Aufgabe 1 (Verbände)

$$[(2+2)+2+4 = 10 \text{ Punkte}]$$

- 1. Sei S_3 die bekannte symmetrische Gruppe.
 - (a) Zeichnen Sie das Hasse-Diagramm des Untergruppenverbandes der S_3 .

Lösung:

(b) Ist der Untergruppenverband aus Teil a) distributiv? Begründen oder widerlegen Sie.

Lösung: Es ist kein distributiver Verband. Es liegt ein typisches Pattern für Nichtdistributivität vor. Benennt man nämlich im Hassediagramm das kleinste und größte
Element mit 0 und 1 und die Elemente der mittleren Schicht von links nach rechts mit
a,b,c,d so gilt:

$$a \curlywedge (b \curlyvee c) = a \curlywedge 1 = a \neq 0 = 0 \curlyvee 0 = (a \curlywedge b) \curlyvee (a \curlywedge c)$$

- 2. Geben Sie jeweils ein Beispiel an (ohne Begründung) für:
 - (a) einen distributiven, aber nicht Booleschen Verband.

Lösung: Etwa (\mathbb{N}, \leq) oder $(\mathbb{N}, |)$

(b) einen distributiven, aber nicht vollständigen Verband.

 $L\ddot{o}sung$: Etwa (\mathbb{N}, \leq) oder $(\mathfrak{P}(\mathbb{N})_{endl}, \subseteq)$, wobei $\mathfrak{P}(\mathbb{N})_{endl}$ die endlichen Teilmengen von \mathbb{N} sind.

3. $(V, \preceq) =_{df} (\mathfrak{P}(\mathbb{N}), \subseteq)$ der bekannte Potenzmengenverband natürlicher Zahlen und $A \subseteq \mathbb{N}$ beliebig. Wir betrachten die Abbildung:

$$h_A: V \to V$$
$$h_A(X) = X \cup A$$

Zeigen oder widerlegen Sie:

- (a) h_A ist ein \land -Homomorphismus.
- (b) h_A ist ein Υ -Homomorphismus.
- (c) h_A ist ein Ordnungshomomorphismus.

$L\ddot{o}sung$:

(a) h ist ein λ -Homomorphismus, denn es gilt für beliebige $X, Y \in \mathfrak{P}(\mathbb{N})$:

$$h_A(X \downarrow Y) = (X \cap Y) \cup A$$

$$\stackrel{\text{Distr.}}{=} (X \cup A) \cap (Y \cup A)$$

$$= h_A(X) \cap h_A(Y)$$

$$= h_A(X) \downarrow h_A(Y)$$

(b) h_A ist auch ein Υ -Homomorphismus, denn es gilt

$$h_{A}(X \vee Y) = (X \cup Y) \cup A$$

$$\stackrel{\text{Idemp.}}{=} (X \cup Y) \cup (A \cup A)$$

$$= (X \cup A) \cup (Y \cup A)$$

$$= h_{A}(X) \cup h_{A}(Y)$$

$$= h_{A}(X) \vee h_{A}(Y)$$

(c) h_A ist ein Ordnungshomomorphismus. Dieses folgt gemäß Satz 7.19 direkt aus Teil (b) oder (c).

Aufgabe 2 (Algebraische Strukturen)

[4+4+2=10 Punkte]

1. Die folgende Verknüpfungstafel einer kommutativen Gruppe mit den vier Elementen $\{a, b, c, d\}$ lässt sich auf genau eine Weise vervollständigen. Ergänzen Sie die fehlenden Einträge und begründen Sie, dass diese in eindeutiger Weise festliegen.

0	a	b	c	d
a				b
b	d			a
c				
d				c

Tipp: Bestimmen Sie zuerst das neutrale Element.

Lösung: Wegen der Rechts- und Linkskürzungsregeln muss es in jeder Zeile und Spalte genau einen Eintrag der Elemente aus $\{a, b, c, d\}$ geben. Da der d-Eintrag für Zeile c in Spalte d fehlt muss c das neutrale Element sein. Es folgen damit sofort die Einträge:

Mit der Kommutativität ergänzt man dann leicht zu

Die beiden fehlenden Einträge sind wegen der Eindeutigkeit der Zeilen und Spalteneinträge klar und wir erhalten:

2. Sei $\langle G, \oplus \rangle$ eine beliebige Gruppe und $\alpha: G \to G$ ein Gruppenautomorphismus (d.h. bijektiver Gruppenhomomorphismus auf G).

Zeigen Sie, dass

$$U_{\alpha} =_{df} \{ g \in G \mid \alpha(g) = g \}.$$

eine Untergruppe von G ist.

$L\ddot{o}sung$:

Neutrales Element: Sei e das neutrale Element von G. Offensichtlich gilt $\alpha(e) = e$ (gilt bereits für beliebige Gruppenendomorphismen), also $e \in U_{\alpha}$.

Abgeschlossenheit: Seien $g, h \in U_{\alpha}$. Dann gilt:

$$\alpha(g \oplus h) \stackrel{\text{Homom.}}{=} \alpha(g) \oplus \alpha(h) \stackrel{g,h \in U_{\alpha}}{=} g \oplus h$$

und somit $g \oplus h \in U_{\alpha}$.

Existenz der Inversen: Sei $g \in U_{\alpha}$. Dann existiert ein Inverses g^{-1} in in G. Wir zeigen, dass dieses ein Element von U_{α} ist.

$$\alpha(g^{-1}) \stackrel{\text{Homom.}}{=} \alpha(g)^{-1} \stackrel{g \in U_{\alpha}}{=} g^{-1}$$

und somit $g^{-1} \in U_{\alpha}$.

3. Geben Sie ein Beispiel eines nicht kommutativen Ringes an und zeigen Sie die Nichtkommutativität anhand eines Beispiels.

$L\ddot{o}sung$:

Ein einfaches Beispiel ist $\mathbb{R}^{2\times 2}$, die Menge der 2×2 -Matrizen. Nichtkommutativität der Matrixmultiplikation folgt aus

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \ = \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \ \neq \ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \ = \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Name, Vorname, Matrikelnummer	Bitte unbedingt leserlich ausfüllen
Name, volname, Matrixemummer	Ditte unbedingt iesernen austunen

Aufgabe 3 (Vektorräume, Untervektorräume)

[2+2+2+2=8 Punkte]

Welche der folgenden Mengen sind Untervektorräume der angegebenen Vektorräume? Begründen Sie Ihre Antwort durch einen Beweis.

- 1. $U_1 =_{df} \{(x, y, z)^t \mid x = y = 3z\} \subseteq \mathbb{R}^3$.
- 2. $U_2 =_{df} \{(a+b,b^2)^t \mid a,b \in \mathbb{Z}_5\} \subseteq (\mathbb{Z}_5)^2.$
- 3. $U_3 =_{df} \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(-x) = -f(x) \} \subseteq \mathbb{R}^{\mathbb{R}}.$
- 4. $U_4 =_{df} \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ ist } bijektiv \} \subseteq \mathbb{R}^{\mathbb{R}}.$

$L\ddot{o}sung$:

1. U_1 ist ein Untervektorraum: Seien $\vec{v}, \vec{w} \in U_1$ und $s \in \mathbb{R}$, dann gilt:

(a)

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$$

mit

$$v_1 + w_1 = (3v_3 + 3w_3)$$

= $3(v_3 + w_3)$
und
 $v_2 + w_2 = (3v_3 + 3w_3)$
= $3(v_3 + w_3)$

(b)

$$s \cdot \vec{v} = \begin{pmatrix} sv_1 \\ sv_2 \\ sv_3 \end{pmatrix}$$

mit

$$sv_1 = s(3v_3)$$

$$= 3(sv_3)$$
und
$$sv_2 = s(3v_3)$$

$$= 3(sv_3)$$

2. Es liegt kein Untervektorraum vor:

Es ist $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Die Quadrate der Elemente von \mathbb{Z}_5 sind 0, 1 und 4, da $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 \mod 5 = 4$ und $4^2 \mod 5 = 1$.

Es gilt für das Element $(0,1)=(4+1,1^2)\in\{(a+b,b^2)\mid a,b\in\mathbb{Z}_5\}$ und für $2\in\mathbb{Z}_5$

$$2 \cdot (0,1) = (0,2) \notin \{(a+b,b^2) \mid a,b \in \mathbb{Z}_5\}.$$

- 3. Mit U_3 liegt ein Untervektorraum vor:
 - (a) U_3 ist offensichtlich nicht leer, da $id \in U_3$
 - (b) Seien $f, g \in U_3$, dann gilt:

$$(f+g)(-x) = f(-x) + g(-x)$$
$$= -f(x) - g(x)$$
$$= -(f+g)(x)$$

(c) Sei $f \in U_3$ und $s \in \mathbb{R}$, dann gilt:

$$s \cdot f(-x) = s \cdot (-f(x))$$
$$= -(s \cdot f)(x)$$

und

4. U_4 ist kein Untervektorraum: Wir betrachten die Funktionen f(x) = -x und $g(x) = x^3$. Beide Funktionen sind bijektiv, somit gilt $f, g \in U_4$. Es gilt aber:

$$(g+f)(x) = x^3 - x$$

= $x(x-1)(x+1)$

somit hat (f+g)(x) drei unterschiedliche Nullstellen und ist nicht bijektiv.