Decision Tree + Ensemble Learning

อ. ปรัชญ์ ปิยะวงศ์วิศาล

Pratch Piyawongwisal

Today

- Recap
 - Decision Tree Classifier
 - Overfitting problem in Decision Tree
- Ensemble Learning
 - Bagging vs Boosting
- Random Forest
- Single Decision Tree vs Ensemble
- Decision Tree & Feature Importance
- Homework

Recap

- Decision Tree ทำการ classify ข้อมูลโดยใช้คำถาม "feature <= ค่า threshold?" หลายๆ ครั้ง จนนำไปสู่คำตอบที่ leaf node
- ทุกคำถาม "feature <= ค่า threshold?" จะแบ่งข้อมูลออกเป็น 2 ฝั่ง
 ฝั่งที่น้อยกว่า และ มากกว่า threshold

 - จึงเกิด decision boundary ที่ตั้งฉากกับแกน feature
- CART algorithm: ในการ train จะสร้าง node ทีละชั้นลงมา แต่ละชั้นจะต้องเลือกว่า
 - ใช้ feature อะไรมาเป็น splitting attribute
 - ใช้ค่า threshold เท่าใหร่

Recap

- ในการแบ่งแต่ละครั้ง จะพยายามให้ทั้ง 2 ฝั่งมีข้อมูลที่บริสุทธิ์/เป็นเอกฉันท์มากขึ้น
 - พยายามลดการปะปนของคลาส (= พยายามลด Gini Impurity หรือ Entropy)

Hussain, et al. (2020). Detecting Congestive Heart Failure by Extracting Multimodal Features and Employing Machine Learning Techniques.

Recap: Overfitting Problem

- Decision tree มักจะ overfit ข้อมูลได้ง่าย 😊
 - เพราะสามารถสร้างต้นไม้ที่ลึกมากๆ เพื่อให้ตอบถูกเกือบ 100% กับข้อมูลชุดฝึกได้
 - Variance สูง (ต้นไม้เปลี่ยนไปตามข้อมูลชุดฝึกมากไป)
- Solution:
 - ตั้งค่า max depth, max leaf nodes,... เพื่อจำกัดขนาดต้นไม้
 - หรือใช้เทคนิค Ensemble Learning (Bagging)

Ensemble Learning

- คือการนำคำตอบจาก weak learner หลายๆ ตัวมารวมกัน (aggregate) เพื่อให้ได้คำตอบที่มี ความแม่นยำขึ้น หรือเสถียรขึ้น และกลายเป็น strong learner
- ทำได้หลายวิธี เช่น
 - Voting (รวมผลหลายๆ อัลกอ เช่น SVM + kNN + Logistic Regression)
 - Bagging (ใช้อัลกอเดียว แต่ train กับข้อมูลชุดฝึกที่เลือกมาแบบสุ่มเปลี่ยนไปเรื่อยๆ)
 - Boosting (ใช้อัลกอเดียว วน train ซ้ำโดยให้น้ำหนักกับข้อมูลที่ทำนายผิดมากขึ้น)
 - Stacking (เหมือน Voting แต่เพิ่มการ train ในส่วนการรวมผล ให้รวมได้เก่งขึ้น)

Bagging

- Bagging มาจากคำว่า Bootstrap Aggregating
- Step 1: Bootstrapping
 - คือการ train อัลกอเดียวกับข้อมูลชุดฝึกที่เลือกมาแบบสุ่มเปลี่ยนไปเรื่อยๆ และจึงทำให้เกิด predictor หลายตัว
 - สามารถ train แต่ละ predictor แบบ parallel ได้
- Step 2: Aggregating
 - คือการนำผลทำนายจาก predictor หลายตัวนั้นไปรวมเป็นคำตอบสุดท้าย
 - รวมโดยการ vote (classification) หรือหาค่าเฉลี่ย (regression)

Bagging

Random Forest

- Random Forest คือ การทำ Bagging โดยใช้ Decision Tree เป็น base learner
- และเพิ่มการสุ่มเลือกใช้ feature แค่บางตัว
- เกิด **tree** จำนวนมาก ที่มีความหลากหลาย มาช่วยกันตอบ

Decision Tree with Bagging

Boosting

- คือการ train predictor ซ้ำๆ
 - แต่ละครั้งจะให้น้ำหนัก (weight) หรือตัวคูณกับจุดข้อมูลที่ทำนายพลาดมากขึ้น
 - เพื่อให้ train แล้วเกิด predictor ใหม่ที่แก้ไขจุดอ่อนของ predictor เก่า
 - นำผลของ predictor ทุกตัว มาเฉลี่ยกัน (โดย weight ตามความแม่นยำของ predictor)
- เป็นการ train แบบ sequential ไม่สามารถทำขนานได้
- อัลกอริทึมที่นิยมใช้
 - AdaBoost
 - Gradient Boosting (XGBoost, LightGBM)

Boosting

[Hands-On Machine Learning with Scikit-Learn and TensorFlow, Géron]

Bagging vs Boosting

Bagging vs Boosting

	Bagging	Boosting
ทำเพื่ออะไร	ลด Variance ลดการ Overfit	ลด Bias ลดการ Underfit
ข้อมูลที่ใช้ train แต่ละ predictor	ข้อมูลที่หยิบจาก training set โดยสุ่ม	ข้อมูลที่ถูกปรับถ่วงน้ำหนัก ตามการทำนายผิดพลาดใน ครั้งก่อน
ลักษณะการ train	Parallel = เร็วกว่า	Sequential = ช้ากว่า
เหมาะกับ base predictor แบบไหน	deep decision tree (ซึ่งมักจะ overfit)	shallow decision tree (ซึ่ง train ได้เร็ว)
ตัวอย่างอัลกอริทึม	Random Forest	XGBoost
ความแม่นยำ	มักจะต่ำกว่า	มักจะสูงกว่า

Single Decision Tree vs Ensemble

- การทำ ensemble (random forest, gradient boosted tree) ช่วยทำให้ผลการ ทำนายจาก decision tree แม่นยำและเสถียรขึ้น
 - เหมาะกับนำไปใช้แข่งขัน เช่น Kaggle
- Drawback: ทำให้อธิบายผลลัพธ์ได้ยากขึ้น 😊 (จาก white-box กลายเป็น black-box)
- การเลือกใช้ขึ้นกับว่าต้องการ performance หรือ interpretability
 - ทำนายแม่น เลือก ensemble
 - ตีความง่าย เลือก single decision tree

Decision Tree & Feature Importance

จง apply decision tree กับชุดข้อมูล student_major.csv เพื่อทำนาย major ของนักศึกษา

- 1. แบ่งข้อมูลออกเป็นชุด train, test ในอัตราส่วน 75:25 โดยใช้ train_test_split (ตัวอย่างโค้ดใน สไลด์ถัดไป)
- 2. ใช้ข้อมูลชุด train (X_train, y_train) ในการ train/validate โมเดล decision tree
 - ใช้ GridSearchCV เพื่อค้นหาค่า hyperparameter ของ model (เช่น max_depth, criterion) ที่ให้ค่า accuracy สูงที่สุด
- 3. นำ model ที่ประสิทธิภาพสูงที่สุดไปใช้ทำนาย major ของนักศึกษากับข้อมูลชุดทดสอบ (X_test, y_test) แสดงผลการทำนายทั้งหมด
- 4. ประเมินประสิทธิภาพของโมเดลที่ได้โดยใช้ metric ต่อไปนี้
 - accuracy score
 - confusion matrix (optional)

วิธีการทำ train_test_split

```
from sklearn.model_selection import train_test_split

X = ...
y = ...
X_train, X_test, y_train, y_test = train_test_split(X, y, test size=0.25, random_state=33)
```

จากนั้นสามารถนำ X_train, y_train ไปใช้ในการฝึก และนำ X_test, y_test ไปใช้ในการทำนาย เพื่อวัดประสิทธิภาพได้

- 5. จากการทดลองในข้อ 4. ให้
 - แสดง line plot ของ accuracy v.s. max_depth จากการทดลอง ในกรณีที่ใช้ Gini criterion
 - แสดง line plot ของ accuracy v.s. max_depth จากการทดลอง ในกรณีที่ใช้ entropy criterion โดยที่ค่า accuracy ของแต่ละค่า hyperparameter จะถูกเก็บอยู่ใน GridSearchCV.cv_results_["mean_test_score"]
- 6. แสดงแผนผัง decision tree ของโมเดลที่ดีที่สุด
 - นำผลจาก export_graphviz ของโมเดลที่ดีที่สุดไปแสดงบนเว็บ webgraphviz
 - capture screen ภาพ decision tree แล้วแนบส่งมาใน Teams พร้อมกับโค้ด

วิธีส่งงาน

- ใน Jupyter Notebook ให้เขียนโค้ดทำ decision tree โดยพยายามให้ทั้งหมดอยู่ใน cell เดียว (หาก จำเป็น สามารถใช้ได้ 4 cell max)
- ทำการ export html โดยไปที่ File -> Download as -> HTML
- rename ชื่อไฟล์เป็น ชื่อ สกุล ภาษาไทย ไม่มีคำนำหน้า
- ส่งไฟล์ html และภาพจาก webgraphviz ที่ MS Teams

Extra

- ลองเปลี่ยนไปใช้ Decision Tree + Bagging, Random Forest หรือ XGBoost
 - https://scikit-learn.org/stable/modules/ensemble.html#bagging
- เปรียบเทียบความแม่นย้ำกับข้อมูลชุดทดสอบ