Techniques asymptotiques

Exercice 1 — Déterminer les développements limités suivants :

$$DL_2(0)$$
 de $ln(e^x + cos(x))$; $DL_2(0)$ de $e^{cos(x)} - (1+x)^{\frac{1}{x}}$;

$$DL_3(0) de \frac{x - \sin(x)}{1 - \cos(x)}$$
; $DL_2(1) de xe^x$; $DL_{2n+1}(0) de \arcsin(x)$

Exercice 2 — Déterminer un équivalent simple de :

$$\ln\left(\frac{1+\operatorname{ch}(x)}{2}\right)\operatorname{en} 0$$
; $\operatorname{arcsin}\left(e^{-\sqrt{n}}\right)\operatorname{en} +\infty$; $\frac{\cos(x)-x^x}{e^x}\operatorname{en} 0$

$$\frac{\lfloor x \rfloor}{\sqrt{x+1}} \text{ en } + \infty; \quad \frac{\ln(x^5+2)}{x^2+5e^x} \text{ en } + \infty; \quad \frac{x^\alpha}{1+x^\beta} \text{ en } 0 \text{ et } + \infty \ (\alpha, \beta \in \mathbb{R})$$

Exercice 3 — Déterminer un équivalent simple des expressions suivantes :

$$\left(1-\frac{1}{\sqrt{n}}\right)^n$$
; $e-\left(1+\frac{1}{n}\right)^n$; $\sin\left(\frac{n^2+n+1}{n+1}\cdot\pi\right)$; $\sqrt{n+(-1)^n}-\sqrt{n}$

Exercice 4 — Soit $t \in \mathbb{R}$. Calculer :

$$\lim_{x \to 0} \frac{x - \arctan(x)}{\sinh(x)} \quad \text{et} \quad \lim_{n \to +\infty} \frac{1}{2i} \left[\left(1 + i \frac{t}{n} \right)^n - \left(1 - i \frac{t}{n} \right)^n \right]$$

Exercice 5 — Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} x^2/\sinh(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

- 1. f est-elle continue en 0? dérivable en 0?
- 2. Donner un développement limité à l'ordre 3 en 0 de f(x).
- 3. Préciser la position relative de la courbe représentative de f par rapport à sa tangente à l'origine.

Exercice 6 — Montrer que la famille $(x \mapsto e^x, x \mapsto xe^x, x \mapsto e^{x^3})$ est libre.

Exercice 7 — Soit (u_n) une suite réelle positive vérifiant $u_n = o(\sqrt{n})$. Montrer que $\left(1 + \frac{u_n}{n}\right)^n \sim e^{u_n}$.

Exercice 8 — On note f la fonction $x \mapsto \frac{1}{x} - \frac{a}{\ln(1+x)} - \frac{b}{e^x - 1}$ avec $a, b \in \mathbb{R}$.

- 1. Trouver une CNS sur (a, b) pour que $\lim_{x\to 0} f(x) = 0$.
- 2. Montrer que, dans ce cas, pour un certain $\lambda \in \mathbb{R}$ à préciser,

$$f(x) = \lambda x^2 + o(x^2)$$

Exercice 9 — Soit $f \in \mathcal{C}^2([0,1])$. Montrer que :

$$\int_0^1 t^n f(t) dt = \int_{n \to +\infty} \frac{f(1)}{n} - \frac{f(1) + f'(1)}{n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 10 — On cherche la limite de la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n$.

- 1. Montrer que $u_n = \sum_{k=0}^{n-1} \left(1 \frac{k}{n}\right)^n$. Donner $\lim_{n \to +\infty} \left(1 \frac{k}{n}\right)^n$ et $\lim_{n \to +\infty} \sum_{k=0}^{n+1} e^{-k}$.
- 2. a) Soit $n \in \mathbb{N} \setminus \{0, 1\}$ et $f_n : x \mapsto e^{-x} \left(1 \frac{x}{n}\right)^n$. Étudier les variations de f_n sur [0, n]. On montrera que f_n atteint un maximum M_n en $\alpha_n \in]1, 2[$.
 - b) Prouver que $M_n = 0$ o $\left(\frac{1}{\sqrt{n}}\right)$ et établir que $\lim_{n \to +\infty} \sum_{k=0}^{n} f_n(k) = 0$. En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}^*}$.
- 🔊 Exercice 11 Variations autour du lemme de Cesàro
 - 1. Soit $(x_n)_{n \in \mathbb{N}}$ une suite réelle convergente de limite $\ell \in \mathbb{R}$.

 Montrer que $\frac{1}{n} \sum_{k=1}^{n} x_k \xrightarrow[n \to +\infty]{} \ell$ puis que $\frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} x_k \xrightarrow[n \to +\infty]{} \ell$.
 - 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs.
 - a) On suppose que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} \ell$. Montrer que $\frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell$.
 - b) En déduire que si $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell$, alors $\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$.

Exercice 12 — Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 1$ et $u_{n+1} = \arctan(u_n)$.

- 1. Justifier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ puis donner sa limite.
- 2. À l'aide du développement limité à l'ordre 3 de arctan, montrer que la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=\frac{1}{u_{n+1}^2}-\frac{1}{u_n^2}$ converge vers une limite à préciser.
- 3. En déduire un équivalent de u_n en $+\infty$ à l'aide de l'exercice précédent.

Exercice 13 — Soit u la suite définie par $u_0 = 1$ et $u_{n+1} = \sqrt{8 + \frac{u_n^2}{2}}$ pour tout $n \in \mathbb{N}$.

- 1. Prouver la convergence de la suite u. On note α sa limite.
- 2. Écrire une fonction Python affichant les 15 premiers termes de la suite u.
- 3. À l'aide du théorème des accroissements finis, déterminer un majorant de $|u_n \alpha|$ dépendant de n. Comment calculer α à 10^{-4} près?
- 4. Écrire une fonction Python permettant d'obtenir une telle approximation.

Exercice 14 — Étude d'un point attractif

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in\mathbb{R}_+$ et $u_{n+1}=f(u_n)$ avec $f:x\mapsto\sqrt{1+x}$.

- 1. Justifier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser sa limite notée ℓ .
- 2. On pose désormais $v_n = |u_n \ell|$.
 - a) À l'aide de v_{n+1}/v_n , prouver que $v_n = O(k^n)$ pour tout $k > |f'(\ell)|$.
 - b) Justifier alors la convergence de $(\ln(\nu_n f'(\ell)^{-n}))$ et en déduire que :

$$|u_n - \ell| \underset{n \to +\infty}{\sim} \alpha f'(\ell)^n$$
 pour un certain $\alpha > 0$.

Exercice 15 — Suite définie implicitement (1)

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $\tan(x) = x$ admet une unique solution notée x_n dans $\left[2n\pi, 2n\pi + \frac{\pi}{2}\right]$.
- 2. Montrer que la suite $(x_n 2n\pi)_{n \in \mathbb{N}}$ est croissante.
- 3. a) Trouver un équivalent de x_n .
 - b) Exprimer $x_n 2n\pi \frac{\pi}{2}$ en fonction de $\arctan\left(\frac{1}{x_n}\right)$.
 - c) En déduire un développement asymptotique de la forme :

$$x_n = 2n\pi + \frac{\pi}{2} + \frac{\lambda}{n} + \frac{\mu}{n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 16 — Suite définie implicitement (2)

Pour $n \in \mathbb{N}^*$, on considère la fonction $f_n : x \mapsto x^n + x - 1$.

- 1. Montrer que l'équation $f_n(x) = 0$ possède une unique solution $u_n \in]0,1[$.
- 2. Pour $\alpha \in]0,1[$, déterminer $\lim_{n \to +\infty} f_n(1-\alpha)$; en déduire la limite de u_n .
- 3. On pose pour $n \in \mathbb{N}^*$, $\alpha_n = 1 u_n$.

 Démontrer que $n\alpha_n \underset{n \to +\infty}{\sim} -\ln \alpha_n$ puis établir que $\lim_{n \to +\infty} \frac{\ln(-\ln \alpha_n)}{\ln n} = 0$.

 On pourra montrer que $\alpha_n > \frac{1}{n}$ à partir d'un certain rang.
- 4. Prouver que $\ln \alpha_n \sim -\ln n$ et en déduire que $\alpha_n \sim \frac{\ln n}{n \to +\infty}$.