- 1. If $y = \sin^3 x$, then $\frac{dy}{dx} =$

- (A) $\cos^3 x$ (B) $3\cos^2 x$ (C) $3\sin^2 x$ (D) $-3\sin^2 x \cos x$ (E) $3\sin^2 x \cos x$
- 3. The graph of f is shown for $0 \le x \le 4$. What is the value of $\int_0^4 f(x) dx$?

- (B) 0 (C) 2 (D) 6 (E) 12

- 5. The Maclaurin series for the function f is given by $f(x) = \sum_{n=0}^{\infty} \left(-\frac{x}{4}\right)^n$. What is the value of f(3)?

 - (A) -3 (B) $-\frac{3}{7}$ (C) $\frac{4}{7}$ (D) $\frac{13}{16}$ (E) 4

- 7. If $\arcsin x = \ln y$, then $\frac{dy}{dx} =$
 - (A) $\frac{y}{\sqrt{1-x^2}}$
 - (B) $\frac{xy}{\sqrt{1-x^2}}$
 - (C) $\frac{y}{1+x^2}$
 - (D) $e^{\arcsin x}$
 - (E) $\frac{e^{\arcsin x}}{1+x^2}$
- 9. Which of the following series converge?

$$I. \sum_{n=1}^{\infty} \frac{8^n}{n!}$$

$$II. \sum_{n=1}^{\infty} \frac{n!}{n^{100}}$$

III.
$$\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$$

- (A) I only
- (B) II only (C) III only
- (D) I and III only
 - (E) I, II, and III

11. Let f be the function defined by $f(x) = \sqrt{|x-2|}$ for all x. Which of the following statements is true?

- (A) f is continuous but not differentiable at x = 2.
- (B) f is differentiable at x = 2.
- (C) f is not continuous at x = 2.
- (D) $\lim_{x \to 2} f(x) \neq 0$
- (E) x = 2 is a vertical asymptote of the graph of f.

13. What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-4)^{2n}}{3^n}$?

- (A) $2\sqrt{3}$

- (B) 3 (C) $\sqrt{3}$ (D) $\frac{\sqrt{3}}{2}$
- (E) 0

Graph of f

15. The graph of a differentiable function f is shown above. If $h(x) = \int_0^x f(t) dt$, which of the following is true?

- (A) h(6) < h'(6) < h''(6)
- (B) h(6) < h''(6) < h'(6)
- (C) h'(6) < h(6) < h''(6)
- (D) h''(6) < h(6) < h'(6)
- (E) h''(6) < h'(6) < h(6)

17. For x > 0, the power series $1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + (-1)^n \frac{x^{2n}}{(2n+1)!} + \dots$ converges to which of the following?

- (A) $\cos x$

- (B) $\sin x$ (C) $\frac{\sin x}{x}$ (D) $e^x e^{x^2}$ (E) $1 + e^x e^{x^2}$

- 19. The function f is defined by $f(x) = \frac{x}{x+2}$. What points (x,y) on the graph of f have the property that the line tangent to f at (x,y) has slope $\frac{1}{2}$?
 - (A) (0,0) only
 - (B) $\left(\frac{1}{2}, \frac{1}{5}\right)$ only
 - (C) (0,0) and (-4,2)
 - (D) (0,0) and $(4,\frac{2}{3})$
 - (E) There are no such points.
- 21. The line y = 5 is a horizontal asymptote to the graph of which of the following functions?

- (A) $y = \frac{\sin(5x)}{x}$ (B) y = 5x (C) $y = \frac{1}{x-5}$ (D) $y = \frac{5x}{1-x}$ (E) $y = \frac{20x^2 x}{1+4x^2}$
- 23. If P(t) is the size of a population at time t, which of the following differential equations describes linear growth in the size of the population?
 - (A) $\frac{dP}{dt} = 200$
 - (B) $\frac{dP}{dt} = 200t$
- (D) $\frac{dP}{dt} = 200P$
- (C) $\frac{dP}{dt} = 100t^2$
- (E) $\frac{dP}{dt} = 100P^2$
- 25. $\int_{1}^{\infty} xe^{-x^2} dx$ is

- (A) $-\frac{1}{e}$ (B) $\frac{1}{2e}$ (C) $\frac{1}{e}$ (D) $\frac{2}{e}$ (E) divergent
- 27. For what values of p will both series $\sum_{i=1}^{\infty} \frac{1}{n^{2p}}$ and $\sum_{i=1}^{\infty} \left(\frac{p}{2}\right)^n$ converge?
 - (A) -2 only
 - (B) $-\frac{1}{2} only$
 - (C) $\frac{1}{2} only$
 - (D) $p < \frac{1}{2}$ and p > 2
 - (E) There are no such values of p.

You may use a graphing calculator for the remaining questions.

Graph of f

- 29. The function f, whose graph is shown above, is defined on the interval $-2 \le x \le 2$. Which of the following statements about f is false?
 - (A) f is continuous at x = 0.
 - (B) f is differentiable at x = 0.
 - (C) f has a critical point at x = 0.
 - (D) f has an absolute minimum at x = 0.
 - (E) The concavity of the graph of f changes at x = 0.

- 31. The graph of the piecewise linear function f is shown above. What is the value of $\int_{-1}^{9} (3f(x) + 2) dx$?
 - (A) 7.5
- (B) 9.5
- (C) 27.5
- (D) 47
- (E) 48.5

- 33. The graph of f', the derivative of the function f, is shown above. Which of the following statements must be true?
 - I. f has a relative minimum at x = -3.
 - II. The graph of f has a point of inflection at x = -2.
 - III. The graph of f is concave down for 0 < x < 4.
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

- 35. What is the average value of $y = \sqrt{\cos x}$ on the interval $0 \le x \le \frac{\pi}{2}$?
 - (A) -0.637
- (B) 0.500
- (C) 0.763
- (D) 1.198
- (E) 1.882
- 37. For -1.5 < x < 1.5, let f be a function with first derivative given by $f'(x) = e^{\left(x^4 2x^2 + 1\right)} 2$. Which of the following are all intervals on which the graph of f is concave down?
 - (A) (-0.418, 0.418) only
 - (B) (-1, 1)
 - (C) (-1.354, -0.409) and (0.409, 1.354)
 - (D) (-1.5, -1) and (0, 1)
 - (E) (-1.5, -1.354), (-0.409, 0), and (1.354, 1.5)
- 39. If f'(x) > 0 for all real numbers x and $\int_4^7 f(t)dt = 0$, which of the following could be a table of values for the function f?
- (B) $\begin{bmatrix} x & f(x) \\ 4 & -4 \\ 5 & -2 \\ 7 & 5 \end{bmatrix}$
- (C) x | f(x) 4 | -4 5 | 67 | 3
- (D) $\begin{bmatrix} x & f(x) \\ 4 & 0 \\ 5 & 0 \\ 7 & 0 \end{bmatrix}$
- (E) $\begin{bmatrix} x & f(x) \\ 4 & 0 \\ 5 & 4 \\ 7 & 6 \end{bmatrix}$
- 41. The derivative of a function f is increasing for x < 0 and decreasing for x > 0. Which of the following could be the graph of f?
 - (A)

(B)

(C)

(D)

(E)

5

43. If the series $\sum_{n=1}^{\infty} a_n$ converges and $a_n > 0$ for all n, which of the following must be true?

(A)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$$

(B) $|a_n| < 1$ for all n

$$(C) \sum_{n=1}^{\infty} a_n = 0$$

- (D) $\sum_{n=1}^{\infty} na_n$ diverges.
- (E) $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.
- 45. The function h is differentiable, and for all values of x, h(x) = h(2 x). Which of the following statements must be true?

$$I. \int_0^2 h(x) dx > 0$$

II.
$$h'(1) = 0$$

III.
$$h'(0) = h'(2) = 1$$

- (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- (E) I, II, and III