Symulacje Monte Carlo

Temat: Rozwiązywanie problemu pijanego marynarza

 $\operatorname{Imię}$ i nazwisko prowadzącego: Grzegorz Pawlik

Wykonawca:	Gracjan Tokarz 255531 W11
$Termin\ zajec:$	Piatek, 15:15
$Data\ oddania\ sprawozdania:$	23.10.2020r
Ocena końcowa:	

Adnotacje dotyczące wymaganych poprawek,oraz daty otrzymania poprawionego sprawozdania

1 Kod źródłowy

1.1 Drunkard.hpp

class Drunkard {

```
public:
                 Drunkard(long int n, int k);
                 ~Drunkard(){
                          Xn. clear ();
                 void printToFile();
                 double varCalc();
        private:
                 long int N, K;
                 std::string filepath;
                 std::ofstream data;
                 std::vector<long int> Xn;
};
1.2
     Drunkard.cpp
Drunkard::Drunkard(long int n, int k){
        K = k;
        N = n;
        long int x;
        float r;
        filepath = "data.dat";
        std::cout<<\!\!K\!<"\_drunks,\_"<<\!\!N\!<<"\_steps\_each \n";
        for (int i = 0; i < K; i++){//iterating\ drunks
                 x = 0;
                 for (long int j = 0; j < N; j++){//iterating\ steps}
                          r = (float) rand()/RAND MAX;
                          if (r > 0.5) x = x + 1;
                          else x = x - 1;
                 Xn.push_back(x);
        }
}
void Drunkard::printToFile(){
        data.open(filepath , std::ios_base::app);
        data \ll log(N) \ll " \ t " \ll log(varCalc()) \ll std :: endl;
        data.close();
}
```

```
double Drunkard::varCalc(){
        \textbf{long double} \  \, \text{sqrAvgs} \, = \, 0; //square \  \, of \  \, averages
        long double avgSqrs = 0; //average of squares
         for (int i = 0; i < K; i++){
                 sqrAvgs += Xn.at(i);
                 avgSqrs += Xn.at(i) * Xn.at(i);
        sqrAvgs = sqrAvgs / K;
        sqrAvgs = sqrAvgs * sqrAvgs;
        avgSqrs = avgSqrs / K;
        return avgSqrs - sqrAvgs;
}
1.3
     main.cpp
int main(int argc, char* argv[], char* envp[]){
        int k = 10000; //number of drunkards
        long int n = atoi(argv[1]); //number of steps
        Drunkard drunkard1(n, k);
        drunkard1.printToFile();
        return 1;
}
```

2 Wyniki

\sqrt{N}	$\sqrt{\sigma}$
4.60517	2.29437
5.29832	2.63724
5.99146	2.98238
6.68461	3.32808
7.37776	3.68327
8.07091	4.02758
8.76405	4.38344
9.4572	4.72663
10.1503	5.07164
10.8435	5.41314
4.60517	2.29437
5.29832	2.63724
5.99146	2.98238
6.68461	3.32808
7.37776	3.68327
8.07091	4.02758
8.76405	4.38344
9.4572	4.72663
10.1503	5.07164
10.8435	5.41314
11.5366	5.76571
12.2298	6.12003
12.9229	6.45345
13.6161	6.80545

3 Wykresy

