TRASCO® ES: "0" backlash coupling

TRASCO® ES is our zero backlash coupling designed to compensate for misalignment and vibration dampening for

indexing applications. The compact design of TRASCO® ES makes it the right choice for all precise motion applications.

Description

The TRASCO® ES consists of two hubs, which are either made of high-strength aluminum (up to the 38/45 size) or steel (from size 42) that are connected with an elastic element.

The precise dimensional characteristics of TRASCO® ES are obtained through our accurate machining process.

The special compound polyurethane elastic element, developed through extensive research and laboratory testing, is made through a press-forming process which guarantees high dimensional accuracy.

The element is available in 4 different hardnesses: 80 Sh. A (blue), 92 Sh. A (yellow), 98 Sh. A (red), 64 Sh. D (green). Coupling performance depends on the type of element selected (see "Technical characteristics").

Other element hardnesses are available upon request to meet special operating conditions, such as high temperatures and/or high torques, and for providing a high degree of vibration dampening capability. Please contact our Engineering Office for help in selecting the appropriate element hardness.

Operation

When the polyurethane element is installed in its special seats between the hubs, it becomes precompressed, thereby providing the zero backlash feature which characterizes the transmission performance of this coupling.

With zero backlash, the coupling remains torsionally rigid within the range of the precompression load, but does permit the absorption of radial, angular, and axial misalignments as well as undesired vibrations.

The significantly wide precompressed area of the flexible element keeps the contact pressure against the elastic element low. Therefore, the element teeth can be overloaded many times without undergoing any wear or taking a permanent set.

Advantages

The TRASCO® ES coupling provides the following advantages:

- "zero-backlash" motion transmission
- dampening (up to 80%) of vibrations from motor shaft
- · low heat and electrical conductivity
- · easy and fast installation
- perfect balance (A & AP type)
- low moment of inertia (due to compact design and types of materials used).

Main applications

TRASCO® ES couplings are most frequently used with:

- servomotors
- robotics
- sliding tables
- · spindle controls for drilling and grinding mandrels
- · ball-bearing screws

Operating Temperature Range

The operating temperature range for the TRASCO® ES depends on the type of element. For the **92 Sh. A (yellow), the range is between -40 and +90 °C, and for the 98 Sh.A (red), the range is between -30 and +90 °C.** Peak temperatures as high as 120 °C can be tolerated for brief instances.

High operating temperatures can cause the elastic element to lose a considerable amount of elasticity, thus substantially lowering the torque handling capacity.

Therefore, when selecting a coupling, the operating temperature must be carefully considered (see "Technical characteristics").

ATEX compliance (Ex)

It is possible to ask for specific certification for use in hazardous area according to EC standard **94/9/EC**. TRASCO® ES couplings are available with specific mounting/operating

instruction manual and conformity. For information, please contact our technical office.

Technical characteristics

The following technical characteristics apply to all types of TRASCO® ES couplings.

When using the M, A and AP versions, check the torque values given in the table against the allowable hub transmission values for the respective versions given in the pertinent sections.

TRASCO® ES couplings can withstand axial, radial, and angular misalignment.

Even after operating for an extended period with a misalignment, there is still zero backlash because the elastic element is only stressed by pressure loads.

When an application causes a high degree of misalignment, a double flexing type coupling can be provided which avoids the formation of reaction forces.

Please contact our Engineering Office.

Size	Shore	Tĸn [Nm]	Tĸ _{max} [Nm]	C⊤ stat. [Nm/rad]	C⊤ din. [Nm/rad]	Cr [N/mm]	¤ Ka [mm]	□ Kr [mm]	□Kw [°]
	80 Sh.A (blue)	0,7	1,4	8	26	114	0,6	0,15	1,0
7	92 Sh.A (yellow)	1,2	2,4	14	43	219	0,6	0,10	1,0
	98 Sh.A (red)	2,0	4	22	69	421	0,6	0,10	1,0
	80 Sh.A (blue)	1,8	3,6	16	52	125	0,8	0,20	1,0
9	92 Sh.A (yellow)	3,0	6	29	95	262	0,8	0,15	1,0
	98 Sh.A (red)	5,0	10	55	155	518	0,8	0,10	1,0
	92 Sh.A (yellow)	7,5	15	114,6	344	336	1,0	0,15	1,0
14	98 Sh.A (red)	12,5	25	171,9	513	604	1,0	0,09	0,9
	64 Sh.D (green)	16	32	234,2	702	856	1,0	0,06	0,8
	80 Sh.A (blue)	5	10	370	1120	740	1,2	0,15	1,1
19/24	92 Sh.A (yellow)	10	20	820	1920	1260	1,2	0,10	1,0
19/24	98 Sh.A (red)	17	34	990	2350	2210	1,2	0,06	0,9
	64 Sh.D (green)	21	42	1470	4470	2970	1,2	0,04	0,8
	80 Sh.A (blue)	17	34	860	1390	840	1,4	0,18	1,1
04/00	92 Sh.A (yellow)	35	70	2300	5130	1900	1,4	0,14	1,0
24/28	98 Sh.A (red)	60	120	3700	8130	2940	1,4	0,10	0,9
	64 Sh.D (green)	75	150	4500	11500	4200	1,4	0,07	0,8
	80 Sh.A (blue)	46	92	1370	2350	990	1,5	0,20	1,3
28/38	92 Sh.A (yellow)	95	190	3800	7270	2100	1,5	0,15	1,0
20/30	98 Sh.A (red)	160	320	4200	10800	3680	1,5	0,11	0,9
	64 Sh.D (green)	200	400	7350	18400	4900	1,5	0,08	0,8
	92 Sh.A (yellow)	190	380	5600	12000	2900	1,8	0,17	1,0
38/45	98 Sh.A (red)	325	650	8140	21850	5040	1,8	0,12	0,9
	64 Sh.D (green)	405	810	9900	33500	6160	1,8	0,09	0,8
	92 Sh.A (yellow)	265	530	9800	20500	4100	2,0	0,19	1,0
42	98 Sh.A (red)	450	900	15180	34200	5940	2,0	0,14	0,9
	64 Sh.D (green)	560	1120	16500	71400	7590	2,0	0,10	0,8
	92 Sh.A (yellow)	310	620	12000	22800	4500	2,1	0,23	1,0
48	98 Sh.A (red)	525	1050	16600	49400	6820	2,1	0,16	0,9
	64 Sh.D (green)	655	1310	31350	102800	9000	2,1	0,11	0,8
	92 Sh.A (yellow)	410	820	13000	23100	3200	2,2	0,24	1,0
55	98 Sh.A (red)	685	1370	24000	63400	7100	2,2	0,17	0,9
	64 Sh.D (green)	825	1650	42160	111700	9910	2,2	0,12	0,8
	92 Sh.A (yellow)	625	1250	32560	43600	3800	2,6	0,25	1,0
65	98 Sh.A (red)	950	1900	47500	71525	6400	2,6	0,18	0,9
	64 Sh.D (green)	1175	2350	117950	189000	8800	2,6	0,13	0,8
75	98 Sh.A (red)	1920	3840	79150	150450	8650	3,0	0,21	0,9
10	64 Sh.D (green)	2400	4800	182300	316300	11900	3,0	0,15	0,8

All the technical data in the catalogue are valid for rotation speeds of 1500 rpm and a working temperature of 30 °C. For linear speed over 30 m/s, dynamic balancing is recommended.

Misalignments

T_{KN}	Coupling nominal torque	Nm
T_{Kmax}	Coupling maximum torque	Nm
C_T	Torsional rigidity	Nm/rad
C_r	Radial stiffness	N/mm
ΔK_a	Maximum axial misalignment	mm
ΔK_r	Maximum radial misalignment	mm
$\Delta K_{\rm w}$	Maximum angular misalignment	0

Installation and maintenance

- 1. Carefully clean the shafts
- Insert the hubs onto shafts being connected. With the M, A and AP versions, be sure to tighten the screws with the Ms torque value given in the catalogue. Be careful with the A and AP versions to tighten the screws uniformally and crosswise to the recommended torque
- 3. Position the element in one of the two coupling hubs
- 4. Fit together the two coupling halves, making sure the "s" dimension is properly observed. This must be done to insure proper elastic element function and long service life, as well as to assure the coupling is properly insulated electrically

With the A and AP versions, mounting the hubs can be facilitated by lubricating the shaft contact surfaces with an oil, but **do not use a molybdenum bisulphide based oils.**

When mounting the TRASCO® ES coupling an axial thrust is generated which disappears when the mounting has been com-

pleted to avoid putting axial loads on the bearings.

Lubrication of the elastic element will reduce the amount of axial force required during installation

Note: All rotating parts must be guarded.

Selection in according to DIN 740.2

The coupling must be chosen so the applied working loads do not exceed the allowable values whatever the working conditions are.

1. Check the load with respect to the nominal torque

The nominal coupling torque must be greater than or equal to the nominal torque of the drive machine for all working temperatures.

$$T_{KN} \geq T_K \cdot S_\theta \cdot S_D$$

2. Check the load with respect to the torque peak values

The maximum coupling torque must be greater than or equal to the torque peaks that occur during operation for all working temperatures.

$$\mathsf{T}_{\mathsf{K}\mathsf{max}} \geq \mathsf{T}_{\mathsf{S}} \cdot \mathsf{S}_{\mathsf{Z}} \cdot \mathsf{S}_{\mathsf{\theta}} + \mathsf{T}_{\mathsf{K}} \cdot \mathsf{S}_{\mathsf{\theta}} \cdot \mathsf{S}_{\mathsf{D}}$$

Motor-side peaks: $T_S = T_{AS} \cdot \frac{1}{m+1} \cdot S_A + T_L^{(1)}$

Driven-side peaks:
$$T_S = T_{LS} \cdot \frac{m}{m+1} \cdot S_L + T_L^{(1)}$$

3. Check the load with respect to periodic torque inversions

By means of resonance

When the resonance frequency is passed rapidly below the operational interval a few torque peaks will be seen.

The generated alternating loads must be compared with the maximum torque the coupling can support.

$$T_{\mathsf{K}\,\mathsf{max}} \geq T_{\mathsf{S}} \cdot S_{\mathsf{Z}} \cdot S_{\theta} + T_{\mathsf{K}} \cdot S_{\theta} \cdot S_{\mathsf{D}}$$

Motor-side peaks: $T_S = T_{AI} \cdot \frac{1}{m+1} \cdot V_R + T_L^{(1)}$

Driven-side peaks: $T_S = T_{LI} \cdot \frac{m}{m+1} \cdot V_R + T_L^{(1)}$

4. Check the load with respect to nonperiodic torque inversions

To check the load with respect to nonperiodic torque inversions, the following equations must be satisfied:

$$0,25 \ T_{KN} = T_{KW} \ge T_{W} \cdot S_{\theta} \cdot S_{f} \cdot S_{D}$$

Motor-side peaks: $T_W = T_{AI} \cdot \frac{1}{m+1} \cdot V_{fi}$

Driven-side peaks: $T_W = T_{LI} \cdot \frac{m}{m+1} \cdot V_{fi}$

(1) T_L to be added if a torque peak occurs during acceleration.

Calculation coefficients

S₀ = Temperature factor

T [°C]	-30/+30	+40	+60	+80
S _a	1	1,2	1,4	1,8

S₀ = Starting frequency factor

S/h	0-100	101-200	201-400	401-800	801-1.600
S _Z	1	1,2	1,4	1,6	1,8

S_f = Frequency factor

f in Hz	1 0	>10
Sf	1	√f/10

S_D = Torsional rigidity factor

Tooling machines	Positioning system	Speed and angular acceleration indicator		
2-5	3-8	10 🛮		

$S_L \circ S_A = Shock factor$

Type of impact	SL 0 Sa
Light	1,5
Medium	1,8
Strong	2,2

$$V_{fi} = \text{Torque-Amplification factor} = \sqrt{\frac{1 + \left(\frac{\Psi}{2\pi}\right)^2}{\left(1 - \frac{n^2}{n^2}\right)^2 + \frac{1}{n^2}}}$$

$$n_{R}$$
 = Resonance frequency = $\frac{30}{\pi} \sqrt{C_{Tdin} \frac{J_{A} + J_{L}}{J_{A} \cdot J_{1}}} \left[min^{-1} \right]$

$$m = Mass factor = \frac{J_A}{J_I}$$

Example of selection

Application

Servomotor driving a recirculating ball screw on a machine tool

Nominal Torque $T_K = 10.0 \text{ Nm}$ Shock Type Light Peak Torque $T_{AS} = 22.0 \text{ Nm}$ Table Moment of Inertia $J_3 = 10.0 \text{ Nm}$

Temperature $T = +40^{\circ}C$

Selection

24/28 "A" type ES coupling with "Red" elastic element (98 Sh. A)

Standard coupling torque: $T_{KN} = 60 \text{ [Nm]}$ Maximum torque: $T_{Kmax} = 120 \text{ [Nm]}$

Hub Moment of Inertia: $J_2 = 0,000135 \text{ [kg} \cdot \text{m}^2\text{]}$

Couple Transmitted by taper locking ring: $Tcal = \begin{cases} 92 \text{ [Nm] bore 20 [mm]} \\ 113 \text{ [Nm] bore 24 [mm]} \end{cases}$

Load check

$$T_{KN} = T_{K} \cdot S_{\theta} \cdot S_{D} = 10 \cdot 1.2 \cdot 4 = 48.0 \text{ [Nm]}$$

$$T_{KN} = 48,0 \text{ Nm} < T_{cal}$$

$$m = \frac{J_A}{J_L}$$
 $J_A = J_1 + J_2$ $J_L = J_3 + J_2$ $m = 1.5$

$$T_S = T_{AS} \cdot \frac{1}{m+1} \cdot S_A = 22,0 \cdot \frac{1}{1,5+1} \cdot 1,5 = 13,2 \text{ [Nm]}$$

$$T_{K_{max}} = T_{S} \cdot S_{Z} \cdot S_{\theta} + T_{K} \cdot S_{\theta} \cdot S_{D} = 13,2 \cdot 1,6 \cdot 1,2 + 12,5 \cdot 1,2 \cdot 4 = 85,34 \text{ [Nm]}$$

$$T_{Kmax} = 85,34 \text{ Nm} < T_{cal}$$

T_{KN}	Coupling nominal torque	Nm
T_K	Motor-side nominal torque	Nm
T_{Kmax}	Coupling maximum torque	Nm
T_S	Motor peak torque	Nm
T_{AS}/T_{AI}	Driver-side peak torque	Nm
T_L	Acceleration delivered torque	Nm
T_{LS}/T_{LI}	Driven-side peak torque	Nm
V_R	Resonance factor	
V_{fi}	Torque amplification factor	
m	Mass factor	
J_A	Motor-side inertia	kgm ²
J_{L}	Driven-side inertia	kgm ²
Ψ	Dampening factor	

ıd

TRASCO® ES executions

FINISHED BORE HUBS EXECUTION

GES F execution

From size 7 to 9. Hub execution with finish bores, and two setscrew.

GES F C execution

From size 14. Hub execution with finish bore, keyway and setscrew. Not suitable for backlash free drives with high reversing frequency or high startup frequency.

CLAMP HUBS EXECUTION

GES M execution

Clamping hub execution with single slot without keyway. Up to size 19/24. Backlash free hub design. Transmissible torque depends on bore diameter.

GES M execution

Clamping hub execution with double slot without keyway. From size 24/28. Backlash free hub design. Transmissible torque depends on bore diameter.

GES M...C execution

Camping hub execution with single slot and keyway. Up to size 19/24. The clamping pressure eliminates backlash in torque reversals.

GES M...C execution

Camping hub execution with double slot and keyway. From size 24/28. The camping pressure eliminates backlash in torque reversals.

GES 2M execution

Split camping hub execution for radial assembly of the coupling Torque depends on bore diameter. Execution "C" with keyway, as option can be delivered for a positive torque transmission with zero backlash. These executions are suitable for double cardanic applications.

SHRINK DISC EXECUTION

GES A execution

Execution with locking ring. This execution is suitable for high speed and high torque. Screws mounting from spider side. Transmissible torque depends on bore diameter.

GES AP execution

Execution with locking ring with high machining accuracy: design suitable for application on spindles according to DIN 69002.

Standard type

SIT coupling hubs are available from stock with either solid hub or with finished bores of standard shaft diameters.

The setscrews of our finished bore execution are positioned 120 degrees from each other with one positioned 180 degrees from

the keyway. Both the solid hub and bored hub coupling are generally available from stock for quick delivery.

Approved according to EC standard ATEX.

Fig. 1

Fig. 2

0:	Ę	F	H	Nmax						
Size	min [mm]	max [mm]	W [kg]	J [kgm²]	[min ⁻¹]					
ALUMINUM HUBS										
7	7 3 7 0,003 0,085 x 10 ⁻⁶									
9	4	9	0,009 0,49 x 10 ⁻⁶		28.000					
14	4	15	0,020	2,8 x 10 ⁻⁶	19.000					
19/24	6	24	0,066	20,4 x 10 ⁻⁶	14.000					
24/28	8	28	0,132	50,8 x 10 ⁻⁶	10.600					
28/38	10	38	0,253	200,3 x 10 ⁻⁶	8.500					
38/45	12	45	0,455 400,6 x 1		7.100					
		STEE	L HUBS							
42	14	55	2,000 2.246 x 10 ⁻⁶		6.000					
48	20	60	2,520 3.786 x 10 ⁻⁶		5.600					
55	25	70	4,100	9.986 x 10 ⁻⁶	5.000					
65	25	80	5,900 18.352 x 10 ⁻⁶		4.600					
75	30	95	6,900	27.464x 10 ⁻⁶	3.700					

A [mm]	G [mm]	L [mm]	l [mm]	M [mm]	N [mm]	S [mm]	P [mm]	С	Ms [Nm]	t [mm]	Fig.
	ALUMINUM HUBS										
14	-	22	7	8	6	1,0	6,0	МЗ	0,3	3,5	1
20	7,2	30	10	10	8	1,0	2,0	МЗ	0,3	5	1
30	11	35	11	13	10	1,5	2,0	M4	1,5	5	2
40	18,5	66	25	16	12	2,0	3,5	M5	2	10	2
55	27,5	78	30	18	14	2,0	4,0	M5	2	10	2
65	30	90	35	20	15	2,5	5,2	M6	4	15	2
80	38,5	114	45	24	18	3,0	5,6	M8	10	15	2
					STEEL	HUBS					
95	46	126	50	26	20	3,0	5,6	M8	10	20	2
105	51	140	56	28	21	3,5	6,0	M8	10	25	2
120	60	160	65	30	22	4,0	9,0	M10	17	20	2
135	68	185	75	35	26	4,5	8,3	M10	17	20	2
160	80	210	85	40	30	5,0	8,3	M10	17	25	2

Bore tolerance: H7 - JS9 (DIN 6885/1) keyway

Order form

Fig. 1

Fig. 2

M_S	Screw tightening torque	Nm
W	Weight	kg
J	Moment of inertia	kgm²
n_{max}	Maximum rpm	min ⁻¹

"M" execution with clamp hubs

This type of coupling permits quick, positive mounting, without any shaft-hub backlash.

With the keyless coupling type, the torque applied for tightening

down the screws (Ms) must be as given in the table.

The M coupling type is available with or without keyway.

Approved according to EC standard ATEX.

Fig. 1

Fig. 2

	F	F		Ms		Hub	Nmax
Size	min [mm]	max [mm]	f	[Nm]	W [kg]	J [kgm²]	[min ⁻¹]
			ALI	JMINU	M HUBS		
7	3	7	M2	0,35	0,003	0,085 x 10 ⁻⁶	40.000
9	4	9	M2,5	0,75	0,007	0,42 x 10 ⁻⁶	28.000
14	6	16	МЗ	1,4	0,018	2,6 x 10 ⁻⁶	19.000
19/24	10	20	M6	11	0,071	18,1 x 10 ⁻⁶	14.000
24/28	10	32	M6	11	0,156	74,9 x 10 ⁻⁶	10.600
28/38	14	35	M8	25	0,240	163,9 x 10 ⁻⁶	8.500
38/45	19	45	M8	25	0,440	465,5 x 10 ⁻⁶	7.100
			S	TEEL	HUBS		
42	25	50	M10	70	2,100	3.095 x 10 ⁻⁶	6.000
48	25	55	M12	120	2,900	5.160 x 10 ⁻⁶	5.600
55	35	70	M12	120	4,000	9.737 x 10 ⁻⁶	5.000
65	40	80	M14	190	5,800	17.974 x 10 ⁻⁶	4.600

Keyway position	A [mm]	G [mm]	L [mm]	l [mm]	M [mm]	N [mm]	S [mm]	P [mm]	t [mm]	E [mm]	Fig.
				ALU	MINU	M HUE	38				
-	14	-	22	7	8	6	1,0	6	4	15,0	1
-	20	7,2	30	10	10	8	1,0	2	5	23,4	1
180°	30	10,5	35	11	13	10	1,5	2	5,5	32,2	1
120°	40	18	66	25	16	12	2,0	3,5	12	45,7	1
90°	55	27	78	30	18	14	2,0	4	12	56,4	2
90°	65	30	90	35	20	15	2,5	5,2	13,5	72,6	2
90°	80	38	114	45	24	18	3,0	5,6	16	83,3	2
				S	TEEL	HUBS					
-	95	46	126	50	26	20	3,0	5,6	20	78,8	2
-	105	51	140	56	28	21	3,5	6	21	108,0	2
-	120	60	160	65	30	22	4,0	9	26	122,0	2
-	135	68	185	75	35	26	4,5	8,3	27,5	139,0	2

From size 7 to 19/24: single slot execution From size 24/28 to 65: double slot execution Bore tolerance: F7 - JS9 (DIN 6885/1) keyway

Hub	GESM 48	F50
GESM: TRASCO® ES hub		
Size		
F: bore diameter FC: bore diameter and keyway		

Fig. 1 Fig. 2

M_S	Screw tightening torque	Nm
W	Weight	kg
J	Coupling moment of inertia	kgm ²
n_{max}	Maximum rpm	min ⁻¹

Using hub execution ${\bf M}$ without keyway, the maximum transmissible torque is the minor between the clamp-hub transmissible

torque and the value stated in the section "Technical characteristics".

Size						Reco	omme	ndec	M c	oupli	ng Ty	ре Н	lub B	ore D	Dia. [r	nm] a	and T	ransr	nissi	ble To	orque	Nm] e], val	id fo	r shat	ft tole	eranc	es k6	6				
Size	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø 10	Ø 11	Ø 12	Ø 14	Ø 15	Ø 16	Ø 19	Ø 20	Ø 22	Ø 24	Ø 25	Ø 28	Ø 30	Ø 32	Ø 35	Ø 38	Ø 40	Ø 42	Ø 45	Ø 48	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
7	0,7	0,8	1	1,1																													
9	1,1	1,4	1,7	1,9	2,2	2,5																											
14			2,5	2,9	3,3	3,7	4,1	4,6	5	5,8	6,2	6,6																					
19/24							23	25	27	32	34	36	43	45																			
24/28							23	25	27	32	34	36	43	45	50	54	57	63															
28/38										58	62	66	79	83	91	100	104	116	124	133	145												
38/45													79	83	91	100	104	116	124	133	145	158	166	174	187								
42																	217	243	261	278	304	330	348	365	391	417	435						
48																	299	335	359	383	419	455	479	503	539	575	599	659					
55																					356	387	407	428	458	489	509	560	611	662	713		
65																							558	586	628	670	697	767	837	907	976	1046	1116

"A" type - Shrink disc execution

This type of coupling provides excellent kinetic uniformity. Furthermore, the absence of keys or set screws makes it a well-balanced coupling and greatly facilitates installation and removal. An exact radial/axial positioning is easy for those applications which require it. The absence of keyways also avoids

fretting corrosion and backlash between the shaft and the hub. This is the ideal type of coupling for applications requiring precision and/or high rotational speeds.

Approved according to EC standard ATEX.

	F	F		Screws	Ms	Н	ub	nmax
Size	min [mm]	max [mm]	f	locking elements	[Nm]	W [kg]	J [kgm²]	[min ⁻¹]
	ALU	MINUM	HUBS	S AND ST	EEL L	OCKING EI	EMENT	
14	6	14	МЗ	4	1,3	0,049	7 x 10 ⁻⁶	28.000
19/24	10	20	M4	6	2,9	0,120	30 x 10 ⁻⁶	21.000
24/28	15	28	M5	4	6,0	0,280	135 x 10 ⁻⁶	15.500
28/38	19	38	M5	8	6,0	0,450	315 x 10 ⁻⁶	13.200
38/45	20	45	M6	8	10,0	0,950	960 x 10 ⁻⁶	10.500
		STEE	L HUE	S AND L	OCKII	NG ELEMEN	T	
42	28	50	M8	4	35,0	2,300	3.150 x 10 ⁻⁶	9.000
48	35	60	M8	4	35,0	3,080	5.200 x 10 ⁻⁶	8.000
55	38	65	M10	4	71,0	4,670	10.300 x 10 ⁻⁶	6.300
65	40	70	M12	4	120,0	6,700	19.100 x 10 ⁻⁶	5.600

A [mm]	G [mm]	L [mm]	l [mm]	M [mm]	N [mm]	S [mm]	P [mm]
AL	UMINUN	HUBS	AND ST	EEL LC	CKING	ELEME	NT
30	10,5	50	18,5	13	10	1,5	2
40	18	66	25	16	12	2,0	3,5
55	27	78	30	18	14	2,0	4
65	30	90	35	20	15	2,5	5,2
80	38	114	45	24	18	3,0	5,6
	STE	EL HUBS	S AND L	OCKING	G ELEM	ENT	
95	46	126	50	26	20	3,0	5,6
105	51	140	56	28	21	3,5	6
120	60	160	65	30	22	4	9
135	68	185	75	35	26	4,5	8,3

Bore tolerance: H7

For the sizes 55 and 65 the ring changes with the bore. For further information please contact our Technical Office.

Using hub execution A, the shrink-disc maximum transmissible torque is the minor between the value stated in the table below and the value stated in section "Technical characteristics".

Size				F	Recom	mende	ed A c	ouplin	д Туре	e Hub	Bore [Dia. [m	m] an	d Trans	smissi	ble To	que [N	lm], va	alid for	shaft	tolerar	nces k	6			
Size	Ø 10	Ø 11	Ø 14	Ø 15	Ø 16	Ø 17	Ø 18	Ø 19	Ø 20	Ø 22	Ø 24	Ø 25	Ø 28	Ø 30	Ø 32	Ø 35	Ø 38	Ø 40	Ø 42	Ø 45	Ø 48	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70
14	10	12	22																							
19/24	42	46	60	65	69	74	79	84	88																	
24/28				66	72	77	82	87	92	102	113	118	135													
28/38								175	185	205	225	235	266	287	308	339	373									
38/45									255	283	312	326	367	398	427	471	515	545	577	620						
42													420	460	500	563	627	670	714	790	850	880				
48																557	612	649	687	744	801	840	932	1033		
55																	986	1112	1140	1185	1284	1412	1420	1652	1680	1691
65																		1531	1580	1772	1840	1960	2049	2438	2495	2590

Order form

Hub GESA 48 F45

GESA: TRASCO® ES hub - "A" execution

Size

F...: bore diameter

Spider AES 24/28 R

TRASCO*ES spider

Size

B: blue; G: yellow; R: red; V: green

M_S	Screw tightening torque	Nm
W	Weight	kg
J	Coupling moment of inertia	kgm ²
n_{max}	Maximum rpm	min ⁻¹

"AP" type - Shrink disc execution according to DIN 69002

Precision "zero-backlash" coupling designed for multi spindle devices on machine tools or controls with reduced mass, such as short center spindles, multi-centers primary spindles in work stations, or joined to high speed bearings with limited tolerance range. It is suitable for very high speeds of rotation (up to speeds of 50 m/s).

	FH6	Ms		Hub	Nmax
Size	[mm]	[Nm]	W [kg]	J [kgm²]	[min ⁻¹]
S	TEEL				
14	14	1,89	0,080	11 x 10 ⁻⁶	28.000
19/24 - 37,5	16	3,05	0,160	37 x 10 ⁻⁶	21.000
19/24	19	3,05	0,190	46 x 10 ⁻⁶	21.000
24/28-50	24	4,90	0,330	136 x 10 ⁻⁶	15.500
24/28	25	8,50	0,440	201 x 10 ⁻⁶	15.500
28/38	35	8,50	0,640	438 x 10 ⁻⁶	13.200
38/45	40	14,00	1,320	1.325 x 10 ⁻⁶	10.500
42	42	35,00	2,230	3.003 x 10 ⁻⁶	9.000
48	45	35,00	3,090	5.043 x 10 ⁻⁶	8.000
55	50	35,00	4,740	10.020 x 10 ⁻⁶	6.300

A [mm]	L [mm]	l [mm]	l2 [mm]	M [mm]	N [mm]	S [mm]	P [mm]	F1 [mm]	F2 [mm]	F3 [mm]
		ST	EEL HU	JBS AN	ID LO	CKING	ELEM	ENT		
32	50	18,5	15,5	13	10	1,5	2,0	17	17	8,5
37,5	66	25	21	16	12	2,0	3,5	20	19	9,5
40	66	25	21	16	12	2,0	3,5	23	22	9,5
50	78	30	25	18	14	2,0	4,0	30	29	12,5
55	78	30	25	18	14	2,0	4,0	32	30	12,5
65	90	35	30	20	15	2,5	5,2	42	40	14,5
80	114	45	40	24	18	3,0	5,6	49	46	16,5
92	126	50	45	26	20	3,0	5,6	54	55	18,5
105	140	56	50	28	21	3,5	6,0	65	60	20,5
120	160	65	58	30	22	4,0	9,0	65	72	22,5

Bore tolerance: H6

Spindle	TRASCO® ES	98 S	h. A	64 s	h. D
size	"AP"	TKN [Nm]	TKmax [Nm]	TKN [Nm]	TKmax [Nm]
25 x 20	14	12,5	25	16	32
32 x 25	19/24 - 37,5	14	28	17	34
32 x 30	19/24	17	34	21	42
40 x 35	24/28 - 50	43	86	54	108
50 x 45	24/28	60	120	75	150
63 x 55	28/38	160	320	200	400

Order form

Hub GESAP 48 F45

GESAP: TRASCO® ES hub - "AP" execution

Size

F...: bore diameter

Spider	AESP	24/28	R
TRASCO® ES spider - "AP" executio	n		
Size			
R: red; V: green			

M_S	Screw tightening torque	Nm
W	Weight	kg
J	Coupling moment of inertia	kgm ²
n_{max}	Maximum rpm	min ⁻¹

"GESS" double cardanic execution

This execution allows higher misalignments. The 2 spiders allow a high vibration dampening providing a decrease in drive noise and longer life of related components (ex. bearings).

The intermediate element is made of aluminum alloy and may be used in combination with any type of hub execution.

Size	Fa min [mm]	Fa max [mm]	E [mm]	A [mm]	C [mm]	H [mm]	L [mm]	V [mm]	M [mm]	S [mm]	N [mm]	G [mm]	W [kg]	J [kg m²]		
	ALUMINUM HUBS							ALUMINUM GESS								
7	3	7	14	-	20	7	34	4	8	1	6	_	0,003	0,00000008		
9	4	9	20	-	25	10	45	5	10	1	8	-	0,007	0,0000004		
14	6	15	30	-	34	11	56	8	13	1,5	10	-	0,024	0,000003		
19/24	10	20	40	-	42	25	92	10	16	2	12	18	0,05	0,000013		
24/28	10	28	55	-	52	30	112	16	18	2	14	27	0,14	0,00006		
28/38	14	35	65	-	58	35	128	18	20	2,5	15	30	0,22	0,00013		
38/45	15	45	80	-	68	45	158	20	24	3	18	38	0,35	0,00035		
					STEEL	HUBS	Α	LUMINUM	GESS							
42	20	45	95	75	74	50	174	22	26	3	20	46	0,51	0,0007		
48	25	60	105	85	80	56	192	24	28	3,5	21	51	0,67	0,001		
55	25	70	120	110	88	65	218	28	30	4	22	60	0,97	0,002		
65	25	75	135	115	102	75	252	32	35	4,5	26	68	1,43	0,004		

Order form

"GES LR1" execution with intermediate shaft

This zero backlash execution, allows connection to long distance shafts in applications such as lifting screw jacks, gantry robot etc. The intermediate shaft is made of steel but may be of different

material for specific need.

The presence of 2 spiders, increases the dampening properties and allow high misalignments.

	Exter	nal hub		Internal hub	
Size		ensions ed bores	Screws	Ms	
	dmin [mm]	dmax [mm]	M·L	[N·m]	M⊤ [N·m]
14	4	15	M3x12	1,34	6,1
19/24	6	24	M6x18	10	34
24/28	8	28	M6x20	10	45
28/38	10	38	M8x25	25	105
38/45	12	45	M8x30	25	123

E [mm]	H [mm]	L [mm]	M [mm]	N [mm]	s [mm]	L2 [mm]	LR1 [mm]	LR1 min [mm]	LZR1 [mm]	d _R x thickness [mm]
30	11	35	13	10	1,5	46,5		65	LR1+22	14 x 2.0
40	25	66	16	12	2,0	80	est	85	LR1+50	20 x 3.0
55	30	78	18	14	2,0	94	request	96	LR1+60	25 x 2.5
65	35	90	20	15	2,5	107,5	o	111	LR1+70	35 x 4.0
80	45	114	24	18	3,0	135		126	LR1+90	40 x 4.0

Coupling configurator

Coupling code	Item	Туре	Execution	Bore diameter	Order example
		GESP	-	-	
	Hub 1	GESF	-	F	GESF38/45F35
	riub i	GESM	F-C	F	GE3F36/43F33
		GESA	-	F	
	Spider 1	AES	B-G-R-V	-	AES38/45V
GESL38/45		LR1= 1200 mm			
	Spider 2	AES	B-G-R-V	-	AES38/45V
		GESP	-	-	
	Hub 2	GESF	-	F	GESF38/45F35
	TIUD Z	GESM	F-C	F	GLGI 30/43F33
		GESA	-	F	

 ${
m M_S}$ Screw tightening torque ${
m M_T}$ Transmissible torque moment

Nm Nm

"GES LR3" execution with intermediate shaft

Ideal execution for long distance shaft connections. Torque transmission is zero backlash. It is used in applications such as automatic machines, lifting machines, palletizing machines, and handling machines. Designed for length up to 4 m without

bearing support (depending on rotation speed). The double slot execution, allows spider mounting and replacement without driver/driven machine displacement. All aluminum alloy for a very low inertia.

	finis	nsions shed res	Clan	Clamping		Moment of inertia [10³ kgm²] with d _{max} hub 1					
Size	dmin [mm]	dmax [mm]	Screws DIN 4762-8.8	Ms [Nm]	Hub 1 J ₁	Hub 2 J ₂	Shaft J ₃	CT [Nm/rad]			
19	8	20	M6	10	0,02002	0,01304	0,340	3003			
24	10	28	M6	10	0,07625	0,04481	0,0697	6139			
28	14	38	M8	25	0,17629	0,1095	1,243	10936			
38	18	45	M8	25	0,50385	0,2572	3,072	27114			
42	22	50	M10	49	1,12166	0,5523	4,719	41591			
48	22	55	M12	86	1,87044	1,1834	9,591	84384			

E [mm]	H [mm]	l [mm]	L [mm]	M [mm]	Lw [mm]	Lw min [mm]	Lzw [mm]	D [mm]	t [mm]	e [mm]	dR [mm]
40	25	17,5	49	16		98	Lw+35	47	8	14,5	40
55	30	22	59	18		113	Lw+44	57	10,5	20	50
65	35	25	67	20	th or lest	131	Lw+50	73	11,5	25	60
80	45	33	83,5	24	Length on request	163	Lw+66	84	15,5	30	70
95	50	36,5	93	26	_	180	Lw+73	94	18	36	80
105	56	39,5	103	28		202	Lw+79	105	18,5	36	100

Coupling configurator

Coupling code	Item	Туре	Execution	Bore diameter	Order example
		GESP	-	-	
	Hub 1	GESF	-	F	GESM38/45F35
	Tidb i	GESM	F-C	F	GESIVI30/431 33
		GESA	-	F	
	Spider 1	AES	B-G-R-V	-	AES38/45V
GESLR38/45	D	istanza tra gi		Lw= 1200 mm	
	Spider 2	AES	B-G-R-V	-	AES38/45V
		GESP	-	-	
	Hub 2	GESF	-	F	GESM38/45F35
	TIUD Z	GESM	F-C	F	GEGIVI30/43F33
		GESA	-	F	

M_S	Screw tightening torque	Nm
J	Coupling moment of inertia	kgm ²
C_{T}	Torsional rigidity	Nm/rad

Size	Bores and torques for friction with hub without keyway [Nm]																							
Size	Ø8	Ø 10	Ø 11	Ø 14	Ø 15	Ø 16	Ø 18	Ø 19	Ø 20	Ø 22	Ø 24	Ø 25	Ø 28	Ø 30	Ø 32	Ø 35	Ø 38	Ø 40	Ø 42	Ø 45	Ø 46	Ø 48	Ø 50	Ø 55
19	17	21	23	30	32	34	38	40	42															
24		21	23	30	32	34	38	40	42	47	51	53	59											
28				54	58	62	70	74	78	86	93	97	109	117	124	136	148							
38							70	74	78	86	93	97	109	117	124	136	148	156	163	175				
42										136	149	155	174	186	198	217	235	248	260	279	285	297	310	
48										199	217	226	253	271	290	317	344	362	380	407	416	434	452	498

Technical data for intermediate shaft couplings (GES LR1 - GES LR3)

	Misaliç	gnment
Size	Assial ΔKa [mm]	Angular ΔKw [°]
14	1,0	0,9
19/24	1,2	0,9
24/28	1,4	0,9
28/38	1,5	0,9
38/45	1,8	0,9

Angular misalignment = 0.9° per spider

$$L_{\text{intermediate shaft}} = \frac{L_{zw} - 2 \cdot L}{1000} \text{ [mm]}$$

with Lzw = total coupling length

Radial misalignment

$$\Delta Kr = (L_z - 2 \cdot H - M) \cdot tan(\Delta Kw) \quad [mm]$$

Selection diagram GES LR3 coupling

