1

AI1110 Assignment 1

Donal Loitam(AI21BTECH11009)

ICSE class 10 paper 2019

Q2 (C): In an Arithmetic Progression, the fourth and sixth terms are 8 and 16 respectively. Find:

- i) common difference
- ii) first term
- iii) sum of the first 20 terms

Solution: Let a_i denote the i th term of the AP , d denote the common diff, S_{20} denote the sum of first 20 terms

TABLE I VARIABLES

Symbol	value
i	4
j	6
a_i	8
a_{j}	14
a_1	?
d	?
S_n	?
S_{20}	?

For any general a_i , a_j :

(i)
$$a_i + (j-i)d = a_j$$

$$\Rightarrow \qquad (j-i)d = a_j - a_i$$

$$\Rightarrow \qquad d = \frac{a_j - a_i}{(j-i)} \qquad (1)$$

Substituting $i=4, j=6, a_i=8$ and $a_j=14$ in eq.(1):

$$\Rightarrow \qquad d = \frac{14-8}{(6-4)}$$

$$\Rightarrow \qquad d = \frac{6}{2}$$

$$\therefore \qquad d = 3 \qquad (2)$$

(ii)
$$a_1 + (i-1)d = a_i$$

$$\Rightarrow a_1 = a_i - (i-1)d \quad (3)$$

Substituting d = 3 and $a_i = 8$ in eq.(3):

$$\Rightarrow a_1 = 8 - (4 - 1)3$$

$$\Rightarrow a_1 = 8 - (3)3$$

$$\Rightarrow a_1 = 8 - 9$$

$$\therefore a_1 = -1 \tag{4}$$

Now calculating S_n for general n:

$$iii)S_n = a_1 + a_2 + \dots + a_{20}$$

= $\frac{n \times [2a_1 + (n-1)d]}{2}$ (5)

Using values from eq.(2) and eq.(4) in eq.(5):

$$S_n = \frac{n \times [2(-1) + (n-1)3]}{2}$$

$$\therefore S_n = \frac{n \times [3(n-1)-2]}{2}$$
(6)

Substituting n = 20 in eq.(6)

$$S_{20} = \frac{20 \times [3(20-1)-2]}{2}$$

$$\Rightarrow S_{20} = 10 \times [3(19) - 2]$$

$$\Rightarrow S_{20} = 10 \times [57 - 2]$$

$$\therefore S_{20} = 10 \times [55] = 550$$