Exercise 1

The Mroz data frame (contained in the R add-on package **carData**) contains observations from married women from the Panel Study of Income Dynamics (PSID). The following covariates should be considered:

lfp	labor-force participation; a factor with levels: no; yes
k5	number of children 5 years old or younger
k618	number of children 6 to 18 years old
age	in years
WC	wife's college attendance; a factor with levels: no; yes
hc	husband's college attendance; a factor with levels: no; yes
lwg	log expected wage rate
inc	family income exclusive of wife's income

Fit a binary logistic regression model mroz.glm.mod using the logit link function. The variable lfp is your binary response. All other given variables are used as explanatory variables. Interpret β_{age} specifically.

Estimate the confidence intervals for all regression coefficients using the function confint().

Exercise 2

In this exercise you will study some properties of the maximum extreme value distribution (the Gumbel distribution) with distribution function

$$F_Z(z) = \log\log^{-1}(z) = \exp(-\exp(-z))$$

where $\log\log(p) = -\log(-\log(p))$. Hence we have $F_0(y) = \log\log^{-1}(h(y))$ and $F_1(y) = \log\log^{-1}(h(y) - \beta)$.

An interesting interpretation for β is given on page 100 in the script.

(a) Explain step-by-step what is happening in the derivation of

$$\mathbb{P}(\max\{Y_1,\dots,Y_n\} \le y) = \prod_{i=1}^n \mathbb{P}(Y_i \le y) = \prod_{i=1}^n F_0(y) = F_0(y)^n.$$

- (b) Load the lehmann_data.csv into R. The dataset contains the binary indicator sex and the response bmi. Fit a Lehmann type I alternative to estimate the shift parameter β as a log reverse-time hazard ratio (Hint: Use the Lehmann() function from package **tram**.)
- (c) Interpret β as on page 100 in the script.
- (d) Sample $n = \lfloor \exp(\beta) \rceil$ observations from \hat{F}_0 and interpret the maximum of these n draws. Here $\lfloor \cdot \rceil$ means rounding to the nearest integer. (Hint: You can use simulate (as.mlt (mod), newdata = ...), where mod is the model and newdata is a data.frame containing n rows of the covariate sex, to simulate from a fitted transformation model.)
- (e) Repeat (d) 1000 times and visualize the empirical cdf of the resulting vector of maxima. Add the estimated distribution function \hat{F}_1 to the plot and interpret your results. (Hint: You can extract the estimated cdf using predict (mod, type = "distribution", newdata = ...).)