Trend		Seasonal	
	N	Α	M
	$\hat{y}_{t+h t} = \ell_t$	$\hat{y}_{t+h t} = \ell_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = \ell_t s_{t+h-m(k+1)}$
N	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m}$	$\ell_{t} = \alpha(y_{t}/s_{t-m}) + (1 - \alpha)\ell_{t-1}$ $s_{t} = \gamma(y_{t}/\ell_{t-1}) + (1 - \gamma)s_{t-m}$
	$\hat{y}_{t+h t} = \ell_t + hb_t$	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$
A	$\begin{aligned} \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{aligned}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$
	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t+h-m(k+1)}$
A _d	$\begin{split} \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$