

# 1 Smart LCD Controller

# 1.1 Overview

The Smart LCD Controller transfers data from the display buffer to the LCD Module. It supports DMA operation and register operation.

#### Features:

- Supports a large variety of LCD Module from different vendors.
- Supports parallel and serial interfaces.
- Supports different size of display panel.
- Supports different width of pixel data.
- Supports DMA operation and register operation.
- Supports Write Operation. Read Operation is not supported.

#### 1.2 Structure





# 1.3 Pin Description

**Table 1-1 SLCD Pins Description** 

| Name              | I/O | Description                             | Interface             |
|-------------------|-----|-----------------------------------------|-----------------------|
| SLCD_RS           | 0   | Command/Data Select Signal. The         | Serial: RS            |
|                   |     | polarity of the signal can be           | Parallel: RS          |
|                   |     | programmable.                           |                       |
| SLCD_CS           | 0   | Chip Select Signal. The polarity of the | Serial: CS            |
|                   |     | signal can be programmable.             | Parallel: Sample Data |
|                   |     |                                         | with the edge of CS   |
| SLCD_CLK          | 0   | The clock of SLCD. The polarity of the  | Serial or not used    |
|                   |     | clock can be programmable.              |                       |
| SLCD_DAT*1 [17:0] | 0   | The data of SLCD.                       | Serial:               |
|                   |     |                                         | SLCD_DAT [15]         |
|                   |     |                                         | Parallel:             |
|                   |     |                                         | SLCD_DAT [17:0]       |
|                   |     |                                         | SLCD_DAT [15:0]       |
|                   |     |                                         | SLCD_DAT [7:0]        |

**Note**\*<sup>1</sup>: SLCD\_DAT [15] is also use as data pin for serial. The SLCD pins are shared with LCDC. You can see the set of register LCDCFG.LCDPIN in LCDC spec.

# 1.4 Register Description

In this section, we will describe the registers in Smart LCD controller. Following table lists all the registers definition. All register's 32bit address is physical address. And detailed function of each register will be described below.

| Name   | Description             |    | Reset Value | Address    | Access |
|--------|-------------------------|----|-------------|------------|--------|
|        |                         |    |             |            | Size   |
| MCFG   | SLCD Configure Register | RW | 0x0000      | 0x130500A0 | 32     |
| MCTRL  | SLCD Control Register   | RW | 0x00        | 0x130500A4 | 8      |
| MSTATE | SLCD Status Register    | RW | 0x00        | 0x130500A8 | 8      |
| MDATA  | SLCD Data Register      | RW | 0x00000000  | 0x130500AC | 32     |
| MFIFO  | SLCD FIFO               | RW | 0x00000000  | 0x130500B0 | 32     |



# 1.4.1 SLCD Configure Register (MCFG)

The register MCFG is used to configure SLCD.

| MCFG |         |          |    |        |     |        |   |          |   |       | 0x1   | 305      | 00     | 40   |
|------|---------|----------|----|--------|-----|--------|---|----------|---|-------|-------|----------|--------|------|
| Bit  | 15 14   | 13       | 12 | 11 1   | 0 9 | 8 (    | 7 | 6        | 5 | 4     | 3     | 2        | 1      | 0    |
|      | TRIGGER | Reserved |    | DWIDTH |     | СМІРТН |   | Reserved |   | CSPLY | RSPLY | Reserved | CLKPLY | TYPE |
| RST  | 0 0     | 0        | 0  | 0 (    | 0 0 | 0      | 0 | 0        | 0 | 0     | 0     | 0        | 0      | 0    |

| Bits  | Name     |                | Description                       |                   | RW |
|-------|----------|----------------|-----------------------------------|-------------------|----|
| 15:14 | TRIGGER  | FIFO trigger f | or DMA Operation.                 |                   | RW |
|       |          | Trigger Lengt  | Selection                         |                   |    |
|       |          | TRIGGER        | Trigger                           | Length            |    |
|       |          | 00             | 4 word                            |                   |    |
|       |          | 01             | 8 word                            |                   |    |
|       |          | 10             | Reserve                           | ed                |    |
|       |          | 11             | Reserve                           | ed                |    |
| 13    | Reserved | These bits alv | ays read 0, and written are ig    | gnored.           | R  |
| 12:10 | DWIDTH*1 | Data Width.    |                                   |                   | RW |
|       |          | DWIDTH         | Data Width                        |                   |    |
|       |          | 000            | 18-bit once Parallel/Serial       |                   |    |
|       |          | 001            | 16-bit once Parallel/Serial       |                   |    |
|       |          | 010            | 8-bit third time Parallel         |                   |    |
|       |          | 011            | 8-bit twice Parallel              |                   |    |
|       |          | 100            | 8-bit once Parallel/Serial        |                   |    |
|       |          | 111            | 9-bit twice Parallel              |                   |    |
|       |          | 101~110        | Reserved                          |                   |    |
| 9:7   | CWIDTH*1 | Command W      | dth.                              |                   | RW |
|       |          | CWIDTH         | Command Width                     |                   |    |
|       |          | 00             | 16-bit once                       |                   |    |
|       |          | 01             | 8-bit once                        |                   |    |
|       |          | 10             | 18-bit once                       |                   |    |
|       |          | 11             | Reserved                          |                   |    |
| 7:5   | Reserved | These bits alv | ays read 0, and written are iq    | gnored.           | R  |
| 4     | CSPLY    | CS Polarity. ( | S initial level will be different | from CS Polarity) | RW |
|       |          | 0: Active Leve | l is Low                          |                   |    |
|       |          | 1: Active Leve | l is High                         |                   |    |
| 3     | RSPLY    | RS Polarity.   |                                   |                   | RW |
|       |          | 0: Command     | RS = 0, Data RS = 1               |                   |    |



|   |          | 1: Command RS = 1, Data RS = 0                     |    |
|---|----------|----------------------------------------------------|----|
| 2 | Reserved | These bits always read 0, and written are ignored. | R  |
| 1 | CLKPLY   | LCD_CLK Polarity.                                  | RW |
|   |          | 0: Active edge is Falling                          |    |
|   |          | 1: Active edge is Rising                           |    |
| 0 | TTYPE    | Transfer Type:                                     | RW |
|   |          | 0: Parallel                                        |    |
|   |          | 1: Serial                                          |    |

Note\*1: The set of DWIDTH and CWIDTH should keep to the rules as follows:

| Interface Mode | Command Width | Data Width        | Color |
|----------------|---------------|-------------------|-------|
| Parallel       | 18-bit        | 18-bit once       |       |
|                | 16-bit        | 16-bit once       |       |
|                |               | 9-bit twice       |       |
|                | 8-bit         | 8-bit once        |       |
|                |               | 8-bit twice       |       |
|                |               | 8-bit third times |       |
| Serial         | 18-bit        | 18-bit once       |       |
|                | 16-bit        | 16-bit once       |       |
|                | 8-bit         | 8-bit once        |       |
|                |               | 8-bit twice       |       |
|                |               | 8-bit third times |       |

# 1.4.2 SLCD Control Register (MCTRL)

MCTRL is SLCD Control Register.

| MCTRL |   | 0x130500A |    |     |     | 44 |   |         |
|-------|---|-----------|----|-----|-----|----|---|---------|
| Bit   | 7 | 7 6       | 5  | 4   | 3   | 2  | 1 | 0       |
|       |   |           | Re | ser | ved |    |   | DMATXEN |
| RST   | ( | 0 0       | 0  | 0   | 0   | 0  | 0 | 0       |

| Bits | Name     | Description                                        | RW |
|------|----------|----------------------------------------------------|----|
| 7:1  | Reserved | These bits always read 0, and written are ignored. | R  |
| 0    | DMATXEN  | SLCD DMA Transfer Enable.                          | RW |
|      |          | This bit is only used for DMA automatic transfer.  |    |



| 10 | genic |                                                                      |  |
|----|-------|----------------------------------------------------------------------|--|
|    |       | (1) This bit starts the automatic transfer of image data from system |  |
|    |       | memory to LCDM.                                                      |  |
|    |       | (2) When DMAC finishes transferring the data, and the                |  |
|    |       | MSTATE.BUSY bit is 0, you can clear DMATXEN bit to stop DMA          |  |
|    |       | mode.                                                                |  |

# 1.4.3 SLCD Status Register (MSTATE)

The register of MSTATE is SLCD status register.



| Bits | Name     | Description                                                               | RW |
|------|----------|---------------------------------------------------------------------------|----|
| 7:1  | Reserved | These bits always read 0, and written are ignored.                        | R  |
| 0    | BUSY     | Transfer is working or not.                                               | RW |
|      |          | This bit will be set to 1 when transfer is working. It will be cleared by |    |
|      |          | hardware when transfer is finished.                                       |    |
|      |          | 0: not busy                                                               |    |
|      |          | 1: busy                                                                   |    |

### 1.4.4 SLCD Data Register (MDATA)

The register MDATA is used to send command or data to LCM. When RS=0, the low 24-bit is used as command. When RS=1, the low 24-bit is used as data.



| Bits | Name | Description                                                           | RW |
|------|------|-----------------------------------------------------------------------|----|
| 31   | RS   | The RS bit of data register is used to decide the meanings of the low | RW |
|      |      | 24-bit.                                                               |    |



|       |          | 0: data                                            |    |
|-------|----------|----------------------------------------------------|----|
|       |          | 1: command                                         |    |
| 30:24 | Reserved | These bits always read 0, and written are ignored. | R  |
| 23:0  | DATA/CMD | Data or Command Register.                          | RW |

# 1.4.5 SLCD FIFO (MFIFO)

The FIFO is used to send command or data to LCM. When RS=0, the low 24-bit is used as command. When RS=1, the low 24-bit is used as data.



| Bits  | Name     | Description                                                          | RW |
|-------|----------|----------------------------------------------------------------------|----|
| 31    | RS       | The RS bit of FIFO is used to decide the meanings of the low 24-bit. | RW |
|       |          | 0: data                                                              |    |
|       |          | 1: command                                                           |    |
| 30:24 | Reserved | These bits always read 0, and written are ignored.                   | R  |
| 23:0  | DATA/CMD | Data or Command Register.                                            | RW |



# 1.5 System Memory Format

The format of Command and Data in system memory is as follows:

| Command | RS [31] = 1                         | XXX [30:n- | <b>⊦</b> 1] |  | Command | d [n:0]    |
|---------|-------------------------------------|------------|-------------|--|---------|------------|
|         | RS [31] = 0 XXX [30:24] Data [23:0] |            |             |  |         |            |
| Data {  | RS [31] = 0                         | XXX [      | 30:16]      |  | Dat     | a [15:0]   |
|         | RS [31] = 0                         | XXX [30:8] |             |  |         | Data [7:0] |

# 1.5.1 Data format

# (1) 24-bit color

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17       | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|----|
| 0  | Х  | Χ  | Х  | Х  | Х  | Χ  | Χ  | R7 | R6 | R5 | R4 | R3 | R2 | R1       | R0 |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | Λ  | 2  | 2  | 1        | 0  |
|    |    | 13 | 12 |    | 10 | 9  | 0  | 1  | O  | 3  | 4  | 3  |    | <b>'</b> | U  |

# (2) 18-bit color

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0  | Χ  | Х  | Х  | Х  | Х  | Х  | Χ  | R5 | R4 | R3 | R2 | R1 | R0 | Χ  | Χ  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| G5 | G4 | G3 | G2 | G1 | G0 | Χ  | Χ  | B5 | B4 | В3 | B2 | B1 | B0 | Χ  | Χ  |

# (3) 16-bit color

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0  | Χ  | Х  | Х  | Χ  | Х  | Х  | Χ  | Χ  | Х  | Х  | Х  | Х  | Х  | Χ  | Χ  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B4 | В3 | B2 | B1 | В0 |

# (4) 8-bit color

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Х  | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | Χ  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Χ  | Х  | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 |



#### 1.5.2 Command Format

#### (1) 18-bit command

| 31  | 30  | 29  | 28  | 27  | 26  | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17  | 16  |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|-----|-----|
| 1   | Χ   | Χ   | Χ   | Χ   | Χ   | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | C17 | C16 |
| 15  | 14  | 13  | 12  | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1   | 0   |
| C15 | C14 | C13 | C12 | C11 | C10 | C9 | C8 | C7 | C6 | C5 | C4 | C3 | C2 | C1  | C0  |

#### (2) 16-bit command

| 31  | 30  | 29  | 28  | 27  | 26  | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 1   | Χ   | Χ   | Χ   | Χ   | Χ   | Χ  | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  |
| 15  | 14  | 13  | 12  | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| C15 | C14 | C13 | C12 | C11 | C10 | C9 | C8 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 |

# (3) 8-bit command once

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| Х  | V  | Х  | Х  | V  | Х  | Х  | V  | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 |

## (4) 8-bit command twice (Command = command part + data part, twice transfer)

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Х  | Х  | Х  | Χ  | Χ  | Χ  | Χ  | Х  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 |

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | Χ  | Χ  | Х  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| Х  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | Χ  | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

**Note:** The command is made up of command part and data part, but need twice transfer, and the first transfer is command part and the second transfer is data part. You need to divide the command into two parts by software.)



#### 1.6 Transfer Mode

Two transfer modes can be used: DMA Transfer Mode and Data Register Transfer Mode.

#### 1.6.1 DMA Transfer Mode

Command and data can be recognized by RS bit coming from memory. The format of DMA transfer can be as follows:

# (1) Command and Data



### 1.6.2 Register Transfer Mode

Each time you can write a command or a data to the register, then it will transfer the RS signal and data or command to LCM. Command and data can be recognized by RS bit coming from data register. The format of data register transfer can be as follows:



# 1.7 Timing

# 1.7.1 Parallel Timing





# 1.7.2 Serial Timing



# 1.8 Operation Guide

#### 1.8.1 DMA Operation

#### (1) Start DMA transfer

- (1) Initial DMAC.
- (2) Set MCFG to configure SLCD.
- (3) Before starting DMA, Wait for MSTATE.BUSY == 0.
- (4) Set MCTRL.DMATXEN to 1 to start DMA transfer. (If you don't want to stop DMA transfer, you need not to check MSTATE.BUSY.)

#### (2) Stop DMA transfer

- (1) Check the status of DMAC, and stop DMAC.
- (2) Wait MSTATE.BUSY == 0
- (3) Set MCTRL.DMATXEN to 0 to stop DMA transfer.

#### (3) Restart DMA transfer

When MCTRL.DMATXEN is set to 0, and then you want to restart DMA transfer at once, you should ensure that MCTRL.DMATXEN must keep low level at least three cycles of PIXCLK.

#### 1.8.2 Register Operation

- (1) Set MCFG to configure SLCD.
- (2) Wait for MSTATE.BUSY == 0.
- (3) Set MDATA register.
- (4) Wait for MSTATE.BUSY == 0.
- (5) Set MDATA register.
- (6) Wait for MSTATE.BUSY == 0.
- (7) ... ...