Department of Mathematics Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 03

1. Show that the space of all 3×3 real (respectively complex) matrices is a vector space over \mathbb{R} (respectively \mathbb{C}) with respect to the usual addition and scalar multiplication.

- 2. Let S:= The set of all 3×3 upper triangular matrices with real entries. Check whether S is a real vector space under usual addition and scalar multiplication of matrices.
- 3. In \mathbb{R} , consider the addition $x \oplus y := x + y 1$ and $a \cdot x := a(x 1) + 1$. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1.
- 4. Which of the following are vector spaces:

(a) \mathbb{C} over \mathbb{C}

(b) \mathbb{C} over \mathbb{R}

(c) \mathbb{R} over \mathbb{C}

(d) \mathbb{R} over \mathbb{R}

5. Which of the following are subspaces of \mathbb{R}^3 :

(a) $\{(x,y,z)|x+y=0\}$

(b) $\{(x,y,z)|x^2+y^2=z\}$

(c) $\{(x,y,z)|x^2+y^2=0\}$

(d) $\{(x, y, z) | xy = 1\}$

(e) $\{(x, y, z) | x \ge 0\}$

(f) $\{(x,y,z)|x+y=z\}$

(g) $\{(x,y,z)|x=y^2\}.$

6. Which of the following are subspaces of \mathbb{C}^3 (over \mathbb{C}):

(a) $\{(z_1, z_2, z_3)|z_1 \text{ is real}\}$

(b) $\{(z_1, z_2, z_3) | z_1 + z_2 = 10z_3\}.$

- 7. Find the conditions on real numbers a, b, c, d so that the set $\{(x, y, z) | ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .
- 8. Which of the following are subspaces of $C[0,1] := \{f : [0,1] \longrightarrow \mathbb{R} : f \text{ is continuous}\}$?

(a) $\{f \in C[0,1] : f\left(\frac{1}{2}\right) = 0\}.$

(b) $\{f \in C[0,1] : f \text{ has a local maxima at } x = \frac{1}{2}\}.$

- (c) $\{f \in C[0,1] : f \text{ has a local maxima or minima at } x = \frac{1}{2}\}.$
- 9. Let \mathbb{V} be a vector space over \mathbb{F} and $\mathbb{W}_1, \dots, \mathbb{W}_r$ subspaces of \mathbb{V} . Then which of the following is a subspace of \mathbb{V} :
 - (a) $\mathbb{V} \setminus \mathbb{W}_1$
 - (b) $\bigcup_{i=1}^{r} \mathbb{W}_i$
 - (c) $\bigcap_{i=1}^{r} \mathbb{W}_i$
 - (d) $\mathbb{W}_1 + \mathbb{W}_2 = \{ w_1 + w_2 : w_1 \in \mathbb{W}_1, w_2 \in \mathbb{W}_2 \}$
- 10. Express the 2×2 matrix $\begin{bmatrix} -2 & 4 \\ 4 & 0 \end{bmatrix}$ as a linear combination of the matrices $\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$, $\begin{bmatrix} -2 & 3 \\ 1 & 4 \end{bmatrix}$ and $\begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix}$.
- 11. In the following W is a subspace of V? Base field is taken as \mathbb{R} in all. Justify your answer.
 - (a) $V := \mathbb{R}[x]$ = vector space of all polynomials with real coefficients, W := set of all polynomials with integer coefficients.
 - (b) $V := \mathbb{R}^2$, $W := \{(x,y) : x + y \ge 0\}$.
 - (c) $V := \mathbb{R}^2$, $W := \{(x,y) : x^2 + y^2 \ge 0\}$.
- 12. Consider the space V of all 2×2 matrices over \mathbb{R} . Which of the following sets of matrices A in V are subspaces of V? Justify (prove) your answers.
 - (a) All upper triangular matrices (i.e. matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$).
 - (b) All A such that AB = BA where B is some fixed matrix in V.
 - (c) All A such that BA = 0 where B is some fixed matrix in V.
 - (d) Would the above results hold for all $n \times n$ matrices where n is a general positive integer $(n \ge 2)$?
- 13. Given the following vectors in \mathbb{R}^3 : $\mathbf{u} = (1,3,5), \mathbf{v} = (1,4,6), \mathbf{w} = (2,-1,3)$ and $\mathbf{b} = (6,5,17)$.
 - (a) Does $\mathbf{b} \in W = \text{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
 - (b) If the answer to (a) is yes, express **b** as a linear combination of **u,v,w**.
- 14. Let U and W be two subspaces of the vector space V. We define $U+W=\{u+w:u\in U,w\in W\}$. Show that U+W is a subspace of V, and moreover, U+W is the smallest subspace of V which contains both U and W.