Bin-Packing Problem (BPP)

Parameters

- n = amount of items (index i)
- m = amount of bins (index j)
- w_i = weight of item $i \ (\forall i = 1, \dots, n)$
- C_i = capacity of bin j ($\forall j = 1, \dots, m$)

Variables

$$-x_{ij} = \begin{cases} 1 & \text{if the item } i \text{ is in bin } j; \\ 0 & \text{otherwise.} \end{cases}$$

$$-y_j = \begin{cases} 1 & \text{if bin } j \text{ is used;} \\ 0 & \text{otherwise.} \end{cases}$$

$$min \sum_{j=1}^{m} y_j \tag{1}$$

s.v

$$\sum_{i=1}^{n} w_i \cdot x_{ij} \le y_j \cdot C_{ij} \qquad \forall j = 1, \cdots, m$$
 (2)

$$\sum_{i=1}^{m} x_{ij} = 1 \qquad \forall i = 1, \cdots, n \tag{3}$$

$$x_{ij} \in \{0,1\} \qquad \forall i = 1, \cdots, n \quad \forall j = 1, \cdots, m$$
 (4)

$$y_j \in \{0,1\} \qquad \forall j = 1, \cdots, m \tag{5}$$