JST-103-PCT reterence 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-213265

(43) Date of publication of application: 30.07.2003

(51)Int.CI.

CO9K 19/44 CO9K 19/20 CO9K 19/34 CO9K 19/38 CO9K 19/46

> G02F 1/13 1/141 GO2F

(21)Application number: 2002-015758

(71)Applicant: CHISSO CORP

CHISSO SEKIYU KAGAKU KK

(22)Date of filing:

24.01.2002

(72)Inventor: HIRANO YUKIO

(54) ANTIFERROELECTRIC LIQUID CRYSTAL COMPOSITE MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide the synthetically excellent composite material with a polymer of an antiferroelectric liquid crystal, which solves the problems that the conventional composite materials with polymers of ferroelectric liquid crystals or antiferroelectric liquid crystals can not synthetically be satisfied on improvements in the problems of mechanical strengths, orientation controls, scorching phenomena and response times.

SOLUTION: This antiferroelectric liquid crystal composite material is characterized in that an antiferroelectric liquid crystal compound or an antiferroelectric composition containing the compound exists in the structure of a polymer obtained from a specific liquid-crystalline monomer. Herein, the liquid-crystalline monomer preferably exhibits a nematic phase, and is preferably selected from fumarate derivatives, difluoromethyleneoxy group-containing (meth)acrylate derivatives, fluorene ringhaving (meth)acrylate derivatives, oxirane ring or oxetane ring having compounds, and the like.

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出顧公開番号 特開2003-213265 (P2003-213265A)

(43)公開日 平成15年7月30日(2003.7.30)

(51) Int.Cl. ⁷		識別記号		FΙ				Ť	テーマコート*(参考)	
C09K	19/44			C09K 1		19/44		2H088		
	19/20 19/34				1	19/20 19/34 19/38 19/46		4H027		
					1					
	19/38				1					
	19/46	·			1			•		
		*	產請求	未請求	請求功	頁の数19	OL	(全 41 頁)	最終頁に続く	
(21)出顧番号	}	特顧2002-15758(P2002-15758)		(71)出願人 000002071 チッソ株式会				社		
(22)出顧日		平成14年1月24日(2002.1.24)		(71)	大阪府大阪市北区中之島 3 丁目 6 番32号 (71) 出願人 596032100 チッソ石油化学株式会社					

千葉県市原市五井海岸 5 番地の1 チッソ 石油化学株式会社機能材料研究所内

東京都中央区勝どき三丁目13番1号

(72)発明者 平野 幸夫

最終頁に続く

(54) 【発明の名称】 反強誘電性液晶複合体

(57)【要約】

【課題】強誘電性液晶や反強誘電性液晶と重合体との従来の複合体は、機械的強度、配向制御、焼き付き現象および応答時間等の問題点の改善について、総合的に満足できるものではなかった。これらの問題点を解決し、総合的に優れた反強誘電性液晶と重合体との複合体を提供することが本発明の目的である。

【解決手段】特定の液晶性モノマーから得られる重合体の構造物中に、反強誘電性液晶化合物またはこの化合物を含む反強誘電性の組成物が存在していることを特徴とする反強誘電性液晶複合体によって上記の課題が解決される。このとき液晶性モノマーはネマチック相を示すものであることが好ましく、またフマル酸エステル誘導体、ジフルオロメチレンオキシ基を含む(メタ)アクリル酸誘導体、フルオレン環を有する(メタ)アクリル酸誘導体、オキシラン環もしくはオキセタン環を有する化合物等から選ばれることが好ましい。

【特許請求の範囲】

【請求項1】液晶性モノマーから得られる重合体の構造物中に、反強誘電性液晶が存在していることを特徴とする反強誘電性液晶複合体。

【請求項2】液晶性モノマーがネマチック相またはスメ クチックA相を示すことを特徴とする、請求項1に記載*

*の複合体。

【請求項3】液晶性モノマーが、式(1)から式(5)のそれぞれで表される化合物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項2に記載の複合体。

2

$$R^{1} - \left(A^{1} - Z^{1} - C - A^{2} - Z^{2} - A^{3} - R^{2}\right)$$

$$(1)$$

(式中、 R^1 は炭素数 $1 \sim 200$ アルキルであって、と のアルキル中の 1 個または隣り合わない 2 個の $-CH_2$ ーは、-O-、-S-、 $-CF_2-$ 、-COO-、-O COーおよび-CO-のうちの 1 種または 2 種で置き換えられてもよく; A^1 、 A^2 および A^3 はそれぞれ独立して、1 、4-シクロへキシレン、少なくとも 1 個の水素がフッ素で置き換えられた 1 、4-シクロへキシレン、1 、4-フェニレン、少なくとも 1 個の水素がフッ素または/および塩素で置き換えられた 1 、4-フェニレン、ビリジン-2 、5 20 -ジイル、ビリダジン-2 、5-ジイル、ビリミジン-2 、5-ジイル、または 1 、3-ジオキサン-2 、5-※

$$R^{1} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} A^{3} - Z^{3} - A^{4} - \left(O\right)_{k} \left(CH_{2}\right)_{p} O$$
(2)

(式中、 R^1 、 A^1 \sim A^3 、 Z^1 、 Z^2 、m、およびn は前記の通りであり; A^4 は A^1 \sim A^3 と独立して A^1 と同一の意味を示し; Z^3 は、 Z^1 および Z^2 と独立して Z^1 と同一の意味を示し;pは $0\sim10$ の整数であ

★り、kはpが0のとき0、pが0でないとき0または1 であり; R^3 は水素またはメチルを示す。但し、 Z^1 ~ Z^3 のうち少なくとも1 個は、 $-CF_2$ O - または-O CF_2 - である。)

$$R^{11} - \left(B^{1} \xrightarrow{q_{1}} Z^{1} - \left(B^{2} \xrightarrow{q_{2}} Z^{2} - \left(B^{3} \xrightarrow{q_{3}} \left(O \xrightarrow{k} \left(C H_{2}\right)_{p} O\right)\right) \right)$$

$$(3)$$

(式中、 R^3 、 Z^1 、 Z^2 、k、およびpは前記の通りであり; R^{1-1} は-CN、 $-CF_3$ 、 $-CF_2$ H、 $-CF_3$ 0、 $-CF_2$ H、 $-CF_3$ 0、 $-CF_3$ 0、 $-CF_3$ 1、 $-CF_3$ 1、 $-CF_3$ 1、 $-CF_3$ 1、 $-CF_3$ 2 H、-NCO0、-NCS1、または炭素数 $1\sim 20$ 0のアルキルであり、このアルキル中の 1 個または隣り合わない 2 個の $-CH_2$ 0 ーは、 $-CF_3$ 0、 $-CF_3$ 0 ー CH = $-CF_3$ 0 ー CH = $-CF_3$ 0 ー CH = $-CF_3$ 1 一 CH = $-CF_3$ 1 に $-CF_3$ 2 ー CH = $-CF_3$ 3 に $-CF_3$ 3 に $-CF_3$ 4 に $-CF_3$ 5 に $-CF_3$ 6 に $-CF_3$ 7 に -

☆がフッ素または/および塩素で置き換えられた1,4-フェニレン、1,4-シクロヘキセニレン、ビリジン-2,5-ジイル、ビリダジン-2,5-ジイル、ビリミジン-2,5-ジイル、ジオキサン-2,5-ジイル、またはフルオレン-2,7-ジイルの9位の水素はフッ素または炭素数1~8のアルキルで置き換えられてもよく;q1、q402およびq3はそれぞれ独立して0または1であるが、これらの合計は1~3である。但し、B¹~B³の少なくとも1個は、9位の水素がフッ素または炭素数1~8のアルキルで置き換えられてもよいフルオレン-2,7-ジイルである。)

$$R^{1} - \left(A^{5}\right)_{m} A^{6} - Z^{4} - A^{7} - \left(O\right)_{k} \left(CH_{2}\right)_{p} O$$

$$(4)$$

(式中、 R^1 、 R^3 、m、k、およびpは前記と同一の意味を示し; A^5 、 A^6 および A^7 はそれぞれ独立し

て、1,4-シクロヘキシレン、1,4-フェニレン、 50 または少なくとも1個の水素がフッ素で置き換えられた 1, 4-フェニレンであり; Z * は単結合、-COO * * -、-OCO-、または-C≡C-である。)

$$R^4 - (CH_2)_{D1} + (O)_{L2} + (CH_2)_{D2} + (O)_{L2} + (CH_2)_{D2} + (O)_{L2} + (O)_{D2} + (O)_{$$

(式中、R®は前記と同一の意味を示し;p1およびp2はそれぞれ独立してpと同一の意味を示し、k1およびk2はそれぞれ独立してkと同一の意味を示し;2個のR⁴はそれぞれ独立して、少なくとも1つのオキシラン環もしくはオキセタン環を有するアルコキシまたはアルコキシカルボニルである。)

【請求項4】液晶性モノマーが式(1)で表される化合物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項3に記載の複合体。

【請求項5】液晶性モノマーが式(2)で表される化合物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項3に記載の複合体。

【請求項6】液晶性モノマーが式(3)で表される化合物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項3に記載の複合体。

【請求項7】液晶性モノマーが式(4)で表される化合 20 物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項3に記載の複合体。

【請求項8】液晶性モノマーが式(5)で表される化合物の群から選択される少なくとも1個の化合物を含むことを特徴とする、請求項3に記載の複合体。

【請求項9】液晶性モノマーが、ネマチック相またはスメクチックA相を示し、かつ請求項3に記載の式(1)から式(5)のそれぞれで表される化合物の群から選択される少なくとも1個の化合物を含み、反強誘電性液晶がエステル系、メチレンオキシ系、ビリミジン系およびビリジン系の反強誘電性を示す液晶化合物からなる群から選択される少なくとも1個の化合物、またはこの化合物を含む反強誘電性の組成物であることを特徴とする、請求項1に記載の複合体。

【請求項10】反強誘電性を示す液晶化合物が、光学活性部位として1-アルキルアルコキシカルボニル基、1-トリフルオロメチルアルコキシカルボニル基、ω一アルコキシ-1-メチルアルコキシカルボニル基、またはω一アルコキシ-1-トリフルオロメチルアルコキシカルボニル基を有する化合物であることを特徴とする、請求項9に記載の複合体。

【請求項 1 1 】液晶性モノマーが、ネマチック相またはスメクチックA相を示し、かつ請求項 3 に記載の式

(1)から式(5)のそれぞれで表される化合物の群から選択される少なくとも1個の化合物を含み、反強誘電性液晶がエステル系、メチレンオキシ系、ピリミジン系およびピリジン系の反強誘電性を示す液晶化合物からなる群から選択される少なくとも1個の化合物、またはこの化合物を含む反強誘電性の組成物であり、複合体中の重合体の割合が1~40重量%であることを特徴とす

る、請求項1に記載の複合体。

【請求項12】液晶性モノマーおよび反強誘電性液晶を含む組成物を、2枚の透明基板を用いて形成された液晶表示用セルに充填し、液晶性モノマーを重合させることを特徴とする、請求項9に記載の複合体の製造方法。

10 【請求項13】重合温度が、混合物がネマチック相また はスメクチックA相を示す温度であることを特徴とす る、請求項12に記載の製造方法。

[請求項14] 重合の方法が光重合法であることを特徴とする、請求項12に記載の製造方法。

【請求項15】重合温度が、混合物がネマチック相またはスメクチックA相を示す温度であり、重合の方法が光重合法であることを特徴とする、請求項12に記載の製造方法。

【請求項16】2枚の透明基板によって請求項1~11 のいずれか1項に記載の複合体が挟まれている構造を有 する液晶表示素子。

【請求項17】透明基板が透明電極を有する基板である、請求項16に記載の液晶表示素子。

【請求項18】透明基板の材質がガラスまたはプラスチックである、請求項16に記載の液晶表示素子。

【請求項19】液晶性モノマーが、ネマチック相または スメクチックA相を示し、かつ請求項3に記載の式

(1)から式(5)のそれぞれで表される化合物の群から選択される少なくとも1個の化合物を含み、反強誘電性液晶がエステル系、メチレンオキシ系、ピリミジン系およびピリジン系の反強誘電性を示す液晶化合物からなる群から選択される少なくとも1個の化合物、またはこの化合物を含む反強誘電性の組成物であり、液晶性モノマーと反強誘電性液晶との合計量に対する液晶性モノマーの割合が1~40重量%であることを特徴とする、液晶性モノマーおよび反強誘電性液晶を含む組成物。

【発明の詳細な説明】

[0001]

【本発明の属する技術分野】本発明は液晶性モノマーから得られる重合体と反強誘電性液晶との複合体、およびこのような複合体を用いた液晶表示素子に関する。なお、本発明における用語「液晶性」は、単に化合物が液晶相を示すという意味に限定されない。この用語は、それ自体は液晶相を示さないけれども、他の液晶化合物と混合したときに液晶組成物の成分として使用できるような化合物にも用いられる。「反強誘電性液晶」は、反強誘電性の液晶化合物またはこの液晶化合物を含む反強誘電性の液晶組成物を意味する。また、「(メタ)アクリロイルオキシ」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリロイルオキシ」を、「(メタ)アクリル酸」は、「アクリカルカートをごといる。

クリル酸またはメタクリル酸」を意味する。

[0002]

【従来の技術】液晶表示素子はコンピューターのディス プレイ等として広く活用されている。従来のCRTに比 較して、省エネルギーおよび省スペースの点で有利であ る。現在、との目的に使用される液晶はネマチック液晶 に限られ、駆動方法としてはTFT (薄膜トランジスタ ー)方式が主流である。しかしながら、液晶の応答時間 が十分に短くない(20~50ミリ・秒)ので、動画表 示の点においてCRTより劣る。

【0003】との問題は、1989年に見出された反強 誘電性カイラルスメクチックC ₄ 相(以下、カイラルス メクチック C_{A} 相を SmC_{A} * 相で表記する。)を利用 することにより改善できる(Jpn. J. Appl. Phys. 198 9, 28, L1265)。反強誘電性を示す液晶化合物は応答時 間が非常に短く(50~300マイクロ・秒)、理論的 にはCRT並みの動画表示が可能である。

【0004】一方、表面安定化強誘電性液晶(SSFL C)モードがクラークとラガウォールによって提案され た(Appl. Phys. Lett., 1980, 36(11), 899)。この方 式は、高速応答を実現する目的で強誘電性液晶を使用し たものであるが、強誘電性液晶が自発分極を持つため、 焼き付き現象等の問題点を持っている。この問題点は、 自発分極を持たない反強誘電性液晶を強誘電性液晶の代 わりに用い、さらにある周期で印加電圧の極性を反転す ることにより改善される。この反強誘電性液晶は、条件 を適切に選択すれば、電界中でしきい電圧値の存在しな い応答を示す。との特性を利用することで、中間調を容 易に実現できる表示素子が提供される。Ferroelectric * * s, 1993, 149, 295には、反強誘電性液晶を表示素子に 用いたフルカラーディスプレイの試作品が記載されてい

【0005】また、反強誘電性液晶化合物は隣接層間で 分子配列が逆方向を向いている。この為、スメクチック **A相またはカイラルスメクチックC相で電傾効果(エレ** クトロクリニック効果)が顕著に現れる。との効果によ って強誘電性液晶よりも高速で光変調することを可能に できる。しかし、との方式を実現するためには、非常に 狭く($1\sim2~\mu$ m)かつ均一なセル間隔が必要である。 大面積の表示素子において、とのようなセル間隔の実現 が非常に難しい。また、反強誘電性液晶はヘリカルポテ ンシャルを持っているため、これを用いた表示素子の配 向状態に外部応力による構造欠陥ができやすい。従っ て、機械的強度を向上させることや反強誘電性液晶を均 一に配向させるととも必要であった。

【0006】Straussらはこの問題点を解決すべく、反 強誘電性液晶と重合体との複合体を提案した(Appl. Ph ys. Lett., 1996, 69(6), 725)。この複合体は反強誘 電性液晶と3次元的に構造制御された重合体とからなっ ている。そして、重合体の3次元網目構造により機械的 強度の向上、セル間隔の制御および均一な配向制御が容 易になったとされた。しかしながらStraussらの方法に おいても、均一な配向が容易に実現されるとは言えな

【0007】Straussらの報告において、重合体の原料 として記載されている液晶モノマーは、下記の液晶性ジ アクリレート(a)であった。

との化合物(a)から得られる重合体は、その物理的性 状に問題点があると考えられる。即ち、理想的な3次元 網目構造にはならないらしく、完全に均一な配向を持つ 複合体を得ることができない。また、この重合体の分子 鎖が均一な幅を有していないので、これが入射光の散乱 ・乱反射を引き起として光漏れを誘発してしまう。との ような重合体は反強誘電性液晶との分子間相互作用が強 いので、複合体中の反強誘電性液晶の電界中での転移が 制限される。とのため、とのような反強誘電性液晶複合 体を用いた表示素子の応答時間が長くなる。

【0008】Pirsらの報告(Mol. Cryst. Liq. Cryst., 1995, 264, 155) には、強誘電性液晶と少量(10重 量%未満、主として4重量%未満)の架橋性重合体を分 子オーダーで混合した複合体が開示されている。との報 告では、添加された少量の重合体が液晶の配向性の均一 性を向上させるので配向欠陥は改善されるとされている が、外部応力に対する機械的強度の点では何ら解決がな されていない。

[0009]

【発明が解決しようとする課題】上記のように、強誘電 性液晶または反強誘電性液晶を重合体と組み合わせた従 来の複合体は、機械的強度、配向制御、焼き付き現象お よび応答時間等の問題点の改善について、総合的に満足 できるものではなかった。本発明は、従来技術の問題点 を解決し、総合的に優れた反強誘電性液晶と重合体との 複合体を提供することを目的とする。

[0010]

【課題を解決するための手段】発明者らは前記問題点を 解決すべく鋭意努力した結果、特定の液晶性モノマーか ら得られる重合体と反強誘電性液晶との複合体が、前記 課題を解決することを見出し本発明を完成するに至っ た。本発明は次の構成を有する。

- (1)液晶性モノマーから得られる重合体の構造物中 に、反強誘電性液晶が存在していることを特徴とする反 強誘電性液晶複合体。
- (2)液晶性モノマーがネマチック相またはスメクチッ

クA相を示すととを特徴とする、前記(1)項に記載の 複合体。

(3) 液晶性モノマーが、式(1) から式(5) のそれ*

* ぞれで表される化合物の群から選択される少なくとも1 個の化合物を含むことを特徴とする、前記(2)項に記載の複合体。

$$R^{1} - \left(A^{1}\right)_{m} Z^{1} - \left(A^{2}\right)_{m} Z^{1} - \left(A^{3}\right)_{m} Z^{1} - \left(A^{3}\right)_{m$$

(式中、R¹は炭素数1~20のアルキルであって、とのアルキル中の1個または隣り合わない2個の-CH2-は、-O-、-S-、-CF2-、-COO-、-O:CO-および-CO-のうちの1種または2種で置き換えられてもよく; A¹、A² およびA³ はそれぞれ独立して、1、4-シクロヘキシレン、少なくとも1個の水素がフッ素で置き換えられた1、4-シクロヘキシレン、1、4-フェニレン、少なくとも1個の水素がフッ素または/および塩素で置き換えられた1、4-フェニレン、1、4-シクロヘキセニレン、ビリジン-2、5-ジイル、ビリダジン-2、5-ジイル、ビリミジン-2、5-ジイル、または1、3-ジオキサン-2、5-※

※ジイルであり;mおよびnは互いに独立して0、1または2であり;R²は水素、-CN、-CF。、-CF2
10 H、-CFH2、-OCF。、-OCF2 H、-NCO、-NCS、-F、-C1、または炭素数1~20のアルキルであり、とのアルキル中の1個の-CH2-は-O-、-S-、-COO-、-OCO-、または-CO-で置き換えられてもよく;Z¹およびZ²は互いに独立して、単結合、-COO-、-OCO-、-CF2O-、-OCF2ー、-CH2CH2ー、-CH2CH2ー、-CH2CH2ー、-CH2CH-、-CF=CF-、または-C≡C-である。)

$$R^{1} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} A^{3} - Z^{3} - A^{4} - \left(O\right)_{k} \left(CH_{2}\right)_{p} O$$

$$R^{3}$$
(2)

(式中、R¹、A¹~A³、Z¹、Z²、m、およびn は前記の通りであり; A⁴ はA¹~A³ と独立してA¹ と同一の意味を示し; Z³ は、Z¹ およびZ² と独立し てZ¹と同一の意味を示し; p は0~10の整数であ ★り、kはpが0のとき0、pが0でないとき0または1 であり; R^3 は水素またはメチルを示す。但し、 $Z^1 \sim Z^3$ のうち少なくとも1個は、 $-CF_2$ O-または-O CF_2 -である。)

(式中、 R^3 、 Z^1 、 Z^2 、k、およびpは前記の通りであり; R^{1-1} は-CN、 $-CF_3$ 、 $-CF_2$ H、-CFH $_2$ 、 $-OCF_3$ 、 $-OCF_3$ H、-NCO、-NCS、-F、-C1、または炭素数 $1\sim20$ のアルキルであり、このアルキル中の1個または隣り合わない2個の $-CH_2$ -は、-O-、-S-、 $-CF_2$ -、-CH= -CH-、-COO-、-OCO-、および-CO-のうちの1種または2種で置き換えられてもよく、またこのアルキル中の1 個の水素は (メタ) アクリロイルオキシで置き換えられてもよく; $-B^1$ 、 $-B^2$ および $-B^3$ はそれぞれ独立して、 $-A^2$ 1、 $-A^2$ 2、 $-A^2$ 3、 $-A^2$ 4、 $-A^2$ 4、 $-A^2$ 4、 $-A^2$ 4、 $-A^2$ 5 とも $-A^2$ 6 とも $-A^2$ 6 とも $-A^2$ 7 に関うなくとも $-A^2$ 7 に対して、 $-A^2$ 7 に対し、 $-A^2$

30☆がフッ素または/および塩素で置き換えられた1, 4 - フェニレン、1, 4 - シクロヘキセニレン、ビリジン - 2, 5 - ジイル、ビリダジン - 2, 5 - ジイル、ビリダジン - 2, 5 - ジイル、ジオキサン - 2, 5 - ジイル、ジオキサン - 2, 5 - ジイル、またはフルオレン - 2, 7 - ジイルであり、このフルオレン - 2, 7 - ジイルの9 位の水素はフッ素または炭素数1 ~ 8 のアルキルで置き換えられてもよく:q 1, q 2 および q 3 はそれぞれ独立して0 または1 であるが、これらの合計は1 ~ 3 である。但し、B 1 $\sim B$ の少なくとも1 個は、9 位の水素がフッ素または炭素数1 ~ 8 のアルキルで置き換えられてもよいフルオレン - 2, 7 - ジイルである。)

$$R^{1} - \left(A^{5}\right)_{m} A^{6} - Z^{4} - A^{7} - \left(O\right)_{k} \left(CH_{2}\right)_{p} O$$
(4)

(式中、 R^1 、 R^3 、m、k、およびpは前記と同一の意味を示し; A^5 、 A^9 および A^7 はそれぞれ独立して、1, 4 – シクロヘキシレン、1, 4 – フェニレン、

または少なくとも1個の水素がフッ素で置き換えられた 1, 4-フェニレンであり; Z^4 は単結合、-COO - 、-OCO- 、または $-C\equiv C-$ である。)

$$R^{4} - \left(CH_{2}\right)_{p1} + \left(O\right)_{k1} + \left(CH_{2}\right)_{p2} + \left(O\right)_{k2} + \left(O\right)_{p2} + \left(O\right$$

(式中、R³は前記と同一の意味を示し; p 1 および p 2はそれぞれ独立して p と同一の意味を示し、k 1 およ びk2はそれぞれ独立してkと同一の意味を示し;2個 のR⁴ はそれぞれ独立して、少なくとも1つのオキシラ ン環もしくはオキセタン環を有するアルコキシまたはア ルコキシカルボニルである。)

- (4)液晶性モノマーが式(1)で表される化合物の群 10 から選択される少なくとも 1 個の化合物を含むことを特 徴とする、前記(3)項に記載の複合体。
- (5)液晶性モノマーが式(2)で表される化合物の群 から選択される少なくとも 1 個の化合物を含むことを特 徴とする、前記(3)項に記載の複合体。
- (6)被晶性モノマーが式(3)で表される化合物の群 から選択される少なくとも 1 個の化合物を含むことを特 徴とする、前記(3)項に記載の複合体。
- (7)液晶性モノマーが式(4)で表される化合物の群 から選択される少なくとも1個の化合物を含むことを特 徴とする、前記(3)項に記載の複合体。
- (8)液晶性モノマーが式(5)で表される化合物の群 から選択される少なくとも1個の化合物を含むことを特 徴とする、前記(3)項に記載の複合体。
- (9)液晶性モノマーが、ネマチック相またはスメクチ ックA相を示し、かつ前記(3)項に記載の式(1)か ら式 (5) のそれぞれで表される化合物の群から選択さ れる少なくとも 1 個の化合物を含み、反強誘電性液晶が エステル系、メチレンオキシ系、ビリミジン系およびビ リジン系の反強誘電性を示す液晶化合物からなる群から 選択される少なくとも1個の化合物、またはこの化合物 を含む反強誘電性の組成物であることを特徴とする、前 記(1)項に記載の複合体。
- (10)反強誘電性を示す液晶化合物が、光学活性部位 として 1 -アルキルアルコキシカルボニル基、 1 -トリ フルオロメチルアルコキシカルボニル基、ωーアルコキ シー 1 -メチルアルコキシカルボニル基、またはω―ア ルコキシ- 1 -トリフルオロメチルアルコキシカルボニ ル基を有する化合物であることを特徴とする、前記

(9)項に記載の複合体。

(11)液晶性モノマーが、ネマチック相またはスメク チックA相を示し、かつ前記(3)項に記載の式(1) から式(5)のそれぞれで表される化合物の群から選択 される少なくとも1個の化合物を含み、反強誘電性液晶 がエステル系、メチレンオキシ系、ビリミジン系および ビリジン系の反強誘電性を示す液晶化合物からなる群か ら選択される少なくとも1個の化合物、またはこの化合 物を含む反強誘電性の組成物であり、複合体中の重合体 の割合が1~40重量%であることを特徴とする、前記 (1)項に記載の複合体。

- (12) 液晶性モノマーおよび反強誘電性液晶を含む組 成物を、2枚の透明基板を用いて形成された液晶表示用 セルに充填し、液晶性モノマーを重合させることを特徴 とする、前記(9)項に記載の複合体の製造方法。
- (13) 重合温度が、混合物がネマチック相またはスメ クチックA相を示す温度であることを特徴とする、前記 (12) 項に記載の製造方法。
- (14) 重合の方法が光重合法であることを特徴とす る、前記(12)項に記載の製造方法。
- (15)重合温度が、混合物がネマチック相またはスメ クチックA相を示す温度であり、重合の方法が光重合法 であることを特徴とする、前記(12)項に記載の製造 方法。
- (16) 2枚の透明基板によって前記(1)~(11) のいずれか1項に記載の複合体が挟まれている構造を有 する液晶表示素子。
- (17) 透明基板が透明電極を有する基板である、前記
 - (16) 項に記載の液晶表示素子。
- (18)透明基板の材質がガラスまたはプラスチックで ある、前記(16)項に記載の液晶表示素子。
- (19)液晶性モノマーが、ネマチック相またはスメク チックA相を示し、かつ前記(3)項に記載の式(1) から式(5)のそれぞれで表される化合物の群から選択 される少なくとも1個の化合物を含み、反強誘電性液晶 がエステル系、メチレンオキシ系、ピリミジン系および ピリジン系の反強誘電性を示す液晶化合物からなる群か ら選択される少なくとも1個の化合物、またはこの化合 物を含む反強誘電性の組成物であり、液晶性モノマーと 反強誘電性液晶との合計量に対する液晶性モノマーの割 合が1~40重量%であることを特徴とする、液晶性モ ノマーおよび反強誘電性液晶を含む組成物。

[0011]

【発明の実施の形態】本発明の反強誘電性液晶複合体に おいては、液晶性モノマーから得られる重合体の構造物 中に反強誘電性液晶が分散されている。このような構造 の複合体とするためには、液晶性モノマーおよび反強誘 電性液晶を含む組成物を均一混合状態に保ったまま、急 速に重合することが肝要である。このようにすることに よって、重合性でない反強誘電性液晶の割合が小さい混 合物では、液晶性モノマーの重合体が海綿状の3次元網 目構造物を形成する。とのとき反強誘電性液晶は、との ような構造物中に均一に分散して存在する小さな空間部 分を満たすことになる。一方、反強誘電性液晶の割合が 大きい組成物では、上記の構造物中の小さな空間がつな がって比較的大きな空洞になった構造物が形成され、強 誘電性液晶はとの空洞を満たして存在することになる。

50 との空間部分のつながり具合は、反強誘電性液晶の割合

に応じて変動する。

【0012】具体的には、液晶性モノマーおよび反強誘 電性液晶を含む組成物を2枚の透明基板で挟み、この混 合物がネマチック相またはスメクチックA相を示す温度 で重合させる。このようにすることによって、反強誘電 性液晶はネマチック相またはスメクチックA相を示した まま重合体の構造物中に取り込まれる。透明基板に予め 配向処理を施しておくことにより、透明基板に挟まれた 液晶性モノマーおよび反強誘電性液晶を含む組成物は、 ネマチック相またはスメクチックA相で均一な配向状態 10 を示す。この配向状態が重合後も維持・反映されるの で、得られた反強誘電性液晶複合体は均一な配向状態を 形成する。複合体の機械的強度が大きいので、液晶表示 素子製造の際に、セル間隔のコントロールが容易にな る。また、重合体の構造物を構成する高分子鎖が極めて 細く、その径は通常、可視光の波長以下である。そのた め、とのような構造物に入射した可視光は、表示素子中 で乱反射や散乱を起とさず、光漏れによるコントラスト の低下が起こらない。

【0013】本発明の表示素子は、反強誘電性液晶複合体自体が高い機械的強度を有するので、透明基板として柔軟なフィルム状プラスチック基板を使用できる。これにより軽量化された表示素子や曲面状の表示素子を提供できる。また、反強誘電性液晶の電気光学応答特性はほとんどの場合ヒステリシスを示す。従って、このような応答特性を有する反強誘電性液晶を用いて本発明の複合体を製造すると、重合体との相互作用によって無しきい電圧特性(V字応答特性)が誘起される場合がある。このような複合体を用いれば、表示素子の階調を容易に調整できる。

【0014】本発明で用いる液晶性モノマーのうち、式 (1)で表される化合物(以下、化合物(1)で表記す る。)はフマル酸エステル誘導体であり、特願2001 -307573号明細書の段落0015~0016に記載の方法で製造することができる。式(2)で表される化合物(以下、化合物(2)で表記する。)はジフルオロメチレンオキシ基を有する(メタ)アクリル酸誘導体であり、特願2001384507号一明細書の段落0044~0050に記載の方法で製造することができる。式(3)で表される化合物(以下、化合物(3)で表記する。)は、式(6)のフルオレン環を有する(メタ)アクリル酸誘導体であり、特願2001-378508号明細書の段落0011~0035に記載の方法で製造することができる。

(6)

(式中、Xは水素、フッ素または炭素数1~8のアルキルである。)

[0015]また、式(4)で表される(メタ)アクリル酸誘導体(以下、化合物(4)で表記する。)、および式(5)で表されるオキシラン環またはオキセタン環を有する化合物(以下、化合物(5)で表記する。)は、Houben Wyle、Organic Syntheses、およびOrganic Reactions等に記載の一般的な有機合成の手法を、適切に組み合わせることにより容易に製造できる。

[0016] 化合物(1)~化合物(5)の具体例を以下に示す。[FM-1]~[FM-45] は化合物(1)の好ましい例である。[DF-1]~[DF-64] は化合物(2)の好ましい例である。[FL-1]~[FL-36] は化合物(3)の好ましい例である。[MA-1]~[MA-32] は化合物(4)の好ましい例である。そして、[DE-1]~[DE-9] は化合物(5)の好ましい例である。

[0017]

[0018]

[0019]

[0020]

[DF-1]
$$C_5H_{11}$$
 C_5H_{11} C_5H_{11}

[0021]

[0022]

[0023]

[DF-42]
$$C_3H_7$$

[DF-43]
$$O-(CH_2)_6-O-O-CF_2O-CF_2O-C_3H_7$$

[DF-46]
$$CH_2CH_2$$
 CF_2O C_3H_7

[DF-50]
$$O-(CH_2)_2-O-O-CF_2O-C_3H_7$$

[0024]

$$[DF-54] \longrightarrow C(CH_2)_3 - C \longrightarrow C_2 - C_3 + r$$

$$[DF-56] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-57] \longrightarrow C(CH_2)_3 - C \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-58] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-59] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-60] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-61] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-62] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-63] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

$$[DF-64] \longrightarrow CF_2 C \longrightarrow C_3 + r$$

[0025]

.

[FL-1]
$$C_3H_7O$$
 $(CH_2)_6-O$ $(CH_2)_6-O$ $(FL-2]$ C_3H_7O $(CH_2)_5-O$ $(CH_2)_5-O$ $(FL-3]$ $(FL-4]$ C_3H_7O $(CH_2)_5-O$ $(FL-5]$ $(FL-6]$ $(CH_2)_3-O$ $(CH_2)_3-O$ $(FL-7]$ $(FL-8]$ $(FL-8]$ $(FL-9)$ $(FL-9)$ $(FL-10]$ $(FL-10]$ $(FL-11]$ $(FL-11]$ $(FL-11]$ $(FL-12]$ $(FL-12$

[0026]

[FL-13]
$$C_5H_{11}$$
 C_5H_{20} C_7C_2 $C_7C_$

[FL-15]
$$C_5H_{11}$$
 OCF_2 $O(CH_2)_3$ OCF_2

C 118 SmA 142.4 I

40

[0027]

[FL-27]
$$O(CH_2)_6$$
 OC_5H_4

[0028]

[MA-6]
$$C_4H_9$$
 $C_4IN_{49}I$

$$[MA-7] \quad C_5H_{11} \longrightarrow \begin{array}{c} \\ \\ \end{array}$$

[MA-9]
$$C_3H_7$$
 C_3H_7 C_3H_7

[MA-10]
$$C_3H_7$$
 $O(CH_2)_6$

[MA-13]
$$C_3H_7O$$
—OCO—OCO—C 84 N 92 I

[0029]

[MA-14]
$$C_{3}H_{11}$$
 C_{0} C_{0}

[0030]

[0032]

【0033】化合物(1)~化合物(4)の2環系化合物は、その液晶相温度範囲が低温領域にあるので、紫外線照射温度を低温側に設定するときに有利である。また、液晶性モノマーの液晶性メソジェニック部位は、その重合体の側鎖部位になる。この側鎖部位は、反強誘電性液晶複合体において反強誘電性液晶の配向を制御する。従って、より強固な配向制御を必要とするときには、3ないし4環系の液晶モノマーが好適である。

[DE-9]

【0034】本発明で用いる反強誘電性液晶化合物は、 反強誘電性を示す液晶化合物であればどのようなもので もよいが、エステル系、メチレンオキシ系、ビリミジン 系、およびビリジン系の化合物が好適である。反強誘電 性液晶化合物はSmC_A*相を示す化合物であり、液晶 性母骨格と光学活性の末端基との組み合わせとして構成 される。このような構造の具体例として、例えば下記の 式(AF-1)~(AF-3)を挙げることができる。*

* これらの式中のR⁵ は炭素数1~20のアルキル、アル コキシまたはアルコキシアルコキシであるが、これらの 基中の-CH2-は-CO-に、水素はフッ素に置き換 えられてもよく、R® は炭素数1~10のアルキルであ り、R⁷ は炭素数1~4のアルキルであるが、R⁸ とR ⁷ が同じ基であることはなく、R⁶ は-CH₈ またはC F。であり、Z⁵ およびZ⁶ は互いに独立して単結合、 -COO-、-OCO-、-CH2O-または-OCH 30 2 - であり、D¹、D² およびD³ は互いに独立して1 ~4個の水素がフッ素または/および塩素で置き換えら れてもよい1, 4-フェニレンであり、rは0または1 であり、tは1~10の整数である。R⁶ としてはブチ ル、ペンチル、ヘキシル、ヘプチル、オクチルなどが好 ましく、R⁷ としてはメチルおよびエチルが好ましく、 tとしては2~5が好ましい。 [0035]

$$R^{5} - \left(D^{1}\right) - Z^{5} - D^{2} - Z^{6} - D^{3} - COO - CH - R^{6}$$

$$R^{5} - \left(D^{1}\right) - Z^{5} - D^{2} - Z^{6} - D^{3} - COO - CH - R^{6}$$

$$(AF-1)$$

$$R^{5} - \left(D^{1}\right) - Z^{5} - D^{2} - Z^{6} - D^{3} - COO - CH - (CH_{2}) - OR^{6}$$

$$(AF-2)$$

$$R^{5} - \left(D^{1}\right) - Z^{5} - D^{2} - Z^{6} - D^{3} - COO - CH - (CH_{2}) - OR^{6}$$

$$(AF-3)$$

【0036】式 $(AF-1) \sim (AF-3)$ に含まれる 化合物の好ましい例として、式 $(AF-4) \sim (AF-120)$ の化合物を挙げることができる。なお、反強誘電性を示さない化合物でも、反強誘電性を示す液晶化合

物と混合したとき、反強誘電性液晶相の温度範囲を著し く縮小させない限り、反強誘電性液晶組成物の成分とし て使用できる。

50 [0037]

$$C_8H_{17}O - CO_2 - COO - CH - C_6H_{13}$$
 (AF-4)

$$C_8H_{17}O$$
— CH_2O — COO - C

$$C_8H_{17}O$$
 CO_2 CO_2 CH_3 $CO_5H-C_6H_{13}$ (AF-6)

$$C_{10}H_{21}$$
 $C_{10}H_{21}$ $C_{6}H_{13}$ (AF-7)

$$C_{10}H_{21}O$$
 CO_2 CO_2 CO_5 CO_6H_{13} (AF-8)

$$C_8H_{17}O$$
 — OCO — COO — CH- C_6H_{13} (AF-9)

$$C_{10}H_{21}O$$
— CO_2 — CO_2 — $COO-CH-C_6H_{13}$ (AF-10)

$$C_{10}H_{21}O$$
 $C_{10}H_{21}O$ $C_{6}H_{13}$ (AF-11)

$$C_{12}H_{25}O$$
 $C_{12}H_{25}O$ $C_{12}H_{25}$

$$C_{12}H_{25}O$$
— CO_2 — CO_2 — CO_5H_{13} (AF-13)

$$MeO(CH2)6O - CO2 - CO2 - COO - CH-C6H13 (AF-14)$$

$$\begin{array}{c}
CH_3 \\
C_3H_7
\end{array}$$

$$\begin{array}{c}
CO_2 \\
CO_2
\end{array}$$

$$\begin{array}{c}
CH_3 \\
COO \\
CH \\
C_6H_{13}
\end{array}$$
(AF-15)

[0038]

$$C_8H_{17}O$$
 — CH_2O — COO — COO

$$C_{10}H_{21}$$
—CH₂O—COO-CH-C₆H₁₃ (AF-18)

$$C_{10}H_{21}O$$
 — CH_2O — CH_3 (AF-19)

$$C_8H_{17}O$$
 — COO — CH_2 — COO — CH_{13} (AF-20)

$$C_{10}H_{21}O$$
— CH_2O — CH_2O — COO - C_6H_{13} (AF-21)

$$C_{10}H_{21}O - OCH_2 - COO - CH - C_6H_{13}$$
 (AF-22)

$$C_{12}H_{25}O$$
 — CH_2O — COO —

$$C_{12}H_{25}O$$
 — CH_2O — COO — CH_2O — COO — CH_{13} (AF-24)

$$\begin{array}{c} \text{CH}_{3} \\ \text{MeO(CH}_{2})_{6}\text{O} - \begin{array}{c} \text{CH}_{2}\text{O} - \begin{array}{c} \text{CH}_{2}\text{O} \\ \text{COO-CH-C}_{6}\text{H}_{13} \end{array} \end{array} \right. \tag{AF-25}$$

$$\begin{array}{c} O \\ C_2H_7 \\ \end{array} - C(CH_2)_6O - \begin{array}{c} CH_3 \\ - CH_2O - \begin{array}{c} CH_2O - \begin{array}{c} CH_3 \\ - COO - \begin{array}{c} CH_{13} \\ \end{array} \end{array} (AF-26) \\ \end{array}$$

$$C_3F_7$$
 C_3F_7 C_3F_7 C_6H_{13} C

$$C_8H_{17}$$
 CO_2 $COO - CH - C_6H_{13}$ (AF-28)

[0039]

(25) 47 (AF-29) (AF-30)(AF-31) (AF-32) COO-CH−C₆H₁₃ (AF-33)CH₃ -COO-CH-C₆H₁₃ (AF-34)CH₃ -COO<u>-</u>CH−C₆H₁₃ (AF-37)

(AF-38)

(AF-39)

$$C_8H_{17}O$$
 $COO-CH-C_6H_{13}$ (AF-40)

[0040]

$$C_{10}H_{21}O$$
 CH_2O CH_2O COO CH C_6H_{13} (AF-41)

$$C_{10}H_{21}O$$
 $C_{10}H_{21}O$ $C_{10}H_{21}$

$$\begin{array}{c} O \\ C_3H_7 \end{array} - O(CH_2)_6O - \begin{array}{c} CH_2O - \begin{array}{c} CH_3 \\ COO - CH_2O - CH_2$$

$$C_8H_{17}$$
 CO_2 CO_2 CO_5 CH_{13} CO_6H_{13} CO_6 CO_6

$$C_{10}H_{21}$$
 C_{02} C_{00} C_{0

$$C_{10}H_{21}O$$
 $C_{10}H_{21}O$ $C_{10}H_{21}$

$$C_8H_{17}O$$
 COO-CH- C_6H_{13} (AF-49)

$$C_{10}H_{21}O$$
 CO_2 CO_2 CO_2 CO_2 CO_2 CO_3 CO_2 CO_3 CO_4 CO_5 CO_5

$$C_{10}H_{21}O$$
 — OCO — COO-CH- C_6H_{13} (AF-51)

$$CH_3$$
 $MeO(CH_2)_6O$
 CO_2
 CO_2
 CO_2
 CO_3
 CO_4
 CO_6H_{13}
 CO_6H_{13}
 CO_6H_{13}
 CO_6H_{13}

[0041]

$$C_8H_{17}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_8H_{17}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_8H_{17}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_8H_{17}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_{10}H_{21} - CO_2 - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - CO_2 - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - CO_2 - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O - COO - COO - CH - C_6H_{13}$$

$$C_{10}H_{21}O$$
 OCO CF₃ (AF-60)

$$\begin{array}{c} \text{CF}_{3} \\ \text{MeO(CH}_{2})_{6}\text{O} & \\ \text{CO}_{2} & \\ \text{CO}_{2} & \\ \text{CO}_{3} & \\ \text{CO}_{4} & \\ \text{CO}_{5} & \\ \text{CO}_{6} & \\ \text{CO}_{13} & \\ \text{CO}_{13} & \\ \text{CO}_{14} & \\ \text{CO}_{15} & \\ \text{CO}_{15}$$

$$C_3H_7$$
 C_2H_2 C_2H_3 C_6H_{13} C

$$C_3F_7$$
 C_3F_7 CO_2 CF_3 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_3 CO_4 CO_5 $CO_$

$$C_8H_{17}$$
 CH_2O COO CH C_6H_{13} (AF-64)

[0042]

(AF-76)

[0043]

$$C_{10}H_{21}O - CO_{2} - CO_$$

[0044]

57

$$C_3H_7$$
 C_3H_7
 C_3H_7

$$C_8H_{17}$$
 CO_2 CO_2 CO_5H_{13} (AF-91)

$$C_{10}H_{21}$$
 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_3 CO_4 CO_4 CO_4 CO_5 CO_5

$$C_{10}H_{21}O - \bigcirc N = \bigcirc CO_2 - \bigcirc COO - \bigcirc CH - \bigcirc C_6H_{13}$$
 (AF-93)

$$C_8H_{17}O$$
 COO-COO-CH- C_6H_{13} (AF-94)

$$C_{10}H_{21}O$$
 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_3 CO_4 CO_5 CO_5

$$C_{10}H_{21}O$$
 $C_{6}H_{13}$ $C_{6}H_{13}$ $C_{6}H_{13}$ $C_{6}H_{13}$

$$CF_3$$
 CO_2
 CO_2
 CO_2
 CO_2
 CO_3
 CO_4
 CO_5
 CO_6
 CO_6

$$C_{10}H_{21}$$
 $C_{10}H_{20}$ C_{1

$$C_{10}H_{21}O$$
 $CH_{2}O$ COO COO $CH_{2}O$ COO COO $CH_{2}O$ COO CO

[0045]

[0046]

【0047】液晶性モノマーおよび反強誘電性液晶を含 む組成物から反強誘電性液晶複合体を製造するときの重 合温度は、この混合物がネマチック相またはスメクチッ クA相を示す温度範囲内であることが好ましい。ネマチ ック相を示す温度範囲においては、液晶分子の熱的揺ら ぎが少ない温度、すなわち可能な限り低温で重合させる ことが好ましい。しかしながら、スメクチックA相を示 す温度範囲においては、液晶分子間の分子間相互作用が 弱い温度、すなわち可能な限り高温で重合させることが 40 好ましい。

【0048】重合方法は、製造の容易さおよび量産性の 観点から、紫外線等を用いた光重合法が好ましい。しか しながら、液晶性モノマーがオキシラン環あるいはオキ セタン環を含む化合物(5)である場合には、カチオン 重合法が好適である。このとき熱重合法が好ましいが、 光重合法を用いても何ら問題はない。熱重合法の場合に は、液晶性モノマーおよび反強誘電性液晶を含む組成物 が、重合温度でネマチック相またはスメクチックA相を 示すように、その組成を調整する必要がある。

【0049】ラジカル光重合法を採用する場合には、反 応時間を短縮する目的で光重合開始剤を前記組成物に添 加してもよい。光重合開始剤の添加量は前記組成物に対 して5重量%未満である。この割合は2重量%未満が好 ましく、1重量%未満がより好ましい。光重合開始剤 は、市販のベンゾインエーテル類、ベンゾフェノン類、 アセトフェノン類、ベンジルケタール類などから選択す るととができる。

【0050】具体的には、2-ヒドロキシー2-メチル -1-フェニルプロパン-1-オン(商品名:ダロキュ アー1173)、1-ヒドロキシシクロヘキシルフェニ ルケトン(商品名:イルガキュアー184)、2,2-ジメトキシー1,2-ジフェニルエタン-1-オン(商 品名:イルガキュアー651)、イルガキュアー50 0、イルガキュアー2959、イルガキュアー907。 イルガキュアー369、イルガキュアー1300、イル ガキュアー819、イルガキュアー1700、イルガキ ュアー1800、イルガキュアー1850、ダロキュア 50 -4265、イルガキュアー784、p-メトキシフェ

ニルー2、4ービス(トリクロロメチル)-s-トリアジン、2-(p-ブトキシスチリル)-5-トリクロロメチル-1、3、4ーオキサジアゾール、9-フェニルアクリジン、1-(4-イソプロビルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンジルジメチルケタール、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノブロパン-1-オン、および2、4-ジエチルキサントン/p-ジメチルアミノ安息香酸メチル混合物などを挙げることができる。

63

【0051】カチオン重合法を採用する場合には、カチオン重合開始剤を使用することが好ましい。カチオン重合開始剤としては、 $HC1O_4$ 、 $CC1_8$ CO_2 H 等のブレンステッド酸、 $A1C1_8$ 、 BF_8 、 $FeC1_8$ 、 $SnBr_4$ 、 $TiC1_4$ 、 I_2 等のルイス酸、 Ph_8 C^+ $C1^-$ 、 R_8 S^+ X^- 、 ArN_2 $^+$ X^- 等のカルベノイド塩あるいはオニウム塩などが好適である。ここで、Phはフェニル、Rはアルキル、Arはアリール、Xは ハロゲンである。

[0052] 複合体中の重合体の好ましい割合は1~4 0重量%である。この割合が小さいと強固な構造物にな 20 らず、複合体の機械的強度が低い。複合体の機械的強度*

*を考慮すると、重合体の割合は5重量%以上、好ましく は20重量%以上である。重合体の割合が大きくなる と、複合体中の重合体構造物の割合が増大し、機械的強 度が更に大きくなる。一方、より高速の応答を求めると きは、重合体の割合が少ない方がよい。また、原料であ る液晶性モノマーの製造コストが高いので、重合体の割 合の上限を決定するには、特性の向上のみではなく、費 用対効果の観点も考慮しなければならない。これらの点 を考慮すると、複合体中の重合体の割合は40重量%以 下であり、好ましくは30重量%以下、更に好ましくは 25重量%以下である。以上のことから、複合体中の重 合体の最も好ましい割合は10~25重量%である。 【実施例】以下、実施例により本発明の複合体を説明す るが、本発明はこれらの実施例に制限されない。なお、 実施例中の%はすべて重量%を意味する。鉛筆硬度は、 JIS規格「JIS-K-5400 8.4 鉛筆引掻 試験」の方法に従って測定した。

実施例1

液晶性モノマーと反強誘電性液晶を混合し、組成物A-1を調製した。この組成物はネマチック相を示した。 【0053】<組成物A-1>

[0054] 2枚のガラス基板にITO電極を形成し、スピンコート法によってポリアミック酸(チッソ(株)製PIA-X189)を塗布した。200℃において30分加熱し、ガラス基板上に厚さ45nmのポリイミド配向膜を形成した。このガラス基板を、レーヨンを巻きつけたロールで一方向にラビングした。このうち一方の透明基板上に直径が2μmの球状スペーサーを分散し、この上にもう一方の透明基板を、ラビング方向が平行に

なる向きに重ね合わせ、空の表示セルを作成した。 【0055】組成物A-1に、これに対して2%の光重合開始剤(チバガイギー社製イルガキュアー651)を添加して、光重合性組成物を調製した。この組成物を100℃に加熱して得られた等方性液体を、毛細管現象を利用し減圧下で前記の表示セルに注入した。この等方性液体を、スメクチックA相が現れるまで徐々に冷却して、均一に配向したスメクチックA液晶の表示素子を得

た。得られた表示素子の一方向から、UVランプにより 7 mW/c m² の強度の紫外線を60秒間照射して、セル中の組成物を重合させ、反強誘電性液晶複合体の表示素子を得た。この表示素子に両極性のパルス電圧30Vを印加したところ、応答時間は50マイクロ・秒であった。この表示素子から透明基板を剥離し、得られた複合体の鉛筆硬度を測定したところBであった。また、重合体構造物の物理的性状に由来する光漏れは観察されなかった。

65

*【0056】実施例2

液晶性モノマーと反強誘電性液晶を混合して、組成物 A $-2\sim$ A -9 を調製した。これらの組成物はすべてネマチック相を示した。組成物 A -1 の代わりにこれらを用いる以外は実施例 1 と同様にして製造することにより、実施例 1 で得られた表示素子と同様の特性を有する、反強誘電性液晶複合体の表示素子が得られる。

15%

【0057】<組成物A-2>

【0058】<組成物A-3>

【0059】<組成物A-4>

10%

15%

【0060】<組成物A-5>

【0063】<組成物A-8>

(38) 73 74 15% 15% 15% CF₃ -COO-CH−(CH₂)₂OC₃H₇ 10% 10% 10% 15% 5%

【0064】<組成物A-9>

【0065】実施例3

10-

液晶性モノマーと反強誘電性液晶を混合して、組成物A 30 【0066】<組成物A-10>-10を調製した。この組成物はネマチック相を示し

【0067】組成物A-10に、これに対し2%の三弗 化ホウ素・ジエチルエーテル錯体を添加した。この組成 物を、毛細管現象を利用し減圧下で、実施例1と同様に して製作した表示セルに注入した。作成した表示素子は 室温でネマチック相を示した。この表示素子を100℃ で30分加熱して、表示素子内の液晶性モノマーをカチ オン重合させ、反強誘電性液晶複合体の表示素子を得 た。得られた表示素子に両極性のバルス電圧30Vを印 30 字曲線をえがいた。 加したととろ、応答時間は60マイクロ・秒であった。 【0068】実施例4

*液晶性モノマーと反強誘電性液晶を混合して、組成物A -11を調製した。この組成物を組成物A-1の代わり に用いた以外は実施例1と同様にして、反強誘電性液晶 複合体の表示素子を得た。この表示素子に両極性のバル ス電圧30 Vを印加したところ、応答時間が60マイク ロ・秒の高速応答を示した。さらに三角波電圧-30V ~30Vを印加したところ、光透過率の電圧依存性がV

15%

【0069】<組成物A-11>

$$C_{9}H_{19}O - COO - COO - (CH_{2})_{4}OC_{2}H_{5}$$

$$C_{11}H_{23}O - COO - (CH_{2})_{4}OC_{2}H_{5}$$

$$C_{11}H_{23}O - COO - COO - COO - C_{6}H_{13}$$

$$C_{11}H_{23}O - COO - C_{11}COO - C_{11}C$$

的強度、均一な配向制御および応答時間について総合的 に満足できるものである。本発明によって、反強誘電性 液晶を表示素子に使用する際の問題点が改善された。即 ち、配向状態における構造欠陥ができにくく、安定化さ* *れた反強誘電性液晶表示索子が提供される。また、本発 明の表示素子は、反強誘電性を示さない液晶を用いた表 示素子に比べて、焼き付きの起きやすさも改善されてい る。

フロントページの続き

(51) Int.C7.7

識別記号

FΙ

テーマコート' (参考).

G02F

500

G02F 1/13

1/141

500

1/13 1/141

Fターム(参考) 2H088 GA02 GA04 JA20 MA01 MA09

MA18 MA20

4H027 BA07 BA11 BD01 BD08 BD12

BD24 BE05 CB04 CE08 CF03

CS03 CT03 CU03 CV01 CX01

CF08 CK01 CM03 CN05 CR03

DM03

THIS PAGE BLANK (USPTO)