Trabalho Laboratorial 3

Planeamento e Gestão de Redes

Endereçamento IP e Serviço DNS

Diogo Remião & Miguel Pinheiro Abril 2021

Faculdade de Engenharia da Universidade do Porto TEC

Conteúdos

1	Introdução	2							
2	Endereçamento	3							
	2.1 Atribuição de endereços	3							
	2.2 Configuração na bancada	3							
	2.3 Switch / Router	5							
3	Configuração DNS / Bind9								
	3.1 Considerações	9							
	3.2 Rede de Servidores / DMZ	9							
	3.3 Armazém	11							
	3.4 Loja	12							
4	Configuração do NAT	14							
5	Teste da configuração do DNS	16							
	5.1 Split DNS	16							
	5.2 Loja	19							
	5.3 Armazém	19							
6	Conclusão	20							
Bi	bliografia	21							

1 Introdução

Este trabalho tem como objetivos a compreensão de requisitos de endereçamento IP numa rede empresarial e configuração de servidores DNS locais. Para tal, foi desenvolvido um projeto de endereçamento tendo em conta os diferentes sub-sistemas da rede empresarial, nomeadamente a criação de uma intranet local, sem acesso à internet, e uma DMZ, que funciona como a fronteira para o exterior da empresa, com acesso à internet. Todas estes sub-sistemas terão a sua própria rede local, pelo que será necessário configurar diferentes Vlans para este efeito.

Depois do plano endereçamento, irá ser abordada a configuração de servidores DNS dentro da empresa, com o objetivo de resolver domínios locais. Estes endereços apenas poderão ser visíveis nas redes locais permitidas, pelo que será utilizada uma bordagem de *Split DNS* para filtrar os pedidos.

Por fim, iremos configurar a rede de forma a que apenas a DMZ tenha acesso à internet, através do protocolo NAT.

2 Endereçamento

2.1 Atribuição de endereços

De acordo com a estrutura da rede e as suas dependências, foi elaborado o seguinte endereçamento da rede:

Endereço IP	Network	Broadcast	DNS	Gateway
Sede	192.168.0.0/23	192.168.1.255	-	192.168.1.254
Rede de Servidores	192.168.2.224/29	192.168.2.231	192.168.2.225	192.168.2.230
Armazém	192.168.2.192/27	192.168.2.223	192.168.2.193	192.168.2.222
Loja1 - Vlan1	192.168.2.0/27	192.168.2.31	192.168.2.1	192.168.2.30
Loja1 - Vlan2	192.168.2.32/27	192.168.2.63	192.168.2.33	192.168.2.62
Loja2 - Vlan1	192.168.2.64/27	192.168.2.95	192.168.2.65	192.168.2.94
Loja2 - Vlan2	192.168.2.96/27	192.168.2.127	192.168.2.97	192.168.2.126
Loja3 - Vlan1	192.168.2.128/27	192.168.2.159	192.168.2.129	192.168.2.158
Loja3 - Vlan2	192.168.2.160/27	192.168.2.191	192.168.2.161	192.168.2.190
DMZ	20.49.51.160/28	20.49.51.175	20.49.51.161	20.49.51.174

Table 2.1: Endereços dos elementos da rede

2.2 Configuração na bancada

Para simular a tipologia da rede empresarial, foi criada a seguinte estrutura de rede na bancada:

Host	Eth1	Eth2			
Tux12	Desativada	DNS Cache Armazém			
Tux13	DNS Rede de Servidores	DNS DMZ			
Tux14	DNS Loja 1 - Vlan1	DNS Loja 1 - Vlan2			

Table 2.2: Estrutura de rede nos hosts

Para se obter esta tipologia, as respetivas interfaces foram configuradas deste modo:

```
eth2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.2.193 netmask 255.255.255.224 broadcast 192.168.2.223
inet6 fe80::2c0:dfff:fe08:8125 prefixlen 64 scopeid 0x20<link>
ether 00:c0:df:08:81:25 txqueuelen 1000 (Ethernet)
RX packets 3052 bytes 578186 (564.6 KiB)
RX errors 0 dropped 2998 overruns 0 frame 0
TX packets 211 bytes 21964 (21.4 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Figure 2.1: Tux12 Interfaces

```
eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.2.225 netmask 255.255.255.248 broadcast 192.168.2.231
inet6 fe80::250:fcff:feed:bb37 prefixlen 64 scopeid 0x20<link>
ether 00:50:fc:ed:bb:37 txqueuelen 1000 (Ethernet)
RX packets 17827 bytes 2845382 (2.7 MiB)
RX errors 0 dropped 12303 overruns 0 frame 0
TX packets 416 bytes 38149 (37.2 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 20.49.51.161 netmask 255.255.255.240 broadcast 20.49.51.175
inet6 fe80::201:2ff:fea0:fa2e prefixlen 64 scopeid 0x20<link>
ether 00:01:02:a0:fa:2e txqueuelen 1000 (Ethernet)
RX packets 33823 bytes 2466259 (2.3 MiB)
RX errors 0 dropped 33769 overruns 0 frame 0
TX packets 286 bytes 26694 (26.0 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 21 base 0x5100
```

Figure 2.2: Tux13 Interfaces

5

```
eth1: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.2.1 netmask 255.255.255.224 broadcast 192.168.2.31
inet6 fe80::2c0:dfff:fe804:2099 prefixlen 64 scopeid 0x20<link>
ether 00:c0:df:04:20:99 txqueuelen 1000 (Ethernet)
RX packets 134423 bytes 9686869 (9.2 MiB)
RX errors 0 dropped 133989 overruns 0 frame 0
TX packets 783 bytes 84156 (82.1 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth2: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.2.33 netmask 255.255.255.224 broadcast 192.168.2.63
inet6 fe80::201:2ff:fe21:8305 prefixlen 64 scopeid 0x20<link>
ether 00:01:02:21:83:05 txqueuelen 1000 (Ethernet)
RX packets 34778 bytes 2534194 (2.4 MiB)
RX errors 0 dropped 34728 overruns 0 frame 0
TX packets 198 bytes 23370 (22.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 21 base 0xd100
```

Figure 2.3: Tux14 Interfaces

2.3 Switch / Router

A estrutura de rede apresentada requere que os diferentes sistemas estejam em Vlans diferentes, de forma a que o seu tráfego interno seja separado. Para tal, várias Vlans foram configuradas no Switch de bancada, atribuindo as portas a que as interfaces dos Tux's estavam ligadas às Vlans respetivas [1]:

VLAN	Name				Sta ⁻	tus	Ports				
1	default			act:		Fa0/6, Fa0/11,	Fa0/7, Fa0 Fa0/12, I	0/8, Fa Fa0/13,	 0/4, Fa0/5 0/9, Fa0/10 Fa0/14, Fa0/16 Fa0/24, Gi0/1		
2	Sede				act		Fa0/15	. 40, 20,	40, 21,	1 40, 24, 010, 1	
3	Armaz	em			act:	ive	Fa0/19				
4	Loja1				act:	ive	Fa0/23				
5	Loja2				act:	ive	Fa0/22				
6	Dmz				act:	ive	Fa0/18				
1002	2 fddi-default 3 token-ring-default 4 fddinet-default				act	act/unsup act/unsup					
1003					act						
1004					act	act/unsup					
1005	5 trnet-default					act/unsup					
VLAN	Type	SAID	MTU	Parent	RingNo	Bridge	No Stp	BrdgMode	Trans1	Trans2	
1	enet	100001	1500				 -	-	0	0	
2	enet	100002	1500						0	0	
3	enet	100003	1500						0	0	
4	enet	100004	1500						0	0	
5	enet	100005	1500						0	0	
6	enet	100006	1500						0	0	

Figure 2.4: Switch Vlans

O switch não faz *forward* de pacotes entre diferentes Vlans. Desse modo, se queremos que as vlans possam comunicar entre si, temos que fazer uso de um dispositivo que suporte *routing* Layer 3. Neste caso, esse dispositivo é router de bancada, o que nos obriga a usar a abordagem **ROAS** (Router-on-a-stick).

Apenas existe uma interface que liga o Switch ao Router : GigabitEthernet2. A configuração ROAS permite que esta interface seja dividida em sub-interfaces, cada uma delas associada a uma VLAN [2]. Estas sub-interfaces vão funcionar como as Gateways das diferentes Vlans no router.

O primeiro passo é criar um **Trunk** no Switch na interface que liga ao Router, que junte todas as vlans. Esta trunk permite que as vlans sejam discriminadas à chegada ao router através do encapsulamento *dot1Q*.

interface GigabitEthernet0/2
 switchport trunk encapsulation dot1q
 switchport trunk allowed vlan 1-6
 switchport mode trunk

Figure 2.5: Switch Trunk

Após a criação do trunk, conseguimos no router separar as Vlans que estão nesse trunk e atribuir a cada uma a sua Gateway.

```
interface GigabitEthernet0/0
 description switch-trunk
 ip address 172.16.1.19 255.255.255.0
 duplex auto
 speed auto
interface GigabitEthernet0/0.2
 encapsulation dot1Q 2
 ip address 192.168.2.230 255.255.255.248
interface GigabitEthernet0/0.3
 encapsulation dot1Q 3
 ip address 192.168.2.222 255.255.255.224
interface GigabitEthernet0/0.4
 encapsulation dot1Q 4
 ip address 192.168.2.30 255.255.255.224
interface GigabitEthernet0/0.5
 encapsulation dot1Q 5
 ip address 192.168.2.62 255.255.255.224
interface GigabitEthernet0/0.6
 encapsulation dot1Q 6
 ip address 20.49.51.174 255.255.255.240
```

Figure 2.6: Router Interfaces

Ao configurar o router, atribuímos a cada Vlan a sua *Gateway*, assim como a sua *Netmask* correspondente. Deste modo, virtualizamos uma ligação direta individual de cada Vlan ao router.

Para testar a configuração podemos fazer um traceroute entre duas Vlans distintas:

```
[root@tux13:~# traceroute -i eth1 192.168.2.193
traceroute to 192.168.2.193 (192.168.2.193), 30 hops max, 60 byte packets
1 192.168.2.230 (192.168.2.230) 0.472 ms 0.544 ms 0.573 ms
2 192.168.2.193 (192.168.2.193) 0.402 ms 0.397 ms 0.380 ms
root@tux13:~#
```

Figure 2.7: Traceroute da Rede servidores para o Armazém

Podemos observar que a Vlan da rede de servidores faz uso da sua gateway para

aceder ao DNS da Vlan do Armazém.

3 Configuração DNS / Bind9

3.1 Considerações

Para ser possível comunicação entre os diferentes sub-sistemas da rede através dos respetivos domínios sem estarmos a depender de IPs, é necessário criar um servidor DNS. O software escolhido foi o **BIND9**, que permite também a configuração do servidor para cache DNS.

Na estrutura de rede que estamos a analisar, temos uma rede local segura e excluída do exterior, e uma DMZ, ligada ao exterior. Idealmente, um servidor DNS seria configurado em cada uma das zonas. No entanto, devido a limitações de hardware, a DMZ está na mesmo *host* que a rede de computadores, pelo que o servidor DNS é partilhado. Desse modo, é preciso configurar uma **Split DNS**. Esta configuração permite a distinção dos endereços que fazem as *queries*. É assim possível fornecer uma resposta diferente dependendo do *host* que está a fazer a *query*.

3.2 Rede de Servidores / DMZ

O servidor DNS na rede de servidores tem como objetivo devolver o endereço para os serviços de:

- Nameserver ns.qquma.pt
- Webserver www.qquma.pt
- Mailserver mail.qquma.pt

No entanto, o endereço a ser devolvido depende da origem do pedido. Se o pedido for proveniente da rede interna (192.168.0.0/21), os endereços a devolver correspondem aos serviços alojados na rede de servidores (192.168.2.22x). Se o pedido for externo (incluíndo da DMZ), os endereços a devolver correspondem aos serviços alojados na DMZ (20.49.51.16x).

Além disso, o servidor DNS só pode resolver pedidos para domínios da loja e do armazém a pedidos internos na rede, bloqueando pedidos externos.

Existe mais que uma forma de fazer esta separação no DNS. A primeira, que é o exemplo fornecido pela documentação do Bind para uma *Split-DNS* [3], faz uso das funções allow-query{} que especifica os endereços que permite *queries* e allow-forward{} que especifica os endereços que permite encaminhamento de *queries* ao *slave*.

O segundo método, que foi o escolhido, prende-se com a criação de *views*, que é um conjunto de zonas que seguem as mesmas configurações gerais [4]. Neste caso, definimos uma *view* para pedidos internos, que através da função match-clients{} permite especificar os endereços que entram nessa *view*. Estas *views* funcionam por exclusão, isto é, o pedido tenta entrar na *views* por ordem e só entra na *view* geral se não conseguir entrar na anterior.

Em ambos os casos, definimos ficheiros *database* diferentes para as zonas internas e externas.

```
acl "company" {
        192.168.0.0/21;
 };
view "internal" { // internal view of the companies zons
    match-clients { "company"; };
        allow-recursion { "company"; };
        zone "qquma.pt"{
                 type master;
                 file "/var/named/db.qquma"; //internal db
        };
        zone "ns.loja1.qquma.pt"{
                 type slave;
                 masters{ 192.168.2.1; };
        };
};
view "external" { //external view of the companies zones to the internel
        match-clients { any; }; //obvious
        zone "qquma.pt" {
                 file "/var/named/db.qquma.external"; //external db
   Consider adding the 1918 zones here, if they are not used in your
   organization
  include "/etc/bind/zones.rfc1918";
```

Figure 3.1: Ficheiro named.conf.local Tux13

Definimos o *range* de IPs 192.168.0.0/21 como pedidos locais e todos os outros como externos.

No ficheiro **db.qquma**, definimos os *DNS Records* para resolver pedidos internos para os diferentes serviços.

3.3. Armazém

```
604800
        IN
                 SOA
                          ns.qquma.pt. mail.qquma.pt. (
                                            ; Serial
                                3
                           604800
                                            ; Refresh
                                            ; Retry
                            86400
                          2419200
                                            ; Expire
                           604800 )
                                            ; Negative Cache TTL
;
@
                 NS
        IN
                          ns.qquma.pt.
0
        IN
                          192.168.2.225
                 Α
                          192.168.2.225
ns
        IN
                 Α
        IN
                          192.168.2.226
www
mail
        IN
                          192.168.2.227
armazem IN
                          192.168.2.193
```

Figure 3.2: Ficheiro db.qquma no Tux13

No ficheiro **db.qquma.external**, definimos os *DNS Records* para resolver pedidos internos para os diferentes serviços.

```
$TTL
         604800
                          ns.qquma.pt. mail.qquma.pt. (
         IN
                 SOA
                                           ; Serial
                                3
                           604800
                                           ; Refresh
                            86400
                                           ; Retry
                          2419200
                                           ; Expire
                           604800 )
                                           ; Negative Cache TTL
0
         IN
                 NS
                          ns.qquma.pt.
         IN
                          20.49.51.161
                 Α
                          20.49.51.161
        IN
ns
                 Α
        IN
                          20.49.51.163
www
                 Α
mail
         IN
                 Α
                          20.49.51.162
```

Figure 3.3: Ficheiro db.qquma.external no Tux13

Por fim, é preciso especificar no ficheiro /etc/resolv.conf o servidor DNS que o sistema tem que usar, que neste caso é a si próprio.

3.3 Armazém

O servidor DNS do armazém tem características diferentes. Primeiramente, este servidor tem que suportar *Caching*, pelo que essa funcionalidade tem que ser ativada.

Em segundo lugar, o servidor DNS não resolve nenhuma *query*, nem mesmo para si próprio. Ele tem que reencaminhar os pedidos DNS para a o DNS da rede de servidores, neste caso na *view* interna. Deste modo, não é preciso configurar um ficheiro *database*,

3.4. Loja 12

mas é necessário definir o servidor DNS na rede de servidores como *forwarder*. Isto vai reencaminhar os pedidos que o servidor local não sabe resolver, que neste caso é todos.

Figure 3.4: Ficheiro named.conf.options no Tux12

3.4 Loja

O servidor DNS da loja tem que conseguir resolver o seu próprio endereço. Deste modo, este servidor DNS é o *slave* do servidor DNS da rede de servidores Sempre que um *host* pede para resolver o *domain* da loja, o servidor DNS da rede de servidores vai reencaminhar o pedido para este servidor, que o vai resolver. Note-se que este pedido apenas é redirecionado na *view* interna, isto é, para pedidos locais. Assim garante-se que o domain não é resolvido para IPs externos..

3.4. Loja 13

```
//
// Do any local configuration here
//
zone "loja1.qquma.pt"{
         type master;
         file "/var/named/db.loja1.qquma";
};
zone "qquma.pt"{
         type slave;
         masters{ 192.168.2.225; };
};
// Consider adding the 1918 zones here, if they are not used in your
// organization
//include "/etc/bind/zones.rfc1918";
```

Figure 3.5: Ficheiro named.conf.local no Tux14

É preciso indicar no ficheiro de configurações qual é a *database* que o DNS tem que aceder para resolver os endereços.

```
604800
                         loja1.qquma.pt. mail.qquma.pt. (
        ΙN
                 SOA
                               3
                                          ; Serial
                          604800
                                           ; Refresh
                           86400
                                          ; Retry
                         2419200
                                          ; Expire
                          604800 )
                                           ; Negative Cache TTL
        ΙN
                NS
                         loja1.qquma.pt.
        IN
                 Α
                         192.168.2.1
                         192.168.2.2
proxy
        IN
                 Α
```

Figure 3.6: Ficheiro db.loja1.qquma no Tux14

No ficheiro verb | db.loja1.qquma | definimos os DNS Records quer para o próprio endereço do *Nameserver*, quer para o *Proxy*.

4 Configuração do NAT

NAT (Network Address Translation) é um protocolo de atribuição de endereços IP público não atribuídos para acesso à Internet [5]. Permite a conservação do endereços IP, de modo a garantir que não há endereços IP reservados a não ser utilizados, dado que há um número finito de endereços disponíveis.

Na estrutura de rede considerada, apenas a DMZ tem acesso à internet. Deste modo, apenas temos que configurar o NAT para as interfaces usadas pela DMZ.

```
interface GigabitEthernet0/0
description switch-trunk
 ip address 172.16.1.19 255.255.255.0
 ip nat outside
 ip virtual-reassembly
duplex auto
 speed auto
interface GigabitEthernet0/0.2
 encapsulation dot1Q 2
ip address 192.168.2.230 255.255.255.248
interface GigabitEthernet0/0.3
encapsulation dot1Q 3
ip address 192.168.2.222 255.255.255.224
interface GigabitEthernet0/0.4
encapsulation dot1Q 4
 ip address 192.168.2.30 255.255.255.224
interface GigabitEthernet0/0.5
encapsulation dot1Q 5
 ip address 192.168.2.62 255.255.255.224
interface GigabitEthernet0/0.6
encapsulation dot1Q 6
ip address 20.49.51.174 255.255.255.240
ip nat inside
 ip virtual-reassembly
```

Figure 4.1: Configuração do NAT nas interfaces GE0/0 e GE0/0.6

Para configurar o NAT, é sempre preciso definir uma interface *NAT inside* e outra *NAT outside*.

A interface **NAT Inside** corresponde à origem do tráfego interno que tem como destino a internet. Neste caso, o tráfego provém apenas da DMZ, pelo que apenas a sua interface foi configurada (GE0/0.6)

A interface **NAT Outside** corresponde à interface que tem ligação ao exterior, isto é, à internet. Neste caso, a interface é que se tem que definir é aquela que está ligada ao *Firetux* (GE0/0).

Para testar se o NAT foi bem configurado, fazemos um *ping* a um endereço externo, como por exemplo google.com.

```
[root@tux13:-# ping -I eth1 google.com
PING google.com (142.250.184.174) from 192.168.2.225 eth1: 56(84) bytes of data.
^C
---- google.com ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 70ms

[root@tux13:-# ping -I eth2 google.com
PING google.com (142.250.184.174) from 20.49.51.161 eth2: 56(84) bytes of data.
64 bytes from mad07s23-in-f14.1e100.net (142.250.184.174): icmp_seq=1 ttl=113 time=13.1 ms
64 bytes from mad07s23-in-f14.1e100.net (142.250.184.174): icmp_seq=2 ttl=113 time=13.1 ms
64 bytes from mad07s23-in-f14.1e100.net (142.250.184.174): icmp_seq=2 ttl=113 time=13.1 ms
64 bytes from mad07s23-in-f14.1e100.net (142.250.184.174): icmp_seq=4 ttl=113 time=13.1 ms
65 c--- google.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 13.119/13.359/13.974/0.356 ms
root@tux13:-#
```

Figure 4.2: Ping nas interfaces eth1 e eth2

Como se observa, a interface **eth1** que corresponde à rede de servidores, que não tem acesso à internet. Com a interface **eth2** que corresponde à DMZ, o *ping* é bem sucedido. Nas restantes interfaces / sistemas, o *ping* também não é bem sucedido como seria de esperar.

5 Teste da configuração do DNS

Para testar as configurações dos DNS, foi ativada a opção de logging no servidor DNS da rede de servidores para podermos analisar os pedidos DNS recebidos. Os logs são escritos no ficheiro /var/log/query.log.

Figure 5.1: Configuração do Logging

É feito uso do comando dig para fazer as queries DNS. A razão para a utilização deste comando ao invés de nslookup deve-se ao facto de ser possível discriminar a interface desejada.

5.1 Split DNS

O **Split DNS** vai separar os pedidos conforme o IP de origem. Desse modo é de esperar:

- Pedidos locais: Endereços da rede de servidores
- Pedidos Externos: Endereços da DMZ

5.1. Split DNS

```
[root@tux13:/# dig -b 192.168.2.225 www.qquma.pt
; <<>> DiG 9.11.5-P4-5.1+deb10u3-Debian <<>> -b 192.168.2.225 www.qquma.pt
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20947
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: be2c7b82989552a6910503576085de9988fa44541bc746f0 (good)
;; QUESTION SECTION:
;www.qquma.pt.
                                       IN
;; ANSWER SECTION:
www.qquma.pt.
                             604800 IN
                                                         192.168.2.226
;; AUTHORITY SECTION:
                             604800 IN
                                                NS
qquma.pt.
                                                          ns.qquma.pt.
;; ADDITIONAL SECTION:
                                                          192.168.2.225
                             604800 IN
                                                Α
ns.qquma.pt.
;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Apr 25 22:26:49 WEST 2021
;; MSG SIZE rcvd: 118
```

Figure 5.2: Query de um endereço local

```
Z5-Apr-2021 22:26:49.211 queries: info: client @0x7f07880bbf40 192.168.2.225#50803 (www.qquma.pt): view internal
```

Figure 5.3: Log da query de endereço local

O endereço devolvido pela *Query* é 192.168.2.226, que corresponde ao Webserver da rede de servidores. No log é possível verificar que a *view* do pedido é a interna, confirmado que reconhece o endereço local.

5.1. Split DNS 18

```
root@tux13:/# dig -b 172.16.1.13 www.qquma.pt
; <<>> DiG 9.11.5-P4-5.1+deb10u3-Debian <<>> -b 172.16.1.13 www.qquma.pt
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24717
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 513824b93e43eee27770b41f6085df49b4106cbe0e8600aa (good)
;; QUESTION SECTION:
                                  IN
;www.qquma.pt.
;; ANSWER SECTION:
www.qquma.pt.
                          604800 IN
                                                    20.49.51.163
;; AUTHORITY SECTION:
qquma.pt.
                          604800 IN
                                           NS
                                                    ns.qquma.pt.
;; ADDITIONAL SECTION:
                          604800 IN
                                                    20.49.51.161
ns.qquma.pt.
;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Apr 25 22:29:45 WEST 2021
;; MSG SIZE rcvd: 118
```

Figure 5.4: Query de um endereço da DMZ

25-Apr-2021 22:29:45.031 queries: info: client @0x7f07880e47a0 172.16.1.13#37644 (www.qquma.pt): view external

Figure 5.5: Log da query de endereço da DMZ

Neste caso, o endereço devolvido pela *Query* é 20.49.51.163, que corresponde ao Webserver da DMZ. Analogamente, no log é possível verificar que a *view* do pedido é a externa, confirmado que filtra o pedido como externo.

É de notar que os pedidos tem um *query time* de 0 ms, o que confirma que os pedidos são resolvidos localmente.

5.2. Loja 19

5.2 Loja

Os pedidos com origem na loja são tratados como pedidos locais pelo que devem ser devolvidos os endereços da rede de servidores, assim como o armazém.

```
[root@tux14:/var/named# dig -b 192.168.2.1 loja1.qquma.pt +short 192.168.2.1 [root@tux14:/var/named# dig -b 192.168.2.1 proxy.loja1.qquma.pt +short 192.168.2.2 [root@tux14:/var/named# dig -b 192.168.2.1 qquma.pt +short 192.168.2.225 [root@tux14:/var/named# dig -b 192.168.2.1 armazem.qquma.pt +short 192.168.2.193 [root@tux14:/var/named# dig -b 172.16.1.14 armazem.qquma.pt +short root@tux14:/var/named# ■
```

Figure 5.6: "Digs" na loja para endereços do sistema

Quando se faz dig para o endereço da loja, este devolve o próprio endereço da interface. Apesar de o endereço da loja não estar definido no ficheiro *database* do servidor DNS da rede de servidores, o pedido é reencaminhado para o slave que é neste caso o servidor DNS da loja. Este servidor tem na sua *database* os *DNS Records* dos domínios da loja, pelo que se confirma o correto funcionamento da tipologia *Master-Slave*.

O *Query* para o armazém é bem sucedido dado que o pedido é local. Externo não era possível resolver.

5.3 Armazém

No caso do armazém, este não consegue resolver nenhum pedido, pelo que todos são reencaminhados para a rede de servidores.

```
[root@tux12:~# dig -b 192.168.2.193 armazem.qquma.pt +short
192.168.2.193
[root@tux12:~# dig -b 192.168.2.193 proxy.loja1.qquma.pt +short
192.168.2.2
[root@tux12:~# dig -b 192.168.2.193 qquma.pt +short
192.168.2.225
[root@tux12:~# dig -b 192.168.2.193 google.com +short
142.250.184.174
```

Figure 5.7: "Digs" no armazém para endereços do sistema

Como de esperar, todas as *queries* são resolvidas corretamente como endereços locais, incluíndo a *query* para o próprio armazém.

6 Conclusão

Os objetivos inicialmente propostos foram atingidos. Foi elaborada um **projeto de endereçamento** para a rede que foi aprovado pelo docente.

Consequentemente, foram configuradas as diferentes **Vlans** e as respetivas *gateways* no router. Foram realizados testes ping que comprovaram a interconectividade entre os diferentes *hosts* na rede local.

A configuração do **NAT** foi realizada no intuito de apenas a DMZ conseguir aceder à internet. Pings a endereços públicos dos diferentes hosts apenas funcionaram na DMZ, como esperado.

Por fim, foram configurados os diferentes servidores DNS na rede. Através do comando dig foram feitas *queries* para diferentes domínios. Observamos que apenas computadores na rede local indicada (192.168.0.0/21) conseguiram resolver os endereços da rede de servidores, da loja, e do armazém.

A DMZ por sua vez, assim como outros domínios internos não autorizados (172.16.0.0/21), apenas conseguiram resolver os domínios da DMZ, não sendo capazes de aceder nem à loja nem ao armazém. Isto vai de encontro aos *DNS Records* que foram introduzidos para as diferentes zonas, pelo que mais uma vez se comprovou o funcionamento dos servidores DNS.

Em suma, este trabalho permitiu-nos adquirir novos conhecimentos na gestão e configuração de redes empresariais, aprofundando o nosso domínio na área do **Software Defined Network**.

Bibliografia

- [1] Creating Ethernet VLANs on Catalyst Switches. Cisco Documentation. [Visitado 04-2021]. URL: \url{https://www.cisco.com/c/en/us/support/docs/lan-switching/vlan/10023-3.html}.
- [2] Configuring Routing Between VLANs with IEEE 802.1Q Encapsulation. Cisco Documentation. [Visitado 04-2021]. URL: \url{https://www.cisco.com/en/US/docs/ios/lanswitch/configuration/guide/lsw_cfg_vlan_encap.html}.
- [3] Advanced DNS Features Split DNS. Bind 9 Documentation. [Visitado 04-2021]. URL: \url{https://bind9.readthedocs.io/en/v9_16_4/advanced.html#split-dns}.
- [4] BIND 9 Configuration Reference Configuration File Grammar. Bind 9 Documentation. [Visitado 04-2021]. URL: \url{https://bind9.readthedocs.io/en/latest/reference.html}.
- [5] Network Address Translation (NAT). Cisco Documentation. [Visitado 04-2021]. URL: \url{https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html}.