How predictable is extinction?

Forecasting species survival at million-year timescales

Peter D Smits, Seth Finnegan

Department of Integrative Biology, University of California - Berkeley

Foundational assertion of conservation paleobiology

By studying the past, we can better predict the future.

What are we predicting?

Extinction is hard to predict, but is important to conservation decisions.

Predicting extinction

➤ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.

Predicting extinction

- ► A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- ► A taxon's global geographic range can change over time.

Predicting extinction

- ➤ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- A taxon's global geographic range can change over time.
- What happens to extinction risk as a taxon changes geographic range? How is extinction risk impacted if that taxon's global geographic range has recently increased or decreased?

Data being analyzed: Neptune database

Global occurrences from Deep Sea Drilling Program and Ocean Drilling Project. – Lazarus. 1994. Math. Geo.; Spencer-Cervato. 1999. Palaeo. Elec.

How we're analyzing the data

- Encoding the past
 - Change in geographic range between current observation and previous observation.
 - Average global temperature at time of previous observation (Mg/Ca elemental ratio).
 - ▶ Age in millions of years at time of observation.
- Explore model adequacy using posterior predictive distribution.
- ► Estimate out-of-sample predictive performance using *k*-fold cross-validation.

A conceptual model for predicting extinction

Measuring performance: confusion matrix

		True condition	
	Total population	Condition positive	Condition negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error
condition	Predicted condition negative	False negative, Type II error	True negative

(wikimedia)

Measuring performance: Receiver Operating Characteristic

Measuring performance: AUC ROC

$$\mathsf{AUC} = \begin{cases} 0.5 & \mathsf{non\ discrimination} \\ 0.6 - 0.7 & \mathsf{poor} \\ 0.7 - 0.8 & \mathsf{acceptable/fair} \\ 0.8 - 0.9 & \mathsf{excellent/good} \\ > 0.9 & \mathsf{outstanding} \end{cases}$$

The area represents the probability of correct ranking of a random "extinct" - "extant" pair.

Measuring performance: *k*-fold cross-validation

(Ken Williams, https://goo.gl/qLcfL8)

In-sample predictive performance, full dataset

 $AUC = 0.7-0.8 \ acceptable/fair$

In-sample predictive performance, full dataset

 $AUC = 0.7-0.8 \ acceptable/fair$

In-sample predictive performance, by time

Cross-validation results, full dataset

 $AUC = 0.7-0.8 \ acceptable/fair$

Cross-validation results, by time

Summary

- The past matters...
 - Our best supported model includes our historical covariates and allows all effects to vary over time.
- But not that much...
 - ► Models only average/fair expected out-of-sample performance.
- Mechanisms behind changes to geographic range operate at sub-million year scales. Perhaps their effects are weak/masked at million (or greater) year scales.

Acknowledgements

- ► UC Berkeley
 - Adiel Klompmaker
 - Emily Orzechowski
 - Larry Taylor
 - Sara Kahanamoku
 - Josh Zimmt
- University of Oslo
 - Franziska Franeck
- ► Neptune DB/MFN Berlin
 - David Lazarus

psmits.github.io/ trident

@PeterDSmits

