MACHINE LEARNING

Assignment 2

CHANG Yung-Hsuan (張永璿) 111652004

eiken.sc11@nycu.edu.tw

September 15, 2025

1. Read Deep Learning: An Introduction for Applied Mathematicians. Consider a network as defined in (3.1) and (3.2). Assume that $n_L = 1$, find an algorithm to calculate $\nabla a^{[L]}(x)$.

Solution. The equation (3.1) in the paper is

$$a^{[1]} = x \in \mathbb{R}^{n_1}$$

and the equation (3.2) in the paper is

$$a^{[l]} = \sigma(W^{[l]}a^{[l-1]} + b^{[l]}) \in \mathbb{R}^{n_l}$$
 for $l = 2, 3, ..., L$.

We can use the same trick as we did during lectures: forward passing and backpropagation, which is essentially the chain rule; we just need to be more careful about dimensions and products.

First, we define

$$z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$$

Then, naively, we write

$$\frac{\partial a^{[l]}}{\partial a^{[l-1]}} = \frac{\partial a^{[l]}}{\partial z^{[l]}} \cdot \frac{\partial z^{[l]}}{\partial a^{[l-1]}}$$

$$=\sigma'\!\left(z^{[l]}\right)\cdot W^{[l]}$$

where

$$\sigma'\left(z^{[l]}\right) = \begin{pmatrix} \sigma'\left(z_1^{[l]}\right) & 0 \\ & \ddots & \\ 0 & \sigma'\left(z_{n_l}^{[l]}\right) \end{pmatrix}$$

 $\in \mathbb{R}^{n_l \times n_l}$

as $\sigma\!\left(z_i^{[I]}\right)$ only relies on the i-th input, and

$$W^{[l]} \in \mathbb{R}^{n_l \times n_{l-1}}$$

The results are quite nice. Thus, we can have

$$\begin{split} \frac{\partial a^{[L]}}{\partial a^{[1]}} &= \frac{\partial a^{[L]}}{\partial a^{[L-1]}} \cdot \frac{\partial a^{[L-1]}}{\partial a^{[L-2]}} \cdot \dots \cdot \frac{\partial a^{[2]}}{\partial a^{[1]}} \\ &= \left(\sigma'\left(z^{[L]}\right) \cdot W^{[L]}\right) \cdot \left(\sigma'\left(z^{[L-1]}\right) \cdot W^{[L-1]}\right) \cdot \dots \cdot \left(\sigma'\left(z^{[2]}\right) \cdot W^{[2]}\right) \\ &\in \mathbb{R}^{n_L \times n_1}. \end{split}$$

which suggests this is a row vector as $n_L = 1$. Hence, we can use the following algorithm to both compute and save (temporarily) data:

1. (Forward Pass)

i. Set
$$a^{[1]} = x$$
.

ii. For *l* in (2, 3, ..., *L*):

•
$$z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$$
 (Saved to calculate $s^{[l]}$.)

•
$$a^{[l]} = \sigma(z^{[l]})$$
 (Saved to calculate $z^{[l+1]}$.)

•
$$s^{[l]} = \mathbf{1}_{n_l}^{\mathrm{T}} \operatorname{diag} \sigma' \left(z^{[l]} \right)$$
 (Saved for the backward pass part; $s^{[l]} \in \mathbb{R}^{1 \times n_l}$ as σ' is diagonal)

2. (Backward Pass)

i. Set
$$g^{[L]} = a^{[L]} = 1$$
 as $n_L = 1$. (This initializes the gradient g.)

ii. For l in (L, L - 1, ..., 2):

•
$$g^{[l-1]} = (g^{[l]} \odot s^{[l]})W^{[l]}$$
 (Elementwise product, then propagate through $W^{[l]}$.)

The output will be $g^{[1]}$, which is the row vector of the gradient $\nabla a^{[L]}(x)$.

2. There are unanswered questions during the lecture, and there are likely more questions we haven't covered. Take a moment to think about them and write them down here.

Answer. How efficient does a hidden layer perform to approximate a monomial? Fix the number of data points to a constant or a scalar times the power of the monomial. Do we have a performance benchmark as we evaluate sorting algorithms to evaluate the effectiveness of a one-hidden layer neural network?

3. Use a neural network to approximate the Runge function

$$f(x) = \frac{1}{1 + 25x^2}, \quad x \in [-1, 1].$$

Write a short report (1-2 pages) explaining method, results, and discussion including

- a. plot the true function and the neural network prediction together,
- b. show the training/validation loss curves, and
- c. compute and report errors (MSE or max error).

Solution. As suggested, I use neural network with one input layer with one feature, two hidden layers with 64 neurons each, and one output layer with a neuron. I use tanh as the activation function.

Figure 1. Runge Function Approximation with Neural Network

One can observe that the approximation is quite decent for x near 0 but it deviates away from 0. This coincides the Runge phenomenon.

Figure 2. Training and Validation Loss Curves vs. Epoch

At around epoch 500, the validation loss (absolute error) becomes around 10^{-5} , and the testing loss reported is 1.2×10^{-5} for MSE and 6.753×10^{-3} for max error.

Raw Code:

```
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
FIG_DIR = os.path.join(BASE_DIR, "figures")
os.makedirs(FIG_DIR, exist_ok=True)

# Runge function
def runge(x):
    return 1 / (1 + 25 * x**2)

# Data generation
N = 100
x = np.linspace(-1, 1, N).reshape(-1, 1)
```

```
y = runge(x)
# Split into train (70%) and temp (30%)
x_train, x_temp, y_train, y_temp = train_test_split(x, y, test_size=0.3,
random state=4)
# Split temp into validation (15%) and test (15%)
x_val, x_test, y_val, y_test = train_test_split(x_temp, y_temp, test_size=0.5,
random state=4)
# Build model
model = keras.Sequential([
    layers.Dense(64, activation="tanh", input shape=(1,)),
    layers.Dense(64, activation="tanh"),
   lavers.Dense(1)
1)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.01),
              loss="mse")
# Train
history = model.fit(
   x_train, y_train,
    validation_data=(x_val, y_val),
    epochs=500,
    verbose=1
)
x_{dense} = np.linspace(-1, 1, 500).reshape(-1, 1)
y_dense_pred = model.predict(x_dense)
# Plot Runge function vs NN approximation
plt.figure(figsize=(7,5))
plt.plot(x dense, runge(x dense), label="True Runge function")
plt.plot(x_dense, y_dense_pred, label="Neural Network Approximation")
plt.scatter(x_train, y_train, s=10, c="gray", alpha=0.5, label="Training data")
plt.legend()
plt.title("Runge Function Approximation")
plt.savefig(os.path.join(FIG_DIR, "runge_approx.png"), transparent=True)
# plt.show()
# Plot the loss curves
plt.figure(figsize=(7,5))
plt.plot(history.history["loss"], label="Training loss")
plt.plot(history.history["val_loss"], label="Validation loss")
plt.yscale("log")
plt.xlabel("Epoch")
```

```
plt.ylabel("MSE (log scale)")
plt.legend()
plt.title("Loss Curves")
plt.savefig(os.path.join(FIG_DIR, "loss_curves.png"), transparent=True)
# plt.show()

# Test set
test_mse = model.evaluate(x_test, y_test, verbose=0)
y_test_pred = model.predict(x_test)
max_err = np.max(np.abs(y_test - y_test_pred))

print(f"Test MSE: {test_mse:.6f}")
print(f"Max error on test set: {max_err:.6f}")
```