé paměti.

Z hlediska základních vlastností ji lze rozdělit na paměť RAM a ROM.

RAM

Jde o paměť s volným (přímým) přístupem tzn. lze číst, zapisovat, měnit, mazat. Je však závislá na napětí. Při výpadku se nuluje. Při práci PC tvoří prostor pro program a data. Její maximální velikost je dána typem CPU (šířkou adresové sběrnice). Umožňuje přístup k libovolné části v konstantním čase bez ohledu na její fyzické umístění.

Paměť RAM z hlediska její konstrukce můžeme dále členit:

a) Dynamická (DRAM)

Dynamická paměť RAM je založena na fyzikálním principu nabíjení kondenzátoru. Takto vzniklý potenciál, který je ekvivalentní napětí, odpovídá logické 0 nebo 1. Jelikož je tento potenciál vybíjen, je nutno tuto operaci v paměťové buňce obnovovat (refresh). Obnova probíhá tak, že jsou paralelně sejmuty obsahy paměťových buněk na řádku, v budiči zesíleny a opět zapsány na původní místo. Rychlost obnovy paměťových míst je několik setkrát za sekundu. Tyto paměti jsou levnější než statické.

Použití: operační paměti

b) Statická (SRAM)

Paměť je tvořena bistabilní klopným obvodem. Není nutná obnova informace jako u DRAM. Přístupová doba je výrazně nižší než u dynamické paměti, ale zase na druhou stranu je její výroba poměrně nákladná.

Použití: pro rychlé paměti cache

Paměť ROM

Určená jen pro čtení, většinou se programuje přímo u výrobce, nedá se přeprogramovat, je energeticky nezávislá tzn. po odpojení napájení neztrácí data. Použití: pro BIOS, pevné paměti atd.

a) Paměť PROM

Programovatelná, energeticky nezávislá. Programuje se na speciálním zařízení programátora a princip je v destrukci vodivých cest, tzn., že je propálená propojka výstupního obvodu.

b) Paměť EPROM

Je více násobně programovatelná, dá se smazat ultrafialovým zářením. Poznáme jí tak, že na čipu je nalepena stříbrná nálepka. Po stržení nálepky do čipu dojde k odkrytí okénka na čipu a může do čipu procházet světlo a sním i UV záření a dojde ke smazání paměti. Smazání paměti lze opakovat v řádku několika desítek cyklů.

c) Paměť EEPROM

Na rozdíl od EPROM se dá mazat elektrickými impulsy, doba mazání se pohybuje v milisekundách. Počet zápisů a mazání v EEPROM opět omezen přibližně v řádku několika stovek cyklů. Dnes se paměti tohoto typu používají pro uchovávání programu BIOS na základní desce počítače. Data se v této paměti uchovají asi na 10 až 20 let. Naproti tomu ROM i PROM není doba pamatování ohraničena.

Vlastní buňka paměti EEPROM pak pracuje na principu vkládání elektrického náboje. Při zápisu dat se přivede na příslušný adresový vodič záporné napětí -U a datový vodič buněk, do nichž se má zaznamenat hodnota 1, se uzemní. Tranzistor se otevře a vznikne v něm náboj, který vytvoří velké prahové napětí. Při čtení se přivede na adresový vodič záporný impuls. Tranzistor s malým prahovým napětím se otevře a vede elektrický proud do datového vodiče, zatímco tranzistor s velkým prahovým napětím zůstane uzavřen.

Vymazání paměti se provádí kladným napětím +U, které se přivede na adresové vodiče. Tunelovaný náboj se tím zmenší a prahové napětí poklesne, čímž je paměť vymazána.

d) Flash-PROM

Je posledním typem ROM, jde o výrazně rychlejší paměť než předešlé typy. V principu se s ní dá pracovat jako s RAM, ale po odpojení napětí se nevymaže. Snese asi 1 000 cyklů programování-výmaz. Její hlavní předností je možnost přeprogramování přímo v PC.