

Hieroglyphs

Команда учёных изучает закономерности в последовательностях иероглифов. Обозначим иероглифы целыми неотрицательными числами. В рамках исследования используются следующие термины.

Для последовательности A, назовём последовательность S **подпоследовательностью** A если, и только если S может быть получена из A удалением нескольких (возможно ни одного) элементов.

В таблице ниже приведены примеры подпоследовательностей последовательности A = [3,2,1,2].

Подпоследовательнось	Как она получена из ${\cal A}$
[3, 2, 1, 2]	ни один элемент не был удалён.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] или [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

Заметим, что , [3,3] или [1,3] не являются подпоследовательностью A.

Рассмотрим две последовательности иероглифов A и B. Последовательность S назовём **общей подпоследовательностью** A и B если, и только если S является подпоследовательностью и A и B. Также, назовём последовательность U **универсальной общей подпоследовательностью** A и B если, и только если выполняются оба следующих условия:

- ullet U является общей подпоследовательностью A и B.
- Любая общая подпоследовательность A и B также является подпоследовательностью U.

Можно доказать, что для любых двух последовательностей A и B существует не более одной универсальной общей подпоследовательности.

Учёные нашли две последовательности иероглифов A и B. Последовательность A состоит из N иероглифов, а последовательность B состоит из M иероглифов. Помогите учёным найти универсальную общую подпоследовательность A и B или определите, что её не существует.

Implementation details

Вы должны реализовать следующую функцию.

```
std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
```

- A: массив длины N описывающий первую последовательность.
- ullet B: массив длины M описывающий вторую последовательность.
- Если универсальная общая подпоследовательность A и B существует, функция должна вернуть массив содержащий эту последовательность. В противном случае, функция должна вернуть [-1] (массив длины 1, единственный элемент которого равен -1).
- Функция будет вызвана ровно один раз для каждого теста.

Constraints

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- ullet $0 \leq A[i] \leq 200\,000$ для всех i, таких что $0 \leq i < N$
- ullet $0 \leq B[j] \leq 200\,000$ для всех j, таких что $0 \leq j < M$

Subtasks

Подзадача	Балл	Дополнительные ограничения
1	3	N=M; A и B обе состоят из N различных целых чисел от 0 до $N-1$ (включительно)
2	15	Для любого целого k , количество элементов A равных k и количество элементов B равных k суммарно не больше 3 .
3	10	$A[i] \leq 1$ для всех i , таких что $0 \leq i < N$; $B[j] \leq 1$ для всех j , таких что $0 \leq j < M$
4	16	Универсальная общая подпоследовательность A и B существует.
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Без дополнительных ограничений

Examples

Example 1

Рассмотрим следующий вызов.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Общими подпоследовательностями A и B являются: [], [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] и [0,1,0,2].

Так как [0,1,0,2] является общей подпоследовательностью A и B, и все общие подпоследовательности A и B являются подпоследовательностями [0,1,0,2], то функция должна вернуть [0,1,0,2].

Example 2

Рассмотрим следующий вызов.

```
ucs([0, 0, 2], [1, 1])
```

Единственной общей подпоследовательностью A и B является пустая последовательность $[\,\,]$. Из этого следует, что функция должна вернуть пустой массив $[\,\,]$.

Example 3

Рассмотрим следующий вызов.

```
ucs([0, 1, 0], [1, 0, 1])
```

Общими подпоследовательностями A и B являются: $[\],[0],[1],[0,1]$ и [1,0]. Можно показать, что универсальной общей подпоследовательности не существует. Функция должна вернуть [-1].

Sample Grader

Input format:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Output format:

```
T
R[0] R[1] ... R[T-1]
```

Здесь R это массив, который вернула функция ucs и T его длина.