Proving that T^n is a contraction is proving $d(T^n(V_1(S)), T^n(V_2(S)))$ $\leq \gamma d(V_1(S), V_2(S))$

Let $d(x_1,x_2) = ||x_1-x_2||_{\infty} = \max |x_1-x_2|$

For V, V2, || T(V1) - T(V2) = max | T(V1) - T(V2)

11 T"(V,)-T"(V,) | = max (s) + v) Ps' V"(s') - R(s) - v [Ps' V"(s')]
ses

= $\gamma \max \left| \sum_{s'} P_{ss'} \left(V_i^{\pi}(s') - V_2^{\pi}(s') \right) \right|$

= $\gamma \max \sum_{s \in S} P_{ss'} | V_i^n(s') - V_i^n(s') |$

 $\leq \gamma \sum_{s'} \int_{ss'}^{\pi} \max_{s \in S} \left| V_{i}^{\pi}(s') - V_{2}^{\pi}(s') \right|$

 $\leq \gamma \max_{s \in S} |V_{s}^{\pi}(s') - V_{s}^{\pi}(s')|$

= \gamma \| \V_1^{\pi} - \V_2^{\pi} \|_{\infty}