1 引言

凸多面体 P 是指 \mathbb{R}^n 中非空有限个点集的凸包,或者等价的是由 \mathbb{R}^n 中有限个半空间的有界交,即

$$P = conv\{p_1, p_2, \cdots, p_\ell\} = \{x \in \mathbb{R}^n : \langle l_i, x \rangle \ge -a_i, i = 1, 2, \cdots, m\}$$

其中 l_i 为 $(\mathbb{R}^n)^*$ 中的线性函数, $a_i \in \mathbb{R}$.

凸多面体的维数就是指凸包或者有界交的维数。若无特殊说明,本文中的所考虑的 n 维多面体均指 \mathbb{R}^n 中的 n 维凸多面体,记为 P^n ,P 的边界记为 K. 另外我们把 P 的内部记为 P° . 凸子集 $F \subset P$ 称为 P 的面,若 F 是多面体 P 与某一个半空间 $V = \{x \in \mathbb{R}^n : \langle l, x \rangle \geq -a \}$ 的交,且 $P^\circ \cap \partial V = \emptyset$. 子集 \emptyset 和 P 本身都为 P 的面,称为平凡面;其他的面称为真面. P 的 0 维面称为 P 的项点,P 的 1 维面称为 P 的边,P 的 n-1 维面称为 P 的 f cect. 记 f_i 为 P 的 i 维面的个数,称 $\mathbf{f}(P) = (f_0, f_1, \cdots, f_{n-1})$ 为 P 的 f — v ector. 取 $f_{-1} = 1$,则 P 的 h — v ector (h_0, h_1, \cdots, h_n) 由下面等式定义

$$h_0t^n + \dots + h_{n-1}t + h_n = (t-1)^n + f_0(t-1)^{n-1} + \dots + f_{n-1}$$

由 Dehn-Sommerville 关系知 $h_i = h_{n-i}, i = 0, 1, \dots, n$,为方便我们统一将 P 的 facets 的个数记为 $f_{n-1} = m$,即 P^n 的 facets 集为 $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$; 把 $h_1 = h_{n-1}$ 记为 κ ,把 $h_2 = h_{n-2}$ 记为 ω .

称多面体 P^n 是单的,若 P^n 的每个顶点恰好是 P 中 n 个 facets 的交,等价地,每个顶点处恰好有 n 条边. 单多面体中任意余维数为 k 的面 F 总可以 (唯一) 表示为 $F = F_1 \cap F_2 \cap \cdots \cap F_k$,其中 F_1, F_2, \cdots, F_k 为包含 F 的 facets.

取 $\mathbb{Z}_2 = \{1, -1\}$ 为二元乘法群. 设 P^n 为 n 维单凸多面体,F 为 P^n 的 facets 集,对每一个 facet $F_i \subset \mathcal{F}$,定义一个染色 $\lambda(F_i) \in \mathbb{Z}_2^n$,使得对 P^n 的每一个项点 $p = F_1 \cap F_2 \cap \cdots \cap F_n$,满足 $span\{\lambda(F_1), \lambda(F_2), \cdots, \lambda(F_n)\} \cong \mathbb{Z}_2^n$ (对任意多面体,这样的染色不一定存在). 对任意点 $x \in P$,记 F(x) 为 P^n 中包含 x 为相对内点的唯一的面,例如 x 为 P^n 内部的点时,则 $F(x) = P^n$; x 为 P^n 的顶点时,则 $F(x) = F_1 \cap F_2 \cap \cdots \cap F_n$,其中 $\{F_1, F_2, \cdots, F_n\}$ 为点 x 附近的 n 个 facets. 不妨设 $F(x) = F_1 \cap F_2 \cap \cdots \cap F_k$,记 $G_{F(x)} = span\{\lambda(F_1), \lambda(F_2), \cdots, \lambda(F_k)\} = span\{\lambda(F_i) : x \in F_i\}$.

则构造 small cover 为

$$M_P^n = (P^n \times \mathbb{Z}_2^n)/\sim$$

 $(x,g) \sim (y,h)$ 当且仅当 $x = y, g^{-1}h \in G_{F(x)}$

设 $\pi: M_P \longrightarrow P$ 为一个自然的投射. 事实上,将 $P^n \cong \mathcal{R}/\mathcal{Z}_2^n$ 看为 orbifold,则 small cover 是一个 right-angle Coxeter orbifold,局部同构 orbifold $\mathcal{R}/\mathcal{Z}_2^n$,映射 $\pi: M_P \longrightarrow P$ 是P上的一个正则的 orbifold covering, \mathcal{Z}_2^n 是它的 covering transformation group.

命题 1.1 small cover 为连通闭流形.

证明: convex polytope, coxeter orbifolds and torus action 性质 1.7 $\lambda: \mathcal{F} \longrightarrow \mathbb{Z}_{n}^{n}$ 称为 small cover M_{P} 的示性函数.

定义 1 facets-pair structure of X.

若连通拓扑空间 X 可由若干个单凸多面体 $\{P_l^n: l=1,2,\cdots,N\}$ 粘合而成,我们记 P_l 的第 i 个 facet F_i 为 $F_{i,l}$,并且满足下面两个条件:

1、任意 facet F_{i,l_1} 唯一配对 F_{j,l_2} 且存在一个同痕 $\tau_{i,l_1}: F_{i,l_1} \longrightarrow F_{j,l_2}$ 与 $\tau_{j,l_1}: F_{j,l_2} \longrightarrow F_{i,l_1}$ 使得 $\tau_{i,l_1} = \tau_{j,l_2}^{-1}$,我们称 $\hat{F} = \{F_{i,l_1}, F_{j,l_2}\}$ 为一个 facet 对,称 F_{j,l_2} 为 F_{i,l_1} 的对 facet

2、对任意余二维面 $f = F_{i_1,l_1} \cap F_{i_2,l_1}$,如果 $\tau_{i_1,l_1}(f) = F_{j_1,l_2} \cap F_{j_3,l_2}$, $\tau_{i_2,l_1}(f) = F_{j_2,l_4} \cap F_{j_4,l_4}$,则 $\tau_{j_3,l_2} \tau_{i_1,l_1}(f) = \tau_{j_4,l_4} \tau_{i_2,l_1}(f) = F_{i_3,l_3} \cap F_{i_4,l_3}$. 这里不排除 $F_{i_2,l_4} = F_{i_3,l_2}$ 或者 $F_{i_2,l_3} = F_{i_3,l_3}$.

则我们称 $S = \{\hat{F}_{i,l}, \tau_{i,l}\}$ 为 $\{P_l^n\}$ 上的一个 facets-pairing structure, $\tau_{i,l_1}: F_{i,l_1} \longrightarrow F_{j,l_2}$ 为 S 的 structure map. 记一步,若 X 为闭的,我们称 S 是 M_P 的一个完全的 facets-pairing structure

事实上,F 上的示性函数 $\lambda: F \longrightarrow \mathbb{Z}_2^n$ 决定了 M_P 上的一个配对结构. 多面体 (P^n,g) 的 facets F_i 与多面体 (P^n,h) 的 facets F_j 相粘,当且仅当 $F_i = F_j, \lambda(F_i)^{-1}\lambda(F_j) = g^{-1}h$. 反之,若知道 $\{P_l^n: l = 1, 2, \cdots, N\}$ 上的一个完全配对结构,我们也可以构造 M_P .

2 example

例 1 当 $P^2=\triangle^2$ 时, \mathcal{F} 上本质上只有一种染色,得到的 $small\ cover$ 是 $\mathcal{R}P^2$

例 2 当 $P^2 = I^2$ 时, \mathcal{F} 上有下面两种不同的染色,分别得到 T^2 和 Klein bottle.

例 3 $(P^2$ 是一个 m 多边形时)

 M_P 是由 4 个 m-gon 沿边粘成的曲面,所以 M_P 的欧拉数为 $\chi(M_P)=4-m$. 当 m 为奇数时, M_P 为 m-2 个 RP^2 的连通和;当 m 为偶数时, M_P 为 m-2 个 RP^2 的连通和或着为 $\frac{m-2}{2}$ 个 T^2 的连通和. 所以 small cover 决定了除 S^2 外的所有二维闭曲面.