Лабораторная работа № 3 Линейное программирование

Цель работы: решение прямой и двойственной задач линейного программирования и анализ чувствительности математической модели ЛП.

1. Краткие теоретические сведения

Задачи линейного программирования (ЛП) являются разновидностью задач математического программирования. В задачах ЛП допустимая область задается в виде системы неравенств и/или равенств, причем все функции в этих ограничениях, а также целевая функция линейны.

Различают несколько форм представления задач ЛП. Наиболее часто используются стандартная и каноническая формы описания задач ЛП. Рассмотрим задачу ЛП на максимум, стандартная форма которой имеет вид:

$$\sum_{j=1}^{n} c_{j} x_{j} \to \max,$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = \overline{1, m}, \quad \text{или в векторной форме:} \quad \begin{array}{c} c^{T} x \to \max, \\ Ax \leq b, \\ x \geq 0. \end{array}$$

$$x_{1}, \dots, x_{n} \geq 0$$

$$(3.1)$$

Здесь a_{ij} , b_i , c_j , $i = \overline{1,m}$, $j = \overline{1,n}$ - известные величины, $A = (a_{ij})$, $i = \overline{1,m}$, $j = \overline{1,n}$ - прямоугольная матрица, $b = (b_1 \dots b_m)^T$, $c = (c_1 \dots c_n)^T$ - векторы.

Канонический вид подобной задачи ЛП:

$$\sum_{j=1}^{n} c_{j} x_{j} \to \max,$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \quad i = \overline{1, m}, \quad \text{или в векторной форме:} \quad \begin{array}{l} c^{T} x \to \max, \\ Ax = b, \\ x \ge 0, \quad m < n. \end{array}$$

$$x_{1}, ..., x_{n} \ge 0, \quad m < n.$$

$$(3.2)$$

Переход от одной формы представления к другой осуществляется по известным правилам [1,2]. При решении задачи ЛП симплекс—методом, она представляется в канонической форме.

Каждой задаче ЛП на максимум (3.1), (3,2) соответствует задача ЛП на минимум и наоборот. Одну из них (первую или вторую) можно назвать *прямой* задачей, а другую — *двойственной* к ней. Методика построения двойственной задачи описана в [2]. Если прямой считать задачу вида (3.1), то ей соответствует двойственная:

$$\sum_{i=1}^{m} b_{i} y_{i} \to \min,$$

$$\sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j}, \quad j = \overline{1, n}, \quad \text{или в векторной форме:} \quad A^{T} y \leq c,$$

$$y \geq 0_{m}. \quad (3.3)$$

$$y_{1}, ..., y_{m} \geq 0,$$

Прямая и двойственная задачи связаны следующими теоремами двойственности [2].

Теорема о существовании решений. Задача линейного программирования вида (3.1) или (3.3) имеет решение тогда и только тогда, когда допустимые множества прямой и двойственной задачи не пусты, т.е.

$$X = \left\{ x \in \mathbb{R}^n \le b, \ x \ge 0_n \right\} \ne \emptyset, \quad Y = \left\{ y \in \mathbb{R}^m Ty \ge c, \ y \ge 0_m \right\} \ne \emptyset.$$

Теорема о совпадении оптимальных значений. Допустимые векторы x^* и y^* являются решениями задач (3.1) и (3.3) тогда и только тогда, когда значения целевых функций обеих задач на этих векторах совпадают: $(cx^*) = (by^*)$

Теорема о дополняющей нежесткости. Допустимые векторы x^* и y^* являются решениями задач (3.1) и (3.3) тогда и только тогда, когда они удовлетворяют следующим условиям:

$$\left(c_{j} - \sum_{i=1}^{m} a_{ij} y_{i}^{*}\right) x_{j}^{*} = 0, \quad j = \overline{1, n},$$

$$\left(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}^{*}\right) y_{i}^{*} = 0, \quad i = \overline{1, m}.$$
(3.4)

Теорему о дополняющей нежесткости можно сформулировать следующим образом.

- Если в оптимальной точке прямой задачи некоторое ограничение не активно (неравенство выполняется строго), то в оптимальной точке двойственной задачи соответствующая переменная равна нулю.
- Если в прямой задаче некоторая переменная не равна нулю (строго положительна), то в оптимальной точке двойственной задачи соответствующее ограничение активно (обращается в равенство).

2. Содержание работы

Для серийного изготовления детали механический цех может использовать пять различных технологий ее обработки на токарном, фрезерном, строгальном и шлифовальном станках. В табл. 3.1 указано время (в минутах) обработки детали на каждом станке в зависимости от технологического способа и общий ресурс рабочего времени станков за одну смену.

Таблина 3.1

													1 6	аол	ица	ι).	l .				
Станки		Токарный					Фрезерный				Строгальный					Шлифовальный					
	ВАРИАНТЫ																				
		1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
T e	1	2	3	1	0	1	1	1	0	2	3	1	3	4	1	2	3	1	2	3	2
X	2	1	0	2	2	1	0	2	1	2	0	2	0	1	1	0	4	4	4	2	5
Н О	3	3	1	0	1	2	2	1	3	0	1	0	4	2	1	1	2	0	2	4	3
Л О	4	0	2	5	3	2	2	3	1	1	2	3	2	0	1	2	1	2	1	0	1
И И Г	5	1	1	2	1	0	1	0	2	3	1	2	1	3	1	5	1	2	1	1	1
Ресурс вре- мени станков		41	00	0 5000			2000			250	0	58	00	4000			10800		8000		

Станки		Токарный				Фрезерный				Строгальный					Шлифовальный						
										ВА	Р И	I A I	ΗΤΙ	Ы							
		6	7	8	9	10	6	7	8	9	10	6	7	8	9	10	6	7	8	9	10
T	1	1	3	1	2	1	1	1	0	2	3	1	3	4	1	2	4	1	2	3	2
X	2	1	0	2	2	1	0	2	1	2	0	0	0	1	1	0	3	4	4	2	5
0	3	3	2	5	0	2	2	1	3	0	1	2	4	2	1	1	2	0	2	4	3
л о	4	1	2	0	3	2	2	3	1	1	2	3	2	0	1	2	0	2	1	0	1
и И	5	0	1	2	1	0	1	0	2	3	1	2	1	3	1	5	1	2	1	1	1
Ресурс времени станков		41	5000			2000			250	0	58	00	4000			10800		8000			

Требуется указать, как надо использовать имеющиеся технологии с тем, чтобы добиться максимального выпуска продукции. Затем следует осуществить анализ чувствительности модели ЛП.

3. Порядок выполнения работы

3.1. Составить математическую модель прямой задачи ЛП в соответствии с выбранным из таблицы вариантом, обозначая через $x_j \ge 0$, $j = \overline{1,5}$, количество деталей, выпускаемых цехом по j технологии; b_i - ресурс времени i-станка, $i \in \{$ токарный, фрезерный, строгальный, шлифовальный $\}$; a_{ij} - временные затраты i-го станка на обработку детали по j-й технологии.

Найти оптимальное решение x^* этой задачи, максимальное значение целевой функции $f^* = f(x^*)$ и число итераций вычислительной процедуры, используя среду Excel.

- 3.1.1. Составить Excel-таблицу в соответствии с моделью задачи ЛП (рис.3.1), зарезервировав ячейки **B3:F3** (изменяемые ячейки) под результат решения задачи $(x_1, x_2, x_3, x_4, x_5)$, ячейки **F6:F9** под значения правых частей ограничений и ячейку **G4** под оптимальное значение целевой функции (ЦФ).
 - 3.1.2. Ввести целевую функцию, осуществив следующие операции.
 - Курсор установить в ячейку **G4**.
 - Щелкнуть мышью по кнопке f_x , расположенной на панели инструментов. На экране появляется диалоговое окно **Мастер** функций шаг 1 из 2.
 - Выбрать функцию **СУММПРОИЗВ.** В строку **Массив 1** ввести **\$B\$3:\$F\$3**, в строку **Массив 2** ввести **B4:F4**. Массив 1 будет использоваться при вводе ограничений, поэтому на этот массив надо сделать абсолютную ссылку, поставив перед адресами ячеек знак **\$**.

Адреса ячеек во все диалоговые окна удобно вводить не с клавиатуры, а протаскивая мышь по ячейкам, чьи адреса следует ввести.

	Α	В	С	D E		F	G	Н
1		Вып	уск прод	укции по	техноло	гиям		
2		x1	x2	x 3	x4	x5	Целевая	
3							функция	
4	Коэффициенты ЦФ	1	1	1	1	1	3.0%	
5	Станки							Ограничения
6	Токарный	2	1	3	0	1		4100
7	Фрезерный	1	0	2	2	1		2000
8	Строгальный	1	2	0	3	2		5800
9	Шлифовальный	3	2	2	1	1		10800

Рис. 3.1

- 3.1.3. Ввести ограничения задачи ЛП.
- Курсор установить в ячейку G4 и скопировать формулу из этой ячейки в буфер.
- Последовательно устанавливая курсор в ячейки F6:F9 и нажимая кнопку Вставить, записать в эти ячейки выражения для ограничений.
- 3.1.4. В строке **Меню** выбрать команду **Сервис\Поиск решения**. Появляется диалоговое окно **Поиск решения** (рис. 3.2).

Поиск решения	×
Установить целевую ячейку: \$G\$4 № Равной: № максимальному значению О значению: О С минимальному значению	<u>В</u> ыполнить Закрыть
Измен <u>я</u> я ячейки: \$В\$3:\$F\$3	<u>П</u> араметры
\$G\$6 <= \$H\$6 \$G\$7 <= \$H\$7 \$G\$8 <= \$H\$8 \$G\$9 <= \$H\$9	Восс <u>т</u> ановить
у дожно	<u>С</u> правка

Рис. 3.2

3.1.5. В строку **Установить целевую ячейку** ввести адрес ячейки **\$G\$4** и указать, какое значение целевой функции (максимальное или минимальное) требуется найти.

Ввести адреса искомых переменных \$В\$3:\$F\$3 в строку Изменяя ячейки.

3.1.6. Ввести в программу ограничения. Для чего щелкнуть мышью по кнопке Добавить диалогового окна Поиск решения. Появляется другое диалоговое окно Добавление ограничения (рис. 3.3).

Рис. 3.3

В строке Ссылка на **ячейку** ввести адрес ячейки первого ограничения \$G\$6, затем знак ограничения.

В строке **Ограничение** ввести адрес ячейки **\$H\$6**, где записана величина ресурса токарного станка.

Щелкнуть мышью по кнопке **Добавить**. Появляется вновь диалоговое окно **Добавление ограничения**. Ввести остальные ограничения задачи, по вышеописанному алгоритму.

После введения последнего ограничения щелкнуть по кнопке **ОК**. На экране появится диалоговое окно **Поиск решения** с введенными условиями.

- 3.1.7. Задать параметры для решения задачи ЛП.
- В диалоговом окне **Поиск решения** (рис. 3.2) щелкнуть левой клавишей мыши по кнопке **Параметры.** На экране появляется диалоговое окно **Параметры поиска решения**.
- Установите флажки в строках **Линейная модель** (это обеспечит применение симплекс-метода) и **Неотрицательные значения** этого окна.
- Щелкнуть левой клавишей мыши по кнопке **ОК**. Возврат в диалоговое окно **Поиск решения**.
- Указатель мыши установить на кнопку **Выполнить**. Появляется диалоговое окно **Результаты поиска решения** и исходная таблица с заполненными ячейками **B3:F3**, соответствующими искомым переменным $(x_1, x_2, x_3, x_4, x_5)$ задачи ЛП и ячейкой **G4** с максимальным значением целевой функции.
- 3.2. Исследовать чувствительность модели к изменениям ресурсов машинного времени станков, т.е. выяснить вариация какого ресурса b_i приводит к наибольшему возрастанию целевой функции.

Для этого увеличивая поочередно величину каждого ресурса на 5-10 %, находим решения прямой задачи ЛП согласно п.3.1 и значения целевой функции $f(b_i)$. Затем определяется приращение функции $\Delta f_i = f(b_i) - f^*$, вызванное увеличением i-го ресурса. При этом структура решения прямой задачи не должна меняться, т.е. двойственные переменные остаются неизменными.

3.3. Построить математическую модель двойственной задачи ЛП в виде

$$F(p_1, p_2, p_3, p_4) = \sum_{i=1}^{4} b_i p_i \rightarrow \min,$$

 $\sum_{i=1}^{4} a_{ij} p_i \ge c_j, \quad j = \overline{1,5},$

где $p_i \ge 0$, $i = \overline{1,4}$, - оценка i-го ресурса.

Решить данную задачу с помощью пакета *Excel*, фиксируя в протоколе оптимальное решение и минимальное значение целевой функции. Проверить выполнение теоремы о совпадении оптимальных значений.

3.4. Усложнить задачу, положив, что цех сможет выпускать детали по k-й технологии в ограниченном количестве, не более $s = x_k/2$ штук, где k номер технологического процесса, по которому было выпущено наибольшее количество деталей x_k в п.3.1. Скорректировать математическую модель п.3.1 в соответствии с возникшей ситуацией и решить задачу ЛП.

Сравнить решение с п.3.1.

3.5. Показать, как изменится использование технологий, если при выпуске деталей в количестве, определенном п.3.1, потребовать минимизации машинных затрат.

4. Содержание отчета

- 4.1. Постановка задачи ЛП.
- 4.2. Математические модели прямой и двойственной задачи ЛП.
- 4.3. Протоколы решения задач ЛП в среде *Excel*.
- 4.4. Анализ чувствительности модели. Связь чувствительности с двойственными переменными.

Литература

1. Исследование операций в экономике/ под ред. проф. Н.Ш.Кремера. М.: Банки и биржи, ЮНИТИ, 1997.