ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TOÁN; Khối B

(Đáp án - thang điểm gồm 04 trang)

Câu	Đáp án	Điểm
1 ,	a) (1,0 điểm)	
(2,0 điểm)	Khi $m=1$, tả có. $y=x-3x+3$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=3x^2-6x$; $y'=0 \Leftrightarrow x=0$ hoặc $x=2$. Các khoảng đồng biến: $(-\infty; 0)$ và $(2; +\infty)$, khoảng nghịch biến: $(0; 2)$.	0,25
	- Cực trị: Hàm số đạt cực đại tại $x = 0$, $y_{CD} = 3$; đạt cực tiểu tại $x = 2$, $y_{CT} = -1$. - Giới hạn: $\lim_{x \to -\infty} y = -\infty$ và $\lim_{x \to +\infty} y = +\infty$.	0,25
	- Bằng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đồ thị:	0,25
	b) (1,0 điểm)	
	$y'=3x^2-6mx$; $y'=0 \Leftrightarrow x=0$ hoặc $x=2m$. Đồ thị hàm số có 2 điểm cực trị khi và chỉ khi $m \neq 0$ (*).	0,25
	Các điểm cực trị của đồ thị là $A(0; 3m^3)$ và $B(2m; -m^3)$.	0,25
	Suy ra $OA = 3 m^3 $ và $d(B, (OA)) = 2 m $.	
	Suy ra $OA = 3 \mid m^3 \mid \text{ và } d(B, (OA)) = 2 \mid m \mid$. $S_{\Delta OAB} = 48 \iff 3m^4 = 48$	0,25

2 (1,0 điểm)	Phương trình đã cho tương đương với: $\cos 2x + \sqrt{3} \sin 2x = \cos x - \sqrt{3} \sin x$	0,25
(1,0 atcm)	$\Leftrightarrow \cos\left(2x - \frac{\pi}{3}\right) = \cos\left(x + \frac{\pi}{3}\right)$	0,25
	$\Leftrightarrow 2x - \frac{\pi}{3} = \pm \left(x + \frac{\pi}{3}\right) + k2\pi \ (k \in \mathbb{Z}).$	0,25
	$\Leftrightarrow x = \frac{2\pi}{3} + k2\pi \text{ hoặc } x = k\frac{2\pi}{3} \ (k \in \mathbb{Z}).$	0,25
3 (1,0 điểm)	Điều kiện: $0 \le x \le 2 - \sqrt{3}$ hoặc $x \ge 2 + \sqrt{3}$ (*). Nhận xét: $x = 0$ là nghiệm của bất phương trình đã cho. Với $x > 0$, bất phương trình đã cho tương đương với: $\sqrt{x} + \frac{1}{\sqrt{x}} + \sqrt{x + \frac{1}{x} - 4} \ge 3$ (1).	0,25
	Đặt $t = \sqrt{x} + \frac{1}{\sqrt{x}}$ (2), bất phương trình (1) trở thành $\sqrt{t^2 - 6} \ge 3 - t \Leftrightarrow \begin{bmatrix} 3 - t < 0 \\ 3 - t \ge 0 \\ t^2 - 6 \ge (3 - t)^2 \end{bmatrix}$	0,25
	$\Leftrightarrow t \ge \frac{5}{2}$. Thay vào (2) ta được $\sqrt{x} + \frac{1}{\sqrt{x}} \ge \frac{5}{2} \Leftrightarrow \sqrt{x} \ge 2$ hoặc $\sqrt{x} \le \frac{1}{2}$	0,25
	\Leftrightarrow $0 < x \le \frac{1}{4}$ hoặc $x \ge 4$. Kết hợp (*) và nghiệm $x = 0$, ta được tập nghiệm của bất phương trình đã cho là: $\left[0; \frac{1}{4}\right] \cup [4; +\infty)$.	0,25
4 (1,0 điểm)	Đặt $t=x^2$, suy ra $dt=2xdx$. Với $x=0$ thì $t=0$; với $x=1$ thì $t=1$.	0,25
(1,0 atem)	Khi đó $I = \frac{1}{2} \int_{0}^{1} \frac{x^2 \cdot 2x dx}{(x^2 + 1)(x^2 + 2)} = \frac{1}{2} \int_{0}^{1} \frac{t dt}{(t + 1)(t + 2)}$	0,25
	$= \frac{1}{2} \int_{0}^{1} \left(\frac{2}{t+2} - \frac{1}{t+1} \right) dt = \left(\ln t+2 - \frac{1}{2} \ln t+1 \right) \Big _{0}^{1}$	0,25
	$= \ln 3 - \frac{3}{2} \ln 2.$	0,25
5 (1,0 điểm)	S Gọi D là trung điểm của cạnh AB và O là tâm của $\triangle ABC$. Ta có $AB \perp CD$ và $AB \perp SO$ nên $AB \perp (SCD)$, do đó $AB \perp SC$.	0,25
	Mặt khác $SC \perp AH$, suy ra $SC \perp (ABH)$.	0,25
	Ta có: $CD = \frac{a\sqrt{3}}{2}$, $OC = \frac{a\sqrt{3}}{3}$ nên $SO = \sqrt{SC^2 - OC^2} = \frac{a\sqrt{33}}{3}$. Do đó $DH = \frac{SO.CD}{SC} = \frac{a\sqrt{11}}{4}$. Suy ra $S_{\Delta ABH} = \frac{1}{2}AB.DH = \frac{\sqrt{11}a^2}{8}$	0,25
	Ta có $SH = SC - HC = SC - \sqrt{CD^2 - DH^2} = \frac{7a}{4}$. Do đó $V_{S.ABH} = \frac{1}{3}SH.S_{\Delta ABH} = \frac{7\sqrt{11}a^3}{96}$.	0,25

6 (1,0 điểm)	Với $x + y + z = 0$ và $x^2 + y^2 + z^2 = 1$, ta có:	
(1,0 <i>utem</i>)	$0 = (x+y+z)^2 = x^2 + y^2 + z^2 + 2x(y+z) + 2yz = 1 - 2x^2 + 2yz, \text{ nên } yz = x^2 - \frac{1}{2}.$	0,25
	Mặt khác $yz \le \frac{y^2 + z^2}{2} = \frac{1 - x^2}{2}$, suy ra: $x^2 - \frac{1}{2} \le \frac{1 - x^2}{2}$, do đó $-\frac{\sqrt{6}}{3} \le x \le \frac{\sqrt{6}}{3}$ (*).	
	Khi đó: $P = x^5 + (y^2 + z^2)(y^3 + z^3) - y^2 z^2 (y + z)$	
	$= x^{5} + (1-x^{2})[(y^{2}+z^{2})(y+z) - yz(y+z)] + (x^{2} - \frac{1}{2})^{2}x$	0,25
	$= x^{5} + (1-x^{2})\left[-x(1-x^{2}) + x\left(x^{2} - \frac{1}{2}\right)\right] + \left(x^{2} - \frac{1}{2}\right)^{2} x = \frac{5}{4}(2x^{3} - x).$	
	Xét hàm $f(x) = 2x^3 - x$ trên $\left[-\frac{\sqrt{6}}{3}; \frac{\sqrt{6}}{3} \right]$, suy ra $f'(x) = 6x^2 - 1$; $f'(x) = 0 \Leftrightarrow x = \pm \frac{\sqrt{6}}{6}$.	
	Ta có $f\left(-\frac{\sqrt{6}}{3}\right) = f\left(\frac{\sqrt{6}}{6}\right) = -\frac{\sqrt{6}}{9}$, $f\left(\frac{\sqrt{6}}{3}\right) = f\left(-\frac{\sqrt{6}}{6}\right) = \frac{\sqrt{6}}{9}$. Do đó $f(x) \le \frac{\sqrt{6}}{9}$.	0,25
	Suy ra $P \le \frac{5\sqrt{6}}{36}$.	
	Khi $x = \frac{\sqrt{6}}{3}$, $y = z = -\frac{\sqrt{6}}{6}$ thì dấu bằng xảy ra. Vậy giá trị lớn nhất của P là $\frac{5\sqrt{6}}{36}$.	0,25
7.a (1,0 điểm)	(C) (C) (C) (C) cần là gốc tọa độ O . Gọi I là tâm của đường tròn (C) cần viết phương trình, ta có $AB \perp OI$. Mà $AB \perp d$ và d , $O \notin d$ nên $OI//d$, do đó OI có phương trình $y = x$.	0,25
	Mặt khác $I \in (C_2)$, nên tọa độ của I thỏa mãn hệ: $\begin{cases} y = x \\ x^2 + y^2 - 12x + 18 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 3 \end{cases} \Rightarrow I(3;3).$	0,25
	Do (C) tiếp xúc với d nên (C) có bán kính $R=d(I,d)=2\sqrt{2}$.	0,25
	Vậy phương trình của (C) là $(x-3)^2 + (y-3)^2 = 8$.	0,25
8.a (1,0 điểm)	Gọi (S) là mặt cầu cần viết phương trình và I là tâm của (S). Do $I \in d$ nên tọa độ của điểm I có dạng $I(1+2t;t;-2t)$.	0,25
	Do $A,B \in (S)$ nên $AI = BI$, suy ra $(2t-1)^2 + (t-1)^2 + 4t^2 = (2t+3)^2 + (t-3)^2 + (2t+2)^2 \Rightarrow t = -1$.	0,25
	Do đó $I(-1; -1; 2)$ và bán kính mặt cầu là $IA = \sqrt{17}$.	0,25
	Vậy, phương trình mặt cầu (S) cần tìm là $(x+1)^2 + (y+1)^2 + (z-2)^2 = 17$.	0,25
9.a (1,0 điểm)	Số cách chọn 4 học sinh trong lớp là C_{25}^4 =12650.	0,25
	Số cách chọn 4 học sinh có cả nam và nữ là $C_{15}^1.C_{10}^3 + C_{15}^2.C_{10}^2 + C_{15}^3.C_{10}^1$	0,25
	= 11075.	0,25
	Xác suất cần tính là $P = \frac{11075}{12650} = \frac{443}{506}$.	0,25

7.b (1,0 điểm)	Giả sử (E) : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$. Hình thoi $ABCD$ có $AC = 2BD$ và A, B, C, D thuộc (E) suy ra $OA = 2OB$.	0,25
	Không mất tính tổng quát, ta có thể xem $A(a;0)$ và $B\left(0;\frac{a}{2}\right). \text{ Gọi } H \text{ là hình chiếu vuông góc của } O \text{ trên } AB,$ $\text{suy ra } OH \text{ là bán kính của đường tròn } (C): x^2 + y^2 = 4.$	0,25
	Ta có: $\frac{1}{4} = \frac{1}{OH^2} = \frac{1}{OA^2} + \frac{1}{OB^2} = \frac{1}{a^2} + \frac{4}{a^2}$.	0,25
	Suy ra $a^2 = 20$, do đó $b^2 = 5$. Vậy phương trình chính tắc của (E) là $\frac{x^2}{20} + \frac{y^2}{5} = 1$.	0,25
8.b _,	Do $B \in Ox$, $C \in Oy$ nên tọa độ của B và C có dạng: $B(b; 0; 0)$ và $C(0; c; 0)$.	0,25
(1,0 điểm)	Gọi G là trọng tâm của tam giác ABC , suy ra: $G\left(\frac{b}{3}; \frac{c}{3}; 1\right)$.	0,25
	Ta có \overline{AM} = (1;2;-3) nên đường thẳng AM có phương trình $\frac{x}{1} = \frac{y}{2} = \frac{z-3}{-3}$. Do G thuộc đường thẳng AM nên $\frac{b}{3} = \frac{c}{6} = \frac{-2}{-3}$. Suy ra $b = 2$ và $c = 4$.	0,25
	Do đó phương trình của mặt phẳng (P) là $\frac{x}{2} + \frac{y}{4} + \frac{z}{3} = 1$, nghĩa là (P) : $6x + 3y + 4z - 12 = 0$.	0,25
9.b	Phương trình bậc hai $z^2 - 2\sqrt{3}iz - 4 = 0$ có biệt thức $\Delta = 4$.	0,25
(1,0 điểm)	Suy ra phương trình có hai nghiệm: $z_1 = 1 + \sqrt{3}i$ và $z_2 = -1 + \sqrt{3}i$.	0,25
	• Dạng lượng giác của z_1 là $z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$.	0,25
	• Dạng lượng giác của z_2 là $z_2 = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$.	0,25

----- HÉT -----