

Introducción a la Ingeniería de Software

¿Qué es un producto de software?

Los productos de software se pueden desarrollar para un cliente en particular (productos personalizados o hechos a medida) o para un mercado en general (productos genéricos).

¿EXISTEN PRODUCTOS INTERMEDIOS?

Disciplina de la ingeniería que comprende todos los aspectos de la producción de software desde la especificación del **sistema** hasta el mantenimiento una vez que se está utilizando

Los ingenieros aplican teorías, *métodos* y *herramientas*

Se adopta un enfoque sistemático y organizado

No solo incluye los procesos técnicos sino también su gestión

Según Pressman: el establecimiento y uso de principios de ingeniería robustos, orientados a obtener software económico que sea fiable y funcione de manera eficiente sobre máquinas reales.

Según IEEE: el enfoque sistemático para el desarrollo, operación, mantenimiento y documentación del software.

Es el conjunto de *métodos, técnicas y*herramientas que controlan el proceso integral
del desarrollo del software y suministra las bases
para construir software de calidad en forma
eficiente en los plazos adecuados

Métodos o técnicas: es un proceso formal para producir un resultado. Por ejemplo: la preparación de una salsa determinada.

Herramientas: son instrumentos o sistemas automatizados para realizar algo de la mejor manera posible. La mejor manera posible puede significar que se produzcan resultados mas exactos, mas eficientes o mas productivos, o que refuerza la calidad del producto resultante. Ejemplo: una buena cuchilla para lograr un picado exacto.

¿Qué es un proceso de software?

 Conjunto de actividades y resultados asociados que producen un producto de software.

DIFERENTES TIPOS DE SISTEMAS NECESITAN DIFERENTES
TIPOS DE PROCESOS DE DESARROLLO

¿Qué es un MODELO?

- Representación abstracta de lo que será un futuro sistema.
- Un modelo de proceso de software es una descripción simplificada que presenta una visión de este proceso. Permite:

Concentrarse en lo importante del futuro sistema.

Discutir cambios y correcciones.

Verificar la comprensión.

Modelos generales de desarrollo de software

Todos los modelos de desarrollo de software se basan en alguno de los siguientes enfoques:

- Enfoque en cascada
- Desarrollo iterativo
- Desarrollo evolutivo

Enfoque en cascada

Enfoque en cascada - Características

- La evolución del producto software procede a través de una secuencia ordenada de transiciones de una fase a la siguiente según un orden lineal.
- Permite iteraciones durante el desarrollo, dentro de un mismo estado o de un estado hacia otro anterior.
- Obliga a especificar lo que el sistema debe hacer antes de construir el sistema.

Enfoque en cascada - Características

- Obliga a definir cómo van a interactuar los componentes antes de construir tales componentes.
- Permite al jefe del proyecto seguir y controlar los progresos de un modo más exacto. Permite detectar y resolver desviaciones sobre la planificación inicial.
- Requiere que el proceso de desarrollo genere una serie de documentos que posteriormente pueden utilizarse para la validación y el mantenimiento del sistema.

Enfoque en cascada - Ventajas

- Las etapas están organizadas de un modo lógico. Si una etapa no puede llevarse a cabo porque faltan decisiones de un nivel mas alto nivel, no se puede seguir adelante.
- Cada etapa incluye cierto proceso de revisión, y se necesita una aceptación del producto antes de que la salida de la etapa pueda usarse.

Enfoque en cascada - Ventajas

- Está organizado de modo que se pase el menor número de errores de una etapa a la siguiente.
- El ciclo es iterativo. El flujo básico es de arriba hacia abajo, no obstante, reconoce que los problemas de etapas inferiores surgen de las decisiones de las etapas superiores.

Enfoque en cascada – Desventajas

- Para que un proyecto tenga éxito todos los estados deben ser desarrollados.
- Cualquier desarrollo en diferente orden dará un producto de inferior calidad.
- Asume que los requisitos de un sistema pueden ser congelados antes de comenzar el diseño.
- Se entrega al cliente el primer producto cuando ya se han consumido el 99% de los recursos para el desarrollo.

Modelo Iterativo Incremental

Modelo Iterativo Incremental - Características

- Permite construir una implementación parcial del sistema global y posteriormente ir aumentando la funcionalidad del sistema.
- El software se construye de modo que sólo satisfaga unos pocos requisitos de todos los que tiene el usuario.
- Debe construirse de tal modo que facilite la incorporación de nuevos requisitos, por lo tanto el software tiene una adaptabilidad mayor.

Modelo Iterativo Incremental - Ventajas

- Produce un sistema operacional mas rápidamente, reduciendo la posibilidad de que las necesidades del usuario cambien durante el desarrollo.
- Se reduce el tiempo de desarrollo inicial, debido al nivel reducido de funcionalidad.
- Facilita la incorporación de nuevos requisitos, por lo tanto el software es fácil de mejorar.
- La mayor adaptabilidad permite que el software se desarrolle a partir de una serie de construcciones y/o mejoras claramente definidas y planificadas.

Modelo Iterativo Incremental Desventajas

- La optimización de la primer entrega para que la demostración tenga éxito como software de exploración no podrá reflejar las funcionalidades del sistema en versiones aumentadas (tiempo de respuesta, etc.)
- Las versiones iniciales se centran en la funcionalidad y la interfaz, dejando de lado algunos temas centrales de la arquitectura que pueden ser muy costosos de desarrollar (seguridad, procesamiento distribuido, etc.)
- El equipo de desarrollo sacrifica la etapa de análisis a favor de una obtención rápida de la primera versión, generando un primer producto alejado de las necesidades del usuario.

Modelo en Espiral

- -La dimensión radial indica los costos de desarrollo acumulativos
- -La dimensión angular indica el progreso realizado al cumplimentar cada desarrollo en espiral.

Modelo en Espiral - Características

- Representa un enfoque dirigido por el riesgo para el análisis y estructuración del proceso software.
- Incorpora métodos de proceso dirigidos por las especificaciones y por los prototipos.
- Desarrolla ciclos de vida iterativos en forma de espiral, mostrando: los ciclos internos del análisis y desarrollo de prototipo precoz y los ciclos externos del modelo clásico.
- El análisis de riesgo aparece en cada ciclo del espiral y busca identificar situaciones que pueden causar el fracaso o excederse de los plazos o presupuestos esperados.
- Proporciona una combinación de los modelos existentes para un proyecto dado.

Modelo en Espiral - Ventajas

- Su rango de opciones permite utilizar los modelos de proceso de construcción de software tradicionales, mientras su orientación al riesgo evita muchas dificultades.
- Incorpora opciones que permiten la reutilización del software existente.
- Se centra en la eliminación de errores y alternativas poco atractivas.
- No establece una diferenciación entre desarrollo de software y mantenimiento del sistema.
- Proporciona un marco estable para desarrollos integrados hardware-software.

Las metodologías de la ingeniería de software

- Son un enfoque estructurado para el desarrollo de software cuyo propósito es facilitar la producción de software de alta calidad con un buen costo.
- Podríamos mencionar:
 - Desarrollo convencional (codificar y corregir)
 - Desarrollo estructurado (modelo cascada)
 - Desarrollo orientado a objetos (modelo iterativo incremental)

Los metodologías de la ingeniería de software

- No existe la metodología ideal, cada una es aplicable en distintos tipos de sistemas.
- Todas los metodologías se basan en modelos gráficos (abstracciones) de desarrollo de un sistema y en el uso de estos modelos como un sistema de especificación o diseño
- Incluyen diferentes componentes: descripciones, reglas, recomendaciones y guías en el proceso.

Manos a la Obra!!

Guía de Trabajos Prácticos (Casos Prácticos 7 y 8)

