Quadratic risk

Exercise 1 (Gaussian model – mean):

The daily power consumption of a company is supposed to have a gaussian distribution. You want to estimate the mean θ through n independent observations; the variance σ^2 is known.

- 1. Propose an estimator of θ by the method of moments.
- 2. Is this estimator biased?
- 3. Compute its quadratic risk.
- 4. Is the estimator efficient?

Exercise 2 (Poisson model):

The daily number of admissions to a cinema is supposed to be Poisson. You want to estimate the mean θ using n observations.

- 1. Give the MLE of θ .
- 2. Is this estimator biased?
- 3. Compute its quadratic risk.
- 4. Is the MLE efficient?

Exercise 3 (Poisson model bis):

In the previous exercise, we now want to estimate the probability $g(\theta) = e^{-\theta}$ that there is no admission.

- 1. Give the MLE of $g(\theta)$ and propose an estimator based on the method of moments.
- 2. Are these estimators biased?
- 3. Are these estimators efficient?

Exercise 4 (Translated exponential):

The lifetimes of laptops are supposed to have a translated exponential distribution of the form¹:

$$P(X > x) = \exp(\theta - x), \quad \forall x \ge \theta,$$

where $\theta > 0$ is unknown. You have n observations.

- 1. Give the MLE of θ and propose another estimator based on the method of moments.
- 2. Are these estimators biased?
- 3. Compute their quadratic risks. Which estimator would you recommend?

¹Note that this model is *not* regular as the support of X depends on θ .

Exercise 5 (Mixture model):

A proportion θ of smartphones are defective: their lifetime has an exponential distribution with parameter μ while the lifetime of a regular smartphone has an exponential distribution with parameter $\lambda < \mu$. Both parameters λ and μ are known. You observe the lifetime of n smartphones.

- 1. Propose an estimator based on the method of moments.
- 2. Compute its quadratic risk.
- 3. Is this estimator efficient? You may consider the case $\mu \to +\infty$.

Exercise 6 (Gaussian vector):

Some signal is supposed to have a gaussian distribution with unknown mean $\theta \in \mathbb{R}^d$ and known covariance matrix Γ . You want to estimate $g(\theta) = w^T \theta$ for some $w \in \mathbb{R}^d$ through n independent observations x_1, \ldots, x_n . Consider the estimator:

$$\widehat{g}(x) = w^T \widehat{\theta}$$
 with $\widehat{\theta} = \frac{1}{n} \sum_{i=1}^n x_i$.

- 1. Compute its quadratic risk.
- 2. Is the estimator efficient?