

The Critical Constants of Propane

James A. Beattie, Noland Poffenberger, and Canfield Hadlock

Citation: J. Chem. Phys. 3, 96 (1935); doi: 10.1063/1.1749615

View online: http://dx.doi.org/10.1063/1.1749615

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v3/i2

Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded

Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

If we substitute the critical temperature and density into the equation of state, we calculate 44.3 atmospheres for the critical pressure, 10 percent lower than the observed value. This should not be considered a bad disagreement since it involves an extrapolation of 40 percent from our highest measured density. It should be pointed out that temperature extrapolations are in general fairly safe but density extrapolations are dangerous. This effect is one that is true of equa-

tions of state in general and it is also true of the experimental data. Since the isometrics are so nearly linear, the experimental data can safely be extrapolated over quite a temperature range; but in the region near the critical, the isotherms, no matter what variables are plotted, are too curved to permit extrapolation. That is, from the data in the range 0.5 to 5.0 moles per liter, we cannot predict the data in the region of 7 moles per liter.

FEBRUARY, 1935

JOURNAL OF CHEMICAL PHYSICS

VOLUME 3

The Critical Constants of Propane

James A. Beattie, Noland Poffenberger and Canfield Hadlock, Research Laboratory of Physical Chemistry Massachusetts Institute of Technology*

(Received November 17, 1934)

The critical constants of propane (C_3H_8) are: $t_c=96.81\pm0.01^{\circ}$ C, $p_c=42.01\pm0.02$ normal atmospheres, $v_c=0.195$ liter per mole (4.43 cc per gram), $d_c=5.13$ moles per liter (0.226 gram per cc). The uncertainty in the critical volume and density is 1 percent.

In the course of our measurements of the compressibility of gaseous propane, we investigated a number of isotherms in the critical region and located the critical point. The method used was the same as that employed in the measurements of the compressibility of propane and of ethane, and has been described elsewhere.

Pressures are given in normal atmospheres; temperatures in degrees centigrade on the international platinum resistance scale, and volumes in liters per mole. In the region of the critical point of propane the uncertainties in the measurement of pressure do not exceed 0.03 percent; those in the location of temperature do not exceed 0.005°C; and those in the measurement of volume do not exceed 0.05 percent.

In the determination of the critical data, the purity of the substance is of primary importance.

measurements of vapor pressure at 50° and 75°C given in Table I. It will be noticed that at 50°C Table I. The effect of varying the vapor volume on the vapor pressure of propane at 50° and 75°C.

The propane was obtained from the Research

Laboratories of the Linde Air Products Company

at Buffalo and was stated by Doctor L. I. Dana

to be 99.9 percent pure or better. That the pro-

pane was of extreme purity is indicated by the

50°C 75°C Vapor Vapor Vapor Vapor volume pressure volume pressure cc normal atm. cc normal atm. 93 16.897 28.112 62 16.899 35 28.113 46 37 31 26 15 16.898 28.113 16.898 28.113 16.898 11 28.11326 16.897 28.113 23 20 16.897 16.898 18 16.898 0.15 16.901

the vapor pressure remained constant within the accuracy of our measurements (± 0.001 atmos-

^{*} Contribution No. 339.

¹ J. A. Beattie, N. Poffenberger and C. Hadlock, to be published shortly.

² J. A. Beattie, C. Hadlock and N. Poffenberger, J. Chem. Phys. 3, 93 (1935).

³ J. A. Beattie, Proc. Am. Acad. Arts and Sci. **69**, 389 (1934).

Temp., °C Density moles/liter	Volume liters/mole	96.00	96.70	96.80	96.81	96.82	96.90	97.00	97.10	97.20
		Pressure, normal atmospheres								
4.201	0.2380		41.9030	41.9660			42.0360	42.0995	42.1695	42.2335
4.341	.2304		41.9175							
4.490	.2227	41.3975	41.9280	41.9940			42.0675	42,1360	42.2060	42.2775
4.651	.2150		41.9300	41.9990	42.0075	42.0145	42.0730	42.1445	42.2150	42.289
4.823	.2073		41.9295	42.0020	42.0095	42.0175	42.0765	42.1515	42.2245	42.301
4.895	.2043			42.0030	42.0110	42.0190		42.1525	42.2280	42.304
4.970	.2012			42.0045	42.0115	42.0195		42.1560		
5.008	.1997		41.9300	-2100 40	12.0110	1210110	42.0800	12.1000	42.2320	42.309
5.047	.1981		*********	42,0030	42.0120	42.0205	1210000	42.1580	12.2020	12.509
5.126	.1951			42,0040	42.0130*	42.0220		42.1595	42,2370	42.315
5.208	.1920		41.9290	42.0045	42.0135	42.0235	42.0855	42,1620	42.2400	42.319
5.293	.1889		41.9290	42.0043	42.0155	42.0233	42.0033	42.1655	42.2400	42.319
				42.0075	42.0133	42.0240		42.1033		
5.380	.1859		44 0205	42.0073	42.0190	42.0200	12 0000	40 4505	40.0535	
5.425	. 1843		41.9305				42,0920	42.1725	42.2535	42.334
5.471	.1828		41.9310	42.0120	42.0215	42.0295				
5.564	.1797		41.9355	42.0200	42.0290	42.0365				
5.661	.1766	41.3965	41.9425	42.0290			42.1105	42.1960	42.2810	42.364
5.918	.1690	41.3970	41.9865	42.0785			42.1675	42.2575		

TABLE II. Isotherms of propane (C3H8) in the critical region.

phere) when the vapor volume was decreased from 93 to 18 cc; and that the vapor pressure increased 0.002 to 0.003 atmosphere when the vapor volume was further decreased to 0.15 cc. That is, during a 600-fold decrease in the vapor volume the increase in vapor pressure was practically within our experimental error. At 75°C the vapor pressure remained constant while the vapor volume was decreased from 50 to 7 cc.

In Table II are given the compressibility data on propane in the critical region, the isotherms between 96.7 and 96.9 being plotted in Fig. 1. The pressures are given to 0.0005 atmosphere since relative values are consistent to about 0.001 atmosphere. In the two phase region the densities listed are the average densities of the whole system.

From Fig. 1 it is evident that the critical temperature is 96.81±0.01°C and the critical pressure 42.01±0.02 normal atmospheres. The determination of the critical density cannot be made with so great an accuracy as those of temperature and pressure. The top of the "steam dome" and the inflection point with horizontal tangent of the 96.81°C isotherm agree quite well for a criti-

Fig. 1. Isotherms of propane in the critical region. The radius of each circle is 0.002 atmosphere.

cal volume of 0.195 liter per mole or a critical density of 5.13 moles per liter. The critical volume seems to have been located to ± 1 percent. International Critical Tables⁴ gives $t_c = 95.6$ °C, $p_c = 43$ atmospheres.

^{*} Critical Point

⁴ International Critical Tables, Vol. III, p. 248. McGraw-Hill Book Co. Inc., New York, 1928.