Machine Learning Exercise 4

何舜成

2012011515

1. Give a proof of $VC(\mathcal{H}) = VC(\Phi)$

Proof:

Given the condition $VC(\Phi) = d$, we know $\exists z_1, z_2, \dots, z_d$ such that

$$|\{(\phi(z_1), \cdots, \phi(z_d))|\phi \in \Phi\}| = 2^d$$

and there are no z_1, \dots, z_d, z_{d+1} such that

$$|\{(\phi(z_1),\cdots,\phi(z_{d+1})|\phi\in\Phi\}|=2^{d+1}$$

Define set $\mathcal{S}_Z = \{(f(x_1), \dots, f(x_d)) | f \in \mathcal{H}\}$ and $\mathcal{T}_Z = \{(\phi(z_1), \dots, \phi(z_d)) | \phi \in \Phi\}$ for a fixed sequence $Z = (z_1, \dots, z_d), z_i = (x_i, y_i).$

Let $g_Z(S) = (I(y_1 \neq s_1), \dots, I(y_d \neq s_d)) = (y_1, \dots, y_d) \oplus (s_1, \dots, s_d)$ (\oplus stands for XOR). Since for all binary sequence $S_1, S_2, S_1 \neq S_2, g_Z(S_1) \neq$ $g_Z(S_2)$ holds true, and for all binary sequence $T, \exists S_T$ such that $g_Z(S_T) =$ T, function $g_Z(\cdot) : \mathcal{S}_Z \to \mathcal{T}_Z$ is **bijection**, and two sets \mathcal{S}_Z and \mathcal{T}_Z are equipotent.

If $VC(\Phi) = d$, then $\exists z_1, z_2, \cdots, z_d$ such that

$$|\{(f(x_1),\cdots,f(x_d))|f\in\mathcal{H}\}|=|\{(\phi(z_1),\cdots,\phi(z_d))|\phi\in\Phi\}|=2^d$$

and for all z_1, \dots, z_d, z_{d+1}

$$|\{(f(x_1), \cdots, f(x_{d+1}))| f \in \mathcal{H}\}| = |\{(\phi(z_1), \cdots, \phi(z_{d+1})| \phi \in \Phi\}| \neq 2^{d+1}$$

Therefore $VC(\mathcal{H}) = d$, and vice versa.

2. Prove the equivalence of the two optimization problems

$$\max_{w,b,t} t$$

$$s.t. \quad y_i(w^T x_i + b) \ge t, \forall i \in [n]$$

$$||w|| = 1$$

and

$$\min_{w,b} \quad \frac{1}{2} ||w||^2$$
s.t.
$$y_i(w^T x_i + b) \ge 1, \forall i \in [n]$$

Proof:

The primal problem \Leftrightarrow

$$\max_{w,b,t} \quad \frac{t}{||w||}$$

$$s.t. \quad y_i((\frac{w}{t})^T x_i + \frac{b}{t}) \ge 1, \forall i \in [n]$$

$$||w|| = 1$$

Let $v = \frac{w}{t}$ and $c = \frac{b}{t}$, then the primal \Leftrightarrow

$$\max_{v,c} \quad \frac{1}{||v||}$$

$$s.t. \quad y_i(v^T x_i + c) \ge 1, \forall i \in [n]$$

It is obvious that maximizing $\frac{1}{||v||}$ is equivalent to minimizing $\frac{1}{2}||v||^2,$ and the primal \Leftrightarrow

$$\begin{aligned} & \min_{v,c} & \frac{1}{2} ||v||^2 \\ & s.t. & y_i(v^T x_i + c) \ge 1, \forall i \in [n] \end{aligned}$$

3. Give the dual problem of the latter one of Ex 2, namely the dual problem of

$$\min_{w,b} \quad \frac{1}{2} ||w||^2$$
s.t.
$$y_i(w^T x_i + b) \ge 1, \forall i \in [n]$$

Solution:

Define the Langrangian function

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^T x_i + b) - 1), \forall i \in [n], \alpha_i \ge 0$$

Set the partial derivatives to zero, w.r.t. \boldsymbol{w} and \boldsymbol{b} respectively, and we get

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

Therefore

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i (y_i (w^T x_i + b) - 1)$$

$$= \frac{1}{2} w^T w - \sum_{i=1}^n \alpha_i y_i w^T x_i - \sum_{i=1}^n \alpha_i y_i b + \sum_{i=1}^n \alpha_i$$

$$= \frac{1}{2} w^T \sum_{i=1}^n \alpha_i y_i x_i - w^T \sum_{i=1}^n \alpha_i y_i x_i - b \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n$$

$$= -\frac{1}{2} w^T \sum_{i=1}^n \alpha_i y_i x_i + \sum_{i=1}^n \alpha_i$$

$$= -\frac{1}{2} (\sum_{i=1}^n \alpha_i y_i x_i)^T \sum_{i=1}^n \alpha_i y_i x_i + \sum_{i=1}^n \alpha_i$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$

The dual problem can be described as follow

$$\begin{aligned} \max_{\alpha} & \sum_{i=1}^{n} -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\ s.t. & \alpha_{i} \geq 0, \forall i \in [n] \\ & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{aligned}$$