

2012-2013-第一学期 工科数学分析期中试题解答(信二学习部整理)

- -. 1. $\cos f(x) \cdot f'(x) f'(\cos x) \sin x$
 - 2. $\frac{1}{3}$, 5
 - 3. $(\alpha + \beta)A$
 - 4. 82cm/sec
 - 5. $\frac{7}{2}$

二.
$$\frac{dy}{dx} = \frac{\frac{1}{\sqrt{1-t^2}}}{\frac{-t}{\sqrt{1-t^2}}} = -\frac{1}{t}$$
 (4 分)

$$\frac{d^2y}{dx^2} = \frac{\frac{1}{t^2}}{\frac{-t}{\sqrt{1-t^2}}} = -\frac{\sqrt{1-t^2}}{t^3}$$
 (8 $\%$)

$$= e^{\lim_{x \to 0} \frac{\ln(1+x) - x}{x(e^x - 1)}}$$
 (5 $\%$)

$$=e^{\lim_{x\to 0}\frac{\ln(1+x)-x}{x^2}}$$
(6 $\%$)

$$= e^{\lim_{x\to 0} \frac{1}{1+x} - 1}_{2x} = e^{\lim_{x\to 0} \frac{-1}{2(1+x)}} = e^{-\frac{1}{2}}$$
 (9 分)

四.
$$\stackrel{\text{deg}}{=} 0 < x < \frac{\pi}{2}$$
 $f'(x) = 6x + \tan x + \frac{x}{\cos^2 x}$ (3 分)

$$\stackrel{\text{YL}}{=} x < 0 \qquad f'(x) = \arctan \frac{1}{x^2} + x \frac{1}{1 + \frac{1}{x^4}} \cdot \frac{-2}{x^3} = \arctan \frac{1}{x^2} - \frac{2x^2}{x^4 + 1} \qquad \dots (6 \ \%)$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x \arctan \frac{1}{x^2}}{x} = \frac{\pi}{2}$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{3x^{2} + x \tan x}{x} = 0$$

1

八.
$$S = 2\pi r h = 4\pi r \sqrt{R^2 - r^2}$$
(3 分)

$$\frac{dS}{dr} = 4\pi\sqrt{R^2 - r^2} + 4\pi r \frac{-r}{\sqrt{R^2 - r^2}} = 4\pi \frac{R^2 - 2r^2}{\sqrt{R^2 - r^2}} \qquad (5 \%)$$

$$\Rightarrow \frac{dS}{dr} = 0$$
 得 $r = \frac{R}{\sqrt{2}}$ (7分)

$$h = 2\sqrt{R^2 - r^2} = \sqrt{2}R$$
(8 $\frac{4}{2}$)

由问题的实际意义,...., 故当 $h = \sqrt{2}R$, $r = \frac{R}{\sqrt{2}}$ 时侧面积最大(9 分)

九. 设
$$f(x) = (x+1)\ln\frac{x+1}{x} - 1$$
 (1分)

$$f'(x) = \ln \frac{x+1}{x} + (x+1)(\frac{1}{x+1} - \frac{1}{x}) = \ln \frac{x+1}{x} - \frac{1}{x} \qquad (2 \ \%)$$

$$f''(x) = \frac{1}{x+1} - \frac{1}{x} + \frac{1}{x^2} = \frac{1}{x^2(x+1)} > 0$$
 (3 分)

故 f'(x)单调增加,

$$\mathbb{X}$$
 $\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} (\ln(1 + \frac{1}{x}) - \frac{1}{x}) = 0$

故当
$$x > 0$$
时, $f'(x) < 0$ (6分)

因此 f(x) 单调减少,又

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x+1) \ln(1+\frac{1}{x}) - 1 = \lim_{x \to +\infty} (x+1) \frac{1}{x} - 1 = 1 - 1 = 0$$

故当
$$x > 0$$
时, $f(x) > 0$ 即 $(x+1)\ln\frac{x+1}{x} > 1$ (9分)

十.
$$\lim_{x\to 1} y = \infty$$
 有垂直渐近线 $x=1$ (1分)

$$\lim_{x \to \infty} \frac{y}{x} = 1 \quad \lim_{x \to \infty} (y - x) = 5 \quad \text{有斜渐近线} \quad y = x + 5 \quad \dots (3 \, \text{分})$$

$$y' = \frac{(x+1)^2(x-5)}{(x-1)^3}$$
 (4 $\frac{1}{2}$)

$$\Rightarrow y' = 0$$
 得 $x = -1$ $x = 5$ (5分)

$$y'' = \frac{24(x+1)}{(x-1)^4}$$
 $\Rightarrow y'' = 0$ $\forall x = -1$ (7 \therefore)

x	(-∞,-1)	-1	(-1,1)	1	(1,5)	5	(5,+∞)
<i>y'</i>	+	0	+		_	0	+
y"	_	0	+		+		+
y		拐点 (-1,0)	<u> </u>	间断		极小值 13.5	1

.....(10 分)

.....(12 分)

则F(x)在[a,b]上连续,在(a,b)内可导,

且由题设及
$$\lim_{x\to a} \frac{f(x)}{x-a} = 1$$
,有

$$f(a) = \lim_{x \to a} f(x) = 0, \qquad \dots$$

故
$$F(a) = F(b) = 0$$
 (5分)

根据罗尔定理, 在(a,b)内存在 ξ , 使得 $F'(\xi) = 0$

由于
$$a \neq 0$$
,可得 $f(\xi) = \frac{b - \xi}{a} f'(\xi)$(8 分)