Tutorial 2 (Lecture 4-6): Forced Oscillations & Coupled Oscillators

- 1. A particle of mass m can perform undamped harmonic oscillations due to an elastic restoring force with a spring constant k. When the particle is in equilibrium, a constant force F is applied to it for τ seconds. Find the amplitude of oscillation of the particle after the force ceases.
- 2. Show that, $x(t) = \frac{f}{\omega_0^2 \omega^2}(\cos \omega t \cos \omega_0 t)$, is a solution of the undamped forced system, $\ddot{x} + \omega_0^2 x = f \cos \omega t$, with initial conditions, $x(0) = \dot{x}(0) = 0$. Show that near resonance, $\omega \to \omega_0$, $x(t) \approx \frac{f}{2\omega_0} t \sin \omega_0 t$, that is the amplitude of the oscillations grow linearly with time. Plot the solution near resonance. (Hint: Take $\omega = \omega_0 \Delta \omega$, and expand the solution taking $\Delta \omega \to 0$.)
- 3. A mildly damped oscillator driven by an external force is known to have a resonance at an angular frequency somewhere near $\omega=1$ MHz with a quality factor of 1100. Further, for the force (in Newtons) $F(t)=10\cos\omega t$, the amplitude of oscillations is 8.26~mm at $\omega=1.0~KHz$ and $1.0~\mu m$ at 100~MHz.
 - a) What is the spring constant of the oscillator?
 - b) What is the natural frequency ω_0 of the oscillator?
 - c) What is the FWHM?
 - d) What is the phase difference between the force and the oscillations at $\omega=\omega_0+\frac{FWHM}{2}$?
- 4. For the coupled oscillator shown in figure below with $k=10\ Nm^{-1}$, $k'=30\ Nm^{-1}$ and $m=1\ kg$, both particles are initially at rest. The system is set into oscillations by displacing x_0 by $40\ cm$ while $x_1=0$.
 - a) What is the angular frequency of the faster normal mode?
 - b) Calculate the average kinetic energy of the mass with coordinate x_1 ?
 - c) How does the average kinetic energy of x_1 change if the mass of both the particles is doubled? (Answer: (a)8.37 s^{-1} , b)8.00 \times 10⁻¹J, c) No Change)

5. Two identical spring-mass systems A and B are coupled by a weak middle spring having a spring constant smaller by a factor of 100 (i.e. $100k_{middle} = k_A = k_B$). Mass A is pulled by a small distance and released from rest, while mass B is released from rest at its equilibrium position, at t=0. Calculate the approximate number of oscillations completed by mass A before its oscillations die down first. (Answer: 50)