

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY
Theory 1 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	2

1 (a) ionic⁻ (1)

 Na^{+} and Cl^{-} (1)

arranged in cubic lattice (diagram required)

each na^+ ion surrounded by six Cl^- ions or each Cl^- ion surrounded by six Na^+ ions may be in diagram or stated in words

(1) [4]

(b) in the solid, the ions cannot move (1)

in the melt, the ions move **or** carry the charge/current

(1) **[2]**

(c) (i)

steel **or** inert cathode (1)

titanium **or** graphite **or** inert anode (1)

(ii) at the anode

$$2Cl(aq) \rightarrow Cl_2(g) + 2e^- \tag{1}$$

at the cathode

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$$

or

$$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 (1)

	Page	2	Mark Scheme Syllabu A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 9701	ıs Paper	
<u> </u>			AIAS LEVEL EXAMINATIONS - NOVEMBER 2003 9701		
		(iii)	hydrogen – ammonia, HC <i>l</i> , margarine, fuel	(1)	
			sodium hydroxide – soap, paper, bleach	(1)	
		(iv)	Cl ₂ produced reacts with the NaOH(aq)	(1)	
			Cl_2 + 2NaOH \rightarrow NaC l O + NaC l + H $_2$ O	(1) [Total: 14 n	[9] nax]
2	(a)		$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$	(1)	[1]
	(b)	(i)	nitrogen	(1)	
		(ii)	from the combustion of the fuel	(1)	[2]
	(c)	(i)	CO reacts with haemoglobin/reduces absorption of oxygen		
			nitrogen oxides/NO/NO ₂ /NO _x acidic/breathing problems/acid rain/photochemical smog		
			hydrocarbons – breathing problems		
			SO ₂ – breathing problems/acid rain	(any 2)	
		(ii)	$CO + NO \rightarrow CO_2 + \frac{1}{2}N_2$		
			or CO + $\frac{1}{2}$ O ₂ \rightarrow CO ₂		
			NO + CO \rightarrow CO ₂ + $\frac{1}{2}$ N ₂ (again)		
			or NO + HC \rightarrow CO ₂ + H ₂ O + N ₂ (qualitative)		
			or NO + $H_2 \rightarrow H_2O + \frac{1}{2}N_2$	(1)	
		(iii)	toxic gases are not removed until the catalytic converter has warmed up	3	
			or there is too much CO to be completely removed as in (c)(ii)		
			or the converter may become less efficient over a period of time/gets clogged up		
			or CO ₂ passes through – causes global warming		
			or SO ₂ passes through – causes acid rain	(1) [Tot a	[5] I: 8]

	Page	3	Mark Scheme	Syllabus	Paper	
			A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	2	
3 (a)		(i)	energy/enthalpy change when 1 mol of a compound formed from its elements	d is	(1)	
			at 25°C and 1 atm		(1)	
		(ii)	$H_2(g)+\frac{1}{2}O_2(g)\to H_2O(I)$		(1)	
	(b)	(i)	Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$		(1)	
		(ii)	heat released = $mc\Delta T$		(1)	
			= 200 x 4.2 x 12.2 = 10.25 kJ		(1)	
		(iii)	$\Delta H_{\text{reacn}} = 40.1 \text{ x } (-10.25) = -411 \text{ kJ mol}^{-1} \text{ sign neces}$	essary		
			for ecf, $\Delta H_{\text{reacn}} = 40.1 \text{ x [answer to (b)(ii)]}$		(4)	
					(1)	[4
	(c)	(i)	The enthalpy (energy) change for converting reacta products	ints into	(1)	
			is the same regardless of the route taken		(1)	
		(ii)	Ca(s) + $2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g) \Delta H = -\Delta H + \frac{c}{f} = 2 \times (-286) \times x$	-411		
			$\Delta H_{\text{reacn}} = x - 2(-286) = -411$		(1)	
			$x = -411 + 2(-286) = -983 \text{ kJ mol}^{-1}$ sign necessary		(1)	
			for ecf, $x = ans. to (b)(iii) + (-572)$			[4]
	(d)		40.1 g of Ca give 24000 cm ³ of H ₂		(1)	
			1 g of Ca gives $\frac{24000}{40.1}$ = 598.5 cm ³ units needed			
			allow 40 g of Ca giving 600 cm ³		(1) [Total :	
1 (a	(a)	(i)	dehydration/elimination/cracking		(1)	
			$C_2H_5OH - H_2O \rightarrow CH_2 = CH_2$			
			or $C_2H_5OH \rightarrow CH_2 = CH_2 + H_2O$		(1)	[2]
	(b)	(i)	yellow/red/orange/brown to colourless			
			do not allow clear or white		(1)	
		(ii)	$CH_2 = CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$ purple to colourless		(1) (1)	

		A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 9701	2
(c)	(i)	$CH_2 = CH_2 + H_2O + [O] \rightarrow CH_2OHCH_2OH$ - $CH_2CH_2CH_2CH_2$ 'tails required'	(1) [4 (1)
		-CH ₂ CHC <i>1</i> CH ₂ CHC <i>1</i> — 'tails required'	(1) [2
(d)	(i)	C_6H_{10}	(1)
	(ii)	$M_{\rm r} = 82$	(1)
	(iii)	% carbon = $\frac{72 \times 100}{82}$ = 87.8%	(1) [3 [Total: 11
i (a)	(i)	$CH_3CH_2CH_2CH_2Br + NaOH \rightarrow$ or OH^-	
		CH ₃ CH ₂ CH ₂ CH ₂ OH + NaBr or Br ⁻	(1)
	(ii)	nucleophilic substitution	(1)
	(iii)	presence of C^{δ_+} – Br^{δ} dipole (1)	
		attack of OH^- on C^{δ_+} (1)	
		formation of intermediate	
		C ₃ H ₇ HO · · · C · · · Br	
		HO C Br	
		H H (1)	
		loss of Br ⁻ (1)	(3 max)
		may all be in a mechanism	[5
(b)	(i)	elimination/dehydrobromination	(1)
	(ii)	I $CH_3CH_2CH = CH_2$	(1)
		II $CH_3C = CH_2$	
		CH ₃	(1)
	(iii)	I CH ₃ CH ₂ CO ₂ H	(1)
, .		II CH₃COCH₃	(1) [5
(c)		(CH ₃) ₃ CBr KCN/ethanol, (CH ₃) ₃ CCN dil H ⁺ , (CH ₃) ₃ CCO ₂ H reflux (1) (1) (1)	[3 [Total: 13

Mark Scheme

Syllabus

Paper

Page 4