MATH 7241 Fall 2020: Problem Set #5

Due date: Sunday October 25

Reading: relevant background material for these problems can be found on Canvas 'Notes 4: Finite Markov Chains'. Also Grinstead and Snell Chapter 11.

<u>Grinstead and Snell:</u> see pages 442-443 and pages 444, 467-468 on Canvas. The text is available online (free!) at

http://www.dartmouth.edu/~chance/

Click on the link "A GNU book".

Exercise 1 Grinstead & Snell, p. 442: #3.

| Exercise 2 | Grinstead & Snell, p. 442: #5.

Exercise 3 'Finite Markov Chains – Problems' file: Exercise 1

Exercise 4 'Finite Markov Chains – Problems' file: Exercise 3

Exercise 5 | GS, p. 444: #17.

Exercise 6 For a Markov chain, suppose that state i is transient, and that state i is accessible from state j (meaning that there is some integer m such that $p_{ji}(m) > 0$). Show that $p_{ij}(n) \to 0$ as $n \to \infty$. [Hint: find an inequality relating $\sum_{n} p_{ii}(n)$ and $\sum_{n} p_{ij}(n)$]

Exercise 7 | GS, p. 467: #7

[Note: ergodic means irreducible, and fixed vector means stationary distribution. For part (c), guess that the chain is reversible and solve the reversibility equations. For part (d), set up a recursion formula by conditioning on the first step].