

SALES, SHIPPING AND SERVICE INFORMATION

HOW TO ORDER - UNITED STATES - MICROWAVE ASSOCIATES. Orders for

Microwave Associates products may be placed with either our sales representatives or directly with Microwave Associates' sales department:

Microwave Associates, Inc.

Northwest Industrial Park

Burlington, Massachusetts 01803

Telephone: (617) 272-3000

TWX: 710-332-6789 TELEX: 94-9464

HOW TO ORDER — INTERNATIONAL. Customers outside the United States are served by Microwave Associates subsidiaries: Microwave Associates International, Inc., and Microwave Associates, Ltd., as well as by international sales representatives.

MICROWAVE ASSOCIATES INTERNATIONAL. All international orders (excluding the United Kingdom) may be placed with either our international sales representatives or directly with Microwave Associates International sales department:

Microwave Associates International, Inc.

Telephone: (617) 272-3000

Northwest Industrial Park

TWX: 710-332-6789. TELEX: 094-9464

Burlington, Massachusetts 01803

Cable: MICROWAVE BURLINGTON

UNITED KINGDOM. Orders in the United Kingdom may be placed directly with Microwave

Associates, Ltd., sales department.

Telephone: Dunstable 601441

Microwave Associates, Ltd.
Humphreys Road, Dunstable: Woodside Estate

TELEX: 82295

Dunstable, Bedfordshire, England

Cable: MICROWAVE LUTON

SHIPPING INSTRUCTIONS. Shipments will be made via parcel post or express, whichever is less expensive, unless other instructions are received. For rush service, we will ship by Air Freight, Air Express, or Air Parcel Post on request.

PRICES AND TERMS. The price and delivery of any item in this catalog is available from either our sales representatives or Microwave Associates sales department. Quotations are F.O.B. factory of origin, and are subject to change without notice. Terms are net 30 days if credit has been extended.

GOVERNMENT SOURCE INSPECTION. Government source inspection is available on any item upon receipt of the complete written confirmation of purchase order items, including the prime government contract number. Government source inspection with respect to some products increases unit price and extends delivery because of duplicate standard final inspection and testing. It is recommended wherever possible that a Certificate of Compliance be substituted for government source inspection to minimize price and delivery delay.

RETURNED MATERIAL. When returning material for repair or replacement, it is necessary first to contact the sales department. We require that complete information be included with the shipment giving a detailed description of the reason for its return, the date and purchase order on which it was obtained, the number of hours of operational use, and the exact address to which the material is to be re-shipped.

WARRANTY. We warrant to the original purchaser all products sold by us to be free of defects in material and workmanship. Our obligation under this warranty is limited to repair, exchange or credit. The warranty does not apply to any product which has been subject to accident, alteration or abuse. Detailed warranty provisions appear on each sales order.

APPLICATION ENGINEERING. Microwave Associates maintains a large support staff of technical sales engineers, both domestically and internationally, who are expert in specific areas of microwave technology. Each has an engineering background that combines formal engineering education with training in microwave specialties — often with many years of product design experience. As further technical support, Microwave Associates makes available the services of its engineering and scientific staff who may be consulted on more advanced circuit designs or application problems.

SPECIFICATIONS. We reserve the right to discontinue items and change specifications without notice.

FEDERAL SUPPLY CODE. Microwave Associates' Federal Supply Code for Manufacturers assigned number is 96341.

TABLE OF CONTENTS

	Bulletin	Page
RECEIVING DIODES		3
Mixer Diode Characteristics	–	5
SELECTION GUIDE - Silicon Point Contact Mixer Diodes in Hermetic Packages	. –	6
Point Contact Diodes for Mixer Applications	. 4150	7
Point Contact Power Monitor Diodes	. –	17
SELECTION GUIDE - Silicon Schottky Mixer Diodes in Hermetic Packages	_	18
SELECTION GUIDE - Silicon Schottky Mixer Diodes for Stripline and	•	
Hybrid Integrated Circuits		19
Schottky Barrier Diodes for Mixer Applications	. 4251	21
Low and Medium Barrier Schottky Mixer Diodes	4211	33
Silicon Beam Lead Schottky Diodes	. 4213	37
Detector Diode Characteristics	_	39
SELECTION GUIDE - Silicon Point Contact Detector Diodes	•	
in Hermetic Packages	_	40
Point Contact Diodes for Detector Applications	1151	41
SELECTION GUIDE - Silicon Schottky Detector Diodes in Hermetic Packages	. 4151	
SELECTION GUIDE - Silicon Schottky Detector Diodes for Stripline and		48
	4	
Hybrid Integrated Circuits Schottky Barrier Diodes for Detector Applications		49
Schottky Barrier Diodes for Detector Applications	, 4250	51
Detector Modules and Packaged Detectors	5152	65
Tunnel Diodes (Back Diodes) for Mixer and Detector Applications	. 5050	71
Schottky Barrier Diodes for Frequency Up-Conversion/Modulation	. 4252	79
Picosecond Switching Diodes for Digital or Logic Circuits	4309	85
CONTROL DIODES		87
SELECTION GUIDE - PIN Diodes		88
PIN Diodes for High Power Applications	4352	89
PIN Diodes for Fast Switching and Limiting Applications	4351	99
PIN Diodes for General Purpose Switching and Attenuation	4350	109
VHF-UHF PIN Diode TR Switch	5101	115
Hermetic Stripline Control Devices	4353	117
Broadband Power Control Modules	F150	127
Microwave Tuning Varactors	4650	135
Tunnel Diodes for Switching Applications	5051	145
POWER GENERATION AND AMPLIFICATION DEVICES		
		149
SELECTION GUIDE - Gunn Diodes	_	150
Low and Medium Power Gunn Diodes	4551	151
High Power Gunn Diodes	4550	161
High Frequency Gunn Diodes	4508A	169
Multiplier Varactors	4450	173
GaAs Parametric Amplifier Varactors	4850	191
npn Silicon Planar Transistors (MA-42020/K2000 Series)	5201	199
npn Silicon Planar Transistors (MA-42050/K5500 Series)	5202	203
npn Silicon Planar Transistors (MA-42000/K6000 Series)	5204	207
npn Silicon Planar Transistor (MA-42100)	5205	211
npn Silicon Planar Transistor (MA-42110)	5206	215
Gallium Arsenide Impatt Diodes	4700	219
Tunnel Diodes for Microwave Amplifier and Oscillator Applications		223
Tunnel Diode Amplifier Application Notes	_	227
SPECIAL PRODUCTS		231
Silicon Epitaxial Wafers and Substrates	4002	233
Semiconductor Ceramic to Metal Packages		237
Silicon MIS Capacitors	4052	245
GaAs Schottky Diodes for Millimeter Applications		248
		249
INDEX		744

Mixer Diode Characteristics

RECEIVER SENSITIVITY

A fundamental limitation on the sensitivity of a microwave receiver employing a resistive mixer arises from the fact that in the frequency conversion process only a fraction of the available RF signal power is converted into power at the intermediate frequency. This "overall" conversion loss is dependent on the diode junction, the diode's package parasitics, and on the matching at the input and output ports of the mixer. An additional limitation in performance arises from the fact that the mixer itself generates noise when it is driven by an RF signal (local oscillator). Thus, the conversion loss and the noise temperature ratio determine the overall noise figure of a microwave mixer diode. The mixer diode is completely characterized by the following parameters: overall receiver noise figure, conversion loss, noise temperature ratio, RF impedance and IF impedance.

NOISE FIGURE (NF₀)

The most important criterion of mixer diode performance is the noise figure. The noise at the output of a receiver is the sum of the noise arising from the input termination (source) and noise contributed by the receiver itself (i.e., due to IF amplifier and mixer diode). The noise factor is the ratio of the actual output noise power of the device, to the noise power which would be available if the device were perfect and merely amplified the thermal noise of the input termination without contributing any noise of its own. It is given by:

$$NF_o = \frac{S_i/N_i}{S_o/N_o}$$

S_i = available signal power at the input of receiver.

N_i = available noise power at the input of receiver.

So = available signal power at the output of receiver.

 N_0 = available noise power at the output of receiver.

The noise figure is the noise factor in decibels.

$$NF_0(dB) = 10 \log 10 \frac{Si/Ni}{So/No}$$

The overall noise figure of a receiver depends on conversion loss (L_c) , the noise temperature ratio (t) of the mixer diode and also on the noise figure of the IF amplifier (NF_{IF}) . It is given by:

$$NF_0 = L_c (t + NF_{IF} - 1).$$

The noise figure is usually measured with a gas tube by the Y factor method which compares the noise figure of the mixer with a standard noise source.

CONVERSION LOSS (L_)

The conversion loss is the ratio of the available signal power output at the IF port divided by the available input power at the signal port (Mil-Standard 750, method 4101). It is determined by measuring the IF power with a power meter and a standard RF input (1 milliwatt of local oscillator power).

NOISE RATIO (t)

The noise ratio is the ratio of the output noise power as seen at the IF terminal to noise power of a resistor of the same impedance value as the IF impedance of the diode when driven by the local oscillator. Usually the local oscillator power is 1 mW.

The noise power of the diode consists of two contributions, white noise, which is frequency independent and flicker, or 1/f noise, which varies inversely with frequency below a frequency called the noise corner frequency. This corner frequency can vary from less than 10 kHz to more than 1 MHz depending on the type of diode used.

RF IMPEDANCE (ZRE)

The RF impedance (Z_{RF}) of the diode is of prime importance in the design of mixers. Impedance mismatch at the RF frequency not only results in signal loss due to reflection but also affects the IF impedance at the IF terminals of the mixer. The RF impedance of a varistor diode can be measured by the VSWR method.

IF IMPEDANCE (ZIE)

The IF impedance (Z_{IF}) is the impedance presented at the output terminals of the mixer when the rectifier is driven by a local oscillator. It is a function of the local oscillator power level and the RF properties of the mixer and circuit connected to the RF terminals of the mixer. It is generally measured with an admittance bridge. The IF impedance is important in determining the coupling circuits between the mixer and IF amplifier.

SELECTION GUIDE-SILICON POINT CONTACT MIXER DIODES IN HERMETIC PACKAGES

Test Frequency	1.0	1.0 GHz 3.0 GHz 9.375 GHz				16.0 GHz		23.9 GHz 3	34.	14.8 GHz							
Type Package EIA Outline	Glass DO-7	Glass	Glass DO-7	Glass	Ceremic DO-23	Glass DO-7	Glass	Ceramic DO-23	Caramic DO-23	Coaxial DO-37	Coaxiel DO:37	Coaxiel DO-37	Coaxial DO-37	Coaxiel DO-37	Coaxial DO-37	Coaxiel DO-36	Coaxiel DO-36
MA Case Style		54		54	3	4	54	3	3	11	11	11	11	11	11	10	10
Mex. Figure (dB)																	
5.5				MA-41504	1N21G							1					<u> </u>
6.0		MA-4815	1N831C	MA-41503	1N21F		MA-41509	1N23H						-	1		
6.5			1N831B	MA-41502		1N832C	MA-41508	1N23G	MA-41202G								
7.0		L	1N831A	MA-41501	1N21E	1N8328	MA-41507	1N23F	MA-41202F		1N78G	MA490G	MA-41201G				
7.5					1N21D	1N832A	MA-41506	1N23E	MA-41202E	MA-492E	1N78F	MA490F	MA-41201F				
8.0								1N23D	MA-41202D		IN7BE	MA490E	MA-41201E		†	1	
8.5			1N831	MA-41500	1N21C					MA-492D	-						
9.0									1		1N78D	MA4900	MA-41201D			1N53D	
9.5							MA-41505				1N78C	MA490C	MA-41201C	1N26C	MA493C	1N53C	MA494C
10.0						1N832		1N23C	MA-41202C	MA-492C	1N78B	MA490E	MA 41201B		MATERIAL PROPERTY.	1N53B	MA4948
10.5					1N218						1	100	1990 412418			118330	MATERIAL PROPERTY.
11.0											1N78	MA490		1N268	MA4938	1N53A	MA494A
11.5	1N82A							1N23B	MA-412028					1N26A	MA493A	INASA	- BANKA
12.0														INA	MA3246		
12.5																	
13.0														1N26	MA493	1N53	
																1	
Comments	JAN Types M/A QPL	Best band- width in glass	JAN Types M/A QPL	Best band- width	JAN Types M/A QPL	JAN Types M/A QPL	Best band- width in glass	JAN Types M/A QPL	Highest burnout RF tested Recom- mended types	Best band- width	JAN Types M/A QPL	M/A Types Broadband	Highest Burnout. RF Tested. Recommended Types	JAN Types M/A QPL	M/A Types Broadband	JAN Types M/A QPL	M/A Type Broadband

Point Contact Diodes For Mixer Applications

Bulletin 4150

Cartridge Types

X-Band

S-Band

Coaxial Types

Ku-Band

K-Band

Ka-Band

X-Band

MQM Types

X-Band

Ku-Band

Glass Types
Sand X-Band

Additional Mixer Diodes

Mixer Diodes Cartridge Type

IN21-IN416 Series, S-Band IN23-IN415 Series, X-Band JAN IN21 and IN23 Series MA-41202 Series, X-Band

CASE STYLES

	IN	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX	
A	0.290	0.296	7,366	7,518	
8	0.246	0.250	6,248	6,350	
С	0.800	0.840	20,320	21,336	
D	0.195	0.215	4,953	5,461	
E	0.222	0.240	5,639	6,096	
F	D.030	0.046	0,762	1,168	
G	0.180	0.190	4,572	4,826	
н	0.020	0.030	0,508	0,762	
J	0.193	0.199	4,902	5,055	
K	0.047	0.057	1,194	1,448	

MAXIMUM RATINGS (At 25°C, unless otherwise specified)

Incident CW RF Power
Temperature Range
Operating
-65 to +150° C
Storage
250 mW
-65 to +150° C

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See Maximum Ratings
Temperature, Operating		See Maximum Ratings
Temperature Cycling	1051	5 Cycles, -65 to +150° C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL CHARACTERISTICS @ $T_A = 25^{\circ}C$

1N23 - 1N415 SERIES 1N21 - 1N416 SERIES

	Test			Max.	IF		1N21
Frequency Band	Frequency GHz	Model ^{1,2} Number	Model ^{1,3} Number	Noise Figure ⁴ dB	Impedance ⁵ Ohms	Max. ⁶ VSWR	Burnout Ergs
S	3.060	1N21G	1N416G	5.5	350 - 450	1.3	5.0
		1N21F	1N416F	6.0	350 - 450	1.3	5.0
		1N21E	1N416E	7.0	350 - 450	1.3	5.0
		1N21D	1N416D	7.3	325 – 475	1.5	2.0
×	9.375	1N23H	1N415H	6.0	335 - 465	1.3	2.0
		1N23G	1N415G	6.5	335 - 465	1.3	2.0
		1N 23F	1N415F	7.0	335 - 465	1.3	2.0
		1N23E	1N415E	7.5	335 - 465	1.3	2.0
		1N23D	1N415D	8.2	325 - 475	1.3	2.0
		1N23C	1N415C	9.5	325 ~ 475	1.5	2.0

NOTES:

- 1. All units are available in matched pairs either forward or reverse (one forward diode, one reversed diode) by adding the suffixes M or MR respectively. Matching criteria for pairs: $\Delta L_c = 0.3$ dB Max., $\Delta Z_{\parallel F} = 25$ Ohms Max.
- 2. Case Style 7-1; Adapter permanently attached.
- 3. Case Style 3; Reversible Adapter

- 4. Single sideband NF, N $_{
 m IF}$ = 1.5 dB, Max. Excess Gas Tube Noise Temperature = 15.2 \pm 0.5 dB. 1N21 Series, P $_{
 m LO}$ = 0.5 mW, RL = 100 Ω , f = 3.060 GHz 1N23 Series, P $_{
 m LO}$ = 1.0 mW, RL = 100 Ω , f = 9.375 GHz
- 5. AC METHOD IF = 60 to 1000 cps.
- 6. I_{RECT.} = 1.0 mA.

JAN CARTRIDGE MIXER DIODES

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Frequency Band	Test Frequency GHz	Model ^{1,8} Number	Max. Noise Figure dB	Impe	F dance hms	Max. ⁶ VSWR	MIL-S-19500 Detail Number
s	3.060	1N21WG	5.5	350	450	1.3	321
		1N21WE	7.0	350	450	1.3	232A
		1N3655A	7.0	350	450	1.3	334
×	9.375	1N23WG	6.5	335	465	1.3	322A
		1N23WE	7.5	335	465	1.3	233B
		1N3745	9.5	325	475	1.5	-

HIGH RF BURNOUT CERAMIC MIXER DIODES

MAXIMUM RATINGS (At 25°C, unless otherwise specified)

Incident RF Pulse Power	20W, 3ns
	(Balanced Mixer)
Incident CW RF Power	250 mW
Temperature Range	
Operating	-65 to +150°C
Storage	-65 to +150°C

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See Maximum Ratings
Temperature, Operating	_	See Maximum Ratings
Temperature Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Moisture Resistance	1021	10 Days

ELECTRICAL CHARACTERISTICS @ TA = 25°C

1	Vlax. ^{2,7}		RF ⁵				
Model ¹ Number	Noise Figure dB	Max. ^{3,7} VSWR	I.F. ⁴ Impedance Ohms	Burnout Rating Watts	Direct Replacement for		
MA-41202E	7.5	1.3	335-465	20	1N23E		
MA-41202F	7.0	1.3	335-465	20	1N23F		

NOTES:

- 1. All units are available in matched pairs either forward or reverse (one forward diode, one reversed diode) by adding the suffixes M or MR respectively. Matching criteria for pairs: $\Delta L_c = 0.3$ dB Max.; $\Delta Z_{|F} = 25$ Ohms Max.
- 2. Single sideband NF, N_{IF} = 1.5 dB Max. Excess Gas Tube Noise Temperature = 15.2 ± 0.5 dB.
- 3. I_{RECT.} = 1.0 mA; R_L = 100 Ω
- 4. AC METHOD: IF = 60 to 1000 cps.

- This is a single shot 15,000 pulse (3 nS pulse width) burnout test.
- 6. R = 100 Ω for VSWR measurement
- 7. Unless otherwise specified, test conditions are:

fo = 9.375 Po = 1.0 mW

Z_M = 400 Ohms Mount, Jan 105

R_= 100 Ohms

8. JAN cartridge mixer diodes are in Case Style 3.

Mixer Diodes **Coaxial Type**

X-Band - MA-492 Series Ku-Band — 1N78 and MA-490 Series K-Band — 1N26 and MA-493 Series Ka-Band — 1N53 and MA-494 Series

CASE STYLES

10

	196	CHES	0000		
DIM.	MIN.	MAX.	MIN.	MAX	
A	0.158	0.162	4.01	4.11	
8	0.545	0.555	13.84	14.10	
C	0.099	-	2.51	-	
D	0.010	0.018	0.25	0.46	
E	0.019	0.021	0.48	0.53	
F	0.044	0.046	1.12	1.17	
G	420	48°	-		

11

	INC	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
A	0.215	0.220	5,45	5,58	
8	0.734	0.786	18,64	19,45	
С	0.147		0.37		
D	0.011	0.028	0.28	0,71	
E	0.007	0.017	0.18	0.43	
F	0.031	0.033	0.79	0.84	
G	420	480	-	-	

MAXIMUM RATINGS (At 25°C, unless otherwise specified)

Incident CW RF Power

100 mW

Temperature Range

Operating $-65 \text{ to } +150^{\circ}\text{C}$ Storage $-65 \text{ to } +150^{\circ} \text{ C}$

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See Maximum Ratings
Temperature, Operating	_	See Maximum Ratings
Temperature Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Moisture Resistance	1021	10 Davs

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

			- 'A	_		IF			
E	Test				Max.		pedance ³	3	Burnout
Frequency	Frequency		Model ¹	Case	Noise Figure 2, 3	•	Ohms	Max.3	Rating
Band	GHz	Number	Number	Style	dB	Min.	Max.	VSWR	Ergs
X	9.375	_	MA-492F	11	7.0	250	450	1.3	2.0
		-	MA-492E	11	7.5	250	450	1.3	2.0
		-	MA-492D	11	8.5	250	450	1.7	2.0
		-	MA-492C	11	9.5	250	450	1.7	2.0
KU	16.000	1N78G	MA-490G	11	7.0	400	565	1,5	1.0
		1N78F	MA-490F	11	7.5	400	565	1.5	1.0
		1N78E	MA-490E	11	8.0	400	565	1.5	1.0
		1N78D	MA-490D	11	8.8	400	565	1.5	1.0
		1N78C	MA-490C	11	9.5	400	565	1.5	1.0
		1N78B	MA-490B	11	10.0	365	565	1.6	1.0
K	23.984	1N26C	MA-493C	11	9.5	400	600	1.5	0.3
	-	1N26B	MA-493B	11	11.0	400	600	1.5	0.3
Ka	34.860	1N53D	MA-494D	10	9.0	400	800	1.6	0.3
		1N53C	MA-494C	10	9.0	400	800	1.6	0.3
		1N53B	MA-494B	10	10.0	400	800	1.6	0.3
		1N53A	MA-494A	10	11.1	400	800	1.6	0.3
IOTES:		1N53	MA-494	10	13.1	400	800	1.6	0.3

- MA-490, 492, 493, 494 are broadband diodes tested in broadband test mounts. All units are available in matched pairs either forward or reverse (one forward diode, one reversed diode) by adding the suffixes M or MR respectively. Matching criteria for pairs: \(\Delta \L_{\text{C}} = 0.3 \text{ dB Max.}; \(\Delta \Z_{\text{IF}} = 25 \text{ Ohms Max}.\)
- 2. Single sideband NF, N $_{\parallel F}$ = 1.5 dB Max. Excess Gas Tube Noise Temperature = 15.2 \pm 0.5 dB.
- 3. Unless otherwise specified, test conditions are: fo = as indicated, $P_0 = 1.0 \text{ mW}$, $Z_M = 400 \text{ Ohms}$, $R_L = 100 \text{ Ohms}$.

JAN COAXIAL MIXER DIODES

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Frequency Band	Test Frequency GHz	Model Number	Case Style	Max. Noise Figure dB	IF Impedance Ohms	Max. VSWR	MIL-S-19500 Detail Number
Ku	16.000	1N78C	11	9.5	400 - 565	1.5	130A
K	23.984	1N26B	11	11.0	400 - 600	1.5	128A
Ka	34.860	1N53	10	13.1	400 - 800	1.6	238
Ka	34.860	1N53B ⁵	10	10.0	400 - 800	1.6	_

HIGH RF BURNOUT KU-BAND MIXER DIODES

MAXIMUM RATINGS (At 25°C, unless otherwise specified)		ENVIRONMENTAL RATINGS PER MIL-STD-750			
(At 25 C, unless othe	iviso specifica,	1	Method	Levels	
Incident RF Power		Temperature, Storage	1031	See Maximum Ratings	
Peak	10W, 3 ns	Temperature, Operating	_	See Maximum Ratings	
	(Balanced Mixer)	Temperature Cycling	1051	5 Cycles, -65 to +150° C	
Incident CW RF Power	250 mW	Shock	2016	500 g's	
Temperature Range		Vibration	2056	15 g's	
Operating	-65 to +150 ^о С	Constant Acceleration	2006	20,000 g's	
Storage	-65 to +150°C	Moisture Resistance	1021	10 Days	

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Model	Case	Max.¹ Noise Figure	Typ. Conversion Loss	Max VS		I.F. ³ Impedance	Typ. ³ Rectified Current	RF ⁴ Burnout Rating
Number	Style	dB	dB	2a	2b	Ohms	mA	Watts
MA-41201D	11	8.8	6.5	1.5	2.5	400 - 565	1.4	10
MA-41201E	11	8.0	6.0	1.5	2.5	400 - 565	1.4	10
MA-41201F	11	7.5	6.0	1.5	2.5	400 - 565	1.4	10
MA-41201G	11	7.0	5.5	1.5	2.5	400 - 565	1.4	10

NOTES:

- Single Sideband NF @ 16 GHz; IF = 30 MHz L.O. Power 1.0 mW; N_{IF} = 1.5 dB; JAN 201 Mount; RL=100 Ohms
- Relative excess Gas Tube Noise Temperature = 16.0 ± 0.5 dB.
- 2. (a) VSWR at 16 GHz in JAN 201 Mount, R_{\perp} = 100 ohms.
 - (b) VSWR 12.5 to 17.5 GHz swept; MA-595 C mount, $\rm R_L$ = 22 ohms.

(Maximum VSWR of MA-595C with 65 + J0 Load 1.2:1, 12.5 to 17.5 GHz).

3. RF Power = 1.0 mW, R $_{L}$ = 100 Ohms, JAN 201 Mount, f $_{o}$ = 16 GHz.

- 4. This is a single shot 15,000 pulse (10W peak, 3 nS pulse width) burnout test.
- 5. Pending JAN approval
- All units are available in reverse polarity, matched forward pairs, or matched opposite polarity (one forward diode, one reverse diode) pairs by adding the suffixes R, M, or MR respectively. Matching criteria for pairs — Δ L_C = 0.3 dB Max.,

 $\Delta z_{1F} = 25 \text{ Ohms Max.}$

Mixer Diodes MQM

X and Ku-Band — MA-41220 Series

CASE STYLE 100

	INC	HES	MM		
DIM	MIN	MAX	MIN	MAX	
Α	.197	.207	5.00	5.26	
8	.070	.082	1.78	2.08	
С	.060	.064	1 52	1.63	
D		.084		2 13	
F	.06	2 REF	1.5	7 REF	
F		012		.30	

MAXIMUM RATINGS (At 25°C unless otherwise specified)

Incident RF CW Power 100 mW Incident RF Peak Pulse Power 2.0 Watts (3 ns pulse width, 1000 pps) Temperature Range Operating $-65 \text{ to } +150^{\circ}\text{ C}$ Storage $-65 \text{ to } +150^{\circ} \text{ C}$

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature Storage	1031	-65 to +150 ⁰ С
Temperature Cycle	1051	5 Cycles
		-65 to +150 ⁰ C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL CHARACTERISTICS @ $T_A = 25^{\circ}C$

Model Number	Frequency Bands	Case Style	Test Frequency GHz	Max.' Noise Figure dB	Max. VSWR	IF Impedance Ohms
MA-41220- C	X	100	9.375	9.0	2.0	250 - 500
MA-41220- E		100	9.375	7.5	1.8	250 - 500
MA-41220- F		100	9.375	7.0	1.6	250 - 500
MA-41220- G		100	9.375	6.5	1.5	250 - 500
MA-41221- D	X, Ku	100	16.0	9.0	_	_
MA-41221- E		100	16.0	8.0	_	_
MA-41221- F		100	16.0	7.5		-

NOTES:

- 1. Test Conditions: Noise figure is single sideband measured with 30 MHz IF, NF IF = 1.5 dB, Max. and local oscillator power = 1.0 mW; excess gas tube noise at 9.375 GHz = 15.3 \pm 0.5 dB.
 - at 16.0 GHz = 16.0 ± 0.5 dB
- 2. All units available as matched pairs by adding the suffix "M". Matching criteria for packaged pairs: Δ NF $_{0}$ = 0.3 dBm Max. Δ Z $_{1F}$ =

Mixer Diodes Glass Packages

UHF, S and X-Band 1N831 and 1N832 Series 1N82 Series MA-41500 Series (PicoMin)

CASE STYLES

TYPICAL				
L _p = 2.5 nH				
C _p = 0.07 pF				

	IN	CHES	N	м
DIM.	MIN.	MAX.	MIN.	MAX.
Α	0 230	0 300	5,84	7.62
ē	0 085	0 107	2,16	2,72
С		1 000		25,4
D	0.018	0 022	0.46	0 56

54

TYPICAL		IN	CHI
L_ = 1.0 nH	DIM.	MIN.	L
ъ 1.0 пп	Α	.145	Ι
$C_{2} = 0.05 pF$	В	.068	I
ъ	С	014	L

	IN	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.145	165	3.68	4,19	
В	.068	075	1,72	1,91	
С	014	016	0,35	0,41	
D	1.000	1.500	25,4	38.1	

Not to scale.

MAXIMUM RATINGS (At 25°C unless otherwise specified)

Incident Peak Pulse RF Power 5.0 W 3 ns Pulse Width, 1000 pps Incident (CW) RF Power 1N831 375 mW 1N832 325 mW MA41500 250 mW Temperature Range $-65 \text{ to } +150^{\circ}\text{C}$ Operating -65 to +150°C Storage

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See Maximum Ratings
Temperature, Operating	_	See Maximum Ratings
Temperature Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL CHARACTERISTICS

Model ^{1,2} Number	Test Frequency GHz	Max. ^{3,4,5} Noise Figure dB	Typical ^{4,5} Conversion Loss dB	IF ^{4, 5} Impedance Ohms	Case Style
1N831	3.06	8.3	5.5	350-450	4
JAN 1N831A ⁸	3.06	7.0	5.0	350-550	4
1N831B	3.06	6.5	4.5	350-550	4
1N831C	3.06	6.0	4.0	350-450	4
1N832	9.375	9.5	7.0	325-475	4
1N832A	9.375	7.5	6.0	335-465	4
JAN 1N832B ⁸	9.375	7.0	5.0	335-465	4
1N832C	9.375	6.5	4.5	335-465	4

Continued on following page.

ELECTRICAL CHARACTERISTICS (Continued)

Model ^{1,2} Number	Test Frequency GHz	Max. ^{3,4,5} Noise Figure dB	Typical ^{4,5} Conversion Loss dB	Ratings ^{4, 5} IF Impedance Ohms	Case Style
MA-41500	3.06	8.3	6.5	200-500	54
MA-41501	3.06	7.0	5.0	250-450	54
MA-41502	3.06	6.5	4.5	250-450	54
MA-41503	3.06	6.0	4.0	250-450	54
MA-41504	3.06	5.5	4.0	250-450	54
MA-41505	9.375	9.5	7.0	200-400	54
MA-41506	9.375	7.5	6.0	200-400	54
MA-41507	9.375	7.0	5.0	200-400	54
MA-41508	9.375	6.5	4.5	200-400	54
MA-41509	9.375	6.0	4.0	200-400	54

UHF MIXER DIODES

Model Number	Case Style	Typ. Forward Voltage @ 15mA Volts	Min. Reverse Voltage @ 500µA Volts	Max. ⁷ Noise Figure dB
1N82A	4	0.75	3.0	14.0
JAN 1N82AG ⁶	4	0.50	3.0	14.5

NOTES:

- 1. Diodes available as single or matched pairs by adding M to model number.
- 2. Matching criteria for pairs.
 - \triangle L_c = 0.3 dB Max.
- \triangle Z $_{|F}^{c}$ = 25 Ω Max. 3. Noise figure is single side band, N $_{|F}$ = 1.5 \pm 0.2 dB. Relative excess gas tube noise temperature = 15.2 dB \pm 0.5 dB \oplus 3.06 GHz, 15.3
- 4. All S-Band measurements for the 1N831 Series at 0.5 mW L.O. in fixed tuned JAN holder with adapter at 3.06 GHz, R_L =100 Ω . For the MA-41500 to MA-41504 Series, test holder JD1908 is used.
- 5. All X-Band measurements for the 1N832 Series at 1.0 mW L.O. in fixed tuned JAN holder with adapter at 9.375 GHz, R $_{L}$ =100 Ω . For the MA-41505 to MA-41509 Series, test holder JD2078 is used.
- 6. The JAN 1N82AG is intended for use as a mixer in the UHF frequency range. It is manufactured to conform to MIL-STD-19500/250B and tested to MIL-STD-750 prescribed methods.
- 7. L.O. Drive = 1.3 mA; R_L = 10 Ohms; $N_{\parallel F}$ = 4.5 dB; F_O = 890 MHz.
- 8. Pending approval to military specifications.

MA-41500 SERIES MIXER DIODES TYPICAL PERFORMANCE CURVES

Additional JEDEC Point Contact Mixer Diodes

S through Ku-Band

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model	Case	Test Freq.	Max. Noise Figure		IF npedance Ohms	Max.	Burnout
Number =	Style	GHz	dB Min.		Max.	VSWR	Rating
1N3655	3	3.06	8.3	300	500	_	10.0 ²
1N3655B	3	3.06	6.0	350	450	1.3	10.0 ²
1N3745	3	9.375	9.5	325	475	1.5	5.0 ²
1N149	7–1	9.375	8.3	325	475	_	_
JAN 1N263 ^{4,5}	151 ⁶	9.375	7.5	140	210	1.3	1.0 ³
1N4600	11	13.3	9.5	400	565	1.5	1.0 ³
1N4601	11	13.0	8.8	400	565	1.5	1.0 ³
1N4602	11	13.3	8.0	400	565	1.5	1.0 ³
JAN 1N1838 ^{1,5}	151 ⁶	13.3	32	450	750	3.0	_
1N4603	11	16.0	9.5	400	565	1.5	1.0 ³
1N4604	11	16.0	8.8	400	565	1.5	1.0 ³
1N4605	11	16.0	8.0	400	565	1.5	1.0 ³

NOTES:

- 1. Germanium point contact diode for doppler applications. Noise figure is measured at IF = 20 KHz.
- 2. Burnout rating in watts using a 3 nS pulse.
- 3. Burnout rating in ergs.
- 4. Germanium Point Contact Diode.
- These units are available in matched pairs either forward or reverse (one forward diode, one reverse diode) by adding the suffixes M or MR respectively.
- 6. Complete case style description available on request.

Point Contact Power Monitor Diodes

UHF through Ku-Band

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model Number	Case Style	Test Freq. MHz	Load Resist. Ohms	Input Power Level mW	Power Level dBm		Rectified Current μΑ Μαχ.	Min.	Output Volt. mV Max.
UHF BAND									
MA-437		140	1515	_	-2.8	92	109	-	_
1N2771	7-1	375	1515	_	-2.8	102	119		_
1142771		750	1515	_	-2.8	104	123	-	_
X-BAND									
1N3143	71	9,375	10000	.05		_	_	72	! 112
1N3778	3	9,375	10000	10.0	_		_	2400	
Ku-BAND									
		16,000	10000	.05	_	_	_	20	50
MA-4135	11	16.000	10000	1.0	_	_	_	600	
		16,000	10000	10.0	_		_	2400	

SELECTION GUIDE-SILICON SCHOTTKY MIXER DIODES IN HERMETIC PACKAGES

Test Frequency	1 GHz		3 GHz						9.3 GHz							16 GH	z		
Case	Medium Berrier	Medium	n Berrier			Low Ba	rrier			1	Medium Ber	vier		Low B	Servier		Medium	Berrier	
Max. Noise Figure	Gless	Corumic	C-Spring Glass	MOM	Whisker Glass	Ceremic MCM	PW		Ceramic	C-Spring Glass	MCM	Ceramic MOM	Pill	Ceremic MQM	Pill	Coaxial	MOM	Ceramic MOM	Pill
d8 \	54_	3	54	100	54	119	120	196	3	54	100	119	120	119	120	111	100	119	120
6.0		MA-40061H																	
6.6	MA-4882	MA-40061G	MA-4853	MA-40003					MA 400711										
8.0		MA-40051F		MA-40002		MA-40100	MA-40106	MA-40126	MA-40071H		MA-40009	MA-40150	MA-40155						
6.5	MA-4863		MA-4852	MA-40001	MA-40103	MA-40101	MA-40106	MA-40127	MA-40071G	MA 40103 MA 40153	MA 40008	MA-40151	MA-40156	MA-40110	MA 40115	MA-4861H 1N5438	MA 40015	MA-40160	MA-40162
7.0		MA-40051E			MA-40104	MA-40102	MA-40107	MA-40128	MA-40071F	MA 40104 MA 40159	MA 40007	MA-40152	MA-40157	MA-40111	MA-40116	MA-4861G 1N5437	MA 40014	MA-40161	MA-40163
7.6			MA-4861						MA-40071E	MA-4856						MA-4861F 1N5436	MA 40013		
8.0											MA-40006					MA-4861E	MA-40012		
8.5										MA-4855									
9.0																MA-4861D			
Comment	General purpose low cost diodes	Best 1/f noise		Broad- bend	Best low local oscillator power, Best burnout	Bonded diode, Best burnout	Bonded pril	Broad- band			Sest Bandwidth	Band diade	н	Bonded diode, Best burnout	Bonded pill	guide wave	Best bandwidth Useful to 40 GHz		

SELECTION GUIDE-SILICON SCHOTTKY MIXER DIODES FOR STRIPLINE AND HYBRID INTEGRATED CIRCUITS

Case Style	134	137	81	121	135	185	
Frequency	Chip	Stripline	Lid	Microstrip	Chip	Beamlead	Note
L-Band	MA-40190						
S-Band	MA-40191						
C-Band		MA-40033 MA-40034 MA-40035					Medium Barrier
X-Band			MA-40121 MA-40171	MA-40122 MA-40172	MA-40140 MA-40170	MA-40123 MA-40173	Low Barrier Medium Barrier
Ku-Band					MA-40119 MA-40169	MA-40124 MA-40174	Low Barrier Medium Barrier

Schottky Barrier Diodes For Mixer Applications

Bulletin 4251

Medium Barrier
Ku Band Coaxial Series
L-X Band Glass Series
S-Ku Band MQM Series
Stripline Series
1N21, 1N23 Equivalents

Medium Barrier Schottky Mixer Diodes

Ku-Band Coaxial Series MA-4861

CASE STYLE

100 mW

	IN	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAK.	
A	215	220	5,46	5,59	
В	735	765	18,67	19,43	
С	147		3,74	T	
D	011	.028	0.28	0,71	
E	.007	017	0,177	0,432	
F	031	.033	0 787	0.838	
G	42 ⁰	48()			

MAXIMUM RATINGS

(@ 25°C, Unless Otherwise Specified) Incident RF CW Power

Incident RF Peak Pulse Power 2.0 W (3 ns Max. pulse width, 1000 pps) **DC Current** 50 mA

Reverse Voltage

 $(I_B = 10 \mu A)$ 2 V Temperature Range: Operating -65 to +150°C

Storage -65 to +150°C

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See Max. Ratings
Temperature, Operating	_	See Max. Ratings
Temperature Cycling	1051	5 Cycles,
		-65 to +150°C
Shock	2016	500 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Model Number	Max. ¹ Noise Figure dB	Max. ^{1,2} VSWR	IF ³ Impedance Ohms
MA4861E	8.0	2.5	250 - 500
MA4861F	7.5	2.0	300 - 550
MA4861G	7.0	2.0	300 - 550
MA4861H	6.5	2.0	300 - 550

All units are also available as individual reverse, matched pair forward, and matched pair forward and reverse by adding the suffix "R", "M" and "MR" respectively to the model number.

Matching criteria for pairs: Δ L_C = 0.3 dB, Max.: Δ Z_{1F} = 25 Ohms, Max.

NOTES:

- 1. Single sideband NF measured at 16 GHz with 30 MHz IF. Local oscillator power = 0.5 mW Nom., N_{1F} = 1.5 dB Max., JAN-201 mount. $R_L = 100$ Ohms.
- 2. Swept measurement 12.5 to 17.5 GHz in MA595C broadband mount with R₁ = 22 Ohms. (VSWR is 1.5 Max. at 16 GHz, R = 100 Ohms in JAN-201 mount). Max. VSWR of MA595C with 65 + jO load = 1.2 from 12.5 to 17.5 GHz (swept
- 3. RF Power = 0.5 mW Nom., R_L = 22 Ohms for MA595C mount and R_L =100 Ohms for JAN-201 mount.
- 4. Coaxial case diode polarity is such that the sleeve is positive with respect to center conductor when current flows in the forward direction.

TYPICAL PERFORMANCE CURVES - MA-4861 SERIES

Medium Barrier Schottky Mixer Diodes

L through X-Band, Pico Minature Glass Packages S through Ku-Band, MQM Packages

CASE STYLES

100

		C,	= .C)5 pl
	IN	INCHES		AMA
DIM.	MIN.	MAX.	MIN.	MAX
Α	145	165	3,68	4,19
В	068	075	1,72	1,91
С	014	016	0,35	0,41
O	1 000	1 500	25,4	38.1

Not to scale

-65 to +175°C

L = 1.0 nH

MAXIMUM RATINGS

Storage

(@ 25°C, unless otherwise specified)

DC Current: L-Band Diodes 200 mA S-Band Diodes 150 mA X-Band Diodes 100 mA Ku-Band Diodes 60 mA Reverse Voltage 3 Volts, Min. Temperature: Operating -65 to +150°C

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature Storage	1031	See Max. Ratings
Temperature Operating		See Max. Ratings
Temperature Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL SPECIFICATIONS @ TA = 25°C

MIXER DIODES		ES Max. ² Test Noise			
Model ¹ Number	Case Style	Frequency GHz	Figure dB	Max. ² VSWR	IF ² Impedance Ohms
MA-4882	54	1.0	5.5	1.5	125-250
MA-4883	54	1.0	6.5	1.6	125-250
MA-4853	54	3.0	5.5	1.5	125-250
MA-4852	54	3.0	6.5	1.5	125-250
MA-4851	54	3.0	7.5	2.0	125-250
MA-4856 MA-4855	54 54	9.3 9.3	7.5 8.5	1.8 2.0	200-400 200-400
MA-40003	100	3.0	5.5	1.6	200-400
MA-40002 MA-40001	100 100	3.0 3.0	6.0 6.5	1.6 1.8	200-400 200-400
MA-40009	100	9.3	6.0	1.6	200-500
MA-40008	100	9.3	6.5	1.6	200-500
MA-40007	100	9.3	7.0	1.6	200-500
MA-40006	100	9.3	8.0	1.8	200-500

(Continued)

Model ¹ Number	Case Style	Test Frequency GHz	Max. ² Noise Figure dB	Max. ² VSWR	IF ² Impedance Ohms
MA-40015	100	16.0	6.5	1.6	200-500
MA-40014	100	16.0	7.0	1.6	200-500
MA-40013	100	16.0	7.5	1.6	200-500
MA-40012	100	16.0	8.0	1.8	200-500

NOTES:

- 1. Matched mixer diode pairs are available by adding the suffix "M". Matching criteria for pairs: $\Delta L_{c} = 0.3$ dB Max.; $\Delta Z_{1F} = 25$ Ohms Max.
- 2. P_{LO} = 1.0 mW; NF $_{IF}$ = 1.5dB Max.; F_{IF} = 30 MHz; R_{L} = 16 Ohms; Single Sideband Noise Figure

TYPICAL PERFORMANCE CURVES

Medium Barrier Schottky Mixer Diodes

Stripline Package Series

MA-40033, MA-40034, MA-40035

CASE STYLE 137

DIMENSIONS

	INC	CHES	ММ		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.090	.110	2,29	2,54	
В	.018	.022	0,46	0,56	
С	.095	.105	2,41	2,67	
D	.003	.005	0,08	0,13	
Ε	-	.050	_	1,27	

MAXIMUM RATINGS (@ 25°C)

Incident RF CW Power

Incident RF Peak Pulse Power (3 ns Max. pulse width, 1000 pps)

DC Forward Current

100 mW

2.0 watts

50 mA

Temperature: Operating

Storage

-65 to +125°C

-65 to +125°C

TYPICAL ELECTRICAL PARAMETERS

All Models

Package Capacitance³ (C_n) Series Resistance (R_s)

.2 pF 8Ω

Junction Capacitance³ (C_j) Breakdown Voltage³ (V_R)

0.1 pF 3.0 V

ELECTRICAL CHARACTERISTICS @ T_A = 25°C

Model ² Number	Case Style	Test Frequency GHz	Max. ¹ Noise Figure dB	Max. VSWR	lr	IF npedanc Ohms	e
MA-40033	137	6.0	5.5	1.5	200		500
MA-40034	137	6.0	6.0	1.5	200		500
MA-40035	137	6.0	7.0	2.0	200		500

NOTES:

- 1. Test Conditions: Noise figure is single sideband; measured with 30 MHz IF N_{jf} = 1.5 dB max. P_{LO} = 1.0 mW; excess gas tube noise = 15.2 dB; $R_{\underline{i}}$ = 16 Ohms.
- 2. All units available as matched pairs by adding suffix "M". Matching criteria: Δ NF = .3 dB max.; $\Delta Z_{\rm IF} = 25$ Ohms max.
- 3. Breakdown voltage is measured at $-10~\mu$ A. Capacitance is measured at 1 MHz.

TYPICAL PERFORMANCE CURVES

Medium Barrier Schottky Mixer Diodes

Schottky Diode Replacements for IN21, IN23 Series

CASE STYLE DIA INCHES MIN MAX 0.292 0.296 7.417 7.618 0 246 0 250 6 248 6 350 0 753 0 783 19 13 19 89 4.953 0.195 0.225 5 7 15 0 046 | 0 766 | 1 168 0.094 2.336 2.387 0.030 0 193 0 199 4 902 5 054 0 047 | 0 057 | 1 194 | 1 448

MAXIMUM RATINGS (@ 25°C, unless otherwise specified)

1	MA-40051 Series	MA-40071 Series
Incident RF CW Powe	r 100 mW	100 mW
DC Current	60 mW	50 mA
Reverse Voltage	3 V	3 V
Temperature Range:		
Operating	-65 to +150 ⁰ C	-65 to +150°C
Storage	-65 to +175°C	-65 to +175 ⁰ C

	Method	d Levels
Temperature, Storage	1031	See Max. Ratings
Temperature, Operating		See Max. Ratings
Temperature, Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Moisture Resistance	1021	10 Days

ENVIRONMENTAL RATINGS PER MIL-STD-750

Pulse Burnout:

Frequency	3.060 GHz	9.375 GHz
R,	100 Ω	100Ω
Pulsewidth	3 ns	3 ns
Incident Peak Power	2W	2W
Pulse Frequency	1 kHz	1 kHz

ELECTRICAL SPECIFICATIONS @ TA =	25° C
----------------------------------	-------

Model ¹	Case	Max. Noise ² Figure	Max. Conversion ³ Loss	Max. Output ⁴ Noise	Max.	IF ⁶ Impedance
Number	Style	dB	dB	Ratio	VSWR ⁵	Ohms
S-Band (Test Frequency - 3	.060 GHz)					
MA-40051E	3	7.0	5.5	1.8	2.0	300-500
MA-40051F	3	6.0	5.5	1.5	1.5	350-450
MA-40051G	3	5.5	5.0	1.5	1.5	350-450
MA-40051H	3	5.0	5.0	1.5	1.5	350-450
S Through X-Band (Test Fr	equency - 9.37	75 GHz)				
MA-40071E	3	7.5	6.0	1.4	2.0	300-500
MA-40071F	3	7.0	6.0	1.4	1.5	325-475
MA-40071G	3	6.5	5.5	1.4	1.5	325-475
MA-40071H	3	6.0	5.0	1.4	1.5	325-475
MA-40071I	3	5.5	4.5	1.4	1.5	325-475

- 1. All units are also available as single reverse, matched pair forward, and matched pair forward and reverse by adding "R", "M" or "MR" respectively to the base type number. Matching criteria for pairs: Δ NF = 0.3 dB Max. and $\Delta Z_{iF} = 25 \text{ Ohms Max.}$
- 2. The specified noise figure is a single sideband measurement made at the stated frequency with a 30 MHz IF and a 1.5 dB

Nom. and R_L = 100 ohms. The MA-40051 Series is tested

in the JAN 264 mount, and the MA-40071 Series in the JAN 105 mount.

- 3. Amplitude Modulation Method.
- 4. Calculated from NF = L_C (NF $_{\rm IF}$ + $N_{\rm RO}$ 1).
- 5. I_{RECT.} = 1.0 mA.
- 6. AC METHOD IF = 60 to 100 cps.

TYPICAL PERFORMANCE CURVES ·

TYPICAL PERFORMANCE CURVES (Continued)

TYPICAL PERFORMANCE CURVES (Continued)

Low and Medium Barrier Schottky Mixer Diodes

MA40100 SERIES-LOW BARRIER MA40150 SERIES-MEDIUM BARRIER

Bulletin 4211

DESCRIPTION

These two families of Schottky mixer diodes are offered in all standard diode package styles. The diodes are silicon Schottky barrier diodes of planar epitaxial passivated chip construction. The manufacturing technique produces devices with extremely uniform electrical characteristics. Uniform RF impedances from diode to diode are provided by the very tight tolerance in junction capacitance.

High reliability versions screened to MIL-STD-750 are available. The tables at the rear of this bulletin give the recommended screening and inspection procedures.

APPLICATIONS

The MA-40100 series of low barrier Schottky diodes, show optimum performance at -3 dBm, and show less than 1 dB noise figure degradation at -10 dBm. They are recommended for starved LO applications.

The MA-40150 series of medium barrier Schottky diodes, show optimum performance at 0 dBm and are recommended for use where moderate LO power is available.

SPECIFICATIONS-

Electrical Characteristics @ 25°C

L- through Ku-Band

Schottky Barrier Mixer Packaged Diodes¹

Frequency Band	Low Barrier ¹ Model Number	Medium Berrier ¹ Model Number	Case ² Style	Test Frequency GHz	Max. ⁴ Noise Figure d8	Mex. VSWR	IF ⁸ Impedance Ohms
L-through-X	MA-40100	MA-40150	119	9.375	6.0	1.5	250-450
	MA-40101	MA-40151	119	9.375	6.5	1.5	250-450
	MA-40102	MA-40152	119	9.375	7.0	2.0	250-450
	MA-40103	MA-40153	54	9.375	6.5	1.5	250-450
	MA-40104	MA-40154	54	9.375	7.0	2.0	250-450
	MA-40105	MA-40155	120	9.375	6.0	1.5	250-450
	MA-40106	MA-40156	120	9.375	6.5	1.5	250-450
	MA-40107	MA-40157	120	9.375	7.0	2.0	250-450
Ku	MA-40110	MA-40160	119	16.0	6.5	1.5	200-450
	MA-40111	MA-40161	119	16.0	7.0	2.0	200-450
	MA-40115	MA-40162	120	16.0	6.5	1.5	200-450
	MA-40116	MA-40163	120	16.0	7.0	2.0	200-450

Schottky Barrier Mixer Diode Chips

and Carriers for Microwave Hybrid Circuits

Low Barrier ^s Model	Medium Barrier ¹ Model Case Number Style		Min. Breakdown Voltage @ 10 µA Volts		Typ. Forward Voltage @ 1 mA Volts		Max. ³ Total Capacitance @ V _R = 0 pF	● 9.375 GHz	
Number	Number	Style	Low	IMEG	Low	Med.		dB	
MA-40140	MA-40170	135	2	4	.3	.4	.15	6.5	
MA-40121	MA-40171	81	2	4	.3	.4	.30	6.5	
MA-40122	MA-40172	121	2	4	.3	.4	.20	6.5	
MA-40123	MA-40173	185	2	4	.3	.4	.30	6.5	
MA-40124	MA-40174	185	2	4	.3	.4	.15	6.5	
MA-40126	MA-40176	186	2	4	.3	.4	.35	6.0	
MA-40127	MA-40177	186	2	4	.3	.4	.35	6.5	
MA-40128	MA-40178	186	2	4	.3	.4	.35	7.0	

- NOTES: 1. All units available as matched pairs by adding the suffix "M". Matching criteria for
 - packaged pairs: \times \times
 - The max, solder temperature for all Case Styles except 120 is 230°C for 5 seconds.

 For Case Style 120, Max, solder temperature is 200°C for 5 seconds.

 3. Measurement frequency = 1 MHz.

 - Test frequency: 1 kHz

 Test frequency: 1 kHz

 Test frequency: 1 kHz

 Test frequency: 1 kHz
 - 5, Test frequency: 1 kHz

Maximum Ratings @ 25°C

Incident RF CW Power 100 mW Incident RF Peak Pulse Power 2.0 Watts (3 ns pulse width, 1000 pps)

DC Forward Current Temperature: Operating

40 mA -65 to + 150°C

-65 to + 150°C

MIL-STD-750

TEST	METHOD	CONDITIONS
Temperature, Storage	1031	-65°C to +150°C
Temperature, Operating	1026	-65°C to +150°C
Temperature, Cycling	1051	5 cycles, -85°C to +125°C
Thermal Shock	1056	5 cycles, 0°C to +100°C
Moisture Resistance	1021	10 days, 90-98% RH, -10°C to 65°C
Shock	2016	5 blows, X ₁ , Y ₁ , Y ₂ at 1500 G
Vibration Fatigue	2046	32 hours each X, Y, Z at 15 G
Vibration Variable Frequency	2056	Four 4 minute cycles, X, Y, Z at 20 G min. 100 - 2000 Hz
Constant Acceleration	2006	1 minute each X ₁ , Y ₁ , Y ₂ at 20,000 G

Typical Parameter Values

Case Style	54	81	119	120	121	135	185	186
Package Capacitance — Cp	.05 pF	.20 pF	.15 pF	.13 pF	0.20 pF			0.2 pF
Package Inductance - Lp	1 nH	.5 nH	.5 nH	.4 nH	~	_	_	.4 nH
Series Resistance - R _s	8 Ω	8 Ω	8Ω	8 Ω	8 Ω	8 Ω	Ω 8	8 Ω
Junction Capacitance - C	.1 pF	.1 pF	.1 pF	.1 pF				

TX Preconditioning and Screening-100%

E	xamination or Test	MIL-STD-750 Methods	Test Conditions
1.	Electrical Test		
2.	High Temperature Storage	1031	t = 168 hrs., T = 150 ^o C
3.	Thermal Shock (Temperature Cycling) 10 Cycles	1051	-65°C to +150°C,
4.	Fine Leak Test	1071	Cond. H
5.	Gross Leak Test	1071	Cond. C, Step 1
6.	Constant Acceleration	2006	20,000 Gs, Y, only
7.	Radiographic Inspection	2076	·
8.	Electrical Test: V _F @ 10 mA, C _O @ V = OV, F = 1 MHz		
9.	Burn-In	1038	Cond. B, $t = 168 \text{ hrs.}$ T = 100° C, I _E = 10 mA
10.	Electrical Test:V _F @10 mA,		Max. $\Delta V_F = \pm 10\%$
	C ₀ @ V = OV, F = 1,0 MHz		Max. $\Delta C_{\tau} = \pm 10\%$
11.	Calculate Drift, ΔV_F and ΔC_T		
12.	Final Visual	2071	

Group B Inspection

		MIL-STD-750		
Examination or Test Method Test Cond		Test Conditions	LTPD	Symbol
Subgroup 1			15	
Physical Dimensions	2066	Per Case Style in this		
Subgroup 2	ı	Bulletin	20	
Solderability	2026	Unit Aging	}	
Subgroup 3			10	
Temperature Cycle (10 cycles)	1051	-65°C to +150°C		
Thermal Shock	1056	Cond. A		
Hermetic Seal, Fine Leak	1071	Cond. H		
Hermetic Seal, Gross Leak	1071	Cond. C, Step 1		
Moisture Resistance	1021			
End Points:				
Noise Figure		See Page 34	ŀ	NF
1F impedance		See Page 34		Z, F
Subgroup 4	İ		10	
Shock — Non-operating	2016	1500G, t = 0.5 ms, 5	<u> </u>	
		blows, X ₁ , Y ₁ , Y ₂		
Vibration Variable Frequency	2056	Non-Operating		
Constant Acceleration	2006	20,000 Gs, X ₁ , Y ₁ , Y ₂		
End Points: Same as Sub- group 3		1 1 2		
Subgroup 5	ı 		λ = 5	
High Temperature Life	1031	T _A = 150°C, t ≈ 1000 hrs.	\ - 3	
End Points: Per Step 8,	, , , , ,	A 195 5, t 1955 tills.		
Table III Drift Criteria	ı			
same as Step 11, Table III	: 			
Subgroup 6			λ = 5	
Steady State Operating Life	1026	I _F = 10 mA, T ≈ 25 ⁰ C,	\ = 5	
Steady State Operating Life	1020	t = 1000 hrs.		
End Points: Per Step 8, Table		. 1000 ms.		
III Drift Criteria				,
same as Step 11, Table III	ı			
same as step 11, Table III		<u> </u>		

Silicon Beam Lead Schottky Diodes

Low and Medium Barrier
Mixer and Detector Beam Lead Diodes

Bulletin 4213

FEATURES

- Planar Construction (Surface Oriented Diode)
- Silicon Nitride Passivation
- Extremely Strong Beam Construction
- High Process Uniformity
- Low Noise Figure (6 dB Typical at 10 GHz)

APPLICATIONS

Beam Lead Diodes are specifically designed for stripline and microstrip circuit applications because they are planar devices. The Beam lead construction provides a device with extremely low parasitic reactances and precise process control insures repeatable RF performance from batch to batch.

Information on Beam Lead Bonding Techniques is available in M/A's Technical Report "Application and Handling of Chip and Hybrid-Chip Diodes for Integrated Circuits."

DESCRIPTION

Beam Lead Schottky Diodes are planar devices in which both the Schottky junction and the back contact are made accessible to a common surface so they may be contacted by the beam leads. The Schottky junction is passivated by silicon oxide and silicon nitride to give stable reliable performance. The diodes meet the humidity tests as specified in MIL STD 750, 1021 as well as burn-in life tests.

During the manufacturing process, gold beam leads are deposited onto a glass layer before the wafer is separated into individual diodes. This technique produces the exceptional beam strength characteristic of M/A Schottky Beam Leads.

SPECIFICATIONS -

Mixer Character	Model Number	Max, Total Capacitance (pF) V _R =0, F=1 MHz	Max. Forward Voltage ❷ 1 mA Volts	Min. Breakdown Voltage @ 10 μΑ Volts	Typical Series Resistance Ohms	Typical Single Side Band NF dB
	MA-40123 (X-Band Low Barrier)	0.25	0.35	2	8	6.0
	MA-40124 (Ku-Band Low Barrier)	0.15	0.35	2	8	6.5
	MA-40173 (X-Band Medium Barrier)	0.25	0.40	3	8	6.0
	MA-40174 (Ku-Band Medium Barrier)	0.15	0.40	3	8	6.5

Detector Characteristics @ T_A = 25°C

	Parameter	Symbol	Typical Value	Units	Test Conditions
MA-40175	Tangential Sensivity	Tss	-55	dBm	I _B '= 25 μA
Ku-Band	Detection Sensitivity	γ	7000	mV/mW	Vid Bw = 2 MHz
Detector	Video Resistance	R _v	1400	Ω	f = 9.375 GHz

Absolute Maximum Ratings

NOTE:

 Incident RF Peak Pulse Power, $T_A = 25^{\circ}C$ (Note 1)
 1W

 Incident C W RF Power, $T_A = 25^{\circ}C$ 300 mW

 Operating Temperature Range
 $-60^{\circ}C$ to $+150^{\circ}C$

 Storage Temperature Range
 $-60^{\circ}C$ to $+150^{\circ}C$

 Maximum Pull On Any Lead
 2 grams

 Diode Mounting Temperature
 $220^{\circ}C$ for 10 sec. max.

1. 3 ns Max. pulse width, 1000 pps.

OUTLINE DRAWING 0.009 0.228 0.4.06 MIN 0.0076-0.152 ANODE CATHODE 0.003-0006 0.076-0.127 NOTE. 0.0003-0006 0.0076-0.0127

TYPICAL PERFORMANCE CURVES -

Detector Diode Characteristics

FIGURE OF MERIT (F. M.)

A Figure of Merit has been established to characterize video receivers:

Figure of Merit = M
$$\frac{\beta R_V}{\sqrt{R_A + R_V}}$$
 where $\beta = \frac{\Delta I}{P_{in}}$

where RV is the dynamic resistance of the diode and is called video resistance, and RA is a constant resistance representing the noise contribution due to amplifiers. The term $R_A \approx 1200\Omega$, but no longer seems to be valid for present low-noise transistor amplifiers. Figure of merit does not consider shot and flicker noise introduced by the bias current. Therefore, this method of characterization is of limited value in describing Schottky-Barrier diodes. Video detectors are presently being characterized by signal sensitivity types of measurement, i.e., amount of available signal power (in decibels referred to 1 mW) required to produce a specified signal-to-noise ratio. The various terms now used are minimum detectable signal (MDS), tangential signal sensitivity (TSS), nominal detectable signal (NDS) and noise equivalent power (NEP):

MINIMUM DETECTABLE SIGNAL (MDS)

The minimum detectable signal (MDS) is defined as the smallest signal which may be observed on an oscilloscope when its position along the trace is unknown. This corresponds to a signal-to noise ratio of approximately unity and is a subjective measurement.

TANGENTIAL SIGNAL SENSITIVITY (TSS)

The Tangential Signal Sensitivity (TSS) is a direct measurement of signal-to-noise voltage in a detector receiver. The measurement is carried out with a pulse signal, the level of which is adjusted such that the highest noise peaks observed on an oscilloscope in the absence of signal are the same level as the lowest noise peaks in the presence of the signal. The condition is shown in Figure 1. The signal level thus determined gives the TSS value. TSS corresponds to a signal-to-noise ratio of approximately 2.5:1. Although the measurement is subjective and depends upon the operator, it is still most commonly used by industry.

Figure 1. Representation of Oscilloscope Display in Determining TSS.

NOMINAL DETECTABLE SIGNAL (NDS)

If $F_V = 1 + (R_A/R_V)$, then NDS = $\frac{2}{M} \sqrt{KTB}$

The Nominal Detectable Signal (NDS) is defined as exactly that microwave power required to produce an output power equal to the noise power. This corresponds to a signal-to-noise ratio of unity.

NDS =
$$\frac{Z}{\gamma}$$
 KTR_V $\left[t_W + \frac{T_o}{T} \left(F_V - 1 \right) B + B_x \ln \frac{f_n}{f_1} \right]$

K = Boltzmann's constant
 T = absolute temperature
 R_V= video resistance

T = room temperature tw = white noise temperat

tw = white noise temperature ratio F_V = noise figure of video amplifier B_X In f_n/f_1 = Flicker noise

The TSS is found empirically to be 4 dB above NDS, under ordinary conditions. The various parameters TSS, MDS, and NDS are all dependent upon the amplifier bandwidth, usually varying as the square root of the bandwidth. Thus the bandwidth at which measurements are made must be stated when specifying the detector. The usual value is a 2-MHz video bandwidth. The attached curve shows the effect of video bandwidth on TSS.

SELECTION GUIDE-SILICON POINT CONTACT **DETECTOR DIODES** IN HERMETIC PACKAGES

Test Frequency		3 GHz				10 GHz				16 GHz	
Case Style TSS ¹ dBm	Glass DO-7 4	Glass 54	Ceramic DO-23 3	MQM 100	Glass DO-7 4	Glass 54	Ceramic DO-23	MQM 100	Coexiel DO-37 11	MQM 100	
40											
45	MA-4123	MA-41510			1N833	MA-41513					
48	MA-4123A	MA-41511			1N833A	MA-41514				MA-41225	
49			MA-417								
50	MA-4139 1N4379	MA-41512	MA-4142	MA-41223	1N833B	MA-41515	1N1611 MA-418A	MA-41223			
51							MA-461A				
52			MA-4142A				1N1611B MA-461B		MA-4116	MA-4122A	
54				MA-41222							
55								MA-41222			
Comment	General Purpose Detector	Best Bandwidth	Waveguide Detector	Broad Band	General Purpose	Best Bandwidth	Waveguide Detector	Broad Band	Waveguide Detector	Broad Band	

NOTE:

- 1. Video Bandwidth = 2 MHz.
- 2. "DO" Numbers are JEDEC outlines.

Point Contact Diodes for Detector Applications

Bulletin 4151

GLASS TYPES

S-Band

X-Band

MOM TYPES

S-Band

X-Band

Ku-Band

K-Band

CARTRIDGE TYPES

X-Band

ADDITIONAL TYPES
UHF — X Band

Point Contact Detector Diodes Glass

S-Band Series

CASE STYLES

TYPICAL

D DIA.

L
p = 2.5 nH

C
p = .07 pF

INCHES MM

DIM. MIN. MAX. MIN. MAX.

A 0.085 0.107 2,16 2,77

B 0.230 0.300 5,84 7.62

C 1000 75,4

54

| INCHES | MMM | MIN. | MAX. | MIN. |

Not to scale.

MAXIMUM RATINGS @ 25°C

Incident RF CW Power
Incident RF Peak Pulse Power
(3 ns Max pulse width, 1000 pps)
DC Currer
4

2.0 W 100 mW

10 mA

ELECTRICAL CHARACTERISTICS @ T_A = 25°C

Model ¹ Number	Case Style	Test Freq. GHz	Min. ^{2, 3} Tangential Sensitivity —dBm	Video Impedance K ohms	Burnout ⁴ Rating Ergs
MA-4123	4	3.060	45		
MA-4123A	4	3.060	48	5–25	5
MA-4123B	4	3.060	· -	525	5
MA-41510			50	4.5—18	5
	54	3.060	45	4.5-18	5
MA-41511	54	3.060	48		_
MA-41512	54	_	_	4.5—18	5
	U-4	3.060	50	4.5—18	5

NOTES:

- 1. Matched pairs are available by adding suffix M with output voltage matched \pm 0.5 dB and Rv \pm 10% at -30 dBm.
- 2. Bandwidth of IF amplifier = 2 MHz; NF IF = 3.5 dB Max. with an input impedance of 10,000 ohms. Low frequency cut-
- 3. Holder is JAN 264 with adaptor for MA-4123 thru MA-4123B, and JD 1908 for MA-41510 thru MA-41512.
- 4. Adequate Heat Sink Required.

Point Contact Detector Diodes Glass

X-Band Series

CASE STYLES

075

Not to scale.

MAXIMUM RATINGS @ 25°C

Incident RF CW Power 2.0 W Incident RF Peak Pulse Power 100mW (3 ns Max. pulse width, 1000 pps) DC Current⁴ 10 mA

ELECTRICAL CHARACTERISTICS @ TA = 25°C

			Min. ^{2,3}		
		Test	Tangential	Video	
Model ¹	Case	Freq.	Sensitivity	Impedance	
Number	Style	GHz	-dBm	K ohms	
1N833	4	9.375	45	4.5-18	
1N833A	4	9.375	48	4.5-18	
1N833B	4	9.375	50	4.5-18	
MA-41513	54	9.375	45	4.5-18	
MA-41514	54	9.375	48	4.5-18	
MA-41515	54	9.375	50	4.5-18	

NOTES:

- 1. Matched pairs are available by adding suffix M with output voltages matched to ± 0.5 dB and Rv $\pm 10\%$ at -30 dBm.
- 2. Bandwidth of IF amplifier = 2 MHz, NF $_{\rm IF}$ = 3.5 dB Max. with an input impedance of 10,000 Ω . Low frequency cutoff is approximately 1.0 KHz.
- 3. Holder is a modified Jan-105 for 1N833 thru 1N833B and JD-2078 for MA-41513 thru MA-41515 diodes.
- 4. Adequate Heat Sink Required.

TYPICAL PERFORMANCE CURVES

1N833 VOLTAGE OUTPUT VS. INCIDENT POWER

MA-41515 TYPICAL VIDEO IMPEDANCE VS. DC BIAS LEVEL

MA-41515 VOLTAGE SENSITIVITY VS. DC BIAS 10K

NOTE:

1. Bandwidth 2 MHz.

Point Contact Detector Diodes

S-Band X-Band Ku-Band

CASE STYLE 100

	IN	CHES		(MI
DIM.	MIN.	MAX.	MIN.	MAX.
Α	197	.207	5,00	5,26
8	070	U82	1,78	2.08
С	.060	.064	1,52	1,63
D	_	.084	-	2,13
E	062	REF	1,57	REF.
F	_	012		0,30

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature Storage	1031	-65 to +150°C
Temperature Cycle	1051	5 Cycles
		−65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

MAXIMUM RATINGS @ 25°C (AT 25°C UNLESS OTHERWISE SPECIFIED)

Incident RF CW Power 100 mW 2.0 W Incident RF Peak Pulse Power (3 ns pulse width, 1000 pps) Temperature Range: -65 to 150°C Operating -65 to 150°C Storage

ELECTRICAL CHARACTERISTICS @ T_A = 25°C

Model Number	Frequency Band	Case Style	Test Frequency GHz	Min. TSS ¹ -dBm	Video Impedance K ohm	Min. Sensitivity mV/mW
MA-41222	S, X	100	9.375	55	1.2 - 1.8	5000
MA-41223		100	9.375	50	1.2 - 1.8	3500
MA-41224	Ku	100	16.0	52	1.2 - 1.8	3500
MA-41225		100	16.0	48	1.2 - 1.8	3000

1. Video bandwidth is 2 MHz. Video amplifier equivalent noise resistance is 500 Ω . Input impedance is 10 K Ω . DC bias is NOTES: 20 μ A. Test holder JD 2094.

Point Contact Diodes for Motion Detector Applications

X-Rand MA-41205 S, X-Band MA-41206 K-Band MA-41207

DESCRIPTION

This series of detector diodes is designed specifically to give maximum sensitivity in zero IF systems such as CW doppler radars, police radars, braking systems, intrusion alarms and other motion detecting systems. These diodes are specifically characterized for low noise and high voltage sensitivity in the 1-10 KHz band without degrading burnout.

MAXIMUM RATINGS @ 25°C

Incident RF CW Power 100 mW Incident RF Peak Pulse Power 5.0 W (3 ns Max. pulse width, 1000 pps) **DC Current** 5 mA

ENVIRONMENTAL RATINGS PER MIL-STD-750 Method Levels Temperature, Storage 1031 $-65 \text{ to } +150^{\circ}\text{C}$ Temperature, Operating -65 to +150°C **Temperature Cycling** 1051 5 Cycles, -65 to +150°C Shock 2016 500 q's Vibration 2056 15 g's Constant Acceleration 20,000 g's 2006 Moisture Resistance 1021

ELECTRICAL SPECIFICATIONS @ $T_{\Delta} = 25^{\circ}C$

Test Frequency Conversion Loss 1 VSWR¹

10.525 GHz ± 250 MHz

5.0 dB, typ.

2.0 max.

AM Noise ²

.22 V RMS Max.

5 - 300 Hz

10 Davs

.22 mV RMS Max.

300 - 500 Hz

NOTES:

1. Test Conditions:

L. O. Power 1.0 mW R_L ≈ 600 Ohms

Holder: Modified JAN 105 F = 10.525 GH2

2. For a system application, the absoulte noise in terms of dB below the carrier, in a given bandwidth is of little value. Hence, using a Gunn diode source, the AM noise is specified in terms of the RMS voltage output of an

amplifier with a voltage gain of 100,000 across the band 5Hz - 300 Hz (with a band reject filter at 120 Hz) or, as the RMS voltage output of an amplifier with a voltage gain of 1000 across the band 300 Hz - 5000 Hz. .5 mW of RF power is incident on the detector and sensitivity is approximate 800 mV/mW.

3. European motion detection frequencies are 9.4 GHz, 9.8 GHz, 10.55 GHz, and 10.8 GHz. The MA-41205 and MA-41206 are designed for this band and are chosen on the basis of package style required.

Additional Point Contact Detector Diodes

UHF - Ku-Band

Туре	Case	CTERISTICS Test Freq.	Min. TSS	Min,	Impe	ideo dance Ohm	
Number	Style	GHz	-dBm	FM	Min.	Max.	Comment
1N830	4	0.1	-	_	_	-	Rectification
AN 1N830A	4	0.1	i –	_	_	_	efficiency 65%
MA-4140	4	0.1	_	_	_	_	
MA-4815	57	0.1	-	-	_	_	
MA-4815A	57	0.1	_		_	******	
1N32	7–1	3.295	49	85	4	22	
AN 1N32	7-1	3.295	49	85	4	22	
MA-4139	4	3.06	50	100	5	25	
MA-4142	3	3.06	50	100	5	25	
MA-4142A	3	3.06	52	200	5	25	
MA-417	3	3.295	49	85	4	22	
1N2102	3	3.295	_	85	4	22	
1N4379	4	3.295	50	100	5	25	
MA-408	7-1	9.00	50	130	1.7	3.1	dc bias 50μA
1N1611	7-1	9.00	50	130	1.7	3.1	dc bias 50μA
MA-418	3	9.00	50	130	1.7	3.1	dc bias 50μA
MA-461	3	9.00	50	130	1.7	3.1	dc bias 50μA
MA-4129	3	9.00	50	130	1.7	3.1	dc bias 50μA
MA-418A	3	9.00	50	160	1.7	3.1	dc bias 50μA
MA-452	7—1	9.00	50	130	1.7	3.1	dc bias 50μA
MA-4128	7-1	9.00	50	130	1.7	3.1	dc bias 50μA
MA-408A	7-1	9.00	51	160	1.7	3.1	dc bias 50μA
1N1611A	7–1	9.00	51	160	1.7	3.1	dc bias 50µA
MA-452A	7—1	9.00	51	160	1.7	3.1	dc bias 50µA
MA-461A	3	9.00	51	160	1.7	3.1	dc bias 50μA
MA-418B	3	9.00	52	220	1.7	3.1	dc bias 50μA
MA-461B	3	9.00	52	220	1.7	3.1	dc bias 50μA
MA-408B	7–1	9.00	52	220	1.7	3.1	dc bias 50μA
1N1611B	7—1	9.00	52	220	1.7	3.1	
MA-452B	7—1	9.00	52	220	1.7	3.1	
MA-4116	11	16.0	52	200	1.6	2.4	

SELECTION GUIDE-SILICON SCHOTTKY DETECTOR DIODES IN HERMETIC PACKAGES

Test Frequency		3.0 GHz		10 GHz								
Case Style TSS ¹ —dBm	Ceramic 3	Gioss 54	MQM Glass 100	Ceremic 3	Glass 54	MQM Glass 100	MQM Ceramic 119	Pill 120	Stripline 186	MOM Ceramic 119	Pill 120	Stripline 186
55	MA-40041	MA-40053	MA-40025		MA-40202		MA-40201	MA-40207	MA-40225	MA-40251	MA-40257	MA-40209
52				MA-40043	MA-40204	MA-40027	MA-40203	MA-40208	MA-40226	MA-40253	MA-40258	MA-40210
50	MA-40040	MA-40052	MA-40024	MA-40042		MA-40026						
Comment	Waveguide detectors	Broadband	General purpose	Waveguide detector, Low 1/F noise	General purpose	Better bandwidth than 119	Bonded diode	Bonded pill, Broad bandwidth	Broadband		p type	

Test Frequency		10 GHz (con	t.)		16 GHz					34 0	34 GHz	
Case Style TSS¹ —dBm	MQM Ceramic 119	Pill 120	Stripline 186	MOM Glass 100	MOM Ceramic 119	PHI 120	MOM Ceramic 119	PHI 120	MOM Ceramic 119	Pill 120	MOM Ceramic 119	PHI 129
56	MA-40232	MA-40230	MA-40228									
52	MA-40233	MA-40231	MA-40227	MA-40029	MA-40205	MA-40215	MA-40255	MA-40265	MA-40242	MA-40240		
50					MA-40206	MA-40216	MA-40256	MA-40266	MA-40244	MA-40241		
48				MA-40028							MA-40249	MA-40248
Comment		Zero Bias		Better bandwidth than 119	Bonded diode, Better burnout than 100	Bonded pill, Broad bandwidth	p	type	zero	bies	zero	bias

NOTE:

1. Video Bandwidth = 2 MHz.

SELECTION GUIDE-SILICON SCHOTTKY DETECTOR DIODES FOR STRIPLINE AND HYBRID INTEGRATED CIRCUITS

Case Style Frequency	134 Chip	137 Stripline	81 Lid	135 Chip	185 Beamlead	Note
Troquency	Omp	Otripinie		Cilip	Dearmead	14018
L-Band	MA-40192					
S-Band	MA-40193					
C-Band		MA-40036				
X-Band		MA-40037 MA-40038 MA-40229	MA-40221 MA-40271 MA-40239	MA-40220 MA-40270 MA-40237	MA-40223	n-type p-type Zero Bias
Ku-Band				MA-40222 MA-40272 MA-40243	MA-40175	n-type p-type Zero Bias

Schottky Barrier Diodes For Detector Applications

Bulletin 4250

Zero Bias Detector Diodes

n-type Detector Diodes

p-type Detector Diodes

Beam Lead Diodes

Doppler Diodes

FEATURES: ZERO BIAS SCHOTTKY DETECTOR DIODES ■ Ultra low 1/f noise ■ High sensitivity at zero bias ■ High resistance to burnout N-TYPE SCHOTTKY DETECTOR DIODES ■ Low ¹/f noise High Sensitivity (TSS) at low bias (20 μA) P-TYPE SCHOTTKY DETECTOR DIODES ■ Low ¹/f noise High Sensitivity (TSS) at low bias (20 μA) ■ High Output Voltage Sensitivity Opposite output voltage polarity to n-type diodes for specific applications.

Zero Bias Schottky Detector Diodes

L through X-Band, MA-40230 Series Ku and Ka-Band, MA-40240 Series

DESCRIPTION

The MA-40230 and MA-40240 Series of diodes were designed for detector applications where high sensitivity is required, without the use of external bias supplies. These devices are oxide passivated Schottky barrier diodes and are available both in standard packages and in case styles suitable for use in hybrid-integrated circuits.

MAXIMUM RATINGS @ 25°C	
Incident RF CW Power	100 mW
Incident RF Peak Pulse Power (3 ns Max. pulse width, 1000 pps)	2.0 W
DC Forward Current	30 mA
Temperature:	
Operating	-65 to +150°C
Storage	-65 to +150°C

ENVIRONMENTAL	RATINGS	PER
MIL-STD-750		

Temperature Storage Temperature Cycle	Method 1031 1051	Level -65 to +150°C 5 Cycles -65 to +150°C
Shock Vibration Constant Acceleration Humidity	2016 2056 2006 1021	500 g's 15 g's 20,000 g's 10 Days

ELECTRICAL C	HARACTERISTI	CS @ T _A = 25	OC Test	Min. ² Tangential	Video	Min. ³
Frequency Band	Model Number	Case ¹ Style	Frequency GHz	Sensitivity —dBm	Resistance K ohm	Sensitivity mV/mW
L - through - X	MA-40230	120	10.0	55	3.0 - 7.0	8000
	MA-40231	120	10.0	52	2.0 - 8.0	4000
	MA-40232	119	10.0	55	3.0 - 7.0	8000
	MA-40233	119	10.0	52	2.0 - 8.0	4000
	MA-40234	. 54	10.0	55	3.0 - 7.0	8000
	MA-40235	54	10.0	52	2.0 - 8.0	4000
	MA-40236	121	_	55 typ.	5.0 typ.	8000 typ.
	MA-40237	135		55 typ.	5.0 typ.	8000 typ.
Ku	MA-40240	120	16.0	52	4.0 - 8.0	6000
	MA-40241	120	16.0	49	3.0 - 4.0	3000
	MA-40242	119	16.0	52	4.0 - 8.0	6000
	MA-40243	135	_	52 typ.	6.0 typ.	6000 typ.
	MA-40244	119	16.0	49	3.0 - 9.0	3000
Ka	MA-40248	119	34	49	4.0 - 10.0	4000
	MA-40249	120	34	49	4.0 - 10.0	4000

NOTES:

- 1. Case Styles 119, 120 and 121 incorporate thermo-compression bonds. Maximum solder temperature for all case styles is 2300 C for
- 2. Test Condition: Video bandwidth 2 MHz; video amplifier noise resistance 500 Ω ; Input impedance 10 K Ω ; no bias.
- 3. Test Condition: RF signal power = -40 dBm.

N-Type Schottky Detector Diodes

L through Ku-Band MA-40200 Series

ENVIRONMENTAL RATINGS

DESCRIPTION

The MA-40200 series of thermo-compression bonded oxide passivated Schottky barrier detector diodes is offered in hermetically sealed packages. Other case styles suitable for use in hybrid integrated circuits are available. This series features highly sensitive, low barrier and bondable Schottky junctions.

MAXIMUM RATINGS @ 25°C	
Incident RF CW Power	100 mW
Incident RF Peak Pulse Power (3 ns Max. pulse width, 1000 pps)	2.0 W
DC Forward Current	30 mA
Temperature:	
Operating	-65 to +150°C
Storage	-65 to +150°C

PER MIL - STD - 750		
	Method	Level
Temperature Storage	1031	-65 to +150°C
Temperature Cycle	1051	5 Cycles
		-65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Days

ELECTRICAL CI		CS @ T _A = 25 ⁶	°C	Min. ^{3, 4}		
Schottky Barrier	Detector Diodes ¹		Test	Tangential	Video ⁴	Min. ⁴
Frequency	Model	Case ^{1, 2}	Frequency	Sensitivity	Impedance	Sensitivity
Band	Number	Style	GHz	–dBm	K Ohm	mV/mW
L - through - X	MA-40201	119	9.3	55	1.2-1.8	5000
	MA-40203	119	9.3	52	1.2-1.8	3500
	MA-40202	54	9.3	55	1.2-1.8	5000
	MA-40204	54	9.3	52	1.2-1.8	3500
	MA-40207	120	9.3	55	1.2-1.8	5000
	MA-40208	120	9.3	52	1.2-1.8	3500
Ku	MA-40205	119	16.0	52	1.2-1.8	3500
	MA-40206	119	16.0	50	1.2-1.8	3000
	MA-40215	120	16.0	52	1.2-1.8	3500
	MA-40216	120	16.0	50	1.2-1.8	3000

Schottky Barrier	Detector Diode (Chips for Hybrid C Min. ⁵ Breakdown	ircuits ¹ Max. ⁶ Zero Voltage	Typ. Forward	Typ. Tangential
Model	Chip	Voltage	Capacitance	Voltage	Sensitivity
Number	Style	Volts	pF	Volts	-d₿m
X-Band					
MA-40220	135	2	.12	.3	55
MA-40221	121	2	.22_	.3	_55
Ku-Band					
MA-40222	135	2	.09	.3	52

NOTES:

- Schottky Barrier junctions thermo-compression bonded in Case Styles 119, 120, 121.
- Max. solder temperature for all Case Styles except 120 is 230° C for 5 seconds.
- 3. Video bandwidth is 2 MHz. Video amplifier equivalent noise resistance is 500 Ω . Input impedance is 10 K Ω .
- 4. DC Bias is 20 μA.
- 5. Breakdown voltage @ -10 μA.
- 6. Capacitance measured at 1.0 MHz.
- 7. Forward voltage is measured at 1 mA.

TYPICAL PARAMETER VALUES

Case Styles	54	119	120	121	135
Package Capacitance — C	.05 pF	.15 pF	.13 pF	0.2 pF	
Package Inductance — L	1 nH	.5 nH	.4 nH	_	_
Series Resistance – R	25 Ω	25 Ω	25 Ω	25 Ω	25 Ω
Junction Capacitance - C _j	.07 pF	.07 pF	.07 pF	.07 pF	.07 pF

CASE STYLES

	IN	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX	
А	145	165	3.68	4,19	
9	068	0/5	1,72	1,91	
Ç	014	016	0.35	0,41	
D	1 000	1 500	25,4	38.1	

	IN	CHES	h	AM
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.078	086	2,01	2,11
в	060	064	1,52	1,63
С	190	210	4,85	5,33
D	.070	082	1,68	2,08
£	060	064	1,52	1,63
F	.060	064	1,52	1,63

	IN	CHES		rM
DIM.	MIN.	MAX.	MIN.	MAX
Α	063	067	1,60	1,70
В	019	021	0.48	0,53
С	004	006	0.10	0,15
n	MOM	025	NOM	0.64

	IN	CHES		4M
DIM.	MIN.	MAX.	MIN.	MAX
Α	051	055	1,29	1,40
8	040	050	1,02	1,27
С		015		0.38

	INC	INCHES		4M
DIM.	MIN.	MAX.	MIN.	MAX
Α	13	17	3,30	4,31
В	13	17	3 30	4,31
С	04	06	1 01	1,42
D	001		0 02	

Not to scale,

TYPICAL PERFORMANCE CURVES

TYPICAL VOLTAGE OUTPUT VS. RF POWER FOR MA-40200 SERIES (20 µA FORWARD BIAS)

TYPICAL VOLTAGE OUTPUT VS. RF POWER (NO BIAS) FOR MA-40200 SERIES

TYPICAL VIDEO IMPEDANCE VS. FORWARD DC BIAS FOR MA-40200 SERIES

Additional N-Type Schottky **Detector Diodes**

S through Ku-Band

DESCRIPTION

This series of Schottky barrier diodes is offered in a hermetically sealed glass, ceramic, and Kovar glass package and designed for use in applications where noise figure and high reliability are important criteria. Each device is RF characterized for use within a specific frequency band. All diodes in this series offer wide dynamic range, and improved reliability.

MAXIMUM RATINGS (@ 25°C, unless otherwise specified)		ENVIRONMENTAL RATINGS PER MIL-STD-750		
Incident RF CW Pov S-Band	ver 150 mW		Method	Levels
X-Band	100 mW	Temperature Storage	1031	See Max, Ratings
Ku-Band	60 mW	Temperature Operating	_	See Max. Ratings
Reverse Voltage	3 Volts, Min.	Temperature Cycling	1051	5 Cycles, -65 to +150°C
Temperature:	- 1 5 1 to	Shock	2016	500 g's
Operating	-65 to +150° C	Vibration	2056	20 g's
Storage	-65 to +150°C	Constant Acceleration	2006	20,000 g's
	-05 to +1/5°C	Humidity	1021	10 Days

ELECTRICAL CHARACTERISTICS @ TA = 25°C

requen Band		Case Style	Test Frequency GHz	Min. ^{1, 2} Tangential Sensitivity —dBm	Video ¹ Impedance K ohm
S	MA-40053	54	3.0	55	1 - 2
	MA-40052	54	3.0	50	1 - 2
X	MA-40073	54	10.0	52	1 - 2
	MA-40072	54	10.0	50	1 - 2
S	MA-40025	100	3.0	55	1 - 2
	MA-40024	100	3.0	50	1-2
X	MA-40027	100	10.0	52	1-2
	MA-40026	100	10.0	50	1 - 2
Ku	MA-40029	100	16.0	52	1-2
	MA-40028	100	16.0	48	1 - 2
S	MA-40040	3	3.0	50	1 - 2
	MA-40041	3	3.0	55	1-2
X	MA-40042	3	10.0	50	1 - 2
	MA-40043	3	10.0	52	1 - 2

NOTE:

- 1. Bias = 30 MA
- 2. Video bandwidth is 2 MHz. Video amplifier equivalent noise resistance is 500 Ω . Input impedance is 10 K Ω .

P-Type Schottky **Detector Diodes**

L through X-Band, MA-40251 Series Ku-Band. MA-40255 Series Ka-Band, MA-40267 Series

ENVIRONMENTAL RATINGS PER

DESCRIPTION

The MA-40250 series of thermo-compression bonded oxide passivated Schottky barrier detector diodes is offered in hermetically sealed packages. Other case styles suitable for use in hybrid integrated circuits are available. These p-type devices feature high sensitivity, low barrier height and low 1/F noise Schottky junctions. (P-type Schottky diodes generally exhibit lower 1/F noise than N-type diodes.)

MAXIMUM RATINGS @ 25°C	
Incident RF CW Power	100 mW
Incident RF Peak Pulse Power	2.0 W
(3 ns Max. pulse width, 1000 pps)	
DC Forward Current	20 mA
Temperature:	
Operating	65 to +150° C
Storage	−65 to +150°C

	Method	Level
Temperature Storage	1031	-65 to +150°C
Temperature Cycle	1051	10 Cycles
		-65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 Davs

ELECTRICAL CHARACTERISTICS @ T _A = 25 th Schottky Barrier Detector Diodes ¹			Test	Min. ³ Tangential	Video ⁴	Min. ⁴
Frequency Band	Model Number	Case ² Style	Frequency GHz	Sensitivity —dBm	Impedance K ohm	Sensitivity mV/mW
L - through - X	MA-40251	119	9.3	55	1.2-1.8	5,000
	MA-40253	119	9.3	52	1,2-1,8	3,500
	MA-40252	54	9.3	55	1,2-1.8	5,000
	MA-40254	54	9.3	52	1.2-1.8	3,500
	MA-40257	120	9.3	55	1.2-1.8	5,000
	MA-40258	120	9.3	52	1.2-1.8	3,500
Ku	MA-40255	119	16.0	52	1.2-1.8	3,500
	MA-40256	119	16.0	50	1.2-1.8	3,000
	MA-40265	120	16.0	52	1.2-1.8	3,500
	MA-40266	120	16.0	50	1.2-1.8	3,000
Ka	MA-40267	119	36.0	49	1.0-2.0	3,000
	MA-40268	120	36.0	49	1.0-2.0	3,000

Schottky Barrier Detector Diode Chips for Hybrid Circuits

Frequency Band	Model Number	Case Style	Min. ⁵ Breakdown Voltage Volts	Max. ⁶ Zero Voltage Capacitance pF	Typ. ⁷ Forward Voltage Volts	Typ. Tangential Sensitivity —dBm
X	MA-40270	135	4	.11	.4	55
	MA-40271	121	4	.22	.4	55
-	MA-40273	185	4	.20	.4	55

Frequency Band	Model Number	Case Style	Min. ⁵ Breakdown Voltage Volts	Max. ⁶ Zero Voltage Capacitance pF	Typ. ⁷ Forward Voltage Volts	Typ. Tangential Sensitivity —dBm
Ku	MA-40272 MA-40274	135 185	4	.08 .15	.4 .4	52 52

NOTES:

- 1. Schottky Barrier junctions thermo-compression bonded in Case Styles 119, 120, 121.
- Max. solder temperature for all Case Styles except 1.20 is 230°C for 5 seconds. For Case Style 1.20, max. solder temperature is 200°C for 5 seconds.
- 3. Video bandwidth is 2 MHz. Video amplifier equivalent noise resistance is 500 Ω Input impedance is 10K $_\Omega$. DC Bias is 20 μ A.
- 4. P_{RF} = -40 dBm; DC Bias: 20 μA
- 5. Breakdown voltage is measured at $-10 \,\mu\text{A}$.
- 6. Capacitance is measured at 1 MHz.
- 7. Forward voltage is measured at + 1 mA.

TYPICAL PARAMETER VALUES

Case Styles	54	119	120	121	135	185
Package Capacitance - Cp	.05 pF	.15 pF	.13 pF	0.2 pF	_	_
Package Inductance - Lp	1 nH	.5 nH	.4 nH	_	_	_
Series Resistance - R _S	25Ω	25Ω	25Ω	25 Ω	25Ω	25Ω
Junction Capacitance - Cj	.08 pF	.08 pF	.08 pF	₹q 80.	.08 pF	.08 pF

CASE STYLES

	INCHES			RM .
DIM.	MIN.	MAX.	MIN.	MAX
Α	145	165	3,68	4.19
В	068	075	1,72	1,91
С	014	016	0,35	0,41
D	1 000	1 500	25.4	38,1

	INCHES			MM.
DIM.	MIN.	MAX.	MIN.	MAX.
Α	051	055	1,29	1,40
В	040	060	1,02	1,27
С		.015		0,38

	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX
Α	13	17	3,30	4,31
8	.13	17	3 30	4,31
С	04	.06	1 01	1,42
D	.001	-	0.05	

	IN	CHES	MM		
DIM.	MIN.	MAX	MIN.	MAX.	
А	078	086	2 01	211	
8	060	064	1,52	1 63	
С	190	210	4 85	5 33	
D	070	082	1 68	2,08	
€	060	064	1 52	1 63	
F	060	064	1,52	1,63	

	100	CHES		MI
DIM.	MIN.	MAX.	MIN.	MAX
Α	063	067	1 60	1,70
В	019	021	0.48	0.53
С	004	006	0,10	0,15
D	NOM	025	NOM	0.64

	INCHES		M	M
DIM,	MIN.	MAX.	MIN.	MAX.
Α	036	038	0,91	0,97
8	.009	-	0,23	-
С	.016)	0,41	
D	007	009	0,18	0,23
E	.004	.006	0,10	0,15
F		.015		0,38
G	.003	.005	0,08	0,13
н	0003	.0005	0.008	0.013

Not to scale.

TYPICAL PERFORMANCE CURVES TYPICAL VOLTAGE OUTPUT VS. RF POWER FOR MA 40250 SERIES (20 μ A FORWARD BIAS) TYPICAL VOLTAGE OUTPUT VS. RF POWER (NO BIAS) FOR MA 40250 SERIES 1٧ f = 9.375 GHz $Z_0 = 50\Omega$ f = 9.375 GHz z_o = 50Ω HOLDER = JD2078 (50Ω 7MM AIR-LINE) NO TUNING HOLDER = JD2078, (50 Ω 7MM AIR-LINE) NO TUNING 100mV 100 K Ω LOAD (Vo) VOLTAGE OUTPUT (Vo) VOLTAGE OUTPUT OKΩ LOAD 10:0m KΩ LOAD 100 KΩ $1 \mathrm{K} \Omega$ Load 1mV 10.0m\ -50 -45 -25 -30 -20 -15 -10 ~40 -35 -25 -20 -15 -10 10 20 POWER INPUT dBm POWER INPUT dBm TSS VS. FREQUENCY FOR MA 40250 SERIES 70 BW = 2 MHz (TSS) TANGENTIAL SENSITIVITY 40 TYPICAL VIDEO IMPEDANCE VS. FORWARD DC BIAS FOR MA 40250 SERIES 201 FREQUENCY GHZ 10K 7K 5K OHMS 3K 2K (R_V) VIDEO IMPEDANCE TYPICAL TSS VS. DC BIAS LEVEL FOR MA 40250 SERIES BW = 2 MHz FREQ = 9.375 GHz 700 (TSS) TANGENTIAL SIGNAL SENSITIVITY HBH -56 200 OPTIMIZED UNTUNED (Zo = 50 OHMS) -52 100 70 -50 50 10 20 30 50 70 100 80 100 200 300 120 140 FORWARD DC BIAS MICROAMPS DC BIAS LEVEL MICROAMPS

Beam Lead Schottky Detector Diodes

Ku-Band MA-40175

CASE STYLE 185

MAXIMUM RATINGS @ 25°C

Incident RF CW Power 100 mW
Incident RF Peak Pulse Power (3 ns Max. pulse width, 1000 pps)

Operating Temperature Range -60°C to +150°C
Storage Temperature Range -60°C to +150°C
Maximum Pull On Any Lead 2 grams
Diode Mounting Temperature 220°C for 10 sec. max.

ELECTRICAL CHARACTERISTICS @ TA =25°C

			T ypical			
Diode	Parameter	Symbol Value Units			Test Conditions	
MA-40175	Tangential Sensitivity	TSS	55	–dBm	25 μA Bias	
Ku-Band	Detection Sensitivity	γ	7000	mV/mW	Video Bandwidth 2 MHz	
Detector	Video Impedance	R_V	1400	Ohms	f = 9.375 GHz	

TYPICAL PERFORMANCE CURVES

200

Low Noise Schottky Detector for Zero IF Systems

MA-40074

CASE STYLE

	INC	HES	MM		
DIM.	MIN.	MAX.	MJN.	MAX.	
Α	0.292	0.296	7.417	7.618	
В	0.246	0.250	6.248	6.360	
С	0.753	0.783	19.13	19,89	
۵	0.195	0.225	4.953	5.715	
E		0.240		6.096	
F	0.030	0.046	0.766	1.168	
G	0.092	0.094	2.336	2.387	
. н.	-	0.030	-	0.762	
J	0.193		4.902	5.054	
К	0.047	0.057	1.194	1.448	

MAXIMUM RATINGS @ 25°C

Incident RF CW Power 200 mW
Incident RF Peak Pulse Power 5.0 W
(3 ns Max. pulse width, 1000 pps)
DC Current 15 mA

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	-65 to +150°C
Temperature, Operating		−65 to +150°C
Temperature Cycling	1051	5 Cycles, -65 to +150°C
Shock	2016	500 g's
Vibration	2056	15 g's
Constant Acceleration	2006	20,000 g's
Moisture Resistance	1021	10 Days

ELECTRICAL SPECIFICATIONS @ TA = 25°C

Frequency Range Conversion Loss¹ VSWR¹ AM Noise ²

10.525 GHz ± 250 MHz 5.0 dB Typ. 2.0:1 Max. .22 V RMS Max. 5 - 300 Hz .22 mV RMS Max. 300 - 5000 Hz

NOTES:

1. Test Conditions: L.O. Power 1.0 mW R₁ = 100 ohms

Holder-modified JAN 105

F = 10.525 GHz

2. For a system application, the absolute noise in terms of dB below the carrier, in a given bandwidth is of little value. Hence, using a Gunn diode source, the AM noise is specified in terms of the RMS voltage of an amplifier with a voltage gain of 100,000 across the band 5 Hz - 300 Hz (with a band reject filter at 120 Hz) or, as the RMS voltage output of an amplifier with a voltage gain of 1000 across the 300 Hz - 5000 Hz. .5 mW of RF power is incident on the MA-40074 and sensitivity is approximate 800 mV/mW.

Detector Modules And Packaged Detectors

Bulletin 5152

Tunnel Diode Detectors

Schottky Detectors

Zero Bias Schottky Detectors

Schottky Limiter | Detectors

TUNNEL DIODE DETECTORS

- Lowest variation in output response with temperature
- High Sensitivity (TSS) with no external bias applied
- Lowest video impedance for wide video bandwidth and for matching to transistor amplifiers

STANDARD SCHOTTKY DETECTORS

- $\overline{}$ High Sensitivity (TSS) at low bias level (100 μ A)
- Highest output voltage sensitivity
- High Power Handling, CW and Pulse Peak Power

ZERO BIAS SCHOTTKY DETECTORS

- High Sensitivity (TSS) with no external bias applied
- High Power Handling, CW and Pulse Peak Power
- High output voltage sensitivity

COMPARISON OF GENERAL CHARACTERISTICS OF THE THREE DETECTOR TYPES¹

Parameter	Tunnel Diode Detector	Standard Schottky Detector	Zero Bias Schottky Detector
RF Impedance (Diode)	35–70 Ω	200–400 Ω @ 100 μA Bias	200–400 Ω
Video Impedance	70–125 Ω	1000-2000 Ω	1500-3000 Ω
CW Power Rating	+ 17 dBm	+ 20 dBm	+ 18 dBm
Peak Power Rating 0.1 µSec, .001 Duty Cycle	+ 20 dBm	+ 23 dBm	+ 23 dBm
TSS, dBm, (2 MHz Video Bandwidth)	−50 to −53	−50 to −53 @ 100 <i>μ</i> A Bias	−51 to −53
K (Open Circuit Voltage Sensitivity) mV/mW @ —20 dBm	400 to 1500	1000 to 3500	1000 to 3000
VSWR ²	1.5:1 to 3:1	2:1 to 5:1	2:1 to 5:1
Operating Temperature Range	–65 to +125 ⁰	-65 to 125 ⁰ C	-20°C to 125°C (with slight Bias -65 to +125°C)
CW Saturation	0 to +5 dBm	>+20 dBm	> +20 dBm

NOTES:

- These performance ranges are typical and depend upon RF Bandwidth and input RF Power level.
- 2. VSWR depends on bias conditions, DC load resistance and RF output impedance of the signal source.

Octave Bandwidth Tunnel Diode Detectors

MA-7700 Series

DESCRIPTION

The MA-7700 Series of Tunnel (back) Diode Detectors offers greater than octave bandwidth frequency response with excellent voltage sensitivity. These detectors function with a dynamic range of 50 dB with -52 dBm TSS. Burnout rating is +20 dBm. A square law characteristic is maintained for power levels below -10 dBm. Linear response is between -10 dBm and +5 dBm (saturation).

Not to scale.

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model Number	Case Style	Frequency Range GHz	Min. Open Circuit Voltage Sensitivity at -20 dBm mV/mW	Max. VSWR @ –20 dBm 100 Ω Video Load	Frequency Response (Flatness) dB	Min. TSS @ 2 MHz Video Bandwidth —dBm
MA-7700K-0001	831	0.5-2.0	700	2:1	±0.7	52
MA-7700K-0002	831	2.0-4.0	700	2:1	±0.5	52
MA-7700K-0003	831	4.0-8.0	600	2.5:1	±0.7	52
MA-7700A-0004	8 28	8.0-12.0	700	2:1	±0.5	52
MA-7700A-0005	828	11.0-18.0	500	2:1	±0.7	52

NOTES:

- 1. Custom designs available on request.
- Tunnel Diode Detector Modules and Tunnel Diode Limiter/ Detectors are under development and will be available in near future.
- Output polarity is normally negative. (Positive output polarity is available on request.)

Schottky Detector Modules and Packaged Detectors

MA-7707 Series MA-7709 Series

DESCRIPTION

The MA-7707 Series of modular Schottky detectors is especially designed to fit in microstrip, strip transmission line or other special TEM structures. When packaged, these Schottky detectors are designated MA-7709 Series. These hermetically sealed detectors have high voltage sensitivity and are ideal for broadband applications. The usable power range is from TSS to +17 dBm. Above +17 dBm, the detector response becomes saturated. A wide variety of performance characteristics can be obtained by altering internal circuit configurations (transformations, dc returns, etc.) and external operating conditions. Bias level, size of load, bandwidth, and power level are factors which affect overall performance. The electrical characteristics of the units listed here are representative of an extremely varied and extensive product line.

CASE STYLES

HARACT	ERISTICS @ TA =		Min.			
Module Model Case Number Style		Packaged Detector Model Case Number Style		Circuit Voltage Sensitivity at -20 dBm mV/mW	Response	TSS @ 2 MHz Video
801	MA-7709A-0001	828	0.5-2.0	1800	±0.5	53
802	MA-7709A-0003	828	2.0-4.0	2000	±0.5	53
802	MA-7709A-0005	828	4.0-8.0	2500	±0.5	53
802	MA-7709A-0007	828	8.0-12.0	2000	±0.5	52
801	MA-7709A-0009	828	12.0-18.0	1800	±0.5	51
801	MA-7709A-0011	828	0.5-18.0	1200	±1.5	51
	Case Style 801 802 802 802 801	Packaged Detector Case Model Style Number 801 MA-7709A-0001 802 MA-7709A-0003 802 MA-7709A-0005 802 MA-7709A-0007 801 MA-7709A-0009	Packaged Detector Case Model Case Style Number Style 801 MA-7709A-0001 828 802 MA-7709A-0003 828 802 MA-7709A-0005 828 802 MA-7709A-0007 828 801 MA-7709A-0009 828	Packaged Detector Frequency Case Model Case Range Style Number Style GHz 801 MA-7709A-0001 828 0.5-2.0 802 MA-7709A-0003 828 2.0-4.0 802 MA-7709A-0005 828 4.0-8.0 802 MA-7709A-0007 828 8.0-12.0 801 MA-7709A-0009 828 12.0-18.0	Packaged Circuit Voltage Detector Frequency Sensitivity at Case Model Case Range -20 dBm Style Number Style GHz mV/mW 801 MA-7709A-0001 828 0.5-2.0 1800 802 MA-7709A-0003 828 2.0-4.0 2000 802 MA-7709A-0005 828 4.0-8.0 2500 802 MA-7709A-0007 828 8.0-12.0 2000 801 MA-7709A-0009 828 12.0-18.0 1800	Packaged Circuit Voltage Frequency Detector Frequency Sensitivity at Response Case Range -20 dBm (Flatness) Style Number Style GHz mV/mW dB 801 MA-7709A-0001 828 0.5-2.0 1800 ±0.5 802 MA-7709A-0003 828 2.0-4.0 2000 ±0.5 802 MA-7709A-0005 828 4.0-8.0 2500 ±0.5 802 MA-7709A-0007 828 8.0-12.0 2000 ±0.5 801 MA-7709A-0009 828 12.0-18.0 1800 ±0.5

^{1. 100} μA forward bias.

A M

Output polarity is normally negative.
 (Positive output polarity is available on request.)

Zero Bias Schottky Detector Modules and Packaged Modules

MA-7742 Series
MA-7744 Series

DESCRIPTION

The MA-7742 series of Zero Bias Schottky Detectors are modular in form. They are designed to fit in microstrip, strip transmission line or other special TEM structures. They are designated MA-7744 series when packaged with connectors. The zero bias detector offers the advantage of high output voltage sensitivity without the need of external bias voltage.

CASE STYLES

Stripline Detector

	INC	HES	MM		
DIM.	MIN.	MAX.	MIN	MAX.	
Α	0.241	0.251	6,12	6,38	
В	0.125	0.135	3,18	3,43	
С	0.325	0.335	8,26	8,51	
٥	0.059	0.067	1,50	1,70	

	INC	HE\$	M	M
DIM.	MIN.	MAX.	MIN.	MAX.
Α	0.241	0.251	6,12	6,38
8	0.125	0.135	3,18	3,43
С	0.527	0.537	13,39	13,64
D	0.069	0.067	1,50	1,70

	INC	HES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	0.312	0.376	7,92	9,53	
8	1.28	1.46	32,51	37.08	

Not to scale.

Module Model Number	Case Style			Frequency Range GHz	Min. Open Circuit Voltage Sensitivity at —20 dBm mV/mW	ensitivity at Response -20 dBm (Flatness)	Min. TSS @ 2 MHz Video Bandwidth —dBm
MA-7742J-0001	801	MA-7744A-0001	828	0.5-2.0	2000	±0.5	53
MA-7742N-0005	802	MA-7744A-0003	828	2.0-4.0	2200	±0.5	53
MA-7742N-0007	802	MA-7744A-0005	828	4.0-8.0	3000	±0.5	54
MA-7742N-0009	802	MA-7744A-0007	828	8:0-12.0	2200	±0.5	52
MA-7742N-0011	801	MA-7744A-0009	828	12.018.0	1800	±0.5	52
MA-7742N-0012	801	MA-7744A-0012	828	0.5-18.0	1700	±1.5	51

Output polarity is normally negative. (Positive output polarity is available on request.)

Schottky Limiter/Detector Modules and Packaged Detector

MA-7717 Series

MA-7715 Series

DESCRIPTION

The MA-7717 Series of modular Schottky Limiter/Detectors is specially packaged for use in microstrip, strip transmission or other special TEM structures. When packaged with SMA connectors, these Limiter-Detectors are designated MA-7715 Series. These hermetically sealed Limiter-Detector modules have excellent voltage sensitivity and are ideal for broadband applications. The usable power range is from < -50 dBm to +10 dBm. Above +10 dBm the limiter section protects the sensitive Schottky diode to +40 dBm CW and +60 dBm peak incident power.

ELECTRICAL (CHAR	ACTERISISTICS	@ ТД	= 25 ⁰ C	Min. Open ¹			Min.
Module Model Number	Case Style	Packaged Model Number	Case Style	Frequency Range GHz	Circuit Voltage Sensitivity @ -20 dBm mV/mW	Max.	Frequency Response (Flatness) dB	TSS @ 2 MHz Video Bandwidth —dBm
MA-7717N-0001	802	MA-7715A-0001	828	0.5 - 1.0	1600	4:1	±.3	50
MA-7717N-0002	802	MA-7715A-0002	828	1.0 - 2.0	1700	3.5:1	±.3	50
MA-7717N-0003	802	MA-7715A-0003	828	2.0 - 4.0	2000	3.5:1	±0.5	50
MA-7717N-0004	802	MA-7715A-0004	828	4.0 - 8.0	2500	4:1	±0.5	51
MA-7717N-0005	802	MA-7715A-0005	828	8.0 - 12.0		4:1	±.75	49
MA-7717N-0006	802	MA-7715A-0006	828	12.0 - 18.0		4:1	±1.0	48
MA-7717N-0007	802	MA-7715A-0007	828	2.0 - 12.0				
MA-7717N-0008	802	MA-7715A-0008	828			4:1	±1.5	48
MA-7717J-0009				6.0 - 18.0		4:1	±1.5	48
IVIA-//1/J-0009	801	MA-7715A-0009	828	2.0 – 18.0	1200	4:1	±1.5	47

NOTES:

- 1. Bias is typically 200μ Amps for low frequency units, 150μ Amps for S and C Bands, and 100μ Amps for X and Ku Bands.
- 2. Above bias is typical, but can be optimized for best VSWR and Open Circuit Voltage sensitivity.
- 3. Output polarity is normally negative. (Positive output polarity is available on request.)

Tunnel Diodes (Back Diodes) For Mixer And Detector

Bulletin 5050

n-Type Germanium Doppler Mixer Diodes

p-Type Germanium Detector Diodes

Applications

p-Type Gallium Arsenide Detector Diodes

GENERAL BACK DIODE CHARACTERISTICS

MA-41807 - 41817 Series (n-type)

Mixer:

- Lowest IF (@ 1 kHz) noise figure at low L. O. drive.
- Able to withstand High incident RF power without degrading IF properties.
- Operation up to 150°C
- High resistance to radiation damage

MA-4C400 Series (p-type)

Detector:

- Lowest variation in output response with temperature
- High sensitivity at zero bias
- Lowest output impedance for wide video bandwidth and for matching to transistor amplifiers.
- High resistance to radiation damage

DESCRIPTION

Microwave Associates Back Diodes are alloyed-junction devices designed for use in microwave mixer and detector applications at frequencies through Ku-band. A wide range of package styles is available to permit the selection of an optimum unit for specific applications in waveguide, coaxial, and stripline transmission systems. These diodes exhibit order-of-magnitude improvements in receiver noise figure for mixer systems utilizing low 1F frequencies. Excellent video detector and power monitor performance can be achieved with these diode types. The MA-41807 - MA-41817 diodes have been space-qualified for operating temperatures up to 150°C.

n-Type Back Diodes Germanium

Doppler Mixer Diodes Detector Diodes

CASE STYLES

30

TYPICAL

L_p = .30 nH C_p = .18 pF

j- -	(Dia.) A - (Dia.) B		
E	(Dia.)	G	DIM.
			В
TE		7	c
D		•	D
c t			E
		i	F
i i			G
-	-	•	н
F	(Dia.)		

Denotes Cathode End

	INC	HES	MAR	
DIM.	MIN.	MAX.	MIN.	MAX.
A	119	127	3,02	3.23
В	.080	.064	1,52	1,63
O	205	.225	5,21	5,72
D	.085	.097	2.16	2,46
E	.060	.064	1,52	1,63
F	080	064	1,52	1,63
G	.016	.024	0,41	0,61
н	.079	.083	2,01	2,11

Not to scale

TY	PICAL
С ^р	= .30 nH = 0.3 pF

	INC	HES		IM
DIM.	MIN.	MAX.	MIN.	MAX.
Α	119	125	3,02	3,175
В	077	083	1,95	2,10
С	055	065	1,39	1,65
D		.025		0,63

DIM.	MIN.	MAX.	MIN.	MAX.
Α	.228	.232	5,791	5,892
В	-	.030	T -	0,762
С	_	.165	-	4,191
D	.157	.163	3,987	4,140
E	.092	.094	2,336	2,387
F	.010	.030	0,254	0,762
G	.183	.187	4,648	4,749
н	.766	.792	19,456	20,116
J	.165	.180	4,191	4,572

MAXIMUM RATINGS @ TA = 25°C (unless otherwise specified)

Incident CW RF Power 0.5 watt 5.0 mA **DC Current** -65°C to +150°C Operating Temperature -65°C to +150°C Storage Temperature

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See max. Rating
Temperature, Operating	_	See max. Rating
		10 cycles
Temperature Cycling	1051	See max. Rating
Shock	2016	1200 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 days

ELECTRICAL CHARACTERISTICS

Mixers	Model ² Number	Case Style	RF Test Frequency GHz	Typ. Conversion Loss ¹ dB	Max. Noise Figure ¹ dB	Typ. IF ¹ Impedance Ohms
	MA-41807	158	9.375	7	14.0	300
	MA-41808	158	9.375	7	12.0	300
	MA-41816	158	9.375	7	10.0	300
	MA-41809	30	13.3	8	14.0	300
	MA-41810	30	13.3	8	12.0	300
	MA-41811	32	13.3	8	14.0	300
	MA-41812	32	13.3	8	12.0	300
	MA-41817	32	13.3	8	10.0	300

NOTES:

1. Conditions: IF = 10 kHz

P_{LO} = -10 dBm, dc load = 10 ohms,

IF Frequency = 10 kHz

2. All units are available as matched pairs by adding the suffix "M" to the model number. Matching criteris for

 Δ L_C = .3 dB max.

VSWR (max.) = 2.0:1 in holder, IF Amplifier Noise $\Delta Z_{if} = 25$ ohms max. Figure = 1.5 dB Nominal.

ELECTRICAL CHARACTERISTICS (CONT.)

Detector	Diodes
Detector	DIOGES

Model Number	* Case Style	R F Test Frequency GHz	Typ. Video Impedance Ohms	Typ. Sensitivity mV/mW	Min. TSS ² —dBm
MA-41820	32	13.3	1500	4000	55
MA-41819	158	9.375	1500	4000	55
MA-41813	32	8.375	1500	4000	55

NOTE:

3. Video Bandwidth = 2 MHz.

TYPICAL PERFORMANCE CURVES

FIGURE 3 MA-41817 A NF vs. TEMPERATURE

FIGURE 4 MA-41817 IF IMPEDANCE vs. LO POWER

p-Type Back Diodes Germanium and Gallium Arsenide

Germanium, MA-4C400 Series Gallium Arsenide MA-4C850 Series

CASE STYLES

32 - TYPE A

	INCHES		A	iki .
DIM.	MIN.	MAX.	MIN.	MAX.
Α	119	125	3,02	3,175
В	077	083	1,95	2.10
С	055	065	1,39	1,65
D		.025		0,63

182 - TYPE B

P	= 0.3 = 0.3		
	INC	HES	
DIM.	MIN	MAY	

TYPICAL

	INCHES		1000	
DIM.	MIN.	MAX.	MIN	MAX
Α	0.110	0.130	2,75	3,30
B	0.085	0.095	2,16	2,41
C	0.115	0,130	2,92	3,30
D	0.003	0.007	0,08	0,18
€	0.230	0.270	5,84	6,86
F	0.010	0.020	0,25	0,51
G	0.035	0.055	0.89	1,40

183 - TYPE C

1 1	PICAL
L	= 0.5 nH
c _p	= 0,5 nH = 0.45 pF

DIM.	INCHES		MANA	
	MIN.	MAX.	MIN.	MAX
A	0.070	0.090	1,78	2,29
В	0.090	0.110	2,29	2,75
С	0.019	0.022	0,48	0,56
D	1.000	-	2,54	-
E	0.085	0.100	2,16	2,54

		ICA	
Lp	=	0.1	nΗ
C_	=	0.3	6 pF

	INCHES		MANA	
DIM.	MIN.	MAX.	MIN.	MAX.
A	0 045	0 055	1,14	1,40
8	0 078	0 082	1,98	2,08
С	0.015	0.019	0.38	0,48
٥	0,027	0.034	0,69	0,86

188

TYPIC	CAL		
c _p =	See	Note	3.

	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX
A	0.065	0.060	1,40	1,52
В	0.020	-	0,51	I
С	0.024	0.030	0,61	0,76
D	0.007	0.014	0,18	0,36
E	0.007	-	0,18	~
F	0.017	0.027	0,43	0,89

191 - TYPE D2

TYPICAL $L_p = 0.1 \text{ nH}$ $C_p = 0.36 \text{ pF}$

DIM.	INCHES		MM	
	MIN.	MAX.	MIN.	MAX
A	0.078	0.082	1,98	2,08
8	0.045	0.065	1,14	1,40
С	0.038	0.042	0,97	1,07
٥	0.015	0.019	0,38	0,48
E	0.027	0.034	0,69	0,86
F	0.048	0.059	1,22	1.50

190 - TYPE D

		ICA	
Lp	=	0.1	nΗ
C_	=	0.3	6 pl

DIM.	INCHES		MAN	
	MIN.	MAX.	MIN.	MAX.
A	0.078	0.082	1,98	2,08
	0.045	0.065	1,14	1,40
С	0.025	0.029	0,64	0,74
D	0.015	0.019	0,38	0,48
E	0.027	0.034	0,69	0,86
F	0.048	0.059	1,22	1,50

Denotes Cathode End

Not to scale.

MAXIMUM RATINGS @ $T_A = 25^{\circ}C$ (unless otherwise specified)

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	d Levels
Temperature, Storage	1031	See max. Rating
Temperature, Operating		See max. Rating
		10 cycles
Temperature Cycling	1051	See max. Rating
Shock	2016	1200 g's
Vibration	2056	1200 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 days

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Germanium Back Diodes

MA Type	KMC Type	Max. I _p μΑ	Max. V _f mV	Max. C _t pF	Typ. V _r mV
MA-4C400	GBDX25	25	160	1.0	330
MA-4C401	GBDX50	50	140	1.0	350
MA-4C402	GBD100	100	120	1.0	375
MA-4C403	GBD250	250	100	1.0	390
MA-4C404	GBD400	400	100	1.0	390
MA-4C405	GBD500	500	80	1.0	390

Gallium Arsenide Back Diodes

KMC Type	Max. Ι _ρ μΑ	Max. V _f mV	Max. C _t pF	Typ. V _r mV
ABDX25	 25	300	2.5	675
ABDX50	50	260	2.5	700
ABD100	100	225	2.0	725
ABD250	250	200	1.5	750
	ABDX25 ABDX50 ABD100	KMC I _p Type μA ABDX25 25 ABDX50 50 ABD100 100	KMC I _p V _f Type μA mV ABDX25 25 300 ABDX50 50 260 ABD100 100 225	KMC I _p V _f C _t Type μA mV pF ABDX25 25 300 2.5 ABDX50 50 260 2.5 ABD100 100 225 2.0

Add Suffix "A", "B", "C", "D", "D1", "D2", or "188" after part number to specify case style.

NOTES:

1. Max. DC Current

Germanium: 50 MA (or 2 x lp whichever is greater)

Gallium Arsenide: Forward Current (1_F) must be restricted

to a value in milliamps equal to or less than one half the junction capacitance in pf. 2. Definitions: V_f measured at $I_f = 3 \text{ mA}$ V_R measured at $I = I_D$

3. Case parasitics are dependent on Chip Mounting Configuration.

TYPICAL MEASURED VALUES - GERMANIUM BACK DIODES FOR VIDEO DETECTORS

M/A Type	KMC Type	Test Frequency GHz	Tangential* Sensitivity —dBm	γ mV/mW	Figure of Merit ^γ /√Rv	Video Resistance Ohms	Output Saturation Voltage mV
		2	56	6000	250	500	180
MA-4C401	GBDX50A	4	53	3000	130	500	180
		8	50	1500	65	500	180
		2	57	2600	180	200	190
MA-4C402	GBD100A	4	54	2200	150	200	190
		8	52	1000	70	200	190
		2	52	925	100	80	250
MA-4C403	GBD250A	4	52	850	95	80	250
		8	52	850	95	80	250

*Calculated – $P_{TSS} = \frac{3.22\sqrt{BF}}{M} \times 10^{-7} \text{ mW}$

B = Bandwidth (2 MHz)

F = Noise Figure (3 dB)

M = Figure of Merit

Schottky Barrier Diodes for Frequency Up-conversion Applications

Bulletin 4252

Upconverter Diodes

Modulator Diodes

STRIPLINE SCHOTTKY UP-GONVERTER DIODES

DESCRIPTION

These Stripline Schottky Up-Converter Diodes are made with bonded planar passivated Schottky junctions, designed specifically for high conversion efficiency in up-converter applications. The diodes are packaged in a miniature stripline package with a plastic coating which protects the diode from mechanical abrasion. It is designed for MIC, stripline and microstrip circuit usage from 100 MHz through X-band.

STRIPLINE SCHOTTKY MODULATOR DIODES

DESCRIPTION

These Stripline Schottky Modulator Diodes are made with bonded planar Schottky junctions. The small junction capacitance and low series resistances are designed specifically for high conversion efficiency in modulator applications. The diodes are packaged in a miniature stripline package with a plastic coating which protects the diode from mechanical abrasion. It is designed for MIC, stripline, and microstrip circuit usage from 100 MHz through X-band.

PACKAGE DESCRIPTION

Case Style 137 is a stripline package with gold-plated Cu leads. The leads provide a good transmission line up to the diode which is in series with the line. The package is designed for use from 100 MHz through X-band. The leads can be soldered per MIL-STD-202, method 208, with maximum solder temperature of 230°C for 5 seconds.

Stripline Schottky **Up-Converter Diodes**

MA-40060 Series

CASE STYLE

137

MAXIMUM RATINGS @ $T_A = 25^{\circ}C$

Incident RF CW Power

Incident RF Peak Pulse Power

(3 ns Max. pulse width, 1000 pps)

DC Forward Current

100 mW

2.0 Watts

50 mA

.018 .022

Temperature:

Operating Storage

-65 to +125°C

-65 to +125°C

TYPICAL ELECTRICAL PARAMETERS

All Models

Package Capacitance (C_n) Series Resistance (R_c)

,2 pF 10 Ω

Junction Capacitance (C_i)

Breakdown Voltage @ -10 μA (V_h)

0.1 pF 3.0 V

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model ³ Number	Case Style	Test Frequency GHz	Max. USUC ^{1,4} Loss dB	Max. VSWR ²
MA-40061	137	6.0	9.0	1.5
MA-40062	137	6.0	10.0	2.0

NOTES:

- USUC = Upper Sideband Upconverter
- Carrier power = + 10 dBm; signal ports terminated with 50 Ω .
- All units available as matched pairs by adding suffix "M". Matching criteria: Δ (USUC loss) $\stackrel{\checkmark}{=}$.3 dB
- Test Conditions: USUC loss is the ratio of pump power to output power at the upper sideband.

Pump Power = +13 dBm

IF Signal Power ≈ +15 dBm

TYPICAL PERFORMANCE CURVES

APPLICATION NOTES

A balanced up-converter may be thought of as a balanced mixer "operated backwards." The IF bandwidth of the balanced structure must be wide enough to pass the input signal that is to be up-converted. Up-conversion generally implies that the pump-to-sideband separation is relatively large. Pump suppression is the result of microwave structure symmetry, diode matching and of optimum pump and signal power levels.

If the input signal is small, compared to the pump power, then the frequency conversion process is linear and the mixer structure is effectively being operated backwards. The more usual applications call for relatively high output power at the upper sideband. Because high signal and pump powers are required to obtain the required sideband power, special Schottky diodes are constructed for this application.

Typical performance curves show pump port VSWR vs. pump power (Figure 1), USUC (Upper Sideband Up-Converter) loss for a single diode up-converter (Figure 2), and for a balanced up-converter (Figure 3). Harmonic content and pump suppression are functions of the up-converter circuit design and of the signal-to-pump power ratio, which must be optimized empirically.

Stripline Schottky **Modulator Diodes**

MA-40080 Series

CASE STYLE

137

	INCHES			ene
DIM.	MIN.	MAX.	MIN,	MAX.
Α	.090	.110	2,29	2.54
В	.018	.022	0,46	0,56
С	.095	.105	2,41	2,67
D	.003	.005	0,08	0,13
E	-	.050	-	1,27

MAXIMUM RATINGS @ $T_A = 25^{\circ}C$

RF CW Power

100mW

2.0 Watts

Temperature:

RF Peak Pulse Power

Operating Storage

-65 to +125° C -65 to +125° C

(3 ns pulse width 1000 pps)

DC Forward Current

50 mA

TYPICAL ELECTRICAL PARAMETERS

All Models

Package Capacitance (C_D) Series Resistance (R_s)

.2 pF | Junction Capacitance (C_i) 10 Ω Breakdown Voltage @ $-10 \,\mu\text{A}$ (V_b)

0.1 pF 3.0 V

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model ³ Case Number Style		Test Frequency GHz	Max. SSB ^{1, 4} Loss dB	Max. VSWR ²
MA-40081	137	6.0	9	1.5
MA-40082	137	6.0	10	2.0

NOTES:

- 1. SSB = Single Sideband
- 2. Carrier power = +10 dBm, signal ports terminated with 50 Ω
- 3. All units available as matched pairs by adding suffix "M". Matching criteria \triangle (SSB loss) $\stackrel{\angle}{=}$.3 dB.
- 4. Test Conditions: SSB loss is the ratio of carrier power divided by the output power at one sideband. Carrier power = +10 dBm, dBm, Signal power = +17 dBm.

TYPICAL PERFORMANCE CURVES

MICROWAVE DIODE MODULATOR

Modulators convert low frequency signals to high frequencies. Small signal modulation is the reciprocal process to small signal mixing. The carrier power is much larger than the signal power, ensuring that the output signal will be a faithful replica of the input signal. Relatively small sideband power outputs are available.

To provide relatively high output power, the MA-40080 Series of Schottky diodes is specifically designed to operate efficiently in the large signal (switching) mode. When the input signal power is significantly higher than the carrier power, the input signal assumes the switching role; and conversion loss must be calculated from carrier input to first-order sideband output. Assuming equal source and load impedances terminating all ports of a single balanced modulator, the carrier source is connected to the output load during alternate half cycles of the input signal. In this case, conversion loss to each first-order-sideband (by Fourier Analysis of the output waveform) is 10dB. Conversion loss is less for optimized source and load impedance.

A singularly Balanced Modulator (SBM) suppresses the modulated carrier and provides output power at the first-order sidebands and at higher-order sidebands. Typically, carrier suppression may be 20 to 25 dB; and the even-order sidebands may be suppressed below the odd-order sidebands by about 20 dB. Suppression depends on the symmetry of the hybrid circuit, the matching criteria of the diodes and on empirical optimizing of the Signal-to-Carrier Power Ratio. A single sideband output can be obtained from a Doubly Balanced Modulator (DBM). Additional suppression of the carrier and of the even-order sidebands is obtained.

MA-47160 Series

PICOSECOND SWITCHING DIODES

for Digital or Logic Circuits

Bulletin 4309

FEATURES

- Low Cost attractive for general purpose applications
- Fast Switching Picosecond switching for high speed digital or logic circuits
- High Breakdown Voltage 70 volt breakdown permits use in high voltage sampling gates
- Low Lifetime permits use in large dynamic range mixer and detector circuits through UHF band

APPLICATIONS

- High Level Detection (Audio through UHF)
- Switching or gating
- Log or Analog Digital Converters
- Sampling or wave shaping
- Low level detection and frequency discrimination

DESCRIPTION

The MA-47160 Series of switching diodes is a family of epitaxial, oxide passivated devices that exhibit ultrafast switching characteristics and high breakdown voltages.

MAXIMUM RATINGS - MA-47160 Series -

Power Dissipation @ 25°C

Derate 1.43 mW/°C for

Temperature Range 25°C to 200°C

Operating Temperature Range

Storage Temperature Range

250 mW

-65 to +200°C -65 to +200°C

SPECIFICATIONS —

Electrical Specifications @ 25°C

			MA-47	7160 ¹	MA-47	'161 ¹	MA-4	7162 ¹
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.
V _B	Breakdown Voltage (Volts)	Ι _R = 10 μΑ	70	-	20	_	15	-
V _F	Forward Voltage (mV)	I _F = 1 mA	-	410	-	410	-	410
1 _F	Forward Current (mA)	V _F = 1	15	***	35	-	20	-
I _R	Reverse Leakage Current (nA)		-	200	-	100	-	100
			@ 50 V	-	@ 15 V	-	@ 8 V	-
C _T	Capacitance (pF)	V _R = 0 V f= 1 MHz	-	2.0	-	1.2	-	1.2
τ	Effective Minority Carrier Lifetime (ps)	I _F = 5 mA	-	100	-	100	-	100

NOTE:

^{1.} All diodes in the MA-47160 Series are packaged in Case Style 54.

SELECTION GUIDE-PIN DIODES

	Application							
Case	High Power	General Purpose		Fast				
Styles	Switching	Switching	Attenuation	Switching	Limiting			
		MA-47100						
Glass		MA-47047	MA-47111	MA-47041	MA-47089			
		MA-47120	MA-47083	MA-47053				
		MA-47600	1N5719	MA-47054				
		MA-47054	MA-47047					
		MA-47123	MA-47123					
	1	MA-47121	MA-47110					
		MA-47122						
Ceramic	MA-47084	MA-47082	MA-47084	MA-47051	MA-47085			
and	MA-47075		MA-47075	MA-47052	MA-47091			
Pill	MA-47079		MA-47079					
Packages	MA-47077		MA-47077					
	MA-47080		MA-47080					
	MA-47081		MA-47081					
Stripline	MA-47200	MA-47220	MA-47220	MA-47205	MA-47222			
	MA-47220	MA-47221	MA-47221	MA-47206				
	MA-47201	MA-47222	MA-47222	MA-47220				
	MA-47202	MA-47205	MA-47205					
	MA-47203	MA-47206	MA-47206					
	MA-47204							
	MA-47208							
Beam Leads		MA-47301	MA-47301	MA-47301				
	1	MA-47302	MA-47302	MA-47302				
Chips	MA-47400	MA-47418	MA-47400	MA-47408	MA-47410			
	MA-47401	MA-47420	MA-47401	MA-47424	MA-47414			
	MA-47402	MA-47416	MA-47402	MA-47425				
	MA-47403	MA-47403	MA-47403	MA-47426				
	MA-47404	MA-47404	MA-47404	MA-47427	-			
	MA-47405	MA-47405	MA-47405					
		MA-47406	MA-47406					
]	MA-47407	MA-47407					
		MA-47408						
		MA-47421			1			
		MA-47422						

PIN Diodes For High Power Applications

Bulletin 4352

Metal – Geramic Packages
Hard Glass Passivated Chips

·
DESCRIPTION
This series of high power PIN switching devices consists of hermetic hard glass passivated chips and packaged diodes using these chips. These Cermachip TM PIN diode chips are impervious to moisture because they are sealed in a layer
of ultra-pure high temperature hard glass. Ranges of breakdown voltage and diode capacitance as well as several package
styles are available for particular applications.
APPLICATIONS
These diodes are designed for use in medium and high power RF switches, phase shifters, duplexers, and attenuators. The chip diodes are particularly well suited for mounting in microwave integrated circuits and modules.
FEATURES
Hermetically sealed chips
 High breakdown voltage Low Thermal Resistance
■ Low Capacitance (to 0.1 pF)
 Low series resistance Excellent Reliability

High Power PIN **Switching Diodes**

Ceramic Packages

ABSOLUTE MAXIMUM RATINGS 1

CW Power Dissipation¹ (Watts) @ $T_{op} = \frac{(175 - T_{op})}{\theta_{JC}}$

Temperature Range:

Operating Storage

--65 to +175°C

-65 to +175°C

Where: $T_{op} = Operating Temperature (^{O}C)$

 $\theta_{\rm JC}$ = Thermal Resistance ($^{\rm O}$ C/W)

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Model Case		Min. Total Breakdown Capacitance ² Voltage pF		eitance ²	Max. Series Resist.		Max. Thermal Resist.
Number Style		Volts	Min.	Max.	Ohm	ns .	°C/W
MA-47084	109	1000	2.6	3.8	0.3 @	150 mA	5
MA-47075	30	1000	0.2	0.5	1.2		30
MA-47077	30	1000	0.5	0.8	0.7		25
MA-47079	30	500	0.2	0.4	0.6		20
MA-47080	30	500	0.4	0.7	0.45		15
MA-47081	30	500	0.7	1.0	0.3		10
MA-47082	30	300	0.2	0.4	0.6 @	50 mA	20
Test Conditions		i _R = 10 μA	. B	= -100V .0 MHz	I _F = 10 f = 500	00 mA 0 MHz	_

TYPICAL	CHARACTERISTICS @ TA = 2	25 ⁰ C
ITPICAL	. CHANACIENISTICS @ IA - 4	. U

Model Number	Dynamic ³ Q	Minority ⁴ Carrier Lifetime μS	Peak ⁵ Power Handling kW	Reverse ⁶ Switching Time - t _{FR} nS	Forward ⁶ Switching Time - t _{R F} nS
MA-47084	300	5.0	30	650	300
MA-47075	450	3.0	12	150	150
MA-47077	350	4.0	16	350	150
MA-47079	650	1.5	8	100	30
MA-47080	600	1.5	8	150	30
MA-47081	500	2.0	8	200	60
MA-47082	500	0.8	3	75	30

NOTES:

- 1. The MA-47084 PIN switching diode exceeds the stated maximum temperature ratings with an operating temperature range up to +200°C and a storage range of up to 250°C. CW power dissipation is thus correspondingly increased.
- 2. The capacitance of the MA-47084 is measured at -250 Volts and the MA-47082 is measured at -50 Volts.
- where $R_{R}^{}$ and $R_{F}^{}$ are reverse and forward bias resistance respectively, and gives 3. Dynamic Q is defined as

information regarding the maximum frequency at which the diodes may be used, and the insertion loss and isolation. Typical values, obtained at f = 1 GHz and -100V and +100 mA biases, are given in the table above. The bias conditions for the MA-47084 are 150 mA and -250V; for the MA-47082, they are 50 mA and -50V. All others are +100 mA and -100V. For additional information, see M. E. Hines' "Fundamental Limitations in RF Switching and Phase Shifting Using Semiconductor Diodes". Proc. IEEE, 53:697(1964).

- 4. I_F = 10 mA, I_B = 6 mA
- 5. The diode is mounted in a 50 Ohm line. Pulsewidth is 1 μ S, with a low repetition rate, such that average heating effects can be
- neglected. The frequency is 1 GHz. Data on the MA-47084 is taken at 3.3 GHz, $V_R = 250V$ and $t_p = 10 \,\mu\text{S}$. The speed with which the diodes will switch RF power depends on the shape of the waveform and the bias conditions. The typical data section shows switching times measured using the circuit of Figure 1; t_{fr} is from forward to reverse bias, and t_{rf} is from reverse to forward bias. The MA-47082 is measured between 50 mA forward and 50V reverse; the MA-47084 is measured at 150 mA and 100V; all others from 100V to +100 mA or vice versa.

SERIES AND SHUNT MOUNT DIODES **Power Handling Data**

SERIES MOUNTING

Peak Forward Peak Reverse Power Bias Power Bias kW kW mΑ V MA-47075 64 100 3 100 MA-47077 100 100 4 100 MA-47079 48 100 2 100 MA-47080 64 100 100 MA-47081 96 100 2 100 MA-47082 16 50 100 MA-47084

SHUNT MOUNTING

	Peak Forward Power Bias		1	Revers	
	kW	mA	Power kW	Bias V	
•	16	100	12	100	
	25	100	16	100	
	12	100	8	100	
	16	100	8	100	
	24	100	8	100	
	4	50	3	100	
	16	100	30	250	

This data was obtained by measurement and calculation as follows:

With the diode series mounted in a 50 Ω coaxial line, the reverse bias power handling was obtained by measuring the do leakage current and was 3 kW during the pulse for the MA-47075 at 100 V bias. This power level corresponds to a peak voltage given by:

V peak =
$$2\sqrt{2 \times P \times Z_0} + 100 \text{ V 8ias} = 1200 \text{ V}$$

With shunt, mounting in a 50 Ω line, the corresponding power handling capability is given by:

$$P = \frac{V^2}{Z_0} = 12 \text{ kW}$$

This shows that the reverse bias power handling capability of the diode is inversely proportional to the line impedance.

POWER HANDLING: (Continued)

Under forward bias, power handling considerations are principally thermal. For a low duty cycle, the power handling can be calculated from the transient thermal resistance at the particular pulse width, the percentage of incident power which will be dissipated in the diode, and the allowable temperature rise before burnout. For short pulses, the junction temperature can reach 300°C before burnout occurs.

The transient thermal resistance for various pulse widths was measured by monitoring the voltage across the diode at the end of the RF pulse. From the change in this voltage between the beginning and the end of the pulse, the temperature rise in the diode can be obtained. Knowing the power dissipated in the diode, the thermal resistance is calculated. The results are shown on Figure 7 under typical performance curves.

From these numbers, the power handling capability under forward bias in any configuration can be calculated.

With a 1 μ S pulse width, at 1 GHz, the diode can safely dissipate 1375 W peak. At 100 mA bias, this corresponds to a maximum RF current of 36 A for the MA-47075.

Thus, this diode, when shunt mounted in a 50 Ω line, is capable of withstanding an incident peak power given by:

$$P_{in} = \left(\frac{1 \text{ max.}}{2}\right)^2 \times Z_0 = 16 \text{ kW}$$

This shows that the forward bias power handling capability of the diode is directly proportional totthe line impedance.

Therefore, there is some optimum value of line impedance for both shunt and series mounted diodes which will result in equal power handling in both directions. However, for a shunt mounted diode, this impedance may not give optimum insertion loss and isolation, which increase as the line impedance is decreased.

FIGURE 1 TEST CIRCUIT FOR SWITCHING TIME

TYPICAL PERFORMANCE CURVES

MA-47077 T 1200 1000 MA-47075 Te

200

TYPICAL SWITCHING TIME 50 VOLTS BIAS

FIGURE 2

50 100 150 200 250 FORWARD BIAS CURRENT IF MA FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

TYPICAL PERFORMANCE CURVES (Continued)

FIGURE 7

FIGURE 8

High Power **Switching Diodes**

PIN Chips MA-47400 Series

CASE STYLES

130

	IN	CHES		M
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.075	.095	1,90	2,51
8	.075	.095	1,90	2,51
C	0086	0106	0.021	0.026

NOTE: • Indicates cathode.

	INCHES		Rent		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.030	.035	0.762	0,889	
8	.030	.035	0,762	0,889	
С	.0085	.0105	0,021	0,026	

132

	IN	CHES	MM		
OIM.	MIN.	MAX.	MIN.	MAX.	
Α	.020	.024	0,508	0,609	
Θ	020	.024	0,508	0,609	
Ç	.003	.006	0,076	0,152	

NOT TO SCALE

MAXIMUM RATINGS

CW Power Dissipation (Watts) @ $T_{op} = (175 - T_{op})$

Temperature:

Operating Storage

-65 to +175°C

 $-65 \text{ to } +200^{\circ}\text{C}$

Where: T_{OP} = Operating Temperature (OC)

 θ_{JC} = Thermal Resistance (${}^{\circ}$ C/W)

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Chip Model	Chip*	Packaged Diode	Case	Min. ¹ Breakdown Voltage	Capaci p		Approx. Top Contact Diameter
Number	Style	Model	Style	Volts	Тур.	Max.	MILS
MA-47400	130	MA-47084	109	1000	2.2	3.0	50
MA-47401	131	MA-47075	30	1000	0.15	0.25	8
MA-47402	131	MA-47077	30	1000	0.3	0.55	14
MA-47403	131	MA-47079	30	500	0.15	0.25	7
MA-47404	131	MA-47080	30	500	0.25	0.40	10
MA-47405	132	MA-47082	30	300	0.15	0.25	5

Case Styles 130 and 131 are hermetically sealed CERMACHIP devices.

TYPICAL OPERATING CHARACTERISTICS @ $T_A = 25^{\circ}C$

Chip Model Number	Max. ³ Series Resistance Ohms	Minority 4 Carrier Lifetime μ S	Reverse Switching Time - t _{FR} nS	Forward Switching Time - t _{R F} nS
MA-47400	0.3 @ 150 mA	5.0	650	300
MA-47401	0.80 @ 100 mA	3.0	150	150
MA-47402	0.50 @ 100 mA	4.0	350	150
MA-47403	0.60 @ 100 mA	1.5	100	30
MA-47404	0.45 @ 100 mA	1.5	150	30
MA-47405	0.60 @ 50 mA	0.8	75	30

NOTES:

- 1. Breakdown Voltage is measured at $-10~\mu\text{A}$.
- Chip Capacitance is measured at -100 Volts and 1 MHz. Appropriate case capacitance must be added for packaged diode models. (Cp = .18 pF for Case Style 30 and Cp = .75 pF for Case Style 109)
- 3. Series resistance is measured at 500 MHz.
- 4. Minority carrier lifetime is measured at I $_{\textrm{F}}$ = 10 mA and I $_{\textrm{R}}$ = 6 mA.
- Reverse Switching Time (t_{FR}) is measured at I_F = 100 mA to V_R = 100V.
- Forward Switching Time (t_{RF}) is measured at V_R = 100V to I_F = 100 mA.

APPLICATIONS DATA

PIN Diodes For Fast Switching And Limiting Applications

Bulletin 4351

Geramic Packages
Glass Packages
Chips

FEATURES: Switching time typically 5 nS. • Low Series resistance, typically 1 Ω Low bias current requirements High power limiting capability, 50W peak pulse power. DESCRIPTION This Series of PIN diodes features oxide passivated silicon devices of mesa construction. The devices have been optimized for fast switching and limiting by careful design and precise chip-processing control. Their low series resistance at low bias currents and low minority carrier lifetime provide a low-loss, ultra-fast switching or limiting device. They are available in ceramic packages for medium power fast-switching; in glass packages for lower power fast-switching, and in chip and beam lead form for MIC applications. **APPLICATIONS** Typical applications of these devices include single and multi-throw switches, pulse modulators, duplexers, TR switches and limiters.

Fast Switching PIN Diodes

Ceramic Packages Chips

CASE STYLES

30

 $L_p = 0.40 \text{ nH}$ $C_p = 0.18 \text{ pF}$

	HICHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX
Α	.119	.127	3,02	3,23
В	.080	.064	1,52	1,63
С	206	.225	5,21	5,72
D	.085	097	2,16	2,46
E	.080	.064	1,52	1,63
F	060	.064	1,52	1,63
G	.016	.024	0,41	0,61
н	.079	.083	2,01	2,11

132

	INCHE		INCHES		MMA		
DIM.	MIN.	MAX.	MIN.	MAX.			
Α	020	024	0,508	0,609			
В	020	024	0,508	0,609			
С	.003	006	0,076	0,152			

Not to scale.

134

	INCHES		MANA	
DIM.	MIN.	MAX.	MIN.	MAX.
Α	0135	0165	0,3429	0,4191
8	0135	0165	0,3429	0,4191
С	0035	.0065	0,0889	0,1651

NOTE: • Denotes Cathode.

ABSOLUTE MAXIMUM RATINGS

Temperature Range:

Operating

-65 to +175°C

Storage

 $-65 \text{ to } +200^{\circ}\text{C}$

CW Power Dissipation (Watts) @ $T_{op} = (175 - T_{op})$

Where: T_{op} = Operating Temperature (OC)

 θ_{JC} = Thermal Resistance (${}^{O}C/W$)

ELECTRICAL CHARACTERISTICS @ $T_A = 25^{\circ}C$

Model Number	Case Style	Chip Number	Chip Style	Min. ¹ Breakdown Voltage Volts	Max. ² Total Capacitance pF	Max. ⁷ Series Resist. Ohms	Max. Thermal Resist. ^O C/W
MA-47052	30	MA-47424	134	200	0.35	1.5	40
MA-47051	30	MA-47408	132	100	0.35	1.0	40

(Continued on next page)

TYPICAL CHARACTERISTICS @ T_A = 25°C

Model Number	Chip Model Number	Chip Style	Dynamic ³ Q	Minority ⁶ Carrier Lifetime nS	Power ⁴ Handling kW	Reverse ⁵ Switching Time - t _{FR} nS	Forward ⁵ Switching Time - t _{RF}
MA-47052	MA-47424	134	200	300	1.0	5	5
MA-47051	MA-47408	132	300	150	.25	5	5

NOTES:

- 1. Breakdown voltage is measured at -10 μA.
- 2. When ordering chips; Chip Capacitance Total Capacitance minus package capacitance (C_p).

Capacitance is measured at -10 volts and 1MHz.

3. Dynamic Q, is defined as $2\pi fC_T \sqrt{R_R R_F}$ where R_R and R_F are reverse and forward bias resistance respectively, and gives information regarding the maximum frequency

at which the diodes may be used, and the insertion loss and isolation. Typical values, obtained at f = 1 GHz and -100V and 100m A biases, are given in the table above. All devices were measured at 1 GHz. The bias conditions for MA-47051 and MA-47052 are 10mA and -10V. For

additional information, see M. E. Hines' "Fundamental Limitations in RF Switching and Phase Shifting Using Semiconductor Diodes". Proc. EEE, 53: 697 (1964).

- 4. The diode is mounted in a 50 Ohm line. Pulsewidth is 1 US with a low repetition rate, such that average heating effects can be neglected. The frequency is 1 GHz.
- 5. The speed with which the diodes will switch RF power depends on the shape of the waveform and the bias conditions; t_{fr} is from forward to reverse bias, and t_{rf} is from reverse to forward bias. The MA-47051 and MA-47052 are measured between 10 mA forward and 10V reverse. 6. $I_F = 10 \text{ mA}$; $I_R = 6 \text{ mA}$.
- 7. Series resistance is measured at +100 mA and 500 MHz.

Fast Switching PIN Diodes

Glass Packages and Chips

CASE STYLES

54

132

TY	PICAL
L	= 1.0 n H
Ъ	= 0.05 pF

	IN	CHES		MAR .
DIM.	MIN.	MAX.	MIN.	MAX
A	.145	.165	3,68	4,19
В	.068	.075	1,72	1,91
С	.014	.016	0,35	0,41
D	1.000	1,500	25.4	38.1

	INC	HES	HMM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.020	024	0,508	0,609	
В	020	.024	0,508	0,609	
Ç	.003	.006	0,076	0,152	

Not to scale.

ABSOLUTE MAXIMUM RATINGS @ 25°C

Operating Temperature Range

 $-65 \text{ to } +150^{\circ}\text{C}$

Storage Temperature Range

-65 to +175°C

Max. Voltage

Breakdown Voltage

Max. D.C. Power Dissipation at 25°C (Case Style 54)

250mW

FAST SWITCHING DIODES

These fast switching PIN diodes are designed for lower power (up to 250 watts peak/5 watts CW) circuits where nanosecond switching times are required. These diodes are useful from 100 MHz through 18 GHz. All of these PIN diodes are passivated to assure low leakage and high reliability.

Model Number	Case Style	Chip ¹ Model Number	Chip Style	Min. ² Breakdown Voltage Volts	Max. ³ Total Capacitance pF	Max. ⁶ Series Resistance Ohms	Minority Carrier Lifetime nS	RF Switching Time nS
MA-47041	54	MA-47427	132	150	0.10	2.5 @ 30mA	75	5
MA-47053	54	MA-47425	132	100	0.20	1.5 @ 10mA	150	5
MA-47054	54	MA-47426	132	100	0.25	1.2 @ 10mA	150	5

NOTES:

2. $I_{\rm H} = 10 \, \mu {\rm A}$.

- 1. Chip capacitance is equal to $C_{\rm T} C_{\rm p}$.
- 3. V_R = 10 V; F = 1.0 MHz
- 4. Ip = 10 mA; Ip =6 mA
- 5. I = 10 mA to -10 V.

6. Series Resistance is measured at 500 MHz.

Fast Switching PIN Diodes

Beam Lead MA-47301, MA-47302

.0004 .0020

.0040 0,050 0,101

MAXIMUM RATINGS @ 25°C

Total Power Dissipation

250 mW

Temperature:

Operating

-65 to +175°C

Storage

-65 to +200°C

ELECTRICAL SPECIFICATIONS @ 25°C

Capacitance ¹ pF		Series ² Resistance Ohms		Breakdown ³ Voltage Volts		Typ. ⁵ Minority Carrier Lifetime	Typ. ⁶ Switching Time - t _{RF}
Max.	Тур.	Max.	Min.	Тур.	mA	nS	nS
	6.0	8.0	40	50	10	100	5
	pF . Max. 0.02	pF O Max. Typ.	pF Ohms Max. Typ. Max.	pF Ohms Vo. Max. Min. 0.02 6.0 8.0 40	pF Ohms Volts Max. Typ. Max. Min. Typ. 0.02 6.0 8.0 40 50	pF Ohms Volts Current Max. Typ. Max. Min. Typ. mA 0.02 6.0 8.0 40 50 10	pF Ohms Volts Current Lifetime . Max. Typ. Max. Min. Typ. mA nS 0.02 6.0 8.0 40 50 10 100

NOTES:

- 1. V_R = 10 Volts; F = 1.0 MHz
- 2. I_F = 10 mA; F = 500 MHz
- 3. $I_R = 10 \,\mu\text{A}$
- 4. V_F = 1.0 Volts
- 5. I_F = 10 mA; I_R = 6 mA
- 6. V_R = 10V; I_F = 10 mA

APPLICATIONS DATA - FAST SWITCHING BEAM LEAD DIODES

FIGURE 1 TYPICAL FORWARD CONDUCTION CHARACTERISTICS

FIGURE 2 TYPICAL ISOLATION AND INSERTION LOSS, MA-47301, MA-47302

Limiter PIN Diodes

Ceramic Packages Glass Packages Chips

		ICA	
		0.4	
Cp	=	.18	рF

	INCHES		INCHES M				
DIM.	MIN.	MAX.	MIN.	MAX.			
Α	.119	.127	3,02	3,23			
8	.060	.064	1,52	1,63			
С	.205	.225	5,21	5,72			
٥	.085	.097	2,18	2,46			
E	.060	.064	1,52	1,63			
F	.060	.064	1,52	1,63			
G	.016	.024	0,41	0,61			
		002	2.04	2.11			

134

	INC	CHES	M	M
DIM.	MIN.	MAX.	MIN.	MAX.
Α	020	024	0,508	0,609
8	020	.024	0,508	0,609
С	.003	.006	0,076	0,152

54

	INC	HES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	0.145	0.165	3,70	4,20	
	0.068	0.078	1,727	1,906	
Ç	1.000	1,500	26,4	38,1	
D	0.014	0.016	0.386	0.406	

Not to scale.

•	ANODE
С	-
1	CATHODE

	INCHES		I M	M
DIM.	MIN.	MAX.	MIN.	MAX.
A	.0135	.3165	0,3429	0,4191
В	0135	.0165	0,3429	0,4191
С	.0035	.0065	0,0889	0,1651

MAXIMUM RATINGS

Temperature Range:

Operating -65 to +175°C Storage $-65 \text{ to } +200^{\circ}\text{C}$

CW Power Dissipation (Watts) @ $T_{op} = \frac{(175 - T_{op})}{\theta_{JC}}$

Where: $T_{op} = Operating Temp. (^{O}C)$

 θ_{JC} = Thermal Resistance (${}^{\circ}C/W$)

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Model Number	Case Style	Chip Model Number	Chip Case Style	Min. ² Breakdown Voltage Volts	Total ¹ Zero Voltage Capacitance pF	Max. ³ Series Resistance Ohms	Max. Thermal Resistance ^O C/W
MA-47085	30	MA-47410	132	30	0.4	1.5	40
MA-47089	54	MA-47412	132	30	0.3	2.0	500
MA-47091	30	MA-47414	134	30	0.3	2.0	40

NOTES:

- 1. Chip capacitance is equal to $C_T C_p$.
- 2. $I_R = 10 \,\mu\text{A}$
- 3. I_F = 10 mA, F = 500 MHz

APPLICATIONS DATA

FIGURE 1 Ku-BAND PULSE POWER TEST SET

FIGURE 2 MA-47091 TESTED AS A Ku-BAND QUASI-ACTIVE LIMITER USING THE ABOVE TEST SET

IN THE ABOVE GRAPH:

T_p = Pulse Duration

Prr = Pulse Repitition Rate

DC = Duty Cycle

PIN Diodes For General Purpose Switching And Attenuation Applications

Bulletin 4350

Glass Packages

Chips

FEATURES

- Low Cost
- Reproducible RF characteristics
- Close tracking between units
- High reliability
- Hermetic packaging

DESCRIPTION

This series of diodes was designed specifically for medium and low power control functions. Available in both chip and packaged diode form, these devices were optimized for specific applications by careful design and precise control of chip processing. High reliability and ruggedness are insured by the latest passivation techniques. The hermetically sealed glass package yields the optimum in price versus circuit performance.

APPLICATIONS

PIN diodes are available in this series for the following circuit functions:

- General purpose control diodes (low cost)
- General purpose switching and attenuator diodes
- Precision attenuator diodes
- Very low intermodulation attenuator diodes

General Purpose Switching and Attenuation

Glass Diodes and Chips

CASE STYLES

	INC	HES	MM			
DIM.	MIN.	N. MAX. MIN.		MAX.		
Α	0.145	0.165	3.7	4.2		
В	0.068	0.075	1.727	1.905		
C	1.000	1.500	25.4	38,1		
D	0.014	0.016	0.356	0.406		

	INC	HES	MM			
DIM.	MIN.	MAX.	MIN.	MAX.		
Α	0.135	0.165	3.43	4.19		
В	0.050	0.070	1.27	1.78		
С	1.000	1.250	25.4	31.75		
D	0.017	0.023	0.432	0.584		

	INC	HES	ММ			
DIM.	MIN.	MAX.				
Α	.200	.240	5.080	6.330		
В	.085	.105	2.160	2.670		
С	.027	.033	.685	.838		
D	1.000	1.250	25.40	31.75		

132

134

165

denotes cathode end.

Not to scale.

ABSOLUTE MAXIMUM RATINGS @ 25° C

Operating Temperature Range Storage Temperature Range

 $-65 \text{ to } +150^{\circ}\text{C}$ $-65 \text{ to } +175^{\circ}\text{C}$ **CW Power Dissipation**

ODS-54-250mW ODS-139-400mW

Max. Voltage

Breakdown Voltage

ODS-146-1 Watt

ELECTRICAL SPECIFICATIONS @ $T_{\Delta} = 25^{\circ}C$

LOW COST, LOW SERIES RESISTANCE SWITCHING DIODES

These PIN diodes are intended for low frequency switching from 5 MHz through 1 GHz, where low R_S at small forward current is a prime factor. These diodes are designed for channel switching and switching crystals in UHF and VHF radios, etc.

Model	Case	Chip ¹	Case	Breakd Volt Vol	age	Tot Capac pl	itance	Max. ⁵ Series Resistance	Typ. ⁶ Minority Carrier Lifetime	
Number	Style	Style	Number	Style	Min.	Тур.	Max.	Тур.	Ohms	n\$
MA-47120	54	MA-47420	134	35	50	1.0	.85	0.5	100	
MA-47121	54	MA-47421	134	35	50	2.0	1.2	0.6	100	
MA-47122	139	MA-47422	134	35	50	2.0	1.4	0.6	100	

LOW COST GENERAL PURPOSE CONTROL DIODES

These PIN diodes are intended for general VHF and UHF switching and in current controlled AGC circuits where purchase price is a prime factor.

Typ.8

Model Number	Case Style	Chip ¹ Number	Chip Style	Breakd Volta Volta Min.	ige i	Res	eries ⁷ istance Ohms x. Typ.	Capa	otal ⁴ citance oF Typ.	Typ. ⁶ Minority Carrier Lifetime μS	Swite Tin	ne
MA-47110	139	MA-47419	132	100	250	3.0	2.5	0.5	0.4	2.0	150	250
MA-47123	139	MA-47423	132	200	250	1.4	1.0	0.5	0.4	1.0	50	200

JAN TX PIN CONTROL DIODES

This unit is intended for general purpose control applications in military systems where a QPL device is required. Full specifications to MIL-S-19500/443 are available on request.

Model Number	Case Style	Min. ² Breakdown Voltage Volts	Max. ⁹ Total Capacitance Ohms	Max. ⁷ Series Resistance Ohms	Min. ⁶ Minority Carrier Lifetime nS	Max. ⁷ Forward Voltage Volts	Max. ⁹ Reverse Current nA
JAN TX 1N5719	54	150	0.30	1.25	100	1.0	250

NOTES:

- 1. Chip capacitance is equal to total capacitance minus package capacitance ($C_{\rm p}$).
- 2. Breakdown Voltage is measured at $-10~\mu\text{A}$.
- 3. Measured at -20 Volts and 1.0 MHz.
- 4. Measured at -50 Volts and 1.0 MHz.
- 5. Measured at I = 10 mA.

- 6. Minority Carrier Lifetime is measured at I $_{\rm F}$ = 10 mA and I $_{\rm R}$ = 6 mA.
- 7. Measured at $I_F = 100 \text{ mA}$.
- 8. t_{RF} is measured from-50V to+50 mA.
- 9. t_{FR} is measured from +50 mA to -50V.
- 9. V_R = 100 Volts.

GENERAL PURPOSE SWITCHING AND ATTENUATOR PIN DIODES

These glass PIN diodes are designed for use as general purpose switches or as voltage variable attenuators in the UHF through X-Band range. These diodes all feature oxide passivation.

Model Number	Case Style	Chip ² Number	Chip Style	Min. ¹ Breakdown Voltage Volts	Max. ³ Total Capacitance pF	Max. Series Resistance Ohms	Typ. ⁵ Minority Carrier Lifetime μS	Max. ⁶ Cross Modulation —dB
MA-47100	54	MA-47406	132	100	0.35	10@30mA	2	70
MA-47600	54	MA-47416	132	100	0.35	18@20mA	2	50
MA-47047	54	MA-47418	132	200	0.30	1.5@30m <i>A</i>	1	_

PRECISION ATTENUATOR DIODE

This diode is designed as a precision current controlled resistor for RF Attenuators. It features tightly controlled RF resistance to assure close tracking between units.

Model	Case	Chip ²	Chip	Min. ¹ Breakdown Voltage	Max. ³ Total Capacitance	Resis	Series Resist. Resistance vs. Bias Ohms Slope			Typ. ⁵ Minority Carrier Lifetime	Typ. RF Switching Time ns	
Number	Style	Number	Style	Volts	pF	Min.	Max.	Min.	Max.	μ S	t _{fr}	t _{rf}
MA-47083	54	MA-47407	132	300	0.25	690 12 —	1040@10µ/ 18@1 m/ 1.5@100m	١	.90	2.0	200	50

LOW COST ATTENUATOR DIODES WITH VERY LOW INTERMODULATION

These diodes are intended for UHF and VHF current controlled AGC circuits, where low intermodulation and low cost are primary factors.

Model Number	Case Style	Chip ² Number	Chip Style	Min. ¹ Breakdown Voltage Volts		tal ³ citance F Typ.	Typ. ⁴ Series Resistance Ohms	Typ. 5 Minority Carrier Lifetime μ S	Typ. ⁵ Cross- and Inter- Modulation —dB	
MA-47111	146	MA-47413	165	100	0.8	0.6	3	8	Refer to Figures 4 & 5.	

NOTES:

- 1. Breakdown Voltage is measured at $-10~\mu\text{A}$.
- 2. Chip capacitance is equal to total capacitance minus package capacitance (C_p).

 3. V_R = 50V; FREQ. = 1.0 MHz
- 4. I_F = 100 mA
- 5. I = 10 mA; I = 6 mA

- 6. See attached application note.
- 7. $I_F = 10 \,\mu\text{A}$ to 10 mA.
- 8. t_{FR} is measured from +50 mA to -50 Volts. t_{RF} is measured from - 50 Volts to +50 mA.

APPLICATIONS NOTE INTERMODULATION AND CROSS MODULATION MEASUREMENT

The specified second order intermodulation distortion is measured by using two carriers of equal amplitude at 40 and 50 MHz. The intermodulation products are measured at the sum frequency of 90 MHz. The value is specified as the power below either carrier. Figure 1A.

Cross modulation is a third order distortion product. It is measured by using the same two carriers of equal amplitude. The 40 MHz carrier is 100% modulated. The cross modulation is measured as the power in one side band below the power of the 50 MHz carrier. See Figure 1B.

Both intermodulation and cross modulation are frequency and power dependent. In general these products will decrease if the frequency is increased and other conditions remain the same. The cross modulation and intermodulation products will also increase rapidly at a single frequency when the carrier power is increased.

All measurements are made in a matched π attenuator, with a line impedance of 50 ohms.

FIGURE 2 INTERMODULATION AND CROSS MODULATION TEST CIRCUIT

FIGURE 3 MATCHED ATTENUATOR π-CIRCUIT FOR MA-47111, MA-47110

VHF-UHF PIN DIODE TR SWITCH

MA-8334 SERIES

Bulletin 5101

FEATURES

- Frequency range 20 MHz to 1000 MHz
- CW Input Power Rating 50 Watts
- Pulsed Power typically 1 kW, 0.001 duty, 10 μsec pulses
- Receiver isolation, 28 dB typical at 450 MHz

- Transmit insertion loss, 0.2 dB, typical
- Low intermodulation
- Small modular package
- High reliability solid-state device

APPLICATIONS

- Transmit-receive switch for fixed station, marine, land and airborne mobile communications equipment.
- Space or frequency diversity receiver or transmitter systems
- Controlling of phase shifters for antenna pattern lobing
- CATV distribution switching
- Amateur and citizen band transceivers

DESCRIPTION -

This is a hybrid RF circuit which incorporates hermetic hard glass passivated PIN diode chips. The circuit is a single pole double-throw switch for transmit-receive duplexing in mobile and fixed station VHF and UHF communications equipment. Also available as a SP3T switch for other applications. These devices are designed to replace electromechanical switching relays used in communications equipment.

Microwave Associates CERMACHIPTM PIN diodes are utilized in these switch circuits. Each CERMACHIPTM diode is hermetic in itself. These switches, therefore, will have high reliability and low reverse leakage, and will withstand extreme electrical and environmental stress. These devices are matched for a nominal 50 ohm line impedance.

Switching is accomplished with a forward direct current for passing arm. The off arm is simply left open-circuit with no bias. Heat sinking is provided through the copper base of the module and circuit frame.

SPECIFICATIONS -

Frequency Range:	20 - 500 MHz	
Isolation	Тур.	Spec.
200 MHz	33 dB	28 dB Min.
450 MHz	28 dB	24 dB Min.
Loss	0.2 dB	0.4 dB Max
Nom. Impedance,		
all ports	50 ohms	
Input VSWR	1.2	1.4 Max.

Lifetime 1 μ sec Min.

Input Power 50 Watts Typ.

Bias Required 50 mA*

Heat Sink Temp. -55°C to + 100°C

Harmonic Meets standards for Commercial Radio
Output Application when installed in Typical
Transmitter Circuitry. Evaluation in
final Customer Circuit is recommended.

SUGGESTED BIAS CIRCUIT

- All capacitors and inductors should be selected for optimum circuit performance at the design frequency.
- The series resistors should be selected to provide 50 mA minimum of bias current.
- Circuit shows bias conditions for low loss between antenna and Port 1 and isolation between antenna and Port 2
- 4. Reverse polarity switches are available upon request.

TYPICAL PERFORMANCE CURVES ISOLATION ISOLATION INSERTION LOSS 1.3 INSERTION LOSS 1.1 INSERTION LOSS 1.1 INSERTION LOSS 1.2 INSERTION LOSS 1.3 INSERTION LOSS 1.1 INSERTION LOSS 1.2 INSERTION LOSS 1.3 INSERTION LOSS 1.4 INSERTION LOSS

Lower frequencies and/or low harmonic specifications may require use of higher bias currents.

Hermetic Stripline Control Devices

Bulletin 4353

Broadband PIN Diodes

MA-47200 Series

MA-47220 Series

FEATURES

- Broadband 50 ohm match through X-band
- Hermetically sealed package
- Low thermal resistance
- High power capability (up to 5 kW peak)
- Fast switching (to 10 ns)

APPLICATIONS

This series of PIN devices is intended for microstrip and stripline control circuits as well as for direct replacement of existing non-hermetic epoxy encapsulated devices. They can function as power switches, limiters, phase-shifters, attenuators, and duplexers. The package flexibility allows the use of high power, high voltage PIN chips that can switch up to 5 kW peak RF power or very fast thin PINs that can switch as fast as 10 nanoseconds.

DESCRIPTION

These broadband matched devices contain a passivated PIN diode chip in shunt; the hermetic seal packaging eliminates the reliability problems associated with earlier devices using epoxy seals. The diodes are matched through X-Band and feature low insertion loss and VSWR characteristics at zero or reverse bias. The designs eliminate the bandwidth limiting parasitics of conventional packages by incorporating the leads and chip as part of a 50 ohm microwave circuit.

Broadband PIN Diodes

MA-47200 Series MA-47220 Series

	INCHES			MM		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	-	133	-		3,37	-
В		065			1,65	
U	-	-	.242	-	-	6,14
٥	.014		.016	0,35	I -	0,40
Е	.380		.400	9.65	-	10,16
F		.210			5,33	
G	-	.060	-		1,52	-
н		.030		-	0,76	
J	1312		.1372	3,32		3,47
K	_	.665	-		16,89	-
L		.005	-	-	0,012	

Not to scale.

	INCHES			<u></u>	MM		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α.		.133			3,37		
8		005			0.012		
С			.242	-		6,14	
D		.065			1,65	-	
E	.014	I	016	0,35		0,40	
F		665		-	16,89		

	INCHES				MM	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A		030			0,76	I
В	242		262	6,15		6,65
С	116		126	2,95		3,20
D	155		165	3,94		4,19
E		060	-		1,52	
F	195		215	4,95		5,46
G	400	I	420	10,16	-	10,67
н		.005			0,13	-
J	.120			3,05	-	
K	.092		100	2,34	-	2,54
L	.075		085	1,91		2,16
М		.080		_	2,03	-

ENVIRONMENTAL RATINGS

Operating and Storage Temperature Range

MA-47200 Series:

-65°C to +175°C

MA-47220 Series:

 -65° C to $+150^{\circ}$ C

All units are capable of meeting the pertinent requirements of MIL-S-19500.

Max. CW Power Dissipation @ T =

$$\frac{\mathsf{T}_{\mathsf{max}} - \mathsf{T}_{\mathsf{op}}}{\theta}$$
 Watts

where:

 T_{op} = Operating Temp. ($^{\circ}$ C)

 θ = Thermal Resistance (${}^{O}C/W$) $T_{max} = 175^{\circ}C$ for MA-47200 Series 150°C for MA-47220 Series

ENVIRONMENTAL CAPABILITIES PER MIL-STD-750

	Method	Conditions
Moisture Resistance	1021	
Temperature, Storage	1031	-65 ^o C to +150 ^o C
Operating		-65°C to +150°C
Cycling	1051	5 cycles, -65°C to +150°C
Thermal Shock	1056	5 cycles, 0°C to +100°C
Shock	2016	5 blows; X ₁ , X ₂ , Y ₁ , Y ₂ , Z ₁ , Z ₂ @ 1500G
Vibration Fatigue	2046	32 hours; X, Y, Z @ 20 G
Vibration,		Four 4-min. cycles; X, Y, Z,
Variable Frequency	2056	@ 20 G Min., 100 to 2000 Hz
Constant Acceleration	2006	20,000 G; X ₁ , X ₂ , Y ₁ , Y ₂ , Z ₁ , Z ₂
Barometric Pressure	1001	150,000 ft.
Salt Atmosphere	1041	

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

Model Number	Case Style	Meas. Freq. GHz	Min. ¹ Breakdown Voltage Volts	Max. IL @ -20V dB	Max. VSWR @ -20V	Min. Isolation @ 25 mA dB
A-47208	114	1.0	1000	0.25	1.5	30
A-47200	114	1.0	500	0.25	1.5	30
A-47202	114	6.0	500	0.5	1.5	25
A-47204	114	8.0	500	0.6	1.5	20
A-47206	114	10.0	100	0.5^2	1.5 ²	20 ³
A-47201	115	1.0	500	0.25	1.5	30
4-47203	115	6.0	500	0.5	1.5	25
4-47205	115	10.0	500	0.6	1.5	20
4-47207	115	10.0	100	0.5^{2}	1.5 ²	20 ³
A-47220	144	10.0	150	0.5	1.5	20 ³
A-47221	144	Note 4	70	1.0 ²	1.5	20 ³
A-47222	144	8.0	150	0.5^{2}	1.5	20 ³
A-47223	144	Note 4	500	0.5 ²	1.5	20 ³

TYPICAL OPERATING CHARACTERISTICS

	Typical Thermal	Minority Carrier	Switch	ing Time	Swi	tching	
Model	Resist.	Lifetime	RF on	RF off	Cond	ditions	
Number	°C/W	μS	nS	nS	RF off	RF on	Heat Sink
MA-47208	10	5.0	300	150	100 mA	100V	Cathode
MA-47200	10	2.0	200	60	100 mA	100V	Cathode
MA-47202	15	1.5	150	30	100 mA	100V	Cathode
MA-47204	20	1.5	100	30	100 mA	100V	Cathode
MA-47206	30	0.1	10	10	10 mA	10V	Cathode
MA-47201	10	2.0	200	60	100 mA	100V	Cathode
MA-47203	15	1.5	150	30	100 mA	100V	Cathode
MA-47205	20	1.5	100	30	100 mA	100V	Cathode
MA-47207	30	0.1	10	10	10 mA	10V	Cathode
MA-47220	30	0.5	100	30	100 mA	100V	Anode
MA-47221	20	0.25	10	10	10 mA	10V	Cathode
MA-47222	20	0.5	100	30	100 mA	100V	Cathode
MA-47223	20	2.0	150	30	100 mA	100V	Cathode

NOTES:

1. Breakdown voltage is measured at $-10~\mu\text{A}$.

4. Test frequencies: MA-47221 4-8 GHz (swept) MA-47223 4-8 GHz (swept)

5. Devices properly mounted in sufficient heat sink derate linearly to zero at 150°C.

MA-47206 and MA-47207 measured @ -10V; MA-47221, MA-47222, and MA-47223 measured at zero volts.
 MA-47206 and MA-47207 measured @ 10 mA; MA-47221 measured at 20 mA; MA-47220, MA-47222, and MA-47223 measured at 100 mA.

SUGGESTED SCREENING OF PIN DIODES FOR HIGHER RELIABILITY

APPLICATION NOTES

Circuit Diagram

The MA-47200 series of broadband shunt mounted PIN diodes consists of a shunt mounted PIN chip with an appropriate series inductance to produce a matched low pass filter structure at zero or reverse bias See Fig. 1a and 1b for reverse bias state. By applying +10 to +100 mA to the center conductor the diode's impedance changes to a low impedance inductive short (See Fig. 1c) causing the diode to reflect the RF power. The MA-47220 has an anode heat sink. This diode contains a NIP chip thus it must be biased with 10 to 100 mA to produce high isolation. See Figure 2.

DIODE MOUNTING PROCEDURES

MA-47200 Series; Mounting Procedure and Package Choice

Case Style 114, with threaded stud, is designed for use where the RF power exceeds 1 to 2 watts CW, (or 1 kW peak), and for installations at frequencies above 5 GHz. The stud can be threaded into the ground plane and held down tightly with a nut, producing a low-resistance heat path. (See Figure 3.) A sharp size B (0.238D) drill through the board will produce a tight fit to the package; a 1 or 2 mil metal shim and a thin rubber gasket make an excellent top contact under the cover. The center conductor contact should be 50 ohms in and out. Soldering or parallel gap welding of the leads is suggested to reduce loss.

Case Style 115 is most useful for lower power applications. It is mounted in the same manner as Case Style 114, except that it is not screwed to the ground plane. At frequencies above 5 GHz the 115 case should be secured by soldering to the ground plane.

FIGURE 3 MA-47200 MOUNTING IN 1/8" BALANCED STRIPLINE

MA-47220 Series; Mounting Procedure

Case style 144 should be firmly bolted to the ground plate with 6-32 screws through the cover and the mounting holes in the diode case, as shown in Figure 4. Contact with the cover can be improved with a 1 to 2 mil metal shim and a thin rubber gasket. (Poor electrical contact with the cover can result in the excitation of higher order modes.)

FIGURE 4 MA-47220 MOUNTING IN 1/8" BALANCED STRIPLINE

DC RETURNS

Since the diode is connected in shunt across the transmission line, a dc return must be provided between the center conductor and the ground. This dc return must appear as a high impedance to the RF signal. This can be accomplished in any of the following ways:

- 1. A ¼ wave length shorted transmission can be used. (The impedance of the shorted line should be as high as possible at RF frequencies for good bandwidth.)
- 2. Commercial bias tees are good dc returns, but in many cases they are narrow band.
- 3. Lumped filters such as a pi filter may be used.
- 4. Other circuit elements may be used for dc returns; for instance: center terminals on a circulator or a mixer dc return may be used.

SWITCHING CONDITIONS

Speed

The switching characteristics of these diodes are measured from a 10 to 90% detected RF waveform. The RF off-time is determined by measuring the time for the power to drop 10 dB from its value at the low insertion loss state. The RF on-time is the time for power to rise to approximately 0.5 dB of its low loss value (See Figure 5).

Bias Considerations

The proper bias of the diode can be determined by examining Figure 1a. Bias can be applied to either lead of the diode. A 1 volt and 10 to 100 mA positive current bias is needed for high isolation. Isolation will increase with current (See Figure 7). However, increased bias results in slower switching times. The anode heat sink diode requires the opposite bias.

Fast Switching Considerations

The rise and fall time characteristics of the RF envelope are a function of both the magnitude of the bias current and the shape of the bias pulse. Faster switching may be obtained by reducing the bias current or using bias current waveform shown in Figure 3b. The large initial 2 to 3 ns turn-off current I_{fp} and I_{pp} should be within the limits of the peak bias current (300 to 1000 mA) and maximum power dissipation of the diodes and driver transistors.

A good typical low current driving circuit is shown in Figure 6. The RF block should not affect the rise time characteristics of the drive circuit.

FIGURE 5

(b) CURRENT PULSE SHAPE FOR FAST SWITCHING

FIGURE 6 TYPICAL HIGH SPEED DRIVER AND DIODE SCHEMATIC

TYPICAL PERFORMANCE CURVES

FIGURE 7 TYPICAL ATTENUATION VS. FORWARD CURRENT MA-47200 AT 1 GHz

Additional PIN Diodes

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Type Number	Case Style	Min. ¹ Breakdown Voltage Volts	Max. ² Capacitance pF	Max. Series Resistance Ohms	Comments
MA-47407	132	200	.15 ²	1.0	chip; @ 100 mA
MA-47066	54	150	.30 ²	1.5	@ 30 mA
1N5767	54	100	.40 ²	2.5	@ 100 mA
MA-47409	133	100	.15 ²	1.5	chip (NIP)
MA-47086	30	80	.40 ²	1.5	limiter
MA-47090	54	80	.30 ²	1.8	limiter
MA-47411	132	80	.20 ²	1.5	limiter chip
MA-47088	30	30	.40 ²	1.8	
MA-47890	Note 5	1800	3.0	0.2	Note 4
MA-47891	Note 6	1200	2.0	0.3	Note 4
MA-47892	Note 6	1200	1.0	0.4	Note 4
MA-47893	Note 7	1200	.20	0.8	Note 4
MA-47894	Note 7	1200	.10	1.0	Note 4
MA-47895	Note 8	600	.70	0.4	Note 4
MA-47896	Note 9	600	.20	0.7	Note 4
MA-47897	Note 9	600	.10	1.0	Note 4
MA-47898	Note 9	300	.20	0.9	Note 4
MA-47899	Note 9	300	.10	1.0	Note 4

NOTES:

- 1. Breakdown Voltage is measured at $-10~\mu\text{A}$.
- 2. Capacitance is measured at -20 Volts.
- 3. Junction capacitance measured with sufficient bias to deplete the I Region.
- 4. The complete model number includes a suffix that describes the case style.
- 5. Available in Case Styles 131 and 150.
- 6. Available in Case Styles 131, 109 and 150.
- 7. Available in Case Styles 131, 30 and 109.
- 8. Available in Case Styles 131, 30, 54 and 109.
- 9. Available in Case Styles 131, 30 and 54.

(Continued on following page.)

CASE STYLES

TYPICAL

$$L_{p} = .18 \text{ nH}$$

 $C_{p} = .18 \text{ pF}$

	INC	HES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.119	.127	3,02	3,23	
B	.060	.064	1,52	1,63	
С	.205	.225	5,21	5,72	
D	.085	.097	2,16	2,46	
E	.060	.064	1,52	1,63	
F	.060	.064	1,52	1,63	
G	.016	.024	0,41	0,61	
Н	.079	.083	2,01	2,11	

54

TYPICAL						
Lp	= 2.5	nH				
C _D	= .09	ρF				

	INCHES		A	AMI
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.145	.165	3,68	4,19
В	.068	.075	1,72	1,91
С	.014	.016	0,35	0,41
D	1.000	1.500	25.4	38.1

TYPICAL

L_p = .60 nH C_p = .75 pF

	INCHES			ene:
DIM.	MIN.	MAX.	MIN	MAX
Α	0.027	0.033	0,69	0,84
В	0.259	0.267	6,6	6,8
С	0.118	0.134	3,0	3,4
D	-	0.446		11,35
£	0.317	0.323	8,05	8,25
F	40°	50°	-	-
G	0.110	0.130	2,794	3,302

131

	INC	CHES	MM		
DIM,	MIN.	MAX.	MIN.	MAX.	
Α	.030	.035	0,762	0,889	
В	.030	.035	0,762	0,889	
С	.0085	.0105	0,021	0,026	

	INC	M	M	
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.020	.024	0,508	0,609
B	.020	.024	0,508	0,609
С	003	nne	0.026	0.152

133

	IN	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.020	.024	0,508	0,609	
В	.020	.024	0,508	0,609	
С	.003	.006	0,076	0.152	

Not to scale.

NOTE: • Denotes Cathode End.

Broadband Power Control Modules

Bulletin 5150

Broadband PIN Attenuators - MA-8342 Series

Broadband SPST Switches - MA-8343 Series

Broadband SPDT Switches - MA-8345 Series

DESCRIPTION MA-8342, MA-8343, and MA-8345 broadband modules are designed for broadband applications in stripline and coaxial circuitry. These solid state devices are fabricated with PIN diode chips, integrated into a hermetically sealed 50 ohm structure. This eliminates the circuit parasitics associated with more conventional devices (and their interconnections), allowing improved broadband performance. All internal contacts are welded or thermal compression bonded to guarantee reliable operation. These modules meet the full requirements of MIL-E-5400.

Broadband Module Attenuators

MA-8342 Series

CASE STYLES

NOTES:

- 1. Material is kovar or copper with gold plating.
- 2. The housing is fabricated with glass to metal hermetic seals.
- 3. INCH

ELECTRICAL CHARACTERISTICS @ T_A = 25°C

				Mid	-Band At	ttenuation	(dB) at		
Module		Frequency	Current	Max. Loss	Max.	S	pecified	Bias Curre	nt
Model	Case	Range	Rating ⁴	at OV Bias	VSWR	0.2	0.5	2.0	10
Number	Style	GHz	mA	dB	at OV Bias	mA	mA	mA	mA
MA-8342-0006	819	2-4	600	1.7	2.0	13-17	25-30	50-56	70 min.
MA-8342-0008	819	4-8	600	2.0	2.25	9-13	19-25	42-48	65 min.
MA-8342-0005	802	8-18	600	2.5	2.0	11-15	22-28	46-52	60 min.

NOTES:

- 1. All devices exhibit a breakdown voltage in excess ot 50 volts.
- 2. Switching speed: 40 nsec, max (10% 90% RF waveform)
- The attenuation as a function of bias current is specified at the mid-band frequency. Typical performance is shown.
- The maximum total current rating includes the combined RF, CW, and DC bias currents.
- The attenuation at a specified bias level will vary less than ±10% of the mid-band attenuation over the frequency range.
 Typical performance is shown.
- 6. Alternate attenuation current available on request.
- 7. Special designs available on request.

MICROWAVE ASSOCIATES, INC. BURLINGTON. MASSACHUSETTS

APPLICATION NOTES Switching Requirements

Bias normally applied externally to the module attenuator. The module can be supplied with a DC blocking capacitor at one end. This can be obtained by adding the suffix 005 to the part number.

TYPICAL BIAS CIRCUITRY

The attenuator is in the low loss state upon the application of zero or negative bias. Positive bias current is required for attenuation, with attenuation increasing with current. However, it should be noted that excessively high bias current results in slower switching time.

Broadband Module Switches

SPST Switch
MA-8343

NOTES:

3. INCH

- 1. Material is kovar or copper with gold plating.
- 2. The housing is fabricated with glass to metal hermetic seal.

Not to scale.

ELECTRICAL CHARACTERISTICS @ $T_A = 25^{\circ}C$

Module Model	Case Cu	Max. urrent Ra	_			Frequ	Bias			
Number	Style mA		Parameter	0.5-1	1-2	2-4	4-8	8-12	12-18	Conditions
			Max. Loss, dB	0.4	0.4	0.5	0.6	0.9	1.0	_10V_
MA-8343-0001	801	801 200	Max. VSWR	1.2	1.3	1.3	1.5	1.7	1.9	-10V_
		Min. Isolation, dB	20	20	20	20	20	20	+20mA	
			Max. Loss, dB	0.5	0.7	1.0	1.5	2.0	2.75	OV
MA-8343-0005	802	600	Max. VSWR	1.2	1.3	1.5	1.5	1.75	2.0	OV
			Min. Isolation, dB	35	55	60	65	65	60	+30mA
			Max. Loss, dB	0.5	0.7	1.0	1.5	2.0	2.75	+6V
MA-8343-0006	802	600	Max. VSWR	1.2	1.3	1,5	1.5	1.75	2.0	+6V
			Min. Isolation, dB	35	55	60	65	65	60	-30mA

NOTES:

- 1. All devices exhibit breakdown voltage in excess of 50 volts.
- 2. Switching Speed: 40 nsec, max. (10% 90% RF waveform)
- The maximum total current rating includes the combined RF, CW, and DC bias currents.

802

4. Special designs available on request.

TYPICAL PERFORMANCE CURVES, MA-8343-0005

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

APPLICATION NOTES

Switching Requirements

Bias is normally applied externally to the module switch. The module can be supplied with a DC blocking capacitor at one end. This can be obtained by adding the suffix -005 to the part number.

FIGURE 1 TYPICAL BIAS CIRCUITRY

The switch is in the low loss state upon the application of zero or negative bias. Positive bias current is required for isolation with attenuation increasing with current. However, it should be noted that excessively high bias current results in slower switching time.

Power Handling Capability

The power handling capability of the switches are dependent on the pulse length, duty cycle, attenuation condition, voltage rating of the diodes and the bias applied.

The maximum applied reverse voltage (combination of the peak RF voltage and DC bias) should not exceed the breakdown voltage.

Maximum power can be handled using the switches full on or off. The power rating is reduced, should the switch be biased to an attenuation level in between. High isolation switches typically reach minimum power handling at an attenuation level ≅ 10 dB. The derating curve is shown in Figure 3.

Power handling must be derated with temperature, and is shown in Figure 4

FIGURE 4 INCIDENT POWER DERATING CURVE VS. CASE TEMPERATURE REFERENCED TO °C

Broadband Module Switches

SPDT MA-8345 Series

CASE STYLE 806

	DIMENSIONS											
		INCHES			MM							
DIM.	MIN.	MIN. TYP.		MIN.	TYP.	MAX						
A	.047	.052	.057	1,2	1,3	1,4						
В	.241	.246	.251	5,1	6,2	6,4						
С	.552	.567	.562	14	14,1	14,3						
Đ	_	_	.045	_	_	1,						
E	-	-	.015	_	_	0,4						
F	.241	.246	.251	6,1	6,2	6,4						
G	.125	.130	.135	3,2	3,3	3,4						
н	.002	.006	.010	0,1	0,2	0,3						
J	.050		.100	1,2	1	2,5						

NOTES:

- 1. Material is kovar or copper with gold plating.
- 2. The housing is fabricated with glass to metal hermetic seals.

ELECTRICAL CHARACTERISTICS @ TA = 25°C

	Maximum Loss at —30 mA dB					Minimum Isolation at +30 m A dB				Maximum VSWR at -30 mA		R			
Model Number	1-2	F 2-4	requer 4-8	8-12	z 12-18	1-2	Fre 2-4		y GHz 8-12	12-18	1-2	2-4	Freque 4-8	8-12	12-18
MA-8345-0001 MA-8345-0002 MA-8345-0003	i e	0.8 1.0		1.5 2.0	2.5	45 60	45 55	70 45 50	45 45	35	1.5 1.5		2.0 1.75 1.75	2.0 2.0	2.0

Switching Speed:

300 nsec. max.

Power Rating:

250 mW max. C. W.

TYPICAL PERFORMANCE CURVES MA-8345-0003

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

APPLICATION NOTES: Switching Requirements

Figure 3 Typical Bias Circuit

Bias is applied externally to the module switch.

Arm A is connected to the common arm when negative current is applied to Bias A and positive current is applied to Bias B.

Arm B is connected to the common arm when negative current is applied to Bias B and positive current is applied to Bias A.

Switching Speed

The switching time from arm A to arm B is the time between the instant the RF signal in arm A has dropped 0.5 dB below the normal insertion loss until the RF signal in arm B has risen to 0.5 dB of its final insertion loss.

The fastest switching speeds can be realized by using a "spiked" waveform. For example, to connect arm B to the common arm, the following waveforms would be required.

CONTROL DIODES

Microwave Tuning Varactors

Bulletin 4650

Silicon, MA-45000 Series

GaAs, MA-46600 Series

Silicon

Tuning Varactors

MA-45000 Series

DESCRIPTION

This series of silicon tuning varactors is designed to obtain the highest Q and largest capacitance change with bias by an essentially abrupt junction. High reliability, close capacitance tracking between diodes and a very low leakage result from Microwave Associates' "passivated metalized mesa" technique. These diodes are available in ceramic packages as well as the case style 54 glass package.

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Microwave Ceramic Tuning Varactors

	Total 3		Case
Model Number	Capac. @4 V 1 MHz pF	Min. ² Capac. Ratio	Min. Q 4 @ -4 V
25 Volt Series		C ₀ /C ₂₅	
Highest Q			
MA-45064	.5	3.1	4000
MA-45065	.7	3.5	4000
MA-45066	.9	3.6	4000
MA-45067	1.2	3.6	3500
MA-45068	1.8	3.8	3500
High Q			
MA-45056	.5	3.1	3000
MA-45055	.7	3.5	3000
MA-45054	.9	3.6	3000
MA-45062	1.2	3.6	3000
MA-45063	1.8	3.8	3000
45 Volt Series		C ₀ /C ₄₅	
MA-45101	0.8	4.2	2500
MA-45102	1.2	4.5	2500
MA-45103	1.8	4.9	2500
MA-45104	2.7	5.2	2000
MA-45105	3.3	5.4	2000
MA-45106	4.7	5.4	2000
MA-45107	6.8	5.4	1500
MA-45108	10.0	5.4	1500
MA-45109	15.0	5.5	1000

Model Number	Total Capac. Capac. @4 V 1 MHz pF	Min. ² Capac. Ratio	Min. C @4 '	
60 Volt Series		C ₀ /C ₆₀		
MA-45121	0.8	4.5	2000	
MA-45122	1.2	5.0	2000	
MA-45123	1.8	5.5	2000	
MA-45124	2.7	5.9	2000	
MA-45125	3.3	6.0	2000	
MA-45126	4.7	6.5	1500	
MA-45127	6.8	6,5	1500	
MA-45128	10.0	7.0	1000	
MA-45129	15.0	7.0	900	
90 Volt Series		C ₀ /C ₉₀		
MA-45141	0.8	5.0	1500	
MA-45142	1.2	5.7	1500	
MA-45143	1.8	6.6	1500	
MA-45144	2.7	7.2	1000	
MA-45145	3.3	7.5	1000	
MA-45146	4.7	7.9	800	
MA-45147	6.8	8.2	800	
MA-45148	10.0	8.5	700	
MA-45149	15.0	8.6	600	

GENERAL CHARACTERISTICS

Microwave Ceramic Tuning Varactors

CASE STYLE 30

Characteristic - All Types	Test Conditions	Symbol	Min.	Тур.	Units
Reverse Breakdown Voltage	I _R = 10 μA	V _B	Per Voltage Series V _B	5 V Greater than Voltage Series V B	V dc
Reverse Leakage Current @ 80% V _{BR}	@ 25°С @ 150°С	l _B	_	.01 0.5	μA dc
Series Inductance (Excess Inductance)	f = 500 MHz	Lp	-	.40	nH
Case Capacitance	f = 1.0 MHz	C _P	_	_	pF
Diode Capacitance Temperature Coefficient	V _R = 4 V f = 1.0 MHz	TC _c	-	300	ppm/ ^O (

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Microwave Glass Tuning Varactors

Case Style 54¹

	Total ³ Capac.	•	Capac. Total Ratio Min. ⁴ Capac.		Total ³ Capac.	Cap Rat	Min. ⁴		
Model Number	@-4V pF	Min. C4/C45	Typ. C ₀ /C ₄₅	Q @ -4V	Model Number	@-4 V pF	Miņ. C4/C ₆₀	Typ. C ₀ /C ₆₀	Q @ -4V
45 Volt Ser	ies				60 Volt Ser	ies			
MA-45165	2.7	2.3	5.3	2000	MA-45156	3.3	2.8	6.2	1500
MA-45166	3.3	2.4	5.5	2000	MA-45157	4.7	2.8	6.5	1500
MA-45167	4.7	2.4	5.5	2000	MA-45158	6.8	2.8	6.5	1500
MA-45168	6.8	2.6	5.5	1500	MA-45159	8.2	2.8	6.8	1200
MA-45169	8.2	2.6	5.5	1500	MA-45160	10.0	2.8	7.0	1000
MA-45170	10.0	2.7	5.5	1500	MA-45161	12.0	2.8	7.0	1000
MA-45171	12.0	2.7	5.5	1200					

NOTES:

- 1. On special order, these devices are also available in other case styles including 31, 94, 96, 108 and as chips.
- Total and capacitance ratios will vary with different packages due to different package parasitics. This is shown by comparison of figures 5 and 6 which allow the determination of total capacitance ratios between any two voltages for the case styles 30 and 54 respectively.
- 3. Typical capacitance tolerances are \pm 10%. Tighter tolerances may be obtained by adding suffix:
 - $A = \pm 5\%$
 - $B = \pm 2\%$
- 4. Diode Q is measured at 3.3 GHz and extrapolated down to 50 MHz by: Q_{50 MHz} = Q_{3.3 GHz} × 50 MHz

Case Style 54

Characteristic - All Types	Test Conditions	Symbol	Min.	Тур.	Units
Reverse Breakdown Voltage:					
60 V Series	I _R = 10 μA	V _B	60	65	V _{dc}
45 V Series	'n '		45	50	
Reverse Leakage Current:					
60 V Series	VR = 55 V, TA = 25°C		1		1
	VR = 55 V, TA = 150°C	Lp	_	0.02	μA dc
45 V Series	VR = 40 V, TA = 25°C		1	0.5	1
	$V_R = 40 \text{ V}, T_A = 150^{\circ} \text{ C}$		_		
Series Inductance					
(Excess Inductance)	f = 500 MHz,	LS	_	2.5	nH
	lead length = 1/16"				
Case Capacitance	f = 1.0 MHz	C _P		0.05	pF
Diode Capacitance	V _R = 4 V	TCo	_	300	ppm/°C
Temperature Coefficient	f = 1.0 MHz	TCC		300	ppin, 0

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (continued)

FIGURE 5 CAPACITANCE CHANGE RATIOS FOR SILICON TUNING VARACTORS IN CASE STYLE 30

FIGURE 6 CAPACITANCE CHANGE RATIOS FOR SILICON TUNING VARACTORS IN CASE STYLE 54

GaAs

Tuning Varactors

MA-46600 Series

DESCRIPTION

The MA-46600 series of tuning varactors are abrupt junction gallium arsenide devices featuring "Q factors" in excess of 4000. This series is specifically designed for broadband high Q tuning performance from VHF through Ka-band. High reliability, low leakages and close capacitance tracking between diodes is typical of these devices. Standard capacitance matching is ±10% but closer matching is available on request. All diode types are available in a wide selection of ceramic packages as well as in chip form. The series is available in three minimum breakdown voltage ranges: 30 volts, 45 volts and 60 volts.

ELECTRICAL CHARACTERISTICS @ $T_{\Delta} = 25^{\circ}C$

Vp = 30 VOLTS

Minimum		C _{TO} (pF) (Capacitance Range) ¹							
Q 1	.5099	1.00 - 1.49	1,50 - 1,99	2.00 - 2.49	2.50 - 2.99				
4,000	MA-46600-D	MA-46601-D	MA-46602-D	MA-46603-D	MA-46604-D				
5,000	MA-46600-E	MA-46601-E	MA-46602-E	MA-46603-E					
6,000	MA-46600-F	MA-46601-F	MA-46602-F		1				
7,000	MA-46600-G	MA-46601-G	1	1					
8,000	MA-46600-H	l	1	1	1				
9,000	MA-46600-J	1	1	1	1				

Vn = 45 VOLTS

Minimum Q ¹		C _{TO} (pF) (Capacitance Range) ¹							
	.5099	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.50 - 2.99				
4,000	MA-46810-D	MA-46611-D	MA-46612-D	MA-46613-D	MA-46614-D				
5,000	MA-46610-E	MA-46611-E	MA-46612-E	MA-46613-E					
6,000	MA-46610-F	MA-46611-F	MA-46612-F		1				
7,000	MA-48610-G	MA-46611-G			1				
8,000	MA-46810-H	1	i	I					

VR - 60 VOLTS

Minimum	C _{TO} (pF) (Capacitance Range) ¹						
Q ¹	.5099	1.00 - 1.50	1.50 - 1.99	2.00 - 2.49	2.50 - 2.99		
4,000	MA-46620-D	MA-46621-D	MA-46622-D	MA-46623-D	MA-48624-D		
5,000	MA-46820-E	MA-46621-E	MA-46622-E	MA-46623-E			
6,000	MA-46620-F	MA-46621-F			Į.		
7,000	MA-46620-G			į	l		

NOTES:

- Customer should specify, within the range indicated, the required capacitance. The nominal tolerance is ±10% of the customer requested value. Closer tolerances are available on request.
- All GaAs Tuning Varactors are available in the cases Indicated in this bulletin as well as in chip form. When ordering, specify the desired case by adding the case designation as a suffix to the type number. For example: an MA-46601-E-30 specifies a 30 volt tuning diode in the ODS-30 package with a C_{TO} between 1.000 and 1.499 and a Q (at -4 volts and 50 MHz) ≥5000.
- Capacitance is measured at 1 MHz on a bridge which has been balanced with a shielded test holder connected in place but open circuited.
- All junctions are abrupt. i. e. $\frac{1}{2} > .50$

where
$$C_{JV} = \frac{C_{JO}}{\left(1 + \frac{V_R}{1.2}\right) \frac{1}{n}}$$

Total capacitance ratios will vary with case choice due

- to differences in case capacitance ($C_{\rm p}$). Figures 2 and 3 show typical ratios for the M/A 30 and 155 case styles respectively.
- 5. Case parasitics (C_p and L_p) are given along with case outlines elsewhere in this bulletin. The $C_{\rm p}$ values listed typically have tolerances of ±.02 pF. However, the actual case capacitance of each diode is measured to within ±.0025 pF.
- 6. Diode Q is measured by the DeLoach Technique and extrapolated to -4 Volts, 50 MHz.
- All GaAs tuning diodes are subjected to a 48 hour 100°C electrical burn-in before final tests. During this period each device is stressed 60 times per second with 30 mA in the forward direction and 5 volts in the back direction.
- Parasitic inductance (L_p) has been determined at X-Band using a DeLoach method measurement.
- Breakdown voltage (V_{BR}) is measured at $-10 \,\mu\text{A}$.
- The shielded test holders used for capacitance measurements are available for purchase.

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

PERFORMANCE CURVES

FIGURE 1 TEMPERATURE COEFFICIENT OF GaAs TUNING DIODES

TYPICAL PERFORMANCE CURVES (continued)

FIGURE 2 CAPACITANCE CHANGE RATIOS FOR GaAs TUNING VARACTORS IN CASE STYLE 30

FIGURE 3 CAPACITANCE CHANGE RATIOS FOR GAAS TUNING VARACTORS IN CASE STYLE 155

TUNING VARACTOR CASE STYLES

			L _p =	.60 nH .18 pF
	1000	HES		
DIM.	MIN.	MAX.	MIN.	MAX.
A	.119	.127	3,02	3,23
В	.060	.064	1,52	1,63
u	.205	.225	5,21	5,72
۵	.085	.097	2.16	2.46
E	.060	.064	1,52	1.63
F	.080	.064	1,52	1,63
G	.016	.024	0,41	0,61
H	.079	.083	2.01	2.11

TYPICAL

TYPICAL

TYPICAL L_p = .40 nH

			p =	.30 pr
	INCHES			•
DIM.	MIN.	MAX.	MIN.	MAX.
A	.119	.127	3,02	3,23
8	.080	.062	1,52	1,57
С	.077	.083	1,96	2,11
D	,115	.129	2,92	3,28
E	,080	.084	1,52	1,63
F	.055	.065	1,40	1,65
G	.016	.024	0,41	0,61

TYPICAL

TYPICAL

Lp = .40 nH

TYPICAL

TYPICAL

TYPICAL

L_p = .40 nH

			L _P	.60 nH
	INCHES			***
DIM.	MIN.	MAX.	MIN.	MAX.
A	.119	.127	3,02	3,23
В	.077	.083	1,96	2,11
С	.085	.097	2,16	-2,46
D	.016	.024	0,41	0,61

			Cp =	.30 pF
	INC	CHE8		**
DIM.	MIN.	MAX.	MIN.	MAX.
A	.119	.127	3,02	3,23
В	.061	.085	1,55	1,65
С	.174	.194	4,42	4,93
D	.066	.065	1,40	1.65
Ε	.077	.083	1,96	2,11
F	.080	.084	1,52	1,63
G	.016	.024	0,41	0,61

32

			c _p =	.30 pF
	INC	HE8		MI
DIM.	MIN.	MAX.	MIN.	MAX
A	.119	.125	3,02	3,18
В	.077	.083	1,96	2,11
С	.055	.065	1,40	1,66
В	_	.025		0.64

			_b	.17 nH
	INCHES		M	M
DIM.	MIN.	MAX.	MIN.	MAX.
4	.078	.086	1,98	2,18
8	.047	.063	1,19	1,35
C	.040	.050	1,02	1,27
D	_	.015		0,381
E	.004	.010	0,102	0,254

			.17 nH .15 pF	
	INCHES		М	84
DIM.	MIN.	MAX.	MIN.	MAX.
A	.078	,086	1,98	2,18
В	.024	.026	0,61	0,66
С	.047	.063	1,19	1,35
D	.070	.080	1,78	2,03
E	.040	.050	1,02	1,27
F		.015		0,38

				2.5 nF .05 pF
	INCHES MM		464	
DIM.	MIN.	MAX.	MIN.	MAX
Α	.145	.165	3,68	4,19
. В	.068	.075	1,72	1,91
С	.014	.016	0,36	0,41
D	1.000	1.500	25,4	38,1

TYPICAL

			-	.30 nH
	100	CHES	N	***
MI.	MIN.	MAX.	MIN.	MAX.
Α.	.119	.127	3,02	3,22
В	.098	.102	2,49	2,59
С	.188	.208	4,78	5,28
D	.057	.071	1,45	1,80
E	.016	.024	0,41	0,61
F	.009	.011	0,23	0,28
G	.030	.040	0,76	1,02
	***		444	1

NOTE: 1. Silicon only.

Denotes Cathode End.

Not to scale.

CONTROL DIODES

Tunnel Diodes for Switching Applications

Bulletin 5051

Germanium
MA-4C100 Series

Gallium Arsenide
MA-4C550 Series

FEATURES

- High speed switching at low power levels
- Low power usage
- High radiation resistance
- Tightly controlled parameters
- Hermetically sealed packages useful in printed circuit board or stripline applications
- Low-noise RF oscillator applications with low power consumption
- Higher power output from GaAs oscillator diode than from a germanium oscillator diode

Switching Tunnel Diodes

Germanium MA-4C100 Series

Gallium Arsenide MA-4C550 Series

182 TYPE B

183 TYPE C

TYPICAL L_p = 0.5 nH C_p = 0.45 pF

TYPICAL L_n = 0.3 nH C_p = 0.35 pF

	INC	HES	N	W
DIM.	MIN.	MAX.	MIN.	MAX.
A	0.070	0.090	1,78	2,29
В	0.090	0.110	2,29	2,75
С	0.019	0.022	0,48	0,56
D	1.000		2,54	-
E	0.085	0.100	2,16	2,54

Denote Cathode End

Not to scale.

ENVIRONMENTAL RATINGS PER MIL-STD-750

ENVIRONMENTAL	A I IIVGS I	LEV MIT 21D-12
	Method	
Temperature, Storage	1031	See max. rating
Temperature, Operating	_	See max, rating
		10 cycles
Temperature Cycling	1051	-65° C to $+100^{\circ}$ C
Shock	2016	1200 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 days

MAXIMUM RATINGS @ $T_{\Delta} = 25^{\circ}C$

(unless otherwise specified)

CW Dissipation (RF)	20 mW
DC Current	Note 1
Temperature, Storage	-65°C to +100°C
Temperature, Operating	-65°C to +100°C

NOTE:

1. DC Current

Germanium: 5.0 MA (or 2X Ip whichever is greater)

Gallium Arsenide: Forward Current (IF) must be restricted to a value in milliamps equal to or less than one

half the junction capacitance in pF.

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

ELECTRICAL CHARACTERISTICS @ T_A = 25°C JEDEC TYPE GERMANIUM DIODES

ODS-182	Түр. І _р mA	Max. C _T pF
1N3128	5.0	15
1N3129	20.0	20
1N3130.	50.0	25
1N3847	5.0	25
1N3848	10.0	25
1N3849	20.0	30
1N3850	50.0	40
1N3851	100.0	40
1N3852	5.0	15
1N3853	10.0	15
1N3854	20.0	20
1N3856	100.0	25
1N3857	5.0	8
1N3858	10.0	8
1N3859	20.0	10
1N3860	50.0	12

ODS-183	Typ. I _p mA	Max. C _Ţ pF	
1N3712	1.0	10	
1N3713	1.0	5	
1N3714	2.2	25	
1N3715	2.2	10	
1N3716	4.7	50	
1N3717	4.7	25	
1N3719	10.0	50	
1N3720	22.0	150	
1N3721	22.0	100	

GERMANIUM Switching Diodes

M/A	кмс	, 1	lp ² Tolerance %	c _T ³		Typ.	Typ.	Тур.
Туре	Туре	mA		typ.	pF max,	V _p mV		V, mV
MA-4C100	G0500.5	0.5	5	0.8	1			
MA-4C102	G0000.5	0.5	10	1.0	2	50	320	460
MA-4C103	G05001	1.0	5	1.0	2	30	320	400
MA-4C104	G00001	1.0	10	2.0	3	60	340	460
MA-4C105	G05005	5.0	5	2.5	3	00	340	400
MA-4C106	G00005	5.0	10	3.5	5	70	350	480
MA-4C107	G05010	10.0	5	4.0	5		350	400
MA-4C108	G00010	10.0	10	6.0	10	80	360	500
MA-4C109	G05020	20.0	5	8.0	10			
MA-4C110	G00020	20.0	10	15.0	20	90	370	540
MA-4C111	G05050	50.0	5	20.0	25			
MA-4C112	G00050	50.0	10	40.0	50	100	380	565
MA-4C113	G00100	100.0	10	60.0	100	110	390	575
MA-4C114	G00200	200.0	10	125.0	200	120	400	580

NOTES:

- 1. $I_p/I_v > 6:1$ on all types.
- i can be held to tolerances of up to ±3% (please specify).
- 3. I_p/C can be varied from $\frac{1}{2}$ to 3.
- V_f can be selected approx. ±25% to meet special requirements.
- 5. Available in ODS-182 and 183.
- When ordering, specify the desired case style by adding the case designation as a suffix to the part number.

GALLIUM ARSENIDE Switching Diode and RF Oscillator Diodes

M/A		ching Diode a	and RF Oscillator Diodes	C,T		Typ. V _p mV	Typ. V _v mV	Typ. V ₁ mV
Type	KMC Type	mA %		typ.	mex.			
MA-4C550	A0500.5	0.5	5	0.8	1			
MA-4C551	A0000.5	0.5	10	1.0	2	100	500	950
MA-4C552	A05001	1.0	5	1.0	2			
MA-4C553	A00001	1.0	10	2.0	3	115	510	1000
MA-4C554	A05005	5.0	5	2.5	3			
MA-4C555	A00005	5.0	10	3.5	5	135	520	1050
MA-4C556	A05010	10.G	5	4.0	5			,
MA-4C557	A00010	10.0	10	6.0	10	155	530	1100
MA-4C558	A05020	20.0	5	8.0	10			
MA-4C559	A00020	20.0	10	15.0	20	175	535	1129
MA-4C560	A05050	50.0	5	20.0	26			
MA-4C561	A00050	50.0	10	40.0	50	195	540	1150
WA-4C562	A00100	100.0	10	60.0	100	205	545	1175
MA-4C563	A00200	200.0	10	125.0	200	225	550	1200
-	1N3118	10.0	10	10.0	20	180	600	1100
	1N3138	50.0	5	20.0	30	190	600	1100

NOTES:

- 1. $I_p/I_v > 12:1$ on all types.
- 2. I_p can be held to tolerances of up to $\pm 3\%$ (please specify).
- 3. I_p/C can be varied from $\frac{1}{2}$ to 3.
- V_f can be selected approx. ±25% to meet special requirements.
- 5. Available in ODS-182 and 183.
- When ordering, specify the desired case style by adding the case designation as a suffix to the part number.

SELECTION GUIDE-GUNN DIODES

Applica- tion Band	Intrusion Alarm	Police Radar and other Motion Detection	Communications Local Oscillators	Broadband YIG Tuned Oscillator	Communications Transmitter and Power Amplifier	Paramp Pump
С		MA-49152 MA-49137 MA-49153	MA-49136 MA-49137 MA-49138	MA-49140-118	MA-49137 MA-49145 MA-49146 MA-49147 MA-49148	-
. x	MA-49508 MA-49618	MA-49107 MA-49157 MA-49158 MA-49508	MA-49106 MA-49107 MA-49109	MA-49117-118	MA-49110 MA-49183 MA-49184 MA-49189	MA-49109
Ku	MA-49162 MA-49163	MA-49162 MA-49163 MA-49122 MA-49123	MA-49122 MA-49123	MA-49126-118 MA-49126-138	MA-49124 MA-49164	MA-49124
К	MA-49628	MA-49628 MA-49179-118 MA-49180		MA-49128-138	MA-49178	MA-49179 MA-49180
Ka	_	_	MA-49172	_	MA-49177	MA-49172 MA-49173 MA-49177
V	_	_	_	_	MA-49181 MA-49182	MA-49181 MA-49182

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

POWER GENERATION AND AMPLIFICATION

Low and Medium Power Gunn Diodes

Bulletin 4551

Motion Detector Applications

Low Noise Oscillator Applications

DESCRIPTION

These GaAs Gunn Diodes, designed to operate through bulk negative resistance effect, feature low FM and AM noise characteristics, and accomplish a one-step conversion from DC-to-microwave energy from a single low voltage supply, thereby eliminating complex circuitry.

APPLICATIONS

Microwave Associates Gunn Diodes are ideally suited for use in low noise sources such as local oscillators, locking oscillators, low power radar applications, and motion detection applications.

FEATURES

- Low AM/FM Noise Characteristics
- Low Voltage Operation
- Case Style Flexibility

Low and Medium Power Gunn Diodes

30

Motion Detection

CASE STYLES

.127 3,02 3,23 1,52 1,63 .000 .064 .206 .225 5,21 5,72 .097 2.16 2.46 .065 .080 .064 1.63 .080 .064 1,63 .016 .024 0,61 .083

.127 3.22 .102 2.49 2.50 .208 .016 024 0.41 0.61 .009 .011 0,23 0,28 .030 .040 0,76 1,02 G .025 0.38 .015

Not to scale.

Denotes Cathode End.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:

 -60° to $+175^{\circ}$ C

Active Region Temperature:

ELECTRICAL CHARACTERISTICS (At diode case temperature of 25°C)

CATHODE HEAT SINK DIODES

								AM Noise ²		
Frequency	Package	Model	Min. Power ¹	, <u> </u>	Volts		90	Volts RMS	Millivolts RMS	
GHz	Style	Number	mW	Тур.	Max.	Min.	Max.	5-300 Hz	300-500 Hz	
	30	MA-49157	50	10.0	12.0	300	450	0.22	0.22	
9.2-10.7		MA-49158	100	10.0	12.0	450	650	0.22	0.22	
		MA-49106	50	10.0	12.0	300	450	0.22	0.22	
	111	MA-49107	100	10.0	12.0	450	650	0.22	0.22	
	30	MA-49162	50	8.0	10.0	300	500	0.22	0.22	
14.1		MA-49163	100	8.0	10.0	500	750	0.22	0.22	
	111	MA-49122	50	8.0	10.0	300	500	0.22	0.22	
		MA-49123	100	8.0	10.0	500	750	0.22	0.22	
ANODE HEA	T DIODES									
9.4 or 10.525	30	MA-49618	5	7.0	12.0	i	80	0.22	0.22	
9.4 or 10.525	30	MA-49508	10	7.0	12.0		160	0.22	0.22	
22	30	MA-49628	10	5.0	8.0		200	0.22	0.22	

- 1. Power is measured into a critically coupled load at a customer specified single frequency in the indicated range.
- 2. The AM noise of the Gunn diodes follows approximately a 1/f law close to the carrier. For a system application, the absolute noise in terms of dB below carrier in a given bandwidth is of little value. Hence, the AM noise is specified in terms of the RMS voltage output of an amplifier with a voltage gain of 100,000 across the band 5 Hz - 300 Hz (with a band rejection filter at 120 Hz) or, as the RMS voltage output of an amplifier with a voltage
- gain of 1000 across the band 300 5000 Hz. The Gunn oscillator power supply is assumed to have a ripple voltage not exceeding 0.2 mV RMS. It is also assumed that 0.5 mW of RF power is incident on the detector (type MA-40074), of sensitivity 80 mV/mW.
- 3. M/A will provide engineering drawings of the test cavities upon request. Also, we will provide technical assistance in the specification and selection of Gunn diodes, detector diodes and suitable cavities.

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

Low and Medium Power Gunn Diodes

Low Noise Oscillator **Applications**

CASE STYLES

30

TYPICAL L_p = .42 nH C_p = .20 pF

	1990	HES	IAM			
DIM.	MIN.	MAX.	MIN.	MAX.		
A	.119	.127	3,02	3,23		
8	.080	.084	1,52	1,63		
С	.206	.226	5,21	5,72		
D	.086	.097	2,16	2,46		
ε	.060	.064	1,52	1,63		
F	.080	.064	1,52	1,83		
G	.016	.024	0,41	0,61		

111

Lp = .24 nH

	IN	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.119	.127	3,02	3,22	
В	.098	.102	2,49	2,50	
C	.188	.208	4,78	5,28	
O	.057	.071	1,45	1,80	
Ε	.016	.024	0,41	0,61	
F	.009	.011	0,23	0,28	
G	.030	.040	0,76	1,02	
H	.015	.025	0,38	0,64	

TYPICAL

118

TYPICAL L_p = .16 nH C_ = .22 pF

			-		
	HM	CHES	8484		
DIM.	MIN.	MAX.	MIN.	MAX.	
A	.048	.062	1,22	1,32	
B	.096	.102	2,40	2,59	
C	.185	.185	4,19	4,69	
۵	.014	.018	0,366	0,457	
E	.008	.012	0,20	0,31	
F	.009	.011	0,23	0,28	
G	.030	.040	0,76	1,02	
Н	.016	.025	0,38	0,64	

138

Lp = .1 nH Cp = .18 pF

	IN	CHE8	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.113	.118	2,87	3,00	
8	.027	.034	0,69	0,86	
C	.068	.070	1,73	1,78	
D	.140	.145	3,56	3,68	
ε	.016	.019	0,41	0,48	
F	.018	.022	0,46	0,56	
G	.015	.025	0,38	0,64	
н	.030	.040	0,76	1,02	
J	.015	.025	0,38	0,64	

Not to scale.

3-48 UNC-2A

Denotes Cathode End.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:

 -60° to $+175^{\circ}$ C

Active Region Temperature:

260°C

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

ELECTRICAL CHARACTERISTICS @ 25°C CW GUNN DIODES (CATHODE HEAT SINK)

LOW POWER CW GUNN DIODES

Frequency ²		5.0520							Max. Thermal
Range	Package	Model	Min. P out ¹	Vop	Volts	lop	mA	I _{th} mA	Resistance OC/W
GHz	Style	Number	mW	Min.	Max.	Min.	Max.	Max.	-C/W
				4.0	4.4	450	050	050	45
	30	MA-49151	25	10	14	150	250	350	45
		MA-49152	50	10	14	250	350	500	35
5.0-8.0	111	MA-49135	25	10	14	150	250	350	45
5.0-8.0		MA-49136	50	10	14	250	350	500	35
	30	MA-49156	25	8	12	200	300	400	45
		MA-49157	50	8	12	300	450	650	35
8.0-12.4	111	MA-49104	25	8	12	200	300	500	45
		MA-49106	50	8	12	300	450	650	35
	30	MA-49161	25	6	10	200	300	500	45
		MA-49162	50	6	10	300	500	700	35
12.4-18.0	111	MA-49121	25	6	10	200	300	500	45
		MA-49122	50	6	10	300	500	700	35

MEDIUM POWER CW GUNN DIODES

	30	MA-49153 MA-49154	100 250	10 10	14 14	350 500	500 700	700 1000	25 17
5.0-8.0	111	MA-49137 MA-49138	100 250	10 10	14 14	350 500	500 700	700 1000	25 17
	30	MA-49158 MA-49159	100 250	8 8	12 12	450 750	650 1050	950 1500	24 15
8.0-12.4	111	MA-49107 MA-49109	100 250	8	12 12	450 750	650 1050	950 1500	24 15
	30	MA-49163 MA-49164	100 250	6	10 10	500 850	750 1150	110 1700	24 15
12.4-18.0	111	MA-49123 MA-49124	100 250	6 6	10 10	500 850	750 1150	1100 1700	24 15

NOTES:

- The minimum power is guaranteed into a critically coupled load at a single frequency to be specified by the customer within the indicated band.
- 2. Specific frequency should be specified by the customer.

TYPICAL PERFORMANCE CURVES

Gunn Diodes

Yig Oscillator, **Varactor Tuned Oscillator Applications**

ELECTRICAL CHARACTERISTICS @ 25°C

Frequency Range	Case	Model	Min. P out *	Vop	Volts	lop N	nA
GHz	Otada Namahan		mW	Min.	Max.	Min.	Max.
5.0 - 8.0	118	MA-49140-118	100	10	14	350	550
8.0 - 12.4	118	MA-49117-118	100	8	12	450	600
12.4 - 18.0	118	MA-49126-118	100	6	10	500	750
12.4 - 18.0	138	MA-49126-138	100	6	10	500	750
18.0 - 26.5	138	MA-49128-138	100	4	8	500	900

^{*} Critically coupled at discrete frequencies across the band.

NOTES:

- 1. Each diode is supplied with operating data: threshold voltage and current, operating voltage and current, frequency, power.
- 2. Maximum threshold current is 1.5 times the maximum operating current (see also application note).
- 3. Bellows or prong cap for the ODS-111 package is available on special request.
- 4. These diodes are designed to operate within a heat sink temperature of -54 to +75°C.

DIODE MOUNTING PROCEDURE

The mount used for the diode must provide an adequate thermal path away from the diode stud. During initial operation it is always advisable to monitor the diode case temperature, (T_C), by means of a thermocouple placed in the screw driver slot at the base of the diode case. As the bias voltage is slowly increased from zero volts, the case temperature should be monitored to ensure adequate heat sinking. As a rule of thumb, the heat sinking is probably adequate if the threshold current measured in the actual oscillator is more than 95% of the threshold current indicated in the accompanying data sheet, (The threshold current is an inverse function of junction temperature). If the junction is too hot because of an inadequate heat sink, the threshold current will decrease to less than 95% of the quoted value. The current through the diode below the threshold is given by:

$$I = \frac{c}{\tau a}$$

T = absolute temperature

a = constant depending on material (typically 1.0 - 1.3)

c = a proportionality constant

The current flow is very sensitive to junction temperature.

Diodes in threaded packages should be securely tightened into a clean, sharply tapped 3 - 48 UNC 2A threaded hole in a copper mount. A torque of approximately 6 inch-ounces should be used in tightening the diode. As an alternative mounting process the diode may be soldered into the mount, using a minimum of clearance for solder between the diode and the mounting hole. The diode and mount should be degreased and tinned with solder before the insertion of the diode. We recommend use of a 60-40 eutectic lead-tin solder with a melting point of $\approx 180^{\circ}$ C. Diodes in prong packages should be soldered in or securely gripped in collet clamps.

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

APPLICATION NOTES

- 1. Under pulse conditions (20 nanosecs), the Gunn diode can withstand a voltage many times the threshold voltage (as well as many times the operating voltage). At the switching voltage, diode pulsed current increases rapidly as in the breakdown phenomenon of junction devices. This switching voltage point is an indication of the quality of the device. Typically the switching voltage ratio to threshold voltage is $(V_e/V_T) \approx 25$.
- 2. The Gunn diode is not in the true sense a "diode". However, due to construction methods, it has a preferred polarity of operation indicated for each type. Reversing the polarity will, in general, damage the device. For all types described herein, the heat sink must be the negative electrode (cathode).
- 3. Since the threshold current varies inversely as absolute temperature, the power supply should be rated to deliver the threshold current at the lowest operating case temperature.
- 4. Referring to the power output vs. bias voltage curve, Figure 2, there are 4 things a circuit engineer should be concerned with; the peak power, the power peak voltage, the turn-on voltage, and the shape of the curve. Turn-On Voltage, V_{TO}, is defined as the voltage at which a single frequency (close to the desired frequency) output is obtained from the Gunn oscillator as the power supply voltage is increased from zero to the desired operating voltage. (See Figure 1.)

Figure 1 Typical MA-49107 Power Out and Frequency Vs. Bias Voltage @ 10.5 GHz and 25°C

Power peak voltage, V_{PP}, is defined as the voltage at which the power is maximum at 25°C. Both the turn-on voltage and the power peak voltage vary with the operating temperature (see Figure 1). Since the operating voltage usually is fixed in a system application, the variation of the power peak voltage and the turn-on voltage with temperature should be considered for a proper design of the Gunn oscillator.

The turn-on voltage usually increases with decreasing temperature. At low enough temperatures the turn-on voltage could be higher than the operating voltage. Then the Gunn oscillator will have zero output if the bias voltage were to be abruptly or gradually turned on to the desired operating voltage.

Figure 2 Typical Gunn diode Characteristics Vs. Temperature

APPLICATION NOTES (Continued)

The turn-on voltage depends not only on the temperature but also on the Gunn diode and the cavity in which the diode is used. To minimize the variation of the turn-on voltage with temperature, it is essential that the oscillator be decoupled from the load. In other words, if the oscillator were to be critically coupled or overcoupled to the load, the turn-on voltage variation would be quite large with temperature. Also, severe moding problems would exist. Usually, we recommend the oscillator be decoupled from the load at least by 2 dB.

Another factor to be considered is the coupling of the diode to the cavity. It is essential that the diode itself is not critically coupled or overcoupled to the cavity.

The shape of the Power-Voltage curve is important. The curve should be smooth and free from discontinuities to assure that the diode is operating at only one frequency and is not moding.

AM Noise

Any power supply has a ripple, however small it may be, associated with the DC output. The AM noise output of the oscillator has two components. The first one is inherently due to the Gunn diode itself. The second one is associated with the bias voltage and the ripple on the power supply. In other words:

AM noise power from the Gunn oscillator

= Inherent noise power of Gunn diode
$$+\frac{dP}{dV}$$
. ΔV

when $\frac{dP}{dV}$ is the slope of the power-bias curve at the operating voltage and a temperature, say T_1 , and ΔV is the bias supply ripple voltage. At a different temperature, the slope of the power-bias curve will be different. If the slope is larger, then the AM noise output will be larger for this same ripple voltage. Conversely, if the slope were smaller, the AM noise output would be lower (assuming, of course, that the inherent noise of the Gunn diode does not change with temperature.)

The criteria for the slope $\frac{dP}{dV}$ is the location of the operating voltage in relation to the power peak voltage. Ideally, the lowest noise will be realized if the operating voltage could be adjusted at any temperature to coincide with the power peak voltage (see Figure 1). (This is because $\frac{dP}{dV} = 0$ at V_{PP}). Often, in low-cost system applications, this luxury is not available. Hence, the operating voltage has to be carefully chosen so that, as temperature changes, the power peak voltage is not located too far from the operating voltage.

Protective Circuit

The Gunn diode has a broad band negative resistance. It is clear from the DC I-V characteristics that a negative resistance exists even at low frequencies. This low frequency negative resistance enables the diode to act as a relaxation oscillator in conjunction with the bias supply leads and any stray capacitance. The frequency of the so-called bias circuit oscillations can extend from a few Hz to a few MHz. The amplitude of the oscillations especially in high efficiency diodes - can be very high, thus giving rise to a catastrophic failure. Even if the amplitude is not high enough to cause a failure, the RF output is modulated by the bias circuit oscillations. This may manifest itself as AM noise on the microwave output.

The bias circuit oscillations may be suppressed by having a protective circuit similar to the one shown in Figure 3 connected as close to the bias lead of the oscillator as is practical.

Figure 3 Protective Circuit to Suppress Bias Circuit Oscillations

POWER GENERATION AND AMPLIFICATION

High Power Gunn Diodes

Bulletin 4550

CW Operation

Pulse Operation

FEATURES

- High output power
- Low AM/FM noise characteristics
- Low thermal resistance
- Unique fabrication method for reliable high power operation

APPLICATIONS

These rugged, reliable, high-power Gunn diodes are ideally suited for use either as locked oscillators or as reflection amplifiers in point-to-point communication links and telemetry systems.

DESCRIPTION

These GaAs Gunn diodes are designed to operate through bulk negative resistance effect and feature low AM and FM noise characteristics. They accomplish a one-step conversion from dc to microwave energy from a single low voltage supply, thereby eliminating complex circuitry.

High Power **Gunn Diodes**

CW Operation Pulse Operation

CASE STYLES

.102 2.49 4,78 5,28 D .057 .071 1.45 1.80 .016 .024 0,41 0,23 0,28 040 .030 0.76 1,02 .015

A DIA.

141

	INC	HES	MAN		
DIM.	MIN.	MAX.	MIN	MAX	
Α	.155	.165	3,94	4.19	
В	.120	.130	3,06	3,30	
С	.045 F	REF.	1,14 REF.		
D	_	.030	-	0,76	
E	-	.030	_	0,76	
F	.205	.225	5,21	5,72	

Not to scale.

NOTE: Denotes Cathode (Heat Sink End)

MAXIMUM RATINGS:

Storage Temperature Maximum Active Region Temperature -60°C to 175°C 260°C

ENVIRONMENTAL CAPABILITIES

Microwave Associates' high power Gunn diodes are capable of passing the following MIL-STD-750 tests:

	Test Method	Test Condition
High Temperature Storage	1031	1000 hours @ 150 ^o C
Temperature Cycling	1051	5 cycles from -65° to +150°C
Thermal Shock	1056	5 cycles from 0°C to +100°C
Shock	2016	0.5 ms pulse, 1500 G, 5 shocks each plane
Vibration	2056	50-2000 Hz at 20 G min., 5 shocks each plane
Constant Acceleration	2006	1 min. each (X ₁ , Y ₁ , Y ₂) plane at 20,000 G
Moisture Resistance	1021	+25° to +65°C at 90 to 98% relative
		humidity for a 10 day period
Leakage .	1071	Fine and gross leaks

Electrical Characteristics at 25° Case Temperature DIODES FOR CW OPERATION

Model Number	Case Style	Frequency Range GHz	Min. Output Power mW	Max. Bias Voltage Volts	Max. Input Power Watts	Max. Threshold Current Amperes	Max. ³ △ T ^O C
MA-49139	111	4.0-8.0 ¹	500	14.0	17.0	2.0	185
MA-49110	111	8.0-12.4 ¹	500	12.0	16.5	2.5	185
MA-49145	141	$4.4-5.0^2$	1000	15.0	28.0	2.8	185
MA-49146	141	5.9-6.4 ²	1000	14.0	28.0	3.0	185
MA-49147	141	6.5-7.2 ²	1000	14.0	28.0	3.0	185
MA-49148	141	7.1-7.9 ²	1000	14.0	28.0	3.5	185
MA-49183	141	8.0-10.0 ¹	750	12.0	21.0	3.0	185
MA-49184	111	12.4-14.5 ¹	500	10.0	16.5	3.0	185
MA-49185	111	$4.4 - 5.0^2$	500	14.0	17.0	2.0	185
MA-49186	111	5.9-6.4 ²	500	14.0	17.0	2.0	185
MA-49187	111	$6.5 - 7.2^2$	500	14.0	17.0	2.0	185
MA-49188	111	7.1-7.9 ²	500	14.0	17.0	2.0	185
MA-49189	111	10.7-11.7 ²	500	12.0	16.5	2.5	185

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

DIODES FOR PULSE OPERATION Electrical Characteristics at 25° Case Temperature

Model Number	Package Style	Frequency ⁴ Range GHz	Min. Output Power Watts	Typ. Peak Voltage Volts	Typ. Peak Current Amps	Max. Peak Voltage Volts	Max. Duty Cycle %	Max. Pulse Length μS
MA-49260	111	5.0-8.0 ¹	5	35	2 -3	45	1	1
MA-49265	111	8.0-12.0 ¹	5	25	2 - 3	35	1	1

NOTES:

1. These diodes will deliver at least the minimum specified output power into a critically coupled load at a customer specified

single frequency within the indicated band.

2. These diodes will deliver at least the minimum specified output power into a critically coupled load over the frequency range listed in the specification table.

3. The rise in temperature between the diode stud and the active region is defined to be Δ T=(P_{in} - P_{out}). In actual use, the thermal drop between the ambient and the diode case must be taken into account in order to avoid exceeding the maximum active region temperature of 260°C. The maximum active region temperature may be computed as follows:

Maximum active region temperature = θ (P_{in} -P_{out}) + T_A + Δ T_H, where T_A = ambient temperature, Δ T_H =temperature

drop between the diode case and the ambient.

In well-designed heat-sinks, the thermal drop, $\Delta T_{\rm L}$, is usually less than 30°C for a power input of about 15 watts. This is an important factor in the design of Gunn oscillators, and must be carefully considered.

Frequency drift during a 0.5 μ S pulse is typically less than 5 MHz in a waveguide cavity.

The technique for measuring thermal resistance $\theta_{\rm L}$ is available on request (TM-321).

The diode impedance as an oscillator can be measured; this data up to 9.0 GHz can be supplied for a nominal additional charms. (Refer to Application Notes.) We will be gled to provide free of charms ones and short-circuited packages of

charge. (Refer to Application Notes.) We will be glad to provide, free of charge, open and short-circuited packages of ODS-111 and ODS-141 for customers who would like to measure the package parasitics for reducing the impedance data to the chip terminals.

7. These high power diodes are normally burnt-in for a minimum period of 48 hours at a diode case temperature (T_c) of $90 \pm 5^{\circ}$ C and a dc bias voltage of (V_{op} + 1.0) volts. For a nominal additional charge, diodes can be burn-in for longer periods as specified by the customer.

RELIABILITY ESTIMATION

Gunn diode MTBF can be established through use of a continuing long term life test. Diodes operating at normal DC bias and a case temperature of 75°C have accumulated at Microwave Associates over 6,000,000 unit hours of operation without failure. An estimate of the minimum MTBF at a 90% confidence level is made by assuming a failure to occur at the present time. Using this technique we estimate the MTBF to be in excess of 200,000 hours with 90% confidence level.

DIODE MOUNTING PROCEDURE

The mount used for the diode must provide an adequate thermal path away from the diode stud. During initial operation it is always advisable to monitor the diode case temperature, (T_C), by means of a thermocouple placed in the screw driver slot or Hex socket at the base of the diode case. As the bias voltage is slowly increased from zero volts, the case temperature should be monitored to ensure adequate heat sinking. As a rule of thumb, the heat sinking is probably adequate if the threshold current measured in the actual oscillator is more than 95% of the threshold current indicated in the accompanying data sheet. (The threshold current is an inverse function of junction temperature). If the junction is too hot because of an inadequate heat sink, the threshold current will decrease to less than 95% of the quoted value. The current through the diode below the threshold is given by:

$$I = \frac{c}{T^a}$$
 $I = current$ $a = constant$ depending on material (typically 1.0 - 1.3)
 $T = absolute temperature$ $c = a$ proportionally constant

The current flow is very sensitive to junction temperature.

The diode should be securely tightened into a clean, sharply tapped 3 - 48 UNC 2A threaded hole in the mount. A torque of approximately 6 inch-ounces should be used in tightening the diode, in the 111 package, (10 inch ounces in the 141 package). As an alternative mounting process the diode may be soldered into the mount, using a minimum of clearance for solder between the diode and the mounting hole. The diode and mount should be degreased and tinned with solder before the insertion of the diode. We recommend use of a 60-40 eutectic lead-tin solder with a melting point of $\approx 180^{\circ}$ C.

TYPICAL COAXIAL OSCILLATOR CAVITY

TYPICAL PERFORMANCE CURVES

C BAND V_T ≈ 4.0 to 5.5 VOLTS - MA-49139

X BAND V_T ≈ 2.9 to 4.0 VOLTS - MA-49110

FIGURE 2 TYPICAL OUTPUT POWER VERSUS FREQUENCY
MA-49110, MA-49145, MA-49146, MA-49147,
MA-49182

FIGURE 3 TYPICAL OUTPUT POWER VERSUS DIODE CASE TEMPERATURE - MA-49130, MA-49110, MA-49145, MA-49146, MA-49147

FIGURE 4 TYPICAL FM NOISE SPECTRUM - BW = 100 Hz, CAVITY $\mathbf{Q}_{\mathbf{L}}$ = 350

FIGURE 5 TYPICAL AM NOISE SPECTRUM - DOUBLE SIDE BAND - 8W = 100 Hz

AMPLIFIER APPLICATIONS

High power Gunn diodes are ideally suited for use as the transmitter output stage in FM and FDM communication system links. The low noise and long life properties of the Gunn device give it the advantage over IMPATT devices in these applications even though IMPATTS offer higher conversion efficiencies. Most repeater applications involve use of the Gunn device in an injection locked oscillator configuration, where the output frequency of the Gunn oscillator follows the frequency of a small circulator coupled input signal. Gain and bandwidth of such a system are related as follows:

$$\frac{BW}{f_O} = \left(\frac{2}{Q_L}\right) \left(\frac{P_1}{P_O}\right)^{1/2}$$
Here: BW = the locking bandwidth (both sides)
$$f_O = the free running operating frequency$$

$$Q_L = the loaded Q of the oscillator$$

$$P_1 = the injected power$$

$$P_O = the free running oscillator power$$

In practice, up to 20 dB per stage of power gain is feasable with oscillator $\mathbf{Q}_{\mathbf{L}}$ as low as 12.

High power Gunn diodes are also available for reflection amplifier service. Here, the diode is operated into a high impedance load such that, in the absence of incoming signal, no oscillations occur. If a small input signal is circulator coupled into the test fixture, it is amplified by triggering oscillations of the Gunn device. In general, gain bandwidth products of 3 GHz per stage are possible.

Specially selected high power gain diodes for reflection amplifier service are supplied with small signal impedance data to aid in amplifier design, and may be specified by adding a suffix A to the appropriate type number.

OWER GENERATION

MA-49000 Series

HIGH FREQUENCY GUNN DIODES

for Communications & Paramp Pump Applications

Bulletin 4508A

FEATURES

- Low package parasitics
- High output power
- Low noise characteristics
- Good power and frequency stability
- High efficiency
- Reliability suitable for military applications

APPLICATIONS

These reliable diodes are ideally suitable for use as paramp pump sources and as transmitters in secure point-to-point communication links. The noise performance of these diodes is better than that of comparable reflex klystrons. This makes these high power Gunn diodes attractive for use as local oscillators.

DESCRIPTION

These GaAs Gunn diodes are designed to operate through bulk negative resistance effect. They feature low noise characteristics, good efficiency, and a one-step conversion from dc to microwave energy from a single low voltage supply, thereby eliminating complex circuitry.

REVISED SPECIFICATIONS TABLE Electrical Characteristics at $T_c = 25^{\circ}$ C

		Frequency	Min. CW ¹ Output						∆ T^{3,4}
Model Number	Case Style	Range GHz	Power mW	BW	V _{op} Min.	(voits) Max. ²	(mÅ)	ار (mA)	°C
MA-49179	118	18-26-5	50	<u>%</u>			Max.	Max.	Max.
				±5	5.0	8.0	600	1000	85
MA-49179	138	18-26.5	50	±5	5.0	8.0	600	1000	80
MA-49180	118	18-26.5	100	±5	5.0	8.0	1000	1600	130
MA-49180	138	18-26.5	100	±5	5.0	8.0	1000	1600	125
MA-49178	118	18-26.5	250	±5	5.0	8.0	1600	2500	175
MA-49177	138	26.5-35.0	150	±5	4.0	8.0	1400	2000	130
MA-49172	138	26.5-40	50	±5	3.5	6.0	800	1200	75
MA-49173	138	26.5-40	100	±5	3.5	6.0	1200	1800	115
MA-49181	138	40-50	50	±5	2.5	4.5	1500	1800	175
MA-49182	138	50-60	50	±5	2.5	4.5	1500	1800	175

NOTES:

- 1. The minimum indicated power is guaranteed into a critically coupled load over the indicated bandwidth centered around the frequency specified by the customer. The customer should also specify case style (118 or 138) with the order.
- 2. The operating voltage, in general, decreases as the center frequency of operation increases.
- 3. $\Delta_T = (P_{in} P_{out})\theta$, where θ is the thermal resistance in ${}^{\circ}$ C/W, P_{in} is the power into the diode in watts, P_{out} is the output power & Δ_T is the temperature difference between the active region and the case.
- 4. The technique for measuring thermal resistance is available on request (TM-321).
- 5. The mount used for the diode must provide an adequate thermal path away from the diode stud. When first using the diode, it is always advisable to ensure adequate heat sinking by monitoring the diode case temperature (T_C) with a thermocouple placed in the screwdriver slot at the base of the stud. The threshold current in the actual oscillator at 25°C should not be less than 95% of the indicated threshold current. The current through the diode below the threshold voltage may be written I = C/T^Q, where T is the absolute temperature of the junction, Q is a material-dependent parameter (whose value usually lies between 0.5 and 1.10), and C is a constant. Since the current is inversely proportional to the junction temperature, the threshold current decreases rather rapidly with increasing temperature.
- 6. Higher power diodes are available on special request.
- 7. All diodes are burnt in with a dc bias equal to V_{op} + 1.0 Volts, for a minimum period of 24 hours, at a minimum case temperature of 85°C;
- 8. All the typical performance curves were measured in MA test cavities. Engineering drawings of these test cavities are available on request,
- Case style 118 and case style 138 are both constructed only of copper. The top lid is soldered on to the ceramic. Extreme care should therefore be taken in soldering any lead to the lid. The temperature of the lid should not exceed 235°C for more than a few seconds during soldering.
- 10. Case style 148 available on request.

Absolute Maximum Ratings:

Storage Temp:

Max Active Region Temp:

-60°C to +175°C 260°C

SPECIFICATIONS (Continued)

Environmental Capabilities

Microwave Associates' high-frequency Gunn diodes, for operation in K and V-bands, are capable of passing the following MIL-STD-750 tests:

Test Description	Test Method	Test Condition
High Temperature Storage	1031	1000 hours at 150°C
Temperature Cycling	1051	5 cycles from -65°C to +150°C
Thermal Shock	1056	5 cycles from 0°C to +100°C
Shock	2016	0.5 ms pulse; 1500 G;
		5 shocks each plane
Vibration	2056	50-2000 Hz at 20 G min.
		5 shocks each plane
Constant Acceleration	2006	1 min. each X ₁ , Y ₁ & Y ₂
		at 20,000 G
Leak Tests	1071	Gross leak

TYPICAL PERFORMANCE CURVES

FIGURE 3 TYPICAL OUTPUT POWER VS. TEMPERATURE AT 40 GHz

APPLICATION NOTES

The power output vs. bias voltage curve (Figure 2) illustrates that there are four things a circuit engineer should be concerned with; the peak power, the peak power voltage, the turn-on voltage, and the shape of the curve.

In general, a Gunn diode should be operated at about 10% less than power peak voltage at 25°C. This is to improve the power stability. As the chip temperature rises, the peak output power and the peak power voltage of the diode decrease. If the diode is operated at less than the room temperature power peak voltage, the drop in power due to the rise in chip temperature will be partially compensated for by the diode operating closer to power peak voltage. The operating voltage that is usually chosen is the power peak voltage at the maximum temperature the diode will see.

The turn-on voltage determines the lower limit of the operating voltage. To ensure cold temperature starting, the diode is generally biased at least 10% higher than the room temperature turn-on voltage. This is because the turn-on voltage increases as the diode temperature decreases.

The shape of the Power-Voltage curve is important. The curve should be smooth and free from discontinuities to assure that the diode is operating at only one frequency and is not moding.

Multiplier Varactors

Bulletin 4450

Silicon, Multiplier Varactors

GaAs, Multiplier Varactors

Silicon Multiplier Varactors

The MA-44100 Series - SNAP TM Varactor

The MA-44200 Series - DUALMODE TM Varactor

The MA-43000 Series - RF Circuit Tested SNAPTM Varactor

The MA-44000 Series - POWERPACK TM Stacked Multiplier Varactor

DESCRIPTION

Microwave Associates manufactures four distinct families of silicon multiplier varactor diodes. Each series has an advantage in a particular type of circuit. All of the varactors in these series are manufactured with an "oxide passivated metalized mesa" process. This process results in a device with extremely low leakage current and excellent reliability. This reliability has been demonstrated on many high reliability programs.

The diffusion profile of each family is carefully controlled to assure closely matched impedances and stored charge characteristics. Control of these characteristics is assured by tight double-ended specifications for lifetime, capacitance and breakdown voltage. All of the varactors are eutectically bonded to assure low thermal resistance.

APPLICATIONS

These varactors are intended for use in high power frequency multiplier circuits, harmonic generators, signal sources, and other signal processing applications.

ABSOLUTE MAXIMUM RATINGS (ALL DEVICES)

Temperature Range:

Operating Temperature

 $-65 \text{ to } +150^{\circ}\text{C}$

Storage Temperature

 $-65 \text{ to } +150^{\circ}\text{C}$

ELECTRICAL SPECIFICATIONS @ $T_{\Delta} = 25^{\circ}C$

SNAP	Varactors
-------------	------------------

Model	Case	Vo	kdown [°] Itage olts	1 Ca _l	unct. pac. @ 6V oF	Max Capa	⁶	Minority Carrier Lifetime nS	Max. Snap Time	Max. Thermal Resist.	Suggested Output Freq. Range	Typical ² Efficiency as Tripler
Number	Style	Min.	Max.	Min.	Max.	Ratio	o Mir	n. Max.	рS	°C/W	GHz	%
MA-44100	43	150	250	16.0	30.0	1.4	1000	3000	3000	5	0.1-1	65
MA-44110	43	100	150	8.0	16.0	1.4	350	1050	750	10	0.5-1	65
MA-44120	43	75	100	3.0	8.0	1.4	150	450	500	15	0.5-2	60
MA-44130	30	45	75	1.0	3.5	1.5	60	200	200	25	2.0-6	60
MA-44140	30	25	45	0.5	1.5	1.5	10	30	100	70	4.0-12	60
MA-44150	30	15	40	0.2	0.6	1.5		30	90	100	8.0-16	50
MA-44300	26	50	_	3.0	5.0	_	100) –	225	300	0.1-1	60
MA-44310	26	35	_	1.0	3.0	_	30) –	200	300	0.5-3	60
MA-44320	54	15	_	0.5	1.0	_	10) –	90	600	1.0-6	60

Circuit Test Model	ed SNAP	Varacto Min. Output Power	rs F _{out}	F _{in}	Max. Input Power	Vo	kdown ¹ Itage olts		-	Mind Carr Lifet	ier ime	Max. Snap- Time	Max. Thermal Resist.
Number	Style	Watts	GHz	GHz	Watts	Min.	Max.	Min.	Max.	Min.	Max.	pS	°C/W
MA-4B300	43	8.0	2.0	0.4	30	100	145	5.0	8.0 ³	300	900	750	7
MA-43000	103	4.0	2.0	0.333	15	85	105	3.0	4.5	250	500	600	12
MA-43002	91	1.5	6.0	2.0	5	45	70	1.6	2.4	75	225	250	25
MA-43004	91	0.30	13.0	3.3	2	30	45	0.45	0.85	20	50	150	45

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

as Tripler

%

65

60

55

40

Range

GHz

1-3

2-6

3-8

8-14

Mode Numb		Case ⁵ Style	•	eakdo Voltag Volts		Junc Capac 6 pF lin.	. @	n	rier M time Si S Ti	fax. nap me pS	Max. Thermal Resist. ^O C/W	Outpu Ra	ested it Freq. nge Hz
MA-435 MA-435		30 93	2 5 20	4(5(0 0 ⁴	.30 .55 ⁴	9 10		90 60	.70 125	1- 1-	
UALMOD	E Var	actors					•			· · · · · · · · · · · · · · · · · · ·			
		Vo	itage	1 Cap	6V	Min	Ca . ⁶ Life	nority rrier etime	Orrafe	Max. Thermal	Sugge: Output	Freq.	Typical ² Efficiency as Tripler
Model Number	Case Style	-	olts Max.	Min.	Max.	Capa Rati		nS . Max.		Resist. ^O C/W	Ran GH	_	%
MA-44200 MA-44210	43 43	150 100	250 150	16 8.0	30 16	1.4		1000 300	3000 750	5 10	0.1— 0 0.5— 1	1.0	65 65
MA-44220	43	75	100	3.0	8.0	1.4	1 50	150	500	15	1.0- 2	2.0	65
MA-44230	30	45	75	1.0	3.5	1.4	20	60	200	25	2.0-	6.6	55
MA-44240	30	2 5	45	0.5	1.5	1.4	4 10	30	100	70	6.0-13	2.0	50
SAA AAGEG									~~	100	400 11	2.0	40
MA-44250	30	15	40	0.2	0.6	1.4	4 8	30	90	100	10.0—1	2.0	40
MULTICHI	P VA	RACT	ORS		0.6	1.4	4 8	30	90	100	10.0—1	2.0	40
MULTICHI	P VA	RACT r Appl	ORS			1.4		30	90	100	10.0-13	2.0	40
MA-44250 MULTICHI For Higher	P VA	RACT r Appl	ORS icatio	ons	ct.		rity	30 Max.	90 Max.	100 Sugges		2.0	
MULTICHI	P VA	RACT r Appl	ORS icatio	Jun Capa	ct. c. @ V	Minor	rity er		7.00	Sugge	sted 7	Typical ²	2 Number
MULTICHI	P VA Powe	RACT r Appl B	ORS icatio	ons Jun Capa 6	ct. c. @ V	Minor Carri Lifet	rity er ime	Max. Snap Time	Max. Thermal Resist.	Sugge: Output Rang	sted T Freq. Eff ge as	Typical ¹ ficiency Tripler	Number of
MULTICHI For Higher	P VA Powe	RACT r Appl B	ORS icatio Vin. ¹ reak-	ons Jun Capa 6	ct. c. @ V	Minor Carri Lifet	rity er ime	Max. Snap	Max. Therma	Sugge:	sted T Freq. Eff ge as	Typical ²	2 Number
MULTICHI For Higher	P VA Powe	RACT r Appl B G e Vo	ORS icatio Vin. ¹ reak- lown	ons Jun Capa 6	ct. c. @ V = Max.	Minor Carri Lifet	rity er ime	Max. Snap Time pS	Max. Thermal Resist. ^O C/W	Sugge: Output Rane GH:	sted i Freq. Eff ge as z	Typical [*] ficiency Tripler %	Number of Chips
MULTICHI For Higher Model Number	P VA Power Case Styl	RACT r Appl B c e Vo	ORS icatio Vin.1 reak- flown ltage /olts	Jun Capa 6 pl Min.	ct. c. @ V = Max.	Minor Carri Lifett nS Min.	rity ier ime Max. 120 240	Max. Snap Time pS	Max. Thermal Resist. OC/W	Sugges Output Rang GH: 2-6 1-3	sted ? Freq. Eff ge as z	Typical ² ficiency Tripler % 55 60	Number of Chips
Model Number MA-44051 MA-44052 MA-44053	P VA Power Case Styl	RACT r Appl B C Voice Vo	ORS icatio Vin.1 reak- down ltage /olts 80 20 75	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0	ct. c. @ V = Max. 1.6 3.0 6.0	Minor Carri Lifett nS Min. 40 80 90	me Max.	Max. Snap Time pS 120 220 500	Max. Therma Resist. OC/W 15 7.5	Sugge: Coutput Ran GH: 2-6 1-3 5-2	sted T Freq. Eff ge as z	Typical ² ficiency Tripler % 55 60 60	Number of Chips
Model Number MA-44051 MA-44053 MA-44070	P VA Power Styl	RACT r Appl B G e Voie V	ORS ication with the control of the	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3	ct. c. @ V = Max. 1.6 3.0 6.0	Minor Carri Lifeti nS Min. 40 80 90 15	me Max. 120 240 500 50	Max. Snap Time pS 120 220 500 100	Max. Thermal Resist. OC/W 15 7.5 5	Sugge: Output Rang GH: 2-6 1-3 5-2 8-1	sted Treq. Eff ge as z	Typical ² ficiency Tripler % 55 60 60 40	Number of Chips 3 3 3 2
Model Number MA-44051 MA-44052 MA-44053	P VA Power Case Styl	RACT r Appl B G e Voie V	ORS icatio Vin.1 reak- down ltage /olts 80 20 75	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0	ct. c. @ V = Max. 1.6 3.0 6.0 0.7	Minor Carri Lifett nS Min. 40 80 90	me Max.	Max. Snap Time pS 120 220 500 100	Max. Thermal Resist. OC/W 15 7.5 5 20 29	Sugges Output Rang GH: 2-6 1-3 5-2 8-1 8-1	sted Treq. Eff ge as z	Typical ² ficiency Tripler % 55 60 60 40 40	Number of Chips 3 3 3 2 2
Model Number MA-44051 MA-44053 MA-44070	P VA Power Styl 56 56 30 111	RACT r Appl B C e Voice V	ORS ication with the control of the	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.3 0.7	ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7	Minor Carri Lifeti nS Min. 40 80 90 15 15 40	Max. 120 240 500 50 120	Max. Snap Time pS 120 220 500 100 100 180	Max. Thermal Resist. OC/W 15 7.5 5 20 29	Sugge: Output	sted Tereq. Eff ge as z	Typical ² ficiency Tripler % 55 60 60 40 40 50	Number of Chips 3 3 3 2 2 2
Model Number MA-44051 MA-44053 MA-44070 MA-44071	P VA Power Styl 56 56 30 111 30	RACT r Appl B G V G S 12 S 11 S 11 S 11 S 11 S 11 S 11 S	ORS icatio Win.1 reak- lown ltage /olts 80 20 75 60 60 80 80	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.3 0.7 0.7	ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7 1.2	Minor Carri Lifett nS Min. 40 80 90 15 15 40 40	Max. 120 240 500 50 120 120	Max. Snap Time pS 120 220 500 100 100 180 180	Max. Thermal Resist. OC/W 15 7.5 5 20 29 15 15	Sugge: Output Range GH: 2-6 1-3 5-2 8-1 3-8 3-8	sted Tereq. Effge as z	Typical ² ficiency Tripler % 55 60 60 40 40 50	Number of Chips 3 3 2 2 2 2
Model Number MA-44051 MA-44052 MA-44073 MA-44071 MA-44060	P VA Power Styl 56 56 30 111 30 111	RACT r Appl B c e Vo 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ORS ication with the second se	Ons Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.3 0.7 0.7	ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7 1.2 1.6	Minor Carri NS Min. 40 80 90 15 15 40 40 60	max. 120 240 500 50 120 120 120	Max. Snap Time pS 120 220 500 100 100 180 180 200	Max. Thermal Resist. OC/W 15 7.5 5 20 29 15 15 12	Sugge: Output Ran GH: 2-6 1-3 5-2 8-1 8-1 3-8 3-8 2-6	sted Tereq. Effige as z	Typical ficiency Tripler % 55 60 40 40 50 50 55	2 Number of Chips 3 3 3 2 2 2 2 2 2 2 2 2
Model Number MA-44051 MA-44052 MA-44053 MA-44070 MA-44071 MA-44060 MA-44061	P VA Power Styl 56 56 30 111 30	RACT r Appl B c e Vo 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ORS icatio Win.1 reak- lown ltage /olts 80 20 75 60 60 80 80	Dins Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.3 0.7 0.7	ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7 1.2	Minor Carri Lifett nS Min. 40 80 90 15 15 40 40	Max. 120 240 500 50 120 120	Max. Snap Time pS 120 220 500 100 100 180 180	Max. Thermal Resist. OC/W 15 7.5 5 20 29 15 15	Sugge: Output Range GH: 2-6 1-3 5-2 8-1 3-8 3-8	sted Tereq. Effige as z	Typical ² ficiency Tripler % 55 60 60 40 40 50	Number of Chips 3 3 2 2 2 2
Model Number MA-44051 MA-44053 MA-44070 MA-44071 MA-44060 MA-44061 MA-44060	P VA Power Styl 56 56 30 111 30 111	RACT r Appl B G V G S S S S S S S S S S S S S S S S S	ORS ication with the second se	Ons Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.7 0.7 1.2 1.2	Ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7 1.2 1.6 1.6	Minor Carrier nS Min. 40 80 90 15 15 40 40 60 60 60	max. 120 240 500 50 120 120 180 180	Max. Snap Time pS 120 220 500 100 100 180 180 200 200	Max. Thermal Resist. OC/W 15 7.5 5 20 29 15 15 12	Sugge: Output Ran GH: 2-6 1-3 5-2 8-1 8-1 3-8 3-8 2-6	sted Tereq. Effige as z	Typical ficiency Tripler % 55 60 40 40 50 50 55	2 Number of Chips 3 3 3 2 2 2 2 2 2 2 2 2
Model Number MA-44051 MA-44052 MA-44053 MA-44070 MA-44060 MA-44061 MA-44060 MA-44058	P VA Power Styl 56 56 30 111 30 111	RACT r Appl B G V G S S S S S S S S S S S S S S S S S	ORS icatio Vin.1 reak- down ltage /olts 80 20 75 60 60 80 80 00 V ED V	Ons Jun Capa —6 pl Min. 0.8 1.6 4.0 0.3 0.3 0.7 1.2 1.2	ct. c. @ V = Max. 1.6 3.0 6.0 0.7 0.7 1.2 1.6 1.6	Minor Carrier nS Min. 40 80 90 15 15 40 40 60 60 60	max. 120 240 500 50 120 120 180 180	Max. Snap Time pS 120 220 500 100 180 180 200 200	Max. Thermal Resist. OC/W 15 7.5 5 20 29 15 15 12	Sugge: Output Ran GH: 2-6 1-3 5-2 8-1 8-1 3-8 3-8 2-6	sted Freq. Eff ge as z	Typical ficiency Tripler % 55 60 40 40 50 50 55	2 Number of Chips 3 3 3 2 2 2 2 2 2 2 2 2

n\$

240

180

120

50

Max. Min. Max.

80

60

40

15

Voltage

Volts

120

100

80

60

Case

Style

122

122

122

122

Model

Number

MA-44010

MA-44020

MA-44030

MA-44040

pF

2.5

1.6

1.2

0.7

Min.

1.6

1.2

0.7

0.3

Time

pS

220

200

180

100

Resist.

°C/W

7

12

15

20

VARACTOR CHIPS⁶ Snap Chips

Chip Model	Chip	Packaged Diode	Suggested Output Freq. Range	-	pac. @ -6V pF	Break Volt Vol	•
Number	Style	Model Number	GHz	Min.	Max.	Min.	Max.
MA-43030	132	MA-43000	1–3	3.0	4.5	85	105
MA-43031	132	MA-43002	3–7	1.6	2.4	45	70
MA-43032	134	MA-43004	7–12	0.45	0.85	30	45
MA-43033	134	MA-43592	10-20	0.20	0.30	25	40
Dualmode Chips							
MA-43034	132	MA-44220	1–3	3.0	8.0	75	100
MA-43035	132	MA-44230	2–6	1.0	3.5	45	75
MA-43036	134	MA-44240	6-12	0.5	1.5	25	45
MA-43037	134	MA-44250	10-20	0.2	0.6	15	40

NOTES:

- 1. Breakdown Voltage is measured at $-10~\mu\text{A}$.
- Doubler efficiencies are typically 5--20% greater than Tripler efficiencies. Quadruplers, typically 10% less than Triplers.
- 3. Junction Capacitance measured at -60V.
- 4. Junction Capacitance measured at 0 V.

 Also available in non-magnetic package for YIG tuned comb generators.

Junct.

6. Detailed electrical specifications for these diodes are listed under the packaged diode type number. Only capacitance and breakdown are measured on unpackaged diodes. Capacitance Ratio is C $_{\mbox{TO}}/\mbox{ C}_{\mbox{T-6}}$.

TYPICAL

TYPICAL

TYPICAL

L_p = .40 nH

= .18 pF

	INC	HE8		10,0
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.119	.127	3,02	3,23
8	.060	.084	1,52	1,63
С	.205	.225	5,21	5,72
D	.085	.097	2,16	2,46
E	.060	.064	1,52	1,63
F	.060	.064	1,52	1,63
G	.016	.024	0,41	0,61
_н	.079	.083	2,01	2,11

- 1	INC	CHES		100
D984.	MIN.	MAX	MH.	MAX
A	-	.240	Γ	6,10
В	.092	.084	2,34	2,39
C .	.155	.165	3,94	4,19
D	.185	.196	4,70	4,96
Ε	.030	.046	0.76	1,17
F	.130	REF.	3,30	REF.
G	-	.030		0,76
н	.180	.190	4,67	4,83
j j	.146	.156	3,68	3,94
K	.096	.106	2,41	2,67
L	.766	.792	19,46	20,12
M	.180	.190	4,67	4,83
			TYPI	

TYPICAL

L_p= 3.0nH

L_p = .3 nH

C_p = .30 pF

			C _p =	.6 nH .75 p
	INC	HE8	I M	NI.
DIM.	MIN.	MAX.	MIN.	MAX
Α	.255	.265	6,5	6,75
8	.208	.212	5,3	5.4
С	.440	.460	11,18	11,70
D	.119	.131	3.03	3,302
E	.050	REF.	1,27	REF.
F	.025	.035	0,606	0.900
G	.020×45 ^Q	REE	0.508×45	REF.

	IN	CHES	S MM				
DIM.	MIN.	MAX.	MIN.	MAX			
Α	119	.127	3,02	3,23			
В	060	.062	1,52	1,57			
c	077	083	1,96	2,11			
D	.115	129	2,92	3,28			
E	060	.064	1,52	1,63			
F	055	065	1,40	1,65			
G	.016	024	0.41	0,61			

Denotes Cathode End.

Not to scale.

1,75 1,35

1,78 2,03

1,02 1,27

0,61 0,66 0,10 0,25

1,50

INCHES MIN. MAX.

A .059 .089 8 .047 .053

C .070 .080

D .040 .050

E .024 .028 F .004 .010

.015

TYPICAL L_p = .12 nH $C_p = .15 pF$

122

					TYPICAL L _p = .4 nH
	IN	CHES	M	M	Cp = .4 pF
DIM.	MIN.	MAX.	MIN.	MAX.	p ·
Α	075	085	1,90	2,16	
В	.095	105	2,41	2,68	
С	096	128	2,44	3,25	
0	800	.012	0,202	0,304	
E	.241	.281	6,12	7,14	

103

TYPICAL L_p = .3 nH C_p = .27 pF INCHES MIN, MAX, MIN. MAX. 3,03 3,25 2,5 2,6 .119 127 .098 .102 188 208 4,8 5,3 D .058 071 1,5 1,8 E .009 .011 0,25 0,28 F .016 024 0,40 0,60 G .050 NOM 1,27 NOM.

132

	(N)	CHES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	020	024	0,508	0,609	
В	020	024	0,508	0,609	
С	.003	006	0.076	0.152	

111

	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX
Α	119	127	3,02	3,22
В	098	102	2.49	2,59
С	186	208	4,78	5.28
D	.057	071	1,45	1,80
E	016	024	0,41	0,61
F	009	011	0.23	0,28
G	030	040	0.76	1,02

TYPICAL L_p = .30 nH C_p = .27 pF

	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX.
Α	119	127	3,02	3,22
В	098	102	2.49	2,59
С	186	208	4,78	5.28
D	.057	071	1,45	1,80
E	016	024	0,41	0,61
f	009	011	0.23	0,28
G	030	040	0.76	1,02
н	015	025	0.38	0.64

NOTE: • Denotes Cathode.

134

	INCHES		MM	
DIM.	MIN.	MAX.	MIN. MAX.	
Α	0135	0165	0,3429	0,4191
В	0135	0165	0.3429	0,4191
С	.0035	.0065	0,0889	0,1651

HOW TO SELECT SILICON MULTIPLIER VARACTORS FOR HARMONIC GENERATION

When selecting a diode for a multiplier circuit, the following constants exist:

- Input frequency
- Output frequency
- Bandwidth
- Required power
- Circuit media coaxial, stripline or waveguide

The choice of using a SNAP or DUALMODE varactor depends on the results required.

SNAP Varactors

- 1. High Efficiency
- 2. Narrow Bandwidth
- 3. Both Low and High Order Multipliers
- 4. Comb generators

A SNAP varactor is an epitaxial diffused varactor designed to store charge when conducting in the forward direction. It conducts for a short time under reverse bias until this charge is swept out by the drive. Then the conduction ceases very abruptly. The lifetime is a measure of the time the diode will store charge, and the snap time, the speed at which reverse conduction ceases.

In general, SNAP varactors have very little capacitance change at reverse biases beyond zero bias.

DUALMODE Varactor

The DUALMODE varactor is designed for low order broadband (10-20%) multipliers (times 2 to times 4). It also works well in low order, high power, narrow band multipliers. It is inferior in high order multiplication (more than times 4). It differs principally from the SNAP diode in having a capacitance change of approximately 1,5:1 between zero bias and -6 volts. In general, the large signal series resistance at a few volts can be somewhat lower than a SNAP diode. Selection of the DUALMODE diode should be made in the same manner except that the bias resistor should be approximately double that used with a similar SNAP varactor at the same multiplication ratio. SNAP and DUALMODE varactors usually are not interchangeable in the same circuit because of their different large signal impedances. In general DUALMODE varactors require idler circuits while SNAP diodes do not.

HOW TO SELECT A MULTIPLIER VARACTOR

The important parameters to optimize are listed below in the usual order of selection:

Capacitance — C_T

The capacitive reactance of the diode at the operating bias should be a minimum of 30 ohms and preferably 60 ohms at the output frequency. Special circuits can be used with lower reactances but in general efficiency will suffer.

An additional constraint is imposed because this capacitance must be compatible with the required diode thermal impedance. The thermal resistance is an inverse function of the capacitance.

MULTIPLIER VARACTOR CAPACITIVE REACTANCE VS. FREQUENCY

HOW TO SELECT A SILICON MULTIPLIER VARACTOR (Continued)

Snap Time - Ts

The snap time or transition time is the time for the diode to switch from a conducting to a non-conducting state. The snap time should be less than the reciprocal of the output frequency.

Lifetime - T_I

The lifetime is a measure of the time required for stored charge to be recovered. It must be long enough for the diode to permit RF current to reach a negative peak before it snaps.

The lifetime of a diode should be a minimum of 10 times 1/F_{IN}

$$T_L \ge 10/F_{1N}$$
 and $\frac{20 \text{ to } 30}{F_{1N}}$ is a better choice.

Package Parasitics - Lp, Cp

The diode package parasitics should be small enough such that the series and parallel resonances will be well above the maximum operating frequency.

Thermal Resistance $-\theta_{JC}$

The thermal resistance of the diode must be small enough to allow the diode to remain within the maximum allowable operating temperature. It must be commensurate with the power to be dissipated, i.e.

$$\theta_{\text{JC}} = \frac{T_{\text{diode max.}} - T_{\text{A}}}{P_{\text{Diss.}}}$$

Where: θ_{JC} = Thermal Resistance (${}^{O}C/W$)

T_{diode max.} = Max. allowable diode temperature (^oC)

T_A = Heat sink maximum temperature (°C)

P_{Diss.} = Power dissipated in the diode under worst case - (Power in - Power out) (Watts)

HOW TO SELECT A SILICON MULTIPLIER VARACTOR (Continued)

Breakdown Voltage - V_B

The minimum required breakdown voltage of the varactor can be obtained by:

$$V_B = K \sqrt{\frac{2 Po}{F_{in} C_{TR}}}$$

Po = Power out at Fout - in Watts

F_{in} = Input frequency in hertz

 C_{TR} = Total capacitance in Farads @ -6 Volts

K = 0.8 for $N \le 4$

K = 1.5 for N > 4

Bias Resistor Selection - Rb

The bias resistor for a SNAP and DUALMODE varactor can be calculated by:

SNAP Varactors

DUALMODE Varactors

$$R_b = \frac{5 T_L}{N^2 C_{TR}}$$

$$R_b = \frac{10 T_L}{N^2 C_{TR}}$$

Where: $T_1 = Lifetime$ (Seconds)

N = Order of Multiplication

CTR = Total Capacitance @ -6 Volts (Farade)

BEST CHOICE OF VARACTOR BY TYPE OF SOURCE

BEST DIODE FOR APPLICATION	HIGH ORDER MULTIPLIER COMB GENERATORS (X 4 OR GREATER)	BROAD BAND MULTIPLICATION (X 4 MAX)	HIGH POWER LOW ORDER (LESS THAN X 4 MAX)	HIGH POWER HIGH FREQUENCY	UPCONVERTERS OR DEMODULATORS	GUARANTEEC CIRCUIT PERFORMANCE
SNAP MA-44100 SERIES	×		x			
DUALMODE MA-44200 SERIES		x	×		×	
RF CIRCUIT TESTED SNAP MA-43000 SERIES	×		×			×
POWER PACK SERIES STACKED VARACTOR MA-44000 SERIES				ABOVE 4 GHz X		

TYPICAL PERFORMANCE CURVES (Continued) MA-4B300 MA-4B300 OUTPUT POWER vs. MULTIPLICATION RATIO MA-4B300 **OUTPUT POWER** 32 WATTS CAPACITANCE vs. VS. INPUT POWER X 12 N 10 REVERSE VOLTAGE 14.0 ᆸ 12.0 TOTAL CAPACITANCE 2.0 GHz GHZ 10.0 @ 2.0 (8.0 6 POWER BUTPUT OUTPUT 6.0 4.0 POWER 2.0 0 0 0 40 60 80 100 6 10 12 16 32 REVERSE VOLTAGE **MULTIPLICATION RATIO** POWER IN @ 0.4 GHz W MA-43000 MA-43000 OUTPUT POWER AT 2 GHz vs. ORDER OF MULTIPLICATION OUTPUT POWER AT 2 GHz vs. INPUT POWER IN X6 MULTIPLIER AT 2 GHZ WATTS POWER OUTPUT PIN 15 WATTS AT 2 IN 8 WATTS 0 8 12 16 20 0 10 POWER IN AT 333 MHz ORDER OF MULTIPLICATION N MA-43000 MA-43000 OUTPUT POWER vs. TEMPERATURE IN X6 MULTIPLIER LIFETIME vs. TEMPERATURE 40 POWER OUTPUT AT 2 GHz WATTS PIN 15 WATTS PERCENT CHANGE 8 WATTS -80 -40 -80 -40 40 80 100 40 100 °c °c TEMPERATURE TEMPERATURE MA-43000 LIFETIME PERCENT CHANGE IN LIFETIME MA-43000 Vs. FORWARD CURRENT CAPACITANCE VS. REVERSE VOLTAGE 70 ᆸ CAPACITANCE 50 PERCENT CHANGE

60 80

6 8 10

REVERSE VOLTAGE

25

25

FORWARD CURRENT, I

100

mΑ

TYPICAL PERFORMANCE CURVES (Continued)

MA:43004

TYPICAL OUTPUT POWER vs. INPUT POWER IN A X5 MULTIPLIER

MA-43004

TEMPERATURE OC
MEASURED WITH TEMPERATURE COMPENSATION CIRCUIT

MA-43004

MA-43004

MA-43004

MA-43004

GaAs **Multiplier Varactors**

MA-48700 Series

DESCRIPTION

The MA-48700 series of Gallium Arsenide multiplier Varactors is specifically designed to provide single-stage, high order multiplication at output frequencies ranging from 3 to 80 GHz. These diodes are diffused junction epitaxial devices. All varactors in this series are available in a choice of 15 different case assemblies and in chip form. Available case assemblies are shown at the rear of this bulletin. The cathode is a heat sink end of the package.

APPLICATIONS

This series of Gallium Arsenide multiplier diodes are intended for medium power harmonic generation with high conversion efficiency.

ELECTRICAL CHARACTERISTICS @ TA = 25°C

F _C O	C _{JO} (pF)								
GHz	.150199	.200249	.250299	.300349	.350399				
100	MA-48701-A	MA-48702-A	MA-48703-A	MA-48704-A	MA-48705-A				
125	MA-48701-B	MA-48702-B	MA-48703-B	MA-48704-B	MA-48705-B				
150	MA-48701-C	MA-48702-C	MA-48703-C	MA-48704-C	MA-48705-C				
175	MA-48701-D	MA-48702-D	MA-48703-D	MA-48704-D	MA-48705-D				
200	MA-48701-E	MA-48702-E	MA-48703-E	MA-48704-E	MA-48705-E				
225	MA-48701-F	MA-48702-F	MA-48703-F	MA-48704-F	MA-48705-F				
250	MA-48701-G	MA-48702-G	MA-48703-G	MA-48704-G	MA-48705-G				
275	MA-48701-H	MA-48702-H	MA-48703-H	MA-48704-H	MA-48705-H				
300	MA-48701-I	MA-48702-I	MA-48703-I	MA-48704-I	MA-48705-I				
325	MA-48701-J	MA-48702-J	MA-48703-J	MA-48704-J					
350	MA-48701-K	MA-48702-K	MA-48703-K						

Fo		C _{JO} (pF)							
F _C O GHz	.400449	.450499	.500549	.550599	.600649	.650699			
100 125	MA-48706-A MA-48706-B	MA-48707-A MA-48707-B	MA-48708-A MA-48708-B	MA-48709-A MA-48709-B	MA-48710-A MA-48710-B	MA-48711-A MA-48711-B			
150 175	MA-48706-C MA-48706-D	MA-48707-C MA-48707-D	MA-48708-C MA-48708-D	MA-48709-C MA-48709-D	MA-48710-C MA-48710-D	MA-48711-C MA-48711-D			
200 225	MA-48706-E MA-48706-F	MA-48707-E MA-48707-F	MA-48708-E	MA-48709-E	MA-48710-E	MA-48711-E			

NOTES:

All GaAs multiplier diodes are available in any case style shown in this bulletin as well as in chip form. When ordering, specify the desired case by adding the case designation as a suffix to the type number. For example: on MA-48703-G-155 specifies a GaAs multiplier diode with a minimum cutoff frequency at 0 volts of 250 GHz and a C_J of between .250 and .299. The device is

- packaged in the 155 case style.

 Junction Capacitance (C) is measured at 1 MHz and 2. 0 volts, on a bridge which has been balanced with a shielded test holder connected in place - but open circuited.
- 3. Package paraeltics (C_p and L_p) are given along with package outlines elsewhere in this bulletin. The $C_{
 m p}$ values listed are typically \pm .02 pF. However th actual package capacitance of each diode is measured to within ± .0025 pF. Parasitic inductance has been determined at X-band using DeLoach measurements.
- Cutoff frequency measurements (F $_{\text{C}_{\text{O}}}$) are made at 0 volts using the DeLoach method. See curve of Figure 1 showing typical F_{C_6} (cutoff at -6 volts) versus F_{C_O} (cutoff at 0 volts) performance curve.

The measured series resonant frequency of each varactor will be supplied with the Diode.

6.
$$\Delta N_J = \frac{C_{J_O} - C_{J_{-6}}}{C_{J_O}} = .52 \text{ Typical}$$

$$\beta = \begin{array}{c} C_{J} + .5 \\ \hline C_{J} - 2 \end{array} = 2.20 \text{ Typical}$$

- All GaAs multiplier diodes are subjected to a 48 hour 100°C electrical burn-in before final tests. During this period, each device is stressed 60 times per second with 30 mA in the forward direction and 5 volts in the back direction.
- 8. Typical breakdown voltage is between 18 and 25 volts at -10 µA. Custom tailored breakdown voltages are available on request.
- De Loach holders for cutoff frequency measurements as well as shielded test fixtures for measuring capacitance are available for purchase.

TYPICAL PERFORMANCE CURVE

FIGURE 1 TYPICAL RELATIONSHIP BETWEEN CUTOFF FREQUENCY AT ZERO AND SIX VOLTS IN GAAL VARACTOR DIODE 800 700 600 500 400 300 200 100 100 F_{CO} GHz

FIGURE 2 VARACTOR DIODE EQUIVALENT CIRCUIT

THE DELOACH METHOD FOR VARACTOR CHARACTERIZATION

Many methods exist for measuring the quality factor or cutoff frequency (F_c) of varactor diodes. Among the most widely used methods are the reflection coefficient techniques of Houlding [1] and Harrison [2]. Unfortunately, at high microwave frequencies, varactor "parasitics" such as supporting structures, contacting straps, and case capacitance tend to make reflection test set calibrations difficult. Also, as varactor quality factor increases, the accuracy of these techniques decreases.

In 1964, DeLoach [3] devised a method for varactor characterization that avoided the above difficulties. This method involved the series resonance of a varactor diode and yielded not only series resistance but junction capacitance and parasitic inductance at any bias voltage. All of these parameters were determined at the self-resonant frequency of the device and in a defined microwave environment. However, the case capacitance of DeLoach's packaged diodes was essentially non existent thus simplifying certain mathmatical solutions. Many widely used industrial varactor packages do have case capacitances that may in fact be larger than the device's junction capacitance.

It can be shown that the inclusion of case capacitance in the equivalent varactor circuit (shown in Figure 2) will modify the determination of cutoff frequency obtained by DeLoach's methods.

DeLoach's formula for diode resistance is as follows:

$$R_{m} = \left(\frac{Z_{o}}{2}\right) \left(\frac{1}{\sqrt{T \cdot 1}}\right) \tag{1}$$

Expansion of the expression for the real part of the total diode impedance, however, reveals that:

$$R_{S_{V}} = (X_{c_{p}})^{2} - \sqrt{(X_{c_{p}})^{4} \cdot (4) (R_{m})^{2} (X_{L_{S}} + X_{c_{p}} + X_{c_{j}})^{2}}$$
(2)

It follows that:

$$F_{c_{v}} = \frac{1}{2\pi R_{s_{v}} C_{j_{v}}}$$
 (3)

where:

T = power transmission loss ratio

Zo = characteristic guide impedance at resonance

$$R_{-} = Re [Z_v]$$

 C_i = junction capacitance at Reverse bias voltage V

 X_{c_j} , X_{c_p} , X_{L_S} = junction, package, and inductive reactances respectively

 R_{s} = junction series resistance at voltage V

F_{c.} = varactor figure of merit or cutoff frequency at voltage V

DIGITAL

DeLoach's method not only results in additional information for the circuit designer, but is a more repeatable measurement that allows much greater accuracy in diode selection resulting in increased customer yields. De Loach's measurements, however, are only as good as the diode holder used. Figure 3 shows a typical DeLoach holder in cross-sectioned view. This is but one of 36 different holders used by M/A to evaluate GaAs varactors over a total frequency range of 5 GHz to 40 GHz. Each holder is computer designed to cover a full waveguide band. The waveguide height in each case is reduced to the ceramic height of the diode package under test. The VSWR of each holder and choke combination is less than 1.1:1 across the waveguide band. Figure 4 is a block diagram of the DeLoach test circuit.

TYPICAL DELOACH HOLDER FIGURE 3

FIGURE 4 TYPICAL DELOACH TEST SET

- Houlding, N., "Measurement of Varactor Quality", Microwave Journal, Volume 3, No. 1, January 1960. [1]
- Harrison, R., "Parametric Diode Q Measurements", Microwave Journal, Volume 3, No. 5, May 1960. [2]
- DeLoach, B.C., "A New Microwave Measurement Technique to Characterize Diodes and an 800 Gc Cutoff Frequency [3] Varactor at Zero Volts Bias", IEEE Transactions on M.T. & T., January 1964.

.117 .123

.060 .064 016 .024

D .055 .065
E .174 .194
F .077 .083
G .033 REF.

2,97

0,40 0,61

1,40 1,65

4,42 4,93 1,96 2,11 0,84 REF.

159	TYPICAL L _s = .60 i	n H
	H C _p =.15 g	۶F
	H DIA. B DIA.	
	A	
•	DIA.	

	INC	HES	Mend		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.119	.127	3,02	3,23	
В	.060	.064	1,52	1,63	
С	.205	.225	5,21	5,72	
D	.085	.097	2,16	2,46	
E	060	.064	1,52	1,63	
F	.060	.064	1,52	1,63	
G	.016	.024	0,41	0,61	
н	.079	.083	2,01	2,11	

	IN	CHES	MANA		
DIM.	MIN.	MAX.	MIN.	MAX	
Α	,117	.123	2,97	3,12	
8	.016	.024	0,41	0,61	
С	.055	.065	1,40	1,65	
D	.117	.127	2,97	3,23	
E	.060	.064	1,52	1,63	
F	.077	083	1,96	2,11	
G	.03	3 REF.	0,8	REF.	

	IN	CHES	l n	em
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.028	.032	0,71	0,81
В	.084	.096	2,13	2,44
С	.028	.032	0,71	0,81
D	.079	.081	2,01	2,06
E	.024	.026	0,61	0,66
F	.008	.010	0,20	0,25
G	.048	.054	1,22	1,37
н	.024	.026	0,61	0,66

Denotes Cathode End.

Not to scale.

POWER GENERATION AND AMPLIFICATION

GaAs Parametric Amplifier Varactors

Bulletin 4850

MA-48500 Series

FEATURES

- High cutoff frequency
- Operating temperatures from 4^oK to 352^oK
- Low noise temperature
- Large gain-bandwidth capability
- High pump efficiencies
- Custom tailored designs available on request

APPLICATIONS

This series of Gallium Arsenide paramp diodes is useful in either degenerate or non-degenerate parametric amplifiers. Low diode series resistances result in minimum amplifier noise temperatures while large capacitive nonlinearities provide maximum pump efficiencies.

DESCRIPTION

The MA-48500 series of diffused junction epitaxial Gallium Arsenide Varactors is specifically designed for use in both room temperature and cryogenically cooled parametric amplifiers. High gain-bandwidth products can be achieved using these diodes over the signal frequency range of 1 GHz to 35 GHz with pump frequencies as high as 90 GHz. All varactors in this series are available in a choice of 15 different case assemblies and in chip form as shown elsewhere in this bulletin. The cathode is the heat sink end of the package. Reverse polarity is available on request.

GaAs Parametric Amplifier Varactors

MA-48500 Series

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Fco	C _{JO} (pF)										
(GHz)	.150199	.200249	.250299	.300349	.350399						
100	MA-48501-A	MA-48502-A	MA-48503-A	MA-48504-A	MA-48505-A						
125	MA-48501-B	MA-48502-B	MA-48503-B	MA-48504-B	MA-48505-B						
150	MA-48501-C	MA-48502-C	MA-48503-C	MA-48504-C	MA-48505-C						
175	MA-48501-D	MA-48502-D	MA-48503-D	MA-48504-D	MA-48505-D						
200	MA-48501-E	MA-48502-E	MA-48503-E	MA-48504-E	MA-48505-E						
225	MA-48501-F	MA-48502-F	MA-48503-F	MA-48504-F	MA-48505-F						
250	MA-48501-G	MA-48502-G	MA-48503-G	MA-48504-G	MA-48505-G						
275	MA-48501-H	MA-48502-H	MA-48503-H	MA-48504-H							
300	MA-48501-I	MA-48502-I	MA-48503-I								
325	MA-48501-J	MA-48502-J									
350	MA-48501-K	MA-48502-K									

F _{CO}		C _{JO} (pF)											
(GHz)	.400449	.450499	.500549	.550599	.600649	.650699							
100	MA-48506-A	MA-48507-A	MA-48508-A	MA-48509-A	MA-48510-A	MA-48511-A							
125	MA-48506-B	MA-48507-B	MA-48508-B	MA-48509-B	MA-48510-B	MA-48511-B							
150	MA-48506-C	MA-48507-C	MA-48508-C	MA-48509-C	MA-48510-C	MA-48511-C							
175	MA-48506-D	MA-48507-D	MA-48508-D	MA-48509-D	MA-48510-D	MA-48511-D							
200	MA-48506-E	MA-48507-E	MA-48508-E	MA-48509-E	MA-48510-E	MA-48511-E							
225	MA-48506-F	MA-48507-F											

NOTES: (Continued on following page.)

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

NOTES:

 All GaAs Paramp diodes are available in any case style shown in this bulletin as well as in chip form. When ordering, specify the desired case by adding the case designation as a suffix to the type number. For example: MA-48503-G-155 specifies a paramp diode with a minimum cutoff frequency at 0 volts of 250 GHz and a C_J of

between .250 and .299. The device is packaged in the ODS-155 case.

2. Junction Capacitance (C $_{\mbox{\scriptsize j}}$) is measured at 1 MHz and

O volts, on a bridge which has been balanced with a shielded test holder connected in place — but open circuited.

3. Package parasitics (C $_{
m p}$ and L $_{
m p}$) are given along with package outlines elsewhere in this bulletin. The C $_{
m p}$ values listed are typically \pm .02 pF. However,

the actual package capacitance of each diode is measured to within $\pm\,.0025~\text{pF}.$

4. Cutoff frequency measurements (F $_{\mathbf{C_O}}$) are made at 0

volts using the Deloach method. See curve of Figure 1 showing typical $F_{C_{-6}}$ (cutoff at -6 volts) versus $F_{C_{O}}$

(cutoff at 0 volts) performance curve.

The measured series resonant frequency of each varactor will be supplied with the diode.

6. $C_{J} - C_{J}$ $\Delta N_{J} = \frac{C_{J} + .5}{C_{J}} = .62 \text{ typical}$ $\beta = \frac{C_{J} + .5}{C_{J}} = 2.20 \text{ typical}$

- All paramp varactors are cycled to liquid nitrogen temperatures to assure cryogenic performance.
- All GaAs Paramp diodes are subjected to a 48 hour 100°C electrical burn-in before final tests. During this period, each device is stressed 60 times per second with 30 mA in the forward direction and 5 volts in the back direction.
- 9. Minimum breakdown voltage is 10 volts at 10 μ A.
- De Loach holders, for cutoff frequency measurements, as well as shielded test fixtures, for measuring capacitance, are available for purchase.

TYPICAL PERFORMANCE CURVE

FIGURE 1 TYPICAL RELATIONSHIP BETWEEN CUTOFF FREQUENCY AT ZERO AND SIX VOLTS IN GAAS VARACTOR DIODE

FIGURE 2 VARACTOR DIODE EQUIVALENT CIRCUIT

THE DELOACH METHOD FOR VARACTOR CHARACTERIZATION

Many methods exist for measuring the quality factor or cutoff frequency (F_c) of varactor diodes. Among the most widely used methods are the reflection coefficient techniques of Houlding [1] and Harrison [2]. Unfortunately, at high microwave frequencies, varactor "parasitics" such as supporting structures, contacting straps, and case capacitance tend to make reflection test set calibrations difficult. Also, as varactor quality factor increases, the accuracy of these techniques decreases.

In 1964, DeLoach [3] devised a method for varactor characterization that avoided the above difficulties. This method involved the series resonance of a varactor diode and yielded not only series resistance but junction capacitance and parasitic inductance at any bias voltage. All of these parameters were determined at the self-resonant frequency of the device and in a defined microwave environment. However, the case capacitance of DeLoach's packaged diodes was

essentially non existant thus simplifying certain mathmatical solutions. Many widely used industrial varactor packages have case capacitances that may in fact be larger than the device's junction capacitance.

It can be shown that the inclusion of case capacitance in the equivalent varactor circuit (shown in Figure 2) will modify the determination of cutoff frequency obtained by DeLoach's methods.

DeLoach's formula for diode resistance is as follows:

$$R_{m} = \left(\frac{Z_{o}}{2}\right) \left(\frac{1}{\sqrt{T-1}}\right) \tag{1}$$

Expansion of the expression for the real part of the total diode impedance, however, reveals that:

$$R_{S_{V}} = (X_{c_{p}})^{2} - \sqrt{(X_{c_{p}})^{4} \cdot (4) (R_{m})^{2} (X_{L_{S}} + X_{c_{p}} + X_{c_{j}})^{2}}$$
(2)

It follows that:

$$F_{c_{v}} = \frac{1}{2\pi R_{s_{v}} C_{j_{v}}}$$
 (3)

where:

T = power transmission loss ratio

Zo = characteristic guide impedance at resonance

 $R_m = Re [Z_v]$

 $\mathbf{C_i}$ = junction capacitance at Reverse bias voltage \mathbf{V}

 $X_{c_i}, X_{c_p}, X_{L_S}$ = junction, package, and inductive reactances respectively

 R_s = junction series resistance at voltage V

 $F_{c_{u}}$ = varactor figure of merit or cutoff frequency at voltage V

- [1] Houlding, N., "Measurement of Varactor Quality", Microwave Journal, Volume 3, No. 1, January 1960.
- [2] Harrison, R., "Parametric Diode Q Measurements", Microwave Journal, Volume 3, No. 5, May 1960.
- [3] DeLoach, B.C., "A New Microwave Measurement Technique to Characterize Diodes and an 800 Gc Cutoff Frequency Varactor at Zero Volts Bias", IEEE Transactions on M.T. & T., January 1964.

THE DELOACH METHOD FOR VARACTOR CHARACTERIZATION (Continued)

32

DeLoach's method not only results in additional information for the circuit designer, but is a more repeatable measurement that allows much greater accuracy in diode selection resulting in increased customer yields. DeLoach's measurements, however, are only as good as the diode holder used. Figure 3 shows a typical DeLoach holder in cross-sectioned view. This is but one of 36 different holders used by M/A to evaluate GaAs varactors over a total frequency range of 5 GHz to 40 GHz. Each holder is computer designed to cover a full waveguide band. The waveguide height in each case is reduced to the ceramic height of the diode package under test. The VSWR of each holder and choke combination is less than 1.1:1 across the waveguide band. Figure 4 is a block diagram of the DeLoach test circuit.

FIGURE 3 TYPICAL DELOACH HOLDER

FIGURE 4 TYPICAL DELOACH TEST SET

TYPICAL

DĨA

INCHES

.119 .125

.077

MAX

.083

.065

Lp = .40 nH

MIN. MAX.

3,18

2,11

3.02

1,40

= .30 pF

91

Denotes Cathode End.

L_p = .40 nH

= .30 pF

Not to scale.

OWER GENERATION AND AMPLIFICATION

MA-42020/K2000 Series

npn SILICON PLANAR TRANSISTORS for UHF and MICROWAVE APPLICATIONS

Bulletin 5201

FEATURES

- Low Cost
- Gold Metallization
- Low Noise
- High Gain

TYPICAL APPLICATIONS

IF, VHF, UHF, TV and RF Amplifiers

DESCRIPTION

This series of npn silicon planar transistors are designed especially for low cost applications demanding low noise, high gain performance. The transistors are rugged, highly reliable devices which utilize gold metallization.

2000 SERIES TRANSISTOR SPECIFICATIONS -

Model Number	KMC Model Number	Max. Noise Figure @ Ic dB	Test Current Ic mA	Min. Gain @ Ic dB	1 dB Comp. Pt. @ Ic dBm	Ft. Typ. MHz	Test Frequency MHz
MA-42020-509	K2116	1.6	1.0	25	-10	2500	60
MA-42020-509	K2069	1.6	1.5	23	-10	2200	60
MA-42021-509	K2117	2.0	1.0	25	-10	2500	60
MA-42021-509	K2071	2.5	1.5	23	-10	2100	60
MA-42022-509	K2118	2.5	1.0	25	-10	2300	60
MA-42023-509	K2070	2.0	1.5	23	-10	2300	60
MA-42024-509	K2072	3.0	1.5	23	-10	2000	60
MA-42025-509	K2112	2.5	1.0	13	-10	2500	450
_	2N5031	2.5	1.0	10	-10	2100	450
	2N3570	2.5	1.5	10	-10	2300	450
_	2N3953	3.0	1.0	10	-10	2000	450
MA-42026-509	K2113	3.0	1.0	13	-10	2300	450
_	2N5032	3.0	1.0	10	-10	2000	450
MA-42027-509	K2114	3.5	1.0	13	-10	2000	450
_	2N3880	3.5	1.5	10	-10	1800	450
	2N3839	3.9	1.5	10	-10	1200	450
_	2N3571	4.0	2.0	10	-8	1200	450
MA-42028-509	K2073	4.0	1.5	10	-10	2000	450
MA-42029-509	K2115	4.0	1.0	13	-10	1800	450
	2N5054	4.0	2.0	10	-8	1200	450
_	2N2857	4.5	1.5	10	-10	1000	450
_	2N3683	4.5	1.5	10	-10	1200	450
_	2N5179	4.5	2.0	10	-10	1300	450
-	2N5053	5.0	2.0	10	-10	1000	450
	2N3572	1.0	2.0	10	-8	1000	450

ELECTRICAL PARAMETERS & MAXIMUM RATINGS (case temperature 25°C) -

Symbol	Definition	Condition	Value
cbo	Collector-base breakdown	lc = 1 μA	30 V min.
ebo	Emitter-base breakdown	$le = 10 \mu A$	2.5 V min.
e00)	Collector cut-off current	Vcb = 15 V	10 nA max
· ፤	Current transfer ratio	Vce = 1 V	30 min.
		lc = 3 mA	300 max.
	Collector current		50 mA max
b	Output capacitance	Vcb = 10 V	1.0 pF max.

CASE STYLE -

MA-42020 SERIES GEOMETRY

INCH MM

60 MHz TEST AMPLIFIER

450 MHz TEST AMPLIFIER

Parts List

Values must be adjusted for proper operating current.

L,	Cu Strip 3/16" W x 1" L	$C_1 C_3$	1 - 10 pF
L ₂	Cu Strip 3/16" W x 1-1/4" L	C,	7 - 25 pF
L ₃	1/2 turn 1/2" diameter No. 22 wire	C_̄	2 - 8 pF
R į*	100K 1/4 W	C ₅	470 pF leadless
R ₂ *	10 K 1/4 W	c _e	1000 pF feedthru
RFC ₁	Resonant at 450 MHz	C,	500 pF mica-button

All specifications are subject to change without notice.

MA-42050/K5500 Series

npn Silicon Planar Transistors for UHF and Microwave Applications

Bulletin 5202

FEATURES

- High Gain
- Gold Metallization
- Low Noise
- Low Cost

APPLICATIONS

IF, VHF, UHF, TV and RF amplifiers and oscillators.

DESCRIPTION

This series of npn silicon planar transistors is highly reliable, rugged devices utilizing gold metallization. The design features high gain and low noise figure in amplifier applications and for low moderate power oscillators.

oise Amplifier Mode Numbe	Case	KMC Model Number	Test Frequency MHz	Mex. Noise Figure @ Ic dB	Min. Gain @ Ic dB	Test Current Ic mA	1 dB Compression @ Point Min. N.F. dBm	Typ. Ft. MHz
MA-4205	0 509, 510, 511	K5510	450	1.7	13	1.5	-10	2500
MA-4205	1 509, 510, 511	K5511	450	2.0	15	3.0	-8	2800
MA-4205	2 509, 510, 511	K5512	450	2.5	15	3.0	-8	2800
MA-4205	5 510, 511	KD5525	1000	3.0	10	3.0	-9	2600
MA-4205	6 510, 511	KD5526	1000	4.5	10	3.0	-7	2300
MA-4205	57 510, 511	KD5527	1000	3.7	10	3.0	-9	2500
	JEC	DEC PART N	0.					
	509	2N5651	450	2.0	13	3.0	-5	2500
	509	2N5652	450	2.5	13	3.0	-5	2200
Oscillato	or Transistors (Co	mmon Base) KMC		Test	Power	Power	
	Model		Model	F	requenc	y Outpu	t Dissipation	
	Number	Case Style	Number		MHz	mW	Wm	
	MA-42060	510	KD5520		2400	150	450	
	MA-42061	510	KD5521		2500	100	450	
	MA-42062	510	KD5522		2500	80	450	

ELECTRICAL PARAMETERS & RATINGS (case temperature 25°C) Symbol Definition Condition Value BV_{cbo} Collector-base breakdown $Ic = 10 \mu A$ 20 V Min. BV.bo Emitter-base breakdown le = 10 μA 2.5 V Min. 50 nA Max. Collector cut-off current Vcb = 10 V Cbo $h_{\rm FE}$ Current transfer ratio Vce = 1 V 20 Min. Ic = 3 mA40 mA Max. Collector current Output capacitance Vc = 10 V 0.75 pF Max

MA-42000/K6000 Series

npn SILICON PLANAR TRANSISTORS FOR UHF AND MICROWAVE APPLICATIONS

Bulletin 5204

FEATURES

- Low Noise
- Large Dynamic Range
- Gold Metallization
- Low Cost

TYPICAL APPLICATIONS

IF, VHF, UHF, TV and RF Amplifiers.

DESCRIPTION

This series of npn silicon planar transistors is designed to provide the lowest possible noise figure at frequencies from 10 to 700 MHz. These transistors exhibit excellent noise figure vs. current characteristics which results in extremely low noise and wide dynamic range performance. These transistors find wide application in sophisticated radar and communications equipment at VHF/UHF frequencies.

. ഒറററ	SERI	FS T	RAN9	SISTOR	SPECIE	ICATION	S
· nuuu	360			310 I C I I			•

Model Number	Case Style	KMC Model Number	Test Frequency MHz	Max. Figure Noise @ Ic dB	Min. Gain dB	Test Current Ic mA	1 dB Compression Pt. @ Ic	1 dB Compr. Pt. dBm
MA-42001	509	K6001	60	1.0	28	5.0	·-2	+16
MA-42002	509	K6002	60	1.5	28	5.0	-2	+16
MA-42003	509	K6003	60	2.0	30	5.0	-2	+16
MA-42004	509	K6011	60	1.5	30	20.0	+12	+16
MA-42005	509	K6012	60	2.0	30	20.0	+12	+16
MA-42006	510		60	4.0	35	40.0	+17	+26
MA-42007	511	KJ6007	450	1.6	18	5.0	-2	+16
MA-42008	511	KJ6008	450	2.0	18	5.0	.2	+16
MA-42009	509	K6009	450	2.5	18	5.0	-2	+16
MA-42010	509	K6021	450	3.0	20	20.0	+11	+16
MA-42011	509	K6022	450	3.5	20	20.0	+11	+1,6
MA-42010	510		450	3.5	20	40.0	+16	+25
MA-42011	510		450	4.0	20	40.0	+16	+25
MA-42010	510	-	450	4.0	20	60.0	+20	+25
MA-42011	510		450	4.5	20	60.0	+20	+25
MA-42012	510	-	450	5.0	20	60.0	+20	+25

- ELECTRICAL PARAMETERS AND RATINGS (case temperature 25°C) -

Symbol	Definition	Conditions	Min.	Тур.	Max.
BV _{cbo}	Collector-base Breakdown voltage	Ι = 10 μΑ	20V	25V	
BVebo	Emitter-base breakdown voltage	$I_{\mu} = 10 \mu\text{A}$	3V	3.5V	
I _{cbo}	Collector cut-off current	V _{cb} = 10 V			10 nA
h _{fe}	Current transfer ratio	V _{ce} = 10 V, I _c = 5	mA 20		200
C _{cb}	Output Capacitance	V _{cb} = 15V	1.3 pF	(510)	1.7 pF (K) (509)
١	Collector current	CD			125 mA
P.	Total Device Dissipation	K pkg. 450 mW,	KJ pkg. 75	0 mW, 51	10 pkg. 1.2 W

POWER GENERATION AND AMPLIFICATION

MA-42100

npn Silicon Planar Transistors for Microwave Applications

Bullet in 5205

FEATURES

- High Gain
- Low Noise Figure
- Gold Metalization
- Low Cost

DESCRIPTION

The MA-42100 transistor is an npn silicon planar transistor designed for high gain and low noise performance in L-band. The design employs gold metallization resulting in rugged, highly reliable transistor.

TYPICAL APPLICATIONS

RF amplifiers at frequencies through L-band.

,MA-42100 TRANSISTOR SPECIFICATIONS =

Model Number	Available Case Styles	Noise Figure dB	Typ. Ga (max.) dB	Typ. Ft. GHz	S _{21 E} ² dB
MA-42100	509, 510 511, 512	2.3 Typ. 2.5 Max.	17 Тур.	4.5	6.0 Min. 7.0 Typ.
Test Conditions		V _{CE} =10V I _C = 5 mA f = 1 GHz	$V_{CE} = 10V$ $I_{C} = 10 \text{ mA}$ $f = 1 \text{ GHz}$	V _{CE} = 10V I _C = 15 mA	V _{CE} =10V I _C = 10 mA f = 2 GHz

ELECTRICAL	. PARAMETERS	& RATINGS (CASE	TEMPERATURE 25°C)
------------	--------------	-----------------	-------------------

Symbol	Definition	Conditions	Min.	Тур.	Max.
BV _{cbo}	Collector-base breakdown voltage	$I_c = 10 \mu\text{A}$	20V	25V	
BV _{ebo}	Emitter-base breakdown voltage	$I_{\rm p} = 10 \mu A$	3V	3.5V	
•	Collector cut-off current	V _{cb} = 10V			100 nA
cbo n _{fe}	Current transfer ratio	$V_{ce}^{S} = 10V, I_{c} = 5 \text{ mA}$	20		200
Cep	Output capacitance	V _{cb} = 15V			1.0 pF
١	Collector Current				50 mA

MA-42100 GEOMETRY

EMITTER

	A	В	С	D	E	F
[511 ·	0.230-0.280 5,841-7,112	0.095-0.105 2,413-2,667	0.016-0.074	0,036-0.044	0,002-0.006 0,050-0,152	0.050 1,270 MAX.
512 •	0,230-0.280 5,841-7,112	0.065-0.075 1,651-1,905	0.016-0.024 0,406-0,609	0.036-0.044 0,914-1,117	0.002-0.006 0,050-0,152	0.050 1,270 MAX.

MA-42100-511 S-PARAMETERS

$$S_{22} \otimes V_{CE} = 10 V$$

Bias		Frequency	•		•	•
С	V _{CE}	MHz	S ₁₁	\$ ₂₁	S ₁₂	\$ ₂₂
		500	.639 -83.5	5.061 + 117.2	.053 +47.5	.710 — 19.9
		1000	.551 - 137.1	3.367 + 86.1	.070 +31.2	.679 - 31.8
mA	10 V	1500	.540 - 165.3	2.429 + 67.4	.081 +28.3	.659 - 37.0
		2000	.527 +177.7	1.867 + 52.0	.089 +23.6	.634 - 47.2
		2500	.541 + 162.3	1.499 + 37.9	.097 +20.8	.604 - 54.9
		3000	.556 +149.9	1.280 +21.9	.109 +16.2	.622 - 64.9
		500	.582 — 103.2	6.790 + 109.1	.043 +44.8	.638 — 21.0
		1000	.537 — 151.9	3.948 + 82.1	.058 + 36.1	.616 - 31.1
5 mA	10 V	1500	.533 — 176.4	2.829 + 64.6	.071 +34.8	.603 - 35.3
		2000	.527 +169.8	2.150 + 50.4	.079 +29.8	.582 - 46.3
		2500	.546 + 155.9	1.722 + 37.4	.090 +27.9	.555 - 53.4
		3000	.564 + 145.1	1.461 + 21.3	.103 +22.6	.575 — 63.8
		500	.475 — 138.9	8.761 + 98.9	.030 +46.9	.554 - 21.0
		1000	.514 - 171.1	4.662 + 76.0	.043 +46.0	.546 - 28.7
0 mA	10 V	1500	.540 + 171.3	3.160 + 60.6	.057 +44.1	.548 - 33.1
		2000	.549 + 159.9	2.444 +47.5	.070 +40.8	.534 - 43.3
		2500	.575 + 149.6	1.912 +35.8	.081 +37.0	.513 - 51.3
		3000	.593 + 138.9	1.634 + 21.4	.094 +31.8	.528 - 61.2

OWER GENERATION

MA-42110

npn SILICON PLANAR TRANSISTORS FOR UHF AND MICROWAVE APPLICATORS

Bulletin 5206

FEATURES

- Very low noise figure
- Wide dynamic range
- Hìgh gain
- Gold metallization
- Low cost

TYPICAL APPLICATIONS

RF and IF amplifiers at frequencies through L-Band

DESCRIPTION

The MA-42110 transistor is an npn silicon planar transistor designed to give very low noise figure and wide dynamic range in the UHF and L-Band ranges. Gold metallization employed in the construction of the device results in a rugged, highly reliable transistor.

Model Number MA-42110	Case Style 509, 511 510, 512	Noise Figure dB 1.2 Typ. 1.5 Max.	Typ. Ga (Max.) dB 22	Typ. Ft. GHz 4.5	S _{21 E} ² dB 10 Min. 12 Typ.
Test Conditions	V _{CE} 10V	V _{CE} =10V I _C =5 mA f= 450 MHz	V _{CE} =10V I _C =20 mA f= 450 MHz	$V_{CE} = 10V$ $I_{C} = 50 \text{ mA}$	V _{CE} =10V I _{CE} =20 mA f= 1 GHz

Symbol	Definition	Conditions	Min.	Тур.	Max.
BV _{cbo}	Collector-base breakdown voltage	I _C = 10 μA	20V	25V	
BV _{ebo}	Emitter-base breakdown	$I_{\rm e} = 10 \mu A$	3V	3.5V	
l _{cbo}	Collector cut-off current	$V_{cb} = 10V$			100nA
h _{fe}	Current transfer ratio	$V_{ce} = 10V$, $I_{c} = 5mA$	20		200
C _{cb}	Output capacitance	V _{cb} = 15V			1.7pF
I _c max.	Max. collector current				125mA

S-PARAMETER DATA MA-42110-511 S PARAMETERS

Bia						
С	V _{CE}	FREQ. MHz	S ₁₁	S ₂₁	\$ ₁₂	S ₂₂
		500	.724 — 157.4	4.126 +91.2	.067 +19.0	.423 – 44.4
		1000	.820 + 176.8	2.220 +64.8	.068 +11.6	.417 — 61.6
5mA	10V	1500	.827 + 159.6	1.464 +45.9	.069 +14.5	.437 — 78.0
		2000	.816 +149.5	1.119 +30.4	.069 + 17.5	.459 — 9 6 .7
		2500	.843 +139.9	.845 +16.2	.075 + 23.4	.498 — 114.0
		3000	.839 +128.6	.696 + 2.3	.089 +24.9	.560 — 129.4
Bia	ıs					
c	V _{CE}	FREQ. MHz	S ₁₁	S ₂₁	S ₁₂	S ₂₂
		500	.725 — 170.4	5.597 +88.1	.045 +25.3	.270 — 61.3
		1000	.814 +170.3	2.891 +65.0	.052 +28.1	.254 — 77.9
10mA	10V	1500	.821 +155.5	1.927 +48.3	.062 +32.0	.279 - 92.3
		2000	.811 +146.6	1.466 + 34.0	.073 +33.7	.307 — 109.9
		2500	.835 +137.7	1.117 +21.0	.085 +34.5	.355 — 124.4
		3000	.830 +126.8	.934 + 6.7	.101 +31.6	.422 — 137.5
Bias	5					
С	V _{CE}	FREQ. MHz	S ₁₁	S ₂₁	S ₁₂	\$ ₂₂
		500	.719 – 176.2	6.539 +86.0	.035 +33.2	.196 – 81.1
		1000	.806 + 167.1	3.274 +65.4	.048 + 40.2	.179 - 98.5
		1500	.782 + 153.2	2.192 +49.6	.061 +42.7	.208 — 111.3
20mA	10V	2000	.809 +145.0	1.666 + 36.1	.076 +41.4	.237 — 125.3
		2500	.832 + 136.3	1.271 +24.1	.090 +39.4	.285 — 136.4
		3000	.827 + 125.8	1.075 +9.9	.108 +34.9	.351 — 146.4

Bulletin 4700

Gallium Arsenide IMPATT Diodes

MA-46021 through MA-46032 0.5 and 1.0 Watt X-Band

DESCRIPTION

These Gallium Arsenide IMPATT Diodes (Impact Ionization Avalanche Transit Time) are junction devices that operate with a reverse bias sufficient to cause avalanche breakdown (typically 70 V and 125-150 mA). In such a diode, carriers are produced by avalanche multiplication. The negative resistance at microwave frequencies is the result of the current phase delay between the voltage and the current. This is produced by both carrier generation and the carrier drift through the active layer. In an appropriate circuit, these diodes will oscillate, producing a microwave output at an efficiency greater than 10%.

APPLICATIONS

These IMPATT diodes are useful as CW oscillators with up to 1 watt output power. They are ideally suited as final stage amplifiers for communication systems in the 10.7-11.7 GHz frequency range.

FEATURES

- Direct conversion from dc to RF with >10% efficiency
- Low AM and FM noise
- Low thermal resistance
- Low cost

MAXIMUM RATINGS

Storage Temperature

-65°C to 150°C

Junction Operating Temperature

200° C⁴

Power Dissipation

200°C - T Case

 θ_{JC}

ELECTRICAL SPECIFICATIONS @ 25°C

Model Case		Oper Frequ G	•	ncy Out		Efficiency ² %		Thermal ³ Resistance ^O C/W	
Number	Style	Min.	Max.	Min.	Тур.	Min.	Тур.	Max.	Тур
1 Watt Device	es								
MA-46027	30	8.0	9.5	1.0	1.3	10	12	18	14
MA-46028	30	9.5	11.0	1.0	1.3	10	12	18	14
MA-46029	30	11.0	12.5	1.0	1.3	10	12	18	14
MA-46030	111	8.0	9.5	1.0	1.3	10	12	18	14
MA-46031	111	9.5	11.0	1.0	1.3	10	12	18	14
MA-46032	111	11.0	12.5	1.0	1.3	10	12	18	14
0.5 Watt Dev	rices								
MA-46021	30	8.0	9.5	0.5	0.7	10	12	30	24
MA-46022	30	9.5	11.0	0.5	0.7	10	12	30	24
MA-46023	30	11.0	12.5	0.5	0.7	10	12	30	24
MA-46024	111	8.0	9.5	0.5	0.7	10	12	30	24
MA-46025	111	9.5	11.0	0.5	0.7	10	12	30	24
MA-46026	111	11.0	12.5	0.5	0.7	10	12	30	24

NOTES:

- Output power is measured in a tunable test mount.(See Outline Drawing)
- 2. Efficiency = RF Power Out dc Power In
- Thermal resistance is obtained by measuring the change in breakdown voltage with dc current.
- 4. Although the diode is capable of withstanding a junction temperature of more than 275°C during operation, relibility may be adversely affected. The maximum recommended junction temperature of 200°C has been chosen to provide long term reliable operation.

TYPICAL OPERATING PARAMETERS @ 25°C

Model ¹	Breakdown	Operating Voltage	Operating Current	Junction ² Capacity
Number	Voltage Volts	Voltage Volts	mA	@ 0 V Bias
1 Watt Devices				
MA-46027	55	70	125	5.0
MA-46028	50	65	150	4.5
MA-46029	45	60	150	4.0
MA-46030	55	70	125	5.0
MA-46031	50	65	150	4.5
MA-46032	45	60	150	4.0
0.5 Watt Devices				
MA-46021	55	70	75	4.0
MA-46022	50	65	75	3.5
MA-46023	45	60	75	3.0_
MA-46024	55	70	75	4.0
MA-46025	50	65	75	3.5
MA-46026	45	60	75	3.0

NOTES:

1. Package capacity and inductance per Outline Drawings.

2. The capacitance at breakdown is approximately 0.1 this value.

APPLICATION NOTES

- 1) Since all IMPATT devices are susceptible to tuning induced failures (burnout), it is always necessary to reduce the bias voltage before tuning for maximum power.
- 2) Caution: A severe load mismatch should be avoided to minimize RF burnout.
- 3) The power supply should be carefully regulated to minimize voltage transients.
- 4) Applications assistance and engineering drawings of the test fixtures are available upon request.
- 5) Anode Heat sink

OF GaAs IMPATT DIODES

POWER GENERATION AND AMPLIFICATION

Tunnel Diodes For Microwave Amplifier And Oscillator Applications

Bulletin 5052

Germanium Tunnel Diodes

for Microwave Amplifiers

Gallium Arsenide Tunnel Diodes
for Microwave Oscillators

Microwave Associates, Inc.

FEATURES

Germanium Tunnel Diodes for Microwave Amplifiers

- High gain bandwidth product
- Low DC power consumption
- Excellent Temperature and Gain Stability
- Amplifier diodes available with noise figure under 5 dB up to 16 GHz
- High reliability versions are available

Gallium Arsenide Tunnel Diodes for Microwave Oscillators

- Low DC power consumption
- Excellent frequency stability
- High DC to microwave conversion efficiency
- Output power from tunnel diode oscillators is sufficient to provide local oscillator power for back diode mixers through through X-Band.
- High resistance to radiation damage

Germanium Tunnel Diodes for Microwave Amplifier Applications

MA-4C250 Series MA-4C260 Series MA-4C270 Series

This series of Germanium Tunnel Diodes is recommended for use in amplifiers into Ku-band. The MA-4C250, 260 and 270 series are representative of the modifications in characteristics which can be made.

CASE STYLES

187 TYPE H L_p = 0.1 nH $C_{p} = 0.35 \, pF$

	INC	HES	MAN		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.013	.017	,330	,431	
8	.078	.082 *	1,98	2,08	
С	.023	.032	.584	.813	
D	.024	.026	.609	.660	
E	.029	.031	,736	,787	
F	.048	052	1,22	1,32	

190 TYPE D

L_p = 0.1 nH C_p = 0.36 pF

	INC	HES	MM		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	.015	019	,381	,482	
8	.078	082	1,98	2,08	
С	.045	055	1,14	1,40	
D	.027	034	,685	863	
E	048	059	1,22	1,50	
F	.025	.029	,635	,736	

Denotes Cathode End

Not to scale.

MAXIMUM RATINGS @ TA = 25°C (unless otherwise specified)

Incident CW RF Power 20 mW 5.0 mA DC Current -65° C to $+100^{\circ}$ C Temperature Range

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Leveis
Temperature, Storage	1031	See max. Rating
Temperature, Operating	_	See max. Rating
•		10 cycles
Temperature Cycling	1051	See max. Rating
Shock	2016	1200 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 days

ELECTRICAL SPECIFICATIONS @ TA = 25°C

M/A ¹ Type	KMC Type	Resistive Cutoff Frequency GHz	June Capa p Typ.	citance	Typ. R _m Ohms	Typ. R _s Ohms	Max.	K Typ.
10050	-05004			6.0	105	2	1.30	1,25
MA-4C250	G25001		5.5					
MA-4C251	G50001	5.0	2.5	3.0	105	2	1.35	1.25
MA-4C252	G10001	10.0	1.0	1.3	105	3	1.40	1.30
MA-4C253	G15001	15.0	.70	0.9	105	3	1.45	1.35
MA-4C254	G20001	20.0	.45	8.0	105	4	1.45	1.40
MA-4C255	G25X0	1 25.0	.30	0.6	105	5	1.45	1.40
MA-4C256	G30001	30.0	.25	0.4	105	5	1.50	1.40
MA-4C257	G40001	40.0	.17	0.3	105	6	_	1.45
MA-4C258	G50X0	1 50.0	.12	0.2	105	7		1.45

 I_{p} (mA) = 1.0 \pm 10%.

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

ELECTRICAL SPECIFICATIONS (CONT.)

Min.

M/A ¹ Type	KMC Type	Resistive Cutoff Frequency GHz	•	itance	Typ. R _m Ohms	Typ. R _s Ohms	Max.	К Тур.
MA-4C260	G25015	2.5	5.4	6.0	75	2	1.30	1.20
MA-4C261	G50015	5.0	2.7	3.1	75	2	1.30	1.25
MA-4C262	G10015	10.0	1.1	1.4	75	3	1.35	1.25
MA-4C263	G15015	15.0	.72	0.9	75	3	1.40	1.30
MA-4C264	G20015	20.0	.46	0.75	75	4	1.40	1.35
MA-4C265	G25X15	25.0	.32	0.6	75	5	1.45	1.40
MA-4C266	G30015	30.0	.27	0.4	75	5	1.45	1.40
MA-4C267	G40015	40.0	.18	0.3	75	6		1.45
MA-4C268	G50X15	50.0	.13	0.2	75	7	****	1.45

 $I_p (mA) = 1.5 \pm 10\%.$

Min.

•	КМС	Resistive Cutoff Frequency GHz	Junction Capacitance pF		Тур. R _m	Typ. R _s		K	
	Туре		Typ.	Max.	Ohms	Ohms	Max.	Typ.	
MA-4C270	G25002	2.5	6.9	7.5	60	2	1.30	1.20	
MA-4C271	G50002	5.0	3.5	4.0	60	2	1.30	1.25	
MA-4C272	G10002	10.0	1.3	1.6	60	3	1.35	1.30	
MA-4C273	G15002	15.0	.90	1.2	60	3	1.40	1.30	
MA-4C274	G20002	20.0	.55	1.0	60	4	1.40	1.35	
MA-4C275	G25X02	25.0	.45	0.9	60	4	1.45	1.40	
MA-4C276	G30002	30.0	.30	0.7	60	5	1.45	1.40	
MA-4C277	G40002	40.0	.22	0.5	60	5	_	1.45	
MA-4C278	G50X02	50.0	.15	0.3	60	6	_	1.45	

NOTE:

 $I_p (mA) = 2.0 \pm 10\%.$

1. Add suffix D or H after M/A type number to specify case style.

THEORETICAL TUNNEL DIODE AMPLIFIER NOISE FIGURE IN dB

Tunnel Diode Amplifier Application Notes

T. D. FORWARD STATIC IV CHARACTERISTICS

EQUIVALENT CIRCUIT

NOISE FIGURE

Tunnel Diode amplifier noise figure in db can be calculated using the

$$NF (db) = .10 \left[\log (1+K) + \log \left(\frac{|Rn| + Rs}{|Rn|} \right) + \log \left(\frac{fro^2}{fro^2 \cdot f^2} \right) \right]$$

GAIN BANDWIDTH

its simplest form by:

where Z_L is the characteristic impedance of the load and Z_d is the RF impedance of the diode. The maximum gain bandwidth that can be achieved by such an amplifier in the idealized case where the diode is assumed to consist of a shunt capacitance across a negative resistance terminating a line and tuned by a shunt inductance is:

$$G_{V} \cdot BW \approx \frac{R_{L} - R_{d}}{R_{L} + R_{d}} \cdot \frac{f_{0}}{Q} \approx \left| \frac{R_{L} - R_{d}}{2\pi R_{L} R_{d} C_{d}} \right|$$

where:

RL= Resistive portion of load impedance
Rd = Overall equivalent RF resistance of diode

Cd = Equivalent capacitance of diode i.e.; capacitive portion of Zd

Q = Overall circuit Q
$$\approx \omega C \frac{R_L R_d}{R_L + R_d}$$

DYNAMIC RANGE

The voltage gain of a reflection type tunnel diode amplifier is given in. The dynamic range of an amplifier is the input signal variation over which the amplifier functions effectively. The lower limit is determined by noise figure; the upper limit by saturation. To compare the effect of semiconductor materials on dynamic range, consider gallium antimonide, germanium, and gallium arsenide diodes with the same values of R_{min}. The peak current values for equal R_{min}, are in the respective ratios of 1 to 1.5 to 2.5. The level at which saturation occurs is roughly proportional to 10 log 1p2. Thus, for a 2.5 to 1 variation of 1p, the saturation level changes by about 8 db. Fortunately, this variation is considerably larger than is the noise figure variations for each material so that a net result of about 5 db in dynamic range is effected by using a gallium arsenide diode in place of a gallium antimonide device.

DEFINITIONS:

$$R_{min} = |R_i| + |R_s|$$

R i= the junction negative resistance at the point on the I-V curve which makes R; most negative.

$$f_{RO} = \frac{1}{2\pi R_{min}C_j} \sqrt{\frac{R_m}{R_n} - 1}$$

$$f_{xo} = \frac{1}{2\pi R_{min}C_{j}} \sqrt{\frac{R_{m}^{2}C_{i}}{L_{s}} - 1}$$

 C_t (total capacitance) is $C_i + C_p$ (Package Capacitance) Shot Noise Contribution (K)

 $K = 20 I_0 R_n$

| = bias current at low noise point

R = negative resistance measured at I

Gallium Arsenide Tunnel Diodes for Microwave Oscillator

MA-4C700 Series MA-4C710 Series MA-4C720 Series

Designed specifically for Microwave Oscillator Applications, these GaAs Tunnel Diodes feature low noise and low DC power requirements.

CASE STYLES

187

	inc	HE8	N	M.
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.013	.017	,330	,431
В	.078	.082	1,98	2,08
С	.023	.032	,584	,813
D	.024	.026	,609	,660
E	.029	.031	,736	,787
F	048	062	1 22	1 22

	INCHES		MM	
DIM.	MIN.	MAX.	MIN.	MAX.
Α	.015	.019	,381	,482
В	.078	.082	1,98	2,08
С	.045	.055	1,14	1,40
D	.027	.034	,685	,863
Ε	.048	.059	1,22	1,50
F	.025	.029	,635	,736

NOTE: • Denotes Cathode End.

Not to scale.

MAXIMUM RATINGS @TA = 25°C (unless otherwise specified)

Incident CW RF Power 0.5 watt DC Current¹ 5.0 mA -65°C to +100°C Temperature Range

ENVIRONMENTAL RATINGS PER MIL-STD-750

	Method	Levels
Temperature, Storage	1031	See max. Rating
Temperature, Operating	_	See max. Rating
		10 cycles
Temperature Cycling	1051	See max. Rating
Shock	2016	1200 g's
Vibration	2056	20 g's
Constant Acceleration	2006	20,000 g's
Humidity	1021	10 days

NOTE:

 $I_{\rm F}$ of GaAs Tunnel Diodes should be restricted to a value in milliamps equal to or less than ½ the Junction Capacitance value in PF $\int I_F \text{ max.} = C_{jv.}$

MICROWAVE ASSOCIATES, INC. BURLINGTON, MASSACHUSETTS

ELECTRICAL CHARACTERISTICS @ $T_A = 25^{\circ}C$

I _p (mA) = 5 ± 109 M/A ² Type	%. KMC Type	Min. Resistive Cutoff Frequency GHz	Typ. Junction Capacitance pF	Typ. R _s Ohms	Typ. R _m Ohms
MA-4C700	A10005	10	1.1	4.0	45
MA-4C701	A15005	15	.76	4.0	45
MA-4C702	A20005	20	.50	5.0	45
MA-4C703	A25005	25	.36	6.0	45
MA-4C704	A30005	30	.28	7.0	45
MA-4C705	A40005	40	.19	8.0	45

M/A ² Type	KMC Type	Resistive Cutoff Frequency GHz	Typ. Junction Capacitance pF	Typ. R _s Ohms	Typ. R _m Ohms
MA-4C710	A10010	10	2.1	2.0	25
MA-4C711	A15010	15	1.1	3.0	25
MA-4C712	A20010	20	.72	4.0	25

Min.

25 25 .50 5.0 MA-4C713 A25010 25 .37 6.0 A30010 **3**C MA-4C714 40 .26 7.0 25 MA-4C715 A40010

I_p (mA) = 20 ± 10%. M/A ² Type	KMC Type	Min. Resistive Cutoff Frequency GHz	Typ. Junction Capacitance pF	Typ. R _s Ohms	Typ. R _m Ohms
MA-4C720	A10020	10	3.5	1.5	10
MA-4C721	A15020	15	1.6	3.0	10
MA-4C722	A20020	20	1.0	4.0	10
MA-4C723	A25020	25	.64	5.0	10
MA-4C724	A30020	30	.53	6.0	10
MA-4C725	A40020	40	.39	7.0	10

NOTE:

 I_{p} (mA) = 10 ± 10%.

^{2.} Add suffix D or H after M/A type number to specify case style.

PRODUCTS 233 to Man Padage Ciwp Capacitors hottky Diodes for Millimeter polications 248 SPECIAL PRODUCTS

231

Silicon Epitaxial Wafers and Substrates

FEATURES:

- Low-resistivity substrates
- Epitaxial layer resistivity profiling
- Custom growth techniques/profiles
- Inverse epitaxy
- 1-1/2 to 3-inch diameter
- Epitaxial layers 0.001 to > 100 ohm-cm
- Epitaxial layers < 1 to > 150 microns thick
- Ingot growth, fabrication, polishing
- Silicon nitride/silicon dioxide

MICROWAVE ASSOCIATES SILICON EPITAXIAL WAFERS AND SUBSTRATES -

for discrete devices, MOS and IC applications.

Our primary goals are two-fold, one is to provide epitaxial wafers with designed resistivity profiles through the layer utilizing specific growth techniques. All runs are evaluated by inversion profiling or differential capacitance of actual wafers produced and/or four-point probe resistivity on control wafers. Virtually all types of single and multiple layer structures are available. Our second goal is to provide low-resistivity substrates and ingots for use in discrete devices.

Complete crystal growth, fabrication, slicing, polishing, epitaxy and evaluation capabilities are available.

NOTE: Most wafer specifications result in slip, lineage and dislocation-free material as determined by the ASTM Standard Method of Test for "Crystallographic Perfection of Epitaxial Deposits of Silicon by Etching Techniques."

CRYSTAL GROWER

EPITAXIAL REACTOR

WAFER CAPABILITIES

- Up to 3 inch diameter
- Epitaxial layer thickness of less than one micron to greater than 150 microns
- Epitaxial layer resistivity of less than 0.001 to greater than 100 ohm-cm
- Maximum stacking fault density of less than 25/cm² and dislocation density of less than 1000/cm² are standard
- Heavily doped polished substrates and ingots are available and grown to specifications:
 - Dopants include Arsenic, Antimony and Boron

- Substrate resistivities are available as follows:
 - Boron Doped (P): as low as 0.0007 ohm-cm Arsenic - Doped (N): as low as 0.0010 ohm-cm Antimony - Doped (N): as low as 0.006 ohm-cm
- Chemically, vapor deposited Silicon Nitride and/or Silicon Dioxide can be grown on Substrates and Epitaxial wafers
- Wafers can be characterized by inversion profiling or differential capacitance
- Profiling service; as a service, Epitaxial wafers can be characterized by inversion profiling

Wafers are produced as standard according to SEMI specifications where applicable; however, wafers can be produced to any desired parameters.

The following Epitaxial layer tolerance specifications are standard on wafers up to 2-inch diameter:

EPITAXIAL LAYER THICKNESS

Thickness	Within a Wafer	Wafer to Wafer
< 2 microns	±10%	±15%
2-5 microns	± 8%	±12%
5-10 microns	± 8%	±10%
> 10 microns	± 5%	± 8%

EPITAXIAL LAYER RESISTIVITY

Resistivity	Within a Wafer	Wafer to Wafer	
< 0.1 ohm-cm	± 8%	±10%	
0.1-3 ohm-cm	±10%	±15%	
3-10 ohm-cm	±10%	±20%	
10-50 ohm-cm	±15%	±30%	
50-100 ohm-cm	±20%	±40%	
> 100 ohm-cm	±20%	To Be Specified	

VISUAL SPECIFICATIONS

Inspection: 100% of the wafers are inspected according to the following criteria:

Epitaxial wafers are viewed in normal room lighting with the unaided eye, following removal from the reactor.

Positive defect criteria:

A maximum number of five positive defects ("spikes") across the wafer area, excluding the outer 5 mm of peripheral area, are permitted. A positive defect is defined as a protrusion greater than 10 microns high and greater than 20 microns in diameter. (Measure under magnification).

The outer 5 mm of peripheral area may contain up to eight positive defects, but the maximum number of defects permitted across the entire wafer is eight.

Negative surface defect criteria:

A maximum of three negative ("pits, voids") defects are permitted across the entire wafer.

No visible haze, interference films or other surface contamination is acceptable.

A maximum number of surface scratches permitted is three, although no scratches are greater than 10 mm in length.

Only unbroken, whole wafers are acceptable.

GENERAL SPECIFICATIONS

Resistivity is measured by inversion profiling, differential capacitance and/or the four-point probe technique - at the center and mid-radius of each of the four quadrants on a representative number of useful wafers.

Thickness is measured by ASTM - corrected or uncorrected infrared reflectance techniques on every wafer were applicable. The specifications apply to the entire wafer excluding the outer 5 mm. Wafer to wafer values are the average of the centerline readings.

Tolerances apply to all types of layers and substrates up to 2 inch diameter, except resistivity of undoped layers on arsenic-doped and low resistivity (≤0.005 ohm-cm) boron-doped substrates.

Surface characteristics may differ for layers greater than 10 microns thick grown by thermal decomposition of silane.

Tighter tolerances, specific-shaped impurity profiles, "spike," "step" and "hyper-abrupt" profiles, layer resistivities greater than 100 ohm-cm, very low resistivity substrates, unusual quantities or other special requirements can be grown to specifications mutually agreed to between the customer and Microwave Associates.

WAFER EVALUATION

Wafer runs can be evaluated by inversion profiling - a nondestructive method which plots the impurity profile as a function of thickness through the epitaxial layer.

Each substrate lot is evaluated and characterized for resistivity, orientation, crystalline defects and all physical parameters.

EVALUATION LEVEL

QUALITY A EVALUATION

100% uncorrected IR measurements of epitaxial layer thickness.

Two to five wafers from a run are evaluated by inversion profiling. In some instances, control wafers are also evaluated using the four-point probe method.

QUALITY B EVALUATION

100% uncorrected IR measurements of epitaxial layer thickness.

Resistivity determined by four-point probe measurement of control wafers.

Resistivity tolerance is ±5% higher for wafer-to-wafer values in each category.

QUALITY C EVALUATION

(for epitaxial layers ≤ 2 microns thick)

Representative samples from each run are evaluated for resistivity and thickness of the epitaxial layer where applicable, by ASTM corrected IR thickness and inversion profiling; and/or four-point probe measurement of control wafers.

QUALITY D EVALUATION

(n⁺ and p⁺ inverse epitaxy)

Thickness of every substrate, where applicable, is measured and identified.

All wafers are measured for epitaxial layer thickness and representative samples are measured for resistivity using the four-point probe technique.

ORDERING INFORMATION

Microwave Associates type MA-4935 (epitaxial wafer) - XXXX (to be assigned by MA).

Nominal Qualitative Information Required:

EPITAXIAL LAYER

Type

Thickness (microns)

Resistivity (ohm-cm)

Dopant (N-Phosphorus, P-Boron)

Quality Evaluation Level (A, B, C, D)

SUBSTRATE

Type

Dopant (Boron, Antimony, Arsenic)

Resistivity (ohm-cm)

Diameter (inches)

Thickness (mils)

Orientation 20 - 30 off (111) is standard for (111)

Flat (inches) (110) is standard for (111)

RESISTIVITY PROFILE OF N/N+ EPITAXIAL WAFER

Semiconductor Ceramic to Metal Packages

FEATURES

- Capability for close tolerances
- Custom parts made to order
- Ten year background in high reliability production
- Quality control all parts checked to 1% A. Q. L and inspection level II in accordance with MIL-STD-105

MICROWAVE ASSOCIATES SEMICONDUCTOR CERAMIC TO METAL PACKAGES

Microwave Associates offers a variety of standard package styles to the circuit design engineer.

All standard ceramic packages are hermetically sealed to meet 1% A. Q. L. unless otherwise specified by the customer and all dimensions and push tests are at 1% A. Q. L. unless otherwise specified.

Microwave Associates high quality control standards comply with MIL-Q-9858. This guarantees uniform performance through advanced manufacturing and packaging techniques. Optimum strength and bonding compatibility is assured in our modern and contamination free manufacturing facilities.

The Company also offers a complete engineering service to assist our customers with special design problems or requirements. Custom engineered ceramic-to-metal packages will be supplied upon request.

Caps are available upon request.

CERAMIC TO METAL SEALS

Microwave Associates' capability in the development and production of precision ceramic to metal seals is demonstrated by the broad number of packages which are illustrated in this brochure. Examples include microwave windows, Gunn tuners, cathode supports, tuning rings, high voltage bushings, and various assemblies for microwave power tubes.

Of course, all seals are fabricated to meet the most stringent environmental requirements.

MATERIAL

Ceramic: 94 - 96% AL₂0₂

FLANGE

Kovar

Copper-clad Kovar (Standard)

Copper

BASE

Te-Cu (Standard)

OFHC

Kovar

CAPABILITY

- 10 min. Storage Temperature to 600°C within hermeticity specs.
- □ Hermiticity: 10⁻⁸ cc/sec.
- □ Concentricity: .005 TIR (Standard)

NOTES:

- 1. Pedestal surface to show no evidence of brazing.
- 2. Parts may be gold plated to customer specification.
- 3. Special parts made to customer specs, and tolerances.

PACKAGE STYLES

INCH MM

Part No.	Base Material
MA 422-41152-1	Kovar
MA 422-41152-2	Copper

Package Style	Corresponding M/A Case Styles
MA-422-40602	30, 36
MA-422-41333	_
MA-422-41152-1	31, 55, 108
MA-422-41152-2	_
MA-422-40830	32
MA-422-40596	_
MA-422-40881	43, 98
MA-422-41509	142, 143
MA-422-41106	91
MA-422-41019	94, 95
MA-422-41018	96, 97
MA-422-41169	111
MA-422-41067	103
MA-422-41280	117
MA-422-41357	118
MA-422-41423	138
MA-422-41597	153, 154

NOTE:

This information is for reference only. The M/A Case Styles shown above utilize, as one of their parts, the package styles shown.

Part No.	Dim, "A"	Finish
MA 422-40602	.035038 0,89-0,97	16
MA 422-41333	.028032 0,71-0,81	8

MA 422-40830

Not to scale.

PACKAGE STYLES (Continued)

MA 422-41106

MA 422-41019

MA 422-41018

Not to scale.

PACKAGE STYLES (Continued)

MA 422-41357

MA 422-41423

MA 422-41597

Not to scale.

Silicon MIS Capacitors

Bulletin 4052A

MA-4M Series

DESCRIPTION

The MA-4M series of silicon chip capacitors utilizes a non-oxide insulator as the dielectric layer. They offer improved reliability and ruggedness over similar MOS capacitors. They exhibit higher capacitance per unit area, resulting in smaller chip size. Refractory metallization techniques are used for contacts thus providing excellent metal to semi-conductor adhesion. All chip capacitors in this series are saw-cut from their wafer.

APPLICATIONS

Silicon MIS capacitors are high Q devices, giving excellent insertion loss characteristics for high frequency applications compared with ceramic chip capacitors. They are used from UHF through Ku-band and exhibit less than 0.1 dB insertion loss over this frequency range.

MAXIMUM RATINGS

Operating Temperature Voltage Breakdown

-55°C to +200°C 125 Volts Min.

Temperature Coefficient

180 PPM/OC

TYPICAL APPLICATIONS IN RF CIRCUITS

- D-C blocks, Capacitive Coupling
- R-F Bypass Capacitors and Fixed Capacitive Loads
- Tuning of Oscillators, Multipliers or Filter sections

OUTLINE DIMENSIONS

			IIIere	ilization		
Nominal Dimensions	Case Style 134	Case Style 132	Case Style 199	Case Style 200	Case Style 201	Case Style 202
×	0.014 0,36	0.022 0,56	0.030 0,76	0.040 1,02	0.050 1,27	0.065 1,65
Y	0.014	0.022 0,56	0.030	0.040 1,02	0.050 1,27	0.065 1,65
Z	0.0045 0,11	0.0045 0,11	0.0045 0,11	0.0045 0,11	0.0045 0,11	0.0045 0,11

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Capacitance ² pF	Model ⁴ Number	Case ⁶ Style
1	MA-4M0001	134
5	MA-4M0005	132
10	MA-4M0010	132
20	MA-4M0020	199
25	MA-4M0025	199
30	MA-4M0030	199
40	MA-4M0040	199
50	MA-4M0050	199
60	MA-4M0060	199
70	MA-4M0070	199
80	MA-4M0080	199
90	MA-4M0090	200
100	MA-4M0100	200
125	MA-4M0125	200
150	MA-4M0150	200
175	MA-4M0175	201
200	MA-4M0200	201
250	MA-4M0250	201
300	MA-4M0300	202

NOTES:

- Special devices with breakdown voltage ratings at 400 Volts D-C are available.
- 2. ±10% Tolerance. Data is measured at 1 MHz, 25°C using a Boonton Model 75D Bridge.
- These chips are capable of withstanding 100 Volts at 150°C for 250 hours with no capacitance change.
- 4. Contacting leads can be provided on special request.
- 5. Each MIS capacitor has gold contacts, both front and back. .

KEY

 Additional chip sizes are available on request for specific capacitances within the limitations of contact size needed for fabrication.

Gallium Arsenide Schottky Diodes

Millimeter **Applications**

DESCRIPTION

Microwave Associates has just introduced a line of low noise zero bias Gallium Arsenide Schottky diodes for millimeter wave receiver applications up to and beyond 100 GHz. The diodes are optimized for mixing and detecting of very weak signals, and are available in hermetically sealed packages as well as chips.

The advantage of Gallium Arsenide material over silicon is that its electron mobility is six to seven times greater than that of silicon. This higher electron mobility gives rise to lower spreading resistance, higher cut-off frequency and lower thermal noise.

Chips used for applications at 90 GHz and above carry a multitude of Schottky diodes to be contacted with a whisker. •Diodes optimized for 90 GHz exhibit a typical junction capacitance of .005 pF and spreading resistance of 10Ω , resulting in values of cut-off frequency in excess of 1000 GHz. At lower frequencies, both chips and packaged devices are used, the latter consisting of a thermo-compression bonded GaAs Schottky chip mounted in small hermetically sealed ceramic packages.

ELECTRICAL CHARACTERISTICS @ TA = 25°C

Model Number	Frequency GHz	Typ. Junction Capacitance pF	Series Resistance Ohms	Max. ¹ Noise Figure dB	TSS ² -dBm	Case ³ Style
MA-40401	36	.05	4-8	7.5	50	135
MA-40402	36	.05	4-8	7.5	50	100
MA-40403	36	.05	4-8	7.5	50	120
MA-40406	36	.05	4-8	7.5	50	119
MA-40408	60	.04	5-10	8.5	48	206
MA-40409	60	.04	5-10	8.5	48	195
MA-40410	90	.005	6-12	10.0	45	195
MA-40412	90	.005	6-12	10.5	45	206

- 1. $F_{|F}$ = 30 MHz; $NF_{|F}$ = 1.5 dB; P_{LO} = 2 mW; 0 Volts Bias. 2. Video Bandwidth = 2 MHz
- 3. Complete case style description as well as other case styles are available on request.

G00001......148

G00010.....148

INDEX OF MODEL NUMBERS Model Model Model **Page Page** Page Number Number Number 2N3839.....200 1N2102.....47 1N3128.....148 1N3129.....148 1N3130.....148 A00001.....148 1N3138.....148 A00005.....148 1N3143.....17 A00010.....148 A00020.....148 A00050......148 A00100.....148 A00200.....148 1N53B 10, 11 1N3714.....148 A05001.....148 1N3715.....148 1N3716.....148 A05010.....148 1N78C 10, 11 1N3717.....148 1N3720.....148 1N3721.....148 A10020......229 1N3848.....148 1N3850.....148 A20010......229 A20020......229 1N3852.....148 1N3853.....148 A25010. 229 1N3854.....148 A25020......229 1N3856......148 A30005......229 A30010......229 1N3859.....148 1N3860......148 1N830A 47

INDEX OF MODEL NUMBERS

B.F. What	INDE	X OF MODEL NUMBERS			
Model Number	2000	Model Number	Down	Model	
· Committee of the comm	Page	Number	Page	Number	Page
G00020		JAN 1N23WEMR	9	KD5523	. 204
G00050		JAN 1N23WG	9	KD5525	. 204
G00100		JAN 1N23WGM	9	KD5526	. 204
G00200		JAN 1N23WGMR	9	KD5527	. 204
G0500.5		JAN 1N26B	11	KJ6007	. 208
G05001		JAN 1N26BR	11	KJ6008	. 208
G05005		JAN 1N26BM	11	MA-4B300	. 174
G05010		JAN 1N26BMR	11	MA-4C100	. 148
G05020		JAN 1N32	47	MA-4C102	. 148
G05050		JAN 1N53	11	MA-4C103	. 148
G10001	225	JAN 1N53B	11	MA-4C104	. 148
G10002	226	JAN 1N78C	11	MA-4C105	. 148
G10015	226	JAN 1N78CR	11	MA-4C106	. 148
G15001	225	JAN 1N78CM	11	MA-4C107	. 148
G15002	226	JAN 1N78CMR	11	MA-4C108	. 148
G15015	226	JAN 1N82AG	14	MA-4C109	. 148
G20001	225	JAN 1N830A	47	MA-4C110	. 148
G20002	226	JAN 1N831A	13	MA-4C111	. 148
G20015	226	JAN 1N832B	13	MA-4C112	. 148
G25001	225	JAN 1N263	16	MA-4C113	. 148
G25002	226	JAN 1N1838	16	MA-4C114	. 148
G25015	226	JAN 1N3655A	9	MA-4C250	. 225
G25X01	225	JAN 1N3655AM	9	MA-4C251	. 225
G25X02	226	JAN 1N3655AMR	9	MA-4C252	. 225
G25X15	226	JAN TX 1N5719	. 112	MA-4C253	. 225
G30001	225	K2069	. 200	MA-4C254	. 225
G30002	226	K2070	. 200	MA-4C255	. 225
G30015		K2071	. 200	MA-4C256	. 225
G40001		K2072	. 200	MA-4C257	. 225
G40002		K2073	. 200	MA-4C258	. 225
G40015		K2112	. 200	MA-4C260	. 226
G50001		K2113	. 200	MA-4C261	. 226
G50002	226	K2114	. 200	MA-4C262	. 226
G50015	226	K2115	. 200	MA-4C263	. 226
G50X01	225	K2116	. 200	MA-4C264	. 226
G50X02	226	K2117	. 200	MA-4C265	. 226
G50X15	226	K2118	. 200	MA-4C266	. 226
GBD100	. 76	K5510	. 204	MA-4C267	. 226
GBD250	. 76	K5511	. 204	MA-4C268	. 226
GBD400	. 76	K5512	. 204	MA-4C270	. 226
GBD500	. 76	K6001	. 208	MA-4C271	. 226
GBDX25	. 76	K6002	. 208	MA-4C272	. 226
GBDX50	. 76	K6003	. 208	MA-4C273	. 226
JAN 1N21WE	9	K6009	. 208	MA-4C274	. 226
JAN 1N21WEM	9	K6011	. 208	MA-4C275	. 226
JAN 1N21WEMR	9	K6012	. 208	MA-4C276	. 226
JAN 1N21WG	9	K6021	. 208	MA-4C277	. 226
JAN 1N21WGM	9	K6022		MA-4C278	. 226
JAN 1N21WGMR	9	KD5520		MA-4C400	
JAN 1N23WE		KD5521		MA-4C401	76
JAN 1N23WEM	9	KD5522	. 204	MA-4C402	76

	INDEX OF MODEL NUMB	ERS		
Model	Model		Model	
Number Page	Number	Page	Number	Page
MA-4C40376	MA-4M0100	247	MA-4851	24
MA-4C404	MA-4M0125		MA-4852	
MA-4C40576	MA-4M0150		MA-4853	
MA-4C550	MA-4M0175		MA-4855	
MA-4C551	MA-4M0200		MA-4856	
MA-4C552148	MA-4M0250		MA-4861E	
MA-4C553148	MA-4M0300		MA-4861F	
MA-4C554	MA-408		MA-4861G	
MA-4C555148	MA-408A		MA-4861H	
MA-4C556148	MA-408B		MA-4882	
MA-4C557	MA-417		MA-4883	
MA-4C558148	MA-418		MA-8334	
MA-4C559148	MA-418A		MA-40001	
MA-4C560148	MA-418B		MA-40001	
MA-4C561	MA-437		MA-40003	
MA-4C562148	MA-452		MA-40006	
MA-4C563148	MA-452A		MA-40007	
MA-4C700	MA-452B		MA-40007	
MA-4C701	MA-461		MA-40008	
MA-4C702229				
MA-4C703	MA-461A		MA-40012	
MA-4C704	MA-461B		MA-40013	
MA-4C705	MA-490B		MA-40014	
	MA-490C		MA-40015	
MA-4C710	MA-490D		MA-40024	
MA-4C711	MA-490E		MA-40025	
MA-4C712229	MA-490F		MA-40026	
MA-4C713229	MA-490G		MA-40027	
MA-4C714229	MA-492C		MA-40028	
MA-4C715229	MA-492D		MA-40029	
MA-4C720	MA-492E		MA-40033	
MA-4C721	MA-492F		MA-40034	
MA-4C722229	MA-493B	10	MA-40035	
MA-4C723229	MA-493C		MA-40040	
MA-4C724229	MA-494		MA-40041	
MA-4C725229	MA-494A		MA-40042	
MA-4C850	MA-494B		MA-40043	
MA-4C85176	MA-494C		MA-40051E	
MA-4C852	MA-494D		MA-40051F	
MA-4C85376	MA-4116		MA-40051G	
MA-4M0001247	MA-4123	42	MA-40051H	
MA-4M0005247	MA-4123A	42	MA-40052	
MA-4M0010247	MA-4123B	42	MA-40053	
MA-4M0020	MA-4128	47	MA-40061	81
MA-4M0025247	MA-4129	47	MA-40062	81
MA-4M0030247	MA-4135	17	MA-40071E	28
MA-4M0040247	MA-4139	47	MA-40071F	28
MA-4M0050247	MA-4140	47	MA-40071G	
MA-4M0060247	MA-4152	47	MA-40071H	
MA-4M0070247	MA-4142A	47	MA-400711	
MA-4M0080247	MA-4815	47	MA-40072	
MA-4M0090247	MA-4815A	47	MA-40073	58

	MBERS			
Model	Model	D	Model	Dono
Number Page	Number	Page	Number	Page
MA-40074 64	MA-40208	55	MA-41206	46
MA-40081	MA-40215	55	MA-41207	46
MA-40082	MA-40216	55	MA-41220-C	12
MA-40100	MA-40220	55	MA-41220-E	12
MA-40101	MA-40221	55	MA-41220-F	12
MA-40102	MA-40222	55	MA-41220-G	12
MA-40103	MA-40230	53	MA-41221-D	12
MA-40104	MA-40231	53	MA-41221-E	12
MA-40105	MA-40232	53	MA-41221-F	12
MA-40106	MA-40233	53	MA-41222	45
MA-40107	MA-40234	53	MA-41223	45
MA-40110	MA-40235	53	MA-41224	
MA-40111	MA-40236	53	MA-41225	45
MA-40115	MA-40237	53	MA-41500	14
MA-40116	MA-40240	53	MA-41501	14
MA-40121	MA-40241	53	MA-41502	14
MA-40122	MA-40242	53	MA-41503	14
MA-40123 34, 38	MA-40243	53	MA-41504	14
MA-40124 34, 38	MA-40244	53	MA-41505	14
MA-4012634	MA-40248	53	MA-41506	14
MA-40127	MA-40249	53	MA-41507	14
MA-40128	MA-40251	60	MA-41508	14
MA-40140	MA-40252	60	MA-41509	14
MA-40150	MA-40253	60	MA-41510	42
MA-40151	MA-40254	60	MA-41511	42
MA-40152	MA-40255	60	MA-41512	42
MA-40153	MA-40256	60	MA-41513	43
MA-40154	MA-40257	60	MA-41514	43
MA-40155	MA-40258	60	MA-41515	43
MA-40156	MA-40265	60	MA-41807	
MA-40157	MA-40266	60	MA-41808	, 73
MA-40160	MA-40267	60	MA-41809	
MA-40161	MA-40268	60	MA-41810	73
MA-40162	MA-40270	60	MA-41811	
MA-40163	MA-40271	60	MA-41812	
MA-40170	MA-40273	60	MA-41813	
MA-40171	MA-40401	248	MA-41816	
MA-40172	MA-40402	248	MA-41817	
MA-40173 34, 38	MA-40403		MA-41819	
MA-40174 34, 38	MA-40406		MA-41820	
MA-40175 38, 63	MA-40408		MA-42001	
MA-40176	MA-40409		MA-42002	
MA-40177	MA-40410		MA-42003	
MA-40178	MA-40412		MA-42004	
MA-40201	MA-41201D		MA-42005	
MA-40202	MA-41201E		MA-42006	
MA-40203	MA-41201F		MA-42007	
MA-40204	MA-41201G		MA-42008	
MA-40205	MA-41202E		MA-42009	
MA-40206	MA-41202F		MA-42010	
MA-40207	MA-41205	46	MA-42011	208

NDFX

INDEX OF MODEL NUMBERS

	INDEX OF MODEL NUMBERS					
Model Number Page	Model Number	Page	Model Number	Page		
MA-42012 208	MA-43543	175	MA-45123			
MA-42020-509 200	MA-43592	75, 176	MA-45124			
MA-42021-509 200	MA-44010		MA-45125	136		
MA-42022-509 200	MA-44020		MA-45126			
MA-42023-509 200	MA-44030		MA-45127	136		
MA-42024-509 200	MA-44040		MA-45128	136		
MA-42025-509 200	MA-44050		MA-45129	136		
MA-42026-509 200	MA-44051	175	MA-45141	136		
MA-42027-509 200	MA-44052		MA-45142	136		
MA-42028-509 200	MA-44053	175	MA-45143	136		
MA-42029-509 200	MA-44058		MA-45144	136		
MA-42050 204	MA-44060		MA-45145	136		
MA-42051 204	MA-44061		MA-45146	136		
MA-42052 204	MA-44070		MA-45147	136		
MA-42055 204	MA-44071		MA-45148	136		
MA-42056 204	MA-44100		MA-45149	136		
MA-42057 204	MA-44110		MA-45156	137		
MA-42060 204	MA-44120		MA-45157	137		
MA-42061 204	MA-44130		MA-45158	137		
MA-42062 204	MA-44140		MA-45159	137		
MA-42063 204	MA-44150		MA-45160	137		
MA-42100	MA-44200		MA-45161	137		
MA-42110	MA-44210		MA-45165	137		
MA-422-40596 240	MA-44220		MA-45166	137		
MA-422-40602 239	MA-44230		MA-45167	137		
MA-422-40830 239	MA-44240		MA-45168	137		
MA-422-40881 240	MA-44250		MA-45169	137		
MA-422-41018 241	MA-44300		MA-45170	137		
MA-422-41019 241	MA-44310	174	MA-45171	137		
MA-422-41067 242	MA-44320	174	MA-46021	220		
MA-422-41106 241	MA-45054	136	MA-46022	220		
MA-422-41152-1239	MA-45055	136	MA-46023	220		
MA-422-41152-2	MA-45056	136	MA-46024	220		
MA-422-41169 242	MA-45062	136	MA-46025	220		
MA-422-41280 242	MA-45063	136	MA-46026	220		
MA-422-41333 239	MA-45064	136	MA-46027			
MA-422-41357 243	MA-45065	136	MA-46028			
MA-422-41423 243	MA-45066	136	MA-46029	220		
MA-422-41509 240	MA-45067	136	MA-46030	220		
MA-422-41597 243	MA-45068	136	MA-46031	220		
MA-43000	MA-45101	136	MA-46032	220		
MA-43002	MA-45102	136	MA-46600-D	140		
MA-43004	MA-45103	136	MA-46600-E	140		
MA-43030	MA-45104	136		140		
MA-43031 176	MA-45105	136		140		
MA-43032	MA-45106	136		140		
MA-43033	MA-45107			140		
MA-43034	MA-45108			140		
MA-43035	MA-45109			140		
MA-43036	MA-45121			140		
MA-43037 176	MA-45122	136	MA-46601-G	140		

Model		NDEX OF MODEL NU Model		Model	
Number	Page	Number	Page	Number	Page
MA-46602-D	140	MA-47089	106	MA-47424	101, 102
MA-46602-E	140	MA-47090	125	MA-47425	103
MA-46602-F	140	MA-47091	106	MA-47426	103
MA-46603-D	140	MA-47100	113	MA-47427	103
MA-46603-E	140	MA-47110	112	MA-47600	
MA-46604-D	140	MA-47111	113	MA-47890	
MA-46610-D	140	MA-47120	112	MA-47891	
MA-46610-E	140	MA-47121		MA-47892	
MA-46610-F	140	MA-47122		MA-47893	
MA-46610-G	140	MA-47123		MA-47894	
MA-46610-H	140	MA-47147		MA-47895	
MA-46611-D	140	MA-47160		MA-47896	
MA-46611-E	140	MA-47161		MA-47897	
MA-46611-F	140	MA-47162		MA-47898	
MA-46611-G	140	MA-47200		MA-47899	
MA-46612-D	140	MA-47201		MA-48501-A	
MA-46612-E		MA-47202		MA-48501-B	
MA-46612-F		MA-47203		MA-48501-C	
MA-46613-D		MA-47204		MA-48501-D	
MA-46613-E	140	MA-47205		MA-48501-E	
MA-46614-D		MA-47206		MA-48501-F	
MA-46620-D		MA-47207		MA-48501-G	
MA-46620-E		MA-47208		MA-48501-H	
MA-46620-F		MA-47220		MA-48501-H	
MA-46620-G	,	MA-47221		MA-48501-J	
MA-46621-D		MA-47222			
MA-46621-E		MA-47223		MA-48501-K	
MA-46621-F		MA-47301		MA-48502-A	
MA-46622-D				MA-48502-B	
MA-46622-E		MA-47302		MA-48502-C	
MA-46623-D		MA-47400	•	MA-48502-D	
MA-46623-E		MA-47401		MA-48502-E	
		MA-47402		MA-48502-F	
MA-46624-D		MA-47403	•	MA-48502-G	
MA-47041		MA-47404	*	MA-48502-H	
MA-47047		MA-47405	•	MA-48502-I	
MA-47051	·	MA-47406		MA-48502-J	
MA-47052	•	MA-47407	•	MA-48502-K	
MA-47053		MA-47408	-	MA-48503-A	
MA-47054		MA-47409		MA-48503-B	
MA-47066		MA-47410		MA-48503-C	
MA-47075	· ·	MA-47411		MA-48503-D	
MA-47077		MA-47412		MA-48503-E	
MA-47079	•	MA-47413		MA-48503-F	
MA-47080	-	MA-47414		MA-48503-G	
MA-47081	-	MA-47416		MA-48503-H	
MA-47082	•	MA-47418		MA-48503-I	193
MA-47083		MA-47419		MA-48504-A	
MA-47084	•	MA-47420		MA-48504-B	
MA-47085	106	MA-47421	112	MA ADEDA C	100

MA-48504-C. 193

MA-48504-D 193

MA-48504-E. 193

MA-47085 106

MA-47086 125

MA-47088 125

	INDEX	OF MODEL N	UMBERS		
Model Number		Model Number	Page	Model Number	Page
MA-48504-F	. 193	MA-48701-J	185	MA-48707-B.	185
MA-48504-G	. 193	MA-48701-K	185		185
MA-48504-H		MA-48702-A	185		185
MA-48505-A			185		185
MA-48505-B			185		185
MA-48505-C			185		185
MA-48505-D			185		185
MA-48505-E			185		185
MA-48505-F	-		185	MA-48708-D .	
MA-48505-G	193	MA-48702-H	185	MA-48708-E	
MA-48506-A		MA-48702-I	185		185
MA-48506-B		MA-48702-J	185		185
MA-48506-C	. 193	MA-48702-K	185		185
MA-48506-D	. 193 N	MA-48703-A	185		185
MA-48506-E	. 193 N	MA-48703-A	185		185
MA-48506-F	. 193 N	MA-48703-B	185		185
MA-48507-A			185		185
MA-48507-B	193 M	MA-48703-D	185		185
MA-48507-C	193 N	MA-48703-E	185		185
MA-48507-D	193 M	MA-48703-F	185		185
MA-48507-E	193 M	MA-48703-G	185		185
MA-48507-F		ИА-48703-H			185
MA-48508-A		ла-48703-I	185		185
MA-48508-B		ЛА-48703-J			185
MA-48508-C		ЛА-48703-К			185
MA-48508-D	193 N	/A-48704-A	185		155
MA-48508-E	193 N	/A-48704-B	185		
MA-48509-A	193 N	ИА-48704-С	185	MA-49107	
MA-48509-B	193 N	MA-48704-D	185	MA-49109	155
MA-48509-C	193 N	ИА-48704-E	185	MA-49110	163
MA-48509-D	193 N	ЛА-48704-F	185	MA-49117-118.	157
MA-48509-E	193 N	MA-48704-G	185	MA-49121	155
MA-48510-A	193 N	/A-48704-H	185	MA-49122	153, 155
MA-48510-B	193 N	ЛА-48704-І	185	MA-49123	
MA-48510-C	193 M	ла-48704-J	185	MA-49124	155
MA-48510-D	193 N	/A-48705-A	185	MA-49126-118.	157
MA-48510-E	193 N	//A-48705-B	185	MA-49126-138.	157
MA-48511-A	193 N	/A-48705-C	185	MA-49128-138.	157
MA-48511-B	193 N	/A-48705-D	185	MA-49135	155
MA-48511-C	193 N	1A-48705-E	185	MA-49136	155
MA-48511-D	193 M	MA-48705-F	185	MA-49137	155
MA-48511-E	193 N	MA-48705-G	185	MA-49138	155
MA-48701-A	185 N	MA-48705-H	185	MA-49139	163
MA-48701-B		MA-48705-I	185	MA-49140-118.	157
MA-48701-C		MA-48706-A	185	MA-49145	163
MA-48701-D			185		163
MA-48701-E		MA-48706-C			163
MA-48701-F			185		155
MA-48701-G			185		155
MA-48701-H			185		155
MA-48701-I	185 M	иА-48707-А	185	MA-49154	155

INDEX OF MODEL NUMBERS

Model Number	Page	Model Number	Page	Model Number	Page
MA-49156	155	MA-7700A-0005	67	MA-7717N-0004	70
MA-49157	153, 155	MA-7700K-0001	67	MA-7717N-0005	70
MA-49158	153, 155	MA-7700K-0002	67	MA-7717N-0006	70
MA-49159	155	MA-7700K-0003	67	MA-7717N-0007,.	70
MA-49161	155	MA-7707J-0003	68	MA-7717N-0008	70
MA-49162	153, 155	MA-7707J-0012	68	MA-7742J-0001	69
MA-49163	153, 155	MA-7707J-0013	68	MA-7742N-0005	69
MA-49164	155	MA-7707N-0006	68	MA-7742N-0007	69
MA-49172		MA-7707N-0008	68	MA-7742N-0009	69
MA-49173		MA-7707N-0009	68	MA-7742N-0011	69
MA-49177		MA-7709A-0001	68	MA-7742N-0012	
MA-49178		MA-7709A-0003	68	MA-7744A-0001	69
MA-49179	170	MA-7709A-0005	68	MA-7744A-0003.	69
MA-49180		MA-7709A-0007	68	MA-7744A-0005	69
MA-49181		MA-7709A-0009	68	MA-7744A-0007	69
MA-49182		MA-7709A-0011	68	MA-7744A-0009	69
MA-49183	163	MA-7715A-0001	70	MA-7744A-0012.	69
MA-49184		MA-7715A-0002	70	MA-8342-0005	129
MA-49185		MA-7715A-0003	70	MA-8342-0006	129
MA-49186		MA-7715A-0004	70	MA-8342-0008	129
MA-49187		MA-7715A-0005	70	MA-8343-0001	131
MA-49188	163	MA-7715A-0006	70	MA-8343-0005	131
MA-49189	163	MA-7715A-0007	70	MA-8343-0006	131
MA-49260		MA-7715A-0008	70	MA-8345-0001	133
MA-49265	164	MA-7715A-0009	, 70	MA-8345-0002	133
MA-49508		MA-7717J-0009	70	MA-8345-0003	133
MA-49618		MA-7717N-0001	70		
MA-49628		MA-7717N-0002	70		
MA-7700A-0004		MA-7717N-0003	70		

U.S.A. SALES REPRESENTATIVES

NORTHFAST

NEW ENGLAND

Burlington Sales, Inc. 97 Cambridge Street Burlington, MA 01803 Tel. (617) 272-7655

MIDDLE ATLANTIC

UPSTATE NEW YORK

T' Electronics Co., Inc. 4054 New Court Avenue Syracuse, NY 13206 Tel. (315) 463-8592 TWX 710-541-0554 TWX 710-541-0554

T' Electronics Co., inc.
2 E. Main Street
Victor, NY 14564

Tel. (716) 924-9101

TWX 510-254-8542

NEW YORK CITY, LONG ISLAND, NORTHERN NEW JERSEY, WESTERN CONNECTICUT

ERA, Incorporated One Dupont Street Plainview, NY 11803 Tel. (516) 822-9890 TWX 510-221-1849

WASHINGTON, D.C. MARYLAND, VIRGINIA, AND NORTH CAROLINA

Burgin-Kreh Associates, Inc. 6100 Baltimore National Pike Baltimore, MD 21228 Tel. (301) 788-5200 TWX 710-862-1450

Burgin-Kreh Associates, Inc. P.O. Box 268 Kingston, TN 37763 Tel. (615) 690-6100

Burgin-Kreh Associates, Inc. P.O. Box 19510 Raielgh, NC 27609 Tel. (919) 781-1100

Burgin-Kreh Associates, Inc. P.O. Box 4254 Lynchburg, VA 24502 Tel. (804) 239-2626

SOUTHEAST

FLORIDA, GEORGIA, ALABAMA

Mr. Richard Kirchberger Microwave Associates, Inc. 1010 East Atlantic Blvd. Pompano Beach, FL 33060 Tel. (305) 943-2690 Mr. Clint Francis Microwave Associates, Inc. Suite 115 14 Perimeter Park Atlanta, GA 30341 Tel. (404) 455-3818

SOUTHWEST

TEXAS, OKLAHOMA, ARKANSAS, LOUISIANA

Microwave Associates, Inc. 811 South Central Expressway Richardson, TX 75080 Suite 546 Tel. (214) 234-2463 TWX 910-867-4769

ARIZONA, NEW MEXICO. COLORADO, UTAH

Microwave Associates, Inc. 7336 E. Shoeman Lane, Suite 108W Scottsdale, AZ 85251 Tel. (602) 947-5431 TWX 910-950-1281

WEST COAST

WASHINGTON, OREGON

C.K. Shanks & Associates, Inc. 4110 W. Charming Way P.O. Box 25385 Portland, OR Tel. (503) 292-5656

NORTHERN CALIFORNIA, NEVADA

Microwave Associates, Inc. 1362 Borregas Avenue Sunnyvale, CA 94086 Tel. (408) 734-2320 TWX 910-339-9248

SOUTHERN CALIFORNIA

Microwave Associates, Inc. 5855 Green Valley Circle Suite 200 Culver City, CA 90320 Tel. (213) 645-6611 TWX 910-328-6132

MIDWEST

NORTHERN ILLINOIS, SOUTHERN WISCONSIN

Dekotech, Incorporated 10001 W. Grand Avenue P.O. Box 306 Franklin Park, IL 60131 Tel. (312) 455-5100 TWX 910-227-1761

MISSOURI, KANSAS, NEBRASKA & SOUTHERN ILLINOIS

Midtec Associates 6912 Marion Shawnee Mission, KS 66218 Tel. (913) 441-6565 Midtec Associates 110 S. Highway 67 Florissant, MO 63033 Tel. (314) 837-5200

IOWA, MINNESOTA

Seltec Sales Corporation P.O. Box 128 Prior Lake Minneapolis, MN 55372 Seltec Sales Corporation 1930 St. Andrews Drive, N.E. P.O. Box 2172 Cedar Rapids, 1A 52405 Tel. (319) 393-1114 TWX 910-525-1329

INDIANA

Delesa Sales Executive Office Park 2118 Inwood Drive, Suite 117 Ft. Wayne, IN 46805 Tel. (219) 483-9537 TWX 810-332-1407 Delesa Sales 10026 E. 21st Street Indianapolis, IN 46229 Tel. (317) 894-3778

OHIO, MICHIGAN, WEST VIRGINIA, AND WESTERN PENNSYLVANIA

S.A.I. Marketing Corporation P.O. Box N Brighton, MI 48116 Tel. (313) 227-1786 TWX 810-242-1518 S.A.I. MArketing Corporation 2420 Burton Drive S.E. Grand Rapids, Mi 49506 Tel. (616) 942-2504

INTERNATIONAL SALES REPRESENTATIVES

U.S.A. CANADA

MA Electronics Canada 3135 Universal Drive Mississauga, Ontario Canada L4X 2E7 Tel. (416) 625-4605 TWX 610-492-4317

AUSTRALIA

Werner Electronics Industries Pty., Ltd. 28 Gray Street Kilkenny, S.A. 5009 Australia CABLE AA20365M

BELGIUM, NETHERLANDS, LUXEMBURG

Microwave Associates Int'l. 176 Rue Victor Hugo 1040 Brussels Belgium Tel. 735-01-95 TELEX 23281 CABLE MELABSA BRUSSELS

BRAZIL

Cosela Ltda. Rua Da Consolacao 867-Cj. 31 01301 Sao Paulo Brazil Tel. 257-3535/258-4325 CABLE "SEMICHIP"

DENMARK

Tage Oisen A/S Tagiverksgrde 37 DK-2100 Copenhagen Denmark Tel. (01) 294800 TELEX 15788

FINLAND

Carlo Casagrande Oy Kalevankatu 4 Helsinki 10 Finland Tel. 640711 TELEX 12-1677 CABLE CARCAS HELSINKI

FRANCE

Microwave Associates, S.A. 57-59 Rue De La Convention Paris France Tel. 579-2338 TELEX 202100F

Andreas E. Dovletoglou 20 Voukourestiou Street Athens 134 Greece Tel. 623-462 CABLE ANDREWDEV-ATHENS

INDIA

Forbes, Forbes, Campbell & Co., Ltd Forbes Building, Home Street P.O. Box 79 P.O. Box 79 Bombay India Tel. 268081 TELEX 112369 CABLE STEAMER BOMBAY

ISRAEL

Microkim Limited Science Based Industries Technion City, Haifa Tel. 04-226820 TELEX 922-46582 Ext. 8313

ITALY

Elettronica Micro-Onde Via Luigi Chiarelli 19 00137 Rome Italy Tel. 82-71-757 TELEX 79278 Elettronica Micro-Onde Via Andrea Doria, 17 20124 Milano Italy Tel. 270922 TELEX 25258

JAPAN

Hakuto Co., Ltd. Foreign Division 2-29 Toranomon 1-Chome, Minato-Ku, Tokyo Japan Tel. (03) 502-2211 TELEX J22912 BRAPAN CABLE BRAPAN TOKYO

MEXICO

Mexitek S.A. Eugenia 408, Dept. 1Y5 APDO Postal 12-1012 Mexico, 12, D.F. Tel. 536-09-10 or 532-97-51

NEW ZEALAND

Amalgamated Wireless (Australasia) N.Z., Ltd. P.O. Box 830 Wellington, 2 New Zealand Tel. 51-279 TELEX NZ31001

NORWAY

Pritish Imports, A/S P.O. Box 2582 Solli Oslo 2 Norway Tel. 41-59-35 TELEX 16743 CABLE BRITCO OSLO

SOUTH AFRICA

SOUTH AFRICA Fairmont Electronics (Pty.) Ltd. P.O. Box 41102 Craighall, 2024 Transvaal R.S. A. 6421 48-6481/2 CABLE "FAIRTRONICS" CRAIGHALL TELEX 8-3227 SA

SPAIN

Hispano Electronica S.A. Commandate Zorita 8 Madrid 20 Spain

SWEDEN

Swedish Elektronik A/B Box 566 191 05 Sollentuna Tel. 08-96-7660 TELEX 13461 Swelink CABLE TELELINK STOCKHOLM

SWITZERLAND

Technology Resources AG Aabergergasse 20 3000 Bern Switzerland Tel. (031) 22-39-73 TELEX 33450

TAIWAN, HONG KONG

Shigms, Inc. (Taiwan Branch)
Room 404, 4th Floor, Q Bldg.
152 Chung Shan N Road, Sec. 1
Taipei
Taiwan
Tel. 5614300, 4309, 0148 & 0149
TELEX 22590 Shigma P.O. Box 348
Tsat Tse Mui Post Office
Hong Kong
TELEX 80273942

UNITED KINGDOM

Microwave Associates, Ltd. Dunstable LU5 4SX Bedfordshire Bedfordshire England Tel. (0582) 601441 TELEX 82295 CABLE MICROWAVE DUNSTABLE

WEST GERMANY & AUSTRIA

Microwave Associates, GmbH Weltenburger Strasse 33 D-8 Munchen 80 West Germany Tel. 089-23 60 v 61 TELEX 5-29103 MAGM

EASTERN EUROPE, EAST GERMANY, POLAND, HUNGARY, BULGARIA, RUMANIA, YUGOSLAVIA, CZECHOSLOVAKIA, U.S.S.R.

Microwave Associates International 14 Warwick Road London W5 England Tel. 579-2555