Mathematical Logic (MATH6/70132;P65) Problem Class, week 6

[1] Suppose \mathcal{L} is a first-order language with relation, function and constant symbols:

$$(R_i : i \in I); (f_i : j \in J); (c_k : k \in K),$$

where R_i is of arity m_i and f_j is of arity n_j .

- (a) Based on what you know to be the definition of 'isomorphism' in the case of groups, or rings (or graphs or orderings), write down a definition of what it should mean for two $\mathcal L$ -structure $\mathcal A$ and $\mathcal B$ to be isomorphic.
- (b) Suppose α is an isomorphism from the $\mathcal L$ -structure $\mathcal A$ to the $\mathcal L$ -structure $\mathcal B$. Suppose v is a valuation in $\mathcal A$. Let w be the vaulation in $\mathcal B$ with $w(x_i)=\alpha(v(x_i))$ for all variables x_i . Prove that for every $\mathcal L$ -formula ϕ ,

v satisfies ϕ in $\mathcal{A} \Leftrightarrow w$ satisfies ϕ in \mathcal{B} .

(Use induction on the length of $\phi ...$)

(c) With A, B as in (b), show that for every L-formula ϕ :

$$\mathcal{A} \models \phi \Leftrightarrow \mathcal{B} \models \phi$$
.

[2] It's difficult to do any reasoning in mathematics without using the equality symbol. In 1st-order logic, we use the following terminology to handle equality. We will say more about this during the lectures after the class.

A first-order language with equality $\mathcal{L}^{=}$ is a 1st-order language with a distinguished 2-ary relation symbol = . An $\mathcal{L}^{=}$ -structure \mathcal{A} is normal if the symbol = is interpreted as equality in \mathcal{A} .

We write the more usual ' $x_1 = x_2$ ' instead of ' $= (x_1, x_2)$ ' in $\mathcal{L}^=$ -formulas.

Suppose $\mathcal{L}^{=}$ is a language with equality which also has a 2-ary relation symbol R.

- (a) Suppose $n \in \mathbb{N}$. Write down a closed $\mathcal{L}^=$ -formula σ_n with the property that, for every normal $\mathcal{L}^=$ -structure \mathcal{A} we have $\mathcal{A} \models \sigma_n$ iff the domain of \mathcal{A} has at least n elements.
- (b) Suppose $n \in \mathbb{N}$. Write down a closed $\mathcal{L}^=$ -formula τ_n with the property that, for every normal $\mathcal{L}^=$ -structure \mathcal{A} we have $\mathcal{A} \models \tau_n$ iff the domain of \mathcal{A} has exactly n elements.
- (c) Find a closed $\mathcal{L}^{=}$ formula θ with the property that for every positive $n \in \mathbb{N}$:

there is a normal $\mathcal{L}^=$ structure \mathcal{A} with n elements in its domain and $\mathcal{A} \models \theta$ if and only if n is even.

(d) Suppose = and R are the only relation symbols in the language and $J=K=\emptyset$. Can you construct your formula θ in (c) so that any two countably infinite normal models of θ are isomorphic? Can you find two non-isomorphic, infinite normal models of such a θ ?