Taller de Álgebra Lineal

Abel Alvarez

2024-05-09

Objetivo Afianzar los conceptos fundamentales de espacios vectoriales, subespacios vectoriales, bases, independencia lineal, producto punto y proyección ortogonal.

- 1. Defina los siguientes términos y proporciona ejemplos
 - Espacios Vectoriales
 - Subespacio vectorial
 - Bases de un Espacio Vectorial
 - Independencia Lineal
- 2. Describa como podemos representar graficamente la suma de dos vectores en \mathbb{R}^2 . Además, describa graficamente como podemos interpretar el producto por un escalar de un vector en \mathbb{R}^2 y proporcione un ejemplo en cada situación.
- 3. Escriba si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - Un conjunto de vectores es linealmente independiente si al menos uno de los vectores es un múltiplo de otro.
 - Si un conjunto de vectores es linealmente independiente, entonces necesariamente es una base para el espacio vectorial.
 - En \mathbb{R}^3 , el conjunto de vectores $\{(1,0,0),(0,1,-1),(1,0,1)\}$ es una base.
 - En \mathbb{R}^2 , el conjunto de vectores $\{(1,0),(0,1),(1,1)\}$ es una base.
 - Si ${\bf u}$ y ${\bf v}$ son dos vectores ortogonales, entonces su producto punto es cero.
- 4. Verificación de Espacio Vectorial: Dado el conjunto de funciones $V = \{f : \mathbb{R} \to \mathbb{R}\}$, donde cada función está definida por $f(x) = ax^2 + bx + c$, con $a, b, c \in \mathbb{R}$. Verifica si V es un espacio vectorial bajo la suma y multiplicación escalar usuales.
- 5. Cálculo de una Base: Sean los vectores $\mathbf{v}_1=(1,2,3),\,\mathbf{v}_2=(4,5,6)$ y $\mathbf{v}_3=(5,7,9)$ en \mathbb{R}^3 . Encuentra una base para el subespacio generado por estos vectores. ¿Cuál es la dimensión de este subespacio?

- 6. Independencia Lineal: Dado el conjunto de vectores $\mathbf{u}_1=(1,0,1),\,\mathbf{u}_2=(0,1,0)$ y $\mathbf{u}_3=(1,1,1)$ en \mathbb{R}^3 , determina si estos vectores son linealmente independientes.
- 7. **Producto Punto:** Define el producto punto de dos vectores, escriba sus propiedades. Explica cómo se utiliza el producto punto para determinar si dos vectores son ortogonales.
- 8. **Proyección Ortogonal:** Explica el concepto de proyección ortogonal de un vector sobre otro. Proporciona una fórmula para calcularla la proyección de un vector sobre otro.
- 9. Cálculo del Producto Punto: Dados los vectores $\mathbf{a}=(1,2,3)$ y $\mathbf{b}=(1,0,-1)$, calcula su producto punto. ¿Los vectores \mathbf{a} y \mathbf{b} son ortogonales?
- 10. Cálculo de la Proyección Ortogonal: Dado el vector $\mathbf{u}=(3,4,3)$ encuentre una forma para calcular un vector ortogonal a \mathbf{u} .