

Convolutional Encoder/Viterbi Decoder

Deepak Bharadwaj.R (2020H1400229H) A.Rajasekar (2020H1400237H) Shri Lakshmi A (2020H1400217H) Aruna (2020H1400220H) ME, Embedded Systems Department of Electrical and Electronics Engineering

BITS Pilani

Hyderabad Campus

Hardware Software Co-Dsn (EEE

G626)

Supervisor: Prof. Amit Kumar Panda

Phd Scholar: Mr. Samala Jagdeesh

Contents

- Introduction
- Problem Statement
- Block Diagrams
- Approach to solution
- Software testing results

Introduction

. Background:

- Convolutional code □ error-correcting code used to overcome data corruption in digital communication channels.
- Viterbi Algorithm

 — there are only a finite number of possible states
 of the encoder, and that given two consecutive states we can
 predict the input bit(s) that would have caused that state transition.
- Problem Statement: Design and implement Convolutional Encoder/Veterbi Decoder .

Convolutional Encoder:

Viterbi Decoder:

- Branch Metric Unit (BMU): Calculates the branch metrics for every stage.
- Add Compare Select (ACS): Calculates the path metrics of all the states in a stage. The number of ACS units depends on the constraint length
- Survivor Memory Unit (SMU): used to store the path history of all the surviving paths and is finally used to retrieve the original input sequence.

Approach to solution

- Implementation of convolutional encoder/viterbidecoder as HW/SW co-design
- ☐ HW/SW division
- ☐ HW/SW parallel synthesis
- ☐ HW/SW parallel simulation
- Tools used: MATLAB simulink and vivado

HW/SW Partitioning

- Hardware: tasks with low complexity and high speed.
- Software: tasks with high complexity and low speed.
- Viterbi decoder:
- Hardware blocks: BMU, SMU and PMU
- Software blocks: Add-compare-select unit

HDL Generated Model

Elaboration of Subsystem

achieve

lead

RTL of Viterbi Decoder

Synthesized Model

Mapping on FPGA

Utilization Report

1. Slice Logic

Site Type	1	Used	1	Fixed	1	Available	1	Util%	1
+	+		+		+		+		+
Slice LUTs*	I	3743	1	0	1	53200	1	7.04	1
LUT as Logic	I	3436	1	0	1	53200	I	6.46	1
LUT as Memory	I	307	1	0	1	17400	1	1.76	1
LUT as Distributed RAM	I	176	1	0	1		1		1
LUT as Shift Register	I	131	1	0	1		1		1
Slice Registers	I	6492	1	0	1	106400	1	6.10	1
Register as Flip Flop	1	6492	1	0	1	106400	1	6.10	1
Register as Latch	I	0	1	0	I	106400	1	0.00	1
F7 Muxes	1	209	1	0	1	26600	1	0.79	1
F8 Muxes	I	104	1	0	1	13300	1	0.78	1
+	+		-+-		+		-+-		+

Conclusion

- Viterbi Decoder plays a significant role in Communication Systems.
- HDL of Viterbi Decoder has been implemented as a IP core and integrated in Simulink Model.
- Hardware Software Codesign speed up the design process and reduce error in design.
- Fabrication rate increases.

Thank You