PACE-IIT & MEDICAL

MUMBAI / AKOLA / DELHI / KOLKATA / GHAZIABAD / NASHIK / GOA / BOKARO / PUNE

IIT	- JEE: 2022-24 TWT DATE: 03/06/22	
TIN	ME: 2hrs and 30mini TOPIC : Vector& Mole Concept , Quadratic Equation MARKS: 180	
To	tal 45 Single Choice Question (+4-1)	
1	What is the maximum number of components into which a vector can be split? (1) 2 (2) 3 (3) 4 (4) Infinite	
2	What is the maximum number of rectangular components into which a vector can be split in	Con.
3	space? (1) 2 (2) 3 (3) 4 (4) Infinite Two vectors, both equal in magnitude, have their resultant equal in magnitude of the either vector. The angle between the vectors is:- (1) 90° (2) 120° (3) 180° (4) zero	
4	Maximum and minimum values of the resultant of two forces acting at a point are 7 N and 3 N respectively. The smaller force will be equal to (a) 5 N (b) 4 N (c) 2 N (d) 1 N If a vector $(2\hat{i} + 3\hat{j} + 8\hat{k})$ is perpendicular to the vector $(4\hat{i} - 4\hat{i} + \alpha\hat{k})$, then the value of α is:	
	(1) -1 (2) 1/2 (3) -1/2 (4) 1	1 -0.89
	(1) $\frac{1}{2}$, $\frac{1}{2}$, 1 (2) $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$	

(3) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

8 The vector that is added to
$$(\hat{i} - 5\hat{j} + 2\hat{k})$$
 and $(3\hat{i} + 6\hat{j} - 7\hat{k})$ to give a unit vector along the x-axis is:-
$$(1) \ 3\hat{i} + \hat{j} + 5\hat{k} \qquad (2) \ \hat{i} + 3\hat{j} + 5\hat{k}$$

(a) 80

45×33

9 A force $(3\hat{i} + 4\hat{j})$ newton acts on a body and displaces it by $(3\hat{i} + 4\hat{j})$ metre. The work done by the

F= V32+42 = 5N

5 = \ 32+42 = 5 M

- (a) 5 J (b) 25 J (c) 10 J (d) 30 JThe (x, y, z) co-ordinates of two points A and B are given respectively as (0, 3, -1) and (-2, 6, 4).

 The displacement vector from A to B is given by

 (a) $-2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ (b) $-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ (c) $-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ (d) $2\hat{\mathbf{i}} 3\hat{\mathbf{j}} 5\hat{\mathbf{k}}$
- What is the dot product of two vectors of magnitudes 3 and 5, if angle between them is 60°?

 (a) 5.2

 (b) 7.5

 (c) 8.4

 (d) 8.6
- The resultant of **A** and **B** makes an angle α with **A** and β with **B**, then

 (a) α is always less than β (b) $\alpha < \beta$ if A < B(c) $\alpha < \beta$ if A > B(d) $\alpha < \beta$ if A = BThe component of vector $\mathbf{A} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ along the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ is
- (a) $\frac{6}{\sqrt{2}}$ (b) $10\sqrt{2}$ (c) $5\sqrt{2}$ (d) 5

 The angles which the vector $\mathbf{A} = 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ makes with the co-ordinate axes are (a) $\cos^{-1}\frac{3}{7} \cdot \cos^{-1}\frac{6}{7}$ and $\cos^{-1}\frac{2}{7}$ (b) $\cos^{-1}\frac{4}{7} \cdot \cos^{-1}\frac{5}{7}$ and $\cos^{-1}\frac{3}{7}$
- (c) $\cos^{-1}\frac{3}{7} \cdot \cos^{-1}\frac{4}{7}$ and $\cos^{-1}\frac{1}{7}$ (d) None of these

 16 The mass of 3.2 x 10⁵ atoms of an element is 8.0 x 10⁻¹⁸ g. The atomic mass of the element is about (NA = 6·x 10²³)
- about (NA = $6 \cdot x \cdot 10^{23}$)
 (a) 2.5×10^{-22} (b) 15 (c) 8.0×10^{-18} (d) 30
- A graph is plotted for an element by putting its mass on X-axis and the corresponding number of atoms on Y-axis. What is the atomic mass of the element for which the graph is plotted? $(N_A = 6.0 \times 10^{23})$

A mixture of 2 x 10^{21} molecules of P and 3 x 10^{21} molecules of Q weighs 0.60 g. If the molecular mass of P is 45, then the molecular mass of Q will be $(N_A = 6 \times 10^{23})$

19	The density of a DNA method was found to be $(N_A = 6 \times 10^{23})$ (a) 5.45 x 10 ⁸ ml		I/ml and its mole ble. What is the $3 \times 10^{-9} \text{ml}$	ar mass determined volume occupied by	by cryoscopic one DNA molecule	?
In	(c) 9.09 x 10 ⁻¹⁶ ml		9 x 10 ⁻¹³ ml			
					110	
20	A compound contains The molecular mass of (a) 122 (b) 116	pound 15	$(14A - 0 \times 10^{-5})$	ns and 9.96 x 10 ⁻²⁴ g	g of other elements. 9.96 X	10-24
21	Total number of valence (a) 0.2N _A	ce electrons pro (b) 3.2N _A	esent in 6.4 g pe (c) 3.6N _A	eroxides ion (O ₂ ²⁻) is (d) 2.8N _A	1.6	6 × 10-24
22	A gaseous mixture commoles of gases present (a) 5	ntains 40% H ₂ a in 10 g of such (b) 2.5	and 60% He by mixture? (c) 4.33	volume. What is the	total number of	1024
23	An organic compound following represents the (a) CH ₂	contains 40% one empirical for (b) CH ₂ O	carbon and 6.67 rmula of the cor (c) 2H ₄ O	7% hydrogen by mas npound? (d) CH3O	ss. Which of the	$\frac{1,66}{10^{24}} \times \frac{1}{16^{-23}}$
24	How many grams of so g/ml and strength 5% (a) 5g (b) 6 g	olute should be (w/v)? (c) 4.17		water to get a solut	ion of density 1.2	172
25	An aqueous solution of dissolved will be	f glucose is 109	% (w/v). The vo	olume in which 1 me	ole of glucose is	72 + 12 + 96
		(b) 9L (c) (0.9 L	(d) 1.8 L	180. = 100	180
26	What volume of 0.8 M to get a solution of chlo	oride ion conce	entration equal t	ed with 50 ml of 0.2 o 0.6 M?	V = 180 2 M-CaCl ₂ solution	6
25		(b) 100 ml	(c) 50 ml	(d) 4.89 ml		
27	In 1200 g solution, 12 g/ml, then the molarity (a) 0.2 M	of the solution	nass = 60) is pro i is (c) 0.167 M	esent. If density of t (d) 12 M	he solution is 1.2	$=\frac{9}{m}$
					(0)	m)
28	Mole fraction of solute of the solution is 1.4, th (a) 6.93	in an aqueous nen the molarity b) 0.1	solution of Na(y of the solution (c) 71.4	OH is 0.1. If the spen is (d) 0.14	cific gravity (density)
29	What should be the den the molality as well as i	molarity of the	cous solution of solution becom (c) 1.06 g/ml	urea (molar mass =	?	

30	An aqueous solution has urea and glucose in mass ratio 3: 1. If the mass ratio of water and glucose in the solution is 10:1, then the mole fraction of glucose in the solution is						
	(a) $\frac{1}{110}$ (b) $\frac{9}{110}$ (c) $\frac{3}{110}$ (d) $\frac{100}{110}$						
31	The roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ are	_(
	(A) $\frac{c-a}{b-c}$, 1 (B) $\frac{a-b}{b-c}$, 1 (C) $\frac{b-c}{a-b}$, 1 (D) $\frac{c-a}{a-b}$, 1	, -(
32	The real numbers α , β are such that $\alpha + \beta = 3$, $\alpha - \beta = 4$ then α , β are the roots of the quadrative equation:						
	(A) $4X^2 - 12X - 7 = 0$ (B) $4X^2 - 12X + 7 = 0$ (C) $4X^2 - 12X + 25 = 0$ (D) None of these	se					
33	S1: If roots of X^2 -bX + C = 0 are two consecutive integers, then value of b^2 -4C is equal to 1. S2: If α , β are roots of X^2 -X + 3 = 0 then value of α^4 + β^4 is equal to 7. S3: If α , β , γ are roots of X^3 -7 X^2 + 16X - 12 = 0 then the value of α^2 + β^2 + γ^2 is equal to 1.						
	(C) 111 (D) F 11						
34	If two roots of the equation $X^3 - PX^2 + qX - r = 0$ ($r \ne 0$) are equal in magnitude but opposite in sign, then:						
ta.	in sign, then: (A) $pr = q$ (B) $qr = P$ (C) $Pq = r$ (D) None of these						
35	If are α, β, γ are roots of equation $X^3 - X - 1 = 0$ then $\frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} + \frac{1 + \gamma}{1 - \gamma}$ has value						
	equal to: $-\alpha = -\gamma$						
	(A) 0 (B) -1 (C) -7 (D) 1						
36	Let α, β, γ are roots of $(X - a)(X - b)(X - c) = d$. $d \neq 0$ then roots of the equation $(x - \alpha)(x - \beta)(x - \gamma) + d = 0$ are						
	(A) $a + 1, b + 1, c + 1$ (B) a, b, c (C) $a - 1, b - 1, c - 1$ (D) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$						
37	If are roots of the equation $X^2 - \sqrt{3}x + \lambda = 0$, $\lambda \in R$ is $\sqrt{3} + 2$ then other roots	,					
	(A) $\sqrt{3}-2$ (B) -2 (C) $2-\sqrt{3}$ (D) 2	is					
38	If the equations $k(6X^2+3)+rx+2x^2-1=0$ and $6k(2x^2+1)+px+4x^2-2=0$ have both rocommon, then value of 2r-p is	ots					
	(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) None of these						
	$2\pi^2 + \pi K + K(6\pi^2 + 3) - 1 = 0$						
2	2m2+rx+6Kx2+3K-1=0						
	x2+6 Kx2+7x+31<-1 =0						
(2	+6K)x2+ xx+ 3K-1 =0						

39 If $3x^2 - 17x + 10 = 0$ and $x^2 - 5x + \lambda = 0$ has a common roots, then sum of all possible real value of λ is (B) $\frac{-29}{2}$ (A) 0 (044)= 8 0+32 +K =0 If α , $\alpha + 4$ are two roots of $x^2 - 8x + k = 0$, then possible value of k is (D) 10 ×2+16+8×-8×+32=0 (C) 12 X ZHIBAK = O (B)0(A) 4 If α , β are two roots of $x^2 + 2x - 4 = 0$ and $\frac{1}{\alpha}$, $\frac{1}{\alpha}$ are roots of $x^2 + qx + r = 0$ the value 41 x 30+16-0 X2-16=-K of $\frac{-3}{}$ is X2 42 =-16

of
$$\frac{-3}{q+r}$$
 is

(A) 4

(B) 0

(C) 12

(D) 10

(X = -1)

(X + 1) (x - 1) = -12

16+16

(C) complex conjugate (D) Rational and equal

1
$$f \alpha, \beta$$
 roots of quadratic equation $x^2 + px + q = 0$ and γ , δ are roots of $x^2 + px - r = 0$, then $(\alpha - \gamma) (\alpha - \delta)$ is equal to
(A) $q + r$ (B) $q - r$ (C)- $(q + r)$ (D) $-(p + q + r)$

If a,b,c are integers, and $b^2 = 4$ (ac + 5d²), d \in N then roots of the quadratic equation

(B) rational and different

 $ax^2 + bx + c = 0$ are

(A) irrational

If different between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then set of possible value of a is (B) (-3,∞)(C) $(3,\infty)$ (D) $(-\infty,-3)$ (A)(-3,3)If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$ a, b, $c \in \mathbb{R}$ have a common root,

then a:b:c is (B) 3:2:1 (C) 1:3:2 (A) 1:2:3 (D) 3:2:1 **Best of Luck**