Fachbereich Mathematik und Informatik Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

9. Übung zur Vorlesung $\begin{array}{c} \text{Computerorientierte Mathematik I} \\ \text{WS } 2015/2016 \end{array}$

Abgabe: 14.1.2016

1. Aufgabe (6 TP)

- a) Zeigen Sie für p=1, dass die in der Vorlesung definierte Abbildung $\|\cdot\|_p: \mathbb{R}^n \to \mathbb{R}$ eine Norm auf \mathbb{R}^n ist.
- b) Zeigen Sie unter Verwendung der Cauchy-Schwarzschen Ungleichung

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le ||x||_2 ||y||_2 \qquad \forall x, y \in \mathbb{R}^n,$$

daß durch $\|\cdot\|_2$ ebenfalls eine Norm definiert ist.

c) Zeichnen Sie im \mathbb{R}^2 die Einheitskreise für $p=1,\ p=2$ und $p=\infty.$

2. Aufgabe (4 TP)

Zeigen Sie, dass für ein beliebiges, aber fest gewähltes $x \in \mathbb{R}^n$

$$\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$$

gilt. Dabei ist $||x||_p^p = \sum_{i=1}^n |x_i|^p$ und $||x||_\infty = \max_{i=1,\dots,n} |x_i|$. **Hinweis:** Für $c \in (0,1]$ gilt $\lim_{p\to\infty} c^{\frac{1}{p}} = 1$.

3. Aufgabe (2 TP)

Kann eine Folge $(x^k)_{k=1,2,3...} \subset \mathbb{R}^n$ bezüglich unterschiedlicher Normen gegen unterschiedliche Grenzwerte konvergieren? Begründen Sie Ihre Antwort.