

OE4080 Term Project

Wave Analysis Toolbox and Validation

- Aditya Jadhav

- Roll No.: NA18B103

- Guided By: Prof. V. Sriram

Content

- Dataset and Visualization
- Toolbox
- Validation
- Wave Height Analysis and Validation
- Spectrum Analysis

Dataset

Bideford Bay, UK

Resource: Link

- .RAW-file contains the wave elevation data, sampled at a frequency of 1.28 Hz
- Contains 30 minutes of data 2304 lines of measurements

Visualizing Dataset

MATLAB Toolbox

Functions

- generate_spectra.m
- get_wvhts.m
- validate_data.m
- 🔊 validate_wvhtdata.m

Wave Elevation Analysis

Validation

Wave Elevation

Modelled as a Gaussian

$$p(\eta) = \frac{1}{\sigma_{\eta} \sqrt{2\pi}} \exp\left(\frac{-\eta^2}{2\sigma_{\eta}^2}\right)$$

standard deviation

Wave Height Analysis

- Zero Up-crossing
- Zero Down-Crossing

Source: Paper

Wave Height Analysis

Validation

Wave Height

Modelled as a Rayleigh Distribution

$$p(H) = 2 \frac{H}{H_{\text{rms}}^2} \exp \left[-\left(\frac{H^2}{H_{\text{rms}}^2}\right) \right]$$

Root Mean Square value of Wave Height

Probability of Exceedance

Wave Heights modelled as a Rayleigh Distribution

$$1 - P(H) = \exp\left[-\left(\frac{H}{H_{\rm rms}}\right)^2\right]$$

Spectrum Analysis

Source: Journee Hydrodynamics

Spectrum Analysis

Spectrum Analysis

Filtering

Day of the state o

Smoothing using moving average

Smoothing using Lanczos filter

References

- Whitford, D.J., Waters, J.K. and Vieira, M.E., 2001. Teaching time-series analysis. II. Wave height and water surface elevation probability distributions. *American Journal of Physics*, *69*(4), pp.497-504.
- Journée, J.M.J. and Massie, W.W., 2001. Offshore hydromechanics.