Final Review

Andrew Wang

August 12, 2024

1 Moment Generation Functions

Definition. For a real-valued random variable X, its moment-generating function is $M_X : \mathbb{R}[0,\infty]$,

 $M_X(t) = \mathbb{E}[e^{tX}], t \in \mathbb{R}$

Proposition.

(a) $M_X(0) = 1$.

(b) $M_{X+Y} = M_X M_Y$ for X, Y independent,

(c) M_X is fully determined by the moments of X so long as $\mathbb{E}X^n \leq (cn)^n$ for some c > 0.

Definition. For random variables X_1, \ldots, X_n , they have moment generating function $M_{X_1,\ldots,n}(t_1,\ldots,t_n)=\mathbb{E}[e^{t_1X_1+\cdots+t_nX_n}].$

Definition. X_1, X_2, \ldots, X_n are multivariate normal random variable if for any $X_i \in X_1, \ldots, X_n$ there exist independent normal random variables Y_1, Y_2, \ldots, Y_m and $a_{ij} \in \mathbb{R}$ such that

$$\sum_{0 \le j \le m} a_{ij} Y_j = X_i$$

2 Law of Large Numbers

Definition. X_n converges in probability to X if for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$$

denoted by $X_n \xrightarrow{p} X$.

Definition. X_n converges almost surely to X if

$$\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1.$$

denoted by $X_n \xrightarrow{a.s.} X$.

Theorem. (Weak and Strong Law of Large Numbers) Suppose $\{X_n\}$ are i.i.d random variables with $X_n \xrightarrow{d} X, \mathbb{E}[X] < \infty$, then

$$\lim_{n \to \infty} \frac{X_1 + X_2 + \dots + X_n}{n} \xrightarrow{p \& a.s.} \mathbb{E}[X].$$

3 Central Limit Theorem

Definition. $X_n \in \mathbb{R}$ converges in distribution to $X \in \mathbb{R}$ if

$$\lim_{n \to \infty} \mathbb{P}(X_n \le a) = \mathbb{P}(X \le a)$$

for all $a \in \mathbb{R}$ at which the CDF of X is continuous. This is denoted as

$$X_n \xrightarrow{d} X$$
.

Theorem. (Central Limit Theorem) Suppose $X_n \in \mathbb{R}$ are i.i.d. with $\mathbb{E}[X^2] < \infty$, Var(X) > 0. Then

$$\frac{X_1 + \dots + X_n - n\mathbb{E}[X]}{\sqrt{n \cdot Var(X)}} \Rightarrow \mathcal{N}(0, 1).$$