

Что находится на эмблеме факультета?

Как разрабатывают аппаратуру?

Микроархитектуру разрабатывают на языке описания аппаратуры (HDL – Hardware Description Language)

Описание микроархитектуры так же часто называют RTL (Register-Transfer Level)

Из **RTL** синтезируют цифровую схему

Пример RTL модуля на SystemVerilog

```
module mux (
    input logic a, b, sel,
    output logic f
    logic n sel, f1, f2;
    assign sel = ~n sel;
    assign f1 = a & n sel;
    assign f2 = b & sel;
     assign f = f1 \mid f2;
endmodule
```


RTL готов — отправляем на tapeout

- 1. Синтезирование из RTL цифровой схемы (на уровне транзисторов) с использованием стандартной библиотеки под конкретную фабрику
- 2. Проектирование физического расположения проводов и базовых элементов
- 3. Изготовление фотомаски (tapeout)

Стандартная библиотека — набор базовых элементов, оптимизированных на физическом уровне

RTL блоки

RTL

Чип

Первый инженерный образец

Ура, отгружаем заказчикам!

Или не все так радужно?...

А что вообще у нас получилось?

Обсуждение: а как тестировать?

Какие виды тестирования вы знаете?

Обсуждение: классификация тестирования

- Функциональное
 - Компонентов (модульное/unit)
 - BPU
 - Декодер
 - АЛУ
 - Кеши
 - Интеграционное
 - АЛУ + декодер
 - Системное (end-to-end)
 - Тестирование процессора целиком как единой системы

Достаточно ли этого?

Классификация тестирования микропроцессора

- Функциональное
 - Компонентов (модульное/unit)
 - Интеграционное
 - Системное (end-to-end)
- Производительности процессор может выполнить заявленное количество операций в секунду
- Стабильности процессор способен работать долгое время и не зависать
- Стресс-тестирование процессор выдерживает высокую нагрузку, не зависает и не плавится

Объект тестирования	Вид тестирования
Результат выполнения инструкций	
Работа с периферией	
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	Стресс
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	Стресс
Время выполнения инструкций	Производительность

Инструменты для тестирования

Вид тестирования	Инструменты
Unit, интеграционное	Testbench
Системное	VCS, FPGA
Потребляемая мощность	Power модель, вольтметр + амперметр
Время выполнения инструкции	perf, llvm-exegesis

Поэтапное тестирование

- Sanity
- Дымовое (smoke)
- Регрессионное
- Приемное (релизное)

Обсуждение: как проверить результат теста?

• Сколько тестов вы сможете проверить вручную за час?

Обсуждение: как проверить результат теста?

• Сколько тестов вы сможете проверить вручную за час?

- Средний запуск тестирования включает миллионы тестов
- Оцените сколько будет стоить верификация одного запуска тестов, если один час работы верификатора стоит 12\$

• Предложите как можно упростить проверку тестов?

Обсуждение: упрощение проверки тестов

- Основной подход в автоматизированной проверке результатов теста – Model Checking
- Model Checking подразумевает наличие референсной модели (поведение модели считается эталонным)
- При данном подходе с помощью набора тестов происходит сравнение поведения тестируемого объекта с моделью
- В случае тестирования микропроцессора в качестве модели выступают различные симуляторы

Модель или симулятор?

В рамках данного курса:

Модель:

- Моделирует конкретные аспекты системы
- Надо настраивать и конфигурировать вручную

Симулятор:

- Имитирует работу вычислительной системы целиком
- Обеспечивает окружение для выполнения

To be continued ...

На следующем занятии узнаем

- Какими бывают разные симуляторы
- В каких сценариях применяются разные симуляторы
- Как отличается производительность разных симуляторов
- Как проверить что вы написали корректный симулятор

Задание к следующему занятию

Выкачать образ с предустановленными симуляторами:

docker pull ghcr.io/riscv-technologies-lab/rv_tools_image:1.0.10

Список литературы

- The RISC-V Instruction Set Manual Volume I Unprivileged Architecture Version 20240411
- Харрис Д. М., Харрис Д. Цифровая схемотехника и архитектура компьютера RISC-V. 2022.
- Baier C., Katoen J. P. Principles of model checking. MIT press, 2008.
- Электрические свойства полупроводников и полупроводниковые приборы : учеб. пособие / В. Г. Шинкаренко. М. : МФТИ, 2016.