Expedia Hotel Recommendation

Anandan Balaji 17 June 2016

Overview

- Problem Definition
- Dataset
- EDA / Model
- Manual Feature Engineering
- Results

Problem Definition

Predict the hotel cluster for an Expedia customer.

- Hotels are grouped on many parameters and is called hotel cluster.
- The hotel clusters are numbered from 1 to 100.

Dataset

The following are the datasets provided and they are available at Kaggle,

www.kaggle.com/c/expedia-hotel-recommendations/data

- train.csv the training dataset
- test.csv the test dataset
- destinations.csv hotel search latent attributes
- sample_submission.csv the sample submission file in the correct format

Dataset – Important Variables

Variable Description

posa_continent ID of the continent

user_location_region Region ID where customer is located

orig_destination_distance Physical distance between the hotel and customer at the time of search

hotel_continent Hotel continent

hotel_country Hotel Country

hotel_country Hotel Country

is_booking 1 if a booking, o if a click

hotel_cluster ID of the hotel cluster

EDA

Source and Destination continent spread

EDA (2)

Hotel Cluster spread

EDA, Model

 By plotting, no pattern/ correlation was found between the dependent and independent variables.

- Linear Regression Model
 - The R-squared value was negligible = 0.005
 - However, the dependent variables is_booking, and is_package had coefficients which were significant.

EDA, Model (2)

- CART (Classification And Regression Tree)
 - Unable to build tree beyond root node
 - The CP (Complexity factor) was negligible 0.006

 The detailed analysis report is available at https://github.com/abalaji-blr/CapstoneProject/tree/master/Deliverables/ExpediaHotelReco.pdf.

Manual Feature Engineering

- The basic Machine Language algorithms were not suitable for this problem.
- However, we have identified some dependent variables which are significant.
- Let's derive features using them and predict the hotel cluster.

Feature #1

Identify often used hotel clusters

- For a given destination, identify the often used top five hotel clusters
- Also, give importance to is_booking
 - If is_booking is 1, give weightage as 1
 - If is_booking is 0, give weightage as 0.15

Feature #2

Use orig_destination_distance

- There are few records match between test and training dataset based on orig_destination_distance
- Predict top five clusters using that
- Give preference to this feature result as they are appropriate match when compared with feature 1 results.

Results

- Combine results from Feature #1 and Feature #2
 - Pick 5 hotel clusters
 - Make sure they are unique.

 The complete R script is available at this <u>https://github.com/abalaji-blr/CapstoneProject/tree/master/Deliverables/ExpediaScript.R</u>

Results (2)

 The Manual Feature Engineering approach yielded the Mean Average Precision Score at 5 (MAP@5) of 0.47122!

1153 ↑119 BalajiAnandan 0.47122 3 Fri, 03 Jun 2016 13:12:55

Your Best Entry ↑

You improved on your best score by 0.15706.

You just moved up 151 positions on the leaderboard.

Future Work

 Explore advanced Machine Language algorithms like Random Forest, XGBoost etc.

Thank You