SAL	Operation
instruction	
move x, y	$x \leftarrow (y)$
add x, y, z	$x \leftarrow (y) + (z)$
sub x, y, z	$x \leftarrow (y) - (z)$
mul x, y, z	$x \leftarrow (y) * (z)$
div x, y, z	$x \leftarrow (y)/(z)$
rem x, y, z	$x \leftarrow (y) \mod (z)$
cvt x, y	$x \leftarrow (y)$, with type conversion
not x, y	$x \leftarrow NOT(y)$, bitwise operation
and x, y, z	$x \leftarrow (y) AND (z)$, bitwise operation
or x, y, z	$x \leftarrow (y) OR(z)$, bitwise operation
nand x, y, z	$x \leftarrow (y) \text{ NAND } (z)$, bitwise operation
nor x, y, z	$x \leftarrow (y) NOR(z)$, bitwise operation
xor x, y, z	$x \leftarrow (y) XOR(z)$, bitwise operation
xnor x, y, z	$x \leftarrow (y)$ XNOR (z), bitwise operation
sll x, y, AMT	x ← (y), logically left shifted by AMT bits
srl x, y, AMT	x ← (y), logically right shifted by AMT bits
sra x, y, AMT	$x \leftarrow (y)$, arithmetically right shifted by AMT bits
rol x, y, AMT	$x \leftarrow (y)$, rotated left by AMT bits
ror x, y, AMT	$x \leftarrow (y)$, rotated right by AMT bits
b label	PC ← label
j label	PC ← label
	if $(y) \neq (z)$ then PC \leftarrow label
	if $(y) < (z)$ then $PC \leftarrow label$
	if $(y) > (z)$ then $PC \leftarrow label$
	if $(y) \le (z)$ then $PC \leftarrow label$
	if $(y) \ge (z)$ then $PC \leftarrow label$
begz y, label	if $(y) = 0$ then $PC \leftarrow label$
bnez y, label bltz y, label	if $(y) \neq 0$ then PC \leftarrow label
bgtz y, label	if $(y) < 0$ then $PC \leftarrow label$ if $(y) > 0$ then $PC \leftarrow label$
blez y, label	if $(y) > 0$ then PC \leftarrow label if $(y) \le 0$ then PC \leftarrow label
bgez y, label	if $(y) \le 0$ then $PC \leftarrow label$ if $(y) \ge 0$ then $PC \leftarrow label$
la x, label	$ x \leftarrow label$
	A Tabel