Bayesian Network Representation

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Exploiting Independence Properties
- Knowledge Engineering

Parameters for Independent r.v.s

- Each X_i represents outcome of toss of coin i
 - Assume coin tosses are marginally independent
 - i.e., $(X_i \perp X_j)$, therefore

$$P(X_1,...,X_n)=P(X_1)P(X_2)..P(X_n)$$

- If we use standard parameterization of the joint distribution, the independence structure is obscured and required 2^n parameters
- However we can use a more natural set of parameters: n parameters $\theta_1,...\theta_n$

Conditional Parameterization

- Ex: Company is trying to hire recent graduates
- Goal is to hire intelligent employees
 - No way to test intelligence directly
 - But have access to Student's SAT score
 - Which is informative but not fully indicative
- Two random variables
 - Intelligence: $Val(I)=\{i^I,i^O\}$, high and low
 - Score: $Val(S) = \{s^1, s^0\}$, high and low
- Joint distribution has 4 entries
 Need three parameters

I	S	P(I,S)
i^0	s^0	0.665
i^0	s^1	0.035
i^1	s^0	0.06
i^1	s^1	0.24.

Alternative Representation: Conditional Parameterization

- $P(I, S) = P(I)P(S \mid I)$
 - Representation more compatible with causality
 - Intelligence influenced by Genetics, upbringing
 - Score influenced by Intelligence
- Note: BNs are not required to follow causality but they often do
- Need to specify P(I) and P(S/I)

SAT

• One marginal, two conditionals $P(S/I=i^0)$, $P(S/i=i^1)$ 5

Conditional Parameterization and Conditional Independences

 Conditional Parameterization is combined with Conditional Independence assumptions to produce very compact representations of high dimensional probability distributions

Naïve Bayes Model

- Conditional Parameterization combined with Conditional Independence assumptions
 - $-Val(G)=\{g^1, g^2, g^3\}$ represents grades A, B, C

		U	11)
$I \mid$	g^1	g^2	g^3
i^0	0.2	0.34	0.46
i^1	0.74	0.17	0.09

P(G|I)

- SAT and Grade are independent given Intelligence (assumption)
 - Knowing intelligence, SAT gives no information about class grade $P \models (S \perp G \mid I)$
- Assertions
 - From probabilistic reasoning $P(I, S, G) = P(S, G \mid I)P(I)$
 - From assumption $P(S,G \mid I) = P(S \mid I)P(G \mid I)$.
 - Combining $P(I, S, G) = P(S \mid I)P(G \mid I)P(I)$

$$P(i^{1}, s^{1}, g^{2}) = P(i^{1})P(s^{1} | i^{1})P(g^{2} | i^{1})$$

= 0.3 \cdot 0.8 \cdot 0.17 = 0.0408.

Three binomials, two 3-value multinomials: 7 params
More compact than joint distribution

SAT

Grade

BN for General Naiive Bayes Model

$$P(C, X_1, ...X_n) = P(C) \prod_{i=1}^n P(X_i \mid C)$$

Encoded using a very small number of parameters

Linear in the number of variables

Application of Naiive Bayes Model

- Medical Diagnosis
 - Pathfinder expert system for lymph node disease (Heckerman et.al., 1992)
- Full BN agreed with human expert 50/53 cases
- Naiive Bayes agreed 47/53 cases

"Student" Bayesian Network

- Represents joint probability distribution over multiple variables
 - BNs represent them in terms of graphs and conditional probability distributions(CPDs)
 - Resulting in great savings in no of parameters needed

Joint distribution from Student BN

- CPDs: $P(X_i \mid pa(X_i))$
- Joint Distribution:

$$P(X) = P(X_1, ...X_n)$$

$$P(X) = \prod_{i=1}^{N} P(X_i \mid pa(X_i))$$

$$P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G)$$

Example of Probability Query

$$P(Y = y_i \mid E = e) = \frac{P(Y = y_i, E = e)}{P(E = e)}$$
Posterior Marginal Probability of Evidence

- Posterior Marginal Estimation: $P(I=i^{l}|L=l^{0},S=s^{l})=?$
- Probability of Evidence: $P(L=l^0, s=s^1)=?$
 - Here we are asking for a specific probability rather than a full distribution

Computing the Probability of Evidence

Probability Distribution of Evidence

$$P(L,S) = \sum_{D,I,G} P(D,I,G,L,S) \qquad \text{Sum Rule of Probability}$$

$$= \sum_{D,I,G} P(D)P(I)P(G \mid D,I)P(L \mid G)P(S \mid I) \qquad \text{From the Graphical Model}$$

Probability of Evidence

$$P(L = l^{0}, s = s^{1}) = \sum_{D,I,G} P(D)P(I)P(G \mid D,I)P(L = l^{0} \mid G)P(S = s^{1} \mid I)$$

More Generally

$$P(E = e) = \sum_{X \setminus E} \prod_{i=1}^{n} P(X_i \mid pa(X_i)) |_{E=e}$$

- An intractable problem
 - #P complete
- Tractable when tree-width is less than 25
 - Most real-world applications have higher tree-width
- Approximations are usually sufficient (hence sampling)
 - When P(Y=y|E=e)=0.29292, approximation yields 0.3

Genetic Inheritance and Bayesian Networks

Genetics Pedigree Example

- One of the earliest uses of Bayesian Networks
 - Before general framework was defined
- Local independencies are intuitive
- Model transmission of certain properties such as blood type from parent to child

Phenotype and Genotype

- Some background on genetics needed to model properly
- Blood type is an observable quantity that depends on the genetic makeup
 - Called a phenotype
- Genetic makeup of a person is called a genotype

Large portions of DNA have no survival function (98.5%) and have variations useful for identification

TH01 is a location on short arm of chromosome 11: short tandem repeats (STR) of same base pair AATG Variant forms (alleles) different for different individuals

Genetic Model

- Human genetic material
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2
- 22 pairs of *autosomal* chromosomes
- One pair of sex chromosomes (X and Y)
- Each chromosome contains genetic material that determine person's properties

- Blood type is a particular locus
- Alleles: Variants of locus
 - Blood type has three variants: A, B, O

Independence Assumptions

- Arise from biology
- Once we know
 - Genotype of a person
 - additional evidence about other members of family will not provide new information about blood-type
 - Genotype of both parents
 - Determine what is passed to off-spring
 - Additional ancestral information not needed
- These independencies can be captured in BN for a family tree

A small family tree

BN for Genetic Inheritance

Autosomal Chromosome

- In each pair,
 - Paternal: inherited from father
 - Maternal: inherited from mother
- Person's genotype is an ordered pair (X,Y)
 - with each having three possible values (A,B,O)
 - there are nine values such as (A,B)
- Blood type phenotype is a function of both copies
 - E.g., genotype (A,O) blood type is A
 - $-(O,O) \rightarrow O$

CPDs for Genetic Inheritance

- Penetrance Model P(B(c)|G(c))
 - Probabilities of different phenotypes given person's genotype
 - Deterministic for bloodtype
- Transmission Model P(G(c)|G(p),G(m))
 - Each parent equally likely to transmit either of two alleles to child
- Genotype Priors P(G(c))
 - Genotype frequencies in population

Real models more complex

- Phenotypes for late-onset diseases are not a deterministic function of genotype
 - A particular genotype may have a higher probability of a disease
- Genetic makeup of individual determined by many genes
- Some phenotypes depend on many genes
- Multiple phenotypes depend on many genes

Modeling multi-locus inheritance

- Inheritance patterns of different genes not independent of each other
- Need to take into account adjacent loci
- Introduce selector variables S(l,c,m)
 - 1 if locus *l* in *c*'s maternal chromosome inherited from *c*'s maternal grandmother
 - 2 if locus inherited from c's maternal grandfather
- Model correlations of variables of adjacent loci l and l'

Use of Genetic Inheritance Model

- Extensively used in
- 1.In genetic counseling and prediction
- 2.In linkage analysis

Genetic Counseling and Prediction

- Take phenotype with known loci and observed phenotype and genotype data for individuals
 - to infer genotype and phenotype for another person (planned child)
- Genetic data
 - Direct measurements of relevant disease loci or nearby loci which are correlated with disease loci

Linkage Analysis

- Harder task
- Identifying disease genes from pedigree data using several pedigrees
 - Several individuals exhibit disease phenotype
 - Available data
 - Phenotype information for many individuals in pedigree
 - Genotype information for known location in chromosome
 - Use inheritance model to evaluate likelihood
 - Pinpoint area linked to disease to further analyze genes in that area
 - Allows focusing on 1/10,000 of genome

Sparse BN in genetic inheritance

- Allow reasoning about large pedigree and multiple loci
- Allow use of model learning algorithms to understand recombination rates in different regions and penetration probabilities for different diseases

Graphs and Distributions

- Relating two concepts:
 - Independencies in distributions
 - Independencies in graphs
- I-Map is a relationship between the two

Independencies in a Distribution

- Let P be a distribution over X
- I(P) is set of conditional independence assertions of the form $(X \perp Y|Z)$ that hold in P

X	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^{I}	0.32
x^{I}	y^0	0.12
x^{I}	y^{I}	0.48

X and Y are independent in P, e.g.,

$$P(x^{I})=0.48+0.12=0.6$$

 $P(y^{I})=0.32+0.48=0.8$
 $P(x^{I},y^{I})=0.48=0.6$ x0.8

Thus $(X \perp Y | \phi) \in I(P)$

Independencies in a Graph

Graph G with CPDs
 is equivalent to a set of independence assertions

 $P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$

Local Conditional Independence Assertions (starting from leaf nodes):

 $I(G) = \{(L \perp I, D, S \mid G), \quad L \text{ is conditionally independent of all other nodes given parent } G$ $(S \perp D, G, L \mid I), \quad S \text{ is conditionally independent of all other nodes given parent } I$ $(G \perp S \mid D, I), \quad \text{Even given parents, } G \text{ is NOT independent of descendant } L$ $(I \perp D \mid \phi), \quad \text{Nodes with no parents are marginally independent}$ $(D \perp I, S \mid \phi)\} \quad D \text{ is independent of non-descendants } I \text{ and } S$

- Parents of a variable shield it from probabilistic influence
 - Once value of parents known, no influence of ancestors
- Information about descendants can change beliefs about a node

I-MAP

- Let G be a graph associated with a set of independencies I(G)
- Let P be a probability distribution with a set of independencies I(P)
- Then G is an I-map of I if $I(G) \subseteq I(P)$
- From direction of inclusion
 - distribution can have more independencies than the graph
 - Graph does not mislead in independencies existing in P

Example of I-MAP

 G_0 encodes $X \perp Y$ or $I(G_0) = \{X \perp Y\}$

 G_1 encodes no Independence or $I(G_1) = \{\Phi\}$

 G_2 encodes no Independence $I(G_2) = \{\Phi\}$

X	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^{I}	0.32
x^{l}	y^0	0.12
x^{I}	y^{I}	0.48

X and Y are independent in P, e.g.,

 G_0 is an I-map of P G_1 is an I-map of P G_2 is an I-map of P

X	Y	P(X,Y)
x^0	y^0	0.4
x^0	y^{I}	0.3
x^{I}	y^0	0.2
x^{I}	y^{I}	0.1

X and Y are not independent in PThus $(X \perp Y) \mid \subseteq I(P)$

 G_0 is not an I-map of P G_1 is an I-map of P G_2 is an I-map of P

If *G* is an I-map of *P* then it captures some of the independences, not all

I-map to Factorization

- A Bayesian network G encodes a set of conditional independence assumptions I(G)
- Every distribution P for which G is an I-map should satisfy these assumptions
 - Every element of I(G) should be in I(P)
- This is the key property to allowing a compact representation

I-map to Factorization

From chain rule of probability

P(I,D,G,L,S) = P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)

- Relies on no assumptions
- Also not very helpful
 - Last factor requires evaluation of 24 conditional probabilities

Grade

SAT

Apply conditional independence assumptions induced from the graph

 $D \perp I \subseteq I(P)$ therefore P(D|I) = P(D) $(L \perp I, D) \subseteq I(P)$ therefore P(L|I, D, G) = P(L|G)

- Thus we get $P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$

- Which is a factorization into local probability models
- Thus we can go from graphs to factorization of P

Factorization to I-map

- We have seen that we can go from the independences encoded in G, i.e., I (G), to Factorization of P
- Conversely, Factorization according to G implies associated conditional independences
 - If P factorizes according to G then G is an I-map for P
 - Need to show that if P factorizes according to G then I(G) holds in P
 - Proof by example

Example that independences in G hold in P

- P is defined by set of CPDs
- Consider independences for S in G, i.e., $P(S \perp D, G, L|I)$

Starting from factorization induced by graph

$$P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$

- Can show that P(S|I,D,G,L)=P(S|I)
- Which is what we had assumed for P

Perfect Map

- I-map
 - All independencies in I(G) present in I(P)
 - Trivial case: all nodes interconnected

- All independencies in *I(P)* present in *I(G)*
- Trivial case: all nodes disconnected

- Both an I-map and a D-map
- Interestingly not all distributions P over a given set of variables can be represented as a perfect map
 - Venn Diagram where D is set of distributions that can be represented as a perfect map

