Complexity Analysis:

```
Problem2:

for ( i=1; i<n; i+2) {

    statement; ------ n/2

}

T(\mathbf{n}) = O(n/2) =>O(1/2*n) = O(n) Showed
```

Problem3:	i	j no. of time
for (i=0; i <n; i++)="" td="" {<=""><td>0</td><td>Θ 0</td></n;>	0	Θ 0
for $(j=0; j< i; j++)$ {	1	0 1
		1 ×
statement;	2	0 2
}		1 _
}		2 ×
T(n) = 1+2+3++n=n(n+1)/2	3	0 3
$=\frac{1}{2}(n^2+n)=>O(n^2)$ showed		1
2		2
		3 ×
	n	n

```
Problem4:
      p=0;
for (i=1; p \le n; i++)
                                                 1
                                                      0+1=1
       p=p+i;
                                                      1+2=3
                                                      1+2+3=6
Therefore,
                                                      1+2+3+4=10
p=\frac{1}{2}(k^2+k); Assume p>n
                                                      .....
                                                      k 1+2+3+4+----+k=k(k+1)/2
      \frac{1}{2}(k^2+k)>n => k^2>n => k>\sqrt{n}
      => O(\sqrt{n}) showed
```

```
      Problem7:
      i*i < n

      for ( i=0; i*i < n; i++) {
      i*i > = n

      statement;
      i^2 = n

      }
      i = \sqrt{n}
```

```
Problem 9:

p=0

for ( i=1; i<n; i=i*2){

    p++;    p= log<sub>2</sub><sup>n</sup>=logn

    }

for ( j=1; j<p; j=j*2) {

    statement; p= log<sub>2</sub><sup>p</sup>=logp

    }

O(loglogn)
```

```
Problem 9:
for ( i=0; i<n; i++) ------n

{
    for ( j=1; j<n; j=j*2)-----n*logn
    {
        statement; ------ n*logn
    }
    }
}

n+2nlogn
O(nlogn)
```

$$fon(i=0; i < n; i+1) - O(n)$$

$$fon(i=0; i < n; i=i+2) - \frac{n}{2} O(n) \qquad \frac{n}{2} - O(n)$$

$$fon(i=n; i > 1; i-1) - O(n) \qquad \frac{n}{200} - O(n)$$

$$fon(i=1; i < n; i=i*2) - O(\log n)$$

$$fon(i=1; i < n; i=i*3) - O(\log n)$$

$$fon(i=n; i > 1; i=i/2) - O(\log n)$$

Analysis of if & while

$$i=0$$
; $i=0$; $i; $i+t$) $-n+1$

while $(i $-n+1$
 $s+m!$; $-n$
 $i++$; $-n$
 $f(m)=3n+2$
 $f(m)=3n+2$
 $f(m)=0$; $i; $i+t$; $-n+1$
 $f(m)=2n+1$
 $f(m)=0$$$$

Analysis of if & while

$$a=1$$
;

while $(a < b)$
 $1 \times 2 = 2$
 $2 \times 2 = 2^{2}$
 $a > b$
 $a = a \times 2$;

 $2^{k} > b$
 $2^{k} = b$
 $k = \log b$
 $(\log n)$

Analysis of it & while

$$i=1;$$
 $k=1;$
 $k=1;$
 $k=1;$
 $k=1;$
 $k > n$
 $k=1;$
 $k > n$
 k

Analysis of it & while

while
$$(m!=n)$$

if $(m > n)$
 $m=16$
 $m=2$
 14
 2
 $m=m-n$;

 $m=m-n$;

 $m=16$
 $m=2$
 $m=2$
 $m=16$
 $m=2$
 $m=16$
 $m=2$
 $m=16$
 $m=2$
 $m=16$
 $m=2$
 $m=2$
 $m=16$
 $m=2$
 $m=2$
 $m=16$
 $m=2$
 $m=16$
 $m=2$
 $m=2$
 $m=16$
 $m=16$
 $m=2$
 $m=16$
 $m=16$
 $m=2$
 $m=16$
 m