Introducción a las Redes Neuronales

Cecilia Garraffo

Outline

- * Redes Neuronales Shallow
- * Funciones de Activación
- * Ajuste de Curvas con Redes Neuronales Shallow
- * Funciones de Pérdida

Inteligencia Artificial

La capacidad de una máquina para realizar tareas que requieren razonamiento o aprendizaje humano.

Machine Learning

La capacidad de una maquina de aprender a tomar decisiones informadas.

Redes Neuronales

Un tipo de modelo inspirado en el cerebro que procesa información mediante capas de nodos conectados.

Deep Learning

Redes neuronales con multiples capas que permiten aprender representaciones complejas de datos.

IA Generativa Redes Neuronales

 $y = F[x, \theta]$

$$\mathbf{y} = \mathbf{F}[\mathbf{x}, \theta]$$

$$x_1$$

$$x_2$$

$$h_2$$

$$h_3$$

$$x_1$$
 $w_{11} + b_1 = f_1(x)$
 $w_{12} + b_2 = f_2(x)$
 $w_{22} + b_3 = f_3(x)$
 $w_{22} + b_3 = f_3(x)$

$$x_1\omega_{11} + x_2\omega_{21}$$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 $w_{12} + b_2$
 $f_2(x)$
 $w_{13} + b_3$
 $f_3(x)$
 $w_{22} + b_3$

$$x_1\omega_{11} + x_2\omega_{21} + b_1$$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 $w_{12} + b_2$
 $f_2(x)$
 $w_{22} + b_3$
 $f_3(x)$
 $w_{22} + b_3$

$$f_1(x_1\omega_{11} + x_2\omega_{21} + b_1)$$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 $w_{12} + b_2$
 $f_2(x)$
 $w_{22} + b_3$
 $f_3(x)$
 $w_{22} + b_3$

$$f_1(x_1\omega_{11} + x_2\omega_{21} + b_1)$$
 $f_2(x_1\omega_{12} + x_2\omega_{22} + b_2)$

$$x_1$$
 $w_{11} + b_1 + b$

$$f_1(x_1\omega_{11} + x_2\omega_{21} + b_1)$$
 $f_2(x_1\omega_{12} + x_2\omega_{22} + b_2)$ $f_3(x_1\omega_{13} + x_2\omega_{23} + b_3)$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 w_{14}
 w_{12}
 w_{12}
 w_{13}
 w_{13}
 w_{13}
 w_{14}
 w_{24}
 w_{25}
 w_{25}

$$\omega_{14}f_1(x_1\omega_{11} + x_2\omega_{21} + b_1) + \omega_{24}f_2(x_1\omega_{12} + x_2\omega_{22} + b_2) + \omega_{34}f_3(x_1\omega_{13} + x_2\omega_{23} + b_3)$$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 w_{14}
 w_{12}
 w_{12}
 w_{13}
 w_{22}
 w_{23}
 w_{24}
 w_{24}
 w_{24}
 w_{24}
 w_{24}
 w_{24}
 w_{25}
 w_{24}
 w_{25}
 w_{25}

$$\omega_{14}f_1(x_1\omega_{11} + x_2\omega_{21} + b_1) + \omega_{24}f_2(x_1\omega_{12} + x_2\omega_{22} + b_2) + \omega_{34}f_3(x_1\omega_{13} + x_2\omega_{23} + b_3) + b_4$$

$$x_1$$
 $w_{11} + b_1$
 $f_1(x)$
 w_{14}
 $w_{12} + b_2$
 $f_2(x)$
 w_{24}
 w_{24}
 w_{24}
 w_{22}
 w_{23}
 w_{24}
 w_{24}
 w_{34}
 w_{34}
 w_{34}
 w_{34}
 w_{34}
 w_{34}

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

Cuantos parámetros tiene esta red neuronal?

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$S \times n$$

$$S \times n + n$$

$$S \times n + n + n \times m$$

$$S \times n + n + n \times m + m$$

Redes Neuronales: Quiz!

Cuantos parámetros tiene una red neuronal de shallow con s inputs, m outputs y n neuronas?

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$f_1(x) = f_2(x) = f_3(x) = ax + b$$

$$f_1(x) = f_2(x) = f_3(x) = ax + b$$

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$f_1(x) = f_2(x) = f_3(x) = ax + b$$

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$y = \omega_{14} a (x_1 \omega_{11} + x_2 \omega_{21} + b_1) + b$$

$$f_1(x) = f_2(x) = f_3(x) = ax + b$$

$$y = \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4$$

$$y = \omega_{14} a (x_1 \omega_{11} + x_2 \omega_{21} + b_1) + b$$

$$+ \omega_{24} a (x_1 \omega_{12} + x_2 \omega_{22} + b_2) + b$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b$$

$$+ \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b$$

$$+ \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b$$

$$+ \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b$$

$$+ \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b + \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b + \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$y = a x_{1}\omega_{11}\omega_{14} + a x_{2}\omega_{21}\omega_{14} + a b_{1}\omega_{14}$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b + \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b + \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$y = a x_{1}\omega_{11}\omega_{14} + a x_{2}\omega_{21}\omega_{14} + a b_{1}\omega_{14} + a x_{1}\omega_{12}\omega_{24} + a x_{2}\omega_{22}\omega_{24} + a b_{2}\omega_{24}$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b + \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b + \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$y = a x_{1}\omega_{11}\omega_{14} + a x_{2}\omega_{21}\omega_{14} + a b_{1}\omega_{14} + a x_{1}\omega_{12}\omega_{24} + a x_{2}\omega_{22}\omega_{24} + a b_{2}\omega_{24}$$

$$a x_{1}\omega_{13}\omega_{34} + a x_{2}\omega_{23}\omega_{34} + a b_{3}\omega_{34} + 3b + b_{4}$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14}f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24}f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34}f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14}a(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b$$

$$+\omega_{24}a(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b$$

$$+\omega_{34}a(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$y = ax_{1}\omega_{11}\omega_{14} + ax_{2}\omega_{21}\omega_{14} + ab_{1}\omega_{14}$$

$$+ax_{1}\omega_{12}\omega_{24} + ax_{2}\omega_{22}\omega_{24} + ab_{2}\omega_{24}$$

$$ax_{1}\omega_{13}\omega_{34} + ax_{2}\omega_{23}\omega_{34} + ab_{3}\omega_{34} + 3b + b_{4}$$

$$y = a(\omega_{11}\omega_{14} + \omega_{12}\omega_{24} + \omega_{13}\omega_{34})x_{1} + a(\omega_{21}\omega_{14} + \omega_{22}\omega_{24} + \omega_{23}\omega_{34})x_{2}$$

$$+a(b_{1}\omega_{14} + b_{2}\omega_{24} + b_{3}\omega_{34}) + 3b + b_{4}$$

$$f_{1}(x) = f_{2}(x) = f_{3}(x) = ax + b$$

$$y = \omega_{14} f_{1}(x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + \omega_{24} f_{2}(x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + \omega_{34} f_{3}(x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b_{4}$$

$$y = \omega_{14} a (x_{1}\omega_{11} + x_{2}\omega_{21} + b_{1}) + b + \omega_{24} a (x_{1}\omega_{12} + x_{2}\omega_{22} + b_{2}) + b + \omega_{34} a (x_{1}\omega_{13} + x_{2}\omega_{23} + b_{3}) + b + b_{4}$$

$$y = a x_{1}\omega_{11}\omega_{14} + a x_{2}\omega_{21}\omega_{14} + a b_{1}\omega_{14} + a x_{1}\omega_{12}\omega_{24} + a x_{2}\omega_{22}\omega_{24} + a b_{2}\omega_{24}$$

$$c_{1} \qquad a x_{1}\omega_{13}\omega_{34} + a x_{2}\omega_{23}\omega_{34} + a b_{3}\omega_{34} + 3b + b_{4}$$

$$y = a (\omega_{11}\omega_{14} + \omega_{12}\omega_{24} + \omega_{13}\omega_{34})x_{1} + a (\omega_{21}\omega_{14} + \omega_{22}\omega_{24} + \omega_{23}\omega_{34})x_{2} \qquad c_{3} + a (b_{1}\omega_{14} + b_{2}\omega_{24} + b_{3}\omega_{34}) + 3b + b_{4}$$

$$\begin{split} f_1(x) &= f_2(x) = f_3(x) = ax + b \\ y &= \omega_{14} f_1(x_1 \omega_{11} + x_2 \omega_{21} + b_1) + \omega_{24} f_2(x_1 \omega_{12} + x_2 \omega_{22} + b_2) + \omega_{34} f_3(x_1 \omega_{13} + x_2 \omega_{23} + b_3) + b_4 \\ y &= \omega_{14} a \left(x_1 \omega_{11} + x_2 \omega_{21} + b_1 \right) + b \\ &+ \omega_{24} a \left(x_1 \omega_{12} + x_2 \omega_{22} + b_2 \right) + b \\ &+ \omega_{34} a \left(x_1 \omega_{13} + x_2 \omega_{23} + b_3 \right) + b + b_4 \\ y &= a x_1 \omega_{11} \omega_{14} + a x_2 \omega_{21} \omega_{14} + a b_1 \omega_{14} \\ &+ a x_1 \omega_{12} \omega_{24} + a x_2 \omega_{22} \omega_{24} + a b_2 \omega_{24} \\ c_1 & a x_1 \omega_{13} \omega_{34} + a x_2 \omega_{23} \omega_{34} + a b_3 \omega_{34} + 3b + b_4 \\ y &= a \left(\omega_{11} \omega_{14} + \omega_{12} \omega_{24} + \omega_{13} \omega_{34} \right) x_1 + a \left(\omega_{21} \omega_{14} + \omega_{22} \omega_{24} + \omega_{23} \omega_{34} \right) x_2 \\ c_2 & + a \left(b_1 \omega_{14} + b_2 \omega_{24} + b_3 \omega_{34} \right) + 3b + b_4 \end{split}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$\omega_{11} = 1.5$$
 $b_1 = 5$ $a(x \omega_{11} + b_1)$ $a(1.5x + 5)$
 $\omega_{12} = 1$ $b_2 = -1.2$ $a(x \omega_{12} + b_2)$ $a(x - 1.2)$
 $\omega_{13} = 2$ $b_3 = -4$ $a(x \omega_{13} + b_3)$ $a(2x - 4)$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(1.5x + 3)$$
 $\omega_{14} = -0.6$
 $a(x - 1.2)$ $\omega_{24} = 1.7$
 $a(2x - 4)$ $\omega_{34} = -1.2$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(1.5x + 3)$$
 $\omega_{14} = -0.6$ $b_4 = -0.5$
 $a(x - 1.2)$ $\omega_{24} = 1.7$
 $a(2x - 4)$ $\omega_{34} = -1.2$

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(1.5x + 3)$$
 $\omega_{14} = -0.6$ $b_4 = -0.5$
 $a(x - 1.2)$ $\omega_{24} = 1.7$
 $a(2x - 4)$ $\omega_{34} = -1.2$

Rectified Linear Unit (ReLU)

$$a(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

$$a(1.5x + 3)$$
 $\omega_{14} = -0.6$ $\omega_{11} = 1.5$ $b_1 = 3$ $\omega_{12} = 1.2$ $\omega_{12} = 1$ $\omega_{13} = 1.2$ $\omega_{14} = -0.6$ $\omega_{14} = -0.6$ $\omega_{15} = 1.5$ $\omega_{16} = 3$ $\omega_{17} = 1.5$ $\omega_{18} = 3$ $\omega_{19} = 1.2$ $\omega_{19} = 1.2$ $\omega_{19} = 1.2$

= Parámetros de nuestro modelo

Como obtenemos el fit azul a partir de los datos que vienen de la función en negro

$$\hat{y} = f[x, \theta]$$

La mejor función $f[x, \theta]$ será la que minimice los Δy_i .

$$R^2 = 1 - \frac{\text{Error del modelo}}{\text{Variabilidad de los datos}}$$

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

Observaciones Independientes

$$L(\Theta) = P(Y|X,\Theta) = \prod_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)}$$

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

Observaciones Independientes

$$L(\Theta) = P(Y|X,\Theta) = \prod_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)} = \prod_{i} \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1-y_i)}$$
 Likelihood

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

Observaciones Independientes

$$L(\Theta) = P(Y|X,\Theta) = \prod_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)} = \prod_{i} \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1-y_i)}$$
 Likelihood

$$\log(L(\Theta)) = \log(P(Y|X,\Theta)) = \log(\sum_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)})$$

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

Observaciones Independientes

$$L(\Theta) = P(Y|X,\Theta) = \prod_{i} P(y_i = 1 \mid x_i)^{y_i} (1 - P(y_i = 1 \mid x_i))^{(1-y_i)} = \prod_{i} \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1-y_i)}$$

Likelihood

$$\log(L(\Theta)) = \log(P(Y|X,\Theta)) = \log(\sum_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)})$$

$$\log(L(\Theta)) = \sum_{i} (\log \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1 - y_i)})$$

Log Likelihood

$$P(y = 1 \mid x) = \frac{1}{1 + \exp^{-(x-\mu)/s}} = \frac{1}{1 + \exp^{-\Theta^T \vec{x}}} = \sigma(\Theta^T \vec{x})$$

$$P(y = 0 | x) = 1 - P(y = 1 | x)$$

$$P(y|x) = P(y = 1|x)^{y} P(y = 0|x)^{(1-y)} = P(y = 1|x)^{y} (1 - P(y = 1|x))^{(1-y)}$$

Bernoulli Distribution

Observaciones Independientes

$$L(\Theta) = P(Y|X,\Theta) = \prod_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)} = \prod_{i} \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1-y_i)}$$

Likelihood

$$\log(L(\Theta)) = \log(P(Y|X,\Theta)) = \log(\sum_{i} P(y_i = 1 \mid x_i)_i^y (1 - P(y_i = 1 \mid x_i))^{(1-y_i)})$$

$$\log(L(\Theta)) = \sum_{i} (\log \sigma(x_i)^{y_i} (1 - \sigma(x_i))^{(1 - y_i)})$$

Log Likelihood

$$\mathcal{L}_{BCE} = -\left[y\log(\sigma(x)) + (1-y)\log(1-\sigma(x))\right]$$

Función de Pérdida

	Detección de GW	Ruido
Hay GW	TP	FN
No hay GW	FP	TN

	Detección de GW	Ruido
Hay GW	TP	FN
No hay GW	FP	TN

Precisión =

	Detección de GW	Ruido
Hay GW	TP	FN
No hay GW	FP	TN

$$Precisión = \frac{TP}{TP + FP}$$

	Detección de GW	Ruido
Hay GW	TP	FN
No hay GW	FP	TN

$$Precisión = \frac{TP}{TP + FP}$$

	Detección de GW	Ruido
Hay GW	TP	FN
No hay GW	FP	TN

$$Precisión = \frac{TP}{TP + FP}$$

Recall =
$$\frac{TP}{TP + FN}$$

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

$$\mathcal{L}_{MAE} = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

$$\mathcal{L}_{BCE} = -\left[y\log(\hat{y}) + (1-y)\log(1-\sigma(x))\right]$$

$$\mathcal{L}_{CE} = -\sum_{k=1}^{K} y_k \log(\sigma(x_k))$$

Redes Neuronales: Shallow

Optimizar los parámetros de la red: minimizar la función de pérdida

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

Redes Neuronales: Bias-Varianza

Figura de Understanding Deep Learning

Redes Neuronales: Reducir la Varianza

Redes Neuronales: Reducir la Varianza

Redes Neuronales: Reducir la Varianza

Redes Neuronales: Reducir el Bias

Redes Neuronales: Overfitting

Figura de Understanding Deep Learning

Redes Neuronales: Trade-off

Redes Neuronales: The Curse of Dimensionality

Figura de Understanding Deep Learning

Redes Neuronales: Trade Off Bias-Variance

Capacity of \mathcal{H}

Belkin et al. 2019

Redes Neuronales: Double Descent

Para mas detalles: Rocks & Mehta 2022

Redes Neuronales: Double Descent

Mañana

- * Descenso del Gradiente
- * Estocasticidad para Funciones de Pérdida no Convexas
- * Aprendizaje Adaptativo
- * Teorema de Aproximación Universal
- * Redes Neuronales Profundas

Redes Neuronales: Función de Activación

Other Activation Functions

