How 'real-world' complexity impacts visual search: insights from a web-based foraging task.

Enilda M. Velazquez, University of Central Florida, enilda.velazquez@ucf.edu Nelson A. Roque, The Pennsylvania State University, <u>nur375@psu.edu</u> P.A. Hancock, University of Central Florida, peter.hancock@ucf.edu

Background

Single vs. Multi-target Search

- · Single target search: looking for one target among many distractors.
- Multi-target search: looking for many targets among many distractors.

Visual Foraging Task

- Developed to address concerns of ecological validity in single target search tasks: the real world is rarely comprised of single targets.
- · A multi-target search task in which observers are instructed to search for all of one kind of target among many distractors [2]

Information Processing → Search Strategy: Theories

- Optimal Foraging Theory [1]: observers maximize target acquisition for targets with maximum information and lowest energetic cost.
- Increasing the information necessary for acquisition \rightarrow increases cost to acquire target \rightarrow observer changes search strategy or search slows [1, 3, 4]

Methods

- 14 block foraging task
- Conjunctive search for 2 experimental sets of stimuli and 1 control set of stimuli.
 - · Experimental sets were composed of images one additional layer of features per image.
 - · (1) background layer, (2) border layer, (3) writing layer Stop Signs Yield Signs

Layers

- Each block presented multiple pages of a pairwise stimuli combination.
- Each page contained 6 targets and 6 distractors.
- Participants foraged through as many pages as possible per block for 45 seconds.
- Counterbalancing of block-stimuli assignment was utilized.

Research Question

How does increasing stimuli complexity affect multi-target search behavior in a foraging task?

Hypothesis

As the stimuli become more complex, mean inter-target time is expected to become larger.

Results

Finding 1: ITT increased as the number of feature layers increased for all categories except the 3-layer stop sign condition.

Finding 2: Low between-individual variation of ITT across categories.

Finding 3: Performance variability was higher for the experimental categories vs the control category.

Stop Sign Performance

Exploratory Finding: Using a mobile device for the task decreased ITT, compared to using a non-mobile device.

Yield Sign Performance

Predictors	Estimates	CI	t	p	Predictors	Esti	mates	CI	t	р
Intercept	606.96	547.84 – 666.07	20.12	<0.001	Intercept	143	33.79	1081.00 – 1786.57	7.97	<0.001
Page	-1.4	-2.09 – -0.72	-4.03	<0.001	Page	-5	5.55	-6.76 – -4.34	-9	<0.001
Device Type	-162.34	-258.33 – -66.34	-3.31	0.001	Device Type	-11	12.63	-212.25 – -13.02	-2.22	0.027
(N) Target Layers	23.6	9.24 – 37.97	3.22	0.001	(N) Target Layers	-16	63.68	-265.56 — -61.79	-3.15	0.002
(N) Distractor Layers	27.64	13.27 – 42.01	3.77	<0.001	(N) Distractor Layers	-15	53.02	-254.90 – -51.14	-2.94	0.003
Random Effects					Random Effects					
σ^2	20841.97								5	9690.89
T ₀₀ Individual	T ₀₀ Individual			5124.02	T _{00 Individual}				4	7898.32
T _{00 Block}				304.12	T _{00 Block}				1	7598.62
ICC				0.69	ICC					0.52
N _{Block}				13	N _{Block}					13
N _{Individual}				215	N _{Individual}					216
Observations Marginal R ² / Conditional R ²	0.049 / 0.701			13905	Observations Marginal R ² / Conditional R ²	0.131	/ 0.586			12946
		Control Performance								
			Estim	nates	CI	t	p			
		Intercept	470	.19	422.14 – 518.24	19.19	<0.001			
		Page	-24	.53	-28.99 – -20.08	-10.8	<0.001			
		Device Type	-97	.97	-195.55 — -0.40	-1.97	0.049			
		(N) Target Layers	353	3.42	332.51 – 374.33	33.14	<0.001			
		Random Effects								
		σ^2 87460.45								
	T ₀₀ Individual				41402.02					
		ICC 0.32								
		N Individual					215			
		Observations Marginal R ² / Conditional R ²	0.226 /	[/] 0.475			3158			

Data Preparation

- All preparation done in R (v 4.2.2) and Python (v 3.11).
- Foraging task embedded into Qualtrics produced 2 databases: surveys + task.
- Event level task data → trial level aggregates by block
- Device meta-data retrieved from user-agent string and parsed.
- Qualtrics loaded and scored.
- Survey + task data joined in long format.
- Final N = 221
- Full package list available by request.

Conclusions

- Main hypothesis supported: as stimuli became more complex, ITT increased, except for the 3-layer stop sign condition.
- Stimuli complexity slowed foraging until the difference in complexity between target and distractor turned the search task from conjunctive search into a pop-out search.
- Low between-individual variation suggests that individuals forage at different baseline foraging rates that are consistent across categories.
- Main Limitation: when observers searched for the 3-layer stop sign paired with other stop signs, observer performance exhibited the performance predicted by the pop-out search effect.
- Thus, complexity defined by number of feature layers may not fully capture how complexity impacts 'real-world' foraging.

References

[1] Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. In Foraging theory. Princeton university press. https://doi.org/10.2307/j.ctvs32s6b

[2] Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual Foraging Tasks Provide New Insights into the Orienting of Visual Attention: Methodological Considerations. In Spatial Learning and Attention Guidance (pp. 3–21). https://doi.org/10.1007/7657_2019_21

[3] Treisman, A., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology.

https://doi.org/10.1016/0010-0285(80)90005-5

[4] Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. https://doi.org/10.3758/s13423-020-01859-9