DATA 201: Time Series Analysis Linear Regression Model Lecture 11: The Auto-Regressive (AR) Model

Lulu Wang

Data Analytics Dickinson College

2/28/2025

The Auto-Regressive (AR) Model

Estimation

Order selection

Auto-Regressive (AR) model

 The AutoRegressive model of order 1, denoted by AR(1), is given by:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \epsilon_t$$

where β_0 and β_1 are parameters to be estimated and ϵ_t has mean zero and variance σ_{ϵ}^2 .

- A scatter plot of Y_{t-1} and Y_t shows little dependence between the current and past value.
- The red line represents $E(Y_t|Y_{t-1}) = \beta_0 + \beta_1 Y_{t-1}$.

Auto-Regressive (AR) Model

• In general, an AR(p) model is defined as:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \dots + \beta_p Y_{t-p} + \epsilon_t$$

where:

- $\beta_0, \beta_1, \dots, \beta_p$ are parameters to be estimated.
- ϵ_t is a white noise error term with mean zero and variance σ_{ϵ}^2 .

Conditional Expectation in AR(p) Model

Property 1: Conditional Expectation

$$E(Y_t|Y_{t-1},...,Y_{t-p}) = \beta_0 + \beta_1 Y_{t-1} + \cdots + \beta_p Y_{t-p}$$

It can be interpreted as a **forecast** since only past information is used to produce an expectation of the variable today.

Property 2: Unconditional Expectation

$$E(Y_t) = \frac{\beta_0}{1 - \sum_{j=1}^p \beta_j}$$

since:

$$E(Y_t) = \beta_0 + \beta_1 E(Y_{t-1}) + \cdots + \beta_p E(Y_{t-p}) + E(\epsilon_t)$$

Assuming that $E(Y_t) = E(Y_{t-k})$ for all values of k. It represents the long-run mean of Y_t

Conditional Expectation in AR(p) Model

Proof of Property 1: Conditional Expectation

The AR(p) model is given by:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \dots + \beta_p Y_{t-p} + \varepsilon_t$$
 (1)

Taking the expectation conditional on past values:

$$E(Y_t|Y_{t-1},\ldots,Y_{t-p}) = E\left(\beta_0 + \sum_{j=1}^p \beta_j Y_{t-j} + \varepsilon_t \Big| Y_{t-1},\ldots,Y_{t-p}\right)$$
(2)

Since $E(\varepsilon_t|Y_{t-1},\ldots,Y_{t-p})=0$, we obtain:

$$E(Y_t|Y_{t-1},\ldots,Y_{t-p}) = \beta_0 + \sum_{j=1}^{p} \beta_j Y_{t-j}$$
 (3)

Variance of AR(p) Model

Property 3: Variance

$$Var(Y_t) = rac{\sigma_{\epsilon}^2}{1 - \sum_{j=1}^p eta_j^2}$$

since:

$$Var(Y_t) = \beta_1^2 Var(Y_{t-1}) + \dots + \beta_p^2 Var(Y_{t-p}) + Var(\epsilon_t)$$

$$= \left(\sum_{i=1}^p \beta_i^2\right) Var(Y_t) + \sigma_{\epsilon}^2$$

This shows how past values contribute to the variance of the current value.

Persistence and Mean Reversion in AR(p)

Property 4: Persistence and Mean Reversion

$$\sum_{i=1}^{p} \beta_{i}$$

measures the **persistence** of the time series. Persistence can also be interpreted as **mean reversion**, which represents how quickly a time series reverts back to its mean.

- Low persistence ⇒ quick mean reversion.
- **High persistence** ⇒ slow mean reversion.

Key Insight: The closer the sum of β_i is to 1, the more persistent the process, meaning past values strongly influence future values.

Persistence and Mean Reversion in AR(1)

The plot below shows the **effect of persistence** in an **AR(1) process** with different values of β :

Persistence and Mean Reversion in AR(1)

Low Persistence ($\beta = 0.3, 0.6$)

- The process exhibits quick mean reversion, meaning that shocks fade away quickly.
- The series remains close to zero, with less variability over time.

High Persistence ($\beta = 0.9$)

- The process takes longer to revert to the mean, meaning past values strongly influence future values.
- Large deviations persist longer before dying out.

Unit Root ($\beta = 1.0$)

- This is a random walk, meaning the process never mean-reverts.
- Variance grows indefinitely, and the series does not stabilize.

Estimation of AR models

- Auto-regressive models AR(P) can be estimated consistently using OLS.
- More general time series models (e.g., MA, ARMA) need to be estimated by Maximum Likelihood (ML).
- There are several functions to estimate time series models that allow choosing the estimation method.
 - In practice, we can go with the default option since for moderate and large sample sizes, the results are nearly identical.
- We will discuss three functions (first two today):
 - Using statsmodels.OLS(): This method applies Ordinary Least Squares (OLS) estimation. Make sure you use the Newey-West method!
 - Using statsmodels.tsa.ar_model.AutoReg():It uses Conditional Maximum Likelihood which is Ordinary Least Squares (OLS).
 - Using statsmodels.tsa.arima.model.ARIMA(): This function estimates AR, MA, and ARIMA models using ML.

How Correlated Observations Lead to Dependent Errors

Consider a simple first-order autoregressive model AR(1):

$$y_t = \beta y_{t-1} + \varepsilon_t \tag{4}$$

where:

- y_t is the observation at time t,
- β is the autoregressive coefficient, where $|\beta| < 1$ for stationarity,
- ε_t is a white noise error term.

By recursively substituting:

$$y_{t-1} = \beta y_{t-2} + \varepsilon_{t-1} \tag{5}$$

$$y_{t} = \beta(\beta y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t} = \beta^{2} y_{t-2} + \beta \varepsilon_{t-1} + \varepsilon_{t}$$
 (6)

(7)

Autocovariance of the Errors

 $\varepsilon_t = V_t - \beta V_{t-1}$

The error term at time t is:

Similarly, the error at t-1 is:

$$\varepsilon_{t-1} = y_{t-1} - \beta y_{t-2} \tag{8}$$

Computing the covariance:

$$Cov(\varepsilon_t, \varepsilon_{t-1}) = Cov(y_t - \beta y_{t-1}, y_{t-1} - \beta y_{t-2})$$
 (9)

Expanding using linearity of covariance:

$$Cov(\varepsilon_t, \varepsilon_{t-1}) = Cov(y_t, y_{t-1}) - \beta Cov(y_t, y_{t-2})$$
$$- \beta Cov(y_{t-1}, y_{t-1}) + \beta^2 Cov(y_{t-1}, y_{t-2})$$
(10)

This results in a non-zero covariance, meaning the errors are correlated over time.

AR estimated by OLS()

• We will simulate time series data.

$$Y_t = 0.5Y_{t-1} + \epsilon_t$$

AR estimated by OLS()

Estimation summary of

$$Y_t = 0.5Y_{t-1} + \epsilon_t$$

```
=== OLS Results (HAC/ Newey-West Standard Errors) ===
                             OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                           0.170
Model:
                                   OLS
                                         Adi. R-squared:
                                                                           0.168
Method:
                        Least Squares
                                         F-statistic:
                                                                           60.83
Date:
                     Thu, 27 Feb 2025
                                         Prob (F-statistic):
                                                                        1.07e-13
                                         Log-Likelihood:
Time:
                              18:59:17
                                                                         -425.08
No. Observations:
                                   298
                                         AIC:
                                                                           854.2
Df Residuals:
                                   296
                                         BIC:
                                                                           861.5
Df Model:
Covariance Type:
                                                  P>ItI
                                                              [0.025
                                                                          0.9751
                 coef
                          std err
                           0.059
                                      -0.247
const
              -0.0145
                                                  0.805
                                                              -0.130
                                                                           0.101
Y lag1
                            0.053
                                       7.799
                                                                           0.517
               0.4130
                                                   0.000
                                                               0.309
Omnibus:
                                 3.409
                                         Durbin-Watson:
                                                                           1.858
Prob(Omnibus):
                                 0.182
                                         Jarque-Bera (JB):
                                                                           3.090
Skew:
                                 0.217
                                         Prob(JB):
                                                                           0.213
                                         Cond. No.
Kurtosis:
                                 3.247
                                                                            1.11
```

AR estimated by AutoReg()

• Example: estimating a AR(3) model:

$$Y_t = 0.6Y_{t-1} - 0.3Y_{t-2} + 0.2Y_{t-3} + \epsilon_t$$

AR estimated by AutoReg()

Estimation summary of

$$Y_t = 0.6Y_{t-1} - 0.3Y_{t-2} + 0.2Y_{t-3} + \epsilon_t$$

Dep. Variable:			V No O	servations:		30	
Model:		AutoRea	(3) Log Li			-415.82	
Method:	C			of innovation		0.98	
Date:		1, 24 Feb 2		, illiovacion	•	841.64	
Time:	1101		:08 BIC			860.11	
Sample:		04-30-2				849.03	
oumpie.		- 12-31-20					
	coef	std err	z	P> z	[0.025	0.975	
const	-0.0137	0.057	-0.240	0.810	-0.125	0.09	
Y.L1	0.5116	0.057	8.925	0.000	0.399	0.62	
Y.L2	-0.2497	0.063	-3.962	0.000	-0.373	-0.12	
Y.L3	0.1625	0.057	2.829	0.005	0.050	0.27	
			Roots				
	Real	Im	aginary	Modulus		Frequency	
AR.1	1.7486	-(0.0000j	1.748	5	-0.0000	
AR.2	-0.1060		1.8730j	1.876	9	-0.2590	
AR.3	-0.1060	+0	1.8730j	1.876	9	0.2590	

Order selection

- How do we choose the order p of the AR model?
- The problem is the same as choosing the best LRM:
 - we use adjusted R^2 to penalize models that include more variables
 - select the model with largest adjusted R²
- We do the same for time series models, but instead of using adjusted R^2 we use:
 - 1. Akaike Information Criterion (AIC) defined as

$$\log(RSS/T) + 2 \cdot \frac{(1+p)}{T}$$

2. Bayesian Information Criterion (BIC) defined as

$$\log(RSS/T) + \log(T) \cdot \frac{(1+p)}{T}$$

 For AIC and BIC the best model has the lowest value of the criterion

Order selection (Cont.)

- This can be achieved in Python using the AutoReg function from statsmodels by selecting the model with the lowest AIC or BIC.
- However, a more convenient approach is to use ar_select_order(), which automatically determines the optimal lag order based on AIC or BIC.