

Of course. Here is a step-by-step solution to both problems using matrices and vectors as requested.

Problem 4: Calculating the New Price of the First Product

This problem can be solved using the Leontief price model. The model states that the price of a product must cover the cost of its inputs (both intermediate and primary) plus the value added.

1. Define the Vectors and Matrices

From the problem description, we can define the following:

• **Input-Output Matrix (A):** This matrix shows the amount of input from sector *i* (row) needed to produce one unit of output in sector *j* (column).

$$A = \begin{bmatrix} 0.3 & 0.4 \\ 0.2 & 0.5 \end{bmatrix}$$

• Initial Price Vector (P): The initial prices of the two products.

$$P = [1000, 1000]$$

• Oil Input Coefficients (a_oil): A vector representing the units of oil needed per unit of output for each sector.

$$a_{oil} = [2, 0.5]$$

• Initial Oil Price (P_oil):

• Value Added Vector (v): The value added per unit of output for each sector.

$$v = [300, 50]$$

2. The Leontief Price Equation

The price equation for an economy is:

```
p = A^T p + c
```

Where:

- **p** is the column vector of product prices.
- A^T is the transpose of the input-output matrix.
- c is the column vector of costs per unit of output, excluding intermediate inputs. This vector is the sum of primary input costs and value added.

```
Let's calculate the initial cost vector c_{initial}:
```

```
c = (a_oil)<sup>T</sup> * P_oil + v<sup>T</sup>
c_initial = [2, 0.5]<sup>T</sup> * 100 + [300, 50]<sup>T</sup>
c_initial = [200, 50]<sup>T</sup> + [300, 50]<sup>T</sup> = [500, 100]<sup>T</sup>
```

We can verify that the initial prices are correct: $p = (I - A^{T})^{-1} * c$

Let's first calculate $(I - A^{T})$:

The initial state is consistent.

3. Calculate the New Prices (p')

The price of oil increases by 45.8%, and the value added remains constant.

• New Oil Price (P'_oil):

```
P'_oil = 100 * (1 + 0.458) = 145.8 HUF
```

• New Cost Vector (c'): The value added v is unchanged.

```
c' = (a_oil)^{T} * P'_oil + v^{T}

c' = [2, 0.5]^{T} * 145.8 + [300, 50]^{T}

c' = [291.6, 72.9]^{T} + [300, 50]^{T} = [591.6, 122.9]^{T}
```

Now, we solve for the new price vector p':

```
p' = (I - A^{T})^{-1} * c'
p' = (1/0.27) * | 0.5 | 0.2 | * | 591.6 | | 0.4 | 0.7 | | 122.9 |
```

First, perform the matrix-vector multiplication:

```
| (0.5 * 591.6) + (0.2 * 122.9) | = | 295.8 + 24.58 | = | 320.38 |
| (0.4 * 591.6) + (0.7 * 122.9) | | 236.64 + 86.03 | | 322.67 |
```

Now, multiply by 1/0.27:

```
p' = (1/0.27) * | 320.38 | = | 320.38 / 0.27 | = | 1186.5926 |
| 322.67 | | 322.67 / 0.27 | | 1195.0741 |
```

The new price vector is p' = [1186.59, 1195.07].

Answer for Question 4: The price of the first product after the price increase is 1186.59 HUF.

Problem 5: Calculating the Inflation Rate

The inflation rate is the weighted average of the price changes for the goods in the index.

1. Define the Weights and Prices

• Weights Vector (w): For the first product, second product, and oil.

```
w = [0.4, 0.5, 0.1]
```

• Initial Price Vector (P_basket_initial):

```
P_basket_initial = [P1, P2, P_oil] = [1000, 1000, 100]
```

• New Price Vector (P_basket_new):

```
P_basket_new = [P1', P2', P'_oil] = [1186.59, 1195.07, 145.8]
```

2. Calculate Individual Price Changes

First, we calculate the percentage price change for each item in the basket.

```
• % Change in P1: (1186.59 / 1000 - 1) * 100 = 18.659%
```

- % Change in P2: (1195.07 / 1000 1) * 100 = 19.507%
- % Change in P_oil: (145.8 / 100 1) * 100 = 45.8%

3. Calculate the Weighted Average Inflation Rate

The overall inflation rate is the dot product of the weights vector and the vector of percentage changes.

```
Inflation Rate = \mathbf{w} \cdot [\%\Delta P1, \%\Delta P2, \%\Delta P\_oil]^{\mathsf{T}}

Inflation Rate = (0.4 * 18.659) + (0.5 * 19.507) + (0.1 * 45.8)

Inflation Rate = 7.4636 + 9.7535 + 4.58

Inflation Rate = 21.7971 \%
```

Answer for Question 5: The inflation rate is 21.80%.