

GT0104 4-Bit Bidirectional Voltage-Level Translator

1 Features	2 Application
- No direction-control	- Handset/Smartphone
- Data rates	- MART
24 Mbps (Push Pull)	- IPC
2 Mbps (Open Drain)	- GPIO
- 1.65 V to 3.6 V on A port and 2.3 V to 5.5 V on B	5.15
port (V _{CCA} ≤ V _{CCB})	
- VCC isolation feature: If either VCC input is at GND,	
both ports are in the high-impedance state	
- No power-supply sequencing required:	
either V _{CCA} or V _{CCB} can be ramped first	
- I _{off} supports partial-power-down mode operation	
- Operating temperature range:-40°C to +85°C	

3 Description **Circuit Diagram** This 4-bit non-inverting translator is a bidirectional voltage-level translator and can be used to build digital switching compatibility between multi voltage systems. It uses two separate configurable power supply rails that including A ports supporting operating voltages from 1.65 V to 3.6 V with tracking V_{CCA} supply, and also including B ports supporting operating voltages from 2.3 V to 5.5 V with tracking V_{CCB} supply. The advantage above provides the support of both lower and Vcca higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8-V, 2.5-V, 3.3-V, and 5- V voltage circuit points. **Peripherals Processors** Placing output-enable (OE) input to low level, all I/Os are forced to high-impedance state that significantly lower the quiescent current consumption. In order to ensure the high-impedance state during power up or power down, OE pin should be tied to GND via a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

4 Revision History

Revision	Date	Note
Rev.A1.0	2023. 09. 21	Original Version
Rev.A1.1	2023. 09. 09	Additional Switch Characteristics Data
Rev.A1.2	2023. 10. 24	1.Update Package Qty 2.Added Tape and Reel Information
Rev.A1.3	2023. 12. 18	Update New Package
Rev.A1.4	2024. 01. 26	Updated Part Name

The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

www.gtic.com 1 / 19

5 Device Summary, Pin and Packages

Table 5-1. Device Summary⁽¹⁾

Serial Name	Part Name	Package	Body Size (Nom)	Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
GT0104	GT0104QD	QFN3.5×3.5-14L	3.50mm×3.50mm	GT0104 XXXXX	3	Tape and Reel,5000
	GT0104SC	QFN2.0×2.0-12L	2.00mm×2.00mm	0104 XXXX	3	Tape and Reel,3000
	GT0104TD	TSSOP-14	5.00mm×4.40mm	GT0104 XXXXXXX	3	Tape and Reel,4000
	GT0104QC	QFN2.0×1.7-12L	2.00mm×1.70mm	0104 XXXX	3	Tape and Reel,4000

⁽¹⁾For all available packages, please contact product sales.

(4)"XXXXX" in Marking will be appeared as the batch code.

FAE: 13148878879

Fig.5-1. GT0104: QD (QFN3.5×3.5-14L) Package

Fig.5-2. GT0104: SC (QFN2.0×2.0-12L) Package

www.gtic.com 2 / 19

⁽²⁾There may be additional marking, which relates to the lot trace code information (data code and Vendor code), the logo or the environmental category on the device.

⁽³⁾MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

5 Device Summary, Pin and Packages (Continued)

Fig.5-3. GT0104: TD (TSSOP14) Package

Fig.5-4. GT0104: QC (12-Pin QFN) Package

www.gtic.com 3 / 19

5 Device Summary, Pin and Packages (Continued)

Table 5-1 Pin Definition

		Pin			1/0	F
Name	QD	SC	TD	QC	I/O	Function
V _{CCA}	1	12	1	1	-	A Port Supply Voltage. 1.65V≤VccA≤3.6V and VccA≤VccB
A1	2	1	2	2	I/O	Input/Output A1. Referenced to V _{CCA} .
A2	3	2	3	3	I/O	Input/Output A2. Referenced to V _{CCA} .
A3	4	3	4	4	I/O	Input/Output A3. Referenced to V _{CCA} .
A4	5	4	5	5	I/O	Input/Output A4. Referenced to V _{CCA} .
NC	6	-	6	-	-	No internal connection
GND	7	5	7	6	-	Ground
OE	8	6	8	12	I	Output Enable(Active High).Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .
NC	9	-	9	-	-	No internal connection
B4	10	7	10	7	I/O	Input/Output B4. Referenced to V _{CCB} .
B3	11	8	11	8	I/O	Input/Output B3. Referenced to V _{CCB} .
B2	12	9	12	9	I/O	Input/Output B2. Referenced to V _{CCB} .
B1	13	10	13	10	I/O	Input/Output B1. Referenced to V _{CCB} .
V _{CCB}	14	11	14	11	-	B Port Supply Voltage. 2.3V≤VccB≤5.5V

^{*}It is suggested to leave the unconnected pins floating.

6 Voltage, Temperature, ESD and Thermal Ratings

6.1 Absolute Maximum Ratings

Parameters	Min	Max	Unit	
Supply voltage, V _{CCA}	-0.3	6.0	V	
Supply voltage, V _{ссв}		-0.3	6.0	V
Input voltage range,V _I	-0.3	6.0	V	
input voltage range, vi	B port	-0.3	6.0	V
Voltage range applied to any output in the high-impedance or	A port	-0.3	6.0	\ \
power-off state, Vo	B port	-0.3	6.0	V
Voltage range applied to any output in the high or low state, Vo	A port	-0.3	V _{CCA} +0.3	\ \
voltage range applied to any odiput in the high of low state, vo	B port	-0.3	V _{CCA} +0.3	V
Input clamp current,I _{IK}	V _I <0		-50	mA
Output clamp current,loк	Vo <0		-50	mA
Continuous output current,Io			±50	mA
Continuous current through Vcca, Vccb or GND	Continuous current through Vcca, VccB or GND			
Maximum junction temperature	Maximum junction temperature			°C
Storage temperature range		-65	150	°C

⁽¹⁾Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

www.gtic.com 4 / 19

⁽²⁾The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed

⁽³⁾The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

6 Voltage, Temperature, ESD and Thermal Ratings(continued)

6.2 ESD Ratings

	E	Value	Unit	
\//⊏€D\	V(ESD) Electrostatic discharge	Human-Body Model (HBM)	±3K	V
V(ESD)		Machine Model (CDM)	±2K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

V_{CCI} is the supply voltage associated with the input port.V_{CCO} is the supply Voltage associated with the output port.

Parameter		Conditions	Min	Тур	Max	Unit
Supply voltage ⁽¹⁾	V _{CCA}		1.65		3.6	V
Supply voltage V		V _{CCB}	2.3		5.5	V
	A-port I/Os	V _{CCA} =1.65 V to 1.95 V V _{CCB} =2.3 V to 5.5 V	V _{CCI} -0.2		V _{CCI}	
Lligh lovel input	A-port i/Os	V _{CCA} =2.3 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	V _{CCI} -0.4		V _{CCI}	
High-level input voltage(V _{Iн})	B-port I/Os	V _{CCA} =1.65 V to 3.6V V _{CCB} =2.3 V to 5.5 V	V _{CCI} -0.4		V _{CCI}	V
	OE input	V _{CCA} =1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	V _{CCI} ×0.8		5.5	
Low-level input	A-port I/Os	V _{CCA} =1.65 V to 1.95 V V _{CCB} =2.3 V to 5.5 V	0		0.15	V
voltage(VIL) ⁽²⁾	B-port I/Os	V _{CCA} =1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	0		0.15	V
OE	OE input	V _{CCA} =1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	0		V _{CCA} ×0.25	V
Input transition rice or	A-port I/0	Os push-pull driving			10	
Input transition rise or fall rate(Δt/Δv)	B-port I/0	B-port I/Os push-pull driving			10	ns/V
ιαπ τατο(Δι/Δν)	Control input				10	
TA Operating free-air temperature		-	-40		85	°C

⁽¹⁾ V_{CCA} must be less than or equal to V_{CCB} .

www.gtic.com 5 / 19

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

7 Electrical Specifications

7.1 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) $^{(1)}(2)(3)$

Pa	rameter	Conditions	VccA	Vccв	Temp	Min	Тур	Max	Uni	
V _{OHA}	Port A Output High Voltage	I _{OH} =–20 μA V _{IB} ≥ V _{CCB} – 0.4V	1.65V to 3.6V	2.3V to 5.5V	Full	V _{CCA} ×0.7			٧	
V _{OLA}	Port A Output Low Voltage	I _{OL} =1mA V _{IB} ≤ 0.15 V	1.65V to 3.6V	2.3V to 5.5V	Full			0.3	V	
V _{OHB}	Port B Output High Voltage	I _{OH} =−20 μA V _{IA} ≥ V _{CCA} − 0.4V	1.65V to 3.6V	2.3V to 5.5V	Full	V _{CCA} ×0.7			V	
V_{OLB}	Port B Output Low Voltage	I _{OL} =1mA V _{IA} ≤ 0.15 V	1.65V to 3.6V	2.3V to 5.5V	Full			0.3	٧	
l _I	Input Leakage Current	OE	1.65V to 3.6V	2.3V to 5.5V	+25℃ Full			±1 ±1.5	μA	
	Guirein				+25℃			± 0.5		
l _{off}	Partial	A Ports	0V	0V to 5.5V						
	Power Down				Full			±1	μA	
	Current	B Ports	0V to 3.6V	0V	+25℃			±0.5		
			2 T GREE		Full			±1		
loz	High-impedance State Output Current	State Output	A or B port	1.65V to 3.6V	2.3V to 5.5V	+25℃			±0.5	μA
102				OE=0V	1.00 10 0.0 1	2.57 10 0.57	Full			±1
	V _{CCA} Supply Current			1.65V to V _{CCB}	2.3v to 5.5V	Full			2.5	
Icca					V _I =V _{O=} open I _O =0	3.6v	0V	Full		
			0v	5.5V	Full			-1		
			1.65V to V _{CCB}	2.3v to 5.5V	Full			10		
I _{CCB}	CB V _{CCB} Supply Current			3.6v	0V	Full			-1	μΔ
			0v	5.5V	Full			1		
_{CCA} + I _{CCB}	Combined Supply Current	$V_I = V_{CCI}$ or GND $I_{O=0}$	1.65V to V _{CCB}	2.3v to 5.5V	Full			13	μΑ	
I _{CCZA}	V _{CCA} Supply Current	$V_I=V_{CCI}$ or $0V$ $I_O=0$, $OE=0V$	1.65V to V _{CCB}	2.3v to 5.5V	Full			1	μΑ	
I _{CCZB}	V _{CCB} Supply Current	$V_{I}=V_{CCI}$ or $0V$ $I_{O}=0$, $OE=0V$	2.3v to 3.6V	2.3v to 5.5V	Full			1	μΑ	
Ci	Input Capacitance	OE	3.3V	3.3V	+25℃		2.5		PF	
Cio	Input-to-output Internal	A Port	3.3V	3.3V	+25℃		5		PF	
Cio	Capacitance B Port		3.3V	3.3V	+25℃		5		25	

⁽¹⁾ V_{CCI} is the VCC associated with the input port.

www.gtic.com 6 / 19

⁽²⁾ V_{CCO} is the VCC associated with the output port

⁽³⁾ V_{CCA} must be less than or equal to $V_{\text{CCB}}.$

7.2 Timing Requirements

V_{CCA} =1.8 $V \pm 0.15V$

		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	l lmi4
		Тур	Тур	Тур	Unit
6 . 6 .	Push-pull Driving	21	22	24	Mhna
Data Rate	Open-drain Driving	2	2	2	Mbps
Pulse	Push-pull Driving (Data Inputs)	47	45	41	
Duration(tw)	tw) Open-drain Driving (Data Inputs)		500	500	ns

$V_{\text{CCA}}\text{=}2.5V\!\pm\!0.15V$

		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	Unit
		Тур	Тур	Тур	Unit
0 . 0 .	Push-pull Driving	20	22	24	Mhna
Data Rate	Open-drain Driving 2		2	2	Mbps
Pulse	Push-pull Driving (Data Inputs)	50	45	41	
Duration(tw)	Open-drain Driving (Data Inputs)	500	500	500	ns

V_{CCA} =3.3 $V\pm0.15V$

		V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	l lmi4
		Тур	Тур	Unit
Data Bata	Push-pull Driving	23	24	Mhna
Data Rate	Open-drain Driving	2	2	Mbps
Pulse Duration(tw)	Push-pull Driving (Data Inputs)	43	41	
	Open-drain Driving (Data Inputs)	500	500	ns

www.gtic.com 7 / 19

7.3 Switching Characteristics: V_{CCA} =1.8 $V\pm0.15V$

over recommended operating free-air temperature range (unless otherwise noted)

			0 1111	V _{ccB} =2.5V±0.2V	V _{ccB} =3.3V±0.2V	V _{ccB} =5V±0.2V		
	Parameter		Conditions	Тур	Тур	Тур	Units	
t _{PHL}	Propagation Delay Time	A to B	Push-pull Driving	5.6	5	5	ns	
THE	High-to-low Output	Alob	Open-drain Driving	7.5	7.9	8.3	113	
t _{РLН}	Propagation Delay Time	A to B	Push-pull Driving	10.0	9.5	9	ns	
IPLH	low-to-high Output	Alob	Open-drain Driving	181	170	154	115	
t _{РНL}	Propagation Delay Time	B to A	Push-pull Driving	7	7.1	7.2		
CPTL	High-to-low Output	BIOA	Open-drain Driving	7.6	8.1	9.2	ns	
t _{PLH}	Propagation Delay Time	B to A	Push-pull Driving	7.6	6.9	6	ns	
YPEN	low-to-high Output		Open-drain Driving	163	145	118	110	
t _{en}	Enable Time	OE to A or B		135	159	182	ns	
t _{dis}	Disable Time		OE to A or B	170	174	181	ns	
4	Input Rise Time	A port	Push-pull Driving	13.4	11.9	10.6	no	
t _{rA}	input Rise Time	rise time	Open-drain Driving	68	66	62	ns	
t _{rB}	Input Rise Time	B port	Push-pull Driving	13	12	11.6	ns	
чв	input Nise Time	rise time	Open-drain Driving	66	65	50	115	
t _{fA}	Input Fall Time	A port fall	Push-pull Driving	5.6	4.7	4.0	ns	
ча	input i all Time	time	Open-drain Driving	5.0	5.1	5.2	113	
t _{fB}	Input Fall Time	B port fall	Push-pull Driving	3.0	3.0	2.9	ns	
чв	input all time	time	Open-drain Driving	6.1	5.6	4.4	113	
t _{sk(O)}	Skew(time), Output	Cha	annel-to-Channel Skew	0.5	0.5	0.5	ns	
Ma	ximum Data Rate		Push-pull Driving	22	23	24	Mbps	
IVIC	Maximum Data Rate		Open-drain Driving	2	2	2	ININHO	

www.gtic.com 8 / 19

7.4 Switching Characteristics, V_{CCA} =2.5 $V\pm0.15V$

over operating free-air temperature range (unless otherwise noted)

Dorometer		Conditions		V _{ccB} =2.5V±0.2V	V_{ccB} =3.3V±0.2V V_{ccB} =5V±0.2V		1114	
	Parameter		Conditions	Тур	Тур	Тур	Units	
t	Propagation Delay Time	A to B	Push-pull Driving	3.5	3.5	3.2	ns	
t _{PHL}	High-to-low Output	ALOB	Open-drain Driving	6.3	6.5	6.7	115	
	Propagation Delay Time	A to B	Push-pull Driving	4.5	4.9	4.7		
tрLН	low-to-high Output	ALOB	Open-drain Driving	158	152	142	ns	
t _{PHL}	Propagation Delay Time	B to A	Push-pull Driving	3.7	3.9	4.6		
PHL	High-to-low Output	Blox	Push-pull Driving 3.5 3.	7.7	ns			
t _{PLH}	Propagation Delay Time	Propagation Delay Time	B to A	Push-pull Driving	4.8	4	2.5	ns
\PLH	low-to-high Output	BIOA	Open-drain Driving	153		113		
t _{en}	Enable Time	OE to A or B		7.7	41.8	130	ns	
t _{dis}	Disable Time		OE to A or B	175	181	182	ns	
t _{rA}	Input Rise Time	A port	Push-pull Driving	9.8	8.6	7.5	ns	
чА	input raso rano	Rise Time	Open-drain Driving	79	77	65	110	
	Input Rise Time	B port	Push-pull Driving	9.8	8.7	8.1	20	
t _{rB}	input Rise fillie	Rise Time	Open-drain Driving 6.3 6.5 Push-pull Driving 4.5 4.9 Open-drain Driving 158 152 Push-pull Driving 3.7 3.9 Open-drain Driving 6 6.6 Push-pull Driving 4.8 4 Open-drain Driving 153 138 OE to A or B 7.7 41.8 OE to A or B 175 181 the Push-pull Driving 9.8 8.6 Open-drain Driving 79 77 the Push-pull Driving 9.8 8.7 Open-drain Driving 93 68 Fall Push-pull Driving 4.6 4.1 Open-drain Driving 5.1 5.1 Fall Push-pull Driving 4.5 4.0 Open-drain Driving 6.9 7.4 Channel-to-Channel Skew 0.5 0.5 Push-pull Driving 22 24	53	ns			
t _{fA}	Input Fall Time	A port Fall	Push-pull Driving	4.6	4.1	3.6	ns	
ЧA	input rail rime	Time	Open-drain Driving	5.1	5.1	5.2	115	
t _{fB}	Input Fall Time	B port Fall	Push-pull Driving	4.5	4.0	4.0		
чв	input Faii Time	Time	Open-drain Driving	6.9	7.4	7.8	ns	
t _{sk(0)}	Skew(time), Output	Cha	nnel-to-Channel Skew	0.5	0.5	0.5	ns	
Ma	iximum Data Rate		Push-pull Driving	22	24	24	Mbps	
IVIA	Amani Data Nate		Open-drain Driving	2	2	2	Minha	

www.gtic.com 9 / 19

7.5 Switching Characteristics, $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range (unless otherwise noted)

Downworton			O and disking a		V _{ccB} =5V±0.2V		
	Parameter		Conditions	TYP	TYP	Units	
	Propagation Delay Time	A to B	Push-pull Driving	2.1	2.2		
tрнL	High-to-low Output		Open-drain Driving	5.9	6.1	ns	
	Propagation Delay Time	A to B	Push-pull Driving	1	3.3	ns	
t _{PLH}	High-to-low Output	Alob	Open-drain Driving	138	131		
4	Propagation Delay Time	P to A	Push-pull Driving	2.3	2.6		
t _{PHL}	High-to-low Output B to A Output		Open-drain Driving	5.4	6.6	ns	
t _{PLH}	Propagation delay time	B to A	Push-pull Driving	1.0	1.0	ns	
*F E II	low-to-high Output	2 10 / 1	Open-drain Driving	133	115		
t _{en}	Enable Time		OE to A or B	4.7	5.2	ns	
t _{dis}	Disable Time		OE to A or B	174	182	ns	
t _{rA}	Input Rise Time	A port	Push-pull Driving	7.4	6.6	ns	
чA	input Nise Time	Rise Time	Open-drain Driving	75	67	113	
t _{rB}	Input Rise Time	B port	Push-pull Driving	7.7	7.1	no	
lгВ	input Rise Time	Rise Time	Open-drain Driving	70	65	ns	
t _{fA}	Input Fall Time	A port Fall	Push-pull Driving	3.4	3.0		
ча	input i all time	Time	Open-drain Driving	5.1	5.1	ns	
t _{fB}	Input Fall Time	B port Fall	Push-pull Driving	3.5	3.2	no	
чв	input i all Time	Time	Open-drain Driving	6.8	6.7	ns	
t _{sk(O)}	Skew(time), Output	C	nannel-to-Channel Skew	0.5	0.5	ns	
М	Maximum Data Rate		Push-pull Driving Open-drain Driving		24	Mbps	
Waximum Data Nato					2	, , , , , ,	

www.gtic.com 10 / 19

8 Typical Characteristics

Fig.8-1. Low Level Output Voltage vs Low Level Current

Fig.8-2. Low Level Output Voltage vs Low Level Current

www.gtic.com 11 / 19

9 Parameter Measurement Information

Unless otherwise noted, all input pulsed are supplied by generators having the following characteristics:

- PSRR 10MHz
- Zo=50 Ω
- dv/dt ≥1V/ns

Note: All input pulses are measured one at a time with one transition per measurement

Fig.9-1. Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using a Push-Pull Driver

Fig.9-2. Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using an Open-Drain Driver

Fig.9-3. Load Circuit for Enable/Disable Time Measurement

Table 9-1 Switch Configuration for Enable/Disable Timing

Table 6 . Girlion Gornigaration for Enable Floating							
Test	S1						
t _{PZL} ⁽¹⁾ , t _{PLZ} ⁽²⁾	2×V _{cco}						
t _{PHZL} ⁽¹⁾ , t _{PZH} ⁽²⁾	Open						

(1) t_{PZL} and t_{PZH} are the same as ten.

(2) t_{PLZ} and t_{PHZ} are the same as tdis.

www.gtic.com 12 / 19

9 Parameter Measurement Information (Continued)

(1) All input pulses are measured one at a time, with one transition per measurement.

Fig.9-4. Voltage Waveforms Pulse Duration

Fig.9-5. Voltage Waveforms Propagation Delay Times

Fig.9-6. Voltage Waveforms Enable and Disable

www.gtic.com 13 / 19

10 Detailed Description

10.1 Overview

The GT0104 IC is a Bi-direction voltage-level translator specifically designed for translating logic voltage levels. The A port can accept I/O voltages that cover from 1.65 V to 3.6 V range; The B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. $10\text{-k}\Omega$ pullup resistors that usually used in open-drain applications have been integrated inside IC with the advantage saving an external resistor. Not only the IC is designed for open-drain applications, but also this device can translate push-pull CMOS logic outputs.

10.2 Architecture

The GT0104 architecture (see Figure below) is a translator with Bi-direction-Sensing function that means a direction-control mechanism to control the direction of data flow from A to B or from B to A is not needed. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. This auto-direction feature is realized by each I/O pin can be automatically reconfigured as either an input or an output.

Fig.10-1. Architecture of GT0104

11 Application Information

The GT0104 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the GT0108 might be a better option for such push-pull applications.

Fig.11-1. Typical Application Schematic

www.gtic.com 14 / 19

12 Package Outline Dimension

QFN3.5×3.5-14L

Symbol	Dimension	s In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	0.800	1.000	0.031	0.039		
A1	0.000	0.050	0.00	0.002		
A2	0.2	200REF	0.008REF			
b	0.180	0.300	0.007	0.012		
D	3.350	3.650	0.132	0.144		
D1	2.0	00TYP	0.079TYP			
Е	3.350	3.650	0.007	0.012		
E1	1.5	500TYP	0.059TYP			
е	0.5	500TYP	0.020TYP			
L	0.300	0.500	0.012	0.020		

www.gtic.com 15 / 19

12 Package Outline Dimension(Continued)

QFN2.0×2.0-12L

Cumbal	Dimension	s In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Min		
А	0.450	0.550	0.018	0.022		
A1	0.000	0.050	0.000	0.002		
С	0.100	0.200	0.004	0.008		
b	0.150	0.250	0.006	0.010		
D	1.900	2.100	0.075	0.083		
E	1.900	2.100	0.075	0.083		
D2	1.000	1.200	0.039	0.057		
E2	1.000	1.200	0.039	0.057		
е	e 0.400		0.016			
h	0.150	0.250	0.006	0.010		
L	0.150	0.250	0.006	0.010		

www.gtic.com 16 / 19

12 Package Outline Dimension(Continued)

TSSOP-14

Symbol	Dimension	s In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Min		
Α		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.250	6.550	0.246	0.258		
е	0.6	50BSC	0.0	026BSC		
L	0.500	0.700	0.020	0.028		
Н	0.2	250TYP	0.0	10TYP		
θ	1°	7°	1°	7°		

www.gtic.com 17 / 19

12 Package Outline Dimension(Continued)

QFN2.0×1.7-12L

Symbol	Dimension	s in millimeters	Dimensions in inches			
Symbol	Min	Max	Min	Min		
А	0.450	0.550	0.018	0.022		
A1	0.000	0.050	0.000	0.002		
A2	0.1	0.152REF		006REF		
D	1.900	2.100	0.075	0.086		
E	1.600	1.800	0.063	0.071		
D2	1.500	1.700	0.059	0.067		
b	0.150	0.250	0.006	0.010		
b1	0.1	50REF	0.006REF			
K	0.2	250REF	0.010REF			
е	0.4	00BSC	0.016BSC			
L	0.400	0.600	0.016	0.024		

www.gtic.com 18 / 19

13 Tape and Reel Information

Note: The picture is only for reference. Please make the object as the standard.

Key Parameter List of Tape and Reel

Package Type	Reel	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W	Pin1
	Diameter	(mm)	(111111)	(111111)	(111111)	(111111)	(111111)	(111111)	(mm)	QµAdrant
QFN3.5×3.5-14L	13"	12.4	4.0	4.0	1.10	4.0	8.0	2.0	12.0	Q1
QFN2.0×2.0-12L	7"	9.0	2.13	2.13	0.88	4.0	4.0	2.0	8.0	Q1
TSSOP-14	13"	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1
QFN2.0×1.7-12L	7"	9.0	1.90	2.30	0.75	4.0	4.0	2.0	8.0	Q1

(1)All dimensions are nominal. (2)Plastic or metal protrusions of 0.15mm maximum per side are not included.

19 / 19 www.gtic.com