Решения на задачите по геометрия

Този материал е изготвен със съдействието на школа Sicademy

G1. Даден е остроъгълният $\triangle ABC$ с център на описаната окръжност точка O.

Нека H_A , H_B и H_C са ортоцентровете съответно на $\triangle BOC$, $\triangle AOC$ и $\triangle AOB$. Да се докаже, че ако точката O е ортоцентърът на $\triangle H_AH_BH_C$, то $\triangle ABC$ е равностранен.

Решение. Точка O е ортоцентър на $\triangle H_A H_B H_C$, следователно $H_C O \perp H_A H_B$. От друга страна, точка H_c е ортоцентър на $\triangle AOB$, откъдето $H_C O \perp AB$. Следователно $H_A H_B \parallel AB$. По условие точките H_B и H_A са ортоцентровете съответно на $\triangle AOC$ и $\triangle BOC$, откъдето получаваме, че $H_B A \parallel OC$ и $H_A B \parallel OC$. Тогава $H_A B \parallel H_B A$. Следователно $H_A B A H_B$ е успоредник. Оттук получаваме, че $H_A B = H_B A$.

Лесно се вижда, че при стандартни означения за ъглите на триъгълника имаме $\angle BH_AC=180^\circ-2\alpha$ и $\triangle BH_AC$ е равнобедрен, защото $\triangle BOC$ е такъв. Следователно $H_AB=\frac{BC}{2\cos\alpha}$. Аналогично $H_BA=\frac{AC}{2\cos\beta}$. Така получаваме, че от $H_AB=H_BA$ следва, че $\frac{BC}{2\cos\alpha}=\frac{AC}{2\cos\beta}$, а оттук получаваме $\sin\alpha\cos\beta=\cos\alpha\sin\beta$. Това означава, че $\sin(\alpha-\beta)=0$ или AC=BC. Аналогично получаваме, че AC=AB.

G2. Даден е остроъгълният $\triangle ABC$ с ортоцентър H. Ъглополовящите на $\angle ABH$ и $\angle ACH$ се пресичат в точката E. Нека $CE \cap AB = F$. Нека AE пресича описаната окръжност около $\triangle BEF$ за втори път в точката G. Да се докаже, че $AG \cdot BC \geq CG \cdot AB$.

Решение. Нека $BE \cap AC = D$. Нека $\angle BAC = \alpha$. Тогава $\angle BFC = \angle BDC = 45^{\circ} + \frac{\alpha}{2}$. Следователно четириъгълникът BFDC е вписан и оттук $AC \cdot AD = AB \cdot AF = AE \cdot AG$. Тогава четириъгълникът DEGC е вписан и оттук $\angle EGC + \angle EGB = \angle ADE + \angle AFE$, откъдето следва, че $\angle BGC = 90^{\circ} + \alpha$.

Построяваме такава точка M, че $\triangle BAC \sim \triangle BGM$. Тогава $\angle CGM = 90^\circ$. Имаме $\frac{AB}{BG} = \frac{BC}{BM}$ и $\angle ABG = \angle CBM$ и оттук $\triangle ABG \sim \triangle CBM$. Тогава $CM = \frac{AG \cdot BC}{AB}$, но от $\angle CGM = 90^\circ$ следва $CG \leq CM$ и получаваме исканото неравенство.

G3. Даден е изпъкналият четириъгълник ABCD, описан около окръжност с център I. Точката P е такава, че $\angle APC$ и $\angle BPD$ имат обща вътрешна ъглополовяща l. Да се докаже, че I лежи върху l.

Решение. Нека M е точката на Микел за четирите прави AB, BC, CD и DA (това е пресечната точка на описаните окръжности на четирите триъгълника, образувани от тези прави). Ще докажем първо, че M притежава описаното в задачата свойство, т.е., че $\angle AMC$ и $\angle BMD$ имат обща вътрешна ъглополовяща.

Нека Q и R са такива, че $\triangle MIQ \sim \triangle MCB$ и $\triangle MIR \sim \triangle MAB$, като подобията са еднопосочни. Тогава $\triangle MDA \sim \triangle MIQ \sim \triangle MCB$ и следователно $\triangle BQA \sim \triangle CID$. Оттук, $\angle BQA + \angle AIB = \angle CID + \angle AIB = 180^\circ$, AIBQ е вписан и ъглите между страните и диагоналите му са равни на половинките от ъглите на ABCD.

Аналогично, същото е вярно и за ICRB. По този начин, тези два четиръгълника са подобни по равни съответни ъгли и $MICRB \sim MAIBQ$, откъдето $\triangle MIC \sim \triangle MAI$ и $\angle CMI = \angle IMA$. Аналогично получаваме и $\angle MDI \sim \angle MIB$ и $\angle DMI = \angle IMB$, откъдето исканото следва.

Да пристъпим сега към решението на задачата. Нека точката P притежава описаното свойство и $MPC'I'A' \sim MDCIA$.

Понеже $\angle APC$ и $\angle BPD$ имат обща вътрешна ъглополовяща и $\triangle CPD \sim \triangle BA'A$, имаме $\angle BPA = \angle CPD = \angle BA'A$, откъдето BAPA' е вписан. Аналогично, BCPC' също е вписан. Понеже BI е ъглополовяща и четириъгълниците $\triangle BAPA'$ и $\triangle BCPC'$ са вписани, имаме

$$\angle IBP = \frac{1}{2}(\angle ABP + \angle CBP) = \frac{1}{2}(\angle AA'P + \angle CC'P)$$
$$= \frac{1}{2}(\angle AA'M - \angle PA'M + \angle CC'M - \angle PC'M).$$

Разделяме тази сума на части и ги преобразуваме поотделно. Понеже $\triangle AA'M \sim \triangle CC'M \sim \triangle II'M$, то

$$\frac{1}{2}(\angle AA'M+\angle CC'M)=\frac{1}{2}(\angle II'M+\angle II'M)=\angle II'M.$$

Понеже BI е ъглополовяща, то

$$\frac{1}{2}(\angle PA'M + \angle PC'M) = \frac{1}{2}(\angle ABM + \angle CBM) = \angle IBM = \angle PI'M.$$

И така, $\angle IBP = \angle II'M - \angle PI'M = \angle II'P$ и следователно BIPI' е вписан. Оттук $\angle BPI = \angle BI'I$. От друга страна, от доказаното по-горе за точката M имаме, че $\triangle MPI' \sim \triangle MDI \sim \triangle MIB$ и следователно $MDIP \sim MIBI'$ и $\angle IPD = \angle BI'I$. По този начин, $\angle BPI = \angle IPD$, което и трябваше да се докаже.