Due September 16, 2021

HW 1

1. Sketch the region in the xy-coordinate plane corresponding to $A \cup B$ and $A \cap B$ if

$$A = \{(x, y): 0 < x < 4, 0 < y < 3\}$$

$$B = \{(x, y): 2 < x < 4, 2 < y < 4\}$$

- 2. Consider the experiment consisting of tossing a coin three times, with H and T standing for heads and tails, respectively.
 - a) The following set of outcomes is an incomplete list of the points of the sample space S of the experiment: {HHH, HTT, TTT, HHT, TTH, HTH, THH}. Find the missing outcome.
 - b) List the outcomes of the following events:

 A_1 = "Head on the second toss"

 A_2 = "More than two heads"

 A_3 = "Head and tail alternate"

- c) List the outcomes of the event $B_1 \cap B_2$, where B_1 = "the first two tosses show the same face" and B_2 = "the last two tosses show the same face".
- 3. In a sample space $S = \{1, 2, 3, ..., 10\}$, let $A = \{2, 3, 4, 5\}$, $B = \{1, 3, 7, 10\}$, $C = \{4, 5, 6, 7\}$, and $D = \{2, 3, 7\}$, find:
 - a) $(A \cup B) \cap (C \cup D)$
 - b) $(A \cup B) \cup (C \cap \overline{D})$
 - c) $(\bar{A} \cap \bar{B}) \cap (\bar{C} \cap \bar{D})$
- 4. Define *symmetric difference* between two events *A* and *B* to be

$$A \div B \ = \ (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

Find the unknown event *X* if you know that for a given event *A*:

a)
$$A \div X = \emptyset$$

b)
$$A \div X = A$$

- 2. as {HHH, HHT, HTT, TTT, THH, TTH, THT, HTHZ The missing one is THT.
 - b) A,= {HHH, HHT, THH, THT g A,= {HHH, HHT, THH, HTHg A3= {THT, HTHg
 - C) B1 = {HHH, HHT, TTT, TTH } B2 = {HHH, HTT, TTT, THH } B1 OB2 = {HHH, TTT }
- 3. AUB) $\cap (CUD) = \{1,2,3,4,5,7,10\} \cap \{2,3,4,5,6,7\}$ $= \{2,3,4,5,7\}$ \Rightarrow (AUB) $\cup (C\cap D) = \{1,2,3,4,5,7,10\} \cup \{4,5,6\}$ $= \{1,2,3,4,5,6,7,10\}$ \subset (ANB) $\cap (COD) = AUB \cap CUD = \{8,9\}$
- 4. ω) $A=x=(A_{\Lambda}\bar{x}) \cup (\bar{A}_{\Lambda}x)=\phi \cup \phi$ $\therefore x=A$. b) $A=x=(A_{\Lambda}\bar{x}) \cup (\bar{A}_{\Lambda}x)=A$ $x=\phi$ c) $A=x=(A_{\Lambda}\bar{x}) \cup (\bar{A}_{\Lambda}x)=S$ $x=\bar{A}$