Computing Assignment 6

Daniel Todd 301428609 D100

During this computing assignment I computed an approximation to the integral $I=\int_0^1 x^{-1}\sin(x^{-1}\log(x))\,dx$ using a subdivision scheme, splitting the interval into subintervals defined by the zeros of $f(x)=x^{-1}\sin(x^{-1}\log(x))$, and then computing a sum of the integral of f(x) for each subinterval. I found that I could compute the integral I accurate to 4 decimal spaces using this method. I then improved my approximation by implementing the Aitken's Δ^2 method, and found that for N = 7000, I could get accurate up to 6 decimal spaces. I picked N = 7000 as this is the highest N I can compute for within reasonable time. My estimate for the integral I is $I \approx 0.459382$, based on the output from my code pasted below. I chose to state 6 digits of accuracy, as for the last 5 iterations of my code, the 6^{th} digit remained unchanged, while the 7^{th} digit and beyond changed.

I then modified my code to compute the integral $J=\int_0^1g(x)dx$, where $g(x)=x^{-1}\cos(x^{-2}\log(x))$. I did this by attempting to find the zeros for g(x), which I did by first observing that g(x)=0 when $\cos(x^{-2}\log(x))=0$. Knowing that $\cos(x)=0$ when $x=-\frac{\pi}{2}i$ where $i=\{1,2,3,\ldots\}$, I reasoned that the zeros of g(x) are where $\frac{\log(x)}{x^2}=-i\frac{\pi}{2}$. It then follows that for zeros a_i , $\frac{\log(a_i)}{a_i^2}+i\frac{\pi}{2}=0$ and as such $\log(a_i)e^{-2\log(a_i)}+i\pi=0$. Then, letting $b_i=-2\log(a_i)$ we get $a_i=e^{-\frac{b_i}{2}}$, $\frac{b_i}{2}e^{b_i}-i\pi=0$, and $a_i=e^{-\frac{b_i}{2}}$. Then, calculating J for N = 20,000 I get J=0.2795060966, which is accurate up to 10 decimal spaces. The output from my program for the calculation of J is pasted below.