Midtern Review

Part IA: Loss Fn Based Approaches Trounty. $D = \left\{ (n^{(i)}, y^{(i)}), \dots (n^{(m)}, y^{(m)}) \right\}$ $Min \geq L(y^{(i)}, ho(n^{(i)}))$ $O = \sum_{i=1}^{m} L(y^{(i)}, ho(n^{(i)}))$

 $L(y, \hat{y}), \hat{y} = h_0(n)$ $L(y, h_0(n))$

Low 11011 -> Reduce overfit

(2) Classif? $L(y,\hat{y}) = J(y + Sign(\hat{y}))$ for t = 1: TGCHI) = Bt-2 PL(B) Problem: Cannot optimize Perception. $L(y,\hat{y}) = \max(0, -y.\hat{y}) L(y,\hat{y}) = \max(0, 1-y.\hat{y}) \Theta$ $L(y,\hat{y}) = \max(0, 1-y.\hat{y}) \Theta$ $L(y,\hat{y}) = \max(0, 1-y.\hat{y}) \Theta$

Degression: $L(y,\hat{y}) = [y-\hat{y}]^2$ ophnize using aD

Part II: Non-Parametric Approaches Deusion Mee KNN y (ni < t) No training (Store Date in Mem) Test: ŷ = y (i+) Loss for minEL (m(n), y) where it = argmin ||x(i) - x||2

where 1 = aligning line - mills

Normaliza important

Normaliza important

Achieve Certainty or instance

of "same Class" on the same

· Cace ful with the least almount of "same Class" on the same . High Interest time / KD trees to reduce Inf. time _ Entropy.

Arg max H(Y) - H(Y) {snist3)

Part It: Unsupervised Learning

MJ, FTX S, optimize
M.