University of Wrocław: Algorithms for Big Data (Fall'19)

16/12/2019

Lecture 10: Compressed Sensing

Lecturer: Przemysław Uznański

Scribe: -

1 Overview

A version of sparse recovery: given linear measurements, recover the signal. In general impossible if m < n, but is possible if we make additional assumptions.

Definition 1. Given $A \in \mathbb{R}^{m \times n}$, and $y = Ax \in \mathbb{R}^m$, recover $x \in \mathbb{R}^n$ given that x is k-sparse.

Rephrasing problem:

minimize
$$||x'||_0$$

subject to
$$Ax' = Ax$$

(this is hard problem, NP-hard?)

The approach: solve the following program

minimize
$$||x'||_1$$

subject to
$$Ax' = Ax$$

The insight is that signals with small $||x'||_1$ should be sparse (the weight of x' is concentrated on a few "optimal" coordinates). Particularly, optimizing $||x'||_2$ would not work.

(Adding noise: subject to $||Ax - Ax'||_2 \le \varepsilon$.)

The program can be expressed as LP, with $n^{\Theta(1)}$ algorithm.

Theorem 2. Let $m = \Theta(k \log(n/k))$. Pick $A \in \mathbb{R}^{m \times n}$ with entries $\mathcal{N}(0,1)$. W.h.p. the following holds for some C: the output x' of the LP satisfies

$$||x' - x||_2 \le \frac{C}{\sqrt{k}} \min_{\|x''\|_0 \le k} ||x - x''\|_1.$$
 (1)

In fact any JL-type distribution works.

1.1 Restricted Isometry Property

Definition 3. We say that matrix A satisfies (k, ε) -RIP if for any k-sparse x there is

$$||Ax||_2 = (1 \pm \varepsilon)||x||_2.$$

Theorem 4. JL matrix with $m = \Theta(k \log(n/k))$ satisfies (k, 1/3)-RIP.

Proof. Recall proof of subspace embeddings. Here as well it is enough to show the property for $||x||_2 = 1$. For any $K \subseteq [n]$, |K| = k, we take $B_K = \{x : ||x||_2 = 1 \land \text{support}(x) \subseteq K\}$, that is vectors spanned on coordinates in K of length 1.

Pick (1/7)-net N_K for B_K of size $2^{\mathcal{O}(k)}$. For any $x \in B_K$ there is $x = \sum_{i \geq 0} \alpha_i x_i$ where $\alpha_i \leq 7^{-i}$ and $x_i \in B_K$, and $\alpha_0 = 1$.

For A properly set (JL with constant 1/7), there is

$$||Ax||_2 = ||A\sum_{i>0} \alpha_i x_i||_2 \le \sum_i \alpha_i ||Ax_i||_2 \le \sum_i \frac{8}{7} \cdot 7^{-i} \le \frac{4}{3}$$

and

$$||Ax||_2 = ||A\sum_{i\geq 0} \alpha_i x_i||_2 \ge ||Ax_0||_2 - \sum_{i\geq 1} \alpha_i ||Ax_i||_2 \ge \frac{6}{7} - \sum_{i\geq 1} \frac{8}{7} 7^{-i} = \frac{6}{7} - \frac{4}{3} \cdot \frac{1}{7} = \frac{2}{3}$$

How large the m needs to be? It needs to work for union of all 1/7-nets. We have $|\bigcup N_K| \le \binom{n}{k} \cdot 2^{\mathcal{O}(k)} = 2^{\mathcal{O}(k \log(n/k))}$.

1.2 Basis pursuit

Theorem 5. (4k, 1/3)-RIP implies (1).

Proof. Denote h = x' - x. Let us reorder x so that x_1, \ldots, x_k are the largest magnitude coefficients, and then so that h_{k+1}, \ldots are sorted (ignoring that h_1, \ldots, h_k might be arbitrary). Denote $A = \{1, \ldots, k\}$ and $A_j = \{k + 5jk + 1, \ldots, 6k + 5jk\}$ for $j \geq 0$.

Denote $\eta = \min_{\|x''\|_0 \le k} \|x - x''\|_1 = \|x_{A^c}\|_1$

First, bound:

$$||x||_1 \ge ||x'||_1 = ||x+h||_1 = ||x_A+h_A||_1 + ||x_{A^c}+h_{A^c}||_1 \ge ||x_A||_1 - ||h_A||_1 - ||x_{A^c}||_1 + ||h_{A^c}||_1$$

SO

$$||h_{A^c}||_1 \le ||h_A||_1 + 2||x_{A^c}|| = ||h_A||_1 + 2\eta \tag{2}$$

Then for any vector y with sorted coordinates, $|y_i| \leq ||y||_1/i$. So

$$||h_{(AA_0)^c}||_2^2 \le ||h_{A^c}||_1^2 \sum_{j=5k}^{\infty} \frac{1}{j^2} \le ||h_{A^c}||_1^2 \frac{1}{\mathcal{O}(k)}$$

so, using (2)

$$||h_{(AA_0)^c}||_2 = \mathcal{O}(\frac{||h_A||_1 + \eta}{\sqrt{k}})$$
(3)

Then

$$0 = ||A(x'-x)||_2 = ||Ah||_2 \ge ||Ah_{AA_0}||_2 - ||\sum_{j\ge 1} Ah_{A_j}||_2$$
$$\ge ||Ah_{AA_0}||_2 - \sum_{j\ge 1} ||Ah_{A_j}||_2$$
$$\ge \frac{2}{3} ||h_{AA_0}||_2 - \frac{4}{3} \sum_{j\ge 1} ||h_{A_j}||_2$$

Each term in $h_{A_{j+1}}$ is smaller than average term in h_{A_j} , so $||h_{A_{j+1}}||_2^2 \le (5k) \frac{||h_{A_j}||_1^2}{(5k)^2} = \frac{||h_{A_j}||_1^2}{5k}$. So

$$\sum_{j>1} \|h_{A_j}\|_2 \le \sum_{j>0} \frac{\|h_{A_j}\|_1}{\sqrt{5k}} = \frac{\|h_{A^c}\|_1}{\sqrt{5k}} = \frac{\|h_A\|_1 + 2\eta}{\sqrt{5k}} \le \sqrt{\frac{k}{5k}} \|h_A\|_2 + \frac{2}{\sqrt{5k}} \eta \tag{4}$$

Combining we have

$$\frac{2}{3} \|h_{AA_0}\|_2 \le \frac{4}{3\sqrt{5}} \|h_A\|_2 + \mathcal{O}(\frac{\eta}{\sqrt{k}})$$

so since $||h_A||_2 \le ||h_{AA_0}||_2$ and $\frac{2}{3} < \frac{4}{3\sqrt{5}}$, there is

$$||h_{AA_0}||_2 = \mathcal{O}(\frac{\eta}{\sqrt{k}})$$

and this bound also applies in the form of

$$\frac{\|h_A\|_1}{\sqrt{k}} = \mathcal{O}(\frac{\eta}{\sqrt{k}}).$$

By triangle inequality

$$||h||_2 \le ||h_{AA_0}||_2 + ||h_{(AA_0)^c}||_2 = \mathcal{O}(\frac{\eta}{\sqrt{k}})$$

1.3 Iterative Hard Thresholding [BD09]

Assume y = Ax + e, where e is some noise, and x is k-sparse.

The algorithm works as follow.

- $x^0 = 0$.
- $\bullet \ a^{i+1} = x^i + A^T(y Ax^i)$
- $x^{i+1} = H_k[a^{i+1}]$ where H_k is projection onto top-k coefficients.

We expect x^t to converge onto $x \pm \mathcal{O}(e)$, in logarithmic number of iterations. Proof: denote $r^i = x - x^i$. Our goal is to show that r^i decreases by a constant factor at each step. Denote S = support(x) and $S^i = \text{support}(x^i)$, and $B^i = S \cup S^i$.

We assume we have $(3k, \varepsilon)$ -RIP for sufficiently small ε (like, small constant).

Properties: (A_S denotes matrix with only columns in S kept, and all others zeroed out).

Lemma 6. For S such that $|S| \leq 3k$:

$$||(I - A_S^T A_S) x_S||_2 \le \varepsilon ||x_S||_2$$

Proof. Follows from A_S being subspace embedding for 3k-sparse vectors.

Lemma 7. for any disjoint S, S' with $|S| + |S'| \leq 3k$

$$||A_S^T A_{S'} x_{S'}||_2 \le \varepsilon ||x_{S'}||_2$$

Proof.

$$\begin{aligned} \|A_S^T A_{S'}\|_2 &= \sup_{\|y\|=1} \|A_S^T A_{S'} y\|_2 = \sup_{\|x\|=1, \|y\|=1} x^T A_S^T A_{S'} y = \sup_{\|x\|=1, \|y\|=1} \langle A x_S, A y_{S'} \rangle \\ &= \sup_{\|x\|=1, \|y\|=1} (\langle x_S, y_{S'} \rangle \pm \varepsilon) \le \varepsilon \end{aligned}$$

where we used that $\langle x_S, y_{S'} \rangle = 0$ and that linear combinations of $x_S, y_{S'}$ are also sparse.

Lemma 8.

$$||A_S^T y||_2^2 \le (1+\varepsilon)||y||_2^2$$

Proof. Follows from $||A_S^T||_2 = ||A_S||_2 \le (1 + \varepsilon)$, which follows from:

$$||A_S||_2 = \sum_{||x||_2 = 1} ||A_S x_S||_2 \le \sqrt{1 + \varepsilon} ||x_S|| = \sqrt{1 + \varepsilon}$$

Now we bound $||r^{i+1}||_2$:

$$\|r^{i+1}\|_2 = \|x - x^{i+1}\|_2 = \|x_{B^{i+1}} - x_{B^{i+1}}^{i+1}\|_2 \le \|x_{B^{i+1}} - a_{B^{i+1}}^{i+1}\|_2 + \|x_{B^{i+1}}^{i+1} - a_{B^{i+1}}^{i+1}\|_2$$

since $x_{B^{i+1}}^{i+1}$ is the best possible k-sparse approximation to $a_{B^{i+1}}^{i+1}$, and $x_{B^{i+1}}$ is k-sparse, we have

$$\begin{split} \|r^{i+1}\|_2 &\leq 2\|x_{B^{i+1}} - a_{B^{i+1}}^{i+1}\|_2 \\ &\leq 2\|x_{B^{i+1}} - x_{B^{i+1}}^i - A_{B^{i+1}}^T A r^i - A_{B^{i+1}}^T e\|_2 \\ &\leq 2\|r_{B^{i+1}}^i - A_{B^{i+1}}^T A r^i\|_2 + 2\|A_{B^{i+1}}^T e\|_2 \\ &\leq 2\|(I - A_{B^{i+1}}^T A_{B^{i+1}}) r_{B^{i+1}}^i\|_2 + 2\|A_{B^{i+1}}^T A_{B^{i} - B^{i+1}} r_{B^{i} - B^{i+1}}^i\|_2 + 2\sqrt{1 + \varepsilon}\|e\|_2 \\ &\leq 2\varepsilon \|r_{B^{i+1}}^i\|_2 + 2\varepsilon \|r_{B^{i} - B^{i+1}}^i\|_2 + 2\sqrt{1 + \varepsilon}\|e\|_2 \\ &\leq 4\varepsilon \|r^i\|_2 + 2\sqrt{1 + \varepsilon}\|e\|_2 \end{split}$$

set $\varepsilon = 1/8$

$$\leq \frac{1}{2} \|r^i\|_2 + 3\|e\|_2$$

References

[BD09] T. Blumensath and M. E. Davies. A simple, efficient and near optimal algorithm for compressed sensing. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3357–3360, April 2009.