Reinforcement Learning

MUKESH KUMAR

AGENDA

- What is Reinforcement Learning
- Core Concepts of RL
- Types of RL
- Q-Learning Algorithm
- Mouse Maze Problem
- Q-Learning in OpenAl Gym Smart Taxi
- SARSA
- Policy Gradient Theory

Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by interacting with an environment to maximize a reward.

Introduction to Reinforcement Learning

Definition: Learning by interacting with an environment to maximize cumulative reward.

Key Concepts:

- Agent: The learner or decision-maker.
- **Environment:** The world the agent interacts with.
- Action: A move the agent makes.
- State: The current situation of the agent.
- Reward: Feedback signal from the environment.

Goal:

Learn a policy (strategy) that maximizes the cumulative reward over time.

Architecture of Reinforcement Learning

Where is Reinforcement Learning Used?

Games & Simulation:

- AlphaGo (beating world champions at Go)
- OpenAl Five (Dota 2)
- Chess and Atari games

Robotics:

- Robotic arms for picking/sorting
- Industrial automation
- Bipedal/humanoid robot walking

Where is Reinforcement Learning Used?

Autonomous Driving:

- Lane following
- Obstacle avoidance
- Decision-making in traffic

Operations & Control:

- Elevator scheduling
- HVAC systems
- Power grid optimization

Key Components of Reinforcement Learning

Agent

- The decision maker
- Learns from experience and chooses actions

Environment

- Everything the agent interacts with
- Provides feedback via rewards

Key Components of Reinforcement Learning

State (s)

- A snapshot of the environment at a given time
- Example: Position of a car in a driving simulation

Action (a)

- A decision taken by the agent
- Example: Move left, accelerate, pick object

Key Components of Reinforcement Learning

Reward (r)

- A numerical signal from the environment
- Positive for good actions, negative for bad ones
- Drives learning and behavior

Mouse Maze

Problem Introduction

• There are totally 10 States = 0-9

 For each state what are the possible actions and reward for each action(reward can be positive or negative)

Goal: Mouse has to exit the maze

Setting up the Rewards

- Reward is a scalar quantity
 - Positive
 - Negative
 - Neutral

For mouse maze, we only have positive rewards, there is not Negative rewards

Initializing Matrices

- Q-Matrix
- R-Matrix
- State-Action Reward Matrix

- What are the different starts in mouse maze problem?
- What are the actions possible in mouse maze problems??

Reward Matrix

- 10 States possible = 0-9
- 4 actions possible = up, down, right, left

	up	down	left	right
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				

For state o

• From 0 it can only go to 3, only down action is possible

• From State 1, only right is possible

	up	down	left	right
0		0		
1				0
2				
3				
4				
5				
6				
7				
8				
9				

Another approach of creating Reward Matrix

State vs State

We are going to use this one for Mouse maze problem

Sate Vs State Reward Matrix

- From o state it can move to only 3
- From 1 state it can move only to 2
- From 2 state it can go to 1,5 or 9

 This is what we call reward matrix, what are the possible actions and corresponding rewards

Reward Matrix

• This is the final Reward matrix, -1 here is not reward it's an invalid option for python program

- 4			_		_	•				
	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
	-1	-1	0	-1	-1	-1	-1	-1	-1	-1
	-1	0	-1	-1	-1	0	-1	-1	-1	100
	0	-1	-1	-1	0	-1	0	-1	-1	-1
	-1	-1	-1	0	-1	0	-1	0	-1	-1
	-1	-1	0	-1	0	-1	-1	-1	-1	-1
	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
	-1	-1	-1	-1	0	-1	-1	-1	0	100
	-1	-1	-1	-1	-1	-1	-1	0	-1	-1
	-1	-1	0	-1	-1	-1	-1	0	-1	100
_										

Q-Matrix (Quality Matrix)

• It's replica of reward matrix except it has all values initialized to zeros.

Values will be updated based on actions agents take

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0

Step1: Calculation

• Lets say we dorp the mouse at 2

• From 2:1,5,9

Say it goes to 9

• Q(2,9) = R(2,9) + 0.7 (Q(9,2), Q(9,9), Q(9,7)) - Q(2,9)

• Q(2,9) = 100

Updated Q-Matrix after step 1

 When we repeate this process 1000 of times we will have a Qmatrix which will have optimum values in each cell

 We can then use this Q-Matrix to decide the next best state mouse should move in order to exit the maze in shortest possible path

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	100
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0

In Class Problem

Calculate the Q value, when the initial state = 3 and mouse moves to

state 4 at Random. (Assume Gamma = 0.7)

Q-Learning Algorithm (Theory)

- Q-Learning is a model-free, value-based Reinforcement Learning algorithm
- that learns the optimal action-selection policy using Q-values.

- Learns how good an action is at a given state, without knowing the environment's
- dynamics.

Q-Learning Key Concepts

Q-Value (**Q**(**s**, **a**)):

• Estimates the **expected total reward** of taking action **a** in state **s** and following the optimal policy afterward.

Goal:

• Learn the optimal Q-values, denoted Q^* , so the agent can act greedily: $\pi(s) = \operatorname{argmax}_a Q^*(s, a)$

Q-Learning Update Rule

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

- Where:
- **s** = current state
- **a** = action taken
- r = reward received
- s' = next state
- a' = possible next actions
- α = learning rate (0 < α ≤ 1)
- γ = discount factor (0 $\leq \gamma < 1$)

$$Q(s, a) \leftarrow Q(s, a) + lpha \cdot \underbrace{\left[r + \gamma \max_{a'} Q(s', a') - Q(s, a)
ight]}_{ ext{TD Error} = \delta}$$

Temporal Difference (TD)

Q-learning: Algorithm

Characteristics of Q-Learning

Model-Free

• Doesn't require knowledge of transition probabilities

Off-Policy

Learns optimal policy independently of the actions taken

Convergence

 Converges to optimal Q-values under appropriate exploration and learning rate conditions