INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 39/00, 39/38, 39/12, C12P 21/04, C12N 7/00, 7/01, 7/02, 7/04, 7/06, 7/08, 15/00, 15/09, 15/63, 15/70, 15/74

(11) International Publication Number:

WO 98/09646

US

A1

(43) International Publication Date:

12 March 1998 (12.03.98)

(21) International Application Number:

PCT/US97/12955

(22) International Filing Date:

31 July 1997 (31.07.97)

(30) Priority Data:

08/708,541

5 September 1996 (05.09.96)

(74) Agents: KITTS, Monica, Chin et al.; Nikaido, Marmelstein, Murray & Oram LLP, Suite 330, Metropolitan Square -"G" Street Lobby, 655 15th Street N.W., Washington, DC 20005-5701 (US).

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/708,541 (CIP)

5 September 1996 (05.09.96)

(71) Applicant (for all designated States except US): UNIVER-SITY OF MARYLAND - BIOTECHNOLOGY INSTI-TUTE [US/US]; Suite 500, 4321 Hartwick Road, College Park, MD 20740 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VAKHARIA, Vikram, N. [US/US]; 11332 Booth Bay Way, Bowie, MD 20720 (US). MUNDT, Egbert [DE/DE]; Ring Strasse 12, D-17498 Rieurserorf (DE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: A METHOD FOR GENERATING BIRNAVIRUS FROM SYNTHETIC RNA TRANSCRIPTS

(57) Abstract

A system for the generation of live Birnavirus such as infectious bursal disease virus (IBDV), a segmented double-stranded (ds)RNA virus of the Birnavirdae family, using synthetic transcripts derived from cloned DNA has been developed. Independent full-length cDNA clones were constructed which contained the entire coding and non-coding regions of RNA segments A and B of IBDV, respectively. Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hours post-transfection. The development of a reverse genetics system for dsRNA viruses will greatly facilitate studies of the regulation of viral gene expression pathogenesis, and design of a new generation of live and inactivated vaccines.

Best Available Copy

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
АT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	S7.	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin .	ΙE	ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	II.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG ·	Congo	KE	Kenya	NI.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ.	New Zealand		
CM	Cameroon		Republic of Korea	PI,	Poland		
CN	China	KR	Republic of Korea	PΥ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
						•	

10

15

A METHOD FOR GENERATING BIRNAVIRUS FROM SYNTHETIC RNA TRANSCRIPTS

Background of the Invention

Infectious bursal disease virus (IBDV), a member of the *Bimaviridae* family, is the causative agent of a highly immunosuppressive disease in young chickens (Kibenge, F.S.B., et al., *J. Gen. Virol.*, 69, 1757-1775 (1988)). Infectious bursal disease (IBD) or Gumboro disease is characterized by the destruction of lymphoid follicles in the bursa of Fabricius. In a fully susceptible chicken flock of 3-6 weeks of age the clinical disease causes severe immunosuppression, and is responsible for losses due to impaired growth, decreased feed efficiency, and death. Susceptible chickens less than 3 weeks old do not exhibit outward clinical signs of the disease but have a marked infection characterized by gross lesions of the bursa.

The virus associated with the symptoms of the disease is called infectious bursal disease virus (IBDV). IBDV is a pathogen of major economic importance to the nation and world's poultry industries. It causes severe immunodeficiency in young chickens by destruction of precursors of antibody-production B cells in the bursa of Fabricius. Immunosuppression causes increased susceptibility to other diseases, and interferes with effective vaccination against Newcastle disease, Marek's disease and infectious bronchitis disease viruses.

There are two known serotypes of IBDV. Serotype I viruses are pathogenic to chickens whereas serotype II viruses infect chickens and turkeys. The infection of turkeys is presently of unknown clinical significance.

IBDV belongs to a group of viruses called *Birnaviridae* which includes other bisegmented RNA viruses such as infectious pancreatic necrosis virus (fish), tellina virus and oyster virus (bivalve mollusks) and drosophila X virus (fruit fly). These viruses all contain high molecular weight (MW) double-stranded RNA genomes.

The capsid of the IBDV virion consists of several structural proteins.

As many as nine structural proteins have been reported but there is evidence that some of these may have a precursor-product relationship (Kibenge,

25

20

30

F.S.B., et al., *J. Gen. Virol.*, 69, 1757-1775 (1988)). The designation and molecular weights of the viral proteins (VP) are as shown below.

5 _	Viral Protein	Molecular Weight
5 _	VP1	90 kDa
	VP2	41 kDa
	VP3	32 kDa
	VP4	28 kDa
10	VP5	17 kDa

Two segments of double-stranded RNA were identified in the genome of IBDV. The IBDV genome consists of two segments of double-stranded (ds)RNA that vary between 2827 (segment B) to 3261 (segment A) nucleotide base pairs (Mundt, E. et al., Virology, 209, 10-18 (1995)). The larger segment A encodes a polyprotein which is cleaved by autoproteolysis to form mature viral proteins VP2, VP3 and VP4 (Hudson, P.J. et al., Nucleic Acids Res., 14, 5001-5012 (1986)). VP2 and VP3 are the major structural proteins of the virion. VP2 is the major host-protective immunogen of IBDV, and contains the antigenic regions responsible for the induction of neutralizing antibodies (Azad, et al., Virology, 161, 145-152 (1987)). A second open reading frame (ORF), preceding and partially overlapping the polyprotein gene, encodes a protein (VP5) of unknown function that is present in IBDV-infected cells (Mundt, E., et al., J. Gen. Virol., 76, 437-443, (1995)). The smaller segment B encodes VP1, a 90-kDa multifunctional protein with polymerase and capping enzyme activities (Spies, U., et al., Virus Res., 8, 127-140 (1987); Spies, U., et al., J. Gen. Virol., 71, 977-981 (1990)).

It has been demonstrated that the VP2 protein is the major host protective immunogen of IBDV, and that it contains the antigenic region responsible for the induction of neutralizing antibodies. The region containing the neutralization site has been shown to be highly conformation-dependent. The VP3 protein has been considered to be a group-specific antigen because

30

15

20

25

it is recognized by monoclonal antibodies directed against it from strains of both serotype I and II viruses. The VP4 protein appears to be a virus-coded protease that is involved in the processing of a precursor polyprotein of the VP2, VP3 and VP4 proteins.

5

10

15

20

25

Although the nucleotide sequences for genome segments A and B of various IBDV strains have been published, it was only recently that the complete 5'- and 3'-noncoding sequences of both segments were determined. The 5'-noncoding region of IBDV segments A and B contain a consensus sequence of 32 nucleotides, whereas the 3'-noncoding terminal sequences of both segments are unrelated, but conserved among IBDV strains of the same serotype (Mundt, E. et al., *Virology*, 209, 10-18 (1995)). These terminii might contain sequences important in packaging and in the regulation of IBDV gene expression, as demonstrated for other dsRNA containing viruses such as mammalian and plant reoviruses, and rotaviruses (Anzola, et al., *Proc. Natl. Acad. Sci. USA*, 84, 8301-8305 (1987); Zou, S., et al., *Virology*, 186, 377-388 (1992); Gorziglia, M.I., et al., *Proc. Natl. Acad. Sci. USA*, 89, 5784-5788 (1992)).

In recent years, a number of infectious animal RNA viruses have been

generated from cloned cDNA using transcripts produced by DNA-dependent RNA polymerase (Boyer, J.C., et al., *Virology*, 198, 415-426 (1994)). For example poliovirus, a plus-stranded RNA virus; influenza virus, a segmented negative-stranded RNA virus; rabies virus, a non-segmented negative-stranded RNA virus; all were recovered from cloned cDNAs of their respective genomes (van der Werf, S., et al., *Proc. Natl. Acad. Sci. USA*, 83, 2330-2334 (1986); Enami, M., et al., *Proc. Natl. Acad. Sci. USA*, 87, 3802-3805 (1990); Schnell, M.J., et al., *EMBO J.*, 13, 4195-4205 (1994)). For reovirus, it was shown that transfection of cells with a combination of SSRNA, dsRNA and *in vitro* translated reovirus products generated infectious reovirus when complemented with a helper virus from a different serotype (Roner, M.R., et

al., Virology, 179, 845-852 (1990)). However, to date, there has been no

report of a recovered infectious virus of segmented dsRNA genome from

30

synthetic RNAs only.

10

15

20

25

30

Summary of the Invention

This invention relates to the infectious bursal disease virus (IBDV) that is associated with Gumboro disease of young chickens. More particularly, this invention relates to a system for the generation of infectious bursal disease virus (IBDV) using synthetic transcripts derived from cloned cDNA. The present invention will facilitate studies of the regulation of viral gene expression, pathogenesis and design of a new generation of live and inactivated vaccines.

Detailed Description of the Invention

by transfection of Vero cells.

In an effort to develop a reverse genetics system for IBDV, three independent full-length cDNA clones which contain segment A of serotype I strain D78 or serotype II strain 23/82 and segment B of the serotype I strain P2, respectively, were constructed. Synthetic RNAs of segments A and B were produced by *in vitro* transcription reaction on linearized plasmids with T7 RNA polymerase. Transcripts of these segments, either untreated or treated with DNase or RNase, were evaluated for the generation of infectious virus

The present inventors have demonstrated that synthetic transcripts derived from cloned DNA corresponding to the entire genome of a segmented dsRNA animal virus can give rise to a replicating virus. The recovery of infectious virus after transfecting cells with synthetic plus-sense RNAs derived from cloned cDNA of a virus with a dsRNA genome (IBDV) completes the quest of generating reverse infectious systems for RNA viruses. A number of investigators have generated infectious animal RNA viruses from cloned cDNA (Boyer, J.C., et al., *Virology*, 198, 415-426 (1994)). Van der Werf et al. were first to generate poliovirus, a plus-stranded RNA virus, using synthetic RNA produced by T7 RNA polymerase on cloned cDNA template (van der Werf, S., et al., *Proc. Natl. Acad. Sci. USA*, 83, 2330-2334 (1986)). later, Enami et al. rescued influenza virus, a segmented negative-stranded RNA virus (Enami, M., et al., *Proc. Natl. Acad. Sci. USA*, 87, 3802-3805 (1990)); and Schnell et al. generated rabies virus, a non-segmented negative-stranded RNA virus, from cloned cDNAs of their respective genomes (Schnell, M.J., et

10

15

20

25

30

al., *EMBO J.*, 13, 4195-4205 (1994)). Roner et al. developed an infectious system for a segmented dsRNA reovirus by transfecting cells with a combination of synthetic ssRNA, dsRNA, *in vitro* translated reovirus products, and complemented with a helper virus of different serotype (Roner, M.R., et al., *Virology*, 179, 845-852 (1990)). The resulting virus was discriminated from the helper virus by plaque assay. However, in this system the use of a helper virus was necessary. In contrast, the presently described reverse genetics system of IBDV does not require a helper virus or other viral proteins. Transfection of cells with plus-sense RNAs of both segments was sufficient to generate infectious virus (IBDV). The fate of the additional one or four nucleotides, respectively, transcribed at the 3'-end of segment A was not determined. However, this did not prevent the replication of the viral dsRNA. Similar effects were observed for plus-stranded RNA viruses by different investigators (Boyer, J.C., et al., *Virology*, 198, 415-426 (1994)).

Transfection of plus-sense RNAs of both segments into the same cell was necessary for the successful recovery of IBDV. Transfected RNAs of both segments had to be translated by the cellular translation machinery. The polyprotein of segment A was presumably processed into VP2, VP3 and VP4 proteins which form the viral capsid. The translated protein VP1 of segment B probably acted as a RNA-dependent RNA polymerase and transcribed minus-strands from synthetic plus-strands of both segments, and the reaction products formed dsRNA. Recently, Dobos reported that in vitro transcription by the virion RNA-dependent RNA polymerase of infectious pancreatic necrosis virus (IPNV), a prototype virus of the Birnaviridae family, is primed by VP1 and then proceeds via an asymmetric, semiconservative, stranddisplacement mechanism to synthesize only plus strands during replication of the viral genome (Dobos, P., Virology, 208, 10-25 (1995)). The present system shows that synthesis of minus-strands proceeds on the plus-strands. Whether the resulting transcribed minus-strand RNA serves as a template for the transcription of plus-strands or not remains the subject of further investigation.

10

15

20

25

30

To prove that the infectious IBDV contained in the supernatants of transfected cells was indeed derived from the synthetic transcripts, an artificial chimera was generated containing segment A of a serotype II strain and segment B of a serotype I strain. Sequence analysis verified this genome combination. The results also indicate that the terminal sequence motifs described by Mundt and Müller are probably responsible for replication, sorting and packaging of the viral genome (Mundt, E. et al., *Virology*, 209, 10-18 (1995)). Presence of serotype-specific terminal sequences obviously does not prevent proper replication of serotype II A segment by the action of the RNA-dependent RNA polymerase VP1 of the serotype I segment B. The ability to create recombinant viruses will greatly help in analyzing the precise function of serotype-specific and serotype-common terminal sequences.

The recovery of infectious IBDV demonstrates that only the plus-strand RNAs of both segments are sufficient to initiate replication of dsRNA. Thus, the results are in agreement with the general features of reovirus and rotavirus replication where the plus-strand RNAs serve as a template for the synthesis of progeny minus-strands to yield dsRNA (Schonberg, M., et al., *Proc. Natl. Acad. Sci.* Patton, J.T., *Virus Res.*, 6, 217-233 (1986); Chen, D., et al., *J. Virol.*, 68, 7030-7039 (1994)). However, the semiconservative, strand displacement mechanisms proposed by Spies et al. and Dobos could not be excluded (Spies, U., et al., *Virus Res.*, 8, 127-140 (1987); Dobos, P., *Virology*, 208, 10-25 (1995)). The development of a reverse genetics system for IBDV will greatly facilitate future studies of gene expression, pathogenesis, and help in the design of new generations of live and inactivated IBDV vaccines.

As used in the present application, the term "synthetic" as applied to nucleic acids indicates that it is a man made nucleic acid in contrast to a naturally occurring nucleic acid. The term implies no limitation as to the method of manufacture, which can be chemical or biological as long as the method of manufacture involves the intervention of man.

The term "cDNA" is intended to encompass any cDNA containing segments A and B and the 5' and 3' noncoding regions of segments A and B.

10

15

20

25

30

The term "infectious" as applied to viruses indicates that the virus has the ability to reproduce. The virus can be pathogenic or nonpathogentic and still be infectious.

The present invention provides a system for the generation of infectious bursal disease virus using synthetic RNA transcripts. This system can be used to study the regulation of viral gene expression, pathogenesis, and for the design of a new generation of live and inactivated IBDV vaccines.

The present invention provides a recombinant vector containing at least one copy of the cDNA according to the present invention. The recombinant vector may also comprise other necessary sequences such as expression control sequences, markers, amplifying genes, signal sequences, promoters, and the like, as is known in the art. Useful vectors for this purpose are plasmids, and viruses such as baculoviruses, herpes virus (HVT) and pox viruses, e.g., fowl pox virus, and the like.

Also provided herein is a host cell transformed with the recombinant vector of the present invention or a host cell transfected with the synthetic RNA of the present invention. The host cell may be a eukaryotic or a prokaryotic host cell. Suitable examples are *E. coli*, insect cell lines such as Sf-9, chicken embryo fibroblast (CEF) cells, chicken embryo kidney (CEK) cells, African green monkey Vero cells and the like.

Also part of this invention is an IBDV poultry vaccine comprising a poultry protecting amount of a recombinantly produced virus or portion of a virus, wherein the virus is inactivated or modified such that it is no longer virulent.

The virus can be inactivated by chemical or physical means. Chemical inactivation can be achieved by treating the virus with, for example, enzymes, formaldehyde, β -propiolactone, ethylene-imine or a derivative thereof, an organic solvent (e.g. halogenated hydrocarbon) and or a detergent. If necessary, the inactivating substance can be neutralized after the virus has been inactivated. Physical inactivation can be carried out by subjecting the viruses to radiation such as UV light, X-radiation, or γ -radiation.

The virus can be attenuated by known methods including serial passage, deleting sequences of nucleic acids and site directed mutagenesis either before or after production of the infectious virus to produce a virus which retains sufficient antigenicity but which has reduced virulence.

5

Physiologically acceptable carriers for vaccination of poultry are known in the art and need not be further described herein. In addition to being physiologically acceptable to the poultry the carrier must not interfere with the immunological response elicited by the vaccine and/or with the expression of its polypeptide product.

10

Other additives, such as adjuvants and stabilizers, among others, may also be contained in the vaccine in amounts known in the art. Preferably, adjuvants such as aluminum hydroxide, aluminum phosphate, plant and animal oils, and the like, are administered with the vaccine in amounts sufficient to enhance the immune response to the IBDV. The amount of adjuvant added to the vaccine will vary depending on the nature of the adjuvant, generally ranging from about 0.1 to about 100 times the weight of the IBDV, preferably from about 1 to about 10 times the weight of the IBDV.

20

15

The vaccine of the present invention may also contain various stabilizers. Any suitable stabilizer can be used including carbohydrates such as sorbitol, mannitol, starch, sucrose, dextrin, or glucose; proteins such as albumin or casein; and buffers such as alkaline metal phosphate and the like. A stabilizer is particularly advantageous when a dry vaccine preparation is prepared by lyophilization.

25

30

The vaccine can be administered by any suitable known method of inoculating poultry including nasally, ophthalmically, by injection, in drinking water, in the feed, by exposure, and the like. Preferably, the vaccine is administered by mass administration techniques such as by placing the vaccine in drinking water or by spraying the animals' environment. When administered by injection, the vaccines are preferably administered parenterally. Parenteral administration as used herein means administration by intravenous, subcutaneous, intramuscular, or intraperitoneal injection.

10

15

20

25

30

The vaccine of the present invention is administered to poultry to prevent IBD anytime before or after hatching. Preferably, the vaccine is administered prior to the time of birth and after the animal is about 6 weeks of age. Poultry is defined to include but not be limited to chickens, roosters, hens, broilers, roasters, breeders, layers, turkeys and ducks.

The vaccine may be provided in a sterile container in unit form or in other amounts. It is preferably stored frozen, below -20°C, and more preferably below -70°C. It is thawed prior to use, and may be refrozen immediately thereafter. For administration to poultry the recombinantly produced virus may be suspended in a carrier in an amount of about 10⁴ to 10⁷ pfu/ml, and more preferably about 10⁵ to 10⁶ pfu/ml in a carrier such as a saline solution. The inactivated vaccine may contain the antigenic equivalent of 10⁴ to 10⁷ pfu/ml suspended in a carrier. Other carriers may also be utilized as is known in the art. Examples of pharmaceutically acceptable carriers are diluents and inert pharmaceutical carriers known in the art. Preferably, the carrier or diluent is one compatible with the administration of the vaccine by mass administration techniques. However, the carrier or diluent may also be compatible with other administration methods such as injection, eye drops, nose drops, and the like.

. th

The invention also can be used to produce combination vaccines with the IBDV material. The IBDV material can be combined with antigen material of Newcastle Disease Virus Infectious Bronchitis virus, Reo virus, Adeno virus and/or the Marek virus.

The foregoing embodiments of the present invention are further described in the following Examples. However, the present invention is not limited by the Examples, and variations will be apparent to those skilled in the art without departing from the scope of the present invention.

Brief Description of the Drawings

Figure 1 is a schematic diagram of cDNA constructs used for synthesis of plus-sense ssRNAs of IBDV with T7 RNA polymerase. Construct pUC19FLAD78 contains the cDNA of segment A of IBDV strain D78 and the recombinant plasmid pUC18FLA23 contains the full-length cDNA of segment

10

15

20

25

30

A of IBDV strain 23/82. Segment A of IBDV encodes the polyprotein (VP2-VP4-VP3), and the recently identified VP5 protein. Plasmid pUC18FLBP2 contains the cDNA of segment B of strain P2 which encodes the RNA-dependent RNA polymerase (VP1). Virus specific sequences are underlined and the T7 promoter sequences are italicized. Restriction sites are shown in boldface and identified. The cleavage sites of the linearized plasmids are shown by vertical arrows and the transcription directions are marked by horizontal arrows.

Figure 2 shows an agarose gel analysis of the transcription reaction products that were used for transfection of Vero cells. Synthetic RNAs transcribed *in vitro* using T7 RNA polymerase and linearized plasmids pUC19FLAD78 (lanes 2, 4 and 6) containing the cDNA of segment A of IBDV strain D78, and pUC18FLBP2 (lanes 1, 3 and 5) containing the cDNA of segment B of strain P2, respectively. After transcription, the reaction mixtures were either treated with DNase (lanes 1 and 2), RNase (lanes 3 and 4) or left untreated (lanes 5 and 6). Two µl of the reaction products were analyzed on 1% agarose gel. Lambda DNA, digested with *Hind* III/*EcoR* I, was used as markers (lane M).

Figure 3 shows a comparison of nucleotide sequences of cloned RT-PCR fragments from segments A and B of the chimeric IBDV strain 23A/P2B (bold-typed) with known sequences of segments A and B of serotype II strain 23/82 and serotype I strain P2, respectively. Nucleotide identities are marked by a colon.

Figure 4 shows the DNA sequence of pUC18FLA23.

Figure 5 shows the DNA sequence of pUC19FLAD78.

Figure 6 shows the DNA sequence of pUC18FLBP2.

EXAMPLES

Viruses and Cells. Two serotype I strains of IBDV, the attenuated P2 strain from Germany and the vaccine strain D78 (Intervet International), and one serotype II strain, the apathogenic 23/82 strain, were propagated in chicken embryo cells (CEC) and purified (Mundt, E. et al., Virology, 209, 10-18 (1995); Vakharia, V.N., et al., Virus Res., 31, 265-273 (1994)). Vero cells

10

15

20

25

30

£ - 21 007 1122700

were grown in M199 medium supplemented with 5% fetal calf serum (FCS) and used for transfection experiments. Further propagation of the recovered virus and immunofluorescence studies were carried out in Vero cells (Mundt, E., et al., *J. Gen. Virol.*, 76, 437-443, (1995)). For plaque assay, monolayers of secondary CEC were prepared and used (Müller, H., et al., *Virus Res.*, 4, 297-309 (1986)).

Construction of Full-Length cDNA Clones of IBDV genome. Fulllength cDNA clones of IBDV segments A and B were independently prepared. The cDNA clones containing the entire coding region of the RNA segment A of strain D78 were prepared using standard cloning procedures and methods (Vakharia, V.N., et al., Virus Res., 31, 265-273 (1994)). By comparing the D78 terminal sequences with recently published terminal sequences of other IBDV strains (Mundt, E. et al., Virology, 209, 10-18 (1995)), it was observed that D78 cDNA clones lacked the conserved first 17 and last 10 nucleotides at the 5'- and 3'-ends, respectively. Therefore, to construct a full-length cDNA clone of segment A, two primer pairs (A5'-D78, A5-IPD78 and A3'-IPD78) were synthesized and used for PCR amplification (Table 1). The DNA segments were amplified according to the protocol of the supplier (New England Biolabs) using "Deep Vent Polymerase" (high fidelity thermophilic DNA polymerase). Amplified fragments were cloned into the EcoR I site of a pCRII vector (Invitrogen Corp.) to obtain plasmids pCRD78A5' and pCRD78A3', respectively. Each plasmid was digested with EcoR I and Sal I and the resultant fragments were ligated into EcoR I digested pUC19 to obtain plasmid pUC19FLAD78 (SEQ ID NOS:27 AND 29) which now contains a full-length cDNA copy of segment A encoding all the structural proteins (VP2, VP4 and VP3, SEQ ID NO:30) as well as the non-structural VP5 protein (SEQ ID NO:28) (Fig. 1).

Two primer pairs (A5'-23, A5IP23 and A3'-23, A3-IP23; see Table 1) were used for reverse transcription (RT) of viral genomic dsRNA of strain 23/82 using "SuperScript RT II" (RNA directed DNA polymerase with reduced RNase H activity, GIBCO/BRL). The RT reaction products were purified by phenol/chloroform extraction and ethanol precipitation. To obtain two cDNA

77 () 70/07**07**0

5

10

15

20

25

30

fragments bounded by primer pairs A5'-23, A5-IP23 and A3'-23, A3-IP23, respectively, RT reaction products were amplified by PCR using "Deep Vent polymerase". Both RT and PCR were carried out according to the supplier's protocol. Resulting PCR fragments were blunt-end ligated into *Sma* I cleaved pUC18 vector to obtain pUC23A5' and pUC23A3'. The 3'-end of segment A contained in plasmid pUC23A3' was ligated into the *Hind* III-*Bst*B I cleaved plasmid pUC23A5' to establish the full-length cDNA of segment A of strain 23/82. The resulting plasmid was termed pUC18FLA23 (SEQ ID NOS: 31 AND 33)(Fig. 1) and encodes structural proteins VP2, VP3 and VP4 (SEQ ID NO: 32) and non-structural protein VP5 (SEQ ID NO: 34)

To obtain cDNA clones of segment B of P2 strain, two primer pairs (B5'-P2, B5-IPP2 and B3'-P2, B3-IPP2) were designed according to the published sequences and used for RT-PCR amplification (see Table 1). Using genomic dsRNA as template, cDNA fragments were synthesized and amplified according to the supplier's protocol (Perkin-Elmer Cetus). Amplified fragments were blunt-end ligated into Sma I cleaved pBS vector (Stratagene) to obtain clones pBSP2B5' and pBSP2B3'. To construct a full-length clone of segment B, the 5'-end fragment of plasmid pBSP2B5' was first subcloned between EcoR I and Pst I sites of pUC18 vector to obtain pUCP2B5'. Then the 3'-end fragment of plasmid pBSP2B3' was inserted between the unique Bgl II and Pst I sites of plasmid pUCP2B5' to obtain a full-length plasmid pUC18FLBP2 (SEQ ID NO:25) which encodes the VP1 protein (SEQ ID NO: 26) (Fig. 1). Plasmids pUC18FLBP2, pUC18FLA23 and pUC19FLAD78 were completely sequenced by using the "Sequenase" DNA sequencing system (U.S. Biochem.), and the sequence data were analyzed using either "DNASIS" (Pharmacia) or "PC/Gene" (Intelligenetics) software. The integrity of the full-length constructs was tested by in vitro transcription and translation coupled reticulocyte lysate system using T7 RNA polymerase (Promega).

Transcription and Transfection of Synthetic RNAs. Plasmids pUC19FLAD78, pUC18FLA23 and pUC18FLBP2 were digested with *BsrG* I, *Nsi* I and *Pst* I enzymes (see Fig. 1), respectively, and used as templates for *in vitro* transcription with T7 RNA polymerase (Promega). Briefly, restriction

10

15

20

25

30

enzyme cleavage assays were adjusted to 0.5% SDS and incubated with proteinase K (0.5 mg/ml) for 1 hour at 37°C. The linearized DNA templates (~3 µg) were recovered after ethanol precipitation, and were added separately to a transcription reaction mixture (50 µl) containing 40 mM Tris-HCl (pH 7.9), 10 mM NaCl, 6 mM MgCl₂, 2 mM spermidine, 0.5 mM ATP, CTP and UTP each, 0.1 mM GTP, 0.25 mM cap analog [m7G(5') PPP(5') G], 120 units of "RNasin" (ribonuclease inhibitor), 150 units T7 RNA polymerase (Promega), and incubated at 37°C for 1 hour. Synthetic RNA transcripts were purified by phenol/chloroform extraction and ethanol precipitation. As controls, the transcription products were treated with either DNase or RNase (Promega) before the purification step.

Vero cells were grown to 80% confluence in 60 mm dishes and washed once with phosphate-buffered saline (PBS). Three ml of "OPTI-MEM I" (reduced serum medium containing HEPES buffer, sodium bicarbonate, hypoxanthine, thymidine, sodium pyruvate, L-glutamine, trace elements, growth factors and phenol red; from GIBCO/BRL) were added to the monolayers, and the cells were incubated at 37°C for 1 hour in a CO, incubator. Simultaneously, 0.15 ml of "OPTI-MEM I" was incubated with 1.25 (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-"Lipofectin" reagent of μg chloride and dioleoylphosphatidylethanolamine, trimethylammonium GIBCO/BRL) for 45 min. in a polystyrene tube at room temperature. Synthetic RNA transcripts of both segments, resuspended in 0.15 ml of diethyl pyrocarbonate-treated water, were added to the OPTI-MEM-Lipofectinmixture, mixed gently, and incubated on ice for 5 min. After removing the "OPTI-MEM" from the monolayers in 60 mm dishes and replacing with fresh 1.5 ml of "OPTI-MEM", the nucleic acid containing mixture was added dropwise to the Vero cells and swirled gently. After 2 hours of incubation at 37°C, the mixture was replaced with M199 medium [CaCl₂ (annhydrous), Fe(NO₃)₃ 9H₂O, KCI, MgSO₄ (anhydrous), NaCl, NaH₂PO₄H₂O, NaHCO₃, L-Alanine, L-Arginine HCI, L-Aspartic acid, L-Cysteine HCI H2O, L-Cysteine 2HCI, L-Glutamic acid, L-Glutamine, Glycine, L-Histidine HCL H2O, L-Hydroxyproline, L-Isoleucine, L-Leucine, L-Lysine HCI, L-Methionine, L-Phenylalanine, L-

10

15

20

25

30

Proline, L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine 2Na 2H₂O, L-Valine, Alpha tocopherol PO₄ Na₂, Ascorbic Acid, Biotin, Calciferol, D-Calcium pantothenate, Choline chloride, Folic acid, I-Inositol, Menandione NaHSO₃ 3H₂O, Niacin, Nicotinamide, Para-aminobenzoic acid, Pyridoxine HCl, Riboflavin, Thiamine HCl, Vitamin A Acetate, Adenine SO₄, Adenylic Acid, ATP, Na₂, Cholesterol, 2-Deoxy-D-Ribose, D-Glucose, Glutathione, Guanine HCl, Hypoxanthine Na, Phenol Red Na, Ribose, Sodium Acetate (anhydrous), Thymine, Tween 80, Uracil, and Xanthine Na; from Mediatech, Inc.] containing 5% FCS (without rinsing cells) and the cells were further incubated at 37°C for desired time intervals.

Identification of Generated IBDV. CEC were infected with filtered (0.2 μm) supernatant from Vero cells transfected with transcripts of pUC18FLA23 and pUC18FLP2B. 16 hours post-infection, the whole cell nucleic acids were isolated (Mundt, E. et al., *Virology*, 209, 10-18 (1995)). Primers were designed according to the published sequences and RT-PCR fragments were amplified, cloned and sequenced (Mundt, E. et al., *Virology*, 209, 10-18 (1995)). Sequence data were analyzed by using "DNASIS" software.

Immunofluorescence. Vero cells, grown on cover slips to 80% confluence, were infected with the supernatants derived from transfected Vero cells (after freeze-thawing) and incubated at 37°C for two days. The cells were then washed, fixed with acetone and treated with polyclonal rabbit anti-IBDV serum. After washing, the cells were treated with fluorescein labeled goat-anti-rabbit antibody (Kirkegaard & Perry Lab.) and examined by fluorescence microscope.

Plaque Assay. Monolayers of secondary CEC, grown in 60 mm dishes, were inoculated with the supernatants derived from transfected Vero cells. After 1 hour of infection, the cells were washed once with PBS and overlayed with 0.8% Agar noble (Difco) containing 10% tryptose phosphate broth, 2% FCS, 0.112% NaHCO₃, 10³ units penicillin, 10³ μg/ml streptomycin, 0.25 μg/ml fungizone, 0.005% neutral red, 0.0015% phenol red. The cells

5 ·

10

15

20

25

30

were incubated at 37°C for 2 to 3 days until plaques could be observed and counted (Müller, H., et al., *Virus Res.*, 4, 297-309 (1986)).

Construction of Full-Length cDNA clones of IBDV Genome. To develop a reverse genetics system for the dsRNA virus IBDV, two independent cDNA clones were constructed that contain segment A of strain D78 and segment B of strain P2 (Fig. 1). Each plasmid encoded either the precursor of structural proteins (VP2, VP4, VP3) and VP5 or only VP1 protein (RNA-dependent RNA polymerase). Plasmid pUC18FLBP2 upon digestion with *Pst* I and transcription *in vitro* by T7 RNA polymerase, would yield RNA containing the correct 5'- and 3'-ends. Whereas, upon digestion with *Bsr*G I and transcription, plasmid pUC19FLAD78 would yield RNA containing the correct 5'-end but with additional four nucleotides at the 3'end. Coupled transcription and translation of the above plasmids in a rabbit reticulocyte system yielded protein products that were correctly processed and comigrated with the marker IBDV proteins after fractionating on SDS-polyacrylamide gel and autoradiography (data not shown).

Transcription, Transfection and Generation of Infectious Virus.

Plus-sense transcripts of IBDV segment A and B were synthesized separately in vitro with T7 RNA polymerase using linearized full-length cDNA plasmids as templates (see Fig. 2). Although two species of RNA transcripts were observed for segment B on a neutral gel (lanes 1 and 5), fractionation of these samples on a denaturing gel yielded only one transcript-specific band (data not shown). In order to show that plus-sense RNA transcripts of both segments are needed for the generation of infectious virus, the transcription mixtures were incubated with different nucleases, as shown in Fig. 2. Synthetic RNAs recovered after treating the transcription products with DNase (lanes 1+2), RNase (lanes 3+4) or without treatment (lanes 5+6), were used for the transfection of Vero cells. As mock control, Lipofectin alone was used. Five days post-transfection, cytopathic effect (CPE) was only visible in Vero cells transfected with combined transcripts of untreated or DNase-treated transcription products, but not with RNase-treated transcription mixtures or

10

15

20

25

30

mock-transfected control. In addition, no CPE was detected when Vero cells were transfected with RNA of only segment A or B (data not shown). These results demonstrate that replication of IBDV ensued after transfection of Vero cells with plus-sense ssRNAs of both segments of IBDV. To verify that the agent causing the CPE in Vero cells was indeed IBDV, transfected Vero cells were freeze-thawed, and supernatants were clarified by centrifugation, and used to infect CEC or Vero cells. CEC infected with the supernatants derived from Vero transfected cells of untreated or DNase-treated transcription mixtures produced CPE in one day post-inoculation (Table 2). However, no CPE could be detected even after five days in CEC, with the supernatants from transfected Vero cells of RNase-treated transcription mixtures, untreated segment A or B transcription mixtures and mock-transfected Vero cells. Similarly, when Vero cells on cover slips were infected with the same supernatants as described above and examined by immunofluorescence staining after 2 days, only supernatants derived from transfected Vero cells of untreated or DNAse-treated transcription mixtures gave positive immunofluorescence signal (Table 2).

Recovery of Transfectant Virus. To determine the time point for the recovery of infectious virus, Vero cells were transfected with combined RNA transcripts of segments A and B. At 4, 8, 16, 24, 36 and 48 hours post-transfection, the supernatants were examined for the presence of transfectant virus by infectivity and plaque assays, as shown in Table 3. Our results indicate that the virus could be recovered as early as 36 hours after transfection. Virus titer was 2.3×10^2 pfu/ml which appear to drop for samples obtained later than 48 hours after transfection.

Generation of a Chimeric Virus. To prove that plus-sense ssRNA of both segments of IBDV are sufficient for recovery of infectious virus, a chimeric IBDV was generated. Plasmid pUC18FLA23 containing a full-length sequence of segment A of serotype II strain was linearized by *Nsi* I digestion and ssRNA was synthesized *in vitro* using T7 RNA polymerase. The ssRNA transcript specifies the correct 5'-end but contains one additional residue at the 3'-end (Fig. 1). Vero cells were transfected with ssRNA of segment A of

10

serotype II strain 23/82 and ssRNA of segment B of serotype I strain P2. Five days after transfection when CPE was evident, the supernatant was clarified (after freeze-thawing) and used to infect CEC. After a second passage in CEC, genomic RNA of the virus was analyzed by RT-PCR and sequencing of the PCR products. Primers for segment A were deigned to specifically amplify only segment A sequences derived from the serotype II strain. Primer for segment B bound to sequences of both serotypes. The amplified fragments were cloned and sequenced. The obtained segment A sequences showed a perfect match with known segment A sequences of serotype II strain 23/82, whereas segment B sequence exhibited complete homology to published segment B sequences of serotype I strain P2 (Fig. 3).

Table 1. Oligonucleotides Used for the Construction of Full Length cDNA Clones of IBDV Genomic Segments A and B.

Nucleotide Sequence	Orientation	Name	Nucleotide Number
TAATACGACTCACTATAGGATACGATCGGTCTGACCCCGGGGGGGG	(+)	A5'-D78	1-31
AGAGAATTCTAATACGACTCACTATAGGAIACGATCGGTCTGAC	(+)	A5′-23	1-48
TGTACAGGGGACCCGCGAACGGATCCAATT	(-)	A3'-D78	3237-3261
CGGCGAATTCATGCATAGGGGACCCGCGAACGGATC	(-)	A3′-23	3242-3261
CGTCGACTACGGGATTCTGG	(-)	A5-IPD78	1711-1730
CAGAGGCAGTACTCCGTCTG	(-)	A5-IP23	1971-1990
AGTCGACGGATTCTTGCTT	(+)	A3-IPD78	1723-1742
GAAGGTGTGCGAGGGAC	(+)	A3-IP23	1883-1900
AGAGAATTC TAATACGACTCACTATAGGATACGATGGGTCTGAC	(+)	B5'-P2	1-18
CGATCTGCTGCAGGCCCCCCCCCAGGCGAAGG	(-)	B3'-P2	2807-2827
CTTGAGACTCTTGTTCTCTACTCC	(-)	B5-IPP2	1915-1938
ATACAGCAAAGATCTCGGG	ŧ	B3-IPP2	1839-1857

Composition and location of the oligonucleotide primers used for cloning. T7 promoter sequences are marked with italic types, the virus specific sequences are underlined, and the restriction sites marked in boldface. Orientation of the virus specific sequence of the primer is shown for sense (+) and antisense (-). The positions where the primers bind (nucleotide number) are according to the published sequences of P2 strain (2).

Table 2. Generation of Infections IBDV From Synthetic RNAs of Segment A and B.

Material Transfected	CPE	Immunofluoroescence
ssRNA A+B, DNase-treated	+	+
ssRNA A+B, RNase-treated	-	-
ssRNA A+B, untreated	+	+
ssRNA A, untreated	-	-
ssRNA B, untreated	-	-
Lipofectin only	-	-

Vero cells were transfected with synthetic RNAs of segment A and B derived from transcription reactions that were either untreated or treated with DNase or RNase. After 5 days, the supernatants were collected, clarified by centrifugation, and analyzed for the presence of virus. The infectivity of the recovered virus was determined in CEC by the appearance of cytopathic effect (CPE) 1-2 days post-inoculation. The specificity of the recovered virus was determined by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum.

Table 3. Recovery of Virus at Various Times Post-Transfection.

Time in hours post-transfection	CPE	Immunofluorescence	pfu/ml
4	_	-	0
. 8		-	0
16	- . , .	-	0 .
24	-	-	0
36	+	+	2.3 × 10 ²
48	+	+	6.0 × 10 ¹

Vero cells were transfected with synthetic RNAs of segment A and B as described. The infectivity and specificity of the recovered virus was detected by CPE in CEC and immunofluorescence staining in Vero cells, respectively. Monolayers of secondary CEC were used for plaque assay after inoculating the cells with the supernatants derived from transfected Vero cells. Approximate titer of the virus was calculated as plaque forming units per ml (pfu/ml).

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: VAKHARIA, Vikram N. MUNDT, Egbert
- (ii) TITLE OF INVENTION: A METHOD FOR GENERATING BIRNAVIRUS FROM SYNTHETIC RNA TRANSCRIPTS
 - (iii) NUMBER OF SEQUENCES: 34
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY & ORAM LLP
 - (B) STREET: 655 Fifteenth Street, N. W., Suite 330 G Street Lobby
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: USA
 - (F) ZIP: 20005-5701
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: KITTS, Monica C.
 - (B) REGISTRATION NUMBER: 36,105
 - (C) REFERENCE/DOCKET NUMBER: P8172-6002
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 202/638-5000
 - (B) TELEFAX: 202/638-4810
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
GAATTCGGCT TTAATACGAC TCACTATAGG ATACGATCGG	TCTGAC 46
(2) INFORMATION FOR SEQ ID NO:2:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
AATTGGATCC GTTCGCGGGT CCCCTGTACA AAGCCGAATT	C 41
(2) INFORMATION FOR SEQ ID NO:3:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CGGCGAATTC ATGCATAGGG GACCCGCGAA CGGATC	36
(2) INFORMATION FOR SEQ ID NO:4:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GTCAGACCGA TCGTATCCTA TAGTGAGTCG TATTAGAATT (CTCT 44

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TTGCATGCCT GCAGGGGGCC CCCGCAGGCG AAG 33	•
(2) INFORMATION FOR SEQ ID NO:6:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
TCGTATCCTA TAGTGAGTCG TATTAGAATT C 31	
(2) INFORMATION FOR SEQ ID NO:7:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GAAGCCTGA GTGAGTTGAC TGACTACAGC TACAACGGGC TGATGTCAGC CACTGCGAAC	60
ATCAACGACA AGATCGGGAA CGTTCTAGTT GGAGAAGGGG TGACTGTTCT CAGTCTACCG	120
(2) INFORMATION FOR SEQ ID NO:8:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECUL	E TYPE: DNA		•	
(xi) SEQUENC	E DESCRIPTION: SEQ ID	NO:8:		٠
GGAAGCCTGA GTGAG	TTGAC TGACTACAGC TACAA	CGGGC TGATGTCAGC	CACTGCGAAC	60
ATCAACGACA AGATC	GGGAA CGTTCTAGTT GGAGA	AGGGG TGACTGTTCT	CAGTCTACC	119
(2) INFORMATION	FOR SEQ ID NO:9:			
(A) LE (B) TY (C) ST	E CHARACTERISTICS: NGTH: 120 base pairs PE: nucleic acid RANDEDNESS: single POLOGY: linear			
(ii) MOLECUL	E TYPE: DNA	·		
(xi) SEQUENC	E DESCRIPTION: SEQ ID 1	NO:9:		
GGAAGCCTGA GTGAA	CTGAC AGATGTTAGC TACAA	IGGGT TGATGTCTGC	AACAGCCAAC	60
ATCAACGACA AAATT	GGGAA CGTCCTAGTA GGGGA	AGGGG TCACCGTCCT	CAGCTTACCC	120
(2) INFORMATION	FOR SEQ ID NO:10:	•		
(A) LE (B) TY (C) ST	E CHARACTERISTICS: NGTH: 120 base pairs PE: nucleic acid RANDEDNESS: single POLOGY: linear			÷
(ii) MOLECUL	E TYPE: DNA			
(xi) SEQUENC	E DESCRIPTION: SEQ ID	NO:10:		
TTTTCAATAG TCCAC	AGGCG CGAACGAAGA TCTCA	GCAGC GTTCGGCATA	AAGCCTACTG	60
CTGGACAAGA CGTGG	AAGAA CTCTTGATCC CCAAA	STCTG GGTGCCACCT	GAGGATCCGC	120
(2) INFORMATION	FOR SEQ ID NO:11:	· .		
(A) LE	E CHARACTERISTICS: NGTH: 120 base pairs PE: nucleic acid RANDEDNESS: single		·	

(ii) MOLECULE TYPE: DNA

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
TTTTCAACAG TCCACAGGCG CGAAGCACGA TCTCAGCAGC GTTCGGCATA AAGCCTACTG	. 60
	120
CTGGACAAGA CGTGGAAGAA CTCTTGATCC CTAAAGTTTG GGTGCCACCT GAGGATCCGC	120
(2) INFORMATION FOR SEQ ID NO:12:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TTTTCAACAG TCCACAGGCG CGAAGCACGA TCTCAGCAGC GTTCGGCATA AAGCCTACTG	60
CTGGACAAGA CGTGGAAGAA CTCTTGATCC CTAAAGTTTG GGTGCCACCT GAGGATCCGC	120
(2) INFORMATION FOR SEQ ID NO:13:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
TAATACGACT CACTATAGGA TACGATCGGT CTGACCCCGG GGGAGTCA	48
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	

AGAGAATTCT AATACGACTC ACTATAGGAT ACGATCGGTC	TGAC 44
(2) INFORMATION FOR SEQ ID NO:15:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
TGTACAGGGG ACCCGCGAAC GGATCCAATT	30
(2) INFORMATION FOR SEQ ID NO:16:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CGGCGAATTC ATGCATAGGG GACCCGCGAA CGGATC	36
(2) INFORMATION FOR SEQ ID NO:17:	·
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CGTCGACTAC GGGATTCTGG	20
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:	•

(A) LENGTH: 20 base pairs

LC110921117322

		(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
((ii)	MOLECULE TYPE: DNA	
((xi)	SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CAGAG	GCAG	GT ACTCCGTCTG	20
<i>(</i> -) -		OWNERTON, HOD, CRO. ID, NO. 19.	
(2)	INFOR	RMATION FOR SEQ ID NO:19:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
AGTC	GACG	GG ATTCTTGCTT	20
(2).	INFOF	RMATION FOR SEQ ID NO:20:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GAAG	GTGT(GC GAGAGGAC	18
(2)	INFO	RMATION FOR SEQ ID NO:21:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:	

AGAGAATTCT AATACGACTC ACTATAGGAT ACGATGGGTC TGAC	44
(2) INFORMATION FOR SEQ ID NO:22:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
CGATCTGCTG CAGGGGGCCC CCGCAGGCGA AGG	33
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
TTGAGACTC TTGTTCTCTA CTCC	24
2) INFORMATION FOR SEQ ID NO:24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TACAGCAAA GATCTCGGG	19
2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid

(C)	STRANDEDNESS: single	
(D)	TOPOLOGY: circular	

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 112..2745

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

(X1) Si	QUENCE DESCR	IPIION: SEQ	ID NO.25.		
GGATACGATG	GGTCTGACCC T	CTGGGAGTC AC	GAATTAAC GT	'GGCTACTA GGGGCGA'	rac 60
CCGCCGCTGG	CCGCCACGTT A	GTGGCTCCT CT	TCTTGATG AT	TCTGCCAC C ATG A Met S 1	
Asp Ile Phe	C AAC AGT CCA Asn Ser Pro	CAG GCG CGA Gln Ala Arg 10	AGC ACG AT	C TCA GCA GCG TT e Ser Ala Ala Ph	C 165 e
GGC ATA AAG Gly Ile Lyd 20	G CCT ACT GCT S Pro Thr Ala	GGA CAA GAC Gly Gln Asp 25	Val Glu Gl	AA CTC TTG ATC CC Lu Leu Leu Ile Pr 30	T 213
AAA GTT TG Lys Val Tr 35	G GTG CCA CCT p Val Pro Pro 40	Glu Asp Pro	G CTT GCC AC Leu Ala Se 45	GC CCT AGT CGA CT er Pro Ser Arg Le 5	G 261 u 0
GCA AAG TT Ala Lys Ph	C CTC AGA GAG e Leu Arg Glu 55	AAC GGC TAG Asn Gly Ty	C AAA GTT T r Lys Val Le 60	rg CAG CCA CGG TC eu Gln Pro Arg Se 65	T 309
CTG CCC GA Leu Pro Gl	G AAT GAG GAG u Asn Glu Glu 70	TAT GAG ACG Tyr Glu Th	r Asp Gln I	TA CTC CCA GAC TT le Leu Pro Asp Le 80	2A 357
Ala Trp Me	G CGA CAG AT t Arg Gln Il 5	A GAA GGG GC e Glu Gly Al 90	T GTT TTA A	AA CCC ACT CTA TO ys Pro Thr Leu Se 95	T 405
CTC CCT AT Leu Pro Il 100	T GGA GAT CA e Gly Asp Gl	G GAG TAC TT n Glu Tyr Ph 105	e Pro Lys T	AC TAC CCA ACA CA yr Tyr Pro Thr Hi	AT 453 Ls
CGC CCT AG Arg Pro Se 115	C AAG GAG AA r Lys Glu Ly 12	s Pro Asn Al	G TAC CCG C a Tyr Pro P 125	CA GAC ATC GCA C TO Asp Ile Ala Le	TA 501 ⊇u 30

CTC Leu	AAG Lys	CAG Gln	ATG Met	ATT Ile 135	TAC Tyr	CTG Leu	TTT Phe	CTC Leu	CAG Gln 140	GTT Val	CCA Pro	GAG Glu	GCC Ala	AAC Asn 145	GAG Glu	549
GGC Gly	CTA Leu	AAG Lys	GAT Asp 150	GAA Glu	GTA Val	ACC Thr	CTC Leu	TTG Leu 155	ACC Thr	CAA Gln	AAC Asn	ATA Ile	AGG Arg 160	GAC Asp	AAG Lys	597
GCC Ala	TAT Tyr	GGA Gly 165	AGT Ser	GGG Gly	ACC Thr	TAC Tyr	ATG Met 170	GGA Gly	CAA Gln	GCA Ala	AAT Asn	CGA Arg 175	CTT Leu	GTG Val	GCC Ala	645
ATG Met	AAG Lys 180	GAG Glu	GTC Val	GCC Ala	ACT Thr	GGA Gly 185	AGA Arg	AAC Asn	CCA Pro	AAC Asn	AAG Lys 190	Asp	CCT Pro	CTA Leu	AAG Lys	693
CTT Leu 195	GGG Gly	TAC Tyr	ACT Thr	TTT Phe	GAG Glu 200	AGC Ser	ATC Ile	GCG Ala	CAG Gln	CTA Leu 205	CTT Leu	GAC Asp	ATC Ile	ACA Thr	CTA Leu 210	741
CCG Pro	GTA Val	GGC	CCA Pro	CCC Pro 215	GGT Gly	GAG Glu	GAT Asp	GAC Asp	AAG Lys 220	CCC Pro	TGG Trp	GTG Val	CCA Pro	CTC Leu 225	ACA Thr	789
					ATG Met											837
					TAC Tyr										AGT Ser	885
GGA Gly	CTA Leu 260	CCA Pro	TAT Tyr	GTA Val	GGT Gly	CGC Arg 265	ACC Thr	AAA Lys	GGA Gly	GAG Glu	ACA Thr 270	ATT Ile	GGC Gly	GAG Glu	ATG Met	933
					CAG Gln 280											981
					AAG Lys											1029
				Trp	TAC Tyr											1077
					AGT Ser											1125

											ATG Met 350						1173
											ATT Ile						1221
											TTG Leu					. •	1269
		Ile									CTT						1317
Asn	Ile	Tyr 405	Ile	Val	His	Ser	Asn 410	Thr	Trp	Tyr	Ser	Ile 415	Asp	Leu			1365
Lys	Gly 420	Glu	Ala	Asn	Cys	Thr 425	Arg	Gln	His	Met	Gln 430	Ala	Ala	Met			1413
Tyr 435	Ile	Leu	Thr	Arg	Gly 440	Trp	Ser	Asp	Asn	Gly 445		Pro	Met	Phe	Asn 450		1461
Gln	Thr	Trp	Ala	Thr 455	Phe	Ala	Met	Asn	Ile 460	Ala	Pro	Ala	Leu	Val 465	Val		1509
Asp	Ser	Ser	Cys 470	Leu	Ile	Met	Asn	Leu 475	Gln	Ile	AAG Lys	Thr	Tyr 480	Gly	Gln	,	1557
Gly	Ser	Gly 485	Asn	Ala	Ala	Thr	Phe 490	Ile	Asn	Asn	His	Leu 495	Leu	Ser	ACA Thr		1605
Leu	Val 500	Leu	Asp	Gln	Trp	Asn 505	Leu	Met	Arg	Gln	Pro 510	Arg	Pro	Asp	AGC Ser		1653
Glu 515	Glu	Phe	Lys	Ser	520	Glu	Asp	Lys	Leu	Gly 525	Ile	Asn	. Phe	Lys	Ile 530		1701
GAG Glu	AGG Arg	TCC	: ATT	GAT Asp 535	Asp	ATC Ile	AGG Arg	GGC Gly	Lys 540	Lev	AGA Arg	CAG Gln	CTI Leu	GTC Val	CTC Leu		1749

CTT Leu	GCA Ala	CAA Gln	CCA Pro 550	GGG Gly	TAC Tyr	CTG Leu	AGT Ser	GGG Gly 555	GGG Gly	GTT Val	GAA Glu	CCA Pro	GAA Glu 560	CAA Gln	TCC Ser	1797
Ser	CCA Pro	Thr 565	Val	Glu	Leu	Asp	Leu 570	Leu	Gly	Trp	Ser	Ala 575	Thr	Tyr	Ser	1845
AAA Lys	GAT Asp 580	CTC	GGG Gly	ATC Ile	TAT	GTG Val 585	CCG Pro	GTG Val	CTT Leu	GAC Asp	AAG Lys 590	GAA Glu	CGC Arg	CTA Leu	TTT Phe	1893
TGT Cys 595	TCT	GCT Ala	GCG Ala	TAT	CCC Pro 600	AAG Lys	GGÀ Gly	GTA Val	GAG Glu	AAC Asn 605	AAG Lys	AGT Ser	CTC	AAG Lys	TCC Ser 610	1941
AAA Lys	GTC Val	GGG Gly	ATC Ile	GAG Glu 615	CAG Gln	GCA Ala	TAC Tyr	AAG Lys	GTA Val 620	GTC Val	AGG Arg	TAT Tyr	GAG Glu	GCG Ala 625	TTG Leu	1989
AGG Arg	TTG Leu	GTA Val	GGT Gly 630	GGT Gly	TGG Trp	AAC Asn	TAC Tyr	CCA Pro 635	CTC Leu	CTG Leu	AAC Asn	AAA Lys	GCC Ala 640	TGC Cys	AAG Lys	2037
AAT Asn	AAC Asn	GCA Ala 645	GGC Gly	GCC Ala	GCT Ala	CGG Arg	CGG Arg 650	CAT His	CTG Leu	GAG Glu	GCC Ala	AAG Lys 655	GGG Gly	TTC Phe	CCA Pro	2085
CTC Leu	GAC Asp 660	GAG Glu	TTC Phe	CTA Leu	GCC Ala	GAG Glu 665	TGG Trp	TCT	GAG Glu	CTG Leu	TCA Ser 670	GAG Glu	TTC Phe	GGT Gly	GAG Glu	2133
GCC Ala 675	TTC Phe	GAA Glu	GGC	TTC Phe	AAT Asn 680	ATC Ile	AAG Lys	CTG Leu	ACC Thr	GTA Val 685	ACA Thr	TCT Ser	GAG Glu	AGC Ser	CTA Leu 690	2181
GCC Ala	GAA Glu	CTG Leu	AAC Asn	AAG Lys 695	CCA Pro	GTA Val	CCC Pro	CCC Pro	AAG Lys 700	CCC Pro	CCA Pro	AAT Asn	GTC Val	AAC Asn 705	AGA Arg	2229
CCA Pro	GTC Val	AAC Asn	ACT Thr 710	GGG Gly	GGA Gly	CTC Leu	AAG Lys	GCA Ala 715	GTC Val	AGĆ Ser	AAC Asn	GCC Ala	CTC Leu 720	AAG Lys	ACC Thr	2277
GGT Gly	CGG Arg	TAC Tyr 725	AGG Arg	AAC Asn	GAA Glu	GCC Ala	GGA Gly 730	CTG Leu	AGT Ser	GGT Gly	CTC Leu	GTC Val 735	CTT Leu	CTA Leu	GCC Ala	2325
ACA Thr	GCA Ala 740	AGA Arg	AGC Ser	CGT Arg	CTG Leu	CAA Gln 745	GAT Asp	GCA Ala	GTT Val	AAG Lys	GCC Ala 750	AA G Lys	GCA Ala	GAA Glu	GCC Ala	2373

Glu AGC	Arg	TCA Ser		3 CM						765					Phe 770	
	AAG		Glu													2469
		GTC Val														2517
GCA Ala	GTT Val	CAG Gln 805	TCG Ser	ACT Thr	TCC Ser	GTG Val	TAC Tyr 810	ACC Thr	CCC. Pro	AAG Lys	TAC Tyr	CCA Pro 815	GAA Glu	GTC Val	AAG Lys	2565
AAC Asn	CCA Pro 820	CAG Gln	ACC Thr	GCC Ala	TCC Ser	AAC Asn 825	CCC Pro	GTT Val	GTT Val	GGG Gly	CTC Leu 830	CAC His	CTG Leu	CCC Pro	GCC Ala	2613
AAG Lys 835	Arg	GCC Ala	ACC Thr	GGT Gly	GTC Val 840	CAG Gln	GCC Ala	GCT Ala	CTT Leu	CTC Leu 845	GGA Gly	GCA Ala	GGA Gly	ACG Thr	AGC Ser 850	2661
AGA Arg	CCA Pro	ATG Met	GGG Gly	ATG Met 855	GAG Glu	GCC Ala	CCA	ACA Thr	CGG Arg 860	TCC Ser	AAG Lys	AAC Asn	GCC Ala	GTG Val 865	AAA Lys	2709
		AAA Lys											CAGC	CAT		2755
GAT	GGGA	ACC .	ACTC	AAGA	AG A	GGAC	ACTA	A TC	CCAG.	ACCC	CGT	ATCC	CCG (GCCT	TCGCCT	2815
GCG	GATGGGAACC ACTCAAGAAG AGGACACTAA TCCCAGACCC CGTATCCCCG GCCTTCGCCT															2827

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 878 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Ser Asp Ile Phe Asn Ser Pro Gln Ala Arg Ser Thr Ile Ser Ala 1 5 10 15

Ala Phe Gly Ile Lys Pro Thr Ala Gly Gln Asp Val Glu Glu Leu Leu

Ile Pro Lys Val Trp Val Pro Pro Glu Asp Pro Leu Ala Ser Pro Ser Arg Leu Ala Lys Phe Leu Arg Glu Asn Gly Tyr Lys Val Leu Gln Pro Arg Ser Leu Pro Glu Asn Glu Glu Tyr Glu Thr Asp Gln Ile Leu Pro Asp Leu Ala Trp Met Arg Gln Ile Glu Gly Ala Val Leu Lys Pro Thr Leu Ser Leu Pro Ile Gly Asp Gln Glu Tyr Phe Pro Lys Tyr Tyr Pro Thr His Arg Pro Ser Lys Glu Lys Pro Asn Ala Tyr Pro Pro Asp Ile

Ala Leu Leu Lys Gln Met Ile Tyr Leu Phe Leu Gln Val Pro Glu Ala

Asn Glu Gly Leu Lys Asp Glu Val Thr Leu Leu Thr Gln Asn Ile Arg

Asp Lys Ala Tyr Gly Ser Gly Thr Tyr Met Gly Gln Ala Asn Arg Leu

Val Ala Met Lys Glu Val Ala Thr Gly Arg Asn Pro Asn Lys Asp Pro . 190

Leu Lys Leu Gly Tyr Thr Phe Glu Ser Ile Ala Gln Leu Leu Asp Ile

Thr Leu Pro Val Gly Pro Pro Gly Glu Asp Asp Lys Pro Trp Val Pro

Leu Thr Arg Val Pro Ser Arg Met Leu Val Leu Thr Gly Asp Val Asp

Gly Asp Phe Glu Val Glu Asp Tyr Leu Pro Lys Ile Asn Leu Lys Ser

Ser Ser Gly Leu Pro Tyr Val Gly Arg Thr Lys Gly Glu Thr Ile Gly

Glu Met Ile Ala Ile Ser Asn Gln Phe Leu Arg Glu Leu Ser Thr Leu

Leu Lys Gln Gly Ala Gly Thr Lys Gly Ser Asn Lys Lys Leu Leu

	290					295					300				
Ser 305	Met	Leu	Ser	Asp	Tyr 310	Trp	Tyr	Leu	Ser	Cys 315	Gly	Leu	Leu	Phe	Pro 320
Lys	Ala	Glu	Arg	Tyr 325	Asp	Lys	Ser	Thr	Trp 330	Leu	Thr	Lys	Thr	Arg 335	Asn
Ile	Trp	Ser	Ala 340	Pro	Ser	Pro	Thr	His 345	Leu	Met	Ile	Ser	Met 350	Ile	Thr
Trp	Pro	Val 355	Met	Ser	Asn	Ser	Pro 360	Asn	Asn	Val	Leu	Asn 365	Ile	Glu	Gly
Cys	Pro 370	Ser	Leu	Tyr	Lys	Phe 375	Asn	Pro	Phe	Arg	Gly 380	Gly	Leu	Asn	Arg
Ile 385	Val	Glu	Trp	Ile	Leu 390	Ala	Pro	Glu	Glu	Pro 395	Lys	Ala	Leu	Val	Tyr 400
Ala	Asp	Asn	Ile	Tyr 405	Ile	Val	His	Ser	Asn 410	Thr	Trp	Tyr	Ser	Ile 415	Asp
Leu	Glu	Lys	Gly 420	Glu	Ala	Asn	Cys	Thr 425	Arg	Gln	His	Met	Gln 430	Ala	Ala
Met	Tyr	Tyr 435	Ile	Leu	Thr	Arg	Gly 440	Trp	Ser	Asp	Asn	Gly 445	Asp	Pro	Met
Phe	Asn 450	Gln	Thr	Trp	Ala	Thr 455	Phe.	Ala	Met	Asn	Ile 460	Ala	Pro	Ala	Leu
Val 465		Asp	Ser	Ser	Cys 470	Leu	Ile	Met	Asn	Leu 475	Gln	Ile	Lys	Thr	Tyr 480
Gly	Gln	Gly	Ser	Gly 485	Asn	Ala	Ala	Thr	Phe 490	Ile	Asn	Asn	His	Leu. 495	Leu
Ser	Thr	Leu	Val 500	Leu	Asp	Gln	Trp	Asn 505	Leu	Met	Arg	Gln	Pro 510	Arg	Pro
Asp	Ser	Glu 515	Glu	Phe	Lys	Ser	Ile 520	Glu	Asp	Lys	Leu	Gly 525	Ile	Asn	Phe
Lys	Ile 530	Glu	Arg	Ser	Ile	Asp 535	Asp	Ile	Arg	Gly	Lys 540	Leu	Arg	Gln	Leu
Val 545	Leu	Leu	Ala	Gln	Pro 550	Gly	Tyr	Leu	Ser	Gly 555	_	Val	Glu	Pro	Glu 560
Gln	Ser	Ser	Pro	Thr	Val	Glu	Leu	Asp	Leu	Leu	Gly	Trp	Ser	Ala	Thr

Tyr Ser Lys Asp Leu Gly Ile Tyr Val Pro Val Leu Asp Lys Glu Arq Leu Phe Cys Ser Ala Ala Tyr Pro Lys Gly Val Glu Asn Lys Ser Leu Lys Ser Lys Val Gly Ile Glu Gln Ala Tyr Lys Val Val Arg Tyr Glu Ala Leu Arg Leu Val Gly Gly Trp Asn Tyr Pro Leu Leu Asn Lys Ala Cys Lys Asn Asn Ala Gly Ala Ala Arg Arg His Leu Glu Ala Lys Gly Phe Pro Leu Asp Glu Phe Leu Ala Glu Trp Ser Glu Leu Ser Glu Phe Gly Glu Ala Phe Glu Gly Phe Asn Ile Lys Leu Thr Val Thr Ser Glu Ser Leu Ala Glu Leu Asn Lys Pro Val Pro Pro Lys Pro Pro Asn Val Asn Arg Pro Val Asn Thr Gly Gly Leu Lys Ala Val Ser Asn Ala Leu Lys Thr Gly Arg Tyr Arg Asn Glu Ala Gly Leu Ser Gly Leu Val Leu Leu Ala Thr Ala Arg Ser Arg Leu Gln Asp Ala Val Lys Ala Lys Ala Glu Ala Glu Lys Leu His Lys Ser Lys Pro Asp Asp Pro Asp Ala Asp Trp Phe Glu Arg Ser Glu Thr Leu Ser Asp Leu Leu Glu Lys Ala Asp Ile Ala Ser Lys Val Ala His Ser Ala Leu Val Glu Thr Ser Asp Ala Leu Glu Ala Val Gln Ser Thr Ser Val Tyr Thr Pro Lys Tyr Pro Glu Val Lys Asn Pro Gln Thr Ala Ser Asn Pro Val Val Gly Leu His Leu

Pro Ala Lys Arg Ala Thr Gly Val Gln Ala Ala Leu Leu Gly Ala Gly

845 840 835 Thr Ser Arg Pro Met Gly Met Glu Ala Pro Thr Arg Ser Lys Asn Ala 860 855 850 Val Lys Met Ala Lys Arg Arg Gln Arg Gln Lys Glu Ser Arg 870 865 (2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3261 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: circular (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 97..531 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: GGATACGATC GGTCTGACCC CGGGGGAGTC ACCCGGGGAC AGGCCGTCAA GGCCTTGTTC 60 CAGGATGGGA CTCCTCCTTC TACAACGCTA TCATTG ATG GTT AGT AGA GAT CAG 114 Met Val Ser Arg Asp Gln 880 ACA AAC GAT CGC AGC GAT GAC AAA CCT GCA AGA TCA AAC CCA ACA GAT 162 Thr Asn Asp Arg Ser Asp Asp Lys Pro Ala Arg Ser Asn Pro Thr Asp **B95** 890 TGT TCC GTT CAT ACG GAG CCT TCT GAT GCC AAC AAC CGG ACC GGC GTC 210 Cys Ser Val His Thr Glu Pro Ser Asp Ala Asn Asn Arg Thr Gly Val 915 910 905 CAT TCC GGA CGA CAC CCT GGA GAA GCA CAC TCT CAG GTC AGA GAC CTC 258 His Ser Gly Arg His Pro Gly Glu Ala His Ser Gln Val Arg Asp Leu 925 920 GAC CTA CAA TTT GAC TGT GGG GGA CAC AGG GTC AGG GCT AAT TGT CTT 306 Asp Leu Gln Phe Asp Cys Gly Gly His Arg Val Arg Ala Asn Cys Leu 945 940 935 TTT CCC TGG ATT CCC TGG CTC AAT TGT GGG TGC TCA CTA CAC ACT GCA 354

Phe Pro Trp Ile Pro Trp Leu Asn Cys Gly Cys Ser Leu His Thr Ala

955

950

GGG CAA TGG GAA CTA CAA GTT CGA TCA GAT GCT CCT GAC TGC CCA GAA Gly Gln Trp Glu Leu Gln Val Arg Ser Asp Ala Pro Asp Cys Pro Glu 965 970 975 980	402
CCT ACC GGC CAG TTA CAA CTA CTG CAG GCT AGT GAG TCG GAG TCT CAC Pro Thr Gly Gln Leu Gln Leu Gln Ala Ser Glu Ser Glu Ser His 985 990 995	450
AGT GAG GTC AAG CAC ACT TCC TGG TGG CGT TTA TGC ACT AAA CGG CAC Ser Glu Val Lys His Thr Ser Trp Trp Arg Leu Cys Thr Lys Arg His 1000 1005 1010	498
CAT AAA CGC CGT GAC CTT CCA AGG AAG CCT GAG TGAACTGACA GATGTTAGCT His Lys Arg Arg Asp Leu Pro Arg Lys Pro Glu 1015 1020	551
ACAATGGGTT GATGTCTGCA ACAGCCAACA TCAACGACAA AATTGGGAAC GTCCTAGTAG	611
GGGAAGGGT CACCGTCCTC AGCTTACCCA CATCATATGA TCTTGGGTAT GTGAGGCTTG	671
GTGACCCCAT TCCCGCAATA GGGCTTGACC CAAAAATGGT AGCCACATGT GACAGCAGTG	731
ACAGGCCCAG AGTCTACACC ATAACTGCAG CCGATGATTA CCAATTCTCA TCACAGTACC	791
AACCAGGTGG GGTAACAATC ACACTGTTCT CAGCCAACAT TGATGCCATC ACAAGCCTCA	851
GCGTTGGGGG AGAGCTCGTG TTTCAAACAA GCGTCCACGG CCTTGTACTG GGCGCCACCA	911
TCTACCTCAT AGGCTTTGAT GGGACAACGG TAATCACCAG GGCTGTGGCC GCAAACAATG	971
GGCTGACGAC CGGCACCGAC AACCTTATGC CATTCAATCT TGTGATTCCA ACAAACGAGA	1031
TAACCCAGCC AATCACATCC ATCAAACTGG AGATAGTGAC CTCCAAAAGT GGTGGTCAGG	1091
CAGGGGATCA GATGTCATGG TCGGCAAGAG GGAGCCTAGC AGTGACGATC CATGGTGGCA	1151
ACTATCCAGG GGCCCTCCGT CCCGTCACGC TAGTGGCCTA CGAAAGAGTG GCAACAGGAT	1211
CCGTCGTTAC GGTCGCTGGG GTGAGCAACT TCGAGCTGAT CCCAAATCCT GAACTAGCAA	1271
AGAACCTGGT TACAGAATAC GGCCGATTTG ACCCAGGAGC CATGAACTAC ACAAAATTGA	1331
TACTGAGTGA GAGGGACCGT CTTGGCATCA AGACCGTCTG GCCAACAAGG GAGTACACTG	1391
ACTITCGTGA ATACTICATG GAGGTGGCCG ACCTCAACTC TCCCCTGAAG ATTGCAGGAG	1451
CATTCGGCTT CAAAGACATA ATCCGGGCCA TAAGGAGGAT AGCTGTGCCG GTGGTCTCCA	1511
CATTGTTCCC ACCTGCCGCT CCCCTAGCCC ATGCAATTGG GGAAGGTGTA GACTACCTGC	1571
TGGGCGATGA GGCACAGGCT GCTTCAGGAA CTGCTCGAGC CGCGTCAGGA AAAGCAAGAG	1631

CTGCCTCAGG	CCGCATAAGG	CAGCTGACTC	TCGCCGCCGA	CAAGGGGTAC	GAGGTAGTCG	1691
CGAATCTATT	CCAGGTGCCC	CAGAATCCCG	TAGTCGACGG	GATTCTTGCT	TCACCTGGGG	1751
TACTCCGCGG	TGCACACAAC	CTCGACTGCG	TGTTÄÄGÄGA	GGGTGCCACG	CTATTCCCTG	1811
TGGTTATTAC	GACAGTGGAA;	GACGCCATGA	CACCCAAAGC	ATTGAACAGC	AAAATGTTTG	1871
CTGTCATTGA	AGGCGTGCGA	GAAGACCTCC	AACCTCCATC	TCAAAGAGGA	TCCTTCATAC	1931
GAACTCTCTC	TGGACACAGA	GTCTATGGAT	ATGCTCCAGA	TGGGGTACTT	CCACTGGAGA	1991
CTGGGAGAGA	CTACACCGTT	GTCCCAATAG	ATGATGTCTG	GGACGACAGC	ATTATGCTGT	2051
CCAAAGATCC	CATACCTCCT	ATTGTGGGAA	ACAGTGGAAA	TCTAGCCATA	GCTTACATGG	2111
ATGTGTTTCG	ACCCAAAGTC	CCAATCCATG	TGGCTATGAC	GGGAGCCCTC	AATGCTTGTG	2171
GCGAGATTGA	GAAAGTAAGC	TTTAGAAGCA	CCAAGCTCGC	CACTGCACAC	CGACTTGGCC	2231
TTAGGTTGGC.	TGGTCCCGGA	GCATTCGATG	TAAACACCGG	GCCCAACTGG	GCAACGTTCA	2291
TCAAACGTTT	CCCTCACAAT	CCACGCGACT	GGGACAGGCT	CCCCTACCTC	AACCTACCAT	2351
ACCTTCCACC	CAATGCAGGA	CGCCAGTACC	ACCTTGCCAT	GGCTGCATCA	GAGTTCAAAG	2411
AGACCCCCGA	ACTCGAGAGT	GCCGTCAGAG	CAATGGAAGC	AGCAGCCAAC	GTGGACCCAC	2471
TATTCCAATC	TGCACTCAGT	GTGTTCATGT	GGCTGGAAGA	GAATGGGATT	GTGACTGACA	2531
TGGCCAACTT	CGCACTCAGC	GACCCGAACG	CCCATCGGAT	GCGAAATTTT	CTTGCAAACG	2591
CACCACAAGC	AGGCAGCAAG	TCGCAAAGGG	CCAAGTACGG	GACAGCAGGC	TACGGAGTGG	2651
AGGCTCGGGG	CCCCACACCA	GAGGAAGCAC	AGAGGGAAAA	AGACACACGG	ATCTCAAAGA	2711
AGATGGAGAC	CATGGGCATC	TACTTTGCAA	CACCAGAATG	GGTAGCACTC	AATGGGCACC	2771
GAGGGCCAAG	CCCCGGCCAG	CTAAAGTACT	GGCAGAACAC	: ACGAGAAATA	CCGGACCCAA	2831
ACGAGGACTA	TCTAGACTAC	GTGCATGCAG	AGAAGAGCCG	GTTGGCATCA	GAAGAACAAA	2891
TCCTAAGGGC	AGCTACGTCG	ATCTACGGGG	CTCCAGGACA	A GGCAGAGCCA	CCCCAAGCTT	2951
TCATAGACGA	AGTTGCCAAA	GTCTATGAAA	TCAACCATGO	ACGTGGCCCA	AACCAAGAAC	3011
AGATGAAAGA	TCTGCTCTTG	ACTGCGATGG	G AGATGAAGC	A TCGCAATCCC	AGGCGGGCTC	-3071
TACCAAAGCC	CAAGCCAAAA	CCCAATGCTC	CAACACAGAG	ACCCCCTGG1	CGGCTGGGCC	3131
GCTGGATCAG	GACCGTCTCT	GATGAGGACO	TTGAGTGAG	G CTCCTGGGAG	TCTCCCGACA	3191

CCACCCGCGC AGGTGTGGAC ACCAATTCGG CCTTACAACA TCCCAAATTG GATCCGTTCG 3251
CGGGTCCCCT 3261

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
- Met Val Ser Arg Asp Gln Thr Asn Asp Arg Ser Asp Asp Lys Pro Ala

 1 5 10 15
- Arg Ser Asn Pro Thr Asp Cys Ser Val His Thr Glu Pro Ser Asp Ala 20 25 30
- Asn Asn Arg Thr Gly Val His Ser Gly Arg His Pro Gly Glu Ala His
- Ser Gln Val Arg Asp Leu Asp Leu Gln Phe Asp Cys Gly Gly His Arg 50 55 60
- Val Arg Ala Asn Cys Leu Phe Pro Trp Ile Pro Trp Leu Asn Cys Gly 65 70 75 80
- Cys Ser Leu His Thr Ala Gly Gln Trp Glu Leu Gln Val Arg Ser Asp
 85 90 95
- Ala Pro Asp Cys Pro Glu Pro Thr Gly Gln Leu Gln Leu Gln Ala 100 105 110
- Ser Glu Ser Glu Ser His Ser Glu Val Lys His Thr Ser Trp Trp Arg
- Leu Cys Thr Lys Arg His His Lys Arg Arg Asp Leu Pro Arg Lys Pro
 130 135 140

Glu

- 145
- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3261 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 131..3166

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GGATACGATC GGTCTGACCC CGGGGGAGTC ACCCGGGGAC AGGCCGTCAA GGCCTTGTTC	60
CAGGATGGGA CTCCTCCTTC TACAACGCTA TCATTGATGG TTAGTAGAGA TCAGACAAAC	120
GATCGCAGCG ATG ACA AAC CTG CAA GAT CAA ACC CAA CAG ATT GTT CCG Met Thr Asn Leu Gln Asp Gln Thr Gln Gln Ile Val Pro 150 155	169
TTC ATA CGG AGC CTT CTG ATG CCA ACA ACC GGA CCG GCG TCC ATT CCG Phe Ile Arg Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro 160 165 170	217
GAC GAC ACC CTG GAG AAG CAC ACT CTC AGG TCA GAG ACC TCG ACC TAC Asp Asp Thr Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr 175 180 185 190	265
AAT TTG ACT GTG GGG GAC ACA GGG TCA GGG CTA ATT GTC TTT TTC CCT Asn Leu Thr Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro 195 200 205	313
GGA TTC CCT GGC TCA ATT GTG GGT GCT CAC TAC ACA CTG CAG GGC AAT Gly Phe Pro Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn 210 215 220	361
GGG AAC TAC AAG TTC GAT CAG ATG CTC CTG ACT GCC CAG AAC CTA CCG Gly Asn Tyr Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro 225 230 235	409
GCC AGT TAC AAC TAC TGC AGG CTA GTG AGT CGG AGT CTC ACA GTG AGG Ala Ser Tyr Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg 240 245 250	457
TCA AGC ACA CTT CCT GGT GGC GTT TAT GCA CTA AAC GGC ACC ATA AAC Ser Ser Thr Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn 255 260 265 270	505
GCC GTG ACC TTC CAA GGA AGC CTG AGT GAA CTG ACA GAT GTT AGC TAC	553

Ala	Val	Thr	Phe	Gln 275	Gly	Ser	Leu	Ser	Glu 280	Leu	Thr	Asp	Val	Ser 285	Tyr	
			ATG Met 290													601
GTC Val	CTA Leu	GTA Val 305	GGG Gly	GAA Glu	GGG Gly	GTC Val	ACC Thr 310	GTC Val	CTC Leu	AGC Ser	TTA Leu	CCC Pro 315	ACA Thr	TCA Ser	TAT Tyr	649
			TAT Tyr													697
			ATG Met													745
			ACT Thr													793
			GTA Val 370				Leu									841
			AGC Ser													889
			CTG Leu													937
			ACC Thr			Val										985
			CTT Leu													1033
			ATC Ile 450													1081
			GCA Ala													1129

A CATODY HARRY

GCA GTG ACG ATC CAT GGT GGC AAC TAT CCA GGG GCC CTC CGT CCC GTC Ala Val Thr Ile His Gly Gly Asn Tyr Pro Gly Ala Leu Arg Pro Val ACG CTA GTG GCC TAC GAA AGA GTG GCA ACA GGA TCC GTC GTT ACG GTC Thr Leu Val Ala Tyr Glu Arg Val Ala Thr Gly Ser Val Val Thr Val GCT GGG GTG AGC AAC TTC GAG CTG ATC CCA AAT CCT GAA CTA GCA AAG Ala Gly Val Ser Asn Phe Glu Leu Ile Pro Asn Pro Glu Leu Ala Lys AAC CTG GTT ACA GAA TAC GGC CGA TTT GAC CCA GGA GCC ATG AAC TAC Asn Leu Val Thr Glu Tyr Gly Arg Phe Asp Pro Gly Ala Met Asn Tyr ACA AAA TTG ATA CTG AGT GAG AGG GAC CGT CTT GGC ATC AAG ACC GTC Thr Lys Leu Ile Leu Ser Glu Arg Asp Arg Leu Gly Ile Lys Thr Val TGG CCA ACA AGG GAG TAC ACT GAC TTT CGT GAA TAC TTC ATG GAG GTG Trp Pro Thr Arg Glu Tyr Thr Asp Phe Arg Glu Tyr Phe Met Glu Val GCC GAC CTC AAC TCT CCC CTG AAG ATT GCA GGA GCA TTC GGC TTC AAA Ala Asp Leu Asn Ser Pro Leu Lys Ile Ala Gly Ala Phe Gly Phe Lys 58.0 GAC ATA ATC CGG GCC ATA AGG AGG ATA GCT GTG CCG GTG GTC TCC ACA Asp Ile Ile Arg Ala Ile Arg Arg Ile Ala Val Pro Val Val Ser Thr TTG TTC CCA CCT GCC GCT CCC CTA GCC CAT GCA ATT GGG GAA GGT GTA Leu Phe Pro Pro Ala Ala Pro Leu Ala His Ala Ile Gly Glu Gly Val GAC TAC CTG CTG GGC GAT GAG GCA CAG GCT GCT TCA GGA ACT GCT CGA Asp Tyr Leu Leu Gly Asp Glu Ala Gln Ala Ala Ser Gly Thr Ala Arg GCC GCG TCA GGA AAA GCA AGA GCT GCC TCA GGC CGC ATA AGG CAG CTG Ala Ala Ser Gly Lys Ala Arg Ala Ala Ser Gly Arg Ile Arg Gln Leu ACT CTC GCC GCC GAC AAG GGG TAC GAG GTA GTC GCG AAT CTA TTC CAG Thr Leu Ala Ala Asp Lys Gly Tyr Glu Val Val Ala Asn Leu Phe Gln GTG CCC CAG AAT CCC GTA GTC GAC GGG ATT CTT GCT TCA CCT GGG GTA Val Pro Gln Asn Pro Val Val Asp Gly Ile Leu Ala Ser Pro Gly Val

CTC Leu	CGC Arg	GGT Gly	GCA Ala 690	CAC His	AAC Asn	CTC Leu	GAC Asp	TGC Cys 695	GTG Val	TTA Leu	AGA Arg	GAG Glu	GGT Gly 700	GCC Ala	ACG Thr	1801
CTA Leu	Phe	CCT Pro 705	GTG Val	GTT Val	ATT Ile	ACG Thr	ACA Thr 710	GTG Val	GAA Glu	GAC Asp	GCC Ala	ATG Met 715	ACA Thr	CCC Pro	AAA Lys	1849
GCA Ala	TTG Leu 720	AAC Asn	AGC Ser	AAA Lys	ATG Met	TTT Phe 725	GCT Ala	GTC Val	ATT Ile	GAA Glu	GGC Gly 730	GTG Val	CGA Arg	GAA Glu	GAC Asp	1897
CTC Leu 735	CAA Gln	CCT Pro	CCA Pro	TCT Ser	CAA Gln 740	AGA Arg	GGA Gly	TCC Ser	TTC Phe	ATA Ile 745	CGA Arg	ACT Thr	CTC Leu	TCT Ser	GGA Gly 750	1945
CAC His	AGA Arg	GTC Val	TAT Tyr	GGA Gly 755	TAT Tyr	GCT Ala	CCA Pro	GAT Asp	GGG Gly 760	GTA Val	CTT Leu	CCA Pro	CTG Leu	GAG Glu 765	ACT Thr	1993
GGG Gly	AGA Arg	GAC Asp	TAC Tyr 770	ACC Thr	GTT Val	GTC Val	CCA Pro	ATA Ile 775	GAT Asp	GAT Asp	GTC Val	TGG Trp	GAC Asp 780	GAC Asp	AGC Ser	2041
ATT Ile	ATG Met	CTG Leu 785	TCC Ser	AAA Lys	GAT Asp	CCC Pro	ATA Ile 790	CCT Pro	CCT Pro	ATT	GTG Val	GGA Gly 795	AAC Asn	AGT Ser	GGA Gly	2089
												AAA Lys				2137
												GAG Glu				2185
												CGA Arg				2233
												GGG Gly				2281
												GAC Asp 875				2329
												GCA Ala				2377

											GAG Glu					2425
											AAC Asn					2473
											GAA Glu				ATT Ile	2521
											CCG Pro					2569
											GGC Gly 970					2617
AGG Arg 975	GCC Ala	AAG Lys	TAC Tyr	GGG Gly	ACA Thr 980	GCA Ala	GGC Gly	TAC Tyr	GGA Gly	GTG Val 985	GAG Glu	GCT Ala	CGG Arg	GGC Gly	CCC Pro 990	2665
										Thr	CGG Arg					2713
				Gly					Thr		GAA Glu			Ala		2761
AAT Asn	GGG Gly	CAC His 102	Arg	GGG Gly	CCA Pro	AGC Ser	CCC Pro 103	Gly	CAG Gln	CTA Leu	AAG Lys	TAC Tyr 103	Trp	CAG Gln	AAC Asn	2809
		Glu					Asn					Asp			CAT His	2857
GCÁ Ala 105	Glu	AAG Lys	AGC Ser	CGG Arg	TTG Leu 106	Ala	TCA Ser	GAA Glu	GAA Glu	CAA Gln 106	Ile	CTA Leu	AGG Arg	GCA Ala	GCT Ala 1070	2905
ACG Thr	TCG Ser	ATC Ile	TAC	GGG Gly 107	Ala	CCA Pro	GGA Gly	CAG Gln	GCA Ala 108	Glu	CCA Pro	CCC Pro	CAA Gln	GCT Ala 108	TTC Phe	2953
				Ala					Ile					Gly	CCA Pro	3001

AAC Asn	CAA Gln	GAA Glu 110	CAG Gln 5	ATG Met	AAA Lys	GAT Asp	CTG Leu 111	Leu	TTG Leu	ACT Thr	GCG Ala	ATG Met 111	Glu	ATG Met	AAG Lys	3049
CAT His	CGC Arg 112	Asn	CCC Pro	AGG Arg	CGG Arg	GCT Ala 112	Leu	CCA Pro	AAG Lys	CCC	AAG Lys 113	Pro	AAA Lys	CCC Pro	AAT Asn	3097
GCT Ala 113	Pro	ACA Thr	CAG Gln	AGA Arg	CCC Pro 114	Pro	GGT Gly	CGG Arg	CTG Leu	GGC Gly 114	Arg	TGG Trp	ATC Ile	AGG Arg	ACC Thr 1150	3145
GTC Val	TCT Ser	GAT Asp	GAG Glu	GAC Asp 115	Leu	GAG Glu	TGA	GCT	CCT (egga(GTCT(CC C	GACA	CCAC	2	3196
CGC	GCAG	GTG '	TGGA	CACC	AA T	rcgg	CTT	A CAZ	CATO	CCCA	AATT	rgga:	rcc (TTC(GCGGGT	3256
CCC	CT -							,					•			3261
(2)			TION											٠		
		(1) ;	(B)	LEN TYP	IGTH : PE: 8		2 an	nino ld		ls					٠.	. :
	(;	Li) P	MOLEC	TULE	TYPE	E: pr	otei	in								
	()	ci) s	SEQUE	ENCE	DESC	RIPI	CION:	SEÇ] ID	NO:3	10:		•			•
Met 1	Thr	Asn	Leu	Gln 5	Asp	Gln	Thr	Gln	Gln 10	Ile	Val	Pro	Phe	Ile 15	Arg	
Ser	Leu	Leu	Met 20	Pro	Thr	Thr	Gly	Pro 25	Ala	Ser	Ile	Pro	Asp 30	Asp	Thr	
Leu	Glu	Lys 35	His	Thr	Leu	Arg	Ser 40	Glu	Thr	Ser	Thr	Tyr 45	Asn	Leu	Thr	
Val	Gly 50	qaA	Thr	Gly	Ser	Gly 55	Leu	Ile	Val	Phe	Phe 60	Pro	Gly	Phe	Pro	
Gly 65	Ser	Ile	Val	Gly	Ala 70	His	Tyr	Thr	Leu	Gln 75	Gly	Asn	Gly	Asn	Tyr 80	
Lys	Phe	Asp	Gln	Met 85	Leu	Leu	Thr	Ala	Gln 90	Asn	Leu	Pro	Ala	Ser 95	Tyr	
Asn	Tyr	Cys	Arg 100	Leu	Val	Ser	Arg	Ser 105	Leu	Thr	Val	Arg	Ser 110	Ser	Thr	

- Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115 120 125
- Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 130 135 140
- Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160
- Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly
 165 170 175
- Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys
 180 185 190
- Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 195 200 205
- Thr Ala Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly 210 215 220
- Val Thr Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu 225 230 235 240
- Ser Val Gly Glu Leu Val Phe Gln Thr Ser Val His Gly Leu Val 245 250 255
- Leu Gly Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile 260 265 270
- Thr Arg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn 275 280 285
- Leu Met Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro 290 295 300
- Ile Thr Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gln 305 310 315 320
- Ala Gly Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu Ala Val Thr 325 330 335
- Ile His Gly Gly Asn Tyr Pro Gly Ala Leu Arg Pro Val Thr Leu Val 340 345 350
- Ala Tyr Glu Arg Val Ala Thr Gly Ser Val Val Thr Val Ala Gly Val
 355 360 365
- Ser Asn Phe Glu Leu Ile Pro Asn Pro Glu Leu Ala Lys Asn Leu Val 370 375 380
- Thr Glu Tyr Gly Arg Phe Asp Pro Gly Ala Met Asn Tyr Thr Lys Leu

385					390					395					400
Ile	Leu	Ser	Glu	Arg 405	Asp	Arg	Leu	Gly	Ile 410	Lys	Thr	Val	Trp	Pro 415	Thr
Arg	Glu	Tyr	Thr 420	Asp	Phe	Arg	Glu	Tyr 425	Phe	Met	Glu	Val	Ala 430	Asp	Leu
Asn	Ser	Pro 435	Leu	Lys	Ile	Ala	Gly 440	Ala	Phe	Gly	Phe	Lys 445	Asp	Ile	Ile
Arg	Ala 450	Ile	Arg	Arg	Ile	Ala 455	Val	Pro	Val	Val	Ser 460	Thr	Leu	Phe	Pro
Pro 465	Ala	Ala	Pro	Leu	Ala 470	His	Ala	Ile	Gly	Glu 475	Gly	Val	Asp	Tyr	Leu 480
Leu	Gly	Asp	Glu	Ala 485	Gln	Ala	Ala	Ser	Gly 490	Thr	Ala	Arg	Ala	Ala 495	Ser
Gly	Lys	Ala	Arg 500	Ala	Ala	Ser	Gly	Arg 505	Ile	Arg	Gln	Leu	Thr 510	Leu	Ala
Ala	Asp	Lys 515	Gly	Tyr	Glu	Val	Val 520	Ala	Asn	Leu	Phe	Gln 525	Val	Pro	Gln
Asn	Pro 530	Val	Val	Asp	Gly	Ile 535	Leu	Ala	Ser	Pro	Gly 540	Val	Leu	Arg	Gly
Ala 545	His	Asn	Leu	Asp	Cys 550	Val	Leu	Arg		Gly 555	Ala	Thr	Leu	Phe	Pro 560
Val	Val	Ile	Thr	Thr 565	Val	Glu	Asp	Ala	Met 570	Thr	Pro	Lys	Ala	Leu 575	Asn
Ser	Lys	Met	Phe 580	Ala	Val	Ile	Glu	Gly 585	Val	Arg	Glu	Asp	Leu 590	Gln	Pro
Pro	Ser	Gln 595	Arg	Gly	Ser	Phe	Ile 600	Arg	Thr	Leu	Ser	Gly 605	His	Arg	Val
Tyr	Gly 610	Tyr	Ala	Pro	Asp	Gly 615	Val	Leu	Pro	Leu	Glu 620	Thr	Glý	Arg	Asp
Tyr 625	Thr	Val	Val	Pro	Ile 630	Asp	Asp	Val	Trp	Asp 635	Asp	Ser	Ile	Met	Leu 640
Ser	Lys	Asp	Pro	Ile 645	Pro	Pro	Ile	Val	Gly 650	Asn	Ser	Gly	Asn	Leu 655	Ala
Ile	Ala	Tyr	Met 660	Asp	Val	Phe	Arg	Pro 665	Lys	Val	Pro	Ile	His	Val	Ala

U & 1 U U J / / & 4/2 J J

- Met Thr Gly Ala Leu Asn Ala Cys Gly Glu Ile Glu Lys Val Ser Phe 675 680 685
- Arg Ser Thr Lys Leu Ala Thr Ala His Arg Leu Gly Leu Arg Leu Ala 690 695 700
- Gly Pro Gly Ala Phe Asp Val Asn Thr Gly Pro Asn Trp Ala Thr Phe 705 710 715 720
- Ile Lys Arg Phe Pro His Asn Pro Arg Asp Trp Asp Arg Leu Pro Tyr
 725 730 735
- Leu Asn Leu Pro Tyr Leu Pro Pro Asn Ala Gly Arg Gln Tyr His Leu 740 745 750
- Ala Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala 755 760 765
- Val Arg Ala Met Glu Ala Ala Asn Val Asp Pro Leu Phe Gln Ser 770 775 780
- Ala Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp 785 790 795 800
- Met Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn 805 810 815
- Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys
 820 825 830
- Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu 835 840 845
- Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys Met Glu Thr 850 855 860
- Met Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Gly His 865 870 875 880
- Arg Gly Pro Ser Pro Gly Gln Leu Lys Tyr Trp Gln Asn Thr Arg Glu 885 890 895
- Ile Pro Asp Pro Asn Glu Asp Tyr Leu Asp Tyr Val His Ala Glu Lys
 900 905 910
- Ser Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile 915 920 925
- Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu 930 935 940
- Val Ala Lys Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu

945					950					955		•			960	
Gln	Met	Lys	Asp	Leu 965	Leu	Leu	Thr	Ala	Met 970	Glu	Met	Lys	His	Arg 975	Asn	
Pro	Arg	Arg	Ala 980	Leu	Pro	Lys	Pro	Lys 985	Pro	Lys	Pro	Asn	Ala 990	Pro	Thr	
Gln	Arg	Pro 995	Pro	Gly	Arg	Leu	Gly 1000	Arg O	Trp	Ile	Arg	Thr		Ser	Asp	
Glu	Asp 1010		Glu ·													•
(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO:31	l:				•				
	(i)		QUEN													
			A) Li						rs							
		(1	3) T	YPE:	nucl	leic	acio	i								
			c) s:										٠,			
		(I) T(OPOLO	OGY:	circ	ula	•			•					
	•	٠.				•		•		*				.,		
	(ii)	MOI	LECUI	LE TY	PE:	CDN	4									•
				•												
	(ix)	FE?	ATURI	3:												
		(2	A) NA	ME/F	ŒY:	CDS					ĺ					
		(E	3) L(CATI	ON:	97	531									
	(xi)	SEC	QUENC	CE DE	ESCRI	PTIC	N: 5	SEQ]	D NC	31:	:		•	•		
GGA1	ACGA	ATC C	GTCT	CACC	C CG	GGGG	AGTO	ACC	CCGGG	GAC	AGGC	CATO	AC I	GCCI	TGTT	60
														•		
CTGG	TTGG	AA C	TCCI	CTTT	C TO	CTGI	ACT	TCC	TTG	ATG	GTG	AGT	AGA	GAT	CAG	114
										Met	Val	Ser	Arg	Asp	Gln	
												1015			- •	
ACA	AAC	GAT	CGC	AGC	GAT	GAC	AAA	CCT	GAT	GGA	TCA	CAC	CCA	ACA	GAT	162
Thr	Asn	Asp	Arg	Ser	Asp			Pro	Asp	Gly	Ser	His	Pro	Thr	Asp	
	1020)				1025	i				1030)				
										•	•				-	• •
rgt	TCC	GTT	CAT	ACG	GAG	CCT	TCT	GAT	GCC	AAC	GAC	CGG	ACC	GGC	GTĆ	210
		Val	His	Thr			Ser	Asp	Ala	Asn	Asp	Arg	Thr	Gly	Val	
1035					1040					1045		_		-	1050	
CAT	TCC	GGA	CGA	CAC	CCT	GGA	GAA	GCA	CAC	ACT	CAG	GTC	CGA	AAC	CTC	258
His	Ser	Gly	Arg	His	Pro	Gly	Glu	Ala	His	Thr	Gln	Val	Arq	Asn	Leu	
				1055	;				1060				_	1065		
SAC	TTA	CAA	CTT	GAC	TGT	AGG	GGA	TAC	AGG	GTC	AGG	ACT	AAT	TGT	CTT	306

Asp	Leu	Gln	Leu 1070	_	Cys	Arg	Gly	Tyr 1075		Val	Arg	Thr	Asn 108		Leu	
			Ile				AGT Ser 1090	ayɔ			Ser		His			354
		Trp					Arg					Asp			GAA Glu	402
	Ala					Leu	CTG Leu				Glu					450
					Thr		TGG Trp			Leu					Asn	498
				Asp			CGG Arg		Pro		TGA	gttg/	ACT (GACT	ACAGCT	551
ACA!	ACGG(SCT (SATG	CAG	CC AC	CTGC	GAAC	A TC	AACG	ACAA	GAT	CGGG	AAC (GTTC	TAGTTG	611
GAG	AAGG	GT (SACTO	GTTC	C A	GTCT	ACCG/	A CT	CAT	ATGA	CÇT	ragt"	TAT	GTGA	GACTCG	671
GTG/	ACCC	CAT (cccc	GCAG	CA GO	GACT	CGAC	C CG	AAGT"	rgat	GGC	CACG'	rgc (GACA	GTAGTG	731
ACA	SACC	CAG A	AGTC	raca(CC A	raac:	AGCT	G CA	GATG	AATA	CCA	ATTC	rcg	TCAC	AACTCA	791
TCC	CGAG	rgg (CGTG	AAGA	CC A	CACT	GTTC'	r cc	GCCA	ACAT	CGA	TGCT	CTC	ACCA	GCTTCA	851
GCG	rtgg:	rgg :	rgag	CTTG	rc T	rcag	CCAA	G TA	ACGA	rcca	AAG	CATT	GAA	GTGG.	ACGTCA	911
CCA'	PTCA(CTT (CATT	GGGT	rt G	ACGG	GACA	G AC	GTAG	CAGT	CAA	GGCA	GTT	GCAA	CAGACT	971
TTG	GGCT	GAC A	AACT	GGGA	CA A	ACAA	CCTT	G TG	CCAT	TCAA	CCT	GGTG	GTC	CCAA	CAAATG	1031
AGA'	rcac(CCA (GCCC.	ATCA	CT T	CCAT	GAAA	C TA	GAGG	TTGT	GAC	CTAC	AAG	ATTG	GCGGCA	1091
CCG	CTGG'	TGA (CCCA	TATA	CA T	GGAC	AGTG.	A GT	GGTA	CACT	AGC	TGTG	ACG	GTGC	ACGGAG	1151
GCA.	ACTA	ccc '	TGGG	GCTC'	TC C	GTCC	TGTC.	A CC	CTGG	TGGC	CTA	TGAA	CGA	GTGG	CTGCAG	1211
GAT	CTGT	TGT (CACA	GTTG	CA G	GGGT	GAGC	A AC	TTCG	AGCT	AAT	cccc	AAC	CCTG	AGCTTG	1271
CAA	AGAA	CCT 2	AGTT.	ACAG.	AG T.	ATGG	CCGC	т тт	GACC	CCGG	AGC	AATG	AAC	TACA	CCAAAC	133
TAA	TACT	GAG '	TGAG	AGAG.	AT C	GTCT	AGGC	A TC	AAGA	CAGT	CTG	GCCC	ACC	AGGG	AGTACA	139:
CCG.	ATTT	CAG 1	GGAG	TACT	TC A	TGGA	GGTT	G CA	GATC	TCAA	CTC	ACCC	CTA	AAGA	TTGCAG	145

GAGCAI I 166	CITTAAGGAC	ATAATCCGAG	CCATTCGGAA	GATTGCGGTG	CCAGTGGTAT	1511
CCACACTCTT	CCCTCCAGCT	GCACCCCTAG	CACATGCAAT	CGGAGAAGGT	GTAGACTACC	1571
TCCTGGGCGA	CGAGGCCCAA	GCAGCCTCAG	GGACAGCTCG	AGCCGCGTCA	GGAAAAGCTA	1631
GAGCTGCCTC	AGGACGAATA	AGGCAGCTAA	CTCTCGCAGC	TGACAAGGGG	TGCGAGGTAG	1691
TCGCCAACAT	GTTCCAGGTG	CCCCAGAATC	CCATTGTTGA	TGGCATTCTG	GCATCCCCAG	1751
GAATCCTGCG	TGGCGCACAC	AACCTCGACT	GCGTGCTATG	GGAGGGAGCC	ACTCTTTTCC	1811
CTGTTGTCAT	TACGACACTC	GAGGATGAGC	TGACCCCCAA	GGCACTGAAC	AGCAAAATGT	1871
TTGCTGTCAT	TGAAGGTGTG	CGAGAGGACC	TCCAGCCTCC	ATCCCAACGG	GGATCCTTCA	1931
TTCGAACTCT	CTCTGGCCAT	AGAGTCTATG	GCTATGCCCC	AGACGGAGTA	CTGCCTCTGG	1991
AGACCGGGAG	AGACTACACC	GTTGTCCCAA	TTGATGATGT	GTGGGACGAT	AGCATAATGC	2051
TGTCGCAGGA	CCCCATACCT	CCAATCATAG	GGAACAGCGG	CAACCTAGCC	ATAGCATACA	2111
TGGATGTCTT	CAGGCCCAAG	GTCCCCATCC	ACGTGGCTAT	GACAGGGGCC	CTCAATGCCC	2171
GCGGTGAGAT	CGAGAGTGTT	ACGTTCCGCA	GCACCAAACT	CGCCACAGCC	CACCGACTTG	2231
GCATGAAGTT	AGCTGGTCCT	GGAGCCTATG	ACATTAATAC	AGGACCTAAC	TGGGCAACGT	2291
	TTTCCCTCAC		•		•	2351
	ACCAACAGCA					2411
	AGAACTCGAA			•	•	2471
					ATTGTGACCG	
		•	,		TTCCTAGCAA	2591
	GGCTGGAAGC					2651
					CGGATCTCCA	2711
	AACAATGGGC	•• •			: '•	2771
	AAGCCCCGGC				•	2831
	CTACCCAGAC					2891
	GGCAGCCACG					2951
CCTTCATAGA	CGAGGTCGCC	AGGGTCTATG	AAATCAACCA	TGGGCGTGGT	CCAAACCAGG	3011

AGCAGATGAA GGACCTGCTC CTGACTGCGA TGGAGATGAA GCATCGCAAT CCCAGGCGGG 3071 CTCCACCAAA GCCAAAGCCA AAACCCAATG CTCCATCACA GAGACCCCCT GGACGGCTGG 3131. GCCGCTGGAT CAGGACGGTC TCCGACGAGG ACTTGGAGTG AGGCTCCTGG GAGTCTCCCG ACACTACCCG CGCAGGTGTG GACACCAATT CGGCCTTCTA CCATCCCAAA TTGGATCCGT 3264 TCGCGGGTCC CCT

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
- Met Val Ser Arg Asp Gln Thr Asn Asp Arg Ser Asp Asp Lys Pro Asp
- Gly Ser His Pro Thr Asp Cys Ser Val His Thr Glu Pro Ser Asp Ala 25
- Asn Asp Arg Thr Gly Val His Ser Gly Arg His Pro Gly Glu Ala His
- Thr Gln Val Arg Asn Leu Asp Leu Gln Leu Asp Cys Arg Gly Tyr Arg 50
- Val Arg Thr Asn Cys Leu Phe Pro Trp Ile Pro Trp Phe Ser Cys Arg 80 70 65
- Cys Ser Leu His Thr Ala Glu Gln Trp Glu Leu Pro Ile Arg Pro Asp 85 90 95
- Ala Pro Asp Ser Ala Glu Pro Ala Cys Gln Leu Gln Leu Gln Ala 100 105 110
- Ser Glu Gln Glu Ser Asn Arg Thr Val Lys His Thr Pro Trp Trp Arg 115 120 125
- Leu Cys Thr Lys Arg Asn His Lys Arg Ser Asp Leu Pro Arg Lys Pro 130 135

Glu

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3264 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 131..3169

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GGATA	CGATC	GGTCT	GACCC	CGGGG	GAGT	CAC	CCGG	GAC	AGG	CATO	CAC 1	rgcci	TGTTC	60
CTGGT	TGGAA	CTCCT	CTTTC	TGCTG	TACT	A TCC	GTTG/	ATGG	TGAC	STAG	AGA 1	rcag?	ACAAAC	120
GATCG	CAGCG			n Leu					3ln (169
Phe I	TA CGG le Arg 60											_		217
	AC ACC sp Thr		Glu L											265
	TG ACT eu Thr	Val										_		313
	TC CCT he Pro											Ser		361
	AC TAC sn Tyr 225													409
Ala S	GC TAC er Tyr 40				Leu									457

	CTC Leu				Asn			505
_	TTC Phe						_	553
	ATG Met 290							601
 	GGA Gly							649
 	 TAT Tyr						CTC Leu	697
	TTG Leu							745
	ACA Thr							793
	GTG Val 370							841
 Ser	AGC Ser							889
	GAA Glu							937
	GCA Ala							985
	AAC Asn							1033
	CCC Pro 450							1081

											ACA Thr					1129
Leu	Ala 480	Val	Thr	Val	His	Gly 485	Gly	Asn	Tyr	Pro	GGG Gly 490	Ala	Leu	Arg	Pro	1177
Val 495	Thr	Leu	Val	Ala	Tyr 500	Glu	Arg	Val	Ala	Ala 505	GGA Gly	Ser	Val	Val	Thr 510	1225
Val	Ala	Gly	.Val	Ser 515	Asn	Phe	Glu	Leu	Ile 520	Pro	AAC Asn	Pro	Glu	Leu 525	Ala	1273
											CCC Pro					1321
											CTA Leu					1369
											GAG Glu 570					1417
											GGA Gly					1465
											GTG Val					1513
											GCA Ala					1561
											GCC Ala					1609
											GGA Gly 650					1657
											GTC Val			-		1705

							GTT Val									1753
							CTC Leu									1801
							ACG Thr 710						Leu			1849
							TTT Phe									1897
							CGG Arg								TCT Ser 750	1945
							GCC Ala									1993
							GTC Val								GAT Asp	2041
							CCC Pro 790									2089
GGC Gly	AAC Asn 800	CTA Leu	GCC Ala	ATA Ile	GCA Ala	TAC Tyr 805	ATG Met	GAT Asp	GTC Val	TTC Phe	AGG Arg 810	CCC Pro	AAG Lys	GTC Val	CCC Pro	2137
							GCC Ala									2185
							AAA Lys									2233
															AAC Asn	2281
								Pro							GAC Asp	2329

AGG Arg	TTG Leu 880	Pro	TAC	CTC Leu	AAC Asn	CTT Leu 885	CCT Pro	TAT	CTC Leu	CCA Pro	CCA Pro 890	ACA Thr	GCA Ala	GGA Gly	CGT Arg	2377
G1n 895	Phe	His	Leu	Ala	Leu 900	Ala	Ala	Ser	Glu	Phe 905	Lys	Glu	Thr	Pro	910	2425
Leu		Asp	Ala	Val 915	Arg	Ala	Met	Asp	Ala 920	Ala	Ala	Asn	Ala	Asp 925	Pro	2473
Leu	TTC Phe	Arg	Ser 930	Ala	Leu	Gln	Val	Phe 935	Met	Trp	Leu	Glu	Glu 940	Asn	Gly	2521
Ile	GTG Val	Thr 945	Asp	Met	Ala	Asn	Phe 950	Ala	Leu	Ser	Asp	Pro 955	Asn	Ala	His	2569
Arg	ATG Met 960	Lys	Asn	Phe	Leu	Ala 965	Asn	Ala	Pro	Gln	Ala 970	Gly	Ser	Lys	Ser	2617
Gln 975	AGG Arg	Ala	Lys	Tyr	Gly 980	Thr	Ala	Gly	Tyr	Gly 985	Val	Glu	Ala	Arg	Gly 990	2665
Pro	ACA Thr	Pro	Glu	Glu 995	Ala	Gln	Arg	Glu	Lys 1000	Asp)	Thr	Arg	Ile	Ser 1005	Lys	2713
AAG Lys	ATG Met	GAA Glu	ACA Thr 1010	Met	GGC Gly	ATC Ile	TAC Tyr	TTC Phe 1019	Ala	ACA Thr	CCG Pro	GAA Glu	TGG Trp 1020	Val	GCT Ala	2761
CTC Leu	AAC Asn	GGG Gly 1025	His	CGA Arg	GGC Gly	CCA Pro	AGC Ser 1030	Pro	GGC Gly	CAA Gln	CTC Leu	AAG Lys 1035	Tyr	TGG Trp	CAA Gln	2809
AAC Asn	ACA Thr 1040	Arg	GAA Glu	ATA Ile	CCA Pro	GAG Glu 1045	Pro	AAT Asn	GAG Glu	GAC Asp	TAC Tyr 1050	Pro	GAC Asp	TAT Tyr	GTG Val	2857
CAC His 1055	GCG Ala	GAG Glu	AAG Lys	AGC Ser	CGG Arg 1060	Leu	GCG Ala	TCA Ser	GAA Glu	GAA Glu 1065	Gln	ATC Ile	CTA Leu	CGG Arg	GCA Ala 1070	2905
GCC Ala	ACG Thr	TCG Ser	ATC Ile	TAC Tyr 1075	Gly	GCT Ala	CCA Pro	GGA Gly	CAG Gln 1080	Ala	GAA Glu	CCA Pro	CCC Pro	CAG Gln 1085	Ala	2953

				Val					Glu	ATC Ile				Arg		3001
CCA Pro	AAC Asn	CAG Gln 1105	Glu	CAG Gln	ATG Met	AAG Lys	GAC Asp 1110	Leu	CTC Leu	CTG Leu	ACT Thr	GCG Ala 1115	Met	GAG Glu	ATG Met	3049
		Arg					Ala			AAG Lys		Lys				3097
	Ala					Pro				CTG Leu 1145	Gly					3145
			GAC Asp		Asp			TGAC	GCT(CCT (GGAC	TCT	CC CC	SACA(CTACC	3199
CGC	GCAG(STG 7	rggac	CACC	AA TI	rcgg(CTT	C TAC	CCAT	CCA	AATT	rgga?	rcc c	STTC	CGGGT	3259
CCC	CT.	•										٠			•	3264
(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:3	4:	•			•		. •		
		(i) 8	(B)	LEI TY		: 10: amin	13 a	mino id		ds						
	(:	ii) l	MOLE	CULE	TYP	E: p	rote	in			. •	. •				
•	(:	xi) :	SEQUI	ence	DES	CRIP'	TION	: SE	Q ID	NO:	3 4 :		ai			
Met 1		Asn	Leu	Met 5	Asp	His	Thr	Gln	Gln 10	Ile	Val	Pro	Phe	Ile 15	Arg	
Ser	Leu	Leu	Met 20	Pro	Thr	Thr	Gly	Pro 25		Ser	Ile	Pro	Asp	Asp	Thr	
Leu	Glu	Lys 35		Thr	Leu	Arg	Ser 40		Thr	Ser	Thr	Tyr 45	Asn	Lęu	Thr	
Val	Gly 50		Thr	Gly	Ser	Gly 55		Ile	Val	Phe	Phe 60		Gly	Phe	Pro	
Gly 65		Val	Val	Gly	Ala 70		Туг	Thr	Leu	Gln 75		Ser	Gly	Asn	80	
Gln	Phe	Asp	Gln	Met	Leu	Leu	Thr	Ala	Glr	Asn	Leu	Pro	Ala	Ser	Tyr	

Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 100 Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115

Phe His Gly Ser Leu Ser Glu Leu Thr Asp Tyr Ser Tyr Asn Gly Leu 130 135 140

Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160

Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Ser 165 170 175

Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ala Gly Leu Asp Pro Lys
180 185 190

Leu Met Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile
195 200 205

Thr Ala Ala Asp Glu Tyr Gln Phe Ser Ser Gln Leu Ile Pro Ser Gly 210 215 220

Val Lys Thr Thr Leu Phe Ser Ala Asn Ile Asp Ala Leu Thr Ser Phe 225 230 235 240

Ser Val Gly Glu Leu Val Phe Ser Gln Val Thr Ile Gln Ser Ile
245 250 255

Glu Val Asp Val Thr Ile His Phe Ile Gly Phe Asp Gly Thr Asp Val 260 265 270

Ala Val Lys Ala Val Ala Thr Asp Phe Gly Leu Thr Thr Gly Thr Asn 275 280 285

Asn Leu Val Pro Phe Asn Leu Val Val Pro Thr Asn Glu Ile Thr Gln 290 295 300

Pro Ile Thr Ser Met Lys Leu Glu Val Val Thr Tyr Lys Ile Gly Gly 310 315 320

Thr Ala Gly Asp Pro Ile Ser Trp Thr Val Ser Gly Thr Leu Ala Val 325 330 335

Thr Val His Gly Gly Asn Tyr Pro Gly Ala Leu Arg Pro Val Thr Leu 340 345 350

Val Ala Tyr Glu Arg Val Ala Ala Gly Ser Val Val Thr Val Ala Gly 355 360 365

- Val Ser Asn Phe Glu Leu Ile Pro Asn Pro Glu Leu Ala Lys Asn Leu 370 375 380
- Val Thr Glu Tyr Gly Arg Phe Asp Pro Gly Ala Met Asn Tyr Thr Lys 385 390 395 400
- Leu Ile Leu Ser Glu Arg Asp Arg Leu Gly Ile Lys Thr Val Trp Pro 405 410 415
- Thr Arg Glu Tyr Thr Asp Phe Arg Glu Tyr Phe Met Glu Val Ala Asp 420 425 430
- Leu Asn Ser Pro Leu Lys Ile Ala Gly Ala Phe Gly Phe Lys Asp Ile 435 440 445
- Ile Arg Ala Ile Arg Lys Ile Ala Val Pro Val Val Ser Thr Leu Phe 450 455 460
- Pro Pro Ala Ala Pro Leu Ala His Ala Ile Gly Glu Gly Val Asp Tyr 465 470 475 480
- Leu Leu Gly Asp Glu Ala Gln Ala Ala Ser Gly Thr Ala Arg Ala Ala 485 490 495
- Ser Gly Lys Ala Arg Ala Ala Ser Gly Arg Ile Arg Gln Leu Thr Leu 500 505 510
- Ala Ala Asp Lys Gly Cys Glu Val Val Ala Asn Met Phe Gln Val Pro 515 520 525
- Gln Asn Pro Ile Val Asp Gly Ile Leu Ala Ser Pro Gly Ile Leu Arg 530 535 540
- Gly Ala His Asn Leu Asp Cys Val Leu Trp Glu Gly Ala Thr Leu Phe 545 550 555 560
- Pro Val Val Ile Thr Thr Leu Glu Asp Glu Leu Thr Pro Lys Ala Leu 565 570 575
- Asn Ser Lys Met Phe Ala Val Ile Glu Gly Val Arg Glu Asp Leu Gln 580 585 590
- Pro Pro Ser Gln Arg Gly Ser Phe Ile Arg Thr Leu Ser Gly His Arg 595 600 605
- Val Tyr Gly Tyr Ala Pro Asp Gly Val Leu Pro Leu Glu Thr Gly Arg
 610 620
- Asp Tyr Thr Val Val Pro Ile Asp Asp Val Trp Asp Asp Ser Ile Met 625 630 635

- Leu Ser Gln Asp Pro Ile Pro Pro Ile Ile Gly Asn Ser Gly Asn Leu 645 650 655
- Ala Ile Ala Tyr Met Asp Val Phe Arg Pro Lys Val Pro Ile His Val 660 665 670
- Ala Met Thr Gly Ala Leu Asn Ala Arg Gly Glu Ile Glu Ser Val Thr 675 680 685
- Phe Arg Ser Thr Lys Leu Ala Thr Ala His Arg Leu Gly Met Lys Leu 690 695 700
- Ala Gly Pro Gly Ala Tyr Asp Ile Asn Thr Gly Pro Asn Trp Ala Thr 705 710 715 720
- Phe Val Lys Arg Phe Pro His Asn Pro Arg Asp Trp Asp Arg Leu Pro 725 730 735
- Tyr Leu Asn Leu Pro Tyr Leu Pro Pro Thr Ala Gly Arg Gln Phe His
 740 745 750
- Leu Ala Leu Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Asp
 755 760 765
- Ala Val Arg Ala Met Asp Ala Ala Ala Asn Ala Asp Pro Leu Phe Arg
 770 775 780
- Ser Ala Leu Gln Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr 785 790 795 800
- Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Lys 805 810 815
- Asn Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala 820 825 830
- Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro 835 840 845
- Glu Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys Met Glu 850 855 860
- Thr Met Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Gly 865 870 875 880
- His Arg Gly Pro Ser Pro Gly Gln Leu Lys Tyr Trp Gln Asn Thr Arg 885 890 895
- Glu Ile Pro Glu Pro Asn Glu Asp Tyr Pro Asp Tyr Val His Ala Glu 900 905 910

- Lys Ser Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser 915 920 925
- Ile Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp 930 935 940
- Glu Val Ala Arg Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln 945 950 955 960
- Glu Gln Met Lys Asp Leu Leu Thr Ala Met Glu Met Lys His Arg 965 970 975
- Asn Pro Arg Arg Ala Pro Pro Lys Pro Lys Pro Lys Pro Asn Ala Pro 980 985 990
- Ser Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser 995 1000 1005

Asp Glu Asp Leu Glu 1010

Claims

1. A method for preparing live Birnavirus, comprising the following steps:

preparing a cDNA containing infectious bursal disease virus genome segments A and B,

transcribing said cDNA to produce synthetic RNA transcripts, transfecting host cells with said synthetic RNA transcripts, incubating said host cells in a culture medium, and isolating live infectious bursal disease virus from said culture medium.

- 2. The method according to claim 1, wherein said Birnavirus is infectious bursal disease virus.
- 3. The method according to claim 1, wherein said host cells are African green monkey Vero cells.
- 4. The method according to claim 1, wherein said segments A and B of said cDNA are independently prepared.
- 5. The method according to claim 4, wherein said segment A is present in plasmid pUC19FLAD78 or pUC18FLA23.
- 6. The method according to claim 4, wherein said segment B is present in plasmid pUC18FLBP2.
- 7. A live infectious bursal disease virus, wherein said virus is made by a process comprising the steps of preparing a cDNA containing infectious bursal disease virus genome segments A and B,

transcribing said cDNA to produce a synthetic RNA transcript, transfecting a host cell with said synthetic RNA transcript, incubating said host cell in a culture medium, and isolating live infectious bursal disease virus from said culture medium.

- 8. A synthetic RNA encoding proteins VP1, VP2, VP3, VP4, and VP5 of infectious bursal disease virus.
 - 9. A host cell transfected with the synthetic RNA according to claim 8.
- 10. A cDNA containing at least a portion of the infectious bursal disease virus genome selected from the group consisting of segment A,

segment B and segments A and B of infectious bursal disease virus, wherein said cDNA includes the 5' and 3' terminii of said segments.

- 11. A recombinant vector comprising the cDNA according to claim 10.
- 12. The vector according to claim 11, wherein said vector is a plasmid.
- 13. The vector according to claim 12, wherein said plasmid is selected from the group consisting of pUC19FLAD78, pUC18FLA23 and pUC19FLBP2.
 - 14. A host cell transformed with the vector according to claim 11.
- 15. A vaccine comprising an infectious bursal disease virus according to claim 7, wherein said infectious bursal disease virus is inactivated or attenuated prior to administration.
- 16. A method for producing a live infectious bursal disease virus vaccine, comprising the steps of

preparing a full-length cDNA containing infectious bursal disease virus genome segments A and B,

transcribing said cDNA to produce synthetic RNA transcripts,
purifying said synthetic RNA transcripts,
transfecting host cells with said purified RNA transcripts,
incubating said host cells in a culture medium,
isolating live infectious bursal disease virus from said culture medium,
attenuating said live infectious bursal disease virus to produce a virus
with reduced virulence, and

combining said live infectious bursal disease virus with a pharmaceutically acceptable carrier to produce a live infectious bursal disease virus vaccine.

- 17. The method according to claim 16, wherein said live infectious bursal disease virus is attenuated by serial passage or site directed mutagenesis.
- 18. The method according to claim 1, wherein said host cells are poultry cells.
- 19. The method according to claim 18, wherein said poultry cells are chicken, turkey, or quail cells.

20. The method according to claim 19, wherein said poultry cells are chicken embryo fibroblast cells or chicken embryo kidney cells.

Fig. 1

Fig. IA

Fig. IB

Fig. IC

Fig. 4

Fig. 4A

Fig.4B

Fig. 5

Fig. 5A

Fig. 5B

Fig. 6

Fig. 6A

Fig. 6B

SUBSTITUTE SHEET (RULE 26)

5/13

Fig. 2

	C,	530	540	550	260	570	580
23-82A	66AAGCCT	GAGTGAGT	TGACTGACTA	CAGCTACAA	CGGCTGATG	GGAAGCCTGAGTGAGTTGACTGACTACAGCTACAACGGGCTGATGTCAGCCACTGCGAAC	GAAC
SEQ ID NO. / 23A/P2B	GGAAGCCT	GAGTGAGT	TGACTGACT	CAGCTACAA	SGAAGCCTGAGTTGACTGACTACAGCTACAACGGGCTGATGTCAGCCACT	GGAAGCCTGAGTTGACTGACTACAGCTACAACGGGCTGATGTCAGCCACTGCGAAC	GAAC
SEQ 1D No. 8 P2a	GEAAGCCT	GAGTGAAC	TGACAGATGI	TAGCTACAA	recetteate	66AAGCCTGAGTGAACTGACAGATGTTAGCTACAATGGGTTGATGTCTGCAACAGCCAAC	CAAC
SEQ ID No. 9	L C)	530	540	550	260	210	580
23-82A	5 ATCAACGA	590 ACAAGATCG	600 GGAACGTTC1	610 Pagttggaga	620 AGGGGTGACT	590 600 610 620 630 640 Atcaacgacaacgatcggaagaacgtgagaagggggggggg	640 ACC6
23A/P28	ATCAACGA	CAAGATCG	66AACGTTC1	AGTTGGAGA	TCAACGACAAGATCGGGAACGTTCTAGTTGGAGAGGGGTGACTGTTCTCAGT	ATCAACGACAAGATCGGGAACGTTCTAGTTGGAGAAGGGGTGACTGTTCTCAGTCTACCG	ACC
P2A SEQ 10 No. 9	ATCACGA	ACAAAATT6 590	66AACGTCC1 600	TAGTAGGGA/ 610	AGGGTCACCO	ATCAACGACAAATTGGGAACGTCCTAGTAGGGGAAGGGTCACCGTCCTCAGCTTACCC 590 600 610 620 630 640	ACCC 640

Fig.3A

Segment A

Į	1	2
Ì	4	
		•
	₹	7 1
-	-	_
Ì	1	
۰		_

	30	130 140 150	120		021 091	<u>8</u>
23-82B	TTTTCAATAGTCCACAGGCGCGAACGAAGTCTCAGCAGCGTTCGGCATAAAGCCTACTG	CCACAGGCGCG	AACGAAGATC	TCAGCAGCGT	TCGGCATAAA	GCCTACTG
23A/P28	TTTCAACAGTCCACAGGCGCGAAGCACGATCTCAGCAGCGTTCGGCATAAAGCCTACTG	TTTCAACAGICCACAGGCGCGAAGCACGATCTCAGCAGGCTTCGGCATAAAGCCTA	AAGCACGATC	TCAGCAGCET	TCGGCATAAA	SCCTACTE
SEQ 10 NO. 11 P28 SEQ 10 No. 12	TITICAACAGTCCACAGGCGCGAAGCACGATCTCAGCGGTTCGGCATAAAGCCTACTG	CCACAGGCGC6/	AAGCACGATC 150	TCAGCAGCGT7	rceccataae 170	SCCTACT6 180
	061	200	210	220	230	240
23-82B SEO 1D No. 10	CTGGACAAGACGTGGAAGAACTCTTGATCCCCAAAGTCTGGGTGCCACCTGAGGATCCGC	TEGACAAGACETEGAAGAACTCTTGATCCCCAAAGTCTEGETECCACCTGAGGATCCG	CTTGATCCCC	AAAGTCT666	reccaccT6A6	SGATCCGC
23A/P2B	CTGGACAAGACGTGGAAGAACTCTTGATCCCTAAAGTTTGGGTGCCACCTGAGGATCCGC	ST66AA6AACT(CTTGATCCT	AAAGTTT666	TECCACCTEA	SEATCCEC
SEQ 10 NO. 11 P2B	CT66ACAA6AC6T6GAAGACTCTT6ATCCCTAAA6TTT666T6CCACCT6A6GATCC6C	ACAAGACGIGGAAGACTCTTGATCCCTAAAGTTIGGGTGCCACCTGAGGATCCG	CTTGATCCCT	AAAGTTT666	TGCCACCTGA(SGATCCGC
SEQ ID NO. 12	061	200	210	220	230	240

|33| |40|

471

261

2 6

ACCATTCACTTCATTGGGTTTGACGGGACAGACGTAGCAGTCAAGGCAGTTGCAACAGACTTTGGGCTGA TCCATGAAACTAGAGGTTGTGACCTACAAGATTGGCGGCACCGCTGGTGACCCAATATCATGGACAGTG **CCTATGAACGAGTGGCTGCAGGATCTGTTGTCACAGTTGCAGGGGTGAGCAACTTCGAGCTAATCCCCAA** CTAATACTGAGTGAGAGATCGTCTAGGCATCAAGACAGTCTGGCCCACCAGGGAGTACACCGATTTGA **GGGAGTACTTCATGGAGGTTGCAGATCTCAACTCACCCCTAAAGATTGCAGGAGCATTTGGCTTTAAGGA** CATAATCCGAGCCATTCGGAAGATTGCGGTGCCAGTGGTATCCACACTCTTCCCTCCAGCTGCACCCCTA **GCACATGCAATCGGAGAGGTGTAGACTACCTCCTGGGCGACGAGGCCCCAAGCAGCCTCAGGGACAGCTC GAGCCGCGTCAGGAAAAGCTAGAGCTGCCTCAGGACGAATAAGGCAGCTAACTCTCGCAGCTGACAAGGG GTGCGAGGTAGTCGCCAACATGTTCCAGGTGCCCCAGAATCCCATTGTTGATGGCATTCTGGCATCCCCA** CAACTGGGACAAACAACCTTGTGCCATTCAACCTGGTGGTCCCAACAAATGAGATCACCCAGCCCATCAC **AGTGGTACACTAGCTGTGACGGTGCACGGAGGCAACTACCCTGGGGCTCTCCGTCCTGTCACCCTGGTGG** CCCTGAGCTTGCAAAGAACCTAGTTACAGAGTATGGCCGCTTTGACCCCGGGGCAATGAACTACACCAAA CATTCCGGACGACACCCTGGAGAAGCACACACTCAGGTCCGAAACCTCGACTTACAACTTGACTGTAGGG **CCGAAGTTGATGGCCACGTGCGACAGTAGTGACAGACCCAGAGTCTACACCATAACAGCTGCAGATGAAT GGATACGATCGGTCTGACCCCGGGGAGTCACCCGGGGACAGGCCATCACTGCCTTGTTCCTGGTTGGAA** CTACT6CAG6CTAGTGAGCAGGAGTCTAACCGTACGGTCAAGCACACTCCCTGGTGGCGTTTATGCACTA CACCAGCTTCAGCGTTGGTGATGAGCTTGTCTTCAGCCAAGTAACGATCCAAAGCATTGAAGTGGACGTC CTCCTCTTTCTGCTGTACTATCGTTGATGGTGGTAGAGATCAGACAAACGATCGCAGCGATGACAAACC FGATGGATCACACCCAACAGATTGTTCCGTTCATACGGAGCCTTCTGATGCCAACGACCGGACCGGCGTC **GATACAGGGTCAGGACTAATTGTCTTTTTCCCTGGATTCCCTGGTTCAGTTGTAGGTGCTCACTACACAC** IGATGTCAGCCACTGCGAACATCAACGACAAGATCGGGAACGTTCTAGTTGGAGAAGGGGTGACTGTTCT CAGTCTACCGACTTCATATGACCTTAGTTATGTGAGACTCGGTGACCCCATCCCGGAGCAGGACTCGAC **ACCAATTCTCGTCACAACTCATCCCGAGTGGCGTGAAGACCACACTGTTCTCCGCCAACATCGATGCTC**

701 771 841 911

98 05

561 631

491

2E 28

351

CATCTACTTCGCGACACCGGAATGGGTGGCTCTCAACGGGCACCGAGGCCCAAGCCCCGGCCAACTCAAG **GAGGCCCCACACCAGAGAGGCACAGAGGGAAAAGACACACGGATCTCCAAGAGATGGAAACAATGG** SAGCAGATGAAGGACCTGCTCCTGACTGCGATGGAGGATGAAGCATCGCAATCCCAGGCGGGCTCCACCAA **AGCCAAAGCCAAAACCCAATGCTCCATCACAGAGCCCCCTGGACGGCTGGGCCGCTGGATCAGGACGGT** TCCATCTAGCCCTGGCTGCCTCC GAGTTCAAAGAGACCCCAGAACTCGAAGACGCTGTGCGCGCAATGG **4**†6CCGCTGCAAATGCCGACCCATTGTTCCGCTCAGCTCTCCAGGTCTTCATGTGGTTGGAAGAAACGG SATTGTGACCGACATGGCTAACTTCGCCCTCAGCGACCCAAACGCGCATAGGATGAAAAACTTCCTAGCA **AACGCACCCCAGGCTGGAAGCAAGTCGCAGAGGGCCAAGTATGGCACGGCAGGCTACGGAGTGGAGGCTC** SECTATECCCCAGACGGAGTACTGCCTCTGGAGACCGGGAGAGACTACACCGTTGTCCCAATTGATGATG **GTGGGACGATAGCATAATGCTGTCGCAGGACCCCATACCTCCAATCATAGGGAACAGCGGCAACCTAGC** CATAGCATACATGGATGTCTTCAGGCCCAAGGTCCCCATCCACGTGGCTATGACAGGGGCCCTCAATGCC AGCTGGTCCTGGAGCCTATGACATTAATACAGGACCTAACTGGGCAACGTTCGTCAAACGTTTCCCTCA actegcaaaacacaagagaataccagagcccaatgaggactacccagactatgtgcacgcggagaaga **GCCGGTTG GCGTCAGAAGAACAGATCCTACGGGCAGCCACGTCGATCTACGGGGCTCCAG GACAGGCTGA** ACCACCCC AGGCCTTCATAGACGAGGTCGCCAGGGTCTATGAAATCAACCATGGGCGTGGTCCAAACCAG CTCCGACG AGGACTTGGAGTGAGGCTCCTGGGAGTCTCCCGACACTACCCGCGCAGGTGT GGACACCAAT CGCGGTGAGATCGAGAGTGTTACGTTCCGVAGCACCAAACTCGCCACAGGCCCACGACTTGGCATGAAGT SCGAGAGGACCTCCAGCCTCCATCCCAACGGGGATCCTTCATTCGAACTCTCTGGCCATAGAGTCTAT **TACGACACTCGAGGATGAGCTGACCCCCAAGGCACTGAACAGCAAAATGTTTGCTGTCATTGAAGGTGT** CGGCCTTCTACCATCCCAAATTGGATCCGTTCGCGGGTCCCCT 2801 2381 2451 2521 259 2661 3081 224 23 273 2871 **196** 30 203 202 2171

Total number of bases is: 3264. DNA sequence composition: 834 A; 942 C; 853 G; 635

Sequence name: 23-82A (SEQ ID NOS: 31 and 33)

Fig.4B

CAGGTAGTCGCGAATCTATTCCAGGTGCCCCAGAATCCCGTAGTCGACGGGATTCTTGCTTCACCTGGG GAACTAGCAAAGAACCTGGTTACAGAATACGGCCGATTTGACCCAGGAGCCATGAACTACACAAAATTG **ATACTGAGTGAGGGGCCGTCTTGGCATCAAGACCGTCTGGCCAACAAGGGAGTACACTGACTTTCGTG** CATGCAATTGGGGAAGGTGTAGACTACCTGCTGGGCGATGAGGCACAGGCTGCTTCAGGAACTGCTCGAG CATTCCGGACGACACCCTGGAGAAGCACACTCTCAGGTCAGAGACCTCGACCTACAATTTGACTGTGGGG TGCAGGGCAATGGGAACTACAAGTTCGATCAGATGCTCCTGACTGCCCAGAACCTACCGGCCAGTTACAA CTACTGCAGGCTAGTGAGTCGGAGTCTCACAGTGAGGTCAAGCACATTCCTGGTGGCGTTTATGCACTA **ATACTTCATGGAGGTGGCCGACCTCAACTCTCCCCTGAAGATTGCAGGAGCATTCGGCTTCAAAGACAT** 5GATACGATCGGTCTGACCCCGGG GGAGTCACCCGGGGACAGGCCGTCAAGGCCTTGTTCCAGGATGGGA COTCCTTCTACAACGCTATCATTGATGGTTAGTAGAGATCAGACAAACGATCGCAGCGATGACAAACC SACACAGGGTCAGGGCTAATTGTCTTTTTCCCTGGATTCCCTGGCTCAATTGTGGGTGCTCACTACACAC **2AGCTTACCCACATCATATGATCTTGGGTATGTGAGGCTTGGTGACCCCATTCCCGCAATAGGGCTTGAC CCGCCACCGACA ACCTTATGCCATTCAATCTTGTGATTCCAACAACGAGATAACCCAGCCAATCACATC ACGAAAGAGTGGCAACAGGATCCGTCGTTACGGTCGCTGGGGTGAGCAACTTCGAGCTGATCCCAAATCC AATCCGGGCCATAAGGAGGATAGCTGTGCCGGTGGTCTCCACATTGTTCCCACCTGCCGCTCCCCTAGCC** CGCGTCAGGAAAGCAAGAGCTGCCTCAGGCCGCATAAGGCAGCTGACTCTCGCCGCCGACAAGGGGTA **ATCTACCTCATAGGCTTTGATGGGACAACGGTAATCACCAGGGCTGTGGCCGCAAACAATGGGCTGACGA SGGAGCCTAGCAGTGACGATCCATGGTGGCAACTATCCAGGGGCCCTCCGTCCCGTCACGCTAGTGGCCT IGATGTCTGCAACAGCCAACATCAACGACAAATTGGGAACGTCCTAGTAGGGGAAGGGGTCACCGTCC AACGCCACCATAAACGCCGTGACCTTCCAAGGAAGCCTGAGTGAACTGACAGATGTTAGCTACAATGGG** ACCAATTCTCATCACAGTACCAACCAGGTGGGGTAACAATCACTGTTCTCAGCCAACATTGATGCCA CACAAGCCTCAGCGTTGGGGGGAGAGCTCGTGTTTCAAACAAGGGTCCACGGCCTTGTACTGGGCGCCACC GCAAGATCAAACCCAACAGATTGTTCCGTTCATACGGAGCCTTCTGATGCCAACAACGGCGGCGT CCAAAAATGGTAGCCACATGTGACAGCAGTGACAGGCCCAGAGTCTACACCCATAACTGCAGCCGATGA1 20 30 20 351 421 491 561 63 70 10 84 98 051 <u>4</u>0 541 281 <u>6</u> 261 331 471 = 2 4 **=**

11/13

CGACAGTGGAAGACGCCATGACAC CCAAAGCATTGAACAGCAAAATGTTTGCTGTCATTGAAGGCGTGCG **AGAAGACCTCCAACCTCCATCTCAAAGAGGATCCTTCATACGAACTCTCTGGACACAGAGACTCTATGGA** SGCGAGATTGAGAAAGTAAGCTTTAGAAGCACCAAGCTCGCCACTGCACACCGACTTGGCCTTAGGTTGG **TGGTCCCGGAGCATTCGATGTAAACACCGGGCCCAACTGGGCAACGTTCATCAAACGTTTCCCTCACAA CCACGCCACTGGGACAGGCTCCC.CTACCTCAACCTACCATACCTTCCACCCAATGCAGGACGCCAGTAC SACCTTGCCATGGCTGCATCAGAGTTCAAAGAGACCCCCGAACTCGAGAGTGCCGTCAGAGCAATGGAAG 2AGCAGCCAACGTGGACCCACTATTCCAATCTGCACTCAGTGTTCATGTGGCTGGAAGAGAATGGGAT** GTGACTGACATGGCCAACTTCGCACTCAGCGACCCGAACGCCCATCGGATGCGAAATTTTCTTGCAAAC SCACCACAAGCAGCAGCAAGTCGCAAAGGGCCAAGTACGGGACAGCAGGCTACGGAGTGGAGGCTCGGG SCCCCACACCAGGGAAGCACAGAGGGAAAAAGACACACGGATCTCAAAGAAGATGGAGACCATGGGCAT **ACCCCAAGCTTTCATAGACGAAGTTGCCAAAGTCTATGAAATCAACCATGGACGTGGCCCAAACCAAGAA AGATGAAAGATCTGCTCTTGACTGCGATGGAGATGAAGCATCGCAATCCCAGGCGGGCTCTACCAAAGC CCAAGCCAAAACCCAATGCTCCAACACAGAGACCCCTGGTCGGCTGGGCCGCTGGATCAGGACCGTCTC** GATGAGGACCTTGAGTGAGGCTCCTGGGAGTCTCCCGACACCACCGCGCGGGTGTGGGACACCAATTCG **GCTTACATGGATGTGTTTCGACCCAAAGTCCCAATCCATGTGGCTATGACGGGAGCCCTCAATGCTTGT** :TACTTT6CAACACCAGAATGGGTAGCACTCAATGGGCACCGAGGGCCAAGCCCCGGCCAGCTAAAGTAC **ATGCTCCAGATGGGGTACTTCCACTGGAGACTGGGAGAGACTACACCGTTGTCCCAATAGATGATGTCT** SGTTGGCATCAGAAGAACAAATCCTAAGGGCAGCTACGTCGATCTACGGGGCTCCAGGACAGGCAGAGCC **366ACGACAGCATTATGCTGTCCAAAGATCCCATACCTCCTATTGTGGGAAACAGTGGAAATCTAGCCA SCCTTACAACATCCCAAATTGGATCCGTTCGCGGGTCCCCT** 2451 2591 2661 2731 280 301 3081 2241 2311 2381 2521 2941 2031 2171 2871 2101

Fotal number of bases is: 3261.

DNA sequence composition: 873 A; 909 C; 847 G; 632 T; 0 OTHER;

Sequence name: D78F (SEQ ID NOS: 27 and 29)

Fig.5E

AGGA TCGTCGAGTGGATATTGGCCCCGGAAGAACCCAAGGCTCTTGTATATGCGGACAACATATACATTG **SCGAAGCACGATCTCAGCAGCGTTCGGCATAAAGCCTACTGCTGGACAAGACGTGGAAGACTCTTGATC** CAGGAGTACTTCCCAAAGTACTACCCAACACATCGCCCTAGCAAGGAGAAGCCCAATGCGTACCCGCCAG ACATCGCACTACTCAAGCAGATGATTTACCTGTTTCTCCAGGTTCCAGAGGCCAACGAGGGCCTAAAGGA TGAAGTAACCCTCTTGACCCAAAACATAAGGGACAAGGCCTATGGAAGTGGGACCTACATGGGACAAGCA aagg agagacaattggcgagatgatagctatctcaaaccagtttctcagagagctatcaacactgttgaa GCAAGGTG CAGGGACAAAGGGGTCAAACAAGAAGAAGCTACTCAGCATGTTAAGTGACTATTGGTACTTA ICAT GCGGGCTTTTGTTTCCAAAGGCTGAAAGGTACGACAAAGTACATGGCTCACCAAGACCCGGAACA 'ATG GT CAGCT C C C C C C A C C C C C A T G A T C T C A T C A C C T G G C C C G T G T G T C C A C A G C C C C aaat aacgtgttgaacattgaagggtgtccat cactctacaaattcaaccgttcagaggagggttgaac ICCA CTCAAACACGTGGTACTCAATTGACCTAGAGAAGGGTGAGGCAAACTGCACTCGCCAACACATGCA SCCACCTTTGCCATGAACATTGCCCCTGCTCTAGTGGTGGACTCATCGTGCCTGATAATGAACCTGCAAA **66ATACGATGGGTCTGACCCTCTGGGAGTCACGAATTAACGTGGCTACTAGGGGCGATACCCGCCGCTGG** CCGCCACGTTAGTGGCTCCTCTTCTTGATGATTCTGCCACCATGAGTGACATTTTCAACAGTCCACAGGC CCTAAAGTTTGGGTGCCACCTGAGGATCCGCTTGCCAGCCCTAGTCGACTGGCAAAGTTCCTCAGAGAGA **ACACTTTTGAGAGCATCGCGCAGCTACTTGACATCACACTACCGGTAGGCCCACCCGGTGAGGATGACAA** SAGGTTGA AGATTACCTTCCCAAAATCAACCTCAAGTCATCAAGTGGACTACCATATGTAGGTCGCACCA **CTAGGTATCAACTTTAAGATTGAGAGGTCCATTGATGATATCAGGGGCAAGCTGAGACAGCTTGTCCTCC** TGCACAACCAGGGTACCTGAGTGGGGGGTTGAACCAGAACAATCCAGCCCAACTGTTGAGCTTGACCT **AATCGACTTGTGGCCATGAAGGAGGTCGCCACTGGAAGAACCCCAAACAAGGATCCTCTAAAGCTTGGGT** |TAAGACCTATGGTCAAGGCAGCGGGAATGCAGCCACGTTCATCAACAACCACCTCTTGAGCACACTAG| GCCCTGGG TGCCACTCACAAGAGTGCCGTCACGGATGTTGGTGCTGACGGGAGACGTAGATGGCGACTT 80 20 281 351 **49** 561 631 5 771 841 98 **=** 051 261 331 40 1 2 6 471 541 **68**1 4 <u>=</u>9

TGTTGGGCTCCACCTGCCCGCCAAGAGAGCCACCGGTGTCCAGGCCGCTCTTCTCGGAGCAGGAACGAG ; A G A C C A A T G G G G T G C G G C C C C A G C G C C C G T G A A A T G G C C A A C G G C G G C A A C G C :ATACAAGGTAGTCAGGTATGAGGCGTTGAGGTTGGTAGGTGGTTGGAACTACCCACTCCTGAACAAAGC) TGAGAGCCT AGCCGAACTGAACAAGCCAGT ACCCCCCAAGCCCCCAAATGT CAACAGACCAGTCAACAC **CTCGTCCTTCTAGCCACAGCAAGAAGCCGTCTGCAAGATGCAGTTAAGGCCAAGGCAGAAGCCGAGAAAC 3GAGAAAGCCGACATCGCCAGCAAGGTCGCCCACTCAGCACTCGTGGAAACAAGCGACGCCCTTGAAGCA** GTTCAGTCGACTTCCGTGTACACCCCCAAGTACCCAGAAGTCAAGAACCCACAGACCGCCTCCAACCCCG ;aaaaggagagccctaacagccatgatgggaaccactcaagaagaggacactaatcccagaccccgtat **TTTGTTCTGCTGCGTATCCCAAGGGAGTAGAGAACAAGAGTCTCAAGTCCAAAGTCGGGATCGAGCAGG ACTAGGGTGGTCAGCTACATACAGCAAAGATCTCGGGATCTATGTGCCGGTGCTTGACAAGGAACGCCTA** SCCGAGTGGTCTGAGCTGTCAGAGTTCGGTGAGGCCTTCGAAGGCTTCAATATCAAGCTGACCGTAACAT CCACAAGTCCAAGCCAGACGCCCGATGCAGACTGGTTCGAAAGATCAGAACTCTGTCAGACCTTC1 SCCCGGCCTTCGCCTGCGGGGGCCCCC 2241 2381 2451 2521 2591 2661 273 2031 2101 **89**1 196 2171 2311

Total number of bases is: 2827.

DNA sequence composition: 796 A; 770 C; 724 G; 537

Sequence name: P2B (SEQ ID No: 25)

Fig.6B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12955

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(6) :Please See Extra Sheet. US CL :Please See Extra Sheet.					
	to International Patent Classification (IPC) or to both	national classification and IPC			
B. FIEI	LDS SEARCHED				
Minimum o	ocumentation searched (classification system follower	ed by classification symbols)			
U.S. :	424/184.1, 204.1, 816, 826; 435/71.1, 235.1, 236,	237, 238, 239, 320.1; 536/23.72			
Documenta	tion scarched other than minimum documentation to th	e extent that such documents are included	in the fields searched		
	data base consulted during the international search (n N-MEDLINE, BIOSIS, CAPLUS, CABA	ame of data base and, where practicable	e, search terms used)		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		:		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
x	MUNDT et al. Complete Nucleotid Noncoding Regions of Both Genome S of Infectious Bursal Disease Virus. Vir 10-18, see entire document.	Segments of Different Strains	1-2, 4-20		
x	US 4,530,831 A (LUTTICKEN ET A) see entire document.	L) 23 JULY 1985 (07/23/85),	7, 15-20		
X	US 5,192,539 A (VAN DER MARE (09/03/93), see entire document.	L ET AL) 09 MARCH 1993	1-3, 7, 15-20		
X	MUNDT et al. Identification of a nov bursal disease virus-infected cells. Jo 1995, Vol. 76, pages 437-443, see en	ournal of General Virology.	8		
X Further documents are listed in the continuation of Box C. See patent family annex.					
"A" do	acial estagories of citad documents: cument defining the general state of the art which is not considered be of particular relevance	"T" ister document published after the inte data and not in conflict with the app the principle or theory underlying the	lication but cited to understand		
L do	tier document published on or after the international filing data cussent which may throw doubts on priority claim(s) or which is ad to establish the publication data of another citation or other	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	red to involve an inventive step		
O do	ecial reason (as specified) cument referring to an oral disclosure, use, exhibition or other sens	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in	step when the document is h documents, such combination		
	cument published prior to the international filing data but leter than priority data claimed	*A* document member of the same paten	t family		
	actual completion of the international search	Date of mailing of the international se	arch report		
	EMBER 1997	1 0 404 1991			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 DATOUAN LEE					
Facsimile No. (703) 305-3230 Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12955

···			
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	passages	Relevant to claim N
x	BAYLISS et al. A comparison of the sequences of segment four infectious bursal disease virus strain and identification variable region in VP2. Journal of General Virology. 1990 71, pages 1303-1312, see entire document.	n of a	1-2, 5-8, 10-13
Y	MORGAN et al. Sequence of the Small Double-Stranded I Genomic Segment of Infectious Bursal Disease Virus and Deduced 90kDa Product. Virology. 1988, Vol. 163, pages see entire document.	Its	1-20
Y	SPIES et al. Nucleotide sequence of infectious bursal disea genome segment A delineates two major open reading fran Nucleic Acids Research. 1989, Vol. 17, No. 19, page 7982 entire document.	nes.	1-20
Y	WO 91/16925 A1 (UNIVERSITY OF MARYLAND at COLLEGE PARK) 14 NOVEMBER 1991 (14/11/91), see document.	entire	1-20
·			
			, * · · · · · ·
·			
			*
·			i •
			· -

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12955

۸.	CLASSI	FICATION	OL 20BIECT	MATTER:		
IP(C (6):					

A61K 39/00, 39/38, 39/12; C12P 21/04; C12N 7/00, 7/01, 7/02, 7/04, 7/06, 7/08, 15/00, 15/09, 15/63, 15/70, 15/74

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

424/184.1, 204.1, 816, 826; 435/71.1, 235.1, 236, 237, 238, 239, 320.1; 536/23.72

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BEURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.