Advanced Math Individual

Haynes Mu Alpha Theta 2019

Instructions

- 1. You have 50 minutes for this test.
- 2. No calculators allowed on this test.
- 3. Do all scratch work on your test.
- 4. Provide exact and fully simplified answers unless otherwise stated.
- 5. Units are not required; if units are given, however, they must be correct.
- 6. Put name and school code on answer sheet.
- 7. Good luck and have fun!

	Name	
	School	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
• •		

Haynes MAO 2019- Advanced Math Individual

- 1) Haseeb has a DVD rotating at 210 revolutions per minute. Find the angular speed of the DVD in radians per second.
- 2) From the top of a 75 ft building, Eddie sees a plane at an angle of elevation of 36°. If the distance from Eddie to the plane is 450 ft, how high in the air is the plane? (Note: $sin(36^\circ) \approx 0.6$, $cos(36^\circ) \approx 0.8$)
- 3) If $\csc \theta = \frac{17}{8}$ and $0 < \theta < \frac{\pi}{2}$, what is $\tan \theta$?

- 4) Determine the constants P and Q given that the parabola $y = Px^2 + Qx 5$ passes through the points (-2, 0) and (-1, -3).
- 5) Find the range of the function $f(x) = 5sin[2(x + \frac{\pi}{3})] 4$
- 6) Simplify the trig identity: $\frac{sinx}{1-cosx} + \frac{1-cosx}{sinx}$
- 7) Find the exact value of $cos(\frac{5\pi}{12})$.
- 8) Convert $(6, \frac{5\pi}{6})$ from polar to rectangular coordinates.

- 9) Solve the equation 2log(x) + log 3 = log 75.
- 10) Olivia and Elisa leave Haynes Airport on different planes. After 1 hour, Olivia and Elisa are 4 and 5 miles from the airport, respectively. The distance between their planes is 6 miles. If *C* is the measure of the acute angle between the two planes' paths, find *sin C* (Assume the planes fly in straight lines).

11) James, Anupam, and Kiet take 6 hours to do a job working together. If James can finish the job 7 times faster than Kiet, and Anupam can finish the job 4 times faster than Kiet, how long will it take for Anupam to finish the job?

12) Find the domain of $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{3 - x}}}$

13) Find the distance between the center of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ and the origin.

14) The mass of bacterial culture is increasing exponentially, starting at 2 mg at t= 0 hours and reaching 5 mg at t= 30 hours. If the mass of the culture at t=25 hours can be

expressed in the form ab^c where a, b, c are positive rational numbers in simplified form, find abc.

15) Suppose that real number x satisfies:

$$\sqrt{98 - x^2} + \sqrt{42 - x^2} = 8$$

What is the value of $\sqrt{98-x^2} - \sqrt{42-x^2}$?

16) Given that complex numbers x, y satisfy $x^3 - y^3 = 98i$ and x - y = 7i, if xy = a + bi where a, b are real numbers, find the value of $\frac{a+b}{3}$.

- 17) For what values of x in the interval $[0, \pi]$ does the graph of y = cot(2x) have a vertical asymptote?
- 18) If $(-1+i)^{10} + (\sqrt{3}+i)^6$ is expressed in the form a+bi, find a+b.

Haynes MAO 2019- Advanced Math Individual

19) Aakash and Kevin are standing at each of the foci of the ellipse with equation $\frac{x^2}{80} + \frac{y^2}{60} = 1$. If d is the distance between them, find d^2 .

20) Solve for the sum of the possible values of x:

$$\left|\begin{array}{ccc} x & 2 & 1 \\ 3 & x & 0 \\ 1 & 0 & 1 \end{array}\right| = 6$$

Haynes MAO 2019- Advanced Math Individual

Answer Key

(Note: units are not required if they are in parentheses; if provided, however, units must be correct)

- 1. 7π (rad/s)
- 2. 345 (ft)
- 3. 8/15
- 4. P = 1/2, Q = -3/2
- 5. [-9, 1] (accept $-9 \le f(x) \le 1$ or $-9 \le y \le 1$)
- 6. 2csc(x) (accept $\frac{2}{sin(x)}$)
- $7. \quad \frac{\sqrt{6}-\sqrt{2}}{4}$
- 8. $(-3\sqrt{3}, 3)$ (accept $(-\sqrt{27}, 3)$)
- 9. x = 5
- 10. $\frac{3\sqrt{7}}{8}$ (accept $\sqrt{63/8}$)
- 11. 18 (hrs)
- 12. [-1, 2] (accept $-1 \le x \le 2$)
- 13. $\sqrt{13}$
- 14. 25/6
- 15.7
- 16. 7
- 17. $x = 0, \pi/2, \pi$
- 18. -96
- 19.80
- 20. 1