Flavor wave model homework problems

April 13, 2023

A. In this part, we will develop a method solving the ground state without diagonalizing the Hamiltonian.

(1) Assume a particle can be discribed by spin only, with S=1. and the Hamiltonian is

$$H = S_z$$
.

Write down the matrix form for H, the eigenstates of H and their energies. We will write down the ground state to be $|a_0\rangle$

(2) Assume a initial state to be $|\psi_0\rangle = \frac{1}{\sqrt{3}}(|S_z = -1\rangle + |S_z = 0\rangle + |S_z = 1\rangle)$. Let $\varepsilon = 10^{-2}$. Calculate

$$|\phi_1\rangle = (1 - \varepsilon H) |\psi_0\rangle$$

$$|\psi_1\rangle = \frac{|\phi_1\rangle}{\langle\phi_1|\phi_1\rangle}$$

Look at the $|\psi_1\rangle$, and show that there are more weights of ground state in $|\psi_1\rangle$ than $|\psi_0\rangle$.

(3) Define

$$|\phi_{n+1}\rangle = (1 - \varepsilon H) |\psi_n\rangle$$

$$|\psi_{n+1}\rangle = \frac{|\phi_{n+1}\rangle}{\langle\phi_{n+1}|\phi_{n+1}\rangle}.$$

Draw (i) $|\langle a_0|\psi_n\rangle|^2$ as a function of n. and (ii) $\langle \psi_n|H|\psi_n\rangle$ as a function of n. Also try with difference positive values of ε and see how the value will change the speed of converging.

- (4) repeat (2) and (3) with $|\psi_0\rangle = |S_z = 0\rangle$. (Some weird thing could happen, depending on the computer.)
- (5) For a general Hamiltonian

$$H = \sum_{i=0}^{d-1} E_i |a_i\rangle \langle a_i|$$

with the eigenenergies $E_0 < E_1 \le E_2 \le ... \le E_{d-1}$, prove that $\forall |\psi_0\rangle$ that $\langle a_0|\psi_0\rangle \ne 0$, $\exists \varepsilon > 0$, the series $\{|\psi_n\rangle\}$ generatred in (2) satisfies

$$\lim_{n \to \infty} |\langle a_0 | \psi_n \rangle|^2 = 1.$$

 $\text{Hint: Consider an } \varepsilon \text{ that } 0 < \varepsilon < 1/|E_{d-1}| \text{ and find a } q \text{ that } 0 < q < 1 \text{ and } \left(1 - \sqrt{\left|\langle a_0 | \psi_{n+1} \rangle\right|^2}\right) < q \left(1 - \sqrt{\left|\langle a_0 | \psi_n \rangle\right|^2}\right).$

Comment: From this part, to make sure the algorithm works, a small fluctuaction should be added in each step to get a nonzero $\langle a_0|\psi_0\rangle$.

(6) Now we know that this algorithm always converges. Let's figure out how to make it fast. Consider a Hamiltonian in (5) with conditions d > 2 and $E_0 < E_1 < E_{d-1}$. Define:

$$|\phi_{n+1}\rangle = (-H+z)|\psi_n\rangle$$

$$|\psi_{n+1}\rangle = \frac{|\phi_{n+1}\rangle}{\langle\phi_{n+1}|\phi_{n+1}\rangle}.$$

where z is a real number and define $x_n = 1 - |\langle a_0 | \psi_n \rangle|$. Prove that (i) $\forall z > \frac{-E_0 - E_{d-1}}{2}, \ \exists q, \ 0 < q < 1$ and

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = q,$$

and (ii) q is minimized when

$$z = -\frac{1}{2} \left(E_1 + E_{d-1} \right)$$

B. This part is to use the method in A to solve the ground state with mean-field approximation.

Consider 2 identical interacting atoms in an external magnetic field and they both have spin-orbital coupling. The Hamiltonian is

$$H = H_1 + H_2 + H_{12}$$

where H_1 and H_2 are the Hamiltonian of two isolated atoms and H_{12} describes the interaction between the atoms. This will be calculated with mean field approximation later.

(1) First we will write down H_1 and H_2 . Assume these two atoms are same and both have quantum numbers S = 1/2 and L = 1. The Hamiltonian is a sum of spin-orbital coupling and also coupling to the external magnetic field \mathbf{B} .

$$H_1 = \lambda \mathbf{S} \cdot \mathbf{L} + \mu_{\mathrm{B}} (2\mathbf{S} + \mathbf{L}) \cdot \mathbf{B}$$

To write down the matrix form, we need work in the proper space. The space is a product of spin space and orbital space, which means the dimension should be the product of dimension of the spin space and the dimension of the orbital space (2S+1)(2L+1)=6. Because when any spin operator is projected into the orbital space, it should be identity, we can write down the operators in this way:

$$S_z = \begin{bmatrix} 1/2 & 0 \\ 0 & -1/2 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1/2 \end{bmatrix}$$

now you can write down the single atom Hamiltonian

$$H_1 = \lambda \mathbf{S} \cdot \mathbf{L} + \mu_{\mathrm{B}}(2\mathbf{S} + \mathbf{L}) \cdot \mathbf{B} = \lambda (S_x L_x + S_y L_y + S_z L_z) + \mu_{\mathrm{B}}(B_x (2S_x + L_x) + B_y (2S_y + L_y) + B_z (2S_z + L_z))$$

and look at how the eigenvalues change as a function of λ and B.

(2) Assume the interaction between two atoms is

$$H_{12} = J\mathbf{S}_1 \cdot \mathbf{S}_2$$

To solve the ground state, we should work in a larger space of dimension $6 \times 6 = 36$, but this matrix is assumed to be too large and we will apply mean-field approximation. In mean field approximation, we will ignore the entanglement between the atoms, which means the ground state can be written as a product of two atoms

$$|\psi_{1,2}\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

and total Hamiltonian on atom 1 is

$$h_1 = H_1 + J\mathbf{S} \cdot \langle \psi_2 | \mathbf{S} | \psi_2 \rangle = J(S_x \langle \psi_2 | S_x | \psi_2 \rangle + S_y \langle \psi_2 | S_y | \psi_2 \rangle + S_z \langle \psi_2 | S_z | \psi_2 \rangle)$$

and also the total Hamiltonian on atom 2 is

$$h_2 = H_2 + J\mathbf{S} \cdot \langle \psi_1 | \mathbf{S} | \psi_1 \rangle = J(S_x \langle \psi_1 | S_x | \psi_1 \rangle + S_y \langle \psi_1 | S_y | \psi_1 \rangle + S_z \langle \psi_1 | S_z | \psi_1 \rangle)$$

Notice that h_1 is a function of $|\psi_2\rangle$. Now you can use the method in part A on two atoms to solve the groud state. You can plot the magnetic moment as a function of λ , J and B.

(3) Now let apply this approximation to a magnetic system. Consider a 2D square lattice.