

EMC & RF Test Report

As per

RSS-247 Issue 2:2017 & FCC Part 15 Subpart 15.247:2016

Unlicensed Intentional Radiators

on the

ProLon BLE Converter

Issued by: TÜV SÜD Canada Inc.

2972 Joseph-A-Bombardier,

Laval, QC, H7P 6E3

Canada

Ph: (450) 687-4976

Name, Project Engineer Testing produced for

See Appendix A for full client & EUT details.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary	6
Applicable Standards, Specifications and Methods	8
Document Revision Status	9
Definitions and Acronyms	10
Testing Facility	11
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	13
6dB Bandwidth of Digitally Modulated Systems	
Transmitter Spurious Radiated Emissions	27
Power Spectral Density	
Appendix A – EUT Summary	52
Appendix B – EUT and Test Setup Photos	54

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Report Scope

This report addresses the EMC verification testing and test results of the **Prolon BLE Converter**, and is herein referred to as EUT (Equipment Under Test). The EUT was tested for compliance against the following standards:

RSS-247 Issue 2:2017

FCC Part 15 Subpart C 15.247:2016

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Summary

The results contained in this report relate only to the item(s) tested.

EUT:	ProLon BLE Converter
FCC Certification #, FCC ID:	2AK9O-485BT20
Industry Canada Certification #, IC:	22455-485BT20
EUT passed all tests performed	Yes
Tests conducted by	Scott Drysdale

For testing dates, see "Testing Environmental Conditions and Dates".

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS-GEN (Table 6)	Restricted Bands for Intentional Operation	QuasiPeak Average	Pass See Justification
FCC 15.207 RSS-GEN (Table 3)	Power Line Conducted Emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-GEN (Table 4)	Spurious Radiated Emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-247 5.2(a)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-247 5.4(d)	Max Output Power	< 1 Watt	Pass
FCC 15.247(b)4 RSS-247 5.4(d)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-247 5.5	Antenna Conducted Spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-247 5.2(b)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
Overall Result			Pass

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Notes, Justifications, or Deviations

The following notes, justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS-247 section 5.4(d)), the unit uses a trace antenna with a gain of less than 6 dBi gain. Based on a theoretical output power of 8 dBm and a received signal of 90 dBuV/m at 3 meters, the calculated antenna gain is approximately -13.2 dBi.

Antenna spurious was not performed as the device employed a trace antenna with no provisions for an external connection.

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 – 2483.5 MHz.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

The EUT was mounted in three orthogonal axis. Worst case results were obtained with the EUT in the X-axis. Worst case results are presented. See Appendix B for axis details.

The maximum effective isotropic radiated power of the EUT is -5.2 dBm, or 0.3 mW, which is less than the SAR Test Exclusion Power Threshold for 5 mm given in FCC KDB 447498 and also the exclusion criteria at 5 mm in ISED RSS-102. Therefore the device meets the SAR Test Exclusion criteria and no test is required.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Sample Calculation(s)

Radiated Emission Test

 $Margin = Limit - (Received\ Signal + Antenna\ Factor + Cable\ Loss - Pre-Amp\ Gain)$

Margin = $50.5 dB\mu V/m - (50 dB\mu V + 10 dB + 2.5 dB - 20 dB)$

Margin = 8.0 dB (pass)

Power Line Conducted Emission Test

Margin = Limit – (Received Signal + Attenuation Factor + Cable Loss + LISN Factor)

 $Margin = 73.0dB\mu V - (50dB\mu V + 10dB + 2.5dB + 0.5dB)$

Margin = 10.0 dB (pass)

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American National Standard For Testing Unlicensed Wireless Devices
CFR 47 FCC 15 Subpart C:2016	Code of Federal Regulations – Radio Frequency Devices, Intentional Radiators
CISPR 22:2008	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
FCC KDB 558074: 2016	FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003 Issue 6 2016	Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
RSS-GEN Issue 4 2014	General Requirements and Information for the Certification of Radio Apparatus
RSS-247 Issue 2:2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE- LAN) Devices
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Document Revision Status

Revision 000 - March 19, 2017 Initial Release

Revision 001 – April 13, 2017 Change of FCC ID as typo error had occurred.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiliary Equipment. A digital accessory that feeds data into or receives data from another device (host) that in turn, controls its operation.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility. The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

EMI – Electro-Magnetic Immunity. The ability to maintain a specified performance when the equipment is subjected to disturbance (unwanted) signals of specified levels.

EUT – Equipment Under Test. A device or system being evaluated for compliance that is representative of a product to be marketed.

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line Impedance Stabilization Network

NCR – No Calibration Required

RF – Radio Frequency

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TÜV SÜD Canada testing lab in Montréal, Québec, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on a EUT that has a maximum width or length of up to 2m and a height of up to 3m. The chamber is equipped with a turntable that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120Vac and 240Vac single phase, or devices that are rated for a 208Vac 3 phase input. DC capability is also available for testing. The chamber is equipped with a mast that controls the polarization and height of the antenna. Control of the mast occurs in the control room adjoining the shielded chamber. Radiated emission measurements are performed using a BiLog antenna and a Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN and using the Vertical Ground plane if applicable.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, 382292) and Industry Canada (IC, 6844B-1). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TÜV SÜD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TÜV SÜD Canada Inc. is accredited to ISO 17025 by A2LA with Testing Certificate #2955.02. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or biannual basis as listed for each respective test.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Testing Environmental Conditions and Dates

Following environmental conditions were recorded in the facility during time of testing

Date	Test	Initials	Temperature (°C)	Humidity (%)	Pressure (kPa)
Feb 20-21, 2017	Radiated Emissions	SD	20 – 24	40 – 51	98.0 – 102.0
Feb 20-21, 2017	Antenna Conducted Emissions	SD	20 – 24	40 – 51	98.0 – 102.0
Feb 20-21, 2017	Power Line Conducted Emissions	SD	20 – 24	40 – 51	98.0 – 102.0

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Detailed Test Results Section

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits and Method

The limit is as specified in FCC Part 15.247(a)2 and RSS-247.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

The method is given in Section 8.1 of FCC KDB 558074 and ANSI C63.10.

Results

The EUT passed. The minimum 6 dB BW measured was 664 kHz and the maximum 99% BW at full power setting was 1064 kHz.

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)
Low Channel (0)	2402	690	1052
Mid Channel (19)	2440	668	1052
High Channel (39)	2480	664	1064

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Graphs

The graphs showed below show the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. Max hold is performed for a duration of not less than 1 minute.

Date: 20.FEB.2017 12:24:34

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

6 dB Bandwidth Mid Channel (19)

Date: 20.FEB.2017 12:43:31

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

6 dB Bandwidth High Channel (39)

Date: 20.FEB.2017 12:53:29

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

99% Bandwidth Low Channel (0)

Date: 20.FEB.2017 12:23:37

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

99% Bandwidth Mid Channel (19)

Date: 20.FEB.2017 13:04:12

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

99% Bandwidth High Channel (39)

Date: 20.FEB.2017 12:54:41

Note: See 'Appendix B – EUT & Test Setup Photos' for photos showing the test set-up.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU-40	Rohde & Schwarz	1/28/16	1/28/2018	4092

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Maximum Peak Envelope Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, the maximum power does not exceed an amount which may create an excessive power level.

Limits and Method

The limits are defined in FCC Part 15.247(b) and RSS-247. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt (30 dBm).

The method is given in Section 9.1.2 of FCC KDB 558074 and ANSI C63.10 Section 11.

Results

The EUT passed. The EUT was set to transmit at maximum power. Three channels were measured. Radiated measurements were obtained with a RBW greater than the occupied bandwidth and converted to Peak power. The following table show the peak power:

Channel	Frequency (MHz)	Peak Power dBm	Peak Power (mW)
Low Channel (0)	2402	-5.2	0.32
Mid Channel (19)	2440	-6.6	0.22
High Channel (39)	2480	-8.2	0.15

Graphs

The plots shown below show the peak power output of the device during the antenna radiated measurements during transmit operation of the EUT.

Page 22 of 59	Report Issued: 4/13/2017	Report File #: 7169002177 -001

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Peak Power, Low Channel (0)

Note: Plot shown with 1 MHz resolution. 99% OBW was 1.06 MHz, however the final reading was obtained with a RBW of 3 MHz.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Peak Power, Mid Channel (19)

Note: Plot shown with 1 MHz resolution. 99% OBW was 1.06 MHz, however the final reading was obtained with a RBW of 3 MHz.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Peak Power, Hi Channel (39)

Note: Plot shown with 1 MHz resolution. 99% OBW was 1.06 MHz, however the final reading was obtained with a RBW of 3 MHz.

See 'Appendix B – EUT and Test Setup Photos' for photos showing the test set-up.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU-40	Rohde & Schwarz	1/28/16	1/28/2018	4092

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Transmitter Spurious Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limits and Method

The method is as defined in Section 12.2 of FCC KDB 558074 and ANSI C63.10.

The limits, as defined in 15.247(d) for unintentional radiated emissions, apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Antenna Spurious Conducted Emissions (-20dBc)' for further details.

Frequency	Limit
0.009 MHz – 0.490 MHz	2400/F(kHz) uV/m at 300m ¹
0.490 MHz – 1.705 MHz	24000/F(kHz) uV/m at 30m ¹
1.705 MHz – 30 MHz	30 uV/m at 30m ¹
30 MHz – 88 MHz	100 uV/m (40.0 dBuV/m ¹) at 3m
88 MHz – 216 MHz	150 uV/m (43.5 dBuV/m ¹) at 3m
216 MHz – 960 MHz	200 uV/m (46.0 dBuV/m ¹) at 3m
Above 960 MHz	500 uV/m (54.0 dBuV/m ¹) at 3m
Above 1000 MHz	500 uV/m (54 dBuV/m²) at 3m
Above 1000 MHz	500 uV/m (74 dBuV/m ³) at 3m

¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1

Based on ANSI C63.4 Section 4.2, if the Peak detector measurements do not exceed the Quasi-Peak limits, where defined, then the EUT is deemed to have passed the requirements.

Page 27 of 59 Report Issued: 4/13/2017 Report File #: 7169002177 -001	Page 27 of 59	Report Issued: 4/13/2017	Report File #: 7169002177 -001
---	---------------	--------------------------	--------------------------------

²Limit is with 1 MHz measurement bandwidth and using an Average detector

³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is $\pm 4.25 dB$ for 30 MHz - 1 GHz and $\pm 4.93 dB$ for 1 GHz - 18 GHz with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector over a full 0-360°. This peaking process is done as a worst case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of 24.835 GHz).

Devices scanned may be scanned at alternate test distances and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above 30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m / 3m) is applied.

Low, middle and high channels, each in three orthogonal axis were checked. However, the worst case graphs are presented.

Page 28 of 59	Report Issued: 4/13/2017	Report File #: 7169002177 -001
1 age 28 01 39	Report Issued. 4/15/2017	Report 1 lie #. 7103002177 -001

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Band-edge measurement graphs are shown for illustration purposes. See final measurement section for all measurements.

Mid Channel 9 kHz – 150 kHz Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel 150 kHz – 30 MHz Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 30 MHz – 1 GHz Horizontal - Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 1 GHz – 3 GHz Horizontal - Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 3 GHz – 18 GHz Horizontal - Peak Emission Graph

Plot was taken at a 1 meter distance. All emissions were noise floor of measurement instrument. No emissions were found in this frequency range. Emissions were scanned to 25 GHz. No emissions were found above 18 GHz and the noise floor of the measurement was below the applicable limit.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 30 MHz – 1 GHz Vertical - Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 1 GHz – 3 GHz Vertical - Peak Emission Graph

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 3 GHz – 18 GHz Vertical - Peak Emission Graph

Plot was taken at a 1 meter distance. All emissions were noise floor of measurement instrument. No emissions were found in this frequency range. Emissions were scanned to 25 GHz. No emissions were found above 18 GHz and the noise floor of the measurement was below the applicable limit.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge – Low Channel (0) Horizontal - Peak Emission

Date: 20.FEB.2017 12:19:46

Note: Restricted band Band Edge plot was taken at a 3m measurement distance. The marker shows the raw value. See the Final Measurements and Results section below for correct values.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge – Hi Channel (39) Horizontal - Peak Emission

Date: 20.FEB.2017 12:52:46

Note: Restricted band Band Edge plot was taken at a 3m measurement distance. The marker shows the raw value. See the Final Measurements and Results section below for correct values.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Final Measurements and Results

The EUT passed. Low, middle, and high bands were measured.

In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205 need to be verified with a final detector. Emissions inside the restricted bands were measured for informational purposes.

The measurements were maximized by rotating the turn table over a full 0-360 rotation and the antenna height was varied from 1 m to 4 m.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Frequenc y (MHz)	Detectio n mode (Q-Peak)	Antenna polarity (Horz/Ver t)	Raw signal dB(µV)	Antenn a factor dB	Cable loss dB + Preselec or	Attenuat or dB	Pre- Am p Gai n dB	Receive d signal dB(µV/ m)	Emissio n limit dB(µV/ m)	Margi n dB(μV)	Resul t
					Low Chann	el					
2402	Peak	Horz	77.0	30.6	5.2	10.0	33.0	89.8			PASS
2402	PEAK 3	Horz	77.2	30.6	5.2	10.0	33.0	90.0			PASS
2402	Peak	Vert	66.3	30.6	5.2	10.0	33.0	79.1			PASS
2402	PEAK 3	Vert	66.6	30.6	5.2	10.0	33.0	79.4			PASS
2400	Peak	Horz	46.2	30.6	5.2	10.0	33.0	59.0	74.0	15.0	PASS
2400	Avg	Horz	39.2	30.6	5.2	10.0	33.0	52.0	54.0	2.0	PASS
2400	Peak	Vert	35.1	30.6	5.2	10.0	33.0	47.9	74.0	26.1	PASS
2400	Avg	Vert	28.7	30.6	5.2	10.0	33.0	41.5	54.0	12.5	PASS
					Mid channe	el					
2445	Peak	Horz	75.4	30.6	5.2	10.0	33.0	88.2			PASS
2445	Peak	Vert	65.1	30.6	5.2	10.0	33.0	77.9			PASS
					High chann	el					
2480	Peak	Horz	74.0	30.6	5.2	10.0	33.0	86.8			PASS
2480	Peak	Vert	63.1	30.6	5.2	10.0	33.0	75.9			PASS
2483.5	Peak	Horz	35.1	30.6	5.2	10.0	33.0	47.9	54.0	6.1	PASS
2483.5	Peak	Vert	30.0	30.6	5.2	10.0	33.0	42.8	54.0	11.2	PASS

Note: Peak 3 is a measurement performed with a 3 MHz RBW for information purposes. Where the peak limit has met the average limit, the product was determined to comply with the requirements.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU-40	Rohde & Schwarz	1/28/16	1/28/2018	4092
Horn Antenna 2 – 18 GHz	WBH218HN	Q-par	Feb 12, 2016	Feb 12, 2018	GEMC 6375
Pre-Amp 1 – 26.5 GHz	HP 8449B	HP	Oct 12, 2016	Oct 12, 2018	GEMC 6351
Horn Antenna 18 – 26.5 GHz	SAS-572	A.H. Systems	Oct 11, 2016	Oct 11, 2018	GEMC 6371
Loop Antenna	EM 6871	Electro-Metrics	Feb 13, 2017	Feb 13, 2019	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 13, 2017	Feb 13, 2019	GEMC 71
BiLog Antenna	3142-C	ETS	Oct 5, 2016	Oct 5, 2018	GEMC 8
4GHZ-12GHz High Pass Filter	11SH10- 4000/T12000- 0/0	K & L Microwave	Apr 9, 2016	Apr 9, 2017	GEMC 119
2.4GHz-2.5GHz Notch Filter	BRM50702	Micro-Tronics	July 11, 2016	July 11, 2017	GEMC 230
RF Cable 7m	LMR-400-7M- 50Ω-MN-MN	LexTec	Feb 1, 2017	Feb 1, 2018	GEMC 4025
RF Cable 10m	LMR-400- 10M-50Ω-MN- MN	LexTec	Feb 1, 2017	Feb 1, 2018	GEMC 4026
RF Cable 0.5m	LMR-400- 0.5M-50Ω-MN- MN	LexTec	Feb 1, 2017	Feb 1, 2018	GEMC 4029
Emissions Software	0.1.94	Global EMC	NCR	NCR	GEMC 58

FCC - 15.209 -Radiated Emissions_Rev1

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Power Spectral Density

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits and Method

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The method is given in Section 10.2 of FCC KDB 558074.

Results

The EUT passed. Low, medium, and high bands were tested. The worst case value is -15.2 dBm as measured with a 3 kHz resolution bandwidth (peak power).

Graphs

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode, with the worst case being presented. The external attenuator and cable loss are not accounted for as reference offset in the spectrum analyzer, however this is 20.5 dB additional to the reading.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

PSD - Low Channel (0)

Date: 20.FEB.2017 12:20:46

Note: 71.3 dBuV - 107 = -35.7 dBm-35.7 dBm + 20.5 atten = -15.2 dBm

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

PSD - Mid Channel (19)

Date: 20.FEB.2017 12:44:15

Note: 69.5 dBuV - 107 = -37.5 dBm-35.7 dBm + 20.5 atten = -15.2 dBm

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

PSD - High Channel (39)

Date: 20.FEB.2017 12:55:35

Note: 69.2 dBuV - 107 = -37.8 dBm-37.8 dBm + 20.5 atten = -17.3 dBm

See 'Appendix B – EUT and Test Setup Photos' for photos showing the test set-up.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU-40	Rohde & Schwarz	1/28/16	1/28/2018	4092

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits and Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207 Method is as defined in ANSI C63.4

Average Limits		Quasi-Peak Limits		
150 kHz – 500 kHz	56 to 46* dBμV	150 kHz – 500 kHz	66 to 56* dBμV	
500 kHz – 5 MHz	46 dBµV	500 kHz – 5 MHz	56 dBμV	
5 MHz – 30 MHz	50 dBμV	5 MHz – 30 MHz	60 dBµV	

^{*} Decreases linearly with the logarithm of the frequency

Both Quasi-Peak and Average limits are applicable and each is specified as being measured with a resolution bandwidth of 9 kHz. For Quasi-Peak, a video bandwidth at least three times greater than the resolution bandwidth is used.

Based on ANSI C63.4 Section 4.2, if the Peak or Quasi-Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Typical Setup Diagram

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is $\pm 2.91 dB$ with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector. This peaking process is done as a worst case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Line 1 (L1) – 120Vac 60Hz

Note: No peak emissions exceeded the average limits as shown above.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Line 2 (L2) – 120Vac 60Hz

Note: No peak emissions exceeded the average limits as shown above.

See 'Appendix B - EUT, Peripherals and Test Setup Photos' for photos showing the test set-up for the highest line conducted emission

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum		Rohde &			
Analyzer	ESU-40	Schwarz	1/28/16	1/28/2018	4092
LISN	FCC-LISN- 50/250- 16-2-01	FCC	Feb. 1, 2017	Feb. 1, 2019	GEMC 65
RF Cable 7m	LMR-400-7M- 50Ω-MN-MN	LexTec	Feb 1, 2017	Feb 1, 2018	GEMC 4025
RF Cable 10m	LMR-400- 10M-50Ω- MN-MN	LexTec	Feb 1, 2017	Feb 1, 2018	GEMC 4026
Emissions Software	0.1.94	Global EMC	NCR	NCR	GEMC 58

FCC_ICES003_CE_Rev1

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Appendix A – EUT Summary

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

For further details for filing purposes, refer to filing package.

General EUT Description

Client			
Organization / Address	ProLonme		
Contact	Brian Galardo		
Phone	450-973-5100		
Email	brian.galardo@prolon.net		
	EUT Details		
EUT Name	Prolon BLE Converter		
FCC ID	2AK9O-485BT20		
Industry Canada #	22455-485BT20		
Equipment Category	Industrial		
Basic EUT Functionality	EUT converts RS485 to Bluetooth		
Input Voltage and	120 Vac, 60 Hz		
Frequency			
Rated Input Current	1A		
Connectors available on	RJ45, USB		
EUT			
Peripherals Required for	N/A		
Test			
Release type			
Intentional Radiator	2400 – 2483.5 MHz for BLE applications as described		
Frequency	above.		
EUT Configuration	Wireless configured to transmit continuously at 100% duty cycle		

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B-EUT and Test Setup Photos'.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Appendix B – EUT and Test Setup Photos

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Note: These photos are for informational purposes. Also refer to the PDF files which are separate from this test report.

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Figure 2 – Radiated Emissions Setup – Photo 2

Note: As per ANSI C63.10 Clause 6.3.1, below 1GHz, the height of the EUT was set to 80cm. Above 1GHz, the height was raised to 1.5m.

Client	Prolon Inc.	
Product	ProLon BLE Converter	SUD
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	

Note: As per ANSI C63.10 Clause 6.3.1, above 1GHz, the height of the EUT was set to 1.5m.

Client	Prolon Inc.	
Product	ProLon BLE Converter	SUD
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	

Client	Prolon Inc.	
Product	ProLon BLE Converter	TÜV
Standard(s)	RSS 247 Issue 2:2017 FCC Part 15 Subpart 15.247:2016	Canada

Figure 5 – Power Line Conducted Emissions Setup – Photo 2

