TRƯỜNG THPT ĐẠI NGÃI **TỔ TOÁN**

KIỂM TRA HỌC KÌ 2 NĂM HỌC 2012-2013 Môn: TOÁN – Lớp 10

ĐỀ CHÍNH THỨC

Thời gian làm bài: 120 phút, không kế thời gian giao đề

I. PHẦN BẮT BUỘC (7,0 điểm)

Câu I. (3,0 điểm)

- 1) Giải bất phương trình $12x^2$ 7x 10 < 0.
- 2) Giải bất phương trình $\frac{4x^2 + 12x + 9}{2x 1}$ 0.
- 3) Giải bất phương trình $\sqrt{x^2 + x 2}$ 3 x + 3.

Câu II. (3,0 điểm)

- 1) Tính giá trị của biểu thức $A = (2 \sin 10^\circ + 1)\cos 50^\circ$.
- 2) Cho $\cos a = \frac{4}{5} \text{ và } \frac{p}{2} < a < 0$. Tính $\cos 2a \text{ và } \tan a$.
- 3) Chứng minh: $\sin a \times \cos^5 a \sin^5 a \times \cos a = \frac{1}{4}\sin(4a)$.

Câu III. (1,0 điểm) Cho tam giác ABC có AB = a, $BC = a\sqrt{3}$, $\overline{A}BC = 30^{\circ}$. Tính theo a độ dài cạnh AC và khoảng cách từ điểm B đến đường thẳng AC.

II. PHẦN TỰ CHỌN (3,0 điểm)

Học sinh chỉ được làm một trong hai phần (phần A hoặc phần B)

Phần A.

Câu IVa. (1,0 điểm) Cho a,b là hai số thực tùy ý. Chứng minh $a^2 + b^2$ ab.

Câu Va. (2,0 điểm) Trong mặt phẳng Oxy, cho đường thẳng D:3x-4y-15=0 và các điểm A(2;-2), B(-6;4).

- 1) Viết phương trình tổng quát của đường thẳng d đi qua hai điểm A và B . Tìm tọa độ giao điểm của hai đường thẳng D và d .
- 2) Viết phương trình đường tròn (\mathbf{C}) có đường kính AB. Chứng minh D là tiếp tuyến của (\mathbf{C}).

Phần B.

Câu IVb. (1,0 điểm)

Cho a,b,x,y là các số thực tùy ý. Chứng minh $(ax+by)^2$ £ $(a^2+b^2)(x^2+y^2)$.

Câu Vb. (2,0 điểm) Trong mặt phẳng Oxy, cho đường thẳng D có phương trình $\sqrt{3}x + y + 2 = 0$ và hai điểm A(0;2), B(-1;1).

- 1) Viết phương trình đường tròn (\mathbf{C}) có tâm A và đi qua O. Chứng minh D tiếp xúc với (\mathbf{C}).
- 2) Viết phương trình tổng quát của đường thẳng d di qua hai điểm A và B . Tính góc giữa hai đường thẳng d và D .

	5
HH	{'`

Học sinh không được sử dụng tài liệu. (Giám thị không giải thích gì thêm.
Họ và tên học sinh:	. Lớp:
Chữ kí của giám thị 1:	.Chữ kí của giám thi 2:

TRƯỜNG THPT ĐẠI NGÃI TỔ TOÁN

KIỂM TRA HỌC KÌ 2 NĂM HỌC 2012-2013 Môn: TOÁN – Lớp 10 Thời gian làm bài: 120 phút, không kể thời gian giao đề

ĐỀ CHÍNH THỨC

ĐÁP ÁN VÀ THANG ĐIỂM

(Đáp án này có 04 trang)

Câu	Ý		Nội dung	Điểm
Câu I	. (3	điểm)		
	1)	(1 điểm) Giải bất phươn	g trình $12x^2 - 7x - 10 < 0$.	_
		Tam thức bậc hai $12x^2$	$\frac{2}{3}$ - $7x$ - 10 có các nghiệm là $\frac{5}{4}$ và - $\frac{2}{3}$.	0.25
	Bảng xét dấu $12x^2 - 7x - 10$			
		χ - ¥	- 2/3	0.25
		$12x^2 - 7x - 10$	- 0 + 0 -	
		Tập nghiệm của bất ph	arrong trình đã cho là $\begin{cases} \frac{2}{3}, \frac{5\ddot{0}}{4\ddot{a}} \end{cases}$	0.5
	2)	(1,0 điểm) Giải bất phươ	ong trình: $\frac{4x^2 + 12x + 9}{2x - 1}$ 3 0.	_
		_	hiệm là $\frac{1}{2}$. Tam thức $4x^2 + 12x + 9$ có nghiệm kép là - $3/2$.	
		Bảng xét dấu x	- ¥	
		$\frac{x}{2x-1}$	- ¥ - 3/2 1/2 +¥ - - 0 +	0.75
		$\frac{1}{4x^2 + 12x + 9}$	+ 0 + +	0.73
		$\frac{4x^2 + 12x + 9}{2x - 1}$	- 0 - +	
		Tập nghiệm của bất ph	arrong trình đã cho là $\begin{cases} \frac{2}{2}; + \frac{\ddot{0}}{2}; \\ \frac{\ddot{b}}{\ddot{a}}; \\ \frac{\ddot{b}}{\dot{a}}; \\ \frac{\ddot{b}}{\ddot{a}}; \\ \ddot{b$	0.25
	3)	$(1 \text{ diểm}) \sqrt{x^2 + x - 2}$	x + 3	
		Điều kiện: $x^2 + x - \frac{1}{2}$	2 ° 0 U x £ - 2 hoặc x ° 1.	0.25
		 Xét x £ - 3. Khi c của bất phương trì 	đó, $\sqrt{x^2 + x - 2} > 0$ và $x + 3 £ 0$. Suy ra $x £ - 3$ là nghiệm nh đã cho.	0.25
	o Xét x Î (- 3;- 2 $\mathring{\mathbf{u}}$ È $\mathring{\mathbf{g}}$;+\frac{1}{2}). Khi đó, $\sqrt{x^2 + x - 2}$ o và $x + 3 > 0$.			
	Do đó, $\sqrt{x^2 + x - 2}$ 3 $x + 3$ \hat{U} $(\sqrt{x^2 + x - 2})^2$ 3 $(x + 3)^2$ \hat{U} 5x + 11 £ 0		0.25	
	$\hat{\mathbf{U}}$ $x \pounds - \frac{11}{5}$. Kết hợp với $x \hat{\mathbf{I}}$ (- 3;- 2 $\hat{\mathbf{u}}$ È $\hat{\mathbf{g}}$;+¥) ta được nghiệm của bất pt trong			0.25
		trường hợp này là - 3	$< x \ \pounds - \frac{11}{5}$. Tổng hợp nghiệm ở hai trường hợp, ta được tập	

	29 111)		
	nghiệm của bpt đã cho là: $\{\xi = \frac{110}{5}, \xi = 1$		
Câu I	II. (3 điểm)		
	1) (1 điểm) $A = (2 \sin 10^\circ + 1) \cos 50^\circ$		
	$A = 2\sin 10^{\circ}\cos 50^{\circ} + \cos 50^{\circ}$	0.25	
	$= \sin(-40^\circ) + \sin 60^\circ + \cos 50^\circ$	0.25	
	$= -\sin 40^\circ + \sin 60^\circ + \sin 40^\circ$	0.25	
	$= \sin 60^0 = \frac{\sqrt{3}}{2}.$	0.25	
	2) (1 điểm) Cho $\cos a = \frac{4}{5} \text{ và } - \frac{p}{2} < a < 0$. Tính $\cos 2a \text{ và } \tan a$		
	$\cos 2a = 2\cos^2 a - 1$	0.25	
	$=2\cancel{\cancel{5}}\frac{\cancel{\cancel{5}}}{\cancel{\cancel{5}}} - 1 = \frac{7}{25}.$	0.25	
	$\tan^2 a = \frac{1}{\cos^2 a} - 1 = \frac{9}{16}.$	0.25	
	$ V_1 - \frac{p}{2} < a < 0 \text{nên } \tan a < 0 . \text{Suy ra } \tan a = -\frac{3}{4} .$	0.25	
	3) (1 điểm) Chứng minh $\sin a \times \cos^5 a - \sin^5 a \times \cos a = \frac{1}{4}\sin(4a)$		
	$\sin a \times \cos^5 a - \sin^5 a \times \cos a = \sin a \times \cos a \left(\cos^4 a - \sin^4 a\right)$	0.25	
	Ta có: $\cos^4 a - \sin^4 a = (\cos^2 a - \sin^2 a)(\cos^2 a + \sin^2 a)$	0.25	
	$=\cos 2a$	0.25	
	$va \sin a \times \cos a = \frac{1}{2} \sin 2a .$		
	Từ đó $\sin a \times \cos a \left(\cos^4 a - \sin^4 a\right) = \frac{1}{2}\sin 2a \cos 2a = \frac{1}{4}\sin 4a$. Suy ra đẳng thức	0.25	
	cần chứng minh.		
	Câu III. (1 điểm) Cho tam giác ABC có $AB = a$, $BC = a\sqrt{3}$, $\overline{A}BC = 30^{\circ}$. Tính theo a độ dài cạnh AC và khoảng cách từ điểm B đến đường thẳng AC .		
	$\circ AC^2 = AB^2 + BC^2 - 2ABABC \cdot \cos ABC$	0.25	
	$= a^2.$	0.25	
	$\circ S_{ABC} = \frac{1}{2}ABBC.\sin B = \frac{a^2\sqrt{3}}{4}$	0.25	
	o Kẻ BH vuông góc với AC tại H . Ta có: $d(B,AC) = BH = \frac{2 \times S_{ABC}}{AC} = \frac{a\sqrt{3}}{2} .$	0.25	
Câu	Câu IVa. (1,0 điểm) Cho a,b là hai số thực tùy ý. Chứng minh $a^2 + b^2$ ab .		
	Ta có : $a^2 + b^2 - ab = a^2 - 2a \cdot \frac{b}{2} + \frac{2b \cdot \frac{3b}{2}}{2b \cdot \frac{3b}{2}} - \frac{2b \cdot \frac{3b}{2}}{2b \cdot \frac{3b}{2}} + b^2$	0.25*	
-		•	

	r
$ = \frac{\mathcal{E}}{\mathcal{E}}a - \frac{b\frac{\ddot{Q}}{2}}{2\frac{\dot{\Xi}}{\dot{Q}}} + \frac{3}{4}b^{2} = 0 $	0.5
Suy ra: $a^2 + b^2 ab$.	0.25
Câu Va. (2 điểm) D: $3x - 4y - 15 = 0$, $A(2; -2)$, $B(-6; 4)$.	
1) (1 điểm) Viết phương trình tổng quát của đường thẳng d đi qua điểm A và B . Tìm tọa G giao điểm của hai đường thẳng D và d .	độ
Ta có $AB = (-8;6)$ vuông góc với $n = (3;4)$.	0.25
Vì d qua $A(2;-2)$ và có v.t.p.t $\overset{1}{n}=(3;4)$ nên d có phương trình là	0.25
3(x-2) + 4(y+2) = 0 hay $3x + 4y + 2 = 0$.	0.25
Tọa độ giao điểm của hai đường thẳng D và d là nghiệm của hệ pt	
$ \begin{vmatrix} $	0.25
$\frac{1}{1}3x + 4y + 2 = 0$	
$\hat{\mathbf{U}}(x;y) = \underbrace{\overset{2}{6}}_{6}^{2}; -\frac{17\frac{\ddot{0}}{\dot{0}}}{8\frac{\dot{\ddot{0}}}{\dot{\ddot{0}}}}. \text{ Tọa độ giao điểm cần tìm là } \underbrace{\overset{2}{6}}_{6}^{2}; -\frac{17\frac{\ddot{0}}{\dot{0}}}{8\frac{\dot{\ddot{0}}}{\dot{\ddot{0}}}}.$	0.25
2) (1 điểm) Viết phương trình đường tròn (C) có đường kính <i>AB</i> . Chứng minh D là tiếp của (C).	tuyến
(C) có tâm là trung điểm $I(-2;1)$ của đoạn AB và có bán kính $r = \frac{AB}{2} = 5$.	0.25
Phương trình của (C) là: $(x + 2)^2 + (y - 1)^2 = 25$.	0.25
Ta có $d(I, D) = \frac{ 3x_I - 4y_I - 15 }{\sqrt{3^2 + (-4)^2}} = \frac{ 3(-2) - 4.1 - 15 }{\sqrt{3^2 + (-4)^2}} = 5.$	0.25
$Vì d(I,D) = r \text{ nên D là tiếp tuyến của } (\mathbf{C}).$	0.25
Câu IVb. (1,0 điểm) Cho a,b,x,y là các số thực tùy ý.	
Chứng minh $(ax + by)^2 \pounds (a^2 + b^2)(x^2 + y^2)$.	
Ta có:	
$(a^2 + b^2)(x^2 + y^2) - (ax + by)^2$	0.5
$= (a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2) - (a^2x^2 + 2axby + b^2y^2)$	
$= a^2y^2 + b^2x^2 + 2axby = (ay + bx)^2 {}^3 0.$	0.25
Suy ra $(ax + by)^2$ £ $(a^2 + b^2)(x^2 + y^2)$.	0.25
Câu Vb. (2,0 điểm) D: $\sqrt{3}x + y + 2 = 0$, $A(0,2), B(-1,1)$.	
1) (1 điểm) Viết phương trình đường tròn (\boldsymbol{C}) có tâm A và đi qua O . Chứng minh D tiếp \boldsymbol{C} (\boldsymbol{C}).	xúc với
Dường tròn (\mathbf{C}) có bán kính $r = AO = 2$.	0.25
Phương trình của (C) là $x^2 + (y - 2)^2 = 4$.	0.25
	0.25
Ta có $d(A,D) = \frac{\left \sqrt{3}x_A + y_A + 2\right }{\sqrt{\left(\sqrt{3}\right)^2 + (1)^2}} = \frac{\left \sqrt{3} \times 0 + 2 + 2\right }{2} = 2.$	
$\begin{array}{c c} & & & \\ \hline \text{Vì } d(I, D) = r \text{ nên D tiếp xúc với } (\textbf{\textit{C}}). \end{array}$	0.25
2) (1 điểm) Viết phương trình tổng quát của đường thẳng d di qua hai điểm A và B. Tí	
giữa hai đường thẳng d và D.	

Vì đường thẳng d có một v.t.c.p là $AB = \begin{pmatrix} -1; -1 \end{pmatrix}$ nên nó có một v.t.p.t là $n = (1; -1)$.	0.25
Phương trình của d là: $1.(x - 0) - 1(y - 2) = 0 \hat{U} x - y + 2 = 0$.	0.25
Ta có: $\cos(d, D) = \frac{\left \sqrt{3}.1 + 1(-1)\right }{\sqrt{\left(\sqrt{3}\right)^2 + 1^2} \times \sqrt{1^2 + \left(-1\right)^2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$	0.25
Suy ra $(d, D) = 75^{\circ}$	0.25

------Hết------