Euclidean k-Means Clustering with α -Center Proximity

Amit Deshpande (MSR, India), Anand Louis (IISc, India), and Apoorv Vikram Singh (IISc, India)

PROBLEM

k means: $\min_{\mu_1,...,\mu_k} \sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||^2$.

 α -Center Proximal Clustering: $\forall i \neq j, x \in C_i$,

$$||x - \mu_j|| > \alpha ||x - \mu_i||$$

Aim: Given $\alpha > 1$, k, n points in \mathbb{R}^d , find the minimum cost α -center proximal k-means clustering.

Motivation: Larger the value of α , the more separated are the clusters. A way to get the "ground-truth" clustering.

MOTIVATION

- Small *k*-means cost alone does not imply stable or meaningful clusters in practice.
- Real-world data have α close to 1.
- Realistic model: most of the points satisfy α -center proximal clustering, except a small fraction.

Intuition of α -center proximal instances

OUR RESULTS

Best known: For $\alpha \geq 2$, [AMM'17] can find the α -center proximal clustering in polynomial time.

Our Results:

- 1. **Algorithmic:** If the α -center proximal clustering of the minimum k-means cost has ω -balanced clusters, then our algorithm outputs the minimum cost α -center proximal clustering with a constant probability in time $O(nd2^{\text{poly}(k/\omega(\alpha-1))})$, where ω is a balance parameter. This holds for *any* value of $\alpha > 1$. We can also handle some class of outliers.
- 2. **Hardness:** There exists a value of α and $\varepsilon_0 > 0$ such that it is NP-hard to approximate minimum k-means cost ω -balanced α -center proximal clustering within a factor of $(1 + \varepsilon_0)$. The value of k depends on n in the construction.

GEOMETRY

This holds for all pairs of α -center proximal clusters. The geometric property was also noted by [TV'10].

MAIN IDEA

Approximate Caratheodory Theorem: Sample points uniformly at random from a cluster of bounded radius. Mean of the sample is close to the cluster mean.

Idea: We can approximate mean of a cluster up to an additive error of $\frac{d_{i,j}}{2}$, and still recover the exact clustering!

OUTLIERS

Model: Let Z denote the set of outliers, and |Z| is known to us. We assume that the set of outliers satisfy the following property. For all $i, j \in [k]$, $x \in C_i$, and $z \in Z$

$$||z - \mu_j|| > \alpha ||x - \mu_i||.$$

Idea: Since outliers are "far-away", and |Z| is known, we can sample sufficient number of points based on ω and |Z|, and get close to the means of each cluster. We use means to get the clusters and then remove the farthest |Z| points.

ALGORITHM AND ANALYSIS

Algorithm:

- 1: Sample poly $\left(\frac{1}{\omega}, k, \frac{\alpha}{(\alpha 1)^2}\right)$ points uniformly at random. \triangleright this ensures sufficient points from all clusters
- 2: Go over all the k partitions of these points (k+1) in case of outliers). \triangleright at least one of the partitions corresponds to desired clustering
- 3: Assign all points to nearest center, and output clustering which is α-center proximal with lowest k-means cost.
 ▷ one of the clusterings will be the desired clustering due to the approximate Caratheodory theorem

Runtime: Step 3 takes time O(nd) for each clustering. Step 2 produces $2^{\text{poly}\left(\frac{1}{\omega},k,\frac{\alpha}{(\alpha-1)^2}\right)}$ number of clusterings. Therefore, the total running time is $O(nd2^{\text{poly}(k/\omega(\alpha-1))})$.

HARDNESS

- 1. [ACKS'15] showed hardness of approximation of Euclidean k-means clustering using reduction from the vertex cover problem on triangle-free graphs.
- 2. We show that the instance given by [ACKS'15] is α -center proximal.

REFERENCES

[ACKS'15] Pranjal Awasthi and Moses Charikar and Ravishankar Krishnaswamy and Ali Kemal Sinop. The Hardness of Approximation of Euclidean *k*-Means. *SoCG*, 2015.

[AMM'17] Haris Angelidakis and Konstantin Makarychev and Yury Makarychev. Algorithms for Stable and Perturbation-Resilient Problems. *STOC*, 2017.

[TV'10] Matus Telgarsky and Andrea Vattani. Hartigan's Method: *k*-means Clustering without Voronoi. *AISTATS*, 2010.