

Departamento de Engenharia Informática e de Sistemas
Instituto Superior de Engenharia de Coimbra
Licenciatura em Engenharia Informática
Inteligência Computacional 2022/2023

Projeto Fase - 1

Bruno Oliveira | 2019136478 | <u>a2019136478@isec.pt</u> | P1

Emanuel Saraiva | 2019130219 | <u>a2019130219@isec.pt</u> | P1

Índice

1. Autores do trabalho	
2. Descrição do caso de estudo e objetivos do problema	3
3. Descrição da implementação dos algoritmos	4
4. Análise de resultados	8
5. Conclusões	16
6. Referências	17

2. Descrição do caso de estudo e objetivos do problema

Nos dias de hoje uma das principais preocupações a nível mundial são as alterações climáticas (climate change). A principal causa das alterações climáticas é a combustão de combustíveis fósseis como o petróleo, o carvão e o gás natural, que emitem gases com efeito de estufa para a atmosfera, provocando assim a alteração dos níveis do mar, a variação de temperatura e a precipitação inesperada. Cada vez mais se optam por medidas de reciclagem para evitar as lixeiras em céu aberto que emitem gases poluentes e consequentemente causam o aumento da temperatura da terra.

O nosso *dataset* não é balanceado, pois existem 3 tipos de vidro (castanho, transparente e verde) e existem 5 mil exemplos de roupa o que nas restantes classes rondam os mil exemplos.

Este dataset é um problema de classificação, com recurso a 15.5 mil imagens distribuídas por 10 classes distintas.

As 10 classes são:

- Papel;
- Vidro;
- Cartão;
- Roupa;
- Sapatos;
- Metal;
- Lixo;
- Biológico;
- Bateria;
- Plástico.

Nota: O *dataset* era constituído por 12 classes, no entanto juntámos os três tipos de vidro de maneira a ter apenas uma classe, acelerando assim o processo de treino.

Link do *dataset*: https://www.kaggle.com/datasets/mostafaabla/garbage-classification.

3. Descrição da implementação dos algoritmos

Nesta fase optámos por desenvolver o algoritmo em *python* com recurso às seguintes bibliotecas:

- Keras (é também uma API);
- Scikit-Learn;
- TensorFlow;
- Numpy
- Pandas;
- Matplotlib;
- Re;
- Entre outras.

Depois de criado o *dataframe* usámos o seguinte código para confirmar que estavam todas as imagens nas classes correspondentes:

```
# Mostra quantas imagens cada classe tem. Dá jeito para confirmar que as imagens estão a ser todas reconhecidas
df_visualization = df.copy()

df_visualization['category'] = df_visualization['category'].apply(lambda x:categories[x] )

df_visualization['category'].value_counts().plot.bar(x = 'count', y = 'category' )

plt.xlabel("Classes de Lixo", labelpad=14)
plt.ylabel("Quantidade de imagens", labelpad=14)
plt.title("Número de imagens que cada classe tem", y=1.02);
```

Resultado do código:

Realizámos vários testes para diferentes camadas e funções de ativação.

Camadas:

- A "mobilenetv2_layer" guarda os dados da camada MobileNetV2. A
 MobileNetV2 usa a arquitetura do modelo CNN para classificar
 imagens. A vantagem de a usar é que como já está pré-treinada, já
 não precisamos de treinar a rede de raiz;
- A função da camada "GlobalAveragePooling2D" é aplicar o "pooling" médio (é o cálculo médio para cada feature map – é um mapa onde um certo tipo de feature é encontrado na imagem) nas dimensões espaciais até que cada dimensão espacial esteja ativada;
- A "Flatten" transforma um array bidimensional num vetor.

 Decidimos usá-la, pois estávamos curiosos com a possível diferença entre estas duas;
- A "Dropout" é a camada que vai tratar o "overfitting". Esta certificase que o modelo consegue usar bem as imagens de treino e de teste. Leva como argumento, um número, o qual corresponde à percentagem de neurónios que vão ser retirados de forma aleatória no treino para controlar o overfitting;
- A camada "**Dense**" é a camada de output (saída) tem 10 neurónios porque o nosso dataset tem 10 classes (len(categories)).

Funções de Ativação:

Decidimos usar a "Softmax" por ser a mais usada neste tipo de situação.

Vimos na internet que a "**Relu**" era conhecida por ser mais rápida, então decidimos experimentar.

Código para construir a rede neuronal:

```
# mobilenetv2 é um modelo (deep learning) do tipo CNN que é pré-treinado, ou seja,
# já foi treinada para classificar imagens, sendo esta capaz de classificar
# 1000 categorias das mesmas
mobilenetv2 layer = mobilenetv2.MobileNetV2(include top = False, input shape = (IMAGE WIDTH, IMAGE HEIGHT,IMAGE CHA
                        weights = 'imagenet')
# O modelo mobilenetv2 já está pré-treinado, logo, não queremos que estas camadas que ele tras
# sejam treinadas novamente pelo tensorflow
mobilenetv2 layer.trainable = False
model = Sequential()
model.add(keras.Input(shape=(IMAGE WIDTH, IMAGE HEIGHT, IMAGE CHANNELS)))
# Cria uma camada para aplicar o preprocessamento na imagem, para ter as caracteristicas pretendidas
def mobilenetv2 preprocessing(img):
  return mobilenetv2.preprocess_input(img)
model.add(Lambda(mobilenetv2 preprocessing))
#model.add(tf.keras.layers.BatchNormalization()) | Demora mt tempo a treinar com esta camada +/- 15 por epoch
# Camadas pre treinadas
model.add(mobilenetv2 layer)
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(Flatten(name="featuresCamadaFlatten"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(Dense(len(categories), activation='softmax'))
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['categorical accuracy'])
model.summary()
feature_extractor = keras.Model(
    inputs=model.inputs,
    outputs=model.get layer(name="featuresCamadaFlatten").output,
x = tf.ones((1, 224, 224, 3))
features = feature extractor(x)
print("Número de Features da Camada featuresCamadaFlatten:")
print(features)
```

Resultado do código:

```
Layer (type)
                             Output Shape
                                                        Param #
 lambda (Lambda)
                             (None, 224, 224, 3)
mobilenetv2 1.00 224 (Funct (None, 7, 7, 1280)
                                                       2257984
 ional)
 featuresCamadaGlobal (Globa (None, 1280)
 lAveragePooling2D)
dense (Dense)
                             (None, 10)
                                                        12810
Total params: 2,270,794
Trainable params: 12,810
Non-trainable params: 2,257,984
Número de Features da Camada GlobalAveragePooling2D:
tf.Tensor([[0.55155
                                  0.44229084 ... 0.
                                                            0.4064743  0.12210276]], shape=(1, 1280), dtype=float3
                      Θ.
2)
```


Decidimos dividir o nosso dataset em 80% treino, 10% validação e 10% teste, de modo a ter dados mais fidedignos e não tão tendenciosos.

Ao fazermos esta divisão, estamos a prevenir que o nosso modelo entre em overfitting, para além de que ao ser gerado os dados sobre a validação, conseguimos combater de igual forma o overfitting.

Código da divisão do dataset:

```
# Muda as categorias de numeros para nomes
df["category"] = df["category"].replace(categories)

# Dividimos o nosso dataset em treino, validação e teste, de modo a ter dados mais fidedignos e não
# tão tendenciosos. 80% para treino, 10% para validação e 10% para teste
# Ao dividir em validação permite-nos ver se o modelo está em overfitting, gera-nos outros dados que não
# os de treino
train_df, validate_df = train_test_split(df, test_size=0.2, random_state=42)
validate_df, test_df = train_test_split(validate_df, test_size=0.5, random_state=42)

train_df = train_df.reset_index(drop=True)
validate_df = validate_df.reset_index(drop=True)
test_df = test_df.reset_index(drop=True)

total_train = train_df.shape[0]
total_validate = validate_df.shape[0]
print('Num Imagens de Treino = ', total_train , ' Num Imagens de Validação = ', total_validate, ' Num Imagens de
```

Resultado:

Num Imagens de Treino = 12412 Num Imagens de Validação = 1551 Num Imagens de Teste = 1552

4. Análise de resultados

Foram realizados os seguintes testes:

- Camada GlobalAveragePooling2D + Função Softmax + Data Augmentation;
- Camada GlobalAveragePooling2D + Função Softmax
- Camada Flatten + Função Softmax;
- Camada GlobalAveragePooling2D + Função Relu;
- Camada Flatten + Função Relu;
- Camada GlobalAveragePooling2D + Camada Flatten + Softmax + Camada Dropout.

Camada GlobalAveragePooling2D + Função Softmax + Data Augmentation:

Foram realizados dois testes com "Augmentation". Este de 9 Epochs e outro de 7, o qual não temos *printscreen*.

```
Epoch 1/20
193/193 [============= ] - 331s 2s/step - loss: 0.6619 - categorical accuracy: 0.7992 - val loss:
0.3179 - val categorical accuracy: 0.9115
Epoch 2/20
      193/193 [==
0.2730 - val categorical accuracy: 0.9219
Epoch 3/20
0.2535 - val categorical accuracy: 0.9219
Epoch 4/20
0.2452 - val categorical accuracy: 0.9277
Epoch 5/20
193/193 [===
     0.2477 - val_categorical_accuracy: 0.9290
Epoch 6/20
0.2529 - val_categorical_accuracy: 0.9277
Epoch 7/20
0.2194 - val_categorical_accuracy: 0.9362
Epoch 8/20
0.2238 - val categorical accuracy: 0.9336
Epoch 9/20
ights from the end of the best epoch: 7.
0.2227 - val categorical accuracy: 0.9323
Epoch 9: early stopping
```


Camada GlobalAveragePooling2D + Função Softmax:

Foram realizados dois testes sem Augmentation. Este de 7 Epochs e outro de 5, respetivamente.

```
0.2477 - val categorical accuracy: 0.9245
Epoch 2/20
         ========] - 291s 2s/step - loss: 0.1956 - categorical accuracy: 0.9410 - val loss:
193/193 [==
0.2075 - val_categorical_accuracy: 0.9382
Epoch 3/20
0.1813 - val categorical accuracy: 0.9434
Epoch 4/20
0.1730 - val_categorical_accuracy: 0.9473
Epoch 5/20
0.1668 - val_categorical_accuracy: 0.9518
Epoch 6/20
0.1620 - val categorical accuracy: 0.9512
Epoch 7/20
ights from the end of the best epoch: 5.
0.1632 - val_categorical_accuracy: 0.9486
Epoch 7: early stopping
Epoch 1/20
0.2689 - val categorical accuracy: 0.9076
Epoch 2/20
0.2049 - val categorical accuracy: 0.9349
Epoch 3/20
193/193 [==
          =========] - 283s 1s/step - loss: 0.1498 - categorical accuracy: 0.9550 - val loss:
0.1789 - val categorical accuracy: 0.9466
Epoch 4/20
      193/193 [=====
0.1821 - val_categorical_accuracy: 0.9434
Epoch 5/20
ights from the end of the best epoch: 3.
0.1680 - val categorical accuracy: 0.9388
Epoch 5: early stopping
```


Comparando os resultados mostrados anteriormente, observamos que com "augmentation" conseguimos ter em média mais iterações (epochs), mas, no entanto, a eficácia de teste é maior quando o teste não a tem.

Camada Flatten + Função Softmax:

Layer (type)	Output Shape	Param #
lambda (Lambda)	(None, 224, 224, 3)	0
<pre>mobilenetv2_1.00_224 (Func ional)</pre>	t (None, 7, 7, 1280)	2257984
<pre>featuresCamadaFlatten (Fla ten)</pre>	t (None, 62720)	Θ
dense (Dense)	(None, 10)	627210
Total params: 2,885,194 Trainable params: 627,210 Non-trainable params: 2,257		
Número de Features da Camad tf.Tensor([[0. 0. 0 0.)), dtype=floa
odel.add(Flatten(name="feature model.add(tf.keras.layers.Globa		turesCamadaGloba
odel.add(Dense(len(categories)	, activation='softmax'))	


```
Epoch 1/20
                  =======] - 281s 1s/step - loss: 1.4961 - categorical accuracy: 0.8821 - val loss:
193/193 [=:
1.1273 - val categorical accuracy: 0.9089
Epoch 2/20
1.0733 - val categorical accuracy: 0.9284
Epoch 3/20
193/193 [==:
           1.1490 - val categorical accuracy: 0.9284
Epoch 4/20
193/193 [==
                    =====] - 279s 1s/step - loss: 0.0859 - categorical accuracy: 0.9899 - val loss:
1.0979 - val categorical accuracy: 0.9375
Epoch 5/20
1.1138 - val_categorical_accuracy: 0.9349
Epoch 6/20
193/193 [===
             ==========] - ETA: 0s - loss: 0.0864 - categorical accuracy: 0.9913Restoring model we
ights from the end of the best epoch: 4.
1.3826 - val categorical accuracy: 0.9303
Epoch 6: early stopping
```


Comparando os resultados anteriores, concluímos que a **GlobalAveragePooling2D** tem mais eficácia nos resultados de teste do que a camada **Flatten**.

Camada GlobalAveragePooling2D + Função Relu:

Camada Flatten + Função Relu;

Eficácia de teste = 6.51 %

Comparando agora estes, observamos que a função de ativação "relu" é sem dúvida inútil para este tipo de classificação.

Camada GlobalAveragePooling2D + Camada Flatten + Softmax + Camada Dropout.

Layer (type)	Output Shape	Param #
lambda (Lambda)	(None, 224, 224, 3)	θ
$\begin{array}{lll} \text{mobilenetv2}_1.00_224 \text{ (Functional)} \end{array}$	(None, 7, 7, 1280)	2257984
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 1280)	θ
$\label{eq:control_for_control} \mbox{featuresCamadaFlatten (Flatten)}$	(None, 1280)	θ
dropout (Dropout)	(None, 1280)	θ
dense (Dense)	(None, 10)	12810

Total params: 2,270,794 Trainable params: 12,810

Non-trainable params: 2,257,984

Número de Features da Camada featuresCamadaFlatten:


```
Epoch 1/20
193/193 [=:
         0.2519 - val categorical accuracy: 0.9206
Epoch 2/20
         193/193 [==
0.1912 - val_categorical_accuracy: 0.9375
Epoch 3/20
0.1669 - val categorical accuracy: 0.9473
Epoch 4/20
      193/193 [==
0.1602 - val categorical accuracy: 0.9486
Epoch 5/20
193/193 [==:
      0.1444 - val_categorical_accuracy: 0.9551
Epoch 6/20
193/193 [===
         :========] - 281s 1s/step - loss: 0.1464 - categorical_accuracy: 0.9550 - val_loss:
0.1546 - val_categorical_accuracy: 0.9499
Epoch 7/20
193/193 [=========== 0.9589Restoring model we
ights from the end of the best epoch: 5.
0.1417 - val categorical accuracy: 0.9551
Epoch 7: early stopping
```


Eficácia de teste = 94.85 %

No último teste realizado, conclui-se que a eficácia de treino tende a estar sempre a aumentar, e a eficácia de validação vai acompanhando o treino com uma ligeira perda no epoch 6.

Este foi o teste com maior valor de eficácia – 95%.

Depois de termos a rede neuronal treinada, fomos fazer previsões:

	precision	recall	f1-score	support
battery	0.98	0.93	0.95	85
biological	0.94	0.98	0.96	104
cardboard	0.93	0.98	0.96	87
clothes	0.99	0.98	0.99	539
glass	0.93	0.91	0.92	200
metal	0.87	0.84	0.85	69
paper	0.95	0.93	0.94	114
plastic	0.87	0.87	0.87	99
shoes	0.93	0.97	0.95	191
trash	0.92	0.94	0.93	64
accuracy			0.95	1552
macro avg	0.93	0.93	0.93	1552
weighted avg	0.95	0.95	0.95	1552

Ao olhar para esta imagem percebemos que para as 1552 imagens guardadas para teste, o nosso modelo foi capaz de as reconhecer e de dizer a que categoria é que cada se refere (exemplo - A classe bateria apareceu no conjunto de dados 85 vezes).

5. Conclusões

Com a realização deste trabalho, conseguimos adquirir bastantes conhecimentos relativamente à temática das redes neuronais e à linguagem de programação python.

Deu-nos a conhecer o potencial dos algoritmos de treino e camadas para a análise de problemas, verificando que as redes neuronais têm um potencial muito grande a nível de processamento lógico. Contudo, este processamento pode induzir em erros por envolver muitos recursos e por isso, quem as prepara tem de ter o cuidado de gerir os recursos de modo a não afetar a qualidade de análise.

Com este trabalho foi-nos possível observar que as redes neuronais aparentaram um melhor desempenho quando utilizada a função de treino softmax, e as camadas GlobalAveragePooling2D, Flatten e Dropout.

Caso fosse possível ter camaras em cada ecoponto, este modelo seria capaz de reconhecer qual o objeto que estava a ser colocado no mesmo e saber se estava a ser depositado no sítio correto.

Concluímos assim, que as redes neuronais são idealmente desenvolvidas para ajudar a resolver problemas complexos em diversas situações da vida real.

6. Referências