Unit 2: Unbounded Optimization Without Calculus

SA	could be used as a stand alone lesson, provided prior knowledge is met
Time	approximate # of 45-50 min periods
Coding	These lessons are geared towards Julia; lessons will need modification for
	other languages. "Coding" includes: basic commands, loops, if/else.
C+L	Computer with desired language installed
SC/GC	Scientific/Graphing calculator
(T)	May need extra time for tech troubleshooting

Title	Topics	Prior knowledge	Equipment	Sequence	Slides	Practice Problems	Time
2.1 Intro	 definition of unbounded optimization local vs global extremes unimodal vs multimodal functions 	• Algebra	0	SA	12	4	1
2.2 Three-Point Interval	Programming a 3-point intervalUsing an iteration counter for refinement	AlgebraCoding	C+L	1.5	10	2	1.5
2.3 Minimum 1 (brute force)	Definition of brute forceWriting a brute-force minimization program	 Pre-Algebra Coding	C+L	SA	4	1	1
2.4 Minimum 2 (intervals)	Minimizing using intervalsGolden Section	AlgebraCoding	C+L	1.5	13	2	1
2.5 Minimum 3 (slopes)	Using slopes to locate a minimum	AlgebraCoding	C+L	SA	5	1	1
2.6 Max and min	 Converting minimization programs directly to maximization programs Using "maximizing a negative" concept 	AlgebraCoding	C+L	2.2, 2.4, 2.5	13	4	1.5
2.7 Global 1 (testing points)	need for horizontal boundariesFinding a global minimum by testing points	AlgebraCoding	C+L	2.2, 2.4	10	3	1.5
2.8 Global 2 (sawtooth)	Curved functions and SlopeSawtooth Method	AlgebraCoding + arrays	C+L	SA	26	5-6	2
2.9 Intro to 3D	Functions in 2 variables3D graphing	• Algebra	0	SA	11	3	1
2.10 Min in 3D 1 (brute force)	Basic minimization in 2 variablesGrid search for starting point	AlgebraCoding + arrays	C+L	2.9	19	5-6	2
2.11 Min in 3D 2 (Hooke-Jeeves)	Hooke-Jeeves pattern search method	AlgebraCoding + arrays	C+L	1.2, 2.9, 2.10	15	5	2
2.12 Min in 3D 3 (cyclic coord)	Cross-sections of 3D graphsCyclic Coordinate Search method	AlgebraCoding + arrays	C+L	1.2, 2.4, 2.9, 2.10	14	5	2-
2.13 Extensions	Maximizing in 3DAdjustments for 3+ variables	AlgebraCoding	C+L	2.6, 2.9- 2.12	9	2	1
2.14 Stochastic 1	DefinitionConvergenceMonte Carlo methods	AlgebraCoding	C+L	SA	19	4	1.5+
2.15 Stochastic 2	Simulated Annealing overviewPseudocode and translationGenetic Algorithms	AlgebraCoding	C+L or GC	SA	22	5	2

Total time, not including assessment/extra: 22 days