

Adjustable Constant Force/Torque Mechanisms for Medical Robotics

Cheng Zhuoqi

zch@mmmi.sdu.dk

Objectives

Safe tool-tissue interaction

- ■The exerted force must be constrained;
- ■The exerted force can be controlled.

Intuitive idea: Impedance control

CDC chip Sensorized graspers Electrode 10 mm (a) MCU circuit Sensorized forceps Joint actuation unit

Kim et al., Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery, IEEE T-RO

Gilbertson et al., Force and Position Control System for Freehand Ultrasound. IEEE T-RO

Why not?

- **x**Sensor integration
- xHigh bandwidth
- xTime latency in control loop
- **x**Sterilization
- **x**Cost

Kyeong et al., A Hand-held Micro Surgical Device for Contact Force Regulation against Involuntary Movements, EMBC

SEA: Serial Elastic Actuator

Adjustable Constant Force/Torque Mechanism

Positive constant stiffness + negative constant stiffness

Design of negative stiffness

Rotational

Translational

Nonlinear spring

Translational case as an example

$$F = \tilde{k}d$$

Expected: $F = \tilde{k}d$ (\tilde{k} is a constant)

So the stiffness of the spring should be nonlinear

$$k = \frac{\tilde{k}}{(\frac{L_s}{\sqrt{w^2 + d^2}} - 1)}$$

Objective:

Seeking the shape of a compliant beam which satisfies the desired stiffness function.

Genetic Algorithm + Finite Element Simulation

- Beam curve generation
- Score
- Crossover and mutation
- Selection

Beam section area design

Objective function:

Minimise $\Phi = e \cdot R(k, k_0) + \xi \cdot R(k, k_0)$

- Linearity: residual e
- Stiffness matching: $R(k, k_0) = \frac{k_0}{k}$

Then the beam section area is modified

Moment of inertia:
$$I = \frac{bh^3}{12}$$

* Better to change b

Medical application Rotational case: Surgical forceps

Motivations:

Hard to estimate and control the grasping force

Kim et al., Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery, IEEE T-RO

Medical application Translational case: Ultrasound Robot

Motivations:

- The pressing force should be consistent during a robotic ultrasound scanning;
- The force can be changed online for diagnosis purpose;
- End-effector should be compliant for safety consideration.

