Dire	ect solution f	or flux												
											Map of node and cell numbers			
	K	num cells	Z	K zone cell	K cell	Н	q	zone 1	zone 2	zone 3				
zone 1	0,0004	6,5										node	cell	
zone 2	0,01	5,5	60	1	0,0004	100		1	0	0	1	-		1
zone 3	0,0001	0	55	1	0,0004	85,11905	0,00119	1	0	0	2	-		2
			50	1	0,0004	70,2381	0,00119	1	0	0	3	-		3
Keq	0,000714		45	1	0,0004	55,35714	0,00119	1	0	0	4	-		4
q	0,00119		40	1	0,0004	40,47619	0,00119	1	0	0	5	-		5
			35	1	0,0004	25,59524	0,00119	1	0	0	6	-		6
			30	1	0,0004	10,71429	0,00119	1	0	0	7	-		7
			25	2	0,01	2,976192	0,00119	0	1	0	8	-		8
			20	2	0,01	2,380954	0,00119	0	1	0	9	-		9
			15	2	0,01	1,785716	0,00119	0	1	0	10	2		10
			10	2	0,01	1,190477	0,00119	0	1	0	11	-		11
			5	2	0,01	0,595239	0,00119	0	1	0	12	-		12
			0	2	0.01	0	0.00119	0	1	0	13	-		13

Figure 1. Solution for a two-layer heterogenous model with approximately equal thickness layer with different K values

Direct calculation for flux $q=Keqrac{\partial H}{\partial l}$

Dire	ect solution for	or flux													
												Mag	Map of node and cell number		
	K	num cells	z	K zone cell	K cell	Н	q	zone 1	zone 2	zone 3					
zone 1	0,0004	8,5											node	cell	
zone 2	0,05	3,5	60	1	0,0004	100		1	0	(0	1	-		1
zone 3	0,0001	0	55	1	0,0004	88,27183	0,000938	1	0	(0	2	-		2
			50	1	0,0004	76,5442	0,000938	1	0	(0	3	-		3
Keq	0,000563		45	1	0,0004	64,81724	0,000938	1	0	(0	4	-		4
q	0,000938		40	1	0,0004	53,09097	0,000938	1	0	(0	5	-		5
			35	1	0,0004	41,36533	0,000938	1	0	(0	6	-		6
			30	1	0,0004	29,64018	0,000938	1	0	(0	7	-		7
			25	1	0,0004	17,91535	0,000938	1	0	(0	8			8
			20	1	0,0004	6,190623	0,000938	1	0	(0	9	-		9
			15	2	0,05	0,28137	0,000938	0	1	(0	10	-		10
			10	2	0,05	0,187578	0,000938	0	1	(0	11	-		11
			5	2	0,05	0,093789	0,000938	0	1	(0	12	-		12
			0	2	0,05	0	0,000938	0	1	(0	13			13

Figure 2. Solution for a two-layer heterogeneous column with non-equal layer thickness and different K values

The Keq is closer to the lower of K values, because equivalent hydraulic conductivity represents the whole unit as a arithmetic mean of the layerd aquifer. Therefore, Keq in this case is calculated as: $Keq=(d_1+d_2)/(d_1/K_1+d_2/K_2)$

Where d_1 is number of cells for K_1 , and d_2 is number of cells for K_2 .