Feuille d'exercices 19. Dérivation et convexité

Exercice 19.1 : (niveau 1)

Déterminer le domaine de définition, le domaine de dérivabilité et la dérivée de la fonction f dans chacun des cas suivants :

$$f(x) = \sqrt{4x^2 - 1}$$
, $f(x) = \sqrt{\frac{x+1}{x-1}}$, $f(x) = |\ln x|$, $f(x) = \cos(\sqrt{x})$ et $f(x) = x|x|$.

Exercice 19.2 : (niveau 1)

Etudiez les suites (x_n) de réels vérifiant : $\forall n \in \mathbb{N} \ x_{n+1} = x_n - x_n^2$.

Exercice 19.3 : (niveau 1)

Montrer que, pour tout $x \ge 1$, $\left| x \ln x - \frac{1}{2}(x^2 - 1) \right| \le \frac{1}{6}(x - 1)^3$.

Exercice 19.4: (niveau 1)

E désigne un \mathbb{R} -espace vectoriel et C_1 et C_2 sont deux parties convexes de E. On note C l'ensemble des milieux des couples de points (A_1, A_2) où $A_1 \in C_1$ et $A_2 \in C_2$. Montrer que C est convexe.

Exercice 19.5 : (niveau 1)

Déterminez les applications de \mathbb{R} dans \mathbb{R} convexes et bornées.

Exercice 19.6: (niveau 1)

Etudiez les suites (x_n) vérifiant la relation de récurrence suivante :

$$\forall n \in \mathbb{N} \ x_{n+1} = \frac{1}{2}(x_n + \frac{a^2}{x_n}),$$

où a > 0.

Exercice 19.7: (niveau 1)

Soit f une application C^1 de [0,1] dans \mathbb{R} telle que f(0)=0 et pour laquelle il existe $a \in]0,1]$ tel que f(a)f'(a) < 0. Montrez qu'il existe $b \in]0,1]$ tel que f'(b)=0.

Exercice 19.8 : (niveau 1)

On considère une suite réelle vérifiant :

$$u_0 \in \mathbb{R}^*$$
, et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, où $f(x) = 1 + \frac{1}{4}\sin\frac{1}{x}$.

- 1°) En notant $I = [\frac{3}{4}, \frac{5}{4}]$, montrer que $f(I) \subset I$. En déduire qu'il existe $\ell \in I$ tel que $f(\ell) = \ell$.
- **2°)** Montrer que, pour tout $x \in I$, $|f'(x)| \leq \frac{4}{9}$. En déduire que $u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

Exercice 19.9 : (niveau 2)

Montrer que $x \mapsto x^2 \tan \frac{1}{x} \sin \frac{2}{x}$ est prolongeable par continuité en 0 et que son prolongement est dérivable en 0. Cette fonction est-elle de classe C^1 en 0?

Exercice 19.10: (niveau 2)

Soit
$$(u_n)$$
 une suite définie par : $u_0 = 1$ et $u_{n+1} = u_n \frac{1 + 2u_n}{1 + 3u_n}$.

Etudiez (u_n) et donnez un équivalent.

Exercice 19.11 : (niveau 2)

- 1°) Montrer que, pour tout $t \in [-\pi, \pi] \setminus \{0\}$, il existe un unique $\theta(t) \in]0, 1[$ vérifiant $\sin t = t \frac{t^3}{6} \cos(t\theta(t))$.
- **2°)** Montrer que $\theta(t) \xrightarrow[t\to 0]{} \frac{1}{\sqrt{10}}$.

Exercice 19.12 : (niveau 2)

Soit f une fonction définie sur un intervalle I et à valeurs dans \mathbb{R} et soit $a \in \mathbb{R}$.

- 1°) On suppose que f est strictement convexe sur I. Démontrer que l'équation f(x) = a admet au plus deux solutions.
- $\mathbf{2}^{\circ}$) On suppose seulement que f est convexe sur I. Que peut-on dire de l'ensemble

Exercice 19.13: (niveau 2)

des solutions de l'équation f(x) = a?

On considère deux applications f et g de \mathbb{R} dans \mathbb{R} .

- 1°) Si f et g sont continues, montrer que $\max(f,g)$ est également continue.
- **2°)** Lorsque f et g sont dérivables en $x_0 \in \mathbb{R}$, à quelle condition $\max(f,g)$ est-elle dérivable en x_0 ?

Exercice 19.14: (niveau 2)

Soit f une application de I dans \mathbb{R} , où I désigne un intervalle inclus dans \mathbb{R} d'intérieur non vide. On suppose que f est dérivable sur I.

- 1°) Soit $(a, b) \in I^2$. On suppose que f'(a) < 0 et que f'(b) > 0. Montrer qu'il existe $c \in]a, b[$ tel que f'(c) = 0.
- 2°) Montrer que f'(I) est un intervalle (c'est le théorème de Darboux).

Exercice 19.15 : (niveau 2)

Etudiez les suites telles que : $x_{n+1} = \sqrt{2 - x_n}$.

Exercice 19.16: (niveau 2)

- 1°) Soient f et g deux applications de [a,b] dans \mathbb{R} , continues sur [a,b] et dérivables sur]a, b[. Montrer qu'il existe $c \in]a, b[$ tel que $\begin{vmatrix} f(b) - f(a) & f'(c) \\ g(b) - g(a) & g'(c) \end{vmatrix} = 0.$
- 2°) Règle de l'Hôpital.

Soit I un intervalle de \mathbb{R} d'intérieur non vide et $a \in I$. Soient f et q deux applications de I dans \mathbb{R} continues sur I et dérivables sur $I \setminus \{a\}$. On suppose que f(a) = g(a) = 0et qu'il existe $V \in \mathcal{V}(a)$ tel que $\forall t \in V \cap (I \setminus \{a\})$ $g'(t) \neq 0$.

Montrer que s'il existe $l \in \overline{\mathbb{R}}$ tel que $\frac{f'(t)}{g'(t)} \xrightarrow[t \to a]{t \to a} l$ alors $\frac{f(t)}{g(t)} \xrightarrow[t \to a]{t \to a} l$.

Exercice 19.17: (niveau 2)

Etudiez les suites réelles (u_n) vérifiant : $u_{n+1} = 1 - u_n^2$.

Exercice 19.18: (niveau 3)

- 1°) Déterminer l'ensemble des applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, dérivables en 0 et telles que, pour tout $x \in \mathbb{R}$, f(2x) = 2f(x).
- 2°) Déterminer l'ensemble des applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, dérivables en 0 et telles que, pour tout $x \in \mathbb{R}$, $f(2x) = f(x)^2$.

Exercice 19.19: (niveau 3)

Soit f une application continue de \mathbb{R} dans \mathbb{R} telle que :

 $\forall (x,y) \in \mathbb{R}^2 \ f(\frac{x+y}{2}) \leq \frac{1}{2}(f(x)+f(y)).$ Montrez que f est convexe.

Exercice 19.20 : (niveau 3)

Soit f l'application de \mathbb{R} dans \mathbb{R} définie par : $f(t) = exp\left(\frac{-1}{t^2}\right)$ si $t \neq 0$ et f(0) = 0.

1°) Montrer qu'il existe une suite $(P_n)_{n\geq 1}$ de polynômes de $\mathbb{R}[X]$ telle que : $\forall n \in \mathbb{N}^* \ \forall t \in \mathbb{R}^* \ f^{(n)}(t) = \frac{P_n(t)}{t^{3n}} exp\left(-\frac{1}{t^2}\right)$. Déterminer une relation de récurrence vérifiée par la suite (P_n) et donner le degré de P_n .

- 2°) Montrer que f est C^{∞} sur \mathbb{R} et que $\forall n \in \mathbb{N}$ $f^{(n)}(0) = 0$.
- 3°) Montrer que toutes les racines de P_n sont réelles.

Exercice 19.21: (niveau 3)

Soit f une application de classe C^{∞} de \mathbb{R}_+ dans \mathbb{R} telle que f(0) = 0 et $f(x) \underset{x \to +\infty}{\longrightarrow} 0$. Montrer qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ de réels, strictement croissante et telle que, pour tout $n \in \mathbb{N}$, $f^{(n)}(a_n) = 0$.

Exercice 19.22 : (niveau 3)

Convergence quadratique de la méthode de Newton.

Soit I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ une application de classe C^1 telle que, pour tout $x \in I$, $f'(x) \neq 0$.

On choisit x_0 dans I et on définit la suite (x_n) par récurrence en convenant que x_{n+1} est l'abscisse de l'intersection avec l'axe Ox de la tangente au graphe de f en le point d'abscisse x_n .

1°) Donner une expression de x_{n+1} en fonction de x_n , f et f'.

Si (x_n) converge vers $\ell \in I$, que peut-on dire de ℓ ?

Lorsque $I = \mathbb{R}_+^*$ et $f(x) = x^2 - a$, avec $a \in \mathbb{R}_+^*$, donner une expression simple de x_{n+1} en fonction de x_n .

2°) On suppose que f est C^3 et qu'il existe ℓ dans l'intérieur de I tel que $f(\ell) = 0$. Montrer qu'il existe $\varepsilon, C \in \mathbb{R}_+^*$ tels que, si $x_0 \in]\ell - \varepsilon, \ell + \varepsilon[$, alors pour tout $n \in \mathbb{N}$, $|x_n - \ell| \leq C10^{-(2^n)}$ (on dit que la convergence de x_n vers ℓ est quadratique).

Exercices supplémentaires:

Exercice 19.23: (niveau 1)

Etudier les suites (x_n) de réels vérifiant la relation, pour tout $n \in \mathbb{N}$, $x_{n+1} = e^{x_n}$.

Exercice 19.24: (niveau 1)

1°) Soit f une application de \mathbb{R}_+ dans \mathbb{R} telle que f(0) = 0 et $f(x) \xrightarrow[x \to +\infty]{} 1$. f peut-elle être convexe?

 $2^{\circ})$ La composée de deux applications convexes est-elle convexe ?

Exercice 19.25 : (niveau 2)

Soit $a \in \mathbb{R}$. Calculer la dérivée n-ième de l'application $x \longmapsto e^{x \operatorname{ch} a} \operatorname{ch}(x \operatorname{sh} a)$.

Exercice 19.26: (niveau 2)

Calculer la dérivée $n^{\text{ème}}$ de $\arctan(t)$.

Exercice 19.27 : (niveau 2)

- 1°) Montrer que, pour tout $t \in \mathbb{R}$, $|e^t 1 t| \le \frac{t^2}{2}e^{|t|}$.
- **2°**) Montrer que, pour tout t > 0, arctan $t > \frac{t}{1+t^2}$.

Exercice 19.28: (niveau 2)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue. Pour tout $n \in \mathbb{N}^*$, justifier l'existence d'une primitive n-ème de f sur \mathbb{R} , notée $f^{[n]}$, et démontrer que l'on peut prendre

$$\forall x \in \mathbb{R}, \ f^{[n]}(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt.$$

Exercice 19.29 : (niveau 2)

Soit f une application de \mathbb{R} dans \mathbb{R} dérivable.

- 1°) Montrez que si f' est bornée, f est uniformément continue.
- 2°) Montrez que si $|f'(x)| \underset{x \to +\infty}{\longrightarrow} +\infty$, f n'est pas uniformément continue.

Exercice 19.30: (niveau 2)

Soit f une application convexe et continue de $\mathbb R$ dans $\mathbb R$. Soit $h \in \mathbb R_+^*$: On pose $g(x) = \frac{1}{2h} \int_{-1}^{x+h} f(t)dt$. Montrez que g est convexe.

Exercice 19.31 : (niveau 2)

Soit f une application de [0,1] dans \mathbb{R} dérivable en 0 et telle que f(0)=0. Montrez que $\sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) \xrightarrow[n \to +\infty]{} \frac{f'(0)}{2}$.

Exercice 19.32 : (niveau 3)

Soit f une application de $[0, +\infty[$ dans \mathbb{R} de classe C^1 , telle que f(0) = 0 et telle que $f'(x) \in [0,1]$ pour tout $x \ge 0$.

Montrer que
$$\int_0^x f^3(t)dt \le \left(\int_0^x f(t)dt\right)^2$$
.

Exercice 19.33 : (niveau 3)

Soit f une application de \mathbb{R} dans \mathbb{R} , continue en 0 et telle que

$$\frac{f(2x) - f(x)}{x} \xrightarrow[x \to 0]{} a \in \mathbb{R}. \text{ Montrer que } f \text{ est dérivable en } 0.$$
Indication. On pourre commoncer par étudier le cas où $f(x)$

Indication. On pourra commencer par étudier le cas où f(0) = 0 = a.

Exercice 19.34: (niveau 3)

Soit $f: I \longrightarrow \mathbb{R}$ une application de classe C^{∞} , où I est un intervalle de \mathbb{R} d'intérieur non vide. On suppose qu'il existe $k \in \mathbb{N}$ tel que, pour tout $t \in I$, $f^{(2k+1)}(t) \geq 0$.

Pour tout
$$a \in I$$
 et $x \in I$, on pose $T_a(x) = \sum_{h=0}^{2k} \frac{(x-a)^h}{h!} f^{(h)}(a)$.

Montrer que pour tout $a, a' \in I$ avec $a < a', T_{a'} - T_a$ est convexe sur I.

Exercice 19.35 : (niveau 3)

Lemme de Grönwall:

Soit f et g deux fonctions continues définies sur \mathbb{R} et à valeurs dans \mathbb{R} .

On suppose que g est positive et qu'il existe $x_0, K \in \mathbb{R}$ tels que, pour tout $x \geq x_0$,

$$f(x) \le K + \int_{x_0}^x f(t)g(t) dt.$$

Montrer que, pour tout $x \ge x_0$, $f(x) \le K \exp \left(\int_{a}^{x} g(t) dt \right)$.

Exercice 19.36: (niveau 3)

Soit $f: I \longrightarrow \mathbb{R}$ une application de classe C^{∞} , où I est un intervalle de \mathbb{R} de cardinal infini. On suppose qu'il existe $k \in \mathbb{N}$ tel que, pour tout $t \in I$, $f^{(2k+1)}(t) \neq 0$.

Pour tout $\alpha \in I$ et $x \in I$, on pose $T_{\alpha}(x) = \sum_{h=0}^{2k} \frac{(x-\alpha)^h}{h!} f^{(h)}(\alpha)$.

Montrer que les graphes des applications T_{α} sont deux à deux disjoints.

Exercice 19.37 : (niveau 3)

Soit f une application de \mathbb{R} dans \mathbb{R} .

On suppose que, pour tout $x \in \mathbb{R}$, l'application $y \longmapsto \frac{f(x+y) - f(x-y)}{2y}$ est constante sur \mathbb{R}^* . On notera g(x) cette constante.

Sauf pour la dernière question, on suppose que g est une application continue sur \mathbb{R} .

- 1°) Montrer que f est dérivable et que f' = g.
- 2°) Quelles sont les valeurs possibles pour f?
- 3°) Reprendre l'exercice en supposant maintenant que g est localement bornée.

Exercice 19.38 : (niveau 3)

Soit $(a, b) \in \mathbb{R}^2$ avec $a \neq 0$ et $a \neq 1$.

On recherche les applications $f:\mathbb{R}\longrightarrow\mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R} \ f \circ f(x) = ax + b.$$

- 1°) Si a < 0, montrez qu'il n'y a aucune solution.
- 2°) Notons $h: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto ax + b$.

Montrez que h est une homothétie dont on précisera le centre et le rapport. Pour $n \in \mathbb{Z}$ calculez h^n (au sens de la composition).

3°) On suppose que $a \in]0,1[$.

Montrez que $h^{-1} \circ f \circ h = f$.

En déduire les expressions possibles de f.

4°) Achevez la résolution de l'exercice.

Exercice 19.39 : (niveau 3)

Soit f une application de $\mathbb R$ dans $\mathbb R$ définie par :

 $\forall t \in \mathbb{R} \ f(t) = \frac{1}{\sqrt{1+t^2}}$. Montrez que la dérivée n-ième de f est de la forme :

 $f^{(n)}(t) = \frac{P_n(t)}{(1+t^2)^n} \frac{1}{\sqrt{1+t^2}}$, où $P_n \in \mathbb{R}_n[X]$. Prouvez les relations:

 $P_{n+1} = (1+X^2)P' - (2n+1)XP_n; \forall n \ge 1 \ P_{n+1} + (2n+1)XP_n + n^2(1+X^2)P_{n-1} = 0;$ $(1+X^2)P''_n - (2n-1)XP'_n + n^2P_n = 0. \text{ En déduire que } P_n = \sum_{0 \le 2k \le n} a_k X^{n-2k} \text{ avec}$

$$a_0 = (-1)^n n!$$
 et $a_p = (-1)^{n+p} \frac{n! n(n-1)...(n-2p+1)}{4^p (p!)^2}$.

Montrez que les racines de P_n sont réelles et simples.