DataCraft Trio

Debnath Kundu (MT22026), Pijush Bhuyan (MT22049), Snehal Buldeo (MT22074)

Data Description

- <u>Dataset URL UCI Repository</u>
 [detection_of_loT_botnet_attacks_N_BaloT]
- This public dataset contains real-time network traffic data recorded from nine commercial IOT devices that were infected with common botnet malware - BASHLITE and MIRAI to carry out ten types of network-based attacks.
- Types of IOT devices: Thermostat, Baby Monitor, Webcam, Doorbells, and Security Cameras.

Types of Attacks

BASHLITE MALWARE-MIRAI MALWARE -

- Scan Scanning the network for vulnerable devices
- Junk Sending spam data packets
- UDP Flooding the network with UDP packets
- TCP Flooding the network with TCP packets
- Combo Sending spam data and opening a connection to a specified IP address and

2. MIRAI MALWARE -

- Scan Automatic scanning for vulnerable devices
- Ack Flooding the network with Ack packets
- Syn Flooding the network with Syn packets
- UDP Flooding the network with UDP packets
- UDP Plain UDP flooding with fewer options, optimized for higher PPS

Plan of Action and Progress So Far

Data Preprocessing

- Each one sample had outliers at the extremities
- Removed such extreme values using InterQuartile Range (IQR)

```
# filter noise
Q1 =data.quantile(0.25)
Q3 = data.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
filtered_data = data[(data >= lower_bound) & (data <= upper_bound)]
# log transform
log_data = np.log(filtered_data)</pre>
```

Data Preprocessing

Sample distribution after noise removal

Attacks Distribution

Mirai Attacks <u>not</u> present in Emnio Doorbell & Samsung 1011
 Camera.

		ATTA 0VO										
		ATTACKS										
			Mirai					Bashlite				
		Benign	Ack	Scan	Sync	UDP	UDP Plain	Combo	Junk	Scan	TCP	UDP
	Damini Doorbell	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Constant = 60	Constant = 60
	Ennio Doorbell	No	N/A	N/A	N/A	N/A	N/A	No	No	Yes	Constant = 60	Constant = 60
D	Provision 737 Security Camera	No	No	Yes	No	Yes	Yes	No	No	Yes	Constant = 60	Constant = 60
E	Provision 838 Security Camera	No	No	Yes	No	Yes	Yes	No	No	Yes	Constant = 60	Constant = 60
V	SimpleHome1002 Security Camera	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Constant = 60	Constant = 60
С	SimpleHome1003 Security Camera	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Constant = 60	Constant = 60
E	Samsung 1011 Camera	Yes	N/A	N/A	N/A	N/A	N/A	No	No	Yes	Constant = 60	Constant = 60
3	Philips Baby Monitor	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Constant = 60	Constant = 60
	Ecobee Thermostat	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Constant = 60	Constant = 60

Hypothesis Testing and Validation

Data Distribution:: Bashlite Scan Attacks

Provision PT 737E Security Camera

Provision PT 838 Security Camera

Data Distribution:: Bashlite Scan Attacks

Data Distribution: Bashlite Scan Attacks

Ecobee Thermostat

Hypothesis Formulation :: 1 (Bashlite)

H₀: bashlite scan attacks have similar packet flow across all devices

i.e.
$$\mu_1 = \mu_2 = \mu_9$$

- H_a: the packet flow during a bashlite scan attack differs in at least one device
- Test Used : ANOVA (Analysis of Variance)
- Sample Size: 50 samples with random sampling
- Assumptions: normally distributed, equal variances and independent samples

Hypothesis Formulation - 1 (Contd)

- P-value obtained = 9e⁻⁴ << 0.05
- Since p-value is less than level of significance, we reject the null hypothesis.
- Note If we remove device no 6, P-value obtained = 0.863 >> 0.05
- In such a case we <u>do not</u> reject the null hypothesis.
- Validation (comparing the population mean packet flows)

Device	1	2	3	4	5	7	8	9
Mean(µ)	76.611559	76.589637	76.638644	76.620499	76.670631	76.611498	76.672633	76.704413
Population size	29849	28120	29297	28397	27825	27698	27859	27494

Data Distribution: Mirai Scan Attacks

Data Distribution: Mirai Scan Attacks

SimpleHome XCS7 1003 WHT Security Camera

SimpleHome XCS7 1003 WHT Security Camera

Ecobee Thermostat

Hypothesis Formulation - 2 (Mirai)

 H₀: mirai scan attacks have similar packet flow for Danmani Doorbell and Philips Baby Monitor

i.e.
$$\mu_1 = \mu_2$$

- H_a: Mirai scan attacks don't have similar packet flow for **Danmani Doorbell** and **Philips Baby Monitor**
- Test Used : T-test
- Sample Size: 50 samples with random sampling
- Assumptions: normally distributed, equal variances and independent samples

Hypothesis Formulation - 2 (Contd)

- P-value obtained = 0.1955 >> 0.05
- Since P-value is more than level of significance, we <u>don't</u> reject the null hypothesis.
- Validation (comparing the population mean packet flows)

Device	1	6
Mean(µ)	60.020962	60.020907
Population Size	107685	103621

Hypothesis Formulation - 3 (Mirai)

 H₀: mirai scan attacks have similar packet flow for both the Provision camera models

i.e.
$$\mu_1 = \mu_2$$

- H_a: mirai scan attacks don't have similar packet flow for both the
 Provision camera models
- Test Used : T-test
- Sample Size: 50 samples with random sampling
- Assumptions: normally distributed, equal variances and independent samples

Hypothesis Formulation - 3 (Contd)

- P-value obtained = 0.1552 >> 0.05
- Since p-value is more than level of significance, we <u>don't</u> reject the null hypothesis.
- Validation (comparing the population mean packet flows)

Device	2	3	
Mean(µ)	60.099604	60.100516	
Population Size	96781	97096	

Hypothesis Formulation - 4 (Mirai)

H₀: mirai scan attacks have similar packet flow across the
 SimpleHome cameras and Ecobee thermostat devices

i.e.
$$\mu_1 = \mu_2 = \mu_3$$

- H_a: the packet flow during a bashlite scan attack differs in at least one device
- Test Used : ANOVA (Analysis of Variance
- Sample Size: 50 samples with random sampling
- Assumptions: normally distributed, equal variances and independent samples

Hypothesis Formulation - 4 (Contd)

- P-value obtained = 0.3458 >> 0.05
- Since P-value is more than level of significance, we don't reject the null hypothesis.
- Validation (comparing the population mean packet flows)

Device	4	5	7
Mean(µ)	60.151278	60.155650	60.161105
Population Size	45930	43674	43192

Other findings, so far

 Bashlite TCP and UDP attacks have a constant traffic flow value and follows no distribution across all devices.

Thank You

