Automaten und formale Sprachen

Voller Freude haben wir beim Abarbeiten des Arbeitsblattes "Übungen zu Grammatiken/ endlichen Automaten" eine Vorschrift entwickelt, mit Hilfe derer man einen Zustandsgraphen eines Automaten (fast 1:1) in eine entsprechende Grammatik übersetzen kann (und umgekehrt). Leider wurde diese Freude durch Aufgabe 7) ein wenig getrübt, weil dort diese Möglichkeit entfiel – stattdessen musste man sich in dem Fall eines Kellerautomaten bedienen. Dadurch ergibt sich allerdings konsequenter Weise die folgende, noch allgemeinere Frage:

Welche Sprachen

(die ja mit Hilfe einer Grammatik beschrieben werden können) können durch welche Art von Automaten gelöst werden?

Dazu definieren wir zunächst verschiedene Typen von **Sprachklassen**, die uns – unbewusst – im Laufe der Zeit begegnet sind, indem wir angeben, mit welcher Art von Produktions-Regeln die zugehörigen Grammatiken dargestellt werden können (Großbuchstaben kennzeichnen dabei Nichtterminale, Kleinbuchstaben Terminale, ϵ das leere Wort). Außerdem stellen wir einen Bezug zu der entsprechenden Automaten-Klasse her, die die entsprechende Grammatik entscheiden kann:

Sprache	Grammatik	Regeln	Automat
regulär	Тур-3	A ::= ε, A ::= a, A ::= aB	Endlicher Automat
kontextfrei	Тур-2	A ::= ε, A ::= γ, wobei γ eine beliebige Kombination aus Terminalen und Nichtterminalen darstellt	Kellerautomat
kontextsensitiv	Тур-1	aAb ::= aγb, γ wie oben, a und b können auch leer sein, S ::= ε nur erlaubt, wenn S sonst nie rechts auftritt (allgemein: "rechts immer mindestens genauso viele Zeichen wie links")	Linear beschränkte Turingmaschine
rekursiv aufzählbar	Тур-0	alle beliebigen Kombinationen	Turingmaschine

Chomsky-Hierarchie für formale Sprachen

Typische Beispiele für die verschiedenen Sprachklassen:

Typ 0\Typ 1: Halteproblem

Typ 1\Typ 2: $L = \{a^nb^nc^n | n \ge 1\}$

Typ 2\Typ 3: $L = \{a^nb^n | n \ge 1\}$

Typ 3: genügend Beispiele bekannt ☺