

2007 年全国大学生电子设计竞赛试题

参赛注意事项

- (1) 2007 年 9 月 3 日 8:00 竞赛正式开始。本科组参赛队只能 A、B、C、D、E、F 题目中任 选一题;高职高专组参赛队原则上在 G、H、I、J 题中任选一题,也可以选择其他题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3) 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3人,开赛后不得中途更换队员。
- (5) 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 2007年9月6日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

音频信号分析仪 (A 题)

【本科组】

一、任务

设计、制作一个可分析音频信号频率成分,并可测量正弦信号失真度的仪器。

二、要求

1. 基本要求

- (1) 输入阻抗: 50Ω
- (2) 输入信号电压范围 (峰-峰值): 100mV~5V
- (3) 输入信号包含的频率成分范围: 200Hz~10kHz
- (4) 频率分辨力: 100Hz (可正确测量被测信号中, 频差不小于 100Hz 的 频率分量的功率值。)
- (5) 检测输入信号的总功率和各频率分量的频率和功率,检测出的各频率分量的功率之和不小于总功率值的 95%;各频率分量功率测量的相对误差的绝对值小于 10%,总功率测量的相对误差的绝对值小于 5%。
- (6)分析时间: 5 秒。应以 5 秒周期刷新分析数据,信号各频率分量应按 功率大小依次存储并可回放显示,同时实时显示信号总功率和至少前两 个频率分量的频率值和功率值,并设暂停键保持显示的数据。

2. 发挥部分

- (1) 扩大输入信号动态范围,提高灵敏度。
- (2) 输入信号包含的频率成分范围: 20Hz~10kHz。
- (3) 增加频率分辨力 20Hz 档。
- (4) 判断输入信号的周期性,并测量其周期。

- (5) 测量被测正弦信号的失真度。
- (6) 其他。

三、说明

- 1. 电源可用成品,必须自备,亦可自制。
- 2. 设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、 主要的测试结果。完整的电路原理图、重要的源程序、和完整的测试结果 用附件给出。

	项 目	主要内容	分数
	系统方案	比较与选择	5
		方案描述	3
	理论分析与计算	放大器设计	
		功率谱测量方法	15
		周期性判断方法	
设计	电路与程序设计	电路设计	10
报告		程序设计	10
JK []	测试方案与测试结果	测试方案及测试条件	
		测试结果完整性	12
		测试结果分析	
	设计报告结构及规范性	摘要	
		设计报告正文的结构	8
		图表的规范性	
	总分		50
基本	实际制作完成情况		50
要求	大阿阿正元/AII/A		30
	完成第(1)项		10
	完成第(2)项		10
发挥	完成第(3)项		10
部分	完成第(4)项		10
IL /J	完成第(5)项		5
	其他		5
	总分		50

无线识别装置 (B题)

【本科组】

一、任务

设计制作一套无线识别装置。该装置由阅读器、应答器和耦合线圈组成, 其方框图参见图 1。阅读器能识别应答器的有无、编码和存储信息。

图 1 无线识别装置方框图

装置中阅读器、应答器均具有无线传输功能,频率和调制方式自由选定。不得使用现有射频识别卡或用于识别的专用芯片。装置中的耦合线圈为圆形空芯线圈,用直径不大于 1 mm 的漆包线或有绝缘外皮的导线密绕 10 圈制成。线圈直径为 6.6 ± 0.5 cm(可用直径 6.6 cm 左右的易拉罐作为骨架,绕好取下,用绝缘胶带固定即可)。线圈间的介质为空气。两个耦合线圈最接近部分的间距定义为 D。

阅读器、应答器不得使用其他耦合方式。

二、要求

1. 基本要求

- (1) 应答器采用两节 1.5V 干电池供电,阅读器用外接单电源供电。阅读器采用发光二极管显示识别结果,能在 D 尽可能大的情况下,识别应答器的有无。识别正确率 $\geq 80\%$,识别时间 ≤ 5 秒,耦合线圈间距 $D \geq 5$ cm。
- (2) 应答器增加编码预置功能,可以用开关预置四位二进制编码。阅读器能正确识别并显示应答器的预置编码。显示正确率 \geq 80%,响应时间 \leq 5秒,耦合线圈间距 $D\geq$ 5cm。

2. 发挥部分

(1) 应答器所需电源能量全部从耦合线圈获得(通过对耦合到的信号进行整流滤波得到能量),不允许使用电池及内部含有电池的集成电路。阅读器能正确读出并显示应答器上预置的四位二进制编码。显示正确率≥80%,响应时间≤5秒,耦合线圈间距 *D*≥5cm。

- (2) 阅读器采用单电源供电,在识别状态时,电源供给功率 $\leq 2W$ 。在显示编码正确率 $\geq 80\%$ 、响应时间 ≤ 5 秒的条件下,尽可能增加耦合线圈间距 D。
- (3) 应答器增加信息存储功能,其存储容量大于等于两个四位二进制数。 装置断电后,应答器存储的信息不丢失。无线识别装置具有在阅读器 端写入、读出应答器存储信息的功能。
- (4) 其他。

三、说明

设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序用附件给出。

	项 目	主要内容	满分
	系统方案	无线识别装置总体方案设计	6
		耦合线圈的匹配理论	
	理论分析与计算	阅读器发射电路分析	9
		阅读器接收电路分析	
		阅读器电路设计计算	
	 电路与程序设计	应答器电路设计计算	19
设计	电超与程序以间	总体电路图	19
报告		识别装置工作流程图	
		调试方法与仪器	
	测试方案与测试结果	测试数据完整性	8
		测试结果分析	
		摘要	
	设计报告结构及规范性	设计报告正文的结构	8
		图表的规范性	
	总分		50
基本	克匹加佐亭 民桂河		50
要求	实际制作完成情况		50
	完成第(1)项		21
发挥	完成第(2)项		20
部分	完成第(3)项		5
	其他		4

总分 50

数字示波器 (C题)

【本科组】

一、任务

设计并制作一台具有实时采样方式和等效采样方式的数字示波器,示意图如图 1 所示。

图 1 数字示波器示意图

二、要求

1. 基本要求

- (1)被测周期信号的频率范围为 10Hz~10MHz, 仪器输入阻抗为 1MΩ,显示屏的刻度为 8 div×10div,垂直分辨率为 8bits,水平显示分辨率 ≥20 点/ div。
- (2) 垂直灵敏度要求含 1V/div、0.1V/div 两档。电压测量误差≤5%。
- (3) 实时采样速率≤1MSa/s,等效采样速率≥200MSa/s;扫描速度要求含20ms/div、2μs /div、100 ns/div 三档,波形周期测量误差≤5%。
- (4) 仪器的触发电路采用内触发方式,要求上升沿触发,触发电平可调。
- (5) 被测信号的显示波形应无明显失真。

2. 发挥部分

- (1) 提高仪器垂直灵敏度,要求增加 2mV/div 档,其电压测量误差≤5%,输入短路时的输出噪声峰-峰值小于 2mV。
- (2)增加存储/调出功能,即按动一次"存储"键,仪器即可存储当前波形, 并能在需要时调出存储的波形予以显示。
- (3) 增加单次触发功能,即按动一次"单次触发"键,仪器能对满足触发

条件的信号进行一次采集与存储(被测信号的频率范围限定为 10Hz~50kHz)。

- (4) 能提供频率为 100kHz 的方波校准信号,要求幅度值为 $0.3V\pm5\%$ (负载电阻 ≥ 1 MΩ时),频率误差 $\leq 5\%$ 。
- (5) 其他。

三、说明

- 1. A/D 转换器最高采样速率限定为 1MSa/s, 并要求设计独立的取样保持电路。为了方便检测, 要求在 A/D 转换器和取样保持电路之间设置测试端子 TP。
- 2. 显示部分可采用通用示波器,也可采用液晶显示器。
- 3. 等效采样的概念可参考蒋焕文等编著的《电子测量》一书中取样示波器的内容,或陈尚松等编著的《电子测量与仪器》等相关资料。
- 4. 设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果可用 附件给出。

	项 目	应包括的主要内容	分数
	系统方案	比较与选择	6
		方案描述	
	理论分析与计算	等效采样分析	12
		垂直灵敏度	
		扫描速度	
ንኒ-ን.ፐ	电路与程序设计	电路设计	12
设计 报告		程序设计	
加口	测试方案与测试结果	测试方案及测试条件	12
		测试结果完整性	
		测试结果分析	
	设计报告结构及规范性	摘要	8
		设计报告正文的结构	
		图表的规范性	
	总分	· · · · · · · · · · · · · · · · · · ·	50
基本	实际制作完成情况		50
要求	大 <u>你</u> 明于元 <u>风</u> 用 <u>仍</u>		50

	完成第(1)项	22
	完成第(2)项	7
发挥	完成第(3)项	7
部分	完成第(4)项	6
	其他	8
	总分	50

程控滤波器 (D 题) 【本科组】

一、任务

设计并制作程控滤波器,其组成如图 1 所示。放大器增益可设置;低通或高通滤波器通带、截止频率等参数可设置。

图 1 程控滤波器组成框图

二、要求

1. 基本要求

- (1) 放大器输入正弦信号电压振幅为 10mV, 电压增益为 40dB, 增益 10dB 步进可调, 通频带为 100Hz~40kHz, 放大器输出电压无明显失真。
- (2) 滤波器可设置为低通滤波器,其-3dB 截止频率 f_c 在 $1kHz\sim20kHz$ 范围内可调,调节的频率步进为 1kHz, $2f_c$ 处放大器与滤波器的总电压增益不大于 30dB, $R_L=1k\Omega$ 。
- (3) 滤波器可设置为高通滤波器,其-3dB 截止频率 f_c 在 $1kHz\sim20kHz$ 范围内可调,调节的频率步进为 1kHz, $0.5f_c$ 处放大器与滤波器的总电压增益不大于 30dB, $R_L=1k\Omega$ 。
- (4) 电压增益与截止频率的误差均不大于10%。
- (5) 有设置参数显示功能。

2. 发挥部分

- (1) 放大器电压增益为 60dB,输入信号电压振幅为 10mV;增益 10dB 步进可调,电压增益误差不大于 5%。
- (2)制作一个四阶椭圆型低通滤波器,带内起伏≤1dB,-3dB通带为50kHz,要求放大器与低通滤波器在200kHz处的总电压增益小于5dB,-3dB通带误差不大于5%。
- (3)制作一个简易幅频特性测试仪,其扫频输出信号的频率变化范围是 100Hz~200kHz,频率步进 10kHz。
- (4) 其他。

三、说明

设计报告正文应包括系统总体框图、核心电路原理图、主要流程图和主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果可用附件给出。

四、评分标准

	项 目	满分
	系统方案	15
	理论分析与计算	15
设计	电路与程序设计	5
报告	测试方案与测试结果	10
	设计报告结构及规范性	5
	总分	50
基本 要求	实际制作完成情况	50
	完成第(1)项	14
小 松	完成第(2)项	16
发挥	完成第(3)项	15
部分	其他	5
	总分	50

开关稳压电源(E题) 【本科组】

一、任务

设计并制作如图 1 所示的开关稳压电源。

开关稳压电源

图 1 电源框图

二、要求

在电阻负载条件下,使电源满足下述要求:

1. 基本要求

- (1) 输出电压 Uo 可调范围: 30V~36V;
- (2) 最大输出电流 I_{Omax}: 2A;
- (3) U₂从 15V 变到 21V 时, 电压调整率 S_U≤2% (I₀=2A);
- (4) I₀从 0 变到 2A 时, 负载调整率 S_I≤5% (U₂=18V);
- (5) 输出噪声纹波电压峰-峰值 $U_{OPP} \leq 1V (U_2=18V, U_0=36V, I_0=2A)$;
- (6) DC-DC 变换器的效率 *η*≥70%(*U*₂=18V,*U*₀=36V,*I*₀=2A);
- (7) 具有过流保护功能,动作电流 $I_{O(th)} = 2.5 \pm 0.2A$;

2. 发挥部分

- (1) 进一步提高电压调整率, 使 $S_U \leq 0.2\%$ ($I_0 = 2A$);
- (2) 进一步提高负载调整率,使 S_I ≤0.5%(U_2 =18V);
- (3) 进一步提高效率,使 $\eta \ge 85\%$ ($U_2=18V, U_0=36V, I_0=2A$);
- (4) 排除过流故障后, 电源能自动恢复为正常状态;
- (5) 能对输出电压进行键盘设定和步进调整,步进值 1V,同时具有输出电压、电流的测量和数字显示功能。
- (6) 其他。

三、说明

- (1) DC-DC 变换器不允许使用成品模块,但可使用开关电源控制芯片。
- (2) U_2 可通过交流调压器改变 U_1 来调整。DC-DC 变换器(含控制电路) 只能由 U_{IN} 端口供电,不得另加辅助电源。
- (3) 本题中的输出噪声纹波电压是指输出电压中的所有非直流成分,要求用带宽不小于 20 MHz 模拟示波器(AC 耦合、扫描速度 20 ms/div)测量 U_{OPP} 。

- (4) 本题中电压调整率 S_U 指 U_2 在指定范围内变化时,输出电压 U_0 的变化率;负载调整率 S_I 指 I_0 在指定范围内变化时,输出电压 U_0 的变化率; DC-DC 变换器效率 $\eta=P_0/P_{\rm IN}$,其中 $P_0=U_0I_0$, $P_{\rm IN}=U_{\rm IN}I_{\rm IN}$ 。
- (5) 电源在最大输出功率下应能连续安全工作足够长的时间(测试期间, 不能出现过热等故障)。
- (6) 制作时应考虑方便测试, 合理设置测试点(参考图1)。
- (7) 设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果用附件给出。

四、评分标准

	项 目	应包括的主要内容或考核要点	满分
	方案论证	DC-DC 主回路拓扑;控制方法及实现方案;提高效率的方法及实现方案	8
VII VI	电路设计 与参数计算	主回路器件的选择及参数计算;控制电路设计与参数计算;效率的分析及计算;保护电路设计与参数计算;数字设定及显示电路的设计	20
投计 报告	测试方法与数据	测试方法;测试仪器;测试数据 (着重考查方法和仪器选择的正确性以及 数据是否全面、准确)	10
	测试结果分析	与设计指标进行比较,分析产生偏差的 原因,并提出改进方法	5
	电路图及设计文件	重点考查完整性、规范性	7
	总分		50
基本要	实际制作完成情况		
求			50
	完成第(1)项		10
	完成第(2)项		10
发挥	完成第(3)项		15
部分	完成第(4)项		4
HFA	完成第(5)项		6
	其他		5
	总分		50

电动车跷跷板(F题) 【本科组】

一、任务

设计并制作一个电动车跷跷板,在跷跷板起始端 A 一侧装有可移动的配重。 配重的位置可以在从始端开始的 200mm~600mm 范围内调整,调整步长不大于 50mm; 配重可拆卸。电动车从起始端 A 出发,可以自动在跷跷板上行驶。电动 车跷跷板起始状态和平衡状态示意图分别如图 1 和图 2 所示。

图1 起始状态示意图

图2 平衡状态示意图

二、要求

1. 基本要求

在不加配重的情况下, 电动车完成以下运动:

- (1) 电动车从起始端 A 出发, 在 30 秒钟内行驶到中心点 C 附近;
- (2) 60 秒钟之内, 电动车在中心点 C 附近使跷跷板处于平衡状态, 保持平衡 5 秒钟, 并给出明显的平衡指示;
- (3) 电动车从(2) 中的平衡点出发,30 秒钟内行驶到跷跷板末端 B 处(车 头距跷跷板末端 B 不大于50mm);
- (4) 电动车在 B 点停止 5 秒后, 1 分钟内倒退回起始端 A, 完成整个行程;

(5) 在整个行驶过程中,电动车始终在跷跷板上,并分阶段实时显示电动车行驶所用的时间。

2. 发挥部分

将配重固定在可调整范围内任一指定位置, 电动车完成以下运动:

(1) 将电动车放置在地面距离跷跷板起始端 A 点 300mm 以外、90°扇形 区域内某一指定位置(车头朝向跷跷板),电动车能够自动驶上跷跷板,

图3 自动驶上跷跷板示意图

如图 3 所示:

- (2) 电动车在跷跷板上取得平衡,给出明显的平衡指示,保持平衡 5 秒钟以上:
 - (3) 将另一块质量为电动车质量 10%~20%的块状配重放置在 A 至 C 间指 定的位置,电动车能够重新取得平衡,给出明显的平衡指示,保持平衡 5 秒钟以上:
 - (4) 电动车在 3 分钟之内完成 (1) ~ (3) 全过程。
 - (5) 其他。

三、说明

- (1) 跷跷板长 1600mm、宽 300mm, 为便于携带也可将跷跷板制成折叠形式。
- (2) 跷跷板中心固定在直径不大于 50mm 的半圆轴上, 轴两端支撑在支架上, 并保证与支架圆滑接触, 能灵活转动。
- (3) 测试中, 使用参赛队自制的跷跷板装置。
- (4)允许在跷跷板和地面上采取引导措施,但不得影响跷跷板面和地面平整。
- (5) 电动车(含加在车体上的其它装置)外形尺寸规定为: 长≤300mm, 宽≤200mm。
 - (6) 平衡的定义为 A、B 两端与地面的距离差 $d= |d_A-d_R|$ 不大于 40mm。
 - (7) 整个行程约为 1600mm 减去车长。
 - (8) 测试过程中不允许人为控制电动车运动。

(9) 基本要求 (2) 不能完成时,可以跳过,但不能得分;发挥部分 (1) 不能完成时,可以直接从 (2) 项开始,但是 (1) 项不得分。

四、评分标准

	项 目	主要内容	分数
		实现方法	
	系统方案	方案论证	12
	永纨刀柔	系统设计	12
		结构框图	
	理论分析与计算	测量与控制方法	13
	建化分别与订异	理论计算	13
设计		检测与驱动电路设计	
报告	电路与程序设计	总体电路图	12
		软件设计与工作流程图	
	4t 田 八 tC	创新发挥	8
	结果分析	结果分析	8
	<u> </u>	摘要	
	设计报告结构	设计报告结构	5
	及规范性 	图表的规范性	
	总分	3.	50
基本 要求	实际制作完成情况		50
	完成第(1)项		10
	完成第(2)项		15
发挥	完成第(3)项		10
部分	完成第(4)项		5
	其他		10
	总分		50

积分式直流数字电压表 (G 题) 【高职高专组】

一、任务

在不采用专用 A/D 转换器芯片的前提下,设计并制作积分型直流数字电压表。

二、要求

1. 基本要求

- (1) 测量范围: 10mV~2V
- (2) 量程: 200mV, 2V
- (3) 显示范围: 十进制数 0~1999
- (4) 测量分辨率: 1mV (2V 档)
- (5) 测量误差: ≤±0.5%±5个字
- (6) 采样速率: ≥ 2次/秒
- (7) 输入电阻: ≥1MΩ
- (8) 具有抑制工频干扰功能

2. 发挥部分

- (1) 测量范围: 1mV~2V
- (2) 量程: 200mV, 2V
- (3) 显示范围: 十进制数 0~19999
- (4) 测量分辨率: 0.1mV (2V 档)
- (5) 测量误差: ≤±0.05%±5个字
- (6) 具有自动校零功能
- (7) 具有自动量程转换功能
- (8) 其他

三、说明

在电路中应有可测得积分波形的测试点。

	项 目	满分
	系统方案	4
设计	理论分析与计算	3
报告	电路与程序设计	4
1K H	测试方案与测试结果	5
	设计报告结构及规范性	4
	总分	20

基本要求	实际制作完成情况	50
	完成第(1)项	4
	完成第(3)项	3
	完成第(4)项	2
发挥	完成第(5)项	20
部分	完成第(6)项	8
	完成第(7)项	8
	其他	5
	总分	50