THE MAGNETIC FIELD LINES

- 1. The magnetic field lines of a magnet form continous closed loops
- 2. The tangent to the field lines at a given point represents the direction of the net magnetic field B at that point
- 3. The larger no. of field lines \longrightarrow stronger \vec{B}
- 4.Do not intersect

MAGNETIC DIPOLE MOMENT (M)

 $m \rightarrow pole strength$ I → Straight line distance b/w poles

Direction from southpole to N pole

> Unit of $M \rightarrow Am^2$ Unit of $m \rightarrow Am$

BAR MAGNET TO DIFFERENT SHAPES

RESULTANT DIPOLE MOMENT

CUTTING OF BAR MAGNET

LENGTHWISE / TRANSVERE HORIZONTAL

Pole strength

Pole strength → same

--- reduce to half

length → reduce to half

length → same

A) Magnetic monopoles does not exist B) A solenoid and bar magnet produce

similar magnetic fields

THE ELECTROSTATIC ANALOG (Help from electrostatics to magnetism)

POTENTIAL AT ANY GENERAL POINT

TORQUE

1) F_{net}=0

 $_{1)}(F_{m})_{net}=0$

 $\vec{\tau} = \vec{p} \times \vec{E} = \vec{p} \cdot \vec{E} = \vec{p} \cdot \vec{E} \cdot \vec{p} \cdot \vec{E} \cdot \vec{p} \cdot \vec{E} \cdot$

 $\vec{\tau} = \vec{M} \times \vec{B} = MB \sin\theta$

WORK DONE IN ROTATING A DIPOLE

1. W=PE $(\cos \theta_1 - \cos \theta_2)$ 1. W_p=MB $(\cos \theta_1 - \cos \theta_2)$ Maximum work done is from $\theta_1 = 0^\circ$ to $\theta_2 = 180^\circ$

POTENTIAL ENERGY

U=-P F

 $U_s = -\vec{M} \cdot \vec{B}$

 $\theta_{\rm c}=0^{\circ}$ Stable position: $\theta=180^{\circ}$ Unstable position

MAGNETISM AND GAUSS' LAW

(MM)

"The net magnetic flux through any closed $\phi \vec{B} \cdot \vec{ds} = 0$ surface is zero"

"The simplest magnetic element is a magnetic dipole or a current loop." Magnetic monopoles do not exist.

THE EARTH'S MAGNETISM

MBC MAGNETISM AND MATTER

APPARENT ANGLE OF DIP

Inclination of magnetic needle in plane other than magnetic meridian

 $\tan \delta' = \frac{\tan \delta}{2}$ cosf

- δ' Apparent angle of dip
- δ true angle of dip
- Angle between MM and the plane other than MM

RELATION BETWEEN TWO FALSE ANGLE OF DIPS ($\delta_1 & \delta_2$) IN MUTUALLY PERPENDICULAR PLANES AND TRUE ANGLE OF DIP (δ)

$$\cot^2 \delta_1 + \cot^2 \delta_2 = \cot^2 \delta$$

FACTS

- 1. Declination is greater at poles and smaller near equator
- 2. Anale of dip is maximum at poles and minimum at equator

COMPASS NEEDLE AND DIP NEEDLE

- 1. A compass needle at the North pole can point along any direction.
- 2. A dip needle at the north pole points down and at South pole points straight up.

TIME PERIOD

of a magnetic dipole in uniform magnetic field

T=211 I

- I Moment of Inertia of the body
- M Magnetic dipole moment

B - Magnetic field

Frequency $V = \frac{1}{2\pi} \sqrt{\frac{MB}{I}}$ To find B,

MAGNETIC PROPERTIES

1) Magnetic Permeability

Absolute Permeability of air or free space $\mu_{\text{o}} = 4\pi \times 10^{-7} \; \frac{\text{Tesla metre}}{\text{Ampere}} \left[\frac{\text{Tm}}{\text{A}} \right]$

Relative Permeability $\mu_{\rm r} = \frac{\mu_{\rm medium}}{\mu_{\rm o}}$ of medium

2) Intensity of magnetizing field (H)

$$\overrightarrow{H} = \frac{B_{\text{ext}}}{\mu_{\text{o}}} \quad \text{vector quantity}$$
 SI unit $\rightarrow \frac{A}{M}$ $\text{CGS unit} \rightarrow \text{Oersted}$

3) Magnetisation (M)

$$\overrightarrow{M} = \frac{\overrightarrow{M}_{\text{net}}}{V} \rightarrow \left[\frac{\text{Induced dipole moment}}{\text{volume}}\right] \quad \text{also, } \overrightarrow{M} = \frac{\overrightarrow{B}_{\text{ind}}}{\mu_{\text{o}}}$$

vector quantity

SI unit
$$\rightarrow \frac{A}{m}$$
 [M] $\rightarrow [\bar{L}^1 A]$

4) Magnetic Susceptibility (χ_m) scalar

$$\chi_{\rm m} = \frac{M}{H} \quad \text{Also } \chi = \frac{B_{\rm ind}}{B_{\rm ext}} \qquad \text{no unit}$$

5) Relation between relative permeability and susceptibility

$$\mu_{r} = (1 + \chi_{m})$$
 Also $\mu_{m} = \mu_{o} \mu_{r} = \mu_{o} (1 + \chi_{m})$

6) Relation between B, M and H

$$B=\mu_m H$$
 $M=\chi H$

MAGNETIC MATERIALS

1. Diamagnetic

- a. Weakly repelled by a magnet
- b. Eg: Cu, Ag, Au, NaCl, H,O etc.
- c. Superconductors Perfect conductivity perfect diamagnetism

$$\chi = -1, \mu_r = 0$$

- d. Perfect diamagnetism in superconductors is called as MEISSNER EFFECT
- e. Important $-1 \le \chi < 0$

- f. Individual atoms do not possess permanent magnetic dipole moment
- g. No effect of temperature on magnetisation

2. Paramagnetic substances

- a. Weakly attracted by a magnet
- b. Eg: Al, Mn, Pt, Na, CuCl2, O2, Crown glass
- c. Individual atom possesses permanent dipole moment
- d. Curie's law

Magnetisation of a paramagnetic material is inversely proportional to the absolute temperature

$$\begin{array}{c}
M = C \frac{B_o}{T} \\
\chi = C \frac{\mu_o}{T}
\end{array}$$
Curie's law

e. Important

0<
$$\chi$$
< ϵ
1< μ_r <1+ ϵ (ϵ — Small positive number)
 μ > μ_o

f. Graph

3. Ferromagnetic substances

- a. Strongly attracted by a magnet
- b. Eg: Fe, Co, Ni, Cd, Fe₃O₄
- c. Individual atoms possess permanent magnetic moment and magnetic moments of neighbouring atoms tend to align due to a force called exchange coupling
- d. Due to exchange coupling, atoms form domains inside which magnetic moments are aligned in the same direction

e. Important $\chi >>> 1$

$$\mu_{r} \rightarrow 1$$

 $\mu \rightarrow \mu_{o}$

f. At high temperature, a ferromagnetic substance becomes paramagnetic

Curie's temperature

$$\chi = \frac{c}{\mathsf{T} - \mathsf{T}_c} \; (\mathsf{T} > \mathsf{T}_c)$$

HYSTERESIS CURVE / B-H CURVE

Magnetisation depends on history of magnetisation

Important terms

Retentivity - OC - Residual magnetism Coercivity - OD-Demagnetising process

- 1. High coercivity Hard substance Steel
- 2. Low coercivity Soft substance Soft iron

Important result

B-H curve signifies the energy loss/heat loss in the process and is proportional to the area of the loop.

Area of hysteresis loop

Higher for steel

Permanent magnets

should have

- 1. High retentivity
- 2. High coercivity
- 3. High permeability

Steel is used for making permanent magnets

Steel soft iron

Smaller retentivity
High coercivity

Higher retentivity than steel Smaller coercivity than steel

ELECTROMAGNETS

Materials should have high permeability low retentivity

Soft iron is used

Used in electric bells, Loudspeakers, telephone diaphragms, heavy cranes to lift machinery

Magnetism