Статистика и анализ данных

Лекция 6. Непараметрические критерии

(22.10.2022)

Параметрические критерии

- Предполагают знание о виде распределения случайной величины
- t-критерий Стьюдента данные должны быть нормально распределены
- Если данных много и они не скошены можно использовать t-критерий
 Стьюдента
- А если данных мало или они специфичные?

Непараметрические критерии

Непараметрические критерии

- Не предполагают знание о виде распределения случайной величины
- Не знаем вид распределения нашей выборки давайте перейдём к другой, но такой, чтобы мы понимали распределение

- Проверим, что медиана выборки равна некоторому числу т (одновыборочная версия)
- Не знаем про распределение выборки не используем абсолютные значения выборки!
- Сравним значения с заданной медианой m будем получать 0 и 1 (меньше m и больше m)
- Получаем новую бинарную выборку, ожидаем, что p = 1/2, так как сравнивали с медианой m
- Биномиальное распределение у новой выборки!

- Выборка: $X_1, ..., X_N \sim P (P не известно)$
- Нулевая гипотеза: median(X) = m
- Альтернативная гипотеза: median(X) ≠ m
- Статистика Т_N
- Нулевое распределение: T_N ~ Bin(N, 1/2) е т

$$T_N = \sum_{i=1}^N X_i > m$$


```
[23] from scipy.stats import shapiro
    shapiro(data["consume"])
    ShapiroResult(statistic=0.7749733328819275, pvalue=1.0203466473862174e-22)
import statsmodels.api as sm
   values = (data["consume"] - data["consume"].mean()) / data["consume"].std()
   sm.qqplot(values, line="45");
₽
                                 Theoretical Quantiles
```

```
[31] from scipy.stats import binom

m = 4.85

N = len(data["consume"])

tN = (data["consume"] > m).sum()

binom(n=N, p=0.5) cdf(tN) * 2

0.028905970266677763
```



```
[32] from statsmodels.stats.descriptivestats import sign_test
sign_test(data["consume"], mu0=m)

(-22.0, 0.028905970266677763)
```

- ullet Выборка: $X_{11},...,X_{1N},X_{21},...,X_{2N}$ связанные выборки
- Нулевая гипотеза: P(X₁>X₂) = 1/2
- Альтернативная гипотеза: P(X₁>X₂) ≠ 1/2
- Статистика Т_N
- Нулевое распределение: $T_N \sim Bin(N, 1/2)$

$$T_N = \sum_{i=1}^{N} [X_{1i} > X_{2i}]$$

Критерий рангов

- Мы превратили выборку в выборку бинарных величин потеряли часть информации и получили более слабый по мощности критерий
- Промежуточный вариант отказаться от абсолютных значений, но сохранить порядок в выборке

Ранги

• Вариационный ряд — отсортированная по возрастанию выборка

$$X_1, ..., X_N \Rightarrow X_{(1)} \le ... < X_{(k1)} = ... = X_{(k2)} < ... \le X_{(N)}$$
 [2 3 5 3 5 5

- Если X_i не в связке, то rank $(X_i) = r$: $X_i = X_{(r)}$
- Если X_i в связке от k_1 до k_2 , то rank(X_i) = $(k_1 + k_2) / 2$

$$\frac{3+4}{2} = 3.5$$

Ранги

```
sample = data.head(10).copy()
sample["consume_rank"] = sample["consume"].rank()
sample[["consume", "consume_rank"]]
```

D		consume	consume_rank	10:
	0	5.0	5.5	
	1	4.2	2.0	
	2	5.5	8.0	
	3	3.9	1.0	
	4	4.5	4.0	
	5	6.4	9.5	
	6	4.4	3.0	
	7	5.0	5.5	
	8	6.4	9.5	
	9	5.3	7.0	

Критерий Манна-Уитни-Уилкоксона

- Есть 2 выборки X и Y, измеренных хотя бы в ранговой шкале.
- Выборки должны быть независимы
- H0: P(X > Y) = P(X < Y)
- Для этого вычисляется специальная U-статистика:
 - Честно считаем для всех возможных пар количество случаев, когда $x_i > y_j$, ситуации равенства считаем за 0.5, получим U1
 - Аналогично, перевернув знак, считаем U2
 - В качестве U берем минимум из этих величин
- Есть и другие методы подсчета U, менее вычислительно громоздкие

Для U-статистики есть специальные таблицы, дающие p-value по n_1 и n_2, однако для больших объемов выборок статистика имеет близкое к нормальному распределение.

- Научились проверять одну гипотезу
- А если гипотез не 1, а 100?

- Выбранный уровень значимости (α = 0.05)
 - в теории вероятность ложно отвергнуть нулевую гипотезу
 - на практике шансы посчитать, что ваш препарат работает, когда это не так
- Что происходит, если гипотез 10?

- Оценим шансы ложно принять хотя бы 1 препарат за работающий
- Вероятность правильно не принять 1 препарат: (1 α)
- Вероятность правильно не принять 10 препаратов: $(1 \alpha)^{10}$
- Вероятность ложно принять хотя бы 1 из 10 препаратов; 1 (1 α)¹⁰

Для 10 препаратов, α = 0.05: P = 0.40126

- Для 10 препаратов, α = 0.05: P = 0.40126
- То есть вероятность ошибки первого рода 0.4!

- Если N = 100: P = 0.99408
- То есть найдется хотя бы 1 препарат, который будет лучше плацебо (но просто случайно)

Ошибка первого рода

- Ранее хотели ошибку первого рода α
- Теперь хотим того же, но для группы экспериментов

- Групповая ошибка первого рода: FWER(V > 0)
- FamilyWise Error Rate

& FWER = or

- Цель FWER(V > 0) ≤ α
- Как добиться? Подобрать а; для проверки гипотезы H_i

Поправка Бонферрони

- Возьмём новые уровни значимости: $a_1 = ... = a_m = a / m$
- Вспомним вероятность отвергнуть хотя бы 1 из $N = 1 (1 \alpha/N) N$
- Для N=10: 0.04889 ≈ 0.05
- Для N=100: 0.04878 ≈ 0.05

• Однако сильно уменьшает мощность тестов (то есть возможность детектировать эффект при его наличии)

Нисходящие методы проверки

- Посчитали уровни значимости для гипотез H₁, ..., H_m
- Отсортируем их и соответствующие им гипотезы:
- \bullet $p_{(1)} \le ... \le p_{(m)} H_{(1)}, ..., H_{(m)}$

 \circ Если $p_{(2)} \ge \alpha_{(2)}$, то принимаем все нулевые гипотезы $H_{(2)}, ..., H_{(m)}$, иначе отвергаем $H_{(2)}$ и проверяем дальше

Метод Холма

• Обеспечивает FWER на уровне а

$$\alpha_1 = \frac{\alpha}{m}$$

$$\alpha_2 = \frac{\alpha}{m-1}$$

$$\alpha_i = \frac{\alpha}{m-i+1}$$

$$\alpha_m = \alpha$$