Reading Material

CS 5135/6035 Learning Probabilistic Models

Lecture 10: Latent Variables, Mixture Models, Expectation Maximization

Gowtham Atluri

October 2, 2018

• Chapter 9. Mixter Models and EM

- Bishop, Pattern Recognition and Machine Learning
- R. Sridharan, Gaussian mixture models and the EM algorithm
 - https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf

Gowtham Atluri

S 5135/6035 Learning Probabilistic Models

her 2 2018 1

S 5135/6035 Learning Probabilist

tober 2, 2018 2 /

Parameter Estimation (using MLE)

- Fitting Univariate distributions p(x)
 - E.g., Height of 200 subjects

$$p(x|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \equiv \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i-\mu)^2/2\sigma^2}$$

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 2, 2018

Parameter Estimation (using MLE)

- Fitting Multivariate distributions $p(\mathbf{x})$ or $p([x_1, x_2, \dots, x_d])$
 - E.g., Height and Weight of 200 subjects

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \equiv \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Gowtham Atl

CS 5135/6035 Learning Probabilistic Model

October 2 2018 4

Parameter Estimation (using MLE)

- Fitting p(y|x) or p(y|x)
 - E.g., Predicting species from petal length. $p(y=1|x) = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$
 - p(species = virginica|PetalLength = 6)

Latent variables

- Latent variables
- Why model latent variables?
- Identifiability issues
- Modeling latent variables

Observed Data & Modelled variables

Previously, the observed variables are modelled.

Modelling height and weight of subjects in a survey.

Samples	Weight	Height
1	77.4	182.6
2	58.5	161.3
3	63.1	161.2
4	68.6	177.7
5	59.3	157.8
6	76.7	170.4

Estimating parameters to determine p(Weight, Height)

 ${\sf Modelling\ Species\ and\ PetalLength}$

Samples	PetalLength	Species
1	1.6	setosa
2	1.4	setosa
3	1.3	setosa
4	5.2	virginica
5	5.0	virginica
6	5.2	virginica

Estimating parameters to determine p(Species|PetalLength)

Latent or Hidden variables

Latent Variables

Random variables whose values are not specified in the observed data.

 E.g., An online survey is sent out to employees at a University to collect their height and weight. Gender is a latent variable that is not measured.

	Row	Weight	Height	Gender
ĺ	1	77.4	182.6	M
İ	2	58.5	161.3	F
ĺ	3	63.1	161.2	F
	4	68.6	177.7	M

Gowtham Atl

CS 5135/6035 Learning Probabilistic Model

per 2, 2018 8,

CS 5135/6035 Learning Probabilistic Model

October 2, 2018 7

Why model latent variables?

- To explain observed data in terms of unobserved concepts.
 - A doctor may group patients into those with a certain syndrome and those without
 - grouping makes it easier to understand the relationships between observed symptoms.
 - A biologist may wish to group animals into distinct species
 - grouping makes it easier to explain behavioral or physiological patterns
- Often these distinctions cannot be observed or measured.

Modeling Latent or Hidden variables

- We want to model latent variables, along with observed variables.
- ullet Let $oldsymbol{v}$ be the observerd/visible variables
- Let **h** be the hidden/latent variables
- We want to model $p(\mathbf{v}, \mathbf{h})$
- We can write $p(\mathbf{v}|\theta) = \sum_h p(\mathbf{v}, \mathbf{h}|\theta)$
- ullet To estimate $oldsymbol{ heta}$, we may perform maximum likelihood on the visible variables alone.

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

ober 2, 2018

Gowtham Atl

CS 5135/6035 Learning Probabilistic Models

tober 2, 2018 10

Identifiability Issues

- E.g., Consider two varibles x_1, x_2 where x_1 is observed and x_2 is not.
- Let the distribution $p(x_1, x_2 | \theta) = \theta_{x_1, x_2}$
- Marginal likelihood only depends on

$$p(x_1|\theta) = \sum_{x_2} \theta_{x_1,x_2}$$

 \bullet Given an MLE solution $\theta^*,$ we can find an equivalent MLE solution θ' provided

$$\sum_{x_2} \theta'_{x_1, x_2} = \sum_{x_2} \theta^*_{x_1, x_2}$$

Identifiability Issues

 \bullet Let the estimated probability distribution be \hat{p}

$$\hat{p}(x_1 = 0, x_2 = 0) \ \hat{p}(x_1 = 0, x_2 = 1) \ \hat{p}(x_1 = 1, x_2 = 0) \ \hat{p}(x_1 = 1, x_2 = 1)$$

 \bullet We can construct a new distribution \hat{p}' such that

$$\hat{p}'(x_1 = 0, x_2 = 0) = \hat{p}(x_1 = 0, x_2 = 1)$$

$$\hat{p}'(x_1 = 0, x_2 = 1) = \hat{p}(x_1 = 0, x_2 = 0)$$

$$\hat{p}'(x_1 = 1, x_2 = 0) = \hat{p}(x_1 = 1, x_2 = 1)$$

$$\hat{p}'(x_1 = 1, x_2 = 1) = \hat{p}(x_1 = 1, x_2 = 0)$$

• There is an inherent symmetry in the solution space.

Modeling Latent Variables

Mixture Models

• Different scenarios

Observed var.	Latent Variable	Latent Variable	
	Continuous	Discrete	
Continuous	Factor Analysis	Mixture Modeling	
Discrete	Latent Trait Analysis	Latent Class Analysis	

- Motivation
- Example
- Formulation
- Limitations of MLE

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

ber 2, 2018 13

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Model

tober 2, 2018 14

14 / 40

Motivation for Mixture Models

- Parameter estimation based on observed variables is not always ideal for modeling data.
 - $\bullet \;\; \mathsf{E.g.}, \; \mathsf{modelling} \; \mathsf{PetalLength} \; \mathsf{using} \; \mathsf{univariate} \; \mathsf{Gaussian}$
 - A univarite distribution is not suited for modeling a bimodal distribution

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 2, 2018 15

Mixture Models

- Data is modelled as a mixture of several components
 - Each component has a simple parametric form (such as a Gaussian)

- Mixture Model is not 'aware' of the underlying interpretation

Atluri CS 5135

CS 5135/6035 Learning Probabilistic Models

October 2, 2018

Mixture Models - univariate example

Mixture Models - bivariate example

Mixture Models - formally

Mixture Models

A distribution f is a **mixture** of k component distributions f_1, f_2, \ldots, f_k if

$$f(x) = \sum_{i=1}^{k} \lambda_i f_i(x)$$

where λ_i are the **mixing weights**, $\lambda_i > 0, \sum_i \lambda_i = 1$

The above definition is a complete stochastic model

- It provides a recipe for generating new data points
- First pick a component prob. distribution
 - With probabilities given by the mixing weights
- Then generate one observation according to that distribution

$$z_i \sim \textit{Multinomial}(\lambda_1, \lambda_2, \dots, \lambda_k)$$

 $x_i | z_i \sim f_{z_i}$

Gowtham Atlu

CC E12E/602E Learning Drobabilistic Madela

ober 2, 2018 19

Mixture Models - formally

Mixture Models

A distribution f is a **mixture** of k component distributions f_1, f_2, \ldots, f_k if

$$f(x) = \sum_{i=1}^{k} \pi_i f_i(x)$$

where π_i are the **mixing weights**, $\pi_i > 0, \sum_i \pi_i = 1$

- In principle, f_i s can be arbitrary distributions
- In practice, we prefer parametric mixture models
 - All distributions belong to the same parametric family, with different parameters
- Gaussian mixture model is a popular mixture model

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Model

tober 2, 2018 20

Scenario

Scenario

Heights of 200 individuals are collected in a survey. Estimate the means of the heights for males and females (μ_M and μ_F).

- Assume the two groups have the same known variance σ^2 .

#data = dataset("car","Davis"); data[:Height]

- ## 200-element Array{Int32,1}:
- ## 182
- ## 161
- ## 161
- ## 177
- ## 157
- ## 170
- ## 167
- ## 186
- ## 178

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

October 2, 2018

The Model

- ullet Let x be a random variable representing the height of individuals
 - $x_i \in \mathbb{R}, i = 1, 2, ..., n$
- \bullet Let z be a random variable representing gender
 - $z_i \in M, F$
 - In general, z can be a categorical varibles.

 $p(z_i) = p^{\mathbb{1}(z_i = M)} (1 - p)^{\mathbb{1}(z_i = M)}$ $p(z_i) = \prod_{c \in \{M, F\}} \pi_c^{\mathbb{1}(z_i = c)}$

where $\pi_M = p$, $\pi_F = 1 - p$ (assume p is known)

• Conditional distributions within each class are Gaussian

$$p(x_i|z_i) = \prod_c \mathcal{N}(x_i; \mu_c, \sigma^2)^{\mathbb{1}(z_i=c)}$$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

October 2, 2018 22 / 4

Parameter Estimation - first attempt (MLE)

- We observe i.i.d heights $D=\{x_1,x_2,\ldots,x_n\}$, and want to find MLE estimates for parameters μ_M and μ_F .
 - Unsupervised learning problem: gender is not observed, but parameters are estimated based on gender.
- Probability density for one data point x_i

$$\begin{split} \rho(x_{i}) &= \sum_{z_{i}} p(z_{i}) p(x_{i}|z_{i}) \\ &= \sum_{z_{i}} \prod_{c} (\pi_{c}^{\mathbb{1}(z_{i}=c)}) (\mathcal{N}(x_{i}; \mu_{c}, \sigma^{2})^{\mathbb{1}(z_{i}=c)}) \\ &= \sum_{z_{i}} \prod_{c} (\pi_{c} \mathcal{N}(x_{i}; \mu_{c}, \sigma^{2})^{\mathbb{1}(z_{i}=c)}) \\ &= \pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2}) \end{split}$$

Parameter Estimation - first attempt (MLE)

• Probability density for one data point x_i

$$p(x_i) = \pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)$$

• Joint density or Likelihood for $D = \{x_1, x_2, \dots, x_n\}$

$$L = p(D) = \prod_{i=1}^{n} (\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2}))$$

Log likelihood

$$\ell = \sum_{i=1}^{n} \log \left(\pi_{M} \mathcal{N} (x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N} (x_{i}; \mu_{F}, \sigma^{2}) \right)$$

- In earlier secenarios, taking a log of likelihood resulted in sum of log terms
 - easier to differentiate
 - here we have a sum in the log that we cannot separate

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

Parameter Estimation - first attempt (MLE)

Log likelihood

$$\ell = \sum_{i=1}^{n} \log \left(\pi_{M} \mathcal{N} (x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N} (x_{i}; \mu_{F}, \sigma^{2}) \right)$$

• By symmetry, we only need to look at one of the means; the other will almost follow the same process

$$\begin{split} \frac{d}{du}\mathcal{N}(x;\mu,\sigma^2) &= \frac{d}{du} \Big[\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \Big] \\ &= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \cdot \frac{2(x-\mu)}{2\sigma^2} \\ &= \mathcal{N}(x;\mu,\sigma^2) \cdot \frac{(x-\mu)}{\sigma^2} \end{split}$$

Parameter Estimation - first attempt (MLE)

Log likelihood

$$\ell = \sum_{i=1}^{n} \log \left(\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2}) \right)$$

• We know

$$\frac{d}{du}\mathcal{N}(x,\mu,\sigma^2) = \mathcal{N}(x,\mu,\sigma^2).\frac{(x-\mu)}{\sigma^2}$$

• Differentiating ℓ w.r.t. μ_M , we obtain

$$\sum_{i=1}^{n} \frac{1}{\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2})} \pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) \frac{x_{i} - \mu_{M}}{\sigma^{2}} = 0$$

- This derivative has ratios of exponentials and linear terms
 - Not possible to arrive at a closed form solution for μ_M
 - Gradient-based approaches are applicable

Expectation Maximixation Approach

- Motivation
- Approach
- Julia code
- Examples

Parameter Estimation - first attempt (MLE)

Log likelihood

$$\ell = \sum_{i=1}^{n} \log \left(\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2}) \right)$$

 \bullet Differentiating ℓ w.r.t. $\mu_{\mathit{M}}\text{,}$ we obtain

$$\sum_{i=1}^{n} \frac{1}{\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2})} \pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) \frac{x_{i} - \mu_{M}}{\sigma^{2}} = 0$$

- This derivative has ratios of exponentials and linear terms
 - Not possible to arrive at a closed form solution for μ_M

Motivation for Expectation Maximization (EM)

- ullet If we knew which subjects were male and female, computing μ_M and μ_F is straightforward.
 - Simplifies to univariate Gaussian parameter estimation
- With Bayes rule, the posterior probability

$$\begin{aligned} \rho(z_i|x_i) &= \frac{\rho(x_i|z_i)\rho(z_i)}{\rho(x_i)} \\ &= \frac{\prod_c \left(\pi_c \mathcal{N}(x_i; \mu_c, \sigma^2)\right)^{\mathbb{I}(z_i = c)}}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)} \end{aligned}$$

• The posterior probability that $z_i = M$

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

Motivation for Expectation Maximization (EM)

• Bringing the $\frac{d}{d\mu_M}\ell$ and the posterior probability together • Differentiating ℓ w.r.t. μ_M , we have

$$\sum_{i=1}^{n} \frac{1}{\pi_{M} \mathcal{N}(\mathbf{x}_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(\mathbf{x}_{i}; \mu_{F}, \sigma^{2})} \pi_{M} \mathcal{N}(\mathbf{x}_{i}; \mu_{M}, \sigma^{2}) \frac{\mathbf{x}_{i} - \mu_{M}}{\sigma^{2}} = 0$$

• The posterior probability that $z_i = M$

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

• Assuming we know $p(M|x_i)$, and by substituting it in the $\frac{d}{dust}$

$$\sum_{i=1}^{n} p(M|x_i) \frac{x_i - \mu_M}{\sigma^2} = 0 \implies \mu_M = \frac{\sum_{i=1}^{n} p(M|x_i) x_i}{\sum_{i=1}^{n} p(M|x_i)}$$

Motivation for Expectation Maximization (EM)

- Bringing the $\frac{d}{d\mu_M}\ell$ and the posterior probability together Differentiating ℓ w.r.t. μ_M , we have

$$\sum_{i=1}^{n} \frac{1}{\pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) + \pi_{F} \mathcal{N}(x_{i}; \mu_{F}, \sigma^{2})} \pi_{M} \mathcal{N}(x_{i}; \mu_{M}, \sigma^{2}) \frac{x_{i} - \mu_{M}}{\sigma^{2}} = 0$$

• The posterior probability that $z_i = M$

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

• Assuming we know $p(M|x_i)$, and by substituting it in the $\frac{d}{dust}\ell$

$$\sum_{i=1}^{n} p(M|x_i) \frac{x_i - \mu_M}{\sigma^2} = 0 \implies \mu_M = \frac{\sum_{i=1}^{n} p(M|x_i) x_i}{\sum_{i=1}^{n} p(M|x_i)}$$

- ullet μ_{M} is a weighted average of the heights
 - each height is weighted by how likely that person is to be male
- By symmetry, μ_F is weighted $(p(F|x_i))$ average of the heights

CS 5135/6035 Learning Probabilistic Models

Motivation for Expectation Maximization (EM)

• To compute posterior prob. $p(M|x_i)$, we need μ_M and μ_F

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

• To compute μ_M and μ_F , we need $p(M|x_i)$ and $p(F|x_i)$

$$\mu_{M} = \frac{\sum_{i=1}^{n} p(M|x_{i})x_{i}}{\sum_{i=1}^{n} p(M|x_{i})} \qquad \mu_{F} = \frac{\sum_{i=1}^{n} p(F|x_{i})x_{i}}{\sum_{i=1}^{n} p(F|x_{i})}$$

- Strategy: We will fix one and solve for the other, iteratively
- EM Algorithm
 - ullet E Step:, we fix parameters $\mu_{\it M}$ and $\mu_{\it F}$, and compute the posterior distribution $p(M|x_i)$ and $p(F|x_i)$
 - M Step:, we fix posteriori distribution $p(M|x_i)$ and $p(F|x_i)$ and optimize for μ_{M} and μ_{F}
 - Repeat the two steps until the values converge

CS 5135/6035 Learning Probabilistic M

Expectation Maximization (EM)

• An elegant and a powerful method for finding Max. Likelihood solutions for models with latent variables

Step 1: Pick initial value μ_M and μ_F

Step 2: maxIter = 1000

Step 3: for i = 1: maxlter

Compute $p(M|x_i)$ Step 4:

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

Optimize for μ_{M} and μ_{F} Step 5:

$$\mu_{M}^{i} = \frac{\sum_{i=1}^{n} p(M|x_{i})x_{i}}{\sum_{i=1}^{n} p(M|x_{i})} \qquad \mu_{F}^{i} = \frac{\sum_{i=1}^{n} p(F|x_{i})x_{i}}{\sum_{i=1}^{n} p(F|x_{i})}$$

if $|\mu_M^i - \mu_M^{i-1}| < \epsilon$ and $|\mu_F^i - \mu_F^{i-1}| < \epsilon$ terminate; end Step 6:

Step 7: end for

Writing code for E step in Julia

• Computing $p(M|x_i)$

$$p(M|x_i) = \frac{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2)}{\pi_M \mathcal{N}(x_i; \mu_M, \sigma^2) + \pi_F \mathcal{N}(x_i; \mu_F, \sigma^2)}$$

```
function E_step(x,mu_M,mu_F,sigma,p)
   numerator = p*pdf.(Normal(mu_M,sigma),x)
   denom = numerator .+ (1-p).* pdf.(Normal(mu_F,sigma),x);
   post_x = numerator ./denom;
   return post_x;
```

E_step (generic function with 2 methods)

Writing code for M step in Julia

ullet Computing μ_M by maximizing the likelihood

$$\mu_{M} = \frac{\sum_{i=1}^{n} p(M|x_{i})x_{i}}{\sum_{i=1}^{n} p(M|x_{i})} \qquad \mu_{F} = \frac{\sum_{i=1}^{n} p(F|x_{i})x_{i}}{\sum_{i=1}^{n} p(F|x_{i})}$$

M_step (generic function with 1 method)

Writing code for EM approach in Julia

```
function EM(x,mu_M,mu_F,p,sigma)
    maxIter = 1000;
    for i=1:maxIter
        print(i,"\n");
        post_x = E_step(x,mu_M,mu_F,sigma,p);
        mu_M_new, mu_F_new = M_step(x,post_x);
        if(abs(mu_M-mu_M_new)<0.001</pre>
           && abs(mu_F-mu_F_new)<0.001)
            break;
        mu_M = mu_M_new;
        mu_F = mu_F_new;
    return mu_M, mu_F;
```

Using EM approach for estimating μ_{M} and μ_{F} in Julia

```
#data = dataset("car","Davis");
x = data[:Height];
mu_M=190;
mu_F=150;
p = 0.5;
sigma=7;
EM(x,mu_M,mu_F,p,sigma)
```

(176.38366334360896, 163.46901164793636)

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 2, 2018

Exploring EM approach: 1st iteration

Gowtham Atluri

135/6035 Learning Probabilistic Models

ber 2, 2018 37

Exploring EM approach: 2nd iteration

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 2, 2018 38 /

Exploring EM approach: 3rd iteration

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 2, 2018 39 / 40

Exploring EM

• posterior distribution for distinguishable components

CS 5135/6035 Learning Probabilistic Mode

October 2, 201

0 / 40