Modèles de Langage et Analyse Syntaxique Cours 2 - Syntaxe

Antoine Rozenknop antoine.rozenknop@lipn.univ-paris13.fr

7 octobre 2010

Introduction

Grammaires formelles

Définitions :

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles type 0 : grammaire non-contrainte

Introduction

Grammaires formelles

```
Définitions :
```

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles

Introduction

Grammaires formelles

Définitions :

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles type 0 : grammaire non-contrainte

Introduction

Grammaires formelles

Définitions :

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles

▶ V : Vocabulaire

- ▶ V : Vocabulaire
- V_T : Vocabulaire terminal

▶ V : Vocabulaire

▶ V_T : Vocabulaire terminal

V_N : Vocabulaire non-terminlal

- ▶ V : Vocabulaire
- \triangleright V_T : Vocabulaire terminal
- ► V_N : Vocabulaire non-terminlal
- ▶ P : Axiome (élément de V_N)

- ▶ V : Vocabulaire
- ▶ V_T : Vocabulaire terminal
- ► V_N : Vocabulaire non-terminlal
- P : Axiome (élément de V_N)
- R : ensemble de règles de récritures de la forme : $\alpha \to \beta$ avec
 - \bullet α , $\beta \in \mathsf{V}^*$
 - $ightharpoonup \alpha
 eq \emptyset$

- ▶ V : Vocabulaire
- $\lor V_T$: Vocabulaire terminal
- ► V_N : Vocabulaire non-terminlal
- P : Axiome (élément de V_N)
- ▶ R : ensemble de règles de récritures de la forme : $\alpha \to \beta$ avec
 - \bullet α , $\beta \in V^*$
 - $\qquad \qquad \alpha \neq \emptyset$

Définition

 $G = (V_N, V_T, R, P)$: grammaire formelle

Dérivation

Définition

Une chaîne u_1 se réécrit en une chaîne u_2 $(u_1 \Rightarrow u_2)$ si et seulement si il existe des chaînes de symboles v_1 , v_2 , α , β tels que :

- 1. $u_1 = v_1 \alpha v_2$ $u_2 = v_1 \beta v_2$
- 2. $\alpha = \beta$ ou $(\alpha \rightarrow \beta) \in R$

Dérivation

Définition

Une chaîne u_1 se réécrit en une chaîne u_2 $(u_1 \Rightarrow u_2)$ si et seulement si il existe des chaînes de symboles v_1 , v_2 , α , β tels que :

- 1. $u_1 = v_1 \alpha v_2$ $u_2 = v_1 \beta v_2$
- 2. $\alpha = \beta$ ou $(\alpha \rightarrow \beta) \in R$

Définition

Une chaîne u_1 se dérive en une chaîne u_2 ($u_1 \Rightarrow^* u_2$) si une succession de réécritures permet d'obtenir u_2 à partir de u_1 .

Dérivation

Définition

Une chaîne u_1 se réécrit en une chaîne u_2 $(u_1 \Rightarrow u_2)$ si et seulement si il existe des chaînes de symboles v_1 , v_2 , α , β tels que :

- 1. $u_1 = v_1 \alpha v_2$ $u_2 = v_1 \beta v_2$
- 2. $\alpha = \beta$ ou $(\alpha \rightarrow \beta) \in R$

Définition

Une chaîne u_1 se dérive en une chaîne u_2 ($u_1 \Rightarrow^* u_2$) si une succession de réécritures permet d'obtenir u_2 à partir de u_1 .

Définition

Une dérivation est une succession de réécritures.

Langage

Définition

On appelle langage engendré par G l'ensemble de toutes les suites de symboles qui dérivent de l'axiome de G :

$$L(G)=\{x/x\in V^* \text{ et } P\Rightarrow^* x\}$$

Langage

Définition

On appelle langage engendré par G l'ensemble de toutes les suites de symboles qui dérivent de l'axiome de G :

$$L(G)=\{x/x\in V^* \text{ et } P\Rightarrow^* x\}$$

Définition

On appelle langage sur V_T l'ensemble (potentiellement infini) des chaînes de longueurs finies formées avec des éléments du vocabulaire terminal V_T .

Décidabilité

Définition

Un langage est décidable si pour toute phrase on peut savoir au bout d'un temps fini si elle appartient ou nom au langage.

Introduction

Grammaires formelles

Définitions

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles type 0 : grammaire non-contrainte

Grammaires de type 4

Dans une grammaire de type 4, les parties droites de toutes les règles sont des terminaux. Les éléments de R ont donc la forme :

$$X \to \alpha \text{ avec } X \in V_N$$
 $\alpha \in V_T^*$

Grammaires de type 4

Dans une grammaire de type 4, les parties droites de toutes les règles sont des terminaux. Les éléments de R ont donc la forme :

$$X \to \alpha \text{ avec } X \in V_N$$

 $\alpha \in V_T^*$

Une telle grammaire ne fait qu'énumérer les phrases de son langage sur V_T .

type 3 : grammaires rationnelles

Définition

Dans une grammaire régulière à gauche, les règles ont l'une des formes suivantes :

$$\left\{ egin{array}{ll} X &
ightarrow & Y & a \ X &
ightarrow & a \end{array}
ight\} \ \ {\it avec} \ \left\{ \left\{ egin{array}{ll} X,Y \in V_N \ a \in V_T \end{array}
ight. \end{array}
ight.$$

type 3 : grammaires rationnelles

Définition

Dans une grammaire régulière à gauche, les règles ont l'une des formes suivantes :

$$\left\{ egin{array}{ll} X &
ightarrow & Y & a \ X &
ightarrow & a \end{array}
ight\} \ \ {\it avec} \ \left\{ \left\{ egin{array}{ll} X,Y \in V_N \ a \in V_T \end{array}
ight.$$

Définition

Dans une grammaire régulière à droite, les règles ont l'une des formes suivantes :

$$\left. egin{array}{ll} X &
ightarrow & a & Y \ X &
ightarrow & a \end{array}
ight\} \ \ avec \ \left\{ egin{array}{ll} X,Y \in V_N \ a \in V_T \end{array}
ight.$$

Exemple de grammaire régulière à droite

$$P \rightarrow a P \qquad P \rightarrow B \\ B \rightarrow b \qquad B \rightarrow b B$$

Exemple de grammaire régulière à droite

Cette grammaire engendre les chaînes $a^n b^m$.

ab aab abb aaabbbbbb

...

▶ la représentation compacte des lexiques

- ▶ la représentation compacte des lexiques
- la construction de correcteurs orthographiques ou de lexiques robustes aux erreurs

- ▶ la représentation compacte des lexiques
- la construction de correcteurs orthographiques ou de lexiques robustes aux erreurs
- des grammaires locales : mots-composés, séquences acceptables de chiffres (nombres,dates)

- ▶ la représentation compacte des lexiques
- la construction de correcteurs orthographiques ou de lexiques robustes aux erreurs
- des grammaires locales : mots-composés, séquences acceptables de chiffres (nombres,dates)
- des grammaires pour des domaines très restreints (annonces de vols dans les aéroports)

Les grammaires de type 3 ne peuvent traiter :

▶ les chaînes a^nb^n de type $a_1 \dots a_nb_1 \dots b_n$ ("respectivement")

Les grammaires de type 3 ne peuvent traiter :

- ▶ les chaînes a^nb^n de type $a_1 \dots a_nb_1 \dots b_n$ ("respectivement")
- les chaînes $a^n b^n$ de type $a_1 \dots a_n b_n \dots b_1$ (expressions parenthésées, structures enchâssées) :

En anglais:

The dog the stick the fire burned beat bit the cat

En français:

Le chat que le voisin que le maire que le préfet qui a été condamné a félicité a attrapé est blanc.

Les grammaires de type 3 ne peuvent traiter :

- ▶ les chaînes $a^n b^n$ de type $a_1 \dots a_n b_1 \dots b_n$ ("respectivement")
- les chaînes a^nb^n de type $a_1 \dots a_nb_n \dots b_1$ (expressions parenthésées, structures enchâssées) :
- les chaînes abac

```
soit ... soit ...
```

Les grammaires de type 3 ne peuvent traiter :

- ▶ les chaînes $a^n b^n$ de type $a_1 \dots a_n b_1 \dots b_n$ ("respectivement")
- les chaînes a^nb^n de type $a_1 \dots a_nb_n \dots b_1$ (expressions parenthésées, structures enchâssées) :
- les chaînes abac
- le rejet en fin de phrase des prépositions (en anglais) ou des particules séparables (en allemand) :

The girl that I do not want to be caught with.

Les grammaires de type 3 ne peuvent traiter :

- ▶ les chaînes $a^n b^n$ de type $a_1 \dots a_n b_1 \dots b_n$ ("respectivement")
- ▶ les chaînes $a^n b^n$ de type $a_1 \dots a_n b_n \dots b_1$ (expressions parenthésées, structures enchâssées) :
- ▶ les chaînes abac
- ▶ le rejet en fin de phrase des prépositions (en anglais) ou des particules séparables (en allemand) :
- Les dépendances à longue distance (interrogatives, clivées...)

 Jean veut savoir quelle fille Marie croit que Paul a
 vue.

type 2 : grammaires hors-contexte

Définition

Une grammaire de type 2, dite hors-contexte ou algébrique, est une grammaire de réécriture dont les parties gauches des règles contiennent un unique non-terminal :

$$X o \alpha$$
 avec $\left\{ egin{array}{l} X \in V_N \ \alpha \in V^* \end{array}
ight.$

Exemple de grammaire hors-contexte

$$\begin{array}{ccc} P & \rightarrow & a \ P \ b \\ P & \rightarrow & a \ b \\ P & \rightarrow & \end{array}$$

Exemple de grammaire hors-contexte

$$\begin{array}{ccc} P & \rightarrow & a P b \\ P & \rightarrow & a b \\ P & \rightarrow & \end{array}$$

Cette grammaire engendre les chaînes $a^n b^n$.

```
""
"ab"
"aabb"
"aaabbb"
```

Utilité en TAL

Les grammaires hors-contexte sont adaptées pour :

les chaînes a^nb^n de type $a_1 \dots a_nb_n \dots b_1$ (expressions parenthésées, structures enchâssées)

$$P \rightarrow SN SV$$

SN $\rightarrow SN (P)$ peut analyser :

The dog the stick the fire burned beat bit the cat

Utilité en TAL

Les grammaires hors-contexte sont adaptées pour :

- les chaînes a^nb^n de type $a_1 \dots a_nb_n \dots b_1$ (expressions parenthésées, structures enchâssées)
- les chaînes abac

soit ... soit ...
$$(X \rightarrow soit \ Y \ soit \ Y)$$

ni ... ni ... $(X \rightarrow ni \ Y \ ni \ Y)$

 Les grammaires hors-contexte traitent avec difficulté le rejet en fin de phrase des prépositions (en anglais) ou des particules séparables (en allemand).

Solution : dupliquer les règles pour chaque préposition ou particule

- Les grammaires hors-contexte traitent avec difficulté le rejet
- ► Elles ne peuvent traiter les dépendances à longue distance (interrogatives, clivées...), le problème étant par exemple de contraindre un accord selon un syntagme qui sort du contexte de cet accord :

Jean veut savoir quelle fille Marie croit que Paul a vue.

- Les grammaires hors-contexte traitent avec difficulté le rejet
- ► Elles ne peuvent traiter les dépendances à longue distance (interrogatives, clivées. . .)
- ▶ Ni les rares langues qui ont des structures de type $a^n b^m c^n d^m$

- Les grammaires hors-contexte traitent avec difficulté le rejet
- ► Elles ne peuvent traiter les dépendances à longue distance (interrogatives, clivées. . .)
- ▶ Ni les rares langues qui ont des structures de type $a^n b^m c^n d^m$
- Ni les chaînes aⁿbⁿ de type a₁ . . . a_nb₁ . . . b_n ("respectivement") Henri et Sophie sont repectivement indifférent et séduite par le film.

- Les grammaires hors-contexte traitent avec difficulté le rejet
- ► Elles ne peuvent traiter les dépendances à longue distance (interrogatives, clivées. . .)
- ▶ Ni les rares langues qui ont des structures de type $a^n b^m c^n d^m$
- ▶ Ni les chaînes $a^n b^n$ de type $a_1 \dots a_n b_1 \dots b_n$ ("respectivement")

Ces arguments ne sont pas vraiment décisifs pour mettre de côté ces grammaires pour le TAL, car en pratique, les n et m ne sont jamais grands.

type 1 : grammaires contextuelles

Définition

Les grammaires de type 1, dites grammaires contextuelles se définissent par des règles du type :

$$\alpha \to \beta \text{ avec } \left\{ \begin{array}{l} \alpha \in V^+ \\ \beta \in V^* \\ |\beta| \ge |\alpha| \end{array} \right.$$

(La partie gauche est non vide, et la partie droite doit contenir plus de symboles que la partie gauche)

La grammaire suivante engendre le langage $a^n b^n c^n$

Ces grammaires sont décidables

le nombre de symboles ne peut que croître dans une dérivation.

Ces grammaires sont décidables

le nombre de symboles ne peut que croître dans une dérivation.

 \rightarrow production des phrases de longueur n en temps fini

► Ces grammaires sont décidables

le nombre de symboles ne peut que croître dans une dérivation.

- \rightarrow production des phrases de longueur n en temps fini
- \rightarrow comparaison de la phrase à analyser avec toutes les productions possibles de longueur n

- Ces grammaires sont décidables
- Les grammaires sur lesquelles portent la majorité des recherches en TAL se situent entre le type 1 et le type 2.

Type 0 : grammaire non-contrainte

Définition

Les grammaires de type 0 se définissent par des règles du type :

$$\alpha
ightarrow \beta$$
 avec $\left\{ egin{array}{l} \alpha \in {\it V}^* \ \beta \in {\it V}^* \end{array}
ight.$

Type 0 : grammaire non-contrainte

Définition

Les grammaires de type 0 se définissent par des règles du type :

$$\alpha
ightarrow \beta$$
 avec $\left\{ egin{array}{l} \alpha \in {\it V}^* \ eta \in {\it V}^* \end{array}
ight.$

Remarque : Ces grammaires ne sont pas décidables.

Plan

Introduction

Grammaires formelles

Définitions :

Hiérarchie des grammaires formelles

type 4

type 3 : grammaires régulières = grammaires rationnelles

type 2 : grammaires hors-contexte = grammaires algébriques

type 1 : grammaires contextuelles

Forme Normale de Chomsky

Forme Normale de Chomsky (CNF)

Définition

Une grammaire hors-contexte est sous Forme Normale de Chomsky si ses règles ont l'une des deux formes :

$$\left\{ egin{array}{ll} X &
ightarrow & Y & Z \ X &
ightarrow & a \end{array}
ight\} \ \, {\it avec} \, \left\{ egin{array}{ll} X \in V_N \ Y \in V_N \ Z \in V_N \ a \in V_T \end{array}
ight.$$

Forme Normale de Chomsky (CNF)

Définition

Une grammaire hors-contexte est sous CNF étendue si ses règles peuvent également prendre les formes :

$$\left. \begin{array}{ccc} X & \rightarrow & Y & Z \\ X & \rightarrow & Y \\ X & \rightarrow & a \end{array} \right\} \ \ avec \ \left\{ \begin{array}{ccc} X \in V_N \\ Y \in V_N \\ Z \in V_N \\ a \in V_T \end{array} \right.$$

Mise sous forme normale

Pour toute grammaire hors-contexte, il existe une grammaire hors-contexte équivalente sous forme normale.

Mise sous forme normale

Pour toute grammaire hors-contexte, il existe une grammaire hors-contexte équivalente sous forme normale.

Définition

Deux grammaire sont dites équivalentes si elles peuvent produire les mêmes chaînes de symboles terminaux.

Mise sous forme normale

Pour toute grammaire hors-contexte, il existe une grammaire hors-contexte équivalente sous forme normale.

Définition

Deux grammaire sont dites équivalentes si elles peuvent produire les mêmes chaînes de symboles terminaux.

Grammaires de type 2: passage d'un arbre syntaxique à un arbre équivalent sous $\mathsf{CNF} = \mathsf{facile}$

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

- 1. Suppression des règles de type : $X \to \alpha \ t_i \ \beta$ (où t_i est un terminal et α et/ou β sont non vides)
 - 1.1 Créer un non-terminal T_i
 - 1.2 Ajouter la règle $T_i \rightarrow t_i$
 - 1.3 Remplacer la règle $X \to \alpha \ t_i \ \beta$ par $X \to \alpha \ T_i \ \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
 - 2.1 Pour chaque règle $Z \to \alpha X \beta$, ajouter une règle $Z \to \alpha Y \beta$.
 - 2.2 Supprimer $X \rightarrow Y$.
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$
 - 3.1 Créer un nouveau non-terminal X_i
 - 3.2 Ajouter la règle $X_i \rightarrow Z \alpha$
 - 3.3 Remplacer la règle $X \to Y Z \alpha$ par $X \to Y X_i$

3 temps:

- 1. Suppression des règles de type : $X \rightarrow \alpha t_i \beta$
- 2. Suppression des règles de type : $X \rightarrow Y$
- 3. Suppression des règles de type : $X \rightarrow Y Z \alpha$

augmente considérablement le nombre de non-terminaux et de règles.

Forme initiale					Forme normale de Chomsky
	R ₁ :	Р	\rightarrow	SN SV	
	R_2 :	SN	\rightarrow	Det N	
	R_3 :	SN	\rightarrow	Det N SP	
	R_4 :	SP	\rightarrow	Prep SN	
	R_5 :	SV	\rightarrow	V	
	R_6 :	SV	\rightarrow	V SN	
	R ₇ :	SV	\rightarrow	V SN SP	
	L ₅ :	V	\rightarrow	mange	

Forme	e initi	ale		Forme	norma	ale de	Chomsky	
R ₁ :	Р	\rightarrow	SN SV	R ₁ :	Р	\rightarrow	SN SV	
R_2 :	SN	\rightarrow	Det N	R ₂ :	SN	\rightarrow	Det N	
R_3 :	SN	\rightarrow	Det N SP					
R_4 :	SP	\rightarrow	Prep SN					
R_5 :	SV	\rightarrow	V					
R_6 :	SV	\rightarrow	V SN					
R ₇ :	SV	\rightarrow	V SN SP					
L ₅ :	V	\rightarrow	mange					

Forme	e initi	ale		Forme	norma	ale de	Chomsky	
R ₁ :	Р	\rightarrow	SN SV	R ₁ :	Р	\rightarrow	SN SV	
R_2 :	SN	\rightarrow	Det N	R ₂ :	SN	\rightarrow	Det N	
R ₃ :	SN	\rightarrow	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP	
R_4 :	SP	\rightarrow	Prep SN					
R_5 :	SV	\rightarrow	V					
R_6 :	SV	\rightarrow	V SN					
R ₇ :	SV	\rightarrow	V SN SP					
L_5 :	V	\rightarrow	mange					
∟ე .	٧	,	mange					

Form	e initi	ale		Forme	norma	ale de	Chomsky
R ₁ :	Р	\rightarrow	SN SV	R ₁ :	Р	\rightarrow	SN SV
R_2 :	SN	\rightarrow	Det N	R ₂ :	SN	\rightarrow	Det N
R ₃ :	SN	\rightarrow	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
				R _{3.2} :	SN	\rightarrow	Det X ₁
R_4 :	SP	\rightarrow	Prep SN				
R_5 :	SV	\rightarrow	V				
R_6 :	SV	\rightarrow	V SN				
R ₇ :	SV	\rightarrow	V SN SP				
L_5 :	V	\rightarrow	mange				

Forme initiale		Forme	norma	ale de	Chomsky
$R_1: P \rightarrow$	SN SV	R ₁ :	Р	\rightarrow	SN SV
$R_2: SN \rightarrow $	Det N	R ₂ :	SN	\rightarrow	Det N
$R_3: SN \rightarrow $	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
		R _{3.2} :	SN	\rightarrow	Det X ₁
$R_4: SP \rightarrow$	Prep SN	R ₄ :	SP	\rightarrow	Prep SN
$R_5: SV \rightarrow $	V				
$R_6: SV \rightarrow $	V SN				
$R_7: SV \rightarrow $	V SN SP				
$L_5: \qquad V \rightarrow $	mange				

Forme initiale		Forme	norma	ale de	Chomsky
$R_1: P \rightarrow$	SN SV	R ₁ :	Р	\rightarrow	SN SV
$R_2: SN \rightarrow $	Det N	R ₂ :	SN	\rightarrow	Det N
$R_3: SN \rightarrow $	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
		R _{3.2} :	SN	\rightarrow	Det X ₁
$R_4: SP \rightarrow $	Prep SN	R ₄ :	SP	\rightarrow	Prep SN
$R_5: SV \rightarrow$	V	R _{1.2} :	Р	\rightarrow	SN V
$R_6: SV \rightarrow $	V SN				
$R_7: SV \rightarrow $	V SN SP				
$L_5: \qquad V \rightarrow $	mange				

Forme		Forme	norma	ale de	Chomsky		
R ₁ :	Р	\rightarrow	SN SV	R ₁ :	Р	\rightarrow	SN SV
R_2 :	SN	\rightarrow	Det N	R ₂ :	SN	\rightarrow	Det N
R ₃ :	SN	\rightarrow	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
				R _{3.2} :	SN	\rightarrow	Det X ₁
R_4 :	SP	\rightarrow	Prep SN	R ₄ :	SP	\rightarrow	Prep SN
R ₅ :	SV	\rightarrow	V	R _{1.2} :	Р	\rightarrow	SN V
R ₆ :	SV	\rightarrow	V SN	R ₆ :	SV	\rightarrow	V SN
R ₇ :	SV	\rightarrow	V SN SP				
L ₅ :	V	\rightarrow	mange				

Forme initiale		Forme normale de Chomsky				
$R_1: P \rightarrow$	SN SV	R ₁ :	Р	\rightarrow	SN SV	
$R_2: SN \rightarrow $	Det N	R ₂ :	SN	\rightarrow	Det N	
$R_3: SN \rightarrow $	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP	
		R _{3.2} :	SN	\rightarrow	Det X ₁	
$R_4: SP \rightarrow $	Prep SN	R ₄ :	SP	\rightarrow	Prep SN	
$R_5: SV \rightarrow $	V	R _{1.2} :	Ρ	\rightarrow	SN V	
$R_6: SV \rightarrow $	V SN	R ₆ :	SV	\rightarrow	V SN	
$R_7: SV \to$	V SN SP	R _{7.2} :	X_2	\rightarrow	SN SP	
$L_5: \qquad V \rightarrow $	mange					

Forme initiale	Forme	norma	ale de	Chomsky	
$R_1: P \rightarrow$	SN SV	R ₁ :	Р	\rightarrow	SN SV
$R_2: SN \rightarrow $	Det N	R ₂ :	SN	\rightarrow	Det N
$R_3: SN \rightarrow $	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
		R _{3.2} :	SN	\rightarrow	Det X_1
$R_4: SP \rightarrow $	Prep SN	R ₄ :	SP	\rightarrow	Prep SN
$R_{5}: SV \rightarrow $	V	R _{1.2} :	Р	\rightarrow	SN V
$R_6: SV \rightarrow $	V SN	R ₆ :	SV	\rightarrow	V SN
$R_7: SV \to$	V SN SP	R _{7.2} :	X_2	\rightarrow	SN SP
		R _{7.1} :	SV	\rightarrow	$V X_2$
$L_5: \qquad V \rightarrow $	mange				

Form	e initi	ale		Forme	norma	ale de	Chomsky
R ₁ :	Р	\rightarrow	SN SV	R ₁ :	Р	\rightarrow	SN SV
R_2 :	SN	\rightarrow	Det N	R ₂ :	SN	\rightarrow	Det N
R_3 :	SN	\rightarrow	Det N SP	R _{3.1} :	X_1	\rightarrow	N SP
				R _{3.2} :	SN	\rightarrow	Det X ₁
R_4 :	SP	\rightarrow	Prep SN	R ₄ :	SP	\rightarrow	Prep SN
R_5 :	SV	\rightarrow	V	R _{1.2} :	Р	\rightarrow	SN V
R_6 :	SV	\rightarrow	V SN	R ₆ :	SV	\rightarrow	V SN
R_7 :	SV	\rightarrow	V SN SP	R _{7.2} :	X_2	\rightarrow	SN SP
				R _{7.1} :	SV	\rightarrow	$V X_2$
L ₅ :	V	\rightarrow	mange	L ₅ :	V	\rightarrow	mange