

THÉMATIQUE COMMUNE DE L'ÉPREUVE DE MATHÉMATIQUES-SCIENCES: LA SANTÉ

Exercice 1: 5 points

Question 1: Dans un club sportif, $\frac{1}{8}$ des adhérents ont plus de 42 ans et $\frac{1}{4}$, soit $\frac{2}{8}$ ont moins de 25 ans. $\frac{1}{8} + \frac{2}{8} = \frac{3}{8}$. Il reste une proportion de $1 - \frac{3}{8} = \frac{8-3}{8} = \frac{5}{8}$ d'adhérents ayant un âge de 25 à 42 ans. **Réponse C**.

Question 2: Pour augmenter le prix de 20 % on multiplie le prix de départ par 1,20. $46\,000 \times 1,20 = 55\,200$. **Réponse B**.

Question 3: Si toutes les longueurs sont multipliées par k, alors les aires sont multipliées par k^2 et les volumes sont multipliées par k^3 . Ici, toutes les longueurs du cube sont multipliées par 3, donc le volume du cube est multiplié par k^3 , soit par 27. **Réponse D**.

Question 4: Les nombres 23 et 37 sont impairs, donc on élimine la réponse D.

Les nombres 23 et 37 ne sont pas divisibles par 3 (on ne les trouve pas dans la table de multiplication du 3; ou la somme de leurs chiffres n'est pas divisible par 3 (2 + 3 = 5 et 5 n'est pas divisible par 3; 3 + 7 = 10 et 10 n'est pas divisible par 3)), donc on élimine la réponse B.

Tous les nombres entiers sont divisibles par 1, donc les nombres 23 et 37 ont 1 comme diviseur commun, donc on élimine la réponse C.

Il ne reste que la bonne réponse. Les nombres 23 et 37 ont exactement deux diviseurs (1 et le nombre lui-même), donc ils sont premiers. **Réponse A**.

Question 5: On calcule f(3) (en remplaçant x par 3).

 $3^2 - 2 \times 3 + 7 = 9 - 6 + 7 = 10$. **Réponse A.**

Exercice 2: 4 points

Voici les tailles, en cm, de 29 jeunes plants de blé 10 jours après la mise en germination.

Taille (en cm)	0	10	15	17	18	19	20	21	22
Effectif	1	4	6	2	3	3	4	4	2
Effectif cumulé croissant	1	5	11	13	16	19	23	27	29

1.
$$\frac{1 \times 0 + 4 \times 10 + 6 \times 15 + 2 \times 17 + 3 \times 18 + 3 \times 19 + 4 \times 20 + 4 \times 21 + 2 \times 22}{29} = \frac{483}{29} \approx 16,7$$

La taille moyenne d'un jeune plant de blé est **d'environ** 16,7 cm 10 jours après la mise en germination.

- **2. a.** L'effectif total est égal à 29. 29 ÷ 2 = 14,5. La médiane est la 15° donnée de la série de données ordonnée dans l'ordre croissant. La médiane de cette série est égale à 18 cm.
 - **b.** Dire que la médiane de cette série est égale à 18 cm signifie qu'au moins la moitié des plants de blé mesurent 18 cm ou moins de 18 cm, 10 jours après la mise en germination.

Exercice 3: 6 points

Pour gagner le gros lot à une kermesse, il faut d'abord tirer une boule rouge dans une urne, puis obtenir un multiple de 3 en tournant une roue de loterie numérotée de 1 à 6.

L'urne contient 3 boules vertes, 2 boules bleues et 3 boules rouges.

- 1. Sur la roue de loterie, il y a deux issues (3 et 6) sur 6 issues qui réalisent l'évènement « obtenir un multiple de 3 ». La probabilité d'obtenir un multiple de 3 est donc égale à $\frac{2}{6} \left(\text{ou} \, \frac{1}{3} \right)$
- 2. Dans l'urne, la probabilité de tirer une boule rouge est égale à $\frac{3}{8}$.

 la probabilité de tirer une boule rouge dans une urne, puis d'obtenir un multiple de 3 sur la roue de loterie est égale à $\frac{3}{8} \times \frac{1}{3}$, soit $\frac{1}{8}$.

 La probabilité qu'un participant gagne le gros lot est égale à $\frac{1}{8}$.

3. Comme on ne change pas le nombre de boules vertes et de boules bleues, il y a 5 boules vertes ou bleues.

Il faut que la moitié des boules soient rouges, donc il faut mettre en tout 5 boules rouges dans l'urne pour que la probabilité de tirer une boule rouge soit de 0,5.

Exercice 4: 5 points

1. On souhaite tracer le motif ci-dessous en forme de losange.

2. On souhaite réaliser la figure ci-dessous construite à partir du bloc **Losange** complété à la question 1.

Exercice 5: 9 points

- 1. a. Avec la formule f(x) = 220 x, on remplace x par 5. 220 5 = 215. La fréquence cardiaque maximale recommandée pour un enfant de 5 ans est de 215 pulsations/minute.
 - **b.** Avec la formule g(x) = 208 0.7x, on remplace x par 5.

 $208 - 0.7 \times 5 = 208 - 3.5 = 204.5$. La fréquence cardiaque maximale recommandée pour un enfant de 5 ans est de 204 pulsations/minute (on ne compte pas de demi-pulsation!).

2. a. Sur l'annexe 2, on complète le tableau de valeurs comme ci-dessous :

х	5	10	20	30	40	50	60	70	80	90	100
f(x)	215	210	200	190	180	170	160	150	140	130	120
g(x)	204,5	201	194	187	180	173	166	159	152	145	138

- **b.** Sur l'annexe 2, on a tracé en rouge la droite d représentant la fonction f dans le repère tracé.
- **c.** Sur le même repère, on a tracé en violet la droite d' représentant la fonction g.
- **3.** Selon la nouvelle formule, à partir de 40 ans la fréquence cardiaque maximale recommandée est supérieure ou égale à celle calculée avec l'ancienne formule. Ceci se voit dans le tableau : avant la colonne correspondant à 40 ans, f(x) est supérieur à g(x) et après cette colonne, f(x) est inférieur à g(x).

Ceci se voit aussi sur la représentation graphique : avant le point d'intersection de d et d' correspondant à 40 ans, d est au-dessus de d' et après ce point, d est en-dessous de d'.

4. L'exercice physique, pour une personne de 30 ans, est le plus efficace lorsque la fréquence cardiaque atteint 80 % de 187 pulsations/minute.

$$\frac{80}{100} \times 187 = 149,6$$

Pour que l'exercice physique soit le plus efficace pour une personne de 30 ans, la fréquence cardiaque doit être de 149 pulsations/minute (on ne compte pas 6 dixièmes de pulsation!).

Exercice 6: 7 points

Dans un laboratoire A, pour tester le vaccin contre la grippe de la saison hivernale prochaine, on a injecté la même souche de virus à 5 groupes comportant 29 souris chacun.

3 de ces groupes avaient été préalablement vaccinés contre ce virus.

Quelques jours plus tard, on remarque que:

- dans les 3 groupes de souris vaccinées, aucune souris n'est malade;
- dans chacun des groupes de souris non vaccinées, 23 souris ont développé la maladie.
- 1. **a.** Il y a 5 groupes de 29 souris. $5 \times 29 = 145$.

Il y a 2 groupes de souris non vaccinées contenant chacun 23 souris ayant développé la maladie. $2 \times 23 = 46$.

La proportion de souris malades lors de ce test est $\frac{46}{145}$ car il y a 46 souris ayant développé la maladie sur 145 souris.

b. Les décompositions en facteurs premiers de 46 et 145 sont : $46 = 2 \times 23$ et $145 = 5 \times 29$. Ces deux décompositions permettent de dire que le seul diviseur commun à 46 et 145 est 1, on ne peut donc pas simplifier cette fraction.

Dans un laboratoire B on informe que $\frac{140}{870}$ des souris ont été malades.

La décomposition en facteurs premiers de 140 est : $140 = 2 \times 2 \times 5 \times 7$.

:
$$140 = 2 \times 2 \times 5 \times 7$$
.

La décomposition en facteurs premiers de 870 est : $870 = 2 \times 3 \times 5 \times 29$.

b.
$$\frac{140}{870} = \frac{\cancel{2} \times 2 \times \cancel{5} \times 7}{\cancel{2} \times 3 \times \cancel{5} \times 29} = \frac{14}{87}$$
.

La forme irréductible de la proportion de souris malades dans le laboratoire B est $\frac{14}{87}$

Exercice 7: 9 points

1. Le triangle ABC est rectangle en A, donc

$$BC^2 = BA^2 + AC^2$$

$$BC^2 = 300^2 + 400^2$$

$$BC^2 = 90\,000 + 160\,000$$

$$BC^2 = 250000$$

$$BC = 500 \text{ m}.$$

2. Les triangles ABC et CDE ont deux angles de même mesure : l'angle droit et l'angle au sommet C, ils sont donc semblables.

Le triangle *CDE* est un agrandissement du triangle *ABC*.

Si k est le coefficient d'agrandissement, alors on a :

$$1000 = k \times 400$$

$$ED = k \times 300$$

$$CD = k \times 500$$

Avec la première égalité, on obtient $k = \frac{1000}{400}$, soit k = 2, 5.

Avec la deuxième égalité, on obtient $ED = 2.5 \times 300$, soit ED = 750 m. 3. Avec la troisième égalité, on obtient $CD = 2.5 \times 500$, soit CD = 1250 m.

$$300 + 500 + 1250 + 750 = 2800.$$

La longueur réelle du parcours ABCDE est égale à 28 000 m.

Annexe 1: exercice 4

Wallis et Futuna 6 2 décembre 2017

Annexe 2: exercice 5

Wallis et Futuna 7 2 décembre 2017