

Capstone Project - 2 Seoul Bike Sharing Demand Prediction ML Supervised Regression

Team Members: Milan Naik K S Apoorva

Contents

- Problem Statement
- Data Summary
- Data Analysis
- Analysis Details
- Challenges
- Conclusions

Problem Statements

- Prediction of bike count required at each hour.
- Reduce waiting time of public.

Data Summary

- Date : Year-Month-Day
- Rented Bike Count Count of bikes rented at each hour
- Hour Hour of the day
- Temperature Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10m
- Dew point temperature -Celsius
- Solar radiation -MJ/m2
- Rainfall -mm
- Snowfall -cm
- Seasons -Winter, Spring, Summer, Autumn
- Holiday -Holiday/No Holiday
- Functional Day NoFunc(Non Functional Hrs), Fun(Functional Hrs)

Basic Data Exploration

- The dataset has 8760 rows and 14 features(columns).
- Three categorical features 'Seasons', 'Holiday', & 'Functioning Day'.
- Outliers present only in dependent variable.
- No Duplicated values.
- No null values.

Outliers in the features

Mean Distribution of Rent Count

Rented Bike Spread over time

Rented Bike Spread over time and seasons

Spread of Categorical Variables

Correlation Matrix

Sklearn Linear Regression

Train Set Metrics

MAE : 279.63676525886547 RMSE: 417.6177272373604 R2: 0.5799939856107544

Adjusted R2: 0.5790929429597478

Test Set Metrics

MAF : 279.676351914832 RMSE: 418.261084845836 R2: 0.5820002553685468

Adjusted R2: 0.5783885064229985

StatsModel Linear Regression

OLS Regression Results

Dep. Variable: Rented Bike Count

R-squared: 0.739 Adj. R-squared: 0.739

Model: OLS Method: Least Squares

F-statistic: 1768 Prob (F-statistic): 0.00

Date: Mon. 29 Mar 2021 15:51:27 Time:

Log-Likelihood: -10113.

No. Observations: 8760

AIC: 2.026e+04 BIC: 2 036e+04

Of Residuals: 8745 Df Model:

14

Covariance Type: nonrobust

273 460 Durbin-Watson: 0.528 Omnibus:

Prob(Omnibus): 0.000 Jarque-Bera (JB): 708.489

-0.0861.42e-154 Skew: Prob(JB):

4.383 Cond. No. 3.39 Kurtosis:

Lasso Regression

Train Set Metrics

MSE : 174434.29073013217 RMSE : 417.6533140418404 MAE : 279.6514885569535

Adjusted R2: 0.5790212057016577

Test Set Metrics

MSE: 174974.15623376577 RMSE: 418.29912291775815 MAE: 279.69652927104465

Adjusted R2: 0.5783118173972227

Ridge Regression

Train Set Metrics

MSE : 174405.84663111053 RMSE : 417.619260368952 R2 : 0.5799909018064554

Adjusted R2: 0.5790898525397359

Test Set Metrics

MSE: 174943.79254949375 RMSE: 418.2628271188987 R2: 0.581996772992402

Adjusted R2: 0.5783849939571981

Decision Tree

Train Set Metrics

MSE: 144263.35839192313 RMSE: 379.82016585737404 MAE: 260.8924363909874

R2 score : 0.6525808954746626 Adjusted R2 : 0.6518355741691877

Test Set Metrics

MSE: 150321.32417112263 RMSE: 387.71294042257944 MAE: 264.35919070732297

R2 score : 0.6408286474422477

Adjusted R2: 0.6377252083360458

Parameters:

i) Criterion: mse

ii) max_leaf node = 9

iii) min_sample_leaf = 1

iv) min sample split = 2

Random Forest

Train Set Metrics

MAE : 48.54989556674694 MSE : 7032.9350228591875

r square: 0.9830630867389857

Adjusted R2: 0.9830267518278136

Parameters:

i) Criterion: mse

ii) n_estimators = 100

iii) min_sample_leaf = 1

iv) min sample split = 2

Test Set Metrics

MAE : 132.01812453901937 MSE : 49532.59497689235

r square: 0.8816489328334202

Adjusted R2: 0.8806263141655062

Random Forest Feature Importance

Xtreme Gradient Boosting

Train Set Metrics

MAE : 72.02930503771624 MSE : 14353.513718216669

r_square : 0.9654334618411727 Adjusted R2 : 0.965359305938372

Test Set Metrics

MAE : 124.6792625943458 MSE : 44743.66369435439

r_square : 0.8930914007303715

Adjusted R2 : 0.8921676513127192

Parameters:

i) learning rate = 0.1

ii) n_estimators = 100

iii) max_depth = 9

iv) min_sample_split = 2

XGboost Feature Importance

Xtreme Gradient Boosting- Grid SearchCv

Train Set Metrics

MAE : 99.2686809475296 MSE : 26764.08051098451

r_square : 0.935545983483143

Adjusted R2: 0.9354077097062905

Test Set Metrics

MAE : 95.49745702168042 MSE : 25252.335405933347

r_square : 0.9396631481727363

Adjusted R2: 0.9391418044069477

Parameters:

- i) learning rate = 0.1
- ii) n_estimators = 100
- iii) max_depth = 7
- iv) min_child_weight = 10

All Model Summary- Metrics

L NO	MODEL_NAME	Train MSE	Train RMSE	Train R^2	Train Adjusted R^2
1	Linear Regression	174434.29073013217	417.6177272373604	0.5799939856107544	0.5790929429597478
2	Lasso Regression	174434.29073013217	417.6533140418404	0.5799224019217912	0.5790212057016577
3	Ridge Regression	174405.84663111053	417.619260368952	0.5799909018064554	0.5790898525397359
4	DecisionTree Regressor	144263.35839192313	379.82016585737404	0.6525808954746626	0.6518355741691877
5	XGBRegressor	26764.08051098451	163.59731205305457	0.935545983483143	0.9354077097062905

L NO	MODEL_NAME	Test MSE	Test RMSE	Test R^2	Test Adjusted R^2
1	Linear Regression	174942.33509641566	418.261084845836	0.5820002553685468	0.5783885064229989
2	Lasso Regression	174974.15623376577	418.29912291775815	0.5819242233018724	0.5783118173972227
3	Ridge Regression	174943.79254949375	418.2628271188987	0.581996772992402	0.5783849939571981
4	DecisionTree Regressor	150321.32417112263	387.71294042257944	0.6408286474422477	0.6377252083360458
5	XGBRegressor	25252.335405933347	158.9098342014532	0.9396631481727363	0.9391418044069477

- Handling the size of Large dataset.
- Feature Engineering.
- Removing the overfitting.
- Optimising the model.

Conclusion

- Comparing to all other algorithms XGboost has less Mean Squared error and Mean Absolute error, with model score of 95% and R-Squared value 93%.
- Total amount of Bike rentals increases with increase in temperature.
- Features like Functioning Day and Temperature has the higher importance for the model.
- There exists higher correlation between temperature and rental bike count. This could be a stepping stone for new bike rental stations.

Thank You