1)
$$100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^{4} \cdot 5^{2}$$
 $259 = 2 \cdot 127 = 2^{4} \cdot 127^{4}$
 $600(100, 259) = 2$
 100
 100
 100
 100
 100
 100
 100
 100

2)
$$a_0, a_1, a_2, \dots, a_{x}, a_{x+1}$$
 $b \in 0$
 $254,100, 54,46,8,6,2,0$
 $GCD(100,254) = 2$

3)		254	100	54	46	8	6	2
	*	ı	0	ı	-	2	- 11	13
	4	O	l	-2	3	-5	28	33

4) $gcd(a,b)=1 \Rightarrow \exists x,y \in \mathbb{Z} \ ax+by=1$ c=c $\Rightarrow c(ax+by)=c$ = cax + cby = c

albc => bc = aq cax + cby = c = cax + aqy = c = a (cx+qy) = c (cx+qy) 6 22 = a | c

alcbe) -> alb valc if ged (a,b) = 1 then axb case coprimes so albe A ged (a,b) = 1 then ale

```
5) ged (F2023, F2023)
   ged(f<sub>2022</sub> + f<sub>2021</sub>, f<sub>2022</sub>)
    gcd C f<sub>2022</sub> + f<sub>2021</sub> / F<sub>2022</sub> , f<sub>2022</sub>)
    9 cd (f<sub>2021</sub>, f<sub>2022</sub>)
    ged (f, f,)
    ged (f<sub>2023</sub>, f<sub>2022</sub>) = ged (0,1) = 1
fiboneci num 50s: 0,1,1,2,3,5,8,13...
                  fo f, f, f, f, f, f, f,
  f<sub>2023</sub> ? f<sub>2022</sub> r = f<sub>2021</sub>
 f2021 : f2020 1= f2019
 f2020 = f2019 r=f2018
   f = 21
   9 cd (f2023, f2022) = 1
```

6)
$$1000$$
 $2^{5}/5^{3}$
 $(2^{0} + 2^{1} + 2^{2} + 2^{5})(5^{0} + 5^{1} + 5^{2} + 5^{2})$
 (15)
 (156)
 2340
 $1000 = 5^{3}2^{3}$
 $5'200 (5^{0} + 5^{1} + 5^{2} + 5^{3})(2^{0} + 2^{1} + 2^{2} + 2^{3})$
 $5'40 (1 + 5 + 25 + 12)(1 + 2 + 14 + 18)$
 $156 \cdot 15$
 2340

7) $1000 = 2^3 \cdot 5^2$

$$2^{0}=5^{\circ}=1 \quad 5^{\circ}=5 \qquad 5^{2}=25 \qquad 5^{3}=125$$

$$2^{\circ}=2 \qquad 2^{\circ}\cdot 5^{\circ} \qquad 2^{\circ}\cdot 5^{2} \qquad 2^{\circ}\cdot 5^{3}$$

$$2^{2}=4 \qquad 2^{2}\cdot 5^{\circ} \qquad 2^{2}\cdot 5^{2} \qquad 2^{2}\cdot 5^{3}$$

$$2^{3}=3 \qquad 2^{3}\cdot 5^{\circ} \qquad 2^{3}\cdot 5^{2} \qquad 2^{3}\cdot 5^{3}$$

$$(2')^4 (2^2)^4 (2^3)^4 (5')^4 (5^2)^4 (5^3)^4$$
 $2^4 2^3 2^{12} 5^4 5^3 5^{12}$
 $2^{24} 5^{24}$
 15^{24}

8) gcd (a,b)=1
coprime!

9)
$$\binom{2n}{n} = \frac{(2n!)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2} = \frac{(2n)!}{(n!)^2}$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n \cdot 2n}{(1 \cdot 2 \cdot 3 \cdot ... \cdot n)} = \frac{n + 1 \cdot ... \cdot 2n}{1 \cdot 2 \cdot 3 \cdot ... \cdot n}$$

P is factor of numerator numerator is divisible by P P is not a factor of denominator Denominator is not divisible by P P cannot be cancelled out by denominator P divides (20)

Problem a) mod 127 X = # of jumps 5 x = 1 mod 127 x = 5 -1 5.5 = 1 mod 127

	127	5	7 2	1
×	1	0	doesnt	matter
9	0	1	-25	51

x = 5 = 51 jumps to land on point 1