

Department of Computer Science & Engineering

QUESTION BANK FOR IV SEMESTER – DAA LAB

Note:

- 1) Students must choose **one question** from the lot. Algorithms for the same should be written
- 2) Programs should be implemented using **Python programming language** for user defined inputs [no hard coding]
- 3) The **built-in modules should not be used** for implementation (except time module and random module)

	Lab Programs	CO	PO
1.	Given a set of men's and women's preference list. Design and implement Gale-Shapley algorithm to determine the stable set of marriages among them. Comment on the time complexity of the same. Assumptions: Men propose first according to their preference list. Women can choose a better partner based on the preference. Men's preference list Women's preference list V A B C	1	1,2,3,4,5,12
	A V W X V A B C B W V X W B C A C V W X X C A B		
2.	Design and implement merge sort algorithm that takes user input and displays the execution time required. State the design strategy used and comment on the time complexity of the same.	2	1,2,3,4,5,12
3.	In a database of numbers there is a table of unsorted numbers. The database admin now wants to sort these numbers using an approach where in the first element is selected as the pivot element for sorting. At certain point, the first half elements are less than the pivot and right half elements are greater than the pivot. Design and implement Quicksort algorithm to solve it. State the design strategy used and comment on the time complexity of the same	2	1,2,3,4,5,12
4.	A truck driver is given a set of locations to be covered with their distances by a company. The company strictly orders that truck should be started from a particular location. Design and implement Dijkstra's algorithm that gives a greedy solution to the truck driver's problem and display the shortest path for a given source location to all other locations. State the design strategy used and comment on the time complexity of the same.	2	1,2,3,4,5,12
5.	A phone company wants to lay lines for communication in a city. Different amounts are charged for connecting between each pair of cities. Design and implement Kruskal's greedy solution such that it forms a spanning tree with minimum cost and find the time complexity of the same.	2	1,2,3,4,5,12

			Г
	5 1 10		
	5 7 6 2		
	3 1		
	4 3		
6.	A drama venue needs to be allocated for different drama school requests such	2	1,2,3,4,5,12
0.	that maximum profit is obtained for the company owning the drama venue.	2	1,2,3,1,3,12
	The requests are shown in the table with start—time, finish-time and the amount		
	affordable by the drama school. Design and implement Weighted Interval		
	Scheduling algorithm such that maximum profit is obtained for the company owning the drama venue using Dynamic programming principles. State the		
	design strategy used and comment on the time complexity of the same.		
	design strategy assertant common on the time compressity of the same.		
	Drama Start- Finish- Value		
	School time time		
	2 2 5 200		
	3 3 6 300 4 4 8 400		
	5 5 9 500 6 6 10 100		
	6 6 10 100		
7.	Given a set of non-negative integers and a value of variable sum. design and	2	1,2,3,4,5,12
ı	implement an algorithm to determine if there is a subset of the given set with		
	a sum equal to the given sum. A suitable message is to be displayed if the given		
8.	problem instance doesn't have a solution. Alia is planning for a trekking expedition with a backpack that can hold 7kg.	2	1,2,3,4,5,12
0.	She needs to select the most valuable items from the following list that can be	2	1,2,3,4,3,12
	accommodated within the backpack. Design and implement Knapsack		
	algorithm that displays the most valuable items that can be carried by her		
	using Dynamic programming principle and find the time complexity of the		
	same.		
	ItemsWeightValue1310		
	$\begin{array}{ c c c c c }\hline 1 & 3 & 10 \\ \hline 2 & 5 & 4 \\ \hline \end{array}$		
	$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 6 & 9 \end{bmatrix}$		
	4 2 11		
9.	Design and implement Bellman ford algorithm to find the shortest path from	2	1,2,3,4,5,12
	a given source to all other nodes. State the design strategy used and comment		
	on the time complexity of the same.		
	a -3		
	-4 -1 d d		
	(b) -2 (t)		
	8 2 2		
	(c) 3		
10	Design and implement N-queens algorithm that displays the possible	3	1,2,3,4,5,12
-0.	solutions on 4 x 4 chessboard. State the design strategy used and time	_	,—,-,·, - ,-
	complexity of the same.		

