Limits of an increasing sequence of complex manifolds

Diganta Borah IISER Pune

Joint work with G. P. Balakumar, Prachi Mahajan, and Kaushal Verma

Union problem

Suppose a complex manifold M is exhausted by biholomorphic images of a domain $\Omega \subset \mathbb{C}^n$:

$$M_1 \subset M_2 \subset \cdots \subset \bigcup_{j=1}^{\infty} M_j = M, \quad M_j \cong \Omega.$$

Then it is of interest to describe M in terms of Ω . This problem will be referred to as the *union problem*.

Background

Behnke-Stein [1938]: An important step towards the solution of the Levi problem: If $\Omega \subset \mathbb{C}^n$ is the union of an increasing sequence of domains of holomorphy

$$\Omega_1 \subset \Omega_2 \subset \cdots \subset \bigcup_{j=1}^{\infty} \Omega_j = \Omega,$$

then Ω is a domain of holomorphy.

Fornaess [1976, 1977]: The Bhenke-Stein result is not true for general Stein manifolds: there exists a complex manifold M such that M is the union of an increasing sequence of Stein manifolds

$$M_1 \subset M_2 \subset \cdots \subset \bigcup_{j=1}^{\infty} M_j = M,$$

but M is not Stein.

Next question: Suppose each M_j satisfies some extra condition. How does that affect the limit M? This is how the union problem arises.

Background

Fornaess and Stout [1977]: Suppose in the union problem $\Omega = \Delta^n$ or \mathbb{B}^n and M is an open subset of a possibly larger taut manifold. Then $M \cong \Omega$.

Taut manifold: A complex manifold M is taut if every sequence of holomorphic maps $f_j:\Delta\to M$ has a subsequence that either converges uniformly on compact subsets to a holomorphic map $f:\Delta\to M$ or diverges uniformly on compact subsets.

Kobayashi pseudometric: Let M be a complex manifold. The Kobayashi pseudometric on M is the function $F_M:TM\to [0,\infty)$ defined by

$$F_M(p; v) = \inf \{ 1/R : R > 0, f : \Delta \to M, f(0) = p, f'(0) = Rv \}.$$

The Kobayashi pseudodistance on M is the integrated form of F_M . If it is a true distance, then M is called Kobayashi hyperbolic. If the Kobayashi distance is complete, M is called *complete hyperbolic*.

Background

Fornaess and Sibony [1981]: Assume that $\Omega / \operatorname{Aut} \Omega$ is compact.

- Hyperbolic case—M is Kobayashi hyperbolic. Then $M\cong\Omega.$
- ullet Non-hyperbolic case—M is not Kobayshi hyperbolic. Then the dimension of

$$\{v: F_M(p; v) = 0\} \subset T_p M$$

is independent of $p \in M$, and is called the Kobayashi corank of M. If M has corank one, then there exists a holomorphic retract $Z \subset \Omega$ such that M is biholomorphic to a locally trivial holomorphic fibre bundle over Z with fibre (biholomorphic to) \mathbb{C} .

Behrens [1985]: Assume that Ω is strongly pseudoconvex.

- Hyperbolic case. M is biholomorphic to Ω or \mathbb{B}^n .
- Non-hyperbolic case. Same as Fornaess-Sibony.

Union problem—Hyperbolic case

Theorem

Assume that in the union problem, M is hyperbolic.

(i) If $\Omega \subset \mathbb{C}^n$ is a bounded Levi corank one domain, then M is biholomorphic either to Ω or to a domain of the form

$$\Omega_{\infty} = \left\{ z \in \mathbb{C}^n : 2 \operatorname{Re} z_n + P_{2m} (z_1, \overline{z}_1) + \sum_{j=2}^{n-1} |z_j|^2 < 0 \right\},\,$$

where $m \geq 1$ is a positive integer and $P_{2m}\left(z_1, \overline{z}_1\right)$ is a subharmonic polynomial of degree at most 2m without any harmonic terms.

- (ii) If $\Omega \subset \mathbb{C}^n$ is a smoothly bounded convex domain then M is biholomorphic either to Ω or to a limiting domain Ω_{∞} arising from scaling.
- (iii) If n=2 and $\Omega\subset\mathbb{C}^2$ is a strongly pseudoconvex polyhedral domain, then M is biholomorphic either to Ω or to Ω_{∞} , where Ω_{∞} is a limiting domain associated to Ω .

Union problem—Hyperbolic case

Theorem

- (iv) Let $\Omega = \left\{z \in \mathbb{C}^n : \frac{1}{2} \left(\sum_{j=1}^n |z_j|^2 + \left|\sum_{j=1}^n z_j^2\right|\right) < 1\right\}$ be the minimal ball or more generally any bounded convex domain whose boundary (is not necessarily smooth but) does not contain nontrivial complex analytic varieties. If M is a priori known to be complete hyperbolic, then $M \cong \Omega$.
- (v) If n=2 and $\Omega\subset\mathbb{C}^2$ is a simply connected domain with generic piecewise C^∞ -smooth Levi-flat boundary, then M is biholomorphic either to Ω or to the unit bidisc $\Delta^2\subset\mathbb{C}^2$.
- (vi) If M is a bounded domain in \mathbb{C}^n and Ω is the symmetrized polydisc, then either M is biholomorphic to Ω or M admits a proper holomorphic correspondence to Δ^n , the unit polydisc in \mathbb{C}^n , with each fibre having cardinality at most n!.

We have

$$M_1 \subset M_2 \subset \cdots \subset \bigcup_{j=1}^{\infty} M_j = M, \quad \psi_j : M_j \stackrel{\cong}{\to} \Omega.$$

Fixing $z^0\in M$, we may assume that $z^0\in M_j$ for all j, and consider the orbit $\{p^j:=\psi^j(z^0)\}$.

Case I— $\{p^j\}$ is a relatively compact subset of Ω . Since Ω is taut, $\{\psi^j\}$ has a limit $\psi:M\to\Omega$ and as M is hyperbolic, it follows that ψ is a biholomorphism.

Case II— $\{p^j\}$ has at least one limit point $p^0\in\partial\Omega$. Suppose Ω is as in (i), (ii), (iii), or (iv).

Step I: Scaling method gives biholomorphisms $A^j:\Omega \to \Omega_j$ such that

$$\Omega_j \to \Omega_\infty$$
, $A^j(p^j) =: q_j \to q^0 \in \Omega_\infty$.

Consider $M_j \xrightarrow{\psi^j} \Omega \xrightarrow{A^j} \Omega_j$, call it $\tilde{\psi}^j$, and note $\tilde{\psi}^j(z^0) \to q_0 \in \Omega_\infty$.

Since Ω_{∞} is taut, $\tilde{\psi}^j$ has a limit, say $\tilde{\psi}:M\to\Omega_{\infty}.$

Step II: $\tilde{\psi}: M \to \Omega_{\infty}$ is a biholomorphism.

- A candidate for the inverse of $\tilde{\psi}$ would be a limit of $\tilde{\psi^j}^{-1}:\Omega_j\to M_j.$
- \bullet $\tilde{\psi}$ is injective: Follows from the stability property

$$\limsup_{j\to\infty} d_{\Omega_j}\big(\tilde{\psi}(z^1),\tilde{\psi}(z^2)\big) \leq d_{\Omega_\infty}\big(\tilde{\psi}(z^1),\tilde{\psi}(z^2)\big), \quad z^1,z^2 \in M.$$

• Therefore, $M \cong \tilde{\psi}(M) \subset \Omega_{\infty}$. Since Ω_{∞} is taut, one can show that $\tilde{\psi^j}^{-1}: \Omega_j \to M$ has a limit $\tilde{\phi}: \Omega_{\infty} \to M$ and is the inverse of $\tilde{\psi}$.

Now suppose Ω is as in (v), i.e., $\partial\Omega$ is generic piecewise smooth Levi flat. Following work of Fu and Wong, one obtains that the c/k-invariant of M with respect to Δ^2 is 1 at z_0 :

$$\frac{c_{M_j}(z^0)}{k_M(z^0)} \geq 1 \text{ for all } j \ \Rightarrow \frac{c_M(z_0)}{k_M(z_0)} \geq 1 \Rightarrow \frac{c_M(z_0)}{k_M(z_0)} = 1,$$

and hence $M \cong \Delta^2$.

Finally, suppose Ω is as in (vi), i.e., the symmetrized polydisc. Let $\pi:\Delta^n\to\Omega$ be the symmetrization map and pick $\lambda^j\in\pi^{-1}(p^j)$. Consider

$$M_j \xrightarrow{\psi_j} \Omega \xrightarrow{\pi^{-1}} \Delta^n \xrightarrow{H_j} \Delta^n$$

By a result of Klingenberg and Pinchuk, this sequence of proper correspondances is normal and hence after passing to a subsequence converges to a proper correspondance from M to Δ^n .

Union problem—Non-hyperbolic case

Theorem

Assume that in the union problem, M is a non-hyperbolic manifold. Then under any of the hypothesis as in Theorem 1 (i)-(iii),

Then the dimension of $\{v: F_M(p;v)=0\} \subset T_pM$ is independent of $p \in M$. If M has corank one, then M is biholomorphic to a locally trivial holomorphic fibre bundle over a retract Z of Ω or that of a limiting domain Ω_∞ with fibre (biholomorphic to) $\mathbb C$.

Recall $\psi^j: M_j \xrightarrow{\cong} \Omega$, and $p^j = \psi^j(z^0)$, and we have two cases to consider

Case I— $\{p^j\}$ is a relatively compact subset of Ω .

By arguments as in Fornaess–Sibony, M is biholomorphic to a fibre bundle over a retract of Ω with fibre $\mathbb C.$

Case II— $\{p^j\}$ has at least one limit point $p^0 \in \partial \Omega$.

- $M_j \xrightarrow{\psi^j} \Omega \xrightarrow{A^j} \Omega_j$, denoted by $\tilde{\psi}^j$, has a limit $\tilde{\psi}: M \to \Omega_{\infty}$.
- $\Omega_j \xrightarrow{\tilde{\psi}^{j^{-1}}} M_j \xrightarrow{\tilde{\psi}} \Omega_{\infty}$, denoted by $\tilde{\alpha}^j$, has a limit $\tilde{\alpha}: \Omega_{\infty} \to \Omega_{\infty}$. Also,

$$\tilde{\alpha} \circ \tilde{\psi}(z) = \lim_{j \to \infty} \tilde{\alpha}^j \circ \tilde{\psi}^j(z) = \lim_{j \to \infty} \tilde{\psi} \circ \tilde{\phi}^j \circ \tilde{\psi}^j(z) = \tilde{\psi}(z),$$

for all $z \in M$. Define $\tilde{Z} = \{w \in \Omega_{\infty} : \tilde{\alpha}(w) = w\} \supset \tilde{\psi}(M)$

- One can check that $\tilde{Z}=\tilde{\psi}(M),~\tilde{Z}$ is a closed connected submanifold of Ω_{∞} , the mapping $\tilde{\alpha}$ is a holomorphic retractions from Ω_{∞} onto \tilde{Z} , and the mapping $\tilde{\psi}$ has constant rank.
- ullet Also, as $ilde{\psi}^j$ are biholomorphisms and hence Kobayashi isometries,

$$F_{M_j}(p,v) = F_{\Omega_j}(\tilde{\psi}^j(p), d\tilde{\psi}^j(p)v) \Rightarrow F_M(p,v) = F_{\Omega_\infty}(\tilde{\psi}(p), d\tilde{\psi}(p)v)$$

and as Ω_{∞} is hyperbolic,

$$F_M(p,v) = 0$$
 iff $d\tilde{\psi}(p)v = 0$.

Therefore, $\dim\{v\in T_pM: F_M(p,v)=0\}=$ nullity $d\tilde{\psi}(p)$ is constant.

 \bullet If corank is 1, arguments of Fornaess-Sibony yields that M is biholomorphic to a fibre bundle over \tilde{Z} with fibre $\mathbb{C}.$

Consequences

Corollary

A C^2 -smooth strongly pseudoconvex domain $D \subset \mathbb{C}^n$ cannot be exhausted by the symmetrized polydisc.

Corollary

Assume that in the union problem, n=2 and $\Omega\subset\mathbb{C}^2$ is a C^∞ -smoothly bounded strongly convex domain. If M is hyperbolic then $M\cong\Omega$ or \mathbb{B}^2 . If M is non-hyperbolic and the corank of F_M is one, then $M\cong\Delta\times\mathbb{C}$.

 ${\bf Proof.}$ In the non-hyperbolic case, the retract Z is one-dimensional and so by Lempert's work,

$$Z=f(\Delta)$$
 where $f:\Delta \to \Omega$ is a Kobayashi extremal.

Thus f is a complex geodesic and hence an embedding. Thus $Z\cong \Delta$ and hence Z admits solutions to both the Cousin problems. It follows that $M\cong Z\times \mathbb{C}\cong \Delta\times \mathbb{C}.$

Retracts of $\Delta \times \mathbb{B}^{n-1}$

Theorem

Let Z be a holomorphic retract of $\Delta \times \mathbb{B}^n$. Assume that Z contains the origin, $Z \neq \{0\}$ and $Z \neq \Delta \times \mathbb{B}^n$. Then Z is given as one of the following:

- (i) Z is the graph of a \mathbb{B}^n -valued holomorphic mapping of Δ ,
- (ii) Z is the graph of a Δ -valued holomorphic function over a complex linear subspace of \mathbb{B}^n ,
- (iii) Z is the intersection of a linear subspace with $\Delta \times \mathbb{B}^n$ of complex dimension at least two.

The idea is to examine how T_0Z intersects $\partial(\Delta \times \mathbb{B}^n)$. For example, suppose $T_0Z \cap \partial(\Delta \times \mathbb{B}^n) \subset \partial\Delta \times \partial\mathbb{B}^n$.

- Write $L = T_0 Z \cap (\Delta \times \mathbb{B}^n)$.
- Since $\partial L \subset \partial \Delta \times \partial \mathbb{B}^n$, the projection $\pi_1: L \to \Delta$ is proper.
- Since proper holomorphic maps do not decrease dimension, $\dim L = 1$ and so $\dim Z = 1$.
- Since π_1 is linear, the fibres of π_1 are singletons and so $\pi_1:L\to\Delta$ is a biholomorphism. Thus

$$L = \{(w, \beta_1(w), \dots, \beta_n(w)) : w \in \Delta\}$$

where β_i 's are linear.

• Show that L=Z.

Thank you!