Dieses Dokument wurde unter der Creative Commons - Namensnennung-NichtKommerziell-Weitergabe unter gleichen Bedingungen (**CC by-nc-sa**) veröffentlicht. Die Bedingungen finden sich unter diesem Link.

Find any errors? Please send them back, I want to keep them!

# **Allgemeines**

#### Definitionen

- $\mathbb{N}^0 = \{0, 1, 2, \dots\}$
- $\mathbb{N}^{\setminus \{0\}} = \{1, 2, \dots\}$

**Alphabet:** endliche Menge von Zeichen  $\Sigma = \{a, b\}$ 

Wort Zeichenfolge  $w = abab \in \Sigma^*$ 

 $\Sigma^*$ : Menge der Wörter

 $\Sigma^+$ :  $\Sigma^* \setminus \{\varepsilon\}$  {}  $\{\varepsilon\} \neq \varepsilon \neq \{\varepsilon\}$ 

**Operator**  $\circ$ : Konkatenation  $\varepsilon \circ w = w, w \circ w = ww = w^2$ 

$$w^n = \underbrace{www \dots w}_{n-mal} \ n \in \mathbb{N}^0$$

 $|w_1|$ : Wortlänge |w| = 5

 $|w|_{\sigma}, \sigma \in \Sigma$  Anzahl  $\sigma$  in  $\Sigma_{|w|_a=3}$ 

Seiten A, B Mengen (Sprachen):  $A = \{\varepsilon, a, bba, bbabb, B = \{a, aa, aaa\}$ 

|A| Mächtigkeit = Anzahl der Elemente

**Sprache:** Teilmenge von  $\Sigma^*$ 

**Vereinigung**  $A \cup B = \{x \in \Sigma^* | x \in A \lor x \in B\}$ 

**Schnitt**  $A \cap B = \{c \in \Sigma^* | x \in A \land x \in B\}$ 

**Komplement**  $\overline{A} = \{x \in \Sigma^* | x \notin A\} = \Sigma^* \setminus A$ 

**Produkt**  $AB = \{xy \in \Sigma^* | x \in A \land y \in B\}$ 

De Morgan Regeln

$$\overline{A \cup B} = \overline{\overline{A} \cap \overline{B}}$$
$$\overline{A \cap B} = \overline{\overline{A} \cup \overline{B}}$$

#### Klassen

Sei  $\mathcal C$  eine Klasse von Sprachen.  $\mathcal C$  heisst vereinigungs- abgeschlossen  $\Leftrightarrow A \in \mathcal C \land B \in \mathcal C$  schnitt- komplement- produkt-

$$\begin{vmatrix} A \cup B \in \mathcal{C} \\ A \cap B \in \mathcal{C} \\ \overline{A} \in \mathcal{C} \\ AB \in \mathcal{C} \end{vmatrix}$$

A ist abgeschlossen gegen Vereinigung und Komplement  $\Leftrightarrow A$  ist abgeschlossen gegen Schnitt und Komplement.

$$A^{0} = \{\varepsilon\}$$

$$A^{1} = A$$

$$A^{n+q} = A^{n}A$$

$$A^{i}A^{j} = A^{i+j}$$

$$(A^{i})^{j} = A^{i\cdot j}$$

$$A^{*} = \bigcup_{n \geq 0} A^{n}$$

$$A^{+} = \bigcup_{n \geq 0} A^{n}$$

$$= A^{0} \cup A^{1} \cup A^{2} \cup \dots$$

$$= \bigcap_{n \geq 0} A^{n}$$

$$= A^{0} \cap A^{1} \cap A^{2} \cap \dots$$

$$\begin{aligned} & \text{Potenzmenge} = 2^A = \{B | B \subseteq A\} \\ & M_a = \{x \in \Sigma^* | x = n^a\} \\ & M_2 = \{1, 4, 9, 16, \dots\} \\ & M_3 = \{1, 8, 27, 64, \dots\} \\ & M_4 = \{1, 16, 81 \dots\} \\ & \bigcup_{i=2}^4 M_i = \{1, 4, 8, 9, 16, \dots\} \\ & \bigcap_{i=2}^4 M_i = \{1^12, 2^12, 3^12, \dots\} \\ & M = \{1, 2, 3\} \\ & 2^M = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \end{aligned}$$

Kreuzprodukt: Seien  $A_i$  Mengen,

$$A_1 \times A_2 \times A_3 \times \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n) | a_i \in A_i, i \in \mathbb{N}^n\}$$

$$\chi_i^n \le 1A_i = \begin{cases} \emptyset & i < 1 \\ A_1 & n = 1 \\ \chi_{i=1}^{n-1} A_i \times A_n & n > 1 \end{cases}$$

#### Relationen

Relationen,  $\tau_{A_i} \subseteq \chi_{i=1}^n A_i$  setzen Elemente von Mengen zueinander in Beziehung. Bsp:

$$\begin{split} \{a,b,\dots,z\}\tau\{1,2,\dots,26\} &= \{(a,1),(b,2),\dots,(z,26)\} \\ & \mathbb{N}^0 \leq \mathbb{N}^0 = \{(a,b)|a+c=b,\ a,b,c \in \mathbb{N}^0\} \end{split}$$

Eigenschaften von Relationen auf gleichen Mengen A:

reflexiv:  $\forall a \in A : a\tau a$ 

irreflexiv:  $\forall a \in A : \overline{a\tau a}$ 

symmetrisch:  $\forall a, b \in A : a\tau b \Rightarrow b\tau a$ 

antisymmetrisch:  $\forall a, b \in A : (a\tau b \land b\tau a) \Rightarrow a = b \text{ (antisymmetrisch} \Rightarrow \text{reflexiv)}$ 

asymmetrisch:  $\forall a, b \in A : a\tau b \Rightarrow \overline{b\tau a}$ 

**transitiv:**  $\forall a, b, c \in A : (a\tau b \land b\tau c) \Rightarrow a\tau c$ 

äquivalent:

Ordnungsrelationen Typ "≤": reflexiv, transitiv, antisymmetrisch

Ordnungsrelationen Typ "<": irreflexiv, transitiv, antisymmetrisch

 $\tau^+$  transitive Hülle

 $\tau^*$  reflexive, transitive Hülle

Satz:  $\tau^*$  ist die kleinste, reflexive und transitive Relation (Hülle), die  $\tau$  selbst umfasst.

$$geg\ A = \{1, 2, 3, 4, 5\}$$

$$R, S \subseteq A \times A$$
 
$$R = \{(1, 2), (2, 3), (2, 5), (3, 4), (5, 4)\}$$
 
$$S = \{(1, 3), (3, 5), (5, 1)\}$$

$$ges R^+, S^+, R^*, S^*$$

$$R^{+} = R \cup \{(1,3), (1,4), (2,4), (1,5)\}$$

$$R^{*} = R^{+} \cup \{(1,1), (2,2), (3,3), (5,5)\}$$

$$S^{+} = S^{+} \cup \{(1,5), (1,1), (3,1), (3,3), (4,5), (5,3)\}$$

$$S^{*} = S^{*} \cup \{(2,2), (4,4)\}$$

#### **Bsp**

a "ist blutsverwandt" auf Menge der Personen

**b** "x ist Teiler von y", d.h.  $\exists z \text{ mit } x \cdot z = y \ x, y, z \in \mathbb{Z}$ 

 $\mathbf{c} \ R \subseteq \mathbb{Z} \times \mathbb{Z} \ \mathrm{mit} \ R = \{(x,y)|xy>0\}$ 

**d** "w ist Präfix von v", d.h.  $\exists u \text{ mit } v = wu, \ u, v, w \in \Sigma^*, \ \Sigma \text{ sei Menge}$ 

|   | refl. | irrefl. | symm.    | antiymm. | asymm. | trans.   | äquiv. | ,,<" | ,,≤" |
|---|-------|---------|----------|----------|--------|----------|--------|------|------|
| a | V     | ×       | <b>V</b> | X        | X      | ×        | X      | X    | X    |
| b | V     | X       | X        | ×        | X      | <b>V</b> | X      | X    | X    |
| С | X     | X       | <b>V</b> | ×        | X      | <b>/</b> | X      | X    | X    |
| d | ~     | X       | X        | <b>✓</b> | X      | <b>V</b> | X      | V    | X    |

Äquivalenzklasse: Sei  $R \subseteq A \times A$  eine ÄR, dann heissen für  $a \in A$  die Mengen  $[a]_R := \{b \in A | aRb\}$  Äquivalenzklassen von R.

Partitionierung: Menge aller ÄK  $A/R := \{[a]_R | a \in A\}$ 

Index Anzahl der  $\ddot{A}K |A/_R|$ 

Bsp  $R = \{(x,y)|x \mod 2 = y \mod 2\}$  partitioniert  $\mathbb{N}^0$  in 2 ÄK:

- $[0]_a = \{0, 2, 3, \dots\}$
- $[1]_a = \{1, 3, 5, \dots\}$

# Automatentheorie und formale Sprachen

# Grammatik

Eine Grammatik ist ein 4-Tupel  $G = (V, \Sigma, P, S)$ 

**V** - Variblen

 $\Sigma$  - Terminal alphabet  $|V| < \infty$ 

P - Regeln/Produktionen

 $|\Sigma| < \infty$  $|P| < \infty$ 

S - Startvariable

# Chomsky-Hirarchie

Typ 0: (Phrasenstrukturgrammatik) - keine Einschränkungen

Typ 1: (kontextsensitiv) -  $(w_1 \to w_2) \Rightarrow (|w_1| \le |w_2|)$  (Wort wird nicht kürzer)

Typ 2: (kontextfrei) -  $(w_1 \to w_2 \Rightarrow (w_1 \in V))$   $w_1$  ist einzelne Variable

Typ 3:  $(\text{regul\"{a}r})$  -  $w_2 \in \Sigma \cup \Sigma V$  "rechte Seiten" von Regeln Terminalsymbol oder Terminalsymbole gefolgt von Variablen

Alle Sprachen der Typen 1,2 und 3 sind entscheidbar.

#### $\varepsilon$ -Sonderregelung (Zulassen des leeren Wortes $\varepsilon$ in Typ 1,2 oder 3)

- Regel hinzufügen:  $S \to \varepsilon$
- Verhindern von S auf rechter Seite von Regeln: Regel mit " $\rightarrow S$ " ersetzen durch " $\rightarrow S$ ""
- Zulassen von  $A \to \varepsilon$  (verändert Sprache nicht) Algorithmus:
  - 1. Zerlege  $V \to V_1, V_2, (A \Rightarrow^* \varepsilon) \in V_1 \text{ und } V_1 \cap V_2 = \emptyset.$
  - 2. Entferne alle  $A \to \varepsilon$ , füge für  $(B \to xAy)$   $(B \to xy)$  hinzu.

#### Wortproblem (Gehört ein Wort zu einer Sprache?)

 $(\exists Algorithmus)[(Algo terminiert in endl. Zeit \land (Algoentscheidet(x \in \mathcal{L}(G)) \lor (x \notin \mathcal{L}(G)))]$  $\Rightarrow$  das Wortproblem ist für Typ 1,2 und 3 entscheidbar (aber NP-hart für Typ 1)

# Syntaxbäume

Wurzel: S

Für  $i = 1, 2, ..., n \ A \rightarrow z \in P \Rightarrow |z|$  viele Söhne  $\rightarrow$  "weitere Kette"

Linksableitung: Variable am weitesten links wird abgeleitet.

Rechtsableitung: Variable am weitesten rechts wird abgeleitet.

mehrdeutige Grammatik: für ein x verschiedene Syntaxbäume möglich

- Mehrdeutigkeit kann oft beseitigt werden.
- Ist dies nicht möglich  $\Rightarrow$  inhärent mehrdeutig

# Backus-Naur-Form Bnf (Typ 2 Grammatiken)

Metaregeln für selbe linke Seite

$$\begin{pmatrix}
A & \to & \beta_1 \\
A & \to & \beta_2 \\
& \vdots \\
A & \to & \beta_3
\end{pmatrix}
A \to \beta_1 |\beta_2| \dots \beta_n$$

erweiterte Backus-Naur-Form Ebnf

$$A \to \alpha[\beta]\gamma \Rightarrow \begin{cases} A \to \alpha\gamma \\ A \to \alpha\beta\gamma \end{cases}$$
$$A \to \alpha\{\beta\}\gamma \Rightarrow \begin{cases} A \to \alpha\gamma \\ A \to \alpha\beta\gamma \\ B \to \beta\beta \\ B \to \betaB \end{cases}$$

# Reguläre Sprachen

# Endliche (deterministische) Automaten DFA

 $M = (Z, \Sigma, \delta, z_0, E)$ 

 ${\cal Z}\,$  Menge der Zustände

 $\Sigma$  Eingabealphabet

 $E\subseteq Z$ Menge der Endzustände

 $z_0$  Startzustand

 $\delta: z \times E \to z$ 

on Startzastaric

Überführungsfunktion

 $z \cap \Sigma = \emptyset$ 

 $|z| < \infty, \ |\Sigma| < \infty$ 

 $\rightarrow$  Zustandsgraphen

# akzeptierte Sprache

Die von M akzeptierte Sprache ist:

$$T(M)=\{x\in \Sigma^*|\hat{\delta}(z,e)\}$$
 wobe  
i
$$\hat{\delta}(z,\varepsilon)=z$$
 
$$\hat{\delta}(z,ax)=\hat{\delta}\left(\delta(z,a),x\right)$$

Jede durch Endliche Automaten erkennbare Sprache ist Regulär (Typ 3). Jede Reguläre Sprache ist durch einen Endlichen Autoamten erkennbar.

#### Nichtdeterministische Automaten

Ein nichtdeterministischer, endlicher Automat (NFA) wird spezifiziert durch ein 5-Tupel:

 $M = (Z, \Sigma, \delta, S, E)$  Z Menge der Zustände

 $\Sigma$  Eingabealphabet  $E \subseteq Z$  Menge der Endzustände

 $S \subseteq Z$  Menge der Startzustände  $\delta: Z \times E \to \mathcal{P}(z)$  Überführungsfunktion

 $z \cap \Sigma = \emptyset$   $|z| < \infty, |\Sigma| < \infty$ 

Jede durch einen NFA akzeptierbare Sprache ist auch durch einen DFA akzeptierbar.

Für jede Reguläre Grammatik G gibt es einen NFA M mit L(G) = T(M).

# regulärer Ausdruck

Ø ist regulärer Ausdruck.

 $\varepsilon$  ist regulärer Audruck.

 $a \in \Sigma$  ist regulärer Audruck.

 $\alpha\beta, (\alpha|\beta), (\alpha)^*$  sind reguläre Ausdrücke, wenn  $\alpha, \beta$  reguläre Ausdrücke sind.

$$\gamma := \emptyset \qquad \Rightarrow L(\gamma) = \emptyset \qquad \qquad \gamma := (\alpha | \beta) \qquad \Rightarrow L(\gamma) = L(\alpha) \cup L(\beta) \\
\gamma := \varepsilon \qquad \Rightarrow L(\gamma) = \{\varepsilon\} \qquad \qquad \gamma := (\alpha)^* \qquad \Rightarrow L(\gamma) = L(\gamma)^* \\
\gamma := \alpha \qquad \Rightarrow L(\gamma) = \{\alpha\} \qquad \qquad \gamma := \alpha \alpha = \alpha^2 \\
\gamma := \alpha \beta \qquad \Rightarrow L(\gamma) = L\{\alpha\} L\{\beta\}$$

Die Menge der durch Reguläre Ausdrücke beschreibbaren Sprachen ist genau die Menge der Regulären Sprachen.

#### Pumping-Lemma Schleifenlemma, Iterationslemma, Lemma von Bar-Hillel, uvw-Theorem

Sei L eine Reguläre Sprache. Dann gibt es eine Zahl n so, dass sich alle Wörter  $x \in L$  mit  $|x| \ge n$  zerlegen lasen in x = uwv, so dass folgende Eigenschaften erfüllt sind:

- $|v| \ge 1$
- $|uv| \leq n$
- $\forall i \in \{0, 1, \dots\}$  gilt:  $uv^i w \in L$

- → Zum Erkennen von nicht regulären Sprachen (geht nicht bei allen).
- $\rightarrow v^i$ -Schleifen

Anwendung: Annehmen, L sei regulär  $\Rightarrow$ Wenn Widerspruch, L nicht regulär.

# Äquivalenzrelationen und Minimalautomaten

 $xR_Ly$ gdw für alle  $z\in \Sigma^*: xz\in L$ 

Eine Sprache L ist genau dann Regulär, wenn der Index von  $R_L$  endlich ist:

$$L \text{ regul\"ar } \Leftrightarrow Index(R_L) < \infty$$

Index: Anzahl erzeugbarer Äquivalenzklassen

 $\ddot{A} quivalenzklassenautomat \equiv Minimalautomat \ (nur\ DFA!)$   $Minimalautomat \rightarrow Minimalautomat\ mit\ min\ Zustandszahl$ 

# Algorithmus Minimalautomat $\mathcal{O}(n^2)$

Eingabe: DfA, alle Zustände erreichbar. Ausgabe: zu verschmelzende Zustände

- 1. Tabelle mit Zustandspaaren  $\{z, z'\}, z \neq z'$
- 2. Markiere Paare  $\{z, z'\}$  mit  $z \in E$  und  $z' \notin E$  und umgekehrt
- 3. unmarkierte Felder: Teste, ob  $\underbrace{\{\delta(z,a),\delta(z',a)\}}_{\text{1 hop!}}$  markiert ist, wenn ja, markiere  $\{z,z'\}$
- 4. Punkt 3 widerholen, bis keine Änderung mehr in der Tabelle passiert.
- 5. Verschmelze unmarkierte Paare.

#### Abschlusseigenschaften

Reguläre Sprachen sind abgeschlossen unter:

- Vereinigung
- Schnitt
- Komplement
- Produkt
- Stern

#### Entscheidbarkeit

Wortproblem: Linearer Aufwand bei bekanntem DFA

**Leerheitsproblem:** Entscheidbar (DfA, kein Weg  $S \to E$ )

 $\textbf{Endlichkeitsproblem:} \ T(M) = \infty \Leftrightarrow S \to \circlearrowright \to E$ 

Schnittproblem:  $\rightarrow$  Leerheitsproblem

Äquivalenzproblem DfA  $\to$  Minimalautomat  $\to$  Isomorphie checken  $\to \mathcal{O}(n)$ 

$$L_1 = L_2 \Leftrightarrow (L_1 \cap \overline{L_2}) \cup (L_2 \cap L_1) = \emptyset$$

 $\rightarrow$  Leerheitsproblem  $\rightarrow$  NP-hart

# Kontextfreie Sprachen

korrekt geklammerte Ausdrücke

#### Normalformen

Chromsky-Normalform: (CNF) Alle Regeln haben die Form  $A \to BC$  oder  $A \to a$ 

Zu jeder Kontextfreien Grammatik G mit  $\varepsilon \notin L(G)$  gibt es eine Chromsky-Normalform-Grammatik G' mit L(G) = L(G').

**Greibach-Normalform:** (GNF) Alle Regeln haben die Form  $A \to aB_1B_2 \dots B_k$   $(K \ge 0)$ 

Erweiterung der Regulären Sprachen, hier nur k=0 und k=1

Zu jeder Kontextfreien Grammatik G mit  $\varepsilon \notin L(G)$  gibt es eine Greibach-Normalform-Grammatik G' mit L(G) = L(G').

# Pumpinglemma

Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl  $n \in \mathbb{N}$ , so adss sich alle Wörter  $z \in L$  mit  $|z| \ge n$  zerlegen lassen in z = uvwxy mit folgenden Eigenschaften:

- $\bullet |vx| \ge 1$
- $|vwx| \leq n$
- $\forall i \geq 0$  gilt  $uv^i w x^i y \in L$

Jede kontextfreie Sprache über einem einelementigen Alphabet ist bereits regulär.

# Abschlusseigenschaften

Die Kontextfreien Sprachen sind...

... abgeschlossen unter

Vereinigung

Produkt

• Stern

... nicht abgeschlossen unter

• Schnitt

• Komplement

#### Der CYK-Algorithmus

```
Data: x = a_1 a_2 \dots a_n
 1 initialisation;
 2 for i := 1 to n_{(j=1)} do
 T[i,1] := \{A \in V | A \to a_i \in P\}
 4 end
 5 for j := 2 to n_{(j>1)} do
       for i := 1 to n + 1 - j do
           T[i,j] := \emptyset for k := 1 to j-1 do
            T[i,j] := T[i,j] \cup \{A \in V | A \to BC \in P \land B \in T[i,k] \land C \in T[i+k,j-k]\}
 8
           \mathbf{end}
9
       \mathbf{end}
10
11 end
12 if S \in T[1, n] then
13 , x liegt in L(G)"
14 else
15 | ,,x liegt nicht in L(G)"
```

Algorithm 1: CYK

# Kellerautomaten (PDA)

Ein (nichtdeterministischer) Kellerautomat (pushdown automaton) wird angegeben durch ein 6-Tupel:  $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ 

- $\bullet$  Z endliche Zustandsmenge
- $\Sigma$  Eingabealphabet
- $\Gamma$  Kelleralphabet

- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^* \text{die})$ Überfühungsfunktion
- $z_0 \in Z$  Startzustand
- $\# \in \Gamma$  unterstes Kellerzeichen

Um Schreibarbeit zu sparen, schreibt man statt  $(z', x) \in \delta(z, a, A)$  einfach  $zaA \to z'x$ .

Eine Sprache L ist kontextfrei genau dann, wenn L von einem nichtdeterministischen Kellerautomaten erkannt wird.

# Deterministisch kontextfreie Sprachen

Ein Kellerautomat M heisst deterministisch, falls für alle  $z \in Z, a \in \Sigma, A \in \Gamma$  gilt:  $|\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \le 1$ .

Hinzu kommt, dass deterministisch kontextfreie Kellerautomaten per Endzustand akzeptieren, nicht per leerem Keller.

Eine Sprache heisst deterministisch kontextfrei, falls sie von einem deterministischen Kellerautomaten erkannt wird.

#### Abgeschlossenheit

Deterministisch kontextfreie Sprachen sind.....abgeschlossen unter:

• Komplement

... nicht abgeschlossen unter:

- Schnitt
- Vereinigung

Zudem ist der Schnitt einer deterministisch kontextfreien Sprache mit einer regulären Sprache wieder deterministisch kontextfrei.

#### Entscheidbarkeit

Wortproblem CYK

**Leerheitsproblem**  $CNF \rightarrow$ 

- 1. Markiere Variablen, die auf Terminale ableiten  $A \rightarrow a$
- 2. markiere sukzessive alle Variablen, die auf diese führen  $A \to BC$  (B, C bereits markiert)
- 3. Wenn die Startvariable nicht markiert ist, ist die Sprache leer.

#### Endlichkeitsproblem Pumping Lemma

Äquivalenzproblem

# Kontextsensitive und Typ-0-Sprachen

#### Kuroda-Normalform

Vergleichbar mit Chromsky-Normalform

Eine Typ 1-Grammatik ist in Kuroda-Normalform, falls alle Regeln eine der 4 Formen haben:

$$A \rightarrow a, A \rightarrow B, A \rightarrow BC, AB \rightarrow CD$$

hierbei stehen A, B, C, D für Variablen und a für ein Terminalsymbol.

Für jede Typ-1 Grammatik G mit  $\varepsilon \notin L(G)$  gibt es eine Grammatik G' in Kuroda-Normalform mit L(G) = L(G').

#### Turingmaschine

 ${\bf Turing maschinen\ sind\ grunds\"{a}tzlich\ nicht determinist isch}.$ 

Eine Turingmaschine ist gegeben durch ein 7-Tupel  $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ 

- $\bullet$  Z endliche Zustandsmenge
- $\Sigma$  Eingabealphabet
- $\Gamma \supset \Sigma$  Arbeitsalphabet
- $\delta: Z \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$  im deterministischen Fall (bzw.  $\delta: Z \times \Gamma \to \mathcal{P}(Z \times \Gamma \times \{L, R, N\})$ ) im nichtdeterministischen Fall) die Überführungsfunktion
- $z_0 \in Z$  der Startzustand
- Ť
- $\square \in \Gamma \Sigma$  das Blank
- $E \subseteq Z$  Menge der Endzustände

Dabei bedeutet  $\delta(z, a) = (z', b, x)$ : Wenn sich M im Zustand z befindet und unter dem Schreib-Lesekopf das Zeichen a steht, so geht M im nächsten Schritt in den Zustand z' über, schreibt (auf den Platz von a) b auf das Band und führt danach die Kopfbewegeung  $x \in \{L, R, N\}$  aus.

Eine Konfiguration einer Turingmaschine ist ein Wort  $k \in \Gamma^* Z \Gamma^*$ .

Konfiguration = Momentaufnahme  $k = \alpha z \beta$  mit z aktueller Zustand.

Definieren auf Menge der Konfigurationen zweistellige Relation  $\vdash$  1 Schritte $\vdash^*$ mehrere Schritte

$$a_1 \dots a_m z b_1 \dots b_n \vdash \begin{cases} a_1 \dots a_m z' c b_2 \dots b_n, & \delta(z, b_1) = (z', c, N), m \ge 0, n \ge 1 \\ a_1 \dots a_m c z' b_2 \dots b_n, & \delta(z, b_1) = (z', c, R), m \ge 0, n \ge 2 \\ a_1 \dots a_m z' c b_2 \dots b_n, & \delta(z, b_1) = (z', c, L), m \ge 1, n \ge 1 \end{cases}$$

Die von einer Turingmascheine M akzeptierte Sprache ist wie folgt definiert:

$$T(M) = \{ x \in \Sigma^* | z_0 x \vdash^* \alpha z \beta; \alpha, \beta \in \Gamma^*; z \in E \}$$

#### linear beschränkte Turingmaschine (LBA)

Eine nichteterministische Turingmaschine heisst linear beschränkt, wenn für alle  $a_1 a_2 \dots a_{n-1} a_n \in \Gamma^+$  und alle Konfigurationen  $\alpha z \beta$  mit  $z_0 a_1 a_2 \dots a_{n-1} \hat{a_n} \vdash^* \alpha z \beta$  gilt  $|\alpha \beta| = n$ . Die von einer linear beschränkten Turingmaschine m akzeptierte Sprache ist wie folgt definiert.

$$T(M) = \{a_1 a_2 \dots a_{n-1} \in \Sigma^* | z_0 a_1 a_2 \dots a_{n-1} \hat{a_n} \vdash^* \alpha z \beta, \ \alpha, \beta \in \Gamma^*; \ z, \in E\}$$

Die von linear beschränkten, nichtdeterministischen Turingmaschine (LBAs) akzeptierten Sprachen sind genau die kontextsensitiven (TYP 1) Sprachen.

Die durch algemeine Turingmaschinen akzeptierbaren Sprachen sind genau die Typ 0-Sprachen.

Eine Mehrband-Turingmaschine ist eine Maschine mit  $k \geq 1$  Bändern und k Schreib-Leseköpfen. Sie kann daher auf jedem Band unabhängig agieren.

Zu jeder Mehrbandturingmaschine M gibt es eine (Einband-)Turingmaschine M' mit T(M) = T(M'), bzw so, dass M' dieselbe Funktion berechnet wie M.

# Überblick

# Beschreibungsmittel

| Typ 3                       | reguläre Grammatik                      |
|-----------------------------|-----------------------------------------|
|                             | DfA                                     |
|                             | NFA                                     |
|                             | regulärer Ausdruck                      |
| Deterministisch kontextfrei | deterministische Kellerautomaten (DPDA) |
| Typ 2                       | kontextfreie Gramatik                   |
|                             | Kellerautomat PDA                       |
| Typ 1                       | kontextsensitive Grammatik linear       |
|                             | beschränkter Automat LBA                |
| Typ 0                       | Typ 0-Grammatik                         |
|                             | Turingmaschine TM                       |

#### Determinismus und Nichtdeterminismus

| nichtdet. Automat | determ. Automat | äquivalent?   |
|-------------------|-----------------|---------------|
| Nfa               | Dfa             | <b>✓</b>      |
| Pda               | DPDA            | X             |
| LBA               | Dlba            | ? Lba-Problem |
| Тм                | Dтм             | V             |

#### Abschlusseigenschaften

|          | Schnitt  | Vereinigung | Komplement | Produkt  | Stern    |
|----------|----------|-------------|------------|----------|----------|
| Typ 3    | <b>✓</b> | <b>✓</b>    | <b>✓</b>   | <b>V</b> | V        |
| Det. kf. | X        | X           | <b>✓</b>   | X        | X        |
| Typ 2    | X        | <b>✓</b>    | X          | <b>V</b> | <b>V</b> |
| Typ 1    | <b>V</b> | <b>✓</b>    | <b>✓</b>   | <b>V</b> | <b>V</b> |
| Typ 0    | <b>V</b> | <b>✓</b>    | X          | <b>V</b> | V        |

#### Entscheidbarkeit

|          | Wort- | Leerheits- | Äquivalenz- | Schnitt- |
|----------|-------|------------|-------------|----------|
| Typ 3    | V     | <b>✓</b>   | <b>✓</b>    | <b>V</b> |
| Det. kf. | V     | <b>✓</b>   | <b>✓</b>    | X        |
| Typ 2    | V     | <b>✓</b>   | X           | X        |
| Typ 1    | V     | X          | X           | X        |
| Typ 0    | X     | X          | X           | X        |

# Wortproblem (Komplexität)

| Typ 3 (Dfa gegeben) | lineare Komplexität                |
|---------------------|------------------------------------|
| Det.kf.             | lineare Komplexität                |
| Typ 2 (Cnf gegeben) | $\mathcal{O}(n^3)$                 |
| Typ 1               | exponentielle Komplexität, NP-hart |
| Typ 0               | unlösbar                           |

# Berechenbarkeitstheorie

#### Churchse These

Die durch die formale Definition der Turing-Berechenbarkeit (äquivalent: While-Berechenbarkeit, Goto-Berechenbarkeit,  $\mu$ -Rekursivität) erfasste Klasse von Funktionen stimmt genau mit der im intuitiven Sinne berechenbaren Funktionen überein.

# Turing-Berechenbarkeit

Eine Funktion  $f: \mathbb{N}^k \to \mathbb{N}$  heisst *Turingberechenbar*, falls es eine (deterministische) Turingmaschine M gibt, so dass für alle  $n_1, \ldots, n_k, m \in \mathbb{N}$  gilt:

$$f(n_1, \dots n_k) = m$$

genau dann, wenn

$$z_0bin(n_1)\#bin(n_2)\#\dots\#bin(n_k)\vdash^*\square\dots\square z_ebin(m)\square\dots\square$$

wobei  $z_e \in E$ , bin(n) ist die binäre Darstellung der Zahl  $n \in \mathbb{N}$ .

Eine Funktion  $f: \Sigma^* \to \Sigma^*$  heisst *Turingberechenbar*, falls es eine (deterministische) Turingmaschine M gibt, so dass für alle  $x, y \in \Sigma^*$  gilt:

$$f(x) = y$$

genau dann wenn

$$z_0x \vdash^* \Box \dots \Box z_e \Box \dots \Box$$

wobei  $z_e \in E$ 

Man beachte, dass beide Definitionen die Turingmaschine in eine Endlosschleife übergehen kann, wenn f(x) = undefiniert.

# LOOP-, WHILE- und GOTO-Berechenbarkeit

#### LOOP-Programme

Variablen:  $x_0 x_1 x_2 \dots$ 

Konstanten: 0 1 2 ...

Trennsymbole: ; :=

Operationszeichen + -

Schlüsselwörter: Loop, Do, End

Eine Funktion  $f: \mathbb{N}^k \to \mathbb{N}$  heisst Loop-berechenbar, falls es ein Loop-Programm P gibt, dass f in dem Sinne berechnet, dass P, gestartet mit  $n_1, \ldots, n_k$  in den Variablen  $x_1, \ldots, x_k$  (und 0 in den restlichen Variablen) stoppt mit dem Wert  $f(n_1, \ldots, n_k)$  in der Variablen  $x_0$ .

# WHILE-Programme

Wir erweitern Loop-Programme durch das Konzept der While-Schleife:

$$WHILEx_i \neq 0DOPEND$$

Eine Funktion  $f: \mathbb{N}^k \to \mathbb{N}$  heisst WHILE-berechenbar, falls es ein WHILE-Programm gibt P gibt, das f in dem Sinne berechnet, dass P, gestartet mit  $n_1, \ldots, n_k$  in den Variablen  $x_1, \ldots, x_k$  (und 0 in den restlichen Fällen) stoppt mit dem Wert  $f(n_1, \ldots, n_k)$  in der Variablen  $x_0$ , sofern  $f(n_1, \ldots, n_k)$  definiert ist, ansonsten stoppt P nicht.

Turingmaschinen können While-Programme simulieren. Dass heisst, jede While-berechenbare Funktion ist auch Turing-berechenbar.

# **GOTO-Programme**

Goto-Programme bestehen aus Sequenzen von Anweisungen  $A_i$ , die jeweils durch eine Marke  $M_i$  eingeleitet werden:

$$M_1: A_1; M_2: A_2; \ldots; M_k: A_k$$

Als mögliche Anweisungen  $A_i$  sind zugelassen:

Wertzuweisungen:  $x_i := x_j \pm c$ 

unbedingter Sprung: Goto  $M_i$ 

bedingter Sprung: If  $x_i = c$  Then Goto  $M_i$ 

Stopanweisung HALT

Jedes While-Programm kann durch ein Goto-Programm simuliert werden. Das heisst, jede While-berechenbare Funktion ist auch Goto-berechenbar.

Jedes Goto-Programm kann durch ein While-Programm (mit nur einer While-Schleife) simuliert werden. Also ist jede Goto-berechenbare Funktion auch While-berechenbar

#### Kleensche Normalform für While-Programme

Jede While-berechenbare Funktion kann durch ein While-Programm mit nur einer While-Schleife berechnet werden.

Goto-Programme können Turingmaschinen simulieren. Also ist jede Turingberechenbare Funktion auch Goto-berechenbar.



#### Primitiv und $\mu$ -rekursive Funktionen

# $Pr\"{u}fungsrelevant?$

#### Halteproblem, Unentscheidbarkeit, Reduzierbarkeit

Eine Menge  $A \subseteq \Sigma^*$  heisst *entscheidbar*, falls die *charakteristische Funktion* von A, nämlich  $\chi_A : \Sigma^* \to \{0,1\}$ , berechenbar ist. Hierbei gilt für alle  $w \in \Sigma^*$ :

$$\chi_A(w) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}$$

Eine Menge  $A \subseteq \Sigma^*$  heisst semi-entscheidbar, falls die "halbe" charakteristische Funktion von A, nämlich  $\chi_A : \Sigma^* \to \{0,1\}$ , berechenbar ist. Hierbei gilt für alle  $w \in \Sigma^*$ :

$$\chi_A(w) = \begin{cases} 1, & w \in A \\ undefiniert, & w \notin A \end{cases}$$



Eine Sprache A ist genau dann entscheidbar, wenn sowohl A, als auch  $\overline{A}$  semi-entscheidbar sind.

Eine Sprache ist genau dann semi-entscheidbar, wenn sie rekursiv aufzählbar ist.

Äquivalente Aussagen:

- A ist rekursiv aufzählbar.
- A ist semi-entscheidbar.
- A ist vom Typ 0.
- A = T(M) für Turingmaschine M

- $\chi'_A$  ist (Turing-, While-, Goto-) berechenbar.
- A ist Definitionsbereich einer berechenbaren Funktion.
- A ist Wertebereich einer berechenbaren Funktion.

#### Halteproblem

Turingmaschinen sind als Wort schreibbar. Dazu nummerieren wir Elemente von  $\Gamma$  und Z durch. Hierbei sei festgelegt, welche Nummern die Symbole  $\square$ , 0, 1, # sowie Start- und Endzustände erhalten.

$$\Gamma = \{a_0, a_1, \dots, a_k\}$$
  
 $Z = \{z_0, z_1, \dots, z_k\}$ 

Jeder  $\delta$ -Regel ordnen wir ein Wort zu

$$\delta(z_i, a_j) = (z_{i'}, a_{j'}, y) \Rightarrow w_{i,j,i',j',y} = \#\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#bin(m)$$

wobei

$$m = \begin{cases} 0, & y = R \\ 1, & y = L \\ 2, & y = N \end{cases}$$

Somit erhalten wir einen Code für die Turingmaschine über dem Alphabet  $\{0, 1, \#\}$ . Sei  $\hat{M}$  eine beliebige, feste Turingmaschine. Dann können wir für jedes Wort  $w \in \{0, 1\}^*$  festlegen, dass  $M_w$  eine Turingmaschine bezeichnet:

$$M_w = \begin{cases} M, & \text{falls } w \text{ Codewort von } M \text{ ist} \\ \hat{M}, & \text{sonst} \end{cases}$$

Unter dem speziellen Halteproblem oder Selbstanwendbarkeitsproblem verstehen wir die Sprache

$$K = \{w \in \{0,1\}^* | M_w \text{ angesetzt auf } w \text{ hält (im Endzustand)}\}$$

Das spezielle Halteproblem ist nicht entscheidbar.

#### Reduktion

Seien  $A \subseteq \Sigma^*$  und  $B \subseteq \Gamma^*$  Sprachen. Dann heisst A auf B reduzierbar - symbolisch mit  $A \leq B$  bezeichnet - falls es eine totale und berechenbare Funktion  $f: \Sigma^* \to \Gamma^*$  gibt, so dass für alle  $x \in \Sigma^*$  gilt:

$$x \in A \iff f(x) \in B$$

Falls  $A \leq B$  und B entscheidbar (bzw. semi-entscheidbar), dann ist auch A entscheidbar (bzw. semi-entscheidbar).

Das (allgemeine) Halteproblem ist die Sprache

$$H = \{w \# x | M_w \text{ angesetzt auf } w \text{ hält}\}$$

Das allgemeine Halteproblem H ist nicht entscheidbar.

 $K \leq H$ , da K Spezialfall von H

Das Halteproblem auf leerem Band ist die Sprache

$$H = \{w \# x | M_w \text{ angesetzt auf } w \text{ hält}\}$$

Das Halteproblem auf leerem Band  $H_0$  ist nicht entscheidbar.

 $H \leq H_0$ , da Turingmaschine einfach das nichtleere Band von H auf das leere Band von  $H_0$  schreiben kann.

#### Satz von Rice

Sei  $\mathcal{R}$  die Klasse aller Turing-berechenbaren Funktionen. Sei  $\mathcal{S}$  eine beliebige Teilmenge hiervon (ausgenommen  $\mathcal{S} = \emptyset$  und  $\mathcal{S} = \mathcal{R}$ ). Dann ist die Sprache

$$C(S = \{w | \text{ die von } M_w \text{ berechnete Funktion liegt in } S\}$$

unentscheidbar.

# Das Postsche Korrespondenzproblem (PCP)

**gegeben:** Eine endliche Folge von Wortpaaren  $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ , wobei  $x_i, y_i \in \Sigma^+$ .

**gefragt:** Gibt es eine Folge von Indizes  $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}, n \ge 1$ , mit  $x_{i_1}, x_{i_2}, \ldots, x_{i_n} = y_{i_1}, y_{i_2}, \ldots, y_{i_n}$ ?

Das PCP ist semi-entscheidbar Immer längere Indexfolgen daraufhin untersuchen, ob sie Lösung sind..

#### modifiziertes Postsches Korrespondenzproblem (MPCP)

gegeben: wie PCP

**gefragt:** Gibt es eine Lösung  $i_1, i_2, \ldots, i_n$  mit  $i_1 = 1$ 

 $\mathsf{MPCP} \leq \mathsf{PCP} \text{ und } H \leq \mathsf{MPCP}$ 

Das Postsche Korrespondenzproblem ist untentscheidbar.

Das Postsche Korrespondenzproblem ist bereits untentscheidbar, wenn man sich auf das Eingabealphabet  $\{0,1\}$  beschränkt.

#### Unentscheidbare Grammatik-Probleme

nicht Prüfungsrelevant

# Komplexitätstheorie

# Komplexitätsklasse und P-NP-Problem

Sei  $f: \mathbb{N} \to \mathbb{N}$  eine Funktion. Die Klasse TIME(f(n)) besteht aus allen Sprachen A, für die es eine deterministische Mehrbandturingmaschine M gibt mit A = T(M) und  $time_M(x) \le f(|x|)$ . Hierbei bedeutet  $time_M : \Sigma^* \to \mathbb{N}$  die Anzahl der Rechenschritte von M bei Eingabe x.

Ein Polynom ist eine Funktion  $p: \mathbb{N} \to \mathbb{N}$  der Form

$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, a_i \in \mathbb{N}, k \in \mathbb{N}$$

Die Komplexitätsklasse P ist wie folgt definiert:

 $\mathsf{P} = \{A | \text{ es gibt eine Turingmaschine } M \text{ und ein Polynom } p \text{ mit } T(M) = A \text{ und } time_M(x) \leq p(|x|) \}$   $= \bigcup_{p \text{ Polynom}} TIME(p(n))$ 

Die Klasse P (ebenso wie größere Komplexitätsklassen wie  $TIME(2^n)$  oder  $TIME\left(2^{2^{\dots^{2^2}}}\right)n$ -mal) ) sind immer noch in der Klasse der primitiv rekursiv bzw Loopberechenbaren Sprachen enthalten

Für nichtdeterministische Turingmaschinen M sei

$$ntime_{M}(x) = \begin{cases} min \text{ Länge einer akzeptierenden Rechnung von } M \text{ auf } x, & x \in T(M) \\ 0, & x \not\in T(M) \end{cases}$$

Sei  $f: \mathbb{N} \to \mathbb{N}$  eine Funktion. Die Klasse NTIME(f(n)) besteht aus allen Sprachen A, für die es eine nichtdeterministische Mehrband-Turingmaschine M gibt mit A = T(M) und  $ntime_M(x) \le f(|x|)$ .

Weiter definieren wir

$$\mathsf{NP} = \bigcup_{p \text{ Polynom}} NTIME(p(n))$$

P-NP-Problem

bekannt:  $P \subseteq NP$ 

erhofft: P = NP

vermutet:  $P \neq NP$ 



# NP-Vollständigkeit

Seien  $A \subseteq \Sigma^*$  und  $B \subseteq \Gamma^*$  Sprachen. Dann heisst A auf B polynomial reduzierbar - symbolisch mit  $A \leq_p B$  bezeichnet - falls es eine totale und mit polynomieller Komplexität berechenbare Funktion  $f: \Sigma^* \to \Gamma^*$  gibt, so dass für alle  $x \in \Sigma^*$  gilt:

$$x \in A \iff f(x) \in B$$

Falls  $A \leq_p B$  und  $B \in P$  (bzw.  $B \in NP$ ), so ist auch  $A \in P$  (bzw.  $A \in NP$ )

Eine Sprache A heisst NP-hart, falls für alle Sprachen  $L \in NP$  gilt:  $L \leq_p A$ .

Eine Sprache A heisst NP-vollständig, falls A NP-hart ist und  $A \in NP$  gilt.

Sei A NP vollständig. Dann gilt  $A \in P \Leftrightarrow P = NP$ . falls es einnmal so wäre...



#### NP-vollständige Probleme

Das Erfüllbarkeitsproblem der Aussagenlogik, kurz Sat, ist das Folgende:

gegeben: eine Formel F der Aussagenlogik

**gefragt:** Ist F erfüllbar, d.h. gibt es eine Belegung der Variablen mit Konstanten  $\in \{0,1\}$ , so dass F den Wert 1 erhält?

$$\mathsf{SAT} = \{code(F) \in \Sigma^* | F \text{ ist eine erfüllbare Formel der Aussagenlogik}\}$$

$$\Sigma = \{(,),\neg,\wedge,\vee,\times,0,1\}$$

Das Erfüllbarkeitsproblem der Aussagenlogik, Sat, ist NP-vollständig.

