Quiz 7: Introduction to Sequence Models

Introduction to Supervised Learning

*Required

1. Email *

- 2. Please enter your name: *

Based on some information of the past T data points, we want to predict one of the three following categories for the next return of FB: category o if the return is < -1%, category 1 if the return is between -1% and +1% and category 2 if the return is > 1%

Here is the description of the training data:

- At each time step t, we have a feature vector $\ x_t$ of size D representing the information we have gathered about the FB stock at time t.
- The whole sequence of feature vectors is: x_1,\dots,x_F
- The corresponding sequence of targets is: y_1,\ldots,y_F (where each $\ y_i\in\{0,1,2\}$)
- We have the following sequences of features and the corresponding targets:

Sequences	Targets
x_1, \dots, x_T	y_{T+1}
x_2, \ldots, x_{T+1}	y_{T+2}
:	:
x_{F-T}, \ldots, x_{F-1}	y_F

Preprocessing

3.	How many sequences do we have in our training data?	1 point
	Mark only one oval.	
	☐ F	
	F-T	
	☐ F-T-1	
4.	Let N be the number of sequences. What is the shape of our training tensor data?	1 point
	Mark only one oval.	
	(N, D)	
	(N, T, D)	
	(N, T)	
5.	What is the shape of our training target data after the one-hot encoding of the targets?	1 point
	Mark only one oval.	
	(N, 3)	
	(N,)	
	(N, T, 3)	
_		
T	he LSTM layer	
W/e	want to use an LSTM layer to process the sequences. Let d be the output vector size at each time step t.	

	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	C_{t+1} C_{t+1}	
	A	
	h_{t-1} h_{t+1}	
	x_{t-1} x_t x_{t+1}	
6.	Why choosing an LSTM layer over a standard RNN layer?	1 point
7.	How does the sigmoid activation function protect the cell state?	1 point

 $\textbf{8.} \quad \text{List all the parameters of the LSTM layer that should be learned using Gradient Descent.} \\$

1 point

9. For each sequence x_1, ..., x_T, let h_1, ..., h_T represent the output vectors. What information is represented by the vector h_t for each t in {1, ..., h_T}?

The Supervised Mode

Let's describe the forward propagation for the first sequence $s_{-1} = x_{-1}, ..., x_{-T}$. The sequence is fed into an LSTM layer. We only keep the last output vector h_{-T} of size d. The vector h_{-T} is then fed into a Dense layer to output a vector of size 3.

10. Describe the evolution of the shape of data after each layer transformation: The LSTM layer and the Dense layer.

11. What activation function should be used in the Dense layer?

1 point

12. What loss function should be used?

1 point

Programming Session

13. Did you understand the problem?

Mark only one oval.

Yes

O No

Feel free to send us an email if you need more support.

This content is neither created nor endorsed by Google.

Google Forms