Germain Salvato Vallverdu

Associate Professor - Chemical physics and numerical simulations

10 août 1983, France Maried, 2 children

Contact

germain.vallverdu@univ-pau.fr (33) 5 59 40 78 51 (33) 6 88 59 08 87

> Technopôle Hélioparc 2 ave du Président P. Angot FR-64053 Pau cedex 9 http://iprem.univ-pau.fr

Theoretical Chemistry

Computational strategy
Development
Complex matrices
Surfaces, interfaces
VASP, CRYSTAL (solid)
Gaussian, Orca (molecule)
Gromacs, Lammps (MD)

Programming

Python Fortran, C ATEX, HTML/CSS

Languages French

French English

Bibliometry

28 articles 21 conferences h-index: 11 13.8 citations per item 385 citations (340 w/o self-citations)

On the web

in LinkedIn g-salvato-vallverdu
b orcid.org/0000-0003-1116-8776
GitHub GitLab: @gvallverdu
gsalvatovallverdu.gitlab.io

Abstract

Associate professor at the University of Pau & Pays Adour, I am a specialist in theoretical chemistry, molecular modeling and numerical simulations at IPREM institute. My research activities, in physical-chemistry, concern the understanding of macroscopic phenomena such as reactivity, thermochemistry or spectroscopy from a microscopic description of matter. The implementation and combination of relevant computational strategies allows for the investigation of complex systems in various field among petroleum-chemistry, biological systems or energy storage materials.

Professional Experiences

since 2010 Université de Pau et des Pays de l'Adour

Pau, France

Associate professor

Theoretical chemistry and computational approaches. Surfaces, interfaces, reactivity and molecular interactions.

2009-2010 **CEA - DAM**

Bruyères le châtel, France

Postdoctoral position

Development and implementation of a mesoscopic model for reactive shock waves propagation in heterogeneous systems.

2006-2009 Université Paris-Sud 11

Orsay, France

PhD Student

Theoretical study of photophysical processes in fluorescent proteins.

Education

2006-2009	PhD in chemistry speciality theoretical chemi Mention très honorable	stry Université Paris-Sud 11
2004-2006	Master degree of physical-chemistry speciality Physico-Chimie Moléculaire Mention TB	Université Paris-Sud 11
2003-2004	Bachelor Degree of physical-chemistry Mention TB	Université Paris-Sud 11
2003-2006	Magistère de Physico-Chimie Moléculaire	Université Paris-Sud 11 – ENS Cachan
2001-2003	Undergraduate physics and chemistry	Lycée François Arago, Perpignan

Main publications

Sabalot-Cuzzubbo, J. et al. Relating the molecular topology and local geometry: Haddon's pyramidalization angle and the Gaussian curvature. The Journal of Chemical Physics **2020**, 152, 244310, Publisher: American Institute of Physics.

Villegas, O. et al. Molecular Cartography of A1 and A2 Asphaltene Subfractions from Classical Molecular Dynamics Simulations. Energy & Fuels **2020**, 34, 13954–13965, Publisher: American Chemical Society.

Quesne-Turin, A. et al. Morphology and Surface Reactivity Relationship in the Li1+xMn2-xO4 Spinel with x = 0.05 and 0.10: A Combined First-Principle and Experimental Study. ACS Applied Materials & Interfaces **2017**,

Guille, E. et al. Possible Existence of a Monovalent Coordination for Nitrogen Atoms in LixPOyNz Solid Electrolyte: Modeling of X-ray Photoelectron Spectroscopy and Raman Spectra. J. Phys. Chem. C **2015**, 119, 23379–23387.

Martin, L. et al. First principles calculations of solid-solid interfaces: an application to conversion materials for lithium-ion batteries. J. Mater. Chem. **2012**, 22, 22063–22071.

Teaching

- Lectures in chemical-physics, theoretical chemistry and programming languages.
- Strong involvement in new information and communication technologies for education
- Science popularization: Quantum mechanics and workshops for school students