Predictive Modeling in Education

Carol Love
Sahmirah Muhammad
Kendall Sanders
Kelly Schuster-Parades

Throughout our project, we focused on answering the following questions:

- **1.** How can we use demographic information and past performance to predict academic success?
- **2.** Would it be possible to predict students' performance in midterms to help predict future grades?
- 3. Could a program such as ours be used to identify at-risk students?
- **4.** How could we use data to identify the most influential factors contributing to academic success?
- **5.** Could we eventually extrapolate our model to identify success in higher education?
- **6.** Could we compare various sub-groups and their outcomes to identify potential disparities?

```
# Add column for average score
df['total score'] = df['math score'] + df['reading score'] + df['writing score']
df['success'] = df['total score'].apply(lambda x: 0 if x < 210 else 1)
df.head()</pre>
```

:	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	total score	success
0	female	group D	some college	standard	completed	59	70	78	207	0
1	male	group D	associate's degree	standard	none	96	93	87	276	1
2	female	group D	some college	free/reduced	none	57	76	77	210	1
3	male	group B	some college	free/reduced	none	70	70	63	203	0
4	female	group D	associate's degree	standard	none	83	85	86	254	1

```
df = df.drop(['math score', 'reading score', 'writing score', 'total score'], axis=1)
df.head()
```

	gender	race/ethnicity	parental level of education	lunch	test preparation course	success
0	female	group D	some college	standard	completed	0
1	male	group D	associate's degree	standard	none	1
2	female	group D	some college	free/reduced	none	1
3	male	group B	some college	free/reduced	none	0
4	female	group D	associate's degree	standard	none	1

Gender	Ethnicity	ELL	SWD	ED	SST	Gifted	Absences	Lexile	MATH 21 Scale Score	ELA 21 Scale Score	ELA 22 Pass	MATH 22 Pass	SCIE 22 Pass	SOCI 22 Pass	Subjects Passed	Overall Pass
FEMALE	WHITE, NOT OF HISPANIC ORIGIN	N	N	Υ	Υ	N	2	1155	492	494	1	1	0	1	3	0
MALE	WHITE, NOT OF HISPANIC ORIGIN	N	N	Υ	N	N	40	885	494	443	0	1	1	1	3	0
FEMALE	WHITE, NOT OF HISPANIC ORIGIN	N	N	Υ	N	N	28	1205	486	507	1	1	1	1	4	1
MALE	WHITE, NOT OF HISPANIC ORIGIN	N	Υ	N	N	N	1	955	472	455	0	0	0	0	0	0
FEMALE	WHITE, NOT OF HISPANIC ORIGIN	N	N	Υ	N	N	10	1305	494	525	1	1	1	0	3	0

	Grade	English Grade	Math Grade	Science Grade	Humanities Grade	Computer Science A
0	12	92.47	90.86	92.95	93.96	1
1	9	96.56	90.75	87.52	94.93	1
2	11	92.98	96.70	93.15	95.58	1
3	11	92.98	96.70	93.15	96.00	1
4	10	85.08	81.70	86.12	89.27	0

Compile, Train and Evaluate the Model

```
In [13]:
          # Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
          input = X train scaled.shape[1]
          nn = tf.keras.models.Sequential()
          # First hidden layer
          nn.add(tf.keras.layers.Dense(units=10, activation="relu", input_dim=input))
          # Output layer
          nn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
          # Check the structure of the model
          nn.summary()
       Model: "sequential"
        Layer (type)
                                     Output Shape
                                                               Param #
        dense (Dense)
                                     (None, 10)
                                                               220
        dense_1 (Dense)
                                     (None, 1)
                                                               11
       Total params: 231
       Trainable params: 231
       Non-trainable params: 0
In [14]:
          # Compile the model
          nn.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
In [15]:
          # Train the model
          fit_model = nn.fit(X_train_scaled, y_train, epochs=50, verbose=1)
```

Compile, Train and Evaluate the Model

```
In [13]:
          # Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
          input = X_train_scaled.shape[1]
          nn = tf.keras.models.Sequential()
          # First hidden layer
          nn.add(tf.keras.layers.Dense(units=10, activation="relu", input_dim=input))
          # Output layer
          nn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
          # Check the structure of the model
          nn.summary()
       Model: "sequential"
        Layer (type)
                                     Output Shape
                                                               Param #
        dense (Dense)
                                     (None, 10)
                                                               220
        dense 1 (Dense)
                                     (None, 1)
                                                               11
       Total params: 231
       Trainable params: 231
       Non-trainable params: 0
In [14]:
          # Compile the model
          nn.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
In [15]:
          # Train the model
          fit_model = nn.fit(X_train_scaled, y_train, epochs=50, verbose=1)
```

Compile, Train and Evaluate the Model

```
In [6]:
         # Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
         input = X_train_scaled.shape[1]
         nn = tf.keras.models.Sequential()
         # First hidden layer
         nn.add(tf.keras.layers.Dense(units=10, activation="relu", input_dim=input))
         # Output layer
         nn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
         # Check the structure of the model
         nn.summary()
      Model: "sequential"
       Layer (type)
                                    Output Shape
                                                              Param #
       dense (Dense)
                                    (None, 10)
                                                              60
       dense_1 (Dense)
                                    (None, 1)
                                                              11
      Total params: 71
      Trainable params: 71
      Non-trainable params: 0
In [7]:
         # Compile the model
         nn.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
In [8]:
         # Train the model
         fit_model = nn.fit(X_train_scaled, y_train, epochs=50, verbose=1)
```


Kaggle Data Set:

- Reading: 0.616
- Writing: 0.672
- Math: 0.608
- Overall (average >= 70): 0.640

Georgia Milestones Data:

- English Language Arts (ELA): 0.867
- Math (MATH): 0.933
- Science (SCIE): 0.667
- Social Studies (SOCI): 0.900
- Overall (pass all four tests): 0.833

Florida Computer Science Data:

Computer Science: 0.829