CS565: INTELLIGENT SYSTEMS AND INTERFACES

Words and Collocation

Semester: July – November 2020

Ashish Anand

Associate Professor, Dept of CSE

IIT Guwahati

Recap

- Essential Resources and basic pre-processing
 - Corpora
 - Text Normalization
 - Word Segmentation: Heuristic approach, subword segmentation
 - Sentence Segmentation
 - Word Normalization: Lemmatization, Stemming, Morphological Parsing

Objective

- Word
 - Basic statistics and inference: Zipf's law
 - Collocation

WORD

Basic Questions

What is the length of the corpus?

How many distinct words are used?

• What are the most common words?

Terminology

• Word Tokens: individual occurrences of words

Word Types: distinct word tokens

Answering the basic questions and making some inference

Word	Freq.	Use
the	3332	determiner (article)
and	2972	conjunction
a	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition
that	877	complementizer, demonstrative
he	877	(personal) pronoun
1	783	(personal) pronoun
his	772	(possessive) pronoun
you	686	(personal) pronoun
Tom	679	proper noun
with	642	preposition

- Corpus: Tom Sawyer by Mark Twain
- Basic Statistics:

71,370 word tokens 8,018 word types

- Observation: Domination of function words (determiner, prepositions etc.)
- Function words vs. Content Words

Source: FSNLP: Chapter 1.

Uneven distribution with long tail phenomena

Word	Frequency of
Frequency	Frequency
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
11–50	540
51–100	99
> 100	102

- Some words are very common
 - Individual word type contributed 1% of all word tokens [12 such words]
- Vast majority of the words occurred very infrequently
 - Over 90% of the word types occur 10 times or less
- Many rare words
 - 12% of the text occurred 3 times or less

Source: FSNLP: Chapter 1.

Empirical observation leading to Zipf's Law

Word	Freq.	Rank	$f \cdot r$	Word	Freq.	Rank	$f \cdot r$
	<i>(f)</i>	<i>(r)</i>			<i>(f)</i>	(<i>r</i>)	
the	3332	1	3332	turned	51	200	10200
and	2972	2	5944	you'll	30	300	9000
a	1775	3	5235	name	21	400	8400
he	877	10	8770	comes	16	500	8000
but	410	20	8400	group	13	600	7800
be	294	30	8820	lead	11	700	7700
there	222	40	8880	friends	10	800	8000
one	172	50	8600	begin	9	900	8100
about	158	60	9480	family	8	1000	8000
more	138	70	9660	brushed	4	2000	8000
never	124	80	9920	sins	2	3000	6000
Oh	116	90	10440	Could	2	4000	8000
two	104	100	10400	Applausive	1	8000	8000

 Establish the relationship between frequency f of word type and its rank r based on frequency

•
$$f \propto \frac{1}{r}$$

- Good description of frequency distribution of words in natural languages
- Principle of Least Effort

Source: FSNLP: Chapter 1.

https://www.thoughtco.com/principle-of-least-effort-zipfs-law-1691104

Zipf's Law: Bad fit for low and high ranks

Source: FSNLP: Chapter 1.

Mandelbrot's Formula: More general relationship

$$f = P(r + \rho)^{-B}$$

$$\log f = \log P - B \log(r + \rho)$$

P, B, ρ are text parameters, collectively measure the richness of text's use of words.

 $P = 10^{5.4}$, B = 1.15, $\rho = 100$

Source: FSNLP: Chapter 1.

References

• Section 1.4 – 1.4.4 [FSNLP]

COLLOCATION

Whole is bigger than the sum of parts

Collocations: Examples

Strong Tea, Stiff breeze, Take a risk, Start up, New Delhi, Fly High

Vs

Last class, Next lecture, New companies

Collocations: Definition

• [Choueka, 1988]: "A sequence of two or more consecutive words, that has characteristics of a syntactic and semantic unit, and whose exact, unambiguous meaning or connotation cannot be derived directly from the meaning or connotation of its components"

- Limitation
 - We may do away with the requirement of words being consecutive.
- Example
 - <u>Knocked</u> on the <u>door</u>
 - *Knocked* at the class-room *door*

Characteristics: subtle and not easily explainable

- "Strong tea" but not "Powerful tea"
- "Stiff breeze" but not "Stiff wind"
- "White wine" but not "Yellow wine"
- "Broad daylight" but not "Bright daylight"

Characteristics

- Limited compositionality
 - Example: Strong Tea
 - Example: White wine, white woman and white hair all refer to different colors and not exactly the white color.
- Non substitutability
 - Example: yellow cannot replace white in "white wine".
- Non-modifiability: can't be modified using additional lexical materials or through grammatical transformations.
 - Example: people as poor as church <u>mice</u>; to get an <u>ugly</u> frog in one's throat.

Special Kinds of Collocations

Light Verbs

- Verbs with little semantic content, e.g. make, take, and do are light verbs in collocations like make a decision, or do a favour
- Nothing as such in the meaning of verbs here "make" or "do" that we should say "make a decision" instead of "take a decision" or "do a favour" instead of "make a favour"

Phrasal Verbs

- Important part of English Lexicon
- Often their translation in other language consists of a single word.

Special Kinds of Collocations

- Proper Nouns
 - Quite different from lexical collocations
 - More like a fixed phrases that reappear exactly the same form
- Terminological Expressions
 - Refer to concepts and objects in technical domain
 - Often highly compositional

Why it is important?

- Computational lexicography
- Parsing
- Semantics
- Natural Language Generation
- Machine Translation
- Linguistic research

References

- Section 1.4 1.4.4 [FSNLP]
- Chapter 5 [FSNLP]

FINDING COLLOCATIONS

Frequency

 Assumption: More frequent occurrence of two words together may imply special function or property which can't be simply explained

Frequency	Word 1	Word 2	
80871	of	the	
58841	in	the	
26430	to	the	
21842	on	the	
21839	for	the	
18568	and	the	Frequency based methods for finding collocations
16121	that	the	
15630	at	the	
15494	to	be	Source: Table 5.1[FSNLP: Page 154]
13899	in	a	Source: Table Stift Stift trage 15 1
13689	of	a	
13361	by	the	Corpus: New York Times newswire-Aug to Nov 1990.
13183	with	the	
12622	from	the	Statistics: 115 MB text with roughly 14 million words
11428	New	York	
10007	he	said	
9775	as	a	
9231	is	a	
8753	has	been	
8573	for	a	

Adding linguistic knowledge to Frequency

Tag Pattern

AN

NN

AAN

ANN

NAN

NNN

NPN

- 1. Part of Speech (PoS) tag patterns for collocation filtering.
- 2. Patterns were proposed by *Justeson and Katz* (1995).
- 3. [A]djective; [N]oun; [P]reposition

Source: Table 5.2 [FSNLP: 154]

Frequency	Word 1	Word 2	POS pattern
11487	New	York	AN
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

Source: Table 5.3 [FSNLP: Page 155]

Pros and Cons of Frequency+PoS Filter

- Advantages
 - Simple method
- Disadvantages
 - Too much dependency on hand-designed filter
 - High frequency can be random without any specific meaning
 - Works well for fixed phrases but will not work for cases where variable number of words may exist between two words
 - Example
 - She *knocked* on his *door*
 - They <u>knocked</u> at the <u>door</u>
 - 100 women <u>knocked</u> on Donaldson's <u>door</u>
 - a man <u>knocked</u> on the metal front <u>door</u>

Sliding window could be savior

Sentence:

man knocked on the front door

Bigrams:

man knocked man on man the man front

knocked on knocked the knocked front knocked

door

on the on front on door

the front the door

front door

References

- Section 1.4 1.4.4 [FSNLP]
- Chapter 5 [FSNLP]