HARMONY SEARCH

Music Inspired Meta Heuristic Algorithm

OVERVIEW

"A New Heuristic Optimisation Algorithm: Harmony Search"

Zong Woo Geem, Joong Hoon Kim and G.V. Loganathan SIMULATION 2001 - SAGE

- Original Concept
- Example Applications
- Evaluation and Comparison
- Applying to Feature Selection
- Possible Improvements

FANCY DEFINITION

Harmony Search is the improvisation process of musicians.

During which, each musician plays a note for finding a best harmony all together.

REWORDED VERSION

Harmony Search is a meta heuristic algorithm trying to find a vector that minimises a certain cost function.

In the process, each decision variable generates a value for finding a global optimum all together.

Harmony Search is the improvisation process of musicians.

During which, each musician plays a note for finding a best harmony all together.

KEY COMPONENTS

- Musicians (Variables)
- Notes (Values)
- Harmony (Set of Values)
- Harmony Memory (Set of Harmonies)

ITERATION STEPS

- Initialise a Harmony Memory
- Improvise a New Harmony
- Include Better Harmony and Exclude Worse
- Repeat until Stop Criteria is Satisfied

ADDED TWISTS

- Harmony Memory Considering Rate
 - ranges from 0 to 1
 - determines if a musician should find notes randomly within all possible range or pick from notes in the harmony memory
- Pitch Adjusting Rate
 - ranges from 0 to 1
 - determines if a musician should shift to neighbouring notes or play as normal

A SIMPLE EXAMPLE

- Minimise function: $(a-2)^2 + (b-3)^4 + (c-1)^2 + 3$
- We know the answer is (a=2, b=3, c=1)
- Let the available choices be (1,2,3,4,5) for each variables
- Harmony Memory size = 3

Random Selected Notes

INITIALISATION

Each Musician Picks a Note from Harmony Memory

PICK NOTES

Include Better Harmony and Exclude Worst (5,3,3)

NEW HARMONY

LATER IMPROVEMENTS

"Improved Harmony Search from Ensemble of Music Players"

Zong Woo Geem

Knowledge-Based Intelligent Information & Engineering Systems (KES) Part-2 2006 - Springer

- Ensemble Consideration
 - enforce a pair wise relationship between musicians
 - combine closely related variables together
- Violated Harmony Consideration
 - include harmony that violates evaluation constraints
 - with penalty applied to score

Very little detail in the paper

EXAMPLE APPLICATIONS

- Traveling Salesman Problem
- Minimise Continuous Variables
- Water Supply Pipeline Optimisation

Global Optimum in 7 out of 20 runs - 20,000 iterations with added heuristics choosing better routes*

TRAVELING SALESMAN

	EXACT	GRG	GA	EP	HS(1)	HS(2)
f(x)	1.3935	1.3934	1.4339	1.3772	1.3771	1.3965
%	0.0000	-0.0072	+2.8992	-1.1697	-1.1769	+0.2153
x ₁	0.82288	0.8229	0.8080	0.8350	0.8348	0.8290
X ₂	0.91144	0.9115	0.8854	0.9125	0.9124	0.9080
g_1	7.05×10 ⁻⁹	1.0×10 ⁻⁴	3.7×10 ⁻²	1.0×10 ⁻²	1.0×10 ⁻²	1.3×10 ⁻²
g ₂	1.73×10 ⁻⁸	-5.2×10 ⁻⁵	5.2×10 ⁻²	-7.0×10 ⁻³	-6.7×10 ⁻³	3.7×10 ⁻³

Min $(a-2)^2 + (b-1)^2$ where a-2b+1=0, $-a^2/4-b^2+1>=0$

CONTINUOUS DATA

Least Cost \$6,056 - 162,636 iterations
Non-linear Programming \$6,320 Genetic \$6,073
\[
\frac{\text{VATER PIPELINES}}{}
\]

EVALUATION PROS

- Very simple algorithm
- Easy to implement
- Global best heuristic
- Produce new solution based on all existing solutions found

EVALUATION CONS

- No good stop criteria
 - max iteration bound
- Hard to set parameters
 - data gives no hint to good settings
- Costly evaluations
 - for entire solution all together
- Can but not handling continuous data well
 - continuous range being discretised into small steps

COMPARISON TO GENETIC ALGORITHM

- Many similar concepts
 - random selection v.s. mutation
- · Considers all existing vectors rather than only two parents
- Not sensitive to initial values
- Faster convergence

APPLYING TO FEATURE SELECTION

- Existing implementations
 - Particle Swarm
 - Genetic Algorithm
 - Ant Colony
 - Simulated Annealing
- · Can already see analogies in feature selection
- · Plug and play approach, a search strategy only

HORIZONTAL APPROACH CONCEPT MAPPING

- Map musicians to attributes
- Map notes to 0 or 1
- · Harmony is represented as a series of bits

•	A	В	C	D	E	F	= (B,C)
	0	1	I	0	0	0	-(D,C)

HORIZONTAL APPROACH ITERATION STEPS

A	В	С	D	Е	F	Score
1			0	0	0	0.9
1	0	I	0	0		0.7
1	I	0	0	0	0	0.3
1	0	I	1	0		0.4

to be excluded

- Initialise Harmony Memory
- Pick a new subset (A, C, D, F)
- Evaluate, include if better and exclude the worst

Repeat until max iteration

TEST ENVIRONMENT

	Ant	HAI	HA2	PSO	GA
heart	7/13	8/13	8/13	7/13	7/13
ionosphere	8/34	10/34	11/34	7/13	10/34
cleveland	8/12	8/12	8/12	8/12	8/12
olitos	5/13	5/13	6/13	5/13	6/13
web	out of memory	1012/2557	1119/2557	187/2557	352/2557
3-completed	6/38	not responding	8/38	7/38	8/38
wineScaled	5/13	5/13	5/13	5/13	5/13

HAI: iteration 1000 memorySize 50
HA2: iteration 500 memorySize 20
sub-optimal results

TESTING RESULT

EVALUATION PROS

- It works!
- Simple algorithm
- Easy to implement
- Require little CPU and memory

EVALUATION CONS

- 3 Parameters to tune
 - Harmony Memory size, max iteration, random selection rate
- · Whole subset evaluation at every iteration is expensive
- Impractical for large attribute data (gene)
- Takes longer than standard search
- Very limited note choices (0 and 1)

VERTICAL APPROACH

- Designed to solve some of the obvious problems
- · Approach from a more natural and intuitive angle

EXPERT-DECISION ANALOGY

- Musician can be treated as an expert
- · Note domain can be generalised into available choices
- Harmony Memory can be seen as a pool of combined decisions

VERTICAL APPROACH CONCEPT MAPPING

- Initialise experts (musicians)
- · Initialise available choices to be all attributes (notes) & no vote

•	EI	E2	E3	E4	E 5	E6	= (A, B, C)
	A	-	В	В	C	-	$-(\land, \lor, \lor)$

VERTICAL APPROACH ITERATION STEPS

EI	E2	E3	E4	E 5	E5	Score
D	A	-	-	A	C	
-	A	-	В	В	C	
В	A	D	В	C	D	
В	A	_	D	A	D	

- Initialise decision space (Harmony Memory)
- Experts make decisions, combine into new subset (A, B, D)
- Evaluate, include if better and exclude worst
- Repeat until max iteration

	Ant	HAI	VA I	VA2	PSO	GA
heart	7/13	8/13	8/13	7/13	7/13	7/13
ionosphere	8/34	10/34	8/34	8/34	7/13	10/34
cleveland	8/12	8/12	9/12	8/12	8/12	8/12
olitos	5/13	5/13	6/13	5/13	5/13	6/13
web	out of memory	1012/2557	452/2557	425/2557	187/2557	352/2557
3-completed	6/38	not responding	7/38	7/38	7/38	8/38
wineScaled	5/13	5/13	5/13	5/13	5/13	5/13

VAI: iteration 100 memorySize 10

VA2: iteration 250 memorySize 25

quicker & better result

TESTING RESULT

EVALUATION PROS

- It still works!
- Need less iterations to find good results & faster to process
- Bound subset size
 - same as number of experts
 - find global best subset within a given number of attributes
- Max Iteration gives a bound to processing time
 - can roughly predict the scale of improvement

- if more iterations was used

EVALUATION CONS

- Whole subset evaluation is expensive still
- Even more parameters! 5 now
 - number of experts
 - neighbour selection rate
- Experts are not really experts
- Reluctant in finding smaller subsets

POSSIBLE IMPROVEMENTS

- Auto-adjusted Parameters
- Intelligent Experts
- Weighted Decisions
- Multiple Phases
- Fuzzy and Rough

AUTO-ADJUSTED PARAMETERS

- Better Stop Criteria
 - no. of iterations since last best subset
 - last decision update
 - score improvement rate of new subset and entire space
- Dynamic Expert Size
 - more expert at start, less towards the end
- Dynamic Decision Space
 - more to consider in the beginning, less to choose later

INTELLIGENT EXPERTS

- Each experts can be distinct and independent
- Experts can also cooperate in pairs or groups
- · Inject different ideas, preferences, strategies to each experts

WEIGHTED DECISIONS

- Each experts can have different weights
- Each decisions can have different weights
- The new subset is then a result of voting

MULTIPLE PHASES

- Divide into different phases, each having different search strategies and evaluation criteria
- Initial: random decision, lose evaluation
- Intermediate: wiser selection, finer evaluation
- Final: picky experts with greedy selection, tight evaluation

MAKE IT FUZZY AND ROUGH

- There's nothing fuzzy or rough involved here
- What is going on?!

QUESTIONS AND IDEAS