Construção de Compiladores Período Especial Aula 19: Construção das Tabelas

Bruno Müller Junior

Departamento de Informática UFPR

2020

- Para entender o algoritmo de construção da tabela de desvios, é necessário primeiro entender três conceitos:
 - Estado
 - Transição
 - Item

Estado

- Cada estado indica:
 - a configuração atual da floresta, e
 - o que falta para completar uma produção;
- Exemplos: Estado 1
 - Árvore "L" na floresta;
 - Aguarda token ","

Estado

Estado

- Exemplos: Estado 5
 - Árvores "L" e "," na floresta;
 - Aguarda token "a", "b" ou árvore "E" (redução de "a" ou "b");
- Exemplos: Estado 4
 - Recebeu token "b";

Transição

Transição

- Mudança de um estado para outro;
 - Usando token: T(1,",")=5
 - Usando árvore não rotulada: T(5,E)=6

Item

- Cada estado indica:
 - a configuração atual da floresta, e
 - ② o que falta para completar uma produção;
- item: representação das configurações possíveis em um estado.
- Utiliza o símbolo para separar a floresta já construída do que falta para completar uma produção;

• Exemplos:

Item

•
$$[L \rightarrow L \bullet, E] \in \mathbf{1}$$

•
$$[L \rightarrow E \bullet] \in 2,6$$

$$\bullet \ [E \to \bullet a] \in 5, 0$$

$$\bullet \quad [E \to a \bullet] \in 3$$

$$\bullet \quad [E \to a \bullet] \in 3$$

 Um estado pode representar um conjunto de itens:

• 5: {
$$[E \rightarrow \bullet a], [E \rightarrow \bullet b], [E \rightarrow \bullet E]$$
}

- Cada produção tem vários itens.
- Por exemplo, a produção $L \rightarrow L, E$ tem os seguintes itens:

$$\begin{array}{cccc} \{L & \rightarrow & [\bullet L, E] \\ L & \rightarrow & [L \bullet, E] \\ E & \rightarrow & [L, \bullet E] \\ E & \rightarrow & [L, E \bullet] \} \end{array}$$

- Observe que cada item apresenta exatamente um •.
- Isto permite calcular quantos itens tem cada produção;

 Na gramática G abaixo estão indicados o número de itens em cada produção.

$$G = \{L' \rightarrow L\#(3)$$

$$L \rightarrow L, E(4)$$

$$L \rightarrow E(2)$$

$$E \rightarrow a(2)$$

$$E \rightarrow b(2)$$

• Existem 3 + 4 + 2 + 2 + 2 = 13 itens;

- Cada estado representa um conjunto de itens;
- Conjunto no sentido matemático:
 - $\bullet \quad E_1 = \{[E \to \bullet a], [E \to \bullet b], [E \to \bullet E]\}$
 - $\bullet \quad E_{\mathbf{2}} = \{[E \rightarrow \bullet E], [E \rightarrow \bullet a], [E \rightarrow \bullet b]\}$
 - então E_1 e E_2 SÃO O MESMO ESTADO!
- Existem 2¹³ formas diferentes de combinar estes itens (ou seja, 2¹³ conjuntos de itens).
- Alguns destes conjuntos são os estados do grafo.

Fecho transitivo de itens

- A construção do conjunto de itens válidos para cada estado (e as transições entre eles) é feita a partir de um item inicial daquele estado.
- Item inicial do estado 0: [L' → •L#].
- Graficamente (o triângulo representa todas as derivações de *L*):

Fecho transitivo de itens

 Observe que o • mostra que todas as derivações possíveis a partir de L também são válidas, ou seja, no triângulo de L podem ser encaixados os seguintes itens: [L → •L, E], [L → •E#]

 Observe que o • mostra que todas as derivações possíveis a partir de L também são válidas, ou seja, no triângulo de L podem ser encaixados os seguintes itens: [L → •L, E], [L → •E#]

Item

Fecho transitivo de itens

- Este processo é conhecido como "aplicar o fecho":
 - para cada item da forma $[A \rightarrow \alpha \bullet B\beta]$
 - inclua todas as itens onde $[B \to \bullet \gamma]$
 - Neste caso, tivemos:

$$\begin{array}{lll} \textit{original} : \mathbf{e_0} = & \{ & [L' \rightarrow \bullet L\#] \} \\ \textit{fecho}(\mathbf{e_0}, L) : \mathbf{e_0} = & \{ & [L' \rightarrow \bullet L\#], \\ & [L \rightarrow \bullet L, E], [L \rightarrow \bullet E] \} \\ \textit{fecho}(\mathbf{e_0}, E) : \mathbf{e_0} = & \{ & [L' \rightarrow \bullet L\#], \\ & [L \rightarrow \bullet L, E], [L \rightarrow \bullet E], \\ & [E \rightarrow \bullet a], [E \rightarrow \bullet b] \} \end{array}$$

Fecho transitivo de itens

• Após o fecho, o estado e_0 é composto pelos itens:

$$e_{\mathbf{0}} = \{ [L' \to \bullet L \#],$$

$$[L \to \bullet L, E], [L \to \bullet E],$$

$$[E \to \bullet a], [E \to \bullet b] \}$$

ou graficamente:

Algoritmo Tabela de Desvios

- Criar a tabela onde cada coluna é um elemento da gramática;
- Aumentar a gramática;
- Oriar estado zero a partir do estado aumentado.
- 4 Para cada estado e_x , faça:
 - Aplicar fecho;
 - Para cada símbolo Y faça:

 - Se e_{temp} já existe, desconsiderar;

Criar a Tabela

 Dada a gramática G, monta-se a tabela de desvios com número desconhecido de linhas. As colunas contém os símbolos (variáveis+tokens) da gramática.

$$G = \{L \rightarrow L, E \text{ } 1\}$$

$$L \rightarrow E \text{ } 2$$

$$E \rightarrow a \text{ } 3$$

$$E \rightarrow b \text{ } 4$$

	Tabela de Desvios								
	L	Е	а	Ь	,	#			
0									
1									
2									
1 2 3									
4 5 6									
6									

Aumentar a gramática

	Tabela de Desvios							
	L	Е	а	b	,	#		
0								
1								
2								
3								
4								
1 2 3 4 5 6								
6								
,								

$$e_{\mathbf{0}} = [L' \rightarrow \bullet L\#]$$

	Tabela de Desvios								
	L	E	a	Ь	,	#			
0									
1									
2									
3									
4									
1 2 3 4 5									
6									

Aplicar Fecho

 O fecho é obtido ao incluir no estado corrente todos os itens deriváveis a partir do ●.

$$\begin{split} e_{\mathbf{0}} = & [L' \to \bullet L \#] \\ & [L \to \bullet L, E][L \to \bullet E] \\ & [E \to \bullet a][E \to \bullet b] \end{split}$$

Tabela de Desvios								
,	L	Е	а	b	,	#		
0								
1								
2								
2 3 4 5 6								
4								
5								
6								

Criar novos estados

- Novos estados são obtidos aplicando a função Transfere.
- A ordem que vamos adotar é a indicada na tabela de desvios.

$$\begin{split} e_{\boldsymbol{0}} &= \{[L' \to \bullet L \#] \\ & [L \to \bullet L, E][L \to \bullet E] \\ & [E \to \bullet a][E \to \bullet b]\} \end{split}$$

- Como n\u00e3o existe estado com estes itens, deve ser criado um novo, e indicado na tabela de desvios.

	Tabela de Desvios								
	L E a b , #								
0	1								
1									
2									
3									
4									
5									
6									

Demais Transições de *e*n

$$e_{\mathbf{0}} = \{ [L' \to \bullet L \#]$$

$$[L \to \bullet L, E][L \to \bullet E]$$

$$[E \to \bullet a][E \to \bullet b] \}$$

•
$$T(e_0, E) = \{[L \to \bullet E]\} = e_2$$

$$T(e_0, a) = \{[E \to a \bullet]\} = e_3$$

•
$$T(e_0, b) = \{ [E \to b \bullet] \} = e_4$$

• $T(e_0, ...) = \emptyset$

- $T(e_0, \#) = \emptyset$

Tabela de Desvios								
	L	E	а	b	,	#		
0	1	2	3	4				
1								
2								
2								
4								
5								
6								

Transições de e₁

$$e_1 = \{ [L' \to L \bullet \#]$$

 $[L \to L \bullet, E \}$

- T(e₁, E) = ∅ $T(e_0, a) = \emptyset$
- $T(e_0, b) = \emptyset$
- $T(e_0, ,) = \{[L \to L, \bullet E]\} = e_5$ $e_5 = Fecho(e_5) = \{[L \rightarrow L, \bullet E],$ $[E \rightarrow \bullet a], [E \rightarrow \bullet b]$
- T(e₀, #) = ∅ (não faz sentido "ultrapassar" o fim de arquivo.

	Tabela de Desvios							
	L	Е	а	b	,	#		
0	1	2	3	4				
1					5			
2								
1 2 3								
4 5 6								
6								

Análise de e₅

- O estado *e*₅ é composto por uma série de itens. Observe o que ele representa graficamente.
- A árvore de E pode derivar para $E \rightarrow a$ ou $E \rightarrow b$.
- Com isso, as entradas a e b são válidas para e_5 , enquanto que "," ou "#" não são.

$$e_5 = \{[L \to L, \bullet E],$$

$$[E \to \bullet a],$$

$$[E \to \bullet b]\}$$

Transições de *e*₂

$$e_2 = \{[L \rightarrow E \bullet]\}$$

- $T(e_2, E) = \emptyset$
- T(e₂, a) = ∅
- $T(e_2,b)=\emptyset$
- T(e₂, ,) = ∅
- $T(e_2, \#) = \emptyset$

Tabela de Desvios								
	L	Е	а	b	,	#		
0	1	2	3	4				
1					5			
2								
2 3 4								
4								
5								
6								

Transições de e₃

$$e_3 = \{[L \rightarrow a \bullet]\}$$

- T(e₃, E) = ∅
- T(e₃, a) = ∅
- $T(e_3,b)=\emptyset$
- T(e₃, ,) = ∅
- $T(e_3, \#) = \emptyset$

Tabela de Desvios								
	L E a b , #							
0	1	2	3	4				
1					5			
2								
1 2 3 4								
5								
6								

Transições de e4

$$e_4 = \{[E \rightarrow b \bullet]\}$$

- T(e₄, E) = ∅
- T(e₄, a) = ∅
- $T(e_4,b)=\emptyset$
- T(e₄, ,) = ∅
- $T(e_4, \#) = \emptyset$

Tabela de Desvios							
	L	Е	a	b	,	#	
0	1	2	3	4			
1					5		
2							
3							
4							
5							
6							

Transições de *e*₅

$$e_{\mathbf{5}} = \{[L \to L, \bullet E],$$
 $[E \to \bullet a],$
 $[E \to \bullet b]\}$

•
$$T(e_5, E) = \{[L \to L, E \bullet]\} = e_6$$

•
$$T(e_5, a) = \{[E \to a \bullet]\} = e_3$$

•
$$T(e_5, b) = \{[E \to b \bullet]\} = e_4$$

$$T(e_5,,)=\emptyset$$

$$T(e_{\mathbf{5}}, \#) = \emptyset$$

Tabela de Desvios									
	L	Е	a	Ь	,	#			
0	1	2	3	4					
1					5				
2									
3									
4									
1 2 3 4 5		6	3	4					
6									

Transições de e₆

$$e_{\pmb{6}} = \{[L \rightarrow L, E \bullet]\}$$

- T(e₆, E) = ∅
- T(e₆, a) = ∅
- $T(e_6, b) = \emptyset$
- $T(e_6,,) = \emptyset$
- T(e₆, #) = ∅

Tabela de Desvios								
	L	E	а	b	,	#		
0	1	2	3	4				
1					5			
2								
2								
4								
5		6	3	4				
6								

Tabela de desvios: Automato com itens

Tabela de Ações

- A tabela de ações indica qual ação o algoritmo deve executar quando encontrar um token.
- Por esta razão, ela não está definida para as variáveis.
- São quatro ações: empilha, Reduz, Aceita e Erro.

- Para cada estado e_x , faça:
 - Se houver um item do tipo $[A \to \alpha \bullet a\beta]$ então coloque um "empilha" na interseção de e_x com a.
 - ② Se houver um item do tipo [A → α• então coloque um "reduz" (com o número da produção correspondente) em toda linha de e_x.
 - Se houver um item do tipo [A → α #] então coloque um "aceita" na interseção de x com #.

$$e_{\mathbf{0}} = [L' \to \bullet L \#]$$

$$[L \to \bullet L, E]$$

$$[L \to \bullet E]$$

$$[E \to \bullet a]$$

$$[E \to \bullet b]$$

Tabela de Desvios									
	L	E	а	Ь	,	#			
0	1	2	3	4					
1					5				
2									
3									
1 2 3 4 5									
5		6	3	4					
6									
	Т	abela	de A	ções					
		а	b	, ,	#	<u>L</u>			
0		е	6	2					
1									
2									
3									
1 2 3 4 5									
5									
6									

Ações de *e*₁

$$e_1 = \{ [L' \to L \bullet \#]$$

 $[L \to L \bullet, E \}$

Tabela de Desvios								
	L	Е	а	Ь	,	#		
0	1	2	3	4				
1					5			
2								
3								
4								
1 2 3 4 5		6	3	4				
6								
	Т	abela	de A	ções				
		а	1 1	,	,	#		
0		е		9				
1					e	Α		
2								
3								
1 2 3 4 5								
5								
6								

Ações de *e*₂

$$e_2 = \{[L \to E \bullet]\}$$

$$G = \{L \rightarrow L, E \textcircled{1}$$

$$L \rightarrow E \textcircled{2}$$

$$E \rightarrow a \textcircled{3}$$

$$E \rightarrow b \textcircled{4}$$

		Tabela	a de	Desvi	os	
	L	Е	а	b	,	#
0	1	2	3	4		
					5	
2						
3						
4						
1 2 3 4 5		6	3	4		
6						
		Tab	ela d	e Açõ	es	
		ā	a	Ь	,	#
0		•	9	e		
1					e	A <i>R</i> ₂
2		1	R ₂	R_2	R_2	R_2
3						
0 1 2 3 4 5						
5						
6						

Ações de e₃

$$e_3 = \{[E \rightarrow a \bullet]\}$$

$$G = \{L \rightarrow L, E \text{ } 1\}$$

$$L \rightarrow E \text{ } 2$$

$$E \rightarrow a \text{ } 3$$

$$E \rightarrow b \text{ } 4$$

Tabela de Desvios								
	L	Е	а	b	,	#		
0	1	2	3	4				
1					5			
2								
3								
1 2 3 4 5								
5		6	3	4				
6								
		Tab	ela d	e Açõ	es			
		ā	a	Ь	,	#		
0		•	9	e				
1					e	Α		
2		ı	R ₂	R_2	R ₂ R ₃	R ₂ R ₃		
3		ŀ	₹2 ₹3	R ₂ R ₃	R_3	R ₃		
1 2 3 4 5								
5								
6								

Ações de *e*₄

$$e_4 = \{[E \rightarrow b \bullet]\}$$

$$G = \{L \rightarrow L, E \text{ } 1\}$$

$$L \rightarrow E \text{ } 2$$

$$E \rightarrow a \text{ } 3$$

$$E \rightarrow b \text{ } 4$$

Tabela de Desvios									
	L	Е	а	b	,	#			
0	1	2	3	4					
1					5				
2									
3									
4									
1 2 3 4 5		6	3	4					
6									
		Tab	ela d	e Açõ	es				
		ā	3	Ь	,	#			
0		•	9	e					
1					e	Α			
2		1	R ₂	R_2	R_2	R_2			
3		- 1	₹3	R_3	R ₃	R_3			
4		- 1	R4	R_4	R_4	R ₄			
0 1 2 3 4 5									
6	i								

Ações de *e*₅

$$e_{\mathbf{5}} = \{[L \to L, \bullet E],$$

 $[E \to \bullet a],$
 $[E \to \bullet b]\}$

$$G = \{L \rightarrow L, E \text{ } 1\}$$

$$L \rightarrow E \text{ } 2$$

$$E \rightarrow a \text{ } 3$$

$$E \rightarrow b \text{ } 4$$

	-	Tabela	a de	Desvi	os	
	L	Е	а	b	,	#
0	1	2	3	4		
1					5	
2						
3						
1 2 3 4 5						
5		6	3	4		
6						
		Tab	ela d	e Açõ	es	
		ā	э	Ь	,	#
0		6	9	e		
1					e	Α
1 2 3		- 1	R ₂	R_2	R_2	R_2
3		1	R ₃	R_3	R_3	A R ₂ R ₃
4 5		1	R4	R4	R4	R4
5		6	e	e		
6						

Ações de *e*₆

$$e_{\mathbf{6}} = \{[L \rightarrow L, E \bullet]\}$$

$$G = \{L \rightarrow L, E \text{ } 1\}$$

$$L \rightarrow E \text{ } 2$$

$$E \rightarrow a \text{ } 3$$

$$E \rightarrow b \text{ } 4$$

Tabela de Desvios								
	L	Е	a	b	,	#		
0	1	2	3	4				
1					5			
2								
1 2 3 4 5								
4								
5		6	3	4				
6								
		Tab	ela d	e Açõ	es			
		ā	3	b	,	#		
0		•	9	e				
1					e	Α		
2		1	R ₂	R_2	R_2	R_2		
1 2 3 4		- 1	₹3	R_3	R_3	R ₃		
4		- 1	R4	R_4	R_4	R ₄		
5		•		e				
6		1	R 1	R_1	R_1	R_1		

Algoritmo Tabela Acões

Representação Alternativa

- Muitos textos usam a notação abaixo;
- Observe que na primeira coluna, " e_x " indica o estado X.
- Sem cores, é menos intuitivo dizer se " e_x " de dentro da tabela significa estado X ou empilha e vai para estado X.
- Em inglês não melhora muito (state X) (shift and goto X).

Tabela de Desvios									
	L	E	а	Ь	,	#			
e0	1	2	e3	e4					
e1					e5				
e2			R_2	R_2	R_2	R_2			
e3			R_3	R_3	R_3	R_3			
e4			R_{4}	R_4	R_4	R_{4}			
e5		6	e3	e4					
е6			R_1	R_1	R_1	R_1			

Algoritmo Tabela Ações

Página para anotações

Licença

- Slides desenvolvidos somente com software livre:
 - LATEX usando beamer;
 - Inkscape.
- Licença:
 - Creative Commons Atribuição-Uso Não-Comercial-Vedada a Criação de Obras Derivadas 2.5 Brasil License. http://creativecommons.org/licenses/by-nc-nd/2.5/br/