Numerical Simulation of Compressible Flows with Immersed Boundaries Using Discontinuous Galerkin Methods

Bachelor thesis by Simone Stange Prof. Dr.-Ing. habil. Martin Oberlack Betreuer: Dr.-Ing Björn Müller

Outline

- Introduction and Fundamentals
 - Introduction
 - The Runge-Kutta Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 8 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

- Introduction and Fundamentals
 - Introduction
 - The Runge-Kutta Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Introduction

kurzes blabla

The Discontinuous Discretisation

Galerkin

Space

DG space discretisation Vorgehen, Bildchen, fluxes

The Runge-Kutta Time Discretisation

RK time discretisation Endformel, Tabelle, cfl criterion

The Immersed Boundary Method

regions mit Bild, Aufteilung Integrale mass matrix rk time discretisation formel cell agglomeration

- 1 Introduction and Fundamentals
 - Introduction
 - The Runge-Kutta Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

sts

Aufbau

Parameter, was wird getan

Ergebnisse, Plot, komischer punkt wird angeschaut

Parameter, was wird getan

Ergebnisse, Plot

- 1 Introduction and Fundamentals
 - Introduction
 - The Runge-Kutta Discontinuous Galerkin Method
 - The Immersed Boundary Method
- 2 Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

laminar steady regime laminar vortex shedding

simulation parameter gitter cD, CL, W*, St

re 20 tabelle, plot, drag over time, vorticity

re 40 tabelle, plot, drag over time, vorticity

re 100 tabelle, plot, lift over time, vorticity

re 200 tabelle, plot, lift over time, vorticity

- 1 Introduction and Fundamentals
 - Introduction
 - The Runge-Kutta Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

conclusion

future works

ende, fragen

bibliography

alle tabellen und graphen die man brauchen könnte in anhang

