Class 12 Wrap-up H Academy

March 24th, 2021 - By Nathan Landman

Class 1 - What is Data Science?

Class 1 - What is Data Science?

Class 1 - What is Data Science?

Class 2 - Python Basics - Data Structures

Class 2 - Python Basics - Control Flow

Class 3 - The Python Data Science Ecosystem

Class 4 - Pandas and Numpy

Series

apples 0 3 1 2 2 0 3 1

+

Series

	oranges
0	0
1	3
2	7
3	2

DataFrame

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

Class 4 - Pandas Split-Apply-Combine (groupby)

Class 5 and 6 - Exploring Datasets

Class 5 and 6 - Exploring Datasets

$$\sigma = \frac{\sum_{1}^{n=1} (x_i - \bar{x})^2}{n}$$
 $\sigma = \sqrt{S^2}$

Class 7 - Time Series Analysis - Trading BTC

Class 7 - A Machine Learning Engineer's Toolbox

Class 7 - A Machine Learning Engineer's Toolbox

Logistic Regression

Linear Regression

Class 7 - A Machine Learning Engineer's Toolbox

Bias vs. Variance

Overfit vs. Underfit

Class 8 - A Machine Learning Engineer's Toolbox

Decision Trees

kNN

SVMs

Class 9 - A Machine Learning Engineer's Toolbox

Class 10 - Deep Learning in Machine Vision

An illustration of an artificial neuron. Source: Becoming Human.

Class 10 - Deep Learning Concepts

Training in Batches

Learning Rate

Epoch:

An Epoch represent one iteration over the entire dataset.

Batch:

We cannot pass the entire dataset into the Neural Network at once. So, we divide the dataset into number of batches.

Iteration:

If we have 1000 images as Data ane a batch size of 20, then an Epoch should run 1000/20 = 50 iteration.

Class 11 - Advances in NLP - Training

Text: Second Law of Robotics: A robot must obey the orders given it by human beings

Class 11 - Advances in NLP - Embeddings

Class 11 - Advances in NLP - Modern Models

Output:

Class 11 - Advances in NLP - Modern Models

Output:

Web3.0

Centralized vs Decentralized

No unique Point of Failure > more secure

From the Book "**Token Economy**" by Shermin Voshmgir, 2019 Excerpts available on **https://blockchainhub.net**

Web3.0

History of the Web

From the Book "Token Economy" by Shermin Voshmgir, 2019 Excerpts available on https://blockchainhub.net

Where to go Next

Refresher - https://flatironschool.com/free-courses/data-science-bootcamp-prep

Computer Vision - https://cs231n.github.io/

NLP - http://web.stanford.edu/class/cs224n/

Statistics - https://www.coursera.org/learn/statistics-for-data-science-python

Algorithms - https://www.coursera.org/browse/computer-science/algorithms

Reinforcement Learning - https://www.coursera.org/courses?query=reinforcement%20learning

General Computer Science - https://www.edx.org/course/subject/computer-science/

Thank you, and I hope you enjoyed the course!

