Math 449: Numerical Applied Mathematics Lecture 31

11/15/2017 Wenzhen

Today's topic: Chebyshev Polynomial

Today: Finish Chebyshev Polynomial

Chebyshev Polynomials, on [-1,1], $T_n = cos(n cos^{-1} x)$

Satisfy recurrence, $T_0(x) = 1$, $T_1(x) = x$,

Tuti(x) = 2x Tu(x) - Tu-1(x)

 $\|f\|_{\infty} = \max_{\alpha \in [a,b]} |f(\alpha)|$ $\|T_n\|_{\infty} = 1, n = 0, 1, 2, ...$

We want to choose The interp pts so that I Then I so is small

Error of lagrange interpolation societies $\|f-p_n\|_{\infty} \leq \frac{M_{n+1}}{(n+1)!} \|\pi_{n+1}\|_{\infty}$ want $\to 0$ as $n \to \infty$.

idea: on [-], 1], take $x_0, x_1, ..., x_n$ to be roots of Tn+1

Thm let $f: [-1,1] \rightarrow \mathbb{R}$ and p_n be the interpolating poly, corresponding to chehysten nodes.

then $\| \pi_{n+1} \|_{\infty} \leq 2^{-n}$

 $\Rightarrow \|f-\rho_n\|_{\infty} \leq \frac{M_{n+1}}{2^n(n+1)!}$

Proof. $\pi_{n+1}(x) = (x-x_0)(x-x_1) \cdots (x-x_n) \leftarrow a \text{ monic polynomical.}$ $\pi_{n+1}(x) = x^{n+1} + \cdots + x^{n+1} = x^{n+1} + x^{n+1} + x^{n+1} + x^{n+1} = x^{n+1} + x^{n+1}$

it has same roots as Thought (x) = 2 n z n+1 + ...

 $=2^n \pi_{n+1}(x)$

 $\|\pi_{n+1}(z)\|_{\infty} = a^{-n}\|\text{Transloo}$

Rmk 1 For [a,b], map [-1,1] to [a,b] scaling the interval

affine map.

Take image of Chebyshev nodes in [a,b].

Rinka. Guarantee Convergence $\|f-p_n\|_{\infty} \to 0$ as $n\to\infty$.

as long as f is "nice" (e.g. C')

This is the foundation for Clenshaw-Curtis quadrature / Fejer quadrature.

Take Chetyshev nocles instead of equally-spaced like Newton Coxes.

Recall
$$V \in \mathbb{R}^n$$
, $p \geqslant 1$ $||V||_p = (|V_1|^p + |V_2|^p + ... + |V_n|^p)^{\frac{1}{p}}$

$$p = 2 \text{ is special, } : \text{comes from inner product } ||V||_2 = (V \cdot V)^{\frac{1}{2}}$$

Def. The p-nom of $f \in C[a,b]$ is

$$\|f\|_{p} = \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{\frac{p}{p}}$$

More generally, if $w: (a,b) \rightarrow \mathbb{R}$ is a positive, cont's, integrate "weight function" weighted function: $w:(a,b) \rightarrow \mathbb{R}$.

weighted p-norm:
$$\|f\|_p = \left(\int_a^b \omega(x) |f(x)|^p dx\right)^{\frac{1}{p}}$$

Lebegue

Space of function s.t. If p is integrable on (a,b) is called $L^{p}(a,b)$

 ω . If p is integrable L^p_ω (a,b) "weighted L^p space"

L2 inner product on (a,b)

$$< f, g> = \int_a^b f(x)g(x) dx$$

weighted
$$L^2$$
: $\langle f,g\rangle_W = \int_a^b w(x)f(x)g(x) dx$
 $\langle f,f\rangle = \int_a^b |f(x)|^2 dx = ||f||_a^2$
 $\Rightarrow ||f||_a = (\langle f,f\rangle)^{1/a}$

Inner Product Space.

A real inner product on a real vector space V is a function $V\times V\to R$ Satisfying some condition $(f,g)\mapsto \langle f,g\rangle$

1. Symmetric
$$\langle f,g \rangle = \langle g,f \rangle$$

2. Positive - definite
$$\langle f, f \rangle > 0 = 0$$
 iff $f = \vec{0} \in V$

3. bilinear
$$\langle f+g,h\rangle = \langle f,h\rangle + \langle g,h\rangle$$

 $\langle f,g+h\rangle = \langle f,g\rangle + \langle f,h\rangle$
 $\langle \lambda f,g\rangle = \lambda \langle f,g\rangle = \langle f,\lambda g\rangle \quad \forall \lambda \in \mathbb{R}, f,g,h \in V$

Every linear product $<\cdot,\cdot>$ defines a norm on V $\|f\| = \langle f,f\rangle^{\frac{1}{2}}$

triangle inequality

Cauchy - Schwatz Inequality.

|<f;g>| < || f || || g ||

Proof. For any $\lambda \in \mathbb{R}$, $\lambda^2 < f, f> + 2\lambda < f, g> + < g, g>$ $0 < \|\lambda f + g\|^2 = \langle \lambda f + g, \lambda f + g> = \lambda^2 \|f\|^2 + 2\lambda < f, g> + \|g\|^2$

RHS is a quadrotic polynomial in λ , that is always positive

 ax^2+bx+C must have either a double real root. $\Rightarrow b^2-4ac \le 0$.

 $a = \langle f, f \rangle$ $b = 2 \langle f, g \rangle$ $c = \langle g, g \rangle$ $(2 \langle f, g \rangle)^2 \leq 4 \langle f, f \rangle \langle g, g \rangle$ $|\langle f, g \rangle| \leq ||f|| ||g||$