

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №3

По курсу: «Моделирование»

Студент	ИУ7И-76Б	Нгуен Ф. С.		
•	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			Рудаков И.В.	
		(Подпись, дата)	(И.О. Фамилия)	

Оглавление

I.	Теоретическая часть	
	Равномерное распределение:	
	Нормальное распределение:	
	Принцип Δt	
	Событийный принцип	
	Экспериментальная часть	
	Входные данные:	
	Выходные данные:	
III	. Код программы:	/

І. Теоретическая часть

Смоделировать систему, состоящую из генератора, очереди и ОА.

Равномерное распределение:

$$X \sim R(a, b)$$
, где $a, b \in R$.

Функция распределения равномерной непрерывной случайной величины:

$$F(x) = egin{cases} 0 & ext{при } x \leq a \ x-a & ext{при } a \leq x \leq b \ 1 & ext{при } x > b \end{cases}$$

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{при } a \le x \le b \\ 0 & \text{иначе} \end{cases}$$
 (2)

Нормальное распределение:

 $X \sim N(\mu, \sigma^2)$, μ — математическое ожидание, σ^2 - дисперсия

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3)

Функция распределения:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (4)

Принцип Δt .

Принцип Δt заключается В последовательном анализе состояний всех блоков в момент \mathbf{t} + Δt по заданному состоянию блоков в момент **t.** При этом новое состояние блоков определяется в алгоритмическим соответствии ИХ описанием учетом действующих случайных факторов, задаваемых вероятности. В результате распределениями такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого принципа: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Достоинство: равномерная протяжка времени.

Событийный принцип.

Характерное свойство систем обработки информации то, что состояние отдельных устройств изменяются в дискретные моменты времени, совпадающие с моментами времени поступления сообщений в систему, временем поступления окончания задачи, времени поступления аварийных сигналов и т.д. Поэтому моделирование и продвижение времени в системе удобно проводить, используя событийный принцип, при

котором состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы

II. Экспериментальная часть

Входные данные:

Количество заявок = 10000						
R(a, b)		$N(\mu, \sigma^2)$				
a	b	μ	σ^2			
1	10	4	0.5			

Выходные данные:

	$\Delta t = 0.01$		Событийный	
Вероятность	Количество	Максимальная	Количество	Максимальная
повтор. обраб.	повторно обраб.	длина очереди	повторно обраб.	длина очереди
заявки	заявок		заявок	
0%	0	6	0	5
10%	991	11	1020	9
20%	2004	14	1994	14
50%	4977	2181	4951	2218
100%	10000	7278	10000	7261

III. Код программы:

```
class Modeller:
         __init__(self, uniform_a, uniform_b, normal_mu, normal sigma, reenter prop):
    def
        self. generator = RequestGenerator(UniformGenerator(uniform a, uniform b))
        self. processor = RequestProcessor(ErlangGenerator(normal mu, normal sigma),
reenter prop)
        self. generator.add receiver (self. processor)
    def event based modelling(self, request count):
        generator = self. generator
        processor = self. processor
        gen period = generator.next time period()
        proc period = gen period + processor.next time period()
        while processor.processed requests < request count:
            if gen period <= proc period:</pre>
                generator.emit request()
                gen_period += generator.next_time_period()
                processor.process()
                if processor.current queue size > 0:
                    proc period += processor.next time period()
                    proc period = gen period + processor.next time period()
        return (processor.processed requests, processor.reentered requests,
                processor.max queue size, proc period)
    def time based modelling(self, request count, dt):
        generator = self. generator
        processor = self. processor
        gen period = generator.next time period()
        proc period = gen period + processor.next time period()
        current time = 0
        while processor.processed requests < request count:
            if gen period <= current time:</pre>
                generator.emit request()
                gen period += generator.next time period()
            if current time >= proc period:
                processor.process()
                if processor.current_queue_size > 0:
                    proc_period += processor.next_time_period()
                else:
                    proc_period = gen_period + processor.next_time_period()
            current time += dt
        return processor.processed requests, processor.reentered requests,
processor.max queue size, current time
```