Cálculo diferencial - Taller 3

Docente: Diego Mauricio Cortés Casas

I. INSTRUCCIONES

La solución de este taller se debe:

- Entregar en archivo de extensión PDF.
- Redactar digitalmente en formato IEEE en parejas.
- Nombrar como

Diferencial_apellido1_apellido2_T3. Ej: Diferencial_Cortés_Casas_T3.

Se habilitará una actividad en el google Classroom en la que podrán cargar el documento final. El plazo de entrega será el **25 de noviembre, a las 06:00h**. Luego de esta hora, la actividad se cerrará automáticamente. No se recibirán entregas por otro medio. Debe recordarse que toda investigación sin referencias bibliográficas es considerada como PLAGIO y será calificada con cero (0). En caso de dudas o aclaraciones, favor escribir un correo con el siguiente asunto: **Diferencial_apellido_inquietud** o en el horario de clase.

Para este ejercicio, asigne los siguientes datos:

- A: Último dígito DNI de estudiante 1.
- **B**: Último dígito DNI de estudiante 2.

II. EJERCICIO 1

La ley de Planck plantea que un cuerpo negro irradia su energía espectralmente, es decir, a partir del infinito rango de frecuencias electromagnéticas. Así mismo, también varía dependiendo de la temperatura a la cuál se encuentra el objeto. Especialmente los astros del universo satisfácen esta forma de transmisión de energía. Dicha ley es satisfecha por la siguiente ecuación:

$$B(\nu, T) = \frac{2h\nu^3}{c^2} \cdot \left(exp\left(\frac{h\nu}{k_B T}\right) - 1\right)^{-1} \tag{1}$$

Donde ν y T, además de ser las variables, son la frecuencia de medición y T la temperatura del cuerpo, respectivamente. Los demás valores se presenta en la tabla I.

Tabla I Constantes de la ley de Planck

Símbolo	Nombre	Magnitud	Unidades
h	Constante Planck	$6,626 \times 10^{-34}$	J·s
c	Velocidad luz	3×10^{8}	$m \cdot s^{-1}$
k_B	Constante Boltzmann	$1,38 \times 10^{-23}$	$J \cdot K^{-1}$

II-A. Punto 1: T variable, ν constante

Si el cuerpo es analizado a una frecuencia electromagnética de $\left(\left|\frac{{\bf A}-{\bf B}}{4}\right|+3\right)\times 10^{14}$ Hz. Debe hallarse:

■ La temperatura máxima presente en el cuerpo a partir de la expresión (1).

II-B. Punto 2: T constante, ν variable

Si el objeto que se analiza tiene una temperatura de $\left(\left|\frac{\mathbf{A}-\mathbf{B}}{2}\right|+3\right)\times 10^3$ K. Debe determinarse:

- Si la función (1) presenta asíntotas.
- Si la función (1) presenta discontinuidades.
- Un aproximado del máximo de la frecuencia a la temperatura del objeto. Utilice el método de Newton-Raphson con un error de orden 10⁻⁵ y adjunte el código de la solución.
- Dominio y Rango de la función (1).

III. EJERCICIO 2

En primer lugar, Asigne como R al residuo de la división $\frac{A+B}{2}$ y selecciones el caso que le corresponda.

En la termoelectricidad, la propiedad más importante por determinar es el coeficiente de Seebeck. [1] determinan como varía esta propiedad con la temperatura para los semiconductores YbAl₂ y para YbAl₃. Este artículo se encuentra anexo a este documento. Determine los puntos críticos del coeficiente Seebeck del semiconductor fijado por el valor R:

- $\blacksquare R=1 \longrightarrow YbAl_2$
- \blacksquare R=0 \longrightarrow YbAl₃

IV. EJERCICIO 3

[2] registra la evolución de los casos confirmados de Covid-19 en la ciudad de Bogotá desde que iniciaron los casos hasta la fecha en la que se escribe este documento. Determine en que días se presentó la mayor aceleración de contagio y desinfección de la enfermedad. Utilice diferencias finitas de primer y segundo orden (adelantadas/atrasadas y centradas). Adjunte el código de resolución.

REFERENCIAS

- [1] H. Van-Daal, P. Van-Aken, and K. Buschow, "The seebeck coefficient of ybal₂ and ybal₃," *Physics letters*, vol. 49A, no. 3, 1974.
- [2] O. de salud de Bogotá, "Casos confirmados de covid-19." [Online]. Available: https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/enfermedades-trasmisibles/covid19/