Factoradic Representation of Rational Numbers

James Philip Rowell

From 'A Course in Pure Mathematics' by G. H. Hardy. Chapter 1, Miscellaneous Examples.

Miscellaneous example* #2 at the end of chapter 1 in Hardy's 'Pure Mathematics' presents us with a fascinating result (which was new to me). The theorem feels like what the basis-representation-theorem is for integers, but this one is for rational numbers, ... beautiful!

Here it is, followed by my proof which starts out with some lemmas to get us rolling.

Theorem

Any positive rational number can be expressed in one and only one way in the form

$$a_1 + \frac{a_2}{1 \cdot 2} + \frac{a_3}{1 \cdot 2 \cdot 3} + \dots + \frac{a_k}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k},$$

where a_1, a_2, \ldots, a_k are integers, and

$$0 \le a_1, \quad 0 \le a_2 < 2, \quad 0 \le a_3 < 3, \quad \dots, \quad 0 < a_k < k$$

Lemma-1

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k-1}{k!} = \frac{k!-1}{k!}$$

Proof of Lemma-1

This equality is fairly trivial to demonstrate by induction, since $\frac{1}{2!} = \frac{2!-1}{2!}$ and,

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k-2}{(k-1)!} + \frac{k-1}{k!}$$

$$= \frac{(k-1)! - 1}{(k-1)!} + \frac{k-1}{k!}$$

$$= \frac{k((k-1)! - 1)}{k(k-1)!} + \frac{k-1}{k!}$$

$$= \frac{k! - k + k - 1}{k!}$$

$$= \frac{k! - 1}{k!}$$

...thus establishing lemma-1 for all values of k. QED

^{*}Hardy doesn't call them 'Exercises' or 'Questions', but that's what they are, math exercises like calculations to perform, theorems to prove etc.

Lemma-2

For integers i, k where $2 \le i < k$ such that,

$$\frac{1}{2!} + \frac{2}{3!} + \ldots + \frac{i-1}{i!} + \frac{i}{(i+1)!} + \ldots + \frac{k-1}{k!}$$

then

$$\frac{1}{i!} > \frac{i}{(i+1)!} + \ldots + \frac{k-1}{k!}$$

Proof of Lemma-2

$$\frac{i}{(i+1)!} + \dots + \frac{k-1}{k!}$$

$$= (\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k-1}{k!}) - (\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{i-1}{i!})$$

$$= \frac{k!-1}{k!} - \frac{i!-1}{i!}$$

$$= \frac{k!}{k!} - \frac{1}{k!} - \frac{i!}{i!} + \frac{1}{i!}$$

$$= \frac{1}{i!} - \frac{1}{k!}$$

$$< \frac{1}{i!}$$

QED

Lemma-3

The set of rational numbers,

$$S_k = \{ \frac{a_2}{2!} + \frac{a_3}{3!} + \dots + \frac{a_k}{k!} \mid 0 \le a_2 < 2, 0 \le a_3 < 3, \dots, 0 \le a_k < k \}$$

is identical to the set of rational numbers,

$$\mathcal{F}_k = \{ \frac{0}{k!}, \frac{1}{k!}, \frac{2}{k!}, \dots, \frac{k!-1}{k!} \}$$

Proof of Lemma-3

It's clear that the set \mathcal{F}_k contains every rational number with denominator k! where $0 \leq \frac{p}{k!} < 1$ and also clear that the size of \mathcal{F}_k is k!. To show that the set \mathcal{S}_k is the same as \mathcal{F}_k , it suffices to show that every member of \mathcal{S}_k is also of the form $0 \leq \frac{p}{k!} < 1$, and that the size of \mathcal{S}_k is also k!.

The smallest member of the set S_k is $\frac{0}{k!}$ and occurs when all the coefficients of the sum are zero. Furthermore, the largest member of the set occurs when all the coefficients of the sum are set to their maximum value, which gives us $\frac{k!-1}{k!}$ as shown in lemma-1.

We also note that every member of S_k can be written as a rational number with k! as the denominator, like so,

$$\frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_{k-1}}{(k-1)!} + \frac{a_k}{k!} = \frac{k \cdot (k-1) \cdot \ldots \cdot 3 \cdot a_2}{k!} + \frac{k \cdot (k-1) \cdot \ldots \cdot 4 \cdot a_2}{k!} + \ldots + \frac{k \cdot a_{k-1}}{k!} + \frac{a_k}{k!}$$

Therefore any member of the set S_k is of the form $0 \le \frac{p}{k!} < 1$, where p in an integer in the range $0 \le p \le k! - 1$.

Furthermore, each possible assignment of values to the coefficients of $\frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ produce a unique member of the set S_k .

For this weren't true and both $\frac{p}{k!} = \frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ and $\frac{p}{k!} = \frac{b_2}{2!} + \frac{b_3}{3!} + \ldots + \frac{b_k}{k!}$ for different coefficients a_2, a_3, \ldots, a_k and b_2, b_3, \ldots, b_k , then we can arrive at a contradiction as follows.

First suppose that $a_i \neq b_i$ is the first such pair of coefficients that differ from each other. In other words, $a_2 = b_2, a_3 = b_3, \ldots, a_{i-1} = b_{i-1}$. Also, without loss of generality we can assume that $a_i > b_i$ and state the following equality:

$$\frac{a_i}{i!} + \frac{a_{i+1}}{(i+1)!} + \dots + \frac{a_k}{k!} = \frac{b_i}{i!} + \frac{b_{i+1}}{(i+1)!} + \dots + \frac{b_k}{k!}$$

$$\Rightarrow \frac{a_i - b_i}{i!} = \frac{b_{i+1} - a_{i+1}}{(i+1)!} + \dots + \frac{b_k - a_k}{k!}$$

Since $a_i - b_i \ge 1$, then $\frac{a_i - b_i}{i!} \ge \frac{1}{i!}$.

Also, $\frac{i}{(i+1)!} + \ldots + \frac{k-1}{k!} \ge \frac{b_{i+1} - a_{i+1}}{(i+1)!} + \ldots + \frac{b_k - a_k}{k!}$ regardless of the values of the coefficients on the right side of the inequality*.

However, lemma-2 tells us,

$$\frac{a_i - b_i}{i!} \ge \frac{1}{i!} > \frac{i}{(i+1)!} + \dots + \frac{k-1}{k!} \ge \frac{b_{i+1} - a_{i+1}}{(i+1)!} + \dots + \frac{b_k - a_k}{k!},$$

demonstrating that equality between the two expressions at either end of the inequality is impossible, so our assumption that there can be a second set of coefficients to produce the same rational number $\frac{p}{k!}$ is false. Therefore any assignment of values to the coefficients of $\frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ produces a unique member of the set \mathcal{S}_k .

Now we can count the number of members of the set S_k , by looking at all the possible combinations of values for the coefficients a_2, a_3, \ldots, a_k . There are 2 choices for the coefficient a_2 , multiplied by the 3 choices for a_3 , multiplied by the 4 choices for a_4, \ldots , up to multiplying by k values that a_k can assume.

Therefore the total number of combinations of values that can be assigned to all the coefficients of $\frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ is $2 \cdot 3 \cdot 4 \cdot \cdots \cdot k = k!$, which means the size of the set \mathcal{S}_k is k!. Recalling our previous conclusion that all members of the set \mathcal{S}_k are of the form $0 \leq \frac{p}{k!} < 1$ we can assert that $\mathcal{S}_k = \mathcal{F}_k$. QED

^{*}Letting all the b's be their maximum value, and all the a's be zero will produce the largest numerators in each term of the sum, any other possibility will result in a smaller term for the sum.

Lemma-4

All rational numbers* $\frac{p}{q}$ such that $0 \le p < q$ and $2 \le q \le k$ are members of the set \mathcal{S}_k .

Proof of Lemma-4

Since $0 \le p < q$ then $0 \le \frac{p}{q} < 1$ and $\frac{p}{q} = \frac{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot (q-1)}{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot (q-1)}$

$$\frac{q}{q} = \frac{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot (q+1) \cdot \cdot \cdot k}{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot (q+1) \cdot \cdot \cdot k} \cdot \frac{p}{q}$$

$$= \frac{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot p \cdot (q+1) \cdot \cdot \cdot k}{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot q \cdot (q+1) \cdot \cdot \cdot k}$$

$$= \frac{2 \cdot 3 \cdot \cdot \cdot (q-1) \cdot p \cdot (q+1) \cdot \cdot \cdot k}{k!}$$

Therefore $\frac{p}{q}$ is an element of \mathcal{F}_k which is the same as the set \mathcal{S}_k . QED

Lemma-5

if $\frac{p}{q} \in \mathcal{S}_k$ then $\frac{p}{q} \in \mathcal{S}_N$ for all N > k.

Proof of Lemma-5

if $\frac{p}{q} \in \mathcal{S}_k$ then,

$$\begin{split} \frac{p}{q} &= \frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!} + \frac{a_{k+1}}{(k+1)!} + \ldots + \frac{a_N}{N!}, \text{ such that,} \\ 0 &\leq a_2 < 2, \ 0 \leq a_3 < 3, \ \ldots, \ 0 \leq a_k < k, \ a_{k+1} = 0, \ \ldots, \ a_N = 0. \end{split}$$

 $\frac{p}{q} \in \mathcal{S}_N \text{ for all } N > k.$

Theorem (restated)

Any positive rational number can be expressed in one and only one way in the form

$$a_1 + \frac{a_2}{1 \cdot 2} + \frac{a_3}{1 \cdot 2 \cdot 3} + \dots + \frac{a_k}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k},$$

where a_1, a_2, \ldots, a_k are integers, and

$$0 \le a_1, \quad 0 \le a_2 < 2, \quad 0 \le a_3 < 3, \quad \dots, \quad 0 < a_k < k$$

^{*}The list of rational numbers being $\frac{0}{2}$, $\frac{1}{2}$, $\frac{0}{3}$, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{0}{4}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{0}{5}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, ..., $\frac{0}{k}$, $\frac{1}{k}$, $\frac{2}{k}$, ..., $\frac{k-2}{k}$, $\frac{k-1}{k}$.

Proof of Theorem

For all integers $m \geq 0$ and q > 0, there exist unique integers n and p such that,

$$m = nq + p ; \quad 0 \le p < q$$

$$\Leftrightarrow \quad \frac{m}{q} = n + \frac{p}{q} ; \quad 0 \le \frac{p}{q} < 1$$

Which tells us that all rational numbers $\frac{m}{q}$ can be written as an integer part, n, plus a fractional part $0 \le \frac{p}{q} < 1$.

In our theorem, the a_1 coefficient plays the role of the integer part n, and the rest of the expression, $\frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ plays the role of the fractional part $0 \le \frac{p}{q} < 1$.

Therefore to express ANY rational number in the form of the theorem, first apply the Euclidean Division Theorem and let $a_1 = n$. If there is no fractional remainder, then we are done, however if there is a fractional remainder $\frac{p}{q}$ (expressed such that p and q are co-prime) then there exists as a unique representation in the set