

Module 1: Introduction au Machine-Learning

Stéphan Clémençon, stephan.clemencon@telecom-paristech.fr

Telecom Evolution, Paris, France

- Stéphan Clémençon (Telecom ParisTech Département TSI)
 - Contact: stephan.clemencon@telecom-paristech.fr Site Dareau: DA314
 - ► Profil: Enseignement/Recherche/Conseil/Industrie
 - Mots-clés: processus stochastiques (markoviens, empiriques, etc.), apprentissage statistique, applications: finance, high tech, biosciences
- ▶ Joseph Salmon (Telecom ParisTech Département TSI)
 - ► Contact: joseph.salmon@telecom-paristech.fr
 - ► Profil : Enseignement/Recherche
 - ► Mots-clés: régression, agrégation, traitement de l'image

Intervenants (2)

- Alexandre Gramfort (Telecom ParisTech Département TSI)
 - ► Contact: alexandre.gramfort@telecom-paristech.fr
 - ► Profil: Enseignement/Recherche/Industrie
 - Mots-clés: brain functional imaging, computational neurosciences
- ► Anne Sabourin (Telecom ParisTech Département TSI)
 - ► Contact: anne.sabourin@telecom-paristech.fr
 - Profil : Enseignement/Recherche
 - Mots-clés: statistique spatiale, théorie des valeurs extrêmes, MCMC

Data mining << Machine-Learning

Motivations pour le machine-learning

- Explosion des capacités de stockage
- Bases de données massives
 - ► finance, génomique, marketing, industrie ...
- Les données sont partout !
 - de grande dimension, hétérogènes, structurées
- Il existe des approches génériques et automatisables

Motivations pour le machine-learning

- Explosion des capacités de stockage
- ▶ Bases de données massives
 - ► finance, génomique, marketing, industrie ...
- Les données sont partout!
 - de grande dimension, hétérogènes, structurées
- Il existe des approches génériques et automatisables

Le but de ce cours : les découvrir !

Les données aujourd'hui

Les chiffres du travail (1)

Les chiffres du travail (2)

Taux d'activité par tranche d'âge hommes vs. femmes

	A	В	С	D	E	F	G	Н	1
1									
2	Taux d'activit	é par ti	ranche	d'âge	de 19	75 à 20	05		
3	En %	L							
4	TOTAL TOTAL	1975	1976	1977	1978	1979	1980	1981	1982
5	Femmes								
6	15-24 ans	45,5	45,7	45,2	43,9	44,2	42,9	42,1	41,87
7	25-49 ans	58,6	60,3	62,1	62,8	64,7	65,4	66,2	67,55
8	50 ans et plus	42,9	43,1	44,4	43,9	44,8	45,9	45,2	43,47
9	Ensemble	51,5	52,5	53,6	53,6	54,8	55,1	55,1	55,29
10	Hommes								
11	15-24 ans	55,6	54,7	53,7	52,2	52,5	52,0	50,4	45,02
12	25-49 ans	97,0	97,1	96,9	96,9	96,9	97,1	96,9	96,75
13	50 ans et plus	79,5	78,8	79,5	78,8	79,4	78,3	75,4	71,65
14	Ensemble	82,5			81,6	81,8	81,5	80,4	78,14

Les chiffres du travail (2)

Taux d'activité par tranche d'âge hommes vs. femmes

	A	В	С	D	E	F	G	Н	1
1									
2	Taux d'activit	é par ti	ranche	d'âge	de 19	75 à 20	05		
3	En %	L							
4	Total Control of the	1975	1976	1977	1978	1979	1980	1981	1982
5	Femmes								
6	15-24 ans	45,5	45,7	45,2	43,9	44,2	42,9	42,1	41,87
7	25-49 ans	58,6	60,3	62,1	62,8	64,7	65,4	66,2	67,55
8	50 ans et plus	42,9	43,1	44,4	43,9	44,8	45,9	45,2	43,47
9	Ensemble	51,5			53,6	54,8	55,1	55,1	55,29
10	Hommes								
11	15-24 ans	55,6	54,7	53,7	52,2	52,5	52,0	50,4	45,02
12	25-49 ans	97,0	97,1	96,9	96,9	96,9	97,1	96,9	96,75
13	50 ans et plus	79,5	78,8	79,5	78,8	79,4	78,3	75,4	71,65
14	Ensemble	82,5	82,2	82,1	81,6	81,8			78,14

http://www.insee.fr/

Taux d'activité par tranche d'âge hommes vs. femmes

Le monde de la finance (1)

Wall Street à la clotûre, un lundi...

Le monde de la finance (2)

DOW JONES INDUS	TRIAL AVERAGE IN (DJI:^DJI)
Dern. Cours:	13.820,19
Heure:	21 sept.
Variation:	† 53,49 (0,39%)
Clôture Préc.	13.766,70
Ouverture;	13.768,33
Var. Journalière:	13.768,25 - 13.877,17
Var. sur 1 an:	11.926,80 - 14.121,00
Volume:	419.389.397

Le monde de la finance (2)

Dern. Cours:	13.820,19	
Heure:	21 sept.	^DJI 21-sept. 16:00 (c) Yahoo
Variation:	† 53,49 (0,39%)	13880
Clâture Préc.	13.766,70	13840
Ouverture:	13.768,33	13820 13800 13800
Var. Journalière:	13.768,25 - 13.877,17	10 12 14 16
Var. sur 1 an:	11.926,80 - 14.121,00	<u> 1i 5i 3m 6m 1a 2a 5a max</u>
Volume:	419.389.397	

http://fr.finance.yahoo.com/

L'imagerie médicale (1)

L'imagerie médicale (2)

Internet (1)

Internet (2)

Netscape Proxy format:

format=%Ses->client.ip% 146.127.62.22 %Req->vars.pauth-user% [%SYSDATE%] "%Req->reqpb.proxy-rec
%Req->srvhdrs.clf-status% %Req->vars.p2c-cl% %Req->vars.remote-status% %Req->vars.r2p-cl%
%Req->vars.c2p-hl% %Req->vars.p2c-hl%
%Req->vars.p2r-hl% %Req->vars.p2c-hl% %Req->vars.p2c-hl% %Req->vars.p2c-hl% %Req->vars.p2c-hl% %Req->vars.p2r-hl% %Req->vars.actual-route%
%Req->vars.cll-status% %Req->vars.svr-status%
%Req->vars.cl-status% or
%Req->vars.cl-status% req-vars.svr-status%
%Req->vars.cl-status% req-vars.svr-status%
%Req->vars.cch-status%
%Req->vars.actual-route%
%Req->vars.cd-status%
%Req->vars.cd-status

Séquençage du génome humain (1)

Plate-forme de séquençage génotypage OUEST-genopole

Séquençage du génome humain (2)

>ADN de la banque Ensembl >SIT à -208

Alignement d'une séquence identifiée dans le foie humain avec l'ADN génomique de la banque Ensembl.

Barcoding Of Life Data Systems (1)

Barcoding of Life Data Systems (2)

Barcoding of Life Data Systems (2)

http://www.barcodinglife.org/

E-marketing (1)- Livres

E-marketing (1)- Jeux vidéos

Nature des données

- ▶ Vecteurs/Matrices (e.g. image pixelisée)
- ► Chaînes de caractères (e.g. texte)
- Graphes/Réseaux
- ► Fonctions/Séries temporelles (e.g. vidéo, audio)

Les questions de machine-learning

- Prédiction
- ► Segmentation/Clustering
- ▶ Détection d'anomalies
- ► Réduction de la dimension
- ► Sélection de variables
- ► Interprétation/Parcimonie
- ► Visualisation

Le preprocessing, une étape critique

- Nettoyage ou filtrage des données
- Données incomplètes
- Données aberrantes
- ▶ Données hétérogènes ou multi-échelles
- ▶ Indexation, "feature extraction" (e.g. "bag-of-words")

Le désert du réel...

Les outils

Domaines afférents

- Informatique :
 - BDD
 - algorithmique

Machine Learning :

méthodes effectives pour la grande dimension

► Mathématiques :

- algèbre linéaire
- modélisation aléatoire,
- probabilités / statistique
- apprentissage statistique
- optimisation
- traitement du signal

Cours de statistique "typique"

- Estimation paramétrique
- ▶ Intervalles/Domaines de confiance
- ► Tests d'hypothèses
- Régression
- ► Analyse en composantes principales

Aspects non abordés dans ce type de cours

- ► Classification, "distribution-free" regression
- Méthodes non-paramétriques
- ▶ Performances non-asymptotiques
- Sélection de modèles
- ▶ Théorie de la décision

Pourquoi faire appel à l'apprentissage statistique?

- ▶ Typologie des problèmes
- ▶ No Free Lunch!
- ► Choix des critères de performance
- ▶ Notion de risque
- Contrôle de la complexité
- Validation des règles de décision
- Rôle du rééchantillonnage
- ► Monitoring des modèles de prévision

Machine Learning... un peu plus que des stats

- Méthodes non-paramétriques opérationnelles
- ► Traitement de données complexes / de grande dimension
- Diversité des contextes
 - supervisé, non-supervisé, semi-supervisé, séquentiel, one-pass, multi-tâche, distribué...
- ▶ Couplage des principes inférentiels avec des algorithmes !

Programme CES Data Science

▶ Introduction

Contexte Eléments de statistique (Rappels) Nomenclature des problèmes rencontrés Applications (exemples)

▶ Un peu de théorie: classification binaire Le principe de la minimisation du risque empirique Théorie de Vapnik-Chervonenkis (complexité combinatoire) Une solution statistique.... un problème informatique!

Programme CES Data Science

- ► Algorithmes "classiques" pour la classification Analyse discriminante linéaire et régression logistique Les "plus proches voisins" et variantes Méthodes de partitionnement - l'algorithme CART Le perceptron mono-couche
- Sélection de Modèles
 Planification expérimentale Validation Croisée -Minimisation Structurelle du Risque - Bootstrap
- Algorithmes "avancés" pour la classification SVM Boosting Random Forest

Programme CES Data Science

D'autres problèmes supervisés

Convexification Classification multi-label Régression ordinale et Régression (Lasso) Ranking

Programme CES Data Science Clustering Analyse en Variables Latentes (kernel PCA, ICA, NMF) Minimum Volume Set

► HMM - Modèles graphiques

Programme CES Data Science

- ► Apprentissage et optimisation distribués Programmation MapReduce
- Graph-Mining
 Clustering spectral
 Détection de communautés
 Visualisation
- ► Apprentissage en ligne
- ▶ Moteurs de recommandation Filtrage collaboratif

Statistical learning - Historical milestones

- ▶ 1943: Artificial neuron model McCullough, Pitts
- ▶ 1958: Perceptron algorithm Rosenblatt
- ▶ 60's: Data-mining John Tukey
- ▶ 1971: Uniform laws of large numbers Vapnik, Chervonenkis
- ▶ 1974, 1986: Backpropagation algorithm
- ▶ 1984: CART Breiman, Friedman, Stone, Olshen
- ▶ 1984: Theory of the learnable Valiant
- ▶ 1995: Statistical learning theory Vapnik

Documentation

► Livres:

- ► The Nature of Statistical Learning Theory (2000) Springer par V. Vapnik
- ► The Elements of Statistical Learning (2001) Springer par T. Hastie, R. Tibshirani, J. Friedman
- Principles and Theory for Data Mining and Machine Learning (2009) - Springer par B. Clarke, E. Fokoue et H. Zhang
- Kernel Methods for Pattern Analysis (2004) Cambridge par J. Shawe-Taylor et N. Cristianini

► Article :

"The curse and blessings of dimensionality" D. Donoho - IMS

Logiciels

- Librairies "state-of-the-art":
 - ▶ The R Project for Statistical Computing
 - http://cran.r-project.org/web/views/MachineLearning.html
- ▶ **Python**: scikit-learn mlpy pybrain
- Autres applications (logiciels libres) :
 - WEKA
 - Orange
 - ► RapidMiner

Machine-Learning: les acteurs

Monde académique:

- Départements: Maths (Appli), Informatique, Bioinformatique, etc.
 - Un savoir fondamental selon le panorama dressé par Carnegie Mellon
- Journaux: JMLR, Machine Learning, Data-Mining and Knowledge Discovery, etc.
- ► Conférences: NIPS, ICML, COLT, UAI, etc.

▶ Industrie:

- ► High-tech: google labs, yahoo labs, Exalead, biotech
- ▶ CRM
- Finance, credit-scoring
- Signal, image or speech processing, automatic anomaly detection

Rappels de statistique

Modèle statistique

- ▶ Observation comme réalisation de X variable aléatoire de loi inconnue P*
- ▶ On suppose X à valeurs dans (E, \mathbb{E})
- Modèle statistique = triplet M = (E, E, P)
 où P = {P_θ : θ ∈ Θ} famille de lois candidates pour P*
- $ightharpoonup \Theta$ est un paramétrage de \mathcal{P} , on note $P^* = P_{\theta^*}$
- Le modèle est paramétrique si Θ est un sev d'un espace euclidien
- ▶ Le modèle est dit non-paramétrique sinon (dim ∞).
- ▶ Modèle identifiable : $\theta \mapsto P_{\theta}$ est injective

Vraisemblance du paramètre

lacktriangle On représente ${\mathcal P}$ par la classe des densités associées

$$\{f(x,\theta) : \theta \in \Theta\}$$

▶ Vraisemblance : pour x fixé,

$$L_x(\theta) = f(x,\theta)$$
.

▶ Exemple : $X = (X_1, \dots, X_n)$ i.i.d. de loi de Bernoulli $\mathcal{B}(\theta)$

$$L(\theta) = \prod_{i=1}^{n} \left(\theta^{X_i} (1-\theta)^{1-X_i}\right) = \theta^{S_n} (1-\theta)^{n-S_n}$$

où
$$S_n = \sum_{i=1}^n X_i$$
.

Notion de statistique

- ▶ Soit X une observation/ un échantillon. Une statistique est une fonction mesurable $T: E \to \mathbb{R}^k$ de X. On dira que T(X) ou $T(X_1, \ldots, X_n)$ est une statistique de l'échantillon.
- ► Exemple : Moyenne empirique

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

► Exemple : Variance empirique

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

▶ Estimation de paramètres $g(\theta^*)$

- Exemple d'estimateur = Maximum de vraisemblance
- ▶ Dans le modèle de Bernoulli $\mathcal{B}(\theta)$ avec $\theta \in [0,1]$:

$$\hat{\theta}_n = \bar{X}$$

Risque quadratique et décomposition biais-variance :

$$R(\hat{\theta}_n, \theta^*) = \mathbb{E}_{\theta^*} ((\hat{\theta}_n - \theta^*)^2)$$

$$= (\mathbb{E}(\hat{\theta}_n) - \theta^*)^2 + \mathbb{V}_{\theta^*} (\hat{\theta}_n) = \frac{\theta^* (1 - \theta^*)}{n} \le \frac{1}{4n}$$

- ► Propriétés : consistance, normalité asymptotique (vitesse)
- ▶ Et si $\theta^* \notin \Theta$? Et si le modèle est faux ?

Intervalle de confiance - paramètre d'une Bernoulli

- ▶ Intervalle aléatoire $I(n, \alpha)$ t.q. $P(\theta^* \in I(n, \alpha)) \ge 1 \alpha$

$$I(n,\alpha) = \left[\bar{X} - \frac{1}{\sqrt{4n\alpha}}, \bar{X} + \frac{1}{\sqrt{4n\alpha}}\right].$$

▶ Par l'inégalité de Hoeffding :

$$I(n, \alpha) = \left[ar{X} - \sqrt{rac{\log(2/lpha)}{2n}}, ar{X} + \sqrt{rac{\log(2/lpha)}{2n}}
ight] \ .$$

▶ Par la loi limite (Φ fdr de la loi $\mathcal{N}(0,1)$) : $I_{\infty}(n,\alpha) =$

Modèle linéaire gaussien

$$\mathbf{Y} = \mathbf{X}\beta + \epsilon$$
.

où $\mathbf{Y} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n \times p}$ sont les données et $\beta \in \mathbb{R}^n$, $\epsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$

- ▶ On suppose : X^TX inversible (identifiabilité)
- ► Estimateur des moindres carrés :

$$\hat{\beta} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}Y$$

$$\hat{s}^2 = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^2$$

Questions autour de l'estimateur des moindres carrés

Problèmes:

- Précision de la prédiction : biais faible grande variance
- ▶ Interprétabilité si *p* est grand

Solutions:

- ▶ Réduction de la dimension de la matrice X
- Méthodes pénalisées ("shrinkage")
- Estimation vs. Prédiction

Machine-Learning: les problèmes statistiques

revisités

Generic setup for supervised learning

- ▶ Random pair = $(X, Y) \sim P$ unknown
- $\triangleright X = \text{observation vector in } \mathcal{X}(\mathbb{R}^d), \text{ ici } d \gg 1$
- $Y = \text{univariate label in } \mathcal{Y} \subset \mathbb{R}$
- $lackbox{ Predictor: } g:\mathcal{X} o\mathcal{Y} \text{ in a class } \mathcal{G}$
- ▶ Loss function: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$
- ▶ Risk functional (unknown!) = Generalization error

$$L(g) = \mathbb{E}(\ell(Y, g(X)))$$

to minimize over $g \in \mathcal{G}$.

▶ Data = $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d. as P

Example 1 - Regression

- Example: Prediction of a stock price
- $ightharpoonup \mathcal{X} = \text{vector of descriptors (financial information, macro-economic indicators, ...)}$
- $ightharpoonup \mathcal{Y} = \mathbb{R}$
- ► Loss function = quadratic error

$$\ell(y,z) = (y-z)^2$$

▶ Optimal solution: $g^*(x) = \mathbb{E}(Y \mid X = x)$

Example 2 - Scoring

- ▶ Classification data: $\mathcal{Y} = \{0, 1\}$
- ▶ Set $\eta(x) = \mathbb{E}(Y \mid X = x) = \mathbb{P}\{Y = 1 \mid X = x\}$
- Logistic regression

$$f(x) = \log\left(\frac{\eta(x)}{1 - \eta(x)}\right)$$

- Additive logistic model
 - → back to linear regression

Example 3 - Binary classification

- ▶ Example: Prediction of the state of a system
- $\mathcal{Y} = \{-1, +1\}$
- ▶ Loss function:

$$\ell(y,z) = \mathbb{I}\{y \neq z\}$$

▶ Risk functional:

$$L(g) = \mathbb{P}{Y \neq g(X)}$$

= $\mathbb{P}{Y \cdot g(X) < 0} = \mathbb{E}(\mathbb{I}_{\mathbb{R}^+}(-Y \cdot g(X)))$

Example 4 - Multiclass Classification

- ► Example: handwritten character recognition
- $\blacktriangleright \mathcal{Y} = \{1, \dots, M\}$
- Loss function

$$\ell(y,z) = \mathbb{I}\{y \neq z\}$$

- ▶ In practice:
 - One Against All
 - ▶ One vs. One
 - Error-Correcting Output Coding

Example 5 - Ordinal Regression

- ► Example: design of search engine
- lacktriangledown ordinal $\mathcal{Y}=\{1,\ldots,M\}$ (e.g. "bad" vs "medium" vs "good")
- Loss function

$$\ell(y,z)=(y-z)^2$$

► In practice: regression + rounding

Example 6 - Unsupervised learning

- ▶ No label information Y
- ▶ Statistical model: $\{p(x, \theta) : \theta \in \Theta\}$
- ▶ Recover the density function of X based on D_n
- Loss function:

$$\ell(x,\theta) = -\log p(x,\theta)$$

- ► Applications: clustering, modes vs. anomaly detection
- Subproblem: Level set estimation

Example 7 - Ranking and scoring

- ► Classification data
- ▶ Set $\eta(x) = \mathbb{P}\{Y = 1 \mid X = x\}$
- $lackbox{\sf Prediction based on scoring rules } s:\mathcal{X}
 ightarrow \mathbb{R}$
- ▶ Goal: find s which ranks as η

Example 7 - Scoring and ROC Curves

► True positive rate:

$$ext{TPR}_s(x) = \mathbb{P}\left(s(X) \geq x \mid Y = 1\right)$$

False positive rate:

$$\operatorname{FPR}_s(x) = \mathbb{P}\left(s(X) \geq x \mid Y = -1\right)$$

Receiving Operator Characteristic curve:

$$x \mapsto (\operatorname{FPR}_s(x), \operatorname{TPR}_s(x))$$

Example 7 - Scoring and ROC Curves

► True positive rate:

$$\mathrm{TPR}_s(x) = \mathbb{P}\left(s(X) \geq x \mid Y = 1\right)$$

False positive rate:

$$\operatorname{FPR}_s(x) = \mathbb{P}\left(s(X) \geq x \mid Y = -1\right)$$

Receiving Operator Characteristic curve:

$$x \mapsto (\operatorname{FPR}_s(x), \operatorname{TPR}_s(x))$$

AUC = Area Under an ROC Curve

Data analysis

- Standard tools revisited
- ► Nonlinear PCA, kernel PCA
- ► Sparse PCA
- ► Independent Component Analysis

Réduction de la dimension

Exemple 1 - Finance

Analyse des taux d'intérêt

Exemple 1 - Finance (2)

Variables = 18 maturités = 1M, 3M, 6M, 9M, 1Y, 2Y, ..., 30Y

► Observations = Historique mensuel sur 8 ans = 96 valeurs

Exemple 2 - Web 2.0

Last-FM - webradio de type collaboratif

Exemple 2 - Web 2.0 (2)

▶ 28302 artistes et leurs "tags"

► Variables = 735 tags = trance, techno, ambient, alternative, rap metal, rock, ...

► Observations = 2840 utilisateurs

Exemple 3 - Reconnaissance de visages

Exemple 3 - Reconnaissance de visages (2)

► Variables = 256 x 256 pixels

► Observations = 64 images

Traits communs

- ▶ Données multivariées
- ► Besoin d'interprétation
- ▶ Variabilité expliquée par des combinaisons de variables

Données

- ▶ Dimension = nombre de variables = p
- ► Taille de l'échantillon = nombre d'observations = n
- ▶ Tableau $n \times p$ de variables quantitatives

Représentation graphique

 \Rightarrow Nuage de n points dans \mathbb{R}^p

Objectifs

- ► Réduction de la dimension
- ▶ Visualisation du nuage en 2D ou 3D
- ► Explication de la variabilité

Principales (ACP)

Analyse en Composantes

Philosophie de l'ACP

 \rightarrow Projeter le nuage selon la "bonne" direction

Philosophie de l'ACP

 \rightarrow Projeter le nuage selon la "bonne" direction

Idée : maximiser la dispersion

Cadre statistique : Tableau de données

- ▶ Observations : $X_i \in \mathbb{R}^p$, $1 \le i \le n$
- ▶ Variable $j: X_{1j}, ..., X_{nj}$
- ▶ Matrice $n \times p$ de données $X = (X_1, \dots, X_n)^T$

$$X = (X_{ij})_{i,j} = \begin{pmatrix} X_{11} & \dots & X_{1p} \\ \vdots & \ddots & \vdots \\ X_{n1} & \dots & X_{np} \end{pmatrix}$$

Matrice de covariance empirique

Barycentre

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in \mathbb{R}^p$$

▶ Matrice de covariance empirique $(p \times p)$

$$S = (s_{kj})_{k,j} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^{T} - \bar{X} \bar{X}^{T}$$

Meilleure direction

- ▶ Direction de projection $a \in \mathbb{R}^p$
- ► Echantillon (1D) = $(a^T X_1, \dots, a^T X_n)$
- ► Maximiser la variance empirique en a :

$$s_a^2 = a^T S a$$

▶ Solution : vecteur propre g₍₁₎ de la plus grande valeur propre l₁

Diagonalisation de S symétrique réelle

- ▶ Valeurs propres : $l_1 \ge ... \ge l_p$
- ▶ Vecteurs propres orthonormés $g_{(1)}, \ldots, g_{(p)}$
- ▶ Réduction de la matrice $S = GLG^T$ où
 - ▶ $L = diag(I_1, ..., I_p)$ matrice diagonale $p \times p$
 - G matrice orthogonale $p \times p$

$$G = (g_{(1)}, \ldots, g_{(p)}) = (g_{kj})_{k,j}$$

Composantes principales (CP)

lacktriangle Composantes principales : pour tout vecteur $z \in \mathbb{R}^p$

$$y_j(z) = g_{(j)}^T(z - \bar{X}), \quad 1 \le j \le p$$

▶ La matrice $n \times p$

$$Y = (y_j(X_i))_{1 \le i \le n, \ 1 \le j \le p}$$

remplace la matrice X des données initiales.

Corrélation empirique "Variable vs. CP"

ightharpoonup Corrélations empiriques entre la variable k et la CP y_i :

$$ilde{r}_{kj} = g_{kj} \sqrt{rac{I_j}{s_{kk}}}$$
 (définition)

Propriété :

$$\sum_{i=1}^p \tilde{r}_{kj}^2 = 1$$

Variance empirique de la *k*-ème variable

▶ Part de la variance empirique de la k-ème variable expliquée par les 2 premières CP (y_1, y_2) :

$$\tilde{r}_{k1}^2 + \tilde{r}_{k2}^2$$

▶ On a:

$$I_1 + I_2 = \sum_{k=1}^{p} s_{kk} (\tilde{r}_{k1}^2 + \tilde{r}_{k2}^2)$$

▶ Visualisation 2D : Disque des corrélations

Disque des corrélations

▶ Point $(\tilde{r}_{k1}, \tilde{r}_{k2})$ correspond la variable k

Variance empirique des données

▶ Part de la variance empirique du nuage de points expliquée par la CP y_j :

$$v_j = \frac{I_j}{Tr(S)}$$

où
$$Tr(S) = \sum_{j=1}^{p} I_j$$
.

Visualisation : scree-graph

Scree-graph

ightharpoonup Axes = indice j de la CP et part de variance v_j

Résultats de l'ACP - Last-FM (1)

Projection du nuage de points sur (CP1, CP2)

Résultats de l'ACP - Last-FM (2)

Projection du nuage de points sur (CP3, CP4)

Résultats de l'ACP - Visages (1)

Résultats de l'ACP - Visages (2)

"Visages propres"

Résultats de l'ACP - Visages (3)

Reconstruction partielle (sous-colonne de la matrice Y)

Résultats de l'ACP - Visages (4)

Projection d'autres images

Quelques remarques

- ► ACP = outil linéaire
- Orthogonalité des composantes principales
- ► En pratique :

Réduction de la matrice $R = (r_{kj})_{k,j}$ des corrélations

$$r_{kj} = \frac{s_{kj}}{\sqrt{s_{kk}s_{jj}}}$$

Obstacle numérique :

Réduction de S en très grande dimension

Quand est-ce que ça marche ?

- ► Nuages de points ellipsoïdaux
- ► Modèle implicite = modèle gaussien
- ▶ Information portée par les statistiques d'ordre 2
- ► Absence de valeurs aberrantes

Echec de l'ACP

⇒ Extension : ACP non-linéaire (à noyau)

Noyaux positifs

Soit ${\mathcal X}$ l'espace où vivent les observations.

Noyau positif

Une fonction $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ est un noyau positif si et seulement si

- 1. k est symétrique: k(x, x') = k(x', x), $\forall x, x' \in \mathcal{X}$
- 2. *k* est positive:

$$\sum_{i=1}^{n} \sum_{i=1}^{n} c_i c_j k(x_i, x_j) \geq 0, \quad \forall c_i \in \mathbb{R}, \quad \forall x_i \in \mathcal{X}, \quad \forall n \geq 1$$

Un théorème d'analyse

Théorème de Mercer

Pour tout noyau positif k sur $\mathcal X$ il existe un espace de Hilbert $\mathcal H$ et une application Φ tels que:

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle, \quad \forall x, x' \in \mathcal{X}$$

 $o\grave{u}< \ , \ > représente le produit scalaire sur \ \mathcal{H}.$

▶ Le théorème de Mercer est non constructif: il ne fournit ni \mathcal{H} , ni Φ

- \blacktriangleright Le théorème de Mercer est non constructif: il ne fournit ni ${\cal H},$ ni Φ
- ► En pratique:

- ▶ Le théorème de Mercer est non constructif: il ne fournit ni \mathcal{H} , ni Φ
- ► En pratique:
 - lacktriangledown est un espace de grande dimension

- Le théorème de Mercer est non constructif: il ne fournit ni \mathcal{H} , ni Φ
- ► En pratique:
 - lacktriangleright $egin{aligned} \mathcal{H} \end{aligned}$ est un espace de grande dimension
 - Φ est une application non-linéaire

- Le théorème de Mercer est non constructif: il ne fournit ni \mathcal{H} , ni Φ
- ► En pratique:
 - $ightharpoonup \mathcal{H}$ est un espace de grande dimension
 - Φ est une application non-linéaire
- H est un espace de représentation des données, connu sous le nom de "feature space" ou espace de caractéristiques

- Le théorème de Mercer est non constructif: il ne fournit ni H, ni Φ
- En pratique:
 - $ightharpoonup \mathcal{H}$ est un espace de grande dimension
 - Φ est une application non-linéaire
- ➤ H est un espace de représentation des données, connu sous le nom de "feature space" ou espace de caractéristiques
- L'astuce du noyau consiste à faire l'impasse sur \mathcal{H} et Φ si on sait qu'ils existent!

Distances images

Norme euclidienne sur \mathbb{R}^m : $\forall u \in \mathbb{R}^m$, $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle \cdot, \cdot \rangle$ produit scalaire sur \mathbb{R}^m

Distances images

- Norme euclidienne sur \mathbb{R}^m : $\forall u \in \mathbb{R}^m$, $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle \cdot, \cdot \rangle$ produit scalaire sur \mathbb{R}^m
- Distance euclidienne:

$$d(u, v) = ||u - v|| = \sqrt{\langle u, u \rangle + \langle v, v \rangle - 2 \langle u, v \rangle}$$

Distances images

- Norme euclidienne sur \mathbb{R}^m : $\forall u \in \mathbb{R}^m$, $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle \cdot, \cdot \rangle$ produit scalaire sur \mathbb{R}^m
- ▶ Distance euclidienne: $d(u,v) = \|u-v\| = \sqrt{\langle u,u \rangle + \langle v,v \rangle 2\langle u,v \rangle}$
- ▶ Transformation non-linéaire : Φ : $\mathbb{R}^d \to \mathbb{R}^m$ avec m > d

Distances images

- Norme euclidienne sur \mathbb{R}^m : $\forall u \in \mathbb{R}^m$, $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle \cdot, \cdot \rangle$ produit scalaire sur \mathbb{R}^m
- ▶ Distance euclidienne: $d(u,v) = ||u-v|| = \sqrt{\langle u,u \rangle + \langle v,v \rangle 2\langle u,v \rangle}$
- lacktriangle Transformation non-linéaire : Φ : $\mathbb{R}^d
 ightarrow \mathbb{R}^m$ avec m>d
- ▶ Noyau: $k(x,x') = <\Phi(x), \Phi(x')>$

Distances images

- Norme euclidienne sur \mathbb{R}^m : $\forall u \in \mathbb{R}^m$, $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle \cdot, \cdot \rangle$ produit scalaire sur \mathbb{R}^m
- ▶ Distance euclidienne: $d(u,v) = ||u-v|| = \sqrt{\langle u,u \rangle + \langle v,v \rangle 2\langle u,v \rangle}$
- ▶ Transformation non-linéaire : Φ : $\mathbb{R}^d \to \mathbb{R}^m$ avec m > d
- ▶ Noyau: $k(x, x') = < \Phi(x), \Phi(x') >$
- Distance image:

$$d_{\Phi}(x,x') = \|\Phi(x) - \Phi(x')\| = \sqrt{k(x,x) + k(x',x') - 2k(x,x')}$$

 \Rightarrow la distance induite par Φ ne fait intervenir que le noyau

► Aucune complication algorithmique en remplaçant le produit scalaire par une autre mesure de similarité

- ► Aucune complication algorithmique en remplaçant le produit scalaire par une autre mesure de similarité
- ► Transformer un problème initialement non-linéaire en un problème linéaire en envoyant les données dans un espace plus grand

- ► Aucune complication algorithmique en remplaçant le produit scalaire par une autre mesure de similarité
- ► Transformer un problème initialement non-linéaire en un problème linéaire en envoyant les données dans un espace plus grand

- ► Aucune complication algorithmique en remplaçant le produit scalaire par une autre mesure de similarité
- ► Transformer un problème initialement non-linéaire en un problème linéaire en envoyant les données dans un espace plus grand

Exemple

Soit $f(x, y) = ax^2 + bx + c - y = 0$ une surface de décision polynomiale (parabole dans \mathbb{R}^2).

- ► Aucune complication algorithmique en remplaçant le produit scalaire par une autre mesure de similarité
- ► Transformer un problème initialement non-linéaire en un problème linéaire en envoyant les données dans un espace plus grand

Exemple

Soit $f(x, y) = ax^2 + bx + c - y = 0$ une surface de décision polynomiale (parabole dans \mathbb{R}^2).

Rôle clé de la transformation:

$$\begin{array}{cccc} \Phi & : & \mathbb{R}^2 & \to & \mathbb{R}^4 \\ & x & \mapsto & \left(x^2, x, 1, y\right)^T \end{array}$$

■ Du non-linéaire au linéaire

Exemple (suite)

On peut écrire:

$$g(x^2, x, 1, y) = ax^2 + bx + c - y = 0$$

où
$$g(u, v, w, y) = au + bv + cw - y$$
.

L'équation g(u, v, w, y) = 0 définit une surface de décision linéaire dans \mathbb{R}^4 .

Exemple (suite)

On peut écrire:

$$g(x^2, x, 1, y) = ax^2 + bx + c - y = 0$$

où
$$g(u, v, w, y) = au + bv + cw - y$$
.

L'équation g(u, v, w, y) = 0 définit une surface de décision linéaire dans \mathbb{R}^4

Un problème non-linéaire dans un certain espace peut parfois se formuler comme un problème linéaire dans un espace plus grand.

Du non-linéaire au linéaire

Outline

Cas de l'analyse en composantes principales et de la régression

ACP à noyau

On considère un nuage de points x_1, \ldots, x_n centrés en l'origine.

On considère un nuage de points x_1, \ldots, x_n centrés en l'origine.

Buts de l'ACP

- méthode de visualisation des données
- réduction de la dimension effective des données

On considère un nuage de points x_1, \ldots, x_n centrés en l'origine.

Buts de l'ACP

- méthode de visualisation des données
- réduction de la dimension effective des données

L'ACP consiste à identifier les composantes principales de l'échantillon constituées par

1. la meilleure direction de projection du nuage de points i.e. celle de variance maximale

On considère un nuage de points x_1, \ldots, x_n centrés en l'origine.

Buts de l'ACP

- méthode de visualisation des données
- réduction de la dimension effective des données

L'ACP consiste à identifier les composantes principales de l'échantillon constituées par

- 1. la meilleure direction de projection du nuage de points i.e. celle de variance maximale
- puis, la meilleure direction de projection orthogonale à la première

On considère un nuage de points x_1, \ldots, x_n centrés en l'origine.

Buts de l'ACP

- méthode de visualisation des données
- réduction de la dimension effective des données

L'ACP consiste à identifier les composantes principales de l'échantillon constituées par

- 1. la meilleure direction de projection du nuage de points i.e. celle de variance maximale
- puis, la meilleure direction de projection orthogonale à la première
- 3. et, ainsi de suite, jusqu'à la *n*-ième

▶ Projection orthogonale d'un vecteur x sur la direction $w \in \mathbb{R}^d$:

$$p_w(x) = \frac{\langle x, w \rangle}{\|w\|}$$

▶ Projection orthogonale d'un vecteur x sur la direction $w \in \mathbb{R}^d$:

$$p_w(x) = \frac{\langle x, w \rangle}{\|w\|}$$

▶ Variance empirique du nuage de points selon la direction w:

$$\mathbb{V}(p_w) = \frac{1}{n} \sum_{i=1}^n \frac{\langle x_i, w \rangle^2}{\|w\|^2}$$

▶ Projection orthogonale d'un vecteur x sur la direction $w \in \mathbb{R}^d$:

$$p_w(x) = \frac{\langle x, w \rangle}{\|w\|}$$

▶ Variance empirique du nuage de points selon la direction w:

$$\mathbb{V}(p_w) = \frac{1}{n} \sum_{i=1}^n \frac{\langle x_i, w \rangle^2}{\|w\|^2}$$

▶ Matrice de covariance empirique $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$

▶ Projection orthogonale d'un vecteur x sur la direction $w \in \mathbb{R}^d$:

$$p_w(x) = \frac{\langle x, w \rangle}{\|w\|}$$

▶ Variance empirique du nuage de points selon la direction w:

$$\mathbb{V}(p_w) = \frac{1}{n} \sum_{i=1}^n \frac{\langle x_i, w \rangle^2}{\|w\|^2}$$

- ► Matrice de covariance empirique $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$
- ▶ On a donc :

$$\mathbb{V}(p_w) = \frac{w^T \Sigma w}{\|w\|^2}$$

Problème d'optimisation

Première composante principale

$$\operatorname*{arg\,max}_{w}\mathbb{V}(p_{w}) = \frac{w^{T}\Sigma w}{\|w\|^{2}}$$

Problème d'optimisation

Première composante principale

$$\operatorname*{arg\,max}_{w}\mathbb{V}(p_{w}) = \frac{w^{T}\Sigma w}{\|w\|^{2}}$$

Solution

Les composantes principales sont les vecteurs propres de la Σ rangés selon la décroissance des valeurs propres correspondantes.

Première composante principale

$$\arg\max_{w} \mathbb{V}(p_w) = \frac{w^T \Sigma w}{\|w\|^2}$$

Solution

Les composantes principales sont les vecteurs propres de la Σ rangés selon la décroissance des valeurs propres correspondantes.

Remarque : la matrice Σ est symétrique réelle donc diagonalisable dans une base orthonormée.

On cherche un vecteur v et un réel λ tels que:

$$\Sigma v = \lambda v$$

Or, on a:

$$\sum v = \frac{1}{n} \sum_{i=1}^{n} \langle x_i, v \rangle x_i$$

D'où:

$$v = \sum_{i=1}^{n} \left(\frac{\langle x_i, v \rangle}{n\lambda} \right) x_i = \sum_{i=1}^{n} \alpha_i x_i$$

On cherche un vecteur v et un réel λ tels que:

$$\Sigma v = \lambda v$$

Or. on a:

$$\sum v = \frac{1}{n} \sum_{i=1}^{n} \langle x_i, v \rangle x_i$$

D'où:

$$v = \sum_{i=1}^{n} \left(\frac{\langle x_i, v \rangle}{n\lambda} \right) x_i = \sum_{i=1}^{n} \alpha_i x_i$$

On utilise

$$x_i^T \Sigma v = \lambda < x_i, v >, \quad \forall j$$

et on y substitue les expressions de Σ et v:

$$\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}\left\langle x_{j},\sum_{k=1}^{n}< x_{k},x_{i}> x_{k}\right\rangle =\lambda\sum_{i=1}^{n}\alpha_{i}< x_{j},x_{i}>$$

lacktriangle On note $K = (\langle x_i, x_j \rangle)_{i,j}$ la matrice de Gram

- ▶ On note $K = (\langle x_i, x_j \rangle)_{i,j}$ la matrice de Gram
- On peut écrire alors le système:

$$K^2\alpha = n\lambda K\alpha$$

- ▶ On note $K = (\langle x_i, x_i \rangle)_{i,j}$ la matrice de Gram
- On peut écrire alors le système:

$$K^2\alpha = n\lambda K\alpha$$

 \blacktriangleright Pour résoudre en $\alpha,$ on résout donc le problème aux éléments propres

$$K\alpha = n\lambda\alpha$$

 elle est adaptée surtout au cas de réalisations de gaussiennes multivariées

- elle est adaptée surtout au cas de réalisations de gaussiennes multivariées
 - en général, la non-corrélation n'implique pas l'indépendance des directions principales

- elle est adaptée surtout au cas de réalisations de gaussiennes multivariées
 - en général, la non-corrélation n'implique pas l'indépendance des directions principales
 - ► alternative : Analyse en Composantes Indépendantes (plutôt que Principales)

- elle est adaptée surtout au cas de réalisations de gaussiennes multivariées
 - en général, la non-corrélation n'implique pas l'indépendance des directions principales
 - ▶ alternative : Analyse en Composantes Indépendantes (plutôt que Principales)
- elle est adaptée aux structures linéaires

- elle est adaptée surtout au cas de réalisations de gaussiennes multivariées
 - en général, la non-corrélation n'implique pas l'indépendance des directions principales
 - alternative : Analyse en Composantes Indépendantes (plutôt que Principales)
- elle est adaptée aux structures linéaires
 - les nuages de points ne sont pas tous ellipsoidaux!!

- elle est adaptée surtout au cas de réalisations de gaussiennes multivariées
 - en général, la non-corrélation n'implique pas l'indépendance des directions principales
 - ► alternative : Analyse en Composantes Indépendantes (plutôt que Principales)
- elle est adaptée aux structures linéaires
 - les nuages de points ne sont pas tous ellipsoidaux!!
 - ► alternative : Kernel PCA

ACP à noyau

ightharpoonup On applique une transformation Φ qui envoie le nuage de points X dans un espace où la structure est linéaire

ACP à noyau

- On applique une transformation Φ qui envoie le nuage de points X dans un espace où la structure est linéaire
- ▶ La matrice de covariance de $\Phi(X) = (\Phi(x_1), \dots, \Phi(x_n))^T$ est alors

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{T}$$

ACP à noyau

- On applique une transformation Φ qui envoie le nuage de points X dans un espace où la structure est linéaire
- ▶ La matrice de covariance de $\Phi(X) = (\Phi(x_1), \dots, \Phi(x_n))^T$ est alors

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{T}$$

▶ Astuce du noyau : $K = (k(x_i, x_j))_{i,j} = (\Phi(x_i)^T \Phi(x_j))_{i,j}$

ACP à noyau (suite)

▶ "Directions" principales de la forme:

$$p_i(x) = \sum_{j=1}^n \alpha_{i,j} k(x_j, x)$$

ACP à noyau (suite)

▶ "Directions" principales de la forme:

$$p_i(x) = \sum_{j=1}^n \alpha_{i,j} k(x_j, x)$$

▶ le vecteur $\alpha_i = (\alpha_{i,1}, \dots, \alpha_{i,n})$ est solution du problème d'optimisation:

$$\max_{\alpha} \frac{\alpha^T K^2 \alpha}{\alpha^T K \alpha}$$

sous les contraintes: $\alpha_i^T K \alpha_j$ pour $j = 1, \dots, i-1$

ACP à noyau (suite)

"Directions" principales de la forme:

$$p_i(x) = \sum_{j=1}^n \alpha_{i,j} k(x_j, x)$$

▶ le vecteur $\alpha_i = (\alpha_{i,1}, \dots, \alpha_{i,n})$ est solution du problème d'optimisation:

$$\max_{\alpha} \frac{\alpha^T K^2 \alpha}{\alpha^T K \alpha}$$

sous les contraintes: $\alpha_i^T K \alpha_i$ pour $j = 1, \dots, i-1$

on résout le problème aux éléments propres:

$$K\alpha = n\lambda\alpha$$

Indépendantes (ACI)

Analyse en Composantes

Problème du "cocktail-party"

- ► ACP = fondée sur la notion de corrélation
- ► Bonne notion = notion d'indépendance

Corrélation vs. Indépendance

- ▶ Or : X et Y indépendants $\Rightarrow cov(X, Y) = 0$
- ▶ Réciproque fausse en général, sauf cas gaussien...
- ▶ De l'ACP vers l'ACI... (beaucoup plus difficile !)

Formulation du problème

- ▶ $S = (S_1, ..., S_d)^T$ sources indépendantes et non-gaussiennes inconnues
- ▶ **A** matrice de mélange $d \times d$ inconnue
- ▶ $X = (X_1, ..., X_d)^T$ observations (capteurs), on suppose Cov(X) = I
- ightharpoonup On a le système : $X = \mathbf{A}S$
- ▶ On cherche A orthogonale telle que :

$$S = \mathbf{A}^T X$$
 ait des composantes indépendantes

Théorie de l'information

▶ Entropie d'une v.a. $Z \sim p(z)$:

$$H(Z) = -\mathbb{E}(\log(p(Z)))$$

► Considérons les v.a. *T* de variance *v*, alors

$$Z \sim \mathcal{N}(0,1) \quad o \quad \max_{T} H(T)$$

▶ Information mutuelle pour $S = (S_1, ..., S_d)^T$:

$$I(S) = \sum_{i=1}^d H(S_i) - H(S)$$

ACI par méthode entropique

Propriété de l'entropie : si $S = \mathbf{A}^T X$

$$H(S) = H(X) + \log(|\det(\mathbf{A})|)$$

▶ On a donc le problème d'optimisation suivant :

$$\rightarrow \min_{\mathbf{A}: \mathbf{A}^T \mathbf{A} = \mathbf{I}} I(\mathbf{A}^T X) = \sum_{i=1}^d H(S_i) - H(X)$$

► Interprétation : écart du comportement gaussien (minimisation de l'entropie des composantes)