Basic relative invariants of homogeneous convex cones

Hideto Nakashima

Kyushu university (JSPS Research Fellow)

2014/6/25

RIMS, Kyoto university

Background

 $\Omega \subset V$: homogeneous convex cone

$$\Delta_1(x),\ldots,\Delta_r(x)$$
: basic relative invariants of Ω

$$\Omega = \left\{ x \in V; \ \Delta_1(x) > 0, \dots, \Delta_r(x) > 0 \right\}.$$

Theorem (Vinberg 1963)

Homogeneous convex domains ⇔ Clans

 $R_xy:=y\bigtriangleup x$: right multiplication operator

Det
$$R_x = \Delta_1(x)^{n_1} \cdots \Delta_r(x)^{n_r} \quad (n_j \ge 1).$$

Contents

- 1. Preliminary clans, basic relative invariants, representations, ...
- 2. Inductive structure of a clan and of the basic relative invariants
- 3. Introduce the multiplier matrix and ε -representations
- 4. Explicit formula of the basic relative invariants

Contents

- 1. Preliminary clans, basic relative invariants, representations, ...
- 2. Inductive structure of a clan and of the basic relative invariants
- 3. Introduce the multiplier matrix and ε -representations
- 4. Explicit formula of the basic relative invariants

Clans (compact normal left symmetric algebras)

V: finite-dimensional real vector space

 \triangle : bilinear product in V

Definition

 (V, \triangle) is a clan \Leftrightarrow the following three conditions are satisfied:

(C1)
$$[L_x, L_y] = L_{x \, \triangle \, y - y \, \triangle \, x}$$
, (left symmetric algebra)

(C2)
$$\exists s \in V^*$$
 s.t. $s(x \triangle y)$ is an inner product, (compactness)

(C3)
$$L_x$$
 has only real eigenvalues. (normality)

$$(L_xy:=x\bigtriangleup y\colon \mathsf{left}\ \mathsf{multiplication}\ \mathsf{operator})$$

In general, clans are
$$\begin{cases} \text{non-associative,} \\ \text{non-commutative,} \\ \text{no unit element.} \end{cases}$$

$$V=\operatorname{Herm}(r,\mathbb{K}),\quad (\mathbb{K}=\mathbb{R},\mathbb{C}, \text{ or }\mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

Normal decomposition

- ullet V: clan with unit element $e_0,$
- c_1,\ldots,c_r : complete system of orthogonal primitive idempotents $(c_i igtriangledown_j = \delta_{ij} c_i,\ c_1+\cdots+c_r=e_0)$
- ullet Normal decomposition: $V=igoplus_{1\leq j\leq k\leq r}V_{kj},$ where

$$egin{cases} V_{jj} = \mathbb{R} c_j & (j=1,\ldots,r), \ V_{kj} = ig\{x \in V; \; L_{c_i} x = rac{1}{2} (\delta_{ij} + \delta_{ik}) x, \; R_{c_i} x = \delta_{ij} x ig\} \,. \end{cases}$$

In the case of $V=\operatorname{Sym}(r,\mathbb{R}),$

- $\bullet \ c_j = E_{jj},$
- $\bullet \ V_{kj} = \mathbb{R}(E_{kj} + E_{jk}).$

Basic relative invariants

- $\mathfrak{h} := \{L_x; x \in V\}$ (split solvable Lie algebra).
- $H := \exp \mathfrak{h}$.
- $\Omega := H \cdot e_0 \Rightarrow$ homogeneous cone. In particular, $H \curvearrowright \Omega$: simply transitively.

Definition.

- $oldsymbol{0} f\colon \Omega o\mathbb{R}$: relatively H-invariant $\Leftrightarrow\exists\chi\colon H o\mathbb{R}\colon$ 1-dim. representation s.t. $f(hx)=\chi(h)f(x)$.
- **2** $\Delta_j(x)$: relatively H-invariant irreducible polynomials $(j=1,\ldots,r)$ \Rightarrow the basic relative invariants

Remark. (Ishi 2001, Ishi-Nomura 2008)

 $\forall p(x)$: relatively *H*-invariant polynomial

$$\Rightarrow p(x) = (\mathrm{const})\Delta_1(x)^{m_1}\cdots\Delta_r(x)^{m_r} \ (m_1,\ldots,m_r\in\mathbb{Z}_{\geq 0}).$$

If $p(x) = \operatorname{Det} R_x$, then we have $m_k \geq 1$ $(k = 1, \dots, r)$.

Dual clan

Definition

 (V, ∇) : the dual clan of V

$$ig\langle \, x \, igtriangledown \, y \, | \, z \, igr
angle = \langle \, y \, | \, x \, \triangle \, z \, igr
angle \quad (x,y,z \in V).$$

homogeneous cone
$$\Omega \longleftrightarrow \Omega^*$$
 \updownarrow dual \updownarrow clan $(V, \triangle) \longleftrightarrow (V, \nabla)$

• Relation between \triangle and ∇ :

$$x \triangle y + x \nabla y = y \triangle x + y \nabla x$$
.

$$V = \operatorname{Herm}(r,\mathbb{K}), \quad (\mathbb{K} = \mathbb{R}, \mathbb{C}, \text{ or } \mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

- Corresponding cone: $\Omega = \{x \in V; \text{ positive definite}\}$.
- basic relative invariants: $\Delta_k(x) = \det^{(k)}(x)$.
- Det $R_x = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$ $(d = \dim \mathbb{K})$.
- Dual clan product:

$$x \nabla y = (\underline{x})^* y + y \underline{x} \quad (x, y \in V).$$

$$V=\operatorname{Herm}(r,\mathbb{K}),\quad (\mathbb{K}=\mathbb{R},\mathbb{C}, \text{ or }\mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

- Corresponding cone: $\Omega = \{x \in V; \text{ positive definite}\}$.
- basic relative invariants: $\Delta_k(x) = \det^{(k)}(x)$.
- Det $R_x = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$ $(d = \dim \mathbb{K})$.
- Dual clan product:

$$x \nabla y = (\underline{x})^* y + y \underline{x} \quad (x, y \in V).$$

$$V=\mathrm{Herm}(r,\mathbb{K}),\quad (\mathbb{K}=\mathbb{R},\mathbb{C}, \ \mathrm{or} \ \mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

- Corresponding cone: $\Omega = \{x \in V; \text{ positive definite}\}$.
- basic relative invariants: $\Delta_k(x) = \det^{(k)}(x)$.
- Det $R_x = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$ $(d = \dim \mathbb{K})$.
- Dual clan product:

$$x \nabla y = (\underline{x})^* y + y \underline{x} \quad (x, y \in V).$$

$$V=\operatorname{Herm}(r,\mathbb{K}),\quad (\mathbb{K}=\mathbb{R},\mathbb{C}, \text{ or }\mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

- ullet Corresponding cone: $\Omega = \{x \in V; \text{ positive definite}\}$.
- ullet basic relative invariants: $\Delta_k(x) = \det^{(k)}(x)$.
- Det $R_x = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$ $(d = \dim \mathbb{K})$.
- Dual clan product:

$$x \nabla y = (\underline{x})^* y + y \underline{x} \quad (x, y \in V).$$

$$V = \operatorname{Herm}(r, \mathbb{K}), \quad (\mathbb{K} = \mathbb{R}, \mathbb{C}, \text{ or } \mathbb{H}).$$

$$\underline{x} := egin{pmatrix} rac{1}{2}x_{11} & 0 & \cdots & 0 \ x_{21} & rac{1}{2}x_{22} & \ddots & dots \ dots & \ddots & \ddots & 0 \ x_{r1} & x_{r2} & \cdots & rac{1}{2}x_{rr} \end{pmatrix}.$$

- Corresponding cone: $\Omega = \{x \in V; \text{ positive definite}\}$.
- ullet basic relative invariants: $oldsymbol{\Delta}_k(x) = \det^{(k)}(x)$.
- Det $R_x = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$ $(d = \dim \mathbb{K})$.
- Dual clan product:

$$x \nabla y = (\underline{x})^* y + y \underline{x} \quad (x, y \in V).$$

Representations of clans

 $E\colon$ a real Euclidean vector space with $\langle\,\cdot\,|\,\cdot\,
angle_E$

Definition

Let $\varphi \colon V \to \mathcal{L}(E) = \{ \text{Linear maps on } E \}.$ $(\varphi, E) \colon$ a selfadjoint representation of the dual clan $(V, \nabla) \colon$

- $ullet \ arphi(x)^* = arphi(x) \ ext{and} \ arphi(e_0) = \mathrm{id}_E,$
- $\quad \bullet \ \varphi(x \nabla y) = \overline{\varphi}(x)\varphi(y) + \varphi(y)\varphi(x),$

where arphi(x) (resp. $\overline{arphi}(x)$) is lower (resp. upper) triangular part of arphi(x).

i.e. $\varphi \colon (V, \nabla) \to (\operatorname{Sym}(E), \nabla)$ is a homomorphism of a clan.

<u>Definition</u>. $Q \colon E \times E \to V \colon$ bilinear map associated with φ :

$$\langle Q(\xi,\eta) | x \rangle = \langle \varphi(x)\xi | \eta \rangle_E \quad (\xi,\eta \in E, \ x \in V).$$

$$Q[\xi] := Q(\xi, \xi) \text{ and } Q[E] := \{Q[\xi]; \ \xi \in E\}.$$

Contents

- 1. Preliminary clans, basic relative invariants, representations, ...
- 2. Inductive structure of a clan and of the basic relative invariants
- 3. Introduce the multiplier matrix and ε -representations
- 4. Explicit formula of the basic relative invariant

Inductive structure of V

 Ω : Homogeneous cone

V: clan associated with Ω

 $V = \bigoplus_{j \le k} V_{kj}$: normal decomposition

Put
$$E=igoplus_{k\geq 2}V_{k1}, \quad W=igoplus_{2\leq j\leq k\leq r}V_{kj}.$$

Note that W is a subclan of V.

 $oldsymbol{V}$ is decomposed as

$$V=V_{11}\oplus E\oplus W=egin{pmatrix} \mathbb{R} c_1 & {}^t\!E \ E & W \end{pmatrix}.$$

We denote general elements x of V by

$$x = \lambda c_1 + \xi + w \quad (\lambda \in \mathbb{R}, \ \xi \in E, \ w \in W).$$

Inductive structure of V

Proposition

Define a linear map $arphi\colon W o \mathcal{L}(E)$ by

$$\varphi(w)\xi := \xi \, \nabla w \quad (w \in W, \ \xi \in E).$$

Then (φ, E) is a selfadjoint representation of (W, ∇) .

With respect to this decomposition, the multiplication is described as

$$x \triangle y = (\lambda \mu)c_1 + (\mu \xi + \frac{1}{2}\lambda \eta + \underline{\varphi}(w)\eta) + (Q(\xi, \eta) + w \triangle v),$$

where $y=\mu c_1+\eta+v$.

Calculate $\operatorname{Det} R_x$ and express by using $\operatorname{Det} R_w^W$

Right multiplication operators

 ${m R}$:Right multiplication operator of ${m V}$

Then we have
$$R_{\lambda c_1+\xi+w}=egin{pmatrix} \lambda & 0 & 0 \\ rac{1}{2}\xi & \lambda \mathrm{id}_E & R_\xi \\ 0 & R_\xi & R_w^W \end{pmatrix},$$

where $oldsymbol{R}^{oldsymbol{W}}$ is right multiplication operator of $oldsymbol{W}$.

Proposition

$$\operatorname{Det} R_{\lambda c_1 + \xi + w} = \lambda^{1 + \dim E - \dim W} \operatorname{Det} R^W_{\lambda w - \frac{1}{2}Q[\xi]}$$

Right multiplication operators

The basic relative invariants of $oldsymbol{V}$ are exhausted by

$$egin{cases} \lambda, \ & ext{irreducible factors of } \Delta_j^W(\lambda w - rac{1}{2}Q[\xi]) \ & ext{ } (j=2,\dots,r), \end{cases}$$

where $\Delta_2^W(w), \dots, \Delta_r^W(w)$ are the basic relative invariants of W .

Theorem

 $\Delta_1(x), \ldots, \Delta_r(x)$: the basic relative invariants of V. There exist non-negative integers $\alpha_2, \ldots, \alpha_r$ s.t.

$$\Delta_j(x) = egin{cases} \lambda & (j=1), \ \lambda^{-lpha_j} \Delta_j^W (\lambda w - rac{1}{2} Q[\xi]) & (j=2,\ldots,r). \end{cases}$$

Right multiplication operators

The basic relative invariants of $oldsymbol{V}$ are exhausted by

$$egin{cases} \lambda, \ ext{irreducible factors of } \Delta_j^W(\lambda w - rac{1}{2}Q[\xi]) & (j=2,\ldots,r), \end{cases}$$

where $\Delta_2^W(w), \dots, \Delta_r^W(w)$ are the basic relative invariants of W .

Theorem

 $\Delta_1(x), \ldots, \Delta_r(x)$: the basic relative invariants of V. There exist non-negative integers $\alpha_2, \ldots, \alpha_r$ s.t.

$$\Delta_j(x) = egin{cases} \lambda & (j=1), \ \lambda^{-lpha_j} \Delta_j^W (\lambda w - rac{1}{2} Q[\xi]) & (j=2,\ldots,r). \end{cases}$$

Contents

- 1. Preliminary clans, basic relative invariants, representations, ...
- 2. Inductive structure of a clan and of the basic relative invariants
- 3. Introduce the multiplier matrix and ε -representations
- 4. Explicit formula of the basic relative invariant

In order to determine α_j , we introduce

- multiplier matrix,
- \circ ε -representation.

Multiplier matrix

- $m{\cdot}$ H: split solvable (= lower triangular) Lie group $h_{jj}>0:$ diagonal component of $h\in H$
- f: relatively H-invariant $(\exists \chi \text{ s.t. } f(hx) = \chi(h)f(x))$

$$\Rightarrow \exists au_i \in \mathbb{R} \text{ s.t. } \chi(h) = (h_{11})^{2 au_1} \dots (h_{rr})^{2 au_r}.$$

 $\underline{\tau} := (\tau_1, \dots, \tau_r)$: multiplier of f.

Multiplier matrix

Definition

$$egin{aligned} \underline{\sigma}_j &= (\sigma_{j1}, \dots, \sigma_{jr}) \colon ext{multiplier of } \Delta_j \ &(\Delta_j(hx) = (h_{11})^{2\sigma_{j1}} \cdots (h_{rr})^{2\sigma_{jr}} \Delta_j(x)) \end{aligned}$$
 $\sigma \colon ext{the multiplier matrix} \Leftrightarrow \sigma = egin{pmatrix} \underline{\sigma}_1 \ \vdots \ \underline{\sigma}_r \end{pmatrix} = (\sigma_{jk})_{1 \leq j,k \leq r} \end{aligned}$

Remark. (Ishi 2001)

- \bullet σ is (lower) triangular,
- $\sigma_{jj} = 1.$

i.e.
$$\sigma = egin{pmatrix} 1 & 0 & \cdots & 0 \ \sigma_{21} & 1 & \ddots & dots \ dots & \ddots & \ddots & 0 \ \sigma_{r1} & \sigma_{r2} & \cdots & 1 \end{pmatrix}.$$

ε -representation

$$(arphi,E)$$
: representation of $(V,
abla)$
 $arepsilon={}^t(arepsilon_1,\ldots,arepsilon_r)\in\{0,1\}^r,\;\;c_arepsilon:arepsilon_1c_1+\cdots+arepsilon_rc_r.$

Definition

$$(arphi,E)\colon$$
 $arepsilon$ -representation $\Leftrightarrow Q[E]=\overline{H\cdot c_arepsilon}.$

 $\operatorname{\overline{Remark}}$. Put $\mathcal{O}_{arepsilon}:=H\cdot c_{arepsilon}$. Then one has

$$\overline{\Omega} = \bigsqcup_{arepsilon \in \{0,1\}^r} \mathcal{O}_{arepsilon} \quad ext{ (Ishi 2000)}.$$

Proposition (Graczyk–Ishi)

(arphi,E): any representation

 $\exists 1 \ arepsilon = arepsilon(arphi) \in \{0,1\}^r$ s.t. arphi is an arepsilon-representation.

ε -representation

Calculation of $\varepsilon(\varphi)$

Put $d_{kj} := \dim V_{kj}$.

$$l^{(1)} := {}^t(\dim E_1, \dots, \dim E_r) \ l^{(k)} := \left\{ egin{array}{l} l^{(k-1)} - {}^t(0, \dots, 0, d_{k,k-1}, \dots, d_{r,k-1}) \end{array}
ight. egin{array}{l} (E_j := arphi(c_j)E), \ (l^{(k-1)}_{k-1} > 0), \ (ext{otherwise}). \end{array}
ight.$$

Then $\varepsilon(\varphi)={}^t(\varepsilon_1,\ldots,\varepsilon_r)$ is defined by

$$arepsilon_k = egin{cases} 1 & ext{(if } l_k^{(k)} > 0), \ 0 & ext{(otherwise)}. \end{cases}$$

Contents

- 1. Preliminary clans, basic relative invariants, representations, ...
- 2. Inductive structure of a clan and of the basic relative invariants
- 3. Introduce the multiplier matrix and ε -representations
- 4. Explicit formula of the basic relative invariants

Determination of α_j

Theorem

 $V=\mathbb{R}c_1\oplus E\oplus W$: clan of rank r with

W: subclan of V

 (φ,E) : representation of (W, ∇) $(\varphi(w)\xi = \xi \nabla w)$.

 $\Delta_j(x)$: basic relative invariants of V $(j=1,\ldots,r)$.

$$\Delta_j(\lambda c_1 + \xi + w) = \lambda^{-\alpha_j} \Delta_j^W(\lambda w - \frac{1}{2}Q[\xi]) \quad (j = 2, \dots, r).$$

Let σ_W be the multiplier matrix of W and arphi an arepsilon-representation. Then

$$egin{pmatrix} lpha_2 \ dots \ lpha_r \end{pmatrix} = \sigma_W egin{pmatrix} 1 - arepsilon_2 \ dots \ 1 - arepsilon_r \end{pmatrix} \quad ext{where } arepsilon = egin{pmatrix} arepsilon_2 \ dots \ 0, 1 \}^{r-1}.$$

 σ_V : multiplier matrix of V

$$\Rightarrow \sigma_V = \begin{pmatrix} 1 & 0 \\ \sigma_W \varepsilon & \sigma_W \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \sigma_W \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \varepsilon & I_{r-1} \end{pmatrix}.$$

Calculation of multiplier matrix

ullet For $k=1,2,\ldots,r-1$, we put

$$E^{[k]} := igoplus_{m>k} V_{mk}, \ V^{[k]} := igoplus_{k < l \le k \le r} V_{ml}. \ \left[egin{array}{c|c} \mathbb{R}c_k & t_{E^{[k]}} \ \hline E^{[k]} & V^{[k]} \end{array}
ight]$$

- ullet $V^{[k]}$ is a subclan of $V^{[k-1]}$.
- ullet $(\mathcal{R}^{[k]}, E^{[k]})$ is a representation of $(V^{[k]},
 abla)$:

$$\mathcal{R}^{[k]}(x)\xi:=\xi\,igtriangledown x \quad (x\in V^{[k]},\; \xi\in E^{[k]}).$$

ullet Assume that $\mathcal{R}^{[k]}$ is an $arepsilon^{[k]}$ -representation $(arepsilon^{[k]} \in \{0,1\}^{r-k})$.

Calculation of multiplier matrix

Put
$$\mathcal{E}_k := egin{pmatrix} I_{k-1} & 0 & 0 \ 0 & 1 & 0 \ 0 & arepsilon^{[k]} & I_{r-k} \end{pmatrix}$$
 .

Recalling

$$\sigma_V = \begin{pmatrix} 1 & 0 \\ 0 & \sigma_W \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \varepsilon & I_{r-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \sigma_W \end{pmatrix} \mathcal{E}_1,$$

we obtain the following theorem.

Theorem

$$\sigma_V = \mathcal{E}_{r-1}\mathcal{E}_{r-2}\cdots\mathcal{E}_1.$$

Vinberg's polynomials

- $\bullet ||x||^2 := \langle x | x \rangle.$
- Definition of Vinberg's polynomials $D_j(x)$ are as follows:
- ullet Define $x^{(j)} = \sum_{k=j}^r x_{kk}^{(j)} c_k + \sum_{m>k\geq j} X_{mk}^{(j)} \in V^{[j-1]}$ by

$$\begin{split} x^{(1)} &:= x, \\ x^{(j+1)}_{kk} &:= x^{(j)}_{jj} x^{(j)}_{kk} - \frac{1}{2s_0(c_k)} \|X^{(j)}_{kj}\|^2 \quad (j < k \leq r), \\ X^{(j+1)}_{mk} &:= x^{(j)}_{jj} X^{(j)}_{mk} - X^{(j)}_{mj} \bigtriangleup X^{(j)}_{kj} \quad (j < k < m \leq r). \end{split}$$

Then

$$D_j(x) := x_{jj}^{(j)} \in \mathbb{R}.$$

ullet Note that each $D_i(x)$ is a relatively H-invariant polynomial.

Vinberg's polynomials

 $D_1(x),\ldots,D_r(x)$ appear in the solution $h\in H$ of the equation

$$he_0=x \pmod{x\in\Omega}.$$

The diagonal components are calculated as

$$h_{11}^2 = D_1(x), \quad h_{jj}^2 = D_1(x)^{-1} \cdots D_{j-1}(x)^{-1} D_j(x) \quad (j \ge 2).$$

This implies

$$\Omega = \{x \in V; \ D_1(x) > 0, \dots, D_r(x) > 0\}$$

= $\{x \in V; \ \Delta_1(x) > 0, \dots, \Delta_r(x) > 0\}.$

Recalling $\Delta_j(x)$ are described as

$$\Delta_j(he_0) = (h_{11})^{2\sigma_{j1}} \cdots (h_{jj})^{2\sigma_{jj}},$$

we obtain the main theorem.

Explicit expression

Main theorem

Let $\sigma_V = (\sigma_{jk})$ be the multiplier matrix of V. Then one has

$$\Delta_1(x) = D_1(x), \quad \Delta_j(x) = rac{D_j(x)}{\prod_{i < j} D_i(x)^{ au_{ji}}},$$

where $au_{ji} = -\sigma_{ji} + \sigma_{j,i+1} + \cdots + \sigma_{jj} \in \mathbb{Z}_{\geq 0}$.

To determine $\Delta_j(x)$:

Divide
$$D_j(x)$$
 by $\Delta_1(x),\ldots,\Delta_{j-1}(x)$ until not-divisible \downarrow Divide $D_j(x)$ by $D_i(x)$ au_{ji} -times.

Thank you for your attention!