Chapitre I- 3-

B- DIPÔLES ACTIFS LINÉAIRES

OBJECTIF

Connaître la caractéristique U=f(I) ou I=g(U) d'un dipôle actif linéaire. Savoir déterminer les éléments du M.E.T. et du M.E.N. Connaître la caractéristique d'une source linéaire parfaite.

I- APPROXIMATION LINÉAIRE

La plupart des dipôles actifs ne sont pas linéaires. Cependant, une partie de la caractéristique U=f(I) peut être assimilée à une droite.

Linéariser revient à remplacer une partie de la courbe par une droite.

L'équation de la droite sera de la forme $U = U_0 - R_0I$ avec :

U₀ ordonnée à l'origine (tension à vide)

 $R_0 = \Delta U / \Delta I$ (pente de la droite).

II- MODÈLES ÉLECTRIQUES ÉQUIVALENTS

1- Modèle équivalent de Thévenin M.E.T.

Un dipôle actif composé d'une source de tension U_0 en série avec une résistance R_0 aura à ses bornes une tension $U = U_0 - R_0$ I.

Tout dipôle actif linéaire pourra donc être remplacé par une source de tension U_0 en série avec une résistance R_0 . C'est le modèle équivalent de Thévenin (M.E.T.)

 U_0 est la tension à vide du dipôle actif linéaire (lorsque I=0). R_0 est la résistance interne du dipôle actif linéaire.

2- Modèle équivalent de Norton (M.E.N.)

La relation $U = U_0 - R_0$ I peut aussi s'écrire $I = \frac{U_0}{R_0} - \frac{1}{R_0}U \Rightarrow I = I_0 - \frac{1}{R_0}U$.

Un dipôle actif composé d'une source de courant I_0 en parallèle avec une résistance R_0 débitera un courant $I=I_0-\frac{1}{R_0}U$.

Tout dipôle actif linéaire pourra donc être remplacé par une source de courant I_0 en parallèle avec une résistance R_0 . C'est le modèle équivalent de Norton (M.E.N.)

 I_0 est le courant de court-circuit (U=0) souvent fictif ; c'est le point d'intersection de la courbe avec l'axe des courants.

 $\mathbf{R_0}$ est la résistance interne. On peut aussi considérer la conductance interne G_0 et dans ce cas : $G_0 = 1 / R_0 \implies I = I_0 - G_0 U$.

III- ÉQUIVALENCE ENTRE LES DEUX MODÈLES

Les modèles de Thévenin et de Norton sont équivalents.

- Pour passer de " Thévenin " vers " Norton " on pose $I_0 = U_0 / R_0$ et on place la résistance R_0 en parallèle avec la source de courant I_0 .
- Pour passer de "Norton "vers "Thévenin "on pose $U_0 = R_0 \, I_0$ et on place la résistance R_0 en série avec la source de tension U_0 .

IV- SOURCES LINÉAIRES PARFAITES

- Source parfaite de tension : $U = U_0$ quel que soit I ($I_{MIN} < I < I_{MAX}$)

 La source impose la tension et le récepteur détermine le courant.

 La résistance interne R_0 est égale à 0Ω et la pente de la droite U=f(I) est nulle.
- Source parfaite de courant : $I = I_0$ quel que soit U ($U_{MIN} < I < U_{MAX}$) La source impose le courant et le récepteur détermine la tension. La résistance interne R_0 est infinie ($G_0 = 0S$) et la pente de la droite I = g(U) est nulle.