Отчет по лабораторной работе

Низкочастотные процессы в многомодовом твердотельном лазере

Работу выполнили студенты **Поляков Андрей, Козлов Александр**

Содержание

1	Основные элементы теории				
2	2 Схема установки				
3 Протокол измерений					
4	Результаты эксперимента с оценкой погрешности и их сравнение с теорией	5			
	4.1 Определение пороговой мощности	5			
	4.2 Расчёт параметра G	5			

Рис. 1: Схема установки.

1 Основные элементы теории

2 Схема установки

Схема экспериментальной установки представлена на Рис. 1. В качестве источника накачки используется полупроводниковый лазер (2) со следующими характеристиками

- 1. длина волны генерации 810 нм;
- 2. пороговый ток питания 200 мА;
- 3. максимальная мощность излучения 0.5 Вт;
- 4. поляризация излучения линейная, вектор электрического поля лежит в вертикальной плоскости.

Короткофокусная линза (3) используется для формирования параллельного пучка из сильно расходящегося у торца лазера излучения накачки. Линза (4) закреплена в поворотном устройстве, позволяющем перемещать луч накачки в горизонтальной и вертикальной плоскостях. Резонатор твердотельного лазера (5–7) установлен на платформе, передвигающейся в продольном и поперечном направлениях. В качестве активной среды лазера используется кристалл алюмоиттриевого граната YAG, легированный ионами Nd^{3+} с концентрацией 1%. Кристалл $\mathrm{Nd:YAG}$ (6) имеет форму цилиндра длинной 1 см и диаметром 0.6 см. Он закреплён в юстировочном устройстве, позволяющем плавно изменять положение оси кристалла относительно оси резонатора. Торцы кристалла имеют дихроичное покрытие. Один формирует входное зеркало резонатора (5), обеспечивая пропускание света $T\approx 1$ на длине волны $\lambda=810\,\mathrm{hm}$ и отражение $R_1\approx 1$ на длине волны $\lambda=1064\,\mathrm{hm}$,

		$P_{\text{нак}}$, мВт	$P_{\text{изл}}$, м B т
$P_{\text{\tiny HAK}}, \text{\tiny MBT}$	$f_{ m peл},~{ m k}\Gamma$ ц	420	9
	<i>J</i> рел, КГЦ 112	410	8.37
216		400	7.85
225	212	391	7.6
235	276	381	7.3
245	336	371	6.8
255	392	361	6.1
265	432	350	5.5
270	448	340	4.6
275	458	330	4
280	476	320	3.76
285	491	290	3.3
296	508	280	2.9
304	532		
345	551	270	$\frac{2.5}{2.1}$
385	600	260	2.1
390	616	250	1.7
395	627	239	1.2
405	639	230	0.9
420	672	220	0.5
120	012	210	0.19
		200	0.14

Таблица 1: Результаты измерений.

другой просветлен на длине волны $\lambda=1064\,\mathrm{m}$. Выходное зеркало резонатора (7), имеющее коэффициент отражения $R_2=0.98\ldots0.995$ на длине волны $\lambda=1064\,\mathrm{m}$, закреплено в юстировочном устройстве, позволяющем плавно поворачивать его относительно входного зеркала резонатора. Установка позволяет менять длину резонатора от 5 до 7.5 см. Для отсекания излучения накачки на выходе резонатора используется фильтр (8). Излучение Nd:YAG лазера подается через поворотное зеркало (9) на фотодиод (10), выход которого подключен к микроамперметру (12) и анализатору спектра СК4-58 (11). Последний предназначен для наблюдения низкочастотных шумов лазера в диапазоне 0 . . . 600 кГц. Не-Ne лазер (15) используется для юстировки резонатора. Для визуального наблюдения генерации Nd:YAG лазера используется карточка-визуализатор инфракрасного диапазона.

3 Протокол измерений

Измерили зависимость релаксационной частоты $f_{\rm pen}$ и мощности излучения $P_{\rm изл}$ от мощности накачки $P_{\rm нак}$. Результаты измерений приведены в Табл. 1.

Рис. 2: Зависимость мощности излучения от мощности накачки. Фоновая засветка учтена и вычтена из мощности излучения.

4 Результаты эксперимента с оценкой погрешности и их сравнение с теорией

4.1 Определение пороговой мощности

Для дальнейшей работы важно определить пороговую мощность $P_{\text{пор}}$, ведь ниже будет часто использоваться параметр накачки A, который определяется как $P_{\text{нак}}/P_{\text{пор}}$ ($P_{\text{нак}}$ измеряется напрямую). Чтобы определить пороговую мощность $P_{\text{пор}}$, надо найти такую мощность накачки, что при мощностях накачки меньше данной мощность излучения равна нулю, а при больших мощностях накачки мощность излучения отлична от нуля.

На Рис. 2 показана снятая зависимость мощности излучения от мощности накачки с учётом фоновой засветки. Видно, что при $P_{\rm Hak} < 210\,{\rm mBT}$ излучения нет. Снятые данные дискретны и поэтому точно определить порог нам не удастся, мы лишь знаем, что при $P_{\rm Hak} = 210 \pm 5\,{\rm mBT}$ излучение есть, а при $P_{\rm Hak} = 205 \pm 5\,{\rm mBT}$ излучения нет. Порог находится где-то между $200\,{\rm mBT}$ и $210\,{\rm mBT}$. Значит, $P_{\rm nop} = 205 \pm 5\,{\rm mBT}$.

4.2 Расчёт параметра G