Stochastik

Statistischer Test

Mirko Birbaumer

Hochschule Luzern Technik & Architektur

1 Fehler 1./2. Art und Macht eines Tests

P-Wert

Vertrauensintervalle

4 Übersicht Statistische Tests

Verschiedene Fehlerarten

Entscheidung Wahrheit	H_0	H_A
H_0	✓	Fehler 1. Art
H_A	Fehler 2. Art	✓

Sie entscheiden sich für H_0 , aber H_A wäre richtig \longrightarrow Fehler 2. Art Sie entscheiden sich für H_A , aber H_0 wäre richtig \longrightarrow Fehler 1. Art

Macht eines statistischen Tests

Macht

Die **Macht** gibt die Wahrscheinlichkeit an, H_A zu entdecken, falls H_A richtig ist:

$$P_{H_A}(T \in K)$$

- **Beispiel:** Sie spielen Würfel mit einem Trickbetrüger. Der weiss, dass die Gewinnwahrscheinlichkeit für einen 6er $\pi=1/3$ ist.
- ullet Wenn Sie nun zu vorsichtig sind (aus Angst vor einer Schlgerei...), den Trickbetrüger des Betrugs zu beschuldigen und lpha (Fehler 1. Art) sehr klein machen, freut es den Trickbetrüger!
- ullet Wird lpha kleiner gemacht, sinkt Ihre Chance, den Betrug aufzudecken: die Macht des statistischen Tests nimmt ab.

P-Wert

P-Wert

Der **P-Wert** ist die Wahrscheinlichkeit, unter der Nullhypothese ein mindestens so extremes Ereignis (in Richtung der Alternative) zu beobachten wie das aktuell beobachtete. Man kann anhand des P-Werts direkt den Testentscheid ablesen: Wenn der P-Wert kleiner als das Niveau ist, so verwirft man H_0 , ansonsten nicht.

ullet Bei einer Binomialverteilung mit n=10 wollen wir die Nullhypothese

$$H_0$$
: $\pi = \pi_0 = 0.5$

gegen die Alternative

$$H_A$$
 : $\pi > 0.5$

testen (π ist z.B. die Wahrscheinlichkeit für Kopf bei einer Münze).

- X : Anzahl Würfe mit Kopf bei insgesamt 10 Würfen
- Unter H_0 folgt die Zufallsvariable X der Verteilung: $X \sim \text{Bin}(10, 0.5)$

P-Wert

- Beobachtet wurde x = 7
- Der P-Wert ist hier die Summe aller Wahrscheinlichkeiten für X grösser gleich 7, d.h. P-Wert = $P_{\pi_0}(X \ge 7)$

Beispiel: Klinische Studien

Beispiel: Klinische Studie Phase 2

- Hersteller behauptet: Neues Medikament wirkt in 80% der Fällen (Nullhypothese)
- In einer Phase 2 Studie mit 100 Patienten werden aber nur 67 gesund.
- Ist das plausibel, wenn die Heilungswahrscheinlichkeit 80% ist? Wir vermuten, die Heilungswahrscheinlichkeit ist kleiner (Alternativhypothese)
- X: Anzahl geheilter Patienten
 Falls Hersteller (also unter Annahme der Nullhypothese) recht hat:

$$X \sim \text{Bin}(n = 100, \pi = 0.8)$$

Beispiel: Klinische Studie Phase 2

• "P-Wert" : $P(X \le 67) = ... = 0.0016$

R-Befehl: pbinom()

> pbinom(67,100,0.8) [1] 0.001550441

- Falls der Hersteller recht hat, ist unsere Beobachtung sehr unwahrscheinlich (Verwerfen der Nullhypothese auf Signifikanzniveau $\alpha=5\%$)
- → Vermutlich ist die Heilungswahrscheinlichkeit kleiner als 80%

Grundidee Vertrauensintervall

 Sie sind ein guter Schütze und wissen, dass Sie in 95% der Fälle nicht allzu weit neben ihr persönlich gewähltes Ziel treffen.

 D.h. in 95% der Fälle landen Sie in einem Bereich, der max. 5 cm von Ihrem Ziel entfernt ist (roter Kreis).

Grundidee

- Jemand anderes will nun herausfinden, auf was Sie wohl gezielt haben
- Die Person kennt Ihre Genauigkeit, d.h. sie weiss, dass Sie in 95% der Fälle max. 5 cm von ihrem Ziel entfernt liegen
- Die andere Person sieht aber leider nur noch den eingeschlagenen Pfeil und weiss nicht, auf was exakt Sie gezielt haben

Vertrauensintervalle: Grundidee

 Was macht die Person am besten? Sie zieht einen Kreis mit Radius 5 cm um die Einschlagstelle

- Dieser Kreis "fängt" das wahre Ziel in 95% der Fälle ein
- Denn: In 95% der Fälle liegen Sie max. 5 cm vom Ziel entfernt. In diesen Fällen "fängt" der Kreis das wahre Ziel ein

Vertrauensintervalle

Übertrag auf Statistik:

- Das Ziel, das wir treffen wollen, ist ein **unbekannter fixer Parameter** (z.B. Gewinnwahrscheinlichkeit π bei Binomialverteilung).
- Der "Pfeil" ist der **Schätzer** dafür: $\hat{\pi}$
- Die **Genauigkeit** kennen wir, wenn wir wissen, wie sich die Differenz $\hat{\pi} \pi$ (= Abstand vom Ziel) verhält
- Das bedeutet, dass wir die **Verteilung** von $\hat{\pi} \pi$ kennen müssen

 ${\sf ZV}, \ {\sf solange} \ {\sf Stichprobe} \ {\sf noch} \ {\sf nicht} \ {\sf realisiert} \ {\sf ist}$

Vertrauensintervalle: Interpretation

- Für eine konkrete Stichprobe sehen wir nur den "eingeschlagenen Pfeil" $\hat{\pi}$ (= realisierter Wert des Schätzers basierend auf den beobachteten Daten)
- ullet Da wir für eine andere Stichprobe einen leicht anderen Wert für $\hat{\pi}$ erhalten, wollen wir dem konkreten Wert nicht allzu viel Gewicht geben
- \bullet Wir wollen lieber eine Ahnung haben, wo das unbekannte, wahre π in etwa liegt, d.h. wir wollen "den roten Kreis ziehen"

• Interpretation vom Vertrauensintervall:

- Für eine konkrete Realisierung wissen wir leider nicht, ob der Kreis das wahre Ziel "eingefangen" hat oder nicht
- Wir wissen aber: Wenn wir diese Strategie verwenden, so "fangen" wir in 95% der Fälle das Ziel ein und liegen richtig

Vertrauensintervalle: Interpretation

Das Ziel x sei fix. Wir schiessen ein paar Mal.

18 / 28

Vertrauensintervall: Definition

Vertrauensintervall

Ein Vertrauensintervall / zum Niveau $1-\alpha$ besteht aus allen Parameterwerten, die im Sinne des statistischen Tests zum Signifikanzniveau α mit der Beobachtung verträglich sind (üblicherweise nimmt man den zweiseitigen Test). Mathematisch heisst dies:

$$I = \{\pi_0; \text{ Nullhypothese } H_0: \pi = \pi_0 \text{ wird belassen}\} = [\pi_u, \pi_o].$$

Das bedeutet also, dass wir sozusagen alle π_0 "durchtesten" und diejenigen "sammeln", bei denen die entsprechende Nullhypothese nicht verworfen wird.

Beispiel: Sie kommen an einer Losbude vorbei und ziehen 50 Lose: darunter sind 7 Gewinne. Es stellt sich also die Frage: welche Werte für die Gewinnwahrscheinlichkeit π sind kompatibel mit Ihrer Beobachtung?

Zweiseitiges Vertrauensintervall

Untere Grenze π_u des 95%-Vertrauensintervalls: wir lassen π_u nach unten "wandern", bis $P_{\pi_u}(X \ge 7) \stackrel{\approx}{\ge} \alpha/2$ ist.

Zweiseitiges Vertrauensintervall

Obere Grenze π_o des 95%-Vertrauensintervalls: wir lassen π_o nach oben "wandern", bis $P_{\pi_o}(X \leq 7) \stackrel{\approx}{\geq} \alpha/2$ ist.

Zweiseitiges Vertrauensintervall mit ${f R}$

```
R-Befehl: binom.test()
> binom.test(7,50)
Exact binomial test
data: 7 and 50 number of successes = 7, number of trials = 50,
p-value = 2.099e-07
alternative hypothesis: true probability
of success is not equal to 0.5
95 percent confidence interval:
0.0581917 0.2673960
sample estimates:
probability of success
0.14
```

Das zweiseitige 95%-Vertrauensintervall ist also

$$I = [0.058, 0.27]$$

Einseitiges Vertrauensintervall

• Einseitiges nach unten gerichtetes Vertrauensintervall auf dem Signifikanzniveau α für Beobachtung x hat die Form

$$[0,\pi_o]$$
,

wobei π_o die folgende Bedingung erfüllt

$$P_{\pi_o}(X \leq x) \stackrel{\approx}{\geq} \alpha$$

• Einseitige nach oben gerichtetes Vertrauensintervall auf dem Signifikanzniveau α für Beobachtung x hat die Form

$$[\pi_u, 1]$$
,

wobei π_u die folgende Bedingung erfüllt:

$$P_{\pi_u}(X \geq x) \stackrel{\approx}{\geq} \alpha$$

Einseitiges Vertrauensintervall mit R

```
R-Befehl: binom.test()
binom.test(7,50,alternative="less")
Exact binomial test
data: 7 and 50
number of successes = 7, number of trials = 50,
p-value = 1.049e-07
alternative hypothesis: true probability of success is less than
0.5
95 percent confidence interval:
0.0000000 0.2469352
sample estimates:
probability of success
0.14
```

- Das einseitige nach unten gerichtete 95%-Vertrauensintervall ist also I = [0, 0.25].
- Das einseitige nach oben gerichtete 95%-Vertrauensintervall erhält man, indem man alternative="greater" wählt

Birbaumer (HSLU T&A) Stochastik 24 / 28

Übersicht Fragestellungen in der Statistik

Wir sind nun in der Lage, folgende Fragestellungen zu beantworten:

- Welcher ist der plausibelste Wert eines unbekannten Parameters?
 - \Rightarrow Parameterschätzung
- Ist ein bestimmter vorgegebener Parameterwert (z.B. ein Sollwert μ_0), mit den beobachteten Daten verträglich?
 - ⇒ Statistischer Test

Im folgenden werden wir uns beschäftigen mit der Fragestellung:

- Was ist der **Bereich** von plausiblen Parameterwerten?
 - \Rightarrow Vertrauensintervall

3 Grundfragestellungen der Statistik

Sei x=6 die effektive Anzahl fehlerhaft übertragener Bits bei der Übertragung von 100 digitalen Signalen. Wir fassen x=6 als **Realisierung** einer Zufallsvariablen X auf, und nehmen an, dass $X \sim Bin(100,\pi)$, also binomialverteilt ist.

- Welches ist der plausibelste Wert π (zur Beobachtung x=6)? **Antwort:** $\hat{\pi}=\frac{6}{100}=0.06$ (Maximum-Likelihood- oder/Momenten-Methode)
- Ist die Beobachtung x=6 kompatibel mit $\pi_0=0.1$ (üblicher Übertragungsfehler von Übertragungskanälen) oder mit $\pi<0.1$? **Antwort:** P-Wert: $P_{\pi_0}(T\leq t)=0.12$ (einseitiger Test)
- Welcher Bereich (Intervall) für den Parameter π ist mit der Beobachtung x=6 kompatibel?

Antwort: 95%-Vertrauensintervall für wahren Parameter I = [0, 0.11]

Übersicht: Statistischer Test

Übersicht Statistische Tests: Testentscheid

Entscheid anhand Teststatistik

Teststatistik $\notin K$: Belasse H_0 Teststatistik $\in K$: Verwerfe H_0

Entscheid anhand p-Wert

p-Wert $> \alpha$: Belasse H_0 *p*-Wert $< \alpha$: Verwerfe H_0

• Entscheid anhand Vertrauensintervall (bei zweiseitigen Tests)

 $\theta_0 \in VI$: Belasse H_0 $\theta_0 \notin VI$: Verwerfe H_0

Absence of evidence is not evidence of absence

Wird H_0 nicht verworfen (d.h. belassen), so bedeutet dies nicht, dass H_0 damit statistisch bewiesen ist.