Szeregowanie zadań

- Operacje pogrupowane w Zadania
- Procesory
- Dodatkowe zasoby

Ograniczenia

- żadna operacja nie może być jednocześnie wykonywana na więcej niż jednym procesorze
- żaden procesor nie może jednocześnie wykonywać więcej niż jedną operację
- inne np. kolejnościowe, czasowe itd.

Klasyczny problem szeregowania

Należy ustalić kolejność wykonywania zadań na poszczególnych procesorach (oraz ewentualnie przydział dodatkowych zasobów), tak aby zachowując ograniczenia optymalizować zadane kryterium uszeregowania

Typowe parametry zadania (operacji)

- p_{li} czas wykonywania na procesorze l
- r_j termin gotowości do wykonania
- d_j żądany termin ukończenia
- w_j priorytet (waga)
- ograniczenia kolejnościowe
- możliwość przerywania (podzielność)
- wymagania zasobowe

Uszeregowanie (harmonogram)

Prezentacja graficzna – wykres Gantta

Parametry oceny uszeregowania

- C_j termin (moment) ukończenia
- F_j czas przepływu $F_j = C_j r_j$
- L_j nieterminowość $L_j = C_j d_j$
- T_j spóźnienie $T_j = \max\{C_j d_j, 0\}$
- U_j czy zadanie (operacja) spóźnione

Typowe kryteria uszeregowania

(minimalizowane)

- C_{max} długość uszeregowania $C_{\text{max}} = \max\{C_i\}$
- L_{max} maksymalna nieterminowość $L_{\text{max}} = \max\{L_j\}$
- \overline{F} średni czas przepływu (1/n ΣF_i)
- \overline{F}_w średni ważony czas przepływu ($\sum w_j F_j / \sum w_j$)
- ΣT_i sumaryczne (średnie) spóźnienie
- $\sum w_i T_i$ sumaryczne (średnie) ważone spóźnienie
- ΣU_j liczba zadań spóźnionych
- $\sum w_i U_i$ sumaryczne kary za spóźnienie

Klasyfikacja problemów szeregowania

- szeregowanie na jednym procesorze
- szeregowanie na procesorach równoległych
 - -jednakowych (P)
 - -jednorodnych (Q)
 - $-r\acute{o}\dot{z}nych(R)$
- szeregowanie w systemie przepływowym
 - -permutacyjnym (*PF*)
 - $-\operatorname{og\'olnym}(F)$
- \bullet szeregowanie w systemie gniazdowym (J)
- szeregowanie w systemie otwartym (O)

Notacja

$\alpha \mid \beta \mid \gamma$

- α rodzaj systemu i liczba procesorów,
 - * rodzaj systemu np., P, Q, R, F, PF, J, O
 - * drugie pole puste gdy liczba procesorów nie jest ustalona
- β charakterystyka zadań
 - * gdy pole puste zadania niepodzielne, niezależne, z zerowymi (jednakowymi) terminami gotowości, bez dodatkowych wymagań zasobowych
 - * pmtn zadania podzielne
 - * prec występują ograniczenia kolejnościowe (zadania zależne)
 - * r_i różne terminy gotowości zadań
 - * res występują wymagania na dodatkowe zasoby
- γ rodzaj kryterium szeregowania, np.

$$C_{\text{max}}$$
, L_{max} , $\sum C_j$, $\sum w_j C_j$, $\sum T_j$, $\sum w_j T_j$, $\sum U_j$, $\sum w_j U_j$

Szeregowanie na jednym procesorze

- 1 | r_j | C_{max} szeregowanie według niemalejących r_j
- 1 | | L_{max} regula EDD (*Earliest Due Date*)
- 1 | r_i | L_{max} problem NP-trudny
- 1 | | ΣC_i regula SPT (Shortest Processing Time)
- 1 | $| \Sigma w_j C_j \text{szeregowanie według niemalejących} współczynników <math>p_j / w_j$
- 1 | | ΣT_j problem NP-trudny
- 1 | | ΣU_i algorytm Moore'a (Hodgsona)
 - 1. uszereguj zadania według niemalejących d_i ;
 - 2. znajdź pierwsze zadanie *j*, które jest opóźnione. Jeżeli nie ma zadań opóźnionych to STOP;
 - 3. spośród uszeregowanych zadań 1,...,j usuń zadanie z najdłuższym czasem wykonywania p_j ;

Usunięte zadania umieść na końcu uszeregowania.

- 1 | | $\sum w_i U_i$ problem NP-trudny
- problem z przezbrojeniami NP-trudny

Szeregowanie na procesorach równoległych

- $P2 \mid \mid C_{\text{max}} \text{problem NP-trudny}$
- $P \mid pmtn \mid C_{\max}$ przy m procesorach $C^*_{\max} = \max\{ \max\{p_j\}, 1/m \sum p_j \}$
- $ullet R \mid pmtn \mid C_{\max}$ metoda dwufazowa
- $P \mid \mid \Sigma C_j$ uogólniona reguła SPT
- $R \mid \mid \Sigma C_j$ model sieciowy
- $P2 \mid \mid \sum w_i C_i$ problem NP-trudny

Szeregowanie czasooptymalne zadań podzielnych na procesorach równoległych

Problem $R \mid pmtn \mid C_{\text{max}}$

Metoda dwufazowa

• faza pierwsza – wyznaczenie minimalnej długości uszeregowania i przydział zadań do procesorów

 t_{lj} – zmienna decyzyjna oznaczająca sumaryczny czas realizacji zadania j na procesorze l

 $\min C_{\max}$

przy ograniczeniach

$$\sum_{j} t_{lj} \leq C_{\text{max}} \qquad \forall l$$

$$\sum_{l} t_{lj} \leq C_{\text{max}} \qquad \forall j$$

$$\sum_{l} \frac{1}{p_{lj}} t_{lj} = 1 \qquad \forall j$$

$$t_{li} \geq 0 \qquad \forall l, j$$

• faza druga – określenie uszeregowania problem $O \mid pmtn \mid C_{max}$

model sieciowy (w przypadku całkowitych czasów wykonywania operacji – model kolorowania krawędzi multigrafu dwudzielnego)

Szeregowanie zadań na procesorach równoległych z kryterium ΣC_i

Problem $R \mid | \Sigma C_j|$

Model sieciowy

n zadań, m procesorów równoległych

Przepustowości wszystkich łuków [0, 1] Wartość przepływu od *s* do *t* równa *n*

Problem przepływowy (flow shop)

(minimalizacja C_{max})

- permutacyjny wszystkie procesory wykonują zadania w tej samej kolejności
- ogólny każdy z procesorów może wykonywać zadania w dowolnej kolejności

Istnieje rozwiązanie optymalne ogólnego problemu przepływowego, w którym

- kolejność wykonywania zadań na pierwszych dwóch procesorach jest taka sama
- kolejność wykonywania zadań na ostatnich dwóch procesorach jest taka sama

Wniosek

Przy liczbie procesorów $m \le 3$ rozwiązań optymalnych ogólnego problemu przepływowego wystarczy poszukiwać wśród uszeregowań permutacyjnych.

- $F2 \mid \mid C_{\text{max}} \text{algorytm Johnsona}$
- $F3 \mid \mid C_{\text{max}}$ problem NP-trudny

Problem przepływowy, 2 procesory

$F2||C_{\max}|$

Algorytm Johnsona

- 1. podziel zadania na dwa zbiory
 - $S1 \leftarrow \{j: p_{1i} \leq p_{2i}\}$
 - $S2 \leftarrow \{j: p_{1j} > p_{2j}\}$
- 2. wykonaj najpierw zadania ze zbioru SI w kolejności niemalejących wartości p_{Ij}
- 3. następnie wykonaj zadania ze zbioru S2 w kolejności nierosnących wartości p_{2j}

Kolejność wykonywania zadań na obu procesorach taka sama

Szeregowanie w systemie otwartym

- O2 | | C_{max} algorytm Gonzaleza i Sahni'ego
- $O3 \mid \mid C_{\text{max}}$ problem NP-trudny
- \bullet $O \mid pmtn \mid C_{max}$

$$C_{\max}^* = \max\{\max_{l} \{\sum_{j} p_{lj}\}, \max_{j} \{\sum_{l} p_{lj}\}\}$$

model sieciowy (w przypadku całkowitych czasów wykonywania operacji – model kolorowania krawędzi multigrafu dwudzielnego)

Dynamiczne reguły szeregowania

- FIFO (First-In First-Out), FCFS (First-Come First-Served) według kolejności pojawiania się zadań
- **SPT** (Shortest Processing Time) najpierw wykonywane najkrótsze zadania

Reguła korzystna w przypadku:

- minimalizacji średniego czasu przepływu
- minimalizacji średniej liczby zadań przebywających w systemie
- minimalizacji średniego spóźnienia
- minimalizacji liczby zadań spóźnionych

Niedogodności:

- blokuje zadania o długich czasach wykonywania
- LPT (Longest Processing Time) najpierw wykonywane najdłuższe zadania

Reguła korzystna w przypadku:

- szeregowania czasoptymalnego na procesorach równoległych, np. dla problemu $Pm \mid C_{max}$

$$C_{\text{max}}(LPT) \le (\frac{4}{3} - \frac{1}{3m})C_{\text{max}}^*$$

Dynamiczne reguły szeregowania

dla zadań z żądanymi terminami ukończenia

- **EDD** (*Earliest Due Date*) najpierw zadania z najwcześniejszym żądanym terminem ukończenia
- **MOD** szeregowanie według zmodyfikowanego terminu zakończenia $MOD = \max\{d_i, t + P_i(t)\}$, gdzie
 - * *t* aktualna chwila
 - * $P_j(t)$ suma czasów realizacji pozostałych do wykonania operacji zadania
- CR (Critical Ratio) szeregowanie według wskaźnika

$$CR = \frac{d_j - t}{P_i(t)}$$

• **STO** (*Slack Time per Operation*) – szeregowanie według wskaźnika

$$STO = \frac{d_j - t - P_j(t)}{NOP}$$
 gdzie

NOP – liczba operacji zadania pozostałych do wykonania