OBJECT

DAVID LU

INTRODUCTION

PREPROCESSING AND DATA AUGMENTATION

Determining the location of a phone in images

Return the object coordinates with respect to the image

RATIONALE

Coordinate Localization is regressed even in complex detection networks

Retraining feature detectors on Scarce datasets is foolish

Use weights in VGG trained on Imagenet to jumpstart custom model

Update convolutional parameters to specialize network to task

METHOD

INPUT OUTPUT

256x256 input squares
Convolutional and Pooling layers similar to VGG
Fully Connected Layer for regression of two coordinates

AD HOC AUGMENTATION DURING TRAINING

PREPROCESSING AND DATA AUGMENTATION

Random Vertical Flipping

Random Horizontal Flipping

Random Brightness Adjustment

Random Contrast Adjustment

Random Saturation Adjustment

Random Hue Adjustment

Normalization

HYPER PARAMETERS AND TRAINING

100 epochs

16 batch

SGD with 0.001 learning rate 0.9 momentum

0.5x / 20 epoch weight decay

MSE Loss

PARAMETERS AND LAYERS

Layer (type)	Output Shape		
======================================	======================================	========= 1,792	
ReLU-2	[-1, 64, 256, 256]	0	
MaxPool2d-3	[-1, 64, 128, 128]	0	
Conv2d-4	[-1, 128, 128, 128]	73,856	
ReLU-5	[-1, 128, 128, 128]	0	
MaxPool2d-6	[-1, 128, 64, 64]	0	
Conv2d-7	[-1, 256, 64, 64]	295,168	
ReLU-8	[-1, 256, 64, 64]	0	
Conv2d-9	[-1, 256, 64, 64]	590,080	
ReLU-10	[-1, 256, 64, 64]	0	
MaxPool2d-11	[-1, 256, 32, 32]	0	
Conv2d-12	[-1, 512, 32, 32]	1,180,160	
ReLU-13	[-1, 512, 32, 32]	0	
Conv2d-14	[-1, 512, 32, 32]	2,359,808	
ReLU-15	[-1, 512, 32, 32]	0	
MaxPool2d-16	[-1, 512, 16, 16]	0	
Conv2d-17	[-1, 512, 16, 16]	2,359,808	
ReLU-18	[-1, 512, 16, 16]	0	
Conv2d-19	[-1, 512, 16, 16]	2,359,808	
ReLU-20	[-1, 512, 16, 16]	0	
MaxPool2d-21	[-1, 512, 8, 8]	0	
AdaptiveAvgPool2d-	22 [-1, 512, 7, 7]	0	
Linear-23	[-1, 64]	1,605,696	
Sigmoid-24	[-1, 64]	0	
Dropout-25	[-1, 64]	0	
Linear-26	[-1, 2] ==========	130 	

RESULTS

LOSS CURVE

RESULTS

PREDICTED VISUALIZATIONS

Name	X	Y
120.jpg	0.7976	0.7551
121.jpg	0.1528	0.8774
122.jpg	0.1555	0.8610
123.jpg	0.5137	0.5422
124.pg	0.7865	0.2362
126.jpg	0.4059	0.2117

RESULTS

COORDINATES

CONCLUSION

DIFFICULTIES

Generalization to test images
Overfitting with larger structures
Custom dataloader
Sensitive to scale

CONCLUSION

FUTURE STEPS

Multi-scale network for different scale phones
Skip connections to avoid overfitting
Usage of UNET style network to remove background before dense layers