Digital Logic Design Chapter 3

Gate-Level Minimization

3-1 Introduction

■ Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

3-2 The Map Method

- Logic minimization
 - Algebraic approaches: lack specific rules
 - The Karnaugh map
 - » A simple straight forward procedure
 - » A pictorial form of a truth table
 - » Applicable if the number of variables < 7
- A diagram made up of squares
 - ◆ Each square represents one minterm

Two-Variable Map

■ A two-variable map

- Four minterms xy, xy', x'y,x'y'
- \star x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram
- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): $m_1 + m_2 + m_3 = x'y + xy' + xy$ =x(y+y')+y(x+x')=x+y

Figure 3.1 Two-variable Map

Figure 3.2 Representation of functions in the map Digital Logic Design ⁵

A Three-variable Map

- A three-variable map (Eight minterms)
 - ♦ The minterms arranged in Gray code sequence not in binary
 - ◆ Any two adjacent squares (vertically or horizontally. But not diagonally) in the map differ by only on variable
 - » e.g., m_5 and m_7 can be simplified

$$m_5 + m_7 = xy'z + xyz = xz(y'+y) = XZ$$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

Figure 3.3 Three-variable Map

A Three-variable Map

- m_0 and m_2 (m_4 and m_6) are adjacent
- \bullet $m_0 + m_2 = x'y'z' + x'yz' = x'z'(y'+y) = x'z'$
- $m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$

				\ 1	<i>K7</i>			,
				$x \setminus$	00	0 1	11	10
m_0	m_1	m_3	m_2	0	x'y'z'	x'y'z	x'yz	x'yz'
m_4	m_5	m_7	m_6	$x \begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'
							Z.	•
	(a)				(b)	

Fig. 3-3 Three-variable Map

 ν

Example 3.1

 \blacksquare Example 3.1: simplify the Boolean function F(x, y, y)

$$z$$
) = $\Sigma(2, 3, 4, 5)$

•
$$F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$$

Figure 3.4 Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Example 3.2

- Example 3.2: simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Figure 3.5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares

Consider four adjacent squares

- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'$
- $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

\ 1	cz		J	y
x	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
$x \left\{ 1 \right\}$	xy'z'	xy'z	xyz	xyz'
			<u> </u>	,

(a)

(b)

Figure 3.3 Three-variable Map

Digital Logic Design

Example 3.3

- Example 3.3: simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$
- $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Note: y'z' + yz' = z'

Figure 3.6 Map for Example 3-3, $P(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Example 3.4

- \blacksquare Example 3.4: let F = A'C + A'B + AB'C + BC
 - Express in sum of minterms and find the minimal SOP
 - ◆ Note: A'C = A' (first row) and C(two middle columns) to give squares 001 & 011.

Ans: $F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + AB$

Figure 3.7 Map for Example 3.4, A'C + A'B+AB'C + BC = C + A'B

Summary of three-variable Map

- <u>One square</u> represents one mintem, giving a term with *three literals*.
- Two adjacent squares represent a term with two literals.
- Four adjacent squares represent a term with one literal.
- <u>Eight adjacent squares</u> encompass the entire map and produce a function that is always equal to <u>1</u>.

3.3 Four-Variable Map

■ The map

- 16 minterms
- Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	m_6	
m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}	
m_8	<i>m</i> 9	m_{11}	m_{10}	
(a)				

Figure 3.8 Four-variable Map

Summary of four-variable Map

- <u>One square</u> represents one mintem, giving a term with <u>four literals</u>.
- *Two adjacent squares* represent a term with *three literals*.
- Four adjacent squares represent a term with two literal.
- <u>Eight adjacent squares</u> represent a term with <u>one</u> <u>literal</u>.
- Sixteen adjacent squares produce a function that is always equal to 1.

Example 3.5

Example 3.5: simplify $P(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Figure 3.9 Map for Example 3-5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

3.4 Five-Variable Map

- Map for more than four variables becomes complicated
 - ◆ Five-variable map: two four-variable map (one on the top of the other).

Figure 3.12 Five-variable Map

Example 3.7

Example 3.7: simplify $F = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

3-5 Product of Sums Simplification

- Approach #1
 - ◆ Simplified *F'* in the form of sum of products
 - \bullet Apply DeMorgan's theorem F = (F')'
 - \bullet F': sum of products \to F: product of sums
- Approach #2: duality
 - Combinations of maxterms (it was minterms)

• $M_0M_1 = (A+B+C+D)(A+B+C+D) = (A+B+C)+(DD) = A+B+C$

	CD			
AB \	00	01	11	10
00	M_0	M_1	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M_{12}	M_{13}	M_{15}	M_{14}
10	M_8	M_9	M_{11}	M_{10}

Example 3.8

Example 3.8: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

Note: BC'D' + BCD' = BD'

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 3.8 (cont.)

□ Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

Sum-of-Minterm Procedure

Consider the function defined in Table 3.2.

♦ In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In product-of-maxterm:

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

Table 3.2 *Truth Table of Function F*

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Sum-of-Minterm Procedure

- □ Consider the function defined in Table 3.2.
 - Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

◆ Combine the 0's:

$$F'(x, y, z) = xz + x'z'$$

◆ Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Figure 3.16 Map for the function of Table 3.2

3-6 Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - ◆ BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - ◆ Can be implemented as 0 or 1
- Example 3.9: simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$.

Example 3.9 (cont.)

- (a) F = yz + w'x'; there for $F = \Sigma(0, 1, 2, 3, 7, 11, 15)$
- (b) F = yz + w'z there for $F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 3.17 Example with don't-care Conditions

Home Work (5)

Digital Design (4th)- Morris Mano-Page 116-Problems:

```
3.2 d, e, f
```

3.7

3.12

3.15

3-7 NAND and NOR Implementation

- NAND and NOR gates are *easier* to fabricate with electronic components.
- Digital circuits are frequently *constructed* with NAND or NOR gates rather than with AND and OR gates.
- □ rules and procedures have been developed for the conversion from Boolean functions given in terms of AND, OR and NOT into equivalent NAND and NOR logic diagrams.

NAND Gate

■ NAND gate is a universal gate

Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

■ Two graphic symbols for a NAND gate

Figure 3.19 Two Graphic Symbols for NAND Gate

Procedure with Two Levels NAND

- The procedure to implement Boolean function with two level NAND:
 - ◆ Simplified in the form of sum of products;
 - ◆ A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
 - ◆ A single NAND gate for the second sum term (the second level);
 - ◆ A term with a single literal requires an inverter in the first level.

Example 3.10

□ Example 3-10: implement $F(x, y, z) = \sum (1,2,3,4,5,7)$

$$F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$$
 $F(x, y, z) = xy' + x'y + z$

Figure 3.21 Solution to Example 3-10

Multilevel NAND Circuits

- Boolean function implementation
 - ◆ AND-OR logic → NAND-NAND logic
 - \rightarrow AND \rightarrow AND + inverter
 - \rightarrow OR: inverter + OR = NAND
 - » For every bubble that is not compensated by another bubble along the same line, insert an inverter.

Figure 3.22 Implementing F = A(CD + B) + BC'

NAND Implementation

Figure 3.23 Implementing F = (AB' + A'B)(C + D')

NOR Implementation

- NOR function is the dual of NAND function.
- The NOR gate is also universal.

Figure 3.24 Logic Operation with NOR Gates

Two Graphic Symbols for a NOR Gate

Figure 3.25 Two Graphic Symbols for NOR Gate

Example:
$$F = (A + B)(C + D)E$$

Figure 3.26 Implementing F = (A + B)(C + D)E

Example

Example: Implement F = (AB' + A'B)(C + D') with NOR gates

Figure 3.27 Implementing F = (AB' + A'B)(C + D') with NOR gates

3-9 Exclusive-OR Function

- Exclusive-OR (XOR) $x \oplus y = xy' + x'y$
- Exclusive-NOR (XNOR)
 - $(x \oplus y)' = xy + x'y'$
- Some identities
 - \bullet $X \oplus 0 = X$
 - \bullet $X \oplus 1 = X'$
 - \wedge $X \oplus X = 0$
 - \bullet $x \oplus x' = 1$
 - \wedge $X \oplus Y' = (X \oplus Y)'$
 - \wedge $X \oplus Y = (X \oplus Y)'$
- Commutative and associative
 - $A \oplus B = B \oplus A$
 - $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

3.9 Exclusive-OR Implementations

Implementations

Figure 3.32 Exclusive-OR Implementations

Odd Function

- $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C = AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7)$
- \bullet XOR is a odd function \rightarrow an odd number of 1's, then F=1.
- ♦ XNOR is a even function \rightarrow an even number of 1's, then F=1.

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Figure 3.33 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

■ Logic diagram of odd and even functions

Figure 3.34 Logic Diagram of Odd and Even Functions

Parity Generation and Checking

- Parity Generation and Checking
 - A parity bit: $P = x \oplus y \oplus z$
 - Parity check: $C = x \oplus y \oplus z \oplus P$
 - » C=1: one bit error or an odd number of data bit error
 - » C=0: correct or an even number of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4 *Even-Parity-Generator Truth Table*

Three-Bit Message			Parity Bit
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Parity Generation and Checking

Table 3.5 *Even-Parity-Checker Truth Table*

Four Bits Received			Parity Error Check	
x	y	Z	P	c
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Home Work (6)

Digital Design (4th)- Morris Mano-Page 116-Problems:

```
3.16 b, c,
```

3. 17

3.20

3.21

3.23

تم بحمد الله