**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

# LEVIFLOW<sup>TM</sup> LFSC-IX MODBUS INTERFACE

Author: Karl Wilhelm

PURPOSE: MODBUS Interface description

**SCOPE**: LEVIFLOW™ Flowmeter LFSC-iX



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

## **Contents:**

| 1 | CC  | DMMUNICATION                                                        | 3  |
|---|-----|---------------------------------------------------------------------|----|
|   | 1.1 | Supported MODBUS functions                                          | 3  |
|   | 1.2 | MODBUS checksum calculation                                         | 3  |
| 2 | INF | PUT REGISTERS                                                       | 4  |
|   | 2.1 | Input register map                                                  | 4  |
|   | 2.1 | .1 Equipment status                                                 | 5  |
|   | 2.2 | Example: Read Input register (MODBUS function 0x04)                 | 6  |
| 3 | НС  | OLD REGISTERS                                                       | 7  |
|   | 3.1 | Hold register map                                                   | 7  |
|   | 3.2 | Example: Read Hold register (MODBUS function 0x03)                  | 11 |
|   | 3.3 | Example: Write Single Hold register (MODBUS function 0x06)          | 12 |
| 4 | CC  | DMMUNICATION PROCEDURES                                             | 13 |
|   | 4.1 | Write parameters                                                    | 13 |
|   | 4.2 | Read current flow                                                   | 14 |
|   | 4.3 | Zero adjustment                                                     | 15 |
|   | 4.4 | Error handling                                                      | 16 |
|   | 4.4 | .1 Equipment status 0x0001: Bubble detected                         | 16 |
|   | 4.4 | .2 Equipment status 0x0002: Measurement Error                       | 16 |
|   | 4.4 | .3 Equipment status 0x0004: Reverse flow                            | 16 |
|   | 4.4 | .4 Equipment status 0x0008: Setting error Fullscale vs. Pulse width | 16 |
|   | 4.4 | ,                                                                   |    |
|   | 4.5 | Get version information                                             | 17 |
| 5 | DE  |                                                                     | 10 |



**Doc. No.** PL-5001-02 **Revision** 03 **Eff. Date** 18-Mai-2022

DCO 22-082

## 1 Communication

LEVIFLOW™ Clamp-On flowmeter supports MODBUS RTU over RS485.

Communication parameters:

| Baudrate  | 57600 |
|-----------|-------|
| Data Bits | 8 Bit |
| Parity    | Even  |
| Stop Bits | 1 Bit |

## 1.1 Supported MODBUS functions

Following MODBUS functions are supported by LEVIFLOW<sup>TM</sup>

| Function code | Description                |
|---------------|----------------------------|
| 03            | Read Hold Registers        |
| 04            | Read Input Registers       |
| 06            | Write Single Hold Register |

A detailed description of the MODBUS protocol and its functions in general can be found here: <a href="http://www.modbus.org/docs/Modbus">http://www.modbus.org/docs/Modbus</a> Application Protocol V1 1b.pdf

#### 1.2 MODBUS checksum calculation

Checksum generation function (c#)

}

return (CRC1 & 0xFFFF);

```
int calculateChecksum(ref Byte[] byteStream, int start, int end)
{
   ushort CRC1 = 0xFFFF;
   for( int i= start; i < end; i++)
   {
      CRC1 = ((ushort)(CRC1 ^ byteStream[i]));
      for (int j = 0; j < 8; j++)
      {
        if ((CRC1 & 1) >0)
        {
            CRC1 = ((ushort)((CRC1 >> 1) ^ 0xA001));
        }
        else
        {
            CRC1 = ((ushort)((CRC1 >> 1)));
      }
}
```

Least significant byte (LSB) of checksum is second to last byte of MODBUS message. Most significant byte (MSB) of checksum is last byte of MODBUS message.

**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

# 2 Input registers

Input registers are read-only. Modbus function 04 is used to read values of input registers.

## 2.1 Input register map

| Regist<br>er<br>No. | Description             | Туре   | Unit     | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default<br>value | Available since Version |
|---------------------|-------------------------|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| 0                   | Equipment status        | ushort | -        | Bit 0 : Bubble detected Bit 1 : Measurement error Bit 2 : Reverse flow Bit 3 : Volume counter pulse set error Bit 4 : Zero adjustment active Bit 5 : Zero adjustment error Bit 6 : currently unused Bit 7 : currently unused Bit 8 : Flow Alarm high Bit 9 : Flow Alarm low Bit 10 : Volume Counter Alarm H Bit 11 : Volume Counter Alarm HH Bit 12 : Output test Bit 13 : currently unused Bit 14 : currently unused Bit 15 : Firmware update active |                  |                         |
| 1                   | Current flow rate       | short  | %        | Current flow rate in percentage of full scale -30000 ~ +30000 ≡ -300.00 ~ 300.00%                                                                                                                                                                                                                                                                                                                                                                     | -                |                         |
| 2                   | Volume Pulse<br>Counter | long   | -        | 0 ~ 4 294 967 295                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                         |
| 4                   | reserved                | short  | -        | 0x0001                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                         |
| 5                   | reserved                | short  | -        | 0x0000                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                |                         |
| 6                   | Temperature             | short  | 1/100 °C | Temperature For example: value 1234 is interpreted as 12.34 °C                                                                                                                                                                                                                                                                                                                                                                                        | -                | 04                      |
| 7                   | Signal strength         | short  | digit    | The signal strength in 0 to 133 % is calculated as: signal strength [%] = signal strength [digit] * 100 * 100 / 8191 / 75                                                                                                                                                                                                                                                                                                                             | -                | 04                      |
| 8<br>9              | Flow in µl/min          | long   | μl/min   | flow value in µl/min<br>(-2147483648 2147483647 µl/min)                                                                                                                                                                                                                                                                                                                                                                                               | -                | 04                      |
| 10                  | reserved                | short  | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                | 04                      |
| 11                  | reserved                | short  | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                | 04                      |
| 12                  | reserved                | short  | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                | 04                      |



Doc. No. PL-5001-02 Revision 03

**Eff. Date** 18-Mai-2022 DCO 22-082

## 2.1.1 Equipment status

| Bit Nr. | Name                           | Description                                                                                                                                                        |
|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 0   | Bubble detected                | Active: Detected bubble in sensor. Stays active while 'bubble detect hold time'                                                                                    |
| Bit 1   | Measurement error              | Active: Sensor signal is abnormal. (Empty sensor, too many bubbles)                                                                                                |
| Bit 2   | Reverse flow                   | Active: Reverse flow                                                                                                                                               |
| Bit 3   | Volume counter pulse set error | Active: Combination of Full scale and Volume Pulse setting is invalid.                                                                                             |
| Bit 4   | Zero adjustment active         | Active: Zero Adjustment is in progress                                                                                                                             |
| Bit 5   | Zero adjustment error          | Not active: Last Zero Adjustment was successful Active: Last Zero Adjustment was not successful because sensor was empty or there were too many bubbles in sensor. |
| Bit 6   | Currently unused               |                                                                                                                                                                    |
| Bit 7   | Currently unused               |                                                                                                                                                                    |
| Bit 8   | Flow Alarm High                | Active: Measured flow is higher than Alarm High level                                                                                                              |
| Bit 9   | Flow Alarm Low                 | Active: Measured flow is lower than Alarm Low level                                                                                                                |
| Bit 10  | Volume Counter Alarm H         | Active: Volume Counter is greater than Volume Counter Alarm H limit (Volume Counter Alarm enabled)                                                                 |
| Bit 11  | Volume Counter Alarm HH        | Active: Volume Counter is greater than Volume Counter Alarm HH limit (Volume Counter Alarm enabled)                                                                |
| Bit 12  | Output test                    | Active: Analog or digital test output is active.                                                                                                                   |
| Bit 13  | Currently unused               |                                                                                                                                                                    |
| Bit 14  | Currently unused               |                                                                                                                                                                    |
| Bit 15  | Firmware update active         | Active: Device is in firmware download mode.                                                                                                                       |

 Doc. No.
 PL-5001-02

 Revision
 03

 Eff. Date
 18-Mai-2022

**Eff. Date** 18-Mai-2022 **DCO** 22-082

## 2.2 Example: Read Input register (MODBUS function 0x04)

LEVIFLOW<sup>TM</sup> Clamp-On flowmeter has device address ID = 3. In this example Input register 0, 1, 2, 3 are read.

→ Start Register 0 and Quantity of Registers = 4

#### **MODBUS** Request:

| Device ID | Function Code | Start Register |      | Quantity of Registers |      | Checksum |      |
|-----------|---------------|----------------|------|-----------------------|------|----------|------|
|           |               | MSB LSB        |      | MSB                   | LSB  | LSB      | MSB  |
| 0x03      | 0x04          | 0x00           | 0x00 | 0x00                  | 0x04 | 0xF0     | 0x2B |

#### MODBUS Response:

| Device<br>ID | Function<br>Code | Byte<br>Count              | Register #1<br>Value |      | Regist<br>Value |      | Regis <sup>*</sup><br>Value |      | Regist<br>Value | ter #4 | Check | sum  |
|--------------|------------------|----------------------------|----------------------|------|-----------------|------|-----------------------------|------|-----------------|--------|-------|------|
|              |                  | (Nr. of<br>value<br>bytes) | MSB                  | LSB  | MSB             | LSB  | MSB                         | LSB  | MSB             | LSB    | LSB   | MSB  |
| 0x03         | 0x04             | 0x08                       | 0x00                 | 0x00 | 0x05            | 0x6F | 0x00                        | 0x00 | 0x03            | 0xC2   | 0x7A  | 0x88 |

→ Input register 0: Equipment Status 0x0000h

Input register 1: Current flow rate  $0x056Fh = 1391 \equiv 13.91 \%$ 

Input register 2: Volume Pulse Counter (most significant short) 0x0000h
Input register 3: Volume Pulse Counter (least significant short) 0x03C2h

→ Volume Pulse Counter 0x000003C2h = 962 pulses

#### MODBUS Error Response:

| Device | Function | Exception | Check | ksum |
|--------|----------|-----------|-------|------|
| ID     | Code     | Code      | LSB   | MSB  |
| 0x03   | 0x84     |           |       |      |

Exception Code: 02 Invalid Start Register

03 Invalid combination (Start Register + Quantity of Registers)

Doc. No. PL-5001-02 Revision 03

**Eff. Date** 18-Mai-2022 DCO 22-082

# 3 Hold registers

Hold registers are writable. MODBUS function 03 is used to read values of hold registers. MODBUS function 06 writes to a single register.

## 3.1 Hold register map

|                 | Parameter Name                     | Туре   | Unit    | Description                                                                                                                                                                                     | Default              | Available        |
|-----------------|------------------------------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| Register<br>No. | T drameter Hame                    | Турс   | O I III | Description                                                                                                                                                                                     | value for<br>LFSC-iX | since<br>Version |
| 0               | Control                            | ushort | -       | Bit 0: 0 = Normal. 1= Zero adjust mode (See 4.3 Zero adjustment)  Bit 2: 0 = Normal. 1 = Reset (Use to reset converter)  Bit 5: 0 = Normal. 1 = Factory setting                                 | 0000h                |                  |
| 1               | Sensor Type                        | short  | -       | (Use to set converter into default setting)  100 = LFSC-i06X  101 = LFSC-i10X  103 = LFSC-i14X  104 = LFSC-i16X  105 = LFSC-i19X  106 = LFSC-i25X  107 = LFSC-i35X                              | 100                  |                  |
| 3               | Full Scale                         | long   | L/min   | 0.010 ~ 500.000 = 10 ~ 500000                                                                                                                                                                   | 10.000               |                  |
| 4               | Currently unused                   | short  | -       |                                                                                                                                                                                                 | 0                    |                  |
| 5               | Currently unused                   | short  |         |                                                                                                                                                                                                 | 0                    |                  |
| 6               | K Factor                           | short  | -       | 0.100 ~ 30.000 = 0 ~ 30000                                                                                                                                                                      | 1.000                |                  |
| 7               | Damping Time                       | short  | S       | 0 = No damping time<br>0.1 ~ 25.0s = 1 ~ 250                                                                                                                                                    | 2.0                  |                  |
| 8               | Low Cutoff                         | short  | %       | 0 = No low cut-off<br>0.1 ~ 25.0%FS = 1 ~ 250                                                                                                                                                   | 2.0                  |                  |
| 9               | Measurement Error Ignore Time      | short  | s       | 0 = No hold<br>1 ~ 99s                                                                                                                                                                          | 10                   |                  |
| 10              | Flow Level on<br>Measurement Error | short  | -       | 0 = 0 % Output<br>1= -25% Output,<br>2 = 105% Output<br>3 = Hold                                                                                                                                | 0                    |                  |
| 11              | Bubble Detect Hold Time            | ushort | s       | 0 = No hold<br>1 ~ 99s                                                                                                                                                                          | 0                    |                  |
| 12              | Digital Output 1 signal logic      | ushort | -       | 0 = N.O.<br>1 = N.C.                                                                                                                                                                            | 0000h                |                  |
| 13              | Digital Output 2 signal logic      | ushort | -       | 0 = N.O.<br>1 = N.C.                                                                                                                                                                            | 0000h                |                  |
| 14              | AGC-control                        | ushort | -       | Bit0 = 0 no agc control enabled<br>Bit1 = 1 agc control enabled if implemented in sensor                                                                                                        | 0                    | 04               |
| 15              | Digital Input Setting              | ushort | -       | 0 = Volume Counter reset<br>1 = Zero Adjust<br>2 = Inverse flow                                                                                                                                 | 1                    |                  |
| 16              | Analog Output Setting              | short  | -       | Bit0: 0 = Analog Out1 4/20mA<br>Bit0: 1= Analog Out1 0/20mA<br>Bit8: 0 = Analog Out2 4/20mA<br>Bit8: 1= Analog Out2 0/20mA                                                                      | 0                    | 08               |
| 17              | Digital Output 1 Setting           | short  | -       | 0 = Flow Alarm High 1 = Flow Alarm Low 2 = Vol. Counter Alarm H 3 = Vol. Counter Alarm HH 4 = Vol. Counter Pulse 5 = Measurement Error 6 = Flow as Frequency 7 = Bubble detect 8 = Custom Value | 5                    |                  |



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

|      |                           |          |                                                  |                                                     |       | ,        |
|------|---------------------------|----------|--------------------------------------------------|-----------------------------------------------------|-------|----------|
| 18   | Digital Output 2 Setting  | short    | -                                                | 0 = Flow Alarm High                                 | 0     |          |
|      |                           |          |                                                  | 1 = Flow Alarm Low                                  |       |          |
|      |                           |          |                                                  | 2 = Vol. Counter Alarm H                            |       |          |
|      |                           |          |                                                  | 3 = Vol. Counter Alarm HH                           |       |          |
|      |                           |          |                                                  | 4 = Vol. Counter Pulse                              |       |          |
|      |                           |          |                                                  | 5 = Measurement Error                               |       |          |
|      |                           |          |                                                  | 6 = Flow as Frequency                               |       |          |
|      |                           |          |                                                  | 7 = Bubble detect                                   |       |          |
|      |                           |          |                                                  | 8 = Custom Value                                    |       |          |
| 19   | Flow Alarm High Value     | short    | %                                                | 0.0 ~ 125.0% of FS = 0 ~ 1250                       | 105.0 |          |
| 20   | Flow Alarm Low Value      | short    | %                                                | -10.0 ~ 125.0% of FS = -100 ~ 1250                  | -5.0  |          |
| 21   | Alarm Hysteresis          | short    | %                                                | 0.0 ~ 20.0 = 0 ~ 200                                | 0.0   |          |
|      | Currently unused          |          | -                                                | 0.0 1 20.0 = 0 1 200                                |       |          |
| 22   | ,                         | short    |                                                  |                                                     | 0     |          |
| 23   | Currently unused          | short    | -                                                |                                                     | 0     |          |
| 24   | Volume Counter Enable     | short    | -                                                | 0 = No                                              | 0     |          |
|      |                           |          |                                                  | 1 = Yes                                             |       |          |
| 25   | Volume Counter Reset      | short    | -                                                | 0 = No                                              | 0     |          |
|      |                           |          |                                                  | 1 = Yes                                             |       |          |
|      |                           |          |                                                  | (After reset, it returns to "No" automatically)     |       |          |
| 26   | Volume Counter Base Unit  | short    | -                                                | 0 = mL                                              | 0     |          |
|      |                           |          |                                                  | 1 = L                                               |       |          |
|      |                           |          |                                                  | 2 = m3                                              |       |          |
| 27   | Volume Counter Multiplier | short    | -                                                | 0 = x0.1                                            | 0     |          |
|      | Factor                    |          |                                                  | 1 = x1                                              |       |          |
|      |                           |          |                                                  | 2 = x10                                             |       |          |
|      |                           |          |                                                  | 3 = x100                                            |       |          |
|      |                           |          |                                                  | 4 = x1000                                           |       |          |
|      |                           |          |                                                  | 5 = x0.01                                           |       |          |
| 28   | Volume Counter Pulse      | short    | _                                                | 0 = 0.5 ms(Max.  1000 Hz)                           | 0     |          |
| 20   | Length                    | 311011   | _                                                | 1 = 50 ms(Max.  1000 Hz)                            | U     |          |
|      | Lengin                    |          |                                                  | 2 = 100 ms(Max.  1012)                              |       |          |
| 20   | Volume Counter Alarm      | oh ort   |                                                  | 0 = No                                              | 0     |          |
| 29   |                           | short    | -                                                |                                                     | 0     |          |
|      | Enable                    |          |                                                  | 1 = Yes                                             | •     |          |
| 30   | Volume Counter Alarm H    | long     | -                                                | 0 ~ 4 294 967 295                                   | 0     |          |
| 31   | Value                     |          |                                                  |                                                     |       |          |
| 32   | Volume Counter Alarm HH   | long     | -                                                | 0 ~ 4 294 967 295                                   | 0     |          |
| 33   | Value                     |          |                                                  |                                                     |       |          |
| 34 - | Currently unused          | short    | -                                                |                                                     | 0     |          |
| 35   |                           |          |                                                  |                                                     |       |          |
| 36   | RS485 Baud Rate           | Short    | -                                                | 0 = 57600bps, 1 = 38400bps, 2 = 19200bps, 3 =       | 0     | 04       |
|      |                           |          |                                                  | 9600bps, 4 = 115200bps                              |       |          |
| 37   | Number of User Linearizer | short    |                                                  | 0 = No linearizer, 1 15 = Number of user linearizer | 0     | 04       |
| 0.   |                           | 0.1011   |                                                  | points                                              |       |          |
| 38   | Linearizer Output 1       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 39   | Linearizer Gulput 1       | long     | μι/ιιιιι                                         | 0 2147400047                                        | U     | 04       |
| 40   | Linearizer Input 1        | long     | ul /min                                          | 0 2147483647                                        | 0     | 04       |
|      | Lineanzer input i         | long     | μl /min                                          | 0 2147403047                                        | U     | 04       |
| 41   |                           | <b>.</b> | <del>                                     </del> | 0.047400047                                         | _     | 0.1      |
| 42   | Linearizer Output 2       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 43   |                           |          |                                                  |                                                     | 1     |          |
| 44   | Linearizer Input 2        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 45   |                           |          | <u></u>                                          |                                                     |       | <u> </u> |
| 46   | Linearizer Output 3       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 47   | ·                         |          | l <sup>'</sup>                                   |                                                     |       |          |
| 48   | Linearizer Input 3        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 49   | 1                         | 9        | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '            |                                                     | _     | [        |
| 50   | Linearizer Output 4       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 51   |                           | long     | M. ,                                             | 5 2 · . / 1000 //                                   |       |          |
| 52   | Linearizer Input 4        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
|      | Lineanzer input 4         | long     | μι /!!!!!                                        | U 217/40304/                                        |       | 04       |
| 53   | Lincorizor Outrot 5       | 1        |                                                  | 0 04.47402647                                       |       | 04       |
| 54   | Linearizer Output 5       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 55   |                           | ļ .      | <del> </del>                                     |                                                     |       |          |
| 56   | Linearizer Input 5        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 57   |                           |          |                                                  |                                                     | ļ     |          |
| 58   | Linearizer Output 6       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 59   |                           |          |                                                  |                                                     |       |          |
| 60   | Linearizer Input 6        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 61   |                           |          |                                                  |                                                     |       |          |
| 62   | Linearizer Output 7       | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 63   | i                         |          | l                                                |                                                     |       |          |
| 64   | Linearizer Input 7        | long     | μl /min                                          | 0 2147483647                                        | 0     | 04       |
| 65   | 1                         | .59      |                                                  |                                                     |       | • •      |
|      | l                         | 1        | l                                                | 1                                                   | i     | ı        |



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

| 66             | Linearizer Output 8                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
|----------------|------------------------------------------------|----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 67<br>68<br>69 | Linearizer Input 8                             | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 70<br>71       | Linearizer Output 9                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 72<br>73       | Linearizer Input 9                             | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 74<br>75       | Linearizer Output 10                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 76<br>77       | Linearizer Input 10                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 78<br>79       | Linearizer Output 11                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 80<br>81       | Linearizer Input 11                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 82<br>83       | Linearizer Output 12                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 84<br>85       | Linearizer Input 12                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 86<br>87       | Linearizer Output 13                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 88<br>89       | Linearizer Input 13                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 90<br>91       | Linearizer Output 14                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 92<br>93       | Linearizer Input 14                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 94<br>95       | Linearizer Output 15                           | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 96<br>97       | Linearizer Input 15                            | long           | μl /min   | 0 2147483647                                                                                                                                                                                                                                                                    | 0     | 04       |
| 98             | Dig. Out 1 Custom Value                        | ushort         | -         | Every bit from equipment status can be linked to digital output 1 (bitwise activation). "Custom value" has to be set in hold register 17 to activate this register.                                                                                                             | 0000h |          |
| 99             | Dig. Out 2 Custom Value                        | ushort         | -         | Every bit from equipment status can be linked to digital output 2 (bitwise activation). "Custom value" has to be set in hold register 18 to activate this register.                                                                                                             | 0000h |          |
| 100            | Flow control                                   | ushort         | -         | Bit 0: 0 normal operation<br>Bit 0: 1 flow inverted                                                                                                                                                                                                                             | 0     | 80       |
| 101            | Currently unused                               | short          | -         |                                                                                                                                                                                                                                                                                 | 0     |          |
| 102            | Output Test                                    | ushort         | -         | Bit 0 : Analog output test, 0 = Off, 1 = On Bit 1 : Digital output 1 test, 0 = Off, 1 = On (Flashing) Bit 2 : Digital output 2 test, 0 = Off, 1 = On (Flashing) Bit 3 : Digital output 1 test, 0 = Off, 1 = On (Steady) Bit 4 : Digital output 2 test, 0 = Off, 1 = On (Steady) | 0     |          |
| 103            | Analog Output Test Value                       | short          | -         | -310.0 ~ 310.0% FS = -3100 ~ 3100                                                                                                                                                                                                                                               | 0.0   |          |
| 104            | Analog Out1 0mA adjust                         | short          | mA<br>m A | +/- 1.00 mA = +/- 100                                                                                                                                                                                                                                                           | 0     | 08<br>08 |
| 105<br>106     | Analog Out1 4mA adjust Analog Out1 20mA adjust | short<br>short | mA<br>mA  | +/- 1.00 mA = +/- 100<br>+/- 1.00 mA = +/- 100                                                                                                                                                                                                                                  | 0     | 08       |
| 107            | Analog Out2 OmA adjust                         | short          | mA        | +/- 1.00 mA = +/- 100<br>+/- 1.00 mA = +/- 100                                                                                                                                                                                                                                  | 0     | 08       |
| 108            | Analog Out2 4mA adjust                         | short          | mA        | +/- 1.00 mA = +/- 100                                                                                                                                                                                                                                                           | 0     | 08       |
| 109            | Analog Out2 20mA adjust                        | short          | mA        | +/- 1.00 mA = +/- 100                                                                                                                                                                                                                                                           | 0     | 08       |
| 110<br>118     | Currently unused                               |                |           |                                                                                                                                                                                                                                                                                 | 0     |          |
| 119            | Converter serialnumber                         | ushort         | -         | 16 characters ASCII code, two characters stored in                                                                                                                                                                                                                              | 0000h |          |
| 120            |                                                |                |           | each register (high byte, low byte).                                                                                                                                                                                                                                            |       |          |
| 121            |                                                |                |           | First show stored in held register 440 LPst had-                                                                                                                                                                                                                                |       |          |
| 122            |                                                |                |           | First char. stored in hold register 119 High byte Last char. stored in hold register 126 Low byte                                                                                                                                                                               |       |          |
| 123<br>124     |                                                |                |           | Last onat. Stored in Hold register 120 LOW byte                                                                                                                                                                                                                                 |       |          |
| 125            |                                                |                |           |                                                                                                                                                                                                                                                                                 |       |          |
| 126            |                                                |                |           |                                                                                                                                                                                                                                                                                 |       |          |
| 127            | LFSC-iX Modbus Device                          | ushort         | -         | 1~99 (0 is not allowed)                                                                                                                                                                                                                                                         | 3     |          |
| 128 -          | Address Currently unused                       | short          | _         | , , ,                                                                                                                                                                                                                                                                           | 0     |          |
| 187            | Reserved                                       | short          | -         |                                                                                                                                                                                                                                                                                 | 0     |          |
| 189            | Reserved                                       | short          | -         |                                                                                                                                                                                                                                                                                 | 0     |          |
| 103            | 1.0001700                                      | JIIJI          | 1         | <u>l</u>                                                                                                                                                                                                                                                                        | v     |          |



 Doc. No.
 PL-5001-02

 Revision
 03

 Eff. Date
 18-Mai-2022

22-082

DCO

|              | 1                         |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |
|--------------|---------------------------|-------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 190          | Reserved                  | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 191          | Reserved                  | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 192          | Reserved                  | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 193          | Reserved                  | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 194 -<br>203 | Currently unused          | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 204          | Calibration set selection | short | - | 0 = Calibration Set 1 (Silicone, 20°C) 1 = Calibration Set 2 (Silicone, 37°C) 2 = Calibration Set 3 (CFlex, 20°C) 3 = Calibration Set 4 (CFlex, 37°C) 4 = Calibration Set 5 5 = Calibration Set 6 6 = Calibration Set 7 (AdvantaFlex, 20°C) 7 = Calibration Set 8 (AdvantaFlex, 37°C)  After changing "calibration set" the new calibration set data gets read from sensor and new calibration set selection is stored to sensor. | 0 |  |
| 205 -        | Currently unused          | short | - |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 |  |
| 255          |                           |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |

Each hold register addresses a 16-bit (short) value. All parameters are non-volatile and stored in FRAM.

All not described Hold-Registers are currently unused or used for internal purposes. Please do not access undescribed Hold-Registers.

Doc. No. PL-5001-02 Revision 03 Fff Date 18-Mai-2022

Eff. Date 18-Mai-2022 DCO 22-082

## 3.2 Example: Read Hold register (MODBUS function 0x03)

LEVIFLOW™ Clamp-On flowmeter has device address ID = 3. In this example Hold register 7 is read.

→ Start Register 7 and Quantity of Registers = 1

#### **MODBUS** Request:

| Device ID | Function Code | Start Register |      | Quantity of Registers |      | Checksum |      |
|-----------|---------------|----------------|------|-----------------------|------|----------|------|
|           |               | MSB            | LSB  | MSB                   | LSB  | LSB      | MSB  |
| 0x03      | 0x03          | 0x00           | 0x07 | 0x00                  | 0x01 | 0x34     | 0x29 |

MODBUS Response:

| Device<br>ID | Function<br>Code | Byte<br>Count              | Regist<br>Value | ter #1 | Check | sum  |
|--------------|------------------|----------------------------|-----------------|--------|-------|------|
|              |                  | (Nr. Of<br>value<br>bytes) | MSB             | LSB    | LSB   | MSB  |
| 0x03         | 0x03             | 0x02                       | 0x00            | 0x02   | 0x40  | 0x45 |

→ Hold register 7: Damping time

 $0x0002h = 2 \equiv 0.2 \text{ sec}$ 

MODBUS Error Response:

| Device Function Code Exception Checksum Code LSB MSB | 0x03   | 0x83     |           |       |      |
|------------------------------------------------------|--------|----------|-----------|-------|------|
| Device Function Exception Checksum                   | ID     | Code     | Code      | LSB   | MSB  |
|                                                      | Device | Function | Exception | Check | ksum |

Exception Code: 02 Invalid Start Register

03 Invalid combination (Start Register + Quantity of Registers)



Doc. No. PL-5001-02 Revision 03 Eff. Date

18-Mai-2022 DCO 22-082

## 3.3 Example: Write Single Hold register (MODBUS function 0x06)

LEVIFLOW<sup>TM</sup> Clamp-On flowmeter has device address ID = 3. In this example Hold register 7 is

→ Write value 10 into Hold register 7

#### **MODBUS** Request:

| Device ID | F | unction Code | Register |      | Register Value |      | Checksum |      |
|-----------|---|--------------|----------|------|----------------|------|----------|------|
|           |   |              | MSB      | LSB  | MSB            | LSB  | LSB      | MSB  |
| 0x03      |   | 0x06         | 0x00     | 0x07 | 0x00           | 0x0A | 0xB9     | 0xEE |

#### **MODBUS** Response:

| Device ID | Function Code | Register |      | Register Value |      | Checksum |      |
|-----------|---------------|----------|------|----------------|------|----------|------|
|           |               | MSB      | LSB  | MSB            | LSB  | LSB      | MSB  |
| 0x03      | 0x06          | 0x00     | 0x07 | 0x00           | 0x0A | 0xB9     | 0xEE |

Wrote value 10 to Hold register 7:

Damping time  $0x000Ah = 10 \equiv 1.0 \text{ sec}$ 

#### MODBUS Error Response:

| Device |      | Exception | Checksum |     |  |
|--------|------|-----------|----------|-----|--|
| ID     | Code | Code      | LSB      | MSB |  |
| 0x03   | 0x86 |           |          |     |  |

**Exception Code:** 02 Invalid Start Register

03 Invalid combination (Start Register + Quantity of Registers)

05 Impossible to execute.



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

# 4 Communication procedures

This chapter describes the most important communication procedures. The LEVIFLOW<sup>TM</sup> Clamp-On flowmeter has MODBUS device address ID = 0x03.

## 4.1 Write parameters



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

#### 4.2 Read current flow

Input register 1 contains the current measured flow in percentage of the full scale.



Doc. No. PL-5001-02 Revision 03

**Revision** 03 **Eff. Date** 18-Mai-2022 **DCO** 22-082

## 4.3 Zero adjustment

For a successful Zero flow adjustment, make sure that sensor is completely filled with liquid.

Trigger zero adjustment by setting 'zero adjustment bit' of control register.

Then check equipment status until Bit 4 of Equipment status register is 0, which means the adjustment procedure has finished.

Bit 5 of Equipment status contains the result of the zero adjustment.



**Doc. No.** PL-5001-02 **Revision** 03

**Eff. Date** 18-Mai-2022 **DCO** 22-082

## 4.4 Error handling

#### 4.4.1 Equipment status 0x0001: Bubble detected

LEVIFLOW<sup>TM</sup> Clamp-On flowmeter detected a bubble in sensor. Actually, this isn't an error. Once a bubble was detected, bit stays active during 'Bubble detect hold time'. LEVIFLOW<sup>TM</sup> Clamp-On flowmeter tolerates bubbles up to a certain amount and size. If flow measurement is impossible 'Measurement Error' gets active.

#### 4.4.2 Equipment status 0x0002: Measurement Error

Sensor signal is abnormal. This error can have multiple reasons:

- 1. Sensor is empty.
- 2. There are too many bubbles or particles in sensor.

#### 4.4.3 Equipment status 0x0004: Reverse flow

LEVIFLOW<sup>TM</sup> Clamp-On flowmeter measures reverse flow (Out  $\rightarrow$  In). This isn't an actual error, but it can be a sign of misconfiguration if there's no physical reverse flow.

Misconfiguration could be:

- 1. Zero adjustment was done while there was still a flow. Reverse flow is detected, if flow rate is below the flow rate measured during zero adjustment. → No flow during Zero adjustment
- 2. Sensor is mounted the opposite way around.

#### 4.4.4 Equipment status 0x0008: Setting error Fullscale vs. Pulse width

Volume Counter is enabled and its pulse length, multiplier factor and base unit (Hold registers 26, 27 and 28) combination doesn't fit to the current Fullscale.

For example, Volume Counter pulse width is set to 50ms which allows maximum 10 pulses per sec and at the same time a Volume pulse represents 0.1 ml (multiplier factor 0.1, base unit ml) and Fullscale is 4 L/min. With this setting combination the current flow can't be represented in pulses, because the Fullscale is too big. Up to 667 pulses per second are needed.

| Pulse  | Pulse | Volume |             | Maximum Full Scale[L/min] |                |                    |                   |                    |  |  |
|--------|-------|--------|-------------|---------------------------|----------------|--------------------|-------------------|--------------------|--|--|
| length | rate  | base   |             |                           | N              | /lultiplier factor |                   |                    |  |  |
| [ms]   | [pps] | unit   | 0.01        | 0.1                       | 1              | 10                 | 100               | 1000               |  |  |
| 0.5    | 1000  | mL     | 0.6         | 6.000                     | 60.000         | 600.000            | 6'000.000         | 60,000.000         |  |  |
| 0.5    | 1000  | Ш      | 600.000     | 6'000.000                 | 60'000.000     | 600'000.000        | 6'000'000.000     | 60'000'000.000     |  |  |
| 0.5    | 1000  | m3     | 600,000.000 | 6'000'000.000             | 60'000'000.000 | 600'000'000.000    | 6'000'000'000.000 | 60'000'000'000.000 |  |  |
| 50     | 10    | mL     | 0.006       | 0.060                     | 0.600          | 6.000              | 60.000            | 600.000            |  |  |
| 50     | 10    | Ш      | 6.000       | 60.000                    | 600.000        | 6'000.000          | 60'000.000        | 600,000.000        |  |  |
| 50     | 10    | m3     | 6'000.000   | 60'000.000                | 600'000.000    | 6'000'000.000      | 60'000'000.000    | 600'000'000.000    |  |  |
| 100    | 5     | mL     | 0.003       | 0.030                     | 0.300          | 3.000              | 30.000            | 300.000            |  |  |
| 100    | 5     | L      | 3.000       | 30.000                    | 300.000        | 3'000.000          | 30'000.000        | 300,000.000        |  |  |
| 100    | 5     | m3     | 3'000.000   | 30'000.000                | 300'000.000    | 3'000'000.000      | 30,000,000.000    | 300'000'000.000    |  |  |



**Doc. No.** PL-5001-02 **Revision** 03 **Eff. Date** 18-Mai-2022

**DCO** 22-082

#### 4.4.5 Equipment status 0x0020: Zero adjustment error

Last Zero Adjustment failed because:

There was no liquid or too many bubbles in sensor during last Zero adjustment.
 → The sensor needs to be filled with liquid and the Zero adjustment restarted.

#### 4.5 Get version information

The version information of the LFSC-iX sensor is stored in the hold register 4097. Reading the hold register 4097 transmits the version register (type ushort) to the host system.

The most significant byte of the version register shows the FPGA version.

The least significant byte of the version register shows the hardware version of the LFSC-iX sensor.

#### For example:

Reading hold register 4097 (hexadecimal 0x1001) transmits the value 1026 to the host system. The Version number 1026 is interpreted as hexadecimal 0x0402. This means the version of the FPGA configuration is 0x04 and the version of the LFSC-iX hardware is 0x02.

Doc. No. PL-5001-02 Revision 03

**Eff. Date** 18-Mai-2022 DCO 22-082

# **5 REVISION HISTORY**

| Rev. | DCO No. | DCO Author  | Effectivity Date | Summary Description of Changes                                                                                                                                            |
|------|---------|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00   | 19-189  | E. Hoffmann | 11-Oct-2019      | First Release                                                                                                                                                             |
| 01   | 20-218  | K. Wilhelm  | 20-Oct-2020      | Firmware 04 features added                                                                                                                                                |
| 02   | 20-256  | K. Wilhelm  | 10-Nov-2020      | Zero Adjustment link added;<br>4.5 Get version information added                                                                                                          |
| 03   | 22-082  | K. Wilhelm  | 18-Mai-2022      | Flow unit changed to µl/min Hold register 14 AGC control defined Hold register 15 and 16 enhanced Hold register 100 flow control defined Hold register 104 to 109 defined |