第 2 章 线性规划的对偶理论

Duality 对偶

Dual Problem 对偶问题

Dual Linear Programming 对偶线性规划

Dual Theory 对偶理论

2.1 问题的提出

例1: 甲企业计划生产I、II两种产品,该两种产品均需经 A、B、C、D 四种不同设备加工,按工艺资料规定,在各种不同设备上的加工时间及设备加工能力、单位产品利润如表中所示。问: 如何安排产品的生产计划,才能使企业获利最大?

设备 产品	A	В	С	D	单位利润
I 产品 II 产品	2 2	1 2	4 0	0 4	2 3
加工能力	12	8	16	12	

设企业生产甲产品为 X_1 件, 乙产品为 X_2 件,则

$$\max z = 2 X_1 + 3 X_2$$
s.t
$$2 X_1 + 2 X_2 \le 12$$

$$X_1 + 2 X_2 \le 8$$

$$4 X_1 \le 16$$

$$4 X_2 \le 12$$

$$X_1 \ge 0, X_2 \ge 0$$

例2: 甲企业生产甲、乙两种产品,该两种产品均需 经A、B、C、D 四种不同设备加工,按工艺资料规定,在各种不同设备上的加工时间及设备加工能力、单位产品利润如表中所示。现有乙企业提出要全部租用甲企业设备。问: 最低出价为多少时才能租下甲企业的设备?

产品	A	В	С	D	单位利润
I 产品 II 产品	2 2	1 2	4 0	0 4	2 3
加工能力	12	8	16	12	

--4--

设第
$$i$$
种资源价格为 y_i (i=1,2,3,4,) ,则有 min w= $12y_1 + 8y_2 + 16y_3 + 12y_4$ s.t
$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 3 \end{cases}$$
 $y_i \ge 0$, (i=1, 2, 3, 4)

 y_1

 y_2

 y_3

 y_4

1.最大生产利润模型

生产的题

设企业生产甲产品为X₁件,

max
$$z=2 X_1 +3 X_2$$

s.t $2 X_1 +2 X_2 \le 12$
 $X_1 +2 X_2 \le 8$

 $4 X_2 \le 12$

 $4 X_1 \le 16$

 $X_1 \ge 0$, $X_2 \ge 0$

2.资源最低售价模型

资源的出资

设第*i*种资源价格为y_i, (i=1, 2, 3, 4,) 则有

min
$$w = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

s.t
$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0 & y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4 & y_4 \ge 3 \\ y_i \ge 0, & (i=1,2,3,4) \end{cases}$$

(原问题) <====>

(对偶问题)

2.2 原问题与对偶问题的关系

一般表示式:

典式模型对应对偶结构矩阵表示

对偶模型其他结构关系

(2) 若模型为

--第2章 对偶问题--

(3) max
$$z = C X$$

s.t $\begin{cases} AX \le b \\ X \le 0 \end{cases}$

$$\max = -CX'$$

$$\text{st.} \begin{cases} -AX' \le b \\ X' \ge 0 \end{cases}$$

min
$$w = Y b$$

s.t $YA \leq C$
 $Y \geq 0$

对偶问题典式:

用矩阵形式表示: (1) $\max z = C X$ $\min w = Y b$ s.t $YA \ge C$ s.t $AX \leq b$ <= $X \ge 0$ $Y \ge 0$ (2) $\max z = CX$ $\min w = Yb$ s.t AX≥b s.t $YA \ge C$ $X \ge 0$ $Y \leq 0$ (3) max z = CX $\min w = Yb$ s.t YA ≤C s.t $AX \le b$ <=====> X ≤0 $Y \ge 0$

原问题与对偶问题关系表

原问题(对偶 问题) 目标函数系数 ———————————————————————————————————	一 对偶问题(原问题) — 约束右端项 — 目标函数系数 — 约束条件系数行向量 A ^T — 约束条件个数
\max 变量 x_j : $x_j \ge 0$ x_j 无约束 $x_j \le 0$	min 约束方程 i: ≥ = ≤
约束方程: ≤ = ≥	变量 y _i : y _i ≥ 0 y _i 无约束 y _i ≤0

复习思考题

- 1. 怎样理解对偶现象?
- 2. 对偶模型的对偶关系是什么?
- 3. 如何从经济上理解对偶模型?
- 4. 互为对偶怎样理解?
- 5. 对偶变量的意义是什么?

2.3 对偶问题的基本性质

$$\begin{aligned} \text{Max } z &= \text{CX} & \text{Min } w &= \text{Y b} \\ \text{s t . } AX &\leq b & \text{s t . } YA &\geq C \\ X &\geq 0 & Y &\geq 0 \end{aligned}$$

(1) 弱对偶性:

若 X^0 ——原问题可行解, Y^0 ——对偶问题可行解 则 $CX^0 \le Y^0$ b

(2) 最优性:

若 X^0 ——原问题可行解, Y^0 ——对偶问题可行解,且 $CX^0 = Y^0$ b

则 X⁰——原问题最优解, Y⁰——对偶问题最优解

证明:设 X*——原问题最优解,Y*——对偶问题最优解

则 $CX^0 \le CX^* \le Y^* b \le Y^0 b$

但 $CX^0 = Y^0 b$, $\therefore CX^0 = CX^* = Y^* b = Y^0 b$

 $\therefore X^0 \Rightarrow X^*, Y^0 \Rightarrow Y^*$

即 X⁰——原问题最优解, Y⁰——对偶问题最优解 证毕。

(3) 无界性"贵洲"叫解和外外外发化 X

若原问题最优解无界,则对偶问题无可行解

证:有性质1, $C X^0 \le Y^0 b$, 当 $C X^0 \to \infty$ 时,则不可能存在 Y^0 , 使得 $C X^0 \le Y^0 b$ 。

注: 逆定理不成立,即

如果原问题(对偶问题)无可行解,那么 对偶问题(或原问题)"解无界"不成立。

(4) 强对偶性(对偶定理)

若原问题有最优解,则对偶问题一定有最优解,

因此, Y*是对偶问题的可行解,

$$X = C_B (B^{-1} b) = C_B B^{-1} b = Y^* b$$

: Y*是对偶问题的最优解。

--第2章 对偶问题--

LP模型矩阵变换:

$$(X_B + B^{-1}NX_N + B^{-1}X_S = B^{-1}b)$$

--第2章 对偶问题--

单纯形法的矩阵描述:

	$C_{\rm B}$	C_{N}	c_{i}	0
初始表	X_{B}	X_N	X_{j}	X_{S}
$0 X_S b$	В	N	p_j	Table I
σ	C_{B}	C_{N}	c _j	0
	144		4	The second second

最终表				
$C_B X_B b'$	I	N	p_{j}	B-1
σ	0	$\sigma_{ m N}$	σ_{j}	os songshi 变量

$$\begin{cases} X_{B} = b' = B^{-1} b \\ N' = B^{-1} N \end{cases}$$

$$\sigma_{N} = C_{N} - C_{B}B^{-1}N \le 0$$

$$\sigma_{S} = \left[-C_{B}B^{-1} \le 0\right]$$

$$\sigma = C - C_{B}B^{-1}A \le 0$$
--19---

--第2章 对偶问题--

(5) 互补松弛性

$$\sum_{i=1}^{n} a_{ij} x_j^* = b_i$$

若
$$\sum_{j=1}^{n} a_{ij} x_{j}^{*} < b_{i}$$
 , 则 $y_{i}^{*} = 0$ 意思: 海傾兒 n m

$$\text{if:} \quad \mathbf{x}_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i}^{*} \right) x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

$$\therefore \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i}^{*} \right) x_{j}^{*} - \sum_{i=1}^{m} b_{i} y_{i}^{*} = 0 \qquad \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j}^{*} - b_{i} \right) y_{i}^{*} = 0$$

$$\stackrel{\text{\tiny \perp}}{=} \sum_{i=1}^{n} a_{ij} x_{j}^{*} - b_{i} < 0, \quad y_{i}^{*} = 0$$

(5) 互补松弛性

性质5的应用:

该性质给出了已知一个问题最优解求另一个问题最优解 的方法,即已知Y*求X*或已知X*求Y*

$$\begin{cases} Y^*X_s = 0 \\ Y_sX^* = 0 \end{cases}$$
 互补松弛条件

由于变量都非负,要使求和式等于零,则必定每一分量为零, 因而有下列关系:

若 $Y^* \neq 0$,则 X_s 必为0;若 $X^* \neq 0$,则 Y_s 必为0利用上述关系,建立对偶问题(或原问题)的约束线性方程组,方程组的解即为最优解。

(5) 互补松弛性

例2.4 已知线性规划

$$\max z = 3x_1 + 4x_2 + x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10 \\ 2x_1 + 2x_2 + x_3 \le 16 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

的最优解是X * =(6,2,0)T,求其对偶问题的最优解Y *。

解: 写出原问题的对偶问题,即

min
$$w = 10 y_1 + 16 y_2$$

$$\begin{cases} y_1 + 2 y_2 \ge 3 \\ 2 y_1 + 2 y_2 \ge 4 \end{cases}$$
标准化
$$\begin{cases} y_1 + y_2 \ge 1 \\ y_1 + y_2 \ge 0 \end{cases}$$

min
$$w = 10 y_1 + 16 y_2$$

$$\begin{cases} y_1 + 2 y_2 - y_3 = 3 \\ 2 y_1 + 2 y_2 - y_4 = 4 \\ y_1 + y_2 - y_5 = 1 \\ y_1, y_2, y_3, y_4, y_5 \ge 0 \end{cases}$$

(5) 互补松弛性

例2.5 已知线性规划

$$\min z = 2x_1 - x_2 + 2x_3$$

$$\begin{cases} -x_1 + x_2 + x_3 = 4 \\ -x_1 + x_2 - x_3 \le 6 \end{cases}$$

$$\begin{cases} x_1 \le 0, x_2 \ge 0, x_3$$
无约束

的对偶问题的最优解为Y * =(0,-2), 求原问题的最优解。

解: 对偶问题是

$$\max w = 4y_1 + 6y_2$$

$$\begin{cases} -y_1 - y_2 \ge 2 \\ y_1 + y_2 \le -1 \end{cases}$$
标准化
$$\begin{cases} y_1 - y_2 = 2 \\ y_1 - y_2 = 2 \end{cases}$$

$$\max w = 4y_1 + 6y_2$$

$$\begin{cases} -y_1 - y_2 - y_3 = 2\\ y_1 + y_2 + y_4 = -1 \end{cases}$$

$$\begin{cases} y_1 - y_2 = 2\\ y_1 - y_2 = 2 \end{cases}$$

(6) 单纯形表中的对应关系

$$\max_{s.t} z = 2 x_1 + 3 x_2
s.t \begin{cases} 2 x_1 + 2 x_2 & 2 \\ x_1 + 2 x_2 & 3 \end{cases}$$

$$\max_{s.t} x_1 + 2 x_2 & 3 \end{cases}$$

$$4 x_1 & 16
4 x_2 & 12
x_1 & 20, x_2 & 20 \end{cases}$$

$$\min_{s.t} w = 12y_1 + 8y_2 + 16y_3 + 12 y_1 + 2y_2 + 4y_3 + 0 y_4 & 2 y_2 + 2y_2 + 0y_3 + 4 y_4 & 2 y_2 + 2y_2 + 0y_3 + 4 y_4 & 2 y_2 + 2y_2 + 0y_3 + 4 y_4 & 2 y_2 + 2y_2 + 0y_3 + 4 y_4 & 2 y_2 + 2y_2 + 2y_2 + 2y_2 + 2y_2 + 2y_3 + 2y_4 & 2 y_2 + 2y_2 + 2y_2 + 2y_3 + 2y_4 & 2 y_4 & 2 y_$$

min w=
$$12y_1 + 8y_2 + 16y_3 + 12 y_4$$

s.t $\begin{cases} 2y_1 + y_2 + 4y_3 + 0 y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4 y_4 \ge 3 \\ y_i \ge 0, i=1, 2, 3, 4 \end{cases}$

of #E	原间型	的,	र्न्था है	台决策登			色洲蓝色出对			
	$c_j \rightarrow$		2	3	0	0	0	0		
C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{X}_2	X3	X ₄	\mathbf{X}_5	\mathbf{x}_6		
0	X ₃	0	0	0 \	/ 1	- 1	- 0.25	0		
2	\mathbf{x}_1	4	1	0 \ /	0	0	0.25	0		
0	\mathbf{x}_6	4	0	0 X	0	- 2	0.5	1		
3	\mathbf{x}_2	2	0	1 / \	0	0.5	- 0.125	0		
	c _j -z _j		0	0 /	0	- 1.5	- 0.125	0		
			- y ₅	- y ₆	-y ₁	- y ₂	- y ₃	- y ₄		

复习思考题

- 4. 强对偶性揭示什么关系? 歸鄉鄉 , 서緣也一定有嚴維解
- 5. 什么叫互补松弛性?掌心炎源的初级价格如果是大于0的低那么它的原问题学中的约束条件就变成
- 6. 单纯形表中的对偶关系是怎样的?

原→无解 = 对偶→无可分解

1F 1 2000422)

(b)
$$\max z = 5x_1 + 6x_2 + 3x_3$$

s. t.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = 5 \\ -x_1 + 5x_2 - x_3 \ge 3 \\ 4x_1 + 7x_2 + 3x_3 \le 8 \\ x_1 \text{ } £5\% \text{ } x_1 \ge 0, x_3 \le 0 \end{cases}$$

L181000503 尹畯X英

解) Min
$$W=5t, +3t_2+8t_3$$

 $5t5$ $Y_1-Y_2+4t_3=5$
 $2T_1+5T_2+7Y_3 \ge 6$
 $2T_3-T_2+3Y_3 \le 3$
Y, 秘東 $Y_2 \le 0$ $Y_3 \ge 0$

--第2章 对偶问题--

《外部》市场价格、 企业内部 以(价格)

2.4 影子价格(Shadow price)

선형 계획법에서의 시스템 분석 수법의 하나. 시스템에서 어느 제약 조건을 변화했다고 가정할 때 다른 제약 조건을 만족하면서 어디까지 비용을 절감할 수 있는가를 분석하고, 이러한 분석을 진행시켜 각 조건을만족하는 최저 비용을 찾아내는 방법.

- ★ 边际利润的概念: 增加单位资源对利润的贡献。
- ★ 对资源使用决策的参考依据: 买进、卖出
- ★ 对资源使用状况的估算: 互补松弛性
- ★ 机会成本: $\sigma_j = c_j C_B B^- p_j = c_j Y p_j = c_j \Sigma a_{ij} y_i$, $\Sigma a_{ij} y_i$ 为生产 x_j 而放弃其他产品生产的利润。
- ★ 制定内部结算价格的参考

재화의 가격이 그 재화의 기회비용을 올바르게 반영하는 가격을 말한다. 가격통제나 독점적 행동 등의 이유로 가격이 자유롭게 움직이지 못하고 어떤 점에 고정될 경우, 이 고정된 가격을 완전경쟁 하에서 성립될 경쟁가격과 비교할 때 이 개념이 발생한다. 완전경쟁에서의 균형분석을 경직가격(rigid price) 내지 타성적가격(conventional price)이 존재하는 경우에도 적용하려할 때에 잠재가격이라는 개념의 발생이유가 있는 것이다.

2.5 对偶单纯形法

由于单纯表中同时反映原问题与对偶问题的最优解,故可以从求对偶问题最优解角度求解LP模型。

例:

列单纯表计算:

对偶问题气量吸伤;20

		$C_i \rightarrow$		-2	-3	0	0
사망대문제 진입/토토	C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{X}_4
被比 SM.	0	\mathbf{x}_3	-3	-1	-1	1	0
1、5张川 叶如位务 小对 华巴孜	0	- X ₄	-4	-1	(-2)	0	1
2. 四班北 X4 对例 X1 X2 二 -3		c _j - z _j		-2	-3	0	0
X1 X2 == 1 == 1 == 1 == 1 == 1 == 1 == 1	0	\mathbf{x}_3	-1	(-1/2)	0	1	-1/2
हुँ स्थ	-3	\mathbf{x}_2	2	1/2	1	0	-1/2
		c _j - z _j		-2-(3)- -1/2	0	0	-3/2
	-2	\mathbf{x}_1	2	1	0	-2	1
	-3	\mathbf{x}_2	大型 共和 石山	0	1	11	-1
		c _j - z _j	1 NEW P	是的最优解。	0	-1	-1
				-%	- YıL	-7	-7

原问题的最优解(2,1,0,0)** 对偶问题的最优解(1,1,0,0)**-28--

对偶单纯形法步骤:

1.列初始单纯形表,使得所有检验数 $\sigma_{j} \le 0$;

2.出基变量: 取min {b_i<0} = b_l → x_(l)

3.入基变量: $\min\left\{\frac{(c_j-z_j)}{a_{li}}\right\} = \rightarrow x_k$

4.主元素: [a_{lk}]

5.迭代: 同单纯形法,新单纯表中p_k化为单位向量

说明:

 1^0 使用对偶单纯形法时,初始表中检验数必须全部为 $\sigma_j \le 0$,即使得其对偶问题为可行解,

20 为便于说明,这里采取从原问题角度叙述迭代步骤。

复习思考题

- 1. 如何定义影子价格?
- 2. 影子价格的经济意义有哪些?
- 3. 机会成本与财务成本有什么不同?
- 4. 为何提出对偶单纯形法?
- 5. 对偶单纯形法的计算原理是什么?
- 6. 对偶单纯形法的应用条件是什么?

2.6 灵敏度分析

1. 灵敏度分析的概念:

当某一个参数发生变化后,引起最优解如何改变的分析。 可以改变的参数有:

b;——约束右端项的变化,通常称资源的改变;

c_i ——目标函数系数的变化,通常称市场条件的变化;

p_i——约束条件系数的变化,通常称工艺系数的变化;

其他的变化有:增加一种新产品、增加一道新的工序等。

2. 分析原理:

借助最终单纯形表,将变化后的结果按下述基本原则反映到最终表中去。

(1)
$$b_{i}$$
变化: $(b+\triangle b)'=B^{-1}(b+\triangle b)$

$$= \underbrace{B^{-1}b}_{} + \underbrace{B^{-1}\triangle b}_{} = b'+B^{-1}\triangle b$$
(2) p_{j} 变化: $(p_{j}+\triangle p_{j})'=B^{-1}(p_{j}+\triangle p_{j})$

$$= B^{-1}p_{j}+B^{-1}\triangle p_{i}=p_{i}'+B^{-1}\triangle p_{i}$$

- (3) c_i变化: 直接反映到最终表中, 计算检验数。
- (4) 增加一个约束方程: 直接反映到最终表中。
- (5) 增加新产品: 仿照pj变化。

3. 计算示例:

例:已知某线性规划模型及最终的单纯表如下:/

s.t	$(2 x_1 + 2 x_2 \le 12)$
	$x_1 + 2 x_2 \le 8$
	$4 x_1 \le 16$
	$4 x_2 \le 12$
	$x_1 \ge 0$, $x_2 \ge 0$

max z=2 x₁+3 x₂+5/ト 问: (1) 若b₂増加8个单位,最优解如何变化?

② 若c2还可增加2个单位,最优解如何改变?

(3) 若引进一个新变量 (产品) (y) 其目标函数 系数为 $(c_y=5)$ 系数列向量为 $(p_y=1)$ $(p_y=1)$ 是否会改变?

				1 C2 = 3	十(2)二号	i [3 ⁻¹			(事文化)	B1[3,2,6,3]
	c _j —	\rightarrow	2	25	0	0	0	0	5	最后
$C_{\rm B}$	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	x ₃	x ₄	X ₅	x ₆	7	
0	\mathbf{x}_3	0	0	0	1	-1	-0.25	0	3	-65
2	\mathbf{x}_1	4	1	0	0	0	0.25	0	2	1.5
0	\mathbf{x}_6	4	0	0	0	-2	0.5	1	6	2
5*	x ₂	2	0	1	0	0.5	-0.125	0	3	024
c	$z_j - z_j$		0	0	0	-1.5	-0.125	0	1	

$$\therefore (b+\triangle b)' = B^{-1}b + B^{-1}\triangle b = b' + B^{-1}\triangle b$$

$$= [0 \ 4 \ 4 \ 2]^{T} + [-8 \ 0 \ -16 \ 4]^{T} = [-8 \ 4 \ -12 \ 6]^{T}$$

- :: 利用对偶单纯形法继续 水最优解。
- (2) 当 c_j 变化时, $\sigma' = C' C_B' B^{-1} A$,列出单纯形表, 重新求出检验数,**如表中所示**:
- (3) 增加y时, $\sigma_y = c_y C_B B^{-1} p_y = 5 (0 1.5 0.125 0) [3 2 6 3]^T$ =1.25>0
- .. 选择y作入基变量, p_y'=B⁻¹p_y==[-0.5 1.5 2 0.25]^T继续迭代:

于12N号和47 2017-第2章 对偶问题--右端项变化分析单纯形表:

返回

$c_j \longrightarrow$	2	3	0	0	0	0
$C_B X_B b$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
$0 x_3 = 8$	0	0	1	-1	-0.25	0
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_6 \mid -12 \mid$	0	0	0	[-2]	0.5	1
$3 \mathbf{x}_2 6$	0	1	0	0.5	-0.125	0
$\mathbf{c}_{\mathbf{j}}\mathbf{-}\mathbf{z}_{\mathbf{j}}$	0	0	0	-1.5	-0.125	0
$0 x_3 -2$	0	0	1	0	[-0.5]	-0.5
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_4 6$	0	0	0	1	-0.25	-0.5
3 x ₂ 3	0	1	0	0	0	0.25
c_j-z_j	0	0	0	0	-0.5	-0.75
$0 x_5 4$	0	0	-2	0	1	1
$2 x_1 3$	1	0	0.5	0	0	-0.25
$0 x_6 7$	0	0	-0.5	1	0	-0.25
$3 x_2 3$	0	1	0	0	0	0.25
c_j-z_j	0	0	-1	0	0	-0.25

--第2章 对偶问题--

C_j变化分析单纯形表:

$c_j \longrightarrow$	2	5	0	0	0	0
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	x ₅	\mathbf{x}_6
$0 x_3 0$	0	0	1	-1	-0.25	0
$2 x_1 4$	1	0	0	0	0.25	0
$0 x_6 4$	0	0	0	-2	[0.5]	1
(5) x_2 2	0	1	0	0.5	-0.125	0
$c_j - z_j$	0	0	0	-2.5	0.125	0
$0 x_3 2$	0	0	1	-2	0	0.5
$2 x_1 2$	1	0	0	1	0	-0.5
$0 x_5 8$	0	0	0	-4	1	2
$5 x_2 3$	0	1	0	0	0	0.25
c_j-z_j	0	0	0	-2	0	-0.25

返回

--第2章 对偶问题--

增加新产品(变量v) 变化	化分析单纯形表:
		U / 1 / 1 T - ~ U / V ~ V •

增	加新	产品	(变量	y)变化	分析单	纯形表:		推;生	产一单位的分种产品和
	c_j	\rightarrow	2	3	0	0	0	0	5
C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X ₅	x ₆	y
0	X3	0	0	0	1	-1	-0.25	0	-0.5
2	\mathbf{x}_1	4	1	0	0	0	0.25	0	1.5
0	\mathbf{x}_{6}	4	0	0	0	-2	0.5	1	[2]
3	\mathbf{x}_2	2	0	1	0	0.5	-0.125	0	0.25
43	$c_j - z_j$		0	0	0	-1.5	-0.125	0	(1.25)
0	\mathbf{x}_3	1	0	0	1	-1.5	-0.125	0.25	0
2	\mathbf{x}_1	1	1	0	0	1.5	-0.125	-0.75	0
5	y	2	0	0	0	-1	0.25	0.5	1
3	\mathbf{x}_2	1.5	0	1	0	0.75	-0.1875	-0.125	0
	$c_j - z_j$		0	0	0	-0.25	-0.4375	-0.625	0

(b) min
$$z = 5x_1 + 2x_2 + 4x_3$$

s. t.
$$\begin{cases} 3x_1 + x_2 + 2x_3 \ge 4 \\ 6x_1 + 3x_2 + 5x_3 \ge 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

LIBI 000 503 尹畯煐

解) 标准化	Zj	-5-2-400
Max2=-51,-212-423	CBXB b	1, 12 1, 14 15
St(132, +72+2213-74)(4)=(4)-(-1)		3 -1 -2 +1 0
(61, +312+5/3-2/3)(-1)=10)(-1)	0 N5 70	-6 -3 -5 0 +1
11, 12, 1/3, 14, 76, 5 6	6 <u>;</u>	-5 -2 -4 0 0
<u> </u>	$0 7 l_{4} - \frac{2}{3}$	9
·· (1, \frac{1}{3} 0, 0 \frac{1}{3}) \tag{7}	$-2 \chi_{2} \frac{10}{3}$	2 3 0 - 3
- (1 , 3 , 0 , 3)		-1 0 $-\frac{2}{3}$ 0 $+\frac{2}{3}$
	-52, 3	10 3 -1 + 2
	-2222	0 1 2 - 1
		00 - 1 - 1 - 3
		-13 - 14 - 15 - 1, -Y2

の分(八世子八)

2.7 参数线性规划

- 1. 概念: 研究目标函数值随某一参数变化的规律及最优解相应的变化。
- 2. 算法: 先令变化量θ=0, 再考察随着θ的增加引起解的变化情况。
- 3. 最后, 画出目标值随θ的变化所形成的曲线。

例:有如下线性规划模型:

$$\max_{s.t} z=2x_1+3x_2$$

$$x_1+x_2 \le 3$$

$$x_1+2x_2 \le 4+\theta$$

$$x_1 \ge 0, x_2 \ge 0 \quad (\theta \ge 0)$$

- (1) 当 θ =0 时的最优解;
- (2) 当θ>0时, z值的变化规律。

解: 先令z=0, 有下述模型的标准形

max z=2x₁+3x₂+0x₃+0x₄
s.t
$$\begin{cases} x_1+x_2+x_3=3\\ x_1+2x_2+x_4=4\\ x_j \ge 0, (j=1,2,3,4) \end{cases}$$

利用单纯形法求解:

--第2章 对偶问题--

$C_i \rightarrow$	2	3	0	0	
C_B X_B b	\mathbf{x}_1	\mathbf{X}_{2}	X_3	X ₄	
$0 x_3 3$	1	1	1	0	
$0 x_4 4$	1	(2)	0	1	
c _j - z _j	2	3	0	0	
$ \begin{array}{cccc} 0 & x_3 & 1 \\ 3 & x_2 & 2 \end{array} $	(1/2) 1/2	0 1	1 0	-1/2 1/2	
c _j - z _j	1/2	0	0	-3/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	0	2 -1	-1 1	$(\theta = 0)$
c _j - z _j	0	0	-1	-1	

--第2章 对偶问题--

当 θ >0时, Δ b' = B-1· Δ b= B-1·(0 θ)^T= (- θ θ)^T,继续迭代如下: (对偶单纯形法)

	$C_i \rightarrow$	2	3	0	0
$C_{\rm B}$	X_B b	\mathbf{x}_1	\mathbf{X}_2	X_3	\mathbf{X}_4
2 3	$\begin{array}{c c} x_1 & 2 - \theta \ge \\ x_2 & 1 + \theta \ge \end{array}$	0 0	0 1	2 -1	$ \begin{array}{c} (-1) \\ 1 \\ 0 \le \theta \le 2 \end{array} $
on b>2的性	c _j - z _j <u>40</u>	0	0	-1	-1
0 3	$\begin{array}{ccc} x_4 & \theta - 2 \\ x_2 & 3 \end{array}$	-1 1	0 1	-2 1	$ \begin{array}{ccc} 1 \\ 0 & (\theta > 2) \end{array} $
HIS A	c _j - z _j	-1	0	-3	0

其变化曲线如下:

复习思考题

- 1. 灵敏度分析的概念是什么?
- 2. 为何要进行灵敏度分析?
- 3. 参数分析解决什么问题?
- 4. 各项参数的变化可能会引起哪些结果改变?
- 5. 敏感度分析与参数规划依据的是什么原理?

例:

某大学教授利用部分业余时间从事咨询工作。现有三个A、B、C企业欲聘请,各自每小时的咨询费用分别为10,12,16元。教授每月可用于外出咨询的时间为40小时,但对每个企业而言,用于准备的时间与咨询所花的时间的比例分别为0.1,0.5,0.8,教授每月可用于准备的时间应不超过24小时。若假定三个企业每月要求的咨询时间可分别达到80,60,20小时。现问:教授应作何种决策,才能使收益最大?

从目前看,教授有许多咨询机会,但可用的外出咨询时间及准备的时间有限,所以可考虑雇用助手(用于帮助准备),但要支付每小时4元的费用,现帮助教授分析一下,它是否该雇用助手,若需雇用,每月应雇用多少时间?

设 用于三个企业咨询的时间分别为A— x_1 ,B— x_2 ,C— x_3 ,

Max
$$z=10x_1+12x_2+16x_3-4\theta$$

s.t. $x_1+x_2+x_3\leq 40$
 $0.1x_1+0.5x_2+0.8x_3\leq 24+\theta$
 $x_1\leq 80$
 $x_2\leq 60$
 $x_3\leq 20$
 $x_1\geq 0, x_2\geq 0, x_3\geq 0$

第2章 对偶问题	Pj	
B-1.	[b - 1 0 0 0] = [[25] 2.5] 2.5] 2.5]

$c_i \longrightarrow$	10	12	16	Q	0	0	0	0 -+		
C_B X_B b	\boldsymbol{x}_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8 σ		
10 x_1 5	1	0	0	1.25	-2.5	0	0	0.75 2.5		
12 x_2 15	0	1	0	-0.25	2.5	0	0	-1.75 ⁻² ·5		
$0 x_6 75$	0	0	0	-1.25	2.5	1	0	-0.75 -2-5		
$0 x_7 45$	0	0	0	0.25	-2.5	0	1	1.75 25		
16 x ₃ 20	0	0	1	0	0	0	0	1.00		
c_j-z_j	0	0	0	- 9.5	-5.0	0	0	-2.5		
	-76	-7,	-78	ー ブ,	-72	-73	-74	-75		
$Z_{max} = 55$	0			B 3 .						
景子价格										

--第2章 对偶问题--

单纯形表:

$c_j \longrightarrow$	10	12	16	-4	0	0	0	0	0
$C_B X_B b$	x_1	x_2	x_3	θ	x_4	x_5	x_6	x_7	x_8
-4 θ 2	0.4	0	0	1	0. 5	-1.0	0	0	0.3
12 x_2 20	1	1	0	0	1.0	0	0	0	-1
$0 x_6 80$	1	0	0	0	0	0	1	0	0
$0 x_7 40$	-1	0	0	0	-1	0	0	1	1
$16 x_3 20$	0	0	1	0	0	0	0	0	1
$c_j - z_j$	-0 .4	0	0	0	- 10	-4	0	0	-2.8

$$Z_{max} = 552$$

本章知识点

- 1. 对偶模型中结构要素的对应关系
- 2. 对偶模型的主要性质
- 3. 影子价格原理及应用分析
- 4. 对偶单纯形法的使用
- 5. 灵敏度分析方法
- 6. 参数规划方法