Quim Llimona Torras

Journal Club 2011. MTG - UPF

Time series similarity

WHERE DID IT COME FROM?

Euclidean Distance:
$$\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+\cdots+(a_n-b_n)^2}=\sqrt{\sum_{i=1}^n(a_i-b_i)^2}$$
.

Euclidean Distance: $\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+\cdots+(a_n-b_n)^2}=\sqrt{\sum_{i=1}^n(a_i-b_i)^2}$.

They didn't even have the same length!

Other similarity measures

Other similarity measures

Euclidean (or Cartesian) distance	$D_{[2]}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
Chebyshey distance	$D_{[\omega]}(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{n} x_i - y_i $
Manhattan (city-block) distance	$D_{[1]}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i - y_i $
Minkowsky distance	$D_{[p]}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} x_i - y_i ^p\right]^{\frac{1}{p}}$
Weighted Minkowsky distance	$D_{[y,w]}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} w_i \mid x_i - y_i \mid^y\right]^{\frac{1}{p}}$
Mahalanobis distance	$D(\mathbf{x}, \mathbf{y}) = \det \mathbf{C} ^{1/n} (\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{y})$
Generalised Euclidean (quadratic) distance	$D(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{K} (\mathbf{x} - \mathbf{y})$
Correlation coefficient	$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2 \sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$
Relative entropy (Kullback-Leibler divergence)	$D(\mathbf{x} \parallel \mathbf{y}) = \sum_{i=1}^{n} x_i \log \frac{x_i}{y_i} \text{ when } \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 1$
χ²-Distance	$D_{\chi^{2}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{(x_{i} - y_{i})^{2}}{y_{i}} \text{ when } \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 1$

Forcing correlation

NON-SYNCED SOURCES

Our measures no longer work!

It can get even worse...

The Dynamic Time Warping approach

It's an alignment algorithm

How does it work?

Cost functions

Audio: choose a good descriptor first (Chroma, MFCC)!

2 options: mapping and multidimensional distance

Why not raw audio?

Euclidean (or Cartesian) distance	$D_{[2]}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
Chebyshev distance	$D_{[\omega]}(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{n} x_i - y_i $
Manhattan (city-block) distance	$D_{[1]}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i - y_i $
Minkowsky distance	$D_{[p]}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} x_i - y_i ^p \right]^{\frac{1}{p}}$
Weighted Minkowsky distance	$D_{[y,w]}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} w_i \mid x_i - y_i \mid^{p}\right]^{\frac{1}{p}}$
Mahalanobis distance	$D(\mathbf{x}, \mathbf{y}) = \det \mathbf{C} ^{1/n} (\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{y})$
Generalised Euclidean (quadratic) distance	$D(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{T} \mathbf{K} (\mathbf{x} - \mathbf{y})$
Correlation coefficient	$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2 \sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$
Relative entropy (Kullback-Leibler divergence)	$D(\mathbf{x} \parallel \mathbf{y}) = \sum_{i=1}^{n} x_i \log \frac{x_i}{y_i} \text{ when } \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 1$
χ^2 -Distance	$D_{\chi^{2}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{(x_{i} - y_{i})^{2}}{y_{i}} \text{ when } \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 1$

Finding the cheapest/best path

DYNAMIC PROGRAMMING

1 1 2 3 5 8 13 21

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$

```
Algorithm Fibonacci(n)
if n <= 1, then:
   return 1
else:
   return Fibonacci(n - 1) + Fibonacci(n - 2)
end of if</pre>
```

A call tree:

```
5

4 3

/ \ / \

3 2 2 1

/ \ / \ / \

2 1 1 0 1 0

/ \

1 0
```

This takes $O(1.618^n)$ time!

```
to compute takes
Fibonacci(40) 75.22 seconds
Fibonacci(70) 4.43 years
```


Dynamic Programming: Bottom-to-up approach

```
int fib(int n)

{
    int f[n+1];

f[1] = f[2] = 1;

for (int i = 3; i <= n; i++)

f[i] = f[i-1] + f[i-2];

return f[n];

}</pre>
```

Dynamic Programming: Bottom-to-up approach

```
int fib(int n)

{
    int f[n+1];

f[1] = f[2] = 1;

for (int i = 3; i <= n; i++)

f[i] = f[i-1] + f[i-2];

return f[n];

}</pre>
```

```
int DTWDistance(char s[1..n], char t[1..m]) {
   declare int DTW[0..n, 0..m]
   declare int i, j, cost
   for i := 1 to m
       DTW[0, i] := infinity
   for i := 1 to n
       DTW[i, 0] := infinity
   DTW[0, 0] := 0
   for i := 1 to n
       for j := 1 to m
           cost:= d(s[i], t[j])
           DTW[i, j] := cost + minimum(DTW[i-1, j ], // insertion
                                       DTW[i , j-1], // deletion
                                       DTW[i-1, j-1]) // match
   return DTW[n, m]
```

```
int DTWDistance(char s[1..n], char t[1..m]) {
   declare int DTW[0..n, 0..m]
   declare int i, j, cost
   for i := 1 to m
       DTW[0, i] := infinity
   for i := 1 to n
       DTW[i, 0] := infinity
   DTW[0, 0] := 0
   for i := 1 to n
       for j := 1 to m
           cost:= d(s[i], t[j])
           DTW[i, j] := cost + minimum(DTW[i-1, j ], // insertion
                                       DTW[i , j-1], // deletion
                                       DTW[i-1, j-1]) // match
   return DTW[n, m]
```

```
int DTWDistance(char s[1..n], char t[1..m]) {
   declare int DTW[0..n, 0..m]
   declare int i, j, cost
   for i := 1 to m
       DTW[0, i] := infinity
   for i := 1 to n
       DTW[i, 0] := infinity
   DTW[0, 0] := 0
   for i := 1 to n
       for j := 1 to m
           cost:= d(s[i], t[j])
           DTW[i, j] := cost + minimum(DTW[i-1, j ], // insertion
                                       DTW[i , j-1], // deletion
                                       DTW[i-1, j-1])
                                                         // match
   return DTW[n, m]
```



```
// insertion
// deletion
// match
```

Distance Matrix

Cost-to-x Matrix

Matlab example: Gunx

Different paths are allowed

TABLE 4.5. Summary of sets of local constraints and the resulting path specifications

Туре	Allowable Path Specification
I	$\begin{array}{ccc} \mathcal{P}_1 \rightarrow (1,0) \\ \mathcal{P}_2 \rightarrow (1,1) \\ \mathcal{P}_3 \rightarrow (0,1) \end{array}$
II	$\begin{array}{c} \mathcal{P}_1 \rightarrow (1,1)(1,0) \\ \mathcal{P}_2 \rightarrow (1,1) \\ \mathcal{P}_3 \rightarrow (1,1)(0,1) \end{array}$
III	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IV	$\mathcal{P}_{1} \rightarrow (1,1)(1,0)$ $\mathcal{P}_{2} \rightarrow (1,2)(1,0)$ $\mathcal{P}_{3} \rightarrow (1,1)$ $\mathcal{P}_{4} \rightarrow (1,2)$

Even more! [Step matrix]

Global constraints

HEURISTICS: REDUCING COMPLEXITY & INCREASING EFFICIENCY

Classical DTW constraints

Boundary Conditions: $\mathbf{i_1} = 1$, $\mathbf{i_k} = \mathbf{n}$ and $\mathbf{j_1} = 1$, $\mathbf{j_k} = \mathbf{m}$.

The alignment path starts at the bottom left and ends at the top right.

Guarantees that the alignment does not consider partially one of the sequences.

<u>Warping Window</u>: $|\mathbf{i}_s - \mathbf{j}_s| \le \mathbf{r}$, where \mathbf{r} > 0 is the window length.

A good alignment path is unlikely to wander too far from the diagonal.

Guarantees that the alignment does not try to skip different features and gets stuck at similar features.

Warping Windows

Figure 4. Two constraints: Sakoe-Chuba Band (left) and an Itakura Parallelogram (right), both have a width of 5.

Heuristic functions

DC Offset, normalization, linear trend

PREPROCESSING: DC OFFSET, NORMALIZATION, LINEAR TREND

Preprocessing

Preprocessing: DC offset

Preprocessing: Amplitude

Q = (Q - mean(Q)) / std(Q)

C = (C - mean(C)) / std(C)D(Q,C)

Preprocessing: Linear trend

The intuition behind removing linear trend is...

Fit the best fitting straight line to the time series, then subtract that line from the time series.

Removed linear trend
Removed offset translation
Removed amplitude scaling

Thank you!

That's all for today © Questions, comments...