Permutations and Combinations: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2020

Concepts

• If we have an experiment E_1 (like flipping a coin) with a outcomes, followed by an experiment E_2 (like rolling a die) with b outcomes, then the total number of outcomes for the composite experiment E_1E_2 can be found by multiplying a with b (this is known as the **rule of product**):

Number of outcomes = $a \cdot b$

• If we have an experiment E_1 with a outcomes, followed by an experiment E_2 with b outcomes, followed by an experiment E_n with z outcomes, the total number of outcomes for the composite experiment $E_1E_2 \dots E_n$ can be found by multiplying their individual outcomes:

Number of outcomes = $a \cdot b \cdot ... \cdot z$

- There are two kinds of arrangements:
 - Arrangements where the order matters, which we call **permutations**.
 - Arrangements where the order doesn't matter, which we call **combinations**.
- To find the number of permutations when we're sampling without replacement, we can use the formula:

Permutation = n!

• To find the number of permutations when we're sampling without replacement and taking only *k* objects from a group of *n* objects, we can use the formula:

$$_{n}P_{k} = \frac{n!}{(n-k)!}$$

• To find the number of combinations when we're sampling without replacement and taking only *k* objects from a group of *n* objects, we can use the formula:

$$_{n}C_{k} = \frac{n}{(k)} = \frac{n!}{k!(n-k)!}$$

Resources

• <u>A tutorial on calculating combinations when sampling with replacement</u>, which we haven't covered in this mission

• An easy-to-digest introduction to permutations and combinations

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2020