

Module 03 – Extra Class

RANDOM FOREST

Nguyen Quoc Thai

Objectives

Decision Tree Review

- **❖** Decision Tree
- ❖ Decision Tree for Classification
- Decision Tree for Regression
- **❖** IRIS Classification
- Salary Prediction

Random Forest

- Decision Tree
- Random ForestBootstrap SampleMajority Voting / Averaging
- **❖** IRIS Classification
- Salary Prediction

Outline

SECTION 1

Decision Tree Review

SECTION 2

Random Forest

Decision Tree

- **Root Node**: the top-level node
- ❖ **Node**: internal node or decision node
- **❖ Parent Node**: a node that precedes a (child) node
- ❖ Leaf: terminal node a node at the end of a branch – represents outcome of the tree (label or numerical value)
- **❖ Branches**: a subset of a tree, starting at an (internal) node until the leaves

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$D = \{3-, 3+\}$$

$$Gini(D) = 1 - \left(\frac{3}{3+3}\right)^2 - \left(\frac{3}{3+3}\right)^2 = \frac{1}{2}$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Decision Tree for Classification

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Numerical Feature

Ascending Ordering

Calculate mean

Determine Gini

Petal_Length	
0.9	0.95
1	
1.2	1.1
1.3	1.25
1.7	1.5
	1.75
1.8	

$$Gini(Length \leq 0.95)$$

$$Gini(Length \leq 1.1)$$

$$Gini(Length \leq 1.25)$$

$$Gini(Length \leq 1.5)$$

$$Gini(Length \leq 1.75)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Decision Tree for Classification

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Numerical Feature

Ascending Ordering

Calculate mean

Determine Gini

Petal_Width	
0.2	0.35
0.5	
0.6	0.55
0.7	0.65
0.9	0.8
1.3	1.1

$$Gini(Width \leq 0.35)$$

$$Gini(Width \leq 0.55)$$

$$Gini(Width \leq 0.65)$$

$$Gini(Width \leq 0.8)$$

$$Gini(Width \leq 1.1)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

$$D = \{3-, 3+\}$$

$$Entropy(D) = -\frac{3}{6}\log_2\frac{3}{3} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Decision Tree for Classification

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Numerical Feature

Ascending Ordering

Calculate mean

Determine Gini

Petal_Length		
0.9	0.95	Entropy($Length \le 0.95$) $Gain(Length \le 0.95)$
1	1.1	Entropy($Length \le 1.1$) $Gain(Length \le 1.1)$
1.2	1.25	Entropy($Length \le 1.25$) $Gain(Length \le 1.25)$
1.3	1.5	Entropy($Length \le 1.5$) $Gain(Length \le 1.5)$
1.7	1.75	Entropy($Length \le 1.75$) $Gain(Length \le 1.75)$
1.8		

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Decision Tree for Classification

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Numerical Feature

Ascending Ordering

Calculate mean

Determine Gini

Petal_Width	
0.2	0.25
0.5	0.35
0.6	0.55
	0.65
0.7	0.8
0.9	1.1
1.3	_,_

Entropy($Width \leq 0.35$) Entropy($Width \leq 0.55$)

Entropy($Width \leq 0.65$)

Entropy($Width \leq 0.8$)

Entropy($Width \leq 1.1$)

 $Gain(Width \leq 0.35)$

 $Gain(Width \leq 0.55)$

 $Gain(Width \leq 0.65)$

 $Gain(Width \leq 0.8)$

 $Gain(Width \leq 1.1)$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2 \qquad MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	
1.5	2.0
2.5	3.25
4.0	
5.5	4.75

<i>SSE</i> (Experience ≤	_	2.0)
--------------------------	---	-----	---

$$SSE$$
 (Experience ≤ 3.25)

$$SSE$$
 (Experience ≤ 4.75)

$$MSE$$
(Experience ≤ 2.0)

$$MSE(Experience \leq 3.25)$$

$$MSE(Experience \leq 4.75)$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

 $MSE(D) = MSE(D_1) + MS(D_2)$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2 \qquad MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$D = \{0, 0, 55, 83\}$$

$$mean(D) = 34.5$$

$$SSE(D_1) = (0 - 34.5)^2 + (0 - 34.5)^2 + (55 - 34.5)^2 + (83 - 34.5)^2 = 5153$$

$$MSE(D_1) = \frac{(0 - 34.5)^2 + (0 - 34.5)^2 + (55 - 34.5)^2 + (83 - 34.5)^2}{4} = 1288.25$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D_2) = (0 - 46)^2 + (55 - 46)^2 + (83 - 46)^2 = 1450$$

$$SSE(Experience \le 2.0) = 1450$$

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

 $MSE(D) = MSE(D_1) + MS(D_2)$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2 \qquad MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$MSE(D_1) = \frac{(0-0)^2}{1} = 0$$

$$MSE(D_2) = \frac{(0-46)^2 + (55-46)^2 + (83-46)^2}{3} = 483$$

$$MSE(Experience \le 2.0) = 483$$

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

 $MSE(D) = MSE(D_1) + MS(D_2)$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

Outline

SECTION 1

Decision Tree Review

SECTION 2

Random Forest

From Decision Tree to Random Forest

Decision Tree

Random Forest

Random Forest

A random forest

* a supervised machine learning algorithm

Data Sampling

Decision Tree Learners

Majority Voting / Averaging

the calculations of numerous decision trees are combined to produce one final result

Data Sampling

Feature = 1
Randomly sample with replacement

Length	Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Width	Label
0.6	0
0.6	0
0.7	0
0.7	0
0.9	1
1.3	1

Length	Label
1	0
1.3	0
1.2	1
1.8	1
1.8	1
1.2	1

 $P_Length \le 1.1$ Entropy = 1.0 Samples = 6Value = [3,3]

Entropy = 0.0Samples = 2Value = [2,0] P_Length ≤ 1.55 Entropy = 0.811 Samples = 4 Value = [1,3]

Entropy = 1.0Samples = 2Value = [1,1] Entropy = 0.0Samples = 2Value = [0,2]

Decision Tree Learners

Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Class 0

Decision Tree Learners

Width	Label
0.6	0
0.6	0
0.7	0
0.7	0
0.9	1
1.3	1

Class 1

Length	Label
1	0
1.3	0
1.2	1
1.8	1
1.8	1
1.2	1

Majority Voting for Classification

Random Forest for Regression

Majority Averaging for Regression

Test sample: Experience = 3

Random Forest for Classification

```
1 import pandas as pd
2 import numpy as np
3 from sklearn.ensemble import RandomForestClassifier
4
5 # Load data
6 df = pd.read_csv('iris_2D.csv')
7
8 # Get data
9 x_data = df[['Petal_Length', 'Petal_Width']].to_numpy()
10 x_data = x_data.reshape(6, 2)
11 y_data = df['Label'].to_numpy(dtype=np.uint8)
```

```
13 # Define model
14 rf_classifier = RandomForestClassifier(
       n_estimators=3,
15
16
       max_features=1,
       max_depth=1,
       criterion='entropy',
18
19
       max_samples=6
20)
21
22 # Train model
23 rf_classifier.fit(x_data, y_data)
24
25 # Predict
26 \text{ x\_test} = \text{np.array}([[2.7, 0.8]])
27 y_predicted = rf_classifier.predict(x_test)
28 y_predicted
```


Random Forest for Regression

```
1 import pandas as pd
2 from sklearn.ensemble import RandomForestRegressor
3
4 # Load data
5 df = pd.read_csv('Salary_Data.csv')
6
7 # Get data
8 x_data = df.iloc[:, :-1]
9 y_data = df.iloc[:, -1]
10
```

```
11 # Define model
12 rf_regressor = RandomForestRegressor(
      n_estimators=2,
13
14
      max_depth=2,
15
      max_samples=7
16)
17
18 # Train model
19 rf_regressor.fit(x_data, y_data)
20
21 # Predict
22 x_test = x_data[:2]
23 y_pred = rf_regressor.predict(x_test)
24 y_pred
```


Summary

Decision Tree Review

- Decision Tree
- ❖ Decision Tree for Classification
- Decision Tree for Regression
- **❖** IRIS Classification
- Salary Prediction

Random Forest

- Decision Tree
- Random Forest
 Bootstrap Sample
 Majority Voting / Averaging
- IRIS Classification
- Salary Prediction

Thanks! Any questions?