文献综述: Optofluidics

畅星兆 2019.05.25

Reference: Sihui Chen et al., "Optofluidics in bio-imaging applications", Photonics Research, 2019.

定义

- Original: optofluidics is capable of manipulating light with on-chip fluidic processes or using light to control fluidic entities.
- advanced optical/photonic methods to enhance performance of the system

出现原因

- most imaging system have come close to practical limits
- compatibility between sample and imaging systems

Components

- 1. Optofluidic Lasers
- 2. Optofluidic Prisms
- 3. Optofluidic Switches
 - 4. Optofluidic Lenses

Optofluidic Lasers

- 1. based on a Fabry-Perot resonator
- 2. based on distributed-feedback gratings

3. optofluidic ring resonator laser system (Q = 1000)

Optofluidic Prisms

use an optofluidic prism to manipulate the light path

1. converging three laminar flow streams

2. ratatable optofluidic prism

Optofluidic Switches

modify light path and intensity, both based on total internal reflection

1. by tuning the index of the mirror channel medium

2. turn on/ turn off piezoelectric transducer

Optofluidic Lenses

• By tuning the flow rates of the streams

Challenges

- 1. unstable and temperature-dependent
- 2. flow control

Optofluidic Imaging Methods

```
(c)
lens-based (most are SPIM)
     obstacles
           bulky instruments,
           diffraction-limited resolution,
           trade-off between field-of-view and resolution
```


lens-free

microscope tomographic microscope

Optofluidic microscope

- 1. aperture: $< 1 \mu m$
- 2. CMOS/ CCD
- 3. resolution: 800 nm
- 4. rearranging 40–50 raw images into a SR image

Fresnel zone plate (FZP) arrays act as high-NA microscope objective lenses and focus illumination light into a nanoscale.

slightly laterally and axially shifted point sources (RGB) below the sample

Tomographic Microscope

single perspective holography provides individual 3D sectioning information

Ultra-fast imaging

 The core concept of optical time-stretch imaging is to retrieve spatial information from the "time-stretch" spectrum in the onedimensional (1D) temporal data stream.

Wong et al. ~100, 000 cells/s

