Comparison of Composite ERPs and AAM Excitation Functions

May 9, 2012

Figure 1: Composites of observed PM1 (black) and the mass excitation function $\chi_1^{\rm M}$ (yellow). Each panel shows composites over different subsets of SSW events. For each curve, the solid line represents the mean and the shading the 98 % bootstrap confidence interval.

Figure 2: Composites of observed PM1 (black) and the wind excitation function χ_1^W (blue). Each panel shows composites over different subsets of SSW events. For each curve, the solid line represents the mean and the shading the 98 % bootstrap confidence interval.

Figure 3: Composites of observed PM2 (black) and the mass excitation function $\chi_2^{\rm M}$ (yellow). Each panel shows composites over different subsets of SSW events. For each curve, the solid line represents the mean and the shading the 98 % bootstrap confidence interval.

Figure 4: Composites of observed PM2 (black) and the wind excitation function $\chi_2^{\rm W}$ (blue). Each panel shows composites over different subsets of SSW events. For each curve, the solid line represents the mean and the shading the 98 % bootstrap confidence interval.

Figure 5: Composites of observed Δ LOD (black) and the wind excitation function $\chi_1^{\rm M}$ (blue). Each panel shows composites over different subsets of SSW events. For each curve, the solid line represents the mean and the shading the 98 % bootstrap confidence interval.