

大纲

- ➤ Dijkstra算法回顾
- ➤ Dijkstra算法堆优化
- ➤ Dijkstra算法堆优化实现
- ➤ Dijkstra算法堆优化时间复杂度

Dijkstra算法回顾

- 回顾一下在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。
- 在第一步中,我们是怎么找 dist[i] 最小的顶点 u 的?
- 0(n) 枚举。
- 可以做的更好吗?

- 回顾一下在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。
- 用最小堆来维护 T 集合中的 dist[i]。
- 执行第一步时, 堆顶元素就是需要的 u。
- 第二步,直接弹出堆顶元素即可。
- 第三步,不变。

• 让我们回到这张图,看看堆优化算法是怎么运行的。

• 初始状态时, 堆中有所有除了 0 以外的点的 (dist, u) 二元组。

	0	1	2	3	4	5
S	1	0	0	0	0	0
dist	0	∞	5	30	∞	∞
path	-1	-1	0	0	-1	-1

• 求出顶点 2 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	0	<u>1</u>	0	0	0
dist	0	<u>20</u>	5	30	∞	<u>12</u>
path	-1	<u>2</u>	0	0	-1	<u>2</u>

• 求出顶点 5 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	0	1	0	0	<u>1</u>
dist	0	20	5	<u>22</u>	<u>30</u>	12
path	-1	2	0	<u>5</u>	<u>5</u>	2

• 求出顶点 1 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	<u>1</u>	1	0	0	1
dist	0	20	5	22	<u>28</u>	12
path	-1	2	0	5	<u>1</u>	2

• 求出顶点 3 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	1	1	<u>1</u>	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

• 求出顶点 3 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	1	1	<u>1</u>	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

• 求出顶点 4 的最短路径,对 dist 和 path 进行修改,同时更新最小堆。

	0	1	2	3	4	5
S	1	1	1	1	<u>1</u>	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

• 至此,0 到其他各顶点的最短路径长度都求完了。

	0	1	2	3	4	5
S	1	1	1	<u>1</u>	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

Dijkstra算法堆优化时间复杂度

- 回顾一下在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。
- 执行第一步时,堆顶元素就是需要的 u。
 - 时间复杂度0(1)
- 第二步,直接弹出堆顶元素即可。
 - 时间复杂度0(log n)

Dijkstra算法堆优化时间复杂度

- 回顾一下在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。
- 第三步,不变。
 - · 注意更新 dist 时,需要把新的 dist 插入堆,一次需要0(log n)。
 - 注意到每个点只会被选入 S 一次,每次会更新这个点所有的出边。因此每一条边只会被更新一次。
 - m 条边总共产生的时间复杂度是0(m log n).

Dijkstra算法堆优化时间复杂度

- 回顾一下在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。
- 因此总的时间复杂度为 0((n + m) log n), 非常优秀。

下节课再见