Базовые понятия

Основными (неопределяемыми) понятиями теории множеств являются, элементы, множества и отношение принадлежать между ними. Для любых множества M и элемента x верно одно из двух утверждений: либо элемент x принадлежит множеству M (запись: $x \in M$), либо элемент x не принадлежит множеству M (запись: $x \notin M$). Множество A называется подмножеством множества B, если все любой элемент, принадлежащий множеству A принадлежит и множеству B. Для обозначения множества, элементы которого мы можем явно выписать используют кавычки « $\{$ » и « $\}$ »; например, через $\{1,2\}$ обозначается множество, которое состоит из чисел 1 и 2.

Система аксиом Цермело – Френкеля

Как и в любой теории, свойства основных понятий теории множеств задаются системой аксиом. Хотя мы и не будем выводить всё из аксиом, приведём здесь для полноты изложения одну из систем аксиом. Все термины из математической логики, которые здесь встречаются, будут пояснены устно и после этого ознакомительного листка мы постараемся их максимально избегать¹.

 ${\bf ZF_1}$ (аксиома объёма) Eсли A и B — два множества и выполняются условия $A \subset B$ и $B \subset A$, то эти множества совпадают (т. е. это одно и то же множество).

Попросту говоря, эта аксиома утверждает, что множество однозначно определяется элементами, которые ему принадлежат. Поэтому, можно говорить, что множество состоит из тех элементов, которые ему принадлежат.

 ${\bf ZF_2}$ (аксиома выделения) Если A — множество и ${\bf L}(x)$ — высказывание, содержащее свободную переменную x, определённое на A, то существует подмножество $A_{\bf L}$ множества A, являющееся областью истинности формы ${\bf L}(x)$.

Данная аксиома позволяет из уже имеющихся множеств получать новые множества. В частности, если взять в качестве L(x) заведомо ложное высказывание, то получим, что существует множество, не содержащее ни одного элемента — nycmoe множество, обозначающееся символом \varnothing .

 ${\bf ZF_3}$ (аксиома множества-степени) Eсли A — множество, то существует множество P(A), элементами которого являются все подмножества множества A и только они.

ZF₄(аксиома пары) Если A, B — множества и $A \neq B$, то существует множество $\{A, B\}$, элементами которого являются множества A, B и только они.

 ${\bf ZF_5}$ (аксиома объединения) Eсли A — множество, элементы которого сами являются множествами, то существует множество, элементами которого являются те элементы, которые принадлежит хотя бы одному множеству из A, и только они.

- 1. Пользуясь аксиомами $\mathbf{ZF_4}$ и $\mathbf{ZF_5}$ докажите, что для любых двух множеств A и B существует множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств A и B. Такое множество называется observed множеств A и B и обозначается $A \cup B$.
- 2. Докажите, что для любых двух множеств A и B существует множество, состоящее из тех и только тех элементов, которые принадлежат и множеству A и множеству B. Такое множество называется nepeceuenuen множеств A и B и обозначается $A \cap B$.
- 3. Докажите, что для любых двух множеств A и B существует множество, состоящее из тех и только тех элементов, которые принадлежат множеству A, но не принадлежат множеству B. Такое множество называется pashocmbo множеств A и B и обозначается $A \setminus B$.

¹чтобы не помереть со скуки

4. Докажите, что для любых двух множеств A и B существует множество, состоящее из тех и только тех элементов, которые принадлежат ровно одному из множеств A и B. Такое множество называется cummempuчeckoŭ pashocmъю множеств <math>A и B и обозначается $A \triangle B$.

 ${\bf ZF_6}$ (аксиома подстановки) Для любого множества A и любого такого двуместного предиката φ , что для каждого $x \in A$ найдётся не более одного y, удовлетворяющего $\varphi(x,y)$, то существует множество B, для которого $y \in B$ равносильно существованию $x \in A$, удовлетворяющего $\varphi(x,y)$.

Проще (хотя и не совсем грамотно) говоря, если область определения некоторой функции является множеством, то и множество её значений — тоже.

 ${\bf ZF_7}$ (аксиома регулярности) Eсли A — множество, все элементы которого являются множествами, то существует $B \in A$ такое, что никакой элемент множества A не является элементом множества B.

В отличие от предыдущих аксиом, которые позволяют по уже имеющимся множествам строить новые, эта аксиома ограничивает список того, что можно считать множеством для того, чтобы избежать парадоксов. В частности:

5. Докажите, что не существует множества, состоящего из всех множеств.

ZF₈(аксиома выбора) Пусть A — непустое множество, а $P^*(A)$ — множество его непустых подмножеств. Тогда существует отображение $\varphi \colon P^*(A) \to A$ такое, что $\varphi(B) \in B$ для каждого $B \in P^*(A)$.

Аксиома выбора является частью (не всегда явно оговариваемой) большинства доказательств, связанных с существованием бесконечных множеств.

ZF₉(аксиома бесконечности) Существует хотя бы одно множество N, состоящее из множеств и обладающее свойствами: 1) $\varnothing \in N$ и 2) если $A \in N$, то $A \cup \{A\} \in N$.

Последняя аксиома гарантирует существование бесконечных множеств.