Indian Institute of Technolgy Indore Semester: Spring Course: Numerical Methods (MA 204

Course: Numerical Methods (MA-204) Tutorial-5

In all the examples you can solve till 5 iterations.(if the number of iterations are not mentioned.)

- 1. Can you use the Bisection method to find a zero of $f(x) = x^3 3x + 1$ in the interval [0, 2].
- 2. Use the Bisection method to find a zero of $f(x) = x^3 3x + 1$ in the interval [0, 1].
- 3. $a=6, b=7, \epsilon=0.0005$. How many iterations are needed such that $|x-r| \le \epsilon$ (Bisection Method).
- 4. Use the Bisection method to find the root of $x = \cos x$ with an absolute error < 0.02 in the interval [0.5,0.9].
- 5. Solve $2x^3 2.5x 5 = 0$ for the root in the interval [1,2] by Regula-Falsi method.
- 6. Find a root of $3x + \sin x e^x = 0$ using Regula-Falsi method.
- 7. Find the roots between [2,3] of $x^3 2x 5 = 0$, by using Regula-Falsi method.
- 8. Use the Secant method to find the root of $f(x) = x^6 x 1$ with two initial points $x_0 = 1$ and $x_1 = 1.5$.
- 9. Use the Secant method to find the root of $f(x) = \cos x + 2\sin x + x^2$ with two initial points $x_0 = 0$ and $x_1 = -0.1$.
- 10. Find the root of $x^4 x 10 = 0$ using fixed point iteration scheme.
 - (a) Consider $g_1(x) = \frac{10}{x^3-1}$ with initial guess 2.
 - (b) Consider $g_2(x) = (x+10)^{\frac{1}{4}}$ with initial guess 1,2 and 4.
 - (c) Consider $g_3(x) = \frac{(x+10)^{\frac{1}{2}}}{x}$ with initial guess 1.8.

What can you say about the convergence of $g_1(x)$, $g_2(x)$ and $g_3(x)$.

11. In the diagram shown the floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You are asked to find the depth to which the ball is submerged when floating in water.

Figure 1: Diagram of the floating ball

The equation that gives the depth x to which the ball is submerged under water is given by $x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$.

- (i) (a) Use the bisection method of finding roots of equations to find the depth x to which the ball is submerged under water. Conduct three iterations to estimate the root of the above equation.
- (b) Find the absolute relative approximate error at the end of each iteration, and the number of significant digits at least correct at the end of each iteration.
- (ii) (a) Use the Secant method of finding roots of equations to find the depth x to which the ball is submerged under water. Conduct three iterations to estimate the root of the above equation.
- (b) Find the absolute relative approximate error and the number of significant digits at least correct at the end of each iteration.