

HT32F52342/HT32F52352 产品规格书

带 Arm® Cortex®-M0+ 内核以及 1 MSPS ADC、USART、UART、SPI、I²C、I²S、MCTM、GPTM、 BFTM、SCI、CRC、RTC、WDT、PDMA、EBI 和 USB 2.0 FS 高达 128KB Flash 和 16KB SRAM 的 Holtek 32-Bit 单片机

版本: V1.50 日期: 2019-04-29

www.holtek.com

目录

1	简介	6
2	特性	7
	内核	7
	片上存储器	7
	Flash 存储器控制器 – FMC	7
	复位控制单元 – RSTCU	7
	时钟控制单元 – CKCU	8
	电源管理 – PWRCU	8
	外部中断 / 事件控制器 – EXTI	8
	模数转换器 - ADC	8
	模拟比较器 – CMP	9
	I/O 端口 – GPIO	9
	马达控制定时器 – MCTM	9
	PWM 产生和捕捉定时器 – GPTM10	0
	单通道产生与捕捉定时器 – SCTM10	0
	基本功能定时器 – BFTM10	0
	看门狗定时器 – WDT10	0
	实时时钟 – RTC1	1
	内部集成电路 – I ² C1	
	串行外设接口 – SPI1	
	通用同步异步收发器 – USART12	
	通用异步收发器 – UART12	
	智能卡接口 – SCI12	
	内置音频接口 – I ² S	
	循环冗余校验 – CRC13	
	外设直接访问内存 – PDMA	
	外部总线接口 – EBI	
	通用串行总线设备控制器 – USB	
	调试支持	
	封装和工作温度	4
3	概述15	5
	单片机信息15	5
	方框图10	6
	存储器映射17	7
	时钟结构20	0

4	引脚图	21
5	电气特性	28
	极限参数	28
	建议直流特性	28
	片上 LDO 稳压器特性	28
	功耗	29
	复位和电源监控特性	30
	外部时钟特性	31
	内部时钟特性	32
	PLL 特性	32
	存储器特性	32
	I/O 端口特性	33
	A/D 转换器特性	34
	比较器特性	35
	SCTM/GPTM/MCTM 特性	36
	I ² C 特性	36
	SPI 特性	37
	I ² S 特性	39
	USB 特性	41
6	封装信息	42
	SAW Type 33-pin (4mm×4mm) QFN 外形尺寸	43
	48-pin LQFP (7mm×7mm) 外形尺寸	
	64-pin LQFP (7mm×7mm) 外形尺寸	45

表列表

表 1. 特性及外设列表	15
表 2. 寄存器映射	18
表 3. 33-pin QFN, 48/64-pin LQFP 封装引脚图	24
表 4. 引脚描述	26
表 5. 极限参数	28
表 6. 建议直流工作条件	28
表 7. LDO 特性	28
表 8. 功耗特性	29
表 9. V _{DD} 电源复位特性	30
表 10. LVD/BOD 特性	30
表 11. 外部高速时钟 (HSE) 特性	31
表 12. 外部低速时钟 (LSE) 特性	31
表 13. 内部高速时钟 (HSI) 特性	
表 14. 内部低速时钟 (LSI) 特性	32
表 15. PLL 特性	32
表 16. Flash 存储器特性	32
表 17. I/O 端口特性	33
表 18. A/D 转换器特性	
表 19. CMP 特性	35
表 20. SCTM/GPTM/MCTM 特性	36
表 21. I ² C 特性	36
表 22. SPI 特性	37
表 23. I ² S 特性	39
表 24. USB 直流电气特性	41
表 25. USB 交流电气特性	41

图列表

图 1. 方框图	16
图 2. 存储器映射	17
图 3. 时钟结构图	
图 4. 33-pin QFN 引脚图	21
图 5. 48-pin LQFP 引脚图	22
图 6. 64-pin LQFP 引脚图	23
图 7. ADC 采样网络模板	34
图 8. I ² C 时序图	
图 9. SPI 时序图 – SPI 主机模式	
图 10. SPI 时序图 – SPI 从机模式, CPHA=1	39
图 11. I ² S 主机模式时序图	40
图 12. I ² S 从机模式时序图	40
图 13 USB 信号上升时间,下降时间和交叉占由压 (Vose) 定♡	41

1 简介

该系列的Holtek单片机是一款基于Arm® Cortex®-M0+处理器内核的32-bit 高性能低功耗单片机。Cortex®-M0+是把嵌套向量中断控制器 (NVIC)、系统节拍定时器 (SysTick Timer) 和先进的调试支持紧紧结合在一起的新一代处理器内核。

该系列单片机可借助 Flash 加速器工作在高达 48 MHz 的频率下,以获得最大的效率。它提供 128 KB 的嵌入式 Flash 存储器用作程序 / 数据存储,16 KB 的嵌入式 SRAM 存储器用作系统操作和应用程序运用。此系列单片机具有多种外设,如 ADC、I²C、USART、UART、SPI、I²S、GPTM、MCTM、SCI、CRC-16/32、RTC、WDT、PDMA、EBI、USB2.0 FS、SW-DP(串行线调试端口)等。在唤醒延迟和功耗方面,几种省电模式提供了具有灵活性的最大优化方案,此举在低功耗应用方面尤为值得考虑。

以上这些特性使该系列单片机可以广泛地适用于各种应用,如大型家用电器应用控制、电源监控、报警系统、消费类产品、手持式设备、数据记录应用、马达控制等。

2 特性

内核

- 32-bit Arm® Cortex®-M0+ 处理器内核
- 高达 48 MHz 的工作频率
- 0.93 DMIPS/MHz (Dhrystone 2.1)
- 单周期乘法
- 集成嵌套向量中断控制器 (NVIC)
- 24-bit SysTick 定时器

Cortex®-M0+ 处理器是一种高效能的 32-bit 处理器内核,特别适合要求面积优化和低功耗的单片机及深度嵌入式应用。Cortex®-M0+ 处理器基于 ARMv6-M 架构,支持 Thumb® 指令集。该处理器还提供了许多功能,如单周期 I/O 端口,硬件乘法器和低延迟中断响应时间。

片上存储器

- 高达 128 KB 片上 Flash 存储器用于指令 / 数据和选项的存储
- 16 KB 片上 SRAM
- 支持多种启动模式

Arm[®] Cortex[®]-M0+ 处理器与调试通过同一条外部接口访问外部 AHB 外设。处理器访问优先于调试访问。Cortex[®]-M0+ 的最大地址范围是 4 GB,因为它具有 32-bit 总线地址宽度。此外,预先定义的内存映射由 Cortex[®]-M0+ 处理器提供,以减少软件被不同的单片机供应商重复实施的复杂性。但有一些区域为 Arm[®] Cortex[®]-M0+ 系统外设所使用。更多信息请参考 Arm[®] Cortex[®]-M0+ 技术参考手册。图 2 显示了该系列单片机的内存映射,包括代码、SRAM、外设和其它预先定义的区域。

Flash 存储器控制器 - FMC

- Flash 加速器获得最大效率
- 具有在系统编程 (ISP) 和在应用编程 (IAP) 的 32-bit 字编程功能
- Flash 保护功能, 防止非法访问

Flash 存储器控制器 FMC 为嵌入式片上 Flash 存储器提供所有必要的功能和预抓取缓存器。由于 Flash 存储器访问速度比 CPU 慢, 故提供一个带有预抓取缓存器的宽访问接口来减少 CPU 指令执行延迟的等待时间。Flash 存储器还提供字编程 / 页擦除功能。

复位控制单元 - RSTCU

- 电源监控
 - 上电复位 / 掉电复位 POR/PDR
 - 掉电检测器 BOD
 - 可编程低压检测 LVD

复位控制单元 RSTCU 有三种复位方式,分别是上电复位、系统复位和 APB 单元复位。上电复位,被称为冷复位,在上电时复位了整个系统。系统复位复位了处理器内核和除 SW-DP 控制器以外的外设 IP 元件。这些复位可以通过外部信号、内部事件和复位发生器触发。

时钟控制单元 - CKCU

- 外部 4~16 MHz 晶振
- 外部 32,768 Hz 晶振
- 在工作电压为 3.3 V, 工作温度为 25°C 下, 内部 8 MHz RC 振荡器精度可调整至 ±2%
- 内部 32 kHz RC 振荡器
- 集成系统时钟 PLL
- 用作外设时钟源的独立的时钟分频器与控制位

时钟控制单元 CKCU 提供了一系列振荡器和时钟功能,包括内部高速 RC 振荡器 (HSI)、外部高速晶振 (HSE)、内部低速 RC 振荡器 (LSI)、外部低速晶振 (LSE)、锁相环 (PLL)、HSE 时钟监控、时钟预分频器、时钟倍频和 APB 时钟分频器与控制电路。AHB、APB 和 Cortex®-M0+的时钟来源于系统时钟 (CK_SYS),而系统时钟可以来自 LSI、LSE、HSI、HSE 或者 PLL。看门狗定时器和实时时钟 (RTC) 使用 LSI 或者 LSE 作为它们的时钟源。

申源管理 - PWRCU

- 单一电源 V_{DD} 供电: 2.0 V~3.6 V
- 集成 1.5 V LDO 稳压器用作 CPU 内核、外设和存储器电源
- V_{BAT} 电池供电给 RTC 和备用寄存器
- 三个电源域: V_{DD}、1.5 V 和备用
- 四种省电模式: 休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式

功耗被视为许多嵌入式系统应用中最重要的问题之一。因此,在这些单片机中,电源控制单元 PWRCU 提供多种省电模式如休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式。这些工作模式可以降低功耗,并允许应用在 CPU 运行时间、速度和功耗相互冲突的需求中达到最佳平衡。

外部中断/事件控制器 - EXTI

- 高达 16 个可配置触发源和触发类型的 EXTI 端口
- 所有 GPIO 引脚都可选作 EXTI 触发源
- 触发源类型包括: 高电平、低电平、下降沿、上升沿或者双沿
- 每个 EXTI 端口都可独立进行中断使能、唤醒和状态位设置
- 每个 EXTI 端口都有软件中断触发模式
- 集成抗尖峰脉冲滤波器,用于封锁短脉冲

外部中断 / 事件控制器 EXTI 由 16 个可独立产生唤醒事件和中断请求的边沿检测器组成。每个 EXTI 端口也可被单独屏蔽。

模数转换器 - ADC

- 12-bit SAR A/D 转换器启动装置
- 高达 1 Msps 转换速率
- 高达 12 个外部模拟输入通道

此系列单片机包含一个多通道 12-bit A/D 转换器, 其具有多路复用通道, 包括 12 个提供模拟信号的外部通道和 2 个可测量的内部通道。如果输入电压必须保持在一个特定的阈值窗口, 模拟看门狗功能将监控和检测信号。当输入电压高于或低于设定的阈值, 将产生中断。有三种转换模式用来把模拟信号转换成数字数据。A/D 转换器可工作在单次转换、连续和非连续转换模式。

模拟比较器 - CMP

- 轨到轨比较器
- 每个比较器都具有可配置的负端输入,用于灵活电压选择
- 专用比较器 I/O 端口及 6-bit 定标器用于提供参考电压
- 可编程迟滞
- 可编程速度与功耗
- 比较器输出可输出至 I/O 口或定时器,也可作为 A/D 转换器触发输入
- 6-bit 定标器可配置为参考电压专用 I/O
- 比较器可通过 EXTI 控制器产生中断,可从休眠或深度休眠模式中唤醒

该系列单片机具有两个通用比较器 (CMP)。模拟比较器可配置为独立的比较器或与各种不同外设 IP 结合。每个比较器都可以产生 NVIC 中断,或通过 EXTI 唤醒事件管理单元将 MCU 从休眠或深度休眠模式中唤醒。

I/O 端口 - GPIO

- 高达 51 个通用输入 / 输出口 (GPIO)
- 端口 A、B、C、D 映射为 16 个外部中断 EXTI
- 几乎所有 I/O 引脚都具有可编程输出驱动电流

单片机有多达51个通用I/O引脚,GPIO,即PA0~PA15到PD0~PD3,可以实现逻辑输入/输出功能。每个GPIO端口都有相关的控制和配置寄存器,扩大了灵活性并满足特定的应用需求。

在封装上 GPIO 引脚与其它替代功能引脚共用,以获得最大的灵活性。通过配置相应的寄存器, GPIO 口可以被用作替代功能的引脚。对单片机 GPIO 引脚的外部中断在外部中断控制单元, EXTI, 都有相关的控制和配置寄存器。

马达控制定时器 - MCTM

- 1 个 16-bit 向上、向下、向上 / 向下自动重载计数器
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式
- 带可编程死区时间插入的互补输出
- 支持三相马达控制和霍尔传感器接口
- 中断输入将强制定时器输出复位或输出固定电平

马达控制定时器包括一个 16-bit 向上 / 向下计数器、四个 16-bit CCR (捕捉 / 比较寄存器)、一个 16-bit 计数器重装载寄存器 (CRR)、一个 8-bit 重复计数器和几个控制 / 状态寄存器。它可用于多种用途,包括测量输入信号的脉冲宽度或产生输出波形,如比较器匹配输出、PWM 输出或带死区时间插入的互补 PWM 输出。MCTM 能够为马达控制、霍尔传感器接口和中断输入提供全功能支持。

PWM 产生和捕捉定时器 - GPTM

- 1 个 16-bit 向上、向下、向上 / 向下自动重载计数器
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为 1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式
- 使用正交解码器带两个输入端口的编码器接口控制器

通用定时器包括一个 16-bit 向上 / 向下计数器, 4 个 16-bit 捕捉 / 比较寄存器 (CCR), 一个 16-bit 计数器重装载寄存器 (CRR) 和多个控制 / 状态寄存器。它们可用于多种用途,包括通用计时、输入信号脉冲宽度测量、输出波形产生,如单脉冲波形产生或 PWM 输出。GPTM 支持的编码器接口是带有两个输入端口的解码器。

单诵道产生与捕捉定时器 - SCTM

- 1 个 16-bit 向上自动重载计数器
- 每个计数器具有单个通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为 1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐计数模式
- 单脉冲输出模式

单通道定时器包括一个 16-bit 向上计数器, 4 个 16-bit 捕捉 / 比较寄存器 (CCR), 一个 16-bit 计数器重装载寄存器 (CRR) 和多个控制 / 状态寄存器。它们可用于多种用途,包括通用计时、输入信号脉冲宽度测量、输出波形产生,如单脉冲波形产生或 PWM 输出。

基本功能定时器 - BFTM

- 1 个 32-bit 比较 / 匹配向上计数器 无 I/O 控制功能
- 单次模式 匹配条件产生后停止计数
- 重复模式 匹配条件产生后重启计数器

基本功能定时器是一个简单的 32-bit 向上计数器,可用于测量时间间隔并产生一个单次或者重复中断。BFTM 工作在两种功能模式下,即重复模式或单次模式。在重复模式下,当一个比较匹配事件发生时,BFTM 重启计数器。BFTM 也包含一个单次模式,在此模式下,当一个比较匹配事件发生时,计数器停止计数。

看门狗定时器 - WDT

- 带有 3-bit 预分频器的 12-bit 向下计数器
- 复位系统事件
- 可编程看门狗定时器窗口功能
- 寄存器写保护功能

看门狗定时器是一个硬件定时电路,可用于检测因软件故障导致的系统故障。它包括一个12-bit 向下计数器、预分频器、一个WDT增量值寄存器、WDT操作控制电路和WDT保护机制。如果软件在看门狗定时器溢出前没有重载计数器的值,计数器溢出时将产生复位。此外,当计数器值大于WDT增量值时,如果软件重新加载计数器,也会产生复位。这意味着计数器必须在有限的时间窗口内用特定方法重新加载。当处理器处于调试模式,看门狗定时器计数器可停止计数。该寄存器写保护功能被使能,来防止看门狗定时器配置的突然改变。

实时时钟 - RTC

- 带可编程预分频器的 32-bit 向上计数器
- 报警功能
- 中断和唤醒事件

实时时钟,RTC 电路包括 APB 接口、32-bit 向上计数器、一个控制寄存器、一个预分频器、一个比较寄存器和一个状态寄存器。除了APB接口位于V_{DDIs} 电源域外,RTC 电路大多位于备份域。因此,当 V_{DDIs} 电源域掉电即单片机进入暂停模式时隔离来自电源控制单元的 ISO 信号,是很有必要的。RTC 计数器被用作唤醒定时器使系统从暂停模式中恢复。

内部集成电路 - I2C

- 支持高达 1MHz 频率的主从模式
- 提供仲裁功能和时钟同步功能
- 支持 7-bit 和 10-bit 寻址模式和一般呼叫寻址
- 支持带可屏蔽地址的多种从机寻址模式

 I^2C 模块是一个允许与外部 I^2C 接口通讯的内部电路,而外部 I^2C 接口是一个工业标准的用于连接外部硬件的两线串行接口。这两个串行线被称为串行数据线 SDA 和串行时钟线 SCL。 I^2C 模块提供了三种数据传输速率: 即 100~kHz 的标准模式、400~kHz 的快速模式和 1~MHz 的快速 + 模式。SCL 周期产生寄存器用于设置不同的占空比得到不同的 SCL 脉冲。

SDA 线是一条双向数据线,它连接整个 I^2C 总线,在主机和从机之间用于数据的传输和接收。 I^2C 模块还具有仲裁检测功能和时钟同步,可防止多个主机试图同时传送数据到 I^2C 总线的情况。

串行外设接口 - SPI

- 支持主从模式
- 主机模式频率高达 (f_{PCLK}/2) MHz 和从机模式频率高达 (f_{PCLK}/3) MHz
- FIFO 深度: 8级
- 多个主机和多个从机工作模式

串行外设接口 SPI 提供了一个 SPI 协议: 主从模式下数据传输和接收功能。SPI 接口使用 4 个引脚,其中有串行数据输入线 MISO 和输出线 MOSI,时钟线 SCK 和从机选择线 SEL。SPI 作为主机使用,用 SEL 和 SCK 信号控制数据流来说明数据通信启动和数据采样率。要接收数据字节,数据流在特定的时钟边沿时被锁存且存储在数据寄存器或 RX FIFO。数据传输也是通过类似的方式,但以相反的顺序。模式故障检测功能使其适用于多主机应用。

通用同步异步收发器 - USART

- 同时支持异步和时钟同步串行通信模式
- 异步工作频率高达 (f_{PCLK}/16) MHz, 同步工作频率高达 (f_{PCLK}/8) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7, 8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位: 1或2个停止位产生
 - 位顺序: 低位优先或高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误
- 自动硬件流控制模式 RTS、CTS
- IrDA SIR 编码器和解码器
- 具有输出使能控制的 RS485 模式
- FIFO 深度: 8×9 位接收器和发送器

通用同步异步收发器 USART 提供了一个灵活的采用同步或异步传输的全双工数据交换。USART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。USART 外设功能支持四种类型的中断,包括线路状态中断、发送 FIFO 空中断、接收器阈值级别到达中断和超时中断。USART 模块包括一个发送 FIFO (TX_FIFO) 和一个接收 FIFO (RX_FIFO)。通过读取线路状态寄存器 LSR,软件可以检测 USART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出、帧和暂停事件造成的错误状况。

通用异步收发器 – UART

- 异步串行通信工作频率高达 (f_{PCLK}/16) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7、8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位: 1或2个停止位产生
 - 位顺序: 低位优先或高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误

通用异步收发器 UART 提供了一个灵活的采用异步传输的全双工数据交换。UART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。UART 外设功能支持线路状态中断。通过读取线路状态寄存器 LSR,软件可以检测 UART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出,帧和暂停事件造成的错误状况。

智能卡接口 - SCI

- 支持 ISO 7816-3 标准
- 字符模式
- 一个发送缓冲器和一个接收缓冲器
- 11-bit ETU (基本时间单位) 计数器
- 9-bit 时间保护计数器
- 24-bit 通用等待时间计数器

- 奇偶产生和检测
- 发送和接收模式下检测到奇偶错误时自动进行字符重发

智能卡接口与 ISO 7816-3 标准兼容。该接口包括卡插入 / 移除检测、SCI 数据发送控制逻辑和数据缓冲器、内置定时器计数器和相关的控制逻辑电路来完成所有与智能卡有关的操作。智能卡接口作为一个智能卡读卡器,便于与外部智能卡通信。所有智能卡接口功能由一系列寄存器控制,包括控制和状态寄存器以及几个相关中断,这些中断使得单片机对 SCI 发送状态进行关注。

内置音频接口 - I2S

- 主机模式或从机模式
- 单声道和立体声
- I2S 对齐模式 左对齐和右对齐模式
- 带 32-bit 扩展通道的 8/16/24/32-bit 采样值
- 8×32 位 TX & RX FIFO 并支持 PDMA
- 带速率控制的 8-bit 小数时钟分频器

I²S 是一个同步通信接口,用于主机或从机与其它音频外设,如 ADC 或 DAC,之间交换数据。I²S 支持多种数据格式。除了立体声 I²S 对齐、左对齐和右对齐模式,还有带 8/16/24/32-bit 采样值的 单声道 PCM 模式。当 I²S 工作在主机模式下并使用小数分频器,它可以提供一个准确的采样频率输出,且支持速率控制功能和输出频率微调,以避免由于不同单片机之间的累积频率误差造成的系统问题。

循环冗余校验 - CRC

- 支持 CRC16 多项式: 0x8005, X¹⁶ + X¹⁵ + X² + 1
- 支持 CCITT CRC16 多项式: 0x1021, X¹⁶ + X¹² + X⁵ + 1
- 支持 IEEE-802.3 CRC32 多项式: 0x04C11DB7, X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- 支持对数据和校验码进行1的补码、字节取反和位取反操作
- 支持字节、半字和字数据大小
- 可编程 CRC 初始种子值
- 对 8-bit 数据在 1 AHB 时钟周期下和 32-bit 数据在 4 AHB 时钟周期下执行 CRC 计算
- 支持 PDMA 对一个存储器区块进行 CRC 计算

CRC 计算单元是用于验证数据传输或存储的数据正确性的错误检测技术测试算法。CRC 计算将数据流或数据块作为输入,并生成一个 16-bit 或 32-bit 输出余数。通常情况下,数据流带 CRC 后缀码,且当被发送或存储时用作校验码。因此,被接收或重新储存的数据流是通过上述相同的生成多项式计算的。如果新的 CRC 码结果与先前计算的不匹配,这意味着数据流出错了。

外设直接访问内存 – PDMA

- 带触发源分组的6个通道
- 8/16/32-bit 宽度数据发送
- 支持地址递增、递减或固定模式
- 4 层可编程通道优先级
- 自动重载模式

■ 支持的触发源包括: ADC、SPI、USART、UART、I²C、I²S、GPTM、MCTM、SCI 和软件请求

外设直接访问内存控制器 PDMA 对 AHB 总线上的数据在外设与系统存储器之间进行转移。每一个 PDMA 通道都有一个源地址、目的地址、存储块长度和发送数量。 PDMA 可以排除 CPU 干扰,避免执行中断服务程序。由于软件无需参与每个数据的转移操作,此举提高了系统性能。

外部总线接口 - EBI

- 用于多种存储器类型的可编程接口
- 将 AHB 事务转换成相应的外部设备协议
- 为每一个存储区提供独立的片选控制
- 支持一系列单片机的可编程时序
- 包括页读取模式
- 当 AHB 事务宽度和外部存储器接口宽度不同时,可自动转换
- 写缓存器可减少因 AHB 写突发事件而停滞的状况
- 支持复用和非复用地址和数据线配置
 - 多达 21 条数据线
 - 高达 16-bit 数据总线宽度

外部总线接口能够访问外部并行总线设备,如 SRAM、Flash 和 LCD 模块。该接口存储映射于 CPU 内部地址。为了减少外接单片机所需的引脚数,数据线与地址线可以复用。总线的读 / 写时序可以被调整以符合外部设备的时序规格。注意,该接口仅支持异步 8 或 16-bit 总线接口。

通用串行总线设备控制器 - USB

- 符合 USB 2.0 全速 (12Mbps) 规范
- 片上 USB 全速收发器
- 1 个控制端点 (EP0) 可用于控制转移
- 3 个单独的缓冲端点可用于批量和中断传输
- 4 对缓冲端点可用于批量、中断和同步传输
- 1,024 字节 EP SRAM 用于端点数据缓冲器

USB 设备控制器符合 USB 2.0 全速规范。有一个被称为端点 0 的控制端点和七个可配置端点。一个1024字节的 SRAM 被用作端点缓冲器。每个端点缓冲器大小可通过相应的寄存器编程来设置,这将为不同的应用提供了最大的灵活性。内置 USB 全速收发器有助于减少总的系统复杂度和成本。 USB 功能块也包含恢复和暂停特性以满足低功耗的需求。

调试支持

- 串行线调试端口-SW-DP
- 4 个用于硬件断点或代码 / 文字修补的比较器
- 2 个用于硬件观察点的比较器

封装和工作温度

- 33-pin QFN, 48/64-pin LQFP 封装
- 工作温度: -40°C~+85°C

3 概述

单片机信息

表 1. 特性及外设列表

夕		HT32F52342	HT32F52352							
主 Flash (KB)		64	127.5							
选项字节 Flash (KB)		0.5								
SRAM (KB)		8 16								
	MCTM	1								
	GPTM	2								
定时器	SCTM	2								
上 印 	BFTM	2								
	RTC	1								
	WDT	1								
	USB	1								
	SPI	2								
	USART	2								
通信	UART	2								
	I ² C	2								
	I^2S	1								
	SCI (ISO7816-3)	2								
EBI		1								
CRC-16/32		1								
GPIO		51 (Max.)								
EXTI		16								
12-bit ADC		1								
通道数		12								
比较器		2								
CPU 频率		48 MHz (Max.)								
工作电压		2.0V~3.6V								
工作温度		-40 °C ~ +85 °C								
封装		33-pin QFN,48/64-pin LQFP								

方框图

Power supply:
Bus:
Control signal:
Alternate function:

图 1. 方框图

存储器映射

图 2. 存储器映射

表 2. 寄存器映射

起始地址	终止地址	外设	总线
0x4000_0000	0x4000_0FFF	USART0	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_3FFF	保留	
0x4000_4000	0x4000_4FFF	SPI0	
0x4000_5000	$0x4000_FFFF$	保留	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4002_1FFF	保留	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	保留	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4002_BFFF	保留	
0x4002_6000	0x4002_6FFF	I^2S	
0x4002_7000	0x4002_BFFF	保留	
0x4002_C000	0x4002_CFFF	MCTM	
0x4002_D000	0x4003_3FFF	保留	
0x4003_4000	0x4003_4FFF	SCTM0	
0x4003_5000	0x4003_9FFF	保留	
0x4003_A000	0x4003_AFFF	SCI1	
0x4003_B000	0x4003_FFFF	保留	
0x4004_0000	0x4004_0FFF	USART1	
0x4004_1000	0x4004_1FFF	UART1	A DD
0x4004_2000	0x4004_2FFF	保留	APB
0x4004_3000	0x4004_3FFF	SCI0	
0x4004_4000	0x4004_4FFF	SPI1	
0x4004_5000	0x4004_7FFF	保留	
0x4004_8000	0x4004_8FFF	I2C0	
0x4004_9000	0x4004_9FFF	I2C1	
0x4004_A000	0x4005_7FFF	保留	
0x4005_8000	0x4005_8FFF	比较器	
0x4005_9000	0x4006_7FFF	保留	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	保留	
0x4006_A000	0x4006_AFFF	RTC & PWRCU	
0x4006_B000	0x4006_DFFF	保留	
0x4006 E000	0x4006 EFFF	GPTM0	
0x4006 F000	0x4006 FFFF	GPTM1	
0x4007 0000	0x4007 3FFF	保留	
0x4007 4000	0x4007 4FFF	SCTM1	
0x4007 5000	0x4007 5FFF	保留	
0x4007 6000	0x4007 6FFF	BFTM0	
0x4007 7000	0x4007 7FFF	BFTM1	
0x4007 8000	0x4007 FFFF	保留	

起始地址	终止地址	外设	总线
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	保留	
0x4008_8000	0x4008_9FFF	CKCU/RSTCU	
0x4008_A000	0x4008_BFFF	CRC	
0x4008_C000	0x4008_FFFF	保留	
0x4009_0000	0x4009_1FFF	PDMA 控制寄存器	
0x4009_2000	0x4009_7FFF	保留	
0x4009_8000	0x4009_9FFF	EBI 控制寄存器	ATID
0x4009_A000	0x400A_7FFF	保留	AHB
0x400A_8000	0x400A_BFFF	USB	
0x400A_C000	0x400A_FFFF	保留	
0x400B_0000	0x400B_1FFF	GPIOA	
0x400B_2000	0x400B_3FFF	GPIOB	
0x400B_4000	0x400B_5FFF	GPIOC	
0x400B_6000	0x400B_7FFF	GPIOD	
0x400B_8000	0x400F_FFFF	保留	

时钟结构

图 3. 时钟结构图

4 引脚图

HT32F52342/HT32F52352 33 QFN-A AF0 (Default) VDDA VSSA PB8 PB7 PB5 PB4 PB2 AF0 AF0 AF1 32 31 30 29 28 27 25 (Default) (Default) 0 33V 33V 33V 33V 33V 33V PA0 33V 3.3 V Digital Power Pad 33V 24 PB1 P33 PB0 PA1 2 33V 33V 23 3.3 V Analog Power Pad PA2 3 33V 33V 22 PA15 P15 1.5 V Power Pad PA3 4 33V 33V PA14 33V 3.3 V Digital & Analog IO Pad 5 33V 33V 20 SWDIO PA13 PA4 3.3 V Digital I/O Pad 33V PA5 6 33V 33V 19 SWCLK PA12 USBDM VDD VDD Domain Pad PA9 7 USB 33V 18 BOOT /PC6 USBDP USB PHY Pad USB 8 33 VSS 33V 17 XTALOUT PB14 /PC7 VDD 33V VDD 33V VDD 33V P15 P33 14 10 11 12 13 15 16 9 XTALIN AF0 (Default) X32KIN CLDO nRST ΥDD SSA PB10 PB11 PB12 PB13 AF1

图 4.33-pin QFN 引脚图

图 5.48-pin LQFP 引脚图

									нт	32F52 6	342/H 4 LQF		52352	!								
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	VSS_3	VDD_3	PC15	PC14	PB5	PB4	PB3	PB2		AF0 (Default)		
AF0 (Default))	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			AF0 (Default)	AF1
		<i></i>	AP	AP	33V	33V	33V	33V	33V	33V	P33	P33	33V	33V	33V	33V	33V	33V				,
PA0	1	33V																	33V	48	PD3	
PA1	2	33V																	33V	47	PD2	
PA2	3	33V			P33		V Dig	tal Day	war Da	اد د									33V	46	PD1	
PA3	4	33V			P30	3.3	v Dig	tai Pov	ver Pa	a									33V	45	PB1	
PA4	5	33V			AP	3.3	V Ana	log Po	wer Pa	ad									33V	44	PB0	
PA5	6	33V			P18	_	V Pow	or Dod											P33	43	VSS_2	
PA6	7	33V			PK	1.5	v Pow	er Pad											P33	42	VDD_2	
PA7	8	33V			33\	3.3	V Digit	al & Aı	nalog l	/O Pad									33V	41	PA15	
VDD_4	9	P33			33\		\/ D:-:	-11/01	D- 4										33V	40	PA14	
VSS_4	10	P33			331	3.3	V Digit	ai i/O i	ad										33V	39	SWDIO	PA13
PC4	11	33V			USI	us	в РНҮ	Pad											33V	38	SWCLK	PA12
PC5	12	33V			ВА	_													33V	37	PA11	
PC8	13	33V			K	Bad	kup Do	omain I	Pad										33V	36	PA10	
PC9	14	33V																	33V	35	PA9_ BOOT	
USBDM /PC6	15	USB																	33V	34	PA8	
USBDP /PC7	16	USB									ı								33V	33	PC13	
			P15	P33	P33	BAK 33V	BAK P33	BAK 33V	BAK 33V	BAK 33V	33V	33V	33V	33V	33V	33V	33V	33V				
			17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32				
			CLDO	VDD_1	VSS_1	nRST	VBAT	X32KIN	х32КОUТ	RTCOUT	PD0	XTALIN	XTALOUT	PB15	PC0	PC10	PC11	PC12		AF0 (Default)		
								PB10	PB11	PB12		PB13	PB14							AF1		

图 6.64-pin LQFP 引脚图

表 3.33-pin QFN, 48/64-pin LQFP 封装引脚图

á	討装类型									替代功	能							
	口衣大宝		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP	48 LQFP	33 QFN	系统 默认	GPIO	ADC	CMP	MCTM /GPTM	SPI	USART /UART	I ² C	SCI	EBI	I2S	N/A	N/A	SCTM	N/A	系统 其它
1	1	1	PA0		ADC_ IN0		GT1_ CH0	SPI1_ SCK	USR0_ RTS	I2C1_ SCL	SCI0_ CLK		I2S_WS					
2	2	2	PA1		ADC_ IN1		GT1_ CH1	SPI1_ MOSI	USR0_ CTS	I2C1_ SDA	SCI0_ DIO		I2S_ BCLK					
3	3	3	PA2		ADC_ IN2		GT1_ CH2	SPI1_ MISO	USR0_ TX				I2S_ SDO					
4	4	4	PA3		ADC_ IN3		GT1_ CH3	SPI1_ SEL	USR0_ RX				I2S_SDI					
5	5	5	PA4		ADC_ IN4		GT0_ CH0	SPI0_ SCK	USR1_ TX	I2C0_ SCL	SCI1_ CLK							
6	6	6	PA5		ADC_ IN5		GT0_ CH1	SPI0_ MOSI	USR1_ RX	I2C0_ SDA	SCI1_ DIO							
7	7		PA6		ADC_ IN6		GT0_ CH2	SPIO_ MISO	USR1_ RTS	SDIT	SCI1_ DET							
8	8		PA7		ADC_ IN7		GT0_ CH3	SPI0_	USR1_		DEI		I2S_ MCLK					
9			VDD_4		IIN /		CH3	SEL	CTS				MCLK					
10			VDD_4 VSS_4															
11	9		PC4		ADC_		GT0_	SPI1_	UR0_	I2C1_		EBI_				SCTM0		
12	10		PC5		IN8 ADC_		CH0 GT0_	SEL SPI1_	TX UR0_	SCL I2C1_		A19 EBI_				SCTM1		
	10				IN9 ADC		CH1 GT0	SCK SPI1	RX	SDA		A20 EBI				SCIMI		
13			PC8		IN10 ADC_		CH2 GT0_	MOSĪ SPI1_				A0 EBI						
14			PC9		IN11		CH3 MT_	MISO	USR0_	I2C0_		A1						
15	11	7	PC6 USBDM				CH2		TX	SCL								
15 16	12	8	USBDP															
16	12	8	PC7				MT_		USR0_	I2C0_								
17	13	9	CLDO				CH2N		RX	SDA								
18	14	10	VDD_1															
19	15	11	VSS_1															
20	16	12	nRST															
21	17	1.2	VBAT															
22	18	13	X32KIN	PB10														
23	19	14	X32KOUT	PB11														
24	20	15	RTCOUT	PB12														WAKEUI
25			PD0							I2C0_ SDA		EBI_ A18	I2S_SDI			SCTM0		
26	21	16	XTALIN	PB13														
27	22	17	XTALOUT	PB14														
28	23		PB15				MT_ CH0	SPI0_ SEL	USR1_ TX	I2C1_ SCL		EBI_ A16	I2S_ MCLK					
29	24		PC0				MT_ CH0N	SPI0_ SCK	USR1_ RX	I2C1_ SDA		EBI_ A17						
30			PC10				GT1_ CH0	SPI1_ SEL				EBI_ AD13	I2S_WS					
31			PC11				GT1_ CH1	SPI1_ SCK				EBI_ AD14	I2S_ BCLK					
32			PC12				GT1_ CH2	SPI1_ MOSI	UR1_ TX	I2C0_ SCL		EBI_ AD15	I2S_ SDO					
33			PC13				GT1_ CH3	SPI1_ MISO	UR1_ RX	I2C0_ SDA		EBI_ CS3	I2S_SDI					

										替代功	能							
圭	村装类型		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP	48 LQFP	33 QFN	系统 默认	GPIO	ADC	CMP	MCTM /GPTM	SPI	USART /UART	I ² C	SCI	EBI	I2S	N/A	N/A	SCTM	N/A	系统 其它
34	25		PA8						USR0_ TX		SCI1_ CLK		I2S_ MCLK					
35	26	18	PA9 _BOOT					SPI0_ MOSI			SCI1_ DIO	EBI_ A1	I2S_WS					CKOUT
36	27		PA10				MT_ CH1		USR0_ RX		SCI0_ DET							
37	28		PA11				MT_ CH1N	SPI0_ MISO			SCI1_ DET	EBI_ A0	I2S_ MCLK			SCTM0		
38	29	19	SWCLK	PA12														
39	30	20	SWDIO	PA13														
40	31	21	PA14				MT_ CH0	SPI1_ SEL	USR1_ TX	I2C1_ SCL	SCI0_ CLK	EBI_ AD0						
41	32	22	PA15				MT_ CH0N	SPI1_ SCK	USR1_ RX	I2C1_ SDA	SCI0_ DIO	EBI_ AD1				SCTM1		
42			VDD_2															
43			VSS_2															
44	33	23	PB0				MT_ CH1	SPI1_ MOSI	USR0_ TX	I2C0_ SCL		EBI_ AD2						
45	34	24	PB1				MT_ CH1N	SPI1_ MISO	USR0_ RX	I2C0_ SDA		EBI_ AD3						
46			PD1				MT_ CH2		USR1_ RTS		SCI0_ CLK	EBI_ AD10						
47			PD2				MT_ CH2N		USR1_ CTS		SCI0_ DIO	EBI_ AD11						
48			PD3				MT_ CH3				SCI0_ DET	EBI_ AD12						
	35		VDD_2															
	36	33	VSS_2															
49	37	25	PB2				MT_ CH2	SPI0_ SEL	UR0_ TX			EBI_ AD4						
50	38	26	PB3				MT_ CH2N	SPI0_ SCK	UR0_ RX			EBI_ AD5				SCTM1		
51	39	27	PB4				MT_ BRK	SPI0_ MOSI	UR1_ TX			EBI_ AD6				SCTM0		
52	40	28	PB5				MT_ BRK	SPI0_ MISO	UR1_ RX			EBI_ AD7						
53			PC14				MT_ CH3			I2C0_ SCL		EBI_ AD8						
54			PC15							I2C0_ SDA		EBI_ AD9				SCTM1		
55			VDD_3															
56			VSS_3															
57	41		PC1			CN0	MT_ CH0	SPI1_ SEL	UR1_ TX			EBI_ OE	I2S_ MCLK					
58	42		PC2			CP0	MT_ CH0N	SPI1_ SCK				EBI_ CS0						
59	43		PC3			COUT0		SPI1_ MOSI	UR1_ RX			EBI_ WE						
60	44		PB6			CN1	MT_ CH2	SPI1_ MISO	UR0_ TX		SCI1_ CLK	EBI_ ALE	I2S_ BCLK					
61	45	29	PB7			CP1	MT_ CH2N			I2C1_ SCL	SCI1_ DET	EBI_ CS1	I2S_ SDO					
62	46	30	PB8			COUT1	MT_ CH3		UR0_ RX	I2C1_ SDA	SCI1_ DIO	EBI_ CS2	I2S_SDI					
63	47	31	VDDA															
64	48	32	VSSA															

表 4. 引脚描述

	引脚编号		引脚	Ж #Ⅱ (1)	I/O 4±+/2	松山亚二	描述
64LQFP	48LQFP	33QFN	名称	类型 (1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
1	1	1	PA0	AI/O	33V	4/8/12/16mA	PA0
2	2	2	PA1	AI/O	33V	4/8/12/16mA	PA1
3	3	3	PA2	AI/O	33V	4/8/12/16mA	PA2
4	4	4	PA3	AI/O	33V	4/8/12/16mA	PA3
5	5	5	PA4	AI/O	33V	4/8/12/16mA	PA4
6	6	6	PA5	AI/O	33V	4/8/12/16mA	PA5
7	7		PA6	AI/O	33V	4/8/12/16mA	PA6
8	8		PA7	AI/O	33V	4/8/12/16mA	PA7
9	_		VDD_4	P	_	_	数字 I/O 口电压
10	_		VSS_4	P	_	_	数字 I/O 口接地参考电压
11	9		PC4	AI/O	33V	4/8/12/16mA	PC4
12	10		PC5	AI/O	33V	4/8/12/16mA	PC5
13	_		PC8	AI/O	33V	4/8/12/16mA	PC8
14	_		PC9	AI/O	33V	4/8/12/16mA	PC9
15	11	7	PC6	I/O	33V	4/8/12/16mA	PC6
15	11	7	USBDM	AI/O	_		USB 微分数据总线符合通用 串行总线标准
16	12	8	USBDP	AI/O	_	_	USB 微分数据总线符合通用 串行总线标准
16	12	8	PC7	I/O	33V	4/8/12/16mA	PC7
17	13	9	CLDO	Р	_	_	内核 1.5V LDO 电源输出 建议连接一个 2.2μF 电容,尽 量靠近 CLDO 与 VSS_1 引脚
18	14	10	VDD_1	P	_	_	数字 I/O 口电压
19	15	11	VSS_1	Р	_	_	数字 I/O 口接地参考电压
20	16	12	nRST	I(BK)	33V_PU	_	暂停模式下外部复位引脚和 外部唤醒引脚
21	17		VBAT	Р	_	_	备份域电池电源输入
22	18	13	PB10 ^(注 4)	AI/O(BK)	33V	< 2mA	X32KIN
23	19	14	PB11(注4)	AI/O(BK)	33V	< 2mA	X32KOUT
24	20	15	PB12 ^(注 4)	I/O(BK)	33V	< 2mA	RTCOUT
25	_		PD0	I/O	33V	4/8/12/16mA	PD0
26	21	16	PB13	AI/O	33V	4/8/12/16mA	XTALIN
27	22	17	PB14	AI/O	33V	4/8/12/16mA	XTALOUT
28	23		PB15	I/O	33V	4/8/12/16mA	PB15
29	24		PC0	I/O	33V	4/8/12/16mA	PC0
30	_		PC10	I/O	33V	4/8/12/16mA	PC10
31	_		PC11	I/O	33V	4/8/12/16mA	PC11
32	_		PC12	I/O	33V	4/8/12/16mA	PC12
33	_		PC13	I/O	33V	4/8/12/16mA	PC13
34	25		PA8	I/O	33V_PU	4/8/12/16mA	PA8

引脚编号			引脚	类型 (1)	I/O 结构 ⁽²⁾	t⇔ iii⊽=h	描述
64LQFP	48LQFP	33QFN	名称	类型 (7)	I/U 结构 "	输出驱动	默认功能 (AF0)
35	26	18	PA9	I/O	33V_PU	4/8/12/16 mA	PA9_BOOT
36	27		PA10	I/O	33V	4/8/12/16 mA	PA10
37	28		PA11	I/O	33V	4/8/12/16 mA	PA11
38	29	19	PA12	I/O	33V_PU	4/8/12/16 mA	SWCLK
39	30	20	PA13	I/O	33V_PU	4/8/12/16 mA	SWDIO
40	31	21	PA14	I/O	33V	4/8/12/16 mA	PA14
41	32	22	PA15	I/O	33V	4/8/12/16 mA	PA15
42	_		VDD_2	P	_	_	数字 I/O 口电压
43	_		VSS_2	P	_	_	数字 I/O 口接地参考电压
44	33	23	PB0	I/O	33V	4/8/12/16 mA	PB0
45	34	24	PB1	I/O	33V	4/8/12/16 mA	PB1
46	_		PD1	I/O	33V	4/8/12/16 mA	PD1
47	_		PD2	I/O	33V	4/8/12/16 mA	PD2
48	_		PD3	I/O	33V	4/8/12/16 mA	PD3
_	35		VDD_2	P	_	_	数字 I/O 口电压
_	36	33	VSS_2	P	_	_	数字 I/O 口接地参考电压
49	37	25	PB2	I/O	33V	4/8/12/16 mA	PB2
50	38	26	PB3	I/O	33V	4/8/12/16 mA	PB3
51	39	27	PB4	I/O	33V	4/8/12/16 mA	PB4
52	40	28	PB5	I/O	33V	4/8/12/16 mA	PB5
53	_		PC14	I/O	33V	4/8/12/16 mA	PC14
54	_		PC15	I/O	33V	4/8/12/16 mA	PC15
55	_		VDD_3	P	_	_	数字 I/O 口电压
56	_		VSS_3	P	_	_	数字 I/O 口接地参考电压
57	41		PC1	AI/O	33V	4/8/12/16 mA	PC1
58	42		PC2	AI/O	33V	4/8/12/16 mA	PC2
59	43		PC3	AI/O	33V	4/8/12/16 mA	PC3
60	44		PB6	AI/O	33V	4/8/12/16 mA	PB6
61	45	29	PB7	AI/O	33V	4/8/12/16 mA	PB7
62	46	30	PB8	AI/O	33V	4/8/12/16 mA	PB8
63	47	31	VDDA	P	_	_	ADC 和比较器模拟电压
64	48	32	VSSA	P	_	_	ADC 和比较器接地参考电压

- 注: 1. I=输入, O=输出, A=模拟端口, P=电源, PU=上拉, BK=备份域。
 - 2.33V=3.3 V 容差。
 - 3. V_{DD15} 上电复位 (POR) 后除了备份域 I/O 的 RTCOUT 引脚外,GPIO 都是 AF0 的状态。通过备份域上电复位 (PORB) 或软件复位 (BAK_CR 寄存器的 BAK_RST 位),RTCOUT 脚会被复位。
 - 4. I/O 引脚的备份域有驱动电流能力的限制 (< 2mA @ V_{DD} = 3.3 V)。当 V_{DD} = 3.3 V,典型灌电流可配置为 4 或 8 mA

5 电气特性

极限参数

下面的表格说明单片机的极限参数。这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

表 5. 极限参数

符号	参数	最小值	最大值	单位
V_{DD}	外部主电源供应电压	V _{SS} -0.3	V _{SS} +3.6	V
V_{DDA}	外部模拟电源供应电压	V_{SSA} -0.3	V _{SSA} +3.6	V
V_{BAT}	外部电池供应电压	V _{SS} -0.3	V _{SS} +3.6	V
V_{IN}	I/O 口输入电压	V _{ss} -0.3	V _{SS} +0.3	V
T _A	工作温度的范围	-40	+85	°C
T_{STG}	储存温度的范围	-55	+150	°C
T _J	最大结温	_	125	°C
P_{D}	总功耗	_	500	mW
V_{ESD}	静电放电电压(人体模式)	-4000	+4000	V

建议直流特性

表 6. 建议直流工作条件

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	I/O 的工作电压	_	2.0	3.3	3.6	V
V_{DDA}	模拟工作电压	_	2.5	3.3	3.6	V
V_{BAT}	电池供电的工作电压	_	2.0	3.3	3.6	V

片上 LDO 稳压器特性

表 7. LDO 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{LDO}	内部稳压器输出电压	调整后, $V_{DD} \ge 2.0 V$ 稳压器输入 @ $I_{LDO} = 35 \text{mA}$ 且电压变化为 $\pm 5\%$	1.425	1.5	1.57	V
$I_{\rm LDO}$	输出电流	V _{DD} =2.0V 稳压器输入 @ V _{LDO} =1.5V	_	35	_	mA
C_{LDO}	内核供电的外部滤波 电容值	电容值取决于内核电源的功耗	_	2.2	_	μF

功耗

表 8. 功耗特性

佐旦	矣 粃	夕.什	典型值	最ス	大值	苗位
符号	参数	条件	$T_A = 25$ °C	$T_A = 25$ °C	$T_A = 85$ °C	单位
		$V_{DD} = V_{BAT} = 3.3 \text{ V},$ HSI = 8 MHz, PLL = 48 MHz, $f_{CPU} = 48 \text{ MHz}, f_{BUS} = 48 \text{ MHz},$ 所有外设使能	20	22.1	_	mA
	工作电流 (运行模式)	$V_{DD} = V_{BAT} = 3.3 \text{ V},$ HSI = 8 MHz, PLL = 48 MHz, $f_{CPU} = 48 \text{ MHz}, f_{BUS} = 48 \text{ MHz},$ 所有外设除能	10.1	11.6	_	IIIA
		$V_{DD} = V_{BAT} = 3.3 \text{ V, HSI off,}$ PLL off, LSI on, $f_{CPU} = 32 \text{ kHz,}$ $f_{BUS} = 32 \text{ kHz,}$ 所有外设使能	44	55	_	пΔ
${ m I}_{ m DD}$		$V_{DD} = V_{BAT} = 3.3 \text{ V, HSI off,}$ PLL off, LSI on, $f_{CPU} = 32 \text{ kHz,}$ $f_{BUS} = 32 \text{ kHz,}$ 所有外设除能	40	51	_	μΑ
	工作电流(休眠模式)	$V_{DD} = V_{BAT} = 3.3 \text{ V},$ HSI = 8 MHz, PLL = 48 MHz, $f_{CPU} = 0$ MHz, $f_{BUS} = 48$ MHz, 所有外设使能	12	13.8	_	mA
ТЪБ		$V_{DD} = V_{BAT} = 3.3 \text{ V},$ HSI = 8 MHz, PLL = 48 MHz, $f_{CPU} = 0$ MHz, $f_{BUS} = 48$ MHz, 所有外设除能	2	2.3	_	1112 \$
	工作电流(深度休眠1模式)	V _{DD} = V _{BAT} = 3.3 V, 所有时钟关闭 (HSE/HSI/PLL/ LSE), LDO 在低功耗模式, LSI on, RTC on	34	43.8	_	
	工作电流(深度休眠2模式)	V _{DD} = V _{BAT} = 3.3 V, 所有时钟关闭 (HSE/HSI/PLL/ LSE), LDO off, DMOS on, LSI on, RTC on	5	12	_	
	工作电流	$V_{DD} = V_{BAT} = 3.3 \text{ V, LDO off,}$ DMOS off, LSE off, LSI on, RTC on	1.85	2.75	_	μΑ
	(暂停模式)	$V_{DD} = V_{BAT} = 3.3 \text{ V, LDO off,}$ DOMS off, LSE off, LSI on, RTC off	1.80	2.67	_	
I.	电池工作电流	V_{DD} 不存在 , V_{BAT} = 3.3 V, LDO off, DMOS off, LSE off, LSI on, RTC on	1.36	2	_	
I _{BAT}	(暂停模式)	V_{DD} 不存在, V_{BAT} = 3.3 V, LDO off, DMOS off, LSE off, LSI on, RTC off	1.36	2	_	

注: 1. HSE 是外部高速振荡器,而 HSI 是内部 8 MHz 高速振荡器。

^{2.} LSE 是 32.768 kHz 外部低速振荡器, 而 LSI 是内部 32 kHz 低速振荡器。

^{3.} RTC 表示实时时钟。

^{4.} 代码 = while (1) {208 NOP} 在 Flash 中执行。

^{5.} f_{BUS} 表示 f_{HCLK} 和 f_{PCLK} 。

复位和电源监控特性

表 9. VDD 电源复位特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{POR}	上电复位阈值(V _{DD} 电压上升)	T_A =-40°C ~ +85°C	1.66	1.79	1.90	V
V_{PDR}	掉电复位阈值(V _{DD} 电压下降)		1.49	1.64	1.78	V
V _{PORHYST}	POR 迟滞	_	_	150	_	mV
t_{POR}	复位延迟时间	V _{DD} =3.3V	_	0.1	0.2	ms

- 注: 1. 数据仅为特性描述结果, 未在生产中测试。
 - 2. 表格中数据设计时可保证,未在生产中测试。
 - 3. 若 LDO 开启,则 VDD POR 处于无效状态。当 VDD POR 处于有效状态时,LDO 将被关闭。

表 10. LVD/BOD 特性

TA=25°C,除非另有规定

符号	参数	条件		最小值	典型值	最大值	单位
V_{BOD}	掉电检测电压	T _A = -40°C ~ 85°C, 工厂调整 (V _{DD} 下降沿)		2.02	2.1	2.18	V
			LVDS = 000	2.17	2.25	2.33	V
		T _A = -40°C ~ 85°C (V _{DD} 下降沿)	LVDS = 001	2.32	2.4	2.48	V
	低压检测电压		LVDS = 010	2.47	2.55	2.63	V
3 7			LVDS = 011	2.62	2.7	2.78	V
$ m V_{LVD}$			LVDS = 100	2.77	2.85	2.93	V
			LVDS = 101	2.92	3.0	3.08	V
			LVDS = 110	3.07	3.15	3.23	V
			LVDS = 111	3.22	3.3	3.38	V
V _{LVDHTST}	LVD 迟滞	V _{DD} =3.3V	_	_	100	_	mV
t_{suLVD}	LVD 建立时间	V _{DD} =3.3V	_		_	5	μs
t_{atLVD}	LVD有效延迟时间	$V_{DD}=3.3V$	_		_	_	μs
I_{DDLVD}	工作电流注3	$V_{DD}=3.3V$	_		5	15	μΑ

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 表格中数据设计时可保证,未在生产中测试。
 - 3. 不包括 Bandgap 电流。
 - 4. LVDS 位于 PWRCU LVDCSR 寄存器中。

外部时钟特性

表 11. 外部高速时钟 (HSE) 特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	2.0	_	3.6	V
f_{HSE}	外部高速振荡器频率 (HSE)	_	4	_	16	MHz
C_{LHSE}	负载电容	V_{DD} =3.3V, R_{ESR} =100 Ω @ 16MHz	_	_	22	pF
R_{FHSE}	XTALIN 和 XTALOUT 引 脚间的内部反馈电阻	_	_	1	_	МΩ
D	等效串联电阻*	V_{DD} =3.3V, HSEDR=0 C_L =12 pF @ 16MHz	_	_	160	Ω
R _{ESR}		V_{DD} =2.4V, HSEDR=1 C _L =12 pF @ 16MHz				
$D_{\text{\tiny HSE}}$	HSE 振荡器占空比	_	40	_	60	%
I_{DDHSE}	HSE 振荡器工作电流	V _{DD} =3.3V @ 16MHz	_	TBD	_	mA
I_{PWDHSE}	HSE 振荡器暂停电流	V _{DD} =3.3V	_	_	0.01	μА
t_{SUHSE}	HSE 振荡器启动时间	V _{DD} =3.3V	_	_	4	ms

表 12. 外部低速时钟 (LSE) 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{BAK}	工作电压范围	_	2.0	_	3.6	V
$f_{\text{CK_LSE}}$	LSE 频率	V _{BAK} =2.0V~3.6V	_	32.768	_	kHz
$R_{\rm F}$	内部反馈电阻	_	_	10	_	$M\Omega$
R_{ESR}	等效串联电阻	$V_{BAK}=3.3V$	30	_	TBD	$k\Omega$
C_L	建议负载电容	$V_{BAK}=3.3V$	6	—	TBD	pF
	LSE 振荡器工作电流 (高电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 kHz \\ R_{ESR} &= 50 \ k\Omega, \ \ C_L \!\! \geq \!\! 7 \ pF \\ V_{BAK} &= \!\! 2.0V \!\! \sim \!\! 2.7V \\ T_A \!\! = \!\! -40 \ ^{\circ}C \sim \!\! +85 \ ^{\circ}C \end{split}$	_	3.3	6.3	μΑ
I_{DDLSE}	LSE 振荡器工作电流 (低电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 kHz \\ R_{ESR} &= 50 \ k\Omega, \ \ C_L \!\!<\! 7 \ pF \\ V_{BAK} &= 2.0 V \!\!\sim\! 3.6 V \\ T_A &= -40 ^{\circ} C \sim +85 ^{\circ} C \end{split}$	_	1.8	3.3	μΑ
	暂停电流	_	_	_	0.01	μΑ
$t_{ m SULSE}$	LSE 振荡器启动时间 (低电流模式)	$ \begin{array}{l} f_{CK_LSE}{=}32.768kHz \\ V_{BAK}{=}2.0V{\sim}3.6V \end{array} $	500	_	_	ms

- 注: PCB 布局时建议参考以下几点以提高 HSE/LSE 时钟晶体电路的稳定性:
 - 1. 晶体振荡器应当尽可能的靠近单片机来缩短走线长度,进而减少寄生电容。
 - 2. 晶体电路部分采用铺地做保护来减少噪音干扰的影响。
 - 3. 高频信号走线时远离晶体振荡器区域,可防止串扰。

内部时钟特性

表 13. 内部高速时钟 (HSI) 特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	2.0	_	3.6	V
f_{HSI}	HSI 频率	V _{DD} =3.3V @ 25°C	_	8	_	MHz
	工厂调整 HSI 振荡器 频率精度	V _{DD} =3.3V, T _A =25°C	-2	_	2	%
ACC _{HSI}		V _{DD} =2.5V~3.6V T _A =-40°C~+85°C	-3	_	3	%
		V _{DD} =2.0V~3.6V T _A =-40°C~+85°C	-4	_	4	%
Duty	HSI 振荡器占空比	f _{HSI} =8MHz	35	_	65	%
т	HSI 振荡器工作电流	£ _OMII_	_	300	500	μΑ
I_{DDHSI}	暂停电流	f_{HSI} =8MHz	_	_	0.05	μΑ
$t_{ m SUHSI}$	HSI 振荡器启动时间	f _{HSI} =8MHz	_	_	10	μs

表 14. 内部低速时钟 (LSI) 特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
f_{LSI}	内部低速振荡器频率 (LSI)	V_{DD} =3.3V T_A =-40°C~+85°C	21	32	43	kHz
ACC _{LSI}	LSI 振荡器频率精度	工厂调整 V _{DD} =3.3V, T _A =25°C	-10	_	10	%
I_{DDLSI}	LSI 振荡器工作电流	$V_{DD}=3.3V, T_A=25^{\circ}C$	_	0.4	0.8	μΑ
t_{SULSI}	LSI 振荡器启动时间	V_{DD} =3.3V, T_{A} =25°C	_	_	100	μs

PLL 特性

表 15. PLL 特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
f_{PLLIN}	PLL 输入时钟频率	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	PLL 输出时钟频率	_	16	_	48	MHz
t_{LOCK}	PLL 锁相时间	_	_	200	_	μs

存储器特性

表 16. Flash 存储器特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
N_{ENDU}	失败前可擦写次数(寿命)	T _A =-40°C~+85°C	10	_	_	K cycles
t_{RET}	数据保存时间	T _A =-40°C~+85°C	10	_	_	Years
t_{PROG}	字编程时间	T _A =-40°C~+85°C	20	_	_	μs
t_{ERASE}	页擦除时间	T _A =-40°C~+85°C	2	_	_	ms
t _{MERASE}	整片擦除时间	T _A =-40°C~+85°C	10	_	—	ms

I/O 端口特性

表 17. I/O 端口特性

T_A=25°C,除非另有规定

IIL 低电平输入电流 3.3V I/O 复位引脚 V _I =V _{SS} , 片内上拉电阻除能。 — — — — — — — — — — — — — — — — — — —	低。高、低。	电平输入电流电平输入电流电平输入电压	3.3V I/O V _I =V _{SS} , 片内 复位引脚 V _I =V _{DD} , 片内 3.3V I/O V _I =V _{DD} , 片内 3.3V I/O 复位引脚		— —	_ 	最大值 3 3	单位 μA μA
In	高い低い高い	电平输入电流电平输入电压	复位引脚 V _I =V _{SS} , 片内 3.3V I/O V _I =V _{DD} , 片内 复位引脚 3.3V I/O 复位引脚			_ _	3	
The 高电平输入电流 复位引脚 Vi=Vod, 片内下拉电阻除能。	低 高 · 施	电平输入电压	复位引脚 V _I =V _{DD} , 片内 3.3V I/O 复位引脚	下拉电阻除能。		_	2	
V _{IL} 低电平输入电压 3.3V I/O -0.5 - V _{IH} 高电平输入电压 3.3V I/O 0.65V _{DD} - V _{HYS} 施密特触发器 输入电压迟滞 3.3V I/O - 0.12V _{DD} 板电平输出电流 (GPIO 灌电流) 3.3V I/O 4 mA 驱动 , V _{OL} =0.4V 4 - 3.3V I/O 12 mA 驱动 , V _{OL} =0.4V 8 - 3.3V I/O 16 mA 驱动 , V _{OL} =0.4V 12 - 3.3V I/O 16 mA 驱动 , V _{OL} =0.4V 16 - 各份域 I/O 驱动 @ V _{DD} =3.3V, V _{OL} =0.4V, PB10, PB11, PB12. 4 - 3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 - 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 - ACM (GPIO 源电流) 3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 - 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 - - 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 - 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 - ACM (GPIO 源电流) 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 - ACM (GPIO 源电流) 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 - ACM (GPIO 源	低 高 · 施	电平输入电压	复位引脚 3.3V I/O 复位引脚	卜拉电阻除能。	_		3	μΑ
VIII (K电平输入电压 复位引脚 -0.5 - VIH 高电平输入电压 3.3V I/O 0.65V _{DD} - Jan 施密特触发器 输入电压迟滞 - 0.12V _{DD} Jan 3.3V I/O 4 mA 驱动 , V _{OL} =0.4V 4 - Jan 3.3V I/O 8 mA 驱动 , V _{OL} =0.4V 8 - Jan 3.3V I/O 12 mA 驱动 , V _{OL} =0.4V 12 - Jan 3.3V I/O 8 mA 驱动 , V _{OL} =0.4V 16 - Jan 3.3V I/O 16 mA 驱动 , V _{OL} =0.4V 4 - Jan 3.3V I/O 8 mA 驱动 , V _{OL} =0.4V 4 - Jan 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 4 - Jan 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 - Jan 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 - Jan 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 - Jan 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 - Jan 4 - - - Jan 4 - - -	高 施		复位引脚			_	3	μΑ
V _{IH} 高电平输入电压 3.3V I/O 0.65V _{DD} — V _{HYS} 施密特触发器 输入电压迟滞 3.3V I/O — 0.12V _{DD} Journal 5.3V I/O 4 mA 驱动 , V _{OL} =0.4V 4 — Journal 3.3V I/O 8 mA 驱动 , V _{OL} =0.4V 4 — Journal 3.3V I/O 12 mA 驱动 , V _{OL} =0.4V 12 — Journal 3.3V I/O 12 mA 驱动 , V _{OL} =0.4V 16 — A 分域 I/O 驱电流 3.3V I/O 16 mA 驱动 , V _{OL} =0.4V 4 — Journal 3.3V I/O 4 mA 驱动 , V _{OL} =0.4V 4 — Journal 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 4 — Journal 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 — Journal 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 — Journal 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 — Journal 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 — Journal 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 — Journal 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 —	高 施			川脚		_	$0.35V_{DD}$	V
V _H 高电平输入电压 V _{HYS} 施密特触发器 输入电压迟滞 3.3V I/O 复位引脚 — 0.12V _{DD} I _{OL} 低电平输出电流 (GPIO 灌电流) 3.3V I/O 4 mA 驱动 , V _{OL} =0.4V 4 — 0.12V _{DD} 3.3V I/O 8 mA 驱动 , V _{OL} =0.4V 12 — 0.12V _{DD} 3.3V I/O 12 mA 驱动 , V _{OL} =0.4V 16 — 0.12V _{DD} A 份域 I/O 驱动 @ V _{DD} =3.3V, V _{OL} =0.4V, PB10, PB11, PB12. 4 — 0.12V _{DD} 3.3V I/O 4 mA 驱动 , V _{OH} =V _{DD} -0.4V 4 — 0.12V _{DD} 3.3V I/O 4 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 — 0.12V _{DD} 3.3V I/O 4 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 — 0.12V _{DD} 3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4V 12 — 0.12V _{DD} 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4V 16 — 0.12V _{DD} A 份域 I/O 驱动 @ V _{DD} =3.3V, V _{OH} =V _{DD} -0.4V, PB10, PB11, PB12. — — 0.12V _{DD} 3.3V 14mA 驱动 I/O, I _{OL} =8mA — — 0.12V _{DD} 3.3V 14mA 驱动 I/O, I _{OL} =12mA — — 0.12V _{DD} 3.3V 16mA 驱动 I/O, I _{OL} =16mA — — 0.12V _{DD} 4 C W _{DD} =2.0 V~2.7V — — 0.12V _{DD} 4 C W _{DD} =2.0 V~2.7V — — 0.12V _{DD} 4 C W _{DD} =2.0 V~2.7V — — 0.12V _{DD} 4 C W _{DD} =2.0 V~2.7V — — 0.12V _{DD} 5 C R W _D I/O 灌电流 = 8mA — 0.12V _{DD} 6 C R W _D I/O 灌电流 = 8mA — 0.12V _{DD} 6 C R W _D I/O 灌电流 = 8mA — 0.12V _{DD} 7 C R W _D I/O W _D =2.0 V~2.7V — 0.12V _{DD}	施領	电平输入电压			-0.5	_	$0.35V_{DD}$	V
接触 接触 接触 接触 接触 接触 接触 接触	施領	电工制八电压	.3V I/O		$0.65V_{DD}$	_	V _{DD} +0.5	V
Viiys 輸入电压迟滯 复位引脚 — 0.12Vpd IoL (K电平输出电流 (GPIO 灌电流) 3.3V I/O 4 mA 驱动 , Vol=0.4V 4 — 3.3V I/O 8 mA 驱动 , Vol=0.4V (GPIO 灌电流) 3.3V I/O 12 mA 驱动 , Vol=0.4V 12 — 16 (GPIO 灌电流) 3.3V I/O 16 mA 驱动 , Vol=0.4V 16 — 2 (GPIO 源电流) 3.3V I/O 4 mA 驱动 , Vol=0.4V 4 — 2 3.3V I/O 4 mA 驱动 , Vol=Vpb-0.4V 4 — 2 3.3V I/O 8 mA 驱动 , Vol=Vpb-0.4V 8 — 2 3.3V I/O 12 mA 驱动 , Vol=Vpb-0.4V 12 — 2 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 12 — 2 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 2 4 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 4 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 5 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 6 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 8 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 8 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.4V 16 — 3 8 CPIO 源电流 3.3V I/O 16 mA 驱动 , Vol=Vpb-0.			复位引脚	夏位引脚		_	$V_{DD}+0.5$	V
個人电压返海 复位引脚 一 0.12V _{DD}	YS 输	密特触发器	3.3V I/O		_	$0.12V_{\rm DD}$	_	mV
Iol 低电平输出电流 (GPIO 灌电流) 3.3V I/O 8 mA 驱动 , Vol=0.4V 12 — 3.3V I/O 12 mA 驱动 , Vol=0.4V 16 — 3.3V I/O 16 mA 驱动 , Vol=0.4V 16 — A份域 I/O 驱动 @ VDD=3.3V, Vol=0.4V, PB10, PB11, PB12. 4 — 3.3V I/O 4 mA 驱动 , VoH=VDD-0.4V 4 — 3.3V I/O 8 mA 驱动 , VoH=VDD-0.4V 8 — 3.3V I/O 12 mA 驱动 , VoH=VDD-0.4V 12 — 3.3V I/O 16 mA 驱动 , VoH=VDD-0.4V 16 — 各份域 I/O 驱动 @ VDD=3.3V, VOH=VDD-0.4V 16 — A份域 I/O 驱动 @ VDD=3.3V, VOH=VDD-0.4V, PB10, PB11, PB12. — — 3.3V 12mA 驱动 I/O, IoL=4mA — — 3.3V 12mA 驱动 I/O, IoL=8mA — — 3.3V 12mA 驱动 I/O, IoL=12mA — — 3.3V 16mA 驱动 I/O, IoL=16mA — — 各份域 I/O 灌电流 = 4mA (低驱动强度) VDD=2.7 V~3.6V — — A份域 I/O 灌电流 = 8mA (高驱动强度) VDD=2.7 V~3.6V — —		入电压迟滞	复位引脚		_	$0.12V_{\rm DD}$	_	mV
Iol 低电平输出电流 (GPIO 灌电流) 3.3V I/O 12 mA 驱动 , Vol=0.4V 12 — 3.3V I/O 16 mA 驱动 , Vol=0.4V 16 — &份域 I/O 驱动 @ V _{DD} =3.3V, Vol=0.4V, PB10, PB11, PB12. 4 — 3.3V I/O 4 mA 驱动 , VoH=V _{DD} -0.4V 4 — 3.3V I/O 8 mA 驱动 , VoH=V _{DD} -0.4V 8 — 3.3V I/O 12 mA 驱动 , VoH=V _{DD} -0.4V 12 — 3.3V I/O 16 mA 驱动 , VoH=V _{DD} -0.4 V 16 — 各份域 I/O 驱动 @ V _{DD} =3.3V, VoH=V _{DD} -0.4V, PB10, PB11, PB12. — — 3.3V 4mA 驱动 I/O, Iot=4mA — — 3.3V 12mA 驱动 I/O, Iot=12mA — — 3.3V 16mA 驱动 I/O, Iot=12mA — — 3.3V 16mA 驱动 I/O, Iot=16mA — — 各份域 I/O 灌电流 = 4mA (低驱动强度) V _{DD} =2.7 V~3.6V — — 各份域 I/O 灌电流 = 8mA (高驱动强度) V _{DD} =2.7 V~3.6V — —			.3V I/O 4 mA 驱动 , V _{OL} =0.4V		4	_	_	mA
GPIO 灌电流 3.3V I/O 16 mA 驱动 , Vol=0.4V 16			3.3V I/O 8 mA 驱动 , V _{OL} =	0.4V	8	_	_	mA
CGPIO 准电流 3.3V I/O 16 mA 驱动 , Vol=0.4V 16			3.3V I/O 12 mA 驱动 , V _{OL} =	=0.4V	12	_	_	mA
Vol.=0.4V, PB10, PB11, PB12. 4 — 3.3V I/O 4 mA 驱动 , VoH=VDD-0.4V 4 — 3.3V I/O 8 mA 驱动 , VoH=VDD-0.4V 8 — 3.3V I/O 12 mA 驱动 , VoH=VDD-0.4V 12 — 3.3V I/O 16 mA 驱动 , VoH=VDD-0.4 V 16 — 各份域 I/O 驱动 @ VDD=3.3V, VOH=VDD-0.4V, PB10, PB11, PB12. — — 3.3V 4mA 驱动 I/O, IoL=4mA — — 3.3V 12mA 驱动 I/O, IoL=8mA — — 3.3V 12mA 驱动 I/O, IoL=12mA — — 3.3V 16mA 驱动 I/O, IoL=16mA — — 4 — — — 3.3V 10 灌电流 = 4mA (低驱动强度) VDD=2.7 V~3.6V — — 4 — — — — 4 — — — — 4 — — — — — — Vol — <td>(GPIO 灌电流)</td> <td>GPIO 灌电流)</td> <td>3.3V I/O 16 mA 驱动 , V_{OL}=</td> <td>=0.4V</td> <td>16</td> <td>_</td> <td>_</td> <td>mA</td>	(GPIO 灌电流)	GPIO 灌电流)	3.3V I/O 16 mA 驱动 , V _{OL} =	=0.4V	16	_	_	mA
IoH 高电平输出电流 (GPIO 源电流) 3.3V I/O 8 mA 驱动 , V _{OH} =V _{DD} -0.4V 8 — 3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4 V 12 — 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4 V 16 — 各份域 I/O 驱动 @ V _{DD} =3.3V, V _{OH} =V _{DD} -0.4V, PB10, PB11, PB12. — — 3.3V 4mA 驱动 I/O, I _{OL} =4mA — — 3.3V 8mA 驱动 I/O, I _{OL} =8mA — — 3.3V 12mA 驱动 I/O, I _{OL} =12mA — — 3.3V 16mA 驱动 I/O, I _{OL} =16mA — — 各份域 I/O 灌电流 = 4mA (低驱动强度) V _{DD} =2.7 V~3.6V — 各份域 I/O 灌电流 = 8mA (高驱动强度) V _{DD} =2.7 V~3.6V — V _{DD} =2.0 V~2.7V — V _{DD} =2.0 V~2.7V —			_		4	_	_	mA
IoH 高电平输出电流 (GPIO 源电流) 3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4 V 12 — 3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4 V 16 — 各份域 I/O 驱动 @ V _{DD} =3.3V, V _{OH} =V _{DD} -0.4V, PB10, PB11, PB12. — — 3.3V 4mA 驱动 I/O, I _{OL} =4mA — — 3.3V 8mA 驱动 I/O, I _{OL} =8mA — — 3.3V 12mA 驱动 I/O, I _{OL} =12mA — — 3.3V 16mA 驱动 I/O, I _{OL} =16mA — — 各份域 I/O 灌电流 = 4mA (低驱动强度) V _{DD} =2.7 V~3.6V — 各份域 I/O 灌电流 = 8mA (高驱动强度) V _{DD} =2.7 V~3.6V — V _{DD} =2.0 V~2.7V — — V _{DD} =2.0 V~2.7V — —		3.3V I/O 4 mA 驱动 , V _{OH} =	$V_{ m DD}$ -0.4V	4	_	_	mA	
Correction Sand Manage Sand Manage			3.3V I/O 8 mA 驱动 , V _{OH} =	V_{DD} -0.4V	8	_	_	mA
CGPIO 源电流			3.3V I/O 12 mA 驱动 , V _{OH}	=V _{DD} -0.4 V	12	_	_	mA
VOH=VDD-0.4V, PB10, PB11, PB12. 3.3V 4mA 驱动 I/O, I _{OL} =4mA 3.3V 8mA 驱动 I/O, I _{OL} =8mA 3.3V 12mA 驱动 I/O, I _{OL} =12mA 3.3V 16mA 驱动 I/O, I _{OL} =16mA 各份域 I/O 灌电流 = 4mA (低驱动强度) VDD=2.7 V~3.6V C A份域 I/O 灌电流 = 8mA (高驱动强度)	(G	GPIO 源电流)	3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4 V		16	_	_	mA
Vol 3.3V 8mA 驱动 I/O, I _{OL} =8mA — — 3.3V 12mA 驱动 I/O, I _{OL} =12mA — 3.3V 16mA 驱动 I/O, I _{OL} =16mA — 备份域 I/O 灌电流 = 4mA (低驱动强度) V _{DD} =2.7 V~3.6V — 各份域 I/O 灌电流 = 8mA (高驱动强度) V _{DD} =2.7 V~3.6V — V _{DD} =2.0 V~2.7V — — V _{DD} =2.0 V~2.7V — —			_			_	2	mA
Vol 3.3V 12mA 驱动 I/O, IoL=12mA — — (低电平输出电压 3.3V 16mA 驱动 I/O, IoL=16mA — 备份域 I/O 灌电流 = 4mA (低驱动强度) VDD=2.7 V~3.6V — 各份域 I/O 灌电流 = 8mA (高驱动强度) VDD=2.7 V~3.6V — VDD=2.0 V~2.7V — VDD=2.0 V~2.7V —			3.3V 4mA 驱动 I/O, I _{OL} =4n	ıΑ	_	_	0.4	V
Vol. 低电平输出电压 备份域 I/O 灌电流 = 4mA (低驱动强度) VDD=2.7 V~3.6V — — VDD=2.0 V~2.7V — — 备份域 I/O 灌电流 = 8mA (高驱动强度) VDD=2.0 V~2.7V — — VDD=2.0 V~2.7V — — — —			3.3V 8mA 驱动 I/O, I _{OL} =8n	ıΑ	_	_	0.4	V
Vol. 低电平输出电压 备份域 I/O 灌电流 = 4mA V _{DD} =2.7 V~3.6V — (低驱动强度) V _{DD} =2.0 V~2.7V — 备份域 I/O 灌电流 = 8mA V _{DD} =2.7 V~3.6V — (高驱动强度) V _{DD} =2.0 V~2.7V —			3.3V 12mA 驱动 I/O, I _{OL} =1	2mA	_	_	0.4	V
备份域 I/O 灌电流 = 4mA VDD=2.7 V~3.6V — (低驱动强度) VDD=2.0 V~2.7V — 备份域 I/O 灌电流 = 8mA VDD=2.7 V~3.6V — (高驱动强度) VDD=2.0 V~2.7V —	Art. 1	由亚松山市 区	3.3V 16mA 驱动 I/O, I _{OL} =1	6mA	_	_	0.4	V
备份域 I/O 灌电流 = 8mA	L IK	电下制 田 电压	备份域 I/O 灌电流 = 4mA	V _{DD} =2.7 V~3.6V	_	_	0.4	V
(高驱动强度) V _{DD} =2.0 V~2.7V — —			(低驱动强度)	V _{DD} =2.0 V~2.7V	_	_	0.6	V
			备份域 I/O 灌电流 = 8mA	V _{DD} =2.7 V~3.6V	_	_	0.4	V
3.3V 4mA 驱动 I/O, I _{OH} =4mA			(高驱动强度)	V _{DD} =2.0 V~2.7V	—	_	0.6	V
			3.3V 4mA 驱动 I/O, I _{OH} =4n	nA	V _{DD} -0.4	_	_	V
3.3V 8mA 驱动 I/O, I _{OH} =8mA			3.3V 8mA 驱动 I/O, I _{OH} =8n	nA	V_{DD} -0.4			V
V _{OH} 高电平输出电压 3.3V 12mA 驱动 I/O, I _{OH} =12mA V _{DD} -0.4		由平輪山由口	3.3V 12mA 驱动 I/O, I _{OH} =1	2mA	V_{DD} -0.4	_		V
V _{OH} 高电平输出电压 3.3V 16mA 驱动 I/O, I _{OH} =16mA V _{DD} -0.4	H 向 '	化 制山 化压	3.3V 16mA 驱动 I/O, I _{OH} =1	6mA	V _{DD} -0.4	_	_	V
备份域 I/O 灌电流 = 2mA V _{DD} =2.7 V~3.6V 2.4 -			备份域 I/O 灌电流 = 2mA	V _{DD} =2.7 V~3.6V	2.4	_	_	V
备份域 I/O 灌电流 = 1mA V _{DD} =2.0 V~2.7V V _{DD} -0.4 一			备份域 I/O 灌电流 = 1mA	V _{DD} =2.0 V~2.7V	V _{DD} -0.4	_	_	V
R _{PU} 内部上拉电阻 3.3V I/O — 46	内部	部上拉电阻	3.3V I/O		_	46	_	kΩ
R _{PD} 内部下拉电阻 3.3V I/O — 46		部下拉由阳	3.3V I/O		_	46	_	kΩ

A/D 转换器特性

表 18. A/D 转换器特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	A/D 转换器工作电压	_	2.5	3.3	3.6	V
V _{ADCIN}	A/D 转换器输入电压范围	_	0		V_{REF^+}	V
V_{REF^+}	A/D 转换器参考电压	_	_	V_{DDA}	V_{DDA}	V
I_{ADC}	电流损耗	$V_{DDA}=3.3V$	_	1	TBD	mA
I_{ADC_DN}	暂停模式电流损耗	$V_{DDA}=3.3V$	_	_	0.1	μA
f_{ADC}	A/D 转换器时钟	_	0.7	_	16	MHz
f_S	采样率	_	0.05	_	1	MHz
$t_{ m DL}$	数据延迟	_	_	12.5	_	1/f _{ADC} Cycles
$t_{\text{S\&H}}$	采样 & 保持时间	_	_	3.5	_	1/f _{ADC} Cycles
t _{ADCCONV}	A/D 转换器转换时间	_	_	16	_	1/f _{ADC} Cycles
R _I	输入采样转换电阻	_	_	_	1	kΩ
C _I	输入采样电容	不包括 pin/pad 电容	_	16	_	pF
$t_{ m SU}$	启动时间	_	_	_	1	μs
N	A/D 转换器分辨率	_	_	12	_	bits
INL	积分非线性误差	$f_S=750$ kHz, $V_{DDA}=3.3$ V	_	±2	±5	LSB
DNL	微分非线性误差	$f_S=750$ kHz, $V_{DDA}=3.3$ V	_	±1	_	LSB
Eo	失调误差	_	_	_	±10	LSB
E_{G}	增益误差	_	_	_	±10	LSB

- 注: 1. 表格中数据设计时可保证,未在生产中测试。
 - 2. 下图显示了 A/D 转换器采样和保持输入级的等效电路,图中 C_l 为内部存储电容, R_i 为内部采样转换的电阻, R_s 是信号源 V_s 的输出阻抗。在正常情况下,采样阶段的持续时间大约是 3.5/ f_{ADC} 。在此阶段,对 C_l 充电以确保在其两端的电压变得足够接近 V_s 。为了保证这一点, R_s 取值会有一定的限制。

图 7. ADC 采样网络模板

最差的情况是,当在输入电压范围的极限 (0V 和 V_{REF}) 进行连续采样,可采用下面公式来确保采样误差低于 1/4 LSB:

$$R_{S} < \frac{3.5}{f_{ADC}C_{I}ln(2^{N+2})} - R_{I}$$

在此公式中, f_{ADC} 是 A/D 转换器时钟频率,N 是 A/D 转换器分辨率 (此时 N=12)。安全程度由引脚 / 焊盘,寄生电容决定,在这个简单的例子中未作说明。

如果系统使用 A/D 转换器, 在连续采样阶段没有轨到轨的输入电压变化, R_s 可能大于上述公式表示值。

比较器特性

表 19. CMP 特性

T_A=25°C,除非另有规定

符号	参数	Š		最小值	典型值	最大值	单位
V_{DDA}	工作电压	比较器模式		2.4	3.3	3.6	V
V_{IN}	输入共模电压范围	CP 或 CN		V_{SSA}	_	V_{DDA}	V
V_{IOS}	输入失调电压 ⁽¹⁾	$T_A=25^{\circ}C$		-15	_	15	mV
		无迟滞 (CMPn	无迟滞 (CMPnHM[1:0] = 00)		0	_	mV
17	<i>t</i> 会);口、世	低迟滞 (CMPn	HM[1:0] = 01)	_	30	_	mV
V_{hys}	输入迟滞	中迟滞 (CMPn	HM[1:0] = 10	_	70	_	mV
		高迟滞 (CMPn	HM[1:0] = 11)	_	100	_	mV
	11 13 88 11 11 13 13 13	宣海楼子	V _{DDA} ≥2.7V	_	50	100	
t_{RT}	比较器的响应时间 输入过载 = ±100 mV	高速模式	V _{DDA} <2.7V	_	100	250	ns
	- HID / C 元 末 - エ100 III V	低速模式	低速模式		2	5	μs
T.	电流损耗	高速模式	高速模式		130	_	μΑ
I_{CMP}	$V_{DDA}=3.3V$	低速模式		_	30	_	μΑ
t_{CMPST}	比较器启动时间	比较器使能,	输出有效	_	_	50	μs
I _{CMP_DN}	暂停电流	CMPEN=0 CVREFEN=0 CVREFOE=0		_	_	0.1	μА
比较器	电压参考 (CVR)						
V_{CVR}	输出范围		_	V_{SSA}	_	V_{DDA}	V
N _{Bits}	CVR 定标器分辨率	_		_	6	_	bits
t_{CVRST}	设定时间	CVR 定标器设定时间 CVREF="000000"~"111111"		_	_	100	μs
т.	电流损耗	CVREFEN=1, CMPREFOE=0		_	65	_	μΑ
I_{CVR}	$V_{DDA}=3.3V$	CVREFEN=1,	CVREFOE=1	_	80	110	μΑ

注:表格中数据设计时可保证,未在生产中测试。

SCTM/GPTM/MCTM 特性

表 20. SCTM/GPTM/MCTM 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{TM}	GPTM 和 MCTM 定时器时钟源	_	_	_	48	MHz
t_{RES}	定时器分辨率时间	_	1	_	_	f_{TM}
f_{EXT}	通道 1~4 的外部信号频率	_	_	_	1/2	f_{TM}
RES	定时器分辨率				16	bits

I²C 特性

表 21. I2C 特性

<i>የተ</i> 🗆	公 米b	标准	模式	快速	模式	快速-	+ 模式	⇔ ⇔
符号	参数	最小值	最大值	最小值	最大值	最小值	最大值	单位
f_{SCL}	SCL 时钟频率	_	100	_	400		1000	kHz
$t_{\rm SCL(H)}$	SCL 时钟高电平时间	4.5	_	1.125	_	0.45	_	μs
$f_{SCL(L)}$	SCL 时钟低电平时间	4.5	_	1.125	_	0.45	_	μs
t_{FALL}	SCL 和 SDA 下降沿时间	_	1.3	_	0.34	_	0.135	μs
t _{RISE}	SCL 和 SDA 上升沿时间	_	1.3	_	0.34	_	0.135	μs
$t_{SU(SDA)}$	SDA 数据建立时间	500	_	125	_	50	_	ns
4	SDA 数据保持时间 (5)	0	_	0	_	0	_	ns
$t_{H(SDA)}$	SDA 数据保持时间 ⁽⁶⁾	100	_	100	_	100	_	ns
$t_{VD(SDA)}$	SDA 数据有效时间	_	1.6	_	0.475	_	0.25	μs
t _{SU(STA)}	START 条件建立时间	500	_	125		50	_	ns
t _{H(STA)}	START 条件保持时间	0		0		0	_	ns
$t_{SU(STO)}$	STOP 条件建立时间	500	_	125	_	50	_	ns

- 注: 1. 表格中数据设计时可保证,未在生产中测试。
 - 2. 为达到标准模式 100kHz, 外设时钟频率必须高于 2MHz。
 - 3. 为达到快速模式 400kHz, 外设时钟频率必须高于 8MHz。
 - 4. 为达到快速 + 模式 1MHz, 外设时钟频率必须高于 20MHz。
 - 5. 此项 I²C 总线时序图的特性参数是基于: COMB FILTER En 除能且 SEQ FILTER=00 的情况。
 - 6. 此项 I²C 总线时序图的特性参数是基于: COMB_FILTER_En 使能且 SEQ_FILTER=00 的情况。

图 8. I2C 时序图

SPI 特性

表 22. SPI 特性

符号	参数	条件	最小值	典型值	最大值	单位
SPI 主机	模式					
f _{SCK} (1/t _{SCK})	SPI 主机输出 SCK 时钟频率	主机模式 SPI 外设时钟频率 f _{PCLK}	_	_	f _{PCLK} /2	MHz
$t_{SCK(H)}$ $t_{SCK(L)}$	SCK 时钟高电平和低电平时间	_	t _{SCK} /2-2	_	t _{SCK} /2+1	ns
$t_{V(MO)}$	数据输出有效时间	_	_	_	5	ns
$t_{H(MO)}$	数据输出保持时间	_	2	_	_	ns
$t_{SU(MI)}$	数据输入建立时间	_	5	_	_	ns
$t_{H(MI)}$	数据输入保持时间	_	5	—	_	ns
SPI 从机	模式					
$f_{SCK} \atop \left(1/t_{SCK}\right)$	SPI 从机输入 SCK 时钟频率	从机模式 SPI 外设时钟频率 f _{PCLK}	_	_	f _{PCLK} /3	MHz
Duty _{SCK}	SPI 从机输入 SCK 时钟占空比周期	_	30	_	70	%
t _{SU(SEL)}	SEL 使能建立时间	_	3 t _{PCLK}	_	_	ns
t _{H(SEL)}	SEL 使能保持时间	_	2 t _{PCLK}	_	_	ns
$t_{A(SO)}$	数据输出访问时间	_	_	_	3 t _{PCLK}	ns
$t_{\rm DIS(SO)}$	数据输出禁止时间	_			10	ns
$t_{\rm V(SO)}$	数据输出有效时间	_	_	_	25	ns
$t_{H(SO)}$	数据输出保持时间	_	15	_	_	ns
$t_{\rm SU(SI)}$	数据输入建立时间	_	5	_	_	ns
$t_{H(SI)}$	数据输入保持时间	_	4	_	_	ns

注: $t_{SCK}=1/f_{SCK}$; $t_{PCLK}=1/f_{PCLK}$; f_{SCK} 为 SPI 输出 (输入) 时钟频率; f_{PCLK} 为 SPI 外设时钟频率。

图 9. SPI 时序图 - SPI 主机模式

图 10. SPI 时序图 – SPI 从机模式,CPHA=1

I2S 特性

表 23. I2S 特性

符号	参数	条件	最小值	典型值	最大值	单位		
I2S 主机村	${}^2\mathbf{S}$ 主机模式							
$t_{\mathrm{WSD(MO)}}$	WS 输出到 BCLK 延迟	_	_	TBD	_	ns		
$t_{\rm DOD(MO)}$	数据输出到 BCLK 延迟	_	—	TBD	_	ns		
$t_{\rm DIS(MI)}$	数据输入建立时间	_	_	TBD	_	ns		
$t_{\mathrm{DIH(MI)}}$	数据输入保持时间	_	_	TBD	_	ns		
I2S 从机村	莫式							
$t_{\rm BCH(SI)}$	BCLK 高脉冲宽度	_	_	TBD	_	ns		
$t_{\rm BCL(SI)}$	BCLK 低脉冲宽度	_	_	TBD	_	ns		
$t_{\mathrm{WSS}(\mathrm{SI})}$	WS 输入建立时间	_	_	TBD	_	ns		
$t_{\rm DOD(SO)}$	数据输出到 BCLK 延迟	_	_	TBD	_	ns		
$t_{\rm DIS(SI)}$	数据输入建立时间	_	_	TBD	_	ns		
$t_{\rm DIH(SI)}$	数据输入保持时间	_	_	TBD	_	ns		

图 11. I2S 主机模式时序图

图 12. I2S 从机模式时序图

USB 特性

USB接口符合 USB-IF 认证 – 全速。

表 24. USB 直流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	USB 工作电压	_	3.0	_	3.6	V
V_{DI}	微分输入灵敏度	USBDP-USBDM	0.2	_	_	V
$V_{\rm CM}$	共模电压范围	_	0.8	_	2.5	V
V_{SE}	单端接收器阈值	_	0.8		2.0	V
V _{OL}	Pad 输出低电压		0	_	0.3	V
V_{OH}	Pad 输出高电压	1.5kΩ 电阻 R _L 连接到 V _{DD33}	2.8	_	3.6	V
V_{CRS}	微分输出信号交叉点电压		1.3	_	2.0	V
Z_{DRV}	驱动器输出电阻值	_	_	10	_	Ω
C _{IN}	收发器 Pad 电容值	_	_	_	20	pF

- 注: 1. 表格中数据设计时可保证,未在生产中测试。
 - 2. R_L 是连接到 USB 驱动器 USBDP 的负载电阻。

图 13. USB 信号上升时间、下降时间和交叉点电压 (V_{CRS}) 定义

表 25. USB 交流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
$t_{\rm r}$	上升时间	C _L =50 pF	4	_	20	ns
$t_{ m f}$	下降时间	C _L =50 pF	4	_	20	ns
$t_{\rm r/f}$	上升时间 / 下降时间匹配度	$t_{r/f} = t_r/t_f$	90	_	110	%

6 封装信息

请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 <u>Holtek 网站</u>以 获取最新版本的封装信息。

封裝信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 1.50 42 of 46 2019-04-29

SAW Type 33-pin QFN (4mm×4mm) 外形尺寸

 符号		尺寸(单位: inch)	
1寸 写	最小值	典型值	最大值
A	0.028	0.030	0.031
A1	0.000	0.001	0.002
A3	_	0.008 BSC	_
b	0.006	0.008	0.010
D	_	0.157 BSC	_
Е	_	0.157 BSC	_
e	_	0.016 BSC	_
D2	0.104	0.106	0.108
E2	0.104	0.106	0.108
L	0.014	0.016	0.018
K	0.008	_	_

<i>የ</i> ጥ 🗆		尺寸(单位: mm)				
符号	最小值	典型值	最大值			
A	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3	_	0.203 BSC	_			
b	0.15	0.20	0.25			
D	_	4.00 BSC	_			
Е	_	4.00 BSC	_			
e	_	0.40 BSC	_			
D2	2.65	2.70	2.75			
E2	2.65	2.70	2.75			
L	0.35	0.40	0.45			
K	0.20	_	_			

48-pin LQFP (7mm×7mm) 外形尺寸

 符号		尺寸(单位: inch)					
1寸 写	最小值	典型值	最大值				
A	_	0.354 BSC	_				
В	_	0.276 BSC	_				
С	_	0.354 BSC	_				
D	_	0.276 BSC	_				
Е	_	0.020 BSC	_				
F	0.007	0.009	0.011				
G	0.053	0.055	0.057				
Н	_	_	0.063				
I	0.002	_	0.006				
J	0.018	0.024	0.030				
K	0.004	_	0.008				
α	0°	_	7°				

符号	尺寸(単位: mm)			
	最小值	典型值	最大值	
A	_	9.0 BSC	_	
В	_	7.0 BSC	_	
С	_	9.0 BSC	_	
D	_	7.0 BSC	_	
Е	_	0.5 BSC	_	
F	0.17	0.22	0.27	
G	1.35	1.4	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

64-pin LQFP (7mm×7mm) 外形尺寸

符号	尺寸(单位: inch)			
	最小值	典型值	最大值	
A	_	0.354 BSC	_	
В	_	0.276 BSC	_	
С	_	0.354 BSC	_	
D	_	0.276 BSC	_	
Е	_	0.016 BSC	_	
F	0.005	0.007	0.009	
G	0.053	0.055	0.057	
Н	_	_	0.063	
I	0.002	_	0.006	
J	0.018	0.024	0.030	
K	0.004	_	0.008	
α	0°	_	7°	

符号	尺寸(単位: mm)			
	最小值	典型值	最大值	
A	_	9.00 BSC	_	
В	_	7.00 BSC	_	
С	_	9.00 BSC	_	
D		7.00 BSC	_	
Е	_	0.40 BSC	_	
F	0.13	0.18	0.23	
G	1.35	1.40	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

Copyright[®] 2019 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而 Holtek 对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,Holtek 不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。Holtek 产品不授权使用于救生、维生从机或系统中做为关键从机。Holtek 拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.