HPL09S0P2T1

N-Channel Enhancement-Mode MOSFET

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and Broadband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

136–941 MHz, 0.2W, 3.7 V BROADBAND RF POWER TRANSISTOR

Typical Broadband EVB Performance (I_{DQ}=50mA, T_A = 25°C, CW)

V DD	Freq.	Gain	Pout		ηD
[V]	[MHz]	[dB]	[dBm]	[mW]	[%]
	400	19.4	23.0	200	65.5
3.7	440	19.5	23.2	206	65.8
	480	19.7	23.1	205	65.9
	520	18.9	22.9	194	63.3

Capable of Handling 20:1 VSWR @ 6.0 Vdc, 0.3 Watts, CW

Figure 1. Pin Connections

Features

Characterized for Operation from 136 to 941 MHz

Unmatched Input and Output Allowing Broad Frequency Range Utilization

Integrated Stability Enhancements

Broadband - Full Power Across the Band

Exceptional Thermal Performance

Extreme Ruggedness

Typical Applications

Output Stage VHF Band Handheld Radio

Output Stage UHF Band Handheld Radio

Output Stage for 700-800 MHz Handheld Radio

Driver for 10-1000 MHz Applications

Table1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V DSS	-0.5, +20	Vdc
Gate-Source Voltage	GS	-0.5, +8	Vdc
Operating Voltage	DD	0, +6	Vdc
Storage Temperature Range	I stg	-65 to +150	°C
Case Operating Temperature	Тс	-40 to +150	°C
Operating Junction Temperature	Tı	-40 to +150	°C
Power Dissipation @TC=25°C	PD	0.3	Watts

Table 2. ESD Protection Characteristic

Test Methodology	Class	
Human Body Model (per JESD22A114)	2, passes 2500 V	
Machine Model (per EIA/JESD22A115)	A, passes 100 V	
Charge Device Model (per JESD22C101)	IV, passes 2000 V	

Table 3. Electrical Characteristics (T_A=25°C unless otherwise noted)

Characteristic	Symbol	Min	Typ.	Max	Unit
Off Characteristics					
Gate-Source Leakage Current	I				
(V _{GS} =5Vde, V _{DS} =0Vde)	GSS	-	-	500	nAdc
Zero Gate Voltage Drain Leakage Current	I				
(V _{DS} =16Vdc, V _{GS} =0Vdc)	DSS	-	-	100	nAdc
Zero Gate Voltage Drain Leakage Current	I				
$(V_{DS}=3.7Vdc, V_{GS}=0Vdc)$	DSS	-	-	100	nAdc
On Characteristics					
	V				
Gate Threshold Voltage (VDS=3.7Vdc, ID=1mA)	GS(th)	1.6	1.8	2.0	Vdc
Gate Quiescent Voltage (VDD=3.7Vdc, ID=50mA	V			• •	
Measured in Functional Test)	GS(Q)	2.3	2.6	2.9	Vdc
	V				
Drain-Source On-Voltage (V _{GS} =5Vdc, I _D =100mA)	DS(ON)	-	0.28	-	Vdc
Dynamic Characteristics					
Reverse Transfer Capacitance	Crss	_	0.25		pF
(V _{DG} =3.7V, Level=30mVac@1MHz)	CISS	_	0.23	•	pr
Output Capacitance	Coss	_	1.8	_	pF
(V _{DS} =3.7V, Level=30mVac@1MHz)	Coss		1.0	-	pr
Input Capacitance	Ciss	_	8.0	_	pF
(V _{GS} =5V, Level=30mVac@1MHz)	C155		0.0		P1

Typical Performances (In DuSemi Narrowband Test DEMO, 50 Ohm system)

Frequency=440MHz, VDD=3.7Vdc, I_{DQ}=50mA, Pin=4dBm, T_A=25°C

Output Power	Pout	ı	155	1	mW
Power Gain	PS	-	18	-	dB
Drain Efficiency	η D	-	57	-	%

Broad Band Evaluation Circuit (@VDD = 3.7V, f = 440 MHz)

Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Value

Part	Description	Part Number	Manufacturer
R3	470Ohm	_	
R4	6.8KOhm	_	_
L1, L2	4.7nH	_	_
L3	8 Turns D: 0.5 mm, φ 2.4 mm Enamel Wire	_	
C3,C15,	100pF Chip Capacitors	GQM21P5C1H101JB01	Murata
C4	18pF Chip Capacitors	GRM1885C1H201JA01	Murata
C12, C9	1000pF Chip Capacitors	GRM1885C1H102JA01	Murata
C10, C14,C7	10uF,25VChip Capacitors	_	_
C5	24pF Chip Capacitors	_	Murata
R1,R2,C1,C2,C8,C6	NC		_
U1	LM1117		
PCB	FR-4 ,1.6mm, E _r 4.5	_	

TYPICAL CHARACTERISTICS

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
1.0	March 2018	Initial Release of Data Sheet	