软件测试与质量保证

3.1 等价类测试

张宇霞 副研究员

- 01 黑盒测试
- 902 等价类测试
- 903 等价类测试案例

日录 CONTENTS

- 01 黑盒测试
- 92 等价类测试
- 903 等价类测试案例

多维度分类:

测试方法

测试阶段

测试目标

■ 黑盒测试 (数据驱动测试)

▶ 它是把测试对象看做一个黑盒子,测试人员完全不考虑程序内部的逻辑结构和内部特性,只依据程序的需求规格说明书,检查程序的功能是否符合它的功能说明。

■ 黑盒测试技术

- 一等价类划分
- ▶边界值分析
- 〉输入组合法
- **|** 因果图
- **>基于状态测试**

- 01 黑盒测试
- 902 等价类测试
- 903 等价类测试案例

■等价类

- ▶如果软件的行为对于一组值来说是相同的,那么这组值就叫做等价类。
- ➤等价类是指测试相同目标或者暴露相同软件缺陷的一组测试用例。

■ 软件规约:

〉将输入的百分制成绩转换为

A、B、C、D四档成绩。

• 90以上: A

• 80-90: B

• 70-80: C

```
void Grade(int score)
  if(score>100)
      System.out.print("Out of scope");
      return;
   if(score>90)
      System.out.print("A");
      return;
   if(score>80)
      System.out.print("B");
      return;
    if(score>70)
      System.out.print("C");
     return;
   System.out.print("D");
     return;
```

■ 软件规约:

〉将输入的百分制成绩转换为

A、B、C、D四档成绩。

• 90以上: A

• 80-90: B

• 70-80: C

• 70以下: D

■95, 97, 98

■85, 81, 89

■72, 73, 79

■59, 60, 0

- **■95**, 97, 98
- **■85**, 81, 89
- **■72**, 73, 79
- **■**59, 60, 0

```
void Grade(int score)
  if(score>100)
     System.out.print("Out of scope");
     return;
   if(score>90)
     System.out.print("A");
     return;
   if(score>80)
     System.out.print("B");
     return;
    if(score>70)
     System.out.print("C");
     return;
   System.out.print("D");
     return;
```

■ 软件规约:

- 〉依据成绩score计算奖励。
 - 90以上: 4×score
 - 80-90: **2**×*score*
 - 70-80: *score*
 - 70以下: 0.5×score

```
double Grade(int score)
 if(score>90)
      return 4*score;
   if(score>80)
      return 2*score;
   if(score>70)
      return score;
   return 0.5*score;
```

■ 软件规约:

〉依据成绩score计算奖励。

• 90以上: 4×score

• 80-90: **2**×*score*

• 70-80: *score*

• 70以下: 0.5×score

■95, 97, 98

■85, 81, 89

■72, 73, 79

■59, 60, 0

- **■95**, 97, 98
- **■85**, 81, 89
- **■72**, **73**, **79**
- **■** 59, 60, 0

```
double Grade(int score)
 if(score>90)
      return 4*score;
   if(score>80)
      return 2*score;
   if(score>70)
      return score;
   return 0.5*score;
```

■等价类划分方法

▶把所有可能的输入数据划分成若干部分(等价类),
然后从每一个等价类中选取少数有代表性的数据作为
测试用例。

■测试用例选择

- 户设计一个测试用例,尽可能多地覆盖尚未覆盖的有效等价 类。重复这个步骤直到覆盖所有有效等价类为止;
- >设计一个测试用例,尽可能少地覆盖尚未被覆盖的无效等 价类(大于等于一)。重复这个步骤,直到所有无效等价 类都被覆盖为止。

■ 软件规约:

)将输入的百分制成绩转换为A、B、C、D四档成绩。

• 90以上: A

• 80-90: B

• 70-80: C

■有效等价类

- >[90,100]
- >[80,90)
- **>**[70,80)
- > [0,70)

■ 软件规约:

→将输入的百分制成绩转换 为A、B、C、D四档成绩。

• 90以上: A

• 80-90: B

• 70-80: C

■无效等价类

$$>(100,+\infty]$$

$$\triangleright$$
[- \propto , 0)

■ 软件规约:

〉将输入的百分制成绩转换 为A、B、C、D四档成绩。

• 90以上: A

• 80-90: B

• 70-80: C

■有效等价类

- >[90,100]
- >[80,90)
- >[70,80)
- >[0,70)

■无效等价类

$$>(100,+\infty]$$

$$\triangleright$$
[- \propto , 0)

■测试用例选择

▶设计一个测试用例,尽可能多地覆盖尚未覆盖的有效等价类。重复这个步骤直到覆盖所有有效等价类为止;

■ 有效等价类

- **>** [90,100]
- \geq [80,90)
- **>** [70,80)
- > [0,70)

■ 无效等价类

- \geq (100, + \propto]
- \geq [-\infty, 0)

02

等价类测试

■测试用例

>A: 95

►B: 85

>C: 75

>D: 65

■ 有效等价类

> A: [90,100]

> B: [80,90)

> C: [70,80)

 \triangleright D: [0,70)

■ 无效等价类

 \triangleright E: (100, + ∝]

 \triangleright F: $[-\infty, 0)$

■ 测试用例选择

设计一个测试用例,尽可能多地覆盖尚未 覆盖的有效等价类。重复这个步骤直到覆 盖所有有效等价类为止。

02

等价类测试

■测试用例 ■测试用例

>A: 95 >E: 101

 \rightarrow B: 85 \rightarrow F: -2

>C: 75

>D: 65

■ 有效等价类

> A: [90,100]

➤ B: [80,90)

> C: [70,80)

 \rightarrow D: [0,70)

■ 无效等价类

 \triangleright E: (100, + ∝]

 \rightarrow F: $[-\infty, 0)$

■ 测试用例选择

▶ 设计一个测试用例,尽可能少地覆盖尚未被覆盖的无效等价类(大于等于一)。重复这个步骤,直到所有无效等价类都被覆盖为止。

- 01 黑盒测试
- 902 等价类测试
- 03 等价类测试案例

■ 软件规约:

- ▶根据年龄、性别、婚姻状况数等计算绩点。
 - 根据绩点进行退税

年龄	20~39岁	10点
	40~59岁	4点
	60岁以上20岁 以下	2点
	男	6点
性别	女	7点
婚姻	己婚	8点
	未婚	3点

	数字范围	1~150
1.年龄	有效等价类	20~39岁
		40~59岁
		60岁以上,150岁以下
		20岁以下,1岁以上
	无效等价类	1岁以下
		150岁以上

2.性别	有效等价类	男
		女
	无效等价类	非「男」或「女」
3.婚姻	有效等价类	己婚
		未婚
	无效等价类	非「已婚」或「未婚」

■测试用例

- ▶年龄=20,性别=男,婚姻=已婚
- ▶年龄=40,性别=女,婚姻=未婚
- ▶年龄=60,性别=女,婚姻=未婚
- ▶年龄=2, 性别=女, 婚姻=未婚

	数字范围	1~150	
1.年龄	有效等价类 无效等价类	20~39岁	√
		40~59岁	√
		60岁以上,15	0岁以下 ▼
		20岁以下,1岁	以上 ✓
		1岁以下	
		150岁以上	

	· ·		
2.性别	有效等价类	男	
		女	
	无效等价类	非「男」或「女」	
3.婚姻	有效等价类	已婚	
		未婚	
	无效等价类	非「已婚」或「未婚」	

■ 测试用例选择

设计一个测试用例,尽可能多地覆盖 尚未覆盖的有效等价类。重复这个步 骤直到覆盖所有有效等价类为止。

■测试用例

- ▶年龄=0,性别=男,婚姻=未婚
- →年龄=160,性别=女,婚姻=未婚
- ▶年龄=60,性别=第三性别,婚姻=未婚
- ▶年龄=2, 性别=女, 婚姻=单身

	数字范围	1~150
1.年龄	有效等价类	20~39岁
		40~59岁
		60岁以上,150岁以下
		20岁以下,1岁以上
	无效等价类	1岁以下 ▼
		150岁以上 ▼

2.性别	有效等价类	男
		女
	无效等价类	非「男」或「女」 ▼
3.婚姻	有效等价类	己婚
		未婚
	无效等价类	非「已婚」或「未婚」 🗸

■ 测试用例选择

▶ 设计一个测试用例,尽可能少地 覆盖尚未被覆盖的无效等价类 (大于等于一)。重复这个步 骤,直到所有无效等价类都被覆 盖为止。

■ 测试用例 (覆盖有效等价类)

- ▶年龄=20,性别=男,婚姻=已婚
- →年龄=40,性别=女,婚姻=未婚
- ▶年龄=60,性别=女,婚姻=未婚
- ▶年龄=2,性别=女,婚姻=未婚

■ 测试用例 (覆盖无效等价类)

- ➤ 年龄=0,性别=男,婚姻=未婚
- ➤ 年龄=160,性别=女,婚姻=未婚
- ➤ 年龄=60,性别=第三性别,婚姻=未婚
- ➤ 年龄=2, 性别=女,婚姻=单身

1.年龄	数字范围	1~150
	有效等价类	20~39岁
		40~59岁
		60岁以上,150岁以下
		20岁以下,1岁以上
	无效等价类	1岁以下
		150岁以上

2.性别	有效等价类	男
	无效等价类	非「男」或「女」
3.婚姻	有效等价类	己婚
		未婚
	无效等价类	非「已婚」或「未婚」

日录 CONTENTS

- 01 黑盒测试
- 902 等价类测试
- 903 等价类测试案例

等价类测试是黑盒测试的重要手段

软件的行为对于一组值来说是相同的,那么这组值就叫做等价类。

等价类测试方法就是把所有输入划分了若干等价类,从每个等价类中选择若干典型输入作为测试用例。

塘地大家