T.D. VI - Espaces vectoriels

I - Systèmes linéaires

Solution de l'exercice 1. On utilise l'algorithme du pivot de Gauss

$$\begin{cases} x + 2y - z &= 1 \\ 3x + 4y - z &= 2 \\ x + 3y + z &= 10 \end{cases} \Leftrightarrow \begin{cases} x + 2y - z &= 1 \\ -2y + 2z &= -1 \\ y + 2z &= 9 \end{cases} \xrightarrow{L_2 \leftarrow L_2 - 3L_1}$$

$$\Leftrightarrow \begin{cases} x + 2y - z &= 1 \\ -2y + 2z &= -1 \\ 6z &= 17 \end{cases} \Leftrightarrow \begin{cases} x &= -\frac{17}{6} \\ y &= \frac{10}{3} \\ z &= \frac{17}{6} \end{cases}$$

Ainsi, l'ensemble des solutions du système est $\left\{ \left(-\frac{17}{6}, \frac{10}{3}, \frac{17}{6} \right) \right\}$.

1. On utilise l'algorithme du pivot de Gauss

$$\begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 \Leftrightarrow \begin{cases} x - y + 2z &= -3 & \iota_{1} \leftarrow \iota_{2} \\ 2x + 3y + z &= 7 & \iota_{2} \leftarrow \iota_{1} \end{cases} \\ 3x + y - z &= 6 \end{cases} \Leftrightarrow \begin{cases} x - y + 2z &= -3 & \iota_{3} \leftarrow \iota_{4} \leftarrow \iota_{2} \\ 3x + y - z &= 6 \end{cases} \Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 & \iota_{2} \leftarrow \iota_{2} - 2\iota_{1} \Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 \\ 23z &= -23 & \iota_{3} \leftarrow -5\iota_{3} + 4\iota_{2} \end{cases} \\ \Leftrightarrow \begin{cases} x &= 1 \\ y &= 2 \\ z &= -1 \end{cases} \end{cases} \Leftrightarrow \begin{cases} x &= 1 \\ y &= 2 \\ z &= -1 \end{cases}$$

Ainsi, \mathcal{S}_1 possède une unique solution et l'ensemble des solutions est $\{(1,2,-1)\}.$

2. On utilise l'algorithme du pivot de Gauss

$$\begin{cases} 2x - y + 4z &= 2 \\ x + 2y - 3z &= 6 \iff \begin{cases} x + 2y - 3z &= 6 & \iota_1 \leftarrow \iota_2 \\ 2x - y + 4z &= 2 & \iota_2 \leftarrow \iota_1 \\ 4x + 3y - 2z &= 14 \end{cases} \\ \Leftrightarrow \begin{cases} x + 2y - 3z &= 6 \\ -5y + 10z &= -10 & \iota_2 \leftarrow \iota_2 - 2\iota_1 \\ -5y + 10z &= -10 & \iota_3 \leftarrow \iota_3 - 4\iota_1 \end{cases} \Leftrightarrow \begin{cases} x + 2y - 3z &= 6 \\ -5y + 10z &= -10 \end{cases} \\ \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= 2 - \lambda \\ y &= 2 + 2\lambda \\ z &= \lambda \end{cases}$$

Le système (\mathscr{S}_2) possède une infinité de solutions et l'ensemble des solutions est

$$\{(2-\lambda, 2+2\lambda, \lambda), \ \lambda \in \mathbb{R}\} = \{(2,2,0) + \lambda(-1,2,1), \ \lambda \in \mathbb{R}\}.$$

3. Le sytème est déjà échelonné et possède deux variables libres. Ainsi, l'ensemble des solutions est

$$\{(5 - \lambda - \mu, \lambda, \mu), (\lambda, \mu) \in \mathbb{R}^2\}$$

= \{(5, 0, 0) + \lambda(-1, 1, 0) + \mu(-1, 0, 1), (\lambda, \mu) \in \mathbb{R}^2\}.

4.
$$(x, y, z) \in \mathbb{R}^3$$
 est solution de $(\mathscr{S}_4) \Leftrightarrow \begin{cases} x + 2y - 3z &= -1 \\ -7y + 11z &= 10 & L_2 \leftarrow L_2 - 3L_1 \\ -7y + 11z &= 7 & L_3 \leftarrow L_3 - 5L_1 \end{cases}$

Les deuxième et troisième lignes sont incompatibles, le système ne possède aucune solution. L'ensemble des solutions est \emptyset .

5. On utilise l'algorithme du pivot de Gauss :

$$\begin{cases}
-x + 2y + 4z &= -11 \quad L_1 \leftarrow L_2 \\
2x - 3y + 5z &= 8 \quad L_2 \leftarrow L_1
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-x + 2y + 4z &= -11 \\
y + 13z &= -14 \quad L_2 \leftarrow L_2 + 2L_1
\end{cases}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= -17 - 22\lambda \\ y &= -14 - 13\lambda \\ z &= \lambda \end{cases}$$

L'ensemble des solutions du système (\mathcal{S}_5) est infini et est donné par

$$\{(-17 - 22\lambda, -14 - 13\lambda, \lambda) ; \lambda \in \mathbb{R}\}\$$

$$= \{(-17, -14, 0) + \lambda(-22, -13, 1)\}.$$

Solution de l'exercice 2. On raisonne par équivalences

$$(x_{1}, x_{2}, x_{3}, x_{4}) \text{ est solution de } (\mathcal{S})$$

$$\Leftrightarrow \begin{cases} x_{1} + 2x_{2} - x_{3} + 4x_{4} &= 2 \quad \iota_{1} \leftarrow \iota_{2} \\ 2x_{1} - x_{2} + x_{3} + x_{4} &= 1 \quad \iota_{2} \leftarrow \iota_{1} \\ x_{1} + 7x_{2} - 4x_{3} + 11x_{4} &= \lambda \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} + 2x_{2} - x_{3} + 4x_{4} &= 2 \quad \iota_{1} \leftarrow \iota_{2} \\ -5x_{2} + 3x_{3} - 7x_{4} &= -3 \quad \iota_{2} \leftarrow \iota_{2} - 2\iota_{1} \\ 5x_{2} - 3x_{3} + 7x_{4} &= \lambda - 2 \quad \iota_{3} \leftarrow \iota_{3} - \iota_{1} \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} + 2x_{2} - x_{3} + 4x_{4} &= 2 \quad \iota_{1} \leftarrow \iota_{2} \\ -5x_{2} + 3x_{3} - 7x_{4} &= -3 \quad \iota_{2} \leftarrow \iota_{2} - 2\iota_{1} \\ 0 &= \lambda - 5 \end{cases}$$

Si $\lambda=5$, le sytème possède une infinité de solution. Si $\lambda\neq 5$, l'ensemble des solutions est l'ensemble vide. Finalement, l'unique solution est $\lambda=5$.

II - Familles de vecteurs

Solution de l'exercice 3.

1. D'une part, E_1 est inclus dans \mathbb{R}^n et $\overrightarrow{0_n} \in E_1$. D'autre part, si $u = (x_1, x_2, \dots, x_n)$ et $v = (y_1, y_2, \dots, y_n)$ sont deux vecteurs de E_1 et α est un réel, alors

$$\alpha u + v = (\alpha x_1 + y_1, \alpha x_2 + y_2, \dots, \alpha x_n + y_n).$$

Comme $u \in E_1$, alors $x_1 = x_2 = 0$. De même, $y_1 = y_2 = 0$. Ainsi,

$$\begin{cases} \alpha x_1 + y_1 &= 0\\ \alpha x_2 + y_2 &= 0 \end{cases}$$

Les deux composantes de $\alpha u + v$ sont nulles, donc $\alpha u + v \in E_1$. Finalement, E_1 est bien un sous-espace vectoriel de \mathbb{R}^n .

2º méthode. En posant $f:(x_1,\ldots,x_n)\mapsto (x_1,x_2)$, alors f est linéaire et $E_1=\operatorname{Ker} f$. Ainsi, E_1 est un espace vectoriel.

2. D'une part, E_2 est inclus dans \mathbb{R}^n et $\overrightarrow{0_n} \in E_2$. D'autre part, si $u = (x_1, x_2, \dots, x_n)$ et $v = (y_1, y_2, \dots, y_n)$ sont deux vecteurs de E_2 et α est un réel, alors

$$\alpha u + v = (\alpha x_1 + y_1, \alpha x_2 + y_2, \dots, \alpha x_n + y_n).$$

Comme $u \in E_2$, alors $x_1 + x_2 = 0$. De même, $y_1 + y_2 = 0$. Ainsi,

$$\left\{ (\alpha x_1 + y_1) + (\alpha x_2 + y_2) = \alpha (x_1 + x_2) + (y_1 + y_2) = 0. \right.$$

Donc, $\alpha u + v \in E_2$.

Finalement, E_2 est bien un sous-espace vectoriel de \mathbb{R}^n .

2º méthode. En posant $f:(x_1,\ldots,x_n)\mapsto x_1+x_2$, alors f est linéaire et $E_2=\operatorname{Ker} f$. Ainsi, E_2 est un espace vectoriel.

3. Comme $(0, ..., 0) \notin E_3$, alors E_3 n'est pas un sous-espace vectoriel de \mathbb{R}^n .

4. D'une part, E_4 est inclus dans \mathbb{R}^n et $\overrightarrow{0_n} \in E_4$.

D'autre part, si $u=(x_1,x_2,\ldots,x_n)$ et $v=(y_1,y_2,\ldots,y_n)$ sont deux vecteurs de E_4 et α est un réel, alors

$$\alpha u + v = (\alpha x_1 + y_1, \alpha x_2 + y_2, \dots, \alpha x_n + y_n).$$

Comme $u \in E_4$, alors $x_1 = x_2$. De même, $y_1 = y_2$. Ainsi,

$$\left\{ \alpha x_1 + y_1 = \alpha x_2 + y_2. \right.$$

Donc, $\alpha u + v \in E_4$.

Finalement, E_4 est bien un sous-espace vectoriel de \mathbb{R}^n .

2º méthode. En posant $f:(x_1,\ldots,x_n)\mapsto x_1-x_2$, alors f est linéaire et $E_4=\operatorname{Ker} f$. Ainsi, E_4 est un espace vectoriel.

5. On remarque que

$$u = (1, 0, 0, \dots, 0) \in E_5$$

 $v = (0, 1, 0, \dots, 0) \in E_5$

Cependant, u + v = (1, 1, 0, ...) donc $u + v \notin E_5$. Ainsi, E_5 n'est pas un espace vectoriel.

Solution de l'exercice 4.

1. Soit $(a,b) \in \mathbb{R}^2$ tel que

$$a(-1, -1, 1, 2) + b(1, -1, 1, 5) = (0, 0, 0, 0).$$

Alors,

$$\begin{cases}
-a+b &= 0 \\
-a-b &= 0 \\
a+b &= 0 \\
2a+5b &= 0
\end{cases} \Leftrightarrow \begin{cases}
-a+b &= 0 \\
a+2b &= 0 \\
a+b &= 0 \\
2a+5b &= 0
\end{cases}$$

Ainsi, a = b = 0 et la famille est libre.

2º méthode. Comme les deux vecteurs ne sont pas colinéaires, alors ils forment une famille libre.

2. Soit $(a,b) \in \mathbb{R}^2$ tel que

$$a(8,4,1,-2) + b(1,3,0,5) = (0,0,0,0).$$

Alors,

$$\begin{cases} 8a + b &= 0 \\ 4a + 3b &= 0 \\ a &= 0 \\ -2a + 5b &= 0 \end{cases}$$

Ainsi, a = b = 0 et la famille est libre.

 2^{e} méthode. Comme les deux vecteurs ne sont pas colinéaires, alors ils forment une famille libre.

3. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$a(1,1,3,2) + b(1,-1,1,3) + c(0,1,5,2) = (0,0,0,0).$$

Alors,

$$\begin{cases} a+b & = 0 \\ a-b+c & = 0 \\ 3a+b+5c & = 0 \\ 2a+3b+2c & = 0 \end{cases} \Leftrightarrow \begin{cases} c+a-b & = 0 & \iota_1 \leftarrow \iota_2 \\ a+b & = 0 & \iota_2 \leftarrow \iota_1 \\ 5c+3a+b & = 0 \\ 2c+2a+3b & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} c + a - b &= 0\\ a + b &= 0\\ -2a + 6b &= 0 & L_3 \leftarrow L_3 - 5L_1\\ 5b &= 0 & L_4 \leftarrow L_4 - 2L_1 \end{cases}$$

Ainsi, a = b = c = 0 et la famille est libre.

4. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$a(1,2,3,4) + b(-1,3,2,1) + c(2,1,-1,1) = (0,0,0,0)$$

T.D. VI - Espaces vectoriels

Alors,

$$\begin{cases} a - b + 2c &= 0 \\ 2a + 3b + c &= 0 \\ 3a + 2b - c &= 0 \\ 4a + b + c &= 0 \end{cases} \Leftrightarrow \begin{cases} a - b + 2c &= 0 \\ 5b - 3c &= 0 \\ 5b - 7c &= 0 \\ 5b - 7c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a - b + 2c &= 0 \\ 5b - 7c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a - b + 2c &= 0 \\ 5b - 3c &= 0 \\ 4c &= 0 \end{cases}$$

Ainsi, a = b = c = 0 et la famille est libre.

Solution de l'exercice 5.

- **1.** Comme $F_1 = \text{Vect}\{(2, -1, -3)\}$, alors ((2, -1, -3)) est une famille génératrice de F_1 .
- **2.** Comme $F_2 = \text{Vect}\{(2,0,-3)\}$, alors ((2,0,-3)) est une famille génératrice de F_2 .
- **3.** Comme $F_3 = \text{Vect}\{(2,0,3), (1,2,-1)\}$, alors ((2,0,3), (1,2,-1)) est une famille génératrice de F_3 .
- **4.** Comme $F_4 = \text{Vect}\{(2,5,3), (1,2,-1)\}$, alors ((2,5,3), (1,2,-1)) est une famille génératrice de F_4 .

Solution de l'exercice 6.

1. $(x, y, z) \in F_1$ si et seulement si 2x - 3y + z = 0 si et seulement s'il existe λ , μ réels tels que

$$\begin{cases} x = \lambda \\ y = \mu \\ z = -2\lambda + 3\mu \end{cases}.$$

Ainsi, $F_1 = \text{Vect}\{(1, 0, -2), (0, 1, 3)\}.$

La famille ((1,0,-2),(0,1,3)) est une famille génératrice de F_1 et elle est libre, donc c'est une base de F_1 .

Remarque. dim $F_1 = 2$, donc F_1 est un plan de \mathbb{R}^3 .

2. Le système étant déjà échelonné,

$$(x, y, z) \in F_2 \Leftrightarrow \begin{cases} 4x + y + z &= 0\\ 3x + z &= 0 \end{cases}$$

 $\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= \lambda\\ y &= -\lambda\\ z &= -3\lambda \end{cases}$

Ainsi, $F_2 = \text{Vect}\{(1, -1, -3)\}$. Comme (1, -1, -3) est non nul, alors la famille ((1, -1, -3)) est une famille libre de F_2 . De plus, c'est une famille génératrice de F_2 , donc c'est une base de F_2 .

Remarque. dim $F_2 = 1$ donc F_2 est une droite de \mathbb{R}^3 .

3. En utilisant l'algorithme du pivot de Gauss,

$$(x,y,z,t) \in F_3 \Leftrightarrow \begin{cases} x-y-z &= 0\\ 2x+3y+z &= 0\\ 5x+5y+2z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x-y-z &= 0\\ 5y+3z &= 0 \\ 10y+6z &= 0 \end{cases} \xrightarrow{L_2 \leftarrow L_2 - 2L_1} \Leftrightarrow \begin{cases} x-y-z &= 0\\ 5y+3z &= 0\\ 0 &= 0 \end{cases} \xrightarrow{L_3 \leftarrow L_3 - 5L_1}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= 2\lambda\\ y &= -3\lambda\\ z &= 5\lambda \end{cases}$$

Ainsi, $F_3 = \text{Vect}\{(2, -3, 5)\}$. Comme ((2, -3, 5)) est une famille génératrice de F_3 composée d'un seul vecteur non nul, alors c'est une base de F_3 .

A. Camanes

Remarque. Comme dim $F_3 = 1$, alors F_3 est une droite de \mathbb{R}^3 .

4. En utilisant l'algorithme du pivot de Gauss,

$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x = 3\lambda \\ y = -2\lambda \\ z = 0 \\ t = \lambda \end{cases}$$

Ainsi, $F_4 = \text{Vect}\{(3, -2, 0, 1)\}$. Comme ((3, -2, 0, 1)) est une famille génératrice de F_4 composée d'un seul vecteur non nul, alors c'est une base de F_4 .

Remarque. Comme dim $F_4 = 1$, alors F_4 est une droite de \mathbb{R}^4 .

Solution de l'exercice 7.

1. $(x, y, z) \in F_1$ si et seulement s'il existe λ , μ réels tels que

$$(x, y, z) = \lambda(1, 1, 2) + \mu(1, 0, 1)$$

si et seulement si le système suivant admet une solution :

$$\begin{cases} \lambda + \mu &= x \\ \lambda &= y \Leftrightarrow \\ 2\lambda + \mu &= z \end{cases} \Leftrightarrow \begin{cases} \mu + \lambda &= x \\ \lambda &= y \\ \lambda &= z - x \end{cases} \atop \Rightarrow \begin{bmatrix} \mu + \lambda &= x \\ \lambda &= y \\ \lambda &= y \end{bmatrix} \atop 0 &= z - x - y \end{cases}$$

Ainsi, le système possède une solution si et seulement si z - x - y = 0. Une équation cartésienne de F_1 est donc x + y - z = 0.

2. $(x,y) \in F_2$ si et seulement s'il existe λ , μ réels tels que

$$(x,y) = \lambda(1,2) + \mu(4,6)$$

$$\begin{cases} \lambda + 4\mu &= x \\ 2\lambda + 6\mu &= y \end{cases} \Leftrightarrow \begin{cases} \lambda + 4\mu &= x \\ -2\mu &= y - 2x \end{cases}$$

3. $(x,y,z) \in F_3$ si et seulement s'il existe λ , μ réels tels que

$$(x, y, z) = \lambda(1, 0, 1) + \mu(2, 3, 1)$$

si et seulement si le système suivant admet une solution:

$$\begin{cases} \lambda + 2\mu &= x \\ 3\mu &= y \Leftrightarrow \begin{cases} \lambda + 2\mu &= x \\ 3\mu &= y \\ \mu &= x - z \end{cases} \\ \Leftrightarrow \begin{cases} \lambda + 2\mu &= x \\ 3\mu &= y \\ 0 &= 3x - 3z - y \end{cases}$$

Ainsi, le système possède une solution si et seulement si 3x-3z-y=0. Une équation cartésienne de F_3 est donc 3x - y - 3z = 0.

4. $(x,y,z) \in F_4$ si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que

56

$$(x, y, z) = \lambda(1, 1, 1)$$

si et seulement si le système suivant possède une solution :

$$\begin{cases} \lambda = x \\ \lambda = y \iff \begin{cases} \lambda = x \\ 0 = x - y & L_2 \leftarrow L_1 - L_2 \\ 0 = x - z & L_3 \leftarrow L_1 - L_3 \end{cases}$$

Ainsi, le système possède une solution si et seulement si $\begin{cases} x-y &= 0 \\ x-z &= 0 \end{cases}$ et une équation cartésienne de F_4 est donc $\begin{cases} x - y = 0 \\ x - z = 0 \end{cases}$

Solution de l'exercice 8.

1. Comme nous devons déterminer les coordonnées d'un vecteur dans la base \mathcal{B}_1 , montrons que \mathcal{B}_1 est une base de \mathbb{R}^3 en montrant que tout vecteur de \mathbb{R}^3 se décompose de manière unique comme combinaison linéaire des vecteurs de \mathcal{B}_1 .

Soit $(x, y, z) \in \mathbb{R}^3$ et a, b, c des réels tels que

$$(x, y, z) = a(-1, 1, 1) + b(1, -1, 1) + c(1, 1, -1).$$

Alors,

$$\begin{cases} x &= -a + b + c \\ y &= a - b + c \\ z &= a + b - c \end{cases} \Leftrightarrow \begin{cases} -a + b + c &= x \\ 2c &= x + y \quad \iota_2 \leftarrow \iota_1 + \iota_2 \\ 2b &= x + z \quad \iota_3 \leftarrow \iota_3 + \iota_1 \end{cases}$$
$$\Leftrightarrow \begin{cases} a &= \frac{y + z}{2} \\ b &= \frac{x + z}{2} \\ c &= \frac{x + y}{2} \end{cases}$$

Ainsi, tout vecteur de \mathbb{R}^3 se décompose de manière unique comme combinaison linéaires des vecteurs de \mathcal{B}_1 et \mathcal{B}_1 est bien une base de \mathbb{R}^3 . De plus,

$$(x,y,z) = \frac{y+z}{2}(-1,1,1) + \frac{x+z}{2}(1,-1,1) + \frac{x+y}{2}(1,1,-1)$$

soit ici

$$(8,4,2) = 3(-1,1,1) + 5(1,-1,1) + 6(1,1,-1).$$

Les coordonnées de (8,4,2) dans la base \mathcal{B}_1 sont donc (3,5,6).

2. Comme nous devons déterminer les coordonnées d'un vecteur dans la base \mathcal{B}_2 , montrons que \mathcal{B}_2 est une base de \mathbb{R}^3 en montrant que tout vecteur de \mathbb{R}^3 se décompose de manière unique comme combinaison linéaire des vecteurs de \mathcal{B}_2 .

Soit $(x, y, z) \in \mathbb{R}^3$ et a, b, c des réels tels que

$$(x, y, z) = a(-1, -1, 1) + b(1, -1, 1) + c(2, 2, -1).$$

Alors,

$$\begin{cases} x = -a + b + 2c \\ y = -a - b + 2c \\ z = a + b - c \end{cases} \Leftrightarrow \begin{cases} -a + b + 2c = x \\ 2b = x - y & L_2 \leftarrow L_1 - L_2 \\ 2b + c = x + z & L_3 \leftarrow L_3 + L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} -a + 2c + b = x \\ c + 2b = x + z & L_3 \leftarrow L_2 \\ 2b = x - y & L_2 \leftarrow L_3 \end{cases} \Leftrightarrow \begin{cases} a = \frac{-x + 3y + 4z}{2} \\ b = \frac{x - y}{2} \\ c = y + z \end{cases}$$

Ainsi, tout vecteur de \mathbb{R}^3 se décompose de manière unique comme combinaison linéaires des vecteurs de \mathcal{B}_2 et \mathcal{B}_2 est bien une base de \mathbb{R}^3 . De plus,

$$(x,y,z) = \frac{-x+3y+4z}{2}(-1,-1,1) + \frac{x-y}{2}(1,-1,1) + (y+z)(2,2,-1)$$

soit ici

$$(8,4,2) = 6(-1,-1,1) + 2(1,-1,1) + 6(2,2,-1).$$

Les coordonnées de (8,4,2) dans la base \mathcal{B}_1 sont donc (6,2,6).

3. Comme $F = \text{Vect } \mathcal{B}$, alors \mathcal{B} est une famille génératrice de F. Montrons que \mathcal{B} est une famille libre. Soit a, b réels tels que

$$a(-1,-1,1) + b(2,2,-1) = (0,0,0).$$

Alors,

$$\begin{cases}
-a + 2b &= 0 \\
-a + 2b &= 0 \\
a - b &= 0
\end{cases} \Leftrightarrow \begin{cases}
-a + 2b &= 0 \\
0 &= 0 \\
b &= 0
\end{cases}$$

Ainsi, a = b = 0 et \mathcal{B} est bien une famille libre.

Finalement, \mathcal{B} est bien une base de F.

Remarque. On aurait pu montrer la liberté en utilisant la non colinéarité des deux vecteurs. De plus, on a montré que dim F=2, donc que F est un plan.

Soit λ , μ des réels tels que

$$(3,3,-1) = \lambda(-1,-1,1) + \mu(2,2,-1).$$

Alors,

$$\begin{cases} -\lambda + 2\mu &= 3 \\ -\lambda + 2\mu &= 3 \\ \lambda - \mu &= -1 \end{cases} \Leftrightarrow \begin{cases} -\lambda + 2\mu &= 3 \\ 0 &= 0 \\ \mu &= 2 \end{cases} \Leftrightarrow \begin{cases} \lambda &= 1 \\ \mu &= 2 \end{cases}$$

Ainsi,

$$(3,3,-1) = (-1,-1,1) + 2(2,2,-1)$$

et les coordonnées de (3,3,-1) dans la base \mathscr{B} sont (1,2).

III - Questions plus théoriques

Solution de l'exercice 9.

1. D'une part, $F \cap G \subset \mathbb{R}^n$.

Comme $\overrightarrow{0_n} \in F$ et $\overrightarrow{0_n} \in G$, alors $\overrightarrow{0_n} \in F \cap G$.

Soit $u, v \in F \cap G$ et $\lambda \in \mathbb{R}$.

- * Comme $u, v \in F$ et F est un espace vectoriel, alors $\lambda u + v \in F$.
- * Comme $u, v \in G$ et G est un espace vectoriel, alors $\lambda u + v \in G$. Ainsi, $\lambda u + v \in F \cap G$.

Finalement, $F \cap G$ est un sous-espace vectoriel de \mathbb{R}^n .

2. Comme $\overrightarrow{0_n} \in F$ et $\overrightarrow{0_n} \in G$, alors

$$\overrightarrow{0_n} + \overrightarrow{0_n} = \overrightarrow{0_n} \in F + G.$$

Soit $u, v \in F + G$ et $\lambda \in R$.

- * Comme $u \in F + G$, il existe $f_1 \in F$ et $g_1 \in G$ tels que $u = f_1 + g_1$.
- * Comme $v \in F + G$, il existe $f_2 \in F$ et $g_2 \in G$ tels que $v = f_2 + g_2$.

Comme F est un espace vectoriel, alors $\lambda f_1 + f_2 \in F$.

Comme G est un espace vectoriel, alors $\lambda g_1 + g_2 \in G$.

Finalement,

$$\lambda u + v = (\underbrace{\lambda f_1 + f_2}_{\in F}) + (\underbrace{\lambda g_1 + g_2}_{\in G}) \in F + G.$$

Ainsi, F + G est bien un espace vectoriel.

3. D'une part, $D_1 = \text{Vect}\{(1,0)\}$ est un sous-espace vectoriel de \mathbb{R}^2 . D'autre part, $D_2 = \text{Vect}\{(0,1)\}$ est un sous-espace vectoriel de \mathbb{R}^2 . Ainsi,

- * $(1,0) \in D_1 \text{ donc } (1,0) \in D_1 \cup D_2$,
- * $(0,1) \in D_2 \text{ donc } (0,1) \in D_1 \cup D_2.$

Cependant, (1,1) = (1,0) + (0,1) n'appartient ni à D_1 , ni à D_2 . Ainsi, $(1,1) \not\in D_1 \cup D_2$.

Ainsi, $D_1 \cup D_2$ n'est pas un espace vectoriel.

Solution de l'exercice 10. L'équation cartésienne de F est

$$\begin{cases} x_1 + \dots + x_n = 0 \end{cases}$$

Il s'agit d'une système échelonné de rang 1, donc il possède n-1 variables libres. Ainsi, dim F=n-1 et une base de F est

$$((1,-1,0,\ldots,0),(1,0,-1,0,\ldots,),\ldots,(1,0,\ldots,0,-1)).$$

IV - Calcul matriciel

Solution de l'exercice 11. On décompose,

$$A = (a - b)I_3 + bJ.$$

De plus, on remarque que $J^2=3J$, puis on montre par récurrence que pour tout $k \ge 1$, $J^k=3^{k-1}J$.

Comme $I_3J = JI_3 = J$, les matrices $(a - b)I_3$ et J commutent. Ainsi,

59

d'après la formule du binôme de Newton,

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} ((a-b)I_{3})^{n-k} (bJ)^{k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (a-b)^{n-k} b^{k} J^{k}$$

$$= \binom{n}{0} (a-b)^{n} b^{0} J^{0} + \sum_{k=1}^{n} \binom{n}{k} (a-b)^{n-k} b^{k} 3^{k-1} J$$

$$= (a-b)^{n} I_{3} + \left(\frac{1}{3} \sum_{k=1}^{n} \binom{n}{k} (a-b)^{n-k} (3b)^{k}\right) J$$

$$= (a-b)^{n} I_{3} + \frac{1}{3} \left(\sum_{k=0}^{n} \binom{n}{k} (a-b)^{n-k} (3b)^{k} - \binom{n}{0} (a-b)^{n}\right) J$$

$$= (a-b)^{n} I_{3} + \frac{(a-b+3b)^{n} - (a-b)^{n}}{3} J$$

$$= (a-b)^{n} I_{3} + \frac{(a+2b)^{n} - (a-b)^{n}}{3} J.$$

Solution de l'exercice 12. D'après les notations,

$$B = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi,

$$B^{2} = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$B^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Alors, pour tout $k \geqslant 3$,

$$B^k = B^{k-3} \times B^3 = 0_3.$$

De plus, $I_3B=BI_3=B$. Ainsi, d'après la formule du binôme de Newton, pour tout $n\geqslant 2$,

$$A^{n} = (B + I_{3})^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} B^{k} I_{3}^{n-k}$$

$$= \binom{n}{0} B^{0} + \binom{n}{1} B + \binom{n}{2} B^{2} + 0_{3}$$

$$= I_{3} + nB + \frac{n(n-1)}{2} B^{2}.$$

On obtient ainsi les coefficients de A^n :

$$A^{n} = \begin{pmatrix} 1 & n\alpha & n\beta + \frac{n(n-1)}{2}\alpha\gamma \\ 0 & 1 & n\gamma \\ 0 & 0 & 1 \end{pmatrix}$$

On vérifie que cette formule reste valable pour n = 0 et n = 1.

V - Matrices & Espaces vectoriels

Solution de l'exercice 13.

1. Comme $AI_n = A$ et $I_nA = A$, alors $I_n \in \mathcal{C}(A)$. Comme $A0_n = 0_n$ et $0_nA = 0_n$, alors $0_n \in \mathcal{C}(A)$. Comme $A \times A = A \times A$, alors $A \in \mathcal{C}(A)$.

Plus généralement, tout polynôme en A appartient à $\mathscr{C}(A)$.

- **2.** On montre que $\mathscr{C}(A)$ est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$.
 - * Comme $0_n A = A0_n$, alors $0_n \in \mathscr{C}(A)$.
 - * Soit $\lambda \in \mathbb{R}$ et $M, M' \in \mathcal{C}(A)$. Montrer que $\lambda M + M' \in \mathcal{C}(A)$, i.e. $A(\lambda M + M') = (\lambda M + M')A$. En effet,

$$\begin{split} A(\lambda M+M') &= \lambda AM + AM', \;\; \text{par distributivit\'e du produit matriciel} \\ &= \lambda MA + M'A, \;\; \text{car } M, \; M' \in \mathscr{C}(A) \\ &= (\lambda M + M')A. \end{split}$$

Ainsi, $\mathscr{C}(A)$ est un espace vectoriel.

2º méthode. On pose $\varphi: M \mapsto AM - MA$. D'après la distributivité du produit matriciel, l'application φ est une application linéaire. Comme $\mathscr{C}(A) = \operatorname{Ker} \varphi$, alors $\mathscr{C}(A)$ est un espace vectoriel.

Solution de l'exercice 14.

1. Soit $(a,b) \in \mathbb{R}^2$ tel que

$$aI_2 + bA = 0.$$

Alors,

$$a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 4 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \iff \begin{cases} a+b & = 0 \\ 4a & = 0 \\ -3a+2b & = 0 \\ 2a & = 0 \end{cases}$$

Ainsi, a = b = 0 et la famille (I_2, A) est libre.

2º méthode. Comme A et I_2 ne sont pas colinéaires, alors la famille (I_2, A) est libre.

2. D'après la définition du produit matriciel,

$$A^2 = \begin{pmatrix} -11 & 12 \\ -9 & -8 \end{pmatrix}.$$

Comme $12 = 3 \times 4$ et $-9 = 3 \times (-3)$, on étudie

$$A^2 - 3A = \begin{pmatrix} -14 & 0\\ 0 & -14 \end{pmatrix}.$$

Ainsi,

$$A^2 = 3A - 14I_2.$$

3. Comme $A^2 = 3A - 14I_2$, alors $\text{Vect}\{I_2, A, A^2\} = \text{Vect}\{I_2, A\}$. Ainsi, (I_2, A) est une famille génératrice de F. D'après la question **1.**, (I_2, A) est une famille libre. Ainsi, (I_2, A) est une base de F et dim F = 2.

Solution de l'exercice 15.

1. D'après la définition du produit matriciel, $A^2 = \begin{pmatrix} 12 & 5 & 7 \\ -1 & 0 & -2 \\ 5 & 2 & 5 \end{pmatrix}$.

Soit a, b, c des réels tels que $aI_2 + bA + cA^2 = 0_3$. Alors,

$$\begin{pmatrix} a+3b+12c & b+5c & 2b+7c \\ -b-c & a & b-2c \\ 2b+5c & b+2c & a+5c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 D_{2}

$$\begin{cases} a + 3b + 12c &= 0 \\ b + 5c &= 0 \\ 2b + 7c &= 0 \\ -b - c &= 0 \\ a &= 0 \\ b - 2c &= 0 \\ 2b + 5c &= 0 \\ b + 2c &= 0 \\ a + 5c &= 0 \end{cases}$$

Ainsi, a=0 puis la dernière ligne fournit c=0 puis b=0. La famille (I_3,A,A^2) est donc libre.

Comme (I_3, A, A^2) est une famille génératrice de F, alors dim F = 3.

2. D'après la définition du produit matriciel,

$$A^3 = \begin{pmatrix} 45 & 19 & 29 \\ -7 & -3 & -2 \\ 23 & 10 & 12 \end{pmatrix}.$$

Ainsi,

$$A^3 - 3A^2 + 4A - I_3 = 0_3.$$

3. En utilisant la relation précédente,

$$A^{3} - 3A^{2} + 4A - I_{3} = 0$$
$$A^{3} - 3A^{2} + 4A = I_{3}$$
$$A(A^{2} - 3A + 4I_{3}) = I_{3}.$$

Ainsi, A est inversible et $A^{-1} = A^2 - 3A + 4I_3$.

4. On raisonne par récurrence.

Initialisation. Pour n = 0, $A^0 = 1I_3 + 0A + 0A^2 \in F$.

Hérédité. Soit $n \in \geq 3$. On suppose que $A^{n-1} \in F$. Alors, il existe a, b, c tels que

$$A^{n-1} = aI_3 + bA + cA^2$$

$$A \times A^{n-1} = A(aI_3 + bA + cA^2)$$

$$A^n = aA + bA^2 + cA^3$$

$$= aA + bA^2 + c(3A^2 - 4A + 3I_3)$$

$$= (3c + b)A^2 + (a - 4)A + 3cI_3$$

$$\in F.$$

5. D'après la question précédente,

$$\operatorname{Vect}\left\{A^{k}, k \in \mathbb{N}\right\} = \operatorname{Vect}\left\{I_{3}, A, A^{2}\right\} = F.$$

Ainsi,

$$\dim \operatorname{Vect}\left\{A^k,\,k\in\mathbb{N}\right\}=\dim F=3.$$

Solution de l'exercice 16.

1. D'une part, $\mathscr{S}_3(\mathbb{R}) \subset \mathscr{M}_3(\mathbb{R})$ et la matrice nulle est une matrice symétrique.

D'autre part, soit $A, B \in \mathscr{S}_3(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Alors, $A^T = A$ et $B^T = B$. Ainsi, comme la transposée est une application linéaire,

$$(\lambda A + B)^T = \lambda A^T + B^T = \lambda A + B.$$

La matrice $\lambda A + B$ est donc symétrique.

Finalement, $\mathscr{S}_3(\mathbb{R})$ est bien un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$.

2. L'ensemble des matrices symétriques de taille 3 est

$$\mathcal{S}_{3}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}, a, b, c, d, e, f \in R \right\} \\
= \left\{ a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
= \operatorname{Vect} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\$$

$$\operatorname{Soit} \mathscr{B} = \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On vérifie très rapidement que \mathscr{B} est une famille libre. De plus, il s'agit d'une famille génératrice de $\mathscr{S}_3(\mathbb{R})$, donc \mathscr{B} est une base de $\mathscr{S}_3(\mathbb{R})$ et dim $\mathscr{S}_3(\mathbb{R}) = 6$.

3. On vérifie comme pour la question **1.** que $\mathscr{S}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$.

On note $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$.

On montre ensuite que

$$\mathscr{S}_n(\mathbb{R}) = \text{Vect} \{ E_{i,j} + E_{j,i}, E_{\ell,\ell}, 1 \leq i < j \leq n, 1 \leq \ell \leq n \}$$

Comme cette famille est libre et génératrice de $\mathscr{S}_n(\mathbb{R})$, son nombre d'éléments est égal à la dimension de $\mathscr{S}_n(\mathbb{R})$. Or,

$$|\{\ell \ ; \ 1 \leqslant \ell \leqslant n\}| = n$$

$$|\{(i,j) \ ; \ 1 \leqslant i < j \leqslant n\}| = \binom{n}{2} = \frac{n(n-1)}{2}.$$

Ainsi,

$$\dim \mathscr{S}_n(\mathbb{R}) = n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}.$$

T.D. VI - Espaces vectoriels

Solution de l'exercice 17. La matrice A appartient à $\mathcal{M}_3(\mathbb{R})$ qui est un espace vectoriel de dimension $3^2=9$.

Comme la famille $(I_3, A, ..., A^9)$ est une famille de 10 vecteurs appartenant à un espace vectoriel de dimension 9, alors cette famille est liée.