Naïve Bayes

```
EXAMPLE P(c) = 0.01
   TEST: 90% it is positive if you have C. sensitive 90% it is negative if you don't have Citien Station.

NESTION: TEST = PositivE
 QUESTION: TEST = POSITIVE
        PROBABILITY OF HAVING CANCER
  What do you think is now the probability of having that specific type of cancer?
   0:51 / 2:37
                                                                        YouTube [3
```


what's the probability that someone with a positive cancer test actually has the disease?

BAYES RULE

So let's makes this specific.

0:35 / 2:19

YouTube []

Prior:
$$P(c) = 0.01 = 1% P(\tau c) = 0.99$$

 $P(Pos(c)) = 0.9 = 90% (-1.0) = 0.1$

posterior:
$$P(C|Pos) = 0.0833$$
 } = []
$$P(7C|Pos) = 0.9167$$
}

SVM

SVM C Parameter

C - controls tradeoff between Smooth decision boundary and classifying training points correctly

Quiz

smooth boundary, or that you will get more training points connect?

- o smooth boundary
- a more training points correct

SVM & (gamma) parameter

Y - defines how far the influence of a single training example reaches

low values - far

high values - close

Decision Tree

Entropy — controls how a DT decides where to split the data

definition: measure of impurity in a bunch of examples

Entropy — controls how a DT decides where to split the data

definition: measure of impurity in a bunch of examples

intuition — all examples are same class

— entropy = 0

examples are evenly split between classes

- entropy = 1.0

grade	bumpiness	speed limit	speed	- [0]	
steep steep flat steep	bumpy smooth bumpy smooth	yes no	slow fast fast	steep stat entropy of ? SSf frat entropy rode? Plast = 1/3)

Information Gain

Pslow =
2
3 Pfast = 1 3

Information = entropy (parent) - [weighted] entropy (children)

grade bumpiness speed entropy of parent = 1.0

grade bumpiness simit speed entropy = $\sum_{i} -P_{i} \log_{2} P_{i}$

steep smooth yes slow entropy = $\left[\frac{-2}{3}\log_{2}\left(\frac{2}{3}\right) - \frac{1}{3}\log_{2}\left(\frac{1}{3}\right)\right]$

flat steep smooth no fast = 0.9184

Algorithms (Pick One) k nearest neighbors — classic, simple, easy to understand adaboost random forest — "ensemble methods" meta classifiers built from (usually) decision trees