Formal Model

- X = set of Users
- S = set of Items

Utility function $u: X \times S \rightarrow R$

- **R** = set of ratings
- R is a totally ordered set
- e.g., **1-5** stars, real number in **[0,1]**

Utility Matrix

		H	arry Po	tter	Twilig	ht S	Star Wars			
		HP1	HP2	HP3	TW	SW1	SW2	SW3		
Anita	\overline{A}	4			5	1				
Beyonce	B	5	5	4						
Calvin	C				2	4	5			
David	D		3					3		

Key Problems

1. Gathering "known" ratings for matrix

How to collect the data in the utility matrix

2. Extrapolate unknown ratings from known ones

- Mainly interested in high unknown ratings
- We are not interested in knowing what you don't like but what you like

3. Evaluating extrapolation methods

How to measure performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items

Implicit

- Learn ratings from user actions
 - E.g., purchase (or watch video, or read article) implies high rating

(2) Extrapolating Utilities

Key problem: Utility matrix *U* is sparse

Most people have not rated most items

• The "Cold Start" Problem:

- New items have no ratings
- New users have no history

(2) Extrapolating Utilities

Three approaches to recommender systems:

- 1. Content-based
- 2. Collaborative Filtering
- 3. Latent factor (Neural embedding) based

Content-based vs. Collaborative Filtering

Database

- Ella Fitzgerald: Jazz, Mid-20th century, vocal legend, famous duets, ...
- Louis Armstrong: Jazz, Mid-20th century, vocal legend, famous duets, ...

Content-based

Suggest Louis Armstrong

Collaborative filtering

Customer W

- Plays Ella Fitzgerald
- •What should we recommend next?

Customer D

- Plays Ella Fitzgerald
- Plays Louis Armstrong

Thomas Quella Wikimedia Commons Recommender Systems and Collaborative Filtering

Content-based Recommender Systems

Content-based Recommendations

Main idea: Recommend items to customer x similar to previous items rated highly by x

Movie recommendations

Recommend movies with same actor(s), director, genre, ...

Websites, blogs, news

Recommend other sites with similar types or words

Plan of Action

User profile

Item Profiles

For each item, create an item profile

Profile is a set (vector) of features

- Movies: genre, director, actors, year...
- Text: Set of "important" words in document

How to pick important features?

- TF-IDF (Term frequency * Inverse Doc Frequency)
- For example use all words whose tf-idf > threshold, normalized for document length

Content-based Item Profiles

		Actor ny A		•••		y Comic Genre		
Movie X	0	1	1	0	1	1	0	1
Movie Y	1	1	0	1	0	1	1	0

But what if we want to have real or ordinal features too?

Content-based Item Profiles

	Melissa McCarth			•••	Johnny Comic Spy Depp Genre Genre				
Movie X	0	1	1	0	1	1	0	1	3
Movie Y	1	1	0	1	0	1	1	0	4

For example "average rating" Maybe we want a scaling factor α between binary and numeric features

Content-based Item Profiles

	Melissa McCarth				•			Pirate Genre	Avg Rating
Movie X	0	1	1	0	1	1	0	1	3α
Movie Y	1	1	0	1	0	1	1	0	4α

Scaling factor α between binary and numeric features

Cosine(Movie X, Movie Y) =
$$\frac{2+12\alpha^2}{\sqrt{5+9\alpha^2}\sqrt{5+16\alpha^2}}$$

$$\alpha = 1:0.82$$

$$\alpha = 2:0.94$$

$$\alpha = 1:0.82$$
 $\alpha = 2:0.94$ $\alpha = 0.5:0.69$

User Profiles

Want a vector with the same components/dimensions as items

- Could be 1s representing user purchases
- Or arbitrary numbers from a rating

User profile is aggregate of items:

Weighted average of rated item profiles

Sample user profile

- Items are movies
- Utility matrix has 1 if user has seen movie
- 20% of the movies user U has seen have Melissa McCarthy
- U["Melissa McCarthy"] = 0.2

Prediction

Users and items have the same dimensions!

	Melissa McCarthy	Actor A	Actor B	•••	
Movie i	0	1	1	0	•••
User x	0.2	.005	0	0	0

- So just recommend the items whose vectors are most similar to the user vector!
- Given user profile **x** and item profile **i**,
- estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

Pros: Content-based Approach

- +: No need for data on other users
 - No user sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Just list the content-features that caused an item to be recommended

Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Recommender Systems and Collaborative Filtering

Collaborative Filtering: User-User

Collaborative filtering

Instead of using content features of items to determine what to recommend

Find similar users and recommend items that they like!

Collaborative Filtering Version 1: "User-User" Collaborative Filtering

Consider user *x* and unrated item *i*

Find set **N** of other users whose ratings are "similar" to **x**'s ratings

Estimate x's ratings for i based on ratings for i of users in N

Collaborative filtering

Find similar users and recommend items that they like:

- Represent users by their rows in the utility matrix
- Two users are similar if their vectors are similar!

	Ha	arry Pott	er	Twilight	S		
	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Problems with raw utility matrix cosine

	Har	ry Potte	r	Twilight	S		
	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Intuitively we want: sim(A, B) > sim(A, C)

$$sim(A,B) = \frac{4 \times 5}{\sqrt{4^2 + 5^2 + 1^2} \sqrt{5^2 + 5^2 + 4^2}} = 0.380$$

$$sim(A,C) = \frac{5 \times 2 + 1 \times 4}{\sqrt{4^2 + 5^2 + 1^2} \sqrt{2^2 + 4^2 + 5^2}} = 0.322$$

Yes, 0.380 > 0.322 But only barely works...

Problem with raw cosine

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Problem with cosine:
 - C really loves SW
 - A hates SW
 - B just hasn't seen it
- Another problem: we'd like to normalize the raters
 - D rated everything the same; not very useful

Mean-Centered Utility Matrix: subtract the means of each row

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3
	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
	1 - 7 - 5	\mathbf{I}/\mathbf{O}	4/0				
C		1/0	2/0	-5/3	1/3	4/3	

- Now a 0 means no information
- And negative ratings means viewers with opposite ratings will have vectors in opposite directions!

Modified Utility Matrix: subtract the means of each row

$$Cos(A,B) = \frac{(2/3) \times (1/3)}{\sqrt{(2/3)^2 + (5/3)^2 + (-7/3)^2} \sqrt{(1/3)^2 + (1/3)^2 + (-2/3)^2}} = 0.092$$

$$Cos(A,C) = \frac{(5/3) \times (-5/3) + (-7/3) \times (1/3)}{\sqrt{(2/3)^2 + (5/3)^2 + (-7/3)^2} \sqrt{(-5/3)^2 + (1/3)^2 + (4/3)^2}} = -0.559$$

Now A and C are (correctly) way further apart than A,B

Mean-centered overlapping-item cosine similarity

Let r_x be the vector of user x's ratings, and \bar{r}_x be its mean (ignoring missing values)

Instead of basic cosine similarity measure

$$\circ \operatorname{sim}(\boldsymbol{x}, \, \boldsymbol{y}) = \cos(\boldsymbol{r}_{\boldsymbol{x}}, \, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \, ||r_{\boldsymbol{y}}||}$$

Mean-centered <u>overlapping-item</u> cosine similarity

• S_{xy} = items rated by both users x and y

(Variant of Pearson correlation)

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Rating Predictions

From similarity metric to recommendations for an unrated item i:

Let r_x be the vector of user x's ratings

Let **N** be the set of **k** users most similar to **x** who have rated item **i**

Prediction for item *i* of user *x*:

• Rate i as the mean of what k-people-like-me rated i

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

• Even better: Rate i as the mean weighted by their similarity to me ...

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} r_{yi}}{\sum_{y \in N} s_{xy}}$$

Many other tricks possible...

Shorthand:

$$s_{xy} = sim(x, y)$$

Recommender Systems and Collaborative Filtering

Collaborative Filtering: User-User

Recommender Systems and Collaborative Filtering

Collaborative Filtering: Item-Item

Collaborative Filtering Version 2: Item-Item Collaborative Filtering

So far: User-user collaborative filtering

Alternate view that often works better: Item-item

- For item *i*, find other similar items
- Estimate rating for item i based on ratings for those similar items
- Can use same similarity metrics and prediction functions as in user-user model
- "Rate i as the mean of my ratings for other items, weighted by their similarity to i"

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

N(i;x)...set of items rated by x and similar to i $s_{ij}...$ similarity of items i and j $r_{xi}...$ rating of user x on item j

Item-Item CF (|N|=2)

movies

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

Item-Item CF (|N|=2)

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

Item-Item CF (|N|=2) Approximate rating with weighted mean

users **sim(1,m)** 2.54 1.000 . . movies <u>3</u> <u>.658</u>

Predict by taking weighted average:

<u>6</u>

$$r_{1.5} = (0.658*2 + 0.768*3) / (0.658+0.768) = 2.54$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{jx}}{\sum s_{ij}}$$

<u>.768</u>

Item-Item vs. User-User

- In practice, <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes
 - (People are more complex than objects)

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

Cannot recommend an item that has not been previously rated

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

- Ethical and social issues:

Can lead to filter bubbles and radicalization spirals

Evaluation

Evaluation

Evaluating Predictions

Compare predictions with known ratings

Root-mean-square error (RMSE)

$$\int_{N} \frac{\sum_{xi} (r_{xi} - r_{xi}^*)^2}{N}$$

- $^{\circ}$ where r_{xi} is predicted, r_{xi}^{*} is the true rating of x on i
- Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings