

2017.11

SC01A

1按键带自校正功能的容性触摸感应器

&智能马桶人体感应、水位检测感应器

青岛博晶微电子科技有限公司

24小时服务热线:0592-2086676

1. 概览

1.1 概述

SC01A 是单键电容触摸感应器,它可以通过任何非导电介质(如玻璃和塑料)来感应电容变化。通过设 置,SC01A可以应用于普通触摸按键开关、智能马桶人体感应、水位检测。

1.2 特性

- ◇ 普通按键应用。
- ◇ 智能马桶人体感应应用。
- ◇ 水位检测应用。
- ◇ 保持自动校正, 无需外部干预
- ◇ 按键输出经过完全消抖处理
- ◇ 并行一对一输出
- ◇ 2.5V~6.0V 工作电压
- ◇ 符合 RoHS 指令的环保 SOP8 封装

1.3 应用

- ◇ 替代机械开关
- ◇ 家庭应用(电视、显示器、键盘)
- ◇ 玩具和互动游戏的人机接口
- ◇ 门禁按键
- ◇ 灯控开关
- ◇ 密封键盘面板

1.4 封装

封装简图

青岛博晶微电子科技有限公司

24小时服务热线:0592-2086676

1.5 管脚

管脚顺序	名称	类型	功能		
1	GND	Pwr	电源地		
2	CMOD	I/O	接电荷收集电容		
3	CDC	I/O	接灵敏度电容		
4	CIN1	I/O	触摸检测端		
5	CIN2	I/O	触摸检测端		
6	OUT	OD	感应按键输出		
7	MD	I/O	模式设置端		
8	VDD	Pwr	电源		

管脚类型

ı CMOS 输入 I/O CMOS 输入/输出 OD NMOS 开漏输出 电源 / 地 Pwr

1.6管脚说明

VDD, GND

电源正负输入端。

CMOD

电荷收集电容输入端,接固定值的电容,和灵敏度无关。

CDC

接灵敏度电容, 电容范围是最小5pf, 最大100pf。根据使用环境选择合适的电容值, 数值越小, 灵敏 度越高。

CIN1

感应电容的输入检测端口。智能马桶和水位检测应用时,接10PF左右的基准电容,普通按键应用时,接触摸 按键输入。

CIN₂

感应电容的输入检测端口。智能马桶和水位检测应用时,接触摸按键输入;普通按键应用时,管脚悬空。

OUT

触摸输出端口。 端口内部结构为NMOS开漏输出,输出高阻或低电平。

MD

工作模式设置端口。1; 当MD悬空时,芯片进入普通按键直接输出模式,检测到手指触摸,输出由高 阻变低电平,手指离开后,输出由低电平变高阻。2: 当MD接GND时,芯片进入普通按键锁存输出模式:

青岛博晶微电子科技有限公司

24小时服务热线:0592-2086676

每次检测到手指触摸,输出电平翻转,状态锁存。3: 当MD接VDD时,芯片进入智能马桶人体感应或水位 位检测模式,当检测到有人体靠近或者检测到液面到达刻度,输出由高阻变低电平,人体离开或液面低于 刻度,输出变高阻。

2. 芯片功能

2.1 初始化时间

上电复位后,芯片需要120ms进行初始化,计算感应管脚的环境电容,然后才能正常工作。

2.2 灵敏度设置

灵敏度由CDC端口接的电容值决定。数值越小,灵敏度越高。

2.3 自校正

在普通按键直接输出模式和普通按键锁存输出模式下,芯片根据外部环境温度和湿度等的漂移,芯片会一 直调整按键的电容基准参考值。如果检测到按键,芯片会停止校正一段时间,这段时间大约50秒,然后芯片会 继续自校正,也就是说检测按键有效的时间不会超过50秒。

2.4 智能马桶人体感应和水位检测

在智能马桶人体感应或水位位检测模式下,CIN1端接10PF左右的基准电容,CIN2端接人体或水位触摸按 键,当人体靠近或者液面达到刻度,检测到触摸按键的电容值大于CIN1上的基准电容值,OUT由高阻变低电平, 直到人体离开或者液面低于刻度、输出才重新变成高阻。

2.5 触摸反应时间

每个通道大约每隔3ms采样一次。经过按键消抖处理以后,检测到按键按下的反应时间大概是18毫秒,检 测按键离开的反应时间大概是12毫秒。所以检测按键的最快频率大概是每秒30次

2.6 输出逻辑

触摸输出有两种状态: 高阻或强低。

当MD悬空或者接VDD,检测到触摸时,输出强低,无触摸时,输出高阻。

当MD接GND,每一次触摸都会引发输出翻转,状态锁存。

MD悬空或者接VDD: 直接输出模式

时段	时段1	时段2	时段3	时段4	时段5	时段6
动作	芯片复位	无触摸	触摸	无触摸	触摸	无触摸
触摸输出	高阻	高阻	低电平	高阻	低电平	高阻

MD接GND: 锁存输出模式

时段	时段1	时段2	时段3	时段4	时段5	时段6
动作	芯片复位	无触摸	触摸	无触摸	触摸	无触摸
触摸输出	高阻	高阻	低电平	低电平	高阻	高阻

青岛博晶微电子科技有限公司 厦门晶尊微电子科技有限公司

24小时服务热线:0592-2086676

3. 应用

3.1 应用电路

1: 普通按键模式(直接或锁存)

2: 智能马桶人体感应和水位检测模式

注意事项:

- 1. Cmod是电荷收集电容,通常取值范围在1nf~10nf,典型值是4.7nf。
- 2. Cdc是灵敏度电容,取值范围是最小5pf,最大100pf,电容取值越小,灵敏度越高。

4. 详细参数

4.1 额定值*

工作温度-40 ~ +85℃ 存储温度......-50 ~ +150℃ 最大Vdd电压.....-0.3~+6.0V 管脚最大直流输出电流......±10mA 管脚容限电压......-0.3V ~ (Vdd + 0.3) Volts

4.2 电气特性

T_A = 25 °C

特性	符号	条件	最小值	典型值	最大值	单位
工作电压	Vdd		2.5		6.5	V
电流损耗	ldd	VDD=5.0V		0.8		mA
		VDD=3.0V		0.45		mA
上电初始化时间	Tini			120		ms
感应管脚电容范围	Cin				2.5*Cdc ¹	
OUT输出电阻 (NMOS开漏)	Zo	delta Cin > 0.2pF		50		Ohm
		delta Cin < 0.2pF		100M		
OUT输出灌电流	Isk	VDD=5V			10.0	mA
最小检测电容	delta_Cin	CDC=5pf		0.2		pF

¹ 如果感应管脚寄生电容超过2.5倍的Cdc电容,芯片不能正常工作(绝大多数情况无需考虑这个限制)

^{*} 注意: 超出上述值可能导致芯片永久损坏

青岛博晶微电子科技有限公司 厦门晶尊微电子科技有限公司 24小时服务热线:0592-2086676

4.3 封装尺寸图 (SOP-8)

<i>h</i> /r □.	毫米单位			英寸单位			
符号	最小	典型	最大	最小	典型	最大	
Α	1.30	1.50	1.70	0.051	0.059	0.067	
A1	0.06	0.16	0.26	0.002	0.006	0.010	
b	0.30	0.40	0.55	0.012	0.016	0.022	
С	0.15	0.25	0.35	0.006	0.010	0.014	
D	4.72	4.92	5.12	0.186	0.194	0.202	
Е	3.75	3.95	4.15	.0148	0.156	0.163	
е		1.27			0.050		
Н	5.70	6.00	6.30	0.224	0.236	0.248	
L	0.45	0.65	0.85	0.018	0.026	0.033	
θ	0°		8°	0°		8°	

