Math 2120B Assignment 4

1. For $M_{22}(\mathbb{R}) \stackrel{T}{\to} M_{22}(\mathbb{R}) \stackrel{S}{\to} P_2(\mathbb{R})$ where $T(A) = A^T$ and

$$S \begin{bmatrix} a & b \\ c & d \end{bmatrix} = b + (a+d)x + cx^2$$

Find $S \circ T : M_{22}(\mathbb{R}) \to P_2(\mathbb{R})$ and verify that

$$[S \circ T]^{\delta}_{\beta} = [S]^{\delta}_{\gamma} [T]^{\gamma}_{\beta}$$

where $\beta = \gamma = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ and $\delta = \{1, x, x^2\}$. Verify also that $[S(A)]_{\delta} = [S]_{\gamma}^{\delta}[A]_{\gamma}$ where

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right]$$

- 2. Show that each linear transformation is bijective. Find the matrix $[T]^{\gamma}_{\beta}$ of $T:V\to W$ corresponding to the bases β of V and γ of W. In each case, show that $[T]^{\gamma}_{\beta}$ is invertible and use the fact that $([T]^{\gamma}_{\beta})^{-1} = [T^{-1}]^{\beta}_{\gamma}$ to determine the action of T^{-1} .
 - (a) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R}), T(p(x)) = p(x+1), \beta = \gamma = \{1, x, x^2\}.$
 - (b) $T: M_{22}(\mathbb{R}) \to P_3(\mathbb{R}),$

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=(a+b+c)+(b+c)x+cx^2+dx^3$$

$$\beta = \{E^{11}, E^{12}, E^{21}, E^{22}\}, \gamma = \{1, x, x^2, x^3\}$$

3. Let $T:V\to W$ be a linear transformation. Show that there exists a basis β of V and a basis γ of W such that

$$[T]^{\gamma}_{\beta} = \left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right]$$

where r is the rank of T. [Hint: Let $\beta_{N(T)} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be a basis for N(T) and extend it to a basis $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_{n-k}, \mathbf{u}_1, \dots, \mathbf{u}_k\}$ for V. Show that $\beta_{R(T)} = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_{n-k})\}$ is a basis for R(T). Extend $\beta_{R(T)}$ to a basis

$$\gamma = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_{n-k}), \mathbf{w}_1, \dots, \mathbf{w}_{m-n+k}\}\$$

of W.

4. Recall that

$$E^{ij}E^{kl} = \delta_{jk}E^{il}$$
 for all $1 \le i, j, k, l \le n$

where

$$\beta = \{E^{ij} | 1 \le i, j \le n\}$$

is the standard basis for $M_{nn}(\mathbb{R})$. Recall also that the trace function is defined by

$$tr: M_{nn}(\mathbb{R}) \to \mathbb{R}, tr(X) = \sum_{i=1}^n x_{ii}$$

Note that tr is a linear transformation.

- (a) For each (i, j) with $1 \le i \ne j \le n$, find $A, B \in M_{nn}(\mathbb{R})$ such that $E^{ij} = AB BA$ and find $C, D \in M_{nn}(\mathbb{R})$ such that $E^{ii} E^{jj} = CD DC$.
- (b) Suppose $T:M_{nn}(\mathbb{R})\to\mathbb{R}$ is linear. Prove that the following statements are equivalent:
 - (1) T(AB) = T(BA) for all $A, B \in M_{nn}(\mathbb{R})$
 - (2) T is a scalar multiple of the trace function.

Hint: Use (a) to show 1 implies 2.

(c) Find a basis for the subspace

$$W = \{ X \in M_{nn}(\mathbb{R}) | \operatorname{tr}(X) = 0 \}$$

of $M_{nn}(\mathbb{R})$.

- (d) Use (a) and (c) to show that $X \in M_{nn}(\mathbb{R})$ can be written as a sum of matrices of the form AB BA if and only if tr(X) = 0.
- 5. A $n \times n$ matrix A is called *strictly upper triangular* if $(A)_{ij} = 0$ for all i, j satisfying $i \geq j$.
 - (a) Let A be a $n \times n$ strictly upper triangular matrix. Prove that, for $k \geq 1$, the matrix A^k has the property that $(A^k)_{ij} = 0$ for all (i,j) with j-i < k. [Hint: you will want to argue by induction. For the k+1th term, you will need to split the sum into two parts. Experiment with n=2 and n=3 to see where you need to split up the sum.]
 - (b) Using the previous part, show that $A^n = 0$ for any $n \times n$ strictly upper triangular matrix. [So, strictly upper triangular matrices are nilpotent.]