PATENT SPECIFICATION

NO DRAWINGS

905,195

Date of Application and filing Complete Specification: Oct. 13, 1959. No. 34701/59.

Application made in Switzerland (No. 65195) on Oct. 20, 1958.

Complete Specification Published: Sept. 5, 1962.

Index at acceptance:—Classes 2(5), R2(P1:T1); and 81(1), B(1P:2P), E1A15. International Classification:—C08g. A61k, l.

COMPLETE SPECIFICATION

Condensation Products

We, ED GEISTLICH SOHNE A.G. FUR CHEMISCHE INDUSTRIE, a Swiss Body Corporate of Wolhusen, Lucerne, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention is concerned with a process 10 for the preparation of novel water-soluble urea-formaldehyde condensation products.

Although various urea-formaldehyde condensation products have been widely used for many years their principal application has been in the fields of adhesives and moulded articles. The condensation products generally employed are usually of the acid catalysed type in which urea units are joined in a two-or even three-dimensional lattice by methylene groups derived from formaldehyde. We have now found that it is possible to prepare, by essentially alkaline condensation of a precondensate which has been formed under acid conditions, low molecular urea-formaldehyde condensation products which are soluble in water and which possess valuable bactericidal and bacteriostatic properties.

The structure of the new products takes the form of substantially linear chains, possibly lightly cross-linked in contrast to the 2- or 3-dimensional lattices of the usual ureaformaldehyde resins, and many of the nitrogen atoms in the chains carry hydroxymethylene groups. The proportion of hydroxymethylene groups in the new product may be determined by hydrolysis in strong acid, e.g., 4N sulphuric acid, the formaldehyde split off being estimated by reaction with 0.1N-iodine solution with addition of 30% sodium hydroxide. The excess iodine is backtitrated against standard thiosulphate. Estimations of this kind show that the product contains approximately between 45 and 55, preferably 52% CH₂OH.

45 On the other hand, when the product is

added to aqueous sodium hydroxide and 0.1N-iodine solution, titration of excess iodine with thiosulphate indicates only 10 to 20% of CH₂OH. Elemental analysis of the new product suggests that the principal recurring unit of the polymer has the empirical formula (CHON)

(C₅H₆O₂N₂)₂.

The absence of heavy cross-linking and the presence of a considerable proportion of hydroxymethylene groups is reflected in the physical properties of the new products. Thus the new urea-formaldehyde condensation products possess a water solubility at 20° C. of 0.05 to 0.5% and a melting point within the range 120 to 150° C. (with evolution of gas). At about 200° C, these products which are normally white become coloured.

The products are further characterised by the possession of infra-red transmission maxima at 3090, 2960, 2500, 1600, 1360, 1425, 1350, 1140, 1110, 840, 780, 730 and 680 cm⁻¹ and infra-red transmission minima at 3350, 3020, 2900, 1630, 1540, 1370, 1240, 1000, 800, 750, 693 and 620 cm⁻¹.

The new products possess a wide bacteriostatic spectrum and are active against many strains which are resistant to antibiotics such as penicillin, streptomycin, oxytetracycline, aureomycin and tetracycline. Tests carried out on products according to the invention have demonstrated activity against the following bacteria:—

Staphylococcus aureus hæmolyticus, Streptococcus pyogenes hæmolyticus, Bacillus pyocyaneus, Proteus, Enterococci, Typhus, Paratyphus B, Bacterium coli, Salmonella anatum, Salmonella choleræ suis, Salmonella typhimurium, Salmonella london, Salmonella enteritidis, Shigella dysenteriæ, Diphtheria Typ. gravis and Bacillus subtilis.

It will be seen that the products are active against both pus-stimulating bacteria such as

50

55

60

65

70

75

80

۰...

are present in bacterial skin infections and discharging wound infections and against bacteria present in internal infections such as ulcus cruris.

The new products possess the further advantage of possessing very low toxicity and substantially no skin irritation.

For pharmaceutical purposes the products prepared by the process according to the invention may be formulated in conjunction with a pharmaceutical carrier. For combatting skin and wound infections the formulation may take the form of, for example, a dusting powder (e.g., with talc or similar base) or an ointment or a solution or suspension while for oral presentation the formulation may be in solid form, e.g., tablets, capsules and the like or in liquid form, e.g., in syrups, elixirs and the like. The products may also be impregnated onto gauze or other suitable material for the production of wound dressings.

A suitable concentration of the active substance in ointments, dusting powders and solutions is from 5—15%, e.g., about 10%.

The process according to the invention for the preparation of the new products falls into two stages. Firstly urea and formaldehyde are reacted in acid aqueous solution, preferably buffered, to form a precondensate. A suitable pH range is 3 to 4, preferably about 3.7, and this can conveniently be achieved using phosphate buffer at about 0.01 M in the reaction mixture; in this stage we have found it convenient to react from 2 to 3, preferably about 2.7 mols of formaldehyde with each mol of urea. The precondensate thus formed is completely in solution in the reaction medium.

The second stage comprises the condensation of the precondensate with additional urea in the presence of alkali. Since the desired product is of comparatively low molecular weight the reaction time and conditions of this stage are preferably carefully controlled. The combination of time and temperature to be used depends to some extent on the method of isolating the product but the optimal conditions can be determined for a given system by simple experimentation. Although there are many ways in which the reaction may be checked and the product isolated from the aqueous solution, one example being neutralisation and evaporation to dryness, we have found that the second stage of the reaction is most suitably carried out by spraying the reaction mixture, after a suitable reaction time at a suitable temperature, into a high temperature drying tower. The air space in the tower is advantageously at about 180 to 200° C. Instead of using a drying tower simple spray drying can be used. We have found that in this way it is possible to control the second condensation stage to

give a product having the required characteristics.

It is generally desirable to conduct the second stage of the reaction at a greater concentration than the first stage, partly to facilitate the spray drying step. For this reason we prefer to concentrate the reaction mixture at the end of the first stage by evaporating off in vacuo a proportion of the water and a small amount of excess formaldehyde. However since heating the precondensate reaction medium at either strongly alkaline or strongly acid pH would lead to an undesirable degree of condensation of the precondensate, it is advisable to neutralise the reaction mixture at the end of the first stage (for example after about ½ to 1 hour at about 80° C.) with a small quantity of sodium hydroxide before concentration. A suitable neutral pH is 6.6 to 6.7. The substantially neutral solution can then be concentrated with little further condensation of the precondensate to give a solution of a suitable viscosity for spraying.

The reaction mixture, after concentration and addition of a further quantity of urea preferably at elevated temperature, for example about 50° C., can then be brought to a suitable alkaline pH, for example 8.0, by addition of further sodium hydroxide. We have found that the quantity of urea to be added at the second stage is preferably sufficient to bring the final ratio of formaldehyde to urea to between 1.25 and 2.0, advantageously about 1.6.

In order that the invention may be well understood we give the following example by way of illustration only:-

100

EXAMPLE

15 parts of urea and 0.0375 parts of trisodium orthophosphate dissolved in 7.5 parts of water are added with stirring at 80° C. over a period of 40 minutes to a solution of 0.025 parts of monosodium orthophosphate in 54.5 parts of formalin (40% formaldehyde; containing 0.065% formic acid). The pH amounts to 3.7. Caustic soda is then added to bring the pH to 6.6 to 6.7 and the reaction solution evaporated in vacuo until 37 parts of distillate (water and formaldehyde) have been removed. The pH is then 7.5. The remaining 51 parts of the reaction solution are heated to 50° C., 10.2 parts of urea are added with stirring and the pH increased to 8 by addition of caustic soda. The turbid and viscous liquid so formed is then sprayed through a rotary nozzle into a drying tower at a drying temperature of 180—200° C. to form a low-molecular condensation product in the form of a difficultly water-soluble, white powder.

The resulting product possessed the following infra-red transmission characteristics. 125

	700/		400/	11101
Transmission Maxima	53%	3090 cm ⁻¹	40%	1110 cm ⁻¹
	57	2960	63	840
	82	2500	58	780
	26	1600	49	730
	30	1460	38	680
	42	1425		
	39	1350		
	40	1140		
Transmission Minima	20%	3350		
	50	3020		
	46	2900		•
	16	1630		
	18	1540		
	32	1370		
	26	1240		
	22	1000 ·		
	56	800		
	46	750		
	27	693		
	33	620		

In order to estimate the proportion of hydroxymethylene groups present, 100 mg. of the product were added to a mixture of 50 ml. 4N sulphuric acid and the reaction mixture steam distilled. When the steam distilled fraction reached 475 mls., this quantity was made up to 500 mls. with distilled water. To 100 mls. of this solution were added 25 mls. 0.1N iodine solution and 30% aqueous sodium hydroxide was added dropwise until the solution was just yellow. After leaving the solution in the dark for 15 minutes, 15 mls. 2N-sulphuric acid were added and the excess iodine titrated with 0.1N aqueous sodium thiosulphate in the presence of a small quantity of starch. The results obtained indicated that the product contained 51.8 to 52.1% of CH₂OH.

However, when 100 mg. of the product were added to a mixture of 50 ml. N-NaOH and 25 ml. 0.1N iodine solution and the reaction mixture kept in the dark for 24 hours, 15 mls. aqueous HCl (25%) being then added and the excess iodine back-titrated with 0.1 N-thiosulphate solution, the results indicated that hydroxymethylene groups comprised 16.0 to 16.5% of the product.

Elemental analyses of the product gave the following results: -

> C 35.98% H 5.88% N 28.83% 29.04% 35.68% 6.05%

The melting point of the product was 120-150° C. (with evolution of gas); heating to 200° C. produced discolouration. Determinations of the water solubility indicated this to be within the range 0.05 to 0.5% weight/volume at 20° C.
WHAT WE CLAIM IS:—

1. As new compounds, urea formaldehyde condensation products comprising free hy-

30

droxymethylene groups in their molecules, possessing a solubility in water at 20° C. of 0.05 to 0.5% weight/volume and a melting point within the range 120 to 150° C.

Compounds as claimed in claim 1 which comprise in their molecules 45 to 55% by weight of free hydroxymethylene groups as determined by estimation of formaldehyde liberated from the compounds under strongly acid conditions.

3. Compounds as claimed in claim 2 which comprise in their molecules about 52% by weight of hydroxymethylene groups as determined by estimation of formaldehyde liberated from the compounds under strongly acid conditions.

4. Compounds as claimed in claim 2 which comprise in their molecules 10 to 20% by weight of free hydroxymethylene groups as determined by estimation by reaction with iodine under alkaline conditions.

Compounds as claimed in any of the preceding claims which possess infra-red transmission maxima at 3090, 2960, 2500, 1600, 1460, 1425, 1350, 1140, 1110, 840, 780, 730 and 680 cm⁻¹ and infra-red transmission minima at 3350, 3020, 2900, 1630, 1540, 1370, 1240, 1000, 800, 750, 693 and 620 cm⁻¹.

6. Compounds as claimed in any of the preceding claims which possess bacteriostatic activity against Staphylococcus aureus hamolyticus, Streptococcus pyogenes hamolyticus, Bacillus pyocyaneus, Proteus, Enterococci,
 Typhus, Paratyphus B, Bacterium coli, Salmonella anatum, Salmonella cholera suis, Salmonella typhimurium, Salmonella london, Salmonella enteritidis, Shigella dysenteria, Diphthera Typ. gravis and Bacillus subtilis.

7. A compound as claimed in claim 1 substantially as herein described.
8. A process for the production of bactericidal urea-formaldehyde condensation products including the steps of condensing urea with formaldehyde in acid aqueous solution to form a precondensate, condensing said pre-

condensate in alkaline medium with a further quantity of urea to form a bactericidal condensation product and removing said condensation product from its aqueous solution in the form of a solid, bactericidal, water-soluble product.

9. A process as claimed in claim 8 in which said acid aqueous solution is at a pH between 3 and 4 during precondensation.

55

80

10. A process as claimed in claim 8 or claim 9 including the steps of condensing urea with formaldehyde in acid aqueous solution to form a precondensate, neutralising the acid solution of the precondensate, concentrating the neutralised solution of the precondensate, condensing said precondensate, in alkaline medium with a further quantity of urea to form a bactericidal condensation product and removing said condensation product from its aqueous solution.

11. A process as claimed in any of claims 8 to 10 in which said condensation product is removed from its aqueous solution, by spraying into a drying tower.

12. A process as claimed in any of claims 8 to 11 including the steps of condensing urea with formaldehyde in acid aqueous solution to form a precondensate, condensing said precondensate in alkaline medium with a sufficient quantity of urea to bring the overall ratio of formaldehyde to urea to between 1.25 and 2.0 to form a condensation product and removing said condensation product from its acueous solution.

13. A process as claimed in any of claims 8 to 12 in which the precondensate remains in aqueous solution during precondensation.

14. A process as claimed in any of claims 8 to 13 in which the alkaline medium is at pH 8.0 and at elevated temperature.

15. A process as claimed in claim 14 in which the elevated temperature is about 50° C.

16. A process as claimed in claim 8 substantially as herein described.

17. A process as claimed in claim 8 substantially as herein described with reference to the example.

For the Applicants:
FRANK B. DEHN & CO.,
Chartered Patent Agents,
Imperial House,
15/19, Kingsway, London, W.C.2.

Learnington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press.—1962. Published by The Patent Office, 25, Southampton Buildings, London, W.C.2, from which copies may be obtained.