BIG DATA AND CLOUD PLATFORMS

Cluster migration - Based on a true story

Goals

- Evaluating the costs for a cloud/on-premises data platform
- Real-world case study
- Fill in this table

Cost	On-premises	On cloud
Hardware	?	?
Software	?	?

Case study

Business intelligence group

Reference architecture

Hadoop Cluster

Hardware

8 CPUs (144 total)

- Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 32GB RAM (576GB total)

- 2 x 16GB DIMM DDR4 2666 MHz 12TB HDD Disk (216TB total)

- 3 x 4TB ST4000DM004-2CV1

```
lshw -short -C cpu
lshw -short -C memory
lshw -short -C disk
```

Software

"Classic" Hadoop stack

SOLonprem	On-premises	On cloud
Hardware	?	?
Software	?	?

Hardware cost: ?

Refer to https://www.rect.coreto-europe.com/en/search.html?clearsearch=1

Hardware cost (up to Mar 05, 2021): 1767€ x 18 = 31806€

Amortization over 3 years (i.e., 10602€/year)

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	?	?

RECT™ WS-2270C	
	€
Main configuration	669.00
Configuration:	
Intel Core i7-10700K	+ 216.00
32 GB DDR4-3200 RAM	+ 146.00
Workstation-Mainboard with	+ 101.00
3 x 4 TB WD Blue	291.00
1x 2.5 Gbit LAN onboard	
Sound on board	
Solid black	
High-Efficiency Noctua CPU	+ 39.00
DVD-Writer 24x DVD	+ 13.00
High-efficiency 750W power	+ 79.00
1 x Your Operating System	30.00
with an individual capacity of	+ 35.00
36 months pick-up	+ 148.00
Complete Configuration	1,098.00
Current price	1,767.00
	Plus VAT
L	easingraten
]	
1 A	dd to cart
-	

https://www.rect.coreto-europe.com/en (Accessed 2021-08-01)

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	?	?

Software cost: ?

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	0€	?

Software cost (up to 2020): 0€

- Free Cloudera Management System
- No software licensing (for research purpose)

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	180000€/year	?

Software cost (up to Mar 05, 2021): 10000€/year x 18 = 180000€/year

- Cloudera is no more free, 10K€ per node
- https://www.cloudera.com/products/pricing.html#private-cloud-services
- https://www.cloudera.com/products/pricing/product-features.html
- No license for research purpose

"Houston we've had a problem!"

- We cannot update/extend the cluster anymore
- What about migrating to the cloud? (we only consider AWS)

Moving a Hadoop cluster to the cloud (we only consider AWS)

AWS price calculator https://calculator.aws/#/estimate

How do we start?

- We have already defined the hardware and the software stack
- Start with coarse tuning, identify the dominating costs first
 - Is it computing, storage, or processing?
- Identify a suitable budget, implement, refine later
 - Wrong refinements can do a lot of damage

SOL _{cloud1}	On-premises	On cloud
Hardware	10602€/year	?
Software	180000€/year	?

Migrating the cluster as-is: ?

 Hint: add 18 EC2 instances satisfying the hardware requirements

SOL _{cloud1}	On-premises	On cloud
Hardware	10602€/year	162000\$/year
Software	180000€/year	?

SOL_{cloud1} migrating the cluster as-is: 13500\$/month = 162000\$/year

- 18 EC2 instances (t4g.2xlarge) with 12TB EBS storage each machine
- Still, we have no software configuration

https://calculator.aws/#/estimate?id=7757afffccc3cafdcfdeb212b74623ef02ed5a36

Pay attention to the region

- Different regions, different prices
- Different regions, different services
- Remember the GDPR and data locality

It makes no sense to move the cluster as-is

More machines ensure better (on-prem) scalability but higher costs

How do we proceed with the migration?

- We need minimum software requirements
- Try to achieve the smallest migration impact
 - Find the most similar cloud-based solution to a Hadoop cluster
 - Rethink applications (later) when you got the know-how
- Identify a suitable budget, implement, refine later
 - Wrong refinements can do a lot of damage

HDFS

- How much durability do we need?
 - HP₀: three replicas (we stick to this)
 - HP₁: decrease replicas for cold data
 - HP₂: move cold data to glacier or delete id
 - **-** ...

HBase has marginal effects on the pricing (100GB << 50TB)

For simplicity, we can omit it

Overall: 50TB storage/year

Processing takes place each time that ESA provides a satellite image

- Some days no images are available
- Some days up to 10 images are available
- Spark jobs are always executed with the same parameters

Image processing

4 machines, 2 cores, 10GB RAM at least

Weather processing is negligible

	On-premises	On cloud
Hardware	2356€/year	38000\$/year
Software	100000€/year	?

Assuming 1 Executor = 1 Machine

Compare 4 machines on-premises vs on cloud

On-premises

- 4 machines: 10602€/year / 18 machines x 4 machines = 2356€/year
- Cloudera requires at least 10 nodes: 100000€/year

AWS

- 4 EC2 instances: 162000\$/year / 18 machines x 4 machines = 36000\$/year
 - Plus the resources for master services = 2000\$/year
- Problems
 - Still no software stack
 - A lot of storage cost
 - Machines are up-and-running even when no computation is necessary (just to persist data)

AWS

- Still, we have no software stack configuration
- Which is the major cost?

AWS

- Still, we have no software stack configuration
- Which is the major cost?

S3 standard

S3 Infrequent Access

Unit conversions

S3 Standard storage: 50 TB per month x 1024 GB in a TB = 51200 GB per month

Calcolo dei prezzi

Tiered price for: 51200 GB

51200 GB x 0.0230000000 USD = 1177.60 USD

Costo totale del piano = 1177.6000 USD (S3 Standard storage cost)

1.000 PUT requests for S3 Storage x 0,000005 USD per request = 0,005 USD (S3 Standard PUT requests cost)

1.000 GET requests in a month x 0,0000004 USD per request = 0,0004 USD (S3 Standard GET requests cost)

1.177,60 USD + 0,0004 USD + 0,005 USD = 1.177,61 USD (Total S3 Standard Storage, data requests, S3 select cost)

S3 Standard cost (monthly): 1,177.61 USD

Unit conversions

S3 One Zone-IA storage: 50 TB per month x 1024 GB in a TB = 51200 GB per month

Calcolo dei prezzi

51.200 GB x 0,01 USD = 512,00 USD (S3 One Zone-IA storage cost)

1.000 PUT requests for S3 One Zone-IA Storage x 0,00001 USD per request = 0,01 USD (S3 One Zone-IA PUT requests cost)

1.000 GET requests for S3 One Zone-IA Storage x 0,000001 USD per request = 0,001 USD (S3 One Zone-IA GET requests cost)

1.000 lifecycle request count for S3 One Zone-IA x 0,00001 USD per request = 0,01 USD (S3 One Zone-IA lifecycle requests cost)

10 GB x 0,01 USD = 0,10 USD (S3 One Zone-IA data retrievals cost)

512,00 USD + 0,01 USD + 0,001 USD + 0,01 USD + 0,10 USD = 512,121 USD (Total S3 One Zone-IA Storage and other costs)

S3 One Zone - Infrequent Access (S3 One Zone-IA) cost (monthly): 512.12 USD

AWS Storage

HDFS on EC2

- Heavy price
- Machine must be always on to guarantee data persistency
- Data locality

S3

- Much cheaper
- Does not require machines for data storage
- Data locality is lost

	On-premises	On cloud
Hardware	2356€/year	0
Software	100000€/year	<i>!</i>

Migrating cluster to EMR: ?

Given the software requirements, we need

- 1 x Master Node (to manage the cluster)
 - 1 x Core node (with HDFS/EBS)
- 4 x Task Nodes (to compute)

	On-premises	On cloud
Hardware	2356€/year	4.47406/2000
Software	100000€/year	14710€/year

Migrating cluster to EMR: 14710€/year

- S3 Infrequent Access storage (50 TB per month): 640€
- 1 x Master EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
 - 75 h/month = 15min/task x 10task/day x 30day/month / 60min/hour
- 1 x Core EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
- 4 x Task EMR nodes, EC2 (m4.4xlarge), Utilization (75 h/month): 72€
- 4 x EC2 on demand (task node): 174.83€
 - Storage amount (30 GB)
 - Workload (Daily, Duration of peak: 0 Hr 15 Min)
 - Instance type (m4.xlarge)
- 2 x EC2 on demand (master and core nodes): 330€
 - Storage amount (30 GB)
 - Instance type (m4.xlarge)

	On-premises	On cloud	
Hardware	2356€/year	13445€/year	
Software	100000€/year		

Migrating cluster to EMR: 13445€/year

- S3 Infrequent Access storage (50 TB per month): 640€
- 1 x Master EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
 - 75 h/month = 15min/task x 10task/day x 30day/month / 60min/hour
- 1 x Core EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
- 4 x Task EMR nodes, EC2 (m4.4xlarge), Utilization (75 h/month): 72€
- 4 x EC2 spot (task node): 69.55€
 - Storage amount (30 GB)
 - Workload (Daily, Duration of peak: 0 Hr 15 Min)
 - Instance type (m4.xlarge)
- 2 x EC2 on demand (master and core nodes): 330€
 - Storage amount (30 GB)
 - Instance type (m4.xlarge)

https://calculator.aws/#/estimate?id=c3780b12bb43b593d05def5a1d5218d9764b8a65

Summing up (cloud options)

Machine uptime	Storage	Software	Feasible?	Cost per year
Constant	EC2	Manual	YES: but high storage cost	~36K€
Constant	EC2	EMR	YES: but high storage cost	~37K€
Constant	S3	Manual	YES: but still manual provisioning	~17K€
Constant	S3	EMR	YES	~18K€
Pay-per-use	EC2	Manual	NO: pay-per-use + EC2 = Data unpersisted	-
Pay-per-use	EC2	EMR	NO: pay-per-use + EC2 = Data unpersisted	-
Pay-per-use	S3	Manual	ISH: repetitive manual provisioning	-
Pay-per-use	S3	EMR	YES	~14K€

Summing up

- We estimated the cluster costs
 - On-premises solution with 18 machines: no go
 - Cloud solution with 18 EC2 instances: no go
- We reduced the solution based on software requirements
 - On-premises solution with 4 machines: no go
 - Cloud solution with 4 EC2 instances: no go, we miss the software configuration
- We moved the cluster to AWS EMR + spot instances + S3 storage

Can we do better?

- Pick ad-hoc cloud services (AWS Lambda e AWS Batch)
- ... to re-think the applications (food for thoughts)

Case study

WeLASER

The WeLASER project

Project description

The increased use of pesticides and fertilisers damages the environment, destroys non-target plants and beneficial insects for the soil and harms human and animal health. Most seeds develop herbicide-resistant properties, rendering pesticides ineffective. Mechanical automatic systems that are studied as alternatives to pesticides deteriorate soil features, damage beneficial soil organisms and offer limited results for in-row weeding. The EU-funded WeLASER project will develop a non-chemical solution for weed management based on pioneering technology consisting of the application of lethal doses of energy on the weed meristems through a high-power laser source. An Al-vision system separates crops from weeds, identifying the weed meristems and pointing the laser at them. A smart controller based on IoT and cloud computing techniques coordinates the system, which is transfered all over the field by an autonomous vehicle.

https://cordis.europa.eu/project/id/101000256 (accessed 2020-08-01)

The WeLASER project

Which requirements do you foresee?

Can we define a tentative (service) architecture for the WeLASER project?

Assumptions

 Do not consider the collection of weed/crop images & training/deploying of the CV algorithm

https://cordis.europa.eu/project/id/101000256 (accessed 2020-08-01)

Data sources

- 8 cameras on the field, average image size 3MB; two services:
 - Alerting: a camera sends an image when smt enters the field (at most 1 img/5 min); assuming 20 alerts/day
 - $20 \frac{alert}{day} \cdot 1 \frac{image}{alert} \cdot 8 \frac{camera}{field} = 160 \frac{image}{day \cdot field}$
 - $160 \frac{image}{day \cdot field} \cdot 3 \frac{MB}{image} = 480 \frac{MB}{day \cdot field} \sim 500 \frac{MB}{day \cdot field}$
 - Monitoring the crop/weed; assuming 2 images/day
 - $2 \frac{image}{day} \cdot 8 \frac{camera}{field} = 16 \frac{image}{day \cdot field}$
 - $16 \frac{image}{day \cdot field} \cdot 3 \frac{MB}{image} = 48 \frac{MB}{day \cdot field} \sim 50 \frac{MB}{day \cdot field}$
- Weather station: 24 measurement/day for humidity/solar radiation/temperature/wind; 1KB/measurement
 - $24 \frac{sample}{day} \cdot 4 \frac{measurement}{sample} \cdot 1 \frac{weather station}{field} = 96 \frac{measurement}{day \cdot field}$
 - $96\frac{measurement}{day \cdot field} \cdot 1\frac{KB}{measurement} = 96\frac{KB}{day \cdot field} \sim 0.1\frac{MB}{day \cdot field}$
- Robot mission: lasts 4 hours, 100 measurement/s from sensor systems; 1KB/measurement
 - $3600 \frac{second}{hour} \cdot 4 \frac{hour}{mission} \cdot 100 \frac{measurement}{second} \cdot 1 \frac{mission}{day \cdot field} = 1440000 \frac{measurement}{day \cdot field}$
 - 1 440 000 $\frac{measurement}{day \cdot field} \cdot 1 \frac{KB}{measurement} = 1.44 \frac{GB}{day \cdot field} \sim 2 \frac{GB}{day \cdot field}$
- Historic data; worst case of 1KB/document: 10³ Json documents describing the farm $\sim 1 \frac{MB}{farm}$

https://docs.google.com/spreadsheets/d/17zEr62CzyqeIy0vU-DcjEUoxf6bMd3ziLSSeIXvk4Lg/edit?usp=sharing

Workload

Nothing special

Every night compute aggregated indexes on the collected data (2h/day)

On-premises (HDFS cluster)

- How many machines do we need?
- With which resources?

	On-premises	On cloud	
Hardware	2900€/year	0	
Software	40000€/year	<i>(</i>	

On-premises

- How many machines do we need?
 - 4: 1 master node + 3 HDFS data nodes
- With which resources?
 - Assuming a HDFS replication factor of 3, we need at least 1TB of disk overall (not that much)
 - Think bigger: at least 8 cores, 64GB
 RAM, 500GB SSD + 4TB HDD, no GPU
- 8700€ / 3 years = 2900€

price: \$75 per CCU over 16 Cores / 128GB RAM Node cap; Variable storage price: HDFS: \$25 per TB over 48TB Node cap or

https://www.rect.coreto-europe.com/en (accessed 2022-09-01) https://www.cloudera.com/products/pricing.html (accessed 2022-09-01)

	On-premises	On cloud	
Hardware	2900€/year	~40000\$/year	
Software	40000€/year		

Moving the Hadoop cluster as IAAS

EC2

 Quantity (4), Pricing strategy (EC2 Instance Savings Plans 3 Year No Upfront), Storage amount (4 TB), Instance type (r6g.2xlarge)

EMR

Number of master EMR nodes (1), EC2 instance (r5.2xlarge), Utilization (100 %Utilized/Month) Number of core EMR nodes (3), EC2 instance (r5d.2xlarge), Utilization (100 %Utilized/Month)

MKS (KAFKA)

 Storage per Broker (10 GB), Number of Kafka broker nodes (3), Compute Family (m5.2xlarge)

https://calculator.aws/#/estimate?id=05965ca7de23fd9e7d2ab2cd0175fe8c01822c9c (accessed 2022-09-01)

	On-premises	On cloud	
Hardware	2900€/year	~4000\$/year	
Software	40000€/year		

Moving the Hadoop cluster as PAAS

EC2

 Quantity (4), Pricing strategy (On-Demand Instances), Storage amount (30 GB), Instance type (r6g.2xlarge)

EMR

Number of master EMR nodes (1), EC2 instance (r5.2xlarge), Utilization (2 Hours/Day)
 Number of core EMR nodes (3), EC2 instance (r5d.2xlarge), Utilization (2 Hours/Day)

S3

Standard storage (60 GB per month)

Kinesis

Days for data retention (1 days), Records (100 per second), Consumer Applications (3)

https://calculator.aws/#/estimate?id=53f60ff0412a18877dc8e1274f7d9875aa3bf665 (accessed 2022-09-01)

Cost vs price

How would you evaluate the cost and the price?

Cost vs price

Price is the amount a customer is willing to pay for a product or service Cost is the expense incurred for creating a product or service

- Hardware
- Development
- Maintenance

Profit is the difference between price paid and costs incurred is profit

If a customer pays \$10 for a product that costs \$6 to make and sell, the company earns \$4