Admin

- Assignment 5 will be posted this week.
 - No late submissions
 - Code must compile
 - Interdependent code will be tested as such

CSC 115 Midterm 2 Review

Part B

Part C

```
public static int sumSquares(int start, int end) {
    // base case
    if (start == end) {
        return start * start;
    }
    // recursive case
    else{
        return start * start + sumSquares(start + 1, end);
    }
}
```

Tweak Part C

```
public static int sumSquares(int start, int end) {
    // base case
    if (start > end) {
        return 0;
    }
    // recursive case
    else{
        return start * start + sumSquares(start + 1, end);
    }
}
```

Part C

```
public static boolean palindrome(String input) {
    Stack<Character> stack = new Stack<Character>();
    int half = input.length()/2;
    int beginPoppingHere = half;
    for (int i = 0; i < half; i++){</pre>
        stack.push(input.charAt(i));
    if (input.length()% 2 == 1)beginPoppingHere = half + 1;
    for (int i = beginPoppingHere; i < input.length();i++){</pre>
        if (input.charAt(i)!= stack.pop()) return false;
    return stack.isEmpty();
```

Big O notation (graphical)

Big O notation (tabular)

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	103	104	105	10 ⁶
n ∗log₂n	30	664	9,965	105	106	10 ⁷
n²	10 ²	104	106	108	1010	10 12
n ³	10³	10 ⁶	10 ⁹	1012	10 ¹⁵	10 18
2 ⁿ	10³	1030	1030	1 103,0	10 10 30,	103 10 301,030

8

A Comparison of Sorting Algorithms

Worst case

Average case

Selection sort

Bubble sort

Insertion sort

Mergesort

Quicksort

Radix sort

Treesort

Heapsort

Figure 10-22

Approximate growth rates of time required for eight sorting algorithms

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort Bubble sort	n ² n ²	n ² n ²
Insertion sort	n^2	n^2
Mergesort	n * log n	n * log n
Quicksort	n ²	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n

Figure 10-22

Approximate growth rates of time required for eight sorting algorithms

Summary

- Worst-case and average-case analyses
 - Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
 - Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size
- Order-of-magnitude analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all O(n²) algorithms
- Quicksort and mergesort are two very efficient sorting algorithms

Heapsort

Recall:

- A complete binary tree is one which may be stored in an array
- A heap is similar to a binary search tree, but with two big differences:
 - BSTs are sorted, while heaps are ordered more weakly
 - BSTs can be in different shapes, but heaps are always complete binary trees
- Ordering invariant for a maxheap:
 - Value of child nodes always less than value of parent node
 - However, there is no ordering amongst siblings!

Array representation of the maxheap

535 97	93 41	26 92	31	23	5	8
--------	-------	-------	----	----	---	---

Heaprebuild (upwards)

- Building a heap is a recursive process
 - A new value is added to the array
 - Must re-establish maxheap property
 - To do so, determine how high the new value must float up towards the heap's root node
- One approach: trickle up
- Example: insert 121 into the previous heap

Heaprebuild (downwards)

- Another approach: trickle down
 - Useful when deleting rather than inserting
 - Assumes two heaps formed at start of operation
 - Determine what value from the each of the smaller heaps should be root of the combined heap


```
heapRebuild(array, root, n)

child = 2 * root + 1

if ( child < n )
    rightChild = child + 1
    if (rightChild < n && array[child] < array[rightChild])
        child = rightChild

if (array[root] < array[child])
        swap array[root] with array[child]
        heapRebuild(array, child, n)</pre>
```

Heapsort

- Intuition
 - Build an initial heap using the original array as storage
 - Once heap is built, move largest item in heap to beginning of a sorted region
- The second step performs a kind of partitioning


```
// Depends upon having heapRebuild
heapSort(array, n)

for (i = n-1 down to 0)
    heapRebuild(array, i, n)

last = n - 1

for (step = 1 through n)
    swap array[0] and array[last]
    last--
    heapRebuild(array, 0, last)
```

Heapsort: analysis

- Number of moves?
- Number of compares?
- O(n log₂n)

Treesort

- This uses a BST
- Each item to be sorted is inserted into the BST
- Once all items are inserted, we perform an inorder traversal
- Upside:
 - Can get O(n log n) efficiency in average case
- Downside:
 - Worst case is O(n²)

BST operation efficiency

- Theorem:
 - A full binary tree of height h ≥ 0 has 2^h-1 nodes
- Theorem:
 - The maximum number of nodes that a binary tree of height h can have is 2^h-1
- Theorem:
 - The minimum height of a binary tree with n nodes is ceil[log₂(n+1)]

BST operation efficiency

- Given these theorems:
 - We can say something about the worst- and best-case heights of a particular binary search tree
 - And given that retrieve, insert and delete describes paths from the root (at worst) some leaf...
 - this means our efficiencies will depend upon the length of this path (which is also the tree height)
- Operations (i.e., number of comparisons)
 - Retrieval: average O(log n); worst O(n)
 - Insertion: average O(log n); worst O(n)
 - Deletion: average O(log n); worst O(n)
- Note: Traversals will always be O(n) as one comparison is needed for visiting every node

Tables & Priority Queues

Reading: Chapter 12

- The ADT table, or dictionary
 - Uses a search key to identify its items
 - Its items are records that contain several pieces of data

City	Country	Population	
Athens	Greece	2,500,000	Figure 12-1
Barcelona	Spain	1,800,000	An ordinary table of cities
Cairo	Egypt	9,500,000	
London	England	9,400,000	
New York	U.S.A.	7,300,000	
Paris	France	2,200,000	
Rome	Italy	2,800,000	
Toronto	Canada	3,200,000	
Venice	Italy	300,000	

- Operations of the ADT table
 - Create an empty table
 - Determine whether a table is empty
 - Determine the number of items in a table
 - Insert a new item into a table
 - Delete the item with a given search key from a table
 - Retrieve the item with a given search key from a table
 - Traverse the items in a table in sorted search-key order

Pseudocode for the operations of the ADT table

```
createTable()
// Creates an empty table.
tableIsEmpty()
// Determines whether a table is empty.
tableLength()
// Determines the number of items in a table.
tableInsert(newItem) throws TableException
// Inserts newItem into a table whose items have
// distinct search keys that differ from newItem's
// search key. Throws TableException if the
// insertion is not successful
```

 Pseudocode for the operations of the ADT table (Continued)

```
tableDelete(searchKey)
// Deletes from a table the item whose search key
// equals searchKey. Returns false if no such item
// exists. Returns true if the deletion was
// successful.
tableRetrieve(searchKey)
// Returns the item in a table whose search key
// equals searchKey. Returns null if no such item
// exists.
tableTraverse()
// Traverses a table in sorted search-key order.
```

- Value of the search key for an item must remain the same as long as the item is stored in the table
- KeyedItem class
 - Contains an item's search key and a method for accessing the search-key data field
 - Prevents the search-key value from being modified once an item is created
- TableInterface interface
 - Defines the table operations

A Binary Search Tree Implementation of the ADT Table

- TableBSTBased class
 - Represents a nonlinear reference-based implementation of the ADT table
 - Uses a binary search tree to represent the items in the ADT table
 - Reuses the class BinarySearchTree

- The ADT priority queue
 - Orders its items by a priority value
 - The first item removed is the one having the highest priority value
- Operations of the ADT priority queue
 - Create an empty priority queue
 - Determine whether a priority queue is empty
 - Insert a new item into a priority queue
 - Retrieve and then delete the item in a priority queue with the highest priority value

Pseudocode for the operations of the ADT priority queue

```
createPQueue()
// Creates an empty priority queue.

pqIsEmpty()
// Determines whether a priority queue is
// empty.
```

Pseudocode for the operations of the ADT priority queue (Continued)

```
pqInsert(newItem) throws PQueueException
// Inserts newItem into a priority queue.
// Throws PQueueException if priority queue is
// full.

pqDelete()
// Retrieves and then deletes the item in a
// priority queue with the highest priority
// value.
```

- Possible implementations
 - Sorted linear implementations
 - Appropriate if the number of items in the priority queue is small
 - Array-based implementation
 - Maintains the items sorted in ascending order of priority value
 - Reference-based implementation
 - Maintains the items sorted in descending order of priority value

Figure 12-9a and 12-9b

Some implementations of the ADT priority queue: a) array based; b) reference based

The ADT Priority Queue

- Possible implementations (Continued)
 - Binary search tree implementation
 - Appropriate for any priority queue

Figure 12-9c

Some implementations of the ADT priority queue: c) binary search tree

First: Remember Binary Search Trees

- For each node n:
 - n's value is greater than all values in its left subtree T_l
 - n's value is less than all values in its right subtree T_R
 - Both T_L and T_R are binary search trees

Problem with Binary Search Trees

Heaps

- A heap is a complete binary tree
 - That is empty

or

- Whose root contains a search key greater than or equal to the search key in each of its children, and
- Whose root has heaps as its subtrees

Heaps

Maxheap

 A heap in which the root contains the item with the largest search key

Minheap

 A heap in which the root contains the item with the smallest search key

Heaps

Pseudocode for the operations of the ADT heap

```
createHeap()
// Creates an empty heap.
heapIsEmpty()
// Determines whether a heap is empty.
heapInsert (newItem) throws HeapException
// Inserts newItem into a heap. Throws
// HeapException if heap is full.
heapDelete()
// Retrieves and then deletes a heap's root
// item. This item has the largest search key.
```

Heaps: Array-based

Data fields

- items: an array of heap items
- size: an integer equal to the number of items in the heap

Figure 12-11

A heap with its array representation

0	10
1	9
2	6
3	3
2345	2
5	5

- Step 1: Return the item in the root
 - Results in disjoint heaps

0	10	
1	9	
2	6	
3	3	
4	2	
4 5	5	

(a)

Figure 12-12a

a) Disjoint heaps

- Step 2: Copy the item from the last node into the root
 - Results in a semiheap

(b)

Figure 12-12b

b) a semiheap

- Step 3: Transform the semiheap back into a heap
 - Performed by the recursive algorithm heapRebuild

Second semiheap passed to heapRebuild

Figure 12-14

Recursive calls to heapRebuild

Efficiency

- heapDelete is $O(\log n)$

Figure 12-13

Deletion from a heap

Heaps: heapInsert

- Strategy
 - Insert newItem into the bottom of the tree
 - Trickle new item up to appropriate spot in the tree
- Efficiency: O(log n)
- Heap class
 - Represents an array-based implementation of the ADT heap

Heapsort

- a) The initial contents of anArray;
- b) anArray's corresponding binarytree

Heapsort partitions an array

into two regions

A Heap Implementation of the ADT Priority Queue

- Priority-queue operations and heap operations are analogous
 - The priority value in a priority-queue corresponds to a heap item's search key
- PriorityQueue class
 - Has an instance of the Heap class as its data field

A Heap Implementation of the ADT Priority Queue

- A heap implementation of a priority queue
 - Disadvantage
 - Requires the knowledge of the priority queue's maximum size
 - Advantage
 - A heap is always balanced
- Finite, distinct priority values
 - A heap of queues
 - Useful when a finite number of distinct priority values are used, which can result in many items having the same priority value

Summary

- The ADT table supports value-oriented operations
- The linear implementations (array based and reference based) of a table are adequate only in limited situations or for certain operations
- A nonlinear reference-based (binary search tree) implementation of the ADT table provides the best aspects of the two linear implementations
- A priority queue, a variation of the ADT table, has operations which allow you to retrieve and remove the item with the largest priority value

Summary

 A heap that uses an array-based representation of a complete binary tree is a good implementation of a priority queue when you know the maximum number of items that will be stored at any one time

Efficiency

- Heapsort, like mergesort, has good worst-case and average-case behaviors, but neither algorithms is as good in the average case as quicksort
- Heapsort has an advantage over mergesort in that it does not require a second array