Zusatzaufgaben 10

Aufgabe 1: Abschlusseigenschaften regulärer Sprachen: Reguläre Ausdrücke

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $\{a^nb^n\mid n\in\mathbb{N}\}$ und $\{a^nb^n\mid n\in\mathbb{N}^+\}$ nicht regulär aber kontextfrei sind. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

regulär, weil nach Theorem 2.4.4 reguläre Sprachen abgeschlossen bezüglich Differenz (∖), Schnitt (∩) und Konkatenation (⋅) sind. Das ist ein Widerspruch. Damit ist A₈ nicht regulär.

/Lösung

Aufgabe 2: Abschlusseigenschaften regulärer Sprachen: NFAs

Gegeben seien die NFAs $M_1 \triangleq (\{\ q_1,\ q_2\ \}, \{\ a,\ b\ \}, \Delta_1, \{\ q_1\ \}, \{\ q_2\ \})$ und $M_2 \triangleq (\{\ q_3,\ q_4\ \}, \{\ 0,\ 1\ \}, \Delta_2, \{\ q_3\ \}, \{\ q_3\ \})$, wobei Δ_1 und Δ_2 durch die folgenden Graphen gegeben sind:

2.a) Gib die Sprachen $L(M_1)$ und $L(M_2)$ an, ohne auf eine Grammatik oder einen Automaten zu verweisen.

$$L(M_1) = \{ aw \mid w \in \{ a, b \}^* \} = L(a(a+b)^*)$$

$$L(M_2) = \{ 1,0^n1 \mid n \in \mathbb{N}^+ \}^* = L((1+00^*1)^*)$$

/Lösung

 $M_3 \triangleq \{\{q_1, q_2, q_3, q_4\}, \{a, b, 0, 1\}, \Delta_3, \{q_1\}, \{q_3\}\}\}$, wobei Δ_3 durch den folgenden Graphen gegeben ist:

Aufgabe 3: Syntaxbäume und Normalformen

Gegeben sei ein Alphabet $\Sigma_1 \triangleq \{ \ \alpha, \ b \ \}$ und die Grammatiken $G_1 \triangleq (\{ \ S, \ A, \ B \ \}, \Sigma_1, P_1, S)$ und $G_2 \triangleq (\{ \ S, \ A \ \}, \Sigma_1, P_2, S)$ mit

$$\begin{array}{ccc} P_1: & S & \rightarrow & \epsilon \mid \alpha A \mid bB \\ & A & \rightarrow & \alpha \mid \alpha A \\ & B & \rightarrow & b \mid bB \end{array}$$

$$\begin{array}{cccc} P_2: & S & \rightarrow & a \mid b \\ & S & \rightarrow & aAA \mid bAA \\ & A & \rightarrow & ab \end{array}$$

sowie die Ableitung σ_1 mit

$$\sigma_1 \stackrel{\triangle}{=} S \Rightarrow_{G_2} bAA \Rightarrow_{G_2} babA \Rightarrow_{G_2} babab$$

und die Ableitungen σ_2 mit

$$\sigma_2 \triangleq S \Rightarrow_{G_2} \alpha AA \Rightarrow_{G_2} \alpha A\alpha b \Rightarrow_{G_2} \alpha\alpha b\alpha b$$

$$f \triangleq \{ (\langle \rangle, \times), (\langle 1 \rangle, | \cdot |), (\langle 2 \rangle, \sum), (\langle 1, 1 \rangle, -5), (\langle 2, 1 \rangle, 0), (\langle 2, 2 \rangle, 1), (\langle 2, 3 \rangle, 2) \}$$
We don't be shriften Baum (R. f.) grafisch an

L-beschrifteter Baum (B, f)

3.b) Gib für alle möglichen Ableitungen des Wortes aaaa bezüglich der Grammatik G_1 den entsprechenden Syntaxbaum an.

Syntaxbaum (B, syn)

-(/Lösung)

3.c) Gib den zu σ_1 gehörigen Syntaxbaum an.

Syntaxbaum (B, syn)

/Lösung

3.d) Gib den zu σ_2 gehörigen Syntaxbaum an.

Syntaxbaum (B, syn)

3.e)	Begründe: G ₂ ist eindeutig.
	Lösung
	Die Grammatik G_2 ist vom Typ 2 (vergleiche mit Tutorium 5 Grammatik G_4 aus Aufgabe 3). Die von der Grammatik G_2 erzeugte Sprache $L(G_2) = \mathfrak{a}$, \mathfrak{aabab} , \mathfrak{b} , \mathfrak{babab} ist endlich. Jedes dieser vier Wörter hat genau einen Syntaxbaum. Für die Wörter \mathfrak{a} und \mathfrak{b} ist das trivial. Für die Wörter \mathfrak{aabab} und \mathfrak{babab} haben wir die Ableitungen \mathfrak{o}_1 und \mathfrak{o}_2 gesehen. Alle anderen Ableitungen für die beiden Wörter hätten lediglich eine andere Reihenfolge als die angegebenen Ableitungen. Der Syntaxbaum für diese Ableitungen sieht jeweils immer
	gleich aus. /Lösung
3.f)	Begründe: Ist G ₁ eine CNF-Grammatik?
	Lösung
	Nein, denn zB die Produktionsregel S \rightarrow aA enthält auf der rechten Seite sowohl ein Terminal als auch ein Nichtterminal. Somit ist G_1 nicht in der Chomsky-Normalform.
3.g)	Begründe: Ist G ₂ eine CNF-Grammatik?
	(Lösung)
	Nein, denn zB die Produktionsregel $S \to \alpha AA$ enthält auf der rechten Seite sowohl ein Terminal als auch Nichtterminale. Somit ist G_2 nicht in der Chomsky-Normalform.
	/Lösung