(1) Publication number:

0 099 948 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 82303995.3

61 Int. Cl.3: C 22 B 21/06

2 Date of filing: 28.07.82

- (3) Date of publication of application: 08.02.84 Bulletin 84/6
- 84 Designated Contracting States: CH DE FR GB IT LI
- Applicant: SHOWA ALUMINUM CORPORATION, 224, 6-cho Kaizan-cho, Sakai Osaka (JP)
- 72 inventor: Shingu, Hideo, 28, Kowaki-cho Matsugasaki, Sakyo-ku Kyoto (JP) Inventor: Arai, Kozo Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP) Inventor: Sakaguchi, Masashi Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP) Inventor: Nishide, Toshio Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP) Inventor: Watanabe, Osamu Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP) Inventor: Tashiro, Yasushi Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP) Inventor: Otsuka, Ryotatsu Showa Aluminum Corporation, 224, 6-cho, Kalzan-cho, Sakai Osaka (JP) Inventor: Tsukamoto, Kenji Showa Aluminum Corporation, 224, 6-cho, Kaizan-cho, Sakai Osaka (JP)
- (A) Representative: Drever, Ronald Fergus et al, Swindell & .
 Pearson 44, Friar Gate, Derby DE1 1DA (GB)

64 Process for producing high-purity aluminum.

To obtain a high-purity aluminum fraction from aluminum containing both eutectic impurities and peritectic impurities, the contents of these impurities in the original aluminum are reduced by melting the original aluminum to obtain molten aluminum (1), adding boron to the molten aluminum (1), and rotating a cooling body (3) as immersed in the boron-containing molten aluminum (1) while introducing a cooling fluid to the interior of the body (3) to crystallize high-purity aluminum on the surface of the body (3). The peritectic impurities react with the boron to form metallic borides, which are centrifugally forced away from the cooling body (3) by the rotation of the latter without being incorporated into the aluminum crystallized on the surface of the body (3). The eutectic impurities are removed from the crystallized aluminum on the surface based on the principle of segregation.

9 948

3 660 O d

1

PROCESS FOR PRODUCING HIGH-PURITY ALUMINUM

The present invention relates to a process for producing aluminum having high purity, and more particularly to a process for treating aluminum containing eutectic impurities, such as Fe, Si Cu and Mg, and also peritectic impurities, such as Ti, V and Zr, by resorting to segregation solidification to obtain aluminum having lower contents of eutectic impurities and peritectic impurities and a higher purity than the original aluminum.

10 Throughout the specification and the appended claims, the term "eutectic impurities" refers to the impurities which undergo a eutectic reaction with aluminum, and the term "peritectic impurities" refers to the impurities which undergo a peritectic reaction with

15 aluminum.

5

When aluminum containing both eutectic

impurities and peritectic impurities is melted and then subjected to equilibrium solidification, the impurity concentration Cs of the resulting solid aluminum fraction is theoretically represented by the following equation.

5

10

15

20

25

 $Cs = ko Co(1 - fs)^{ko-1}$ (1)

wherein ko is the distribution coefficient, Co is the impurity concentration of the original aluminum, and fs is the ratio of the solid fraction. The above equation shows that when the distribution coefficient ko is smaller than 1, the impurity concentration Cs of the solid fraction is smaller than the impurity concentration Co of the original aluminum and that when the distribution coefficient ko is larger than 1, the impurity concentration Cs of the solid fraction is greater than the impurity concentration Co of the original aluminum. eutectic impurities are smaller than 1 in distribution coefficient, the solid fraction prepared from aluminum containing such impurities is lower than the original aluminum in impurity concentration. Accordingly when the original aluminum is melted and thereafter solidified, high-purity aluminum can be obtained advantageously by selectively separating off the resulting pro-eutectic aluminum. Segregation solidification processes based on this principle are already known as disclosed, for example, in U.S. Patents No. 3,671,229, No. 3,211,547,

- etc. However, peritectic impurities are larger than l in distribution coefficient, so that aluminum containing such impurities affords a solid fraction which is higher than the original aluminum in impurity concentration.
- Accordingly when aluminum containing both eutectic impurities and peritectic impurities is treated by the conventional segregation solidification process to obtain pro-eutectic aluminum selectively, the resulting solid fraction is lower in the concentration of eutectic impurities but higher in the concentration of peritectic.

impurities than the original aluminum.

Aluminum containing both eutectic impurities and peritectic impurities is therefore usually treated by adding boron to a melt of such aluminum in a container to cause the boron to react with Ti, V, Zr and like peritectice impurities and form insoluble metallic borides such as TiB₂, VB₂, ZrE₂, etc., allowing the mixture to stand for a long period of time, for example, for more than 1 hour to settle the metallic borides, placing the molten aluminum into another container as separated from the borides, and selectively drawing off pro-eutectic aluminum only from the container. This process is inefficient since the settlement of the metallic borides requires much time.

The object of the present invention is to overcome the above drawback and to provide a process for treating aluminum containing both eutectic impurities and peritectic impurities by segregation solidification to remove the impurities of both types from the aluminum to the greatest possible extent and obtain aluminum having a higher purity than the original aluminum.

The process of this invention for producing high-purity aluminum comprises the steps of melting 10 aluminum containing both eutectic impurities and peritectic impurities to obtain molten aluminum, adding boron to the molten aluminum, immersing a cooling body into the boron-containing molten aluminum, and rotating the cooling body while introducing a cooling fluid to the interior of the cooling body to crystallize high-purity aluminum on the surface of the body.

15

20

25

With this process, the boron reacts with the peritectic impurities to form metallic borides, which are moved away from the cooling body and dispersed throughout the liquid phase by the centrifugal force produced by the rotation of the cooling body. Accordingly an aluminum fraction having lower contents of eutectic impurities and peritectic impurities than the original aluminum can be crystallized on the surface of the cooling body, giving high-purity aluminum. Unlike the

conventional process, the present process does not involve the necessity of settling the metallic borides and therefore can be practiced within a shortened period of time.

5 When aluminum containing Fe, Si, Cu, Mg and like eutectic impurities, and Ti, V, Zr and like peritectic impurities is melted, and boron is added to the resulting melt, the boron reacts with the Ti, V, Zr and like peritectic impurities to form TiB2, VB2, ZrB2 and like insoluble metallic borides. The amount of boron 10 to be used, which is determined in accordance with the Ti, V, Zr and like contents of the aluminum to be purified, is a predetermined amount larger than the amount needed for forming the above metallic borides. may be added in the form of an Al-B master alloy or \mathtt{NaBF}_4 15 Since boron undergoes a eutectic reaction or like salt. with aluminum, the excess of boron other than the quantity of boron forming the metallic borides with the peritectic impurities is removed in the same manner as 20 the eutectic impurities as will be described below.

When a cooling body is rotated as immersed in the boron-containing molten aluminum while introducing a cooling fluid to the interior of the body, high-purity aluminum crystallizes on the surface of the cooling body. Stated more specifically, when aluminum containing

25

eutectic impurities is melted and subjected to equilibrium solidification, pro-eutectic aluminum of high purity separates out first. The ratio between the eutectic impurity concentration of the solid phase and the eutectic impurity concentration of the liquid phase at this time 5 is represented by the distribution coefficient ko. During actual solidification, however, the eutectic impurities are released into the liquid phase to form a layer of concentrated eutectic impurities in the liquid phase in the vicinity of the liquid-solid interface or boundary, 10 so that the impurity concentration of the solid phase is governed by the effective distribution coefficient $k_{\scriptscriptstyle\rm E}$ considering the thickness of the concentrated layer (hereinafter referred to as "diffusion layer"). impurity concentration Cs of the solid phase is repre-15 sented by Equation (1) wherein $k_{\rm E}$ is used in place of ko, i.e. by the following equation.

$$Cs = k_E Co(1 - fs)^{k_E-1}$$
 (2)

$$k_{E} = \frac{ko}{ko + (1 - ko) \exp(-\frac{R\ell}{D})}$$

wherein R is the solidification velocity, δ is the thickness of the diffusion layer formed in the vicinity of the

liquid-solid interface, and D is the diffusion coefficient of the eutectic impurities in the liquid phase. therefore follows that the effective distribution coefficient $k_{\rm E}$ can be made approximate to the distribution coefficient ko effectively by decreasing the solidification velociy R and the thickness of the diffusion layer. δ , and increasing the diffusion coefficient D. these variables, the diffusion coefficient D is considered to be a constant which is dependent on the kind of the eutectic impurity generally when the liquid phase has a constant temperature, so that it is difficult to vary the diffusion coefficient D. It is therefore effective to decrease the solidification velocity R and the thickness of the diffusion layer, δ , for making the effective distribution coefficient $k_{\rm E}$ approximate to the distribution coefficient ko.

5

10

15

20

25

When the eutectic impurities are released into the liquid phase at the liquid-solid interface, dendrites are formed at the interface. It is well known that when such dendrites grow, the impurities released into the liquid phase in the vicinity of the liquid-solid interface are trapped, as they are or in the form of eutectic crystals of several microns, in the interstices of the dendrites. This phenomenon is undesirable for the purification of aluminum. The growth of dendrites

occurs when the actual temperature of the liquid phase is lower than the temperature of the equilibrium liquidus in the vicinity of the liquid-solid interface. This phenomenon is referred to as constitu-5 tional undercooling. The growth of dendrites is promoted when the difference (degree of undercooling) AT between the temperature of the equilibrium liquidus and the actual liquid phase temperature increases. Accordingly the growth of dendrites can be inhibited effectively by . 10 decreasing the difference AT. To decrease AT, there is the need to increase the temperature gradient of the melt in the vicinity of the liquid-solid interface. Ideally, the temperature gradient should be smaller than the temperature gradient of the equilibrium liquidus 15 to make AT smaller than 0.

The foregoing leads to the following three requirements for purifying aluminum with improved efficiency.

(a) To decrease the solidification velocity to the greatest possible extent.

20

- (b) To decrease to the greatest possible extent the thickness of the diffusion layer in the vicinity of the liquid-solid interface.
- (c) To increase to the greatest possible extent the temperature gradient involved in the liquid phase in

the vicinity of the interface.

When a cooling body is immersed in molten aluminum containing boron, aluminum having a high purity starts to crystallize on the surface of the cooling body. The solidification proceeds while the eutectic impurities 5 are being released into the liquid phase in the vicinity of the liquid-solid interface to form a diffusion layer. The solidification velocity at this time is governed by the difference between the amount of heat removed from 10 the molten aluminum by the cooling body and the amount of heat supplied to the molten aluminum by heating from outside. Thus the velocity is controlled by these amounts of heat. Further when an increased amount of heat is supplied to the molten aluminum by external heating, with 15 an increased amount of heat removed from the melt by cooling with the cooling body, greater transfer of heat occurs between the cooling body and the melt', consequently giving a greater temperature gradient to the liquid phase in the vicinity of the liquid-solid interface. The 20 greater the temperature gradient, the more effectively is the formation of dendrites inhibited at the interface to prevent the eutectic impurities from being arrested by the dendrites. Ideally, the temperature gradient involved in the liquid phase in the vicinity of the liquid-solid interface should be greater than that of 25

the equilibrium liquidus. The formation of dendrites can then be inhibited completely. From the viewpoint of industrial productivity, however, it is desirable to effect suitable transfer of heat from the molten aluminum to the cooling body by advantageously controlling the 5 external heating and cooling with the cooling body. Further when the cooling body is rotated, the solid phase and the liquid phase move relative to each other, whereby the diffusion layer formed near the liquid-solid interface is effectively agitated and mixed with the other 10 major portion of the liquid phase to disperse the impuriites in the diffusion layer throughout the entire liquid phase, consequently greatly reducing the thickness of the diffusion layer. At the same time, the boundary layer in the temperature distribution of the liquid phase is 15 made thinner, consequently permitting the liquid phase to have an increased temperature gradient in the vicinity of the liquid-solid interface. The thicknesses of the diffusion layer and the boundary layer in the temperature distribution can be decreased by increasing the speed of 20 rotation of the cooling body, in other words, the speed of the relative movement between the cooling body and the molten aluminum. However, if the speed is exceedingly high, the aluminum crystallized on the surface of the cooling body is likely to separate off easily due to the 25

increase of the centrifugal force, resulting in reduced productivity. Preferably the speed of the relative movement is within the range of 400 to 8000 mm/sec because if the speed is lower than 400 mm/sec, the diffusion layer will not be made thinner effectively, whereas if it is 5 higher than 8000 mm/sec, the increased centrifugal force will lead to reduced productivity. When the cooling body is in the form of a cylinder having a diameter of 160 mm, for example, the body can be rotated at 50 to 1000 10 r.p.m., but especially good results are obtained at 200 to 700 r.p.m. Further improved results can be achieved if the direction of rotation of the body is reversed with suitable frequency. Since boron undergoes a eutectic reaction with aluminum, the excess of boron other than the amount of boron forming metallic borides with the peritectic impurities is removed in the same manner as Fe, Si, Cu, Mg and like eutectic impurities.

The high-purity aluminum deposited on the surface of the cooling body on crystallization is recovered, for example, by melting the high-purity fraction or by scraping off the fraction.

15

20

25

The present invention further provides a process comprising the steps of melting aluminum containing both eutectic impurities and peritectic impurities to obtain molten aluminum, placing the molten aluminum

into a holding container, adding boron to the molten aluminum within the container, and rotating a cooling body as immersed in the boron-containing molten aluminum within the container while introducing a cooling fluid to the interior of the cooling body to crystallize high-purity aluminum on the surface of the body.

5

10

In the above process, the cooling body is immersed into the molten aluminum preferably after causing the boron to react with the peritectic impurities by allowing the molten aluminum to stand for at least about 5 minutes following the addition of the boron. To promote the reaction, it is desirable to agitate the boron-containing molten aluminum.

process comprising melting aluminum containing both eutectic impurities and peritectic impurities to obtain molten aluminum, placing the molten aluminum into a boron adding vessel, causing the molten aluminum placed into the vessel to be forwarded to a plurality of purifying tanks from

20 tank to tank and to be discharged from the last tank, adding boron to the molten aluminum within the vessel, and rotating a cooling body as immersed in the boron-containing molten aluminum within each of the tanks while introducing a cooling fluid to the interior of the cooling body to crystallize high-purity aluminum on the surface

of the body. This process affords a large quantity of high-purity aluminum efficiently by a centinuous operation.

The boron adding vessel and the purifying tanks are prepared, for example, by dividing a single large container into a plurality of sections by partitions each having a communication opening, one of the sections serving as the vessel and the other sections as the tanks. Alternatively a plurality of crucibles may be arranged in a row, with each crucible communicating with another through a trough, such that one of the crucibles serves as the boron adding vessel and the others as the purifying tanks.

Boron is placed into the vessel continuously so that the molten aluminum therein has a constant boron concentration during operation. Preferably the molten aluminum in the vessel is agitated to accelerate the reaction between the boron and the peritectic impurities. The cooling body is immersed in the molten aluminum in each of the purifying tanks. The supply of the melt to the purifying tanks is so adjusted that the amount of the melt in each tank remains unchanged during operation. To allow equal amounts of aluminum to crystalize on the surfaces of the cooling bodies in the purifying tanks, the temperature of the molten aluminum, the speed of rotation and cooling capacity of the cooling bodies are

suitably controlled. The eutectic impurity concentration of the molten aluminum in the purifying tanks progressively increases from tank to tank away from the melting furnace. The average impurity concentration of all the aluminum fractions obtained is variable by varying the ratio of 5 the total amount of aluminum fractions recovered by the cooling bodies to the total amount of the melt supplied. (The ratio will be referred to as "recovery ratio".) smaller the recovery ratio, the lower is the average impurity concentration. Accordingly aluminum having a 10 constant purity which is higher than the purity of the original aluminum supplied from the melting furnace for purification can be obtained by rendering the recovery ratio constant. Further at the same recovery ratio, the purity of the aluminum obtained increases with the increase 15 in the number of purifying tanks.

The invention will be described below in greater detail with reference to the accompanying drawings.

Fig. 1 is a view in vertical section showing a 20 first embodiment of apparatus for producing high-purity aluminum by the process of the invention;

Fig. 2 is a view in vertical section showing a second embodiment of apparatus for producing high-purity aluminum by the process of the invention;

Fig. 3 is an enlarged fragmentary view of Fig. 2 partly broken away;

10

15

20

Fig. 4 is a graph showing the result achieved when the process of the invention was practiced with use 5 of the second apparatus, the graph showing the relation of the amount of aluminum (yield) crystallized on the peripheral surface of a cooling body in each purifying tank to the ratio of the eutectic impurity concentration of the molten aluminum in the tank to the eutectic impurity concentration of the aluminum to be purified; and

Fig. 5 is a graph showing the relation between the number of purifying tanks and the ratio of the eutectic impurity concentration of the aluminum obtained to that of the aluminum to be purified, the relation being determined by practicing the process of the invention with use of the second apparatus.

With reference to a first apparatus for practicing the process of the invention, the aluminum to be purifyied and containing both eutectic impurities and peritectic impurities is melted and placed in a holding container comprising a crucible 2. The molten aluminum 1 is heated and maintained at a temperature exceeding the solidifying temperature thereof. Boron is added to the molten aluminum 1, and the mixture is agitated for at

least 5 minutes. A cooling body 3 is thereafter immersed in the melt 1. The cooling body 3 is in the form of a hollow cylinder having closed opposite ends and is movable upward and downward. A hollow rotary shaft 4 extends upward from the upper end of the body 3. The interior of the hollow rotary shaft 4 is in communication with the interior of the cooling body 3. A cooling fluid supply pipe 5 extends through the shaft 4 into the cooling body 3. The rotary shaft 4 is provided at its upper end with a drive device (not shown), by which the shaft 4 and the 10 body 3 are rotated. The top and bottom of the body 3 and the portion of the shaft 4 to be exposed to the melt 1 are preferably covered with a heat insulating material 6 so as not to permit aluminum to crystallize on these portions. This is due to the reason that since the effect 15 produced by the rotation of the body 3 is lower at these portions than at the periphery of the body 3, aluminum, if crystallizing on these portion, will have a lower purity than the aluminum crystallizing on the periphery. cooling body 3 is rotated while introducing a cooling 20 fluid, such as air, nitrogen or argon, from the pipe 5 into the body 3 at an adjusted rate so that the portion of the melt 1 around the body 3 will be cooled slowly. Pro-eutectic aluminum having a high purity then starts to crystallize on the periphery of the body 3. After a 25

specified quantity of aluminum has been deposited on the body 3, the body is raised and withdrawn from the melt 1, and the high-purity aluminum obtained is collected.

The above procedure is repeated in aluminum

melts of progressively higher purities to obtain aluminum
of greatly improved purity.

With reference to Figs. 2 and 3 showing a second apparatus, there is provided a melting furnace ll for melting the aluminum to be purified and containing both eutectic impurities and peritectic impurities. A large 10 container 12 in the form of a horizontally elongated rectangular parallelepiped is disposed on the right side of the furnace 11. The container 12 is divided into five sections by partitions 13. Of these sections, the one at the left end serves as a boron adding vessel 14, and 15 the other four sections serve as purifying tanks 15 to The partitions 13 are formed at their upper ends with openings 19 through which the vessel 14 and the tanks 15 to 18 communicate with one another. The vessel 14 has an agitator 20 in its interior. The agitator 20 20 comprises a vertical rotary shaft 21, a propeller-shaped stirring blade 22 attached to the lower end of the shaft 21 and unillustrated drive means. Each of the tanks 15 to 18 is provided with a cooling body 23 which is movable upward and downward. The body 23 is in the form of a 25

downwardly tapered hollow cylinder having closed opposite ends and a hollow rotary shaft 24 extending upward from its top. The interior of the shaft 24 is in communication with the interior of the body 23. A cooling fluid supply pipe 26 extending through the shaft 24 into the body 23 has a large number of cooling fluid outlets 25 in its peripheral wall. The upper end peripheral portion and the bottom of the cooling body 23 are covered with heat insulating members 27 and 28 respectively.

5

10

Before molten aluminum 30 is placed into the tanks 14 to 18, the cooling bodies 23 are held raised as indicated in broken lines in Fig. 2.

The aluminum to be purified and containing both eutectic impurities and peritectic impurities is melted in the furnace 11, and the molten aluminum 30 is first 15 placed into the vessel 14, in which boron is added to the melt 30. The mixture is agitated by the agitator 20. this vessel 14, the boron reacts with Ti, V, Zr and like peritectic impurities, forming TiB2, VB2, ZrB2 and like insoluble metallic borides. The molten aluminum 20 containing the eutectic impurities, insoluble metallic borides and an excess of boron flows into the tanks 15 to 18 through the communication openings 19. After a predetermined amount of molten aluminum 30 has been placed into each of the tanks 15 to 18, the cooling body 23 is 25

lowered and immersed in the melt, with the upper heat insulating member 27 in contact with the melt 30 and with the lower edge of the member 27 located within the mass of the melt 30 at such a position that it will not be influenced by the temperature of the atmosphere. 5 upper end peripheral portion of the body 23 is covered with the insulating member 27, and the body is so immersed in the melt 30 that the member 27 is in contact with the surface of the melt 30 with its lower edge at a position where it is free of the influence of the atmospheric 10 temperature, for the following reason. The portion of the melt 30 near the surface thereof exposed to the atmosphere has a lower temperature than the other portion by being affected by the atmospheric temperature and is therefore liable to solidify on the periphery of the body 15 23 in the vicinity of the above surface. Consequently aluminum solidifies at a higher velocity at this portion than at the other portion of the periphery of the body 23, with the result that the aluminum fraction deposited on this portion has a lower purity than the fraction on the 20 other portion and becomes mixed with the latter fraction when the purified aluminum is removed from the outer periphery of the body 23 for collection after the completion of the purifying operation. This results in a reduced overall purifying efficiency. Further the bottom 25

of the cooling body 23 is covered with the heat insulating member 28 because the rotation of the body 23 will
not produce a satisfactory effect at the bottom, such that
the aluminum fraction deposited on the bottom of the body
23 has a lower purity than the other fraction on the
periphery of the body.

5

The cooling body 23 in this state is rotated while injecting a cooling fluid into the body through the inlets 25 of the supply pipe 26. This causes aluminum 10 to crystallize on the portion of the peripheral surface of the body 23 which is immersed in the melt 30 and which is not covered with the insulating members 27 and 28. Since the metallic borides contained in the melt 30 are centrifugally forced away from the body 23 by the rotation 15 thereof, the aluminum deposited on the periphery of the body 23 is free from such borides. The excess of boron, which forms a eutectic with aluminum, is removed like the eutectic impurities. The temperature of the molten aluminum, and the speed of rotation and cooling capacity 20 of the bodies 23 are so controlled that equal amounts of aluminum will be deposited on the peripheral surfaces of the bodies in the purifying tanks 15 to 18, while the supply and discharge of molten aluminum are controlled so that the tanks 15 to 18 contain equal amounts of melt. 25 with the recovery ratio maintained at a constant value.

Assuming that the molten aluminum supplied from the furnace 11 has a eutectic impurity concentration of CO and that the melt portions contained in the tanks 15 to 18 have eutectic impurity concentrations of Cl, C2, C3 and C4 respectively, C0 < C1 < C2 < C3 < C4. Further the 5 ratio of the eutectic impurity concentration of the melt in each of the tanks 15 to 18 to CO, namely the ratio CN/CO where N is 1 to 4, increases with the start of the operation but levels off when the amount of aluminum deposit on the periphery of the cooling body 23 reaches 10 a value as shown in Fig. 4. At this time, the total amount of eutectic impurities, Ms, in the aluminum recovered by the cooling bodies 23 plus the amount of eutectic impurities, Mn, in the molten aluminum discharged from the tank 18 at the right end is always equal to the 15 amount of eutectic impurities, No, in the aluminum to be purified. Accordingly, if the eutectic impurity concentration and the effective distribution coefficient of the eutectic impurities of the molten aluminum in each of the tanks 15 to 18 are known, high-purity aluminum can 20 be obtained with the desired eutectic impurity concentration when the recovery ratio is set to a definite value. The smaller the recovery ratio, the lower is the eutectic impurity concentration of the molten aluminum in each purifying tank, so that the cast block obtained has a 25

higher purity. The purity of the aluminum to be obtained can be determined by varying the recovery ratio. At a definite recovery ratio, the eutectic impurity concentration of the molten aluminum discharged increases with the increase of the number of purifying tanks as seen in Fig. 5, enabling the cooling bodies 23 to afford aluminum of higher purity.

When the same operation as above is repeated again with use of the aluminum collected by the cooling bodies 23, aluminum having a higher purity can be obtained. Since the molten aluminum resulting from the second operation usually has a higher purity than the original aluminum used as the material for the first operation, the molten aluminum, if returned to the furnace 11, gives an improved yield.

Example 1

The apparatus shown in Fig. 1 was used. Aluminum containing 0.08 wt.% of Fe, 0.05 wt.% of Si, 0.0015 wt.% of Ti, 0.004 wt.% of V and 0.0005 wt.% of Zr was melted, and the molten aluminum 1 was maintained at 670° C in the crucible 2. Al-3 wt.% B master alloy was added to the aluminum 1 so that the resulting melt had a boron concentration of 0.004 wt.%. The mixture was agitated for 5 minutes after the addition of the alloy. The cooling body 3, 100 mm in outside diameter, was immersed

in the melt 1 and rotated at a speed of 400 r.p.m. while supplying air into the body 3 through the supply pipe 5. The body 3 was rotated for 10 minutes and thereafter withdrawn from the melt 1 by raising. The body 3 was found to have aluminum deposited on its periphery in an amount of 20 wt. % based on the amount of the original aluminum. When checked for impurity concentration, the cast aluminum block was found to contain 0.008 wt. % of Fe, 0.012 wt. % of Si, less than 0.0001 wt. % of Ti, 0.0002 wt. % of V, less than 0.0002 wt. % of Zr and 0.0003 wt. % of B.

5

10

Example 2

The apparatus shown in Fig. 1 was also used. Aluminum containing 0.08 wt. % of Fe, 0.05 wt. % of Si, 0.002 wt. % of Ti, 0.008 wt. % of V and 0.001 wt. % of Zr 15 was melted, and the molten aluminum 1 was maintained at 670° C in the crucible 2. Al-3 wt. % B master alloy was added to the aluminum 1 so that the resulting melt had a boron concentration of 0.008 wt. %. The mixture was agitated for 5 minutes after the addition of the alloy. 20 The cooling body 3, 200 mm in outside diameter, was then immersed in the melt 1 and rotated at a speed of 650 r.p.m. while supplying air into the body through the pipe 5. After rotating the body 3 for 10 minutes, the body 3 was withdrawn from the melt. The body 3 was found to have 25

aluminum deposited on its periphery in an amount of 20% based on the amount of the original aluminum. When checked for impurity concentration, the cast aluminum block was found to contain 0.005 wt. % of Fe, 0.009 wt. % of Si, less than 0.0001 wt. % of Ti and V, less than 0.0002 wt. % of Zr and 0.0005 wt. % of B.

Example 3

The apparatus shown in Figs. 2 and 3 was used. The cooling bodies 23 were held raised. Aluminum contain-10 ing 0.08 wt. % of Fe, 0.05 wt. % of Si, 0.002 wt. % of Ti and 0.008 wt. % of V was melted in the furnace 11, and the molten aluminum was supplied to the boron adding vessel 14. Boron was added to the aluminum so that the resulting melt had a boron concentration of 0.008 wt. % at all times. The mixture was agitated by the agitator 15 When the purifying tanks 15 to 18 were filled with the molten aluminum flowing through the communication openings 19, each cooling body 23 having a diameter of 200 mm at the portion thereof covered with the heat insulating member 27 was lowered into the molten aluminum 20 The body 23 was rotated at 400 r.p.m. while supplying a cooling fluid into its interior from the pipe 26. During operation, the molten aluminum was continuously supplied from the furnace 11 to the vessel 14 and tanks 15 to 18 so as to fill up these containers to a constant 25

level. Boron was also continuously placed into the vessel 14 to maintain the boron concentration at 0.008 wt. % at all times. The eutectic impurity concentrations Cl, C2, C3 and C4 of the melt portions in the tanks 15 to 18 remained in the relation of Cl C3 C4 from the C2 start of the operation, and a steady state was established after the amount of aluminum deposit on the body 23 reached a specified amount. When the effective distribution coefficient of iron was 0.1 at a recovery ratio of 0.7, the ratios of the iron concentrations Cl. C2, C3 and C4 to 10 the iron concentration CO of the molten aluminum supplied from the furnace 11, namely C1/CO, C2/CO, C3/CO and C4/CO, levelled off at 1.3, 1.6, 2 and 2.7, respectively. operation was continued in this state. When checked for impurity concentration, the resulting cast aluminum blocks 15 were found to contain 0.008 wt. % of Fe, 0.008 wt. % of Si, 0.0001 wt. % of Ti, 0.0002 wt. % of V and 0.0006 wt. % of B on the average.

Example 4

The operation of Example 3 was repeated under the same conditions except that the recovery ratio was 0.4.

The operation was continued in a steady state. All the aluminum blocks obtained were found to have average impurity concentrations of: 0.005 wt. % Fe, 0.006 wt. % Si, 0.0001 wt. % Ti, 0.0002 wt. % V and 0.0005 wt. % B.

Example 5

The operation of Example 3 was repeated under the same conditions as in Example 3 except that eight purifying tanks were used in place of the four tanks. The operation was continued in a steady state. The aluminum blocks obtained were found to have the following average impurity concentrations: 0.0065 wt. % Fe, 0.007 wt. % Si, 0.0001 wt. % Ti, 0.0002 wt. % V, 0.0005 wt. % B. The aluminum had a higher purity than that obtained in Example 3 with use of the four purifying tanks and was produced at twice the speed therein.

5

10

The present invention may be embodied different—
ly without departing from the spirit and basic features
of the invention. Accordingly the embodiments herein

15 disclosed are given for illustrative purposes only and
are not in any way limitative. It is to be understood
that the scope of the invention is defined by the appended
claims rather than by the specification and that various
alterations and modifications within the definition and
20 scope of the claims are included in the claims.

Claims

5

15

20

- 1. A process for producing high-purity aluminum comprising the steps of melting the aluminum to be purified and containing both eutectic impurities and peritectic impurities to obtain melten aluminum, and adding boron to the molten aluminum, characterised by rotating a cooling body (3, 23) as immersed in the boron-containing molten aluminum (1) while introducing a cooling fluid to the interior of the cooling body (3, 23) to crystallize high-purity aluminum on the surface of the body (3, 23)
- 2. A process according to claim 1, characterised by placing the molten aluminum into a holding container (2), adding the boron to the molten aluminum within the container (2), and rotating the cooling body (3) as immersed in the boron-containing molten aluminum within the container (2).
- 3. A process according to claim 1 or 2, characterised in that the molten aluminum is agitated after the boron is added thereto.
- 4. A process according to claim 1, characterised by placing the molten aluminum into a boron adding vessel (14), causing the molten aluminum placed into the vessel (14) to be forwarded to a plurality of purifying tanks (15-18) from tank to tank and to be discharged from the last tank (18), adding the boron to the molten aluminum within the vessel (14), and rotating one of the cooling bodies (23) as immersed in the boron-containing molten aluminum within each of the tanks (15-18).

- 5. A process according to claim 4, characterised in that the molten aluminum having the boron added thereto in the vessel is agitated.
- 5. A process according to claim 4 or 5, characterised in that
 the supply and the discharge of the molten aluminum are controlled so that the amounts of the molten aluminum in the
 purifying tanks (15-18) remain unchanged during operation, and
 the cooling bodies (23) are controlled so that equal amounts
 of high-purity aluminum are crystallized on the surfaces of the
 cooling bodies (23).
 - 7. A process according to any of the preceding claims, characterised in that the speed of the relative movement between the cooling body (3, 23) and the molten aluminum is about 400 to about 8000 mm/sec when the cooling body is rotated.

A Section of the section of

.

EUROPEAN SEARCH REPORT

0 0 909ca90r/4umBer

EP 82 30 3995

	DOCUMENTS CONS	SIDERED TO BE	RELEVANT			
Category	Citation of document with indication, where app of relevant passages		opriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Ci. 3)	
Y	Patent Abstract 6, no. 3, 9 Jan JP-A-56-127 735	uary 1982 &	vol.	1	C 22 B	21/0
Y	US-A-3 198 625 * Claim 1 *	(P.T. STRO	JP)	. 1		
A,D	US-A-3 211 547 al.)	(N. JARRET	ſ et			
A,D	US-A-3 671 229 al.)	 (M.E. FERBI	ER et			
A	US-A-2 471 899	(A. REGNER				·
A	US-A-3 239 899	 (A.F. JOHNS	SON)		TECHNICAL FI SEARCHED (In	t. Cl. ³)
					C 22 B	9/0
		· .				
·	The present search report has be	Date of completion 24-03-			Examiner	
Y: par doo A: tec O: nor	CATEGORY OF CITED DOCI ticularly relevant if taken alone ticularly relevant if combined w cument of the same category hnological background n-written disclosure ermediate document	JMENTS vith another	T: theory or pri E: earlier pater after the filin D: document of L: document of	nt document, I ng date ited in the app ited for other	ying the invention	