

1 (0)	(S	2 (2)	4 (4)	7 (1)	(2)	7 (1)	0. (2)
1. (6) 9. (2)nathongo	2. (2) 10. (1) thongo	3. (3) /11. (3) thongo	4. (4) //12. (2) hongo	5. (1) /// 13. (6) hongo	6. (2) 14. (1680)	7. (1) 7. (2) Ongo //	8. (2) 16. (3) 0090 ///
17. (2)	18. (13)	19. (2)	20. (0)	21. (40)	22. (24)	23. (4)	24. (4)
25. (2)	26. (2)	27. (6)	` ´	29. (26)	30. (3)		. ,
mathongo							
1. (6) $(2i)^n$							
$\frac{(2i)^n}{\left(1-i\right)^{n-2}}$							
$=\frac{(2i)^n}{\sqrt{\frac{n-2}{2}}}$							
$\begin{pmatrix} -2i \end{pmatrix}_{n+2}^{2}$							
$\left(2i\right)^{\frac{N+2}{2}}$							
$=\frac{\left(\begin{array}{c} \\ \\ \end{array}\right)^{\frac{n-2}{2}}$							
()							
$=\frac{(2)^{\frac{n+2}{2}}i^{\frac{n+2}{2}}}{\binom{n-2}{2}}$	/// mathonas						
$\begin{pmatrix} -1 \end{pmatrix}$							
•	ist be even $n=2,4$ r	•					
	ositive integer possit	ble is $n = 0$					
2. (2) Let,							
$z_1 = x_1 + iy$	z_1 and $z_2=x_2+iy_2$						
$\operatorname{::} \operatorname{Re}(z_1 z_2) =$							
$x_1x_2 - y_1y_2$ $\cdots \operatorname{Re}(z_1 + z_2)$	=0(i) 0 = 0 mathons						
$x_1 + x_2 = 0.$							
///	ons (i) and (ii) we ge	t					
$x_1^2 + y_1y_2 = $ $\Rightarrow y_1y_2 = -$							
Therefore In	$n(z_*)$ and $Im(z_*)$ are	of opposite sign					

swer Keys and Solutions			JEE Main Crash Cou
(3) Let $z_1=\left(rac{z-ar{z}+zar{z}}{2-3z+5z} ight)$ thongo /// mathongo			
Let $z=3+iy$			
$egin{align*} ar{z} &= 3 - iy \\ math &= 2iy + \left(9 + y^2\right) \\ z_1 &= \frac{2iy + \left(9 + y^2\right)}{2 - 3(3 + iy) + 5(3 - iy)} \end{aligned}$			
$z_1 = \frac{2iy + (9 + y^2)}{2(2 + ix) + 5(2 - ix)}$			
2 - 3(3 + iy) + 5(3 - iy) $9 + u^2 + i(2u)$			
$= \frac{9 + y^2 + i(2y)}{8 - 8iy}$ mathongo /// mathongo			
$(9+u^2)+i(2u)$			
$=rac{\left(9+y^2 ight)+i(2y)}{8(1-iy)}$ $ ext{Re}(z_1)=rac{\left(9+y^2 ight)-2y^2}{8\left(1+y^2 ight)}$			
$(9+y^2)-2y^2$			
$t = \frac{9 - y^2}{8(1 + y^2)}$ mathongo mathongo			
(' 0 /			
$= \frac{1}{8} \left[\frac{10 - (1 + y^2)}{(1 + y^2)} \right]$ $= \frac{1}{8} \left[\frac{10}{1 + y^2} - 1 \right]$			
$\begin{bmatrix} (1+y^2) \\ 1 \end{bmatrix}$ thongo /// mathongo			
$=\frac{1}{8}\left \frac{10}{1+u^2}-1\right $			
$=rac{1}{8}\left[rac{1+y^2}{1+y^2}-1 ight]$ $\frac{1+y^2\in[1,\infty]}{1+y^2}\in(0,1]$ mathongo mathongo			
$\frac{1}{2} \in (0,1]$			
10			
$\frac{10}{1+y^2} \in (0,10)$ mathong /// mathong			
$\frac{10}{1+u^2} - 1 \in (-1,9]$			
- · 9			
$\operatorname{Re}(z_1) \in \left(\frac{-1}{8}, \frac{9}{8}\right]$ nathongo mathongo			
$\alpha = \frac{-1}{2}, \beta = \frac{9}{2}$			
$\alpha = \frac{1}{8}, \beta = \frac{1}{8}$			
$24(\beta - \alpha) = 24\left(\frac{9}{8} + \frac{1}{8}\right) = 30$			
,			
(4) ithongo /// mathongo /// mathongo			
$u = rac{2(x+iy)+i}{(x+iy)-ki} = rac{2x+(2y+1)i}{x+(y-k)i} imes rac{x-(y-k)i}{x-(y-k)i}$			
Real part of $u = Re(u) = \frac{2x^2 + (2y+1)(y-k)}{x^2 + (y-k)^2}$ Imaginary part of $u = \operatorname{Im}(u) \frac{x(2y+1) - 2x(y-k)}{x^2 + (y-k)^2}$			
Imaginary part of $u = \text{Im}(u) \frac{x \cdot (y-k)}{x(2y+1) - 2x(y-k)} \frac{x \cdot (y-k)}{x^2 + (y-k)^2}$			
w + (y w)			
Now Re(u) + Im(u) = 1 $\frac{2x^2 + (2y+1)(y-k) + x(2y+1) - 2x(y-k)}{x^2 + (y-k)^2} = 1$ mathongo			
${x^2 + (y-k)^2} = 1$			
for y-axis put $x = 0$			
$\Rightarrow \frac{(2y+1)(y-k)}{(y-k)^2} = 1$ mathongo /// mathongo			
$\Rightarrow (y-k)(y+1+k) = 0$			
y = k, -(1+k) Now point $P(0, k), Q(0, -(1+k))$			
PQ = 2K + 1 = 5			
$2k+1=\pm 5$ mathon $2k=4,-6$ mathon $2k=1$ mathon $2k=1$			
2k = 4, -6 $k = 2, -3$			
Hence, $k=2$ $(k>0)$. mathongo			

Answer Keys and Solutions			JEE Main Crash Course
14. (1680) $\left(\frac{z^2+8iz-15}{z^2-3iz-2}\right) \in R$ hongo mathongo			
$\Rightarrow 1 + \frac{(11iz - 13)}{(z^2 - 3iz - 2)} \in R$ Put $z = \alpha - \frac{13}{11}i$ mathongo mathongo			
$\Rightarrow (z^2-3iz-2)$ is imaginary Put $z=x+iy$ $\Rightarrow (x^2-y^2+2xyi-3ix+3y-2) \in \text{Imag inary}$			
$egin{aligned} \Rightarrow &\operatorname{Re}ig(x^2-y^2+3y-2+(2xy-3x)iig) = 0 \ \Rightarrow &x^2-y^2+3y-2 = 0 \end{aligned}$			
$x^2=y^2-3y+2$ mathongo $x^2=(y-1)(y-2)$ $\therefore z=lpha-rac{13}{11}i$ Put $x=lpha,y=rac{-13}{11}$			
$\alpha^2 = \left(\frac{-13}{11} - 1\right) \left(\frac{-13}{11} - 2\right)$ $\alpha^2 = \left(\frac{24 \times 35}{11}\right)$ mathongo			
$lpha^2=rac{(24 imes35)}{121} \ 242lpha^2=48 imes35=1680$ 15. (2)			
Given: mathong $\left(1-\sqrt{3}i\right)^{200}=2^{199}\Big(p+iq\Big)$			
$\Rightarrow \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{200} = \frac{1}{2}(p + iq)$ $\Rightarrow \left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)^{200} = \frac{1}{2}(p + iq)$			
$\Rightarrow \left(\cos\left(\frac{200\pi}{3}\right) - i\sin\left(\frac{200\pi}{3}\right)\right) = \frac{1}{2}(p + iq)$ $\Rightarrow \left(\cos\left(201\pi - \frac{\pi}{3}\right) - i\sin\left(201\pi - \frac{\pi}{3}\right)\right) = \frac{1}{2}(p + iq)$			
$\Rightarrow \left(-\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right) = \frac{1}{2}(p + iq)$ $\Rightarrow 2\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = p + iq$			
$\Rightarrow -1 - i\sqrt{3} = p + iq$ So though $p = -1, q = -\sqrt{3}$ mathong $p = -1, q = -\sqrt{3}$			
$lpha=p+q+q^2=2-\sqrt{3}$ $eta=p-q+q^2=2+\sqrt{3}$ ango which mathongo So,			
$\alpha + \beta = 4$ $\alpha \cdot \beta = 1$ go /// mathongo /// mathongo Required equation is			
$x^2 - 4x + 1 = 0$ mathongo mathongo mathongo mathongo			

Answer Keys and Solutions J	IEE Main Crash C	Course
16. (3) thongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///		
$ \left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3 \text{ mathongo } \text$		
So, $\bar{z}=\sin\frac{2\pi}{9}-\frac{i}{\cos\frac{2\pi}{9}}=\frac{1}{z}$ mathongo wathongo wa		
$\left(\frac{1+\frac{1}{z}}{z}\right)$ /// $\underline{m}_{z}^{3}\left(\frac{1+z}{1+z}\right)^{3}$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///		
$= \left(\sin\frac{2\pi}{9} + i\cos\frac{2\pi}{9}\right)^3$ mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo //		
$=-i\left(\cos\left(3\times\frac{2\pi}{9}\right)-i\sin\left(3\times\frac{2\pi}{9}\right)\right)$ mathongo w m		
$ = -i\left(\frac{-1}{2} - i\frac{\sqrt{3}}{2}\right) \\ = -\frac{1}{2}\left(\sqrt{3} - i\right) $ mathongo /// mathongo // mathong		
17. (2) As $ z\omega \stackrel{!}{=} 1$ ngo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathong		
Let $\arg(z) = \theta$ $\lim_{n \to \infty} \arg(\omega) = \left(\theta - \frac{3\pi}{2}\right)$ athongo /// mathongo /// mathongo /// mathongo ///		
So, $z=re^{i\theta}$ mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo // math		
$\Rightarrow \omega = \frac{1}{r} e^{i\left(\theta - \frac{3\pi}{2}\right)}$ When the state of the state		
$rac{1-2ar{z}\omega}{1+3ar{z}\omega} = rac{1-2e^{i\left(-rac{3\pi}{2} ight)}}{1+3e^{i\left(-rac{3\pi}{2} ight)}} = \left(rac{1-2i}{1+3i} ight)$ $= rac{(1-2i)\ (1-3i)}{(1+3i)\ (1-3i)} = rac{1-5i+6i^2}{10} = rac{-5+5i}{10} = -rac{1}{2}(1+i)$		
Then, principal $\arg\left(\frac{1-2\bar{\imath}\omega}{1+3\bar{\imath}\omega}\right)$ thongo we mathongo we mathon we were mathon as a single weak we will be a single		
$= -\left(\pi - \frac{\pi}{4}\right) = \frac{-3\pi}{4} \text{ mathongo } mathongo$		

