三年 班 號 姓名

# 一、填充題:若答案要填角的大小,請用弧度(弳)表示,用角度作答不計分

**1.** 下列何者最接近  $y = \sin x - \sqrt{3}\cos x$  的圖形?\_\_\_\_\_

(1)





. .



(4)



(5)

(3)



- 2. 試求 $\frac{2017\pi}{24}$ 的最大負同界角\_\_\_\_\_。(請以弧度表示)
- 3. 有一張紙形狀為扇形,其中心角為<sup>2π</sup>、半徑3公分。將此扇形紙以圓心作為錐頂捲成直圓錐狀,試求 直圓錐的最大容積=\_\_\_\_\_\_ 立方公分。
- $4. f(x) = \sqrt{3} \sin x + \cos x$ 
  - (1) 若  $f(x) = r_1 \sin(x + \theta_1)$ ,  $r_1 > 0$ ,  $0 \le \theta_1 < 2\pi$ , 則 數對  $(r_1, \theta_1) =$ \_\_\_\_\_\_
  - (2) 若  $f(x) = r_2 \cos(x + \theta_2)$ ,  $r_2 < 0$ ,  $0 \le \theta_2 < 2\pi$ ,則  $\theta_2 =$  \_\_\_\_\_( $\theta_1$ , $\theta_2$  請以弧度表示)
- 5. 試判斷平面上的點(csc3,  $\tan(\frac{200\pi}{3})^{\circ}$ )在第\_\_\_\_\_\_象限。

高雄中學一〇六學年度第一學期第二次段考數學科試卷(自然組)

三年\_\_\_\_\_ 班 \_\_\_\_\_號 姓名\_\_\_\_\_\_\_

**6.** 兩圖形  $\Gamma_1$ :  $\begin{cases} x = \sqrt{3} + 2\cos q_1 \\ y = 2\sin q_1 \end{cases}, 0 \le q_1 < 2p \quad , \Gamma_2$ :  $\begin{cases} x = -\sqrt{3} + 2\cos q_2 \\ y = 2\sin q_2 \end{cases}, 0 \le q_2 < 2p$ 

今要求: $\Gamma_2$ 和 $\Gamma_1$ 有兩個交點,且 $\Gamma_2$ 除交點外的部分都在 $\Gamma_1$ 的內部。 試縮小 $\theta_2$ 的範圍以符合所求 \_\_\_\_\_\_(請以弧度表示)

- 7. 試求  $f(x) = |\pi \sin(\frac{\pi}{6}x \frac{1}{6}) + 1|$  的週期。\_\_\_\_\_\_(請以弧度表示)
- 9.  $\alpha$ 、  $\beta$  為任意有向角,且  $\alpha+\beta=\frac{\pi}{3}$ 。試求  $3\sin\alpha+4\sin\beta$  的最小值。\_\_\_\_\_\_
- **10.** 求  $f(x) = 3(\sin x + \cos x) 4(\sin x + \cos x) (\sin^2 x \sin x \cos x + \cos^2 x)$ 的週期。\_\_\_\_\_\_(請以弧度表示)
- 11.  $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$ ,若  $2\sin x + 3\cos x$  的最大值為 M、最小值為 m。求數對(M, m) = \_\_\_\_\_。
- **12.**  $\theta$  為任意有向角,令  $k=1+2\sin^2\theta-\sin 2\theta+\sin 4\theta$ ,試求 k 的範圍。\_\_\_\_\_\_
- **13.** 坐標平面中,O 為原點,A(1,0)。P 為  $y=x^2-3$  的圖形和圓  $C: x^2+y^2=4$  在第一象限的交點,試求  $\angle AOP =$ \_\_\_\_\_。(請以弧度表示)

#### 二、作圖題

**1.** 在已知  $\sin x \cdot \cos x$  函數圖形的前提下,試簡略繪出  $f(x) = \sin x (\sin x + \cos x)$ 的圖形,其中 $-\pi \le x \le \pi$ ,並請說明如何作圖。並標示出圖形中最高點的坐標。無說明或用單純描點方式繪圖都不給分。

## 高雄中學一〇六學年度第一學期第二次段考數學科答案卷(自然組)

三年\_\_\_\_\_ 班 \_\_\_\_\_ 號 姓名\_\_\_\_\_\_\_

## 一、填充題:(92%)

參考計分標準:(註:全對才給分。)

| 格數 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 分數 | 10 | 20 | 30 | 40 | 48 | 56 | 64 | 70 | 74 | 78 | 82 | 86 | 89 | 92 |

| 1.               | 2.                  | 3.                                                                        | 4.(1)                                |  |
|------------------|---------------------|---------------------------------------------------------------------------|--------------------------------------|--|
| (1)              | $-\frac{47\pi}{24}$ | $\frac{2\sqrt{2}\pi}{3}$                                                  | $(2,\frac{\pi}{6})$                  |  |
| 4.(2)            | 5.                  | 6.                                                                        | 7.                                   |  |
| $\frac{2\pi}{3}$ | 1                   | $0 \le \theta_2 \le \frac{\pi}{6}, \ \frac{11\pi}{6} \le \theta_2 < 2\pi$ | 12                                   |  |
| 8.               | 9.                  | 10.                                                                       | 11.                                  |  |
| 4                | -√13                | $\frac{2\pi}{3}$                                                          | $(\sqrt{13}, \frac{2-3\sqrt{3}}{2})$ |  |
|                  |                     |                                                                           |                                      |  |
| 12.              | 13.                 |                                                                           |                                      |  |

## 二、作圖題:(8%)

1. 在已知  $\sin x \cdot \cos x$  函數圖形的前提下,(1)試簡略繪出  $f(x) = \sin x (\sin x + \cos x)$ 的圖形,其中 $-\pi \le x \le \pi$ , 並請說明如何作圖。(2)並標示出圖形中最高點的坐標。無說明或用單純描點方式繪圖都不給分。

有兩點須求出坐標: $(\frac{-5\pi}{8}, \frac{\sqrt{2}+1}{2})$ , $(\frac{3\pi}{8}, \frac{\sqrt{2}+1}{2})$ 。少列出一點扣 2 分。

