Cinematica - Sommario

Tutto sulla Cinematica.

0. L'idea della Cinematica

Introduzione alla Cinematica

Introduzione alla cinematica: l'idea cardine

1. Significato di cinematica

IDEA. L'idea cardine della *cinematica* è della *descrizione del moto*. Si tratta solo di quello: se si vuole invece studiare la *causa del moto*, allora si va a studiare la *dinamica*; per quanto riguarda invece lequilibro meccanico, si studia la *statica*.

2. La modellizzazione della cinematica

MODELLO. Come *modello*, ovvero *analogia semplificata della realtà*, consideriamo *ogni corpo* come un *punto materiale*: ovvero considereremo sempre i *corpi puntiformi*. Più piccolo un oggetto, meglio funziona questa "approssimazione".

FIGURA 2.1. (L'idea della modello)

1. Grandezze Fondamentali per la Cinematica

Posizione e Spostamento di un Corpo Puntiforme

Prime grandezze per un corpo puntiforme: posizione e spostamento.

1. Definizione di Posizione e Spostamento

#Definizione

Definizione (posizione).

Si associa ad un corpo puntiforme la posizione, un "vettore" che indica, appunto, la sua posizione nello spazio. Viene indicata come \vec{r} . Notare che questo in realtà si "comporta quasi come un punto", dato che il suo modulo $|\vec{r}|$ ha significato diverso a seconda del sistema di riferimento (o dall'origine).

#Definizione

Definizione (spostamento).

Supponiamo di avere *due posizioni* $\vec{r_1}, \vec{r_2}$ per un corpo. Allora lo *spostamento* di un corpo è la differenza tra queste ultime posizioni, ovvero

$$\Delta ec{r} := ec{r}_2 - ec{r}_1 = \Delta x \cdot \hat{i} + \Delta y \cdot \hat{j} + \Delta z \cdot \hat{k}$$

Il suo modulo è

$$\left|\Delta ec{r}
ight| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$

FIGURA 1.1. (Idea grafica di posizione e spostamento)

2. Posizione in funzione del tempo (Legge Oraria)

#Osservazione

Osservazione (descrivere analiticamente la posizione di un corpo).

Supponiamo di avere una situazione come nella figura 2.1.: un corpo parte da un punto \vec{r}_i iniziale, e arriva al punto \vec{r}_f finale. Supponendo che i due punti siano diversi, vogliamo trovare un modo per descrivere questo moto, soprattutto in funzione del tempo.

Definiremo dunque una legge oraria come una funzione $\vec{r}(t)$ che associa all'istante del tempo alla posizione del corpo in quell'istante del tempo. La parte difficile è proprio di trovare tale funzione che descriva fedelmente il movimento di un corpo di una data situazione.

FIGURA 2.1. (Situazione del problema)

#Definizione

Definizione (legge oraria).

Sia $\vec{r}:[t_0,t_1]\longrightarrow \mathbb{R}^3$, dove $[t_0,t_1]$ è l'intervallo del tempo misurato e \mathbb{R}^3 lo spazio in cui ci muoviamo (può essere anche \mathbb{R}^2). Sia \vec{r}_i la posizione iniziale del corpo e \vec{r}_f la posizione finale. Se valgono che

$$egin{cases} ec{r}(t_0) = ec{r}_i \ ec{r}(t_1) = ec{r}_f \end{cases}$$

allora $\vec{r}(t)$ si dice legge oraria.

Genericamente la funzione viene definita come

$$ec{r}(t) := x(t) \cdot \hat{i} + y(t) \cdot \hat{j} + z(t) \cdot \hat{k}$$

con x(t), y(t), z(t) delle leggi orarie su \mathbb{R}^1 .

#Esempio

Esempio (esempio su 2D).

Supponiamo di avere

$$ec{r}(t) = [2 ext{ m} + 2 ext{ m/s} \cdot t] \cdot \hat{i} + [0 ext{ m} + 4 ext{ m/s} \cdot t] \cdot \hat{j}$$

Allora, per avere una rappresentazione grafica di \vec{r} si deve prima disegnare i grafici di x(t) e y(t) (figura 2.2.), poi per creare un "nuovo grafico" dove come assi abbiamo x(t) in funzione di y(t) (figura 2.3.).

Si osserva che con la rappresentazione finale di $\vec{r}(t)$ non si ha nessuna indicazione chiara del tempo: infatti occasionalmente si può trovare una curva, che potrebbe sembrare una non-funzione (dal momento che associa ad un elemento di x(t) elementi diversi di y(t)), ma in realtà stiamo solo trascurando il tempo. Sfruttando l'asse libero z(t) e usandolo come "indicatore del tempo", si vede che quella diventa una funzione. Analogia del cubo.

FIGURA 2.2. (Leggi orarie su parti separate)

FIGURA 2.3. (Legge oraria generale)

2. Grandezze Derivate per la Cinematica

Velocità e Accelerazione di un Corpo Puntiforme

Definizione di velocità e accelerazione di un corpo puntiforme. Esempio del calcolo dell'accelerazione di un corpo (moto armonico).

1. Velocità media e velocità istantanea di un corpo

#Definizione

Definizione (velocità media).

Siano t_2, t_1 due *istanti del tempo* e x_2, x_1 posizioni del corpo associati alle istanti del tempo nella maniera seguente:

$$x_1 \leftrightarrow t_1; x_2 \leftrightarrow t_2$$

Allora definiamo la velocità media del corpo come

$$\langle v_x
angle = rac{x_2 - x_1}{t_2 - t_1} = rac{\Delta x}{\Delta t}$$

#Definizione

Definizione (velocità istantanea).

Si definisce invece la $velocit\`{a}$ istantanea per un corpo quando portiamo il limite Δt a zero. Ovvero, la derivata

$$v_x = \lim_{\Delta t o 0} rac{\Delta x}{\Delta t} = rac{\mathrm{d}x}{\mathrm{d}t}$$

In particolare è la derivata della legge oraria del corpo sul tempo.

$$ec{v} = rac{\mathrm{d}}{\mathrm{d}t} ig[ec{r}(t)ig] := rac{\mathrm{d}x}{\mathrm{d}t} \cdot \hat{i} + rac{\mathrm{d}y}{\mathrm{d}t} \cdot \hat{j} + rac{\mathrm{d}z}{\mathrm{d}t} \cdot \hat{k}$$

2. Accelerazione

Definizione (accelerazione).

In una maniera del tutto analoga, definiamo l'accelerazione media come la derivata della velocità:

$$ec{a}(t) = rac{\mathrm{d}ec{v}}{\mathrm{d}t} = rac{\mathrm{d}^2}{\mathrm{d}t^2} ig[ec{r}(t)ig]$$

3. Esempio generale

#Esempio

Esempio (l'accelerazione del moto armonico).

Supponiamo che un corpo si muova secondo la seguente legge oraria:

$$x(t) = A\cos(\omega \cdot t)$$

Prima di tutto vogliamo capire quali sono le grandezze associate alle misure A, ω . Per questo usiamo l'analisi dimensionale (Grandezze e Misure Fisiche > 43c58).

$$x(t) = A\cos(\omega t) \ [x(t)] = [A] \underbrace{[\cos(\omega t)]}_{ ext{adimensionale}} \ L = L$$

Inoltre si osserva che

$$[\omega] = T^{-1}$$

dal momento che l'*argomento della funzione* cos dev'essere adimensionale. Infatti questa grandezza è una frequenza e si misura in hertz.

Adesso calcoliamo $v_x(t)$ e $a_x(t)$.

$$v_x(t) = -L\omega\sin(\omega t) \ a_x(t) = -L\omega^2\cos(\omega t)$$

Come ultima osservazione possiamo dedurre la relazione

$$a_x(t) = -\omega \cdot x(t)$$

che è proprio un'equazione differenziale del tipo

$$f''(x) + \omega f(x) = 0$$

risolvibile con l'approccio "Ansatz".

3. Moto Uniformemente Accelerato

Moto Uniformemente Accelerato

Il moto uniformemente accelerato: legge oraria per moto con accelerazione costante, derivazione della formula

1. Legge oraria per il moto uniformemente accelerato

(#Teorema)

Teorema (legge oraria per il moto uniformemente accelerato).

Supponiamo che l'accelerazione a in cui si muove un corpo sia costante. Allora si trova che la sua legge oraria è

$$\left|x(t)=x_0+v_0t+rac{1}{2}at^2
ight|$$

dove x_0 , v_0 sono (rispettivamente) la posizione e la velocità iniziale. Qualitativamente la legge oraria viene raffigurata come nella figura 1.1..

FIGURA 1.1. (Il grafico della legge oraria)

#Dimostrazione

DIMOSTRAZIONE del Teorema 1 (legge oraria per il moto uniformemente accelerato)

Partiamo da

$$a(t) = a$$

Vogliamo trovare la velocità di tale corpo. Per farlo, dobbiamo risolvere l'equazione differenziale

$$\dot{v} = a(t) = a$$

Con un procedimento metodico, ovvero con l'integrazione si ottiene

$$\frac{\mathrm{d}v}{\mathrm{d}t} = a \implies \mathrm{d}v = a\cdot \mathrm{d}t \implies \int \mathrm{d}v = a\int \mathrm{d}t \implies \boxed{v(t) = at + C}$$

dove C è la costante dell'integrazione indefinita. Per trovare tale costante si può fare certe scelte, come ad esempio supporre che $v(t_0)=v_0$ per cui si ha

$$v(t_0) = v_0 = at_0 + C \implies C = v_0 - at_0$$

Allora si ha

$$v(t) = a(t - t_0) + v_0$$

Per il prossimo passaggio, poniamo $t_0=0$ per semplicità.

Ora vogliamo risolvere l'equazione differenziale

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v(t) \implies x(t) = \int v(t) \, \mathrm{d}t = \int (v_0 + at) \, \mathrm{d}t$$

Compiendo l'opportuna scelta di porre $x(0) = x_0$, si ha

$$x(t)=x_0+v_0t+rac{1}{2}at^2$$

che è la legge voluta. ■

2. L'incremento dello spazio in funzione della velocità iniziale

#Corollario

Corollario (l'incremento dello spostamento in funzione della velocità).

Supponiamo che un corpo uniformemente accelerato stia movendo ad un'accelerazione fissata a. Se il corpo parte dal punto x_0 con una velocità iniziale v_0 , allora l'incremento della posizione del corpo è proporizionale all'incremento del quadrato della velocità. Ovvero,

$$x-x_0=rac{v^2-v_0^2}{2a}$$

Qui si ha infatti una descrizione del *moto uniformemente accelerato*, con il "tempo rimosso" (ovvero indipendentemente dal tempo trascorso).

#Dimostrazione

DIMOSTRAZIONE del Corollario 2 (l'incremento dello spostamento in funzione della velocità)

Abbiamo le leggi orarie

$$v(t) = at + v_0; x(t) = x_0 + v_0 t + rac{1}{2} a t^2$$

Vogliamo cercare di *"rimuovere il tempo"* da queste equazioni. Poniamo dunque

$$t=rac{v-v_0}{a}$$

e vale per la prima equazione. Adesso lo sostituiamo per la seconda equazione e abbiamo

$$egin{aligned} x &= x_0 + v_0 \left(rac{v - v_0}{a}
ight) - rac{1}{2}aigg(rac{v - v_0}{a}igg)^2 \ &= x_0 + rac{v \cdot v_0}{a} - rac{v_0^2}{a} + rac{1}{2a}(v^2 - 2v \cdot v_0 + v_0^2) \ &= x_0 + rac{v^2 + v_0^2}{2a} - rac{v_0^2}{a} \ &= x_0 + rac{v^2 - v_0^2}{2a} \ &= x_0 - rac{v^2 - v_0^2}{2a} \end{aligned}$$

che è la tesi.

#Osservazione

Osservazione (la distanza di frenata).

Questa formula è particolarmente utile per calcolare la "distanza di frenata" di un'oggetto, con un'accelerazione (costante!!!) negativa. Ponendo infatti la "velocità finale" $v^2=0$, si ha $-v_0^2=2ad$ (dove $d=x-x_0$) e quindi

$$d=-rac{v_0^2}{2a}$$

Dato che a è negativa, la quantità d sarà sicuramente positiva.

4. Caduta Libera e Moto del Proiettile

Caduta Libera e Moto del Proiettile

Casi particolari della Cinematica Puntiforme: la caduta libera di un corpo e il moto di un proiettile.

1. Caduta Libera

#Osservazione

Osservazione (la legge dei gravi).

Si osserva che tutti i corpo cadono con la medesima accelerazione, con

$$ec{a}=-g\hat{j},gpprox9.8~rac{ ext{m}}{ ext{s}^2}$$

Questo vale indipendentemente dalla loro massa.

Questo fenomeno è noto come la "caduta dei gravi", osservata dal padre del metodo scientifico Galileo Galilei nella seconda metà del sedicesimo secolo.

#Teorema

Teorema (la caduta libera di un corpo).

Dall'osservazione della *caduta dei gravi*, possiamo applicare la *modellizzazione della cinematica* in questa situazione.

In questo caso abbiamo quindi un corpo che si muove alla velocità

$$ec{v}(t) = -gt \cdot ec{j} + ec{v_0}$$

In particolare, prendendo la sola componente verticale,

$$v_y(t) = -gt + v_{0y}$$

Per quanto riguarda la sua legge oraria, si ha

$$y(t) = y_0 + y_{0y}t - rac{1}{2}gt^2$$

Quindi l'andamento della sua *posizione* è esattamente una *parabola* direzionata verso il basso (*figura 1.1.*).

DIMOSTRAZIONE del Teorema 2 (la caduta libera di un corpo)

Segue direttamente dalla legge oraria per il moto uniformemente accelerato (Teorema 1 (legge oraria per il moto uniformemente accelerato)). ■

#Corollario

Corollario (l'altezza massima raggiunta dal corpo).

Se vogliamo studiare il *massimo* della sua posizione (ovvero la sua altezza massima raggiunta), basta considerare la *legge oraria per il moto uniformemente accelerato generalizzato dal tempo* (Corollario 2 (l'incremento dello spostamento in funzione della velocità)). Ovvero,

$$y_M=y_0+rac{v_{0y}^2}{2g}$$

Ovviamente questa vale solo se v_0 è positiva; se invece è negativa, il punto massimale coincide con il punto di partenza.

FIGURA 1.1. (L'andamento di un corpo in caduta libera)

2. Moto di un proiettile

#Osservazione

Osservazione (notizie storiche sul moto del proiettile).

Lo studio del *moto del proiettile* ritiene una buona *importanza storica*, in particolare per le *guerre* e le *battaglie*: si vuole spiegare e descrivere accuratamente la *traiettoria* dei proiettili.

In particolare, viene studiato inizialmente nel 340 A.C. dal filosofo greco *Artistotele*, che parla di un "moto naturale" e di un "moto forzato": il moto naturale consisterebbe nella caduta, e il moto forzato nella spinta orizzontale. La domanda che si pone *Aristotele* e quella del perché i proiettili vengano effettivamente forzati.

Dopodiché, il filosofo greco Filipono

(https://it.wikipedia.org/wiki/Giovanni_Filopono) (490-570 A.C.) parla di un "impeto", che è importante in quanto costituisce le fondamenta del concetto di quantità di moto.

Infine la risposta venne "data" dallo scienziato Galileo Galiei, che al posto di dare subito spiegazioni, si è impiegato ad osservare e misurare.

#Teorema

Teorema (il moto di un proiettolo).

Supponiamo che un corpo si sta muovendo ad un'accelerazione

$$\vec{a} = -g \cdot \hat{j}$$

Con una velocità iniziale

$$ec{v_0} = v_{0x} \cdot \hat{i} + v_{0y} \cdot \hat{j}$$

Allora segue che

$$egin{aligned} ec{v}(t) &= v_{0x} \cdot \hat{i} + (v_{0y} - gt) \cdot \hat{j} \ \\ ec{r}(t) &= (x_0 + v_{0x}t) \cdot \hat{i} + (y_0 + v_{0y}t - rac{1}{2}gt^2) \end{aligned}$$

Allora il moto del proiettile non è altro che una parabola orientata verso il basso.

#Dimostrazione

DIMOSTRAZIONE del Teorema 5 (il moto di un proiettolo)

Segue direttamente dalla formula di un corpo in caduta libera (Teorema 2 (la caduta libera di un corpo)) e dal moto uniformemente accelerato (Teorema 1 (legge oraria per il moto uniformemente accelerato)). ■

FIGURA 2.1. (Descrizione quantitativa di un moto del proiettile)

#Osservazione

Osservazione (i dati disponibili a noi).

Prima di procedere con ulteriori calcoli, osserviamo che tradizionalmente con un problema del genere (ovvero il calcolo della traiettoria di un proiettile) ci vengono dati solo $due\ dati$: il modulo della velocità iniziale $|v_0|$ e l'angolo della "sparata" θ .

Sarà quindi importante ricordarci le seguenti formule per "scomporre" il modulo della velocità iniziale nelle sue singole componenti v_{0u}, v_{0x} .

$$egin{cases} v_{0x} = |v_0|\cos heta \ v_{0y} = |v_0|\sin heta \end{cases}$$

Questo discende dai risultati della trigonometria (Definizione 4 (seno e coseno)).

#Corollario

Corollario (altezza massima e gitatta di un proiettile).

Adesso vogliamo calcolare l'altezza massima raggiunto da un proiettile, sparato con una velocità di v_0 ad angolo θ .

$$y_M=y_0+rac{|v_0|^2}{2g}{
m sin}^2\, heta$$

Per quanto riguarda invece la *gittata del proiettile* (ovvero la distanza orizzontale percorsa da un corpo), si ha, supponendo che non c'è nessun dislivello tra l'altezza iniziale e finale,

$$R=rac{|v_0|^2\sin(2 heta)}{g}$$

#Dimostrazione

DIMOSTRAZIONE del Corollario 7 (altezza massima e gitatta di un proiettile) N.B. La dimostrazione di questo risultato (o il ragionamento che sta dietro) è più importante dell'enunciato!

Per calcolare l'altezza massima, basta pensare che si tratta di una situazione di "frenatura" in cui il corpo sta "frenando verticalmente" con una decelerazione di g: allora si ha la tesi.

Per quanto riguarda invece la *gittata*, vogliamo fare un ragionamento completo. Prendiamo innanzitutto i valori conosciuti: $|\vec{v}_0|$, θ , $y_f = 0$, $|\vec{v}_y(t_f)| = -v_y(t_0)$. L'ultimo "valore conosciuto" deriva dal fatto che la "velocità finale è opposta della velocità iniziale": per convincerci di questo è sufficiente disegnare il grafico della parabola e "immaginare" le tangenti nei zeri (figura 2.2.). Abbiamo dunque abbastanza dati per calcolare l'istanza del tempo in cui il proiettile ricade a terra, che è sufficiente per calcolare il dato voluto R.

$$\left\{egin{array}{ll} v_y(t_f) &= v_{y0} - gt_f = -v_{y0} \ &\Longrightarrow t_f = rac{2v_{y0}}{g} \end{array}
ight.$$

da cui discende il risultato finale

$$R=v_x(t_f)=2rac{v_{0x}v_{0y}}{g}=\ldots=\boxed{rac{|v_0|^2\sin(2 heta)}{g}}$$

che è la tesi.

FIGURA 2.2. (L'esperimento mentale)

5. Moto Circolare Uniforme

Moto Circolare Uniforme

Moto circolare uniforme. Approccio geometrico e analitico alla questione quantitativa per l'accelerazione del punto in moto.

1. Il moto circolare uniforme

#Definizione

Definizione (moto circolare uniforme).

Supponiamo che un oggetto si sta muovendo ad una velocità costante |v| (costante in modulo!), con la traiettoria di una circonferenza con raggio r (figura 1.1.).

Questo moto si dice "moto circolare uniforme".

FIGURA 1.1. (Moto circolare uniforme)

2. Studio geometrico del moto circolare uniforme

Osservazione (e l'accelerazione?).

Vogliamo sapere la *quantità* (nel senso del *modulo*) dell'accelerazione $|\vec{a}|$. Possiamo approcciarci a questo problema nel seguente modo.

Prendo *due vettori velocità* $\vec{v}(t)$ e $\vec{v}(t+\Delta t)$. Possiamo dunque definire l'incremento della velocità come $\Delta \vec{v} := \vec{v}(t+\Delta t) - \vec{v}(t)$. Di conseguenza, l'accelerazione media diventa $\frac{\Delta \vec{v}}{\Delta t}$; geometricamente si ha la *figura 2.1*..

Adesso osservo che l'angolo $\Delta \theta$ tra i vettori velocità è il medesimo angolo $\Delta \theta$ tra i due segmenti: di conseguenza abbiamo *due triangoli simili*, da cui discende $\Delta \vec{r} = \Delta \vec{v}$.

Allora, svolgendo i passaggi matematici otteniamo il risultato finale

$$egin{aligned} & rac{|\Delta ec{r}|}{R} = rac{|\Delta ec{v}|}{v} \ & \Longrightarrow rac{|\Delta ec{r}|}{\Delta t} \cdot rac{1}{R} = rac{|\Delta ec{v}|}{\Delta t} \cdot rac{1}{v} \ & \Longrightarrow |ec{a}| = rac{|ec{v}|}{R} \cdot v \ & \Longrightarrow \left| |ec{a}| = rac{|ec{v}|^2}{R}
ight| \end{aligned}$$

con l'analisi dimensionale è possibile verificare la correttezza della formula.

FIGURA 2.1. (L'incremento della velocità)

3. Studio analitico del moto circolare uniforme

#Osservazione

Osservazione (studio analitico del moto circolare uniforme).

Alternativamente possiamo compiere uno studio analitico del moto circolare uniforme, con gli strumenti della trigonometria.

Innanzitutto, dato che stiamo parlando di un *moto uniforme*, è ragionevole descrivere l'angolo come una *funzione lineare in variazione del tempo*, come

$$\theta(t) = \omega t$$

dove ω è un fattore di proporzionalità arbitraria, misurata in Hertz. Può essere infatti definita come "velocità angolare".

Dopodiché possiamo descrivere il vettore-posizione $\vec{r}(t)$ come

$$\vec{r}(t) = x(t) \cdot \hat{i} + y(t) \cdot \hat{j}$$

con

$$\begin{cases} x(t) = r\cos(\omega t) \\ y(t) = r\sin(\omega t) \end{cases}$$

Allora questo posso trovare la *velocit*à e l'*accelerazione* nella forma vettoriale.

$$ec{v}(t) = \dot{ec{r}(t)} = \omega r (-\sin(\omega t) \cdot \hat{i} + \cos(\omega t) \cdot \hat{j}) \ ec{a}(t) = \ddot{ec{r}}(t) = \dot{ec{v}}(t) = -\omega r^2 (\cos(\omega t) \cdot \hat{i} + \sin(\omega t) \cdot \hat{j}) = -\omega^2 \cdot ec{r}(t)$$

Notare che questo risultato è coerente con l'approccio geometrico al moto circolare. Infatti, ponendo $\omega=\frac{|\vec{v}|}{r}$, da cui si ha

$$ec{a}=rac{|ec{v}|}{r^2}$$

#Definizione

Definizione (velocità angolare).

Si definisce la velocità angolare come il rapporto incrementale tra la differenza dell'angolo e la differenza del tempo

$$\omega = rac{\mathrm{d} heta}{\mathrm{d}t}$$

In particolare si può istanziare questo risultato per $\theta=2\pi$ e t=T; ovvero possiamo prendere la quantità del tempo necessario per compiere un giro intero

$$\omega=rac{2\pi}{T}$$

Si osserva che per un moto circolare uniforme la quantità ω è sempre costante.

#Teorema

Teorema (moto circolare uniforme).

Dato un oggetto che si muovo secondo un *moto circolare uniforme*, le informazioni sulla sua *posizione*, *velocità* e accelerazione sono date dalle seguenti.

$$egin{aligned} ec{r}(t) &= r(\cos(\omega t)\hat{i} + \sin(\omega t)\hat{j}) \ \hline ec{v}(t) &= \omega r(-\sin(\omega t)\hat{i} + \cos(\omega t)\hat{j}) \ \hline ec{a}(t) &= -\omega^2 \cdot ec{r}(t) \ \hline \end{aligned}$$

DIMOSTRAZIONE del Teorema 5 (moto circolare uniforme)

Basta vedere lo studio analitico del moto circolare uniforme (Osservazione 3 (studio analitico del moto circolare uniforme)). ■

#Osservazione

Osservazione (equazione differenziale).

Si nota che

$$ec{a}(t) = -\omega^2 \cdot ec{r}(t)$$

è un'equazione differenziale del secondo ordine, del tipo

$$f''(x) + \omega^2 f(x) = 0$$

Infatti, una soluzione per questa equazione differenziale ordinaria è proprio un'equazione con delle funzioni trigonometriche \sin , \cos .

6. Moto Generalizzato in 2D

Moto Generalizzato in 2D

Descrizione del moto a due dimensioni. Caso generalizzato del moto, analisi geometrico-vettoriale del vettore velocità e del vettore accelerazione.

1. Caso generalizzato del moto

#Osservazione

Osservazione (generalizzazione del moto a due dimensioni).

Adesso consideriamo un caso più generale di una traiettoria, ovvero qualcosa del tipo raffigurato nella figura 1.1.: vogliamo capire se ci sono delle "regole" che stanno sotto i vettori velocità $\vec{v}(t)$ e accelerazione $\vec{a}(t)$, data un'istanza del tempo.

Notiamo che il vettore velocità dev'essere sempre parallela alla tangente della curva $\vec{r}(t)$. Questo ha senso e coincide perfettamente con l'interpretazione geometrica della derivata (Osservazione 2 (interpretazione geometrica della derivata)).

Per quanto riguarda l'accelerazione, bisogna fare uno studio più approfondito e ingrandito della traiettoria, in particolare nella parte più "curvate". Prendendo due istanze dei vettori velocità sufficientemente vicini $\vec{v}(t)$ e $\vec{v}(t+\Delta t)$ e prendendo il loro incremento $\Delta \vec{v} = \vec{v}(t+\Delta t) - \vec{v}(t)$, abbiamo una freccia che punta ortogonalmente rispetto ai vettori velocità. Scalandolo in particolare l'incremento del tempo Δt , si ottiene il vettore velocità $\vec{a}(t_i), t_i \in [t, t+\Delta t]$ (figura 1.2.). Dunque si ha un "grado di libertà" per il vettore accelerazione, e di solito varia al curvare della traiettoria.

Si dimostrerà che \vec{a} può essere scomposta in *due componenti*: Una componente è *parallela* a \vec{v} , e la chiamiamo \vec{a}_{\parallel} : questa componente determina il cambiamento del modulo di $|\vec{v}|$.

La seconda componente è quella *ortogonale* a \vec{v} , e la chiamiamo \vec{a}_{\perp} : questa componente determina il *cambiamento della direzione* di \vec{v} .

FIGURA 1.1. (La prima situazione)

FIGURA 1.2. (La situazione zoomata)

#Osservazione

Osservazione (il modulo dell'accelerazione nullo non implica l'assenza del cambiamento di velocità).

Da questo notiamo che $|\vec{a}|$ non deve necessariamente implicare che non c'è nessun cambiamento di velocità $\Delta \vec{v}$; invece può solo necessariamente implicare che non c'è nessun cambiamento nell'"intensità" della velocità.

7. Moti Relativi

Moti Relativi

Moti relativi. Il grande navilio di Galilei. Regole per determinare rapporti tra due sistemi di riferimento diversi. Definizione di sistema inerziale.

1. L'osservazione del gran navilio di Galilei

#Osservazione

Osservazione (l'osservazione di Galilei).

Nella prima metà del diciassettesimo secolo, il noto scienziato Galileo Galilei fece una notevole osservazione⁽¹⁾.

Supponiamo che una barca stia muovendo ad una velocità v. Su questa barca stiamo facendo cadere una palla, che si muove come un oggetto in caduta libera (Teorema 2 (la caduta libera di un corpo)). Quindi, da un osservatore all'interno della barca vede che la palla cade normalmente.

Tuttavia, per un osservatore esterna dalla barca, è tutto diverso. Infatti, la palla "acquisisce" il movimento della barca, conferendogli un moto parabolico (figura 1.1.).

Questa osservazione è importante, dal momento che pone le *fondamenta* per i *moti relativi*. Vedremo come si potrà *formalizzare* le nozioni di

sistema di riferimento e come poter porre in rapporto due sistemi di riferimento diversi.

FIGURA 1.1. (L'osservazione galileiana)

(1) In realtà si tratta di un'osservazione ancora più ampia e complessa, per approfondire vedere il testo sul 'Gran Navilio' (Il Gran Navilio)

2. Leggi per i sistemi di riferimento

#Definizione

Definizione (sistema di riferimento).

Sia O_A un punto sul piano \mathbb{R}^2 . Allora si dice "Sistema di riferimento A" come il piano cartesiano formato dall'asse X_A e dall'ascissa Y_A .

FIGURA 2.1. (Illustrazione grafica dei sistemi di riferimento)

#Proposizione

Proposizione (relazione tra i sistemi di riferimento).

Sia P un punto fissato, \vec{r}_{PA} (e \vec{r}_{PB}) il segmento tra l'origine del sistema di riferimento A (e B), sia \vec{r}_{BA} il segmento tra l'origine di B e A. Allora vale che

$$oxed{ec{r}_{PA}=ec{r}_{PB}+ec{r}_{BA}}$$

ovvero "P secondo A = P secondo B + B secondo A" Prendendo le derivate, valgono pure

$$egin{aligned} ec{v}_{PA} &= ec{v}_{PB} + ec{v}_{BA} \ ec{a}_{PA} &= ec{a}_{PB} + ec{a}_{BA} \end{aligned}$$

#Dimostrazione

DIMOSTRAZIONE della Proposizione 3 (relazione tra i sistemi di riferimento) Basta osservare che \vec{r}_{PA} non è altro che la somma dei vettori \vec{r}_{BA} e \vec{r}_{PB} . (figura 2.2.)

FIGURA 2.2. (Illustrazione grafica della Proposizione 3 (relazione tra i sistemi di riferimento))

3. Sistemi di riferimento inerziali

#Definizione

Definizione (sistema di riferimento inerziale).

Siano A,B due sistemi di riferimento. Questi si dicono sistemi di riferimento inerziali se vale che

$$\vec{a}_{BA} = 0 \; rac{\mathrm{m}}{\mathrm{s}^2}$$

8. Esercizi sulla Cinematica 1D

Esercizi sulla Cinematica 1D

Esercizi sulla cinematica puntiforme in una dimensione.

1. Esercizi

#Esercizio

Esercizio (la fuga del panico).

Supponiamo che, in una fuga da un incendio, una fila di persone si stanno muovendo verso una porta d'uscita. Tuttavia, la porta è chiusa e non può essere aperta.

Supponendo che ogni uomo *occupi uno spazio* di $0.25~\mathrm{m}$ e che tra ogni uomo ci sia una *distanza* di $1.75~\mathrm{m}$ e che ogni uomo viaggia alla *velocità* di $3.5~\frac{\mathrm{m}}{\mathrm{s}}$:

- a) Calcolare l'aumentare dello "cumulo delle persone davanti alla porta" in funzione del tempo
- b) Calcolare quanto tempo ci serve per raggiungere uno cumulo totale (davanti alla porta) di $5~\mathrm{m}$ (la risposta dovrebbe darci un'idea di quanto pericolosa sia questa situazione).

L'idea viene raffigurata nella figura 1.1..

#Esercizio

Esercizio (la frenata improvvisa).

Supponiamo di viaggiare in un'automobile ad una velocità v_0 . Quando siamo a $100~\mathrm{m}$ dal semaforo rosso, ci mettiamo un mezzo secondo per

accorgercene del problema e *iniziamo ad applicare i freni*. Supponendo che i freni siano in grado di dare una decelerazione costante del $5\frac{m}{s^2}$, calcolare la *velocità massima con cui possiamo viaggiare* per non superare il semaforo.

9. Esercizi sulla Cinematica 2D (o 3D)

Esercizi sulla Cinematica 2D (o 3D)

Esercizi sulla cinematica multidimensionale.

1. Moto del proiettile

#Esercizio

Esercizio (l'esperimento dell'uomo-proiettile di Zacchini).

Nel 1922 un italo-americano fece un noto esperimento, in cui si introduceva in un cannone e lo faceva sparare, facendo diventare il suo corpo un vero e proprio proiettile.

Supponendo di che l'uomo è stato sparato a con un'angolazione di $heta=53.0^\circ$ gradi, con una velocità iniziale di $|\vec{v}_0|=26.5~\mathrm{m/s}$, calcolare i seguenti dati:

- a) Se la una torre di altezza $18~\mathrm{m}$ dista dal cannone di $23~\mathrm{m}$, dire la distanza tra l'*uomo in volo* e la *torre* quando l'uomo raggiunge la posizione orizzontale della torre.
- b) Calcolare la differenza delle altezze tra l'altezza massima raggiunta dall'uomo e dalla torre
- c) Supponendo di posizionare una rete a $3\ \mathrm{m}$ di altezza, calcolare la posizione in cui posizionare la rete affinché l'uomo non cada a terra.

#Esercizio

Esercizio (la bomba vulcanica).

Un vulcano sta eruttando e ha appena espulso una roccia dall'altezza di $3.30~\rm km$, con un angolo di $35\,^\circ$. La roccia vulcanica raggiunge il terreno a $9.40~\rm km$ dal lancio.

- a) Calcolare la velocità iniziale affinché sia verificata questa situazione
- b) Calcolare l'istanza del tempo in cui la roccia raggiunse il terrno
- c) Dire se ad aumentare della distanza finale sia necessaria o meno un'aumento nella velocità iniziale.

2. Moto circolare uniforme

#Esercizio

Esercizio (il satellite).

Un satellite terrestre, a distanza dalla terra di $640~\rm km$, sta orbitando attorno il pianeta terra. Questo satellite compie un giro attorno la terra ogni $5880~\rm s$

- a) Calcolare la velocità del satellite in modulo
- b) Calcolare l'accelerazione centripeta del satellite

Dati: raggio terrestre $R_T=6378~\mathrm{km}$

3. Moti relativi

#Esercizio

Esercizio (il velista).

Un velista sta viaggiando a 10 nodi verso l'est, e sta viaggiando in una zona dove il vento ha una velocità di 5 nodi verso il nord. Calcolare la velocità del vento ossservato dal velista.

#Esercizio

Esercizio (il fiocco di neve e l'auto).

Adesso sta nevicando, e i fiocchi di neve cadono a $8 \ \frac{m}{s}$. Dire l'angolo rispetto alla componente verticale misurabile da un conducente di

un'automobile che sta viaggiando a $50~\frac{\mathrm{km}}{\mathrm{h}}.$

4. Esercizi misti

#Esercizio

Esercizio (il ragazzo con la pietra sul filo).

Un ragazzo sta facendo girare un sasso legato ad un filo; la corda è lunga $1.5~\rm m$. Ad un certo punto, la corda si spezza e il sasso viene lanciato dal terreno con un'altezza di $2~\rm m$ e con un'angolazione di $\theta_0=0^\circ$. Il sasso cade dopo $10~\rm m$ dal lancio.

Calcolare la velocità necessaria affinché sia verificata questa situazione.