STATS/CSE 780 - Homework Assignment 2

Name: Aman
preet Singh $\left(400672477\right)$

2025-09-30

Supplemental Material

• Note: GitHub Copilot was used to assist with code generation and error handling.

Plots

Imports

```
# Core
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

# Visualization
import matplotlib.pyplot as plt
import seaborn as sns

# Preprocessing & Splitting
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder

# Models
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from metric_learn import LMNN # Metric learning, optional
```

```
df = pd.read_csv("spotify_churn_dataset.csv")
df = df.drop(columns=['user_id'])
```

Exploratory Data analysis

```
df.isna().sum()
df.shape
df.info()
df.describe()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8000 entries, 0 to 7999
Data columns (total 11 columns):
```

	~ -		5 .	
#	Column	Non-Null Count	Dtype	
0	gender	8000 non-null	object	
1	age	8000 non-null	int64	
2	country	8000 non-null	object	
3	subscription_type	8000 non-null	object	
4	listening_time	8000 non-null	int64	
5	songs_played_per_day	8000 non-null	int64	
6	skip_rate	8000 non-null	float64	
7	device_type	8000 non-null	object	
8	ads_listened_per_week	8000 non-null	int64	
9	offline_listening	8000 non-null	int64	
10	is_churned	8000 non-null	int64	
dtypes: float64(1), int64(6), object(4)				

memory usage: 687.6+ KB

	age	$listening_time$	songs_played_per_day	$skip_rate$	$ads_listened_per_week$	offline_listening	is_ch
count	8000.000000	8000.000000	8000.000000	8000.000000	8000.000000	8000.000000	8000.
mean	37.662125	154.068250	50.127250	0.300127	6.943875	0.747750	0.258
std	12.740359	84.015596	28.449762	0.173594	13.617953	0.434331	0.438
min	16.000000	10.000000	1.000000	0.000000	0.000000	0.000000	0.000
25%	26.000000	81.000000	25.000000	0.150000	0.000000	0.000000	0.000
50%	38.000000	154.000000	50.000000	0.300000	0.000000	1.000000	0.000
75%	49.000000	227.000000	75.000000	0.450000	5.000000	1.000000	1.000
max	59.000000	299.000000	99.000000	0.600000	49.000000	1.000000	1.000

```
# Select categorical columns
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
# Plot pie charts in 2x2 grids
for i in range(0, len(categorical_cols), 4):
    plt.figure(figsize=(10, 8))
    for j, col in enumerate(categorical_cols[i:i+4], 1):
        plt.subplot(2, 2, j)
        df[col].value_counts().plot(
            kind='pie',
            autopct='%1.1f%%',
            startangle=90,
            colors=sns.color_palette("pastel"),
            wedgeprops={'edgecolor': 'k'}
        plt.title(col.replace("_", " ").title(), fontsize=10)
        plt.ylabel('')
    plt.tight_layout()
    plt.savefig("pie.png", dpi=300, bbox_inches='tight')
    plt.show()
```

```
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap (Numerical Variables)")
plt.savefig("corr.png", dpi=300, bbox_inches='tight')
plt.show()
```

```
# ---- Missing Values ----
print("Missing Values Summary:\n")
print(df.isnull().sum())
Missing Values Summary:
gender
                        0
age
country
subscription_type
listening_time
songs_played_per_day
skip_rate
device_type
ads_listened_per_week
                        0
offline_listening
                        0
                         0
is_churned
dtype: int64
# ---- Boxplots for Outliers ----
# Select only numeric columns
numeric_cols = df.select_dtypes(include=['number']).columns
# Create boxplots for each numeric column
plt.figure(figsize=(15, 8))
for i, col in enumerate(numeric_cols, 1):
   plt.subplot((len(numeric_cols) + 2)//3, 3, i)
    sns.boxplot(x=df[col], color='skyblue')
   plt.title(col)
   plt.tight_layout()
plt.suptitle("Boxplots for Numeric Features", fontsize=16, y=1.03)
plt.show()
```

Data Splitting

```
y = df['is_churned']
# Features: drop the target
```

Training size: 4800 Validation size: 1600 Test size: 1600

Scalling and Encoding

```
X_test_final = X_test_final.reindex(columns=X_train_final.columns, fill_value=0)
# 5. Shapes
print("X_train:", X_train_final.shape)
print("X_val:", X_val_final.shape)
print("X_test:", X_test_final.shape)
X_train: (4800, 24)
X_val: (1600, 24)
X_test: (1600, 24)
# Columns you want to scale
scale_cols = ['age', 'listening_time', 'songs_played_per_day', 'skip_rate']
scaler = StandardScaler()
# Copy so we don't overwrite original data
X_train_scaled = X_train_final.copy()
X_val_scaled = X_val_final.copy()
X_test_scaled = X_test_final.copy()
# Fit on train only
X_train_scaled[scale_cols] = scaler.fit_transform(X_train_final[scale_cols])
X_val_scaled[scale_cols] = scaler.transform(X_val_final[scale_cols])
X_test_scaled[scale_cols] = scaler.transform(X_test_final[scale_cols])
```

KNN

```
# Range of k values to try
k_values = range(1, 21)  # try k from 1 to 20
val_accuracies = []

for k in k_values:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train_scaled, y_train)
    y_val_pred = knn.predict(X_val_scaled)
    acc = accuracy_score(y_val, y_val_pred)
    val_accuracies.append(acc)
```

```
# Find best k
best_k = k_values[np.argmax(val_accuracies)]
print("Best k based on validation set:", best_k)
```

Best k based on validation set: 17

```
plt.plot(k_values, val_accuracies, marker='o')
plt.xlabel("Number of Neighbors (k)")
plt.ylabel("Validation Accuracy")
plt.title("Choosing k using Validation Set")
plt.xticks(k_values)
plt.show()
```

```
# --- Train best KNN on combined train+val and test it ---
best_k = 14 # selected from validation performance
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(np.vstack((X_train_scaled, X_val_scaled)), np.hstack((y_train, y_val)))
y_test_prob = knn.predict_proba(X_test_scaled)[:, 1]
# --- ROC and optimal cutoff ---
fpr, tpr, thresholds = roc_curve(y_test, y_test_prob)
optimal_idx = (tpr - fpr).argmax()
optimal_cutoff = thresholds[optimal_idx]
print(f"Optimal probability cutoff: {optimal_cutoff:.3f}")
# --- Plot ROC curve ---
plt.figure(figsize=(7,5))
plt.plot(fpr, tpr, label=f'ROC Curve (AUC = {roc_auc_score(y_test, y_test_prob):.3f})', color='blue')
plt.plot([0, 1], [0, 1], '--', color='gray', label='Random Guess')
plt.scatter(fpr[optimal_idx], tpr[optimal_idx], color='red', label=f'Optimal cutoff = {optimal_cutoff:.2f}')
plt.title("KNN ROC Curve with Optimal Cutoff")
plt.xlabel("1 - Specificity (False Positive Rate)")
plt.ylabel("Sensitivity (True Positive Rate)")
plt.legend()
plt.show()
# --- Apply optimal cutoff and compute metrics ---
y_test_pred = (y_test_prob >= optimal_cutoff).astype(int)
cm = confusion_matrix(y_test, y_test_pred)
tn, fp, fn, tp = cm.ravel()
```

```
print("Confusion Matrix:")
print(cm)

accuracy = (tp + tn) / (tp + tn + fp + fn)
precision = precision_score(y_test, y_test_pred)
misclassification_error = 1 - accuracy
recall = recall_score(y_test, y_test_pred) # Sensitivity
specificity = tn / (tn + fp)
f1 = f1_score(y_test, y_test_pred)
auc = roc_auc_score(y_test, y_test_prob)
```

```
print(f"\nAccuracy: {accuracy:.3f}")
print(f"Precision: {precision:.3f}")
print(f"Misclassification Error: {misclassification_error:.3f}")
print(f"Sensitivity (Recall): {recall:.3f}")
print(f"Specificity: {specificity:.3f}")
print(f"F1-Score: {f1:.3f}")
print(f"AUC: {auc:.3f}")
```

Accuracy: 0.499
Precision: 0.274

Misclassification Error: 0.501 Sensitivity (Recall): 0.565

Specificity: 0.476 F1-Score: 0.369 AUC: 0.522

Logistic Regression

```
C_values = np.logspace(-4, 4, 25)
accs, f1s, aucs = [], [], []

for C in C_values:
    clf = LogisticRegression(C=C, solver='liblinear', class_weight='balanced', max_iter=1000)
    clf.fit(X_train_scaled, y_train)
    y_val_prob = clf.predict_proba(X_val_scaled)[:,1] # if binary
    y_val_pred = (y_val_prob >= 0.5).astype(int)
```

```
accs.append(accuracy_score(y_val, y_val_pred))
    f1s.append(f1_score(y_val, y_val_pred, average='binary')) # change average for multiclass
        aucs.append(roc_auc_score(y_val, y_val_prob))
    except Exception:
        aucs.append(np.nan)
# report best by different metrics
best_acc = C_values[np.nanargmax(accs)]
best_f1 = C_values[np.nanargmax(f1s)]
best_auc = C_values[np.nanargmax(aucs)]
print("Best C (acc):", best_acc, max(accs))
print("Best C (f1):", best_f1, max(f1s))
print("Best C (auc):", best_auc, max(aucs))
Best C (acc): 0.1 0.5225
Best C (f1): 0.00046415888336127773 0.35294117647058826
Best C (auc): 1.0 0.5150345007372649
import matplotlib.pyplot as plt
plt.semilogx(C_values, aucs, marker='o')
plt.xlabel("Regularization Strength (C)")
plt.ylabel("AUC")
plt.title("Choosing C for Logistic Regression")
plt.show()
# Train a final model (use best C or just C=1)
clf = LogisticRegression(C=1, solver='liblinear', class_weight='balanced', max_iter=1000)
clf.fit(X_train_scaled, y_train)
# Predict probabilities on validation or test set
y_test_prob = clf.predict_proba(X_test_scaled)[:, 1]
# Compute ROC curve values
fpr, tpr, thresholds = roc_curve(y_test, y_test_prob)
auc = roc_auc_score(y_test, y_test_prob)
```

```
# Find optimal cutoff index
optimal_idx = (tpr - fpr).argmax()
optimal_cutoff = thresholds[optimal_idx]
# Plot ROC curve
plt.figure(figsize=(7, 5))
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC Curve (AUC = {auc:.3f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--', label='Random Guess')
# Mark optimal point
plt.scatter(fpr[optimal_idx], tpr[optimal_idx], color='red', s=80,
            label=f'Optimal cutoff = {optimal_cutoff:.2f}')
# Labels and legend
plt.xlabel('1 - Specificity (False Positive Rate)')
plt.ylabel('Sensitivity (True Positive Rate)')
plt.title('ROC Curve with Optimal Cutoff')
plt.legend()
plt.grid(True)
plt.show()
# Classify based on cutoff
y_test_pred = (y_test_prob >= 0.49).astype(int)
# Confusion matrix and performance metrics
cm = confusion_matrix(y_test, y_test_pred)
tn, fp, fn, tp = cm.ravel()
accuracy = accuracy_score(y_test, y_test_pred)
error_rate = 1 - accuracy
sensitivity = tp / (tp + fn)
specificity = tn / (tn + fp)
print("\n=== Logistic Regression Test Performance ===")
```

```
print("\n=== Logistic Regression Test Performance ===")
print(f"Accuracy: {accuracy:.3f}")
print(f"Misclassification Error: {error_rate:.3f}")
print(f"Sensitivity (TPR): {sensitivity:.3f}")
print(f"Specificity (TNR): {specificity:.3f}")
print("Confusion Matrix:\n", cm)
```

```
=== Logistic Regression Test Performance ===

Accuracy: 0.459

Misclassification Error: 0.541

Sensitivity (TPR): 0.589

Specificity (TNR): 0.414

Confusion Matrix:

[[491 695]

[170 244]]

coef_df = pd.DataFrame({
    'Feature': X_train_scaled.columns,
    'Coefficient': clf.coef_.ravel()
})

coef_df['AbsCoefficient'] = np.abs(coef_df['Coefficient'])

coef_df.sort_values('AbsCoefficient', ascending=False)[0:3]
```

	Feature	Coefficient	AbsCoefficient
10	country_CA	-0.165776	0.165776
18	$subscription_type_Free$	-0.144746	0.144746
12	$country_FR$	0.135067	0.135067

KNN using LMNN

```
# Train LMNN on training data ---
lmnn = LMNN(k=5, learn_rate=1e-6, max_iter=200)
lmnn.fit(X_train_scaled, y_train)

# Transform train, val, test sets ---
X_train_lmnn = lmnn.transform(X_train_scaled)
X_val_lmnn = lmnn.transform(X_val_scaled)
X_test_lmnn = lmnn.transform(X_test_scaled)

# Select best k using validation accuracy ---
k_values = range(1, 21)
val_accuracies = []

for k in k_values:
```

```
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train_lmnn, y_train)
y_val_pred = knn.predict(X_val_lmnn)
acc = accuracy_score(y_val, y_val_pred)
val_accuracies.append(acc)

best_k = k_values[np.argmax(val_accuracies)]
print("Best k (with LMNN) based on validation set:", best_k)

# Plot validation accuracy vs k ---
plt.plot(k_values, val_accuracies, marker='o')
plt.xlabel("Number of Neighbors (k)")
plt.ylabel("Validation Accuracy (LMNN)")
plt.title("Choosing k using Validation Set (after LMNN)")
plt.xticks(k_values)
plt.show()
```

```
# Train final KNN (best_k) on combined train+val and test it ---
knn = KNeighborsClassifier(n_neighbors=12)
knn.fit(np.vstack((X_train_lmnn, X_val_lmnn)), np.hstack((y_train, y_val)))
# Predict probabilities on test set ---
y_test_prob = knn.predict_proba(X_test_lmnn)[:, 1]
# ROC curve and optimal cutoff ---
fpr, tpr, thresholds = roc_curve(y_test, y_test_prob)
auc = roc_auc_score(y_test, y_test_prob)
optimal_idx = (tpr - fpr).argmax()
optimal_cutoff = thresholds[optimal_idx]
print(f"AUC (LMNN + KNN): {auc:.3f}")
print(f"Optimal probability cutoff: {optimal_cutoff:.3f}")
# Confusion matrix using optimal cutoff ---
y_test_pred = (y_test_prob >= optimal_cutoff).astype(int)
cm = confusion_matrix(y_test, y_test_pred)
print("Confusion Matrix (LMNN + KNN):")
print(cm)
# Compute performance metrics ---
```

```
tn, fp, fn, tp = cm.ravel()
accuracy = (tp + tn) / (tp + tn + fp + fn)
misclassification_error = 1 - accuracy
precision = tp / (tp + fp) if (tp + fp) != 0 else 0
recall = tp / (tp + fn) if (tp + fn) != 0 else 0 # Sensitivity
specificity = tn / (tn + fp) if (tn + fp) != 0 else 0
f1_{score\_val} = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else 0
auc_val = roc_auc_score(y_test, y_test_prob)
# Print metrics ---
print(f"\nAccuracy: {accuracy:.3f}")
print(f"Misclassification Error: {misclassification_error:.3f}")
print(f"Precision: {precision:.3f}")
print(f"Sensitivity (Recall): {recall:.3f}")
print(f"Specificity: {specificity:.3f}")
print(f"F1-Score: {f1_score_val:.3f}")
print(f"AUC: {auc_val:.3f}")
AUC (LMNN + KNN): 0.524
Optimal probability cutoff: 0.333
Confusion Matrix (LMNN + KNN):
[[723 463]
[232 182]]
Accuracy: 0.566
Misclassification Error: 0.434
Precision: 0.282
Sensitivity (Recall): 0.440
Specificity: 0.610
F1-Score: 0.344
AUC: 0.524
```