

Flipping and Spinning in Possible Worlds

Consider Jack, Jill in Cambridge and Princeton respectively, each with a fair coin. Jack, Jill can do one of three things

Nothing, spin and flip

denote as N S F

Denote the result of spinning in Cambridge by a_s
 flipping in Cambridge by a_f
 spinning in Princeton by b_s
 flipping in Princeton by b_f

Then each of a_s, a_f, b_s, b_f is either H or T.

Consider 5 worlds

I: (N, N) first member of pair refers to Cambridge
 second Princeton

II. (S, S) with outcome (a_s, b_s)

III (S, F) (a_s, b_f)

IV (F, S) (a_f, b_s)

V (F, F) (a_f, b_f)

Denote by A denote the content of a counterfactual
 so A can take the values $(N, N), (S, S), (S, F), (F, S), (F, F)$

and let $B(\sigma)$ denote "the outcome is σ "

2

so we are considering counterfactuals of the form

$$A \Box \rightarrow B(\sigma)$$

where $\gamma A = (S, S)$, $\sigma = (a_S, u_S)$

$A = (S, P)$, $\sigma = (a_S, u_P)$

$A = (F, S)$, $\sigma = (a_F, u_S)$

$A = (F, F)$, $\sigma = (a_F, u_F)$

1. let I be the actual world.

then consider $\exists \sigma! (A \Box \rightarrow B(\sigma))$

This is a Precise of Counterfactual Determinates.

which is False when the number of
undetermined

But $A \Box \rightarrow \exists \sigma! (B(\sigma))$

a Precise of Counterfactual determinateness is
true.

How can we establish that the matching condition is satisfied made up of the four trees (1), (2), (3) & (4).

2. Let \bar{v} be the added word.

Mr. Lewis says (1) is true.
and (2) is true.

but not (3) and (4).

3. Nested Counterfactuals:

$\bar{v} \rightarrow \bar{v}$ gives to (2) or seen from word \bar{v}

$\bar{v} \rightarrow \bar{v}$ gives to (4) or seen from word \bar{v} .

But the two word \bar{v} 's we are led to via the two routes are not the same word.

This is the turkey - square problem, that can only be solved if we assume determinism.