ECN13104: Solid State Devices and Circuits

Dr. Vimal Kumar Singh Yadav ECE Department, MNNIT Allahabad, Prayagraj, Uttar Pradesh-211004

vksyadav@mnnit.ac.in

Ph: 6001391628

17/09/2024

MOSFET Drain Current Equations in different regions of operations

MOSFET in ON State ($V_{GS} > V_{TH}$)

 The channel charge density is equal to the gate capacitance times the gate voltage in excess of the threshold voltage.

Areal inversion charge density [C/cm²]:
$$Q_{inv} = C_{ox}(V_{GS} - V_{TH})$$

Note that the reference voltage is the source voltage.

In this case, V_{TH} is defined as the value of V_{GS} at which the channel surface is strongly inverted (i.e. $n = N_A$ at x=0, for an NMOSFET).

MOSFET as Voltage-Controlled Resistor

 For small V_{DS}, the MOSFET can be viewed as a resistor, with the channel resistance depending on the gate voltage.

$$R_{ON} = \text{resistivit y} \cdot \frac{L}{t_{inv} \cdot W} = \frac{1}{q \mu_n n_{inv}} \cdot \frac{L}{t_{inv} \cdot W}$$

• Note that $qn_{inv} \cdot t_{inv} = Q_{inv} = C_{ox} (V_{GS} - V_{TH})$

$$R_{ON} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

MOSFET Channel Potential Variation

- If the drain is biased at a higher potential than the source, the channel potential increases from the source to the drain.
- → The potential difference between the gate and channel decreases from the source to drain.

Charge Density along the Channel

The channel potential varies with position along the channel:

- The current flowing in the channel is $I_D = WQ_{inv}(y) \cdot v(y)$ charge per unit time
- The carrier drift velocity at position y is $v(y) = \mu_n E = \mu_n \frac{dV_C(y)}{dy}$ where μ_n is the electron field-effect mobility

Drain Current, ID (for VDS<VGS-VTH)

$$I_D = WQ_{inv}(y) \cdot v(y) = WQ_{inv}(y) \cdot \mu_n \frac{dV_C(y)}{dy}$$

current is charge per unit time

Integrating from source to drain:

$$\int_{0}^{L} I_{D} dy = \int_{V_{S}}^{V_{D}} W \mu_{n} Q_{inv}(V_{C}) dV_{C}$$

$$I_{D}L = W\mu_{n} \int_{V_{S}}^{V_{D}} C_{ox} \left[V_{GS} - V_{TH} - V_{C} \right] dV_{C} = W\mu_{n} C_{ox} \left\{ \left[V_{GS} - V_{TH} \right] V_{DS} - \frac{1}{2} V_{DS}^{2} \right\}$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS}$$

ID-VDS Characteristic

- For a fixed value of V_{GS} , I_{D} is a parabolic function of V_{DS} .
- I_D reaches a maximum value at $V_{DS} = V_{GS} V_{TH}$.

Inversion-Layer Pinch-Off (V_{DS}>V_{GS}-V_{TH})

- When $V_{DS} = V_{GS} V_{TH}$, $Q_{inv} = 0$ at the drain end of the channel.
 - → The channel is "pinched-off".

L1 L

- As V_{DS} increases above V_{GS} - V_{TH} , the pinch-off point (where $Q_{inv} = 0$) moves toward the source.
 - Note that the channel potential $V_{\rm C}$ is always equal to $V_{\rm GS}$ - $V_{\rm TH}$ at the pinch-off point.
 - \rightarrow The maximum voltage that can be applied across the inversion-layer channel (from source to drain) is V_{GS} - V_{TH} .
 - → The drain current "saturates" at a maximum value.

Current Flow in Pinch-Off Region

- Under the influence of the lateral electric field, carriers drift from the source (through the inversion-layer channel) toward the drain.
- A large lateral electric field exists in the pinch-off region:

$$E = \frac{V_{DS} - (V_{GS} - V_{TH})}{L - L_1}$$

 Once carriers reach the pinch-off point, they are swept into the drain by the electric field.

Drain Current Saturation (Long-Channel MOSFET)

• For $V_{DS} > V_{GS} - V_{TH}$: $I_D = I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$

$$\left|V_{D,sat}\right| = V_{GS} - V_{TH}$$

MOSFET Regions of Operation

• When the potential difference between the gate and drain is greater than V_{TH} , the MOSFET is operating in the *triode region*.

 When the potential difference between the gate and drain is equal to or less than V_{TH}, the MOSFET is operating in the *saturation region*.

Triode or Saturation?

In DC circuit analysis, when the MOSFET region of operation is not known, an intelligent guess should be made; then the resulting answer should be checked against the assumption.

Example: Given $\mu_n C_{ox} = 100 \, \mu A/V^2$, $V_{TH} = 0.4V$. If V_G increases by 10mV, what is the change in V_D ?

The Body Effect

• V_{TH} is increased by reverse-biasing the body-source PN junction:

$$\begin{split} V_{TH} = & V_{FB} + 2\varphi_B + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\varphi_B + V_{SB})}}{C_{ox}} \\ = & V_{FB} + 2\varphi_B + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\varphi_B)}}{C_{ox}} - \frac{\sqrt{2qN_A\varepsilon_{Si}(2\varphi_B)}}{C_{ox}} + \frac{\sqrt{2qN_A\varepsilon_{Si}(2\varphi_B + V_{SB})}}{C_{ox}} \\ = & V_{TH0} + \frac{\sqrt{2qN_A\varepsilon_{Si}}}{C_{ox}} \left(\sqrt{2\varphi_B + V_{SB}} - \sqrt{2\varphi_B}\right) = V_{TH0} + \gamma \left(\sqrt{2\varphi_B + V_{SB}} - \sqrt{2\varphi_B}\right) \\ & \gamma \quad \text{is the body effect parameter.} \end{split}$$

Channel-Length Modulation

- The pinch-off point moves toward the source as V_{DS} increases.
- \rightarrow The length of the inversion-layer channel becomes shorter with increasing $V_{\rm DS}$.
- \rightarrow $I_{\rm D}$ increases (slightly) with increasing $V_{\rm DS}$ in the saturation region of operation.

$$\frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2}$$

$$\Delta L \propto V_{DS} - V_{DSsat}$$

$$I_{Dsat} \propto \frac{1}{L - \Delta L} \cong \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right)$$

$$V_{GS} - V_{TH} \qquad V_{DS}$$

$$I = \frac{1}{2} \mu C \frac{W}{n} (V - V)^{2} \left[1 + \lambda (V - V) \right]$$

$$I_{D,sat} = \frac{1}{2} \mu C \frac{W}{n} (V - V)^{2} \left[1 + \lambda V \right]$$

$$I_{D,sat} = \frac{1}{2} \mu C \frac{W}{n} (V - V_{TH})^{2} \left[1 + \lambda V \right]$$

 λ is the **channel length modulation coefficient**.

λ and L

 The effect of channel-length modulation is less for a longchannel MOSFET than for a short-channel MOSFET.

Velocity Saturation

In state-of-the-art MOSFETs, the channel is very short (<0.1 μ m); hence the lateral electric field is very high and carrier drift velocities can reach their saturation levels.

The electric field magnitude at which the carrier velocity saturates is E_{sat} .

$$v_{sat} = \begin{cases} 8 \times 10^6 \text{ cm/s for electrons in Si} \\ 6 \times 10^6 \text{ cm/s for holes in Si} \end{cases}$$

Impact of Velocity Saturation

- Recall that $I_D = WQ_{inv}(y)v(y)$
- If $V_{DS} > E_{sat} \times L$, the carrier velocity will saturate and hence the drain current will saturate:

$$I_{D,sat} = WQ_{inv}v_{sat} = WC_{ox}(V_{GS} - V_{TH})v_{sat}$$

- $I_{D,sat}$ is proportional to $V_{GS}-V_{TH}$ rather than $(V_{GS}-V_{TH})^2$
- I_{D,sat} is not dependent on L
- I_{D,sat} is dependent on W

Short-Channel MOSFET I_D-V_{DS}

 I_{DS} - V_{DS} for 35nm gate lengths

- $I_{D,sat}$ is proportional to V_{GS} - V_{TH} rather than $(V_{GS}$ - $V_{TH})^2$
- $V_{\rm D,sat}$ is smaller than $V_{\rm GS}$ - $V_{\rm TH}$
- Channel-length modulation is apparent (?)

Drain Induced Barrier Lowering (DIBL)

- In a short-channel MOSFET, the source & drain regions each "support" a significant fraction of the total channel depletion charge $Q_{dep} \times W \times L$
 - \rightarrow V_{TH} is lower than for a long-channel MOSFET
- As the drain voltage increases, the reverse bias on the body-drain PN
 junction increases, and hence the drain depletion region widens.
 - $\rightarrow V_{TH}$ decreases with increasing drain bias.

(The barrier to carrier diffusion from the source into the channel is reduced.)

 \rightarrow $I_{\rm D}$ increases with increasing drain bias.

NMOSFET in OFF State

- We had previously assumed that there is no channel current when $V_{GS} < V_{TH}$. This is incorrect!
- As $V_{\rm GS}$ is reduced (toward 0 V) below $V_{\rm TH}$, the potential barrier to carrier diffusion from the source into the channel is increased. I_D becomes limited by carrier diffusion into the channel, rather than by carrier drift through the channel.

(This is similar to the case of a PN junction diode!)

 \rightarrow I_D varies exponentially with the potential barrier height at the source, which varies directly with the channel potential.

Sub-Threshold Leakage Current

• Recall that, in the depletion (sub-threshold) region of operation, the channel potential is capacitively coupled to the gate potential. A change in gate voltage ($\Delta V_{\rm GS}$) results in a change in channel voltage ($\Delta V_{\rm CS}$):

 $\Delta V_{CS} = \Delta V_{GS} \times \left(\frac{C_{ox}}{C_{ox} + C_{dep}} \right) \equiv \Delta V_{GS} / m$

• Therefore, the sub-threshold current ($I_{D,subth}$) decreases exponentially with linearly decreasing V_{GS}/m

"Sub-threshold swing":

$$S = \left(\frac{d(\log_{10} I_{DS})}{dV_{GS}}\right)^{-1}$$
$$S = mV_T \ln(10) > 60 \text{mV/dec}$$

Short-Channel MOSFET I_D-V_{GS}

P. Bai et al. (Intel Corp.), Int'l Electron Devices Meeting, 2004.

Sub-threshold curves (I_{DS} - V_{GS}) for 35nm gate lengths

V_{TH} Design Trade-Off

• Low V_{TH} is desirable for high ON-state current:

$$I_{\mathrm{D,sat}} \propto (V_{\mathrm{DD}} - V_{\mathrm{TH}})^{\eta}$$
 $1 < \eta < 2$

• But high V_{TH} is needed for low OFF-state current:

MOSFET Large-Signal Models $(V_{GS} > V_{TH})$

Depending on the value of $V_{\rm DS}$, the MOSFET can be represented with different large-signal models.

$$I_{D,sat} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} \left[H \lambda V_{DS} \right]$$

$$or$$

$$I_{D,sat} = V_{sat} W C_{ox} (V_{CS} - V_{TH}) \left[1 + \lambda V_{DS} \right]$$

MOSFET Transconductance, g_m

• Transconductance (g_m) is a measure of how much the drain current changes when the gate voltage changes.

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}}$$

- For amplifier applications, the MOSFET is usually operating in the saturation region.
 - For a long-channel MOSFET:

$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \{1 + \lambda V_{DS}\}$$

$$g_{m} = \sqrt{2\mu C_{ox} \frac{W}{L} \{1 + \lambda V_{DS}\} I_{D}}$$

— For a short-channel MOSFET:

$$g_m = v_{sat}WC_{ox}\left\{1 + \lambda V_{DS}\right\}$$

MOSFET Small-Signal Model (Saturation Region of Operation)

• The effect of channel-length modulation or DIBL (which cause $I_{\rm D}$ to increase linearly with $V_{\rm DS}$) is modeled by the transistor output resistance, $r_{\rm o}$.

$$r_o \equiv \frac{\partial V_{DS}}{\partial I_D} \approx \frac{1}{\lambda I_D}$$

PMOS Transistor

• A p-channel MOSFET behaves similarly to an n-channel MOSFET, except the polarities for I_D and V_{GS} are reversed.

- The small-signal model for a PMOSFET is the same as that for an NMOSFET.
 - The values of $g_{\rm m}$ and $r_{\rm o}$ will be different for a PMOSFET vs. an NMOSFET, since mobility & saturation velocity are different for holes vs. electrons.

PMOS I-V Equations

• For $|V_{DS}| < |V_{D,sat}|$:

$$V_{D,sat}$$
:
$$I_{D,tri} = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS} \left[1 - \lambda V_{DS} \right]$$

• For $|V_{DS}| > |V_{D,sat}|$:

$$I_{D,sat} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \left[1 - \lambda V_{DS} \right]$$

for long channel

 $I_{D.sat} = -v_{sat}WC_{ox}(V_{CS}-V_{TH})\left[1-\lambda V_{DS}\right]$

for short channel

CMOS Technology

- It possible to form deep n-type regions ("well") within a p-type substrate to allow PMOSFETs and NMOSFETs to be co-fabricated on a single substrate.
- This is referred to as CMOS ("Complementary MOS") technology.

Schematic cross-section of CMOS devices

Comparison of BJT and MOSFET

• The BJT can achieve much higher $g_{\rm m}$ than a MOSFET, for a given bias current, due to its exponential *I-V* characteristic.

Bipolar Transistor	MOSFET
Exponential Characteristic Active: $V_{\text{CB}} > 0$ Saturation: $V_{\text{CB}} < 0$ Finite Base Current Early Effect	Quadratic Characteristic Saturation: $V_{DS} > V_{GS} - V_{TH}$ Triode: $V_{DS} < V_{GS} - V_{TH}$ Zero Gate Current Channel-Length Modulation
Diffusion Current –	Drift Current Voltage-Dependent Resistor

Acknowledgements

- Professor Liu, UC Berkeley
- Fundamental of Microelectronics, Bahzad Razavi
- Semiconductor Devices: Modelling and Technology' Nandita DasGupta and Amitava DasGupta, PHI, 2004.
 Prof. Roy P. Paily, IIT Guwahati, India