Departamento de Matemática - UFV MAT 131 - Introdução à Álgebra

RELAÇÕES ENTRE CONJUNTOS

(1) INCLUSÃO: $A \subset B \iff (\forall x \in A, x \in A \implies x \in B)$

Atenção: $A \not\subset B \iff (\exists x \in A, x \in A \land x \notin B)$

PROPRIEDADES

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2) A \subset A, \forall A$
3) $A \subset B \in B \subset C \Longrightarrow A \subset C$	4) $A \subset B \in B \subset A \Longrightarrow A = B$

(2) IGUALDADE: $A = B \iff A \subset B \quad e \quad B \subset A$

Atenção: $A \neq B \iff (A \not\subset B \quad ou \quad B \not\subset A)$

(3) CONJUNTO DE PARTES: $\mathcal{P}(A) = \{B \subset U : B \subset A\}$

 $X \in \mathcal{P}(A) \Longleftrightarrow X \subset A$

Atenção: $X \notin \mathcal{P}(A) \iff X \not\subset A$

PROPRIEDADES: Para qualquer conjunto A, valem:

$(1) \ a \in A \Longleftrightarrow \{a\} \in \mathcal{P}(A)$	$(5) B \subset A \Longleftrightarrow B \in \mathcal{P}(A)$
$(2) \emptyset \in \mathcal{P}(A)$	$(6) A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$
$(3) A \in \mathcal{P}(A)$	$(7) \mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$
$(4)\mathcal{P}(\emptyset) = \{\emptyset\}$	$(8) \ \mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$

OPERAÇÕES ENTRE CONJUNTOS

(1) UNIÂO: $A \cup B = \{x \in U : x \in A \text{ ou } x \in B\}$

 $x \in (A \cup B) \iff (x \in A \quad \lor \quad x \in B)$

Atenção:

 $x \notin (A \cup B) \iff (x \notin A \land x \notin B)$

PROPRIEDADES

$(1) A \cup A = A$	$(2) A \cup \emptyset = A$	$(3) A \cup U = U$
$(4) A \cup B = B \cup A$	$(5) (A \cup B) \cup C = A \cup (B \cup C)$	(6) $A \subset (A \cup B), B \subset (A \cup B)$
$(7) A \subset B \Longleftrightarrow A \cup B = B$	$(8) A \subset C eB \subset C \Longrightarrow A \cup B \subset C$	$(9) A \cup B = \emptyset \Longrightarrow A = \emptyset e B = \emptyset$

(2) INTERSEÇÃO: $A \cap B = \{x \in U : x \in A \mid e \mid x \in B\}$

 $x \in (A \cap B) \iff (x \in A \land x \in B)$

Atenção:

 $x \notin (A \cap B) \iff (x \notin A \lor x \notin B)$

PROPRIEDADES

I IOI MEDADES	
$(1) A \cap A = A$	$(2) A \cap \emptyset = \emptyset$
$(3) A \cap U = A$	$(4) A \cap B = B \cap A$
$(5) (A \cap B) \cap C = A \cap (B \cap C)$	(6) $(A \cap B) \subset A$; $(A \cap B) \subset B$
$(7)A \subset B \Longleftrightarrow A \cap B = A$	$(8)A \subset B \Longrightarrow A \cap C \subset B \cap C$
$(9) \ A \subset C \ e \ B \subset D \Longrightarrow A \cap B \subset C \cap D$	

PROPRIEDADES ADICIONAIS

1 TOOT TOLD TID TO THE TOTAL TO THE	
$(1) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$(2) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$(3) A \cap (A \cup B) = A$	$(4) A \cup (A \cap B) = A$

(3) DIFERENÇA:
$$A - B = \{x \in U : x \in A \mid e \mid x \notin B\}$$

 $x \in (A - B) \iff (x \in A \land x \notin B)$

Atenção:

 $x \notin (A - B) \iff (x \notin A \lor x \in B)$

PROPRIEDADES

$(1) A - A = \emptyset$	$(2) A - \emptyset = A$
$(3) \emptyset - A = \emptyset$	$(4) A - B \neq B - A$
$(5) A \cap (B - C) = (A \cap B) - (A \cap C)$	$(6) (A - B) \subset A$
$(7) A \subset B \Longrightarrow (A - C) \subset (B - C)$	$(8) \ A \subset B \Longleftrightarrow A - B = \emptyset$
$(9) B \cap (A - B) = \emptyset$	$(10) \ A \cap B = \emptyset \Longleftrightarrow A - B = A$

(4) COMPLEMENTAR:

$$\mathcal{C}_B^A = \{ x \in U : x \in (B - A) \}$$

 $\mathcal{C}_U^A = A^c = \{x \in U : x \notin A\}$

Atenção:

$$x \notin \mathcal{C}_B^A \Longleftrightarrow (x \notin B \lor x \in A)$$

$$x \notin A^c \Longleftrightarrow x \in A$$

PROPRIEDADES

Para $A \subset B$		Para $A \subset U$	
$(1) \mathcal{C}_B^{\mathcal{C}_B^A} = A$	$(5) A \cup \mathcal{C}_B^A = B$	$(1) (A^c)^c = A$	$(5) (A \cup A^c) = U$
$(2)\mathcal{C}_A^A = \emptyset$	$(6) \ \mathcal{C}_B^A \subset B$	$(2) (A \cap A^c) = \emptyset$	$(6) U^c = \emptyset$
$(3) \mathcal{C}_A^{\emptyset} = A$	$(7) B - A = B \cap \mathcal{C}_B^A$	$(3) (\emptyset)^c = U$	$(7) A \subset B \Longleftrightarrow B^c \subset A^c$
$(4) A \cap \mathcal{C}_B^A = \emptyset$	$(8) \ \mathcal{C}_B^{A \cap C} = \mathcal{C}_B^A \cup \mathcal{C}_B^C$	$(4) (A - B) = A \cap B^c$	$(8) (A \cap B)^c = A^c \cup B^c$
			$(A \cup B)^c = A^c \cap B^c$

(5) DIFERENÇA SIMÉTRICA:

$$A \triangle B = \{ x \in U : x \in (A \cup B) \, ex \notin (A \cap B) \}$$

$$A\triangle B = \{x \in U : x \in (A - B) \text{ ou } x \in (B - A)\}$$

 $x \in (A \triangle B) \iff x \in [(A \cup B) - (A \cap B)] \iff (x \in A \text{ ou } x \in B) \text{ e} (x \in A^c \text{ ou } x \in B^c)$

Atenção:

$$x \notin (A \triangle B) \iff x \notin [(A \cup B) - (A \cap B)] \iff (x \notin A e x \notin B) \text{ ou } (x \in A e x \in B)$$

PROPRIEDADES

$(1) \ A \triangle B = \emptyset$	$(4) (A\triangle B)\triangle C = A\triangle (B\triangle C)$
$(2)A\triangle\emptyset = A$	$(5) (A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$
	$(A \cup C) \triangle (B \cup C) \subset (A \triangle B) \cup C$
(3) $A\triangle B = B\triangle A$	$(6) (A \triangle B) \cup (B \triangle C) = (A \cup B \cup C) - (A \cap B \cap C)$

NÚMERO DE ELEMENTOS DE UM CONJUNTO

PROPRIEDADES

- 1. Se $A \cap B = \emptyset$, então $n(A \cup B) = n(A) + n(B)$;
- 2. $n(A B) = n(A) n(A \cap B)$;
- 3. $n(A \cup B) = n(A) + n(B) n(A \cap B);$
- $4. \ n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C) n(B \cap C) + n(A \cap B \cap C);$
- 5. Se n(A) = k, então $n[\mathcal{P}(A)] = 2^k$.