Fundamentos e Teoria da Computação

Gabriel Santos Ferreira de Pádua

TP1

Autômatos de Pilha (Não) Determinísticos

INTRODUÇÃO

O trabalho Prático dois é referente à construção de autômatos de pilha determinísticos ou não determinísticos, e máquinas de Mealy e Moore.

INTRODUÇÃO	1
Questão 1:	3
Questão 2:	4
Questão 3:	5
Questão 4:	6
Questão 5:	8
Questão 6:	9
Questão 7:	10
Questão 8:	12
Ouestão 9:	14

Questão 1:

$$\{a^nb^{2n}\mid n\geq 0\}$$

Input	Result
aabbbb aaabbbbbb	Accept
aabbbb	Accept
aaabbbbbb	Accept
aab	Reject
	Reject
aabbbbb	Reject

Questão 2:

$$\{0^{3n}1^{2n}\mid n\geq 0\}$$

Input	Result
00011	Accept
0000001111	Accept
00000000111111	Accept
0001	Reject
0001 000111 000100	Reject
000100	Reject
	Reject

Questão 3:

$$\{0^n1^{3n}0^{2m}1^m \mid n \ge 0 \text{ e } m \ge 0\}$$

RI ^L	
Input	Result
0111001	Accept
00111111000011	Accept
0111000011	Accept
1000110	Reject
111111000	Reject
0010101010	Reject
	Reject

Questão 4:

Uma linguagem livre do contexto qualquer, **definida por você**. Você deverá escrever também em português, ou em notação matemática, a definição desta linguagem.

Seja uma Gramática Livre de Contexto definida por:

GLC
$$G = (\{P,U\}, \{0, 1, 2\}, R, P)$$
 onde R é composto pelas regras:

$$P \rightarrow 1UP2$$

$$U\rightarrow00$$

Essa gramática gera uma linguagem livre de contexto, tal que suas palavras sempre terão no centro "00" e iniciarão com n 1's e terminarão com n 2's.

Definição : L = {
$$w \in 1^n 002^n | n > 0$$
}

Table Text Size	
Input	Result
1002	Accept
110022	Accept
1111002222	Accept
11002 10022	Reject
	Reject
1100222	Reject

Questão 5:

Construa uma máquina de Moore que leia palavras do alfabeto {a, b, c} e produza palavras do alfabeto {0, 1, 2}, sendo que ao ler um a deve ser produzido um 0, ao ler um b deve ser produzido um 1 e ao ler um c deve ser produzido um 2.

Input	Result
aaaaaaaa	0000000
bbbbbbb	11111111
cccccccc	22222222
abcabcabc	012012012
ccaabb	220011
cbacbaaaabac	210210000102

Obs: como no enunciado não é falado um símbolo para se iniciar, tive a ideia de criar um estado inicial que não produzisse nenhuma saída, e que tivesse ligação aos outros estados.

Questão 6:

Construa uma máquina de Mealy equivalente à máquina de Moore do Exercício 5.

Input	Result
aaaaaaaa	0000000
bbbbbbb	11111111
cccccccc	22222222
abcabcabc	012012012
ccaabb	220011
cbacbaaaabac	210210000102
aaacccbbb	000222111
aaaaabbbc	000001112
aaaaaaccccccccbb	00000022222222211
gabriel	
nao vai dar	
teste	

OBS: Há apenas um estado, que ao ler diferentes entradas (alfabeto de entrada) tem como saída um output específico (alfabeto de saída). Portanto, ao tentarmos outras letras, não seria possível o reconhecimento. No exemplo acima foram adicionadas mais três palavras de entradas a mais que na número 5 e três entradas não reconhecíveis.

Questão 7:

Construa uma Máquina de Moore que receba como entrada palavras formadas por símbolos do alfabeto {0,1,2} e que gera palavras formadas por símbolos do alfabeto {x,y,z} da seguinte forma: um 0 sempre gera um x; um 1 gera um y, mas se três ou mais 1's consecutivos são lidos, a partir do terceiro (incluindo o terceiro) ele passa a gerar z. Um 2 gera um x se é lido após um 0 ou após um 2 ou se é lido inicialmente, e gera um y se é lido após um 1.

Tabelas de teste de : Regras únicas e Palavras de entrada:

Table Text Size	
Input	Result
02111111112	xxyy zzzzz y
02222	XXXXX
011122222220000	xyyzy1000000000x
222222111000	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
00000111111222222	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
12020120212120	уухооуухоуууух

Questão 8:

Construa uma máquina de Moore de acordo com uma <u>especificação feita</u> <u>por você</u>, escrevendo também esta especificação em português no trabalho.

Descrição da máquina de moore:

Trata-se de uma máquina que representa um controle de video games, onde cada botão realiza uma função específica. O alfabeto de entrada em questão são os botões do controle (manete), enquanto o conjunto de output são as ações do personagem visualizadas. Sendo assim, os alfabetos estão mapeados como:

- ➤ Alfabeto de entrada: {Y,X,A,B};
- ➤ Conjunto de saída: {Bater, Esquiva, Agarrar, Pular};
 - o Y produz Bater
 - o X produz Esquiva
 - A produz Agarrar
 - o B produz Pular

Onde o primeiro elemento do primeiro grupo tem como saída o primeiro elemento do segundo grupo, e assim sucessivamente.

Table Text Size	
Result	
Bater Bater Bater Bater Bater Pular Esquiva	
Bater Bater Bater Bater Agarrar Bater Bater Bater Pular Bater Bater	
Pular Pular Bater Bater Agarrar Bater Esquiva	
Esquiva Bater Esquiva Bater Pular Esquiva Bater	
Pular Agarrar Pular Agarrar Pular Esquiva Pular Bater	
Esquiva Agarrar Pular Bater Bater Pular Esquiva Agarrar Bater	

obs: Ler tabela ouvindo isso:

Questão 9:

Construa uma máquina de Mealy de acordo com uma <u>especificação feita por você</u>, escrevendo também esta especificação em português no trabalho.

Especificação: Construa uma máquina de mealy de ler cores e transformá-las em outras , embaraçando as cores da imagem de entrada. Considere o alfabeto $\{R,G,B\}$ que gera as cores $\{G,B,R,Y\}$;

- > R gera G
- ➤ G gera B
- ➤ B gera R
- ➤ dois BB seguidos geram Y

Input	Result
RGB	GBR
RGBGRRB	GBRBGGR
RGBBBBGR	GBRYYYBG
GRBRBGB	BGRGRBR
	RYYBGR
BRG	RGB