Putnam Solutions 7

Problem 1

Proof.

$$yz(y + z) + xz(x + z) + xy(x + y) = -2$$

Problem 2

Proof. We prove the statement by induction. Note the statement is obvious when there are 1, 2, or 3 points. Now suppose M consists of n points and there is a point \square

Problem 3

Problem 4

Proof. We prove the statement by induction. It is clearly true for n=1 since $1 \le 1 \le 2$. If it holds for n then $\sqrt{n} \le r_n \le 1 + \sqrt{n}$ which implies $1 + \frac{n}{r_n} \le 1 + \frac{n}{\sqrt{n}} = 1 + \sqrt{n}$ and $1 + \frac{n}{r_n} \ge 1 + \frac{n}{1 + \sqrt{n}} = \frac{1 + \sqrt{n} + n}{1 + \sqrt{n}} = 1 + \sqrt{n} - \frac{\sqrt{n}}{1 + \sqrt{n}} = 1 + \sqrt{n} - \frac{1}{1 + 1/\sqrt{n}} \ge 1 + \sqrt{n} - 1 = \sqrt{n}$. Thus the claim holds for r_{n+1} and statement follows.

Problem 5

Proof. Without loss of generality we may take J = [0, 1] since we can intertwine the continuous map $g: J \to J$ with a continuous map $f: [0, 1] \to [0, 1]$ by a linear map $\psi: J \to [0, 1]$ (ie $g = \psi^{-1} \circ f \circ \psi$). Note since g^n is surjective that g is also surjective: otherwise $g(g^{n-1}([0, 1])) \subseteq g([0, 1]) \subsetneq [0, 1]$ which would imply g^n is not the identity. We also claim g is injective. Suppose there were two distinct point $x_1 \neq x_2$ with $g(x_1) = g(x_2)$. Then $g^n(x_1) = g^{n-1}(g(x_1)) = g^{n-1}(g(x_2)) = g^n(x_2)$ which contradicts g^n being the identity map. Thus g is a homeomorphism from $[0, 1] \to [0, 1]$ and in particular is monotone increasing or monotone decreasing. First suppose it is monotone increasing. If there is an x such that x < g(x) then $g(x) < g^2(x)$ and so

on implying $x < g^n(x) = x$ which is a contradiction. Similarly if there is an x such that g(x) < x then $x = g^n(x) < x$ which also yields a contradiction so we conclude g(x) = x for all x and in particular $g \circ g = I$. Now if g is monotone decreasing then $g \circ g$ is monotone increasing and we again look at the points x with $x \neq g^2(x)$. If $n \equiv 0 \mod 2$ the previous argument gives us that $g \circ g = I$ so assume $n \equiv 1 \mod 2$. Then if $x < g^2(x)$ we have $x < g^{n-1}(x)$ and since g is monotone decreasing we have $x = g^n(x) < g(x)$. This implies $x < g^3(x)$ and so on until we have $x < g^n(x) = x$ a contradiction. The case when $x > g^2(x)$ is identical but with the inequalities flipped. Thus we conclude $g \circ g = I$ and we are done.

Problem 6

Proof. We prove the statement by induction. The case n=1 is vacuously true since no games are played. Now suppose this statement is true for n players and the number of wins and losses for player r ($1 \le r \le n$) with n players is denoted by w_r and ℓ_r respectively. Now suppose each player plays a new opponent player n-1 and call the new number of wins and losses w'_r and ℓ'_r for the original player r and also let w'_{n+1} and ℓ'_{n+1} be the number of wins and losses for the new player. Since the statement for n players holds true even if we relabel the n players by a permutation we may assume without loss of generality that player n+1 won against players $1, \dots, k$ and lost against the last $k+1, \dots, n$ players. Then we have

$$\sum_{r=1}^{n+1} w_r'^2 - \sum_{r=1}^{n+1} \ell_r'^2 = \left(\sum_{r=1}^n w_r'^2 - \ell_r'^2\right) + w_{n+1}'^2 - \ell_{n+1}'^2$$

$$= \left(\sum_{r=1}^k w_r^2 - (\ell_r + 1)^2\right) + \left(\sum_{r=k+1}^n (w_r + 1)^2 - \ell_r^2\right) + k^2 - (n-k)^2$$

$$= \left(\sum_{r=1}^n w_r^2 - \ell_r^2\right) - \left(\sum_{r=1}^k 2\ell_r + 1\right) + \left(\sum_{r=k+1}^n 2w_r + 1\right) - n^2 + 2kn.$$

Now the first sum is 0 by the inductive hypothesis. Since the total number of losses in the original n player game must be n(n-1)/2 (since this is how many games are played) we have $\sum_{r=1}^{k} \ell_r = n^2/2 - n/2 - \sum_{r=k+1}^{n} \ell_r$ which implies the sum of the

middle two terms is

$$-\sum_{r=1}^{k} 2\ell_r + 1 + \sum_{r=k+1}^{n} 2w_r + 1 = -n^2 + n + (n-k) - k + 2\sum_{r=k+1}^{n} w_r + \ell_r$$
$$= -n^2 + 2(n-k) + 2(n-k)(n-1)$$

since the sum of the number of wins and losses of player r is the number of games player r played ie n-1. But then the expression for the difference of the sums of the squares of the numbers of wins and losses reduces to

$$-n^{2} + 2n(n-k) - n^{2} + 2kn = -2n^{2} + 2n^{2} - 2kn + 2kn = 0.$$

Thus we have established the inductive step and the result follows. \Box

Problem 7

Problem 9