Departamento de Matemática - UFV MAT 131-Introdução a Álgebra

Segunda Avaliação - PER2020

Pontuação: A prova tem valor de 15 pontos distribuídos da seguinte forma:

- 1. 8 pontos para as questões objetivas;
- 2. 7 pontos para as questões discursivas.

QUESTÕES OBJETIVAS - MÚLTIPLA ESCOLHA

- 1. (2 pontos) Dado o conjunto $A = \{a, \{a\}, \{\emptyset\}, \emptyset\}$ e as afirmações: (I) $\{a\} \in A$ e $\{a\} \subset A$ (II) $\{a, \emptyset\} \subset A$ e $\{a\} \subset \mathcal{P}(A)$ e (III) $(\{\emptyset\}, \emptyset) \in A^2 \longrightarrow (\emptyset, \{\emptyset\}) \in D(A)$ É correto afirmar:
 - (a) Somente duas afirmações são verdadeiras
 - (b) As três afirmações são falsas
 - (c) Somente duas afirmações são falsas
 - (d) Somente uma afirmação é falsa
- 2. (2 pontos) Para mostrar que $(B-C)\cap(B\cap C)=\emptyset$, foram apresentadas três provas. Indicar a prova correta:
 - (I) Note que $(B-C)\cap (B\cap C)=\emptyset$, nos diz que B-C e $B\cap C$ não possuem elementos em comum. Por outro lado, como $B\cap C\subset C$, qualquer elemento em B também está em C. Assim, para $x\in (B-C)$, temos $x\in B$ e $x\notin C$. Logo, $x\in C$ e $x\notin C$, que é um absurdo. Daqui, $x\in \emptyset$. Portanto, $(B-C)\cap (B\cap C)=\emptyset$.
 - (II) Se $x \in (B-C) \cap (B \cap C)$, então $x \in (B-C)$ e $x \in (B \cap C)$. De onde, $x \in B$ e $x \notin C$. Ou seja, $x \notin (B \cap C)$. Daqui, $x \in \emptyset$. Portanto, $(B-C) \cap (B \cap C) = \emptyset$.
 - (III) É suficiente mostrar que $(B-C)\cap (B\cap C)\subset \emptyset$, pois $\emptyset\subset (B-C)\cap (B\cap C)$ se cumpre naturalmente. Suponhamos que $(B-C)\cap (B\cap C)\not\subset \emptyset$, então existe $x\in (B-C)\cap (B\cap C)$ tal que $x\notin \emptyset$. Ora, se $x\in (B-C)\cap (B\cap C)$, temos $(x\in B\ e\ x\notin C)\ e\ (x\in B\ e\ x\in C)$. Logo, $x\in B\ e\ (x\in C\ e\ x\notin C)$. De onde, $x\in B\ e\ x\in \emptyset$. Ou seja, $x\in \emptyset$. Mas, isto contradiz nossa suposição, $x\notin \emptyset$. Assim, $(B-C)\cap (B\cap C)\subset \emptyset$. Portanto, $(B-C)\cap (B\cap C)=\emptyset$.
- 3. (2 pontos) Defina a operação * ente dois conjuntos por $A*B = (A \cup B) A^c$. Marcar a afirmação correta:
 - (a) A * B = B * A para todo $A, B \subset U$
 - (b) $A*(B\cap C)=(A*B)\cap (A*C)$, para todo $A,B,C\subset U$
 - (c) $A\cap (B*C)=(A\cap B)*(A\cap C),$ para todo $A,B,C\subset U$

- 4. (2 pontos) Seja n(A) = n(B) = 8 e n(C) = n(D) = 5 e suponha que o número máximo de elementos de $(A \cup C)$ seja k e que o número máximo de elementos de $(B \cap D)$ seja k. É correto afirmar:
 - (a) $k \cdot h = 60$
 - (b) k h = 8
 - (c) $h^2 k = 10$

QUESTÕES DISCURSIVAS

- 1. (2 pontos) Considerando o conjunto universo $U = \{\sqrt{2}, 5+3i, 1/2, -2, 2, 7\}$ e os conjuntos $A = \{x \in U : x \notin \mathbb{Q} \longleftrightarrow x \in \mathbb{Z}\}$ e $B = \{x \in U : (x \in \mathbb{N} \lor x \notin \mathbb{R}) \longleftrightarrow x \in \mathbb{C}\}$. Determinar os elementos de A e B.
- 2. (2 pontos) Seja U o conjunto universo e sejam $A, B, D \subset U$ conjuntos não vazios tais que $(A \cup B)^c \subset D$. Mostre que $(A \cup B) D = \emptyset$ se, e somente se D = U.
- 3. (2 pontos) Sejam A, B, C e D conjuntos quaisquer. Mostre que $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$
- 4. (1 ponto) Sejam A, B, C, D conjuntos tais que n(A) = n(B) = 8 e n(C) = n(D) = 5. Determinar o número máximo de elementos de $(A \cup C)$ e o número máximo de elementos de $(B \cap D)$. Justifique sua resposta!

Boa Prova!