Approximation by orthogonal transform

John Mount*

November 12, 2014

Abstract

We work through the derivation of the standard solution to the orthogonal Procrustes problem.

1 Introduction

The orthogonal Procrustes problem is: given two matrices A, and B then find an orthogonal matrix W such that $||AW - B||_F^2$ is minimized. We will limit or work to the case where A, B are real n by n matrices.

The current family of solutions goes back to Peter Schonemann's 1964 thesis[Wikipedia, 2014, Schonemann, 1966] and we adapt the proof from [Bindel, 2012] for this note.

2 Some Linear Algebra

To work the problem we will need some background definitions and facts from linear algebra, which we will state without proof.

Definition 1. For a m row by n column matrix A the transpose of A written tr(A) is a n row by m column matrix such that $tr(A)_{j,i} = A_{i,j}$ for $i = 1 \cdots m$, $j = 1 \cdots n$.

Definition 2. An orthogonal matrix W is a real matrix with n rows and n columns such that $WW^{\top} = W^{\top}W = I$. Note that in addition to having orthogonal rows and columns an orthogonal matrix is also full rank and has all rows and columns unit length.

Definition 3. The squared Frobenius norm of a n by n matrix X is written as $||X||_F^2$ and is equal to $\sum_{i=1}^n \sum_{j=1}^n |X_{i,j}|^2$.

Definition 4. The trace of a n by n matrix X is written as tr(X) and is defined as $\sum_{i=1}^{n} X_{i,i}$.

Lemma 1. For real n by n matrices $||X||_F^2 = ||X^\top||_F^2$.

Lemma 2. For real n by n matrices $||X||_F^2 = tr(XX^\top) = tr(X^\top X)$.

Lemma 3. For real n by n matrices $A_1, \dots A_k$ $tr(A_1 \dots A_k) = tr(A_k A_1 \dots A_{k-1})$. That is: trace is invariant under cyclic re-ordering of a product (though not under arbitrary permutations in general).

Lemma 4. $||AW||_F^2 = ||A||_F^2$ if W is orthogonal.

^{*}email: mailto:jmount@win-vector.com web: http://www.win-vector.com/

Proof.

$$||AW||_F^2 = \operatorname{tr}(AWW^\top A^\top)$$
$$= \operatorname{tr}(AA^\top)$$
$$= ||A||_F^2$$

Lemma 5. If A is an m row by n column real matrix then there exists matrices U, D, V such that $A = UDV^{\top}$ and:

- U is a m by m orthogonal matrix
- D is a m by n diagonal matrix
- $D_{i,i}$ are non-negative and decreasing in i
- \bullet V is a n by n orthogonal matrix.

This factorization is called the singular value decomposition, and is available in most linear algebra libraries.

3 The solution

The problem is to find an orthogonal matrix W minimizing $||AW - B||_F^2$ where A, B are n by n real matrices.

Theorem 1. Let UDV^{\top} be the singular value decomposition of $A^{\top}B$ where A, B are real n by n matrices. Then $W = UV^{\top}$ is an orthogonal matrix minimizing $||AW - B||_F^2$.

Proof. To derived the method we first expand $||AW - B||_F^2$.

$$||AW - B||_F^2 = \sum_{i,j} (AW - B)_{i,j}^2$$

$$= \sum_{i,j} (AW)_{i,j}^2 + (B)_{i,j}^2 - 2(AW)_{i,j}(B)_{i,j}$$

$$= ||AW||_F^2 + ||B||_F^2 - 2\operatorname{tr}(W^\top A^\top B)$$

$$= ||A||_F^2 + ||B||_F^2 - 2\operatorname{tr}(W^\top A^\top B)$$

So picking W to maximize $\operatorname{tr}(W^{\top}A^{\top}B)$ will minimize $||AW - B||_F^2$. Let UDV^{\top} be the singular value decomposition of $A^{\top}B$.

$$\operatorname{tr}(W^{\top}A^{\top}B) = \operatorname{tr}(W^{\top}UDV^{\top})$$
$$= \operatorname{tr}(V^{\top}W^{\top}UD)$$

Write $Z = V^{\top}W^{\top}U$, notice Z is orthogonal (being the product of orthogonal matrices). The goal is re-stated: maximize $\operatorname{tr}(ZD)$ through our choice of W. Because D is diagonal we have $\operatorname{tr}(ZD) = \sum_{i=1}^{n} Z_{i,i}D_{i,i}$. The $D_{i,i}$ are non-negative and Z is orthogonal for any choice of W. The maximum is achieved by choosing W such that all of $Z_{i,i} = 1$ which implies Z = I. So an optimal W is UV^{\top} . \square

4 Application

An application of the orthogonal Procrustes solution to machine learning is given in a iPython notebook [Mount, 2014] (and soon to be followed up by a blog post on http://www.win-vector.com/blog).

References

[Bindel, 2012] Bindel, D. (2012). Intro to scientific computing (cs 3220) notes week 5: Wednesday, feb 29. http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec12.pdf. Accessed: 2014-11-12.

[Mount, 2014] Mount, J. (2014). xdrift ipython worksheet. http://winvector.github.io/xDrift/xDrift.html.

Accessed: 2014-11-12.

[Schonemann, 1966] Schonemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem. *Psychometrika*, 31(1):1–10.

[Wikipedia, 2014] Wikipedia (2014). Orthogonal procrustes problem. http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem. Accessed: 2014-11-12.