MODULO 3 – Capítulo 2 SSD

Definiciones

- **SATA III (Serial ATA Revision 3.0)**: Es una interfaz de transferencia de datos utilizada en discos duros y unidades de estado sólido (SSD). Ofrece una velocidad de hasta 6 Gbps y utiliza un conector estándar para unidades de 2.5", 3.5" y mSATA.
- NVMe (Non-Volatile Memory Express): Es un protocolo de comunicación optimizado para memorias flash y SSD, diseñado para aprovechar las ventajas del bus PCIe (PCI Express). NVMe permite velocidades de transferencia mucho mayores en comparación con SATA.

Diferencia entre NVMe y el conector M.2

El término **NVMe** se refiere al protocolo de comunicación, mientras que **M.2** es un formato físico o factor de forma. Un SSD M.2 puede utilizar el protocolo NVMe si se conecta a través de PCIe, o puede usar SATA si está diseñado para ello.

Conector mSATA

El **mSATA (Mini-SATA)** es una variante del conector SATA diseñada para dispositivos compactos, como ultrabooks y tarjetas de expansión. Tiene un formato similar a una tarjeta mini PCIe y permite conectar unidades SSD con tecnología SATA.

NGFF (Next Generation Form Factor)

NGFF es otro nombre para **M.2**, el estándar que reemplazó al mSATA. Soporta tanto interfaces SATA como PCIe/NVMe, dependiendo del diseño del SSD.

Tabla de formatos de SSD (SATA y M.2)

Formato	Interfaz	Descripción
2.5" SATA	SATA III	Factor de forma más común en SSD de consumo.
3.5" SATA	SATA III	Más usado en servidores o almacenamiento de gran capacidad.
mSATA	SATA III	Factor de forma más compacto, usado en ultrabooks y dispositivos embebidos.
M.2 2280	SATA III / PCIe NVMe	El más común en laptops y PC modernas (22 mm de ancho, 80 mm de largo).
M.2 2242	SATA III / PCIe NVMe	Más corto (22 mm de ancho, 42 mm de largo), usado en dispositivos compactos.
M.2 2230	PCIe NVMe	Aún más compacto (30 mm de largo), usado en dispositivos ultracompactos.

Tipos de SSD según tecnología de memoria

Tipo de SSD	Descripción	
SLC (Single-Level Cell)	Almacena 1 bit por celda. Es rápido, duradero y costoso.	
MLC (Multi-Level Cell)	lti-Level Almacena 2 bits por celda. Es un equilibrio entre velocidad, durabilidad costo.	
TLC (Triple-Level Cell)	Almacena 3 bits por celda. Es más barato, pero menos duradero.	
QLC (Quad-Level Almacena 4 bits por celda. Mayor densidad, pero menor rendin vida útil.		
3D NAND	Apila celdas en múltiples capas para mejorar capacidad y rendimiento.	

¿Qué es SSD 3D?

SSD 3D utiliza memoria **3D NAND**, donde las celdas de memoria se apilan verticalmente en múltiples capas, lo que mejora la capacidad, la eficiencia energética y el rendimiento en comparación con la memoria NAND tradicional (2D NAND).

Tabla de tecnologías de capas (SLC, MLC, TLC, QLC, etc.)

Tipo	Bits por celda	Ventajas	Desventajas
SLC	1 bit	Alta velocidad, mayor vida útil	Costoso, menor capacidad
MLC	2 bits	Buen equilibrio de rendimiento y durabilidad	Más lento que SLC
TLC	3 bits	Más barato y alta densidad	Menor durabilidad y rendimiento
QLC	4 bits	Mayor capacidad y menor costo	Velocidad y vida útil reducidas
PLC	5 bits	Máxima densidad y menor costo	Rendimiento y durabilidad muy bajos