Nombre:	
DNI:	

A1	A2	А3	В

Sean la matriz A de tamaño 100 x 100 y el vector b de tamaño 100 definidos como:

$$a_{ij} = \begin{cases} 100 \ (i+j) & si & i=j \\ i-j & si & i\neq j \end{cases} \qquad b_i = i/10$$

- A.- Responder a las siguientes cuestiones sobre el sistema lineal Ax = b:
 - 1. Sea la matriz A'el resultado de aplicar el método de Gauss al sistema Ax = b. Es decir, la matriz A'será de la forma:

$$A' = \begin{pmatrix} 1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

El valor de la posición a_{ij} es:

~	
u_{ii}	
ij	

2. Sean las matrices L y U el resultado de hacer una descomposición de tipo A=LU (descomposición LU <u>sin</u> permutación). Es decir, las matrices L y U serán de la forma:

$$L = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \quad U = \begin{pmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

El valor de las posiciones l_{ij} y u_{ij} es:

l_{ij}	
u_{ij}	

3. Resolver el sistema Ax = b utilizando el método de Gauss, la descomposición LU y los métodos iterativos de Jacobi y de Gauss-Seidel (con el vector x = (0,0,...,0,0) como condición inicial). Rellenar la siguiente tabla:

	TOLERANCIA	ITERACIONES	Valor de x_i
GAUSS			
LU			
JACOBI	Х		
GAUSS-SEIDEL		У	

B.- Realizar el ajuste por mínimos cuadrados de los datos contenidos en el fichero data_file.txt que podéis descargar de Moodle. Completar la siguiente tabla:

	Grado 1	Grado 2	Grado 3
Coeficiente	a_i =	a_i =	a_i =

NOTA: TODOS LOS RESULTADOS DEBEN DARSE CON 8 CIFRAS SIGNIFICATIVAS.