DATA VISUALIZATION

Bùi Tiến Lên

2023

Contents

1. Data Visualization

2. Visual Data Analyze

Data Visualization

- Explainable Artificial Intelligence
- Data Visualization

Explainable Artificial Intelligence

- Explainable could mean interpretable
- Abstraction: how much of an explanation do we need?
- The Explainable AI (XAI) program aims to create a suite of machine learning techniques that:
 - Produce more explainable models, while maintaining a high level of learning performance (prediction accuracy)
 - Enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

Data Zigualizatio

Visualization

Explainable Artificial

Intelligence

Data Visualiza

Visual D

The Explainable Artificial Intelligence (cont.)

Human vs. Model

The challenge is people don't understand the system and the system doesn't understand the people.

- We need models for the system to use to understand and explain things to the human.
- We also need models in the human's head about what the system does.

Data
Visualization
Explainable Artificia

Data Visualization

Visual Da Analyze

What is Visualization

Visualization is a computational process that generates visual representations of data.

• It offers a method to see the unseen.

Why Do We Visualize Data?

• Table with four groups of numbers: What do they tell you?

Group A		Group B		Grou	лр C	Group D	
×	У	×	У	×	У	X	У
10.00	8.04	10.00	9.14	10.00	7.46	8.00	6.58
8.00	6.95	8.00	8.14	8.00	6.77	8.00	5.76
13.00	7.58	13.00	8.74	13.00	12.74	8.00	7.71
9.00	8.81	9.00	8.77	9.00	7.11	8.00	8.84
11.00	8.33	11.00	9.26	11.00	7.81	8.00	8.47
14.00	9.96	14.00	8.10	14.00	8.84	8.00	7.04
6.00	7.24	6.00	6.13	6.00	6.08	8.00	5.25
4.00	4.26	4.00	3.10	4.00	5.39	19.00	12.50
12.00	10.84	12.00	9.13	12.00	8.15	8.00	5.56
7.00	4.82	7.00	7.26	7.00	6.42	8.00	7.91
5.00	5.68	5.00	4.74	5.00	5.73	8.00	6.89

Data
Visualization
Explainable Artificial

Data Visualization

Why Do We Visualize Data? (cont.)

Consider the following table, which shows sales numbers for three categories, by quarter, over a four-year period. What trends can you see?

Category	2013 Q1	2013 Q2	2013 Q3	2013 Q4	2014 Q1	2014 Q2	2014 Q3	2014 Q4
Furniture	\$463,988	\$352,779	\$338,169	\$317,735	\$320,875	\$287,934	\$319,537	\$324,319
Office Supplies	\$232,558	\$290,055	\$265,083	\$246,946	\$219,514	\$202,412	\$198,268	\$279,679
Technology	\$563,866	\$244,045	\$432,299	\$461,616	\$285,527	\$353,237	\$338,360	\$420,018
Category	2015 Q1	2015 Q2	2015 Q3	2015 Q4	2016 Q1	2016 Q2	2016 Q3	2016 Q4
Category Furniture	2015 Q1 \$307,028	2015 Q2 \$273,836	2015 Q3 \$290,886	2015 Q4 \$397,912	2016 Q1 \$337,299	2016 Q2 \$245,445	2016 Q3 \$286,972	2016 Q4 \$313,878

Visualizatio

Explainable Arti

Data Visualization

Visual Danalyze

Visualization Systems

Concept 2

Visualization systems (vis) provide visual representations of datasets designed to **help** people **carry out** tasks more effectively.

Computer-based visualization systems

Visualization
Explainable Artificia
Intelligence
Data Visualization

Visual D

Diagram of Components

Visualization
Explainable Artifici
Intelligence
Data Visualization

Visual Da Analyze

Why have a human in the loop?

- Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods
- Vis allows people to analyze data when they don't know exactly what questions they need to ask in advance
- Don't need vis when fully automatic solution exists and is trusted

Visualization
Explainable Artifici
Intelligence
Data Visualization

Why have a computer in the loop?

By using computers, we can build tools that allow people to explore or
present large datasets that would be completely infeasible to draw by hand,
thus opening up the possibility of seeing how datasets change over time.

Data
Visualization
Explainable Artificial

Data Visualization

Visual D Analyze

Why depend on vision?

- Human visual system is high-bandwidth channel to brain, overview possible due to background processing
- Sound: lower bandwidth and different semantics, overview not supported
- Touch: impoverished record/replay capacity, only very low-bandwidth communication thus far
- Taste
- Smell

Visualization
Explainable Artificia
Intelligence
Data Visualization

Visual Da

Why Use Interactivity?

- Interactivity is crucial for building vis tools that handle complexity.
- It allows us to actively take part in the visual data analysis.

Visual Data Analyze

/isualizatio

Explainable Artil Intelligence Data Visualization

Visual Data Analyze

Why analyze?

Three-part analysis framework for a vis instance:

- what data is shown in the views
- why is the task being performed
- how is the vis idiom constructed in terms of design choices.

Jata /isualizatio

Explainable Artific Intelligence Data Visualization

Visual Data Analyze

Why analyze? (cont.)

 Analyzing vis usage as chained sequences of instances, where the output of one instance is the input to another.

Data Visualizatio

Explainable Artific Intelligence

Visual Data Analyze

Four levels, three questions

Domain situation

who are the target users?

Abstraction

- translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction, often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction

Idiom (figure, chart, diagram)

- how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

Algorithm

efficient computation

Validation

Different ways to get it wrong at each level

Validation (cont.)

Use methods from different fields at each level

Figure Validation

- Ugly: A figure that has aesthetic problems but otherwise is clear and informative
- Bad: A figure that has problems related to perception; it may be unclear, confusing, overly complicated, or deceiving
- Wrong: A figure that has problems related to mathematics; it is objectively incorrect

References

- Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
- Munzner, T. (2014).

 Visualization analysis and design.

 CRC press.
 - Russell, S. and Norvig, P. (2016).

 Artificial intelligence: a modern approach.

 Pearson Education Limited.
- Ward, M. O., Grinstein, G., and Keim, D. (2015). Interactive data visualization: foundations, techniques, and applications. CRC Press.