- 1. Considereu el cos $\mathbb{Q}[\sqrt{D}]$ amb D lliure de quadrats. I sigui $B = \mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} | a, b \in \mathbb{Z}\}$ un domini dins el cos. Proveu que B és enter sobre \mathbb{Z} . És B integrament tancat? Trobeu la clausura entera de \mathbb{Z} en el cos $\mathbb{Q}[\sqrt{D}]$.
- 2. Trobeu l'anell d'enters del cos $\mathbb{Q}(e^{2\pi i/N})$ amb N un natural.
- 3. Considera k(X) el cos de fraccions en l'anell de polinomis en la variable X a coeficients en un cos k algebraicament tancat. Sigui $f(X,Y) \in k[X,Y]$ amb X,Y variables irreductible. Estudieu quan $k[C_f] := k[X,Y]/f(X,Y)$ és noetherià. Estudieu quan $k[C_f]$ té dimensió de Krull 1.
- 4. Considera $k[C_f]$ amb $f(X,Y) = Y^2 X^3$. Proveu que $k[C_f]$ no és integrament tancat. Qui seria la clausura entera de k[X] dins el cos de fraccions de $k[C_f]$?
- 5. Considera $k[C_f]$ amb $f(X,Y) = Y^2 X^3 X^2$. Proveu que $f(X,Y) \in k[X,Y]$ és irreductible i trobeu la clausura entera de k[X] dins el cos de fraccions de $k[C_f]$.
- 6. Considera $k[C_f]$ on $f = Y^2 X^3 aX b \in k[X, Y]$ on defineix una corba el.líptica. Demostreu que $k[C_f]$ és un domini de Dedekind.
- 7. Penseu els tres exercicis anteriors amb k no algebraicament tancat.
- 8. Trobeu qui són tots els ideals maximals de k[X,Y] amb k algebraicament tancat on k[X,Y] és anell en dues variables X,Y a coeficients en el cos k algebraicament tancat.
- 9. Trobeu tots els ideals maximals de $k[C_f]$ quan $f(X,Y) \in k[X,Y]$ irreductible amb k algebraicament tancat.
- 10. Sigui A un anell commutatiu. Son equivalents: (1) tot ideal de A és principal, (2) tot ideal primer de A és principal.
- 11. Sigui A un domini llavors

$$A = \bigcap_{P \in Spec(A)} A_{(P)} = \bigcap_{M \in Spec_M(A)} A_{(M)}$$

- on Spec(A) són tots els ideals primers del domini A i $A_{(P)}$ és la localització de l'anell A amb l'ideal primer P.
- 12. Considera $f(X,Y) = Y^2 X^3(1-X)$ i observem que $k[C_f]$ és un domini però no integrament tancat. Trobeu la clausura entera dins el cos de fraccions de $k[C_f]$.
- 13. Sigui A un anell commutatiu. Siguin I_1, \ldots, I_n n ideals de A. Suposem que I_i i I_j son coprimers si $i \neq j$. Siguin donats $y_1, \ldots, y_n \in A$. Llavors existeix $y \in A$ complint que per a tot $i = 1, \ldots, n$ amb $y y_i \in I_i$.
- 14. Sigui A un domini de Dedekind. Demostreu que tot ideal de A es pot generar amb dos elements de A.
- 15. Si A un domini de Dedekind on té un número finit d'ideals maximals, llavors A és un domini d'ideals principals.
- 16. Proveu que el nombre de classes de $\mathbb{Q}(\sqrt{-11})$ és 1.
- 17. Sigui $d = p_1 \cdot \ldots \cdot p_n$ un enter lliure de quadrats amb p_i primers diferents. Sigui $L = \mathbb{Q}(\sqrt{-d})$. Proveu que el grup de classes de l'anell d'enters de L conté un subgrup isomorf a $(\mathbb{Z}/(2))^{n-1}$.
- 18. Sigui $K = \mathbb{Q}(\sqrt{m})$ amb K/\mathbb{Q} de grau 2, $G = Gal(K/\mathbb{Q}) = \{\sigma, id\}$. Sigui $\alpha \in K^*$ on $\sigma(\alpha)\alpha = 1$. Demostreu existeix $\gamma \in \mathcal{O}_K$, l'anell d'enters de K, complint $\alpha = \sigma(\gamma)/\gamma$.

- 19. Demostreu que el nombre de classes de $\mathbb{Q}(\sqrt{-p})$ és senar si $p \equiv 3 \pmod{4}$.
- 20. Demostreu que el nombre de classes de $\mathbb{Q}(\sqrt{-p})$ és parell si $p \equiv 1 \pmod{4}$.
- 21. Sigui k un cos de $char(k) \neq 2$. Sigui $d(X) \in k[X]$ un polinomi lliure de quadrats.
 - Proveu que $B := k[x][\sqrt{-d(X)}]$ és un domini de Dedekind.
 - Si $d(x) = \prod_{i=1}^{N} (X b_i)$ amb $b_i \in k$ amb N senar o que -1 no és un quadrat en el cos k. Demostreu que $C\ell(B)$ conté un subgrup isomorf a $(\mathbb{Z}/(2))^{N-1}$.
 - Si k finit $C\ell(B)$ és un grup finit, però no es veritat per k no finit. Doneu un exemple per tal que $C\ell(B)$ no és finit.
 - Si $d(X) = \alpha X^6 + 3X^4 + 3X^2 + 1$ amb α convenientment triat, demostreu que llavors $C\ell(B)$ conté un element d'ordre 3.
- 22. Calculeu la ramificació de l'extensió $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ amb d enter lliure de quadrats.
- 23. Calculeu la ramificació de l'extensió $\mathbb{Q}(e^{2\pi i/p})/\mathbb{Q}$ amb p primer. Quina extensió $L:=\mathbb{Q}(\sqrt{d})$ quadràtica es troba dins de $\mathbb{Q}(e^{2\pi i/p})$?
- 24. Sigui L/K una extensió finita i separable. Sigui A un domini de Dedekind amb cos de fraccions K, i B la clausura entera de A en L. Sigui P un ideal maximal de A. Construïu L/K de grau 3 i P complint $PB = Q(Q')^2$ amb Q, Q' ideals maximals de B.
- 25. Sigui A un domini de Dedekind amb cos de fraccions K. Sigui P un ideal maximal de A, i sigui $f(Y) \in A[X]$ P-Eisenstein. Sigui β una arrel de f(Y) i escrivim $L = K(\beta)$. Sigui B la clausura de A en L. Proveu que $PB = M^{deg(f)}$ amb M ideal maximal de B.
- 26. Sigui $L = \mathbb{Q}(\sqrt{-5}, \sqrt{-1})$ i $K = \mathbb{Q}(\sqrt{-5})$. Proveu que l'extensió entre els anells d'enters de L i K és no-ramificada.
- 27. Denotem ara $K=\mathbb{Q}(\sqrt{-14})$ i $L=K(\gamma)$ amb $\gamma=\sqrt{2\sqrt{2}-1}$. Demostreu que cap primer de l'anell d'enters de K ramifica en l'anell d'enters de L.
- 28. Sigui $f(X,Y) \in \mathbb{Z}[X,Y]$ un polinomi irreductible no-constant. Sigui p un primer i denotem per $f_p(X,Y) \in \mathbb{F}_p[X,Y]$ la reducció modul p del polinomi. Tenim una aplicació natural $\varphi_p : \mathbb{Z}[X,Y]/(f) \to \mathbb{F}_p[X,Y]/(f_p)$ que indueix una aplicació entre ideals maximals. Demostreu que els ideals maximals de $\mathbb{Z}[X,Y]/(f)$ estan amb bijecció amb la unió disjunta variant p dels ideals maximals de $\mathbb{F}_p[X,Y]/(f_p)$ via el morfisme φ_p .