Turing Machines and Chomsky Hierarchy

Formal Languages and Abstract Machines

Week 11

Baris E. Suzek, PhD

Outline

- Review of last week
- Universal Turing Machine
- Countable/uncountable Sets
- Linear Bounded Automata
- Chomsky Hierarchy and Recursively Enumerable Languages

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^R

Regular Languages

*a**

a*b*

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an infinite loop

Standard Turing Machine

The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
 Initial state Final state

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 Initial Final Configuration

For all $w \in D$ Domain

Example

The function
$$f(x, y) = x + y$$
 is computable

x, y are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

Turing machine for function f(x, y) = x + y

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- · Repeat:
 - Find rightmost \$, replace it with 1

· Go to right end, insert 1

Until no more \$ remain

Definition of Algorithm:

An algorithm for function f(w) is a Turing Machine which computes f(w)

Algorithms are Turing Machines

When we say:

There exists an algorithm

We mean:

There exists a Turing Machine that executes the algorithm

Variations of the Standard Model

Turing machines with:

- Stay-Option
 - · Semi-Infinite Tape
 - · Off-Line
 - Multitape
 - Multidimensional

Multitape Turing Machines

Time 2

$$\underbrace{q_1}^{(b,f) \to (g,d), L, R} q_2$$

Outline

- Review of last week
- Universal Turing Machine
- Countable/uncountable Sets
- Linear Bounded Automata
- Chomsky Hierarchy and Recursively Enumerable Languages

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

· Reprogrammable machine

· Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L)$$
 $\delta(q_2, b) = (q_3, c, R)$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $\,M\,$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
                           (Turing Machine 2)
     00100100101111,
     111010011110010101,
     ..... }
```

Outline

- Review of last week
- Universal Turing Machine
- Countable/uncountable Sets

- Linear Bounded Automata
- Chomsky Hierarchy and Recursively Enumerable Languages

Infinite sets are either:

Countable

or

Uncountable

Countable set:

```
Any finite set or
```

Any Countably infinite set:

There is a one to one correspondence between elements of the set and Natural numbers

Example: The set of even integers is countable

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Proof

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Correspondence:

Positive integers:

Doesn't work:

we will never count $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$ numbers with nominator 2: $\frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \dots$

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1} \qquad \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1} \qquad \frac{2}{2} \qquad \frac{2}{3} \qquad \cdots$$

3	3	
$\overline{1}$	$\overline{2}$	• • •

$$\frac{4}{1}$$
 ...

1	1	1	1	
1	$\overline{2}$	3	$\overline{4}$	• • •
2	2	2		
<u>1</u>	$\overline{2}$	$\frac{1}{3}$	•	

3	3	
1	2	

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \xrightarrow{\frac{1}{2}} \frac{1}{3} \xrightarrow{\frac{1}{4}} \cdots$$

$$\frac{2}{1} \xrightarrow{\frac{2}{2}} \frac{2}{3} \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \dots$$

Correspondence:

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumeration S

$$\begin{array}{c} \text{output} \\ \text{(on tape)} \end{array} \begin{array}{c} s_1, s_2, s_3, \dots \\ \\ \end{array}$$

Finite time: t_1, t_2, t_3, \dots

Enumeration Machine

Configuration

Time 0

Time t_1

Time
$$t_2$$

Time
$$t_3$$

Observation:

If for a set there is an enumeration procedure, then the set is countable

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe an enumeration procedure

Naive procedure:

Produce the strings in lexicographic order:

a

aa

aaa

aaaa

• • • • •

Doesn't work:

strings starting with b will never be listed (violates the generation in finite time rule)

Better procedure: Proper Order

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

• • • • • • • • •

length 1 b aaab acba length 2 bbbcca cb CCaaa aab length 3 aac

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Definition: A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set

The powerset 2^S of S is uncountable

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$
Elements of S

Elements of the powerset have the form:

$$\{s_1, s_3\}$$

$$\{s_5, s_7, s_9, s_{10}\}$$

....

We encode each element of the power set with a binary string of 0's and 1's

Powerset element	Encoding				
	<i>s</i> ₁	s_2	<i>s</i> ₃	s_4	• • •
{ <i>s</i> ₁ }	1	0	0	0	• • •
$\{s_2,s_3\}$	0	1	1	0	• • •
$\{s_1, s_3, s_4\}$	1	0	1	1	• • •

Let's assume (for contradiction) that the powerset is countable.

Then: we can enumerate the elements of the powerset

Powerset

element		Encoding				
t_1	1	0	0	0	0	• • •
t_2	1	1	0	0	0	• • •
t_3	1	1	0	1	0	• • •

Take the powerset element whose bits are the complements in the diagonal

New element:
$$t = 0011...$$
 (binary complement of diagonal)

The new element t must be some t_i in the powerset

However, that's impossible:
By construction, t differs
from each t_i , since their nth digits differ

Hence, t cannot occur in the enumeration. There is something we can't count.

Contradiction!!!

Since we have a contradiction:

The powerset 2^S of S is uncountable

An Application: Languages

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

A language is a subset of S:

$$L = \{aa, ab, aab\}$$

Example Alphabet: $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\{\lambda\}, \{a\}, \{a,b\}, \{aa,ab,aab\}, \ldots\}$$

 $L_1 \ L_2 \ L_3 \ L_4 \ \ldots$

uncountable

Languages: uncountable

Turing machines: countable

There are more languages than Turing Machines

Conclusion:

There are some languages not accepted by Turing Machines

(These languages cannot be described by algorithms)

Languages not accepted by Turing Machines

Outline

- Review of last week
- Universal Turing Machine
- Countable/uncountable Sets
- Linear Bounded Automata
- Chomsky Hierarchy and Recursively Enumerable Languages

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power with Deterministic LBA's?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L = \{a^{n!}\}$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

Context-Sensitive Grammars:

Productions

String of variables and terminals

String of variables and terminals

and:
$$|u| \leq |v|$$

The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

A language L is context sensistive if and only if L is accepted by a Linear-Bounded automaton

Outline

- Review of last week
- Universal Turing Machine
- Countable/uncountable Sets
- Linear Bounded Automata
- Chomsky Hierarchy and Recursively Enumerable Languages

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Context-sensitive

Context-free

Regular

Unrestricted Grammars:

Productions

String of variables and terminals

String of variables and terminals

Example unrestricted grammar:

$$S \to aBc$$

$$aB \to cA$$

$$Ac \to d$$

Recursively Enumerable Languages

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

We will prove:

There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

A Language which is not Recursively Enumerable

Non Recursively Enumerable

We want to find a language that is not Recursively Enumerable

This language is not accepted by any Turing Machine

Consider alphabet $\{a\}$

$$a^1 a^2 a^3 a^4 \dots$$

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

Example language accepted by $\,M_{i}\,$

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Alternative representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$	0	1	0	1	0	1	0	• • •

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists from the 1's in the diagonal

Consider the language \overline{L}

$$L = \{a^i : a^i \in L(M_i)\}$$

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

Theorem:

Language \overline{L} is not recursively enumerable

Proof:

Assume for contradiction that

 \overline{L} is recursively enumerable

There must exist some machine $\,M_{k}\,$ that accepts $\,\overline{L}\,$

$$L(M_k) = \overline{L}$$

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_1$?

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_2$?

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_3$?

Similarly:
$$M_k \neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$
 or $a^i \notin L(M_k)$ $a^i \notin L(M_i)$

Therefore, the machine $\,M_{\,k}\,\,$ cannot exist

Therefore, the language $\,L\,$ is not recursively enumerable

End of Proof

Observation:

There is no algorithm that describes $\,L\,$

(otherwise \overline{L} would be accepted by some Turing Machine)

Non Recursively Enumerable

Turing acceptable languages and Enumeration Procedures

We will prove:

 A language is recursively enumerable if and only if there is an enumeration procedure for it

Theorem:

If language L is recursively enumerable then there is an enumeration procedure for it

Proof:

Enumeration Machine

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows:

 \mathcal{A} aa ah ba bbaaa aah

NAIVE APPROACH

Enumeration procedure

Repeat: \widetilde{M} generates a string w

M checks if $w \in L$

YES: print w to output

NO: ignore W

Problem: If $w \notin L$

machine M may loop forever

BETTER APPROACH

 \widetilde{M} Generates first string w_1

M executes first step on w_1

 \widetilde{M} Generates second string w_2

M executes first step on w_2 second step on w_1

\widetilde{M} Generates third string w_3

M executes first step on w_3 second step on w_2 third step on w_1

And so on.....

. . .

If for any string w_i machine M halts in a final state then it prints w_i on the output

Theorem:

If for language L there is an enumeration procedure then L is recursively enumerable

Proof: Input Tape \mathcal{W} Machine that accepts L Enumerator Compare for L

Turing machine that accepts L

For input string w

Repeat:

- \cdot Using the enumerator, generate the next string of L
- Compare generated string with w If same, accept and exit loop

End of Proof

We have proven:

A language is recursively enumerable if and only if there is an enumeration procedure for it

Theorem:

A language $\,L\,$ is recursively enumerable if and only if $\,L\,$ is generated by an unrestricted grammar

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Context-sensitive

Context-free

Regular