

From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model report

Paper's Authors

Kai-Yueh Chang, Tyng-Luh Liu, and Shang-Hong Lai

Advisor

Dr. Maryam Abedi

Student

Mohammad Shahpouri

October 2022

${\bf Contents}$

Li	st of	Figures	ii
Li	st of	Tables	iii
Li	st of	Equations	iv
1	Co-	segmentation energy function	1
	1.1	Co-saliency prior	1
	1.2	Within-image MRF energy	1
	1.3	Global energy term	2
2	Lea	rning visual vocabulary	3
3	Exp	perimental results	3
	3.1	Quantitative result	4
	3.2	Qualitative result	4
\mathbf{R}	efere	nces	5

${f List}$	of	Figures
------------	----	---------

List of Tables

1 Co-segmentation accuracy. The results by the proposed method, measured in the pixel accuracy, are reported in the rightmost seven columns. When the global energy term E in Equation 1 is included, visual words can be obtained either by K-means or by K-means with $L_{1,2}$ regularization. 4

List of Equations

1	Equation 1		•									•							 •					•	1	L
2	Equation 2																								1	L
3	Equation 3																								1	
4	Equation 4																								1	L
5	Equation 5																								2	2
6	Equation 6																								2	2
7	Equation 7																								2	2
8	Equation 8																								2	2
9	Equation 9																								2	2
10	Equation 10) .																							2	2
11	Equation 11																								3	3
12	Equation 12)		 										 					 			 			9	3

1 Co-segmentation energy function

An energy function is propsed for co-segmenting M images $\{I\}_{i=1}^{M}$. An over-segmentation technique [1] is applied to each image, and partition I_i into n_i superpixels. co-segmenting these M images is to find the binary labels $\{\mathbf{x}^i\}_{i=1}^{M}$ minimizing the following energy function:

$$F(\{\mathbf{x}^i\}) = \sum_{i} L_i(\mathbf{x}^i) + \lambda \cdot E(\{\mathbf{x}^i\})$$

$$= \sum_{i} L_i(\mathbf{x}^i) + \lambda \sum_{i,j} G(\mathbf{x}^i, \mathbf{x}^j, I^i, I^j)$$
(1)

where $L_i(x^i)$ is the within-image MRF energy of the labeling \mathbf{x}^i on I^i , $G(\mathbf{x}^i, \mathbf{x}^j, I^i, I^j)$ is the between-image energy, and λ weighs the importance of the global energy term $E(\{\mathbf{x}^i\})$.

1.1 Co-saliency prior

SIFT feature [2], \mathbf{g}_{j}^{i} , is applied on every five pixels. For each \mathbf{g}_{j}^{i} the distance to its most similar point on image I^{k} is calculated by:

$$d(\mathbf{g}_j^i, I^k) = \min_{l} \|\mathbf{g}_j^i - \mathbf{g}_l^k\| \tag{2}$$

 \mathbf{g}_{j}^{i} is now associated with M-1 distances $\{d(\mathbf{g}_{j}^{i}, I^{k})\}_{k\neq i}$. To derive \bar{d}_{j}^{i} average of the first half smallest distances are computed. Then, sigmoid function is utilized to define the weight w_{j}^{i} by:

$$w_j^i = \frac{1}{1 + \exp(-\frac{\mu - \bar{d}_j^i}{\sigma})} \tag{3}$$

where μ and σ are the parameters related to the shape of the sigmoid function. $\mu = 0.8$ and $\sigma = 0.2$

1.2 Within-image MRF energy

First the cost of labeling a superpixel \mathbf{p}_{i}^{i} is computed as:

$$\alpha_j^i = \sum_{k \in \mathbf{p}_j^i} \tau - \tilde{s}_k^i \tag{4}$$

where τ is a parameter to be adjusted. \tilde{s}_k^i is co-saliency map value of image I^i at pixel k. Second, calculating the cost of assigning different labels to two adjacent superpixels is:

$$\beta_{j,k}^{i} = \sum_{(l,m)\in B_{j,k}^{i}} \exp\left(-\frac{\|\mathbf{v}_{l}^{i} - \mathbf{v}_{m}^{i}\|^{2}}{2\sigma_{RGB}^{2}}\right)$$
 (5)

where \mathbf{v}_{l}^{i} and \mathbf{v}_{m}^{i} are the respective RGB values of pixels l and m, and $B_{j,k}$ includes all the pairs of adjacent pixels across the boundary of superpixels \mathbf{p}_{j}^{i} and \mathbf{p}_{k}^{i} . With Equation 4 and Equation 5, the exact form of $L_{i}(\mathbf{x}^{i})$ can then be stated as follows:

$$L_i(\mathbf{x}^i) = \sum_{j=1}^{n_i} \alpha_j^i x_j^i + \sum_{(j,k) \in \mathcal{E}^i} \beta_{j,k}^i \delta[x_j^i \neq x_k^i]$$

$$\tag{6}$$

where n_i is the total number of superpixels in I^i , δ is an indicator function that outputs 1 when the statement is true. $\beta^i_{j,k} > 0$ for all $(j,k) \in \mathcal{E}^i$ ensures the following important regularity about $L_i(\mathbf{x}^i)$.

Property 1 The within-image MRF energy $L_i(\mathbf{x}^i)$ defined in Equation 6 is submodular.

1.3 Global energy term

To compute global energy term each superpixel is represented by an unnormalized histogram h.

$$\mathbf{H}_{f}^{i} = \sum_{k=1}^{n_{i}} \mathbf{h}_{k}^{i} x_{k}^{i} \text{ and } \mathbf{H}_{b}^{i} = \sum_{k=1}^{n_{i}} \mathbf{h}_{k}^{i} (1 - x_{k}^{i})$$
 (7)

Then, the histogram of I^i is denoted as:

$$\mathbf{H}^i = \sum_{k=1}^{n_i} \mathbf{h}_k^i = \mathbf{H}_f^i + \mathbf{H}_b^i \tag{8}$$

Between-image energy $G(\mathbf{x}^i, \mathbf{x}^j, I^i, I^j)$ can be calculated as:

$$G(\mathbf{x}^{i}, \mathbf{x}^{j}, I^{i}, I^{j}) = \|\mathbf{H}_{f}^{i} - \mathbf{H}_{f}^{j}\|_{2}^{2} - \sum_{k \in \{i, j\}} c_{1}^{k} \|\mathbf{H}_{f}^{k} - c_{2}^{k} \mathbf{H}_{b}^{k}\|_{2}^{2}$$

$$(9)$$

where c_1^* decides the influence of the dissimilarity, and c_2^* is to balance the foreground and the background histograms.

By substituting $\mathbf{H}_b^i = \mathbf{H}^i - \mathbf{H}_f^i$ into Equation 9, and taking the definition of \mathbf{H}_f^i in Equation 7, we obtain:

$$G(\mathbf{x}^{i}, \mathbf{x}^{j}, I^{i}, I^{j}) = C - 2 \sum_{l,m} \left\langle \mathbf{h}_{l}^{i}, \mathbf{h}_{m}^{j} \right\rangle x_{l}^{i} x_{m}^{j} +$$

$$2c_{1}c_{2}(1+c_{2}) \times \sum_{k \in \{i,j\}} \sum_{l=1}^{n_{k}} \left\langle \mathbf{h}_{l}^{k}, \mathbf{H}^{k} \right\rangle x_{l}^{k} +$$

$$(1-c_{1}(1+c_{2})^{2}) \times \sum_{k \in \{i,j\}} \sum_{l,m} \left\langle \mathbf{h}_{l}^{k}, \mathbf{h}_{m}^{k} \right\rangle x_{l}^{k} x_{m}^{k}$$

$$(10)$$

where C is a constant term. $c_1 = \frac{1}{(1+c_2)^2}$. Finally, by setting $c = \frac{c_2}{1+c_2}$, $G(\mathbf{x}^i, \mathbf{x}^j, I^i, I^j)$ becomes:

$$C - 2\sum_{l,m} \left\langle \mathbf{h}_{l}^{i}, \mathbf{h}_{m}^{j} \right\rangle x_{l}^{i} x_{m}^{j} + 2c \times \sum_{k \in \{i,j\}} \sum_{l=1}^{n_{k}} \left\langle \mathbf{h}_{l}^{k}, \mathbf{H}^{k} \right\rangle x_{l}^{k}$$

$$\tag{11}$$

Property 2 The total energy function F defined in Equation 9 is submodular, and hence the proposed energy minimization can be optimally solved by the graph-cut algorithm.

2 Learning visual vocabulary

Suppose that J pixels are uniformly sampled from each image, and represent each pixel by a SIFT feature vector \mathbf{z} . To cluster all these pixels over $\{I^i\}_{i=1}^M$ into K visual words, an assignment table A of size $M \times J \times K$, and the following optimization problem are considered:

$$\min_{\{\mu_{k}\}_{k=1}^{K}, A} \sum_{k=1}^{K} \sum_{i=1}^{M} \sum_{j=1}^{J} (\|\mathbf{z}_{i,j} - \mu_{k}\| \cdot A_{i,j,k}) + \\
\eta \times \sum_{k=1}^{K} \sqrt{\sum_{i=1}^{M} \left(\sum_{j \in R^{i}}^{J} A_{i,j,k}\right)^{2}} \\
\text{subject to } A_{i,j,k} \in \{0,1\}, \\
\sum_{k} A_{i,j,k} = 1, \forall i, j$$
(12)

where $\{\mu_k\}$ are the cluster centers and $\eta = 4$ controls the influence of the regularization term.

3 Experimental results

Weizman horses, MSRC database, and gnome dataset are used to evaluate the performance of the method.

3.1 Quantitative result

Table 1. Co-segmentation accuracy. The results by the proposed method, measured in the pixel accuracy, are reported in the rightmost seven columns. When the global energy term E in Equation 1 is included, visual words can be obtained either by K-means or by K-means with $L_{1,2}$ regularization.

Dataset	Num. of	DC [a]	Without	global term	K-	means	K -means + $L_{1,2}$							
Dataset	images	DC [3]	Saliency	Co-Saliency	Saliency	Co-Saliency	Saliency	Co-Saliency	$\{c_2, \tau\}$					
Cars front	6	87.65%	77.01%	79.01%	83.27%	88.50%	88.04%	90.78%	90.46%					
Cars back	6	85.10%	76.22%	77.63%	79.72%	88.50%	85.34%	85.76%	85.76%					
Bike	30	63.30%	70.90%	72.38%	75.06%	76.67%	75.52%	76.76%	76.60%					
Cat	24	74.40%	83.06%	79.80%	85.78%	86.36%	86.34%	86.68%	86.68%					
Plane	30	75.90%	85.91%	86.22%	86.58%	86.80%	86.92%	87.66%	87.21%					
Face	30	84.30%	78.54%	78.96%	84.41%	85.51%	85.08%	87.27%	85.76%					
Cow	30	81.60%	88.40%	88.71%	91.25%	91.30%	91.10%	91.36%	90.92%					
Horse	30	80.10%	78.72%	76.59%	85.30%	86.00%	85.57%	86.36%	84.36%					
Gnome	4		89.29%	93.56%	93.28%	95.21%	95.00%	95.29%	95.12%					

3.2 Qualitative result

Figure 1. Examples of the input images and the co-segmentation results.

References

- [1] P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," *International Journal of Computer Vision*, vol. 59, pp. 167–181, Sep 2004. 1
- [2] D. Lowe, "Object recognition from local scale-invariant features," in *Proceedings of the Seventh IEEE International Conference on Computer Vision*, vol. 2, pp. 1150–1157 vol.2, 1999. 1
- [3] A. Joulin, F. Bach, and J. Ponce, "Discriminative clustering for image co-segmentation," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1943–1950, 2010. 4