CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 11 LUGLIO 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1.

- (i) Dare la definizione di divisore e di multiplo in \mathbb{Z} di un numero intero.
- (ii) Per un intero m, definire la relazione di congruenza modulo m in \mathbb{Z}, \ldots
- (iii) ...e descrivere, per un arbitrario $a \in \mathbb{Z}$, $[a]_m$.
- (iv) Determinare gli $m \in \mathbb{N}$ per i quali:

(
$$\alpha$$
): $[3]_m = [21]_m$; (β) : $[3]_m = [-3]_m$; (γ) : $[3]_m = [3]_m^{-1}$;

Esercizio 2. Per ogni intero positivo m si definisca l'operazione binaria $*_m$ in \mathbb{Z}_m ponendo, per ogni $a, b \in \mathbb{Z}_m$,

$$a *_m b = \overline{10}a + \overline{6}b.$$

- (i) Dopo aver calcolato $\bar{1} *_m \bar{0}$, $\bar{0} *_m \bar{1}$, $(\bar{0} *_m \bar{0}) *_m \bar{1}$, $\bar{0} *_m (\bar{0} *_m \bar{1})$, caratterizzare gli $m \in \mathbb{N}^*$ tali che:
 - $(\alpha) *_m \text{ sia commutativa};$
 - $(\beta) *_m \text{ sia associativa};$
 - $(\gamma) *_m$ sia associativa e commutativa.
- (ii) Determinare tutti e soli gli $a \in \mathbb{Z}_{34}$ tali che $a*_{34}\bar{1} = \bar{0}$. Stabilire se $\bar{1}$ è cancellabile in $(\mathbb{Z}_{34}, *_{34})$. Sia ora m il massimo intero positivo tale che $*_m$ sia associativa e poniamo $* = *_m$.
 - (iii) Decidere se $(\mathbb{Z}_m, *)$ ha elementi neutri a destra e/o a sinistra e, nel caso, descriverli [Suggerimento: si trovino gli $a \in \mathbb{Z}_m$ tali che $a * \bar{0} = \bar{0}$].
 - (iv) Sia $X = \{\bar{6}n \mid n \in \mathbb{Z}_m\}$. X è una parte chiusa in $(\mathbb{Z}_m, *)$? Se lo è, decidere se (X, *) ha elementi neutri a destra e/o a sinistra e, nel caso, descriverli.

Esercizio 3. Consideriamo la funzione resto, $f:(a,b)\in\mathbb{N}\times\mathbb{N}^*\longmapsto \operatorname{rest}(a,b)\in\mathbb{N}$. Sia \mathcal{R} il suo nucleo di equivalenza.

- (i) f è suriettiva?
- (ii) La restrizione di f a $\mathbb{N} \times \{1000\}$ è iniettiva?
- (iii) La restrizione di f a $\{1000\} \times \mathbb{N}^*$ è iniettiva?
- (iv) Descrivere $[(4,2)]_{\mathcal{R}}$.

Sia ora Σ la relazione d'ordine definita in $S:=\mathbb{N}\times\mathbb{N}^*$ ponendo, per ogni $a,c\in\mathbb{N}$ e $b,d\in\mathbb{N}^*$:

$$(a,b) \Sigma (c,d) \iff ((a,b) = (c,d) \vee f((a,b))$$
è un divisore proprio di $f((c,d))$.

- (v) Si determinino in (S, Σ) gli eventuali elementi minimali, massimali, minimo, massimo. (S, Σ) è un reticolo?
- (vi) Si determini l'insieme dei minoranti in (S, Σ) dell'insieme $X := \{8, 15\} \times \{4, 5\}$. Decidere se esiste (e, nel caso, individuare) inf $_{(S,\Sigma)} X$.
- (vii) Esibire se esiste, o provare che non esiste, un sottoinsieme Y di S tale che (Y, Σ) sia un reticolo pentagonale.

Esercizio 4. Per ogni intero primo p, sia $f_p = x^3 - x + \bar{1} \in \mathbb{Z}_p[x]$.

- (i) Determinare il minimo primo positivo \bar{p} tale che $f_{\bar{p}}$ non sia irriducibile in $\mathbb{Z}_{\bar{p}}[x]$;
- (ii) scrivere $f_{\bar{p}}$ come prodotto di polinomi monici irriducibili in $\mathbb{Z}_{\bar{p}}[x]$;
- (iii) determinare $X = \{g \in \mathbb{Z}_{\bar{p}}[x] \mid (\forall a \in \mathbb{Z}_{\bar{p}})(f_{\bar{p}}(a) = \bar{0} \Rightarrow g(a) = \bar{0})\};$
- (iv) $h := \overline{2}x^3 + \overline{3}x + \overline{2}$ è associato a $f_{\overline{p}}$ in $\mathbb{Z}_{\overline{p}}[x]$?
- (v) $t := \bar{3}x^3 x + \bar{3}$ è associato a $f_{\bar{p}}$ in $\mathbb{Z}_{\bar{p}}[x]$?