Feuille de TD n.6 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Exercice 1. (Variation quadratique).

La variation quadratique d'une martingale M de carré intégrable à trajectoire continue est définie comme l'unique processus croissant, continu, noté $\langle M \rangle$ tel que $\langle M \rangle_0 = 0$ et vérifiant que $M_t^2 - \langle M \rangle_t$ est une martingale.

1. Soit B un M.B.S. trouver $\langle B \rangle$.

Réponse. $\langle B \rangle_t = t$

On appelle processus d'Itô X un processus de la forme

$$X_t = X_0 + \int_0^t K_s \ ds + \int_0^t H_s \ dB_s$$

où X_0 est \mathcal{F}_0 mesurable, K et H sont deux processus adaptés vérifiant p.s. pour tout $t \geq 0$

$$\int_0^t (|K_s| + H_s^2) \ ds < +\infty$$

Cette décomposition est unique p.s.

Pour tout processus d'Itô X de décomposition ci-dessus on appelle processus crochet le processus $\langle X \rangle$ défini pour tout $t \geq 0$ par

$$\langle X \rangle_t = \int_0^t H_s^2 ds$$

2. Montrer que si $H_s \in \Pi_2^2$ alors les processus crochet et variation quadratique de $\int H_s dB_s$ coïncident.

Réponse. Dans ce cas on a que $\int_0^t H_s \ dB_s$ est à la fois un processus d'Itô et aussi une martingale de carré intégrable vérifiant que le processus $((\int_0^t H_s \ dB_s)^2 - \int_0^t H_s^2 \ ds)_t$ est une martingale. D'où l'identification.

On peut montrer également que $\langle X \rangle_t = \lim_{n \to \infty} \sum_{t_i \in \Delta_n} (X_{t_i} - X_{t_{i-1}})^2 \operatorname{dans} L^2$ où $\Delta_n = \{0 = t_0^n < t_1^n < \dots < t_k^n = t\}$ est une subdivision de l'intervalle [0,t] vérifiant $\lim_{n \to \infty} \sup_{t_i \in \Delta_n} (t_i - t_{i-1}) = 0$.

3. En utilisant la question 4 de l'exercice 2 de la feuille de TD n. 5 vérifier l'affirmation ci dessus dans le cas où X=B le MBS.

Réponse. Immédiat.

La covariation quadratique entre 2 processus X et Y est définie par

$$\langle X, Y \rangle = \frac{1}{4} (\langle X + Y \rangle - \langle X - Y \rangle)$$

4. Montrer que l'application $(X,Y) \to \langle X,Y \rangle$ est bilinéaire symétrique.

Réponse. Dans le cas où X et Y sont des martingales de carré intégrable on remarque que

$$XY - \langle X, Y \rangle = \frac{1}{4}((X+Y)^2 - \langle X+Y \rangle - (X-Y)^2 + \langle X-Y \rangle)$$

par conséquent $\langle X,Y\rangle$ est un processus continu à variation finie (tel que $\langle X,Y\rangle_0=0$) tel que $XY-\langle X,Y\rangle$ est une martingale.

Montrons que ce processus est unique. En effet supposons que $A=(A_t)_t$ est un autre processus continu à variation finie t.q. A_0 vérifiant XY-A est une martingale; alors $M=\langle X,Y\rangle-A$ est une martingale continue à variation finie. On va montrer que cela implique que M=0 p.s.

On a $M_0 = 0$ et on notons $V_s(M)$ la variation de M. On pose $T_k = \inf\{t > 0 : V_t(M) > k\}$ observons que $\forall t < T_k$ on a $|M_t| \le k$ et $V_t(M) \le k$ et par orthogonalité des accroissements des martingales on a pour tout $t < T_k$

$$\mathbb{E}(M_t^2) = \mathbb{E}(\sum_{i=1}^n (M_{t_i} - M_{t_{i-1}})^2) \le \mathbb{E}(V_t(M) \sup_i |M_{t_i} - M_{t_{i-1}}|) \le k \mathbb{E}(\sup_i |M_{t_i} - M_{t_{i-1}}|)$$

où $t_i=it/n$. De plus par la continuité de M on a $\sup_i |M_{t_i}-M_{t_{i-1}}| \to 0$ p.s. quand $n\to\infty$. Comme $|M_{t_i}-M_{t_{i-1}}| \le 2k$ on en déduit par cv dominée que $\lim_{n\to\infty}\mathbb{E}(\sup_i |M_{t_i}-M_{t_{i-1}}|)=0$. Ce qui traduit que $\mathbb{E}(M_t^2)=0$ pour tout $t< T_k$. Comme $T_k\to +\infty$ lorsque $k\to +\infty$ (car M est à variation finie) on en déduit $\mathbb{E}(M_t^2)=0$ pour tout $t\in\mathbb{R}^+$ ce qui implique bien $M_t=0$ p.s..

A partir de là on en déduit aisément que $\langle X,Y\rangle=\langle Y,X\rangle$ et que comme pour tout $\alpha\in\mathbb{R}$ $\alpha(XY-\langle X,Y\rangle)$ est une martingale et que $\alpha XY-\langle \alpha X,Y\rangle$ est aussi une martingale par l'unicité on en déduit que

$$\langle \alpha X, Y \rangle = \alpha \langle X, Y \rangle$$

enfin comme (X + Y)Z = XZ + YZ on en déduit (toujours par unicité) que

$$\langle X, +Y, Z \rangle = \langle X, Z \rangle + \langle Y, Z \rangle$$

ce qui conclut la preuve de la bilinéarité.

Dans le cas des processus on se ramène à la définition de $\langle X \rangle$ qui est une forme quadratique. L'expression est en fait l'expression polaire de cette forme quadratique d'où la bilinéarité.

5. Soient X et Y deux processus d'Itô de décomposition

$$dX_t = K_t dt + H_t dB_t$$

$$dY_t = L_t dt + M_t dB_t$$

ou B est un mouvement brownien. Montrer que $\langle X,Y\rangle_t=\int_0^t HsMs\ ds$. Réponse. Il suffit de voir que $(X+Y)_t$ est $(X-Y)_t$ sont des processus d'Itô de décomposition respectives :

$$d(X + Y)_t = (K_t + L_t) dt + (H_t + M_t) dB_t$$

$$d(X - Y)_t = (K_t - L_t) dt + (H_t - M_t) dB_t$$

Par conséquent

$$d\langle X, Y \rangle_t = \frac{1}{4}((H_t + M_t)^2 - (H_t - M_t)^2) dt = H_t M_t dt$$