Test

Siyi Zhao (赵思逸) 🗈

2023年10月31日

目录

1	Expansion		1
	1.1	from time to scale factor	1
	1.2	to cosmology redshift and Hubble parameter	2
	1.3	Hubble sphere	9

1 Expansion

1.1 from time to scale factor

We have two kinds of "time" in cosmology since our Universe are expanding.

If we focus on the coordinate, the metric is written as (c=1)

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$
(1)

By scaling the time axis, we can get the conformal time, and have an "appearantly" Minkovski spacetime

$$ds^{2} = a^{2}(t)(-d\tau^{2} + dx^{2} + dy^{2} + dz^{2})$$
(2)

The scale factor can be solved from the Friedmann equation, ¹

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho\tag{3}$$

with a model of energy-momentum contained in the Universe like ²

$$\frac{\rho(t)}{\rho_{\rm cr}} = \sum_{s=\gamma, \text{m}, \nu, \text{DE}} \Omega_s a(t)^{-3(1+w_s)}$$

$$\tag{4}$$

This model assumes a constant of equation of state.

In our Λ CDM model (reserve curvature)

$$\frac{\rho(t)}{\rho_{\rm cr}} = \Omega_{\rm R} \left(\frac{a}{a_0}\right)^{-4} + \Omega_{\rm M} \left(\frac{a}{a_0}\right)^{-3} + \Omega_{\Lambda} + \Omega_{\rm K} \left(\frac{a}{a_0}\right)^{-2} \tag{5}$$

¹also deriveing the Friedmann equations from Einstein field equation is not that trival, see another block in preparation..

²Friedmann equation itself has assumptions about the energy-momentum, it's ideal fluid which can be parameterized by only ρ and P..

1 EXPANSION 2

just solve the differencial equation

$$\dot{a} = H_0 a_0 \sqrt{\Omega_R \left(\frac{a}{a_0}\right)^{-2} + \Omega_M \left(\frac{a}{a_0}\right)^{-1} + \Omega_\Lambda \left(\frac{a}{a_0}\right)^2 + \Omega_K} \tag{6}$$

$$t(a_1) = \int_0^{a_1} \frac{\mathrm{d}a}{H_0 a_0 \sqrt{\Omega_R \left(\frac{a}{a_0}\right)^{-2} + \Omega_M \left(\frac{a}{a_0}\right)^{-1} + \Omega_\Lambda \left(\frac{a}{a_0}\right)^2 + \Omega_K}}$$
(7)

It's not linear, so need numerical solution. See code/expansion.ipynb

But it's OK to see some exceptions.

Block 1. matter donimated:

$$\dot{a} = H_0 (a_0 \Omega_M)^{\frac{1}{2}} a^{-\frac{1}{2}} \tag{8}$$

then

$$t = \frac{2}{3H_0(a_0\Omega_M)^{\frac{1}{2}}}a^{\frac{3}{2}} \tag{9}$$

assumed a(t=0) = 0.

1.2 to cosmology redshift and Hubble parameter

It will be easy to use redshift and Hubble parameter H(z) in the calculations. Define redshift as

$$\frac{a}{a_0} = \frac{1}{1+z} \tag{10}$$

And turn Eq. (3) to

$$H(a) \equiv \frac{\dot{a}}{a} = H_0 \sqrt{\frac{\rho(a)}{\rho_{\rm cr}}} \equiv H_0 E(a)$$
 (11)

Eq. (5) turns out

$$E(a) = \sqrt{\Omega_{\rm R} \left(\frac{a}{a_0}\right)^{-4} + \Omega_{\rm M} \left(\frac{a}{a_0}\right)^{-3} + \Omega_{\Lambda} + \Omega_{\rm K} \left(\frac{a}{a_0}\right)^{-2}}$$
(12)

$$E(z) = \sqrt{\Omega_{\rm R}(1+z)^4 + \Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda} + \Omega_{\rm K}(1+z)^2}$$
 (13)

1.3 Hubble sphere

Hubble sphere is where the Hubble flow velocity equals to the speed of light.

$$v_{\rm H} = \dot{a}\chi\tag{14}$$

The comoving distance

$$\chi = \int_{a_1}^{a_0} \frac{\mathrm{d}a}{a^2 H(a)} \tag{15}$$

Hubble sphere as a function of time should be

$$\chi = \frac{c}{aH(a)} \tag{16}$$

参考文献 3

$\mathbf{L\!\!\!/} \mathbf{T}_{\mathbf{E}} \mathbf{X}$

$$H.$$
 (17)

$$H|\psi\rangle$$
 (18)

citation example[Lyth and Liddle(2009)]

参考文献

[Lyth and Liddle(2009)] D. H. Lyth and A. R. Liddle, *The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure* (Cambridge University Press, Cambridge, UK, 2009).