Introduction to Optimization Theory Homework Assignment 1

Chen Zhiyang, 2017011377

March 2019

Ex. 2.2

Proof:

For any $\boldsymbol{x}, \boldsymbol{y} \in S$, we have $f(\boldsymbol{x}), f(\boldsymbol{y}) \leq c$. f is convex so that for any $\lambda \in [0, 1]$, we have

$$f(\lambda \cdot \boldsymbol{x} + (1 - \lambda) \cdot \boldsymbol{y}) \le \lambda f(\boldsymbol{x}) + (1 - \lambda) f(\boldsymbol{y}) \le \lambda \cdot c + (1 - \lambda) \cdot c = c,$$

which means $\lambda \cdot \boldsymbol{x} + (1 - \lambda) \cdot \boldsymbol{y} \in S$. Therefore, S is convex.

Ex. 2.4

The argument is wrong in that extreme points are representation-dependent. When we convert an arbitrary LP problem to an equivalence in standard form, we might add new variables and new constraints, which may create extreme points.

For example, polyhedron $P = \{(x,y) | 0 \le x \le 1\}$ does not have an extreme point, while its standard form $P' = \{(x_0, x_1, y_0, y_1) | x_0 - x_1 = 1, (x_0, x_1, y_0, y_1) \ge \mathbf{0}\}$ $\{(x_0 = x, x_1 = x - 1, y = y_0 - y_1)\}$ has extreme points.

Ex. 2.6

(a)

Proof:

For any $\mathbf{y} \in C$, i.e. $\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{A}_i, (\lambda_1, \lambda_2, \dots, \lambda_n) \geq \mathbf{0}$, we could define polyhedron

$$P = \left\{ (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n \middle| \sum_{i=1}^n \lambda_i \mathbf{A}_i = y, (\lambda_1, \lambda_2, \dots, \lambda_n) \ge \mathbf{0} \right\}.$$

It's obvious that P is non-empty. Notice that P is a polyhedron in standard form, so P does not contain a line, which means P has at least one extreme point (basic feasible solution) $\mathbf{\Lambda}^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_n^*)$. For a basic feasible solution, there are at most m non-zero components, which means

$$oldsymbol{y} = \sum_{i=1}^n \lambda_i^* oldsymbol{A}_i$$

is a representation with at most m non-zero coefficients.

(b)

Proof:

Similar to (a), for any $\mathbf{y} = \sum_{i=1}^n \lambda_i \mathbf{A}_i$, $\sum_{i=1}^n \lambda_i = 1$, $(\lambda_1, \lambda_2, \dots, \lambda_n) \geq \mathbf{0}$, we could define polyhedron

$$\Lambda = \left\{ (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n \middle| \sum_{i=1}^n \lambda_i \mathbf{A}_i = y, \sum_{i=1}^n \lambda_i = 1, (\lambda_1, \lambda_2, \dots, \lambda_n) \ge \mathbf{0} \right\}$$

with m+1 equation constraints. Again, we know that Λ has at least one basic feasible solution, with at most m+1 non-zero components, which is a representation of \boldsymbol{y} with at most m+1 non-zero coefficients.

Ex. 2.7

Proof:

That $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ span \mathbb{R}^n means there exist n linearly independent vectors in $\{\mathbf{a}_i | i=1,2,\ldots,m\}$ (i.e. rank $\mathbf{A}=\mathrm{rank}\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_m\right]=n$), which means the polyhedron does not contain a line. Therefore, there exist n linearly independent vectors that span \mathbb{R}^n in $\{\mathbf{g}_i | i=1,2,\ldots,k\}$, too.

Ex. 2.8

Proof:

 \Rightarrow :

If a basis is associated with the basic solution x, for any i s.t. the i-th column is not in the basis, we set $x_i = 0$. So if $x_i \ge 0$, the i-th column has to be in the basis.

 \Leftarrow

If every column A_i , $i \in J$ is in the basis, all columns $\{x_i\}$ that are not in the basis have $x_i = 0$. Therefore, the basis is associated with the solution.

Ex. 2.9

(a)

Proof:

If two different bases lead to the same basic solution, more than n-m variables are zero, which means more than n constraints are active at here.

(b)

False.

Degenerate basic solution may have only one basis, e.g. consider polyhedron in standard form $P = \{(x,y) | x = 0, y = 0, (x,y) \ge 0\}$. The polyhedron contains only one point, and obviously there's only one choice of basis.

(c)

False.

The counterexample is the same as (b). There's no adjacent basic solution.