Planche 2

Questions de cours (15 min)

Question T1 : Énoncer la loi de Beer-Lambert. Préciser les conditions de validité et les limites d'application de cette loi.

Question T2: Comment prévoir le sens d'évolution d'un système chimique à partir du quotient réactionnel initial? Que se passe-t-il si $Q_r = K^o$?

Exercice : Dosage spectrophotométrique et équilibre de complexation (45 min)

Partie 1 : Étalonnage

On souhaite doser des ions fer(II) Fe²⁺ par spectrophotométrie. Pour cela, on prépare une gamme étalon de solutions de sulfate de fer(II) de concentrations connues. On mesure l'absorbance A de chaque solution à $\lambda = 510$ nm dans des cuves de longueur $\ell = 1,0$ cm.

$[\text{Fe}^{2+}] \text{ (mmol} \cdot \text{L}^{-1})$	0,0	2,0	4,0	6,0	8,0	10,0
A	0,00	0,18	0,36	0,54	0,71	0,89

- 1. Rappeler l'expression de la loi de Beer-Lambert.
- 2. Tracer la courbe d'étalonnage $A = f([Fe^{2+}])$. La loi de Beer-Lambert est-elle vérifiée?
- 3. Déterminer graphiquement le coefficient d'absorption molaire ε de Fe²⁺ à 510 nm. Préciser son unité.
- 4. On mesure l'absorbance d'une solution inconnue : $A_{inconnue} = 0,63$. Déterminer la concentration en ions Fe²⁺ dans cette solution.

Partie 2 : Complexation et équilibre

Les ions Fe²⁺ peuvent former un complexe coloré avec un ligand L neutre selon la réaction :

$$Fe^{2+}(aq) + 3L(aq) = [FeL_3]^{2+}(aq)$$

On prépare un mélange en introduisant dans une fiole de 100 mL :

- 10,0 mL d'une solution de Fe²⁺ à $C_1 = 0,020 \text{ mol} \cdot \text{L}^{-1}$
- 15,0 mL d'une solution de ligand L à $C_2 = 0.030 \text{ mol} \cdot \text{L}^{-1}$
- De l'eau distillée jusqu'au trait de jauge
- 5. Calculer les concentrations initiales $[Fe^{2+}]_0$ et $[L]_0$ après dilution dans la fiole.
- 6. Dresser le tableau d'avancement volumique de la réaction de complexation.
- 7. Écrire l'expression du quotient de réaction Q_r puis de la constante d'équilibre K^o .
- 8. À l'équilibre, on mesure $[\text{Fe}^{2+}]_{eq} = 5.0 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$. Calculer l'avancement volumique x_{eq} de la réaction.
- 9. En déduire les concentrations à l'équilibre de toutes les espèces.
- 10. Calculer la constante d'équilibre K^o . Quel est le type de cette réaction?
- 11. Comment pourrait-on favoriser expérimentalement la formation du complexe $[FeL_3]^{2+}$? Proposer deux méthodes.

Données : On néglige les variations de volume lors du mélange.