最后的模拟赛

Newnode & C_SUNSHINE

2016年7月21日

题目名称	Ass	We	Can
可执行文件名	ass	we	can
输入文件名	ass.in	we.in	can.in
输出文件名	ass.out	we.out	can.out
时间限制	$1\sim 12$ s	1s	0.2s
内存限制	233MB	233MB	233MB
题目类型	传统型	传统型	传统型
是否有部分分	否	否	否

提交文件名需加后缀:

对于Pascal语言	ass.pas	we.pas	can.pas
对于C语言	ass.c	we.c	can.c
对于C++语言	ass.cpp	we.cpp	can.out

最终测试时, 打开-O2优化。

提交说明

建立以名字命名的文件夹,文件下包含且仅包含源代码,不建立子目录。

1 ASS 2

1 Ass

1.1 问题描述

小火车沉迷守望先锋不能自拔,他的好朋友myh想让他换换胃口,所以拉着他玩分燃油游戏,游戏是这样的。

有n辆火车分K桶燃油,最后一辆火车提供一个划分方案(就是每辆车能分到多少,总和为K,当然必须是整数),然后n辆车投票,如果通过的票数超过 V_n 就通过,否则最后一辆车被扔到海里,剩下的火车继续分燃油。

火车们当然都是绝顶聪明的,他们会按照如下策略进行投票或分配:

- 1.保证自己不被扔到海里。
- 2.在1相同的条件下保证自己得到的燃油最多。
- 3.在1和2都相同的条件下保证最多的火车被扔到海里。
- 4.在1,2,3都相同的时候随便操作。

当然火车们不会结盟, 他们决定操作的时候不会考虑其他车。

现在告诉你n, K和 V_i ,问你前i辆火车进行游戏的时候,最后一辆车最多能分到多少,如果会被扔到海里就输出-1。

1.2 输入格式

第一行一个整数n表示火车数。

第二行一个整数 K表示燃油桶数。

接下来n行,第i行一个整数 V_i 。

1.3 输出格式

n行,第i行一个整数表示前i辆火车进行游戏的时候,最后一辆车最多能分到多少,如果会被扔到海里就输出-1。

1.4 样例输入

1.4.1 样例输入1

5

100

1

1

1 ASS3

2

2

3

1.4.2 样例输入2

见选手文件目录下ass/ex_ass2.in

1.5 样例输出

1.5.1 样例输出1

100

100

99

99

98

1.5.2 样例输出2

见选手文件目录下ass/ex_ass2.out

1.6 数据规模与约定

对于20%的数据, $1 \le n \le 2000$,

对于另外20%的数据, $i-3 \ge V_i$,

对于这部分数据时限为 $_{\odot}$ 剩下的则为 $_{\odot}$ 12s。 对于另外 $_{\odot}$ 20%的数据, $_{K}=10^{18}$,

对于100%的数据, $1 \le n \le 10^6, 1 \le K \le 10^{18}$ 。

数据量非常大,请使用尽量快的输入输出方式。

 $2 ext{ WE}$

2 We

2.1 问题描述

有一个长为A,宽为B的矩形,四个顶点分别为(0,0), (A,0), (0,B), (A,B),现在(0,0)出有一个激光发射器,可以向矩形内任意角度发射激光,激光可以碰到矩形壁按照光的反射定律反射。

现在已知激光在矩形壁上反射了恰好K次,并且最终到达了(A,B)点被吸收。 现在王想让你对于所有可能的光路,求出光路长度的P次方和,答案对998244353取模。 两条光路不同当且仅当初始激光发射角度不同。

2.2 输入格式

第一行一个正整数T表示数据组数。 接下来T行,每行四个正整数A, B, K, P,意义如题目所述。

2.3 输出格式

对于每组数据输出一行一个整数表示答案。

2.4 样例输入

6

3 4 0 0

3 4 0 2

3 3 2 0

3 3 2 2

3 17 1 2

59325 31785 262142 2

2.5 样例输出

1

25

2

180

2 WE 5

0 29299510

2.6 数据规模与约定

#	$K \leq$	$P \in$	其他
1	0	$\{0, 2\}$	
2	100	$\{0, 2\}$	
3	3000	{0}	
4	3000	$\{0, 2\}$	
5	10^{5}	{0}	
6	10^{5}	$\{0, 2\}$	A = B = 1
7	10^{9}	{0}	
8	10^{9}	$\{0, 2\}$	A = B = 1
9	10^{9}	$\{0, 2\}$	
10	10^{9}	{0,2}	

对于所有数据, $T \le 25; 1 \le A, B \le 10^6; 0 \le K \le 10^9; P \in \{0, 2\}.$

3 CAN

3 Can

3.1 问题描述

王最近得到了一张平面图,他想把这张平面图画在一个平面上,使得任意两个点不重合,任意一条边画成一条线段,满足任意两条线段不在端点以外的地方有公共点,王不能接受斜的线段,所以他要求你的所有边都必须画成平行与坐标轴的线段。

然而不久王就发现,大多数平面图都是没办法这样画出来的,比如一个三元环。王想出了一个办法,可以在一些边上加一些二度点,将一条边切成若干条。

例如一个三元环可以在一条边上加一个点就变成了四元环,就可以画成正方形了。

现在王想知道,对于一个给定的平面如图,至少要加多少个二度点才能在平面上按照自己的要求画出来呢?

3.2 输入格式

输入中直接限制了这个平面图的拓扑结构,即给出的是一个平面嵌入的结构,具体描述方式如下:

第一行两个正整数n, m表示平面图点数和有限平面区域的数目。

接下来m行,每行第一个整数k表示这个平面区域边界上的点数,接下来k个整数 p_i 按照逆时针方向给出了这个平面区域边界上点的编号。

保证给出的图任意点的度数不超过4且删去任意一个点图都仍然是连通的(点双连通图)

3.3 输出格式

输出一行一个整数表示最少需要加的二度点数目。

3.4 样例输入

3.4.1 样例输入1

5 1

5 1 2 3 4 5

3.4.2 样例输入2

6 2

3 1 2 3

3 CAN

5 2 4 5 6 3

3.4.3 样例输入3

5 4

3 1 2 3

3 1 3 4

3 1 4 5

3 1 5 2

3.4.4 样例输入4

见选手文件目录下can/ex_can4.in

3.5 样例输出

3.5.1 样例输入1

0

3.5.2 样例输入2

1

3.5.3 样例输入3

4

3.5.4 样例输出4

见选手文件目录下can/ex_can4.out

3 CAN 8

3.6 样例解释

3.7 数据规模与约定

本题采用捆绑测试,只有通过一个子任务的全部测试点才算通过这个子任务,否则不得分。

Subtask 1[10pts]:

 $m \leq 1$.

Subtask 2[10pts]:

 $m \leq 2$.

Subtask 3[10pts]:

 $n \leq 5$.

Subtask 4[10pts]:

 $n \leq 10$.

Subtask 5[10pts]:

 $n \leq 20$.

Subtask 6[20pts]:

 $n \leq 50$.

Subtask 7[30pts]:

 $n \le 200$.

对于全部数据, $3 \le n \le 200; 1 \le m \le 200$.