Defn: let G be any group, and choose $g \in G$ the cyclic subgroup of G generated by g is $\{..., \overline{g}, \overline{g}', 1, 9, \overline{g}^2, ..., \overline{g} = : \langle g \rangle$

2 possibilitus

then
$$\exists k \neq l \in \mathbb{N}$$

$$| 2g \rangle | = \infty$$

then $\exists k \neq l \in \mathbb{N}$

"Hamslation"

$$2g \rangle$$

then also
$$= g^{-\kappa} g^{\kappa} = g^{-\kappa} g^{l} = g^{l-\kappa}$$

$$= g^{-\kappa} g^{\kappa} = g^{-\kappa} g^{l} = g^{-\kappa} g^{l} = g^{-\kappa}$$

we see 129>120 € and (9)200

Study orders, subgroups, etc

0				
	9	149>	<u>n</u> < 9>	
7	0	१ च 3	12	12971
1 5,11.	7	₹0,7,, 7)	12
2 10		{0,2,4,6,8,70}	2	6
3,	9	{ 0, 3, 6, 9 }	3	4
4,	8	६ <i>०,</i> च, हु दु	4	3
6		₹ō, 6 }	G	2

Facts: • inside
$$2L/n2L$$
, $(2\overline{g}>) = \frac{n}{gca(n, j)}$

Note: The subgroup of 29, 9; in cyclic Ex: 2/1272 look at 24,6> {4,6,2,10,8,0} =<2> Namely: let a be the gcd of i, i, ord (g) Euclid: I x,y & Z W gcd (i,j) = xi + yi Euclid: = r,s & Z w/ gcd(gcd(i,j), ord(g)) r. gcd(i, i) + s. ord (9) so, there are u,v,w w/ gcd(i,j, ord(g)) = u·i +v·j + w· ord(g) then: $g(d(i,j,ord(g))) = u \cdot i + v \cdot j + w \cdot ord(g)$ $= (g^{\perp})^{\nu} \cdot (g^{i})^{\nu} \left(g^{ord(g)}\right)^{\nu}$ is an element of ¿gi, gi> 19

and also some power of g.

0. T. O.H, gcd (i, j, ord (g)) | i

=> gir is a power of god(i,i, ord(g))

conclusion: $\langle g^{2}, j^{i} \rangle = \langle g^{gcd}(i,j), ond(g) \rangle$

So, any subgroup of Log> is cyclic

Ex: Z/12Z, we famel

(百) = 至3

 $(\overline{2}) = (\overline{10}) = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$

(3)= (7)= (0,3,6,9)

ノリン= ノラン= その、年、多月

267= 20,63

Next, in $\mathbb{Z}/n\mathbb{Z}$, which (and how many) elements in g produce $2g = \mathbb{Z}/n\mathbb{Z}$?

 $A: Lg > = \mathbb{Z}/n\mathbb{Z} \implies gcd(g,n) = 1$

Defⁿ: Given $n \in \mathbb{N}$, the number of numbers i, an the list 0, ..., n-1, $\omega/\gcd(i,n)=1$ is the Euler φ -function $\varphi(n)$ $Ex: \varphi(12)=4$