Assignment-3

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

Problem 3.1. (UAG 5.1) A rgular function on \mathbb{P}^1 is constant. Deduce that there are no non-constant morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ for $m \geq 1$.

Solution. Suppose $f \in k(\mathbb{P}^1)$ be a rational function, which is regular everywhere. If we restrict it to the affine piece $\mathbb{A}_{(0)}$, we get $f(x,1)=p(x)\in k[x]$ (as for the case of affine variety dom f=V iff $f\in k[V]$). Similarly, we can restrict f to another affine piece \mathbb{A}_{∞} . We get, $f(1,y)=f(1/y,1)=p(1/y)\in k[y]$. It is possible iff p is constant.

Any morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ can be given by (f_1, \dots, f_m) where f_i are regular on \mathbb{P}^1 . Thus the function f is constant by the previous part.

Problem 3.2. (The quadric surface in \mathbb{P}^3).

(i) Show that the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ gives an isomorphism of $\mathbb{P}^1 \times \mathbb{P}^1$ with the quadric

$$S_{1,1} = Q : (X_0 X_3 = X_1 X_2) \subseteq \mathbb{P}^3.$$

- (ii) What are the images in Q of the two families of lines $\{p\} \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \{p\}$ in $\mathbb{P}^1 \times \mathbb{P}^1$? Use this to find some disjoint lines in $\mathbb{P}^1 \times \mathbb{P}^1$, and conclude from this that $\mathbb{P}^1 \times \mathbb{P}^1 \not\cong \mathbb{P}^2$.
- (iii) Show that there are two lines of Q passing through the point P = (1, 0, 0, 0) and that the complement U of these two lines is the image of $\mathbb{A}^1 \times \mathbb{A}^1$ under the Segree embedding.
- (iv) Show that under the projection $\pi|_Q:Q\dashrightarrow \mathbb{P}^2$, U maps isomorphically to a copy of \mathbb{A}^2 , and the two lines through P are mapped to two points of \mathbb{P}^2 .
- (v) Find $dom \pi$ and $dom \varphi$, and give a geometric interpretation of the singularities of π and φ .

Solution.

(i) Let $\varphi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$, $([X_0, X_1], [Y_0, Y_1]) \mapsto [X_0Y_0, X_0Y_1, X_1Y_0, X_1Y_1]$ be the Segree embedding. Then we clearly have $\operatorname{Im} \varphi = S_{1,1} \subseteq Q$. Since we know that the Segree embedding $S_{1,1} \cong \mathbb{P}^1 \times \mathbb{P}^1$. Its enough to show that $Q \subseteq S_{1,1}$. Note that

$$\begin{split} Q &= \{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid X_0 X_3 - X_1 X_2 = 0 \} \\ &= \left\{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid \det \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix} = 0 \right\} \\ &= \left\{ [X_0, X_1, X_2, X_3] \in \mathbb{P}^3 \mid \operatorname{rk} \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix} = 1 \right\}, \end{split}$$

the rank can not be zero, as at least one of the entries X_0, X_1, X_2, X_3 is nonzero. Let $[X_0, X_1, X_2, X_3] \in Q$, and WLOG assume $X_0 \neq 0$, then we get there exists $\lambda, \mu \neq 0$ such that

$$\begin{pmatrix} X_0 \\ X_2 \end{pmatrix} = \lambda \begin{pmatrix} X_1 \\ X_3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} X_0 \\ X_1 \end{pmatrix} = \mu \begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$$

Thus we get that $X_1=\frac{X_0}{\lambda}$, $X_2=\frac{X_0}{\mu}$ and $X_3=\frac{X_2}{\lambda}=\frac{X_0}{\mu\lambda}$, thus we get that

$$[X_0, X_1, X_2, X_3] = \left[X_0, \frac{X_0}{\lambda}, \frac{X_0}{\mu}, \frac{X_0}{\mu \lambda} \right] = [\mu \lambda, \mu, \lambda, 1] = \varphi([\mu, 1], [\lambda, 1]).$$

Therefore we have proved that $Q \subseteq S_{1,1}$, hence we get that φ induces an isomorphism of $S_{1,1}$ and Q.

- (ii) We have $\varphi(\{p\} \times \mathbb{P}^1) = \{[aY_0, aY_1, bY_0, bY_1] \mid [Y_0, Y_1] \in \mathbb{P}^1\}$, which is equation of the line passing through $[a, 0, b, 0], [0, a, 0, b] \in \mathbb{P}^3$. Similarly image of $\mathbb{P}^1 \times \{p\}$ is again a line in \mathbb{P}^3 . But then note that for $p \neq q \in \mathbb{P}^1$, we have $(\{p\} \times \mathbb{P}^1) \cap (\{q\} \times \mathbb{P}^1) = \emptyset$, hence their images are disjoint lines in Q. But we know that any two lines in \mathbb{P}^2 have a intersection, hence $\mathbb{P}^1 \times \mathbb{P}^1 \ncong \mathbb{P}^2$.
- (iii) Let us consider the image of $\mathbb{A}^1 \times \mathbb{A}^1$ in \mathbb{P}^3 under the Segre embedding. We get

$$\varphi(\mathbb{A}^1 \times \mathbb{A}^1) = \{ [ab, a, b, 1] \in \mathbb{P}^3 \mid a, b \in k \}.$$

Now consider the two lines $\ell_1=\{[\mu,0,\lambda,0]\in\mathbb{P}^3\mid [\mu,\lambda]\in\mathbb{P}^1\}$ and $\ell_2=\{[\mu,\lambda,0,0]\in\mathbb{P}^3\mid [\mu,\lambda]\in\mathbb{P}^1\}$ through [1,0,0,0] and contained in Q. We claim that the complement U of these two lines is $\varphi(\mathbb{A}^1\times\mathbb{A}^1)$. Clearly we have $\varphi(\mathbb{A}^1\times\mathbb{A}^1)\cap(\ell_1\cup\ell_2)=\emptyset$. Conversely let $[X_0,X_1,X_2,X_3]\notin\varphi(\mathbb{A}^1\times\mathbb{A}^1)$, then $[X_0,X_1,X_2,X_3]=\varphi([a,b],[1,0])=[a,0,b,0]\in\ell_1$ or $[X_0,X_1,X_2,X_3]=\varphi([1,0],[c,d])=[c,d,0,0]\in\ell_2$. Therefore we have shown that $U=\varphi(\mathbb{A}^1\times\mathbb{A}^1)$.

(iv) Under the projection $\pi|_Q:Q\dashrightarrow \mathbb{P}^2, [X_0,X_1,X_2,X_3]\mapsto [X_1,X_2,X_3].$ Then

$$\pi(U) = \pi(\varphi(\mathbb{A}^1 \times \mathbb{A}^1)) = [a, b, 1] \in \mathbb{A}^2 \subseteq \mathbb{P}^2.$$

And the two lines ℓ_1 and ℓ_2 maps to the two points [0, 1, 0] and [1, 0, 0] respectively.

(v) Since π is just the projection of \mathbb{P}^3 from the point [0,0,0,1] onto the \mathbb{P}^2 , its domain is given by $\dim \pi = \mathbb{P}^3 \setminus [0,0,0,1]$, and hence $\dim \pi|_Q = Q \setminus [0,0,0,1]$. On the other hand the domain of the Segre embedding is $\dim \varphi = \mathbb{P}^1 \times \mathbb{P}^1$.

Problem 3.3. Problem 5.3

Solution.

(a) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2 \setminus \{[0, 0, 1]\}$ and is a rational function in each coordinate of the image. We therefore have

$$\operatorname{dom}\varphi=[x,y,z]\in\mathbb{P}^2\setminus\{[0,0,1]\}.$$

Further, this is a birational map, as it has the rational inverse given by the map in (c), $[x, y] \mapsto [x, y, 0]$.

(b) The given map is not a rational map. This is because

$$\varphi([1,0]) = [1,0,1] \neq [2,0,1] = \varphi([2,0]),$$

but $[1,0] \neq [2,0]$.

(c) The given map is a rational map. This is because it is well-defined for all $[z,y]\in\mathbb{P}^1$ and is a rational function in each coordinate of the image. We therefore have

$$\operatorname{dom}\varphi=\mathbb{P}^1.$$

Further, this is a birational map, as it has the rational inverse given by the map in (a), $[x, y, z] \mapsto [x, y]$.

(d) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $xyz \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

$$\operatorname{dom} \varphi = \{ [x, y, z] \mid xyz \neq 0 \}.$$

Further, φ^2 is the identity map on dom φ , and so it is a birational map.

(e) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $z \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

$$\operatorname{dom} \varphi = \{ [x, y, z] \mid z \neq 0 \}.$$

The map is not birational as the function fields of the domain and image are not isomorphic.

(f) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with one of x, y non-zero, and is a rational function in each coordinate of the image. We therefore have,

$$\operatorname{dom}\varphi = \mathbb{P}^2 \setminus \{[0,0,1]\}.$$

The map is not birational as there is no rational inverse.

Problem 3.4. Let $C \subseteq \mathbb{P}^3$ be an irreducible curve defined by $C = Q_1 \cap Q_2$, where $Q_1 : (TX = q_1)$, and $Q_2 : (TY = q_2)$, with q_1, q_2 quadratic forms in X, Y, Z. Show that the projection $\pi : \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ defined by $(X, Y, Z, T) \mapsto (X, Y, Z)$ restricts to an isomorphism of C with the plane curve $D \subseteq \mathbb{P}^2$ given by $Xq_2 = Yq_1$.

Solution. Let us define the map $\varphi: D \dashrightarrow C$, as follows,

$$[X, Y, Z] \mapsto \begin{cases} [X, Y, Z, \frac{q_1}{X}] & \text{if } X \neq 0 \\ [X, Y, Z, \frac{q_2}{Y}] & \text{if } Y \neq 0 \end{cases}$$

Note that this is indeed a map from D to C, as if $[X,Y,Z] \in D$ with $X \neq 0$, then we get that $Xq_2 = Yq_1$, and hence, $TX = q_1$ and $TY = \frac{Yq_1}{X} = \frac{Xq_2}{X} = q_2$, thus $\varphi([X,Y,Z]) \in C$, and similarly for $Y \neq 0$, we have $[X,Y,Z,T] = \varphi([X,Y,Z]) \in C$. On the other hand restricting the projection onto C, we get that $\pi([X,Y,Z,T]) = [X,Y,Z]$, and since $TX = q_1$ and $TY = q_2$ we get that $Yq_1 = TXY = Xq_2$, thus we indeed have $[X,Y,Z] \in D$.

Finally note that $\pi|_C \circ \varphi = \mathrm{id}_D$ is obvious and

$$\varphi(\pi|_C([X,Y,Z,T])) = \varphi([X,Y,Z]) = \begin{cases} [X,Y,Z,\frac{q_1}{X}] & \text{if } X \neq 0 \\ [X,Y,Z,\frac{q_2}{Y}] & \text{if } Y \neq 0 \end{cases} = [X,Y,Z,T],$$

where the last equality follows from the fact that $TX = q_1$ and $TY = q_2$ for points in C. Thus we indeed have $\varphi \circ \pi|_C = \mathrm{id}_C$. Hence π restricted onto C induces an isomorphism of C with the plane curve D.

Problem 3.5. Problem 5.6

Solution.

(a) The affine pieces are:

(i)
$$(x = 1): y^2z = 1 + az^2 + bz^3$$

(ii)
$$(y = 1) : z = x^3 + axz^2 + bz^3$$

(iii)
$$(z = 1) : y^2 = x^3 + ax + b$$

The intersections with the coordinate axes are:

(i)
$$(x = 0) : z(y^2 - bz^2) = 0$$

(ii)
$$(y = 0): x^3 + axz^2 + bz^3 = 0$$

(iii)
$$(z=0): x^3=0$$

(b) The affine pieces are:

(i)
$$(x = 1): (y - z)^2 - 2yz(y + z) = 0$$

(ii)
$$(y = 1) : (z - x)^2 - 2zx(z + x) = 0$$

(iii)
$$(z = 1) : (x - y)^2 - 2xy(x + y) = 0$$

The intersections with the coordinate axes are:

(i)
$$(x=0): y^2z^2=0$$

(ii)
$$(y=0): z^2x^2=0$$

(iii)
$$(z=0): x^2y^2=0$$

(c) The affine pieces are:

(i)
$$(x = 1) : z^3 = (1 + z^2)y^2$$

(ii)
$$(y=1): xz^3 = x^2 + z^2$$

(iii)
$$(z=1): x = (x^2+1)y^2$$

The intersections with the coordinate axes are:

(i)
$$(x=0): z^2y^2 = 0$$

(ii)
$$(y=0): xz^3=0$$

(iii)
$$(z=0): x^2y^2=0$$

Problem 3.6. (UAG 5.7) Let $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ be an isomorphism; identify graph of φ as subvariety of $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$. Now do the same if $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ is given by map $(X,Y) \mapsto (X^2,Y^2)$.

Solution. Consider the identity map $\mathrm{Id}:\mathbb{P}^1\to\mathbb{P}^1$ and the given isomorphism, it will give us a map $\mathrm{Id}\times\varphi:\mathbb{P}^1\times\mathbb{P}^1\to\mathbb{P}^1\times\mathbb{P}^1$ by $(x,y)\mapsto(x,\varphi(x))$. Under the identification of $\mathbb{P}^1\times\mathbb{P}^1=\mathbb{P}^3$ we can say, $\mathrm{Id}\times\varphi$ is also a morphism of variety. In the variety $\mathbb{P}^1\times\mathbb{P}^1$, the diagonal $\Delta=\{(x,x):x\in\mathbb{P}^1\}$ is closed (simply because it is given by the vanishing of x_0-x_2 and x_1-x_3 where $[x_0:x_1]$ and $[x_2:x_3]$ are co-ordinates of two copies of \mathbb{P}^1). It's not hard to see the graph of φ is given by the inverse image of Δ under $\mathrm{Id}\times\varphi$.

$$\Gamma(\varphi) = (\operatorname{Id} \times \varphi)^{-1}(\Delta)$$

Since the graph is closed it's inverse image will also be closed. Thus the graph is a closed set and under zariski topology any closed set is given by vanishing of some set of polynomials. This will help us to identify $\Gamma(\varphi)$ as a subvariety of $\mathbb{P}^1 \times \mathbb{P}^1$. If φ is given by $[x:y] \to [f(x,y):g(x,y)]$ then the graph can be given by the image of following vanishing set under segre embedding

$$\{[x_0:x_1:x_2:x_3]:x_2=f(x_0,x_1),x_3=g(x_0,x_1)\}$$

If, φ given by $[x,y]\mapsto [x^2:y^2]$ the image of $([x:y],[x^2,y^2])$ is $[x^3:xy^2:yx^2:y^3]$ (image under segre embedding). Which is rational curve $\mathbb{P}^1\to\mathbb{P}^3$, a sub-variety of \mathbb{P}^3 .

$$\Gamma(\varphi) \simeq \text{Rational curve in } \mathbb{P}^3$$

Problem 3.7. (i) Prove that the product of two irreducible algebraic sets is again irreducible.

(ii) Describe the closed sets of the topology on $\mathbb{A}^2 = \mathbb{A}^1 \times \mathbb{A}^1$ which is the product of the Zariski topologies on the two factors; now find a closed subset of the Zariski topology of \mathbb{A}^2 not of this form.

Solution.

(i) Suppose that $X \times Y = Q_1 \cup Q_2$, with each Q_i a closed subset of $X \times Y$. For each $x \in X$, the closed set $\{x\} \times Y$ is isomorphic to Y, and is therefore irreducible. Since $\{x\} \times Y = ((\{x\} \times Y) \cap Q_1) \cup ((\{x\} \times Y) \cap Q_2)$ either $\{x\} \times Y \subseteq Q_1$ or else $\{x\} \times Y \subseteq Q_2$.

The subset $X_1 \subseteq X$ consisting of those $x \in X$ with $\{x\} \times Y \subseteq Q_1$ is a closed subset, to see this note that $X_1 = \cap_{y \in Y} X_y$, where X_y is the collection of points $x \in X$ such that $\{x\} \times \{y\} \in Q_1$. Since $X_y \times \{y\} = (X \times \{y\}) \cap Q_1$, X_y and hence X_1 is closed. Similarly we can define the closed subset X_2 .

Since $X = X_1 \cup X_2$ and X is irreducible, we either have $X = X_1$ or $X = X_2$. But $X = X_i$ implies $X \times Y = Q_i$, contradicting the fact the both of the Q_i 's are nonempty. Therefore $X \times Y$ is irreducible.

(ii) We know that the closed subsets of \mathbb{A}^1 under the Zariski topology are finite subsets of \mathbb{A}^1 and the whole set \mathbb{A}^1 . Thus under the product topology on $\mathbb{A}^2 = \mathbb{A}^1 \times \mathbb{A}^1$ closed subsets are once again finite subsets of $\mathbb{A}^1 \times \mathbb{A}^1$, $\{x_1, \ldots, x_n\} \times \mathbb{A}^1, \mathbb{A}^1 \times \{y_1, \ldots, y_m\}$ and $\mathbb{A}^1 \times \mathbb{A}^1$.

Consider the closed subset $C = V(X - Y) = \{(a, a) \mid a \in k\} \subseteq \mathbb{A}^2$. If k is an infinite field, then C does not belong to any of the closed sets coming from the product topology on $\mathbb{A}^1 \times \mathbb{A}^1$.

Problem 3.8. Problem 5.12

Solution. The given curve is $C: (Y^2Z = X^3 + aXZ^2 + bZ^3) \subset \mathbb{P}^2$. The affine pieces are

$$C_{(0)}: y^2 = x^3 + ax + b, \quad C_{(\infty)}: z' = x'^3 + ax'z'^2 + bz'^3$$

Let f be a regular function on C. Then, dom $f \supset C_{(0)}$, and so, $f \in k[C_{(0)}] = k[x,y]/(y^2 - x^3 - ax - b)$. Hence, there is $q, r \in k[x]$ such that $f(x,y) \equiv q(x) + yr(x)$ in $k[C_{(0)}]$. Now, as dom $f \supset C_{(\infty)}$, we get that

$$q\left(\frac{x'}{z'}\right) + \frac{1}{z'}r\left(\frac{x'}{z'}\right) \equiv p(x', z'),$$

for some polynomial p. Therefore, we can multiply out the denominators to get an expression

$$\widetilde{q}(x', z') + \widetilde{r}(x', z') = p(x', z')z'^m + A(x', z')g,$$

in k[x', z'], where \widetilde{q} is homogeneous of degree m, \widetilde{r} is homogeneous of degree m-1, $g=x'^3+ax'z'^2+bz'^3-z'$. We now write $p=p_1+p_2$ and $A=A_1+A_2$, where p_1 , A_1 consist of the odd degree terms and p_2 , A_2 consist of the even degree terms. Then, assuming m is odd, we get

$$\widetilde{q} = p_2 z'^m + A_1 g, \quad \widetilde{r} = p_1 z_1^m + A_2 g.$$

A similar expression holds in case m is even, by switching p_1 with p_2 and A_1 with A_2 . Now, \widetilde{q} is homogeneous of degree m, and hence, A_1g must have degree at least m. Therefore, we get (as g has the term z') that $z' \mid \widetilde{q}$. Similarly, $z' \mid \widetilde{r}$. Hence, we can divide the entire expression by z', and get \widetilde{q} homogeneous of degree m-1 and \widetilde{r} homogeneous of degree m-2. Hence, assuming that m is the least possible we get m=0, and so, $f\equiv c$ for some constant c. This shows that f must in fact be constant, as was required.

Problem 3.9. (UAG 5.13) Study the embedding $\varphi: \mathbb{P}^2 \to \mathbb{P}^5$ given by $[x:y:z] \mapsto [x^2:xy:xz:y^2:yz:z^2]$ and prove that φ is an isomorphism. Prove that the lines of \mathbb{P}^2 go over the conics of \mathbb{P}^5 and the conics go over the twisted quartics of \mathbb{P}^5 .

For any line $\ell \subset \mathbb{P}^2$, write $\pi(\ell) \subseteq \mathbb{P}^5$ for the projective plane spanned by the conics $\varphi(\ell)$. Prove that union of $\pi(\ell)$ taken over all $\ell \subset \mathbb{P}^2$ is a cubic hypersurface $\Sigma \subseteq \mathbb{P}^5$.

Solution. Consider the following vanishing set on \mathbb{P}^5 ,

$$S = V(t_0t_3 - t_1^2, t_3t_5 - t_4^2, t_0t_5 - t_2^2, t_1t_2 - t_0t_4, t_1t_4 - t_3t_2, t_2t_4 - t_5t_1)$$

It's not hard to see $\operatorname{Im} \varphi \subset S$. Now note that the map φ gives us a surjective map between the following vector spaces,

{homogeneous quadratic polynomials in t_0, \dots, t_5 } \rightarrow {homogeneous quartics in x, y, z}

The first V.S is of dimension 21 and the later one has dimension 15. Thus the kernal has dimension 6. Now note that the polynomials defining S are linearly independent. So, $\operatorname{Im} \varphi = S$. Thus the image of φ is given by the variety S. Now take the map $\psi: S \to \mathbb{P}^3$ that maps $[t_0: \dots: t_5] \to [t_0: t_1: t_2]$ works as the inverse map of φ (it is defined except for [0:0:0:0:0:1]). So, φ is an isomorphism. Any line in \mathbb{P}^2 can be given by the set $\{[X:Y:AX+BY]\}$, the image of that under φ is $(X^2, XY, AX^2 + BXY, Y^2, AXY + BY^2, A^2X^2 + 2AXBY + B^2Y^2)$. Note that the projective transformation given by

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -A & -B & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & A & 0 & -B & 1 & 0 \\ -A^2 & -2AB & 0 & -B^2 & 0 & 1 \end{bmatrix}$$

is valid since its determinant is I (easily computed using the fact that it is a lower triangular matrix). Any conic in \mathbb{P}^2 can be re-parametrized so that it is given by $[u^2:uv:v^2]$. It's image in S is twisted quardics.

To do the last part we can also identify S as the following set,

$$S = \left\{ [t_0 : t_1 : \dots : t_5] \in \mathbb{P}^5 : \operatorname{rank} \begin{pmatrix} t_0 & t_1 & t_2 \\ t_1 & t_3 & t_4 \\ t_2 & t_4 & t_5 \end{pmatrix} \le 1 \right\}$$

From the above identification of S we can say, $\bigcup_{\ell \subset \mathbb{P}^2} \pi(\ell)$ is given by $\det \begin{pmatrix} t_0 & t_1 & t_2 \\ t_1 & t_3 & t_4 \\ t_2 & t_4 & t_5 \end{pmatrix} = 0$. This clearly determines a hyper-surface in \mathbb{P}^5 .