» Convolutional Networks

- * ConvNets, CNNs \rightarrow have driven change in image processing since around 2012
- * Usually Deep learning = ConvNets
- Also increasingly being used for text analytics/natural language processing, and other places where input data is a sequence.
- ConvNets consist of input and output layers plus multiple hidden layers, e.g. 10-100 layers. Hence "deep" learning since MLPs ("shallow" networks) usually have just one hidden layer.
- Each layer takes output of previous layer as its input.
 - * Main types of layer: Convolutional, pooling, fully connected
- Some good resources online (also plenty of terrible ones) e.g.
 - * https://www.coursera.org/learn/convolutional-neural-networks/
 - * Stanford CS231 course https://cs231n.github.io/

- * Nodes in a convolutional layer use a *kernel* or *filter*
- Basic primitive: take a <u>matrix</u> as input, apply kernel to it (convolve the matrix and kernel) and produce a matrix as output
- Conventional to use * to denote convolution, try not to mix up with multiplication
- * Example:

Note: Kernel in CNN and kernel in SVM are different concepts

			4	5	
			3	10	
			4	5	*
6	1	1	2	2	
3	2	1	5	4	
		Input			

				-1		Ш
			=			
	Kerne	el		Ou	tpu	t

 $1 \times 1 + 1 \times 1 + 3 \times 1 + 2 \times 0 + 3 \times 0 + 2 \times 0 + 3 \times (-1) + 2 \times (-1) + 1 \times (-1) = 5 - 6 = -1$

1				5							
1				10							
3				5	3						
6	1	1	2	2	١						
3	2	1	5	4							
	Input										

Kernel	Output
	o acpac

 $2 \times 1 + 3 \times 1 + 2 \times 1 + 3 \times 0 + 2 \times 0 + 1 \times 0 + 4 \times (-1) + 3 \times (-1) + 4 \times (-1) = 7 - 11 = -12 \times 1 + 3 \times 1 + 2 \times 1 + 3 \times 0 + 2 \times 0 + 1 \times 0 + 4 \times (-1) + 3 \times (-1) + 4 \times (-1) = 7 - 11 = -12 \times 1 + 3 \times 1 + 2 \times 1 + 3 \times 0 + 2 \times 0 + 1 \times 0 + 4 \times (-1) + 3 \times (-1) + 4 \times (-1) = 7 - 11 = -12 \times 1 + 3 \times 1 + 2 \times 1 +$

1	2	3	4 0	5 ⁻¹							
1	3				1	0	-1		-1	-4	-14
3	2	1			* 1			=			
6	1	1	2	2		Kern	el			Outpu	ıt
3	2	1	5	4			·.			o acpo	
		Inpı	ıt								

 $3 \times 1 + 2 \times 1 + 1 \times 1 + 4 \times 0 + 3 \times 0 + 4 \times 0 + 5 \times (-1) + 10 \times (-1) + 5 \times (-1) = 6 - 25 = -14 \times 10^{-1}$

1	2	3	4	5	
1			3	10	ı
3 1			4	5	*
6			2	2	l
3	2	1	5	4	
		Input			

1 0 -1 -1 -4 -1	4
	Τ
* 1 0 -1 = 6	
1 0 -1	
Kernel Output	

*~ Observe that applying 3×3 kernel to a 5×5 matrix gives a 3×3 matrix

1	2	3	4	5								
1	3	2	3	10						-1	-4	-14
3	2	1	4	5	*				_	6	-3	-13
6	1	1	2	2						9	-6	-8
3	2	1	5	4	Kernel						Outpu	it
		Inpu	t									

st Suppose we want to detect vertical edges in image ...

* Try kernel: 1 0 -1 1 0 -1 1 0 -1

Note: Edge detection, smoothing filters, and other image processing have been used for decades (i.e., way before CNNs) even downsampling can be implemented as a convolution!

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

10	10 0	10 -1	0	0	0	
10			0	0	0	*
			0	0	0	"
10	10	10	0	0	0	
10	10	10	0	0	0	

		0		

$$0 \times 1 + 10 \times 1 + 10 \times 1 + 10 \times 0 + 10 \times 0 + 10 \times 0 + 10 \times (-1) + 10 \times (-1) + 10 \times (-1) = 0$$

10	10	10 0	0 -1	0	0								
10				0	0	إيا	1	0	-1		0	30	
10				0	0	*				[=			
		10	U		_	Į Į						l	
10	10	10	0	0	0	Γ'							
10	10	10	0	0	0	ĺ							

$$0 \times 1 + 10 \times 1 + 10 \times 1 + 10 \times 0 + 10 \times 0 + 10 \times 0 + 10 \times (-1) + 0 \times (-1) + 0 \times (-1) = 30$$

10	10	10	0	0	0							
10	10	10	0	0	0	1			0	30	30	Π
10	10	10	0	0	0	* 1		=	0	30	30	
10	10	10	0	0	0	1			0	30	30	
10	10	10	0	0	0							

* Observe that non-zero values in output highlight the edge

Dark→light vs light→dark edges

0	0	0	10	10	10							
0	0	0	10	10	10				0	-30	-30	0
0	0	0	10	10	10	*		 =	0	-30	-30	0
0	0	0	10	10	10				0	-30	-30	0
0	0	0	10	10	10	1						

- Sign of output depends on whether transition is dark→light or light→dark
- * To detect horizontal edges use kernel: $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$
- * Similarly 45° angled edges, 70° etc
- * Can use kernel larger than 3×3 , but 3×3 is v common in ConvNets.

» Learning Kernels

First key idea: use convolution/kernels for extracting features (e.g., edges) Second key idea: learn kernels

* Rather than hand-crafting kernels, *learn* them!

0	0	0	10	10	10			
0	0	0	10	10	10			
0	0	0	10	10	10	*		
0	0	0	10	10	10			
0	0	0	10	10	10			

<i>W</i> 3		X 1	x 2	x 3	X 4
	=	x ₅	x ₆	<i>X</i> ₇	X 8
		x 9	X 10	X 11	x ₁₂

- * Output from convolution node is a <u>matrix</u>, we need to map this to a scalar output/prediction \rightarrow reshape/flatten matrix into a vector $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{12}]$, then use this as input to one of our usual models E.g.
 - * Linear model $\hat{\mathbf{y}} = \theta^T \mathbf{x}$
 - * NB: Can add more convolution & other layers before map to output \rightarrow will come back go this soon!
- * Use training data to <u>learn</u> the unknown (i) output parameters $\underline{\theta}$ and (ii) kernel weights $\underline{w} = [w_1, w_2, \dots, w_9]$:
 - 1. Define cost function
 - 2. Use gradient descent \rightarrow typically use stochastic gradient descent variant.
- Back in familiar territory: a model mapping from input (matrix of pixel values) to predicted output, model has unknown parameters, learn these using a cost function+training data.

» Padding

- * Applying 3×3 kernel to 5×5 matrix gives 3×3 matrix \to output is smaller than input
- st Often want to keep output same size as input ightarrow use padding

0	0	0	0	0	0	0	
0			3	4	5		1 0 -1
0			2	3	10		
0	3	2	1	4	5		* 1 0 -1 =
0	6	1	1	2	2		Kernel
0	3	2	1	5	4		Kerner
0							

- * Add extra rows and columns of zeros to pad original 5×5 input matrix out to 7×7 . Apply kernel to this padded matrix to obtain 5×5 output i.e. output same size as original 5×5 input.
- * Some terminology:
 - st Valid convolution: apply kernel directly to input ightarrow output is smaller than input
 - st Same convolution: pad original input then apply kernel ightarrow output is same size as input

» Strided Convolutions

- * In previous examples we moved kernel along by one column/row at each step ightarrow we used a stride of 1
- * Can also use larger strides e.g. <u>stride 2</u>

 Observe that increasing stride reduces the size of the output matrix

- Gray-scale images are described by a single matrix, each element of matrix specifying shade of corresponding pixel
- * Colour images are described by *three* matrices.
 - E.g. RGB image has one matrix specifying red intensity of each pixel, one specifying green and one specifying blue.

- $*~32 \times 32 \times 3$ input has three *channels*, each channel is a 32×32 matrix of values
 - * The $32 \times 32 \times 3$ stack of three 32×32 matrices is called a *tensor*
- * We define a separate 3×3 kernel for each channel, so overall have a $3 \times 3 \times 3$ kernel
- * How to calculate output?

- * Apply each 3×3 kernel to its corresponding 32×32 input channel. This gives three 30×30 output matrices.
- * Now add element (1,1) of each of the three matrices together to get element (1,1) of final output. Repeat for all elements $(i,j), i=1,\ldots,30, j=1,\ldots,30 \to \text{end}$ result is a single 30×30 matrix as output
- * Note: number of channels of kernel *must* match number of input channels. E.g. if have 3 input channels then need 3 kernel channels.

More detailed example:

 Three 3 × 3 kernels: channel 1

1	0	-1
1		
1		

channel 2								

channel 3								

* Three input channels:

channel 1							
1			4				
1			3				
3			4				
6	1	1	2				

channel 3								
			4					
			3					
			4					
1	5	6	4					

* Output is obtained by applying channel i kernel to channel i input then summing. E.g. element (1,1) of output is

$$1 \times 1 + 1 \times 1 + 3 \times 1 + 2 \times 0 + 3 \times 0 + 2 \times 0 + 3 \times (-1) + 2 \times (-1) + 1 \times (-1) + 4 \times 2 + 2 \times 2 + 1 \times 2 + 3 \times 0 + 6 \times 0 + 3 \times 0 + 1 \times (-2) + 1 \times (-2) + 1 \times (-2) + 1 \times (-2) + 1 \times (-3) + 2 \times 3 + 6 \times 3 + 5 \times 3 + 2 \times 0 + 3 \times 0 + 2 \times 0 + 3 \times (-3) + 2 \times (-3) + 1 \times (-3) + 2 \times (-3)$$

st Now shift all kernels by one column and repeat to get element (1,2) of output, and so on.

» Multiple Filters

- We can apply several filters to the same input and stack their outputs together
- * E.g. Apply two $3\times3\times3$ kernels to a $32\times32\times3$ input to get a $30\times30\times2$ output:

- * Note: number of output channels can be larger/smaller/same as number of input channels
- * Kernel weights w, input a. After convolution output is w * a. Here a and a * w are both tensors i.e. a stack of matrices.
- * What is number of parameters w in this setup?
 - * Each $3\times3\times3$ kernel has 27 weights (it depends only on the kernel, not on the input -> scalable) * One $3\times3\times3$ kernel for each output channel, so $27\times2=54$ weights.