Sine Wave	**Bit Rate and Baud Rate**	**Shannon-Hartley Theorem**	
Formula $y(t) = A \sin(2\pi f t + \phi)$ $T = \frac{1}{f}$ $f = \frac{1}{T}$ $\Delta \phi = 2\pi f \Delta t$ $V_{\rm rms} = \frac{V_m}{\sqrt{2}}$ Description General Form Period Frequency Phase Shift RMS Voltage	Formula $R = B \log_2(M)$ $\operatorname{Baud} = \frac{\operatorname{Bit Rate}}{\log_2(\operatorname{Number of Levels})}$ Description Bit Rate Baud Rate	Formula $C = B \log_2(1 + \mathrm{SNR}_{\mathrm{linear}})$ $\mathrm{SNR}_{\mathrm{linear}} = 10^{\frac{\mathrm{SNR}_{\mathrm{dB}}}{10}}$ Description Channel Capacity SNR (linear)	
Power and Loss	**Antenna**	**Signal Types**	
Formula $L=a imes d$ $P_{ m received}=P_{ m transmitted}-L_{ m total}$ $P_{ m W}=10^{rac{P_{ m dBm}}{10}} imes10^{-3}$ Description Power Loss Received Power dBm to Watts	Formula $A_{ m eff}=rac{\lambda^2 G_{ m lin}}{4\pi}$ $G_{ m lin}=10^{rac{G_{ m dBi}}{10}}$ Description Effective Area Gain (linear)	Type Analog Signal Digital Signal Description Continuous signal that varies over time (e.g., sine wave, voice signal) Discrete signal with distinct levels (e.g., binary data)	
Modulation Schemes	**Line Coding Schemes**	**Constellation Diagrams**	
Scheme ASK (Amplitude Shift Keying) FSK (Frequency Shift Keying) PSK (Phase Shift Keying) QAM (Quadrature Amplitude Modulation) Description Varies amplitude Varies frequency Varies phase Combines amplitude and phase variations	Scheme NRZ-L (Non-Return to Zero-Level) Manchester AMI (Alternate Mark Inversion) Description Binary 1 is high, 0 is low Binary 1 is low-to-high transition, 0 is high-to-low transition Binary 1 alternates polarity, 0 is zero voltage	Scheme QPSK 8-QAM Points Four points at 0°, 90°, 180°, 270° Eight points with different amplitudes and phases	
Frequency Spectrum			
Signal Sine Wave Square Wave NRZ Data Stream	Spectrum Single frequency component Fundamental frequency and odd DC component and harmonics of		

Conversion Table

Unit	Conversion	Unit	Conversion	Unit	Conversion	Unit	Conversion
1 MHz	$1 imes10^6 ext{Hz}$	1 kHz	$1 imes10^3 ext{Hz}$	1 mW	$1 imes 10^{-3}$ W	1 μW	$1 imes10^{-6}$ W
1 Gbps	$1 imes10^9$ bps	1 Mbps	$1 imes10^6$ bps	1 kbps	$1 imes10^3$ bps	1 Baud	1 symbol per second