555 timer

$$f = \frac{1}{\ln(2) \cdot C_1 \cdot (2R_1 + R_2)}$$

 C_1 is the capacitor of 4.7 μ F, R_1 is the thermistor and R_2 is the resistor (measured to 2.14 kohm) between the discharge pin and VDD.

Beta equation

$$R = R_0 \cdot e^{-\beta(\frac{1}{T_0} - \frac{1}{T})}$$

 T_0 is the specified temperature at which $R=R_0$ (25°C in this case). R_0 is the specified resistance (10 kohm in this case).

 β is 3470 for the thermistor in question.

Steinhart-Hart

This is supposedly a more accurate approximation of NTC thermistors than the beta equation.

$$\frac{1}{T} = A + B \cdot \ln(R) + C \cdot \ln(R)^3$$

A, B and C are the constants that define the curve.

Calibration

The relog daemon uses the Steinhart-Hart equation. This requires running the calibration tool to retrieve the A, B and C constants for the thermistor and also C_1 if you don't happen to have a capacitance meter.

The constants are retrieved using a least-squares regression on actual measurements. It's a nasty equation to do it with algebra, a simpler solution is to do it numerically by constantly making small adjustments on all the parameters.

The numerical method requires initial values:

- The initial value of C_1 should be the specified capacitance.
- $A=\frac{1}{T_0}-\frac{1}{\beta}ln(R_0)$ and $B=\frac{1}{\beta}$ where T_0 , R_0 and β are specified in the datasheet for the thermistor. (25°C, 10 kohm and 3470)
- C is very small compared to A and B, but for the calibration script to work, it must have a positive value. I selected it by trial and error.