Ordinary character table of $G \cong C3 \times Q16$:

1	a	6a	6b	2a	3a	3b	24a	24b	8a	8b	24c	24d	12a	12b	4a	4b	12c	12d	12e	12f	4c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1
χ_3	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1
χ_4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_5	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$-E(3)^2$	$-E(3)^2$	-1	-1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	1	-1	$-E(3)^{2}$	-E(3)	$E(3)^{2}$	E(3)	1
χ_6	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-E(3)	-E(3)	-1	-1	$-E(3)^2$	$-E(3)^2$	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^2$	E(3)	$E(3)^{2}$	1
χ_7	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$-E(3)^2$	$-E(3)^2$	-1	-1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	$-E(3)^2$	-E(3)	-1
χ_8	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-E(3)	-E(3)	-1	-1	$-E(3)^2$	$-E(3)^2$	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^2$	-1
χ_9	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	1	-1	$-E(3)^2$	-E(3)	$-E(3)^2$	-E(3)	-1
χ_{10}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^2$	-E(3)	$-E(3)^2$	-1
χ_{11}	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1
χ_{12}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1
χ_{13}	2	2	2	2	2	2	0	0	0	0	0	0	-2	-2	-2	0	0	0	0	0	0
$ \chi_{14} $	2	$2 * E(3)^2$	2 * E(3)	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	$-2*E(3)^2$	-2 * E(3)	-2	0	0	0	0	0	0
$ \chi_{15} $	2	2 * E(3)	$2 * E(3)^2$	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	-2 * E(3)	$-2*E(3)^2$	-2	0	0	0	0	0	0
χ_{16}	2	-2	-2	-2	2	2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	0	0	0	0	0	0
$ \chi_{17} $	2	-2	-2	-2	2	2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	0	0	0	0	0	0
χ_{18}	2	-2 * E(3)	$-2*E(3)^2$	-2	2 * E(3)	$2 * E(3)^2$	$-E(24)^{11} + E(24)^{17}$	$E(24)^{11} - E(24)^{17}$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(24) + E(24)^{19}$	$E(24) - E(24)^{19}$	0	0	0	0	0	0	0	0	0
χ_{19}	2	-2 * E(3)	$-2*E(3)^2$	-2	2 * E(3)	$2 * E(3)^2$	$E(24)^{11} - E(24)^{17}$	$-E(24)^{11} + E(24)^{17}$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(24) - E(24)^{19}$	$-E(24) + E(24)^{19}$	0	0	0	0	0	0	0	0	0
χ_{20}	2	$-2*E(3)^2$	-2 * E(3)	-2	$2*E(3)^2$	2 * E(3)	$-E(24) + E(24)^{19}$	$E(24) - E(24)^{19}$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(24)^{11} + E(24)^{17}$	$E(24)^{11} - E(24)^{17}$	0	0	0	0	0	0	0	0	0
χ_{21}	2	$-2*E(3)^2$	-2*E(3)	-2	$2*E(3)^2$	2 * E(3)	$E(24) - E(24)^{19}$	$-E(24) + E(24)^{19}$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(24)^{11} - E(24)^{17}$	$-E(24)^{11} + E(24)^{17}$	0	0	0	0	0	0	0	0	0

								χ_{21} 2	2 -2 * E($(3)^2 -2*E$	(3) -2	$2*E(3)^2$	2 * E(3)	E(24) - E(2)	$(4)^{19} - B$	E(24) + E	$(24)^{19}$ $E(8)$	$E(8)^3$	-E(8) + E(8)
Trivial source character table of $G \cong C3 \times Q16$ at $p = 2$:																			
Normalisers N_i	N_1		N_2		N	73		$\overline{N_4}$		N_5		N_6		N_7			$\overline{N_8}$		$\overline{N_9}$
p-subgroups of G up to conjugacy in G	P_1		P_2		\overline{P}	3		$\overline{P_4}$		P_5		P_6		P_7			$\overline{P_8}$		P_9
Representatives $n_i \in N_i$	3a	3b	1a $3a$	3b	1a $3a$	3b	1a 3a	3b	1a	$\overline{3a}$ 3	b 1 a	3a	3b	1a $3a$	3b	1 <i>a</i>	$\overline{3a}$ $3b$, <u>1a</u> :	3a $3b$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 2 \cdot \chi_{16} + 2 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \begin{vmatrix} 16 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	16	16	0 0	0	0 0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 2 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 2 \cdot \chi_{20} + 2 \cdot \chi_{21} \end{vmatrix} $	$16 * E(3)^2$	16 * E(3)	0 0	0	0 0	0	0 0	0	0	0 (0 0	0	0	0 0	0	0	0 0	0	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 * E(3)	$16 * E(3)^2$	0 0	0	0 0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0$	8	8	8 8	8	0 0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0 /	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$8 * E(3)^2$	8 * E(3)	8 $8*E(3)^2$	8 * E(3)	0 0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 * E(3)	$8 * E(3)^2$	8 8 * E(3)	$8 * E(3)^2$	0 0	0	0 0	0	0	0	0	0	0	0 0	0	0	0 0	0 '	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0$	4	4	4 4	4	4 4	4	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 * E(3)	$4 * E(3)^2$	4 4 * E(3)	$4*E(3)^2$	4 4*E(3)	$4*E(3)^2$	0 0	0	0	0 (0	0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 * E(3)^2$	4 * E(3)	$4 4 * E(3)^2$	4 * E(3)	4 4 * E(3)	2 $4*E(3)$	0 0	0	0	0	0	0	0	0 0	0	0	0 0	0 '	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0$	4	4	4 4	4	0 0	0	2 2	2	0	0 (0	0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 * E(3)	$4 * E(3)^2$	4 4 * E(3)	$4 * E(3)^2$	0 0	0	2 2 * E(3)			0	0	0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 * E(3)^2$	4 * E(3)	$4 4 * E(3)^2$	4 * E(3)	0 0	0	2 2 * E(3)	$(3)^2 2 * E(3)$) 0	0	0	0	0	0 0	0	0	0 0	0 '	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} = 0$	4	4	4 4	4	0 0	0	0 0	0	2	2 2	2 0	0	0	0 0	0	0	0 0	0 '	0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	()	$4 * E(3)^2$	()	\ /	0 0	0	0 0	0		E(3) = 2 * E		0	0	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 * E(3)^2$	4 * E(3)	$4 4 * E(3)^2$	4 * E(3)	0 0	0	0 0	0	2 2*	$E(3)^2 = 2 * I$	$E(3) \mid 0$	0	0	0 0	0	0	0 0	0 '	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{19} + 0 \cdot $	2	2	2 2	2	2 2	2	2 2	2	0	0 () 2	2	2	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 * E(3)^2$	2 * E(3)	$2 2 * E(3)^2$	2 * E(3)	2 2 * E(3)	2 * E(3)	2 2 * E(3)	$(3)^2 2 * E(3)$) 0	0			2 * E(3)	0 0	0	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 * E(3)	$2 * E(3)^2$	2 2 * E(3)	$2 * E(3)^2$	2 2 * E(3)	$2 * E(3)^2$	2 2*E(3)	(3) 2 * E(3)	$ ^{2} 0$	0) 2	2 * E(3)	$2 * E(3)^2$	0 0	0	0	0 0	0 '	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} 2}$	2	2	2 2	2	2 2	2	0 0	0	2	2 2	2 0	0	0	2 2	2	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 * E(3)^2$	2 * E(3)	$2 2 * E(3)^2$	2 * E(3)	2 2 * E(3)	2 * E(3)	0 0	0	2 2*	$E(3)^2 = 2 * I$	$E(3) \mid 0$	0	0	$2 2 * E(3)^2$	2 * E(3)	0	0 0	0 '	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 * E(3)	$2 * E(3)^2$	2 2 * E(3)	$2*E(3)^2$	2 2 * E(3)	$2*E(3)^2$	0 0	0	2 2 *	E(3) = 2 * E	$E(3)^2 \mid 0$	0	0	2 2 * E(3)	$2 * E(3)^2$	0	0 0	0 '	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \mid 2}$	2	2	2 2	2	2 2	2	0 0	0	0	0 (0	0	0	0 0	0	2	2 2	0 (0 0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \right \ 2 $	$2 * E(3)^2$	2 * E(3)						0	0	0	0	0	0	0 0	0		$(E(3)^2 2*E(3)^2$		0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 * E(3)	$2 * E(3)^2$	2 2 * E(3)	$2*E(3)^2$	2 2 * E(3)	$2*E(3)^2$	0 0	0	0	0	0 0	0	0	0 0	0	2 2 *	*E(3) 2*E($(3)^2 \mid 0$	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} = 1$	1	1	1 1	1	1 1	1	1 1	1	1	1	1	1	1	1 1	1	1	1 1	1	1 1
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(3)^{2}$	E(3)	$1 E(3)^2$	E(3)	1 $E(3)^2$	E(3)	$1 E(3)^2$				$(3) \qquad 1$	$E(3)^{2}$	E(3)	$1 E(3)^2$	E(3)		$E(3)^2$ $E(3)$		$(3)^2 E(3)$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \mid 1 \cdot \chi_{18} \mid 1 \cdot \chi_{19} \mid 1 $	E(3)	$E(3)^2$	1 $E(3)$	$E(3)^2$	1 $E(3)$	$E(3)^{2}$	1 E(3)	$E(3)^{2}$	1 1	E(3) $E($	$(3)^2 1$	E(3)	$E(3)^2$	1 $E(3)$	$E(3)^{2}$	$\mid 1 \mid I$	E(3) $E(3)$	$)^2$ 1 E	$E(3) E(3)^2$

$P_1 = Group([()]) \subseteq$

- $P_2 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48)]) \cong C2$ $P_2 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,20)(15,21)(19,22)(14,20)(15,21)(19,22)(11,27)(21,28)(14,20)(19,22)(11,27)(21,28)(14,20)(19,22)(11,27)(21,28)(14,20)(11,27)(21,28)(11$
- $P_3 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,5,6,17)(2,9,10,24)(31,13,28)(4,15,16,31)(7,19,20,35)(8,22,23,38)(11,26,27,41)(14,29,30,42)(18,33,34,45)(21,36,37,46)(25,39,40,47)(32,43,44,48)]) \cong C4$
- $P_4 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,3,6,13)(2,47,42,39)(36,48,46,43)]) \cong C4$
- $P_5 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,2,6,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,2,6,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,2,6,10)(3,13)(4,16)(5,17)(12,28)(14,30)(15,31)(18,34)(19,35)(12,37)(12,28)(14,30)(15,31)(18,34)(19,35)(12,37)(12,28)(14,30)(15,31)(18,34)(19,35)(12,37)(12,28)(14,30)(15,31)(18,34)(19,35)(19,34)(19,35)(19,34)(19,35)(19,34)(19,35)(19,34)(19$
- $P_6 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(19,35)(21,37)(22,38)(25,40)(26,41)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), \\ (1,5,6,17)(2,9,10,24)(3,12,13,28)(4,15,16,31)(7,19,20,35)(8,22,23,38)(11,26,27,41)(14,29,30,42)(15,41,31,26)(21,32,37,44)(22,45,38,33)(29,47,42,39)(36,48,46,43)]) \cong Q8$
- $P_8 = Group([(1,6)(2,10)(3,13)(4,16)(5,17)(7,20)(8,23)(9,24)(11,27)(12,28)(14,30)(15,31)(18,34)(19,35)(21,37)(22,38)(25,40)(26,41)(29,42)(32,44)(33,45)(36,46)(39,47)(43,48), (1,5,6,17)(2,9,10,24)(31,13,28)(4,15,16,31)(7,19,20,35)(8,22,23,38)(11,26,27,41)(14,29,30,42)(21,47,36,25,37,39,46,40)]) \\ \cong C8$
- $P_9 = Group([(1, 5)(2, 10)(3, 13)(4, 16)(5, 17)(1, 25)(4, 10)(3, 13)(4, 16)(2, 10)(3, 13)(4, 16)(2, 10)(3, 13)(4, 16)(2, 10)(3, 14)(1, 16)(2, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1, 16)(1$

 $N_6 = Grow[([1,3,6,13](2,7,10,20)(4,11,16,27)(5,28,17,12)(4,14,29)(3,44,48),(1,2,4,29)(3,44,48),(1,2,4,29)(3,44,48),(1,2,4,29)(3,44,48),(1,2,3,34)(2,3,44,48),(1,2,3,34)(2,3,44,48),(1,2,3,34,49)(2,3,34,49)(2,3,34,49)(2,3,34,49)(2,3,34,49)(2,3,34,49)(3,34$