REGRESSION

Linear Regression

Linear Regression

- Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task.
- Regression models a target prediction value based on independent variables.
- It is mostly used for finding out the relationship between variables and forecasting.

Linear Regression

Linear Regression Function

$$y=a + bx$$

- Y is the output we want. x is the input variable. a = constant and b is the slope of the line
- The output varies linearly based upon the input.
- 'a' is the constant (value of y when x is zero)
- Slope (b) of Regression line

$$b = r \frac{sy}{sx} \qquad r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

• Y-intercept (a) of Regression Line

•
$$a = mean(y)$$
-b*mean(x)

Example

Student	X _i	y _i	(x _i -x)	(y _i -y)
1	95	85	17	8
2	85	95	7	18
3	80	70	2	-7
4	70	65	-8	-12
5	60	70	-18	-7
Sum	390	385		
Mean	78	77		

Example.....

Student	X _i	y _i	$(x_i-x)^2$	$(y_i-y)^2$
1	95	85	289	64
2	85	95	49	324
3	80	70	4	49
4	70	65	64	144
5	60	70	324	49
Sum	390	385	730	630
Mean	78	77		

• And for each student, we also need to compute the squares of the deviation scores

Example.....

Student	X _i	y _i	$(x_i-x)(y_i-y)$
1	95	85	136
2	85	95	126
3	80	70	-14
4	70	65	96
5	60	70	126
Sum	390	385	470
Mean	78	77	

• And finally, for each student, we need to compute the product of the deviation scores.

Slope.....

Pearson correlation coefficient

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

r=470/
$$\sqrt{730x630}$$

470/678.15
r= 0.693

Compute the standard deviation of x ($\sigma_{x/Sx}$): $\sigma_{x} = \text{sqrt} \left[\sum (x_{i} - x)^{2} / N - 1 \right]$ $\sigma_{x} = \text{sqrt} (730/4) = \text{sqrt} (182.5) = 13.5$ Next, we find the standard deviation of y, ($\sigma_{y/Sy}$): $\sigma_{x} = \text{sqrt} \left[\sum (x_{i} - x_{i})^{2} / N - 1 \right]$

$$\sigma_y = \text{sqrt} \left[\sum (y_i - y)^2 / N - 1 \right]$$

 $\sigma_y = \text{sqrt} (630/4) = \text{sqrt} (157.5) = 12.5$

Slope b of Regression line is= $b=r\frac{Sy}{Sx}$ 0.693 × 12.5/13.5= 0.641

Y-intercept

- Y-intercept
- a = mean(y)-b× mean(x)
- 77-0.64×78
- 77-49.92
- a=27.08

Linear Regression Function

Linear Regression Function

$$y=a + bx$$

y=27.08+0.641(x)

If a student made an 80 in Intro to Programming, the estimated statistics grade (y) would be:

$$y=27.08+0.641(80)$$

=27.08+51.28
= 78.36

Linear Regression Graph

