# Sistemas Digitales Sistemas Secuenciales

# Flip-Flop SR



## Tabla de verdad

(nunca puede haber S&R, the effects of S or R being true persist when returning to the initial state)

| S | R | Q | Q |                                 |
|---|---|---|---|---------------------------------|
| 0 | 0 |   |   | (initial state)                 |
| 1 | 0 | 1 | 0 |                                 |
| 0 | 1 | 0 | 1 |                                 |
| 1 | 1 | 0 | 0 | (ungodly, now a race condition) |

### **Versión NAND**



### Tabla de verdad

| S | R | Q | Q |                                    |
|---|---|---|---|------------------------------------|
| 0 | 0 | 1 | 1 | (now this ones illegal)            |
| 1 | 0 | 1 | 0 |                                    |
| 0 | 1 | 0 | 1 |                                    |
| 1 | 1 |   |   | (now this ones then initial state) |

Flip-Flop JK

| Jt | Kt | $Q_{t+1}$ |                                                  |
|----|----|-----------|--------------------------------------------------|
| 0  | 0  | Qt        | (La salida se mantiene igual al siguiente ciclo) |
| Λ  | 1  | Λ         |                                                  |

1 0 1

1 0 1

1 1  $\bar{Q}_t$  (La salida se invierte al siguiente ciclo)



Diagrama de tiempo



Flip-Flop D -

$$\begin{array}{c|cccc}
D & Q_{t+1} \\
\hline
0 & 0 \\
1 & 1
\end{array}$$

Flip-Flop T -

$$\begin{array}{c|cccc}
T & Q_{t+1} \\
\hline
0 & Q \\
1 & \bar{Q}
\end{array}$$

Shift registers

$$\begin{array}{c|cccc} S_1 & S_0 \\ \hline 0 & 0 & \text{hold} \\ 0 & 1 & \text{store left} \\ 1 & 0 & \text{store right} \\ 1 & 1 & \text{PI??} \end{array}$$