Billboard Hot 100 Analysis &

Machine Learning Project

Name:

Cesario Angel Ibarra

Details

Use some supervised learning techniques to determine the top hits of the Billboard Hot 100 (1958 to 2020)

- For this final portion we will use the hot100df_distinct
- working with a shape of (13058,21)
- Data Prep and Preprocessing
- One Hot Encoding
- Scaling
- Model building
- Model Evaluation ## Supervised Learning Part 3

I will use various models to predict the number 1 spot for the Billboard Hot 100

```
In [1]: import seaborn as sns
        import matplotlib.pyplot as plt
        import matplotlib as mpl
        from matplotlib import cm
        import numpy as np
        import pandas as pd
        import os
        import pickle
        %matplotlib inline
        mpl.rc('axes', labelsize=14)
        mpl.rc('xtick', labelsize=12)
        mpl.rc('ytick', labelsize=12)
        # Where to save the figures
        PROJECT ROOT DIR = "."
        FOLDER = "figures"
        IMAGES PATH = os.path.join(PROJECT ROOT DIR, FOLDER)
        os.makedirs(IMAGES PATH, exist ok=True)
        def save fig(fig id, tight layout=True, fig extension="png", resolution=300):
           path = os.path.join(IMAGES PATH, fig id + "." + fig extension)
           print("Saving figure", fig id)
           if tight layout:
               plt.tight layout()
            plt.savefig(path, format=fig extension, dpi=resolution)
        # Set columns view to max
        pd.set option('display.max columns', None)
```

Import pickled hot100df_distinct

In [2]: ml_df = pd.read_pickle('hot100df_distinct.pkl')
 ml_df

Out[2]:		performer	song_performer	song	track_duration_s	danceability	energy	key	loudness	mode	speech
	0	Andy Williams	And Roses And Roses Andy Williams	And Roses And Roses	166.106	0.154	0.185	F	-14.063	major	0
	1	Britney Spears	Baby One More Time Britney Spears	Baby One More Time	211.066	0.759	0.699	С	-5.745	minor	0
	2	Paul Davis	'65 Love Affair Paul Davis	'65 Love Affair	219.813	0.647	0.686	D	-4.247	minor	0
	3	Tammy Wynette	'til I Can Make It On My Own Tammy Wynette	'til I Can Make It On My Own	182.080	0.450	0.294	G	-12.022	5.745 minor 0 4.247 minor 0 2.022 major 0 5.714 minor 0 5.257 major 0 3.244 minor 0 2.702 major 0	
	4	Luther Vandross	'Til My Baby Comes Home Luther Vandross	'Til My Baby Comes Home	332.226	0.804	0.714	В	-6.714	minor	0
	•••										
	13053	The Trammps	Zing Went The Strings Of My Heart The Trammps	Zing Went The Strings Of My Heart	202.693	0.667	0.851	E	-5.257	major	0
	13054	The Five Americans	Zip Code The Five Americans	Zip Code	175.040	0.393	0.594	Α	-5.986	major	0
	13055	Bad Wolves	Zombie Bad Wolves	Zombie	254.805	0.448	0.826	D	-3.244	minor	0
	13056	Herb Alpert & The Tijuana Brass	Zorba The Greek Herb Alpert & The Tijuana Brass	Zorba The Greek	264.853	0.531	0.642	F	-12.702	major	0
	13057	K7	Zunga Zeng K7	Zunga Zeng	273.000	0.846	0.657	C#	-9.642	major	0

13058 rows × 23 columns

In [3]: # Check dtypes print(ml_df.dtypes)

object performer object song_performer object song float64 track_duration_s danceability float64 float64 energy object key loudness float64

```
mode
                         object
speechiness
                        float64
acousticness
                        float64
                       float64
instrumentalness
liveness
                        float64
                        float64
valence
                        float64
tempo
time_signature float64 date datetime64[ns]
                  int64
rank
last week
                        float64
                          int64
peak rank
weeks_on_board key_signature
                          int64
                        object
                          int64
year
dtype: object
```

Data Preparation Processing

- First we need to OnHotEncode the peak rank column for predictions
- create a new column top_hit in the ml_df
- set to 1 if value of peak_rank column is less than or equal to 1, and otherwise 0.
- use sklearn to OneHotEncode

```
In [4]: # First Import sklearn
        from sklearn.preprocessing import OneHotEncoder
In [5]: ml df['top hit'] = np.where(ml df['peak rank'] <= 1, 1, 0)</pre>
        # One-hot encode the top hit column
        encoder = OneHotEncoder(sparse output=False)
        top hit encoded = encoder.fit transform(ml df[['top hit']])
        top hit encoded df = pd.DataFrame(top hit encoded, columns=encoder.get feature names out
        # Concatenate the one-hot encoded top hit column with the original DataFrame
        ml df = pd.concat([ml df, top hit encoded df], axis=1)
        # Drop the original top hit column and the first and sixteenth columns
        ml df = ml df.drop(['top hit'], axis=1)
In [6]: # Rename top hit 1 to top hit pos and drop top hit 0 negative class
        ml df = ml df.drop(['top hit 0'], axis=1)
        ml df = ml df.rename(columns={'top hit 1': 'top hit pos'})
        ml df
              performer song performer song track durations deposibility energy key loudness mode speech
Out[6]:
```

	performer	song_performer	song	track_duration_s	danceability	energy	key	loudness	mode	speech
0	Andy Williams	And Roses And Roses Andy Williams	And Roses And Roses	166.106	0.154	0.185	F	-14.063	major	0
1	Britney Spears	Baby One More Time Britney Spears	Baby One More Time	211.066	0.759	0.699	С	-5.745	minor	0
2	Paul Davis	'65 Love Affair Paul Davis	'65 Love Affair	219.813	0.647	0.686	D	-4.247	minor	0
3	Tammy Wynette	'til I Can Make It On My Own	'til I Can	182.080	0.450	0.294	G	-12.022	major	0

			Tammy Wynette	Make It On My Own							
	4	Luther Vandross	'Til My Baby Comes Home Luther Vandross	'Til My Baby Comes Home	332.226	0.804	0.714	В	-6.714	minor	0
	•••										
	13053	The Trammps	Zing Went The Strings Of My Heart The Trammps	Zing Went The Strings Of My Heart	202.693	0.667	0.851	E	-5.257	major	0
	13054	The Five Americans	Zip Code The Five Americans	Zip Code	175.040	0.393	0.594	Α	-5.986	major	0
	13055	Bad Wolves	Zombie Bad Wolves	Zombie	254.805	0.448	0.826	D	-3.244	minor	0
	13056	Herb Alpert & The Tijuana Brass	Zorba The Greek Herb Alpert & The Tijuana Brass	Zorba The Greek	264.853	0.531	0.642	F	-12.702	major	0
	13057	K7	Zunga Zeng K7	Zunga Zeng	273.000	0.846	0.657	C#	-9.642	major	0

13058 rows × 24 columns

In [7]: # Let's drop the date column, this is unnecessary
ml_df = ml_df.drop(['date'], axis=1)
ml_df

Out[7]:		performer	song_performer	song	track_duration_s	danceability	energy	key	loudness	mode	speech
	0	Andy Williams	And Roses And Roses Andy Williams	And Roses And Roses	166.106	0.154	0.185	F	-14.063	major	0
	1	Britney Spears	Baby One More Time Britney Spears	Baby One More Time	211.066	0.759	0.699	С	-5.745	minor	oor 0
	2	Paul Davis	'65 Love Affair Paul Davis	'65 Love Affair	219.813	0.647	0.686	D	-4.247	minor	0
	3	Tammy Wynette	'til I Can Make It On My Own Tammy Wynette	'til I Can Make It On My Own	182.080	0.450	0.294	G	-12.022	major	0
	4	Luther Vandross	'Til My Baby Comes Home Luther Vandross	'Til My Baby Comes Home	332.226	0.804	0.714	В	-6.714	minor	0

	13053	The Trammps	Zing Went The Strings Of My Heart The Trammps	Zing Went The Strings Of My Heart	202.693	0.667	0.851	E	-5.257	major	0
	13054	The Five Americans	Zip Code The Five Americans	Zip Code	175.040	0.393	0.594	Α	-5.986	major	0
	13055	Bad Wolves	Zombie Bad Wolves	Zombie	254.805	0.448	0.826	D	-3.244	minor	0
	13056	Herb Alpert & The Tijuana Brass	Zorba The Greek Herb Alpert & The Tijuana Brass	Zorba The Greek	264.853	0.531	0.642	F	-12.702	major	0
	13057	K7	Zunga Zeng K7	Zunga Zeng	273.000	0.846	0.657	C#	-9.642	major	0

13058 rows × 23 columns

```
In [8]: print(ml_df.dtypes)
```

```
performer
                  object
song performer
                 object
                  object
song
track_duration_s float64
danceability float64
energy
                 float64
                  object
key
loudness
                float64
mode
                  object
speechiness float64 acousticness float64
instrumentalness float64
liveness
                 float64
                 float64
valence
valence
tempo
                 float64
time_signature float64
                  int64
rank
last_week float64 peak_rank int64
                  int64
weeks on board
                   int64
key signature
                  object
year
                   int64
                  float64
top hit pos
dtype: object
```

Now let's finish up Preprocessing

```
In [9]: # Import libraries
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
```

```
In [10]: # Split into inputs and outputs
X = ml_df.drop(columns='top_hit_pos')
y = ml_df['top_hit_pos']
```

```
In [11]: # determine categorical and numerical features
    numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
    categorical_ix = X.select_dtypes(include=['object', 'bool']).columns

In [12]: # define the data preparation for the columns
    t = [('cat', OneHotEncoder(), categorical_ix), ('num', MinMaxScaler(), numerical_ix)]
    col_transform = ColumnTransformer(transformers=t)
In [13]: # Apply the transformations to the data
    X_transformed = col_transform.fit_transform(X)
```

Split for train test and import rft classifier

```
In [14]: # Import Libs
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
```

```
In [15]: # Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X_transformed, y, test_size=0.2, ran
```

Create Random Forest Classifier model

```
In [16]: # Create and fit the Random Forest model
    rfcl = RandomForestClassifier()
    rfcl.fit(X_train, y_train)
```

Out[16]: ▼ RandomForestClassifier

RandomForestClassifier()

Make Prediction with test set and evaluate model performance

```
In [17]: # Make predictions on the test set
    y_pred = rfcl.predict(X_test)

In [18]: # Evaluate the model preformance
    accuracy = rfcl.score(X_test, y_test)
    print(f'Accuracy: {accuracy:.2f}')

Accuracy: 1.00
```

Visualize with a confusion matrix

• from sklearn.metrcis import cm

```
In [19]: from sklearn.metrics import confusion_matrix
In [20]: # create confusion matrix object
    rfcl_cm = confusion_matrix(y_test, y_pred)

# Create a heatmap plot of the confusion matrix
    sns.heatmap(rfcl_cm, annot=True, fmt='d', cmap='Blues')
    plt.xlabel('Predicted label')
    plt.ylabel('True label')
    plt.show()
```


Evaluate model scores

```
In [21]: # import libs for metrics
         from sklearn.metrics import accuracy score, precision score, recall score, f1 score
         # Calculate the accuracy, precision, and recall scores for the RandomForestClassifier
In [22]:
         accuracy = accuracy score(y test, y pred)
         precision = precision score(y test, y pred)
         recall = recall score(y test, y pred)
         f1 = f1 score(y test, y pred)
         # Print the accuracy, precision, and recall scores for the RandomForestClassifier
         print(f'Accuracy: {accuracy:.2f}')
         print(f'Precision: {precision:.2f}')
         print(f'Recall: {recall:.2f}')
         print(f'F1-score: {f1:.2f}')
         Accuracy: 1.00
         Precision: 1.00
         Recall: 0.90
```

Let's try a KNN Classifier

F1-score: 0.95

```
In [23]: # Import libs
    from sklearn.neighbors import KNeighborsClassifier

In [24]: # Create and fit KNN model
    knn = KNeighborsClassifier()
    knn.fit(X_train, y_train)
Out[24]:
```

```
* KNeighborsClassifier
KNeighborsClassifier()
```

Make Prediction with test set and evaluate model performance

```
In [25]:
         # Make predictions on the test set
         knn y pred = knn.predict(X test)
         # Evaluate the model preformance
In [26]:
         knn accuracy = knn.score(X test, y test)
         print(f'KNN Accuracy: {knn accuracy:.2f}')
        KNN Accuracy: 0.96
         # Calculate the accuracy, precision, and recall scores for the KNN
In [27]:
         knn accuracy = accuracy score(y test, knn y pred)
         knn precision = precision score(y test, knn y pred)
         knn recall = recall score(y test, knn y pred)
         knn f1 = f1 score(y test, knn y pred)
         # Print the accuracy, precision, and recall scores for the KNN
         print(f'KNN Accuracy: {knn accuracy:.2f}')
         print(f'KNN Precision: {knn precision:.2f}')
         print(f'KNN Recall: {knn recall:.2f}')
         print(f'KNN F1-score: {knn f1:.2f}')
        KNN Accuracy: 0.96
        KNN Precision: 0.38
        KNN Recall: 0.03
        KNN F1-score: 0.05
```

BOOM

We can see the RandomForestClassifier is most suited for predictions

- with a Precision score of 1
- and a Recall score of .75

Thirdly, Let's try a SVM

```
svc_accuracy = accuracy_score(y_test, svc_y_pred)
svc_precision = precision_score(y_test, svc_y_pred)
svc_recall = recall_score(y_test, svc_y_pred)
svc_f1 = f1_score(y_test, svc_y_pred)

# Print the accuracy, precision, and recall scores for SVC
print(f'SVC Accuracy: {svc_accuracy:.2f}')
print(f'SVC Precision: {svc_precision:.2f}')
print(f'SVC Recall: {svc_recall:.2f}')
print(f'SVC F1-score: {svc_f1:.2f}')
SVC Accuracy: 0.96
SVC Precision: 0.77
SVC Recall: 0.18
```

Pickle ml_df

SVC F1-score: 0.30

```
In [ ]: ml_df.to_pickle('ml_df.pkl')
```