

KLEINES PRIVATES LEHRINSTITUT

DERKSEN

GYMNASIUM

Informatik 09 - Tabellenkalkulation

Informatik 09 - Tabellenkalkulation

Stunde 1+2
BYCS Drive
Excel Werbung
Tabellenkalkulation

Stunde 3+4
Formeln und Parameter
Excel-Werbung erweitert mit Formeln
Absolute und relative Zellbezüge

Stunde 5+6
Formeln mit Diagrammen darsteller
Exkurs: Abstraktionsebenen
Der Weg der Daten

Stunde 7+8
Datenflussdiagramm

Funktionen und Stelligkeit Getränkekalkulation

Stunde 9+10
Datenfluss-Puzzle
Verkettung von Funktionen

Stunde 11+12
Übung: Funktionale Modellierung
Umsetzung der DFDs als Tabelle

Stunde 13+14
Wenn-Dann-Funktion
Wenn-Dann-Funktion
Einkaufstabelle filtern
Daten filtern

Zusatz Optional: Übung Notentabelle

Outline

Stunc	ا _م 1	+2
Sturio		_

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Excel Werbung

1. Schau das Video unter: mehlas: 1 izid / (m/d), excel 1-verbring

2. Strate das Video unter: mehlas: 1 izid / (m/d), excel 1-verbring

2. Strate das Video unter: mehlas: 1 izid / (m/d)

3. Strate das Video unter: mehlas: 1 izid / (m/d)

4. Siga disiner Tabelle sus dem Video unter des cald geleben Schitten in BVSS Dive nacht

4. Siga disiner Tabelle sus dem Video unter des de Quantitatellen graffich dersells

5. Strate das Tabelle sussibilité unter Westernanteste von (19 km Quantaria und burst dar?

6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumzate berechnet werden?

Tabellenkalkulation
In Tabellenkalkulation
In Tabellenkalkulatiospacopammene können Daten in den Zallen der erfast und mehtlle von Formaln verarbeitet werden. Jede Zelle bestett eine eindeutige Adresse. Diese besteht aus Buchtstaben () und Zallen () Bekannen Tabelheinkalkulationsprogramme sind z.B. Microsoft Excil, Libre-Office Calc oder Google Spreadsheers.

BYCS Drive

- 1. Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mebis Logindaten an.
- 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name **Informatik 09**
- 3. Wenn du in diesem Ordner auf **+Neu** klickst kannst du neue Dateien (z.B. Kalkulationstabellen) erstellen.

WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. .xlsx), nicht zu verändern!

Excel Werbung

- 1. Schau das Video unter: mebis.link/inf9_excel-werbung
- 2. Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01_ExcelWerbung.xlsx
- 3. Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- 5. Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar?
- 6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel. Libre Office Calc oder Google

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel. Libre Office Calc oder Google

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel. Libre Office Calc oder Google

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel. Libre Office Calc oder Google

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

BYCS Drive . Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mehis Logindaten 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name Informatik 09 Wenn du in diesem Ordner auf +Neu klickst kannst du neue Dateien (z.B. Kalkulationstahellen) erstellen. WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. xlsx), nicht zu verändern!

Excel Werbung

- Schau das Video unter mehis link/inf9 excel-werbung
- Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01 Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar? Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet

ahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, Libre Office Calc oder Google Spreadsheets

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem ma-thematischen Term oder vorgefertigten Funktio-nen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als: In Formeln können feste Werte (z.B. für MwSt: 1.19) oder Werte anderer Zellen (als Adresse. z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Excel-Werbung erweitert mit Formeln

- Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
- Führt die Schritte wie im Video aus, jedoch nur bis zu den
- (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um. Tragt hebt auch diese Zellen entsprechend hervor. Die Tabelle

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen entsprechend der veränderten Zellposition. Man Möchte man dies verhindern, setzt man ein S

Spalte) der Adresse und spricht von einem ezue. Dies ist auch für Spalte oder Zeile einzeln möglich.

Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

Excel-Werbung erweitert mit Formeln

- 1. Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
- 2. Führt die Schritte wie im Video aus, jedoch nur bis zu den Werten der 1. Spalte
- 3. Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um. Tragt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert, automatische Berechnung (=Formel)

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

Tight oder konjert man sine Formal in sine
Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem Zellbezug. Dies ist auch für Spalte oder Zeile

einzeln möglich.

relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut

absolut

Art des Bezugs von A1

Original

2 nach unten

Formel

+ 1 nach rechts

verschoben

= A1 + C3

= \$A1 + C3

Absolute und relative Zellbezüge

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem Zellbezug. Dies ist auch für Spalte oder Zeile

einzeln möglich.

Art des

Bezugs von A1

relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut

absolut

Original Formel

2 nach unten

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Г	
	Zieht oder kopiert man ei andere Zelle, so verändern entsprechend der verändert
	spricht von einem Zellbe Möchte man dies verhinder
	Symbol vor den entsprechen Spalte) der Adresse und spr

einzeln möglich.

sich die Adressen

n, setzt man ein !

zug. Dies ist auch für Spalte oder Zeile

len Teil (Zeile oder

Art des Bezugs von A1	Beispiel: Original Formel	2 nach unten + 1 nach rechts verschoben	
relativ	= A1 + C3		
Spalte absolut Zeile relativ	= \$A1 + C3		
Spalte relativ Zeile absolut	= A\$1 + C3		
absolut	= \$A\$1 + C3		

Formeln mit Diagrammen darstellen
Disparme wir im orten Hefteirtrag, die Engabe, Verarbeitung und Ausgabe darstellen, nennt man Dateinflussdigsen. 2 Zeichre für eine Wachstmaberechnung und eine Summe aus deiner Tabelle je ein Daterflussdisgamm. 8 Desnige dabei: Was stellt du die Daten der und wiesr72.m Beispiel als konkreten Wert, als Zelladresse, als Beschreibung.

En Korngelste der informatik ist es, Programme daraustellen. Die Arbeit eines Computers ist sehr komplex, daher nuszt nan Janech Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen "In einem Modell () stellt man alles möglichst auf derselben Ebene dar. Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert Formel m. Adresse Beschreibung Einzelwerte Beschreibung

Der Weg der Daten

- Öffne im Browser Orinoco: klassenkarte.de/oo/
 Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und
- Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit
- den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.

 4. Erstellt mödlichst viele Diacramme auf verschießenen Abstraktionsebenen.

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Besch

Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

In einem

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Outline

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw.

Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

Getränkekalkulation

wird sie auf mehrere Personen aufgeteilt.

- Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 - manche kann es doppelt geben) und nehmt euch
- gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft ramm (mit hoher Abstraktion)
- Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.

 Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden. Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Datenflussdiagramm Datenflussdiagramme stellen die Ein- und Ausga-Schema eines DFDs mit Platzhaltern: ben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Outline

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Funktionen und Stelligkeit

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw.

Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion

geschrieben werden und sind dann beliebig weistellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt werkens Start und Entzelle na. Zum Begeicht.

Getränkekalkulation

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufneteilt

Rildet mindestens 4 Grunnen (41 42 R1 R2 - manche kann es donnelt gehen) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft

2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion) Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tahellensoftware in RYCS Drive um

Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch: Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden. Ein Beispiel ist das Gesamt-Diagramm aus der vorheri-

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?

4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?

4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Datenfluss-Puzzle

- Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- Überlegt euch: Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Übung: Funktionale Modellierung

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf h\u00f6chster Abstraktionsebene.

Verkettung von Funktionen

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Daterflussdig rammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Daterfluss in zwei aufgeteilt werden. Ein Beispiel ist das Gesamt-Diagramm aus der vorheriegen Aufgabe.

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- •
- •
- •

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf höchster Abstraktionsebene.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Übung: Funktionale Modellierung (e) Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- •
- •

Umsetzung der DFDs als Tabelle

										<u> </u>
Zeichne eine grobe Skizze deiner Tabelle:										
_ A	В	С	D	Е	F	G	Н		J	K
1										
2	Lösungmöglichkeit 1			Lösungmöglichkeit 2						
3	Einnahmen Getränke	400,00€				Einnahmen Tickets		Preis pro Ticket		
4	Ausgaben Getränke	100,00€				600	,00€	5		
5	Gewinn Getränke	300,00€					Anzahl Gäste		Gäste pro Security	
6	Einnahmen Tickets	600,00€					120		80	
7	Preis pro Ticket	5		Einnahmen Getränke	Ausgaben Getränke			Anzahl Security		Kosten pro Secu-Person
8	Anzahl Gäste	120		400,00€	100,00€				2	250,00€
9	Gäste pro Security	80		Gewinn Getränke				Securitykosten		
10	Anzahl Security	2		300,00€				500,00€		
11	Kosten pro Secu-Person	250,00€		Gewinn pro Gaste						
12	Kosten Security gesamt	500,00€		3,33€						
13	Durchn. Gewinn pro Gast	3,33€								

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Übung: Funktionale Modellierung

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf h\u00f6chster Abstraktionsebene f\u00fcr Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf h\u00f6chster Abstraktionsebene.

Umsetzung der DFDs als Tabelle

- Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
 Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zeile (z.B. faitbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- •
- .

Enhandstrabelli filtern

(Rigeste fa kingspielne Enkaldsdels in word NYCG One Ontor und Other ein

2 fred ein Hill für Filtern Englische besont

3 fred ein Hill für Filtern Englische besont

4 fred ein Hill für Filtern Englische besont

5 fred ein der Geste Besond Englische besont

5 fred ein Hill für Filtern Englische Besont

5 fred eine Hill für Filtern Englische Besont

5 fred eine Hill für Filtern Englische Besond

5 fred ein Filtern Englische Englische Besond

6 fred eine Filtern Englische Besond

6 fred ein Filtern Englische Besond

6 fred eine Filtern Englische Besond

6 fred e

Dates Filters

Washinstein (1994) Determinages, int as latherally filter an eventurist Mil distanchion mass.

* of an Industrial Military (1994) Annual Services

* of an Industrial Military (1994) Annual Services

* Military Filtre Lineau International Services

* Military Filtre L

Wenn-Dann-Funktion

- 1. Öffne Studyflix: bycs.link/studyflix-excel-if
- 2. Schaue das Video und baue die beschriebene Tabelle in BYCS Drive nach.
- 3. Fasse den Artikel/das Video in einem kurzen Hefteintrag zusammen.
- 4. Ergänze mit Hilfe deines Buchs, die Darstellung der Wenn-Dann-Funktion im Datenflussdiagramm.

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

:

Wenn-Dann-Funktion

Enhandstabels filters

1. Sparse 1. Supporting the analysis for each state of the s

Disses filters between the partie Dissesses of an Miller of the Committee of the Miller of the Committee of the Miller of the Committee of the Committee of the Committee of the Committee of the Miller of the Committee of the Miller of the Committee of the Commi

Optional: Übung Notentabelle

Frau Krust möchte die Noten ihrer Klasse übersichtlich verwalten. Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler.in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat. Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Labeile soll auberdem optisch ansprechend sein. Erstelle in BYCS-Drive eine solche Kalkulationstabelle

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten.

Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch

ansprechend sein.

Erstelle in BYCS-Drive eine solche Kalkulationstabelle