seaborn.barplot

seaborn.barplot

Bar graphs are useful for displaying relationships between categorical data and at least one numerical variable. seaborn.countplot is a barplot where the dependent variable is the number of instances of each instance of the independent variable.

dataset: IMDB 5000 Movie Dataset (https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset)

```
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
plt.rcParams['figure.figsize'] = (20.0, 10.0)
plt.rcParams['font.family'] = "serif"

df = pd.read_csv('../../../datasets/movie_metadata.csv')
```

df.head()

	color	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes
0	Color	James Cameron	723.0	178.0	0.0	855.0
1	Color	Gore Verbinski	302.0	169.0	563.0	1000.0
2	Color	Sam Mendes	602.0	148.0	0.0	161.0
3	Color	Christopher Nolan	813.0	164.0	22000.0	23000.0
4	NaN	Doug Walker	NaN	NaN	131.0	NaN

5 rows × 28 columns

For the bar plot, let's look at the number of movies in each category, allowing each movie to be counted more than once.

```
# split each movie's genre list, then form a set from the unwrapped list of all genres
categories = set([s for genre_list in df.genres.unique() for s in genre_list.split("|")])

# one-hot encode each movie's classification
for cat in categories:
    df[cat] = df.genres.transform(lambda s: int(cat in s))

# drop other columns
df = df[['director_name', 'genres', 'duration'] + list(categories)]
df.head()
```

	director_name	genres	duration	Reality- TV	Family	Biography	Comedy	Action	Cri
0	James Cameron	Action Adventure Fantasy Sci- Fi	178.0	0	0	0	0	1	0
1	Gore Verbinski	Action Adventure Fantasy	169.0	0	0	0	0	1	0
2	Sam Mendes	Action Adventure Thriller	148.0	0	0	0	0	1	0
3	Christopher Nolan	Action Thriller	164.0	0	0	0	0	1	0
4	Doug Walker	Documentary	NaN	0	0	0	0	0	0

 $5 \text{ rows} \times 29 \text{ columns}$

df.head()

	duration	Category	Count	islong
15136	100.0	Comedy	1	0
15148	106.0	Comedy	1	1
15164	104.0	Comedy	1	1
15170	106.0	Comedy	1	1
15172	103.0	Comedy	1	1

Basic plot

```
p = sns.countplot(data=df, x = 'Category')
```


color by a category

make plot horizontal

Saturation

Targeting a non-default axes

<matplotlib.axes._subplots.AxesSubplot at 0x111017278>

Add error bars

add black bounding lines

Remove color fill


```
bg_color = 'white'
sns.set(rc={"font.style":"normal",
             "axes.facecolor":bg_color,
            "figure.facecolor":bg_color,
            "text.color":"black",
             "xtick.color":"black",
            "ytick.color":"black",
            "axes.labelcolor": "black",
            "axes.grid":False,
             'axes.labelsize':30,
             'figure.figsize':(20.0, 10.0),
             'xtick.labelsize':25,
             'font.size':20,
             'ytick.labelsize':20})
#sns.set_style({'font.family': 'Helvetica'})
#sns.set(style="white",font_scale=1.25)
num_categories = df.Category.unique().size
p = sns.countplot(data=df,
                  y = 'Category',
                   hue = 'islong',
                   saturation=1,
                   xerr=3*np.arange(num_categories),
                   edgecolor=(0,0,0),
                   linewidth=2)
leg = p.get_legend()
leg.set_title("")
labs = leg.texts
labs[0].set_text("Short")
labs[0].set_fontsize(25)
labs[0].set_size(30)
labs[1].set_text("Long")
leg.get_title().set_color('black')
p.axes.xaxis.label.set_text("Counts")
plt.text(900,2, "Bar Plot", fontsize = 95, color='Black', fontstyle='italic')
```

<matplotlib.text.Text at 0x112bbc400>

(https://github.com/apryor6) (mailto:apryor6@gmail.com) (https://linkedin.com/in/alan-pryor-02a52b57)

Alan (AJ) Pryor, Jr. • 2017 • alanpryorjr.com (http://apryor6.github.io)

Theme by beautiful-jekyll (http://deanattali.com/beautiful-jekyll/)