REVISÃO FUNDAMENTOS DE CÁLCULO I – LIMITES: PROPRIEDADES E EXCEÇÕES.

LIMITES

→ Utilizamos limites quando buscamos saber para onde o valor de uma função vai quando a mesma *tende* em direção a um ponto específico.

Como exemplos já vistos, vamos considerar os seguintes casos:

a) Uma função linear qualquer: f(x) = ax + b, o que é esperado acontecer quando aproximamos o x á zero?

(Esperamos que o valor da função se aproxime mais ainda de b)

Vamos levar em consideração a seguinte função: $f(x) = 2 \cdot x + 4$

х	f(x)
1	6
0,75	5,5
0,5	5
0,1	4,2
0,01	4,02
0,001	4,002

b) Claro, isso acontece por ser uma função básica, polinomial, a qual não possui nenhuma restrição, porém existe funções que não existem em determinado ponto, ou intervalo, como uma função racional $f(x) = \frac{1}{\chi}$ onde a mesma não existe quando o *denominador* é igual a *zero*, ou uma função logaritmo quando o número dentro da mesma é negativo, tal como funções de raízes de números pares.

Vamos considerar alguns casos e estudar o que acontece quando elas se aproximam desse ponto em específico.

1.
$$f(x) = \frac{1}{x}$$

Vejam que quando o x está se aproximando de zero a função faz uma curva e explode para valores muitos altos, quando isso ocorre teremos uma *Assíntota Vertical*, porém quando o x está indo para valores mais elevados e o valor da função se aproxima muito de zero ou algum outro valor teremos então uma *Assíntota Horizontal*, vamos verificar esse acontecimento por meio de uma tabela.

x→0	f(x)
1	1
0,5	2
0,25	4
0,1	10
0,01	100
0,001	1000
0,0001	10000

$$f(x) = \frac{1}{x}$$

$$1 \qquad 1$$

$$5 \qquad 0.25$$

$$25 \qquad 0.04$$

$$100 \qquad 0.01$$

$$1000 \qquad 0.001$$

$$10000 \qquad 0.0001$$

f(x)

0.00001

As Assíntotas verticais ocorrem normalmente, quando a função se aproxima de um valor (ela não assume o valor, apenas se aproxima), e o valor da função explode, seja para $+\infty$ ou $-\infty$. Já as Assíntotas horizontais ocorrem quando o x vai para valores elevados e a função fica se aproximando de um valor específico, como no exemplo onde quanto maior o x mais próximo de zero é o valor da função.

E se tivéssemos uma outra função racional:

$$f(x) = \frac{1}{x - 2}$$

Se fossemos nós aproximar o x a zero nesse caso, iriamos ver que a função iria se aproximar do valor $-\frac{1}{2}$, porém perceberemos que quando tentamos aproximar o x até 2, acontece o mesmo efeito visto a cima, logo quando estamos lidando com funções racionais nosso objetivo em si é analisar o que acontece com a função quando a parte de baixo da divisão é igual a zero, ou seja, em que ponto x faz que x-2=0.

2. Já com a função logaritmo, ou a função raiz quadrática, quarta ordem, sexta ordem, raízes de ordem par, a função não existe no momento que o

valor que está dentro é negativo, logo, a função não existirá a partir de um ponto.

Veja o seguinte caso:

$$f(x) = \sqrt[2]{x}$$

Observem que a função não assume nenhum valor \underline{real} quando x é negativo.

Claro há casos especiais onde temos junções das funções que vimos até o momento, como:

$$f(x) = \frac{1}{\sqrt{x-4}}$$

Nesse caso temos uma função racional, onde a parte de baixo é uma raiz quadrática, pelo que vimos até agora sabemos que por ser raiz de ordem par, a função não deve existir quando o x - 4 < 0, logo quando x for menor que 4, e por ser um racional a função deve tender a grandes valores quando o x se aproxima de 4, porém o mesmo não assume o valor 4, pois caso assumisse tal valor o *denominador* da divisão seria 0.

x→4	f(x)
5	1
4,5	1,414
4,1	3,162
4,01	10
4,001	31,623
4,0001	100

$$f(x) = \frac{1}{\sqrt{x-4}}$$

A notação básica a ser utilizada para se referir a Limites vai ser:

$$\lim_{x\to a} f(x) = L$$

Onde f(x) é a função a qual se busca o limite, a o ponto de estudo e L é o valor que tende a função quando se aproxima desse mesmo ponto.

Propriedades dos Limites

1. Constante: O limite de uma constante vai ser ela mesma, basicamente pense em uma linha reta, que não muda em nenhum momento, logo o valor que ela assume no ponto atual, não mudará no próximo ponto. Tal que:

$$\lim_{x\to a}C=C$$

Veja que ao fazer f(x) = 1 temos que para todo x a função continua a mesma coisa, ou seja, constante. Tal que $\lim_{x\to 2} \mathbf{1} = \mathbf{1}$.

2. Soma e Subtração: Uma das propriedades que vemos de limites é o limite da soma ou subtração, onde quando estamos fazendo o limite de uma soma/subtração de funções, ou apenas uma soma/subtração, podemos separar tal limite em diversas partes. Veja:

$$\lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

Qual seria a importância em fazer tal separação? A ideia é bem simples, ao dividir um limite em partes, podemos trabalhar de forma separada cada uma, assim podendo utilizar de métodos, ou propriedades a qual já conhecemos, darei um exemplo:

$$\lim_{x \to 4} 4 \cdot x + 6 = \lim_{x \to 4} 4 \cdot x + \lim_{x \to 4} 6 = (\lim_{x \to 4} 4 \cdot x) + 6 = 22$$

Nesse exemplo, separei a soma que acontecia, ao separar observem que aparece o limite de uma constante $\lim_{x\to 4} \mathbf{6}$ e sabemos que o limite de uma constante é ela mesma, logo no fim só precisaríamos fazer o limite de $\mathbf{4} \cdot \mathbf{x}$, que no fim daria 16 somando com o 6, obteríamos que $\lim_{x\to 4} \mathbf{4} \cdot \mathbf{x} + \mathbf{6} = \mathbf{22}$. Claro foi um exemplo simples, a qual poderia ser feito de forma direta, porém em funções mais complexas possa surgir essa necessidade de separar o limite em vários.

3. *Multiplicação e divisão*: Outra propriedade é o de multiplicação e divisão, basicamente saiba que o limite do produto, será o produto dos limites, a mesma ideia com a divisão, vamos ver alguns casos:

a. Multiplicação e divisão com constante:

$$\lim_{x \to a} C \cdot f(x) = \lim_{x \to a} C \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \frac{f(x)}{C} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} C}$$

Dado conhecimentos passados, temos que o limite da constate é ela mesma, tal que teríamos:

$$\lim_{x \to a} C \cdot f(x) = \lim_{x \to a} C \cdot \lim_{x \to a} f(x) = C \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \frac{f(x)}{C} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} C} = \frac{\lim_{x \to a} f(x)}{C}$$

Ou seja, o limite de um produto entre uma constante e função vai ser essa mesma constante multiplicada pelo limite da função.

b. Multiplicação e divisão entre funções:

$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Seguindo da mesma ideia, podemos separar produtos, ou divisões em uma função e trabalhar o limite de forma separada, e no fim juntar as partes novamente.

Vamos para um exemplo utilizando todas propriedades vistas:

$$\lim_{x \to 4} \frac{x^2 + 4x + 2}{3x - 1} = \frac{\lim_{x \to 4} x^2 + 4x + 2}{\lim_{x \to 4} 3x - 1} = \frac{\lim_{x \to 4} x^2 + \lim_{x \to 4} 4x + \lim_{x \to 4} 2}{\lim_{x \to 4} 3x - \lim_{x \to 4} 1}$$

$$\lim_{x \to 4} \frac{x^2 + \lim_{x \to 4} 4x + \lim_{x \to 4} 2}{\lim_{x \to 4} 3x - \lim_{x \to 4} 1} = \frac{\left(\lim_{x \to 4} x^2\right) + \left(4 \cdot \lim_{x \to 4} x\right) + 2}{\left(3 \cdot \lim_{x \to 4} x\right) - 1} = \frac{(16) + (16) + 2}{(3 \cdot 4) - 1} = \frac{34}{11}$$

4. Potencia e Raízes: Segue a mesma ideia do que já foi visto, o limite da raiz será a raiz do limite, tal como o limite da potência é a potência do limite:

$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$$
$$\lim_{x \to a} f(x)^k = \left(\lim_{x \to a} f(x)\right)^k$$

Limites a qual não é possível determinar o seu valor

A ideia é que sempre que fazemos o limite de uma função, é esperado que chegamos a algum valor ou que esse vá para o infinito seja positivo ou negativo. Porém a casos especiais que não sabemos dizer exatamente o valor, esses sendo:

$$(\infty-\infty,\,\frac{\pm\infty}{\pm\infty}$$
 , $0\cdot\pm\infty,\,\frac{0}{0}$, 0^0 , $1^\infty,\infty^0)$

Ou seja, caso o limite da função tenda para um dos casos acimas, não conseguiremos obter o valor da forma tradicional, assim teremos que buscar métodos ou manipulações para encontrar o valor da mesma e sair da indeterminação, um método é o de L'hospital, que será visto após certo tempo, focaremos no momento em manipulações, que serão vistas na parte de resoluções.