Whole Dataset Evaluation:

code	name	rule	native units	notes
amae	Average MAE	$MAE_{avg} = \frac{1}{PN} \sum_{p=1}^{P} \sum_{i=1}^{N} d_i^p - y_i^p $	yes	Average Mean Absolute Error over all outputs and all patterns in native units.
aed	Average ED	$ED_{avg} = \frac{1}{p} \sum_{p=1}^{p} \sqrt{\sum_{i=1}^{N} (d_i^p - y_i^p)^2}$	yes	Average Euclidean Distance over all patterns in native units.
amse	Average MSE	$MSE_{avg} = \frac{1}{PN} \sum_{p=1}^{P} \sum_{i=1}^{N} (d_i^p - y_i^p)^2$	no	
armse	Average RMSE	$RMSE_{avg} = \frac{1}{P} \sum_{p=1}^{P} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (d_i^p - y_i^p)^2}$	no	
mmae	Median MAE	$MAE_{med} = \underset{p=1}{\overset{p}{M}} d \left(\frac{1}{N} \sum_{i=1}^{N} d_i^p - y_i^p \right)$	yes	MAE error of the average pattern in native units.
t10mae	Top 10% MAE	$MAE_{top10} = \underset{p \in \underset{10\%}{\text{Min}}^{P}}{\text{Max}} \left(\frac{1}{N} \sum_{i=1}^{N} d_{i}^{p} - y_{i}^{p} \right)$	yes	Error of the last from the top 10% in native units.

1/3 R. Jakša 2019

Evaluation of Single Pattern:

code	name	rule	native units	notes
mae	Mean Absolute Error	$MAE = \frac{1}{N} \sum_{i=1}^{N} d_i - y_i $	yes	Average output error in native units, Manhattan distance without the $1/N$ averaging.
ed	Euclidean Distance	$ED = \sqrt{\sum_{i=1}^{N} (d_i - y_i)^2}$	yes	Euclidean Distance between desired and actual outputs in native units.
mse	Mean Square Error	$MSE = \frac{1}{N} \sum_{i=1}^{N} (d_i - y_i)^2$	no	Error function for LMS algorithms.
rmse	Root Mean Square Error	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (d_i - y_i)^2}$	no	

2/3 R. Jakša 2019

Symbols:

 d_i^p Desired value of *i*-th output from the *p*-th pattern.

 y_i^p Actual value of *i*-th output from the *p*-th pattern.

Number of outputs.

P Number of patterns in the dataset.

 $\operatorname{Md}_{p=1}^{p} \left(f(y^{p}) \right) \qquad \operatorname{Median value of } f \text{ for all values of } y^{p} \text{ between } p = 1 \text{ to } P.$

 $\max_{p \in \text{Min}_{p}^{p}} \left(f(y^{p}) \right)$ Maximum from minimal 10% of f for all y^{p} between p = 1 to P.