National University of Singapore FTS 431: Formula SAE

Design of R20 Chassis Dept

World Map

Formula Student Competitions:

USA

Canada

UK

Spain

Italy

Germany

Netherlands

Austria

Hungary

Czech

China

South Korea

Australia

The best teams use a monocoque for the frame...

Rigidity Lightweight Safety

Preliminary Findings

Validating Concept through Weight Savings

Three Stages of the Monocoque Project

Design

Determining the geometry and materials.

Manufacturing

Overcoming 4 key challenges.

Testing

Understanding torsional stiffness of the monocoque.

Shaping the Geometry of Monocoque

1

FSAE Rules

Minimum area of the monocoque is **limited** by the template rules: cockpit template and foot well template.

2

Torsional Stiffness

Frame is modelled as springs in series:

$$\frac{1}{K_T^{Total}} = \frac{1}{K_T^A} + \frac{1}{K_T^B} + \frac{1}{K_T^C}$$

Added flanges at cockpit rim to **increase** local stiffness to for **higher** torsional rigidity.

Component Packaging

Designing to catch front suspension inboard points, ARB mounts, steering mounts for **excellent** dynamic performance.

Deciding the Monocoque Laminate Schedule

Testing

3-Point Bending and Perimeter Shear.

- The more the number of plies, the stiffer the sandwiched panel.
- The more the number of plies, the higher the peak force.

- The **more** the number of plies, the **higher** the peak force.
- The thickness of the core does not affect the peak force.

Transferring Monocoque in CAD to a Physical Product

Key Juestions

Method (s)

Illustration

How to construct the mold?

- How to join the two halves?
- How to jig and locate points?
- How to validate dimensions?

- 2 halves with horizontal split line
- CF mold for stiffness and similar CTE

- K1 gap between halves
- Double lap joints (4 plies each face)
- Jig with CF mold

- Acrylic jigs with reference to welding table
- Drill bushing for hole concentricity

- Probing CMM
- Scanned model about 0.5mm deviation from CAD model

Lessons from Torsional Rigidity Test Results

- Chassis TR achieved 3018Nm/deg, meeting objective of 2800Nm/deg at start of design phase.
- Engine contributes to approximately 200Nm/deg. Data used to develop future simulations.
- Gradient of the graph indicates rear spaceframe is the least stiff and cockpit opening loses stiffness.

Positioning NUS Formula SAE to be Champions

How will the chassis department contribute to the success of the NUS FSAE team?

- Design successfully passed SES and incorporated other departments' components.
- Addressed manufacturing challenges by sourcing new suppliers and developing new manufacturing processes.
- Validated TR target achieved with testing and analysed future areas to work on.

Annex

Removed

