

SUNARIO

Introdução Justificativa Metodologia Resultados Conclusão Sugestões

INTRODUÇÃO

INTRODUÇÃO

A violência contra pessoas LGBTQIA+ no Brasil é uma realidade **persistente** e **alarmante**, marcada por profundas desigualdades estruturais, heranças históricas de preconceito e a contínua ausência de políticas públicas efetivas de proteção e inclusão.

De acordo com o relatório anual do **Grupo Gay da Bahia (GGB)**, o Brasil continua entre os países que mais matam pessoas LGBTQIA+ no mundo.

INTRODUÇÃO

Em 2024, foram registradas:

291 mortes violentas motivadas por LGBTfobia

um **aumento de mais de 8%** em relação ao ano anterior.

Esses números revelam não apenas a gravidade do problema, mas também a **urgência** de políticas comprometidas com a promoção dos direitos humanos e a garantia da vida e dignidade da população LGBTQIA+.

JUSTIFICATIVA

JUSTIFICATIVA

Este estudo se justifica pela necessidade de compreender os padrões da violência contra a população LGBTQIA+, identificar os grupos mais vulneráveis e contribuir para o desenvolvimento de estratégias de enfrentamento baseadas em evidências.

Como trabalho de conclusão do curso Pretalab - Ciclo 13, na trilha de Inteligência Artificial com foco em análise de dados, este projeto busca demonstrar a aplicabilidade de técnicas exploratórias e preditivas no enfrentamento de problemas sociais complexos.

METODOLOGIA

METODOLOGIA

Este estudo foi conduzido por meio de uma **análise exploratória e preditiva** em relação aos dados sobre **homicídios de pessoas LGBTQIA+ no Brasil**, com a utilização de quatro bases de dados distintas contemplando os diferentes recortes demográficos e geográficos

Etapas

do projeto

- O1 Coleta e carregamento dos dados
- O2 Pré-processamento dos dados
- O3 Análise exploratória dos dados
- O4 Modelagem preditiva
- O5 Interpretação e apresentação dos resultados

01. COLETA E CARREGAMENTO DOS DADOS

Quatro arquivos no formato CSV foram utilizados, contendo as seguintes informações:

• Dados gerais do Brasil;

• Distribuição por local;

• Distribuição por raça/cor;

 Distribuição por grupos específicos da população LGBTQIA+;

Etapas

do projeto

- O1 Coleta e carregamento dos dados
- O2 Pré-processamento dos dados
- O3 Análise exploratória dos dados
- O4 Modelagem preditiva
- O5 Interpretação e apresentação dos resultados

02. PRÉ-PROCESSAMENTO DOS DADOS

Em cada conjunto de dados foi realizada a inspeção para verificar:

- a estrutura da base de dados;
- os tipos de dados;
- a presença de valores ausentes (tratados com o preenchimento com zero);
- a integridade das colunas relevantes para a análise posterior;
- a confirmação de valores únicos nas colunas categóricas;

02. PRÉ-PROCESSAMENTO DOS DADOS

Variáveis disponíveis:

- Dados gerais do Brasil
 - o ano
 - homicidios

- Distribuição por local
 - o ano
 - local
 - homicidios
 - prop_homicidios_total

- Distribuição por raça/cor
 - o ano
 - o raca_cor
 - homicidios
 - prop_homicidios_total
- Distribuição por grupos específicos da população LGBTQIA+
 - o ano
 - o local
 - homicidios
 - prop_homicidios_total

02. PRÉ-PROCESSAMENTO DOS DADOS

Presença de valores ausentes (NaNs):

• Dados gerais do Brasil

ano	0
local	0
homicidios	0
prop_homicidios_total	0
dtype: int64	

• Distribuição por local

ano	0
raca_cor	0
homicidios	13
prop_homicidios_total	13
dtype: int64	

• Distribuição por raça/cor

 Distribuição por grupos específicos da população LGBTQIA+

ano	0
grupo	0
homicidios	21
prop_homicidios_total	38
dtype: int64	

Pode-se perceber que dois dos conjuntos de dados **possuem** valores ausentes.

Etapas

do projeto

- O1 Coleta e carregamento dos dados
- O2 Pré-processamento dos dados
- O3 Análise exploratória dos dados
- O4 Modelagem preditiva
- O5 Interpretação e apresentação dos resultados

Foram realizadas **análises descritivas** e **visualizações gráficas** para identificação de **padrões e distribuições relevantes para a análise**, como:

- Quantidade total de homicídios por local;
- Distribuição de homicídios por raça/cor;
- Distribuição de homicídios entre grupos específicos da população LGBTQIA+;

Análises estatísticas descritivas:

Os locais com mais homicídios:

- Residência
- Via Pública

Análises estatísticas descritivas:

Raça/cor com maior taxa de homicídios:

• Branca

Análises estatísticas descritivas:

Identidades de gênero com maiores taxas de homicídios:

- Gay;
- Trans ou Travesti;

Etapas

do projeto

O1 Coleta e carregamento dos dados

2 Pré-processamento dos dados

O3 Análise exploratória dos dados

O4 Modelagem preditiva

O5 Interpretação e apresentação dos resultados

Foi desenvolvido um modelo preditivo com o objetivo de prever o número de homicídios a partir de atributos demográficos presentes no dataset de distribuição por raça. Na criação do modelo preditivo foi utilizado o algoritmo de Random Forest Regressor, com as seguintes etapas:

- Pré-processamento dos dados, com a transformação da variável categórica raca_cory em variáveis dummy (one-hot encoding);
- Separação do conjunto de dados em treino e teste;
- Treinamento do modelo e utilização da métrica de erro médio absoluto (MAE) para avaliação do desempenho;
- Comparação visual entre as distribuições dos valores reais e previstos para validar a capacidade preditiva do modelo;

```
# Machine Learning - Previsão de Risco com base em atributos demográficos
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train test split
from sklearn.metrics import mean_absolute_error
# Dados do modelo: df raca
df ml = df raca.copy()
df_ml = pd.get_dummies(df_ml, columns=["raca_cor"])
X = df ml.drop(columns=["homicidios"])
y = df_ml["homicidios"]
X train, X test, y train, y test = train test split(X, y, random state=42)
modelo = RandomForestRegressor(n_estimators=100, random_state=42)
modelo.fit(X_train, y_train)
y_pred = modelo.predict(X_test)
erro_mae = mean_absolute_error(y_test, y_pred)
print(f"Erro médio absoluto (MAE): {erro_mae:.2f}")
```

Código de treinamento do modelo utilizando o algoritmo **Random Forest Regressor**.

Código de treinamento do modelo utilizando o algoritmo **Random Forest Regressor**.

```
# Comparação com Regressão Ridge
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

modelo_ridge = Ridge(alpha=1.0)
modelo_ridge.fit(X_train, y_train)
y_pred_ridge = modelo_ridge.predict(X_test)

print("Ridge:")
print("Ridge:", mean_absolute_error(y_test, y_pred_ridge))
print("MSE:", mean_squared_error(y_test, y_pred_ridge))
print("R2:", r2_score(y_test, y_pred_ridge))
```

Código treina um modelo de Regressão Ridge usando os dados de treinamento, faz previsões nos dados de teste e avalia o desempenho do modelo com as métricas MAE, MSE e R², permitindo comparar sua capacidade preditiva com outros modelos

```
from sklearn.model_selection import GridSearchCV

param_grid = {'alpha': [0.01, 0.1, 1, 10, 100]}
grid_ridge = GridSearchCV(Ridge(), param_grid, cv=5, scoring='r2')
grid_ridge.fit(X_train, y_train)

print("Melhor alpha:", grid_ridge.best_params_)
print("Melhor R² médio (validação cruzada):", grid_ridge.best_score_)
```

O codigo realiza uma busca em grade (Grid Search) para encontrar o melhor valor do parâmetro alpha da Regressão Ridge, usando validação cruzada para avaliar o desempenho do modelo com base no R², otimizando assim a regularização para melhorar a previsão

Etapas

do projeto

- O1 Coleta e carregamento dos dados
- O2 Pré-processamento dos dados
- O3 Análise exploratória dos dados
- O4 Modelagem preditiva
- O5 Interpretação e apresentação dos resultados

05. INTERPRETAÇÃO E APRESENTAÇÃO DOS RESULTADOS

Os resultados da análise exploratória e do modelo preditivo foram apresentados por meio de **gráficos** e **tabelas**, evidenciando os principais insights a respeito da distribuição e evolução dos homicídios contra pessoas LGBTQIA+ no Brasil.

Realizou-se uma **exploração da série temporal dos homicídios ao longo dos anos**, a fim de identificar as tendências e mudanças ao longo do tempo, representadas graficamente. Dessa forma, foram respondidas as p**erguntas orientadoras propostas pela docente do curso**:

- Quais locais têm as maiores taxas de violência contra a população LGBTQIA+?
- Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

1. Quais locais têm as maiores taxas de violência contra a população LGBTQIA+?

Тор	10 Locais com Mais Homicío	dios contra	LGBTQIA+	(2019):
	Local	Homicídios		
0	Residência	111		
1	Via Pública	71		
2	Não Identificado	39		
3	Local com ao menos um caso	38		
4	Matagal/Mata	12		
5	Rodovia/BR/Estrada	12		
6	Hotel/Motel	9		
7	Bar	6		
8	Hospital	4		
9	Parque	4		

1. Quais locais têm as maiores taxas de violência contra a população LGBTQIA+?

A análise mostra que os principais cenários de violência são as **residências** e as **vias públicas**, seguidos por matagal ou mata, hotéis e motéis, e rodovias ou estradas.

A presença significativa de homicídios em **residências** sugere que muitos desses crimes ocorrem em **contextos íntimos ou familiares**, o que pode estar relacionado à rejeição, violência doméstica ou conflitos interpessoais motivados por LGBTfobia.

Já a alta incidência em vias públicas e áreas isoladas, como matas e estradas, aponta para a exposição da população LGBTQIA+ à violência urbana e à vulnerabilidade em espaços abertos, muitas vezes sem proteção institucional.

2.Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

Tabela: Total de Homicídios Contra LGBTQIA+ por Ano (Dados Nacionais)

	ano	homicidios
0	2000	130
1	2001	132
2	2002	126
3	2003	125
4	2004	158
5	2005	135
6	2006	112
7	2007	142
8	2008	187
9	2009	199
10	2010	260
11	2011	266
12	2012	338
13	2013	314
14	2014	329
15	2015	319
16	2016	343
17	2017	445
18	2018	420
19	2019	329

2.Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

A análise da série histórica de homicídios contra pessoas LGBTQIA+ no Brasil, entre os anos de 2000 e 2019, revela uma tendência preocupante de crescimento ao longo do tempo.

Os anos de **2017** e **2018** se destacam como os períodos com os maiores números de homicídios registrados, indicando um pico alarmante de violência nesse intervalo.

Esse aumento pode estar relacionado a fatores como o acirramento de discursos de ódio, retrocessos em políticas públicas de proteção e a intensificação da intolerância em contextos políticos polarizados.

2.Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

Apesar de um **declínio observado em 2019**, é importante destacar que essa redução não necessariamente representa uma melhora estrutural na segurança da população LGBTQIA+.

A queda pode estar associada a fatores como subnotificação, mudanças na metodologia de coleta de dados ou até mesmo à ausência de registros oficiais em determinadas regiões.

Portanto, o decréscimo em 2019 deve ser **interpretado com cautela**, pois não há evidências suficientes para afirmar que houve uma reversão consistente na tendência de violência.

2.Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

Tabela: Homicídios Contra LGBTQIA+ por Raça/Cor (Dados do 2019)

	Raça/Cor	Homicídios
0	Branca	121
1	Parda	90
2	Não Identificado	86
3	Preta	32

2.Há padrões sazonais ou demográficos (idade, raça ou identidade de gênero) nos crimes?

Os dados por raça/cor revelam um resultado que merece atenção: embora o número de vítimas registradas na categoria "branca" seja o mais elevado individualmente, a soma das vítimas pardas e pretas, ou seja, pessoas negras, representa um contingente expressivo da violência letal contra a população LGBTQIA+.

Além disso, chama a atenção o número significativo de casos em que a raça/cor da vítima não foi identificada, o que pode indicar falhas na coleta de dados ou negligência institucional na documentação desses crimes.

Esse cenário sugere que os dados disponíveis podem **não refletir com precisão a realidade da violência**, especialmente no que diz respeito à sua dimensão racial.

CONCLUSÃO

CONCLUSÃO

Os dados mostram o que a população LGBTQIA+ já sente na pele há muito tempo: viver com medo, seja dentro de casa ou na rua, ainda é uma realidade no Brasil. A violência não é pontual nem isolada – ela é reflexo de uma estrutura que normaliza a exclusão, silencia denúncias e falha em proteger quem mais precisa.

O uso da **inteligência artificial** para entender padrões e prever riscos é um passo importante, mas ele só tem valor real se virar ação concreta.

Dados sozinhos não salvam vidas.

SUGESTÕES

• Criação de centros comunitários LGBTQIA+ com apoio público, em bairros periféricos e cidades menores, oferecendo acolhimento, atendimento jurídico e psicológico gratuito, além de espaço seguro para quem sofre violência ou rejeição familiar. Esses espaços devem ser geridos com participação da própria comunidade, valorizando saberes locais.

• Educação que acolhe e forma, com políticas de formação continuada para professores(as) sobre gênero e sexualidade, e inclusão de temas LGBTQIA+ nos currículos escolares. Não se trata de "doutrinar", mas de garantir que jovens LGBTQIA+ possam estudar sem medo – e que seus colegas aprendam a respeitar as diferenças desde cedo.

• Formação e sensibilização de profissionais de atuação na ponta através da implementação de programas de capacitação continuada para profissionais da saúde, educação, segurança pública e justiça, com conteúdos sobre diversidade sexual e de gênero.

• Criar um sistema nacional de monitoramento da violência contra pessoas LGBTQIA+, com recorte por raça/cor, identidade de gênero, orientação sexual e território, com a padronização dos registros em boletins de ocorrência, laudos médicos e certidões de óbito.

OBRIGADA PELA OPORTUNIDADE!

Griselda Karen Sillerico Justo

https://www.linkedin.com/in/griselda-justo/ https://github.com/GriseIdaJusto

Amanda da Silva Gonçalves

https://www.linkedin.com/in/amanda-goncalves-568879228/ https://github.com/AmandaAmani

Priscila Estevão Da Cunha

https://www.linkedin.com/in/priestevao/ in https://github.com/priscilaestevao (🛒)

Camille dos Santos Nogueira

https://www.linkedin.com/in/camille-nogueira-205272275/ **in** https://github.com/camizsn 🏈

Raysa Leide De Oliveira

https://www.linkedin.com/in/raysaleide/ https://github.com/raysaleide (🔻)

Manuela De Oliveira Souza Brito

https://www.linkedin.com/in/manuelaoliveiracompliance/ in https://github.com/Manuelaoliveira97 (\$\\exists\$)

