

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/004020

International filing date: 02 March 2005 (02.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/553,531

Filing date: 17 March 2004 (17.03.2004)

Date of receipt at the International Bureau: 28 April 2005 (28.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

06.4.2005

PA 1280234

THE UNITED STATES OF AMERICA**TO ALL TO WHOM THESE PRESENTS SHALL COME:****UNITED STATES DEPARTMENT OF COMMERCE****United States Patent and Trademark Office****February 08, 2005**

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.**

APPLICATION NUMBER: 60/553,531**FILING DATE: March 17, 2004**

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

W. MONTGOMERY
Certifying Officer

PROVISIONAL APPLICATION FOR PATENT COVER SHEET
 This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

INVENTOR(S)

Given Name (first and middle [if any]) Takashi UDAGAWA	Family Name or Surname	Residence (City and either State or Foreign Country) Chichibu Japan	
U.S. PTO 22151 60/553531 031704			

Additional inventors are being named on the _____ separately numbered sheet(s) attached hereto

TITLE OF THE INVENTION (500 characters max)

BORON PHOSPHIDE-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE

CORRESPONDENCE ADDRESS

Direct all correspondence to the address for SUGHRUE MION, PLLC filed under the Customer Number listed below:

WASHINGTON OFFICE

23373

CUSTOMER NUMBER

ENCLOSED APPLICATION PARTS (check all that apply)

Specification (Japanese Language)	Number of Pages 9	<input type="checkbox"/> CD(s), Number _____
Drawing(s)	Number of Sheets 1	<input type="checkbox"/> Other (specify) _____
<input type="checkbox"/> Application Data Sheet. See 37 CFR 1.76		

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT

- Applicant claims small entity status. See 37 CFR 1.27.
- A check or money order is enclosed to cover the Provisional filing fees. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account.
- The USPTO is hereby authorized to charge the Provisional filing fees to our Deposit Account No. 19-4880. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account.

FILING FEE AMOUNT (\$)

\$160.00

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

- No.
- Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

SIGNATURE

TYPED or PRINTED NAME Abraham J. Rosner

TELEPHONE NO. (202) 293-7060

DATE March 17, 2004

REGISTRATION NO. 33,276

DOCKET NO. P80423

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

【書類名】明細書

【発明の名称】リン化硼素系半導体発光素子

【技術分野】

【0001】

本発明は、禁止帯幅の高いリン化硼素系半導体層を利用して、格子不整合系構造でありながら、高い強度の発光をもたらせるリン化硼素系半導体発光素子に関するものである。

【背景技術】

【0002】

n 型または p 型のリン化硼素(BP)系半導体層は、従来から、発光ダイオード(LED)やレーザダイオード(LD)を作製するのに利用されている。例えば、下記の特許文献1では、シリコン(Si)基板上に設けた、珪素(Si)を故意に添加した n 型BP層上に形成した窒化アルミニウム・ガリウム(AlGaN)層を利用して青色LEDが構成されている。また、マグネシウム(Mg)をドーピングした p 型BP層はコンタクト層としてLEDを構成するのに利用されている(特許文献1の段落[0023]参照)。

【特許文献1】特開平5-283744号公報

【0003】

上記の如く、 $Al_xGa_{1-x}N$ ($0 \leq x \leq 1$, $0 \leq Y \leq 1$) 等のIII族窒化物半導体層と共に、化合物半導体発光素子を形成するのに利用されているのは、室温での禁止帯幅を2.0エレクトロンボルト(eV)とするリン化硼素である(例えば、特許文献2参照)。従って、高いバンドギャップに相応する青色の発光を呈する上記のLEDを構成するのに際し、クラッド(clad)層等としては利用されず、もっぱら、III族窒化物半導体層を成長させるための下地層として利用されている(特許文献1の段落[0013]参照)。

【特許文献2】特開平2-288388号公報

【0004】

下地層としてリン化硼素層を、例えば、珪素(Si)単結晶(シリコン)基板に設ける場合、基板表面の結晶面の方位に依って、エピタキシャル成長するリン化硼素層の表面の面方位が決定されることが知られている。例えば、上記特許文献1の段落[0025]では、シリコンの(100)基板結晶面上には、(100)リン化硼素層が成長し、その(100)リン化硼素層の(100)結晶表面には、立方晶の結晶構造のAlGaN層が成長するとされている。一方、シリコンの(111)基板結晶面上には、(111)リン化硼素層が成長し、その(111)リン化硼素層の(111)結晶表面には、六方晶の結晶構造のAlGaN層が成長するとされている。

【0005】

そして、発光層等への適用が期待されている立方晶のAlGaNは、六方晶構造のIII族窒化物半導体との比較に於いて、結晶構造からして不安定であり(特許文献1の段落[0002]参照)、六方晶結晶構造型のIII族窒化物半導体の場合程、安定して形成することが出来ないという問題がある。

【発明の開示】

【発明が解決しようとする課題】

【0006】

そこで、上記したように、シリコンの(111)基板結晶面上の(111)リン化硼素層結晶表面に、結晶構造がより安定な六方晶の結晶構造のAlGaN層を成長させることができると検討されているが、この場合、立方晶が混在しない、六方晶の結晶層が得られる領域は、リン化硼素下地層との接合界面から50nm未満の界面近傍の領域に限定されてしまう(特許文献1の段落[0025]参照)。

【0007】

すなわち、縦しんば、(111)シリコンを基板として形成したリン化硼素系半導体層に、純粹に六方晶結晶からなるIII族窒化物半導体層を十分な層厚で形成しようとしても、その形成は困難であるという問題があった。

【0008】

本発明は、上記に鑑みてなされたもので、シリコンを基板として形成したリン化硼素系半導体層に、結晶性に優れた六方晶結晶からなるIII族窒化物半導体層を十分な層厚で形成することができ、したがって高い発光強度を発揮させることができるリン化硼素系半導体発光素子を提供することを目的とする。

【課題を解決するための手段】**【0009】**

1) 上記目的を達成するために、第1の発明は、リン化硼素系半導体発光素子であって、珪素単結晶基板と、上記珪素単結晶基板の表面上に設けられた、双晶を含む第1の立方晶リン化硼素系半導体層と、上記第1の立方晶リン化硼素系半導体層上に設けられた六方晶のIII族窒化物半導体からなる発光層と、上記発光層上に設けられ、双晶を含むとともに上記第1の立方晶リン化硼素系半導体層とは伝導型が異なる第2の立方晶リン化硼素系半導体層と、を有することを特徴としている。

【0010】

2) 第2の発明は、上記した1) 項に記載の発明の構成に加えて、上記第1の立方晶リン化硼素系半導体層は、(111)-珪素単結晶基板の(111)結晶表面上に設けられている、ことを特徴としている。

【0011】

3) 第3の発明は、上記した2) 項に記載の発明の構成に加えて、上記第1の立方晶リン化硼素系半導体層は、[110]結晶方向が珪素単結晶の[110]結晶方向に平行に配向している、ことを特徴としている。

【0012】

4) 第4の発明は、上記した2) 項または3) 項に記載の発明の構成に加えて、上記第1の立方晶リン化硼素系半導体層は、(111)-珪素単結晶基板の(111)結晶表面との接合領域に、(111)結晶面を双晶面とする(111)双晶を含んでいる、ことを特徴としている。

【0013】

5) 第5の発明は、上記した1) 項から4) 項の何れかに記載の発明の構成に加えて、上記第1の立方晶リン化硼素系半導体層は、不純物を故意に添加していないアンドープの層である、ことを特徴としている。

【0014】

6) 第6の発明は、上記した1) 項から5) 項の何れかに記載の発明の構成に加えて、上記発光層は、第1の立方晶リン化硼素系半導体層の[110]結晶方向に[-2110]結晶方向が平行に配向するとともに、(0001)結晶面を表面とする、ことを特徴としている。

【0015】

7) 第7の発明は、上記した1) 項から6) 項の何れかに記載の発明の構成に加えて、上記発光層は、リンの原子濃度が層厚の増加方向に減少している、ことを特徴としている。

【0016】

8) 第8の発明は、上記した6) 項に記載の発明の構成に加えて、上記第2の立方晶リン化硼素系半導体層は、発光層の[-2110]結晶方向に[110]結晶方向が平行に配向している、ことを特徴としている。

【0017】

9) 第9の発明は、上記した6) 項から8) 項の何れかに記載の発明の構成に加えて、上記第2の立方晶リン化硼素系半導体層は、発光層の(0001)結晶表面との接合領域に、(111)結晶面を双晶面とする(111)双晶を含んでいる、ことを特徴としている。

【0018】

10) 第10の発明は、上記した6) 項から9) 項の何れかに記載の発明の構成に加え

て、上記第2の立方晶リン化硼素系半導体層は、不純物を故意に添加していないアンドープの層である、ことを特徴としている。

【0019】

11) 第11の発明は、上記した1) 項から10) 項の何れかに記載の発明の構成に加えて、上記第1及び第2の立方晶リン化硼素系半導体層は、室温での禁止帯幅が2.8エレクトロンボルト (eV) 以上である、ことを特徴としている。

【0020】

12) 第12の発明は、上記した1) 項から11) 項の何れかに記載の発明の構成に加えて、上記第1及び第2の立方晶リン化硼素系半導体層は、クラッド層として備えられている、ことを特徴としている。

【0021】

13) 第13の発明は、上記した1) 項から11) 項の何れかに記載の発明の構成に加えて、上記第2の立方晶リン化硼素系半導体層は、発光層からの発光を外部に透過する窓層として備えられている、ことを特徴としている。

【0022】

14) 第14の発明は、上記した1) 項から11) 項の何れかに記載の発明の構成に加えて、上記第2の立方晶リン化硼素系半導体層は、素子駆動電流を拡散させる電流拡散層として備えられている、ことを特徴としている。

【0023】

15) 第15の発明は、上記した1) 項から11) 項の何れかに記載の発明の構成に加えて、上記第2の立方晶リン化硼素系半導体層は、電極を形成するためのコンタクト層として備えられている、ことを特徴としている。

【発明の効果】

【0024】

本発明では、珪素単結晶基板の表面上に設けられた、双晶を含む第1の立方晶リン化硼素系半導体層と、その第1の立方晶リン化硼素系半導体層上に設けられた六方晶のIII族窒化物半導体からなる発光層と、その発光層上に設けられた、双晶を含む第2の立方晶リン化硼素系半導体層とでリン化硼素系半導体発光素子を構成するようにした。すなわち、珪素単結晶基板上に、格子ミスマッチ度の高い第1の立方晶リン化硼素系半導体層を成長させる際に、その接合領域の第1の立方晶リン化硼素系半導体層の内部に双晶を含めるようにしたので、双方間の格子ミスマッチを緩和することができ、その格子ミスマッチを緩和した第1の立方晶リン化硼素系半導体層に六方晶のIII族窒化物半導体からなる発光層を設けたので、結晶性に優れた発光層を十分な層厚で形成することができる。したがって高い発光強度を発揮させることができる。

【0025】

また、六方晶のIII族窒化物半導体からなる発光層に、第2の立方晶リン化硼素系半導体層を成長させる際に、その接合領域の第2の立方晶リン化硼素系半導体層の内部に双晶を含めるようにしたので、発光層と第2の立方晶リン化硼素系半導体層との間の格子ミスマッチを緩和することができ、その第2の立方晶リン化硼素系半導体層を格子歪みの少ないものとすることができる。したがって、局所的な耐圧不良の少ない耐圧特性に優れる発光素子を製造することができる。

【発明を実施するための最良の形態】

【0026】

以下にこの発明の実施の形態を詳細に説明する。

【0027】

本発明に係わるリン化硼素系半導体とは、硼素 (B) とリン (P) とを構成元素として含む、例えば $B_{\alpha}A_{1-\beta}Ga_{\gamma}In_{1-\alpha-\beta-\gamma}P_{1-\delta}As_{\delta}$ ($0 < \alpha \leq 1, 0 \leq \beta < 1, 0 \leq \gamma < 1, 0 < \alpha + \beta + \gamma \leq 1, 0 \leq \delta < 1$) であり、また $B_{\alpha}A_{1-\beta}Ga_{\gamma}In_{1-\alpha-\beta-\gamma}P_{1-\delta}N_{\delta}$ ($0 < \alpha \leq 1, 0 \leq \beta < 1, 0 \leq \gamma < 1, 0 < \alpha + \beta + \gamma \leq 1, 0 \leq \delta < 1$) であり、また単量体のリン化硼素 (BP)、リン化硼素・ガリウム・インジウム (GaN) などである。

組成式 $B_\alpha Ga_\gamma In_{1-\alpha-\gamma} P : 0 < \alpha \leq 1, 0 \leq \gamma < 1$)、また窒化リン化硼素(組成式 $BP_{1-\delta} N_\delta : 0 \leq \delta < 1$)や砒化リン化硼素(組成式 $B_\alpha P_{1-\delta} As_\delta$)等の複数のV族元素を含む混晶である。

【0028】

アルミニウム(A1)、ガリウム(Ga)等の第III族元素と、リン(P)や砒素(As)等の第V族元素から構成されるIII-V族化合物半導体は、立方晶閃亜鉛鉱型(sphalerite)または六方晶ウルツ鉱型(Wurtzite)の何れかの結晶型にも成り得ることがグリム・ゾンマーフェルト規則に依り、教示されている(「工業化学基礎講座5 無機工業化学」、昭和48年2月25日、(株)朝倉書店発行、6版、220頁参照)。従来技術でも、六方晶のリン化硼素はIII族窒化物半導体層を成長させるための下地層として利用されている(上記特許文献1参照)。しかし、本発明では、立方晶閃亜鉛鉱型のリン化硼素系半導体層を用いて、リン化硼素系半導体発光素子を構成する。立方晶閃亜鉛鉱型半導体結晶では、価電子帯(valence band)側が縮退しているため、ウルツ鉱型半導体結晶と比較すれば、クラッド層等に好適に使用できるp型の伝導層が得られ易いからである。

【0029】

本発明では、立方晶閃亜鉛鉱型のリン化硼素系半導体層を確実に得るために、同型の結晶型であるダイヤモンド結晶構造型の珪素単結晶を基板として利用する。珪素(Si)単結晶(シリコン)からなる基板上には、ハロゲン法、ハイドライド法やMOCVD(有機金属化学的気相堆積)法に依り、リン化硼素系半導体層を形成する。または、分子線エピタキシャル法で形成する。例えば单量体のリン化硼素層を、トリエチル硼素(分子式: $(C_2H_5)_3B$)とホスフィン(分子式: PH_3)を用いてMOCVD法で形成する。

【0030】

上記の様な気相成長手段でリン化硼素系半導体層を成長させるのに際し、形成時の原料供給比率(所謂、V/III比率)を高値とすれば、基板とする珪素単結晶の表面の面方位が(111)とは異なっていても、例えば、(100)或いは(110)であっても、主に(111)結晶面が積重してなる(111)リン化硼素系半導体層が得られ易くなく傾向がある。しかし、当初から、(111)珪素単結晶を基板として利用すれば、V/III比率が低値であっても(111)リン化硼素系半導体層を成長させることができる。従つて、本発明では、表面を(111)結晶面とする(111)珪素単結晶を基板として利用する。(111)珪素単結晶の伝導型は、第1の伝導型とする。即ち、発光素子用途の積層構造体を構成するのには、第1の伝導型の珪素単結晶基板上に、第1の伝導型のリン化硼素系半導体層を堆積する。

【0031】

表面を(111)結晶面とする(111)珪素単結晶を基板として利用すれば、低いV/III比率でも、(111)リン化硼素系半導体層を成長できるため、例えばアンドープでp型のBP層を形成するのに優位となる。例えば、MOCVD法にあって、V/III比率($PH_3/(C_2H_5)_3B$ 供給濃度比率)を10~50と低値としても、1000°C~1200°Cの温度で、p型(111)リン化硼素系半導体層を簡易に成長できる。形成温度及びV/III比率に加えて、成長速度を精密に制御すれば、(111)珪素単結晶基板上に禁止帯幅の大きな(111)リン化硼素系半導体層を形成できる。成長速度は、毎分2nm以上で30nm以下の範囲とするのが適する。

【0032】

(111)珪素単結晶基板上に、(111)リン化硼素系半導体層、例えば单量体のリン化硼素層を気相成長させる際に、成長の初期段階での成長速度を大として形成すると、基板と接合する近傍の領域に双晶(twin)を効率的に発生させることができる。珪素単結晶との格子不整合度が大である程、成長速度をさほど大とせずとも基板との接合領域で双晶を発生させ易くなる。例えば、格子ミスマッチ度を約1.6~4%とする珪素単結晶(格子定数=5.4309Å)とリン化硼素(格子定数=4.5383Å)との接合領域には、毎分20nmの成長速度で約 $5 \times 10^{11} cm^{-2}$ の面密度で双晶を発生させることが

できる。双晶の密度は、リン化硼素系半導体層の層厚方向で減少する。双晶の密度は、例えば、断面TEM(透過電子顕微鏡)像に撮像された一定領域内での双晶粒界の数を計数すれば求められる。

【0033】

この接合領域に発生させた双晶は、珪素単結晶基板とリン化硼素系半導体層との格子ミスマッチを緩和して、結晶性に優れるリン化硼素系半導体層をもたらす作用を有する。双晶は、立方晶閃亜鉛型リン化硼素系半導体層の(111)結晶面を双晶面とするものであるのが好ましい。(111)双晶は、(111)珪素単結晶基板とリン化硼素系半導体層との格子ミスマッチを緩和するのに特に効果を奏する。リン化硼素系半導体層内での(111)双晶の有無は、電子線回折像に異常回折斑点が出現することから知れる。

【0034】

(111)双晶を発生させることで、結晶性を向上させた広禁止帯幅の(111)リン化硼素系半導体層は、化合物半導体発光素子にあって、例えばクラッド層等のバリア作用を有する障壁層として利用することができる。特に室温での禁止帯幅を2.8エレクトロボルト(eV)以上、望ましくは3.5eV以上とするリン化硼素系半導体層は好ましく利用できる。例えばクラッド層は、室温でのキャリア濃度を $1 \times 1.0^{19} \text{ cm}^{-3}$ 以上とし、抵抗率を $5 \times 10^{-2} \Omega \cdot \text{cm}$ 以下とする低抵抗のリン化硼素系半導体層から好適に形成できる。クラッド層を構成するp型リン化硼素系半導体層の層厚は、50ナノメータ(nm)以上で500nm以下とするのが適する。

【0035】

また、(111)珪素単結晶基板上に形成した、(111)リン化硼素系半導体からなるクラッド層等は、その上に六方晶ウルツ鉱結晶型のIII族窒化物半導体層を形成するのに効果を奏する。表面を(111)結晶面とするリン化硼素系半導体層上には、面方位を(0001)とする、例えば窒化ガリウム・インジウム(組成式 $\text{Ga}_x\text{In}_{1-x}\text{N}$: $0 \leq x \leq 1$)や窒化リン化ガリウム(組成式 $\text{Ga}_x\text{N}_{1-y}\text{P}_y$: $0 \leq y \leq 1$)等からなる発光層を成長させることができ。[110]結晶方向に、底面格子のa軸([-2110]方向)を平行に配向した $\text{Ga}_x\text{In}_{1-x}\text{N}$ ($0 \leq x \leq 1$)等は発光層を構成するのに好適である。インジウム組成($= 1 - x$)を相違する複数の相(phase)を含む多相構造の $\text{Ga}_x\text{In}_{1-x}\text{N}$ 層から構成すれば、発光強度のより高いリン化硼素系半導体発光素子を形成するのに有効となる。

【0036】

また、第1(基板上層側)の立方晶リン化硼素系半導体層から第2(発光層上層側)の立方晶リン化硼素系半導体層へ向けて、リン原子濃度を減少させたIII族窒化物半導体から発光層を構成すると、第1のリン化硼素系半導体層との密着性に優れ、尚且つ、高い強度の発光をもたらす発光層を形成することができる。例えば第1のリン化硼素系半導体層を気相成長させた後、成長に使用したリン(P)の原料ガスを緩やかに成長系外へ排出しつつ、その上に発光層をなすIII族窒化物半導体層を成長させるための窒素の原料ガスを徐々に、成長系内へ供給すれば、リン原子濃度に勾配を付した発光層を形成することができる。この際、リンの原料を成長系の外部へ排出する時間を長く保てば、発光層内のリン原子濃度の減少をより緩やかにできる。第1のリン化硼素系半導体層側の発光層底面でのリン原子濃度は、両層の密着性の観点からして、 $5 \times 10^{18} \text{ cm}^{-3}$ 以上で $2 \times 10^{20} \text{ cm}^{-3}$ 以下であるのが適する。第2のリン化硼素系半導体層側の発光層表面でのリンの原子濃度は、発光強度の観点から、 $5 \times 10^{19} \text{ cm}^{-3}$ 以下とするのが適する。発光層の内部でのリン原子の濃度分布は、例えば2次イオン質量分析(SIMS)法で計測することができる。

【0037】

上記の様な、配向関係を有するウルツ鉱結晶型III族窒化物半導体層の(0001)結晶面は、その上層に(111)立方晶リン化硼素系半導体層を形成するのに有効に作用する。(0001)III族窒化物半導体層であれば、例えば、表面が(0001) GaN 層であれば、“double positioning”様式をもって(P.HIRSCH他著、「ELECTRON MICROSCO

PY OF THIN CRYSTAL」、Krieger Pub.Com. (1977, U.S.A.) , 306頁参照)、(111) リン化硼素層を簡便に成長させることができる。[-2110] 結晶方向に、[110] 結晶方向を平行とする(111) リン化硼素系半導体層は格子歪も少なくクラッド層や青色光或いは緑色光等の可視光を発光素子の外部へ透過するための窓層として有効に利用することができる。

【0038】

(0001) III族窒化物半導体層の表面に、(111) リン化硼素系半導体層を成長させるのに際し、接合領域に(111) 双晶を含ませると、特に結晶性に優れる(111) リン化硼素系半導体層が得られる。接合領域に双晶を形成するには、(111) リン化硼素系半導体層の成長速度を変調させる。(111) 硅素単結晶基板上に(111) リン化硼素系半導体層を成長させる場合とは逆に、成長初期に於ける成長速度を小とする。例えば毎分2 nm以上で10 nm以下とするのが好適である。層厚が増加すると共に、成長速度を経時に増加させて、例えば毎分20 nm以上で30 nm以下として、リン化硼素系半導体層を短期間で成長させるとすると、リン(P)等の揮散性の高い構成元素の散逸を防止して、所望の伝導型とキャリア濃度を有するリン化硼素系半導体層を得るのに貢献することができる。

【0039】

(0001) III族窒化物半導体層上に設けた、禁止帯幅の大きな(111) リン化硼素系半導体層は、クラッド層、窓層またはコンタクト層として利用することができる。例えば禁止帯幅が約5 eVを超えると、発光の透過性を確保するのに優位となるものの、発光層との障壁差が大となり、順方向電圧或いは閾値電圧の低いリン化硼素系半導体発光素子を得るのに不利となる。禁止帯幅は、例えば屈折率及び消衰係数の波長分散性から求めることができる。クラッド層、窓層またはコンタクト層にしても、不純物を故意に添加しない、アンドープのリン化硼素系半導体層は、ドーピングした不純物の拡散に因る他層の変性を回避するのに効果がある。

【0040】

本発明に係わるリン化硼素系半導体発光素子は、上記の双晶を含むリン化硼素系半導体層からなるクラッド層、窓層またはコンタクト層の表面上に一方の極性のオーミック電極を、また例えば硅素単結晶基板の裏面に他の一方の極性のオーミック電極を設けて形成する。n型リン化硼素系半導体層については、金・ゲルマニウム(Au·Ge)合金等からn型オーミック電極を構成できる。p型リン化硼素系半導体層については、金(Au)・亜鉛(Zn)や金(Au)・ベリリウム(Be)合金、或いはニッケル(Ni)合金から構成することができる。例えば一辺の長さを500 μm以上とする平面積の大きなLEDを構成する際には、リン化硼素系半導体層の表面に広範囲に亘り、例えば直径を20 μm～50 μmとする円形で小型のオーミック電極を分散させつつ、互いに電気的に導通させて配置する手段が有効となる。素子駆動電流を平面的に広範囲に拡散できため、発光強度の高い、或いは発光面積の大きなLEDを得るのに好都合となるからである。

【実施例】

【0041】

(111) 硅素単結晶基板上に形成した(111) リン化硼素(BP)層と、(111) BP層上に形成した(0001) 窒化ガリウム・インジウム発光層とを備えたリン化硼素系LEDを構成する場合を例にして本発明を具体的に説明する。

【0042】

図1は本発明に係わるダブルヘテロ(DH)接合構造のLEDを作製するために使用した積層構造体の断面構造を模式的に示す図である。図において、積層構造体11はLEDチップ10を作製するためのものであり、この積層構造体11は、アンドープn型(111) 硅素(Si) 単結晶基板101上に、アンドープでn型の(111) リン化硼素からなる下部クラッド層102、n型(0001) 窒化ガリウム・インジウム(Ga_{0.90}In_{0.10}N) 井戸層と(0001) 窒化ガリウム障壁層とを3周期で重層させた多重量子井戸構造の発光層103、およびアンドープでp型の(111) リン化硼素からなる上部クラ

ット層104を、順次堆積して形成した。

【0043】

発光層103は下部クラッド層102に接して井戸層が形成され、その井戸層から順に障壁層、井戸層、障壁層、井戸層、障壁層が積層され、最上の障壁層が上部クラッド層104に接している。

【0044】

アンドープのn型(111)リン化硼素層(下部クラッド層102)、及びアンドープのp型(111)リン化硼素層(上部クラッド層104)は、トリエチル硼素(分子式: $(C_2H_5)_3B$)を硼素(B)源とし、ホスフィン(分子式: PH_3)をリン源とする常圧(略大気圧)有機金属気相エピタキシー(MOVPE)手段を利用して形成した。n型(111)リン化硼素層(下部クラッド層102)は925°Cで、p型(111)リン化硼素層(上部クラッド層104)は1025°Cで形成した。発光層103は、トリメチルガリウム(分子式: $(CH_3)_3Ga$)/ NH_3 / H_2 反応系常圧MOCVD手段により、800°Cで形成した。井戸層を構成する上記の窒化ガリウム・インジウム層は、インジウム組成を相違する複数の相(phase)から構成される多相構造から構成し、その平均的なインジウム組成は0.10(=10%)であった。井戸層の層厚は5nm、障壁層の層厚は10nmとした。

【0045】

(111)珪素単結晶基板101の表面上に、下部クラッド層102をなす(111)リン化硼素層を成長させる初期の段階に於いて、成長速度は毎分2.5nmに設定した。50nmの層厚に達する迄、同成長速度で成長させた後、成長速度を毎分20nmに減少させて、全体の層厚が600nmに達する迄、成長を継続した。一方、(0001)III族窒化物半導体からなる発光層103上に、上部クラッド層104を成長させる際の初期の成長速度は毎分10nmとし、以後、20nmに増加させて全厚を200nmとするp型上部クラッド層104を成長させた。低い成長速度(毎分10nm)で成長させた部分の層厚は25nmとした。

【0046】

下部クラッド層102をなすアンドープのn型(111)リン化硼素層のキャリア(正孔)濃度は $6 \times 10^{19} \text{ cm}^{-3}$ であり、また、室温での抵抗率は $8 \times 10^{-3} \Omega \cdot \text{cm}$ であった。また、上部クラッド層104をなすアンドープのp型(111)リン化硼素層のキャリア(正孔)濃度は $2 \times 10^{19} \text{ cm}^{-3}$ であり、また室温での抵抗率は $5 \times 10^{-2} \Omega \cdot \text{cm}$ であった。

【0047】

屈折率(n)及び消衰係数(k)の積値($= n \cdot k$)の2倍値($= 2 \cdot n \cdot k$)の光子エネルギー依存性から求めた室温での禁止帯幅は、下部クラッド層102をなすn型(111)リン化硼素層について3.1eVであった。また、上部クラッド層104をなすp型(111)リン化硼素層について4.2eVであった。このため、p型リン化硼素からなる上部クラッド層104は、発光層103からの発光を外部へ透過するための窓層を兼用するp型クラッド層を構成するのに足るものとなった。

【0048】

(111)珪素単結晶基板101と下部クラッド層102との接合領域のn型(111)リン化硼素層の内部領域(基板101との接合界面から厚さ50nmに至るn型リン化硼素層の領域)から得られた制限視野電子線回折(SAD)像には、双晶に起因する異常回折スポットが出現した。異常回折斑点が、{111}回折スポットの中間に、{111}回折スポット間の間隔の1/3の間隔で規則的に配列していたことから、この双晶は、(111)双晶であることが示された。

【0049】

また、(0001)III族窒化物半導体発光層103と上部クラッド層104との接合領域のp型(111)リン化硼素層の内部領域(多重量子井戸構造の発光層103との接合界面から厚さ25nmに至るp型リン化硼素層の内部領域)から得られた制限視野電子

線回折 (SAD) 像にも、(111) 双晶に起因する異常回折スポットが認められた。即ち、何れの接合領域にも (111) 双晶の存在が確認された。

【0050】

一般的な断面TEM技法で、上記の接合領域の格子像を撮像して、(111) 双晶粒界の数を計数した。(111) 硅素単結晶基板101とn型下部クラッド層102との接合界面近傍の領域での(111) 双晶の面密度は約 $6 \times 10^{11} \text{ cm}^{-2}$ であった。(111) 双晶の密度は、また層厚の増加方向に漸次、減少しており、n型下部クラッド層102の表面近傍の領域では、 $7 \times 10^8 \text{ cm}^{-2}$ に減少していた。

【0051】

また、(0001) III族窒化物半導体発光層103と上部クラッド層104との接合領域に於ける、p型(111) リン化硼素層の内部の(111) 双晶の密度は約 $2 \times 10^{10} \text{ cm}^{-2}$ であった。その表面近傍での(111) 双晶の密度は、極端に減少しており、約 $5 \times 10^7 \text{ cm}^{-2}$ であった。

【0052】

また、一般的な透過型電子顕微鏡(TEM)を使用してエビタキシャル成長層102～104の配向関係を調査した。電子ビームを、(111) 硅素単結晶基板101の[110] 方向に平行に入射させてTEDパターンを撮像した。下部クラッド層102をなすn型(111) リン化硼素層からは、(110) 結晶面に対応する逆格子パターンが得られた。これにより、硅素単結晶基板101の[110] 結晶方向に平行に、n型(111) リン化硼素層の[110] 結晶方向が配向しているのが示された。また、同じくTEDパターンから、六方晶のIII族窒化物半導体発光層103の[-2110] 結晶方向に、[110] 結晶方向を平行にしてp型(111) リン化硼素層(上部クラッド層104)が成長しているのが示された。

【0053】

また、下部クラッド層102の成長終了後、下部クラッド層102を成長させるためのリン原料として使用していたホスフィン(PH_3)ガスの成長系への供給を直ちに遮断せずに、その流量を毎分 4.30 cc から 0 cc へ5秒間を掛けて経時的に徐々に減少させた。この操作が発光層103の内部のリン原子濃度の分布に与える影響を調査するため、発光層の103の内部でのリン原子濃度の層厚の増加方向での分布を一般的なSIMS法で分析した。その結果、下部クラッド層102に最も近接している井戸層内のリン原子濃度は、平均して約 $9 \times 10^{19} \text{ cm}^{-3}$ であった。また、発光層103の中央部の井戸層内のリン原子濃度は、平均して約 $2 \times 10^{19} \text{ cm}^{-3}$ であった。

【0054】

また、上部クラッド層104に最も近接した井戸層の内部のリン原子濃度は平均して約 $6 \times 10^{18} \text{ cm}^{-3}$ であり、発光層103の層厚方向に、リン原子濃度が減少しているのが認められた。

【0055】

発光を外部へ取り出す窓層を兼用する上部クラッド層104をなすp型リン化硼素層の表面の全面に、通常の真空蒸着法に依り、金・ゲルマニウム(Au·Ge)合金膜、ニッケル(Ni)膜、及び金(Au)膜を順に被着させた。次に、結線用の台座電極を兼ねるp型オーミック電極105を設ける上部クラッド層104の中央部に限り、底面部をAu·Ge合金膜とする上記の3層重層電極を残置させるために、公知のフォトリソグラフィー技術を利用して選択的にバーニングを施した。次に、p型オーミック電極105とする以外の領域に在る金属膜をエッチング除去し、上部クラッド層104の表面を露出させた。フォトレジスト材を剥離した後、再び、チップに裁断するための格子状の溝を設けるために選択的バーニングを施した。然る後、塩素を含むハロゲン系混合ガスを利用したプラズマドライエッティング手法に依り、上記のバーニングを施した領域に限定して、上部クラッド層104を選択的にエッチングで除去し、チップへの裁断用の溝を形成した。

【0056】

一方、硅素単結晶基板101の裏面の全面には、一般の真空蒸着法に依り金(Au)膜

を被着させて、n型オーミック電極106を形成した。珪素単結晶基板101の(111)表面に直交する[110]結晶方位に平行に設けた、線幅を50μmとする上記の帯状の溝に沿って劈開し、一边を350μmとする正方形のLEDチップ10とした。

【0057】

p型オーミック電極105及びn型オーミック電極106の間に、順方向に20mAの素子駆動電流を流通してLEDチップ10の発光特性を確認した。LEDチップ10からは中心の波長を440nmとする青色帶光が放射された。発光スペクトルの半値幅は220ミリエレクトロンボルト(meV)であった。一般的な積分球を利用して測定される樹脂モールド以前のチップ状態での輝度は10ミリカンデラ(mcd)であった。また、順方向電流を20mAとした際の順方向電圧(Vf)は3.1Vと低値となった。一方、逆方向電流を10μAとした際の逆方向電圧は9.5Vと高値となった。また、局所的な耐圧不良も殆ど発生しなかった。

【0058】

このように、この発明では、格子ミスマッチ度の高い珪素単結晶基板上に成長させたリン化硼素系半導体層を利用してリン化硼素系半導体発光素子を形成する場合、珪素基板等との格子ミスマッチを緩和する(111)双晶を含む(1.11)リン化硼素系半導体層に接合させて(0001)III族窒化物半導体からなる発光層を設けることとしたので、結晶性に優れる発光層がもたらされ、従って、高い発光強度のリン化硼素系発光素子をもたらすに効果を奏することができる。

【0059】

また、(0001)III族窒化物半導体からなる発光層に接合させて設ける、窓層を兼ねる上部クラッド層を、(111)双晶を含む、[-2110]方向に[110]方向を平行として配向した、格子歪みの少ない(111)リン化硼素系半導体層から構成したので、局所的な耐圧不良の少ない耐圧特性に優れるリン化硼素系半導体LED等を提供することができる。

【図面の簡単な説明】

【0060】

【図1】本発明に係わるダブルヘテロ(DH)接合構造のLEDを作製するために使用した積層構造体の断面構造を模式的に示す図である。

【符号の説明】

【0061】

- | | |
|-----|-----------|
| 10 | LEDチップ |
| 11 | 積層構造体 |
| 101 | 珪素単結晶基板 |
| 102 | 下部クラッド層 |
| 103 | 発光層 |
| 104 | 上部クラッド層 |
| 105 | p型オーミック電極 |
| 106 | n型オーミック電極 |

【書類名】図面
【図1】

BEST AVAILABLE COPY