BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

(COURSE HANDOUT: PART-II)

Date: 01/08/2016

In addition to Part- I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME G533

Course Title : CONDUCTION AND RADIATION HEAT TRANSFER

Instructor-in-charge: SANTANU PRASAD DATTA

1. Course Description

Heat conduction equations; Eigen value problems; analytical solution of heat conduction equation by Laplace transform, Duhamel's theorem, Fourier transform and separation of variables techniques; contact resistance; transient heat conduction - conduction with moving boundary, solidification and melting; problems with periodic boundary conditions; inverse heat conduction, micro-scale heat transfer; integral equation for radiative exchange; view factors; radiative exchange between surfaces: black surfaces, gray, diffuse partially specular surfaces; radiative properties of participating media: introduction to gas properties, wide band models, total emissivity, particle properties; radiative transfer through participating media: gray, plane-parallel slab; approximate methods; non-gray media.

2. Scope and Objective

To introduce and familiarize students with various analytical methods used as tools to analyse a wide range of engineering applications involving heat transfer by conduction and radiation. Emphasis will be given to understanding and the use of various mathematical techniques needed to develop the exact analytical and appropriate solutions for a broad class of heat conduction and radiation problems. Examples will be discussed to illustrate the applications of various exact solution techniques. In the first half, basics conduction heat transfer equations and analytical methods to the solutions of transient conduction heat transfer with and without heat generation, with moving heat source and phase change will be discussed. In the second half, the theory of radiation heat transfer and analytical methods to the solution of radiation heat exchange between different surfaces with and without participating media will be discussed.

3. Text Books (TBs)

- (a) TB1: M. Necati Ozisik, "Heat Conduction", John Wiley & Sons, 2nd edition, 1993.
- (b) TB2: Michael F. Modest, Radiative Heat Transfer, Academic Press, 2nd edition, 2003.

4. Reference Books (RBs)

- (a) RB1: Latif M. Jiji, "Heat Conduction", Springer, 3rd edition, 2009.
- (b) RB 2: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, "Fundamentals of Heat and Mass Transfer", Wiley, 7th edition, 2011.
- (c) RB2: Muralidhar, K. and Banerjee, J., "Conduction and Radiation", Narosa Publishing House Pvt. Ltd., 2010.
- (d) RB3: Vedat S. Arpaci, "Conduction Heat Transfer", Addison-Wesley, 1991.
- (e) RB4: John R. Howell and Robert Siegel, "Thermal Radiation Heat Transfer", Taylor & Francis, 4th Edition, 2002.

5. Course Plan

Lecture No.	Learning Objectives	Topics to be covered	Chapter Nos.
1-5	Heat conduction equations	Fundamental of conduction heat transfer (CHT)	Ch. 1-3
	with different geometry,	- steady and transient CHT, boundary	(TB1)
	boundary conditions,	conditions, separation of variables, Eigen values	
	solution methodology		
6-14	Different methodologies to	Exact solution of CHT - Duhamel's theorem,	Ch. 5-7
	solve transient and steady	Green's function, Laplace transform, Fourier	(TB1)
	state heat conduction	transform	
15-18	Mathematical modelling of	Application of transient conduction heat transfer	Ch. 10
	moving heat source and	(TCHT) - stationary and moving heat	(TB1)
	heat sink problems	source/sink	
19-22	Phase-change problems	Application of TCHT - moving boundary	Ch. 11
	with variable boundary wall	problems (melting and solidification)	(TB1)
23-26	An overview of inverse	Inverse heat conduction problems (IHCP),	Ch. 14
	heat conduction problems,	micro-scale heat transfer	(TB1)
	heat capacity		
27-29	Fundamentals of radiation,	Fundamental of radiation heat transfer (RHT) –	Ch. 1 &
	basic laws, some definition	radiation characteristics of matter, radiative	3 (TB2)
	of radiative heat transfer	properties of surfaces	
30-31	Definition and method to	View factors	Ch. 4
	evaluate view factor		(TB2)
32-35	Radiative heat exchange	Radiative heat exchange between gray,	Ch. 5-7
	between different surfaces	diffusive, partially-specular and non-gray	(TB2)
		surfaces	
36-38	Equation of radiative	Radiative heat transfer with participating media	Ch. 9
	transfer in participating	 absorbing, emitting and scattering 	(TB2)
	media		
39-40	Radiative properties of	Radiative properties of gases and particles	Ch. 10-
	molecular gases and		11
	particulate media		(TB2)

6. Evaluation Scheme

Evaluation Component	Duration	Weightage	Date & Time	Nature of
	(min.)	(%)		Component
Test-I	60	15%	9/9, 8.30-9.30 AM	Closed Book
Test-II	60	15%	24/10, 8.30-9.30 AM	Closed Book
Assignments	Within 7	20%	To be announced by I/C	Open Book
	days			
Term-project (1)	-	20%	To be announced by I/C	Open Book
Comprehensive Exam	180	30%	03/12 FN	Closed Book

7. Chamber Consultancy Hour

To be announced by I/C in the class.

8. Notices

All notices concerning this course will be displayed in *Mechanical Engineering* notice board. Students are advised to visit regularly *CMS* (institute's web based Course Management System) for all notices and updates.

9. Make-up Policy

Make-up request for tests shall be granted only for the genuine cases with sufficient evidence. Request letter duly signed by the student should reach the under signed well in advance.