CO₂ and Cost Impacts of a Transportation-microgrid with Electric Vehicle Charging Infrastructure: a case study in Southern California

Luis Fernando Enriquez-Contreras, Matthew Barth, Sadrul Ula

Department of Electrical and Computer Engineering
University of California, Riverside

13 end

Purpose

- The goal is to see the accuracy of simulated microgrid models when applied to a real system
- This validation's main contribution is documenting the difficulties and challenges involved in transitioning from a simulated model to real-life implementation
- This paper focuses on the problems and outcomes of the microgrid's full-size components and describes how software is implemented in a full-scale microgrid
- The validation results are compared to the simulated model to analyze the differences and similarities between simulated and real-life data

Abstract

As an important part of Intelligent Transportation Systems (ITS), this paper presents a case study at the University of California, Riverside (UCR) that evaluates the effectiveness of different transportation-based microgrid configurations in reducing both carbon dioxide (CO_2) emissions and electricity costs. CO_2 emissions are calculated using high-resolution California Independent System Operator (CAISO) CO₂ emissions data to accurately assess the environmental impact of each setup. Electric costs were also compared to determine the financial savings potential for the consumer. The results demonstrate that a peak-shaving transportation-microgrid strategy can effectively reduce CO₂ emissions in the range of 24% to 38% and costs from \$27,000 to \$29,000 per year, even when considering the additional demand from 12 vehicles charging daily at the building. However, careful consideration should be given to battery sizing, as peak-shaving has diminishing returns. Doubling the battery size may only provide an additional savings of \$2,000 per year with a negligible reduction in emissions. This highlights the importance of optimizing battery capacity to maximize cost-effectiveness and environmental impact.

Microgrid Architecture

Figure: Microgrid Architecture of our Case Study Example BESS: Battery Energy Storage System

EV Charging Simulations

Level 2 Chargers Number of Sessions in One Year

Figure: Validation of the Level 2 EV Charger Stochastic Process that Compares the Probability Density Function of Actual Charging Data to the Poisson Process

Control Software

Algorithm 1: Microgrid Control Software 1 df ← dataset

- 2 output ← []
 3 count ← 0
 4 delay ← 15 minutes
 5 new_interval ← current_time
 6 while data_length > count do
 7 | inverter_power ← df.power[count]
 8 | while new_interval > current_time do
 9 | output ← inverter_get_data
 10 | end
 11 | count += 1
 12 | new_interval += delay
 - Results

EV Charging Scenarios Comparison

Figure: EV Charging Scenarios Comparison

Figure: Cost and CO₂ Emissions for Different Battery Capacities

Conclusion

- The results from this short validation demonstrate the possibility lowering the max demand of the net load, thus reducing the facility's demand costs, by utilizing a BES system in combination with solar power
- The algorithm proposed and implemented achieved the goal of lowering the max demand, thereby reducing the stress on the grid
- Load prediction is needed to optimize data for the algorithm more accurately; optimization using shorter time intervals is also needed to reduce possible power surges
- This approach is unsuitable for islanding since the net load would exceed zero on multiple occasions
- Future improvements on this microgrid system will integrate load control, and a faster reaction time to the system that should enable full capability of automated islanding

Acknowledgements

I would like to give a special thanks to the CE-CERT staff, and my family who have supported me throughout my research and without them this contribution would not be possible.

Contact Information

- Researcher: Luis Fernando Enriquez-Contreras
- Web: https://www.cert.ucr.edu/transportationsystems-vehicle-infrastructure-interaction
- Email: lenri001@ucr.edu
- Phone: +1 (909) 763 1899