Midterm 2

Jaden Wang

Problem (1). We wish to show inequality in both directions to prove equality.

(\geq): Since $f \geq 0$ is measurable, there exists a sequence of simple measurable functions (f_n) such that $0 \leq f_n \nearrow f$. This means that given $f_n, \omega, f_n(\omega) \leq f(\omega)$.

$$\int_{\Omega} f \ d\mu = \int_{\Omega} \lim_{n \to \infty} f_n \ d\mu$$

$$= \lim_{n \to \infty} \sum_{i} a_{n_i} \mu(A_{n_i})$$

$$= \lim \sup_{n} \sum_{i} a_{n_i} \mu(A_{n_i})$$

$$\leq \lim \sup_{n} \sum_{i} \left[\inf_{\omega \in A_{n_i}} f(\omega) \right] \mu(A_{n_i})$$

$$\leq \sup_{i} \sum_{i} \left[\inf_{\omega \in A_i} f(\omega) \right] \mu(A_i)$$

 (\leq) : Since the supremum of a set is always greater or equal to the supremum of its subset,

$$\int_{\Omega} f \ d\mu = \sup_{0 \le s \le f} s \ d\mu$$

$$= \sup_{i} \sum_{i} a_{i} \mu(A_{i}) \text{ where } a_{i} \le f(w) \text{ for } \omega \in A_{i}$$

$$\geq \sup_{i} \sum_{i} \left[\inf_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \text{ since inf is a special case of } a_{i}$$

By inequality in both direction we show that they are equal.

Problem (2).

Case (1). f, g are simple. Then let $f = \sum_{i=1}^n a_i I_{A_i}$ and $g = \sum_{j=1}^m b_j I_{B_j}$ where

 A_i, B_j are respectively disjoint partitions of Ω . Then

$$gf = \left(\sum_{j=1}^{m} b_j I_{B_j}\right) \left(\sum_{i=1}^{n} a_i I_{A_i}\right)$$
$$= \sum_{j=1}^{m} \sum_{i=1}^{n} b_j a_i I_{A_i \cap B_j}$$

Note that if a given $\omega \notin B_j$ or $\omega \notin A_i$, then the product $b_j a_i I_{B_j} I_{A_i}$ will be zero. Thus the only terms remain are the ones with $I_{A_i \cap B_i}$. Now consider

$$\int_{\Omega} g \ d\nu = \sum_{j=1}^{m} b_j \nu(B_j)$$

$$= \sum_{j=1}^{m} b_j \int_{B_j} f d \ \mu$$

$$= \sum_{j=1}^{m} b_j \sum_{i=1}^{n} a_i \mu(A_i \cap B_j)$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} b_j a_i \mu(A_i \cap B_j)$$

$$= \int_{\Omega} g f \ d\mu$$

Case (2). f, g are not simple. Since $f, g \ge 0$ are measurable, there exists sequences of simple measurable functions $(f_n), (g_m)$ such that $0 \le f_n \nearrow f, 0 \le g_m \nearrow g$. By Case 1, we know that for each pair of f_n, g_m ,

$$\int_{\Omega} g_m \ d\nu = \int_{\Omega} g_m f_n \ d\mu.$$

Taking $n, m \to \infty$, by Lebesgue's Monotone Convergence Theorem,

$$\lim_{n,m\to\infty} \int_{\Omega} g_m d \nu = \lim_{n,m\to\infty} \int_{\Omega} g_m f_n d\mu$$
$$\int_{\Omega} g d\nu = \int_{\Omega} g f d\mu$$

Problem (3). (\Rightarrow): Suppose E(X)=0, we want to show that P(X=0)=1 by showing $P((X=0)^c)=0$. Since $X\geq 0$, the complement of X=0 is X>0. Let $B=\{\omega: X(\omega)>0\}$, it suffices to show that P(B)=0.

Note that since $X \ge 0, \ 0 \le XI_B \le X$. Therefore,

$$0 \le \int X I_B \ dP \le \int X \ dP = E(X) = 0.$$

It follows that $\int XI_B dP = \int_B X dP = 0$. Recall that $X(\omega) > 0 \ \forall \ \omega \in B$, then it must be that P(B) = P(X > 0) = 0 as required.

(\Leftarrow): Suppose $P(X=0)=1 \Rightarrow P(X>0)=0$. X=0 is clearly a simple function where $X(\omega)=0\cdot I_{\Omega}$.

$$E(X) = \int X dP$$
$$= 0 \cdot P(\Omega)$$
$$= 0$$