Отчёт по лабораторной работе 4

Хамбалеев Булат Галимович 29 октября, 2022

Цель работы

Реализовать алгоритмы нахождения наибольшего общего делителя.

Задание

Задание подразумевает реализацию алгоритма нахождения наибольшего общего делителя на языке программирования Python.

Выполнение лабораторной

работы

Выполнение лабораторной работы

1. Реализуем функцию алгоритма Евклида.

```
Ввод [1]: def Euclead(a,b):
               r = []
               d = 0
               if a>b:
                   r.append(a)
                   r.append(b)
               else:
                   r.append(b)
                   r.append(a)
               i = 0
               while True:
                   r.append(r[i]%r[i+1])
                   if r[-1]==0:
                       d = r[i+1]
                       break
                   i+=1
               return d
Ввод [8]: Euclead(2,4)
  Out[8]: 2
Ввод [9]: Euclead(10,4)
  Out[9]: 2
Ввод [10]: Euclead(3,69)
 Out[10]: 3
```

2. Реализуем бинарный алгоритм Евклида.

```
Ввод [12]: def BinaryEuclead(a,b):
               a = a
               while a%2==0 and b%2==0:
                   a = a/2
                   b = b/2
                   g = g*2
               u = a
               v = b
               while u!=0:
                   while u%2==0:
                       u = u/2
                   while v%2==0:
                       v = v/2
                   if u>=v:
                       u=u-v
                   else:
                       v=v-u
               d = g*v
               return d
Ввод [20]: BinaryEuclead(42,14)
 Out[20]: 14.0
Ввод [21]: BinaryEuclead(2,4)
 Out[21]: 2.0
Ввод [23]: BinaryEuclead(4,64)
 Out[23]: 4.0
```

3. Реализуем расширенный бинарный алгоритм Евклида.

```
Ввод [24]: def BinaryEucleadExtended(a,b):
               b = b
               while a%2==0 and b%2==0:
                   a = a/2
                   b = b/2
               D = 1
               while u!-0:
                   while u%2 == 0:
                        u=u/2
                   if A%2--0 and B%2--0:
                        A = A/2
                        B = B/2
                   else:
                       A = (A+b)/2
                       B = (B-a)/2
                   while v%2==0:
                        v=v/2
                        if C%2==0 and D%2==0:
                           C = C/2
                            D = D/2
                        else:
                           C = (C+b)/2
                           D = (D-a)/2
                   if u>=v:
                        A - A - C
               x = C
               y = D
               return d,x,y
```

4. Проверим работу расширеного бинарного алгоритма.

```
Ввод [26]: BinaryEucleadExtended(16,164)
  Out[26]: (4.0, 31.3125, -3.03125)
Ввод [27]: BinaryEucleadExtended(2,164)
  Out[27]: (2.0, 63.984375, -0.765625)
Ввод [28]: BinaryEucleadExtended(86,76)
  Out[28]: (2.0, 35.609375, -40.265625)
Ввод [ ]:
```

Figure 4: рис.4. Проверка работы.

Спасибо за внимание