Class 7: Machine Learning

Nicole Chang

4/26/23

Example of K-means clustering

First step is o make up some data with a known structure, so we know what the answer should be.

```
tmp <- c( rnorm(30, mean = -3), rnorm(30, mean = 3) )
x <- cbind(x = tmp, y = rev(tmp))
plot(x)</pre>
```


Now we have some structured data in x. Let's see if k-means is able to identify the two groups.

```
k <- kmeans(x, centers = 2, nstart = 20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 3.077954 -2.853543
2 -2.853543 3.077954
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 73.96439 73.96439 (between_SS / total_SS = 87.7 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

Let's explore k:

```
k$size
```

[1] 30 30

k\$centers

```
x y
1 3.077954 -2.853543
2 -2.853543 3.077954

plot(x, col = k$cluster)
```


Now we can add the clusters centers:

```
plot(x, col = k$cluster)
points(k$centers, col= "blue", pch = 15)
```


An example when we select the wrong number of cluster for k-means.

```
k_3 <- kmeans(x, centers = 3, nstart = 20)
plot(x, col = k_3$cluster)</pre>
```


Example of Hierarchical Clustering

Let's use the same data as before, which we stored in 'x'. We will use the 'hclust()' function.

```
clustering <- hclust( dist(x) )
  clustering
Call:</pre>
```

Cluster method : complete
Distance : euclidean

Number of objects: 60

hclust(d = dist(x))

```
plot(clustering)
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

Let's add a horizontal line

```
plot(clustering)
abline(h=10, col="pink")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get our results (i.e., memebership vector) we need to "cut" the tree. The function for doing that is cutree().

```
subgroups <- cutree(clustering, h = 10)
subgroups</pre>
```

Plotting this...

```
plot(x, col = subgroups)
```


You can also "cut" your tree with the number of clusters you want:

Principal Component Analysis (PCA)

PCA of the UK food

First was to read the data.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267

Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Now we can generate some basic visualizations

```
barplot( as.matrix(x), col = rainbow( nrow(x) ) )
```


Let's refine our barplot:

```
barplot( as.matrix(x), col = rainbow( nrow(x) ), beside = T )
```


Other visualizations that can be useful...

```
pairs(x, col = rainbow( nrow(x) ), pch = 16)
```


Let's apply PCA (principal components analysis). For that, we need to use the command prcomp(). This function expects the transpose of our data.

```
# transpose_matrix <- t(x)
# pca <- prcomp( transpose_matrix )
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        4.189e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

Let's plot the PCA results

```
plot(pca)
```


We need to access the results of the PCA analysis

attributes(pca)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

We can explore the pca\$x dataframe:

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	2.532999	-105.768945	2.842865e-14
Wales	-240.52915	224.646925	56.475555	7.804382e-13
Scotland	-91.86934	-286.081786	44.415495	-9.614462e-13
N.Ireland	477.39164	58.901862	4.877895	1.448078e-13

Plotting:

```
plot( x=pca$x[,1], y=pca$x[,2] )
```



```
plot( x=pca$x[,1], y=pca$x[,2] )
colors_countries <- c('orange', 'pink', 'blue', 'green')
text( x=pca$x[,1], y=pca$x[,2], colnames(x), col = colors_countries)</pre>
```


pca\$scale

[1] FALSE

PCA of a RNA-Seq dataset

FIrst step as always is loading the data:

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)</pre>
```

Q10: How many genes and samples are in this data set?

```
dim(rna.data)
```

[1] 100 10

I have 100 genes, and 10 samples.

Let's apply PCA:

```
pca_rna = prcomp( t(rna.data) )
summary(pca_rna)
```

Importance of components:

```
PC1
                                    PC2
                                             PC3
                                                       PC4
                                                               PC5
                                                                         PC6
Standard deviation
                      2214.2633 88.9209 84.33908 77.74094 69.66341 67.78516
Proportion of Variance
                          0.9917
                                 0.0016 0.00144 0.00122
                                                            0.00098
                                                                    0.00093
Cumulative Proportion
                          0.9917
                                 0.9933 0.99471
                                                  0.99593
                                                            0.99691
                                                                    0.99784
                            PC7
                                     PC8
                                              PC9
                                                       PC10
Standard deviation
                      65.29428 59.90981 53.20803 3.142e-13
Proportion of Variance 0.00086
                                0.00073 0.00057 0.000e+00
Cumulative Proportion
                       0.99870
                                0.99943 1.00000 1.000e+00
```

Let's plot the principal components 1 and 2.


```
cols_samples <- c( rep('blue', 5), rep('red', 5) )
cols_samples</pre>
```


barplot(pca_rna\$rotation[,1])

gene1 gene18 gene36 gene54 gene72 gene90

sort(pca_rna\$rotation[,1])

gene50	gene18	gene3	gene57	gene75	gene79
-0.188796985	-0.185668500	-0.183374164	-0.160771014	-0.153164404	-0.146803635
gene56	gene61	gene27	gene17	gene44	gene13
-0.132330117	-0.124572881	-0.123615228	-0.122536548	-0.117808971	-0.113357525
gene59	gene54	gene53	gene25	gene1	gene39
-0.103935563	-0.102503320	-0.093979884	-0.083761992	-0.081247810	-0.077306742
gene82	gene29	gene58	gene51	gene49	gene86
-0.076658760	-0.075605635	-0.075274651	-0.069855142	-0.069530208	-0.069165267
gene91	gene32	gene19	gene94	gene87	gene11
-0.065288752	-0.064721235	-0.062411218	-0.061938300	-0.059547317	-0.055698801
gene81	gene40	gene31	gene46	gene70	gene77
-0.043780416	-0.037323670	-0.037219970	-0.031990529	-0.030784982	-0.029225446
gene78	gene24	gene12	gene26	gene96	gene80
-0.025639741	-0.025407507	-0.024870802	-0.022868107	-0.022293151	-0.021824860
gene43	gene42	gene65	gene64	gene9	gene84
-0.020617052	-0.014550791	-0.014052839	-0.012639567	-0.007495075	-0.001289937
gene83	gene69	gene4	gene5	gene97	gene37
0.008504287	0.008871890	0.014242602	0.014303808	0.014994546	0.021280555
gene88	gene8	gene89	gene6	gene92	gene35
0.024015925					

gene73	gene74	gene67	gene52	gene71	gene95
0.044581700	0.044286948	0.037840851	0.035802086	0.035589259	0.035342407
gene2	gene22	gene14	gene36	gene15	gene93
0.053465569	0.053013523	0.052004194	0.051765605	0.049090676	0.044940861
gene20	gene33	gene47	gene38	gene7	gene63
0.071571203	0.068437703	0.067141911	0.066665407	0.063389255	0.060529157
gene34	gene55	gene76	gene30	gene16	gene72
0.119604059	0.114988217	0.104435777	0.089150461	0.081254592	0.078551648
gene41	gene100	gene99	gene28	gene68	gene85
0.153077075	0.152877246	0.151678253	0.150812015	0.144227333	0.134907896
gene48	gene62	gene60	gene90	gene66	gene23
0.190495289	0.184203008	0.183139926	0.173156806	0.171311307	0.165155192
		gene98	gene45	gene10	gene21
		0.230633225	0.225149201	0.197905454	0.194884023