

Licenciatura em Engenharia Eletrotécnica

Máquinas Elétricas II

Enunciados dos Trabalhos Laboratoriais

Enunciados dos Trabalhos Laboratoriais

Máquinas Elétricas II

RECURSO EDUCACIONAL ABERTO (REA) OPEN EDUCATIONAL RESOURCE (OER)

Licença: CC BY-SA 4.0 International

https://creativecommons.org/licenses/by-sa/4.0/

Autor: Ricardo Luís **Instituição:** ISEL

Ano: 2025

Repositório GitHub: https://github.com/Ricardo-Luis/me-2-oer/tree/main/lab-outlines

Editor: Typst (ficheiros fonte .typ disponíveis no repositório)

Ferramentas de inteligência artificial utilizadas:

- Perplexity AI: pesquisa de fontes e referências bibliográficas;
- NotebookLM: organização de conteúdos a partir de pesquisa dirigida nos documentos fornecidos pelo autor;
 - Claude (Anthropic): revisão e aprimoramento do texto para maior fluidez e correção linguística.

Nota: O autor assume inteira responsabilidade editorial e científica sobre o conteúdo apresentado.

Como citar este documento:

Ricardo Luís, "Enunciados dos Trabalhos Laboratoriais", Máquinas Elétricas II, recurso educacional aberto, ISEL, 2025. [Online].

Disponível: https://github.com/Ricardo-Luis/me-2-oer/tree/main/lab-outlines

Prefácio

Este documento tem como objetivo orientar os grupos de trabalho das aulas práticas de Máquinas Elétricas II, fornecendo linhas de orientação para a preparação dos ensaios a realizar no Laboratório Máquinas Elétricas (LME) e para a elaboração dos respetivos relatórios técnicos.

No LME pretende-se um ambiente de experimentação colaborativa e de prática reflexiva. Nesse sentido, as aulas práticas são estruturadas para orientar os estudantes no trabalho em equipa durante a realização de ensaios experimentais, tendo como esteio as competências técnicas nos procedimentos de ensaio e de segurança. Promove-se a observação sistemática e a reflexão estruturada sobre os resultados obtidos, conduzindo os estudantes a analisar os dados recolhidos, a fundamentar-se nos conhecimentos teóricos, a decidir sobre ajustes nos procedimentos e executar as modificações necessárias.

Para tal, após a constituição dos grupos de trabalho no início do semestre, é necessária a consulta do documento "Planeamento das Aulas Práticas", que inclui:

- Calendarização semanal das atividades;
- Distribuição das bancadas de trabalho;
- Pré-requisitos para as aulas práticas;
- Informação sobre a entrega de relatórios.

Cada enunciado de Trabalho Laboratorial (TL) está estruturado da seguinte forma:

- Objetivos de aprendizagem;
- Introdução ao TL;
- Sequência de ensaios;
- Considerações para observação e análise de resultados.

Esta estrutura visa proporcionar aos estudantes uma compreensão clara das expectativas e procedimentos para cada TL, facilitando uma aprendizagem eficiente e uma experiência laboratorial produtiva. Complementarmente, este documento inclui um anexo sobre a elaboração de relatórios laboratoriais.

Lisboa, setembro de 2025

Ricardo Luís

A aprendizagem é resultado do que o aluno faz e pensa, e somente do que o aluno faz e pensa. O professor só pode promover a aprendizagem influenciando o que aluno faz e pensa.

— **Herbert Simon** (1916-2001)

Índice

Ľ	'L1: Geradores de Corrente Contínua	1
	Objetivos de aprendizagem	1
	Introdução	1
	Ensaios laboratoriais	1
	Sugestões de análise	2
T	L2: Motores de Corrente Contínua	1
1.	Objetivos de aprendizagem	
	Introdução	
	Ensaios laboratoriais	
	Sugestões de análise	
T .	L3: Alternador Síncrono Isolado	
	Objetivos de aprendizagem	5
	Introdução	5
	Ensaios laboratoriais	6
	Sugestões de análise	6
T.	L4: Máquina Síncrona sobre Rede Elétrica	7
	Objetivos de aprendizagem	7
	Introdução	7
	Ensaios laboratoriais	8
	Sugestões de análise	8
T'	L5: Transitórios de Máquinas Elétricas	g
	Objetivos de aprendizagem	
	Introdução	9
	Ensaios laboratoriais	
	Sugestões de análise	10
Α.	NEXO: Relatório Laboratorial	11
⊂1 .	Âmbito	
	Estrutura	
	Escrita Técnica	
	Ferramentas técnicas	
	remainentas tecinicas	13

Referências	17
Resumo	16
Inteligência Artificial Generativa	15
Trabalho Colaborativo em Tempo Real	14
Notebooks computacionais como Ambiente Integrado	14

TL1: Geradores de Corrente Contínua

Objetivos de aprendizagem

Como resultado do TL1 - Geradores de Corrente Contínua, pretende-se que o estudante adquira capacidades para:

- Conceber e executar esquemas elétricos de geradores de CC;
- Operar geradores CC com diferentes tipos de excitação;
- Conduzir ensaios para obtenção de curvas características de funcionamento de geradores CC;
- Distinguir os processos de regulação da tensão de saída de um gerador CC;
- Analisar comparativamente as curvas características de geradores CC.

Introdução

As máquinas de Corrente Contínua (CC) são classificadas quanto ao tipo de excitação que utilizam na montagem do seus circuitos elétricos. No funcionamento como gerador CC distinguem-se dois grupos principais:

- Gerador CC de excitação separada ou independente. O circuito indutor é alimentado por uma fonte CC;
- Geradores CC autoexcitados. O(s) circuito(s) indutor(es) do gerador é(são) alimentado(s) pela tensão produzida pelo induzido.

Para uma análise completa do gerador CC, do(s) seu(s) circuito(s) indutor(es) e induzido, podem ser consideradas as seguintes curvas características:

- Característica magnética ou de vazio;
- Característica externa;
- Característica de regulação.

Ensaios laboratoriais

TL1.1: Gerador CC de excitação separada

- Ensaio em vazio para caracterização do circuito indutor a duas velocidades constantes distintas:
- Ensaio em carga para caracterização do circuito induzido. Regulação de um ponto de funcionamento do gerador em carga.

TL1.2: Características externas de geradores autoexcitados

- Ensaio carga de um gerador autoexcitado. Sugestão: utilizar o gerador em excitação derivação;
- Verificar e testar a influência do enrolamento série no funcionamento do gerador autoexcitado. Sugestão: modificar a montagem anterior para excitação composta;

- Quais as condições necessárias para a autoexcitação num gerador CC?
- Determinar as quedas de tensão de um gerador CC;
- Comparar as características externas do gerador CC para os vários tipos de excitação;
- Definir uma característica de regulação para um gerador CC.

TL2: Motores de Corrente Contínua

Objetivos de aprendizagem

Como resultado do TL2 - Motores de Corrente Contínua, pretende-se que o estudante adquira capacidades para:

- Conceber e executar esquemas elétricos de motores de CC;
- Operar motores CC com diferentes tipos de excitação;
- Conduzir ensaios para obtenção de curvas características de funcionamento de motores
 CC;
- Analisar comparativamente as curvas características de motores CC;
- Distinguir os processos de regulação da velocidade de um motor CC;
- Regular a velocidade do motor CC através do sistema Ward-Leonard;
- Obter um mapa de funcionamento de um motor CC em regime de velocidade variável.

Introdução

Para caracterização do funcionamento de motores de Corrente Contínua (CC) são estabelecidas curvas características que relacionam grandezas que permitem verificar o comportamento de um motor CC no seu funcionamento em regime permanente:

- Característica de velocidade: n = f(I), com U e R_c constantes;
- Característica de binário: T = f(I), com U e R_c constantes;
- Característica mecânica: n = f(T) ou T = f(n), com U e R_c constantes.

Estas curvas características podem ser obtidas experimentalmente, ensaiando os motores CC em regime de carga variável, ou deduzidas teoricamente, conhecendo algumas grandezas e parâmetros da máquina CC: $E_0={\rm f}(i_{\rm exc}), U, I, R_i, R_s, \frac{N_s}{N_d}, \Delta E(I_i).$

O sistema Ward-Leonard permite obter um acionamento de velocidade variável com as grandezas de saída, velocidade e binário, desacopladas. Ou seja, este sistema permite controlar de forma independente, a velocidade e o binário disponível. Neste ensaio experimental são obtidas as grandezas do motor CC, que permitem obter a potência elétrica consumida e a potência mecânica útil, em regime de velocidade e carga variáveis. Com estes dados torna-se possível representar um mapa de funcionamento desta máquina, por exemplo, representando curvas de nível (isolinhas) de rendimento do motor em regime de velocidade e binário variáveis.

Ensaios laboratoriais

TL2.1: Motor excitação derivação vs. excitação composta

- Ensaio em carga do motor CC de excitação derivação;
- Ensaio em carga do motor CC de excitação composta (aditiva e subtrativa);
- Verificação das condições de embalamento do motor CC.

TL2.2: Motor série

- Ensaio carga de um motor CC de excitação série;
- Verificação das condições de embalamento do motor série.

TL2.3: Sistema Ward-Leonard

• Ensaio de um motor CC de excitação separada, em regime de carga variável, alimentado por uma rede CC de tensão variável.

- Em que situações pode ocorrer um embalamento num motor CC?
- Comparar as características de velocidade e de binário do motor CC para os vários tipos de excitação;
- Representar num gráfico as características mecânicas, $n={\rm f}(T_u)$, do motor CC do sistema Ward-Leonard;
- Determinar o mapa de eficiência de um motor CC de excitação separada, no regime de velocidade e carga variáveis, a partir dos dados de ensaio do sistema Ward-Leonard.

TL3: Alternador Síncrono Isolado

Objetivos de aprendizagem

Ao completar o trabalho laboratorial, TL3 - Alternador Síncrono Isolado, o estudante será capaz de:

- Identificar e diferenciar alternadores síncronos de polos lisos e polos salientes;
- Conceber e executar esquemas elétricos de Alternadores Síncronos Trifásicos (AST) em rede isolada;
- Conduzir ensaios para determinação dos parâmetros do circuito equivalente por fase, em AST de polos lisos e de polos salientes;
- Operar AST em rede isolada em condições variáveis de carga (corrente e $\cos \varphi$):
 - levantar e interpretar características externas de funcionamento;
 - obter características de regulação de tensão;
 - compreender os mecanismos de regulação da tensão e da frequência.
- Desenvolver e interpretar diagramas vetoriais de tensões do alternador para diferentes condições de operação.

Introdução

A análise em regime permanente de um AST a operar numa rede elétrica isolada baseia--se em duas ferramentas analíticas principais:

- circuito equivalente por fase;
- diagrama vetorial de tensões por fase.

Para implementar estas ferramentas é necessária uma caracterização detalhada dos circuitos indutor (rotor) e induzido (estator). Assim, os parâmetros elétricos da máquina determinam-se a partir dos seguintes ensaios experimentais:

- Ensaio do alternador em vazio, à velocidade nominal, para obter a característica magnética, $E_0={\rm f}(I_{\rm exc})$;
- Ensaio do alternador em curto-circuito, à velocidade nominal, para obter a característica de curto-circuito, $I_{\rm cc}={\rm f}(I_{\rm exc})$;
- Ensaio de pequeno escorregamento para identificação do tipo de rotor da máquina síncrona (polos lisos ou polos salientes);
- Medição da resistência dos enrolamentos do estator.

Os ensaios do AST em carga variável com diferentes fatores de potência permitem extrair curvas características do seu funcionamento em rede elétrica isolada:

- Característica externa: U = f(I), com velocidade, $I_{\rm exc}$ e $\cos \varphi$ constantes;
- Característica de regulação da tensão: $I_{\rm exc}={\rm f}(I)$, com U, velocidade e $\cos\varphi$ constantes.

Estas curvas características permitem validar o(s) modelos considerado(s) para análise do comportamento do AST, para diferentes tipos de carga, comparando os resultados teóricos e experimentais.

Ensaios laboratoriais

TL3.1: Máquina síncrona de polos lisos vs. polos salientes

- Ensaios em vazio e de curto-circuito;
- Ensaio de pequeno escorregamento;
- Medição da resistência dos enrolamentos do estator.

TL3.2: Características externas

- Ensaios em carga do AST com cargas resistiva e reativa:
 - obtenção das característica externas;
 - obtenção das características de regulação da tensão;
 - observação da regulação de tensão e frequência do alternador.

- Desenvolva o circuito equivalente por fase do AST usando o modelo de polos lisos e determine as características externas teóricas;
- Compare os resultados teóricos com as características externas obtidas experimentalmente;
- Sob condições de corrente de carga constante e tensão nominal, elabore os diagramas vetoriais de tensões para diversos cenários de fator de potência;
- Estabeleça a relação entre os diagramas vetoriais obtidos e as respetivas características de regulação da tensão, comparando e discutindo os resultados observados;
- Usando o exemplo prático de um grupo eletrogéneo a Diesel (também conhecido por grupo gerador-Diesel), avalie a necessidade e o funcionamento dos reguladores de tensão e de velocidade na sua operação autónoma em rede isolada.

TL4: Máquina Síncrona sobre Rede Elétrica

Objetivos de aprendizagem

Após a conclusão do trabalho laboratorial, TL4 - Máquina Síncrona sobre Rede Elétrica, o estudante será capaz de:

- Compreender as funções da Máquina Síncrona Trifásica (MST) na rede elétrica;
- Elaborar e implementar esquemas de ligação da MST para operação na rede elétrica;
- Executar os procedimentos de ligação da MST à rede elétrica e operá-la nos quatro quadrantes de funcionamento (como alternador, motor e compensador síncrono);
- Obter experimentalmente e interpretar curvas V (curvas de Mordey) de uma MST;
- Associar e operar alternadores síncronos 3~ em paralelo numa rede elétrica isolada, garantindo a repartição de carga entre alternadores com tensão e frequência constantes;
- Desenvolver e interpretar diagramas vetoriais de tensões da MST em rede elétrica sob diferentes condições de operação.

Introdução

Este trabalho analisa o funcionamento da MST ligada a uma rede elétrica. Considera-se a rede elétrica de corrente alternada do laboratório de potência infinita, o que implica que a tensão e frequência constantes. Assim, nos ensaios TL4.1 e TL4.2 ajustam-se as potências ativa (alternador), mecânica (motor) e reativa (alternador/motor/compensador), considerando que a tensão da MST e a velocidade do rotor permanecem constantes. Essa estabilidade estática é garantida pelo acoplamento magnético entre o rotor e o campo girante, pois os enrolamentos do estator, ligados à rede elétrica, estão sob a mesma tensão e frequência.

No ensaio TL4.3, a rede elétrica é formada por alternadores em paralelo alimentando uma carga de carácter indutivo (RL), configurando uma rede elétrica isolada. Este ensaio procura responder a duas questões principais:

- Como manter a tensão e a frequência constantes ao variar a carga ativa e/ou reativa, preservando a repartição de carga entre os alternadores?
- Como ajustar a repartição de carga (ativa e reativa) entre os alternadores, mantendo constantes a tensão e a frequência?

O trabalho TL4 possibilita a compreensão prática e teórica da operação da MST em redes elétricas, capacitando o estudante a aplicar conceitos de sincronismo, gestão e repartição de carga em contextos reais de geração e operação de energia elétrica.

Ensaios laboratoriais

TL4.1: Ligação a rede elétrica e funcionamento nos 4 quadrantes

- Sincronização do alternador com a rede elétrica;
- Operação da MST nos quatro quadrantes de funcionamento, incluindo fator de potência unitário e atuação como compensador síncrono.

TL4.2: Curvas de Mordey

- Utilização da MST como motor acoplado a um gerador de corrente contínua (mais carga elétrica) para ensaio em carga no motor síncrono.
- **Bancadas 2 e 3 (MST sem barras amortecedoras)**: preparar esquema e procedimento para ligação da MST à rede elétrica por meio de motor de arrasto.
- Bancadas 4 e 5 (MST com barras amortecedoras): preparar esquema e procedimento para ligação da MST à rede elétrica, utilizando as barras amortecedoras (arranque como motor de indução com auxílio de autotransformador).

TL4.3: Paralelo de alternadores em rede isolada

- Sincronização (paralelo) entre alternadores síncronos trifásicos;
- Regulação de frequência e tensão vs repartição de carga ativa e reativa.

- Reflita sobre as condições de sincronização do alternador síncrono com a rede elétrica ou entre alternadores. Por exemplo, quais poderiam ser as implicações de sincronizar as tensões entre o alternador e a rede sem a verificar a sequência de fases?
- Elabore diagramas vetoriais simplificados para explicar a operação da MST nos quatro quadrantes, assumindo o modelo de polos lisos e resistência estatórica, $R \approx 0$;
- Utilize diagramas vetoriais da MST para verificar pontos de operação distintos nas curvas "V" da máquina;
- Analise as curvas "V" da MST, interpretando-as nas componentes de potência ativa/ mecânica, reativa e aparente;
- No paralelo de alternadores em rede isolada, analise os processos de regulação de tensão e frequência em resposta a variações de carga;
- No paralelo de alternadores em rede isolada, avalie os processos de repartição de carga entre alternadores, mantendo constantes a tensão e frequência da rede isolada;
- Analise o funcionamento da MST como compensador síncrono nos ensaios realizados.

TL5: Transitórios de Máquinas Elétricas

Objetivos de aprendizagem

Como resultado do trabalho laboratorial, TL5 - Transitórios de Máquinas Elétricas, pretende-se que o estudante adquira capacidades para:

- Distinguir os regimes transitórios das máquinas elétricas (ME) em estudo (ME de corrente contínua e ME síncrona trifásica), examinando o comportamento e os resultados experimentais em ensaios específicos;
- Determinar os parâmetros mecânicos de uma ME a partir do ensaio de desaceleração;
- Obter os parâmetros que caracterizam o regime dinâmico de um curto-circuito trifásico aplicado a um alternador síncrono em vazio.

Introdução

Este trabalho permite uma introdução ao funcionamento dos regimes dinâmicos das ME analisadas durante as atividades laboratoriais.

Assim, neste trabalho laboratorial é utilizado o motor de corrente contínua como exemplo para obtenção da sua equação mecânica, através dos ensaios em vazio, para determinar as perdas mecânicas, $p_{\rm mec}$, e de desaceleração para obter os parâmetros mecânicos. A equação mecânica do motor como parte do modelo matemático da máquina é fundamental para simulação e otimização do seu desempenho, e como base para estudos mais avançados em máquinas elétricas e sistemas de controlo.

A análise do regime transitório de um curto-circuito trifásico aplicado a um alternador síncrono é fundamental para o dimensionamento de equipamentos de proteção, como disjuntores e relés. Este estudo permite garantir que os dispositivos sejam capazes de suportar e interromper correntes de defeito elevadas, assegurando assim a integridade e a segurança do sistema elétrico onde a máquina síncrona esteja integrada.

Ensaios laboratoriais

Máquina de corrente contínua

• Ensaio em vazio do motor de corrente continua (utilizar excitação em derivação ou independente) para separação de perdas mecânicas e magnéticas, $p_{(\text{mec+Fe})}$;

• Ensaio de desaceleração do motor de corrente contínua para determinação dos parâmetros mecânicos: momento de inércia, J, coeficiente de atrito dinâmico, K_d , e coeficiente de atrito estático, K_e .

Máquina síncrona de polos salientes

• Ensaio do alternador à tensão nominal em vazio, submetido a um curto-circuito trifásico.

- Analisar o transitório mecânico do motor de corrente contínua, obtendo:
 - ightharpoonup o binário relativo às perdas mecânicas, T_p ;
 - ightharpoonup os parâmetros mecânicos (J,K_d,K_e) e a validação dos mesmos, estimando a curva de velocidade de desaceleração, $\omega(t)$, por amortecimento natural da máquina ensaiada.
- Analisar a envolvente da corrente do curto-circuito trifásico do alterador, determinando:
 - as correntes de curto-circuito subtransitória, transitória e de regime permanente $(I''_{cc}, I'_{cc}, I_{cc})$;
 - a corrente máxima de curto-circuito do alternador devido à componente contínua;
 - as reatâncias síncronas subtransitória, transitória e de regime permanente $(X_d'', X_d', X_d);$
 - as constantes de tempo subtransitória, transitória e da armadura (estator) (T_d'', T_d', T_a) .

ANEXO: Relatório Laboratorial

Âmbito

Objetivo do Relatório

O relatório laboratorial é um documento essencial que regista e interpreta os resultados dos ensaios experimentais. Visa documentar de forma sistemática e rigorosa o processo experimental, apresentando a metodologia utilizada, os resultados obtidos, a sua análise crítica e as conclusões relevantes para o trabalho desenvolvido, [1], [2].

Importância Académica e Profissional

- Desenvolve competências de comunicação técnico-científica;
- Treina metodologias de registo e análise de dados;
- Promove o pensamento crítico e a capacidade de interpretação;
- Prepara os estudantes para práticas profissionais em engenharia.

Estrutura

O relatório deve ter entre 15-25 páginas (conforme o número de aulas práticas), procurando a síntese e objetividade no desenvolvimento do conteúdo. A estrutura recomendada inclui os seguintes elementos, [3]:

- 1. **Título**: apresentado na folha de rosto, com outros elementos como: instituição, curso, unidade curricular, grupo de trabalho, data.
- 2. **Introdução**: tem o propósito de apresentar o contexto do trabalho (enquadramento), e estabelecer os objetivos.
 - 2.1 Enquadramento
 - 2.2 **Objetivos**
- 3. **Procedimentos de Ensaio**: essencial para descrever como o trabalho foi realizado, com detalhe suficiente para que outros possam repetir o procedimento (condução do trabalho/ ensaio). De modo a ilustrar as metodologias usadas, os esquemas de ligações e os materiais utilizados devem ser considerados, identificando o objeto de estudo.
 - 3.1 Esquema(s) de ligações
 - 3.2 Material utilizado
 - 3.3 **Condução do trabalho** (por ensaio)

ISEL\LEE\ME II Relatório Laboratorial

4. **Resultados Experimentais**: apresentar os dados e observações (em geral, na forma de tabelas e figuras) de forma objetiva, sem interpretação nesta fase.

- 5. **Análise de Resultados**: a discussão é essencial para interpretar os resultados, relacionálos com os objetivos e o enquadramento, e eventualmente com outros trabalhos ou comportamento teórico esperado.
- 6. **Conclusões**: apresenta os aspetos fundamentais, ligando-os aos objetivos do trabalho.

A estes elementos podem ainda ser considerados na estrutura do relatório, de acordo com a dimensão e complexidade do mesmo, Índice, Listas de abreviaturas/símbolos/figuras/tabelas/glossário, Resumo/*Abstract*, Bibliografia e Anexos...

Escrita Técnica

A escrita técnica deve ser clara, objetiva e precisa, facilitando a comunicação entre especialistas. Seguem orientações essenciais, [1], [2]:

- **Objetividade**: Seja direto e evite linguagem coloquial ou ambígua.
- **Clareza**: Use frases curtas e evite períodos muito longos. Prefira a voz ativa ("O grupo realizou...").
- **Organização**: Mantenha a estrutura lógica e sequencial, com títulos descritivos e numeração hierárquica.
- **Impersonalidade**: Evite opiniões pessoais e use linguagem impessoal ("Verificou-se que...").
- **Legibilidade**: Utilize fontes e tamanhos adequados, margens uniformes e espaçamento consistente.
- **Terminologia**:Utilize terminologia técnica correta e defina todas as siglas e símbolos na primeira ocorrência.
- **Esquemas Elétricos**: Assegure o uso correto da simbologia normalizada de acordo com a norma IEC 60617, [4]. Esta conformidade é essencial para a comunicação técnica precisa e universal.
- **Figuras e Tabelas**: Numere e legende todas as figuras e tabelas, indicando preferencialmente unidades do Sistema Internacional, [5].
- **Revisão**: Verifique o texto para eliminar erros ortográficos, gramaticais e de formatação.
- **Referências**: Cite todas as fontes consultadas, seguindo uma das normas internacionais, ou nacional, usuais em engenharia (IEEE, ISO 690 ou NP 405).

Ferramentas técnicas

Na redação de documentos técnicos e relatórios laboratoriais, a escolha adequada de ferramentas computacionais promove eficiência, reprodutibilidade e o rigor técnico. Recomenda-se que os grupos de trabalho selecionem as ferramentas que considerarem mais convenientes para o seu contexto específico. Apresentam-se a seguir algumas sugestões de ferramentas FOSS (*Free and Open Source Software*) compatíveis com os vários sistemas operativos (Linux, macOS, e Windows).

Tabela 1 - Ferramentas FOSS para a realização de documentos técnicos

Categoria	Ferramenta	Descrição	
	OnlyOffice,	Processadores de texto para documentos, com suporte a	
	<u>LibreOffice</u>	formatação avançada e compatibilidade	
	<u>Typst</u>	Alternativa moderna ao L ^A T _E X, com sintaxe simplificada	
Escrita,		e tipografia automática para documentos técnicos	
Edição e	Overloof	Plataforma online colaborativa para edição L ^a T _E X, con-	
Formatação	<u>Overleaf</u>	trolo de versões e modelos de documentos científicos	
	TeXstudio,		
	TeXworks,	Editores de texto para a escrita de documentos L ^A T _E X	
	<u>TeXmaker</u>		
	OnlyOffice,	As respetivas folhas de cálculo são alternativas compa-	
	<u>LibreOffice</u>	tíveis com o Microsoft Excel	
Folha de Cálculo / Gráficos	LabPlot	Análise e visualização de dados científicos com gráficos	
		2D/3D avançados e ferramentas estatísticas	
de Resultados Gnumeric		Folha de cálculo leve e precisa, instalação independente	
de Resultados	Gnumeric	sem necessidade de suite office completa	
	gnuplot	Utilitário de linha de comandos para criação de gráficos	
		2D/3D e visualização de funções matemáticas e dados	
	LibreCAD,	Aplicações de desenho assistido por computador (CAD)	
	<u>QCAD</u>	bidimensional (2D) que utilizam o formato base DXF	
	draw.io	Desenhos como esquemas, diagramas e fluxogramas,	
Desenho		com bibliotecas para facilitar a criação, com exportação	
Técnico		para SVG, PNG, JPEG, PDF, etc.	
	QElectroTech	Esquemas elétricos, eletrónicos, controlo e automação	
		e outras áreas de engenharia com uma vasta biblioteca	
		de componentes	

Categoria	Ferramenta	Descrição
Linguagens de descrição	<u>CeTZ</u>	Biblioteca Typst para ilustrações vetoriais, esquemas e
		diagramas
	<u>TikZ</u>	Biblioteca L ^A T _E X para ilustrações vetoriais, esquemas e
gráfica textuais		diagramas
		Linguagem de programação compatível com a sintaxe
	<u>Octave</u>	do MATLAB, utilizada para computação numérica e
		visualização de dados
Computação		Linguagem de programação dinâmica de elevado de-
Computação Científica e Análise Numérica	Julia	sempenho, ideal para computação científica, análise
		numérica e aplicações de engenharia
	Python	Linguagem e bibliotecas (NumPy, SciPy, SymPy) para
		cálculo numérico, simbólico e simulações científicas
	<u>Scilab</u>	Ambiente de programação para cálculo numérico com
		ferramentas para análise de dados, visualização e simu-
		lação, semelhantes ao MATLAB e Simulink

Notebooks computacionais como Ambiente Integrado

Para projetos multidisciplinares e relatórios técnicos, pode considerar-se a utilização de *notebooks* computacionais (e.g., Jupyter, Pluto, Google Colab, LabPlot) como ambiente de integração para desenvolvimento, análise e documentação. Nestes ambientes, é possível combinar código, texto, equações matemáticas, visualizações e tabelas, facilitando a reprodução dos resultados e a elaboração de relatórios técnicos claros e completos. Um exemplo de relatório laboratorial sobre máquinas elétricas no formato de *notebook* computacional pode ser consultado em [6].

Trabalho Colaborativo em Tempo Real

Entre as ferramentas recomendadas, destacam-se as seguintes plataformas que permitem trabalho colaborativo em tempo real, com edição simultânea por vários utilizadores, histórico de versões e controle de acessos:

- Typst (documentos Typst)
- Overleaf (documentos LaTeX)
- OnlyOffice, <u>CryptPad</u> (documentos, folhas de cálculo, ...)
- Draw.io (desenhos, esquemas, diagramas, fluxogramas)

 Google Colab (serviço alojado do Jupyter Notebook que não requer configuração para utilização e fornece acesso a recursos de computação, através das linguagens de programação: Python, Julia, R)

Inteligência Artificial Generativa

A Inteligência Artificial Generativa (GenAI) pode apoiar a redação e revisão de relatórios, mas a sua integração deve ser feita com **responsabilidade**, **transparência** e **sentido crítico**, [7], [8], [9].

· Trabalhar com GenAI, não através dela

- Use-a para: revisão gramatical e ortográfica, verificação ou sugestões de estrutura do relatório, esclarecimento de conceitos, organização inicial de ideias ou para brainstorming;
- Evite usar para: escrever secções inteiras do relatório, interpretar resultados experimentais, substituir a sua análise crítica e tirar conclusões científicas;
- Não perca a prática da escrita: editar texto gerado não substitui o exercício da escrita;
- Pratique o pensamento crítico: confronte, questione e valide sempre os resultados.

Transparência

► Declare sempre o uso de GenAI, explicando como foi utilizada (ex.: revisão, resumo, verificação gramatical). Exemplos de declaração:

"A revisão linguística deste relatório foi apoiada por GenAI (ex.: ChatGPT, Gemini). O conteúdo final foi validado e é assumido pelos autores."

"Recorreu-se à GenAI (Claude) para esclarecimento de terminologia técnica. A interpretação dos resultados é da responsabilidade dos autores."

Verifique e cite a informação obtida, recorrendo a fontes credíveis.

Considerações Éticas

- ► Integridade: declare sempre o uso e mantenha a equidade académica;
- Questione-se: "Isto ajuda-me a aprender ou substitui o meu pensamento?"
- Proteja dados pessoais e respeite direitos de autor.

· Autoria e Responsabilidade

• O relatório deve refletir o seu/vosso entendimento e reflexão crítica;

ISEL\LEE\ME II Relatório Laboratorial

► A GenAI não substitui a autoria nem a responsabilidade académica do(s) estudante(s), nomeadamente quanto à originalidade, validade e integridade do trabalho.

Resumo

A escrita técnica em engenharia exige clareza, rigor e organização. O uso de ferramentas técnicas adequadas, a integração de *notebooks* como ambiente integrativo, o trabalho colaborativo em tempo real e o uso responsável de inteligência artificial contribuem para a qualidade, reprodutibilidade e transparência dos relatórios técnicos. Privilegie sempre a autonomia, a reflexão crítica e a ética académica.

Referências

- [1] R. Barrass, *Students Must Write: a guide to better writing for scientists, engineers and students.* London, England: Routledge, 2003.
- [2] M. Alley, *The craft of scientific writing*, 3.° ed. New York, NY: Springer, 1996.
- [3] M. Alley, «Laboratory Reports», *Writing as an Engineer or Scientist*. Leonhard Center, Penn State, University Park, PA 16802. [Online]. Disponível em: https://www.craftofscientificwriting.org/laboratory-reports.html
- [4] «IEC 60617 Symbols». [Online]. Disponível em: https://qelectrotech.org/forum/misc.php?
 action=pun_attachment&item=2124&download=1
- [5] Bureau International des Poids et Mesures, *The International System of Units (SI): Text in English (updated in 2024)*, 9th edition. Sèvres Cedex, France: BIPM, 2024. [Online]. Disponível em: https://www.bipm.org/en/publications/si-brochure
- [6] R. Luís, «Ensaio back-to-back: Análise de potências, perdas e rendimento de máquinas CC», *Notebooks Computacionais Aplicados a Máquinas Elétricas II*. ISEL, Lisboa, Portugal, 2025. [Online]. Disponível em: https://ricardo-luis.github.io/me-2/back2backlab.html
- [7] W. Holmes, F. Miao, e UNESCO, *Guia para a IA generativa na educação e na pesquisa*. UNESCO Publishing, 2024. [Online]. Disponível em: https://unesdoc.unesco.org/ark:/48223/pf0000390241
- [8] J. F. Cohen e D. Moher, «Generative artificial intelligence and academic writing: friend or foe?», *Journal of Clinical Epidemiology*, vol. 179, p. 111646, 2025, doi: https://doi.org/10.1016/j.jclinepi.2024.111646.
- [9] M. Gerlich, «AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking», *Societies*, vol. 15, n.° 1, 2025, doi: 10.3390/soc15010006.

REA/OER | CC BY-SA 4.0

Ricardo Luís | ISEL | 2025