Introducción a ML y GenAl

Evaluación y validación de modelos

Ariel Ramos Vela 10-10-2024

Agenda

- 1. Sobreajuste y Subajuste
- 2. Validación Cruzada
- 3. Ejemplo práctico (Python)
- 4. Métricas de Rendimiento
- 5. Proyecto

Sección I: Sobreajuste y Subajuste

Sobreajuste (Overfitting): Modelo muy complejo que se ajusta demasiado bien al conjunto de entrenamiento, pero falla en generalizar a datos nuevos.

Subajuste (Underfitting): Modelo demasiado simple que no captura patrones importantes de los datos.

Factores que Conducen a Sobreajuste y Subajuste

X Dogs

Cats

Sobreajuste:

- Modelo demasiado complejo
- Exceso de características (features)
- Datos insuficientes

Subajuste:

- Modelo demasiado simple
- No suficiente entrenamiento

¿Sobreajuste o subajuste?

Cómo Evitar el Sobreajuste

- Regularización (L1, L2)
- Simplificación del Modelo (Reducir complejidad)
- Recolección de más datos
- **Data Augmentation** (para imágenes y texto)

$$J = ext{Error} + \lambda \sum |w_i| \qquad J = ext{Error} + \lambda \sum w_i^2$$

$$J = ext{Error} + \lambda \sum w_i^2$$

Cómo Evitar el Subajuste

- Modelos más complejos (aumentar capacidad)
- Mayor entrenamiento (más tiempo, mejores hiperparámetros)
- Añadir características relevantes

Sección II: Validación Cruzada (Cross Validation)

Dividir los datos en varios subconjuntos (folds) y evaluar el modelo varias veces para evitar la dependencia en un único conjunto de validación.

K-Fold Cross Validation

4-fold validation (k=4)

Dividir el conjunto de datos en K partes, entrenar en K-1 y validar en el restante, repitiendo K veces.

Beneficios de la Validación Cruzada

- Reducir la varianza en la estimación del rendimiento
- Aprovechamiento de los datos:
 Cada punto de datos se usa para entrenar y validar.
- Evita sesgos de entrenamiento y selección errónea de hiperparámetros.

Tipos de Validación Cruzad

- K-Fold Cross Validation
- Leave-One-Out Cross
 Validation (LOOCV)
- Stratified K-Fold (para datos desbalanceados)

Total Data

Cuándo Usar Validación Cruzada

- Datasets pequeños: Permite aprovechar al máximo los datos.
- Elección de hiperparámetros: Ideal para ajustar parámetros sin sobreajuste.
- Limitaciones:
 - Costo computacional alto para grandes datasets.
- Ejemplo Práctico (Python)

Sección III: Métricas de Rendimiento

¿Por qué son importantes las métricas de rendimiento?

- Diferentes métricas capturan diferentes aspectos del desempeño del modelo.
- Ayudan a evitar el enfoque exclusivo en la precisión o en métricas que no reflejan la realidad.

Métricas de Clasificación

- Exactitud (Accuracy)
- Precisión (Precision)
- Recall (Sensibilidad)
- F1-Score
- Matriz de Confusión

		Predicted	
		Animal	Not animal
Actual	Animal		
	Not animal		

True Positives	2
True Negatives	3
False Positives	0
False Negatives	1

Accuracy	83%	$\frac{3+2}{3+2+0+1}$
Precision	75%	$\frac{3}{3+1}$
Recall	100%	$\frac{3}{3+0}$
F1 score	86%	$2\cdot\frac{0.75\cdot 1}{0.75+1}$

Métricas de Regresión

- MSE (Mean Squared Error)
- MAE (Mean Absolute Error)
- R² (Coeficiente de Determinación)

Conclusiones

- Importancia de balancear entre sobreajuste y subajuste.
- Uso de validación cruzada para generalización efectiva.
- Métricas de rendimiento como herramienta clave para la evaluación del modelo.