Analysis

Alec Zabel-Mena

 $\underline{\text{Text}}$

Principles of Mathematical Analysis (3^{rd} edition) Walter Rudin

November 23, 2020

Chapter 1

The Real and Complex Numbers

1.1 Ordered Sets

Definition. Let S be any set. An **order** on S is a relation < such that:

(1) For $x, y \in S$, one and only one of the following hold:

$$x < y$$
 $y < x$

We call this property the **trichotomy law**

(2) < is transitive over S.

We denote the relations > and \le to mean x > y if and only if y < x, and $x \le y$ if and only if x < y, or x = y. We call S together with < an **ordered set**.

Example 1.1. Define < on \mathbb{Q} such that for $r, s \in \mathbb{Q}$, r < s implies < 0s - r.

Definition. Let S be an ordered set, and let $E \subseteq S$. We say that E is **bounded above** there is some $\beta \in S$ for which $x \leq \beta$, for all $x \in E$. We say that E is **bounded below** if $\beta \leq x$, for call $x \in E$. We say an $\alpha \in S$ is a **least upperbound** of E, if α is an upperbound of E, and for all other upperbounds, γ , of E, $\alpha \leq \gamma$. Likewise, α is a **greatest lowerbound** of E if α is a lowerbound of E, and for all other lowerbounds γ of E, $\gamma \leq \alpha$. We denote the least upperbound, and greatest lowerbound by $\sup E$ and $\inf E$, respectively.

Lemma 1.1.1. Let S be an ordered set, and let $E \subseteq S$. Then E has (if they exist) a unique least upperbound, and a unique greatest lowerbound.

Proof. Let $\alpha, \beta \in S$ be least upperbounds of E. Then by definition, we have that $\alpha \leq \beta$, and $\beta \leq \alpha$; thus by the trichotomy law, $\alpha = \beta$. The proof is the same for greatest lowerbounds.

Example 1.2. (1) Let $A = \{p \in \mathbb{Q} : p^2 < 2\}$, and $B = \{p \in \mathbb{Q} : p^2 > 2\}$. Clearly, we have that every element of B is an upperbound of A, and every element of A is a lowerbound of B. Now take $p \in \mathbb{Q}$ a positive rational, and take $q \in \mathbb{Q}$ such that $q = p - \frac{p^2 - 2}{p + 2}$. Then

 $q^2-2=\frac{2(p^2-2)}{(p+2)^2}$. Now if $p\in A$, then $p^2-2<0$, which implies that p< q, and $q^2<2$; thus A has no largest element; similarly, if $p\in B$, then $p^2-2>0$, which implies that q< p and $q^2>2$, which shows that B has no least element. Thus $\sup A$ and $\inf B$ do not exist in \mathbb{Q} .

- (2) If $\alpha = \sup E \in S$, it may or may not be that $\alpha \in E$. Take $E_1 = \{r \in \mathbb{Q} : r < 0\}$, and $E_2 = \{r \in \mathbb{Q} : r \leq 0\}$. Then $\sup E_1 = \sup E_2 = 0$, but $0 \notin E_1$, where as $0 \in E_2$
- (3) Consider the set $\frac{1}{\mathbb{Z}^+} = \{\frac{1}{n} : n \in \mathbb{Z}^+\}$. By the well ordering principle, 1 is the least element, and is also an upper bound of all $\frac{1}{n}$ for n > 1. Now also notice that as n gets arbitrarily large, then $\frac{1}{n}$ gets arbitratirly small; that is to say $\frac{1}{n}$ "tends" to 0, so $\sup \frac{1}{\mathbb{Z}^+} = 1 \in \frac{1}{\mathbb{Z}^+}$, and $\inf \frac{1}{\mathbb{Z}^+} = 0 \notin \frac{1}{\mathbb{Z}^+}$.

Definition. We say an ordered set S has the **least upperbound property**, if whenever $E \subseteq S$, nonempty, and bounded above, then $\sup E \in S$ exists; likewise, S has the **greatest lowerbound property** if whenever E is nonempty, bounded below then $\inf E \in S$ exists.

- **Example 1.3.** (1) The set of all rationals \mathbb{Q} does not have the least upperbound property, nor the greatest lowerbound property, take A, B as in the previous example. Letting $E = \{1, \frac{1}{2}, \frac{1}{4}\} \subseteq \frac{1}{\mathbb{Z}^+}$, we see that $\frac{1}{\mathbb{Z}^+}$ satisfies both properties, with $\sup E = 1$, and $\inf E = \frac{1}{4}$.
 - (2) Let $A \subseteq \mathbb{R}$ be nonempty, and be bounded below. Then by the greatest lowerbound property, $\alpha = \inf A \in \mathbb{R}$ exists; Then for all $x \in A$, $\alpha \leq x$, and for all other lowerbounds $\gamma, \gamma \leq \alpha$. Then $-x \leq -\alpha$, and $-\alpha \leq -\gamma$, then we see that $-\gamma$ and $-\alpha$ are upper upper of -A, and that $-\alpha$ is the least upper of -A

Theorem 1.1.2. If S is an ordered set with the least upperbound property, then S also inherits the greatest lowerbound property.

Proof. Let $B \subseteq S$, and let $L \subseteq S$ be the set of all lowerbounds of B. Then we have for any $y \in L$, $x \in B$, $y \le x$. So every element of B is an upperbound of L, and L is nonempty, hence $\alpha = \sup L \in S$ exists. Now if $\gamma \le \alpha$, then γ is not an upperbound of L, hence $\gamma \notin B$; thus $\alpha \le x$ for all $x \in B$, so $\alpha \in L$, and by definition of the greatest lowerbound, we get $\alpha = \inf B$.

1.2 Fields

Definition. A field is a set F, together with binary operations + and \cdot (called addition and multiplication, respectively) such that:

- (1) F forms an abelian group under +.
- (2) $F \setminus \{0\}$ forms an abelian group under \cdot (where 0 is the additive identity of F).
- (3) · distributes over +.

We now state the following propositions without proof.

1.2. FIELDS 5

Proposition 1.2.1. For all $x, y, x \in F$:

(1)
$$x + y = x + y$$
 implies $y = z$

(2)
$$x + y = x$$
 implies $y = 0$

(3)
$$x + y = 0$$
 implies $y = -x$

$$(4) - (-x) = x.$$

Proposition 1.2.2. For all $x, y, x \in F \setminus \{0\}$:

(1)
$$xy = xy$$
 implies $y = z$

(2)
$$xy = x$$
 implies $y = 1$

(3)
$$xy = 1 \text{ implies } y = x^{-1}$$

$$(4) (x^{-1})^{-1} = x.$$

Proposition 1.2.3. For all $x, y, x \in F$:

(1)
$$0x = 0$$

(2)
$$x \neq 0$$
 and $y \neq 0$ implies $xy \neq 0$

(3)
$$(-x)y = -(xy) = x(-y)$$

$$(4) (-x)(-y) = xy.$$

Definition. An **ordered field** is a field F that is also an ordered set, such that:

(1)
$$x + y < x + z$$
 whenever $y < z$, for $x, yz, z \in F$

(2)
$$xy > 0$$
 whenever $x > 0$ and $y > 0$, for $x, y \in F$.

Proposition 1.2.4. Let F be an ordered field, then for any $x, y, z \in F$, the following hold:

(1)
$$x > 0$$
 implies $-x < 0$.

(2) If
$$x > 0$$
 and $y < z$, then $xy < xz$.

(3) If
$$x < 0$$
 and $y < z$, then $xz < xy$.

(4) If
$$x \neq 0$$
, then $x^2 > 0$, in particular, $1 > 0$.

(5)
$$0 < x < y$$
 implies that $0 < y^{-1} < x^{-1}$.

Proof. (1) If x > 0, then 0 = x + (-x) > 0 + (-x), so -x < 0.

(2) We have
$$0 < z - y$$
, so $0 < x(z - y) = xz - xy$, so $xy < xz$.

- (3) Do the same as (2),, multiplying z y by -x.
- (4) If x > 0, we are done. Now suppose that x < 0, then -x > 0, so $(-x)(-x) = xx = x^2 > 0$; in particular, we also have that $1 \neq 0$, and $1 = 1^2$, so 1 > 0.
- (5) We have $0 < xy^{-1} < yy^{-1} = 1$, then $0 < x^{-1}xy^{-1} = y^{-1} < x^{-1}1 = x^{-1}$

1.3 The Field of Real Numbers

Theorem 1.3.1. There exists an ordered field \mathbb{R} with the least upperbound property, such that $\mathbb{Q} \subseteq \mathbb{R}$.

Definition. We call the field \mathbb{R} the **field of real numbers**,and we call the elements of \mathbb{R} real numbers.

Definition. Let S be an ordered field, and let $E \subseteq S$. We say that E is **dense** in S, if for all $r, s \in S$, with r < s, there is an $\alpha \in E$ such that $r < \alpha < s$.

Theorem 1.3.2 (The Archimedean Principle). If $x, y \in \mathbb{R}$, and x > 0, then there is an $n \in \mathbb{Z}^+$ such that nx > y.

Proof. Let $A = \{nx : n \in \mathbb{Z}^+\}$, and suppose that $nx \leq y$. Then y is an upperbound of A, abd since A is nonempty, $\alpha = \sup A \in \mathbb{R}$, since x > 0, we have $\alpha - x < \alpha$, so $\alpha - x$ is not an upperbound of A. Hence $\alpha - x < mx$ for some $m \in \mathbb{Z}^+$. Then $\alpha < (1 - m)x \in A$, contradicting that α is an upperbound of A.

Theorem 1.3.3 (The density of \mathbb{Q} in \mathbb{R}). \mathbb{Q} is dense in \mathbb{R} .

Proof. Let x < y be realnumbers, then y - x > 0, so by the Archimedean principle, there is an $n \in \mathbb{Z}^+$ fir which n(y-x) > 1. By the Archimedean principle again, we have $m_1, m_2 \in \mathbb{Z}^+$ for which $m_1 > nx$ and $m_2 > -nx$, thus $-m_2 < nx < m_1$, and we also have that there is an $m \in \mathbb{Z}^+$ for which $-m_2 < m < m_1$, and $m-1 \le nx < m$. Thus combining inequalities, we get nx < m < ny, thus $x < \frac{m}{n} < y$.

Theorem 1.3.4 (The existence of $n^t h$ roots of positive reals). For every real number X > 0, and for every $n \in \mathbb{Z}^+$, there is one, and only one positive real number y for which $y^n = x$.

Proof. Let y > 0 be a real number; then $y^n > 0$, so there is at most one such y for which $y^n = x$. Now let $E = \{t : \mathbb{R} : t^n < x\}$, choosing $t = \frac{x}{1+x}$, we see that $0 \le t < 1$, hence $t^n < t < x$, so E is nonempty. Now if 1 + x < t, then $t^n \ge x$, so $t \notin E$, and E has 1 + x as an upperbound. Therefore, $\alpha = \sup E \in \mathbb{R}$ exists.

Now suppose that $y^n < x$, choose $0 \le h < 1$ such that $h < \frac{x-y^n}{n(y+1)^{n-1}}$, then $(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)n-1 < x-y^n$, thus $(y+h)^n < x$, so $y+h \in E$, contraditing that y is an upperbound. On the other hand, if $y^n > x$, choosing $k = \frac{y^n - x}{ny^{n-1}}$, then $0 \le k < y$, and letting $t \ge y - k$, we get that $y^n - t^n \le y^n + (y-k)^n < kny_{n-1} = y^n - x^n$, so $t^n \ge x$, making y - k an uppearbound of E, which contradicts $y = \sup E$.

Remark. We denote y as $\sqrt[n]{x}$, or as $x^{\frac{1}{n}}$.

Corollary. If $a, b \in \mathbb{R}$, with a, b > 0, and $n \in \mathbb{Z}^+$, then $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$.

Proof. Let $\alpha = \sqrt[n]{a}$, and $\beta = \sqrt[n]{b}$. Then $\alpha^n = a$, and $\beta^n = b$, so $ab = \alpha^n \beta^n = (l\alpha\beta)^n$, we are done.

Definition. We define the **extended real number system** to be the field \mathbb{R} , together with symbols ∞ , and $-\infty$, called **positive infinity** and **negative infinity**, such that $-\infty < x < \infty$ for all $x \in \mathbb{R}$. We call elements of the extended real numbers **infinite**, and every other element not in the extended real numbers **finite**.

Lemma 1.3.5. ∞ is an upperbound for every subset E, of \mathbb{R} , and $-\infty$ is a lowerbound for every subset E of \mathbb{R} . Moreover, if E is not bounded above, then $\sup E = \infty$, and if E is not bounded below, then $\inf E = -\infty$.

Remark. We make the following assumptions for extended real numbers:

- (1) If $x \in \mathbb{R}$, then $x + \infty = \infty$, $x \infty = -\infty$, and $\frac{x}{\infty} = \frac{x}{-\infty} = 0$.
- (2) If x > 0, then $x(\infty) = \infty$ and $x(-\infty) = -\infty$.
- (3) If x < 0, then $x(\infty) = -\infty$ and $x(-\infty) = \infty$.

1.4 The Complex Field

Definition. We define a **complex number** to be a pair of real numbers (a, b). We denote the set of all comlex numbers by \mathbb{C} . We define the **addition** and **multiplication** of complex numbers to be the binary operations $+: \mathbb{C} \to \mathbb{C}$ and $\cdot: \mathbb{C} \to \mathbb{C}$ such that

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-bd,ad+bc)$

Lastly, we define i to be the complex number such that i = (0, 1).

Theorem 1.4.1. \mathbb{C} forms a field together with + and \cdot .

Theorem 1.4.2. For
$$(a,0), (b,0) \in C$$
, $(a,0) + (b,0) = (a+b,0)$, and $(a,0)(b,0) = (ab,o)$.

Proof. This is a straightforward application of the addition and multiplication of complex numbers.

Theorem 1.4.3. $i^2 = -1$.

Proof.
$$i^2 = (0,1)(0,1) = (0-1,1-1) = (-1,0) = -1.$$

Theorem 1.4.4. Let $(a,b) \in \mathbb{C}$, then (a+b) = a+ib.

Proof.
$$(a,b) = (a,0) + (0,b) = (a,0) + (0,1)(b,0) = a+ib$$
.

Definition. Let $a, b \in \mathbb{R}$, and let $z \in \mathbb{C}$ such that z = a + ib. We define the **complex conjugate** of z to be the complex number $\overline{z} = a - ib$. Moreover, we define the **real part** of z to be a, and the **imaginary part** of z to be b, and we denote them $a = \operatorname{Re} z$, $b = \operatorname{Im} z$

Theorem 1.4.5. Let $z, w \in \mathbb{C}$. Then

- (1) $\overline{z+w} = \overline{z} + \overline{w}$.
- (2) $\overline{zw} = \overline{zw}$.
- (3) $z + \overline{z} = 2 \operatorname{Re} z$ and $z \overline{z} = 2i \operatorname{Im} z$.

(4) $z\overline{z}$ is a nonegative real number.

Proof. Let z = a + ib, and let w = c + id. Then z + w = (a + c) + i(b + d), so $\overline{z + w} = (a + b) - i(b + d) = (a - ib) + (c - id) = \overline{z} + \overline{w}$; similarly, we get $\overline{zw} = \overline{zw}$. Moreover, we have (a + ib) + (a - ib) = 2a, and (a + ib) - (a - ib) = 2ib, we also have that $z\overline{z} = (a + ib)(a - ib) = a^2 + b^2 \ge 0$, and $z\overline{z} = 0$ if and only if a = b = 0.

Definition. Let $z \in \mathbb{C}$. We define the **modulus** of z to be $|z| = \sqrt{z\overline{z}}$.

Remark. |z| exists and is unique.

Theorem 1.4.6. Let $z, w \in \mathbb{C}$, then:

- (1) $|z| \ge 0$ and |z| = 0 if and only if z = 0.
- $(2) |\overline{z}| = |z|.$
- (3) |zw| = |z||w|.
- (4) Re z < |z|.
- (5) |z+w+ < |z| + |w|.

Proof. Let z = a + ib, and w = c + id. Then $|z| = \sqrt{a^2 + b^2} \ge 0$, and |z| = 0 if and only if a, b = 0. Moreover, $|\overline{z}| = |a + i(-b)| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$. We also habe $|zw|^2 = (a^2 + b^2)(c^2 + d) = |z|^2|w|^2$, likewise, $||rez|| = |a + i0| = \sqrt{a^2} \le \sqrt{a^2 + b^2}$. Finally we prove (5).

We have $|z+w|^2 = (x+w)(\overline{z}+\overline{w}) = z\overline{z} + \overline{z}w + \overline{w}z + w\overline{w} = |z|^2 + w\operatorname{Re} z\overline{w} + |w|^2 \le |z|^2 + 2|s\overline{w}| + |w|^2 = (|z| + |w|)^2.$

Theorem 1.4.7 (The Cauchy Schwarz Inequality). Let $a_i, b_i \in \mathbb{C}$, for $1 \leq i \leq n$. Then:

$$\left|\sum_{i=1}^{n} a_{i} \overline{b_{i}}\right| \leq \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{j}|^{2}$$
(1.1)

Proof. Let $A = \sum a_j|^2$, $B = \sum |b_i|^2$, and $C = \sum a_i\overline{b_i}$. If B = 0, then $b_i = 0$ for $1 \le i \le n$, and we are done; so suppose that B > 0. Then

$$\sum |Ba_j - Cb_j|^2 = \sum (Ba_j - Cb_j)(B\overline{a_j} - \overline{Cb_j})$$

$$= B \sum |a_j|^2 - B\overline{C} \sum a_j \overline{b_j} - BC \sum \overline{a_j} b_j + |C^2| \sum |b_j|^2$$

$$= (B^2A - B|C|^2) = B(AB - |C|^2) > 0$$

Since B > 0, we get $|C|^2 \le AB$ as required.

1.5 Euclidean Spaces

Definition. Let $k \in \mathbb{Z}^+$, and let \mathbb{R}^k be the set of all ordered k-tuples (x_1, x_2, \ldots, x_k) , with $x_i \in \mathbb{R}$ for $1 \le i \le k$. We call \mathbb{R}^k the **Euclidean space** of **dimension** k; more simply the **Euclidean k-space**. We call elements of \mathbb{R}^k vectors or **points**; and we define vector addition and scalar multiplication to be:

$$(x_1, \dots, x_k) + (y_1, \dots, y_k) = (x_1 + y_1, \dots, x_k + y_k)$$

 $\alpha(x_1, \dots, x_k) = (\alpha x_1, \dots, \alpha x_k)$

for $(x_1, \ldots, x_k), (y_1, \ldots, y_k) \in \mathbb{R}^k$ and $\alpha \in \mathbb{R}$.

Theorem 1.5.1. \mathbb{R}^k forms a vector space together with vector addition and scalar multiplication.

Definition. Let $x, y \in \mathbb{R}^k$. We define the **inner product** of x and y to be the binary operation $\langle , \rangle : \mathbb{R}^k \mathbb{R}^k \to \mathbb{R}$ such that

$$\langle x, y \rangle = \sum_{i=1}^{k} x_i y_i$$

We define the **norm** of x to be $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum x_i^2}$.

Theorem 1.5.2. Let $x, y \in \mathbb{R}^k$, and $\alpha \in \mathbb{R}$. Then:

- (1) $||x|| \ge 0$ and ||x|| = 0 if and only if $x_i = 0$ for all $1 \le i \le k$.
- (2) $||\alpha x|| = |\alpha|||x||$.
- $(3) ||\langle x, y \rangle|| \le ||x|| ||y||.$
- (4) $||x+y|| \le ||x|| + ||y||$, and $||x-z|| \le ||x-y|| + ||y-z||$

Proof. (1) follows by definition of the norm. We also have that $||\alpha x|| = \sqrt{\sum \alpha^2 x_i^2} = \sqrt{\alpha^2} \sqrt{\sum x_i^2} = |\alpha|||x||$.

Now by the Cauchy Schwarz inequality, we have that $||\langle x,y\rangle||^2 = \sum x_i^2 y_i^2 \le \sum x_i^2 \sum y_i^2 = ||x||||y||$. Finally we have that $||x+y|| = \langle x+y,x+y\rangle = \langle x,x\rangle + 2\langle x,y\rangle + \langle y,y\rangle \le ||x||^2 + 2||x||||y|| + ||y^2|| = (||x|| + ||y||)^2$, the last result follows immediately.

Chapter 2

Topological Foundations

2.1 Finite, Countable, and Uncountable Sets

Definition. Let A be a set, and let $E \subseteq \mathbb{N}$. We say that A is **finite** if there exists a 1-1 mapping of A ont E, we say A is **countable** if $E = \mathbb{N}$, and we say A is **atmost countable** if A is either finite or countable.

Example 2.1. The set of all integers \mathbb{Z} is countable. Take $f: \mathbb{N} \to \mathbb{Z}$ such that f(n) = 2 if n is even, and f(n) = -n if n is odd.

Definition. Let A be a set, and let $E \subseteq \mathbb{N}$. A **sequence** in A is a mapping $f : E \to A$ such that $f(n) = x_n$, for $x_n \in A$. We call the values of f **terms** of the sequence. We denote sequences by $\{x_n\}_{n=1}^n$, and when $E = \mathbb{N}$, we denote them simply by $\{x_n\}$.

Theorem 2.1.1. Every infinite subset of a countable set is countable.

Proof. Let A be countable, and let $E \subseteq A$ be infinite. Arrange the elements of A into a sequence $\{x_n\}$, and construct a sequence $\{n_k\}$ such that n_1 is the least term for which $\{x_{n_k}\} \in E$, and n_k is the least term greater than n_{k-1} for which $x_{n_k} \in E$. Let $f(k) = x_{n_k}$, and we get a 1-1 mapping of \mathbb{N} onto E.

Theorem 2.1.2. Let $\{E_n\}$ be a sequence of countable sets. Then $S = \bigcup E_n$ is also countable.

Proof. Arrange every set E_n in a sequence $\{x_{nk}\}$, and consider the infinite array (x_{ij}) , in which the elements of E_n form the *n*-th row. Then (x_{ij}) contains all the elements of S, and we can arrange them is a sequence

$$x_{11}, (x_{21}, x_{12}), (x_{31}, x_{22}, x_{13}), \dots$$

Moreover, if $E_j \cap E_j \neq \emptyset$, for $i \neq j$, then the elements of $E_i \cap E_j$ appear more than once in the sequence of S; so taking $T \subseteq \mathbb{N}$, we get a 1-1 mapping of T onto S, hence S is atmost countable, and since $E_i \subseteq S$ for $i \in \mathbb{N}$, is infinite, by theorem 2.1.1, S is infinite, thus S is countable.

Figure 2.1: The infinite array (x_{ij})

Corollary. Let A be at most countable, and suppose for all $\alpha \in A$ that the sets B_{α} are at most countable. Then

$$T = \bigcup_{\alpha \in A} B_{\alpha}$$

is atmost countable.

Theorem 2.1.3. Let A be countable, and let B_n be the set of all n-tuples (a_1, \ldots, a_n) such that $a_i \in A$ for $1 \le i \le n$. Then B_n is countable.

Proof. By induction on n, we have that $B_1 = A$, which is countable. Now suppose that B_n is countable, and consider B_{n+1} whose elements are of the form (b, a) where $b \in B_n$ and $a \in A$. Fixing b, we get a 1-1 correspondence between the elements of B_{n+1} and A; therefore B is countable.

Corollary. \mathbb{Q} is countable.

Proof. For every rational $\frac{p}{q} \in \mathbb{Q}$, represent $\frac{p}{q}$ as (p,q). Then the countability of \mathbb{Q} follows from theorem 2.1.3.

Theorem 2.1.4. Let A be the set of all sequences of 0 and 1; then A is uncountable.

Proof. Let EA be countable, and let E consist of all the sequences of 0 and 1, s_1, s_2, s_3, \ldots Construct the sequence s such that if the n-th term of the sequence s_i is 0, then the n-th term of s is 1, and vice versa, for $i \in \mathbb{Z}^+$. Then the sequence s differs from the sequence s_i at atleast one place; thus $s \notin E$, but $s \in A$. Therefore $E \subset A$, which establishes the uncountablity of A.

2.2 Metric Spaces

Definition. A set X, whose elements we will call **points**, is said to be a **metric space** if there exists a mapping $d: X \times X \to \mathbb{R}$, called a **metric** (or **distance function**) such that for $x, y \in X$

- (1) $d(x,y) \ge 0$, and d(x,y) = 0 if and only if x = y.
- (2) d(x,y) = d(y,x).
- (3) $d(x,y) \le d(x,z) + d(z,y)$ (The Triangle Inequality).

Example 2.2. The absolute value, $|\cdot|$ for real numbers, the modulus $|\cdot|$ for complex numbers, and the norm $||\cdot||$ for vectors are all metrics. They turn \mathbb{R} , \mathbb{C} , and \mathbb{R}^k into metric spaces respectively.

Definition. An **open interval** in \mathbb{R} (or **segment**) is a set of the form $(a,b) = \{a,b \in \mathbb{R} : a < x < b\}$, a **closed interval** in \mathbb{R} is a set of the form $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$; and **half open intervals** in \mathbb{R} are sets of the form $[a,b) = \{x \in \mathbb{R} : a \le x \le b\}$ and $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$.

If $a_i < b_i$, for $1 \le i \le k$, the set of all points $(x_1, \ldots, x_k) \in \mathbb{R}^k$ which satisfy the Inequalities $a_i \le x_i \le b_i$ is called a **k-cell** in \mathbb{R}^k . If $x \in \mathbb{R}^k$, and r > 0, we call the set $B_r(x) = \{y \in \mathbb{R}^k : ||x - y|| < r\}$ an **open ball** in \mathbb{R}^k , and we call the set $B_r[x] = \in \mathbb{R}^k : ||x - y|| \le r\}$ a **closed ball** in \mathbb{R}^k .

Definition. We call a set $E \subseteq \mathbb{R}^k$ convex, if whenever $x, y \in E$, $\lambda x + (1 - \lambda)y \in E$ for $0 < \lambda < 1$.

Lemma 2.2.1. Open and closed balls, along with k-cells are convex.

Proof. Let $B_r(x)$ be an open ball; let $y, x \in B_r(x)$, and $0 < \lambda < 1$. Then $||x - (\lambda y + (1 - \lambda)z|| = ||\lambda(x - y) - (1 - \lambda)(x - z)|| \le \lambda ||x - y|| + (1 - \lambda)||x - z|| < \lambda r + (1 - \lambda)r$. The proof is analogous for closed ball.

Now let K be a k-cell for $a_i < b_i$, for $1 \le i \le k$, let $x, y \in K$, then $a_i \le x_i, y_i \le b_i$, so $\lambda a_i \le \lambda x_i \le \lambda b_i$, and $(1 - \lambda)a_i \le (1 - \lambda)y_i \le (1 - \lambda)b_i$, since $0 < \lambda < 1$, $a_i \le a_i + (1 - \lambda)a_i \le \lambda x_i + (1 - \lambda)y_i \le \lambda b_i + (1 - \lambda)b_i \le b$.

Corollary. Open and closed intervals, along with half open intervals are convex.

Proof. We just notice that open and closed intervals are open and closed balls in $\mathbb{R}^1 = \mathbb{R}$, we also notice that half open intervals [a, b) and (a, b] are subsets of the closed interval [a, b], and hence inherit convexity.

For the following definitions, let X be a metric space with metric d.

Definition. A **neighborhood** of a point $x \in X$ is the set $N_r(x) = \{y \in X : d(x,y) < r\}$ for some r > 0 called the **radius** of the neighborhood. We call x a **limit point** of a set $E \subseteq X$ if every neighborhood of x contains a point $y \neq x$ such that $y \in E$. If $y \in E$, and y is not a limit point, we call y an **isolated point**.

Definition. We call a set $E \subseteq X$ closed if every limit point of E is in E. A point $x \in X$ is an **interior point** of E if there is a neighborhood E of E such that E be call E open if every point of E is an interior point of E.

Definition. $E \subseteq X$ is called **prefect** if E is closed, and every point of E is a limit point of E. We call E **dense** if every point of X is either a limit point of E, or a point of E, or both.

Lemma 2.2.2. If $E \subseteq X$, then E is perfect in X if and only if $\overline{E} = E$.

Lemma 2.2.3. If EX is dense in X, then either E is perfect in X, or X = E, or both.

Definition. We call $E \subseteq X$ bounded if there is a real number M > 0, and a point $y \in X$ such that d(x, y) < M for all $x \in E$.

Theorem 2.2.4. Let X be a metric space and $x \in X$. Every neighborhood of x is open.

Proof. Consider the neighborhood $N_r(x)$, and $y \in E$, there is a positive real number h such that d(x,y) = r - h, then for $z \in X$ such that d(y,s) < h, we have $d(x,s) \le d(x,y) + d(y,s) < r - h + h = r$, thus $s \in E$, so y is an interior point of E.

Theorem 2.2.5. If x is a limit point of a set E, then every neighborhood of x contains infinitely many points of E.

Proof. Let N be a neighborhood of x containing only a finite number points of E. Let y_1, \ldots, y_n be points of $N \cap E$ distinct from x and let $r = \min\{d(x, y_i)\}$ for $1 \le i \le n$, then r > 0, and the neighborhood $N_r(x)$ contains no point y of E for which $y \ne x$, so x is not a limit point; which is a contradiction.

Corollary. A finite point set has no limit points.

Proof. By theorem 2.2.5, if x is a limit point in the finite point set E, then evry neoghborhood of contains infinitely many points of E; contradicting its finiteness.

Example 2.3. (1) The set of all $z \in \mathbb{C}$ such that |z| < 1 is open, and bounded.

- (2) The set of all $z \in \mathbb{C}$ for which $|z| \leq 1$ is closed, perfect, and bounded.
- (3) Any nonempty finite set is closed, and bounded.
- (4) \mathbb{Z} is closed, but it is not open, perfect, or bounded.
- (5) The set $\frac{1}{\mathbb{Z}^+}$ is neither closed, nor open, it is not perfect; but it is bounded..
- (6) \mathbb{C} is closed, open, and perfect, but it is not bounded.
- (7) The open interval in (a, b) is open (only in \mathbb{R}), and bounded.

Theorem 2.2.6. Let X be a metric space, a set $E \subseteq X$ is open if and only if $X \setminus E$ is closed.

Proof. Suppose that $X \setminus E$ is closed, let $x \in E$, then $x \notin X \setminus E$, and x is not a limit point of $X \setminus E$. Thus there is a neighborhood N of x such that $N \cap E = \emptyset$, thus $N \subseteq E$, and so x is an interior point of E.

Conversely, suppose that E is open, and let x be a limit point of $X \setminus E$, then every neighborhood of of x contains a point of $X \setminus E$, so x is not an interior point of E, since E is open, it follows that $x \in X \setminus E$, thus $X \setminus E$ is closed.

Corollary. E is closed if and only if $X \setminus E$ is open.

Proof. This is the converse of theorem 2.2.5.

Theorem 2.2.7. Let X be a metric space. The following are true:

2.2. METRIC SPACES 15

- (1) If $\{G_{\alpha}\}$ is a collection of open sets, then $\bigcup G_{\alpha}$ is open.
- (2) If $\{G_i\}_{i=1}^n$ is a finite collection of open sets, then $\bigcap_{i=1}^n G_i$ is open.
- (3) if $\{G_{\alpha}\}$ is a collection of closed sets, then $\bigcap G_{\alpha}$ is closed.
- (4) If $\{G_i\}_{i=1}^n$ is a finite collection of closed sets, then $\bigcup_{i=1}^n G_i$ is closed.

Proof. Let $G = \bigcup G_{\alpha}$, then if $x \in G$, $x \in G_{\alpha}$ for some α , then x is an interior point of G_{α} , hence an interior point of G, so G is open. Now let $G = \bigcap_{i=1}^{n} G_i$ For $x \in G$, there are neighborhoods N_i of x, with radii r_i such that $N_i \subseteq G_i$ for $1 \le i \le n$. Then let $r = \min\{r_1, \ldots, r_n\}$, and let N be the neighborhood of x with radius r, then $N \subseteq G_i$, hence $N \subseteq G$, so G is open.

The proofs of (3) and (4) are just the converse of the proofs of (1) and (2).

Definition. Let X be a metric space, and let $E \subseteq X$, and let E' be the set of all limit points of E. We define the **closure** of E to be the set $\overline{E} = E \cup E'$.

Theorem 2.2.8. If X is a metric space, and $E \subseteq X$, then the following hold

- (1) \overline{x} is closed.
- (2) E is closed if and only if $E = \overline{E}$.
- (3) If $F \subseteq X$ such that $E \subseteq F$, and F is closed, then $\overline{E} \subseteq F$.

Proof. If $x \in X$, and $x \notin \overline{E}$, then $x \notin E$, nor is it a limit point of E, thus there is a neighborhood of x that is disjoint from E, hence $X \setminus \overline{E}$ is open.

Now if E is closed, then $E' \subseteq E$, so $\overline{E} = E$, conversely, if $E = \overline{E}$, then clearly E is closed. Now if F is closed and $E \subseteq F$, then $F' \subseteq F$, and $E' \subseteq F$, therfore $\overline{E} \subseteq F$.

Theorem 2.2.9. Let $E\mathbb{R}$ be nonempty and bnounded above, let y supE, then $y \in \overline{E}$, hence $y \in E$ if E is closed.

Proof. Suppose that $y \notin E$, then for every h > 0, there exists a point $x \in E$ such that y - h < x < y, then y is a limit point of E, thus $y \in \overline{E}$.

Theorem 2.2.10. Let $Y \subseteq X$; a subset E of Y is open in Y if and only if $E = Y \cap G$ for some open subset G of X.

Proof. Suppose E is open in Y, then for each $x \in E$, there is a $r_p > 0$ such that $d(x, y) < r_p$, if $y \in Y$, that implies that $y \in E$; hence let V_x be the set of all $y \in X$ such that $d(x, y) < r_p$, and define

$$G = \bigcup_{x \in E} V_p$$

Then by theorems 2.2.2 and 2.2.6, G is open in X, and $EG \cap Y$. Now we also have that $V_p \cap YE$, thus $G \cap YE$, thus $E = G \cap Y$. Conversely, if G is open in X, and $E = G \cap Y$, then every $x \in E$ has a neighborhood $v_p \in G$, thus $V_p \cap Y \subseteq E$, hence E is open in Y.

2.3 Compact Sets

Definition. Let X be a metric space, and let $E \subseteq X$. An **open cover** of E is a collection $\{G_{\alpha}\}$ of subsets of X such that $E \subseteq \bigcup G_{\alpha}$. We call a collection $\{E_{\beta}\}$ of subsets of X an **open subcover** of E if $\{E_{\beta}\}$ is a cover of E, and $\bigcup E_{\beta} \subseteq \bigcup G_{\alpha}$. We call E **compact** if every open cover of E contains a finite open subcover.

Lemma 2.3.1. Every finite set is compact.

Proof. Let K be finite, and let $\{G_{\alpha}\}$ be an open subcover of K. Since K is finite, there is a 1-1 mapping of K onto the set $\{1,\ldots,n\}$. Let $\{E_i\}_{i=1}^n$ be the finite collection of all subsets of K, clearly, $\{E_i\}$ is an open cover of K. Moreover, if $\bigcup E_i \subseteq \bigcup G_{\alpha}$, we are done, and if $\bigcup G_{\alpha} \subseteq \bigcup E_i$, then $\{G_i\}$ is a finite subcollection that covers K, so in either case, K is compact.

Theorem 2.3.2. Let X be a metric space, and let $K \subseteq Y \subseteq X$. Then Y is compact in X if and only if K is compact in Y.

Proof. Suppose K is compact in Y, and let $\{G_{\alpha}\}$ be a collection of subsets of Y X that cover K, and let $V_{\alpha} = Y \cap G_{\alpha}$, then $\{V_{\alpha}\}$ is a collection of subsets of X covering K, in which $V_{\alpha} \subseteq G_{\alpha}$ for all α , therefore K is compact in Y

conversely, suppose that K is compact in X, and let $\{V_{\alpha}\}$ be a collection of open sets in Y such that $K \subseteq \bigcup V_{\alpha}$, by theorem 2.2.10, there is a collection $\{G_{\alpha}\}$ of open sets in Y such that $V_{\alpha} = Y \cap G_{\alpha}$, for all α . Then $K \subseteq \bigcup_{i=1}^{n} G_{\alpha_{i}}$; therefore, K is compact in Y.

Theorem 2.3.3. Compact subsets of metric spaces are closed.

Proof. Let X be a metric space, and let K be compact in X and let $x \in X \setminus K$, if $y \in K$, let U and V be neighborhoods of x and y respectively, each of radius $r < \frac{1}{2}d(x,y)$. Since K is compact, there are finitely many points $y_1, \ldots y_n$ such that $K \bigcup_{i=1}^n V_i = V$, where V_i is a neighborhood of y_i for $1 \le i \le n$. Let $U = \bigcap_{i=1}^n U_i$, then $V \cap W$ is empty, hence $UX \setminus V$, therefore, $x \in X \setminus K$, therefore K is closed.

Theorem 2.3.4. Closed subsets of compact sets are compact.

Proof. Let X be a metric space with $F \subseteq KX$, with F closed in X, and K compact. Let $\{V_{\alpha}\}$ be an open cover of F. If we append $X \setminus F$ to $\{V_{\alpha}\}$, we get an open cover Θ of K, and since K is compact, there is a finite subcollection Φ which covers K, so Φ is an open cover of F, $X \setminus F\Phi$, then $\Phi \setminus (X \setminus F)$ still covers F, therefore F is compact.

Theorem 2.3.5. Let $\{K_{\alpha}\}$ be a collection of compact sets of a metric space X, such that every finite subcollection of $\{K_{\alpha}\}$ is nonempty. Then $\bigcap K_{\alpha}$ is nonempty.

Proof. Fix $K_1 \subseteq \{K_\alpha\}$, and let $G_\alpha = X \setminus K_\alpha$. Suppose no point of K_1 is in $\bigcap K_\alpha$, then $\{G_\alpha\}$ covers K_1 , and since K is compact, we have $K_1 \bigcup_{i=1}^n G_{\alpha_i}$, for $1 \le i \le n$, which implies that $\bigcap K_\alpha$ is empty, a contradiction.

Corollary. If $\{K_{\alpha}\}$ is a sequence of nonempty compact sets, such that $K_{n+1} \subseteq K_n$, then $\bigcap_{i=1}^{\infty} K_n$ is nonempty.

Theorem 2.3.6. If E is a infinite subset of a compact set K, then E has a limit point in K.

Proof. Suppose no point of K is a limit point of E, then for all $x \in K$, the neighborhood U_x contains at most one point in E. Then no finite subcollection of $\{U_x\}$ covers E, which contradicts the compactness on K.

Theorem 2.3.7 (The Nested Interval Theorem). if $\{I_n\}$ is a sequence of intervals in \mathbb{R} such that $I_{n+1} \subseteq I_n$, then $\bigcap_{i=1}^{\infty} I_n$ is nonempty.

Proof. We let $I_n = [a_n, b_n]$. Letting E be the set of all a_n , E is nonempty and bounded above by b_1 . Letting $x = \sup E$, and $m \ge n$, we have $[a_m, b_m] \subseteq [a_n, b_n]$, thus $a_m \le x \le b_m$ for all m, thus $x \in I_m = \bigcap_{j=i}^n I_j$

Theorem 2.3.8. Let $k \in \mathbb{Z}^+$, and $\{I_n\}$ be a nonempty sequence of k-cells of \mathbb{R}^k such that $I_{n+1}I_n$. Then $\bigcap_{j=1}^{\infty} I_n$ is nonempty.

Proof. Let I_n be the set of all points $x \in \mathbb{R}^k$ such that $a_{n,j} \leq x_j \leq b_{n,j}$, and let $I_{n,j} = [a_{n,j}, b_{n,j}]$. Then for each $1 \leq j \leq k$, by the nested interval theorem, $\bigcap_{l=1}^{\infty} I_{l,j}$ is nonempty, hence there are real numbers x'_j such that $a_{n,j} \leq x'_j \leq b_{n,j}$. Letting $x' = (x'_1, \ldots, x'_k)$, we get that $x' \in I \bigcap_{l=1}^{\infty} I_l$

Theorem 2.3.9. Every k-cell is compact.

Proof. Let I be a k-cell, and let $\delta = \sqrt{\sum_{j=1}^k a(b_j - a_j)^2}$ we get for $x, y \in I$, $||x - y|| \leq \delta$. Now suppose there is an open cover $\{G_\alpha\}$ of I for which no finite subcover is contained. Let $c_j = \frac{a_j + b_j}{2}$, then the closed intervals $[a_j, c_j]$, $[c_j, b_j]$ determine the 2^k k-cells Q_i such that $\bigcup Q_i = I$. Then at least one Q_i cannot be covered by any finite subcollectio of $\{G_\alpha\}$. Subdividing Q_1 , we get a sequence $\{Q_n\}$ such that $Q_{n+1} \subseteq Q_n$, Q_n is not covered by any finite subcollection of $\{G_\alpha\}$, and $||x - y|| \leq \frac{\delta}{2^n}$ for $x, y \in Q_n$. Then by theorem 2.3.8, there is a point $x' \in Q_n$, and for some $\alpha, x' \in G_\alpha$; since G_α is open, there is an r > 0 for which ||x - || < r implies $y \in G_\alpha$. Then for n sufficiently large, we have that $\frac{\delta}{2^n} < r$, then we get that $Q_n \in G_\alpha$, which is a contradiction.

Theorem 2.3.10 (The Heine-Borel Theorem). If E is a subset of \mathbb{R}^k , then the following are equivalent:

- (1) E is closed and bounded.
- (2) E is compact.
- (3) Every infinite subset of E has a limit point in E.

Proof. Suppose that E is closed and bounded, then $E \subseteq I$ for some k-cell I in \mathbb{R}^k , and hence it is compact. By theorem 2.3.4, E is compact. Now suppose that E is compact, then by theorem 2.3.6, every infinite subset of E has a limit point in E.

Now suppose that every infinite subset of E has a limit point in E. If E is not bounded, then $||x_n|| > n$ for some $x_n \in E$ and $n \in \mathbb{Z}^+$. Then the set of all such x_n is infinite, and

has no limit point in E, a contradiction; moreover suppose that E is not closed. Then there is a point $x_0 \in \mathbb{R}^k \backslash E$, which is a limit point of E. Then there are points $x_n \in E$ for which $||x_n - x_0|| < \frac{1}{n}$, let S be the set of all such points. Then S is infinite and has x_0 as its only limit point; for if $y \neq x_0 \in \mathbb{R}^k$, then $\frac{1}{2}||x_0 - y|| \leq ||x_0 - y|| - \frac{1}{n} \leq ||x_0 - y|| - ||x_n - x_0|| \leq ||x_n - y||$ for only some n. Thus by theorem 2.2.3, y is not a limit point of S Therefore, if every infinite subset of E has a limit point in E, E must be closed.

Theorem 2.3.11 (The Bolzano-Weierstrass Theorem). Every bounded infinite subset E of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof. We have that $E \subseteq I$, for some k-cell I in \mathbb{R}^k . Since k-cells are compact, by the Heine-Borel theorem, E is also compact and has a limit point in I.

2.4 Perfect Sets

Theorem 2.4.1. If $P \subseteq \mathbb{R}^k$ is a nonempty perfect set, then P is uncountable.

Proof. Since every point of P is a limit point of P, we gave that P must be infinite. Then suppose that P is countable. For points $x_n \in P$, construct the sequence $\{U_n\}$ of neighborhoods of x_n , for $n \in \mathbb{Z}^+$; now by induction, if U_1 is a neighborhood of x_1 , then for $y \in \hat{U_1}$, $||x_1 - y|| \leq r$ for some r > 0. Now suppos the neighborhood U_n of x_n has been constructed such that $U_n \cap P$ is nonempty. Then there is a neighborhood U_{n+1} fo x_{n+1} such that $\hat{U_{n+1}} \subseteq U_n$, $x_n \notin \hat{U_{n+1}}$, and $\hat{U_{n+1}} \cap P$ is nonempty. Therefore there is a nonempty $K_n = U_n \cap P$. Since $\hat{U_n}$ is close and bounded, \hat{U} is compact, and since $x_n \notin K_{n+1}$, $x_n \notin \bigcap_{i=1}^{\infty} K_i$, and since $K_n \subseteq P$, $\bigcap K_i$ is empty, a contradiction.

Corollary. Let a < b be real numbers. Then the closed interval [a, b] is uncountable. Moreover, \mathbb{R} is uncountable.

Proof. We have [a, b] is closed, and perfect (since (a, b)[a, b] is [a, b] is uncountable. Moreover, take $f : \mathbb{R} \to [a, b]$, by $f(x) = \frac{a+b}{2}x$; then f is a 1-1 mapping of \mathbb{R} onto [a, b], which makes \mathbb{R} uncountable.

Theorem 2.4.2 (The construction of the Cantor set). There exists a perfect set in \mathbb{R} which contains no open interval.

Proof. Let $E_0 = [0, 1]$, and remove $(\frac{1}{3}, \frac{2}{3})$, and let $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Now remove the open intervals $(\frac{1}{9}, \frac{2}{9})$ $(\frac{3}{9}, \frac{6}{9})$, $(\frac{7}{9}, \frac{8}{9})$, and let $E_2 = [0, \frac{2}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{7}{8}, \frac{8}{9}]$. Continuing the remove the middle third of each interval, we obtain the sequence of compact sets $\{E_n\}$, such that $E_{n+1}E_n$, and E_n is the union of 2^n closed intervals of length $\frac{1}{3^n}$. Then let:

$$P = \bigcap_{i=1}^{\infty} E_i \tag{2.1}$$

Then P is nonempty, and compact.

Now let I be the open interval of the form $(\frac{3k+1}{3^m}, \frac{3k+2}{3^m})$, with $k, m \in \mathbb{Z}^+$. Then by the construction of P, I has no point in P, we also see that every other open interval contains a subinterval of the form of I; them P contains no open interval.

Now let $x \in P$, and let S be any open interval for which $x \in S$. LEt I_n be the closed interval of E_n such that $x \in I_n$. Choose n sufficiently large such that I_nS . If $x_n \neq x$ is an endpoint of I_n , then $x_n \in P$, and so x is a limit point of P. Therefore P is perfect.

Definition. The we call the set P constructed in the proof of theorem 2.4.2 the **Cantor set**.

2.5 Connected Sets

Definition. Two subsets A and B of a metric space X are **seperated** if $A \cap \hat{B}$ and $\hat{A} \cap B$ are both empty. We say a subset E of X is **connected**, if E is not the union of two nonepmty speperated sets.

Theorem 2.5.1. A subset E of \mathbb{R} is connected if and only if $x, y \in E$ and x < z < y imply $z \in E$.

Proof. Let $x,y \in E$ such that for some $z \in (x,y)$, $z \notin E$. Then $E = A \cup B$, with $A = E \cup (-\infty, z)$ and $B = E \cup (z, \infty)$. Then A and B are separated, which contradicts the connectedness of E.

Conversely suppose for $x, y \in E$, that $z \in E$ for $z \in (x, y)$. Then there are nonempty seperated sets A and B such that $A \cup B = E$. Choose $x \in A$, $y \in B$ such that x < y, and let $z = \sup(A \cap [x, y])$. Then by theorem 2.2.8, $z \in \hat{A}$, so z notinB. In particular, $x \le x < y$. Now if $z \notin A$, then x < z < y, with $z \notin E$. Now if $z \in A$, then $z \notin \hat{B}$, hence there is a z' such that z < z' < y, and $z' \notin B$. Then x < z' < y and $z' \notin B$.

Chapter 3

Sequences

3.1 Convergent Sequences

Definition. A sequence $\{x_n\}$ in a metric space X is said to **converge** if there is a point $x \in X$ such that for every $\epsilon > 0$, there is an $N \in \mathbb{Z}^+$ such that $d(x_n, x) < \epsilon$ whenever $n \geq N$. We say $\{x_n\}$ **converges** to x, and we call x the **limit** of $\{x_n\}$ as n approaches ∞ . We write $x_n \to x$ as $n \to \infty$, and $\lim_{n \to \infty} x_n = x$ (or $\lim x_n = x$). If $\{x_n\}$ does not converge, we say the $\{x_n\}$ diverges, or is divergent.

Example 3.1. Consider the following sequences in \mathbb{C} .

- (1) $\{\frac{1}{n}\}$ is bounded, and $\lim_{n\to\infty}\frac{1}{n}=0$.
- (2) The sequence $\{n^2\}$ us unbounded and diverges.
- (3) $1 + \frac{(-1)^n}{n} \to 1$ as $n \to \infty$, and $\left\{1 + \frac{(-1)^n}{n}\right\}$ is bounded.
- (4) $\{i^n\}$ is bounded and divergent.
- (5) $\{1\}$ is bounded and converges to 1.

Theorem 3.1.1. Let $\{x_n\}$ be a sequence in a metric space, then:

- (1) $\{x_n\}$ converges to $x \in X$ if and only if every every neighborhood of x contains x_n for all but finitely many n.
- (2) If $\{x_n\}$ converges to x, and x', then x = x'.
- (3) If $\{x_n\}$ converges, then x_n is bounded.
- (4) If $E \subseteq X$, and x is a limit point of E, then there is a sequence in E that converges to x.

Proof. Suppose $x_n \to x$, and let U be a neighborhood of x. For some $\epsilon > 0$, there is an $N \in \mathbb{Z}^+$ for which $d(x_n, x) < \epsilon$, whenever $n \geq N$, thus $x_n \in U$ for finitely many n. Conversely, suppose that $x_n \in U$ for some $n \geq N$, then letting $\epsilon > 0$, we havae $d(x, x_n) < \epsilon$, hence $x_n \to x$.

Let > 0, then there are $N_1, N_2 \in Z^+$ such that $d(x_n, x) < \frac{\epsilon}{2}$, and $d(x_n, x') < \frac{\epsilon}{2}$. Then choosing $N = \max\{N_1, N_2\}$, and letting ϵ be arbitrarily small, we have $d(x, x') \le d(x, x_n) + d(x_n, x') < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$; and so we get that x = x'.

Let $x_n \to x$, then there is an $N \in \mathbb{Z}^+$ for which $d(x_n, x) < 1$ whenever $n \geq N$. Letting $r = \max\{1, d(x_N, x)\}$, then $d(x_n, x) \leq r$.

Finally, let x be a limit point of E, then for each $n \in Z^+$, there is an $x_n \in E$ such that $d(x, x_n) < \frac{1}{n}$, choose $N > \frac{1}{\epsilon}$, then whenever $n \ geq N$, $d(x, x_n) < \epsilon$; hence $x_n \to x$.

Theorem 3.1.2. Suppose $\{x_n\}$ and $\{y_n\}$ are sequences in \mathbb{C} , and that $\lim x_n = x$, $\lim y_n = y$ as $n \to \infty$. Then the following hold as $n \to \infty$:

- (1) $\lim (x_n + y_n) = \lim x_n + \lim y_n = x + y$.
- (2) $\lim x_n y_n = \lim x_n \lim y_n = xy$.
- (3) $\lim_{y_n} \frac{x_n}{\lim y_n} = \frac{\lim x_n}{\lim y_n} = \frac{x}{y}$; given that $y_n, y \neq 0$.
- *Proof.* (1) Let > 0, then for $N_1, N_2 \in \mathbb{Z}^+$, $|x_n x| < \frac{\epsilon}{2}$ and $|y_n y| < \frac{\epsilon}{2}$. Then choose $N = \max\{N_1, N_2\}$, then whenever $n \ge N$, we have $|(x_n + y_n) (x + y)| \le |x_n x| + |y_n y| < \epsilon$.
 - (2) Notice that $x_n y_n xy = (x_n x)(y_n y) + x(y_n y) + y(x_x x)$, then for $N_1, N_2 \in \mathbb{Z}^+$, $|x_n x| < \sqrt{\epsilon}$, and $|y_n y| < \sqrt{\epsilon}$. Then choosing $N = \max\{N_1, N_2\}$, then $|(x_n x)(y_n y)| < \epsilon$, thus we have $|x_n y_n xy| \le |(x_n x)(y_n y)| + |x(y_n y)| + |y(x_x x)| < \epsilon$.
 - (3) We first show that $\frac{1}{y_n} \to \frac{1}{y}$, given that $y_n, y \neq 0$. Choose m such that $|y_n y| < \frac{1}{2}|y|$ whenever $n \geq m$, then $|y_n| > \frac{1}{2}|y|$. Then for $\epsilon > 0$, there is an N > m such that whenever $n \geq N$, $|y_n y| < \frac{1}{2}|y|^2\epsilon$. Then $|\frac{1}{y_n} \frac{1}{y}| \leq \frac{|y_n y|}{|y_n y|} < \frac{2}{|y|^2}|y_n y| < \epsilon$. Then choosing the sequences $\{x_n\}$ and $\{\frac{1}{y_n}\}$, the rest follows.

Corollary. (1) For any $c \in \mathbb{C}$, and a sequene $x_n \to x$, we have $\lim cx_n = c \lim x_n = cx$ and $\lim (c + x_n) = c + \lim x_n = c + x$ as $n \to \infty$.

(2) Provided that $x, x_n \neq 0$, we have $\lim_{x \to \infty} \frac{1}{\lim x_n} = \frac{1}{\lim x_n} = \frac{1}{x}$, as $n \to \infty$.

Proof. We choose $\{x_n\}$ and $\{y_n\} = \{c\}$ for all n, then the results follow.

Theorem 3.1.3. (1) Let $x_n = (\alpha_{1n}, \dots \alpha_{kn}) \in \mathbb{R}^k$. Then $\{x_n\}$ converges to x if and only if $\lim \alpha_{jn} = \alpha_j$ for $1 \leq j \leq k$, as $n \to \infty$.

(2) Let $\{x_n\}$, $\{y_n\}$ be sequences in \mathbb{R}^k , and let $\{\beta_n\}$ be a sequence in \mathbb{R} such that $x_n \to x$, $y_n \to y$, and $\beta_n \to \beta$. Then $\lim (x_n + y_n) = x + y$, $\lim x_n y_n = xy$, and $\lim \beta_n x_n = \beta x$.

Proof. If $x_n \to x$, then $|\alpha_{jn} - \alpha_j| \le ||x_n - x|| < \epsilon$, thus $\lim \alpha_{jn} = \alpha_j$. Conversely, suppose that $\alpha_{jn} \to \alpha_j$. Then for $\epsilon > 0$ there is an $N \in \mathbb{Z}^+$ such that $n \ge N$ implies $|\alpha_{jn} - \alpha_j| < \frac{\epsilon}{\sqrt{k}}$. Then for $n \ge N$,

$$||x_n - x|| = \sqrt{\sum |\alpha_{jn} - \alpha_j|^2} < epsilon$$

To prove (2), we appy part (1) of this theorem together with theorem 3.1.2.

Theorem 3.1.4 (The Sandwhich Theorem). Let $\{x_n\}$, $\{y_n\}$, and $\{w_n\}$ be sequences in \mathbb{R} , and Suppose that $\lim x_n = \lim y_n = a$ and that there is an $N \in \mathbb{Z}^+$ such hat $x_n \leq w_n \leq y_n$ for all $n \geq N$. Then $\lim_{n \to \infty} w_n = a$.

Proof. Let $\epsilon > 0$ and let $\{x_n\}$ and $\{y_n\}$ both converge to a. Then by definition there are $N_1, N_2 \in \mathbb{Z}^+$ such that $|x_n - a| < \epsilon$ and $|y_n - a| < \epsilon$ for $n \geq N_1, N_2$. Now choose $N = \max\{N_0, N_1, N_2\}$, if $n \geq N$, we have $-\epsilon < x_n - a < \epsilon$, and we also have $x_n - a < w_n - a < y_n - a$, thus we have that:

$$-\epsilon < x_n - a < w_n - a < y_n - a < \epsilon$$

Thus we have that $|w_n - a| < \epsilon$.

Corollary. If $x_n \to \infty$ as $n \to \infty$, and $\{y_n\}$ is bounded, then $x_n y_n \to 0$ as $n \to \infty$.

Proof. We have that $\{y_n\}$ is bounded, hence, there is M>0 such that $|y_n|< M$ for all $n\in\mathbb{Z}^+$. And since $\{x_n\}$ converges to 0 we have that for any ϵ there is an $N\in\mathbb{Z}^+$ such that for $n\geq N$, $|x_n-0|<\frac{\epsilon}{M}$. For $|x_ny_n-0|=|x_ny_n|< M|x_n|< M\frac{\epsilon}{M}=\epsilon$. Therefore, $x_ny_n\to 0$ as $n\to\infty$.

Corollary. Let $\{x_n\}$, $\{y_n\}$ be sequences such that $0 \le x_n \le y_n$ for $n \ge N > 0$. Then if $y_n \to 0$, then $x_n \to 0$ as $n \infty$.

Proof. This is a special case of the sandwhich theorem.

3.2 Subsequences

Definition. Let $\{x_n\}$ be a sequence, and let $\{n_k\}\mathbb{Z}^+$ such that $n_k < n_{k+1}$. We call the sequence $\{x_{n_k}\}$ a **Subsequence** of $\{x_n\}$. If $\{x_{n_k}\}$ converges, we call its limit the **subsequential limit** of $\{x_n\}$.

Theorem 3.2.1. A sequence $\{x_n\}$ converges to a point x if and only if every subsequence $\{x_{n_k}\}$ converges to x.

Proof. Clearly if $x_n \to x$, then every subsequence $x_{n_k} \to x$, (since subsequences can be thought of as subsets of thier parent sequences). On the other hand, let $x_{n_k} \to x$ for $\{k\} \subseteq \mathbb{Z}^+$. Then for $\epsilon > 0$, there is a $K \in \mathbb{Z}^+$ for which $d(x_{n_k}, x) < \frac{\epsilon}{2}$ for $k \ge K$. Let $N \in \mathbb{Z}^+$, and choose $n \ge \max\{N, K\}$, then $d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, d) < \epsilon$.

Theorem 3.2.2. If $\{x_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{x_n\}$ converges to a point x.

Proof. If $\{x_n\}$ is finite, then thre is an $x \in \{x_n\}$ and a sequence $\{n_k\}$ with $n_k < n_{k+1}$ such that $x_{n_i} = x$ for $1 \le i \le k$, then the subsequence converges to x.

Now if $\{x_n\}$ is infinite, there is a limit point $x \in X$ of $\{x_n\}$, then choose n_i such that $d(x, x_i) < \frac{1}{i}$ for $1 \le i \le k$. Obtaining $\{n_k\}$ from this, we see that $n_k < n_{k+1}$, and so we get that $\{x_{n_k}\}$ converges to x.

Corollary. Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 3.2.3. The subsequential limits of $\{x_n\}$ is a metric space X form a closed subset of X.

Proof. Let E be the set of all subsequential limits of $\{x_n\}$, and let x be a limit point of E. Choose n_i such that $x_{n_i} \neq x$ and let $\delta = d(x, x_{n_i})$, for $1 \leq i \leq k$. Then consier the sequence $\{n_k\}$, since x is a limit point of E, there is an $x' \in E$ for which $d(x, x') < \frac{\delta}{2^i}$. Thus there is an $N_I > n_i$ such that $d(x', x_{n_i}) < \frac{\delta}{2^i}$, thus $d(x, x_{n_i}) < \frac{\delta}{2^i}$. So $\{x_n\}$ converges to x and $x \in E$.

3.3 Cauchy Sequences

Definition. We call a sequence $\{x_n\}$ in a metric space X a **Cauchy sequence** in X, or more simply, **Cauchy** in X if for all $\epsilon > 0$, there is an $N \in \mathbb{Z}^+$ such that $d(x_n, x_m) < \epsilon$ whenever $m, n \geq N$.

Definition. Let E be a nonempty subset of a metrix space X, and lelt $S \subseteq \mathbb{R}$ be the all real numbers d(x,y), with $x,y \in E$. We call sup S the **diameter** of E, and denote it diam E.

Theorem 3.3.1. Let $\{x_n\}$ be a sequence, and let E_N be the set of all points p_N such that $N < p_{n+1}$. Then $\{x_n\}$ is Cauchy if and only if $\lim \dim E_N = 0$ as $N \to \infty$.

Proof. Let $\{x_n\}$ be Cauchy, Let $x_{N_1}, x_{N_2} \in E$ such that $d(x_n, x_{N_1}) < \frac{\epsilon}{2}$, and $d(x_{N_2}, x_m) < \frac{\epsilon}{2}$. Then we see that $d(x_{N_1}, x_{N_2}) \le d(x_{N_1}, x_n) + d(x_m, x_{N_2}) < \epsilon$, so $\{x_{N_k}\}$ is Cauchy and we see that $\lim \dim E_N = 0$. Now suppose that $\lim \dim E = 0$, then for any $x_n, x_m \in S$, $d(x_n, 0) < \frac{\epsilon}{2}$ and $d(0, x_m) < \frac{\epsilon}{2}$ implies that $d(x_n, x_m) \le d(x_n, 0) + d(0, x_m) < \epsilon$, whenever n, m > N, for $\epsilon > 0$.

Theorem 3.3.2. (1) If $E \subseteq X$, then diam $\hat{E} = \text{diam } E$.

(2) If $\{K_n\}$ is a sequence of compact sets in X, such that $K_{n+1} \subseteq K_n$, and if $\lim \dim K_n = 0$ as $n \to \infty$, then $\bigcap_{i=1}^{\inf ty} K_i$ contains exactly one point.

Proof. Clearly diam $E \leq \dim \hat{E}$. Now let $\epsilon > 0$, and choose $x, y \in \hat{E}$, then there are points $x', y' \in \hat{E}$ such that $d(x, x') < \frac{\epsilon}{2}$ and $d(y, y') < \frac{\epsilon}{2}$. Hence, $d(x, y) \leq d(x, x') + d(x', y') + d(y'y) < \epsilon \dim E$, then choosing ϵ arbitrarily small, diam $\hat{E} \leq \dim E$.

Now, we also have that by the nested interval theorem that $K = \bigcap K_i$ is nonempty. Now suppose that K contains more that one point. then diam K > 0, and since $K \subseteq K_n$ for all n, $diam K \le \dim K_n$, a contradiction. Thus K contains exactly one element.

Theorem 3.3.3. (1) In any metric space X, every convergent sequence is a Cauchy sequence.

- (2) If X is compact, and $\{x_n\}$ is Cauchy in X, then $\{x_n\}$ converges to a point in X.
- *Proof.* (1) If $x_n \to x$, and $\epsilon > 0$ such that there is an $N \in \mathbb{Z}^+$ such that $d(x_n, x) < \frac{\epsilon}{2}$ for all $n \geq N$, then for $m \geq N$, we have $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \epsilon$. Thus $\{x_n\}$ is Cauchy.

(2) Let $\{x_n\}$ be Cauchy, and let E_N be the set of all points x_N for which $x_N < x_{N+1}$. Then $\lim \operatorname{diam} \hat{E} = 0$, then being closed in X, each $\hat{E_N}$ is compact in X, and $\hat{E_{N+1}} \subseteq \hat{E_N}$, so by theorem 3.3.2, there is a unique $x \in X$ in all of $\hat{E_N}$. Now for $\epsilon > 0$, there is an $N_0 \in \mathbb{Z}^+$ for which $\operatorname{diam} \hat{E} < \epsilon$. Then for all $x_n \in \hat{E}$, $d(x_n, x) < \epsilon$ whenever $n \geq N_0$.

Corollary (The Cauchey Criterion). Every Cauchy sequence in \mathbb{R}^k converges to a point in \mathbb{R}^k .

Proof. Let $\{x_n\}$ be Cauchy in \mathbb{R}^k , define E_N as in (2), then for some $N \in \mathbb{Z}^+$, diam E < 1, and so $\{x_n\}$ us the union of all E_n , and ther set of points $\{x_1, \ldots, x_{N-1}\}$, so $\{x_n\}$ is bounded, and thus has a compact closure, it follows then that $x_n \to x$ for some $x \in \mathbb{R}^k$.

Definition. We call a metric space **complete** if every Cauchy sequence in the space converges.

Theorem 3.3.4. All compact metric spaces, and all Euclidean spaces are complete.

Example 3.2. Consider \mathbb{Q} together with the metric |x-y|. The metric space induced on \mathbb{Q} by $|\cdot|$ is not complete.

Definition. A sequence $\{x_n\}$ in \mathbb{R} is said to be **monotonically increasing** if $x_n \leq x_{n+1}$, $\{x_n\}$ is said to be **monotonically decreasing** if $x_{n+1} < x_n$. We call $\{x_n\}$ **monotonic** if it is either monotonically increasing or monotonically decreasing.

Theorem 3.3.5. A monotonic sequence converges if and only if it is bounded.

Proof. Suppose, without loss of generality, that $\{x_n\}$ is monotonically increasing. If $\{x_n\}$ is bounded, then $x_n \leq x$, then for all $\epsilon > 0$, there is an $N \in \mathbb{Z}^+$ for which $x - \epsilon < x_N \leq x$. Then for $n \geq N$, $x_n \to x$. The converse follows from theorem 3.1.2.

3.4 Upper and Loweer Limits.

Let $\{n\}$ be a sequence in \mathbb{R} such that for all M > 0, there is an $N \in \mathbb{Z}^+$ for which $n \geq N$ implies that either $x_n \geq M$, or $x_n \leq M$. Then we write $x_n \to \infty$ and $x_n \to -\infty$, respectively.

Definition. Let $\{x_n\}$ be a sequence in \mathbb{R} , and let E the set of all extended real numbers x such that $x_{n_k} \to x$ for some subsequence $\{x_{n_k}\}$. Then E contains all subsequential limits of $\{x_n\}$, and possible $\pm \infty$. We then call sup E the **upper limit** of E, and inf E the **lower limit** of E.

Theorem 3.4.1. Let $\{x_n\}$ be a sequence in \mathbb{R} , and let E be the set of all extended real numbers x, let $s = \sup E$ and $s' = \inf E$. Then the following hold:

(1) $s,s' \in E$.

(2) If x > s, and x' > s', there is an $N \in \mathbb{Z}^+$ such that $n \ge N$ implies that $x' < x_n < x$.

Proof. We prove the theorem for the case of s, since it is analogous for s'.

- (1) If $s = \infty$, then E is not bounded above, so neither is $\{x_n\}$, and there is a subsequence for which $x_n \to \infty$. Now if $s \in \mathbb{R}$, then E is bounded above, and has at least one subsequential limit. Then $s \in E$. Now if $s = -\infty$, then E contains only $-\infty$, and so by definition $x_n \to -\infty$.
- (2) Suppose there is an x > s, such that $x_n \ge x$ for all n. Then there is a $y \in E$ such that $y \ge x \ge s$, a contradiction of the definition of s.

Example 3.3. (1) Let $\{x_n\}$ be a sequence in \mathbb{Q} , then every real number is a subsequential limit, and $\limsup x_n = \infty$ and $\liminf x_n = -\infty$.

- (2) Let $\{x_n\} = \{\frac{(-1)^n}{1+\frac{1}{n}}\}$; then $\limsup x_n = 1$ and $\liminf X_n = -1$ as $n \to \infty$.
- (3) For a sequence $\{x_n\}$ in \mathbb{R} , $\lim x_n = x$ if and only if $\limsup x_n = \liminf x_n = x$ as $n \to \infty$.

Theorem 3.4.2. If $x_n \leq y_n$, for $n \geq N > 0$, then $\liminf x_n \leq \liminf y_n$ and $\limsup x_n \leq \limsup y_n$ as $n \to \infty$.

3.5 Special Sequences

Theorem 3.5.1. Let $n, p \in \mathbb{Z}^+$. Then the following hold as $n \to \infty$.

- (1) $\lim \frac{1}{n^p} = 0$.
- (2) $\lim \sqrt[p]{n} = 1$.
- (3) $\lim \sqrt[n]{n} = 1$.
- (4) If $\alpha \in \mathbb{R}$, then $\lim \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (5) If |x| < 1, then $\lim x^n = 0$.

Proof. (1) Let $n > [p] \frac{1}{\epsilon}$; then $|\frac{1}{n^p}| < \epsilon$.

- (2) If p=1, we are done. If p>1, let $x_n=\sqrt[p]{p}-1$, then $x_n>0$. By the binomial theorem, $1+nx_n\leq (1+x_n)^p=p$, hence $0\leq x_n\leq \frac{p-1}{p}$. Now if 1>p>0, then $\frac{1}{p}>0$, so we notice that $0\leq \frac{1}{x_n}\leq \frac{1}{\frac{p-1}{n}}$.
- (3) Let $x_n = \sqrt[n]{n} 1$, then $x_n \ge 0$, then by the binomial theorem again, $n = (1 + x_n)^n \ge \frac{n(n-1)}{2}x_n^2$, then $0 \le x_n \le \sqrt{\frac{2}{n-1}}$.
- (4) Let $k \in \mathbb{Z}^+$ such that $k > \alpha$. Then n > 2k, let $(1+p)^n > \binom{n}{k} p^k > \frac{n^k p^k}{2^k k!}$. So $0 < \frac{n^{\alpha}}{(1+p)^n} < \frac{2^k k!}{p^k} n^{-k}$, since $\alpha k < 0$, $n^{\alpha k} \to 0$ and we are done.
- (5) Take $\alpha = 0$, and let $x = \frac{1}{1+p}$, then the result follow.

Chapter 4

Continuity

4.1 Limits of Functions.

Definition. Let X, and Y be metric spaces, and let $E \subseteq X$, and let $f : E \to Y$ be a function. We say that f **converges** to a point $q \in Y$, as x **approaches** a limit point $p \in X$ if for every $\epsilon > 0$, there is a $\delta > 0$ for which $d_Y(f(x), q) < \epsilon$, whenever $0 < d_X(x, p) < \delta$. We say that q is the **limit** of f at p and we write $f \to q$ as $x \to p$, and $\lim_{x \to p} f(x) = q$, or more simply, $\lim f = q$.

- **Example 4.1.** (1) Let $X = Y = \mathbb{R}$, under the absolute value $|\cdot|$, and let $I \subseteq \mathbb{R}$ be an interval, and $f: I \to \mathbb{R}$. Then f has a limit L as x approaches a limit point $c \in \mathbb{R}$ if for every $\epsilon > 0$, there is a $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $0 < |x c| < \delta$. We call functions that map into \mathbb{R} real valued.
 - (2) Let $X = Y = \mathbb{C}$, under the modulus $|\cdot|$, and let $D \subseteq \mathbb{R}$ be an domain, and $f: D \to \mathbb{R}$. Then f has a limit L as z approaches a limit point $w \in \mathbb{R}$ if for every $\epsilon > 0$, there is a $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $0 < |z w| < \delta$. We call functions that map into \mathbb{C} complex valued.
 - (3) Let $X = Y = \mathbb{R}^k$, under the norm $||\cdot||$, and let $D \subseteq \mathbb{R}^k$ be an domain, and $f: D \to \mathbb{R}^k$. Then f has a limit L as x approaches a limit point $c \in \mathbb{R}^k$ if for every $\epsilon > 0$, there is a $\delta > 0$ such that $||f(x) L|| < \epsilon$ whenever $0 < ||x c|| < \delta$. We call functions that map into \mathbb{R}^k vector valued.

Theorem 4.1.1 (The Sequential Criterion). Let X and Y be metric spaces, and let $E \subseteq X$, and $f: E \to Y$ be a function, and $p \in E$ be a limit point. Then $\lim f(x) = q$ as $x \to p$ if and only if $\lim f(x_n) = q$ as $n \to \infty$ for any sequence $\{x_n\} \in E$, such that $x_n \neq p$ and $\lim x_n = p$.

Proof. Suppose that $\lim f(x) = q$ as $x \to p$, and choose $\{x_n\} \subseteq E$ such that $x_n \neq p$ and $\lim x_n = p$ as $n \to \infty$. Then for $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(x), q) < \epsilon$ whenever $0 < d_X(x, p) < \delta$, and since $d_X(x_n, p) < \delta$ whenever $n \geq N$ for some N > 0, we have $d_Y(f(x_n), q) < \epsilon$ whenever $d_X(x_n, p) < \delta$.

Conversely, suppose that $\lim f \neq q$, that is for some $\epsilon > 0$, $d_Y(f(x), q) > \geq \epsilon$ whenever $d_X(x, p) < \delta$ for all $\delta > 0$. Then choose $\delta = \frac{1}{n}$, for $n \in \mathbb{Z}^+$, then we have $\lim x_n = p$, but $\lim f(x_n) \neq q$.

The importance of the sequential criterion is that it lets us translate theorems about limits of sequences into theorems about limits of functions.

Corollary. If f has a limit at p, then the limit of f is unique.

Definition. Letting $f, g : E \to Y$, we define the sum, product, scalar product and the quotient of f and g to be the functions from E into Y:

- (1) f + g(x) = f(x) + g(x).
- (2) fg(x) = f(x)g(x).
- (3) $(\lambda f)(x) = \lambda f(x)$ for $\lambda \in X$.
- (4) $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$, provided that $g(x) \neq 0$.

It is well known that the set of all functions from E into Y form an algebra under these operations.

Theorem 4.1.2. Let $E \subseteq X$ a metric space, and let $p \in E$ be a limit point. Let $f, g : E \to Y$ be functions, such that $\lim f = A$ and $\lim g = B$ as $x \to p$. Then the following hold as $x \to p$.

- (1) $\lim (f+g) = \lim f + \lim g = A + B$.
- (2) $\lim fg = \lim f \lim g = AB$.
- (3) $\lim \frac{f}{g} = \frac{\lim f}{\lim g} = \frac{A}{B}$, provided that $B \neq 0$.

Corollary. The following hold:

(1)
$$\lim \lambda f = \lambda \lim f = \lambda A$$
, and $\lim (\lambda + f) = \lambda + \lim f = \lambda + A$.

(2)
$$\lim \frac{1}{f(x)} = \frac{1}{\lim f} = \frac{1}{A}$$
, provided that $A \neq 0$.

Theorem 4.1.3 (The Sandwich Theorem). Let f, g, and h be real valued functions defined on \mathbb{R} such that $\lim_{x \to \infty} f = \lim_{x \to \infty} g = A$ as $x \to p$, and suppose that $f(x) \le h(x) \le g(x)$ for all $x \in \mathbb{R}$. Then $\lim_{x \to \infty} h = A$ as $x \to p$.

Corollary. Let f, g be real valued functions defined on \mathbb{R} such that $0 \le f(x) \le g(x)$ for all $x \in \mathbb{R}$. Then if $g \to 0$ as $x \to p$, then $f \to 0$.

The proofs of all these are the result of appling the sequential criterion.

4.2 Continuous Functions.

Definition. Let X and Y be metric spaces and let $p \in E \subseteq X$, and $f : E \to Y$ be a function. We say that f is **continuous** at p if for every $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ whenever $0 < d_X(x, p) < \delta$. If f is continuous at every point in X, we say that f is **continuous on** X.

Theorem 4.2.1. If $E \subseteq X$ a metric space, and if f is a function defined on X, and $p \in E$ is a limit point, then f is continuous if and only if $\lim f(x) = f(p)$ as $x \to p$.

Theorem 4.2.2. Suppose X, Y, and Z are metric spaces, and that $f: E \to Y$, $g: Y \to Z$, are functions (with $E \subseteq X$) such that f is continuous at p and g is continuous at f(p). Then $g \circ f$ is continuous at p.

Proof. For every $\epsilon > 0$, we have $\delta_1, \delta_2 > 0$ such that $d_Y(f(x), f(p)) < \epsilon$, when $0 < d_X(x, p) < \delta_1$, and $d_Z(g(y), g(f(p))) < \epsilon$ whenever $d_Y(y, f(p)) < \delta_2$. Then choose $\delta = \min\{\delta_1, \delta_2\}$, and we see that $d_Z(g(f(x)), g(f(p))) < \epsilon$ whenever $0 < d_X(x, p) < \delta$.

Theorem 4.2.3. A mapping f of a metric space X into a metric space Y is continuous if and only if for every open set $V \subseteq Y$, $f^{-1}(V)$ is open in X.

Proof. Let f be continuous on X, and let V be open in Y. For $p \in X$, $f(p) \in V$, and since V is open, there is an $\epsilon > 0$ such that $y \in V$ when $d_Y(y, f(p)) < \epsilon$. Since f is continuous, there is a $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$, whenever $0 < d_X(x, p) < \delta$. Thus $f^{-1}(V)$ is open in X.

Conversly, suppose that $f^{-1}(V)$ is open in X for V open in Y. Let $p \in X$ and $\epsilon > 0$, and let $V = \{y \in Y : d_Y(y, f(p)) < \epsilon\}$; V is open in Y, so $f^{-1}(V)$ is open in X, thus there is a $\delta > 0$ such that $x \in f^{-1}(V)$ when $0 < d_X(x, p) < \delta$, then $f(x) \in V$, so $d_Y(f(x), f(p)) < \epsilon$; therefore, f is continuous at p.

Corollary. A mapping f from X into Y is continuous if and only if $f^{-1}(C)$ is closed in X, whenever C is closed in Y.

Proof. This is the converse of the previous theorem.

Theorem 4.2.4. Let $f, g: X \to \mathbb{C}$ be continuous complex valued functions defined on a metric space X, then f + g, fg, and $\frac{f}{g}$ are continuous.

Proof. This follows from theorem 4.1.2 and the sequential criterion.

Theorem 4.2.5. Let f_1, \ldots, f_k be realized functions defined on a metric space X, and define $f: X \to \mathbb{R}^k$ by $f(x) = (f_1(x), \ldots, f_k(x))$ for all $x \in X$. Then f is continuous if and only if f_i is continuous for $11 \le i \le k$. Moreover, if $g: X \to \mathbb{R}^k$ and f are continuous, then so is f + g and fg.

Proof. Notice that $|f_i(x) - f_i(y)| \le ||f(x) - f(y)|| = \sqrt{\sum |f_i(x) - f_i(y)|^2}$ for $1 \le i \le k$. If follows then that f is continuous if and only f_i is. Moreover, if $g: X \to \mathbb{R}^k$ is also continuous, then by the previous theorem, so is f + g and fg.

- **Example 4.2.** (1) Let $x \in \mathbb{R}^k$, define the functions $\phi_i : \mathbb{R}^k \to \mathbb{R}$ by $\phi_i(x) = x_i$ for all $1 \le i \le k$, then ϕ_i is continuous on \mathbb{R}^k
 - (2) The monomials $x_1^{n_1}x_2^{n_2}\dots x_k^{n_k}$, with $n_i \in \mathbb{Z}^+$ for $1 \le i \le k$ are continuous on \mathbb{R}^k . So are all constant ultiples, thus the polynomial $\sum c_{n_1,\dots,n_k}x_1^{n_1}x_2^{n_2}\dots x_k^{n_k}$ is also continuous on \mathbb{R}^k .
 - (3) We have $||||x|| ||y|||| \le ||x y||$ for all $x, y \in \mathbb{R}^k$, thus the mapping $x \to ||x||$ is continuous on \mathbb{R}^k .

4.3 Continuity and Compactness.

Definition. A mappinf $f: E \to \mathbb{R}^k$ is said to be **bounded** if there is a real number M > 0 such that $||f|| \le M$ for all $x \in E$.

Theorem 4.3.1. Let f be a cn=ontinuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact in Y.

Proof. Let $\{V_{\alpha}\}$ be an open cover of f(X), since f is continuous, then $f^{-1}(V_{\alpha})$ is open in X, and since X is compact, $X \subseteq \bigcup_{i=1}^n V_{\alpha_i}$, and $f(f^{-1}(E)) \subseteq E$, we have that $f(X) \subseteq \bigcup_{i=1}^n 6nV_{\alpha_i}$.

Theorem 4.3.2. If $f: X \to \mathbb{R}^k$ is continuous, where X is a compact metric space, then f(X) is closed and bounded; in particular, f is bounded.

Proof. From theorem 4.3.1, we have that f(X) is compact in \mathbb{R}^k , therefore, it is closed and bounded.

Theorem 4.3.3 (The Extreme Value Theorem). Suppose f is a continuous, realvalued function on a metric space X, and that $M = \sup f$, and $m = \inf f$. Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

Proof. By theorem 4.3.2, f(X) is closed and bounded, thus $M, m \in f(X)$.

Theorem 4.3.4. Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then the inverse mapping $f^{-1}: Y \to X$ is a Continuous mapping of Y onto X.

Proof. By theorem 4.2.3, it suffices to show that f(V) is open in Y whenever V is open in X. We have that $X \setminus V$ is closed in X, and compact, thus $f(X \setminus V)$ is closed and compact in Y, thus $f(V) = Y \setminus f(X \setminus V)$ is open in Y.

Definition. Let f be a mapping of a metric space X into a metric space Y. We say that f is **uniformly continuous** on X if for every $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(q), f(p)) < \epsilon$, for all $p, q \in X$ for which $d_X(p, q) < \delta$.

Lemma 4.3.5. If f is uniformly continuous, then f is continuous.

Theorem 4.3.6. Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X

Proof. Let $\epsilon > 0$, by the continuity of f, we can associate for each $p \in X$ a number $\phi(p) > 0$ such that for $q \in X$, $d_X(p,q) < \phi(p)$ implies $d_Y(f(p),f(q)) < \frac{1}{2}\phi(p)$. Now let $J(p) = \{q \in X: d_X(p,q) < (p)\}$. Clearly, $p \in J(p)$, so J(p) is an open cover of X, and since X is compact, there are p_1, \ldots, p_n for which $X \subseteq \bigcup_{i=1}^n J(p_i)$, then take $\delta = \min\{\phi(p_1), \ldots, \phi(p_n)\}$; we have $\delta > 0$. Now let $p, q \in X$ such that $d_X(p,q) < \delta$. Then there is an $m \in \mathbb{Z}^+$ with $1 \le m \le n$ such that $p \in J(p_m)$, thus $d_X(p,q) < \frac{1}{2}\phi(p_m)$, by the triangle inequality, we get $d_i(q,p_m) \le d_X(q,p) + d_X(p,p_m) < \delta + \frac{1}{2}\phi(p_m) = \phi(p_m)$, for $1 \le m \le n$. Therefore, $d_Y(f(p),f(q)) \le d_Y(f(p),f(p_m)) + d_Y(f(p_m),f(q)) < \epsilon$. Thus, f is uniformly continuous.

Remark. What this theorem says, is that in any compact metric space, continuity and uniform continuity are equivalent.

Theorem 4.3.7. Let $E \subseteq \mathbb{R}$ be noncompact, then:

- (1) There exists a continuous function on E which is not bounded.
- (2) There is a bounded, continuous function on E which has no maximum.
- (3) If E is bounded, there exists a continuous function on E that is not uniformly continuous

Proof. Suppose first that E is bounded. Then there is a limit point $x_0 \notin E$ of E. Consider the function

$$f(x) = \frac{1}{x - x_0}$$
 for all $x \in E$

Then f is continuous on E, but not bounded. Then let $\epsilon > 0$ and $\delta > 0$, and choose $x \in E$ such that $|x - x_0| < \delta$, then taking t arbitrarily close to x_0 , we can get $|f(x) - f(t)| \ge \epsilon$, even though $|x - t| < \delta$. Thus f is not uniformly continuous.

Now choose

$$g(x) = \frac{1}{1 + (x - x_0)^2}$$
 for all $x \in E$

g is continuous, and bounded on E (0igi1), then $\sup g = 1$, and since g(x) < 1 for all x, we see that g attains no maximum.

Lastly, suppose that E is unbounded, then the functions f(x) = x and $h(x) = \frac{x^2}{1+x^2}$ for all $x \in E$ establish (1) and (2).

Example 4.3. Let f be the mapping of the interval $[0, 2\pi)$ onto the unit circle. That is $f(t) = (\cos t, t)$ for $0 \le t < 2\pi$. Then f is a continuous 1-1 mapping of $[0, 2\pi)$ onto the unit circle, however, the inverse mapping, f^{-1} fails to be continuous at the point f(0) = (1, 0).

4.4 Continuity and Connectedness.

Theorem 4.4.1. If f is a continuous mapping of a metric space X into a metric space Y, and if $E \subseteq X$ is Connected, then so is f(E).

Proof. Suppose that $f(E) = A \cup B$ with $A, B \subseteq Y$ nonempty and seperated. Let $G = E \cap f^{-1}(A)$ and $H = E \cap f^{-1}(B)$, then $E = G \cup H$, and G and H are both nonempty. Then since $A \subseteq \overline{A}$, $G \subseteq f^{-1}(\overline{A})$, and since f is continuous, $f^{-1}(\overline{A})$ is closed, so $\overline{G} \subseteq f^{-1}(\overline{A})$, thus $f(\overline{G}) \subseteq \overline{A}$. Since f(H) = B, and $\overline{A} \cap B$ is empty, $\overline{G} \cap H$, and $H \cap \overline{H}$ are also empty, which contradicts the connectedness of E.

Theorem 4.4.2 (The Intermediate Value Theorem). Let $f[a,b] \to \mathbb{R}$ be a realizable function. If f(a) < f(b), and $c \in \mathbb{R}$ such that f(a) < c < f(b), then there is an $x \in (a,b)$ such that f(x) = x.

Proof. We have that [a,b] is connected in \mathbb{R} , thus by theorem 4.4.1, f([a,b]) is connected in \mathbb{R} , hence there is an $x \in (a,b)$ for which f(x) = c.

Corollary. If $f : [a,b] \to \mathbb{R}$ is a real-valued function such that f(a) < 0 < f(b), then there is an $x \in (a,b)$ such that f(x) = 0.

4.5 Discontinuities.

Definition. Let X and Y be metric spaces, and let $f: E \to Y$ for $E \subseteq X$. If there is a point x in E for which f is not continuous, we say that f is textbfdiscontinuous at x, and we say that f has a **discontinuity** at x.

Definition. Let f be defined on (a, b), and let x be such that $a \le x < b$. We write f(x+) = q if $f(t_n) \to q$ for all sequences $\{t_n\}$ in (x, b) such that $t_n \to x$. Similarly, if x is such that $a < x \le b$, we write f(x-) = q if $f(t_n) \to q$ for all sequences $\{t_n\}$ in (a, x) such that $t_n \to x$. We call f(x+) and f(x-) the **right handed limit** and **left handed limit** of f at x respectively, and write $\lim_{t\to x^+} f = f(x+)$ and $\lim_{t\to x^-} f = f(x-)$.

Theorem 4.5.1. If $x \in (a,b)$, then $\lim f$ exists as $t \to x$ if and only if, $f(x+) = f(x-) = \lim f$.

Proof. Suppose that $\lim f$ exists, by the uniqueness of the limit, and the sequential criterion, we get that $f(x+) = f(x-) = \lim f$. Conversely, suppose that f(x+) = f(x-) = q. Then $f(t_n) \to q$ for all sequences $\{t_n\}$ in (x,b) and (a,x), then $f(t_n) \to q$ for all sequences $\{t_n\}$ in (a,b), thus by the sequential criterion again, $\lim f$ exists, and $\lim f = q$.

Definition. Let f be defined on (a,b). If f is discontinuous at a point x, and f(x+) and f(x-) exists, we say that f has a **removable discontinuity** at x, otherwise, we say the f has an **infinite discontinuity**.

Example 4.4. (1) The function f(x) = 1 for $x \in \mathbb{Q}$ and f(x) = 0 for $x \in \mathbb{R} \setminus \mathbb{Q}$ has an infinite discontinuity at every point x.

- (2) The function f(x) = x for $x \in \mathbb{Q}$ and f(x) = 0 for $x \in \mathbb{R} \setminus \mathbb{Q}$ is continuous at x = 0, and has an infinite discontinuity at every other point x.
- (3) The function $f(x) = \sin \frac{1}{x}$ for $x \neq 0$ and f(x) = 0 for x = 0, has an infinite discontinuity at x = 0.

(4) The function f(x) = x + 2 for -3 < x < -2 and $0 \le x < 1$ and f(x) = -x - 2 for $-2 \le x < 0$ has a removable discontinuity at x = 0, and is continuous everywhere else.

Remark. The discontinuities in examples (1) and (2) are the result of \mathbb{Q} and $\mathbb{R}\backslash\mathbb{Q}$ being dense in \mathbb{R} .

4.6 Monotonic Functions.

Definition. Let f be a real-valued function on an interval (a, b). We say that f is **monotonically increasing** on (a, b) if a < x < y < b implies $f(x) \le f(y)$. We say that f is **monotonically decreasing** on (a, b) if a < x < y < b implies $f(y) \le f(x)$. We say f is **monotonic** if it is either monotonically increasing or monotonically decreasing.

Theorem 4.6.1. Let f be monotonic on (a,b) then f(x+) and f(x-) exist at every point of (a,b) and sup f=f(x-) and inf f=f(x+), and the following hold:

- (1) If f is monotonically increasing $f(x-) \le f(x) \le f(x+)$
- (2) If f is monotonically decreasing $f(x+) \le f(x) \le f(x-)$

Proof. We prove only (1), since (2) is analogous. Suppose that f is monotonically increasing, clearly, f has an upperbound A for which $A \leq f$. Now let $\epsilon > 0$, then there is a $\delta > 0$ for which $a < x - \delta < x$, and $A - \epsilon < f(x - \delta) \leq A$. Then we have $f(x - \delta) < f(t) \leq A$ for all $x - \delta < t < x$, then we get $|f(t) - A| < \epsilon$, hence $f(x - \delta) = A$, Similarly, we get $f(+) = -\inf f$. Now since $\sup f \leq f \leq \inf f$, we get the desired result.

Corollary. Monotonic functions have no infinite discontinuities.

Theorem 4.6.2. Let f be monotonic on (a,b), then the set of all points of (a,b) for which f is discontinuous is atmost countable.

Proof. Suppose, without loss of generality that g is monotonically increasing, and let E be the set of all points of (a,b) for which f is discontinuous. By the density of \mathbb{Q} in \mathbb{R} , for each $x \in E$ associate $r(x) \in \mathbb{Q}$ such that f(x+) < f(x) < f(x-). Since $x_1 < x_2$ implies $f(x_1+) \leq f(x_2-)$, then $r(x_1) \neq r(x_2)$, thus $x_1 \neq x_2$, and so r is a 1-1 mapping of E into \mathbb{Q} .

Now, given a countable E in an interval (a,b), we can construct a monotonic function f that is discontinuous at every point in E and continuous everywhere else. Arrange the points of E into a sequence $\{x_n\}$ and let $\{c_n\}$ be a sequence such that $c_n > 0$ for all $n \in \mathbb{Z}^+$, such that $\sum c_n$ converges. Define $f(x) = \sum_{x_n < x} c_n$, for $x \in (a,b)$. Then we have that

- (1) f is monotonically increasing on (a, b).
- (2) f is discontinuous at every point in E with $f(x_n+) f(x_n-) = c_n$.
- (3) f is continuous at every point in $(a, b) \setminus E$.

Definition. Let f be a real-valued function defined on an interval (a, b). We say that f is **continuous form the right** if f(x+) = f(x), and we say f is **continuous from the left** if f(x-) = f(x).

4.7 Infinite Limits and Limits at Infinity.

Definition. For any $c \in \mathbb{R}$, the set of all real numbers x such that x > c is called the **neighborhood of** ∞ , and denoted (c, ∞) . The set of all real numbers x such that x > c is called the **neighborhood of** $-\infty$, and denoted $(-\infty, c)$.

Definition. Let $f: E \to \mathbb{R}$ be a real-valued function. We say that $f(t) \to A$ as $t \to x$, with A, and x extended real numbers if for every neighborhood of U A, there is a neighborhood V of x such that $V \cap E$ is nonempty, and $f(t) \in U$ for all $t \neq x \in V \cup E$.

Theorem 4.7.1. Let $f, g : E \to \mathbb{R}$ be realvalued functions such that $f \to A$, and $g \to B$ as $t \to x$, for extended real numbers A, B, and x. Then the following hold as $t \to x$.

- (1) $f \to A'$ implies A = A'.
- (2) $f + g \rightarrow A + B$.
- (3) $fg \rightarrow AB$.
- (4) $\frac{f}{g} \to \frac{A}{B}$. Provided that (1), (2), and (3) are not of the forms $\infty \infty$, $0 \cdot \infty, \frac{\infty}{\infty}$, and $A_{\overline{0}}$, respectively.

Proof. This is a direct application of the sequential criterion using the appropriate definition.

Chapter 5

Differentiation

5.1 The Derivative of Real valued Functions.

Definition. Let $f:[a,b] \to \mathbb{R}$ be a real-valued function defined on [a,b]. The **derivative** of f at a point $x \in (a,b)$ is the function $f':(a,b) \to \mathbb{R}$ defined by

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 (5.1)

If f' is defined at $x \in [a, b]$, then we say that f is **differentiable** at x, and if f' is defined for all $x \in (a, b)$, we say that f is **differentiable** on (a, b).

Theorem 5.1.1. Let $f:[a,b] \to \mathbb{R}$ be a real-valued function. If f is differentiable at a point $x \in (a,b)$, then f is continuous.

Proof. As
$$t \to x$$
, we get $|f(t) - f(x)| = \left| \frac{f(t) - f(x)}{t - x} \right| |t - x| \to f'(x) = 0$, thus $f(t) \to f(x)$.

Theorem 5.1.2. Suppose $f, g : [a, b] \to \mathbb{R}$ are realvalued functiond differentiable at a point $x \in (a, b)$. Then f + g, fg, and $\frac{f}{g}$ are differentiable at x, and as $t \to x$:

- (1) (f+g)' = f' + g'.
- (2) (fg)' = f'g + fg'.
- (3) $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$, provided that $g(x) \neq 0$.

Proof. (1) follows directly from the definition. Now notice that fg(t) - fg(x) = f(t)(g(t) - g(x)) + g(t)(f(t) + f(x)), then dividing by t - x, the result follows by definition.

Now also notice that $\frac{\frac{f}{g}(t) - \frac{f}{g}(x)}{t - x} = \frac{1}{g(t)g(x)} (g(x) \frac{f(t) - f(x)}{t - x} - f(x) \frac{g(t) - g(x)}{t - x})$, and the result again follows by definition.

Example 5.1. (1) The derivative of constant functions are alway 0, and the derivative of the identity function is always 1.

(2) Let $f(x) = x^n$, for $n \in \mathbb{Z}$, and $x \neq 0$ for n < 0, then f is differentiable and $f'(x) = nx^{n-1}$.

(3) Polynomial functions are differentiable, and so are rational functions $\frac{p}{q}$, provided that $q \neq 0$.

Theorem 5.1.3 (Caratheodory's Theorem). Let $f : [a,b] \to \mathbb{R}$ be a continuous real valued function. Then f is differentiable at a point $x \in (a,b)$ if and only if there is a continuous function $\phi : (a,b) \to \mathbb{R}$ such that $f(t) - f(x) = \phi(t)(t-x)$; moreover, $\phi = f'$.

Proof. Suppose f' exists at x, and define $\phi:(a,b)\to\mathbb{R}$ by $\phi(t)=\frac{f(t)-f(x)}{t-x}$ when $t\neq x$, and $\phi(t)=f'(x)$ at t=x. Then by the continuity of f, ϕ is continuous at x, moreover, at $t\neq x$ we see that $f(t)-f(x)=\phi(t)(x-t)$.

Conveersely, sup[ose there is a ϕ , continuous at x such that $f(t) - f(x) = \phi(t)(x - t)$, then clearly, $\lim \phi = f'(x)$ as $t \to x$, and since ϕ is continuous, $\phi(x) = f'(x)$.

Theorem 5.1.4 (The Chain Rule). Suppose that $f:[a,b] \to \mathbb{R}$ and $g:I \to \mathbb{R}$ are continuous, where $f([a,b]) \subseteq I \subseteq [a,b]$, and suppose that f is differentiable at x, and that g is differentiable at f(x). Then $g \circ g$ is differentiable at x, and $(g \circ f)' = (g' \circ f)f'$.

Proof. We have by Caratheodory's theorem that f(t) - f(x) = (t - x)(f'(x) - u(t)), and g(s) - g(y) = (s - y)(g'(y) - v(s)). Then letting y = f(x), and $s \to y$ as $t \to x$, we see that $u, v \to 0$, and we get that g(f(t)) - g(f(x)) = g'(f(t)f(t)) - g'(f(x))f(x), dividing by t - x give the desired result.

- **Example 5.2.** (1) Let $f(x) = \sin \frac{1}{x}$ at $x \neq 0$, and f(x) = 0 at x = 0. We have at $x \neq 0$, that $f'(x) = \sin \frac{1}{x} \frac{1}{x} \cos \frac{1}{x}$, but at x = 0, we must appeal to the definition, and we get $f(t) = \sin \frac{1}{t}$, which diverges at $t \to 0$, thus f'(0) does not exist.
- (2) Let $f(x) = x^2 \sin \frac{1}{x}$ at $x \neq 0$, and f(x) = 0 at x = 0. For $x \neq 0$, we get $f'(x) = 2x \sin \frac{1}{x} \cos \frac{1}{x}$, and at x = 0, we notice that $|t \sin \frac{1}{t}| \leq |t|$, so by the sandwhich theorem, f'(0) = 0 as $t \to 0$.

5.2 Mean Value Theorems.

Definition. Let $f: X \to \mathbb{R}$ be defined on a metric space X. We say that f has a **local maximum** at a point $p \in X$, if there is a $\delta > 0$ for which $f(q) \le f(p)$ whenever $d(q, p) < \delta$. Likewise f has a **local minimum** at a point $p \in X$, if there is a $\delta > 0$ for which $f(q) \le f(p)$ whenever $d(q, p) < \delta$. We call local maxima and local minimums **local extrema**.

Theorem 5.2.1. Let $f:[a,b] \to \mathbb{R}$ be a realvalued function, and suppose that f has a local extremum at $x \in (a,b)$. If f' exists, then f'(x) = 0.

Proof. Suppose, without loss of generality that f has a local maximum at x. Chooses $\delta > 0$ such that $a < x - \delta < x < x + \delta < b$. Then if $x - \delta < t < x$, we have $|t - x + \delta| < \delta$, so $f(t) \le f(x)$, thus $\frac{f(t) - f(x)}{t - x} \le 0$. Similarly, for $x < t < x + \delta$, we get $\frac{f(t) - f(x)}{t - x} \ge 0$, hence, as $t \to x$, we get $0 \le f'(0) \le 0$, thus f'(x) = 0.

Theorem 5.2.2 (The Generalized Mean Value Theorem). If $f, g : [a, b] \to \mathbb{R}$ are continuous on [a, b], and differentiable on (a, b), then there is a point $x \in (a, b)$ such that (f(b) - f(a))g'(x) = (g(b) - g(a))f'(x).

Proof. Let h(t) = (f(b) - f(a))g'(x) - (g(b) - g(a))f'(x), for $t \in [a, b]$, then h is continuous on [a, b], and differentiable on (a, b), moreover, we have h(b) = f(b)g(a) - f(a)g(b) = h(b). Now if h is constant, then h' = 0 for all t and we are done., Now suppose that $h(a) \le h(t)$, and let $x \in (a, b)$, be a local minimum of h, then h'(x) = 0, and we are done; the same result follows for local minima of h.

Corollary (The Mean Value Theorem). LEt $f : [a,b] \to \mathbb{R}$ be continuous on [a,b], and differentiable on (a,b). Then there is an $x \in (a,b)$ such that f(b) - f(a) = (b-a)f'(x).

Proof. Take g(t) = t.

Theorem 5.2.3. Suppose that $f : [a,b] \to \mathbb{R}$ is differentiable on (a,b). Then the following hold for all $x \in (a,b)$:

- (1) If $f' \geq 0$, then f is monotonically increasing.
- (2) If f' = 0, then f is constant.
- (3) If $f' \leq 0$, then f is monotonically decreasing.

Proof. Let $x_1, x_2 \in (a, b)$, then by the mean value theorem, there is an $x \in (x_1, x_2)$ such that $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$. Then if f'(x) = 0, we get $f(x_2) = f(x_1)$, and that f is constant. If $f'(x) \ge 0$, we get $f(x_2) \ge f(x_1)$, making f monotonically increasing, similarly, if $f'(x) \le 0$, we get f monotonically decreasing.

5.3 The Continuity of Derivatives.

Theorem 5.3.1. Let $f:[a,b] \to \mathbb{R}$ be differentiable on all of [a,b], and suppose that $f'(a) < \lambda < f'(b)$. Then there is an $x \in (a,b)$ such that $f'(x) = \lambda$.

Proof. Let $g(t) = f(t) - \lambda t$, then g'(a) < 0 and g'(b) > 0. Then for $t_1, t_2 \in (a, b), g(t_1) < g(a)$, and $g(b) < g(t_2)$. Then by the extreme value theorem, g attains a maximum at a point $x \in (t_1, t_2)$, hence g'(x) = 0, hence $f'(x) = \lambda$.

Corollary. If $f:[a,b] \to \mathbb{R}$ is differentiable, then f cannot have any removable discontinuities, nor jump discontinuities.

Remark. f' may have infinite discontinuities.

5.4 L'Hosptal's Rule.

Theorem 5.4.1 (L'Hospital's Rule). Suppose f and g are realvalued functions differentiable on (a,b), and that g' neq0 for all $x \in (a,b)$, where $-\infty \le a < b \le \infty$, and suppose that $\frac{f'}{g'} \to A$ as $x \to a$. If $f,g \to 0$, or if $g \to \pm \infty$, as $x \to a$, then $\frac{f}{g} \to A$ as $x \to a$.

Proof. Suppose first that $-\infty \leq A < \infty$, and choose $q, r \in \mathbb{R}$ such that A < r < q. By hypothesis, there is a $c \in (a,b)$ for which a,x < c implies $\frac{f}{g} < r$. If a < x < y < c, then by the generalized mean value theorem, $\frac{f(x)-f(y)}{g(x)-g(y)} = \frac{f'(t)}{g'(t)} < r$, thus letting $x \to a$, we see hat $\frac{f(y)}{g(y)} \leq r < q$. Now suppose, without loss of generality, that $g \to \infty$. Fixing y, and choosing $c_1 \in (a,y)$ such that g(x) > g(y), and g(x) > 0, if $a < x < c_1$, then $\frac{f(x)}{g(x)} < r - r \frac{g(y)+f(y)}{g(x)}$, then as $x \to a$, there is a $c_2 \in (x,c_1)$ such that $\frac{f}{g} < q$.

Likewise, if we suppose that $-\infty < A \le \infty$, by the same reasoning, we can choose a p < A and $c_3 \in (a,b)$ such that $p < \frac{f}{g}$ as $x \to a$. Since p < A < q, by the sandwhich theorem, we get $\frac{f}{g} = A$ as $x \to a$.

5.5 Taylor's Theorem.

Definition. If f has a derivative f' on an interval, and f' is differentiable, we denote f'' to be (f')' and call it the **second derivative** of f; likewise, if f'' is differentiable, we denote the **third derivative** by $f^{(3)} = (f'')'$. More generally, for $n \in \mathbb{Z}^+$, we define recursively the nth derivative to be:

- (1) $f^{(0)} = f$ and $f^{(1)} = f'$.
- (2) $f^{(n+1)} = (f^{(n)})'$, given that $f^{(n)}$ is differentiable.

We call f nth differentiable if $f^{(n)}$ exists.

Theorem 5.5.1 (Taylor's Theorem). Suppose $f:[a,b] \to \mathbb{R}$ is a real-valued function, that is nth differentiable, and let $n \in \mathbb{Z}^+$ be such that $f^{(n-1)}$ is continuous on [a,b], and that $f^{(n)}$ exists on (a,b). LEt $\alpha, \beta \in [a,b]$ be distinct, and define:

$$p(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k$$
 (5.2)

Then there exists a point $x \in (\alpha, \beta)$ such that $f(\beta) = p(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n$.

Proof. For n = 1, this reduces to the mean value theorem, so suppose that n > 1. Let $M \in \mathbb{R}$ be such that $f(\beta) = p(\beta) + M(\beta - \alpha)^n$, and let $g(t) = f(t) - p(t) + M(\beta - \alpha)^n$, for $t \in [a, b]$. Then g is nth differentiable, and we get $g^{(n)} = f^{(n)} - n!M$ for $t \in (a, b)$. We wish to show that $f^{(n)} = n!M$.

We have that $p^{(k)} = f^{(k)}(\alpha)$ for $0 \le k \le n-1$, then $g(\alpha) = g'(\alpha) = \cdots = g^{(n-1)}(\alpha) = 0$, and our choice of M shows that $g(\beta) = 0$. So $g'(x_1) = 0$ for $x_1 \in (\alpha, \beta)$, so by the mean value theorem, since $g'(\alpha) = 0$, then g''(2) = 0 for $x_2 \in (\alpha, x_2)$. Proceeding inductively, we then get that $g_{(n)}(x_n)=0$ for $x_n \in (\alpha, x_{n-1})$, hence we get that $n!M = f^{(n)}(x)$.

Definition. We call the series in equation (5.2) the **Taylor series** (or **Taylor polynomial**) of f about α . We call the realnumber M such tat $n!M = f^{(n)}(x)$ the **tail**, (or **error**) of the Taylor series.

5.6 Derivatives of vector valued functions.

Definition. Let $f:[a,b] \to \mathbb{C}$ be a complex valued function, such that $f(t) = f_1(t) + if_2(t)$. We say that f is **differentiable** at a point x if and only if f_1 and f_2 are differentiable, and we denote the **derivative** of f to be the function $f:(a,b) \to \mathbb{C}$ such that $f' = f'_1 + if'_2$

Definition. Let $f:[a,b] \to \mathbb{R}^k$ be a vectorvalued function for $k \in \mathbb{Z}^+$. f is said to be differentiable at $x \in (a,b)$ if there is some point $f'(x) \in \mathbb{R}^k$ such that:

$$\lim_{t \to x} ||\frac{f(t) - f(x)}{t - x} - f'(x)|| = 0 \tag{5.3}$$

We define the **derivative** of f at x to be the function $f':(a,b)\to\mathbb{R}$ such that the values of f' statisfy equat ion (5.3)

Remark. If $f:[a,b]\to\mathbb{R}^k$ is defined by $f=(f_1,\ldots,f_k)$, then f is differentiable at a point $x\in(a,b)$ if and only if f_i is differentiable at x for $1\leq i\leq k$, and we have that $f'=(f'_1,\ldots,f'_k)$.

Theorem 5.1.1 follows naturally, and so does theorem 5.1.2(a) and (2), where we define fg as $\langle f, g \rangle$, however, the mean value theorem in general does not hold.

- **Example 5.3.** (1) Define $f: \mathbb{R} \to \mathbb{C}$ by $f(x) = e^{ix} = \cos x + i \sin x$. Then $f(2\pi) f(0) = 0$, however, $f'(x) = ie^{ix} \neq 0$ for all x (moreover, |f'| = 1), so the generalized mean value theorem fails here.
- (2) Define $f, g: (0,1) \to \mathbb{C}$ by f(x) = x and $g(x) = x + x^2 e^{\frac{i}{x^2}}$ for all x. Since $|e^{it}| = 1$, we have that $\lim \frac{f}{g} = 1$ as $x \to 0$. Now $g'(x) = 1 + (2x i\frac{2}{x})e^{\frac{1}{x^2}}$ on (0,1), hence $|g'| = |2x i\frac{2}{x}| 1 \ge \frac{2}{x} 1$, so $|\frac{f'}{g'}| \le \frac{x}{2-x} \to 0$ as $x \to 0$, so L'Hospital's rule fails in \mathbb{C} as well, and hence in \mathbb{R}^2 (as \mathbb{C} is isomorphic to \mathbb{R}^2).

Theorem 5.6.1. Suppose $f:[a,b] \to \mathbb{R}^k$, for $k \in \mathbb{Z}^+$ is continuous, and that f is differentiable on (a,b). Then there is an $x \in (a,b)$ for which $||f(b)-f(a)|| \leq (b-a)||f'(x)||$.

Proof. Let z=f(b)-f(a), and define $\phi=\langle f,g\rangle$ for all $t\in[a,b]$, then ϕ is a real valued function continuous on [a,b], moreover it is differentiable on (a,b); therefore, by the mean value theorem, $\phi(b)-\phi(a)=(b-a)\phi'(a)=(b-a)\langle z,f'(x)\rangle$ for $x\in(a,b)$. On the other hand, we have that $\phi(b)-\phi(a)=\langle z,z\rangle=||z||^2$, hence, by the Cauchy Schwarz inequality, we have that $||z||^2=(b-a)\langle z,f'\rangle\leq ||z||||f'||$, which gives the desired result.

Chapter 6

The Riemann Integral

6.1 The Integral.