SEMINAR ALGEBRA III SERIILE 20,22

TIBERIU DUMITRESCU ŞI MIHAI EPURE

Seminar 0

- 1. Determinați:
 - (i) câtul şi restul împărțirii lui $X^{23}-1$ la X^5-1 în $\mathbb{Q}[X]$,
- (ii) câtul și restul împărțirii lui 8388607 la 31 în $\mathbb{Z}.$ (Ind. $8388607=2^{23}-1.)$
- 2. Arătați că unitățile inelului $\mathbb{Z}[i]=\{a+bi\mid a,b\in\mathbb{Z}\}$ sunt 1, -1, i,-i. Aici unitate = element inversabil.
- 3. Arătați că: $X^5 + X^3 X^2 1$ divide $X^n 1 \Leftrightarrow 12$ divide n.
- 4. Arătați că: 35 divide $2^n 1 \Leftrightarrow 12$ divide n.
- 5. Arătați că 2-i divide 3+i în $\mathbb{Z}[i]$.
- 6. Verificați dacă $3+\sqrt{2}$ divide numerele $13\pm2\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$.
- 7. Verificați dacă $24+5\sqrt{23}$ este element inversabil în inelul

$$\mathbb{Z}[\sqrt{23}] = \{a + b\sqrt{23} \mid a, b \in \mathbb{Z}\}.$$

(Ind. Calculați $1/(24+5\sqrt{23})$.)

- 8. Verificați dacă 2+5i divide numerele 7+3i, 7-3i, 7+i în $\mathbb{Z}[i]$.
- 9. Verificați dacă $1+\sqrt{5}$ divide $1-\sqrt{5}$
 - (i) în inelul $\mathbb{Z}[\sqrt{5}]$,
 - (ii) în inelul $\mathbb{Z}[(1+\sqrt{5})/2]$.
- 10. Verificați dacă numerele următoare sunt asociate în divizibilitate:
 - (i) 9 + 7i şi 7 + 9i în inelul $\mathbb{Z}[i]$,
 - (ii) $7 + 2\sqrt{2}$ și $5 + \sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$,
 - (iii) $23 + 13\sqrt{3}$ şi $5 \sqrt{3}$ în inelul $\mathbb{Z}[\sqrt{3}]$.
- 11. Arătați că: 2+3i divide a+bi în $\mathbb{Z}[i] \Leftrightarrow 13$ divide 2a+3b în \mathbb{Z} .
- 12. Verificați dacă $A:=\{a+b(1+\sqrt{7})/2\mid a,b\in\mathbb{Z}\}$ este subinel în $\mathbb{R}.$
- 13. Determinați divizorii lui 13 4i în $\mathbb{Z}[i]$.
- 14. Determinați un element inversabil diferit de ± 1 în inelul $\mathbb{Z}[\sqrt{7}]$.

- 15. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele 13 și $3+2\sqrt{-5}$ sunt elemente prime.
- 16. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$:
 - (i) $3 + \sqrt{-5}$ este atom neprim,
 - (ii) $7 \sqrt{-5}$ este element reductibil.
- 17. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ numerele 7 și $5-\sqrt{6}$ sunt elemente prime.
- 18. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ numerele 2, 3, 5 și $\sqrt{6}$ sunt elemente reductibile.
- 19. Găsiți numerele prime p, q, r astfel încât în inelul $\mathbb{Z}[\sqrt{10}]$:
 - (i) p este element prim,
 - (ii) q este atom neprim,
 - (iii) r este element reductibil.
- 20. Folosind inelul $\mathbb{Z}[\sqrt{14}],$ arătați că ecuația $y^2=14x^2+23$ nu are soluții în numere întregi.
- 21. Fie $a,b\in\mathbb{Z}$ astfel încât a^2+b^2 se divide cu 19. Arătați că 19 divide numerele a și b.

22. Arătați că

4

$$(3+\sqrt{2})(5+2\sqrt{2})(7-3\sqrt{2})$$

este o factorizare atomică a lui 67 + 20 $\sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$.

- 23. Găsiți o factorizarea atomică a lui 633 + 135i în inelul $\mathbb{Z}[i]$.
- 24. Găsiți toate factorizările atomice ale lui $29 5\sqrt{-5}$ în inelul $\mathbb{Z}[\sqrt{-5}]$.
- 25. Găsiți o factorizare atomică a lui 91 în inelul $\mathbb{Z}[(1+\sqrt{-3})/2].$
- 26. Arătați că în inelul $\mathbb{Z}[\sqrt{-14}]$

$$3^4 = (5 + 2\sqrt{-14})(5 - 2\sqrt{-14})$$

sunt factorizări atomice ale lui 81.

27. Găsiți o infinitate de soluții numere întregi ale sistemului de ecuații

$$\begin{cases} xz + 2yv = 3 \\ xv + yz = 1. \end{cases}$$

28. Arătați că inelul $\mathbb{Z}[X]$ este inel CLD.

- 29. Listați divizorii lui 62 + 34i în $\mathbb{Z}[i]$.
- 30. Listați divizorii lui 95 27 $\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$.
- 31. Arătați că inelul $\mathbb{Z}[\sqrt{-26}]$ este nefactorial folosind egalitatea

$$109^2 + 12^2 \cdot 26 = 5^6.$$

- 32. Folosind atomul 2, arătați că inelul $\mathbb{Z}[\sqrt{d}]$ este nefactorial dacă d<-2.
- 33. Arătați că inelul $\mathbb{Z}[\sqrt{10}]$ este nefactorial.
- 34. Rezultă din egalitatea $\sqrt{6}^2 = 2 \cdot 3$ că inelul $\mathbb{Z}[\sqrt{6}]$ este nefactorial ?
- 35. Fie A un inel factorial și $a,b\in A-\{0\}$ astfel încât $a^{2n-1}|b^{2n}|a^{2n+1}$ pentru orice $n\geq 1$. Arătați că a este asociat cu b.

- 36. Pentru numerele $a=779-247i,\,b=817+19i,$ calculați (a,b) și [a,b] în $\mathbb{Z}[i]$.
- 37. Arătați că în inelul $\mathbb{Z}[\sqrt{-17}]$:
 - (i) $2 + \sqrt{-17}$ şi 7 sunt relativ prime,
 - (ii) $6 + 3\sqrt{-17}$ și 21 nu au cmmdc.
- 38. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele $13-7\sqrt{-5}$ și $29-5\sqrt{-5}$ nu au CMMDC. Observați că numerele se divid cu $1-\sqrt{-5}$.
- 39. Fie a, b două numere întregi cu (a, b) = d. Calculați (a + bi, a bi) în $\mathbb{Z}[i]$.
- 40. Arătați că $x,y\in\mathbb{Z}[\sqrt{d}]$ sunt coprime dacă au normele coprime în \mathbb{Z} . Este reciproca adevărată ?
- 41. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele $3+2\sqrt{-5}$ și $3-2\sqrt{-5}$ au CMMMC.
- 42. Fie A un inel factorial și $a,b,c\in A-\{0\}$. Arătați că

$$[a, b, c](a, b)(a, c)(b, c) = abc(a, b, c).$$

- 43. Arătați că idealul $< 2, \sqrt{6} > \dim \mathbb{Z}[\sqrt{6}]$ este principal.
- 44. Arătați că idealul < 2, $\sqrt{-6} > \dim \, \mathbb{Z}[\sqrt{-6}]$ nu este principal.
- 45. Arătați că numerele $2-\sqrt{7}$ și $3+4\sqrt{7}$ sunt comaximale în $\mathbb{Z}[\sqrt{7}]$.
- 46. Găsiți un generator pentru idealul < $-1+5i, 1+3i > \text{din } \mathbb{Z}[i].$
- 47. Arătați că în $\mathbb{Z}[\sqrt{-3}]$ ave
m $<2>\cap<1+\sqrt{-3}>=<4,2+2\sqrt{-3}>$ și că acest ideal nu este principal.
- 48. Găsiți exemple de ideale neprincipale în $\mathbb{Z}[\sqrt{-5}].$
- 49. Fie Aun domeniu. Arătați că A[X] este inel principal dacă și numai dacă A este corp.

- 50. Calculați (43-81i,33-19i) în $\mathbb{Z}[i]$ folosind algoritmul lui Euclid.
- 51. Rezolvați ex. precedent prin factorizare.
- 52. Fie A un domeniu și $a,a',b,b',c\in A-\{0\}$ cu proprietatea aa'+bb'=1. Rezolvați ecuația ax+by=c.
- 53. Rezolvați în $\mathbb{Z}[i]$ ecuația (43-81i)x+(33-19i)y=27-5i .
- 54. Rezolvați în $\mathbb{Z}[i]$ ecuația (43-81i)x+(33-19i)y=12+i .
- 55. Arătați că $N(\sqrt{10}-2q) \ge 4$ pentru orice $q \in \mathbb{Z}[\sqrt{10}]$. Deduceți că inelul $\mathbb{Z}[\sqrt{10}]$ nu este norm-euclidian.
- 56. Completați tabelul următor cu întregi Gauss astfel încât produsele pe orizontală/verticală să fie numerele indicate

57. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{79}]$ sunt prime:

$$<11>, <2>, <3+\sqrt{79}>, <6+\sqrt{79}>.$$

58. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{-10}]$ sunt prime:

$$<7, 2-\sqrt{-10}>, <11, 2+13\sqrt{-10}>, <3, 1-\sqrt{-10}>.$$

- 59. Verificați dacă idealul < 5, 12 i > este prim în $\mathbb{Z}[i]$.
- 60. Verificați dacă idealul < 23 + 3 $\sqrt{-5}$, 13 + 2 $\sqrt{-5}$ > este prim în $\mathbb{Z}[\sqrt{-5}]$.
- 61. Arătați că în $\mathbb{Z}[\sqrt{-6}]$ idealul < 11 > nu este prim dar este produs de două ideale prime. Intr-un inel A, produsul idealelor < a, b > și < c, d > este prin definiție idealul < ac, ad, bc, bd >.
- 62. Arătați că idealul $H=< X^2+1, Y^2+1> \dim \mathbb{Q}[X,Y]$ nu este prim. (Ind. $X^2-Y^2\in H.$)
- 63. Arătați că în $\mathbb{Z}[\sqrt{-5}]$ idealul H=<2> nu este o intersecție de două ideale prime. (Ind. $(1+\sqrt{-5})^2\in H$.)

- 64. Scrieți polinomul $(3+i)X^3+(7+i)X-10 \in \mathbb{Z}[i][X]$ ca produs dintre o constantă și un polinom primitiv.
- 65. Factorizați polinomul $15015X^4 + 60060$ în $\mathbb{Z}[X]$.
- 66. Fie polinoamele $f=2X+1+\sqrt{-3}$ și $g=2X+1-\sqrt{-3}$ din $\mathbb{Z}[\sqrt{-3}][X]$. Arătați că:
 - (i) f şi g sunt primitive dar fg este neprimitiv.
 - (ii) f și g sunt atomi, iar fg este produs de 3 atomi în $\mathbb{Z}[\sqrt{-3}][X]$.
- 67. Factorizați polinoamele $(3+i)X^4-(3+i)$ și $(5-i)X^6-(5-i)$ în $\mathbb{Z}[i][X]$ și calculați cmmdc al lor.
- 68. Verificați dacă $X^4 X^2 + 1$ este ireductibil în $\mathbb{Z}[i][X]$ sau $\mathbb{Z}[\sqrt{3}][X]$.
- 69. Verificați dacă $X^4 X^2 + 1$ este ireductibil în $\mathbb{Z}[X]$ sau $\mathbb{Z}[\sqrt{-3}][X]$.
- 70. Fie A un domeniu astfel încât A[X] este inel factorial. Arătați că A este inel factorial.

- 71. Arătați că $33X^6 + 84X^5 546X^3 + 294X^2 + 168$ ireductibil in $\mathbb{Q}[X]$.
- 72. Arătați că $3X^6+11X^4-5X^3-4X^2+X+7$ este ireductibil în $\mathbb{Q}[X]$ reducândul mod 2.
- 73. Arătați că $\sqrt{-2}X^5+(7-6\sqrt{-2})X^3+22X^2+1+7\sqrt{-2}$ este ireductibil în $\mathbb{Q}(\sqrt{-2})[X]$.
- 74. Arătați că $X^3Y + XY^2 + Y^3 + X$ este ireductibil în $\mathbb{C}[X,Y]$.
- 75. Arătați că polinomul $f = X^6 X^5 + X^4 X^3 + X^2 X + 1$ este ireductibil peste \mathbb{Q} folosind teorema lui Murty. (Ind. $13 \cdot 17 \cdot 19 \cdot 23 547 \cdot 177 = -242$.)
- 76. Fie $p \in \{2,3,5\}$ și $f \in \mathbb{Z}[X]$ un polinom p-Eisenstein. Rezultă că f este ireductibil peste $\mathbb{Q}(i)$?
- 77. Fie p un număr prim cu scrierea zecimală

$$p = 10^n \cdot 2 + 10^{n-1} a_{n-1} + \dots + 10a_1 + a_0, \quad 0 \le a_i \le 9.$$

Deduceți din teorema lui Murty că polinomul

$$f = 2X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

este ireductibil.

78. Arătați că \mathbb{Z}_{13} este $\mathbb{Z}[i]\text{-modul față de înmulțirea cu scalari$

$$(a+bi)\widehat{x} := \widehat{(a+5b)}x, \ a,b \in \mathbb{Z}, \ \widehat{x} \in \mathbb{Z}_{13}.$$

- 79. Arătați că \mathbb{Z}_7 nu are structuri de $\mathbb{Z}[\sqrt{3}]$ -modul.
- 80. Arătați că $\mathbb{Z}_3\times\mathbb{Z}_3$ este $\mathbb{Z}[i]\text{-modul față de înmulțirea cu scalari$

$$(a+bi)(x,y) := (ax-by, ay+bx), \ a,b \in \mathbb{Z}, \ x,y \in \mathbb{Z}_3.$$

Este acest modul ciclic?

81. Arătați că în \mathbb{Z} -modulul \mathbb{Z}^2 avem

$$\langle (3,1), (5,-3) \rangle > \cap \langle (7,0), (0,7) \rangle = \langle (14,0), (7,7) \rangle.$$

- 82. Este $\mathbb{Z}[i]$ un $\mathbb{Z}[3i]$ -modul finit generat? Dar ciclic ?
- 83. Fie funcția

$$f: \mathbb{Z}^2 \to \mathbb{Z}_2 \times \mathbb{Z}_{10}, \ f(x,y) = (\bar{x}, \widehat{2x-y}).$$

Arătați că:

- $(i)\ f$ este aplicație $\mathbb{Z}\text{-liniară}.$
- (ii) f este surjectivă.
- (iii) Nucleul lui f este egal cu < (4, -2), (2, 4) <math>> .
- 84. Arătați că orice $\mathbb{Z}[i]\text{-submodul finit generat al lui }\mathbb{Q}[i]$ este ciclic.

85. Fie funcția

$$f: \mathbb{Z}^2 \to \mathbb{Z}_2 \times \mathbb{Z}_{10}, \ f(x,y) = (\bar{x}, \widehat{2x-y}).$$

Arătați că:

- (i) f este aplicație \mathbb{Z} -liniară.
- (ii) f este surjectivă.
- (iii) Nucleul lui f este egal cu < (4, -2), (2, 4) <math>> .
- (iv) Modulul factor $\mathbb{Z}^2/<(4,-2),(2,4)>$ este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_{10}$.

86. Folosind teorema fundamentală de izomorfism, arătați că $\mathbb{Z}[i]\text{-modulul}$ factor

$$\mathbb{Z}[i] \times \mathbb{Z}[i] / < (1+i, 1-i) >$$

este izomorf cu $\mathbb{Z}[i] \times \mathbb{Z}_2$. Structura de $\mathbb{Z}[i]$ -modul a lui $\mathbb{Z}[i] \times \mathbb{Z}_2$ este dată de

$$(a+bi)(c+di,x) = ((a+bi)(c+di),(a+b)x), \quad a,b,c,d \in \mathbb{Z}, x \in \mathbb{Z}_2.$$

(Ind. Incercați cu funcția $(x,y) \mapsto (x-iy,y \cdot \widehat{1})$.)

- 87. Este $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i] \times \mathbb{Z}[i] / < (1+i,1-i) > \dim$ ex. precedent ciclic ?
- 88. Arătați că $\mathbb{Z}[i]$ -modulul factor

$$\mathbb{Z}[i] \times \mathbb{Z}[i] / < (2 - i, 2 + i) >$$

este izomorf cu $\mathbb{Z}[i]$ cu structura canonică de $\mathbb{Z}[i]\text{-modul}.$

(Ind. Incercați cu funcția $(x,y)\mapsto (2+i)x-(2-i)y$.)

- 89. Arătați că $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i] \times \mathbb{Z}[i]$ este generat de vectorii (2-i,2+i) și (1,1+i). (Ind. 1 = (1+i)(2-i) (2+i).)
- 90. Rezolvați ex. 88 folosind ex. precedent și teorema a doua de izomorfism.
- 91. Fie A un inel comutativ și fie $a,b,a',b'\in A$ cu aa'+bb'=1. Arătați că A-modulul factor $A^2/<(a,b)>$ este izomorf cu A.

14

92. Arătați că

Seminar 13

$$\mathbb{Z}_{144} = <\widehat{9} > \dot{+} < \widehat{16} >$$

ca \mathbb{Z} -module.

- 93. Spunem că un modul este indecompozabil dacă singura sa descompunere în sumă directă internă $M=M_1\dot+M_2$ este cea trivială, adică $M=M\dot+\{0\}$. Arătați că \mathbb{Z} -modulele \mathbb{Z} , \mathbb{Q} și \mathbb{Z}_8 sunt indecompozabile.
- 94. Verificați dacă

$$B = \{1 + 2i, 2 + 3i\}, C = \{1 + 2i, 4 + 5i\}, D = \{1, 1 + i, 1 + 3i\}$$

sunt baze ale \mathbb{Z} -modulul liber $\mathbb{Z}[i]$.

- 95. Arătați că \mathbb{Z}_4 nu este $\mathbb{Z}_8\text{-modulul liber.}$ Generalizare.
- 96. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^2/<(2,8)>$ nu este liber.
- 97. Numărați aplicațiile \mathbb{Z} -liniare de la $\mathbb{Z}[i]$ la $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- 98. Dați că un exemplu de două module nelibere M,N cu produsul direct $M\times N$ liber.