Five number summary

- 1. min
- 2. lower fourth
- 3. median
- 4. upper fourth
- 5. max

```
summary(prices)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 379 506 572 593 699 799
```

Test score data

Fewer bins

Test score dataset

Original data set of scores:

35, 59, 61, 64, 66, 66, 70, 72, 73, 74, 75, 76, 76, 78, 79, 80, 80, 81, 81, 82, 82, 82, 84, 86, 88, 88, 88, 89, 89, 90, 91, 91, 92, 92, 92, 92, 94, 94, 94, 94, 96, 98, 102

Mean: 82

Median: 84

Trimmed dataset (min and max removed):

59, 61, 64, 66, 66, 70, 72, 73, 74, 75, 76, 76, 78, 79, 80, 80, 81, 81, 82, 82, 82, 84, 86, 86, 88, 88, 88, 89, 89, 90, 91, 91, 92, 92, 92, 92, 94, 94, 94, 94, 96, 98

Mean: 82.63

Median: 84

How much was trimmed? $\frac{1}{45}$ = 2.22%

Trimmed means

Suppose we want to **trim 15%**.

$$.15 \times 45 = 6.75 \text{ values}$$

Trim 6:

$$\frac{6}{45}$$
 = 0.133

$$\overline{x}_{tr(13.33)}$$
 = 83.667

Trim 7:

$$\frac{7}{45}$$
 = 0.156

$$\overline{x}_{tr(15.56)}$$
 = 83.774

Interpolate:

Median vs. trimmed mean

number of values trimmed from each side

Sample and population means

population mean: μ = sum of N population values / N

sample mean:
$$\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

population median: $\widetilde{\mu}$

sample median: \widetilde{x}

Measures of variability

deviations from the mean

 $x_1 - \overline{x}$, $x_2 - \overline{x}$, etc.

Data: 3, 8, 11, 14

Mean: 9

value deviation deviation²

3

-6

36

8

-1

1

11

2

4

14

5

25

Sum of squared deviations

 S_{xx} : 36 + 1 + 4 + 25 = 66

Population variance

$$\sigma^2 = 66/4 = 16.5$$

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 / N$$

Sample variance

Sum of squared deviations:

$$S_{xx}$$
: 36 + 1 + 4 + 25 = 66

Sample variance:

$$s^2 = 66 / 3 = 22$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Why n-1?

Short answer: using **n** would result in an underestimation, since the values in the sample are closer to the sample mean than to the true population mean (which we don't know)

Standard deviation

Square root of variance

- Population s.d. = $\sqrt{\sigma^2}$
- Sample s.d. = $\sqrt{s^2}$
- same units as original values
- Variance of test scores: 156.636
- Standard deviation of test scores: 12.515

EXERCISE (p. 47, #62)

Consider the following information on ultimate tensile strength (lb/in^2) for a sample of n=4 hard zirconium copper wire specimens:

```
\overline{x} = 76,831

s = 180

smallest x_i = 76,683

largest x_i = 77,048
```

Set up equations to determine the values of the two middle sample observations. *Do not solve.*

EXERCISE: sd for n = 3

Find the sample mean, variance, and standard deviation:

X1 X2 X3 mean var sd

```
1 2 3
```

- 2 4 6
- 0 5 10
- 99 100 101
- -8 -5 -2

X1 X2 X3 X4 mean var sd set1 1 2 3 4 2.5 1.67 1.29

X1 X2 X3 X4 mean var sd set3 0 5 10 30 11.2 173 13.2

X1 X2 X3 X4 mean var sd set4 0 5 95 100 50 3017 54.9

STAT UN1201 – Chapter 2

Prof. Joyce Robbins

Probability

In 1654, writer Antoine Gombaud "Chevalier de Méré" wanted to know if the following bets are profitable:

- getting at least one six on 4 dice rolls
- getting at least one double-six on 24 dice rolls

Vocabulary (2.1)

- experiment process whose outcome is subject to uncertainty (ex. rolling a die)
- **sample space** set of all possible outcomes of an experiment S = {1, 2, 3, 4, 5, 6}

Experiment with an infinite sample space

• ex. flip a coin until you get tails

sample space

```
S = \{T, HT, HHT, HHHT, ...\}
```

event

```
you get tails in less than 8 flips
A = {T, HT, HHHT, HHHHHT, HHHHHHT}
```

Vocabulary (2.1)

- event collection of outcomes contained in the sample space
- simple event one outcome (ex. getting a 5)
 A = {5}
- **compound event** more than one outcome (ex. rolling > 3) B = {4, 5, 6}

Set theory 1

■ **complement** of an event – all outcomes in the sample space that are *not* in the event

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{1, 3\}$
 A' ("not A") = $\{2, 4, 5, 6\}$

Set theory 2

■ union of two events: all outcomes in *either* event or in $both A \cup B$ ("A or B")

$$A = \{1, 3\}$$

 $B = \{3, 5\}$
 $A \cup B = \{1, 3, 5\}$

Set theory 3

■ intersection of two events: all outcomes in *both* events

$$A \cap B$$
 ("A and B")
 $A = \{1, 3\}$
 $B = \{3, 5\}$
 $A \cap B = \{3\}$