CS-228 Logic

Om Swostik

https://github.com/swostikom20/

Last updated: March 7, 2023

Contents

Tutorial-1	2
Tutorial-2	4

Tutorial-1

```
1: Given \phi = \forall x \exists y \ R(x,y) \land \exists y \forall x \neg R(x,y). Take the model m to be the set of
naturals \mathbb{N} with < relation. Then, m \models \phi (Why?)
(Hint: N is an well-ordered set (i.e has a minimum) and isn't bounded above)
2: \varphi_B(x,y) = \exists z (P(z,x) \land P(z,y)) \land \neg F(x)
                                                                                                                                                       (\varphi_S(x,y) = \exists z (P(z,x) \land P(z,y)) \land F(x), x \text{ is}
\varphi_A(x,y) = \exists z (P(z,y) \land \varphi_S(x,z))
sister of y)
\varphi_C(x,y) = \exists z (\varphi_A(z,x) \land P(z,y))
\varphi_O(x) = \forall z, y(P(z,y) \land P(z,x) \Rightarrow (x=y))
The spousal relationship cannot be defined (Why?)
3: Zero(x) = +(x, x) = x
One(x) = \forall y (\times (x, y) = y)
Two(x) = \exists z((+(z,z) = x) \land One(z))
Even(x) = \exists z, y((\times(z, y) = x) \land Two(y))
Odd(x) = \neg Even(x)
Prime(x) = \neg One(x) \land (\neg \exists w, y((\times (w, y) = x) \land (\neg One(w) \land \neg One(y))))
Goldbach conjecture in FO: \forall x (\neg One(x) \land \neg Two(x) \land Even(x) \Rightarrow \exists z, w (Prime(z) \land \neg Two(x) \land Two(x) \land \neg Two
Prime(w) \wedge +(z,w) = x)
4: Encoding associativity of +: \forall x, y, z(+(x, +(y, z)) = +(+(x, y), z))
Encoding the right identity as 0: \forall x(+(x,0)=x)
Encoding right inverse: \forall x \exists y (+(x,y) = 0)
Encoding A(4): \forall x, y, z(+(x, z) = +(y, z) \Rightarrow x = y)
Here we have used the signature \tau = (0, +).
```

- 5: (i) Consider the set of integers \mathbb{Z} with the induced relation $+_Z$ referring to the usual addition in \mathbb{Z} . The constant 0_Z refers to 0 in \mathbb{Z} . Observe that addition is associative and admits both left and right inverses. Also $0_{\mathbb{Z}}$ is a identity for addition. We can conclude the τ -structure \mathbb{Z} satisfies ψ .
- (ii) Consider the set \mathbb{N}_0 of whole numbers and the corresponding induced relation being addition and the constant being 0 (in \mathbb{N}_0). This τ -structure doesn't satisfy ψ as φ_3 fails to be true (non-zero elements in \mathbb{N}_0 don't have inverses).
- (iii) Consider the set of all $n \times n$ invertible matrices with complex values, $GL_n(\mathbb{C})$.

Let the induced binary operation be matrix multiplication and let the constant 0 map to the identity $n \times n$ matrix.

It's clear that the τ -structure $GL_n(\mathbb{C})$ satisfies ψ , however, it doesn't satisfy $\forall x, y(+(x,y) = +(y,x))$ (Why?).

(iv) As before, consider the set \mathbb{N}_0 of whole numbers with the usual addition. This satisfies $\varphi_1 \wedge \varphi_2$ but doesn't satisfy φ_3 .

Consider the set of non-negative reals $\mathbb{R}_{\geq 0}$, with the binary operation defined as +(a,b) = |a-b| and the constant mapping to 0. Show that this structure satisfies $\varphi_2 \wedge \varphi_3$ but fails to satisfy φ_1 .

Consider \mathbb{Z} with the usual addition and the constant 0 mapping to 1 (in \mathbb{Z}). This satisfies $\varphi_1 \wedge \varphi_3$ but fails to satisfy φ_2 .

We can conclude that ψ isn't equivalent to any of $\varphi_1 \wedge \varphi_2$, $\varphi_2 \wedge \varphi_3$ or $\varphi_1 \wedge \varphi_3$.

7:

Consider the undirected graph \mathcal{G} above (with loops). This (with its natural edge relation) satisfies the second formula but not the first.

8: $\exists^{\geq n} x(x=x) \land \neg \exists^{\geq n+1} x(x=x)$ is true for all models whose universe has exactly n elements.

Let
$$\varphi = \exists x_1, x_2 \dots x_n (\land_{i \neq j} (x_i \neq x_j)).$$

 $\varphi \equiv \exists^{\geq n} x(x = x) \text{ (Why?)}$

9: Using counting quantifiers, we can write,

$$\varphi = \exists^{\geq n} x (x = x) \land \neg \exists^{\geq m+1} x (x = x)$$

 φ evaluates to true only over models with at least n and at most m elements.

Tutorial-2

- $\mathbf{1}(a)$ Any word w over $\{a,b\}$ having equal number of occurrences of ab and ba must start and end with the same character. (Why?)
- $Q_a(first) = \exists x (Q_a(x) \land \forall y (x \leq y))$ (a is the first character in w)
- $Q_a(last) = \exists x (Q_a(x) \land \forall y (y \le x))$ (a is the last character in w)

Now, let $\varphi = (Q_a(first) \wedge Q_a(last)) \vee (Q_b(first) \wedge Q_b(last))$

 φ is only satisfied by words which have equal number of ab and ba.

- (b) $\exists x (Q_{\#}(x) \land \forall y (x < y \Rightarrow Q_b(y)) \land \forall z (z < x \Rightarrow Q_a(z)))$
- (c) $\forall x, y(S(x,y) \land Q_b(x) \Rightarrow Q_b(y)$) (Note that word with all a's and empty word also need to satisfy)
- (d) $Q_0(second) = \exists x (\forall y (x \leq y) \land \forall y (S(x,y) \Rightarrow Q_0(y)))$

 $Q_0(second - last) = \exists x (\forall y (y \le x) \land \forall z (S(z, x) \Rightarrow Q_0(z)))$

Now, let
$$\varphi = Q_0(second) \wedge Q_0(second - last)$$

(e) $\Sigma = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$

Now, for the top row to be bigger than bottom row, there must exist a $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

somewhere and everything before this must only consist of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

$$\exists x (Q_{\{1\ 0\}}(x) \land \forall y (y < x \Rightarrow Q_{\{0\ 0\}}(y) \lor Q_{\{1\ 1\}}(y)))$$

2 FO \subseteq Regular languages