1

SISTEMAS MULTIMÍDIA IMAGEM 2

Prof.: Danilo Coimbra (coimbra.danilo@ufba.br)

- Como as imagens são capturadas?
 - Tecnologia tentar imitar o olho humano

Olho	Câmera
Cristalino	Lente
Íris	Íris
Cones	CCD
Bastonetes	CCD

CCD = charge-coupled device

- Imagem é "entendida" como uma matriz de pontos
 - □ Pixel ou Pel = Picture element
- A luz proveniente de cada ponto da imagem é capturada por um sensor (CCD)
 - É composto por uma malha de material fotossensível. Cada célula da malha corresponde a um ponto da imagem

- Imagens coloridas
 - Utilizam um CCD para cada cor primária (RGB)
 - Um filtro separa a luz incidente direcionando as componentes para o CCD correto
 - Cada posição do frame buffer armazena informação dos três componentes

- Imagens coloridas
 - Utiliza um filtro de cor de pixels com seções (RGB)
 - Estimam/calculam um valor médio de cor para cada pixel
 - Muitas câmeras atuais usam esse método (custo-benefício)

- Tamanho físico em disco
- □ Imagem de 640 x 480 com 24 bits por pixel?

- Tamanho físico em disco
- □ Imagem de 640 x 480 com 24 bits por pixel
 - 7.372.800 bits (~7Mbits)
 - 921.600 bytes (~1MB)

- Tamanho físico em disco
- Uma imagem na forma digital não apresenta,
 tecnicamente, uma resolução (dimensão) no mundo real
 - Exemplo: a que tamanho podemos imprimir uma imagem com 600 x 300 pixels?

- Necessário saber a capacidade do equipamento em reproduzir um número de pixels por unidade de medida
 - Pixels por polegada (ppi) ou Pontos por polegada (dpi)

Diferentes resoluções

Qual a resolução (largura e altura) de uma imagem criada por uma câmera de 5 megapixels? (imagem proporção 4:3. Ex.: 1280:720)

- Qual a resolução (largura e altura) de uma imagem criada por uma câmera de 5 megapixels? (imagem proporção 4:3. Ex.: 1280:720)
- \square res.= $4ax3a=12a^2$
- $a^2 = res./12$
- □ a=raiz(res./12)

5 megapixels=5.000.000 a=raiz(5.000.000/12)=~646

imagem = 4(646)x3(646)

imagem = 2584x1938

- Exibição do monitor
 - Considerando uma tela de mesmo tamanho

Tela: 640 x 480 pixels Imagem: 400 x 300 pixels

Tela: 800 x 600 pixels lmagem: 400 x 300 pixels

- Representação de Imagens
 - ■Na memória do computador:
 - Matriz de pixels armazenada no frame-buffer

- Em arquivos:
 - Geradas por computador
 - Gráficos
 - Digitalizadas
 - Documentos
 - Imagens

- □ Gráficos
 - Dois modos de representação
 - Mapas de bits
 - Arquivos maiores
 - ■Não necessita de interpretadores
 - BMP, TIFF, ...
 - Comandos de alto nível
 - Arquivos menores (somente instruções)
 - Necessidade de interpretadores
 - SVG* (Scalable Vector Graphics),...
 - * Ver conteúdo complementar no moodle

- Imagens
 - Adquiridas por scanners ou câmeras, ou criadas computacionalmente
 - Imagens de tom contínuo
 - ■Tons de cinza: 8 bits
 - ■Coloridas: 8, 16, 24 ou 32 bits por pixel
 - Conteúdo do frame buffer em um arquivo
 - Normalmente aplica-se compressão
 - Diversos formatos
 - ■GIF, JPEG, PNG,...

Tipos de Imagens

Vetoriais

Matriciais

Imagens Vetoriais

 A representação vetorial é empregada para a definição de modelagem de objetos que compõem a imagem

- Na representação vetorial são usados elementos básicos como os pontos, as linhas, as curvas,...
 - São chamadas de primitivas vetoriais

Imagens Vetoriais

- Cada primitiva vetorial possui um conjunto de atributos que defini sua aparência a um conjunto de dados que defini sua geometria
 - Ex.: SVG (representação vetorial para Web, baseado em XML, atributos podem ser animados)

Imagens Vetoriais

- Vantagens
 - Facilidade de armazenamento e representação dos elementos geométricos
 - □ Facilidade de manipulação (escala, rotação, ..)
 - Alteração simples
- Desvantagens

Requer dispositivos de saída específicos para ter bons

resultados

Reconstrução mais lenta

Imagens Matriciais

 Representação: a imagem é descrita por um conjunto de células em um arranjo espacial bidimensional, uma matriz

Cada célula representa um pixel

 Os objetos são formados usando adequadamente os pixels

As imagens matriciais são também conhecidas como bitmaps

Imagens Matriciais

- A representação matricial é usada para formar a imagem na memória do computador
 - Representação digital

memória da imagem

Controlador de vídeo

monitor

Imagens Matriciais

 A dimensão de uma imagem depende de resolução do dispositivo que se utilizou (monitor, impressora, scanner)

Exemplo:

- Imagem de 34x34 pixels
- Se apresentada num monitor de 72 dpi, qual as dimensões físicas da imagem?

Imagens Matriciais

 A dimensão de uma imagem depende de resolução do dispositivo que se utilizou (monitor, impressora, scanner)

Exemplo:

- Imagem de 34x34 pixels
- Se apresentada num monitor de 72 dpi, qual as dimensões físicas da imagem?

dimensão física = dimensão em pixels / resolução dos dispositivos

dim.fis. =
$$34/72 = 0.4722 = 12$$
mm

Representação Digital

- Imagem monocromática
 - Uma imagem monocromática é uma função bidimensional da intensidade de luz $\mathbf{f}(\mathbf{x},\mathbf{y})$, onde \mathbf{x} e \mathbf{y} denotam coordenadas espaciais (largura e altura) e valor \mathbf{f} em qualquer ponto (\mathbf{x},\mathbf{y}) é proporcional ao brilho (ou nível de cinza) da imagem naquele ponto

Representação digital de uma imagem

- Consiste nas etapas de
 - Amostragem: espaçamento horizontal e vertical
 - matrix de pixels
 - Quantização: níveis de representação da intensidade de luz
 - Codificação: representação binária de pixels

Representação digital de uma imagem

- Amostragem
 - □ É amostrar uma imagem em amostras igualmente espaçadas
 - Terá como resultado uma matriz M x N de amostras da imagem, onde cada elemento é chamado de pixel

Representação digital de uma imagem

Quantização

É a representação do valor medido de um pixel aproximado

Representação digital de uma imagem

- Diferentes níveis de quantização
 - Comparação

256 níveis de cinza (8 bits)

2 níveis de cinza (1 bit)

- Representação digital de uma imagem
 - Imagem Colorida

Comparação Vetorial x Matricial

Objeto Vetorial

Objeto Matricial

Comparação Matricial x Vetorial

- Conversão Vetorial p/ Bitmap
 - Imagem vetorial é decomposta em pixels e colocada numa matriz
 - Qualidade depende do tamanho da matriz
 - Problemas de serrilhado

Comparação Matricial x Vetorial

- Conversão Bitmap p/ Vetorial
 - Conversão mais difícil, com altos índices de falha
 - Algoritmos e heurísticas de detecção de formas
 - Resultados bons para formas geométrica, ruins para imagens reais
 - Normalmente resulta na perda de cores

Referências

- Gonzales & Woods. Digital Image Processing.
 2nd ed. Prentice-Hall, 2002. Capítulo 8, seção 8.1.
- Halsall, F. Multimedia Communications:
 Applications, Networks, Protocols, and
 Standards, Addison-Wesley Publishing, 2001.
 ISBN: 0201398184.
- Pennebaker & Mitchell. JPEG Still Image Data
 Compression Standard. Van Nostrand Reinhold, 1993.
- Notas de aula do Prof. Antonio G. Thomé.
 Universidade Federal do Rio de Janeiro. Aquisição e Representação de Imagem Digital