

INFORMATIQUE POUR LA ROBOTIQUE 2

Récap et introduction projet

Enseignants: Maëva LECAVELIER - maeva.lecavelier@gmail.com

Michael CHATOEV - michaelchatoev@gmail.com

Sommaire

01

Organisation

Les prochains cours

02

Récap

Rappels des acquis

03

Sujets projet

Quelques idées

04

Organisation des projets

1

Organisation

Les prochains cours

Prochains cours

Date et heure	Durée	Sujet
Vendredi 09/05 à 13h30	4h	Début projet
Vendredi 12/05 à 13h30	3h	Projet
Vendredi 23/05 à 13h30	4h	Projet
Lundi 26/05 à 16h	2h	Soutenances
Mardi 27/05 à 16h	2h	Soutenances

Rendu du rapport de projet par mail à M. CHATOEV et Mme LECAVELIER avant le 25/05 à 23h59 (heure du mail qui fait foi)

Récap

Rappels des acquis

Concepts abordés

- → Introduction à Linux
- → Introduction à Docker
- → Python
- → Introduction au Machine Learning sur machine "puissante"
- → Exploitation du Machine Learning avec du Fine Tuning sur machine "puissante

Linux

- Les commandes de base : ls, mkdir, cd, pwd...
- Les permissions sur les fichiers et comment les modifier
- L'arborescence des fichiers et les chemins absolus/relatifs
- Les scripts et les redirections

Docker

- Un gestionnaire de conteneur
- Permet la portabilité, facilite le déploiements améliore la compatibilité des programmes vis-à-vis de leur environnement
- Fonctionne avec des fichiers de configuration (Dockerfile, docker-compose.yml) qui :
 - Permettent de faire un lien entre le conteneur et la plateforme physique
 - Définissent l'environnement du conteneur

Python

- C'est un langage polyvalent et simple
- Il fonctionne avec des bibliothèques. Un utilitaire (pip) permet de gérer l'installation et le versionning de ces librairies
- L'exécution d'un fichier Python
- Les fonctions en Python

Machine Learning et Fine Tuning

- Introduction au ML et à ses différentes étapes (préparation des données, construction et compilation du modèle, entraîner le modèle, l'évaluer...)
- Introduction aux réseaux de neurones et leur implémentation en Python (avec TensorFlow)
- Les contraintes de puissance de la mise en place d'un système de reconnaissance d'image
- La possibilité d'adapter un modèle existant à ses problématiques via le fine tuning

Des questions?

Avant de passer à la suite

Contrôle

Sujets projet

Quelques idées

Idées projets

Analyseur de déchets

Utiliser une caméra pour classifier des déchets (plastique, carton, verre...) et communiquer le résultat à une Arduino (activation d'un tri automatique, par exemple).

Reconnaissance de gestes

Identifier des gestes de la main à la caméra, puis communiquer cette information à une Arduino (commande d'un robot ou d'un autre système physique).

Assistant visuel pour malvoyants

Détecter des objets courants ou dangers (obstacle, marche, signalisation) à l'aide de la vision et transmettre des indications via Arduino (voix, son, vibration...).

Surveillance sonore

Détecter des événements sonores particuliers (alarme, cris, porte qui claque), classifier ces sons en temps réel, puis piloter une Arduino.

Découpage des projets :

Trouver un modèle et le faire fonctionner

Selon votre problématique, à vous de trouver un modèle pré-entraîné cohérent. Dans un premier temps, cherchez à le faire fonctionner tel quel pour estimer ses performances

Adapter le modèle à vos besoins

Utilisez le fine-tuning pour adapter votre modèle à votre problématique. N'oubliez pas de le tester sur plateforme embarquée une fois entraîné.

Exploiter le résultat dans un environnement réel

Ensuite, via de la communication série avec une Arduino, interagissez avec le monde réel selon les résultats interprétés par votre modèle

Organisation des projets

Organisation des projets

- En binôme (tel que définit au début du cours)
- 3 séances pour avancer à votre rythme. Recommandation de faire un incrément par séance (voir Slide 15)
- Rapport:
 - 10 pages maximum
 - Explication de votre problématique/cas d'usage
 - Justification des choix avec résultats (pourquoi tel modèle et pas un autre, pourquoi tel paramétrage pour le fine tuning etc...).
 - Performance attendue et performance réelle
 - Schéma fonctionnel de votre robot (capteur, actionneurs, Arduino, Jetson...)
- Soutenances:
 - Contexte, problématique, présentation du projet puis démo
 - 10 min de soutenance, 5 min de questions

Merci!

Des questions?