DPLL Algorithm

Anthony W. Lin

What it is

- A complete algorithm for SAT based on search (depthfirst search) and deduction (unit resolution)
- Developed by Davis, Putnam, Logemann, and Loveland over 50 years ago.
- Modern SAT-solvers enhance DPLL algorithms with numerous heuristics (e.g. clause learning, nonchronological backtracking, branching strategies, restart strategies, better data structures, ...)

A simple DFS algorithm

```
def SAT(Formula):
    if Formula == true:
        return true
    elif Formula == false:
        return false
    else:
        x = CHOOSE_VAR(Formula)
        return Formula[true/x] or Formula[false/x]
```

pick a new decision variable

boolean or

Apply DFS on the following formula

$$(\neg x \lor y) \land x \land \neg y$$

Unit Resolution

DPLL applies a restricted version of the resolution inference rule

Example:
$$\frac{\{x\} \qquad \{\neg x, y, \neg z\}}{\{y, \neg z\}}$$

Boolean Constraint Propagation (BCP)

Keep applying unit resolution

DPLL Algorithm

```
def SAT(Formula):
    Formula = BCP(Formula)
    if Formula == true:
        return true
    elif Formula == false:
        return false
    else:
        x = CHOOSE_VAR(Formula)
        return Formula[true/x] or Formula[false/x]
```

$$\{\neg P, Q, R\}$$

$$\{\neg Q, R\}$$

$$\{\neg Q, \neg R\}$$

$$\{\neg P, Q, R\} \qquad \{\neg Q, R\} \qquad \{\neg Q, \neg R\} \qquad \{P, \neg Q, \neg R\}$$

A simple improvement

We call a literal ℓ <u>pure</u> if it appears only positively or negatively in Formula

What is so special about pure literals?

We can make them true before choosing a decision variable to branch!

DPLL Algorithm

keep applying
BCP and
SET_PURE_TRUE
till not possible

```
def SAT(Formula):
   while true:
      Formula1 = BCP(Formula)
      Formula2 = SET_PURE_TRUE(Formula1)
      if Formula2 == Formula1:
         break
   if Formula == true:
      return true
   elif Formula == false:
      return false
   else:
      x = CHOOSE_VAR(Formula)
      return Formula[true/x] or Formula[false/x]
```

$$\{\neg P, Q, R\}$$

$$\{\neg Q, R\}$$

$$\{\neg Q, \neg R\}$$

$$\{\neg P, Q, R\} \qquad \{\neg Q, R\} \qquad \{\neg Q, \neg R\} \qquad \{P, \neg Q, \neg R\}$$

$$\{A, \neg B, \neg C\} \quad \{\neg A, \neg B, \neg C\} \quad \{B, C\} \quad \{C, D\} \quad \{C, \neg D\}$$

```
\{A, \neg B, D\} \ \{A, \neg B, E\} \ \{\neg B, \neg D, \neg E\} \ \{A, B, C, D\}
\{A, B, C, \neg D\} \{A, B, \neg C, E\} \{A, B, \neg C, \neg E\}
```

Correctness of DPLL

Termination: Can argue by induction on the size of the formula. This uses the fact that both BCP and SET_PURE_TRUE terminate and never output a bigger formula.

Partial Correctness (i.e. if terminates output the right thing):

Can argue by induction on the size of the formula using that BCP produces an equivalent formula, and SET_PURE_TRUE outputs an equisatisfiable formula.

Implementation Matter

Naive implementation of BCP takes quadratic time

We can make it a linear time algorithm by using three hash maps for the formula.

$$\{P\} \qquad \{\neg P, Q\} \qquad \{R, \neg Q, S\}$$

Formula
$$F = \{1: \{\neg P\}, 2: \{\neg P, Q\}, 3: \{R, \neg Q, S\}\}$$

$$Var\text{->Clause} \quad VC = \{P: \{1,2\}, Q: \{2,3\}, R: \{3\}, S: \{3\}\}$$

Set of keys for F for unit clauses
$$U=\{1\}$$

Conflict Driven Clause Learning

Background

- CDCL enhances DPLL with: (1) clause learning, and (2) non-chronological backtracking (a.k.a. backjumping)
- CDCL was proposed by Marques-Silva and Sakallah, and Bayardo and Schrag in mid-late 1990s
- They were awarded CAV'2009 Test-of-Time Award for their "fundamental contributions to the development of high-performance boolean satisfiability solvers"
- Most modern SAT-solvers improve CDCL (e.g. Minisat, Zchaff, Z3, Glucose, Lingeling, ...) by other heuristics

Clause Learning

If conflict occurs because of BCP, learn a new clause that <u>explains</u> and <u>prevents</u> the same conflict.

Some terminology

x is a <u>decision variable</u>

X = 0 is a <u>decision assignment</u>

BCP might generate an <u>implied</u> assignment, e.g., Y = 1 [e.g. if Y is a unit clause]

Conflict clause is a clause that is violated in a branch of this search tree

More notation

Label an implied assignment by the unit clause

$$\begin{array}{ccc} \{P,Q\} & \{\neg P\} \\ \text{C1} & \text{C2} \end{array}$$

$$(P=0,C2)$$

Conflict Analysis

C1	$\{\neg X_1, X_2, \neg X_3, X_4\}$
C2	$\{\neg X_1, \neg X_2, \neg X_3, X_4\}$
C3	$\{\neg X_1, \neg X_4, X_5\}$
C4	$\{\neg X_1, \neg X_5, X_6\}$
C5	$\{\neg X_1, \neg X_4, \neg X_6\}$
C6	$\{X_1, X_3, X_5\}$

Decision assignment

Implied assignment

$$<(X4=1,C1),(X5=1,C3),(X6=1,C4)>$$

Conflict clause

$$\{\neg X_1, \neg X_4, \neg X_6\}$$

Characteristic of a good conflict clause

It's a conflict clause

Adding it to the formula preserves equivalence

It contains only decision variables

$$\{\neg X_1, \neg X_4, \neg X_6\}$$
 NOT yet a good conflict clause

Learning a good conflict clause

$$\mathcal{A} = \langle p_1 \mapsto b_1, \dots, p_k \mapsto b_k \rangle$$
 — assignment leading to conflict

Use backward induction (via resolution) and compute the learned clause $\,A_1\,$

- 1. A_{k+1} any conflict clause
- 2. p_i is a decision variable or not appear in $A_{i+1} ==>$

$$A_i = A_{i+1}$$

3. $p_i\mapsto b_i$ is an implied assignment (implied by C_i) that appears in A_{i+1}

$$A_i$$
 = a resolvent of A_{i+1} and C_i

C1	$\{\neg X_1, X_2, \neg X_3, X_4\}$	< X1=1, X3=1, X2=0 >
C2	$\{\neg X_1, \neg X_2, \neg X_3, X_4\}$	<(X4=1,C1),(X5=1,C3),(X6=1,C4)>
СЗ	$\{\neg X_1, \neg X_4, X_5\}$	
C4	$\{\neg X_1, \neg X_5, X_6\}$	$A_7 = \{\neg X_1, \neg X_4, \neg X_6\}$
C5	$\{\neg X_1, \neg X_4, \neg X_6\}$	$A_6 = ?$
C6	$\{X_1,X_3,X_5\}$	• • •
		$A_1 = ?$

Where to backtrack to

The highest level where the learned clause is a unit clause