Name:	Index No	Signature:
-------	----------	------------

545/2

CHEMISTRY

Paper 2

July/Aug. 2023

2 hours

UGANDA TEACHERS' EXAMINATIONS SCHEME

Uganda Certificate of Education

JOINT MOCK EXAMINATIONS

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaced provided.

Section **B** consists of 4 semi-structured questions. Answer any **two** questions from the question. Answers to the questions **must** be written in the answer booklet(s) provided.

In both sections, all working must be clearly shown.

Where necessary use;

$$H = 1$$
, $O = 16$, $Na = 23$, $Al = 27$, $Cl = 35.5$, $S = 32$, $C = 12$).

1 mole of gas occupies 24l at room temperature,

1 mole of gas occupies 22.4l at stp or 22400cm³.

	For Examiners' use only													
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Total
										,				

© 2023 Uganda Teachers' Examinations Scheme

SECTION A (50 MARKS)

Answer all questions in this section.

1.	Ste	el is one of the widely used alloys,	
	(a)	What is meant by the term alloy?	(01 mark
	(b)	State two elements in the alloy steel	(01 mark)
	(c)	Give two reasons why steel is widely preferred	(02 marks)
			•••••
	(d)	State two other alloys other than steel.	(01 mark)
			••••••
2.	(a)	Define the term rate of reaction.	(01 mark)
	(b)	The graph below was drawn from experimental resureaction between dilute hydrochloric acid and equal magnesium powder and magnesium ribbon separate respectively. Study the graph and answer questions to	amounts of

		(1)	Compare the	e shapes of the graphs	. $(2\frac{1}{2}marks)$
		•••••			
			•••••		
					•••••
					•••••
		(ii)	Explain the	shapes of the graphs.	(02 marks)
		•••••		***************************************	
		•••••			
3.	An io	on X ⁺ ha	as electronic co	onfiguration 2:8.	
	(a)	State	the group and	period in periodic tab	le to which a neutral
		eleme	ent X belongs		(01 mark)
		(i)	Group		
		(ii)	Period		

(b)	(i)	Write the formula of the oxide of X	(0½mark)
	(ii)	State the type of bond in the oxide of X is	in b (i) above. (0½mark)
	(iii)	Give a reason for the type of bond in b (i	
(c)		an equation for the reaction between the o ilute hydrochloric acid.	xide of X above (1½marks)
(d)	To the	e resultant solution in C above, was added d m hydroxide dropwise until excess, state wh	ilute at was observed.
001011	,	be prepared in the laboratory according + NaOH _(s) → NaCO _{3(s)} + CH _{4(g)} .	to the equation

(b) Draw the diagram of a set up that can be used in the extension (a) above.	xperimen 02 marks _/
	x -
(c) Calculate the amount of sodium ethanoate in grams reproduce 33600cm ³ of methane at s.t.p.	equired to
	• • • • • • • • • • • • • • • • • • • •
(a) What is meant by the term oxide?	 01 mark)

5.

	(c)	Detern	nine the molecular formular of Y	(01 mark)
		,		
Har on the				······
				••••••
	(b)	Calcul	late the empirical formula of Y	(03 marks)
	1.44g of (W = 65)	S, O = 1	W remained, the molecular mass of Y is 16) e the term reduction	(01 mark)
6.			compound Y of an oxide of W was red	
		Form	nula	(½mark)
	(c)		rt from the oxides you have named in (learned and write the formula of one example of	of the oxide
			Class	
			Observation	
		(ii)	Calcium	
			Class	
			Observation	
	(b)	when (i)	what is observed and give the class of each of the following is burnt in exces Carbon	s oxygen.

		••••		
7.	(a)	Exp	lain the term basicity of an acid.	(1½ mark)
			,	
		••••		
		••••		
		••••		
	(b)	12.5	0cm ³ of 0.1M dibasic acid reacted exactly	with 25.0cm ³ of
		sodi	um hydroxide solution.	
		(i)	Calculate the concentration of sodium	hydroxide solution
			in moles per litre.	(2½ marks)
		(ii)	the concentration of sodium hydroxide	solution in grams
			per litre.	(1 mark)
				•••••
				•••••
8.	Figure	below	shows an electrochemical cell used dur	ing electrolysis of
	concen	trated	hydrochloric acid	

(a) Name the possible electrodes that can be used as

(i)	Anode	(½ mark,
(ii)	Cathode	(½ mark,
X.T.		,
Nan	ne the product in the syringe	
A		. (½ mark)
В		(½ mark)
Writ	e the equation of reaction at	
(i)	Cathode	(01 mark)
(ii)	Anode	(01 mark)
Gase		
(i)		(½ mark)
(ii)	Gas B	(4/mark)
	(ii) Nan A B Writ (i) (ii) Gase litmu (i)	(ii) Cathode Name the product in the syringe A B Write the equation of reaction at (i) Cathode (ii) Anode Gases in syringe A and B were tested separately will litmus paper, state what was observed with (i) Gas A

9.	A mixture of copper(II) sulphate and zinc sulphate were dissolve in 4cm ²							
	of disti	lled water. Dilute sodium hydroxide so	olution was the added to the					
	resultar	nt solution dropwise until in excess. Th	ne mixture was filtered.					
	(a)	Identify the cation in the;						
		(i) Filtrate	(½ marks)					
		(ii) Residue	(½marks)					
	(b)	Write the equation(s) of reaction(s	s) between excess sodium					
		hydroxide and the cation in the;						
		(i) Filtrate	(2½ marks)					
		(ii) Residue	(1½ marks)					
10.	Expla	in the following observations and in	each case write an ionic					
	equati	on for the reaction.						
	(a)	When chlorine gas is bubbled throug	h a solution of					
		iron(II) sulphate, the solution turns fi	rom pale green to					
		yellow.	(2½marks)					

	12.00
(b)	When hydrogen sulphide gas is bubbled through a solution of Iron(III) chloride, the solution turns from yellow to green.
	SECTION R. (30 MARKS)

SECTION B: (30 MARKS)

Answer two questions from this section.

Additional questions answered will not be marked.

- 11. (a) Define the term enthalpy of neutralization. (01 mark)
 - (b) In an experiment to determine the enthalpy of neutralization of an acid H_nX, 30.0cm³ of 1M sodium hydroxide solution were poured in a plastic beaker, volumes of 1M acid H_nX were added as shown in the table below; The initial temperature t₁ of sodium hydroxide and t₂ of acid H_nX were 19°C and 21°C respectively. The mixtures were stirred and temperature t₃ attained every after additional volume was recorded. The results were recorded in the table below.

77.1				COCIO				
Volume of H _n X	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
added (cm ³)	=	1)						
Tames 4 (00)								
Temp t_3 (0 C)	21.5	22.8	24.2	25.5	26.8	28.0	28.1	27.7
	. 17	2/2 -	3					
Temp change								
	- 51,631	19						
$t = \left(t_3 - \frac{t_1 + t_2}{2}\right)$								
							1	1

Complete the table above

(03 marks)

- (b) (i) Plot a graph of temperature change against volume of acid added (05 marks)
 - (ii) Using the graph, determine the volume of acid required to neutralize 30.0cm³ of sodium hydroxide. (01 mark)
- (c) Determine the number of moles of sodium hydroxide used.

(02 marks)

- (d) Calculate the enthalpy of neutralization of the acid H_nX . (density of solution = 1gcm^{-3} , S.H.C of solution = $4.2 \text{Jg}^{-1.0} \text{C}^{-1}$)
- 12. (a) (i) Name two general methods used in extraction of metals.

 (01 mark)
 - (ii) For each of the methods you have name in a (i) above, identify two metals that can be extracted by the method.

(02 marks)

- (b) Describe how sodium can be extracted from its ore of brine (diagram not required) (9½ marks)
- (c) Sodium was burnt in limited oxygen
 - (i) State what was observed.

(01 mark)

(ii) Write the equation for the reaction.

(11/2marks)

- (a) Dilute nitric acid was added to a mixture of Lead(II) Carbonate and Zinc carbonate. State what was observed. (02 marks)
 - (b) Dilute ammonia solution was added dropwise until excess to the resultant solution in (a), state what was observed. (01 mark)

- the resultant mixture in (b) was filtered and both filtrate and residue were kept

 (i) State what was observed. (01 mark)

 (ii) Write the formula of the substance responsible for the filtrate formed. (01 mark)
- (d) Dilute nitric acid was added to the filtrate in (c) dropwise until the solution was just acidic
 - (i) State what was observed. (01 mark)
 - (ii) To 1cm³ of the acidified solution, was added dilute sodium hydroxide solution dropwise until excess. State what was observed, explain your observation. (07 marks)
 - (iii) Describe a test that can be used to identify the cation present in the residue (02 marks)
- 14. (a) With the aid of a lebelled diagram, describe a setup of experiment that can be used to prepare dry ammonia gas in the laboratory starting with ammonium chloride. (06 marks)
 - (b) 56dm³ of ammonia gas were passed over excess strongly heated copper(II) oxide in a U-tube.
 - (i) State what was observed. (01 mark)
 - (ii) Write the equation for the reaction in the U-tube.

(1½marks)

- (iii) Calculate the mass of the solid product formed. (2½ marks)
- (c) (i) Describe a chemical test, that can be used to identify a cation of ammonium in solution. (2½ marks)
 - (ii) Write a possible equation for the reaction in c (i) above.

END