Universidad Nacional Autónoma de Honduras Departamento de Matemática Pura Ejercicios complementarios de Repaso MM 425 Topología

Profesor: Dr. Fredy Vides

Instrucciones: Resolver las siguientes problemas, dejando evidencia de argumentos precisos y rigurosos que respalden sus resultados y conclusiones.

- 1. Dados (X, d_X) y (Y, d_Y) EM, $\alpha, \beta > 0$, y dada $f \in Y^X$ biyectiva (uno-a-uno y sobre). Probar que si $\alpha d_X(x, y) \leq d_Y(f(x), f(y)) \leq \beta d_X(x, y)$ para cualquier par $x, y \in X$, entonces $f \in C(X, Y)$. Es f^{-1} continua?
- 2. Probar que si (X, d) es un EM, para cada $x_0 \in X$, la función $X \to \mathbb{R}, x \mapsto d(x_0, x)$ es una función uniformemente contínua de X a \mathbb{R} .
- 3. Sea (X, d) un EM. Probar o refutar las siguientes proposiciones:
 - (a) Si $Y \subset X$, int(Y) coincide con la unión de todos los subconjuntos abiertosde X que están contenidos en X.
 - (b) Si $Y \subset X$, \overline{Y} coincide con la intersección de todos los subconjuntos cerrados de X que contienen a Y.
 - (c) Para cada $x \in X$, $int(X \setminus \{x\}) = X \setminus \{x\}$.
- 4. Determine las clausuras de los siguientes SE métricos de \mathbb{R} respecto de la métrica usual:
 - (a) $A = \{1/n | x \in \mathbb{Z}^+\}$
 - (b) $B = \{1 1/n | n \in \mathbb{Z}^+ \}$
 - (c) $C = \{x | 0 < x < 1\}$
 - (d) $C = \{x | 0 < x \le 1\}$
- 5. Probar que una función $f: X \to Y$ es contínua ssi $f^{-1}(E)$ es un subconjunto cerrado de X para todo subconjunto cerrado E de Y.
- 6. Probar que si S es un subconjunto de un ET X, entonces \overline{S} es la intersección de todos los conjuntos cerrados que contienen a S.
- 7. Probar que si \mathcal{B} es una base para una topología sobre X, entonces la topología generada por \mathcal{B} es igual a la intersección de todas las topologías sobre X que contienen a \mathcal{B} . Calcular una base para la topología relativa del conjunto de números enteros $\mathbb{Z} \subset \mathbb{R}$, con respecto a la topología usual en \mathbb{R} .
- 8. Sea $\{\mathcal{T}_{\alpha}\}$ una familia de topologías sobre X. Pruebe que existe una única topología sobre X más pequeña entre todas las que contienen a todas las colecciones \mathcal{T}_{α} , y una única topología más grande entre todas las que están contenidas en toda \mathcal{T}_{α} .
- 9. Sea $X = [0, 8] \cap \mathbb{Z}$ y sea $f \subset X \times X$ la función definida por

$$f = \{(0,0), (1,1), (2,2), (3,0), (4,1), (5,2), (6,0), (7,1), (8,2)\}.$$

Sea \sim la relación de equivalencia en $X \times X$ definida por la regla $x \sim y$ ssi f(x) = f(y). Calcular:

- (a) La topología más pequeña \mathcal{T}_X de X que contiene a $\{\{0,3,6\},\{1,4,7\},\{2,5,8\}\}$.
- (b) La topología cociente $\mathcal{T}_{X/\sim}$ con respecto a \mathcal{T}_X .
- (c) Calcular las componentes conexas $\mathcal{C}(\pi(x))$ y $\pi(\mathcal{C}(x))$ para cada $x \in X$. Donde $\pi: X \to X/\sim$ es la proyección natural sobre el espacio cociente X/\sim .
- 10. Sea \mathbb{S}^1 un ET homeomorfo a $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Probar que el ET $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ es compacto y CPT.
- 11. Un punto p de un ET X es un punto de corte si $X \setminus \{p\}$ es desconexo.
 - (a) Probar que la propiedad de tener un punto de corte es una propiedad topológica.
 - (b) Utilizar la propiedad topológica de punto de corte para probar que (0,1) y [10,100) no son homeomorfos. Son $[\pi,\sqrt{2})$ y $(-\infty,\pi]$ homeomorfos?
- 12. (a) Probar en detalle que la propiedad de ser conexo es una propiedad topológica.
 - (b) Probar que si X es un ET homeomorfo a [0,1], entonces X es conexo.
- 13. Se dice que un ET X tiene la propiedad de punto fijo (PPF) si cada mapa $f: X \to X$ tiene un punto fijo. Propiedad que la PPF es una propiedad topológica.
- 14. Probar or refutar que los siguientes ET son CPT:
 - (a) $\mathbb{S}^1 \simeq_h \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1 \}$
 - (b) $\mathbb{S}^2 \simeq_h \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$
 - (c) $\mathbb{X} = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^2$
 - (d) $\mathbb{R}_2^* = \mathbb{R}^2 \setminus \{(0,0)\}.$