BASIC ELECTRONICS LAB REPORT

NAME: NISHAT MAHMUD

ID: B190305003

COURSE TITLE: BASIC ELECTRONICS LAB

COURSE CODE: CSEL-1206

Experiment Name: To verify Zener diode as a voltage regulator with fixed input voltage V_{in} and variable load resistance R_L .

Objective: To study Zener diode as a voltage regulator, when input voltage V_{in} is fixed while load resistance R_L is variable.

Components:

- 1. DC power supply +15V external source
- 2. Digital Multimeter (DMM)
- 3. Resistor (2 pcs)
- 4. Breadboard
- 5. Wires

Circuit Diagram: Circuit used to study Zener diode as a voltage regulator is shown in the following figure:

Figure 1.1: A Zener Diode Voltage Regulator

Graph:

*Green line indicates input *Blue line indicates output

Graph 1.1: Input and Output waveform of Zener Diode Voltage

Experiment Name: To verify Zener diode as a voltage regulator with fixed load resistance R_L and variable input voltage V_{in} .

Objective: To study Zener diode as a voltage regulator, when input voltage V_{in} is variable while Load resistance R_L is fixed.

Components:

- 1. DC power supply +(1 30)V external source
- 2. Digital Multimeter (DMM)
- 3. Resistor (2 pcs)
- 4. Breadboard
- 5. Wires

Circuit Diagram: Circuit used to study Zener diode as a voltage regulator is shown in the following figure:

Figure 2.1: A Zener Diode Voltage Regulator

Graph:

Graph 2.1: Input and Output waveform of Zener Diode Voltage

Experiment Name: To verify and experiment Half-wave and Full-wave rectifier.

Objective: To study the characteristics and operation of Half-wave and Full-wave rectifier.

Components:

- 1. DC power supply
- 2. Digital Multimeter (DMM)
- 3. Resistor (2 pcs)
- 4. Transformer
- 5. Breadboard
- 6. Diode (5 pcs)
- 7. Wires

Circuit Diagram (Half-wave rectifier): Circuit used to study Half-wave rectifier is shown in the following figure:

Figure 3.1: A Half-wave rectifier

Graph (Half-wave rectifier):

Graph 3.1: Input and Output waveform of Half-wave rectifier

Circuit Diagram (Full-wave rectifier): Circuit used to study Full-wave rectifier is shown in the following figure:

Figure 3.2: A Full-wave rectifier

Graph (Full-wave rectifier):

*Green line indicates input *Blue line indicates output

Graph 3.2: Input and Output waveform of Full-wave rectifier

Experiment Name: To design and verify Inverting and Non-inverting amplifier using 741 Op-amp.

Objective: To study the input & output waveform of Inverting and Non-inverting amplifier using 741 Op-amp.

Components:

- 1. DC power supply
- 2. Digital Multimeter (DMM)
- 3. Resistor (4 pcs)
- 4. IC LM741 (2 pcs)
- 5. Breadboard
- 6. Wires

Circuit Diagram (Inverting amplifier): Circuit used to study Inverting amplifier is shown in the following figure:

Figure 7.1: An Inverting amplifier using LM741

Graph (Inverting amplifier):

Graph 7.1: Input and Output waveform of Inverting amplifier

*Blue line indicates output

Circuit Diagram (Non-inverting amplifier): Circuit used to study Non-inverting amplifier is shown in the following figure:

Figure 7.2: A Non-inverting amplifier using LM741

Graph (Non-inverting amplifier):

Graph 7.2: Input and Output waveform of Non-inverting amplifier

Experiment Name: To design and verify the operations of Summing and Subtractor amplifier circuit using 741 Op-amp.

Objective: To study the input & output waveform of Summing and Subtractor amplifier circuit using 741 Op-amp.

Components:

- 1. DC power supply
- 2. Digital Multimeter (DMM)
- 3. Resistor (9 pcs)
- 4. IC 741 Op-amp (2 pcs)
- 5. Breadboard
- 6. Wires

Circuit Diagram (Summing amplifier): Circuit used to study Summing amplifier is shown in the following figure:

Figure 8.1: A Summing amplifier using 741 Op-amp

Graph (Summing amplifier):

*Blue, Red and Paste color lines indicate input *Green line indicates output

Graph 8.1: Input and Output waveform of Summing amplifier

Circuit Diagram (Subtractor amplifier): Circuit used to study Subtractor amplifier is shown in the following figure:

Figure 8.2: A Subtractor amplifier using 741 Op-amp

Graph (Subtractor amplifier):

*Green line indicates output

Graph 8.2: Input and Output waveform of Subtractor amplifier

Experiment Name: To design and verify the characteristics of 741 op-am Integrator circuit for different inputs.

Objective: To get familiarized with and to observe the characteristics of Integrator circuit for different inputs.

Components:

- 1. DC power supply
- 2. Digital Multimeter (DMM)
- 3. Resistor (3 pcs)
- 4. Capacitor
- 5. IC 741 Op-amp
- 6. Breadboard
- 7. Wires

Circuit Diagram: Circuit used to study Integrator circuit is shown in the following figure:

Figure 9.1: An Integrator circuit using 741 Op-amp

Graph:

Graph 9.1: Input and Output waveform of Integrator circuit

*Green lines indicate output

Experiment Name: To design and verify the characteristics of 741 op-am Differentiator circuit for different inputs.

Objective: To get familiarized with and to observe the characteristics of Differentiator circuit for different inputs.

Components:

- 1. DC power supply
- 2. Digital Multimeter (DMM)
- 3. Resistor (3 pcs)
- 4. Capacitor (2 pcs)
- 5. IC 741 Op-amp
- 6. Breadboard
- 7. Wires

Circuit Diagram: Circuit used to study Differentiator circuit is shown in the following figure:

Figure 10.1: A Differentiator circuit using 741 Op-amp

Graph:

Graph 10.1: Input and Output waveform of Differentiator circuit