Exercices du Cours d'Analyse 1 Filière SMIA Suites numériques et Fonctions

> Mme S. AMRAOUI 2019 / 2020

Table des matières

Ι	Enoncés des exercices	5
1	Nombres réels	7
2	Suites numériques	9
3	Continuité et dérivabilité des fonctions numériques d'une variable réelle	13
II	Corrigé des exercices	17
4	Nombres réels	19
5	Suites numériques	27
6	Continuité et dérivabilité des fonctions numériques d'une variable réelle	33

Première partie

Enoncés des exercices

Chapitre 1 NOMBRES RÉELS

Exercice 1.

- 1. Montrer que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.
- 2. Montrer que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$.
- 3. La somme de deux nombres irrationnels est -il toujours un nombre irrationnel?

Même question pour le produit.

4. Soient x et y deux rationnels positifs tels que \sqrt{x} et \sqrt{y} soient irrationnels. Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel.

Exercice 2. Les ensembles suivants ont-ils une borne supérieure, un plus grand élément, une borne inférieure, un plus petit élément, dans \mathbb{Q} , dans \mathbb{R} ?

1.[0, 3[, 2.
$$\{0\} \cup [1, 2]$$
, 3. $\mathbb{Q} \cap \left[0, \frac{1}{3}\right]$, 4. $\left\{x; \exists n \in \mathbb{N}^*, x = \frac{1}{n}\right\}$ et 5. $\left\{x \in \mathbb{Q}; x^2 < 2\right\}$.

Exercice 3. Soit
$$I = \left\{ x \in \mathbb{R}^* \, ; \, -2 < x + \frac{1}{2x} \le 2 \right\}$$
.

- 1. Déterminer les $x \in \mathbb{R}^*$ tel que $-2 < x + \frac{1}{2x}$.
- 2. Déterminer les $x \in \mathbb{R}^*$ tel que $x + \frac{1}{2x} \le 2$.
- 3. Montrer que I est la réunion de deux intervalles.
- 4. Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément de I.

Exercice 4 . Soient A et B deux parties non vides et bornées de $\mathbb R$ telles que $A\subset B$.

Comparer inf A, sup A, inf B et sup B.

Exercice 5.

Soient A et B deux parties de \mathbb{R} non vides et bornées

- 1. Montrer que $A \cup B$ est une partie de $\mathbb R$ non vide et bornée
- 2. Montrer que $\sup(A \cup B) = \max(\sup A, \sup B)$.
- 3. Montrer que $\inf(A \cup B) = \min(\inf A; \inf B)$.
- 4. Application : Quelles sont les bornes inférieure et supérieure de $\left\{\frac{1}{n} + (-1)^n, n \in \mathbb{N}^*\right\}$.
- 3. Montrer que si $A\cap B\neq\varnothing$, alors $\max(\inf A;\inf B)\leq \sup(A\cap B)\leq \min(\sup A;\sup B)$ et

 $\max(\inf A; \inf B) \le \inf(A \cap B) \le \min(\sup A; \sup B)$.

Exercice 6.

Soit A une partie de \mathbb{R} majorée et on note $M=\sup A$. On suppose que $M\notin A$. Montrer que, pour tout $\varepsilon>0$, l'intervalle $M-\varepsilon,M$ contient une infinité d'éléments de M.

Exercice 7.

Soit $n \in \mathbb{N}^*$. Vérifier que $(2 + \sqrt{3})^n + (2 - \sqrt{3})^n$ est un entier pair. En déduire que la partie entière de $(2 + \sqrt{3})^n$ est un entier impair.

Exercice 8.

Soit x,y des réels. Montrer que

1. $x \le y \Rightarrow E(x) \le E(y)$.

2. $E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$.

 $3. \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$

4. $E(x) + E(x+y) + E(y) \le E(2x) + E(2y)$.

Exercice 9. Soit $n \in \mathbb{N}^*$ et pour i = 1, ..., n; $x_i \in [-1, 1]$ tels que $x_1 + x_2 + ... + x_n = 0$.

Montrer que $|x_1 + 2x_2 + ... + nx_n| \le E\left(\frac{n^2}{4}\right)$.

Exercice 10.

Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$. Montrer que : $E(\frac{E(nx)}{n}) = E(x)$.

Exercice 11.

Montrer que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Chapitre 2 SUITES NUMÉRIQUES

Exercice 1. Soient (u_n) et (v_n) deux suites convergentes. Etudier la convergence de la suite (w_n) définie par $w_n = \max(u_n, v_n)$.

Exercice 2.

1. Montrer qu'une suite d'entiers relatifs (u_n) converge si et seulement si elle

2. Soit (u_n) une suite d'entiers naturels deux à deux distincts. Montrer $\lim_{n \to +\infty} u_n =$ $+\infty$.

Exercice 3.

1. Soit (u_n) la suite de terme général u_n , définie pour tout $n \in \mathbb{N}^*$, par $u_n = \frac{E(\sqrt{n})}{n}$.

Montrer que $\lim_{n \to +\infty} u_n = 0$.

2. Soit (v_n) la suite de terme général v_n , définie pour tout $n \in \mathbb{N}^*$, par $v_n = \frac{\left(E\left(\sqrt{n}\right)\right)^2}{n}$.

Montrer que la suite (v_n) converge et déterminer sa limite.

Exercice 4. Montrer que la suite (u_n) de terme général u_n définie par : $u_n = \frac{1 \times 3 \times ... \times (2n+1)}{3 \times 6 \times ... \times (3n+3)}$

$$u_n = \frac{1 \times 3 \times \dots \times (2n+1)}{3 \times 6 \times \dots \times (3n+3)}$$

est convergente et déterminer sa limite.

Exercice 5.

I. On considère la suite $(u_n)_{n\geq 2}$ de terme général u_n défini pour $n\geq 2$ par :

$$u_n = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

 $u_n = \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}.$ 1. Montrer que $(u_n)_{n \geq 2}$ n'est pas une suite de Cauchy.
2. Montrer que $\lim_{n \to +\infty} u_n = +\infty$.

II. On considère la suite (v_n) de nombres réels définie par $v_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}.$

$$v_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

- 1. Montrer que la suite (v_n) est croissante.
- 2. Montrer que la suite (v_n) est convergente et que sa limite l vérifie $\frac{1}{2} \leq l \leq 1$.

Exercice 6. Déterminer si elle existent les limites des suites suivantes

$$1. u_n = \sqrt{n + \sqrt{n}} - \sqrt{n},$$

1.
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
, 2. $u_n u_n = \left(1 + \frac{1}{n}\right)^n$, 3. $u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$, 4. $u_n = \frac{\sin n}{n + (-1)^{n+1}}$,

3.
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$$

4.
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

$$5. u_n = \sum_{k=1}^{n} (-1)^{n-k} k!, \qquad n + (-1)^{n+1}$$

$$6. u_n = \sum_{k=1}^{n} \frac{1}{n^2 + k^2}.$$

6.
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$

Exercice 7.

Soit
$$(a, b) \in (\mathbb{R}^{*+})^2$$
 tel que $a > b$, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{a_n + b_n}{2}$

 $\sqrt{a_n b_n}$

10

- 1. Montrer que ces suites sont bien définies
- 2. Montrer qu'elles sont adjacentes, on note par M(a,b) leurs limite communes appelle moyenne arithmico - $g\acute{e}om\acute{e}trique$ de a et b
 - 3. Calculer M(a, a) et M(a, 0).
 - 4. Montrer que $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 8.

 $Soit(u_n)$ une suite réelle.

Parmi les suites ci-dessous, trouver celles qui sont extraites d'une autre : $(u_{2n}), (u_{3n}), (u_{6n}), (u_{3.2n}), (u_{3.2n+1}), (u_{2n}), (u_{2n+1}).$

Soit $(u_{\varphi(n)})$ une suite extraite de (u_n) . Montrer que toute suite extraite de $(u_{\varphi(n)})$ est extraite $de(u_n)$.

Exercice 9.

Soit (u_n) une suite convergente. La suite $(E(u_n))$ est-elle convergente?

Exercice 10.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent. Montrer que (u_{2n}) et (u_{2n+1}) convergent vers la même limite En déduire que (u_n) converge.

Suites numériques

11

Exercice 11.

Quelles sont les valeurs d'adhérence de la suite $(-1)^n$? de la suite $\cos(\frac{n\pi}{3})$?

Donner un exemple de suite qui ne converge pas et qui possède une unique valeur d'adhérence.

Exercice 12.

Soit (u_n) une suite bornée de nombre réels. Pour tout $n \in \mathbb{N}$, on pose $x_n = \inf \{u_p; p \ge n\}$ et $y_n = \sup \{u_p; p \ge n\}$. 1. Montrer que les suites (x_n) et (y_n) sont-elles bien définies?

2. Déterminer les suites
$$(x_n)$$
 et (y_n) dans les cas suivants : a. $u_n = (-1)^n$, b. $u_n = 1 - \frac{1}{n+1}$.

12 Suites numériques

Chapitre 3

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1. Déterminer les limites suivantes, lorsque celles-ci existent :

1.
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$
, 2. $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$, 3. $\lim_{x\to +\infty} \frac{E(\ln x)}{x}$, 4. $\lim_{x\to 0^+} E\left(\frac{1}{x}\right)$, 5. $\lim_{x\to 0} xE\left(\frac{1}{x}\right)$, 6. $\lim_{x\to 0} x^2E\left(\frac{1}{x}\right)$.

$$3. \lim_{x \to +\infty} \frac{E(\ln x)}{x}$$

4.
$$\lim_{x \to 0^+} E\left(\frac{1}{x}\right)^x$$

$$6. \lim_{x \to 0} x^2 E\left(\frac{1}{x}\right)$$

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. On suppose que f admet comme limite $l \in \mathbb{R}$ en $+\infty$. Démontrer que f admet pour limite l en $-\infty$.

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudier la continuité de f sur \mathbb{R} .

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q}. \end{cases}$ Montrer que f n'est continue en aucun point.

Exercice 5. Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

1.
$$f(x) = \sin x \sin\left(\frac{1}{x}\right)$$
, 2. $g(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 6. Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

- 1. Montrer que f est bornée et atteint sa borne supérieure.
- 2. Atteint-elle toujours sa borne inférieure?

Exercice 7. Montrer que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes. (On pourra utiliser le théorème de la valeur intermédiaire)

14

Exercice 8.

- 1. Montrer que la fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .
- 2. Montrons que la fonction $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}^{+*} .

Exercice 9.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que, pour tous $x, y \in \mathbb{R}$, $|f(x) - f(y)| \le$

- 1. Montrer que f est 2π -périodique (c'est-à-dire que $f(x+2\pi)=f(x)$ pour tout $x \in \mathbb{R}$.
 - 2. Montrer que f est continue sur \mathbb{R} .
 - 2. Montrer que i est continue sur $\frac{\pi}{2}$ et calculer $f'\left(\frac{\pi}{2}\right)$.

Exercice 10. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définie continue telle que $\lim_{x\to +\infty} f\left(x\right) = \lim_{x\to -\infty} f\left(x\right) = +\infty.$ Montrer que f admet un minimum absolu.

Exercice 11. Soit $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ définie par $f(x) = \sqrt{\sin x} + x$.

Montrer que f réalise une bijection de $\left[0,\frac{\pi}{2}\right]$ sur un intevalle, que l'on déterminera. Montrer que la bijection réciproque, est continue et dérivable sur cet intervalle.

Exercice 12.

Montrer que toute fonction polynôme de \mathbb{R} dans \mathbb{R} , de degré impair, s'annule en au moins un point.

- Exercice 13.
 1. Montrer que $\forall x > 0, \frac{1}{1+x} < \ln(x+1) \ln(x) < \frac{1}{x}$.
- 2. En déduire, pour $k \in \mathbb{N} \setminus \{0,1\}$, $\lim_{n \to +\infty} \sum_{n=n+1}^{kn} \frac{1}{n}$.

Exercice 14.

Soit $f_n: \mathbb{R}^+ \to \mathbb{R}$ la fonction définie, pour tout $n \in \mathbb{N}$, par :

$$f_n(x) = \ln(1+x^n) + x - 1.$$

- 1. Montrer qu'il existe $c_n \in [0,1]$ tel que $f_n(c_n) = 0$.
- 2. Montrer que f_n est strictement croissante sur \mathbb{R}^+ , en déduire que c_n est unique.

Exercice 15. Calculer les limites suivantes en utilisant la règle de l'Hospital après avoir vérifié sa validité :

$$\lim_{x\to 0}\frac{x}{\sqrt{1+x^2}-\sqrt{1+x}}; \lim_{x\to -\infty}\frac{2ch^2x-sh\left(2x\right)}{x-\ln\left(chx\right)-\ln\left(2\right)} \text{ et } \lim_{x\to 1^-}\frac{\arccos x}{\sqrt{1-x^2}}.$$

Exercice 16. Etablir les relations

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2}; \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|} \frac{\pi}{2} \text{ pour } x \neq 0;$$

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}; \sin(\arctan x) = \frac{x}{\sqrt{1+x^2}} \text{ et}$$

$$\sin(2 \arcsin x) = 2x\sqrt{1-x^2}.$$

Deuxième partie

Corrigé des exercices

Chapitre 4

NOMBRES RÉELS

Exercice 1.

1. Montrons que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.

Soit $x\in\mathbb{Q}$ et $y\notin\mathbb{Q}$. Par l'absurde : Si $z=x+y\in\mathbb{Q}$, alors par différence de deux nombres rationnels $y=z-x\in\mathbb{Q}$

Or y est irrationnel donc $x + y \notin \mathbb{Q}$.

2. Montrons que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$.

Soit $x\in\mathbb{Q}\setminus\{0\}$ et $y\notin\mathbb{Q}$. Par l'absurde : Si $z=xy\in\mathbb{Q}$, alors par quotient de deux nombres rationnels $y=\frac{z}{x}\in\mathbb{Q}$

Or y est irrationnel $xy \notin \mathbb{Q}$.

3. La somme et le produit de deux nombres irrationnels ne sont pas toujours un nombre irrationnel.

Exemple : $x=\sqrt{2}\notin\mathbb{Q}$ et $y=-\sqrt{2}\notin\mathbb{Q}$ alors que $x+y=0\in\mathbb{Q}$ et $xy=-2\in\mathbb{Q}.$

Exercice 2.

- 1. Les majorants de A=[0,3[sont $[3,+\infty[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est 3, sa borne inférieure est 0, $3\notin A$, donc A n'a pas de plus grand élément, $0\in A$, donc son plus petit élément est 0.
- 2. Les majorants de $B=\{0\}\cup[1,2]$ sont $[2,+\infty[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est 2, sa borne inférieure est 0, $2\in A$, donc B a pour plus grand élément, $0\in B$, donc son plus petit élément est 0.
- 3. Les majorants de $C=\mathbb{Q}\cap\left[0,\frac{1}{3}\right]$ sont $\left[\frac{1}{3},+\infty\right[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est $\frac{1}{3}$, sa borne inférieure est 0, son plus grand élément est $\frac{1}{3}$ et son plus petit élément est 0.
 - 4. Pour tout $n \in \mathbb{N}^*$, on a $0 < \frac{1}{n} \le 1$.

Ainsi, $C = \left\{\frac{1}{n} \mid n \in \mathbb{N}^*\right\}$ est minoré par 0 et majoré par 1. De plus, $1 \in C$, dont 1 est un majorant de C qui est élément de C. C'est donc sa borne supérieure et aussi son plus grand élèment. Enfin, prouvons que 0 est la borne inférieure de C. Pour cela, on remarque que, pour tout $\varepsilon > 0$, on peut trouver $n \in \mathbb{N}^*$ tel que $\frac{1}{n} < \varepsilon$. Comme 0 est un minorant de C, ceci prouve que 0 est la borne inférieure de C.

5. On a $x^2 < 2 \Leftrightarrow -\sqrt{2} < x < \sqrt{2}$ et $D = \{x \in \mathbb{Q}; x^2 < 2\}$ n'est rien d'autre que l'intervalle $]-\sqrt{2},\sqrt{2}[$. C'est un intervalle borné, dont la borne inférieure est $-\sqrt{2}$ et dont la borne supérieure est $\sqrt{2}$. $-\sqrt{2}$ et $\sqrt{2}$ n'appartiennent pas à D, donc D n'a ni plus grand élèment, ni plus petit élèment.

Exercice 3.

Soit
$$I = \left\{ x \in \mathbb{R}^* \, ; \, -2 < x + \frac{1}{2x} \le 2 \right\}.$$

1. Déterminer les $x \in \mathbb{R}^*$ tel que $-2 < x + \frac{1}{2x}$.

Pour $x \in \mathbb{R}^*$, on a $-2 < x + \frac{1}{2x} \Leftrightarrow \frac{2x^2 + 4x + 1}{2x} > 0 \Leftrightarrow x \in \left] -1 - \frac{\sqrt{2}}{2}, -1 + \frac{\sqrt{2}}{2} \right[\cup]0, +\infty[$.

[. 2. Déterminer les $x \in \mathbb{R}^*$ tel que $x + \frac{1}{2x} \le 2$.

Pour
$$x \in \mathbb{R}^*$$
, on a $-2 < x + \frac{1}{2x} \Leftrightarrow \frac{2x^2 + 4x + 1}{2x} \ge 0 \Leftrightarrow x \in \left]0, 1 - \frac{\sqrt{2}}{2}\right] \cup \left[1 + \frac{\sqrt{2}}{2}, +\infty\right[.$

3. Montrer que I est la réunion de deux intervalles.

$$I = \left\{ x \in \mathbb{R}^*; -2 < x + \frac{1}{2x} \right\} \cup \left\{ x \in \mathbb{R}^*; x + \frac{1}{2x} \le 2 \right\}$$

$$= \left(\left[-1 - \frac{\sqrt{2}}{2}, -1 + \frac{\sqrt{2}}{2} \right] \cup \left[0, +\infty[\right) \cup \left[0, 1 - \frac{\sqrt{2}}{2} \right] \right] \cup \left[1 + \frac{\sqrt{2}}{2}, +\infty[\right]$$

$$= \left[-1 - \frac{\sqrt{2}}{2}, -1 + \frac{\sqrt{2}}{2} \right] \cup \left[0, +\infty[\right]$$

4. Les majorants de I sont $[0, +\infty[$, les minorants sont $]-\infty, -1-\frac{\sqrt{2}}{2}]$, la

borne supérieure est 0, la borne inférieure est $-1-\frac{\sqrt{2}}{2}$, $0 \notin I$, donc I n'a pas de plus grand élément, $-1-\frac{\sqrt{2}}{2} \in I$, donc c'est le plus petit élément de I.

Exercice 4. A et B sont des parties non vides et bornées de \mathbb{R} donc les bornes sup et inf considérées existent.

Pour tout $a \in A$, on a $a \in B$ donc $a \leq \sup B$, donc $\sup B$ majore A. Comme $\sup A$ est le plus petit des majorants de A, on a $\sup A \leq \sup B$.

Pour tout $a \in A$, on a $a \in B$ donc inf $B \leq a$, donc inf B minore A. Comme $\inf B$ est le plus grand des majorants de B, on a $\inf B \leq \inf A$.

Enfin, puisque $A \neq \emptyset$, inf $A \leq \sup A$.

En conclusion On a inf $B \leq \inf A \leq \sup A \leq \sup B$.

Exercice 5.

1. $A \cup B \neq \emptyset$, car $A \subset A \cup B$. Si $x \in A \cup B$, alors $x \in A$ ou $x \in B$, d'où $\min(\inf A; \inf B) \le x \le \max(\sup A, \sup B)$. Ainsi $A \cup B$ est borné.

2.Montrons que $\sup(A \cup B) = \max(\sup A, \sup B)$.

D'après l'exercice 4 et puisque $A \subset A \cup B$ et $B \subset A \cup B$, on a sup $A \leq$ $\sup (A \cup B)$ et $\sup B \leq \sup (A \cup B)$.

On vient de prouver $\sup (A \cup B) \ge \max(\sup A, \sup B)$.

Montrons que sup $(A \cup B) \le \max(\sup A, \sup B)$: soit $M = \max(\sup A, \sup B)$. Pour $x \in A \cup B$ alors soit $x \in A$ et alors $x \leq \sup A \leq M$, ou soit $x \in B$ et alors $x \leq \sup B \leq M$; donc quelque soit $x \in A \cup B$, $x \leq M$ donc M est un majorant

de $A \cup B$, donc $\sup(A \cup B) \le M$.

3. Montrons que $\inf(A \cup B) = \min(\inf A; \inf B)$.

D'après l'exercice 4 et puisque $A \subset A \cup B$ et $B \subset A \cup B$, on a inf $A \geq$ $\inf (A \cup B)$ et $\inf B \ge \inf (A \cup B)$.

On vient de prouver inf $(A \cup B) \leq \min(\inf A, \inf B)$.

Montrons que inf $(A \cup B) \ge \min(\inf A, \inf B)$: soit $m = \min(\inf A, \inf B)$.

Pour $x \in A \cup B$ alors soit $x \in A$ et alors $x \ge \inf A \ge m$, ou soit $x \in B$ et alors $x \ge \inf B \ge M$; donc quelque soit $x \in A \cup B$, $x \le m$ donc m est un minorant de $A \cup B$, donc $\inf(A \cup B) \ge m$.

4. Application : Quelles sont les bornes inférieure et supérieure de E = $\left\{ \frac{1}{n} + (-1)^n, n \in \mathbb{N}^* \right\}$

On a
$$E = A \cup B$$
 avec $A = \left\{ \frac{1}{2n} + 1, n \in \mathbb{N}^* \right\}$ et $B = \left\{ \frac{1}{2n+1} - 1, n \in \mathbb{N} \right\}$
Pour $n \in \mathbb{N}^*$ on a $1 < \frac{1}{n} + 1 < \frac{5}{n}$ d'où inf $A = 1$ et sup $A = \frac{5}{n}$

Pour $n \in \mathbb{N}^*$, on a $1 < \frac{1}{2n} + 1 \le \frac{5}{4}$, d'où inf A = 1 et $\sup A = \frac{5}{4}$ Pour $n \in \mathbb{N}$, on a $1 < \frac{1}{2n+1} + 1 \le 2$, d'où inf B = 1 et $\sup B = 2$.

Ainsi sup $E = \max(\sup A, \sup B) = \max(\frac{5}{4}, 2) = 2$ et inf $E = \min(\inf A, \inf B) =$ 1.

5. Montrons que $\max(\inf A; \inf B) \leq \sup(A \cap B) \leq \min(\sup A; \sup B)$ si $A \cap B \neq \emptyset$.

D'après l'exercice 4 et puisque $A \cap B \subset A$ et $A \cap B \subset B$, on a inf $A \leq$ $\sup (A \cap B)$ et $\inf B \leq \sup (A \cap B)$. Donc $\max(\inf A; \inf B) \leq \sup(A \cap B)$.

De même $\sup (A \cap B) \leq \sup A$ et $\sup (A \cap B) \leq \sup B$, d'où $\sup (A \cap B) \leq$ $\min(\sup A; \sup B)$.

Montrons que $\max(\inf A; \inf B) \leq \inf(A \cap B) \leq \min(\sup A; \sup B)$ si $A \cap B \neq A$ Ø.

D'après l'exercice 4et puisque $A \cap B \subset A$ et $A \cap B \subset B$, on a $\inf A \le \inf(A \cap B) \le \sup(A \cap B) \le \sup A.$

et $\inf B \le \inf(A \cap B) \le \sup(A \cap B) \le \sup B$.

$$\begin{cases} \inf A \le \inf (A \cap B) \\ \inf B \le \inf (A \cap B) \end{cases} \Rightarrow \max(\inf A; \inf B) \le \inf(A \cap B).$$

$$\begin{cases} \inf A \leq \inf \left(A \cap B \right) \\ \inf B \leq \inf \left(A \cap B \right) \end{cases} \Rightarrow \max (\inf A; \inf B) \leq \inf (A \cap B).$$
 De même
$$\begin{cases} \inf \left(A \cap B \right) \leq \sup A \\ \inf \left(A \cap B \right) \leq \sup B \end{cases} \Rightarrow \inf (A \cap B) \leq \min (\sup A; \sup B).$$

Exercice 6.

Soit A une partie de \mathbb{R} majorée et on note $M = \sup A$. On suppose que $M \notin A$. Montrer que, pour tout $\varepsilon > 0$, l'intervalle $M - \varepsilon, M$ contient une infinité d'éléments de A.

On raisonne par l'absurde, et on suppose que $|M - \varepsilon, M| \cap A$ est fini. Soit $\{a_1,\ldots,a_p\}=[M-\varepsilon,M[. \text{ Posons } a=\max(a_1,\ldots,a_p). \text{ Alors } a< M. \text{ On pose }$ $\alpha = M - a$. On a $\alpha > 0$, donc il existe $a_{p+1} \in A$ tel que $M - \alpha < a_{p+1} \le M$. On a même $a_{p+1} < M$ car $M \notin A$. De plus, $a_{p+1} > M - \alpha = a \ge M - \varepsilon$. On en déduit que $a_{p+1} \in M$ et que $a_{p+1} \neq a_i$, $i = 1, \ldots, p$. Ceci contredit l'hypothèse initiale.

Exercice 7.

Soit $n \in \mathbb{N}^*$. Vérifier que $(2+\sqrt{3})^n+(2-\sqrt{3})^n$ est un entier pair. En déduire que la partie entière de $\left(2+\sqrt{3}\right)^n$ est un entier impair. Calculons $S=\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n$ à l'aide de la formule du binôme de

Newton. On trouve

$$S = \sum_{k=0}^{n} C_n^k 2^{n-k} \sqrt{3}^k + \sum_{k=0}^{n} C_n^k 2^{n-k} (-1)^k \sqrt{3}^k = \sum_{k=0}^{n} C_n^k 2^{n-k} \left(1 + (-1)^k \right) \sqrt{3}^k.$$

Maintenant, si $k = 2p$ est pair, alors $\left(1 + (-1)^k \right) \sqrt{3}^k = 2.3^p$ est un entier

Maintenant, si k = 2p est pair, alors $\left(1 + (-1)^k\right)\sqrt{3}^k = 2.3^p$ est un entier pair, et si k est impair, $\left(1 + (-1)^k\right)\sqrt{3}^k = 0$. On en déduit que S est bien un entier pair, comme somme d'entiers pairs. De plus, on a $0 < 2 - \sqrt{3} < 1$ et donc $0 < \left(2 - \sqrt{3}\right)^n < 1$. On en déduit que $\left(2 + \sqrt{3}\right)^n < S < 1 + \left(2 + \sqrt{3}\right)^n$

D'où
$$S - 1 \le (2 + \sqrt{3})^n < S$$

ce qui prouve que la partie entière de $\left(2+\sqrt{3}\right)^n$ est S-1. C'est donc un entier impair.

Exercice 8.

1. Montrons que $x \le y \Rightarrow E(x) \le E(y)$ $x \le y \Rightarrow E(x) \le x \le y$.

Donc E(x) est un entier relatif inférieur ou égal à y, Comme E(y) est le plus grand entier relatif inférieur ou égal à y, on a donc $E(x) \leq E(y)$.

2. Montrons que : $E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$. Des inégalités $E(x) \le x < E(x) + 1$ et $E(y) \le y < E(y) + 1$, on en déduit $E(x) + E(y) \le x + y < E(x) + E(y) + 2$.

Or E(x+y) est le plus grand entier n tel que $n \le a+b$. Puisque $E(x)+E(y) \le x+y$, on en déduit qu $E(x)+E(y) \le E(x+y)$. De même, E(x+y)+1 est le plus petit entier m tel que m>a+b. Puisque E(x)+E(y)+2>E(x+y), on en déduit $E(x)+E(y)+2\ge E(x+y)+1$, ce qui est l'autre inégalité demandée.

3. Montrons que $\forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a$.

On traite d'abords le cas a = 1

$$E(x) \le x < E(x) + 1 \Rightarrow E(x) + 1 \le x + 1 < (E(x) + 1) + 1$$

Donc E(x + 1) = E(x) + 1

Si
$$a \in \mathbb{N}$$
, $E(x+a) = E(x+(a-1))+1 = E(x+(a-2))+2 = \dots = E(x)+a$.
Si $a < 0$, $E(x) = E((x+a)-a) = E(x+a)$ (puisque $-a > 0$)

Si a < 0, E(x) = E((x+a) - a) = E(x+a) (puisque -a > 0)

4. Montrons que $E(x) + E(x+y) + E(y) \le E(2x) + E(2y)$. Écrivons x = m + s et y = n + t avec $m, n \in Z$ et $s, t \in [0, 1]$. Si s + t < 1,

alors

E(x) + E(x + y) + E(y) = n + (n + m) + m = 2n + 2m.

Puisque $2n \le E(2x)$ et $2m \le E(2y)$, le résultat est démontré.

Si $s+t \ge 1$ (et dans ce cas s+t < 2), on a

$$E(x) + E(x + y) + E(y) = n + (n + m + 1) + m = 2n + 2m + 1.$$

Mais alors, on a ou bien $s \in [1/2, 1[$, ou bien $t \in [1/2, 1[$ (il est aussi possible que s et t soient dans $[\frac{1}{2}, 1[$). Supposons par exemple que $s \in [1/2, 1[$. Alors 2x = 2n + 2s = (2n + 1) + (2s - 1) où $2s - 1 \in [0, 1[$. Ainsi, E(2x) = 2n + 1 et comme

 $E(2y) \geq 2m$, le résultat est démontré. La démonstration est exactement similaire si on suppose que $t \in [\frac{1}{2}, 1[$.

Exercice 9

On a

$$(x_1 + 2x_2 + \dots + nx_n) = (x_1 + x_2 + \dots + x_n) + (x_2 + \dots + x_n) + (x_3 + \dots + x_n) + \dots + (x_{n-1} + x_n) + x_n,$$

D'où
$$|x_1 + 2x_2 + ... + nx_n| \le |x_1 + x_2 + ... + x_n| + |x_2 + ... + x_n| + |x_3 + ... + x_n| + |x_{n-1} + x_n| + |x_n|$$
...

Or
$$x_1 + x_2 + ... + x_n = 0$$
 et donc $x_2 + ... + x_n = -x_1, x_3 + ... + x_n = -x_1 - x_2, ...,$
 $|x_1 + 2x_2 + ... + nx_n| \le 0 + |x_1| + |x_1 + x_2| + ... + |x_n|$

$$|x_1 + x_2 + x_3| + \dots + |x_1 + x_2 + \dots + |x_{n-1}|$$

$$1^{er}$$
 cas. Si $n=2p$, alors $\frac{n^2}{4}=p^2$ et donc $E\left(\frac{n^2}{4}\right)=p^2$.

$$|x_1 + 2x_2 + \dots + nx_n| \le |x_1 + x_2 + \dots + x_{2p}| + |x_2 + \dots + x_{2p}| + \dots + |x_p + \dots +$$

$$|x_{p+1} + \ldots + x_{2p}| + \ldots + |x_{2p-1} + x_{2p}| + |x_{2p}|$$

Or
$$x_1 + x_2 + ... + x_n = 0$$
 et donc $x_2 + ... + x_n = -x_1, x_3 + ... + x_n = -x_1 - x_2, ...$, ainsi et puisque $x_i \in [-1, 1]$,

$$|x_1 + 2x_2 + \dots + nx_n| \le 1 + 2 + 3 + \dots + (p-1) + p + (p-1) + \dots + 2 + 1$$

D'où,
$$|x_1 + 2x_2 + ... + nx_n| \le 2\frac{p(p-1)}{2} + p = p^2 = E\left(\frac{n^2}{4}\right)$$

amsi et puisque
$$x_i \in [-1,1]$$
, $|x_1 + 2x_2 + ... + nx_n| \le 1 + 2 + 3 + ... + (p-1) + p + (p-1) + + 2 + 1$
D'où, $|x_1 + 2x_2 + ... + nx_n| \le 2 \frac{p(p-1)}{2} + p = p^2 = E\left(\frac{n^2}{4}\right)$.

 $2^{\hat{e}me}$ cas. Si $n = 2p + 1$, alors $\frac{n^2}{4} = p^2 + p + \frac{1}{4}$ et donc $E\left(\frac{n^2}{4}\right) = p^2 + p$.

$$|x_1 + 2x_2 + \dots + nx_n| \le |x_1 + x_2 + \dots + x_{2p+1}| + |x_2 + \dots + x_{2p+1}| + \dots + x_{2p+1}| + \dots + x_{2p+1}|$$

$$|x_{p+1} + \dots + x_{2p+1}| + |x_{p+2} + \dots + x_{2p+1}| + \dots + |x_{2p+1}|$$

Or $x_1 + x_2 + \dots + x_n = 0$ et donc $x_2 + \dots + x_n = -x_1, x_3 + \dots + x_n = -x_1 - x_2, \dots$,

ainsi et puisque $x_i \in [-1,1]$,

$$|x_p + \dots + x_{2p}| \le 1 + 2 + 3 + \dots + (p-1) + p + p + (p-1) + \dots + 2 + 1$$

D'où,
$$|x_1 + 2x_2 + ... + nx_n| \le 2\frac{p(p+1)}{2} = p^2 + p = E\left(\frac{n^2}{4}\right)$$
.

Dans tous les cas, on a montré que

$$|x_1 + 2x_2 + \dots + nx_n| \le E\left(\frac{n^2}{4}\right).$$

Exercice 10.

Soit
$$n \in \mathbb{N}^*, x \in \mathbb{R}$$
. Montrons que : $E(\frac{E(nx)}{n}) = E(x)$.

On a

$$E(x) \leq x < E(x) + 1 \Rightarrow nE(x) \leq nx < nE(x) + n$$

$$\Rightarrow nE(x) \leq nx < nE(x) + n \Rightarrow nE(x) \leq E(nx) < nE(x) + n$$

$$\Rightarrow E(x) \leq \frac{E(nx)}{n} < E(x) + 1$$

Donc

$$E(\frac{E(nx)}{n}) = E(x).$$

Exercice 11. Montreons que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Soient x un réel et ε un réel strictement positif. On a $\sqrt[3]{x} < \sqrt[3]{x+\varepsilon}$. Puisque $\mathbb Q$ est dense dans $\mathbb R$, il existe un rationnel r tel que $\sqrt[3]{x} < r < \sqrt[3]{x+\varepsilon}$ et donc tel que $x < r^3 < x + \varepsilon$, par stricte croissance de la fonction $t \mapsto t^3$ sur

 $\mathbb{R}.$ On a montré que

 $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R}

https://sigmoid.ma

25

Chapitre 5 SUITES NUMÉRIQUES

Exercice 1. On pose
$$\lim_{n\to +\infty}(u_n)=l$$
 et $\lim_{n\to +\infty}(v_n)=l'$
On sait que $\max(a,b)=\frac{1}{2}\left((a+b)+|a-b|\right)$
donc $\max(u_n,v_n)=\frac{1}{2}\left((u_n+v_n)+|u_n-u_n|\right)\to \frac{1}{2}\left((l+l')+|l-l'|\right)=\max(l,l').$

Exercice 2.

- 1. Montrons qu'une suite d'entiers (u_n) converge si et seulement si elle est stationnaire.
 - Si (u_n) est stationnaire, il est clair que cette suite converge.

Réciproquement, supposons que (u_n) est une suite d'entiers convergente et notons l sa limite. Montrons que $l \in \mathbb{Z}$. Par l'absurde, si $l \notin \mathbb{Z}$ alors E(l) < l < E(l) + 1 donc à partir d'un certain rang $E(l) < u_n < E(l) + 1$. Ce qui est en contradiction avec $u_n \in \mathbb{Z}$. Ainsi $l \in \mathbb{Z}$.

Puisque $u_n \to l$ et l-1 < l < l+1, à partir d'un certain rang $l-1 < u_n < l+1$. Or $u_n \in \mathbb{Z}$ et $l \in \mathbb{Z}$ donc $u_n = l$.

2. Soit $A \in \mathbb{R}^+$ et soit $E = \{n \in \mathbb{N}, u_n < A\}$. L'ensemble E est fini car il contient au plus E(A) + 1 éléments. Par suite il possède un plus grand élément N et alors $\forall n \geq N+1, u_n \notin A$, donc $u_n \geq A$. Par suite $u_n \to +\infty$.

Exercice 3.

1. Soit
$$(u_n)$$
 la suite de terme général u_n , définie pour tout $n \in \mathbb{N}^*$, par $u_n = \frac{E\left(\sqrt{n}\right)}{n}$.

Montrer que $\lim_{n \to +\infty} u_n = 0$.

Pour tout $n \in \mathbb{N}^*$, $E\left(\sqrt{n}\right) \le \sqrt{n} < E\left(\sqrt{n}\right) + 1$

Donc $\left(E\left(\sqrt{n}\right)\right)^2 \le n < \left(E\left(\sqrt{n}\right) + 1\right)^2$

D'où $\frac{1}{\left(E\left(\sqrt{n}\right) + 1\right)^2} < \frac{1}{n} \le \frac{1}{\left(E\left(\sqrt{n}\right)\right)^2}$

On multiplie ces dernières inégalités par $E(\sqrt{n}) > 0$, car $n \ge 1$, on obtient

$$\frac{E\left(\sqrt{n}\right)}{\left(E\left(\sqrt{n}\right)+1\right)^{2}} < \frac{E\left(\sqrt{n}\right)}{n} \le \frac{1}{E\left(\sqrt{n}\right)}$$

Or $\sqrt{n}-1 < E\left(\sqrt{n}\right)$ et $\lim_{n \to +\infty} \sqrt{n}-1 = +\infty$, donc $\lim_{n \to +\infty} E\left(\sqrt{n}\right) = +\infty$.

$$\text{Par suite } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{\left(E\left(\sqrt{n}\right)+1\right)^2} = \lim_{n \to +\infty} \frac{1}{E\left(\sqrt{n}\right)} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{Par suite } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_{n \to +\infty} \frac{E\left(\sqrt{n}\right)}{n} = 0. \\ \text{D'où } \lim_$$

2 2. Soit (v_n) la suite de terme général v_n , définie pour tout $n \in \mathbb{N}^*$, par $v_n = \frac{\left(E\left(\sqrt{n}\right)\right)^2}{n}.$ Montrer que la suite (v_n) converge et déterminer sa limite.

2. On multiplie par
$$(E(\sqrt{n}))^2$$
 les inégalités $\frac{1}{(E(\sqrt{n})+1)^2} < \frac{1}{n} \le \frac{1}{(E(\sqrt{n}))^2}$, ent

on obtient

ent
$$\frac{\left(E\left(\sqrt{n}\right)\right)^{2}}{\left(E\left(\sqrt{n}\right)+1\right)^{2}} < \frac{\left(E\left(\sqrt{n}\right)\right)^{2}}{n} \le 1$$
Or
$$\lim_{n \to +\infty} \frac{\left(E\left(\sqrt{n}\right)\right)^{2}}{\left(E\left(\sqrt{n}\right)+1\right)^{2}} = 1.\text{D'où } \lim_{n \to +\infty} \frac{\left(E\left(\sqrt{n}\right)\right)^{2}}{n} = 1.$$

Montrer que la suite (u_n) de terme général u_n définie par : $u_n = \frac{1 \times 3 \times ... \times (2n+1)}{3 \times 6 \times ... \times (3n+3)}$

$$u_n = \frac{1 \times 3 \times \dots \times (2n+1)}{3 \times 6 \times \dots \times (3n+3)}$$

est convergente et déterminer sa limite.

Il est que clair que $u_n > 0$, la suite estdonc minorée, de plus $\frac{u_{n+1}}{u_n} = \frac{2n+3}{3n+6}$ $\frac{2n+4}{3n+6} = \frac{2}{3} < 1.$

La suite est donc décroissante.

Donc la suite de terme général u_n est décroissante et minorée donc elle converge. Soit l sa limite

On a
$$u_{n+1} = u_n \times \frac{2n+3}{3n+6}$$
. La limite vérifie donc $l = \frac{2}{3}l$. Ainsi $l = 0$.

Exercice 5.

On considère la suite $(u_n)_{n\geq 2}$ la suite de nombres réels dont le terme général u_n est défini pour $n \ge 2$ par :

$$u_n = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

1. Montrer que $(u_n)_{n\geq 2}$ n'est pas une suite de Cauchy.

On a
$$u_{2n}-u_n=\frac{1}{n+1}+\ldots+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}.$$
 Donc pour $\varepsilon=\frac{1}{2}, \forall n\in\mathbb{N}, \ \exists \ p=n\geq n, q=2n\geq n \ \mathrm{et} \ |u_p-u_q|>\varepsilon.$

La suite n'est donc pas de Cauchy.

2. La suite (u_n) n'est pas de Cauchy donc n'est pas convergente. .

De plus (u_n) est croissante. Si elle était majorée , elle serait convergente donc elle n'est pas majorée. D'où $\lim_{n\to+\infty}u_n=+\infty$.

Exercice 6.

1.
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
,

$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n} = \frac{\left(\sqrt{n + \sqrt{n}} - \sqrt{n}\right)\left(\sqrt{n + \sqrt{n}} + \sqrt{n}\right)}{\sqrt{n + \sqrt{n}} + \sqrt{n}}$$
$$= \frac{\sqrt{n}}{\sqrt{n + \sqrt{n}} + \sqrt{n}} = \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{n}}} + 1\right)}$$

D'où (u_n) converge vers $\frac{1}{2}$.

$$2. u_n = \left(1 + \frac{1}{n}\right)^n,$$

On a
$$u_n = e^{n \ln \left(1 + \frac{1}{n}\right)} \to e$$
.

3.
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} = \frac{1 - (\frac{-2}{3})^n}{1 + (\frac{-2}{3})^n} \to 1.$$

4.
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

On a Pour
$$n \in N^*$$
, $0 \le n-1 \le n+(-1)^{n+1} \le n+1$, d'où $\frac{1}{n+1} \le n+1$

$$\frac{1}{n + (-1)^{n+1}} \le \frac{1}{n-1}$$
Ainsi $\left| \frac{\sin n}{n + (-1)^{n+1}} \right| \le \frac{1}{n-1} \to 0.$

5.
$$u_n = \sum_{k=1}^{n} (-1)^{n-k} k! = n! - (n-1)! + (n-2)! + \dots + (-1)^n$$
.

Si n est pair alors $u_n \ge n! - (n-1)!$ et si n est impair alors $u_n \ge n! - (n-1)! - 1$. Puisque $n! - (n-1)! = (n-1)(n-2) \to +\infty$ et $n! - (n-1)! - 1 = (n-1)(n-2) - 1 \to +\infty$, on a $u_n \to +\infty$.

6.
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$
.

On a
$$\frac{n}{n^2 + n} \le \sum_{k=1}^{n} \frac{1}{n^2 + k^2} \le \frac{n}{n^2 + 1}$$

Donc $u_n \to 0$.

Exercice 7. Moyenne arithmico-géometrique :

Soit $(a, b) \in (\mathbb{R}^{*+})^2$ tel que a > b, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$

1. Montrons par récurrence que $a_n > 0$ et $b_n > 0$.

On a $a_0 > 0$ et $b_0 > 0$.

Supposons que $a_n > 0$ et $b_n > 0$ alors $a_{n+1} = \frac{a_n + b_n}{2} > 0$ et b_{n+1} est bien définie, de plus $b_{n+1} > 0$.

2. Pour tout $(x,y) \in (\mathbb{R}^+)^2$ on a $\sqrt{xy} \leq \frac{x+y}{2}$, en effet Pour $(x,y) \in (\mathbb{R}^+)^2$

$$\sqrt{xy} \le \frac{x+y}{2} \Leftrightarrow 4xy \le (x+y)^2 \Leftrightarrow (x-y)^2 \ge 0.$$

On en déduit que $b_n \leq a_n$.

0.

Il en résulte que : $b_{n+1} = \sqrt{a_n b_n} \ge \sqrt{b_n^2} = |b_n| = b_n$ et $a_{n+1} - a_n = \frac{b_n - a_n}{2} \le a_n$

De plus $a_{n+1} - b_{n+1} \le a_{n+1} - b_n = \frac{a_n + b_n}{2} - b_n = \frac{a_n - b_n}{2}$.

Ainsi par récurrence, on a $a_n - b_n \le \frac{a - b}{2^n}$. Or $a_n - b_n \ge 0$ et $\lim_{n \to +\infty} \frac{a - b}{2^n} = 0$, donc $\lim_{n \to +\infty} a_n - b_n = 0$

Les suites (a_n) et (b_n) sont adjacentes, on note par M(a,b) leurs limite communes appelle moyenne arithmico - géométrique de a et b

3. Si a = b,
alors les deux suites (a_n) et (b_n) sont constantes égales à a et donc
 M(a,a) = a.

Si b = 0, alors la suite (b_n) est constante égales à 0 et donc M(a, 0) = 0.

e) Notons (a'_n) et (b'_n) les suites définies par le procédé précédent à partir de $a'_0 = \lambda a$ et $b'_0 = \lambda b$.

Par récurrence, on montre $a'_n = \lambda a_n$ et $b'_n = \lambda b_n$ donc $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 8.

Pour chercher les suites extraites de (u_{2n}) , il s'agit de trouver toutes les suites pour lesquelles chaque terme est de la forme 2n, c'est-à-dire est pair. (u_{3n}) ne convient pas (par exemple, pour n = 1, u_3 n'est pas un élément de (u_{2n}) . (u_{6n}) est une suite extraite de (u_{2n}) , car chaque entier de la forme 6n s'écrit encore 2p, avec p = 3n. Il en est de même de $((u_{3,2n}))$

Les suites extraites de (u_{3n}) sont (u_{6n}) , $(u_{3.2n})$, $(u_{3.2n+1})$;

Seule la suite $(u_{2^{n+1}})$ est extraite de (u_{2^n})

Posons $v_n = (u_{\varphi(n)})$, et soit $\psi : \mathbb{N} \to \mathbb{N}$ strictement croissante donnant la suite extraite considérée $(v_{\psi(n)})$. On a alors $v_{\psi(n)} = u_{\varphi(\psi(n))}$. Or, $\varphi \circ \psi$ est strictement

Suites numériques 31

croissante comme composée d'applications strictement croissante. La suite $(v_{\psi(n)})$ est donc bien extraite de (u_n) .

Exercice 9.

Soit (u_n) une suite convergente. La suite $(E(u_n))$ est-elle convergente? Soit $u_n = 1 + \frac{(-1)^n}{n}$.

Soit
$$u_n = 1 + \frac{(-1)^n}{n}$$
.
On a $\frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}$, d'où $\frac{(-1)^n}{n} \to 0$ et donc (u_n) converge vers 1.
Soit $v_n = E(u_n)$

Ona
$$v_{2n} = E\left(u_{2n}\right) = E\left(1 + \frac{1}{2n}\right) = 1$$
, d'où $v_{2n} \to 1$ et $v_{2n+1} = E\left(u_{2n+1}\right) = E\left(1 - \frac{1}{2n+1}\right) = 0$, d'où $v_{2n+1} \to 0$.

Ainsi $(E\left(u_n\right))$ n'est pas convergente.

Exercice 10.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent.

Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite

Supposons que $\lim_{n\to+\infty} u_{2n} = l$, $\lim_{n\to+\infty} u_{2n+1} = l'$ et $\lim_{n\to+\infty} u_{3n} = l''$. La suite (u_{6n}) est extraite de (u_{2n}) et de (u_{3n}) , donc l = l''.

De même La suite (u_{6n+3}) est extraite de (u_{2n+1}) et de (u_{3n}) , donc l'=l''.

Ainsi l = l' = l''

Par conséquent (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Montrons alors que (u_n) converge.

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n} - l| < \varepsilon$ et Il existe $N' \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n+1} - l| < \varepsilon$.

donc si $m \in \mathbb{N}$, m est soit pair ou impair,

$$m > \max(N, N') \Rightarrow |u_m - l| < \varepsilon.$$

Exercice 11.

1. Quelles sont les valeurs d'adhérence de la suite $(-1)^n$? de la suite $\cos(\frac{n\pi}{3})$?

La suite $(-1)^n$ ne prend que les valeurs 1 et -1. Il est clair que toute suite extraite ne prenant que l'une de ces deux valeurs ne pourra converger que vers 1 ou vers -1. L'ensemble des valeurs d'adhérence est donc inclus dans $\{-1,1\}$. D'autre part, en notant $u_n = (-1)^n$, on a $u_{2n} = 1$ et $u_{2n+1} = 1$. Ainsi, 1 et -1 sont effectivement des valeurs d'adhérence de (u_n) .

Pour la suite (v_n) définie par $v_n = \cos(\frac{n\pi}{3})$, le même raisonnement prouve que les valeurs d'adhérence sont $\cos(0)$, $\cos(\frac{\pi}{3})$, $\cos(\frac{2\pi}{3})$, $\cos(\pi)$, c'est-à-dire 1, $\frac{1}{2}$, $-\frac{1}{2}$ et -1.

2. Donner un exemple de suite qui ne converge pas et qui possède une unique valeur d'adhérence.

Posons $u_{2n}=1$ et $u_{2n+1}=n$. Alors 1 est valeur d'adhérence, et la suite (u_n) est divergente. De plus, 1 est l'unique valeur d'adhérence de (u_n) . En effet, considérons $(u_{\varphi(n)})$ une suite extraite de (u_n) . Si $\varphi(n)$ est un entier impair pour une infinité de termes, alors $(u_{\varphi(n)})$ est divergente. Si, $\varphi(n)$ est pair sauf pour un nombre fini d'entiers n et $(u_{\varphi(n)})$ est stationnaire donc convergente vers 1.

Exercice 12.

Soit (u_n) une suite bornée de nombre réels. Pour tout $n \in \mathbb{N}$, on pose $x_n = \inf\{u_p; p \ge n\}$ et $y_n = \sup\{u_p; p \ge n\}$.

1. Montrer que les suites (x_n) et (y_n) sont-elles bien définies ? Soit $A_n = \{u_p; p \ge n\}$.

 $A_n \neq \emptyset$ puisqu'il contient u_n . De plus A_n est borné puisque (u_n) est une suite bornée. Donc (x_n) et (y_n) sont-elles bien définies

2. Déterminer les suites (x_n) et (y_n) dans les cas suivants :

a. Pour $u_n=(-1)^n$, on a $A_n=\{-1,1\}$, donc $x_n=-1$ et $y_n=1$.

b. Pour $u_n = 1 - \frac{1}{n+1}$, la suite (u_n) est croissante, donc A_n est minoré par

 $1 - \frac{1}{n+1}$, et cet élément appartient à A_n . Donc $x_n = 1 - \frac{1}{n+1}$.

L'ensemble A_n est majoré par 1, et de plus, pour tout $\varepsilon > 0$, on peut trouver

p > n tel que $1 - \varepsilon < 1 - \frac{1}{p+1} \le 1$. Ainsi, $y_n = \sup A_n = 1$.

Chapitre 6

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1.

1. Comme
$$\left| x \sin \left(\frac{1}{x} \right) \right| \le |x|$$
, on a $\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0$,

2. Par encadrement
$$\lim_{x\to +\infty} \frac{x\cos e^x}{x^2+1} = 0$$
,

3.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{1}{x}\ln(1+x)} = e,$$

4. On a
$$E\left(\frac{1}{x}\right) > \frac{1}{x} - 1$$
, donc $\lim_{x \to 0^+} E\left(\frac{1}{x}\right) = +\infty$,

5. On a
$$\frac{1}{x} - 1 < E\left(\frac{1}{x}\right) \le \frac{1}{x}$$
.

Si
$$x > 0$$
, on a alors $1 - x < xE\left(\frac{1}{x}\right) \le 1$ et si $x < 0, 1 < xE\left(\frac{1}{x}\right) \le 1 - x$;

On en déduit que $\lim_{x\to 0} xE\left(\frac{1}{x}\right) = 1$,

6. Comme
$$\frac{1}{x}-1 < E\left(\frac{1}{x}\right) \le \frac{1}{x}$$
, on a $x-x^2 < x^2 E\left(\frac{1}{x}\right) \le x$, donc $\lim_{x\to 0} x^2 E\left(\frac{1}{x}\right) = 0$.

Exercice 2.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. Soit $\varepsilon > 0$. Comme f admet comme limite $l \in \mathbb{R}$ en $+\infty$, $\exists A > 0$ tel que $(x > A \Rightarrow |f(x) - l| < \varepsilon)$.

Soit B = -A. Alors $x < B \Rightarrow -x > A \Rightarrow |f(-x) - l| < \varepsilon$. Or est une fonction paire, donc f(-x) = f(x). On déduit de ce qui précéde que $\exists B < 0$ tel que $(x < B \Rightarrow |f(x) - l| < \varepsilon)$. On a ainsi montré que f admet pour limite l en $-\infty$.

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudions la continuité de f sur \mathbb{R} .

Par somme et composé, f
 est continue sur chaque intervalle $I_k = \lfloor k, k+1 \rfloor$ avec $k \in \mathbb{Z}$. Etudions la continuité en $a \in \mathbb{Z}$. $\lim_{x \to a^+} f(x) = a = f(a)$ et $\lim_{x \to a^-} f(x) = a$ $a-1+\sqrt{a-(a-1)}=a=f(a)$. f est continue en a donc elle est continue à droite et à gauche. Finalement f est continue sur \mathbb{R} .

Exercice 4. Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 la fonction définie par $f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$

Montrer que f n'est continue en aucun point.

Puisque \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} , on peut trouver pour chaque $a \in \mathbb{R}$ une suite (u_n) de \mathbb{Q} et une suite (v_n) de $\mathbb{R} \setminus \mathbb{Q}$ telles que $u_n \to a$ et $v_n \to a$. Mais, pour chaque n, on a $f(u_n) = 1$ et $f(v_n) = 0$. Les suites $(f(u_n))$ et $(f(v_n))$ ne convergent pas vers la même limite alors que (u_n) et (v_n) convergent toutes les deux vers a. Ainsi, f n'est pas continue en a.

Les fonctions suivantes sont-elles prolongeables par Exercice 5. continuité sur R?

1.
$$f(x) = \sin x \sin\left(\frac{1}{x}\right)$$
,

f est définie et continue sur \mathbb{R}^* . En 0, $|f(x)| = \left|\sin x \sin\left(\frac{1}{x}\right)\right| \le |\sin x|$, donc $\lim_{x\to 0} f(x) = 0$. Par suite, f est prolongeable par continuité en 0 en posant f(0) = 0.

2.
$$g(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$
.

g est définie et continue sur $\mathbb{R}\setminus\{-1,1\}$ et on a $g(x)=\frac{x-1}{1-x^2}=\frac{-1}{1+x}$. Par conséquent $\lim_{x\to 1}g(x)=-\frac{1}{2}$. Et donc en posant $g(1)=-\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R}\setminus\{-1\}$. En -1, la fonction g ne peut être prolongée par continuité, car en -1, g n'admet de limite finie.

Exercice 6.

Soit $f:[0,+\infty[$ $\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

1. Montrons que f est bornée et atteint sa borne supérieure.

On distingue deux cas : ou bien f est la fonction nulle, dans ce cas il n'y a rien à montrer, ou bien f n'est pas toujours nulle, dans ce cas il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) > 0$. D'autre part, on sait que f tend vers 0 quand x tend vers $+\infty$, donc en appliquant la définition de la limite avec $\varepsilon = \frac{f(x_0)}{2}$, on trouve qu'il existe un réel A > 0 tel que $\forall x \in [0, +\infty[$, $x \ge A \Rightarrow |f(x)| \le \frac{f(x_0)}{2}$

Comme f est à valeurs dans $[0, +\infty[$, on obtient : $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$

Donc f est bornée sur l'intervalle $[A, +\infty[$. D'autre part, le théorème des bornes montre que f est bornée sur l'intervalle [0, A], plus précisément il existe des réels $0 \le m \le M$ tels que f([0, A]) = [m, M]. Il en résulte que f est majorée sur $[0, +\infty[$ par $\max\left(\frac{f(x_0)}{2}, M\right)$. Or on constate que $x_0 \in [0, A]$ (sinon la propriété $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$ serait contredite), donc $M \ge \frac{f(x_0)}{2}$. Il en résulte que f est majorée par M sur $[0, +\infty[$. Or, toujours d'après le théorème de bornes, il existe $c \in [0, A]$ tel que f(c) = M, donc f atteint sa borne supérieure.

2. Atteint-elle toujours sa borne inférieure?

La fonction $f:[0,+\infty[\to [0,+\infty[$ définie par $f(x)=\frac{1}{x+1}$ satisfait les hypothèses de l'énoncé, mais n'atteint pas sa borne inférieure (qui est 0).

Exercice 7.

Montrons que les seules applications continues de ${\cal R}$ vers ${\cal Z}$ sont les fonctions constantes.

Soit $f: \mathbb{R} \to \mathbb{Z}$ continue.

Par l'absurde : Si f n'est pas constante alors il existe a < b tel que $f(a) \neq f(b)$.

Soit y un nombre non entier compris entre f(a) et f(b).

Par le théorème des valeurs intermédiaires, il existe $x \in \mathbb{R}$ tel que y = f(x) et $f(x) \notin \mathbb{Z}$.

Exercice 8.

1. Montrons que la fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Pour
$$y > x > 0$$
, $(\sqrt{y} - \sqrt{x})^2 = y + x - 2\sqrt{x}\sqrt{y} \le y - x$.
Donc $\sqrt{y} - \sqrt{x} \le \sqrt{y + x}$.

De même, par symétrie, si x > y > 0 $\sqrt{x} - \sqrt{y} \le \sqrt{x - y}$.

Ainsi $\forall x, y > 0, \ \left| \sqrt{x} - \sqrt{y} \right| \le \sqrt{|y - x|}.$

Soit $\varepsilon > 0$ et soit $\eta = \varepsilon^2 > 0$.

Pour tout x, y > 0, $|y - x| \le \eta$, $|\sqrt{x} - \sqrt{y}| \le \varepsilon$.

Ainsi la fonction racine carrée est uniformément continue.

2. Montrons que la fonction $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}^{+*}

Supposons que la fonction $x \mapsto \ln x$ est uniformément continue sur \mathbb{R}^{+*} .

Pour $\varepsilon = 1$, il existe $\eta > 0$ tel que $\forall x, y > 0$, ($|x - y| \le \eta \Rightarrow |\ln x - \ln y| \le 1$)

Ainsi si
$$y = x + \eta$$
, $\ln\left(\frac{x + \eta}{x}\right) \le 1$.

Or
$$\lim_{x\to 0^+} \ln\left(\frac{x+\eta}{x}\right) = +\infty$$
, ce qui est en contradiction avec $\ln\left(\frac{x+\eta}{x}\right) \le 1$.

Exercice 9.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que, pour tous $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le |\sin x - \sin y|$$

1. Pour tout $x \in \mathbb{R}$ on a, par hypothèse appliquée à $y = x + 2\pi$,

$$0 \le |f(x) - f(x + 2\pi)| \le |\sin x - \sin(x + 2\pi)| = 0$$
et donc $f(x + 2\pi) = f(x)$.

2. Soit $x_0 \in \mathbb{R}$. On veut montrer que $\lim_{x \to x_0} f(x) = f(x_0)$. Soit $\varepsilon > 0$. Puisque sin est continue, il existe $\eta \geq 0$ tel que pour $|x-x_0| \leq \eta$, $|\sin x - \sin x_0| \leq \varepsilon$. Or, par hypothèse, pour tout $x \in \mathbb{R}$, $|f(x) - f(x_0)| \le |\sin x - \sin x_0|$.

Par conséquent, pour $|x-x_0| \leq \eta, |f(x)-f(x_0)| \leq \varepsilon$. Par définition de la limite, ceci montre que $\lim_{x \to x_0} f(x) = f(x_0)$.

3. On veut montrer que $\lim_{x \to \frac{\pi}{2}} \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}}$ est un réel. Or on sait que la

fonction sin est dérivable en $\frac{\pi}{2}$ et $\sin'\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$. Donc $\lim_{x \to \frac{\pi}{2}} \frac{\sin x - \sin(\frac{\pi}{2})}{x - \frac{\pi}{2}} =$

0. Et par l'hypothèse, pour tout $x \neq \frac{\pi}{2}$,

$$\left| \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} \right| \le \left| \frac{\sin x - \sin(\frac{\pi}{2})}{x - \frac{\pi}{2}} \right|.$$

Donc par comparaison

$$\lim_{x \to \frac{\pi}{2}} \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} = 0.$$

Exercice 10.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définie continue telle que

$$\lim_{x\to +\infty} f\left(x\right) = \lim_{x\to -\infty} f\left(x\right) = +\infty.$$
 Montrons que f admet un minimum absolu.

Comme $\lim_{x\to+\infty} f(x) = \lim_{x\to-\infty} f(x) = +\infty$, il existe $A,B\in\mathbb{R}$ tels que

 $\forall x \leq A, \forall x \geq B, f(x) > M$. Ainsi f est minorée par M sur $]-\infty, A[\cup]B, +\infty[$. De plus, f admet un minimum sur [A,B] en un point $a \in [A,B]$ car continue sur un segment. f est donc minorée sur R par min (M, f(a))

On choisit M de façon que f(0) < M. Soit par exemple M = f(0) + 1. On a alors $A \le 0 \le B$ car $f(0) \le M$.

On a f(a) < f(0) car $0 \in [A, B]$ donc f(a) < M.

Pour tout $x \in]-\infty, A[\cup]B, +\infty[$, on a donc f(x) > M > f(a) et pour tout $x \in [A, B]$, on a f(x) > f(a).

Ainsi f admet un minimum absolu en a.

Exercice 11.

Soit $f: \left[0, \frac{\pi}{2}\right] \to R$ définie par $f(x) = \sqrt{\sin x} + x$.

Montrons que f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un intevalle, que l'on déterminera.

La fonction f est continue. De plus les fonctions $x\mapsto \sqrt{\sin x},\ x\mapsto x$ sont strictement croissantes sur $\left[0,\frac{\pi}{2}\right]$, La fonction f est donc strictement croissant sur $\left[0, \frac{\pi}{2}\right]$ à valeurs dans $f\left(\left[0, \frac{\pi}{2}\right]\right) = \left[0, 1 + \frac{\pi}{2}\right]$.

Ainsi étant donné que f est continue et strictement croissant sur $\left[0, \frac{\pi}{2}\right]$, réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, 1 + \frac{\pi}{2}\right]$.

Montrons que la bijection réciproque, est continue et dérivable sur l'intervalle $[0,1+\frac{\pi}{2}].$

f est dérivable sur $\left]0,\frac{\pi}{2}\right]$, de dérivée $f'(x)=\frac{\cos x}{2\sqrt{\sin x}}+1>0$ pour tout $x\in\left]0,\frac{\pi}{2}\right]$. Donc f^{-1} est dérivable sur $f\left(\left[0,\frac{\pi}{2}\right]\right)=\left]0,1+\frac{\pi}{2}\right]$. Etudions la dérivabilité de f^{-1} en 0:

En posant
$$x = f^{-1}(h)$$
, on a

$$\frac{f^{-1}(h) - f^{-1}(0)}{h} = \frac{x}{f(x)} = \frac{x}{\sqrt{\sin x} + x} = \frac{1}{\sqrt{\frac{1}{x}}\sqrt{\frac{\sin x}{x}} + 1}.$$

On en déduit que $\lim_{h\to 0} \frac{f^{-1}(h) - f^{-1}(0)}{h} = 0$ et par suite $(f^{-1})'(0) = 0$.

Exercice 12.

Montrons que toute fonction polynôme de R dans R, de degré impair, s'annule en au moins un point.

Soit P(x) un polynôme de degré impair.

Comme fonction polynomiale, P est continue sur \mathbb{R} .

Le degré du polynôme est impair, donc : $\lim_{x\to -\infty} P(x) = -\infty$ et $\lim_{x\to +\infty} P(x) = +\infty$

Donc, d'après le théorème des valeurs intermédiaires, l'équation P(x)=0 admet au moins une solution car $0 \in]-\infty, +\infty[$.

Exercice 13.

1. Montrons que
$$\forall x > 0, \frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$$
.

La fonction $x \mapsto \ln(x)$ étant continue et dérivable sur $]0, +\infty[$, on lui applique le théorème des accroissements finis entre x et x+1. Il existe $c \in]x, x+1[$ tel que $\ln(x+1) - \ln(x) = \frac{1}{c}$

Or
$$x < c < x + 1$$
 donne $\frac{1}{1+x} < \frac{1}{c} < \frac{1}{x}$. D'où $\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$

2. Montrons que pour $k \in N \setminus \{0,1\}$, $\lim_{n \to +\infty} \sum_{p=n+1}^{kn} \frac{1}{p}$.

D'après la question 1, on a
$$\sum_{p=n+1}^{kn} \left(\ln (p+1) - \ln (p) \right) < \sum_{p=n+1}^{kn} \frac{1}{p}$$
 et $\sum_{p=n+1}^{kn} \frac{1}{p} < \sum_{p=n+1}^{kn} \frac{1}{p}$

$$\sum_{n=n+1}^{kn} \left(\ln \left(p \right) - \ln \left(p - 1 \right) \right).$$

Donc
$$\ln\left(\frac{kn+1}{n+1}\right) < \sum_{p=n+1}^{kn} \frac{1}{p} < \ln\left(k\right)$$

Par le théorème des gendarmes $\lim_{n\to+\infty} \sum_{n=n+1}^{kn} \frac{1}{n} = \ln(k)$.

Exercice 14.

Soit $f_n : \mathbb{R}^+ \to \mathbb{R}$ la fonction définie, pour tout $n \in \mathbb{N}$, par : $f_n(x) = \ln(1+x^n) + x - 1.$

1. Montrons qu'il existe $c_n \in [0,1]$ tel que $f_n(c_n) = 0$.

La fonction f_n est une fonction continue sur [0,1], $f_n(0) = -1 < 0$ et $f_n(1) = -1$ $\ln(2) > 0$, d'après le théorème des valeurs intermédiaires il existe $c_n \in [0,1]$ tel que $f_n\left(c_n\right) = 0.$

2. Montrons que f_n est strictement croissante sur R^+ , en déduire que c_n est unique.

La fonction f_n est dérivable de dérivée $f'_n(x) = \frac{bx^{n-1}}{1+x^n} + 1 > 0$ pour tout $x \in [0, +\infty[$, par conséquent f_n est une bijection de [0, 1] sur $[-1, \ln(2)]$, comme $0 \in$ $[-1, \ln{(2)}], f_n$ admet un unique antécédent du réel 0, c'est à dire il existe un unique $c_n \in [0, 1] \text{ tel que } f_n(c_n) = 0.$

Exercice 15. Calcul des limites suivantes :
$$\lim_{x\to 0}\frac{x}{\sqrt{1+x^2}-\sqrt{1+x}}; \lim_{x\to -\infty}\frac{2ch^2x-sh\left(2x\right)}{x-\ln\left(chx\right)-\ln\left(2\right)} \text{ et } \lim_{x\to 1^-}\frac{\arccos x}{\sqrt{1-x^2}}.$$

$$\blacksquare \lim_{x \to +\infty} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}}$$

$$\lim_{x \to +\infty} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}} = \lim_{x \to +\infty} \frac{1}{\frac{x}{\sqrt{1+x^2}} - \frac{1}{2\sqrt{1+x}}}$$

$$= \lim_{x \to +\infty} \frac{1}{\frac{1}{\sqrt{\frac{1}{x^2} + 1}} - \frac{1}{2\sqrt{1+x}}} = 1$$

$$2ch^{2}x - sh(2x) = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{e^{2x} + e^{-2x} + 2}{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= e^{-2x} + 1.$$

 et

$$x - \ln(chx) - \ln(2) = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) - \ln(2)$$

$$= x - \ln\left(e^x + e^{-x}\right) = x - \ln\left(e^x \left(1 + e^{-2x}\right)\right)$$

$$= x - \ln\left(e^x\right) - \ln\left(1 + e^{-2x}\right) = -\ln\left(1 + e^{-2x}\right)$$

Ainsi

$$\lim_{x \to -\infty} \frac{2ch^2x - sh(2x)}{x - \ln(chx) - \ln(2)} = \lim_{x \to -\infty} \frac{e^{-2x} + 1}{-\ln(1 + e^{-2x})} = \lim_{x \to -\infty} \frac{2e^{-2x}}{\frac{2e^{-2x}}{1 + e^{-2x}}}$$

$$= \lim_{x \to -\infty} 1 + e^{-2x} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}} = \lim_{x \to 1^{-}} \frac{\sqrt{1 - x^2}}{\frac{-x}{\sqrt{1 - x^2}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1$$

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^2}}}{\frac{-x}{\sqrt{1 - x^2}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1$$

Exercice 16. Etablir les relations $= \arccos(x) + \arcsin(x) = \frac{\pi}{2}$

On pose $f(x) = \arccos(x) + \arcsin(x)$

f est dérivable sur]-1,1[de dérivée $f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$

Ainsi f est constante sur]-1,1[, donc sur [-1,1] (car continue aux extrémités). Or $f(0) = \arccos 0 + \arcsin(0) = \frac{\pi}{2}$,

Par conséquent $f(x) = \frac{\pi}{2}$ pour tout $x \in [-1, 1]$.

 \blacksquare $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|} \frac{\pi}{2}$ pour $x \neq 0$.

On pose
$$g(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$$

g est définie dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ de dérivée

$$g'(x) = \frac{1}{1+x^2} + \left(\frac{-1}{x^2}\right) \frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

donc g est constante sur chacun de ses intervalles de définition : $g(x) = c_1 \over \pi$ sur $]-\infty, 0[$ et $g(x) = c_2$ sur $]0, +\infty[$. Sachant $\arctan(1) = \frac{\pi}{4}$ et $\arctan(-1) = -\frac{\pi}{4}$, on obtient : $c_1 = \frac{\pi}{2}$ et $c_2 = -\frac{\pi}{2}$

Pour rout $x \in \mathbb{R}$, on a

$$\cos^2(\arctan x) = \frac{1}{1+x^2}$$

d'où

$$\cos\left(\arctan x\right) = \pm \frac{1}{\sqrt{1+x^2}}$$

Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\cot \cos y \ge 0 \text{ si } y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \text{ donc} \right]$ $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$

$$\cos\left(\arctan x\right) = \frac{1}{\sqrt{1+x^2}}$$

$$\sin\left(\arctan x\right) = \frac{x}{\sqrt{1+x^2}}.$$

Pour rout $x \in \mathbb{R}$, on a

$$\sin^2(\arctan x) = 1 - \cos^2(\arctan x) = 1 - \frac{1}{1 + \tan^2(\arctan x)}$$
$$= 1 - \frac{1}{1 + x^2} = \frac{x^2}{1 + x^2}$$

D'où $|\sin(\arctan x)| = \frac{|x|}{\sqrt{1+x^2}}$. Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \sin y \text{ et du même signe que } y \text{ sur} \right] -\frac{\pi}{2}, \frac{\pi}{2} \left[\text{, donc} \right]$

$$\sin\left(\arctan x\right) = \frac{x}{\sqrt{1+x^2}}.$$

Pour rout $x \in [-1, 1]$, on a : $\sin(2 \arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x)$ Or $\sin(\arcsin x) = x$ et $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$, donc $\cos(\arcsin x) = \pm \sqrt{1 - x^2}$ Mais $\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\cos \ge 0$ sur cet intervalle, donc $\cos(\arcsin x) = \frac{\pi}{2}$

 $\sqrt{1-x^2}.$

Ainsi $\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$.

