## S-gráf alapú ütemező algoritmus párhuzamos hozzárendelést megengedő feladatokhoz

Molnár Gergő Mérnökinformatikus Bsc.

Témavezető:

dr. Hegyháti Máté, tudományos főmunkatárs

Tudományos és Művészeti Diákkör 2019. Széchenyi István Egyetem 2019.11.21.

#### **Tartalom**

- Ütemezési feladatok
- Megoldó módszerek
- S-gráf keretrendszer
- Problémadefiníció
- A megoldó módszer
- Teszteredmények

### Ütemezés



- Általánosan
  - Erőforrások, feladatok, korlátok
- Gyártórendszerek ütemezése
  - > Termékek, berendezések
  - Végrehajtási-, tisztítási-, átállási idők
  - Tárolási irányelvek

### Megoldó módszerek

- MILP (Mixed-Integer Linear Programming) modellek
  - Időfelosztásos (Time discretization based)
  - Precedencia alapú (Precedence based)
- Analízis alapú eszközök
  - Időzített automaták
  - Időzített Petri hálók
- S-gráf keretrendszer

### Az S-gráf keretrendszer

- Irányított gráfon alapuló modell
- Receptek és ütemtervek vizualizációja
- Recept gráf:



### Az S-gráf keretrendszer

- Ütemezési algoritmusok → ütemezési élek
- Ütemezési gráf:



### Throughput maximalizálás

Termékek batch darabszámai alapján konfigurációk



• T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: Sgraph approach," vol. 24, pp. 649 – 654, 2007.

#### Probléma definíció

Heating

Fűtő: 100 kg

Szétválasztó: 100 kg

Reaktor 1: 80 kg

Reaktor 2: 50 kg

Változó batch méret

➤ Több berendezés ugyanahhoz a feladathoz

Feed A

- ➤Összes különböző hozzárendelés rögzítése
- ➤Külön termékként kezelve



#### Probléma definíció

- $3^3 = 27$  rögzített recept
- Összevont esetek a dominált hozzárendelések eltávolítása után

| Eset      | Reakció 1    | Reakció $2$ | Reakció $3$  | Max bevétel    |
|-----------|--------------|-------------|--------------|----------------|
| 4,5,13,14 | $R1 \lor R2$ | R2          | $R1 \lor R2$ | 53,75          |
| 2,11      | $R1 \lor R2$ | R1          | R2           | 71,67          |
| 1,10      | $R1 \lor R2$ | R1          | R1           | 86,00          |
| 16        | R2           | R1&R2       | R1           | 86,00<br>89,58 |
| 7         | R1           | R1&R2       | R1           | 114,67         |
| 9         | R1           | R1&R2       | R1&R2        | 139,75         |

6 recept → 6 termék → 6 dimenziós tér

## Az új megoldó módszer





#### Vezérlő

- N dimenziós rácstér
- Megvalósíthatóság metódus minden rácspontra
- Megvalósíthatatlan rácspont és nagyobbak elvetése
- Nincs revenue line emelés

# Megvalósíthatóság és profitmaximalizáló metódus

- Ütemezés
- Összes megvalósítható megoldás megkeresése
- Nem megvalósítható részütemezések elvetése
  - Időkorlát
  - Profitkorlát
- Elvégzendő feladatok halmaza nem csökken
- Levél: minden berendezés ütemezése lezárt

## Teszteredmények

- Helyes megoldás
- Kisebb feladatokra jobb futási idő



## Teszteredmények

Nagyobb feladatokra rosszabb futási idő



## Teszteredmények

Kevesebb rácspont vizsgálat



# Összefoglalás

- S-gráf keretrendszer és korábbi megoldó módszer bemutatása
- Az új, párhuzamos hozzárendelést megengedő módszer kidolgozása, a keretrendszerbe történő implementálása
- Új módszer tesztelése, majd a régi megoldóval történő összehasonlítása

Köszönöm a figyelmet!