70 DFA

	2000	parional below		
	9	6	191	ed ing live too
A <-	90	0	90,91	->B
	90	1	90 =	A
B 5	90,91	0	95,91,92	-> c
	90,91	1	90,92-	->0
c }	90,91,92	0	90191192193) E
	90,41,92	1	90192,93	2F
D }	90,92	,0	90,41193	H
	90,42	1	90,93+	76
E* 5	9019119219	3 0	90,91,92	→E
- 7	93,91,98	1	90,92,93	→) F
p 5	90192143	0	90, 91 ,93	-7H
	90,92,	1	90, 93	->6
6+ 5	90,93	0	90,91,13	→ H
	90,93	1	90193	>6
HT ?	90,91,	0	90,91	->E
	90,91,	1	90,192	→ F

Final States = { A,B,C,D}

simplified version: mertine vesion:

O B OIL CO OI EFHG

O O OIL CO OIL

Question 2.2.5

a) To solve this question, we need to creok a stake for each possible o, 1 combinations in a 5-length string. Total number of combinations would be 25. = 32. When a new character input arrives our 5 length string (state) transforms to another 5 (eight string (state)

For instance: if we are in the state 101100, and a

new in put arrives.

01100 input 0 > 11000 } new possible states.

for each stake, we will able to transform to another stake (5 character string)

S in case of an input.

Since we need at least 2 zeros. The states with I and a zeros

25 - (5) + 1 = 27 total number of stokes All 1 sero 1 sero strings o sero

Demonstration for the block of three consecutive symbols contains at least two ols. (I show this since it possess less) string trop

 $2^{3} - {3 \choose 1} - {3 \choose 0} + 1$ it is working

Question 2.2.5

b) This question is the clossic bod to example for the NFA

NFA >

For OFA version we need at lost $2^n = 2l^2 = 1024$ stoles.

The reason for this comes from we need to know all occurences need to know all possible combinations and which combination (stole) we are correctly belong.

Question 2.2.5:

4)

final states = SE, F?

for this question we will decide states by looking the number of 1's and o's in mod 3 and 5 respectively. Total number of states 3.5 = 15

1 - zero 0 zero 1

2 - One 0 Zepo 1

3- Two o tero 1

4- Three o Zerol

5- Four o Zerol

6- zero o onel

7- one o one!

8-two o one 1

9 - three o onel

10 - Fow a and

10 - Fow o one

11-3c00 two

12- one o two

13 - two 0 two 1

14 - three o two 1

15- four o two

(Accepting state)

only Accepting state is

CS-302 HWI Poge 5

Question 2.2.6

B) To solve this question we will firstly solve for normal ordering binary strings and checking whether they are divisible by 5 or not.

For normal order:

Reversing a Ital means switching the start and final state and changing the directions of inputs (arrows). This will work in the apposite directions.

,	2	6	Q'	Ī
15	P	0	P19	1)2
	P	1	P	1
2 }	P, 9	0	Pigiris -	->3
	Pig		Pi+ -	74
3 5	P19, 1,5	0	Pig, 515 -	-23
	P19,1,5	b	P1+ +	- → 4
4 5	Pit	0	Piq	→2
\	Pi+	1	P	→1
	1/6			
X>	1200	2 8	3	
, ,		Tro	-)(1)	
	1	1	1	
	4	7		

Informal Description: The language which accepts the lost two digits are oo or 01.

Question 2.5.2

. 1						
*	Q		6		Q'	
AC	Pigir		C		P19,1	
	1.9,5		Ь		9,0	
1	8.9.	7	C		819,5	1
B	9,0		a		P19,5	1
	9,5	1	6		-	t
*	9,5		c		Pigir	1
CE			a		1	İ
	~		٦	T	Ø	
.,	-		C		0	
NE	-ø		9,6,0		\$	
			-			

it accepts the Collowing string with length less or equal to 3

= \(\{ \xi, \alpha, \xi, \alpha, \alpha, \alpha, \alpha, \alpha, \beta, \text{ca, cb, cc,} \\ aaa, aab, aac, aba, abb, abc, aca, acb, acc, \text{caa, cb, cc,} \\ aaa, bab, bac, bca, bcb, bcc, \text{caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc} \)

It except all the strings except bba, bbb, bbe.