ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARIS, TÉLÉCOM PARIS, MINES PARISTECH, MINES SAINT-ÉTIENNE, MINES NANCY, IMT Atlantique, ENSAE PARIS CHIMIE PARISTECH.

Concours Centrale-Supélec (Cycle international), Concours Mines-Télécom, Concours Commun TPE/EIVP.

CONCOURS D'ADMISSION 2022

CORRIGÉ DE LA SECONDE ÉPREUVE DE PHYSIQUE

Filière PC

(Durée de l'épreuve: 4 heures) PHYSIQUE II — PC.

A propos des araignées

Des araignées volantes Ι

□ - 1. On assimile une araignée à une sphère d'eau : leur masse est donc $m_{\rm g} = \frac{4}{3}\pi r^3 \rho_{\rm eau}$ avec $r \in [r_{\rm min} = 1~{\rm mm}, r_{\rm max} = 3, 5~{\rm mm}]$ avec $\rho_{\rm eau} = 10^3 {\rm kg \cdot m^{-3}}$ on a donc $\boxed{m_{\rm min} = 2~{\rm mg} < m_{\rm g} < m_{\rm max} = 180~{\rm mg}}$

$$m_{\rm min} = 2\,{\rm mg} < m_{\rm g} < m_{\rm max} = 180\,{\rm mg}$$

 \Box - 2. On applique le théorème de Gauss sur une sphère de rayon $r > R_t$ centrée sur la terre, il vient $4\pi r^2 E(r) = Q/\varepsilon_0 = 4\pi R_T^2 \sigma/\varepsilon_0$ ainsi $E(r) = (R_T/r)^2 \sigma/\varepsilon_0$ pour $r = R_T$ on obtient $E_0 = \sigma/\varepsilon_0$ soit $\sigma = E_0\varepsilon_0$ et numériquement $\sigma = 1 \,\mathrm{nC}$.

Si ce modèle est correct, le champ dérive du potentiel $V(r) = R_T^2 E_0 \left(\frac{1}{R_T} - \frac{1}{r} \right)$ ainsi

$$V(R_T + z_0) = R_T^2 E_0 \left(\frac{1}{R_T} - \frac{1}{R_T + z_0} \right) = R_T^2 E_0 \left(\frac{1}{R_T} - \frac{1}{R_T} \left(1 - \frac{z_0}{R_T} \right) + o\left(\frac{z_0}{R_T} \right) \right)$$

$$= E_0 z_0 + o\left(\frac{z_0}{R_T} \right)$$

avec $z_0 = 60 \,\mathrm{km}$, le d.l. est correct mais la valeur numérique $V\left(R_T + z_0\right) = 120 \times 6.10^4 = 120 \,\mathrm{km}$ $7~260~{\rm kV\cdot m^{-1}}$ ne correspond pas à la mesure effectuée qui est de $360~{\rm kV\cdot m^{-1}}$, le modèle surestime la valeur du potentiel d'un facteur 20. Il y a des pertes dans l'atmosphère...

Le modèle n'est pas correct

 \Box - 3. Le nombre de Reynolds compare les termes convectifs et les termes diffusifs dans l'équation de Navier-Stokes $\mathcal{R}_e = \frac{\rho V \ell}{\eta}$. Pour déterminer le régime dans le problème du décolage des araignées c'est le rayon qu'il convient de prendre en compte car c'est celui-ci qui est face au vent de vitesse V=U. On a donc $\ell=r$ et

$$\mathcal{R}_e = \frac{\rho_{\text{air}} Ur}{\eta} \text{ soit } \boxed{\mathcal{R}_e \simeq \frac{1 \times 0.1 \times 10^{-6}}{1.9.10^{-5}} \simeq 5 \times 10^{-3} \ll 1}$$

On est en présence d'un écoulement laminaire .

- □ 4. Dans un tel écoulement non turbulent la force hydrodynamique F_h est proportionnelle à la vitesse relative, à la viscosité de l'air et à la taille caractéristique soumise à l'écoulement d'air. Le coefficient de proportionalité dépend de facteurs géométriques. En supposant que les forces s'additionnent pour chaque fil, n fils procurent une force nF_h qui doit au minimum compenser le poids. On a donc $mg = nF_h$ soit $n = mg/F_h$ avec la valeur proposée et la masse estimée pour les araignées on trouve $n \simeq 12$ fils pour les plus petites et un bon millier pour les plus grosses : la force hydrodynamique ne suffit pas.
- \square 5. Il y a de nombreuses méthodes pour faire ce calcul...

L'une d'elle, suggérée..., consiste à se placer dans le triangle $A_1A_kA_{n+k}$ avec 1 < k < n+1, rectangle en A_1 car A_kA_{n+k} est un diamètre du cercle. On mesure les angles utiles sur un schéma

On voit immédiatement que $(O\widehat{A_1}, O\widehat{A_k}) = (k-1)\pi/n = 2\alpha_k$ et $(A_{n+k}\widehat{A_1}, \widehat{A_{n+k}}A_k) = \alpha_k$ de plus $A_kA_{n+k} = 2L\sin\alpha$. On en déduit que $A_1A_k = 2L\sin\alpha\sin(\alpha_k)$ et $A_1A_{n+k} = 2L\sin\alpha\cos(\alpha_k)$ le potentiel créé en A_1 par les charges A_k et A_{n+k} est donc

$$V_k = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{A_1 A_k} + \frac{1}{A_1 A_{n+k}} \right) = \frac{q}{8\pi\varepsilon_0 L \sin \alpha} \left(\frac{1}{\sin\left(\frac{(k-1)\pi}{2n}\right)} + \frac{1}{\cos\left(\frac{(k-1)\pi}{2n}\right)} \right)$$

le potentiel total en A_1 est la somme sur toutes les valeurs de k comprises entre 2 et n de tous ces V_k ainsi

$$V = \sum_{k=2}^{n} V_k \text{ soit } V = \frac{q}{8\pi\varepsilon_0 L \sin\alpha} \sum_{k=1}^{n-1} \left[\frac{1}{\sin\left(\frac{k\pi}{2n}\right)} + \frac{1}{\cos\left(\frac{k\pi}{2n}\right)} \right] \implies \boxed{p = 8}$$

L'énergie potentielle d'interaction est donc $E_{\rm int} = \frac{1}{2} \times 2nqV$ le facteur $\frac{1}{2}$ est là pour ne pas compter deux fois chaque paire. On a donc

$$E_{\rm int} = \frac{nq^2}{8\pi\varepsilon_0 L \sin\alpha} \sum_{k=1}^{n-1} \left[\frac{1}{\sin\left(\frac{k\pi}{2n}\right)} + \frac{1}{\cos\left(\frac{k\pi}{2n}\right)} \right]$$

La valeur de α qui maximise cette énergie d'interaction est donc celle qui minimise $\sin \alpha$, soit $\alpha_e = \pi/2$. L'éventail est alors complètement ouvert : tous les fils sont dans le même plan.

 \Box - 6. En coordonnées cylindriques la masse m modélisant le fil est située en M telle que $\overrightarrow{OM} = \frac{L}{2} \sin \alpha \widehat{e}_r + \frac{L}{2} \cos \alpha \widehat{e}_z$ son énergie cinétique est donc $E_{c,1} = \frac{1}{2} m \left(\frac{d\overrightarrow{OM}}{dt}\right)^2 = \frac{1}{8} m L^2 \dot{\alpha}^2$, comme il y a 2n fils l'énergie cinétique totale est $E_{c,n} = \frac{1}{4} n m L^2 \dot{\alpha}^2$. L'énergie mécanique totale de l'éventail est donc

$$E = \frac{1}{4} nm L^2 \dot{\alpha}^2 + \frac{nq^2 G(n)}{8\pi \varepsilon_0 L \sin \alpha}$$

Le système est conservatif, son énergie mécanique est conservée, en la dérivant par rapport au temps on obtient l'équation du mouvement

$$\frac{dE}{dt} = 0 \implies \boxed{\ddot{\alpha} - \frac{q^2 G(n) \cos \alpha}{4\pi \varepsilon_0 m L^3 \sin^2 \alpha} = 0}$$

Au voisinage de l'équilibre $\alpha = \frac{\pi}{2} + \varepsilon$ avec $\varepsilon \ll 1$, on a

$$\ddot{\varepsilon} + \frac{q^2 G\left(n\right) \sin \varepsilon}{4\pi \varepsilon_0 m L^3 \cos^2 \varepsilon} \text{ en linéarisant } \boxed{\ddot{\varepsilon} + \omega^2 \varepsilon = 0 \text{ avec } \omega = \sqrt{\frac{q^2 G\left(n\right)}{4\pi \varepsilon_0 m L^3}}}$$

L'équilibre α_e est donc stable. La période des oscillations est $T=2\pi/\omega$ soit $T=\sqrt{\frac{16\pi^3\varepsilon_0 mL^3}{q^2G\left(n\right)}}$

 \Box - 7. Le champ électrostatique extérieur agissant sur les fils de longueur L et inclinés d'un angle α rajoute une énergie potentielle $E_{\rm ext} = 2nqL\cos\alpha E_0$. La nouvelle énergie potentielle totale dans notre approximation (élasticité et pesanteur négligées) s'écrit

$$E_{p} = \frac{nq^{2}G(n)}{8\pi\varepsilon_{0}L\sin\alpha} + 2nqL\cos\alpha E_{0}$$

l'équilibre est donc obtenu pour α_e tel que

$$\left. \frac{dE_p}{d\alpha} \right|_{\alpha = \alpha_e} = 0 \implies \boxed{\frac{\sin^3 \alpha_e}{\cos \alpha_e} = -\frac{qG(n)}{16\pi \varepsilon_0 L^2 E_0}}$$

On voit ainsi que q doit être négatif pour que l'éventail s'ouvre vers le haut. Par ailleurs $f: x \mapsto \sin^3(x)/\cos(x)$ est une fonction croissante tout comme G(n), en conclusion : $\alpha_e \nearrow \sin n \nearrow$, $\alpha_e \nearrow \sin -q \nearrow$, $\alpha_e \searrow \sin L \nearrow$ et $\alpha_e \searrow \sin E_0 \nearrow$. L'observation d'un angle $\alpha_e = \pi/6$ pour 6 fils permet de mesurer la charge q portée par chaque fil :

$$q = -\frac{16\pi\varepsilon_0 L^2 E_0}{G(3)} \frac{\sin^3 \alpha_e}{\cos \alpha_e} = -\frac{20}{19} 10^{-9} \simeq -1 \text{ nC}$$

 \Box - 8. La force électrostatique due à la présence du champ extérieur E_0 et au fait que les 2n fils possèdent une charge q est $F=2nqE_0$ dirigée vers le haut grâce au signe de q. Cette force doit compenser le poids donc

$$mg = 2nqE_0 \implies n = \frac{mg}{2qE_0}$$

pour une araignée de masse $m = 5 \times 10^{-6}$ kg on doit donc avoir

$$n > \frac{mg}{2qE_0} \implies n \gtrsim 250 \text{ fils}$$

Il faut un champ électrique plus fort!

 \square – 9. Question ouverte : réponse ouverte !

On peut aller:

- d'une description précise du phénomène (comme dans le sujet MP),
- à l'explication classique avec deux sphères que l'on rapproche (qui n'est pas très convaincante car des sphère ne seront jamais pointues),
- à des commentaires sur le fait que les équipotentielles V= cste se resserrent au voisinage d'une pointe créant ainsi un champ $\vec{E}=-\mathrm{grad}\,V$ plus important.

II Produire de la musique avec des fils d'araignée

Il n'y a aucun mouvement horizontal donc $T_x(x+dx,t)-T_x(x,t)=0$ ce qui signifie que T_x est indépendant de x. On a par ailleurs $\tan\alpha=\frac{dz}{dx}=\frac{T_x}{T_z}$ et en écrivant

 $T = \sqrt{T_x^2 + T_z^2} = T_x \left(1 + \left(\frac{dz}{dx}\right)^2\right)^{1/2}$. Au premier ordre en $\frac{dz}{dx}$ on peut écrire ds = dx, $\cos \alpha = 1$, $\sin \alpha = \tan \alpha = \frac{dz}{dx}$ et $T = T_x$ et l'on peut en conclure que la norme de la tension T est homogène dans le fil.

 \Box – **11**. La projection du PFD sur \hat{e}_z donne $\mu ds \frac{\partial^2 z}{\partial t^2} = T_z \left(x + dx \right) - T_z \left(x \right)$ en utilisant le fait qu'à l'ordre où l'on travaille ds = dx et $T_z = \frac{\partial z}{\partial x} T_x = T \frac{\partial z}{\partial x}$ il vient

$$\mu dx \frac{\partial^2 z}{\partial t^2} = T \left[\left. \frac{\partial z}{\partial x} \right|_{x+dx} \left. \frac{\partial z}{\partial x} \right|_x \right] \text{ soit } \boxed{ \frac{\partial^2 z}{\partial t^2} - c^2 \frac{\partial^2 z}{\partial x^2} = 0 }$$

où $c = \sqrt{T/\mu}$ est la célérité des ondes transversales qui se propagent dans le fil.

 \Box - 12. La fonction z(x,t) = f(u) + g(v) avec u = x - ct et v = x + ct est telle que

$$\frac{\partial^2 z}{\partial t^2} = c^2 \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 g}{\partial v^2} \right) \text{ et } \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 g}{\partial v^2}$$

Elle est donc bien solution de l'équation de propagation. La fonction f correspond à l'onde plane progressive qui se propage vers les x croissants à la vitesse c, et la fonction f correspond à l'onde plane progressive qui se propage vers les x décroissants à la vitesse c.

 \Box - 13. Les deux extrémités du fil sont ici attachées ce qui impose $\forall t, \underline{z}(0,t) = \underline{z}(\ell,t) = 0$. Ces conditions aux limites se matérialisent dans le système

$$\left\{ \begin{array}{l} \underline{A} + \underline{B} = 0 \\ \underline{A}e^{-jk\ell} + \underline{B}e^{+jk\ell} = 0 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} \underline{\underline{A}} = -\underline{B} \\ \underline{\underline{A}}\left(e^{-jk\ell} - e^{+jk\ell}\right) = 0 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} \underline{\underline{A}} = -\underline{B} \\ \underline{\underline{A}}\sin k\ell = 0 \end{array} \right\}$$

Si $\underline{A} = 0$ alors $\underline{B} = 0$ et aucune onde ne se propage, par contre $\sin k\ell = 0 \implies k = k_n = n\pi/\ell$ avec $n \in \mathbb{N}$, correspond à des modes de propagation. La relation de dispersion $\omega = kc$ permet d'obtenir les pulsations de ces modes $\omega_n = n\pi c/\ell$ avec $n \in \mathbb{N}$. Il s'agit d'onde stationnaires pour lesquelles $\underline{z}(x,t) = \underline{C}e^{j\omega_n t}\sin(k_n x)$ soit $z(x,t) = C\cos(\omega_n t)\sin(k_n x)$: ce sont des vibrations en phase.

- \Box 14. La fréquence du son est $f_n = \frac{\omega_n}{2\pi} = \frac{nc}{2\ell} = \frac{n}{2\ell} \sqrt{\frac{T}{\mu}}$ on a donc $T = \frac{4\mu\ell^2 f_n^2}{n^2}$ et pour le fondamental (n=1) il vient $T = 4\mu\ell^2 f_1^2$ soit numériquement $T = 2.10^{-2} \,\mathrm{N}$. Cette valeur correspond à quelques millièmes de la tension qui la ferai sortir de son régime d'élasticité : le fil de soie peut donc être utilisé pour fabriquer une corde de violon.
- $\Box \mathbf{15}. \text{ On cherche des solutions sous la forme } \underline{z} = \underline{A}e^{j(\omega t kx)} \text{ il vient } \frac{E\pi a^4}{4\mu}k^4 + c^2k^2 \omega^2 = 0. \text{ On}$ $\text{cherche les solutions } k^2 > 0 \text{ de cette \'equation, il vient} \boxed{k^2 = \frac{2T}{E\pi a^4}\left(\sqrt{1 + \frac{E\pi a^4\omega^2}{\mu c^4}} 1\right)}$

Cette valeur de k doit être injectée dans les deux modes x croissant et x décroissant. Les conditions aux limites étant identiques on trouve toujours $k = k_n = n\pi/\ell$ ce qui donne

$$\frac{n^2\pi^2}{\ell^2} = \frac{2T}{E\pi a^4} \left(\sqrt{1 + \frac{E\pi a^4 \omega^2}{\mu c^4}} - 1 \right) \implies \omega_n^2 = \frac{\mu c^4}{E\pi a^4} \left[\left(1 + \frac{Ea^4 n^2 \pi^3}{2T\ell^2} \right)^2 - 1 \right]$$

en développant le carré on obtient

$$f_n^2 = \frac{\omega_n^2}{4\pi^2} = \frac{c^2 n^2}{4\ell^2} \left[1 + \frac{Ea^4 \pi^3}{4T\ell^2} n^2 \right] \implies f_n = \frac{cn}{2\ell} \sqrt{1 + Bn^2} \text{ avec}$$
 $B = \frac{Ea^4 \pi^3}{4T\ell^2}$

Les fréquences ne sont plus des multiples d'une fréquence fondamentale, le son n'est plus harmonique. Pour ℓ et T fixés, on peut calculer le rapport

$$\frac{B_{\text{soie d'araignée}}}{B_{\text{corde classique}}} = \frac{E_{\text{soie d'araignée}} \times (a_{\text{soie d'araignée}})^4}{E_{\text{corde classique}} \times (a_{\text{corde classique}})^4}$$
$$= \frac{60}{25} \left(\frac{35}{40}\right)^4 = \frac{3 \times 7^4}{2 \times 5 \times 8^3} = 1,4$$

un violon utilisant des fils d'araignées produit un son moins harmonique et plus aigu...d'une très grande qualité mais ça ils ne peuvent pas le savoir!

III Chapelet de gouttes d'eau sur une toile d'araignées

III.A Approche statique

 \Box – 16. Le volume initial est celui d'un cylindre évidé

$$V = \pi \left[(a + h_0)^2 - a^2 \right] \lambda \implies V = \pi \left[2ah_0 + h_0^2 \right] \lambda = \pi \left[R_0^2 - a^2 \right] \lambda$$

en présence de la modulation $h(z) = h_m + \varepsilon \cos(kz)$ on obtient

$$V = \pi \int_0^{\lambda} \left[2ah(z) + h^2(z) \right] dz$$
$$= \pi \int_0^{\lambda} \left[2ah_m + \varepsilon a \cos(kz) + h_m^2 + 2\varepsilon h_m \cos(kz) + \varepsilon^2 \cos^2(kz) \right] dz$$

La valeur moyenne sur une longueur d'onde se simplifie en $V = \pi \left(2ah_m + h_m^2 + \frac{1}{2}\varepsilon^2\right)\lambda$ la conservation du volume depuis l'état sans modulation donne enfin

$$h_m^2 + 2ah_m + \frac{1}{2}\varepsilon^2 - R_0^2 + a^2 = 0 \implies h_m + a = R_0\sqrt{1 - \frac{1}{2}\left(\frac{\varepsilon}{R_0}\right)^2}$$

si $\varepsilon \ll R_0$ un développement limité à l'ordre 1 de la racine fournit enfin, avec $h_0 = R_0 - a$

$$h_m + a = R_0 - \frac{1}{4} \frac{\varepsilon^2}{R_0} \implies h_m = h_0 - \frac{\varepsilon^2}{\chi R_0} \text{ avec } \chi = 4$$
 (1)

 \Box – 17. L'énergie de surface sur une portion de longueur λ s'écrit dans l'état initial

$$E_0 = 2\pi \left(a + h_0 \right) \gamma \lambda$$

et dans l'état modulé $E = 2\pi\gamma \int_0^{\lambda} (a + h_0) ds$. On écrit l'expression de ds founie à l'ordre 1, il vient $ds = \left(1 + \frac{1}{2} \left(\frac{dR}{dz}\right)^2\right) dz$ avec $R(z,t) = a + h_m + \varepsilon(t) \cos(kz)$ et il vient

$$E = 2\pi\gamma \int_0^{\lambda} \left[a + h_m + \cos(kz) \right] \left[1 + \frac{1}{2} \varepsilon^2 k^2 \sin^2(kz) \right] dz$$

tous les facteurs constant de $\cos(kz)$ disparaissent dans l'intégration qui se simplifie en

$$E = 2\pi\gamma \int_0^{\lambda} [a + h_m] \left[1 + \frac{1}{2}\varepsilon^2 k^2 \sin^2(kz) \right] dz$$
$$= 2\pi\gamma\lambda \left[a + h_m + \frac{1}{4}\varepsilon^2 k^2 (a + h_m) \right]$$

on peut maintenant calculer

$$\Delta E = E - E_0 = 2\pi\gamma\lambda \left[h_m - h_0 + \frac{1}{4}\varepsilon^2 k^2 \left(a + h_m \right) \right]$$

avec les expressions calculées pour h_m à la question précédente il vient à l'ordre ε^2

$$\Delta E = 2\pi\gamma\lambda \left[-\frac{\varepsilon^2}{4R_0} + \frac{1}{4}\varepsilon^2 k^2 \left(\underbrace{a + h_0}_{R_0} - \frac{\varepsilon^2}{\chi R_0} \right) \right]$$
$$= \frac{\pi\gamma\lambda\varepsilon^2}{2R_0} \left[k^2 R_0^2 - 1 \right] \quad \text{CQFD}$$

- \Box 18. La fonction $\Delta(\varepsilon)$ est une parabole passant par l'origine et dont l'axe de symétrie est $\varepsilon = 0$.
 - Si $k = \frac{2\pi}{\lambda} > \frac{1}{R_0}$, la parabole est ouverte vers le haut, la fonction ΔE présente un minimum en $\varepsilon = 0$: l'équilibre constitué par le cylindre non modulé est stable ;
 - Par contre si $\lambda > 2\pi R_0$, la fonction ΔE présente un maximum en $\varepsilon = 0$: l'équilibre est instable et se rompt en présence d'une perturbation. On s'attend à l'apparition de gouttes écartées de la longueur d'onde...

III.B Approche dynamique

□ - 19. Le problème est invariant par rotation autrour de l'axe Oz, donc v ne dépend pas de θ , de plus dans la limite $L \gg a$ le cylindre peut-être considéré comme infini et donc invariant par translation selon cet axe : v ne dépend pas non plus de z. Finalement $v = v(r) \hat{e}_z$. Si l'on ne considère pas le champ de pesanteur, l'équation de Navier-Stokes s'écrit

$$\rho \left[\frac{\partial v}{\partial t} + \left(\vec{v}.\vec{\nabla} \right) \vec{v} \right] = -\vec{\nabla} P - \eta \Delta \vec{v}$$

Attendu que $\vec{v} = v(r) \hat{e}_z$, la composante selon \hat{e}_z de $(\vec{v}.\vec{\nabla})\vec{v}$ est nulle. En régime stationaire, la composante selon \hat{e}_z de l'équation de Navier-Stokes est donc

$$\frac{\eta}{r}\frac{d}{dr}\left(r\frac{dv}{dr}\right) = \frac{\partial P}{\partial z}$$

Etant donné que les variables z et r sont indépendantes, les deux termes de cette égalité sont des constantes. On a donc

$$\frac{\eta}{r}\frac{d}{dr}\left(r\frac{dv}{dr}\right) = \frac{\partial P}{\partial z} = \beta = cste$$

 \Box - 20. On intègre l'équation précédente pour la variable r, il vient

$$\frac{d}{dr}\left(r\frac{dv}{dr}\right) = \frac{\beta}{\eta}r \implies \frac{dv}{dr} = \frac{\beta}{2\eta}r + \frac{k}{r}$$

La constante d'intégration k est fixée par la condition $v'(R_0) = 0$ qui donne $k = -\frac{\beta}{2\eta}R_0^2$. On intègre une nouvelle fois pour avoir

$$v(r) = \frac{\beta}{4\eta}r^2 - \frac{\beta R_0^2}{2\eta}\ln(r) + k$$

la constante est maintenant fixée par la contrainte $v\left(a\right)=0$ qui donne $k=\frac{\beta R_0^2}{2\eta}\ln\left(a\right)-\frac{\beta}{2\eta}a^2$ on obtient donc finalement

$$v\left(r\right) = -\frac{\beta a^{2}}{2\eta} \left\{ \frac{1}{2} \left[1 - \left(\frac{r}{a}\right)^{2} \right] + \left(\frac{R_{0}}{a}\right)^{2} \ln\left(\frac{r}{a}\right) \right\} \text{ et donc } \boxed{\alpha = \frac{\beta a^{2}}{2\eta}}$$

 \Box – 21. Le débit volumique s'obtient par l'intégrale

$$Q = 2\pi \int_{a}^{a+h_0} rv\left(r\right) dr = -\frac{\beta\pi a^3}{\eta} \int_{a}^{a+h_0} \frac{r}{a} \left\{ \frac{1}{2} \left[1 - \left(\frac{r}{a}\right)^2 \right] + \left(\frac{R_0}{a}\right)^2 \ln\left(\frac{r}{a}\right) \right\} dr$$

il est clair qu'il faut poser y = r/a et $x = h_0/a$ pour avoir

$$Q = -\frac{\pi \beta a^4}{\eta} \int_1^{1+x} \left\{ \frac{1}{2} \left[y - y^3 \right] + (1+x)^2 y \ln y \right\} dy$$

$$= -\frac{\pi \beta a^4}{2\eta} \left[\frac{1}{2} y^2 - \frac{1}{4} y^4 + (1+x)^2 y^2 \ln y - \frac{1}{2} (1+x)^2 y^2 \right]_1^{1+x}$$

$$= \frac{2\pi \beta a h_0^3}{3\eta} 3 \left[\frac{1+3(1+x)^4 - 4(1+x)^2 - 4(1+x)^4 \ln(1+x)}{16x^3} \right]$$

 \Box - 22. On repart de $h(z,t) = h_m + \varepsilon \cos(kz)$, il vient $\frac{\partial h}{\partial z} = -\varepsilon k \sin(kz)$ puis $\frac{\partial^3 h}{\partial z^3} = \varepsilon k^3 \sin(kz)$, avec l'expression proposée on a donc

$$\frac{dP}{dz} = -\gamma \left(\frac{1}{a^2} \frac{\partial h}{\partial z} + \frac{\partial^3 h}{\partial z^3} \right) = \frac{\gamma \varepsilon k}{a^2} \sin(kz) \left[1 - (ak)^2 \right]$$

en remplaçant β par cette nouvelle expression non stationaire dans le débit on obtient

$$Q(z,t) = \frac{2\pi\gamma k h_0^3}{3\eta a} \varepsilon(t) \xi(x) \sin(kz) \left[1 - (ak)^2\right]$$
 (2)

 \Box - 23. Considérons un élément de volume V de fluide compris entre les abscisses z et z+dz.

Pendant une durée dt un volume Q(z,t) dt entre dans V et un volume Q(z+dz,t) dt en sort. L'eau étant incompressible la variation de volume est donc

$$dV = [Q(z,t) - Q(z+dz,t)] dt \simeq -\frac{\partial Q}{\partial z} dz dt$$

Par ailleurs le volume du cylindre considéré s'écrit $V=\pi\left(R^2-a^2\right)dz$ avec $R=a+h\left(z,t\right)$ ainsi $dV=2\pi R dR dz=2\pi R \frac{\partial R}{\partial t} dt dz$ en évrivant l'égalité des deux variations de volume obtenues nous avons

$$-\frac{\partial Q}{\partial z}dzdt = 2\pi R \frac{\partial R}{\partial t}dtdz \implies \boxed{-\frac{\partial Q}{\partial z} = 2\pi R \frac{\partial R}{\partial t}}$$
(3)

 \Box - 24. En utilisant l'expression (2) on trouve

$$\frac{\partial Q}{\partial z} = \frac{2\pi\gamma k^2 h_0^3}{3\eta a} \varepsilon(t) \xi(x) \cos(kz) \left[1 - (ak)^2\right]$$

Comme $R=a+h\left(z,t\right)=a+h_{m}\left(t\right)+\varepsilon\cos\left(kz\right)$, l'expression (1) permet d'écrire $R=R_{0}+\varepsilon\cos\left(kz\right)-\frac{1}{4}\frac{\varepsilon^{2}}{R_{0}}$ ainsi à l'ordre ε nous avons

$$\frac{\partial R}{\partial t} = \frac{d\varepsilon}{dt}\cos(kz)$$
 et $2\pi R \frac{\partial R}{\partial t} = 2\pi R_0 \frac{d\varepsilon}{dt}\cos(kz)$

Toujours à l'ordre ε , et en se rappelant que $R_0 = a + h_0 = a(1+x)$, la relation (3) s'écrit donc

$$-\frac{\gamma k^2 h_0^3}{3\eta a^2 (1+x)} \varepsilon(t) \xi(x) \left[1 - (ak)^2\right] = \frac{d\varepsilon}{dt}$$

en prenant la limite $x \to 0$ il vient (grâce au fait que $\xi\left(x\right) \to -1$ quand $x \to 0$)

$$\frac{d\varepsilon}{dt} + \frac{\gamma k^2 h_0^3}{3\eta a^2} (a^2 k^2 - 1)\varepsilon = 0 \text{ ainsi } \delta = \frac{\gamma h_0^3}{3\eta a^2}$$

On retrouve un résultat semblable à celui de la phase statique :

- Si $(ak)^2 < 1$, i.e. $\lambda > 2\pi a$, les perturbations croissent exponentiellement, le cylindre de longueur λ est instable:
- Si $(ak)^2 > 1$, i.e. $\lambda < 2\pi a$, les perturbations sont évanescentes, le cylindre de longueur λ est stable.

 \Box - 25. Un laser de longueur d'onde $\lambda=633\,\mathrm{nm}$ est de couleur rouge . La largeur b de la tache de diffraction est donnée par $b\simeq\frac{\lambda D}{a}$ on obtient donc $a=\lambda D/b$ numériquement $a=633.10^{-9}\times2/9.10^{-2}\,\mathrm{m}$ soit $a=14\,\mu\mathrm{m}$. L'instabilité se produira dès que $\lambda>2\pi a$ qui correspond à une longueur de cylindre qui se déstabilise, et donc à l'ordre de grandeur des gouttes les plus petites que l'on observera. Numériquement $\lambda\simeq0,1\,\mathrm{mm}$.