Solution	Marks	Remarks
1. For $n = 1$, L.H.S. = $1 \times 2 = 2$		n=1, 2=2 V
$R.H.S. = 1^2(1 + 1) = 2$	1	n=1, 1x2 + 2x5+ = 2 >
\therefore the statement is true for $n = 1$		Aim of Afrikan 1821 - 1868 (2019-6-7-64)
Assume $1 \times 2 + 2 \times 5 + \dots + k(3k - 1) = k^2 (k + 1)$ (for some positive integer k)	1	× 1 - 4
Then $1 \times 2 + 2 \times 5 + + k(3k - 1) + (k + 1)[3(k + 1) - 1]$		According to the street of the state of the street of the
$f_{ij}(\zeta) = k^{2}(k+1) + (k+1) [3(k+1) - 1]$	1 11/03	magnes in a sign contra
$= (k + 1) (k^2 + 3k + 2)$		Account took is true
$= (k + 1)^2 (k + 2)$	1	[xz+zze] . 4 r(+1)-)/11
\therefore the statement is also true for $n = k + 1$		
(if it is true for $n = k$)		The State of is true from
(By the principle of mathematical induction)		Red marker X
\therefore the statement is true for all +ve integers n .	<u>1</u> _5_	
2. (a) Coefficient of $x = n + 6$	1A	5% n= 4 (1 1)
n + 6 = 10		7 49 hr ct 1 - 18
n = 4	1A	
(b) Coefficient of $x^2 = \underline{n(n-1)} + 6n + 9$	2A	Accept nCr notation
$= \frac{4(4-1)}{2} + 6(4) + 9$		
= 39 (A, 11 H) m m + (M) (28)	1A 5	
$3. \qquad (a) \qquad \frac{y-7}{x-4} = m$	1A	M飞游的图点:说
mx - y + (7 - 4m) = 0		
$\left \frac{7-4m}{\sqrt{m^2+1}}\right =1$	1M+1A	Omit absolute sign
$(7 - 4m)^2 = m^2 + 1$		
$15m^2 - 56m + 48 = 0$	1A	
$m = \frac{4}{3} \qquad \text{or} \qquad \frac{12}{5}$	(<u>2A</u>)	1A +/A

	Solution	Marks	Remarks
4.	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 2$	1A	or $y = \int (x^2 - 2) dx$
	$y = \frac{1}{3}x^3 - 2x + c$	1A	
	Put $x = 3$, $y = 4$ c = 1	1M 1A	·
	$\therefore y = \frac{1}{3}x^3 - 2x + 1$		
	(b) $x^2 - 2 = -2$	1A	
	x = 0 , y = 1	1A	
	\therefore The coordinates of the point is $(0, 1)$	6	
5.	$\sin 2\theta (4\cos^2\theta - 3) - \sin\theta = 0$		
	$2\sin\theta\cos\theta(4\cos^2\theta - 3) - \sin\theta = 0$	1A	For $\sin 2\theta = 2\sin\theta\cos\theta$
	$2\sin\theta\cos3\theta$ - $\sin\theta$ = 0	1M	For using the identity
	$\sin\theta (2\cos 3\theta - 1) = 0$ $\sin\theta = 0 \text{or} \cos 3\theta = \frac{1}{2}$	1A+1A	
	$\theta = n\pi$ or $\theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}$ (n is an integer)	<u>1A+1A</u> 6	or 180n°, 120n°±20°
6.	(a) $x^3 - x^2 - 2x = 0$	1A	@ 120n p.p1
0.	x = 0, -1, 2	IA	
	$\therefore a = -1, b = 2$	1A	
	(b) Area = $\int_{-1}^{0} (x^3 - x^2 - 2x) dx - \int_{0}^{2} (x^3 - x^2 - 2x) dx$	1M+1M	1M for ∫ydx ÃA
	$= \left[\frac{x^4}{4} - \frac{x^3}{3} - x^2\right]_{-1}^0 - \left[\frac{x^4}{4} - \frac{x^3}{3} - x^2\right]_0^2$	1A	IM for $\int_a^0 - \int_0^b$ or $\int_0^a + \int_0^a$ For correct integration
	$=\frac{5}{12}+\frac{8}{3}$		
	$=\frac{37}{12}$	1A 6	

		Marks	Remarks
So	Julian		Nemalas
(a	!	1A	
	$=\sqrt{72}$		^
	1 80		
	$\cos \angle VBD = \frac{\frac{1}{2}BD}{VB}$	1M .	
	$=\sqrt{18}/9$		β
	∠ <i>VBD</i> = 61.9°	1A	D N
			/¹ ∠ <i>VAB</i> = 70.5°
(b	Let N be the point on VA such that $DN \perp VA$, $BN \perp VA$. The angle between the 2 planes is $\angle BND$.	1M	∠AVB = 38.9°
	$\cos \angle VAB = \frac{1}{3}$!	
	$BN = 6 \sin \angle VAB$ (or 9 sin $\angle AVB$)	1M	
	$=4\sqrt{2}$	1 A	Accept 5.7
	$\sin\frac{\angle BND}{2} = \frac{\frac{1}{2}BD}{BN}$	1M	
	$=\frac{\sqrt{18}}{4\sqrt{2}}=\frac{3}{4}$		
	∠BND = 97.2°	1A 8	
A	ternative solution		
(1	Let N be the point on VA such that $DN \perp VA$, $BN \perp VA$. The angle between the 2 planes is $\angle BND$.	IM	
	$BN = DN = 4\sqrt{2}$	1M+1A	Accept 5.7
	$\cos \angle BND = \frac{BN^2 + DN^2 - BD^2}{2BN \cdot DN}$	1M	
	$=\frac{(4\sqrt{2})^2+(4\sqrt{2})^2-(\sqrt{72})^2}{2(4\sqrt{2})(4\sqrt{2})}$		
	= -0.125		
	∠BND = 97.2°	1A	
L_			
		i	į.

Solution			Marks	Remarks	
8.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2 + \cos x)\cos x + \sin^2 x}{(2 + \cos x)^2}$	1M+1A	<pre>1M for quotient rule or product rule</pre>	
		$=\frac{2\cos x + 1}{(2 + \cos x)^2}$	1A		
		$= \frac{(2\cos x + 4) - 3}{(2 + \cos x)^2}$			
		$= \frac{2}{2 + \cos x} - \frac{3}{(2 + \cos x)^2}$	1	,	
	(b)	$dt = \sqrt{3} \sec^2\theta d\theta$	1A	Stand, in diam	
		$\int_{0}^{1} \frac{dt}{t^{2} + 3} = \int_{0}^{\frac{\pi}{6}} \frac{\sqrt{3}}{3} d\theta$	1A+1A	1A for limits 1A for integrand	
		$=\frac{\sqrt{3}\pi}{18}$	1A	Accept $\frac{\pi}{6\sqrt{3}}$	
	(c)	$dx = \frac{2dt}{1+t^2}$	1A	or $dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$	
	•	Since $\cos x = \frac{1-t^2}{1+t^2}$,	1A		
		$\therefore \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{2 + \cos x} = \int_0^1 \frac{2}{t^2 + 3} \mathrm{d}t$	1A		
		$= \frac{\sqrt{3}\pi}{9}$	1A 4	Accept $\frac{\pi}{3\sqrt{3}}$	
-	(d)	$\frac{dy}{dx} = \frac{2}{2 + \cos x} - \frac{3}{(2 + \cos x)^2}$ Integrating with respect to x,		·	
		$\int_0^{\frac{\pi}{2}} \left[\frac{2}{2 + \cos x} - \frac{3}{(2 + \cos x)^2} \right] dx = \left[\frac{\sin x}{2 + \cos x} \right]_0^{\frac{\pi}{2}}$ $= \frac{1}{2}$	1M+1A	<pre>1M for integrating both sides, (pp-1) for omitting limits</pre>	
		$2 \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} - 3 \int_0^{\frac{\pi}{2}} \frac{dx}{(2 + \cos x)^2} = \frac{1}{2}$			
		$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{(2 + \cos x)^2} = \frac{2\sqrt{3}\pi}{27} - \frac{1}{6}$	1A	Accept $\frac{2\pi}{9\sqrt{3}} - \frac{1}{6}$	

Sol	ution	Marks	Remarks
(a)	Substitute $y = mx + c$ into E ,		
	$16x^2 + 25(mx + c)^2 = 400$	1M	
	$(25m^2 + 16)x^2 + 50mcx + 25c^2 - 400 = 0$	1A	
	Since L is a tangent to E ,		
	$(50 \text{ mc})^2 - 4(25m^2 + 16) (25c^2 - 400) = 0$	1M	
	$(50mc)^2 - 4[(25mc)^2 - 400(25m^2) + 400c^2 - 400(16)] = 0$		
	$c^2 = 25m^2 + 16$	1_4	
(b)	Substitute (h, k) into L		
	c = k - mh	1A	
	Substitute into (a),		
	$(k - mh)^2 = 25m^2 + 16$	1M	
	$(h^2 - 25)m^2 - 2hkm + (k^2 - 16) = 0$	1	
(0)	Put $h = 7$, $k = 4$		
	$24m^2 - 56m + 0 = 0$	1M	·
	$m = 0$ or $\frac{7}{3}$	1A+1A	
	m = 0: The equation of tangent is $y = 4$	1A	
	$m = \frac{7}{3}$: The equation of tangent is $\frac{y-4}{x-7} = \frac{7}{3}$		
	7x - 3y - 37 = 0	1A	$y = \frac{7}{3}x - \frac{37}{3}$
(d)	Let $p(h, k)$ be a point on the locus	_5	
	$\frac{k^2 - 16}{h^2 - 25} = -1$	1M+2A	$1M \text{ for } m_1 m_2 = -1$
	$h^2 + k^2 - 41 = 0$	1A	
	The equation of the locus is $x^2 + y^2 - 41 = 0$.	4	
Alter	native solution		
	$25)m^2 - 2xym + (y^2 - 16) = 0$		
	$\frac{2xy \pm \sqrt{4(x^2 - 25)(y^2 - 16)}}{2(x^2 - 25)}$	1A	
<i>m</i> ₁ <i>m</i> ₂		1M	
	$\frac{\sqrt{4(x^2-25)(y^2-16)}}{2(x^2-25)} \cdot \frac{2xy-\sqrt{4(x^2-25)(y^2-16)}}{2(x^2-25)}$ $25)(x^2+y^2-41)=0$	-11)	
	$25)(x^{2} + y^{2} - 41) = 0$ $25 = 0 , x^{2} + y^{2} - 41 = 0$		

Solution		Marks	Remarks	
, ,	$x^{2} + y^{2} - 2y - 4 = 0$ - 1) ² = 5			
,-	entred at $(0, 1)$ with radius $\sqrt{5}$	1A		
	e between centres			
= V(8 -	$(0)^2 + (5 - 1)^2 = 4\sqrt{5}$			
Radius	of circle = $4\sqrt{5} \pm \sqrt{5}$	1M+1M	1M for +, 1M for -	
	$= 3\sqrt{5}$ or $5\sqrt{5}$	1A+1A		
∴ Equat	ions of circles are			
(x -	$(8)^2 + (y - 5)^2 = 45$	1 A	$x^2 + y^2 - 16x - 10y + 44 = 0$	
(x -	$8)^2 + (y - 5)^2 = 125$	1 <u>A</u> _7_	$ x^2 + y^2 - 16x - 10y - 36 = 0$	
Alterna	tive solution			
Let the	equation of circle be			
i i	$y^2 - 16x - 10y + k = 0$	1A	,	
}	$x^2 + y^2 - 2y - 4 = 0$			
∴ 10	5x + 8y - 4 - k = 0	1A		
(<u>k</u> +	$\frac{4-8y}{16})^2+y^2-2y-4=0$	1M	·	
320	$r^2 - 16(36 + k)y + (k^2 + 8k - 1008)$	= 0		
256	$(36 + k)^2 - 4(320)(k^2 + 8k - 1008) =$: 0 1M		
k^2 -	8k - 1584 = 0	1A		
k =	44 or -36	1A+1A		
Equati	ons of circle are			
	$y^2 - 16x - 10y + 44 = 0$			
x ²	$y^2 - 16x - 10y - 36 = 0$			
(b) 2x +	$2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
At (-	1,3), $\frac{dy}{dx} = \frac{-2x}{(2y-2)} = \frac{1}{2}$	1A	·	
The eq	uation is			
$\frac{y-3}{x+3}$	$\frac{1}{2} = \frac{1}{2}$			
x - 2y	+ 7 = 0	1 <u>A</u> 2	-	
Alternative	solutions		-	
ì	ng the formula $xx_1 + yy_1 - (y + y_1)$	- 4 = 0		
	mustion is $x(-1) + y(3) - (y + 3) -$	i i	·	
	x - 2y + 7 = 0	1A		
(2) Slope	of $L_1 = \frac{-1}{-1} / \frac{3-1}{-1-0} = \frac{1}{2}$	1A		
\(- \)				

			HP/	P.8
Soluti	lon		Marks	Remarks
(c) ((i)	$x^2 + y^2 - 2y - 4 + k(x - 2) = 0$ (k is a constant)	2A	Accept $(x - 2) + k(x^2 +) = 0$
((ii)	Substitute L_1 into F ,		
	•	$(2y - 7)^{2} + y^{2} - 2y - 4 + k(2y - 7) - 2k = 0$	1M	·
		$5y^2 + (2k - 30)y + (45 - 9k) = 0$	1A	
		$(2k - 30)^2 - 20 (45 - 9k) = 0$	1M	
		$4k^2 + 60k = 0$		
		k = -15 $(k = 0 (rejected))$	1A	
		: Equation of C_2 is $x^2 + y^2 - 15x - 2y + 26 = 0$	1A 7	
٦	1+			
		native solutions for (ii)		
(.	1)	Substitute $y = \frac{1}{2}(x + 7)$	1M	
		$5x^2 + (4k + 10)x + (5 - 8k) = 0$	1A	
		$(4k + 10)^2 - 20(5 - 8k) = 0$	1M	
		$4k^2 + 60k = 0$		
(:	2)	$x^2 + y^2 + kx - 2y = 2k + 4$		
		$(x + \frac{k}{2})^2 + (y - 1)^2 = \frac{k^2}{4} + 2k + 5$		
		centre is $(-\frac{k}{2}, 1)$, radius = $\sqrt{\frac{k^2}{4} + 2k + 5}$	1M	·
		If L_1 is tangent to a circle in F ,		
		$\left \frac{-\frac{k}{2} - 2 + 7}{\sqrt{5}} \right = \sqrt{\frac{k^2}{4} + 2k + 5}$	1M+1A	
		$(5 - \frac{k}{2})^2 = 5(\frac{k^2}{4} + 2k + 5)$		
		$4k^2 + 60k = 0$		

	Solution		Marks	Remarks
11.	(a) Volume	$= \int_{-b}^{-b} \pi x^2 \mathrm{d}y$	1A+1A	1A for $\int \pi x^2 dy$,
		$= \int_{-b}^{\frac{-b}{2}} \pi a^2 (1 - \frac{y^2}{b^2}) \mathrm{d}y$	1M	1A if others correct
		$= \pi a^{2} [y - \frac{y^{3}}{3b^{2}}]_{-b}^{-\frac{b}{2}}$	1 A)	+1
		$= \pi a^2 \left[\frac{-b}{2} + \frac{b}{24} + b - \frac{b}{3} \right]$		
		$=\frac{5\pi a^2 b}{24}$	1	
	(b) (i)	Equation of ellipse is $\frac{x^2}{100} + \frac{y^2}{36} = 1$	_ <u>5</u>	Accept $a = 10, b = 6$
		Put $y = -3$	1A	
		$x^2 = 75$ $\therefore \text{ surface area} = \pi x^2$		
		= 75π	1A	
	(ii)	Put a = 10, b = 6 into (a)	1A	
		Volume = $\frac{5\pi(10)^2(6)}{24}$		
		$= 125\pi$	1A	
	(iii)	(1) Let V be the volume of water remaining in the bowl.		
		$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\pi}{100}(25 + 2t)$	1A	
	•	$V = \frac{-\pi}{100} (25t + t^2) + c$	1A	
		At $t = 0$, $V = 125\pi$ $\therefore c = 125\pi$	1M +	ıA
		$\therefore V = 125\pi - \frac{\pi}{100} (25t + t^2)$		

Solution	Marks	Remark
Alternative solutions		X
$V = 125\pi - \int_0^t \frac{\pi}{100} (25 + 2t) dt$	1M+1A	1M (12)
$= 125\pi - \frac{\pi}{100} [25t + t^2]_0'$	1A	
$= 125\pi - \frac{\pi}{100}(25t + t^2)$	1A	
Let V be the volume of water lost.		
$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\pi}{100}(25 + 2t)$	1A	
$V = \frac{\pi}{100} (25t + t^2) + c$	1A	
At $t = 0$, $V = 0$. $c = 0$ Volume remaining	1M	
$= 125\pi - \frac{\pi}{100}(25t + t^2)$	1A	
(2) $125\pi - \frac{\pi}{100}(25t + t^2) = 0$ $t^2 + 25t - 12500 = 0$	1M	
t = 100 or -125 (rejected)		
$\therefore t = 100 \text{ (seconds)}$	1 <u>A</u>	

		112011110120 [3]		1 4 1 1
•	Sol	ution	Marks	Remarks
12.	(a)	$2[\cos\theta + \cos(\theta + 2\alpha) + \dots + \cos(\theta + 8\alpha)]\sin\alpha$		
		= $2\cos\theta\sin\alpha + 2\cos(\theta + 2\alpha)\sin\alpha + \dots$ + $2\cos(\theta + 8\alpha)\sin\alpha$	1A	
		$= \sin(\theta + \alpha) - \sin(\theta - \alpha) + \sin(\theta + 3\alpha)$ $- \sin(\theta + \alpha) + \dots + \sin(\theta + 9\alpha)$ $- \sin(\theta + 7\alpha)$	1M	For using the identity.
		$= \sin(\theta + 9\alpha) - \sin(\theta - \alpha)$	1	
		Put $\alpha = \frac{\pi}{5}$	1A	
		$2[\cos\theta + \cos(\theta + \frac{2\pi}{5}) + \dots + \cos(\theta + \frac{8\pi}{5})]\sin\frac{\pi}{5}$,	二、花文则有野
		$= \sin(\theta + \frac{9\pi}{5}) - \sin(\theta - \frac{\pi}{5})$	1A	
		$=2\sin\pi\cos(\theta+\frac{4\pi}{5})$		$DR = \sin(\theta + \frac{9\pi}{5}) - \sin(\theta + \frac{9\pi}{5})$
		= 0	1	OR = $\sin(\theta - \frac{\pi}{5}) - \sin(\theta - \frac{\pi}{5})$
		$\cos\theta + \cos(\theta + \frac{2\pi}{5}) + \dots + \cos(\theta + \frac{8\pi}{5}) = 0$	1	$OR : (\theta + \frac{9\pi}{5}) - (\theta - \frac{\pi}{5}) = 2\pi$
			7	
	(b)	(i) $PD^2 = r^2 + r^2 - 2r^2\cos(\frac{4\pi}{5} - \theta)$	1A	
		$= 2r^2 - 2r^2 \cos(\theta + \frac{6\pi}{5})$	1	
		OR $PD^2 = [2r\sin{\frac{1}{2}}(\frac{4\pi}{5} - \theta)]^2$	1A	
		$= 2r^2[1 - \cos(\frac{4\pi}{5} - \theta)]$		
		$= 2r^2 - 2r^2 \cos(\theta + \frac{6\pi}{5})$	1	·

Marks	Remarks
1A	Any one of PA^2, PB^2 or P
1A	or $2r^2 - 2r^2 \cos(\frac{2\pi}{5} - \theta)$
1A	
1	
1A	
1A	
1 <u>A</u>	
	1A 1A 1A 1A