APPLIED MATHEMATICS-1(BAS-101)

(INFINITE SERIES) TUTORIAL SHEET -5

(Gauss's Test, Cauchy's Integral Test)

14. Test the convergence of the series.

15. 1.
$$1 + \frac{2 \cdot x}{2} + \frac{3^2 \cdot x^2}{3!} + \frac{4^3 \cdot x^3}{4!} + \dots$$
, for $x > 0$

16. 2.
$$\frac{x}{1} + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots$$
 for $x > 0$

17. 3.
$$\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \cdots$$
, for $a, x > 0$

18. 4.
$$\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} + \cdots$$

19. 5. Apply Cauchy's Integral Test to test the convergence of the series.

20. (a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

21. (b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2+1}$$

22. 6 Test the convergence of
$$\sum_{n=3}^{\infty} \frac{1}{n \log n (\log \log n)^p}$$
 $p > 0$

23. Test for convergence the series whose nth term is

24.
$$7 \cdot \frac{(n!)}{(2n)!} x^n$$
, $x > 0$

25.
$$8 \cdot \frac{n!}{(n+1)^n} x^n$$
 $x > 0$