Experimental Evaluation of Antitumor Drugs in the USA

and USSR and Clinical Correlations

nci

Monograph 55

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Public Health Service

National Institutes of Health

LIBRARY

THEONAL INSTITE HEALTH

NATIONAL CANCER INSTITUTE MONOGRAPH 55

December 1980

Experimental Evaluation of Antitumor Drugs in the

USA and **USSR** and Clinical Correlations

NIH Publication No. 80-1933
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
PUBLIC HEALTH SERVICE
NATIONAL INSTITUTES OF HEALTH
NATIONAL CANCER INSTITUTE, BETHESDA, MARYLAND 20205

NATIONAL CANCER INSTITUTE MONOGRAPHS

Vincent T. DeVita, Jr., Director, National Cancer Institute

The proceedings of conferences and symposia dealing with cancer or closely related research fields and series of papers on specific subjects of importance to cancer research are presented in these monographs. Authors of papers presented at a conference or symposium should consult the chairman or conference editor for instructions on typing and presentation of material. Generally, the requirements of style and format are the same as those of the *Journal of the National Cancer Institute*.

BOARD OF EDITORS

John L. Ziegler, Editor in Chief

Elizabeth K. Weisburger, Assistant Editor in Chief

Stuart A. Aaronson, Associate Editor
Mary A. Fink, Associate Editor
Janet W. Hartley, Associate Editor

Donald Henson, Associate Editor

Ronald B. Herberman, Associate Editor

George S. Johnson, Associate Editor
Arthur S. Levine, Associate Editor
John J. Mulvihill, Associate Editor
Alan S. Rabson, Associate Editor
Steven A. Rosenberg, Associate Editor

EDITORIAL STAFF

Phyllis Jay, Managing Editor

Edwin A. Haugh, Assistant Managing Editor

Florence I. Gregoric, Monograph Editor

For sale ONLY by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Payment is required in advance, and check or money order should be made payable to the Superintendent of Documents. Add 25% for overseas mailing.

Experimental Evaluation of Antitumor Drugs

in the

USA and USSR and Clinical Correlations

Sponsored by the National Cancer Institute National Institutes of Health

and

The Oncological Scientific Center Academy of Medical Sciences, USSR Under the auspices of The 23 May 1972 USA-USSR Agreement for Cooperation in the Fields of Medical Science and Public Health Editors:

United States:

Abraham Goldin Ira Kline

Soviet Union:

Zoya P. Sof'ina Anatoli B. Syrkin

List of collaborators who contributed material for this Monograph: 1

- G. Attassi, Institut Jules Bordet, 1, rue Héger Bordet, 1000 Brussels, Belgium
- A. Barker, Battelle Memorial Institute, Columbus Laboratories, Columbus, Ohio
- V. S. Bazhanov, All-Union Research Institute for the Search for New Antibiotics, Academy of Medical Sciences, Moscow, USSR
- A. K. Belousova, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- A. E. Bogden, Department of Immunobiology, Mason Research Institute, Worcester, Massachusetts
- V. A. Chernov, All-Union Research Chemical Pharmaceutical Institute, Moscow, USSR
- J. Davenport, Charles Pfizer and Company, Inc., New York, New York
- S. R. K. de Dennis, Wisconsin Alumni Fund, Madison, Wisconsin
- Y. V. Dobrynin, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- L. E. Dudek, Hazelton Laboratories America, Inc., Vienna, Virginia
- N. M. Emanuel, Institute for Chemical Physics, Academy of Sciences, Moscow, USSR
- V. A. Filov, N. N. Petrov Institute for Oncology, Ministry of Public Health, Leningrad, USSR
- J. Gargus, Hazelton Laboratories America, Inc. Vienna, Virginia
- G. F. Gauze, All-Union Research Institute for the Search for New Antibiotics, Academy of Medical Sciences, Moscow, USSR
- B. T. Garibjanian, A. L. Minjoyan Institute of Fine Organic Synthesis of Academy of Sciences of Armenian S.S.R., Yerevan, USSR
- R. Geran, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland
- T. G. Glazkova, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- A. Goldin, Division of of Cancer Treatment, National Cancer Institute, Bethesda, Maryland
- V. A. Gorbunova, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- J. H. M. Henderson, George Washington Carver Foundation, Tuskegee Institute, Tuskegee, Alabama
- R. K. Johnson, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland
- I. Kline, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland

¹ We, the Editors, acknowledge the enthusiastic support of Dr. Joseph F. Saunders, Deputy Director, Office of International Affairs, National Cancer Institute, for this American-Soviet collaborative effort. It was due to his dedicated efforts that this joint monograph was brought to fruition. We express similar gratitude to Professor N. N. Trapeznikov, Deputy Director-General of the Oncologic Scientific Center, Academy of Medical Sciences, Moscow, USSR.

COLLABORATORS

- N. P. Konovalova, Institute for Chemical Physics, Academy of Sciences, Moscow, USSR
- N. D. Lagova, Oncological Scientific Center, Academy of Medical Sciences, Moscow USSR
- I. S. Levi, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- W. Lichter, University of Miami School of Medicine, Miami, Florida
- V. A. Lyashenko All-Union Research Institute for the Search for New Antibiotics. Academy of Medical Sciences, Moscow, USSR
- F. L. Minzenberger, Illinois Technological Research Institute, Chicago, Illinois
- L. L. Malyugina, N. N. Petrov Institute for Oncology, Ministry of Public Health, Leningrad, USSR
- I. Miller, Arthur D. Little Company, Inc., Cambridge, Massachusetts
- S. M. Navashin, All-Union Research Institute for Antibiotics, Academy of Medical Sciences, Moscow, USSR
- L. A. Ostrovskaya, Institute for Chemical Physics, Academy of Sciences, Moscow, USSR
- V. Peake, Southern Research Institute, Birmingham, Alabama
- N. I. Perevodchikova, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- A. M. Petrovsky, Institute of Control Problems, Academy of Sciences, Moscow, USSR
- G. N. Platonova, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- Y. C. Pukhalskaya, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- F. M. Schabel, Jr., Southern Research Institute, Birmingham, Alabama
- J. Schuller, Stanford Research Institute, Stanford University Medical Center, Stanford, California
- A. Shefner, Illinois Technological Research Institute, Chicago, Illinois
- M. Sherman, Battelle Memorial Institute, Columbus Laboratories, Columbus, Ohio
- Y. N. Shkodinskaya, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- M. M. Sigel, University of Miami School of Medicine, Miami, Florida
- Z. P. Sof'ina, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- N. Y. Sologub, Ukrainian Research Institute for Pharmacology and Toxicology, Kiev, USSR
- A. B. Syrkin, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- P. Thayer, Arthur D. Little Company, Inc., Cambridge, Massachusetts
- V. N. Vapnik, Institute of Control Problems, Academy of Sciences, Moscow, USSR
- J. M. Venditti, Drug Evaluation Branch, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland
- I. Wodinsky, Arthur D. Little Company, Inc., Cambridge, Massachusetts

COLLABORATORS

- R. J. Woodman, Microbiological Associates, Bethesda, Maryland
- N. P. Yavorskaya, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- L. A. Zaytseva, Oncological Scientific Center, Academy of Medical Sciences, Moscow, USSR
- A. A. Zidermane, Institute for Organic Synthesis, Academy of Sciences of Latvian S.S.R., Riga, USSR

TABLE OF CONTENTS

	Page
Foreword	
Arthur C. Upton and Nikolai N. Blokhin	хi
Preface	
Vincent T. DeVita, Jr. and Natalia I. Perevodchikova	xiii
Introduction	
Abraham Goldin, Ira Kline, Zoya P. Sofʻina, and Anatoli B. Syrkin	1
Chapter I: Drugs Included in the Joint Research Program of the United States and Soviet Union	
Part A — Structure, Biologic, and Biochemical Characteristics of Antitumor Drugs Developed in the United States	5
Part B — Structure, Biologic, and Biochemical Characteristics of Soviet Antitumor Drugs	10
Chapter II: Methods of Selecting Antitumor Drugs in the United States and Soviet Union	
Part A — Test Systems Used in the United States	25
Part B — Test Systems Used in the Soviet Union	35
Chapter III: Analysis of Experimental Data and Correlations with Clinical Use of Drugs	
Part A — Comparison of Systems for Studying Antitumor Drugs in the United States and Soviet Union	51
Part B — Rational Selection of Experimental Models for Studying Antitumor Drugs	66
Part C — Possibility of Predicting the Spectrum of Antitumor Effect of Drugs on the Basis of Experimental Data	76
Chapter IV: Ranking Drugs for Clinical Trials	
Part A — Methods of Prediction	79
Part B Regression Method: Results and Predictions	80
Part C — Pattern-Recognition Method: Preliminary Results	87
Part D Summary	88

TABLE OF CONTENTS

	Page
Chapter V: Conclusion: Prospects for the Development of Methods for Studying the Antitumor Effects of New Substances	93
Appendixes: Tables I–IV	
Table I — Results of Experimental Studies in the United States With Drugs Developed Here	. 110
Table II — Results of Experimental Studies in the United States With Drugs Developed in the Soviet Union	. 128
Table III — Results of Experimental Studies in the Soviet Union With Drugs Developed There	. 136
Table IV — Results of Experimental Studies in the Soviet Union With Drugs Developed in the United States	162

FOREWORD

The "Agreement Between the USA and the USSR for Cooperation in Medical Science and Public Health," which was signed on 23 May 1972, by former Secretary of State, William P. Rogers, and the Soviet Minister of Health, Boris V. Petrovsky, provided the opportunity for collaborative research in cancer chemotherapy on an international basis. In the first USA-USSR Monograph "Methods of Development of New Antitumor Drugs," various aspects of the joint collaborative effort in anticancer drug development were described.

Cancer investigators of the United States and the Soviet Union have been actively engaged in a bilateral research program relating preclinical findings to clinical efficacy and have amassed a large body of data on exchanged drugs in a battery of experimental tumor test systems. The results of this effort have set a stage for the correlation of these test systems for anticancer drug screening. Thus as a natural sequence to the first Monograph, this publication presents another bank of information evolving from these joint studies. The experimental data are compared with respect to the use of common and different animal tumor test systems in both countries and are analyzed in relation to clinical activity to establish the possibility for prospective prediction of new drugs for clinical utility.

The positive results of programs summarized in this Monograph provide a tangible and important product of the American-Soviet cooperative effort in cancer research. Also of considerable significance is the exchange of scientists between the two nations that provides a means for the sharing of different methodologies being used and under development in both countries for the screening and subsequent preclinical testing of potentially useful anticancer agents.

Concrete accomplishments such as this Monograph pave the way for future success in joint American and Soviet oncologic studies.

Arthur C. Upton
Former Director, National Cancer Institute
National Institutes of Health
Public Health Service
U.S. Department of Health and
Human Services
Bethesda, Maryland 20205

Nikolai N. Blokhin
Academician, USSR Academy of
Medical Sciences
General Director, Oncological
Scientific Center
Academy of Medical Sciences,
Moscow, USSR

PREFACE

In the five years since the signing of the USA-USSR Agreement for Health Cooperation, successful implementation of the joint cancer program has been achieved through: 1) an exchange of scientists; 2) the exchange of data and information; 3) an exchange of antitumor drugs and biologic and technicologic materials; 4) joint research programs; and 5) joint publications.

In the program of the Division of Cancer Treatment, National Cancer Institute, a new screening program has recently been instituted that removes screening from the realm of random empiricism and replaces the process with an experimental approach. It involves a prescreen comprised of leukemia P388 and a "by-pass" of the prescreen for compounds indicated by surveillance of the world's literature to have high biologic interest. Compounds active against P388 or selected to by-pass it are introduced into a screening panel comprised of human colon, breast, and lung tumors growing as xenografts in athymic mice and corresponding murine tumors growing in conventional mice. The program is designed to determine definitively whether the new screening panel has the capacity to improve prediction for activity of drugs in humans with cancer, both with respect to tumors in general and for tumors of organ-specific sites.

In the Oncological Scientific Center of the USSR, Academy of Medical Sciences, among the transplantable tumors being used to select the new drugs, besides leukemia La and carcinoma 755, leukemia L1210 and Lewis lung tumor have been included in recent years. The in-depth study of active antitumor agents is being conducted on various highly differentiated, solid transplantable tumors of animals. For this purpose, tumors of the mammary gland, large intestine, lung, uterine cervix, and forestomach are being used. The most promising drugs are being studied on induced and spontaneous tumors in laboratory and domestic animals, as well as on human tumors growing in tissue culture. Great attention is being devoted to the study of the metabolism of the tumors and the mechanisms of action of the drugs. All these measures are directed at prediction of the effect of new antitumor agents in man.

The present Monograph encompasses the testing of 30 American and 28 Soviet drugs in a spectrum comprised of a diversity of experimental tumor types, with comprehensive biologic and mathematical analyses pertaining to possible prognoses for therapeutic effects against specific categories of human tumors. It is significantly contributory to the development of new approaches in the screening programs for antitumor drugs at the National Cancer Institute and the Oncological Scientific Center of the USSR Academy of Medical Sciences and to the collaborative effort in the conquest of cancer.

In conjunction with the editors, we wish to express our gratitude to the many investigators and laboratories who contributed to this collaborative program.

Vincent T. DeVita, Jr.
Director, National Cancer Institute
Director, Division of Cancer Treatment
National Cancer Institute
National Institutes of Health
Bethesda, Maryland 20205

Natalia I. Perevodchikova
Professor, Chief of Department of
Chemotherapy
Oncological Scientific Center
Academy of Medical Sciences
Moscow, USSR

Introduction1

Systematic screening programs designed to find new chemotherapeutic agents that may be effective in the treatment of cancer were instituted in the United States and in the Soviet Union in the 1940's. In the United States, such programs were initiated at the National Cancer Institute in Bethesda, Maryland; Children's Cancer Research Foundation in Boston; Sloan-Kettering Institute for Cancer Research in New York City; Columbia University College of Physicians and Surgeons in New York City; Army Chemical Center at Edgewood, Maryland; Burroughs Wellcome Company in Tuckahoe, New York; and the Lederle Laboratories in Pearl River, New York (1).

In the USSR, systematic experimental programs for study of anticancer activity were begun at the N. N. Petrov Institute of Oncology in Leningrad and the Ordzhonikidze All-Union Scientific Research Chemical-Pharmaceutical Institute in Moscow. In addition, studies were conducted at the Ukrainian Scientific Research Sanitary-Chemical Institute and in the Institute of Experimental and Clinical Oncology of the USSR Academy of Medical Sciences (now the Oncological Scientific Center of the USSR Academy of Medical Sciences).

These initial programs, plus others at the Chester Beatty Institute in Great Britain, Cancer Institute and University of Tokyo in Japan, Cancer Institute in Heidelberg, the National Cancer Institute in Budapest, and at research centers in other countries, generated great interest in the search for and development of new antitumor agents on a worldwide basis; thus chemotherapy programs were developed recently in many countries. The institution of the United States and USSR Medical Agreement has provided a unique opportunity for collaboration in preclinical cancer chemotherapy and the possibility for relating the results of such cooperative efforts to screening and drug development worldwide.

In 1970, L. F. Larionov (2) concluded: "I believe the time is ripe for international unification of screening procedures. Apparently it would be best to hold a special meeting either within the International Union Against Cancer or the World Health Organization."

At the VII International Congress of Chemotherapy in 1971 in Prague, a panel discussion was held on The Predictability of Experimental Test Systems for Clinical

Abbreviations: WHO = World Health Organization; UICC = Union Internationale Contre le Cancer (International Union Against Cancer); OSC = Oncological Scientific Center; CICA = Committee on International Collaborative Activities.

Chemotherapy. In a summary written by Goldin and Pujman (3), in a follow-up of L. F. Larionov's recommendation, they concluded that there would be considerable value in having an international conference on cancer chemotherapy screening. Goldin and Pujman stated, "At the panel in Prague there was general consensus that such a meeting should be held and that it would contribute definitely to progress in cancer chemotherapy." It was further recommended "At such a conference there could be discussion of international cooperation and the development of standards, choice of test systems and interchange of tumor materials, test agents and the results of drug evaluation. The relationship of preclinical screening and evaluation programs to the international clinical effort in cancer could receive prime attention."

With this stimulus, an International Conference on Screening Methodology for Anti-tumor Drugs sponsored by the WHO was held in Geneva in September 1974. At this conference were leading investigators in preclinical and clinical chemotherapy from most of the countries in which screening for anticancer activity is being conducted. The program of the International Conference on Screening Methodology for Anti-tumor Drugs encompassed important preclinical objectives of particular pertinence to the current collaborative program beween the United States and the Soviet Union.

A diversity of test systems for the screening and further evaluation of antitumor agents are used in various countries of the world, and a primary objective was to obtain a single composite listing and description of these test systems. The survey in Geneva of primary and secondary screens for the participating countries met this objective by providing a basis for the compilation and publication of the various test systems in the WHO Report "Description of Systems Used in Experimental Screening of Anti-Cancer Preparations in Sixteen Countries" (4). This included some detailed descriptions of the characteristics of the test systems, the identity of the principal investigators using these systems, and the types of compounds that have been identified as active by them. The listing encompasses both in vitro and in vivo test systems used as primary or secondary screens or for detailed drug evaluation and investigation.

A second important objective of the conference was the standardization of test systems. Such standardization encompasses animals and animal care, maintenance and propagation of tumor lines, tumor transplantation, quality control, preparation and administration of materials, selection of dosages, control and test group size, randomization of animals, and quantitative test evaluation, which includes appropriate experimental design, parameters, and criteria of responses. An ultimate objective evidently is

¹ This Introduction was prepared by Abraham Goldin, Ira Kline, Zoya P. Sof'ina, and Anatoli B. Syrkin.

to establish worldwide protocols pertaining to drug testing, or at a minimum, to distribute a compilation of existing protocols from the various countries pertaining to animal breeding, standards of testing, and criteria of response.

With respect to the establishment of uniform world-wide standards for animals and drug evaluation, a specific objective of the conference was to focus attention on the 1) establishment of animal genetic centers for breeding and distribution of animals; 2) tumor cell banks for storage and distribution of tumor material; and 3) a centralized data bank for acquisition, storage, and distribution of screening and evaluation data to the various programs of the world, either directly or through regional data banks. Mechanisms were discussed and established for exchange of test materials, active drugs, significant findings, and collaborative publication. Exchange of active drugs at as early a date as possible was considered a most worthwhile objective, and steps were taken to implement such exchange.

At the Geneva meeting, participants considered that it would be most important to establish a common standardized reference screen, which if adopted in the various countries, would provide an important frame of reference and lead to uniformity in the interpretation of experimental data. The reference screen could be, but would not necessarily have to be, the first system in which the drug would be tested. However, it would be essential that as many compounds as possible and especially those active in other systems be tested in the reference screen and that the data be distributed universally, possibly through the data banks. The leukemia L1210 system was designated as a reference screen because of its highly quantitative characteristics and its good record of predictability of clinically active compounds. In their extensive retrospective analysis, Goldin et al. (5) emphasized that the L1210 system was capable of identifying successfully 16 of the 20 clinically established antitumor drugs, and of a more extensive list of 45 drugs showing activity in patient therapy it identified 33.

A most important preclinical objective pertains to the screens to be adopted. From the point of view of the preclinical chemotherapist, it is obviously unreasonable to expect that all screening programs should follow the same spectrum of test systems. On the other hand, the adoption of diversified screening systems has considerable merit. It was considered desirable that the workers in each laboratory use the standard reference screen agreed upon plus their specific spectrum of tumor systems. This in turn would result in the utilization of an extensive total number of test systems on an international basis and have the potential for detection of a maximum number of new and novel types of structures.

The Geneva conference participants emphasized the importance of communication and collaboration of both preclinical and clinical therapists on a worldwide basis.

The interest in collaborative chemotherapy is evidenced further by the number of recent important workshops held in various areas. One of these was a UICC workshop held in Budapest in April 1974 (6), which dealt

with new approaches for chemotherapy models. In this workshop it became clear that new models, including xenografted human tumors in nude mice, could have considerable potential for large-scale primary screening and could be important for studies in tumor biology and immunology. Another UICC workshop was held on the subject "Drug Resistance and Selectivity in Cancer Chemotherapy" in Bratislava in July 1975 (7). This workshop was concerned with important specific questions related to the identification of target determinants of drug action and their potential as predictors of human tumor sensitivity or resistance to drugs. This was followed by a conference at the OSC in Moscow in September 1976 dealing with "Human Tumor Sampling for Biochemical Pharmacological Studies of Target Determinants of Drug Action" under the auspices of the UICC-CICA and the collaborative agreement between the United States and Soviet Union. The workshop served to focus attention in detail on specific problems pertaining to human tumor sampling for biochemical and pharmacologic investigations and led to a number of particular recommendations for further investigation. Arrangements were made for collaboration on pertinent problems between various centers represented at the workshop and also with researchers at other laboratories and institutes where specific expertise and interest is demonstrated.

In the USA-USSR Monograph "Methods of Development of New Anticancer Drugs" (8), several articles delineated various aspects of preclinical collaboration by the United States and Soviet Union in antitumor chemotherapy. Thus historically, it is a highly logical development for the United States and the Soviet Union to engage in a collaborative effort in tumor screening and drug evaluation, and steps were undertaken to implement this program.

In accordance with this Agreement, more than 150 drugs have been exchanged since the beginning of the program and are currently under investigation in both countries. The results of the studies with 30 American and 28 USSR drugs, a number of which are established as active clinically or are under clinical trial, have provided the possibility for detailed analysis of data collected in both countries. The analysis of this collective data is the primary objective of this Monograph. The authors have addressed the following problems:

- Comparison of the data obtained by use of the same methodologic approaches with common and different tumor model systems.
- 2) Performance of an analysis of the experimental data in relation to clinical activity to establish the possibility for prospective prediction of antitumor activity of new drugs generally and against specific categories of tumor. For this purpose, biologic, biochemical, and specific mathematical approaches have been used; the data collected in each country and also common data were taken into account.
- 3) Use of the analysis in the improvement of screening systems in each country.

In addition to the presentation of the test data and

INTRODUCTION 3

analyses, a listing of the drugs, their structures and properties, and descriptions of the tumor systems are included.

The results of this collaborative investigation may help

to point the way to improvement of screening methodology and to future investigations and approaches for obtaining new effective drugs for patient therapy.

Chapter I: Drugs Included in the Joint Research Program of the United States and Soviet Union ¹

A: STRUCTURE, BIOLOGIC, AND BIOCHEMICAL CHARACTERISTICS OF ANTITUMOR DRUGS DEVELOPED IN THE UNITED STATES

The biochemical, pharmacologic, and other noteworthy biologic characteristics of the drugs from the United States are included.

Cyclophosphamide

The initial drug in this series, cyclophosphamide (NSC-26271), is inactive per se and must be biologically activated. The end product of the biologic activation of this agent was described by Rauen et al. (9) as the relatively stable compound N- β -chloroethyl-aziridine, which is formed spontaneously in vivo from bis-β-chloroethylamine. Brock (10) pointed out that cyclophosphamide is an inactive transport form, and in vivo this compound possessed the widest therapeutic range of several related alkylating agents studied. In pharmacologic studies done by Brock and Hohorst (11) in rats, the cytostatic activity in the serum was reached at 60 minutes. This level was strongly dose dependent and remained constant in the serum for approximately 1 to 2 hours, then it decreased to 30% after 4 hours, and finally disappeared after 24. The increase of serum cytostatic activity after oral or sc administration reached a maximum of only 50% of that observed after iv or ip injection.

Brock (12) also reported that after administration of this agent to mice, rats, and dogs, cytotoxic activity was observed in the serum and to a lesser extent in various blood-free organ extracts. High concentrations of the activation product were eliminated in the urine and in the bile. Depending on the dose, the maximum activity in the serum was reached as early as 15–30 minutes after administration and remained practically constant for 90–120 minutes. After 240 minutes, the activity fell to about

Abbreviations: BCNU = 1,3-bis(2-chloroethyl)-1-nitrosourea; ic = intracerebral(ly); CCNU = 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; CSF = cerebral spinal fluid; 5-FU = 5-fluorouracil; ara-C = cytosine arabinoside; cis-PT(II) = cis-platinum(II) diamminedichloride; LD50 = mean lethal dose; CNS = central nervous system; AMSA = 4'-(9-acridinylamino)-methanesulfon-m-anisidide; PCNU = 1-(2-chloroethyl)-(2,6-3-dioxo-3-piperidyl)-1-nitrosourea; Me-CCNU = 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea; DTIC = dacarbazine; MTD = maximum tolerable dose; MNU = methylnitrosourea.

20–50% of the maximum value; after 24 hours it was not detectable. Liver sections incubated at 37° C in Ringer's solution containing glucose and agitated in a Warburg apparatus in the presence of oxygen caused an intense activation of cyclophosphamide. Such activation was absent in an atmosphere of nitrogen. Potel and Brock (13) showed that when cyclophosphamide was administered to rats, it inhibited specific antibody formation to a bacterial antigen stimulus and resulted in a reduction of leukocytes in the peripheral blood and plasma cells of the spleen; the effect is of limited duration.

1,3-Bis (2-chloroethyl)-1-nitrosourea

Schabel et al. (14) reported that 1,3-bis(2-chloroethyl)-1-nitrosourea (NSC-409962) had marked activity against ip inoculated leukemia L1210 when administered ip, sc, or orally. The nitrosoureas, of which BCNU seems to be one of the most highly active, were the first to possess an encouraging degree of activity against ic inoculated L1210 leukemia. When [14C]BCNU was used, radioactive carbon was in all tissues examined, including the brain, and equal quantities were present in sensitive and resistant plasmacytomas of the hamster (15). DeVita et al. (16) studied the pharmacology of BCNU in man with [14C]-labeled drug. Although radioactivity was excreted slowly in man and monkeys, it was eliminated rapidly in mice. Urinary excretion accounted for the major portion of the isotope, and as much as 10% was excreted as CO₂. The compound is degraded rapidly so that promptly after administration no intact drug is demonstrable. The high lipid solubility of this agent allows it to cross the blood-brain barrier rapidly. Wheeler and Bowdon (17) reported on the inhibition of de novo synthesis of purine ribonucleotides by high doses of the agent that resulted in the inhibition of the incorporation of carbon-14 from formate into purine of RNA and DNA.

1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea

The pharmacokinetics of CCNU (NSC-79037) was studied by Oliverio and co-workers (18) in mice, rats, dogs, and monkeys. They showed that the half-life of the initial phase for [14C]-labeled CCNU is approximately 5 minutes, whereas the second phase extends over 1 hour. During 6 hours after iv injection into dogs, radioactivity in the CSF exceeded that of the plasma threefold. After biotransformation, the drug is primarily excreted by the kidneys; within the first 24 hours, it is completely excreted in rodents and monkeys, but is more protracted in dogs. Henry et al. (19) performed hepatotoxicity studies

¹ This chapter was prepared by I. Kline, I. S. Levi, Y. N. Shkodinskaya, A. K. Belousova, and N. D. Lagova.

with CCNU in dogs and demonstrated toxicity following oral administration of a single dose. Levin and associates (20) demonstrated the antitumor activity of CCNU against ependymoblastoma, glioma 26, and glioma 261 of mice. They also studied the uptake and distribution of [14C]CCNU in intracerebral and subcutaneous tumors. The studies showed that the radioactive drug was taken up by the normal brain adjacent to the tumor, as well as by distant normal brain tissue, and that the parent drug had relatively constant tissue: plasma ratios. Cheng et al. (21) conducted extensive studies with [14C]CCNU on its binding to proteins and nucleic acids. These investigators reported that the carcinostatic activity of this drug reflects a modification of the cellular proteins as well as of nucleic acids. Wheeler and co-workers (22), in considering the biochemical therapeutic properties of alkylating agents, indicated that a nitrosourea having optimal therapeutic properties would have low carbamoylating activity, low chemical stability, high alkylating activity, and a distribution coefficient falling at the upper end of the range for the compounds included in their studies.

Uracil Mustard

Lyttle and Petering (23) reported on some of the biologic characteristics of uracil mustard (NSC-34462) in the Walker carcinosarcoma 256. These investigators showed that this compound had a marked degree of activity in this tumor system and that it was more effective when given intermittently rather than daily. They also noted that the usual side effects of nitrogen mustards were absent. Brunk and Cavanaugh (24) studied the distribution of radioactive uracil mustard in rats and determined drug levels in the livers, kidneys, spleens, and small intestines. Of the injected radioactivity, 2.6% was localized in the liver at 30 minutes; the level gradually declined to 0.26% at 96 hours.

Imidazole Mustard (TIC-mustard)

Imidazole mustard (NSC-82196) is an unstable compound easily convertible to an isomeric transformation product. With appropriate precautions, however, this compound may be prepared in good yield with little of the transformation product as a contaminant. It may be stored for long periods at low temperatures (25). Vogel et al. (26), using [14C]imidazole mustard in their studies to elucidate the in vitro stability of this compound and its physiologic disposition including absorption, excretion, and metabolism in mice and dogs, reported the plasma half-life in dogs to be 2 hours after iv administration, but penetration of the blood-brain barrier was negligible. Gastrointestinal absorption after oral administration was poor and erratic. The primary route of excretion of absorbed drug was renal in both species, and more than 60% of the drug was excreted in the urine by dogs within 6 hours after iv administration.

Streptozotocin

Streptozotocin (NSC-85998), an antibiotic extracted

from Streptomyces achromogenes and prepared in highly purified form, is a highly effective cytotoxic agent for pancreatic β-cells. Whereas the cytotoxic properties of streptozotocin resemble those of alloxan, its specificity is considerably greater, as demonstrated by the wide margin between a diabetogenic dose and general toxicity (27). Evans et al. (28) reported on the persistent glycosuria produced by streptozotocin and elaborated further upon the mechanism of the diabetogenic action of this compound. Schein and Loftus (29) studied the biochemical properties of streptozotocin and noted that after a single diabetogenic iv dose, this agent produced a 24-hour depression of oxidized and reduced nicotinamide adenine dinucleotide content in mouse liver. These investigators suggested that streptozotocin inhibited the synthesis of pyridine nucleotides. Bhuyan (30) studied the biochemical properties of streptozotocin in in vitro systems and reported that this agent inhibited the incorporation of precursors into DNA to a greater degree than into RNA or protein. Bhuyan et al. (31) described the pharmacologic characteristics of streptozotocin and pointed out that streptozotocin levels in plasma decreased rapidly, with a half-life of 10 to 15 minutes; however, the levels were maintained for a longer period in the tissues. Streptozotocin was excreted so rapidly in the urine that 72% of the total radioactive injected material could be accounted for in the urine after 4 hours (31). Rakieten and associates (32), who administered single diabetogenic doses of pure streptozotocin to rats and induced renal tumors in 29% of these animals, discovered that the tumorigenic properties of streptozotocin may be related to the N-nitrosoalkane end of the molecule or to the in vivo release of this group as diazomethane.

Hexamethylmelamine

Hexamethylmelamine (NSC-13875) has been studied by Worzalla et al. (33) with respect to metabolism and physiologic distribution in patients and in rats. Following administration of the radioactive drug orally to patients, respiratory [14C]O₂ was detected within 1 hour, and the level accumulated to 9% of the administered dose in 6 hours. After 72 hours, 29% of the radioactivity was recovered in the urine and 0.5% in the feces. In rats, oral and ip administration of the radioactive drug led to the recovery of 13 and 30%, respectively, of the dose of. [14C]O₂ in 24 hours. At 72 hours after oral administration of labeled drug, 58% of the radioactivity was recovered as follows: 16% as [14C]O2, 38% in the urine, and 4% in the feces. In the same interval, 80% of the ip dose was recovered as follows: 33 as [14C]O₂; 42 in the urine; and 5 in the feces. Worzalla and his associates noted that demethylation appears to be significant in the metabolism of hexamethylmelamine in man and in rats. Lake et al. (34), after their investigation of the mechanism of action of hexamethylmelamine, suggested that the presence of a methyl group rather than the number of methyl groups was the determining factor in the antitumor activity of the methylmelamines.

5-Fluorouracil

Bosch and associates (35) in a report on various biochemical properties of 5-FU (NSC-19893) and other related fluorinated pyrimidines showed that these compounds inhibited the incorporation of [14C]-labeled formate into DNA thymine, and with the exception of 5fluoro-2'-deoxyuridine, inhibited the incorporation of uracil into RNA. They concluded that fluorinated pyrimidines inhibit the metabolic methylation of deoxyuridine monophosphate to thymidine monophosphate. Chaudhuri et al. (36) used ([14C]-labeled 5-FU to follow the excretion, distribution, and metabolism of this agent in mice and in patients with cancer. The compound was excreted rapidly and unchanged in the urine shortly after injection. They also reported that 5-fluorouridine nucleotides at the mono, di, and triphosphate levels were incorporated into RNA, but not into DNA, in mouse liver, spleen, sarcoma 180, Ehrlich ascites carcinoma, and human metastatic carcinoma.

Cyclocytidine

Cyclocytidine (NSC-145668) has been reported (37) to be a more potent and less toxic antineoplastic agent than the parent compound cytosine arabinoside (ara-C). The anhydronucleoside interrupted tumor growth in a stepwise manner, possibly reflecting its slow hydrolysis to arabinosylcytosine (37). Their observation suggested that cyclocytidine is a depot form of arabinosylcytosine. Ho (38) pointed out that although this compound is a schedule-independent antitumor agent in various experimental systems, ara-C is schedule dependent. Cyclocytidine is not deaminated by the abundant deaminase in human liver and mouse kidney. In further studies on other biochemical properties of cyclocytidine, Ho (39) showed in in vivo systems that cyclocytidine possessed a lesser but longer lasting effect than ara-C. From studies in mice and dogs, it was suggested that cyclocytidine is hydrolyzed to arabinosylcytosine in vivo and may thus serve as a reservoir of the latter. Cyclocytidine is a weak inhibitor of DNA synthesis in mouse leukemia L1210 cells according to Kessel's (40) research. This compound is gradually hydrolyzed, apparently by a nonenzymatic process, to ara-C in the extracellular space, and rapid uptake of the latter compound resulted in progressive inhibition of DNA synthesis. (40).

Hirayama et al. (41) performed distribution assays of cyclocytidine on the urine and feces of monkeys, dogs, and rats. The administered cyclocytidine showed a half-life of 22 minutes in the plasma of dogs and monkeys, whereas that of $1-\beta$ -D-arabinofuranosylcytosine hydrochloride (ara-C) was in the plasma of dogs 47 minutes and less than 5 in the plasma of monkeys because of the rapid deamination of the compound. These workers pointed out that the rate of distribution and elimination of cyclocytidine after iv administration is not affected by the presence of cytidine deaminase in the plasma and tissues. When Ho et al. (42) studied the clinical pharmacology of cyclocytidine, they detected two metabolites of $2-[1^4C]$ -cyclocytidine in the plasma and urine, the hydrolytic

product ara-C and its deaminated product ara-U, in cancer patients. Eighty percent of the dose was found in the urine in 24 hours: 70% as cyclocytidine and 10% as ara-C and ara-U. The plasma disappearance curve of ara-C is linear, and the estimated half-life is 8 hours.

Ho and co-workers (43) performed additional pharmacologic studies of cyclocytidine with dogs. After the drug was administered, the two metabolites were again found in the plasma and urine. The urinary excretion of cyclocytidine was rapid, and 5 hours after parental administration, 60% of the drug was excreted, with 45% as cyclocytidine, 10% as ara-C, and 5% as ara-U. In contrast, after similar administration of ara-C, 45% of the drug is eliminated, 33% as ara-C and 12% as ara-U.

5-Azacytidine

Cihak and Vesely (44) conducted biochemical studies with 5-azacytidine (NSC-102816) in regenerating rat liver. It was proposed that the inhibitory effect and the changes in the polyribosome pattern are due to the incorporation of 5-azacytidine into newly synthesized RNA. Levitan and Webb (45) reported that 5-azacytidine also caused a breakdown of hepatic polyribosomes. In addition, 5-azacytidine prevented the inactivation of tyrosine transaminase, but not that of tryptophan pyrrolase, which normally occurs after an increase in hormone. In cell culture research with the agent and L1210 leukemia cells performed by Li et al. (46), 5-azacytidine inhibited mitosis, and this inhibition was correlated with that of DNA synthesis. 5-Azacytidine predominantly killed cells in the S-phase. In addition, this agent caused considerable chromosome damage to the L1210 cells in culture. Chabner et al. (47) showed that 5-azacytidine undergoes enzymatic deamination by peripheral human leukemia leukocytes. Increased levels of the enzyme cytidine deaminase may reduce the effectiveness of 5-azacytidine in the treatment of human leukemia. That inhibitors of pyrimidine deamination, such as tetrahydrouridine, are helpful in preventing catabolism of this antineoplastic agent is possible.

cis-Platinum (II) Diamminedichloride

The inhibitory effect of *cis*-platinum compounds was studied in vitro with the use of human amnion cells (48). Those compounds that inhibited tumor most effectively also inhibited DNA synthesis selectively and [³H]dThd incorporation more rapidly than [³H]uridine or [³H]leucine incorporation. The binding mechanism of *cis*-Pt (II) (NSC-117875) to DNA (49) and its toxicologic effects in dogs, monkeys, and mice (50) were investigated; doserelated morbidity generally was demonstrated within 5 to 7 days after administration of the compound. Toxic signs included severe hemorrhagic enterocolitis, hypocellularity of the bone marrow and lymphoid tissues, and marked renal lesions. Occasionally, pancreatitis was observed in dogs and myocarditis in monkeys.

In a clinical study by DeConti et al. (51), the half-life of cis-Pt (II) was 25 to 49 minutes, with a secondary phase that ranged from 58 to 73 hours. Urinary excre-

tion was incomplete with only 27 to 45% of the radioactive drug eliminated in the first 5 days. Renal impairment was the dose-limiting toxicity in the single-dose escalation scheme used.

Stadnicki et al. (52) found that transient hearing loss occurred in the monkey treated with the largest dose administered and in 1 of 3 animals treated at a lower dose. These findings indicated that when cis-Pt (II) was given in a treatment regimen that caused more severe organ toxicity, it caused less severe ototoxicity than neomycin sulfate.

Gallium Nitrate

The toxicity and antitumor activity of various salts including gallium nitrate (NSC-15200) were reported by Hart and Adamson (53). Gallium ranked third with respect to toxicity in experimental animals in an order of four inorganic salt-metal complexes. All four metals exhibited antitumor activity, but when the tumor was inoculated by a route different from that of the drug, only gallium inhibited tumor growth.

Guanazole

When Brockman et al. (54) studied the biochemical properties of guanazole (NSC-1895), they found that it inhibited the incorporation of adenine, hypoxanthine, and uridine into DNA to a much greater extent than into RNA in L1210 leukemia cells in vivo. Similar results were obtained when they used human epidermoid carcinoma cells in culture; guanazole inhibited the reduction of ribonucleotides to deoxyribonucleotides. Hahn and Adamson (55), in their paper on the properties of guanazole, stated that the compound was active against leukemia L1210 implanted ic. They also observed that a variant of leukemia L1210 made resistant to guanazole was not cross-resistant to dichloromethotrexate, BCNU, and ara-C. An investigation by Vick and Herman (56) on the effect of guanazole on the heart and blood pressure of dogs revealed that this agent produced a sharp drop in arterial blood pressure, an increase in right ventricular pressure, a slight decrease in heart rate, and a rise in central and portal venous pressures. These changes were transient, lasting from 5 to 10 minutes, and could be partially ameliorated by prior treatment with antihistamine, antiserotonin, and adrenergic blocking drugs. After Musa et al. (57) administered [14C]guanazole orally to rats, the blood levels of the labeled drug peaked at about 1 hour after dosing and declined in two distinct phases. The half-life of the slower phase was 3.2 hours. Tissue distribution of the labeled material was observed 90 minutes after dosing and showed the highest concentration of the drug in the bladder and the lowest in abdominal fat.

Ellipticine

Bhuyan and co-workers (58) investigated the biochemical characteristics of ellipticine (NSC-71795) in cell culture of a Chinese hamster fibroblast line and deter-

mined that it inhibited DNA and RNA synthesis more than protein synthesis and also interacted with DNA to cause severe chromosomal aberrations. Li and Cowie (59) reported that ellipticine significantly inhibited DNA, RNA, and protein synthesis and the inhibition was not reversible by the removal of the drug in cultured L1210 cells. Ellipticine bound preferentially to helical DNA by intercalation, and the strength of the binding was substantially greater than that of proflavin (60). Hardesty and associates (61) observed distribution of ellipticine in mice after the agent was administered in solution and as a suspension given orally or ip; the highest and lowest tissue levels occurred after its administration ip in solution and suspension, respectively. The major portion of this drug was present in the feces; only trace amounts were present in the urine. Although ellipticine decreased the blood pressure and the heart rate of monkeys, the carotid artery blood flow increased (62). Herman and his co-workers (62) also found that ellipticine produced immediate and marked hemolysis in anesthetized monkeys.

3-Tritylthio-L-alanine

In a report on the pharmacokinetics of 3'tritylthio-L-alanine (NSC-83265), Coffey et al. (63) stated that the rat absorbed this drug (which had a half-life of 20 hr) slowly and excreted it rapidly, chiefly in the bile. With a half-life of about 81 hours in dogs and monkeys, the compound showed rapid first-order absorption and slow excretion, mainly in the urine. The monkey excreted more in the urine than the dog. The main site of drug concentration in the tissues of the three species was the liver, with appreciable concentrations also in the kidney of the monkey.

Kessel et al. (64), when working on the biosynthesis of L1210 cells in culture, detected that 3-tritylthio-L-alanine interfered with the incorporation of precursors into nucleic acid and protein and caused disorganization of cell membranes.

Inosine Diglycolaldehyde

Inosine diglycolaldehyde (NSC-118994) inhibited ribonucleotide reductase in cell-free extracts from Ehrlich tumor cells (65). Cysyk and Adamson (66, 67) reported that the excretion of this drug in the urine of mice, rats, and monkeys was rapid, with 35 to 59% eliminated during the first 3 hours and a total of 58 to 68% excreted in 24 hours.

Dichloroallyl Lawsone

Dichloroallyl lawsone (NSC-126771) inhibited succinoxidase according to Iwamoto et al. (68), who researched the drug. With reference to its pharmacokinetics, Chadwick et al. (69) stated that, although dichloroallyl lawsone had a higher therapeutic index than the parent compound lapachol, the half-times of absorption of the two drugs were similar. Also, concentration-time curves for this agent were greater than that for the parent compound. In earlier work, Chadwick and Chang (70) found that

the concentration of dichloroallyl lawsone in the plasma and heart was approximately 10 times higher at 2 minutes after injection than after oral administration.

Indicine-N-oxide

The toxic doses of indicine-N-oxide (NSC-132319) were determined in mice, dogs, and monkeys by Castles et al. (71), who also described hematologic changes, bone marrow depression, and gastrointestinal toxicity. The lethality of a 1,200-mg/kg dose was discovered when this agent was given iv; an iv dose of 300-600 mg/kg was toxic for beagle dogs (72).

Coralyne Sulfoacetate

Studies on the preclinical toxicology of coralyne sulfoacetate (NSC-154890) were performed by Castles and his associates (73). In mice and hamsters given iv injections, the LD50 of this drug was approximately 222 mg/kg. In dogs, single iv doses of 75 or 37.5 mg/kg caused death in 10 and 66 days, respectively. At the lower dose, anorexia occurred in 44 days and was followed by marked body weight loss of approximately 57% and death by day 67.

α-2'-Deoxythioguanosine

LePage et al (74), in investigations of the biochemical carcinostatic properties of α - and β -2'-deoxythioguanosine (NSC-71851) found that, although the β -anomer, thioguanine riboside, and thioguanine appeared to be of approximately equal toxicity on a molarity basis, the α -anomer was actually much less toxic. Ten years later, Henry and Didomenico (75) studied the preclinical toxicology of this agent in dogs and monkeys; it was characterized initially by the development of emesis, diarrhea and anorexia, anemia, and leukopenia. Gastrointestinal toxicity and significant thrombocytopenia were present only at higher levels. With extended treatment, the bone marrow components were depressed, and this condition was not reversed during the rest period after drug treatment.

3-Deazauridine

Using extracts of lekemia L1210 cells to examine the mechanism of action of 3-deazauridine (NSC-126849), McPartland and co-workers (76) suggested that deazauridine exerted its growth inhibitory activity by interfering with the activity of cytidine triphosphate synthetase. Administration of testosterone, either concomitantly with the drug or in depot form 5 days before drug treatment, prevented or reduced both weight loss and mortality (77). Histopathologic changes produced in the intestinal epithelium by 3-deazauridine were alleviated by the administration of testosterone.

6-Selenoguanosine

Ross et al. (78), after studying the biochemical properties of 6-selenoguanosine (NSC-137679), reported that

guanine, 6-thioguanine, and 6-selenoguanosine showed comparable substrate activity, whereas azaguanine was a much poorer substrate for hypoxanthine-guanine phosphoribosyl transferase in mouse sarcoma 180 cells.

Townsend's Nucleoside Derivative

Plagemann (79) investigated the biochemical properties of Townsend's nucleoside [1,4,5,6,8-pentazaacenaphthylene-3-amino-1,5-dihydro-5-methyl-(5-14C)-1-β-D-ribofuranosyl] (NSC-154020). Within two hours this compound completely inhibited the incorporation of [14C]formate into nucleotides and nucleic acids of Novikoff hepatoma cells. However, the inhibition of de novo synthesis of purines and pyrimidines was not the only toxic effect of this agent because high concentrations of uridine, adenine, guanine, and hypoxanthine, either alone or combined, failed to prevent the inhibition of cell replication by Townsend's nucleoside. Bennett and associates (80) reported that it was degraded to a single compound characteristic of a 5'-monophosphate. The nucleoside inhibited the incorporation of [14C]formate and [14C]hypoxanthine into polynucleotides. Using [14C]-tagged material during investigations with dogs, Friedman et al. (81) found that the biologic half-life of this drug was 19 minutes. Also, studies on excretion showed that within 5 hours only about 5% of the labeled material was excreted in the urine, of which over 50% is the unchanged nucleoside; the remainder consisted of several metabolites. An unusual feature of this compound was that 54% of the administered dose was excreted in the bile in high concentrations.

ICRF-187 (Soluble Form of ICRF-159)

To relate toxicity and therapeutic efficacy to dose better and to facilitate pharmacologic studies, Venditti and Wolpert-DeFillippes (82) reported on a soluble parenteral formulation of ICRF-159 (ICRF-187; NSC-169780). The water-soluble material was four times as soluble as the racemic mixture. Antitumor research with the soluble product indicated that it was equivalent in activity to ICRF-159 in the L1210, B16, and LL mouse tumor systems.

Spirohydantoin Mustard

Peng et al. (83) reported that spirohydantoin mustard (NSC-172112), prepared as a nitrogen mustard carrier for CNS antitumor evaluation, produced cures repeatedly in the murine ependymoblastoma brain tumor system. This rationally designed CNS-directed nitrogen mustard has the ability to cross-link with DNA in the intracerebral rat glioma 9L and in bone marrow (84).

Quinolinium Derivative

Atwell and Cain's (85) data on a series of quinolinium (NSC-176319) compounds indicated that the 7-NO₂ quinoline congeners had high activity, whereas all 6-NO₂ variants proved inactive.

Chlorozotocin

Against Chinese hamster cells in vitro, chlorozotocin (NSC-178248) was approximately 40 times more toxic for noncycling cells and 20 times more so for cycling cells in comparison with streptozotocin (86). When Anderson et al. (87) studied the effect of this agent against mouse leukemia L1210, it produced no significant depression in either normal bone marrow DNA synthesis or peripheral neutrophil count. In contrast, it produced greater than a 90% inhibition of DNA synthesis in leukemia ascites cells. In their findings on additional structure—activity studies of nitrosourea derivatives, Schein and co-workers (88) showed that chlorozotocin produced only minor degrees of inhibition in mouse and human bone marrow DNA synthesis as compared with BCNU.

Cain's Acridine Derivative

Cysyk and Adamson (89) reported on the pharma-cologic properties of Cain's acridine derivative [acridinyl anisidide, AMSA; (NSC-249992)]. Using radioactively tagged material, they found that the compound is eliminated rapidly in the bile and more than half of the administered dose was excreted in the first 2 hours. Chromatographic analysis of the bile indicated that nearly all of the radioactivity was associated with one metabolite. More of the [14C]-labeled material was in the liver, bladder, and spleen. These investigators also determined that this compound interacts strongly with DNA. In additional studies of the biochemical properties of acridine derivatives, Waring (90) showed that they bind to DNA by intercalation.

1-(2-Chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea

The effectiveness of PCNU (NSC-95466) and other nitrosoureas in rats inoculated ic with sarcoma cells was investigated by Levin and Kabra (91). Their studies revealed that PCNU had greater alykylating activity, lower carbamoylating activity, and superior antitumor activity compared with CCNU, BCNU, and Me-CCNU. Based on these findings, they suggested that PCNU should be evaluated further as a potentially useful chemotherapeutic agent against brain tumors.

5-(3,3-Dimethyl-1-triazeno)-imidazole-4-carboxamide (Dacarbazine)

Pharmacologic studies with DTIC (NSC-45388) conducted by Loo et al. (92) indicated that plasma clearance of the drug in the dog was rapid, with a half-life of about 36 minutes. Excretion was complete in 6 hours, at which time the cumulative excretion was 17% of the injected dose; the drug appeared in the CSF 10 minutes after injection. When administered iv to man, the plasma clearance of DTIC was similar to that seen in the dog, with a plasma half-life of 35 minutes, but when given orally, the cumulative excretion of DTIC was variable and, on the average, 19% of the dose was in the urine in 6 hours. These results suggested that the gastrointestinal absorp-

tion of DTIC was slow, incomplete, and variable. Additional pharmacologic studies with DTIC were done by Householder and Loo (93) with mice, in which they observed that after an ip injection of the drug, 56% of the radioactive material was in the carcass at 15 minutes and that it diminished to 4.7% at 24 hours. Organ distribution of the radioactive drug in tumor-bearing mice was markedly different than in normal animals. The cumulative urinary excretion of radioactivity after iv injection of the labeled drug was 40-66% in 5 hours, and 36-84% of this represented unchanged DTIC.

In humans, the dog, and the mouse, the major metabolite of DTIC was 5-aminoimidazole-4-carboxamide. Gerulath and Loo (94) observed that DTIC was more lethal in the presence of light than in the dark to Chinese hamster ovary cells than to human melanoma cells in vitro. They also pointed out that when light was excluded, an alternative pathway of decomposition was followed, and 5-aminoimidazole-4-carboxamide and a methyl carbonium ion were formed, which then interacted with cellular DNA.

The structure and solubility characteristics of the USA drugs included in the joint study are presented in table 1.

B: STRUCTURE, BIOLOGIC, AND BIOCHEMICAL CHARACTERISTICS OF SOVIET ANTITUMOR DRUGS

At the end of the 1940's, L. F. Larionov advanced the idea of the selective synthesis of alkylating agents in which metabolites and biologically active substances are used as carriers of cytotoxic "warheads" (120, 121).

Dopan

Dopan (NSC-44629), one of the first representatives of this type of "alkylating metabolite" (122) is active against a number of transplantable and inducible tumors of mice, rats, and rabbits and is capable of evoking total regression of some of them. Its toxic effect is manifested in reversible suppression of hematopoiesis, particularly granulocytopoiesis.

[14C]Dopan administered orally to rats is detected in all tissues and organs, especially in the bone marrow and liver, and is retained there for an extensive period (123).

The antitumor effect of dopan may be reduced by prior administration of large doses of the methylpyrimidines, methyluracil and pentoxyl (124), which suggests that a pyrimidine carrier of chlorethylamine groups may contribute to the realization of antitumor effect.

Twenty-four hours after the administration to rats with sarcoma 45 at an MTD, dopan elicits marked reduction of DNA synthesis in the liver, spleen, and bone marrow. In normal tissues, the impaired synthesis is fully restored in 72 hours, whereas in the tumor, there is only partial restoration at this time.

On the basis of the depth of suppression of DNA and RNA synthesis in tumor cells and the capacity to induce the appearance of cross-links and breaks in DNA molecules, dopan can be classified as a potent alkylating agent.

TABLE 1.--Drugs from the United States included in the program of American-Soviet research

1	References	5)	\$			ii research p ∞			1)	(2)
	Refer	(95)	(14)	(96)	(26)	(98)	(66)	(100)	(101)	(102)
of American-Soviet research	Characteristics of drug	Soluble in water Stability, 6 days (refrigeration) Vehicle: saline Log: $P = +0.629 \pm 0.040$	Solubility, 4.25 mg in 1 ml ethanol Stability, 12% decomposition at 6 hr Vehicles: saline and alcohol Log: $P = +1.532 \pm 0.018$	Solubility: <0.5 mg/ml in water Stability: solubility of 4.5/100 ml, 6 hr Vehicle: Klucel Log: $P = 2.828 \pm 0.023$	Insolubie in water Soluble in dilute acid Stability, hydrolyzes in water Vehicle: CMC	Solubility, 5 mg/100 ml water Stability, solution decomposes (HCl) in 30 min Vehicle: Klucel	Solubility, 20 mg/ml water Stability, buffered citrate solution stable for 8 hr Vehicle: saline	Solubility, 0.92 mg/ml Stable in bulk and solution Vehicle: Klucel Log: $P=+2.524\pm0.007$	Soluble in water Stable Vehicle: saline Log: $P=-0.982\pm0.019$	Solubility, 200 mg/ml in water Stability, 1% solution in water for 24 hr Log: $P = -2.263 \pm 0.023$
Orago from the Orace States included in the program of American-Soviet research	otructural tormula	O CH2CH2-CI O P-N-CH2CH2-CI N H . H2O	O 	NO N	H HN CH2CH2CI	CI-CH ₂ CH ₂ CI-CH ₂ CH ₂ N N N N N N N N N N N N N N N N N N N	HO OH OH OH OH OH OH OH OH OH	CH ₃ -N-CH ₃ CH ₃ -N-CH ₃ N-CH ₃ CH ₃ -CH ₃	T O Z-H	HOOH SHOW THE PART OF THE PART
1	Compound name	Cyclophosphamide	1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU)	1-3 (2-Chloroethyl)-3-cyclohexyl- 1-nitrosourea (CCNU)	5-Bis(2-chloroethyl)-aminouracil (Uracil mustard or Nordopan	5-[3,3-Bis (2-chloroethyl)-1-triazeno]- imidazole-4-carboxamide (Imidazole mustard; TIC-mustard)	2-Deoxy-2-(3-methyl-3-nitrosoureido)- p-glucopyranose (Streptozotocin)	2,4,6-Tris (dimethylamino)-s-triazine (Hexamethylmelamine)	5-Fluorouracil (5-FU)	Cyclocytidine
ON OWN	INDC INC.	26271	409962	79037	34462	82196	85998	13875	19893	145668

Table 1.—Drugs from the United States included in the program of American-Soviet research (continued)

		KLINE	, 22 ,				
References	(103)	(104)	(105)	(106)	(107)	(108)	(65)
Characteristics of drug	Solubility, 14 mg/ml in water Stability, 9% decomposition in solution in 24 hr, 30 days in bulk at 60° C Vehicle: saline	Solubility, 1 mg/ml in water Vehicle: saline	Solubility, 650 mg/ml in water Stable Vehicle: saline	Solubility, 200 mg/ml in water Stable at reom temperature for 24 hr Vehicle: saline Log: $P = -1.610 \pm 0.011$	Solubility, <0.01 mg/ml in water Stability Bulk, no decomposition after 60 days at room temperature Vehicle: saline and Tween-80 Log: P = +4.805 ± 0.044	Solubility, <0.02 mg/ml in water Stability Bulk, no decomposition after 30 days Solution, no decomposition in saline Vehicle: saline Log: $P = 1.046 \pm 0.018$	Solubility, 500 mg/ml in water Stability Bulk, no decomposition at 60° C after 30 days Solution, no decomposition after 24 hr Vehicle: saline Log: $P = -2.114 \pm 0.004$
Ompound name Structural formula	HO-CH ₂	NH ₃	NO ₃) ₃	H.V. H.V. H.V. H.V.	H-Z-H	C-S-CH ₂ -CH-C-OH	HO CH ² OH HO CH ² OH
Compound name	5-Azacytidine	cis-Platinum(II) diamminedichloride	Gallium nitrate	Guanazole	Ellipticine	3-Tritylthio-L-alanine (s-trityl-L-cysteine)	Inosine diglycolaldehyde
NSC No.	102816	119875	15200	1895	71795	83265	118994

TABLE 1.—Drugs from the United States included in the program of American-Soviet research (continued)

N.C.N.	Compound name	Structural formula Structural formula	Characteristics of drug	References
100			Characteristics of airing	West chees
126771	Dichloroallyl lawsone	CH ₂ -CH=C-Cl ₂	Solubility, 1 mg/ml in water Stability Bulk, no decomposition at 60° C for 30 days Solution, no decomposition at room temperature for 24 hr Vehicle: Klucel Log: $P = +3.103 \pm 0.004$	(109)
132319	Indicine- <i>N</i> -oxide	CH ₃ -CH COOCH ₂ CH ₃ CH CH ₃ CH	Solubility, 100 mg/ml in water Stability Bulk, 5% decomposition after 30 days at room temperature Solution, no decomposition after 24 hr Vehicle: saline Log: $P = -1.525 \pm 0.035$	(110)
154890	Coralyne sulfoacetate	CH ₃ O-CH ₃ CH ₃ O-CH ₃	Solubility, 6.3 mg/ml in water Stability Bulk, 1% decomposition after 30 days Solution, 3% decomposition after 24 hr at room temperature Vehicle: saline Log: $P = -0.859 \pm 0.046$	(111)
71851	α -2'-Deoxythioguanosine (α -TGdR)	HS Z HO OH HO OH	Solubility, 7.1 mg/ml in water Stability Bulk, no decomposition at 60° C for 28 days Solution, no decomposition at room temperature Vehicle: saline and Tween-80 Log: $P = -0.851 \pm 0.036$	(112)
126849	3-Deazauridine	HO-CH ₂	Solution, 18 mg/ml in water Stability Bulk, no decomposition at 60° C for 30 days Solution, no decomposition at room temperature for 24 hr Log: $P = -2.280 \pm 0.008$	(113)

gs from the United States included in the program of American-Soviet research (continued)

Deferences	References	(114)	(115)	Creighton AM: Per- sonal com- munication	(83)	(85)
Soviet research (continuea)	Characteristics of orug	Impurity problem affects solubility and stability	Insoluble in water Soluble in 0.1 N HCl (20 mg/ml) Vehicle: saline and Klucel	Solubility, 10–12 mg/ml in water Stability Bulk, <1% decomposition at 60° C after 7 days Solution, 42% decomposition after 6 days at 28° C	Solubility, <0.01 mg/ml in water Stability Bulk, stable for 30 days at 60° C Saturated solution in DMA had a half-life of 30-60 min Vehicle: saline and Tween-80	Solubility, 8.3 mg/ml in water Stability Bulk, no decomposition at 60° C for 30 days Solution, 0.2% aqueous, no decomposition after 24 hr Vehicle: Klucel
Table 1,—Drugs from the United States included in the program of American—Soviet research (continued	Structural formula	NHOH OH	HOH, COH	HN N-CH ₂ -CH-N NH CH ₃	HN N-CH ₂ CH ₂ N (CH ₂ CH ₂ CI) ₂	H ₂ N NH OCONH ·2Br –
TABLE 1.—Drugs from the Ur.	Compound name	6-Selenoguanosine	1,4,5,6,8-Pentaazaacenapthylene- 3-amino,1,5-dihydro-5-methyl- 1-β-p-ribofuranosyl (Townsend's nucleoside derivative; TCN)	4,4'-(1-Methyl-1,2-ethanediyl) bis- 2,6-piperazinedione (+) (ICRF- 187; soluble form of ICRF-159)	Spirohydantoin mustard	6-Amino-1-methyl-4-[[[[[(1-methyl pyridinium-4-yl)-amino]phenyl] amino]-carbonyl]phenyl]amino]-quinolinium dibromide (quinoline derivative)
	NSC No.	137679	154020	169780	172112	176319

TABLE 1.—Drugs from the United States included in the program of American-Soviet research (continued)

		to the said and the manner from the same	The state of tructions potentially and the state of the s	
NSC No.	Compound name	Structural formula	Characteristics of drug	References
178248	Chlorozotocin	HO-CH ₂ OH HO HOO-N-CH ₂ CH ₂ CI	Solubility, <18 mg/ml in water Stability Bulk, at 60° C considerable decomposition after 24 hr Solution, 40% decomposition at room temperature at 25 hr Vehicle: saline Log: $P = -1.019 \pm 0.017$	(116)
249992	4'-(9-Acridinylamino)-methane- sulfon-m-anisidide (Cain's acridine derivative; AMSA)	HN—OHSO ₂ CH ₃	Soluble, 1 mg/ml in water Stable in water for 4 days Vehicle: saline and alcohol	(117)
95466	1-(2-Chloroethyl)-3-(2,6-dioxo-3- piperidyl)-1-nitrosourea (PCNU)	HN—ONHCONCH,CH,CI	Solubility, <1 mg/ml in water Stability, solution decomposed 38% after 24 hr Vehicle: saline and Tween-80 Log: $P = +0.374 \pm 0.012$	(118)
45388	5-(3,3-Dimethyl-1-triazeno) - imidazole-4-carboxamide (DTIC; dacarbazine)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Solubility, 1.0 mg/ml in water, 12.0 mg/ml in 0.1 N HCl Stability in citric acid, mannitol, and water 11 days, 64% decomposition (light) 11 days, 58% decomposition	(611)

Fluorodopan

The reactivity of the haloalkylamides such as fluorodopan (NSC-73754) depends on the rate of disassociation of the halogen ion. Because the fluorine ion in the fluorodopan molecule practically does not dissociate, it can be considered as a monofunctional alkylating agent (120).

An investigation of fluorodopan has shown that the general toxic effect on animals is decreased fiftyfold as compared with dopan, whereas the high and the broad antitumor activity spectrums are retained (125).

The advantages of fluorodopan over dopan include 1) rapid reversibility of the toxic effect on hematopoiesis, 2) milder disturbance of granulocytopoiesis, 3) absence of damage to the mucous membrane of the intestine, and 4) the long period of manifestation of the antitumor effect after a single administration of an MTD (126). The most appropriate manner of administration is in large doses with an interval of 5-7 days.

In a study of the mechanism of action of fluorodopan, the concentration that caused 50% suppression of DNA synthesis in ascites tumor cells after a brief incubation was five times higher than for dopan. The accumulation of labeled precursors in the form of nucleoside triphosphates is indicative of a block at the level of DNA and RNA polymerase (127).

Fluorodopan does not cause the appearance of crosslinks in the DNA molecules of tumor cells, and the concentrations at which the apparance of breaks in DNA are observed are considerably higher than those of dopan. Thus the alkylating capacity of fluorodopan is greatly reduced in comparison with dopan, and this is reflected in the characteristic features of its biologic effects.

Sarcolysin

Sarcolysin (NSC-14210) is a drug of high selectivity and broad-spectrum antitumor activity. When administered to rats in a single MTD (12 mg/kg), it caused total resorption of a number of transplantable tumors with only a moderate toxic effect on the normal tissues. The side effects on the organism are manifested chiefly in a reversible suppression of hematopoiesis. Although the bone marrow regenerates rapidly, the lymphoid tissue does so more slowly (120). Larionov proposed that the high selectivity of the antitumor effect of sarcolysin is related to the fact that the natural carrier, phenylalanine, serves as a conductor of the cytotoxic group, predominantly into the tumor cell.

Indirect confirmation of this hypothesis is provided by data on the extensive biologic activity of the L isomer of sarcolysin (melphalan) as compared with the D isomer and the observation that the antitumor effect of sarcolysin can be weakened by simultaneous administration of massive doses of tyrosine (128). It is possible that the antimetabolite properties of sarcolysin are manifested at the membrane level in competition with a metabolite for cell entry. Also, sarcolysin, like other chlorethylamines, alkylates nucleic acids and proteins of tumors and normal tissues with the appearance of cross-links and breaks in

DNA molecules and cross-links between the DNA and nuclear proteins. Alkylation of DNA and nuclear proteins results in the disturbance of the DNA replication processes, transcription, and mutagenic effects.

As opposed to nitrogen mustard and other chlorethylamines, sarcolysin in therapeutic doses disturbs the energy balance of tumor cells by acting on the mitochondria as an uncoupling agent (129).

Phenthyrine

Phenthyrine (NSC-275658) is highly effective not only against many transplantable sarcomas and melanomas of mice and rats but also against spontaneous tumors of dogs (e.g., transitional cell sarcoma, tumors of the ovary, thyroid, and breast).

The toxicity of phenthyrine depends on the route of administration. The LD50 is 30-60 mg/kg when administered iv to mice and rats and increases by an order of magnitude when given orally (130). At high doses, phenthyrine damages the lymphoid organs, the gastrointestinal tract, the liver, kidneys, thyroid glands, sex organs, and heart. In therapeutic doses, it may affect hematopoiesis, the gastrointestinal tract, and the heart.

One characteristic feature of the drug is its high immunodepressive action (131); another is its effect on the endocrine system. Phenthyrine causes a bloody discharge from the vagina of dogs, up to the point of uterine hemorrhaging, as well as lactation changes in the mammary gland and its tumors (132).

The toxic effect of phenthyrine on the thyroid gland can indirectly explain its high immunodepressive properties because of the relationship between the immunologic reactivity of the organism and the production of thyroxine. Also, the sensitivity of the thyroid gland to phenthyrine merits particular attention because the drug is a nitrogen mustard analog of thyroxine.

Palphicerin

Palphicerin (NSC-183734) displayed antitumor activity in experiments not only against tumors sensitive to chlorethylamines but also against nonsensitive tumors (133).

The drug was injected sc into dogs for 5 days in doses of 30 and 60 mg/kg and administered orally in single doses of 15 and 60 mg/kg. When parenterally administered, the toxicity was manifested in body weight loss, dyspepsia, a decline in the total number of leukocytes and lymphocytes, and impaired coordination of movement. The 60-mg/kg dose resulted in the death of the dogs. Smaller doses impaired muscular coordination, which was not restored in the course of several months.

A histologic study of the organ tissues showed changes in the cerebellum, with destruction of the granular layer of cells and interstitial cell edema. The introduction of palphicerin into the stomachs of dogs and mice does not cause the disturbed coordination of their movements shown by sc or ip administration in therapeutic doses. Thus the toxicity of the drug for brain tissue varies with its route of administration.

Phenestrol

The cytostatic hormone phenestrol (NSC-183736) combines the properties of an alkylating agent and an estrogen. This action is manifested not only in its effect on tumor growth but also on hematopoiesis. Like phenester, but to a lesser degree, phenestrol suppresses lymphopoiesis and stimulates granulocytopoiesis but more weakly than does sinestrol. Thus the alkylating and hormonal properties of the cytostatic hormone appear less pronounced than its individual components.

Hormonal properties of phenestrol are manifested in its effect on the target tissue. In rats, it causes an increase in the weight of the uterus, adrenals, and pituitary, and hyperplasia of the mammary glands to a lesser degree than sinestrol. The drug reduces the weight of the ovary, seminal vesicles, and the ventral lobe of the prostate gland (134, 135). Also, phenestrol possesses a prolonged estrogenic effect not found with sinestrol: It sharply increases the duration of estrus in gonadectomized mice and rats and inhibits for an extended period the production of follicle-stimulating pituitary hormone. Phenestrol significantly retards the growth of hormone-dependent tumors only in gonadectomized mice and rats (135).

Distron

The biologic characteristics of the cytostatic hormone distron (NSC-183735) are also related to the specific properties of its components. However, as opposed to phenestrol, distron has a much broader spectrum of action on transplantable, induced, and spontaneous tumors of animals that are relatively insensitive to alkylating agents and hormones (136, 137).

Although its properties are not cumulative, distron causes an extensive and prolonged lymphotoxic effect in dogs without lowering the total leukocyte count.

This cytostatic hormone manifests androgenic and anabolic properties and is similar to testosterone propionate in its androgenic activity but stronger in its anabolic effect. The drug displays nephrotoxicity, cardiotoxicity, and some neurotropism in dogs.

Judging by the nature of the effect on the process of transcription and metabolism of newly synthesized RNA in tumor cells and the spleen of mice, one can conclude that distron does not differ from phenester. Both drugs, when administered in a single maximum permissible dose, at first suppress transcription of pre-rRNA, and then the suppression is replaced by stimulation and accumulation in the nucleus and cytoplasm of unusual post-rRNA, which may be either incomplete transcripts or the products of disturbed processing. Distron is bound to the cytoplasmic receptors of androgens in normal tissues and tumors.

Prospidine

Whereas prospidine (NSC-166100) suppresses the growth of a large number of transplantable tumors of

mice and rats up to the point of total regression of some of them, it is entirely inactive against transplantable leukemias.

Prospidine differs from the other antitumor compounds in its broad therapeutic scope and, consequently, its significant selectivity of action (138, 139).

A study of the pharmacokinetics of [14C]prospidine revealed its rapid (within 2 hr) disappearance from the blood after iv administration; the greater part of the radioactive label is eliminated in the urine. The distribution of radioactivity in the tissues differs basically from that of other drugs. Prospidine accumulates in large quantities in the kidneys, lungs, upper respiratory tract, skin, intestine, pancreas, bones, and to a lesser degree in the spleen and lymph nodes. The slow elimination of the radioactive compound from the larynx, trachea, and major bronchi and from the cells of the hyaline cartilage of these organs is characteristic (140). Thus the character of the distribution of the drug partly explains its low toxicity and the absence of a suppressive effect on hematopoiesis.

As evidenced by the mechanism of action on the tumor cell, prospidine also differs from other alkylating compounds. It neither has an immunodepressive effect nor does it suppress the incorporation of [³H]dThd into DNA of sarcoma 45 cells. As opposed to dipin and fotrin, prospidine reduces the ionic permeability of the plasma membrane of the tumor cells (141).

The effect of prospidine on intracellular processes is apparently mediated by parts of the plasma membrane receptor system responsible for ionic homeostasis of the cell. Its selective attack on tumor cells may result from structural differences at the cell surface (139).

Fotrin

Fotrin (NSC-216135) has higher antitumor activity against transplantable tumors and leukemias than thiophosphamide, dipin, and thiodipin. Characteristic features of fotrin are the lower toxicity and less pronounced cumulative properties than for the other drugs mentioned above. Fotrin suppresses lymphocyte and granulocyte production to an equal degree. The leukocyte count returns to normal in 10–13 days after the administration of the drug (142).

A study of the pharmacokinetics of [32P]fotrin revealed maximum accumulation of radioactivity (15 min after iv injection) in the blood, intestine, liver, thymus, and a minimum in the femur, bone marrow, and muscles. An intermediate position is occupied by the pituitary, thyroid, pancreas, spleen, lungs, and kidneys. With time, the level of radioactivity increases in the spleen, thymus, and pituitary, and in the other tissues it declines to the minimum in 2–4 days.

As evidenced by the distribution pattern, forrin displays a certain affinity for organs rich in lymphoid tissue. The elimination of labeled forrin occurs through the kidneys and intestine, with about 70% of the drug eliminated in the urine during the first 24 hours and 0.4% in the feces; during the following days, more of the isotope is eliminated through the intestine (142).

Diiodobenzotepa

Diiodobenzotepa (NSC-167781) displays high antitumor activity against carcinomas and mesenchymomas (143) and is distinguished by its therapeutic scope and prolonged antitumor effect.

Although it preserves the basic character of the biologic effect of the ethyleneimines, diiodobenzotepa differs from them in its its low toxicity (LD50 for rats, 500 mg/kg) and reduced effect on hematopoiesis. The stimulating action exerted on the thyroid gland may be the cause of a host-mediated effect of the drug on tumor growth (144).

Diazan

Diazan (NSC-271276) has considerable antitumor activity and a broad spectrum of action. The drug is low in toxicity, but when applied several times daily, its toxicity increases sharply, which is indicative of its cumulative properties (145).

With the use of autoradiography, diazan was shown to suppress DNA synthesis and reduce the mitotic activity of leukemia L1210 cells, thus blocking for a prolonged period the transition of the cells from the G_1 -phase into the S-phase and from the S-phase into the G_2 -period and mitosis. Cell reproduction is then restored, but the intensity of the DNA synthesis remains lowered (146).

When given in therapeutic doses to mice with leukemia L1210, diazan caused marked suppression of transcription without influencing the processing of the high molecular weight precursors of mRNA and rRNA (147).

Methylnitrosourea

As one of the few antitumor agents that penetrates the blood-brain barrier MNU (NSC-23909) is effective against intracerebral forms of leukemia L1210, sarcoma 180, Ehrlich tumor, and transplantable glioma 101/12.

The drug, equally active when administered parenterally and orally, is most effective in single-administration "shock" doses. The side effects of MNU include suppression of hematopoiesis (147-149). This cycle-nonspecific agent exerts a cytotoxic effect not only on proliferating but also on quiescent cells cultivated in vitro. A characteristic feature of its effect on the kinetics of cell proliferation in vivo is the suppression of DNA synthesis, the prolongation of the S- and G_2 -phases, and the temporary blocking of the cells in the late interphase (150).

Like other nitrosourea derivatives, MNU undergoes metabolic transformations in the organism and tumor under the influence of microsomal hydroxylases (151). The products of these transformations, the methylcarbonium ion and isocyanate, enter into alkylation and carbamoylation reactions with nucleic acids, proteins, and the components of the membranes of normal and tumor cells that lead to disturbances in DNA replication, transcription, and translation (152, 153).

When MNU is administered in single therapeutic doses to mice with leukemia L1210 or Ehrlich ascites tumor, profound inhibition of transcription not only of mRNA but also of rRNA and a disturbance of the normal processing of the rRNA take place (154).

Ftorafur

In a study of the mechanism of action of ftorafur (NSC-148958), Meyren and Belousova (155) found that the drug blocks thymidylate synthetase. However, the lack of correspondence between the limited capacity of the drug to suppress the biosynthesis of thymidylate in tumor cells in vitro and its considerable antitumor activity in vivo led to the hypothesis that ftorafur is a latent form of 5-FU. Further work on the metabolism and pharmacokinetics of [14C]ftorafur confirmed this hypothesis. Under the influence of nonspecific oxidases of the liver microsomes, the pseudoglycoside bond in the ftorafur molecule is broken, accompanied by the liberation of 5-FU.

Ftorafur, as opposed to 5-FU, circulates in the blood for a long time, assuring prolonged contact of endogenous 5-FU with tumor cells. Also, when ftorafur is administered in vivo there is less likelihood of the occurrence of high concentrations of 5-FU that will be toxic for normal tissues, again assuring high antitumor activity of ftorafur in the presence of low toxicity (156).

In studies with patients with neuroectodermal tumors of the brain, ftorafur penetrated well through the bloodbrain barrier and accumulated predominantly in the tumorous brain tissues. These data served as a basis for a study of the efficacy of ftorafur in the treatment of brain tumors (157). Ftorafur is equally effective parenterally and orally.

Tomizin

Tomizin (NSC-216134) differs in its mechanism of antitumor action from the well-known folic acid antagonists. It suppresses dihydrofolate reductase as well as the enzyme which inactivates aminopterin. As a result of this activity, tomizin can be effective against tumors resistant to other folic acid analogs (158).

In in vitro experiments, tomizin selectively inhibited the division of tumor cells. With approximately comparable activity to methotrexate in antitumor activity, tomizin has less acute or cumulative toxicity.

A study of the pharmacokinetics of [35S]tomizin administered iv to rats with sarcoma M-1 and sarcoma 45 (159) revealed that it disappears from the blood rapidly (in 5–15 min). The highest level of radioactivity is recorded in the kidneys, adrenals, and pancreas, with lower levels in the lymph nodes, stomach, liver, small intestine, brain, and tumor. [35S]Tomizin is eliminated from the body predominantly via the kidneys. The basic metabolic pathways are deamination and oxidation of the sulfur atom with the formation of 4-methoxypyrimido-6-thiazine and its sulfoxide. In addition, the N-5 nitrogen atom undergoes oxymethylation, and the amino group at C-6 undergoes acylation.

Carminomycin

Carminomycin (NSC-180024), an anthracycline anti-

biotic related in structure to daunorubicin and adriamycin, has a broad spectrum of antitumor action. The optimal mode for administration to animals is iv, with an interval of 96–120 hours between injections (160).

Judging by the mechanism of cytotoxic effect, carminomycin does not differ basically from daunorubicin. In a culture of *Micrococcus lysodeikticus*, carminomycin selectively suppresses DNA synthesis and, to a lesser degree, RNA synthesis. In ascites tumor cells, carminomycin inhibits DNA and RNA synthesis to an equal degree (161).

Like daunorubicin, carminomycin interacts in vitro with native DNA, RNA, polyribonucleotides, and purine nucleotides. The antibiotic stabilizes the double helical structure of DNA, and raises its melting point and viscosity. The result of the interaction of carminomycin with DNA is the suppression of the activity of RNA polymerase.

As opposed to many antitumor antimetabolites and antibiotics, carminomycin suppresses the repair synthesis of DNA (161, 162). Carminomycin differs from daunorubicin by its greater capacity to be absorbed from the gastrointestinal tract, a fact that is related to its pharmacokinetic characteristics and side effects (163).

Olivomycin

Olivomycin (NSC-76411), an antibiotic of the aurelic acid group, possesses a broad spectrum of antibacterial and antitumor action. At doses close to lethal, the antibiotic suppresses hematopoiesis and exerts a toxic effect on the kidneys of experimental animals. However, the acute toxicity of olivomycin is significantly lower than that of chromomycin, and its cumulative toxicity, also lower, characterizes it as a drug of higher selectivity of antitumor action (164-167). In its mechanism of cytotoxic effect, olivomycin resembles chromomycin and mithramycin. The antibiotics interact with native DNA in the Mg²⁺ or Mn²⁺ complex form and suppress its template activity during the process of transcription. Because the binding of olivomycin to DNA is strong, it leads to a prolonged retardation of the movement of the RNA polymerase along the DNA template and impairs the elongation of RNA. As opposed to dactinomycin, the process of intercalation does not play a major role in the interaction of this class of antibiotics with DNA (168).

Variamycin

Variamycin (NSC-269146) is active against a broad spectrum of tumors and leukemias in mice and rats. It differs from olivomycin and chromomycin, which are close to it in structure, in character of toxic effect and in other pharmacologic properties, but as indicated by the characteristics of its acute toxicity, variamycin is similar to mithramycin. After repeated therapeutic doses to rats, rabbits, and dogs, the toxic effect of variamycin was manifested by disturbances of liver and kidney functions and blood coagulation processes (169).

[14C]Variamycin accumulates during the first hour after administration to rats in the blood, kidneys, liver, and

spleen. No tendency for the radioactivity in the spleen to subside is noted in the course of 24 hours (170).

Variamycin penetrates the blood-brain barrier and accumulates predominantly in the intracranial tumor (multiform glioblastoma of rats), compared with normal brain tissue (170).

The mechanism of antitumor action of variamycin, like that of other antibiotics of this group, is based on its ability to form strong complexes with the DNA of the tumor cells and selective suppression of RNA synthesis (171). The parts of the DNA to which the variamycin and mithramycin are bound are common. They are rich in G-C pairs, which suggests the selective inhibition of the synthesis of ribosomal RNA by the antibiotic.

The products of partial degradation of variamycin, tetraozide and triozide weakly inhibit the synthesis of RNA in animal cells and in noncellular systems. The aglycone of variamycin is inactive as an inhibitor of RNA synthesis.

Variamycin exerts a strong immunodepressive effect at one-half the LD50 dose when given 24 hours before immunization. The administration of the antibiotic after antigenic stimulation does not reduce the immune response.

Reumycin

Reumycin (NSC-99733) belongs to the group of triazine antibiotics and is the dimethyl analog of fervenulin.

As an antitumor drug, it is effective against Ehrlich carcinoma, sarcoma 37, adenocarcinoma 755, and lympholeukemia L-5278Y, but it is inactive against leukemias L1210 and La. Reumycin is moderately toxic and has a high selectivity of antitumor action (172).

With prolonged iv administration at an MTD to dogs, reumycin caused leukopenia, thrombocytopenia, a change in the EKG, and a reduction in the clotting capacity of the blood. At toxic doses, it disturbed the functions of the kidneys and liver, exerted an immunodepressive effect, and increased the permeability of the vessel walls (173).

Like other triazine antibiotics, reumycin is an autooxidizable electron acceptor from flavin NADH-cytochome-b₅ oxidoreductase. The mechanism of antitumor action of reumycin is related to the effective oxidation of cytoplasmic NADH that leads to the disruption of energy metabolism and biosynthetic processes. In particular, reumycin suppresses RNA synthesis in tumor cells (173).

Chanerol

Chanerol (NSC-183737) is a drug of plant origin, characterized by unusual antitumor activity and low toxicity (174, 175). Judging by its characteristic features, chanerol is a lectin that differs from phytohemagglutinin by the absence of nitrogen in the molecule.

Compared with other lectins, chanerol has high antitumor activity, which correlates with its agglutinating capacity (174, 175).

A toxicity study of chanerol when given to animals (mice, rats, guinea pigs, rabbits, and dogs) showed that

a primary contributing factor to its toxic effect on the organism was the impairment of the coagulating and anticoagulating functions of the blood. These disturbances lead to thrombosis of the capillaries, disturbed microcirculation, and focal hemorrhaging. The intensity of the above-noted changes and their localization are determined not only by the magnitude of the dose of the drug used, but also by the anatomicophysiologic characteristics of the

capillary channels of the internal organs (176, 177). An important characteristic of chanerol is the phenomenon of resistance of animals to repeated administration that may be used to prevent the development of the thrombohemorrhagic syndrome in animals.

The structures and solubility characteristics of a number of the Soviet drugs included in the joint study are presented in table 2.

TABLE 2.—Drugs from the USSR included in the program of American-Soviet research

References	(122)	(126)	(178)	(179)	(134)	(180)	(180)	earch (181)	earch (182)
Institute conducting research	OSC, AMS, USSR							All-Union Scientific Research Chemical-Pharmaceutical Institute, MMP, USSR	All-Union Scientific Research Chemical-Pharmaceutical Institute, MMP, USSR
Solubility	Poorly soluble in alcohol; practically insoluble in water	Soluble in acetone, chloro- form; practically insol- uble in water	Readily soluble in water but poorly soluble in ethyl alcohol	Soluble in alcohol, ethyl acctate, chloroform; insoluble in water	Poorly soluble in ethyl acetate; soluble when heated in DMSO (1.7%), benzyl alcohol (4%), benzyl benzoate (5.5%)	Readily soluble in chloroform but poorly soluble in 95% ethanol; insoluble in water	Soluble in chloroform and ether but poorly sol-uble in alcohols; insol-uble in water	Readily soluble in water but poorly soluble in alcohol; practically insoluble in ether and chloroform	Readily soluble in water, 95% alcohol, chloroform, soluble in acctone, but only slightly in ether
Structural formula	HN N (CH ₂ CH ₂ CI) ₂	HN CH ₂ CH ₂ F CH ₂ CH ₂ CI	(CICH ₂ CH ₂) ₂ N—CH ₂ CHCOOH	$CICH_2CH_2)_{2}N \leftarrow \bigcirc CH_2CHCONHCH$ $CH_2CH(CH_3)_{2}$ $NHCOCH_3$	C_2H_5 CH CH CH $CH_2CH_2CH_2CH_2$ CH CH $CH_2CH_2CH_2CH_2$			CICH ₂ CHCH ₂ -N + + A - CH ₂ CHCH ₂ CI CI ₂ CI CICH OH	CH ₂
Compound name	Dopan	Fluorodopan	Sarcolysin	Asaley	Phenestrol	Distron	Palphicerin	Prospidine	Fotrin
N CON	44629	73754	14210	167780	183736	183735	183734	166100	216135

TABLE 2.—Drugs from the USSR included in the program of American-Soviet research (continued)

References	(183)	(184)	(185)	(186)	(187)	(188)	(175)
Institute conducting research	Kiev Research Institute for Pharmacology and Toxicology, Ministry of Health, Ukrainian SSR	IOS Academy of Sciences, Latvian SSR, and OSC, AMS, USSR	All-Union Scientific Research Chemical-Pharmaceutical Institute, MMP, USSR	Institute for the Search for New Antibiotics, AMS, USSR	Institute for the Search for New Antibiotics, AMS, USSR	OSC, AMS, USSR	" "
Solubility	Poorly soluble in chloroform, 95% ethyl alcohol; insoluble in water	Readily soluble in water, alcohol	Readily soluble in water, methanol	Readily soluble in water, methanol	Readily soluble in water, alcohol	Soluble in alcohol, aqueous alcohol, dioxan, DMFA	Readily soluble in water, alcohol
Structural formula	N ONHNOO I	O Z.	OMe NH, HCI	HO OH OOH OOH NH2-HCI	OH OOH OOH OOH OOH OOH OOH OOH OOH OOH	H NH ₂ ·HCl	nnin
Compound name	Diiodobenzotepa	Ftorafur	Tomizin	Carminomycin	Olivomycin	Aton	Chanerol (polyphenol from tannin group)
NSC No.	167781	148958	216134	180024	76411	196869	183737

0
3
2
Įį.
rican-Soviet research (continued
0
7
-5-4
\tilde{c}
2
e
رنا
5

0)
2
0
S
7
7
೮
.5
ē
5,
~
1
+
0
2
7
Z
Qζ
ç
ã
e progran
uded in the progra
7
6-2
-
*
ë
B
_2
2
2
×
S
S
USSR
0
2

62
2
5
チ
5
00
7
Õ.
7-
4
1
<u>-</u> 5
臣 2.一
LE 2
BLE 2
TABLE 2

ANDLE L.—UIU63 JIU	m the Ossk included in the program	1ABLE 2.—Drugs from the USSR included in the program of American–Soviet research (continued) Institut	h (continued) Institute conducting	
Compound name	Structural formula	Solubility		References
Colchizin (synthetic derivative of colchicine)		Readily soluble in alcohol, moderately in water, 6% solution in 10% alcohol	£	(189)
Diazan	N ₂ CHCOCH ₂ CH ₂ COCHN ₂	Readily soluble in water, poorly soluble in hex- ane, octane	Institute for Chemical Physics, AS, USSR	, (145)
Variamycin HO Me HO Me HO MeO	Me OH HO OH	Readily soluble in lower alcohols, moderately in water	All-Union Research Institute for Antibiotics, Ministry of Health, USSR	(190)
Reumycin	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Soluble in water	All-Union Research Institute for Antibiotics, Ministry of Health, USSR	(191)
Agavoside (steroid glycoside)		Soluble in water	OSC, AMS, USSR	(192)
Digitonin HO. Glc-Gal-Glc— Xyl	$\begin{array}{c} Me \\ Me \\ OH \\ Glc = \beta - D - glucose \\ Gal = \beta - D - galactose \\ Xyl = \beta - D - xylose \end{array}$	Soluble in water, DMSO		(192)
Funkioside (steroid glycoside)		Insoluble in water	r r	(192)
Vitalboside (triterpene glycoside)		Insoluble in water		(193)

TABLE 2.—Drugs from the USSR included in the program of American-Soviet research (continued)

NSC No.	Compound name	Structural formula	Solubility	Institute conducting research	References
275652	Glucomannan (polysaccharide from roots of Eremurus comosus)	\$1	Soluble in water to 8%, DMSO, insoluble in alcohol	OSC, AMS, USSR	(194)
275656	Dioxadet	$\begin{array}{c} CH_2OH \\ HN - CH_2 - O \\ CH_2 - O \\ CH_2 - O \end{array}$	Soluble in water, readily soluble in methyl alcohol, poorly soluble in vegetable oils	N. N. Petrov Research Institute for Oncology, USSR	(195)
275658	Phenthyrine	$(CICH_2CH_2)_2N$ O	CH2CHCOOH Soluble in water and NH2·2HCI alcohol	OSC, AMS, USSR	(130)
23909	Methylnitrosourea	CH ₃ —N—C—NH ₂ NO O	Moderately soluble in water (up to 1%), well in organic solvents (acetone, DMFA, DMSO), soluble in	Institute for Chemical and Physics, Academy of Science, USSR	(961)

Chapter II: Methods of Selecting Antitumor Drugs in the United States and Soviet Union

In this chapter, information is presented on the methodologic techniques used in the United States and the USSR in screening for new antitumor drugs.

A: TEST SYSTEMS USED IN THE UNITED STATES

Lymphoid Leukemia L1210

Origin

This tumor line originated as a lymphocytic leukemia in a DBA/2 female mouse in 1948 after the skin was treated with 0.2% 20-MCA in ethyl ether (197).

Source 2

General

Routinely, when the L1210 system is used as a primary drug screen, ascitic fluid from stock tumor-bearing DBA/2 mice is implanted ip into (C57BL/6 × DBA/2) BDF₁ or (BALB/c × DBA/2) CDF₁ mice. Treatment is begun on the following day. Drug effectiveness is assessed on the basis of survival time of the mice. Results are expressed as a percentage of the control survival time.

Abbreviations: ic = intracerebral(ly); MST = median survival time; NCI = National Cancer Institute; ILS = increased life-span; 3- or 20-MCA = 3- or 20-methylcholanthrene; LL = Lewis lung (tumor); OSC AMS = Oncological Scientific Center, Academy of Medical Sciences (USSR); LD50 = median lethal dose; OD = optical density; ED50 = median inhibitory concentration.

- ¹ This chapter was prepared by I. Kline and G. N. Platonova.
- ² Tumor line was obtained from frozen tumor bank maintained at Arthur D. Little, Inc., Cambridge, Massachusetts.
- ³ Range is 3 g, with a minimum weight of 18 g for males and 17 g for females.
- ⁴ Animal selection is based on weight; normally, the mice are 6-8 wk old.
- ⁵ A single sex is used for all test (treatment) and control mice in 1 experiment.
- ⁶ A test group is defined as 1 experimental group receiving one dosage level of drug.
- ⁷ Number depends on No. of test groups (G) and No. of mice in each test group (M); No. of control animals = $\sqrt{G} \times M$. Example: If an experiment contains 25 test groups of 6 mice each, the No. of control mice is $\sqrt{25} \times 6 = 30$.
- 8 T/C% = test group mean survival time/control group mean survival time \times 100. The percentage increase in lifespan over control (ILS%) is computed as follows: ILS% = T/C% 100.

Propagation of stock tumor

Animals: DBA/2

Inoculum: Consisted of 0.1 ml of diluted (sterile physiologic saline) ascitic fluid containing 10^{3} cells (ip), 10^{6} cells (sc), or 10^{7} cells (iv); 0.5 ml diluted blood containing 2×10^{5} cells drawn from a leukemic mouse (ic).

Implant site: ip, sc, or ic on day 0.

Time of transfer for propagation or for drug testing: Day 6 or 7.

Drug testing

Animals: BDF₁ or CDF₁ mice

Weight range: ³
Age range: ⁴
Sex: ⁵

No. of mice/test group: 6 3-10, usually 6

No. of control mice/experiment: ^{6, 7} 3-10, usually 6 Testing schedule: Daily, ip, days 1-9; once on days 1, 5, and 9; or once on day 1 only depending on the amount of available material

Dosage: For initial testing, three serial diluted dosage levels (D, D/2, and D/4) are used.

Evaluation

Acceptable control mean survival time: 8-11 days

Parameter of effect: 8

Minimum criterion for activity: $T/C \ge 125\%$

Day of final evaluation (day on which survivors are discarded): Day 30 or 45.

Lymphocytic Leukemia P388

Origiu

This tumor line originated as a lymphocytic leukemia in 1955 in a DBA/2 female mouse after the skin was painted with 3-MCA (198).

Source 2

General

Routinely, when the P388 system is used as a primary screen, ascitic fluid from stock tumor-bearing DBA/2 mice is implanted ip into BDF₁ or CDF₁ mice. Treatment is begun on the following day. Drug effectiveness is assessed on the basis of survival time of the mice. Results are expressed as a percentage of the control survival time.

Propagation of stock tumor

Animals: DBA/2 mice

Inoculum: Consisted of 0.1 ml of diluted (sterile physiologic saline) ascitic fluid containing 10⁶ cells ip, 10⁷ cells sc or iv, or 0.05 ml of diluted blood containing 3 X 10⁵ cells drawn from a leukemic mouse (ic)

Implant site: ip, sc, or ic on day 0 Time of transfer for propagation: Day 7 Time of transfer for drug testing: Day 6 or 7

Drug testing

Animals: BDF₁ or CDF₁

Weight range: ³ Age range: ⁴ Sex: ⁵

No. of mice/test group: ⁶ 6 No. of control mice/experiment: ⁷

Testing schedule: Usually ip daily from days 1 to 9 Dosage: For initial testing, three serial diluted dosage levels (D, D/2, and D/4) are used.

Evaluation

Acceptable control mean survival time: 9-14 days

Parameter of effect: 8

Minimum criterion for activity: T/C = 125%

Day of final evaluation: Day 30 or 45

B16 Melanoma

Origin

This tumor line arose spontaneously in 1954 on the skin at the base of the ear in a C57BL/6 mouse (199, 200).

Source

The B16 tumor was supplied by The Jackson Memorial Laboratory in 1967 as a subcutaneous tumor in C57BL/6 mice. Lines used in this program were generated in vivo from the frozen tumor bank.²

General

For drug testing, a homogenate of subcutaneously grown tumor from C57BL/6 mice is implanted either ip or sc into BDF₁ mice. When the tumor is implanted ip, it grows as multiple discrete masses lining the peritoneal cavity and not as ascites tumor. The subcutaneous B16 is considerably more resistant than the intraperitoneal to drug therapy. In general, ip treatment is begun on the day after either ip or sc tumor implantation. Drug effectiveness is usually assessed on the basis of the survival time of the mice. Results are normally expressed as a percentage of the control survival time.

Propagation of stock tumor

Animals: C57BL/6 mice

Inoculum: Tumor fragment (approximately 25 mg) is implanted by trocar or 12-gauge needle. Alternatively, 0.5 ml of a tumor homogenate (1 g tumor in 10 ml physiologic saline) may be implanted sc, or 0.05 ml inoculated ic.

Implant site: sc or ic on day 0

Time of transfer for propagation: Day 10–14 Time of transfer for drug testing: Day 10–14

Drug testing

Implant site: Tumor homogenate implanted ip or sc

Animals: BDF₁ Weight range: ³ Age range: ⁴ Sex: ⁵

No. of mice/test group: 6 10

No. of controls/experiment: 7

Testing schedule: In general, ip treatment is given daily from days 1 through 9. However, the treatment schedule may be varied for an individual drug based on results obtained in other test systems.

Dosage: Dose-response testing is used. The actual dosage levels and No. of dosage levels are determined by existing data from other test systems.

Evaluation

Acceptable control median survival time: For ip implanted B16, MST is 14-22 days.

Parameter of effect: 8

Day of final evaluation: Day 90

Friend Virus Leukemia (Solid)

Origin

A pathogenic virus causing a leukemia-like disease in mice was isolated by Dr. C. Friend from mouse donors which had received inoculations of cell-free extracts prepared from a transplanted mouse carcinoma (201).

Source 2

General

Tumor fragments are transplanted sc into BDF₁, DBA/2, or Swiss mice. Treatment (ip) is begun on the following day and continued to day 11. Drug efficacy is assessed on the basis of tumor weight inhibition, which is determined on day 12.

Propagation of stock tumor

Animals: BDF₁, DBA/2, Swiss mice

Inoculum: Fragments Implant site: sc

Time of transfer for propagation or drug testing: Days 13-14

Drug testing

Animals: BDF₁, DBA/2, Swiss mice

Weight range: 3 Age range: 4

Sex: 5

No. of mice/test group: 6 8-10 No. of control mice/experiment: 7

Evaluation

Parameter of effect: 9 Tumor weights on day 12

Lewis Lung Carcinoma

Origin

This tumor arose spontaneously as a carcinoma of the lung in a C57BL/6 mouse in 1951 in the laboratory of M. R. Lewis [Lewis MR: Unpublished data; (202, 203)].

Source

The Lewis lung carcinoma was obtained in 1961 from the Sloan-Kettering Institute, which had received it in 1954 from M. R. Lewis.²

General

The system has the extension of survival time as the principal parameter of response. The subcutaneously grown tumor from C57BL/6 stock tumor mice is implanted sc as a 2- to 4-mm fragment or im as a 2×10^6 cellular homogenate into BDF₁ mice. Initial testing involves early treatment usually beginning on day 1. Tumor weight inhibition (extrapolated from tumor size) may be used as an ancillary parameter.

Propagation of stock tumor

Animals: C57BL/6 mice

Inoculum and implant site: Tumor fragment (2- to 4mm or 25 mg) implanted sc by trocar into the axillary region.

Time of transfer for propagation: Day 12-14 Time of transfer for drug testing: Day 12-14

Drug testing

Implant site: Tumor fragments (see above) are implanted sc. Alternatively, a homogenate (2×10^6) cells) implanted im into the right hind leg, or tumor

Animals: BDF₁ Weight range: 3 Age range: 4 Sex: 5

⁹ Tumor inhibition percent = control tumor wt - treated tumor wt/control tumor wt \times 100.

homogenate (1×10^5 cells) may also be implanted iv.

No. of mice/test group: 6 10

No. of control mice/experiment: 7

Testing schedule: Treatment (ip) is given daily from days 1 through 9 or 11. However, the treatment schedule and day of initiation of treatment may vary for a specific drug under study.

Dosage: Dose-response testing is used. Dosage levels are determined from existing data derived from other

test tumor systems.

Evaluation

Acceptable control median survival time: 18–28 days

Parameter of effect: 8

Minimum criterion for activity: T/C = 150%

Day of final evaluation: Day 90

AKR Lymphocytic Leukemia (Transplantable, L-AKR)

Origin

Spontaneous virus leukemia arises in approximately 70% of the AKR mice when they reach 1 year of age (201).

Source

AKR mice were procured from Mammalian Genetics and Animal Production Section, Division of Cancer Treatment, NCI.

General

When enlarged spleens are distinctly palpable (≥ 600 mg), they are transplanted ip into AKR mice. Treatment generally is begun on the following day. Drug effectiveness is assessed on the basis of the survival time of the mice.

Progagation of stock tumor

Animals: AKR mice

Inoculum: Spleens weighing ≥ 600 mg are used for donor tissues. The inoculum, prepared at a concentration of 1:10, is administered ip.

Time of transfer for propagation or for drug testing: When spleens are distinctly palpable ($\geq 600 \text{ mg}$), they are transplanted.

Drug testing

Animals: AKR mice Weight range: 3 Age range: 4

Sex: 5

No. of mice/test group: 6 Usually 8-10 No. of control mice/experiment: 7

Testing schedule: Generally daily, days 1-9

Evaluation

Parameter of effect: 8

Lymphatic Leukemia P1534

Origin

This tumor line arose spontaneously in the thymus of a DBA/2 mouse in 1940 (204).

Source 2

General

A splenic brei from mice with advanced leukemia is inoculated ip into DBA/2 or CDF₁ mice. Treatment is started on the following day. Drug efficacy is assessed on the basis of the survival time of the mice.

Propagation of stock tumor

Animals: DBA/2

Inoculum: Spleen brei at a concentration of 1:100. Spleens are removed from mice with advanced leukemia (day of transfer, 10) and are implanted ip.

Drug testing

Animals: DBA/2 or CDF₁

Weight range: 3 Age range: 4 Sex: 5

No. of mice/test group: 6 Usually 6 No. of control mice/experiment: 7

Testing schedule: Daily, days 1-9, or as indicated;

treatment ip

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Ehrlich Ascites Tumor

Origin

This is an undifferentiated tumor that originated spontaneously as a carcinoma. Paul Ehrlich reported in 1907 on several transplantable tumors of the mouse. The various Ehrlich tumors carried in transplantation today as the Ehrlich ascites tumors were derived undoubtedly from one of the original lines of Ehrlich's carcinomata (205).

Source 2

General

Ascitic fluid from stock Swiss mice is implanted ip into recipient Swiss mice. Treatment is started on the following day. Drug effectiveness is assessed on the basis of inhibition of ascites volume (or weight).

Propagation of stock tumor

Animals: Swiss mice

Inoculum: 106 cells implanted ip

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: Swiss mice Weight range: 3 Age range: 4 Sex: 5

No. of mice/test group: 6 Usually 6 No. of control mice/experiment: 7

Testing schedule: Usually daily, days 1-7, ip

Evaluation

Parameter of effect: Day 12: percent tumor ascites inhibition = $(control - treated)/control \times 100$.

Gardner 6C3HED Lymphosarcoma

Origin

This lymphosarcoma was induced with estradiol benzoate in the thymus gland of a C3H mouse in 1941 (204).

Source 2

General

Ascitic fluid from stock C3H mice is implanted ip into C3H or (C3H \times AKR) CHKRF₁ mice. Treatment is begun on the following day. Drug efficacy is assessed on the basis of the survival time of the mice.

Propagation of stock tumor

Animals: C3H mice

Inoculum: Ascitic fluid containing 106 cells is implanted ip.

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: C3H or CHKRF₁ mice

Weight range: 3 Age range: 4 Sex: 5

No. of mice/test group: Usually 6 No. of control mice/experiment: 3 Testing schedule: Daily, days 1-9, ip

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Mecca Lymphosarcoma

Origin

This lymphosarcoma arose spontaneously in the region of a mammary gland from a transplanted carcinoma in an AKR/M mouse in 1949 (204).

Source 2

General

Ascitic fluid from stock AKR/N mice is transplanted ip into CHKRF₁ mice. Treatment is begun the next day. Drug effectiveness is assessed on the basis of survival time.

Propagation of stock tumor

Animals: AKR/N mice

Inoculum: Ascitic fluid containing 1×10^6 cells is im-

planted ip.

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: CHKRF₁ mice

Weight range: ³ Age range: ⁴ Sex: ⁵

No. of mice/test group: 6–10, usually 6 No. of control mice/experiment: ⁷

Testing schedule: Daily, days 1-9, treatment ip

Evaluation 8

Day of final evaluation: Day 30

P-815 Mast Cell Leukemia (Ascites)

Origin

This leukemia originated in a DBAf/2 mouse painted repeatedly with 3-MCA (206).

Source 2

General

Ascitic fluid from stock tumor-bearing CDF₁ mice is implanted ip into BDF₁ or CDF₁ animals. Treatment is started the next day. Drug efficacy is assessed on the basis of the survival time of the mice.

Propagation of stock tumor

Animals: CDF₁

Inoculum: Ascitic fluid diluted to a concentration of

 1×10^6 cells is implanted ip.

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: BDF₁ or CDF₁ mice

Weight range: ³ Age range: ⁴ Sex: ⁵

No. of mice/test group: 6-10, usually 6 No. of control mice/experiment: ⁷

Testing schedule: Daily, days 1-9 or 15, treatment ip

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

LPC-1 Plasma Cell Neoplasm

Origin

This neoplasm originated in a male BALB/c mouse that had received ip injections of mixtures of incomplete Freund's adjuvants and heat-killed staphylococci in 1900 (201).

Source 2

General

Ascitic fluid from stock tumor-bearing BALB/c mice is inoculated ip into recipient BALB/c mice. Treatment is initiated between days 14 and 19 and continued for 28 days. Drug effectiveness is assessed on the basis of the survival time of the mice.

Propagation of stock tumor

Animals: BALB/c

Inoculum: Ascitic fluid containing 1×10^5 cells is

inoculated ip.

Time of transfer for propagation or drug testing:

Day 14-15

Drug testing

Weight range of mice: 3

Sex:

No. of mice/test group: 8-10, usually 8

No. of control mice/experiment: 7

Testing schedule: Treatment (ip) is started between days 14 and 19 and continued for 28 days.

Evaluation

Parameter of effect: 8

L-5178Y Lymphocytic Leukemia

Origin

A medium was developed that permitted the growth of an ascitic line of L-5178Y in tissue culture. This line produced a typical leukemia when inoculated into susceptible strains of mice (208).

Source 2

General

Ascitic fluid from stock tumor-bearing DBA/2 mice is inoculated ip into BDF₁ mice. Treatment is started the following day. Drug is assessed on the basis of the survival time of the mice.

Propagation of stock tumor

Animals: DBA/2

Inoculum: Diluted ascitic fluid (0.1 ml) containing

 1×10^6 cells (ip) or 1×10^7 cells (iv)

Implant site: ip or iv

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: BDF₁ Weight range: ³

Sex: 5

No. of mice/test group: 6–10, usually 6 No. of control mice/experiment: ⁷

Testing schedule: Daily, days 1-9 or 10; treatment ip

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

P-329 Reticulum Cell Sarcoma

Origin

This neoplasm arose in a female DBA/2 mouse after 5 skin paintings with 0.2% solution of 3-MCA in ether during the first 2 weeks of life (209).

Source 2

General

The stock tumor is maintained in CDF₁ mice. Ascitic fluid at a concentration of 1×10^6 cells is implanted into CDF₁ or BDF₁ mice. Testing is generally started on day 1. Extension of survival time is the parameter of response used.

Propagation of stock tumor

Animals: CDF₁ mice

Inoculum and implant site: Ascitic fluid diluted to 1 ×

10⁶ is implanted ip.

Time of transfer for propagation or drug testing: Day 8

Drug testing

Implant site: Ascitic fluid is implanted ip

Animals: CDF₁ or BDF₁ mice

Weight range: 3

Sex: 5

No. of mice/test group: 6–8 No. of control mice/experiment: ⁷

Testing schedule. Generally, ip treatment is given daily from days 1 to 9 or 10.

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Reticulum Cell Sarcoma (Kelly; Mouse)

Origin

This sarcoma was induced in a newborn C57BL/6JN mouse with a single injection of 3-MCA (210).

Source 2

General

A splenic suspension is prepared from tissue taken from a donor CDF₁ mouse and implanted ip into CDF₁ mice. Treatment is begun on day 1 or 5. Survival time is used to assess drug effectiveness.

Propagation of stock tumor

Animals: CDF₁ mice

Inoculum: Spleen taken from mice with advanced dis-

ease is diluted 1:6 and implanted ip.

Drug testing

Animals: CDF₁ mice Weight range: ³

Sex: 5

No. of mice/test group: 8–10, usually 8 No. of control mice/experiment: ⁷

Testing schedule: Treatment ip daily, days 5-15

Evaluation 8

Day of final evaluation: Day 40

Carcinoma 1025

Origin

This carcinoma was induced in 1945 in the skin of AKR mouse with 20-MCA (204).

Source 2

General

Tumor fragments are implanted sc in AKR or CHKRF₁ mice. Treatment is begun on the following day. Survival time is the basis for drug effectiveness.

Propagation of stock tumor

Animals: AKR or CHKRF₁ mice Inoculum: Tumor fragments Implantation site: sc

Time of transfer for propagation or drug testing: Days 12-14

Drug testing

Animals: CHKRF₁ or AKR mice

Weight range: 3

Sex: 5

No. of mice/test group: 8-10, usually 8

No. of control mice/experiment: 7

Testing schedule: Treatment ip, days 1-5

Evaluation 9

Weight is recorded on day 15.

Lymphocytic Leukemia P-288

Origin

This neoplasm originated in a DBA/2 male mouse after 20 skin paintings (three times weekly) with 0.2% 3-MCA in ether (211).

Source 2

General

Ascitic fluid from donor DBA/2 mice is implanted ip into BDF₁ mice. Treatment is generally begun on the next day. Drug effectiveness is assessed on the basis of survival time of the mice.

Propagation of stock tumor

Animals: DBA/2

Inoculum: Ascitic fluid containing 106 cells is inocu-

lated sc

Time of transfer for propagation or drug testing: Days 5-7

Drug testing

Animals: BDF₁ mice Weight range: ³

Sex: 5

No. of mice/test group: 6–8, usually 6 No. of control mice/experiment: ⁷ Testing schedule: Daily, days 1–10

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Leukemia P-335

Origin

This tumor was induced in a DBA/2 mouse with 3-MCA (Potter M: Personal communication).

Source 2

General

Ascitic fluid from stock CDF₁ mice is implanted ip into BDF₁ mice. Treatment is started on the following day. Drug effectiveness is assessed on the basis of survival time of the mice.

Propagation of stock tumor

Animals: CDF₁

Inoculum: Ascitic fluid containing 106 cells

Implant site: ip

Time of transfer for propagation or for drug testing:

Day 7

Drug testing

Animals: BDF₁ mice Weight range: ³

Sex: 5

No. of mice/test group: 6–8, usually 6 No. of control mice/experiment: ⁷

Testing schedule: Daily, days 1-9; ip treatment

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Lymphosarcoma P-1798

Origin

This lymphosarcoma arose in a BALB/c mouse that had received a 20% diethylstilbestrol-cholesterol pellet sc (212).

Source 2

General

Tumor fragments or suspensions from donor BALB/c mice are implanted sc into BALB/c, CDF₁, or CAF₁ mice. Drug treatment is started the following day. Survival time or tumor weight is the basis for drug effect.

Propagation of stock tumor

Animals: BALB/c or CAF₁

Inoculum: Fragments or tumor brei at a concentration

of 3 or 5×10^6 cells

Implant site: sc

Time of transfer for propagation or for drug testing:

Days 12-14

Drug testing

Animals: BALB/c, CDF₁, or CAF₁

Weight range: 3

Sex: 5

No. of mice/test group: 8-10, usually 8 No. of control mice/experiment: ⁷ Testing schedule: Daily, days 1-11

Evaluation

Parameter of effect: 8

Alternative parameter: Tumor weight, day 12

Granulocytic Leukemia P-1081

Origin

This tumor was X-ray-induced in a DBA/2 mouse and was converted to the ascites form (Potter M: Personal communication).

Source 2

General

Ascitic fluid from donor tumor-bearing BDF₁ mice is implanted ip into the same strain. Treatment is started the next day. Drug efficacy is assessed on the basis of ILS.

Propagation of stock tumor

Animals: BDF₁ mice

Inoculum: Ascitic fluid containing 1×10^6 cells

Implanted site: ip

Time of transfer for propagation or drug testing: Day 7

Drug testing

Animals: BDF₁ mice Weight range: 3

Sex: 5

No. of mice/group: 6-8, usually 6 No. of control mice/experiment: 7

Testing schedule: Daily, days 1–10; ip treatment

Evaluation

Parameter of effect: 8

Day of final evaluation: Day 30

Melanotic (Cloudman) Melanoma S-91

Origin

This tumor arose spontaneously in 1937 at the base of the tail of a female DBA/2 mouse, an observation made by Dr. Cloudman at The Jackson Memorial Laboratory (205).

Source 2

General

Fragments of tumor brei from stock tumor-bearing DBA/2 are implanted sc into BDF₁ mice. Treatment is begun the following day. Drug efficacy is assessed on the basis of inhibition of tumor weight.

Propagation of stock tumor

Animals: DBA/2

Inoculum: Fragments or tumor brei diluted 1:2

Implant site: sc

Time of transfer for propagation or drug testing: Day 21

Drug testing

Animals: BDF₁ Weight range: 3

Sex: 5

No. of mice/test group: 10 No. of control mice/experiment: 7

Testing schedule: Daily, days 1-11; ip treatment

Evaluation

Parameter of effect: 9 Day of evaluation: Day 21

Hepatoma 129

Origin

This tumor line was developed by the oral administration of carbon tetrachloride (0.2 cc of a 3% solution at weekly intervals in a male C3H mouse (213).

Source 2

General

Fragments from tumor-bearing C3H mice are implanted sc into recipient C3H animals. Drug effectiveness is determined by inhibition of tumor weight.

Propagation of stock tumor

Animals: C3H mice

Propagation of stock tumor: Tumor fragments

Drug testing

Animals: C3H mice, tumor fragments for testing

Weight range: 3

Sex: 5

No. of mice/test group: 10 No. of control mice/experiment: 7

Testing schedule: Days 5-14, sc treatment

Evaluation

Parameter of effect: 9 Day of tumor weight: day 15

Ependymoblastoma

Origin

The original tumor was induced by 3-MCA implantation in the brain of a mouse (214).

Source 2

The experimental tumor used in these studies was the mutant strain derived by Ausman et al. (215).

General

The tumor is routinely propagated in C57BL/6 mice

by sc implantation of $2 \times 2 \times 8$ -mm fragments. The ic implantation was performed according to the technique described by Ausman and co-workers (215). In this technique, tumor fragments are expressed into the right cerebral hemisphere with a modified 19-gauge, 3-inch spinal needle. Treatments were generally given daily on days 1–5 unless noted otherwise. Drug effectiveness was assessed on the basis of survival time of the mice. Treatment results are expressed as a percentage of the control survival time.

Propagation of stock tumor

Animals: C57BL/6

Inoculum: Implantation of $2 \times 2 \times 8$ -mm fragments sc

Site: For drug testing, ic

Time of transplantation for propagation and drug test-

ing: Days 12-14

Drug testing

Animals: C57BL/6 males Weight range: 20-24 g

Age: Approximately 6 weeks old

No. of mice/test group: 6 mice/dose level

No. of control mice: Usually 1 group of 30 untreated control mice was inoculated with 25 drug-treated

groups (6 mice each).

Testing schedule: Usually ip once daily on days 1-5

Evaluation

Acceptable control mean survival time: 17-21 days

Parameter of effect: 8

Minimum criterion for activity: $T/C \ge 125\%$

Sarcoma 180

Origin

The primary tumor was found in the right axillary region of a white male mouse at necropsy, October 1914, in the laboratory of W. H. Woglam (Crocker Institute, New York, N.Y.). The tumor was diagnosed as a carcinoma. After transplantation, the tumor resembled a sarcoma (205).

Source 2

General

Tumor fragments are implanted sc into Swiss mice. Treatment is begun the following day and continued daily until day 7. Drug effectiveness is based on tumor weight or survival time. The tumors are excised and weighed on day 9. Survival time results are expressed as a percentage of the control survival time.

Propagation of stock tumor

Animals: Tumor is not strain specific. Non-inbred Swiss albino mice are used.

Inoculum: Fragments

Site: sc

Time of transfer for propagation or drug testing: Day

6 or 7

Drug testing

Animals: Swiss mice Weight range: ³ Age range ⁴ Sex: ⁵

No. of mice/test group: 6–10, usually 8 No. of control mice/experiment: ⁷

Testing schedule: Generally daily, days 1-7

Evaluation

Tunmor weight: Percent T/C = average test tumor

wt/average control tumor wt \times 100.

Survival time: 8

Mammary Adenocarcinoma C3H/He

Origin

The virus-induced spontaneous mouse mammary adenocarcinoma has many common features with human breast cancer, e.g., anatomic morphology and invasiveness, growth and progression through a precancerous stage, genetic and hormone factors, and the general correlation of response of human and murine tumors to chemical agents (216, 217).

Source

Retired female C3H/He (C3H) breeders bearing spontaneous mammary adenocarcinomas were supplied by the Mammalian Genetics and Animal Production Section, NCI, after detection of the tumors in the course of routine handling.

General

Spontaneous tumors were dissected, cut into fragments, and implanted into the axillary region of the mice. Treatment usually was started when the tumors measured 6 mm in diameter. Treatment schedules of test agents depended on previous schedules of effectiveness in other tumor systems. Dose–response studies were used. Drug effectiveness was based on inhibition of local tumor growth and ILS compared with untreated control animals.

Propagation of stock tumor

Animals: C3H/He mice

Inoculum: Tumor fragments approximately 1 mm in diameter were implanted sc in the axillary region.

Time of transfer for propagation or drug testing: Shortly after palpable mammary tumors were detected

Drug testing

Animals: Retired female C3H/He (C3H) breeders (donors). Recipients were C3H/He for first generation tumor transplants.

Weight range: 18-26 g

Sex: Female

No. of mice/test group: Usually 9 mice/test group; control untreated groups contained 16 or more mice.

Testing schedule: Either ip or sc treatment generally was initiated when tumor measured approximately 4-6 mm. Treatment schedules were selected from previously demonstrated effective schedules in other tumor systems.

Evaluation

Inhibition of tumor growth: Tumor diameters were measured with vernier calipers. Tumor volumes were calculated with the formula of a prolate sphere $4/3 \pi ab^2$, where a and b are the major and minor semiaxes (218).

Percent T/C = tumor volume of test group/tumor volume of control group \times 100.

Increase in survival time:

Percent T/C = test group MST/control group MST \times 100.

Adenocarcinoma Ca-755

Origin

This adenocarcinoma arose spontaneously in the mammary gland of a C57BL mouse in 1936 (204).

Source 2

General

Tumor brei or fragments are implanted sc into BDF₁ mice. Treatment (ip) is started on the next day and generally is continued until day 11. Drug efficacy is assessed by tumor weight inhibition on day 12 or by survival time of the mice. Results are expressed as a percentage of the untreated control animals.

Propagation of stock tumor

Animals: C57BL/6 mice

Inoculum: $2 \times 2 \times 2$ -mm fragments are implanted sc

via trocar or 1:10 tumor brei inoculated sc.

Time of transfer for propagation or drug testing: Days 10-14

Drug testing

Animals: BDF₁ mice Weight range: ³

Sex: 5

No. of mice/test group: 8–10, usually 8 No. of control mice/experiment: ⁷

Testing schedule: Daily, days 1–11 (generally ip)

Evaluation

Survival time: 8
Tumor weight: 9

In Vitro KB Cell Culture Screen

Origin

This tumor line was derived in 1954 from a human epidermoid carcinoma of the nasopharynx (219).

Source 2

General

KB cells are cultivated in Eagle's Basal Medium plus 10% serum. Stock cells are fed 24 hours before testing. Test materials were added on days 0 or 1. Results are expressed as the dose that inhibits growth to 50% of control growth by 3 days after drug addition.

Drug testing

General: Three to five dose levels per material; two tubes per dose level.

Control group: Number varies according to number of test groups (n), according to the formula: $2\sqrt{n}$. Base-line protein was determined according to the method of Oyama and Eagle (220).

Testing schedule:

Day 0: Stock cells are diluted to $10\text{--}20~\mu\text{g/ml}$ (20,000–30,000 cells/ml) in complete medium. Cells are added to tubes and test material is added simultaneously or on day 1. Total volume is approximately 3–4 ml. A positive control is run with odd-numbered control groups.

Day 1: If 24-hour culture is used, it is refed and test material is added; protein values of base-line protein tubes are determined.

Day 3: Protein analyses of test, control, and at least three protein standard and medium blank control tubes are conducted.

Day 4: If 24-hour cultures are used, protein analysis as prescribed for day 3 is followed.

Dosage: Synthetics and plant products are tested by weight at 100, 10 and 1 μg/ml and crude fermentation products by dilution at 1:10, 1:100, and 1:1,000. Dried or crystalline fermentation products are also tested by weight at appropriate concentrations. Lower concentrations and all additional tests are to be done at five dose levels at 0.3-log intervals.

Quality control: Control tubes must show growth of at least six times that of base-line tubes. Positive control, 6-mercaptopurine (NSC-755), limits ED50 between 0.05 and 0.5 μg/ml.

Criteria of activity: By confirmation assays with synthetics and plant and animal extracts, ED50 \leq 4 and \leq 20 μ g/ml, respectively.

B: TEST SYSTEMS USED IN THE SOVIET UNION

During the screening and detailed study of drugs with antitumor activity in vivo in the institutions of the Soviet Union, more than 30 model systems are used, including transplantable and spontaneous tumors of mice, rats, and rabbits. In addition, in some instances, studies are presented on the cytotoxic activity of drugs in vitro in different model systems.

Minor differences in methodology occur in the various institutions. Because of this, only general procedures are given for most of the methods used in obtaining the data. Nevertheless, the methodology is reflected in the tables and appendixes in accordance with the results obtained with the individual compounds.

Lymphoid Leukemia L1210

Origin

This tumor line originated as a lymphocytic leukemia in a DBA/2 female mouse in 1948 after the skin was painted with 0.2% 20-MCA in ethyl ether (197).

Source

L1210 strain was obtained from the NCI, Bethesda, Maryland, in September 1973.

General

Ascitic fluid is administered to DBA/2, BDF₁, or CDF₁ mice. Treatment begins 24-48 hours after transplantation. Route of administration depends on the drug and experiment.² The efficacy is evaluated by the life-span, and for kinetic studies of the effect of the drug, by an analysis of the kinetic curves of the alteration of the total number of leukemia cells (147).

Propagation of stock tumor

Animals: DBA/2 mice

Inoculum: Each mouse receives 0.25 ml of ascites tumor diluted with Hanks' solution in a ratio of 1:60.

Inplant site: ip

Time of transfer for propagation: 6-7 days

Transplantation for testing: Each mouse receives 10⁵– 10⁶ leukemia cells in 0.1–0.3 ml of ascitic fluid diluted with sterile citrate in Medium 199 or physiologic solution.

Inoculation time: 6-7 days

Drug testing

Animals: BDF₁, CDF₁, or DBA/2

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 6 (minimum 3) No. of control animals/experiment: 6 6–10

Testing schedule: Differs in accordance with purpose of test

of test

Method of administering drug: Predominantly ip

Dosage: 7

Evaluation

Acceptable control: Average life duration 7–9 days or 8–11 days, depending on quantity of grafted cells.

Parameter of effect: ILS% is compared with controls or number surviving to the 30th day.⁸ In the kinetic study, the parameter of effect is the activity coefficient $N = \frac{\psi_c - \psi_t}{\psi_c}$, where ψ_c and ψ_t are the average specific rates of growth of the tumors in the control and treated groups (147).

Minimum criterion of activity: ILS by $\geq 25\%$

Day of final evaluation: The surviving animals are killed on the 30–90th day.

Lymphocytic Leukemia P388

Origin

This tumor line originated as a lymphocytic leukemia in a DBA/2 female mouse after the skin was painted with 3-MCA.

Source

The line was obtained from the NCI, Bethesda, Maryland, September 5, 1973 (200).

General

Ascitic fluid was administered ip to DBA/2 or BDF_1 or CDF_1 mice. Therapy begins 24 hours after inoculation.

² The treatment is given ip, iv, sc, or orally, depending on the properties of the drug and the purpose of the experiment.

 $^{^3}$ Minimal weight of mice is 20 g \pm 3-4 g; minimal weight of rats is 90-120 g.

⁴ Age of mice is 2-3 mo.; age of rats is 1.5-2 mo.

⁵ Animals of the same sex were used for all experimental and control groups.

 $^{^6}$ No. of animals in control group depends on No. of experimental groups and is determined by the formula $\sqrt{\text{No.}}$ of experimental animals \times No. of animals in each experimental group.

⁷ Dosage in the first experiment is selected at no less than three levels, which differ from one another severalfold. In subsequent experiments, doses are chosen in accordance with the results of the first experiment until the determination of the optimal dose.

 $^{^8}$ ILS% is calculated by the formula: average survival time in experimental group — average survival time in control group/average survival time in control group \times 100.

Administration of drug 2

Parameter of effect

Life-span

Propagation of stock tumor

Animals: DBA/2 mice

Inoculum: ip

Implant site: Ascitic fluid (0.25 ml/mouse) diluted

1:40 with Hanks' solution, ip

Time of transfer for propagation: 6-8 days

Transplantation for testing: DBA/2, BDF₁, or CDF₁ mice. Inoculation: Each mouse received 0.3 ml ascitic fluid diluted with citrate and Medium 199 containing 10⁵–10⁶ cells.

Inoculation time: 6–8 days

Drug testing

Animals: DBA/2, BDF₁, or CDF₁

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 6 (3 for preliminary tests)

No. of control animals/experiment: 6 6-10

Testing schedule: Differs, depending on purpose of

experiment Dosage: 7

Evaluation

Acceptable control: Average duration of life, 8-11 days

Parameter of effect: ILS% of the controls or No. of survivors to 30th day of evaluation of effect 8

Minimum criterion of activity: ILS ≥ 25%

Day of final evaluation: Surviving animals were killed on 30-90th day.

Hemocytoblastosis La

Origin

Leukemia La was induced in C57BL mice by a single exposure to X-irradiation in 1955 (221).

Source

The La strain was obtained from Dr. Pujman of Czechoslovakia in 1960.

General

Transplantation is accomplished with a suspension of spleen cells containing a fixed quantity of leukemia cells. Treatment begins 24 hours after transplantation.

Administration of drug 2

Parameter of effect

The duration of life is expressed as percent increase with respect to the controls as well as kinetic characterization.

Propagation of stock tumor

Transplantation for testing: Quantity of material transplanted and site of transplantation are indicated in tables (see Appendixes III, IV).

Transplantation time: 6–7 days

Drug testing

Animals: C57BL mice

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 6-10 (minimum 3)

No. of control animals/experiment: 6

Testing schedule: Differs depending on problems investigated

Method of administering drug: Predominantly ip

Dosage: 7

Evaluation

Acceptable control: Average duration 6-9 days, depending on quantity of material inoculated

Parameter of effect: ILS% of controls or survival to 30th day, as well as coefficient of inhibition of leukemia process (N), showing how many times slower, compared with the controls, the leukemic process is

developing.⁸ N = $\frac{t_{\rm exp}}{t_{\rm e}}$, where $t_{\rm exp}$ and $t_{\rm e}$ are the times for reaching the same value of the magnitude being studied for the experimental and control groups (147).

Minimum criterion of activity: ILS by $\geq 25\%$

Day of final evaluation: Surviving mice were killed on 30-90th day.

Lymphatic Leukemia L-5178Y

Source

This strain was obtained from the tumor bank of OSC AMS USSR.

General

L-5178Y is transplanted ip in hybrid mice. Treatment begins 24 hours after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of the development of ascites in terms of weight

Propagation of stock tumor

Inoculum: Each mouse receives ip 0.2 ml of ascitic fluid diluted with sterile physiologic solution containing 2×10^6 cells.

Time of transfer for propagation: 7 days

Drug testing

Animals: Hybrid mice

Weight: 3 Age: 4 Sex: 5

No. of animals/test group: 8-10

No. of control animals/experiment: 10, calculated by formula 6

Testing schedule: Differs depending on problems posed

Dosage: 7

Evaluation

Acceptable control: Average volume of ascites on 10th day after transplantation is 6.8 ml.

Parameter of effect: Inhibition of development of ascites by weight 9

Minimum criterion of activity: Inhibition of development of ascites by 50%

Ascites Tumor NK/Ly

Origin

Tumor NK/Ly was obtained in 1960 by transplantation from C3H mice with spontaneous lympholeukosis (222). Presently, NK/Ly represents a substrain of the Ehrlich tumor.

Source

Strain NK/Ly was obtained in 1962 from Hungary.

General

NK/Ly is transplanted with ascitic fluid ip into noninbred mice. Treatment begins on the day after inoculation and is administered ip or sc.

Parameter of effect

Inhibition of growth of the tumor, ascites volume, or quantity of tumor cells.

Propagation of stock tumor

Inoculum: Quantity of inoculated tumor material and site of inoculation are indicated in Appendixes III,

Time of transfer: 7–11 days

Drug testing

Animals: Non-inbred mice

Weight: 3 Age: 4 Sex: 5

No. of animals/test group: 10–15

No. of control animals/experiment: 15-20, calculated

by formula 6

Testing schedule: Differs depending on problems posed

Dosage: 7

Evaluation

Acceptable control: Average volume of ascitic fluid is 5-6 ml, or 2-2.5 ml of dense precipitate; average No. of tumor cells contained in peritoneal cavity of mouse is $250-400 \times 10^{6}$.

Parameter of effect: Percentage inhibition of volume of the ascitic fluid, or the dense precipitate, or in the No. of tumor cells 9

Minimum criterion of activity: 100% inhibition when drug was injected ip; 40-60% inhibition for sc injection

Day of final evaluation: 8-12 days

Lymphosarcoma LI0-1

Origin

Lymphosarcoma LI0-1 was obtained in 1950 by transplantation of spleen from an AfB mouse with spontaneous leukemia (222).

Source

The tumor was obtained from the bank of the OSC AMS USSR.

General

The tumor is transplanted im in AfB mice or noninbred mice. The treatment begins 24 hours or on the 4–5th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth in weight

Propagation of stock tumor

Inoculum: Quantity of material transplanted and site of transplantation are indicated in Appendix III.

Transplantation time: 10-12 days

Drug testing

Animals: AfB or non-inbred mice

Weight: 3 Age: 4 Sex: 5

⁹ Percentage inhibition of tumor growth (by weight and volume of tumor, by volume of ascites, precipitate, or by quantity of tumor cells) is calculated by the formula: Percent inhibition = average index of tumor growth in control average index of tumor growth in experimental group/average index of tumor growth in control × 100.

No. of animals/test group: 5-10

No. of control animals/experiment: 6 12-15

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average life duration is 10–18 days, average tumor weight on 11th day after transplantation is 2.9 g.

Parameter of effect: Percentage tumor growth inhibition in weight ⁹

Minimum criterion of activity: Inhibition of tumor growth by ≥ 50% or minimum statistically significant percent of inhibition

Day of final evaluation: 11-12 days

Plasmacytoma MOPC-406

Origin

In 1967, the plasmacytoma was induced in a male BALB/c mouse with mineral oil plus immunization with bovine, sheep, horse, and swine erythrocytes (224, 225).

Source

Strain was obtained from Dr. M. Potter (United States) in 1971.

General

BALB/c or CDF₁ mice, preferably females, are administered ip a suspension of finely ground tumor nodules found in the peritoneal cavity along the mesenterium. Treatment begins 48 hours after transplantation.

Administration of drug 2

Parameter of effect

Average life-span expressed in percent of the controls

Propagation of stock tumor

Animals: BALB/c, preferably females

Inoculum: A suspension of ground tumor nodules (0.2 ml/mouse) from the peritoneal cavity diluted with Medium 199 based on 1 g tumor tissue/10 ml medium

Implant site: ip

Time of transfer for propagation: 12-14 days

Transfer for drug testing: Same as for propagation (12–14 days)

Drug testing

Animals: BALB/c or CDF₁

Weight: ³ Age: ⁴

Sex: Preferably females

No. of animals/test group: 6-8

No. of control animals/experiment: 8-10, calculated

by formula ⁶ Dosage: ⁷

Evaluation

Acceptable control: Average life-span is 15 days (13.2-17.1).

Parameter of effect: ILS% of controls or surviving mice 8

Minimum criterion for activity: ILS by $\geq 25\%$

Day of final evaluation: 60-90 days

Lewis Lung Carcinoma

Origin

This tumor line arose spontaneously as a carcinoma of the lung in a C57BL mouse in 1951 (203, 222).

Source

The strain was obtained from the NCI, Bethesda, Maryland, September 1973.

General

A suspension of tumor tissue is transplanted sc in C57BL or BDF₁. Treatment begins 24–48 hours after transplantation.

Administration of drug 2

Parameter of effect

Weight or volume of the tumor and life-span

Propagation of stock tumor

Animals: C57BL mice

Inoculum: Each mouse receives 0.5 ml of tumor suspension in Hanks' solution in a ratio of 1:2.

Implant site: im

Time of transfer for propagation: 11-12 days

Transfer for drug testing: Each mouse receives sc in the axillary region 0.5 ml of a tumor suspension in a dilution of 1 g tumor in 10 ml sterile Medium 199.

Transplantation time: 12–14 days

Drug testing

Animals: C57BL or BDF₁

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 6

No. of control animals/experiment: 6 12-14

Testing schedule: Differs, depending on purpose of experiment

Dosage: 7

NATIONAL CANCER INSTITUTE MONOGRAPH NO. 55

Evaluation

Acceptable control: Average weight of tumor on 13th day after transplantation, 4.3 g (3.5–7.4), average life duration, 24 days

Parameter of effect: ILS% of controls 8 or percent inhibition of tumor growth by weight or volume 9 Minimum criterion for activity: Inhibition of tumor

growth by $\geq 50\%$ or ILS by $\geq 25\%$

Day of final evaluation: The surviving animals are killed on the 60–90th day.

Adenocarcinoma CA-755

Origin

CA-755 was obtained in 1936 from a spontaneous tumor of a mammary gland in a C57BL female mouse (204).

Source

The strain was obtained from the NCI, Bethesda, Maryland, September 5, 1973.

General

CA-755 is transplanted sc as a suspension of tumor tissue in C57BL or BDF₁ mice. Treatment begins 24–48 hours after transplantation.

Administration of drug 2

Parameters of effect

Weight of tumor, volume of tumor, and life-span

Propagation of stock tumor

Animals: C57BL

Inoculum: Quantity of transplantable tumor material and site of transplantation are indicated in Appendixes III, IV.

Time of transfer for propagation: 12-14 days

Drug testing

Animals: C57BL or BDF₁ mice

Weight: ³ Age: ⁴

Sex: Only female

No. of animals/test group: 6–10

No. of control animals/experiment: 12–16, calculated by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average tumor weight on 13th day after transplantation, 2.5 g (2.2-5.5 g); average lifespan, 25.4 days. Growth rate of tumor depends on season. In the spring-summer period, life-span =

22.7 days, and a tumor weight at the time of death is 12.6 g; in the autumn-winter period, the life-span = 27.4 days, and an average tumor weight at the time of death is 9.4 g.

Parameter of effect: ILS% relative to controls,8 or percent inhibition of tumor growth by weight or

olume ⁹

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50-70\%$ or ILS by $\geq 25\%$

Day of final evaluation: Surviving mice were killed on the 60–90th day.

Adenocarcinoma of Large Intestine AKATOL-1-71

Origin

In 1971, the tumor developed from a subcutaneous syngeneic transplant of embryonic large intestine in a BALB/c mouse (226).

Source

The strain was obtained in 1972 from the Laboratory of Virology of the OSC AMS USSR.

General

AKATOL is transplanted sc with a suspension of tumor tissue in BALB/c or CDF₁. Treatment begins 48 hours after transplantation.

Administration of drug 2

Parameters of effect

Weight or volume of tumor and life-span

Propagation of stock tumor

Animals: BALB/c mice

Inoculum: Each mouse receives sc 0.5 ml of a suspension of tumor tissue diluted 1:2 with Hanks' solution.

Implant site: sc

Inoculation time: 18 days

Transplantation for testing: Each mouse receives sc in the axillary region 0.5 ml of a tumor suspension in a dilution of 1 g of tumor tissue in 10 ml of Medium 199.

Transplantation time: 18 days

Drug testing

Animals: BALB/c or CDF₁ mice

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 6-12

No. of control animals/experiment: 12-14, calculated by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average tumor weight on 13th day after transplantation, 1 g (0.85-1.5); average life-span, 57 days (44.2-82.6). Growth rate of tumor changes progressively from generation to generation.

Parameter of effect: ILS% relative to controls 8 or percent inhibition of tumor growth by weight and volume 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$ or ILS by $\geq 25\%$

Day of final evaluation: Surviving mice were killed on 90–100th day.

Carcinoma NK

Origin

Tumor arose in 1953 as a spontaneous undifferentiated carcinoma of the mammary gland in an H mouse.

Source

Strain was obtained from Hungary.

General

Tumor is transplanted sc in non-inbred mice. Treatment begins 1 day or 5 or 6 days after tumor transplantation.

Parameter of effect

Inhibition of tumor growth

Propagation of stock tumor

Inoculum: Quantity of transplanted material and site are indicated in Appendix III.

Time of transfer for propagation: 9-15 days

Drug testing

Animals: Non-inbred mice

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 6–10

No. of control animals/experiment: 10, calculated by formula ⁶

Testing schedule: Differs, depending on problems posed Method of introducing drug: ²

Dosage: 7

Evaluation

Acceptable control: Average tumor weight on 13th day after transplantation is 5.2–5.8 g.

Parameter of effect: Percent inhibition of tumor growth by weight ⁹

Minimum criterion for activity: Percent of growth inhibition = 50% or statistically significant percent of inhibition.

Day of final evaluation: 12–14 days

Squamous Cell Carcinoma of the Forestomach (PRZh)

Origin

In 1955, the tumor was induced with DMBA in the mucous membrane of the forestomach of C57Br mice (227).

Source

The tumor was obtained from the Strain Laboratory of the OSC AMS USSR in 1958.

General

PRZh is transplanted sc with a tumor suspension in mice of line C57Br. Treatment begins 48 hours after transplantation.

Administration of drug 2

Parameter of effect

Weight or volume of tumor or life-span

Propagation of stock tumor

Animals: C57Br mice

luoculum: Each mouse receives 0.5 ml of a suspension of tumor tissue diluted with Hanks' solution in a

ratio of 1:2 Implant site: im

Time of transfer for propagation: 11-12 days

Drug testing

Animals: C57Br mice

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 6-10

No. of control animals/experiment: 12-14, calculated by formula ⁶

Testing schedule: Differs, depending on purpose of experiment

Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 13th day after transplantation is 8.8 g (7.4–11.1).

Average life duration: 45 days (41–50.4)

Parameter of effect: ILS% or percent tumor growth inhibition in weight or in volume of tumor 8, 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$ or ILS by $\geq 25\%$

Day of final evaluation: Surviving mice were killed on 90th day.

Cancer of the Uterine Cervix RShM-5

Origin

In 1970, the tumor was induced with 3-MCA in a

subcutaneous autotransplant of the uterine cervix of a female CBA mouse (228).

Source

Strain was obtained in 1972 from the Endocrinology Laboratory of OSC AMS USSR.

General

RShM-5 is transplanted sc in a suspension of tumor tissue in mice of line CBA. Treatment begins 48 hours after transplantation.

Administration of drug 2

Parameters of effect

Weight and volume of tumor and life-span

Propagation of stock tumor

Animals: CBA female mice

Inoculum: Each mouse receives sc in the axillary region 0.5 ml of a suspension of tumor tissue diluted with Hanks' solution in a ratio of 1:2.

Time of transfer for propagation: 18–21 days

Transfer for drug testing: Each mouse receives sc in the axillary region 0.5 ml of a tumor suspension in a dilution of 1 g of tumor in 10 ml of Medium 199.

Transplantation time: 21 days

Drug testing

Animals: Only CBA females

Weight: ³ Age: ⁴

No. of animals/test group: 6-10

No. of control animals/experiment: 12–14, calculated by formula ⁶

Testing schedule: Differs, depending on problems posed

Evaluation

Acceptable control: Average weight of the tumor on the 13th day after transplantation is 0.75 g (0.56–1.0); average life-span is 43 days (39–54).

Parameter of effect: ILS% relative to control 8 or percent inhibition of tumor growth in weight and volume 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$ or ILS by $\geq 25\%$

Day of final evaluation: Surviving animals were killed on the 90–100th day.

B16 Melanoma

Origin

This tumor line arose spontaneously in 1954 on the skin at the base of the ear in a C57BL mouse (199, 200).

Source

The tumor was obtained in 1975 from the United States.

General

Melanoma B16 is transplanted sc with a tumor suspension in C57BL mice. Treatment begins 48 hours after transplantation.

Administration of drug 2

Parameters of effect

Weight or volume of tumor and ILS

Propagation of stock tumor

Inoculum: Quantity of transplantable tumor material and site of transplantation are indicated in Appendix III.

Animals: C57BL mice

Time of transfer for propagation: 16–20 days

Drug testing

Animals: C57BL or BDF₁ mice

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 6-10

No. of control animals/experiment: 12–14, calculated

by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average weight of tumor on 14th day after transplantation is 3.8 g (2.6–6.0); average life-span is 30–40 days

Parameter of effect: ILS% or percent tumor growth inhibition in weight and volume 8, 9

Minimum criterion for activity: Inhibition of the growth of the tumor by $\geq 50\%$, ILS by $\geq 25-50\%$

Day of final evaluation: Surviving mice were killed on the 90th day.

Harding-Passey Melanoma

Origin

This tumor arose spontaneously in 1925 at the tip of the ear of a brown mouse (229).

Source

The Harding-Passey melanoma strain was obtained from the Tumor Bank of the OSC AMS USSR.

General

The tumor is transplanted sc in C3HA, BDF₁, or non-

inbred mice. Treatment begins on the 7–10th day after transplantation of the tumor.

Administration of drug 2

Parameters of effect

Diameter and weight of the tumor and life-span

Propagation of stock tumor

Inoculum: Quantity of tumor material transplanted and the site of transplantation are indicated in Appendix III.

Time of transfer for propagation: 20-25 days

Drug testing

Animals: C3HA, BDF₁, or non-inbred mice

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals-test group: 10

No. of animals/control group: 6 10-12

Testing schedule: Differs, depending on problems posed

Dosage: 7

Evaluation

Acceptable control: Average tumor weight on 21st day is 2.5 g; average diameter is 1.7 cm.

Parameter of effect: ILS% or percent inhibition of tumor growth by weight and diameter 8. 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$, ILS by $\geq 25\%$

Sarcoma 37

Origin

This tumor arose spontaneously in 1906 in an old female mouse as an adenocarcinoma of the mammary gland. In the process of transplantation, the tumor was transformed into an undifferentiated polymorphocellular sarcoma (204).

Source

Sarcoma 37 was obtained in 1958 from England.

General

The tumor is transplanted sc or ip with ascitic fluid in non-inbred mice. Treatment begins 24–48 hours or on the 5th day after transplantation.

Administration of drug 2

Parameters of effect

Weight or volume of tumor, life-span, and volume of ascites (in ascitic variant)

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of transplantation are indicated in Appendixes III IV

Time of transfer for propagation: 7-15 days

Drug testing

Animals: Non-inbred mice

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 8-10

No. of animals/control group: Determined by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average weight of tumor on 13th day after transplantation is 4.5–7.6 g, depending on season; volume of ascites is 4.0 ml; average life-span is 51.2 days.

Parameters of effect: ILS% and percent of tumor growth inhibition in weight and in volume 8, 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$ or increase in life-span by $\geq 25\%$ Day of final evaluation: Surviving animals were killed on 90–120th day.

Sarcoma AK

Origin

This tumor arose in 1946 as a polymorphocellular sarcoma after the injection of 9-dimethyl-3,4-benz-acridine (230).

Source

The tumor was obtained from the Bank of the OSC AMS USSR.

General

Sarcoma AK is transplanted sc with a tumor suspension in mice of lines C57BL, A, AfB and non-inbred. Treatment begins 24 hours or on the 5th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth or life-span

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of transplantation are indicated in Appendix III.

Time of transfer for propagation: 10-14 days

Drug testing

Animals: Non-inbred mice

Weight: ³
Age: ⁴
Sex: ⁵

No. of animals/test group: 6-10

No. of animals/control group: Calculated by formula ⁶ Testing schedule: Differs, depending on problems posed

Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 13th day after transplantation is 4.2–7.6 g.

Parameter of effect: Inhibition of tumor growth 9

Minimum criterion for activity: Inhibition of tumor growth by ≥ 50% or minimal statistically significant percent of inhibition

Sarcoma 180

Origin

This tumor arose spontaneously in a male albino mouse in 1914 in the Crocker Institute in the United States. Originally, it was classified as a carcinoma, which was transformed in the process of transplantation into a poorly differential sarcoma (204).

Source

The tumor was obtained in 1975 from the United States.

General

Sarcoma 180 is transplanted sc with a tumor suspension in non-inbred mice. Treatment begins 48 hours or 5-6 days after transplantation.

Administration of drug 2

Parameters of effect

Inhibition of tumor growth in weight and volume and life-span

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of transplantation are indicated in Appendixes III, IV.

Time of transfer for propagation: 14-18 days

Drug testing

Animals: Non-inbred mice

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 8-12

No. of animals/control group: 15-20, determined by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: Average weight of tumor on 13th day after transplantation is 3.0 g (1.5–4.0); average life-span is 35 days (29.3–41.8).

Parameter of effect: ILS% or percentage inhibition of tumor growth in weight and in volume 8, 9

Minimum criteria for activity: Inhibition of growth of tumor $\geq 50\%$ or minimal statistically significant percent of inhibition and ILS $\geq 25\%$

Day of final evaluation: Surviving animals were killed on the 90th day.

Ehrlich Tumor

Origin

The initial tumor for the strain of Ehrlich solid adenocarcinoma was a spontaneous cancer of the mammary gland of mice that developed in 1905. The ascitic variant of Ehrlich tumor was obtained in 1932 by ip transplantations of Ehrlich solid adenocarcinoma (204).

Source

The Ehrlich tumor was obtained from the Bank of OSC AMS USSR.

General

The tumor is transplanted ip or sc with ascitic fluid in non-inbred mice. Treatment begins 24 hours after transplantation for the ascitic variant and in 4–6 days in sc transplantation.

Administration of drug 2

Parameters of effect

Volume of ascites, weight of tumor, number of tumor cells, and life-span

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of transplantation are given in Appendix III. Time of transfer for propagation: 8–12th day

Drug testing

Animals: Non-inbred mice

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 7-15

No. of animals/control group: 15–20, calculated by formula ⁶

Testing schedule: Differs, depending on problems posed Dosage: ⁷

Evaluation

Acceptable control: On the 8–9th day, average volume of ascitic fluid is 7 ml; average number of tumor cells is 400×10^6 ; average weight of tumor is 2 g, average life-span is 12–20 days.

Parameters of effect: ILS% or percent inhibition of development of tumor growth according to volume of ascites, number of tumor cells, weight of tumor ^{8, 9}. In the kinetics study, the parameter of effect is the coefficient of activity $N = \frac{\psi_c - \psi_t}{\psi_c}$, where ψ_c and ψ_t are the average specific growth rates of the tumor in the control and experimental groups.

Minimum criterion of activity: Percent inhibition of tumor growth by $\geq 50\%$ or ILS% by $\geq 25\%$

Adenocarcinoma of the Mammary Gland

Origin

This tumor was transplanted from spontaneous tumor that developed in C3H mice by the time they were 8–10 months old (I–III generations of spontaneous tumor in this mouse line).

General

A suspension of crushed fragments of tumor tissue free of necrosis transplanted sc in C3H mice. Treatment ordinarily is administered ip.

Parameters of effect

Inhibition of tumor growth as calculated by the change in volume or weight of the tumor and increase in life expectancy of the animal receiving the drug compared with controls

Propagation of stock tumor

Animals: C3H mice

Transplantation material and site of transplantation: A suspension (0.2 ml) of crushed fragment of tumor tissue in physiologic solution is transplanted sc in the side of the mouse.

Inoculum: 50-70 mg

Transplantation time: Per strain and per experiment: 18–20 days

Drug testing

Animals: C3H mice

Weight fluctuation: 22-25 g

Age: Mice selected according to weight indicated

Sex: Males

No. of mice/test group: 10-12

No. of mice/control group: 15-20. In the kinetics study, 30-40 mice are in each control and experi-

mental group; 3-5 mice are killed from each group at 2- to 3-day intervals, and the weight of the tumors in each group is determined.

Testing schedule: Day of tumor transplantation is day 0.

Method of administering drug: ip

Day of first injection of drug: Day 10-12 when tumor weight reaches approximately 200 mg

Dosage: Daily for 6-8 days or every other day, depending on the drug

Day of evaluation of effect: For determining the percent of inhibition of tumor growth, 40th day

Evaluation

Accepable control: Inhibition of tumor growth compared with controls 9

Parameter of effect: Activity coefficient $N = \frac{\overline{\psi}_c - \overline{\psi}_t}{\overline{\psi}_c}$

where ψ_c and ψ_t are the average specific growth rates of the tumors in the control and treated groups of animals; determined in the kinetics study of the effect of the drug.

Minimum criterion for activity: Increase in average life-span of the treated animals compared with the controls 8

Walker Carcinosarcoma 256

Origin

This tumor arose in 1928 as a spontaneous adenocarcinoma of the mammary gland of a pregnant unpedigreed rat (204).

Source

The strain was obtained from the tumor bank of the OSC AMS USSR.

General

The tumor is transplanted sc in non-inbred rats. Treatment begins 24 hours or 3-6 days after transplantation.

Administration of drug 2

Parameters of effect

Inhibition of tumor growth in weight or size and ILS

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of its injection are indicated in Appendix III. Time of transfer for propagation: 7–14 days

Drug testing

Animals: Non-inbred rats

Weight: 3

Age: 4
Sex: 5

No. of animals/test group: 8-12

No. of animals/control group: 15, calculated by formula 6

Testing schedule: Differs, depending on purpose of experiment

Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 14th day after transplantation is 33 g; average life-span is 15–25 days.

Parameters of effect: Percent of inhibition of tumor growth in weight or size and ILS% of controls 8, 9

Coefficient of activity: $N = \frac{\overline{\psi_c} - \overline{\psi_t}}{\overline{\psi_c}}$, where $\overline{\psi_c}$ and

 $\overline{\psi}_t$ are the average specific growth rates of the tumor in the control and test groups.

Minimum criterion of activity: Percent inhibition of tumor growth ≥ 50 or minimal statistically significant percent of inhibition

Sarcoma 45

Origin

This spindle-cell sarcoma arose in 1949 as a result of the injection of DMBA into subcutaneous cellular tissue of a non-inbred rat (231).

Source

Sarcoma 45 was obtained from the tumor bank of the OSC AMS USSR.

General

The tumor was transplanted sc in non-inbred rats. Treatment begins on 4-5th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of injection are given in Appendix III. Time of transfer for propagation: 14–20th day

Drug testing

Animals: Non-inbred rats

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 8–10

No. of animals/control group: 15, calculated by formula 6

Testing schedule: Differs, depending on purpose of tests Dosage: ⁷

Evaluation

Acceptable control: Average weight of tumor on 16th day is 19.3 g; average life-span is 18-25 days.

Parameter of effect: Inhibition of tumor growth (weight)9

Minimum criterion for activity: Inhibition of tumor growth ≥ 50-70% or minimal statistically significant percent of inhibition

Sarcoma M-1

Origin

Polymorphocellular sarcoma M-1 was obtained in 1943 from a tumor induced by 3,4-benzpyrene (232).

Source

Strain was obtained from the tumor bank of the OSC AMS USSR.

General

The tumor is transplanted sc in non-inbred rats. Treatment begins on the 5th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of its injection are indicated in Appendix III. Time of transfer for propagation: 14–16th day

Drug testing

Animals: Non-inbred rats

Weight: ³ Age: ⁴ Sex: ⁵

No. of animals/test group: 8–10

No. of animals/control group: 10, calculated by formula ⁶

Testing schedule: Differs, depending on problem

Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 15th day after transplantation is 18 g; average life-span is 16–28 days.

Parameter of effect: Inhibition of tumor growth in weight, calculated by formula ⁹

EVALUATION OF ANTITUMOR DRUGS: USA-USSR

Minimum criterion for activity: Minimal statistically significant percent of inhibition

Jensen's Sarcoma

Origin

The polymorphocellular sarcoma arose in 1907 in a gray rat as a result of the injection of tuberculosis bacteria (233).

Source

The strain was obtained from the tumor bank of the OSC AMS USSR.

General

The tumor is transplanted sc in non-inbred rats. Treatment begins on the 1st or 5th or 6th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth in weight

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of injection are given in Appendix III. Time of transfer for propagation: 10-14th day

Drug testing

Animals: Non-inbred rats

Weight: 3 Age: 4 Sex: 5

No. of animals/test group: 8-10

No. of animals/control group: 10, calculated by for-

Testing schedule: Differs, depending on problems posed Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 14th day after transplantation is 10.4-17.8 g; average life-span is 16-25 days.

Parameter of effect: Percent of inhibition of tumor growth in weight calculated by formula 9

Minimum criterion for activity: Inhibition of tumor growth by $\geq 50\%$ or minimal statistically significant percent of inhibition

Sarcoma 536

Origin

The tumor strain was obtained in 1953 by transplantation of a spontaneously developed tumor in the abdominal cavity of a rat (233).

Source

The tumor was obtained from the All-Union Scientific Research Chemical-Pharmaceutical Institute.

General

This tumor is transplanted sc in non-inbred rats. Treatment begins on the 5-6th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth in weight or life-span

Propagation of stock tumor

Inoculum: Quantity of transplanted tumor material and site of its injection are given in Appendix III. Time of transfer for propagation: 12–14th day

Drug testing

Animals: Non-inbred rats

Weight: 3 Age: 4 Sex: 5

No. of animals/test group: 8-10

No. of animals/control group: 10, calculated by for-

mula 6

Testing schedule: Differs, depending on problems posed Dosage: 7

Evaluation

Acceptable control: Average weight of tumor on 15th day after transplantation is 20-26 g; average lifespan is 16-25 days.

Parameter of effect: Inhibition of tumor growth in weight calculated by formula 9

Minimum criterion for activity: Minimal statistically significant percent of inhibition

Guerin Carcinoma

Origin

This carcinoma was obtained in 1934 by transplantation of a spontaneous adenocarcinoma of the uterus of a Wistar rat (234).

Source

The strain was obtained from the tumor bank of the OSC AMS USSR.

General

The tumor is transplanted as a suspension given sc to non-inbred rats. Treatment begins on the 3-7th day after transplantation of the tumor.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth

Propagation of stock tumor

Inoculum: Quantity of tumor material transplanted and site of inoculation are indicated in Appendix III. Time of transfer for propagation: 13-17th day

Drug testing

Animals: Non-inbred rats

Weight: 3 Age: 4

Sex: Only females

No. of animals/test group: 10

No. of animals/control group: 15, calculated by for-

Testing schedule: Differs, depending on purpose of

experiment Dosage: 7

Evaluation

Acceptable control: Average tumor weight is 20-25 g. Parameter of effect: Inhibition of tumor growth in weight 9

Minimum criterion for activity: Percent of inhibition

of tumor growth = 70.

Alveolar Liver Cancer RS-1

The tumor was induced in 1956 with acetylaminofluorene in a non-inbred rat. The initial tumor was a hepatocholangioma, now alveolar mucosal cancer (235).

Source

Origin

The tumor was obtained from the bank of the OSC AMS USSR.

General

The tumor is transplanted sc in non-inbred rats. Treatment begins on the 8-10th day after transplantation.

Administration of drug 2

Parameter of effect

Inhibition of tumor growth in weight or size

Propagation of stock tumor

Quantity of transplanted material and site of injection are given in Appendixes III, IV.

Time of transfer for propagation: 25-30th day

Drug testing

Animals: Non-inbred rats

Weight: 3 Age: 4 Sex: 5

No. of animals/test group: 8-10

No. of animals/control group: Calculated by formula 6 Testing schedule: Differs, depending on problems posed

Dosage: 7

Evaluation

Acceptable control: Average tumor weight on the 26th day after transplantation is 19 g; average life-span is 25-45 days.

Parameter of effect: Inhibition of tumor growth in

weight 9

Minimum criterion for activity: Inhibition of the tumor growth by $\geq 50\%$ or the minimal statistically significant percent of inhibition

Day of final evaluation: 18-20th day

Pliss Lymphosarcoma

Origin

The tumor was obtained in 1958 in the Research Institute for Oncology by G. B. Pliss, after sc transplantation of a tumor which arose in a rat that received 3.3-dichlorobenzidine. The tumor has been passed in non-inbred and albino rats in the Research Institute for Oncology since 1958 (236). The system is used as a model in which the parameter of effect is the weight of the tumors.

Propagation of stock tumor

The tumor is transplanted sc as 0.4 ml of a 30% suspension of tumor tissue in physiologic solution. The material for the transplantation is taken on the 14-16th day.

Drug testing

Transplantation site: sc on the flank, 0.4 ml of a 30% suspension of tumor tissue in physiologic solution, taken on the 14-16th day after transplantation

Animals: Albino, non-inbred rats raised by the Rappolovo Breeding Farm, males or females, weighing 100-120 g, aged 8-10 weeks

No. of animals/test group: 10

No. of animals/control group: 12-15

Testing schedule: Injections of drug given ip every day beginning with 4-5th day after transplantation, with a total of 10–12 injections

Dosage: A single optimal dose

Evaluation

On the day after completion of the therapy, according to the weight of the tumors

EVALUATION OF ANTITUMOR DRUGS: USA-USSR

Acceptable controls: The acceptable average tumor weight in the controls is 12–15 g.

Parameter of effect: Percent inhibition of tumor growth 9

Minimum criterion for activity: Inhibition of growth by 40-50%

Rhabdomyosarcoma MOP

Origin

Rhabdomyosarcoma MOP was obtained in the Research Institute for Oncology in 1947 by sc transplantation of a tumor which developed in a hind paw of a rat after the injection of 9,10-dimethyl-1,2-benzanthracene (237). The tumor was maintained in the laboratories of the Research Institute for Oncology by sc or im transplantation in non-pedigreed rats. The system is used as a model in which the parameter of effect is the inhibition of tumor growth.

Propagation of stock tumor

Animals: White cross-bred rats raised by the Rappolovo Breeding Farm

Inoculum: A 30% suspension (0.4 ml) of tumor tissue in sterile physiologic solution given sc

Time of transfer for propagation: The tumor for transplantation is taken from the animals on the 13–15th day.

Inplant site: The flank

Drug testing

Tumor site: Flank

Animals: Female albino cross-bred rats raised by the Rappolovo Breeding Farm, weighing 100-120 g, aged 6-8 weeks

No. of animals/test group: 10 No. of animals/control group: 15

Testing schedule: Injections of drug given ip daily, beginning with 3d-4th day after transplantation and continuing for 10 days

Dosage: One; occasionally several doses are used, consisting of 10–20% of the LD50

Evaluation

Acceptable control: Made on the basis of the weight of the tumors on the day following the completion of therapy; acceptable average weight of the tumor in the controls is 15 g.

Parameter of effect: Percent inhibition of tumor growth 9

Minimum criterion for activity: Inhibition of tumor growth by 90-100%

Ovarian Tumor OYa

Origin

Ascites tumor of the rat ovary OYa was obtained in

1958 by transplantation of an ovarian tumor, which arose in a rat whose mother had received DMBA during the period of gestation and lactation (238).

Source

The strain was obtained from the OSC AMS USSR in 1962.

General

The strain was passed ip in albino rats raised by the Rappolovo Breeding Farm. The system is used as a model in which the parameter of effect is the inihibition of tumor growth.

Propagation of stock tumor

Animals: Albino rats from Rappolovo Breeding Farm Inoculum: Ascitic fluid (0.4 ml) obtained on the 8-10th day after transplantation Inplant site: ip

Drug testing

Implantation site: Ascitic fluid (0.4 ml) obtained on the 8–10th day after transplantation, ip

Animals: Albino non-inbred female rats weighing 100-120 g

No. of animals/test group: 10-12

No. of animals/each control group: 10-12

Testing schedule: Injections, ip or sc, of drug for 7–8 days beginning with the first day after transplantation Dosage: Ordinarily, a single optimal dose is used with

the different routes of administration of the drug.

Evaluation

On the day following the completion of therapy, according to the total volume of ascitic fluid 9

Acceptable control: Average quantity of ascitic fluid acceptable for control is 30–40 ml.

Minimum criteria for activity: For ip injections, 70–100% inhibition; for sc injections, 40%.

Brown-Pierce Epithelioma

Origin

This line was obtained in 1921 from an undifferentiated tumor (possibly epithelial originally) of the scrotum of a rabbit (204).

Source

The tumor strain was obtained in frozen form from the OSC AMS USSR.

General

The system is used as a model for which the chief parameters of response are the percent of inhibition and retardation of metastasis into the other organs.

Procedure

Minced tumor diluted with physiologic solution was given intratesticularly in doses of 0.4–0.5 ml.

Propagation of stock tumor

Animals: Male rabbits

Inoculum: The tumor suspension of the Brown-Pierce

epithelioma is injected in a quantity of 0.5 ml.

Implant site: Right testis

Time of transfer for propagation: Days 20–21 Time of transfer for drug testing: Days 20–21

Drug testing

Animals: Male rabbits

Weight: 300 g, with minimum weight of 250 g

Age: Usually 7–8 months No. of animals/test group: 10

No. of animals/control group: No less than 10 Testing schedule: Indicated in Appendix III

Evaluation

Efficacy of a drug was evaluated according to a four-point system with subsequent derivation of an arbitrary (average) index of metastatic activity for each organ in the experimental and control groups. On the basis of a comparison of the sum of these indexes (for all organs) in treated and control animals, the percent of inhibition of the metastasizing process was determined and compared with the results obtained with other antitumor drugs.

Sarcoma 37, Tumor L-5178Y, Ehrlich Tumor, Tumor NK/Ly

Substrains

Adapted to growth in vitro

Origin

Sarcoma 37 (ascites) was adapted to growth in vitro by means of repeated passages of the ascites tumor cells in the form of suspension cultures in test tubes and in the peritoneal cavity of animals. With this method of selection, tumor cells were obtained that preserved their malignancy and their ability to reproduce in vitro. In this way, a substrain of sarcoma 37 was obtained that was capable of regular growth in primary suspension cultures. The strain was maintained by transplantation in animals with periodic (twofold to threefold) passage through an in vitro/ in vivo system every 3–4 months (239). Besides the substrain of sarcoma 37 described above, use was made of the tumors L-5178Y, Ehrlich tumor, and NK/Ly, which are also adapted to growth in vitro.

Source

Substrains of sarcoma 37, tumor L-5178Y, Ehrlich

tumor, and NK/Ly were obtained in 1973 from the Institute for the Search for New Antibiotics of the AMS, USSR.

Strain transplantation

Animals: Non-inbred mice

Age: 2-3 months

Transplantation: Each mouse is given injections of

 5×10^6 cells in 0.5 ml of physiologic solution.

Implant site: ip

Time of transplantation: 5-6th day

Drug testing

The tumor cells removed directly before the experiment from the abdominal cavity of the mice are introduced into a test tube containing medium and incubated with the drug at 37° C for 20 hours. The incubation medium is 50% Eagle's Basal Medium and 50% hydrolysate of 0.5% lactalbumin in Hanks' solution with the addition of 20% bovine serum and 0.1 mg streptomycin/ml of medium. The number of tumor cells/milliliter of medium is 4×10^5 . The drug concentrations tested are 100, 50, and 10 µg/ml in one of the following solvents: alcohol, dimethyl sulfoxide, polypropylene glycol, acetone, 1% Na₂CO₃ solution, or 1% tartaric acid solution. The concentration of the solvent should not exceed 10%. If activity is detected at the lowest concentration, then lower concentrations are tested. The number of samples in the controls without incubation (initial control) is 6; in the controls after incubation (incubator control), 6; for each concentration of the drug, 2. The number of concentrations of each drug tested is 3.

Criteria of culture growth and cytotoxic activity of drugs

The evaluation of the growth of the cultures and the cytotoxic activity of the drugs is conducted by spectrophotometric determination of the total DNA and RNA content by the method of extinction difference (240). For this, after preliminary washing of the centrifuged cell precipitate (to free it of acidsoluble compounds) with cold 0.2 N HClO4 and subsequent hot acid hydrolysis in 0.5 N HClO4 at 90° C for 20 minutes, the OD of the hydrolysate is determined at wavelengths of 270 and 290 nm. The content (sum) of DNA and RNA is calculated by the formula: Σ NA (μ g/ml) = OD at 270 nm - OD at $290 \text{ nm}/0.19 \times 10.8$, where 0.19 and 10.8 are the average coefficients for converting the nucleic phosphorus to the quantity of nucleic acid. The intensity of the culture growth is determined by the increment of the sum of nucleic acids according to the formula: Percent culture growth intensity = \(\Sigma \) NA incubated -Σ NA_{initially}/Σ NA_{initially}× 100, where Σ NA_{incubated} is the sum of nucleic acids in the incubator control, and Σ NA_{initially} is the sum of nucleic acids in the initial control.

EVALUATION OF ANTITUMOR DRUGS: USA-USSR

Evaluation

Acceptable control: Increase in the sum of nucleic acids ≥ 40%

Criterion of cytotoxicity: ED50 is the dose suppressing the synthesis of nucleic acid by 50%.

Cell Line CaOV

Origin

The primary culture was obtained in the OSC AMS USSR in June 1959 from tissue of a cystadeno-carcinoma of a human ovary (241).

Source

The cells of line CaOV are maintained in the form of a monolayer culture at the OSC AMS USSR, and the material is also stored in their cell bank.

General

Reinoculation procedure: Cells are detached by a 0.25% solution of trypsin in phosphate buffer, then the collected culture is reinoculated once weekly in a ratio of 1:2. The nutrient medium is a synthetic Medium 199 with 10% bovine serum and 50 IU kanamycin/ml. Culture is kept in the incubator at 37° C.

Preparation of cultures for experiment

Material for inoculation: Cells detached from the glass are diluted with prepared nutrient medium to a density of about 1×10^5 cells/ml.

Preparation for cultures: The cells are inoculated in standard flat-bottomed vessels with a volume of 10 ml and a bottom diameter of 20 mm. Rubber test tube stoppers were of nontoxic material. Two milliliters of the cell suspension is inoculated with a total of about 2×10^5 cells.

Study of drugs

Selection of cultures for tests: Cultures are selected with the same pink color of the nutrient medium; 1-day-old cultures are used.

No. of cultures in experimental group: From 2 to 6; usually 3-4; a group of cultures with the same concentration of one substance being tested is considered as the experimental group. No. of control cultures in one series of experiments depends on the No. of experimental groups and No. of cultures in each group, usually from 8 to 12.

Testing schedule: A single addition to a 1-day culture of 1 ml of a solution of the substance being studied in a protein-free nutrient Medium 199; exposure to substance is for 48 hours.

Concentration of substance being studied: Successive

dilutions of the substance are used with a final concentration of 100, 10, and 1 μ g/ml. A weighed portion of the substance (up to 10 mg) is dissolved in 2 drops of DMSO, with subsequent dilution with Medium 199.

Effect evaluation: The effect is evaluated according to: 1) change in the incorporation of [³H]dThd by the cells, 2) change in the total content of nucleic acids in the cells, and 3) change in the total content of protein in the cells.

Determination of level of incorporation of [3H]dThd by the cells: By the end of the exposure period to the drug, the nutrient medium is replaced with fresh medium containing [3H]dThd in the concentration of 1 µ/ml. Exposure is for 1 hour, after which the cultures are cooled to 0° C, the medium decanted, the cells washed twice with chilled Hanks' solution and once with chilled 2.5% perchloric acid solution in distilled water. Nucleotides are hydrolyzed and extracted in 5 ml of 10% perchloric acid in distilled water in a water bath at 80° C for 20 minutes. To 10 ml of standard dioxan scintillation liquid (ZhS-8), 0.5 ml of extract is added, and, after neutralization with 0.1 ml ammonia, measurement with a liquid scintillation counter is made of the average value of the radioactivity level for the control and for each of the experimental groups.

Determination of the total content of nucleic acids in the cells: The nucleotides remaining in the samples of 4.5 ml of extract in 10% perchloric acid are used for the spectrophotometric determination of the total content of nucleic acids in the cells. The extinction of the extract is determined at wavelengths of 270 and 290 nm. On the basis of the extinction difference, according to Spirin's formula (240), determination is made of the total content of nucleic acids in the culture.

Determination of the total protein content in the cultures: After removal from the specimens of the nucleotide extract, the remaining cells are used to determine the quantity of protein in them. The cells are lysed at 37° C with a 1 N solution of NaOH in distilled water. Protein is determined by Lowry's method (242).

Processing of results: For each criterion of evaluation, the ratio in percent of the average index is calculated for each experimental group relative to the control. On the basis of the magnitudes obtained by probit analysis, the ED50 value is determined, as applicable to each evaluation criterion.

Minimal activity criterion: The drug is considered active if the ED50 is lower than 100 μg/ml for one of the evaluation criteria.

Simultaneously, with the study of the biologic activity of the unknown substance, a structurally similar substance with a known cytotoxic effect was used as a positive control.

Chapter III: Analysis of Experimental Data and Correlations With Clinical Use of Drugs

A: COMPARISON OF SYSTEMS FOR STUDYING ANTITUMOR DRUGS IN THE UNITED STATES AND SOVIET UNION

As a result of our parallel study of drugs, a large body of factual material has been obtained that can be subjected to analysis to find the most informative test systems and to establish correlations with the data from clinical research.

However, to conduct such an analysis, it is first necessary for us to determine whether the data obtained in different countries are comparable and whether the totality of the available data in the cooperating countries can be used. For this purpose, a compilation was made of the results of exposure of identical tumors to the same drugs when they were studied in the United States and Soviet Union. When this was done, the data obtained were indeed comparable (table 3). Differences noted in a number of instances in the magnitude of the responses for the same drugs administered in treatment of the same tumors may be accounted for by variations in therapeutic schedules and the extent of fluctuation ordinarily observed in the activity of drugs in various experiments. Consequently, it appeared justifiable to combine the material obtained in both countries and to discuss the data as a whole.

Since one of the primary objectives of this investigation was to study the possibility of transferring experimental data to clinical use, it was considered essential to supplement the list of agents with a number of characterized, clinically active drugs. Twenty-four such drugs (table 4) studied in the experimental tumor models most frequently used for screening were selected for this purpose.

Table 5 presents summary data on the antitumor activity of 71 drugs in the study. The antitumor activity is expressed in arbitrary units based on a summary evaluation of efficacy. Taken into consideration were the re-

Abbreviations: LL = Lewis lung (tumor); BCNU = 1,3-bis (2-chloroethyl)-1-nitrosourea; CCNU = 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; 5-FU = 5-fluorouracil; PCNU = 1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea; ara-C = cytosine arabinoside; Me-CCNU = 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea; ILS = increase in life-span; NCI = National Cancer Institute; OSC = Oncological Scientific Center; DTIC = dacarbazine; MNU = methylnitrosourea; cis-PT(II) = cis-platinum(II) diamminedichloride; ic = intracerebral(ly); LD50 = mean lethal dose; HGPRT = hypoxanthine-guanine phosphoribosyltransferase; ED50 = median inhibitory concentration.

sponse parameters, ILS of the treated animals, and inhibition of tumor growth. For convenience of discussion, the drugs are grouped in accordance with similarity in chemical structure or mechanism of action. In addition, data in table 6 indicate the effect of the drugs on the life-span of the treated animals. The results of clinical study of many of the same compounds (5, 243–250) are given in table 7.

Different models and methods are used in the various institutions of the United States and the Soviet Union that are engaged in experimental studies of antitumor properties of certain substances. However, the basic material summarized in the present monograph is the result of the study by the NCI (all the substances cited in this volume were studied under the auspices of this Institute) and the OSC of the USSR Academy of Medical Sciences (almost 90% of the drugs were studied at the OSC and the remainder at cooperating institutions). Therefore, it was considered possible that a comparison of the methods of drug screening could be made with materials at these two institutions and, when necessary, with the data from other institutes of the USSR.

Models

Certain common model systems have been used by the NCI and OSC in the study of the antitumor activity of drugs: leukemias L1210 and P388, LL, and melanoma B16. All four tumor models are incorporated in the screening program at the NCI but at the OSC, although leukemia L1210 and LL are used regularly, P388 and B16 are supplementary models reserved for in-depth study of active drugs.

The assortment of experimental tumors that are used in the study of antitumor drugs in both countries is large. However, the decision concerning the development of drugs in the NCI has been based largely on the results with five experimental systems: L1210 (ip), L1210 (sc), P388, B16, and LL. Ependymoblastoma inoculated ic has often been included. In the detailed investigation of active drugs, numerous other animal tumors have also been used. In a new prospective screen, use is being made of the murine intestinal tumors, colon 26 and colon 38; mouse mammary gland carcinoma, CD8F₁; and human colon, breast, and lung tumors growing in athymic mice. However, data on these tumors are not presented here because of the small volume of studies conducted at this time.

To determine the antitumor activity of drugs, the OSC uses tumor models L1210 (ip), hemocytoblastosis La, mammary gland adenocarcinoma Ca-755 and LL. These tumors constitute the primary system of screening for

¹ This chapter was prepared by Zoya P. Sof'ina, Abraham Goldin, and A. K. Belousova.

TABLE 3.—Comparison of results of antitumor activity of drugs in the USSR and the United States

			USS	SR			United S		
Drugs	Tumors	Route of adminis- tration	Days after tumor in- oculation	Dose, mg/kg	ILS%	Route of administration	Days after tumor in- oculation	Dose, mg/kg	ILS%
Dopan	L1210	ip "	1-8	0.4	63	ip	1-death	2	70
Elyanadanan	LL		2, 6	0.4	0		1-9	1	26
Fluorodopan	L1210	Oral		60	18	Oral	1, 9 every 3 hr	32	31
	LL	**	**	60	10	ip	1, 5, 9	23	22
Sarcolysin	L1210	ip "	"	7	107	"	1-10	8	91
Acelou	LL L1210	Oral	2-6 2, 6	2 120	45 35	"	1–11 1, 5, 9	1 64	10 58
Asaley	LIZIO	orar "	2, 6	40	22	,,	1, 3, 9	4	24
Phenestrol	L1210	sc	**	100	14	sc	1	100	2
Distron	L1210	,,	2, 6	400	41	ip	1-9	200	15
	LL	**	2–6	25	27	"	,,	50	21
Palphicerin	L1210	"	"	25 25	18	sc :	» »	100 12.5	36 0.4
Prospidine	LL L1210		1–5	200	3 0	ip "	**	132	0.4
Ftorafur	L1210	ip "	1, 5, 9	500	80	,,	1, 5, 9	833	88
Carminomycin	L1210	"	2, 6	0.6	38	"	1, 3, 5	0.65	53
	21210	**	2,,0	0.5	21	**	1–9	0.03	3
Chanerol	L1210	"	2–6	10	15	**	1-5	2.2	8
	LL	"	,,	10	7	**	1-17 every other day	8	5
Colchizin	L1210	"	2, 6	100	0	"	1-5	200	18
	P388 LL	"	1-8 2-6	120 120	157 7	,,	1 – 9	200 100	70 2
Diazan	L1210	sc	1, 3, 5, 7	10	30	,,	**	6.3	41
	P388	"	1, 4, 7, 10	25	85	**	"	3	70
Variamycin	L1210	ip "	1–6	1	0	"	**	0.75	15
ъ .	P388	"	,,	1	95	"	"	1.5	70
Reumycin	L1210 P388	,,	1–9	2.5 2.5	10 11	,,	**	0.75 3	4 0
Agavoside	L1210	**	1-5	5	12	,,	,,	1.3	3
Digitonin	L1210	"	1-7	6	0	"	**	40	2
	P388	"	1–5	15	12	**	**	0.62	1
Cyclophosphamide	L1210 LL	"	2, 6 4, 18	100 200	117 90	"	5 8	172 300	224 7 1
BCNU	L1210	"	2, 6	35	700	,,	1	30	206
	LL	"	4, 11	40	20	>>	î	40	39
CCNU	L1210	"	2	40	419	"	5	50	179
TIO	LL	"	4	50	16	"	1–9 "	2	7
TIC-mustard	L1210 LL	"	2–7 2, 6	150 120	120 30	,,	8–16	87 50	143 23
Streptozotocin	L1210	**	2, 6	50	28	,,	1-9	50	38
Str vp vozovo vin	LL	**	2,,~	50	0	**	8–16	20	15
Hexamethylmelamine	L1210	***	"	70	13	**	1–9	150	24
6 TX I	LL	"	,,	125	18	"	"	50	68
5-FU	L1210 LL	"	2-11 2-6	20 26	84 0	,,	8–16	16 20	73 32
Cyclocytidine	L1210	**	1–8	100	127	**	1–9	300	160
	LL	**	2–6	120	3	**	,,	640	35
Azacytidine	L1210	**	1-9	3	136	**	"	3	124
Guanazole	L1210	**	,,	1,800	61	sc	1, 5, 9	600	226
	LL	**	2-6, twice	500	4	ip	every 3 hr 8–16	800	54
			daily	500	7	*P	0 10	300	,

Table 3.—Comparison of results of antitumor activity of drugs in the USSR and the United States (continued)

			USS	SR			United S	tates	
Drugs	Tumors	Route of administration	Days after tumor in- oculation	Dose, mg/kg	ILS%	Route of administration	Days after tumor in- oculation	Dose, mg/kg	ILS%
Gallium nitrate	L1210	**	2-6	60	8	"	1-9	50	15
S-Trityl-L-cysteine		Oral	79	200	37	99	97	70	55
Inosine digly- colaldehyde	L1210 LL P388	ip ,,	1-5 2, 6 2, 6, 10	100 200 200	32 5 104	>> >> >>	", 1–11 1–10	200 65 150	75 15 109
Ellipticine	P388	**	1, 4, 7	30	60	"	**	25	104
3-Deazauridine	L1210	**	2-6	500	41	"	1–9	200	50
6-Selenoguanosine	**	**	***	30	63	"	"	25	129
ICRF-187	**	**	99	400	96	**	2, 5, 9	1,024	86
Chlorozotocin	"	"	99	7.5	156	99	1	30	517
PCNU	"	33	1-5	2	109	39	2	6	103
Nordopan	**	**	99	0.4	55	99	1-death	0.3	59
Quinoline derivative	**	"	2-6	10	483	33	1, 5, 9	25	201
α-Deoxythio- guanosine	***	99	99	80	54	***	1–3	40	78
Townsend's nucleo- side derivative	>9	***	39	15	63	99	1–9	25	74

drugs. In the second step of the study, AKATOL adenocarcinoma of the large intestine, cancer of the uterine cervix RShM-5, squamous cell forestomach cancer PRZh, and plasmacytoma MOPC-406 are used more often than others. For promising substances, this assortment of tumors is usually supplemented by various other experimental models. Hormone-sensitive tumors and endocrinologic tests are used for drugs with presumed hormone activity. Immunoactive drugs are studied with immunologic test sytems.

Schedules of Drug Application

Studies of antitumor effect at the NCI and OSC differ also in the schedules of application of the drugs being investigated. At the NCI, the effect of the drugs is studied on various schedules: daily, single, and intermittent (with an interval of 96 hr) administration. The duration of the course in multiple administration is usually 9 days. At the OSC, compounds are usually introduced during screening in the form of a brief 5-day course (every day or twice at an interval of 96 hr). In other institutions of the Soviet Union longer courses of therapy are administered ordinarily.

A comparison of the results of studies of the same drugs on the same model systems in the United States and Soviet Union shows that when the treatment of the animals was begun at the same time after transplantation of the tumor, differences in the schedules of drug application most often did not result in marked variations in antitumor effect (table 3). The difference in the degree of effect is significant only when the antitumor effect of

the drug depends primarily on the schedule of therapy. Thus when tested on mice with L1210 at the OSC, the effect of guanazole was substantially lower than at the NCI (a 61% ILS on a daily schedule as opposed to a 226% increase on an every 3-hour intermittent schedule, respectively). The effect of this drug is S-phase-specific, as a result of which one drug injection/day is insufficient for the maximum possible suppression of the growth of tumors with a high proliferative pool and a short generation time (12 hr). Difference in magnitude of the effect was also found in the testing of other drugs (6-selenoguanosine, Cain's quinoline derivative, chlorozotocin, BCNU, or CCNU), which require either prolonged daily administration or infrequent injection of massive doses

Table 4.—Drugs with known clinical activity included in discussion

Methotrexate	Prednisolone (prednisone)
6-Mercaptopurine	Chlorambucil
6-Thioguanine	Vinblastine
Ara-C	Mithramycin
Hydroxyurea	Daunorubicin
Dactinomycin	Bleomycin
Adriamycin	Mitomycin C
Vincristine	Me-CCNU
Procarbazine	Dibromodulcitol
Nitrogen mustard	L-Asparaginase
Estracyt	Dibromomannitol
Myleran	Thio-TEPA

TABLE 5.—Effect of drugs on experi-

													1 /	BLE 3	o.—E)	ffect of	arug	s on e.	xperi-
Leukemias							Lyn	nphom		Plasi									
Drug	L1210	P388	La	L-5178Y	L-AK	Friend's virus leukemia	Lymphocytic leukemia P-288	P1534	Lymphosarcoma P1798	Pliss	LI0-1	Mecca	Gardner	MOPC-406	LPC-1	Adenocarcinoma Ca-755	Lewis lung	AKATOL-1-71	RShM-5
Methotrexate	+++	+++	-											+		+++	+	+++	++
Tomizin	_	_	_																
Quinoline derivative	+++	+++	+++													+	_	++	++
5-FU	++	+++	+++											++		+++	++	_	_
Ftorafur	++	+	++											+		++	+++	+	+
3-Deazauridine	+	-	_													++	_		++
Ara-C	++	+++	_													_	++	+	++
Cyclocytidine	+++	+++	+											_		++	++	+	+
5-Azacytidine	+++	+++	++	- -	+				-					++		+++	++	+++	
6-Mercapto- purine	+	+												++			_		_
6-Thioguanine	++	++			ļ									++		+++	_	+++	+
α-Deoxythio- guanosine	++	++	-		+													+	
6-Seleno-	+++	++	_										+++			+++	++	++	++
guanosine Inosine digly- colaldehyde	+++	+++	+++		+++									+		-	-	-	-
Townsend's nucleoside derivative	+++	_	-													_	-	+++	++
DTIC	+	++	-		-		1									+	+	++	+
Reumycin	_	-		++											1	+	-		
Hydroxyurea	+	++	+++		1	1								+		++	++	+++	+++
Guanazole	+++	+	+++		+++									+		+++	++	++	+++
ICRF-187	+++	++	-													+++	++	+	+
Dactinomycin	+	+++	+++			1								++		++	_	+	++
Adriamycin	++		+++											++		+++		+	_
Carminomycin	++	++	+++								+++			+		+	+	+	++
Olivomycin	++	++++									++				ļ	+++		+	
Variamycin	-	++	++								+					+		1	-
Aton		ļ -	ļ				ļ	1		ļ					-	++	+	+	++
Vincristine		+++					-		-	-			-	+	-	+++		++	+
Colchizin	-	+++	+++			-	-	-							-	+++		++	+++
Chanerol	-	-	ļ <u> </u>	-				-								+	++	+	+
Glucomannan	-	 -										ļ				+	+	+	+
Agavoside			14.1.						-			-				+	T		-
Digitonin	ļ <u> </u>	-	+++			-	-	-		-			-			+	++	++	+
Funkioside	-	ļ -	++				-	-	-	_	-		-			++	++	+	+-
Vitalboside	-	_	+++			-		-		-	-					++	++	++	+
Coralyne sulfoacetate	++	++																	+
Ellipticine	J+++	+++			+							J		<u> </u>					

mental tumors of mice and rats a

		Carci		5							Me	ela- mas		Sarc	omas	and u	ndiffer	rentiat	ed tur	nors	
PRZh	Ca-1025	Carcinoma NK	Ca Guerin	Rhabdomyosarcoma MOP	Ovarian tumor (OYa)	Са-С3Н	Hepatoma 129	Alveolar liver cancer (RS1)	Walker 256	Ependymoblastoma	B16	Harding-Passey melanoma	Ehrlich's ascites tumor	Ascites tumor NK/Ly	Sarcoma 37	Sarcoma 180	Sarcoma 536	Sarcoma AK	Sarcoma 45	Sarcoma M-1	Jensen's sarcoma
_											+++				+	+					
-		_						-		_	+++		++	++	++	+	_	+		+	+
										+	++				+						
		+						+	+	_	+	+			++	+		+	_		
											_										
			-							_	++				+	-					
							-				++				+	-					
+											++				_	_					
++											+				++	-					
											+										
				-							++										
-				-											_						
											_										
								-	_	-	+++	+	+		+						
		_	-	-							++				++	+					
-										+	++				+						
+										+	+										
+				ļ							+				+	-					
+		-		-							+			++	+	++					
											+					+					
			+						+		+	+	_		+	+			+	+	
										_	_				_						
+											+				+						
+				-							_				++	_					
											-				-	+					
+										-	+										
										-	+				+						
											+				+						
											+										
											+										
				-						-	++										
I				1		L	L	L	L	L	L	L	L	1	L	L					

TABLE 5.—Effect of drugs on experi-

													Т	ABLE S	$5E_j$	fect of	drugs	s on ex	cperi-
				Leuk	emias					Lyn	nphom	nas		Plasi					
Drug	L1210	P388	La	L-5178Y	L-AK	Friend's virus leukemia	Lymphocytic leukemia P-288	P1534	Lymphosarcoma P1798	Pliss	LI0-1	Месса	Gardner	MOPC-406	LPC-1	Adenocarcinoma Ca-755	Lewis lung	AKATOL-1-71	RShM-5
Dichloroallyl lawsone	_	++															-	+	_
Indicine-N- oxide	+	+++															+	+	_
Nitrogen mustard	+	++	+											+			_	+	
Nordopan	++	+++	+++		ļ											+++	++	+++	+
Dopan	++	++	++		ļ								++	+		-	++	_	
Fluorodopan	+++	+++	+++		++							+++	++	++		+++	++	+++	+++
Sarcolysin Asaley	++	++	++		T T							+++		+		+++	+++	+ +	+++
Spirohydantoin mustard	++	+++	++													+	++		+
TIC-mustard	+++	++	+		++											+	++		+
Palphicerin	+	+++	_											+		+++	-	+	+++
Prospidine		++	_								_					++	++	++	+
Cyclophos- phamide	+++	+++	+++		+++	+++	+++	++	+				+++	+++	+++	+++	+++	+++	+++
Phenthyrine	_	+	_											_		+++	++	_	+
Estracyt	_		_											_		_	_		
Phenestrol	_	_	_													+	_		_
Distron	+	++	++		1											+++	+	+	++
Fotrin	++	+++	+++						-		++					ļ	_		
Dioxadet	+++	+++			ļ.——			ļ		_		ļ		-	ļ		_		
Diiodobenzo- tepa	++	+++															_		
Hexamethyl- melamine	+	-	+											-		+++	+++	+	++
MNU	+++	+++	+			-		1							-	++	++	++	+
BCNU	+++	+++	-		+				1						1	++	+++	+++	+++
CCNU	+++	+++	-		+			 	1		ļ			-		+	+++	++	+
PCNU	+++	+++	-													++	+++	++	++
Streptozotocin	+	++	+++											+		-	_	++	+
Chlorozotocin	+++	+++	-													-	++	++	+++
Diazan	+	++	+++													+			
Myleran	_	_	_											<u> </u>		+		+	
Cain's acridine derivative	++	+++	_													++	++	+	++
cis-Pt(II)	++		+++		++											+++	++	+++	_
Gallium nitrate		+	+++		_									-		+++	_	++	
S-Trityl-L- cysteine	++	+++			+											+	-		
Prednisolone (prednisone)		-	_													++	_	+	_
Procarbazine	++	++			25 404							50.74	7		S. h	50. 996	7	+++	ion of

[&]quot; = absence of effect; + = ILS by 25-49% or inhibition of tumor growth by 50-74%; ++ = ILS by 50-99% or inhibition of

mental tumors of mice and rats a (continued)

		Carci	inomas	5								ela- mas		Sarc	comas	and u	ndiffe	rentia	ted tur	nors	
PRZh	Ca-1025	Carcinoma NK	Ca Guerin	Rhabdomyosarcoma MOP	Ovarian tumor (OYa)	Са-С3Н	Hepatoma 129	Alveolar liver cancer (RS1)	Walker 256	Ependymoblastoma	B16	Harding-Passey melanoma	Ehrlich's ascites tumor	Ascites tumor NK/Ly	Sarcoma 37	Sarcoma 180	Sarcoma 536	Sarcoma AK	Sarcoma 45	Sarcoma M-1	Jensen's sarcoma
											+										
											++										
											_				_	-					
											++					+++					
										+++	+++				++	++					
_						++	+++			-	+++		++		+++	++					
										+++	+ +				+++						
_						++				_	++				++	+					
+++								++	++	+	+++		-			-	+		++	+	++-
_	+++					+				++	++				+++	+++					
										-	++				++	++					
										_						_					
										-	++		+++		+	_		+	+++	+	
		,	+++	+++	++				+++	_	++			+++	+++	-			+++		
			+++							+	+					+++			+++	++	++-
_															+++	++					
						++			+++				+++	++	++	++			+++		
++										++	+++				+	+++					
		-								+++	++										
_										+++	+++										
			+						+++		+	+							++		
											++				++	-					
						+				++	+++				+	++					
										-	_										
+											++										
											+				_						

tumor growth by 75–90%; +++=ILS by $\geq 100\%$ or inhibition of tumor growth by $\geq 90\%$.

TABLE 6.—ILS of animals treated with drugs ^a

				IABLE	. U1 <i>L</i>		imais ir		un ang						
Drug	L1210	P388	La	L-AK	MOPC-406	Ca-755	Lewis lung	AKATOL	RShM-5	Са-СЗН	PRZh	B16	Ependymo- blastoma	837	2180
Methotrexate	+++	+++	-		+	+	-	+	-		_	_		-	-
Tomizin		- 1	_				_	_				+++	_		
Quinoline derivative	+++	+++	+++			_	_	++	-			_			
5-FU	++	+++	+++		+++	-	+	+	_		_	++	+	-	-
Ftorafur	++	+	++		+	_	-	-	+			+	_	_	
3-Deazauridine	+	-	_			_	-		_			-			
Ara-C	+++	+++	_		_	_	_	_	+			+		_	-
Cyclocytidine	+++	+++	+		_	_	_	-	+			_	_	<u> </u>	
5-Azacytidine	+++	+++	++	+	++	+	+		_	+	_	+		_	
6-Mercapto- purine	++	+	_		++	++	_	+	_			_		_	-
6-Thioguanine	++	+			++	+	_	_	_		++	+		_	-
α-Deoxythio- guanosine	++	++	_	+		++	_		_			-			
6-Selenoguano- sine	+++	++	_			+	++	+	++			++			
Inosine diglycol- aldehyde	+++	+++	+++	+++	+	_	_	_	_			_	_	_	-
Townsend's nucleoside derivative	+++		_			_		_	_			-			
DTIC	+	+	_		_	_	_	_	_		-	+		-	
Reumycin	_	_					_					-			
Hydroxyurea	+++	_	+++		+	_	_	+	_			+		_	-
Guanazole	+++	+	+++	+++	+	_	++	+		+	_	_	+	-	_
ICRF-187	+++	++	_			++	++	_			+	++	+		
Dactinomycin	+	+++	+++		+	_	_		_		_	++			
Adriamycin	++	+++	+++		++	+	-	_			_	+++		_	_
Carminomycin	++	++	+++		+		_	_	_		_	+		_	
Olivomycin	++	+++	++			_						+			
Variamycin		++	++				_					+			
Aton	_	-					_						_		
Vincristine	+	+++	++					+			-	++			
Colchizin		+++	+++		+	_	_	-				+			
Chanerol	_		_			+	_					_			
Glucomannan	_														
Agavoside	_				ļ		<u> </u>					-	-		
Digitonin	_	_	+++												
Funkioside		_	++				_					<u> </u>			
Vitalboside	_		+++				_								
Coralyne sulfoacetate	++	++					++					+			
Ellipticine	+++	+++		+			_					_	_		
Dichlorallyl lawsone	_	++					_					+			
Indicine-N-oxide	+	+++					_					++			
Nitrogen mustard	+	+++	+		++	_	-	-	-			++			_
Nordopan	++	+++	+++			_	+	_	+			++			
Nitrogen mustard	+	+++			++		_					++			-

TABLE 6.—ILS of animals treated with drugs a (continued)

Drug	L1210	P388	La	L-AK	MOPC-406	Ca-755	Lewis lung	AKATOL	RShM-5	Са-С3Н	PRZh	B16	Ependymo- blastoma	S37	8180
Dopan	++	+++	++		++	_	+	-	-			+			
Fluorodopan	+	++	_		_	+	-	_	_			+	+++		
Sarcolysin	+++	+++	+++	-+	+++	++	++	_	+	++	_	+++	_	++	+
Asaley	++	++	++		+	_	+	_				+	+	+	
Spirohydantoin mustard	++	+++	++			+	+		1			++	+++		
TIC-mustard	+++	+++	+	++	_	_	+	-	_	++	_	++	_	_	
Palphicerin	+	+++			+	+	-	-	_			++			_
Prospidine	_	+	_			+	++	_			+++	+++	+		_
Cyclophospha- mide	+++	+++	+++	+++	+++	++	+++	+	++	+	_	++	++		+
Phenthyrine	-	++	_		_	+	+	_	+			++	_	_	
Estracyt	-		_			_	_		_					-	+
Phenestrol	-	_	_			_	-		_			_	-		
Distron	-	++	_		_	÷	-	+	_			_	-		
Fotrin	++	++	+-+				. –					+++		_	
Dioxadet	+++	-++					j - j					++	_		
Diiodobenzotepa	++	+++					-					++	+		
Hexamethyl- melamine	+	_	+		_		_	_	_	·		_		-	_
MNU	+++	+++	+			_			_						
BCNU	+++	+++	-	+		_	+++	_	++			++	++		
CCNU	+++	+++	_	+	_	+	++	_	_		-	+++		_	-
PCNU	+++	+++	_			++	-+	+	_			++	+++		
Streptozotocin	+	++	+++		+	_	_	+	_	+++	_	+			
Chlorozotocin	+++	+++	-			+	+	_	++			+	+++		
Diazan	+	++	+++				-					+			
Myleran	_	_	_		_	_	_					_			
Cain's acridine derivative	++	+++	_			_	+	_	++			++			
cis-Pt(II)	++	+++	+++	++	_	_	+	-	_	_		++	++		
Gallium nitrate	_	+	+++	_	_	_	-	_	_	+		_		_	_
S-Trityl-L- cysteine	++	+++		+			-					_	_		
Prednisolone (prednisone)	_	_	_			+	_	-	_						
Procarbazine	++	++	-		_	_	_	++	-			_			

^a See table 5 legend for definitions of symbols.

for maximum manifestation of effect. As a result, the antitumor activity of these drugs was higher at times when tested at the OSC and at others it was higher at the NCI. However, no fundamental discrepancy was observed in the evaluation of the presence of antitumor activity for the drugs in either place, despite the difference in the treatment schedules followed.

Indexes of Therapeutic Efficacy

For the same decision to be reached regarding the activity of a drug, observations with the identical thera-

peutic schedule may not necessarily be as important as the choice of index of effect in the evaluation. The primary criterion of effect of drugs on a tumor in the NCI has been the ILS of the treated animals as compared with controls. Also taken into account is the percent of cured animals. Growth inhibition of the tumor has not been used as extensively (251, 252).

At the OSC, the antitumor activity is evaluated on the basis of the duration of life and the percent of cured animals as well as the inhibition of growth of solid tumors at various times of observation (253, 254). Broad use is

TABLE 7.—Effect of drugs on patients with tumors a

				ADLL		-L]) t	ci oj	uru	gs or	ı pat	ienis	wiii	· iun										
Drug	Colon	Melanoma	Lung (small cell)	Breast	Ovary	Cervix	Prostate	Choriocarcinoma	Pancreas	Larynx	Stomach	Kidney	Wilms' tumor	Head and neck	Brain	Bladder	Neuroblastoma	Retinoblastoma	Myeloma	Sarcoma	Testes	Leukoses	Lymphomas
Methotrexate	\oplus	_	+	+	(\oplus		+						+	(+	+	+	+
Tomizin																							
Quinoline derivative																							
5-FU	+	_	_	+	+	((+)		+		+			+		\oplus							
Ftorafur	+			+	+						+				①								
3-Deazauridine																							
Ara-C	-	_	_	_																		+	+
Cyclocytidine																						+	
5-Azacytidine	-			_																			
6-Mercaptopurine	-		-	_				(+)						①								+	
6-Thioguanine	-																					+	
α-Deoxythioguanosine																							
6-Selenoguanosine																							
Inosine diglycolaldehyde																							
Townsend's nucleoside derivative																							
DTIC	-	+	-	_													(+)			+			
Reumycin		\oplus																					
Hydroxyurea	_	\oplus	+									(+)		\oplus								(+)	
Guanazole																							
Dactinomycin	-	(+)						+					+							+	+	(+)	+
Adriamycin	_	_	+	+	+	(+		\oplus		+		+	\oplus		+	+		+	+	+	+	+
Carminomycin				+	(+)															+		\oplus	+
Olivomycin		(-		(+)			+												(+)			
Variamycin																							
Aton																							
Vincristine	-	-	+	+	-	\oplus							+		\oplus		+			+		+	+
Colchizin																							
Chanerol																							
Glucomannan																							
Agavoside																							
Funkioside																							

TABLE 7.—Effect of drugs on patients with tumors a (continued)

				,					Pati	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	1	1	1		1					
Drug	Colon	Melanoma	Lung (small cell)	Breast	Ovary	Cervix	Prostate	Choriocarcinoma	Pancreas	Larynx	Stomach	Kidney	Wilms' tumor	Head and neck	Brain	Bladder	Neuroblastoma	Retinoblastoma	Myeloma	Sarcoma	Testes	Leukoses	Lymphomas
Vitalboside								_															
Coralyne sulfoacetate																							
Ellipticine																		1					
Dichloroallyl lawsone																							
Indicine-N-oxide																							
Nitrogen mustard	-	-	+	①	+		(+)				(+)											①	+
Nordopan																							
Dopan																						(+
Fluorodopan																							+
Sarcolysin	-	\oplus	_	+	+	(+	①	+		+
Asaley	_		_	+																			+
Spirohydantoin mustard																							
TIC-mustard	-												-	ļ -	(+)								
Palphicerin							1																
Prospidine		①	-	(+)	+					+								+		\oplus			+
Cyclophosphamide	(+)	①	+	+	+	+	①						+	+		①	+	+	+	+	+	+	+
Phenthyrine	<u> </u>		_																			+	+
Estracyt							+																
Phenestrol																							
Distron																							
Fotrin				1																		+	+
Dioxadet			((+)	+																		
Diiodobenzotepa				+												+				-			
Hexamethylmelamine	+	_	①	(+	((①						1	+
MNU		+	+	_																			+
BCNU	(((①							(+				+				+
CCNU	(0	(①	(+								+
PCNU			j																				
Streptozotocin	1-								+														(+)
Chlorozotocin																							
Diazan		①	(
Myleran			-				_															+	
	1	1		1	_	1	J	L	-L				J	1	J			-					

TABLE 7. — Effect of drugs on patients with tumors* (continued)

	1	I		1				a				Ι											
Drug	Colon	Melanoma	Lung (small cell)	Breast	Ovary	Cervix	Prostate	Choriocarcinoma	Pancreas	Larynx	Stomach	Kidney	Wilms' tumor	Head and neck	Brain	Bladder	Neuroblastoma	Retinoblastoma	Myeloma	Sarcoma	Testes	Leukoses	Lymphomas
Cain's acridine derivative																							
cis-Pt(II)	_				+	+								+		+				(+		
Gallium nitrate																							
Procarbazine	-	-	(\oplus							+	+
Chlorambucil	-	_		(+)	+	(+						\oplus					+	\oplus	+	+	+
Vinblastine	-	_	-	+				+						+	(1)		+				+		+
Mithramycin		-	_	_			1								(+)					_	+		
Daunorubicin																	+					+	(+)
Bleomycin	-	-	(+)	-		+				\oplus				+							+		+
Mitomycin C	(-	(+)	+		\oplus			\oplus		+					(
Me-CCNU	+	+	(+)	-	-	(+)					\oplus	_		+	+					_			
Dibromodulcitol	_	\oplus	(+)	+								(+)		\oplus									
L-Asparaginase																						+	
Dibromomannitol																						+	
Thio-TEPA				+	+											(+)							+

[&]quot;Minus sign = inactive; plus sign = adequate evaluation and drug is active; encircled plus sign = evidence of drug activity but it is not clearly established.

made of the kinetic indexes of tumor growth for evaluation of effect at the Institute of Chemical Physics of the USSR Academy of Sciences (147).

It is evident from the data presented here that when the antitumor activity of the drugs is determined according to different indexes (e.g., by the ILS or by the inhibition of tumor growth), the evaluation of the efficacy of therapy with some drugs may be different with regard to solid tumors. Thus in the testing of a large number of drugs against LL, some were considered inactive according to NCI's system but active according to that of the OSC (methotrexate, ftorafur, ara-C, cyclocytidine, vincristine, chanerol, glucomannan, agavoside, funkioside, vitalboside, fluorodopan, and others). The difference in the evaluation is related to the fact that, whereas these drugs cause a significant though temporary suppression of the growth of LL, they do not increase the life-span of the animals (text-fig. 1). A similar situation is observed in the study of the effect of hydroxyurea, guanazole, 5-FU, hexamethylmelamine, and gallium nitrate on the growth of Ca-755. These drugs cause marked inhibition of tumor growth but fail to prolong the lives of the treated mice (text-fig. 2).

Use of similar drugs may also result in a temporary

effect in the treatment of some solid tumors of man. For example, 5-FU has been observed to cause a pronounced immediate antitumor effect in the treatment of gastro-intestinal cancer (248, 255-257). However, the treated patients do not necessarily live longer than those untreated. Despite a lack of clear evidence of an effect by 5-FU on life-spans of many patients with generally refractory solid tumors when used alone, the drug is nevertheless an established and valuable therapeutic agent and is

TEXT-FIGURE 1.—Dynamics of growth of LL after treatment with A) 300 mg ftorafur/kg, days 2 and 6, and B) 25 mg ara-C/kg, days 2-6. Solid line = control group; dashed line = experimental group.

Text-figure 2.—Growth dynamics of Ca-755 after treatment with 50 mg 5-FU/kg on days 2 and 6. See text-figure 1 legend for line explanations.

widely administered in the treatment of various human tumors, including gastrointestinal tumors.

The same may be said of a number of other drugs practically applied in oncology. These substances are often used in combined therapy and thereby substantially increase the efficacy of treatment. Consequently, when rating a substance as active in the initial screening for new antitumor agents, scientists should give some consideration to reducing the extent of inhibition of tumor growth required for a drug to pass, so as not to miss potentially active substances. This is easily and conveniently done by measurement of the effect of drugs on tumor growth in animals with solid tumors. This type of rationale also served as a basis for the selection of leukemia P388 as a prescreen in the newly instituted screening program at the Division of Cancer Treatment, NCI, since its sensitivity to therapy may increase the number of compounds rated as active. A schema of the new screening program at the NCI that involves a panel of tumors (including human tumors growing in athymic mice) is shown in text-figure 3.

A special study conducted at the OSC by Z. P. Sof'ina suggested that, based on the pattern of activity in animal

Text-figure 4.—Growth dynamics of S37 after treatment with 50 mg gallium nitrate/kg on days 2-6. Survival time for controls = 61 days; experimental animals = 43 days. See text-figure 1 legend for line explanations.

tumor systems, the existing drugs could be classified into 3 groups:

- 1) Some compounds only have an immediate, temporary antitumor effect. Of the drugs included in the study and under the prescribed experimental conditions, such an effect was observed with colchizin, gallium nitrate, Townsend's nucleoside derivative, the quinolinium derivative, and some others. These drugs usually did not increase the life-spans of animals with solid tumors and sometimes caused stimulation of neoplastic growth after pronounced inhibition (text-fig. 4).
- 2) The second group of drugs, which had a prolonged or delayed antitumor effect, included, e.g., cyclophosphamide, chlorozotocin, prospidine, palphicerin, phenestrol. 6-mercaptopurine, 6-thioguanine, α-deoxythioguanosine (text-figs. 5–7).
- 3) Antitumor agents in the third group included drugs that depended substantially on the growth rate of the

Text-figure 3.—The Division of Cancer Treatment, NCI: Flow of drugs through screens.

TEXT-FIGURE 5.—Growth dynamics of AKATOL after treatment with 100 mg cyclophosphamide on days 2 and 6. See text-figure 1 legend for line explanations.

neoplasm for their rapidity of manifestation of effect and duration of suppressive action on tumor development (text-fig. 8): antimetabolites (e.g., ara-C, DTIC, 5-FU, ftorafur, guanazole, 3-deazauridine), some alkylating agents (sarcolysin, TIC-mustard, asaley, hexamethylmelamine, phenthyrine, etc.), and substances of natural origin (streptozotocin, vincristine).

The characterization of the effects of drugs is traceable to their mechanism of action, e.g., the temporary blocking effect of colchicine on cell division is well-known. Atwell and Cain (85) and Sof'ina et al. (258) have elucidated how quickly the blocking of methionine synthetase by the quinolinium derivative ceases after discontinuance of therapy.

Townsend's nucleoside derivative causes a temporary block of purine nucleoside synthesis (80, 81). Thus compounds of the first group which cause a temporary block of the syntheses of various vitally important products would generally appear to exert a brief suppressive effect on tumor growth. The combination of this mechanism of action and the pharmacokinetic characteristics of the

Text-figure 6.—Growth dynamics of S37 after treatment with 1 mg 6-thioguanine/kg on days 2-6. See text-figure 1 legend for line designations.

TEXT-FIGURE 7.—Growth inhibition of tumors by 6-thioguanine; 1) PRZh, 2) AKATOL, 3) RShM-5, 4) S37, and 5) Ca-755.

drugs (rapid elimination from the body or high rate of inactivation of the drug) leads to the possibility of rapid restoration of the damage inflicted and consequently to regeneration of the tumor.

Substances of the second group, with prolonged or delayed effects, include drugs that cause structural damage in DNA. This may occur not only as a result of alkylation of DNA but also as a result of incorporation of anomalous nucleotides. Both events lead to informational incapacity of the DNA. The latter may be manifested in two or three generations of cells, such as in the thiopurines (129, 259, 260). Of the alkylating agents, the drugs that require activation in the body [phenestrol (134); cyclophosphamide (261); prospidine (262)] belong to this category. The pharmacokinetic features of these compounds may also promote their prolonged action on the tumor.

The third group of drugs includes the antimetabolites which act on various stages of nucleic acid synthesis. Some drugs, such as 5-FU, have different points of attack when acting on cells of different metabolic types and cause irreversible changes in RNA function in some of them and reversible changes in metabolic levels in others

TEXT-FIGURE 8.—Growth inhibition of various tumors by ara-C. 1) AKATOL, 2) S37, 3) RShM-5, 4) LL, 5) Ca-755.

(263, 264). Also included are some alkylating agents which are rapidly inactivated or eliminated from the body and the intercalating agents, dactinomycin and anthracycline antibiotics (162). The effects of these drugs are exerted to the greatest degree on dividing cells. However, under conditions of active proliferation, the process of regeneration of damage inflicted by these substances may also be facilitated. As a result, the well-known dependence of effect on the proliferative activity of the tumor cells is especially characteristic of this group (265–268).

Clinical experience has indicated that the above-listed properties of the drugs may also be manifested when they are administered to the patient with cancer. Mention was made above of the brief effect 5-FU may have on tumors of the gastrointestinal tract in man. Also, several authors have reported on the prolonged duration of the effect of cyclophosphamide, prospidine (262), and cis-Pt(II) (269, 270) in the treatment of solid tumors. A large series of clinical investigations devoted to optimization of the application of cycle- and phase-specific substances also suggests that the dependence of drug effect on the growth rate of the tumors is important in clinical practice (269, 271–273).

Thus, the information obtained by experimental study of the dynamics of the changes in tumors under the influence of antitumor drugs is significant, inasmuch as it may contribute to prediction of these characteristics in the treatment of the patient.

Dependence of Effect on Dose and Other Factors

Because dose–response studies make important contributions to the information obtained, it is highly desirable to perform them for evaluation of drug effects. Evaluation is invariably done in testing at the NCI, but, unfortunately, dose–response studies are not always conducted by other investigators in the United States and in the Soviet Union.

Establishment of dose-response curves makes possible the determination of the effect of the optimal dose on the tumor. A number of factors may influence the sensitivity of animals to antitumor agents: Different strains of animals react differently to the same drug as do animals bearing different tumors. For example, because CBA mice are 2.5 times more susceptible to *cis-Pt* (II) than mice of other strains, it is necessary to reduce the dose of the drug when treating them from 2.5 mg/kg, which is usually well tolerated by mice of other strains, to 1 mg/kg.

Sex differences also exist in the susceptibility of animals to some drugs (274–277). For example, the LD50 of asaley for female rats is 450 mg/kg and for males 235 mg/kg. The LD50 doses of sarcolysin are 19 and 14 mg/kg, respectively, for female and male rats (278).

Seasonal and circadian fluctuations in susceptibility of animals to antitumor compounds also occur. Significant seasonal fluctuations have been observed in the susceptibility of mice to cyclophosphamide, 5-FU, and olivomycin (279–281). The same dose of cyclophosphamide (450 mg/kg) caused the death of 20% of the animals in March and 90% in August. Injection of 5-FU (240 mg/kg) during the winter was less toxic (caused death in

25% of the animals) than in summer (70%). The circadian fluctuations in the toxicity of olivomycin were extensive (90% of the mice died from a dose of 8 mg/kg given at 11:00 a.m. and 20% when the same dose was given at 8:00 p.m.); with 5-FU, 90% died when a dose of 240 mg/kg was given at 8:00 a.m. and 30% at 8:00 p.m.; 75% of the mice died from a dose of 22 mg sarcolysin/kg given at 8:00 a.m. and none died when the drug was injected between 2:00 and 5:00 p.m.

Similar to the above observations are the variations that occur among experiments in the optimal doses of different drugs. Thus it may be noted that the optimal dose of cyclophosphamide when given once to mice on the 5th day after the inoculation of L1210 ranged from 140 to 300 mg/kg (Appendix I). When mice with LL were treated with 5-FU, the optimal dose in 1 experiment was 20 mg/kg, and in another it was one-half as much. The optimal doses of olivomycin also varied by a factor of 2-4.

Sensitivity of tumors to chemotherapeutic agents also has seasonal and daily fluctuations, but they may be less pronounced than in that of normal tissues. These differences in the behavior of normal tissues and tumors can conceivably be used to increase the selectivity of action against the tumors. For this reason it would clearly be advantageous to inject drugs at the moment normal tissues are least susceptible (280, 282–284).

The optimal dose of a drug may vary even when the experiments are conducted under specified conditions. Ascertainment of optimal doses requires constant use of a series of doses of the drugs being studied in each experiment.

Dose-response experiments make it possible for one to determine not only the therapeutic effectiveness of drugs but also the range of safe effective doses (therapeutic or specificity index). The therapeutic index (or specificity index) of drugs for a tumor is usually defined as the ratio of the dose causing a specified degree of toxic effect for the host relative to the dose eliciting a defined therapeutic effect. An example of a broad and a narrow specificity index is presented in text-figure 9. Methotrexate has a broad range of effective doses in the treatment of L1210. If a 25% increase in life-span of the treated mice (ED25) is designated as the minimum criterion of therapeutic effect, then the optimal dose (ED_{opt}) of methotrexate by

Text-figure 9.—Dependence of antitumor effect of quinoline derivative and methotrexate on dose, according to data of Skipper and Schmidt (285) and Sof'ina (unpublished).

daily injection in mice with L1210 is four times higher than the minimally active dose, i.e., about 0.8 and 0.2 mg/kg (285). An example of a drug that evidenced a narrower range of effective doses, but against a different tumor, is Cain's quinoline derivative (Sof'ina ZP: Unpublished data). The ratio of optimal dose of this drug to the dose giving a 25% increase in survival time in the treatment of La is about 1.4:1 (text-fig. 9).

The range of effective doses may be different even for the same drug in the treatment of different tumors. For a tumor that is more susceptible to a drug, one can expect the range of effective doses to be greater.

Thus analysis of the systems for studying antitumor drugs in the United States and the Soviet Union has emphasized that:

- 1) In the screening of new drugs, attention should be given to the criteria of therapeutic efficacy. Evaluation of the antitumor effect according to several parameters is desirable.
- 2) The effect of the drugs on different tumors should be determined on the basis of establishment of dose– response curves. This permits comparison of response at optimal doses or fractions thereof and comparison of the shapes of the curves, permitting determination of the margin of safety (therapeutic index or specificity index) with which the drugs can be used.
- 3) It is highly important in the establishment of the maximum therapeutic effectiveness of drugs that they be examined on different schedules of administration.

B: RATIONAL SELECTION OF EXPERIMENTAL MODELS FOR STUDYING ANTITUMOR DRUGS

Susceptibility of Experimental Models to Antitumor Drugs

Experience in chemotherapy has shown that a definitive number of drugs evaluated in experimental systems as active also manifest some antitumor effects when they are used to treat human tumors. Nevertheless, not all substances found to exert antitumor activity in clinical testing are then proposed for widespread use. The lack of interest in the introduction of such compounds into general practice is frequently attributable to the consideration that the drugs do not have any definite advantages over those already available. Alternatively, the drugs may be shelved because of the undesirable toxicologic properties.

Each of the many experimental systems surely has some definite value. However, the abundance of experimental models compels a search for a rational approach to their selection. For this purpose, an analysis of the cooperatively obtained data was undertaken.

For a resolution of the question of the optimal assembly of experimental tumors for screening drugs, an evaluation of the importance of the information received from each system separately and from all the data for the entire series of models was necessary. In this respect, a primary question arose: Do tumors of the same type react in the same way (all leukemias, carcinomas, sarcomas, melanomas) to the same drugs? Analyses of the data showed that the susceptibility of an experimental tumor to a drug

is not determined by its classification as a specific histologic type. Actually, as may be seen in table 5, the presence of an antitumor effect by a drug against a single line of leukemia, carcinoma, sarcoma, or melanoma does not mean that others of the same tumor lines will react to the drug in the same way. For example, methotrexate, ara-C, ICRF-187, various nitrosourea derivatives, and numerous other drugs strongly suppressed the growth of L1210, but the same drugs were not active against La. The reverse relationship was observed for variamycin, colchizin, digitonin, funkioside, vitalboside, and gallium nitrate.

The response of different carcinomas to the same antitumor drug may also be variable (table 5). A drug may totally suppress the growth of one carcinoma and not influence the growth of another at all, or there may be less dramatic differences in degree of effect. A drug may or may not suppress the growth of several carcinomas. Thus inosine diglycolaldehyde was not effective against any of the solid mouse tumors studied, but ellipticine and estracyt acted against three carcinomas. On the other hand, 6-selenoguanosine, hydroxyurea, carminomycin, chanerol, agavoside, funkioside, coralyne sulfoacetate, Nordopan, prospidine, distron, BCNU, PCNU, and Cain's acridine derivative manifested antitumor activity against all the carcinomas used. What the similarities and differences are in the properties of carcinomas that accounted for the above responses is not clear. Likewise, no definite pattern of response by all sarcomas to treatment with anticancer agents was observed.

Nevertheless, the reactions of some tumors to drugs differ little. For example, L1210 and P388 often differ only in the degree of susceptibility to the same drugs. Generally, more P388 is susceptible than L1210.

An analysis of the data indicates that each experimental tumor usually has its specific spectrum of sensitivity to antitumor drugs. Also, animal leukemias are more susceptible to chemotherapy than are solid tumors. This susceptibility is manifested in a considerably prolonged life-span of animals with leukemias than those with solid tumors after treatment with the various antitumor agents. A similar pattern has been observed clinically.

An examination of the data obtained focuses attention on the fact that each of the experimental neoplasms (both leukemias and solid tumors) react to substances of a specific type of mechanism of action. Results of the effect of drugs on the animals' life-spans are pertinent in this regard (table 6).

Thus L1210, which has a broad spectrum of sensitivity to antitumor agents, reacted strongly to antimetabolites of nucleic acid metabolism (analogs of pyrimidines, purines, folic acid, and ribonucleotide reductase inhibitors) and several alkylating substances, especially nitrosourea derivatives. Membrane-interacting substances and compounds, which intercalate into DNA, usually have reduced effect or none at all on this leukemia.

The susceptibility spectrum of La is different. This tumor, as opposed to L1210, does not react strongly to the purine analogs and nitrosourea derivatives, but it is highly susceptible to intercalators (antibiotics) and to mitotic poisons.

One can see in table 6 that Ca-755 is susceptible to purine analogs and to a number of alkylating substances (chlorethylamine and nitrosourea derivatives). LL is susceptible to ribonucleotide reductase inhibitors (guandzole) as well as to chlorethylamines and nitrosourea derivatives. The adenocarcinoma of the large intesting. AKATOL, is highly sensitive to analogs of folic acid, so some analogs of purines, and to ribonucleotide reductate inhibitors. Its reaction to chlorethylamines is weak and, in contrast to many experimental tumors, it is sensitive to procarbazine. Squamous cell uterine cervix cancer RShM-5 is of low susceptibility to most drugs except for pyrimidine analogs.

Research on the cytotoxic effect of drugs in suspension cell cultures of a number of animal tumors (table 8) has also indicated that their effect in these systems is related to their mechanism of action. Thus the analogs of pyrimidines and purines, as well as substances which intercalate into DNA, manifested the greatest cytotoxic effect against S37 cells. Ehrlich ascites tumor showed selective sensitivity to ribonucleotide reductase inhibitors. Membrane interacting substances displayed high activity against NK/Ly.

Some of the substances had cytotoxic action against all the in vitro systems used. These included adriamycin, carminomycin, BCNU, and dioxadet. Reduced cytotoxic effect was observed with 5-FU, nitrogen mustard, 6-selenoguanosine, agavoside, and vitalboside. A comparison of these data with the results of a study of the drugs in vivo and clinically suggests that substances with narrow spectra of cytotoxic effect in vitro generally also possess narrower ranges of effect against animal and human tumors and that drugs which suppress the reproduction of cells of all types of tumors considerably in vitro have broad spectra of antitumor action in vivo against animal and human tumors.

Clarification of the observed differences in sensitivty of tumors to various kinds of drugs requires, first of all, elucidation of their metabolic characteristics.

Factual material obtained in the present investigation can be interpreted from this point of view. Biochemical studies of the two murine leukemias La and L1210, which are similar in cell cycle parameters but differ strongly in susceptibility to drugs, have led to the conclusion that they also differ substantially in some metabolic characteristics. For instance, the moderate susceptibility of the L1210 cells to 5-FU could be explained by the observation that the cytotoxic effect of this compound against leukemia cells is attributable to inhibition of the synthesis of thymidylate de novo and that this metabolic block is partially alleviated by a significant salvage pathway of thymidylate synthesis. The higher susceptibility to 5-FU of La cells may be caused by a double blockade. For this tumor, the drug not only suppresses thymidylate synthetase but also, by competing successfully with the natural substrate uridine 5'-triphosphate for RNA polymerase, is incorporated into RNA and interferes with its function. In addition, in La cells the rate of thymidylate synthesis de novo significantly exceeds the capacity of the salvage pathway. Hence, the latter pathway cannot fully compensate for the blocking of thymidylate synthetase by 5-FU (263).

For the analogs of cytidine, ara-C, and 5-azacytidine, an opposite pattern prevails. La is far less susceptible to these drugs than is L1210. In an analysis of the nucleotide pool of these leukemias, attention is focused on the extremely low level of cytidine nucleotides in L1210 cells. Perhaps this deficit in cytidine derivatives may serve as a basis for the higher susceptibility of L1210 cells to ara-C and 5-azacytidine (263).

Leukemias L1210 and La differ also in metabolism of purine nucleotides, and this may account for their differences in susceptibility to purine analogs (264).

Because 6-mercaptopurine and 6-thioguanine perform a double blockade of the biosynthesis of purine nucleotides de novo, it is generally considered that the susceptibility of the cells of various tumors to these drugs should depend on the potential capacity of this de novo pathway and its contribution to the total metabolism of purine nucleotides. In Ca-755, which is highly susceptible to 6-thiopurines, the synthesis of purines de novo exceeds the salvage pathway twofold; the same relationship also exists in Ehrlich ascites tumor. However, for La, which is only slightly sensitive to 6-thiopurines, the de novo pathway is four to six times in excess of the salvage pathway. Consequently, the ratio of the rates of synthesis of purines de novo and that of the salvage pathway may not always serve as an index of the susceptibility of the tumor to purine analogs.

One of the criteria of susceptibility of tumor cells to 6-thiopurines is the activity of the enzyme HGPRT involved in lethal synthesis to the active mononucleotides. Whereas L1210 is moderately sensitive to 6-thiopurines, La hardly reacts to them, and, correspondingly, the activity of HGPRT in L1210 cells is four times higher than in La cells (264).

The cause of the delayed death of tumor cells as a result of 6-mercaptopurine and 6-thioguanine action is their incorporation into the DNA and RNA molecules with subsequent interference with their functions. During the development of resistance by L1210 to 6-mercaptopurine, the ability of the analog to be incorporated into nucleic acids decreases sharply compared with the initial sensitive strain (264).

The cause of the high susceptibility of La to antibiotics is not clear, although it is known that their cytotoxic effect is based on their capacity to intercalate into DNA and to disturb the process of transcription.

That data on the spectrum of sensitivity of tumors to drugs with specific mechanisms of action can provide important information on characteristic features of their metabolism must be emphasized. Thus the high sensitivity of L1210 and La, Ca-755, and Ehrlich carcinoma to ribonucleotide reductase inhibitors indicates that this enzyme plays an important role in the synthesis of deoxyribonucleotides in these tumors, whereas transglycosidase reactions are not as important. The higher susceptibility of AKATOL adenocarcinoma to 6-thioguanine compared with α -deoxythioguanosine and 6-selenoguanosine points to the high activity of lethal synthesis by HGPRT and the low activity of the transglycosidases and kinases in

												haracteri	
			Opti	mal the	гару								Effect,
				schedule	e 	Тур	e of act	tion			1	Bloc	king of
Drug	Solubility	Total dose, mg/kg	Daily	Intermittent, 8 times/day	Intermittent, once/day	Immediate effect	Delayed effect	Effect depends on tumor growth rate	Purines	Pyrimidines	Thymidylate	Ribonucleotide reductase	Folic acid cycle
Methotrexate	w	20			+			+	+		+		+
Tomizin	W	350-750	+			+			+		+		+
Quinoline derivative	NA	25-40	+			+			+		+		+
5-FU	W	100-200			+			+			+		
Ftorafur	W	500-1,500			+			+			+		-
3-Deazauridine	W	1,500	+					+		+			
Ara-C	W	125-150		+				+		+		+	
Cyclocytidine	W	600-800			+			+		+		+	
5-Azacytidine	W	12–16			+		+			+			
6-Mercaptopurine	W	150-200	+				+						
6-Thioguanine	W	5	+				+						
α-Deoxythioguanosine	NA	500	+				+		+				
6-Selenoguanosine	NA	125-150	+				+		+				
Inosine diglycolaldehyde	W	500–600			+				+			+	
Townsend's nucleoside derivative	NA	75–100	+			+			+				
DTIC	W	350-400			+			+					
Reumycin	W	7–15	+										
Hydroxyurea	,W	2,500		+				+					
Guanazole	W	5,000		+				+				+	
ICRF-187	W	1,500			+		+					+	
Dactinomycin	NA	0.6			+	+							
Adriamycin	W	7.5–8			+								
Carminomycin	W	1–5			+	+							
Olivomycin	W	20–25			+								
Variamycin	W	1.25-4	+										
Aton	NA	500	+										
Vincristine	W	1.2			+	+		+					
Colchizin	W	340–600	+			+							
Chanerol	W	50-80	+			+		+					
Glucomannan	W	1,000-1,500	+										
Agavoside	W	25–35	+			+							
Digitonin	W	50–100	+			+							
Funkioside	NA	35–100	+			+							
Vitalboside			+			+							
	NA	50-100	T		+	+							
Coralyne sulfoacetate	W	500-600			-								
Ellipticine	NA	1,000	+		-								
Dichlorallyl lawsone	NA	500	+										

the oncolgical effect of drugs a

parame Mechan			ropertie	es									
biosyntl			nes			Туре с	of inter	action			In vitro ED	50, μg/ml	
АТР	Active transport	DNA	RNA	Proteins	Nucleic acids	Membranes	Hormone receptors	Microtubules	Enzymes	S3.7	L-5178Y	Ehrlich ascites tumor	NK/Ly
	+	+	+							0.001 b	0.1-0.001	<0.001 ^b	0.1-001
***		+	+							100IA	100 IA	100 IA	100 IA
		+	+							50-10 b	50-10 ^b	50-10 b	50-10
		+	+	+						<0.1 b	<0.1 ^b	<0.1 b	1
		+	+	+						<10 b	50-10	50-10	<10 b
		+	+							10	10	<10 b	10
		+	+	+						<1 b	<1 b	100–50	10-1
		+	+	+						<20 b	500-200	500 IA	500 IA
			+	+						0.1 ^b	10-1	1	10–1
										50-20 b	500	250-100	250–100
										<20 b	100–50	<20 b	50-20
		+								100 IA	100 IA	100 IA	100 IA
			+							100-50	50-10 b	50-10 b	50-10 ^b
		+	+							100-75 b	75 b	250-100	100-75
		+	+							<10 b	<10 b	<10 b	<10 b
		+	+	+	a	a				500-250	500-250	500 IA	500 IA
+			+							100 IA	100 IA		10 b
										500	500	<50 b	200 IA
		+		†	-		1			2,000 IA	2,500	250-100 b	2,000
		+								100 IA	100 IA	500 IA	100 IA
		+	+	+	i						0.001-0.0001 b	< 0.001	0.01-0.001
		+	+	+	i		-			<1 b	<1 b	<1 b	<1 b
		+	+	+	i			-	-	<0.1 b	<0.1 b	<0.1 b	<0.1 b
			+	+	i	-	-			<0.1 b	1-0.1	1-0.1	1-0.1
-			+	+	i								
			ļ <u>-</u> -		1					10–1	1-0.1	0.1 b	1-0.1
-			-					c		100-50	20 %	50	100-50
-					-			c		50-20	<10 b	50-20	100-50
				-			 	 	+	50-20 b	50-20 b	100-50	<50
										30-20	30 20	100 30	(30
+	+					С				50-10 b	50-10 b	50-10 b	50-10 b
+	+					c				100-50	100-50	100-50	50-10 b
+	+		1			С				50-10	<10 b	50-10	<10 b
+	+					c				50-10 b	50-10 b	50–10 ^b	50-10 b
			+			<u> </u>				100 IA	100 IA	100 IA	100 IA
											Poorly		
	1		I	1	1		1		<u> </u>	L			

TABLE 8.—Some characteristics of the

			Onti	mal the	**************************************								Effect,
			Opti	schedule	гару	Тур	e of act	ion				Bloc	king of
Drug	Solubility	Total dose, mg/kg	Daily	Intermittent, 8 times/day	Intermittent, once/day	Immediate effect	Delayed effect	Effect depends on tumor growth rate	Purines	Pyrimidines	Thymidylate	Ribonucleotide reductase	Folic acid cycle
Indicine-N-oxide	W	7,000	+				+						
Nitrogen mustard	W	0.5	+			+							
Nordopan	NA	2-2.5	+										
Dopan	NA	2-3	+										
Fluorodopan	NA	120			+			+					
Sarcolysin	W	14-20			+			+					
Asaley	NA	200			+			+					
Spirohydantoin mustard	NA	30–100	+			+							
TIC-mustard	NA	240-300	+					+					
Palphicerin	NA	125	+				+						
Prospidine	W	1,000	+				+						
Cyclophosphamide	W	200			+		+						
Phenthyrine	W	300-400	+			+							
Estracyt	W	500	+				+						
Phenestrol	NA	500-1,200	+				+						
Distron	NA	125-300	+				+						
Fotrin	W	180-240	+					+					
Dioxadet	W	10–20	+										
Diiodobenzotepa	NA	400–600	+										
Hexamethylmelamine	NA	750	+					+					
MNU	NA	120	+		+								
BCNU	NA	70–80			+		+						
CCNU	NA	50-60			+		+						
PCNU	NA	10-20			+		+						
Streptozotocin	W	250	+					+					
Chlorozotocin	W	25-38			+		+						
Diazan	W	20-100			+								
Myleran	NA	100	+										
Cain's acridine derivative	NA	50-100	+		+			+			-		
cis-Pt(II)	W	8			+		+						
Gallium nitrate	W	250	+			+							
S-Trityl-L-cysteine	W	1,250											-
Prednisolone (prednisone)	NA	0.5	+				+						
Procarbazine	NA	625	+				+						

^a W= preparation dissolves in water; NA = drug dissolves in nonaqueous solvents; the ED50 indicated in the table as two figures

^b These systems have the greatest activity.

oncological effect of drugs a (continued)

Mechan	ism of	action											
		d enzyr	nes			Type o	of inter	action			In vitro EI	050, μg/ml	
АТР	Active transport	DNA	RNA	Proteins	Nucleic acids	Membranes	Hormone receptors	Microtubules	Enzymes	S37	L-5178Y	Ehrlich ascites tumor	NK/Ly
										500 IA	500 IA	500 IA	500 IA
										1-0.1 b	1-0.1 b	<1 b	1-0.1 b
	+	+	+	+	a					20-10	50-20	10 b	10 b
	+	+	+	+	a					<1 b	20-10	<1 b	1
		+	+		a					50	100-50	<50 b	<50 b
+		+	+	+	a					10-1	10-1	<1 b	<1 b
+		+			a	a				10 b	50-10	10 b	50-10
					a								
		+	+	+	a					50-20 b	100-50	100-50	100-50
+		+	+	+	a	a				100-50 b	100-50 b	100 IA	100 IA
		+	+		a					500 IA	500 IA	500 IA	500 IA
		+	+	+	a				a	17	"	,,	19
		+	+	+	a					<50 b	<50 b	<50 b	<50 b
		+	+	+	a		a				Poorly	soluble	
		+	+	+	a		a			500 050	700 TA	050 100 1	~00 T A
		+	+		a					500-250	500 IA	250-100 b	500 IA
					a					<10	<10	<10	<10
		+	٠+		a						Poorly	soluble	
		+	+	+	a	a			a	100 IA	50-10 b	100 IA	100 IA
		+	+	+	a	a			a	10-1 b	10–1 ^b	10-1 ^b	10-1 b
		+	+	+	a					100	100	100–50 b	100-50 b
		+	+	+	a					<50 b	<50 b	<50 b	<50 b
+		+	+		a			a		500 IA	500 IA	500 IA	500 b
		+	+		a					>100	100 IA		100 b
										100-50 b	100 IA	100 IA	100 IA
										100 IA	100 IA	100 IA	100 IA
		+	+		С					<50	<10 b	<10 b	20-10
										100-50 b	100	250–100	100-50 b
										<50 b	250–100	500-250	500 IA
										100 IA	100 IA	100 IA	100 IA

means that the ED50 is in the interval between the concentrations listed. a = alkylation; i = intercalation; c = bound; IA = inactive.

TABLE 9.—Percent antitumor effect of 6-thiopurine and 6-selenopurine on various experimental tumors of

		Tumor										
	L1210	La		Ca-755		A	KATOL			RShM-5		B16
Drug	ILS	ILS	1 d	7–8 d	ILS	1 d	7–8 d	ILS	1 d	7-8 d	ILS	ILS
6-Thioguanine	53	+8	87	99.8	40	95	95	21	14	68	0	31
α-Deoxythioguanosine	54	2	97	99	82	+22	64	14	2	+23	11	12
6-Selenoguanosine	63	17	97	99.4	48	66	66	40	55	66	53	51

^a 1 d and 7-8 d = inhibition of tumor growth 1 day or 7-8 days after treatment.

this tumor (table 9). Conversely, RShM-5 is practically resistant to 6-thioguanine and moderately sensitive to 6-selenoguanosine. These reactions suggest that in RShM-5 cells, lethal synthesis of 6-thioguanine is not significant because of a low level of HGPRT, whereas adequate activity of purine nucleotide glycosidases permits the activation of 6-selenoguanosine. A similar relationship of these enzymes apparently also exists in melanoma B16.

Selection of Experimental Models for the Study of Antitumor Drugs

New analogs of known antitumor agents are often tested in tumor models which possess high sensitivity to that class of compound. However, an analysis of the data shows that such models are useful primarily in the investigation of special problems, but they may not be sufficiently discriminating for screening. For example, it is inadvisable for one to screen analogs in tumor systems that have high sensitivity to the specific class when the objective is to find analogs with different mechanisms of action and spectrums of activity. If the test system is extremely sensitive, it may be too difficult to detect more active analogs.

To illustrate this, we can cite a number of examples. Some chlorethylamine derivatives known to differ in their spectra of action against human tumors (see table 7) differ little in their effectiveness against sarcomas 298 and 45 and Walker carcinosarcoma 256, tumors that are highly susceptible to chlorethylamines. Alternatively, a difference in the action spectra of these drugs is clearly manifested when studies with them are conducted on tumors with different susceptibility spectra (table 10).

It also appears less useful to attempt to find a difference in the spectra of antitumor action of derivatives of nitrosoureas with L1210, LL, and AKATOL adeno-

carcinoma of the large intestine. The differences in drug response are significantly more manifest if La, Ca-755, and RShM-5 cancer of the uterine cervix are used (table 11). With the latter systems, a substantial difference in the effect of streptozotocin and some for MNU becomes apparent as in the therapy of patients. Streptozotocin differed most in its activity spectrum. On tumors highly susceptible to nitrosoureas, it was less effective.

Studies on Ca-755, which is highly susceptible to purine analogs, yielded no substantial information on the action spectra of these drugs. However, all the information obtained with L1210, LL, AKATOL, and RShM-5 revealed definitive differences among the drugs (table 12). The nature of these differences has already been elaborated in the foregoing section.

Therefore, practically no new information can be obtained from several models as compared with one model, if they are similar in susceptibility to drugs.

Where primary screening is being conducted with these models, we suggest that one of them be selected and then the system be supplemented with tumors differing in their susceptibility spectra. Of the two leukemias, L1210 and P388, only one need be chosen for initial testing. This is presently being done at the Division of Cancer Treatment, NCI, where P388 is the initial prescreen and then L1210 is used for further evaluation as part of a tumor spectrum.

The most valuable information on the antitumor properties of drugs is obtained with a system composed of models that are substantially dissimilar in their susceptibility spectra to drugs with different mechanisms of action. Such systems make possible the detection of alterations in mechanisms and in the spectrum of antitumor effect.

At the same time, a search may be conducted for drugs with the same spectrum of antitumor activity but with greater selectivity of antitumor action in systems with specific sensitivity to the given class of compounds. Com-

Table 10.—Effect of chlorethylamine derivatives with different clinical antitumor activity spectra on experimental tumors a

	Tumor										
Drug	S-298	S-45	Walker 256	L1210	La	Ca-755	AKATOL	RShM-5			
Sarcolysin	+++	+++	+++	+++	+++	+++	+	+++			
Dopan	++	++	+++	++	++	_	_	_			
Phenthyrine	++	++	++		_	+++	_	+			
Prospidine		++	++	_	_	++	++	+			

a See table 5 for definitions of symbols.

TABLE 11.—Antitumor activity spectra of nitrosourea derivatives a

	Tumor									
Drug	L1210	LL	AKATOL	La	Ca-755	B16	RShM-5			
BCNU	+++	+++	+++	_	++	++	+++			
CCNU	+++	+++	++	_	+	+++	+			
Chlorozotocin	+++	++	++	_	_	+++	+++			
Streptozotocin	+	_	++	+++	_	+	+			
MNU	+++	++	++	+	++	·	+			

^a See table 5 for definitions of symbols.

parison of parameters pertaining to damage to the tumor and normal tissues, expressed in appropriate indexes, may serve as the criterion of selectivity of their effect.

The Breadth of the Antitumor Spectrum and Specificity of Antitumor Effect of Drugs

Of particular interest is the problem of breadth of the spectrum of antitumor action. A comparison of experimental and clinical data for the drugs permits examination of this question.

Tables 5 and 7 show that, generally, drugs having a broad spectrum of antitumor activity in experimental systems also possess it in clinical therapy. Cyclophosphamide, methotrexate, 5-FU, adriamycin, nitrosourea derivatives (except streptozotocin), hexamethylmelamine, sarcolysin, cis-PT(II), among others, are characterized by broad spectra of antitumor activity. However, ara-C, cyclocytidine, inosine diglycolaldehyde, hormone cytostatics, myleran, DTIC, etc., have narrow spectra. Still other drugs occupy an intermediate position.

Evidently, compounds with broad spectra of activity vitally damage systems important for all tumors. Drugs with narrow spectra appear to exert an effect against systems vital for only individual types of tumors. Although broad-spectra compounds command a high degree of interest, others with a specific, directed action should also receive considerable attention. When the point of attack is sufficiently different from that which obtains in vital tissues of the host, such drugs should in principle act on tumors more selectively.

The results of theoretical studies in oncology indicate that the effect of drugs that exert action against specific metabolic targets in tumor cells can continue to do so, provided that the tumor cells retain their initial characteristics. However, progression of the tumor usually leads

to loss of specific features that could serve as the basis for directed action of a therapeutic agent (286, 287). For instance, hormone and immunologic specificity may be lost. As a result, it is often true that a drug which initially controlled the growth of a tumor ceases to act against it as the disease progresses. Some tumors are not susceptible to the action of the known antitumor agents from the moment of their origin. Substances with activity related to enzymes or substrates present in some and absent in other tumors may also exert specific biochemical action; the classic example of such a drug is L-asparaginase.

Current knowledge of malignant growth does not yet permit the widespread use of approaches to the preparation of antitumor drugs with specific biochemical action for the treatment of most tumor types. In the meantime, drugs with broad spectra of antitumor action that do not possess strong specificity are being used successfully in oncologic therapy and, undoubtedly, will continue to occupy a significant position in the arsenal of chemotherapeutic agents.

Nevertheless, it is highly important that scientists continue to devise means for the elaboration of specifically active antitumor agents. Experience has shown that it is advisable for such drugs to be investigated in special test systems.

The characterization of drugs with potential hormone activity should include testing with hormone-susceptible tumors and with pertinent endocrinologic investigations. The activity of these substances may not be revealed in other test systems. An example is provided by the use of estrogen derivatives, such as estracyt and phenestrol (134, 288, 289). Table 13 presents data on the effect of phenestrol on estrogen-susceptible cancer of the mammary gland RMC-1, hormone-susceptible adenocarcinoma Ca-755, and tumors that manifest predominant susceptibility to

TABLE 12.—Antitumor activity spectra of purine analogs *

	Tumor									
Drug	Ca-755	La	L1210	LL	AKATOL	RShM-5				
6-Mercaptopurine	+++	_	+	_	+++	_				
6-Thioguanine	+++	_	++	_	+++	+				
α-Deoxythioguanosine	+++	_	++	_	+	_				
6-Selenoguanosine	+++	-	+++	++	++	++				

^a See table 5 for definitions of symbols.

alkylating agents (Walker 256, S-45, and S-298). The drug acts on hormone-sensitive tumors similar to estrogen, a portion of which is present in its molecule. It is active against Walker 256, which is highly susceptible to alkylating drugs, but its activity is limited against S-45 and S-289 (tumors less susceptible to chlorethylamines). In the early 1960's when phenestrol was synthesized, it was tested on systems susceptible to alkylating agents. At that time (tables 5, 13), the compound displayed lower antitumor activity than other chlorethylamine derivatives and was considered unpromising. Only subsequently when the drug was used on hormone-dependent tumors was interest in it renewed. Phenestrol possesses specific estrogenic activity (table 14) and can thereby be administered to treat estrogen-susceptible tumors. The dual properties of estrogen and alklating agent contribute to the activity of phenestrol. Its analog, di(phenylacetyl) sinestrol, which does not contain the alkylating groups, had a loss of antitumor activity, as reflected in life-span and cure of rats with RMC-1 (table 15).

Estracyt, which has similar estrogenic activity (290–293), demonstrated activity in the treatment of patients with carcinoma of the prostate.

Studies of the effect of streptozotocin on the insular apparatus of the pancreas also represent a special interest, inasmuch as it has shown activity in the treatment of neoplasms of this organ (27, 294).

The recently discovered antithyroid activity of phenthyrine also opens new possibilities for the use of this drug (132, 295).

Doubtless, antitumor drugs with immunologic activity should be subjected to special study. In the evaluation of chanerol, which is related to phytohemagglutinin, a decisive role was played by the study of its agglutinating capacity with respect to normal (erythrocytes, leukocytes) and malignant (leukemia and solid tumor) cells. The selective agglutination of malignant cells of a number of solid tumors has been demonstrated (174, 175). Agglutination of erythrocytes can be prevented with a drip infusion of the drug. These studies served as a basis for the clinical testing of chanerol (177).

If the specificity of action of a drug is to be related to the metabolic characteristics of the tumors, a study program should include appropriate research on the subject (296, 297).

TABLE 13.—Antitumor effect of phenestrol (percent tumor growth inhibition) ^a

		s suscept ating ag	Hormone-sensi		
	Walker		tun	nors	
Drug	256	S-45	S-298	RMC-1	Ca-755
Phenestrol	96.5	47	54	50-80	70
Phenester	99.5	94	90	20	33
Sinestrol	20	_	_	50-90	70

^a Phenestrol and sinestrol are used in equimolar doses and phenester at the MTD.

TABLE 14.—Effect of phenestrol on weight of target organs in male rats

	Weig		ans in mg	/100 g	
Drug dose	Adren- als	Seminal Ventral vesicles prostate		Testes	
Control 100 mg phenestrol/kg	18 33	487 174	81 24	1,350 1,100	

Previous investigations have shown that drugs with high antitumor activity in one system may also be active in several tumor systems. For this reason, in the past, a small number of tumor systems have been used in screening, but these models should be selected so that they supplement one another in sensitivity to drugs of different mechanisms of action. From the large number of experimental tumors available, it is possible to compile a number of sets of such test systems. Examples of such batteries of experimental tumors are those that have been used for primary screening of antitumor drugs at the NCI and OSC. In the NCI screening system, if the antitumor effect was evaluated not only on the basis of ILS of the animals but also by the inhibition of tumor growth, then except for drugs with estrogenic activity, 67 out of 69 drugs of clinical interest were detectable. Although the panel of tumors in the new screen has already detected several compounds with clinical activity, it is too early to assess their overall prognostic value. The OSC system allows the detection of almost all active antitumor agents (taking into account the fact that drugs with a specific type of activity are studied in special test systems). Drugs with possible specific types of activity should be investigated in special test systems.

Role of Supplementary Test Systems in the Study of Active Antitumor Drugs

An examination of the data obtained indicates that the use of some supplementary models and test systems in the study of new drugs can contribute significantly to the choice of active agents.

These may be test models which differ substantially in their properties from other models. For example, interesting information can be obtained with the use of mouse squamous cell carcinoma of the forestomach PRZh, a neoplasm insensitive to most antitumor compounds.

TABLE 15.—Effect of sinestrol and its derivatives on RMC-1

			of animals with drugs
D			Cure of
Drug	Dose	Days	tumors, %
Control	_	37	13
Sinestrol	0.2 mg/rat	32	23
Di(phenylacetyl) - sinestrol	100 mg/kg	31	8
Phenestrol	100 mg/kg	52	36

Against this background, the high activity of prospidine (the cure of a large proportion of the animals) acquires particular significance, inasmuch as this drug has manifested activity against human squamous cell cancer.

Also of interest is the research on the effect of drugs on mice bearing plasmacytomas. Studies with MOPC-406 have shown that an especially high response, i.e., more than 100% ILS of the treated animals (sarcolysin 132%, cyclophosphamide 113%), is exerted on this tumor by drugs active in human myeloma.

The continuing design and study of new models for experimental chemotherapy is most important. Some induced and spontaneous tumors of laboratory and especially of domestic animals (e.g., dogs) are apparently promising in this regard.

Of prognostic value are the results of research on tumors transplanted ic, such as L1210 or P388 and ependymoblastoma. In the first two models, a response against intracranially inoculated disease will be observed for drugs active against systemic disease only when the drugs pass through the blood-brain barrier. Similarly, intracranially transplanted ependymoblastoma can respond to treatment only with drugs that cross the bloodbrain barrier and are active against the tumor at that site. By using L1210 and P388 inoculated ic, one can obtain information pertinent to treatment of brain metastases of a tumor susceptible to the drug used. With ic inoculated ependymoblastoma or other brain tumors, the question may be asked: Is a specific brain tumor susceptible to a drug already known to pass through the blood-brain barrier? The data in table 16 illustrate this.

The data for L1210 and P388 leukemias indicate that 5-FU, guanazole, ICFR-187, TIC-mustard, cyclophosphamide, and asaley do not pass the blood-brain barrier readily. Perhaps the poor permeability of the barrier to these drugs is the reason for their ineffectiveness on the

Table 16.—Susceptibility of L1210, P388 and ependymoblastoma to antitumor drugs by differing sites of inoculation and tumor localization

			ILS %	6	
Drug	L1210	L1210 P388 ic ip		P388 ic	Ependy- moblas- toma ic
5-FU	102	33			30
Guanazole	226	28			27
ICRF-187	136	46			42
TIC-mustard	167	55			17
Cyclophospha mide	- 148	30			75
Spirohydan- toin mustar	:d		140–191	35	156
Asaley	58	18			42
BCNU	208	271	132-191	90-143	50
PCNU	226	235	163-172	276-318	295
Chlorozotocir	517	20			170
Fluorodopan			63-72	50	169-439

intracranial ependymoblastoma. For verification, the sensitivity of the ependymoblastoma could also be tested following sc inoculation of the tumor.

PCNU is an example of a drug which penetrates well through the blood-brain barrier and is highly effective in the treatment of animals with ependymoblastoma. Like PCNU, BCNU penetrates freely through the barrier but is only weakly active against this brain tumor (14, 91).

Another interesting group of drugs includes spirohydantoin mustard, chlorozotocin, and fluorodopan. The first two, judging by their effect on ic inoculated L1210 and P388, pass through the blood-brain barrier poorly, whereas fluorodopan penetrates it to a greater extent. These three compounds elicited a marked ILS for mice with intracranial ependymoblastoma that indicated this tumor possessed high sensitivity to them. This is of particular interest because one of these substances, spirohydantoin mustard, was especially designed for the treatment of brain tumors (83, 84). The observations raise the question whether it is possible that the therapy of some brain tumors in man with similar drugs may be accomplished even by conventional systemic administration, despite the inadequate passage of the drugs through the blood-brain barrier. An even greater effect may be achieved if such compounds can be administered directly into the brain, inasmuch as it can be expected that high concentrations of active drug will reach the target tumor site.

Also of definitive interest is the study of the effect of drugs on the same tumor inoculated by different routes. For example, it is informative for one to examine the response to drugs of L1210, P388, and B16, inoculated ip and sc. When these routes of implantation are used, the disease process and localization of tumor cells in the body varies. This may have a substantial effect on the antitumor action of the drugs, each of which has its own patterns of distribution and excretion and other characteristics.

In general, a tumor inoculated sc is less susceptible to drugs than if it is inoculated ip (Appendixes I-IV). Contributory to this is the fact that with ip inoculation of the tumor, a direct effect of the drug on the tumor cell is realized, because the drugs also are ordinarily injected into the peritoneal cavity. However, some compounds cause a greater effect against sc inoculated tumors. Thus L1210 sc was more susceptible to procarbazine, BCNU, methotrexate, and prednisone. Perhaps with this route of administration of the inoculum, the leukemia process (L1210) is localized primarily in the spleen, toward which the effect of the above drugs is directed to a considerable degree. In a study of the effect of a large number of drugs on B16 melanoma inoculated ip and sc, greater susceptibility was also found after tumor cells were injected ip. Some drugs were more effective in the treatment of sc inoculated B16: prospidine, dichlorallyl lawsone, coralyne sulfoacetate, and ICRF-187.

The tumor process in sc inoculation of L1210 and B16 differs substantially (see section on "Models"). The lists of substances manifesting definitive activity against sc inoculated L1210 and B16 also differ.

With various routes of inoculation of tumor cells, the localization of the tumor burden can be altered substantially, and on the basis of the results of therapeutic efficacy, implications can be drawn concerning the pharmacokinetics of the drugs.

Interesting and useful information on the drugs under evaluation can be obtained by determination of the cytotoxic effects of drugs in vitro. An important limiting factor pertains to the solubility of the materials to be tested.

Although many different systems in vitro can be used to test antitumor drugs, short-term and stationary cultures of animal and human tumors would appear to be preferable. At present, such systems are used chiefly in prescreening. About 80–85% of the compounds manifesting antitumor activity in vivo are also screened in tumor cell systems in vitro (239, 298–301).

The in vitro studies provide us the possibility of obtaining supplementary information on the mechanisms of action of antitumor drugs. The presence of a cytotoxic effect in vitro is indicative of a direct effect of the drug on the tumor. From the concentration of a drug resulting in a prescribed effect (e.g., the ED50) in vitro, an estimate can be made of the concentration necessary at the tumor site in vivo to suppress tumor growth. A lack of correspondence between these concentrations would indicate that either the active substance in vivo is not the drug itself but one of its metabolites or that the effect of the drug is mediated by the host.

Various tumors in vitro can react differently to the same drug; an analysis of the data indicates that these dissimilarities depend on differences in metabolism and structural-biologic characteristics of the cellular elements of the various tumors. As a result, similarities and differences in the effectiveness of drugs may provide leads concerning their mechanisms of action.

3-Deazauridine, like ara-C, strongly suppressed the growth of the same tumors: S37 and L-5178Y. It also suppresses the activity of cytidine triphosphate synthetase and thereby, like ara-C, disturbs the metabolism of cytidine nucleosides in tumor cells (76). The spectrum of cytotoxic effect in vitro of 6-mercaptopurine differs from that of 6-thioguanine and 6-selenoguanosine; this last compound damages the largest number of types of tumor cells. This is in agreement with the results of the study of the drugs in in vivo systems and with the above-discussed characteristics pertaining to the mechanisms of action of these compounds.

In prescreening for new antitumor agents in vitro, substances with an ED50 in vitro that did not exceed 100 $\mu g/ml$ are generally considered to have evidenced sufficient activity to warrant further interest. However, as reflected in the results with guanazole, it is apparent that activity in a concentration exceeding 100 $\mu g/ml$ can also represent some interest. The drug was ten times more cytotoxic in a culture of Ehrlich tumor cells than in other in vitro systems, although the ED50 was beyond the upper limits of the efficacy criterion: 100–250 $\mu g/ml$ for Ehrlich tumor cells and 2,000–2,500 $\mu g/ml$ for L-5178Y, S37, and NK/Ly.

Hydroxyurea exerted its greatest cytotoxic effect against

Ehrlich tumor (ED50, 50 vs. $500-2,000 \mu g/ml$ for S37, L-5178Y, and NK/Ly).

Both guanazole and hydroxyurea are ribonucleotide reductase inhibitors. This enzyme is important in the biosynthesis of the deoxyribonucleotides in Ehrlich tumor cells, and it would appear that inhibition of the enzyme results in the antitumor effect of these drugs. Interestingly, inosine diglycolaldehyde, which also suppresses the activity of ribonnucleotide reductase, restrains the multiplication of L-5178Y cells most extensively and is the least effective against Ehrlich tumor. The drug also has an activity spectrum on animal tumors in vivo different from that of guanazole or hydroxyurea. This would suggest that for inosine diglycolaldehyde the primary mechanism of antitumor action is other than inhibition of ribonucleotide reductase activity.

The discovery of new drugs possessing spectra of activity in tumor culture similar to known antitumor agents would tend to indicate some similarity of mechanism underlying the cytotoxic effect. Thus the inclusion of in vitro test systems for the study of potential antitumor drugs provides an opportunity to obtain additional information concerning the drugs and may provide presumptive evidence concerning mechanisms of action of interest in clinical use.

C: POSSIBILITY OF PREDICTING THE SPECTRUM OF ANTITUMOR EFFECT OF DRUGS ON THE BASIS OF EXPERIMENTAL DATA

The results with antitumor drugs in experimental systems (table 5) and in patient treatment (table 7) show that correspondence of activity of compounds for various types of tumor is not complete.

Some antileukemia drugs (myleran, phenthyrine, prednisolone) do not inhibit the growth of most experimental leukemias but do inhibit the growth of other forms of animal tumors (table 17). Table 18 provides an example in which there is no clear correlation of the effect of drugs on the same types of solid human and animal tumors.

Nevertheless, analysis of the present material does permit an evaluation of possible approaches to the prediction of the spectrum of activity of drugs against human tumors on the basis of experimental data.

The differences in susceptibility of human tumors to chemotherapeutic agents, like that of animal tumors, is undoubtedly related to their metabolic characteristics (129, 286, 302–306).

The pharmacokinetic characteristics of drugs and their metabolic transformations in the host, as well as the kinetics of cellular reproduction of the tumor, may exert important influences on the therapeutic results. However, the structural-biochemical profile of the neoplasm is nevertheless decisive for the outcome of the therapy. Even when a high concentration of the active form of the drug is delivered to the tumor site and when the cells are in a mitotic phase susceptible to the chemotherapy, the tumor cells will remain viable if 1) cell membranes provide an

TABLE 17.—Activity of some antitumor drugs in experimental systems ^a

						Tumor					
				MOPC-							
Drug	L1210	P388	La	406	Ca-755	LL	B16	AKATOL	RShM-5	S37	S180
Myleran	_	_	_	_	+	_	_	+	_	++	_
Phenthyrine	_	++	_	_	+++	++	++	_	+	++	_
Prednisolone	_	_	_	_	++	+	+	+	_	+	

a See table 5 for symbol definitions.

effective barrier to drug entry, 2) cells contain no targets for the antitumor agent, 3) cells are capable of avoiding the metabolic block created by the drug, or 4) they easily correct for the deficiences created, etc.

It is most important to enlarge on and systematize the existing data pertaining to the structural-biochemical differences between the various types of animal and human tumors.

An analysis of clinical data, despite their incompleteness, permits examination of any regular patterns in the susceptibility of the individual tumor types to chemotherapeutic agents.

Some similarity is apparent in the response of clinical mammary gland and ovarian cancers and possibly uterine cervix tumor to antitumor drugs. Inasmuch as the proliferation and functional activity of organs from which these tumors develop are regulated by the same hormones, the response to which may be governed by the presence in the cells of hormone receptors, this regulation may underlie any observed similarities. Tumors of the mammary gland in rats have been used successfully in the search for drugs effective in breast cancer, and it is suggested that these and related models may also be valuable in the screening of chemotherapeutic agents for ovarian cancer and cancer of the uterine cervix (273, 307–311). The value of screening for induced cancer of the ovary in laboratory animals has not been clarified.

Trapeznikov et al. (312) reported the presence of specific antigens for melanoma, and for this tumor, the use of immunotherapy is possible. In one study alteration of the tumor was accomplished by means of attaching new chemical determinant groups to the cell; some anti-

tumor drugs, e.g., sarcolysin, may be used for this purpose. Antitumor agents can also cause activation of the cytotoxic function of the lymphocytes directed at tumor cells (313). Dactinomycin is one of the drugs which has evidenced this property and, like sarcolysin, it has demonstrated some activity in patients with melanoma (table 7). Of the antibiotics, olivomycin also exerted activity against melanoma, which is interesting because its mechanism of action has features in common with dactinomycin (162).

Lung cancer (small cell) has not been susceptible to all of the drugs that demonstrated some effect on melanoma. Also, some drugs have acted against small cell lung cancer but have been inactive in melanoma.

Some compounds which have shown activity in small cell lung cancer are immunosuppressants (cyclophosphamide, methotrexate, nitrogen mustard). Also, in patients with this form of cancer an ACTH-like hormone, ectopic ACTH, is often produced by the tumor (314–317). In these patients, the function of the adrenals is altered, and that of the thyroid is reduced, i.e., the functions of organs closely associated with the immune response have been altered (314, 315, 318, 319). Some relationship may exist between the above-noted metabolic characteristics in patients with lung tumor and the susceptibility of small cell lung cancer to drugs that influence the corticosteroid function of the adrenals. Some experimental tumors known to be susceptible to corticosteroids are Ca-755, AKATOL, and those of the transplantable C3H mammary gland. Drugs that produced an effect in human lung cancer actively suppressed the growth of either Ca-755 or AKATOL, or both (table 5). In lung cancer, a relationship may exist between the metabolic influences of

TABLE 18.—Effect of drugs on carcinomas and melanomas of animals and man a

		Carcinoma and/or melanoma										
		Animals Man ^b										
Drug	Ca-755	LL	AKATOL	B16	Mammary gland	Large intestine	Lung	Melanoma				
Methotrexate	+++	+	+++	+++	+	+	+	_				
5-FU	+++	++	_	++	+	+	-	_				
6-Mercaptopurine	+++	_	+++	++	_	_	_					
Adriamycin	+++.	_	+	+	+	_	+	_				
Dactinomycin	++	_	+	+		_		+				
DTIC	+	+	++	+++	_	_	_	+				

^a See table 5 for symbol definitions.

^b See table 7.

this tumor and its susceptibility to antitumor drugs; this subject is worthy of further investigation.

Knowledge of the metabolic characteristics of human tumors and of their interrelationships with the host may aid in the prediction of the activity spectra of new chemotherapeutic agents. It also seems clear that the experimental tumor systems may detect properties of drugs which are decisive for activity in various forms of human tumors. Various properties of a drug may contribute to activity against human tumors and these will be most readily detected not by one but by a number of different experimental systems. In view of this, there would appear to be an advantage in having the prediction of the antitumor activity spectra of drugs based on the sum total of observations in a large number of different types of models. Some aspect of hormone activity may have decisive significance for the reaction of drugs against certain types of tumors, immunologic activity in others, and different characteristics of the mechanism of action in still others.

Elucidation of the pharmacokinetics of the drugs can be of substantial assistance in predicting the effect of drugs on tumors and on the host. As stated earlier, the possibility of creating in a susceptible tumor situated in a certain region of the body a concentration of the drug necessary for an effect depends on the distribution of the compound in the body. This is well illustrated by the above-listed examples of substances, some of which penetrate the blood-brain barrier and others which do not (table 16).

A correspondence between the distribution of drugs in the organism and their antitumor effects has been found for streptozotocin (31), prospidine (140), bleomycin (320, 321), ara-C (322), and for other antitumor agents. Manifestation of the antitumor effect may be influenced by both the concentration of drug and the time of exposure at the tumor site, although the level of drug need not be high (323). The prolonged maintenance of an effective concentration of the drug in the tumor appears highly important for phase-dependent drugs. Prolonged exposure results in an effect of the agent on the maximum possible number of tumor cells, inasmuch as the

latter are continuously entering into the phase of greatest susceptibility to the drug as they move through the cell cycle (265, 268).

The relationship between the distribution and elimination of drugs from the normal organs and tissues and the toxic effect on the host is evident. More rapid alleviation of the toxic effect of the substance on normal tissues compared with the tumor may contribute to an increase in selective damage to the neoplasm.

An important role in the resultant biologic effects of drugs is played by their metabolism in the host and in the tumor. A number of agents are biologically inert until they are transformed into active products (e.g., cyclophosphamide). The study of the metabolism of antitumor drugs in the organism and in tumors is necessary to determine means for control of the activity of these substances. Ho (39) and Camiener (324) have reported on the stabilization of ara-C when using tetrahydrouridine to improve its activity. Investigation of the metabolism of this drug led to the preparation of numerous compounds that did not undergo deamination, e.g., cyclocytidine, etc. (39, 325).

To date, pharmacokinetic studies appear to have contributed only a small measure of their potential to the selection of antitumor drugs. Clearly, further developments in pharmacokinetics and investigations of the mechanisms of action will broaden the selection of new and more effective agents for patient therapy.

The use of human tumors growing in athymic mice for screening and chemotherapeutic investigations may prove highly beneficial in the translation of preclinical drug activity to the treatment of patients. The new screening panel at the Division of Cancer Treatment, NCI (text-fig. 3), is designed to determine whether the incorporation of human tumors as test models will yield a higher incidence of new drugs that are more effective against clinical neoplasia. Also, it may improve predictability of drugs active against specific types of tumors.

Overall, the analysis of the data obtained in the preclinical screening systems emphasizes that definitive relationships may be established between the structural characteristics and metabolic patterns of animal and human tumors and their susceptibility to antitumor agents.

Chapter IV: Ranking Drugs for Clinical Trials 1

The ultimate goal of screening activity with potential chemotherapeutic agents is identification of compounds that are effective in the clinical treatment of various human tumors. For this goal to be achieved, it is necessary that therapeutic results obtained with animal tumor models are correlated in some useful way with results achievable in patient therapy. To the extent that such correlations exist and can be identified, they can 1) lend validity to the concept of screening, 2) facilitate comparative evaluations of various screening models, and 3) lead to useful predictions of clinical results.

In this chapter we shall discuss two related methods of prediction methodology: One makes use of the statistical theories of multiple correlation and regression (regression method), and another is based on more general concepts of pattern recognition. The regression method has the advantage of requiring only data related to animal testing and clinical results, but the mathematical models are restricted by the modest number of compounds for which such information exists. The pattern recognition method uses additional chemical and biologic information about each compound and does not require that complete information be available.

In the development of methodology, data have been used that do not necessarily constitute the most complete or accurate information desired. The results of animal screening are only partial in that they do not reflect the use of the new animal screens, e.g., human xenografts in nude mice. The responses were supplied by clinical investigators in the United States and Soviet Union with the use of current literature. Although such data represent the best that could be made available at the time of statistical analysis, it is generally conceded that they can reflect only qualitative consensual judgments and should not be regarded as final authoritative clinical evaluations of anticancer compounds.

Research conducted with these provisional data by the regression method has yielded results that are encouraging relative to the possibility for correlating animal with clinical results ("Regression Method"). With the mathematical models developed by this research, predictions

Abbreviations: NCI = National Cancer Institute; OSC = Oncological Scientific Center; DTIC = dacarbazine; ara-C = cytosine arabinoside; CCNU = 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; Me-CCNU = 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea; cis-PT(II) = cis-platinum(II) diamminedichloride; BCNU = 1,3-bis(2-chlorethyl)-1-nitrosourea; LL = Lewis lung (tumor).

have been made of clinical activity against certain specific tumors for compounds for which complete animal test results are available but which have yet to be evaluated in man. Such predictions should be regarded as illustrative of the use of the methodology until more comprehensive data become available.

Application of the pattern recognition method (described in "Methods of Prediction") requires the accumulation of more general data concerning potential anticancer compounds than has heretofore become available. Initial efforts at application, necessarily limited by the amount of accessible data, are summarized and discussed in the section on "Pattern Recognition Method."

A: METHODS OF PREDICTION

The problem of predicting the clinical activity of antitumor compounds can be reduced to a form convenient for the application of mathematical methods. Suppose we are given a collection of observations or data points so that each point represents a set of attributes or properties of a different compound. These attributes can consist of 1) results determined when the compound is used in one or more animal tumor models, 2) biologic or chemical properties of the compound, or 3) both kinds of information. Such a data point is said to have dimension n if it includes n distinct attributes. Furthermore, we shall assume that l such data points are available. The general problem for us then is to predict the activity of a new compound not yet clinically tested. We can achieve this by dividing the n-dimensional space consisting of the lknown data points into two subspaces, one associated with clinical activity against a given human tumor and the other with inactivity.

The method of regression is one of the classical means for solving this problem. It leads to a formula or "discriminant function" with a rule for classification. Thus if the data point for a given compound is substituted in this formula, the value obtained can be used with the classification rule to conclude whether the point lies in the space of "actives" or in that of "inactives." In theory, the development of the discriminant function requires the existence of two conditions: 1) The sets of active and inactive data points belong to multivariate normal populations with identical covariance matrices; and 2) the number of data points must be large relative to the number of attributes comprising each data point.

In practice, modest deviations from the first condition usually cause few difficulties. However, the second condition, generally tends to restrict the number of attributes as well as the form of the discriminant function. Several newer methods of classification have been proposed under

¹ This chapter was prepared by I. Miller, V. N. Vapnik, and T. G. Glazkova.

the general theory of "pattern recognition" (326, 327) that will assist us to overcome these difficulties. These methods are proposed to remove the retrictive conditions required for the classical approach; in particular, they allow the potential use of much more information concerning the attributes of each compound.

The problem of pattern recognition appeared at the end of the 1950's and consists of the following: x_1^* , ..., x_1^* . A certain number of examples are available of compounds (data points) that belong to one class and some that belong to a second class: \overline{x}_1^* , ..., \overline{x}_{l2}^* . One must construct a rule F(x), with the help of which any compound can be classified as accurately as possible into one of two classes.

For this purpose, one portion of the compounds has been tested on human beings (this fact is marked with an *asterisk*). Active compounds are denoted by x^* and inactive by \bar{x}^* . The required function, F(x), would give the value of 1 and 0 for compounds belonging to the first and second class, respectively.

We refer to the problem of constructing a function that separates the compounds of the first and second class with as few errors as possible as "training." The central question of the prediction problem is to determine whether an achieved good separation of the training sequence into two classes guarantees a high quality of classification of new compounds.

Theoretical results show that if the number of training points is large and the "complexity" of the constructed function F(x) is not great, then the quality of the resulting predictions will be approximately the same as the quality of the separation of the training sequence into two classes. If the complexity is large, then even if the training points are divided unerringly, the classification of the new examples cannot be considered successful.

For ascertainment that the classification rule discovered is satisfactory, it is necessary not only that the given examples be correctly divided in accordance with this rule but also that the rule itself be simple; these two requirements are contradictory. The more complex the determining rule the more accurately the training sequence can be divided with its help.

To obtain maximum accuracy in future classification, one must reach a compromise between the complexity of the determining rule and the accuracy that can be obtained for a rule of known complexity in the classification of given compounds.

When mentioning "complexity" of the determining rule, we have appealed to intuition. The concept of complexity of a function is a subtle one and we will not define it here. However, theory shows that it is possible to reduce complexity with only coarse descriptions for each parameter. For instance, with respect to animal test results, we could use the description:

- 1 = if prolongation of life-span extends beyond a certain standard;
- 0 = if prolongation of life-span is equal to the standard;
- -1 = if prolongation of the life-span is less than the standard.

What then is preferable; is it better to seek meaning in any small change in the value of a parameter and to construct a rule on the basis of a small number of parameters, or to try to take into account as many parameters as possible but to make use only of their rough (qualitative) characteristics? The answer to this question can be given only as a result of experimental research. Nevertheless, taking only the qualitative characteristics of each parameter into consideration is consistent with our objectives of a qualitative prediction (active or inactive compound).

Therefore, to increase the accuracy of the construction of a determining rule for prediction of the activity of compounds, one can either 1) reach the required compromise between the complexity of the determining rule and the accuracy of the classification of the training sequence given for the construction of the rule, or 2) increase the number of parameters used in the construction of the rule without increasing the complexity of the rule by using qualitative data concerning the value of each of these parameters.

Obtaining a formula for the determining rule constitutes a complete solution to the problem. However, in practice we are faced with a far more modest problem, i.e., the classification of given compounds as active or inactive. It is not necessary to find a general formula for the rule to classify any compound. This is an important idea because finding the general formula is a considerably more complex problem than the one set before us: the classification of compounds of interest.

Moreover, the theory of classification shows that better results may be achieved if we exclude certain compounds from the group to be classified. Although the excluded compounds will not be classified, those that remain will be classified with the highest obtainable degree of accuracy.

B: REGRESSION METHOD: RESULTS AND PREDICTIONS

The regression method for ranking compounds is based on the development of mathematical models or formulas which relate animal test data for chemotherapeutic agents to the results of clinical trials with these agents. The data required to estimate these models consist of both complete screening results in as wide a variety of animal models as possible and clinical results against specific human tumors. Each compound for which a complete set of such data exists gives rise to a data point, and a ranking model is estimated for a specific human tumor type by methods of multiple regression, whenever sufficient data points become available.

Available Data

All available clinical studies in which compounds have been tested as single agents were reviewed by clinicians at the NCI or at the OSC. Consideration was given to the number of patients with either a complete or a partial remission (patients responding) as well as the number of patients who could be evaluated (those who received sufficient drug in a well-defined therapy regimen). Based

TABLE 19.—Screening and clinical data summary

				value for	mouse to	umors		Clinical evaluations				
Compound	NSC No.	L1210 ip	L1210 sc	P388	B16	LL	Breast	Colon	Lung	Melanoma		
Methotrexate	740	187	246	228	108	113	S++	S+	S++	S-		
	750	109	104	112	98	107	NE NE	NE	S-	NE		
Myleran								S-				
6-Thioguanine	752 755	171	157	132	125	121	NT		NT S-	NT S		
6-Mercaptopurine	755	159	156	125	115	110	S-	S-		S		
Nitrogen mustard	762	153	121	209	186	116	S++	S-	S++	S-		
Cycloleucine	1026	140	127	129	147	113	NE	(NE)	NE	NE		
Dactinomycin	3053	136	125	271	167	121	NE	S-	NE	S+		
Stilbestrol	3070	102	101	110	102	107	NT	NT	NT	NT		
Chlorambucil	3088	130	110	170	130	116	S+	S-	NE	S-		
Thio-TEPA	6396	160	166	163	123	114	(NE)	(NE)	NE	(NE)		
Phenylalanine mustard	8806	19 8	152	336	176	123	S++	S-	NE-	S-		
Triethylenemelamine	9706	177	158	230	136	135	NE	NE	(NE)	NE		
Prednisone	10023	105	128	104	119	114	NE	NT	NT	NT		
Hexamethylmelamine	13875	107	108	109	111	109	S++	S^+	S++	S-		
17256E	17256E	99	109	108	118	111	NE	NE	NE	NE		
Testosterone	17591	107	104	113	133	117	NT	NT	NT	NT		
5-FU	19893	172	163	178	130	118	S++	S++	s-	s-		
Mithramycin	24559	108	107	137	115	120	NE	NE	s-	s-		
Cyclophosphamide	26271	324	288	296	152	158	S++	S+	S++	s-		
Provera	26386	103	92	103	113	134	NE	NT	NT	NT		
Mitomycin C	26980	153	125	198	165	120	S++	S++	S+	S-		
Floxuridine	27640	155	147	196	142	127	S++	S++	s-	NE		
Hydroxyurea	32065	253	147	120	127	116	s-	s-	S+	S-		
6-Azauridine		142		131	110	117	NT	NT	NT	NT		
	32074		126	131	113	116	NE	S-	s-	S-		
Trimethylcolchicinic acid methyl ether	36354	122	132									
Streptonigrin	45383	112	103	133	132	101	(NE)	S-	S-	(NE)		
DTIC	45388	150	153	129	130	118	ŇĚ	S-	s	S++		
Vinblastine	49842	133	113	208	171	121	S+	S-	S-	S-		
Tubercidin	56408	119	_	141	115	104	NE	S-	NE	NE		
Porfiromycin	56410	164	125	219	134	103	NE	S-	S-	NE		
Azotomycin	56654	165	106	163	109	107	NE	S+	S-	(NE)		
Chromomycin A ₃	58514	134	105	198	135	124	NT	NT	NT	NT		
Ara-C	63878	448	315	215	131	123	NE S+	S-	S-	S- S-		
Vincristine	67574	131	120	251	160	118 89		S-	S-	NE		
1-Acetyl-2-picolinyl- hydrazine	68626	112	115	105	102		NE		NE			
5-Trifluoromethyl-2'- deoxyuridine	75520	155	155	121	116	144	NE	NE	NT	NE		
Procarbazine	77213	154	163	155	124	102	NE	S-	S+	S-		
CCNU	79037	502	418	241	203	123	S-	S-	S++	S+		
Daunomycin	82151	137	126	192	211	119	NE	NE	NE	NE		
TIC-mustard	82196	356	334	282	165	122	NE	S-	NT	S-		
Streptozotocin	85998	136	131	167	125	106	NE	S-	NE	NE		
Dibromomannitol	94100	113	106	135	130	109	NT	NT	NT	NT		

Table 19.—Screening and clinical data summary (continued)

		Avera	ge T/C v				y (continue)		1	
Compound	NSC No.	L1210 ip	L1210 sc	P388	B16	LL	Breast	Clinical e	Lung	Melanoma
Me-CCNU	95441	360	343	245	190	147	S-	S+	S+	S+
Camptothecin	100880	212	152	170	134	141	NT	s-	NT	s-
Yoshi-864	102627	310	150	291	189	113	NE	NE	S	s-
5-Azacytidine	102816	225	172	232	137	115	S	s-	NE	NE
Dibromodulcitol	104800	127	129	127	125	115	S+	s-	S+	S+
L-Asparaginase	109229	112	134	134	109	93	NE	NE	NE	NE
Iphosphamide	109724	284	260	221	142	147	S+	s-	S+	NT
cis-Pt(II)	110875	163	148	220	181	114	NE	s-	NE	NE
Adriamycin	123127	170	156	295	259	120	S++	s-	S++	s-
Bleomycin	125066	110	110	128	142	147	s-	s-	s-	s-
ICRF-159	129943	203	176	196	129	121	NE	S+	s-	NE
BCNU	409962	346	447	282	198		S+	S+	S+	S+
			447			138				
Sarcolysin	14210	173		300	273	110	S+	S-	s-	S+
Digitonin	23471	102		101	109	129				N 7777
Dopan	44629	144	130	197	145	126	NT	NT	NT	NT
Fluorodopan	73754	129		150	143	122	NT	NT	NT	NT
Olivomycin	76411	166	131	223	160	97	NT	NT	s-	S+
Reumycin	99733	104	_	100	118	_				
Ftorafur	148958	180	168	136	133	119	S+	S+	NT	NT
1H-Pyrazolopyrimidine riboside derivative	154819	117				_				
Prospidine	166100	111	114	156	176		S+	NT	S-	S+
Asaley	167780	158	160	185	121	119	S+	S-	s-	NE
Diiodobenzotepa	167781	160	161	221	145	117	S+	NT	NT	NT
Carminomycin	180024	133	_	176	125	103	S+	NT	NT	NT
Palphicerin	183734	130	128	245	132	104	NT	NT	NT	NT
Distron	183735	111	121	195	123	121	NT	NT	NT	NT
Phenestrol	183736	106	_	107	108	104	NT	NT	NT	NT
Chanerol	183737	106	_	100	110	105				
Colchizin	183738	110		160	118	102				
Aton Tomizin	196869	102	100	113	98	122	NT	N.T.	Non	NT
Fotrin	216134 216135	101 160	102	105	200	122	NT NT	NT NT	NT NT	NT NT
Histare	269141	136	_	248 241	181 144	116 113	NI	IN I	NI	INI
Variamycin	269141	115	_	170	134	128				
Diazan	271276	145	_	170	143	120				
Glucomannan	275652	96		104	102	102				
Agavoside	275653	97		100	110	98				
Funkioside	275654	108	_	95	103	136				
Vitalboside	275655	101		99	88	120				
Klophocyl	275659	147		206						
Methylnitrosourea	23909	188	161	157	144	124	NT	NT	S+	S+
Dioxadet	275656	195		214	178	119	NT	NT	S+	NT
Imidaphen	275657	155		187	159	114		_		
Phenthyrine	275658	124		171	164	119	NT	NT	s-	NT

on this information, each compound was evaluated for activity against each of 17 solid human tumors according to the following designations:

S++ = definite clinical activity
S+ = some clinical activity
S- = no clinical activity

NE = evaluation not possible

NE) = evaluation not possible but preliminary evidence of activity present

The resulting clinical evaluations are shown in table 19 only for those human tumors for which sufficient data are currently available for use in the statistical analysis. They reflect the response rates, definition of response, and a consensus of clinical judgment as to whether a particular compound was adequately evaluated and, if so, whether it was active. In making such activity judgments, the clinicians involved took into account the known sensitivity or resistance to chemotherapy of each tumor type.

The following five mouse screening systems were chosen on the basis of adequacy of available data and accuracy and consistency of screening results: leukemia L1210, ip and sc; P388; B16 melanoma; and LL carcinoma. For each compound, a representative value of T/C was obtained by an average of optimum values in available animal tests against each animal tumor system that passed several statistical criteria for acceptability. The resulting animal test data also are displayed in table 19.

Methodology

Each ranking model equation, representing the multivariate correlation between the five animal test results and the corresponding clinical results, has the following form: $y = f(x_1, x_2, x_3, x_4, x_5)$, where y is the clinical evaluation, and x_1, x_2, x_3, x_4 , and x_5 are the natural logarithms of T/C for the L1210 ip, L1210 sc, P388, B16, and LL screens, respectively. Statistical analysis has shown that the S+ and S++ compounds do not differ significantly in their correlation with animal test results; accordingly, these two groups were combined as active compounds, to which a y-value of 1 was assigned. All inactive compounds (S-) were assigned y-values of 0, and compounds having the clinical evaluations NE or NT (not tested) for any given human tumor type were not included in the model construction phase.

Sufficient data currently exist to facilitate estimation of ranking models for 4 human tumors, i.e., those of the breast, colon, lung, and melanoma. The equations of the ranking models so derived are shown in table 20. Each value of R^2 shown in this table gives the proportion of the original variability in the values of y that is explained by the corresponding equation. (The square root of R^2 is the magnitude of the multiple correlation between the clinical and screening results as combined by the equation.) These equations represent nonlinear polynomials; because they express purely empirical relationships between clinical and screening results, they are not suitable for extrapolation purposes, nor do they portray fundamental laws governing the exact mathematical relationships among screening systems.

TABLE 20.—Ranking models for 4 human solid tumors

```
A) Breast tumor (R^2 = 0.64)

y = 0.06522 - 0.13105 x_1 + 0.59817 x_2 + 2.59621 x_4 + 2.09037 x_5 - 4.38727 x_2^2 + 3.82884 x_1 x_2 + 16.94498 x_1 x_5 - 14.27530 x_2 x_5 - 12.42208 x_4 x_5
```

B) Colon tumor (
$$R^2 = 0.42$$
)
 $y = 0.36417 + 1.10819 x_1 - 0.96246 x_2 + 0.18619 x_3$
 $- 1.47203 x_4 - 0.08094 x_5 - 0.93125 x_{21}^2$
 $- 11.84980 x_{25}^2 + 1.55235 x_2 x_3 - 2.70312 x_3 x_4$
 $+ 17.88618 x_4 x_5$

C) Lung tumor (
$$R^2 = 0.42$$
)
 $y = 0.52383 - 0.10654 x_3 + 1.73032 x_4 - 5.03105 x_5 - 6.35973 x_3x_4 + 8.31578 x_3x_5 + 5.42329 x_4^2$

D) Melanoma tumor (
$$R^2 = 0.53$$
)
 $y = -0.27988 - 0.64758 x_1 + 0.67951 x_2 + 2.57532 x_3$
 $-1.29787 x_4 + 1.59360 x_5 - 2.99911 x_2 x_3$
 $+2.51038 x_2 x_4 + 7.53211 x_2 x_5 - 8.23978 x_3 x_5$

Classification of Compounds

For each compound (data point) used to develop a given ranking model, a predicted value of y (\hat{y}) can be derived by a substitution of the corresponding values of x_1 , x_2 , x_3 , x_4 , and x_5 in the equation for that model. The probability distribution of these \hat{y} -values is graphed separately for clinically active (S++ and S+) and inactive (S-) compounds in text-figures 10-13.

The varying degrees of separation between the lines shown in text-figures 10–13 illustrate the differing abilities of these ranking models to discriminate between clinically active and inactive compounds. For example, in text-figure 10, the overlap between the two sets of data points contains only 2 points. If the cutoff value $y_0 = 0.5$ is chosen to classify any compound as a predicted active or inactive depending on whether \hat{y} is greater or less than 0.5 for that compound, 2 of the 24 compounds are thus misclassified. Estimates of the relative frequencies of misclassification errors are found by the observation that the inactive (upper) line intersects the line y = 0.5 at the ordinate 0.75 and the active line intersects at about 0.01.

TEXT-FIGURE 10.—Distribution of \hat{y} -values for breast tumor; closed circles = S+ and S++ compounds; solid squares = S- compounds.

Thus the probability that an inactive compound will erroneously be classified as active (false positive) is 1-0.75=0.25, and the probability that an active compound will be classified as inactive (false negative) is 0.01. Results of classifying compounds used to construct all four ranking models are summarized in tables 21-24.

Text-figure 11.—Distribution of \hat{y} -values for colon tumor. See text-figure 10 legend for symbol designations.

Table 21.—Classification of compounds used in the regression methodology against breast tumor

Activity	$\hat{y} < 0.5$	$\hat{y} > 0.5$
S++, S+	1	17
S-	5	1

Compounds correctly classified

-			
Iphosphamide	S+	Chlorambucil	S+
Cyclophosphamide	S++	BCNU	S+
Adriamycin	S++	Dibromodulcitol	S+
Nitrogen mustard	S++	Ftorafur	S+
Methotrexate	S++	Asaley	S+
Mitomycin C	S++	Diiodobenzotepa	S+
Vinblastine	S+	5-Azacytidine	s-
Vincristine	S+	Me-CCNU	s-
Phenylalanine mustard	S++	Bleomycin	s^-
Floxuridine	S++	CCNU	s-
5-FU	S++	Hydroxyurea	S-

Compounds misclassified

E-landa di	S++
False negative: Hexamethylmelamine	2++
False positive: 6-Mercaptopurine	S
Errors of misclassification:	
Probability of false negative	0.008
Probability of false positive	0.245

Text-figure 12.—Distribution of \hat{y} -values for lung tumor. See text-figure 10 legend for symbol designations.

TABLE 22.—Classification of compounds used against colon tumor

Activity	$\hat{y} < 0.35$	$\hat{y} > 0.35$
S++, S+	1	10
\mathbf{S}^-	24	3

Compounds correctly classified

•			
BCNU	S+	Hydroxyurea	s-
Me-CCNU	S^+	Camptothecin	s^-
Methotrexate	S+	Trimethylcolchicinic	s-
Azotomycin	S+	acid methyl ether	
Floxuridine	S++	Streptozotocin	s-
ICRF-159	S+	Phenylalanine mustard	s-
Cyclophosphamide	S+	1-Acetyl-2-picolinyl-	s-
5-FU	S++	hydrazine	
Mitomycin C	S++	Procarbazine	S-
Ftorafur	S+	Dactinomycin	s-
DTIC	s-	Nitrogen mustard	s
Chlorambucil	s-	Vincristine	s-
Bleomycin	s-	Porfiromycin	s-
6-Thioguanine	s-	Platinum salt	s-
Dibromodulcitol	s-	Streptonigrin	s-
Vinblastine	s-	Ara-C	s-
6-Mercaptopurine	S-	CCNU	s-
Iphosphamide	S-	Adriamycin	s-
Tpilospilatilide	3	•	

Compounds misclassified

False negative: Hexamethylmelamine	S+
False positives: TIC-mustard	s-
5-Azacytidine	s-
Asaley	S-
Errors of misclassification:	
Probability of false negative	0.227
Probability of false positive	0.164

Ranking of Compounds Not Clinically Evaluated

Any compound tested in each of the 5 animal systems can be ranked with respect to its predicted clinical activity

Text-figure 13.—Distribution of ŷ-values for melanoma. See text-figure 10 legend for symbol designations.

TABLE 23.—Classification of compounds used against lung cancer

Activity	$\hat{y} < 0.37$	$\hat{y} > 0.37$
S++, S+	1	13
S -	15	3

Compounds correctly classified

Adriamycin	S++	6-Mercaptopurine	s^-
Me-CCNU	S^+	Azotomycin	S-
Cyclophosphamide	S++	5-FU	s^-
CCNU	S++	Ara-C	s-
Nitrogen mustard	S^{++}	ICRF-159	s-
BCNU	S^+	Myleran	s^-
Mitomycin C	S^+	Trimethylcolchicinic	s^-
Iphosphamide	S^+	acid methyl ether	
Procarbazine	S^+	Vincristine	s-
Hydroxyurea	S+	Mithramycin	S-
Methotrexate	S^{++}	Bleomycin	s
Dibromodulcitol	S+	Porfiromycin	S-
Methylnitro-	S+	Yoshi-864	S-
sourea		Asaley	s-
Floxuridine	s-	Olivomycin	S-

Compounds misclassified

False negative: Hexamethylmelamine	S++
False positives: Streptonigrin	s-
Vinblastine	s-
DTIC	S-
Errors of misclassification:	
Probability of false negative	0.134
Probability of false positive	0.312

against a specific human tumor for which a suitable ranking model has been estimated. The ranking is achieved by substitution of values of x_1 , x_2 , x_3 , x_4 , and x_5 , which represent the animal test results for a given compound in the appropriate model equation (table 20) for a given human solid tumor. This will result in a value of \hat{y} , the index of predicted clinical activity. If the resulting index of predicted clinical activity exceeds the cutoff value for that human tumor (cutoff values are shown in text-figs. 10–13), that compound is predicted to be clinically active against the given tumor.

The results of applying the ranking model equations to compounds not yet clinically evaluated against each human solid tumor (breast, colon, lung, and melanoma) are shown in table 25, in which the compounds are listed in rank order, beginning with those having the highest values of \hat{y} . The clinician can make use of these predictions by starting at the top of the list and applying other purely clinical considerations (e.g., toxicity, tumor stage) in a process of elimination. Such a process would produce a compound (or set of compounds) that meets the clinical desiderata and at the same time has maximum predicted activity on the basis of animal test results.

TABLE 24.—Classification of compounds used against melonoma

Activity	$\hat{y} < 0.25$	$\hat{y} > 0.25$
S++, S+	1	7
s-	15	6

Compounds correctly classified

Dactinomycin	S+	Hexamethylmelamine	s-
DTIC	S^{++}	Mithramycin	s-
CCNU	S^+	Cyclophosphamide	s^-
Me-CCNU	S^+	Mitomycin C	s^-
BCNU	S^+	Hydroxyurea	s^-
Olivomycin	S^+	Vinblastine	s^-
Methylnitrosourea	S^+	Ara-C	s^-
Methotrexate	s^-	TIC-mustard	s-
Nitrogen mustard	s^-	Yoshi-864	s^-
Chlorambucil	s-	Adriamycin	s-
Phenylalanine mustard	S^-	Bleomycin	s^-

Compounds misclassified

False negative: Dibromodulcitol	S^+
False positives: 6-Mercaptopurine	s-
5-FU	S-
Trimethylcolchicinic acid methyl ether	s-
Vincristine	s-
Procarbazine	s^-
Camptothecin	s-
Errors of misclassification:	
Probability of false negative	0.134
Probability of false positive	0.230

TABLE 25.—Ranking of compounds not clinically evaluated

Tumor	Predicted active	Predicted inactive		
	Compound	ŷ-value	Compound	ŷ-value
Breast	Camptothecin	1.49	Distron	0.46
	Platinum salt	1.12	17256E	0.40
	Chromomycin A ₃	1.08	Porfiromycin	0.35
	Triethylenemelamine	1.06	Prednisone	0.33
	5-Trifluoromethyl-2'-deoxyuridine	1.06	Stilbestrol	0.26
	Daunomycin	1.05	Myleran	0.22
	Provera	0.98	1-Acetyl-2-picolinylhydrazine	- 0.02
	Cycloleucine	0.93	Azotomycin	- 0.14
	Methylnitrosourea	0.93 0.91	Ara-C Yoshi-864	-0.41 -1.12
	Dactinomycin	0.91	1 08111-004	- 1.12
	Dopan 6-Thioguanine	0.88		
	ICRF-159	0.85		
	Procarbazine	0.84		
	DTIC	0.83		
	Palphicerin	0.83		
	Thio-TEPA	0.82		
	Streptonigrin	0.75		
	Olivomycin	0.75		
	TIC-mustard	0.74		
	6-Azauridine	0.73		
	Dibromomannitol	0.73		
	Streptozotocin	0.71		
	Testosterone	0.67		
	L-Asparaginase	0.61		
	Mithramycin	0.58		
	Trimethylcolchicinic acid methyl ether	0.56		
	Tomizin	0.56		
Colon	Tomizin	1.24	Stilbestrol	0.33
	Methylnitrosourea	0.51	Chromomycin A ₃	0.33
	Dopan	0.45	6-Azauridine	0.32
	Triethylenemelamine	0.41	Daunomycin	0.29
	Testosterone	0.41	Dibromomannitol	0.22 0.19
	Myleran	0.39 0.37	17256E Mithramycin	0.19
	Cycloleucine	0.37	Distron	0.19
	Thio-TEPA Diiodobenzotepa	0.35	Prednisone	0.12
	Dilodobenzotepa	0.55	L-Asparaginase	0.02
			Palphicerin	- 0.04
			Provera	- 0.11
			5-Trifluoromethyl-2'-deoxyuridine	-0.52
			Yoshi-864	- 0.66
			Olivomycin	- 1.06
Lung	Tomizin	3.19	Streptozotocin	0.35
Lung	Daunomycin	1.74	Chlorambucil	0.32
	1-Acetyl-2-picolinylhydrazine	1.09	Prednisone	0.32
	Cycloleucine	0.99	Thio-TEPA	0.29
	L-Asparaginase	0.71	Chromomycin A ₃	0.29
	Dibromomannitol	0.60	Distron	0.26
	Platinum salt	0.60	Stilbestrol	0.25
	Testosterone	0.59	6-Thioguanine	0.24
	Ftorafur	0.44	Camptothecin	0.24
	Triethylenemelamine	0.42	Diiodobenzotepa	0.20
	17256E	0.41	6-Azauridine	0.11
	Dopan	0.38	5-Azacytidine	0.11
			Dactinomycin	0.10
			TIC-mustard	0.05
			Palphicerin	- 0.16 - 0.21
			Phenylalanine mustard 5-Trifluoromethyl-2'-deoxyuridine	- 0.21 - 0.56
			F Taithing an action 11 decommended	

TABLE 25.—Ranking of compounds not clinically evaluated (continued)

Tumor	Predicted active		Predicted inactive		
	Compound	ŷ-value	Compound	ŷ-value	
Melanoma	5-Trifluoromethyl-2'-deoxyuridine	1.16	Prednisone	0.22	
	Palphicerin	1.02	5-Azacytidine	0.21	
	Porfiromycin	0.74	L-Asparaginase	0.19	
	Iphosphamide	0.72	Dopan	0.17	
	Ftorafur	0.52	Chromomycin A ₃	0.08	
	6-Thioguanine	0.50	Triethylenemelamine	0.07	
	Distron	0.48	Myleran	0.06	
	Thio-TEPA	0.45	Dibromomannitol	0.06	
	Asaley	0.45	Cycloleucine	0.03	
	Streptozotocin	0.44	Streptonigrin	0.03	
	Diiodobenzotepa	0.40	Daunomycin	0.01	
	Azotomycin	0.37	Stilbestrol	- 0.01	
	Platinum salt	0.33	17256E	- 0.05	
	ICRF-159	0.33	Testosterone	- 0.20	
	Floxuridine	0.29	Provera	-0.25	
	6-Azauridine	0.26	1-Acetyl-2-picolinylhydrazine	- 0.43	
			Tomizin	-0.75	

C: PATTERN-RECOGNITION METHOD: PRELIMINARY RESULTS

Rules for the prediction of clinical activity can be derived from a learning sequence based on table 1. The clinical evaluation S++ or S+ found in this table will place the corresponding compound in the first class, and compounds with the evaluation S- will constitute the second class. From this learning sequence and the principles outlined in the preceding section, each classification rule can be specified in the form of a table. The predictive strength of the resulting tables can be estimated by the number of errors in the classification of the elements of the learning sequence; with fixed complexity, the fewer the number of errors in the classification of compounds in the learning sequence, the higher the quality of a classification rule.

Because a decrease in the number of errors of classification can be achieved by an increase in the complexity of the rule for classification, one must take into account the degree of complication of the rule. A more reliable way to evaluate the predictive strength of a determinant rule can be obtained with the help of a "jackknife" procedure, with which the number of classification errors made with the learning sequence more accurately describes the predictive strength of the rule.

This procedure consists of the following: From the learning sequence, composed of l elements, the first element is eliminated and the classification rule is constructed on the basis of the remaining l-1 elements. With the help of the constructed rule, a prediction is made as to which of the two classes the eliminated element belongs. The result of the prediction is compared with the true value. Then a second element is eliminated (the first is returned to the learning squence), a new determinant rule is similarly constructed, and the prediction is compared with the true value. This procedure is

done l times (once for each element of the learning sequence). As a result, the number of elements for which the prediction did not coincide with the true classification is determined; this number characterizes the predictive strength of the rule.

A feature of the jackknife procedure is that a prediction is given each time about a new element of the classification rule, i.e., about an element not participating in the learning. Hence the number of errors made with the use of the jackknife will characterize the predictive strength of the rule more accurately than the overall number of errors of classification of the learning sequence.

The results of applying this method are shown in table 26 (breast, colon, and lung tumors, and melanoma), in which the classification rule and the number of classification errors of the learning sequence are presented. Note that not all compounds of the learning sequence for each tumor were classified correctly; e.g., 1 of the 13 clinically active compounds against lung tumor and 2 of the active compounds against melanoma were improperly categorized by the pattern recognition procedure.

To obtain an estimate of the predictive power of these classifications, we can refer to the number of errors made by the jackknife procedure (table 27).

Table 26 illustrates how the classification rules can be used to predict the clinical activity of compounds for which animal test results are known. The first column in this table gives the symbol for the independent variable representing average T/C values, the second identifies the corresponding animal tumor model, the third gives one or more intervals into which may fall the T/C value associated with a particular compound when tested against that model, and the fourth column displays the coefficient that applies to such a result. (The coefficient associated with a T/C value not falling in any given interval is assigned the value of 0.) One can classify the predicted

TABLE 26.—Classification rules for clinical activity

Tumor	Inde- pendent variable	Animal tumor model	Intervals	Coeffi- cient k	Tumor	Inde- pendent variable	Animal tumor model	Intervals	Coefficient k
Breast	x_1	L1210 ip	$205 < x_1 \le 264$ $x_1 > 264$		Lung	x_1	L1210 ip L1210 sc	$20 < x_1 \le 363$ $188 < x_2 \le 292$	8
	x_2	L1210 sc	$x_2 \leq 294$	26		-		$x_2 \ge 293$	1
	x_3	P388	$294 < x_2 \le 430$ $x_3 \le 131$	20 22		x_3	P388	$x_3 \le 127$ $x_3 \ge 194$	30 21
			$222 < x_3 \le 245$	23		x_4	B16	$x_4 \ge 163$	9
	x_4	B16	$x_4 \le 145$ $x_4 \ge 184$	26 20		x_5	LL	$100 < x_5 \le 127$ $x_5 \ge 128$	28 22
	x_5	LL	$x_{5} \ge 117$	10				Ü	
		Predicted a	ctivity: $\sum k_i < 79$				Predicted ac	etivity: $\Sigma k_i > 54$	
		Σį	$k_i > 79$ $\sum k_i$;<79			Σ^{k}	$k_i < 54$ $\sum k_i$	>54
	S++, ; S-	S+	0 5	18		S++, ; S-		1 1 14	2 4
Colon	<i>x</i> ₁	L1210 ip	$x_1 \le 146$ $146 < x_1 \le 363$	19 29	Melanoma	x_1	L1210 ip	$x_1 \le 166$ $x_1 \ge 325$	19 14
	x_2	L1210 sc	$ \begin{array}{c} 154 < x_2 \leq 292 \\ x_2 > 292 \end{array} $	10		x_2	L1210 sc	$ \begin{array}{c} 123 < x_2 \leq 327 \\ x_2 > 327 \end{array} $	19 14
	x_3	P388	$x_3 \leq 174$ $174 < x_3 \leq 208$			x_3 x_4	P388 B16	$ 222 < x_3 \le 290 \\ x_4 \le 191 $	33 11
	x_4	B16	$ \begin{array}{c} x_4 \leq 117 \\ x_4 \geq 126 \end{array} $	29 20		x_5	LL	$ \begin{array}{c} x_4 = 101 \\ 191 < x_4 \le 206 \\ x_5 \le 100 \end{array} $	22 16
	x_5	LL	$x_{4} = 120$ $106 < x_{5} \le 113$ $x_{5} > 113$	29 19		~ 5	LL	$x_5 = 100$ $x_5 = 113$	17
		Predicted a	ctivity: $\sum k_i > 80$	•			Predicted ac	etivity: $\sum k_i > 82$	
			•	_i >80				•	>82
	S++, 5 S-		1 25	10		S++, S			5 1

TABLE 27.—Estimates of predictive power of classifications ^a

Tumor	No. of false negatives	No. of false positives		
Breast	1 (5.5)	2 (33.3)		
Colon	1 (9.1)	9 (33.3)		
Lung	3 (23.1)	3 (16.7)		
Melanoma	2 (28.5)	4 (19.0)		

^a Numbers in parentheses are estimates of the probabilities of false-negative and false-positive prediction errors expressed as percentages.

activity of drugs by adding all coefficients determined by use of this table and noting whether the sum of coefficients is greater than the threshold value.

For example, to classify the predicted activity of Yoshi-864 against clinical breast tumors, we first obtain the following average T/C-values from table 19:

Independent variable	x_1	x_2	x_3	x_4	x_5
Tumor model	L1210 ip	L1210 sc	P388	B16	LL
Average T/C	310	150	291	189	113

With x_1 greater than 264, the corresponding coefficient (table 26) equals 12; similarly, the coefficients of x_2, \ldots, x_5 are 26, 0, 20, and 0, respectively. (The coefficients of x_3 and x_5 are 0 because the corresponding values of x do not fall in any of the intervals given in the third column of table 26.) The sum of these five coefficients is 12 + 26 + 0 + 20 + 0 = 58. The threshold value for use with table 26 is 79; because 58 is less than 79, Yoshi-864 is predicted to be active against human breast tumors.

Classifications of predicted activity of other compounds for which sufficient animal test data are available but for which clinical activity has not been established are given in table 28 (breast, colon, and lung tumors, and melanoma).

D: SUMMARY

The applications of methods for ranking (classifying) compounds presented here should be regarded as preliminary. With regard to applications of the regression method, the clinical activity of more compounds against additional human tumors is required as well as responses of compounds when tested against new experimental sys-

TABLE 28.—Classification of compounds with unknown clinical activity by pattern recognition methods

Tumor	Evaluated as active compounds	$\sum k_i$	Evaluated as inactive compounds	Σk_i
Breast	cis-Pt(II)	26	5-Trifluoromethyl-2'-deoxyuridine	84
	Dactinomycin	36	Provera	84
	TIC-mustard	42	DTIC	84
	Cycloleucine	48	6-Azauridine	84
	Olivomycin	49	Testosterone	84
	Porfiromycin	52	Triethylenemelamine	85
	Azotomycin	52		
	Procarbazine	52		
	Streptozotocin	52		
	Dibromomannitol	52		
	L-Asparaginase	52		
	Thio-TEPA	52		
	Streptonigrin	52		
	Daunomycin	56		
	Yoshi-864	58		
	Dopan	62		
	Distron	62		
	Chromomycin A ₃	62		
	ICRF-159	62		
	6-Thioguanine	62		
	Mithramycin	62		
	Methylnitrosourea	62		
	Ara-C	68		
	Camptothecin	72		
	1-Acetyl-2-picolinylhydrazine	74		
	Myleran	74		
	Stilbestrol	74		
	Prednisone	74		
	17256E	74		
	Trimethylcolchicinic acid methyl ether	74		
	Palphicerin	75		
	Tomizin	73 78		
Colon	5-Trifluoromethyl-2'-deoxyuridine	98	Dibromomannitol	79
Colon	Methylnitrosourea	98 89		79
	· · · · · · · · · · · · · · · · · · ·		Cycloleucine	
	Myleran	88	Dopan Directal and the second	78 78
	Stilbestrol	88	Diiodobenzotepa	
			Chromomycin A ₃	78
			Daunomycin	78
			Yoshi-864	78
			Triethylenemelamine	78
			Mithramycin	78
			Provera	78
			6-Azauridine	78
			Tomizin	69
			Thio-TEPA	69
			Testosterone	69
			L-Asparaginase	59
			17256E	59
			Distron	58
			Olivomycin	49
			Prednisone	49
			Palphicerin	39

TABLE 28.—Classification of compounds with unknown clinical activity by pattern recognition methods (continued)

Tumor	Evaluated as active compounds	Σk_i	Evaluated as inactive compounds	$\sum k_i$
Lung	Tomizin	67	Provera	52
	TIC-mustard	67	5-Trifluoromethyl-2'-deoxyuridine	52
	cis-Pt(II)	58	Dopan	49
	Dactinomycin	58	Diiodobenzotepa	49
	Prednisone	58	Distron	49
	17256E	58	Chromomycin A ₃	49
	Testosterone	58	Palphicerin	49
	Stilbestrol	58	Triethylenemelamine	43
	Phenylalanine mustard	58	Daunomycin	37
	5-Azacytidine	57	1-Acetyl-2-picolinylhydrazine	30
			Camptothecin	30
			Ftorafur	28
			Streptozotocin	28
			Dibromomannitol	28
			6-Thioguanine	28
			Cycloleucine	28
			Chlorambucil	28
			6-Azauridine	28
			Thio-TEPA	28
			L-Asparaginase	0
Melanoma	Palphicerin	82	5-Azacytidine	80
			Triethylenemelamine	80
			Dopan	66
			Asaley	66
				66
			Diiodobenzotepa	
			5-Trifluoromethyl-2'-deoxyuridine	66
			cis-Pt(II)	66
			Cycloleucine	66
			Prednisone	66
			Floxuridine	66
			6-Azauridine	66
			Thio-TEPA	66
			L-Asparaginase	65
			Tomizin	58
			Daunomycin	55
			Porfiromycin	49
			Streptozotocin	49
			Ftorafur	47
			Distron	47
			Chromomycin A ₃	47
			Iphosphamide	47
			6-Thioguanine	47
			Provera	47
			ICRF-159	47
			Testosterone	47
			1-Acetyl-2-picolinylhydrazine	46
			Azotomycin	30
			Dibromomannitol	30
			Myleran	30
			Stilbestrol	30
			17256E	30
			Streptonigrin	30

tems. Application of the more general pattern recognition method should be improved when additional information about the compounds is taken into account.

The initial applications of the two methods described here have resulted in differing predictions in a number of instances for compounds the clinical activity of which is unknown. These differences may largely disappear as the required data for more comprehensive applications become available, or it may become evident that one method establishes a clear-cut superiority in its accuracy of prediction in comparison to the other. Only through addi-

tional investigation will the answer to this question become known.

For the present, those compounds predicted by both methods to be active against a given human tumor might be regarded as constituting the highest priority group for clinical testing. Collaborative efforts to improve clinical prediction through increasing the quality and quantity of the data base are expected to resolve some of the present uncertainties and to enlarge the list of compounds and human tumors for which useful clinical predictions can be made.

Chapter V: Conclusion: Prospects for the Development of Methods for Studying the Antitumor Effects of New Substances¹

With the development of chemotherapy, a number of types of malignant neoplasms can be treated successfully (245, 248, 249, 328–330).

Cancers for which chemotherapy has been effective so that patients were free of disease and achieved a normal life-span are listed in table 29 (329).

Obviously, the most frequently encountered forms of malignant tumors are not included. Nevertheless, with the availability of new drugs and the use of combinations of drugs and combined modalities, significant responses are being obtained for the common solid tumors (245, 248, 249, 329, 331–334).

Advanced cancers that may be considered responsive to chemotherapy, with elicitation of definitive increases in survival time are given in table 30 (329). An additional group (table 31) has been partially responsive to drugs, but data on survival time are still preliminary (329). Progress is being made in the treatment of other types of cancer including bladder, thyroid, and hepatocellular carcinoma.

It must be emphasized that investigators have been reasonably successful in the selection of antitumor agents and their studies have the potential for prediction of antitumor activity against specific forms of neoplasia. Whether candidate drugs possess a broad or narrow spectrum of action may be determined. Whether the spectrum and selectivity of antineoplastic action of analogs of known drugs have been altered in experimental tumor systems can also be shown. On the basis of experimental studies, we can project the characteristic features of the dynamics of tumor growth inhibition on exposure to the drugs. A tentative prediction can be provided of the effective dose range of drugs and of the optimal therapeutic schedule. In some instances and on the basis of tests in tumorous animals and in vitro, judgments can be made concerning pharmacokinetic characteristics and the mechanisms of action of antitumor substances. The use of special methods for studying the pharmacokinetics, metabolism, and the mechanisms of action allows us to predict the effects of drugs on tumors localized in specific areas in the host, and, in conjunction with toxicity studies, to project possible damage to one or another set of normal organs and tissues. Information is provided that

Abbreviations: CNS = central nervous system; 5-FU = 5-fluorouracil; ara-C = cytosine arabinoside; DTIC = dacarbazine; NCI = National Cancer Institute.

may help in our optimizing the mode of therapy and in increasing the selectivity of antitumor effects of the drugs.

The current study has also permitted the examination of relationships between the efficacy of drugs in the treatment of specific types of human tumors and the biologic activity of these compounds. Elucidation of such relationships holds promise for the prediction of the effect of new drugs on the various types of human tumors. Generally, however, the problem of prediction of the spectrum of antitumor effect in clinical trial for most newly synthesized drugs on the basis of experimental data remains unresolved. As a corollary to this problem is the need to synthesize drugs which selectively suppress the growth of specific types of tumors.

One approach to its solution requires continuation of extensive investigation of qualitative and quantitative differences and similarities between normal and malignant cells on the one hand and between various human and animal tumors on the other.

In this regard, the studies being performed on the metabolic characteristics of human and animal tumors may be considered as being highly pertinent. They may aid not only in rational synthesis of new antitumor drugs but also in the rational selection of drugs for the treatment of specific types of tumors.

The characterization of the metabolic profile of tumor types constitutes a comprehensive program which includes elucidation of the total pattern of the biosynthetic pathways and their interrelationships, the reactions involved in catabolism, energy exchange, transport of materials to the cell, the systems involved in regulation of all of these processes, and the status of the endogenous pool of metabolites and coenzymes.

It appears impractical to study each tumor with respect to all the parameters mentioned above, and, in fact, this may not be necessary. Careful selection is essential if one is to study precisely those metabolic features which can serve as biochemical criteria for an indication of the susceptibility of a tumor to drugs of known or presumed mechanisms of action.

In this approach, careful consideration should be given to the fact that the metabolic pathways for a drug and the biologic targets it damages, i.e., enzymes, nucleic acids, membranes, etc., may be essentially the same in normal tissues and tumors. This can account for the degree of relative selectivity of the antitumor effects of drugs.

Also, when the drug is administered on appropriate therapeutic schedules, the cells of the normal tissues may repair their damage more readily than the cells of the

¹ This chapter was prepared by Abraham Goldin, Ira Kline, Zoya P. Sof'ina, and Anatoli B. Syrkin.

TABLE 29.—Cancers for which drugs have been effective for some patients' achievement of a normal life-span

Acute leukemia in children Burkitt's lymphoma Choriocarcinoma Embryonal rhabdomyosarcoma Ewing's sarcoma Histiocytic lymphoma Hodgkin's disease Retinoblastoma Skin cancer Testicular carcinoma Wilms' tumor

sensitive tumors. Thus a fundamental problem consists of finding differences in the metabolism of tumors that will be sensitive to the administration of therapeutic doses of antitumor drugs. Extensive investigations have been conducted to characterize the biochemical determinants of sensitivity of tumors to antimetabolites, e.g., purine analogs, pyrimidines, and their nucleosides (335–338).

Some relationships have been found between the rates of lethal synthesis, the ratio of the rates of biosynthesis of purine and pyrimidine nucleotides de novo and the salvage pathways, the inhibition of the target enzyme under the influence of the active forms of the antimetabolites, and the sensitivity of the cells of different animal tumors. However, these criteria individually may not be wholly adequate for predicting the sensitivity of a tumor to an antimetabolite. It seems logical to assume that the sum total of the metabolic characteristics will allow this to be done with greater probability.

The efforts of researchers have been directed to the search for an integral index of tumor sensitivity to different drugs. One of the criteria of this type for the purine and pyrimidine analogs involves the dynamics of drug incorporation into the nucleic acids of tumor cells. In general, the analog may be incorporated into the nucleic acids of sensitive tumor cells more extensively and may be held there longer in comparison with cells of resistant tumors.

The causes of the death of tumor cells under the influence of antimetabolites may frequently involve not just a single metabolic block but several, each of them disturbing an entire chain of linked biosynthetic reactions. Inasmuch as consideration should also be given to the relationship between the cytotoxic effect of many antimetabolites and the phase of the cell cycle, it is clear that the interrelationships of drug and cellular response are highly complex and point to the potential usefulness of mathematical modeling methods.

In fact, the simplified models created in some laboratories that involve the action of the pyrimidine analogs (5-FU, ara-C) and antifolates on tumor cells do allow

TABLE 30.—Cancers responsive to chemotherapy with improvement shown in patients' survival

Adrenal cortical carcinoma
Adult acute leukemias
Breast carcinoma
Endometrial carcinoma
Lymphocytic lymphomas

Malignant insulinoma Multiple myeloma Neuroblastoma Ovarian carcinoma Prostate cancer

TABLE 31.—Cancers responsive to chemotherapy for which clinical improvement in patients' survival is preliminary

Cancer of the CNS
Endocrine gland tumors
Gastrointestinal cancer
Head and neck cancers
Malignant carcinoid tumors

Malignant melanoma Oat cell carcinoma of the lung Osteogenic sarcomas Soft tissue sarcomas

prediction of the dynamics of their death as a function of dose and time of exposure to the drug (339–342).

Recently, the methodologic approaches devised for predicting the effectiveness of antimetabolites in the treatment of animal tumors have begun to be transferred to the clinical realm. This transfer has been supplemented by improvement in the isolation and cultivation methods of human tumor cells, analysis of the nucleotide pool, and alteration of the pool under the influence of inhibitors (343).

Progress will undoubtedly be made in this area with the further development of the biochemical criteria pertaining to the susceptibility of various human tumors to antimetabolites.

As regards other classes of antitumor compounds, including alkylating agents, antibiotics, and substances of plant origin, a complete understanding of the underlying causes of sensitivity and resistance to them of human and animal tumors is lacking.

Primary targets for attack on the part of the alkylating agents are the DNA, RNA and nuclear protein molecules; thus one of the important characteristics of a tumor cell governing the extent of sensitivity is its ability to repair deficiencies in the structure of the alkylated DNA molecule and to eliminate the damaged RNA and protein molecules.

Evaluation of the level of the enzymes of DNA repair synthesis is important: the higher the level, the lower the sensitivity of the cell to the alkylating agents (344, 345).

The alkylation of the RNA molecules leads to the impairment of its processing and hence its functions in translation. The more rapidly the cell eliminates the damaged RNA, the more readily will unimpaired protein synthesis be restored. Data indicate that the alkylation of the RNA molecules per se may serve as a signal for the induction of synthesis of specific RNases, which selectively eliminate the damaged molecules (153, 346). A deficiency in this regulatory system may be the cause of the high sensitivity of cells to alkylating agents.

Some representatives of this class of antitumor compounds possess high affinity for the membrane of tumor cells and disturb active transport of substances as well as the energy functions of the membranes of the mitochondria and the endoplasmic reticulum.

The sensitivity of various tumors to such membranotropic drugs may depend in certain measure on the structural and functional intactness of their membranes (347, 348).

Finally, a group of alkylating agents become active cytostatics only after metabolic transformations under the influence of microsomal NADP-dependent hydroxylases.

They include cyclophosphamide, DTIC, and nitrosourea derivatives (261, 349). The sensitivity of tumors to these compounds depends on the level of this enzyme system.

Many antibiotics capable of intercalating between the bases of the double helix of DNA resemble alkylating agents in the mechanism of their cytotoxic effect. The search for biochemical criteria of tumor sensitivity to antibiotics of this class could follow the same lines as for alkylating compounds.

In addition, further development of methods of human tumor heterotransplantation and cultivation in vitro may provide substantial assistance in fundamental investigations and in the prediction of the spectrum of action of antitumor drugs.

Until recently, evaluation of drugs against human neoplasms was conducted primarily in cell culture, and the correlation between the sensitivity to drugs of the same tumors in vitro and in clinical trial has generally been low. Only solitary investigators have succeeded in obtaining a high proportion of coincidence of results. Despite the lack of success and the complexities arising in connection with this work, studies along this line are being continued. Several investigators have devised or reported improvements in cultivating procedures and techniques for evaluating the effects of such drugs (350–356).

Concurrently, as in the Division of Cancer Treatment at the NCI with its rational screening approach, scientists at other research centers have expressed great interest in the use of heterotransplantation of human tumors for 1) screening for new antitumor agents, 2) predictions of the spectrum of clinical activity, and 3) fundamental investigations of antitumor drug activity.

The growth of human tumors in animals depends on the suppression or exclusion of the immune response of the host, and this has been achieved by the injection of various immunosuppressants. However, the immunosuppressants may alter the host-tumor relationship and complicate interpretation of the results.

The development of methodology for cultivation of tumor tissues in diffusion chambers (357-362) and especially the availability of mutant athymic mice have made studies with xenografts of human tumors in these animals possible without additional conditioning of the mice. Although thymectomized mice that are then irradiated and have had their bone marrow reconstituted have been successfully used (363-365), the simplest method technically would appear to be that of heterotransplantation of tumors in athymic mice. Studies with such models have begun and provide a highly important feature of the new prospective screen being used at the Division of Cancer Treatment, NCI. Human tumors growing in athymic mice preserve most of their biologic, biochemical, and immunologic characteristics (366–369). Some tumors have been transplanted repeatedly, with the production of individual strains (370). After 3-4 passages, some tumors, which previously grew slowly, began to grow more rapidly, thereby allowing more efficient performance of chemotherapeutic experiments with them. Experience in this field is still limited, however. Of significance in relation to humans is the fact that tumors of the same type taken from different patients can show different sensitivity to antitumor drugs (371, 372).

Studies with xenografts of human tumors in athymic mice (as well as in diffusion chambers) represent an approach of great potential, and extensive investigations with these mice are surely warranted. Certain limitations may be noted in the utilization of the athymic mice, and their influences on tumor growth and chemotherapy should be investigated with a view to further improvement of the xenograft model. The mice are apparently not completely devoid of immune mechanisms which may alter tumor growth and drug responsiveness. The primary incidence of growth of certain tumor types is not high; generally, these do not metastasize readily. The vasculature of the tumor would appear to be that of the host. How the athymic mice could be used to identify new drugs that exert their antitumor effects via the immune system of the host is not clear. The necessity for maintaining germfree conditions for their reproduction and maintenance is an obstacle to the widespread use of athymic mice. The effect on the sensitivity to drugs of accelerated tumor growth in the production of human tumor lines has not been clarified.

Clearly, research on the metabolism and pharmacokinetics of antitumor drugs should receive increased emphasis. Also, consideration should be given to the fact that the medicinal form in which the drug is administered may exert a substantial effect on its distribution, bioavailability, metabolism, and, consequently, on its antitumor activity. Thus a rational approach to the creation, utilization, and study of medicinal forms should receive additional serious attention.

From the above, it is evident that in any compilation of well-founded recommendations for the use of antitumor drugs and especially for prediction of their effect in patient therapy, the attainment and processing of a considerable quantity of information will undoubtedly be necessary and advantageous. The volume of data to be analyzed is so great that the analysis may best be performed by mathematical methods and computer devices. Mathematical methods will surely play an increasingly greater role in tumor chemotherapy, and it is projected that they will aid in the selection of the most useful information from the large data pool obtained by diverse methodologies. Mathematical modeling approaches will certainly facilitate and accelerate progress in the field of tumor chemotherapy.

Chapter IV of this Monograph represents an initial attempt by Americans and Soviet specialists at predicting the spectrum of antitumor action of drugs by various mathematical methods.

As a result of this study, judgments of a prognostic nature have been advanced with respect to numerous new compounds. Specific substances were recommended for testing in certain forms of tumors. The activities of a number of the drugs on each of the four forms of human tumors under investigation in this study were predicted by both mathematical methods, a finding that lends support to the probability of discovering an antitumor effect by these drugs against the tumors in question. Future re-

search will show to what extent the mathematical approaches used are rational. The study performed has also shown that further joint efforts in the field of mathematical prediction will undoubtedly assist in the resolution of the now existing uncertainties and improvement of the prediction of the clinical activity of drugs. Improved classification of the activity of the known antitumor agents against the various types of clinical neoplasia underlies and will aid in the refinement of these mathematical approaches.

A comparison of the extensive data in a wide range of systems obtained in the United States and USSR has

shown that the pooled data can be considered as an integral whole. This is important because it is indicative of valid prospects for further joint American–Soviet research which will allow a significantly greater increment of representative material to be obtained for analysis.

The factual material cited in this Monograph is being made available to various specialists for examination and will undoubtedly be the subject of future studies. Results of experimental and clinical studies of the individual drugs presented may also be of special interest to chemotherapists.

- GOLDIN A, CARTER S: Screening and evaluation of antitumor agents. In Cancer Medicine (Holland JF, Frei E III, eds). Philadelphia: Lea & Febiger, 1973, pp 605-628
- (2) LARIONOV LF: Methods of screening anticancer drugs in the Soviet Union. Cancer Chemother Rep 54:71-77, 1970
- (3) GOLDIN A, PUJMAN V: The predictability of experimental test systems for clinical chemotherapy. In Advances in Antimicrobial and Antineoplastic Chemotherapy (Hejzlar M, Semonský M, Masák S, eds). Baltimore: Univ Park Press, 1972, pp 785–786
- (4) Report of a WHO Committee: Description of Systems Used in Experimental Screening of Anti-Cancer Preparations in Sixteen Countries. Geneva: WHO, 1974
- (5) GOLDIN A, SERPICK AA, MANTEL N: Experimental screening procedures and clinical predictability value. Cancer Chemother Rep 50:173-218, 1966
- (6) MIHICH E, LAURENCE DJ, LAURENCE DM, et al: UICC Workshop on New Animal Models for Chemotherapy of Human Solid Tumors: UICC Tech Rep Ser, vol 15. Geneva: UICC, 1974
- (7) ——: UICC Workshop on Drug Resistance and Selectivity in Cancer Chemotherapy, Bratislava, Czechoslovakia, 1975. UICC Tech Rep Ser, vol 21. Geneva: UICC, 1976
- (8) SAUNDERS J, CARTER SK (eds): Methods of Development of New Anticancer Drugs. Natl Cancer Inst Monogr 45:1-262, 1977
- (9) RAUEN HM, REISCH A, SCHRIEWER H: Zum biochemischen Wirk ungsmechanismus von Cyclophosphamid. Arzneim Forsch 14:176–178, 1964
- (10) Brock N: Zur pharmakologischen Charakterisierung zyklischer N-Lost-Phosphamidester als Krebs-Chemotherapeutica. Arzneim Forsch 8:1-9, 1958
- (11) Brock N, Hohorst HJ: Über die Aktivierung von Cyclophosphamid in vivo und in vitro. Arzneim Forsch 13:1021-1031, 1963
- (12) BROCK N: Pharmacologic characterization of cyclophosphamide (NSC-26271) and cyclophosphamide metabolites. Cancer Chemother Rep 51:315-325, 1967
- (13) POTEL J, BROCK N: Die Beeinflussung immunologischer Reaktionen durch cancerotoxische Subtanzen. II. Beeinflussung der Antikörper-Bildung durch N,N-bis (2-chloraethyl)-N'-O-propylenphosphorsäureesterdiamid. Arzneim Forsch 15:659-666, 1965
- (14) SCHABEL FM JR, JOHNSTON TP, McCaleb GS, et al: Experimental evaluation of potential anticancer agents. VIII. Effects of certain nitrosoureas on intracerebral L1210 leukemia. Cancer Res 23:725– 733, 1963
- (15) WHEELER GP, BOWDON BJ, HERREN TC: Distribution of C¹⁴ from C¹⁴-labeled 1,3-bis(2-chloroethyl)-

- 1-nitrosourea (NSC-409962) in tissues of mice and hamsters after intraperitoneal administration of the agent. Cancer Chemother Rep 42:9-12, 1964
- (16) DEVITA VT JR, DENHAM C, DAVIDSON JD, et al: The physiological disposition of the carcinostatic 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in man and animals. Clin Pharmacol Ther 8:566-577, 1967
- (17) WHEELER GP, BOWDON BJ: Some effects of 1,3-bis(2-chloroethyl)-1-nitrosourea upon the synthesis of protein and nucleic acids in vivo and in vitro. Cancer Res 25:1770-1778, 1965
- (18) OLIVERIO VT, VIETZKE WM, WILLIAMS MK, et al: The absorption, distribution, excretion and biotransformation of the carcinostatic 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in animals. Cancer Res 30:1330-1337, 1970
- (19) HENRY MC, DAVIS RD, SCHEIN PS: Hepatotoxicity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) in dogs: The use of serial percutaneous liver biopsies. Toxicol Appl Pharmacol 25:410-417, 1973
- (20) Levin VA, Shapiro WR, Clancy TP, et al: The uptake, distribution and antitumor activity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in the murine glioma. Cancer Res 30:2451-2455, 1970
- (21) CHENG CJ, FUJIMURA S, GRUNBERGER D, et al: Interaction of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC-79037) with nucleic acids and proteins in vivo and in vitro. Cancer Res 32:22-27, 1972
- (22) WHEELER GP, BOWDON BJ, GRIMSLEY JA, et al: Interrelationships of some chemical, physicochemical, and biological activities of several 1-(2-haloethyl)-1-nitrosoureas. Cancer Res 34:194-200, 1974
- (23) LYTTLE DA, PETERING HG: 5-Bis(2-chloroethyl)-aminouracil, a new antitumor agent. J Natl Cancer Inst 23:153-162, 1959
- (24) BRUNK SF, CAVANAUGH JH: The distribution of radioactivity from uracil mustard-2-C¹⁴ in the hepatic subcellar particulates and nucleic acids of the rat. Toxicol Appl Pharmacol 11:565-574, 1967
- (25) SHEALY YF, KRAUTH CA, HOLUM LB, et al: Synthesis and properties of the antileukemic agent 5(or 4)-[3,3-bis(2-chloroethyl)-1-triazeno]imidazole-4(or 5)-carboxamide. J Pharm Sci 57:83-86, 1968
- (26) VOGEL CL, DENHAM C, WAALKES TP, et al: The physiological disposition of the carcinostatic imidazole-4(or 5)-carboxamide, 5(or 4)-[3,3-bis(2-chloroethyl)-1-triazeno] (NSC-82196) (imidazole mustard) in mice and dogs. Cancer Res 30:1651–1657,
- (27) JUNOD A, LAMBERT AE, ORCI L, et al: Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med 126:201–205, 1967
- (28) Evans JS, Gerritsen GC, Mann KM, et al: Antitumor and hyperglycemic activity of streptozotocin (NSC-37917) and its cofactor, U-15, 774. Cancer Chemother Rep 48:1-6, 1965

- (29) SCHEIN PS, LOFTUS S: Streptozotocin: Depression of mouse liver pyridine nucleotides. Cancer Res 28:1501-1506, 1968
- (30) BHUYAN BK: The action of streptozotocin on mammalian cells, Cancer Res 30:2017-2023, 1970
- (31) BHUYAN BK, KUENTZEL SL, GRAY LG, et al: Tissue distribution of streptozotocin (NSC-85998). Cancer Chemother Rep 58:157-165, 1974
- (32) RAKIETEN N, GORDON BS, COONEY DA, et al: Renal tumorigenic action of streptozotocin (NSC-85998) in rats. Cancer Chemother Rep 52:563-567, 1968
- (33) Worzalla JF, Johnson BM, Ramirez G, et al: N-Demethylation of the antineoplastic agent hexamethylmelamine by rats and man. Cancer Res 33:2810-2815, 1973
- (34) LAKE LM, GRUNDEN EE, JOHNSON BM: Toxicity and antitumor activity of hexamethylmelamine and its N-demethylated metabolites in mice with transplantable tumors. Cancer Res 35:2858-2863, 1975
- (35) BOSCH L, HARBERS E, HEIDELBERGER C: Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res 18:335-343, 1958
- (36) CHAUDHURI NK, MONTAG BJ, HEIDELBERGER C: Studies on fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-C¹⁴ and 5-fluoroorotic-2-C¹⁴ acid in vivo. Cancer Res 18:318–328, 1958
- (37) WANG MC, SHARMA RA, BLOCH A: Studies on the mode of action of 2,2'anhydro-1-β-D-arabinofuranosylcytosine. Cancer Res 33:1265-1271, 1973
- (38) Ho DH: Distribution of kinase and deaminase of 1-β-D-arabinofuranosylcytosine in tissues of man and mouse. Cancer Res 33:2816-2820, 1973
- (39) ——: Metabolic fate of O², 2'-cyclocytidine. Drug Metab Dispos 1:752-755, 1973
- (40) Kessel D: On the characteristics of inhibition of deoxyribonucleic acid synthesis by 2,2'-anhydro-1-βp-arabinofuranosylcytosine. Biochem Pharmacol 23:2657-2662, 1974
- (41) HIRAYAMA H, SUGIHARA T, HAMADA F, et al: Distribution and excretion of cyclocytidine in monkeys, dogs, and rats. Gan 65:153-161, 1974
- (42) Ho DH, Rodriguez V, Loo TL, et al: Clinical pharmacology of O²,2'-cyclocytidine. Clin Pharmacol Ther 17:66-72, 1975
- (43) Ho DH, CARTER CJ, Loo TL, et al: Pharmacologic studies of cyclocytidine and arabinosylcytosine in dogs. Drug Metab Dispos 3:309-313, 1975
- (44) ČIHÁK A, VESELY J: Altered liver regeneration in partially hepatectomized rats following 5-azacytidine treatment. Coll Czech Chem Commun 34:910–918, 1969
- (45) Levitan IB, Webb TE: Effects of 5-azacytidine on polyribosomes and on the control of tyrosine transaminase activity in rat liver. Biochem Biophys Acta 182:491-500, 1969
- (46) LI LH, OLIN EJ, FRASER TJ, et al: Phase specificity of 5-azacytidine against mammalian cells in tissue culture. Cancer Res 30:2770-2775, 1970
- (47) Chabner BA, Drake JC, Johns DG: Deamination of 5-azacytidine by a human leukemia cell cytidine deaminase. Biochem Pharmacol 22:2763-2765, 1973
- (48) HARDER HC, ROSENBERG B: Inhibitory effects of antitumor platinum compounds on DNA, RNA and protein syntheses in mammalian cells in vitro. Int J Cancer 6:207-216, 1970

- (49) MUNCHAUSEN LL, RAHN RO: Biologic and chemical effects of cis-dichlorodiammineplatinum(II) (NSC-119875) on DNA. Cancer Chemother Rep 59:643-646, 1975
- (50) SCHAEPPI U, HEYMAN IA, FLEISCHMAN RW, et al: cis-Dichlorodiammineplatinum(II) (NSC-119875): Preclinical toxicologic evaluation of intravenous injection in dogs, monkeys and mice. Toxicol Appl Pharmacol 25:230-241, 1973
- (51) DECONTI RC, TOFTNESS BR, LANGE RC, et al: Clinical and pharmacological studies with *cis*-diammine-dichloroplatinum(II). Cancer Res 33:1310-1315, 1973
- (52) STADNICKI SW, FLEISCHMAN RW, SCHAEPPI U, et al: cis-Dichlorodiammineplatinum(II) (NSC-119875): Hearing loss and other toxic effects in rhesus monkeys. Cancer Chemother Rep 59:467-480, 1975
- (53) HART MM, ADAMSON RH: Antitumor activity and toxicity of salts of inorganic group IIIa metals: Aluminum, gallium, indium and thallium. Proc Natl Acad Sci USA 68:1623-1626, 1971
- (54) BROCKMAN RW, SHADDIX S, LASTER WR JR, et al: Inhibition of ribonucleotide reductase, DNA synthesis, and L1210 leukemia by guanazole. Cancer Res 30:2358–2368, 1970
- (55) HAHN MA, ADAMSON RH: Pharmacology of 3,5-diamino-1,2,4-triazole (guanazole). I. Antitumor activity of guanazole. J Natl Cancer Inst 48:783-790, 1972
- (56) VICK JA, HERMAN EH: Cardiovascular effects of guanazole. Toxicol Appl Pharmacol 16:108-119, 1970
- (57) Musa MN, Lower GM, JR, Welling PG, et al: Absorption, tissue distribution and excretion of the anti-neoplastic agent guanazole in the rat. Res Commun Chem Pathol Pharmacol 7:497-512, 1974
- (58) BHUYAN BK, FRASER TJ, LI LH: Cell cycle phase specificity and biochemical effects of ellipticine on mammalian cells. Cancer Res 32:2538-2544, 1972
- (59) LI LH, Cowie CH: Biochemical effects of ellipticine on leukemia L1210 cells. Biochim Biophys Acta 353:375-384, 1974
- (60) Kohn KW, Waring MJ, Glaubiger D, et al: Intercalative binding of ellipticine to DNA. Cancer Res 35:71-76, 1975
- (61) HARDESTY CT, CHANEY NA, MEAD JA: The effect of route of administration on the distribution of ellipticine in mice. Cancer Res 32:1884-1889, 1972
- (62) HERMAN EH, CHADWICK DP, MHATRE RM: Comparison of the acute hemolytic and cardiovascular actions of ellipticine (NSC-71795) and some ellipticine analogs. Cancer Chemother Rep 58:637-643, 1974
- (63) COFFEY JJ, PALM PE, DENINE EP, et al: Species differences in the physiological disposition of 3-tritylthio-L-alanine (NSC-83265). Cancer Res 31:1908– 1914, 1971
- (64) Kessel D, Smith G, Blahnik J: Effects of S-(trityl)-L-cysteine and its analogs on cell surface properties of leukemia L1210 cells. Biochem Pharmacol 25:1893-1897, 1976
- (65) CORY JG, MANSELL MM, WHITFORD TW JR: Inhibition of ribonucleotide reductase activity and nucleic acid synthesis in tumor cells by the dialdehyde

- derivatives of inosine (NSC-118994) and inosinic acid. Cancer Res 36:3166-3170, 1976
- (66) CYSYK RL, ADAMSON RH: Anti-tumor properties and pharmacologic disposition of inosine dialdehyde Proc Am Assoc Cancer Res 15:56, 1974
- (67) ——: Pharmacologic disposition of inosine dialdehyde (NSC-118994) in mice, dogs and monkeys. Cancer Treatment Rep 60:555-562, 1976
- (68) IWAMOTO Y, HANSEN IL, PORTER TH, et al: Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxidase, by adriamycin and other quinones having anti-tumor activity. Biochem Biophys Res Commun 58:633-638, 1974
- (69) CHADWICK M, JAQUES D, BERARD G: Comparative disposition of dichloroallyl lawsone in rats bearing Walker 256 tumor after i.v. and p.o. administration. Proc Am Assoc Cancer Res 17:178, 1976
- (70) CHADWICK M, CHANG C: Comparative pharmacokinetics of dichlorallyl lawsone and lapachol in dog plasma after p.o. and i.v. administration. Proc Am Assoc Cancer Res 14:89, 1973
- (71) CASTLES TR, SNYDER JL, LEE C, et al: Toxicity of indicine N-oxide (NSC-132319) in mice, dogs, and monkeys (PB Rep. No. 243930/AS). Springfield, Va.: Natl Tech Inform Serv, 1974, pp 1-350 (Chem Abst 84:54223, 1976)
- (72) RAKIETEN N, COONEY DA, DAVIS RD: Toxicity studies on NSC-132319, indicine N-oxide following single i.v. administration to beagle dogs (PB Rep No. 228981/AS). Springfield, Va.: Natl Tech Inform Serv, 1973, pp 1-66 (Chem Abstr 81:114824, 1974)
- (73) Castles TR, Hicks JS, Sanyer JL, et al: Preclinical toxicologic evaluation of coralyne sulfoacetate (NSC-154890) in mice, dogs, and monkeys. Toxicol Appl Pharmacol 37:165, 1976
- (74) LEPAGE GA, JUNGA IG, BOWMAN B: Biochemical and carcinostatic effects of 2'-deoxythioguanosine. Cancer Res 24:835–840, 1964
- (75) HENRY MC, DIDOMENICO E: Preclinical toxicology of α-2'-deoxythioguanosine (NSC-71851). Cancer Chemother Rep 5 (Part 3):9-14, 1974
- (76) McPartland RP, Wang MC, Bloch A, et al: Cytidine 5'-triphosphate synthetase as a target for inhibition by the antitumor agent 3-deazauridine. Cancer Res 34:3107-3111, 1974
- (77) BLOCH A, DUTSCHMAN G, GRINDEY G, et al: Prevention by testosterone of the intestinal toxicity caused by the antitumor agent 3-deazauridine. Cancer Res 34:1299-1303, 1974
- (78) Ross AF, AGARWAL KC, CHU SH, et al: Studies on the biochemical actions of 6-selenoguanine and 6-selenoguanosine. Biochem Pharmacol 22:141– 154, 1973
- (79) PLAGEMANN PG: Transport, phosphorylation, and toxicity of a tricyclic nucleoside in cultured Novikoff rat hepatoma cells and other cell lines and release of its monophosphate by the cells. J Natl Cancer Inst 57:1283–1295, 1976
- (80) BENNETT LL JR, SMITHERS DL, HILL DL: Biochemical properties of the nucleoside of 3-amino-5-methyl-1, 5-dihydro-1,4,5,6,8-pentaazaacenaphthylene (NSC-154020). Proc Am Assoc Cancer Res 17:54, 1976
- (81) FRIEDMAN J, RAULSTON GL, FURLONG NB, et al:
 Disposition of 3-amino-5-methyl-1,5-dihydro-1-

 β -D-ribofuranosyl-1,4,5,6,8-pentaazaacenaphthylene (TCN; NSC-154020) in beagle dogs. Proc Am Assoc Cancer Res 18:231, 1977

- (82) VENDITTI JM, WOLPERT-DEFILIPPES MK: The activiity of new drugs against mouse tumors. In Chemotherapy: Cancer Chemotherapy I (Hellman K, Connor TA, eds). New York: Plenum Press, 1976, pp 129-147
- (83) PENG GW, MARQUEZ VE, DRISCOLL JS: Potential central nervous system antitumor agents. Hydantoin derivatives. J Med Chem 18:846-849, 1975
- (84) HILTON J, SESSIONS RH, WALKER MD: Cross-linking of DNA in rat brain tumor and bone marrow by spirohydantoin mustard (SHM). Proc Am Assoc Cancer Res 18:112, 1977
- (85) ATWELL GJ, CAIN BF: Potential antitumor agents. 13. Bis-quaternary salts. J Med Chem 16:673-678, 1973
- (86) TOBEY RA, OKA MS, CRISSMAN HA: Differential effects of two chemotherapeutic agents, streptozotocin and chlorozotocin, on the mammalian cell cycle. Eur J Cancer 11:433-441, 1975
- (87) Anderson T, McMenamin MG, Schein PS: Chlorozotocin, 2-[3-(2-chloroethyl)-3-nitrosoureido]-D-glucopyranose, an antitumor agent with modified bone marrow toxicity. Cancer Res 35:761-765, 1975
- (88) SCHEIN PS, PANASCI L, WOOLLEY PV, et al: Pharmacology of chlorozotocin (NSC-178248), a new nitrosourea antitumor agent. Cancer Treatment Rep 60:801-805, 1976
- (89) CYSYK RL, ADAMSON RH: Anti-tumor properties and pharmacology of 4'-(9-acridinylamino)-methanesulfonanilide. Proc Am Assoc Cancer Res 16:28, 1975
- (90) WARING MJ: DNA-binding characteristics of acridinylmethanesulphonanilide drugs: Comparison with antitumor properties. Eur J Cancer 12:995–1001, 1976
- (91) LEVIN VA, KABRA P: Effectiveness of the nitrosoureas as a function of their lipid solubility in the chemotherapy of experimental rat brain tumors. Cancer Chemother Rep 58:787-792,1974
- (92) Loo TL, Luce JK, Jardine JH, et al: Pharmacologic studies of the antitumor agent 5-(dimethyltriazeno)-imidazole-4-carboxamide. Cancer Res 28:2448-2453, 1968
- (93) HOUSEHOLDER GE, Loo TL: Disposition of 5-)3, 3-dimethyl-1-triazeno)-imidazole-4-carboxamide, a new antitumor agent. J Pharmacol Exp Ther 179:386-395, 1971
- (94) GERULATH AH, Loo TL: Mechanism of action of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide in mammalian cells in culture. Biochem Pharmacol 21:2335-2343, 1972
- (95) ARNOLD H, BOURSEAUX F, BROCK N: Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours of the rat. Nature 181:931, 1958
- (96) JOHNSTON TP, MCCALEB GS, OPLIGER PS, et al: The synthesis of potential anticancer agents. XXXVI. N-nitrosoureas. II. Haloalkyl derivatives. J Med Chem 9:892-911, 1966
- (97) LYTTLE DA, PETERING HG: 5-Bis-(2-chloroethyl)-aminouracil, a new antitumor agent. J Am Chem Soc 80:6459-6460, 1958
- (98) SHEALY YF, KRAUTH CA: Complete inhibition of mouse leukemia L1210 by 5 (or 4)-[3,3-bis(2-chloro-

- ethyl)-1-triazeno]imidazole-4(or 5)-carboxamide (NSC-82196). Nature 210:208-209, 1966
- (99) HERR RR, EBLE TE, BERGY ME, et al: Isolation and characterization of streptozotocin. Antibiot Ann 7:236-240, 1959-60
- (100) HENDRY JA, HOMER RF, ROSE FL: Cytotoxic agents. III. Derivatives of ethyleneimine. Br J Pharmacol 6:357-410, 1951
- (101) Heidelberger C, Chaudhuri NK, Danneberg P, et al: Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663-666, 1957
- (102) KIKUGAWA K, ICHINO M: On the reaction of Vilsmeier-Haack reagent with nucleoside: A convenient synthesis of 2,2'-cyclocytidine. Tetrahedron Lett 11:867-870, 1970
- (103) BERGY ME, HERR RR: Microbiological production of 5-azacytidine. II. Isolation and chemical structure. Antimicrob Agents Chemother 6:625-630, 1966
- (104) Rosenberg B, Van Camp L, Grimley EB, et al: The inhibition of growth or cell division in *Escherichia coli* by different ionic species of platinum (IV) complexes. J Biol Chem 242:1347-1352, 1967
- (105) Adamson RH, Canellos GP, Sieber SM: Studies on the antitumor activity of gallium nitrate (NSC-15200) and other group IIIa metal salts. Cancer Chemother Rep 59:599-610, 1975
- (106) PELLIZZARI G: Guanazole and its alkyl derivatives. L'Orosi 17:145-155, 185-192, 1894
- (107) WOODWARD RB, IACOBUCCI GA, HOCHSTEIN FA: The synthesis of ellipticine. J Am Chem Soc 81:4434-4435, 1959
- (108) AMIARD G, HEYMES R, VELLUZ L: Nouvelle synthèse du glutathion. Bull Soc Chim 120:698-700, 1956
- (109) RUTNER H: Tumor-inhibiting lapachol derivatives. Ger Pat #21095711 Feb 17, 1972, #109,571. (Chem Abstr 76:140334f, 1972)
- (110) MATTOCKS AR, SCHOENTAL R, CROWLEY HC, et al: Indicine: Major alkaloid heliotropium indicum. J Am Chem Soc 23:5400-5403, 1961
- (111) ZEE-CHENG KY, PAULL KD, CHENG CC: Experimental antileukemic agents. Coralyne, analogs, and related compounds. J Med Chem 17:347–351, 1974
- (112) IWAMOTO RH, ACTON EM, GOODMAN L: 2'-Deoxythioguanosine and related nucleosides. J Med Chem 6:684-688, 1963
- (113) BLOCH A, DUTSCHMAN G, CURRIE BL, et al: Preparation and biological activity of various 3-deazapyrimidines and related nucleosides. J Med Chem 16:294-297, 1973
- (114) CHU SH: Potential antitumor agents. Selenoguanosine and related compounds. J Med Chem 14:254–255, 1971
- (115) TOWNSEND LB, MILNE GH: Synthesis, chemical reactivity and chemotherapeutic activity of certain selenonucleosides and nucleosides related to the pyrrolo (2,3-d)pyrimidine nucleoside antibiotics. Ann NY Acad Sci 255:91-103, 1975
- (116) JOHNSTON TP, McCALEB GS, MONTGOMERY JA: Synthesis of chlorozotocin, the 2-chloroethyl analog of the anticancer antibiotic streptozotocin. J Med Chem 18:104–106, 1975
- (117) ATWELL GJ, CAIN BF, SEELYE RN: Potential antitumor agents. 12. 9-Anilinoacridines. J Med Chem 15:611-615, 1972

- (118) Hansch C, Smith N, Engle R, et al: Quantitative structure-activity relationships of antineoplastic drugs: Nitrosoureas and triazenoimidazoles. Cancer Chemother Rep 56:443-456, 1972
- (119) SHEALY YF, KRAUTH CA, MONTGOMERY JA, et al: Coupling reactions of 5-diazoimidazole-4-carboxamide. J Org Chem 27:2150-2154, 1962
- (120) Larionov LF: Chemotherapy of Malignant Tumors. Moscow: Meditsina, 1962 (Russian)
- (121) LARIONOV LF, MANKIN ZV: Biological and chemical methods of treatment of cancer. In Malignant Tumors (Petrov NN, ed), vol 1 (Part 2). Leningrad: Meditsina, 1948, pp 117-152 (Russian)
- (122) LARIONOV LF, PLATONOVA GN: Antitumor effect of 4-methyl-5-di(2-chloroethyl) aminouracil (dopan). Vopr Onkol 1(No. 5):36-38, 1955 (Russian)
- (123) Kost YeA, Kozoreva AL: Dopan (experimental studies with dopan labeled with C¹⁴). Farmakol Toksikol 26(No. 6):729-732, 1963 (Russian)
- (124) PLATONOVA GN: Weakening of the antitumor effect of dopan by its structural analogs. Patol Fiziol 1(No. 3):22-28, 1957 (Russian)
- (125) BUKHAROVA IK, SYRKIN AB, BODIAGIN DA: Some pharmacologic properties of fluorodopan. Farmakol Toksikol 33:602–606, 1970 (Russian)
- (126) LARIONOV LF, BUKHAROVA IK: Experimental data on the antitumor drug fluorodopan. Vopr Onkol 17(No. 5):78-81, 1971 (Russian)
- (127) KOZLOVA IS, BELOUSOVA AK: Effect of dopan and fluorodopan on the synthesis of nucleic acids and their precursors in Ehrlich's ascites cancer cells. In Problemy Khimioterapii Zlokachestvennykh Opukholey. Moscow-Kiev: Meditsina, 1974, pp 147–149 (Russian)
- (128) TRUSHEYKINA VI: Effect of DL-phenylalanine and L-tyrosine on the antitumor activity of p-di(2-chloroethyl) aminophenylalanine or sarcolysin (DL or L forms). In Voprosy Khimioterapii Zlokachestvennykh Opukholey. Moscow: Meditsina, 1960, pp 231–238 (Russian)
- (129) Belousova AK: Molecular mechanisms of the action of alkylating agents and antimetabolites. In Chemotherapy of Malignant Tumors. Moscow: Meditsina, 1977, pp 61-117 (Russian)
- (130) Vardanian SA: Antitumor activity of O[p-d(2-chlorethyl) aminophenyl] DL-tyrosine (fentirin). Vopr Onkol 10(No. 6):90-94, 1964 (Russian)
- (131) VOLOKOVA RYA, ZARETSKAYA YUM: Immunologic properties of fentirin. Biull Eksp Biol Med 80(No. 9):74-76, 1975 (Russian)
- (132) MIKHAILOVA LM: Toxicity and pharmacologic properties of fentirin. In Reports of the Second All-Union Conference on the Synthesis and Action Mechanism of Physiologically Active Substances. Odessa: USSR Academy of Science, 1976, pp 254–256 (Russian)
- (133) Postovskiy IYA, Afanasyeva GYE, Blasova LA, et al: Synthesis and study of the biologic activity of lipid-soluble compounds containing the di-(2-chloroethyl) amino group. In Problemy Khimioterapii Zlokachestvennykh Opukholey. Moscow-Kiev: Meditsina, 1974, pp 15–16 (Russian)
- (134) LARIONOV LF, SOF'INA ZP, LAGOVA ND, et al: Experimental study of the antitumor effect of complex ethers of p-di(2-chloroethyl) aminophenylacetic acid

- with estrogens. Vopr Onkol 14(No. 11):61-64, 1968 (Russian)
- (135) LARIONOV LF, SOF'INA ZP, LAZAREV NI, et al: The study of action of esters of chlorophenacyl and various hormones on tumors and normal animal tissues.

 In Proceedings of the Tenth International Cancer Congress, Houston, May 1970. Houston: Medical Arts, 1970, pp 411–412
- (136) YAGUZHINSKAYA VP, KASHNIKOVA NM, KURDYUMOVA KN, et al: II. Esters of p-di(2-chloroethyl) aminophenylalkanic acids and steroid compounds. Zh Obshch Khimii 41(No. 3):688-690, 1971 (Russian)
- (137) KURDYUMOVA KN, KASHNIKOVA NM, SMIRNOVA LI, et al: Complex ethers and peptides containing di(2-halogenethyl) amino derivatives of amino acids and phenyl alkane acids. In Problems of Malignant Tumor Chemotherapy. Moscow-Kiev: Institute of Oncological Problems, Ministry of Health, 1974, pp 20–22 (Russian)
- (138) SORKINA IUA, CHERNOV VA, GRUSHINA AA, et al: Antitumor activity of prospidine. Vopr Onkol 16(No. 7):83-86, 1970 (Russian)
- (139) CHERNOV VA, GEODAKIAN SV: Role of the plasma membrane in the mechanism of the antitumor effect of prospidine. Khim Farmakol Zh No. 12:18-23, 1977 (Russian)
- (140) BOGOMOLOVA NS, SUSKOVA VS, MINAKOVA SM, et al: Blood level, distribution in organs and tissues, and elimination of prospidine C¹⁴ in rats. Farmakol Toksikol 38:722–728, 1975 (Russian)
- (141) FILITS LN, PERSHIN GN: Immunodepressive activity of prospidine. Farmakol Toksikol 40:89-92, 1977 (Russian)
- (142) OVCHINNIKOVA VA, FILATOV PP, CHERNOV VA, et al:
 Distribution of phosphorus-32-labeled fotrin in the
 body of tumorous and intact rats. Khim Farmakol
 Zh No. 12:18-23, 1977 (Russian)
- (143) PEYASKHOVICH IM, PROTSENKO LD, SOLOGUB PYA, et al: Antiblastic effect of halogen-containing acyldiethylene triamides of phosphoric acid. In Papers of the XIII International Anticancer Congress, vol 6. Moscow-Leningrad: Meditsina, 1963, pp 84-86 (Russian)
- (144) SOLOGUB PYA, TARNAVSKAYA MI: Comparative evaluation of the antitumor activity of halogen-containing analogs of benzotepa. Farmakol Toksikol 34(No. 6):149-156, 1971 (Russian)
- (145) EMANUEL NM, GUMANOV LL, KONOVALOVA NM, et al: Antitumor effect of 1,2-bis-diazoacetylethane in an experiment. Dokl Akad Nauk SSSR (Bio Ser) 183(No. 3):724-726, 1968 (Russian)
- (146) GONCHAROVA SA, KONOVALOVA NP, SHEVTSOVA VN: Effect of diazan on the mitotic cycle of leukemia L1210 cells. Vopr Onkol 22(No. 2):68-72, 1976 (Russian)
- (147) EMANUEL NM: Kinetics of Experimental Tumor Processes. Moscow: Nauka, 1977, pp 1-416 (Russian)
- (148) EMANUEL NM, VERMEL EM, OSTROVSKAYA LA, et al: Kinetic study of the antitumor activity of N-nitrosoalkylurea in an experiment. Vopr Onkol 16(No. 3):46-54, 1970 (Russian)
- (149) EMANUEL NM, VERMEL EM, OSTROVSKAYA LA, et al: Experimental and clinical studies of antitumor activity of 1-methyl-1-nitrosourea (NSC-23909). Cancer Chemother Rep 58:135-148, 1974

(150) OSTROVSKAYA LA, FRANKFURT OS: Effect of N-methyl-N-nitrosourea on cellular kinetics in tumors. Vopr Onkol 23(No. 2):88-93, 1977 (Russian)

- (151) HILL DL, KIRK MC, STRUCK RF: Microsomal metabolism of nitrosoureas. Cancer Res 35:296–301, 1975
- (152) MITSKEVICH LG, ROZET EG, KUKUSHKINA GV, et al: Study of RNA polymerase activity of the nuclei of Ehrlich's ascites carcinoma in connection with the study of the action mechanism of N-alkyl-N-nitrosourea. Biokhimiia 37:851–854, 1972 (Russian)
- (153) ABAKUMOVA OV, UGAROVA TY, GORBACHEVA LB, et al: Effect of N-methyl-N-nitrosourea on protein-synthesizing system in mouse liver and hepatoma 22a cells. Cancer Res 34:1542–1547, 1974
- (154) DEDERER LYU, KUKUSHKINA GV, GORBACHEVA LB:
 Disturbance of the synthesis and processing of RNA
 in cells of Ehrlich's ascites carcinoma and leukemia
 L1210 by N-methyl-N-nitrosourea. Dokl Akad Nauk
 SSSR 221:736-739, 1975 (Russian)
- (155) MEYREN DV, BELOUSOVA AK: Problem of the action mechanism of the new antitumor drug ftorafur. Vopr Med Khimi No. 3:288-293, 1972 (Russian)
- (156) MEYREN DV, URBANOVICH EL, SNIEDZE TN, et al:
 Participation of nonspecific oxidases of rat liver
 microsomes in the destruction of N-1-furanidylpyrimidines. Biull Eksp Biol Med 83(No. 2):162164, 1977 (Russian)
- (157) APINIS TA, ZILBERE AM, MEIRENA DV, et al: Clinical pharmacokinetics of 2-14C ftorafur in patients with astrocytoma. Vopr Onkol 22(No. 7):20-24, 1976 (Russian)
- (158) SOKOLOVA AS, RIABOKON' NA, ERSHOVA IUA, et al: Tomizin—a new inhibitor of folic metabolism enzymes possessing antitumor activities. Vopr Onkol 21 (No. 11):45-50, 1975 (Russian)
- (159) Yadrovskaya VA, Korolev GK, Nemeriuk MP, et al: Synthesis of tomizin ³⁵S and its distribution in the rat's body. Khim Farmakol Zh No. 4:11–14, 1976 (Russian)
- (160) SHORIN VA, BAZHANOV VS, AVERBUKH LA, et al: Antitumor activity of a new antibiotic carminomycin. Antibiotiki 18(No. 8):681-687, 1973 (Russian)
- (161) DUDNIK YUV, OSTANINA LN, KOZ'MIAN LM, et al: Action mechanism of carminomycin. Antibiotiki 19:514-517, 1974 (Russian)
- (162) GAUZE GF, DUDNIK YUV: Action mechanisms of antitumor antibiotics. *In* Chemotherapy of Malignant Tumors (Blokhin NN, ed). Moscow: Meditsina, 1977, pp 118–152 (Russian)
- (163) Gol'Bert LYE, FILIPPOS'YANTS ST, KUNRAT IA, et al: Study of the toxicity, pharmacodynamics, and pharmacokinetics of a new antitumor antibiotic carminomycin. Antibiotiki 19:57-62, 1974 (Russian)
- (164) GAUZE GF: Olivomycin, mithramycin, chromomycin three related cancerostatic antibiotics. Adv Chemother 2:179–195, 1965
- (165) Rossolimo OK: Effect of olivomycin on the development of melanoma (Harding-Passey strain) in mice. Antibiotiki 9(No. 3):249-252, 1964 (Russian)
- (166) Shorin VA, Rossolimo OK: Experimental study of the antitumor activity of six antibiotics of the olivomycin group. Antibiotiki 10(No. 1):48-53, 1965 (Russian)
- (167) SHORIN VA, ROSSOLIMO OK, STANISLAVSKAYA MS, et al: Antitumor activity of the antibiotic olivomy-

- cin. Antibiotiki 7(No. 3):60-64, 1962 (Russian) (168) DUDNIK YUV, NETYKSA YEM: Interaction of sibiro-
- mycin with DNA and olivomycin A complexes with DNA. Antibiotiki 17:44-48, 1972 (Russian)
- (169) NAVASHIN SM, TERENT'YEVA TG, SOKOLOV AB: Antitumor and pharmacologic activity of the antibiotic variamycin. In Papers of the Soviet-Italian Symposium on Antitumor Antibiotics (Ghione M, Navashin, S, eds). Milan: Mont-Edison, 1975, pp 203-230
- (170) NAVASHIN SM, TERENT'YEVA TG, BOBIKOV EV, et al: Variamycin, a new antitumor antibiotic. In Chemotherapy: Cancer Chemotherapy II (Hellman K, Connors TA, eds), vol 8. New York: Plenum Press, 1976, pp 133-138

(171) YESELEVICH MM, SASIKIN, YUO, TORBOCHKINA LI: Mechanism of action of variamycin. Antibiotiki 16(No. 15):400-404, 1971 (Russian)

- (172) AKIMENKO VK. GOLOVCHENKO NP. YESIPOV SYE, et al: Comparative study of biological activity of the antibiotics rheomycin, fervenulin, 7-methoxyrheomycin, and xanthotricin. In Papers of the Soviet-Italian Symposium on Antitumor Antibiotics (Ghione M, Navashin S, eds). Milan: Mont-Edison, 1975, pp 239-252
- (173) YEGORENKO GG, SHTEGEL'MAN LA, SOLOV'YEV VN, et al: Experimental study of the effect of the antitumor antibiotic rheomycin on the macro-organism. Antibiotiki 21 (No. 2):178-182, 1976 (Russian)
- (174) PUKHAL'SKAIA ECH, CHERNYAKHOVSKAYA IYU, PE-TROVA MF, et al: Macromolecular antitumor agents from Chamaenerium angustifolium. Neoplasma 22:29-37, 1975
- (175) PUKHAL'SKAIA ECH, PETROVA MF, KIBALCHICK PN, et al: Isolation of a polymer from Chamaenerium angustifolium and study of its antitumor activity. Antibiotiki 15(No. 9):782-785, 1970 (Russian)
- (176) Postol'nikov SF, Krusanova NI, Zaytseva LA, et al: Study of the toxicity of a new phytohemagglutinin, Zdrabookhr Kazakhstana Alma-Ata chanerol. No. 9:85-87, 1976 (Russian)
- (177) Postol'NIKOV SF, SYRKIN AB: Experimental study of the side effects of chanerol—a potential antitumor drug. In Voprosy Radiobiologii i Biologicheskogo Deystviya Tsitotoksicheskikh Preparatov (Problems of Radiobiology and Biological Effect of Cytotoxic Drugs). Tomsk: Tomsky Medical Institute, 1977, pp 179-182 (Russian)
- (178) LARIONOV LF, KHOKHLOV AS, SHKODINSKAYA YEN, et al: Antitumor activity of n-di(2-chloroethyl)aminophenylalanine (sarcolysin). Biull Eksp Biol Med 39:48-52, 1955 (Russian)
- (179) LARIONOV LF, BUKHAROVA IK, SHAMAEVA YE: Experimental study of toxicity and antitumor activity of the ethyl ether of acetyl sarcolysin L-leucine (asaley). Vopr Onkol 11 (No. 4):78-80, 1965 (Russian)
- (180) LARINOV LF, SOF'INA ZP: Prospects of searching for new antitumor drugs. Presented at the VIII Summary Scientific Conference of the Institute of Experimental and Clinical Oncology. Moscow: Acad Med Sci, 1972, pp 79-88 (Russian)
- (181) MIKHALEV VA, DOROKHOVA MI, SMOLINA NE, et al: Prospidine and some other derivatives of steropolypiperazine. Zh Obshch Khimii 34:3716-3719, 1964 (Russian)

- (182) MUKHINA LYE, KROPACHEVA AD, SAFONOVA TS, et al: Method of synthesizing morpholyl-ethyleneiminesubstituted trimers of phosphonitrichloride, USSR Patent No. 220983 (1966). Otkrytiya 19:183, 1973
- (183) PROTSENKO LD, NEGIEVICH LA: Studies of the iodinecontaining diethylene triamide of phosphoric acid. Zh Obshch Khimii 35(No. 9):1564-1566, 1965
- (184) HILLER SA, ZHUK RA, LIDAK MYU: Analogs of pyrimidine nucleosides, 1. N-(alpha-furanidyl) derivatives of natural pyrimidine bases and their antimetabolites. Dokl Akad Nauk SSSR 176(No.2): 332-335, 1967 (Russian)
- (185) SAFONOVA TS, NEMERJUK MP, MYSHKINA LA, et al: Investigation of nitrogen- and sulfur-containing heterocycles. XIII. Synthesis of 6-amino derivatives of pyrimido/4, 5- β -/ pyrazino-/ 2, 3- β /- and pyrido/2, 3-β/-I, 4 thiazines. Khim Geterot Soed No. 7:944-948, 1972 (Russian)
- (186) BRAZHNIKOVA MG, ZBARSKY VB, PONOMARENKO VI, et al: Physical and chemical characteristics and structure of carminomycin, a new antitumor antibiotic. J Antibiot (Tokyo) 27:254-256, 1974
- (187) GAUZE GF, UKHOLINA RS, SVESHNIKOVA MA: Olivomycin, a new antibiotic, produced by Actinomyces olivoreticuli. Antibiotiki 7(No. 3):34-38, 1962 (Russian)
- (188) SEVBO DP, GINZBURG OF: Synthesis of 2-aminophenothiazone-3. Zh Organ Khim 4(No. 10):1854-1857, 1968 (Russian)
- (189) KISELEVA VV: Search for natural antitumor substances. In Papers of the XIII Summary Scientific Conference of the Institute of Experimental and Clinical Oncology. Moscow: Acad Med Sci, 1972, pp 72-78 (Russian)
- (190) ZDANOVICH YUB, LOKSHIN GE, KUZOVKOV AD, et al: Isolation and characterization of the new antibiotic, variamycin. Khim Prirod Soed No. 5:646-649, 1971 (Russian)
- (191) NAVASHIN SM, FOMINA IP, KOROLEVA VG, et al: Experimental study of antitumor activity of the antibiotic reumycin. Antibiotiki 12(No. 10):892-898, 1967 (Russian)
- (192) LAZUR'YEVSKY GV, KINTYA PK, PUKHAL'SKAIA YECH, et al: Steroid glucosides, structure and biological activity. Khim Farmakol Zh 11 (No. 6):19-29, 1977 (Russian)
- (193) CHIRVA VYA, KINTYA PK, MEL'NIKOV VN: I. Structure of the ribose-containing saponine vitalboside. Khim Priro Soed No. 4:472-475, 1972 (Russian)
- (194) SHERBUKHINA NK, KIRILLINA VL, SHERBUKHIN VO: Water-soluble polysaccharide from Eremurus comosus. Dokl Akad Nauk SSSR 202(No. 6):1451-1453, 1972 (Russian)
- (195) MALYUGINA LL, REMIZOV AL, KRAYZ BO: Study of the antitumor activity of a number of new derivatives of symmetrical triazine. In Problems of Malignant Tumor Chemotherapy. Moscow-Kiev: Institute of Oncological Problems, Ministry of Health, USSR, 1974, pp 109-110 (Russian)
- (196) EMANUEL NM, VERMEL YEP, RAPOPORT IA, et al: Antitumor properties of strong chemical mutagens (nitrosourea derivatives). Dokl Akad Nauk SSSR 163(No. 2):483-485, 1965 (Russian)

- (197) LAW LW, DUNN TB, BOYLE PJ, et al: Observations on the effect of a folic acid antagonist on transplantable lymphoid leukemias in mice. J Natl Cancer Inst 10:179-192, 1949
- (198) DAWE CJ, POTTER M: Morphologic and biologic progression of a lymphoid neoplasm of the mouse in vivo and in vitro. Am J Pathol 33:603, 1957
- (199) Handbook on Genetically Standardized JAX Mice. Bar Harbor, Maine: The Jackson Memorial Laboratory, 1962
- (200) GERAN RI, GREENBERG NH, MACDONALD MM, et al:
 Protocols for screening chemical agents and natural
 products against animal tumors and other biological
 systems (3d ed). Cancer Chemother Rep 3(Part 3):
 1-103, 1972
- (201) Gross L: Oncogenic Viruses. New York: Pergamon Press, 1970
- (202) SUGIURA K, STOCK CC: Studies in a tumor spectrum.

 III. The effect of phosphoramides on the growth of
 a variety of mouse and rat tumors. Cancer Res
 15:38-51, 1955
- (203) Mayo JG: Biological characterization of the subcutaneously implanted Lewis lung tumor. Cancer Chemother Rep 3(Part 2):325-330, 1972
- (204) DUNHAM LJ, STEWART HL: A survey of transplantable and transmissible animal tumors. J Natl Cancer Inst 13:1299-1377, 1953
- (205) STEWART HL, SNELL KS, DUNHAM LJ, et al: Transplantable and transmission tumors of animals. In Atlas of Tumor Pathology. Washington, D.C.: Armed Forces Inst Pathol, 1959
- (206) DUNN TB, POTTER M: A transplantable mast-cell neoplasm in the mouse. J Natl Cancer Inst 18:587-601, 1957
- (207) POTTER M, KUFF EL: Myeloma globulins of plasmacell neoplasms in inbred mice. I. Immunoelectrophoresis of serum, with rabbit antibodies prepared against microsome fractions of the neoplasms. J Natl Cancer Inst 26:1109-1137, 1961
- (208) FISCHER GA: Tissue culture of mouse leukemic cells. Proc Am Assoc Cancer Res 2:201, 1957
- (209) DAWE CJ, POTTER M, LEIGHTON J: Progressions of a reticulum-cell sarcoma of the mouse in vivo and in vitro. J Natl Cancer Inst 21:753-781, 1958
- (210) Kelly MG, O'Gara RW: Induction of tumors in newborn mice with dibenz[a, h]-anthracene and 3-methylcholanthrene. J Natl Cancer Inst 26:651-679, 1961
- (211) POTTER M: Variation in resistance patterns in different neoplasms. Ann NY Acad Sci 76:630-642, 1958
- (212) LAMPKIN JM, POTTER M: Response to cortisone and development of cortisone resistance in a cortisone sensitive lymphosarcoma of the mouse. J Natl Cancer Inst 20:1091-1111, 1958
- (213) Andervont HB, Dunn TB: Transplantation of hepatomas in mice. J Natl Cancer Inst 15:1513-1524, 1955
- (214) ZIMMERMAN HM, ARNOLD H: Experimental brain tumors. I. Tumors produced with methylcholan-threne. Cancer Res 1:919-938, 1941
- (215) AUSMAN JI, SHAPIRO WR, RALL DP: Studies on the chemotherapy of experimental brain tumors: Development of an experimental model. Cancer Res 30:2394-2400, 1970
- (216) FUGMANN RA, STOLFI RL, HAYWORTH PE, et al:

Immunologic and chemotherapeutic parameters in a model breast tumor system. Cancer Chemother Rep 4(Part 1):25-32, 1974

- (217) SANDBERG JS, GOLDIN A: The use of first generation transplants of a slow growing solid tumor for the evaluation of new cancer chemotherapeutic agents. Cancer Chemother Rep 55:233-238, 1971
- (218) Gelzer J, Loustalot P: Biological and chemotherapeutic studies on primary mammary tumors in C₃H and C₃HO mice. Int J Cancer 2:179-187, 1967
- (219) EAGLE H: Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med 89:362–364, 1955
- (220) OYAMA VI, EAGLE H: Measurement of cell growth in tissue culture with a phenol reagent (Folin-Ciocalteau). Proc Soc Exp Biol Med 91:305-307, 1956
- (221) PUJMAN V: Some remarks on experimental leukemias in C57BL mice. Vopr Onkol 1(No. 4):93-95, 1955 (Russian)
- (222) Nemeth L, Kellner B: A new ascites tumour to be used as a screening tool. Neoplasma 8:337-343, 1961
- (223) MALYUGINA LL: New strain of transplantable lymphatic leukemia LIO-1. Vopr Onkol 7:181-187, 1954 (Russian)
- (224) Catalogue of Murine Plasma Cell Tumors. First edition, November, 1973
- (225) ROVIS L, KABAT EA, POTTER M: Immunochemical studies on a mouse myeloma protein having specific binding affinity for 2-acetamide-2-deoxy-D-mannose. Carbohydr Res 23:223-227, 1972
- (226) ZINZAR SN, LEITINA BI, TUMIAN BG, et al: Malignant tumors arising from syngeneic transplants of embryonic gastrointestinal tract. Vopr Onkol 18(No. 4):89-92, 1972 (Russian)
- (227) DOBRYNIN YAV, POGOSIANTS EE, PRIGOZHINA EL: Transplantable strains of mouse proventricle cancer. Vopr Onkol 4(No. 2):155-160, 1958 (Russian)
- (228) AMANDZHOLOV BS, IRD EA, SOF'INA ZP: Characteristics of transplantable cancer of the cervix uteri of mice (RShM-5). Vopr Onkol 18:96-98, 1972 (Russian)
- (229) Harding HE, Passey RD: A transplantable melanoma of the mouse. J Pathol Bacteriol 33:417–427, 1930
- (230) Mashbits FD: Study of the blastomogenic activity of some acridine compounds. Vopr Onkol 1:58, 1955 (Russian)
- (231) POGOSIANTS EE: Brief review of strains of transplantable tumors maintained in the laboratories of the Soviet Union (according to materials of 10 institutes). Vopr Onkol 3(No. 2):233-243, 1957 (Russian)
- (232) Shabad LM, Blokh MI. New transplantable strain of rat sarcoma, M-1. Biull Eksp Biol Med 24(No. 10):4, 1947 (Russian)
- (233) POGOSIANTS EE, KISELEVA NS: Tumor strains maintained at the Institute for Experimental and Clinical Oncology, AMS USSR. Vopr Onkol 9(No. 8):103-116, 1963 (Russian)
- (234) GUÉRIN M, GUÉRIN P: Epithelioma de l'utérus du rat, lymphotrope et transplantable. Bull Cancer (Paris) 23:632-646, 1934
- (235) MALYUGINA LL: Transplantable alveolar mucus cancer of the rat liver RS-1. Vopr Onkol 4(No. 5):600–604, 1958 (Russian)

- (236) PLISS GB: Oncologic characteristics of a new strain of rat lymphosarcoma. Biull Eksp Biol Med 2:95-99, 1961 (Russian)
- (237) MALYUGINA LL, SMOYLOVSKAYA EYA: Laboratory strain of transplantable rat sarcoma MOP. Vopr Onkol 8:45–52, 1955 (Russian)
- (238) POGOSIANTS EE, PRIGOZHINA EL, EGOLINA NA: Transplantable ascitic tumor of the rat ovary (strain OYa). Vopr Onkol 8(No. 11):29-36, 1962 (Russian)
- (239) IVANITSKAYA LP, MAKUKHO LV: Primary suspended cultures of tumor cells of ascitic transplantable tumors as a model for studying antitumor compounds. Vopr Onkol 19 (No. 5):67-71, 1973 (Russian)
- (240) SPIRIN AS: Spectrophotometric determination of the total amounts of nucleic acids. Biokhimiya 23(No. 5):656-662, 1958 (Russian)
- (241) DOBRYNIN YAV, MONATOVA TI, MIRZOYAN EE: Characteristics of lines of human ovarian cancer cells. Vopr Onkol 20(No. 3):44-53, 1974 (Russian)
- (242) LOWRY OH, ROSEBROUGH NY, FARR AZ, et al: Protein measurement with the folin phenol reagent. J Biol Chem 193:265-268, 1951
- (243) GARIN AM: Some aspects of the drug therapy of tumors. Doctoral Dissertation, Institute of Experimental and Clinical Oncology, Moscow, 1969 (Russian)
- (244) KAREV NI, GARIN AM, BLOKHINA NG, et al: Results of clinical study of the drug diiodobenzotepa in malignant tumors. Klin Med 52(No. 5):50-53, 1975 (Russian)
- (245) JOHNSON RK, GOLDIN A: The clinical impact of screening and other experimental tumor studies. Cancer Treatment Rev 2:1-31, 1975
- (246) Wasserman TH, Comis RL, Goldsmith M, et al: Tabular analysis of the clinical chemotherapy of solid tumors. Cancer Chemother Rep 6(Part 3): 399-419, 1975
- (247) BLOKHINA NG, VOZNYI EK, ALEKSEEV VM, et al: Results of clinical study of ftorafur administered parenterally. Vopr Onkol 22(No. 2):120-121, 1976
- (248) PEREVODCHIKOVA NI: Clinical Chemotherapy of Tumorous Diseases. Moscow: Meditsina, 1976
- (249) ——: Present potentialities of chemotherapy of solid tumors. Ter Arkh 49:8, 10-15, 1977 (Russian)
- (250) The Medical Letter, vol 20, No. 19 (Issue 514), New Rochelle, N.Y.: Medical Letter Inc, pp 81-88 (September 1978)
- (251) GOLDIN A, VENDITTI JM, CARTER SK: Screening at the National Cancer Institute. In Methods of Development of New Anticancer Drugs. Natl Cancer Inst Monogr 45:37–48, 1977
- (252) SCHEPARTZ SA: Memorandum to suppliers of compounds. February 13, 1976. *In* Methods of Development of New Anticancer Drugs. Natl Cancer Inst Monogr 45:155-156, 1977
- (253) SOF'INA ZP: Models and methods applicable for the screening of antitumor drugs in the USSR and abroad. Vopr Onkol 22(No. 4):82-96, 1976 (Russian)
- (254) ———: Experimental selection of antitumor compounds: Products of synthetic and vegetable origin.

 In Methods of Development of New Antitumor Drugs. Natl Cancer Inst Monogr 45:245-253, 1977
- (255) BLOKHINA NG: Remote results of prophylactic treat-

- ment of cancer of the colon and rectum with 5-fluorouracil. Klin Med (Mosk) 54(No. 8):58-63, 1976 (Russian)
- (256) ——: Drug therapy of tumors of the stomach and large intestine, Doctoral Dissertation, Institute of Oncological Problems, Moscow-Kiev, 1976 (Russian)
- (257) ——: Treatment of patients with widespread forms of cancer of the gastrointestinal tract. In Treatment of Generalized Forms of Tumor Diseases (Blokhin NN, Eckhardt SH, eds). Moscow: Meditsina, 1976, p 393 (Russian)
- (258) SOF'INA ZP, MYASISHCHEVA NV, ARSENIAN FG, et al:
 Possibility of heightening the antitumor effect of a
 folic acid antagonist by use of methylcobalamine
 analogs. Vestn Akad Med Nauk SSSR No. 1:72–
 78, 1979 (Russian)
- (259) HORAKOVA K, NAVAROVA J, PATERSON AR: The delayed cytotoxic effect of 6-mercaptopurine. Characterization of the unbalanced growth in HeLa cells produced by 6-mercaptopurine. Biochim Biophys Acta 366:333-340, 1974
- (260) TIDD DM, KIM SC, HORSKOVA K, et al: A delayed cytotoxic reaction for 6-mercaptopurine. Cancer Res 32:317-322, 1972
- (261) HILL DL: A Review of Cyclophosphamide. Springfield, Ill.: Charles C Thomas, 1975
- (262) Prospidine—a new antitumor drug. In Sbornik Trudov (Chernov VA, ed). Moscow: VNIHFI, 1973, pp 271 (Russian)
- (263) Gerasimova GN, Mokina VD, Sidorova TA: Comparison of the store of free ribonucleotides in the spleen of C57BL and DBA/2 mice and in leukemia cells susceptible and resistant to 5-fluorouracil. Biokhimiya 1:163-169, 1978 (Russian)
- (264) Belousova AK, Gerasimova GN: Search for biochemical criteria of susceptibility and resistance of tumor cells to antimetabolites. Vestn Akad Med Nauk SSSR No. 5:58-64, 1978 (Russian)
- (265) FRANKFURT OS: Cell Mechanisms of Tumor Chemotherapy. Moscow: Meditsina, 1976, pp 1-392 (Russjan)
- (266) BASERGA R: The relationship of the cell cycle to tumor growth and control of cell division: A review. Cancer Res 25:581-595, 1965
- (267) MADOC-JONES H: Site of action of cytotoxic agents in the cell life cycle. Exp Pharmacol 38(No. 1):205-219, 1974
- (268) SKIPPER HE: Kinetic behavior versus response to chemotherapy. Natl Cancer Inst Monogr 34:2-14, 1971
- (269) LOEB E, HILL JM, PARDUE AS, et al: Solid tumor experience with newer platinum coordination compounds. J Clin Hematol Oncol 7:701-710, 1977
- (270) WITTES RE, CVITKOVIC E, KRAKOFF IH, et al: The role of *cis*-diamminedichloroplatinum (II) in the treatment of head and neck cancer. J Clin Hematol Oncol 7:711-716, 1977
- (271) ABU-ZAHRA H, CLARYSSE A, COWAN D, et al: Treatment of acute myeloblastic leukemia in adults: Remission induction with a combination of cyclophosphamide, cytarabine and vincristine. Can Med Assoc J 107:1073-1078, 1972
- (272) STEEL GG: Cytokinetics of neoplasia. In Cancer Med-

- icine (Holland JF, Frei E III, eds). Philadelphia: Lea & Febiger, 1973, pp 125-140
- (273) GRISWOLD DP, SKIPPER HE, LASTER WR, et al: Induced mammary carcinoma in the female rat as a drug evaluation system. Cancer Res 26:2169–2180, 1966
- (274) Sof'ina ZP: Differences in the effect of antitumor drugs on animals of different sexes. *In* Proceedings of a Conference on Host Approaches to Control of Tumor Growth. Leningrad: Institute of Oncology, 1963, pp 84–85
- (275) —: Role of endocrine glands and hormones in the realization of the biological effects of alkylating compounds. In Pervaya Vsesoyuznaya Konferentsiya po Khimioterapii Zlokachestvennykh Opukholey (First All-Union Conference on Chemotherapy of Malignant Tumors). Riga: Zinatne, 1968, pp 59-61 (Russian)
- (276) LOBOVA TG, SOF'INA ZP: Distribution of asafan-C¹⁴ in the organs of animals of different sexes. Vopr Onkol 14(No. 10):79-82, 1968 (Russian)
- (277) SOKOLOVA AS: Significance of endocrine system in antitumor effect of cytostatic drugs. *In* Itogi Nauki (Results of Science): Comparative oncology. Moscow: VINITI, 1967, pp 34-70 (Russian)
- (278) SOF'INA ZP: Comparative study of the side effects of the antitumor drugs embichin, sarcolysin, and asaline. Farmakol Toksikol 32(No. 3):312-316, 1969 (Russian)
- (279) LESNAYA NA: Dependence of toxicity of antitumor drugs on time of injection. In Papers of the VII Summary Scientific Conference of the Institute of Experimental and Clinical Oncology. Moscow: Acad Med Sci, 1971, pp 138–142 (Russian)
- (280) —: 5-Fluorouracil in combination with drugs of a different action mechanism (experimental study).

 Doctoral Candidate Dissertation, Institute of Experimental and Clinical Oncology, Moscow, 1975 (Russian)
- (281) LOBOVA TG, LESNAYA NA, BOBROVA VN: Toxic effect and distribution of sarcolysin in the bodies of animals as a function of the time of the day of its injection. In Voprosy Radiobiologii i Biologicheskogo Deystviya Tsitostaticheskikh Preparatov (Goldberg Ye D, ed). Tomsk: Tomskogo Univ, 1973, pp 87–88 (Russian)
- (282) KOLOMINA SM: Circadian rhythm of mitoses in various malignant tumors of mice. Doctoral Candidate Dissertation, Moscow Univ, Moscow, 1966, (Russian)
- (283) SVENOGEYEVA TP: Circadian rhythm of mitosis in sarcoma T-1. Vopr Onkol 15(No. 7):105-107, 1969 (Russian)
- (284) Burns ER, Scheving LE, Pauly JE: Chronochemotherapy of L1210 leukemia with cytosine arabinoside (ara-C) in combination with cyclophosphamide (C) or C and vincristine (V). Proc Am Assoc Cancer Res 18:107, 1977
- (285) SKIPPER HE, SCHMIDT LH: A manual on quantitative drug evaluation in experimental tumor systems. Part I. Background, description of criteria, and presentation of quantitative therapeutic data on various classes of drugs obtained in diverse experimental tumor systems. Cancer Chemother Rep 17:1-143, 1962

(286) Shapot VS: Biochemical Aspects of Tumor Growth.

Moscow: Meditsina, 1975 (Russian)

- (287) FOULDS L: Neoplastic Development. London, New York: Academic Press, 1969, pp 1–439
- (288) Lagova ND, Sof'ina ZP, Valuyeva IM: Value of endocrine system in antitumor effect of the hormone cytostatic fenestrol on mammary cancer. Presented at the Symposium on the Functional State of the Endocrine Glands in the Tumor Process. Rep Rostov-on-Don, USSR, 1973
- (289) Sor'ina ZP, Lagova ND, Baluyeva IM, et al: Biological effect of a number of hormone-cytostatic drugs (esters of chlorphenacyl with sinestrol, dehydroepiandrosterone and pregnenolone). In First All-Union Conference on the Chemotherapy of Malignant Tumors. Riga: Zinatne, 1968, pp 441–443 (Russian)
- (290) JÖNSSON G, HÖGBERG KB: Treatment of advanced prostatic carcinoma with estracyt. A preliminary report. Scand J Urol Nephrol 5:103-107, 1971
- (291) MITTELMAN A, SHUKLA SK, WELVAART K, et al: Oral estramustine phosphate (NSC-89199) in the treatment of advanced (stage D) carcinoma of the prostate. Cancer Chemother Rep 59:219–223, 1975
- (292) MITTLEMAN A, CATANE R, MURPHY GP: Clinical experience with estramustine phosphate (estracyt) in hormonally resistant stage D carcinoma of the prostate. *In* Proceedings of the 10th International Congress of Chemotherapy (Siegenthaler W, Lüthy R, ed), vol 2. Washington, D.C.: Am Soc Microbiol, 1978, pp 1278–1282
- (293) NILSSON T, JÖNSSON G: Estramustine phosphate (estracyt) as a primary treatment of prostatic carcinoma. *In* Proceedings of the 10th International Congress of Chemotherapy (Siegenthaler W, Lüthy R, eds), vol 2. Washington, D.C.: Am Soc Microbiol, 1978, pp 1282–1283
- (294) MURRAY-LYON IM, EDDLESTON AL, WILLIAMS R, et al: Treatment of multiple hormone-producing malignant islet-cell tumour with streptozotocin. Lancet 2:895–898, 1968
- (295) MIKHAYLOVA LM: Experimental study of the side effects and antitumor properties of fentirin. Doctoral Candidate Dissertation, Cancer Research Center of the USSR Academy of Medical Sciences, Moscow, 1977 (Russian)
- (296) BERTINO JR, HRYNIUK WM, CAPIZZI R: Prediction of methotrexate responsiveness of tumors in man. Natl Cancer Inst Monogr 34:179–182, 1971
- (297) WERKHEISER WC: The biochemical, cellular, and pharmacological action and effects of the folic acid antagonists. Cancer Res 23:1277-1285, 1963
- (298) IVANITSKAYA LP, MAKUKHO LV, MANAFOVA NA: Use of methods of determining nucleic acids in cancer cell cultures in tests in vitro for screening antitumor antibiotics and studying their mechanism of action. Antibiotiki 14(No. 10):895-900, 1969 (Russian)
- (299) YAVORSKAYA NP: Use of primary suspended cultures of tumor cells for primary evaluation of antitumor effect of new drugs. *In* Problemy Khimoterapii Zlokachestvennykh Opukholey (Problems of Chemotherapy of Malignant Tumors). Moscow-Kiev: Meditsina, 1974, pp 180–182 (Russian)
- (300) European Organization for Research on the Treatment

- of Cancer Screening Group. Handbook of Materials and Methods. Eur J Cancer 8:185-196, 1972
- (301) Shimoyama M: Cytocidal action of anticancer antigens: Evaluation of the sensitivity of cultured animal and human cancer cells. Bibl Haematol 40:711-722, 1975
- (302) Belousova AK: Biochemical Approaches to the Chemotherapy of Tumors. Leningrad: Meditsina, 1965, pp 1-395 (Russian)
- (303) ——: The Mechanism of Action of Antitumor Compounds. In Methods of Development of New Anticancer Drugs. Natl Cancer Inst Monogr 45:183–193, 1977
- (304) KUZIN MI, OSOKINA LI, GOLUBKOV VA: Dependence of some biological properties of tumors on their metabolism. Vopr Onkol 21 (No. 12):3-7, 1975 (Russian)
- (305) BAKER BR: Design of Active Site-Directed Irreversible Enzyme Inhibitors. New York: Wiley, 1967
- (306) Heidelberger C: Cancer chemotherapy with purine and pyrimidine analogues. Annu Rev Pharmacol 7:101-124, 1967
- (307) BESKROVNYI AM: Technique of testing antitumor activities of drugs on induced cancer of the mammary glands of mice. Vopr Onkol 16:62-66, 1970 (Russian)
- (308) —: Antitumor effectiveness of hormones in cancer of mammary glands in mice. Vopr Onkol 17(No. 9):95-98, 1971 (Russian)
- (309) LAGOVA ND: Hormone therapy of mammary cancer.
 Probl Endokrinol (Mosk) No. 5:3-6, 1960 (Russian)
- (310) ——: Hormone therapy of mammary cancer in an experiment. *In* Gormonoterapiya Zlokachestvennykh Opukholey. Moscow: Meditsina, 1968, pp 48-69 (Russian)
- (311) HUGGINS C: Steroids and cancer. In Biological Activity of Steroids in Cancer (translated from English to Russian). Moscow: Meditsina, 1965, pp 157-161
- (312) Trapeznikov NN, Yavorskiy VV, Svet-Moldavsky GJ, et al: Approaches to immunotherapy of malignant melanomas. Vestn Akad Med Nauk SSSR No. 4:38-44, 1974 (Russian)
- (313) KADAGIDZE ZG: Use of the "lymphocyte plus target cell" system for studying the effect of antitumor drugs. In First All-Union Conference on Chemotherapy of Malignant Tumors. Riga: Zinatne, 1968, pp 323-324 (Russian)
- (314) CHIRVINA ED, SMILLER RR, TIUTIUNOVA AM: State of functional activity of adrenal cortex in patients with lung cancer. Vopr Onkol 17(No. 1):15-19, 1971 (Russian)
- (315) CHIRVINA ED: Refinement of the surgical method for the combined therapy of lung cancer and hormonal changes in the organism. Doctoral Dissertation, Petrov Institute of Oncology, Leningrad, 1976 (Russian)
- (316) CHRISTY NP: Adrenocorticotrophic activity in the plasma of patients with Cushing's syndrome associated with pulmonary neoplasms. Lancet 1:85–86, 1961
- (317) GEWIRTZ G, YALOW RS: Ectopic ACTH production in carcinoma of the lung. J Clin Invest 53:1022-1032, 1974
- (318) SMIRNOVA KD, LAZAREV NI: Metabolites of steroid

- hormones of the adrenal cortex in the urine of lung cancer patients. Vestn Akad Med Nauk SSSR 25(No. 2):35-38, 1970 (Russian)
- (319) SMIRNOVA KD: Functional state of adrenal cortex in patients with lung cancer. Sov Med 34(No. 2):139-140, 1971 (Russian)
- (320) ICHIKAWA T: Discovery of clinical effect of bleomycin against squamous cell carcinoma and further development of its study. In Proceedings of the Tenth International Cancer Congress, May 1970, Houston. Abstr No. 755. Houston: Medical Arts, 1971, p 467
- (321) UMEZAWA H: Bleomycin. Antibiotica 3:21-33, 1974
- (322) Chou T, Hutchison D, Schmid F, et al: Metabolism and selective effect of β-D-arabinofuranosylcytosine in L1210 and host tissues in vivo. Cancer Res 35:225-236, 1975
- (323) GORBACHEVA LB: Pharmacokinetics of some antitumor drugs. *In* Chemotherapy of Malignant Tumors. Moscow: Meditsina, 1977, pp 190-209 (Russian)
- (324) Camiener GW: Studies of the enzymatic deamination of ara-cytidine. V. Inhibition in vitro and in vivo by tetrahydrouridine and other reduced pyrimidine nucleosides. Biochem Pharmacol 17:1981–1991, 1968
- (325) MOFFATT JG, HAMAMURA EK, RUSSELL AF, et al: Synthesis and biological examination of some derivatives of 2,2'-anhydro-1-(β-D-arabinofuranosyl)-cytosine hydrochloride (NSC-145668). Cancer Chemother Rep 58:451–469, 1974
- (326) VAPNIK VN, CHERVONVENKIS AYA: Theory of Recognition of Forms. Moscow: Nauka, 1974 (Russian)
- (327) VAPNIK VN, STERIN AM: On the regulated minimization of the Total risk in the problem of recognition of forms. Automation Telemechanization No. 10, 1977
- (328) ZUBROD CG: Chemical control of cancer. Proc Natl Acad Sci USA 69:1042-1047, 1972
- (329) DEVITA VT JR, YOUNG RC, CANELLOS GP: Combination versus single agent chemotherapy. A review of the basis for selection of drug treatment of cancer. Cancer 35:98-110, 1975
- (330) DEVITA VT JR, CANELLOS G, HUBBARD S, et al: Chemotherapy of Hodgkin's disease (HD) with MOPP: A 10-year progress report. Proc Am Assoc Cancer Res 17:269, 1976
- (331) Carter SK: The chemotherapeutic approach to cancer therapy: A quick review. In The Yearbook of Cancer (Clark RL, Cumley RW, eds). Chicago: Year Book, 1972, 475-498
- (332) ——: Planning combined therapy—The interaction of experimental and clinical studies. Cancer Chemother Rep 4(Part 2):3-11, 1974
- (333) LIVINGSTON RB, CARTER SK: Single Agents in Cancer Chemotherapy. New York: Plenum Press, 1970
- (334) DEVITA VT JR: Adjuvant therapy—An overview. In: Adjuvant Therapy of Cancer (Salmon E, Jones SE, eds). Amsterdam: Elsevier-North Holland, 1977, pp 613-641
- (335) HENDERSON JF, MIKOSHIBA A, CHU SY, et al: Kinetic studies of adenosine kinase from Ehrlich ascites tumor cells. J Biol Chem 247:1972–1975, 1972
- (336) HENDERSON JF, PATERSON AR, CALDWELL IC, et al: Inhibitors of nucleoside and nucleotide metabolism. Cancer Chemother Rep 3(Part 2):71-85, 1972
- (337) LANGEN P, KOWOLLIK G, ETZOLD G, et al: The phos-

- phorylation of 3'-deoxy-3'-fluorothymidine and its incorporation into DNA in a cell-free system from tumor cells. Acta Biol Med Ger 20:483–494, 1972
- (338) LEPAGE GA, Loo TL: XIII-2. Purine Antagonists. In Cancer Medicine (Holland JF, Frei E III, eds). Philadelphia: Lea & Febiger, 1973, pp 754-768
- (339) JACKSON RC, HARRAP KR: Studies with a mathematical model of folate metabolism. Arch Biochem Biophys 158:827-841, 1973
- (340) SHACKNEY SE: A computer model for tumor growth and chemotherapy, and its application to L1210 leukemia treated with cytosine arabinoside (NSC-63878). Cancer Chemother Rep 54:399-429, 1970
- (341) WERKHEISER WC, GRINDEY GB, MORAN RG: Mathematical simulation of the interaction of drugs that inhibit deoxyribonucleic acid biosynthesis. Mol Pharmacol 9:320-329, 1973
- (342) LINCOLN T, MORRISON P, AROESTY J, et al: Computer simulation of leukemia therapy: Combined pharmacokinetics, intracellular enzyme kinetics, and cell kinetics of the treatment of L1210 leukemia by cytosine arabinoside. Cancer Treatment Rep 60: 1723-1739, 1976
- (343) RUSTUM YM, HIGBY DJ: Biochemical and clinical studies of chronic lymphocytic leukemia. Eur J Cancer 14:5-14, 1978
- (344) Loveless A: Genetic and Allied Effects of Alkylating Agents. London: Butterworths, 1966
- (345) REGAN JD, SETLOW RB: Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res 34:3318-3325, 1974
- (346) LERMAN MI, ABAKUMOVA OY, KUCENKO NG, et al: Different degradation rates of alkylated RNA protein and lipids in normal tumor cells. Cancer Res 34:1536-1541, 1974
- (347) Belousova AK: Some achievements and prospects of the study of the action mechanisms of new antitumor compounds. Vopr Onkol 18:89–98, 1972 (Russian)
- (348) Belousova AK, Romanova IN: Effect of alkylating agents on structure and function of mitochondrial membranes. Presented at the 7th Summary Scientific Conference of the Institute for Experimental Clinical Oncology. Moscow: USSR Academy of Medical Sciences, 1971, pp 29-37
- (349) SKIBBA JL, ERTÜRK E, BRYAN GT: Effects of 4(5)-(3,3-dimethyl-1-triazeno)-imidazole-5(4)-carboxamide (NSC-45388) in proliferating rat tissues. Biochem Pharmacol 21:2817–2824, 1972
- (350) DOBRYNIN IAV, STENYAYEVA TI, KONDRAT'EVA NA:
 Use of cultures of tumor cells for screening and
 studying antitumor drugs. In Problems of Malignant
 Tumor Chemotherapy. Moscow-Kiev: Institute of
 Oncology, Minster of Health, USSR, 1974, pp 175–
 177 (Russian)
- (351) TERENT'EVA TG, FOMINA IP, PLATINSKIY LV, et al:
 Study of the susceptibility of explants of Wilms'
 tumor to some chemical agents. In First All-Union
 Conference on Chemotherapy of Malignant Tumors.
 Riga: Zinatne, 1968, pp 319-320 (Russian)
- (352) TERENT'EVA TG, FOMINA IP, NAVASHIN SM, et al: Susceptibility of human kidney cancer in a culture to antitumor drugs. Vopr Onkol 7:67-70, 1971 (Russian)

(353) MATTHIAS M: Methoden und Anwendungsmöglichkeiten der Organkultur in der Klinishen und experimentellen Krebsforschung. Arch Geschwulstforsch 41:382–397, 1973

- (354) TANNEBERGER S, MOHR A: Biological characterization of human tumours by means of organ culture and individualized cytostatic cancer treatment. Arch Geschwulstforsch 42:307–315, 1975
- (355) WRIGHT JC, WALKER D: Tissue culture as a test model for sensitivity of chemotherapeutic agents on tumors.

 In Aktuelle Problems der Therapie Maligner Tumoren. Stuttgart: Georg Thiem Verlag, 1973, pp 17-27
- (356) SALMON SE, HAMBURGER AW, SOEHNLEN B, et al: Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N Engl J Med 298:1321-1327, 1978
- (357) YEVGENJEVA TP: Heterotransplantation of human cancers to animals by means of diffusion chamber. Eur J Cancer 6:533-535, 1970
- (358) SVYATUKHIN MV, MALENKOVA EN: Growth morphology of explants of human melanoma in diffusion chambers. Arkhiv Patol 36(No. 1):48-53, 1974 (Russian)
- (359) SMETANKINA OZ, PLATONOVA GN, SOF'INA ZP: Determination of the nucleic acids for evaluating the growth of tumor cells in diffusion chambers. Vopr Onkol 23(No. 4):57-61, 1977 (Russian)
- (360) BENCZUR M, PETRANYI GG, HENDY J, et al: Comparative studies by in vitro methods and diffusion chamber technique for determining the individual drug sensitivity in lymphoid malignancies (Comparative Animal Experiments—Clinical Studies). In Actuelle Probleme der Therapie Maligner Tumoren. Stuttgart: Georg Theim Verlag, 1973, pp 124–137
- (361) CAIN BF, CALVELEY SB, BOREHAM BA, et al: Drugtumor sensitivity matching procedure using diffusion chambers in vivo. Cancer Chemother Rep 58:189– 205, 1974
- (362) CONNORS TA, PHILLIPS BJ: Commentary. Screening for anticancer agents; the relative merits of in vitro and in vivo techniques. Biochem Pharmacol 24:2217–2224, 1975
- (363) DETRE SI, DAVIES AJ, CONNORS TA: New models for cancer chemotherapy. Cancer Chemother Rep 5(Part 2):133-143, 1975
- (364) MITCHLEY BC, CLARKE SA, CONNORS TA, et al: Hexamethylmelamine-induced regression of human lung tumors growing in immune deprived mice. Cancer Res 55:1099-1102, 1975
- (365) CONNORS TA, CUMBER AJ, ROSS WC, et al: Regression of human lung xenografts induced by watersoluble analogs of hexamethylmelamine. Cancer Treat Rep 61:927-928, 1977
- (366) GIOVANELLA BC, YIM SO, MORGAN AC, et al: Metastases of human melanomas transplanted in "nude" mice. J Natl Cancer Inst 50:1051-1053, 1973
- (367) PICKARD RG, COBB LM, STEEL GG: The growth kinetics of xenografts of human colorectal tumours in immune deprived mice. Br J Cancer 31:36-45, 1975
- (368) POVLSEN CO, FIALKOW PJ, KLEIN E, et al: Growth and antigenic properties of a biopsy-derived Burkitt's lymphoma in thymus-less (nude) mice. Int J Cancer 11:30-39, 1973
- (369) VISFELDT J, POVLSEN CO, RYGAARD J: Chromosome

108

- analyses of human tumors following hetero-transplantation to the mouse mutant "nude." Acta Pathol Microbiol Scand [A] 80:169-176, 1972
- (370) POVLSEN CO, RYGAARD J: Heterotransplantation of human adenocarcinomas of the colon and rectum to the mouse mutant nude. A study of nine consecutive transplantations. Acta Pathol Microbiol Scand [A] 79:159-169, 1971
- (371) OSIEKA R: Chemotherapy studies with human colon cancer xenografts in nude mice. In Current Chemotherapy [Proceedings of the 10th International
- Congress of Chemotherapy Zurich, Switzerland (Siegenthaler W, Lüthy R, eds)], vol 2. Washington, D.C.: Am Soc Microbiol, 1978, pp 1149–1151
- (372) OVEJERA AA, HOUCHENS DP, BARKER AD: Chemotherapeutic sensitivity to anticancer drugs of human tumor xenografts in athymic mice. In Current Chemotherapy [Proceedings of the 10th International Congress of Chemotherapy, Zurich, Switzerland (Siegenthaler W, Lüthy R, eds)], vol 2. Washington, D.C.: Am Soc Microbiol, 1978, pp 1144–1146

APPENDIXES I-IV

Results of Experimental Studies of Antitumor Drugs

APPENDIX I.—Results of experimental studies in the United States with drugs developed here

ED50.	ug/ml																																												
Day of eval-	uation	09	32	9	31	9	45	:	20	21	33	36	33	38	30	35	45	09	£	45	09	30	45	30	:	£	09	:	2	: :	\$: :	: :	: :	: :	: :	: :	2	:	2	:	£ :	: :	: {	70
Survi- vors/	total	2/8	8/0	:	:	0/10	:	:	8/0	2	2	2	2	£		\$	0/10	\$	8/0	4/10	1/10	4/6	0/10	5/6	1/6	2/7	10/10	:	9/0	£ :	£	0/10	9/0	: :		1/0	0/10	9/0	0/10	•	£	2/8	0/10	1/10	° />
Percent ILS or tumor inhibi-	tion	224	136	124	248	148	31	39	53	30	24	177	155	144	121	105	230	211	295	503	207	157	87	168	200	150	650	200	28	56	45	37	43	ვ ;	7 6	87	25	39	21	20	33	71	59	4 ç	C7
g/kg/ ion	Optimal	172	280	140	240	300	ž.	:	100	400	ĩ	300	200	300	180	:	250	225	£	400	2	25	64	20	25	20	300	£	20	£	25	£ (00 5	3 8	200	99	40	25	20	:	ž.	300	200	300	108
Doses, mg/kg/ injection	Tested (350-84	400-135	400-86	•	400-150	300-200	:	400-100	:	400-50	500-108	:	:	2	300-65	250-100	225-44	•	400-200	2	100-6.3	64-4	100-6.3	400-25	200-50	300-200		200-6.3	100-25	:	100-6.3	100-25	: :	: :	:	80-40	100-25	100-12.5	2	£	300-75	400-25	300-75	300-108
Treatment Schedule,	days	5 only				:	1 only		:	:	"	5 only	2	:	: : : :		2 only	:	"	"	"	1-9	\$:		:	2 only		1–9		.	.	: :	: :	: 3	: :	:	:	2	:	:	8 only	: :	: :	
T	Route	qi	:	2	:	:	:	:	:	:	:	30	:	:	: :		. <u>С</u>		:	:	:	:	:	:	:	:	:	:	:	:	:	: :	: :	: :	: :	: :	٤	:	:	:	£	£ :	: :	: :	
Con-	trols	6.6	9.0	9.5	8.9	8.5	8.2	6.6	7.4	9.0	8.9	9.0	10.0	9.0	9.5	0.6	4.0	4.3	4.3	5.6	4.0	11.6	12.0	10.8	6.6	12.0	8.0	10.0	17.0	23.0	13.0	17.4	16.0	76.0	: :	: ;	21.3	23.0	14.0	12.0	:	35.0	28.8	30.0	0.40
Parameter	of effect b	MST	:	:	2	2	2	:	:	ţ	:	: :	\$:	: :	:	:	.	:	۱ ء	£	:	:	2	2		:	:	:	: :	\$: :	: :	: :	: :	: :	:	:	:	:	2	2	: :	: :	
Expt.	No.	1562	1711	1719	1740	6142	232	233	1930	1933	1947	643	661	663	999	899	C218	C228	C230	C297	C315	2214	1944	3424	4209	0001	8000	6000	0005	0018	0019	0164	0008	0030	200	0700	8600	0035	0001	0004	8000	0017	0031	00I9	cooo
Site and	inoculum	ip, 1×10^5	"		, ,		ic, 1×10^5		:		,,	sc, 1×10^6					iv, 1×10^7	£				ip, 1×10^{6}			,, ,,	" "	iv, 1×10^7	" 1×10^6	ip, 1:10	: : : :		: : : :		sc, 1 : 10				: :	ic, 1×10^5	:	ic, 1:10	sc, 1:5	: :		
	Tumor	L1210																				P388							B 16													TT			
Drug	vehicle	Saline																				_																							
Com-	punod	Cyclophos-	pnamide																																										
NSC	No.	26271																																											

	4/52 61 1/5 3/33 " 6/34 66 0/12 Death 0/10 " 0/12 " 1/7 30 0/10 " " " " " 80 84 1/10 79 0/10 86 1/10 86 1/10 86	12 76 Death 8 " " " " " " " " " " " " " " " " " " "
		100 98 100 93 90 100 150 150 177 77 67 67
200 133 45 35 37.5 50 108 180	200 360 150 1150 100 100 200 200 200 200 200 200 200 20	50 45 45 45 45 11.3
300-60 450-90 45-2.8 70-4.4 100-25 37.5-30 50-6.3 180-39 300-65 25-3.1	200 160 200 150 100 64-2 108-14 65-8.4 200-50 400-50 200-12.5 50-6.3 180-11 45-2.8 90-5.6 80-20 20	50–62 50–25 100–6.3 50–25 180–11.3 50–6.3 180–11.3 22.5–2.9
1 only 2 12 hr, 1–7 2 1.9 3 1.9 3 1.9 3 1.9	1 only """ 14-42 "" "" "" "" "" "" "" "" "" "" "" "" ""	1–11 "" 1–10 ""
	::::: %:::::::::::::::::::::::::::::::	
21.7 21.0 688 mg 1,032 " 958 " 1,049 " 963 " 35.0 23.0 24.4	16.5 16.5 16.5 14.0 29.0 22.0 22.0 24.0 19.0 1,356 mg 1,533 " 697 " 697 " 69.8 52.5 69.8 58.0 58.0	1,056 mg 1,404 " 1,358 " 672 " 583 " 10 " 12 13 10 10.3 10.5 11.5 1
Tumor wt " " " " " " " " " " " " " " " " " "	Tumor wt " " " " " " " " " " " " " " " " " " "	Tumor wt """ MST """ """ """ """ """ """ """ """ """ "
0003 0023 0471 0498 2477 2478 2596 0008 0009	003 00406 0407 0407 0407 00013 00013 00074 0008 1856 1859 00058 00058 00017 0017 0017	0026 0001 0008 0016 0019 0002 0003 0006 0007 0003 0007 0004
LL iv, 1 × 10 ⁵ S180 sc, tumor frag """" """ Madison im, 1 × 10 ⁵ cells """ """ """	t) ip, ascit """" ic, tumo """" sc, tumc """" sc, tumc """" """ """ """ """ """ """ """ """	Friend sc, tumor frag """" Gardner ip, 1 × 106 """ AK leuk ip, spleen susp P-1534 ip, 1:10 leuk """ P329 ip, 1 × 106 RCS Kelly)
		CMC

ED50, ug/ml		1,200
Day of eval- uation	Death	21 21 30 30 30 30 45
Survi- vors/ total		% 0/10 % 0/10 % 8/10 8/10 8/10 1/6 1/6 1/6 1/6 1/9 0/10
Percent ILS or tumor inhibition	21 26 7 30 100 100 103 58 98 98 201 71 705 71 705 71	17 28 45 100 88 100 80 84 146 129 110 193 271 146 126 146 127 116 127 175 176 176 176 177 176 176 176 176 176 176
ng/kg tion Optimal	11.3 45 10 40 22.5 90 45 25 50 25 	11.3 45 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10
Doses, mg/kg injection Tested Optim	m 10 10 m 10 10 m	65-8.4 60-15 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-2.0 16-3.7 16-2.0 16-3.7 16-3.7 16-3.7
Treatment Schedule, e days	1-10 10-19 "" 1-10 """ """ 1-death """" """ 1 only """	10nly 1-9
Tro Tro Route	. <u></u>	
Controls	14.4 22.6 24.1 20.3 23.3 1,388 mg 1,628 " 7.6 11.2 9.2 8.8 6.7 7.0 6.9 10.1 28.0 31.8	9.7 9.5 817 mg 792 " 693 " 697 " 9.7 8.8 9.6 " 5.7 6.5 6.5 4.0 4.1
Parameter of effect b	T wt	Tumor wt
Expt.	0005 0003 0004 0005 0005 0000 0001 0003 0004 0003 0004 0005 0007 0006 0008	0002 0003 0004 00011 00043 0044 0045 E446 E446 E446 E446 E444 0045 8643 8643 8644 8651 8666 0099 0204 C411 C437
APPENDIX 1.—Kestuits of experimental studies in the United States with drugs developed here "(Continued) Percontinued) Britania Site and Expt. Parameter Con-Schedule, injection inhibition incoculum No. of effect trols Route days Tested Optimal tion	P329 ip, 1 × 106 RCS " 1:6 " " " Ca-1025 sc, tumor frag P288 ip, 1 × 106 leuk " " " P335 ip, 1 × 106 leuk " " " P-1798 sc, 1 × 106 lym- " " P-1081 ip, 1 × 106	sc, 1: 2 """" """" """" """" """ """ """ """ "
Tumor	P329 RCS Ca-1025 P288 leuk P335 leuk P-1798 lym- phoma P-1081	chlo-roleuk S91 mela- noma L1210 L1210 L1210
APPENDIX Drug vehicle Tumor		Saline and alco-hol
Com-	26271 Cyclophos- Saline phamide	409962 1,3-Bis(2-chloro-ethyl)-1-nitro-sourea
NSC No.	26271	409962

		7 1.2	
90: 130 130 130 130 130 130 130 130 130 130	30	60 61 61 60 88 88 88 88	30 "Death" " 60
0/10 0/10 0/6 5/6 6/6 1/10 0/10 2/10 2/10 3/6	0/10 0/6 0/10 " 4/10 0/10	", 1/33 0/31 1/10 6/6 0/6	1/6 3/6 2/6 6/10 10/10 0/9 3/10
143 122 87 87 191 156 132 90 143 102 757 500 87 87	113 95 66 66 50 41 58 117 72	35 35 35 73 76	179 142 136 177 240 526 775
8.0 5.33 6.0 8.0 8.0 8.0 4.0 4.0 4.0 7.7 7.75	7.5 10 8 4.0 7.5 5.0 80 40	30 20 2.5 5.0 1.5	50 36 50 50 28
64-2.0 12-5.33 4.0-0.25 16-2.0 " 50-10 50-10 50-10	30-3.75 10-1.25 8-1.0 8-0.5 15-1.87 15-1.9 20-2.5 160-5.0 40-5.0	160-5.0 30 30 10-2.5 10-1.25 24-1.5 20-2.6	200–6.3 800–6.3 288–18.0 225–18.5 71–14
1-9 "" "" 1 only "" "" 1-9	"""" 1 only """	" " " " " " " " " " " " " " " " " " "	5 only " " " 1 only " " 2 only " " "
		2 2 2 2 2 2	* * * * * * *
8.9 8.9 10.0 11.9 10.0 11.7 11.6 10.0 8.0 8.0 10.0 10.0 10.0 3.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	15 23 18 12 12 23 23 23	28.4 14 17 20 1,549 mg 1,339	9.2 10.3 9.6 8.4 8.8 4.2 4.0
		""" Tumor wt ""	MST
0013 0029 0050 5176 5177 5183 0003 0003 0004 0005	0018 0084 0073 0003 0004 0008 0105 0105	0139 0431 0432 0001 0003 3718 3728 B453 1233	8244 8245 2841 0010 0011 C414 C415
0	6 ip, 1:10 8c, 1:10 8c, 1:5 ic, 1 \times 10 ⁵ " " " 8c, 1:10 8c, 1:10	AK leuk (Spont) Epend ic, tumor frag S180 sc " " KB KB	L1210 ip, 1 × 10 ⁵ """ ic, 1 × 10 ⁴ ", " iv, 1 × 10 ⁷
	B B B B B B B B B B B B B B B B B B B	en S K	
Saline Saline and alco- hol	Saline and alcohol Saline Saline Klucel Saline and alcohol	Saline and Twee 80 Saline and alcohol Saline Saline Saline Saline	Klucel CMC Klucel
			79037 1-(2-Chloroethyl)- 3-cyclo- hexyl-1- nitro- sourea
			79037

APPENDIX I.—Results of experimental studies in the United States with drugs developed here a (Continued)

	ED50,																										9.1			
	eval- uation	60	} =	30	£ :	: :	: :	09	: :	: :	:	2	: :	: :	: :		ŧ	ŧ	;	:	36	41		9	:	61	; :	Death	:	:
Survi-		1/8	0/10	9/0	: :	: :	: :	3/10	6/10	8/10	,	9/0	3/6	1/6	: 0	9/0	2/6	9/0	0/10	2	2	8/0		:	8/8	1/40	3/26	1/0	9/0	
Percent ILS or tumor	inhibi- tion	422	134	53	65	4 6	140	400	650	200 757	200	68	185	150	15/	140	130	23	6	07	<u>«</u>	33		56	137	35	45	59	41	30
g/kg/	Optimal	90	2 ∞	12.5	18	3.6	11.0	59	43	29	43	16	£ :	: :	. •	4 7		26	2.0	:	8.0	16		09	12	40	30	0.3	1.5	3.7
Doses, mg/kg/	Tested Optimal	90-18	8-0.5	12.5-5.5	18-8.2	3.6-2.4	8-1.0 8-1.0	71-15	: :	: 1	£	32-4	: :	: :	: :		:	· £	2-0.25	*	64-4.0	:		60-12	:	40	30	6.0-0.1	12-1.5	3.7–1.2
Treatment	Schedule, days	2 only	`.	:	£ :	: :	: :	1 only	: :		"	1-9	2 :	: :	: :	:	*	:	:	:	1-11	£		1 only	:			1-death	:	:
Tre	Route	. й .	:	:	: :	: :	: :	:	: :		:	î.	£ :	: :	: :	:	:	ŗ	;	ŧ	:	:		ŧ	:	:	:	:	:	:
	Con- trols	4. «	9.3	11.1	12.1	4:11	11.0	0.9	8.0	10.0	10.0	19.0	21.0	17.0	14.0 25.0	3:	26	26	35.3	32.7	24.8	19.5		19.7	25.3	14	; £	8.8	8.5	8.6
	Parameter of effect b	MST	:		r :	: :	: ‡	:	: :	: :	÷	:	s :	: :	: ::	:	:	:	:	:	:	£		£	£	:	*	:	:	:
	Expt.	C441	0043	4689	4775	4909	0880	0001	0005	0003	000	0012	0027	0014	7700	0000	0053	0026	0727	0735	0277	0145		6000	0012	0461	0467	7260	0933	0454
	Site and inoculum	iv, 1×10^7	; ; ;	ip, 1×10^6	: :			ic, 1×10^7	" 1×10^6	iv. 1×10^7	" 1×10^6	ip, 1:10	: : : :		: :	"""		sc. 1:10	sc, tumor frag		im, 1×10^6	"		iv, 1×10^5				ip, 1×10^5		
	Tumor	L1210		P388								B16						B16	īT					LL		AK leuk	(Spont) KB	L1210		
ı	Drug vehicle	Klucel	and alco- hol	Klucel								Saline		Klucel	Colling	Klucel	I Anna					Saline	and Tween	Saline	and alco-	Klucel		Saline	СМС	Alkali and saline
	Com- bound	79037 1-(2-Chlo- Klucel roethyl)- Saline	3-cyclo- hexyl-1- nitro-	sourea																								34462 Uracil		
	NSC No.	79037																										34462		

	50 " " 8	Death 30 45	30 "" 60 "" Death	
3/6 0/10 3/6 0/10 0/6 0/9		0/8 De		0/6 6/10 0/6
27 27 200 200 25 25 42	10 73 83 68	208 167 135 139 143 227 201	20 55 57 27 183 250 313 325	81 55 26 50 92 115 47
2.5 1.7 5.0 0.75 1.5 1.13	0.25 1.69 1.35 1.5	100 108 80 87 " 100	20 40 80 212 371 6600	25 100 100
5.5-1.8 3.7-1.2 1.7-0.75 14-0.65 6-0.38 3.00-0.38 1.5-0.19 3.0-0.05 14-1.8	1.0-0.13 1.69-0.68 1.35-0.17 12-1.5 2.5-0.3	200–25 180–39 240–20 87–21.8 87–2.8 400–12.5	640–10.0 " 265–53 371–27 600–120 693–137 200–25	25-3.1 200-25 150-10 400-25 "
" " " 1–15 7–death 1–10 1–9 " " "		1	"" " 2 only "" "" "" "" "" "" "" "" "" "" "" "" ""	
10.2 8.3 9.1 10.0 11.0 14.0 15.5 20.0 20.0 22.5	24.0 1,097 mg 1,032 " 838 "	8.2 8.9 8.2 8.8 8.8 8.3	9.5 9.2 9.2 9.4 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	11.0 19.2 19.0 18.0 14.0 16.0 24.0
	ır wt " "	MST		
. 1479 0133 0161 0065 0013 0055 0133 0382	3009 2905 0578 3106	1260 1332 R099 4623 4682 0020	0227 0228 0229 0230 C414 C424 C424 C441 C470	0131 0001 0005 0015 0024 0008 0008
"" "" ip, 1×10^4 sc, 1×10^6 ip, 1×10^6 ip, 1×10 "" "" "" " sc, tumor frag	im, 1 × 10 ⁶ sc, tumor frag sc, tumor frag sc, tumor frag	ip, 1 × 10 ⁵ sc, 1 × 10 ⁶	ic, 1×10^4 """ iv, 1×10^7 """ iv, 1×10^7 """ ip, 1×10^6	sc, 1 × 10 ⁶ ip, 1:10 """" sc, "" sc, ""
L1210 P388 B16 LL	Ca-755	L1210	P388	B16
Saline CMC Other Saline Saline and	Tween 80 Other CMC CMC Alkali 8 and saline CMC	CMC DMSO Other Saline and alco- hol Saline and Tween	80 Other	CMC Other Water Klucel Saline and Tween 80
		82196 TIC- mustard		

APPENDIX I.—Results of experimental studies in the United States with drugs developed here " (Continued)

ED50,	4	100
Day of eval- ED50, uation ug/ml	60 37 60 55 30 62 60 60 55	30 45 45 30 30 60 60 60 60 30 30 30
Survi- vors/ total	0/6 0/8 1/10 0/10 0/6 0/10 	0/6 0/10 0/10 0/8 0/10 0/8 0/10 0/6 0/6
Percent ILS or tumor inhibi- tion	70 255 10 23 72 72 17 13 53 35	55 38 48 40 40 61 13 44 44 15 10 10 18
mg/kg tion Optimal	100 200 3.1 50 405 100 200 37.5 50 73	100 50 100 67 120 50 100 39 50 200 200 100 1100 1130
Doses, mg/kg injection Tested Optim.	400-25 200-12.5 100-3.1 400-25 405-180 400-50 800-100 100-25 50 249-73	200–12;5 " 150–67 120–15 200–12.5 " 200–12.5 75–33.3 200–12.5 160–20 150–9.4 160–20 195–85 160–20
Treatment Schedule, te days	1-9 1-8 8-16 7 only 1-5 1 only 1-9 2, 9	11–9
Tr	.e. : : : : : .e.	
Con- trols	29.0 27.0 29.0 32.0 32.0 16.3 20.0 35.4 12.4 20.0 35.7	8.8 8.8 8.7 8.7 8.7 8.7 11.0 11.0 10.9 17.0 17.0 17.0 17.0 17.3 8.2 10.8
Parameter of effect b	MST	
Expt. No.	0052 0025 0279 0018 0023 0040 0002 0002 0002 0002	5165 P0421 P0421 P0422 P0423 0023 0023 0023 0023 0023 0023 0023
Site and inoculum	B16 sc, 1: 10 LL im, 1 × 10 ⁶ sc, 1: 5 sc, 1: 5 iv, 1 × 10 ⁶ Epend ic, tumor frag Madison im, 1 × 10 ⁵ AK leuk ip, 1: 10 C3H ip, tumor frag mam KB	ip, 1×10^5 " " " " " " " " " " " " " " " " " "
Tumor	B16 LL LL Epend Addison AK leuk C3H mam KB	L1210 L1210 LL LL KB L1210 L1210 L1210
Drug vehicle	Klucel Saline and Tween 80 Other Saline and Tween 80 Klucel Saline Other	Saline I Citric acid Saline Other Water I Water I Saline I And Tween Saline I Tween Saline I And Tween Saline I And Tween Saline I And
Com-	TIC-mustard	85998 Strepto- Saline acid acid acid acid Saline Other Water Saline ylmela- and mine Saline Saline ylmela- and mine Saline and Twe Saline Sali
NSC No.	82196 TIC-	13875

		31			0.085
09	: : :	12 8	75 30 30 60 40 30	46 30 60 60 60 60 60 8	30 40 60 33 33 33 34 45
0/10	" 4/10	0/10	`_'	1/8 0/3 0/3 1/10 0/10 0/10 0/10 0/10 0/10 0	1/10 1/8 2/8 1/8 0/6 0/8 0/8 3/8 0/8
24	22 68 93	94	73 102 32 33 150 150 55	26 26 59 61 61 63 30 30 30 93 93	158 211 168 160 138 100 511 254 136 136
200	40 50 25	80.4	16 23 119.3 120 37.5 24 	15 100 28 20 30 10 20 30 20 30 37.5	266 400 300 300 400 500 400 500
400–25	320–40 400–12.5	294-36.8 280-83		60-7.5 400-50 28-12 20-2.5 40-5.0 40-5 " 80-5 " 80-7 80-7 80-7 80-13 40-10 40-2.5 45-37.5	600-118 800-100 500-39 833-108 500-39 800-50 800-100 500-39
1–18	(4 2 days) 1-9 " 1-18	(4 2 uays) 1-11 1-7	1-9 1 only 1-9 1.	3-7 (q 4 days) 1-9 1-17 " 1-9 " 8-16 (daily) " 1-11 " 1-5 1-7 (q 12 hr)	1–9
	: : :	: :			
18.7	25.4 35.3 28.4	804 mg 457 "	2.8888.448.65.45.65.65.65.65.65.65.65.65.65.65.65.65.65	11.3 19.0 11.0 21.0 19.5 23.0 25.5 31.0 27.5 19.5 19.5 17.0 17.0 17.0 3,750 mg	9.6 9.0 9.5 10.0 9.0 10.4 10.4 9.3 11.1 11.1
	: : :	Tumor wt	MST	<i>x x x</i>	MST
0382	0267 0727 0728	2726 0094 0799 0799	1792 2137 0047 0041 C309 0031 0035	0269 0001 0015 0046 0035 0046 0012 0016 0106 0233 A180 2523	0013 0193 3429 2060 2069 0755 0770 0014 00175 0105
ip, 1:10	sc, 1:5 sc, tumor susp	sc, tumor frag sc, ""	ip, 1×10 ⁵ ic, 1×10 ⁴ iv, 1×10 ⁶ sc, 1×10 ⁶ ip, 1×10 ⁶	P388 sc, 1 × 10 ⁶ B16 iv, 1 × 10 ⁶ B16 ip, 1:10 sc, "" LL sc, tumor frag im, 1 × 10 ⁶ im, 1 × 10 ⁶ im, 1 × 10 ⁶ Ca-755 sc, tumor frag Epend ic, "" S180 sc, ""	KB ip, 1 × 10 ⁵ " " " " " " " " " " " " " " " " " "
B16	TT	Ca-755 S180 KB	L1210 L1210 P388	P388 B16 LL LL AK leuk Ca-755 Epend S180	L1210
Klucel		СМС	Water Saline CMC Water Saline	Saline Klucel Saline Klucel Saline CMC Saline	Saline Water
			19893 5-Fluoro- uracil		145668 Cyclo- cytidine

APPENDIX I.—Results of experimental studies in the United States with drugs developed here a (Continued)

ED50,	µg/ml					< 1.0																												
Day of eval-	uation	36	45	09	:		30	: :		31	30		:	2	09	30	: :	£ £	: :	45	; ;	09	:	ŗ	45	9	32	:	.	20	9	69 :	59	
Survi- vors/	total	3/8	9/0	8/0	9/0		:	: :	*	8/0	:	0/10	9/0	3:	0/10	9/0	٤ :	: :		5/y 0/10	1/9	0/10	9/0	2	2	5/6	9/0	0/10	1/10	8/0	1/10	0/30	0/10	
Percent ILS or tumor inhibi-	tion	66	10	35	=		109	128	4 4 4	100	138	57	28	50 50	129	135	127	145	ر د بر	30	42	۽!	09	44	40	99	33	27	56	12	31	4 t	36	
	Optimal	400	400	640	400		2.5	3.0	3.12	1.5	3.0	3.2	0.75	3.0	4.0	1.9	3.0		C. 1	۲.6 ۲.0	5.0	3.0	ŧ	:	:	0.75	1.5	4.0	1.6	0.75	1.6	0.9	2.7	
Doses, mg/kg/ injection	Tested (800-100	800-100	640–80	1,600-	}	10-1.25	6-0.75	6.3-3.1	12-0.75	5.0-0.65	5.2-0.2	6-0.75	3-0.75	6-2.0	19-0.9	6-0.75	· ·	1.5-0.19	7.5-3.4	:	6.0-0.75	:	:	:	:	:	400.5	3.2-0.2	1.5-0.1	3.2-0.2	6.0	6.0–1.8	
Treatment Schedule,	days	5–13	1–9	ţ.	1–5		1–9	: :	:	:	: :	: :	:	:	:	2	£ :		: :	:	:	:	:	:	:	:	:	*	*	1-11	:	1-9	16-24	
Tre	Route	i.	:	:	:		£ :	: :	:	sc	: :	: :	.2	, - :	:	:	: :	: :	: :	:	:	:	:	:	:	:	ī	2	:	: :	\$: :	:	
Con-	trols	20.4	23	26.6	27		8.7	∞ ∝ 4. o	9.6	0.6	: (∞ ο΄ ς	2 8	9.0	6.1	10.0	11.3	0."		13.0	14.7	20.6	14.0	18.0	15.0	31.0	21.0	23.0	:	24.0	27.3	18.0	42	
Parameter	of effect b	MST	.	*	:		: :	: :		:	: :	: :	:	:	:	. ;	: :	: :	z	ŧ		:	.	:	•		:	•	:	: :	:	: :	:	
Expt.	No.	0102	0248	0118	6200	0952	4321	8892	5891	0990	0703	0016	0048	0003	C492	1517	5768	0888	/060	0002	0019	0327	0024	0007	0232	0024	0039	0105	0202	0251	0289	0839	0039	
Site and	inoculum	sc, 1×10^6 ic,	ip, 1:10	sc, tumor frag	ic, tumor frag		ip, 1×10^5	, ,	:	sc, 1×10^6	s :		ic. 1×10^4		iv, 1×10^6	ip, 1×10^6	s :		1 1 106	sc, $1 \times 10^{\circ}$ ic $1 \times 10^{\circ}$	" " "	ip, 1:10	: :	: :		sc, tumor susp	" "		sc, 1:10	im, 1×10^6			sc. tumor frag	
	vehicle Tumor	P388	B16	TT	Epend	KB	L1210			L1210			1.1210			P388			0000	F366		B16				B16				LL		AK leuk	C3H	mam
Drug	vehicle	Water	Saline, soni- fied	Saline and Tween	Saline																													
Com-	punod	Cyclo- cytidine					102816 5-Azacyti-	dine																										
NSC	No.	145668 Cyclo- cvtic					102816																											

				0.018	72
62	Death " 17 45 30 " " 60			57 60 60 60 60 60	30
; ;	0/8 0/10 3/6 3/6 2/10	0/6 0/10 0/6 	0/10 3/31	0/10 0/6 1/10 0/10 0/10 0/10 0/10	9/0
12 27	44 87 87 87 87 197 197 197 86	25 42 25 25 25	63 43 43 54 63 63 63 63 63 63 63 63 63 63 63 63 63	61 15 15 24 24 37 30 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	34
0.44	1.3 1.0 2.0 3.0 2.0 0.8	2.0 2.0 1.2	2.0 1.2 10.0	50 12.5 80 11.6 9.4 19.2 50 50 7	80
30-10	2.5-0.3 2.0-0.3 4.0-0.5 3.0-1.3 8.0-0.5 6.4-0.4	4.8–0.6 2.0–0.5 4.8–0.6	2.0-0.5 4.8-0.6 10.0	3.0-1.3 3.0-1.3 100-12.5 160-20 100-12.5 160-20 400-50 25-3.1 50-12.5 200-50	320–40 120–50
3, 7, 11, 15	9-1.			2, 7 1-5 1-9 	
: :					* *
50 8.7	9.5 9.8 9.0 10.0 12.0 15.0	17.0 16.0 17.0 27.0 31.0	23.0 24.0 27.5 18.0	45.3 17.0 10.1 8.3 10.7 11.6 9.4 19.2 21.0 23.5 18.0 15.0	19.0
: :					: :
0066 C490	1442 1445 1445 1470 0647 0034 0196 0315 0104	0008 0008 0029 0032 0032 0024	0035 0094 0020 0016 0795	0050 0057 1501 0798 8645 8646 0005 2871 5257 0001 0152 0075	0031 0066 0800
" "" L-5178Y iv, 1 × 10 ⁷	L1210 ip, 1 × 10 ⁵ " " " sc, 1 × 10 ⁶ P388 ip, 1 × 10 ⁶ sc, 1 × 10 ⁶ B16 ip, 1: 10	SC, 1	CL AK leuk (Spont	C3H sc, tumor frag mam Epend ic, "" KB L1210 ip, 1 × 10 ⁵ sc, " sc, " sc, " sc, " sc, " sc, " LL im, 1 × 10 ⁶ AK leuk ip, 1 : 10	Epend ic, tumor frag
	Saline Other Saline	Saline and Tween 80 Saline Klucel	Klucel Saline Saline and Tween 80 Klucel Saline and Tween 80	Klucel	
	num(II) diam- minedi- chloride			15200 Gallium nitrate	

APPENDIX I.—Results of experimental studies in the United States with drugs developed here a (Continued)

ED50,	<u> </u>															51					
Day of eval- uation	09	2	23	45	: :	: :	20	30	47	:	99 :	:	63	09	27	59	30	52	30	:	9:
Survi- vors/ total		1/10	8/0	0/10	: :	: #	9/0	:	8/0	1/8	0/10	9/0	0/10	5/10	8/0	:	2/10	0/10	9/0	0/10	9/0
Percent ILS or tumor inhibi-	365	226	99	28	9	1157 157	38	63	56	35	30	27	26	160	23	32	126	20	104	∑ ∞	36
mg/kg tion Optimal	540	009	200	£ :	: :		800	£	1,500	750	800	125	238	550	200	400	32	40	25	32	10
Doses, mg/kg injection Tested Optim	7	1,350-	833-180	500-100	: :	: :	3,200-	800-100	1,500- 1	3,000-	800-100	250-15.6	810-238	550-375	1,000– 125	600–300	128-4.0	64-8.0 40-5.0	100-12.5	32-4.0	10-1.3 80-10
Treatment Schedule, te days	1, 5, 9 (q 3 hr)) : :	ŗ	: :	: :	: #	1–9	•	*	ŧ.	8–16	1, 5, 9	0–21 (q 3 hr)	1–9	:	*	. :	1, 5, 9 (a 3 hr)	1–9	<u>.</u>	* *
Tre	qi	:	sc	.₽:	: :	: :	•	•	:	:	: :	£	£ .	2	:	:	: :	. .	: :	:	* *
Con- trols	10.8	9.7	9.0	7.8	10.4	8.3 5.6	13.0	11.0	25.0	21.0	27.0	20.1	49	23	36.8	32	9.2	8.8	11.0	19.2	22.0
Parameter of effect b	MST	:	*	: :	: :	: :	:		:	£	: :	:	:	*	.	£	: :	: :	* :	:	: :
Expt.		C471	0649	0172	0174	0055	0970	0888	0231	0124	0005	0148	0062	0278	0021	0025	0000	1691 0648	0887	0001	0105
Site and inoculum	ip, 1 × 10 ⁵	,,	sc, 1×10^6	ic, 1×10^5	701 > 1 15	IV, I × IU* " "	ip, 1×10^6		im, 1×10^6	£	sc, tumor frag	ic, tumor susp	ip, tumor frag	ip, 1:10	Madison im, $1 imes 10^5$:	ip, 1×10^5	sc, 1×10^6	ip, 1×10^6	sc, "	ip, 1:10
Tumor	L1210		L1210				P388	e	LL			Epend	С3Н шаш	AK leuk ip, 1:10	Madison	ΚB	L1210		P388	c	B16
Drug vehicle	Saline		Water	Saline			Saline, soni- fied	Saline and Tween 80	Water		Saline				Water		Other	Steroid	Saline	Tween 80	Saline
Com-	Guanazole																71795 Ellipticine				
NSC No.	1895																71795				

	2.3												1.0				
£	50 57 60 45 30 60	Death 30	45	30	:	: 2	09	3 :	:	40	09	:		30	:	2 2	60 49 60
0/10	0/8 0/10 " 0/6	0	1/8	9/0	01.0	0/10	9/0	2,*	8/0) :	0/10	:	9/0	2/6	8/0	0/6 0/10	0/8
20	21 22 22 24 24	55 75	20	118	70	80 6	} %	25	12	<u>~</u>	37	35	18	88 187	75	109	15 43 54
16	6.3 4.0 50 37.5 32 80	70 50	23	20	9	040	8 6	25	<u> </u>	25	10	2.5	75	70 200	£	150	65 23 25
32-4.0	12.5-1.6 32-2.0 200-25 75-18.8 64-8.0 640-2.5		65–5.0	200–12.5		90-8.0 120 15	200-13	25-3.1	120-15	200–12.5	10-2.5	80-1.2	75–25	280–35 200–50	400-50	300–37.5 400–50	300–39 300–37.5 25–6.3
£	1, 5, 9 1, 5, 9 1, 5, 9	1-9	q4hr q 2days (5–13)	1-9	:	: :	2	ţ	£	1-11	1-9	:	1–5	1–9	£	1–10	1-11
:	* * * * * *	: :	SC	di.	:	: :	:	:	:	ŗ	ŗ	:		£ £	:	£ £	:::
23.0	24.0 33.0 13.0 22.0 20.0 25.5	9.7	14.0	11.0	:		20.00	22.0	23.0	25.0	24.0	17.0	21.5	9.3	10.7	11.0	28.5 23.0 24.0
:		£ £	:	£	:	: :	2	:	£	:	:	:	•	: :	:	2 2	
0105	0251 0034 0023 0023 0039 0128 1068	1295 5438	0694	0888	011	2/15	000	0105	0105	0147	0078	0136	0059 0340 0349	4302 5221	0000	0700	0114 0089 0078
SC	LL im, 1 × 10 ⁶ Madison im, 1 × 10 ⁵ AK leuk ip, 1: 10 ", ", " Epend ic, tumor frag KB	L1210 ip, 1 × 10 ⁵	sc, 1×10^6	38 ip, 1×10^6	:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19,1.10	" " " " " "		lenk	16 16 16 16 16 16 16 16 16 16 16 16 16 1	Epend ic, tumor frag KB	L1210 ip, 1×10^5	e e	38 ip, 1×10^6 sc, 1×10^6	LL im, 1×10^6 AK leuk ip, $1:10$
u		e		P388			1 D16		_	Ţ					sen	P388	
Saline and Tween	80 Water Other Klucel Saline Other	Other I Saline and Tween	Saline	Saline and Tween 80	20 .	Water	Niucei	Saille	Klucel	Saline		Klucel	Saline	Saline	Saline and Tween	Saline Saline and Tween	80 Saline
		83265 3-Trityl- thio-L- alanine												118994 Inosine di- glycolal-	denyde		

APPENDIX I.—Results of experimental studies in the United States with drugs developed here " (Continued)

	ED50, µg/ml	> 100	8.1		> 100
Day	eval- uation	30	335	35 30 30 49 49	47 30 60 60 60 60 7
Survi		0/10	0/10 0/6 1/6 0/6	0/6 0/8 0/6 0/10 	0/6 0/10 0/6 0/10 "" "" 0/8
Percent ILS or	inhibi- tion	113	13 20 20 12 8 8 8 36 11 11 11 11	35 47 104 111 23 64 64 50 31 23	36 64 64 125 83 33 42 42 42 43
lg/kg/	Ction	25 120	25 50 100 100 50 12.5 50 ,,	200 800 800 400 800 812 312 312 400 400	160 128 160 75 160 16 64 8.0 100
Doses, mg/kg/	injection Tested Opt	50-12.5 480-60	75-6.2 50-12.5 50-10.0 100-12.5 "	200–6.2 800–400 800–100 800–50 1,024–64 " 800–25 ",	200 160-5.0 128-8.0 600-5.0 150-9.3 160-20 250-8.0 256-16 256-16 256-16 256-8.0 200-12.5
Treatment	Schedule, days	1-9	1–9 "" "" 8–16		1–9
Tre	Route	ď.			
	Con- trols	19.0	13.7 9.0 10.0 16.0 18.0 31.0 23 24.0 31.0	9.1 8.7 10.7 12.0 9.0 19.2 22.7 24.8 25.8 25.4 17.0	9.5 10.5 10.0 12.0 16.3 15.2 19.6 27.8 28.0
	Parameter of effect ^b	MST "			
	Expt.	0125 0045 1397	1747 1660 0301 0017 0007 0024 00035 0008	1682 1706 0005 3348 3621 0005 0053 0008 0267 0160	2695 3189 0069 1217 0002 0136 0608 00077
	Site and inoculum	AK leuk ip, 1:10 Epend ic, tumor frag KB	ip, 1 × 10 ⁵ ip, 1 × 10 ⁶ ip, 1 × 10 ⁶ ip, 1: 10 sc, 1: 10 sc, 1: 10 sc, tumor frag """	$\begin{array}{c} \text{ip, } 1 \times 10^5 \\ \text{sc, } \\ \text{ip, } 1 \times 10^6 \\ \text{ip, } 1 \times 10^6 \\ \text{sc, } \\ \text{ip, } 1 : 10 \\ \text{sc, } \\ \text{if, } 1 : 5 \\ \text{im, } 1 \times 10^6 \\ \text{im, } 1 \times 10^6 \\ \end{array}$	ip, 1 × 10 ⁵ ip, 1 × 10 ⁶ sc, " ip, 1:10 ip, 1:10 ", ", " sc, " " sc, " "
	Drug vehicle Tumor	AK leuk Epend KB	L1210 P388 B16 LL LL	L1210 P388 P388 B16 LL	KB L1210 P388 B16
	Drug vehicle	Saline	Water Saline Klucel	Water Saline Water Saline Water	Other Dater Saline and Tween 80
	Com- pound	118994 Inosine di- glycolal- dehyde	126771 Dichloro- allyl law- sone	132319 Indicine- N -oxide	154890 Coralyne sulfoace- tate
	NSC No.	118994	126771	132319	154890

65						0.65	120								79		
\$	35	20	:	50	09	:	30	30	30	50	: :	: :	30	21	90	\$	•
:		3/6	9/0	8/0	0/10	2	9/0	÷	0/10 0/6	0/10	: :	5/10	0/6	0/10	*		1/10
50	78	62	89	12	30	36	50	129	100 98 38	36	51	652	74	11	3	98	136
32	40	50	25	£	200	400	200	25	4 16	1.0	32	23	25	25	12.5	1,024	2
256-8.0	160–10 600–75	50–12.5	25-6.3	50-1.6	400-100	09-009	400–100 300–132	50-12.5	64–1.0	2 2	: :	32–1.0	50–12.5 30–15	100-3.1	2.0-0.3 100-3.1	1,024-	<u> </u>
\$	1-3 5-13	(4 2 days) 1–9	£	1-11	5, 9, 13	33	1-9		: : :		: :	6 6	. .	5-13	8–16	1,5,9	** ***
:	sc s	ċt	=	:	:	:	: :	=	:::	2 2	: :	: :	: :	: :	: :	=	sc
21.4	7.8	12.0	11.0	20.5	23.0	18.0	9.1	:	8.0 10.5	21.3	30.3	23.0	8.5	9.6	30.6	9.1	9.3
	: :	2	2	6	\$	2	£ £			: :	: :	\$ £	: :	: :	2 2	:	:
0088	2183 0784	0991	1234	0184	0051	0193 0376	4759 4025 1232	5891	P250 3332 1448	0715	0029	01111	6124	0792	3183 0033 1152	0000	0011
	ip, 1×10^5 sc, 1×10^6	ip, 1×10^6	ip, 1×10^6	im, 1×10^6	AK leuk ip, 1:10		$", 1 \times 10^5$ KB	ip, 1×10^5	" " ip, 1 × 10 ⁶	ip, 1:10	sc," "	LL sc, tumor frag Gardner ip, 1×10^6	ip, 1×10^5	sc, 1×10^6	1p, $1 \times 10^{\circ}$ sc, tumor frag	ip, 1×10^5	:
KB	L1210	P388 n	P388	LL	AK leuk n	КВ	L1210	L1210	P388	B16		LL Gardner	L1210	0	r388 LL KB	L1210	
	71851 α-Deoxy- Saline thio-	guanosine Saline and Tween	Saline, soni-	Saline and and Tween	Saline and Tween	Saline	126849 3-Deazauri- dine	137679 6-Seleno- Saline	guanosine DMSO Saline				154020 Townsend's Saline nucleo-		rivative Klucel Saline	169780 ICRF-187 Saline	

APPENDIX I.—Results of experimental studies in the United States with drugs developed here " (Continued)

ED50, µg/ml		> 100	
Day of eval- uation	30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	30 	:
Survi- vors/ total	0/10	0/6 3/6 0/1 0/10 2/10 0/10 0/10 0/10 3/6 0/6 0/10 3/6	0/10 6/6 9/10 0/10
Percent ILS or tumor inhibi- tion	50 46 32 32 32 32 44 42	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 144 150 24 23
mg/kg tion Optimal	128 256 64 800 400 64 64 	35 " 6.3 0.78 6.0 6.0 6.0 25	25 16 8.0 "."
Doses, mg/kg injection Tested Optim	512–16 256–16 512–32 800–25 " 64–8.0 " 256–8.0	35–16 25–0.39 24–1.5 " 12.5–0.78 " 24–1.5 24–1.5 75–12.5 50, 12.5	16-0.5 " 16-1.0 16-0.5 32-1.0
Treatment Schedule,	5-13 1-9 1, 5, 9 1, 5, 9 1, 5, 9		
Tre	. <u></u>		
Con- trols	9.1 9.4 9.7 20.0 22.3 23.8 22.0 20.3	9.4 9.3 10.2 10.3 8.9 8.9 17.1 17.1 7.2 23.9 20.3	8.0 12.3 12.0 16.9 15.4
Parameter of effect b	MST		
Expt. No.	0061 0013 0015 0116 0269 0003 0181 0179	6751 3536 4328 3354 0017 00272 0271 00272 0271 0144 0143 0007	2453 0008 2116 1144 0145
Site and inoculum	sc, 1×10^6 ic, 1×10^5 ip, $1 : 10$ ip, $1 : 10$ sc, " ic, tumor frag	ip, 1 × 10 ⁵ ip, 1 × 10 ⁶ ic, " ic, " ic, 1 × 10 ⁵ ic, tumor frag " sc, " ip, 1 × 10 ⁵ ip, 1 × 10 ⁵ ip, 1 × 10 ⁵	ic, " ip, 1×10^6 ip, $1 : 10$ ip, $1 : 10$
Drug vehicle Tumor	L1210 B16 B16 Epend	KB L1210 P388 n1 1 B16 Epend LL	n P388 B16
Drug vehicle	Water	Saline Saline Tween Saline and Tween Saline Saline Saline Saline Saline Saline Saline Saline Saline	sanne and Tween 80 Klucel P388 Klucel B16
Com- pound	169780 ICRF-187 Water Klucel Saline and Twe 80	dantoin mustard mustard 172112 Spirohy-dantoin mustard 176319 Cain's cain's	derivative derivative F
NSC No.	169780	dant mus	

9.5	24		
30	09	60 " 45 " 77 " 60	Death 45 30 60
\$6	9/10 8/10 0/10 0/10 9/10 6/10 0/10 0/10 0/10 3/6	0/8 0/10 2/10 2/10 0/10 1/8 0/10	6/6 2/6 8/10 10/10 4/10 2/10 4/6 1/10 1/10
11 12	517 20 20 30 1138 1138 1141 1141 1170 1103	148 172 143 57 57 49 40 6	226 103 235 197 328 470 172 163 276 318
2.0	30 30 30 45.0 7.5 7.5 7.5 10 1.3	10.0 10.0 10.0 10.0 2.0	16 6.0 24 33 17 35 9.0 4.0 13.0
16-0.5	45-4.0 45-9.0 64-4.0 45-9.0 60-7.5 67-13.0 30-1.9 67-13 67-13 67-13 160-10 160-10 160-13	16.7–3.6 51–6.6 4.0–0.25 8.0–0.25 4.0–0.13 16.7–3.6	750-8.0 6-0.5 36-12 44-5.5 35-2.1 9.0-4.0 4.0-0.5 45-8.0
8-16	1 only 2 only 1 only 1 only 1 -9 1 only 1 only 1 -9 1 only 1 -9 1 only 1 -9	1, 5, 9 1-9 1, 5, 9 1, 5, 9	2 only
31.9	9.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	10.4 11.0 221.1 224.8 22.3 20.4 20.3	9.2 8.6 8.7 7.0 4.0 11.0 6.3 6.3
# # # #			
0155 0024 1439	\$680 \$828 0033 0222 0001 1245 3335 0705 00158 0011 00144 0151	0054 2412 0743 0710 0715 0039 0018	2609 2625 0115 0120 0104 0103 2486 0007
sc, 1:5 ",",	ip, 1 × 10 ⁵ ip, 1 × 10 ⁶ ic, 1 × 10 ⁶ iv, 1 × 10 ⁶ iv, 1 × 10 ⁶ ip, 1 × 10 ⁶ ip, 1 × 10 ip,	ip, 1 × 10 ⁶ ip, 1:10 sc," iv, 1 × 10 ⁵ iv, 1 × 10 ⁵ ic, tumor frag """	ip, 1 × 10 ⁵ ic, 1 × 10 ⁴ iv, 1 × 10 ⁵ iv, 1 × 10 ⁶ ip, 1 × 10 ⁶ ip, 1 × 10 ⁷ ic, 1 × 10 ⁶ ip, 1 : 10
LL KB	L1210 L1210 P388 B16 LL LL Epend KB	Clinical P388 form Other B16 LL Clinical form Saline Epend and alco- hol	L1210 P388 en en B16
	Saline Saline Klucel Saline	Clinical form cother Clinical form Saline and alcohol	Other Saline and Tween 80 Saline and Tween 80 Tween 80 Tween 80
	178248 Chlorozo-tocin	249992 Cain's Clinic acridine form derivative Other Clinic Form Saline and also also holl holl	95466 1-(2-Chloro- Other ethyl)-3- (2,6-dioxo- 3-piperi- dyl)-1-ni- trosourea Saline and Twe 80 Soline Saline Saline and Twe 80 Soline Saline Saline and Twe 80

APPENDIX I.—Results of experimental studies in the United States with drugs developed here " (Continued)

ED50,	&		
Day of eval- uation	60 99 59 60 60	Death 30 30 30 30 30 30 60 60	40 60 20 20
Survi- vors/ total u	0/10 6/6 5/6 8/9 2/10 1/10		0/8 4/10 5/10
rercent ILS or tumor inhibi- tion	65 295 314 161 56 41	94 70 33 111 28 54 43 67 69	31 " 172 76 ¢
ig/kg/ tion Optimal	1.6 2.5 1.6 15.0 40 20	200 160 900 150 300 300	23 25 400 "
Doses, mg/kg/ injection Tested Optim	2.4-0.7 40-2.5 1.6-1.1 23-7.6 80-5.0	400–50 400–25 320–20 900–176 300–75 300–25 300–37.5	500–23 300–37.5 400–25
Treatment Schedule,	1–9 1–5 2 only 1 only	1-9 2 only 1-9 1-10 1-10 1-9 "	2-12 8-16 1-9 7, 14, 21
Tre	ë: : : :		
Con- trols	22.0 15.2 23.9 21.9 23.0 26.9	9.4 9.7 7.7 8.9 8.3 8.3 115.0 116.0 114.0 26.5	22.5 36.5 22.0 991 mg
Parameter of effect b	MST		" " Tumor wt
Expt.	0518 0116 0138 0009 0105 0134 0692	1225 P371 0022 C259 0035 0012 0012 0016	0140 0015 0087 0018
Drug Site and vehicle Tumor inoculum	ip, 1:10 ic, tumor frag ", ", " iv, 1 × 10 ⁶ sc, "	ip, 1 × 10 ⁵ ic, 1 × 10 ⁵ ic, 1 × 10 ⁵ iv, 1 × 10 ⁷ sc, 1 × 10 ⁶ ip, 1 × 10 ⁶ ip, 1 × 10	LL im, 1×10^6 sc, $1 : 5$ Epend sc, tumor frag Colon-38 " "
Tumor	D		LL Epend Colon-38
Drug vehicle	Saline Gum arabic Saline Other	<u> </u>	Klucel Saline Klucel
Com- pound	95466 1-(2-Chloro- Saline B16 ethyl)-3- Eper (2,6-dioxo- 3-piperi- Gum LL dyl)-1-ni- arabic trosourea Saline Other KB	45388 Dacarba- zine	
NSC No.	95466	45388	

* ED50 = median inhibitory concentration; MST = mean survival time; ic = intracerebrally; LL = Lewis lung; q = every; frag = fragment; AK leuk (Spont) = AK leukemia (Spontaneous); Epend = ependymoblastoma; C3H mam = C3H mammary; susp = suspension; RCS = reticular cell sarcoma; CMC = carboxymethyl cellulose; DMSO = dimethyl sulfoxide; Clinical form = clinical formulation.

^b MST value for controls is given in days.
^c Other signifies other than standard vehicle was used. Reader is directed to Instruction 14 of the Drug Evaluation Branch, Division of Cancer Treatment, National Cancer Institute.

d Tumor was inhibited.

APPENDIX II.—Results of experimental studies in the United States with drugs developed in the Soviet Union *

	ED50, ug/ml																			3.6														
Day	eval- uation	Death	: :	:	:	:	:	: :	30	09	t t	Death	"	:	:	£	: :		z z			£ ;	09		30	2	09	:	45	30	09	45	9	30
Survi-	vors/ total	2/0	9/0	:	ŗ	0/10		9/0	0/10	1/10	0/10	9/0	? ?	\$:	2	: :		3/6	2		8/0	21.		£	9/0	0/10	:	2	2	9/0	0/10	7/0	9/0
Percent ILS or tumor	inhibi- tion	30	70	£ :	53	42	18	75	41	55	35	0 0	33	205	28	75	61	ř	233	,		29 26	31		62	72	37	27	24	20	35	9	000	12
		1.3	2.0	16	32	14	39	1.0 4.0	0.5	ţ.	1.0	0	. c	;	0.5	4.0	2.0		. v	3		65 30	32		10	£	32	128	7.0	14	10	4	2	8.0
Doses, mg/kg/	Tested Optimal	2.00-0.6	4.00-0.50	32 0-4 0	128-32	39-5.0	65-8.4	4.0–5.0		:	: :		20-025	4.0-0.5	0.5-0.06	4.0-1.0	8.0-1.0	6.0-0.4	4.0-0.5			180-23	128-8.0		80-5.0	:	32–2.0	256-16	28-3.5	•	80-5.0	39–1.8	76 25	64–2.0
Treatment	Schedule, days	1-death	: :	1-6	1-death	8-death	"	1–10	1–9	ť	: :	1_10	1110		ğ				1-10			1,5,9	1, 9 (q 3 hr)	•	1-9	:	2	1,5,9	1–9	:	:	:	:	£
Ė	Route	ij	£ ;	ე .≥	Oral	Sc	:	.d.:	2	:	: :	:	2	:	:	ž.	: :		: :				Oral		ď	\$	sc	Oral	ų.	2	2	:	*	:
	trols	8.9	8.6	00	9.1	9.5	11.0	12.0 11.0	17.9	21.2	20.6	13.5	14.0	13.0	9.1	8.5	9.5) '	9.0	2.21		∞ 4. ¢	8.0		12.0	11.0	11.2	11.0	17.9	0.6	20	:	23	12.4
É	Parameter of effect b	MST	2 2	•	*	2	x ;	2 2	£	2	s s	*	:	:	:	\$	2 2					: :	÷		:		•	£	•	•	:	:	*	•
þ	Expt.	0971	0975	9860	1002	0110	0185	0041 0046	9000	0198	0107	0035	0037	0041	0038	0042	0035	0000	0027	0258		2137	7566		2220	9860	2813	2829	0004	0004	0030	0382	0105	0018
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site and inoculum			:		sc, 1×10^6	, ,	ip, 1×10^6	sc, 1×10^6	ip, 1:10	sc, " "	in 1 × 106	, , , , , , , , , , , , , , , , , , ,		2 3		$\frac{1}{1}$, 1×10^6		$\frac{1}{1}$, 1×10^6			1 p, 1 × 1 0°			_		: :		sc, 1×10^6	ic, 1×10^5	ip, 1:10		"""	ic, 1×10^5
	Drug vehicle Tumor	L1210						P388		B16	1	Gardner			P388	1	P335		P1081	KB		L1210			F388		ď		P388		B16	а		
Š	vehicle	СМС	Saline						Klucel			Saline			СМС			;	Saline			Klucel	Acid-	saline	Saline	Klucel	Acid- saline		Klucel			Saline and Tween	Klucel	Water
	ponud	44629 Dopan																			i	/3/54 Fluoro-												
Con	No.	44629																			1	/3/34												

	20									> 100		
61	66 8 8 "	Death "	30 60 30	; 49 12	. 49	8 2	30 Death " 15 Death	: : :	: :	:	30	: :
0/10	3/6 9/10 0/6	: :	4/6 0/10 3/10 0/10	0/8) : :	0/6 " 0/10 0/6	: : : : :	: : :	: :	:	*	0/10
22	439 169 37 50	91	200 40 278 168	73 10 94	58	78 71 98 99	23 40 60 64 50	85 124 90	23	25	28	62 58
23	12 16 31	8.0	2.0 4.0 8.0 6.0	4.0	6.3	5.0 2.5 10 8.0	2.5 8.0 5.2 8.0	" 4.0 2.0	4.0	:	64	256 384
180–23	48-3.0 64-2.0 31	32-2.0	16–2.0 4.0–0.5 32–4.0 16–4.0	4.0-0.5 16-1.0 16-1.0) 5.0–0.3 10–0.6 10–0.1 8.0–2.0	2.5-0.62 16-2.0 " 12-2.7 16-2.0		32–2.0	16–2.0	256–2.0	256–1.0 384–113
1, 5, 9	1-5	1–10	1–9	" 1-11	" 2 only	1–7 (q 12 hr) " 1–11	1–5 1–10 1–5 1–5			2	1, 5, 9	5–13
2	S.	.d.:		: : :		: : : :			: :	•	. <u>ф</u>	sc "
22.5	18.3 22.3 994 mg 169 "	9.3 8.9	11.0 19.2 14.0	23.0 19.5 1,003 mg	35.4	1,409 mg 828 " 3.7 g 5.7 "	19.0 10.0 1,389 mg 8.0	" 12.5 10.0	10.5	10.0	9.0	9.1
:	" Tumor wt " "	MST "	::::	" " Tumor wt		Tumor wt """ """	MST " Tumor wt MST		* *	6	:	2 2
0057	0118 0212 3591 3577 0403 0110	0713 0722	0050 0001 0016	0105 0150 2475	2388	0303 0475 0022 0075	0058 0015 0014 0120 0043	0046 0014 0015	00008	0039 0007 0369	9157	0052 0054
sc, tumor frag	ic, " " Sc, " " " " " " " " " " " " " " " " " " "	ip, 1×10^5	ip, 1 × 10 ⁶ sc, " ip, 1: 10	sc," " im, 1 × 10 ⁶ sc, tumor frag		" " " ip, 1 × 10 ⁶	ic, tumor frag ip, 1×10^6 sc, tumor frag ip, spleen susp	ip, 1 × 10 ⁶	ip, 1:10 ip, 1:10	ip, 1×10^6	ip, 1×10^5	sc, 1×10^6
Saline LL and Tween	Saline Epend Klucel Olive S180 oil KB	Alkali L1210 and	Other P388 Klucel P388 Saline B16	Klucel LL MC Ca-755	sel	S180 Acid– saline Ehrlich	Saline Epend Gardner Hep 129 AK leuk	Other Saline Mecca L	Alkali P-1534 and P-1534 saline	Other P815 KB	Saline L1210 and Tween	Klucel
		14210 Sarcolysin									167780 Asaley	

APPENDIX II.—Results of experimental studies in the United States with drugs developed in the Soviet Union a (Continued)

ED50, ug/ml						1.2		
Day of eval- uation	30	35	06 40	30	60 ,,	9; ;	20 30 30 60 80	90 2 30 00
Survi- vors/ total	9/0	2	0/10	9/0	0/10	0/9 0/10 "	0/3 0/6 " 0/10	0/6 0/10 0/10 0/6
Percent ILS or tumor inhibi- tion	18	75	95	54	38 31	24 13 42	1 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 10 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
mg/kg tion Optimal	128	32	128 64 "	£	32 2.0 64	4.0 2.0 16	100 " 25 400 12.5 120	25 180 200 50 50 100 88
Doses, mg/kg injection Tested Optim	256–2.0	.	256–1.0	256–2.0	256–8.0 256–1.0 256–2.0	128-4.0 256-1.0 128-4.0	400–100 800–25 400–25 25–6.3 405–80	25–6.3 405–80 200–12.5 800–25 400–25 400–50 300–59
Treatment Schedule, te days	1–9	2	5–13	1–9	* * *	1-5	2, 6 1 only 1-9 "	" 1 only 1-9 " " " " " " " " " " " " " " " " " " "
Tre	qi	2	" SC	ip	r : :		sc Oral ip "	sc Oral ip
Con- trols	7.6	11.0	12.2	9.7	17.2 30.0 7.2	25 30.8 16.3	8.9 8.5 10.5 19.0 25.4	24.8 8.8 8.4 10.7 111.7
Parameter of effect b	MST	•	2 2 2	£	* * *	2 2 2	* * * * *	
Expt.	0026	3061	3325 0001 0003	0016	0473 0246 0022	0070 0013 0035 1397	7696 8222 8222 1809 0193 0006	0120 7924 8221 8221 8221 0005 1537 1843
Site and inoculum	ic, 1×10^5	ip, 1×10^6	», », », », », », », », », », », », », »	ic, 1×10^6	ip, 1:10 sc, 1:5 ic, 1×10^5	sc, tumor frag """ ic, ""	ip, 1×10 ⁵ "" " ip, 1×10 ⁶ ip, 1×10 sc, ""	sc, tumor frag ip, 1 × 10 ⁵ " " " sc, 1 × 10 ⁶ ip, 1 × 10 ⁶ " " "
Drug vehicle Tumor	Saline L1210 and Tween	Olive P388	Other Klucel	Saline P388 and Tween	Saline B16 Other Saline and Tween	Klucel LL Other Klucel Epend KRB	Saline and Tween 80 Klucel Saline and Tween 80 Saline 80 Saline 80 Solumbar 80	Klucel LL Saline L1210 and Tween 80 Klucel L1210 P388 Saline and Tween 80
Com-	Asaley						183736 Phenestrol	183735 Distron
NSC No.	167780 Asaley						183736	183735

		183734 Palphicerin Saline Other						166100 Prospidine Water								216135 Fotrin							167781 Diiodoben-	zotepa
Klucel Saline and	Tween 80 Klucel	Saline Other	Saline Saline	and J Tween 80	Saline	Tween B16		Water	Saline	Water	Saline		Water	Saline										
B16	u II	L1210		P388 n	P388	nB16	LL	L1210		P388			B16			L1210	P388		B16		1.1	3	L1210	
sc, " ic, 1×10^5 ip, $1:10$ ", "	sc, " "sc, tumor frag	ip, 1×10^5	" " sc, 1×10 ⁶	ip, 1 × 106	sc, 1×10^6	ip, 1:10	sc, tumor frag	ip, 1×10^5	sc, "	ip, 1×10^6	sc, 1×10^6	ic, 1×10^5	ip, 1:10	sc, " "s	, , ,	ip, 1×10^5	ip, 1×10^6	2 2	sc, ip, 1:10	""""	Sc,""	se, tunioi mag	ip, 1×10^5	, , ,
0004 0032 0807 0824	0006	8220 2894	8220 8220 0005	1809 1843	0002	0563	0120	3421	0005	1210 1844	0003	0032	0054	0106	0107 0120	2078	4209	1846	0127	0136	0004		5152	2819 5150
	2 2	£ £		£ £	: :	£ £	2			: :		:	: :	•		: :	ţ	: :	: \$	*	£ £		: :	: :
17.9 9.3 26 18.7	25.4	8.8	8.8	10.5	19.2	20.3	24.8	9.3	10.7	11.0	17.9	9.3	21.0	19.4	20.6 24.8	10.1	9.6	11.5	17.9	20.9	18.7	C.14	8.6	9.0
	2 2	2 2	sc Oral ip	: :	. .	: :	£		:	z z	: :	2	: :	٤	. .	: :	2	: :	: :	:			: :	: :
	£ £	1 only	1–9	"	: :	: :		. .		: :			: :	,	£ £	: :	*	£ \$		ŧ	; - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	(q 2 days)	1–9	1 only
200–25 ". 80–5.0 80–2.5	405-80	800–25	200–12.5 400–25 80–10	200–25 100–6.3	100–12.5	80–15	25-3.1	300-59	320-40	400–100 300–88	320-40	400-20	300-37.5	400-50	400–100 320–40	400-25	64-4.0	100-3.1	100–12.5		20-1.3	200-0.3	512-2.0	: :
25 100 5.0 80	20	800	100 50 80	50 25	50	35	12.5	132	320	200	160	5;	150	200	320	25	32	25	: :	66	20	7.71	16	64 512
39 61 34 17	51	53 29	36 38 28	157 132	35	57	o 4	7	ָרָ גָּ	59	5 2 2	707	54	77	119	56	135	160	52 117	88	39	10	92	83 49
0/10 3/10 0/10		9/0	0/8	2/6 1/6	1/10) ; ; ;	\$	9/0	6/0	9/0	0/10	*	9/0	0/9	0/10	0/6	9/0	0/10	0/10		: :		9/0	0/10 0/6
45 30 45	09	30		£	: :	09	09	30	30	: :	2 2	*	09		£ £	30	300	09	30	,,	: :		30	£ £

APPENDIX II.—Results of experimental studies in the United States with drugs developed in the Soviet Union a (Continued)

ED50,			
Day of eval-	30	30 221 330 30 60 60 60 60 60	30
Survi- vors/	0/10 0/10 0/10 5/10 0/10 	0/8 1/8 0/10 0/10 0/6 0/10 0/6	: :
Percent ILS or tumor inhibi-	33 61 170 61 54 50 48 35 47	88 68 68 64 64 33 37 100 100 22	53
g/kg/ ion	512 32 8.0 64 256 32 32 32 32 36 8.0	833 833 833 500 833 500 108 65 50 12.5 50 12.5 50	0.65
Doses, mg/kg/ injection Tested Ontimal	512-2.0 64-8.0 512-2.0 " 64-8.0 512-2.0 "	833-108 833-39 833-108 833-65 1,436- 1,436- 1,436- 316 300-200 833-108 300-25 100-12.5	3.00-0.39
Treatment Schedule,	1 only 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 5, 9	1 only 1, 5, 9
Tr	Oral ip	oral oral sip	. .
Con-	9.2 9.9 9.9 10.9 11.8 11.8 19.2 25.1 22.3 22.3 25.4	8.4 8.7 8.7 8.7 10.1 10.1 10.8 10.9 10.9 10.9 10.0 28.8 26.0 26.0 11.5 11.5 11.5 11.5 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	8.7
Parameter of effect "	MST		£ £
Expt.	0005 4991 1796 1806 0002 0063 0297 0297 0296	2137 2502 0789 2502 0007 1614 1745 0005 0003 0258 2078 1756 0006 0110	7595
Site and incenting	sc, " ip, 1×10 ⁵ sc, " ip, 1×10 ⁶ " sc, " ip, 1:10 " sc, 1:5 sc, 1:5 sc, 1:10 sc, 1:10	ip, 1 × 10 ⁵ sc, 1 × 10 ⁶ ip, 1 × 10 ⁶ iv, " iv, " iv, " iv, " ip, tumor susp sc, 1:5 im, 1 × 10 ⁶ ip, 1 × 10 ⁶ sc, "	ip, 1 × 10 ⁵
Drug vehicle Tumor	L1210 n P388 B16 LL	L1210 P388 B16 LL L1210 P388 B16 LL	L1210
Drug	Saline 3 and Tween 80 Rucel Saline 3 and Tween 80 Saline 1 Tween 80	Klucel Other Water Other Water Saline	
Com-	-d	148958 Ftorafur	180024 Carmino- mycin
NSC	167781	216134	180024

133

30	30 30 30 30 	30	30 60 60 60	30 30 60 80 60	30 60	30
"" "1/10 0/9 0/10	0/6 0/10 0/10 0/10 1/10 0/10		0/6 0/10 " 0/3 0/10 "	0/6 "" "" "" "" "" "" "" "" "" "" "" "" ""	0/6 " " 0/10	0/6 " 0/10
80 10 38 11 3	911 1127 127 30 79 40	132	8 2 4 0 2 8 2	18 50 70 70 29	41 48 70 43	15 70 34 28
0.72 0.65 1.0 0.25 0.13 0.03	0; 5:00; 10 0; 2:00; 10 0; 10	200	2.2 1.0 3.2 2.0 3.3 8	200 180 200 270 23 53 35	6.3 3.0 0.75	0.75 1.5 3.0
1.2-0.16 3.0-0.39 1.0-0.13 1.0-0.03	2.0-0.25 4.0-0.5 12-0.38 4-0.25 4-0.5	400–50	11.3–2.2 16–0.5 32–1.0 8–0.5 7.5–1.5 16–0.5	200–12.5 270–53 200–12.5 270–53 300–59 180–35 400–50	50–6.3 6.00–0.75 "	3.0-0.38
1 only 1,5,9 1–9	1-10 1-9 ""		1-5 1-9 " " " 1-17 (q 2 days)	119	2 2 2	
2 2 2 2 2		2 2 2	sc Oral ip "	s sc si	z	2 2 2 2
2, 111.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	9.2 11.0 17.9 20.5 20.6	9.3 12.3 20.7	8.3 8.6 11.0 20.3 25.4 29.7	9.0 8.3 9.0 10.8 11.3 20.3 25.4 26.6	8.6 10.0 17.6	9.3 12.3 23.1 23.4
		2 2 2	* * * * * * *		2 2 2 2	* * * *
4594 2844 0032 0131 0091	4085 0000 0319 0006 0107	7053 1955 0217	P124 8223 " 2937 0006 0004	8224 P124 8224 3268 1844 0563 0006	7096 7108 2263 0205	7053 1955 0214 0128
ip, 1 × 10 ⁶ ic, 1 × 10 ⁵ ip, 1 : 10 sc, tumor susp sc, tumor frag	ip, 1 × 10 ⁶ sc, " 10 ⁶ ip, 1 × 10 ⁶ sc, " 2c, " 10 sc, " 10	ip, 1×10^5 " 1×10^6	ip, 1 × 10 ⁵ " " " ip, 1 × 10 ⁸ ip, 1 × 10 ⁸ ip, 1: 10 sc, " " sc, tumor frag	ip, 1 × 10 ⁵ """" ip, 1 × 10 ⁶ "p, 1: 10 sc, "" sc, tumor frag	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ip, 1×10^5 ip, 1×10^6 ip, $1 : 10$ sc, tumor frag
P388 Clinical B16 form Saline LL	Other L1210 Saline and Tween 80 Saline P388 Saline and B16 Tween		Salinc L1210 P388 B16 LL	L1210 P388 B16 Klucel LL	Other L1210 Salinc L1210 P388 B16	L1210 P388 Water B16 LL
	76411 Olivomy- cin	196869 Aton	183737 Chanerol	183738 Colchizin	271276 Diazan	269146 Variamy- cin

APPENDIX II.—Results of experimental studies in the United States with drugs developed in the Soviet Union " (Continued)

ED50,								
Day of eval- uation	09	: : : :	30 "	30 "	* * * *		30	30
Survivors/ total	0/6	,, 0/8 0/10	z z z z	" 1/10 0/10	: : : :	", 0/8 0/10	0/6 0/10 1/10 0/6 3/10 0/10	,, 0/6 0/10 ,,
Percent ILS or tumor inhibi- tion	4 0 0 18	_3 	2 1 9 29	36	$\frac{1}{20}$	1 8 0 2 :	68 121 129 99 94 62 19	31 16 70 72
ig/kg/ tion Optimal	0.75 3.0 0.75	1.3 5.0 ", 0.62	40 0.62 "	20 2.5 5.0		100 200 25	2.5 "" "1.25 0.62	20 10
Doses, mg/kg/ injection Tested Optim	3.0-0.38	10–1.3 40–5 5.0–0.62	40–5.0 5.0–0.62 "	40–5.0 5–0.6 ""	40-5.0	100–12.5 ,,, 200 100–12.5	7.5-2.5 5.0-0.6 3.8-0.6 5.0-0.6	40-5.0 20-10.0 40-5.0 20-2.5
Schedule,	1-9		£ £ £ £					
Tre	qi. "	* * * *		* * * *	2 2 2 2	2 2 2 2		* * * *
Con- trols	9.3 12.3 23.1	8.3 11.6 20.7 19.6	8.3 11.6 23.1 23.4	8.3 11.6 23.1 23.4	8.3 11.9 19.6 22.4	8.3 11.9 11.6 20.7 19.6	8.6 8.2 11.6 11.2 23.1 19.6 23.4	8.3 8.6 11.9
Parameter of effect ^b	MST "	2 2 2 2	2 2 2 2	* * * *	z			* * * *
Expt. No.	7053 1955 0214	7099 2251 0217 0126	7099 2251 0214 0128	7099 2251 0214 0128	7099 2235 0218 0127	7099 2235 2251 0217 0126	7108 7102 2251 2375 0214 0218 0128	7099 7108 2235 2251
Site and inoculum	ip, 1×10 ⁵ ip, 1×10 ⁶ ip, 1:10	ip, 1×10^5 ip, 1×10^6 ip, 1×10 sc, tumor frag	ip, 1×10^5 ip, 1×10^6 ip, 1×10 sc, tumor frag	ip, 1×10^5 ip, 1×10^6 ip, 1×10 sc, tumor frag	ip, 1×10^5 ip, 1×10^6 ip, 1×10 sc, tumor frag	ip, 1×10^5 ip, 1×10^6 ip, 1×10^6 ip, $1 : 10$ sc, tumor frag	ip, 1 × 10 ⁵ ip, 1 × 10 ⁶ ip, 1 × 10 ⁶ ip, 1 : 10 ip, 1 : 10 sc, tumor frag	ip, 1×10^5 ip, 1×10^6
Tumor	L1210 P388 B16	L1210 P388 B16 LL	L1210 P388 B16 LL	L1210 P388 B16 LL	L1210 P388 B16 LL	L1210 P388 B16 LL	L1210 P388 B16 LL	L1210 P388
Drug vehicle	Water	Saline						
Com- pound	Reumycin	275653 Agavoside	23471 Digitonin	275654 Funkioside	275655 Vitalboside	Gluco- mannan	275656 Dioxadet	275658 Phenthy- rine
NSC No.	99733	275653	23471	275654	275655	275652 Gluco- mani	275656	275658
						NATIONAL CANC	ER INSTITUTE MONOG	RAPH NO. 55

09	:	Death	"	:	30	.		45	09	:	06
3/10	0/10	9/0	2	0/10	9/0	1/6		0/10	£	£	4/6
	19	88	87	61	59	24		45	43	24	349
	*	11	10	39	12.5	37.5		12.5	2	40	8.0
:	•	14-11	20-5.0	180-14	50-12.5	37.5–16.5		25-3.1	50-3.1	160-5.0	8.0-0.25
:	:	1-death	*	6-death	1-9	2		•	•	1 only	15
£	*		:	t	:	:		ĩ	2	ŧ	:
23.1	23.4	11.3	9.7	0.6	11.0	12.0		19.2	20.4	25.5	20.0
2	•	2	2	£	2	:		:	2	:	,
0214	0128	0829	0912	253	2481	2847		0594	8800	0017	0181
ip, 1:10	sc, tumor frag	ip, 1×10^5		sc, 1×10^6	ip, 1×10^6	**		ip, 1:10	* * * *	sc, tumor frag	ic, tumor frag
B16	TT	L1210		L1210	P388	£		B16		LL	Epend
		23909 Methylni-	trosourea		Saline	and	80	Saline			

^a ED50 = median inhibitory concentration; CMC = carboxymethyl cellulose; MST = mean survival time; LL = Lewis lung; frag = fragment; leuk = leukemia; ic = intracerebrally; mam = mammary; Epend = ependymoblastoma; susp = suspension; Mecca L = Mecca lymphoma; Clinical form = clinical formulation.

^b MST value for controls is given in days.

APPENDIX III,—Results of experimental studies in the Soviet Union with drugs developed there

	eval- ED50, uation ug/ml																							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20-10 	5-1									
Day	eval- uation	19	12	15	37	46	L 2	22	32	7	21	41	L [29	19	L ;	51	3 5	57	10	70	5 4	20				69	2 6) c	7;	13 25	£ .	- "	18	48
S. Irvii	vors/ total	9/0	0/5	2 %	0/7	8/0	9/9	9/5	1/6	9/9	4/6	9/0	7/7	ţ	1/0	9/9	: :	9/5	9/0	6/8	, ,	y,'	•				0/3	9/0	9/9	9/9	2/0	9/0	×,×	8/L	8/0
ILS or Percent	inhibi- tion	7	32	89	7	88	13 -	- <u>~</u>	0	7,	+84	18	+242	94	0	+14	+18 28	۲ م	0	45	5 5	S &	77				18	2	>	76	2 ;	10	00 46	57	7
/kg/	Opti- mal																										100								
Doses, mg/kg/ injection	Tested	0.4	0.5		:	:		;	:	: :	2	ŗ		",	*	0.2-0.4	: 2	:	£	9.0	: 7	4	ŗ				25–400	3 :		: :	: 3	: :	: #	:	:
Treatment	Schedule, days	2-6	1-5 5	0 1-1	5-6	3-14	2,6	" "	" "	2–6		:		:	£	: :	: :	2	£	2,6	: (9-7	:				2,6	2,1	0,7	: :		: :			: :
Tre	Route	Oral	요:	2	Oral	і	: :	2	:	Oral "	:	:	: :	ŗ	:	: :	: :	:	ŗ	: :	: :	: :	ŧ				: :	:		: :	: :	: :	: #	£	£
	Con- trols	יסי ו	8.0	7.2 "	14.7 "	19.8 "	970 mm ³	24.116 "	24.5 days	1,137 mm ³	14,800 "	22.0 days	323 mm ³	8.577 "	54 days	184 mm ³	1,308 "	13 123 "	41.4 days	558 mm ³	2,414 "	558 " 1 490 "	2,414 "				8.5 days	14.7 "		1,518 mm ³	11,514	19.7 days	268 mm ³	25,060 "	24.7 days
	Parameter of effect	MST	£ #	:	:	•	Tumor vol		MST	Tumor vol		MST	Tumor vol		MST	Tumor vol		:	MST	Tumor vol				NA content			MST "			Tumor vol		MST	I umor vol		MST
	Expt.	1	7 7	υ 4	5,6,7		∞			6			10, 11			12, 13			14								15	1 12	71	18		Š	184		
	Site and inoculum	ip, 1×10^6 cells		, ,,	" 50 mg tumor susp		sc, " " " " "												" 106 cells								73754 Fluoro- Boiled L1210 ip, 10 ⁶ cells	in 50 matumoreus	tp, 50 mg tunnor susp	sc, " " " "		: :			
	Drug vehicle Tumor	L1210		La	MOPC	406	TT			Ca-755			AKA-	201		RShM-5			S37					S37	Ehrlich	NK/Ly	L1210	MOPC	406 406	TT		7 7 7 7	CA-733		
		Boiled	starch																								Boiled L12								
	Com- pound	Dopan																									Fluoro-	mdon.							
	NSC No.	44629 Dopan																									73754								

8 15 25

13 23 30 62 62 77 20 27 27 27 27 27 27 27 27 27 27 27 27 27	938, 14, 24, 4, 24, 4, 24, 4, 24, 4, 24, 4, 24, 4, 24, 4, 24, 4, 24, 2
10/10 ", 9/10 1/10 8/8 ", 5/8 0/8 0/6	1/3 3/6 0/6 0/6 0/4 5/6 1/6 6/6 0/6 6/6 1/6 6/6 1/6 0/6 0/6 0/7
8 8 8 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	227
	01
	25-4.0
	2-6 2-6 2-6 1,5 2-6 2-6 2-6 2-6 2-6 2-6 2-6
193 mm ³ 2,636 " 22,235 " 30,025 " 29.1 days 292 mm ³ 4,196 " 18,062 " 34,133 " 31.2 days 1,308 mm ³ 3,644 " 41.4 days	8.5 " 9.9 " 7.6 " 7.1 " 15.1 " 17.0 mm³ 10,553 " 17,188 " 20.1 days 17,00 mm³ 10,553 " 17,188 " 20.693 mm³ 14,775 " 18,001 " 21.3 days 2,693 mm³ 14,775 " 18,001 " 21.3 days 2,693 mm³ 14,775 " 18,001 " 21.3 days 3,562 " 15,436 " 22.3 days 992 mm³ 8,588 " 16,407 " 19,849 " 25.5 days 25.5 days
Tumor vol """ MST Tumor vol Pro ""	Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST Tumor voi """ MST
19, 20 21 813 22	23, 24 25 25 26 27 28, 29 30 31 33 33 33 33 33
	rells " " " " " " " " " " " " " " " " " "
Ca-755 " " AKA- " " TOL TOL RShM-5 " " CaOv CaOv CaOv	L1210 ip, 106 cells """" MOPC ip, 50 mg th 406 LL sc, "" Ca-755 sc, ""

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there a (Continued)

	eval- ED50, uation ug/ml																																										10-1
Day	eval uatio	41			14						85	9 ;	14	20	, es	- ;	13	4 5	39	108	7 - 61	CI C	3 5	200	7 5	CT	7	13	20	27	105	7	14	22	123		14	22	123	7 ;	1 7	56	
Survi-	vors/ total	9/9	9/0	10/10		ţ	0/10	10/10	:	:	0/10	10/10	8/10	:	2/10	<u> </u>	: :	: :	: !	7/0		: :	į	2/7	9/9	0/4	8/8	2	î.	ŧ	4/8	6/6	:	z	4/9	6/6	: :	£	4/9	9/9	:	9/0	
Percent ILS or tumor	inhibi- tion	68	37	33	64	92	59	∞	63	64	21	09	× ×	06	50	+10 1	20	65	3	22	4 6	78	00	4 (3 6	470	84	86	91	82	57	69	99.5	9	72	83	86	91	93	92	4 C	27	
g/kg/ ion	Opti- mal	4 :	:												t	~ :	: :	: :	: :	: :	: :	: :	:	: :	: :		:	:	£	:	:												
Doses, mg/kg/ injection	Tested	0.5-4	:	1.5	2			S	•	£	:	0:		: :	: I	\ :	: :	: :	: :	: :	: :	:	:	: :	: :		:	:	*	:	:	ŧ	:	:	:	7 1	: 3	:	2	۲:	*	ţ	
Treatment	Schedule, days	2–6	£.	4-13		*		4,7,10,13		" " " "	11 11 11 11			: :		2,0		: :	: :	: :	: :	:	:	: :	: :		:	"	33 33	: :	""	"	:	: :	""	5–6	£ :	:	£	2,6		:	
Trea	S	ip	t	*	£	:	:	,	:		٤	: :	: :	: :	: :	: :	: :	: :	: :	: :	: :		. :	: :	: :		£	£	:	:	.	:	:	:	£	£ :	:	:	£	: :	: :	:	
	Con- trols	5,339 mm ³	11,649 24 4 davs	265 mm ³	6,718 "	16,324 "	28 days	265 mm ³		16,324 "	28 days	\vdash		16,324 "	28 days	319 mm°	563		10,763	82.6 days	270 mm ³		3,803	39.6 days	6,148 mm ³	167,11	=			15,462 "	46.9 days	$180 \mathrm{mm}^3$		6,415 "	64.6 days	⊏		6,515 "	64.6 days	1,094 mm ³	9,123	34 days	
	Parameter of effect	Tumor vol	TSM	Tumor vol	"		MST	Tumor vol		:	MST	or v			MST .	I umor vol				MST .	I umor vol	:		MSI	I umor vol		"	:	:	* *	MST	Tumor vol		:	MST	or v		: 1	MST	Tumor vol		MST	NA content
	Expt. No.	35		36) 1											37,38					39,40			;	4		42					43, 47	48							49, 50			
	Site and inoculum	sc, 50 mg tumor susp																		:							sc, 106 cells													" 50 mg tumor susp			
	Tumor	Ca-755															TOT.			1	RShM-5 sc,				PKZh		S37													S-180			S37
	Drug vehicle	Saline																																									
	Com- pound		colysin																																								
	NSC No.	8806 Sar-																																									

10 7	20 20	ì													-	10
		19 61 37	7 13	35	18	13	35 7 5	5 6 6 6 7	21 21 21	35 93	14 23	32 62 7	32 32 32	13 20	34	
		9/0	9/9	9/9	0/7	9/9	1/6 10/10		1/10 6/6 "	9/0	× ; ;	7/8 1/8 8/8		8/8	2/8	
		35 77 31	76	52.45	525	68 50 47	52 91	98 76	12 64 54	36	63 63	. 25 69 69	81 64 72	58 94 87	81 25	
		0, ,	0	. 0.								0		0, ,		
		120	4::	. 12								4		12		
		1,5	2–6	2,6	: : :		: : :			: : :	1 1 2	2-6		2,6		
		Oral "	* * *		£ £ ;	: : :		: : :		: : :	: : :	: : :	: : : :	r r r		
		8.5 days 11.2 " 14.7 "	1,564 mm ³ 11,764 "	24.1 days 2,397 mm ³ 6,202 "	12,582 " 33 days	1,554 mm ³ 11,764 "	34.1 days 135 mm ³	10,618 "	33.2 days 1,920 mm ³ 4,091 "	12,342 " 53 days	111 mm ³ 1,124 " 6,689 "	17,531 " 39.1 days 111 mm ³	1,124 " 6,689 " 17,531 "	52.1 days 512 mm ³ 3,221 " 7,312 "	26,884 " 45.9 days	
	2	MST "	Tumor vol	MST Tumor vol	 MST	1 umor vol " "	MST Tumor vol	" " "	Tumor vol		" " "	" MST Tumor vol	: : : X	Tumor vol	 MST f³H]dThd	incl NA content Pro "
		61, 62 63 64	65	99		/0	68, 69,		71		7/		814	73		
		dsns	:				:		:	:	:					
	[³H]dThd incl NA content Pro "	ip, 10 ⁶ cells " 3.5 × 10 ⁶ " 50 mg tumor susp	sc, " " " s				" " "		" " "	:	:			sc, 106 cells		
L5178Y Ehrlich	NK/Ly CaOv CaOv	L1210 hLa MOPC	rr Tr				Ca-755		AKA- TOL		KShM-5			S37	Ca0v	CaOv CaOv
		167780 Asaley Boiled starc														

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

	eval- ED50, ration ug/ml																			100		> 100														
Day	eval- ED50 uation ug/m	13	7	14	r- ;	13	28	47	71	19	27	54	10	20	27	77	7 ;	: 7	30	3		/\	38	7 1	64	, -	15	24	40	- ;	13	77	\$ 5 r	13	18	93
Survi-	vors/ total	9/0	10/10	1/10	10/10	: :		9/10	6/6	ŗ	:	6/0	10/10	ŧ	2	0/10	9/9	: :	2/6	s S			0/3	9/9	9/0	10/10	8/10	2	0/10	9/9	: :	9/0	0/6 6/6	, :	£ ;	6/0
Percent ILS or tumor	inhibi- tion	410	45	61	27	39	52	က်	43	23	56	18	31	5 6	35	0	+42	+25	0 70	ì			13	40) (۳ د	. 4	48	6	4	21	10	7	6	77	46
	Opti- mal																						400										25	}	٤ :	a
Doses, mg/kg/ injection	Tested	100	300	ŧ	F :	: :	: :	: :	:	:	:	:	: :	£	£	2	100	: :	:				25–400 25	50	:	150	3 =	:	£	25	: :	: :	25-50	3:	: :	\$
Treatment	Schedule, days	2-6	3,6,9	" " "	3,6,9,12				8,11,14,17,	" " "	"""		7,11,15,19	" " " "		" " " "	2–6	: :	:				2,6 2–6	: :	:	4 14	ţ: f:	2 2	: :	2–6	: :	: :	: 2	:	£	:
Tre	Route	S:	ŧ	£	: ۽		: :	: :	:	ţ	t		: :	:	ŧ	ŗ	٤ ۽	: :	:				: :	: :	£	t	:	x	:	٤ .	: :	: :	: \$:	:	:
	Con- trols	7.6 days	2,992 mm ³	6.3 g	_	4,314 "	7,824 "	8.0 g	1,013 mm³	3.656 "	7,742 "	39.7 days	425 mm ³	1,306	9,824 "	41.4 days	954 mm ³	3,536 "	11,6/6	0/+,67			8.5 days 15.1	1,588 mm ³	10.7 days	19.7 Udys 9.49 mm ³	6777	13,340 "	27.5 days	2,524 mm ³	12,837 "	26,178 "	24 days	026.8	18,300 "	23.3 days
	Parameter of effect	MST	Tumor vol	Tumor wt) IC		:	Tumor wt	Tumor vol	:	:	MST	Tumor vol		" "	MST	or v	: :		[3H]dThd	incl	NA content Pro "	MST."	Tumor vol	MCT	Tumor vol	" "	"	MST	Tumor vol	: :		Timorvol	,, ,,	:	MST
	Expt.	74	76.77					:	78				79				80						82	84		80	6			98			87 88	89,90		
	Site and inoculum	ip, 10^6 cells	sc. 50 mg tumor susp					2					" " " " "				11 11 11 11 11						sc, 10 ⁶ cells ip, 50 mg tumor susp			* * * * *				" " " " "			£	" " " " "		
	Drug vehicle Tumor	L1210	Ca-755	3				Ca-755	RShM-5				RShM-5				S180			\ \frac{1}{2}		CaOv CaOv	L1210 MOPC	rr Tr									755	Ca-1.33		
	Drug vehicle	Olive	IIO																				Olive													
	Com- pound		1011																				Distron													
	NSC No.	183736 Phenes-																					183735 Distron													

22 22 22 22 20 27 27 27 27	12 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	83 7 7 7 7 30 30	13 663 38 11 10 10 10 13 13 13 13 13 13 13 13 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
9/9 " 8/9 " 7/7 " " 6/7	"" 10/10 "" 8/10 0/10 10/10 7/7	0/7 6/7 4/7 6/6 5/6	0/6 0/7 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+11 46 68 58 35 44 45 45 45 45 45 45 45 45 45 45 45 45	45 52 53 53 54 55 73 73 74 75 75 75 75 75 76 76 76 77 76 77 76 77 76 77 76 77 77	0 46 44 47 77 77 71 16	18 222 41 43 448 449 449 449 449 449 449 449 449 449
2			
50 = 1 = 1 = 25 = 2 = 25	100 150	2 2 2 2 2 2 2	
5,12,19,26 """"" 2-6 "" 4,6,8,10, 12,14,16	10,17,24 31 """"""""""""""""""""""""""""""""""""		1-5 2-6 2-6 """" """"""""""""""""""""""""""
1,125 mm ³ 4,680 " 12,652 " 17,506 " 26,246 " 5,872 " 17,140 " 17,140 " 21,826 "	2,616 " 4,452 " 6,696 " 2,572 mm ³ 5,326 " 14,677 " 22,854 " 39 days 425 mm ³ 4,051 " 9,824 " 4,051 " 1,188 " 1,188 "	48.3 days 520 mm ³ 2,827 " 8,618 " 56 days 954 mm ³ 3,536 "	7.6 days 8.8 " 15.1 " 1,518 mm ³ 11,514 " 15,093 " 19.7 days 428 mm ³ 14,104 " 23.8 days 1,068 mm ³ 6,756 " 8,889 " 56.6 days
Tumor vol	"""" MST Tumor vol """ MST Tumor vol """	MST Tumor vol " " MST Tumor vol " " " "	MST " Tumor vol " " MST
92	94 94	96	98 99 100 101 102
	20	" 10 ⁶ cells " 50 mg tumor susp	ip, 106 cells " 5 × 106 cells " 50 mg tumor susp sc, " " " " " " " " " " " " " " " "
AKA- TOL RShM-5	RShM-5	S37 S180	L1210 La MOPC 406 LL Ca-755 TOL
			Olive oil
			3734 Palphi-cerin

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there a (Continued)

	ED50, ug/ml																																			
Day	eval- ED50 uation ug/ml	7	28	80	· (C	17	26	۲,	13	ر د	3 4	3 -	:	14	16	14	16	14	21	7-14	12	4	7	11	14	8	47	7	<u> </u>	2	13	56	36	r ;	+ C	78
Survi		T/T "		2/7	9/10		0/10	8/8	: :	:	1/8	0/15	0/17	77/77	72/72	22/22	20/20	10/10	6/10	0/31	6/6	40/42	1/7	2	: ۵	: !	1/7	8/8	3/2	9/9	, .	:	9/9	9/9	: :	
Percent ILS or	inhibi- tion	25	20	7	- 54	+11	0	4 (40	6 6 7	<u> </u>	0	0	32-100	38–77	52-71	51–53	62.	79	30	:	31–39	15	75	75	83	32	\$ C	/ 0	93	82	72	31	81	c 6	29
y/kg/	Opti- mal						1	25	: :	:	:												200	£	: :	: :		150	: :	:	ŧ	:	2	: :		:
Doses, mg/kg/ injection	Tested	25	:	: :	:	:	£ ;	25–50	: :	:	:	200		150-0.3	150-10	150-100	100	:	120	200-100	200	400-200	100-200	•	: 3	: :		150–50	: \$	150-20	•	:	£	100–150	:	:
Treatment	Schedule, days	2-6	:	£ £		ţ	£ ;	: :	: :	:	£	1–5	:	5-13	6-14	5-13	6-14	5-14	9-19	1-5		5-12	5-6	£	:	: :	: :	: :	: :	£	£	.	:	: :	: :	:
Trea	Route	S:	:	: :	:	:	: :	: :	: :	2	:	i.	:	:	÷	£	:	:	:	ĩ	:	:	:	:	: :	: :	: :	: :	: :	2	£	:	:	: :	: :	
	Con- trols	520 mm ³	15,467 "	56 days	4.891 "	16,220 "	30 days	453 mm ³		3,004	10,010 17 9 days	7 7	6–7 days	10.4-17.8 g	9.5-19.3 g	4.8-25.2 g	23.8-30 g	33 g	10.7 g	6.5-12.5 days	12 g	2.7-3.3 g	122 mm ³	2,846 "		18,922 "	26.9 days	604 mm ³	6,642 "	491 "	2.987 "	17,231 "	12.4 g	210 mm ³	4,100	16,116 "
	Parameter of effect	Tumor vol	"	MST Tumor vol	" "		MST	Tumor vol			McT	MST	r.	112-118 Tumor wt					:	MST	Tumor wt		Tumor vol				MST	Tumor vol		"	"	" "	Tumor wt	Tumor vol		:
	Expt. No.	104		105	106			815				107, 108	109, 110	112-118	119-125	126, 127	129	130	131,133, 135	139-141	142	136–138	816				!	785		786) -			787		
	Site and inoculum	sc, 106 cells		" 50 mg times to	dene ioiiini giii oc			11 11 11 11 11				ip. 10 ⁵ cells	" 0.2–0.3 ml tumor	S-Jensen sc, 0.3–0.4 ml tumor	dsns	*			£	ip 0.2 ml ascitic fl	im, " " im	sc, 0.3-0.4 ml tumor	" 50 mg tumor susp				:									
	Drug vehicle Tumor	S37		6100	2100			RShM-5				L1210	La	S-Jensen	\$45	SM-1	S536	Walker	RS-1	S180	S180	S180	Ca-755							TT	1			AKA-	IOL	
	Drug vehicle	Olive	;									Saline																								
	Com- pound																																			
	NSC No.	183734 Palphi-										166100 Prospi-																								

7 \ \ \ 200 200 \ \ 200	
7-8	26 26 15 20 20 15 15 ,,,
0/6 7/7 %/8 8/8 %/8 %/8 %/8 %/8 %/8 %/8	" " 9/10 10/10
28-91 40-201 28-91 40-201 28-91 40-201 28-91 43-56 335 53 53 54 47 40-201 11 28-91 43-56 35 58 58 70 49-100 49-100 49-100	99.7 99.7 99.2 99.2
30 30 30 30 30 30 30 30 30 30 30 30 30 3	" 60 60 60 60 60 60 60 60 60 60 60 60 60
150 150 150 15-30 15-30 15-10 20-30 20-30 15-30 20-30 20-30 15-30 20-30 15-30 15-30 15-30	20-80 40-60 " 40-80 20-60
1-6 6-12 5-13 1-8 5-13 1-7 1-7	5-14 5,7,9,11,13, 15,17,19 5-14 "
ייין אין אָר אָר אָר אָר אָר אָר אָר אָר אַר אַר אַר אַר אַר אַר אַר אַר אַר אַ	al
32.7 days 5,964 mm³ 15,093 " 27,111 " 36 days 490 mm³ 2,231 " 3,783 " 7,177 " 32 days 5,254 mm³ 5,254 " 10,540 " 18,579 " 3,927 " 41 days 8,251 mm³ 3,927 " 7-8 days 15,412 " 3,294 " 15,412 " 3,294 " 15,412 " 3,294 " 15,412 " 3,294 " 15,412 " 3,294 " 16,442 " 14,2-18.6 g 11.6-14.7 g 2.8-2.9 g 3.6 g 3.6 g 41 days 8,55 mm³ 3,294 " 14,412 " 3,6 g 7-8 days 14,448 " 4,448 " 4,448 "	
MST Tumor vol """ Ascites wt Tumor vol """ Ascites wt Tumor vol """ """ Ascites wt Tumor vol """ """ Ascites wt Tumor vol """ """ Ascites wt Tumor vol """ """ Ascites wt Tumor vol """ """ Ascites wt Tumor vol """ """ """ Ascites wt Tumor vol """ """ """ """ """ """ """ """ "" "" """ "	Tumorv
788 788 817 819 819 819 143-146 173-176 177, 178 179, 180 181-186 789	187–195 196, 197 198, 199 200, 202, 203 204–206
umor """"""""""""""""""""""""""""""""""""	: : : :
"" "" "" "" "0.3" "14" " "14" " "14" " " " " " " " " " "	; ; ; ;
ip, 0.2—0.3 ml tumor susp sc, 0.3—0.4" ip, 0.2 ml ascitic fl sc, 50 mg tumor susp sc, 50 mg tumor susp sc, 50 mg tumor susp	
PRZh LL LL TOL RShM-5 RShM-5 CaOv CaOv CaOv CaOv CaOv CaOv CaOv CaOv CaOv La i Ll0-1 i S-37 SM-1 Ll0-1 i S-37 SM-1 Ll0-1 i Ca-NK Ehrlich i Ll0-1 Ll0-1 i Ll0-1 Ll0-1 i Ll0-1 Ll	S45 S-Jensen SM-1 S180 Ca- Guerin
Saline	
	167781 Diiodo- Boiled benzo- starch tepa
216135 Fotrin	81 Dii
2161	1677

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there a (Continued)

	eval- ED50, uation µg/ml																														
Day	eval- uation	12	16	17	9	12	63 93	7	13	19	63	7 - 5	2 5	27	45	9 :	25	9	7	4 %	91	7	13	20	44	12	:	40	10	170	j
Surv:	vors/ total	7/10	9/0	\$:	:	0/8	8/8	:	2	8/0	1.7	: :	2/9		7/7	: 2	1/0	8/8	: :	8/0	8/8	:	2/8	8/0	9/0	9/9	9/0	9/9	:	
Percent ILS or	inhibi- tion	73	16	80	0	85	38	92	84	63	7	69	42	4	9	+128	27	34	98	37	7	66	79	47	17	99	99	0	53	63 63	,
/kg/	Opti- mal	30	350	200		009	250	300	£	:	: i	250	· 2	:	£											90	:		: 6	150	
Doses, mg/kg/ injection	Tested	30-40	250 300–350	50-833	50-400	200-600	250–300 250	200-300	2	:	: (057	. *	:		300		:	s :	: :		*	:	:	:	15-115	15–120	108-833	58-200	75-200	
Treatment	Schedule, days	5–14	2,6	1,5,9	* * * *	1,5	2,6	: :	:	11 11	: :	: :	: :	" "	:	: :	: :	"		: :	" "		: :	: :	" "	1-10	ŧ	1,5.9	<u>~ _</u> ,	1-10	•
Tre	Route	Oral	.dr	£	÷	:	. .	:	:	:	: :	: :		:	:	: :	: :	:	:	: :	ĩ	:	:	:	"	"		£	: :		
	Con- trols		6.9 days 8.3 "		* &		8.8 "	344 mm ³	1,567 "	8,405 "	33.9 days	3,8/3 mm ³	6,334	21,826 "	7.6 g	64 mm ³	856 " 12.628 "	36.9 days		1,308 "	61 days	1,624 mm ³	10,870 "	22,611 "	24 days	2.4 g	1.6"	40 days	1.48	1.8	
	Parameter of effect	207–209 Extent and size of metas-tases	MST "	* * *	:		£ £	Tumor vol		:	MST .	I umor vol		:	Tumor wt	Tumor vol		MST	or v		MST	Tumor vol	: :	:	MST	Tumor wt		MST	Tumor wt		
	Expt.		404, 405	406 407, 408, 409	410	411,412	413, 414 415, 416	417-420			į	421				422			423			424, 425				426, 427	428	429	430	431, 432	
	Site and inoculum	Brown- it, 100 mg tumor susp h Pierce epi- the- lioma	ip, 10 ⁶ cells	" 105 "	" "		" 5×10^6 cells " 50 mg tumor susp	" " " " " s			:	:				33 33 33 33			sc, 106 cells			" 50 mg tumor susp)			11 11 11 11 11	11 11 11 11 11 11			2	
	Tumor	Brown- Pierce epi- the- lioma	L1210	L1210	P388	La	La MOPC	400 Ca-755				AKA-	101			RShM-5			S37			LL				S180	Mel. H P	Д	S-AK	Walker	256
	Drug vehicle	Boiled		Tween- L1210 80 in			Saline									Saline										Tween- S180	80 in Mel.	1			
	Com- pound		148258 Ftorafur Saline																												
	NSC No.	167781 Diiodo- benzo tepa	148258																												

	<pre></pre>						
*		13	: : : :	111 10 10 15	26 7 7 114 222 28 28 54	21 46 93 7	44 7 7 115 7 7 7 7 7 7
£	* * *	41/47	42/45 18/20 19/20 8/8	5/5 10/10 7/8 0/20 50/50	10/10 24/24 0/10 6/6 "	", 0/5 0/8 0/8 1/8	0/8 10/10 9/10 0/10 8/8 6/8 7/7 8/8
34	355	20-60	50-80 0 30-50 80	70 0 0 35-50	55 30 0 68 60 60 111	29 38 213 28 55	21 34 34 37 49 49 78 +20
:	* * *	75	72.5 60 50	50	35 50	9.0	
100-180	z z z	50-100	50-72.5 50-75 50	20 50 37.5–75 30–55	35 30 50–75 ""	0.2 0.5–0.6 0.15 0.5 0.5	
ž.	2-12	3-12		3-11 4-10 1-8 1-5 3-14	3–25 2–6 	2,6 1–5 2,6 	
ŧ	* * *	:	: : : :	s ip s.		* ; * * * *	
21.4 "	6.9 " 14.1 " 6.8 "	4.2–7.6 g	4.4–5.7" 5.2–5.8" 4.1–7.8"	5.1.7 6.0." 3.0." 6 days 20-47 g	18.0 g 20-26 g 19 g 210 mm ³ 4,100 " 12,807 " 16,116 " 32.7 days	9.9 " 9.9 " 7.1 " 1,624 mm ³ 10,870 "	24 days 421 mm³ 12,488 " 24,2 days 466 mm³ 1,930 " 4,139 " 1,116 " 6,732 "
z z	" " NA content " " " " 13HJdThd incl NA content Pro "	Tumor wt	" " " " Ascites wt	" " MST Tumor wt	" " Tumor vol " " " " MST	"" " Tumor vol	MST Tumor vol MST Tumor voi """" """" """"""""""""""""""""""""""
434	435 436 437	438-441	442–445 446, 447 448, 449 450, 451	452 453 454,455 456-460	462–463 464 791	618, 619 620 621	622 623 624 623, 624 625 625
" 100 " "		sc, 0.3-0.4 ml tumor	susp """ "" iv, 0.2 ml ascitic fl	nor susp I tumor	susp " " 50 mg tumor susp	ip, 10 ⁵ cells " 5 × 10 ⁶ cells " 50 mg tumor susp sc, " " " "	" " " " " " " " " " " " " " " " " " "
LS-Pliss	RS-15 S-Jensen S45 S37 L5178Y Ehrlich NK/Ly CaOv CaOv	S-AK	S37 Ca-NK S180 NK/Ly	Ehrlich La S-Jensen	SM-1 S536 RS-1 AKA- TOL	L1210 La MOPC 406 LL	Ca-755 AKA- TOL RShM-5 PRZh
		216134 Tomazin Saline				180024 Car- Saline mino- mycin	

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

100	eval- ED50, uation µg/ml																												< 0.1	< 0.1 < 0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V.1	<u>^</u>		 €					
Day	eval- uation	4.	50 50 80	60	14	23	91	7	14	30	o :	: :	: :	: :	: :	9	2 :	:	:	:	:	2 :	:	2 :	:	: :	: :	•								11	: :	: 2	2	
Curci	vors/ total	8/2	2/8	% %	2		8/0	9/9	: ;	9/6	38/40	31/40	30/40	15/40	12/40	10/10	10/10	2	2	:	:	£ :	•	8/10	7/10	10/10	9/10	8/10								20/20	: :	10/30	19/20	10/ 10
Percent ILS or	inhibi- tion	32	+3	58	+30	+5	13	+33	+64	3	54	01	7	0 4 7	C 7	7 7	76	6	97	7.1	100	99	67	84	98	- ;	7.	68								36	54	94	00	00
	Opti- mal									1	1.5-2.0	: :	: :	: :	:	~		:	2	3.75	£	2.5	: :	: :	: 1	5.0	: :	•										363	0.23	
Doses, mg/kg/ injection	Tested	9.0	: :	:	:	2	:	0.15	: :		1.34	 	1.00	× .	v. c	0.0	1 35	. ∝	2.25	2.75	3.75	2.0	2.5	3.2	: ;	2.5	3.75	5.0								2.5	3.75	5.0	2.5	J.,
Treatment	Schedule, days	2.6	:	:	:	: :	**	2-6	: :		1,3,5,7	" " " "			** ** ** **	148	111	""""		1,4	:	3,8 8,8	: :	: :		: :										6,9,12,15		£	7	١,۴,٠
Tre	Route	.d.	:	:	:	£	: :	: :	: :		≥ :	:	:	:	:	ĩ	:	:	2	Oral	:	. <u>\</u>	: :	: :	•	crai	: :	:								.≥	: :	:	:	
	Con- trols	14,142 mm ³	50.4 days	348 mm ³	1,308 "	3,168 "	61 days	954 mm ³	3,536 "	29,478	4.5 × 10°	:	: 2	: :	**	1 84 σ	3 10 12		: :	1.94 "	:	1.82 "		: :	: :											2.18 g				14.0
	Parameter of effect	Tumor vol	MST	Tumor vol	:		MST	Tumor vol	: :		No. 0I	ascinc colle	cells/	шonse		Tumorwt							: :						NA content				[3H]dThd	incl	NA content Pro "	or			:	
	Expt.	979		627				628			629-632					753_55	759-559	100-00				638-643														644	929		657	3
	Site and inoculum	im, 50 mg tumor susp		sc, 106 cells				" 50 mg tumor susp			NK/Ly ip, 7.5 \times 10° cells 6					im 0.2 ml tumor susa 633-637	dens 10111111 1111 2:1, 1111	,				tumor	dsns													im, 0.2 ml 2.5% cell	dsns			
	Tumor	PRZh		S37				S180		1/////	NK/Ly					1 10-1						S180							151707	LOI/OI Ebalish	NK/I v	MIN ES	CaOv	(CaO	LI0-1				
	Drug vehicle	Saline																																		2%	Ethyl alco-	hol	1011	
	Com- pound	Car-	mvcin																																	76411 Olivo-	mycin			
	NSC No.	180024																																		76411				

									< 0.1	1-0.1								10-1 1-0.1 0.1 1-0.1
10: :	ç	17	۲;	13	25	51	13	20 26			13	:		22	16	19		
15/15	14/13	8/8	6/6	6/8	5/9	1/9		: :			10/10	8/L		7/7	6/L	L/9		
57	74	00	24 2	86 74	28	v (9 6	m 14	∞		65	51		45	29	4		
V	0.0	9.0	6.0	: :	: :	: •	4 :	: :										
. 4.0	2.0	1.0	. 4	: :	: :	: :	: :	: :	1		81	40		18	:	50		
3,5,7,9	1–9	1,3 4-14 2-7	3-8 2,6 :: ::	: :	: :	: :	: z : z	: :	2-14		$^{2-12}_{3 \times /day}$	$^{2-12}_{3\times/day}$		$3 \times / day$	5-15 3 ×/day	8-18		
* * *	. <u>e</u> .	:		£	: :	: :	:	: :	:		2	Oral		.≘		Oral		
1.9 "	10 days	5.1 g 22.4 days	785 mm ³	20,580 "	23,873 "	34.6 days	780 mm ³ 2,400 "	7,364 " 9,586 "	5.2 g		5.1 g	3.3 "		1.8 "	2.7 "	5.6"		
: : :	MST "	Tumor wt MST	Tumor vol		: 4074	MSI	J.	: :	umo A co	: :	Fumor wt	:		2	:	:		NA content " " " "
658, 659	820						679		824 N		465-470 Tumor wt	471, 472		473	474	475		24
sc, 10-20 mg tumor susp	ip, 0.3 ml tumor susp						 sc, 50 mg tumor susp 			ردی				Т-5 " " " " "	BS- " " " " "			8Y ch Ly
S180	La	Ca-755					Saune ANA- TOL		S180 S37 L5178Y	Ehrlich NK/Ly	Alcohol Ca-755 in saline	Poly- ethyl- ene oxide	in citric acid	Alcohol RShM-5 in	KREBS-	Poly- S91 ethyl- ene oxide	in citric acid	Alcohol S37 in L5178Y saline Ehrlich NK/Ly
											Aton							

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there a (Continued)

	eval- ED50, uation µg/ml																																							0	50-20	100-50	< 50	
Day	eval- uation	19	† C	13	16	35	7	13	16	35	7	13	17	39	7	4 ;	<u> </u>	2 2 L	- 4	20	<u>26</u>	33	7	13	70	89	7	13	50 70	ر و	- ;	51	7,	11	12	C t	` '	- ;	- ;	77		1		
Survi-	vors/ total	9/0	6/9	3:	:	9/0	9/9	ŧ	9/9	9/0	9/9	£	2	9/0	8/8	: :	: 0	8/6		:	:	:	2/9	ŧ	2	0/7	1/7	:	6/7	0/1	7//	: :	:	r/3	7/0	: :		9/9	: :	:				
Percent ILS or tumor	inhibi- tion	15	۶,		43	7	37	32	25	ς.	26	82	62	45	92	ક દ	33	و ب	5	29	28	4	71	33	17	19	94	14	+	∞ ,	63	2 0	70	0 7	C 4	7	+48	5.4	97+	+1				
ig/kg/ ion	Opti- mal	10	:	£	:	:					£	£	2	:	40	: :	: :	:																										
Doses, mg/kg/ injection	Tested	10	10	2 5		:	20	£	£	£	10	£	:	:	20-40	: :	: :		2 :	£		£	£	2	2	2	50	: :	: :	£ '	∞ :	: 2	£	Ç	2;	: :	: :	: :	: :					
Treatment	Schedule, days	2-6	2-6	· •	:	:	2,6	:	:	33 33	5–6	£	:	:	2,6	: :	: :)	:		:	*	:	:	:	5,6	:	: :	£	1–5	: :		,	0 - 7	: :	: :	: :	: :	\$				
Tre	Route	.ir	:	:	ŧ	£	£	:	:	:	:	:	2	:	r :	: :	: :	: \$	ŧ	:	£	:	*	£	:	2	: :	: :	: :	: :	: :	: :	:	:	: :	: :	: :	: :	: :	:				
	Con- trols	8.5 days	1.518 mm ³	11,514 "	15,093 "	19.7 days	=	11,514 "	15,093 "	19.7 days	443 mm ³		11,007 "	22.3 days		11.969 "	77.0 4	27.8 days	3.242 "	7.057	8,166 "	10,010	270 mm ³	1,429 "	3,863 "	39.1 days	270 mm ³	1,429 "	3,863 "	39.1 days	12.8 mm ³	16.2	10.7	3.7.	1,1/5 mm ²	2,195			3,536 "	11,676 "				
	Parameter of effect	MST "	Tumor vol	"	"	MST	or.		:	MST	Tumor vol		33	MST	or,	: :	TOTA	Tumoryol	" "	"		:	Tumor vol			MST	ī		£ .	MST	Tumor vol			Turnor wi	I umor voi			: :			NA content			
	Expt. No.	723	725	ì						725	726-728				729			720 733	551-051				734-737								738			1	139			740						
	Site and inoculum	ip, 10 ⁶ cells	sc. 50 mg firmor susp	Jana Jamas Sur oc isc							£				33 33 33 33			, , , , , , , , , , , , , , , , , , , ,					33 33 33 33								im, " " "			11- 406 11-	sc, 10° cells		:	" 50 mg tumor susp						
	Tumor	210	. I.	}						LL	Ca-755							V A V	TOL				RShM-5								PRZh			223	23/			S180			S37 1 5178	Ehrlich	NK/Lv	
	Drug vehicle	Saline																																										
	Com- pound		5																																									
	NSC No.	183737 Chan-																																										

9

		69	2 8	52	37	7	د ا دن	21	35	L ;	21	35	7	13	33	7	13	22	45	۲ ;	22	106	7	4	23	25	7	14 23	32	62	7	13	50	28	7 :	10	30	90
		0/3	6/1	8/0	9/0	9/9		2	9/0	9/9	3/6	9/0	9/9	4/6	3/0 1/6	9/9	۽	2/6	9/0	10/10	:	0/10	8/L	£ ;	8/9	8/0 *	8/8	8/2	8/4	8/0	8/8	: :		8/0	9/9	:	£	9/0
		0	335	32	34	18	17	0	7	17	10	. ∞	70	+12	15	95	54	+19	m	8 %	19	9	64	12	+ 18	77 -	59	31	-	21	45	72	49	35	53	48	9	15
		100														170	: :	: :	î			,																
		25–400) :	110	120	ī	:	:	:	170	:		120	: :	*	85-170	£ ;	: :	:	100	: :	:	120	£ ;		:	170	: :	:	£	100	: :	: :	•	120	:	:	:
		2,6	1-5		2–6	:	:	:		2,6	:	:	5-6	: :	=	2,6	# :	: :	£	: :	: :	:	2–6	: :	: :	ŧ	2,6	: :	: :	:	2–6	£ ;	: :	•	: :	: :	2	£
		: :	ţ		:	ŧ	:	:	:	: :	: :	:	:	: :	:	:	£ ;	: :	:	: :	: :	:	£	£ ;	: :	:	:	: :	:	:	: :	: :	: :		: :	:	ŗ	"
		8.5 days	9.3	17.4 "	14.7 "	1.554 mm ³	11.764 "	21,268 "	24.1 days	1,554 mm ³	71,764	24.1 days	785 mm ³	7,519 "	12,232 23.7 dave	341 mm ³	5,401 "	19,153 "	26.1 days	393 mm ³	8,109	33.1 days	111 mm ³	1,124 "	6,689 "	39.1 days	111 mm ³	1,124 "	17.531 "	39.1 days	2,937 mm ³	7,230 "	9,032 "	8.8 days	321 mm ³	3 230 "	11,199 "	52.4 days
[3H]dThd incl NA content	Pro "	MST "	:	:	•	Tumorvol	"	:	MST	Tumor vol		MST	5 Tumor vol	: :	MST	Tumor vol	. :	11 11	MST	Tumor vol	: :	MST	Tumor vol	: :	: :	MST	Tumor vol	: :	:	MST	Tumor vol	r :		MST	Tumor vol	:	:	MST
		709	711	712	713	714							715, 716							717			718								719				720			
		ip, 10 ⁶ cells	11 11 11		50 mg tumor susp	sc. 50 mg tilmor susp	dens touin													11 11 11 11			11 11 11 11 11								" " " "				sc, 106 cells			
CaOv CaOv	CaOv	L1210	1 200 E	į	MOPC 406	11	1						Ca-755							AKA-	IOL		RShM-5								PRZh				S37			
		183738 Colchi- Saline	Z.1.1.																																			

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

	eval- ED50, uation ug/ml		6	50-20 50-20 100-50																																			
Day of	eval- uation	7	26			3 :	:	ť	2	2	2	2	:	\$:	: :	£		\$:	:	:	£	:	2	:	\$	20	2	2	:	14		10	14	ŧ	2	19	
	vors/ total	11/11	0/11		2/10	0/10	*	:	:	£	2	£	£	:	:	: :			:	:	t	9/0	S *	t	.	2	2	3/10	1/10	ţ	ŗ	0/10	22	ž.	:	:	ť	£	
Percent ILS or tumor	inhibi- tion	+72	13		103	10	9	30	:	7	10	12	17	73	í	25	128		8	56	9	6	59	58	17	9/	52	244	120	115	140	70	53	95	90.5	94	64	51	
ng/kg/ ction	Opti- mal				1.5	j r	:	:	£	2	£	£	:	25	:	: :	:		,,		2	£	2	:	:	t	£	20	2	ť	2								
Doses, mg/kg/ injection	Tested	100			15	3 7	150	200	10	S	100	130	150	25	:	: :	۲,		150	5:		:	25	75	150	.	t	20	2	£	150	20	25	15	4	5	2	40	
Treatment	Schedule, days	2–6			1357		1,5,10	11, 11, 11	1,3.5,7	" " " "	-	:		1,3,5,7,9,	11,13,15	1,4,7,10,13	1,3,5.79,	11,13,15,	1 4 7 10	1,4,7,10	1,2,2,1	161116	1.3.5	1.5.9	7	1.6	1,5,9	0,2,4.6,8	1,3,5,7,9	2,4,6,8,10	0.5,10,15	1,4,7 10,13	7,10,13	1,4,7,9	5,7,9,11,13	""" """	7,10,13	14,16,18	
Ţ	Route	ip.	2		S	3 :	ŧ	:	:	:	ŧ	:	:	£	:	. :	ŗ.		:	:	:	:	.≘	12	£	:	:	:	:	ĩ	•	•	:	:	:	:	:	ž.	
	Con- trols	1,081 mm ³	30 days		8 4 ± 0 2 days		19 99 99 99	11 11 11 11	:	t t	:	"	£	9.8 ± 0.2 "	:		: :		" " " "	, , , ,	11 11 11 11	11 11 11 11	" " " "		" " "		11 11 11 11	$6.5 \pm 0.14 \text{days}$		31 11 11 11	" " " "	1.7 g		16.9 "	19.4 "		: :	3.3 "	
	Parameter of effect	Tumor vol	MST	INA content " " " "	TSM	::	*	:	£	ţ	*		*	£			£		,,	2	ž	:	:	*	:	:	*	:	£	£	£	or		:	"		: :		
	Expt.	721			210	211	212	213	214	215	216	217	218	219	0	220	221		222	777	227	225	226	227	228	229	230	231	232	233	234	235		236	237, 238	•		239	
	Site and inoculum	sc, 50 mg tumor susp			in 105 cells	ip, 10 com								" 10 ₆ "														" 10 ⁸ "				sc, 0.3 ml tumor susp			" " " 9.0 "			" 0.3 " " "	
	Drug vehicle Tumor	S180	7	S3/ L5178Y Ehrlich NK/Lv	11210	01717								P388														La				Ca-755		Walker 256	S45			Mel.	п.г.
		Saline			Saline	Sami																																	
	Com- pound	183738 Colchizin			711776 Diazan	Diazani																																	
	NSC No.	183738			271276	0/11/1																																	

																2×10-			5×10-			
4	12 30	:::	14:	12	10	: :	: :	21	ŧ	2	" 0	:	4:	20	119	7			ν.			
:			10/10				8/10 10/10		0/10	10/10	8/10 10/10		9/10 10/10 "	9/10	10/10							
71	0 95	61	61	69	67	65	31	44 72.3	7.5	9 4	36	,	54 70 77	56 70	63							
	1.0	0.75	0.15	0.15	0.15	0.25	0.25	0.5	:	ŧ	0.5		0.4 0.2 4	0.2	0.3							
8	0.25-1.0 1.0-2.0 0.12-1.25	1.0–1.5	0.15-0.5	0.15-0.5	0.1-0.3	0.15-0.5 0.1-0.25	0.15-0.5	0.25-0.75 0.15-0.5	2	0.2	0.2-0.4		0.4-0.8	0.2-0.4	0.2-0.4 0.4-0.8							
5,7,9,11,13	1-6 1,4,7 1-6	1,3,5,7	1,4,7	1.3.5.79	1-8	1,3,5,7,9	1,3,5,7,9 $1-9$	3,5,7,9 9–17	00 71	9,11,13,	14,16,18.20 3-7	1	3,5,7 3-11 3.79.11	10-18 10,12,14,	10-18 10 12,14,	10,10						
£	: 2.d	.≥.≙.	≥.Ω.	≙. Ω ≥	: :	.ì. di	•.≥ . Ω	i.s. di	ŧ	iv	: .d	٠.	≥.₽.≥	i.d	ū.≥i							
15.2 "	10.8 days " " 13.2 "	" "11.4 "	===	6,300 "	5,100 "		4,300 "	5,400 "	:	:	37,000 "	:	35,900 "	43,100 "	41,600 "							
ŧ	H		r vol	: :	: :	: :	: :	: :	ŧ	£	: :	:	: ; ;	: :	: :							
\$	MST		Tumor vol	: :	: :	: :	: :	: :		:	: :	:	: = :	£ £	* *							
240	660	662	663	664	999	999	299	899			699		029	671	672							
	ip, 10 ⁵ cells	ip, 0.5 ml cell susp	sc, 20 mg cell susp	11 11 11 11 11	ip, 5×10^6 cells			sc, 20 mg tumor susp			sc, 30-mm³ tumor frag		11 11 11 11 11	11 11 11 11 11	sc, tumor frag n			u.			f.	
Ca- Jensen	L1210 P388	La	LI0-1	Ca-755	S37	Ehrlich	S180	Mel.	H.P.		Walker	256	S45	SM-1	Ca Guerin	Hep-2	mary cul-	ture of human	tumor Hep-2	mary cul-	ture of human	tumor
Saline	269146 Varia- Saline mycin																					

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

Day of eval- ED50, uation ug/ml	5×10-4	12	: :	10	. 12		£ ;	41 ::	:	25	2	: :	: :		£ (30	\ :	19 " 0.25-0.3		
										4.						cra		- '	,	- ^
Survi- vors/ total		9/10	8/10	8/10	10/10		9/10	10/10	1		:	9/10	10/10	ŧ	0/10	9/10		10/10		7/7
Percent ILS or tumor inhibi- tion		65	31	3: 1	5/ 61	47	۽ ۽	4 4 4 7	55	11 2		35				35	39.5	30		12
g/kg/ ion Opti- mal		1.5	:	0.25	.: .:	2.5	20	2.5	20		1.5	2.5	20	2.5	ì	10	:		,	N L
Doses, mg/kg/ injection Opt Tested ma		1.0-2.5	0.25-1.0	0.25-1.0	1.0–2.5	1.5–3.5	25–75	1.5-3.5	25–75	1.0-2.5	1.0-2.5	1.5-3.5	75-50	0.5-2.0	0.5-2.5	<u>5</u> -10	5-20	5-10 50-70		4-8 5-7
Treatment Schedule, te days		1-9	13579	1,2,3,7,7	1,3,5,7,9 1–9	1,3.5,7,9	1–9	1-9 1.3.5.7.9	1-9	1-9	1-9	1,3,5,7,9	<u>-</u> -γ	1.3.5.7.9	1–9	3-6	3,5,7	9-13		3-7
Tre		ip .×	:.₽.≥	à .∯.	≥.≘	- .≥	Oral	ლ.≥	Oral	. <u>c</u> ≥	. <u>e</u>	·.≥ (Oral	գ.≥	: .≘.:	: :	'n	ip Oral		ïط:
Con- trols		6,800 mm ³	7,200 "	5,000 "	6,700 "	* **	: : : :	5,640		21.2 days	2,015 mm ³	: :		3,020	10 days	11.6 days	, , ,	30,600 "		8.4 days 2,577 mm ³
Parameter of effect		Tumor vol	: :	: :	: =	:	: :			MST "	Tumor vol	: :			MST	Tumor vol	"	z z z z		MST Tumor vol
Expt.		45	4	81	46		•	158		201	171		173	7/1	147	132	;	34		682
Site and inoculum		L5178Y ip, 5×10^6 cells	" " "	1, 1, 1,	sc, 50 mg tumor susp		:	: 07		11 11 11 11	" 3×3 -mm tumor	frag	20 min 20 min 2 min 2 min 3 mi	iiii, 20 iiig tuiiioi susp	ip, 10 ⁵ cells	sc 30-mm ³ tumor frag	9			ip, 106 cells sc, 50 mg tumor susp
Tumor	Hep-2 pri-mary cul-ture of human tumor Hep-2 pri-mary cul-ture of humon tumor humon tumor humon ture of human tumor	L5178Y	S37	Ehrlich	Ca-755		,	Mel. H.P.		B16	S180		11			P388 Walker	256	Ca- Guerin Hep-2		L1210 LL
Drug vehicle	Saline	Saline																	;	Saline
Com- pound	ii.	ci.																		Agavo- side
NSC No.	269146 Varia-myc	99773 Reu-																NOGE A PI		275653 Agavo- side

50–10		
19 19 19 19 19 19 19 19 19 19 19 19 19 1	11 15 60 150 7 7 113 10 10 19 8 8 117 117	10 19 13 19 25 26 26 7 7 7 30
7/0 6/7 6/7 7/7 8/8 8/8 1/7 1/7 1/7	0/8	8/8 3/8 8/8 8/8 1/8 1/8 1/8
588 711 721 722 733 744 747 750 760 760 760 760 760 760 760 760 760 76	0 12 74 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	60 19 19 19 19 19 19 19 19 19 19 19 19 19
:: 0::: 0::::: 1::	20	
5-6 5-7 5-7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 15 10 10–20 	20–25 "10–15 """ 20
2-6	1-7 6 1-5 15 1-10 " (q other day) 1-5 10 2-6 10 " " " " " " " " " " " " " " " " " " "	4-8 7-8 7-8 13-13-13-13-13-13-13-13-13-13-13-13-13-1
8,924 "7.7 g 692 mm³ 8,711 " 17,466 " 25.5 days 908 mm³ 2,650 " 2 g 576 mm³ 2,857 " 9,448 " 9,648 " 6 g 802 mm³ 4,427 " 3.7 g 845 mm³ 6,026 " 12.6 g	9 days 11.5 "" 16 " 17.2 " 763 mm³ 6,024 " 10,895 " 6.6 g 667 mm³ 5,210 " 8,716 "	1,992 mm ³ 7,059 " 458 " 1,046 " 3,258 " 6,834 " 5.3 g 826 mm ³ 1,919 " 12,367 "
Tumor wt Tumor vol " " MST Tumor vol " " Tumor wt Tumor wt Tumor wt Tumor wt Tumor wt " " Tumor wt Tumor wt " " " Tumor wt " " " " " " " " " " " " " " " " " " "	MST " " Tumor vol " " Tumor wt Tumor wt Tumor wt Tumor wt	Tumor vol """" """ Tumor wt Tumor vol """" """" """""
686 686 688	673 675 676 677 678	679
e e e e	dsns:	z z
im, " " " " " sc, " " " " " " " " " " " " " " " " " " "	ip, 10 ⁶ cells " 10 ⁷ " " 20, 50 mg tumor " " " " " "	" " " " " " " " " " " " " " " " " " "
Ca-755 AKA- TOL RShM-5 B16 B16 B16 S37 L5178Y Ehrlich NK/Ly	L1210 P388 La LL LL	B16 RShM-5 S37
	23471 Digi- Saline tonin	

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

Day of eval- ED50, uation µg/ml	100–50		50–10 10 50–10 10	
Day of eval- uation		96	* 7	110
Survi- vors/ total	!	8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8		3/8
Percent ILS or tumor inhibi- tion		88 77 70 70 70 70 70 70 70 70 70 70 70 70	<i>)</i> (0 3
g/kg/ ion Opti- mal		20 20		12
Doses, mg/kg/ injection Opti Tested ma		10-20 6-20 7-25 10 5-20 8-20	:	6–12
Treatment Schedule, ite days		1-5 7-1:		2–6 (q other day) 2–6
Tr		:	.	: :
Con- trols		17.2 days 1,210 mm³ 6,879 " 7.3 g 666 mm³ 5,210 " 8,716 " 9.5 g 5,075 mm³ 22,657 " 797 " 3,700 " 12,136 " 797 " 3,700 " 12,136 " 9,448 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 " 9,648 "	17,367	10 days
Parameter of effect	NA content " " " "	Tumor vol Tumor vol Tumor vol """ Tumor vol """ MST Tumor vol """ Tumor vol	E	MST "
Expt.		690 691 693 694 696 696		869
Site and inoculum		ip, 10 ⁷ cells sc, 50 mg tumor susp """""""""""""""""""""""""""""""""""		ip, 10 ⁶ cells " 10 ⁷ "
Tumor	S37 L5178Y Ehrlich NK/Ly	La LL Ca-755 AKA- TOL RShM-5 S37	S37 L5178Y Ehrlich NK/Ly	L1210 P388
Drug vehicle	Saline	Saline		Saline
Com- pound	Digi- tonin			
NSC No.	23471 I	275654 Funkio-side		275655 Vitalboside

						50–10	
92	7 11 16 22	22 23 23	12 17 17 7 7 13 20	7 112 118 25 8 8	20 20 20 12 19 25		
1/9	8/8 7/8 ""	8/8	""" 8/8 "" 7/8	8/8	7/8 		10/10
134	24 13 23 11	40 115 10 0	75 46 24 10 36 6	72 44 0 0 65	23 23 23 70 70 65	0 :	80 50 43 71 66 68
	4::::			10	4: : : : : : : : : : : : : : : : : : :		10 100 10 400 10 100
6–12		4::::	8–15 "" 10 ""	14 8–14	10–14 "" 8–20 ""	5-10	100, 400 100, 400 10, 100, 200, 400 400 10 10
1-10	2-e			"" "" 3-7	2-6 	1–5	2-11 2-7 " " 2-11 2-7
:							oral ip or ip ip ip ip ip ip
91	1,219 mm ³ 6,006 " 10,455 " 18,230 "	1,219 mm ³ 6,006 " 10,455 " 18,230 "	725 mm ³ 6,739 " 14,783 " 9.8 g 661 mm ³ 4,921 " 13,207 "	1,215 mm ³ 3,177 " 9,743 " 7.5 g 2,226 mm ³ 5 196 "	12,018 " 12,018 " 12,291 " 13.2 g 32.5 mm ³ 1,044 " 2,977 "	8.2 days	2 g 2 2 31" 2.31" 9,418 mm³ 413 "
£	Tumor vol	Tumor vol	Tumor vol Tumor vol " " Tumor vol " " Tumor vol	or wt	" " Tumor wt Tumor vol " " Tumor vol	NA content " " " " " MST	Tumor wt """ Tumor vol "" Tumor wt
700	701	702	703	705	707	741	743 744 745 746 747
£	sc, 50 mg tumor susp				" " " " " sc, 10 ⁷ cells	ip, 10 ⁶ cells	
La	1		Ca-755 AKA- TOL	B16	S37	S37 L5178Y Ehrlich NK/Ly L1210	P.388 LL Ca-755 AKA- TOL RShM-5 PRZh
						275652 Gluco- Saline	man nan

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there " (Continued)

	eval- ED50, uation ug/ml																	
Day	eval- uation	20	z z	=		∞		13			60	11	£	19	: :	z ,	9 :	•
Surgi.	vors/ total	8/8 10/10 8/8	10/10	9/10	:	10/10	•	ŧ.	9/10	10/10	1/6 9/10	10/10	:	: :	: :	3/10	10/10	
Percent ILS or	inhibi- tion	21 0 "	52	99.1– 100	22.8–32	80–95	29–34	43.3-63.4	100		33–133 85	29 16	81	15.2 39.6	52.2 54.6	67.0	86 72.7	50.2
ig/kg/	Opti- mal		100											1.5-2.0				
Doses, mg/kg/ injection	Tested	10 50 400	100	1.5	\$:	.	£	£	:	9.0	0.4	£	0.5	1.5 2.0	2.5	<u>.:</u>	3.0
Treatment	Schedule, days	5–19	: :	2–10	*	2-7	:	2-12	:	2–9	2-7 2-9	2–10	:	4–16	: :	٤ ,	4-I2 "	6,8,10, 12,14
Tre	Route	ip ". Oral	ip Oral	ij	2	:	£	Sc	ip	£	z :	S:	тр	: :	: :	£ ;	: :	. .
	Con- trols	10 10	5.7 "	4.5–1.21 ml	4.02–1.3 "	2.75-0.82 "	3.23-1.3 "	6.47–1.89 "	5.01-1.33 "	5.08-1.37 "	7.71 days 4.45 ml	4.33 " 27.2 "	23.1 "	=		: :	1,740 "	1,247 "
	Parameter of effect	or v		Vol ascitic fl, dense	Vol ascitic fl, dense prec	Vol ascitic fl, dense	Vol ascitic fl, dense prec	Vol ascitic fl, dense	Vol ascitic fl, dense	Vol ascitic fl, dense	MST lascitic	: :		101	, ,	: :		z :
	Expt.	749	752	255	256	257	258	259	260	261	262 263	264 265	266	267		4	268 269	270
	Site and inoculum	, 50 mg tumor s	33	ip, 0.1 ml ascitic fl		n n n n		n n n n		33 33 33 33	ip, 10 ⁵ cells ip, 0.4 ml ascitic fl	33 33 33 33 33 33 33 34 34 35 35		sc, 0.1 " "		:		
	Tumor	S37	S180	S37		S37		NK/Ly		Ehrlich	L1210 OYa			S37				
	Drug vehicle	Saline		Saline	10% Ethyl alco-	Saline						10%	Ethyl alco- hol	Saline			10%	Ethyl alco- hol
	Com- pound	Gluco- man- nan		Dioxa- det														
	NSC No.	275652		275656 Dioxa- det														

							50–10 < 10 "	
18	116	;	" 17	17 17 15	:	: 41	σ,	13 61 37 ,, 9 13 21 40
11/14 10/10 ".	14/14	9/10		8/10 9/10 11/11	9/9	10/10		0/6 "" 7/7 ""
82.2 54.0 55 41	37 37 40 40	99.8 99.7 100	99.6 77.7 93.9	88.7 99.3 99.7	100.0	20.0 39.0		2 18 18 18 18 18 18 18 18 18 18 18 18 18
		0.4-0.5						
4.5 2.0	2.0	0.5 0.5 0.6 0.7	0.5	0.5	2.0	0.5		200 60 1150 60
4,7,10,13 7-17 6-16	6-17		5-10 5-13 4-16	6-18 3-16 3-14	5–10	4-14		2.6 1–5 2–6 2.6 2.6
: : : : :	: : :	::::	: :	: : :	. <u>E</u>	. <u>d</u> .:		Oral
2,830 " 2,380 " " " " " " " " " " "	3,530 " 2,250 " 2,850 " 30,720 "		32,306 " 8,132 " 10,135 "	31,210 " 32,870 " 19,596 "	16,450 "	16,000 " 25,300 "		7.6 days 11.2 " 14.7 " 3,786 mm³ 6,300 " 11,234 "
: : : : :	: :::	::::	:::	: : :	£	: :	NA content " " " "	MST " " Tumor vol " " MST
* * * * *	* * * *	: : : :	: : :		•	* *	ZA: : :	MST " Tumor v " MST
271	273 274 275 275		277 278 279	280 281 282	283	284		51 52 53 54
	sc, 0.2 ml 30% tumor susp ip, 0.1 " sc, 0.2 "				:	2 2		ip, 10^6 cells ip, 3.5×10^6 cells ip, 50 mg tumor susp sc, 50 mg tumor susp
Ehrlich	S180 LI0-1 Walker		S45	Ca- Jensen MOPC 406		LS-Pliss LS-Pliss	S37 L5178Y Ehrlich NK/Ly	210 PC 06
Saline			10% Ethyl alco-	Saline 10% Ethyl alco-	Tribu- tyric io- dine- lipoic alco-	Saline 10% Ethyl alco-		Boiled L12 starch La MC MC LL
								275568 Phen-thy-rine

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there a (Continued)

	ED50, ug/ml				1 7 7 10		
Day		7 13 65	13 20 45 7	21 7 7 12 26 33	21 21 21	31 77 111 14 18 17 77	112 112 113 8 113
Survi	vors/ total	8/8 7/8 0/8	6/6 5/6 3/6 7/7	", 0/7 7/7 ", ", ", ", ", ", ", ", ", ", ", ", ", "	% 9/9 2/6	0/10 "" 1/10 0/7 7/7 6/7 5/7 5/7	8/8 8/8 6/8 6/6
Percent ILS or	inhibi- tion	97 86 33	22 28 0 67	22 15 27 60 78 71 53	+ 1 + 0 + 1 + 1	100 62 75 130 40 71 76 86	65 65 60 60 78 41 40 13 79
g/kg/ on	Opti- mal					20 20	çî .
Doses, mg/kg/injection	Tested	200	09 : : : : :	200	09 : :	80 67 20 15–20 40–80 30–70 "	10 50 20 20 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40
Treatment	Schedule, days	2,6	2–6			1.6 1.6 1.5 1.5 2,6 	2
Trea	Route	Oral "			* * *	: : : : : : : : : 2 .	. S. 'ā'
	Con- trols	403 mm ³ 8,558 ". 22 days	3,873 mm ³ 8,334 " 17,149 " 28 days 273 mm ³	1,200 4,371 " 48.3 days 429 mm ³ 2,629 " 6,398 " 24,475 "	954 mm ³ 3,536 " 11,676 "	8 days """ 10.4" 8 "" 122 mm³ 2,846 "" 6,832 " 18,922 " 18,922 "	949 mm ³ 13,980 " 29,064 " 18.6 days 1,456 mm ³ 4,194 "
	Parameter of effect	Tumor vol	Tumor vol " " MST Tumor vol	TS	Tumor vol """ [³H]dThd incl NA content Pro "	MST " " " Tumor vol " " " " MST Tringor wt	Tumor vol " " " MST Tumor vol
	Expt.	55	56	58	09	241, 242 825 826 827	828
	Site and inoculum	sc, 50 mg tumor susp		" " " " sc, 10 ⁶ cells	sc, 50 mg tumor susp	ip, 1.5 × 10 ⁶ cells ip, 10 ⁶ cells sc, 50 mg tumor susp ", ", ", ", "	t t
	Tumor	Ca-755	AKA- TOL RShM-5	S37	S180 CaOv CaOv	vice- L1210 dis- tilled H ₂ O P388 or La saline Ca-755	AKA- TOL
	Drug vehicle	Boiled				Twicedis- distilled H ₂ O or saline	
	Com- pound		275568 Phenthy-Boiled rine starcl			23909 Methyl- Twice- nitro- dis- sourea tilled H ₂ O or salin	
	NSC No.	275568 Phen-thy-	275568			23909	

19 7 7 113 119 25 65 8 8 8 	* : : : : :			40 48 16 10	
8/8 "" 7/8 0/8 10/10 ""	:::::				
22 61 16 23 80 80 80 80 80 80 75	45 90 80 50 85 75	30 90 70 50 70	10 85 85 70 70 60 60 75	85 90 75 75 90 90	80 80 80 80 80
20 20	: :	50	20 50 20	: : :	£ £
30–70 30–70 20 10 6 50 20 10	5 20 10 5 50 20	10 20 10 5 50 20	10 20 20 20 20 20 20 20 20 20 20 20 20 20	100 100 100 100 100	20 20 20 20 20 20 20 20 20 20 20 20 20 2
2,6 1-6 			7,13	12,14,16, 18,20,22 " " 21 3,10 " "	3-8 3-8 " "
: 3: : : : . . 3: :	i. ip	: ' G ': : S':	•	gi . S: qi	sc ip
2 1	4.4 ml, 380 × 10 ⁶ ip """ """" """ sc		5.0 ml, 800 × 10 ⁶ 6.7 g 4.0	3.0 " " " 4.2 " 64.4 " " " " "	52
243	244	245	246 247,248 Tu	250 251, 252, 253	254
RShM-5 " " " " " " " " " " " $^{\circ}$ Ehrlich ip, $6 imes 10^6$ cells	£	: :	" "sc, 50 mg tumor susp	sc, 70 mg tumor susp	: : :
RShM-5 Ehrlich	S180	S37	NK/Ly LL	C3H mam- mary ° Walker 256	S45

APPENDIX III.—Results of experimental studies in the Soviet Union with drugs developed there * (Continued)

			050, g/ml					70	000	300 ~	1
	Day	of	eval- ED50, uation ug/ml	,	81 °	£			1	1	
			vors/ total		10/10	£					
Percent	ILS or	tumor	inhibi- tion		90 85	70					
	1g/kg/	ion	Opti- Tested mal		70						
	Doses, m	inject	Tested		200	8					
		Treatment	Schedule, days		7–12	*					
		Trea	Schedule Route days		sc "						
			Con- trols		26 g	" "					
			Parameter of effect	0.00	Tumor wt	11 31		r³HldThd	incl	NA content	Pro
			Expt.		254						
			Site and	IIIOCAIAIII	sc, 70 mg tumor susp						
			E	I umor	S45			5	Ça O	CaOv	CaOv
			Drug	venicie	Twice-	dis-	tilled	H ₂ O	saline		
			NSC Com- Drug	punod	Methyl-	nitro-	sourea				
			NSC	Z	23909			H ₂ O			

* ED50 = median inhibitory concentration; MST = mean survival time; LL = Lewis lung; susp = suspension; NA = nucleic acid; [3H]dThd incl = tritiated thymidine included; Pro = protein; it = intratesticular; q = every; fl = fluid; frag = fragment; Mel. H.P. = Harding Passey melanoma; prec = precipitate. Some data were not available.

*Pro = protein; it = intratesticular; q = every; fl = fluid; frag = fragment; Mel. H.P. = Harding Passey melanoma; prec = precipitate. Some data were not available.

*Protein; it = intratesticular; q = every; fl = fluid; frag = fragment; Mel. H.P. = Harding Passey melanoma; prec = precipitate. Some data were not available.

*Protein; it = intratesticular; q = every; fl = fluid; frag = fragment; Mel. H.P. = Harding Passey melanoma; prec = precipitate. Some data were not available.

"Tumor was third generation and spontaneous.

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States*

	ng/ml																																								
Day of eval-	nation	69	27	: :	37		0	7	13	16	26	7	13	26	9	11	15	200	07	26	- "	17	39	7	13	19	105	7	14	70	27	140	7	14	22	59	85	10	14	20	27
• ,	total	2/3	0/10	" (1/6	,	5/ /0	9/9		9/9	9/0	9/9	٤.	1/6	10/10	£ :	: :	: :		0/10	6/6	t	9/0	14/14	,,	ť	1/14	1/7	ţ	ŗ	ŗ	2/0	1/7	:	:	:	2/7	6/6	6/9	6/5	£
Percent ILS or tumor inhibi-	tion	1117	129	105	25 118	ć	11.2	96	83	65	46	66	100	130	25	9.66	96	\$ \$			7 S																72	74	97	86	91
g/kg/ on	Jptimal	100			100															,	90 1	2	*																		
Doses, mg/kg/ injection	I ested Optimal	25-400	100	: <u>:</u>	*	2		40			\$	100	£	£	200	: :		: :	:	: 0) 	£	:	75) :	2	:	100	£	ť	2	2		:	£	:	:	200	2	:	:
Treatment Schedule,	days	2, 6	0 ,	- v	2,6	6	ט ני	, 2–6	:	:	•	2,6	£ .			r :		: :	:	: (, , o :	"			" "		2	2	2		: :	" "	" "	2 2	" "	:	" "	7	ţ	2	2
Tre	Koute	ip	: :	: :	ž	ī	ť	:	:		£	: :	: :	£ ;	£ ;	: :	: :	: :	:	: :	: :	:	:	:	:	:	1	:	£	ţ	2	:	•			:	:	:	:	•	£
		8.5 days	7.3 "	: :	14.7 "		" "	1,518 mm ³	11,514 "	15,093 "	19.7 days	=	11,514 "	19.7 days	Ξ		8,561 "	13,234	676,67	26.8 days	443 mm° 5 5 4 5 mm°	11.007	22.3 days	257 mm ³	3.648 "	11,233 "	28.6 days	8			6,638 "	44.2 days	112 mm ³	1,489 "	5,771 "	10,985 "	41.5 days	425 mm ³			9,324 "
Parameter	or errect	MST	: :	: \$	\$	£	*	Tumor vol	" "	33	MST)r v		MST	or v	. :		: :		MSI	I umor vol	" "	MST	Tumor vol	" "	" "	MST	Tumor vol			"	MST	Tumor vol			"	MST	or v			: :
Expt.		293	294		295, 296			297							298					ć	667			300))			301-303					304					305			
					umor susp	ž	ž	:	ž	t	ŗ	r :	: :	: :	: :	: :	: :	: :	=	: :		:	ž	ĭ	ž		ç	2	£	z	ŗ	ž.	ĭ	ž	č	ŗ	ţ	2	ž	r :	r.
pg S	E	9(96		tumoi	£	z	:	2	£	£	£ :	: :	: :	: :	: :	: :	t	:	: :	: :	:	ž.	:	£	:	ç	£ :	£	î.	ţ	ž.		•	£	:	ť	t	2	£ :	2
Site and	Inocui	ip, 1×10^6	ip, 7×10^6	: :	ip, 50 mg t		ŧ		" "	" "	:	: :		: : : :	: :	: :	: :	"	:	: :		" "	:	;	" "	"		: :		ĩ	ţ	: :	: :	: :	"	:	:	t	£	: :	: :
E	I umor	L1210 ip	La ip	3.		406 "		LL sc,	*	•	•	F :	£ :		£ ;		2			. 188 "	Ca-/33 "	•	2	AKA- "	TOL "	2	£	£ ;	•	•	\$	•	RShM-5 "		•	=	2		£		
Drug	<u>ນ</u>																																								
Com-	ponud	26271 Cyclophos- Saline phamide	•																																						
NSC	No.	26271																																							

	500 , " > 1,000 > 1,000	
77 77 77 77 77 13 85 85 77 77 77 77 77 77 77 77 77 77 77 77 77		00 17 11 11 12 13 14 14 14 15 16 16 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19
0/9 7/7 "" 0/7 6/6 8/8 8/8 "" 6/6 "" 4/6 0/6 8/8		0/6 " 10/10 " 9/10 " 1/10 8/8 7/8 " 10/10 1/10 6/6 5/6 9/9 " " 1/10 1/10 1/10 1/10 1/10 1/10 1/10
+ 34 + 34 99.9 44		700 122 433 643 643 880 880 880 881 882 883 884 885 885 887 887 887 887 887 887 887 887
0::::::::		χ, , , , , , , , , , , , , , , , , , ,
		20-35 25-40 40 20-35 40
. ¹ - 2		", 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
41.4 days 112 mm ³ 1,489 " 5,771 " 10,985 " 41.5 days 6,148 mm ³ 11,231 " 14,399 " 45.8 days 348 mm ³ 1,308 " 2,232 " 1,094 " 5,123 " 9,017 " 9,017 "		8.3 days 8.0 " 949 mm³ 4,288 " 6,772 " 13,340 " 27.5 days 6,642 " 14,448 " 487 " 1,068 " 6,756 " 8,889 " 56.6 days 210 mm³ 4,100 " 12,807 " 32.7 days 425 mm³ 1,366 " 4,051 " 9,824 "
MST 304 Tumor vol """" MST 306 Tumor vol """ MST 307, 308 Tumor vol """ 309 """ MST MST MST MST MST MST MST	NA content """ "" [³H]dThd incl NA content Pro "	MST " " " " " " " " " " " " " " " " " " "
304		325 803 326 327 329 339
" " " " " " " " " " " " " " " " " " "		r susp
cells ""		strmo
im, " " " " " " " " " " " " " " " " " " "		sc, 50 mg tumo sc, 50 mg tumo """""""""""""""""""""""""""""""""""
PRZh i S37 S S37 S S37 S S37 S S37 S S380 S	S37 L5178Y Ehrlich NK/Ly CaOv CaOv	L1210 ii La LL s LL S Ca-755 TOL TOL TOL S
		Saline
		409962 1,3-Bis(2-chloro-ethyl)-1-nitro-sourea

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

	ED50. µg/ml			10-1	£	ī																														
Day	_ =	7	20				06	141	37	23	7	13	97 %	2 50	∞	13	39	7 ;	5 1	39	7	13	23 52	7	14	23	62	۲;	1. 4. 7.	62	7	13	67	- 41	23	91
Survi-		8/8	£				9/0	3/8	9/0	8/0	9/9	: 4	3/0 4/6	11/11		10/11	0/11	9/9	2/6	9/0	6/6	: :	1/0	8/8	; :	2	8/0	8/8	: :	1/8	9/9	:	9/0	8/8	£	8/0
Percent ILS or tumor	inhibi- tion	+ 96 81	6				009	419	0	:	94	99.7	. « . «	39	28	16	£ (8 6	53	38	89	79	C 4	69	63	55	2	20	98 44	6	, ες	+ 43	31	65	+ 10 10	19
3/kg/	ion Optimal						30										ć	30																		
Doses, mg/kg/	injection Tested Opt	35	*				20-30	0 1	30	40	30	: :		50	:	:	: (20–30			30	s :	: :	12	 	•	2	30	: :		ŗ	£ :		: r	:	
Treatment	Schedule, days		"				ř (7 :	2,6	m	2,6			4		,,	۽	2,6	: :	" "	:	: :	: :	2-6	, ,	.	£	2,6			"	2 :		. 2	:	z z
Trea	S	ъ́г.	2				Oral	d:	Oral	.a	Oral	: :	ž.	2	*	2	r :			ţ	£	: :	: :	2	:	.	:	. :	: :	:	ž.	2 :		. 2	.	*
	Con- trols F	E	9,082 "				days	× .	14.7 "	15.0 "	mm^3	2,987 "	6	204 mm ³	1,890 "	6,053 "	24.9 days	443 mm ³	3,349	22.3 days	1,776 mm ³	4,184 "	14,002 13.8 g	11.0 g	1,124 "	689,9	39.1 days	111 mm ³	1,124	39.1 days	6,148 mm ³	11,231 "	45.8 days	348 mm ³	3,168 "	61.0 days
	Parameter of effect b	or v	"	NA content	33	" "	MST	£ £	£	*	or v		-	" vol		"	MST	Tumor vol		MST		: :	or wt	vol.	" "	"	MST	Tumor vol		MST	0	2	MST	346, 349 1 umor voi " "	* **	MST
	Expt.	331, 332	•				333, 334	226	336,337		338			339	340			341, 342			343, 344			345							346,347		340 340	340, 349		
	Site and inoculum	, 50 mg tumor susp		: :	11 11 11 11 11	33 33 33 33	ip, 106 cells		" 50 mg tumor susp	21 21 21 21 31	" " ,		**	33 33 33 33					33 33 33 33	" " " " " "	33 33			33 33 33 33	11 11 11 11 11			33 33 33 33 33		33 33 33 33	1, " " " "		106 20112		" " "	
	Tumor	PRZh	i c	S37 I 5178V	Ehrlich	NK/Ly	L1210	-	MOPC	901	LL						1	Ca-755			AKA-	TOL		RShM-5							PRZh		637	100		
	Drug vehicle	Saline						starch																												
	Com- pound		ethyl)-1-	nitro-			79037 1-(2-Chlo- Boiled	3-cvclo-	hexyl-1-	sourea																										
	NSC No.	409962					79037																													

		20–10 50–20 10 "
7 14 21 56	99 141 19 10 10 11 10 11 11 11 11 11 13 13 13 14 14 14 17 17 17 17 17 17 17 17 17 17 17 17 17	18 63 93 7 7 7 7 7 7 7 35
6/6 " 5/6 1/6	0/6 0/4 0/7 0/7 1/7 1/7 0/9 9/9 9/9 1/7 1/7 1/7 1/7	0/6 ", 0/8 ", 7/7 ", 7/7 ", ", 1/0
29 "16 0	12 221 49 49 42 42 43 43 44 40 40 40 40 40 40 40 40 40	120 28 7 7 7 7 7 7 7 8 8 8 8 4 9 4 9 4 7 3 0 0 10 10 10 10 10 10 10 10 10 10 10 10
	0.0 0.8 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	150
2 2 2 2	0.4-0.5 0.4-1.2 0.4-0.6 0.5 0.5 0.7 0.4 0.4 0.4 0.4 0.4 0.4 0.7 0.3-0.75	100–200 60 120 60
* * * *	2-6 1-5 1-5 1-5 1-5 1-5 1-6	2-7 1-5 2-6 2-6 3.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* * * *	ër i i i i i i i i i i i i i i i i i i i	
1,094 mm ³ 5,123 " 9,017 " 34.0 days	8.3 " 8.4 " 8.0 " 9.4 " 397 mm³ 6,628 " 15,574 " 19,271 " 21.2 days 154 mm³ 5,799 " 9,875 " 22,745 " 32.8 days 122 mm³ 2,846 " 6,832 " 18,922 " 26.9 days 452 mm³ 2,738 " 6,326 " 6,326 " 12,761 " 88.5 days	7.1 " 8.8 " 17 " 2,693 mm³ 14,775 " 18,001 " 2.693 mm³ 14,775 " 14,775 " 18,001 "
Tumor vol " " MST	Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor Nol """ MST Tumor Nol """ MST MST	NA content """ MST """ Tumor vol """ MST Tumor vol """ MST Tumor Nol """ MST
350	287 289 289 290 291 292 804 805	6 310, 311 312,313 314 315
50 mg tumor susp	ip, 106 cells """" """" """" """" """" """" """"	ip, 10^6 cells 50 mg tumor susp sc, " " " " " " " " " " " " " " " " " " "
S180	1% L1210 Ethyl alco- hol La LL Ca-755 Ca-755	Saline L1210 La MOPC 406 LL
	34462 Uracil 19 mustard	82196 TIC- Sa mustard

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

ED50, ug/ml	\$0-20 100-50 "
Day of eval- ED50, uation ug/ml	100 100 100 100 100 100 100 100 100 100
Survi- vors/ total	6/6 %/0 1/7 %/7 %/7 %/7 %/7 %/8 %/8 %/8 %/8 %/8 %/8 %/9 %/9 %/9 %/9 %/9 %/9 %/9 %/9
Percent ILS or tumor inhibi- tion	+ + + + + + + + + + + + + + + + + + +
Doses, mg/kg/ injection Tested Optimal	20
Doses, mg/kg injection Tested Optin	60 1120 1120 1120 1120 1120 1120 1130 1140 50 50
Treatment Schedule, ate days	2-6 3-7 3-7 3-7 1-6 2-8 3-10
Trea S Route	· G
Con- trols R	9,220 mm³ 17,996 "" 22.3 days 6.5 g 319 mm³ 563 " 4,056 " 82.6 days 95 mm³ 2,157 " 11,221 " 54.8 days 95 mm³ 11,221 " 54.8 days 34.008 " 41.1 days 34.008 " 41.1 days 34.008 " 15.1 " 15.2 " 15.3 " 16.4 " 7.1 " 8.6 " 15.1 " 12.5 " 2,693 mm³ 14,755 "
Parameter of effect b	Tumor vol " vol " vol " vol " vol " " " MST Tumor vol " " " MST Tumor vol " " " MST Tumor vol " " " MST " " " MST " " " MST " " " MST " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
Expt. No.	316, 317 320 321 322 323, 324 754 755 757 757 758 759 760
Site and inoculum	sc, 50 mg tumor susp """"""""""""""""""""""""""""""""""
Drug vehicle Tumor	Ca-755 AKA- TOL TOL RShM-5 RShM-5 S37 S37 L5178Y Ehrlich NK/Ly L1210 P388 La MOPC 406 LL
Drug vehicle	Saline
Com- pound	to- ocin
NSC No.	85998 Strep zot

APPENDIX IV 167

7 13 104 104 104 114 113 113 114 115 117 117 117 117 117 117 117 117 117	13 69 88 38 41 41 41 41 41 41 41 41 41 41
8/8 0/8 7/7 0/7 8/8 8/8 0/8	0/6 0/7 0/7 0/9 0/9 0/9 1/7 1/7 1/7 1/7 1/7 1/7 1/7 1/7
50 68 68 68 68 68 68 68 68 68 68	13 148 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
50	12
40–50 "" "" 50 "" 40–50 ""	70 125 "" 75–200 "" 75–200 "" 75–125 ""
	Original and the second of the
466 mm³ 1,930 " 4,139 " 11,013 " 52.0 days 273 mm³ 1,288 " 4,371 " 48.3 days 3,459 mm³ 5,904 " 7,42 days 42 days 429 mm³ 2,629 " 1,487 " 5,647 "	7.6 days (13.8 "" 15.1 "" 2,040 mm³ 7,359 "" 22.1 days 288 mm³ 1,670 "" 4,801 "" 11,972 "" 24.2 days 1,371 mm³ 5,331 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,231 "" 8,8 g 5,19 mm³ 7,230 "" 9,082 "" 8.8 g 519 mm³ 7,230 "" 6,398 "" 11,295 "" 6,398 "" 11,295 "" 6,347 "" 11,295 "" 6,347 "" 11,993 "" 1,487 mm³ 5,647 "" 11,093 ""
Tumor vol MST Tumor vol MST Tumor vol MST Tumor vol MST Tumor vol """ MST """ MST """ MST """	MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST Tumor vol """ MST
763–765 766, 767 769–771	360 361 362 363 364, 365 366 369 370, 371
in, "" "" "" "" "" "" "" "" "" "" "" "" ""	ip, 106 cells 5 × 106 sc,
AKA-TOL TOL RShM-5 PRZh S37 S180	3875 Hexa- Boiled L1210 methyl- starch La MOPC LL 406 LL Ca-755 Ca-755 RShM-5 S37 S180

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

	FDS0	ug/ml																																									
	Day of	uation	31	16	63	38	7	13	20	35	7	13	20	35	7	15	19	35	7 2	<u>.</u>	35	, -	15	19	35	7	15	19	35	9	10	56	66	6	13	17	27	7	13	26	7	13	25
(a)	Survi-	total	9/0	0/5	2/7	1/6	1/7	1/9	2/7	1/0	1/1	£	2/9	0/7	1/7	ָּג װ	6/7	//0	1//	617	//0	- / -		2	0/7	7/7	ĩ	:	0/7	10/10	:	9/10	0/10	9/9	9/9	:	9/0	8/8		8/0	1/7	2	2
ontinue	Percent ILS or tumor	tion	75	94	339	110	93	63	7	0	06	70	23	11	52	53	23	ر و	58	20	0 0 0	S 6	76	52	13	91	69	54	19	9	43	11	22	37	32	46	0	27	56	9	73	22	+31
rares - (C		Optimal	25	20		ž.																27	°,	ť	2	20	£	•	2														·
ie United 5	Doses, mg/kg/ injection	Tested C	10-30	50		20-65	25	r	ť	:	65	:	:	ţ	70	.	. :	: (30	.	£	20 65			•	£		•	:	20	£		2	65	2	:	:	20	2	z.	9		£
elopea ın tr	Treatment	days	2-8	2,6	" "	:	2-6	*	:	"	2,6	" "	" "	: :	7-6	£ :	£ 1	: .	2,4,6	" "		٠,		""	" "	2,6	11 11	" "	, ,	"		"	r r			;	;	""		:	t t	:	۲ ۲
ıgs aev	Trea	Route	.ip	t	t	.	t	:	ť	*	t	£	.	:	£	£ :	£ :	: :	: :	*		2	"		:	*	•	ž	2	2	•	2	2	.	2	£	2	*	:	:	ž	2	£
verimental studies in the Soviet Union With arugs developed in the United States (Continued)		trols 1	8.7 days	"		15.1 "	2.693 mm ³	14,775 "	18,001 "	21.3 days	2,693 mm ³	14,775 "	18,001 "	21.3 days	822 mm ³		25,125 "	24.1 days	822 mm ³		23,123 24.1 days	022 mm3	18.280 "	25,125 "	24.1 days	822 mm ³	18,380 "	25,125 "	24.1 days	\simeq		6,756 "	56.6 days	184 mm ³		3,644 "	41.4 days	3,459 mm ³	5,654 "	43 days	336 mm ³	1,986 "	8,049 "
ne soviet U	Doromotor	of effect b	MST "	2	2	•	486-488 Tumor vol		"	MST	Tumor vol	** ***		MST	Tumor vol	:	•	MSI	Tumor vol	2	į.	Tumornal	" ", "	, ,	MST	Tumor vol			MST	Tumor vol			MST	Tumor vol		"	MST	Tumor vol	: :	MST	500, 501 Tumor vol	"	: :
stuates in i		No.	476–481		482, 483		486-488				•				489-493											908				494-496				497, 498				499			500, 501		
APPENDIX IV.—Kesults of experimental	Sire on the	inoculum	ip, 10 ⁶ cells	" " "	" 5×10^6 cells	" 50 mg tumor susp	2	11 11 11 11 11	" " " " "	11 11 11 11 11	" " " " "	" " " " "	" " " " " "	33 33 33 33	39 39 39 39	99 99 99 99		: :	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " "		33 33 33 33	ž	11 11 11 11 11	11 11 11 11 11	" " " "	11 11 11 11 11	" " " " "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t	11 11 11 11 11		11 11 11 11 11		11 11 11 11 11	t		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		sc, 106 cells	" "	
1V.—Ke		Tumor	L1210		La	MOPC 406	TT								Ca-755															AKA-	TOL			RShM-5				PRZh			S37		
APPENDIX	C	vehicle	Saline																																								
7	ä	ponnod	5-Fluoro- uracil																																								
	0	9.0	893																																								

APPENDIX IV 169

<0.1 ,,, <1 >1,000 20 30	
133	15 18 18 18 18 18 18 18 18 18 18
0/7 6/6 1/6	0/8 0/8 0/8 0/6 0/6 0/6 0/6 0/6 0/6 0/7 1/7 1/7 1/7 1/8
4 8 1 + 1	1277 1000 1000 288 350 440 440 440 440 440 440 440 440 440 4
	120
	100 100–120 400 120 120 120 120 120 120 120 1
* * * * *	11-8
2 2 2 3	
52.7 days 1,094 mm ³ 5,123 " 34.0 days	7.0 " 7.4 " 10.5 " 8.8 " 14.0 " 14.775 " 14.775 " 14.775 " 14.775 " 13.138 " 10.226 " 13.138 " 14.3 " 10.226 " 13.138 " 14.3 " 14.43 " 5.549 " 22.3 days 443 mm³ 10.526 " 6.776 " 82.6 days 270 mm³ 1,429 " 3,863 " 39.6 days 270 mm³ 1,429 " 3,863 " 39.6 days 31.68 " 31.68 "
MST Tumor vol " MST NA content " " " " " " " " " " " " " " " " " " "	503, 504 MST 505 506 507–509 " 511, 512 Tumor vol " " MST Tumor vol " " MST Tumor vol " " MST Tumor vol " " " MST Tumor vol " " " " " " " " " " " " " " " " " " "
502	503, 504 505 506 507–509 510 511, 512 514, 515 516 517 518 518
or susp ""	SUSP TENENT OF THE TENENT OF
g tumo.	106 cells 5 × 106 cells 50 mg tumor susp 110
50 mg tum	
	10
S180 S37 L5178Y Ehrlich NK/Ly CaOv CaOv	L1210 P388 La MOPC 406 LL TOL TOL RShM-5
	Saline
	145663 Cyclocytidine

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

Day of eval- ED50, uation ug/ml	20 500–250 500		
Day of eval- uation		25 63 37 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39	13
Survi- vors/ total		2/8 0/6 1/8 0/6 0/7 7/7 "" 0/6 1/8 8/8 8/8 "" 1/8 8/8 ""	1/10
Percent ILS or tumor inhibi- tion		182 183 184 185 186 187 187 187 187 187 187 187 187 187 187	+ 19
ng/kg/ tion Optimal		6 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Doses, mg/kg/ injection Tested Optin	·	1-6 3 2-2.5 5 5 5 -8 8 -8 	£ £
Treatment Schedule,		2-6 1-9 2-6 3-11 2-6 2-6 3-11 2-6 3-7 2-6 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7	t t
Tres			z z
Con- trols			4,891 " 30 days
Parameter of effect b	NA content " " " " "	ST "" "" "" "" "" "" "" "" "" "" "" "" "	" " MST
Expt.		521–523 524, 525 526, 527 530–532 533 534 535 536	
Site and inoculum		ip, 10 ⁶ cells 50 mg tumor ss sc, """ """ """ """ """ """ """ ""	, , , , , , , , , , , , , , , , , , ,
Tumor	S37 L5178Y Ehrlich NK/Ly	L1210 La MOPC 406 LL LL TOL TOL PRZh S37	
Drug vehicle	Ca-755 S	Saline	
Com-	Cyclocyti- dine	102816 5-Azacyti-	
NSC No.	145663 C	102816	

50 10 " 20-10

	25 100 26 38	\$ 8 113 39	7 10 18 7	16 17 13 18 18 48	7 16 17 13 16	7 13 20 7	18 26 7 18 26	10 17 23 10 17 23	
	0/8 2/6 0/6 0/5	8/11 8/11 6/11 0/11	7/7	7/8 4/8 0/8	9/9	7/7 4/7 3/7 6/6			
	68 142 200 11	34 61 23 18	90 95 94 94	60 92 71 0	81 91 85 91 89	+ 1 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	70 61 25 93 80	76 82 70 73 83 83	
	4 4		2.5	: :					
	0.5–5 2–4 8 2	0:::	8 " 1.5–2.5	1.5	1.5–2.5	2-1: 4	2.5	שני אחני מני אחני	
	2–6 1–5 2–6	4:::	8	2-6	3-7 " 2-6	4, 11	4	", ", 4, 7, 10, 13, ", ", ", ", ", ", ", ", ", ", ", ", ",	
	* * * *	* * * *							
	8.0 " 7.8 " 15.1 "	204 mm ³ 1,890 " 6,053 " 24.9 days	80 mm ³ 756 " 7,203 " 700 "	8,538 " 11.2 g 568 mm ³ 8,769 " 25,060 " 24.7 days	665 mm ³ 1,901 " 3.4 g 664 mm ³ 1,901 " 2.8 g	531 mm ³ 2,045 " 4,908 " 455 "	4,233 " 12,833 " 455 " 4,233 " 12,833 "	2,089 " 9,013 " 17,001 " 2 089 " 9,013 "	
NA content " " " "	MST 	umor vol """ MST	Tumor vol " " " " " " " " " " " " " " " " " " "	wt oor vol ".	'umor vol " wt " vol " , wt	, vol			NA content " " " "
Z î î î	385–387 388, 389 390 391	392, 393 Tumor vol " " MST	394 T	396, 397 1	398, 399 Tumor vol " wt 400 " vol " wt	401		403	Ž
	cells " mg tumor susp	: : : :	: : : : :		:::::	2 2 2		mg tumor susp """""""""""""""""""""""""""""""""""	
	lls tumo	* * * *	: : : :			" Ils		tumo	
	9 ~	* * * *				" " " " 10 ⁶ cells		50 mg	
> -		sc, " " " " " "				: : : :			St 5
S37 L5178Y Ehrlich NK/Ly	L1210 La MOPC 406	77	Ca-755		AKA- TOL	RShM-5 S37		S180	S37 L5178Y Ehrlich NK/Ly
	Saline								
	19875 cis-Plati- num (II) diam- minedi- chloride								
	19875								

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

Day of eval- ED50, uation µg/ml	10 30 50		100–50 100 250–100 100–50		
Day of eval- uation		88 10 10 11 11 11 11 11 11 11 11	.,	17	29
Survi- vors/ total		0/6 0/7 0/7 0/10 6/6 1/6 1/7 1/7 1/7 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8		0/7	8/0
Percent ILS or tumor inhibi- tion		24.8 17.1 88.8 92.8 92.8 17.1 16.0 16.0 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3		61	49
ng/kg/ tion Optimal		60 60 60 45 7 7 80 80			
Doses, mg/kg/ injection Tested Optim		60-75 50 50 60-70 35-55 "" 45 "" 45 "" 45-50 ""		1,800	2 000
Treatment Schedule, ite days		2,6		1-9 Twice/day, 1-5	3-8
Tre		Tare errerererererererererererererererere		: :	•
Con- trols		7.1 days "." 17.0 ". 2.7 g 785 mm³ 10,836 ". 23,873 ". 34.6 days 1,371 mm³ 5,331 ". 9,986 ". 12,068 ". 69.6 days 112 mm³ 1,489 ". 5,771 ". 41.5 days 11489 ". 5,771 ". 41.5 days 112 mm³ 1,489 ". 5,771 ". 41.5 days 1,489 ". 5,647 ".		8.9 " 13.8 "	15.0 "
Parameter of effect ^b	[³H]dThd incl NA content Pro "		NA content " " " " "	MST "	ž.
Expt.		373, 374 375, 376 377 378, 379 380 382, 383	-	538 539, 540	541
Site and inoculum		50 mg tumor susp """ """ """ """ """ """ """ """ """		ip, 10^6 cells 5×10^6	" 50 mg tumor susp
Drug vehicle Tumor	CaOv CaOv CaOv	PC 06 555 M-5	S37 L5178Y Ehrlich NK/Ly	L1210 ij La	MOPC '
Drug	Saline	Saline		Saline	
Com- pound	cis-Plati- num (II) diam- minedi- chloride	nitrate		1895 Guanazole Saline	
NSC No.	119875	15200		1895	

																															2,000	2,500	50-100	5,000- 2,000	7,000								
7	13	. 14 14		13	21	48	15	7		4 C	140	2	. 41	20	140	7	13	21	59	82	7	13	20	7	13	25	133	7	13	26)		7			20	00	12	∞	12	24	0	17
8/8	£	8/0	8/8	, ,	8/L	8/0	1/7	9/9	:	: :	9/0	2/2	:	ť	2/0	8/8	;	:	2/8	8/0	8/8	2/8	:	L/L	•	5/7	0/1	6/6	6/1	6/0						9/0	1/7	2/9	1/7	2/9	9/9	"	6
47	36	¹ 4	95	71	34	18	55	72	ć	8	† ¢	46	53	15	34	91	43	45	24	∞	26	+3	16	99	9	31	22	09+	2	-	•					09	0	+ 10	27	18	17	13	12
500				:		**	2,000	009	:	: 2		1.300	**	•	2	200	:	33		1,000		:	:	1,800	2	٠ :	2	200		*						30	50	,,	100		20	0,0); ;
Twice/day,	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	11 11 11	2–6	*	:	•	2,4,6	Thrice/day,	9-7		:	:	:		23 23 33	Twice/day,	, ,	" " "	" " "	2–6	:		:		•	: 3	•	Twice/day,	; ;	" "						1.4.7	3, 6, 9	:	11 11 11	" " "	3, 6, 9,	12, 13	, c, c,
2	t	:	ç	t	ž	ž.	2	*	:	: :	*	2	•	2	£	:	:		:		*	ž		ĩ	2	£ :	2		2	*						:	•	*	•	"	2	ť	2
1,624 mm ³	" 02801		568 mm ³	8,769 "	24,164 "	24.7 days	5.8g	627 mm ³	1,000	1,698	2,000 44.2 days	627 mm ³	1,698 "	3,638 "	44.2 days	144 mm ³		5,298 "	40.2 days	41.1 "	-8	16,120 "	28,087 "		1,986 "	8,049 "	52.7 days	1,081 mm ³	4 891 "		20 days					9.6	1,980 mm ³	9,671 "	1,980 "	9.671 "	7,738 "	£30 "	1,411 "
Tumor vol	"	MST	Tumor vol	" "	"	MST	Tumor wt	lov "	:		MST	Tumor vol	"		MST	Tumor vol	"	:	MST	:	Tumor vol	* *		"			MST	Tumor vol		MST	NA content	"	:			MST	775, 776 Tumor vol	" "	"	"	"		"
542			543				544	545								546				547				548				549								774	775,776				777	770	0//
ž	2	:	:	:	:	:	:	£	:	:	:	:	:	:	:	£	2	:	:	:	2	:	2					dsns.	2	;							dsns	,,	;	"	,,	:	
ž	•	:	:	:	:	:	:	t	:		:	:	:	:	:	2	2	2	2	2	ť	2	2	S				lown:	,	ĩ						S	umor	"	ť	ĩ	£	2	:
sc, " "	" " "	" "	" " "	" " "	" " "	" " "	" " "		" "	" " "	" " "	" " "	" " "	:	33 33 33	: :	" " "	33 33 33	" "	im, " ,	2	" " "	" " "	sc, 106 cells	66 66			" 50 mg tumo	:	" " "						ip, 10 ⁶ cells	sc, 50 mg tumo	" " "	" " "	33 33 33	" "	" " "	2
TT			Ca-755					AKA-	IOL							RShM-5				PRZh				S37				S180			S37	L5178Y	Ehrlich	NK/Ly		P388	hLL				RShM-5	VAV	TOL
																								Saline												Boiled	starch LL						
																																				5 Ellipticine Boiled P388	•						

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

ED50,	50 250–100 500–250 500	100–75	75 250–100 100–75
Day of eval- uation	8 12 16	10 25 25 11 27 24 25 26 31 13 13 13 13 13 13 13 13 13	
Survivors/	3/6	0/6 0/5 0/7 0/7 0/7 0/8 8/8 8/8 8/8 0/8 0/8 0/7 0/7 0/6	
Percent ILS or tumor inhibi- tion	37 82 82	+ + + + + + + + + + + + + + + + + + +	
g/kg/ on Optimal	200	100 200 700	
Doses, mg/kg/ injection Tested Optimal	100-200 200-250 80-250	100 200 120 200 100-200 100 200 100 100 100 100 100 100 100	
Treatment Schedule,	2-6	2,6,10 1,5 1,5 3,7,11 3,7,11 3,7,11 3,7,11 3,7,11 3,7,11 1,1 1,1 1,1 1,1 1,1 1,1 1,1	
Tre	ip Oral ip		
Con- trols	7.1 days 6.5 g	7.6 days 11.2 " 8.7 " 15.8 " 16.8 " 2,397 mm³ 7,162 " 33.0 days 5.5 g 2.3 " 7.7 " 568 mm³ 8,769 " 25,060 " 25,060 " 3,517 " 82.6 days 144 mm³ 1,116 " 40.2 days 32.1 mm³ 5,125 " 52.4 days 1,094 mm³ 5,125 " 52.4 days 1,094 mm³ 5,125 " 9,017 " 9,017 "	
Parameter of effect b	612, 614 MST 615, 616 Tumor wt NA content " " "	567 MST 568 " 569 " 570–572 " 574–576 Tumor vol 577 Tumor wt 578, 579 " MST 580 " MST 581 Tumor vol " MST 583 Tumor vol " MST 583 Tumor vol " MST 584 Tumor vol " " MST 584 Tumor vol " " MST 584 Tumor vol " " " MST 584 Tumor vol " " "	
Expt. No.	612, 614	567 568 569 570–572 573 574–576 580 581 582 583	
	or susp		
Site and inoculum	ip, 10° cells " " " sc, 50 mg tumoi	ip, 106 cells iii iii iii iii iii iii sc, ii ii ii ii ii iii ii ii ii ii ii iii ii	
Drug vehicle Tumor	L1210 ip Ca-755 sc S37 L5178Y Ehrlich NK/Ly	L1210 ip, P388 La La MOPC 406 LL Sc, LL Sc, TOL Sc, S37 S37 S37 S180 S180 S37 S37	L5178Y Ehrlich NK/Ly
Drug	Saline	Saline	
Com- pound	S-Trityl- L-cys- teine	diglycol- aldehyde	
NSC No.	83265	diglyc aldeh	

~ 1,000	> 1,000			500		
		7 7 7 26 10 17	7 13 42 20	7 115 119 123 100 110	20 15 13 23 42 10 10	60 113 122 65 65 7 7 7 7 7 7 7 80 80 80 80 80 80 80 80 80 80 80 80 80
		7/7 ,,, 6/6 5/6 7/7	9/9 ", 5/9 0/7	7/7 "" "S/7 T/7	0/6 7/7 ,,, 9/9 ,,, 5/9 5/7	0/3 0/16 8/8 "" 0/8 6/6 ""
		12 18 + 53 + 46 30 54	39 9 0 18	51 37 43 40 14 47 20 68	53 70 70 70 21 36 36 75 89	54 97 99 79 79 79 64 64 61 64 61
				500	200	80 1100
		100 50 ""	500	200–500 " 500 400	200 200–500 75–100 " 200	20-80 80-120 60-100 " " 80-120 "
		3-17 3-14 3-13	2–6 " " 1–9	3-16 "" 3-17 3-12	1,4,7 3,6,9,12 2–6 "" 3,6	2-6 2-6 2-6
		S:::::	Б.:			
		2,585 mm ³ 6,918 " 1,003 " 7,738 " 539 " 1,411 "	1,776 " 4,184 " 13.8 g 9.6 days	2,585 mm³ 6,918 " 14 068 " 18,893 " 1,003 " 7,738 " 539 " 1,411 "	9.6 days 2,585 mm³ 6,918 " 1,776 " 4,002 " 13.8 g 539 mm³ 1,411 " 3,552 "	7.8 days 8.8 ". 1,482 mm³ 6,080 ". 25,001 ". 24 days 912 mm³ 5,087 ". 15,054 ". 21,384 ".
[3H]dThd	NA content Pro "	779–781 Tumor vol 782 " " 783 " "	" " " wt MST	Tumor vol	MST	MST Tumor vol " " MST Tumor vol " " " " MST Tumor Nol " " " " " " " MST
		779–781 782 783	591	593, 594 595 596	603, 604 605 605 606	645 795 647 649
			* * *	dsns:	sus;	dsns.
			" " " " " " " ip, 10 ⁶ cells		ip, 10° cells sc, 50 mg tumor in	ip, 10 ⁶ cells sc, 50 mg tumos """""""""""""""""""""""""""""""""""
CaOv	CaOv CaOv	LL sh RShM-5 AKA- TOL	AKA- TOL P388	LL RShM-5 AKA- TOL S37 L5178Y Ehrlich NK/Ly	P388 LL AKA- th TOL AKA- TOL RShM-5	starch La Ca-755 AKA- TOL
		Boiled	Saline		Saline Boiled starch	Boiled starc
		12677 Dichloro- allyl lawsone	132319 Indicine- N-oxide		154890 Coralyne sulfoace-tate	71851 α-Deoxy-thioguanosine
						(-

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

Day of eval- ED50, uation ug/ml				
Day of eval- uation	8 114 20 60	", 13 13 22 65 65 7 14 67	60 7 7 7 7 7 7 7 7 7 7 7 7 7	60 7 7 7 7 7 7 7 7 7 7 7 7 7 9 6 9 8 8 8 8 8 20 20 20 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
Survi- vors/ total	6/6 ", 5/6 0/6	0/3 0/6 7/7 6/7 5/7 7/7 1,7/4	0/3 0/6 8/8 8/8 1/8 7/7 6/7 	0/3 0/6 7/7 0/7 7/7 7/7 6/7 5/6 5/6
Percent ILS or tumor inhibi- tion	2 12 48 14	41 87 82 82 87 7	66 6 6 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	68 24 + 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ng/kg/ ion Optimal	100	500 300 400 ""	30 25	15 20 20
Doses, mg/kg, injection Tested Optin	60–109	100–500 100–300 200–400 ", " 200–300	20–50 25–50 "" 25–35 "" 20–30	15-20 15-30 10-20 " 15-20 " " 20-30
Treatment Schedule,		2-5		
Trea Soute	۳			
Con- trols	2,729 " 8,721 " 42 days	7.8 " 1,482 mm³ 6,080 " 25,601 " 24 days 412 mm³ 3,228 "	7.8 " 8.8 " 1,482 mm³ 6,080 " 25,001 " 24 days 412 mm³ 3,228 " 9,175 " 25.7 days 1,037 mm³ 3,918 " 9,086 " 3,756 "	7.8 " 8.8 " 1,450 mm³ 11,233 " 21.4 days 645 mm³ 2,537 " 4,561 " 2,286 " 42 days 777 mm³ 2,799 "
Parameter of effect '	Tumor vol " " MST	Tumor vol " " MST Tumor vol " MST MST	"." Tumor vol "." MST Tumor vol "." MST Tumor vol "." MST Tumor vol "." MST	" Tumor vol " MST Tumor vol " " " MST Tumor vol " " " " " " " " " " " " " " " " " " "
Expt.	654	585 792 586 587	588 793 589 590	608 802 609 610 611
Site and inoculum	sc, 50 mg tumor susp """""""""""""""""""""""""""""""""""	ip, 10 ⁶ cells sc, 50 mg tumor susp n,	ip, 106 cells sc, 50 mg tumor susp n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n,	ip, 10 ⁶ cells sc, 50 mg tumor susp si,
Drug vehicle Tumor	Boiled RShM-5 starch	Boiled L1210 starch La Ca-755 RShM-5	Saline L1210 La Ca-755 RShM-5 AKA- TOL	Boiled L1210 starch La Ca-755 AKA- TOL RShM-5
NSC Com-	71851 α-Deoxy- thiogua- nosine	126849 3-Deaza- uridine	137679 6-Seleno-guano-sine	154020 Townsend's Boiled nucleo-starc side
	7	12	13.	15.

APPENDIX IV 177

27 60	22 19 19 18 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	7 13 23 108 22 17 7	23 60 7 13 21 60	" 7 7 22 22 65	7 13 23 29 50 8 8 14 20 60
,, 1/6	0/3 0/7 7/7 6/7 0/7 7/7 0/7 5/7 5/6 6/6 6/6	6/6 "" 0/6 1/7 ""	6/7 0/7 6/6 3/6 0/6	1/3 1/6 8/8 7/8 0/8	6/6 3/6 0/6 7/7 ""
; <i>n</i>	850 23 4 4 4 4 6 5 3 3 3 3 4 5 4 6 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35 31 31 78 79 65	6 34 56 18 16 22	483 150 71 71 + 21	65 66 66 72 74 73 10 10
* *	500 200 300 200 200 200 200 200 200 200 2		: : oo : : :	_	∞:::: 'V::::
£ £	50-400 300-500 "" 300-350 "" 300-400	"""" 10–25 5–15 5–20	4	10–40 5–15 ""	8—3 * : : : : : : : : : : : : : : : : : : :
* *	2-1-5		2-6	1-5 2-6	
£ £			* * * * * *	* * * * * * * :	
16,903 " 42 days	7.3 " 9.4 " 11,233 " 11,233 " 14,347 " 21.4 days ol 645 mm³ 2,537 " 4,561 " 12,286 " 4,2 days ol 777 mm³ " 8,721 " 8,721 " 6,903 "	5,964 mm ³ 15,093 " 29,111 " 36 days 7.3 " 8 " 522 mm ³	33,666 " 22.7 days 244 mm³ 2,196 " 6,059 " 34.2 days	7.8 " 8.8 " 1,482 mm³ 6,080 " 25,001 " 24 days	912 mm ³ 5,087 " 15,054 " 21,384 " 37.0 days 777 mm ³ 2,799 " 8,721 "
	rvol T				
" MST	Tumor vol " MST Tumor vol " " MST Tumor vol " MST Tumor vol " " MST Tumor vol " " " " " " " " " " " " "	Tumor MSJ MSJ " Tumor	MST Tumor vol	Tumor MST	Tumor vol MST Tumor vol MST
" WS		601 Tumor " " MSJ 356 " 808 " 357 Tumor			649 Tumor " MST 654 Tumor " MST
" " " " " " " " " " " " " " " " WS	sc, 50 mg tunnor susp	601 356 susp 357	800	,10 ⁶ cells 645 ,50 mg tumor susp 647 ,50 mg tumor susp 647 ,10 mg tumor susp 647	649 """" "" (649 """" "" (654 """" "" (654
33 33 33 33 33 33 33 33	ip, 10° cells 807 sc, 50 mg tumor susp 598 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	" " " 601 " " " " " 601 " " " " " " 601 " " " " " " " 601	800	ip, 10 ⁶ cells 645 sc, 50 mg tumor susp 647 """""""""""""""""""""""""""""""""""	649

APPENDIX IV.—Results of experimental studies in the Soviet Union with drugs developed in the United States a (Continued)

ED50,	ug/mj																																								
Day of eval-	uation	7	23	100	22	17	7	4	23	09	7	14	21	<u>7</u> 9	7	13	23	87,	108	22	7	4	18	43	7	13	21	28	108	7;	4 c	17	17	ć	77		4	23	90	۲ ;	13
Survi- vors/	total	7/7	<i>L</i> /9	1/7	1/3	9/0	1/7	:	٠ !	0/7	1/7	2	2	1/0	1/7	: ;	2/9	2/3	0/1	0/3	L/ /	2/9	:	0/1	1/7	: :	. :	£ .	2/0	7/7	/ /9	0/7	9/0	,,	0/0	1/1	;	5/7	1/7	7/7	:
Percent ILS or tumor inhibi-	tion	38	0	6	156	10	+ 15	30	34	53	39	73	72	91	64	85	83	79	10	51	80	12	+ 36	24	71	28	54	27	<u>∞</u>	၁ (75	53	10	9	109	01	9	75	72	80	81
g/kg/ on	Optimal	٥:	:	£	7.5						3	£	:	t 1	2	: :	: :	: :	.	10	Ŋ			:	9	: :	: :	: :	•				8	c	1 V) Z	t =	:	2	m :	:
Doses, mg/kg, injection	Tested (5-7		.	2.5-10	5-10	3–9	£ :	: :	£	3-5	•	ŧ	. .	£	. :	: :	: :	£	5-20	5-15	£	2	:	4–6	: :	: :	: :	2 1	n:	: 2	:	5-15	,	1-1 0	2 v 1	<u></u>		:	1.5–3	
Treatment Schedule,	days	2–6	ţ	:	î.	1–5	:	:	:	£	2–6	2	ţ	\$ 1	£	: :	: :	: :	2	£	ţ	£	\$	•	£ '	: :	÷ ;	: :	: :	: :	: :	:	1-5	,	0-7 -	<u>-</u>) 	\$	ţ	. :	:
Tre	Route	٠ċ٠:	:	:	:	\$	£ :	: :	£ :	£	:	:	2	2 :	:	£ :	: :	: :	•	፥	£	ž.	\$	ŧ	: :	: :	: :	: :	: :	: :	: :	:	:	:	:	ŧ	ž	:	2		:
Con-	trols	5,964 mm ³	29,111 "	36 days		«	Ε		33,779 "	22.7 days	412 mm ³		9,175 "	25.7 days	$1,037 \text{ mm}^3$	3,918 "		3,756	50 days	7.3 "	1,450 mm ³		14,347 "	21.4 days	Ξ	3,918 "	9,086	3,756 "	50 days	412 mm ³		2,17,5 75.7 dave		7	ر: ە ئ	577 mm ³	12.666 "	33,779 "	22.7 days	1,037 mm ³	3,918
Parameter	of effect b	Tumor vol	**	MST		2	Tumor vol			MST	or v		"	MST	or v	: :			MST	*	or v			MST	or v	: :			MST	Tumor vol	: :	TSM		2		Tumor not	" ",	" "	MST	Tumor vol	
Expt.	No.	655			351	810	352				353				797					358	359				801				,	286			811	2 7 6	234	355	CCC			862	
Site and		im, 50 mg tumor susp	:	11 11 11 11 11	ip, 106 cells	11 11 11	sc, 50 mg tumor susp		16 16 16 16 16 16 16 16 16 16 16 16 16 1	10 10 10 10	11 11 11 11 11	,, ,, ,, ,, ,,	93 93 93 93		33 33 33 33			: :		ip, 106 cells	3	31 31 39 39	20 00 00 00	11 11 11 11								39 39 39 39 39	ip, 106 cells	, ,	" " "	so 50 matumoreus	" " " " " "	,, ,, ,, ,,	11 11 11 11 11		
Drug	vehicle Tumor	Boiled PRZh			Boiled L1210	starch La	Ca-755				RShM-5				AKA-	TOL				249992 Cain's acri- Boiled L1210	starch Ca-755				AKA-	TOL			i	RShM-5			La	05/66 1 /2 Chlo Bollod 1 1210	bolled L1210	- statem La	((1-4)			AKA-	101
Com-	punod	Quino- linium	deriva-	tive	178248 Chlorozo-	tocin														Cain's acri-	dine de-	rivative												1 /2 Chlo	roethyl)	3-(2 6-	dioxo-3-	piperi-	dyl)-1-	nitro-	sonies
NSC	No.	176319			248															992														766	001						

21 28 108 7 7 13 21 60	13 17 17 17 17 17 17 17 17 17 17 17 17 17
", 0/7 5/5 ",	0/6 0/6 0/8 0/8 0/8 1/7 1/7 1/7 1/7 1/7 1/7 1/7 1/7 1/7 1/7
56 50 40 33 63 37	+ + + + + + + + + + + + + + + + + + +
	175
	125–225 50 80 80 80 50 175 175–200 175–200 175–200 175–200 175–200 175–200 175–200
* * * * * * *	21.16 1.15 1.16 1.17 1.18 1.19
9,086 " 3,756 " 50 days 244 mm³ 2,196 " 6,059 "	7.3 " 8.9 " 14.9 " 14.9 " 14.775 " 18,001 " 21.3 days 2,693 mm³ 14,775 " 18,001 " 21.3 days 443 mm³ 5,549 " 22.3 days 443 mm³ 5,549 " 22.3 days 466 mm³ 1,930 " 4,139 " 5,549 " 22.3 days 95,549 " 35,549 " 35,549 " 35,549 " 35,549 " 35,549 " 35,640 " 3
	Tumor vol "" MST Tumor vol "" MST Tumor vol "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" MST Tumor vol "" "" "" MST Tumor vol "" "" "" "" "" "" "" "" "" "" "" "" ""
799	550, 551 812 552 553 554, 555 559, 560 559, 560 564, 565
* * * * * * *	Sus t t t t t t t t t t t t t t t t t t t
	ip, 106 cells sc, 50 mg tumo n, n, n, n, n, n, n, n, n, n,
RShM-5	Boiled L1210 starch La MOPC 406 LL Ca-755 Ca-755 RShM-5 RShM-5
	45388 Dacarba-

"ED50 = median inhibitory concentration; MST = mean survival time; LL = Lewis Lung; susp == suspension; [3H]dTHd incl = tritiated thymidine included; NA = nucleic acid; Pro = protein.

http://nihlibrary.nih.gov

10 Center Drive Bethesda, MD 20892-1150 301-496-1080