### Measuring the Energy Footprint of OpenStack

Ronan-Alexandre Cherrueau, Adrien Lebre, Anne-Cécile Orgerie, <u>Anthony Simonet</u> 3rd Discovery Plenary Meeting

Inria – IMT Atlantique – LS2N

# Many Ways to Deploy OpenStack



with consequences on resources utilisation and energy consumption

## Many Ways to Deploy OpenStack



with consequences on resources utilisation and energy consumption

## Many Ways to Deploy OpenStack



with consequences on resources utilisation and energy consumption

• V E е

#### Example: nova-scheduler





Pinned to one core, leaves the other cores unused

#### Goal(s)

- Measuring the energy consumption of support services during common operations (booting a VM, creating a VNET, allocating a VIP, migrating a VM, etc.) When varying the number of compute nodes ([I, 800])
- Providing a model for the energy footprint of OpenStack
- Providing guidelines for energy-aware OpenStack operations

#### Methodology



- Measure of all services except compute
- On the **Taurus** cluster of Grid'5000
- Some services isolated on a specific node
  - Glance, Cinder, Neutron, Horizon, MariaDB, nova-scheduler
  - (RabbitMQ, HAProxy)
- Remaining services on a controller node
- 1 to 800 (fake) compute nodes

#### Methodology

- 1. For n in {1, 10, 100, ..., 800} compute nodes
  - 1. Deploy OpenStack
  - 2. Do nothing for one hour









- Difficulties
  - Complex deployments, frequent failures for various (random?) reasons
  - Incoherent idle measurements (sudden change of consumption with no charge)

- The official benchmark suite for OpenStack
- Still on Taurus
- Isolated services: glance, cinder, neutron
- 1 controller
- 1 (actual) compute

#### Methodology

- 1. Deploy OpenStack
- 2. For each rally benchmark
  - Pause for 2 minutes
  - Execute Rally benchmark
  - Pause for 2 minutes

nb keypairs 100-benchmark create-and-list-keypairsjson-flavor name m1medium-image name Debian



nb keypairs 100-benchmark create-and-list-keypairsjson-flavor name m1medium-image name Debian: controller



nb keypairs 100-benchmark create-and-list-keypairsjson-flavor name m1medium-image name Debian: cinder



nb keypairs 100-benchmark create-and-list-keypairsjson-flavor name m1medium-image name Debian: neutron



nb keypairs 100-benchmark create-and-list-keypairsjson-flavor name m1medium-image name Debian: taurus-11



- Difficulties
  - Precision of measures (precision of wattmeters and Kwapi)
  - Very short time for measuring most operations (only a couple seconds)
  - Difficulty to get the exact timing of operations
- WIP
  - Study how energy consumption scales with the number of compute nodes and operations
  - Isolate more services (nova-schedulers, RabbitMQ & HAProxy)

#### Conclusion

(I don't have one.)

### Questions?