Chapitre 12 – Titrage colorimétrique – Hachette

Les dosages par titrage

a. Dosages

- Un dosage permet de déterminer la quantité de matière ou la concentration d'une espèce chimique dissoute dans une solution.
- Un dosage par titrage, ou **titrage**, est une technique de dosage mettant en jeu une réaction chimique totale et rapide.
- On réalise des dosages dans de nombreux domaines tels que la santé, l'environnement, le contrôle qualité, etc.
- Les dosages par étalonnage diffèrent des dosages par titrage car aucune réaction chimique n'est nécessaire pour les réaliser (doc.A).

b. Réaction support d'un titrage

Lors d'un titrage, le réactif titré A, dont on cherche à déterminer la concentration C_A réagit avec le réactif titrant B de concentration C_B connue. L'équation de la réaction support du titrage s'écrit :

$$a A + b B \rightarrow c C + d D$$

c. Dispositif de titrage

Le réactif titré peut être mis dans un bécher ou dans un erlenmeyer (doc B).

• Au cours d'un titrage, le réactif titrant est versé jusqu'à ce que le réactif titré ait totalement réagi, l'équivalence est alors atteinte.

L'équivalence d'un titrage est atteinte lorsqu'on a réalisé un mélange stoechiométrique des réactifs titré et titrant. Les deux réactifs sont alors totalement consommés.

 Avant l'équivalence, le réactif titrant est totalement consommé; il est le réactif limitant. Après l'équivalence, le réactif titré est totalement consommé; il devient le réactif limitant.

> Le diiode I_2 (aq) est le réactif titré : il est placé dans l'erlenmeyer. L'ion thiosulfate $S_2 O_3^{2-}$ (aq) est le réactif titrant : il est placé dans la burette graduée.

À l'équivalence du titrage, il y a changement de réactif limitant.

Remarques importantes:

- Lors du titrage du diiode, les ions sodium Na^* (aq) sont des ions spectateurs : ils n'interviennent pas dans l'équation support du titrage.
- Il est parfois possible d'utiliser un **indicateur de fin de réaction** pour observer un changement de couleur à l'équivalence si les réactifs ne sont pas colorés.

b. Titrages colorimétriques

Lors d'un **titrage colorimétrique**, un changement de couleur du mélange réactionnel permet de repérer l'équivalence.

Exemple: Dosage du diiode $\frac{1}{2}$ (aq) par les ions thiosulfate $\frac{5}{2}O_3^{2-}$ (aq) selon la réaction d'équation: $\frac{1}{2}(aq) + 2\frac{5}{2}O_3^{2-}$ (aq) $\rightarrow 2\frac{1}{2}(aq) + \frac{5}{2}O_3^{2-}$ (aq).

* Les espèces spectatrices ne sont pas indiquées.

L'équivalence est repérée par un changement de couleur : le diiode **]**, seule espèce colorée du système chimique étudié, n'est plus présent à l'équivalence. La solution devient donc incolore (doc. **C**).

c. Relation à l'équivalence du titrage

L'équation support de la réaction de titrage s'écrit :

$$a A + b B \rightarrow c C + d D$$
.

• À l'équivalence du titrage, on réalise un mélange stoechiométrique des réactifs titré et titrant (doc. D).

La **relation à l'équivalence** du titrage s'écrit :

$$\frac{n_0(A)}{a} = \frac{n_E(B)}{b} \quad \text{soit} \quad \frac{C_A \times V_A}{a} = \frac{C_B \times V_E}{b}$$

ullet La concentration C_A du réactif titré recherchée est donc :

$$C_{A} = \frac{a}{b} \times \frac{C_{B} \times V_{E}}{V_{A}}$$

C Changement de couleur à l'équivalence

Avant l'équivalence

et après

> Évolution de la couleur du mélange réactionnel lors du titrage du diiode par les ions thiosulfate.

Exemple de relation à l'équivalence

$$a=1$$
 $b=2$
↓
 $I_2(aq) + 2 S_2 O_3^{2-}(aq)$
 $\rightarrow 2 \Gamma(aq) + S_4 O_6^{2-}(aq)$

À l'équivalence du titrage :

$$\frac{n_0(l_2)}{1} = \frac{n_E(s_2 \cup s_3)}{2}$$

Dosage

Un dosage permet de déterminer la quantité de matière ou la concentration d'une espèce chimique dissoute en solution.

Dosage par titrage

Met en jeu une réaction chimique totale et rapide.

Titrage de A par B $a A + b B \rightarrow c C + d D$

Réactif titré A :

- C_A=?
- V_A connu

Réactif titrant B:

- C_B connue
- V_E : volume à l'équivalence mesuré sur la burette graduée

Équivalence

2 La détermination de la concentration du réactif titré

Mélange des réactifs titré et titrant en proportions stæchiométriques

II y a changement de réactif limitant. Les réactifs titrant et titré sont totalement consommés.

$$\frac{n_0(A)}{a} = \frac{n_E(B)}{b} \text{ soit } \frac{C_A \times V_A}{a} = \frac{C_B \times V_E}{b}$$

Repérage dans le cas d'un titrage colorimétrique : changement de couleur du mélange réactionnel à l'équivalence Exemple :

À l'équivalence et après