Statistics for the Sciences

Analyzing Frequencies

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- One-way Frequency Table
 - Multinomial Experiment
 - Single variable goodness-of-fit tests
- Chi-Square Contingency Test
- Lab 1
- Lab 2

Multinomial Experiment

Sometimes samplings results in measurements that are qualitative or categorical rather than quantitiative. The following characteristics, which define a multinomial experiment:

- The experiment consists of n identical trials. (binomial)
- Each trial results in one of k categories.
- The probability that the outcome falls into a particular category *i* on a single trial is p_i and **remains constant** from trial to trial. The sum of all *k* probabilities,

$$p_1 + p_2 + \cdots + p_k = 1.$$

- The trials are independent.
- We are interested in the number of outcomes in each category, O_1, O_2, \ldots, O_k with $O_1 + O_2 + \cdots + O_k = n$.

Multinomial Experiment

• Example: A researcher wants to know the distribution of different blood types (A, B, AB, and O) in a sample of 200 individuals. The data collected can be summarized in a one-way table.

##		Blood_Type	Frequency
##	1	A	80
##	2	В	50
##	3	AB	30
##	4	0	40

Multinomial Experiment

- In the multinomial experiment, we make inferences about all the probabilities,
 p₁, p₂, p₃,..., p_k.
- \bullet It can be shown that the expected number of outcomes resulting in category i is

$$E(O_i) = np_i, \quad i = 1, 2, \ldots, k.$$

• Suppose that we hypothesize values for p_1, p_2, \ldots, p_k and calculate the expected value for each cell. Certainly if our hypothesis is true, the cell counts ni should not deviate greatly from their expected values np_i for $i=1,2,\ldots,k$. Hence, it would seem intuitively reasonable to use a test statistic involving the k deviations,

$$O_i - E(O_i) = O_i - np_i, \quad i = 1, 2, ..., k.$$

In 1900 Karl Pearson proposed the following test statistic

$$X^{2} = \sum_{i=1}^{k} \frac{[O_{i} - E(O_{i})]^{2}}{E(O_{i})} = \sum_{i=1}^{k} \frac{[O_{i} - np_{i}]^{2}}{np_{i}}.$$

It can be shown that when n is large, X^2 has an approximate chi-square (χ^2) probability distribution.

- Note that for each category the Pearson statistic computes (observed-expected)²/expected (noting that we assume H_0 true and under this assumption, the expected number in category i is $np_i^{(0)}$) and sums over all categories.
- When H_0 is true, the differences observed-expected for all cells will be small, but large when H_0 is false. We reject H_0 only if X^2 is large.

- Sample size requirement: Experience has shown that the cell counts n_i should not be too small if the χ^2 distribution is to provide an adequate approximation to the distribution of X^2 . As a rule of thumb, we will require that **all expected cell counts are at least five**, although Cochran (1952) has noted that this value can be as low as one for some situations.
- Determine df: The **principle** to determine the df is: the appropriate number of degrees of freedom will equal the number of cells, k, less 1 df for each independent linear restriction placed on the cell probabilities.

• Example: We test $H_0: P(A) = 34\%, P(B) = 9\%, P(AB) = 4\%, P(O) = 53\%$

```
##
## Chi-squared test for given probabilities
##
## data: observed_counts
## X-squared = 160.6, df = 3, p-value < 2.2e-16</pre>
```

Contingency Table

- Analysis of categorical data is based on counts, proportions or percentages of data that fall into the various categories defined by the variables.
- Suppose a population is partitioned into rc categories, determined by r levels of variable 1 and c levels of variable 2. The population proportion for level i of variable 1 and level j of variable 2 is p_{ij} . This information can be displayed in the following $r \times c$ table:

Two-Way Table of Proportions

	Column				Marginals
row	1	2		С	
1	p ₁₁	p ₁₂		p_{1c}	<i>p</i> ₁ .
2	p_{21}	p ₂₂		p_{2c}	p_{2} .
					-
•					•
•					
r	p_{r1}	p_{r2}		p_{rc}	p_r .
Marginals	$p_{\cdot 1}$	p .2		<i>p</i> . <i>c</i>	1

Contingency Table

• Data summary:

Two-Way Table of Counts

	Column				Marginals
row	1	2		С	
1	<i>O</i> ₁₁	O_{12}		O_{1c}	R_{1} .
2	O ₂₁	O_{22}		O_{2c}	R_2 .
	-				
r	O_{r1}	O_{r2}		O_{rc}	R_{r} .
Marginals	C. ₁	C. ₂		C.c	n

We want to test

 H_0 : row and column variables

are independent

 H_a : row and column variables

are not independent.

Chi-Square Contingency Test

 To do so, we select a random sample of size n from the population. Suppose the table of observed frequencies is

		Totals			
row	1	1 2 c			
1	O ₁₁	O ₁₂		O_{1c}	R_1 .
2	O_{21}	O_{22}		O_{2c}	R_2 .
r	O_{r1}	O_{r2}		O_{rc}	R_r .
Totals	$C_{\cdot 1}$	C.2		C. _c	n

• It can be shown that under H_0 the expected cell frequency for the ij cell is given by

$$E_{ij} = \frac{\text{row i total} \times \text{column j total}}{\text{sample size}}$$
$$= \frac{R_{i}. C_{.j}}{n} = n\hat{p}_{i}.\hat{p}_{.j},$$

where $\hat{p}_{i\cdot} = R_{i\cdot}/n$ and $\hat{p}_{\cdot j} = C_{\cdot j}/n$.

Chi-Square Contingency Test

To measure the deviations of the observed frequencies from the expected frequencies under the assumption of independence, we construct the Pearson χ^2 statistic

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}.$$

If H_0 is true, X^2 has (approximately) a $\chi^2_{(\mathbf{r}-\mathbf{1})(\mathbf{c}-\mathbf{1})}$ distribution.

(Note that for the approximation to be valid, we require that $E_{ij} \geq 5$).

Enter data manually

• Go to Variable View, value labels

- Note that the data is **NOT** raw data, it is a summarized frequency table.
- So we need to weight the cases
 - lacktriangle Click on Data ightarrow Weight Cases ...

→ NPar Tests

Chi-Square Test

Frequencies

type

	Observed N	Expected N	Residual
1 A	80	68.0	12.0
2 B	50	18.0	32.0
3 AB	30	8.0	22.0
40	40	106.0	-66.0
Total	200		

Test Statistics

	type
Chi-Square	160.601*
df	3
Asymp. Sig.	<.001
Asymp. Sig.	<.001

a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected

• teng.csv: Teng et al. (2020) analyzed the results of a survey of domestic cat owners in Australia. The survey focused on factors (e.g. cat demographics, owner attitudes and demographics, etc.) that might affect the prevalence of overweight and obese cats. They related nearly 1400 survey responses of owner-assessed body condition score [BCS with five categories: very underweight (1), somewhat underweight (2), ideal (3), chubby/overweight (4), and fat/obese (5)] to a range of categorical predictors with a multivariate multinomial GLM. We will use one aspect of their data to construct a contingency table relating the BCS, reduced to three categories (1&2, 3, 4&5) to cats' begging behavior (four categories: never, sometimes, often, always).

Data

##		begging	bcs	count
##	1	never	bcs12	21
##	2	never	bcs3	266
##	3	never	bcs45	56
##	4	sometimes	bcs12	55
##	5	sometimes	bcs3	527
##	6	${\tt sometimes}$	bcs45	162
##	7	often	bcs12	14
##	8	often	bcs3	106
##	9	often	bcs45	69
##	10	always	bcs12	10
##	11	always	bcs3	47
##	12	always	bcs45	44

• Like in Lab 1, weight cases

 \bullet Click on Analyze \to Descriptive Statistics \to Crosstabs ..., and then

 The extremelly small p-value shows that the two categorical variables are NOT independent.

Chi-Square Tests

	Value	df	Asymptotic Significance (2- sided)
Pearson Chi-Square	55.928ª	б	<.001
Likelihood Ratio	53.239	6	<.001
N of Valid Cases	1377		

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.33.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.