

ALGEBRA Chapter 11

NUMEROS COMPLEJOS

HELICO MOTIVATING

¿Puedes multiplicar mentalmente el siguiente números complejos y dar la respuesta en menos de 10 segundos

$$z_1=7+i$$

$$z_2=7-i$$

HELICO THEORY CHAPTHER 01

NÚMEROS COMPLEJOS

I) UNIDAD IMAGINARIA

$$i^2 = -1 \quad y \quad i = \sqrt{-1}$$

$$\sqrt[4]{-9} = \sqrt{9} \cdot \sqrt{-1} = 3i$$

$$4\sqrt{-25} = \sqrt{25}.\sqrt{-1} = 5i$$

POTENCIAS DE LA UNIDAD IMAGINARIA

$$i^1 = i$$

$$i^2 = -1$$

$$1^{3} = -1$$

$$i^4 = 1$$

$$i^5 = i$$

$$1^{6} = -1$$

$$i^7 = -i$$

$$i^8 = 1$$

$$i^9 = i$$

$$i^{10} = -1$$

$$i^{11} = -i$$

$$t^{12} = 1$$

Teorema:

$$i^{4k} = 1$$

$$i^{4k+2} = -1$$

$$i^{4k+1} = i$$

$$i^{4k+3} = -i$$

Ejemplo

$$*i^{23} = i^{20+3} = i^3 = -i$$

$$i^{201} = i^{200+1} = i^1 = i$$

Teorema:

$$i + i^2 + i^3 + i^4 + \dots + i^{4k} = 0$$

Ejemplo

$$i + i^2 + i^3 + i^4 + \dots + i^{200} = 0$$

Definición:

 $a, b \in R$

$$z = (a; b) = a + bi / i = \sqrt{-1}$$

Donde:

- \square Parte real: $Re_{(z)} = a$
- \square *Parte imaginaria:* $Im_{(z)} = b$

Ejemplo:

$$z = (3; 2) = 3 + 2i$$

$$Re_{(z)} = 3$$

$$Im_{(z)} = 2$$

Definiciones:

Sea: z = a + bi, a, $b \in R$; entonces se define

- 1. complejo conjugado (\bar{z}) : $\bar{z} = a bi$
- 2. Complejo opuesto (z^*) : $z^* = -a bi = Op(z)$

<u>Ejemplo</u>

$$z = 3 - 4i \longrightarrow \bar{z} = 3 + 4i$$

$$z = 3 - 4i \longrightarrow z^* = -3 + 4i = 0p(z)$$

Operaciones con Números complejos

Adición y sustracción

Ejemplo:

$$z_1 + z_2 = 5 + 6i$$

$$z_1 = 2 + 4i$$

$$z_2 = 3 + 2i$$

$$z_1 - z_2 = -1 + 2i$$

Multiplicación

Sea:
$$z_1 = 2 + 4i$$

 $z_2 = 3 + 2i$

$$z_1.z_2 = (2+4i)(3+2i)$$

$$z_1.z_2 = 6 + 4i + 12i + 8i^2$$

$$z_1.z_2 = -2 + 16i$$

$$(a+bi)(a-bi)=a^2+b^2$$

División:
$$z = \frac{2+4i}{3-2i}$$

$$z = \frac{(2+4i)(3+2i)}{(3-2i)(3+2i)}$$

$$> (3-2i)(3+2i) = 3^2 + 2^2 = 13$$

(2+4i)(3+2i)=-2+16i

$$z = \frac{-2 + 16i}{13} = \frac{-2}{13} + \frac{16}{13}i$$

$$(0.01)(0.101) \quad 0.2.102 \quad 4.0$$

PROPIEDADES:

$$\frac{1+i}{1-i}=i$$

$$\frac{1-i}{1+i}=-i$$

$$(1+i)^2=2i$$

$$(1-i)^2 = -2i$$

$$(\mathbf{1} \mp i)^4 = -4$$

$a, b, m, n \in \mathbb{R} \ con \ m, n \neq 0$

se cumple:
$$\frac{a}{m} = -\frac{b}{n}$$

$$\frac{a+bi}{n+mi} \rightarrow complejo \ real$$

$$se \ cumple: \frac{a}{n} = \frac{b}{m}$$

HELICO PRACTICE

CHAPTHER 01

Simplifique:

$$A = \frac{i^{32} + i^{54} + 3i^{65}}{i^{46} + 4i^{520} + i^{673}}$$

$$A = \frac{i^{4k} + i^{4k+2} + 3i^{4k+1}}{i^{4k+2} + 4i^{4k} + i^{4k+1}}$$

$$A = \frac{1 + (-1) + 3(i)}{(-1) + 4(1) + i} = \frac{3i}{3 + i} \times \frac{3 - i}{3 - i} = \frac{9i + 3}{9 + 1} = \frac{9i + 3}{10}$$

PROBLEMA 2

Sean los números complejos:

$$z_1 = 5 + 7i$$
 $z_2 = 8 - 4i$
Calcule: $Op(z_1) + \overline{z_2} - 2\overline{z_1}$

$$\overline{z_1} = 5 + 7i \implies \overline{z_1} = 5 - 7i \implies 0p(z_1) = -5 - 7i$$

$$z_2 = 8 - 4i \implies \overline{z_2} = 8 + 4i$$

Luego:
$$-5 - 7i + 8 + 4i - 2(5 - 7i)$$

$$\rightarrow$$
 $-7 + 11i$

PROBLEMA 3

Sean:

$$z_1 = -7 + 2i$$
 $z_2 = 4 - 3i$
Calcule: $z_1.z_2 + 0p(z_2) + \overline{z_1}$

$$z_1 = -7 + 2i \implies \overline{z_1} = -7 - 2i$$

$$z_2 = 4 - 3i \qquad \Rightarrow 0p(z_2) = -4 + 3i$$

$$z_{1}z_{2} = (-7 + 2i)(4 - 3i) = -28 + 21i + 8i - 6i^{2}$$

$$z_1 z_2 = -22 + 29i$$

$$\implies -22 + 29i - 4 + 3i - 7 - 2i = -33 + 30i$$

PROBLEMA 4

Si:
$$\frac{5+2i}{3+4i} = a + bi$$
 Calcule: $\frac{b}{a}$

$$\frac{(5+2i)}{(3+4i)} \times \frac{(3-4i)}{(3-4i)} = \frac{(15-20i+6i-8i^2)}{9-16i^2} = \frac{23-14i}{25}$$

$$\Rightarrow \frac{23}{25} - \frac{14}{25}i = a + bi$$

$$\frac{b}{a} = \frac{-14}{23}$$

Simplifica:

$$M = \left[\frac{1+i}{1-i} - \frac{1-i}{1+i}\right]^4$$

Resolución

RECORDANDO:

$$\frac{1+i}{1-i}=i$$

$$\frac{1-i}{1+i}=-i$$

→ 1

Reemplazando:

$$M = \left[\frac{1+i}{1-i} - \frac{1-i}{1+i}\right]^4$$

$$\mathbf{M} = [\mathbf{i} - (-\mathbf{i})]^4$$

$$M = [i + i]^4$$

$$M = [2i]^4$$

$$M = 16$$

La edad de Carlos hace 15 años coincide con la parte imaginaria de $z_1.\overline{z_2}$, donde: $z_1 = 4 - 3i$; $z_2 = -7 - \overline{z_1}$ ¿Qué edad tiene Carlos?

Resolución

$$z_1 = 4 - 3i$$

$$\overline{z_1} = 4 + 3i$$

$$z_2 = -7 - \overline{z_1}$$

$$z_2 = -7 - (4 + 3i)$$

$$z_2 = -7 - 4 - 3i$$

$$z_2 = -11 - 3i$$

$$\overline{z_2} = -11 + 3i$$

Hallando Imag($z_1,\overline{z_2}$):

$$z_1.\overline{z_2} = (4-3i)(-11+3i)$$

$$z_1.\overline{z_2} = -44 + 12i + 33i + 9$$

$$z_1.\overline{z_2} = -35 + 45i$$

$$Imag(z_1.z_2) = 45$$

Rpta: 60 años

Al reducir $T = \frac{(1+i)^{12}+(1-i)^4}{17}$, El valor de T^2+4 representa el precio de una entrada a un concierto. Si asisten 100 personas, ¿cuánto fue lo recaudado?

Recordar:

$$(1+i)^2=2i$$

$$(1-i)^2 = -2i$$

$$i^2 = -1$$

$$i^6 = -1$$

$$T = \frac{(1+i)^{12} + (1-i)^4}{17}$$

$$T = \frac{\left[(1+i)^2\right]^6 + \left[(1-i)^2\right]^2}{17}$$

$$T = \frac{\left[2i\right]^6 + \left[-2i\right]^2}{17}$$

$$T = \frac{2^6 \cdot i^6 + (-2)^2 \cdot i^2}{17}$$

$$T = \frac{64(-1) + 4(-1)}{17}$$

$$T = \frac{-68}{17}$$

$$T = -4$$

$$T = -4$$