# DYNAMISCHE SYSTEME Softwareprojekt 2

## Agenda



- Füchse essen Hasen essen Karotten
- Hefe-Zucker-System
- Projektidee
- Projektplanung
- Realisierung
- Demonstration
- Reflexion

#### Füchse essen Hasen essen Karotten



- Hase-Fuchs-System: Simulation eines Räuber-Beute-Systems
  - Simulation der Systemveränderungen über die Zeit
  - 3 Populationen: Füchse, Hasen, Karotten
  - 3 Wachstumsfunktionen:
    - Wachstum Karotten = a b · Hasen
    - Wachstum Hasen = c d · Füchse + e · Karotten
    - Wachstum Füchse = f + g · Hasen

#### Füchse essen Hasen essen Karotten



- Hase-Fuchs-System: Simulation eines Räuber-Beute-Systems
  - Simulation:
    - Zuweisung von Startwerten der Populationen und Parametrierung von a, b, c, .., f und g
    - Berechnungen in möglichst kleinen Schritten:
      - Wachstumsrate berechnen
      - Zur aktuellen Populationszahl Wachstumsrate addieren

#### Füchse essen Hasen essen Karotten



#### Demonstration



## Hefe-Zucker-System



- Hefewachstum: Abhängig von der Zuckermenge und dem Platz, also auch der Hefemenge
- Zuckerwachstum: Abhängig von der Hefemenge und dem Hefewachstum
- Mathematische Definition (Kinetik nach Monod):
  - Wachstum Hefe (H') =  $a \cdot Z + b \cdot H$
  - Wachstum Zucker  $(Z') = c \cdot H + d \cdot H'$



#### Differentialgleichungen

## Projektidee



- Ziel: Programm zur Simulation von beliebigen Dynamischen Systemen
- Haupt-Anforderungen:
  - Konfiguration von Dynamischen Systemen
    - Eingabe von mathematischen Funktionen mit Variablen
  - Visualisierung von beliebigen Simulationen
  - Zusatzfeatures wie Speichern/Laden/Import,
     Steuermöglichkeiten währen einer Simulation

# Projektplanung



Iterationsplanung mit 3 Iterationen

| Nr. | Zeitraum      | Geplanter Aufwand RK | Geplanter Aufwand DEL | Aufwand total |
|-----|---------------|----------------------|-----------------------|---------------|
| 1   | 22.03 - 11.04 | 18.0                 | 23.0                  | 41            |
| 2   | 12.04 - 02.05 | 5.0                  | 15.0                  | 20            |
| 3   | 03.05 - 24.05 | 30.0                 | 22.0                  | 52            |
|     |               | 53.0                 | 60.0                  | 113           |

- Taskplanung aufgrund der Anforderungen
- Zuteilung und Priorisierung jeweils vor Iterationsstart
- Burndown-Charts zum Tracken der Fortschritte während einer Iteration

# Projektplanung



Burndown-Chart: Abschluss Iteration 1





- Tools, Technologien und Frameworks
  - □ Java 1.7 (zum Schluss 1.6) und Swing
  - Eclipse DIE
  - □ Git und Github
    - https://github.com/delsener/ch.zhaw.softwareprj2.git
  - Mayen 3.0.4
  - □ JUnit 4.8.1
  - □ JFreeChart 1.0.13
  - Apache Common JEXL



- Projektstruktur / Komponenten
  - GUI-Komponenten
    - th.zhaw.dynsys.gui
  - Logik-/Simulations-Komponenten
    - ch.zhaw.dynsys.simulation
  - Hilfsklassen für Expression Language (JEXL)
    - the ch.zhaw.dynsys.el.utils
  - Persistenz-Klassen
    - the ch.zhaw.dynsys.persistence



- Problemstellung: Eingabe von mathematischen Formeln
  - **■** Expression Language:
    - Unterstützung bei der Interpretation von mathematischen Scripten
    - Scriptsprache
    - Zwei bekannte Java Libraries: Spring Expression Language SpEL, Apache Common JEXL



- Problemstellung: Eingabe von mathematischen Formeln
  - Beispiel-Script das von JEXL interpretiert wird:

```
{
  var t = -20.0
  var t_diff = 0.0
  var H = 100.0
  var H diff = 0.0
  var Z = 650.0
  var Z_diff = 0.0
}
return [
    new("java.lang.Double",5),
    new("java.lang.Double",math:max(-H, 0.0001*H*Z*(20-math:abs(10- t)))),
    new("java.lang.Double",math:min(0, -math:min(Z, H diff)))
];
```



#### Demonstration der GUI-Features



#### **Demonstration**



- Hefe-Zucker-System
  - Wachstumsfunktionen:
    - Wachstum Hefe (H') =  $a \cdot Z + b \cdot H$
    - Wachstum Zucker  $(Z') = c \cdot H + d \cdot H'$
  - Parametrierung:
    - a = 1, b = 2, c = -1, d = -0.2
  - Startwerte:
    - Hefe = 1.0
    - Zucker = 1.0

#### Reflexion



- Interessante Projektarbeit
- Applikation entwickeln um ein numerisches Problem zu lösen
- Gute fachliche Unterstützung durch Hr. Heuberger
- Programm funktioniert, ist aber (wie immer) erweiterbar:
  - z.B. Regelbarkeit der Berechnungsschrittweiten, komplexere grafische Darstellung (weitere Grafen), ...