Homework 3

The problems below are from the Sipser textbook.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA that recognizes a language L. Does the NFA $(Q, \Sigma, \delta, q_0, Q \setminus F)$, which is result of swapping the accept and reject states in M, necessarily recognize the complement of L? Prove or give a counterexample.
- 1.32 Let

$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

 Σ_3 contains all size 3 columns of 0s and 1s. A string of symbols in Σ_3 gives three rows of 0s and 1s. Consider each row to be a binary number and let

 $B = \{w \in \Sigma_3^* | \text{ the bottom row of } w \text{ is the sum of the top two rows} \}.$

For example,

$$\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix} \right] \left[\begin{smallmatrix} 1 \\ 1 \\ 0 \end{smallmatrix} \right] \in B, \quad \text{ but } \quad \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix} \right] \not \in B.$$

Prove that B is regular. Hint: Prove the regularity of B^R and then apply a closure property.

- **1.40** Recall that string x is a **prefix** of string y if a string z exists where xz = y, and that x is a **proper prefix** of y if in addition $x \neq y$. In each of the following parts, we define an operation on a language A. Show that the class of regular languages is closed under that operation.
 - ^A**a.** $NOPREFIX(A) = \{w \in A | \text{ no proper prefix of } w \text{ is a member of } A\}.$
 - **b.** $NOEXTEND(A) = \{w \in A | w \text{ is not the proper prefix of any string in } A\}.$
- **1.41** For languages A and B, let the *perfect shuffle* of A and B be the language

$$\{w | w = a_1b_1 \cdots a_kb_k, \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i, b_i \in \Sigma\}.$$

Show that the class of regular languages is closed under perfect shuffle.

- 1.62 Let $\Sigma = \{a,b\}$. For each $k \geq 1$, let D_k be the language consisting of all strings that have at least one a among the last k symbols. Thus $D_k = \Sigma^* \mathbf{a} (\Sigma \cup \varepsilon)^{k-1}$. Describe a DFA with at most k+1 states that recognizes D_k in terms of both a state diagram and a formal description.
- **1.66** A *homomorphism* is a function $f: \Sigma \longrightarrow \Gamma^*$ from one alphabet to strings over another alphabet. We can extend f to operate on strings by defining $f(w) = f(w_1)f(w_2)\cdots f(w_n)$, where $w = w_1w_2\cdots w_n$ and each $w_i \in \Sigma$. We further extend f to operate on languages by defining $f(A) = \{f(w) | w \in A\}$, for any language A.
 - a. Show that the class of regular languages is closed under homomorphism. In other words, given a DFA M that recognizes B and a homomorphism f, construct a finite automaton M' that recognizes f(B). Consider the machine M' that you constructed. Is it a DFA in every case?
- **1.69** Let $\Sigma = \{0,1\}$. Let $WW_k = \{ww | w \in \Sigma^* \text{ and } w \text{ is of length } k\}$.
 - a. Show that for each k, no DFA can recognize WW_k with fewer than 2^k states.
 - **b.** Describe a much smaller NFA for \overline{WW}_k , the complement of WW_k .