ESE 406 Final Exam Cheat Sheet

Function	Time domain $f(t) = \mathcal{L}^{-1}\left\{F(s) ight\}$	Laplace s-domain $F(s) = \mathcal{L}\left\{f(t) ight\}$
nth power (for integer n)	$\frac{t^n}{n!} \cdot u(t)$	$\frac{1}{s^{n+1}}$
qth power (for complex q)	$\frac{t^q}{\Gamma(q+1)} \cdot u(t)$	$\frac{1}{s^{q+1}}$
unit step	u(t)	$\frac{1}{s}$
delayed unit step	u(t- au)	$\frac{e^{-\tau s}}{s}$
ramp	$t \cdot u(t)$	$\frac{s}{\frac{1}{s^2}}$
nth power with frequency shift	$\frac{t^n}{n!}e^{-\alpha t}\cdot u(t)$	$\frac{1}{(s+\alpha)^{n+1}}$
exponential decay	$e^{-\alpha t} \cdot u(t)$	$\frac{1}{s+\alpha}$
exponential approach	$(1 - e^{-\alpha t}) \cdot u(t)$	$\frac{\alpha}{s(s+\alpha)}$
sine	$\sin(\omega t) \cdot u(t)$	$\frac{\omega}{s^2 + \omega^2}$
cosine	$\cos(\omega t) \cdot u(t)$	$\frac{s}{s^2 + \omega^2}$
hyperbolic sine	$\sinh(\alpha t) \cdot u(t)$	$\frac{\alpha}{s^2 - \alpha^2}$
hyperbolic cosine	$\cosh(\alpha t) \cdot u(t)$	$\frac{s}{s^2 - \alpha^2}$
Exponentially-decaying sine wave	$e^{-\alpha t}\sin(\omega t)\cdot u(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
Exponentially-decaying cosine wave	$e^{-\alpha t}\cos(\omega t)\cdot u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt.$$

$$t_r = \frac{1.8}{\omega_n}$$

$$X(z) = \mathcal{Z}\left\{x[n]\right\} = \sum_{n=0}^\infty x[n]z^{-n}.$$

$$t_s = \frac{4.6}{\sigma}$$

TABLE 8-1 Short Table of z-Transforms

_			
Transform Pair Number	Continuous-time Function $f(t)$ for $t > 0$	Sample Values $f(nT)$ for $n \ge 0$	z-Transform of $f(nT)$
1.	1-1	$f(nT) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases} \stackrel{\Delta}{=} \delta(n)$	измерт выприодка прачит 1
2.	1 (unit step)	1 marketate server onword	$\frac{1}{1-z^{-1}}$ beginning the second of
3.	$e^{-\alpha t}$	$e^{-\alpha nT} = (e^{-\alpha T})^n = K^n$	$\frac{1}{1 - e^{-\alpha T} z^{-1}} = \frac{1}{1 - K z^{-1}}$
4.	t	nT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
5. [†]	te^{-at}	nTe^{-anT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
6.†	sin bt	$\sin bnT$	$\frac{(\sin bT)z^{-1}}{1 - 2(\cos bT)z^{-1} + z^{-2}}$
7.†	cos bt	$\cos bnT$	$\frac{1 - (\cos bT)z^{-1}}{1 - 2(\cos bT)z^{-1} + z^{-2}}$
8.†	$e^{-at}\sin bt$	$e^{-anT}\sin bnT$	$\frac{e^{-aT}(\sin bT)z^{-1}}{1 - 2e^{-aT}(\cos bT)z^{-1} + e^{-2aT}z^{-2}}$
9.†	$e^{-at}\cos bt$	$e^{-anT}\cos bnT$	$\frac{1 - e^{-aT}(\cos bT)z^{-1}}{1 - 2e^{-aT}(\cos bT)z^{-1} + e^{-2aT}z^{-2}}$

[†]In transforms 5 through 9, e^{-aT} and bT can be replaced by constants, K_1 and K_2 , respectively, as was done in transform 3. Convergence of the z-transform requires $|K_1| < 1$.

BDK: 03-May-2010

