Induction term in spherical coordinates

Loren Matilsky

February 2, 2023

1 The problem

We consider the ideal (resistance-free) magnetohydrodynamic (MHD) induction equation:

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}),\tag{1}$$

$$= \mathbf{B} \cdot \nabla \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{B} - (\nabla \cdot \mathbf{u}) \mathbf{B}, \tag{2}$$

where \boldsymbol{B} and \boldsymbol{u} are the vector magnetic and velocity fields, respectively. The three terms on the right-hand-side of Equation (2) are often interpreted as "shear," "advection," and "compression," respectively. However, this interpretation is problematic in general for two reasons:

- 1. The so-called shear and compression terms contain sub-terms that cancel; in particular, only velocity motions *perpendicular* to magnetic-field lines can shear or compress.
- 2. Solid-body rotation (which is a rigid, non-shearing motion) shows up in the so-called shear term.

When resolving the induction equation into a particular curvilinear system (e.g., spherical coordinates), another problem arises:

3. Large curvature terms appear, which are difficult to interpret and occasionally cancel.

To see how problem 1 arises, we decompose the velocity field into components parallel and perpendicular to the local direction of B:

$$\boldsymbol{u} \coloneqq u_{\parallel} \hat{\boldsymbol{e}}_{\parallel} + \boldsymbol{u}_{\perp} \tag{3}$$

Obviously $\mathbf{B} = Bx_{\parallel}$, where $B = |\mathbf{B}|$. We denote the Cartesian distance along \mathbf{B} by x_{\parallel} . We also decompose \mathbf{u} into its parallel and perpendicular components:

$$\nabla \cdot \boldsymbol{u} = \frac{\partial u_{\parallel}}{\partial x_{\parallel}} + \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \tag{4}$$

We then calculate

$$\boldsymbol{B} \cdot \nabla \boldsymbol{u} - (\nabla \cdot \boldsymbol{u}) \boldsymbol{B} = B \frac{\partial}{\partial x_{\parallel}} (u_{\parallel} \hat{\boldsymbol{e}}_{\parallel} + \boldsymbol{u}_{\perp}) - \left(\frac{\partial u_{\parallel}}{\partial x_{\parallel}} + \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \right) B \hat{\boldsymbol{e}}_{\parallel}$$

$$= B \frac{\partial u_{\parallel}}{\partial x_{\parallel}} \hat{\boldsymbol{e}}_{\parallel} + B \frac{\partial \boldsymbol{u}_{\perp}}{\partial x_{\parallel}} - \frac{\partial u_{\parallel}}{\partial x_{\parallel}} B \hat{\boldsymbol{e}}_{\parallel} - (\nabla_{\perp} \cdot \boldsymbol{u}_{\perp}) B \hat{\boldsymbol{e}}_{\parallel}$$

$$= B \cdot \nabla \boldsymbol{u}_{\perp} - (\nabla_{\perp} \cdot \boldsymbol{u}_{\perp}) \boldsymbol{B}. \tag{5}$$

Thus, only motions perpendicular to the local field line (i.e., u_{\perp}) can shear or compress B. To see how Problem 2 arises, we consider a velocity field due to rigid rotation at constant angular velocity Ω about the z-axis in spherical coordinate system:

$$\Omega = \Omega \hat{e}_z = \text{constant} \tag{6a}$$

$$\boldsymbol{u} = \boldsymbol{\Omega} \times \boldsymbol{r} = r \sin \theta \hat{\boldsymbol{e}}_{\phi} \tag{6b}$$