

REPRODUCING REALITY

A COMPARISON OF METHODOLOGIES AND MACHINE LEARNING ALGORITHMS FOR THE CALIBRATION OF AGENT-BASED MODELS IN ECOLOGY

MSc thesis Leiden Universiteit Femke Keij Supervisor: Dr. George van Voorn, Biometris, Wageningen University & Research

ECOLOGICAL MODELS

Traditional differential equation models

Agent-Based Models

AGENT-BASED MODELS

AGENT-BASED MODELS

CALIBRATION

Introduction

wolves

Methodology Results Discussion Conclusion

2000

log(population) 1000

500

CALIBRATION

CALIBRATION

CALIBRATION STEPS & ISSUES

- Sampling
- Sample size
- Repeated runs

CALIBRATION STEPS &

Methodology Introduction Conclusion Results Discussion

CALIBRATION STEPS & ISSUES

- Multiple parameters
- May need a lot of data
- Non-linear and dynamic relationships

CALIBRATION STEPS & ISSUES

- Availability
- Scale
- Information
- Noise

CALIBRATION STEPS & ISSUES

RESEARCH QUESTIONS

- 1. Identify calibration issues
- What is the influence of ...
 - a) Using a full time series vs. using time points
 - b) Summarising vs. not summarising repeated runs of the same parameter combination
 - c) Noise in the real-world data
- ... on calibration performance (i.e., the ability to deduce the input parameters correctly)?
- 3. Which algorithm most succesfully calibrates ABMs?
 - a) A univariate or multivariate algorithm?
 - b) A linear or non-linear algorithm?

ABMS

Continuous parameters

- RMSE
- NRMSE
- Point prediction performance
- % estimated correctly

Discrete parameter

- Cohen's kappa
- F1 score
- Matthew's correlation coefficient
- % estimated correctly

RESULTS OBSERVATIONS & ISSUES

RESULTS GENERAL PERFORMANCE

RESULTS RQ 1: FULL TIME SERIES VS. TIME POINTS

RESULTS RQ 1: SUMMARISING REPEATED RUNS

RESULTS RQ 1: NOISE IN DATA

RESULTS RQ 2: UNI-VARIATE VS. MULTI-VARIATE LINEAR VS. NON-LINEAR

DISCUSSION STRENGTHS & LIMITATIONS

Strengths

- Overview of calibration steps
- Started to identify which steps may be influential

Limitations

- Computational limitations
 - Parameters as a set
 - Time points

DISCUSSION IDEAS FOR FUTURE RESEARCH

- Sampling
- Evaluating performance
- Algorithms
- Expanding methodological questions
- Expanding the study

CONCLUSION

THANK YOU

QUESTIONS?

BIBLIOGRAPHY

- •Elske van der Vaart, Alice S.A. Johnston, and Richard M. Sibly. Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models. Ecological Modelling, 326:113–123, 4 2016.
- •Matthew Oremland and Reinhard Laubenbacher. Optimization of agent-based models: Scaling methods and heuristic algorithms. JASSS, 17:6, 2014.
- •Ernesto Carrella. No free lunch when estimating simulation parameters. JASSS, 24:7, 2021.
- •Ernesto Carrella, Richard Bailey, and Jens Madsen. Calibrating agent-based models with linear regressions. JASSS, 23:7, 2020.
- •Guus Ten Broeke, George Van Voorn, Arend Ligtenberg, and Jaap Molenaar. The use of surrogate models to analyse agent-based models. JASSS, 24:3, 2021.

