$$\int_{y} \frac{f(3)}{3-z} d3 = \int_{\pi i}^{(2)} \int_{y} \frac{MATH 644}{3-z}$$
CHAPTER 5

Section 5.2: Winding Number

Contents

The Winding Number	2
Homologous Curves	6
Simply-Connected Regions	7
Logarithm	12

Created by: Pierre-Olivier Parisé Spring 2023 **Lemma 1.** If γ is a cycle and $a \notin \gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - a} \, d\zeta$$

is an integer.

Proof. Write $y = \sum_{j=1}^{N} \gamma_j$, γ_j are closed curve.

 $\int_{1}^{\infty} f(3) d3 = \sum_{i=1}^{N} \int_{y_{i}}^{y_{i}} f(3) d3.$

We may suppose that each vy is conticlifferent. (picavise). We can deal with only one of them. From now on, let y be a closed preuvise conf. diff. curve. y: [0,1] -> C.

Pefine $h(x) = \int_0^x \frac{y'(t)}{v(t)-a} dt$

then, th'bi) wists of th'bi) = x'bi) , except

at finitely many oc.

 $\frac{d}{dx}\left[\frac{-h(x)}{e}(y(x)-a)\right] = -h'(x)e^{-h(x)}$ = - y'/x) e + y'/xi) e-h/xi) (weight at finitely many se).

Since
$$e^{-h(x)}$$
 $(y(x)-a)$ is continuous, it must be constant in Lo_1i]

$$\Rightarrow e^{-h(i)}(y(i)-a) = e^{-h(0)}(y(0)-a)$$

$$= e^{0}(y(0)-a)$$

$$= y(i)-a (y closed curve)$$

Since $a \notin y$,
$$-h(i) = 1$$

$$e^{-h(i)} = 1$$

$$\Rightarrow h(i) = 2k\pi i \quad , \quad k \in \mathbb{Z}$$

So,
$$\frac{1}{2\pi i} \int_0^1 \frac{y'(t)}{y(t)-a} dt = \frac{h(1)}{2\pi i} = k.$$

DEFINITION 2. If γ is a cycle, then the **index** or **winding number** of γ about a is

$$n(\gamma,a) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - a} \, d\zeta \quad (a \not \in \gamma).$$

Proposition 3. Let γ be a cycle.

- (a) $n(\gamma, a)$ is an analytic function of a, for $a \notin \gamma$.
- **(b)** $n(\gamma, a)$ is constant in each component of $\mathbb{C}\backslash\gamma$.
- (c) $n(\gamma, a) \to 0$ as $a \to \infty$. In particular, $n(\gamma, a) = 0$ for any a in the unbounded component of $\mathbb{C}\backslash\gamma$.
- (d) $n(-\gamma, a) = -n(\gamma, a)$.
- (e) $n(\gamma_1 + \gamma_2, a) = n(\gamma_1, a) + n(\gamma_2, a)$.

Proof.

$$n(y,a) = \frac{1}{2\pi i} \int_{y} \frac{1}{3-a} d3$$

is analytic on C/y.

rs bounded by some
$$y_j^*$$
, where $y = \sum_j y_j$

 $\frac{1}{|3-a|} \leq \frac{1}{drst(\gamma,a)} \rightarrow 0, \quad a \rightarrow \infty.$ thuefore, it o is a polygonal curve as in thm. 4, $n(y,a) = n(\sigma,a) \leq \frac{|\sigma|}{a\pi} \frac{1}{dist(\sigma,a)} \rightarrow 0$ By Lumna 1, n(y, a) should be constant \Rightarrow $n(\gamma_1 a) = 0$ $\forall a \in \mathcal{N}$ where is the unbounded component of C/y. (d) Direct calculations.

(e) Direct calculations.

Z

Some Intuition:

① Difference in the argument.

Suppose
$$y(t) = r(t)e^{i\theta(t)}$$
 where

$$\bullet \qquad \gamma(0) = \gamma(1) .$$

Then,
$$n(y,0) = \operatorname{Re} \left[\frac{1}{2\pi i} \int_{y}^{1} \frac{1}{z} dz \right]$$

$$= \operatorname{Re} \left[\frac{1}{2\pi i} \int_{0}^{1} \frac{r'(t) e^{i\Theta(t)} + r(t) i\Theta'(t) e^{-i\Theta(t)}}{r(t) e^{i\Theta(t)}} \right]$$

$$= \operatorname{Re} \left[\frac{1}{2\pi i} \int_{0}^{1} \frac{r'(t)}{r(t)} + i \Theta'(t) dt \right]$$

$$= \frac{1}{2\pi} \int_{0}^{1} \Theta'(t) dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} \Theta'(t) dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} \Theta'(t) dt$$

Net change in the "argument" o by 271.

2 Rays and number of connected components.

Goal: Find nly, i).

i. Draw ray R, from 1 to 00.

in. Locate intersections of R, with

in Consider each connected component of y/k,

-b $n(y_{i,1}) = 1$

-> n(y2)1) = 1.

 $n(\gamma_1) = n(\gamma_1, 1) + n(\gamma_2, 1) = 2.$ Overall, Works for any rays:

$$h(y_i) = \sum_{j} n(y_{j+1}) = 2$$
.

¥

Homologous Curves

Definition 4. Closed curves γ_1 and γ_2 are **homologous** in a region Ω if $n(\gamma_1 - \gamma_2, a) = 0$ for all $a \notin \Omega$ and we write $\gamma_1 \sim \gamma_2$.

Remarks:

- Homology is an equivalence relation on curves in Ω .
- A closed curve is said to be **homologous to 0** if $n(\gamma, a) = 0$ for all $a \notin \Omega$. In this case, we write $\gamma \sim 0$.

EXAMPLE 5. Show that $\gamma_1(t) = r_1 e^{it}$ and $\gamma_2(t) = r_2 e^{it}$ $(0 \le t \le 2\pi)$ are homologous in $\Omega := \{z : |z| < R\}, \text{ where } r_1 < r_2 < R.$

$$m(y_1-y_{2_1}a) = n(y_1,a) - n(y_{2_1}a) = 0 - 0 = 0$$

DEFINITION 6. Let Ω be a bounded region in $\mathbb C$ bounded by finitely many piecewise continuously differentiable simple closed curves. The **positive orientation** of $\partial\Omega$ is a parametrization that has the following property:

(a) for each $t \in [0,1]$ where the derivative exists, there is an $\varepsilon(t) > 0$ such that $\gamma(t) + ui\gamma'(t) \in$ Ω , for all $u \in [0, \varepsilon(t)]$.

Notes:

- (1) When the positive orientation is chosen for $\partial\Omega$, then
 - $n(\partial\Omega, a) = 0$, for each $a \notin \overline{\Omega}$;
 - $n(\partial\Omega, a) = 1$, for each $a \in \Omega$.

EXAMPLE 7. Find the positive orientation of the boundary of the closed annulus $A := \{z : z \in A\}$ $r_1 \le |z| \le r_2\}.$ $\gamma_2(t) = rze^{it}$

Change y, into -y, to obtain positive orientation

SIMPLY-CONNECTED REGIONS

DEFINITION 8.

- (a) A region $\Omega \subset \mathbb{C}^*$ is called **simply-connected** if $\mathbb{C}^* \setminus \Omega$ is connected.
- (b) Equivalently, a region Ω is simply-connected if $\mathbb{S}^2 \setminus \pi(\Omega)$ is connected, where π is the stereographic projection.

EXAMPLE 9. Show that

- (a) the unit disk is simply connected;
- (b) the vectical strip $\Omega = \{z : 0 < \text{Re } z < 1\}$ is simply connected;
- (c) $\mathbb{C}\setminus\{0\}$ is not simply connected.

Rez=0 Rez=1

THEOREM 10.

- (a) A region $\Omega \subset \mathbb{C}$ is simply-connected if and only if every cycle in Ω is homologous to 0 in Ω .
- (b) If Ω is not simply-connected then we can find a simple closed polygonal curve contained in Ω which is not homologous to 0.

Proof.

(a) (⇒) I simply-connected.

Lety be a cycle in I and a \$ IZ.

Since B= C+\I is convected, Brust

he in one of the component of C'/y

Since ∞ ∈ B, B is in the unbounded

component of $C^4/\gamma = n(\gamma, \alpha) = 0$.

(=) Suppose (4/2 in not connected:

Q4/R = AUB,

where A & B are closed sets in C and

ADB = &. WLOG , assume = EB.

Ais closed => 12: 121>Rqu/oo} NA = Ø

=> A is bounded.

Let ao EA = C*/ R. We construct yo = R at.

nly, a) \$0.

Let d= dist(A,B) = inf { la-bl, aEA, bEB}>0

d d=1 if B= 2003.

- 1) Pare plane with squares of side $\frac{d}{2}$, such that as unter of one square
- 2) Each square has the positive orientation (counter clockwise)
- 3) Shade all squares Sj s.t. Sj NA 7 ø
- 4) Let yo be the cycle US; (after concelling sides with opposite direction).
- 5) Now, $\gamma_0 \subseteq \mathcal{I}$ because $\gamma_0 \cap (A \cup B) = \emptyset$
- (a) We have $n(\gamma_0, a_0) = 1$ because a_0 is in one bounded component of γ_0 .
- 7) $v_0 = \sum_{j=1}^{N} \sigma_j^2$, where σ_j^2 is a polygonal closed curve. Then at least one of the σ_j^2 is not homologous to O.

Lis Thin gives you part (b).

COROLLARY 11. Suppose f is analytic on a simply-connected region Ω . Then

(a) $\int_{\gamma} f(z)dz = 0$ for all closed curves $\gamma \subset \Omega$;

(b) there exists a function F analytic on Ω such that F' = f;

(c) if also $f(z) \neq 0$ for all $z \in \Omega$, then there exists a function g analytic on Ω such that $f = e^g$.

Proof.

(a) Since $y \in \mathbb{Z}$ and \mathbb{Z} in simply-connected, by Thm.10, $y \sim 0$. This means that $n(y_1a) = 0$

Va ∉_z. By Cauchy's theorem,

 $\int_{\gamma} f(z) dz = 0$

(b) Fix zo Es and define

$$F(z) = \int_{\sigma_z} f(3) d3$$

If σ_z d γ_z are two different curves

connecting 2 to 20, then $\overline{\sigma}_2 + (-1/2)$ is a

closed path $d \int_{\overline{Q}_z} f(z) dz = \int_{\gamma_z} f(z) dz$.

$$\frac{F(z+h)-F(z)}{h} = \frac{\int_{\sigma_z+h} f(3) d3 - \int_{\sigma_z} f(z) d3}{h}$$

Let B be a disk centered at Z p.1. B $\subseteq \Sigma$. then, for h small enough, write

0 2+h = 02+ 1/h

$$\Rightarrow \left| \frac{F(z + h) - F(z)}{h} \right| \leq \left| \frac{\int_{\gamma_h} f(z) - f(z)}{h} \right| ds$$

$$\leq \sup_{\gamma_h} \left| \frac{f(z) - f(z)}{h} \right| \xrightarrow{h \to 0} 0$$
Thurstone, $F'(z) = f(z)$, $\forall z \in \mathbb{Z}$.

c) From the assumption:
$$f' = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z)$$
From (b), $f(z) = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z)$

$$\Rightarrow f' = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z) = \lim_{z \to \infty} f(z)$$
Fix $z_0 \in \mathcal{C}$. Set $f(z_0) = \lim_{z \to \infty} f(z_0) = \lim_{z \to \infty} f(z_0) = \lim_{z \to \infty} f(z_0)$
Let $a = a_0 - \operatorname{Re} g(z_0) + i(0_0 - \operatorname{Im} g(z_0))$

P.-O. Parisé MATH 644 Page 11

$$\Rightarrow (g+a)' = g' = f'$$

$$\frac{f(z_0)}{e^{g(z_0)+a}} = 1$$

$$\lim_{g(z)} \frac{g(z)}{g(z)+a}$$

$$hat h = 1 d f(z) = e^{g(z)+a}$$

$$1 \neq f(z) = e^{g(z)+a}$$

① "Uniqueness" in (b).

If
$$F \& G$$
 wish with $F' = G' = f$ in R

then
$$(F-G)'=0 \Rightarrow F=G+C$$
, $C\in C$.

② "Uniqueness" in (c).

$$e^{9} = f = e^{h}$$

$$g'e^g = h'e^h \Rightarrow g'f = h'f$$

 $\Rightarrow g' = h' (f(z) \neq 0).$

So,
$$g = h + c$$
, some $C \in \mathbb{C}$.
But, $e^h = e^g = e^{h + c} \Rightarrow e^c = 1$

DEFINITION 12. If g is analytic in a region Ω and if $f = e^g$ then g is called a **logarithm** of f in Ω and is written $g(z) = \log f(z)$. The function g is uniquely determined by its value at one point $z_0 \in \Omega$.

Notes:

- ① f has countably many logarithms, which differ by $2\pi ki$. To specify $\log f(z)$ uniquely, we have to specify its value at one point $z_0 \in \Omega$.
- ② We do not claim that we can define a logarithm on $f(\Omega)$ and then composed with f to obtain $\log f(z)$.

EXAMPLE 13. Consider the function $z \mapsto (z-1)/(z+1)$, for $z \in \mathbb{D}$.