Projeto PSI3501 - Verificação automática da voz - P2

Piero Conti Kauffmann (8940810)

Introdução

Triplet Loss

- Composição da tripla (A, P, N)
 - Instância chave (A) de um usuário i
 - Instância positiva (P) do mesmo usuário i
 - Instância negativa (N) de um outro usuário j

Retirado de Schroff et. al (2015)

• **Objetivo**: Aprender a função $g: R^N \to R^D$ (D << N) que mantém g(A) mais perto de g(P) do que g(N), com uma margem m de segurança

$$||g(x_i^a) - g(x_i^p)||_2^2 + m < ||g(x_i^a) - g(x_j^n)||_2^2, i \neq j$$

Função de custo

Função de custo (tri)

$$\mathcal{L}_{tri}(\theta) = \sum_{i \neq j} \sum_{\substack{a, p, n \\ a \neq p}} [m + \|g_{\theta}(x_i^a) - g_{\theta}(x_i^p)\|^2 - \|g_{\theta}(x_i^a) - g_{\theta}(x_j^n)\|^2]_{+}$$

Todas as triplas possíveis

Onde [.]+ é a função ReLU(x) = max(0, x)

- Dificuldade principal: como escolher as triplas?
 - Rápida obtenção
 - Informações relevantes para o aprendizado

Função de custo

- Dificuldade principal: como escolher as triplas?
 - Rápida obtenção
 - Informações relevantes para o aprendizado

Função de custo

Dificuldade principal: como escolher as triplas?

Método Batch Hard (Hermans et al, 2017)

Conjunto de usuários

Amostragem (M,N)

$$\mathcal{L}_{BH}(\theta) = \sum_{i=1}^{M} \sum_{a=1}^{N} \big[\ m + \max_{p=1,2,\dots N} \lVert g_{\theta}(x_i^a) - g_{\theta}(x_i^p) \rVert^2 - \min_{\substack{j=1,\dots,M\\n=1,\dots,N\\j \neq i}} \lVert g_{\theta}(x_i^a) - g_{\theta}(x_j^n) \rVert^2 \ \big]_{+}$$

Datasets - Casos de uso

MNIST

- 70 mil Imagens de dígitos (0-9) manuscritos
- Avaliar cada "dígito" como um "usuário"
- Útil para prototipagem

- Gravações de usuários do site 'VoxForge'
 - Gravações baixadas por script do site voxforge.org (licenciados sob a GNU/ GPL de uso livre)
 - 195 usuários, cada um com uma média de 15 trechos
 - Cada trecho tem uma duração média de 12 segundos
 - Text Independent

Base de dados MNIST

MNIST

Treino: 60 mil imagens

Teste: 10 mil imagens

Representação: imagens 28x28

• Arquitetura da rede neural *g (CNN)*

Batch de exemplo

• Exemplo de um batch com N = 8 ('usuários'), M = 10 (instâncias)

Treinamento

- 700 iterações, N = 4 usuários, M = 5 instâncias
- Custo 'batch-hard'

Performance

- Aplicação da rede neural g no conjunto de testes
 - Vetores obtidos com D = 300 dimensões

Aplicamos um método (T-SNE) de redução de dimensionalidade para visualizar os vetores dos dados de teste

Base de dados VoxForge

- VoxForge
 - wav de 22050 Hz
- Pré processamento e extração de *features*
 - Corte ou extensão de cada arquivo, tal que todos possuam 10 segundos
 - Extração de 20 coeficientes Mel-Cepstrais (MFCC)

Resultado: X: N (batch-size) x 20 (features) x 431 (tempo)

- Cálculo do Z-score de cada um dos coeficientes Mel-Ceptrais para que estes possuam média zero e desvio-padrão unitário
 - X[k, i, :] = (X[k, i, :] média(X[:, i, :])) / desvio-padrão(X[:, i, :])

Base de dados VoxForge

Arquitetura da rede neural

Treinamento

• Figura: média móvel (janela de 10 pontos) da função de custo (método batch-hard com $N=10\ e\ M=5$)

Conjunto de teste

• 36 usuários não vistos previamente pelo modelo

Lista de usuários do conjunto de teste com o respectivo número de amostras:

anap $40 (10)$	avsa242 (39)	bjb (10)	catchercradle (20)
anoldman (10)	ax (10)	blood (10)	ccrawford (10)
anonymous (10)	azmisov (20)	bloomtom (20)	cebidae (10)
apdsqueaky (10)	bachroxx (10)	bluepeppers (10)	chandrashekhar
ariyan (10)	bebe (10)	bonzer (10)	(10)
arjuan (10)	beez1717 (10)	brad (20)	chocoholic (9)
	bendauphinee	bread555 (10)	chris21 (10)
asladic (10)	(20)	bugsysservant	
asp (10)	bhart (40)	(80)	chrisspen (10)
atterer (30)	bigmbywater (20)	cactusbin (10)	cj5 (10)

Redução de dimensionalidade (TSNE) dos vetores preditos no conjunto de teste

Performance dos vizinhos mais próximos do conjunto de teste

Método

- Para cada instância j do conjunto de teste, avaliam-se quais usuários que produziram os K vizinhos mais próximos de j
- Caso o usuário que produziu j seja o mesmo da maioria dos seus K vizinhos, é registrado um 'acerto', caso contrário, um 'erro'
- Taxa de acertos em função de K

	K = 1	K = 3	K = 5
Taxa de acertos (%)	100%	99,64%	99,74%