

به نام خدا

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

كنترل مدرن

فاز دوم پروژه

استاد كبريايي

سیده دیبا روانشید شیرازی ۸۱۰۱۹۹۴۳۱ محمد جواد حبیبی ۸۱۰۱۹۹۴۰۱

خواسته ها:

قطب های دسته تند :

بهره فیدبک دسته تند :

قطب های دسته کند :

بهره فیدبک دسته کند :

نمودار خروجی حالت های دسته قطب تند :

خروجی اصلی سیستم نمودار زرد رنگ میباشد.

٠.١

بلوک دیاگرام دسته قطب تند:

نمودار خروجی حال های دسته قطب کند:

خروجی اصلی سیستم نمودار زرد رنگ میباشد.

بلوک دیاگرام دسته قطب کند :

با توجه به نتایج بالا قطب های تند سریع تر از قطب های کند همگرا شده اند. این نکته را در نظر داشته باشید که خروجی قطب های سریع برای 5 ثانیه است و خروجی قطب های کند برای 10 ثانیه میباشد.

ما از یک سری ضرایب بعد از ورودی پله استفاده کرده ایم به نام K_S,K_F که کاربرد اینها در ردیابی ورودی میباشد.

$$K_f = inv(-C * inv(A-B.*fast_K) * B)$$

$$K_s=inv(-C * inv(A-B.*slow_K) * B)$$

.2

بلوک دیاگرام دسته قطب تند به همراه اغتشاش:

خروجی حالت های سیستم دسته قطب تند:

خروجی اصلی سیستم نمودار زرد رنگ میباشد.

بلوک دیاگرام دسته قطب کند :

خروجی حالت های سیستم دسته قطب کند:

خروجی اصلی سیستم نمودار زرد رنگ میباشد.

چیزی که مشخص است این است که اغتشاش از بین نرفته است و در خروجی سیستم باقی مانده است.

	poles=[-1 -2 -3 -4 -5]			قطب های مطلوب :	
Ac = 5×5					
0	1.0000	0	0	0	
-0.3780	0	7.0147	0.0343	0	
0	0	0	1.0000	0	
18.9001	0	-0.3797	-1.7133	0	
-1.0000	0	0	0	0	
Bc = 5×1 0 -0.0699					
0					
3.4965 0 K = 1×5					
16.5891	9.1976	24.4254	3.9840	-4.8979	
Co = 5×5					
0	-0.0699	0.1198	24.3479	-41.8051	
-0.0699	0.1198	24.3479	-41.8051	43.9131	
0	3.4965	-5.9903	7.6137	-8.5053	
3.4965	-5.9903	7.6137	-8.5053	471.8584	
0	0	0.0699	-0.1198	-24.3479	
ans = 5					

پارامتر های ماتریس در عکس بالا قابل مشاهده است.

ماتریس ما همانطور که پیداست فول رنک میباشد.

بلوک دیاگرام سیستم :

خروجی سیستم:

حالت های سیستم :

.4

خروجی حالت های سیستم :

خروجی سیستم:

بلوک دیاگرام سیستم :

با توجه به خروجی بالا متوجه میشویم سیستم در تلاش است تا اغتشاش را از بین ببرد و ورودی را ردیابی کند.

پارامتر های قطب های کند و تند :

خروجی حالت های سیستم دسته قطب تند:

خروجی سیستم:

بلوک دیاگرام دسته قطب تند :

حالت های سیستم دسته قطب کند :

خروجی سیستم دسته قطب کند:

بلوک دیاگرام دسته قطب کند:

.6

باید یک L,F در نظر گرفته شود و معادله لیاپانوف حل شود و ماتریس معکوس P بدست آید.

پارامتر های مورد نیاز:

بلوک دیاگرام سیستم :

حالت های سیستم :

خروجی سیستم :

.7

از تخمین گر مرتبه کامل استفاده میکنیم.

بلوک دیاگرام سیستم :

حالت نهایی گوی :

8.

بلوک دیاگرام :

حالت نهایی گوی :

درست است که سیستم کمی در میانه راه اغتشاش پیدا کرد اما در نهایت فیدبک حالت باعث پایداری سیستم شد.