Название...

Исследование и разработка маршрута проектирования (от архитектурного уровня до готового нетлиста) подсистем обмена данными в системах-на-кристалле.

Исследование и разработка масштабируемых подсистем обмена данными в системахна-кристалле.

Содержание

1	Исследование вопроса межсоединения в системах-на-кристалле					
	1.1 Системы-на-кристалле					
	1.2	2 Многоядерные процессоры				
	1.3	B IP-блоки				
	1.4	4 Автоматизация процесса проектирования				
	1.5	Особенности верификации				
	1.6	Сети-на-кристалле				
		1.6.1 Основны				
		1.6.1.1 Примеры				
		1.6.1.2 Сетевой принцип построения				
		1.6.1.3 Существующие тенденции и сложности				
		1.6.2 Особенности				
		1.6.2.1 Системный уровень				
		1.6.2.2 Уровень сетевых интерфейсов				
		1.6.2.3 Сетевой уровень				
		1.6.2.4 Уровень соединений				
2	Автоматизация процесса проектирования путем генерации масштабируемого RTL-описания					
	2.1	Актуальность				
	2.2	Научная новизна				
	2.3	В Практическая значимость				
	2.4	Генерация RTL-описания				
		2.4.1 Описание подхода				
		2.4.2 Парсинг входного RTL-описания				
		2.4.3 Масштабирование				
		2.4.4 Графический интерфейс				
3	Раз	работка сети-на-кристалле				
	3.1	Актуальность				
	3.2	Научная новизна				
	3.3	3 Практическая значимость				
	3.4	Маршрут проектирования				
	3.5	Архитектура				
	3.6	б Буферизация маршрутизаторов сети				
	3.7	Виртуальные каналы				
	3.8	Арбитраж				
		3.8.1 Статический				
		3.8.2 Динамический				
	3.0	Pavouduryna uug				

		3.9.1	Максимальное быстродействие / Best Effort (BE)	10
		3.9.2	Гарантированный сервис / Guaranteed Service (GS)	10
	3.10	Качес	тво сервиса / Quality of Service (QoS)	10
	3.11	Интег	рация механизма синхронизация	10
4	Вер	ация сети-на-кристалле	11	
	4.1	Актуа	льность	11
	4.2	Научн	ая новизна	11
	4.3 Практическая значимость			
		4.4.1	Создание универсального тестового окружение	11
		4.4.2	Создание модели	12
		4.4.3	Сбор статистики	12
			4.4.3.1 Метрики	12
			4.4.3.2 Создание средства для визуализации	12
Л.	итера	arvna		13

Исследование вопроса межсоединения в системах-на-кристалле

В данной главе отражено исследование современных систем-на-кристалле (СнК). Подробно рассмотрены масштабируемые механизмы межсоединения с акцентом на сети-на-кристалле, вопрос автоматизации проектирования IP-блоков и их верификации.

- 1.1 Системы-на-кристалле
- 1.2 Многоядерные процессоры
- 1.3 ІР-блоки
- 1.4 Автоматизация процесса проектирования

Теоретическая проработка главы 2.

1.5 Особенности верификации

Теоретическая проработка главы 3.

1.6 Сети-на-кристалле

Теоретическая проработка главы 4.

- 1.6.1 Основны
- 1.6.1.1 Примеры
- 1.6.1.2 Сетевой принцип построения
- 1.6.1.3 Существующие тенденции и сложности
- 1.6.2 Особенности
- 1.6.2.1 Системный уровень
- 1.6.2.2 Уровень сетевых интерфейсов
- 1.6.2.3 Сетевой уровень
- 1.6.2.4 Уровень соединений

Автоматизация процесса проектирования путем генерации масштабируемого RTL-описания

В данной главе описывается подход повышения эффективности процесса проектирования за счет автоматизации процесса генерации масштабируемого RTL-описания.

2.1 Актуальность

С увеличением количества интегрируемых IP-блоков в системах-на-кристалле (СнК), повышаются требования к узлам, отвечающим за их межсоединение. Специфика разработки блоков межсоединения [более подробно в главе 1].

Необходимость создания параметризированного по количеству как ведомых (slave), так и ведущих (master) портов межсоединения повлекла за собой работу по созданию средств для генерации RTL-описания.

2.2 Научная новизна

- Модульность: parser->(XML)->Scaler (представление Verilog/SystemVerilog).
- Независимость.

2.3 Практическая значимость

Генерация выходного RTL-описания IP-блоков по заданным параметрам реализована у многих вендоров. У большинства из них этот процесс заключается в создании RTL-описания в соответсвие со специфическим синтаксисом, расширяющим стандартный язык описания аппаратуры (например, Synopsys CoreBuilder или открытый проект CONfigurable NEtwork Creation Tool). Такой подход является зависимым от конкретного вендора и может быть применен только для IP-блоков той фирмы, которая занимается их разработкой совместно с разработкой средств для генерации.

Также вопросом реализации автоматизации процесса создания конфигурируемых IPблоков занимались и независимые от вендоров команды (например, CoreTML framework). При этом решая проблему зависимости от поставщика IP-блоков, они не снимают все ограничения с процесса генерации. Так, в основе решения задачи сохраняется необходимость написание RTL-кода согласно со специфическим синтаксисом, что привязывает описание к конкретному программному средству генерации.

Подход, который предложен в данной работе, решает сформулированные проблемы:

- 1. Зависимость от вендора.
- 2. Зависимость от средств генерации.

Генератор может быть использован для любого синтезируемого Verilog/SystemVerilog описания.

Подход универсальный.

2.4 Генерация RTL-описания

2.4.1 Описание подхода

2.4.2 Парсинг входного RTL-описания

Написана программа на языке c++, основная функциональная часть которой реализована на основе открытого программного обеспечения lex и уасс операционной системы Linux. Выполняется парсинг входного RTL-описания, на выходе получается XML-описание блока.

2.4.3 Масштабирование

Написана программа на языке до, работающая с XML-описанием блока, получаемого в результате парсинга. Дополнительными входными данными являются определяемые пользователем шаблоны, определяющие те участки кода, требующие масштабирования до значений, также указанных пользователем.

2.4.4 Графический интерфейс

Написана программа с графическим интерфейсом на языке c++ посредством Qt библиотеки, интегрирующая в себя этапы генерации RLT-описания по заданным параметрам, с дальнейшими этапами компиляции, симуляции и синтезом блока.

Рис. 2.1: Графический интерфейс программного средства генерации RTL-описания.

Разработка сети-на-кристалле

В данной главе речь пойдет о разработке сети-на-кристалле. На данный момент создана базовая реализация параметризированной сети-на-кристалле. Были проведены эксперименты касательно буферизации маршрутизаторов сетей различных размерностей. Вопрос больше проработан теоретически, чем на практике. Есть много направлений работы по конкретной реализации сети-на-кристалле. Сейчас почти завершена реализации платформы (средства генерации, тестовое окружение, модель) для проведения экспериментов.

3.1 Актуальность

Сети-на-кристалле являются наиболее эффективными в вопросах межсоединения блоков в СнК с большим количеством узлов (в зависимости от конкретного случая > 6 или > 8 узлов в сети).

3.2 Научная новизна

Существует множество зарубежных публикаций на данную тему. Не вижу на данный момент конкретной новизны в моих наработках, но тема широка и есть места, где можно доработать.

3.3 Практическая значимость

1. На базе сети-на-кристалле.

3.4 Маршрут проектирования

В маршруте проектирования использованы техники и подходы, описанные в предыдущих главах. Кратко, он состоит из следующих этапов:

- 1. Разработка базового RTL-описания.
- 2. Задание конфигурационных параметров сети.
- 3. Генерация выходного RTL-описания.
- 4. Верификация локальных блоков сети (маршрутизатора).
- 5. Верификация сети.

- 6. Синтез локальных блоков сети.
- 7. Синтез сети.
- 8. Анализ производительности, сбор статистики.

3.5 Архитектура

Сеть с топологие типа двумерная решетка.

3.6 Буферизация маршрутизаторов сети

Реализована буферизация входной, внутренней и выходной частей маршрутизатора. Показаны различные зависимости от глубины буферизации для сетей разной размерности.

3.7 Виртуальные каналы

Виртуальные каналы строятся на основе буферизации маршрутизаторов сети.

3.8 Арбитраж

На данный момент реализован статический арбитраж.

- 3.8.1 Статический
- 3.8.2 Динамический
- 3.9 Реконфигурация
- 3.9.1 Максимальное быстродействие / Best Effort (BE)
- 3.9.2 Гарантированный сервис / Guaranteed Service (GS)
- 3.10 Качество сервиса / Quality of Service (QoS)
- 3.11 Интеграция механизма синхронизация

Верификация сети-на-кристалле

В данной главе рассматривается реализованный подход к верификации сети-накристалле. Достаточно большая работа была проведена за последний год в данном направлении из-за актуальности практического применения результатов данной работы на фирме. А именно была поставлена задача верификации всех коммутаторов как разарботанных своими силами, так и покупных. Без платформы для верификации невозможно было получить остальные выводы в работе. При этом тестовое окружение построено на базе библиотеки, разработка которой велась отдельной лабораторией на фирме, в состав которой также вхожу и я.

4.1 Актуальность

Затраты (временные и ресурсные) на верификацию в процессе разработки на сегодняшний день постоянно растут относительно затрат на создание RTL-описания. Роль коммутаторов в СнК возрастает [более подробно в главе 1].

Тема создания тестового окружения на языке SystemVerilog средствами библиотеки UVM с использованием библиотеки SystemC для реализации модели проектируемого блока является актуальной и важной в современном подходе к проектированию.

4.2 Научная новизна

1. Систематизация метрик.

4.3 Практическая значимость

4.4 Тестовое окружение

Тестовое окружение написано на языке SystemVerilog средствами библиотеки UVM.

4.4.1 Создание универсального тестового окружение

Есть презентация на фирме на тему создания и использования универсального тестового окружения.

4.4.2 Создание модели

Модель написана на языке SystemC. Сейчас реализована простая версия модели, реализующую статическую сверку памятей (модели и RTL). Есть необходимость ее доработки для более точного и аккуратного динамического анализа.

4.4.3 Сбор статистики

Сбор статистики реализован в библиотеке тестовго окружения.

4.4.3.1 Метрики

Продуманы следующие метрики сбора статистики:

- 1. Среднее/максимальное время передачи транзации/байта данных.
- 2. Средняя/максимальная скорость передачи транзакций/байтов данных.
- 3. Средняя/максимальная пропускная способность канала транзакций/байтов данных.

4.4.3.2 Создание средства для визуализации

Написано на языке программирования python с использованием библиотеки Matplotlib.

Ссылки на публикации: [1] [2] [3] [4] [5] [6] [7] [8] [9]

Литература

- [1] И.А. Медведев. Исследование способов буферизации маршрутизатора в сетях-накристалле // 17-ая Всероссийская межвузовская научно-техническая конференция студентов и аспирантов "Микроэлектроника и информатика - 2010". Тезисы докладов. МИЭТ, 2010. с. 88.
- [2] Путря Ф.М. Медведев И.А. Аппаратные методы синхронизации потоков в многоядерном вычислительном кластере // Проблемы разработки перспективных микро- и наноэлектронных систем 2010. Сборник трудов / под ред. под общ. ред. академика РАН Стемпковского А.Л. ИППМ РАН, 2010. С. 346–361.
- [3] И.А. Медведев. Масштабируемые механизмы синхронизации потоков в многоядерных системах // Международная научно-техническая конференция "Проектирование систем на кристалле: тенденции развития и проблемы". Тезисы докладов. МИЭТ, 2010. с. 20.
- [4] И.А. Медведев // Тезисы докладов конференции "Зеленоград Космосу". 2011. с. 89.
- [5] Путря Ф.М. Медведев И.А. Анализ механизмов синхронизации потоков для систем—на—кристалле с большим числом вычислительных ядер // Известия вузов. Электроника. 2011. № 3. С. 58–63.
- [6] И.А. Медведев. Анализ эффективности применения виртуальных каналов для маршрутизации в сети-на-кристалле // "54-я научная конференция МФТИ". Тезисы докладов. МФТИ, 2011. с. 89.
- [7] Путря Ф.М. Медведев И.А. Верификация коммутационной логики для систем и сетей на кристалле // Вопросы радиоэлектроники. 2012. № 2. С. 56–66.
- [8] И.А. Медведев. Исследование способов буферизации маршрутизатора в сетях-на-кристалле. МИЭТ, 2012.
- [9] И.А. Медведев. Анализ эффективности применения буферизации для маршрутизации в сети-на-кристалле // Проблемы разработки перспективных микро- и наноэлектронных систем 2012. Сборник трудов / под ред. под общ. ред. академика РАН Стемпковского А.Л. ИППМ РАН, 2012. С. 445–450.