CHAPTER 2:

FUNDAMENTAL CCONCEPTS & RELATIONSHIPS

- 1. Physical units (Review)
- 2. Faraday's law
- 3. Efficiencies (Faradaic and Voltaic)
- 4. Ionic and electronic conduction
- 5. Ionic conductance, mobility, Kohlrausch's laws
- 6. Grotthuss transport
- 7. Strong & weak electrolytes (Arrhenius & Ostwald laws)
- 8. Some additional fundamentals: Field, Potential, Poisson's & Laplace's equations
- 9. Movement of an ion in an electrical field
- 10. Walden's Laws
- 11. Debye-Huckel-Onsager theory for strong electrolytes (Overview)
- 12. Non-aqueous electrolytes.
- 13. Molten salts, Ionic liquids
- 14. Heterogeneous media: Bruggemann's equation. Emulsions, gas evolving electrodes.
- 15. Conductivity measurements

Review of Few Key Physical Quantities

MECHANICAL

Force: $f = m \times a$ f = [Dyne or Nt] m = [gr or Kg] $a = [acceleration, cm/s^2 \text{ or m/s}^2]$

Work (or energy): W = F x S W = [erg; Joule; Watt s; KWH; Cal; BTU]

Power: $P = \frac{W}{t} \left[\frac{J}{s} = Watt; KW; HP \right]$ 746 W = 1 HP

ELECTRICAL

Charge: q [cb]

 $F [1 Faraday = 96,480 cb = 10^5 cb]$

Current: $I = [Amp] = \frac{q}{t} \left[\frac{Cb}{s} \right]$

Current density^a $i = \frac{I}{A} \left[\frac{A}{cm^2} \right] or \left[\frac{mA}{cm^2} \right] or \left[\frac{A}{dm^2} \right] or \left[\frac{A}{ft^2}; ASF \right]$

Power = P = V * I [Watt] = [Ampere] x [Volt] 1 HP = 745.7 Watts

Work or Energy = W = P*t = V*I*T

[Joule] = [Watt*S]

[KW*hr]

THERMAL

Thermal energy: Q[cal] 1 cal = 4.18 J

Heat flux $q = \frac{Q}{t} \left[\frac{Cal}{s} \right]$

$$1\left[\frac{mA}{cm^2}\right] = \left[1\frac{mA}{cm^2}\frac{A}{1000\,mA}\frac{100\,cm^2}{dm^2}\right] = \left[0.1\frac{A}{dm^2}\right] \sim \left[1\frac{A}{ft^2};ASF\right]$$

^a current density units:

Faraday's Laws

Faraday's Laws provides a relationship between the amount of charge passed to the amount of material reacted in the electrode reaction

1
$$\mathbf{w} \sim \mathbf{q} = \mathbf{I}\mathbf{t}$$

2
$$\frac{w}{a} \propto \frac{M}{n}$$

$$q$$
 - charge n - number of electrons

Combine:

$$w \propto \frac{M}{n} It$$

Defining Faraday's constant:

$$w = \frac{1}{F} \frac{M}{n} It$$

$$F = 96, 480 \text{ cb} = 26.8 \text{ AHr} (=L^*e)$$

L – Avogadro No. (6.02 x10²³ [atoms/mole])

e – electron charge (1.6x10⁻¹⁹ [cb/electron])

Deposit thickness:
$$h = \frac{1}{F} \frac{M}{n\rho} it$$

lonic Flux:
$$N = \frac{i}{nF}$$
 [M / sec-cm²] or [gr-ion/sec-cm²]

EFFICIENCIES IN ELECTROCHEMICAL SYSTEMS

Fraction of current or voltage which is useful

Efficiency < 1 or < 100%

$$\mathcal{E}_{F} = \frac{I_{1}}{I_{T}} = \frac{I_{1}}{I_{1} + I_{2}} = \frac{W_{1}}{W_{1} + W_{2}} = \frac{W_{1}}{W_{Theoretical}}$$

$$\varepsilon_V = \frac{V_1}{V_T} = \frac{V_1}{V_1 + V_2}$$

Current Efficiency < 1:

- Competing reactions
- Product decomposition
- Product recombination

Voltaic Efficiency < 1:

- · Ohmic overpotential
- Activation overpotential
- Mass transport limitation

EFFICIENCIES IN ELECTROCHEMICAL SYSTEMS

Fraction of current or voltage which is useful

Efficiency < 1 or < 100%

	Electricity → Chemicals Plating Battery charging electrolyzer	Chemicals → Electricity Battery discharge
Faradaic Coulombic Current Efficiency	Actual Product Wt Theoretical Product Wt	Theoretical Product Wt Actual Product Wt
Voltaic Efficiency	E ⁰ Applied Voltage	Applied Voltage E0

Current Efficiency < 1:

- Competing reactions
- Product decomposition
- Product recombination

Voltaic Efficiency < 1:

- Ohmic overpotential
- Activation overpotential
- Mass transport limitation

Conduction

Metals:

$$R = \rho \frac{l}{A}$$
 $\rho = resistivity [\Omega \cdot cm]$

Typical metallic resistivity at 20°C:

Ag	1.6 x 10 ^{-∞} Ω.cm
Cu	1.7
Al	2.8
Ni	7.8
Fe	10
Hg	96
Carbon (fiber)	4-5000
Graphite	1360

Electrolytes:

$$\kappa = 1/\rho = [\Omega^{-1}cm^{-1}] = [S/cm]$$

 $\kappa = f(concentration, Z, v_i, composition, T,)$

 $\kappa \sim 0.1 - 1 \text{ S/cm} \ (\sim 10^6 \text{ more resistive than metals!})$

$$\Lambda \equiv \frac{\kappa}{|Z|C} \qquad [S cm^2 eq.^{-1}]$$

$$|Z| \equiv v_j z_j = v_+ z_+ = v_- z_- \text{ ("valence")}$$

Implication of limited conductivity:

- Power dissipation (narrow gaps, low current density)
- Non- uniform current distribution
- Structure of water

Define *Equivalent Conductance*:

$$\Lambda = \frac{\kappa}{|z|C} \qquad [S cm^2 eq.^{-1}]$$

$$|Z| \equiv v_j z_j = v_+ z_+ = |v_- z_-| ("valence")$$

$$\Lambda = \frac{\kappa}{|z|C} = \frac{\kappa}{v_{+}z_{+}C} = \frac{\kappa}{|v_{-}z_{-}|C}$$

We Expect

We Have

IDEAL REAL

Fig. 6. Concentration dependence of equivalent conductance for aqueous solutions at 25° C.

From: Ref 1 E.C. Potter "Electrochemistry" Cleaver Hume Press, 1961

$$\Lambda = \Lambda^{\infty} - A\sqrt{C}$$

Debye-Huckel and Onsager

Fig. 7. Kohlmusch square-root law for equivalent conductance of aqueous electrolytes at 25° C.

Law of Independent Ionic Mobilities (Kohlrausch)

salt	$\Lambda_{\scriptscriptstyle 0}$	Difference	salt	$oldsymbol{\Lambda}_{ exttt{o}}$	difference
KCl NaCl	149.86 126.45	23.41	KC1 KNO ₃	149.86 14496	4 9
KNO ₃	144.96	23.41	NaCl	126.45	4.9
NaNO ₃	121.55		NaNO ₃	121.55	
KJ	150.32	23.41	LiC1	115.03	4.9
NaJ	126.91		LiNO ₃	110.1	

$$\lambda_{+} + \lambda_{-} = \Lambda^{\circ}$$

Equivalent ionic conductivities and solvated ionic radii

ION	λ [ohm ⁻¹ cm²eq ⁻¹]	
	39	
Na+	50	
K ⁺	73	
Rb ⁺	78	
	73	
Ag+	62	
Mg ⁺⁺	53	
SO ₄	79.6	
	76	
	77	
NO ₃ -	71.4	
H+	350	
OH-	200	
All other ions:	~ 50	

Equivalent ionic conductivities and solvated ionic radii

ION	λ [ohm ⁻¹ cm²eq ⁻¹]	Radius [A] (solvated ionic)
Li+	39	2.36
Na ⁺	50	1.8
K ⁺	73	1.21
Rb⁺	78	
Cs+	73	
Ag ⁺	62	1.455
Mg++	53	1.725
SO ₄	79.6	1.15
CI	76	1.2
ŀ	77	1.16
NO ₃ -	71.4	1.37
H+	350	0.25 (Grothuss Mechanism)
OH-	200	0.44 (Grothuss Mechanism)
All other ions:	~ 50	~ 1.5

Implications:

- Structure of water
- Hydration of ions
- Abnormal conductivity of H⁺ and OH⁻

Grotthus transport mechanism

Hydroxyl

MATH REVIEW

Tensors (general representation of a parameter)

Rank – 'dimensionality' or qualities

Scalars – only magnitude, no direction (rank =0)

Vectors – magnitude + direction (rank = 1,2, or 3)

Gradient

$$\nabla \Phi$$
 short hand notation for: $\overrightarrow{\nabla \Phi} \equiv \overrightarrow{i} \frac{d\Phi}{dx} + \overrightarrow{j} \frac{d\Phi}{dy} + \overrightarrow{k} \frac{d\Phi}{dz}$

gradient of a scalar (1) is a vector

Divergence

$$\nabla \bullet \overrightarrow{N}_{j} = \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{y}}{\partial y} + \frac{\partial N_{z}}{\partial z}$$

Net flux out of a differential volume element. Divergence is the negative of convergence. Divergence of a vector is a scalar. Used often to perform mass balance in the electrolyte.

Material Balance (on any volume element)

$$\frac{\partial C_j}{\partial t} = - \nabla \bullet \overrightarrow{N}_j + R_j$$

Difference

$$\Delta \Phi = \Phi_i - \Phi_i$$