I/O Patterns and Bottlenecks in Deep Learning Workloads

Pablo Alessandro Hugen¹

¹Institute of Informatics – UFRGS

Comp. Sys. Perf. Analysis 2025/2

Content

Introduction
Context
Objectives
Justification
Related Works

Methodology (so far)

Results (so far

- ► Recent growing interest in optimizations for Machine Learning/Deep Learning training and inference methods.
- Used in various fields: LLMs, Image reconition and classifications, and so on.
- ► Large models often need very large HPC infraestructures for processing the insane amount of training data.
- ► The performance of the storage and I/O subsystem of HPC systems is critical

- ► Traditional HPC workloads are characterized by large, sequential data access (PAUL; KARIMI; WANG, 2021).
 - ► Simulations which saves the state at the end or in checkpoints
- ► In contrast, ML workloads generate small, random reads across numerous files (PAUL; KARIMI; WANG, 2021).
- ► Large amounts of data (far greater than system memory) + random read pattern = lot of page faults and cache misses (VERY BAD)

Table 2.2 Example Time Scale of System Latencies

Event	Latency	Scaled
1 CPU cycle	0.3 ns	1 s
Level 1 cache access	0.9 ns	3 s
Level 2 cache access	2.8 ns	9 s
Level 3 cache access	12.9 ns	43 s
Main memory access (DRAM, from CPU)	120 ns	6 min
Solid-state disk I/O (flash memory)	50–150 μs	2-6 days
Rotational disk I/O	1–10 ms	1–12 months
Internet: San Francisco to New York	40 ms	4 years
Internet: San Francisco to United Kingdom	81 ms	8 years
Internet: San Francisco to Australia	183 ms	19 years
TCP packet retransmit	1–3 s	105-317 years
OS virtualization system reboot	4 s	423 years
SCSI command time-out	30 s	3 millennia
Hardware (HW) virtualization system reboot	40 s	4 millennia
Physical system reboot	5 m	32 millennia

- ▶ At Large Scale Distributed DL Workloads, IO can take roughly 85% of the *training* time (DRYDEN et al., 2021).
- ► And training is often one of the most expensive parts of the pipeline (LEWIS; BEZ; BYNA, 2025).

Objectives

General:

Understand patterns in I/O operations and possible bottlenecks in common Machine Learning workloads

Especifics:

- ▶ **Disk throughput**: Understand how disk throughput varies in training between epochs, checkpoints and when the number of training processes varies.
- ► **GPU** usage: Know how the GPU usage (%) behaves in those scenarios.

Justification			

▶ By understanding those patterns and possible bottlenecks I hope to find some ideas and directions for further work.

Related Work

Lewis, Bez e Byna (2025)

Surveys literature from 2019 to 2024 on the I/O challenges, patterns, and optimizations for machine learning applications on high-performance computing systems to identify gaps for future research.

Párraga et al. (2021)

This paper presents a methodology for analyzing the input/output (I/O) patterns of deep learning applications on high-performance computing (HPC) systems, applying it to codes using TensorFlow2 and PyTorch with the MNIST and CIFAR-10 datasets to understand performance bottlenecks.

Related Work

Gainaru et al. (2022)

This paper discusses the complex I/O patterns and challenges of emerging machine learning workflows used for large-scale scientific data analysis, proposes methods to optimize data transfers, and demonstrates performance gains with a medical application case study.

Paul, Karimi e Wang (2021)

This paper presents an in-depth I/O characterization of over 23,000 machine learning jobs from a one-year period on the Summit supercomputer, using the Darshan tracing tool to analyze how their behavior varies across different scientific domains and workload scales.

Content

Introduction
Context
Objectives
Justification
Related Works

Methodology (so far)

Results (so far

- ► Simulation: dlio_benchmark (DEVARAJAN et al., 2021).
- ► The experiments are available at ⟨https://github.com/HpcResearchLaboratory/perf_2025⟩.
 - ► Custom workloads
 - ► dlio_benchmark (python venv :(, will try to use nix shell)
 - ► Slurm script to perform all benchmarks

System

Table: System Specifications

Component	Specification
CPU	4x ARM Neoverse-V2 (288 cores total)
Memory (RAM)	857 GiB
GPU	4x NVIDIA GH200 (120GB each)
Storage	1.8 TB NVME

Workloads

Table: Workflow Configuration Summary

Model Name	Framework Name	Epochs	Checkpoints Enabled
cosmoflow_h100_custom	tensorflow	1	No
default_custom	pytorch	10	No
dlrm_custom	pytorch	3	Yes (every 2 steps)
unet3d_h100_custom	pytorch	5	Yes (after epoch 5, then every 2)

Experimental project

- ► Input variables: # of epochs, # of processes
- ▶ Response variables: Accelerator Usage (AU), I/O Throughput

Table: Experimental setup

Model	Epochs	Procs.	Run
cosmoflow	1	1	N
cosmoflow	1	2	N
cosmoflow	1	4	N
cosmoflow	1	6	N
cosmoflow	1	8	N
default	10	1	Y
default	10	2	Y
default	10	4	Y
default	10	6	Y
default	10	8	Y
dlrm	3	1	Y
dlrm	3	2	Y
dlrm	3 3 3 5 5	4	Y
dlrm	3	6	N
dlrm	3	8	N
unet3d	5	1	Y
unet3d	5	2	Y
unet3d	5 5	4	Y
unet3d		6	Y
unet3d	5	8	Y

Content

```
Introduction
Context
Objectives
Justification
Related Works
```

Methodology (so far)

Results (so far)

Accelerator Usage vs. Number of Processes

Figure: Accelerator usage for different models and number of processes.

I/O Throughput vs. Number of Processes

Figure: I/O throughput for different models and number of processes.

Bibliography I

DEVARAJAN, H. et al. Dlio: A data-centric benchmark for scientific deep learning applications. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). [S.I.: s.n.], 2021. p. 81–91.

DRYDEN, N. et al. Clairvoyant prefetching for distributed machine learning i/o. In: *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.* New York, NY, USA: Association for Computing Machinery, 2021. (SC '21). ISBN 9781450384421. Disponível em: https://doi.org/10.1145/3458817.3476181).

GAINARU, A. et al. Understanding and leveraging the i/o patterns of emerging machine learning analytics. In: NICHOLS, J. et al. (Ed.). Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. Cham: Springer International Publishing, 2022. p. 119–138. ISBN 978-3-030-96498-6.

Bibliography II

LEWIS, N.; BEZ, J. L.; BYNA, S. I/o in machine learning applications on hpc systems: A 360-degree survey. *ACM Comput. Surv.*, Association for Computing Machinery, New York, NY, USA, v. 57, n. 10, maio 2025. ISSN 0360-0300. Disponível em: https://doi.org/10.1145/3722215.

PÁRRAGA, E. et al. Analyzing the i/o patterns of deep learning applications. In: NAIOUF, M. et al. (Ed.). *Cloud Computing, Big Data & Emerging Topics*. Cham: Springer International Publishing, 2021. p. 3–16. ISBN 978-3-030-84825-5.

PAUL, A. K.; KARIMI, A. M.; WANG, F. Characterizing machine learning i/o workloads on leadership scale hpc systems. In: 2021 29th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). [S.I.: s.n.], 2021. p. 1–8.