I. EXPRESSIONS FOR $\chi_{ m surface}^{ m abc}$ IN TERMS OF $\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell}$

The prefactor of Eqs. (??) and (??) diverges as $\tilde{\omega} \to 0$. To remove this apparent divergence of χ , we perform a partial fraction expansion in $\tilde{\omega}$.

Intraband Contributions

For the intraband term of Eq. (??), we obtain

$$I = C \left[-\frac{1}{2(\omega_{nm}^{\Sigma})^2} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + \frac{2}{(\omega_{nm}^{\Sigma})^2} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{1}{2(\omega_{nm}^{\Sigma})^2} \frac{1}{\tilde{\omega}} \right]$$

$$- D \left[-\frac{3}{2(\omega_{nm}^{\Sigma})^3} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + \frac{4}{(\omega_{nm}^{\Sigma})^3} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{1}{2(\omega_{nm}^{\Sigma})^3} \frac{1}{\tilde{\omega}} - \frac{1}{2(\omega_{nm}^{\Sigma})^2} \frac{1}{(\omega_{nm}^{\Sigma} - \tilde{\omega})^2} \right],$$

$$(1)$$

where $C = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} (r_{nm}^{\text{LDA,b}})_{;k^c}$, and $D = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{\text{b}} \Delta_{nm}^{\text{c}}$. Time-reversal symmetry leads to the following relationships:

$$\mathbf{r}_{mn}(\mathbf{k})|_{-\mathbf{k}} = \mathbf{r}_{nm}(\mathbf{k})|_{\mathbf{k}},$$

$$(\mathbf{r}_{mn})_{;\mathbf{k}}(\mathbf{k})|_{-\mathbf{k}} = (-\mathbf{r}_{nm})_{;\mathbf{k}}(\mathbf{k})|_{\mathbf{k}},$$

$$\mathcal{V}_{mn}^{\Sigma,a,\ell}(\mathbf{k})|_{-\mathbf{k}} = -\mathcal{V}_{nm}^{\Sigma,a,\ell}(\mathbf{k})|_{\mathbf{k}},$$

$$(\mathcal{V}_{mn}^{\Sigma,a,\ell})_{;\mathbf{k}}(\mathbf{k})|_{-\mathbf{k}} = (\mathcal{V}_{nm}^{\Sigma,a,\ell})_{;\mathbf{k}}(\mathbf{k})|_{\mathbf{k}},$$

$$\omega_{mn}^{\Sigma}(\mathbf{k})|_{-\mathbf{k}} = \omega_{mn}^{\Sigma}(\mathbf{k})|_{\mathbf{k}},$$

$$\Delta_{nm}^{a}(\mathbf{k})|_{-\mathbf{k}} = -\Delta_{nm}^{a}(\mathbf{k})|_{\mathbf{k}}.$$

$$(2)$$

For a clean, cold semiconductor, $f_n = 1$ for an occupied or valence (n = v) band, and $f_n = 0$ for an empty or conduction (n=c) band independent of \mathbf{k} , and $f_{nm}=-f_{mn}$. Using the relationships above, we can show that the $1/\omega$ terms cancel each other out. Therefore, all the remaining nonzero terms in expressions (1) are simple ω and 2ω resonant denominators that are well behaved at $\omega = 0$.

To apply time-reversal invariance, we notice that the energy denominators are invariant under $\mathbf{k} \to -\mathbf{k}$, and then we only look at the numerators, then

$$C \to f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} |_{\mathbf{k}} + f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} |_{-\mathbf{k}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} |_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} \right) \left(-r_{mn}^{\mathrm{LDA, b}} \right)_{;k^{c}} |_{\mathbf{k}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} + \mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} \left(r_{mn}^{\mathrm{LDA, b}} \right)_{;k^{c}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} + \left(\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} \right)^{*} \right]$$

$$= 2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA, b}} \right)_{;k^{c}} \right], \tag{3}$$

and likewise,

$$D \to f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} \Delta_{nm}^{\mathbf{c}} |_{\mathbf{k}} + f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} \Delta_{nm}^{\mathbf{c}} |_{-\mathbf{k}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} \Delta_{nm}^{\mathbf{c}} |_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} \right) r_{mn}^{\mathrm{LDA, b}} \left(-\Delta_{nm}^{\mathbf{c}} \right) |_{\mathbf{k}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} + \mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} r_{mn}^{\mathrm{LDA, b}} \right] \Delta_{nm}^{\mathbf{c}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} + \left(\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} \right)^* \right] \Delta_{nm}^{\mathbf{c}}$$

$$= 2 f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA, b}} \right] \Delta_{nm}^{\mathbf{c}}. \tag{4}$$

The last term in the second line of Eq. (1) is dealt with as follows.

$$\frac{D}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{(\omega_{nm}^{\Sigma} - \tilde{\omega})^{2}} = \frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{\Sigma})^{2}} \frac{\Delta_{nm}^{c}}{(\omega_{nm}^{\Sigma} - \tilde{\omega})^{2}} = -\frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{\Sigma})^{2}} \left(\frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}}\right)_{;k^{c}}$$

$$= \frac{f_{mn}}{2} \left(\frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{\Sigma})^{2}}\right)_{def} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}}, \tag{5}$$

where we used Eqs. (??) and for the last line, we performed an integration by parts over the Brillouin zone, where the contribution from the edges vanishes.[1] Now, we apply the chain rule, to get

$$\left(\frac{\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}r_{nm}^{\mathrm{LDA},\mathrm{b}}}{(\omega_{nm}^{\Sigma})^{2}}\right)_{;k^{\mathrm{c}}} = \frac{r_{nm}^{\mathrm{LDA},\mathrm{b}}}{(\omega_{nm}^{\Sigma})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}\right)_{;k^{\mathrm{c}}} + \frac{\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}}{(\omega_{nm}^{\Sigma})^{2}} \left(r_{nm}^{\mathrm{LDA},\mathrm{b}}\right)_{;k^{\mathrm{c}}} - \frac{2\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}r_{nm}^{\mathrm{LDA},\mathrm{b}}}{(\omega_{nm}^{\Sigma})^{3}} \left(\omega_{nm}^{\Sigma}\right)_{;k^{\mathrm{c}}}, \tag{6}$$

and work the time-reversal on each term. The first term is reduced to

$$\frac{r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} |_{\mathbf{k}} + \frac{r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} |_{-\mathbf{k}} = \frac{r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} |_{\mathbf{k}} + \frac{r_{mn}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{2}} \left(\mathcal{V}_{nm}^{\Sigma,a,\ell} \right)_{;k^{c}} |_{\mathbf{k}} \\
= \frac{1}{(\omega_{nm}^{\Sigma})^{2}} \left[r_{nm}^{\text{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} + \left(r_{nm}^{\text{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} \right)^{*} \right] \\
= \frac{2}{(\omega_{nm}^{\Sigma})^{2}} \text{Re} \left[r_{nm}^{\text{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} \right], \tag{7}$$

the second term is reduced to

$$\frac{\mathcal{V}_{mn}^{\Sigma,a,\ell}}{(\omega_{nm}^{\Sigma})^{2}} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}} |_{\mathbf{k}} + \frac{\mathcal{V}_{mn}^{\Sigma,a,\ell}}{(\omega_{nm}^{\Sigma})^{2}} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}} |_{-\mathbf{k}} = \frac{\mathcal{V}_{mn}^{\Sigma,a,\ell}}{(\omega_{nm}^{\Sigma})^{2}} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}} |_{\mathbf{k}} + \frac{\mathcal{V}_{nm}^{\Sigma,a,\ell}}{(\omega_{nm}^{\Sigma})^{2}} \left(r_{mn}^{\text{LDA,b}}\right)_{;k^{c}} |_{\mathbf{k}} \\
= \frac{1}{(\omega_{nm}^{\Sigma})^{2}} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}} + \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}}\right)^{*} \right] \\
= \frac{2}{(\omega_{nm}^{\Sigma})^{2}} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\text{LDA,b}}\right)_{;k^{c}} \right], \tag{8}$$

and by using (??), the third term is reduced to

$$\frac{2\mathcal{V}_{mn}^{\Sigma,a,\ell}r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\left(\omega_{nm}^{\Sigma}\right)_{;k^{c}}|_{\mathbf{k}} + \frac{2\mathcal{V}_{mn}^{\Sigma,a,\ell}r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\left(\omega_{nm}^{\Sigma}\right)_{;k^{c}}|_{-\mathbf{k}} = \frac{2\mathcal{V}_{mn}^{\Sigma,a,\ell}r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}} + \frac{2\mathcal{V}_{mn}^{\Sigma,a,\ell}r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\Delta_{nm}^{c}|_{-\mathbf{k}}$$

$$= \frac{2\mathcal{V}_{nm}^{\Sigma,a,\ell}r_{mn}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}} + \frac{2\mathcal{V}_{mn}^{\Sigma,a,\ell}r_{nm}^{\text{LDA,b}}}{(\omega_{nm}^{\Sigma})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}}$$

$$= \frac{2}{(\omega_{nm}^{\Sigma})^{3}}\left[\mathcal{V}_{nm}^{\Sigma,a,\ell}r_{mn}^{\text{LDA,b}} + \left(\mathcal{V}_{nm}^{\Sigma,a,\ell}r_{mn}^{\text{LDA,b}}\right)^{*}\right]\Delta_{nm}^{c}$$

$$= \frac{4}{(\omega_{nm}^{\Sigma})^{3}}\operatorname{Re}\left[\mathcal{V}_{nm}^{\Sigma,a,\ell}r_{mn}^{\text{LDA,b}}\right]\Delta_{nm}^{c}.$$
(9)

Combining the results from (7), (8), and (9) into (6),

$$\frac{f_{mn}}{2} \left[\left(\frac{\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA}, \mathbf{b}}}{(\omega_{nm}^{\Sigma})^{2}} \right)_{;k^{c}} |_{\mathbf{k}} + \left(\frac{\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathrm{LDA}, \mathbf{b}}}{(\omega_{nm}^{\Sigma})^{2}} \right)_{;k^{c}} |_{-\mathbf{k}} \right] \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} =$$

$$\left(2 \operatorname{Re} \left[r_{nm}^{\mathrm{LDA}, \mathbf{b}} \left(\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \right)_{;k^{c}} \right] + 2 \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} \left(r_{nm}^{\mathrm{LDA}, \mathbf{b}} \right)_{;k^{c}} \right] - \frac{4}{\omega_{nm}^{\Sigma}} \operatorname{Re} \left[\mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} r_{mn}^{\mathrm{LDA}, \mathbf{b}} \right] \Delta_{nm}^{c} \right) \frac{f_{mn}}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}}. \tag{10}$$

We substitute (3), (4), and (10) in (1),

$$\begin{split} I &= \left[-\frac{2f_{mn}\operatorname{Re}\left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}\left(r_{nm}^{\mathrm{LDA,b}}\right)_{;k^{\mathrm{c}}}\right]}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + \frac{4f_{mn}\operatorname{Re}\left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}\left(r_{nm}^{\mathrm{LDA,b}}\right)_{;k^{\mathrm{c}}}\right]}{(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \right] \\ &+ \left[\frac{6f_{mn}\operatorname{Re}\left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}r_{nm}^{\mathrm{LDA,b}}\right]\Delta_{nm}^{\mathrm{c}}}{2(\omega_{nm}^{\Sigma})^{3}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} - \frac{8f_{mn}\operatorname{Re}\left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}r_{nm}^{\mathrm{LDA,b}}\right]\Delta_{nm}^{\mathrm{c}}}{(\omega_{nm}^{\Sigma})^{3}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \right. \\ &+ \frac{f_{mn}\left(2\operatorname{Re}\left[r_{nm}^{\mathrm{LDA,b}}\left(\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}\right)_{;k^{\mathrm{c}}}\right] + 2\operatorname{Re}\left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell}\left(r_{nm}^{\mathrm{LDA,b}}\right)_{;k^{\mathrm{c}}}\right] - \frac{4}{\omega_{nm}^{\Sigma}}\operatorname{Re}\left[\mathcal{V}_{nm}^{\Sigma,\mathrm{a},\ell}r_{mn}^{\mathrm{LDA,b}}\right]\Delta_{nm}^{\mathrm{c}}}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} \right]. \end{split}$$

If we simplify,

$$I = -\frac{2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\operatorname{LDA,b}} \right)_{;k^{c}} \right]}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + \frac{4f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\operatorname{LDA,b}} \right)_{;k^{c}} \right]}{(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{6f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} r_{nm}^{\operatorname{LDA,b}} \right] \Delta_{nm}^{c}}{2(\omega_{nm}^{\Sigma})^{3}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} - \frac{8f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} r_{nm}^{\operatorname{LDA,b}} \right] \Delta_{nm}^{c}}{(\omega_{nm}^{\Sigma})^{3}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{2f_{mn} \operatorname{Re} \left[r_{nm}^{\operatorname{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} \right]}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + \frac{2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\operatorname{LDA,b}} \right)_{;k^{c}} \right]}{2(\omega_{nm}^{\Sigma})^{2}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} - \frac{4f_{mn} \operatorname{Re} \left[\mathcal{V}_{nm}^{\Sigma,a,\ell} r_{mn}^{\operatorname{LDA,b}} \right] \Delta_{nm}^{c}}{2(\omega_{nm}^{\Sigma})^{3}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}},$$

$$(11)$$

we conveniently collect the terms in columns of ω and 2ω . We can now express the susceptibility in terms of ω and 2ω . Separating the 2ω terms and substituting in above equation

$$I_{2\omega} = -\frac{e^{3}}{\hbar^{2}} \sum_{mn\mathbf{k}} \left[\frac{4f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\mathrm{LDA,b}} \right)_{;k^{c}} \right]}{(\omega_{nm}^{\Sigma})^{2}} - \frac{8f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} r_{nm}^{\mathrm{LDA,b}} \right] \Delta_{nm}^{c}}{(\omega_{nm}^{\Sigma})^{3}} \right] \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}}$$

$$= -\frac{e^{3}}{\hbar^{2}} \sum_{mn\mathbf{k}} \frac{4f_{mn}}{(\omega_{nm}^{\Sigma})^{2}} \left[\operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\mathrm{LDA,b}} \right)_{;k^{c}} \right] - \frac{2 \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} r_{nm}^{\mathrm{LDA,b}} \right] \Delta_{nm}^{c}}{\omega_{nm}^{\Sigma}} \right] \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}}. \tag{12}$$

We can express the energies in terms of transitions between bands. Therefore, $\omega_{nm}^{\Sigma} = \omega_{cv}^{\Sigma}$ for transitions between conduction and valence bands. To take the limit $\eta \to 0$, we use

$$\lim_{\eta \to 0} \frac{1}{x \pm i\eta} = P \frac{1}{x} \mp i\pi \delta(x),\tag{13}$$

and can finally rewrite (12) in the desired form,

$$\operatorname{Im}\left[\chi_{i,\mathbf{a},\ell \text{bc},2\omega}^{s,\ell}\right] = -\frac{\pi |e|^3}{2\hbar^2} \sum_{vc\mathbf{k}} \frac{4}{(\omega_{cv}^{\Sigma})^2} \left(\operatorname{Re}\left[\mathcal{V}_{vc}^{\Sigma,\mathbf{a},\ell} \left(r_{cv}^{\text{LDA},\mathbf{b}}\right)_{;k^c}\right] - \frac{2\operatorname{Re}\left[\mathcal{V}_{vc}^{\Sigma,\mathbf{a},\ell} r_{cv}^{\text{LDA},\mathbf{b}}\right] \Delta_{cv}^{\mathbf{c}}}{\omega_{cv}^{\Sigma}} \right) \delta(\omega_{cv}^{\Sigma} - 2\omega). \tag{14}$$

where we added a 1/2 from the sum over $\mathbf{k} \to -\mathbf{k}$. We do the same for the $\tilde{\omega}$ terms in (11) to obtain

$$I_{\omega} = -\frac{e^{3}}{2\hbar^{2}} \sum_{nm\mathbf{k}} \left[-\frac{2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\mathrm{LDA,b}} \right)_{;k^{c}} \right]}{(\omega_{nm}^{\Sigma})^{2}} + \frac{6f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} r_{nm}^{\mathrm{LDA,b}} \right] \Delta_{nm}^{c}}{(\omega_{nm}^{\Sigma})^{3}} + \frac{2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \left(r_{nm}^{\mathrm{LDA,b}} \right)_{;k^{c}} \right]}{(\omega_{nm}^{\Sigma})^{2}} - \frac{4f_{mn} \operatorname{Re} \left[\mathcal{V}_{nm}^{\Sigma,a,\ell} r_{mn}^{\mathrm{LDA,b}} \right] \Delta_{nm}^{c}}{(\omega_{nm}^{\Sigma})^{3}} + \frac{2f_{mn} \operatorname{Re} \left[r_{nm}^{\mathrm{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,a,\ell} \right)_{;k^{c}} \right]}{(\omega_{nm}^{\Sigma})^{2}} \right] \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}}.$$

$$(15)$$

We reduce in the same way as (12),

$$I_{\omega} = -\frac{e^{3}}{2\hbar^{2}} \sum_{nm\mathbf{k}} \frac{f_{mn}}{(\omega_{nm}^{\Sigma})^{2}} \left[2 \operatorname{Re} \left[r_{nm}^{\mathrm{LDA,b}} \left(\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell} \right)_{;k^{c}} \right] + \frac{2 \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,\mathrm{a},\ell} r_{nm}^{\mathrm{LDA,b}} \right] \Delta_{nm}^{c}}{\omega_{nm}^{\Sigma}} \right] \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}}, \tag{16}$$

and using (13) we obtain our final form,

$$\operatorname{Im}\left[\chi_{i,\mathbf{a},\ell \text{bc},\omega}^{s,\ell}\right] = -\frac{\pi |e|^3}{2\hbar^2} \sum_{cv} \frac{1}{(\omega_{cv}^{\Sigma})^2} \left(\operatorname{Re}\left[r_{cv}^{\text{LDA,b}} \left(\mathcal{V}_{vc}^{\Sigma,\mathbf{a},\ell}\right)_{;k^c}\right] + \frac{\operatorname{Re}\left[\mathcal{V}_{vc}^{\Sigma,\mathbf{a},\ell} r_{cv}^{\text{LDA,b}}\right] \Delta_{cv}^c}{\omega_{cv}^{\Sigma}} \right) \delta(\omega_{cv}^{\Sigma} - \omega), \tag{17}$$

where again we added a 1/2 from the sum over $\mathbf{k} \to -\mathbf{k}$.

Interband Contributions

We follow an equivalent procedure for the interband contribution. From Eq. (??) we have

$$E = A \left[-\frac{1}{2\omega_{lm}^{\Sigma}(2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{lm}^{\Sigma} - \tilde{\omega}} + \frac{2}{\omega_{nm}^{\Sigma}(2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{1}{2\omega_{lm}^{\Sigma}\omega_{nm}^{\Sigma}} \frac{1}{\tilde{\omega}} \right]$$

$$-B \left[-\frac{1}{2\omega_{nl}^{\Sigma}(2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nl}^{\Sigma} - \tilde{\omega}} + \frac{2}{\omega_{nm}^{\Sigma}(2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} + \frac{1}{2\omega_{nl}^{\Sigma}\omega_{nm}^{\Sigma}} \frac{1}{\tilde{\omega}} \right],$$

$$(18)$$

where $A = f_{ml} \mathcal{V}_{mn}^{\Sigma, a} r_{nl}^{c} r_{lm}^{b}$ and $B = f_{ln} \mathcal{V}_{mn}^{\Sigma, a} r_{nl}^{b} r_{lm}^{c}$. Just as above, the $\frac{1}{\bar{\omega}}$ terms cancel out. We multiply out the A and B terms,

$$E = \left[-\frac{A}{2\omega_{lm}^{\Sigma}(2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{lm}^{\Sigma} - \tilde{\omega}} + \frac{2A}{\omega_{nm}^{\Sigma}(2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \right] + \left[\frac{B}{2\omega_{nl}^{\Sigma}(2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nl}^{\Sigma} - \tilde{\omega}} - \frac{2B}{\omega_{nm}^{\Sigma}(2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \right].$$

$$(19)$$

As before, we notice that the energy denominators are invariant under $\mathbf{k} \to -\mathbf{k}$ so we need only look at the numerators. Starting with A,

$$\begin{split} A \rightarrow f_{ml} \mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} |_{\mathbf{k}} + f_{ml} \mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} |_{-\mathbf{k}} \\ &= f_{ml} \left[\mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} |_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma,\mathbf{a},\ell} \right) r_{ln}^{\mathbf{c}} r_{ml}^{\mathbf{b}} |_{\mathbf{k}} \right] \\ &= f_{ml} \left[\mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} - \mathcal{V}_{nm}^{\Sigma,\mathbf{a},\ell} r_{ln}^{\mathbf{c}} r_{ml}^{\mathbf{b}} \right] \\ &= f_{ml} \left[\mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} - \left(\mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right)^* \right] \\ &= -2 f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma,\mathbf{a},\ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right], \end{split}$$

then B,

$$B \to f_{ln} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} |_{\mathbf{k}} + f_{ln} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} |_{-\mathbf{k}}$$

$$= f_{ln} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} |_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} \right) r_{ln}^{\mathbf{b}} r_{ml}^{\mathbf{c}} |_{\mathbf{k}} \right]$$

$$= f_{ln} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} - \mathcal{V}_{nm}^{\Sigma, \mathbf{a}, \ell} r_{ln}^{\mathbf{b}} r_{ml}^{\mathbf{c}} \right]$$

$$= f_{ln} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} - \left(\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right)^* \right]$$

$$= -2 f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right].$$

We then substitute in (19),

$$E = \left[\frac{2f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right]}{2\omega_{lm}^{\Sigma} (2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{lm}^{\Sigma} - \tilde{\omega}} - \frac{4f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right]}{\omega_{nm}^{\Sigma} (2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} - \frac{2f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right]}{2\omega_{nl}^{\Sigma} (2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nl}^{\Sigma} - \tilde{\omega}} + \frac{4f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right]}{\omega_{nm}^{\Sigma} (2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \right].$$

We manipulate indices and simplify.

$$\begin{split} E &= \left[\frac{f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right]}{\omega_{lm}^{\Sigma} (2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{lm}^{\Sigma} - \tilde{\omega}} - \frac{f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right]}{\omega_{nl}^{\Sigma} (2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma})} \frac{1}{\omega_{nl}^{\Sigma} - \tilde{\omega}} \right] \\ &+ \left[\frac{f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right]}{2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma}} - \frac{f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right]}{2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma}} \right] \frac{4}{\omega_{nm}^{\Sigma}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}} \\ &= \left[\frac{f_{mn} \operatorname{Im} \left[\mathcal{V}_{ml}^{\Sigma, \mathbf{a}, \ell} r_{ln}^{\mathbf{c}} r_{nm}^{\mathbf{b}} \right]}{2\omega_{nm}^{\Sigma} - \omega_{nl}^{\Sigma}} - \frac{f_{mn} \operatorname{Im} \left[\mathcal{V}_{ln}^{\Sigma, \mathbf{a}, \ell} r_{nm}^{\mathbf{b}} r_{ml}^{\mathbf{c}} \right]}{2\omega_{nm}^{\Sigma} - \omega_{nl}^{\Sigma}} \right] \frac{1}{\omega_{nm}^{\Sigma}} \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} \\ &+ \left[\frac{f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{b}} r_{lm}^{\mathbf{c}} \right]}{2\omega_{nm}^{\Sigma} - \omega_{nm}^{\Sigma}} - \frac{f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}, \ell} r_{nl}^{\mathbf{c}} r_{lm}^{\mathbf{b}} \right]}{2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma}} \right] \frac{4}{\omega_{nm}^{\Sigma}} \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}}, \end{split}$$

and substitute in (??),

$$I = -\frac{e^3}{2\hbar^2} \sum_{nm} \frac{1}{\omega_{nm}^{\Sigma}} \left[\frac{f_{mn} \operatorname{Im} \left[\mathcal{V}_{ml}^{\Sigma,a,\ell} \{ r_{ln}^{c} r_{nm}^{b} \} \right]}{2\omega_{nm}^{\Sigma} - \omega_{lm}^{\Sigma}} - \frac{f_{mn} \operatorname{Im} \left[\mathcal{V}_{ln}^{\Sigma,a,\ell} \{ r_{nm}^{b} r_{ml}^{c} \} \right]}{2\omega_{nm}^{\Sigma} - \omega_{nl}^{\Sigma}} \right] \frac{1}{\omega_{nm}^{\Sigma} - \tilde{\omega}} + 4 \left[\frac{f_{ln} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \{ r_{nl}^{b} r_{lm}^{c} \} \right]}{2\omega_{nl}^{\Sigma} - \omega_{nm}^{\Sigma}} - \frac{f_{ml} \operatorname{Im} \left[\mathcal{V}_{mn}^{\Sigma,a,\ell} \{ r_{nl}^{c} r_{lm}^{b} \} \right]}{2\omega_{lm}^{\Sigma} - \omega_{nm}^{\Sigma}} \right] \frac{1}{\omega_{nm}^{\Sigma} - 2\tilde{\omega}}.$$

Finally, we take n = c, m = v, and l = q and substitute,

$$\begin{split} I &= -\frac{e^3}{2\hbar^2} \sum_{cv} \frac{1}{\omega_{cv}^{\Sigma}} \left(\left[\frac{f_{vc} \operatorname{Im} \left[\mathcal{V}_{vq}^{\Sigma, a, \ell} \{ r_{qc}^{c} r_{cv}^{b} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{qv}^{\Sigma}} - \frac{f_{vc} \operatorname{Im} \left[\mathcal{V}_{qc}^{\Sigma, a, \ell} \{ r_{cv}^{b} r_{vq}^{c} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{cq}^{\Sigma}} \right] \frac{1}{\omega_{cv}^{\Sigma} - \tilde{\omega}} \\ &+ 4 \left[\frac{f_{qc} \operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma, a, \ell} \{ r_{cq}^{b} r_{qv}^{c} \} \right]}{2\omega_{cq}^{\Sigma} - \omega_{cv}^{\Sigma}} - \frac{f_{vq} \operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma, a, \ell} \{ r_{cq}^{c} r_{qv}^{b} \} \right]}{2\omega_{qv}^{\Sigma} - \omega_{cv}^{\Sigma}} \right] \frac{1}{\omega_{cv}^{\Sigma} - 2\tilde{\omega}} \right) \\ &= \frac{e^3}{2\hbar^2} \sum_{cv} \frac{1}{\omega_{cv}^{\Sigma}} \left(\left[\frac{\operatorname{Im} \left[\mathcal{V}_{qc}^{\Sigma, a, \ell} \{ r_{cv}^{b} r_{vq}^{c} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{cq}^{\Sigma}} - \frac{\operatorname{Im} \left[\mathcal{V}_{vq}^{\Sigma, a, \ell} \{ r_{qc}^{c} r_{cv}^{b} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{qv}^{\Sigma}} \right] \frac{1}{\omega_{cv}^{\Sigma} - \tilde{\omega}} \\ &- 4 \left[\frac{f_{qc} \operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma, a, \ell} \{ r_{cq}^{b} r_{qv}^{c} \} \right]}{2\omega_{cq}^{\Sigma} - \omega_{cv}^{\Sigma}} - \frac{f_{vq} \operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma, a, \ell} \{ r_{cq}^{c} r_{qv}^{b} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{cv}^{\Sigma}} \right] \frac{1}{\omega_{cv}^{\Sigma} - 2\tilde{\omega}} \right). \end{split}$$

We use (13),

$$\begin{split} I &= \frac{\pi |e^3|}{2\hbar^2} \sum_{cv} \frac{1}{\omega_{cv}^{\Sigma}} \left(\left[\frac{\text{Im} \left[\mathcal{V}_{qc}^{\Sigma,\text{a},\ell} \{ r_{cv}^\text{b} r_{vq}^\text{c} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{cq}^{\Sigma}} - \frac{\text{Im} \left[\mathcal{V}_{vq}^{\Sigma,\text{a},\ell} \{ r_{qc}^\text{c} r_{cv}^\text{b} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{qv}^{\Sigma}} \right] \delta(\omega_{cv}^{\Sigma} - \omega) \\ &- 4 \left[\frac{f_{qc} \, \text{Im} \left[\mathcal{V}_{vc}^{\Sigma,\text{a},\ell} \{ r_{cq}^\text{b} r_{qv}^\text{c} \} \right]}{2\omega_{cq}^{\Sigma} - \omega_{cv}^{\Sigma}} - \frac{f_{vq} \, \text{Im} \left[\mathcal{V}_{vc}^{\Sigma,\text{a},\ell} \{ r_{cq}^\text{c} r_{qv}^\text{b} \} \right]}{2\omega_{qv}^{\Sigma} - \omega_{cv}^{\Sigma}} \right] \delta(\omega_{cv}^{\Sigma} - 2\omega) \right), \end{split}$$

and recognize that for the 1ω terms, $q \neq (v, c)$, and for the 2ω q can have two distinct values such that,

$$I = \frac{\pi |e^{3}|}{2\hbar^{2}} \sum_{cv} \frac{1}{\omega_{cv}^{\Sigma}} \left(\sum_{q \neq (v,c)} \left[\frac{\operatorname{Im} \left[\mathcal{V}_{qc}^{\Sigma,a,\ell} \{ r_{cv}^{b} r_{vq}^{c} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{cq}^{\Sigma}} - \frac{\operatorname{Im} \left[\mathcal{V}_{vq}^{\Sigma,a,\ell} \{ r_{qc}^{c} r_{cv}^{b} \} \right]}{2\omega_{cv}^{\Sigma} - \omega_{qv}^{\Sigma}} \right] \delta(\omega_{cv}^{\Sigma} - \omega)$$

$$-4 \left[\sum_{v' \neq v} \frac{\operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma,a,\ell} \{ r_{cv'}^{b} r_{v'v}^{c} \} \right]}{2\omega_{cv'}^{\Sigma} - \omega_{cv}^{\Sigma}} - \sum_{c' \neq c} \frac{\operatorname{Im} \left[\mathcal{V}_{vc}^{\Sigma,a,\ell} \{ r_{cc'}^{c} r_{c'v}^{b} \} \right]}{2\omega_{c'v}^{\Sigma} - \omega_{cv}^{\Sigma}} \right] \delta(\omega_{cv}^{\Sigma} - 2\omega) \right).$$

[1] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Brooks Cole, Saunders College, Philadelphia, 1976.