Oppgaver for kapittel 0

0.2.1

Gitt funksjonen f(x) = a(b-x)(c-x). Finn ekstremalpunktet til f uttrykt ved b og c.

0.2.2

Gitt en andregradsfunksjon f(x). Finn uttrykket til f når

- a) f har nullpunkt x = 3 og x = -4, og ekstremalverdi 5.
- b) f har nullpunkt x = -1 og x = 10, og ekstremalverdi -100.
- c) f har nullpunkt x = 8, og toppunkt (10, 9).

0.3.1

Finn (eventuelle) horisontale og vertikale asymptoter, og (eventuelle) skjæringspunkt med y-aksen, for funksjonene.

a)
$$f(x) = \frac{4}{x-2}$$

b)
$$g(x) = \frac{7}{x+3}$$

a)
$$f(x) = \frac{4}{x-2}$$
 b) $g(x) = \frac{7}{x+3}$ c) $h(x) = \frac{x^2}{x^2-16}$

d)
$$j(k) = \frac{k-3}{k-2}$$
 e) $p(s) = \frac{s-8}{s}$

e)
$$p(s) = \frac{s-8}{s}$$

0.4.1

Finn den omvendte funksjonen g til f, og bekreft at g(f) = x.

a)
$$f(x) = 3x$$

b)
$$f(x) = -9x + 2$$

a)
$$f(x) = 3x$$
 b) $f(x) = -9x + 2$ c) $f(x) = \frac{5}{2}x - 7$

d)
$$f(x) = \frac{3}{x-5}$$
 e) \sqrt{x} f) $\sqrt[3]{x}$ g) $\sqrt[4]{x+9}$

e)
$$\sqrt{x}$$

f)
$$\sqrt[3]{x}$$

g)
$$\sqrt[4]{x+9}$$

0.4.2

Finn den omvendte funksjonen g til f, og bekreft at g(f) = x.

a)
$$f(x) = e^x + 2$$

a)
$$f(x) = e^x + 2$$
 b) $f(x) = \ln(x+5)$ c) $f(x) = \frac{1}{\ln(x)}$

c)
$$f(x) = \frac{1}{\ln(x)}$$

0.4.3

Funksjonen $f(x) = a(2 - x - x^3)$ har en omvendt funksjon g(y), og g(490) = -4. Finn verdien til a.

0.5.1

Gitt en polynomfunksjon med ekstremalpunkt a og b, som er de eneste ekstremalpunktene til funksjonen på intervallet [a, b]. Forklar hvorfor funksjonen er injektiv på dette intervallet.

1

Gruble 1

(R1V23D2)

Nedanfor har vi tegnet grafane til tre funksjoner f,g,h og k

- a) Avgjør og grunngi i hvert tilfelle om funksjonen har en omvendt funksjon.
- b) Bestem definisjonsmengden til den omvendte funksjonen i de tilfellene hvor den finnnes.

Gruble 2

(1TV23D1)

Nedenfor ser du grafen til en rasjonal funksjon.

Bestem f(x). Husk å argumentere for at svaret ditt er rett.

Gruble 3

Vis at funksjonen $f(x) = ax^2 + bx + c$ er konveks hvis a > 0 og konkav hvis a < 0.

Gruble 4

I figuren under har vi to parabler. Den grønne parabelen er tegnet ved å først speile den blå parabelen om horisontallinja gjennom bunnpunktet, for så å parallellforskyve parablene slik at de tangerer hverandre i et punkt $B.\ A$ og C ligger på horisontallinja gjennom B, og D og E ligger langs samme horisontallinje.

Finn lengden til linjestykket AC, uttrykt ved s, når du vet at DE=2s.

