TEAM NOTE

CRET

1.	Mat	hematics	2
	A.	ax + by = c	2
	B.	number of relative prime number	2
	C.	FFT, NTT with precision	2 5
		FFT, NTT cpp	5
	E.	miller rabin, pollard rho	6
	F.	sum of divisiors	7
	G.	taylor series	8
2.	Com	binatorics	9
	A.	lucas theorem	9
		stirling number	9
	C.	catalan number	9
	D.	Generating Function	9
3.	Geo	metry	10
	A.	line segment	10
	В.	area of triangle	10
	C.	convex hull	10
	D.	Rotating Calipers	11
4.	Grap		12
		bipartite matching	12
	В.	SCC	12
	C.	scc – cpp	13
	D.	Dinic	14
5.	Tree		15
	A.	HLD	15
6.	String		
	A.	suffix array & LCP	18
	В.	manacher	19
	C.	kmp	20
7.	Wel	l-Known	21
	A.	2-sat	21
	B.	second MST	21
	C.	log LIS	23
	D.	Aho-Corasik, trie	23
	Ε.	Game-Theory	25
	F.	Slope Trick	25
	G.	DNC Optimization	25

Mathematics

```
ax + by = c
def abcsol(a, b, c):
    A = a
    B = b
    fa = [1, 0]
    fb = [0, 1]
    while a % b:
       fa, fb = fb, [(x - y * (a // b)) for x, y in zip(fa, fb)]
        a, b = b, a \% b
    gcd = b
    if c % gcd:
        return False
    return [fb[i] * c // gcd for i in range(2)]
print(abcsol(5, 2, 7))
# (7, -14)
number of relative prime number
# phi using primes => []
def phi(n, primes):
    rpn = n
    for p in primes:
        if n % p:
            continue
        while n % p == 0:
           n //= p
        rpn //= p
        rpn *= p - 1
        if n == 1:
            break
    if n != 1:
        rpn *= n - 1
        rpn //= n
    return rpn
# phi using factorization
from math import *
def phi f(factor):
    return prod([fact - 1 for fact in list(set(factor))])
```

FFT, NTT with precision

```
from math import *
def FFT(f, w):
```

```
n = len(f)
    if n == 1:
        return f
    even = [f[i] for i in range(0, n, 2)]
    odd = [f[i] for i in range(1, n, 2)]
    even = FFT(even, w ** 2)
    odd = FFT(odd, w ** 2)
    wp = complex(1)
   for i in range(n//2):
        f[i] = even[i] + wp * odd[i]
        f[i + n//2] = even[i] - wp * odd[i]
        wp *= w
    return f
# A, B => index = degree
def multiple(A, B):
    n = max(len(A), len(B))
    N = 2 ** ceil(log2(2 * n))
   A += [0] * (N - len(A))
    B += [0] * (N - len(B))
    rw = complex(cos(tau / N), sin(tau / N))
    # FFT 된 A 와 B 의 inner product
    AA = FFT(A, rw)
    BB = FFT(B, rw)
    CC = [AA[i] * BB[i] for i in range(N)]
    # inner product 된 값을 다시 inverse FFT (1 / rw)
    C = FFT(CC, complex(1) / rw)
    for i in range(N):
        C[i] /= complex(N)
        C[i] = round(C[i].real)
    return C
from math import *
w = 3
mod1 = 2281701377
mod2 = 998244353
mod3 = 2130706433
def power(a, b, mod):
    ret = 1
    a %= mod
    b \% = mod
   while b:
        if b & 1:
            ret = (ret * a) % mod
        a = (a * a) \% mod
        b >>= 1
    return ret
def NTT(A, mod, inv=False):
    n = len(A)
    rev = [0] * n
   for i in range(n):
```

```
rev[i] = rev[i >> 1] >> 1
        if i & 1:
            rev[i] |= n >> 1
        if i < rev[i]:</pre>
            A[i], A[rev[i]] = A[rev[i]], A[i]
    x = power(w, (mod - 1) // n, mod)
    if inv:
        x = power(x, mod - 2, mod)
    root = [1]
    for i in range(1, n):
        root.append((root[i-1] * x) % mod)
    i = 2
    while i <= n:
        step = n // i
        for j in range(0, n, i):
            for k in range(i>>1):
                u = A[j|k]
                v = (A[j|k|i >> 1] * root[step*k]) % mod
                A[j|k] = (u + v) \% mod
                A[j|k|i >> 1] = (u - v) \% mod
                if A[j|k|i >> 1] < 0: A[j|k|i >> 1] += mod
        i <<= 1
    if inv:
        t = power(n, mod - 2, mod)
        for i in range(n):
            A[i] = (A[i] * t) \% mod
    return A
def multiple(a, b, mod):
    n = \max(len(a), len(b))
    n = 2 ** ceil(log2(2 * n))
    a += [0] * (n - len(a))
    b += [0] * (n - len(b))
    D = NTT(a, mod, inv=False)
    E = NTT(b, mod, inv=False)
    return NTT([(D[i]*E[i]) % mod for i in range(n)], mod, inv=True)
import copy
input()
a = list(map(int, input().split()))
b = list(map(int, input().split()))
c = copy.copy(a)
d = copy.copy(b)
C = multiple(c, d, mod1)
c = copy.copy(a)
d = copy.copy(b)
D = multiple(c, d, mod2)
E = multiple(a, b, mod3)
answer = []
for i in range(len(C)):
    ans = 0
    ans += C[i] * mod2 * mod3 * power(mod2*mod3, mod1-2, mod1)
    ans += D[i] * mod1 * mod3 * power(mod1*mod3, mod2-2, mod2)
    ans += E[i] * mod1 * mod2 * power(mod1*mod2, mod3-2, mod3)
```

```
ans %= mod1 * mod2 * mod3
    answer.append(ans)
FFT, NTT cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <iomanip>
typedef long long 11;
using namespace std;
const 11 mod = 2281701377;
const 11 w = 3;
11 power(11 a, 11 b) {
    long long ret = 1;
    while (b) {
        if (b & 1)
            ret = (ret * a) % mod;
        a = (1LL * a * a) % mod;
        b /= 2;
    return ret;
}
vector<ll> NTT(vector<ll>& A, bool inv=false) {
    int n = A.size();
    vector<ll> rev(n);
    for (int i = 0; i < n; ++i) {
        rev[i] = rev[i >> 1] >> 1;
        if (i & 1)
            rev[i] |= n >> 1;
        if (i < rev[i])</pre>
            swap(A[i], A[rev[i]]);
    }
    11 x = power(w, (mod - 1) / n);
    if (inv) {
        x = power(x, mod - 2);
    }
    vector<ll> root(n, 1);
    for (int i = 1; i < n; ++i) {
        root[i] = (root[i-1] * x) % mod;
    }
    for (int i = 2; i <= n; i <<= 1) {
        11 \text{ step = n / i;}
        for (int j = 0; j < n; j += i) {
            for (int k = 0; k < (i >> 1); ++k) {
                11 u = A[j|k];
                11 \ v = (A[j|k|(i >> 1)] * root[step*k]) % mod;
                A[j|k] = (u + v) \% mod;
                A[j|k|(i >> 1)] = (u - v) \% mod;
                if (A[j|k|(i >> 1)] < 0)
```

```
A[j|k|(i >> 1)] += mod;
            }
       }
    }
    if (inv) {
        11 t = power(n, mod - 2);
        for (int i = 0; i < n; ++i)
            A[i] = (A[i] * t) % mod;
    return A;
}
vector<ll> multiply(vector<ll>& a, vector<ll>& b) {
    int n = max(a.size(), b.size());
    n = 2 * pow(2, ceil(log2(n)));
    a.resize(n);
    b.resize(n);
    vector<ll> A = NTT(a, false);
    vector<ll> B = NTT(b, false);
    vector<ll> result(n);
    for (int i = 0; i < n; ++i){
        result[i] = (A[i] * B[i]) % mod;
    return NTT(result, true);
}
miller rabin, polard rho
import math, random
def power(x, y, p):
    res = 1
    piv = x \% p
    while y:
        if y & 1:
            res *= piv
            res %= p
        piv *= piv
        piv %= p
        y >>= 1
    return res
# True => 합성수이다
def miller_rabin(n, p):
    if n \% p == 0:
        return True
    d = n - 1
    while 1:
        cur = power(p, d, n)
        if cur == n - 1:
            return False
        elif d & 1:
            return not (cur == 1 or cur == n - 1)
        d >>= 1
# 소수면 True
def prime_test(n):
```

```
for i in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]:
        if n == i:
            return True
        if miller_rabin(n, i):
            return False
    return True
def func(c, x, n):
    return (c + ((x ** 2) \% n)) \% n
def rho(n, factor):
    if n == 1:
        return factor if factor else [1]
    if n % 2 == 0:
        factor.append(2)
        factor = rho(n // 2, factor)
        return factor
    if prime_test(n):
        factor.append(n)
        return factor
    a, b, c = 0, 0, 0
    g = n
    while 1:
        if g == n:
            b = random.randint(2, n - 1)
            c = random.randint(1, 20)
        a = func(c, a, n)
        b = func(c, func(c, b, n), n)
        g = math.gcd(abs(a - b), n)
        if g != 1:
            break
    factor = rho(g, factor)
    factor = rho(n // g, factor)
    return factor
sum of divisors
def divsum(factor):
    d = \{\}
    for f in factor:
        if f in d:
            d[f] += 1
        else:
            d[f] = 1
    for f, n in d.items():
        S *= f ** (n+1) - 1
        S //= f-1
    return S
```

taylor series

```
from decimal import Decimal
fact = [Decimal('0') for _ in range(40)]
fact[1] = Decimal('1')
for i in range(2, 40):
    fact[i] = Decimal(str(i)) * fact[i - 1]

def sin(x: Decimal):
    x %= 2 * Decimal('strinrg of phi')
    res = Decimal('0')
    value = x
    for k in range(19):
        addition = (-1 if k % 2 == 1 else 1) * (value / fact[2 * k + 1])
        res += addition
        value *= x * x
    return res
```

Combinatorics

lucas theorem

```
def lucas(n, k, m):
    ans = 1
    while k != 0:
        ans = (ans * math.comb(n % m, k % m)) % m
        n //= m
        k //= m
    return ans
```

stirling number

$$S(r, n) = S(r-1, n-1) + nS(r-1, n)$$
 $S(m, n) = \sum_{j=0}^{m-1} {m-1 \choose j} S(j, n-1)$

제2종 스털링 수와 전사함수의 개수

집합 X에서 Y로의 전사함수의 개수도 제2종 스털링 수와 관련돼 있다. X, Y의 원소의 수가 각각 r, n이라고 하자. 이제 집합 X를 n개의 부분집합으로 분할하자. 그런 방법의 수는 S(r,n)이다. 그런 후 각 부분집합에 Y의 원소를 하나씩 대응하는 방법은 n! 가지이므로 구하는 전사함수의 개수는 n!S(r,n)이다. 포함배제의 원리를 써서 전사함수의 개수를 구할 수 있으므로

$$S(r, n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^r$$

catalan number

Generating Function

Chapter	1+x+x*+ = 1/-x			
generating function g(x): h+hx+hx2+ Legence (1.1.1.1) + 1	$\frac{1-\chi^{n+1}}{1-\chi} = \frac{1-\chi^{n+1}}{1-\chi}$ $\frac{1-\chi^{n+1}}{1-\chi}$ $\frac{1-\chi^{n+1}}{1-\chi}$ $\frac{1-\chi^{n+1}}{1-\chi}$ $\frac{1-\chi^{n+1}}{1-\chi}$	$\mathscr{U}(1,1,1,1) = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+=\prod_{K=0}^{\infty}$	$\frac{K^{K}}{K!} = e^{K} \Rightarrow \sum_{k=0}^{n} \frac{Ux^{k}}{k!} = e^{\pm x}$	
) Loguete ((1), (1), (2)	((x) = (1+ x+ =	$\frac{1}{1} + \dots \cdot \frac{1}{1} \cdot $	$\Rightarrow \frac{1}{r} (e^{3x} - e^{2x} - e^{x} + 1)$	
inear Humogeneous Recurrence Relations fen) = fen-1) + fen-2) Let fen) = g^		$\Rightarrow e^{-\kappa} = 1 - \kappa + \frac{\kappa^{\lambda}}{2!} - \frac{\kappa^{\beta}}{3!} + \dots$	h.	
$g^n = g^{n-1} + g^{n-2} \rightarrow g^{n-1}(g^{-1}g^{-1}) - 0 \Rightarrow r = \frac{f^{-1}}{2}$		Fibonacci $g(x) = f_0 + f_1 x + f_2 x + \dots$ $-xg(x) = -f_1 x - f_1 x^2 + \dots$	$\begin{array}{c} \zeta \Rightarrow q(\kappa) \int_{-\infty}^{\infty} (-\infty - x^{-1})^{2} = \int_{0}^{\infty} + \infty \left(\int_{0}^{\infty} + \int_{0}^{\infty} \right) - \infty \\ \Rightarrow q(\kappa) = \frac{\alpha}{(-\infty - x^{-1})} = \frac{-\kappa}{(\infty - d_{1})(\infty - d_{2})} \end{array}$	$\frac{C_1}{(x-d_1)} + \frac{C_2}{(x-d_2)}, d_1 = \frac{-1 \pm \sqrt{5}}{2}$
$\sum_{n=0}^{\infty} \chi^{n} = \frac{1}{1-\chi} \longrightarrow \sum_{n=1}^{\infty} n\chi^{n} = \chi \frac{d}{d\chi} \left(\frac{1-\chi}{1-\chi}\right) = \frac{\chi}{(1-\chi)^{2}}$ $\longrightarrow \sum_{n=0}^{\infty} n^{2}\chi^{n} = \chi \frac{d}{d\chi} \left(\frac{\chi}{(1-\chi)^{2}}\right) = \frac{\chi}{(1-\chi)^{2}}$	-X) ³	-1/July - 7/6/11		+ C ₁ d ₁ = 0
$\rightarrow \sum_{n=1}^{N-1} u_{3} X_{v} = \chi \frac{q_{1}q_{1}}{q_{1}} \left(\frac{(1-\chi)_{2}}{\chi(1-\chi)_{2}} \right) =$	$\mathcal{A}\left(\frac{1+\sqrt{2}}{(1-\sqrt{2})^3} + \mathcal{A}\left(\frac{1}{(1-\sqrt{2})^3} + \frac{5(1+\sqrt{2})}{(1-\sqrt{2})^3}\right)\right) + \mathcal{O}I_o$		$\Rightarrow q(x) = \frac{1}{\sqrt{s}} \left\{ \frac{1 - \chi/d_1}{1 - \chi/d_2} - \frac{1}{1 - \chi/d_2} \right\} \Rightarrow$	$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$

Geometry

lower.append(p)

```
line segment
A = [0, 0, 0, 0]
B = [0, 0, 0, 0]
def CP(v1, v2):
    return v1[0] * v2[1] - v1[1] * v2[0]
def PTV(p1, p2):
    return [p2[0] - p1[0], p2[1] - p1[1]]
def intersection(A, B):
    # True -> intersection
    # False -> Not intersection
   VA = PTV(A[:2], A[2:])
    AtoB1 = CP(VA, PTV(A[:2], B[:2]))
    AtoB2 = CP(VA, PTV(A[:2], B[2:]))
    if AtoB1 * AtoB2 > 0:
        return False
    VB = PTV(B[:2], B[2:])
    BtoA1 = CP(VB, PTV(B[:2], A[:2]))
    BtoA2 = CP(VB, PTV(B[:2], A[2:]))
    if BtoA1 * BtoA2 > 0:
        return False
    if AtoB1 * AtoB2 == 0 or BtoA1 * BtoA2 == 0:
        if \max(A[0], A[2]) < \min(B[0], B[2]):
            return False
        if \max(B[0], B[2]) < \min(A[0], A[2]):
            return False
        if \max(A[1], A[3]) < \min(B[1], B[3]):
            return False
        if \max(B[1], B[3]) < \min(A[1], A[3]):
            return False
    return True
area of triangle
def area(p1, p2, p3):
    A = p1[0] * p2[1] + p2[0] * p1[1] + p3[0] * p1[1]
   B = p1[1] * p2[0] + p2[1] * p1[0] + p3[1] * p1[0]
    return abs(A - B)
convex hull
def ccw(p1, p2, p3):
    return (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])
def convex_hull(points):
   points = sorted(points)
    lower = []
    for p in points:
        while len(lower) >= 2 and ccw(lower[-2], lower[-1], p) <= 0:</pre>
            lower.pop()
```

```
upper = []
    for p in reversed(points):
         while len(upper) >= 2 and ccw(upper[-2], upper[-1], p) <= 0:</pre>
              upper.pop()
         upper.append(p)
    return lower[:-1] + upper[:-1]
Rotating Calipers
def cald(A, B):
  return (A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2
def MD(t):
  P = [(A[i][0] + t*A[i][2], A[i][1] + t*A[i][3])  for i in range(N)]
  HP = CH(P)
  \mathbf{M} = \mathbf{0}
  L = len(HP)
  i = 0
  for i in range(len(HP)):
    cv = (HP[i][0] - HP[(i+1)\%L][0], HP[i][1] - HP[(i+1)\%L][1])
    while vccw((HP[(j+1)\%L][0] - HP[j\%L][0], HP[(j+1)\%L][1] - HP[j\%L][1]), cv) > 0:
       M = max(M, cald(HP[i], HP[i\%L]))
       i += 1
    M = max(M, cald(HP[i], HP[j\%L]), cald(HP[i], HP[(j+1)\%L]))
  return M
```

Graph

bipartite matching

```
L = []
R = \begin{bmatrix} 1 \end{bmatrix}
E = [[] for _ in range(len(L))]
S = [-1 for _ in range((len(R)))]
V = [False for _ in range(len(R))]
def dfs(u):
    for v in E[u]:
         if V[v]:
             continue
         V[v] = True
         if S[v] == -1 \text{ or } dfs(S[v]):
             S[v] = u
             return True
    return False
for i in range(len(L)):
    V = [False for _ in range(len(R))]
    dfs(i)
SCC
from collections import deque
N = 1
E = [[] for _ in range(N)]
F = [False for _ in range(N)]
L = [0 for _ in range(N)]
level = 0
ANS = []
S = deque([])
def scc(u):
    global level
    level += 1
    last = L[u] = level
    S.append(u)
    for v in E[u]:
         if not L[v]:
             last = min(last, scc(v))
         elif not F[v]:
             last = min(last, L[v])
    if last == L[u]:
         scc_set = []
         while S:
             p = S.pop()
             scc_set.append(p)
             F[p] = True
             if u == p:
                  break
         ANS.append(scc_set)
```

```
return last
for i in range(N):
    if not F[i]:
        scc(i)
SCC - CPP
class SCC{
public:
  int V;
  vector<vector<int>>& graph;
  int groupId = 0;
  vector<int> groupIdOf;
  vector<bool> visited;
  vector<int> stack;
  vector<int> stackIdx;
  const int MAX = 987654321;
  SCC(int V, vector<vector<int>>& graph):V(V), graph(graph){}
  vector<int> getScc(){
    groupIdOf = vector<int>(V, -1);
    stackIdx = vector<int>(V, -1);
    visited = vector<bool>(V, false);
    for (int v = 0; v < V; v++) {
      if (visited[v]) continue;
      DFS(v, stack, stackIdx);
    }
    return groupIdOf;
  int DFS(int curNode, vector<int>& stack, vector<int>& stackIdx) {
    visited[curNode] = true;
    stack.push_back(curNode);
    stackIdx[curNode] = stack.size();
    int minParentIdx = MAX;
    for (auto e : graph[curNode]) {
      if (stackIdx[e] != -1 && stackIdx[e] < minParentIdx) {</pre>
        minParentIdx = stackIdx[e];
        continue;
      }
      if (visited[e]) continue;
      minParentIdx = min(DFS(e, stack, stackIdx), minParentIdx);
    }
    if (minParentIdx == stackIdx[curNode] || minParentIdx == MAX) {
      while (stack.size() > 0 && stack.back() != curNode) {
        groupIdOf[stack.back()] = groupId;
        stackIdx[stack.back()] = -1;
        stack.pop_back();
      }
      groupIdOf[stack.back()] = groupId;
```

```
stackIdx[stack.back()] = -1;
stack.pop_back();
groupId += 1;
return MAX;
}
return minParentIdx;
}
};
```

```
Dinic
from collections import deque
N = 1
F = [[0 for _ in range(N)] for _ in range(N)]
L = [-1 for _ in range(N)]
P = [ 0 for _ in range(N)]
ADJ = [[] for _ in range(N)]
S, E = 0, N - 1
def bfs(S, E):
    global L
    L = [-1 for _ in range(N)]
    L[S] = 0
    queue = deque([S])
    while queue:
         u = queue.popleft()
         for v in ADJ[u]:
             if L[v] == -1 \text{ and } F[u][v]:
                  L[v] = L[u] + 1
                  queue.append(v)
    return L[E] != -1
def dfs(u, f, E):
    global P
    if u == E:
         return f
    while P[u] \leftarrow E:
         V = P[u]
         if L[u] < L[v] and F[u][v]:
             add = dfs(v, min(f, F[u][v]), E)
             if add:
                  F[u][v] -= add
                  F[v][u] += add
                  return add
         P[u] += 1
    return 0
MF = 0
while bfs(S, E):
    P = [0 for _in range(N + 2)]
    while add := dfs(S, float('inf'), E):
         MF += add
```

Tree

HLD – Euler Route

```
vector<vector<int>> graph;
class hldNode{
public:
  int idx;
  int root;
  int leaf;
  int parent;
  int childEdIdx;
  int heavy;
  int level;
};
vector<hldNode> hldList;
vector<int> hldNodeQueue;
int getChildCntAndInitHeavyNode(int parent, int idx){
  int cnt = 0;
  int heavyIdx = -1;
  int heavyCnt = 0;
  for(auto e: graph[idx]){
    if(e == parent) continue;
    int curCnt = getChildCntAndInitHeavyNode(idx, e);
    cnt += curCnt;
    if(heavyCnt < curCnt){</pre>
      heavyCnt = curCnt;
      heavyIdx = e;
    }
  hldList[idx].heavy = heavyIdx;
  return cnt + 1;
int hldInit(int parent, int cur, int root, int level){
  if(hldList[cur].heavy == -1){
    hldList[cur].idx = hldNodeQueue.size();
    hldList[cur].root = root;
    hldList[cur].leaf = cur;
    hldList[cur].parent = parent;
    hldList[cur].childEdIdx = hldList[cur].idx;
    hldList[cur].level = level;
    hldNodeQueue.push back(cur);
    return cur;
  }
  hldList[cur].idx = hldNodeQueue.size();
  hldList[cur].root = root;
  hldNodeQueue.push_back(cur);
  hldList[cur].leaf = hldInit(cur, hldList[cur].heavy, root, level + 1);
  hldList[cur].parent = parent;
  for(auto e: graph[cur]){
    if(e == parent || e == hldList[cur].heavy) continue;
    hldInit(cur, e, e, level + 1);
```

```
hldList[cur].childEdIdx = hldNodeQueue.size() - 1;
  hldList[cur].level = level;
  return hldList[cur].leaf;
}
int lca(int a, int b){
  while(a != b){
    if(hldList[a].root == hldList[b].root){
      if(hldList[a].level < hldList[b].level)</pre>
        b = a;
      else
        a = b;
    }else{
      if(hldList[hldList[a].root].level < hldList[hldList[b].root].level)</pre>
        b = hldList[hldList[b].root].parent;
      else if(hldList[hldList[a].root].level > hldList[hldList[b].root].level)
        a = hldList[hldList[a].root].parent;
      else{
        a = hldList[a].parent;
        b = hldList[b].parent;
      }
    }
  }
  return a;
class segNode{
public:
  int st;
  int ed;
  11 val;
  pair<11, 11> lazy;
};
vector<segNode> segTree;
int leafNum = 1;
void segInit(int N){
  while(leafNum < N) leafNum *= 2;</pre>
  segTree = vector<segNode>(leafNum * 2);
  for(int i = 0; i < N; i++){
    segTree[leafNum + i].st = i;
    segTree[leafNum + i].ed = i + 1;
    segTree[leafNum + i].val = 0;
    segTree[leafNum + i].lazy = {1, 0};
  for(int i = N; i < leafNum; i++){</pre>
    segTree[leafNum + i].st = i;
    segTree[leafNum + i].ed = i + 1;
    segTree[leafNum + i].val = 0;
    segTree[leafNum + i].lazy = {0, 0};
  }
  for(int i = leafNum - 1; i > 0; i--){
    segTree[i].st = segTree[2 * i].st;
    segTree[i].ed = segTree[2 * i + 1].ed;
    segTree[i].val = 0;
    segTree[i].lazy = {1, 0};
```

```
}
}
void segUpdate(int idx, int st, int ed, pair<11, 11> op){
  if(segTree[idx].st == st && segTree[idx].ed == ed){
    segTree[idx].lazy.first *= op.first;
    segTree[idx].lazy.second *= op.first;
    segTree[idx].lazy.second += op.second;
    segTree[idx].val = segTree[idx].val * op.first + (op.second) * (ed - st);
    segTree[idx].lazy.first %= DIV;
    segTree[idx].lazy.second %= DIV;
    segTree[idx].val %= DIV;
    return;
  }
  if(segTree[idx].lazy.first != 1 || segTree[idx].lazy.second != 0){
    segUpdate(2 * idx, segTree[2 * idx].st, segTree[2 * idx].ed,
segTree[idx].lazy);
    segUpdate(2 * idx + 1, segTree[2 * idx + 1].st, segTree[2 * idx + 1].ed,
segTree[idx].lazy);
    segTree[idx].lazy = \{1, 0\};
  if(ed <= segTree[2 * idx].ed)</pre>
    segUpdate(2 * idx, st, ed, op);
  else if(segTree[2 * idx + 1].st <= st)
    segUpdate(2 * idx + 1, st, ed, op);
  else{
    segUpdate(2 * idx, st, segTree[2 * idx].ed, op);
    segUpdate(2 * idx + 1, segTree[2 * idx + 1].st, ed, op);
  segTree[idx].val = segTree[2 * idx].val + segTree[2 * idx + 1].val;
  segTree[idx].val %= DIV;
  return;
11 segGetVal(int idx, int st, int ed){
  if(segTree[idx].st == st && segTree[idx].ed == ed){
    return segTree[idx].val;
  }
  if(segTree[idx].lazy.first != 1 || segTree[idx].lazy.second != 0){
    segUpdate(2 * idx, segTree[2 * idx].st, segTree[2 * idx].ed,
segTree[idx].lazy);
    segUpdate(2 * idx + 1, segTree[2 * idx + 1].st, segTree[2 * idx + 1].ed,
segTree[idx].lazy);
    segTree[idx].lazy = \{1, 0\};
    segTree[idx].val = segTree[2 * idx].val + segTree[2 * idx + 1].val;
    segTree[idx].val %= DIV;
  }
  if(ed \le segTree[2 * idx].ed)
    return segGetVal(2 * idx, st, ed);
  if(segTree[2 * idx + 1].st <= st)
    return segGetVal(2 * idx + 1, st, ed);
  return (segGetVal(2 * idx, st, segTree[2 * idx].ed) + segGetVal(2 * idx + 1,
segTree[2 * idx + 1].st, ed)) % DIV;
}
```

String

suffix array & LCP

```
import math
def LCPSUFFIX(5, L):
    def radix_sort(rank, max_rank, rktoi, L):
        radix = [0 for _ in range(max_rank + 1)]
        new_rktoi = [0 for _ in range(L)]
        # radix 를 cummulative 로 구성
        for rk in range(L):
            radix[rank[rktoi[rk]]] += 1
        for ra in range(max rank):
            radix[ra + 1] += radix[ra]
        # sorting 후의 ranking 위치로 i 값을 옮김
        for rk in range(L - 1, -1, -1):
            radix[rank[rktoi[rk]]] -= 1
            new_rktoi[radix[rank[rktoi[rk]]]] = rktoi[rk]
        # rank 로 sorting 된 rktoi 반환
        return new_rktoi
    def update_rank(rank1, rank2, rktoi, L):
        rank count = 1
        new_rank = [0 for _ in range(L)]
        new rank[rktoi[0]] = 1
        for i in range(1, L):
            if rank1[rktoi[i - 1]] != rank1[rktoi[i]] or rank2[rktoi[i - 1]] !=
rank2[rktoi[i]]:
                rank_count += 1
            new rank[rktoi[i]] = rank count
        # rank1, rank2 를 기준으로 rank1 의 동점자가 처리된 rank 를 반환 및 rank 갯수
반환
        return new_rank, rank_count
    rank1 = [ord(S[i]) - ord('A') + 1  for i in range(L)]
    rank2 = [0 for _ in range(L)]
    rktoi = radix_sort(rank1, max(rank1), [i for i in range(L)], L)
    rank1, rank_count = update_rank(rank1, rank2, rktoi, L)
    for i in range(math.ceil(math.log2(L))):
        for rk in range(L):
            rank2[rktoi[rk]] = rank1[rktoi[rk] + 2 ** i] if rktoi[rk] + 2 ** i < L</pre>
else 0
        rktoi = radix_sort(rank2, rank_count, rktoi, L)
        rktoi = radix sort(rank1, rank count, rktoi, L)
        rank1, rank_count = update_rank(rank1, rank2, rktoi, L)
        if rank count == L:
            break
    itork = [0 \text{ for } in \text{ range}(L)]
   for i in range(L):
```

```
itork[rktoi[i]] = i
   # LCP 배열 생성
   LCP = [0 for _ in range(L)]
   val = 0
   for i in range(L):
      if itork[i] == 0:
          continue
      uprki = rktoi[itork[i] - 1]
      while i + val < L and uprki + val < L and S[i + val] == S[uprki + val]:
          val += 1
      LCP[itork[i]] = val
      val = max(val - 1, 0)
   return LCP
manacher
import sys
# 필수 전역 변수
S = sys.stdin.readline()[:-1] # 문자열
                         # 문자열 전처리
S = "#".join(S)
                           # 문자열 길이
N = len(S)
r = [0 for i in range(len(S))] # r[i] : i 번째 단어의 펠린드롬 반지름
far = -1
                             # 가장 멀리 온 팰린드롬 끝부분
                             # 가장 멀리 온 팰린드롬 끝부분의 중심점
farMid = -1
## ind 의 펠린드롬 반지름 길이 구하는 함수
def getPalinRadius(ind):
 global S, N, r, far, farMid
 curR = 0
 # curR 초기화 부분
 if ind <= far:</pre>
   curR = min(r[2 * farMid - ind], far - ind)
 # 좌우로 넓혀가며 반지름 찾는 부분
 while 0 \le ind - curR - 1 and ind + curR + 1 < N and S[ind - curR - 1] == S[ind + CurR - 1]
curR + 1]:
   curR += 1
 r[ind] = curR
 # far 갱신
 if far < ind + curR:</pre>
   far = ind + curR
   farMid = ind
 return r[ind]
## 인덱스와 계산된 길이를 줬을 때 펠린드롬 길이를 구하는 함수
## getPalinRadius 는 전처리된 반지름을 기준으로 하기 때문에 무작정 2 곱하면 안됨
def getPalinLen(ind, r):
 if ind % 2 == 0: # 실제 단어 일때
```

```
return 1 + (r // 2) * 2
 else: # 더미 단어 일때
   return (r + 1) // 2 * 2
ans = 0
for i in range(len(S)):
 curAns = getPalinLen(i, getPalinRadius(i))
 if ans < curAns:</pre>
   ans = curAns
print(ans)
kmp
int main() {
   string T;
   getline(cin, T);
   string P;
   getline(cin, P);
   //p 배열 설정하기
   vector<int> p(P.size(), 0);
   int curCompIdx = 0;
   for (int i = 1; i < P.size(); i++) {
       while (curCompIdx > 0 && P[curCompIdx] != P[i])
           curCompIdx = p[curCompIdx - 1];
       if (P[curCompIdx] == P[i])
           p[i] = ++curCompIdx;
   }
   //찾기
   int curPatternIdx = 0;
   vector<int> idxArray;
   for (int k = 0; k < T.size(); k++) {
       if (curPatternIdx == P.size()) {
           idxArray.push_back(k - P.size());
           curPatternIdx = p[curPatternIdx - 1];
       while (curPatternIdx > 0 && P[curPatternIdx] != T[k])
           curPatternIdx = p[curPatternIdx - 1];
       if (P[curPatternIdx] == T[k])
           curPatternIdx++;
       else
           curPatternIdx = 0;
   if (curPatternIdx == P.size()) {
       idxArray.push_back(T.size() - P.size());
   }
   cout << idxArray.size() << "\n";</pre>
   for (auto e : idxArray)
       cout << e + 1 << " ";
   return 0;
}
```

Well-Known

```
vector<int> levelOf;
                                                    vector<vector<int>> spTable;
2-sat
                                                    vector<vector<int>> spTableMax;
for i in range(N6):
                                                    vector<vector<int>>> spTable2ndMax;
    if not finished[i]:
                                                    void initSpTable(){
         scc(i)
                                                     for(int j = 1; j < 20; j++){
res = [0] * N3
                                                       for(int i = 0; i < V + 1; i++){
for i in range(N3):
    if scc_num[i] == scc_num[i + N3]:
                                                        spTable[i][j] = spTable[spTable[i][j - 1]][j
         print(-1)
                                                    - 1];
         break
    if scc_num[i + N3] < scc_num[i]:</pre>
                                                        spTableMax[i][i] = -1;
         res[i] = 1
                                                        spTable2ndMax[i][i] = -1;
else:
    print(res.count(1))
                                                        vector<int> curVals(4);
    for i in range(N3):
                                                        curVals[0] = spTableMax[i][j - 1];
         if res[i]:
                                                        curVals[1] = spTable2ndMax[i][i - 1];
              print(i + 1, end=' ')
                                                        curVals[2] = spTableMax[spTable[i][j -
                                                    1]][i - 1];
second MST
                                                        curVals[3] = spTable2ndMax[spTable[i][i
                                                    - 1]][j - 1];
두번째 MST
                                                        sort(curVals.rbegin(), curVals.rend());
#include <iostream>
#include <vector>
                                                        spTableMax[i][j] = curVals[0];
#include <algorithm>
                                                        for(int k = 1; k < 4; k++){
#include <cmath>
                                                         if(curVals[k] == curVals[0]) continue;
                                                         spTable2ndMax[i][j] = curVals[k];
using namespace std;
                                                         break;
                                                        }
//Graph
int V. E:
vector<vector<int>> edges;
//Union-Find
                                                    }
vector<int> groupOf;
int getGroup(int v){
                                                    int LCA(int v1, int v2){
 if(v != groupOf[v]) groupOf[v] =
getGroup(groupOf[v]);
                                                     int curMaxEdge = -1;
 return groupOf[v];
                                                     while(levelOf[vI] < levelOf[v2]){
void unionGroup(int v1, int v2){
                                                      curMaxEdge = max(curMaxEdge,
 vI = \mathbf{getGroup}(vI);
                                                    spTableMax[v2][(int)(floor(log2(levelOf[v2])
 v2 = \mathbf{getGroup}(v2);
                                                    - levelOf[v1])))]);
                                                       v2 =
 if(v1 < v2)
                                                    spTable[v2][(int)(floor(log2(levelOf[v2] -
  groupOf[v2] = v1;
                                                    levelOf[v1])))];
 else
  groupOf[v1] = v2;
                                                     while(levelOf[vI] > levelOf[v2]){
```

//LCA

```
curMaxEdge = max(curMaxEdge,
                                                       while(levelOf[vI] > levelOf[v2]){
spTableMax[v1][(int)(floor(log2(levelOf[v1]
                                                        if(spTableMax[v1][(int)(floor(log2(levelOf
                                                     [v1] - levelOf[v2])))] < maxEdge)
- levelOf[v2])))]);
  v1 =
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
spTable[v1][(int)(floor(log2(levelOf[v1] -
                                                     spTableMax[v1][(int)(floor(log2(levelOf[v1])
levelOf[v2])))];
                                                     - levelOf[v2])))]);
                                                        if(spTable2ndMax[v1][(int)(floor(log2(lev
                                                     elOf[v1] - levelOf[v2])))] < maxEdge)
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
 while(v1 != v2){
                                                     spTable2ndMax[v1][(int)(floor(log2(levelOf[
  int st = 1;
                                                     v1] - levelOf[v2])))]);
  int ed = 20;
  while(st \le ed)
                                                        v1 =
   int mid = (st + ed) / 2;
                                                     spTable[v1][(int)(floor(log2(levelOf[v1] -
                                                     levelOf[v2])))];
   if(spTable[v1][mid] == spTable[v2][mid])
                                                       }
    ed = mid - 1;
   else
                                                       while(v1 != v2){
    st = mid + 1;
                                                        int st = 1;
                                                        int ed = 20;
  curMaxEdge = max(curMaxEdge,
                                                        while(st \leq ed){
spTableMax[v1][ed]);
                                                         int mid = (st + ed) / 2;
  curMaxEdge = max(curMaxEdge,
spTableMax[v2][ed]);
                                                         if(spTable[v1][mid] == spTable[v2][mid])
  vI = \operatorname{spTable}[vI][\operatorname{ed}];
                                                          ed = mid - 1;
  v2 = \text{spTable}[v2][\text{ed}];
                                                         else
                                                          st = mid + 1;
                                                        }
 return curMaxEdge;
                                                        if(spTableMax[vI][ed] < maxEdge)
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
int LCA2nd(int v1, int v2, int maxEdge){
                                                     spTableMax[v1][ed]);
                                                        if(spTable2ndMax[v1][ed] < maxEdge)
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
 int cur2ndMaxEdge = -1;
                                                     spTable2ndMax[v1][ed]);
 while(levelOf[vI] < levelOf[v2]){
  if(spTableMax[v2][(int)(floor(log2(levelOf
                                                        if(spTableMax[v2][ed] < maxEdge)
[v2] - levelOf[v1])))] < maxEdge)
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
   cur2ndMaxEdge = max(cur2ndMaxEdge,
                                                     spTableMax[v2][ed]);
spTableMax[v2][(int)(floor(log2(levelOf[v2]
                                                        if(spTable2ndMax[v2][ed] < maxEdge)
                                                         cur2ndMaxEdge = max(cur2ndMaxEdge,
- levelOf[v1])))]);
  if(spTable2ndMax[v2][(int)(floor(log2(lev
                                                     spTable2ndMax[v2][ed]);
elOf[v2] - levelOf[v1]))] < maxEdge)
   cur2ndMaxEdge = max(cur2ndMaxEdge,
                                                        vI = \operatorname{spTable}[vI][\operatorname{ed}];
spTable2ndMax[v2][(int)(floor(log2(levelOf[
                                                        v2 = \text{spTable}[v2][\text{ed}];
v2] - levelOf[v1])))]);
                                                       }
  v2 =
                                                      return cur2ndMaxEdge;
spTable[v2][(int)(floor(log2(levelOf[v2] -
levelOf[v1])))];
                                                     //MST
```

```
left = mid + 1
int MSTWeight:
                                                          elif value <= D[mid]:</pre>
vector<br/>bool> isMSTEdge;
                                                               right = mid
vector<vector<pair<int, int>>> MST;
                                                      return left
void getMST(){
 sort(edges.begin(), edges.end());
                                                 for i in range(1, N):
                                                      index = -1
 for(int i = 0; i < E; i++){
  if(getGroup(edges[i][1]) ==
                                                      if A[i] > D[-1]:
                                                          index = len(D)
getGroup(edges[i][2])) continue;
                                                          D.append(A[i])
                                                          I.append(i)
  MSTWeight += edges[i][0];
                                                      else:
  isMSTEdge[edges[i][3]] = true;
                                                          index = find index(0, len(D) -
  unionGroup(edges[i][1], edges[i][2]);
                                                  1, A[i])
                                                          if A[i] < D[index]:
  MST[edges[i][1]].push_back({edges[i][2],
                                                               D[index] = A[i]
edges[i][0]});
                                                               I[index] = i
                                                      DA[i] = index + 1
  MST[edges[i][2]].push_back({edges[i][1],
                                                      IA[i] = -1 if index - 1 < 0 else
edges[i][0]});
                                                  I[index - 1]
 }
}
                                                  ans = []
                                                 c = I[-1]
//인접 리스트로 된 트리를 dfs 를 통해
                                                 while c != -1:
spTable 과 levelOf 를 초기화 하기 위함
                                                      ans.append(A[c])
                                                      c = IA[c]
void dfs(int cur, int prv, int level){
                                                  print(ans)
 levelOf[cur] = level;
                                                 Aho-Corasik, trie
 for(auto e: MST[cur]){
  if(e.first == prv) continue;
                                                  #include <iostream>
  dfs(e.first, cur, level + 1);
                                                  #include <string>
                                                  #include <vector>
  spTable[e.first][0] = cur;
                                                 #include <queue>
  spTableMax[e.first][0] = e.second;
                                                  using namespace std;
}
                                                  class Node {
                                                  public:
log LIS
                                                    bool ifEnd;
import sys
                                                    vector<Node*> children;
A = [1, 2, 3, 4, 5]
                                                    Node* fail;
N = len(A)
D = [A[0]] # 그 갯수인 최소값
                                                    Node() {
I = [0] # 그 최소값의 index
                                                      ifEnd = false;
DA = [1 for _ in range(N)] # <math>\mathcal{I} \subseteq
                                                      for (int i = 0; i < 26; i++)
위치에서의 최대
                                                        children = vector<Node*>(26,
IA = [-1 for _ in range(N)] # 최대를
                                                 NULL);
이루는 바로 이전 index
                                                      fail = NULL;
                                                    }
def find index(left, right, value):
                                                  };
    while left != right:
        mid = (left + right) >> 1
                                                 int main() {
         if D[mid] < value:</pre>
```

```
ios_base::sync_with_stdio(false);
  cin.tie(NULL);
                                                          if (curFail != NULL){
                                                             if(curFail->children[i]->ifEnd)
  cout.tie(NULL);
                                                              curNode->children[i]->ifEnd =
  int N;
                                                   true;
  cin >> N;
                                                             curNode->children[i]->fail =
                                                   curFail->children[i];
  //트라이 트리 구축
                                                          }
                                                          else{
  Node* root = new Node();
                                                            curNode->children[i]->fail = root;
  for (int i = 0; i < N; i++) {
    string str;
    cin >> str;
                                                          Queue.push(curNode->children[i]);
                                                        }
    Node* curNode = root;
                                                      }
    for (int j = 0; j < str.size(); j++) {
       if (curNode->children[str[j] - 'a'] ==
                                                      //탐색 수행
NULL)
         curNode->children[str[j] - 'a'] =
                                                      int Q;
new Node();
                                                      cin >> 0;
                                                      for(int i = 0; i < Q; i++){
       curNode = curNode->children[str[j] -
'a'];
                                                       string str;
                                                       cin >> str;
    curNode->ifEnd = true;
                                                       Node* curNode = root;
  }
                                                       for(int j = 0; j < str.size(); j++){
  //실패함수 매핑
                                                        if(curNode->children[str[i] - 'a'] !=
                                                   NULL){
  queue<Node*> Queue;
                                                         curNode = curNode->children[str[j] -
                                                   'a'];
  //첫번째 레벨 node 들의 fail 은 루트로
지정해주고, 0 에 넣기
                                                        else{
  for(int i = 0; i < 26; i++){
                                                         if(curNode->fail == NULL){
   if(root->children[i] == NULL) continue;
                                                          curNode = root;
                                                         } else{
   root->children[i]->fail = root;
                                                          curNode = curNode->fail;
   Queue.push(root->children[i]);
                                                          j--;
  while (!Queue.empty()) {
    Node* curNode = Queue.front();
                                                        if(curNode->ifEnd){
    Queue.pop();
                                                         break;
    //현재 노드의 자식들의 실패함수를
매핑해주기.
    for (int i = 0; i < 26; i++) {
                                                       if(curNode->ifEnd)
       if (curNode->children[i] == NULL)
                                                        cout \ll "YES\n";
continue;
                                                       else
                                                        cout << "NO\n";
       Node* curFail = curNode->fail;
       while (curFail != NULL && curFail-
>children[i] == NULL)
                                                      return 0;
         curFail = curFail->fail;
```

```
for i in range(n-2, -1, -1):
                                                          R[i] = min(R[i], R[i+1] - 1)
Game-Theory
                                                       print(*R, sep='\n')
     if p == 'R':
          answer ^= x^y
                                                       DNC Optimization
     if p == 'B':
          answer ^= min(x,y)
                                                       import sys
     if p == 'K':
          temp = 0
                                                       L, G = map(int, sys.stdin.readline().split())
                                                       C = list(map(int, sys.stdin.readline().split()))
          if \min(x,y) \% 2 == 0:
                                                       DP = [[0 \text{ for } \_ \text{ in } range(L + 1)] \text{ for } \_ \text{ in }
               if \max(x,y) \% 2 == 0:
                    temp = 0
                                                       range(G + 1)
               else:
                                                       CC = [0 \text{ for } \_ \text{ in } range(L + 1)]
                    temp = 1
          else:
               if \max(x,y) \% 2 == 0:
                                                        CC[1] = C[0]
                    temp = 3
                                                       for i in range(2, L + 1):
               else:
                                                          CC[i] = C[i - 1] + CC[i - 1]
                    temp = 2
          answer ^= temp
     if p == 'N':
                                                       def dnc_dp(i, s, e, l, r):
          a = (x - \min(x,y) +
                                                          if s > e:
min(x,y) % 3)
                                                             return
          b = (y - \min(x,y) +
min(x,y) % 3)
                                                          m = (s + e) // 2
          c = (a+b) // 3
                                                          opt = 1
          answer ^= min(a,b,c)
                                                          mini = DP[i - 1][m]
     if p == 'P':
                                                          for k in range(1, m + 1):
          answer ^{=} ((x+y) \% 3 +
((x//3)^{(y//3)}) * 3)
                                                             if mini \ge DP[i - 1][k] + (CC[m] -
                                                       CC[k]) * (m - k):
                                                               mini = DP[i - 1][k] + (CC[m] - CC[k])
Slope Trick
                                                        *(m-k)
import heapq
                                                               opt = k
n = int(input())
                                                          DP[i][m] = mini
a = list(map(int, input().split()))
a = [a[i]-i \text{ for } i \text{ in } range(n)]
                                                          dnc_dp(i, s, m - 1, l, opt)
                                                          dnc_dp(i, m + 1, e, opt, r)
q = []
heapq.heappush(q, -a[0])
                                                       for i in range(1, L + 1):
                                                          DP[1][i] = CC[i] * i
ans = 0
R = [0 for _in range(n)]
                                                       for i in range(2, G + 1):
R[0] = a[0]
                                                          dnc_dp(i, 1, L, 1, L)
for i in range(1, n):
                                                       print(DP[G][L])
  heapq.heappush(q, -a[i])
  R[i] = -q[0] + i
  if a[i] < -q[0]:
     ans += -q[0] - a[i]
     heapq.heappop(q)
     heapq.heappush(q, -a[i])
```