Learning to control networked-coupled subsystems with unknown dynamics

Aditya Mahajan McGill University

Symcomore group meeting 29 Sep 2023

- email: aditya.mahajan@mcgill.ca
 - homepage: http://cim.mcgill.ca/~adityam

Network-coupled subsystems-(Aditya Mahajan)

Salient Features

- ▶ Large/growing size
- ▶ Nodes have local states
- ▶ Coupled dynamics and costs

Salient Features

- ▶ Large/growing size
- ▶ Nodes have local states
- Coupled dynamics and costs

Design challenges

- ▶ Scalability of the solution
- ▶ How to handle model uncertainty

Network-coupled subsystems-(Aditya Mahajan

Salient Features

- ▶ Large/growing size
- ▶ Nodes have local states
- Coupled dynamics and costs

Design challenges

- ▶ Scalability of the solution
- ▶ How to handle model uncertainty

Present a spectral decomposition method for network-coupled subsystems which leads to scalable planning and learning

System Model

- Network-coupled subsystems
 - ▶ Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

System Model

- Network-coupled subsystems
 - ▶ Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

Planning solution

- Spectral factorization of dynamics and cost
- Decoupled Riccati equations

System Model

- Network-coupled subsystems
 - ▶ Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

Planning solution

- Spectral factorization of dynamics and cost
- Decoupled Riccati equations

Learning solution

- Spectral factorization of learning
- Numerical experiments

System Model

- Network-coupled subsystems
 - ► Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

Planning solution

- Spectral factorization of dynamics and cost
- Decoupled Riccati equations

Learning solution

- Spectral factorization of learning
- Numerical experiments

System Model

Weighted undirected graph ${\cal G}$

- ▶ Nodes $N = \{1, ..., n\}$.
- Symmetric matrix $M = [\mathfrak{m}^{ij}]$ associated with \mathfrak{G} (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Model

Weighted undirected graph ${\cal G}$

- ▶ Nodes $N = \{1, ..., n\}$.
- Symmetric matrix $M = [\mathfrak{m}^{ij}]$ associated with \mathfrak{G} (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

▶ A subsystem located at each node. State $x_t^i \in \mathbb{R}^{d_x}$. Control $u_t^i \in \mathbb{R}^{d_u}$.

$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{i \in N} m^{ij}x_t^j + E\sum_{i \in N} m^{ij}u_t^j + w_t^i$$

System Model

Weighted undirected graph 9

- ▶ Nodes $N = \{1, ..., n\}$.
- Symmetric matrix $M = [\mathfrak{m}^{ij}]$ associated with \mathfrak{G} (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

ightharpoonup A subsystem located at each node. State $x_t^i \in \mathbb{R}^{d_x}$. Control $u_t^i \in \mathbb{R}^{d_u}$.

$$x_{t+1}^{i} = Ax_{t}^{i} + Bu_{t}^{i} + D\sum_{j \in N} m^{ij}x_{t}^{j} + E\sum_{j \in N} m^{ij}u_{t}^{j} + w_{t}^{i}$$

Network field of states $x_t^{g,i}$

Network field of control ut, 9, i

System Model (cont.)

Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{i}\mathbf{j}} (\mathbf{x}_t^i)^{\mathsf{T}} \, Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{i}\mathbf{j}} (\mathbf{u}_t^i)^{\mathsf{T}} \, Q(\mathbf{u}_t^j) \right]$$

where $H_q = [h_q^{ij}]$ and $H_r = [h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

System Model (cont.)

Per-step cost

$$c(x_t, u_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{i}\mathbf{j}}(x_t^i)^\intercal \, Q(x_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{i}\mathbf{j}}(u_t^i)^\intercal \, Q(u_t^j) \right]$$

where $H_q=[h_q^{ij}]$ and $H_r=[h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Remark

For two symmetric $n \times n$ matrices M_1 and M_2 , the following statements are equivalent:

- \triangleright M_1 and M_2 share the same eigenvectors.
- $ightharpoonup M_1$ and M_2 communte (i.e., $M_1M_2=M_2M_1$)
- $ightharpoonup M_1$ and M_2 are simultaneously diagonalizable.

System Model (cont.)

Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{ij}(\mathbf{x}_t^i)^{\mathsf{T}} Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{ij}(\mathbf{u}_t^i)^{\mathsf{T}} Q(\mathbf{u}_t^j) \right]$$

where $H_q = [h_q^{ij}]$ and $H_r = [h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Important special case

- $H_q = \sum_{k=0}^{K_q} q_k M^k \text{ and } H_r = \sum_{k=0}^{K_r} r_k M^k.$
- ▶ Captures the intuition that the per-step cost respects the graph structure.
- Example: $H_q = q_0 I + q_1 M + q_2 M^2$ means that there is a cost coupling between the one-and two-hop neighbors.

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4, \qquad x_t^{9,2} = 2x_t^1 + 2x_t^3,$$

$$x_t^{9,3} = 2x_t^2 + 1x_t^4, \qquad x_t^{9,4} = 1x_t^1 + 1x_t^3.$$

Dynamical coupling

▶ Nodes are not exchageable

$$x_{t}^{9,1} = 2x_{t}^{2} + 1x_{t}^{4}, \qquad x_{t}^{9,2} = 2x_{t}^{1} + 2x_{t}^{3},$$

 $x_{t}^{9,3} = 2x_{t}^{2} + 1x_{t}^{4}, \qquad x_{t}^{9,4} = 1x_{t}^{1} + 1x_{t}^{3}.$

Cost coupling

Nodes are not exchageable

Suppose $H_q = q_0I + q_1M + q_2M^2$.

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4,$$
 $x_t^{9,2} = 2x_t^1 + 2x_t^3,$ $x_t^{9,3} = 2x_t^2 + 1x_t^4,$ $x_t^{9,4} = 1x_t^1 + 1x_t^3.$

Cost coupling

Nodes are not exchageable

Suppose $H_q = q_0 I + q_1 M + q_2 M^2$.

Two-hop neighborhood

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4,$$
 $x_t^{9,2} = 2x_t^1 + 2x_t^3,$ $x_t^{9,3} = 2x_t^2 + 1x_t^4,$ $x_t^{9,4} = 1x_t^1 + 1x_t^3.$

Cost coupling

▶ Nodes are not exchageable

Suppose
$$H_q = q_0I + q_1M + q_2M^2$$
. Then

$$H_{q} = \begin{bmatrix} q_{0} + 5q_{2} & 2q_{1} & 5q_{2} & q_{1} \\ 2q_{1} & q_{0} + 8q_{2} & 2q_{1} & 4q_{2} \\ 5q_{2} & 2q_{1} & q_{0} + 5q_{2} & q_{1} \\ q_{1} & 4q_{2} & q_{1} & q_{0} + 2q_{2} \end{bmatrix}$$

Two-hop neighborhood

Model generalizes mean-field control model

Special case

- ► Consider $M = \frac{1}{n} \mathbb{I}_{n \times n}$ and $H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M$.
- Network-field $\frac{1}{n}\sum_{t=0}^{n}x_{t}^{j}=:\bar{x}_{t}$ is the (empirical) mean-field.

Model generalizes mean-field control model

Special case

- ▶ Consider $M = \frac{1}{n} \mathbb{I}_{n \times n}$ and $H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M$.
- Network-field $\frac{1}{n}\sum_{t=0}^{n}x_{t}^{j}=:\bar{x}_{t}$ is the (empirical) mean-field.

Dynamics

$$x_{t+1}^{i} = Ax_{t}^{i} + Bu_{t}^{i} + D\bar{x}_{t} + E\bar{u}_{t} + w_{t}^{i}.$$

Per-step cost

$$\begin{split} c(x_t, u_t) &= (1 + \kappa) \left[\bar{x}_t^\intercal Q \bar{x}_t + \bar{u}_t^\intercal R \bar{u}_t \right] \\ &+ \frac{1}{n} \sum_{i \in \mathbb{N}} \left[(x_t^i - \bar{x}_t)^\intercal Q (x_t^i - \bar{x}_t) + (u_t^i - \bar{u}_t)^\intercal Q (u_t^i - \bar{u}_t) \right]. \end{split}$$

Problem formulation

Summary of the model

- Dynamics: $x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij}x_t^j + E\sum_{j \in N} m^{ij}u_t^j + w_t^i$
- ▶ Per-step cost: $c(x_t, u_t) = \sum_{i \in N} \left[\mathbf{h}_{\mathbf{q}}^{ij}(x_t^i)^{\mathsf{T}} Q(x_t^j) + \mathbf{h}_{\mathbf{r}}^{ij}(u_t^i)^{\mathsf{T}} Q(u_t^j) \right]$
- ▶ Network structure: M, H_q, and H_r have the same eigenvectors.

Problem formulation

Summary of the model

Dynamics:
$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij}x_t^j + E\sum_{j \in N} m^{ij}u_t^j + w_t^i$$

$$\blacktriangleright \text{ Per-step cost: } c(x_t, u_t) = \sum_{i \in N} \left[\mathbf{h}_{\mathbf{q}}^{ij}(x_t^i)^{\intercal} Q(x_t^j) + \mathbf{h}_{\mathbf{r}}^{ij}(u_t^i)^{\intercal} Q(u_t^j) \right]$$

Choose a policy π : $(x_t^1, ..., x^n) \to (u_t^1, ..., u_t^n)$ to minimize:

$$\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) \right]$$

Problem formulation

Summary of the model

Dynamics:
$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij}x_t^j + E\sum_{j \in N} m^{ij}u_t^j + w_t^i$$

ightharpoonup Network structure: M, H_q, and H_r have the same eigenvectors.

Objective

Choose a policy π : $(x_t^1, \dots, x^n) \to (u_t^1, \dots, u_t^n)$ to minimize:

$$\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) \right]$$

- Standard soln requires solving $nd_x \times nd_x$ Riccati Eq.
- ▶ Complexity scales $O(n^3 d_x^3)$.

System Model

- Network-coupled subsystems
 - Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

Planning solution

- Spectral factorization of dynamics and cost
- Decoupled Riccati equations

Learning solution

- Spectral factorization of learning
- Numerical experiments

Our result: Develop a decomposition which computes the optimal policy by solving at most n Riccati eqns of dimension $d_{\chi} \times d_{\chi}$.

co-author: Shuang Gao

paper: TCNS 2022

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}},$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0} I + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0} I + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

ightharpoonup For each $\ell \in [L]$, define eigenstates, eigencontrols, and eigennoise as

$$x_+^{\ell,\,\mathrm{i}} = x_+^{\mathrm{i}} v^\ell (v^\ell)^\intercal, \quad u_+^{\ell,\,\mathrm{i}} = u_+^{\mathrm{i}} v^\ell (v^\ell)^\intercal, \quad \mathrm{and} \quad w_+^{\ell,\,\mathrm{i}} = w_+^{\mathrm{i}} v^\ell (v^\ell)^\intercal.$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda_{q}^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda_{r}^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

For each
$$\ell \in [L]$$
, define eigenstates, eigencontrols, and eigennoise as

$$ightharpoonup$$
 For each $\ell \in [L]$, define eigenstates, eigencontrols, and eigennoise as

 $\breve{x}_t^i = x_t^i - \sum_{\ell=1}^L x_t^{\ell,i}, \quad \breve{u}_t^i = u_t^i - \sum_{\ell=1}^L u_t^{\ell,i}, \quad \text{and} \quad \breve{w}_t^i = w_t^i - \sum_{\ell=1}^L w_t^{\ell,i}.$ Network-coupled subsystems-(\overline{\Pi}\overline{\text{ditya}} Mahajan)

 $x_{+}^{\ell,i} = x_{+}^{i} v^{\ell}(v^{\ell})^{\mathsf{T}}, \quad u_{+}^{\ell,i} = u_{+}^{i} v^{\ell}(v^{\ell})^{\mathsf{T}}, \quad \text{and} \quad w_{+}^{\ell,i} = w_{+}^{i} v^{\ell}(v^{\ell})^{\mathsf{T}}.$

Implication of Spectral Decomposition

$$\begin{split} x_{t+1}^{\ell,i} &= (\mathsf{A} + \lambda^\ell \mathsf{D}) \, x_t^{\ell,i} + (\mathsf{B} + \lambda^\ell \mathsf{E}) \, u_t^{\ell,i} + \boldsymbol{w}_t^{\ell,i} \\ \text{and} \quad \breve{x}_{t+1}^i &= \mathsf{A} \breve{x}_t^i + \mathsf{B} \breve{u}_t^i + \breve{\boldsymbol{w}}_t^i \end{split}$$

Implication of Spectral Decomposition

Noise-coupled dynamics

$$\begin{split} x_{t+1}^{\ell,i} &= (\mathsf{A} + \lambda^{\ell} \mathsf{D}) \, x_t^{\ell,i} + (\mathsf{B} + \lambda^{\ell} \mathsf{E}) \, \mathfrak{u}_t^{\ell,i} + \boldsymbol{w}_t^{\ell,i} \\ \text{and} \quad \breve{x}_{t+1}^i &= \mathsf{A} \breve{x}_t^i + \mathsf{B} \breve{\mathfrak{u}}_t^i + \breve{\boldsymbol{w}}_t^i \end{split}$$

Decoupled cost

$$\begin{split} c(x_t,u_t) &= \sum_{i \in N} \left[\mathbf{q}_0 \breve{c}(\breve{x}_t^i,\breve{u}_t^i) + \sum_{\ell=1}^L \mathbf{q}^\ell c^\ell(x_t^{\ell,i},u_t^{\ell,i}) \right] \\ \text{where } \mathbf{q}^\ell &= \mathbf{q}_0 + \mathbf{q}_1 \lambda_{\mathbf{q}}^\ell, \quad r^\ell = r_0 + r_1 \lambda_{\mathbf{r}}^\ell, \text{ and} \\ & \breve{c}(\breve{x}_t^i,\breve{u}_t^i) = (\breve{x}_t^i)^\intercal \, Q\breve{x}_t^i + \frac{r_0}{q_0} (\breve{u}_t^i)^\intercal \, R\breve{u}_t^i \\ & c^\ell(x_t^{\ell,i},u_t^{\ell,i}) = (x_t^{\ell,i})^\intercal \, Qx_t^{\ell,i} + \frac{r^\ell}{q^\ell} (u_t^{\ell,i})^\intercal \, Ru_t^{\ell,i}. \end{split}$$

Implication of Spectral Decomposition

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

- \triangleright State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- Dynamics: $x_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)x_{t}^{\ell,i} + (B + \lambda^{\ell}E)u_{t}^{\ell,i} + w_{t}^{\ell,i}$
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \check{x}_{t}^{i} . Control \check{u}_{t}^{i} .
- ightharpoonup Dynamics: $\breve{\mathbf{x}}_{t+1}^i = \mathbf{A}\breve{\mathbf{x}}_t^i + \mathbf{B}\breve{\mathbf{u}}_t^i + \breve{\mathbf{w}}_t^i$
- \triangleright Per-step cost: $c^{\ell}(\breve{\mathbf{x}}_t^i, \breve{\mathbf{u}}_t^i)$.

Implication of Spectral Decomposition

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

- \triangleright State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- Dynamics: $x_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)x_t^{\ell,i} + (B + \lambda^{\ell}E)u_t^{\ell,i} + w_t^{\ell,i}$
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \check{x}_{t}^{i} . Control \check{u}_{t}^{i} .
- **D**ynamics: $\breve{\mathbf{x}}_{t+1}^i = \mathbf{A}\breve{\mathbf{x}}_t^i + \mathbf{B}\breve{\mathbf{u}}_t^i + \breve{\mathbf{w}}_t^i$
- ▶ Per-step cost: $c^{\ell}(\check{\mathbf{x}}_{\mathsf{t}}^{\mathsf{i}}, \check{\mathbf{u}}_{\mathsf{t}}^{\mathsf{i}})$.

Only coupled through the noise in the dynamics

Implication of Spectral Decomposition

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

- \triangleright State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- **Dynamics**: $x_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)x_t^{\ell,i} + (B + \lambda^{\ell}E)u_t^{\ell,i} + w_t^{\ell,i}$
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \check{x}_t^i . Control \check{u}_t^i .
- ightharpoonup Dynamics: $\ddot{x}_{t+1}^i = A \ddot{x}_t^i + B \ddot{u}_t^i + \ddot{w}_t^i$
- \triangleright Per-step cost: $c^{\ell}(\breve{\mathbf{x}}_{\mathsf{t}}^{\mathsf{i}},\breve{\mathbf{u}}_{\mathsf{t}}^{\mathsf{i}})$.

Certainty equivalence: Optimal policy of stochastic LQ system is same as that of deterministic LQ system.

The deterministic system has decoupled dynamics and cost!

Only coupled through the noise in the dynamics

Main result

Under standard assumptions, the optimal control action is given by

$$u_t^i = \breve{u}_t^i + \sum_{\ell=1}^L u_t^{\ell,i} = \breve{G}\breve{x}_t^i + \sum_{\ell=1}^L G^{\ell}x_t^{\ell,i}$$

where

$$reve{\mathsf{G}} = \mathsf{Gain}\!\left(\mathsf{A},\mathsf{B},\mathsf{Q},rac{\mathsf{r_0}}{\mathsf{q_0}}\mathsf{R}
ight)$$

$$\mathsf{G}^\ell = \mathsf{Gain}\Big(\mathsf{A} + \lambda^\ell \mathsf{D}, \mathsf{B} + \lambda^\ell \mathsf{E}, \mathsf{Q}, rac{\mathsf{r}^\ell}{\mathsf{q}^\ell} \mathsf{R}\Big), \quad \ell \in [\mathsf{L}]$$

Main result

Under standard assumptions, the optimal control action is given by

$$u_t^i = \breve{u}_t^i + \sum_{\ell=1}^L u_t^{\ell,i} = \breve{G}\breve{x}_t^i + \sum_{\ell=1}^L G^{\ell}x_t^{\ell,i}$$

where

$$\check{\mathsf{G}} = \mathsf{Gain}\!\left(\mathsf{A},\mathsf{B},\mathsf{Q},\frac{\mathsf{r}_\mathsf{0}}{\mathsf{q}_\mathsf{0}}\mathsf{R}\right)$$

$$\mathsf{G}^\ell = \mathsf{Gain}\bigg(\mathsf{A} + \lambda^\ell \mathsf{D}, \mathsf{B} + \lambda^\ell \mathsf{E}, \mathsf{Q}, \tfrac{r^\ell}{\mathsf{q}^\ell} \mathsf{R}\bigg), \quad \ell \in [\mathsf{L}]$$

▶ The gains
$$\check{G}$$
, $\{G^{\ell}\}_{\ell=1}^{L}$ are the same at all subsystems!

$$\blacktriangleright$$
 Requires solving (L + 1) Riccati Eqn of dimension $d_x \times d_x.$

▶ Complexity scales
$$O(Ld_x^3)$$
 (cf. $O(n^3d_x^3)$ for naive solution).

Outline

System Model

- Network-coupled subsystems
 - ► Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

Planning solutior

- Spectral factorization of dynamics and cost
- Decoupled Riccati equations

Learning solution

- Spectral factorization of learning
- Numerical experiments

Modeling uncertainty

Model $\theta_* = [A_*, B_*] \in \ensuremath{\boldsymbol{\Theta}}$ (uncertain set)

Modeling uncertainty

Model $\theta_* = [A_*, B_*] \in \Theta$ (uncertain set)

Worst-case design

- Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Modeling uncertainty

Model $\theta_* = [A_*, B_*] \in \Theta$ (uncertain set)

Worst-case design

- > Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Learning solution

- Design an adaptive policy which asymptotically converges to the optimal policy of the true (unknown) model.
- Reinforcement learning or adaptive control

Modeling uncertainty

Model $\theta_* = [A_*, B_*] \in \Theta$ (uncertain set)

Worst-case design

- > Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Learning solution

- Design an adaptive policy which asymptotically converges to the optimal policy of the true (unknown) model.
- ▶ Reinforcement learning or adaptive control

Comparing learning algorithms

$$Regret(T) = \sum_{t=1}^{T} \left[cost \ of \ learning \ algo(t) - cost \ of \ clairvoyant \ agent(t) \right]$$

Large literature. Various classes of algos with different regret guarantees.

Review: Regret for learning in LQ regulation

Bounds on Regret

- **Lower bound**: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5}d_u\sqrt{T})$.
- ▶ Upper bound: Various classes of algorithms achieve $\tilde{\mathbb{O}}(d_x^{0.5}(d_x + d_u)\sqrt{T})$.
 - ▶ Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Review: Regret for learning in LQ regulation

Bounds on Regret

- **Lower bound**: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5}d_u\sqrt{T})$.
- ▶ Upper bound: Various classes of algorithms achieve $\tilde{O}(d_x^{0.5}(d_x + d_u)\sqrt{T})$. ▶ Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

- Challenge with learning in networks
- ightharpoonup Effective dimensions are nd_x and nd_u
- ▶ Directly using existing algos gives regret of $\tilde{O}(n^{1.5}d_{x}^{0.5}(d_{x}+d_{u})\sqrt{T})$.
- Normalized regret per agent is $\tilde{O}(n^{0.5}d_x^{0.5}(d_x+d_u)\sqrt{T})$.

Review: Regret for learning in LQ regulation

Bounds on Regret

- **Lower bound**: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5}d_u\sqrt{T})$.
- ▶ Upper bound: Various classes of algorithms achieve $\tilde{O}(d_x^{0.5}(d_x + d_u)\sqrt{T})$. ▶ Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

- Challenge with learning in networks
- ightharpoonup Effective dimensions are nd_x and nd_u
- ▶ Directly using existing algos gives regret of $\tilde{\mathbb{O}}(n^{1.5}d_x^{0.5}(d_x+d_u)\sqrt{T})$.
- Normalized regret per agent is $\tilde{O}(n^{0.5}d_x^{0.5}(d_x+d_u)\sqrt{T})$.

Regret per agent grows with size of the network!

Our result: Develop a learning algorithm which exploits the structure of the network and has a per agent regret of $\tilde{O}((1+\frac{1}{n})\,d_x^{0.5}(d_x+d_u)\,\sqrt{T})$.

- co-author: Sagar Sudhakara, Ashutosh Nayyar, Yi Ouyang
 - paper: TCNS 2023

Learning model

Problem setting

- **Known:** Network (M, H_q , H_r). Cost (Q, R).
- **▶ Unknown**: Dynamics (A, B, C, D).

Learning model

Problem setting

- **Known**: Network (M, H_q , H_r). Cost (Q, R).
- ▶ Unknown: Dynamics (A, B, C, D).

Modeling assumptions

- $\mathbf{P} \ \breve{\theta}_* = [A_*, B_*] \in \breve{\Theta}$
- ▶ Bayesian prior on $\check{\Theta}$ and $\{\Theta^\ell\}_{\ell=1}^L$.

Learning model

Problem setting

- **Known**: Network (M, H_q , H_r). Cost (Q, R).
- **▶ Unknown:** Dynamics (A, B, C, D).

Modeling assumptions

- $\mathbf{\check{\theta}}_* = [A_*, B_*] \in \check{\Theta}$
- $\blacktriangleright \ \theta^\ell = [A_* + \lambda^\ell D_*, B_* + \lambda^\ell E_*] \in \Theta^\ell$
- ▶ Bayesian prior on $\check{\Theta}$ and $\{\Theta^{\ell}\}_{\ell=1}^{L}$.

Implication of Spectral Decomposition

$$\text{Recall: } c(x_t, u_t) = \sum_{i \in N} \left[\mathbf{q_0} \breve{c}(\breve{x}_t^i, \breve{u}_t^i) + \sum_{\ell=1}^L \mathbf{q^\ell} c^\ell(x_t^{\ell,i}, u_t^{\ell,i}) \right]$$

Thus, for any policy π ,

$$J(\pi; \theta_*) = \sum_{i \in \mathbb{N}} \left[\mathbf{q_0} \breve{J}^i(\pi; \breve{\theta}_*) + \sum_{\ell=1}^{L} \mathbf{q^\ell} J^{\ell, i}(\pi; \theta_*^{\ell}) \right].$$

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\breve{\theta}$

- ▶ For learning θ_*^{ℓ} , select an agent i_{\circ}^{ℓ} such that $v^{\ell, i_{\circ}^{\ell}} \neq 0$.
- ▶ Learn $G^{\ell}(\theta_*^{\ell})$ using $\{x_t^{\ell, i_0^{\ell}}, u_t^{\ell, i_0^{\ell}}\}_{t \ge 1}$.

Separately learn $\{\theta^{\ell}\}_{\ell=1}^{L}$ and $\breve{\theta}$

- For learning θ_*^{ℓ} , select an agent i_{\circ}^{ℓ} such that $v^{\ell, i_{\circ}^{\ell}} \neq 0$.
- ► Learn $G^{\ell}(\theta_*^{\ell})$ using $\{x_t^{\ell,i_0^{\ell}}, u_t^{\ell,i_0^{\ell}}\}_{t \geq 1}$.
- \triangleright At time t, select agent j_{t-1} with the "most informative obs".
- ▶ Learn $\check{G}(\check{\theta}_*)$ using $\{\check{x}_t^{j_t}, \check{u}_t^{j_t}, \check{x}_{t+1}^{j_t}\}_{t \ge 1}$.

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\check{\theta}$

- ▶ For learning θ_*^{ℓ} , select an agent i_{\circ}^{ℓ} such that $v^{\ell, i_{\circ}^{\ell}} \neq 0$.
- ▶ Learn $G^{\ell}(\theta_*^{\ell})$ using $\{x_t^{\ell,i_0^{\ell}}, u_t^{\ell,i_0^{\ell}}\}_{t \geq 1}$.
- \triangleright At time t, select agent j_{t-1} with the "most informative obs".
- ▶ Learn $\check{G}(\check{\theta}_*)$ using $\{\check{x}_t^{j_t}, \check{u}_t^{j_t}, \check{x}_{t+1}^{j_t}\}_{t \ge 1}$.

- ▶ Use variant of Thompson sampling to learn each component
- ▶ The high-level idea also applies to other learning algos

Separately learn $\{\theta^{\ell}\}_{\ell=1}^{L}$ and $\check{\theta}$

- For learning θ_*^{ℓ} , select an agent i_0^{ℓ} such that $v^{\ell}, i_0^{\ell} \neq 0$.
- Learn $G^{\ell}(\theta_*^{\ell})$ using $\{x_t^{\ell,i_0^{\ell}}, u_t^{\ell,i_0^{\ell}}\}_{t\geq 1}$.
- \triangleright At time t, select agent j_{t-1} with the "most informative obs".
- ► Learn $\check{G}(\check{\theta}_*)$ using $\{\check{x}_t^{j_t}, \check{u}_t^{j_t}, \check{x}_{t+1}^{j_t}\}_{t \ge 1}$.

▶ The high-level idea also applies to other learning algos

Thus, regret also decomposes as

$$R(T) = \sum_{i \in N} \left[\mathbf{q_0} \breve{R}^i(T) + \sum_{\ell=1}^{L} \mathbf{q^\ell} R^{\ell,i}(T) \right].$$

Since $J(\pi; \theta_*) = \sum_{i \in \mathbb{N}} \left| \mathbf{q_0} \breve{J}^i(\pi; \breve{\theta}_*) + \sum_{\ell=1}^L \mathbf{q^\ell} J^{\ell, i}(\pi; \theta_*^{\ell}) \right|.$

Bounding regret

Bounding $R^{\ell,i}(T)$

ightharpoonup Since agent \mathfrak{i}_\circ^ℓ is learning in the standard manner, we have

$$\mathsf{R}^{\ell,\frac{\mathbf{i}^{\ell}_{o}}{\mathsf{o}}}(\mathsf{T}) = \tilde{\mathsf{O}}\big(\mathbf{W}^{\ell,\frac{\mathbf{i}^{\ell}_{o}}{\mathsf{o}}} \mathsf{d}_{x}^{0.5} (\mathsf{d}_{x} + \mathsf{d}_{\mathfrak{u}}) \sqrt{\mathsf{T}}\big).$$

▶ We show that for other agents

$$R^{\ell, \mathbf{i}}(T) = \left(\frac{v^{\ell, \mathbf{i}}}{v^{\ell, \mathbf{i}^{\ell}_{\circ}}}\right)^{2} R^{\ell, \mathbf{i}^{\ell}_{\circ}}(T) = \tilde{O}\left(\mathbf{W}^{\ell, \mathbf{i}} d_{x}^{0.5}(d_{x} + d_{u}) \sqrt{T}\right).$$

Bounding regret

Bounding $R^{\ell,i}(T)$

 \blacktriangleright Since agent i_\circ^ℓ is learning in the standard manner, we have

$$R^{\ell,\frac{\mathbf{i}_{\circ}^{\ell}}{0}}(T) = \tilde{\mathfrak{O}}\big(\mathbf{W}^{\ell,\frac{\mathbf{i}_{\circ}^{\ell}}{0}} d_{x}^{0.5} (d_{x} + d_{u}) \sqrt{T}\big).$$

▶ We show that for other agents

$$R^{\ell, \mathbf{i}}(T) = \left(\frac{v^{\ell, \mathbf{i}}}{v^{\ell, \mathbf{i}_0^{\ell}}}\right)^2 R^{\ell, \mathbf{i}_0^{\ell}}(T) = \tilde{O}\left(\mathbf{W}^{\ell, \mathbf{i}} d_x^{0.5} (d_x + d_u) \sqrt{T}\right).$$

Bounding
$$\breve{R}^{i}(T)$$

- Need to bound regret from first principles.
 - Using the most informative observation allows us to bound the regret of auxiliary systems at all nodes.
- Show that $\breve{R}^{i}(T) = \tilde{O}(\breve{W}^{i}d_{x}^{0.5}(d_{x} + d_{u})\sqrt{T}).$

Bounding regret

Since agent i_0^ℓ is learning in the standard manner, we have

Bounding R

Overall Regret Bound

▶ Combining these, we have

$$\begin{split} R(T) &= \tilde{\mathcal{O}} \big(\alpha^{\mathcal{G}} d_x^{0.5} (d_x + d_u) \sqrt{T} \big), \\ \text{where } \alpha^{\mathcal{G}} &= \sum_{\ell=1}^L q^\ell + q_0(n-L). \end{split}$$

▶ Regret per agent is proportional to

$$\alpha^{g}/n = O\left(1 + \frac{L}{n}\right).$$

Thus, regret per agent reduces with the size of the network!

Mean-field systems

Choice of parameters

$$M = \frac{1}{n} \mathbb{I}_{n \times n} \text{ and } H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M.$$

Mean-field systems

Choice of parameters

$$ightharpoonup M = \frac{1}{n} \mathbb{I}_{n \times n}$$
 and $H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M$.

Scaling of regret

$$ightharpoonup q^1 = r^1 = (1 + \kappa)/n$$
. Thus, (normalized) $\alpha^g = \left(1 + \frac{\kappa}{n}\right)$.

▶ Regret per-agent goes down as the network becomes larger (mean-field effect).

Mean-field systems

Choice of parameters

$$ightharpoonup M = \frac{1}{n} \mathbb{I}_{n \times n} \text{ and } H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M.$$

Scaling of regret

$$ho$$
 q¹ = r¹ = (1 + κ)/n. Thus, (normalized) $\alpha^g = \left(1 + \frac{\kappa}{n}\right)$.

Network-coupled Rubsystem (Aditya Mahajan)

A general low-rank network

Choice of parameters

 $\blacktriangleright \ M = M^{\circ} \otimes \frac{1}{n} \mathbb{1}_{n \times n} \text{, } H_q = (I - M)^2 \text{, and } H_r = I.$

α

A general low-rank network

Choice of parameters

 $\blacktriangleright \ M = M^{\circ} \otimes \frac{1}{n} \mathbb{1}_{n \times n} \text{, } H_q = (I - M)^2 \text{, and } H_r = I.$

Scaling of regret

$$\lambda^{\ell} = \pm \sqrt{2(\alpha^2 + b^2)}$$
, $q^{\ell} = (1 - \lambda^{\ell})^2$, $r^{\ell} = 1$. Thus, (unnormalized) $\alpha^{g} = 4n + 4(\alpha^2 + b^2)$.

▶ Regret per-agent goes down as the network becomes larger (network-field effect).

A general low-rank network

Choice of parameters

$$\blacktriangleright \ M = M^{\circ} \otimes \frac{1}{n} \mathbb{1}_{n \times n}, \ H_q = (I - M)^2, \ \text{and} \ H_r = I.$$

Scaling of regret

$$ho \ \lambda^{\ell} = \pm \sqrt{2(\alpha^2 + b^2)}, \ q^{\ell} = (1 - \lambda^{\ell})^2, \ r^{\ell} = 1.$$
 Thus, (unnormalized) $\alpha^{g} = 4n + 4(\alpha^2 + b^2).$

α

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

 $\blacktriangleright \ \, \text{Solve} \,\, (L+1) \,\, \text{Riccati eqns of dims} \,\, d_{\chi} \times d_{\chi}.$

Learning solution

▶ Regret per agent $\tilde{O}((1+\frac{1}{n})\sqrt{T})$

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

 $\blacktriangleright \ \, \text{Solve} \,\, (L+1) \,\, \text{Riccati eqns of dims} \,\, d_{\chi} \times d_{\chi}.$

Learning solution

▶ Regret per agent $\tilde{O}((1+\frac{1}{n})\sqrt{T})$

Future Directions

- Multiple types of agents, approximate symmetry, . . .
- ▶ Large networks, graphon limits?
- ▶ Other types of scalable network stuctures?

- email: aditya.mahajan@mcgill.ca
- web: http://cim.mcgill.ca/~adityam

Thank you

Funding

- NSERC Discovery
- DND IDEaS Network

References

- > planning: TCNS 2022
- learning: TCNS 2023