ECE 6258: Digital Image Processing (DIP)

Instructor

Dr. Imtiaz Ahmad Taj (imtiaz@case.edu.pk)

Teaching Assistants

Talal Ibrahim and Mubeen Ghafoor

Lecture timings

Tuesday (7:30-9:00), Friday (6:00-7:30).

Text books and notes 1.

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing", 2nd edition, Pearson Education, Inc., 2002.
- 2. "Digital Image Processing using MATLAB" R. C. Gonzalez, R. E. Woods and S.L. Eddins Pearson Education, Inc., 2004.
- 3. Class Slides

Additional books

J. C. Russ, "The Image Processing Handbook", fourth edition, CRC Press, 2002.

Pre-requisites for the course

- 1. Knowledge of probability and random variables, Vectors and Matrices.
- 2. Working knowledge of Matlab
- 3. Signals and Systems, and DSP courses especially the concepts of Convolution, FFT, filtering, etc.

Class yahoo group:

case_dip_f2006

Grading Policy: Breakup

Sessional 1:	~15%
Sessional 2:	~15%
Surprise Quizzes:	~5%
Assignments (written + programming)	~20%
Project	~15%
• Final:	~30%

Grading breakup can change without any notice during the semester in benefit of all the students

Grading Policy: evaluation

- Grades are given according to the class standings of the student (relative marking)
- Average marks of the class will get around B grade
- Around top 10% of the class student will get A
- The grading will follow the approximate bell shaped curve

Assignments

- Please check the class yahoo group case_dip_F2006 every day, for the notification of assignments, projects and other updated information.
- Assignments will have $\sim 20\%$ weight in the total marks.
- Assignments may be written assignments of programming assignments.
- There will be a total of around 8 assignments.
- The deadline for the submission of assignment will be given with the assignment.
- Assignments submitted after the deadline will not be accepted and will carry ZERO MARKS.
- Cheated assignments will get ZERO MARKS.

Labs

- There will be a total of 3 to 4 labs in this course
- The purpose of the labs is to guide the students to practically implement the concepts covered in the class
- The lab will cover only the basic image processing techniques like image enhancement, restoration and filtering
- The programming part of first four assignments will be covered in the lab
- Labs will not be mandatory if you feel that you can do the assignments yourself then you can quit the labs

Project

- Projects will have $\sim 15\%$ weight in the total marks.
- Projects may be conducted individually or in groups of two students.
- Different suggested topics for projects will be uploaded on the class yahoo group within the first two weeks of the course.
- Reading material and other sources for every project to help the students will also be given.
- If you want to do your own project take permission first.
- Project topics should be selected and approved within the first five weeks of the course.
- Project presentation date will be announced and projects will not be accepted after the presentation date.
- Projects consisting of Downloaded codes or presentations will not be accepted will carry ZERO MARKS.

Why do we process images?

- Facilitate picture storage and transmission
 - Efficiently store an image in a digital camera
 - Send an image through mobile phone
- Enhance and restore images
 - Remove scratches from an old photo
 - Improve visibility of tumor in a radiograph
- Extract information from images
 - Measure water pollution from aerial images
 - Measure the 3D distances and heights of objects from stereo images
- Prepare for display or printing
 - Adjust image size
 - Halftoning
- Biometrics based identification

Photo restoration

Damaged Image

Restored Image

Photo colorization

Original B/W Image colorized Image

Original Image Colorized Image

Color photo enhancement

Original Images

Enhanced Images

Image Enhancement

Initial image

Final image

Performed steps: Gaussian blur, contrast enhancement, median filter and sharpening. Processing made by Photoshop.

Example taken from microscopy.berkeley.edu/courses/dib

Restoration of image from Hubble Space Telescope

Faulty image of Saturn

Recovered image

Extraction of settlement area from an aerial image

Earthquake analysis from space

Image shows the ground displacement of a typical area due to earthquake

Center for Advance Studies in Engineering

- Medical Imaging: Computer Tomography (CT)
 - Generating 3-D images from 2-D slices.
 - CAD, CAM applications
 - Industrial inspections

CT Scanner Picker PQ 6000 Model

- •GE Medical High Speed Advantage scanner
- Picker PQ 6000

Medical Imaging: Computer Aided Tomography (CAT)

[545x700 24-bit color JPEG, 69069 bytes] Section through Visible Human Male - head, including cerebellum, cerebral cortex, brainstem, nasal passages (from Head subset)

Medical Imaging: Ultrasound imaging

Profile of a fetus at four months. This face is approximately 1 inches (4cm) long. (http://www.parenthood.com)

Medical imaging: Averaging MRI slices for knee image

Image compression

Original

Image compression

Original

JPEG2000 27:1

Face detection

Face Tracking

Face Morphing

Fingerprint recognition

Personal Identification using Iris Recognition

National Geographics: "Afghan Girl"

Removing geometric distortions of camera

9/6/2006

Center for Advance Studies in Engineering

Digital Image Processing ECE 6258

Applications of DIP

Categorization according to image sources

- Electromagnetic (EM) band Imaging
 - Gamma ray images
 - x-ray band images
 - ultra-violet band images
 - visual light and infra-red images
 - Imaging based on micro-waves and radio waves
- Non-EM band Imaging
 - Acoustic and ultrasonic images
 - Electron Microscopy
 - Computer-generated synthetic images

EM Spectrum

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Applications of DIP

EM band imaging

- Gamma-ray imaging
 - Nuclear medicine, astronomical observations.
- X-ray Imaging
 - Medical diagnostics (CAT scans, x-ray scans), industry, astronomy.
- Ultra-violet imaging
 - Fluorescence microscopy, astronomy,
- Visible & Infrared-band imaging (most widely used)
 - Light microscopy, astronomy, remote sensing, industry, law enforcement, military recognizance, etc.
- Micro-wave and radio band imagery
 - Radar, Medicine (MRI), astronomy

Applications of DIP

Non-EM band imaging

- Acoustic imaging (hundreds of Hz)
 - Geological exploration (oil exploration)
- Ultrasound imaging (millions of Hz)
 - Industry and medicine especially in obstetrics, determine the health of the fetal development
- Electron microscopic imaging
 - Used to achieve magnification of 10,000x or more
 - (Light microscopy is limited to around 1000x)
- Synthetic imaging
 - 3D modeling or visualization systems for flight simulators, machine design, special effects and animations, etc.

Classification of DIP and Computer Vision Processes

- Low-level process: (DIP)
 - Primitive operations where inputs and outputs are images Major functions: image pre-processing like noise reduction, contrast enhancement, image sharpening, etc.
- Mid-level process (DIP and Computer Vision and Pattern Recognition)
 - Inputs are images, outputs are attributes (e.g., edges) major functions: segmentation, description, classification / recognition of objects
- High-level process (Computer Vision)
 - make sense of an ensemble of recognized objects; perform the cognitive functions normally associated with vision

Image Processing Steps

Image Processing Computer vision and PR

- Image acquisition by sensor
- Image sampling and quantization

Image enhancement and restoration

 Filtering in spatial domain or frequency domain

Feature Extraction

- Edge detection
- Interest points

Colored image Processing

- Pseudo coloring
- Color segmentation

Multi-resolution analysis

- Pyramids
- Wavelets
- Other transformations

Image and video compression

- Image compression standards
- Video compression standards

Image Geometrical Rectification

Camera geometry

Feature Extraction

- Edge and Interest points detection
- Texture and shading
- Shape from texture and shading

Calculation on Multiple Views

- Multi-view geometry and Stereo imaging
- Structure from motion

Segmentation

 Impose some order on group of pixels to separate them from each other

Template matching

Segmentation

Classification and Recognition

- Classification and interpretation of objects based on selected features
- Recognize objects using probabilistic techniques

Processing

Digital Image

Scope of DIP Course

- Digital image fundamentals and image acquisition (briefly)
- Image enhancement in spatial domain
 - pixel operations
 - histogram processing
 - Filtering
- Image enhancement in frequency domain
 - Transformation and reverse transformation
 - Frequency domain filters
 - Homomorphic filtering
- Image sampling
- Image restoration
 - Noise reduction techniques
 - Geometric transformations
- Color image processing
 - Color models

9/6/2006

- Pseudocolor image processing
- Color transformations and color segmentation

Scope of DIP Course (continued)

Wavelets and multi-resolution processing

- Multi-resolution expansion
- Wavelet transforms, etc.

Image compression

- Image compression models
- Error free compression
- Lossy compression, etc

Image segmentation

- Edge, point and boundary detection
- Thresholding
- Region based segmentation, etc

Morphological image processing

- Dilation and erosion
- Opening closing
- Hit or miss transformation
- Basic morphological algorithms