# Kapittel 6: Relasjoner

Nettkurs

Boka

# Definisjon

- ullet En **binær relasjon** (binary relation) fra mengden S til mengden T er en delmengde av S imes T.
- En binær relasjon på mengden S er en delmengde av  $S^2 = S imes S$ .
- Mer generelt, en n-ær relasjon (n-ary relation) er en delmengde av  $A_1 \times ... \times A_n$ .



# Noen spesielle relasjoner

ullet Identitetsrelasjonen (identity relation) på S, eller likhetsrelasjon, som relaterer alle elementer til seg selv:

$$\{\langle x, x \rangle \mid x \in S\}.$$

- $\circ$  Her er identitetsrelasjonen på mengden  $\{1,2,3\}$  :  $\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
- o Må alltid være på en mengde

- Den tomme relasjonen (empty relation) fra S til T, som ikke relaterer noe elementer til hverandre:  $\emptyset$ .
  - $\circ~$  Den tomme relasjonen på mengden  $\{1,2,3\}$ : extstyle extst
- Den universelle relasjonen (universal relation) fra S til T, som relaterer alle elementer i S til alle elementer i T:  $S \times T$ .

# Universet av relasjoner



### Refleksivitet

- En binær relasjon R på mengden S er **refleksiv** (*reflexive*) hvis det for alle x i S er slik at  $\langle x, x \rangle \in R$ .
  - $\circ~$  La S være mengden  $\{1,2,3\}.$  Da skal en refleksiv relasjon på den mengden inneholde  $\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}.$
  - $\circ \{\langle 1,1\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,2\rangle,\langle 3,3\rangle\}$  er en refleksiv relasjon på S.
  - $\circ \ \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle\}$  er <code>ikke</code> en refleksiv relasjon på S.
  - Eksempler på refleksive relasjoner:



## Symmetri

- En binær relasjon R på mengden S er **symmetrisk** (*symmetric*) hvis det for alle x,y er slik at hvis  $\langle x,y\rangle\in R$ , så  $\langle y,x\rangle\in R$ .
  - $\circ$  La S være mengden  $\{a,b,c\}$ .
  - $\circ~$  Da er  $\{\langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle c,b \rangle\}$  en symmetrisk relasjon på S.
  - $\circ \ \{\langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle\}$  er <u>ikke</u> en symmetrisk relasjon på S.



#### **Transitivitet**

- En binær relasjon R på mengden S er **transitiv** (*transitive*) hvis det for alle x,y,z er slik at hvis  $\langle x,y\rangle\in R$  og  $\langle y,z\rangle\in R$ , så  $\langle x,z\rangle\in R$ .
  - $\circ$  La S være mengden  $\{1,2,3\}$ .
  - $\circ \{\langle 1,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle\}$  er transitiv relasjon på S.
  - $\circ \{\langle 1, 2 \rangle, \langle 2, 3 \rangle\}$  er ikke transitiv.
  - $\{\langle 1,2\rangle,\langle 2,1\rangle\}$  er <u>ikke</u> transitiv heller, fordi den mangler  $\langle 1,1\rangle$  og  $\langle 2,2\rangle$ . Så hvis vi går fra 1 til 2 og tilbake, da burde vi ha den tredje steg fra 1 til 1.
  - Steg kan gå fremover og bak bare mellom to elementer i mengden, ikke mer. Hvis det er mer enn to, da er det alltid en direksjon.
  - Også, når du ser på en mengde, må du telle alle instanser av to-steg hopp,
     og hvis alle er transitive, da og bare da er hele mengden transitiv.



#### **Ekvivalens**

- ullet En binær relasjon på mengden S er en **ekvivalensrelasjon** (equivalence relation) hvis den er refleksiv, symmetrisk og transitiv.
  - $\circ$  La S være mengden  $\{1,2,3\}$ .
  - $\circ$  Da er  $\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$  en ekvivalensrelasjon på S.

# Anti-symmetri

• En binær relasjon R på mengden S er **anti-symmetrisk** (anti-symmetric) hvis det for alle x,y er slik at hvis  $\langle x,y\rangle\in R$  og  $\langle y,x\rangle\in R$ , så x=y.

- Anti-symmetriske relasjoner er de hvor det ikke finnes to forskjellige elementer som er relatert til hverandre.
  - La S være mengden  $\{1,2,3\}$ .
  - $\circ \ \{\langle 1,2 \rangle, \langle 1,3 \rangle\}$  er en anti-symmetrisk relasjon på S.
  - $\circ \ \{\langle 1,2 \rangle, \langle 2,1 \rangle\}$  er <code>ikke</code> anti-symmetrisk, fordi 1 
    eq 2.

#### **Irrefleksivitet**

- En binær relasjon R på mengden S er **irrefleksiv** (*irreflexive*) hvis det ikke er noe  $x \in S$  slik at  $\langle x, x \rangle \in R$ .
- Irrefleksive relasjoner er de hvor ingenting er relatert til seg selv.
  - $\circ$  La S være mengden  $\{1, 2, 3\}$ .
  - $\circ \{\langle 1,2\rangle,\langle 2,1\rangle\}$  er en irrefleksiv relasjon på S.
  - $\circ \{\langle 3,1\rangle, \langle 3,2\rangle, \langle 3,3\rangle\}$  er ikke irrefleksiv pga  $\langle 3,3\rangle$ .

## Partielle ordninger

- ullet En binær relasjon på mengden S er en **partiell ordning** (partial order) hvis den er refleksiv, transitiv og anti-symmetrisk.
- Partielle ordninger er relasjoner med "retning".

## Totale ordninger

- En partiell ordning R på en mengde S kalles en **total ordning** (total order) eller en **lineær ordning** (linear order) hvis det for alle x og y i S er slik at xRy og yRx.
- Totale ordninger er relasjoner som ordner alle elementene i en mengde etter hverandre.
- Relasjonen ≤ på reelle tall er en total ordning.
- Delmengderelasjonen trenger ikke å være en total ordning, fordi det er mulig å ha to mengder A og B uten at hverken  $A\subseteq B$  eller  $B\subseteq A$ .