CPE301 - SPRING 2018

Design Assignment 2

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

One 220Ω resistor Two $10K\Omega$ resistors One pushbutton One red LED (See schematics for diagrams)

2. INITIAL/DEVELOPED CODE OF TASK 1/A

No initial code for any tasks.

3. MODIFIED CODE OF TASK 1/A

```
Task 1 assembly code:
```

```
.org 0x00
    LDI R16, HIGH(RAMEND)
    OUT SPH, R16
    LDI R16, LOW(RAMEND)
    OUT SPL, R16
    SBI DDRB, 2
                        ;set PORT2 as output
    LDI R17, 0
                         ;used to intialize PB2 OFF
                         turn PB2 off;
    OUT PORTB, R17
    LDI R16, 4
                         ;used to toggle LED
 LOOP:
                        ;call delay subroutine
    rcall myDelay
                         ;toggle bits of R17
    EOR R17, R16
    OUT PORTB, R17
                         ;toggle LED
    RJMP LOOP
                         ;continue looping
 myDelay:
    LDI R18, 250
                        ;counter for delay
 L1:
    LDI R19, 250
                        ;second nested counter for delay
 L2:
                        ;take 1 clock cycle 250*250 times
    NOP
    DEC R19
                         ;take 1 clock cycle 250*250 times and decrement 2nd count
                        ;keeping delaying if not zero
    BRNE L2
                         ;decrement primary counter
    DEC R18
                         ;go into nested loop if not zero
    BRNE L1
    RET
                          ;finished .25 second delay
     Task 1 C code:
 #include <avr/io.h>
 #define F_CPU 1000000UL
 #include <util/delay.h>
□int main()
 {
      DDRB |= (1<<2);
                                     //set PB2 as output
      PORTB &= ~(1<<2);
                                      //set PB2 OFF
      while (1)
                                    //Turn on LED
          PORTB |= (1<<2);
           _delay_ms(250);
                                     //wait 250ms
                                 //Turn off LED
          PORTB &= ~(1<<2);
         _delay_ms(250); //wait 250ms
      }
 }
```

4. MODIFIED CODE OF TASK 2/B

Task 2/B assembly code:

```
.org 0x00
      LDI R16, HIGH(RAMEND)
      OUT SPH, R16
      LDI R16, LOW(RAMEND)
OUT SPL, R16
      SBI DDRB, 2
                              ;set PORT2 as output
                             jused to intialize PB2 OFF
      LDI R17, 0
                             ;set PB2 OFF
      OUT PORTB, R17
                             ;set PD2 as input
;set PD2 as input
      CBI DDRD, 2
      LDI R17 ,0x04
                             ;set PD2 as input
      OUT PORTD, R17
      LDI R25, 0
  LOOP:
      IN R16, PIND
                             ;R16 gets PIND values
      CPI R16, 0x00
                             ;check if button was pressed
                             ;if not 0 keep polling
      BRNE LOOP
      OUT PORTB, R17
                              ;Turn on LED
      rcall myDelay250ms
                             ;call 250ms delay 4 times for
      rcall myDelay250ms
                             ;overall 1 second delay
      rcall myDelay250ms
      rcall myDelay250ms
      OUT PORTB, R25
                              ;turn off LED
      jmp LOOP
  myDelay250ms:
      LDI R18, 250
                              ;counter for delay
      LDI R19, 250
                              ;second nested counter for delay
  L2:
      NOP
                             ;take 1 clock cycle 250*250 times
                              ;take 1 clock cycle 250*250 times and decrement 2nd count
      DEC R19
      BRNE L2
                              ;keeping delaying if not zero
      DEC R18
                              ;decrement primary counter
      BRNE L1
                              ;go into nested loop if not zero
                              ;finished .25 second delay
      RET
      Task 2/B C code:
 #include <avr/io.h>
 #define F_CPU 1000000UL
 #include <util/delay.h>

☐ int main(void)

 {
      DDRB |= 0xFF;
                                //set PORTB as output
                                //initialize LED OFF
      PORTB = 0x00;
      PORTD = 0x04;
                                //turn on pull-up
                               //while button is not pressed
      while (1)
      {
          if(PIND & 0x04)
                                    //if the button isn't pressed
          {
              //do nothing
          }
          else
          {
              PORTB |= (1<<2);
                                    //Turn on LED
                                   //wait 1 second
               _delay_ms(1000);
              PORTB &= ~(1<<2);
                                   //Turn off LED
          3
      }
```

MODIFIED CODE OF TASK 3/C

Task 3/C assembly code:

```
.org 0
      LDI R16, 4
                           ;used to toggle LED
                           ;used to initialize TCCR0A
      LDI R18, 0
      SBI DDRB, 2
                           ;PB2 as output
                           ;needed to toogle led
      LDI R17,0
      OUT PORTB, R17
                           turn LED off;
  begin:
      LDI R20, 12 ;250ms delay with 1024 prescaler
OUT TCNT0, R20 ;load value into timer
LDI R20, 5 ;to set prescaler
OUT TCCR0B, R20 ;Prescaler: 1024
OUT TCCR0A, R18 ;Timer0, normal mode, initalize clock
  loop:
      IN R20, TIFR0
                           ;read in TIFR0
      SBRS R20, 0 ;if TOV0 is set skip next instruction
    RJMP LOOP ;keep polling
      LDI R20, 0
      OUT TCCR0B, R20 ;stop the timer
      LDI R20, 1
      OUT TIFRØ, R20
                           ;reset TOV0 flag
                           ;XOR to toogle led
      EOR R17, R16
      OUT PORTB, R17
                           ;toggle LED
      RJMP begin
                            :reset
      Task 3/C C code:
 #include <avr/io.h>
□int main(void)
 {
                               //set PB2 as output
//turn PB2 LED off
     DDRB |= (1<<2);
PORTB &= ~(1<<2);
TCCRØA = 0;
                                  //Timer0, normal mode, initialize clock
                                 //prescaler of 1024
     TCCRØB = 5;
     TCNT0 = 12;
                                  //250ms delay value
     while (1)
         //reset o...
//reset counter
                                         //toggle LED
              PORTB ^= (1<<2);
             TIFR0 |= (1<<TOV0);
                                           //reset overflow bit
             TCNT0 = 12;
         }
     }
 }
```

6. MODIFIED CODE OF TASK 4/D

Task 4/D assembly code:

```
.org 0x0
    jmp MAIN
                                 ;addr for Timer1 overflow
.org 0x1A
   jmp T1_OV_ISR
.org 0x100
MAIN:
    ldi R17, HIGH(RAMEND)
                                 ;initialize the stack
    out SPH, R17
    ldi R17, LOW(RAMEND)
out SPL, R17
    sbi DDRB, 2
                        ;set PB2 as output
    ldi R17, 0
    out PORTB, R17
                             ;turn off LED initially
                            ;upper bits of 61630
;set high bits of counter
    ldi R17, 0xF0
    sts TCNT1H, R17
                             ;lower bits of 61630
    ldi R17, 0xBE
                             ;set low bits
    sts TCNT1L, R17
    ldi R17, 0
    sts TCCR1A, R17
                             ;normal mode
    ldi R17, 3
    sts TCCR1B, R1/
ldi R17, (1<<TOIE1)
R17 ;set flag bit
                             ;set prescaler to 64
                    ;enable the interrupt
    sei
again:
    jmp again
                                  ;loop until interrupt occurs
T1_OV_ISR:
    LDI R20, 1<<TOV1
                            clear the flag bit;
    sts TIFR1, R20
                             ;flag bit cleared
    IN R16, PORTB
                             ;read in PB2
    LDI R17, 0x04
EOR R16, R17
                          ;toggle PB2
;toggle LED
;reload upper bits
    OUT PORTB, R16
    ldi R17, 0xF0
    sts TCNT1H, R17
                             ;reset the couter
                            reload lower bits;
    ldi R17, 0xBE
    sts TCNT1L, R17 ; res
RETI ; return
                              ;reset the counter
  RETI
```

Task 4/D C code:

```
#include <avr/io.h>
 #include <avr/interrupt.h>
□int main()
 {
                            //set PB2 as output
     DDRB |= 0x04;
     PORTB = 0;
                              //initialize LED off
                              //normal mode
//set pre-scaler to 64
     TCCR1A = 0;
      TCCR1B = 3;
     TCNT1 = 61630;
     TCNT1 = 61630; //set timer value
TIMSK1 = (1<<TOIE1); //enable overflow interrupt
     sei ();
                                //enable interrupts
     while(1)
          //wait for interrupt
}
□ISR (TIMER1 OVF vect)
                            //reset flag bit
//toggle LED
      TIFR1 |= (1<<TOV1);
     PORTB ^= 0x04;
     TCNT1 = 61630;
                               //reset timer
 }
```

MODIFIED CODE OF TASK 5/E 7.

Task 5/E assembly code:

```
.ORG Ø
                                  ;location for reset
     JMP MAIN
 .ORG 0x02
                                  ;location for EXT_INT0
    JMP EX0 ISR
 .ORG 0x1A
                                  ;location for TIM1_OVF
     JMP T1_OV_ISR
 MAIN:
     LDI R20, HIGH(RAMEND)
                                 ;initialize the stack
     OUT SPH,R20
     LDI R20, LOW(RAMEND)
     OUT SPL,R20
     SBI DDRB,2
                             ;PC.3 = output
                             ;pull-up activated
     SBI PORTD,2
     LDI R20,1<<INT0
                             ;Enable INT0
     OUT EIMSK,R20
                             ;Enable INT0
     LDI R20, (1<<ISC01)
                             ;Configure to falling edge triggered
     sts EICRA,R20
     LDI R20, (1<<TOIE1)
                             ;Enable timer1 overflow interrupt
                             ;Enable TOIE1
;Set I (Enable Interrupts)
     STS TIMSK1, R20
     SET
 HERE:
     JMP HERE
                             ;wait for interrupt
 EX0_ISR:
     LDI R20, 1<<INTF0
                             ;load in flag position
                             ;clear flag
     OUT EIFR, R20
                             ;send 1 to PB2
     LDI R22,0x04
     OUT PORTB, R22
                             turn on LED;
     LDI R17, 0xF0
                             ;get upper bits of 61630
                             ;set high bits of counter
     STS TCNT1H, R17
                             ;get lower bits of 61630
     LDI R17, 0xBE
     STS TCNT1L, R17
                             ;set lower bits
     LDI R17, 0
     STS TCCR1A, R17
                             ;normal mode
     LDI R17, 4
     STS TCCR1B, R17
                             ;set prescaler to 256
     RETI
                             ;finish interrupt
T1_OV_ISR:
    LDI R20, 1<<TOV1
                            ;clear flag bit
    STS TIFR1, R20
    LDI R17, 0
                             ;turn off LED
    OUT PORTB, R17
    STS TCCR1B, R17
                             ;turn off timer
    RETT
                            ;finish interrupt
Task 5/E C code:
```

```
#include <avr/io.h>
#include <avr/interrupt.h>
□int main()
          DDRB = 1<<2;

PORTD = 1<<2;

EIMSK = (1<<INT0);

EICRA = (1<<ISC01);

TIMSK1 = (1<<TOIE1);
                                                         //set PB2 as output
                                                        //set PB2 as output
//set up pull up resistor
//enable external interrupt 0
//falling edge trigger
//overflow interrupt timer1 enabled
           sei();
           while (1)
                  //wait for interrupts
|
|}
|□ISR (INTØ_vect)
           EIFR |= (1<<INTF0);
PORTB |= (1<<2);
TCNT1 = 61630;
TCCR1A = 0;
TCCR1B = (1<<CS12);
                                                         //reset flag
                                                         //turn on LED
                                                         //set counter value
//normal mode
                                                         //set prescaler to 256
  L 3-
□ISR (TIMER1_OVF_vect)
          TIFR1 |= (1<<TOV1);
PORTB &= ~(1<<2);
TCCR1B = 0;
                                                         //reset flag
                                                         //turn LED off
//turn off timer
```

8. SCHEMATICS

Schematic for tasks 1,3, and 4

Schematic for tasks 2 and 5

9. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Task 1/A assembly before delay:

After delay:

Task 1/A C code before delay:

```
Processor Status
 #include <avr/io.h>
 #define F_CPU 1000000UL
                                                               Value
                                           Name
 #include <util/delay.h>
                                       Program Counter
                                                        0x00000042
                                       Stack Pointer
                                                        0x08FD
⊡int main()
 {
                                       X Register
                                                        0x0000
      DDRB |= (1<<2);
                                       Y Register
                                                        0x08FF
      PORTB &= ~(1<<2);
                                       Z Register
                                                        0x0000
      while (1)
                                       Status Register
                                                        ITHSVNZC
                                       Cycle Counter
                                                        16
           PORTB |= (1<<2);
                                       Frequency
                                                        1.000 MHz
           <u>_delay_ms(250);</u>
PORTB &= ~(1<<2);
                                       Stop Watch
                                                        0.00~\mu s
           _delay_ms(250);
                                      ■ Registers
 }
                                                         0x00
                                       R00
                                                         0x00
                                       R01
```

After delay:

Task 2/B assembly before button pushed:

LUI KI/, Ø	ion pusheu.	
OUT PORTB, R17	Processor Status	
CBI DDRD, 2	Name	Value
LDI R17 ,0x04	Program Counter	0x000000F
OUT PORTD, R17 LDI R25, 0	Stack Pointer	0x08FF
	X Register	0x0000
LOOP:	Y Register	0x0000
IN R16, PIND CPI R16, 0x00	Z Register	0x0000
BRNE LOOP	Status Register	ITHSVN Z C
OUT PORTB, R17	Cycle Counter	16
rcall myDelay250ms rcall myDelay250ms	Frequency	1.000 MHz
rcall myDelay250ms	Stop Watch	0.00 μs
rcall myDelay250ms	■ Registers	
OUT PORTB, R25	R00	0x00
Jiip Loor	R01	0x00
myDelay250ms:	R02	0x00
LDI R18, 250	BUS	0~00

After button pushed:

Auter pactor pastical			
LDI KI/, A	SUSPILIO INITAL	LVE PDZ VEE	
OUT PORTB, R17	Processor Status		
CBI DDRD, 2	Name	Value	
LDI R17 ,0x04	Program Counter	0x00000013	
OUT PORTD, R17 LDI R25, 0	Stack Pointer	0x08FF	
	X Register	0x0000	
LOOP:	Y Register	0x0000	
IN R16, PIND CPI R16, 0x00	Z Register	0x0000	
BRNE LOOP	Status Register	UTHSVNZC	
OUT PORTB, R17	Cycle Counter	1003044	
rcall myDelay250ms	Frequency	1.000 MHz	
rcall myDelay250ms rcall myDelay250ms	Stop Watch	1,003,028.00 µs	
rcall myDelay250ms	■ Registers		
OUT PORTB, R25	R00	0x00	
jmp LOOP	R01	0x00	
myDelay250ms:	R02	0x00	
LDI R18, 250	R03	0×00	
1.11			

Task 2/B C code before button pushed:

```
Processor Status
  #include <avr/io.h>
  #define F_CPU 1000000UL
                                                         Value
                                      Name
 #include <util/delay.h>
                                  Program Counter
                                                   0x00000048
                                  Stack Pointer
                                                   0x08FD
⊡int main(void)
                                  X Register
                                                   0x0000
 {
      DDRB |= 0xFF;
                                  Y Register
                                                   0x08FF
      PORTB |= 0x00;
                                                   0x0000
                                  Z Register
      PORTD = 0x04;
                                  Status Register
                                                   UTHSVNZC
      while (1)
                                  Cycle Counter
                                  Frequency
                                                   1.000 MHz
          if(PIND & 0x04)
                                                   0.00 µs
                                  Stop Watch
               //do nothing
                                 ■ Registers
                                  R00
                                                    0x00
          else
                                  R01
                                                    0x00
               PORTB |= (1<<2)
                                  R02
                                                    0x00
                delay_ms(1000)
```

After button pushed:

```
Processor Status
 #include <avr/io.h>
 #define F CPU 100000UL
                                       Name
                                                            Value
 #include <util/delay.h>
                                   Program Counter
                                                     0x00000052
                                   Stack Pointer
                                                     0x08FD

    int main(void)

                                   X Register
                                                     0x0000
 {
      DDRB |= 0xFF;
                                   Y Register
                                                     0x08FF
      PORTB |= 0x00;
                                   Z Register
                                                     0x0000
      PORTD = 0x04;
                                   Status Register
                                                     IITHS VNZC
      while (1)
                                   Cycle Counter
                                                     1000023
                                   Frequency
                                                     1.000 MHz
           if(PIND & 0x04)
                                   Stop Watch
                                                     1,000,002.00 µs
               //do nothing
                                  ■ Registers
                                    R00
                                                      0x00
           else
                                    R01
                                                      0x00
               PORTB |= (1<<2)
                                    R02
                                                      0x00
               _delay_ms(1000)
PORTB &= ~(1<<2
                                    RN3
//lurn of
                                                     EDIO
      }
```

Task 3/C assembly before timer overflow:

; Replace with your app	lica	Processor Status	
.org 0	-110	Name	Value
LDI R16, 4	;us	Program Counter	0x0000000A
LDI R18, 0	;us	Stack Pointer	0x08FF
SBI DDRB, 2 LDI R17,0	;PB ;ne	X Register	0x0000
OUT PORTB, R17	;tu	Y Register	0x0000
begin:		Z Register	0x0000
LDI R20, 12	;25	Status Register	UTHSVNZC
OUT TCNT0, R20 LDI R20, 5	;lo ;to	Cycle Counter	10
OUT TCCR0B, R20	;Pr	Frequency	1.000 MHz
OUT TCCRØA, R18	;⊤i	Stop Watch	0.00 µs
loop: IN R20, TIFR0	;re	■ Registers	
SBRS R20, 0	;if	R00	0x00
10111 2001	,,,,	R01	0x00
LDI R20, 0		R02	0x00
OUT TCCR0B, R20	;st	RU3	0~00

After timer overflow:

; Replace with your appl	Processor Status	
.org 0	Name	Value
LDI R16, 4	Program Counter	0x000000D
LDI R18, 0 SBI DDRB, 2	Stack Pointer	0x08FF
LDI R17,0	X Register	0x0000
OUT PORTB, R17	Y Register	0x0000
begin: LDI R20, 12	Z Register	0x0000
OUT TCNT0, R20	Status Register	UTHSVNZC
LDI R20, 5	Cycle Counter	249869
OUT TCCR0B, R20 OUT TCCR0A, R18	Frequency	1.000 MHz
loop:	Stop Watch	249,859.00 μs
IN R20, TIFR0	; □ Registers	
SBRS R20, 0 RJMP LOOP	R00	0x00
	R01	0x00
LDI R20, 0	R02	0x00
OUT TCCR0B, R20	RUS	0~00

Task 3/C C code before timer overflow:

After timer overflow:

```
Processor Status
 #include <avr/io.h>
                                    Name
                                                       Value
                                Program Counter
                                                 0x0000004B
                                Stack Pointer
                                                 0x08FD
□int main(void)
 {
                                X Register
                                                 0x00000
      DDRB |= (1<<2);
                                                 0x08FF
                                Y Register
      PORTB &= ~(1<<2);
      TCCRØA = 0;
                                Z Register
                                                 0x0000
      TCCRØB = 5;
                                Status Register
                                                 ITHSVNZC
      TCNT0 = 12;
                                Cycle Counter
                                                 249877
                                Frequency
                                                 1.000 MHz
      while (1)
                                Stop Watch
                                                 249,858.00 µs
                               Registers
           if(TIFR0 & (1 <<
                                R00
                                                  0x00
               PORTB ^= (1<<
                                R01
                                                  0x00
               TIFR0 |= (1<<
                                                  0x00
                                R02
               TCNT0 = 12;
           }
                                 RN3
                                                  0
```

Task 4/D assembly code before timer interrupt overflow:

After interrupt occurs:

Task 4/D C code before timer overflow interrupt:

```
DDRB |= 0x04;
                               Processor Status
      PORTB = 0;
                                     Name
                                                         Value
      TCCR1A = 0;
                                 Program Counter
                                                  0x00000050
      TCCR1B = 3;
      TCNT1 = 61630;
TIMSK1 = (1<<TOIE1);
                                 Stack Pointer
                                                  0x08FD
                                 X Register
                                                  0x0000
      sei ();
                                 Y Register
                                                  0x08FF
                                                  0x0000
                                 Z Register
      while(1)
                                 Status Register
                                                  IITHS VNZC
           //wait for interr
                                 Cycle Counter
                                 Frequency
                                                   1.000 MHz
 }
                                 Stop Watch
                                                  0.00 µs
☐ISR (TIMER1_OVF_vect)
                                Registers
      TIFR1 |= (1<<TOV1);
                                 R00
                                                   0x00
      PORTB ^= 0x04;
                                 R01
                                                   0x00
      TCNT1 = 61630;
                                                   0x00
                                 R02
                                 בחם
                                                   ۸.۸۸
```

After interrupt occurs:

```
DDRB = 0x04;
                              Processor Status
     PORTB = 0;
                                                      Value
                                   Name
     TCCR1A = 0;
                               Program Counter
                                               0x00000059
     TCCR1B = 3;
                               Stack Pointer
     TCNT1 = 61630;
                                                0x08F6
     TIMSK1 = (1 << TOIE1);
                               X Register
                                                0x00000
     sei ();
                               Y Register
                                                0x08FF
                               Z Register
                                                0x0000
     while(1)
                                                Status Register
          //wait for interr
                               Cycle Counter
                                                250024
                               Frequency
                                                1.000 MHz
}
                               Stop Watch
                                                249,995.00 µs
∃ISR (TIMER1_OVF_vect)
                              Registers
      TIFR1 = (1 << TOV1);
                               R00
                                                0x00
     PORTB ^= 0x04;
                                                0x00
                               R01
     TCNT1 = 61630;
                               R02
                                                0x00
 }
                               RU3
                                                0
```

Task 5/E assembly before timer interrupt:

,	•	
LDI R17, 0xF0	Processor Status	
STS TCNT1H, R17	Name	Value
LDI R17, 0xBE STS TCNT1L, R17	Program Counter	0x0000003B
LDI R17, 0	Stack Pointer	0x08FF
STS TCCR1A, R17	X Register	0x0000
LDI R17, 4	Y Register	0x0000
STS TCCR1B, R17	Z Register	0x0000
	Status Register	I THSVNZC
T1_OV_ISR:	Cycle Counter	99
LDI R20, 1< <tov1 STS TIFR1, R20</tov1 	Frequency	1.000 MHz
LDI R17, 0	Stop Watch	0.00 µs
OUT PORTB, R17 STS TCCR1B, R17	☐ Registers	
RETI	R00	0x00
	R01	0x00
	R02	0x00
	I	

After interrupt:		
LDI R17, 0xF0	Processor Status	
STS TCNT1H, R17	Name	Value
LDI R17, 0xBE STS TCNT1L, R17	Program Counter	0x0000003E
LDI R17, 0	Stack Pointer	0x08FD
STS TCCR1A, R17	X Register	0x0000
LDI R17, 4	Y Register	0x0000
STS TCCR1B, R17	Z Register	0x0000
	Status Register	OTHSVNZC
T1_OV_ISR:		1000046
LDI R20, 1< <tov1< td=""><td>Cycle Counter</td><td></td></tov1<>	Cycle Counter	
STS TIFR1, R20	Frequency	1.000 MHz
STS TIFR1, R20 LDI R17, 0	-	
STS TIFR1, R20 LDI R17, 0 OUT PORTB, R17	Frequency	1.000 MHz
STS TIFR1, R20 LDI R17, 0	Frequency Stop Watch	1.000 MHz
STS TIFR1, R20 LDI R17, 0 OUT PORTB, R17 STS TCCR1B, R17	Frequency Stop Watch Registers	1.000 MHz 999,947.00 μs
STS TIFR1, R20 LDI R17, 0 OUT PORTB, R17 STS TCCR1B, R17	Frequency Stop Watch Registers	1.000 MHz 999,947.00 μs 0x00

Task 5/E before timer interrupt:

```
Processor Status
     while (1)
                                                            Name
                                                                               Value
                                                        Program Counter 0x0000005D
          //wait for interrupts
                                                        Stack Pointer
                                                                         0x08FD
 }
                                                                         0x0000
                                                        X Register
□ISR (INT0_vect)
                                                                         0x08FF
                                                        Y Register
      EIFR |= (1<<INTF0);
                                //reset flag
                                                                         0x0000
                                                        Z Register
     PORTB |= (1<<2);
                               //turn on LED
                                                        Status Register
                                                                         THSVNZC
     TCNT1 = 61630;
                               //set counter value
                                                        Cycle Counter
                                //normal mode
     TCCR1A = 0;
                                                                         1.000 MHz
      TCCR1B = (1 << CS12);
                                //set prescaler to 25
                                                        Frequency
                                                        Stop Watch
                                                                         0.00 µs
                                                       ■ Registers
∃ISR (TIMER1 OVF vect)
                                                         R00
                                                                         0x00
     TIFR1 |= (1<<TOV1);
                                //reset flag
                                                                         0x00
                                                         R01
      PORTB &= ~(1<<2);
                                //turn LED off
                                //turn off timer
      TCCR1B = 0;
                                                         R02
                                                                          0x00
```

After interrupt:

```
Processor Status
      while (1)
                                                             Name
                                                                                Value
                                                         Program Counter
                                                                          0x0000006C
          //wait for interrupts
                                                         Stack Pointer
                                                                          0x08F8
                                                         X Register
                                                                          0x0000
□ISR (INT0_vect)
                                                         Y Register
                                                                          0x08FF
      EIFR |= (1<<INTF0);
                                //reset flag
                                                         Z Register
                                                                          0x0000
      PORTB |= (1<<2);
                                //turn on LED
                                                                          OTHSVNZC
                                                         Status Register
                                //set counter value
      TCNT1 = 61630;
                                                         Cycle Counter
                                                                          999989
      TCCR1A = 0;
                                //normal mode
      TCCR1B = (1<<CS12);
                                //set prescaler to 25
                                                                          1.000 MHz
                                                         Frequency
                                                         Stop Watch
                                                                          999,954.00 µs
                                                        ■ Registers

☐ISR (TIMER1_OVF_vect)

                                                          R00
                                                                          0x00
      TIFR1 |= (1<<TOV1);
                                 //reset flag
                                                          R01
                                                                          0x00
                                //turn LED off
      PORTB &= ~(1<<2);
      TCCR1B = 0;
                                //turn off timer
                                                          R02
                                                                           0x00
```

10. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Setup for tasks 1, 3, and 4

Set up for tasks 2 and 5

11. VIDEO LINKS OF EACH DEMO

Tasks 1/3/4 - https://www.youtube.com/watch?v=Q2s7c8BWkkk

Tasks 2/5 - https://www.youtube.com/watch?v=0_fHTzq70SA

12. GITHUB LINK OF THIS DA

https://github.com/nhanuscin/submit/tree/master/DA2

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Nathan Hanuscin