Définition: Variance, écart-type

Si on dispose d'une série de valeurs x_1, \dots, x_n , et qu'on dispose de la moyenne M, on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$

Définition: Variance, écart-type

Si on dispose d'une série de valeurs x_1, \dots, x_n , et qu'on dispose de la moyenne M, on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$

Définition: Variance, écart-type

Si on dispose d'une série de valeurs x_1, \cdots, x_n , et qu'on dispose de la moyenne M, on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$

Définition : Variance, écart-type

Si on dispose d'une série de valeurs x_1, \dots, x_n , et qu'on dispose de la moyenne M, on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$

Définition : Variance, écart-type

Si on dispose d'une série de valeurs x_1, \cdots, x_n , et qu'on dispose de la moyenne \mathbf{M} , on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$