Diskrete Strukturen in der Informatik

Naive Mengenlehre & Relationen

PD Dr. Stefan Milius

WS 2015/2016

Organisatorisches

Modulabschluss

- erfolgreiches Lösen der Hausaufgaben !
- $\bullet \geq 50\%$ Punkte als Prüfungsvoraussetzung; gewertet werden die 6 besten Abgaben
- 60-/90-minütige benotete Abschlussklausur ergibt Modulnote
- maximal 15% Bonuspunkte durch Hausaufgaben

Hausaufgaben

- Abgabe der Hausaufgaben vor der Vorlesung
- im Notfall im Briefkasten im Raum A 514 bis 17:30 Uhr
- Übungsserien werden ab jetzt voraussichtl. Freitag Nachmittag/Abend veröffentlicht

Überblick

Inhalt

- Aussagen- und Prädikatenlogik
- Naive Mengenlehre
- Relationen und Funktionen
- Mombinatorik und Stochastik
- Algebraische Strukturen
- Bäume und Graphen
- Arithmetik

Vorlesungsziele

heutige Vorlesung

- Verallgemeinerung Vereinigung und Schnitt
- Produkt und Summe von Mengen
- Vollständige Induktion
- Open Potenzmenge

Bitte Fragen direkt stellen!

Notation

notationelle Varianten

- sind natürlich akzeptabel
- ightarrow es muss aber eindeutig verständlich bleiben

Beispiele

- $(\forall x \in X).(\exists y \in Y).(x \le y)$
- $\forall x \exists y : (x \in X \land y \in Y) \rightarrow (x \leq y)$
- $(\forall x \in X)(\exists y \in Y)$: $(x \le y)$
- ۵

Rückblick: Mengen und Operationen

Mengenlehre – Wiederholung

Notation

• $x \in X$ heißt "x ist Element der Menge X"

Negation: $x \notin X$

7 / 52

- Teilmenge $M \subseteq N$ gdw. $(\forall x \in M).(x \in N)$
- Mengeneinschränkung $\{x \in X \mid F\}$
- Vereinigung $M \cup N$, Schnitt $M \cap N$, Differenz $M \setminus N$

Stefan Milius Diskrete Strukturen WS 2015/2016

Mengenlehre - Rechenregeln

Vorsicht

- Differenz '\' entspricht nicht der logischen Implikation '→'
- $A \rightarrow B$ gdw. $\neg A \lor B$
- wir betrachten also $M^c \cup N$

Stefan Milius Diskrete Strukturen WS 2015/2016

Mengenlehre - Rechenregeln

§3.1 Theorem

Seien M, N und U Mengen, so dass $M\subseteq U$ und $N\subseteq U$. Dann gilt: (gemeinsame Grundmenge U)

$$M \setminus N = (M^{c} \cup N)^{c}$$

Beweis.

Wir wissen bereits: $(M^c \cup N)^c = (M^c)^c \cap N^c = M \cap N^c$. Es bleibt *zu zeigen* (z.zg.): $M \setminus N = M \cap N^c$.

$$M \setminus N = \{x \mid (x \in M) \land (x \notin N)\}$$
$$= \{x \mid (x \in M) \land (x \in N^{c})\}$$
$$= M \cap N^{c}$$

Grundmenge U

klassische Tautologienweitere Eigenschaften

$$A \lor \neg AA \cup A^{c} = U$$

$$((A \lor B) \land (A \to C) \land (B \to C)) \to C$$

$$(A \land (A \to B)) \to B$$

$$((A \to B) \land (B \to C)) \to (A \to C)((A \subseteq B) \land (B \subseteq C)) \to (A \subseteq C)$$

$$(A o B) \leftrightarrow (\neg B o \neg A)(A \subseteq B)$$
 gdw. $(B^c \subseteq A^c)$ $((A o B) \land (A o \neg B)) o \neg A$

$$(A \land B) \to A(A \cap B) \subseteq A$$
$$A \to (A \lor B)A \subseteq (A \cup B)$$

Notizen

- Jede Tautologie liefert die Grundmenge U beim Umschreiben von \land , \lor , \neg (nutze $A \to B$ gdw. $\neg A \lor B$)
 - Tautologie: $(A \land (A \rightarrow B)) \rightarrow B$ gdw. $\neg (A \land (\neg A \lor B)) \lor B$
 - für Mengen:

$$(A \cap (A^{c} \cup B))^{c} \cup B = A^{c} \cup (A^{c} \cup B)^{c} \cup B$$

$$= A^{c} \cup (A \cap B^{c}) \cup B$$

$$= ((A^{c} \cup A) \cap (A^{c} \cup B^{c})) \cup B$$

$$= (U \cap (A^{c} \cup B^{c})) \cup B$$

$$= A^{c} \cup B^{c} \cup B$$

$$= U$$

ullet Jede unerfüllbare Formel liefert die leere Menge \emptyset

§3.2 Theorem (Monotonie)

Seien $M \subseteq M'$ und $N \subseteq N'$. Dann gelten

$$(M \cap N) \subseteq (M' \cap N')$$
 und $(M \cup N) \subseteq (M' \cup N')$

Beweis.

- zu $(M \cap N) \subseteq (M' \cap N')$: Sei $x \in (M \cap N)$. Dann $x \in M$ und $x \in N$. Da $M \subseteq M'$ und $N \subseteq N'$ folgen $x \in M'$ und $x \in N'$. Folglich $x \in (M' \cap N')$.
- zu $(M \cup N) \subseteq (M' \cup N')$: Sei $x \in (M \cup N)$. Dann $x \in M$ oder $x \in N$. Da $M \subseteq M'$ und $N \subseteq N'$ folgt $x \in M'$ oder $x \in N'$. Folglich $x \in (M' \cup N')$.

§3.3 Theorem

Für alle Mengen M und N sind folgende Aussagen äquivalent:

- \bullet $M \subset N$
- \bigcirc $M \cap N = M$
- $M \cup N = N$

Beweis.

Durch Aguivalenz zu $0: 0 \leftrightarrow 0$ und $0 \leftrightarrow 0$

• zu $\mathbf{0} \to \mathbf{0}$ und $\mathbf{0} \to \mathbf{0}$: Da $M \subseteq N$ folgt durch Monotonie

$$M = M \cap M \subseteq M \cap N$$
 und $M \cup N \subseteq N \cup N = N$

 $(\S 3.2)$

Trivialerweise $M \cap N \subseteq M$ und $N \subseteq M \cup N$.

• zu $2 \rightarrow 1$ und $3 \rightarrow 1$:

$$M = M \cap M \subset M$$

$$M = M \cap N \subseteq N$$
 und $M \subseteq M \cup N = N$

Verallgemeinerung: Vereinigung und Schnitt

Bemerkungen

Vereinigung und Schnitt bisher nur zweistellig

- (zwei Argumente)
- ightarrow Verallgemeinerung für beliebig viele Argumente

§3.4 Definition

Sei I eine Menge und M_i eine Menge für jedes $i \in I$

- $\bigcup_{i \in I} M_i = \{x \mid \text{es existiert } i \in I, \text{ so dass } x \in M_i\}$ = $\{x \mid (\exists i \in I).(x \in M_i)\}$
- $\bullet \bigcap_{i \in I} M_i = \{x \mid \text{für alle } i \in I \text{ gilt } x \in M_i\} \\
 = \{x \mid (\forall i \in I).(x \in M_i)\}$

Beispiele

- für jede Menge M gilt: $M = \bigcup_{m \in M} \{m\}$
- geschlossenes Interval [u, o] für $u, o \in \mathbb{R}$ mit $u \le o$

$$[u,o] = \{r \in \mathbb{R} \mid u \le r \le o\}$$

ullet es gilt $\mathbb{R}=igcup_{n\in\mathbb{N}}[-n,n]=igcup_{r\in\mathbb{R}_{>0}}[-r,r]$

Beweis.

Durch Ringinklusion: $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{>0}} [-r, r] \subseteq \mathbb{R}$

- zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n = \lceil |r| \rceil$ (aufrunden; i.e., $|r| \le n$). Dann gilt $-n \le r \le n$ und damit $r \in [-n, n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n, n]$.
- zu $\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq\bigcup_{r\in\mathbb{R}>0}[-r,r]$: trivial, da $\mathbb{N}\subseteq\mathbb{R}_{\geq0}$
- zu $\bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$: $[-r, r] \subseteq \mathbb{R}$ für alle $r \in \mathbb{R}_{\geq 0}$

Beispiel

• Sei $r \in \mathbb{R}_{\geq 0}$ eine reelle Zahl. Dann ist

$$\bigcap_{x \in \mathbb{R}_{>0}} [r - x, r + x] = \{r\}$$

Beweis.

Durch beidseitige Inklusion.

$$_{,,,}\supseteq$$
": $\{r\}\subseteq [r-x,r+x]$ gilt für alle $x\in\mathbb{R}_{\geq 0}$.

"⊆": Zeige durch Kontraposition:

für alle
$$y \in \bigcap_{x \in \mathbb{R}_{>0}} [r - x, r + x]$$
 gilt $y \in \{r\}$ (gdw. $y = r$).

Es sei $y \neq r$. Wähle x mit 0 < x < |y - r|.

Dann gilt $y \notin [r-x, r+x]$ und daher $y \notin \bigcap_{x \in \mathbb{R}_{>0}} [r-x, r+x]$.

§3.4 Notationsvarianten

- $\bigcup_{i=u}^{o} M_i = \bigcup_{i \in I} M_i$ und $\bigcap_{i=u}^{o} M_i = \bigcap_{i \in I} M_i$ für $I = \{u, u+1, \dots, o\} \subseteq \mathbb{N}$ (bekannt von \sum und \prod)
- $\bigcup \{M_i \mid i \in I\} = \bigcup_{i \in I} M_i \text{ und } \bigcap \{M_i \mid i \in I\} = \bigcap_{i \in I} M_i$

Sonderfälle

- $\bigcup_{i \in \emptyset} M_i = \emptyset$
- $\bigcap_{i \in \emptyset} M_i = U$ für Universum U

(oder undefiniert)

Beispiele

- $\bullet \bigcup \{\{1, 3, 5\}, \{1, 2, 3\}, \{2, 3, 5\}\} = \{1, 2, 3, 5\}$

gleiche Mengen		Bezeichnung
$M \cap (\bigcup_{i \in I} M_i)$	$\bigcup_{i\in I}(M\cap M_i)$	Distributivität von ∩
$M \cup \left(\bigcap_{i \in I} M_i\right)$	$\bigcap_{i\in I}(M\cup M_i)$	Distributivität von \cup
$\bigcap_{i\in I} A$	Α	Idempotenz von \bigcap ; $I \neq \emptyset$
$\bigcup_{i\in I} A$	Α	Idempotenz von \bigcup ; $I \neq \emptyset$
$\left(\bigcap_{i\in I}M_i\right)^{c}$	$\bigcup_{i\in I}M_i^c$	$\operatorname{DEMorgan} ext{-}\operatorname{Gesetz}\operatorname{f\"ur}\bigcap$
$\left(\bigcup_{i\in I}M_i\right)^{c}$	$\bigcap_{i\in I}M_i^c$	${ t DEMORGAN ext{-}\sf Gesetz}$ für ${ t igcup}$

Produkt und Summe von Mengen

Mengenprodukt

§3.5 Definition (Mengenprodukt)

Es seien M und N Mengen sowie $m \in M, n \in N$.

Das geordnete Paar aus m und n ist die Menge

$$(m,n) = \{\{m\},\{m,n\}\}\$$
,

Das (kartesische) Produkt $M \times N$ ist definiert durch

$$M \times N = \{(m,n) \mid m \in M, n \in N\} ,$$

die Menge aller geordneten Paare von Elementen aus M und N.

Notizen

- $\{m, n\}$ $(\neq (m, n))$ heißt auch ungeordnetes Paar aus m und n
- Reihenfolge relevant; $(m, n) \neq (n, m)$, falls $m \neq n$
- Aber: $\{m, n\} = \{n, m\}$

Mengenprodukt

Beispiele

- sei $M = \{1, 2, 3\}$ und $N = \{1, 3\}$ $M \times N = \{(1,1), (1,3), (2,1), (2,3), (3,1), (3,3)\}$
- seien $M_1 = [2,3]$, $M_2 = [6,7]$ und N = [2,3]

• sei F die Menge der FACEBOOK-Nutzer

 $\{(x, y) \in F \times F \mid x \text{ ist FACEBOOK-Freund von } y\}$

Mengenlehre – Disjunktheit

§3.6 Definition

Zwei Mengen M und N heißen disjunkt gdw. $M \cap N = \emptyset$.

Beispiele

- {1, 2, 3} und {2, 4, 6} sind nicht disjunkt
- {1, 2, 3} und {4, 5, 6} sind disjunkt
- Man kann zwei Mengen M und N immer "disjunkt machen":

§3.7 Theorem

Für beliebige Mengen M und N sind $M \times \{1\}$ und $N \times \{2\}$ disjunkt.

Beispiel

Für $\{a, b\}$ und $\{b, c\}$ sind disjunkt:

$$\{a,b\} \times \{1\} = \{(a,1),(b,1)\}$$
 und $\{b,c\} \times \{2\} = \{(b,2),(c,2)\}$

Mengenlehre – Disjunktheit

§3.7 Theorem

Für beliebige Mengen M und N sind $M \times \{1\}$ und $N \times \{2\}$ disjunkt.

Beweis.

Zu zeigen: $M \times \{1\} \cap N \times \{2\} = \emptyset$.

Sei $m \in M$. Dann gilt $(m,1) \in M \times \{1\}$ aber $(m,1) \notin N \times \{2\}$.

Also ist liegt kein Element von $M \times \{1\}$ in $N \times \{2\}$.

Analog liegt kein Element von $N \times \{2\}$ in $M \times \{1\}$.

 Stefan Milius
 Diskrete Strukturen
 WS 2015/2016
 25 / 52

Mengenlehre – Disjunkte Vereinigung

§3.8 Definition

Die disjunkte Vereinigung zweier Mengen M und N ist die Menge

$$M \uplus N = (M \times \{1\}) \cup (N \times \{2\}).$$

(Notation auch: M + N.)

Beispiel

Für $M = \{a, b, c\}$ und $N = \{b, c, d\}$ gilt

$$M \uplus N = \{(a,1),(b,1),(c,1),(b,2),(c,2),(d,2)\}.$$

Notiz

Die disjunkte Vereinigung liegt in einer anderen Grundmenge.

Wenn $M, N \subseteq U$ wobei U Grundmenge dann

$$M \times \{1\}, N \times \{2\}, M \uplus N \subset U \times \{1, 2\}.$$

Diskrete Strukturen

Mengenlehre – Kardinalität

§3.9 Definition (naive Kardinalität)

Eine Menge *M* ist endlich, falls sie endlich viele Elemente hat.

- Falls M endlich ist, dann ist |M| die Anzahl ihrer Elemente
- Falls M unendlich (nicht endlich) ist, dann schreiben wir $|M| \ge \infty$

(zunächst)

27 / 52

Rechenregeln

Es gelten:

- $|\emptyset| = 0$
- $|\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}| = 3???$
- $|M \times N| = |M| \cdot |N|$
- $\bullet |M \uplus N| = |M| + |N|$
- $M \subseteq N \implies |M| \le |N|$

§3.10 Theorem

Für alle endlichen Mengen M und N gilt

$$\max(|M|, |N|) \le |M \cup N| \stackrel{(\dagger)}{\le} |M| + |N|$$
,

mit Gleichheit bei (‡) gdw. M und N disjunkt sind.

Beweis.

- **1** Da $M \subseteq M \cup N$ und $N \subseteq M \cup N$ gelten
 - $|M| \leq |M \cup N|$ und $|N| \leq |M \cup N|$;
 - also auch $\max(|M|, |N|) \leq |M \cup N|$.
- **2** Es gilt: $|M \cup N| = |M| + |N| |M \cap N| \le |M| + |N|$.
- **3** Wenn $M \cap N = \emptyset$, dann gilt $|M \cap N| = 0$.

Also
$$|M \cup N| = |M| + |N|$$
.

Zwischenfrage

Frage

Formulieren Sie das entsprechende Resultat für den Schnitt!

$$\cdots \leq |M \cap N| \leq \cdots$$

$$0 \le |M \cap N| \le \min(|M|, |N|)$$

Stefan Milius Diskrete Strukturen WS 2015/2016

Vollständige Induktion

§3.11 Theorem (Prinzip der vollständigen Induktion)

Sei F(x) eine Aussagenschablone mit einer Variable x. Gelten

- 1 Induktionsanfang (IA): F(0) und
- **2** Induktionsschritt (IS): $F(n) \rightarrow F(n+1)$ für alle $n \in \mathbb{N}$,

 $(\forall n \in \mathbb{N}).(F(n) \to F(n+1))$

dann gilt F(x) für alle $x \in \mathbb{N}$.

 $(\forall x \in \mathbb{N}).F(x)$

Notizen

- \bullet F(0) gilt offensichtlich gem. Induktionsanfang
- ullet daraus folgt gem. Induktionsschritt dann F(1)
- woraus gem. Induktionsschritt F(2) folgt, etc.
- im Induktionsschritt (IS) heißen:
 - F(n) die Induktionshypothese (IH) oder -voraussetzung
 - F(n+1) die Induktionsbehauptung (IB)

IA

IS

Beispiel (Summenformel von GAUSS)

- Aussage: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ für alle $n \in \mathbb{N}$
- Induktionsanfang: $\sum_{i=1}^{0} i = 0 = \frac{0.1}{2}$
- Induktionshypothese: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- Induktionsbehauptung: zu zeigen: $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$
(IH)

Carl Friedrich Gauss (* 1777; † 1855)

- dtsch. Mathematiker, Astronom und Physiker
- Integralsätze & Glockenkurve
- Formel zur Berechnung von Ostern

Mengenlehre - Starke Induktion

Manchmal reicht im Induktionsschritt die Induktionshypothese F(n) nicht aus, um die Induktionsbehauptung F(n+1) zu beweisen.

§3.12 Theorem (Prinzip der vollständigen Induktion)

Sei F(x) eine Aussagenschablone mit einer Variable x. Gelten

- 1 Induktionsanfang (IA): F(0) und
- **2** Induktionsschritt (IS): für alle $n \in \mathbb{N}$ gilt:

wenn F(k) für alle k < n gilt, dann gilt auch F(n).

$$(\forall n \in \mathbb{N}). (\forall (k < n).F(k)) \rightarrow F(n))$$

dann gilt F(x) für alle $x \in \mathbb{N}$.

$$(\forall x \in \mathbb{N}).F(x)$$

Mengenlehre - Starke Induktion

Notizen

- Im Vergleich zur "normalen" vollständigen Induktion hat die Implikation im Induktionsschritt eine stärkere Voraussetzung: statt nur F(n) hat man F(0), F(1), F(2), . . . F(n) zur Verfügung
- Eine ähnliche Überlegung wie vorher zeigt, dass dies ein korrektes Beweisprinzip ist:
 - F(0) gilt gemäß Induktionsanfang
 - ullet daraus folgt gemäß Induktionschritt F(1)
 - ullet aus F(0) und F(1) folgt gemäß Induktionsschritt F(2)
 - aus F(0), F(1), F(2) folgt gemäß Induktionsschritt F(3)
 - usw.

Mengenlehre - Starke Induktion

Beispiel

Aussage: Jede natürliche Zahl n > 1 lässt sich als Produkt von Primzahlen schreiben. F(x) = x + 2 ist Produkt von Primzahlen

Beweis.

Durch starke Induktion:

- **1** Induktionsanfang: n = 2 ist Primzahl (ein Produkt mit einem Faktor)
- 2 Induktionsschritt: Sei n > 2.
 - 1. Fall: n Primzahl. Dann fertig, denn n ist Produkt mit einem Faktor.
 - 2. Fall: n nicht Primzahl. Dann ist $n = a \cdot b$ mit a, b < n.

Wegen Induktionsvoraussetzung gilt:

$$a = p_1 \cdot p_2 \cdot \cdots \cdot p_k$$
 und $b = q_1 \cdot q_2 \cdot \cdots \cdot q_\ell$.

mit Primzahlen $p_1, \ldots, p_k, q_1, \ldots, q_k$.

Dann ist $n = p_1 \cdot \cdots \cdot p_k \cdot q_1 \cdot \cdots \cdot q_\ell$ Produkt von Primzahlen.

37 / 52

Mengenlehre – Vollständige Induktion

Grund für die Wirksamkeit dieses Beweisprinzips: Induktiver Aufbau der Menge $\mathbb N$ durch die Definition:

- $0 \in \mathbb{N}$
- ② Ist $n \in \mathbb{N}$, so ist auch $n+1 \in \mathbb{N}$.
- ullet Außer den Elementen gemäß 1. und 2. enthält $\mathbb N$ keine weiteren Elemente.

(Drittens wird im Folgenden nicht explizit angegeben!)

Definition legt Erzeugungsmechanismus für alle Elemente von $\mathbb N$ fest, der bei einem Induktionsbeweis der Aussage

"
$$F(n)$$
 gilt für alle $n \in \mathbb{N}$ "

widergespiegelt wird.

- auch andere Mengen M sind induktiv definierbar
- Schema:
 - Explizite Angabe von einigen Elementen von M
 - **2** Regeln zur Erzeugung weiterer Elemente $y \in M$ aus vorhandenen $x_1, ..., x_k \in M$.

Beispiel 1

Induktive Definition einer Menge $N \subseteq \mathbb{N} \times \mathbb{N}$

- **1** $(0,0) \in N \text{ und } (1,1) \in N.$
- **2** Falls $(m, n) \in N$, so $(m + 2, n) \in N$.
- **3** Falls $(m, n) \in N$, so $(m, n + 2) \in N$.

Beispiel 2

Sei M eine Menge. Induktive Definition der Menge M^{\triangle} der Binärbäume mit Knotenmarkierungen in M:

 \bullet $a \in M^{\triangle}$ für alle a aus M

(liefert Bäume

(a)

3 Falls $a \in M$ und $x, y \in M^{\triangle}$, so $(a, x, y) \in M^{\triangle}$:

Mathematische Beweismethode, die eine Aussage für alle Elemente einer induktiv definierten Menge M beweist.

(Verallgemeinerung der vollständigen Induktion.)

Prinzip:

- Gegeben: Aussagenschablone F(x) mit Variable x informell: F(x) ist eine Eigenschaft von Elementen von M
- Um $(\forall x \in M).F(x)$ für alle $x \in M$ zu beweisen:
 - **1 Induktionsanfang:** beweise F(m) gilt für alle (in der induktiven Definition on M) explizit angegebenen Elemente $m \in M$.
 - **2 Induktionsschritt:** beweise für jede Regel, mit der $n \in M$ aus m_1, \ldots, m_k erzeugt werden kann:

falls
$$F(m_1), \ldots, F(m_k)$$
 gelten, so gilt auch $F(n)$.

3 Induktionsschluss: aus den Punkten 1. und 2. folgt, dass F(m) für alle $m \in M$ gilt.

Beispiel

- Induktive Definition einer Menge $N \subseteq \mathbb{N} \times \mathbb{N}$
 - **1** $(0,0) \in N$ und $(1,1) \in N$.
 - **2** Falls $(m, n) \in N$, so $(m + 2, n) \in N$.
 - **3** Falls $(m, n) \in N$, so $(m, n + 2) \in N$.
- Behauptung: Für alle $(m, n) \in N$ gilt:

m + n ist durch 2 teilbar.

Beweis.

Durch strukturelle Induktion:

Induktionsanfang:

Element $(0,0) \in N$: 0+0=0 durch 2 teilbar.

Element $(1,1) \in N$: 1+1=2 durch 2 teilbar.

Induktionsschritt:

Induktionsvoraussetzung:

für
$$(m, n) \in N$$
 sei $m + n$ durch 2 teilbar.

Dann gilt für

Element
$$(m+2, n) \in N$$
:

Es ist
$$(m+2) + n = (m+n) + 2$$
 durch 2 teilbar.

Element
$$(m, n+2) \in N$$
:

Es ist
$$m + (n+2) = (m+n) + 2$$
 durch 2 teilbar.

Beispiel

Man betrachte die Mengen M^{\triangle} der Binärbäume über M.

Für $t \in M^{\triangle}$ seien

- #t die Anzahl der Knoten von t und
- h(t) die Höhe des Baumes t.

Aussage: Für alle Binärbäume $t \in M^{\triangle}$ gilt: $\#t \leq 2^{h(t)+1} - 1$.

Aussage: Für alle Binärbäume $t \in M^{\triangle}$ gilt: $\#t \leq 2^{h(t)+1} - 1$.

Beweis.

Durch strukturelle Induktion:

1 Induktionsanfang: Sei $a \in M \subseteq M^{\triangle}$.

Dann gelten: #a = 1 und h(a) = 0.

Also gilt: $\#a = 1 = 2 - 1 = 2^{0+1} - 1 = 2^{h(m)+1}$.

2 Induktionsschritt: Seien $a \in M$ und $s, t \in M^{\triangle}$. Dann gelten:

$$\#(a, s, t) = 1 + \#s + \#t$$
 und $h(a, s, t) = 1 + \max\{h(s), h(t)\}.$

Setze $k = \max\{h(s), h(t)\}$. Dann gilt:

$$\#(a, s, t) = 1 + \#s + \#t \le 1 + (2^{h(s)+1} - 1) + (2^{h(t)+1} - 1)$$
$$\le 2^{k+1} + 2^{k+1} - 1 = 2 \cdot 2^{k+1} - 1$$
$$= 2^{(1+k)+1} - 1 = 2^{h(a, s, t)+1} - 1.$$

Potenzmenge

§3.13 Definition (Potenzmenge)

Sei M eine Menge. Dann ist die Potenzmenge $\mathcal{P}(M)$ die Menge

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

aller Teilmengen von M

Beispiele

- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
- $\mathcal{P}(\{1, 2, 3\})$ ist die Menge

 $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Zwischenfrage

Was ist $\mathcal{P}(\{a,\{b,c\}\})$?

§3.14 Theorem

weil

Sei M eine endliche Menge. Dann gilt $|\mathcal{P}(M)| = 2^{|M|}$.

Beweis.

per vollständiger Induktion über |M|:

- IA: Die einzige Menge M mit |M|=0 ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- IS: Sei M eine Menge, so dass |M|=n+1 für ein $n\in\mathbb{N}$. Wähle $x\in M$ beliebig. Dann ist

$$\mathcal{P}(M) = \mathcal{P}(M \setminus \{x\}) \cup \{N \cup \{x\} \mid N \in \mathcal{P}(M \setminus \{x\})\}$$
$$\mathcal{P}(M \setminus \{x\}) = \{N \subseteq M \mid x \notin M\},$$
$$\{N \cup \{x\} \mid N \in \mathcal{P}(M \setminus \{x\})\} = \{N \subseteq M \mid x \in N\}.$$

Wegen der Disjunktheit der beiden "Summanden" gilt

$$|\mathcal{P}(M)| = 2 \cdot |\mathcal{P}(M \setminus \{x\})| = 2 \cdot 2^{|M|-1} = 2^{|M|}$$
,

wobei $|\mathcal{P}(M \setminus \{x\})| = 2^{|M|-1}$ per Induktionshypothese.

49 / 52

§3.15 Theorem

Es gelten die folgenden Mengenbeziehungen:

 $(,, \supseteq$ " gilt im Allg. nicht!)

Beweis.

Durch Äquivalenzkette:

$$S \in \mathcal{P}(M \cap N)$$
 gdw. $S \subseteq M \cap N$ gdw. $S \subseteq M$ und $S \subseteq N$ gdw. $S \in \mathcal{P}(M)$ und $S \in \mathcal{P}(N)$ gdw. $S \in \mathcal{P}(M) \cap \mathcal{P}(N)$

2 Schlusskette (mit Äquivalenzen):

Setting Shette (init Addivatelizer):
$$S \in \mathcal{P}(M) \cup \mathcal{P}(N)$$
) gdw. $S \in \mathcal{P}(M)$ oder $S \in \mathcal{P}(N)$ gdw. $S \subseteq M$ oder $S \subseteq N$ impliziert $S \subseteq M \cup N$ gdw. $S \in \mathcal{P}(M \cup N)$

Gegenbeispiel

Die Mengenbeziehung $\mathcal{P}(M \cup N) \subseteq \mathcal{P}(M) \cup \mathcal{P}(N)$ gilt nicht!

Betrachte $M = \{a, b\}$ und $N = \{b, c\}$.

Dann gilt $\{a, c\} \subseteq M \cup N$; also $\{a, c\} \in \mathcal{P}(M \cup N)$ gilt.

Aber weder $\{a,c\}\subseteq M$ noch $\{a,c\}\subseteq N$ gelten.

Also $\{a, c\} \notin \mathcal{P}(M) \cup \mathcal{P}(N)$.

Zusammenfassung

- Verallgemeinerung Vereinigung und Schnitt
- Produkte und Summen von Mengen
- Vollständige Induktion
- Potenzmenge

Zweite Übungsserie ist bereits im OLAT.