Matematik B F2021 Forelæsning 4 (uge 9)

EMEA: 16.6-8

Inverse matricer, Cramers regel mv

l dag:

Inverse matricer

- Definition og grundlæggende resultater (16.6)
- Hvordan bestemmer vi den inverse til en given (invertibel) matrix? (16.7)

2 metoder:

- 1. En generel formel baseret på "co-faktorer"
- 2. Metode baseret på rækkeoperationer

• Lidt mere om lineære ligningssystemer (16.8)

- "Cramers regel": en generel formel for entydig løsning til n ligninger med n ubekendte
- Lidt om homogene ligningssystemer
- Til slut: Øvelse del af gammel eksamensopgave
 - (så meget der er tid til)

Invers matrix (16.6)

Lad **A** være en $n \times n$ matrix

Lad \mathbf{I}_n betegne $n \times n$ identitetsmatricen

Vi siger, at en $n \times n$ matrix **X** er en invers til **A** hvis:

$$\mathbf{AX} = \mathbf{XA} = \mathbf{I}_n$$

Hvis **A** har en invers **X**, så er den entydig og vi skriver:

$$\mathbf{X} = \mathbf{A}^{-1}$$

Lad X og Y være inverse til A
Så har vi:
$$Y = YIn = Y(AX) = (YA)X = InX = X$$

Eksempler:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 4 & 2 \end{pmatrix} \text{ har en invers: } \mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix}$$

$$\frac{AA^{-1} = \mathcal{I}_{2}}{\begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix}} \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \text{ har ikke en invers!}$

Vigtigt resultat (16.6.2), s.645:

A har en invers \Leftrightarrow $|\mathbf{A}| \neq 0$

"=)" Antag A har invers X, dvs. AX = I. |AX| = |I|=1 |A|.|X| Altse me (A) #0

En kvadratisk matrix, der har en invers kaldes:

non-singulær/regulær/invertibel

Check eksempler fra før:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 4 & 2 \end{pmatrix}$$

$$|A| = 2 \neq 0$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$|0| = 0 /$$

Nyttigt at vide...(16.6.4-5), s.646

Lad A og X være $n \times n$ matricer. Da gælder:

$$\mathbf{AX} = \mathbf{I}_n \quad \Leftrightarrow \quad \mathbf{XA} = \mathbf{I}_n$$

Hvis vi vil vise, at X er en invers til A, er det altså nok at checke en af de to ligninger!

'=)" Autag
$$AX = T$$
. So er $|A| \cdot |X| = |AX| = |T| = 1$
og derfor er $|A| \neq 0$.
Altså har A invers A^{-1} .
Så er $X = TX = (A^{-1}A)X = A^{-1}(AX) = A^{-1}T = A^{-1}$

Signary
$$X = TX = (A^{-1}A)X = A(AX) = A'T = A^{-1}A$$

Dus
$$XA = A^{-1}A = I$$
.

Øvelse:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Vis, at kun A har en invers

Bestem tallene a og b så følgende gælder:

pingo.coactum.de (131061)

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 1 \\ 0 & 2 & b \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 1 \\ 0 & 2 & b \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & 1 \\
0 & 2 & b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 4+2 & 1+b \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 4+2 & 1+b \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 4+2 & 1+b \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 4+2 & 1+b \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2a+2 & 2+b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 2a+2 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 2a+2 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 2a+2 & -1
\end{pmatrix}$$

Regneregler for inverse matricer (Theorem 16.6.1)

Lad **A** og **B** være invertible $n \times n$ matricer. Da gælder:

- (a) $(A^{-1})^{-1} = A$
- $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- (c) $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$ (d) $(c\mathbf{A})^{-1} = c^{-1}\mathbf{A}^{-1}$ (for alle tal $c \neq 0$)
- (a) $A^{-1}A = AA^{-1} = I$
- (b) $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$ Af resultatet på slide 6 fås så: $(AB)^{-1} = B^{-1}A^{-1}$

Matricer som afbildninger

Mere generelt:

En $n \times n$ matrix **A** definerer en ("lineær") afbildning fra \mathbb{R}^n ind i \mathbb{R}^n vha matrixmultiplikation

Hvordan finder vi den inverse? (16.7)

Vi vil se på 2 metoder:

- 1. En generel formel, der involverer de "co-faktorer", vi definerede i forb. med determinater (uge 8)
- 2. Vha. rækkeoperationer

Og centralt resultat:

$$|\mathbf{A}| = \sum_{k=1}^{n} a_{ik} \cdot C_{ik} = \sum_{k=1}^{n} a_{kj} \cdot C_{kj}$$

"udvikling efter i'te række/j'te søjle"

Co-faktor matrix:

$$\mathbf{C}^{+} = (C_{ij}) = \begin{pmatrix} C_{11} & \cdots & C_{1i} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ C_{i1} & \cdots & C_{ii} & \cdots & C_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{ni} & \cdots & C_{nn} \end{pmatrix}$$

Den adjugerede matrix (adjugate matrix):

$$\operatorname{adj}(\mathbf{A}) = (\mathbf{C}^{+})' = \begin{pmatrix} C_{11} & \cdots & C_{i1} & \cdots & C_{n1} \\ \vdots & \ddots & \vdots & & \vdots \\ C_{1i} & \cdots & C_{ii} & \cdots & C_{ni} \\ \vdots & & \vdots & \ddots & \vdots \\ C_{1n} & \cdots & C_{in} & \cdots & C_{nn} \end{pmatrix}$$

Generel formel for den inverse (Theorem 16.7.1)

Lad **A** være en $n \times n$ matrix med $|\mathbf{A}| \neq 0$. Da gælder:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \cdot \operatorname{adj}(\mathbf{A})$$

For 3×3 matricer:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$

For at finde den inverse skal vi altså udregne en determinant af orden 3 og ni determinanter af orden 2

Eksempel fra tidligere:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$

$$C_{ij} = (-1)^{i+j} \cdot |\mathbf{A}_{ij}|$$

$$|A| = -1$$

$$C_{11} = |A_{11}| = -1, C_{21} = 0, C_{31} = 0$$

$$C_{12} = -|A_{12}| = 0, C_{22} = 1, C_{32} = -1$$

$$C_{13} = |A_{13}| = 0, C_{23} = -2, C_{33} = 1$$

$$A^{-1} = \frac{1}{-1} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \\ 14 & 14 \end{pmatrix}$$

Bestem invers matrix vha rækkeoperationer:

Lad **A** være en $n \times n$ matrix

Opstil
$$n \times (2n)$$
 matricen ($\mathbf{A} : \mathbf{I}_n$)

Dvs den matrix hvis første n søjler udgøres af \mathbf{A} , og hvis sidste n søjler udgøres af \mathbf{I}_n

Omdan ved rækkeoperationer denne matrix til formen ($\mathbf{I}_n : \mathbf{X}$) (Hvis muligt!)

$$\left(\, {f A} : {f I}_n \,
ight) \stackrel{ ext{Rækkeoperationer}}{\longrightarrow} \left(\, {f I}_n : {f X} \,
ight)$$

Da er $n \times n$ matricen **X** den inverse til **A**:

$$\mathbf{X} = \mathbf{A}^{-1}$$

Eksempel fra tidligere:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

Opstil 3×6 matricen ($\mathbf{A} : \mathbf{I}_n$):

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & | & | & 0 & 0 & | & 0 \\
0 & 2 & | & | & 0 & 0 & | & 0
\end{pmatrix}$$

$$A \mid + s^{\circ} A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

Øvelse: Bestem den inverse!

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ -1 & 4 & 4 \end{pmatrix}$$

pingo.coactum.de (131061):

Stem på 3. række i den inverse

$$(A: T_3) = \begin{cases} 1 & 2 & 3 & | & 0 & 0 \\ 0 & 2 & 2 & | & 0 & | & 0 \\ -1 & 4 & 4 & | & 0 & 0 & | \\ \end{cases} \sim \begin{cases} 1 & 2 & 3 & | & 0 & 0 & | & 9 \\ 0 & 2 & 2 & 0 & | & 0 & | & -3 & -1 \\ 0 & 6 & 7 & | & 0 & | & | & | & | \\ \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ -1 & 4 & 4 \end{pmatrix}$$

Lidt om hvorfor metoden virker...

Lad $\mathbf{A} = (a_{ij})_{3\times 3}$. En invers $\mathbf{X} = (x_{ij})_{3\times 3}$ skal opfylde:

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1
\end{pmatrix}$$

Kan skrives som 3 ligningssystemer (hver med 3 lign, 3 ubek.):

$$\mathbf{A} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{A} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{A} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Disse kan løses ved Gauss elimination!

Og da de alle har samme koefficientmatrix, kan de løses "i et hug"

Det er netop det, metoden med rækkeoperationer gør

Cramers regel mv. (16.8)

Betragt n ligninger med n ubekendte på matrix-form:

$$Ax = B$$

Sidste uge omtalte vi flg resultat:

 $\mathbf{A}\mathbf{x} = \mathbf{B}$ har entydig løsning

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{A} \times = \mathbf{A}^{-1}\mathbf{B}$$

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{B} = \mathbf{A}^{-1}\begin{bmatrix}b_1\\ \vdots\\b_n\end{bmatrix}$$
Entydia losu...

Betragt igen n ligninger med n ubekendte: $\mathbf{A}\mathbf{x} = \mathbf{B}$

Definér: $D_{j} = \begin{vmatrix} a_{11} & \dots & a_{1,j-1} \\ a_{21} & \dots & a_{2,j-1} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{n,j-1} \end{vmatrix} b_{1} \begin{vmatrix} a_{1,j+1} & \dots & a_{1n} \\ a_{2,j+1} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n,j+1} & \dots & a_{nn} \end{vmatrix}$

Cramers regel (Theorem 16.8.1)

Antag koefficientmatricen opfylder $|\mathbf{A}| \neq 0$. Den entydige løsning til ligningssystemet er:

$$x_1 = \frac{D_1}{|\mathbf{A}|}, \quad x_2 = \frac{D_2}{|\mathbf{A}|}, \quad \dots, \quad x_n = \frac{D_n}{|\mathbf{A}|}.$$

Eksempel (forelæsning 2, slide 7-8 og 12-14)

$$x_1 + x_2 - x_3 = -1$$

$$2x_1 + 4x_2 = -4$$

$$-x_1 + 3x_2 + 2x_3 = -6$$

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 4 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$

$$|A| = -6$$

$$D_{1} = \begin{vmatrix} -1 & 1 & -1 \\ -9 & 9 & 0 \\ -6 & 3 & 2 \end{vmatrix} = -12, D_{2} = \begin{vmatrix} 1 & -1 & -1 \\ 2 & -9 & 0 \\ -1 & -6 & 2 \end{vmatrix} = 12, D_{3} = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 9 & -9 \\ -1 & -6 & 2 \end{vmatrix} = -6$$

$$x_1 = \frac{-12}{-6} = 2$$
, $x_2 = \frac{12}{-6} = -2$, $x_3 = \frac{-6}{-6} = 1$

Homogene lineære lign.systemer

Matrix form:
$$\mathbf{A}\mathbf{x} = \mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Et homogent ligningssystem har altid den trivielle løsning:

$$x_1 = x_2 = \ldots = x_n = 0$$

Theorem 16.8.2

Betragt et homogent lineært ligningssystem med n ligninger og n ubekendte: $\mathbf{A}\mathbf{x} = \mathbf{0}$

Et sådant ligningssystem har ikke-trivielle løsninger hvis og kun hvis $|\mathbf{A}| = 0$

Øvelse (del af eks.opg fra 2006, tilpasset)

Betragt for ethvert
$$s \in \mathbb{R}$$
 matricen: $\mathbf{A}(s) = \begin{pmatrix} 1 & 1 & s \\ 1 & 0 & 0 \\ s & 0 & s \end{pmatrix}$

- (a) Bestem $|\mathbf{A}(s)|$, og afgør for hvilke $s \in \mathbb{R} |\mathbf{A}(s)|$ er non-singulær
- (b) Bestem $(\mathbf{A}(s))^{-1}$ for ethvert af de $s \in \mathbb{R}$, for hvilke $\mathbf{A}(s)$ er non-singulær
- (c) Løs for ethvert $s \in \mathbb{R}$ ligningssystemet

(a)
$$|A(s)| = (-1)^3 \cdot | \cdot |_0 \cdot |_0 = -1$$

 $A(t) = (-1)^3 \cdot | \cdot |_0 \cdot |_0 = -1$
 $A(t) = (-1)^3 \cdot | \cdot |_0 \cdot |_0 = -1$

A(s) er således non-singulær netophvis s‡0.

(b) Lad s \$0. $\mathbf{A}(s) = \begin{pmatrix} 1 & 1 & s \\ 1 & 0 & 0 \\ s & 0 & s \end{pmatrix}$ Altsc: $(A(s))^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & s-1 & -1 \\ 0 & -1 & \frac{1}{s} \end{pmatrix}$ for ethwert $s \neq 0$.

For sto er $|A(s)| \neq 0$ og derfor $A(s) = \begin{pmatrix} 1 & 1 & s \\ 1 & 0 & 0 \\ s & 0 & s \end{pmatrix}$ har det homogene lign. syst $\begin{pmatrix} x_1, x_2, x_3 \end{pmatrix} = \begin{pmatrix} 0, 0, 0 \\ s & 0 & s \end{pmatrix}$ kon den trivielle løsn: $\begin{pmatrix} x_1, x_2, x_3 \end{pmatrix} = \begin{pmatrix} 0, 0, 0 \\ s & 0 & s \end{pmatrix}$ (må selvf også gerne bare skrives $x_1 = x_2 = x_3 = 0$) For s = 0 løses vha Gauss-elimination Udvidet koett. matrix:

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & \gamma Udvidet koeff. natrix: Heref ses, at x_3 kan vælges som fri variabel, og at $x_1 = 0$ og $x_2 = 0$. Altså kan den foldst. læsning skrives: $(x_1, x_2, x_3) = (o_1 o_1 t), \text{ hoor } t \in \mathbb{R}$