

Ministry of Surface Transport (Roads Wing)

STANDARD PLANS FOR HIGHWAY BRIDGES R.C.C. SLAB SUPERSTRUCTURE

Copies can be had from : The Secretary, Indian Roads Congress, Jamnagar House, Shahjahan Road,

Ministry of Surface Transport (Roads Wing)

The Indian Roads Congress on behalf of the Govt. of India,

Published by

New Delhi- 110011

NEW DELHI 1992 Price Rs. 400/-(plus packing & postage charges)

FOREWORD

I have great pleasure in placing before the community of Bridge Engineers, this Volume of Standard Plans for Highway Bridges covering RCC right slab type superstructure. This publication is the first in the series of new Standard Plans for Highway Bridge Superstructure being brought out keeping in view the recent changes in specifications and provisions in the Bridge Codes. I am sure this publication will prove extremely useful in proper planning, estimation and execution of highway bridges in the country.

The publication has been made possible by the sustained efforts of the personnel of the Bridges Standards and Research zone of the Bridges Directorate of this Ministry and the Consultant associated with the work, who deserve commendation for the work done by them. The keen interest of the Addl. Director General (Bridges), in taking up this work and bringing out this publication in a short time is worthy of special mention.

of market

(K.K. SARIN)

Director General (Road Development) & Addi. Secretary to the Govt. of India

New Delhi, June 1, 1991

PREFACE

E~1

*3 \$# \$**

1 : 1 : 2 : 2 :

함 15년 2년 2년 2년 The Standard Plans for Highway Bridges with RCC Slab Type Superstructure (Volume II) were first issued by the Ministry of Surface Transport (Roads Wing) in the year 1977. Since then there have been several revisions in the specifications and provisions of the Bridge Codes. The preparation of revised Standard Drawings was, therefore, taken up towards the end of 1989 and completed on top priority.

This Volume, the first in the series of new Standard Drawings for Superstructure, contains Standard Plans for RCC Slab type highway bridge superstructure for 3.0 to 10.0 metre effective spans. It also contains drawings for wearing coat, railings and miscellaneous items. A separate volume containing bill of quantities for various items of superstructures will also be issued shortly.

The design caters for one lane of IRC Class 70-R wheeled/tracked loading or 2-lanes of IRC Class A loading whichever produces more severe effect. Footpaths have been designed for a crowd load of \$\$\text{\$K\N\mathbb{m}^2\$}\$. Keeping in view the current practice of providing a deck of the same width as the adjoining road for NH bridges having total length less than 30 m, the overall width between the outer faces of the railing kerb has been kept as 12 m. The wearing coat will be of mastic and asphalic concrete type, except in remote areas where average 75 mm thick cement concrete wearing coat may also be adopted. The designs are based on Standard Specifications and Codes of Practice for Highway Bridges issued by the Indian Roads Congress. For construction purposes, Specifications for Roads and Bridge works issued by the Govt. of India, Ministry of Surface Transport (Roads Wing), as amended from time to time, will apply.

The plans have been made complete in all respects so that they could be readily adopted for preparation of estimates and also serve as construction drawings in the field. The entire design philosophy adopted lays great emphasis on constructability i.e. convenient and full translation of the design on to the ground. A great deal of attention has, therefore, been paid to dimensioning and detailing. I have no doubt that the wide spread adoption of these Standard Plans will lead to reduction in time of construction and enhancement of the quality and durability of our road bridges.

Every possible care has been taken to eliminate errors in the Drawings but users are requested to bring to our notice errors or omissions, if any, which may come to light while using these Drawings in their bridge works.

The work of preparing the Designs and Drawings was carried out by the Consultant, M/s. Consulting Engineering Services (India) Pvt. Ltd., New Delhi. Equally important contributions in the finalisation of the designs and details were made by officers of the Ministry whose names appear in the title blocks of various drawings. The enthusiasm and dedication which they brought to bear on the task are to be highly consequence.

Amianburi.

(NINAN KOSHI)
Addi, Director General (Bridges),
Ministry of Surface Transport (Roads Wing)

New Delhi, June 1, 1991

iH

CONTENTS

								C									ы								>		
*	¥	z	3	*	#	3	Effective span	REINFORCEMENT FOOTPATHS	3	*	**	3	3	3	. 3	Effective span	REINFORCEMENT DETAILS FOOTPATHS	(With Footpaths)	Details of R.C.C. Railings	(Without Footpaths)	Details of R.C.C. Railings	Miscellaneous Details	General Arrangement	General Notes	GENERAL	DRAWING DESCRIPTION	
10.0 m	9.0 m	8.0 m	7.0 m	6.0 ш	5.0 m	4.0 ш	3.0 ш	DETAILS & QUANTITIES	10.0 m	9.0 m	8.0 m	7.0 m	6.0 m	5.0 m	4.0 m	3.0 m			lings		lings					NOITE	
SD/122	SD/121	SD/120	SD/119	SD/118	SD/117	SD/116	SD/115	FOR SLABS WITH	SD/114	SD/113	SD/112	SD/111	SD/110	SD/109	SD/108	SD/107	& QUANTITIES FOR SLABS WITHOUT		SD/106		SD/105	SD/103 & SD/104	SD/102	SD/101		DRAWING NO.	

(A) GENERAL

- These notes are applicable for the Standard Drawings for R.C.C. solid slab superstructure with and without footpaths.
- These drawings are applicable only for right bridges with

αi

No raised footpaths shall be provided on the bridges having length less than 30m unless the same are otherwise existing on the approaches.

œ.

- All dimensions are in millimetres unless otherwise mentioned. Only written dimensions are to be followed. No drawing shall be scaled.
- Design criteria:
- The design is according to the following codes:
- (a) IRC:5-1985
- (b) IRC: 8-1986 (1985 reprint)
- IRC: 21-1987. T
- The following loads have been considered in the design:
- (a) One lane of IRC class 70R or two lanes of IRC class A on carriage way, whichever governe.
- (b) Footpath load of 5 kN/eq.m for superstructure having
- (c) Wearing coat load of 2 kN/sq.m.
- III. The deeligns are applicable for MODEPATE AND SEVERE conditions of exposure.
- Public utility services (except water supply and sewerage), if required, shall be carried over the bridge through 150mm diameter ducts provided in the footpaths. Total load of such todipath. Waterfeere rage pipeline shall not be carried over any part of the exponstructure, Inspection observes in footpoths may be provided as shown in the drewing. The totalion and apacing of chambers along the footpoth will be decided by the Engineer-in-charge in consultation with the users: services shall not be more than 1.0 kN per metre on each
- Wearing cost shall consist of the following:
- A cost of mestic asphal form thick with a prime cost over the top of the deck before the wearing cost is laid. The prime cost of mestic asphalt shall be 30% staight un 30/ 40 penatration grade bitumen and 50% light solvent (Benzo) to be laid over the deck also. The insutating layer of 6mm thick mestic asphalt with 75% lime stone dust filler and 25% of 30/40 penetration grade bitumen shall be laid at 375% with broom over prime cost. <u>.</u>
- Sommittick sephaltic contrate wearing cost in two layers of 25mm each as per Clause 512 of MOST's Specifications for Road and Bridge Works (Second Revision-1988 Ð
- crete weering coat in M30 grade concrete with maximum water cement ratio as OAC, The reinforcement shall consist of 9mm High Yield Strength Deformed base @ 300mm centres reducing to 100 centres in both the dIin remote areas where provision of mastic and asphaltic concrete weating coat is not precticable, the Engineer-inschange may permit provision of 75mm thick cement constants. In case of isolated bridge construction or bridges located

- rections over a strip of 300mm near the expension joint. Perinforcement shall be placed at the centre of the vear-ing oast. Weating cost shall be discontinued at expen-sion joint locations. Joint filters shall extend upto the top of weating oost.
 - 20mm expansion joint does not cater for any allowance for possible titing of abutment. eó
- Support for the deck eleb shall provide a bearing width of 400mm. In urban areas, chequered tiles may be provided in the footpath portion by suitably edjusting the thickness of the footpath slab. 6.
- Type/poetton of return walls, railings, guard posts, ramp etc. in approach portion shall be decided by the Engineer-in-charge. Ë
- MATERIALS SPECIFICATIONS **@**

Concrete

Concrete shall be of design mix and shall have minimum 28 days characteristic strength on 150mm outces for all elements of superstructure as indicated below: ÷

Conditions of exposure	Conditions of Concrete grade exposure	Characteristic Strangth
MODERATE	92 W	25 MPa (for 3m to 9m span)
MODERATE	8 M	30 MPa (for 10m spen)
SEVERE	M 30	30 MPa (for 3m to 10m span)

- High strength ordinary portland cement conforming to IS:8112 or ordinary portland cement conforming to IS 289 capable of achieving the required design concrete strength shall only be
- The minimum cament content and maximum water cement ratio in the concrete design mit what lib 50 Mgcuum and 0.45 respectively for WODEFATE conditions of exposure. The minimum cement content and maximum water cement ratio in the concrete design mit shall be 400 kg/cum and 0.40 respectively for SECFETE conditions of exposure.

Reinforcement

All reinforcing bars shall be High Yield Strength Deformed bars (Grade designation S 415) conforming to IS 1786.

Water to be used in concreting and curing shall conform to Clause 302.4 of IRC 21-1987.

WORKMANSHIP/DETAILING

Ō

- Minimum clear cover to any reinforcement including stirrups shall be 50mm unless shown otherwise in the drawings. ÷
- For ensuring proper cover of concrete to reinforcement bers specially made polymer cover blocks shall only be used.
 - Construction Joints
- The location and provision of construction joints shall be approved by Engineer-in-charge. The concreting operation shall be carried out continuously upto the construction joint.

- The concrete surface at the joint shall be brushed with a stiff brush after casting while the concrete is still fresh and it has only slightly handened.
- Before new concrete is poured the surface of old concrete shall be prepared as under:
- a) For hardened concrete, the surface shall be thoroughly observed to remove debris/latiance and made rough so that 1/4 of the size of the aggregate or structurally demaging the
 - b) For partially hardened concrete, the surface shall be treated by wire brush followed by an air jet.
- The old surface shall be soaked with water without leaving puddles immediately before starting concreting to prevent the absorption of water from new concrete.
- New concrete shall be thoroughly compacted in the region of the joint. ž
- Welding of reinforecement bars shall not be permitted.
 - Laps in reinforcement: υć
- 1. Minimum lap length of reinforcement shall be kept as 83 d where 'd' is the diameter of ber.
- Not more than 50% of reinforcement shall be lapped at any one location.
- Supporting obeirs of 12mm diameter shall be provided at auttable intervals as per IS: 2502. Bending of reinforcement bere shall be as per IS: 2502.
- Concrete shall be produced in a mechanical mixer of capacity not less than 200 lites having integral weigh-batching facility and automatic water measuring and dispensing device.
 - Proper compaction of concrete shall be ensured by use of full width acreed vibrations for concrete in deck alab.
- Properly braced steel plates shell be used as shuttering. ö
 - Sharp adges of concrete shall be chamlered. Ë

GENERAL SPECIFICATIONS 6

The work shall be executed in accordance with MOST's Speci-fication for Road and Bridge Works (Second Revision, 1998) except wherever otherwise mentioned.

REFERENCE TO DRAWINGS Œ

Drawing No.	Title.
SD/101	GENERAL NOTES
SD/102	GENERAL APPRANCEMENT
SD/103 & SD/104	MISCELLANEOUS DETAILS
SD//105	DETAILS OF R.C.C. RAILINGS
	(WITHOUT FOOTPATHS)
SD/106	DETAILS OF R.C.C. PAILINGS
	(WITH FOOTPATHS)
SD/107 THROUGH	R.C.C. SOLID SLAB SUPERSTRUCTURE
SD/114	(PIGHT)
	SPANS 3m To 10m
	(WITHOUT FOOTPATHS)
SD/115 THROUGH	R.C.C. SOLID SLAB SUPERSTRUCTURE
SD/122	(RIGHT)
	SPANS 3m To 10m
	(WITH FOOTPATHS)

		ΒY		₽		10.0 m
*		DESCHIPTION	REVISION	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI	STANDARD DRAWINGS FOR ROAD BRIDGES	R.C.C. SOLID SLAB SUPERSTUCTURE (RIGHT) SPAN 3.0m To 10.0 m (WITH AND WITHOUT FOOTPATHS) GENERAL NOTES
		DATE		AININETE (RO	STANDA	енвтис (with
		Ø₩		_		SUPI

SD/101 DRG. NO. 1990

M.K. M.K. MANDELLEB APPROVED BY

A S.K. KMSTHW (N

(U. JAYAKOD) کر پخت

.+

RECOMMENDED BY

(-) ()**1** ()

1-12 1-18 3

• 1

) ii

. -. -1 # . -

+

	•		
			-

PUBLIC WORKS DEPARTMENT

DESIGN OF HIGH LEVEL BRIDGE ON KELWARA KUMBHALGARH ROAD OVER KELWARA LAKE

Design Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

<u>INDEX</u>

S. No	Particulars	Page
1.	Preamble	
2.	Hydraulic Design	
3.	Stability Check for Pier in Different Load Cases	
4.	Computation of Reinforcement in Pier	
5.	Design of Pier Footing	
6.	Design of Pier Footing Cap	
7.	Stability Check for Abutment in Different Load Cases	
8.	Design of Abutment Footing	
9.	Cross Sections & L Section of the River	
10.	Geotechnical Investigation Report	
11.	General Arrangement Drawing	
12.	Details of Pier Complete Drawing	
13.	Pier Reinforcement Details	
14.	Details of Bottom Anchorage of Pier	
15.	Details of Reinforcement in Pier cap	
16.	Deck Slab Anchorage Detail	
17.	Details of Abutment Complete Drawing	
18.	Details of Approach Slab	

Design of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

PREAMBLE Type of Bridge

The bridge shall be a High Level bridge. The HFL is 98.500 m and the proposed deck level is 100.755 m. The free board shall be 1200 mm in accordance to IRC:5-1998 Clause 106.2.1

Decking Arrangement

The Deck Slab shall standard RCC deck slabs each 12000 mm wide i.e. 7500 mm carriage way and Footpath and Railings on both sides. There shall be 25 mm wide expansion joint between the adjacent deck slabs along the length of the bridge. The location of proposed road is right angle to the direction of flow.

There shall be 8 Nos. of spans. The centre to centre distance for the spans shall be $10.8\ m.$

Standard RCC Solid Slab Superstructure with right effective span 10 M with footpath shall be provided in accordance to the Ministry of Surface Transport (Roads Wing), New Delhi drawings. [Drawing No. SD/112].

It is proposed to construct 12000 mm wide slabs as per these standard drawings. As per requirement of use in the proposed bridge the deviation with respect to these drawings shall be as follows:-

- 1. Pier Cap Width 1200 mm [In the reference drawing the pier cap width is 800 mm]. The width of piers shall be 1200 mm. Due to this change the Centre to Centre distance shall be 10800 mm (centre to centre over piers). For all spans the clear span shall be 9600 mm and the centre to centre distance shall be 10800 mm. The length of reinforcement shall be modified as per these geometrical requirements however spacing of the reinforcement shall not be altered.
- 2. Footpath & Railing: As per drawing No. SD/102, SD/103, Sd/104, SD/105 and SD/106.
- 3. Reinforcement Detailing: The reinforcement detailing is suitably modified as required for the modifications referred above in points 1.

The proposed decking arrangement is shown in Drawing – D-01 titled as Decking arrangement.

Design Loads

The following loads have been considered in the design of deck slab and for the stability of the sub structure:-

[A] Maximum of the following cases

- I. One lane of IRC class 70R on carriage way
- II. One lanes of IRC Class A on carriage way
- III. Two lanes of IRC Class A on carriage way
- IV. Three lanes of IRC Class A on carriage way

- V. One lane of IRC class 70R and one lane of IRC Class A on carriage way
- VI. One lane of IRC class AA TRACKED VEHICLE on carriage way

In order to account for two adjacent slabs the resultant reactions and moments have been multiplied by 2 for stability check of the sub structure.

[B] Other Loads

- a) Footpath load of 5KN/Sqm.
- b) Wearing coat land of 2 KN/Sqm.

Safe Bearing Capacity

The detailed sub soil investigation report for a bridge constructed in the vicinity of the bridge is enclosed.

The foundation rock is safe against the eroding effects of the water flow and other climatic conditions.

As per detailed test of foundation rock the lowest safe bearing capacity for rectangular footing at depth 2.5 m and downwards is 250 kN/ Sq M; Hence the Safe Bearing Capacity adopted for design is 250 kN/ Sq M.

Depth of Foundation/Founding Level

For all the footings hard rock is available hence the foundation shall be laid at 1.5 m depth embedded in rock.

Scour Depth

The maximum scour depth computed is 7.04 M. As per Clause No. 703-2-3-1 of IRC 78-1983 considering Scour at the pier two times of calculated scour depth below the highest flood level. But we shall provide foundation at 1.5 m ANCHORED IN BED ROCK AVAILABLE.

Reinforcement Detail & other Detail of Deck slab

Ministry of surface transport details drawings are enclosed which contains miscellaneous details of deck slab including reinforcement drawing.

The right effective span of the proposed bridge is 7.60 m. The length along the centre line of road between pier centers is 8.80 m.

The deck slab pertaining to 10 m. right effective span shall be provided as given in MOST drawings No. SD/101, SD/102, SD/103, SD/104, SD/105, SD/106 and SD/122.

In the drawing the clear right span is 7600 mm. The proposed bridge shall have clear right span as 7600 mm conforming to the standard drawing adopted.

Bearing detail

Tar paper bearing shall be providing on top of pier cap & abutment cap.

Approach slab

The detail of approach slab is enclosed as drawing JK-03.

Pier Cap Detail

Pier cap drawing is enclosed as annexure JK-05.

DESIGN OF HIGH LEVEL BRIDGE

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

Hydraulic Calculation Computation of Discharge

1 Flood calculation by Area Velocity Method (As per Article- 5 of IRC SP-13)

Q =	AxV	Where			
A =	751.37 m2		A =	Cross sectional area in m ²	
P =	89.44 m		P =	Perimeter calculated in m	
S =	1 IN	8333	S =	Slope as per drain LS taken at	
				Proposal site	
n =	0.033		n =	Rugosity coefficient	
				(As per IRC SP-13)	
V =	$I/nx (A/P)^{2/3} x(S)^{1/2}$		V =	Velocity in m/sec.	
=	1.38 m/sec.				
Q =	1036.89 Cumecs				
4.					

Linear Water Way Calculation

Regime Surface width of the stream is given by :-

154.57 m

L =

Looking to the approach gradient constraints adopt

8 Spans of 10 M each.

4.8 (Q)1/2

This will cause contraction and afflux. Calculation is done for the same to fix deck level. 8 x

Effective linear water way proposed =

10 = 80 M Total 80 M

Scour Depth Calculation

(As per clause no. 703.2.2.1 of IRC: 78.1983)

$$dsm = 1.34x (Db^2 / Ksf)^{-1/3}$$
 Where

$$Db = The discharge in Cumecs per meter width Ksf = the silt factor = 1.5$$

Effective linear waterway = Width of waterway - Obstructed width of piper 78.80 - (7 x 1.2)

= 70.40 m

Db =1036.89 / 70.40 dsm = 7.04 m

As per Clause No. 703-2-3-1 of IRC 78-1983 considering Scour at the pier two times of calculated scour depth below the highest flood level. But hard rock is available in foundation so the foundation will be anchored in the rock as per IRC guidelines.

Afflux Calculation

As per IS: 7784 (Part -I) 1975 Molesworth Formula for Afflux

Afflux h = $((V^2/17.85) + 0.0152)x(A^2/a^2-1)$

Where,

h = afflux in m,

v = Velocity in the unobstructed stream in m/s,

A = the unobstructed sectional area of the river in m²

a = the obstructed sectional area of the river at the cross drainage work in m².

As per Annexure- 1

Unobstructed Area of Flow after Bridge Construction = 739.74 m²

 $A = 739.744 \text{ m}^2$ V = 1.38 m/sec.

Computation of Area obstructed by Deck Slab

HFL: 98.500 m

Top Level of Deck slab : 100.755 m

Free Board 1.200 m

Thickness of Slab and Wearing Coat 0.975 m
Length Of Slab 78.800 m

Height of Obstruction 0.975 m

Area obstructed by deck slab 78.800 x 0.98

76.83 m²

Computation of Area obstructed by Piers

HFL: 98.500 m

Soffit of Deck slab: 99.780 m

Average river bed level = 89.816 m

Nos. of pier =

Height of Obstruction 98.500 - 89.816 = 8.684 m

7

Area obstructed by one pier: = 1.2 x 8.68

= 10.421 m²

For 7 Nos. of piers = 7 x 10.421

 $A1 = 72.94 \text{ m}^2$

Computation of Area obstructed by Abutments

```
Average ground level =
                                                      89.816 m
Height of Obstruction
                                                      98.500 -
                                                                            91.316 =
                                                                                                  7.184 m
Area obstructed by one Abutment : A2 = (0.40+0.75)/2
                                                                               7.18
                                                                   4.13 m<sup>2</sup>
                                                           2 x
For two Abutments =
                                                                               4.13
                                                                    8.26 m<sup>2</sup>
Total area of obstruction due to slab,
                                                             A0 +A1 + A2
piers and abutments A
                                                                  76.83 +
                                             =
                                                                                       72.94 +
                                                                                                           8.26
                                                                158.04 m<sup>2</sup>
Actual Area of flow a =
                                                     739.744 -
                                                                            158.04
                                                                581.71 \text{ m}^2
                                             =
Afflux h =
                                                         0.08 m
Afflux flood level =
                                                     98.500 +
                                                                               = 80.0
                                                                                                 98.580 m
Obstructed Velocity
                                             ٧
                                                                         Q/a
                                                               1036.89 /
Obstructed Velocity
                                                                                       581.71
                                             =
                                                                    1.79 m/sec
However we consider design velocity
                                                         2.00 m/sec.
                                                               98.580 M
Afflux flood level
                                             =
                                                               99.780 M
Soffit of deck slab
```

This is well above the Afflux flood level.

Though it is not a high level bridge; there shall be no hindrance to traffic during high floods. Hence OK.

<u>DETERMINATION OF VELOCITY AT PROPOSED</u> <u>SUBMERSIBLE BRIDGE</u>

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

AS PER UP-STREAM SECTION

	HIGHES	T FLOOD	LEVEL		98.500	M
CHAINAGE	G.L.	DEPTH OF	LENGTH	AVERAGE	CROSS	WETTED
		FLOW IN	OF FLOW	DEPTH OF	SECTIONAL	PERIMETER
		M		FLOW	AREA OF FLOW	
0	91.96	1.30	0.00	0.00	0.00	0.00
5	90.5	8.00	5.00	4.65	23.24	8.36
10	88.76	9.74	5.00	8.87	44.35	5.29
15	87.91	10.59	5.00	10.17	50.83	5.07
20	87.61	10.89	5.00	10.74	53.70	5.01
25	87.3	11.20	5.00	11.05	55.23	5.01
30	86.99	11.51	5.00	11.36	56.78	5.01
35	86.69	11.81	5.00	11.66	58.30	5.01
40	86.38	12.12	5.00	11.97	59.83	5.01
45	86.07	12.43	5.00	12.28	61.38	5.01
50	85.77	12.73	5.00	12.58	62.90	5.01
55	86.76	11.74	5.00	12.24	61.18	5.10
60	88.76	9.74	5.00	10.74	53.70	5.39
65	90.81	7.69	5.00	8.72	43.58	5.40
70	93.08	5.42	5.00	6.56	32.78	5.49
75	95.36	3.14	5.00	4.28	21.40	5.50
80	97.43	1.07	5.00	2.11	10.53	5.41
83.18	98.55	0.00	3.18	0.53	1.70	3.36
		TOTAL	83.18		751.37	89.44

751.37 SQM A P 89.44 M R 8.40 M 0.033 N 8333 S 1 IN V 1.37 M/SEC

CI	HAINAGE	G.L.	DEPTH OF	LENGTH	AVERAGE	CROSS	WETTED
			FLOW IN	OF FLOW	DEPTH OF	SECTIONAL	PERIMETER
			M		FLOW	AREA OF FLOW	

Q 1030.74 CUMECS

The design engineer visually observed the river to ascertain the Roughness Coefficient n for the Manning's formula. Upon visual inspection of the river in the vicinity of the proposed bridge site it was found that the River bed surface is good with clean straight banks, no rifts or deep pools however containing some weeds and stones. Roughness Coefficient pertaining to these characteristics is 0.033

Design Discharge = 1030.74 CUMECS

Critical Levels									
Road top level (RTL)	100.755	M							
Average Ground Level(AGL)	89.816	M							
Average Height Of Bridge	4.500	M							
Nala Bed level (NBL)	82.570	M							
Ordinary flood level (OFL)	96.000	M							
Foundation level (FL)	79.000	M							
Ht. of bridge h= (RTL-NBL)	18.185	M							
Ht. of bridge H=(RTL-FL)	21.755	M							

^{**} Needs Rational Evaluation w.r.t. afflux.

^{**} Average of GL for points lying below HFL.

CROSS SECTION OF RIVER DOWN-STREAM Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

Chainage	RL in M
in M (u/s	
or d/s)	
0	100.63
25	98.976
50	91.771
75	89.95
100	92.423
125	92.451
150	94.611
175	95.074
200	96.02
30.00	98.50
180.00	98.50

CROSS SECTION OF RIVER AT PROPOSED BRIDGE SITE

	HIGHE		98.500	M		
Chainage	RL in M	DEPTH OF	LENGTH OF	AVERAGE	CROSS	WETTED
in M (u/s		FLOW IN M	FLOW	DEPTH OF	SECTIONAL	PERIMETER
or d/s)				FLOW	AREA OF	
or arey					FLOW	
0	97.59	0.91	0.00	0.00	0.00	0.00
5	94.89	3.61	5.00	2.26	11.30	5.68
10	92.49	6.01	5.00	4.81	24.05	5.55
15	90.23	8.27	5.00	7.14	35.70	5.49
20	87.27	11.23	5.00	9.75	48.75	5.81
25	85.73	12.77	5.00	12.00	60.00	5.23
30	84.18	14.32	5.00	13.55	67.73	5.23
35	82.63	15.87	5.00	15.10	75.48	5.23
40	82.57	15.93	5.00	15.90	79.50	5.00
45	84.53	13.97	5.00	13.37	66.85	5.70
50	86.48	12.02	5.00	13.17	65.85	5.06
55	88.46	10.04	5.00	9.16	45.78	5.30
60	90.36	8.14	5.00	9.09	45.45	5.35
65	92.38	6.12	5.00	8.08	40.40	6.35
70	94.68	3.82	5.00	5.98	29.90	7.98
75	97.43	1.07	5.00	3.60	17.98	8.66
80	99.84	0.00	5.00	3.06	15.30	9.55
83.18	101.08	0.00	3.18	3.06	9.74	8.74
		TOTAL	83.18		739.74	105.93

0.00 98.50 77.50 98.50

DETERMINATION OF BED SLOPE OF THE RIVER Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

Chainage in	RL in M
M (u/s or	
d/s)	
-	82.588
25.00	82.580
50.00	82.582
75.00	82.579
100.00	82.576
125.00	82.570
150.00	82.570
175.00	82.567
200.00	82.564
225.00	82.561
250.00	82.558
275.00	82.550
300.00	82.552
325.00	82.549
350.00	82.546

Reference Poits							
Ch	RL						
0.00	82.588						
350.00	82.546						

DESIGN OF PIER AND CHECK FOR STABILITY- SUBMERSIBLE BRIDGE

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

DESIGN DATA

4 DIOLIT EFFECTIVE ODANI		0.00.14						
1 RIGHT EFFECTIVE SPAN	=	9.60 M						
2 SPAN C/C OF PIERS	=	10.80 M						
3 OVERALL WIDTH OF PIER CAP	=	12.00 M						
4 H.F.L.	=	98.50 M						
5 BUOYANCY		100.00.0/						
6 AT FOOTING LEVEL		100.00 %						
7 AT PIER LEVEI	L =	100.00 %						
8 AQUEDUCT FALLS UNDER ZONE-II SO SEISMIC CASE IS NOT								
GOVERNING HERE.								
9 FLOOD DISCHARGE	=	1030.74 CUMECS						
10 RIVER BED SLOPE	=	1 IN	8333					
11 DESIGN VELOCITY	=	2.00 m/sec	0333					
12 BED LEVEL OF THE HEIGHEST PIER	=	82.57 M						
12 BED LEVEL OF THE HEIGHEST FIER	-	02.37 IVI						
13 SAFE BEARING CAPACITY	=	25.00 t/m2	250.00 kN/m ²					
			KIWIII					
14 TOP LEVEL OF FOUNDING ROCK	=	80.50 M						
15 EMBEDMENT OF PIER IN HARD	=	1.50 M						
ROCK		70.000.14						
16 FOUNDATION LEVEL OF THE	=	79.000 M						
HIGHEST PIER		100 755 14						
17 DECK LEVEL OF THE BRIDGE		100.755 M						
18 TOP LEVEL OF THE PIER CAP	=	99.780 M						
19 LEVEL DIFFERENCE OF PIER CAP	=	20.78 M						
TOP AND FOUNDING LEVEL CHECKING STABILITY OF PIER AT R.L.79 M	FOOTING LEVEL							
A DEAD LOAD CALCULATION	FOOTING LEVEL							
SUPER STRUCTURE								
Self Weight of Slab =	10.80 x	12.00 x	0	90 x	24.00 =	2799.36 kN		
Self Weight of Wearing Coat =	10.80 x	12.00 x			24.00 =	233.28 kN		
Railings and Footpath	10.00 X	12.00 X	0.0	70 X	24.00	62.00 kN		
TOTAL						3094.64 kN		
SUB STRUCTURE						000 110 1 Kit		
Pier Cap								
Pier Cap =	1.50 x	12.00 x	0.	60 x	24.00		=	259.200 kN
Flared Portion Sides =	0.50 x	0.15 x	0.	60 x	12.00 x	2.00 x	24.00 =	25.920 kN
=	0.50 x	0.15 x	0.	60 x	3.14 x	1.20 x	24.00 =	4.069 kN
Flared Portion u/s & d/s Sides =	0.60 x	0.60 x	1.	50 x	24.00		=	12.960 kN
=	3.14 /	4.00 x	1.	20 x	1.20 x	0.60 x	24.00 =	16.278 kN
TOTAL								318.427 kN
Pier								
Flared Portion Top =	0.50 x	0.15 x			12.00 x	2 x	24.00 =	25.920 kN
=	0.50 x	0.15 x		60 x	3.14 x	1.20 x	24.00 =	4.069 kN
Pier Rectangular portion =	1.20 x	12.00 x	17.	93 x	24.00		=	6196.608 kN

10/[67] Stability Analysis Kumbhalgarh Bridge.xls STABILITY CHECK FOR PIER-TEJ

	Pier Curved portio	n =	3.14 /		4 x		1.20 x		1.20	x	17.93	x	24.00 =	486.434 kN
	Flared Portion bottor		0.50 x		0.60 x		0.30 x		24.00		11.00	^	=	
	Tidled Folion bollon	'' =	3.14 /		4 x		1.20 x		1.20		0.60	v	24.00 =	
	TOTA		J. 14 /		7 ^		1.20 X		1.20	^	0.00	^	24.00 -	6736.895 kN
	IOIA	_												0/30.033 KN
	Weight of Pier Above H.F.L	_												0.000 kN
	Weight of Pier Below H.F.L		6736.89 -		0.00								=	
	Weight of Pier Below H.F.t		0730.09 -		0.00								_	0/30.035 KN
۱۸	eight of Sub Structure with 15% Buoyanc	·v =	0.00 + (6736.89 x		22.50 /		24.00	١			=	6315.839 kN
•	Footing			5.60	M x	3.80	M x			M				0010.000 KIV
	Weight without Buoyand		15.60 x	3.00	3.80 x		1.50 x		24.00				=	2134.080 kN
	Weight with 100% Buoyand		15.60 x		3.80 x		1.50 x		14.00				=	
	Total Weight of Substructure Withou				0.00 X		1.00 X		14.00					1244.000 KIV
	Total Weight of Substructure Withou	=	318.43 +		6736.89 +		2134.08						=	9189.402 kN
	Total Weight of Substructure With B				0730.03		2134.00							3103.402 KIV
	Total Weight of Substructure With D	=	318.43 +		6315.84 +		1244.88						=	7879.146 kN
		_	310.43		0313.04		1244.00						_	7073.140 KN
В	LIVE LOAD CALCULATION													
	Maximum Reaction due Live Load													
	including Impact	=	788.27 x		1.00 =		788.27	kN						
	Refer Live load Computation sheet													
	showing maximum reaction										Haunch	0.60	М	
	chowing maximum roudilon	=	78.83 T which	is =	788.27 k	N						0.00		
											PCC Offset	0.20	М	
	TOTAL LONGITUDINAL MOMENT DU	FORCE						Length Variant	1.00	M				
	Maximum Longitudinal moment due to													
	Live Load including Impact and										Marialda Mandana	0.50		
	Breaking Force										Width Variant	0.50	M	
	Broaking Force	=	122.13 x		2.00 =		244.25	kN-n	1					
	Refer Live load Computation sheet													
	showing maximum reaction	=	12.21 T-m											
	2		which is	s =	122.13 k	N-m						243.85	Stress	
												144.78		
	TOTAL TRANSVERSE MOMENT DUE TO LIVE LOAD & BREAKING FORCE												•	
	Maximum Transverse moment due to													
	Live Load including Impact and													
	Breaking Force													
	· ·	=	1123.94 x		2.00 =		2247.88	kN-n	1					
	Refer Live load Computation sheet													
	showing maximum reaction	=	112.39 T-m											
			ا مامامان،		4400 04 6	NI								

C LOADS DUE TO WATER CURRENT

WATER CURRENT IN LONGITUDINAL DIRECTION (ALONG THE BRIDGE)

which is =

As per IRC- II (6-1966) clause 213.5 For V= 2.00 m/sec

Since the bridge is at Zero Degrees skew from the direction of current as per IRC- II (6-1966) clause 213.5 it should be designed for (20+0) = 20 Degrees or (20-0) = 20 Degrees whichever gives higher quantum of water current forces.

1123.94 kN-m

Obstructed Velocity = $V \sin 20^{\circ}$ = 2.00 x $\sin 20^{\circ}$ = 0.68

$2v^2 =$	0.93								
Total SUBMERGED Height =	18.00 M	0.93	0.88	0.88	0.00				
FORCE ON DECK SLAB BETWEEN Deck L				0.00	0.00				
$2v^2 = ($	0.93 +)/2 =	0.91					
Area Obstructed =	8.00 x	0.00		0.91 0.00 Sq	m				
Area Obstructed =	0.00 X	0.00	_	0.00 34	"				
Force on Pier =	52.00 x	k	x	v^2 x	Area Obstructed				
=	52.00 x	1.50		0.91 x	0.00 / 100	=	0.00 kN	at R.L.	100.343 M
Moment @ R. L.	80.60 M =	0.00		19.74 =	0.00 kN-m		0.00 KW	at IV.L.	100.040 W
Moment @ R. L.	80.00 M =	0.00		20.34 =	0.00 kN-m				
Moment @ R. L.	79.00 M =	0.00		21.34 =	0.00 kN-m				
FORCE ON PIER CAP BETWEEN 99.93 M			^	21.04	0.00 KI4-III				
$2v^2 = ($	0.88 +)/2 =	0.88					
Area Obstructed =	8.00 x	0.60	,	4.80 Sq	m				
Alea Obstructed –	0.00 X	0.00	_	4.00 34	11				
Force on Pier =	52.00 x	k	x	v^2 x	Area Obstructed				
=	52.00 x	1.50		0.88 x	4.80 / 100	=	3.30 kN	at R.L.	89.465 M
Moment @ R. L.	80.60 M =	3.30		8.86 =	29.24 kN-m		0.00 KW	at IV.L.	00.400 W
Moment @ R. L.	80.00 M =	3.30		9.46 =	31.22 kN-m				
Moment @ R. L.	79.00 M =	3.30		10.47 =	34.52 kN-m				
FORCE ON PIER BETWEEN 99.33 M to 8		3.30	^	10.47 -	34.32 KIV-III				
$2v^2 = ($	0.88 +	0.00)/2 =	0.44					
Area Obstructed =	7.33 x	13.20		96.82 Sq	~				
Area Obstructed –	7.33 X	13.20	_	90.02 Sq	11				
Force on Pier =	52.00 x	k	х	v ² v	Area Obstructed				
=	52.00 x	1.50		0.44 x	96.82 / 100	=	33.15 kN	at R.L.	89.165 M
Moment @ R. L.	81.10 M =	33.15		8.07 =	267.32 kN-m		33.13 KI	at IV.L.	03.103 W
Moment @ R. L.	80.50 M =	33.15		8.66 =	287.21 kN-m				
Moment @ R. L.	79.00 M =	33.15		10.17 =	336.92 kN-m				
Women @ K. L.	79.00 IVI –	33.13	^	10.17 -	330.92 KN-III				
TOTAL LONGITUDINAL MOMENT DUE TO	WATER CURRENT	-							
Moment @ R. L.	81.10 M =	0.00	+	29.24					
	0	0.00	+	267.32 =	296.56 kN-m				
Moment @ R. L.	80.50 M =	0.00		31.22	200.00 1.11 1.11				
	00.00 111	0.00	+	287.21 =	318.43 kN-m				
Moment @ R. L.	79.00 M =	0.00		34.52	010110 1111 111				
	7 0.00 W	0.00	+	336.92 =	371.44 kN-m				
WATER CURRENT IN TRANSVERSE DIRE	CTION (ACROSS 1	HE BRIDGE)			• • • • • • • • • • • • • • • • • • • •				
	For V=	2.00 m/sec	Maximum v	elocity being 1.4	114 x mean velocity		(1.414= Root of 2)		
Obstructed Velocity = V Cos 20 0 =	2.00 x	Cos 20 0		,			,		
=	1.88								
2v2 =	7.07								
Total Height =	18.00 M	7.07	6.68	6.63	0.00				
FORCE ON DECK SLAB BETWEEN Deck L			3 M						
$2v^2 = ($	7.07 +)/2 =	6.87					
Area Obstructed =	10.80 x	0.000	,	0.00 Sq	m				
		2.000		0.00 04	••				
Force =	52.00 x	k	Х	$v^2 x$	Area Obstructed				
=	52.00 x	1.50		6.87 x	0.00 / 100	=	0.00 kN	at R.L.	100.343 M
	02.00 %	1.00		5.5. X	3.33 / 100		MT		

Moment @ R. L.	80.60 M =		0.00 x	19.74 =	0.00 kN-m				
Moment @ R. L.	80.00 M =		0.00 x	20.34 =	0.00 kN-m				
Moment @ R. L.	79.00 M =		0.00 x	21.34 =	0.00 kN-m				
FORCE ON PIER CAP BETWEEN 99.93 M	Ito Soffit Level 99.3	3 M							
$2v^2 = ($	6.68 +		6.63)/2 =	6.66					
Area Obstructed =	1.50 x		0.60 =	0.90 Sqm					
Force on Pier =	52.00 x	k	x	v ² x Ar	ea Obstructed				
=	52.00 x		1.50 x	6.66 x	0.90 / 100	=	4.67 kN	at R.L.	89.465 M
Moment @ R. L.	80.60 M =		3.30 x	8.86 =	29.24 kN-m				
Moment @ R. L.	80.00 M =		3.30 x	9.46 =	31.22 kN-m				
Moment @ R. L.	79.00 M =		3.30 x	10.47 =	34.52 kN-m				
FORCE ON PIER BETWEEN 99.33 M to	80.5 M								
$2v^2 = ($	6.63 +		0.00)/2 =	3.32					
Area Obstructed =	7.33 x		1.20 =	8.80 Sqm					
Force on Pier =	52.00 x	k	x	v ² x Ar	ea Obstructed				
=	52.00 x		1.50 x	3.32 x	8.80 / 100	=	22.77 kN	at R.L.	89.165 M
Moment @ R. L.	80.60 M =		33.15 x	8.57 =	283.89 kN-m				
Moment @ R. L.	80.00 M =		33.15 x	9.16 =	303.78 kN-m				
Moment @ R. L.	79.00 M =		33.15 x	10.17 =	336.92 kN-m				
TOTAL TRANSVERSE MOMENT DUE TO	WATER CURRENT								
Moment @ R. L.	80.60 M =		0.00 +	29.24 =					
			+	283.89	313.13 kN-m				
Moment @ R. L.	= M 00.08		0.00 +	31.22 =					
_			+	303.78	335.00 kN-m				
Moment @ R. L.	79.00 M =		0.00 +	34.52 =					
_			+	336.92	371.44 kN-m				
SEISMIC CONDITION									
A		d to 41	. 4						

D

According to clause 222.1 of IRC : 6- 1966 the Aqueduct is situated in the standard Zone- II ; therefore the aqueduct need not to be designed for Seismic Forces.

E WIND FORCE

Slab								
Area =	11.10 x	0.98					=	10.82 Sqm
height of C.G. above Bed level =	100.34 -	82.57 =		17.77 m				
According to Clause 212.3 IRC -6 -1966	Wind pressure =	114.10 Kg/Sqm	=		1.14	kN/Sqm		
Wind Force =	10.82 x	1.14					=	12.35 kN
Moment @ R. L.	80.60 M =	12.35 x		19.74 =	243.7	9 kN-m		
Moment @ R. L.	80.00 M =	12.35 x		20.34 =	251.2	0 kN-m		
Moment @ R. L.	79.00 M =	12.35 x		21.34 =	263.5	5 kN-m		
Pier Cap								
Area A1 =	1.50 x	0.60					=	0.90 Sqm
Area A2 =	1.35 x	0.60					=	0.81 Sqm
							Total	1.71 Sqm
¥ = (0.90 x	0.90)+ (0.81 x	0.3	0)/	1.71	0.62 M
height of C.G. above Bed level =	89.47 -	82.57 =		6.90 m				

```
According to Clause 212.3 IRC -6 -1966
                                            Wind pressure =
                                                                         90.17 Kg/Sqm =
                                                                                                              0.90
                                                                                                                      kN/Sqm
                             Wind Force =
                                                  1.71 x
                                                                          0.90
                                                                                                                                                   1.54 kN
                                                                                                  8.86 =
                                                                                                                 13.67 kN-m
                         Moment @ R. L.
                                                  80.60 M =
                                                                          1.54 x
                         Moment @ R. L.
                                                  80.00 M =
                                                                          1.54 x
                                                                                                  9.46 =
                                                                                                                 14.59 kN-m
                         Moment @ R. L.
                                                                                                 10.47 =
                                                                                                                 16.14 kN-m
                                                  79.00 M =
                                                                          1.54 x
(I)
                           Pier from R.L.
                                                 99.780 to
                                                                         82.57 M
                                   Area =
                                                   1.20 x
                                                                          17.21
                                                                                                                                                  20.65 Sam
             height of C.G. above Bed level =
                                                  91.18 -
                                                                         82.57 =
                                                                                                  8.61 m
                                                                                                                      kN/Sqm
    According to Clause 212.3 IRC -6 -1966
                                            Wind pressure =
                                                                         93.93 Kg/Sqm
                                                                                                              0.94
                             Wind Force =
                                                  20.65 x
                                                                          0.94
                                                                                                                                                  19.40 kN
                         Moment @ R. L.
                                                  80.60 M =
                                                                          19.40 x
                                                                                                 10.58 =
                                                                                                               205.14 kN-m
                         Moment @ R. L.
                                                  80.00 M =
                                                                          1.54 x
                                                                                                 11.18 =
                                                                                                                17.23 kN-m
                         Moment @ R. L.
                                                  79.00 M =
                                                                          1.54 x
                                                                                                 12.18 =
                                                                                                                 18.77 kN-m
    TOTAL TRANSVERSE MOMENT DUE TO WIND FORCE
                         Moment @ R. L.
                                                  80.60 M =
                                                                         243.79 +
                                                                                                 13.67 +
                                                                                                                205.14 +
                                                                                                                                     462.60 kN-m
                         Moment @ R. L.
                                                  = M 00.08
                                                                        251.20 +
                                                                                                 14.59 +
                                                                                                                 17.23 +
                                                                                                                                     283.02 kN-m
                         Moment @ R. L.
                                                                        263.55 +
                                                                                                 16.14 +
                                                  79.00 M =
                                                                                                                 18.77 +
                                                                                                                                     298.45 kN-m
                                     BASE PRESSURE CALCULATION
    CASE-1 FOR SERVICE CONDITION AT R. L.79 M
             VERTICAL LOADS
    DEAD LOAD CALCULATION
    SUPER STRUCTURE
                                               3094.64 kN
    SUB STRUCTURE
                                        =
                                               9189.40 kN
                                                                   Without Buoyancy
    SUB STRUCTURE
                                        =
                                               7879.15 kN
                                                                   With Buoyancy
    LIVE LOAD
                                        =
                                                 788.27 kN
    Total Load without Buoyancy
                                               13072.31 kN
    Total Load with Buoyancy
                                               11762.05 kN
    Total LONGITUDINAL MOMENT
                                        =
                                                 371.44 +
                                                                        244.25 =
                                                                                               615.70 kN-m
    Total TRANSVERSE MOMENT
                                                371.44 +
                                                                       2247.88 =
                                                                                               2619.32 kN-m
                                  C.S.A. =
                                               15.60
                                                            Х
                                                                       3.80
                                                                                                                 59.28 m<sup>2</sup>
                                                                                         2
                                                                                                                 37.54 m<sup>3</sup>
                                      I_{xx} =
                                               1/6x
                                                           15.60
                                                                        Х
                                                                                  3.80
                                                                                                                154.13 m<sup>3</sup>
                                      I_{yy} =
                                               1/6x
                                                           15.60
                                                                                              3.80
                                                                                                      =
                                                                                   Χ
                                                                                 )+ / - (
                  STRESS with Buoyancy = (
                                               11762.05 /
                                                                                             615.70
                                                                                                                 37.54 )+/-(
                                                                                                                                    2619.32 /
                                                                                                                                                          154.13 )
                                                                         59.28
                                               198.42
                                                           +/-
                                                                      16.40
                                                                                  +/-
                                                                                             16.99
                                    P_{max} =
                                               198.42
                                                                      16.40
                                                                                             16.99
                                                 231.81 kN/m<sup>2</sup>
                                            < 250 kN/m2 Hence O.K.
                                    P_{min} =
                                              198.42
                                                                      16.40
                                                                                             16.99
                                                 165.02 kN/m<sup>2</sup>
                                            > 0 Hence O.K.
                STRESS without Buoyancy = (
                                               13072.31 /
                                                                         59.28
                                                                                 )+ / - (
                                                                                             615.70
                                                                                                    1
                                                                                                                 37.54 )+/-(
                                                                                                                                    2619.32 /
                                                                                                                                                          154.13 )
                                               220.52
                                                           +/-
                                                                      16.40
                                                                                  +/-
                                                                                             16.99
                                    P_{max} =
                                              220.52
                                                                      16.40
                                                                                             16.99
                                                 241.91 kN/m<sup>2</sup>
```

14/[67]

```
P_{min} =
                                          220.52
                                                                                         16.99
                                                                  16.40
                                             187.12 kN/m<sup>2</sup>
                                        > 0 Hence O.K.
CASE-2 FOR IDLE CONDITION AT R. L.79 M
                                                               (WHEN THERE IS NO LIVE LOAD)
                                                               A CHECK OF STABILITY DUE TO BUOYANCY EFFECT
SUPER STRUCTURE
                                           3094.64 kN
SUB STRUCTURE
                                           9189.40 kN
                                                               Without Buoyancy
SUB STRUCTURE
                                    =
                                           7879.15 kN
                                                               With Buoyancy
LIVE LOAD
                                               0.00 kN
Total Load without Buoyancy
                                          12284.04 kN
Total Load with Buoyancy
                                          10973.79 kN
              STRESS with Buoyancy = (
                                          10973.79 /
                                                                     59.28
                                                                             )+ / - (
                                                                                         371.44
                                                                                                /
                                                                                                                                                      154.13 )
                                                                                                            37.54 )+ / - (
                                                                                                                                371.44 /
                                          185.12
                                                       +/-
                                                                   9.89
                                                                              +/-
                                                                                          2.41
                                P_{max} =
                                          185.12
                                                                   9.89
                                                                                          2.41
                                             197.42 kN/m<sup>2</sup>
                                        < 250 kN/m2 Hence O.K.
                                P_{min} =
                                                                   9.89
                                                                                          2.41
                                          185.12
                                             172.81 kN/m<sup>2</sup>
                                        > 0 Hence O.K.
            STRESS without Buoyancy = (
                                          12284.04 /
                                                                     59.28
                                                                             )+ / - (
                                                                                         371.44
                                                                                                 1
                                                                                                                                371.44 /
                                                                                                                                                      154.13 )
                                                                                                            37.54 )+ / - (
                                          207.22
                                                       +/-
                                                                   9.89
                                                                              +/-
                                                                                          2.41
                                P_{max} =
                                          207.22
                                                                   9.89
                                                                                          2.41
                                             219.52 kN/m<sup>2</sup>
                                        < 250 kN/m2 Hence O.K.
                                P_{min} =
                                          207.22
                                                                   9.89
                                                                                          2.41
                                             194.92 kN/m<sup>2</sup>
                                        > 0 Hence O.K.
CASE- 3 FOR WIND FORCE AT SERVICE CONDITION AT R. L.79 M
SUPER STRUCTURE
                                           3094.64 kN
SUB STRUCTURE
                                           9189.40 kN
                                                               Without Buoyancy
SUB STRUCTURE
                                           7879.15 kN
                                                               With Buoyancy
LIVE LOAD
                                    =
                                            788.27 kN
Total Load without Buoyancy
                                          13072.31 kN
Total Load with Buoyancy
                                          11762.05 kN
Total LONGITUDINAL MOMENT
                                             371.44 +
                                                                    244.25
                                                                                                           615.70 kN-m
Total TRANSVERSE MOMENT
                                             371.44 +
                                                                    298.45 +
                                                                                          2247.88 =
                                                                                                          2917.78 kN-m
              STRESS with Buoyancy = (
                                          11762.05 /
                                                                     59.28 )+/-(
                                                                                         615.70 /
                                                                                                            37.54 )+/-(
                                                                                                                                2917.78 /
                                                                                                                                                     154.13 )
                                          198.42
                                                       +/-
                                                                              +/-
                                                                                         18.93
                                                                  16.40
                                P_{max} =
                                          198.42
                                                                  16.40
                                                                                         18.93
                                             233.75 kN/m<sup>2</sup>
                                        < 250 kN/m2 Hence O.K.
                                P_{min} =
                                          198.42
                                                                  16.40
                                                                                         18.93
                                             163.08 kN/m<sup>2</sup>
                                        > 0 Hence O.K.
```

< 250 kN/m2 Hence O.K.

```
STRESS without Buoyancy = (
                                            13072.31 /
                                                                       59.28
                                                                               )+ / - (
                                                                                           615.70 /
                                                                                                                37.54 )+ / - (
                                                                                                                                    2917.78 /
                                                                                                                                                          154.13 )
                                            220.52
                                                         +/-
                                                                    16.40
                                                                                 +/-
                                                                                            18.93
                                            220.52
                                                                    16.40
                                                                                            18.93
                                              243.85 kN/m<sup>2</sup>
                                         < 250 kN/m2 Hence O.K.
                                 P_{min} =
                                            220.52
                                                                    16.40
                                                                                            18.93
                                              185.19 kN/m<sup>2</sup>
                                         > 0 Hence O.K.
CASE- 4 FOR WIND FORCE AT IDLE CONDITION AT R. L.79 M
                                                                             [ NO LIVE LOAD ]
SUPER STRUCTURE
                                             3094.64 kN
SUB STRUCTURE
                                             9189.40 kN
                                                                 Without Buoyancy
SUB STRUCTURE
                                             7879.15 kN
                                                                 With Buoyancy
LIVE LOAD
                                                0.00 kN
Total Load without Buoyancy
                                            12284.04 kN
Total Load with Buoyancy
                                            10973.79 kN
Total LONGITUDINAL MOMENT
                                            371.44 kN-m
                                                                      298.45 =
                                                                                              669.90 kN-m
Total TRANSVERSE MOMENT
                                              371.44 +
               STRESS with Buoyancy = (
                                            10973.79 /
                                                                       59.28 )+/-(
                                                                                            371.44 /
                                                                                                                37.54 )+/-(
                                                                                                                                    669.90 /
                                                                                                                                                          154.13 )
                                            185.12
                                                         +/-
                                                                     9.89
                                                                                 +/-
                                                                                            4.35
                                 P_{max} =
                                            185.12
                                                                     9.89
                                                                                             4.35
                                              199.36 kN/m<sup>2</sup>
                                                                                                               190.67
                                                                                                                                                          179.57
                                         < 250 kN/m2 Hence O.K.
                                 P_{min} =
                                                                                            4.35
                                            185.12
                                                                     9.89
                                              170.88 kN/m<sup>2</sup>
                                         > 0 Hence O.K.
                                  P_3 =
                                           185.12
                                                                     9.89
                                                                                            4.35
                                              190.67 kN/m<sup>2</sup>
                                                                                                               170.88
                                                                                                                                                          199.36
                                         < 250 kN/m2 Hence O.K.
                                                                                                                                Stress Diagram
                                  P₄ =
                                           185.12
                                                                     9.89
                                                                                            4.35
                                              179.57 kN/m<sup>2</sup>
                                         > 0 Hence O.K.
            STRESS without Buoyancy = (
                                           12284.04 /
                                                                       59.28
                                                                               )+ / - (
                                                                                            371.44
                                                                                                                37.54 )+/-(
                                                                                                                                    669.90 /
                                                                                                                                                          154.13 )
                                            207.22
                                                         +/-
                                                                     9.89
                                                                                 +/-
                                                                                            4.35
                                 P_{max} =
                                            207.22
                                                                     9.89
                                                                                                                                                          212.77
                                                                                            4.35
                                                                                                               201.67
                                              221.46 kN/m<sup>2</sup>
                                         < 250 kN/m2 Hence O.K.
                                 P_{min} =
                                            207.22
                                                                     9.89
                                                                                            4.35
                                              192.98 kN/m<sup>2</sup>
                                                                                                               192.98
                                         > 0 Hence O.K.
                                                                                                                                                          221.46
                                                                                                                                Stress Diagram
```

CASE- 5 FOR ONE SPAN DISLODGED CONDITION AT R. L.79 M

 SUPER STRUCTURE
 =
 1547.32 kN

 SUB STRUCTURE
 =
 9189.40 kN
 Without Buoyancy

 SUB STRUCTURE
 =
 7879.15 kN
 With Buoyancy

 LIVE LOAD
 =
 0.00 kN


```
730.36
                                                            +/-
                                                                        187.78
                                                                                     +/-
                                                                                                 88.92
                                  P_{max} =
                                              730.36
                                                                        187.78
                                                                                                 88.92
                                               1007.07 kN/m<sup>2</sup>
                                           < 8000 kN/m<sup>2</sup> (that is 8 N/mm<sup>2</sup>) Hence O.K.
                                   P_{min} =
                                              730.36
                                                                       187.78
                                                                                                 88.92
                                                 453.65 kN/m<sup>2</sup>
                                           > (- 3600 kN/m<sup>2</sup> (that is 3.6 N/mm<sup>2</sup>) Hence O.K.
                                                                           14.40 )+/-(
             STRESS without Buoyancy = (
                                              10938.23 /
                                                                                                 540.81
                                                                                                                       2.88 )+/-(
                                                                                                                                         2561.01 /
                                                                                                                                                                    28.80 )
                                              759.60
                                                            +/-
                                                                        187.78
                                                                                     +/-
                                                                                                 88.92
                                  P_{max} =
                                              759.60
                                                                        187.78
                                                                                                 88.92
                                               1036.31 kN/m<sup>2</sup>
                                           < 8000 kN/m2 (that is 8 N/mm2) Hence O.K.
                                   P_{min} =
                                              759.60
                                                                       187.78
                                                                                                 88.92
                                                 482.89 kN/m<sup>2</sup>
                                           > (- 3600 kN/m² (that is 3.6 N/mm²) Hence O.K.
CASE- 7 FOR IDLE CONDITION AT R. L.80 M
SUPER STRUCTURE
                                               3094.64 kN
SUB STRUCTURE
                                               7055.32 kN
                                                                     Without Buoyancy
SUB STRUCTURE
                                               6634.27 kN
                                                                     With Buoyancy
LIVE LOAD
                                                   0.00 kN
                                              10149.96 kN
Total Load without Buoyancy
Total Load with Buoyancy
                                               9728.91 kN
               STRESS with Buoyancy = (
                                               9728.91 /
                                                                           14.40 )+/-(
                                                                                                 296.56
                                                                                                         1
                                                                                                                       2.88 )+/-(
                                                                                                                                            313.13 /
                                                                                                                                                                    28.80 )
                                              675.62
                                                            +/-
                                                                        102.97
                                                                                     +/-
                                                                                                 10.87
                                  P_{max} =
                                              675.62
                                                                        102.97
                                                                                                 10.87
                                                789.46 kN/m<sup>2</sup>
                                            < 8000 kN/m<sup>2</sup> (that is 8 N/mm<sup>2</sup>) Hence O.K.
                                   P_{min} =
                                              675.62
                                                                       102.97
                                                                                                 10.87
                                                 561.77 kN/m<sup>2</sup>
                                           > (- 3600 kN/m² (that is 3.6 N/mm²) Hence O.K.
             STRESS without Buoyancy = (
                                                                                                                                                                    28.80 )
                                              10149.96 /
                                                                           14.40 )+/-(
                                                                                                296.56
                                                                                                          /
                                                                                                                       2.88 )+/-(
                                                                                                                                            313.13 /
                                              704.86
                                                            +/-
                                                                        102.97
                                                                                     +/-
                                                                                                 10.87
                                  P_{max} =
                                              704.86
                                                             +
                                                                        102.97
                                                                                                 10.87
                                                 818.70 kN/m<sup>2</sup>
                                           < 8000 kN/m<sup>2</sup> (that is 8 N/mm<sup>2</sup>) Hence O.K.
                                   P_{min} =
                                              704.86
                                                                       102.97
                                                                                                 10.87
                                                591.01 kN/m<sup>2</sup>
                                           > (- 3600 kN/m<sup>2</sup> (that is 3.6 N/mm<sup>2</sup>) Hence O.K.
CASE- 8 FOR WIND FORCE AT SERVICE CONDITION AT R. L.80 M
SUPER STRUCTURE
                                               3094.64 kN
SUB STRUCTURE
                                       =
                                               7055.32 kN
                                                                     Without Buoyancy
                                       =
SUB STRUCTURE
                                               6634.27 kN
                                                                     With Buoyancy
LIVE LOAD
                                                788.27 kN
```

```
Total Load without Buoyancy
                                            10938.23 kN
Total Load with Buoyancy
                                            10517.17 kN
                                                                                                                540.81 kN-m
Total LONGITUDINAL MOMENT
                                              296.56 +
                                                                       244.25
                                                                                                               3023.61 kN-m
Total TRANSVERSE MOMENT
                                              313.13 +
                                                                       462.60 +
                                                                                              2247.88 =
              STRESS with Buoyancy = (
                                                                        14.40 )+/-(
                                                                                             540.81
                                                                                                                  2.88 )+/-(
                                                                                                                                   3023.61 /
                                                                                                                                                             28.80 )
                                            10517.17 /
                                            730.36
                                                         +/-
                                                                     187.78
                                                                                  +/-
                                                                                             104.99
                                 P_{max} =
                                            730.36
                                                                     187.78
                                                                                             104.99
                                             1023.13 kN/m<sup>2</sup>
                                          < 8000 kN/m<sup>2</sup> (that is 8 N/mm<sup>2</sup>) Hence O.K.
                                            730.36
                                                                    187.78
                                                                                             104.99
                                              437.59 kN/m<sup>2</sup>
                                         > (- 3600 kN/m<sup>2</sup> (that is 3.6 N/mm<sup>2</sup>) Hence O.K.
            STRESS without Buoyancy = (
                                            10938.23 /
                                                                        14.40 )+/-(
                                                                                             540.81 /
                                                                                                                                                             28.80 )
                                                                                                                  2.88 )+/-(
                                                                                                                                   3023.61 /
                                                         +/-
                                                                                  +/-
                                            759.60
                                                                    187.78
                                                                                             104.99
                                 P_{max} =
                                            759.60
                                                                    187.78
                                                                                   +
                                                                                             104.99
                                             1052.37 kN/m<sup>2</sup>
                                          < 8000 kN/m<sup>2</sup> (that is 8 N/mm<sup>2</sup>) Hence O.K.
                                 P_{min} =
                                                                    187.78
                                            759.60
                                                                                             104.99
                                              466.83 kN/m<sup>2</sup>
                                         > (- 3600 kN/m2 (that is 3.6 N/mm2) Hence O.K.
CASE- 9 FOR WIND FORCE AT IDLE CONDITION AT R. L.80 M
SUPER STRUCTURE
                                             3094.64 kN
SUB STRUCTURE
                                             7055.32 kN
                                                                 Without Buoyancy
SUB STRUCTURE
                                             6634.27 kN
                                                                  With Buoyancy
LIVE LOAD
                                              788.27 kN
Total Load without Buoyancy
                                            10938.23 kN
Total Load with Buoyancy
                                            10517.17 kN
Total LONGITUDINAL MOMENT
                                              296.56 kN-m
Total TRANSVERSE MOMENT
                                              313.13 +
                                                                       462.60 =
                                                                                               775.73 kN-m
                                                                        14.40 )+/-(
                                                                                                                                      775.73 /
                                                                                                                                                             28.80 )
              STRESS with Buoyancy = (
                                            10517.17 /
                                                                                            296.56
                                                                                                                  2.88 )+/-(
                                            730.36
                                                         +/-
                                                                     102.97
                                                                                  +/-
                                                                                             26.94
                                 P_{max} =
                                            730.36
                                                                     102.97
                                                                                             26.94
                                              860.27 kN/m<sup>2</sup>
                                          < 8000 kN/m2 (that is 8 N/mm2) Hence O.K.
                                 P_{min} =
                                            730.36
                                                                    102.97
                                                                                             26.94
                                              600.45 kN/m<sup>2</sup>
                                         > (- 3600 kN/m2 (that is 3.6 N/mm2) Hence O.K.
                                                                                            296.56
                                                                                                                                      775.73 /
                                                                                                                                                             28.80 )
            STRESS without Buoyancy = (
                                            10938.23 /
                                                                        14.40
                                                                                )+ / - (
                                                                                                      /
                                                                                                                  2.88 )+/-(
                                            759.60
                                                         +/-
                                                                     102.97
                                                                                  +/-
                                                                                             26.94
                                 P_{max} =
                                            759.60
                                                           +
                                                                    102.97
                                                                                             26.94
                                              889.51 kN/m<sup>2</sup>
                                          < 8000 kN/m2 (that is 8 N/mm2) Hence O.K.
                                 P_{min} =
                                            759.60
                                                                     102.97
                                                                                             26.94
```

629.69 kN/m²

> (- 3600 kN/m² (that is 3.6 N/mm²) Hence O.K.

ABSTRACT OF BASE PRESSURE AND STRESSES

Name Of Work :- Construction Of High Level Bridge on Kel	wara Kumbha	algarh Road	l Over Kelwa	ara Lake		
CASE- 1 FOR SERVICE CONDITION AT R. L.79 M	231.81	165.02	241.91	187.12		
CASE- 2 FOR IDLE CONDITION AT R. L.79 M	197.42	172.81	219.52	194.92		
CASE- 3 FOR WIND FORCE AT SERVICE CONDITION AT R. L.79 M	233.75	163.08	243.85	185.19		
CASE- 4 FOR WIND FORCE AT IDLE CONDITION AT R. L.79 M	199.36	170.88	190.67	179.57	221.46	192.98
CASE- 5 FOR ONE SPAN DISLODGED CONDITION AT R. L.79 M	173.26	144.78	164.56	153.47	181.12	171.23
Maximum 243.85 144.78 Minimum						
CASE- 6 FOR SERVICE CONDITION AT R. L.80 M	1007.07	453.65	1036.31	482.89		
CASE- 7 FOR IDLE CONDITION AT R. L.80 M	789.46	561.77	818.70	591.01		
CASE- 8 FOR WIND FORCE AT SERVICE CONDITION AT R. L.80 M	1023.13	437.59	1052.37	466.83		
CASE- 9 FOR WIND FORCE AT IDLE CONDITION AT R. L.80 M	860.27	600.45	889.51	629.69		
Maximum 1052.37 437.59 Minimum						

REINFORCEMENT CALCULATION IN PIER IN LOWER FLARED PORTION Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

		R.L.	80.50	M TC)	81.10	M			
FOR SERVICE CO	NDITION									
VERTICAL	. LOADS									
SUPER ST	RUCTURE	=			1.64 kN					
SUB STRU		=			5.32 kN		Without Buoyancy			
SUB STRU		=			1.27 kN		With Buoyancy			
LIVE LOAD		=			3.27 kN					
	without Buoyancy	=			3.23 kN					
	with Buoyancy	=		10517	7.17 kN					
Total LONG	GITUDINAL MOMENT									
		t @ R. L.	80.00) M =		540.81	kN-m			
Total TRAN	NSVERSE MOMENT									
0011005		t @ R. L.	80.00			3023.61	kN-m			
CONCRET				M-25			445.44			
	ERISTIC STRENGTH	OF REINFOR	RCEMENT				415 N/mm2			
	BLE STRESSES				100					
IN STEEL					190					
IN CONCR		05								
	ERISTIC STRENGTH	OF		£-1.	_		20 N/			
Concrete	o Camanagaiya Ctrasa i	_		fck	=		30 N/mm2			
Bending	e Compressive Stress i	n		σοbο	=		8 N/mm2			
	e Compressive Stress i	n Direct		σcbc	-		o IN/IIIIIIZ			
Compressi		II Direct		σcc	=		8 N/mm2			
Compressi	OH			σct	=		3.6 N/mm2			
l Iltimate Δ	xial Load P _U	=		OCI	1.5 X		10938.23 =	16407.34 kN		
	-									
	ongitudinal Moment M _U	=			1.5 X		540.81 =	811.2195 kN-m		
Ultimate Tr	ransverse Moment M _U	=			1.5 X		3023.61 =	4535.417 kN-m		
INCREASE	WHEN WIND CONDI	TION IS CON	ISIDERED				33.33 %			
Neglecting	area of Cut and Ease	water parts R	ectangular Sec	tion cons	idered is					
			12001	mm x		1201	mm			
		As	sume cover as	3	75					
d¹/d		=		8	37.5 /		1201.2 =	0.0728		
$P_U/(f_{ck} b d)$		=		16407	7.34 x		1000 / (30 x	12001 x	1201.2)
		=		0.0	379		•			
FOR LONG	GITUDINAL MOMENT									
Mu/(f _{ck} b d ²	²)	=		811	1.22 x		1000000 / (30 x	12001 x	1201.2 2)
· (OK	,	=			016		' (- 		/
		_		5.0	0.0					

Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum percentage of steel.

The point lies below the range of applicability. Hence provide minimum percentage of steel CRITERIA 1 FOR MINIMUM STEEL Pt = 0.8 % OF CROSS SECTION AREA OF COLUMN REQUIRED FOR COMPRESSION

Area Required due to Compression = 10517.17 x 1000 / 8 1314647 mm² Area of steel @ 0.8% = 0.8 x 1314647 / 100 10517 mm² CRITERIA 2 FOR MINIMUM STEEL Pt = 0.3 % OF GROSS SECTION AREA OF COLUMN Area of steel @ 0.3% = 0.3 x12001.2 x 1201.2 / 100 43248 mm² PROVIDE STEEL AREA 43248 mm² 25 MM BARS = NO. OF 88 Nos. **SPACING** 290 MM FOR TRANSVERSE MOMENT $Mu/(f_{ck} b d^2)$ 30 x 4535.42 x 1000000 / (= 1201.2^{2}) 12001.2 x

Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum percentage of steel.

11.87

254.67 kN

0.0087

TRANSVERSE REINFORCEMENT

Shear Force to be resisted by the pier In Accordance to IS 1893

Pt 0.30

Permissible Shear Stress = 0.40 N/mm² Refer table 61

3023.61

Nominal Shear Reinforcement will suffice

According to IRC 21-1987 Clause 306.3

Dia of Transverse Reinforcement = 25 / 4 = 6.25 mm

Provide 12 mm dia rings

Pitch of the Transverse should be least of

a) Least lateral Dimension = 1201.2 mm

b) 12 d = 12 x 12 = 144 mm

c) 300 mm = 300 mm

d) As per IS IS 13920:1993 Cl. 7.4.6 < or = 100 mm

Provide 12 mm dia rings @ 100 mm c/c.

Check for Shear

This spacing is in accordance to IS 13920:1993 Cl. 7.4.6

CODE OF PRACTICE FOR DUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES

Check for Size of Hoop Reinforcement Refer IS 13920:1993 Cl. 7.4.8

Ash= 0.18 Sh (Fck/Fy)x(Ag/Ak-1)S 100.00 mm N/mm² h 300.00 (Spacing of long. bars+ effective cover) or 300 mm whichever is less N/mm² Fck 30.00 Cover 75 mm to main reinforcement N/mm² Fy 415.00 Ag mm^2 = 1201.20 Considering 1 mm Wide Pier Ak 1100.20 mm^2 Considering 1 mm Wide Pier Effective = Hence Ash mm^2 35.84 mm^2 Ash ProvideD 113.04 Which is OK 100 mm d) As per IS IS 13920:1993 Cl. 7.4.6 < or = Provide 100 mm c/c. 12 mm dia rings @

This spacing is in accordance to IS 13920:1993 Cl. 7.4.6

CODE OF PRACTICE FORDUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES

ABSTRACT

LONGITUDINAL REINFORCEMENT 25 290 However Adopt spacing as 250 mm MM BARS

TRANSVERSE REINFORCEMENT 12mm dia rings @100mm c/c.

REINFORCEMENT CALCULATION IN PIER

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake R.L. м то 100.80 81.10 FOR SERVICE CONDITION **VERTICAL LOADS** SUPER STRUCTURE 3094.64 kN SUB STRUCTURE 9189.40 kN Without Buoyancy SUB STRUCTURE 7879.15 kN With Buoyancy LIVE LOAD 788.27 kN Total Load without Buoyancy 13072.31 kN Total Load with Buoyancy 11762.05 kN Total LONGITUDINAL MOMENT Moment @ R. L. 81.10 M = 615 70 kN-m Total TRANSVERSE MOMENT Moment @ R. L. 81.10 M = 2619.32 kN-m CONCRETE MIX M-25 CHARACTERISTIC STRENGTH OF REINFORCEMENT 415 N/mm2 PERMISSIBLE STRESSES 190 IN STEEL IN CONCRETE CHARACTERISTIC STRENGTH OF fck 30 N/mm2 Concrete Permissible Compressive Stress in Bending σcbc 8 N/mm2 Permissible Compressive Stress in Direct Compression 8 N/mm2 σcc σct = 3.6 N/mm2 Ultimate Axial Load P., 1.5 X 13072.31 = 19608.46 kN Ultimate Longitudinal Moment Mu 1.5 X 615.70 = 923.5442 kN-m Ultimate Transverse Moment M_{II} 1.5 X 2619.32 = 3928.986 kN-m INCREASE WHEN WIND CONDITION IS CONSIDERED 33.33 % Neglecting area of Cut and Ease water parts Rectangular Section considered is 1200 mm 12000 mm x Assume cover as 75 d¹/d 87.5 / 1200 = 0.0729 = $P_U/(f_{ck} b d)$ 1000 / (19608.46 x 30 x 12000 x 1200)

= 0.0018

Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum percentage of steel.

923.54 x

0.0454

The point lies below the range of applicability. Hence provide minimum percentage of steel CRITERIA 1 FOR MINIMUM STEEL Pt = 0.8 % OF CROSS SECTION AREA OF COLUMN REQUIRED FOR COMPRESSION

FOR LONGITUDINAL MOMENT

 $Mu/(f_{ck} b d^2)$

1000000 / (

30 x

12000 x

1200 2)

```
Area Required due to Compression =
                                                                       11762.05 x
                                                                                                    1000 /
                                                                                                                           8
                                                                        1470257 mm<sup>2</sup>
       Area of steel @ 0.8% =
                                                               0.8 x
                                                                                       1470257 /
                                                                                                              100
                                                                          11762 mm<sup>2</sup>
       CRITERIA 2 FOR MINIMUM STEEL Pt = 0.3 % OF GROSS SECTION AREA OF COLUMN
       Area of steel @ 0.3% =
                                                               0.3 x
                                                                                                             1200 /
                                                                                                                               100
                                                                                         12000 x
                                                                          43200 mm<sup>2</sup>
                                                =
       PROVIDE STEEL AREA
                                                                          43200 mm<sup>2</sup>
       NO. OF
                                                                25 MM BARS
                                                                                                       88 Nos.
       SPACING
                                                                             290 MM
       FOR TRANSVERSE MOMENT
       Mu/(f_{ck} b d^2)
                                                                        3928.99 x
                                                                                                 1000000 / (
                                                                                                                          30 x
                                                                                         12000 x
                                                                                                             1200^{2})
                                                                          0.0076
       Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum
       percentage of steel.
       TRANSVERSE REINFORCEMENT
       Shear Force to be resisted by the pier In Accordance to IS 1893
                                                2619.32
                                                                                 11.87
                                                                                                          220.62 kN
Check for Shear
                         Nominal Shear Stress = 220.62
                                                                                 1000
                                                                                               /(
                                                                                                          12000 x
                                                                                                                             1200)
                                                                  Х
                                                                            0.02 N/mm<sup>2</sup>
                                             Pt
                                                              0.30
       Permissible Shear Stress =
                                                              0.40 N/mm<sup>2</sup>
                                                                                 Refer table 61
       Nominal Shear Reinforcement will suffice
       According to IRC 21-1987 Clause 306.3
       Dia of Transverse Reinforcement
                                                                              25 /
                                                                                                        4 =
                                                                                                                        6.25 mm
                                        Provide
                                                                12 mm dia rings
       Pitch of the Transverse should be least of
       a) Least lateral Dimension =
                                                             1200 mm
                                                                                             12 =
       b) 12 d =
                                                                12 x
                                                                                                              144 mm
       c) 300 \text{ mm} =
                                                              300 mm
       d) As per IS IS 13920:1993 Cl. 7.4.6
                                                                             100 mm
                                                < or =
                                         Provide
                                                                12 mm dia rings @
                                                                                                     100 mm c/c.
       This spacing is in accordance to IS 13920:1993 Cl. 7.4.6
       CODE OF PRACTICE FOR DUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES
       Check for Size of Hoop Reinforcement
                                                                   Refer IS 13920:1993 Cl. 7.4.8
                                                Ash= 0.18 Sh (Fck/Fy)x(Ag/Ak-1)
                                              S
                                                                   100.00
                                                                                 mm
                                              h
                                                         =
                                                                   300.00
                                                                                 N/mm<sup>2</sup>
                                                                                                (Spacing of long. bars+ effective cover) or 300 mm whichever is less
                                            Fck
                                                                   30.00
                                                                                 N/mm<sup>2</sup>
                                                                                                                  Cover 75 mm to main reinforcement
                                             Fy
                                                                   415.00
                                                                                 N/mm<sup>2</sup>
```

 mm^2 Ag 1200.00 Considering 1 mm Wide Pier Ak 1099.00 mm^2 Considering 1 mm Wide Pier Effective mm^2 Hence Ash 35.87 Ash ProvideD 113.04 mm^2 Which is OK d) As per IS IS 13920:1993 Cl. 7.4.6 100 mm < or = Provide 12 mm dia rings @ 100 mm c/c. This spacing is in accordance to IS 13920:1993 Cl. 7.4.6 CODE OF PRACTICE FORDUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES

ABSTRACT

LONGITUDINAL REINFORCEMENT 25 MM BARS 290 MM However Adopt spacing as 250 mm TRANSVERSE REINFORCEMENT 12mm dia rings @100mm c/c.

27/[67]

DESIGN OF PIER FOOTING SUBMERSIBLE BRIDGE

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

FOR WIND AT SERVICE CONDITION

Length of footing	l _f	15.60	m	
Width of Footing	I _b	3.80	m	
Width of Pier		1.20	m	
Vertical Load	Р	13072.31	kN	
Longitudinal Moment	M_e	615.70	kN-m	
Transverse Moment	M_b	2917.78	kN-m	
Area in Tension = y x I _b			0.00 m^2	0.00 %
Maximum Pressure before Redistribution			243.85 kN/m ²	
Maximum Pressure After Redistribution =	pxK		243.85 kN/m ²	
Maximum Stress at Edge of Pier			243.85 kN/m ²	
Distance From Face of Pier to the Edge			1.30 m	
Stress at the Edge of Pier			160.43 kN/m^2	
Average Stress on Cantilevered Area			202.14 kN/m ²	
Area of the Cantilever Portion			1.30 m ²	
Distance of Centroid of the Stress in			0.69 m	
Cantilever Portion				
Moment about the Face of Pier			182.55 kN-m	
CONCRETE GRADE			M-25	
FOR THIS GRADE ocbc			10 N/mm2	
m			9.33	
ost			200	
factor k			0.318	
j B			0.894 1.422	
R Effective Depth Required			358 mm	
Adopt Total Depth			1500 mm	
Cover			50 mm	
Assume Bar Dia			25 mm	
Keeping A Cover Of 50 mm Effective De	epth		1438 mm	
Adopt Effective Depth	•		1437.5 mm	
Steel Required Ast			710 mm ²	
Area Of One Bar			491 mm²	
Spacing S			691 mm	

Provide Bars Of Dia And Spacing Area Of Distribution Steel Dia Of Bar For Distribution Steel	25	5 mm Ado	pt spacing as 250 mm 2000 mm ² 20 mm
Area Of One Bar In Distribution Reinfo Using The Bars Spacing Required Provide Bars Of Dia And Spacing) mm	314 mm² 157 mm 150 mm
Provide Bars Of Dia And Spacing for Top Main Steel	12	? mm	150 mm
Provide Bars Of Dia And Spacing for Top Distribution Steel	12	2 mm	150 mm
CHECK FOR SHEAR Critical Section is at a distance equal to a Section of Shear from end of pier Maximum Stress at Edge of Pier Stress at the Section for Shear Check Average Stress on Cantilevered Area Shear Force V=V' + M/d tanB Actual Shear Stress	(B=0) Hence V =V	pier face É	1437.5 mm -0.14 m 243.85 kN/m ² 253.16 kN/m ² 248.51 kN/m ² -34.17 kN -0.02 N/mm ²
Percentage Steel Tc k=1 Permissble Shear Stress = k Tc	100As/bd		0.05 0.23 N/mm ² 0.23 N/mm ²
Dia Of two Legged Stirrups			near Stress hence Shear nent should be provided 16 mm
Area Of One Bar In Distribution Reinfo Using The Bars Spacing Required s= A Provide Bars Of Dia And Spacing	Asw ts d/V	6 mm Ado	201 mm ² -3382 mm pt spacing as 250 mm

LIVE LOAD CALCULATION:-

[1] CLASS AA TRACKED VEHICLE:-

(a) Dispersion width along the span

According to clause 305.13 IRC- 21-2000

$$= 3.6 + 2(0.075 + 0.775)$$

(b) Dispersion width across the span

According to clause 305.13 IRC- 21-2000

be =
$$K \times (1 - x/Le) +bw$$

K = A Constant having the value depending upon the ratio (L1/Le where.

be = the effective width of the slab on which the load acts.

Le = Effective Span

x = the distance of c.g. of concentrate load from the near support

bw = The breadth of concentration area of the load i.e. Dimension of the tyre or track contact area over the road surface

Heve ,

$$=\frac{L1}{Le}$$
 $=\frac{7.00}{10.0}$ $=$ 0.7

Value of K = 2.4

bw =
$$0.85 + 2 \times 0.075$$
 = 1.0 M

$$X = L$$
 $2 = \frac{10}{2} = 5.0 \text{ M}$
 $be = 2.4 \times 4 \qquad (1 - 5/10) + 1$

Impact factor is 13.75% as pere IRC Section-II, Clause - 211-3 (a) (i)

DISPERSION ACROSS SPAN (CLASS AA TRACKED VEHICAL

The tracked vehicle is placed at a distance of minimum clearence of 1-2 m from Kerb Dispersion across span

- = C/C distance between wheels
 - + width from centre of wheel on clearence side
- + Least on other side or halp the dispersion of one wheel.
- = 2.05 + 1.93 + Least of 2.715 OR 5.8/2
- = 2.05 + 1.93 + 2.715
- = 6.695

Impact factor = 1.1375

Total load with impact

$$= 70 \times 1.1375$$

= Intensity of Load

$$= \frac{79.63}{5.30 \times 6.695} = 2.24 \text{ T/M}$$

Maximum Reaction

For Maximum reaction at support the Centre of gravity of the loads should be adjacent to one support should be adjacent to one support

Reaction
$$R_A$$
= 2.24x 3.00 x 1.50 /10.00
= 1.01 T
Reaction R_B = 2.24x 3.00 -1.01
= 5.71 T

DISPERSION ALONG SPAN (CLASS AA TRACKED VEHICLE

(a) Dispersion width along the span :-

$$tp = tc = 2 (tw + ts)$$

Dispersion along the span

Dispersion between two wheel is overlapping hence restricted to 1-2 M

= Dispersion combined for two wheels

= 3.1 M (along the span)

Impact factor = 1.1375

Total load with impact

= Intensity of Load

Maximum Reaction

For Maximum reaction at support the Centre of gravity of the loads should be adjacent to one support should be adjacent to one support

Reaction
$$R_A$$
= 7.91x 3.00 x 1.50 /10.00
= 3.56 T
Reaction R_B = 7.91x 3.00 -3.56
= 20.17 T

DESIGN OF PIER CAP :-				
D.L./ M Width along bridge				
DL. Of Slab =	0.75 x	8.40 x.	2.4 =	15.12 T
D.L. of Wearing coat =	0.08 x	8.40 x.	2.4 =	<u>1.51</u> T
			TOTAL	16.63 T
D.L. of Slab & Wearing coat on half of the pier	=			
		16.63 /	2 =	8.32 T
L.L. on Pier cap including impact along bridge				
	=	82.50 x	1.1375 =	93.84 T
(Refer Live Load Computation)				
Dispersion width across the span for				
70 T TRACKED VEHTCLE	=	6.695 M		
(Refer Solid slab design page SS-16)				
Live Load u.d.l. on Pier	=	93.84 /	6.695 =	14.02 T
Per M width				
Total Load on Half =	8.32 +	+ 14	1.02 =	22.33 T
of pier along bridge				Per M width
Effective depth of slab =90-2.5-2.5/2 =	71.25 d	cm		
Placement of the live load at effective depth from the support (taking support width 750 mm)				
Eccentricity = 71.25 -75/2	=	33.75 cm	=	0.34 M
Bending Moment along the bridge =				
	22.33 x	0.34		7.54 T - M/M width
=				
	7.54 x	10.00 =	75.4 kN-M	/M width
This moment is too small hence it will not/be the governing B.M.				
Moment in pier cap		75.40 kN-m		
CONCRETE GRADE		M30		
FOR THIS GRADE ochc		10 N/mm2		
m		9.33		
ost		200		
factor k		0.318		
j		0.894		
R		1.422		
Effective Depth Required		230 mm		
Adopt Total Depth		1200 mm		
Cover		50 mm		
Assume Bar Dia		25 mm		
Keeping A Cover Of 50 mm Effective Depth		1138 mm		
Adopt Effective Depth		1137.5 mm		
Steel Required Ast		371 mm ²		
Area Of One Bar		491 mm ²		
Spacing S		1323 mm		
Provide Bars Of Dia And Spacing	25 mm	100 mm	Adopt spacing	as 100 mm
Provide Bars Of Dia And Spacing for Top Main Steel	25 mm	100 mm	promis	· - · · · - · · · · · · · · · · · · · · · · · · ·
Provide Bars Of Dia And Spacing for Bottom Steel	16 mm	100 mm		
PIER SECTION ACROSS BRIDGE	10 11111	100 11111		
DEAD LOAD MOMENT PER METRE Width across bridge :-				
Slab D.L.	0.975 x	15 x.	2.4 =	35.10 T
D.L. of Wearing coat =	0.975 x	13 x. 12 x.	2.4 =	2.16 T
D.E. of Froding Code			4.7 -	2.101
	0.070 X		ΤΟΤΔΙ	37 26 ⊤
D.L. of Slah & Wearing coat on half of the nier			TOTAL	37.26 ⊤
D.L. of Slab & Wearing coat on half of the pier	5.070 X		TOTAL 2 =	37.26 T 18.63 T/ M width

L.L on pier 64.69 T = Dispersion width along the span for 70 T Tracked vehical 5.3 M 5.3 = 12.21 T/ M width L.L. . per M width on pier = 64.69 / Total D.L. + L.L. on half of Pier across 18.63 + 12.21 30.84 T bridge per M width Per M width The Live Load is with clearance from the Footpath and kerb. The cantilever portion of pier cap and width of footpath is 1500 mm Hence There is no eccentricity. Bending Moment across the bridge = 30.84 x 0 0.00 T - M/M width Provide Minimum steel Minimum Reinforcement calculation for Pier cap :-As per clause 710.8.2, IRC-78 - 2000, the thickness of pier cap shall be at least 200 mm However the thickness of Pier cap here is 1200 MM. Grade of Concrete M 30 Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10 IRC 21-2000 in any RC structure is 250 Sq mm per m in each direction. Allowable maximum spacing is 300 mm. Shrinkage and Temperature reinforcement required = 250 x 300 mm² 1.2 = Provide 25 mm tor reiforcement @ 100 mm c/c (14 Nos.) in top along the pier cap Provide 16 mm tor reiforcement @ 100 mm c/c (14 Nos.) in bottom along the pier cap Area of Steel Provided at top = (14x 491)= 6874 mm² $> 300 \text{ mm}^2$ OK Area of Steel Provided at bottom = (14x 201)2814 mm² > 300 mm² OK CHECK FOR SHEAR ALONG BRIDGE DIRECTION 30.84 T Shear Force 308.40 kN V=V' + M/d tanB (B=0) Hence V =V' **Actual Shear Stress** 0.27 N/mm² Percentage Steel 100As/bd 0.25 Tc 0.23 N/mm² Permissble Shear Stress = k Tc 0.23 N/mm² < Actual Shear Stress hence Shear Reinforcement should be provided Dia Of two Legged Stirrups 16 mm Area Of One Bar In Distribution Reinforcement 201 mm² 296 mm Using The Bars Spacing Required s= Asw ts d/V Provide Bars Of Dia And Spacing 16 mm 100 mm Adopt spacing as 100 mm HOWEVER Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the pier cap Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along the pier cap SHEAR CHECK ACROSS BRIDGE DIRECTION V = 20.3 T 203.00 kN Shear Force V=V' + M/d tanB (B=0) Hence V =V'

Actual Shear Stress
Percentage Steel
Tc
k=1

100As/bd

0.18 N/mm² 0.25 0.23 N/mm²

Permissble Shear Stress = k Tc

0.23 N/mm²
> Actual Shear Stress hence No Shear
Reinforcement is required.

HOWEVER

Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the pier cap Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along the pier cap

CALCULATION OF LIVE LOAD REACTION FOR PIER SUBSTRUCTURE FOR SIMPLY SUPPORTED SPANS OF A TWO LANE BRIDGE STRUCTURE

Centre line of pier w.r.t. the bearings :-

Rb	=	0.3	m
Rc	=	0.3	m

Reaction has been calculated for the following cases

- One lane of class 70-R(W)
 - One lane of class A
 - Two lane of class A
 - Three lane of class A
- One lane of class 70-R(W) + One lane of class A

Condition A: MAXIMUM LONGITUDINAL MOMENT CASE

Case 1: One lane of class 70-R(W)

Case 3: Two lane of class-A

Rc = 2*0	=	0.0	t
Rb = 2*7	=	13.9	t
Ra=	=	96.9	t
Vert.Reaction = 0 + 13.9	=	13.9	t
Braking Force(For single lane only)	=	11.1	t
Dead load reaction on the pier , Rg	=	485.0	t
Value of " μ " =	=	0.00	
Horizontal force due to temperature, T μ*(Rg+Ra)	=	0.0	t

 span
 load
 cg

 4.42
 51
 1.93

 5.79
 68
 2.895

 7.92
 80
 3.65

 9.44
 92
 4.4

 13.4
 100
 5.12

8.78

37/[67] Stability Analysis Kumbhalgarh Bridge.xis LLOAD-TEJ

Condition B: MAXIMUM TRANSVERSE MOMENT / REACTION CASE

CASE 1: ONE LANE OF CLASS 70-R(W)

first span			
SPAN	LOAD	CG	
	8.28	49	3.33
	5.04	58	2.18
	8.95		

34	3.715
51	3.19

second	span		
SPAN	LOAD	0	G
	3	80	3.65
4.5	52	92	4.4
8.4	18	100	5.12
2	24	100	5.12
8.9	95		
first spa	n		

first span		
3	17	0.87
4.52	29	1.75
8.48	41	2.56
24	49	3.53
8 95		

38[67] Stability Analysis Kumbhalgarh Bridge.xls LLOAD-TEJ

Rc = 90% of(9.77+21.74)

39/[67]

10 - 30 % 01(3.77 - 21.74)	-	20.4		
Rb = 90% of(24.85+31.22)	=	50.5	t	
Ra=	=	29.5	t	

28.4

two span length	load	cg6.8 end	cg2.7 end
9	27.2	4.5	4.5
13.3	38.6	7.1	6.2
14.5	50	8.79	5.71
18.7	52.7	9.24	9.46
18.8	55.4	9.71	9.09
17.6	55.4	9.71	9.09

load	Span2load	cg 6.8	load	Span2 load	cg 6.8
27.2	13.6	1.5	55.4	27.2	4.5
38.6	20.4	4.14	52.7	27.2	4.5
50	20.4	4.14	50	20.4	4.14
52.7	27.2	4.5	38.6	20.4	4.14
55.4	27.2	4.5	27.2	13.6	1.5
			span2	8.78	

load 1	Cg 2.7 end	load 1	Cg 2.7 end
13.6	1.5	28.2	4.07
18.2	1.81	25.5	3.4
25.5	3.4	29.6	1.73
28.2	4.07	18.2	1.81

Stability Analysis Kumbhalgarh Bridge.xls LLOAD-TEJ

Summary of Loads

	Max. Longitudin	al Moment			
Max. vertical reaction (t)	Transverse moment (t.m)	Longitudinal moment (t.m)	Design horizontal force (t)	Transverse ecc. (m)	Longitudinal ecc. (m)
60.4	175.3	18.1	16.0	2.905	0.300
55.4	160.7	2.1	11.1	2.900	0.038
13.9	16.0	4.2	11.1	0.700	0.300
18.8	13.2	5.6	13.9	0.700	0.300
60.6	115.9	18.2	18.8	1.913	0.300

	Max.	Transverse I	Moment			
Load case	Max. vertical reaction (t)	Transverse moment (t.m)	Longitudinal moment (t.m)	Design horizontal force (t)	Transverse ecc. (m)	Longitudinal ecc. (m)
1L class 70 - R	53.0	154.0	2.8	20.0	2.905	0.054
1L class - A	34.6	145.4	4.5	10.0	4.200	0.131
2L class - A	69.2	79.6	9.0	11.1	9.046	0.131
3L class - A	93.5	65.4	12.2	13.9	0.700	0.131
1L class 70 - R + 1L class - A	78.8	112.4	6.6	18.8	1.426	0.084

Vertical reaction due to braking has been neglected.

Maximum Reaction due Live Load including Impact	78.83	MT	=	788.27	KN
Maximum Longitudinal moment due to Live Load including	12.21	T-M	=	122.13	KNM
Impact and Breaking Force					
Maximum Transverse moment due to Live Load including Impact and Breaking Force	112.4	Т-М	=	1123.94	KNM

Component	Chainage	NSL
Central Pier at Chainage	40	82.57
A1	-3.2	98.6
P1	7.6	
P2	18.4	
P3	29.2	
P4	40	82.57
P5	50.8	
P6	61.6	
P7	72.4	
A2	83.2	101

TYPICAL SECTION OF THE ABUTMENT TYPABUT-01

Design of ABUTMENT

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

(a) Data Preliminary dimensions : Assumed as in Fig. TYPABUT-01

Superstructure : RCC Slab Bridge Total Width of Slab = 12.00 M

overall length = 10.80 m : Reinforced concrete

Type of abutment : Reinforced concrete Loading : As for National Highway

Back fill : Gravel with angle of repose $\Phi = 35^{\circ}$

Unit weight of back fill, w = 18 kN/m3

Angle of internal friction of soil on wall, $z = 17.5^{\circ}$

Approach slab : R.C. slab 300 mm thick, adequately reinforced

Load from superstructure per running foot of abutment wall:

Dead load = 802.01 kN/m Live load = 93.84 kN/m

(Refer Stability Analysis for sub structure. The above two values are obtained from the calculations for superstructure, and are taken to act over a width of 15 m).

Bearing: Tar Paper Bearings

(C) Self weight of abutment

Treating the section as composed of 6 elements as shown in Fig. 1the weight of each element and moment about the point O on the front toe are computed as in Table 1

(d) Longitudinal forces

(i) Force due to braking

Force due to 70 R wheeled vehicle =	0.2 x	1000 =	200 kN
This force acts at 1.2 m above the road level(Clause 214.3)	.		
Force on one abutment wall =	200 /	2 =	100 kN
Horizontal force per m of wall =	100 /	12.00 =	8.34 kN/ m

(ii) Force due to temperature variation and shrinkage

Assuming moderate climate, variation in temperature is taken as + 17 oC as per Clause 218.5 of Bridge Code.

Coefficient of Thermal expansion = 1.17E-05 /°C

Strain due to temperature variation = $17 \times 1.17E-05 = 1.99E-04$

From Clause 220.3, strain due to concrete

shrinkage = 2.00E-04

Total strain due to temperature and shrinkage = 1.99E-04 + 2.00E-04 = 3.99E-04

Horizontal deformation of deck due to temperature and shrinkage affecting one abutment = 3.99F-04 x 10800 /2 = 2.15F+00 mm Modulus of Elasticity Ec = 5000x fck^{1/2} 31220.19 N/mm2 Horizontal Stress due to strain in longitudinal direction at bearing level = 31220.19 = 3.99E-04 x 12.45 N/mm2 Horizontal Force due to strain in longitudinal direction at bearing level (For 1 m width of Slab) 1.25E+01 x 900 = 11208.36 N/m 11.21 kN/m Vertical reaction due to braking 200(1.2 + 0.975)Vertical reaction at one abutment = -----2.61 kN/m

(d)Earth pressure

(iii)

Active earth pressure $P = 0.5 \text{ wh}^2 \text{ K}_a$

where K_a is obtained from Equation (3.5)

 $K_a = \sec\Theta \sin(\Theta - \Phi) / [(\sin(\Theta + z)^{1/2} + (\sin(\Phi + z)\sin(\Phi - \delta)/\sin(\Theta - \delta))^{1/2}]$

Where P= Total active pressure, acting at a height of 0.42 h inclined at z to the normal to the wall on the earth side w = unit weight of earth fill

h = height of wall

 Θ = Angle subtended by the earthside wall with thw horizontal on the earth side

11.10x15

 Φ = Angle of internal friction of the earthfill

z =angle of friction of the earthside wall with the earth

 δ = Inclination of earthfill surface with the horizontal

Substituting values in Equation (3.5), we get $K_a = 0.496$ Coefficient

Height of backfill below approach slab = 4.86 m

Active earth pressure =

0.5 x 18 x 4.86^{2} x 0.496 = 105.23 kN/m

Height above base of centre of pressure = 0.42 x 4.86 =

Passive pressure in front of toe slab is neglected.

(e) Live load surcharge and approach slab

2.04 m

Equivalent height of earth for live load surcharge as per clause 714.4 is 1.20 m

Horizontal force due to L.L. surcharge =1.2 x 18 x 0.496 x 9.20 = 52.02 kN/m Horizontal force due to approach slab = 0.3 x 24 x 0.496 x 9.20 = 17.34 kN/m

Total 69.36 kN/m

The above two forces act at

2.4275 m above the base.

Vertical load due to L.L. surcharge and approach slab

 $= (1.2 \times 18 + 0.3 \times 24) \times 6.5 =$

187.2 kN/m

(f) Weight of earth on heel slab

Vertical load = $18 \times 6.5 \times (4.855 - 1)$ 34.7 kN/m

(g) Check for stability - overturning

The forces and their position are as shown in Fig. 1

The forces and moments about the point O at toe on the base are tabulated as in

Table 1 Two cases of lading condition are examined (i) Span loaded condition and (ii) Span unloaded condition.

Case (i) Span loaded condition

See Row 15 of Table 12.3

Overturning moment about toe = 469.25 kN-m Restoring moment about toe = 9783.99 kN-m

Factor of safety against overturning = 9783.99 / 469.25 = 20.85 Location of Resultant from O > 1.5 Hence Safe

 $X_0 = (M_V - M_H) / V = (1740.9 - 623.1) / 691.4 = 1.62 m$

=(9783.986 - 469.25) / 1904.726) = 4.89 m

Eccentricity of resultant

 $e_{max} = B/6 =$ 11.05 /6 = 1.84 m

 $e = (B/2 - X_0) = 0.78 \text{ m} < 0.80 \text{ m}$ 5.53 -4.89 =0.64 m < 1.84 m

Case (ii) Span unloaded condition

See Row 11 of Table 12.3

Overturning moment about toe = 432.47 kN-m Restoring moment about toe = 9410.21 kN-m

Factor of safety against overturning = 9410.21 / 432.47 =21.76 Location of Resultant from O > 1.5 Hence Safe

 $X_0 = (M_V - M_H) / V =$

=(9410.214 - 432.47) / 1808.272) = 4.96 m

(h)Check for stresses at base

For Span loaded condition

Total downward forces = 1904.73 kN

1904.73 6 x 0.78

Extreme stresses at base =

Maximum Stress = 1904.726/(11.05x1)(1 + (6x0.64/11.05)) = 232.28 kN/m2Minimum Stress = 1904.726/(11.05x1)(1 - (6x0.64/11.05)) = 112.48 kN/m2

Table 1 Forces and Moments About Base for Abutment.

SI.	Details	Force	, kN	Mo	Moment about O, kn-m			
No.		V	Н	Arm m	Mv	M_H		
1.	D.L. from superstructure	802.01	-	3.88	3111.810	-		
2.	Horizontal force due to temperatre and shrinkage	0	11.21	4.41	-	49.429		
3.	Active earth pressure	0	105.23	2.04	-	214.669		
4.	Horizontal force due to L.L surcharge and approach slab	0	69.36	2.4275	-	168.371		
5.	Vertical load due to L.L. surcharge and approach slab	187.20	-	7.8	1460.16	-		
6.	Self weight - part 1 11.05x1x 24 =	265.20	-	5.525	1465.23	-		
7.	Self weight - part 2 2.205x1.05x 24 =	55.57	-	4.03	223.9471	-		
8.	Self weight - part 3 1.2x1.05x 24 =	30.24	-	1.68	50.8032	-		
9.	Self weight - part 4 0.3x0.45x 24 =	3.24	-	2.05	6.642	-		
9.	Self weight - part 5 Triangular River Side 1/2x3x2.655x24=	95.58	-	2.50	238.95	-		
9.	Self weight - part 5 Triangular Earth Fill Side 1/2x6x2.855x24=	191.16	-	6.55	1252.098	-		
10.	Weight of earth on heel slab part 1 Rectangular Portion 0.5 x 3.855 x 18=	34.7	-	10.8	374.76	-		
10.	Weight of earth on heel slab part 2 Triangular Portion 1/2x6x3.855x18=	143.37	-	8.55	1225.814	-		
11.	Items 1 to 10	1808.27			9410.21	432.47		

	(Span unloaded condition)					
12.	L.L. from Superstructure Class 70 R wheeled vehicle	93.84	-	3.875	363.6348	-
13.	Vertical force due to braking	2.61	-	3.88	10.137	-
14.	Horizontal force due to braking	0.00	8.34	4.41	1	36.7794
15.	Items 11 to 14 (Span loaded condition)	1904.73	194.14	-	9783.99	469.25

NET LONGITUDINAL MOMENT

9783.99 - 469.25 =

Maximum pressure = 232.28 kN/m2 < 250.00 kN/m2 permissible HENCE OK.

Minimum pressure = 112.48 kN/m2 >0 (No tension) HENCE OK.

(i) Check for sliding

See Row 15 of Table 1

Sliding force = 194.14 kN

Force resisting sliding = 0.6 x 1904.73 = 1142.84 kN

Factor of Safety against sliding = 1142.84 / 194.14 = **5.89**

(j) Summary > 1.5 Hence Safe

The assumed section of the abutment is adequate.

9314.74

DESIGN OF ABUTMENT FOOTING

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake REDISTRIBUTION OF PRESSURE

FOR WIND AT SERVICE CONDITION

Length of footing	I_{f}	15.20	m			
Width of Footing	I_b	11.05	m			
Width of Abutment just above footing		9.05	m			
Vertical Load	Р	1904.73	kN			
Longitudinal Moment	M_e	9314.74	kN-m			
Transverse Moment	M_b	0.00	kN-m			
Area in Tension = y x l _b			0.00 m^2	0.00 %		
Maximum Pressure before Redistribution			232.28 kN/m ²			
Maximum Pressure After Redistribution =	pxK		232.28 kN/m ²			
Maximum Stress at Edge of Pier			232.28 kN/m ²			
Distance From Face of Pier to the Edge			1.00 m			
Stress at the Edge of Pier			211.26 kN/m ²			
Average Stress on Cantilevered Area			221.77 kN/m²			
Area of the Cantilever Portion			1.00 m ²			
Distance of Centroid of the Stress in		0.51 m				
Cantilever Portion						
Moment about the Face of Pier			112.64 kN-m			
CONCRETE GRADE			M-25			
FOR THIS GRADE ocbc			10 N/mm2	<u>)</u>		
m			9.33			
ost			200			
factor k			0.318			
j			0.894 1.422			
R Effective Depth Required			1.422 281 mm			
Effective Depth Required Adopt Total Depth			1000 mm			
Cover		50 mm				
Assume Bar Dia			16 mm			
Keeping A Cover Of 50 mm Effective D		942 mm				
Adopt Effective Depth		942 mm				
Steel Required Ast		669 mm ²				
Area Of One Bar		201 mm ²				

Spacing S			300 m	ım	
Provide Bars Of Dia And Spacing		16 mm	150 m	ım	Adopt spacing as 150 mm
Area Of Distribution Steel			1884 m	ım²	
Dia Of Bar For Distribution Steel			20 m		
Area Of One Bar In Distribution Reir	forcement		314 m	ım²	
Using The Bars Spacing Required			167 m	ım	
Provide Bars Of Dia And Spacing		16 mm	160 m	ım	Adopt spacing as 150 mm
Provide Bars Of Dia And Spacing fo	or				
Top Main Steel		12 mm	150 m	ım	
Provide Bars Of Dia And Spacing for	r				
Top Distribution Steel		12 mm	150 m	ım	
CHECK FOR SHEAR	(As per IRC 2	21-1987 CI.	304.7)		
Critical Section is at a distance equal to	o effective depth f	from pier fa	ce 942 m	ım	
Section of Shear from end of pier			0.06 m	ı	
Maximum Stress at Edge of Pier			232.28 k l	N/m²	
Stress at the Section for Shear Check			228.54 k l	N/m ²	
Average Stress on Cantilevered Area			230.41 k l	N/m ²	
Shear Force			13.36 ki		
V=V' + M/d tanB	(B=0) Hence	V =V'			
Actual Shear Stress	, ,		0.01 N	/mm²	
Percentage Steel	100As/bd		0.14		
Tc			0.23 N	/mm²	
k=1					
Permissble Shear Stress = k Tc			0.23 N	/mm ²	
			< Actual Shear Stres		e Shear
			Reinforcement shou		
Dia Of two Legged Stirrups			16 m	-	
Area Of One Bar In Distribution Reir	forcement		201 _m	m ²	
			5666 m		
Using The Bars Spacing Required so Provide Bars Of Dia And Spacing	- ASW IS U/V	16 mm	150 m		Adopt spacing as 150 mm
					•

DESIGN OF ABUTMENT FOOTING

REINFORCEMENT CALCULATION IN ABUTMENT SUBMERSIBLE BRIDGE

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake

Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10 IRC 21-2000 in any RC structure is 250 Sq mm per m in each direction. Allowable maximum spacing is 300 mm.

Shrinkage and Temperature reinforcement required per metre =		250	mm ²		
Area Of One Bar	12 mm dia	113	mm ²		
Spacing S		452	! mm		
Provide Bars Of Dia And Spacing	12 mm	125	mm		
Provide Bars Of Dia And Spacing	12 mm	125	mm		
HORIZONTAL SHRINKAGE &TEMPERATURE REINFORCEMENT	12	MM BARS	125	MM	In Vertical direction on all FOUR faces
VERTICAL SHRINKAGE &TEMPERATURE REINFORCEMENT	12	MM BARS	125	MM	In Lateral direction on all FOUR faces

DESIGN OF Abutment CAP SUBMERSIBLE BRIDGE

Name Of Work :- Construction Of High Level Bridge on Kelwara Kumbhalgarh Road Over Kelwara Lake	
DESIGN OF Abutment CAP :-	

DESIGN OF Abutment CAP :-				
D.L./ M Width along bridge				
DL. Of Slab =	0.975 x	15 x.	2.4 =	35.10 T
D.L. of Wearing coat =	0.075 x	12 x.	2.4 =	2.16 T
D.L. of Wealing Goat =	0.073 X	12 A.	TOTAL	37.26 T
D.L. of Slab & Wearing coat on half of the Abutment	=		TOTAL	37.20 1
B.E. of Glab & Wearing Coat of Hair of the Abdullent		37.26 /	2 =	18.63 T
L.L. on Abutment cap including impact along bridge		37.207	2 -	10.03 1
L.L. on Abutinent cap including impact along bridge	=	82.50 x	1.1375 =	93.84 T
(Defer Live Lead Computation)	-	02.30 X	1.1373 -	33.04 1
(Refer Live Load Computation) Dispersion width across the span for				
70 T TRACKED VEHTCLE	=	C COE M		
	_	6.695 M		
(Refer Solid slab design page SS-16)	=	93.84 /	6.695 =	14.02 T
Live Load u.d.l. on Abutment	_	93.04 /	0.095 =	14.02 1
Per M width	40.00	4.4	.02 =	00.0F T
Total Load on Half =	18.63 +	14	02 =	32.65 T
of Abutment along bridge	00.05			Per M width
Effective depth of slab =90-2.5-2.5/2 =	86.25 c	m		
Placement of the live load at effective depth from the support (taking support width 750 mm)		00.75		0.04.14
Eccentricity = 71.25 -75/2	=	33.75 cm	=	0.34 M
Bending Moment along the bridge =				
	32.65 x	0.34	•	1.02 T - M/M width
=				
	11.02 x	10.00 =	110.2 kN-M	/M width
This moment is too small hence it will not/be the governing B.M.				
Moment in Abutment cap		110.20 kN-m		
CONCRETE GRADE		M30		
FOR THIS GRADE ocbc		10 N/mm2		
m		9.33		
ost .		200		
factor k		0.318		
		0.894		
R		1.422		
Effective Depth Required		278 mm		
Adopt Total Depth		1200 mm		
Cover		50 mm		
Assume Bar Dia		25 mm		
Keeping A Cover Of 50 mm Effective Depth		1138 mm		
Adopt Effective Depth		1137.5 mm		
Steel Required Ast		542 mm ²		
Area Of One Bar		491 mm ²		
Spacing S		905 mm		
Provide Bars Of Dia And Spacing	25 mm	100 mm	Adopt spacing a	s 100 mm
Provide Bars Of Dia And Spacing for Top Main Steel	25 mm	100 mm	Adopt spacing t	
Provide Bars Of Dia And Spacing for Bottom Steel	16 mm	100 mm		
Abutment SECTION ACROSS BRIDGE	10 111111	100 11111		
DEAD LOAD MOMENT PER METRE Width across bridge :-				
Slab D.L.	0.975 x	15 x.	2.4 =	35.10 T
D.L. of Wearing coat =	0.975 x 0.075 x	13 X. 12 X.	2.4 =	2.16 T
B.L. of Wedning Coat -	0.070 X	12 1.	TOTAL	37.26 T
			IOIAL	31.20

D.L. of Slab & Wearing coat on half of the Abutment		=	27.26 /	2 =	18.63 T/ M	width
L.L on Abutment		=	37.26 /	2 -	64.69 T	widti
Dispersion width along the span for 70 T Tracked vehical	=	5.3 M				
L.L per M width on Abutment = Total D.L. + L.L. on half of Abutment across bridge per M width The Live Load is with clearance from the Footpath and kerb. The cantilever portion of A Hence There is no eccentricity.	Abutment cap and width of footpa	18.63 + th is 1500 mm	64.69 / 12.21	5.3 = =	12.21 T/ M 30.84 T Per M width	width
Bending Moment across the bridge =		30.84 x	0		0.00 T - M/M width	
Provide Minimum steel Minimum Reinforcement calculation for Abutment cap:- As per clause 710.8.2, IRC- 78 - 2000, the thickness of Abutment cap shall be at least 200 mm However the thickness of Abutment cap here is 1200 MM. Grade of Concrete M 30 Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10 IR in any RC structure is 250 Sq mm per m in each direction. Allowable maximum spacing Shrinkage and Temperature reinforcement required = Provide 25 mm tor reiforcement @ 100 mm c/c (14 Nos.) in top along the Abutme Provide 16 mm tor reiforcement @ 100 mm c/c (14 Nos.) in bottom along the Abutme (14x 491)	g is 300 mm. ent cap	6874 mn	250 n² > 300 mm		1.2 =	300 mm ²
		007 1		- On		
Area of Steel Provided at bottom = (14x 201) CHECK FOR SHEAR ALONG BRIDGE DIRECTION V =	=	2814 mn	n ² > 300 mm	² OK		
Shear Force V=V' + M/d tanB Actual Shear Stress Percentage Steel Tc	(B=0) Hence V =V' 100As/bd		308.40 kN 0.27 N/mm ² 0.25 0.23 N/mm ²			
k=1 Permissble Shear Stress = k Tc Dia Of two Legged Stirrups			0.23 N/mm² Shear Stress hencement should be p			
Area Of One Bar In Distribution Reinforcement Using The Bars Spacing Required s= Asw ts d/V Provide Bars Of Dia And Spacing HOWEVER Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along		16 mm	201 mm ² 296 mm 100 mm	Adopt spacing	g as 100 mm	
SHEAR CHECK ACROSS BRIDGE DIRECTION V =		20.3 T				

Shear Force V=V' + M/d tanB Actual Shear Stress Percentage Steel

Tc k=1

Permissble Shear Stress = k Tc

(B=0) Hence V =V'

100As/bd

0.18 **N/mm²** 0.25

203.00 kN

0.23 N/mm²

0.23 N/mm²

> Actual Shear Stress hence No Shear Reinforcement is required.

HOWEVER

Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the Abutment cap Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along the Abutment cap

DESIGN OF DIRT WALL AS COLUMN WITH BENDING

AXIAL LOAD ON THE DIRT WALL	31.60 KN		
ASSUME WIDTH OF DIRT WALL	1000 MM	EMIN/B	0.00
ASSUME DEPTH OF DIRT WALL	300 MM	EMIN/D	0.01
MOMENT TRANSFERRED TO DIRT WALL	12.80 KN-M	•	•
FACTORED AXIAL LOAD	47.40 KN		
FACTORED MOMENT	19.20 KN-M		
DIA OF LONGITUDINAL REINFORCEMENT	10 MM		
CLEAR COVER	40 MM		
d'	45 MM		
d'/D	0.15		
ADOPT d'/D	0.15		
PU/FCKBD	0.01		
MU/FCKBD ²	0.01		
REINFORCEMENT EQUALLY DISTRIDUTED ON	TWO SIDES		
USING CHART NO- OF RCC DESIGN AIDS	33	CONC GRAD	E M-30
P/FCK	0.01		
P	0.3	> Minimum St	teel 0.2% Hence OK
AS	900 SQ MM		
TOTAL NUMBER OF BARS REQUIRED	12		
NUMBER OF BARS ON EACH SIDE	6		
SPACING	200 MM		

Alternate design Considering dirt wall as cantilever

 mm^2 On River side 10mm bars @ 150 mm c/c 524 $\,\mathrm{mm}^2$ On Approach Slab side 10mm bars @ 150 Mm c/c 524 Minimum steel required in Horizontal direction 0.002 1000 = 250 500 mm² i.e. 250 mm² on each face 314 mm^2 provide 10 @ 250 mm c/c =

ABSTRACT

VERTICAL REINFORCEMENT IN SHAPE OF STIRRUPS on both faces

DIA 10 mm SPACING 150 mm

HORIZONTAL REINFORCEMENT BAR DIA on both faces

DIA 10 mm SPACING 250 mm

Design of Dirt Wall

Dirt wall is subjected to

- (1) Live load
- (2) Live load surcharge
- (3) Braking force
- (3) Earth Pressure
- Consider 70 T tracked vehicle case is governing & 14 T Axle over dirt wall, Dispersion width at top of DIRT WALL

2) Self wt. of dirt wall

$$=$$
 0.6 x 0.3 x 2.4

= 0.495 T/M

Say 0.5 T/M

Total direct loads =
$$2.66 + 0.5 = 3.16$$
 T/M = **31.6** kN

Here considering that only 70% of Braking force will be on dirt wall & the rest of braking force will be on soil.

= B.M. due to Braking force

Intensity of Earth Pressure at Deck Level

$$=$$
 0.224 x 1.8

8 x 1.2

 $= 0.483 \text{ T/M}^2$

Intensity of Earth Pressure at top of Abutment Ca=

$$=$$
 0.224 x 1.8 x (1.2 + 0.825)

 $= 0.816 \text{ T/M}^2$

B.M. due to Earth Pressure & Live Load

Surcharge/M width

$$=$$
 $\frac{1}{2}$ = (0.816 - 0.483) X 0.825 X 0.42 X 0.875

+

0.483

X 0.82

0.825 $X = \frac{0.528}{2}$

0.164

Total BM at top of DIRT WALL

=
$$0.09$$
 Kg./Cm²

For M 30 Grade,

Permissible Direct Compressive

Stress =

Stress =
$$50$$
 Kg./Cm²

$$= \frac{1.05}{50} + \frac{0.09}{67} \le 1$$

$$= 0.021 + 0.001 \le 1$$

=
$$0.022$$
 ≤ 1 HENCE OK.

```
DEAD LOAD CALCULATION:-
DEPTH OF DECK SLAB =
                                                          925 mm
DEPTH OF WEARING COAT =
                                                          75 mm
DIA OF MAIN BAR =
                                                           25 mm
                                                           25 mm
Clear cover =
Effective depth of slab deffective =
                                                          925 -
                                                                              25 -
                                                                                                  25 /2 =
                                                                                                                   887.5 mm
Effective SpanLeffective =
                                                          10 m
DESIGN DEAD LOAD:-
(1) Weight / Sqm of Slab
                                                        0.925 x
                                                                             2.4 =
                                                                                                2.22 T/ Sam
(2) Weight / Sqm of wearing coat
                                                        0.075 x
                                                                             2.4 =
                                                                                                0.18 T/ Sqm
                                            Total DL
                                                                                                 2.4 T/ Sqm
DEAD LOAD BENDING MOMENT
                                                                 2.4x10x10/8 =
                                                                                               30.00 T-M
```

LIVE LOAD CALCULATION :-

[1] CLASS AA TRACKED VEHICLE :-

(a) Dispersion width along the span

= Length of Contact + 2 (Wearing coat + depth of Slab)

= 3.6+2(0.075+0.925)= = **5.60** m

(b) Dispersion width across the span

be = $K \times (1 - x/Le) + Bw$

K = A Constant having the value depending upon the ratio (be/Le) where ---

be = the effective width of the slab on which the load acts.

Le = Effective Span

x = the distance of c.g. of concentrate load from the near support

bw = The breadth of concentration area of the load i.e. Dimension of the tyre or track contact area over the road surface

Here , be = 7.50 m Le = 10.00 m be/le =0.75 Value of K = 2.4 Bw = $0.85 + (2 \times 0.075) =$ 1.00 m 5.00 m Le/2 = 10.00 /2 = x =

Impact factor is 13.75% as pere IRC Section-II, Clause - 211-3 (a) (i)

DISPERSION ACROSS SPAN (CLASS AA TRACKED VEHICAL)

The tracked vehicle is placed at a distance of minimum clearence of 1.2 m from Kerb

Dispersion across span = C/C distance between wheels + width from centre of wheel on clearence side

be =

+ Least on other side or half the dispersion of one wheel.

2.20 m

5.75

DISPERSION ALONG SPAN (CLASS AA TRACKED VEHICLE

Maximum Bending Moment due to Live load, at centre

$$= 5.34 \times \frac{5.6}{2} (10.00 - \frac{5.6}{5})$$

$$= 132.77 \text{ T} - \text{M}$$

Class AA wheeled vehicle :-

For Maximum B.M. at Centre of the span, the Centre of gravity of the loads and the centre of the span should coincide

(a) Dispersion width along the span :-

$$tp = tc = 2 (tw + ts)$$

tp = width of dispersion parallel to span

tc = width of tyre contact area parallel to span

ts = Overall depth of slab

tw = Thickness of Wearing coat

Dispersion along the span

$$= 0.15 + 2 (0.075 + 0.75) = 1.8 m$$

Dispersion between two wheel is overlapping hence restricted to 1.2 M

= Dispersion combined for two wheels

= 3.0 m (along the span)

DISPERSION ALONG SPAN (CLASS AA WHEELED VEHICLE)

(B) Dispersion width across the span :-

be =
$$k \times (1 - X/L) + w$$

Le = 10.0 M & L1 = 7.5 M
= Value of K = 2.4
 $X = L/2 = 10/2 = 5.00 M$
Bw = 0.30 + 2 (0.075) = 0.45 M

6.45 M

(For one Wheel)

DISPERSION ACROSS THE SPAN (CLASS AA WHEELED HEVHICLE)

When the wheel is placed at a distnace of minimum clearance of 1-2 M from Kerb,

be = $2.4 \times 5 \times (1 - 5.00/10.00) + 0.45 =$

Combined effective width

- = c/c distance between wheels
 - + 1/2 of the dispersion of one wheel
 - + least of available width from centre of wheel on clearance side or half the dispersion of one wheel

= 2.2 + 3.225 + 1.655

= **7.08** m

According to clause 211.3 (a) (ii) section-III, IRC 6- 1966 Impact factor = 25%

= 1.25

= Total load of tracks with impact

= 20 x 1.25

4.8

= 25 T

Intensity =
$$\frac{\text{Load}}{\text{dispersion along x across the span}}$$

= $\frac{25 \times 2}{3.00 \times 7.08}$

2.35 T/M

DISPERSION ACROSS THE SPAN (CLASS AA WHEELED HEVHICLE)

Maximum B.M. due to Live load at centre

$$= 2.35 \times \frac{7.08}{2} (10.00 - \frac{7.08}{5})$$

$$= 71.41 \text{ T - M}$$

$$= 2.35 \times 3 (5 - 3)$$

= 2.35<u>x3 (</u> 5 <u>- 3)</u> 2 2

=

Here from bending moment view point class AA tracked vehical is governing

Hence Maximum Bending Moment due to Live load = 15.527 T - M

132.77 T - M

Total B.M = B.M due to Dead load + BM. Due to Live load = 30.00 + 132.77 = 162.77 T-M