b) Modelo ANOVA por bloques:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
 con i=1,..., a; j=1,..., b

Donde

yij: respuesta para el i ésimo tratamiento en la j ésima réplica

 μ : media global

τi: efecto del i ésimo tratamiento

βj: efecto del j ésimo bloque

εij: error aleatorio (componente aleatoria del modelo)

Supuestos: Homogeneidad de varianzas, ε_{ij} independientes y $\varepsilon_{ij} \sim N$ (0, σ^2)

Restricciones: Asumiendo fijos tanto el factor como el bloqueo:

$$\sum_{i=1}^{a} \tau_i = 0 \qquad \qquad \sum_{j=1}^{b} \beta_j = 0$$

Siendo para este caso:

Tratamiento: Solución. a=3

Bloque: Días. b=4

Respuesta: Cantidad de bacterias.

Y las hipótesis:

 H_0) $\mu_1 = \mu_2 = \cdots = \mu_a$

 H_1) Al menos dos de las medias no son iguales.

O:

 H_0) $\tau_1 = \tau_2 = \cdots = \tau_a = 0$

 H_1) $\tau_i \neq 0$ para al menos un valor i.

Análisis exploratorio:

Se puede observar que existe un efecto significativo principalmente en la solución 3.

También existe un efecto significativo por parte, principalmente del día 4, de los días de la medición.

c) Construyendo la tabla ANOVA:

Pruebas de efectos inter-sujetos

Variable dependiente: Cantidad de bacterias

•	Tipo III de suma		Media		
Origen	de cuadrados	gl	cuadrática	F	Sig.
Modelo corregido	1810,417ª	5	362,083	41,913	,000
Intersección	4218,750	1	4218,750	488,344	,000
Tratamiento	703,500	2	351,750	40,717	,000
Bloque	1106,917	3	368,972	42,711	,000
Error	51,833	6	8,639		
Total	6081,000	12			
Total corregido	1862,250	11			

a. R al cuadrado = ,972 (R al cuadrado ajustada = ,949)

Teniendo en cuenta el p-value<0,01 que representa a la solución, se puede afirmar que existe un efecto significativo por parte de la misma con respecto a la cantidad de bacterias.

Y, dado el p-value<0,01 que representa al día, se puede afirmar que existe un efecto significativo dado por el bloque con respecto a la cantidad de bacterias, por lo que el modelo usado es correcto.

d) Homogeneidad de varianzas:

$$H_0$$
) $\sigma_1^2 = \sigma_2^2 = \dots = \sigma^2$
 H_1) $\exists \sigma_i^2 \neq \sigma^2$

Mediante el calculo alternativo ya que el software no lo permite de manera directa, se obtiene la siguiente tabla ANOVA:

ANOVA

abs_res

	Suma de		Media		
	cuadrados	gl	cuadrática	F	Sig.
Entre grupos	1,310	2	,655	,447	,653
Dentro de grupos	13,187	9	1,465		
Total	14,498	11			

Al ser el p-value un numero bastante grande no se puede rechazar la hipótesis nula y se concluye que existe homogeneidad de varianzas.

La normalidad de los residuos:

$$H_0$$
) $e_{ij} \sim N (0, \sigma^2)$
 H_1) $No H_0$

Observando Shapiro-Wilk:

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Residuo para Respuesta	,172	12	,200*	,932	12	,403

^{*.} Esto es un límite inferior de la significación verdadera.

No se rechaza la hipótesis nula y se concluye la normalidad de los residuos.

a. Corrección de significación de Lilliefors

Aleatoriedad e independencia de los residuos:

Como ningún punto se aleja mas de 3 unidades del eje central, se concluye que los residuos están distribuidos aleatoria e independientemente.