

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

SIMULACIÓN DE SISTEMAS Tarea 1. Modelo de un potenciómetro

Trabajo de: ADRIAN A. GONZÁLEZ DOMÍNGUEZ [359834]

Asesor: OSCAR RAMSES RUIZ VARELA

Marca	Angulo	Resistencia (k Ω)				
1	0	0.00662				
2	10	0.0072				
3	20	0.0412				
4	30	6.06				
5	40	12.43				
6	50	23.11				
7	60	32.34				
8	70	40.64				
9	80	48.05				
10	90	56.81				
11	100	66.4				
12	110	72.6				
13	120	81.4				
14	130	90				
15	140	97.4				
16	150	105.9				
17	160	115.7				
18	170	122.2				
19	180	129.5				
20	190	136.2				
21	200	146				
22	210	154.7				
23	220	160.8				
24	230	168.7				
25	240	175.2				
26	250	179.1				
27	260	185.2				

Marca	Angulo	Resistencia (k Ω)			
28	270	191.9			
29	280	199.3			
30	290	204.7			
31	300	204.7			
32	310	204.8			

3)

Se dice que una función es lineal si tiene estas propiedades:

Homogeneidad:

$$f(ax) = af(x)$$

$$f(2(150)) = 2f(150)$$

$$f(300) = 211.8$$

El f(200) de la muestra vale 204.7,

La diferencia entre 204.7 y 211.8 es de 7.1 que cae dentro del 5% de error. Por lo cual es lineal en este segmento.

Aditividad:

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

Entonces para

$$f(100+150) = f(100) + f(150) = 66.4 + 105.9 = 172.3$$

Comparando con el valor real f(250) = 179.1

La diferencia entre 179.1 y 172.3 es de 8.75 que cae dentro del 5% de error. Por lo cual es lineal en este segmento.

Region de linealidad

En la gráfica inferior se puede visualizar que la región aproximada de linealidad es entre 25° y 280°.

4)

Se utilizó el método númerico de mínimos cuadrados, el cual busca trazar la recta que más se acerque a los datos obtenidos.

La ecuación de la recta la da la ecuación.

$$Y = C_1 x + C_2 + Error$$

$$C_1 = n rac{\sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$

$$C_2 = rac{\sum Y_i}{n} - C_1 = rac{\sum X_i}{n}$$

5)

El error se obtiene a partir de la suma de los cuadrados de la diferencia entre el valor obtenido experimentalmente y el valor esperado según la función de regresión.

$$\mathrm{Error} = \sum \left(Y_i - C_2 - C_i X_i
ight)^2$$

SUMMARY OUTPUT								
Regression S	Statistics							
Multiple R	0.996819114							
R Square	0.993648347							
Adjusted R Square	0.993429325							
Standard Error	5.559523802							
Observations	31							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	140222.9623	140223	4536.74	2.04244E-33			
Residual	29	896.3408421	30.9083					
Total	30	141119.3031						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-10.24963355	2.046356956	-5.0087	2.5E-05	-14.43490345	-6.06436364	-14.43490345	-6.06436364
0	0.751940935	0.011163792	67.3553	2E-33	0.729108416	0.774773455	0.729108416	0.774773455

El error de la función obtenida es del 5.55%

Fuentes bibliográficas

Khan Academy. (n.d.). https://es.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-dc-circuit-analysis/a/ee-linearity

Romero Rodriguez, E. (2007). Ajuste de curvas.

https://www.geocities.ws/datos_universidad/MNumericos/AjusteDeCurvas