PRACTICAL

MACHINE LEARNING

RECOMMENDER ENGINE AND ANOMALY DETECTION

Seth Juarez

sethj@devexpress.com @sethjuarez Analytics Program Manager DevExpress

Titanium Sponsors

agenda

- a word about data science
- what is machine learning?
- recommender systems
- unsupervised learning organization
 - -k-means
 - hierarchical clustering
- anomaly detection (motivation)

data science

- key word: science
- try stuff
- it (might not | won't) work the first time

machine learning

- finding (and exploiting) patterns in data
- replacing "human writing code" with "human supplying data"
 - system figures out what the person wants based on examples
 - need to abstract from "training" examples to "test" examples
 - -most central issue in ML: generalization

machine learning

- split into two (ish) areas
 - supervised learning
 - predicting the future
 - learn from past examples to predict future
 - unsupervised learning
 - understanding the past
 - making sense of data
 - learning structure of data
 - compressing data for consumption

Recommendations for You in Books

Machine Learning: A Probabilistic...

Kevin P. Murphy Hardcover

\$30.00 \$81.00

Why recommended?

Windows 8 Apps with HTML5 and...

Stephen Walther Paperback

\$30.00 \$26.62

Why recommended?

Besting

Turkers and Applies

Boosting: Foundations and Algorithms Robert E. Schapire, Yoav

Freund Hardcover

★★★☆☆ (5) \$50.00 \$41.42

Why recommended?

Bayesian Reasoning and Machine Learning

David Barber
Hardcover

hardcover

\$90.00 \$81.00

Why recommended?

Programming Windows: Writing Windows...

Charles Petzold

Paperback (8)

\$50.00 \$41.78

Why recommended?

Machine Learning: The Art and Science...

Peter Flach Paperback

********* (8)

\$60 00 \$54 00

Why recommended?

Professional Windows 8
Programming...

Nick Lecrenski, Doug Holland,

Paperback

松松松松松 (6)

\$44.99 \$27.71

Why recommended?

> See more recommendations

Recently Watched

Popular on Netflix

Romantic Comedies

Your taste preferences created this row.

Comedies Romantic.

As well as your interest in...

- spam catchers
- ocr (optical character recognition)
- natural language processing
- machine translation
- biology
- medicine
- robotics (Autonomous Systems)
- etc...

RECOMMENDER SYSTEM

recommender systems

what do people like?

how does knowing people similarity help when recommending something?

recommender systems

how are things alike?

how does knowing item similarity help when recommending something?

UNSUPERVISED LEARNING

figuring out similarity (among other things)

HOW DOES IT WORK?

pattern

1. data

3. model

data – example

Grade	GPA	Age	Tall	Friends	
Α	3.5	16	Yes	12	
С	2.0	12	No	3	
F	2.1	13	Yes	1	
В	3.5	17	Yes	6	
D	2.0	18	No	4	
Α	3.8	15	No	6	
D	2.3	14	No	4	
В	3.3	17	Yes	8	

features

gpa, age, tall, friends

values (x)

[A, 3.5, 16, Yes, 12]

which students are most similar? how should they be grouped? given a new student, where does she belong?

DO SOMETHING

code

DISTANCE AND SIMILARITY

math

distance (metric)

- $d: X \times X \to \mathbb{R}$
- Must follow these rules:
 - 1. $d(x, y) \ge 0$
 - 2. $d(x, y) = 0 \iff x = y$
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,z) \le d(x,y) + d(y,z)$
- Main idea: if I have a Φ and a Ψ how far away are they from each other?
- closer similar, farther dissimilar

distance

- euclidian distance
- manhattan distance
- cosine distance
- hamming distance

k-means

- how it works
 - initialize K centers
 - -find closest (distance) points to K centers
 - -set each center to the average of the closest points
 - -rinse and repeat until convergence

DEMONSTRATION

k-means

strings?!?!

	the	red	dog	cat	eats	food
1. the red dog ->	1	1	1	0	0	0
 cat eats dog → 	0	0	1	1	1	0
 dog eats food→ 	0	0	1	0	1	1
4. red cat eats	0	1	0	1	1	0

RECOMMENDING

collaborative filtering / content-based filtering

collaborative filtering

what people who are similar to me like?

content-based filtering

what items are similar to the one I chose?

DEMONSTRATION

collaborative filtering / content-based filtering

SIMILARITY

other ways of measuring similarity

HIERARCHICAL CLUSTERING

models

clustering

linkage

single

average

centroid

complete

DEMONSTRATION

hierarchical clustering

ANOMALY DETECTION

brainstorm / motivation

anomaly detection

- how could we use KMeans to detect anomalies?
 - step 1: get last n things and convert them to vectors (matrix)
 - step 2: get thing in question and add it to the bunch
 - step 3: run KMeans
 - step 4: measure distance of [new thing] from all centers
 - step 5: return min/avg/mode whatever
 - step 6: tune (what is an acceptable threshold?)

anomaly detection

 how could we use Hierarchical Clustering to detect anomalies?

recap

- a word about data science
- what is machine learning?
 - -supervised
 - unsupervised
- recommender systems, anomaly detection
- k-means, hierarchical clustering
- nuML http://numl.net

planned

- unsupervised learning:
 - -gaussian mixture models
 - latent semantic analysis (better pca for text)
 - -self organizing maps
 - –smarter interfaces (API to deal with reduction chaining)
 - -multi-processor, gpgpu

some reading

QUESTIONS?

Seth Juarez

sethj@devexpress.com @sethjuarez Analytics Program Manager DevExpress

