1. (1 pt.) The linear regression model below in Equation 1 is used to estimate medical insurance premiums in dollars. What is the exact interpretation of the coefficient for age in years?

$$premium = 400 + 2.1 * blood pressure + 18 * age + 2.3 * blood sugar$$

Equation 1

Holding all other inputs constant, for a one-unit increase in age, average medical insurance premium will increase by 18 dollars on average.

2. (1 pt.) The logistic regression model below in Equation 2 is used to estimate the probability of a medical insurance claim. What is the exact interpretation of the coefficient for age in years?

Equation 2

$$Log \ odds = 1.5$$

 $Odds = e^{1.5} = 4.48$

Holding all other inputs constant, for a one-unit increase in age, the odds of the medical insurance claim change by a factor of 4.48

3. (1 pt.) You are managing a machine learning project. You see that the data scientists on the project are using traditional OLS regression on a wide, dirty data set. You would like to suggest a more contemporary, and potentially more appropriate, approach. You remember learning about elastic net regression in machine learning class, but you'll need to convince your team it's worth evaluating. Draw a line between the two columns below to match the advantages of elastic net regression to the contemporary technique that elastic net incorporates.

Technique Name

Advantage

Iteratively reweighted least squares

Automatic variable selection for wide data

L1/LASSO regularization

More stable model in the presence of outliers

4. (1 pt.) After fitting a logistic regression model, you notice a numeric coefficient with a value of -20.2368.

What is the odds ratio associated with this coefficient?

$$Log \ odds = -20.2368$$

```
DNSC 6314
Spring 2022
Assignment 2
Odds = e^{-20.2368} = 1.62 \times 10^{-9}
```

Should you use this model?

No, the numeric coefficient is very small and would lead to no expected change in the final value

5. (1 pt.) Circle the correct answers: For a dataset with P >> N, *elastic net* / LASSO) regression can select only N features, whereas (elastic net LASSO) can select greater than N features.

6. (1 pt.) Figure 1 below displays the trace plot for a LASSO model that was trained for 220 iterations. The best performance in validation data was observed at 100 iterations.

How many features are selected for the model at 100 iterations?

5

At 100 iterations, how many features have positive standardized coefficients?

5

At 100 iterations, how many features have negative standardized coefficients?

0

Figure 1: A LASSO trace plot with a reference line for the best performing model in validation data. Adapted from *Elements of Statistical Learning*, Figure 3.19.

7. (1 pt.) Circle the term of the Normal Equation below (Equation 3) that is compromised by strong correlation between input features.

$$\mathbf{B} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Equation 3

Rewrite the equation and include the term that equips the formula for L2/ridge regression and addresses the common correlated inputs problem.

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

For questions 8 - 10 refer to the colab notebook that accompanies the assignment. Copy the notebook to your own Google drive. Then ...

• Upload loan_clean.csv used in the class example. (Cell 5)

- Set the X/input features to GRP_REP_home_ownership, GRP_addr_state GRP_purpose, GRP_verification_status, STD_IMP_REP_annual_inc, STD_IMP_REP_delinq_2yrs, STD_IMP_REP_dti, STD_IMP_REP_emp_length, STD_IMP_REP_int_rate, STD_IMP_REP_loan_amnt, STD_IMP_REP_longest_credit_lengt, STD_IMP_REP_revol_util, STD_IMP_REP_term_length, STD_IMP_REP_total_acc. (Cell 11)
- Set the y/target feature to bad loan. (cell 11)
- Set the glm_grid() function to consider the following values for α: 0.01, 0.25, 0.5, 0.99. (Cell 13)
- Use the correct function call for the glm_grid() function. (Cell 15)
- After training, set the most important feature after training and viewing results. (Cell 18)
- After training, input the correct data and use the correct function call to generate a prediction. (Cell 22)

The notebook will perform many regressions in a grid search to find the best values of α and λ for the data. It will generate various results and plots. Use the notebook to fill in the answers below.

8. (1 pt.) What are the selected features and their coefficient values?

Coefficient Name	Value
Intercept	-1.6674288949522607
GRP_REP_home_ownership	0.05141784848056818
GRP_addr_state	-0.0021362779538869722
GRP_purpose	0.02654487017363923
GRP_verification_status	-0.031662109727201154
STD_IMP_REP_annual_inc	-0.22499358162642524
STD_IMP_REP_delinq_2yrs	0.017391027679952722
STD_IMP_REP_dti	0.14304222277838258
STD_IMP_REP_emp_length	-0.00985020949106613
STD_IMP_REP_int_rate	0.39245459250976994
STD_IMP_REP_loan_amnt	0.08583408407021786
STD_IMP_REP_longest_credit_lengt	0.01018959921410591
STD_IMP_REP_revol_util	0.08782326764993052
STD_IMP_REP_term_length	0.1278139935407737
STD_IMP_REP_total_acc	-0.10475492968099663

9. (1 pt.) Which is the most important feature?

STD IMP REP int rate

Assignment 2

10. (1 pt.) What is the prediction for the following new customer? Should you lend to this customer?

Feature	Value
GRP_REP_home_ownership	3
GRP_addr_state	20
GRP_purpose	5
GRP_verification_status	3
STD_IMP_REP_annual_inc	1
STD_IMP_REP_delinq_2yrs	5
STD_IMP_REP_dti	3
STD_IMP_REP_emp_length	-2
STD_IMP_REP_int_rate	4
STD_IMP_REP_loan_amnt	3
STD_IMP_REP_longest_credit_lengt	4
STD_IMP_REP_revol_util	3
STD_IMP_REP_term_length	3
STD_IMP_REP_total_acc	-2

No as the prediction value is 0.82 which translates to it being a bad loan.