SF1626 Flervariabelanalys Föreläsning 15

Henrik Shahgholian

Vid Institutionen för matematik, KTH

VT 2018, Period 3

Vektoranalys

Dagens Lektion: Avsnitt 15.5-15.6

- Ytintegraler, $\iint_Y f \, dS$ Flödesintegraler, $\iint_Y \mathbf{F} \cdot \hat{\mathbf{N}} \, dS$

Parameterytor i \mathbb{R}^3

En parameteryta är värdemängden till en kontinuerlig funktion \mathbf{r} definierad på något lämpligt område D i \mathbb{R}^2 med värden i \mathbb{R}^3 . Typ:

$$\mathbf{r}(u,v) = (x(u,v), y(u,v), z(u,v)), \qquad (u,v) \in D.$$

Oftast är D en rektangel. Om \mathbf{r} är 1-to-1 så skär inte ytan sig själv. Bilden av randen av D kallas då randen av parameterytan.

En yta sägs vara glatt om den har ett unikt tangentplan i varje punkt (utom längs randen). En normalvektor till detta tangentplan sägs vara en normalvektor till ytan.

Parameterytor i \mathbb{R}^3

En avbildningen från ett plant området till en yta i rummet.

Parameterytor i \mathbb{R}^3

En märklig, dock användbar, avbildning i bilindustrin.

Figur:

Parameterytor: Exempel

1. En funktionsyta z = f(x, y), då $(x, y) \in D$, kan ses som en parameteryta

$$\mathbf{r}(x,y)=(x,y,f(x,y)), \qquad (x,y)\in D$$

2. Enhetssfären $x^2 + y^2 + z^2 = 1$ kan parametriseras genom

$$\mathbf{r}(\phi,\theta) = (\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi)$$

där
$$0 \le \phi \le \pi$$
, $0 \le \theta < 2\pi$

Ytmått

På en yta Y parametriserad genom

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in D.$$

är $\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v$ en normalvektor och Ytelement dS ges av

$$dS = |\mathbf{r}'_u \times \mathbf{r}'_v| dudv = Ytelement$$

och Arean(Y) =
$$\iint_Y dS = \iint_D |\mathbf{r}'_u \times \mathbf{r}'_v| dudv$$

Ytintegralen av en funktion f över Y kan beräknas

$$\iint_{Y} f \, dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}'_{u} \times \mathbf{r}'_{v}| \, du dv$$

Ytelement dS

Ytelement dS i ett speical fall: z = g(x, y)

Om ytan ges av en funktionsgraf z = g(x, y) så får vi att

$$dS = \sqrt{1 + (g_x)^2 + (g_y)^2}.$$

Undersök detta i mer detalj, på sidan 892.

Exempel 1: Beräkna ytelementen för dessa ytor

- a) Y_1 är ytan z + y + x = 1
- b) Y_2 är Konen $z = \sqrt{x^2 + y^2}$
- c) Ytan Y_3 , som parametriseras genom

$$\mathbf{r}(u,v) = (u\cos v, u\sin v, v) \mod 0 \le u \le 1 \text{ och } 0 \le v \le \pi,$$

Exempel 2

Beräkna ytintegralen $\iint_S xy \ dS$ då S är den del av planet z + y + x = 1 som ligger i första oktanten.

Lösning av Exempel 2: grafen samt dess projektion i planet

Exempel 2

Observera att dS har redan beräknats i Exempel 1a, och vi har

$$dS = \sqrt{1 + (z_x)^2 + (z_y)^2} dxdy \, dar \, z = 1 - x - y. \, Dvs$$

 $dS = \sqrt{3}dxdy$. Integralen blir då en dubbelintegral över det området D, där x, y varierar, dvs den gröna triangel i bilden ovan. Alltså vi får

$$\iint_{S} xydS = \iint_{D} xy \sqrt{3} dxdy = \sqrt{3} \int_{0}^{1} \int_{0}^{1-x} xy dxdy$$
$$= \sqrt{3} \int_{0}^{1} \left[xy^{2}/2 \right]_{0}^{1-x} dx = (\sqrt{3}/2) \int_{0}^{1} \left[x^{3} - 2x^{2} + x \right] dx = (\sqrt{3}/24)$$

Quiz (hemma): Beräkna samma integral då vi betraktar x = 1 - y - z som graf.

Orienterade ytor i \mathbb{R}^3

På en yta Y parametriserad genom

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in D.$$

med $\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v$ som normalvektor, säger vi att den sida av ytan åt vilken denna normalvektor pekar är den positiva sidan.

Orienterade ytor i \mathbb{R}^3

På en yta Y parametriserad genom

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in D.$$

med $\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v$ som normalvektor, säger vi att den sida av ytan åt vilken denna normalvektor pekar är den positiva sidan.

OBS: Inte alla ytor är orienterbara på detta sätt, jfr t ex Möbiusbandet. http://demonstrations.wolfram.com/HandMovingOnAMoebiusStrip/

Orienterade ytor i \mathbb{R}^3

På en yta Y parametriserad genom

$$\mathbf{r}(u,v) = (x(u,v), y(u,v), z(u,v)), \quad (u,v) \in D.$$

med $\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v$ som normalvektor, säger vi att den sida av ytan åt vilken denna normalvektor pekar är den positiva sidan.

OBS: Inte alla ytor är orienterbara på detta sätt, jfr t ex Möbiusbandet. http://demonstrations.wolfram.com/HandMovingOnAMoebiusStrip/

En orientering av ytan inducerar en orientering på dess randkurvor: en sådan sägs vara positivt orienterad om ytan är till vänster om kurvan när vi är på den positiva sidan av ytan och går längs kurvan.

Flödet av ett vektorfält genom en yta i R³

Flödet av ett vektorfält \mathbf{F} genom en orienterad yta Y ges av

$$\iint_Y \mathbf{F} \cdot \hat{\mathbf{N}} \, dS$$

där $\hat{\mathbf{N}}$ är enhetsnormal till ytan (med rätt orientering).

Flödet av ett vektorfält genom en yta i R³

Flödet av ett vektorfält \mathbf{F} genom en orienterad yta Y ges av

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS$$

där $\hat{\mathbf{N}}$ är enhetsnormal till ytan (med rätt orientering).

Enbart det som går i **N** riktningen räknas.

Flödet av ett vektorfält genom en yta i R³

Flödet av ett vektorfält \mathbf{F} genom en orienterad yta Y ges av

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS$$

där $\hat{\mathbf{N}}$ är enhetsnormal till ytan (med rätt orientering).

Enbart det som går i **N** riktningen räknas.

Det som går i tangentriktningen bidrar inte till integralen.

En vanlig tillämpning av flödesintegraler

Om vektorfältet **F** är hastighetsfältet för en tidsoberoende strömning, så kan flödesintegralen

$$\iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS$$

tolkas som den volym av det strömmande mediet som per tidsenhet passerar genom ytan *Y*.

Se: http://demonstrations.wolfram.com/ElectricFlux/

Beräkning av flödet av ett vektorfält genom en yta i \mathbb{R}^3

Eftersom $\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v$ är en normalvektor på ytan som pekar åt rätt håll, får vi en enhetsnormal $\hat{\mathbf{N}}$ genom

$$\hat{\mathbf{N}} = \frac{\mathbf{r}_u' \times \mathbf{r}_v'}{|\mathbf{r}_u' \times \mathbf{r}_v'|}$$

Och eftersom $dS = |\mathbf{r}'_u \times \mathbf{r}'_v| \, dudv$ ser vi att vi kan beräkna flödesintegraler genom

$$\iint_{Y} \mathbf{F} \cdot d\mathbf{S} = \iint_{Y} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS = \iint_{D} \mathbf{F} \cdot \mathbf{r}'_{u} \times \mathbf{r}'_{v} \, dudv$$

om Y parametriseras av $\mathbf{r}(u, v)$ för $(u, v) \in D$.

Obs: högerledet är en vanlig dubbelintegral.

Exempel 3

Bestäm flödet av vektorfältet $\mathbf{F} = (y, z, x)$, genom ytan

$$S = \{(x, y, z): z + x^2 + y^2 = 5, z > 1\},$$

då ytan är orienterad så att normalen är riktad uppåt i z-riktningen.

Lösning av Exempel 3

Normalen till ytan blir $\mathbf{n} = (2x, 2y, 1)$. Använder vi att $z = 5 - x^2 - y^2$ på ytan, så får

Flödet =
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (y, (5 - x^2 - y^2), x) \cdot (2x, 2y, 1) dxdy =$$

Lösning av Exempel 3, fortsättning

$$\iint_{D} (2xy+2y(5-x^2-y^2)+x)dxdy = \iint_{D} (2xy+10y-2yx^2-2y^3+x)dxdy,$$

där D är projektionen av ytan i xy-planet, dvs

$$D = \{x^2 + y^2 = 5 - z \le 5 - 1 = 4\}.$$

Alltså

Flödet
$$= 0$$
,

antingen genom kalkyl, eller att alla involverade funktioner är udda, i antingen x eller, y, och att integrationsområdet är symmetriskt.

Minitenta 1

- A. Beräkna flödet av vektorfältet $\mathbf{F}(x, y, z) = (x, y, z)$ ut genom den totala begränsningsytan till cylindern som ges av $x^2 + y^2 \le 1$ och $0 \le z \le 1$.
- B. Beräkna flödet av det elektrostatiska fältet $\mathbf{E}(\mathbf{r}) = \frac{\mathbf{r}}{|\mathbf{r}|^3}$ kring en punktladdning i origo ut genom sfären med radie R och medelpunkt i origo. Här är $\mathbf{r} = (x, y, z)$.
- C. Beräkna flödet av vektorfältet $\mathbf{F}(x,y,z)=(z,0,x^2)$ uppåt genom den del av ytan $z=x^2+y^2$ som ligger ovanför kvadraten $-1 \le x \le 1$, $-1 \le y \le 1$ i xy-planet.

(Facit: A. 3π , B. 4π , C. 4/3)

Minitenta 2

Vi betraktar flödet av vektorfältet

$$\mathbf{v}(x, y, z) = (x + y, y, 2xy + z + 3)$$

upp genom den del av ytan $z = 1 - x^2 - y^2$ som ligger ovanför xyplanet.

- A. Parametrisera ytan.
- B. Ställ upp integralen som beräknar flödet av \mathbf{v} med hjälp av parametriseringen från A.
- C. Beräkna flödet av v med hjälp av integralen från B.

(*Facit*: 9π/2)