Lecture 2 In-Class Exercise

- 1. This problem will estimate population regression functions using data from a known population that we define ourselves. Draw a N=100 random sample of three indpendent N(0,1) variables: x_1 , x_2 , and u. The relevant command in Stata is drawnorm. From these, generate two outcome variables: $y_1 = 10 + x_1 + u$ and $y_2 = 10 + x_1 + 2x_2 + u$. Note: if you want to be able to replicate work done with randomly generated values in Stata, put the set seed # command at the beginning of your do-file. You will then get the same set of random numbers every time you run your program.
 - (a) What is the population mean of y_1 , $E[y_1]$? What is the population variance of y_1 , $\sigma_{y_1}^2$? What is the conditional expectation function $E[y_1|x_1]$? Is it linear? What is the conditional variance of y_1 given x_1 ? Note: these questions can be answered without use of the data.
 - (b) What is the population mean of y_2 , $E[y_2]$? What is the population variance of y_2 , $\sigma_{y_2}^2$? What is the conditional expectation function $E[y_2|x_1]$? Is it linear? Note: these questions can be answered without use of the data.
 - (c) Regress y_1 on x_1 (i.e., estimate the model $y_1 = \beta_0 + \beta_1 x_1$ using OLS). Note the slope coefficient and its standard error. Do the intercept and slope equal the known population intercept and slope? Why or why not?
 - (d) Regress y_2 on x_1 (i.e., estimate the model $y_2 = \tilde{\gamma}_0 + \tilde{\gamma}_1 x_1$ using OLS). Note the slope coefficient and its standard error. If you are interested in an unbiased estimate of the slope on x_1 in the population regression function for y_1 , will your slope estimator suffer from omitted variables bias? Why or why not?
 - (e) Now regress y_2 on x_1 and x_2 (i.e., estimate the model $y_2 = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2$ using OLS). Why does $\hat{\gamma_1}$ differ from $\hat{\gamma_1}$, even though we know the population correlation between x_1 and x_2 is zero?
 - (f) Compare the estimated standard errors on $\hat{\tilde{\gamma}}_1$ from part (d) and $\hat{\gamma}_1$ from part (e). How and why did it change?
 - (g) Now modify x_2 to purge it of any sample correlation with x_1 . Call this variable x_{2a} . Hint: you are looking for variation in x_2 that is orthogonal to ("not explained" by) x_1 .

- (h) Generate a new y_2 (call it y_{2a}) using x_{2a} in place of x_2 . Repeat parts (d) and (e). What changed, and why? Why does the standard error on $\hat{\gamma}_1$ change with the inclusion of x_{2a} , when we know x_{2a} is uncorrelated (by construction) with x_1 ?
- (i) Return to part (c). Compare the reported standard error for $\hat{\beta}_1$ to the *population* standard error for $\hat{\beta}_1$. Hint: you know the population σ^2 .
- (j) Start with an empty dataset and recreate your random variables x_1 , u, and y_1 , but this time draw a N = 10,000 random sample. Repeat part (i). Now how do your reported $\hat{\beta}_1$ and standard error for $\hat{\beta}_1$ compare to the population β_1 and standard error for $\hat{\beta}_1$?
- 2. This problem is similar to #1, but we will assume x_1 and x_2 come from a bivariate normal distribution, so that we know x_1 and x_2 are correlated. The relevant command in Stata is drawnorm, but we need to specify a correlation matrix for the distribution (call this C). $\sigma_{x_1}^2$ and $\sigma_{x_2}^2$ will continue to be 1, but assume they have a correlation of 0.5. Continue to use N = 100. Create the outcome variable $y_2 = 10 + x_1 + 2x_2 + u$. See the syntax below for the drawnorm command and its correlation matrix.

```
clear
matrix C = (1, .5 , 0 \ .5, 1, 0 \ 0, 0, 1)
drawnorm x1 x2 u, n(100) corr(C)
```

- (a) What is the population variance of y_2 ? How does this compare with your answer in question #1 part (b)?
- (b) For fun, use the user-written Stata command tddens to visualize the bivariate distribution of (x_1, x_2) as a "heat map".
- (c) Regress y_2 on x_1 . Note the slope coefficient and its standard error. If you are interested in an unbiased estimate of β_1 (the slope coefficient on x_1 in the population), does this regression suffer from omitted variables bias? Why or why not? If so, in what direction is the bias?
- (d) Now regress y_2 on x_1 and x_2 . What changed, and why?
- (e) Apply the "regression anatomy" formula. That is, show that $\hat{\beta}_2$ is equal to the slope coefficient from a simple regression of y_2 on \tilde{x}_2 , where \tilde{x}_2 is the residual from a regression of x_2 on x_1 . Equivalently, $\hat{\beta}_2 = Cov(y_2, \tilde{x}_2)/Var(\tilde{x}_2)$.
- (f) Demonstrate the omitted variables bias formula by showing the coefficient in the "short" regression (part c) is equal to the coefficient on x_1 in the "long" regression (part d) + the product of β_2 (the coefficient on x_2 in the "long" regression) and π (the coefficient from a regression of the omitted x_2 on the included (x_1)).