The Definite Integral in Cylindrical Coordinates

$$\iiint_D f \, dV = \iiint_{\infty} \int_{\infty} f(r, \theta, z) \, dz \, r \, dr \, d\theta$$

$$\Delta V = \Delta z \cdot r \, \Delta r \, \Delta \theta$$

Example

Find the limits of integration in cylindrical coordinates for integrating a function $f(r,\theta,z)$ over the region D bounded below by the plane z=0, laterally by the cylinder $x^2 + (y-1)^2 = 1$ and above by the paraboloid $z = x^2 + y^2$.

$$\iiint_D f(r,\theta,z) dV = \int_0^{\pi} \int_0^{2\sin\theta} \int_0^{r^2} f(r,\theta,z) dz \ rdr \ d\theta$$

Spherical Coordinates

$$P = (\rho, \phi, \theta)$$

 ρ = distance from the origin $(\rho \ge 0)$

 ϕ = angle between *OP* and positive *z* - axis $(0 \le \phi \le \pi)$

 θ as in cylindrical coordinates $(0 \le \theta \le 2\pi)$

Conversion Formulas

$$r = \rho \sin \phi$$
 $x = r \cos \theta = \rho \sin \phi \cos \theta$
 $z = \rho \cos \phi$ $y = r \sin \theta = \rho \sin \phi \sin \theta$

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}$$

Example

Describe the set given by the equation:

a)
$$\rho = a \ (a \ge 0)$$

The sphere of radius a centered at the origin

b) $\phi = \phi_0$

A cone with vertex at the origin and the axis along the z-axis (the xy - plane, if $\phi_0 = \pi/2$)

c) $\theta = \theta_0$

The half-plane that contains the z-axis and makes an angle θ_0 with the positive x-axis

Example

Convert to a spherical coordinate equation

a)
$$x^2 + y^2 + (z-1)^2 = 1$$
 (a sphere)

$$x^2 + y^2 + z^2 - 2z + 1 = 1$$

$$\rho^2 - 2\rho\cos\phi = 0$$

$$\rho(\rho - 2\cos\phi) = 0$$

$$\rho = 0 \text{ or } \rho = 2\cos\phi \text{ (includes } \rho = 0)$$

$$(\phi = \pi)^2$$

1