# Diagonalització: resum, mètode i exemples M1-GEI-FIB

Mercè Mora

Curs 2022-2023(1)

# Diagonalització

Si f és un endomorfisme d'un  $\mathbb{K}$ -espai vectorial E de dimensió n ( $\mathbb{K}$  pot ser, per exemple,  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{Z}_p$  amb p primer) direm que f diagonalitza si existeix una base d'E tal que la matriu associada a f en aquesta base sigui diagonal.

# Valors i vectors propis

- valor propi (vap.) de  $f: \lambda \in \mathbb{K}$  tal que  $f(v) = \lambda v$ , per a algun vector  $v \neq 0_E$
- vector propi (vep.) de  $f: v \in E$  tal que  $v \neq 0_E$  i  $f(v) = \lambda v$ , per a algun  $\lambda \in \mathbb{K}$  (direm que v és un vector propi de valor propi  $\lambda$ )

 $\triangleright f$  diagonalitza si i només si existeix una base de vectors propis

# Subespais de vectors propis

Per a tot 
$$\lambda \in \mathbb{K}$$
 definim  $E_{\lambda} = \{v : f(v) = \lambda v\}$ 

- Per a tot  $\lambda \in \mathbb{K}$ ,  $E_{\lambda}$  és un subespai vectorial de E
- Si  $\lambda$  NO és vap de f aleshores  $E_{\lambda} = \{0_E\}$
- Si  $\lambda$  és vap de f aleshores  $E_{\lambda}$  conté els vectors propis de valor propi  $\lambda$ , més el vector  $0_E$

# Subespais de vectors propis (cont.)

Si A és la matriu associada a f en una base qualsevol B, aleshores:

- $E_{\lambda}$  está format per les solucions del sistema d'equacions lineal homogeni  $(A \lambda I_n)X = 0$ .
- $E_{\lambda}$  és un subespai vectorial de dimensió  $n \text{rang}(A \lambda I_n)$
- $\lambda \in K$  és valor propi de  $f \Leftrightarrow E_{\lambda} \neq \{0_E\} \Leftrightarrow \operatorname{rang}(A \lambda Id) < n \Leftrightarrow \det(A \lambda I_n) = 0$
- Si  $\lambda_1, \lambda_2, \ldots, \lambda_k$  són valors propis diferents de f i  $v_1, v_2, \ldots, v_k$  són vectors propis de valor propi  $\lambda_1, \lambda_2, \ldots, \lambda_k$  respectivament, aleshores  $v_1, v_2, \ldots, v_k$  són linealment independents

## Polinomi característic

Polinomi característic de f:

$$p_f(x) = \det(A - x I_n)$$

on A és la matriu associada a f en una base qualsevol d'E (es pot demostrar que el polinomi característic és invariant per canvis de base.)

- $\lambda \in \mathbb{K}$  és valor propi de f si, i només si,  $\lambda$  és arrel de  $p_f(x)$
- Si  $\lambda \in \mathbb{K}$  és arrel de multiplicitat m del polinomi característic, aleshores  $1 \leq \dim E_{\lambda} \leq m$ .
- Si  $\lambda \in \mathbb{K}$  és arrel de multiplicitat 1 (arrel simple) del polinomi característic, aleshores  $\dim E_{\lambda} = 1$ .

# Polinomi característic (cont.)

- Si  $\lambda \in \mathbb{K}$  és arrel de multiplicitat m del polinomi característic, direm que m és la multiplicitat algebraica de  $\lambda$  i dim  $E_{\lambda}$  és la multiplicitat geomètrica de  $\lambda$ . Per tant, amb aquesta terminologia, la multiplicitat geomètrica és més petita o igual que la multiplicitat algebraica.
- $p_f(x)$  és un polinomi de grau n tal que
  - el coeficient de  $x^n$  és  $(-1)^n$ ;
  - el terme independent és det A;
  - el coeficient de  $x^{n-1}$  és  $(-1)^{n-1}$  tr A, on tr A és la traça de A (=suma dels elements de la diagonal principal d'A).

#### Caracterització

**Teorema.** f diagonalitza si, i només si, es compleixen alhora les dues condicions següents:

- i)  $p_f(x)$  es pot descompondre en factors de grau 1 en  $\mathbb{K}[x]$ ;
- ii) per a tota arrel  $\lambda$  de  $p_f(x)$ , la dimensió d' $E_{\lambda}$  és igual a la multiplicitat de  $\lambda$  en  $p_f(x)$ .

La condició ii) és equivalent a dir que, per a tota arrel  $\lambda$  de  $p_f(x)$ , les multiplicitats algebraica i la geomètrica coincideixen.

**Corol·lari.** Si  $p_f(x)$  té n arrels diferents en  $\mathbb{K}$ , aleshores f diagonalitza.

# Mètode: determinar si f diagonalitza

f endomorfisme d'un  $\mathbb{K}$ -espai vectorial E de dimensió n A la matriu associada a f en la base B,

• Calcular el polinomi característic de *f* i descompondre'l en factors de grau 1:

$$p_f(x) = \det(A - x I_n) = \dots$$
  
=  $(-1)^n (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_k)^{m_k}$ 

on  $m_1 + m_2 + \cdots + m_k = n$  i  $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{K}$  són arrels diferents de multiplicitat  $m_1, m_2, \ldots, m_k$  respectivament.

 $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$  són els valors propis de f, de multiplicitat algebraica  $m_1, m_2, \dots m_k$  respectivament.

Si  $p_f(x)$  no es pot descompondre en factors de grau 1, f no diagonalitza. Altrament, continuem.



# Mètode: determinar si f diagonalitza (cont.)

• Comprovem si  $\dim E_{\lambda_i} = m_i$ , per a tots els valors propis  $\lambda_i$  tals que  $m_i > 1$ : equival a comprovar si  $n - \operatorname{rang}(A - \lambda_i I_n) = m_i$ .

Si en algun cas no es compleix, f no diagonalitza. Altrament, f diagonalitza

# Mètode: base en què diagonalitza

• Calculem una base  $B_i$  de  $E_{\lambda_i}$  per a cada valor propi  $\lambda_i$ .

Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A - \lambda_i \ I_n$  i expressem la solució en forma paramètrica, és a dir, calculem una base del subespai vectorial solució del sistema homogeni. La base tindrà exactament  $m_i$  vectors,  $B_i = \{v_{i1}, v_{i2}, \ldots, v_{i \ m_i}\}$ .

• Una base de vectors propis de f és:

$$B' = B_1 \cup B_2 \cup \dots \cup B_k$$

$$= \{\underbrace{v_{11}, v_{12}, \dots, v_{1 m_1}}_{\text{veps. de vap. } \lambda_1}, \underbrace{v_{21}, v_{22}, \dots, v_{2 m_2}}_{\text{veps. de vap. } \lambda_2}, \dots, \underbrace{v_{k1}, v_{k2}, \dots, v_{k m_k}}_{\text{veps. de vap. } \lambda_k}\}$$

# Mètode: matriu diagonal

• La matriu associada en la base B' és la matriu diagonal:

on cada  $\lambda_i$  apareix exactament  $m_i$  vegades i els elements que no són de la diagonal principal són nuls.

• Es satisfà la igualtat  $D = P^{-1}AP$ , on P és la matriu  $P_B^{B'}$  de canvi de base de B' a B, és a dir, les columnes de P són les components dels vectors de B' en la base B

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$  tal que la matriu associada en la base canònica és  $\begin{pmatrix}0&2&-2\\-1&1&1\\1&1&1\end{pmatrix}$ 

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 0 - x & 2 & -2 \\ -1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{pmatrix} = \cdots = -(x - 2)(x^2 + 4)$$

No diagonalitza perquè el polinomi característic no té totes les arrels reals, és a dir, no es pot descompondre en factors de grau 1 en  $\mathbb{R}[x]$ .

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$  tal que la matriu associada en la base canònica és  $\begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -1 \\ 0 & 0 & 4 \end{pmatrix}$ 

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 1 - x & 3 & 2 \\ 1 & -1 - x & -1 \\ 0 & 0 & 4 - x \end{pmatrix} = \dots$$
$$= -(x - 4)(x - 2)(x + 2)$$

Diagonalitza perquè el polinomi característic té 3 (=  $\dim \mathbb{R}^3$ ) arrels diferents (4, 2 i -2).

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$  tal que la matriu associada en la base canònica és  $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$ 

#### Solució.

• Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 1 - x & 1 & 1 \\ -1 & 1 - x & -1 \\ 1 & 0 & 2 - x \end{pmatrix} = \dots = -(x - 1)^2 (x - 2)$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 1             | 2             |
| 2             | 1             |

• El valor propi 1 té multiplicitat 2 > 1. Comprovem si  $\dim E_1 = 2$ :

$$\begin{split} \dim &E_1 = 3 - \operatorname{rang} \begin{pmatrix} 1 - 1 & 1 & 1 \\ -1 & 1 - 1 & -1 \\ 1 & 0 & 2 - 1 \end{pmatrix} \\ &= 3 - \operatorname{rang} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} \\ &= 3 - 2 = 1 \neq 2 \end{split}$$

Per tant, f no diagonalitza.

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$  tal que la matriu associada en la base canònica és  $\begin{pmatrix} 5 & 0 & 0 \\ -1 & -1 & 0 \\ 1 & 6 & 5 \end{pmatrix}$ 

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 5 - x & 0 & 0 \\ -1 & -1 - x & 0 \\ 1 & 6 & 5 - x \end{pmatrix} = (5 - x)^2 (-1 - x)$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 5             | 2             |
| -1            | 1             |

• El valor propi 5 té multiplicitat 2 > 1. Comprovem si  $\dim E_5 = 2$ :

$$\begin{split} \dim &E_5 = 3 - \mathrm{rang} \begin{pmatrix} 5 - 5 & 0 & 0 \\ -1 & -1 - 5 & 0 \\ 1 & 6 & 5 - 5 \end{pmatrix} \\ &= 3 - \mathrm{rang} \begin{pmatrix} 0 & 0 & 0 \\ -1 & -6 & 0 \\ 1 & 6 & 0 \end{pmatrix} = 3 - 1 = 2. \end{split}$$

Per tant, f diagonalitza.

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^4\longrightarrow\mathbb{R}^4$  tal que la

matriu associada en la base canònica és 
$$\begin{pmatrix} -2 & 2 & 2 & 1 \\ 0 & 4 & 0 & 0 \\ 0 & 6 & 4 & 3 \\ 0 & 1 & 0 & -2 \end{pmatrix}$$

#### Solució.

• Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} -2 - x & 2 & 2 & 1 \\ 0 & 4 - x & 0 & 0 \\ 0 & 6 & 4 - x & 3 \\ 0 & 1 & 0 & -2 - x \end{pmatrix} = (-2 - x)^2 (4 - x)^2$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| -2            | 2             |
| 4             | 2             |

ullet Els dos valors propis, -2 i 4, tenen multiplicitat 2>1.

Comprovem si 
$$\dim E_{-2}=2$$
 i si  $\dim E_4=2$ .

$$\begin{split} \dim E_{-2} &= 4 - \mathrm{rang} \begin{pmatrix} -2 - (-2) & 2 & 2 & 1 \\ 0 & 4 - (-2) & 0 & 0 \\ 0 & 6 & 4 - (-2) & 3 \\ 0 & 1 & 0 & -2 - (-2) \end{pmatrix} \\ &= 4 - \mathrm{rang} \begin{pmatrix} 0 & 2 & 2 & 1 \\ 0 & 6 & 0 & 0 \\ 0 & 6 & 6 & 3 \\ 0 & 1 & 0 & 0 \end{pmatrix} = 4 - 2 = 2 \\ \dim E_4 &= 4 - \mathrm{rang} \begin{pmatrix} -2 - 4 & 2 & 2 & 1 \\ 0 & 4 - 4 & 0 & 0 \\ 0 & 6 & 4 - 4 & 3 \\ 0 & 1 & 0 & -2 - 4 \end{pmatrix} \\ &= 4 - \mathrm{rang} \begin{pmatrix} -6 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 3 \\ 0 & 1 & 0 & -2 - 4 \end{pmatrix} = 4 - 3 = 1 \neq 2. \end{split}$$

Per tant, f no diagonalitza.

Comproveu si diagonalitza l'endomorfisme  $f:\mathbb{R}^4\longrightarrow\mathbb{R}^4$  tal que la

matriu associada en la base canònica és 
$$\begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ -2 & -1 & 3 & 2 \end{pmatrix}$$

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} -2 - x & 0 & 0 & 0 \\ 0 & -2 - x & 0 & 0 \\ 2 & 0 & -1 - x & 0 \\ -2 & -1 & 3 & 2 - x \end{pmatrix}$$
$$= (-2 - x)^2 (-1 - x)(2 - x)$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| -2            | 2             |
| -1            | 1             |
| 2             | 1 1           |

• El valor propi -2 té multiplicitat 2, diferent de 1. Comprovem si  $\dim E_{-2} = 2$ :

$$\begin{split} \dim &E_{-2} = 4 - \mathrm{rang} \begin{pmatrix} -2 - (-2) & 0 & 0 & 0 \\ 0 & -2 - (-2) & 0 & 0 \\ 2 & 0 & -1 - (-2) & 0 \\ -2 & -1 & 3 & 2 - (-2) \end{pmatrix} \\ &= 4 - \mathrm{rang} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & -1 & 3 & 4 \end{pmatrix} = 4 - 2 = 2. \end{split}$$

Per tant, f diagonalitza.

Comproveu si diagonalitza l'endomorfisme  $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$  tal que la

matriu associada en la base canònica és 
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 3 & 1 \\ -1 & 0 & 2 & 0 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

#### Solució.

• Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 2-x & 0 & 0 & 0 \\ 1 & -1-x & 3 & 1 \\ -1 & 0 & 2-x & 0 \\ 1 & 0 & 1 & 2-x \end{pmatrix} = (2-x)^3 (-1-x)$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 2             | 3             |
| -1            | 1             |

• El valor propi 2 té multiplicitat 3 > 1. Comprovem si  $\dim E_2 = 3$ :

$$\begin{split} \dim &E_2 = 4 - \mathrm{rang} \begin{pmatrix} 2-2 & 0 & 0 & 0 \\ 1 & -1-2 & 3 & 1 \\ -1 & 0 & 2-2 & 0 \\ 1 & 0 & 1 & 2-2 \end{pmatrix} = \\ &4 - \mathrm{rang} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & -3 & 3 & 1 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \\ &= 4-3 = 1 \neq 3 \end{split}$$

Per tant, f no diagonalitza.

Demostreu que l'endomorfisme  $f:\mathbb{R}^2\longrightarrow\mathbb{R}^2$  tal que la matriu associada en la base canònica és  $A=\begin{pmatrix}1&2\\3&2\end{pmatrix}$  diagonalitza.

Trobeu una base en que f diagonalitzi, i doneu la matriu associada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada.

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 1 - x & 2 \\ 3 & 2 - x \end{pmatrix} = (1 - x)(2 - x) - 6$$
$$= x^2 - 3x - 4 = (x - 4)(x + 1).$$

Diagonalitza perquè el polinomi característic té 2 arrels diferents i  $\dim \mathbb{R}^2 = 2$ .

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 4             | 1             |
| -1            | 1             |

• Base de  $E_4$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-4I_2$ :

$$\begin{pmatrix} 1-4 & 2 \\ 3 & 2-4 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \sim \begin{pmatrix} 3 & -2 \end{pmatrix}$$

Solució:

$$\{(x,y): x=\frac{2}{3}y\}=\{(\frac{2}{3}y,y): y\in\mathbb{R}\}=\{y(\frac{2}{3},1): y\in\mathbb{R}\}.$$

Base:  $\{(\frac{2}{3}, 1)\}$ 

• Base de  $E_{-1}$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A - (-1)I_2$ :

$$\begin{pmatrix} 1 - (-1) & 2 \\ 3 & 2 - (-1) \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Solució:

$$\{(x,y): x=-y\} = \{(-y,y): y \in \mathbb{R}\} = \{y(-1,1): y \in \mathbb{R}\}.$$

Base:  $\{(-1,1)\}$ 

- Base de E en que f diagonalitza:  $B' = \{(\frac{2}{3}, 1), (-1, 1)\}$
- Matriu associada en la base B':  $D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$
- Relació entre D i A:  $D = P^{-1}AP$ , on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és

a dir, 
$$P = \begin{pmatrix} \frac{2}{3} & -1\\ 1 & 1 \end{pmatrix}$$
.

Demostreu que l'endomorfisme  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  tal que la matriu

associada en la base canònica és 
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
 diagonalitza.

Trobeu una base en que f diagonalitzi, i doneu la matriu assciada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada.

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 3 - x & 1 & 1 \\ 2 & 4 - x & 2 \\ 1 & 1 & 3 - x \end{pmatrix}$$
$$= (3 - x)^2 (4 - x) + 2 + 2 - (4 - x) - 3(3 - x) - 2(3 - x) = \dots$$
$$= -x^3 + 10x^2 - 28x + 24 = -(x - 2)^2 (x - 6)$$

#### • Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 2             | 2             |
| 6             | 1             |

El valor propi 2 té multiplicitat 2 > 1.

Comprovem si  $\dim E_2 = 2$ :

$$\dim E_2 = 3 - \operatorname{rang} \begin{pmatrix} 3 - 2 & 1 & 1 \\ 2 & 4 - 2 & 2 \\ 1 & 1 & 3 - 2 \end{pmatrix}$$
$$= 3 - \operatorname{rang} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} = 3 - 1 = 2.$$

Per tant, f diagonalitza.

• Base de  $E_2$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-2I_3$ :

$$\begin{pmatrix} 3-2 & 1 & 1 \\ 2 & 4-2 & 2 \\ 1 & 1 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Solució:

$$\{(x,y,z): x+y+z=0\} = \{(x,y,z): x=-y-z\} = \{(-y-z,y,z): y,z\in\mathbb{R}\} = \{y(-1,1,0)+z(-1,0,1): y,z\in\mathbb{R}\}$$

Base:  $\{(-1,1,0),(-1,0,1)\}$ 

• Base de  $E_6$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-6I_3$ :

$$\begin{pmatrix} 3-6 & 1 & 1 \\ 2 & 4-6 & 2 \\ 1 & 1 & 3-6 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 \\ 2 & -2 & 2 \\ 1 & 1 & -3 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$

Solució: 
$$\{(x, y, z) : x = z, y = 2z\} = \{(z, 2z, z) : z \in \mathbb{R}\} = \{z(1, 2, 1) : z \in \mathbb{R}\}$$

Base:  $\{(1,2,1)\}$ 

• Base de *E* en que *f* diagonalitza:

$$B' = \{(-1, 1, 0), (-1, 0, 1), (1, 2, 1)\}$$

• Matriu associada en la base 
$$B'$$
:  $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ 

• Relació entre D i A:

 $D = P^{-1}AP$ , on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és a dir,

$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}.$$

Demostreu que l'endomorfisme  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  tal que la matriu associada en la base canònica és  $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$  diagonalitza.

Trobeu una base en que f diagonalitzi, i doneu la matriu associada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada.

#### Solució.

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 2-x & 0 & 4 \\ 3 & -4-x & 12 \\ 1 & -2 & 5-x \end{pmatrix}$$

$$= (2-x)(-4-x)(5-x) - 24 - 4(-4-x) - 24(2-x) = \dots$$

$$= -x^3 + 3x^2 - 2x = -x(x-1)(x-2)$$

• Valors propis:

| valors propis | multiplicitat |
|---------------|---------------|
| 0             | 1             |
| 1             | 1             |
| 2             | 1             |

Diagonalitza perquè té 3 valors propis diferents i  $\dim \mathbb{R}^3 = 3$ .

• Base de  $E_0$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-0 \cdot I_3 = A$ :

$$\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & -2 & 3 \end{pmatrix}$$

Solució:

$$\{(x, y, z) : x + 2z = 0, -2y + 3z = 0\} = \{(x, y, z) : x = -2z, y = \frac{3}{2}z\} = \{(-2z, y\frac{3}{2}z, z) : z \in \mathbb{R}\} = \{z(-2, \frac{3}{2}, 1) : y, z \in \mathbb{R}\}$$

Base:  $\{(-4,3,2)\}$ , ja que el vector  $(-2,\frac{3}{2},1)$  genera el mateix subespai que  $2(-2,\frac{3}{2},1)=(-4,3,2)$ 

• Base de  $E_1$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-1\cdot I_3$ :

$$\begin{pmatrix} 2-1 & 0 & 4 \\ 3 & -4-1 & 12 \\ 1 & -2 & 5-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 3 & -5 & 12 \\ 1 & -2 & 4 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \end{pmatrix}$$

Solució: 
$$\{(x, y, z) : x + 4z = 0, y = 0\} = \{(x, y, z) : x = -4z, z = 0\} = \{(-4z, 0, z) : z \in \mathbb{R}\} = \{z(-4, 0, 1) : y, z \in \mathbb{R}\}$$

Base:  $\{(-4,0,1)\}$ 

• Base de  $E_2$ . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients  $A-2I_3$ :

$$\begin{pmatrix} 2-2 & 0 & 4 \\ 3 & -4-2 & 12 \\ 1 & -2 & 5-2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4 \\ 3 & -6 & 12 \\ 1 & -2 & 3 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 0 & 0 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

Solució: 
$$\{(x, y, z) : z = 0, x = 2y\} = \{(2y, y, 0) : y \in \mathbb{R}\} = \{y(2, 1, 0) : z \in \mathbb{R}\}$$

Base:  $\{(2,1,0)\}$ 

• Base de *E* en que *f* diagonalitza:

$$B' = \{(-4,3,2), (-4,0,1), (2,1,0)\}$$

- Matriu associada en la base B':  $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- Relació entre D i A:  $D = P^{-1}AP$ , on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és

a dir, 
$$P = \begin{pmatrix} -4 & -4 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
.