Neural Network

Advanced machine learning lecture

Sommaire du cours

- Lecture 1 : Basics & linear and logistic regression
- Lecture 2 : Machine Learning Strategy
- Lecture 3 : Support Vector Machine
- Lecture 4 : Random forest & Boosting
- Lecture 5 : Neural Network
- Lecture 6 : Deep neural network & deep learning strategy
- Lecture 7 : Structuring a deep learning project
- Lecture 8 : Convolutional neural network
- ► Lecture 9 : Recurrent neural network

Summary

- ▶ I/ Introduction to deep learning
- ► II/ Neural networks Basics
- III/ Practical aspects of Deep Learning
- ► IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

I/ Introduction to deep learning

- ► I/ Introduction to deep learning
- ► II/ Neural networks Basics
- ► III/ Practical aspects of Deep Learning
- ► IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

Scale drives deep learning progress

Scale drives deep learning progress

Data

Computation

Algorithms

What is a Neural Network?

Your first neural network

II/ Neural network basics

- ► I/ Introduction to deep learning
- II/ Neural network basics
- ► III/ Practical aspects of Deep Learning
- ► IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

Neural network representation

Neural network representation

$$z_{1}^{[1]} = w_{1}^{[1]^{T}} x + b_{1}^{[1]} \quad ; \quad a_{1}^{[1]} = g(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]^{T}} x + b_{2}^{[1]} \quad ; \quad a_{2}^{[1]} = g(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]^{T}} x + b_{3}^{[1]} \quad ; \quad a_{3}^{[1]} = g(z_{3}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]^{T}} x + b_{3}^{[1]} \quad ; \quad a_{3}^{[1]} = g(z_{3}^{[1]})$$

Vectorization

$$\begin{bmatrix} z_{1}^{[1]} \\ z_{1}^{[1]} \end{bmatrix} = \begin{bmatrix} w_{1}^{[1]^{T}} x + b_{1}^{[1]} \\ w_{1}^{[1]} x + b_{1}^{[1]} \end{bmatrix}; \begin{bmatrix} a_{1}^{[1]} \\ a_{1}^{[1]} \end{bmatrix} = g(z_{1}^{[1]})$$
$$\begin{bmatrix} z_{1}^{[1]} \\ z_{3}^{[1]} \end{bmatrix} = \begin{bmatrix} w_{2}^{[1]} x + b_{2}^{[1]} \\ w_{3}^{[1]} x + b_{3}^{[1]} \end{bmatrix}; \begin{bmatrix} a_{1}^{[1]} \\ a_{2}^{[1]} \end{bmatrix} = g(z_{3}^{[1]})$$

$$\begin{bmatrix} z_{1}^{[1]} \\ z_{2}^{[1]} \\ z_{3}^{[1]} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{[1]} & w_{1,2}^{[1]} & w_{1,3}^{[1]} & w_{1,4}^{[1]} \\ w_{2,1}^{[1]} & w_{2,2}^{[1]} & w_{2,3}^{[1]} & w_{2,4}^{[1]} \\ w_{3,1}^{[1]} & w_{3,2}^{[1]} & w_{3,3}^{[1]} & w_{3,4}^{[1]} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} b_{1}^{[1]} \\ b_{2}^{[1]} \\ b_{3}^{[1]} \end{bmatrix} ; \begin{bmatrix} a_{1}^{[1]} \\ a_{2}^{[1]} \\ a_{3}^{[1]} \end{bmatrix} = g \begin{pmatrix} \begin{bmatrix} z_{1}^{[1]} \\ z_{2}^{[1]} \\ z_{3}^{[1]} \end{bmatrix} \end{pmatrix}$$

$$\begin{bmatrix} 3,1 & (3,4) & (4,1) & (3,1) \\ & & &$$

Vectorizing across multiple examples

for i = 0 to m:

$$a^{[1](i)} = g(w^{[1]^T}x^{(i)} + b)$$

$$(1,1) \qquad (1,3) \qquad (3,1) \qquad (1,1)$$

$$\hat{y}^{(i)} = a^{[2](i)} = g(w^{[2]^T}a^{[1](i)} + b)$$

$$(3,m) \qquad (3,4) \qquad (4,m) \qquad (3,1)$$

$$a^{[1]} = g(w^{[1]^T}X + b)$$

$$(1,m) \qquad (1,3) \qquad (3,m) \qquad (1,1)$$

$$\hat{y} = a^{[2]} = g(w^{[2]^T}a^{[1]} + b)$$

$$x \in \mathbb{R}^{n_x} \qquad x^{(i)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\hat{y} \in \mathbb{R}$$

$$X \in \mathbb{R}^{(n_{\chi}, m)} \quad X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ x_3^{(1)} & x_3^{(2)} & x_3^{(3)} & \dots & x_3^{(m)} \\ x_4^{(1)} & x_4^{(2)} & x_4^{(3)} & \dots & x_4^{(m)} \end{bmatrix}$$

$$\hat{y} \in \mathbb{R}^m$$

Activation function

$$z^{[1]} = w^{[1]} X + b$$

$$a^{[1]} = \sigma(z^{[1]}) \qquad g(z^{[1]})$$

$$z^{[2]} = w^{[2]} a^{[1]} + b$$

$$a^{[2]} = \sigma(z^{[2]}) \qquad g(z^{[2]})$$

Sigmoïd saturate for large values

Do not use Sigmoïd in activation function in neural network

Expect for the output layer in case of binary classification

hidden layer 1 hidden layer 2

Sigmoid activation

- Sigmoid can saturate and lead to vanishing gradients
- Not zero centered
- e^X is computationally expensive

Rectified Linear Unit (ReLU)

Pros:

ReLU does not saturate for positive values ReLU is quite fast to compute

Cons:

ReLU suffers from a problem kown as 'dying ReLU'

Leaky ReLU

Variants:

- Randomized leaky Relu (RReLU), if you neural network is overfitting.
- Parametric leaky Relu (PReLU), if you have a huge training set.

Exponential Linear Unit (ELU)

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Pros:

- It takes on negative values which allows the unit to have an average output closer to 0
- It has non zero gradient for z < 0, which avoiding dying units issue.
- It is smooth everywhere, including around z=0, which help speed up gradient descent.

Cons:

- It is slower to compute than ReLU

Activations functions tips

In general for performance:

ELU > Leaky ReLU > ReLU

If you care about runtime:

Leaky ReLU > ELU

Default:

ReLU

Gradient Descent for neural networks

Parameters:
$$w^{[1]}, n^{[0]}, \quad (n^{[1]}, 1) \quad (n^{[2]}, n^{[1]}) \quad (n^{[2]}, 1)$$

$$w^{[1]}, \quad b^{[1]}, \quad w^{[2]}, \quad b^{[2]}, \quad a^{[2]}, \quad n_x = n^{[0]}, \quad n^{[1]}, \quad n^{[2]} = 1$$

$$Cost function: \quad J(w^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}) = \frac{1}{m} \sum_{i=1}^{n} \mathcal{L}(\hat{y}, y)$$

Gradient descent:

Compute prediction
$$(\hat{y}^{(i)}, i = (1, ..., m))$$

$$\begin{aligned} dw^{[1]} &= \frac{dJ}{dw^{[1]}} db^{[1]} = \frac{dJ}{db^{[1]}}, dw^{[2]} = \frac{dJ}{dw^{[2]}}, db^{[2]} = \frac{dJ}{db^{[2]}} \\ w^{[1]} &\coloneqq w^{[1]} - \alpha dw^{[1]} \\ b^{[1]} &\coloneqq b^{[1]} - \alpha db^{[1]} \\ w^{[2]} &\coloneqq w^{[2]} - \alpha dw^{[2]} \\ b^{[2]} &\coloneqq b^{[2]} - \alpha db^{[2]} \end{aligned}$$

Forward propagation

Back propagation

Formulas for computing derivatives

Forward propagation:

$$z^{[1]} = w^{[1]^T} X + b^{[1]}$$

$$a^{[1]} = g(z^{[1]})$$

$$z^{[2]} = w^{[2]^T} a^{[1]} + b^{[2]}$$

$$a^{[2]} = g(z^{[2]})$$

Back propagation:

$$dz^{[2]} = a^{[2]} - Y Y = [y^{(1)}, y^{(2)}, ..., y^{(m)}]$$

$$dw^{[2]} = \frac{1}{m} dz^{[2]} a^{[1]^T}$$

$$db^{[2]} = \frac{1}{m} sum(dz^{[2]})$$

$$dz^{[1]} = w^{[2]^T} dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dw^{[1]} = \frac{1}{m} dz^{[1]} X^T$$

$$db^{[1]} = \frac{1}{m} sum(dz^{[1]})$$

Initialize weights to zero?

$$w^{[1]} = \begin{bmatrix} p & l \\ p & l \end{bmatrix} \leftarrow a_1^{[1]} = a_2^{[1]} \longrightarrow dz_1^{[1]} = dz_2^{[1]} \longrightarrow dw^{[1]} = \begin{bmatrix} u & v \\ u & v \end{bmatrix} \longrightarrow w^{[1]} := w^{[1]} - \alpha dw$$

Initialize weight randomly

Getting Matrix Dimensions Right

$$Z^{[1]} = w^{[1]^T} A^{[0]} + b^{[1]}$$

$$(n^{[1]}, m) (n^{[1]}, n^{[0]}) (n^{[0]}, m) + (n^{[1]}, 1)$$

$$Z^{[2]} = w^{[2]^T} A^{[1]} + b^{[2]}$$

$$(n^{[2]}, m) (n^{[2]}, n^{[1]}) (n^{[1]}, m) + (n^{[2]}, 1)$$

$$Z^{[3]} = w^{[3]^T} A^{[2]} + b^{[3]}$$

$$(n^{[3]}, m) (n^{[3]}, n^{[2]}) (n^{[2]}, m) (n^{[3]}, 1)$$

Why deep representations?

To approximate a function Deeper neural network architecture required less parameters to train than a shallower one.

$$y = x_1 XOR \ x_2 \ XOR \ x_3 \ XOR \ x_4 \ XOR \ x_5 \ XOR \ x_6 \ XOR \ \dots$$

Summary of deep learning

Forward propagation

Backward propagation

III/ Practical aspects of Deep Learning

- ► I/ Introduction to deep learning
- ► II/ Neural network basics
- III/ Practical aspects of Deep Learning
- ► IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

Deep learning a highly iterative process

layers

hidden units

Learning rates

Activation functions

•••

Train / dev / test sets

Training set Dev/validation set Test set

Data

Bias & Variance

Regularization for logistic regression

$$\min_{w,b} J(w,b)$$

$$w \in \mathbb{R}^{n_{\chi}}$$
 $b \in \mathbb{R}$

 λ =regularization parameter

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$L_2$$
 regularization

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{j=1}^{n_x} w_j^2 \quad \text{We use only } L_2$$

$$L_1$$
 regularization

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{j=1}^{n_x} |w_j|$$

Regularization for Neural Network

$$J(w^{[1]}, b^{[1]}, \dots, w^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \|W^{[l]}\|^{2}$$

$$||W^{[l]}||^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} (w_{ij}^{[l]})^2 \qquad w: (n^{[l-1]}, n^{[l]})$$

Gradient descent with regularization

$$dw^{[l]} = (from\ backprop) + \frac{\lambda}{m}w^{[l]}$$

$$w^{[l]} \coloneqq w^{[l]} - \alpha \ dw^{[l]}$$

Drop out regularization

Using drop-out you can't rely on any one feature, so have to spread out weights

Data augmentation

Enlarge your Dataset

Early stopping

Normalizing inputs

$$x' = \frac{x - \bar{x}}{\sigma}$$

Train \bar{x} and σ with your train set and save them to apply them to the dev and test set.

Vanishing and exploding gradient

When you construct a very deep neural network your gradient in the last hidden layer can be very large or be approximate to zero.

It's a huge problem because with this problem your model can not learning properly.

Exploding gradients: detection

Exploding gradients are easy to detect

Unstable learning curve

The gradients can be to large and contain NaNs and you end up with NaNs in the weights

Gradient clipping

Gradient $g = \frac{\partial L}{\partial \theta}$, θ - all the network parameters

$$if \|g\| > threshold$$

$$g \leftarrow \frac{threshold}{\|g\|}g$$

Choose the highest threshold which helps to overcome the exploding gradient problem

Gradient clipping

Weight Initialization for relu activation

To avoid exploding gradient, for large n, we want w_i small.

$$Var(w_i) = \frac{2}{n}$$

$$w^{[L]} = np.random.rand(w^{[l]}.shape) * np.sqrt(\frac{2}{n^{[L-1]}})$$

Gradient checking

$$f'(w) = \lim_{\varepsilon \to 0} \frac{f(w + \varepsilon) - f(w - \varepsilon)}{2\varepsilon}$$

$$\frac{f(w+\varepsilon)-f(w-\varepsilon)}{2\varepsilon}\approx g(w)$$

$$\frac{(1.01)^3 - (0.99)^3}{2(0.01)} = 3.0001$$

$$g(1) = 3w^2 = 3$$

approx error: 0.0001

Gradient checking

$$J(\theta) = J(\theta_1, \theta_2, \theta_3, \dots)$$

For each i:

$$d\theta approx [i] = \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_i + \varepsilon, \dots) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_i - \varepsilon, \dots)}{2\varepsilon}$$

$$d\theta approx [i] \approx \frac{\partial J}{\partial \theta_i}$$

Check
$$\frac{\|\mathrm{d}\theta approx - \mathrm{d}\theta\|_2}{\|\mathrm{d}\theta approx\|_2 + \|\mathrm{d}\theta\|_2} \approx 10^{-7}$$

If check $\geq 10^{-5}$ your implementation of gradient can have some problems.

Gradient checking

- Don't use in training only to debug.
- If algorithm fails grad check, look at components to try to identify bug.
- Remember regularization
- Doesn't work with dropout
- Run at random initialization

III/ Practical aspects of Deep Learning

- ► I/ Introduction to deep learning
- ► II/ Neural network basics
- ► III/ Practical aspects of Deep Learning
- IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

Batch vs mini-batch gradient descent

Batch vs mini-batch gradient descent

Batch gradient descent

Batch too large:

Too long per iteration

Mini-batch gradient descent

Batch too small:

Loose speeding from vectorization

Use a power of 2 and make sure that your mini batch match your GPU memory

Exponentially weighted Averages

Gradient descent with momemtum

On iteration t:

Compute dw, db on current mini-batch

$$V_{dw} \coloneqq \beta \ V_{dw} + (1 - \beta) \ dw$$

$$V_{db} \coloneqq \beta \ V_{db} + (1 - \beta) \ db$$

$$W \coloneqq W - \alpha V_{dw}$$

$$b \coloneqq b - \alpha V_{db}$$

 $\beta=0.9$ in most of the case but you can change it It can be an hyperparameter.

RMSProp

On iteration t:

Compute dw, db on current mini-batch

$$S_{dw} := \beta S_{dw} + (1 - \beta) dw^{2}$$

$$S_{db} := \beta S_{db} + (1 - \beta) db^{2}$$

$$W := W - \alpha \frac{dw}{\sqrt{S_{dw}}}$$

$$b := b - \alpha \frac{db}{\sqrt{S_{db}}}$$

Adam optimization

$$V_{dw} = 0$$
, $S_{dw} = 0$, $V_{db} = 0$, $S_{db} = 0$

On iteration t:

Compute dw, db on current mini-batch

$$V_{dw} \coloneqq \beta_1 \ V_{dw} + (1 - \beta_1) \ dw$$

$$V_{db} \coloneqq \beta_1 \ V_{db} + (1 - \beta_1) \ db$$

$$S_{dw} \coloneqq \beta_2 \ S_{dw} + (1 - \beta_2) \ dw^2$$

$$S_{db} \coloneqq \beta_2 \ S_{db} + (1 - \beta_2) \ db^2$$

$$W \coloneqq W - \alpha \frac{V_{dw}}{A}$$

$$W \coloneqq W - \alpha \frac{V_{dw}}{\sqrt{S_{dw}}}$$

$$b \coloneqq b - \alpha \frac{b}{\sqrt{S_{db}}}$$

Momentum β_1

RMSProp β_2

You need top choose:

- α
- β_1
- β_2

Learning rate decay

alpha can change to permit your gradient descent to reach easily the minimum.

$$\alpha = \frac{1}{1 + decay \ rate \ * epoch \ num} \alpha_0$$

$$\alpha = rate^{epoch \ num} \alpha_0$$

$$\alpha \frac{rate}{\sqrt{epoch\;num}} \alpha_0$$

Epoch: one pass for all your mini-batch

III/ Practical aspects of Deep Learning

- ► I/ Introduction to deep learning
- ► II/ Neural network basics
- ► III/ Practical aspects of Deep Learning
- ► IV/ Optimization algorithms
- ▶ V/ Hyperparameters tuning, Batch Normalization

Tuning process

- \triangleright α
- β or β_1 , β_2

 $\beta = 0.9 \text{ or } \beta_1 = 0.9, \beta_2 = 0.999$

- # layers
- # hidden units
- Learning rate decay
- Mini-batch Size

Batch normalization

Batch normalization

For each l:

$$\mu^l = \frac{1}{m} \sum_i z_i^l$$

$$\sigma^{l^2} = \frac{1}{m} \sum_{i} (z_i^{\ l} - \mu^{l})^2$$

$$Z_{norm}^{l} = \frac{z^{l} - \mu^{l}}{\sqrt{\sigma^{l^{2}} - \varepsilon}}$$

$$\tilde{Z}^l = \gamma Z_{norm}^l + \beta$$

$$Z_{norm}{}^{l} = \frac{z^{l} - \mu^{l}}{\sqrt{\sigma^{l^{2}} - \varepsilon}} \qquad \qquad X \xrightarrow{\text{input layer}} \qquad \text{hidden layer 1} \qquad \text{hidden layer 2} \qquad \text{output layer}$$

$$Z_{norm}{}^{l} = \frac{z^{l} - \mu^{l}}{\sqrt{\sigma^{l^{2}} - \varepsilon}} \qquad \qquad X \xrightarrow{(w^{[1]}, b^{[1]})} \qquad Z^{[1]} \xrightarrow{\qquad \qquad } \tilde{z}^{[1]} \xrightarrow{\qquad \qquad } a^{[1]}$$

$$Z_{norm}{}^{l} = \gamma Z_{norm}{}^{l} + \beta \qquad \qquad X \xrightarrow{(w^{[2]}, b^{[2]})} \qquad Z^{[2]} \xrightarrow{\qquad \qquad } \tilde{z}^{[2]} \xrightarrow{\qquad \qquad } a^{[2]}$$

$$a^{[1]} \xrightarrow{\qquad \qquad } z^{[2]} \xrightarrow{\qquad \qquad } \tilde{z}^{[2]} \xrightarrow{\qquad \qquad } a^{[2]}$$

$$(w^{[3]}, b^{[3]}) \qquad (\gamma^{[3]}, \beta^{[3]}) \qquad \sigma(\tilde{z}^{[3]})$$

$$a^{[2]} \xrightarrow{\qquad \qquad } z^{[3]} \xrightarrow{\qquad \qquad } a^{[3]} \xrightarrow{\qquad } a^{[3]} \xrightarrow{\qquad } a^{[3]} \xrightarrow{\qquad } a^{[3]}$$

Softmax

Imagine you want an algorithm able to predict four classes, if the pictures is a dog, a cat, a bird or other

softmax

Activation function:

$$t_i = e^{(z_i^{[L]})}$$

$$a_i^{[L]} = \frac{t_i}{\sum_{j=1}^{n^{[L]}} t_j} = \frac{e^{(z_i^{[L]})}}{\sum_{j=1}^{n^{[L]}} e^{(z_j^{[L]})}}$$

$$\sum_{i=1}^{n^{[L]}} a_i^{[L]} = 1$$

Softmax loss function

$$\mathcal{L}(\hat{y}, y) = -\sum_{j=1}^{n^{[L]}} y_j \log \hat{y}_j$$