Action Schema Networks: Generalised Policies with Deep Learning

Sam Toyer¹, Felipe Trevizan^{1,2}, Sylvie Thiébaux¹, Lexing Xie^{1,3}

¹Australian National University, ²Data61, ³Data to Decisions CRC

The piano mover's (other) problem

- Send service robot to front door.
- Make it push piano from front door to living room.

The piano mover's (other) problem

- 1. Send service robot to front door.
- Make it push piano from front door to living room.

Additional constraint: avoid obstacles which could bump/scratch piano.

It's a factored probabilistic planning problem!

Propositions: state is an assignment to binary variables.

```
(at robot front-door): false, (at robot living-room): true, (undamaged piano): true, ...
```

It's a factored probabilistic planning problem!

Propositions: state is an assignment to binary variables.

```
(at robot front-door): false, (at robot living-room): true, (undamaged piano): true, ...
```

Actions: move agent from state to state.

```
(push piano robot living-room hallway)
(at piano hallway)
(at robot hallway)
(at robot hallway)
(at robot hallway)
```

We must find a **policy** which chooses actions that (reliably) take us from the initial state to a goal state.

Probabilistic Planning Domain Definition Language (PPDDL)

Domain

A general "template" for a family of problems.

Predicates: lifted propositions; for instance:

(at ?object ?location), (path ?start ?end), (undamaged ?object), (cluttered ?location), ...

Action schemas: lifted actions; for example:

Instance

Describes one particular problem in a family of problems; associated with a single domain

Objects: piano, robot, front-door, ...

Initial state: (at piano front-door) ∧ (at robot living-room) ∧ (path living-room hallway) ∧ ...

Goal: (at piano living-room) ∧ (undamaged piano)

Generalised policies

A generalised policy can be applied to any problem in a domain.

Our contribution: generalised policies for probabilistic planning with neural networks.

Traditional approach:
Solve each problem in a set independently

Generalised policies:
Learn the *1 weird trick* which allows you to
easily solve *every* problem in a domain

Generalised policies with NNs: first attempt

How do we **transfer** learnt knowledge between problems of different "shape"?

Generalised policies with NNs: second attempt

Big idea: exploit structure by using separate network module for each action. Only construct input from proposition which action affects or depends on.

Generalised policies with NNs: second attempt

Big idea: exploit structure by using separate network module for each action. Only construct input from propositions which action affects or depends on.

Example for (move ?agent ?from ?to) action schema:

Generalised policies with NNs: second attempt

Big idea: exploit structure by using separate network module for each action. Only construct input from proposition which action affects or depends on.

Example for (move ?agent ?from ?to) action schema:

Actions with same schema now have same number of inputs, so we can share weights

Going deeper with proposition modules

Proposition modules corresponding to same predicate have same input shape: we can **share weights** again.

Action Schema Networks (ASNets)

Transfer knowledge with **weight-sharing** between:

1. Action modules in same layer corresponding to same schema

Action Schema Networks (ASNets)

Feature vector corresponding to each proposition

Transfer knowledge with **weight-sharing** between:

- 1. Action modules in same layer corresponding to same schema
- 2. Proposition modules in same layer corresponding to same predicate

Receptive field limitation

What if relevant propositions are outside receptive field?

⇒ Too shallow to "see" goal!

Solve by giving both proposition truth values and heuristic-based inputs.

In our case: indicator vector for each action module that tells us whether action is in a LM-cut landmark.

Supervised training loop

1. Explore training environments with:(a) the learnt policy and(b) a "teacher" policy

Invoke teacher planner (LRTDP) to obtain teacher
 Q-values for each visited state and each action

3. Add observed (state, teacher Q-values) pairs to memory M

4. Sample pairs from *M* and take gradient descent step to **minimise** action classification loss

Policy should choose an action with **minimal** teacher Q-value $Q^{T}(s,a)$

Evaluation domains

Probabilistic Blocks World

25 training problems (with 5-9 blocks) IPPC'08 domain (modified)

Triangle Tire World

3 training problems (with 6-28 locations)
IPPC'08 domain

CosaNostra Pizza

5 training problems (with 1-5 toll booths)

Evaluation protocol

Evaluation emulates setting in which we only need our generalised policy to solve a **single** large problem.

Evaluation protocol

For baselines, we report mean time for each baseline planner's value function to converge at s_0 .

Time limit of 9,000s (2.5h) on all planners.

Baselines in this presentation use **h**^{add} **heuristic**—LM-cut sometimes finds cheaper policies, but is far less scalable (see paper).

Problem size

Works best for solving many problems, or very large problems, with a common "trick".

Learnt ASNet policy *always* reaches the goal in these problems, with trajectory cost comparable to baselines—no optimality guarantees in general case, though!

Summary and future work

- Our work: neural nets for generalised policies.
- Proposed Action Schema Network (ASNet)
- Generalised policies often much faster than planning one problem at a time

Future work:

- Lift receptive field limitation
- Combining traditional search
- Explore representation learning, policy gradient RL, etc.

Appendices

Action and proposition modules

Action module

Proposition module

Network structure

Layers wired up to propagate information between **related** action and proposition modules.

Inspiration from convnets

Successively more
expressive
representations from
local operations only.

Related work

Several approaches to learning in **non-probabilistic** planning:

- Learn policies *or* heuristics
- Common representations: decision lists/trees

Three ways to improve:

- Apply to probabilistic planning (minor)
- 2. Increase accuracy; flawed policies ruinous for planning!
- 3. More flexibility in loss

This work: build **flexible**, **accurate**, **generalised policy models** for **probabilistic problems**.

Image credits

- Moving boxes: https://udmlawconstruction.wordpress.com/page/3/
- Assorted mess in hallway: https://leasing.dmcihomes.com/deal-neighbor-problems-condominium/
- "Smashed glass" floor covering:
 http://rebloggy.com/post/room-mirror-glass-messy-hallway-corridor-broken-mirror-soft-grunge/56981800908
- Grand piano:
 <u>https://commons.wikimedia.org/wiki/File:Steinway_%26_Sons_concert_grand_piano,_model_D-274,_manufactured_at_Steinway%27s_factory_in_Hamburg,_Germany.png</u>
- Two-story floor plan: https://www.apghomes.com.au/designs/under-350000