MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

9 de maio de 2016

Lista 3

L3.1 (Sipser 1.46) Prove que as seguintes linguagens não são regulares.

a. $L_a = \{0^n 1^m 0^n \mid m, n \ge 0\}$

Resposta: Vamos usar o lema do bombeamento para mostrar que L_a não é regular. A prova é por contradição.

Suponha o contrário, ou seja, que L_a é regular. Seja p o comprimento de bombeamento dado pelo lema do bombeamento. Seja s a cadeia $s=0^p1^{p+1}0^p$. Como $s\in L_a$ e $|s|\geq p$, o lema do bombeamento garante que s pode ser dividida em três partes s=xyz, onde, para qualquer $i\geq 0$, $xy^iz\in L_a$. Vamos mostrar que isso é impossível.

A condição 3 do lema do bombeamento diz que $|xy| \le p$ e, por esta razão, y contém apenas 0s. Vamos tomar a cadeia s' = xyyz, onde $y = 0^a$ e $a \ge 1$. Neste caso, teremos mais 0s no início da cadeia do que no fim e, portanto, $s' \notin L_a$, o que é uma contradição da condição 1 do lema do bombeamento.

Portanto, podemos concluir que L_a não é regular.

b. $L_b = \{0^m 1^n \mid m \neq n\}$

Resposta: Há a resposta no livro do Sipser.

c. $L_c = \{w \mid w \in \{0,1\}^* \text{ não \'e um palíndromo}\}$

Resposta: Tomei como base a questão anterior no livro [1].

Um palíndromo é uma cadeia que tem a mesma leitura da esquerda para a direita e vice-versa. Logo, $L_c = \{w \mid w \in \{0,1\}^* e \ w \neq w^R\}$.

Vamos usar o lema do bombeamento para mostrar que L_c não é regular. A prova é por contradição.

Suponha o contrário, ou seja, que L_c é regular. Seja p o comprimento de bombeamento dado pelo lema do bombeamento. Seja a cadeia $s=0^p10^{p+p!}$. Como $s\in L_c$ e $|s|\geq p$, o lema do bombeamento garante que s pode ser dividida em três partes s=xyz com $x=0^a,\ y=0^b$ e $z=0^c10^{p+p!}$, onde, $b\geq 1$ e a+b+c=p. Vamos mostrar que isso é impossível.

Seja a cadeia $s' = xy^{i+1}z$, onde $i = \frac{p!}{b}$. Então, temos que:

$$y^{i+1} = 0^{b^{(\frac{p!}{b})}}0^b = 0^{b(\frac{p!}{b})}0^b = 0^{p!}0^b = 0^{b+p!}$$

Logo, $xyz = 0^a 0^{b+p!} 0^c 10^{p+p!} = 0^{a+b+p!+c} 10^{b+p!}$. Como a+b+c=p, temos que $xyz = 0^{p+p!} 10^{p+p!}$ e, sendo assim, $xyz \notin L_c$.

Portanto, podemos concluir que L_c não é regular.

d. $L_d = \{wtw \mid w, t \in \{0, 1\}^+\}$

Resposta: Vamos usar o lema do bombeamento para mostrar que L_d não é regular. A prova é por contradição.

Suponha o contrário, ou seja, que L_d é regular. Seja p o comprimento de bombeamento dado pelo lema do bombeamento. Seja a cadeia $s = 0^p 10^p$, onde $p \ge 1$. Como $s \in L_d$ e $|s| \ge p$, o lema do bombeamento garante que s pode ser dividida em três partes s = xyz, onde, para qualquer $i \ge 0$, $xy^iz \in L_d$. Vamos mostrar que isso é impossível.

A condição 3 do lema do bombeamento diz que $|xy| \leq p$ e, por esta razão, y contém apenas 0s. Vamos tomar a cadeia s' = xyyz. Neste caso, teremos um número maior de 0s no início da cadeia do que no fim e, portanto, $s' \notin L_d$, o que é uma contradição da condição 1 do lema do bombeamento.

Portanto, podemos concluir que L_d não é regular.

L3.2 (Sipser 1.49) Reescrevi o enunciado substituindo y por w para não confundir com as propriedades do lema do bombeamento. Para ambas as questões o alfabeto é $\Sigma = \{0, 1\}$.

a. Seja $B=\{1^k w\mid w\in \Sigma^* \text{ e } w \text{ contém pelo menos } k \text{ 1s, para } k\geq 1\}.$ Mostre que B é uma linguagem regular.

Resposta: Se B é uma linguagem regular, então existe um autômato finito que a reconhece.

Podemos observar algumas cadeias que pertencem a B, tais como, 111|00111, 1|10, 1|11, 1|01 e outras que não pertencem a B, tais como, 0|0, 0|1, 1|00, onde | indica o final da subcadeia 1^k . Percebemos, então, que as cadeias em B não podem começar com 0 e, as que estão em B devem, necessariamente, começar em 1, já que $k \ge 1$.

Logo, podemos reescrever B como $B=\{1x\mid x\in \Sigma^*\ e\ x\ \text{tem pelo menos um }1\}.$

Agora, vamos construir um AFD $M = (Q, \Sigma, \delta, s, F)$ que reconhece B:

b. Seja $C = \{1^k w \mid w \in \Sigma^* \text{ e } w \text{ contém no máximo } k \text{ 1s, para } k \geq 1\}.$ Mostre que C não é uma linguagem regular.

Resposta: Vamos usar o lema do bombeamento para mostrar que C não é regular. A prova é por contradição.

Suponha o contrário, ou seja, que C é regular. Seja p o comprimento de bombeamento dado pelo lema do bombeamento. Seja s a cadeia $s=1^p01^p$. Como $s\in C$ e $|s|\geq p$, o lema do bombeamento garante que s pode ser dividida em três partes s=xyz com $x=1^a,\ y=1^b$ e $z=1^c01^p$, onde, $b\geq 1$ e a+b+c=p. Vamos mostrar que isso é impossível.

Vamos tomar a cadeia $s' = xy^0z = 1^{a+c}01^p$. Como $b \ge 1$ e a+b+c=p, nós temos que a+c < p e, sendo assim, $s' \notin C$, o que contradiz a condição 1 do lema do bombeamento.

Portanto, podemos concluir que C não é regular.

L3.3 Converter a expressão regular $0(0 \cup 1)*01(0 \cup 1)*1$ para AFN.

Resposta: As figuras abaixo mostram passo a passo a construção do AFN que representa a expressão dada.

 $0 \cup 1$

L3.4 No autômato generalizado da figura 1.67b, foi removido o estado 2, resultando no autômato da figura 1.67c. Foi então removido o estado 1 para produzir o autômato da figura 1.67d, obtendo-se assim uma expressão regular final. Refazer as contas produzindo um autômato generalizado ao se remover o estado 1 daquele da figura 1.67b. Deste autômato generalizado, remova o estado 2 e produza um novo autômato generalizado final com dois estados.

Resposta:

Removendo o estado 1, onde $q_{rem}=1, q_i=s, q_j=2, R_1=\epsilon, R_2=a, R_3=b, R_4=\emptyset,$ temos $(\epsilon)(a)^*(b)\cup(\emptyset)=a^*b$:

Removendo o estado 2, onde $q_{rem}=2, q_i=s, q_j=\alpha, R_1=a^*b, R_2=a\cup b, R_3=\epsilon, R4=\emptyset,$ temos $(a^*b)(a\cup b)^*(\epsilon)\cup(\emptyset)=(a^*b)(a\cup b)^*$:

Referências

[1] Michael Sipser. *Introduction to the theory of computation*. Boston: Thomson Course Technology, 2006. ISBN: 0534950973.