B.

Perform encryption and decryption using the RSA algorithm. You need to describe the detailed procedure, including using exponentiation modular arithmetic to compute x^y mod z

Answer:

Given Data:

Prime Numbers P = 3, Q = 11

Encryption Key e = 7

Plain Text = 5 Decryption Key = ? CipherText = ?

Step	Example
Choose two large prime numbers P and Q and compute N and Z	P=3 Q=11 N = P*Q = 33 Z = Φ (n) = (P-1)*(Q-1) = 20
Choose decryption key d that is relative prime to Z	d=3 Note: relative prime between d and Z means that d and Z have no prime factors in common, that is, their only common factors is 1. $gcd(Z,d)=1$; $1 < d < Z$;
Choose encryption key e so that "e*d mod Z=1", or "e = d^{-1} mod Z" Note: $e < Z$	This statement can be restated as e * d = Z* n + 1 e * d = Z * n + 1 where n is an integer e * 3 = 20 * n + 1 if $n = 1$, $e * 3 = 21 \Longrightarrow e = 7$
 Encryption E(M) = M^e mod N = C Note: How to compute the mod of exponentiation Use Google search Use Widnows' calculator Starts ==> Programs ==> Accessaries ==> Calculator Or you can use the Exponentiationprocedure described in Modular Arithmetic. Concept about congruent modulo n is also required for this approach. 	Assume the message, M, is 19(Note: M must be smaller than N) C = cipher text = E(M) = M^e mod N = (5^7) mod 33 C = 14
Decryption $D(C) = C^d \mod N$	Decrypt a message = D(C) = C^d mod N = 14^3 mod 33 = 5 <==== Thus the answer is correct

A.

Perform encryption and decryption using the RSA algorithm. You need to describe the detailed procedure, including using exponentiation modular arithmetic to compute x^y mod z

Answer:

Prime Numbers P = 7, Q = 17

Decryption Key d = 5Plain Text = 19

Encryption Key = ? CipherText = ?

Step	Example
Choose two large prime numbers P and Q and compute N and Z	P=7 Q=17 N = P*Q = 119 $Z = \Phi(n) = (P-1)*(Q-1) = 96$
Choose decryption key d that is relative prime to Z	d = 5 Note: relative prime between d and Z means that d and Z have no prime factors in common, that is, their only common factors is 1. gcd(Z,d)=1; 1 < d < Z;
Choose encryption key e so that "e*d mod Z=1", or "e = d^{-1} mod Z" Note: $e < Z$	This statement can be restated as e * d = Z* n + 1 e * d = Z * n + 1 where n is an integer e * 5 = 96 * n + 1
	if $n = 1$, $e * 5 = 97 ==>$ not a solution if $n = 2$, $e * 5 = 193 ==>$ not a solution if $n = 3$, $e * 5 = 289 ==>$ not a solution if $n = 4$, $e * 5 = 385 ===>$ $e = 77$
 Encryption E(M) = M^e mod N = C Note: How to compute the mod of exponentiation Use Google search Use Widnows' calculator Starts ==> Programs ==> Accessaries ==> Calculator Or you can use the Exponentiationprocedure described in Modular Arithmetic. Concept about congruent modulo n is also required for this approach. 	Assume the message, M, is 19(Note: M must be smaller than N) C = cipher text = E(M) = M^e mod N = (19^77) mod 119 C = 66
Decryption D(C) = C^d mod N	Decrypt a message = D(C) = C^d mod N = 66^5 mod 119 = 19 <==== Thus the answer is correct

Draw a diagram to show the steps described in the following process (Page 81 of the book "Network Security Essentials, Applications and Standards, Second Edition")

This question assumes that Alice has a private key and a public key .

When Bob wishes to communicate with Alice, Bob can do the following:

- 1. Bob prepares a message.
- 2. Bob creates a session key.
- 3. Bob encrypts the message using symmetric key cryptography and the session key.
- 4. Bob encrypts the session key using asymmetric key cryptography and Alice's public key.
- 5. Bob attaches the encrypted session key to the encrypted message and sends it to Alice.
- 6. Alice decrypts the session key using her private key.
- 7. Alice uses the decrypted session key to decrypt the message.

The diagram should include Alice, Bob, and Eve.

Answer:

Msg => Message

S_{Alice} => Private Key of Alice

P_{Alice} => Public Key of Alice

S_{Bob} => Private Key of Bob

P_{Bob} => Public Key of Bob

What Bob knows and does	What Eve (the public) knows and does	What Alice knows and does
Msg , S _{Bob} , P _{Bob} , PAlice	PBob, PAlice	S _{Alice} , P _{Alice}
Bob Session key Session Key Session Key Session Key Session Key Asymmetric Key Cryptography Encryption Alg. Encrypted Session Key Session Key Asymmetric Key Cryptography Encryption Alg.	Encrypted Msg (i.e. Msg+SessionKey) + Encrypted Session key (i.e.Session Key + Public Key of Alice(P _{Alice}))	Encrypted Session Key Asymmetric Key Cryptography Decryption Alg. Decrypted Session Key Decrypted Session Key Decrypted Message