Structural motif search across the protein-universe with Folddisco

Hyunbin Kim, Rachel Seongeun Kim, Milot Mirdita, and Martin Steinegger

Structural Motifs

- Short, recurring 3D arrangements of tertiary structural elements
- Form **recognizable patterns** across diverse proteins
- Often linked to:
 - Stability
 - Binding interactions
 - Catalytic activity / active sites

Why Do They Matter?

- Functionally constrained: Evolution preserves them at sub-Ångström resolution
- Motif identification can reveal functional clues, even when:
 - No known homologs exist
 - The protein's function is uncharacterized

Motif-Function Examples

• Cys₂-His₂ zinc finger

Stabilizes **DNA-binding domains** in transcription factors

• CWxP, NPxxY, DRY motifs in GPCRs

Drive **receptor activation** and signal transduction

Gap in Annotation Tools

Most methods rely on sequence → function relationship

However, this relationship is **indirect**

- Sequence determines structure, but function is executed by structure
 Similar sequences ≠ identical functions
 (due to structural divergence, context, or local geometry)
- Distant residues in sequence can form critical 3D motifs

- This reliance stems from:
 - The wide availability of high-throughput sequencing and alignment tools
 - Limited structural data (until recently)
 - Historically inefficient structure comparison methods
- In contrast, methods that model **structure** → **function** relationships:
 - Can provide more direct functional insights
 - Especially useful for motif-level functional prediction

Structure-based functional annotation

Challenges with Conventional Tools

- Scarcity of structural data (compared to sequence data)
- Slow and computationally intensive structural alignment
- Poor scalability to large databases or motif-scale queries

Foldseek: A Scalable Alternative

- Converts 3D structure into a 1D sequence using a 3Di alphabet
- Enables fast and scalable structural alignments
 - Treats structure comparison as sequence alignment
- Not designed for motifs
 - Assumes linear residue matching, which is effective for global or domain-level alignments
 - Structural motifs are non-linear, they often involve:
 - Non-contiguous residues in sequence
 - Spatially close but sequentially distant fragments

RCSB motif search

- Addresses non-linear motifs by:
 - Breaking proteins into proximal residue pairs
- Features for Each Pair:
 - Residue 1 AA identity
 - Residue 2 AA identity
 - Cα–Cα distance
 - Cβ–Cβ distance
 - Angle between Cα–Cβ vectors
- Stored as a **5-feature set** in an **inverted index**
- Index maps to: PDB entry + positions
- Scales with residue count
- Indexing requires **"75**× more operations than residue count
 - ➤ Due to pairwise feature extraction & storage

Limitations of motif search tools

- The indexing time and storage requirement
 - RCSB motif search took 3.5 days and 55GB to index 160,467 structure
 - pyScoMotif took 20.5 hours for 195,000 structures, but still required 73G
 - a faster Python-based motif finder utilizing the same pair representation, except that it uses side-chain centroids instead of Cβ atoms

- Lack of flexibility in handling various query motif types and length
 - RCSB supports query motifs of up to **10 residues**
 - Alignment-based fragment search methods can **handle longer, discontinuous queries**, but **struggle with short motifs** like catalytic triads or zinc fingers

FoldDisco

• The first motif search algorithm that supports **both short motif queries and long, discontinuous segments** within a single framework.

 Massive scale efficiency: indexing 53M structures in under 24 hours (<1.5 TB) with queries taking only a few second

- Folddisco examines proximal residue pairs
 - Extracts and encodes feature sets, storing them in an index
 - o Builds upon RCSB's feature set with
 - **Torsion angles** (N–C α , C β) from **trRosetta**
 - → Capture side-chain orientation

Folddisco is a fast tool for sensitive motif detection in millions of protein structures

 Given motif-defining query residues it examines proximal pairs (<20Å) and computes feature sets for each pair.

 Each set is encoded and rapidly searched against a precomputed index of pairwise features from database structures

Extended search: it can generate
 additional feature sets accounting for
 amino-acid substitutions, side-chain
 flexibility, and increased distances/angles.

FoldDisco: Feature Set & Indexing Strategy

Feature Set Construction

- Identify proximal residue pairs:
 - **5 RCSB features** (black):
 - 2 new features (pink): Torsion
 angles (N–Cα and Cβ)
- Each 7-feature set is bit-encoded
- Stored in an index:
 - Maps feature sets → structure IDs where they occur
 - No need to store residue positions

Motif Querying Process

- Apply same feature extraction on query motif's proximal residues
- Perform a "pre-filter" step:
 - Retrieve all structure **IDs** with matching feature sets
- Optionally:
 - Post-process retrieved structures
 Match their residues (pink) to the query (gray)

FoldDisco: Pairwise Features & Efficient Encoding

Encoding Feature Sets as 32-bit Integers

- AA types (20 options): 5 bits each (AA1, AA2: 10 bits)
- Distances (0–20Å, 16 bins): 4 bits each
 (Cα, Cβ: 8 bits)
- Angles (cos & sin, 4 bins each): 4 bits per angle ($C\alpha$ – $C\beta$, torsion angles: 12 bits)
- Total: **30 bits** + 2 padding bits = **32-bit** unsigned integer
- Two feature sets per pair (both AA_1-AA_2 and AA_2-AA_1 directions since dihedral angles are **non-symmetric.**

Indexing Phase

- Assign unique IDs to each protein structure
- Identify proximal residue pairs (within 20Å radius)
- For each pair:
 - Extract two sets of 7 features
 - Encode each feature set as a 32-bit unsigned integer
- Use each integer as a key in the index →
 - ➤ Maps to **structure IDs** where the feature set appear

FoldDisco: Querying

Querying Phase

- Extract proximal residue pairs from the query motif
- For each pair (i, j), compute:
 - Feature set for (i, j) and (j, i)
 (due to asymmetry in dihedral features)
- Encode feature sets as 32-bit integers

Extended search (optional):

- More encodings for each query proximal pair in given range
- Allow AA substitutions
- Looser distance/angle thresholds

Pre-Filtering Step

 Use query integers as keys to retrieve matching structure IDs

Scoring & Ranking

- Rank matches by:
 - Number of shared feature sets
 - Rarity of those sets (higher rarity → higher

$$ext{IDF}_e = \log_2 \left(rac{\# ext{ total structures}}{\# ext{ structures with encoding } e}
ight)$$

Coverage score

- Measures how well a candidate structure covers the query motif
- Adjusted by structure length:

n: number of shared encodings L: structure length (residues) Score_{cand} =
$$L^{-\alpha} \sum_{i=1}^{n} \mathrm{IDF}_{e_i}$$
 a: length penalty exponent (default = 0.5)

Motif Completeness Score

 Counts distinct query residues involved in shared encodings (e.g. (x-y and x-z) or (x-y and z-t))

FoldDisco: Residue matching via Graph Construction

Why Needed?

FoldDisco's index doesn't store residue positions: Must match residues post hoc for structural alignment

Residue Matching Process

- Build **residue graph**:
 - Nodes = candidate residues
 - Directed edge if a residue pair matches any query pair encoding
 - \circ Edges may also be added for similar **AA** identity and **Ca–Ca** distance
 - More than two feature sets are considered for each query residue pair by setting the distance and angle thresholds
- Graph Search
 - Identify motif-like residue clusters as:
 - Strongly Connected Components (via Tarjan's Algorithm)
 - Weakly Connected Components (via DFS on undirected graph)
- Superposition computation
 - Superposes the query motif on the matched residues using the Quaternion Characteristic Polynomial algorithm.
 - \circ RMSD is calculated using the coordinates of the C α and C β atoms of the query motif and the matched residues.

Folddisco is the most accurate method in querying the human fraction of the AFDB-proteome for zinc fingers, both when using a short motif query suitable for pyScoMotif and RCSB (d, left; residue labels, e.g. F207, denote chain and residue number) and when using the motif-containing segments suitable for MASTER (e, left). f, Folddisco achieves higher sensitivity than pyScoMotif on SCOPe-constructed benchmarks, where the goal is to match SCOPe sequences of the same family as the query before matching a different fold, using all conserved columns ("full") or a random subsample of them (60%, 20%).

Folddisco accurately detects discontinuous motifs like zinc fingers and segment-based motifs, previously requiring separate tools.

Dataset

Human subset of AFDB: 23,391 protein structures

Compared Against

- Short motif:
 - RCSB Motif Search
 - pyScoMotif
- Segment-based motif
 - MASTER

Zinc Finger Motif PDB: 1G2F

Full motif: F207, F212, F225, F229

Segment for MASTER: F204–215 and F222–232

Evaluating FoldDisco's Generalizability with SCOPe Benchmark

Performance beyond specific motifs (e.g., zinc fingers, catalytic triads)

Benchmark Construction

- Based on SCOPe family-level MSAs (from FoldMason)
- Selected fully occupied columns and a dominant residue (occurring in >66% of the members)
 Simulates realistic, scattered motif-like queries

Three Query Types using the dominant residues:

- Full: All dominant residue positions
- **60% Sampled**: Random subset of positions
- **20% Sampled**: Sparse queries with minimal info

Folddisco achieves higher sensitivity than pyScoMotif

- **TP**: Match from same **SCOPe family**
- FP: Match from a different fold
- Sensitivity: TP / P before first FP Ranked by:
 - **Coverage score** (FoldDisco pre-filter)
 - RMSD (FoldDisco full)

Folddisco builds indexes faster and smaller than previous tools:

indexing AFDB50 (53M structures) takes only ~24h vs. ~20 days (extrapolated) for pyScoMotif. Querying a zinc-finger motif across AFDB50 takes just ~13s, up to 48x faster than pyScoMotif.

Applications of Folddisco: Zinc finger motif detection

Folddisco can annotate proteins: querying a canonical zinc-finger uncovers an **uncharacterized oyster protein and metagenomic proteins**. It also detects **partial catalytic metal sites in E. coli** peptide deformylase. All of these hits would be **missed by Foldseek or sequence aligners**

Applications of Folddisco: Conformational state identification

Folddisco can distinguish functional states.

- Searching GPCR activation motifs (CWxP, NPxxY, DRY), clearly separating active/inactive states.
 - from activated (left, magenta)
 - inactivated (right, purple)

Large-Scale Search on AFDB

- ~53% of retrieved structures were active
- Closely aligns with
 experimental PDB distribution
 (~54% active)

Applications of Folddisco: Protein interface search

Folddisco queried a cross chain protein—protein interface motif pattern derived from immunoglobulin λ -like and immunoglobulin κ variable domains

 an interface between antibody chains (gray/black), it successfully identifies matching interfaces within monomeric antibody fragments (cyan).

Folddisco Server

- Databases
 - o PDB
 - AFDB
 - ESM30

Conclusion

High-Speed Motif Search

- Indexes millions of structures in under 24 hours
- Queries return results in seconds, with high sensitivity

Motif-Centric and Functionally Aware

- Handles both short/local and long/discontinuous motifs
- Distinguishes **functional states** (e.g., active vs. inactive GPCRs)
- Enables interface-level searches for PPI discovery

Beyond Global Alignment

- Moves past sequence and domain-based matching
- Captures **structural motifs** across diverse folds and conformations