Dynamic Programming

Hengfeng Wei

hfwei@nju.edu.cn

June 11 - June 19, 2017

Dynamic Programming

- 1D DP
- 2D DF
- OP on Graphs
- 4 The Knapsack Problem

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1 \text{ (Problem 7.2)}$$

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$S(i) = 1 + \min\{N(i-1), N(i/2)(\text{if } n\%2 = 0), N(i/3)(\text{if } n\%3 = 0)\}$$

$$S(1) = 0$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

"Mathematics may not be ready for such problems."

— Paul Erdős

Longest increasing subsequence (Problem 7.3)

- Given an integer array $A[1 \dots n]$
- ► To find (the length of) a longest increasing subsequence.

$$5, 2, 8, 6, 3, 6, 9, 7 \implies 2, 3, 6, 9$$


```
Subproblem: L(i) : the length of the LIS of A[1 \dots i] Goal: L(n)
```

Subproblem: L(i): the length of the LIS of $A[1 \dots i]$

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 \dots i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Subproblem: L(i): the length of the LIS of A[1...i]

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 \dots i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Init:

$$L(0) = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Longest path distance in the DAG!

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- \blacktriangleright To find (the sum of) a maximum-sum subarray of A
 - ightharpoonup mss = 0 if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- ightharpoonup To find (the sum of) a maximum-sum subarray of A
 - ightharpoonup mss = 0 if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: the sum of the MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- \blacktriangleright To find (the sum of) a maximum-sum subarray of A
 - $ightharpoonup \operatorname{mss} = 0$ if all negative

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: the sum of the MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Make choice: Is $a_i \in MS[i]$?

Recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1], ???\}$$

Subproblem: $\mathsf{MSS}[i]$: the sum of the $\mathsf{MS}[i]$ ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1] + a_i, 0\} \text{ (prove it!)}$$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$MSS[i] = max\{MSS[i-1] + a_i, 0\}$$
 (prove it!)

Init:

$$\mathsf{MSS}[0] = 0$$

Subproblem: MSS[i]: the sum of the MS[i] ending with a_i or 0

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: where does the MS[i] start?

Recurrence:

$$MSS[i] = max\{MSS[i-1] + a_i, 0\}$$
 (prove it!)

Init:

$$\mathsf{MSS}[0] = 0$$

Time: $\Theta(n)$

Maximum-product subarray

Maximum-product subarray (Problem 7.4)

Reconstructing string (Problem 7.9)

- ▶ String $S[1 \cdots n]$
- ▶ Dict for lookup:

$$dict(w) = \begin{cases} \text{ true } & \text{if } w \text{ is a valid word} \\ \text{false } & \text{o.w.} \end{cases}$$

▶ Is $S[1 \cdots n]$ valid (reconstructed as a sequence of valid words)?

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Subproblem: V[i]: is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Init:

$$V[0] = \mathsf{true}$$

Time: $O(n^2)$

Hotel along a trip (Problem 7.15)

- ▶ Hotel sequence (distance): $a_0 = 0, a_1, \dots, a_n$
- $ightharpoonup a_0 \leadsto a_n$
- Stop at only hotels
- ► Cost: $(200 x)^2$
- ► To minimize overall cost

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: what is the last but one hotel a_i to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: what is the last but one hotel a_i to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Init:

$$C[0] = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Highway restaurants

Highway restaurants (Problem 7.16)

- ▶ Locations: L[1 ... n]
- ▶ Profits: $P[1 \dots n]$
- ▶ Any two hotels should be $\geq k$ miles apart
- ► To maximize the total profit

Subproblem:

Goal:

Make choice:

Recurrence:

Time:

Weighted interval/class scheduling (Problem 7.14)

- ► Classes: $C = \{c_1, c_2, \cdots, c_n\}$ $c_i \triangleq \langle g_i, s_i, f_i \rangle$
- ► Choosing non-conflicting classes to maximize your grades

sort $\mathcal C$ by finishing time.

Greedy algorithms by finishing time or weights fail.

Subproblem: G[i]: the maximal grades obtained from $\{c_1,c_2,\cdots,c_i\}$ Goal: G[n]

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Init:

$$G[0] = 0$$

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: choose c_i or not in G[i]?

Recurrence:

$$G[i] = \max\{G[i-1], G[p(i)] + g_i\}$$

p(i): the largest index j < i s.t. c_i and c_j are disjoint

Init:

$$G[0] = 0$$

Time: $O(n \log n) + T(p(i)) + O(n) \cdot O(1)$

Weighted interval/class scheduling

Why is ordering necessary?

$$G[7] = \max\{G[6], G[\{1, 3, 5\}] + g_7\}$$

subproblems changed: all $O(2^n)$ subsets

Weighted interval/class scheduling

What about sorting by starting time?

$$G[6] = \max\{G[5], G[\{2,3\}] + g_6\}$$

subproblems changed: all $O(2^n)$ subsets

Dynamic Programming

- 1D DP
- 2D DP
- OP on Graphs
- 4 The Knapsack Problem

LCS: longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

(1) Find (the length of) an LCS of X and Y

$$X = \langle A, B, C, B, D, A, B \rangle$$
$$Y = \langle B, D, C, A, B, A \rangle$$
$$Z = \langle B, C, B, A \rangle$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Make choice: Is $X_i = Y_i$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0, j] = 0, \ 0 \le j \le n$$

 $L[i, 0] = 0, \ 0 \le i \le m$

Time: $\Theta(mn)$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \left\{ \begin{array}{ll} L[i,j-1]+1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{array} \right.$$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \begin{cases} L[i,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$
$$X \implies X^{(k)} \triangleq X_1^{(k)} \cdots X_m^{(k)}$$

Longest common substring

What about longest common substring?

Shortest common supersequence (Problem 7.6)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

 \blacktriangleright Find (the length of) a shortest common subsequence of X and Y

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Remark

$$\max(m, n) < L(m, n) < m + n$$

Variants of LCS

Variants of LCS (Problem 7.7)

Longest contiguous substring both forward and backward (Problem 7.8)

- ▶ String $T[1 \cdots n]$
- ► Find a longest contiguous substring (LCS) both forward and backward

dynamicprogrammingmanytimes

- lacktriangledown try subproblem L[i]: the length of an LCS in $T[1\cdots i]$
- lacktriangledown try subproblem L[i,j]: the length of an LCS in $T[i\cdots j]$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_i

Goal: $\max_{1 \le i \le j \le n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Init:

$$\begin{split} L[i,i] &= 0, \ 0 \leq i \leq n \\ L[i,i+1] &= \left\{ \begin{array}{ll} 1 & \text{if } T_i = T_{i+1} \\ 0 & \text{if } T_i \neq T_{i+1} \end{array} \right. \end{split}$$

Code: three ways of filling the table


```
for d = 2 to n-1
  for i = 1 to n-d
    j = i + d
    ...
return max {1 <= i <= j <= n} L[i,j]</pre>
```

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$ Goal: L[1,n]

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Init:

$$L[i, i] = 1, \ \forall 1 \le i \le n$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i\ldots j]$ Goal: C[1,n]+1

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \dots j] \ \ \text{is a palindrome} \\ \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \ \text{o.w.} \end{array} \right.$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \ldots j] \ \text{is a palindrome} \\ \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \text{ o.w.} \end{array} \right.$$

Init: C[i, i] = 0

Time: $O(n^3)$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k \dots i] \text{ is a palindrome}}} P[k-1] + 1$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1 \cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k...i] \text{ is a palindrome}}} P[k-1] + 1$$

Init: P[0] = 1Time: $O(n^2)$

String splitting (Problem 7.11)

- ► Split a string *S* into many pieces
- $ightharpoonup Cost |S| = n \implies n$
- ▶ Given locations of m cuts: $C_0, C_1, \cdots, C_m, C_{m+1}$
- lacktriangle Find the minimum cost of splitting S into m+1 pieces $S_0\cdots S_m$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$

using cuts $C_{i+1} \cdots C_{j-1}$

Goal: C[0, m+1]

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$

using cuts $C_{i+1} \cdots C_{j-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{j-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$ using cuts $C_{i+1} \cdots C_{i-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{j-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Init: C[i, i+1] = 0

Subproblem:

Subproblem:

Goal:

Make choice:

Subproblem:

Goal:

Make choice:

Recurrence:

Init:

Time:

Dynamic Programming

- 1 1D DP
- 2D DP
- 3 DP on Graphs
- 4 The Knapsack Problem

Dynamic Programming

- 1D DP
- 2D DP
- OP on Graphs
- The Knapsack Problem

