Série 5 : Dipôle RC

EXERCICE 1:

Étude de la décharge de deux condensateurs dans un conducteur ohmique On considère le circuit électrique comportant :

- Deux condensateurs de capacité C_1 et $C_2 = 2.5 \,\mu\text{F}$;
- Un générateur de basse fréquence (GBF) qui applique un échelon de tension montant de valeur $U_0 = 12 \text{ V}$ puis un échelon de tension descendant de valeur nulle.

1. Établir l'équation différentielle vérifiée par la tension u_1 lorsque le GBF applique un échelon de tension descendant.

2. La solution de l'équation différentielle s'écrit de la forme : $u_1 = Ae^{-\frac{1}{\tau}}$.

• Déterminer l'expression de
$$\tau$$
 en fonction de C_1 , C_2 , et R .

3. Déduire l'expression de la tension u_2 .

4. La courbe donne les tensions u_1 et u_2 en fonction du temps.

1.4 Déterminer la valeur de C_1 .

2.4 Déterminer la valeur de τ et déduire la valeur de R.

Figure 1

EXERCICE 2:

Le montage électrique schématisé sur la figure 1 comporte :

Un générateur idéal de tension de f.é.m. E,

Deux condensateurs de capacité C_1 et $C_2 = 2\mu F$,

Un conducteur ohmique de résistance $R = 3k\Omega$,

Un interrupteur K à double position.

On place l'interrupteur K dans la position (1) à un instant pris comme origine des dates (t = 0).

La solution de cette équation différentielle s'écrit sous la forme : $u_2(t) = A \cdot (1 - e^{-t/\tau})$.

Déterminer l'expression de A et celle de auen fonction des paramètres du circuit.

Les courbes de la figure 2, représentent l'évolution des tensions $u_2(t)$ et $u_R(t)$. La droite (T) représente la tangente à la courbe représentant $u_2(t)$ à l'instant t = 0.

(b) Montrer que $C_1 = 4\mu F$.

