Inverse Laplace Transform

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Definition of inverse Laplace transform

If F(s) represents the Laplace transform of f(t), then f(t) is the **inverse Laplace transform** of F(s).

• If $\mathcal{L}[f(t)] = F(s)$, then $f(t) = \mathcal{L}^{-1}[F(s)]$

$$ullet \ \mathcal{L}^{-1}[\mathcal{L}[f(t)]] = f(t)$$

$$\int \frac{d}{dx} \qquad \frac{d}{dx} \int$$

$$\frac{qx}{q}$$

Inverse Laplace transform is also linear.

$$\mathcal{L}^{-1}[lpha F(s) + eta G(s)] = lpha \mathcal{L}^{-1}[F(s)] + eta \mathcal{L}^{-1}[G(s)]$$

Common inverse Laplace transforms are tabulated

Use Seaborg Table 3.1... in reverse

Inverse L.T. $f(t)$	Laplace Transform $F(s)$	Inverse L.T. $f(t)$	Laplace Transform $F(s)$
	$\left\lfloor \frac{1}{s} \right\rfloor$	e^{at}	$\left[\frac{1}{s-a}\right]$
t^n	$oxed{n!}{s^{n+1}}$	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{3/2}}$
$\sin(at)$	$rac{a}{s^2+a^2}$	$t\sin(at)$	$rac{2as}{(s^2+a^2)^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$	$t\cos(at)$	$rac{s^2 - a^2}{(s^2 + a^2)^2}$

Applying inverse Laplace transform

Zill Ex. 4.2.1a Evaluate
$$\mathcal{L}^{-1}\left[rac{1}{s^5}
ight]$$

Recall
$$t^n = \mathcal{L}^{-1}\left[rac{n!}{s^{n+1}}
ight]^{
u}$$

$$n+1=5 = 1$$

Zill Ex. 4.2.1a Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{s^5}\right]$$
 $n+1=5$ $=\frac{4!}{4!}\left[\frac{4!}{s^{4+1}}\right]$ Recall $t^n=\mathcal{L}^{-1}\left[\frac{n!}{s^{n+1}}\right]$

Zill Ex. 4.2.1b Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{s^2+7}\right]$$
Recall $\sin(at) = \mathcal{L}^{-1}\left[\frac{a}{s^2+7}\right]$

Zill Ex. 4.2.1b Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{s^2+7}\right]$$
 $=$ $\frac{1}{\sqrt{7}}\cdot\frac{1}{\sqrt{5^2+(\sqrt{7})^2}}=\frac{1}{\sqrt{7}}\cdot\frac{\sqrt{7}}{\sqrt{5^2+(\sqrt{7})^2}}=\frac{1}{\sqrt{7}}\cdot\frac{\sqrt{7}}{\sqrt{5^2+(\sqrt{7})^2}}=\frac{1}{\sqrt{7}}\cdot\frac{\sqrt{7}}{\sqrt{7}}$
Recall $\sin(at)=\mathcal{L}^{-1}\left[\frac{a}{s^2+a^2}\right]$

Term-wise division and linearity

$$2^{-1}\left\lceil rac{-2s+6}{s^2+4}
ight
ceil$$

$$2^{-1}\left(\frac{-25+6}{5^2+4}\right)$$
 ~ Laplace (5) space

$$\frac{1}{2} \int_{0}^{1} \left[\frac{-2S}{S^{2}+4} + \frac{6}{S^{2}+4} \right]$$

$$\mathcal{L}^{-1}\left(\frac{a}{S^2+a^2}\right) = \sin\left(a\right)$$

Zill Ex. 4.2.2 Evaluate
$$\mathcal{L}^{-1}\left[\frac{-2s+6}{s^2+4}\right]^{\frac{1}{2}}$$
 $\mathcal{L}^{-1}\left(\frac{s}{s^2+a^2}\right) = \sin(at)$ $\mathcal{L}^{-1}\left(\frac{s}{s^2+a^2}\right) = \cos(qt)$

$$\alpha^2 = 4$$

=
$$-21^{-1} \left[\frac{s}{s^2 + 4} \right] + 6 1^{-1} \left[\frac{1}{s^2 + 4} \right]$$

= $\left[-2 \cos(2\tau) + 6 \right] \sin(2t)$ Fine t space

Partial fractions and linearity

Ex. Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$$

$$\frac{1}{(s-1)(s+4)} = \frac{A}{(s-1)} + \frac{B}{(s+4)} = \frac{1}{s-1} + \frac{1}{s+4}$$

$$\frac{A}{(s-1)(s+4)} = \frac{A}{(s-1)} + \frac{B}{(s+4)} = \frac{1}{s-1} + \frac{1}{s+4}$$

$$\frac{A}{(s-1)(s+4)} = \frac{A}{(s-1)} + \frac{B}{(s+4)} + \frac{B}{(s+4)} = \frac{1}{s-1} + \frac{1}{s+4}$$

$$\frac{A}{(s-1)(s+4)} = \frac{A}{(s-1)(s+4)} + \frac{B}{(s+4)} + \frac{S-1}{s-1}$$

$$\frac{A}{(s-1)(s+4)} = \frac{A}{(s-1)(s+4)}$$

$$\frac{A}{(s-$$

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$$
 with Heaviside expansion.

1. Set up partial fraction expansion

2. Multiply both sides by one denominator term $(s+a)$

3. Evaluate at $s=-a$

4. Solve for coefficient

1. Cover up denominator term
$$(s+a)$$

- 2. Evaluate at s = -a
- 3. The result is the coeff for the term

$$1 + 4 = A + 0$$
 $A = \frac{1}{5}$
 $A = \frac{1}{5}$
 $A = \frac{1}{5}$
 $A = \frac{1}{5}$
 $A = \frac{1}{5}$

Limitation: Rational function of s with distinct linear factors in denominator

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$$
 with Heaviside expansion.

1. Set up partial fraction expansion

2. Multiply both sides by one denominator term
$$(s+a)$$

3. Evaluate at $s=-a$

4. Solve for coefficient

$$S+y=0 \\
S=-y$$

- 1. Cover up denominator term (s + a)
- 2. Evaluate at s=-a
- 3. The result is the coeff for the term

$$\frac{1}{(5-1)(5+4)} = \frac{1}{5-1} = \frac{1}{5-1} = \frac{1}{5-1} = \frac{1}{5} = 3$$

Limitation: Rational function of s with distinct linear factors in denominator

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate $\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$ with Heaviside expansion.

$$A = \frac{1}{5}, B = -\frac{1}{5} \implies 2^{-1} \left[\frac{1}{5} \frac{1}{5-1} - \frac{1}{5} \frac{1}{5+4} \right]$$

$$= \frac{1}{5} 2^{-1} \left[\frac{1}{5-1} \right] - \frac{1}{5} 2^{-1} \left[\frac{1}{5+4} \right]$$

$$= \frac{1}{5} 2^{-1} - \frac{1}{5} 2^{-1} + \frac{1}{5$$

$$\int_{-1}^{-1} \left(\frac{1}{Sta} \right) = e^{-at}$$

Cover-up method is great for more complicated expressions

Zill Remarks 4.2.ii Evaluate $\mathcal{L}^{-1}\left[\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right]$ with Heaviside expansion.

$$\frac{S^{2}+6s+9}{(s-1)(s-2)(s+4)} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{s+4} = \frac{16}{-5} \frac{1}{s-1} + \frac{25}{6} \frac{1}{s-2} + \frac{1}{30} \frac{1}{s+4}$$

$$S=1:$$
 $\frac{S^2+6S+9}{(S-2)(S+4)} = \frac{1^2+6+9}{(1-2)(1+4)} = \frac{16}{-5} = A$

$$S-2=0$$
 S^2+6S+9 = $\frac{4+12+9}{(S-1)(S+4)} = \frac{25}{(S-1)(S+4)} =$

$$5=-4$$
: $5=-4$: $5=-4$: $5=-4$: $(5-1)(5-2)$ = $\frac{16-24+9}{(-5)(-6)}$ = $\frac{1}{30}$ = C