Лабораторная работа №1

НКАбд-06-23

Улитина Мария Максимовна

Содержание

1	1 Цель работы		5
2	2 Задание		6
3	3 Выполнение лабораторной работы		7
	3.1 Создание виртуальной машины		7
	3.2 Установка операционной системы		7
	3.3 Обновления		9
	3.4 Повышение комфорта работы		9
	3.5 Отключение SELinux		9
	3.6 Установка драйверов для VirtualBox		10
	3.7 Настройка раскладки клавиатуры и установка имени пользо	вателя	11
	3.8 Установка Pandoc и TexLive		11
	3.9 Домашнее задание		11
4	4 Контрольные вопросы		14
5	5 Выводы		15
6	6 Список литературы		16

Список иллюстраций

3.1	Создание виртуальнои машины	1
3.2	Установка дистрибутива	8
3.3	Настройка пользователя	8
3.4	Установка обновлений	9
3.5	tmux	9
3.6	Отключение SELinux	ç
3.7	Средства разработки	10
3.8	пакет DKMS	10
3.9	Дополнительная ОС	10
3.10	Диск	10
3.11	Pandoc	11
3.12	texlive	11
3.13	Linux version	12
3.14	Mhz processor	12
3.15	CPU0	12
3.16	Memory available	12
3.17	Hypervisor detected	12
3.18	Файловая система	13
3.19	Последовательность монтирования файловых систем	13

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Настроить виртуальную машину. Установить дистрибутив Linux Fedora.
- 2. ВЫполнить задание.
- 3. Ответить на контрольные вопросы.

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Создадим виртуальную машину в VirtualBox, настроим ее выделим память и вычислительные ресурсы (рис. 3.1)

Рис. 3.1: Создание виртуальной машины

3.2 Установка операционной системы

Установим дистрибутив Linux Fedora, выберем язык, другие настройки, а также введем данные пользователя (рис. 3.2)

Рис. 3.2: Установка дистрибутива

(рис. 3.3)

Рис. 3.3: Настройка пользователя

3.3 Обновления

Переключимся на роль суперпользователя и установим обновления (рис. 3.4)

```
mmulitina@10:-$ sudo -i

Мы полагаем, что ваш системный администратор изложил вам основы безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде чем что-то вводить.

№3) С большой властью приходит большая ответственность.

По соображениям безопасности пароль, который вы введёте, не будет виден.

[sudo] пароль для mmulitina:

[root@10 -]# dnf -y update
```

Рис. 3.4: Установка обновлений

3.4 Повышение комфорта работы

Для повышения комфорта работы установим tmux (рис. 3.5)

```
[root@10 ~]# dnf -y install tmux mc
```

Рис. 3.5: tmux

3.5 Отключение SELinux

Отключим SELinux, внеся изменения в конфигурационный файл (рис. 3.6)

```
# SELINUXTYPE can take one of these three values:

# targeted - Targeted processes are protected,

# minimum - Modification of targeted policy. Only selected processes are protected.

# mls - Multi Level Security protection.

**ELINUXTYPE targeted
```

Рис. 3.6: Отключение SELinux

Перезагрузим виртуальную машину командой reboot.

3.6 Установка драйверов для VirtualBox

Переключимся на роль суперпользователя и установим необходимые средства разработки (рис. 3.7)

```
mmulitina@10:-$ sudo -i
[sudo] пароль для mmulitina:
root@10:-# dnf -y group install "Development Tools"
```

Рис. 3.7: Средства разработки

Установим пакет DKMS (рис. 3.8)

```
root@10:~# dnf -y install dkms
```

Рис. 3.8: пакет DKMS

В меню виртуальной машину подключим образ диска дополнительной гостевой виртуальной ОС (рис. 3.9)

Рис. 3.9: Дополнительная ОС

Подмонтируем диск и установим необходимые драйвера (рис. 3.10)

```
root@10:-# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
root@10:-# /media/VBoxLinuxAdditions.run
```

Рис. 3.10: Диск

Перезапустим виртуальную машину.

3.7 Настройка раскладки клавиатуры и установка имени пользователя

Данный этап работы был пропущен, т.к. имя пользователя и настройки клавиатуры были изначально верны.

3.8 Установка Pandoc и TexLive

Скачаем вручную необходимю версию pandoc и pandoc-crossref (рис. 3.11)

Рис. 3.11: Pandoc

Поместим их в каталог /usr/local/bin.

Установим texlive (рис. 3.12)

(249/4560):	texlive-abraces-svn64967-69.fc39.no	212	kB/s		18	kB	00:00
(250/4560):	texlive-abstract-svn15878.1.2a-69.f	244	kB/s		16	kB	00:00
(251/4560):	texlive-abstyles-svn15878.0-69.fc39	439	kB/s		28	kB	00:00
(252/4560):	texlive-academicons-svn62622-69.fc3	1.1	MB/s		55	kB	00:00
(253/4560):	texlive-accanthis-svn64844-69.fc39.	6.0	MB/s		427	kB	00:00
254/4560):	texlive-accents-svn51497-69.fc39.no	2.9	MB/s		244	kB	00:00
255/4560):	texlive-accessibility-svn55777-69.f	5.1	MB/s		532	kB	00:00
256/4560):	texlive-accfonts-svn18835-77.fc39.n	844	kB/s		49	kB	00:00
257/4560):	texlive-accsupp-svn53052-69.fc39.no	5.1	MB/s		337	kΒ	00:00
258/4560):	texlive-achemso-svn65103-69.fc39.no	870	kB/s		61	kB	00:00
259/4560):	texlive-acmart-svn64967-69.fc39.noa	1.7	MB/s		61	kB	00:00
260/4560):	texlive-acmconf-svn15878.1.3-69.fc3	466	kB/s		18	kB	00:00
				- ;			

Рис. 3.12: texlive

3.9 Домашнее задание

С помощью команды dmesg | grep -i "то, что ищем" узнаем:

Версию ядра Linux (Linux version) (рис. 3.13)

```
rootel0:-# dmesg | grep -i 'Linux version'
[ 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuildede0c58eb5f524c2096
3d3b29334043cc) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNU ld version 2.
40-14.fc39) #1 SMP PREEMPT_DYNAMIC Mon Feb 5 22:21:14 UTC 2024
```

Рис. 3.13: Linux version

Частоту процессора (Detected Mhz processor) (рис. 3.14)

```
root@10:-# dmesg | grep -i 'Mhz'

[ 0.000021] tsc: Detected 3194.004 MHz processor

[ 3.761158] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:c7:a6:40
```

Рис. 3.14: Mhz processor

Модель процессора (CPU0) (рис. 3.15)

```
root@10:-# dmesg | grep -i 'CPU0'

[ 0.165698] smpboot: CPU0: AMD Ryzen 7 7735HS with Radeon Graphics (family: 0

x19, model: 0x44, stepping: 0x1)

cont@10:-#
```

Рис. 3.15: СРИО

Объём доступной оперативной памяти (Memory available) (рис. 3.16)

```
root@10:~# dmesg | grep -i 'Memory'
```

Рис. 3.16: Memory available

Тип обнаруженного гипервизора (Hypervisor detected) (рис. 3.17)

```
root@10:~# dmesg | grep -i 'Hypervisor detected'
[ 0.000000] Hypervisor detected: KVM
```

Рис. 3.17: Hypervisor detected

Тип файловой системы корневого раздела (рис. 3.18)

```
oot@10:-# sudo fdisk -l
Disk /dev/sda: 80 GiB, 85899345920 bytes, 167772160 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 006DA2BF-D548-4473-AC08-C265362C46A6
Device
             Start
                         End
                              Sectors Size Type
/dev/sda1 2048 4095 2048 1M BIOS boot
/dev/sda2 4096 2101247 2097152 1G Linux filesystem
/dev/sda3 2101248 167770111 165668864 79G Linux filesystem
Disk /dev/zram0: 8 GiB, 8589934592 bytes, 2097152 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Рис. 3.18: Файловая система

Последовательность монтирования файловых систем (рис. 3.19)

```
root@10:~# dmesg | grep -i 'mount'
```

Рис. 3.19: Последовательность монтирования файловых систем

4 Контрольные вопросы

- 1. Учетная запись пользователя содержит информацию, необходимую для идентификации пользователя, нформацию о группе, к которой он принадлежит, его идентификатор, домашний каталог.
- 2. Для получения справки по команде -help. Для перемещения по файловой системе -cd. Для просмотра содержимого каталога ls. Для определения объема каталога -du. Для создания файла touch, каталога mkdir. Для удаления файла rm, удаления каталога rmdir. Для задания прав на файл или каталог chmod. Для просмотра истории команд history.
- 3. Файловая система порядок, определяющий способ хранения, организации и именования данных на различных носителях. Yfghbvth?, FAT32, ext2.
- 4. С помощью df.
- 5. Узнать id процесса с помощью ps. Потом применяем kill или killall для удаления всех процессов.

•

5 Выводы

В процессе выполнения лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

6 Список литературы

1. Лабораторная работа №1.