Cycle cardiaque

Démarrer le module

Objectifs

- Interpréter à l'aide d'une courbe la chronologie des modifications mécaniques, électriques et hémodynamiques au cours d'un cycle cardiaque
- Préciser sur une courbe pression-volume du ventricule gauche les événements et les valeurs des différentes phases délimitant le travail cardiaque

Le cycle cardiaque est divisé en deux phases principales:

- période de contraction ventriculaire et d'éjection sanguine : systole
- période de relaxation ventriculaire et de remplissage sanguin : diastole

A une fréquence cardiaque de 72 battements /min, chaque cycle cardiaque dure environ 0,8 s avec 0,3 s pour la systole et 0,5 s pour la diastole.

Systole

Introduction

- 1- Période de contraction ventriculaire isovolumétrique
- 2- Période d'éjection ventriculaire

La systole est subdivisée en deux périodes :

- période de contraction ventriculaire isovolumétrique
- période d'éjection ventriculaire

1- Période de contraction ventriculaire isovolumétrique

Elle représente la première partie de la systole où les ventricules se contractent, toutes les valves cardiaques étant fermées et le sang ne pouvant être éjecté.

Le volume ventriculaire reste donc constant et le muscle développe une tension mais ne se raccourcit pas.

2- Période d'éjection ventriculaire

Lorsque la pression dans les ventricules dépasse celle de l'aorte et du tronc pulmonaire, les valves aortiques et pulmonaires s'ouvrent débutant la période d'éjection ventriculaire.

Les fibres musculaires ventriculaires contractées expulse le sang des ventricules vers l'aorte et le tronc pulmonaire.

Le volume de sang éjecté par chaque ventricule est appelé volume d'éjection (VES).

Diastole

Introduction

- 1- Période de relaxation ventriculaire isovolumétrique
- 2- Période de remplissage ventriculaire

La diastole est subdivisée en deux périodes:

- période de relaxation ventriculaire isovolumétrique
- période de remplissage ventriculaire

1- Période de relaxation ventriculaire isovolumétrique

Les ventricules se relâchent et les valves aortique et pulmonaires se ferment. Les valves auriculo-ventriculaires (AV) sont également fermées. Le volume ventriculaire reste constant.

2- Période de remplissage ventriculaire

L'ouverture des valves AV provoque le début du remplissage ventriculaire avec le sang provenant des oreillettes.

La contraction auriculaire survient en fin de diastole alors que le remplissage ventriculaire est presque achevé (80% du remplissage).

Modifications mécaniques, hémodynamiques et électriques au cours du cycle cardiaque

Introduction

- 1- De la mésodiastole à la télédiastole : Remplissage ventriculaire
- 2- Systole ventriculaire
- 3-Protodiastole : relaxation isovolumétrique

La description concernera les modifications de pression et de volume à l'origine des événements survenant dans l'oreillette gauche, le ventricule gauche et l'aorte au cours :

- de la mésodiastole à la télédiastole
- de la systole ventriculaire
- de la protodiastole

Les mêmes modifications sont observées du côté droit du cœur à l'exception des niveaux de pression.

1- De la mésodiastole à la télédiastole : Remplissage ventriculaire

mésodiastole : milieu de la diastole

télédiastole : fin de la diastole

CYCLE CARDIAQUE

- 1-L'oreillette et le ventricule gauches sont relaxés avec une légère élévation de la pression auriculaire.
- 2- La valve AV est ouverte laissant passer le sang de l'oreillette vers le ventricule.
- 3-4- La valve aortique reste fermée pendant toute la diastole car la pression aortique est supérieure à la pression ventriculaire, mais tend à diminuer pendant la diastole.

Vander-physiologie humaine-6ème édition

CYCLE CARDIAQUE

- 5- L'arrivée du sang à partir de l'oreillette dans le ventricule entraîne une légère augmentation de la pression ventriculaire d'où augmentation du volume ventriculaire. 6- A la fin de la diastole, le nœud sinusal
- décharge d'où dépolarisation de l'oreillette et apparition de l'onde P à l'ECG.
- 7- 8- La contraction de l'oreillette qui en résulte entraîne une augmentation de la pression auriculaire avec passage d'un petit volume de sang supplémentaire dans le ventricule.
- 9- A la fin de la diastole ventriculaire, le volume de sang dans le ventricule constitue le volume maximal que ce dernier peut renfermer. Il est appelé volume télédiastolique (VTD).

 Vander- physiologie humaine-6ème étal.

2- Systole ventriculaire

Le ventricule qui jusque là était relâché pendant son remplissage, commence à se contracter immédiatement

après la contraction auriculaire.

CYCLE CARDIAQUE

10- L'onde de dépolarisation passe dans le ventricule grâce au nœud auriculoventriculaire et s'y propage d'où l'apparition du complexe QRS à l'ECG. Le ventricule se contracte.

11- Cette contraction ventriculaire entraîne une augmentation très rapide et immédiate de la pression ventriculaire dépassant la pression auriculaire.

12- Il s'ensuit une fermeture de la valve AV.
13- La pression aortique reste supérieure à la pression ventriculaire, la valve aortique reste fermée. Le ventricule ne peut pas se vider : toutes les valves sont fermées.
C'est la phase de contraction ventriculaire isovolumétrique.

Vander- physiologie humaine-6ème éd

CYCLE CARDIAQUE

14- La pression ventriculaire dépasse la pression aortique mettant fin à la contraction ventriculaire isovolumétrique.

15-16- La valve aortique est ouverte, d'où éjection ventriculaire. L'éjection est d'abord rapide puis diminue.

17- La quantité de sang restant dans le ventricule à la fin de la systole détermine le volume télésystolique (VTS).

Vol. d'éjection = vol. télédiastolique - vol. télésystolique 70 ml = 135 ml - 65 ml

(vol. = volume)

Vander- physiologie humaine-6ème édition

CYCLE CARDIAQUE

18- Quand le sang s'écoule dans l'aorte, la pression aortique s'élève parallèlement avec la pression ventriculaire.

19-Les pics de pression ventriculaire et aortique sont atteints avant la fin de l'éjection ventriculaire.

20-21- En dernière partie de la systole, la force de contraction ventriculaire diminue aboutissant à une baisse de la vitesse d'éjection du sang d'où chute du volume et de la pression aortiques.

Vander- physiologie humaine-6ème édition

3-Protodiastole: relaxation isovolumétrique

La phase de la diastole débute avec la relaxation du muscle ventriculaire et la fin de l'éjection.

CYCLE CARDIAQUE

22-L'apparition de l'onde T à l'ECG correspond au déclenchement de la repolarisation ventriculaire.

23- Au cours de la relaxation ventriculaire, la pression ventriculaire chute au deçà de la pression aortique qui reste significativement élevée avec fermeture de la valve aortique. Le sang rebondissant contre la valve provoque une baisse puis un rebond de la pression aortique donnant un aspect appelé encoche dicrote. 24- Les valves aortique et AV étant fermées, c'est la phase de relaxation ventriculaire isovolumétrique.

Vander- physiologie humaine-6ème éditi

CYCLE CARDIAQUE

25- La phase de relaxation ventriculaire isovolumétrique s'achève avec une baisse de la pression ventriculaire au dessous de la pression auriculaire.

26-27- La valve AV s'ouvre avec écoulement du sang de l'oreillette vers le ventricule. 28- La vitesse du débit sanguin est augmentée à la phase initiale du remplissage par chute rapide de la pression ventriculaire.

Vander- physiologie humaine-6ème édition

Courbe pression-volume du ventricule gauche : travail cardiaque

Introduction
Courbe pression -volume du ventricule gauche

Le cycle du ventricule gauche peut être représenté sur un diagramme pression-volume.

Courbe pression -volume du ventricule gauche

CYCLE CARDIAQUE

Courbe pression-volume du ventricule gauche

Au début de la systole, la valve mitrale étant fermée, la pression augmente sans modifications du volume : c'est la contraction isovolumétrique.

Lorsque la pression ventriculaire dépasse la pression dans l'aorte, la valve aortique s'ouvre : c'est la phase d'éjection.

Au cours de l'éjection rapide, le volume diminue alors que la pression augmente.

Pendant l'éjection lente, le volume continue à décroître et la pression diminue.

Lorsque la pression ventriculaire devient inférieure à la pression dans l'aorte, la valve aortique se ferme.

La pression ventriculaire continue à diminuer alors que le volume ne change pas : c'est la phase de relaxation isovolumétrique.

S'ouvre ensuite la valve mitrale avec augmentation rapide du volume ventriculaire alors que la pression ventriculaire continue à baisser avant de remonter : c'est le remplissage rapide.

La surface enclose par la boucle pression-volume est égale au travail effectué par le ventricule pour éjecter le sang dans l'aorte.

Pressions de la circulation pulmonaire

Pressions du ventricule droit et des artères pulmonaires

Pressions du ventricule droit et des artères pulmonaires

Les variations de la pression du ventricule droit et des artères pulmonaires sont similaires à celles du ventricule gauche et l'aorte, mais quantitativement, elles sont différentes.

La circulation pulmonaire est un système à basse pression.

La paroi du ventricule droit est plus fine que celle du ventricule gauche mais les volumes d'éjection des deux ventricules sont identiques.

		Pressions dans la circulation systémique
Systole	25 mmHg	120 mmHg
Diastole	10 mmHg	80 mmHg

Bruits du cœur

Bruits du cœur Souffles du cœur

Bruits du cœur

Avec un stéthoscope, on perçoit deux bruits du cœur dus à la fermeture des valves.

- B1 : premier bruit du cœur, de basse tonalité, relativement longue, accompagnant la fermeture des valves AV, en début de systole.
- B2: deuxième bruit du cœur, plus intense, sec et rapide, dû à la fermeture des valves pulmonaire et aortique, en début de diastole.

Souffles du cœur

Il existe d'autres bruits appelés souffles pouvant être des signes de maladie cardiaque. Ils sont induits par des anomalies cardiaques à l'origine d'un débit sanguin turbulent. Cette turbulence du flux peut être due à un écoulement rapide du sang dans la direction habituelle à travers une valve anormalement étroite : sténose, ou par écoulement rétrograde à travers une valve endommagée et non étanche : insuffisance.