Loglinear Models for Contingency Tables

Jinhwan Suk

Department of Mathematical Science, KAIST

August 23, 2020

Contents

- 1 Loglinear Models for Two-way Tables
- 2 Loglinear Models for Three-Way Tables
- Inference for Loglinear Models
- 4 Loglinear Models for Higher Dimensions
- 5 Loglinear Model Fitting

Loglinear Models for Two-way Tables

Independence Model for a Two-Way Table

- Consider an $I \times J$ table that classifies n subjects.
- In Poisson form, independence is the loglinear model

$$\log \mu_{ij} = \lambda + \alpha_i + \beta_j \Leftrightarrow \mu_{ij} = \mu \alpha_i \beta_j$$

Identifiability requires constraints such as

$$\alpha_I = \beta_J = 0$$

Loglinear Models for Two-way Tables

Saturated Model for a Two-Way Table

If X and Y are statistically dependent...

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY} \tag{1}$$

Test of independence

$$\lambda_{ij}^{XY} = 0 \rightarrow df = (I-1)(J-1)$$

- ullet The number of parameters in model (1) = $IJ \stackrel{\textit{MLE}}{\Longrightarrow} \hat{\mu}_{ij} = n_{ij}$
- For 2 × 2 tables,

$$\log \theta = \log \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}}$$
$$= \lambda_{11}^{XY} + \lambda_{22}^{XY} - \lambda_{12}^{XY} - \lambda_{21}^{XY}$$

Loglinear Models for Two-way Tables

Hierarchical Versus Nonhierarchical Models

• Hierarchical model includes all lower-order terms.

(e.g)
$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

• An example of nonhierarchical model : $\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_{ij}^{XY}$ $\rightarrow \log \mu_{Ii} = \lambda$ in every column

Contents

- 1 Loglinear Models for Two-way Tables
- 2 Loglinear Models for Three-Way Tables
- Inference for Loglinear Models
- 4 Loglinear Models for Higher Dimensions
- 5 Loglinear Model Fitting

Types of Independence

• Mutual independence : $\pi_{ijk} = \pi_{i++}\pi_{+j+}\pi_{++k}$ The loglinear model is

$$\log \mu_{ijk} = \log \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z$$

• Joint independence : $\pi_{ijk} = \pi_{i+k}\pi_{+j+}$ The loglinear model is

$$\log \mu_{ijk} = \log \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ}$$

• Conditional independence : $\pi_{ij|k} = \pi_{i+|k} \pi_{+j|k}$ The loglinear model is

$$\log \mu_{ijk} = \log \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

Types of Independence

- λ_{ij}^{XY} , λ_{jk}^{YZ} , and λ_{ik}^{XZ} pertain to conditionally dependent variables.
- Permitting all three pairs to be conditionally dependent,

$$\log \mu_{ijk} = \log \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ik}^{XZ}$$
 (2)

Exponentiating both sides,

$$\pi_{ijk} = \psi_{ij}\phi_{jk}\omega_{ik}$$

- For the model (2), each pair has homogeneous association.
- The model (2) is called the loglinear model of *homogeneous* association or of *no three-factor interaction*.

Interpretation of Loglinear Model Parameters

At a fixed level k of Z, the local odds ratios

$$\theta_{ij(k)} = \frac{\pi_{ijk}\pi_{i+1,j+1,k}}{\pi_{i,j+1,k}\pi_{i+1,j,k}}$$

describe XY conditional association.

• Using model (2),

$$\log \theta_{ij(k)} = \log \frac{\mu_{ijk}\mu_{i+1,j+1,k}}{\mu_{i,j+1,k}\mu_{i+1,j,k}} = \lambda_{ij}^{XY} + \lambda_{i+1,j+1}^{XY} - \lambda_{i,j+1}^{XY} - \lambda_{i+1,j}^{XY}$$

• An absence of three-factor interaction is equivalent to

$$\theta_{ij(1)} = \theta_{ij(2)} = \cdots = \theta_{ij(k)}$$

• Any model not having three-factor interaction term has a homogeneous association for each pair of variables.

Interpretation of Loglinear Model Parameters

TABLE 8.3 Alcohol, Cigarette, and Marijuana Use for High School Seniors

Alcohol	Cigarette	Marijuana Use		
Use	Use	Yes	No	
Yes	Yes	911	538	
	No	44	456	
No	Yes	3	43	
	No	2	279	

Source: Data courtesy of Harry Khamis, Wright State University.

Interpretation of Loglinear Model Parameters

TABLE 8.4 Fitted Values for Loglinear Models Applied to Table 8.3

Alcohol	Cigarette	Marijuana		1	Loglinear Mo	odel ^a	
Use	Use	Use		(AC, M)	(AM, CM)	(AC, AM, CM)	(ACM)
Yes	Yes	Yes No	540.0 740.2	611.2 837.8	909.24 438.84	910.4 538.6	911 538
	No	Yes No	282.1 386.7	210.9 289.1	45.76 555.16	44.6 455.4	44 456
No	Yes	Yes No	90.6 124.2	19.4 26.6	4.76 142.16	3.6 42.4	3 43
	No	Yes No	47.3 64.9	118.5 162.5	0.24 179.84	1.4 279.6	2 279

^aA, alcohol use; C, cigarette use; M, marijuana use.

Interpretation of Loglinear Model Parameters

TABLE 8.5 Estimated Odds Ratios for Loglinear Models in Table 8.5

	Conditional Association			Marginal Association		
Model	\overline{AC}	AM	СМ	\overline{AC}	AM	СМ
$\overline{(A,C,M)}$	1.0	1.0	1.0	1.0	1.0	1.0
(AC, M)	17.7	1.0	1.0	17.7	1.0	1.0
(AM, CM)	1.0	61.9	25.1	2.7	61.9	25.1
(AC, AM, CM)	7.8	19.8	17.3	17.7	61.9	25.1
(ACM) level 1	13.8	24.3	17.5	17.7	61.9	25.1
(ACM) level 2	7.7	13.5	9.7			

Contents

- 1 Loglinear Models for Two-way Tables
- 2 Loglinear Models for Three-Way Tables
- Inference for Loglinear Models
- 4 Loglinear Models for Higher Dimensions
- 5 Loglinear Model Fitting

Inference for Loglinear Models

Chi-Squared Goodness-of-Fit Tests

- X^2 and G^2 test
- df = cell counts the number of parameters

TABLE 8.6 Goodness-of-Fit Tests for Loglinear Models in Table 8.4

Model	G^2	X^2	df	P-value ^a
(A, C, M)	1286.0	1411.4	4	< 0.001
(A, CM)	534.2	505.6	3	< 0.001
(C, AM)	939.6	824.2	3	< 0.001
(M, AC)	843.8	704.9	3	< 0.001
(AC, AM)	497.4	443.8	2	< 0.001
(AC, CM)	92.0	80.8	2	< 0.001
(AM, CM)	187.8	177.6	2	< 0.001
(AC, AM, CM)	0.4	0.4	1	0.54
(ACM)	0.0	0.0	0	_

^aP-value for G² statistic.

Inference for Loglinear Models

Inference about Conditional Associations

- Tests about conditional associations compare loglinear models.
- For model (XY, YZ, XZ), consider the hypothesis of XY conditional independence.

$$H_0:\lambda_{ij}^{XY}=0$$

- The test statistic is $G^2(XZ,YZ) G^2(XY,YZ,XZ)$ with df = (I-1)(J-1)
- $G^2[(AM, CM)|(AM, CM, AC)] = 187.8 0.4 = 187.4$ $df = 2 - 1 = 1 \rightarrow P < 0.001$
- It provides strong evidence of AC conditional association.

Inference for Loglinear Models

Inference about Conditional Associations

- With large sample sizes, statistically significant effects can be weak and practically unimportant.
- Confidence intervals are more useful than tests for assessing associations.

TABLE 8.7 Output for Fitting Loglinear Model to Table 8.3

			IIA FOI AS	sessing Good		_
	Criteri			DF Valu		F.
	Deviance			1 0.37		
	Pearson	Chi-S	quare	1 0.40	0.4011	
				Standard	Wald	
Paramete	r		Estimate	Error	Chi-Square	Pr>ChiSq
Intercep	t		5.6334	0.0597	8903.96	<.0001
a	1		0.4877	0.0758	41.44	<.0001
2	1		-1.8867	0.1627	134.47	<.0001
n	1		-5.3090	0.4752	124.82	<.0001
a.*m	1	1	2.9860	0.4647	41.29	<.0001
a*c	1	1	2.0545	0.1741	139.32	<.0001
c*m	1	1	2.8479	0.1638	302.14	<.0001
	LR S	tatist	ics			
	٤	Source	DF	Chi-Square	Pr>ChiSq	
		a*m	1	91.64	<.0001	
		a*c	1	187.38	< .0001	
		c*m	1	497.00	< .0001	

Contents

- Loglinear Models for Two-way Tables
- 2 Loglinear Models for Three-Way Tables
- 3 Inference for Loglinear Models
- 4 Loglinear Models for Higher Dimensions
- 5 Loglinear Model Fitting

Models for Four-Way Contingency Tables

- 4 variables W, X, Y and Z
- Interpretations are simplest when the model has no three-factor interaction terms, so that each pairwise association is homogeneous.
- For model (WXY, WZ, XZ, YZ), each pair is conditionally dependent, but at each level of Z, the WX association, the WY association, the WY association vary.

Models for Four-Way Contingency Tables

TABLE 8.8 Loglinear Models for Injury, Seat-Belt Use, Gender, and Location^a

		Seat	Injury		(GI,GL,GS,IL,IS,LS)		(GLS, GI, IL, IS)		Sample Proportion
Gender Location	Belt	No	Yes	No	Yes	No	Yes	Yes	
Female	Urban	No	7,287	996	7,166.4	993.0	7,273.2	1,009.8	0.12
		Yes	11,587	759	11,748.3	721.3	11,632.6	713.4	0.06
	Rural	No	3,246	973	3,353.8	988.8	3,254.7	964.3	0.23
		Yes	6,134	757	5,985.5	781.9	6,093.5	797.5	0.11
Male	Urban	No	10,381	812	10,471.5	845.1	10,358.9	834.1	0.07
		Yes	10,969	380	10,837.8	387.6	10,959.2	389.8	0.03
	Rural	No	6,123	1,084	6,045.3	1,038.1	6,150.2	1,056.8	0.15
		Yes	6,693	513	6,811.4	518.2	6,697.6	508.4	0.07

^aG, gender; I, injury; L, location; S, seat-belt use.

Source: Data courtesy of Cristanna Cook, Medical Care Development, Augusta, Maine.

Models for Four-Way Contingency Tables

TABLE 8.9 Goodness-of-Fit Tests for Loglinear Models in Table 8.8

Model	G^2	df	P-Value
$\overline{(G,I,L,S)}$	2792.8	11	< 0.0001
(GI, GL, GS, IL, IS, LS)	23.4	5	< 0.001
(GIL, GIS, GLS, ILS)	1.3	1	0.25
(GIL, GS, IS, LS)	18.6	4	0.001
(GIS, GL, IL, LS)	22.8	4	< 0.001
(GLS, GI, IL, IS)	7.5	4	0.11
(ILS,GI,GL,GS)	20.6	4	< 0.001

- Mutual independence model (G, I, L, S) fits very poorly
- Model (GI, GL, GS, IL, IS, LS) fits much better but still has a lack of fit.
- Model (GIL, GIS, GLS, ILS) fits well but is complex

Models for Four-Way Contingency Tables

TABLE 8.10 Estimated Conditional Odds Ratios for Models of Table 8.8

	Loglinear Model					
Odds Ratio	(GI, GL, GS, IL, IS, LS)	(GLS, GI, IL, IS)				
GI	0.58	0.58				
IL	2.13	2.13				
IS	0.44	0.44				
GL S = no	1.23	1.33				
S = yes	1.23	1.17				
GS L = urban	0.63	0.66				
L = rural	0.63	0.58				
LS G = female	1.09	1.17				
G = male	1.09	1.03				

- Model (GLS, GI, IL, IS) seemed to fit much better than (GI, GL, GS, IL, IS, LS).
- The difference in G^2 : 23.4 7.5 = 15.9, df = 5 4 = 1(P=0.0001)
- However, the degree of three-factor interaction is weak
- With huge samples, it is better to focus on estimation rather than hypothesis testing.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣♀

Dissimilarity Index

• The dissimilarity index

$$\hat{\Delta} = \sum_{i} |n_i - \hat{\mu}_i|/2n = \sum_{i} |p_i - \hat{\pi}_i|/2$$

summarizes how far the model fit falls from the data.

- When $\hat{\Delta} <$ 0.02 or 0.03, the sample data follow the model pattern quite closely.
- When Δ is near 0, $\hat{\Delta}$ tends to overestimate Δ , substantially so for small n.

Contents

- Loglinear Models for Two-way Tables
- 2 Loglinear Models for Three-Way Tables
- 3 Inference for Loglinear Models
- 4 Loglinear Models for Higher Dimensions
- 5 Loglinear Model Fitting

Minimal Sufficient Statistics

For three-way tables, the joint Poisson probability is

$$\prod_{i} \prod_{j} \prod_{k} \frac{e^{-\mu_{ijk}} \mu_{ijk}^{n_{ijk}}}{n_{ijk}!}$$

• The kernel of the log likelihood is

$$L(\mu) = \sum_{i,j,k} n_{ijk} \log \mu_{ijk} - \sum_{i,j,k} \mu_{ijk}$$

For saturated model, this simplifies

$$L(\boldsymbol{\mu}) = n\lambda + \sum_{i} n_{i++} \lambda_{i}^{X} + \sum_{j} n_{+j+} \lambda_{j}^{Y} + \sum_{k} n_{++k} \lambda_{k}^{Z}$$
$$+ \sum_{i,j} n_{ij+} \lambda_{ij}^{XY} + \sum_{i,k} n_{i+k} \lambda_{ik}^{XZ} + \sum_{j,k} n_{+jk} \lambda_{jk}^{YZ}$$
$$+ \sum_{i,j,k} n_{ijk} \lambda_{ijk}^{XYZ} - \sum_{i,j,k} \exp(\lambda + \dots + \lambda_{ijk}^{XYZ})$$

Minimal Sufficient Statistics

TABLE 8.12 Minimal Sufficient Statistics for Fitting Loglinear Models

Model	Minimal Sufficient Statistics
$\overline{(X,Y,Z)}$	$\{n_{i++}\}, \{n_{+i+}\}, \{n_{++k}\}$
(XY,Z)	$\{n_{ij+}\}, \{n_{++k}\}$
(XY, YZ)	$\{n_{ij+}\}, \{n_{+jk}\}$
(XY, XZ, YZ)	$\{n_{ij+}\}, \{n_{i+k}\}, \{n_{+jk}\}$

Likelihood Equations for Loglinear Models

Loglinear models have the form

$$\log \mu = X\beta$$

(e.g) consider the independence model, $\log \mu_{ij} = \lambda + \lambda_i^{\mathsf{x}} + \lambda_j^{\mathsf{Y}}$

$$\begin{bmatrix} \log \mu_{11} \\ \log \mu_{12} \\ \log \mu_{21} \\ \log \mu_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda \\ \lambda_1^X \\ \lambda_1^Y \\ \lambda_1^Y \end{bmatrix}$$

• We have $\log \mu_i = \sum_i x_{ij} \beta_j$ for all i.

Likelihood Equations for Loglinear Models

The log likelihood is

$$L(\boldsymbol{\mu}) = \sum_{i} n_{i} \log \mu_{i} - \sum_{i} \mu_{i}$$

$$= \sum_{i} n_{i} \left(\sum_{j} x_{ij} \beta_{j} \right) - \sum_{i} \exp \left(\sum_{j} x_{ij} \beta_{j} \right)$$

- $\frac{\partial L(\mu)}{\partial \beta_j} = \sum_i n_i x_{ij} \sum_i \mu_i x_{ij}$
- The likelihood equation is

$$X^t n = X^t \hat{\mu}$$

Birch, Maximum Likelihood in Three-way Contingency Tables (1963)

- Equivalence of MLE's for
 - Poisson Sampling
 - Multinomial sampling
 - Product-multinomial sampling
- The likelihood equations have a unique solution
- MLE's are the same under a wide variety of sampling conditions
- The estimates are sufficient statistics
- Generalization to multi-way contingency tables

Birch, Maximum Likelihood in Three-way Contingency Tables (1963)

Experiment 1. We have N independent Poisson distributions with expected frequencies $\mu_i(\theta)$, i=1,...,N and corresponding observed frequencies n_i , i=1,...,N.

Birch, Maximum Likelihood in Three-way Contingency Tables (1963)

Experiment 2. We have $\rho-1$ independent multinomial distributions. For the $\alpha-$ th, we have taken a sample of fixed size

$$N_{\alpha} = \sum_{i=R(\alpha-1)+1}^{R(\alpha)} n_i$$

and we have observed numbers $n_{R(\alpha-1)+1},...,n_{R(\alpha)}$ respectively in the 1st, ... , $r(\alpha)$ th categories, where

$$R(\alpha) = egin{cases} \sum_{eta=1}^{lpha} r(eta), & ext{for } lpha \geq 1 \ 0, & ext{for } lpha = 0 \end{cases}$$

The corresponding expected frequencies are $\mu_{R(\alpha-1)+1}(\theta)$, ..., $\mu_{R(\alpha)}(\theta)$. We also have $r(\rho)$ Poisson distributions.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Birch, Maximum Likelihood in Three-way Contingency Tables (1963)

Theorem

Let us denote the MLE of θ in experiment 1 by $\hat{\theta}$ and the MLE of θ in experiment 2 by $\hat{\theta}^*$. Then, provided

$$\sum_{i=R(lpha-1)+1}^{R(lpha)} \hat{\mu_i}(oldsymbol{ heta}) = N_lpha,$$

$$\hat{\theta} = \hat{\theta}^*$$
 and $\hat{\mu_i} = \hat{\mu_i}^*$.

Birch, Maximum Likelihood in Three-way Contingency Tables (1963)

Theorem

Suppose now we have unrestricted sampling conditions.

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ik}^{XZ} + \lambda_{ijk}^{XYZ}$$

Then the following statements hold.

- **1** The marginal totals n_{ij+} , n_{i+k} , n_{+jk} are sufficient statistics
- ② The marginal totals are equal to the MLE of their expectations, i.e. $n_{ij+} = \hat{m}_{ij+}$
- **3** There is one set of λ 's for which the likelihood function is stationary.
- The MLEs are determined uniquely by the marginal totals being equal to the MLE of their expectations.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q ()

Covariance Matrix of ML Parameter Estimator

• From general expression $\log \mu_i = \sum_j x_{ij} \beta_j$, we obtained

$$\frac{\partial L(\boldsymbol{\mu})}{\partial \beta_j} = \sum_i n_i x_{ij} - \sum_i \mu_i x_{ij}$$

The Hessian matrix has elements

$$\frac{\partial^{2}L(\mu)}{\partial\beta_{j}\partial\beta_{k}} = -\sum_{i} x_{ij} \frac{\partial\mu_{i}}{\partial\beta_{k}}$$

$$= -\sum_{i} x_{ij} \left[\frac{\partial}{\partial\beta_{k}} \left(\exp\left(\sum_{h} x_{ij}\beta_{h}\right) \right) \right]$$

$$= -\sum_{i} x_{ij} x_{ik} \mu_{i}$$

Covariance Matrix of ML Parameter Estimator

• The information matrix is

$$\mathcal{J} = \pmb{X^t} \mathsf{Diag}(\pmb{\mu}) \pmb{X}$$

The asymptotic covariance matrix is

$$cov(\hat{eta}) = \left[oldsymbol{X^t} \mathsf{Diag}(oldsymbol{\mu}) oldsymbol{X}
ight]^{-1}$$

Newton-Raphson Method

• From model $\log \mu = X\beta$,

$$L(\boldsymbol{\beta}) = \sum_{i} n_{i} \left(\sum_{h} x_{ij} \beta_{h} \right) - \sum_{i} \exp \left(\sum_{h} x_{ij} \beta_{h} \right)$$

Then

$$\nabla_{j}L(\boldsymbol{\beta}) = \sum_{i} n_{i}x_{ij} - \sum_{i} \mu_{i}x_{ij}$$
$$\nabla_{jk}^{2}L(\boldsymbol{\beta}) = -\sum_{i} \mu_{i}x_{ij}x_{ik}$$

 $m{eta}$ It generates the next value $m{eta}^{(t+1)}$ by $m{eta}^{(t+1)} = m{eta}^{(t)} - (m{H}^{(t)})^{-1}m{u}^{(t)}$

$$oldsymbol{eta}^{(t+1)} = oldsymbol{eta}^{(t)} + \left[oldsymbol{X^t} \mathsf{Diag}(oldsymbol{\mu}) oldsymbol{X}
ight]^{-1} oldsymbol{X^t} (oldsymbol{n} - oldsymbol{\mu}^{(t)})$$

Newton-Raphson Method

• Alternatively, $\beta^{(t+1)}$ can be expressed as

$$\beta^{(t+1)} = -(\mathbf{H}^{(t)})^{-1} \mathbf{r}^{(t)}$$

where
$$r_{j}^{(t)} = \sum_{i} \mu_{i}^{(t)} x_{ij} [\log \mu_{i}^{(t)} + (n_{i} - \mu_{i}^{(t)}) / \mu_{i}^{(t)}]$$

• The iterative process begins with $\mu_i^{(0)}=n_i$ or with an adjustment such as $\mu_i^{(0)}=n_i+\frac{1}{2}$

Iterative Proportional Fitting(IPF)

Steps:

ullet Start with $oldsymbol{\mu}^{(0)}$ satisfying a model no more complex than the one being fitted.

(e.g)
$$\{\mu_i^{(t)} = 1\}$$

- ② By multiplying by appropriate factors, adjust $\mu_i^{(0)}$ successively to match each marginal table in the set of minimal sufficient statistics.
- Ontinue until the maximum difference between the sufficient statistics and their fitted values is sufficiently close to zero.

Iterative Proportional Fitting(IPF)

Example:

- Consider the model (XY, XZ, YZ). Its minimal sufficient statistics are $\{n_{ij+}\}$, $\{n_{i+k}\}$, and $\{n_{+jk}\}$.
- IPF algorithm has three steps

$$\mu_{ijk}^{(t+1)} = \mu_{ijk}^{(t)} \frac{n_{ij+}}{\mu_{ij+}^{(t)}}, \quad \mu_{ijk}^{(t+2)} = \mu_{ijk}^{(t+1)} \frac{n_{i+k}}{\mu_{i+k}^{(t+1)}}, \quad \mu_{ijk}^{(t+3)} = \mu_{ijk}^{(t+2)} \frac{n_{+jk}}{\mu_{+jk}^{(t+2)}}$$

As the cycle progress, G^2 statistic is monotone decreasing.

The IPF algorithm produces ML estimates.