Санкт-Петербургский государственный университет Математико-механический факультет Информационно-аналитические системы

Ким Юния Александровна 18.Б07-мм

Вычислительный практикум

Отчёт по заданию N2

Преподаватель: Евдокимова Т.О.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

Содержание

1.	Ссылка на код
2.	Постановка задачи
3.	Теоретическая часть
	3.1. LU-разложение
	3.1. LU-разложение
4.	Численный эксперимент
	4.1. Описание
	4.2. Результаты
	43 Анализ

1. Ссылка на код

https://github.com/yuniyakim/MethodsOfComputation/pull/12

2. Постановка задачи

Задача — реализация метода решения СЛАУ под названием LU-разложение, а также реализация метода регуляризации для нескольких плохо обусловленных матриц и определение лучшего параметра регуляризации.

3. Теоретическая часть

Исходная задача – решение СЛАУ вида Ax = b.

3.1. LU-разложение

Пусть матрица A такая, что все её главные миноры отличны от нуля. В таком случае можно сказать, что существуют единственные матрицы L и U, такие что A = LU, L – нижняя треугольная матрица с 1 на диагонали, а U – верхняя треугольная.

Существуют формулы для нахождения элементов матриц L и U:

•
$$l_{ii} = 1$$
,
 $l_{ij} = 0$, $i < j$,
 $l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} * u_{kj}) / u_{jj}$, $i > j$,
 $i, j = 1..n$.

•
$$u_{ij} = 0, i > j,$$

 $u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} * u_{kj}, i \leq j,$
 $i, j = 1..n.$

Таким образом решение исходной СЛАУ Ax = b заключается в решении двух систем с треугольными матрицами: сначала Ly = b, а затем Ux = y.

3.2. Регуляризация

Регуляризация применяется для повышения устойчивости плохо обусловленных матриц. Вместо решения исходной СЛАУ Ax = b, решается следующая задача:

$$||Ax - b||^2 + \alpha ||x||^2 = min,$$

 α — фиксированный параметр регуляризации. Решение системы — это предел при $\alpha \to 0$. В случае эрмитовой положительно определённой матрицы задача минимизации функционала равносильна решению системы $(A+\alpha E)x_{\alpha}=b$.

4. Численный эксперимент

4.1. Описание

Для численного эксперимента брались матрицы Гильберта порядков 4, 5, 6 и 7. Параметр α варьировался от 10^{-1} до 10^{-12} .

4.2. Результаты

Hilbert ma	trix of order 4.		
α	cond (A + α E)	x - x_a	
0	15513.738738928416	0	0
0.1	15198.05520000203	145.12642927251778	1.230769230769135
0.01	15132.224821592801	32.52833759560168	0.2758620689655001
0.001	15466.722125016608	3.713865316067835	0.03149606299212948
0.0001	15508.934501026793	0.3767259546304032	0.003194888178922995
1E-05	15513.2572732246	0.0377268353393004	0.0003199488081868651
1E-06	15513.69058192336	0.00377322682560255	3.19994880122465E-05
1E-07	15513.733923125625	0.0003773281688122252	3.1999948841843207E-06
1E-08	15513.738257348969	3.7732908788857153E-05	3.199999500935746E-07
1E-09	15513.738690773913	3.7733838128059915E-06	3.2000000871335966E-08
1E-10	15513.738734114811	3.773806161899095E-07	3.2000055938530176E-09
1E-11	15513.738738449456	3.7755774862434036E-08	3.2000357921031885E-10
1E-12	15513.738738879874	3.8653228673659875E-09	3.199929309105404E-11

Рисунок 4.1. Результаты матрицы Гильберта 4 порядка

Hilbert ma	atrix of order 5.		
α	cond (A + α E)	x - x_α	b - Ax_α
0	476607.2502423224	0	[0
0.1	489426.3324141757	1025.845843150612	1.597191412499339
0.01	462592.0558135596	287.2368360967612	0.4472135954995226
0.001	474692.276629531	35.028882467965325	0.05453824335364192
0.0001	476409.36069434066	3.581506702518172	0.005576229370287022
1E-05	476587.39579456596	0.35895631786299426	0.0005588772750898119
1E-06	476605.264139339	0.035903714914588304	5.590030191482177E-05
1E-07	476607.0516251624	0.003590470391385792	5.590155986135025E-06
1E-08	476607.23037988006	0.0003590614233133974	5.59016916700117E-07
1E-09	476607.248255909	3.592595473765507E-05	5.590171200694584E-08
1E-10	476607.25004290685	3.604745798583967E-06	5.5901680231722494E-09
1E-11	476607.25022248446	3.721641074785029E-07	5.590174401457238E-10
1E-12	476607.25023920275	5.4105222189915565E-08	5.59456010422163E-11

Рисунок 4.2. Результаты матрицы Гильберта 5 порядка

Hilbert m	atrix of order 6.		
α	cond (A + αE)	x - x_α	
0	14951058.640470082	0	[0]
0.1	16126004.005345587	6806.541788991131	1.9169919726352098
0.01	14466210.384424854	2302.21266509495	0.6483943436721934
0.001	14876487.639876958	302.2209681707392	0.08511740419022677
0.0001	14943248.822279872	31.197780894648897	0.008786531560599501
1E-05	14950274.009042876	3.1298822059145115	0.0008814989676926866
1E-06	14950980.141133988	0.31308916413558685	8.817845659007201E-05
1E-07	14951050.790406989	0.03131056399505059	8.818131396139328E-06
1E-08	14951057.8569046	0.0031314207266336875	8.81815869826729E-07
1E-09	14951058.563158356	0.00031333497729284633	8.818155681488366E-08
1E-10	14951058.634177089	3.015204916134309E-05	8.818366860946723E-09
1E-11	14951058.639529917	3.131698986009441E-06	8.820571746725982E-10
1E-12	14951058.639633762	1.3183682076163991E-06	8.799856953180092E-11

Рисунок 4.3. Результаты матрицы Гильберта 6 порядка

Hilbert m	atrix of order 7.		
α	cond (A + α E)	x - x_α	b - Ax_α
0	475367356.65265673	0	0
0.1	537642672.9325366	43536.753728331205	2.1973188863451925
0.01	459307971.92901814	17239.385857983765	0.8700792901106599
0.001	472549363.0024246	2448.682935937153	0.12358609566039482
0.0001	475067636.83164793	255.61418615742284	0.01290096670218661
1E-05	475337196.98744303	25.673902250903094	0.0012957832118702375
1E-06	475364338.0973986	2.568449272083931	0.00012963546223663071
1E-07	475367054.2285104	0.2568912490450661	1.2964117585947294E-05
1E-08	475367326.14974135	0.02567373537666407	1.2964183544265487E-06
1E-09	475367353.6145305	0.002426344044588283	1.2964143153236724E-07
1E-10	475367357.5601552	3.832892511593119E-05	1.296448271668595E-08
1E-11	475367356.351966	0.00013478999874193007	1.294931958171225E-09
1E-12	475367356.26605624	8.957987389802108E-05	1.3085295758285285E-10

Рисунок 4.4. Результаты матрицы Гильберта 7 порядка

4.3. Анализ

В результате экспериментов была выявлена зависимость между параметром регуляризации, точностью решения, а также величиной числа обусловленности: при уменьшении параметра регуляризации α увеличивается точность решения новой СЛАУ, при этом можно заметить, что число обусловленности в общем растёт.