Package 'royston'

February 20, 2015

Date 2015-02-02
Title Royston's H Test: Multivariate Normality Test
Author Selcuk Korkmaz
Maintainer Selcuk Korkmaz <selcuk.korkmaz@hacettepe.edu.tr></selcuk.korkmaz@hacettepe.edu.tr>
Depends R (>= $2.15.0$)
Imports nortest, moments
Description Performs a multivariate normality test based on Royston's H test
<pre>URL http://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf</pre>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-02 12:43:26
R topics documented:
royston-package
Index 4
royston-package Royston's Multivariate Normality Test

Description

Version 1.2

Performs a multivariate normality test based on Royston's H test

2 royston.test

Details

Package: royston
Type: Package
License: GPL (>=2)

royston.test(a)

Author(s)

Selcuk Korkmaz Maintainer: Selcuk Korkmaz <selcuk.korkmaz@hacettepe.edu.tr>

royston.test

Royston's Multivariate Normality Test

Description

A function to generate the Shapiro-Wilk's W statistic needed to feed the Royston's H test for multivariate normality

Usage

royston.test(a)

Arguments

а

A numeric matrix or data frame

Details

If kurtosis of the data greater than 3 then Shapiro-Francia test is better for leptokurtic samples else Shapiro-Wilk test is better for platykurtic samples.

Value

statistic the value of Royston's H statistic at significance level 0.05

p.value an approximate p-value for the test with respect to equivalent degrees of freedom

(edf)

Author(s)

Selcuk Korkmaz

royston.test 3

References

Johnson, R.A. and Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. 3rd. ed. New-Jersey:Prentice Hall.

Mecklin, C.J. and Mundfrom, D.J. (2005). A Monte Carlo comparison of the Type I and Type II error rates of tests of multivariate normality. Journal of Statistical Computation and Simulation, 75:93-107.

Royston, J.P. (1982). An Extension of Shapiro and Wilks W Test for Normality to Large Samples. Applied Statistics, 31(2):115124.

Royston, J.P. (1983). Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk W. Applied Statistics, 32(2).

Royston, J.P. (1992). Approximating the Shapiro-Wilk W-Test for non-normality. Statistics and Computing, 2:117-119.121133.

Royston, J.P. (1995). Remark AS R94: A remark on Algorithm AS 181: The W test for normality. Applied Statistics, 44:547-551.

Shapiro, S. and Wilk, M. (1965). An analysis of variance test for normality. Biometrika, 52:591611.

Trujillo-Ortiz, A., R. Hernandez-Walls, K. Barba-Rojo and L. Cupul-Magana. (2007). Roystest:Royston's Multivariate Normality Test. A MATLAB file. URL http://www.mathworks.com/matlabcentral/fileexchange/1

See Also

shapiro.test sf.test kurtosis mahalanobis qqplot qchisq

Examples

```
a=iris[1:50,1:4] # Iris data only for setosa and four variables
royston.test(a) # Data analyzed have a non-normal distribution.

#Variable 4 (petal width) is markedly non-normal. So when take off that variable;

dev.new()
a=iris[1:50,1:3] # Iris data only for setosa and three variables
royston.test(a) # Data analyzed have a normal distribution.
```

Index

```
kurtosis, 3
mahalanobis, 3
qchisq, 3
qqplot, 3
royston(royston-package), 1
royston-package, 1
royston.test, 2
sf.test, 3
shapiro.test, 3
```