Transforming Trigonometric Graphs

There is no new theory here: just use your knowledge of transforming graphs, i.e. whether the transformation occurs 'inside' the function (i.e. input modified) or 'outside' the function (i.e. output modified).

Sketch
$$y = 4 \sin x$$
, $0 \le x \le 360^{\circ}$

Sketch
$$y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$$

$$f(\pi) = \cos \pi$$

$$f(\pi) = \cos \pi$$

$$f(\pi) + 45$$

$$f($$

Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$

15

Sketch
$$y = \sin\left(\frac{x}{2}\right)$$
, $0 \le x \le 360^{\circ}$

$$\frac{f(x) = \sin 2L}{f(\frac{2L}{2}) = \sin(\frac{2L}{2})}$$
 f(\frac{1}{2}) = $\sin(\frac{2L}{2})$ f(\frac{1}{2})\tag{SF} \times \frac{2}{2}

- a the value of p
- **b** the coordinates of D
- c the smallest value of k
- **d** the value of q.

- (1 mark)
- (1 mark)
- (1 mark)
- (1 mark)

$$f(\pi) = \sin(\pi + 60)$$

$$f(\theta) = \sin(\theta)$$

$$f(\theta) = \frac{3}{4}$$