Universidade Federal da Bahia Departamento de Ciência da Computação

Heap

Ricardo Araújo Rios

Introdução

- Heap é uma estrutura de dados organizada como uma árvore binária;
- Para uma árvore binária ser considerada uma heap, algumas regras precisam ser satisfeitas:
 - Ordem dos nós;
 - Completude;

Неар

Introdução

Introdução

- Regra 01 Ordem dos nós:
 - o Para cada nó v da árvore, exceto a raiz, temos:
 - $chave(pai(v)) \le chave(v) min-heap$
 - $chave(pai(v)) \ge chave(v) max-heap$

Min-heap

Max-heap

- Regra 02 Completude (balanceamento)
 - A estrutura é dita ser completa, ou está balanceada, se:
 - Todo nó folha está ou no nível h ou h-1;
 - O nível h-1 deve estar completamente preenchido;
 - Se o nível h não estiver preenchido completamente, as folhas estão mais à esquerda.

Exemplo

Exemplo

Árvore Binária de Pesquisa

Inserção

Operações Básicas

- Inserção
 - o Fix-up
- Remoção
 - o Fix-down

Inserção

- Inserir o novo item no final da heap;
- Restaurar a ordem da heap (fix-up).

Inserção

Localização do nó folha para inserção

Inserção

• Localização do nó folha para inserção

Inserção

• Localização do nó folha para inserção

Inserção

• Localização do nó folha para inserção

Realiza troca se o filho for maior que o pai

Inserção

• Localização do nó folha para inserção

Inserção

• Localização do nó folha para inserção

Inserção

• Localização do nó folha para inserção

Realiza troca se o filho for maior que o pai

Inserção

• Localização do nó folha para inserção

Remoção

- Substitui o nó a ser removido pelo último nó da heap;
- Restaurar a ordem da heap (fix-down).

Remoção

Remoção

Remoção

Seleciona o último elemento

Remoção

Remoção

Remoção

 7

 6

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Remoção

Remoção

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Utilização

- Fila de prioridade
- Exemplo: supondo que quanto maior o valor, maior a prioridade, a remoção de um elemento é realizada sempre removendo o elemento raiz e restaurando a ordem da heap (fix-down)

Remoção

Se pai for menor que os filhos, troca o pai pelo filho com maior valor

Utilização

• Por que usar Heap?

TAD	Operação	Tempo	
Lista não-ordenada	Inserir	O(1)	
	Remover	O(n)	
Lista ordenada	Inserir	O(n)	
	Remover	O(1)	
Неар	Inserir	O(log n)	
	Remover	O(log n)	

Referências

- [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Algoritmos Teoria e Prática, 2ª Edição, Elsevier, 2002;
- [2] Kleinberg, J., Tardos, E., Algorithm Design, Pearson, 2006;
- [3] Goodrich, M. T., Tamassia, R., Estrutura de Dados e Algoritmos em Java, 4ª Edição, Bookman, 2007;
- [4] Ziviani, N., Projeto de algoritmos com implementações em Java e C++, Thomson, 2007