

Robust Voice Activity Detection using DNN Approaches

Name: Parashar Kshitij

Project ID: SCSE23-0748

Supervisor: A/P Chng Eng Siong

Examiner: Dr. Josephine Chong

Date: 10th May 2024

Presentation Outline

INTRODUCTION

- **Background**
- **Objective and** Scope

Contribution

Future Work

Background

The number of digital voice assistants is projected to grow to **8.4 billion** in 2024

F. Laricchia, Number of voice assistants in use worldwide 2019-2024, Mar. 2022. [Online]. Available: https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/.

Number of digital voice assistants in use worldwide from 2019 to 2024 (in billions)*

Sources

Voicebot.ai; Business Wire; Juniper Research © Statista 2024

Additional Information:

2019 and 2020

Background

Purpose

 Distinguish between speech and non-speech segments to improve the accuracy of diarization pipeline

Applications

- Meeting transcription
- Speaker identification
- Voice-controlled devices

Approaches

- Energy
- o DNN models
- Hybrid methods

Motivation

Background Noise

 Noise interference challenges accurate speech detection.

Domain Adaptation

 Adapting to diverse environments and recording conditions is crucial.

Real-time processing

 Handling longer audio streams demands efficient methods.

Evaluation metrics and benchmarks¹

 Standard evaluation metrics and benchmarks are lacking in VAD, hindering method comparison and assessment.

^[1] S. Yadav, P. A. D. Legaspi, M. S. O. Alink, A. B. J. Kokkeler, and B. Nauta, "Hardware implementations for voice activity detection: Trends, challenges and outlook," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 3, pp. 1083–1096, 2023

Objectives & Scope

Models:

- Pyannote
- Silero
- MarbleNet

Datasets:

- **DIHARD III**
- AliMeeting

Evaluate models based on:

- Accuracy
- Missing Detection
- False Alarm
- ROC-AUC score
- Real Time Factor

Develop a robust VAD model

Scope: Single-channel far-field voice activity detection tasks

- Pyannote, Silero, MarbleNet
- **Evaluation Metrics**
- **ONNX**

LITERATURE **REVIEW**

- **Experiment 1**
- **Experiment 2**
- **Experiment 3**
- **Experiment 4**
- **Experiment 5**

- Summary
- Contribution
- **Future Work**

Audio Processing

Frame

A frame is a single sample of an audio file.

Frame Step

Determines the overlap or spacing between any two consecutive frames

Audio frames with a smaller frame step

A larger segment of audio data that encompasses multiple consecutive frames

Stride & Overlap

Evolution of VAD Architectures

Late 1990s – Early 2010s

- Hidden Markov Models
- Gaussian Mixture Models
- Exploration of different features (MFCC, Mel)

2011 - 2017

- Multi Layer Perceptron
- Recurrent Neural Network
- Convolutional Neural Network

2017 onwards

- Long Short **Term Memory**
- Bidirectional Long Short **Term Memory**

Pyannote

- **1. Feature Extraction:** Employs SincNet to identify the most important features. Implements a bank of band-pass filters where low and high cutoff frequencies are learned
- **2. Architecture:** LSTM (type of RNN) layers for modeling temporal dependencies, and a feedforward layer for predicting frame-level speech probabilities.

Table 1: Voice activity detection // $FA = false \ alarm \ rate (\%) / Miss. = missed \ detection \ rate (\%)$

VAD		AMI [8, 15]		DIHARD 3 [9]			VoxConverse [11]		
VAD	FA	Miss.	FA+Miss.	FA	Miss.	FA+Miss.	FA	Miss.	FA+Miss.
silero_vad	9.4	1.7	11.0	17.0	4.0	21.0	3.0	1.1	4.2
dihard3 [9]	NA	NA	NA	4.0	4.2	8.2	NA	NA	NA
Landini et al. [12]	NA	NA	NA	NA	NA	NA	1.8	1.1	3.0
pyannote 1.1 [16]	6.5	1.7	8.2	4.1	3.8	7.9	4.5	0.3	4.8
Ours – pyannote 2.0	3.6	3.2	6.8	3.9	3.3	7.3	1.8	0.8	2.5

H. Bredin and A. Laurent, End-to-end speaker segmentation for overlap-aware resegmentation, 2021.

Silero

- **1. Feature Extraction:** Employs Short-Time Fourier Transform (STFT) as a feature extraction technique.
- **2. Adaptable Sampling Rates**: Works seamlessly with both 8kHz and 16kHz sampling rates, enhancing versatility.
- Real-time Detection: Enables real-time voice activity detection by processing audio in manageable parts.

4. Architecture:

- 1. Encoder consisting of convolutional layers
- 2. Decoder with an LSTM layer
- 3. Convolutional and sigmoid layers for output.

S. Team, Silero VAD: Pre-trained enterprise-grade voice activity detector (VAD), number detector and language classifier, https://github.com/snakers4/silero-vad, 2021

MarbleNet

- **1. Feature Extraction:** uses Mel-Frequency Cepstral Coefficients (MFCC).
- 2. Architecture: Multiple CNN blocks.

Cross Entropy Dropout 1x1 Conv Out Ch = # classes ReLU Conv-BN-ReLU Kernel Width = 1 Out Ch = 128 Epilogue Conv-BN-ReLU Dilation:2 Kernel Width = 29 Batch Norm Out Ch = 128 1D Depthwise+ Batch Norm Pointwise Conv(K) Conv-BN-ReLU Block B Out Ch (C) Repeat R Times 1x1 Pointwise Repeat B Convolution Times Dropout Conv-BN-ReLU Block 1 Out Ch (C) ReLU $\times R$ Conv-BN-ReLU Batch Norm Prologue Kernel Width = 11 Out Ch = 128 1D Depthwise+ Pointwise Conv(K)

F. Jia, S. Majumdar, and B. Ginsburg, Marblenet: Deep 1d time-channel separable convolutional neural network for voice activity detection, 2021.

Datasets

Parameters	AliMeeting ²		DIHARD	III (Full)³			
	Train	Eval	Train/Dev	Eval			
Duration (in hours)	104.75	4	34.15	33.01			
# Recordings	212	8	254	259			
Overlap ratio (%)	42.27	24.20	10.70	9.35			
Language	Mar	ndarin	English (Not all	English (Not all native speakers)			
Domain	Me	eting	Court, Maptask, M	Audiobooks, Broadcast Interview, Clinical, Court, Maptask, Meeting, Restaurant, Webvideo, etc. (11 in total)			
Audio File Format	.V	VAV	.FL	.FLAC			
Ground Truth Format	.Tex	ctGrid	.RT	.RTTM			

^[2] F. Yu, S. Zhang, Y. Fu, et al., "M2met: The ICASSP 2022 multi-channel multi-party meeting transcription challenge," CoRR, vol. abs/2110.07393, 2021.

^[3] N. Ryant, P. Singh, V. Krishnamohan, et al., The third DIHARD diarization challenge, 2021.

Abbreviations:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Accuracy

$$= \frac{\# \ correct \ predictions}{\# \ total \ predictions}$$
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

Abbreviations:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

$$=\frac{FN}{FN+TP}$$

$$= \frac{\# \ correct \ predictions}{\# \ total \ predictions}$$
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

Abbreviations:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

False Alarm Rate
$$= \frac{FP}{FP + TN}$$

Missed Detection Rate

$$=\frac{FN}{FN+TP}$$

Accuracy

$$= \frac{\# \ correct \ predictions}{\# \ total \ predictions}$$
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

Abbreviations:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

False Alarm Rate
$$= \frac{FP}{FP + TN}$$

Missed Detection Rate

$$=\frac{FN}{FN+TP}$$

ROC - AUC(Receiver Operating Characteristic - Area Under the Curve)

Accuracy

$$= \frac{\text{\# correct predictions}}{\text{\# total predictions}}$$
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

Abbreviations:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

False Alarm Rate
$$= \frac{FP}{FP + TN}$$

Missed Detection Rate

$$=\frac{FN}{FN+TP}$$

ROC — AUC (Receiver Operating Characteristic — Area Under the Curve)

Accuracy

$$= \frac{\text{\# correct predictions}}{\text{\# total predictions}}$$
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

Real Time Factor $= \frac{Time \ taken \ to \ process \ a \ file}{Duration \ of \ the \ file}$

Open Neural Network Exchange

Summary

Contribution

Future Work

METHODOLOGY & **RESULTS**

- **Experiment 1**
- **Experiment 2**
- **Experiment 3**
- **Experiment 4**
- **Experiment 5**

Overall Approach

Survey performance of SOTA models

DIHARD III domain-wise analysis

Understand the effects varying chunk sizes and strides

Retrain best performing model

ONNX for inference

Operating Environment:

- Aspire 2A GPU cluster provided by National Super Computing Centre (NSCC).
- CPU: HPE Cray EX 2x AMD EPYC Millan 7713
- **GPU: NVIDIA A100-40G SXM**

1 Initial Inference

- **Pyannote** was obtained by the replication of training procedure as described by Bredin et al. with chunk size 5s and stride as 4s.
- Silero was obtained from the official Github repository made by the Silero team.
- MarbleNet was obtained through a collaboration with Al Singapore.

1 Initial Inference

≡	Model	Chunk size	Stride	Accuracy	MDR	FAR	ROC-AUC	RTF
	Pyannote	5s	5s	0.97	1.00	2.00	0.941	0.095
IHARD	Silero			0.83	11.1	6.10	0.795	0.022
	MarbleNet			0.77	1.60	21.6	0.536	0.011

po	Model	Chunk size	Stride	Accuracy	MDR	FAR	ROC-AUC	RTF
Aeeting	Pyannote			0.95	3.00	1.7	0.777	0.011
AliMe	Silero	5s	5s	0.74	21.9	4.0	0.624	0.038
4	MarbleNet			0.92	8.7	4.8	0.732	0.047

 Pyannote demonstrates superior performance compared to Silero and MarbleNet under the conditions of a 5-second chunk size and stride on both the DIHARD III and AliMeeting datasets.

Effect of Varying Chunk Sizes and Strides

- Aim to investigate the impact of varying chunk sizes and strides on the performance of Pyannote, Silero, and MarbleNet.
- Some important hyperparameters
 - Range of chunk sizes tested: 0.5s 5s
 - Range of strides tested: 0.1s 5s
 - Prediction threshold: 0.5
 - Dataset: DIHARD III Eval set

(0.5, 0.5) (0.5, 0.2) (0.5, 0.1)

Effect of Varying Chunk Sizes and Strides

ACCURACY

FAR

• X Axis Legend:

(5, 5)

5

• (p, q): p is chunk size, q is stride

(1, 0.2)

(1, 1)

 Conclusion: Pyannote exhibits the best performance with higher average evaluation metrics

DIHARD III domain-wise analysis with Pyannote (5,4)

- From Experiment 1 and 2, Pyannote is the best performing model.
- Aim to understand the performance of Pyannote for different domains of DIHARD III
- Domains of interest: Restaurant, Meeting and Webvideo

DIHARD III domain-wise analysis with Pyannote (5,4)

ACCURACY

MDR

Conclusion

- Larger chunk size ⇒ Higher accuracy & ROC-AUC
- For fixed chunk size, decreasing stride ⇒ decreasing accuracy & ROC-AUC (except restaurant)

DIHARD III domain-wise analysis with Pyannote (5,4)

	Chunk	Stride	Acc	MDR	FAR	ROC-AUC	RTF
	5s	5s	0.960	1.7	2.4	0.888	0.078
ant	1 s	1 s	0.886	7.4	4.0	0.776	0.076
Restaurant	1 s	0.4 s	0.911	1.9	7.0	0.680	0.035
Res	0.5s	0.5s	0.840	10.8	5.3	0.704	0.070
	0.5s	0.3s	0.871				

	Chunk	Stride	Acc	MDR	FAR	ROC-AUC	RTF
	5s	5s	0.966	1.3	2.1	0.929	0.088
Bu	1 s	1 s	0.941	2.3	3.7	0.875	0.074
Meeting	1 s	0.4s	0.931 0.6		6.2	0.809	0.034
Σ	0.5s	0.5s	0.913	3.5	5.2	0.821	0.070
					7.1	0.778	0.048
ь d	ecent n	erform	ance fo	ır	8.4	0.747	0.032

For small chunk size and stride, decent performance for chunk size 1s and stride 0.4s is observed

	Chunk	Stride	Acc						
	5s	5s	0.947	1./	ა.0	0.517	บ.บอบ		
0	1 s	1 s	0.871	3.8	9.1	0.812	0.087		
	1 s	0.4 s	0.848	9.1	14.1	0.747	0.030		
vvebv	0.5s	0.5s	0.833	14.1	12.0	0.759	0.070		
	0.5s	0.3s	0.827	12.0	15.0	0.721	0.048		
	0.5s	0.2s	0.816	15.0	17.2	0.693	0.031		

						0.070	0.004
	25	25	0.303	0.4	1.1	0.973	0.091
ooks	1 s	1 s	0.962	0.8	3.0	0.929	0.075
Audiobooks	1 s	0.4s	0.946	0.1	5.3	0.883	0.029
And	0.5s	0.5s	0.919	1.4	6.7	0.843	0.070
	0.5s	0.3s	0.905	0.5	9.0	0.797	0.049
	0.5s	0.2s	0.889	0.2	10.9	0.756	0.032

0.5s

ROC-AUC

RTF

0.887

0.2s

Retraining Pyannote

- Aim to train Pyannote on different values of chunk sizes and strides
- Model nomenclature format: Py (x, y)
 - Py: Pyannote
 - x: Training chunk size (s)
 - y: Training stride (s)

Layer	Hyperparameter				
SincNet	stride				
	hidden_size				
	num_layers				
LSTM	bidirectional				
	monolithic				
	dropout				
Lincor	hidden_size				
Linear	num_layers				

Other
Hyperparameters
Max. no. of epochs
Batch size
Chunk size (s)
stride (s)
Frame size (s)
Frame shift (s)
Optimiser
Learning rate
Max. Gradient Norm
Number of channels
Sample rate (Hz)

Domain	Model	Acc	MDR	FAR	ROC-AUC	RTF
Restaurant	Py (5, 4)	0.911	1.9	7.0	0.680	0.035
	Py (1, 0.4)	0.891	3.0	7.9	0.642	0.034
Webvideo	Py (5, 4)	0.848	1.1	14.1	0.747	0.030
	Py (1, 0.4)	0.831	3.9	13.0	0.761	0.035
Meeting	Py (5, 4)	0.931	0.6	6.2	0.809	0.034
	Py (1, 0.4)	0.848	0.9	14.2	0.596	0.034
Audiobooks	Py (5, 4)	0.946	0.1	5.3	0.883	0.029
	Py (1, 0.4)	0.976	0.7	17	0.956	0.035
DIHARD III	Py (5, 4)	0.920	0.6	7.4	0.821	0.029
Eval set	Py (1, 0.4)	0.920	1.8	6.2	0.846	0.034

- **1. Restaurant Domain:** Py (5, 4) achieves higher accuracy (0.911) than Py (1, 0.4) (0.891), showing superior event detection performance.
- **2. Consistency Across Domains:** Py (5, 4) consistently outperforms Py (1, 0.4) in Webvideo and Meeting domains, maintaining lower MDR and FAR values.
- **3. Chunk Size and Stride Impact:** Larger chunk size and stride (Py (5, 4)) generally lead to better performance across domains.
- **4. Audiobooks Exception:** Py (1, 0.4) achieves higher accuracy (0.976) than Py (5, 4) (0.946), indicating differences in generalization capabilities.

Training Pyannote

Py (3, 2)									
Chunk	Stride	Domain	Acc	MDR	FAR	ROC-AUC	RTF		
		Restaurant	0.723	24.8	2.9	0.731	0.035		
		Webvideo	0.775	17.3	5.2	0.808	0.036		
3s	3s	Meeting	0.834	15.9	0.8	0.874	0.034		
		DIHARD III Eval set	0.897	8.7	1.6	0.908	0.036		

Py (1.5, 1)							
Chunk	Stride	Domain	Acc	MDR	FAR	ROC-AUC	RTF
1.5s	1.5s	Restaurant	0.692	29.1	1.7	0.751	0.035
		Webvideo	0.767	19.1	4.2	0.807	0.036
		Meeting	0.831	16.3	0.6	0.878	0.034
		DIHARD III Eval set	0.882	10.5	1.2	0.903	0.036

Py (0.75, 0.5)							
Chunk	Stride	Domain	Acc	MDR	FAR	ROC-AUC	RTF
0.75s	0.75s	Restaurant	0.645	34.3	1.1	0.742	0.035
		Webvideo	0.776	17.8	4.6	0.810	0.036
		Meeting	0.834	15.8	0.7	0.880	0.034
		DIHARD III Eval set	0.887	9.8	1.5	0.902	0.036

 While larger configurations like Py (5, 4) yield superior performance in most challenging domains, smaller configurations like Py (1.5, 1) and Py (0.75, 0.5) may excel in less noisier domains.

Comparing Py (5, 4) with Model K = Py (0.1875, 0.125)						
Domain	Model	Acc	MDR	FAR	ROC-AUC	RTF
Restaurant	Py (5, 4)	0.727	21.9	5.4	0.640	0.035
	Model K	0.622	36.1	1.8	0.714	0.035
Webvideo	Py (5, 4)	0.772	9.8	13.0	0.702	0.030
	Model K	0.755	18.7	5.8	0.784	0.035
Meeting	Py (5, 4)	0.809	13.7	5.4	0.755	0.034
	Model K	0.801	18.8	1.2	0.848	0.034
DIHARD III	Py (5, 4)	0.842	7.3	8.5	0.754	0.029
Eval set	Model K	0.869	11.2	1.9	0.885	0.034

Inference chunk size and stride = 0.1875s

- 1. Models trained on small chunk sizes and strides may not perform optimally during inference with same configuration.
- 2. Py (5,4) demonstrates robustness and generalization across various chunk sizes and strides.
- 3. Larger chunk sizes, like in Py (5,4), provide more context to the BLSTM-based model, resulting in accurate predictions.

ONNX for Inference

- Aim to study the difference in inference times using Python and C++ based models
- Model Configuration:
 - Model: Py (5,4)
 - Inference chunk size: 5s
 - Inference stride: 5s
 - Prediction threshold: 0.5

ONNX for Inference

S.No.	Length of Audio	Python	C++
1	616.803s	33.08s	2s
2	49s	1.81s	<1s
3	599.952s	26.07s	1.8s
4	368.43s	15.29s	1.2s
5	33hrs 28s	58min 20s	12min 3s

- Significant and consistent reduction in inference time when using the C++ based model.
- This scalability is crucial for real-time VAD systems that may need to process long audio recordings efficiently.

- **Experiment 1**
- **Experiment 2**
- **Experiment 3**
- **Experiment 4**
- **Experiment 5**

Contribution

Future Work

CONCLUSION

Contribution

Future Work

Thank You!

Questions?

