Эконометрика

с Монте-Карло и эконометрессами

в задачах и упражнениях

Дмитрий Борзых, Борис Демешев

2 ноября 2013 г.

Содержание

1	МНК без матриц и вероятностей	1
2	Парный МНК без матриц	2
3	Многомерный МНК без матриц	4
4	МНК с матрицами и вероятностями	5
5	Линейная алгебра	7
6	Случайные вектора	8
7	Многомерное нормальное и квадратичные формы	11
8	Задачи по программированию	14

Todo list

1 МНК без матриц и вероятностей

- 1. Верно ли, что для любых векторов $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_n)$ справедливы следующие неравенства?
 - (a) $\sum_{i=1}^{n} (a_i \bar{a}) = 0$
 - (b) $\sum_{i=1}^{n} (a_i \bar{a})^2 = \sum_{i=1}^{n} (a_i \bar{a}) a_i$
 - (c) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} (a_i \bar{a})b_i$
 - (d) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} a_i b_i$

да, да, да, нет

- 2. При помощи метода наименьших квадратов найдите оценку неизвестного параметра θ в следующих моделях:
 - (a) $y_i = \theta + \theta x_i + \varepsilon_i$
 - (b) $y_i = \theta \theta x_i + \varepsilon_i$
 - (c) $\ln y_i = \theta + \ln x_i + \varepsilon_i$

- (d) $y_i = \theta + x_i + \varepsilon_i$
- (e) $y_i = 1 + \theta x_i + \varepsilon_i$
- (f) $y_i = \theta/x_i + \varepsilon_i$
- (g) $y_i = \theta x_{i1} + (1 \theta) x_{i2} + \varepsilon_i$
- 3. Покажите, что для моделей $y_i = \alpha + \beta x_i + \varepsilon_i$, $z_i = \gamma + \delta x_i + v_i$ и $y_i + z_i = \mu + \lambda x_i + \xi_i$ МНК-оценки связаны соотношениями $\hat{\mu} = \hat{\alpha} + \hat{\gamma}$ и $\hat{\lambda} = \hat{\beta} + \hat{\delta}$.
- 4. Найдите МНК-оценки параметров α и β в модели $y_i = \alpha + \beta y_i + \varepsilon_i$.
- 5. Рассмотрите модели $y_i = \alpha + \beta(y_i + z_i) + \varepsilon_i$, $z_i = \gamma + \delta(y_i + z_i) + \varepsilon_i$.
 - (a) Как связаны между собой alpha и qamma?
 - (b) Как связаны между собой $b\hat{e}ta$ и $d\hat{e}lta$?

 $\hat{\alpha}+\hat{\gamma}=0$ и $\hat{\beta}+\hat{\delta}=1$

- 6. Как связаны МНК-оценки параметров α , β и γ , δ в моделях $y_i = \alpha + \beta x_i + \varepsilon_i$ и $z_i = \gamma + \delta x_i + v_i$, если $z_i = 2y_i$.
- 7. Для модели $y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ решите условную задачу о наименьших квадратах: $Q(\beta_1,\beta_2):=\sum_{i=1}^n (y_i-\beta_1 x_{i1}-\beta_2 x_{i2})^2 \to \min_{\beta_1+\beta_2=1}$

2 Парный МНК без матриц

- 1. Рассмотрим модель $y_t = \beta_1 + \beta_2 \cdot t + \varepsilon_t$, где ошибки ε_t независимы и равномерны на [-1;1]. С помощью симуляций на компьютере оцените и постройте график функции плотности для $\hat{\beta}_1$, $\hat{\beta}_2$, \hat{s}^2 , $\widehat{\text{Var}}(\hat{\beta}_1)$, $\widehat{\text{Var}}(\hat{\beta}_2)$ и $\widehat{\text{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$.
- 2. Пусть $y_i=\mu+\varepsilon_i$, где $\mathbb{E}(\varepsilon_i)=0$, $\mathrm{Var}(\varepsilon_i)=\sigma^2$, $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j$. Найдите:
 - (a) $\mathbb{E}(\overline{y})$
 - (b) $Var(\overline{y})$
 - (c) $\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$
 - (d) $\operatorname{Var}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$, если дополнительно известно, что ε_i нормально распределены
- 3. Рассматривается модель $y_i = \beta x_i + \varepsilon_i$, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких значениях параметров c_i несмещённая оценка $\hat{\beta} = \frac{\sum_{i=1}^n c_i y_i}{\sum_{i=1}^n c_i x_i}$ имеет наименьшую дисперсию?

 $c_i = c \cdot x_i$, где $c \neq 0$

- 4. Пусть $y_i=\beta_1+\beta_2x_i+\varepsilon_i$ и $i=1,\ldots,5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2=55, \sum_{i=1}^5 x_i^2=3, \sum_{i=1}^5 x_iy_i=12, \sum_{i=1}^5 y_i=15, \sum_{i=1}^5 x_i=3$. Используя их, найдите:
 - (a) $\hat{\beta}_1$ и $\hat{\beta}_2$
 - (b) $\operatorname{Corr}(\hat{\beta}_1, \hat{\beta}_2)$
 - (c) TSS
 - (d) ESS
 - (e) RSS
 - (f) R^2
 - (g) $\hat{\sigma}^2$

Проверьте следующие гипотезы:

(a)
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

(b)
$$\begin{cases} H_0: \beta_1 + \beta_2 = 1 \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

- 5. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2 = 55, \sum_{i=1}^5 x_i^2 = 2, \sum_{i=1}^5 x_i y_i = 9, \sum_{i=1}^5 y_i = 15, \sum_{i=1}^5 x_i = 2.$ Используя их, найдите:
 - (a) $\hat{\beta}_1$ и $\hat{\beta}_2$
 - (b) $Corr(\hat{\beta}_1, \hat{\beta}_2)$
 - (c) *TSS*
 - (d) ESS
 - (e) RSS
 - (f) R^2
 - (g) $\hat{\sigma}^2$

Проверьте следующие гипотезы:

(a)
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

(b)
$$\begin{cases} H_0: \beta_1 + \beta_2 = 1 \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

- 6. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $\mathbb{E}\hat{\beta}$. Какие из следующих оценок параметра β являются несмещенными:
 - (a) $\hat{\beta} = \frac{y_1}{r_1}$
 - (b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n}$
 - (d) $\hat{\beta} = \frac{\overline{y}}{\overline{z}}$
 - (e) $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$

 - $(f) \hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}}$ $(g) \hat{\beta} = \frac{1}{n} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{n} \frac{y_3 y_2}{x_3 x_2} + \dots + \frac{1}{n} \frac{y_n y_{n-1}}{x_n x_{n-1}}$ $(h) \hat{\beta} = \frac{1}{n 1} \frac{y_2 y_1}{x_2 x_1} + \frac{y_3 y_2}{x_3 x_2} + \dots + \frac{y_n y_{n-1}}{x_n x_{n-1}}$

 - (i) $\hat{\beta} = \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$
 - (j) $\hat{\beta} = \frac{1}{2} \frac{y_n y_1}{x_n x_1} + \frac{1}{2n} \frac{y_1}{x_1} + \dots + \frac{y_n}{x_n}$
 - (k) $\hat{\beta} = \frac{1}{2} \frac{y_n y_1}{x_n x_1} + \frac{1}{2} \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$

 - (l) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$ (m) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(\overline{y} y_i)}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$
 - (n) $\hat{\beta} = \frac{y_1 + 2y_2 + \dots + ny_n}{x_1 + 2x_2 + \dots + nx_n}$
 - (o) $\hat{\beta} = \frac{\sum_{i=1}^{n} i(y_i \overline{y})}{\sum_{i=1}^{n} i(x_i \overline{x})}$
 - (p) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$

(q)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \overline{y}}{x_i - \overline{x}}$$

- 7. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $Var(\beta)$.
 - (a) $\hat{\beta} = \frac{y_1}{r_1}$
 - (b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n}$
 - (d) $\hat{\beta} = \frac{\bar{y}}{\bar{x}}$
 - (e) $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$
 - (f) $\hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}}$
 - (g) $\hat{\beta} = \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$
 - (h) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$
 - (i) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(\overline{y} y_i)}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$ (j) $\hat{\beta} = \frac{y_1 + 2y_2 + \dots + ny_n}{x_1 + 2x_2 + \dots + nx_n}$ (k) $\hat{\beta} = \frac{\sum_{i=1}^{n} i(y_i \overline{y})}{\sum_{i=1}^{n} i(x_i \overline{x})}$

 - (1) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$
 - (m) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i \overline{y}}{x_i \overline{x}}$
- 8. Рассмотрите классическую линейную регрессионную модель $y_i = \beta \cdot i + \varepsilon_i, i = 1, \dots, n$. Какая из оценок $\hat{\beta}$ и $\tilde{\beta}$ является более эффективной?
 - (a) $\hat{\beta} = y_1$ и $\tilde{\beta} = y_2/2$
 - (b) $\hat{\beta} = y_1$ и $\tilde{\beta} = \frac{1}{2}y_1 + \frac{1}{2}\frac{y_2}{2}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{1} + \ldots + \frac{y_n}{n} \text{ M } \tilde{\beta} = \frac{1 \cdot y_1 + \ldots + n \cdot y_n}{1^2 + \ldots + n^2}$

3 Многомерный МНК без матриц

1. Эконометрэсса Ширли зашла в пустую аудиторию, где царил приятный полумрак, и увидела на доске до боли знакомую надпись:

$$\hat{y} = 1.1 - 0.7 \cdot x_2 + 0.9 \cdot x_3 - 19 \cdot x_4$$

Помогите эконометрэссе Ширли определить, что находится в скобках

- (а) Р-значения
- (b) *t*-статистики
- (с) стандартные ошибки коэффициентов
- (d) R^2 скорректированный на номер коэффициента
- (e) показатели VIF для каждого коэффициента

t-статистики

2. Для нормальной регрессии с 5-ю факторами (включая свободный член) известны границы симметричного по вероятности 80% доверительного интервала для дисперсии σ_{ε}^2 : A=45, B = 87.942.

- (а) Определите количество наблюдений в выборке
- (b) Вычислите $\hat{\sigma}_{\varepsilon}^2$
- (а) Поскольку $\frac{\hat{\sigma}_{\varepsilon}^2(n-k)}{\sigma_{\varepsilon}^2} \sim \chi^2(n-k)$, где $\hat{\sigma}_{\varepsilon}^2 = \frac{RSS}{n-k}$, k=5. $P(\chi_l^2 < \frac{\hat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} < \chi_u^2) = 0.8$. Преобразовав, получим $P(\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} < \sigma_{\varepsilon}^2 < \frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2}) = 0.8$, где $\chi_u^2 = \chi_{n-5;0.1}^2$, $\chi_l^2 = \chi_{n-5;0.9}^2$ соответствующие квантили. По условию $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2} = A = 45$, $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} = B = 87.942$. Поделим B на A, отсюда следует $\frac{\chi_u^2}{\chi_l^2} = 1.95426$. Перебором квантилей в таблице для хи-квадрат распределения мы находим, что $\frac{\chi_{30;0.1}^2}{\chi_{30;0.9}^2} = \frac{40.256}{20.599} = 1.95426$. Значит, n-5=30, отсюда следует, что n=35.
- (b) $\hat{\sigma}_{\varepsilon}^2 = 45 \frac{\chi_u^2}{n-5} = 45 \frac{40.256}{30} = 60.384$

4 МНК с матрицами и вероятностями

- 1. Пусть $y = X\beta + \varepsilon$ регрессионная модель.
 - (а) Сформулируйте теорему Гаусса-Маркова
 - (b) Верно ли, что оценка $\hat{\beta} = (X'X)^{-1}X'y$ несмещённая?
 - (c) В условиях теоремы Гаусса-Маркова найдите ковариационную матрицу $\hat{\beta}$
- 2. Пусть $y = X\beta + \varepsilon$ регрессионная модель и $\tilde{\beta} = ((X'X)^{-1}X' + A)y$ несмещённая оценка вектора неизвестных параметров β . Верно ли, что AX = 0?
- 3. Пусть $y = X\beta + \varepsilon$ регрессионная модель, $X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$, $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$,

 $\mathbb{E}(\varepsilon)=0,\,\mathrm{Var}(\varepsilon)=\sigma^2I.$ Найдите коэффициент корреляции $\mathrm{Corr}(\hat{eta}_1,\hat{eta}_2).$

- 4. Пусть $y = X\beta + \varepsilon$ регрессионная модель, где $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$. Пусть Z = XD, где $D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 - $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 5. Пусть $y=X\beta+\varepsilon$ регрессионная модель, где $\beta=\begin{pmatrix} \beta_1\\ \beta_2\\ \beta_3 \end{pmatrix}$. Пусть Z=XD, где D=
 - $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 6. Пусть $y=X\beta+\varepsilon$ регрессионная модель, где $\beta=\begin{pmatrix} \beta_1\\ \beta_2\\ \beta_3 \end{pmatrix}$. Пусть Z=XD, где D=
 - $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 7. Пусть $y=X\beta+\varepsilon$ регрессионная модель. Верно ли, что $\hat{\varepsilon}'\hat{y}=0$ и $\hat{y}'\hat{\varepsilon}=0$? да, да
- 8. Пусть $y = X\beta + \varepsilon$ регрессионная модель, где $\mathbb{E}(\varepsilon) = 0$, $\mathrm{Var}(\varepsilon) = \sigma_{\varepsilon}^2 I$. Пусть A неслучайная матрица размера $k \times k$, $\det(A) \neq 0$. Совершается преобразование регрессоров по правилу Z = XA. В преобразованных регрессорах уравнение выглядит так: $y = Z\gamma + u$, где $\mathbb{E}(u) = 0$, $\mathrm{Var}(u) = \sigma_u^2 I$.
 - (а) Как связаны между собой МНК-оценки $\hat{\beta}$ и $\hat{\gamma}?$

- (b) Как связаны между собой векторы остатков регрессий?
- (с) Как связаны между собой прогнозные значения, полученные по двум регрессиям?
- (a) $\hat{\gamma} = (Z'Z)^{-1}Z'y = A^{-1}(X'X)^{-1}(A')^{-1}A'X'y = A^{-1}(X'X)^{-1}X'y = A^{-1}\hat{\beta}$
- (b) $\hat{u} = y Z\hat{\gamma} = y XAA^{-1}\hat{\beta} = y X\hat{\beta} = \hat{\varepsilon}$
- (c) Пусть $z^0=\left(1\quad z_1^0\quad \ldots\quad z_{k-1}^0\right)$ вектор размера $1\times k$ и $x^0=\left(1\quad x_1^0\quad \ldots\quad x_{k-1}^0\right)$ вектор размера $1\times k$. Оба эти вектора представляют собой значения факторов. Тогда $z^0=x^0A$ и прогнозное значение для регрессии с преобразованными факторами равно $z^0\hat{\gamma}=x^0AA^{-1}\hat{\beta}=x^0\hat{\beta}$ прогнозному значению для регрессии с исходными факторами.
- 9. Рассмотрим оценку вида $\tilde{\beta} = ((X'X)^{-1} + \gamma I)X'y$ для вектора коэффициентов регрессионного уравнения $y = X\beta + \varepsilon$, удовлетворяющего условиям классической регрессионной модели. Найдите $\mathbb{E}(\tilde{\beta})$ и $\mathrm{Var}(\tilde{\beta})$.
 - (a) $\mathbb{E}(\tilde{\beta}) = ((X'X)^{-1} + \gamma I)X'\mathbb{E}(y) = ((X'X)^{-1} + \gamma I)X'X\beta = \beta + \gamma X'X\beta$
 - $$\begin{split} & (\text{b}) \quad \text{Var}(\tilde{\beta}) = \text{Var}(((X'X)^{-1} + \gamma I)X'y) = \text{Var}(((X'X)^{-1} + \gamma I)X'\varepsilon) = \\ & = (((X'X)^{-1} + \gamma I)X') \, \text{Var}(\varepsilon)(((X'X)^{-1} + \gamma I)X')' = \\ & = (((X'X)^{-1} + \gamma I)X')\sigma_{\varepsilon}^2 I(((X'X)^{-1} + \gamma I)X')' = \sigma_{\varepsilon}^2 ((X'X)^{-1} + \gamma I)X'X((X'X)^{-1} + \gamma I) = \\ & = \sigma_{\varepsilon}^2 ((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \sigma_{\varepsilon}^2 ((X'X)^{-1} + 2\gamma I + \gamma^2 X'X) \end{split}$$
- 10. Верно ли, что при невырожденном преобразовании факторов R^2 не меняется? А именно, пусть заданы две регрессионные модели: $y = X\beta + \varepsilon$ и $y = Z\alpha + u$, где y вектор размера $n \times 1$, X и Z матрицы размера $n \times k$, β и α вектора рамзера $k \times 1$, ε и u вектора размера $n \times 1$, а также Z = XD, $\det(D) \neq 0$. Верно ли, что коэффициенты детерминации представленных выше моделей равны между собой?
- 11. Верно ли, что при невырожденном преобразовании факторов RSS не меняется. А именно, пусть заданы две регрессиионные модели: $y = X\beta + \varepsilon$ и $y = Z\alpha + u$, где y вектор размера $n \times 1$, X и Z матрицы размера $n \times k$, β и α вектора размера $k \times 1$, ε и u вектора размера $n \times 1$, а также Z = XD, $\det(D) \neq 0$. Верно ли, что сумма квадратов остатков в представленных выше моделях равны между собой?
- 12. Пусть регрессионная модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, $i = 1, \ldots, n$, задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix}^T$. Известно, что $\mathbb{E}\varepsilon = 0$ и $\mathrm{Var}(\varepsilon) = 4 \cdot I$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X^T X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ M } (X^T X)^{-1} = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 1 & -0.5 \\ 0 & -0.5 & 1.5 \end{pmatrix}.$$

Найдите:

- (a) $Var(\varepsilon_1)$
- (b) $Var(\beta_1)$
- (c) $Var(\hat{\beta}_1)$
- (d) $\widehat{\text{Var}}(\hat{\beta}_1)$
- (e) $\mathbb{E}(\hat{\beta}_1^2) \beta_1^2$
- (f) $Cov(\hat{\beta}_2, \hat{\beta}_3)$
- (g) $\widehat{\text{Cov}}(\hat{\beta}_2, \hat{\beta}_3)$
- (h) $\operatorname{Var}(\hat{\beta}_2 \hat{\beta}_3)$
- (i) $\widehat{\operatorname{Var}}(\hat{\beta}_2 \hat{\beta}_3)$
- (j) $Var(\beta_2 \beta_3)$

- (k) $\operatorname{Corr}(\hat{\beta}_2, \hat{\beta}_3)$
- (l) $\widehat{\mathrm{Corr}}(\hat{\beta}_2, \hat{\beta}_3)$
- (m) $\mathbb{E}(\hat{\sigma}^2)$
- (n) $\hat{\sigma}^2$

5 Линейная алгебра

- 1. Найдите каждую из следующих матриц в каждой из следующих степеней $\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{2}$, $-\frac{1}{3}$, -1, 100.
 - (a) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$
 - (b) $\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$
- 2. Найдите ортогональную проекцию и ортогональную составляющую (перпендикуляр) вектора u_1 на линейное подпространство $L = \mathcal{L}(u_2)$, порождённое вектором u_2 , если
 - (a) $u_1 = (1 \ 1 \ 1 \ 1), u_2 = (1 \ 0 \ 0 \ 1)$
 - (b) $u_1 = (2 \ 2 \ 2 \ 2), u_2 = (1 \ 0 \ 0 \ 1)$
 - (c) $u_1 = (1 \ 1 \ 1 \ 1), u_2 = (7 \ 0 \ 0 \ 7)$
- 3. Найдите обратные матрицы ко всем матрицам, представленным ниже.
 - (a) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
 - (c) $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 - (d) $\begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- 4. Найдите ранг следующих матриц в зависимости от значений параметра λ .
 - (a) $\begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 \lambda & 1 2\lambda \\ 1 + \lambda & 1 + 3\lambda \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$
 - (d) $\begin{pmatrix} \lambda & 1 & -1 & -1 \\ 1 & \lambda & -1 & -1 \\ 1 & 1 & -\lambda & -1 \\ 1 & 1 & -1 & -\lambda \end{pmatrix}$

- 5. Пусть i = (1, ..., 1)' вектор из n единиц и $\pi = i(i'i)^{-1}i'$. Найдите:
 - (a) $tr(\pi)$ и $rk(\pi)$
 - (b) $\operatorname{tr}(I-\pi)$ и $\operatorname{rk}(I-\pi)$
- 6. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что матрица $P = X(X'X)^{-1}X'$ симметрична и идемпотентна?
- 7. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что каждый столбец матрицы $P = X(X'X)^{-1}X'$ является собственным вектором матрицы P, отвечающим собственному значению 1?
- 8. Пусть X матрица размера $n \times k$, где n > k, пусть $\mathrm{rk}(X) = k$ и $P = X(X'X)^{-1}X'$. Верно ли, что каждый вектор-столбец u, такой что X'u = 0, является собственным вектором матрицы P, отвечающим собственному значению 0?
- 9. Верно ли, что для любых матриц A размера $m \times n$ и матриц B размера $n \times m$ выполняется равенство $\operatorname{tr}(AB) = \operatorname{tr}(BA)$?
- 10. Верно ли, что собственные значения симметричной и идемпотентной матрицы могут быть только нулями и единицами?
- 11. Пусть P матрица размера $n \times n$, P' = P, $P^2 = P$. Верно ли, что $\mathrm{rk}(P) = \mathrm{tr}(P)$?
- 12. Верно ли, что для симметричной матрицы собственные векторы, отвечающие различным собственным значениям, ортогональны?
- 13. Найдите собственные значения и собственные векторы матрицы $P = X(X'X)^{-1}X'$, если

(a)
$$X = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$

(b)
$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$

(c)
$$X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(d)
$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

6 Случайные вектора

1. Пусть $y=(y_1,y_2,y_3,y_4,y_5)'$ — случайный вектор доходностей пяти ценных бумаг. Известно, что $\mathbb{E}(y')=(5,10,20,30,40),$ $\mathrm{Var}(y_1)=0,$ $\mathrm{Var}(y_2)=10,$ $\mathrm{Var}(y_3)=20,$ $\mathrm{Var}(y_4)=40,$ $\mathrm{Var}(y_5)=40$ и

$$Corr(y) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0.3 & -0.2 & 0.1 \\ 0 & 0.3 & 1 & 0.3 & -0.2 \\ 0 & -0.2 & 0.3 & 1 & 0.3 \\ 0 & 0 & -0.2 & 0.3 & 1 \end{pmatrix}$$

С помощью компьютера найдите ответы на вопросы:

(а) Какая ценная бумага является безрисковой?

- (b) Найдите ковариационную матрицу Var(y)
- (c) Найдите ожидаемую доходность и дисперсию доходности портфеля, доли ценных бумаг в котором равны соответственно:

i.
$$\alpha = (0.2, 0.2, 0.2, 0.2, 0.2)'$$

ii.
$$\alpha = (0.0, 0.1, 0.2, 0.3, 0.4)'$$

iii.
$$\alpha = (0.0, 0.4, 0.3, 0.2, 0.1)'$$

- (d) Составьте из данных бумаг пять некоррелированных портфелей
- 2. Пусть $i=(1,\ldots,1)'$ вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I)$.
 - (a) Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
 - (b) Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
 - (c) Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы
- 3. Пусть $X = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.
 - (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
 - (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
 - (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 4. Пусть $X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 5. Пусть $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$.
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.
- 6. Пусть $x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\,\mathbb{E}(x)=\begin{pmatrix}1\\2\end{pmatrix},\,\mathrm{Var}(x)=\begin{pmatrix}2&1\\1&2\end{pmatrix}$. Найдите $\mathbb{E}(y),\,\mathrm{Var}(y)$ и $\mathbb{E}(z),\,\mathrm{если}$
 - (a) $y = x \mathbb{E}(x)$
 - (b) y = Var(x)x
 - (c) $y = Var(x)(x \mathbb{E}(x))$
 - (d) $y = \operatorname{Var}(x)^{-1}(x \mathbb{E}(x))$
 - (e) $y = Var(x)^{-1/2}(x \mathbb{E}(x))$

(f)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x) (x - \mathbb{E}(x))$$

(g)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x - \mathbb{E}(x))$$

(h)
$$z = x' \operatorname{Var}(x) x$$

(i)
$$z = x' Var(x)^{-1} x$$

7. Пусть
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\,\mathbb{E}(x)=\begin{pmatrix}1\\4\end{pmatrix},\,\mathrm{Var}(x)=\begin{pmatrix}4&1\\1&4\end{pmatrix}.$$
 Найдите $\mathbb{E}(y),\,\mathrm{Var}(y)$ и $\mathbb{E}(z),\,\mathrm{если}$

(a)
$$y = x - \mathbb{E}(x)$$

(b)
$$y = Var(x)x$$

(c)
$$y = Var(x)(x - \mathbb{E}(x))$$

(d)
$$y = Var(x)^{-1}(x - \mathbb{E}(x))$$

(e)
$$y = Var(x)^{-1/2}(x - \mathbb{E}(x))$$

(f)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x) (x - \mathbb{E}(x))$$

(g)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x - \mathbb{E}(x))$$

(h)
$$z = x' \operatorname{Var}(x) x$$

(i)
$$z = x' \operatorname{Var}(x)^{-1} x$$

8. Известно, что случайные величины x_1, x_2 и x_3 имеют следующие характеристики:

(a)
$$\mathbb{E}(x_1) = 5$$
, $\mathbb{E}(x_2) = 10$, $\mathbb{E}(x_3) = 8$

(b)
$$Var(x_1) = 6$$
, $Var(x_2) = 14$, $Var(x_3) = 1$

(c)
$$Cov(x_1, x_2) = 3$$
, $Cov(x_1, x_3) = 1$, $Cov(x_2, x_3) = 0$

Пусть случайные величины y_1, y_2 и y_3 , представляют собой линейные комбинации случайных величин X_1, X_2 и X_3 :

$$y_1 = x_1 + 3x_2 - 2x_3$$
$$y_2 = 7x_1 - 4x_2 + x_3$$
$$y_3 = -2x_1 - x_2 + 4x_3$$

- (а) Выпишите математическое ожидание и ковариационную матрицу случайного вектора $x = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T$
- (b) Напишите матрицу A, которая позволяет перейти от случайного вектора x = $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T$ к случайному вектору $y = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}^T$
- (c) С помощью матрицы A найдите математическое ожидание и ковариационную матрицу случайного вектора $y = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}^T$
- 9. Пусть ξ_1, ξ_2, ξ_3 случайные величины, такие что $Var(\xi_1) = 2$, $Var(\xi_2) = 3$, $Var(\xi_3) = 4$, $Cov(\xi_1, \xi_2) = 1$, $Cov(\xi_1, \xi_3) = -1$, $Cov(\xi_2, \xi_3) = 0$. Пусть $\xi = \begin{pmatrix} \xi_1 & \xi_2 & \xi_3 \end{pmatrix}^T$. Найдите $Var(\xi)$ и

$$\begin{array}{c} \operatorname{Var}(\xi_1+\xi_2+\xi_3). \\ \operatorname{Ho} \text{ определению ковариационной матрицы:} \\ \operatorname{Var}(\xi) = \begin{pmatrix} \operatorname{Var}(\xi_1) & \operatorname{Cov}(\xi_1,\xi_2) & \operatorname{Cov}(\xi_1,\xi_3) \\ \operatorname{Cov}(\xi_2,\xi_1) & \operatorname{Var}(\xi_2) & \operatorname{Cov}(\xi_2,\xi_3) \\ \operatorname{Cov}(\xi_3,\xi_1) & \operatorname{Cov}(\xi_3,\xi_2) & \operatorname{Var}(\xi_3) \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} \\ \operatorname{Var}(\xi_1+\xi_2+\xi_3) = \operatorname{Var} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \operatorname{Var} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 9 \\ \begin{pmatrix} \xi_1 \\ \xi_3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0$$

10. Пусть
$$h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$
; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\operatorname{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_1 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$. Найдите $\mathbb{E}(z_1)$ и $\operatorname{Var}(z_1)$.

$$\mathbb{E}(z_1) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

11. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\mathrm{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_2 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Найдите $\mathbb{E}(z_2)$ и $\mathrm{Var}(z_2)$ $\mathbb{E}(z_2) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \quad + \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Поскольку $z_2 = z_1 + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, где z_1 — случайный вектор из предыдущей задачи, то $\mathrm{Var}(z_2) = \mathrm{Var}(z_1)$. Сдвиг случайного вектора на вектор-

12. Пусть
$$h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$
; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\operatorname{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$. Найдите $\mathbb{E}(z_3)$

 $\begin{array}{l} \text{ W Var}(z_3) \\ \text{ B данном примере произлюстрирована процедура центрирования случайного вектора} - \text{ процедура вычитания из случайного вектора} \\ \text{ вектор-константу} \\ \mathbb{E}(z_3) = \mathbb{E}\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \mathbb{E}\left(\mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \mathbb{E}\left(\mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \mathbb{E}\left(\mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}, \text{ поэтому Var}(z_3) = \text{Var}(z_1). \end{array}$

 (ξ_2) $(\xi_$

- 13. Пусть r_1, r_2 и r_3 годовые доходности трёх рисковых финансовых инструментов. Пусть α_1 , α_2 и α_3 — доли, с которыми данные инструменты входят в портфель инвестора. Считаем, что $\sum_{i=1}^3 \alpha_i = 1$ и $\alpha_i \geqslant 0$ для всех i=1,2,3. Пусть $r=\begin{pmatrix} r_1 & r_2 & r_3 \end{pmatrix}^T$, $\mathbb{E}(r)=\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T$, $\operatorname{Var}(r) = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{22} \end{pmatrix}$. Параметры $\{a_i\}$ и $\{c_i\}$ известны.
 - (а) Найдите годовую доходность портфеля П инвестора
 - (b) Докажите, что дисперсия доходности портфеля Π равна $\sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_i c_{ij} \alpha_j$

(c) Для случая
$$\alpha_1=0.1,\ \alpha_2=0.5,\ \alpha 3=0.4,\ \mathbb{E}(r)=\begin{pmatrix}a_1&a_2&a_3\end{pmatrix}^T=\begin{pmatrix}0.10&0.06&0.05\end{pmatrix}^T,$$

$$\operatorname{Var}(r)=\begin{pmatrix}0.04&0&-0.005\\0&0.01&0\\-0.005&0&0.0025\end{pmatrix}$$
 найдите $\mathbb{E}(\Pi)$ и $\operatorname{Var}(\Pi)$

14. Пусть
$$h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$
; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\mathrm{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $z_4 = \mathrm{Var}(h)^{-1/2}z_3$. Найдите $\mathbb{E}(z_4)$ и $\mathrm{Var}(z_4)$

15. Пусть
$$h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$
; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\operatorname{Var}(h) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $z_4 = \operatorname{Var}(h)^{-1/2}z_3$. Найдите $\mathbb{E}(z_4)$ и $\operatorname{Var}(z_4)$

7 Многомерное нормальное и квадратичные формы

1. Пусть $\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3)'\sim N(0,I)$ и матрица A представлена ниже. Найдите $\mathbb{E}(\varepsilon'A\varepsilon)$ и распределение случайной величины $\varepsilon' A \varepsilon$.

(a)
$$\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1/3 & 1/3 & -1/3 \\ 1/3 & 1/3 & -1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

(f)
$$\begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix}$$

$$\begin{pmatrix}
-1/2 & 0 & 1/2
\end{pmatrix}$$
(g)
$$\begin{pmatrix}
1/2 & -1/2 & 0 \\
-1/2 & 1/2 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

(h)
$$\begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0.8 & 0.4 & 0 \\
0.4 & 0.2 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0.2 & -0.4 & 0 \\
-0.4 & 0.8 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

- 2. Пусть $i=(1,\ldots,1)'$ вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I)$.
 - (a) Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
 - (b) Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
 - (c) Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы
- 3. Пусть $X = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одина-

ково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 4. Пусть $X=\begin{pmatrix} 1 & 1\\ 1 & 2\\ 1 & 3\\ 1 & 4 \end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 5. Пусть $X=\begin{pmatrix}1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и одинаково распределены $\sim N(0,1).$
 - (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$.

- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.
- 6. Пусть $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)' \sim N(0, I)$. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$ и распределение случайной величины $\varepsilon' P \varepsilon$, если $P = X(X'X)^{-1}X'$ и матрица X' представлена ниже.
 - (a) (1 1 1)
 - (b) $(1 \ 2 \ 3)$
 - $(c) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - $(d) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$
 - (e) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 7. Пусть $\varepsilon=\begin{pmatrix} \varepsilon_1\\ \varepsilon_2\\ \varepsilon_3 \end{pmatrix}\sim N(0,\sigma^2I),\ i=(1,\dots,1)'$ вектор из n единиц, $\pi=i(i'i)^{-1}i',\ X$
 - матрица размера $n \times k, P = X(X'X)^{-1}X'$. Найдите:
 - (a) $\mathbb{E}(\varepsilon'(P-\pi)\varepsilon)$
 - (b) $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$
 - (c) $\mathbb{E}(\varepsilon' P \varepsilon)$
 - (d) $\mathbb{E}(\sum_{i=1}^{n} (\varepsilon_i \bar{\varepsilon})^2)$
- 8. Пусть $\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3)'\sim N(0,4I),\ A=\begin{pmatrix} 4&1&1\\1&3&1\\1&1&2 \end{pmatrix}$. Найдите:
 - (a) $\mathbb{E}(\varepsilon' A \varepsilon)$
 - (b) $\mathbb{E}(\varepsilon'(I-A)\varepsilon)$
- 9. Пусть $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ случайный вектор, имеющий двумерное нормальное распределение с математическим ожиданием $\mu = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ и ковариационной матрицей $\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
 - (a) Найдите Σ^{-1}
 - (b) Найдите $\Sigma^{-1/2}$
 - (c) Найдите математическое ожидание и ковариационную матрицу случайного вектора $y = \Sigma^{-1/2} \cdot (x \mu)$
 - (d) Какое распределение имеет вектор y из предыдущего пункта?
 - (е) Найдите распределение случайной величины $q = (x \mu)^T \cdot \Sigma^{-1} \cdot (x \mu)$
- 10. Пусть $z = \begin{bmatrix} z_1 & z_2 & z_3 \end{bmatrix}^T \sim N(0, I_{3x3}), b = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T,$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}.$
 - (a) Найдите $\mathbb{E}x$ и $\mathrm{Var}(x)$ случайного вектора $x=A\cdot z+b$
 - (b) Найдите распределение случайного вектора \boldsymbol{x}
 - (c) Найдите $\mathbb{E} q$ случайной величины $q = z^T \cdot K \cdot z$
 - (d) Найдите распределение случайной величины q

8 Задачи по программированию

1. Начиная с какого знака в числе $\pi = 3.1415...$ можно обнаружить твой номер телефона? Первый 10 миллионов знаков числа π можно найти на сайте http://code.google.com/p/pc2012-grupo-18-turma-b/downloads/list. Если не хватает, то миллиард знаков, файл размера примерно в 1 гигабайт, доступен по ссылке http://stuff.mit.edu/afs/sipb/contrib/pi/. Настоящие челябинцы рассчитывают π самостоятельно. Краткая история о том, как маньяки считали π до 10 миллиардов знаков и потеряли полгода из-за сбоев компьютерного железа, http://www.numberworld.org/misc_runs/pi-10t/details.html.