№	Материал	Частотный диапазон	Толщина экрана1	Толщина экрана 2
1	Нержавеющая сталь	30кГц-3МГц	0,4мм	4мм

МГТУ им.	Отчет о лабораторной работе	ИУ7-76Б
Н.Э.	«Исследование методов защиты	(индекс группы)
Баумана	от воздействия ЭМП»	Барсуков Н.М.
Кафедра Э9	Вариант № 1	(Ф.И.О. студента)

Материал экрана	Нержавеющая сталь			
Толщины экрана_	0.4mm, 4mm	4 * 10 ⁻⁴ M	4 * 10 ⁻³	

Частотный диапазон_ 30кГц - 3Мгц

Формула для глубины проникновения ЭМП:

$$\delta = \sqrt{\rho/(\pi f \mu)}$$
, M,

Формула для эффективности экранирования:

$$\Theta = 36 + 20 \lg(\delta/\rho) + 8,7(d/\delta), \, дБ.$$

Графики эффективности экранов в заданном частотном диапазоне

Выводы по результатам проведенных расчетов:

По результатам проведенных расчетов сравнительное малое увеличение экрана дает огромный прирост в эфективности защиты