Lecture 17

SIMPLE HARMONIC MOTION

SUPERPOSITIONS

Lecture 17

SIMPLE HARMONIC MOTION

SUPERPOSITIONS

- One-dimensional Superposition
 - Equal frequency
- Multiple vibrations of same frequency
 - Beats
- Perpendicular Vibrations: Lissajous Figures

Superposed Vibrations in One dimension

Most physical situations involve combined vibrations

Simple Harmonic Motion One-dimensional Superposition 2/

Superposed Vibrations in One dimension

- Most physical situations involve combined vibrations
- As long as the system is linear
 - i.e. displacement \propto force,

harmonic vibrations can simply be added, mathematically!

Superposed Vibrations in One dimension

- Most physical situations involve combined vibrations
- As long as the system is linear

i.e. displacement \propto force,

harmonic vibrations can simply be added, mathematically!

SUPERPOSITION

Two SHM's: same frequency, different phase

$$x_1 = A_1 \cos(\omega t + \phi_1);$$

$$x_2 = A_2 \cos(\omega t + \phi_2)$$

Two SHM's: same frequency, different phase

$$x_1 = A_1 \cos(\omega t + \phi_1);$$

$$x_2 = A_2 \cos(\omega t + \phi_2)$$

Adding, we get the wave

$$x_1 + x_2 = R\cos(\omega t + \theta)$$

Two SHM's: same frequency, different phase

$$x_1 = A_1 \cos(\omega t + \phi_1);$$

$$x_2 = A_2 \cos(\omega t + \phi_2)$$

Adding, we get the wave

$$x_1 + x_2 = R\cos(\omega t + \theta)$$

Resultant wave obtained by simply adding the component waves point by point!

Rotating vector picture

Rotating vector picture

$$R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta.$$

Rotating vector picture

$$R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta.$$

$$\tan \theta = \frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2},$$

Rotating vector picture

$$R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta.$$

$$\tan \theta = \frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2},$$

When
$$A_2 = A_1 = A$$
,

$$\theta = \frac{\delta}{2}$$

$$R = 2A\cos(\delta/2).$$

Rotating vector picture

Adding the vectors \vec{r}_1 and \vec{r}_2 ,

$$R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta.$$

$$\tan \theta = \frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2},$$

When
$$A_2 = A_1 = A$$
,

$$\theta = \frac{\delta}{2}$$

$$R = 2A\cos(\delta/2).$$

Eg: Interference

Complex Exponential Method

Complex Exponential Method

$$z_1 = A_1 e^{i(\omega t + \phi_1)}$$

Complex Exponential Method

$$z_1 = A_1 e^{i(\omega t + \phi_1)}$$

$$z_1 = A_1 e^{i(\omega t + \phi_2)}$$
$$z_2 = A_2 e^{i(\omega t + \phi_2)}$$

Complex Exponential Method

$$z_1 = A_1 e^{i(\omega t + \phi_1)}$$

$$z_2 = A_2 e^{i(\omega t + \phi_2)}$$

$$z = z_1 + z_2 = A_1 e^{i(\omega t + \phi_1)} + A_2 e^{i(\omega t + \phi_2)}$$

Complex Exponential Method

$$\begin{split} z_1 &= A_1 e^{i(\omega t + \phi_1)} \\ z_2 &= A_2 e^{i(\omega t + \phi_2)} \\ z &= z_1 + z_2 = A_1 e^{i(\omega t + \phi_1)} + A_2 e^{i(\omega t + \phi_2)} \end{split}$$
 or,
$$Re^{i\omega t + \theta} = e^{i(\omega t + \phi_1)} \left(A_1 + A_2 e^{i\delta}\right)$$

Complex Exponential Method

$$\begin{split} z_1 &= A_1 e^{i(\omega t + \phi_1)} \\ z_2 &= A_2 e^{i(\omega t + \phi_2)} \\ z &= z_1 + z_2 = A_1 e^{i(\omega t + \phi_1)} + A_2 e^{i(\omega t + \phi_2)} \\ \text{or,} \quad Re^{i\omega t + \theta} &= e^{i(\omega t + \phi_1)} \left(A_1 + A_2 e^{i\delta}\right) \\ \text{where } R &= \sqrt{(Re(z))^2 + (Im(z))^2}, \end{split}$$

Complex Exponential Method

$$\begin{split} z_1 &= A_1 e^{i(\omega t + \phi_1)} \\ z_2 &= A_2 e^{i(\omega t + \phi_2)} \\ z &= z_1 + z_2 = A_1 e^{i(\omega t + \phi_1)} + A_2 e^{i(\omega t + \phi_2)} \\ \text{or,} \quad Re^{i\omega t + \theta} &= e^{i(\omega t + \phi_1)} \left(A_1 + A_2 e^{i\delta}\right) \\ \text{where } R &= \sqrt{(Re(z))^2 + (Im(z))^2}, \\ \tan \theta &= \frac{Im(z)}{Re(z)} \end{split}$$

Complex Exponential Method

$$\begin{split} z_1 &= A_1 e^{i(\omega t + \phi_1)} \\ z_2 &= A_2 e^{i(\omega t + \phi_2)} \\ z &= z_1 + z_2 = A_1 e^{i(\omega t + \phi_1)} + A_2 e^{i(\omega t + \phi_2)} \\ \text{or,} \quad Re^{i\omega t + \theta} &= e^{i(\omega t + \phi_1)} \left(A_1 + A_2 e^{i\delta}\right) \\ \text{where } R &= \sqrt{(Re(z))^2 + (Im(z))^2}, \\ \tan \theta &= \frac{Im(z)}{Re(z)} \end{split}$$

Ex.: Show that you get the same formulae as from the geometric picture, and a second s

and same relative phase

$$x_1 = a\cos(\omega t),$$

a

$$x_1 = a\cos(\omega t),$$

 $x_2 = a\cos(\omega t + \delta),$

$$x_1 = a\cos(\omega t),$$

$$x_2 = a\cos(\omega t + \delta),$$

$$x_3 = a\cos(\omega t + 2\delta),$$

$$\begin{array}{rcl} x_1 & = & a\cos(\omega t), \\ x_2 & = & a\cos(\omega t + \delta), \\ x_3 & = & a\cos(\omega t + 2\delta), \\ & \vdots \\ x_n & = & a\cos(\omega t + (n-1)\delta). \end{array}$$

$$\begin{array}{rcl} x_1 & = & a\cos(\omega t), \\ x_2 & = & a\cos(\omega t + \delta), \\ x_3 & = & a\cos(\omega t + 2\delta), \\ & \vdots \\ x_n & = & a\cos(\omega t + (n-1)\delta). \end{array}$$

$$x_1 = a\cos(\omega t),$$

$$x_2 = a\cos(\omega t + \delta),$$

$$x_3 = a\cos(\omega t + 2\delta),$$

$$\vdots$$

$$x_n = a\cos(\omega t + (n-1)\delta).$$

$$x_1 = a\cos(\omega t),$$

$$x_2 = a\cos(\omega t + \delta),$$

$$x_3 = a\cos(\omega t + 2\delta),$$

$$\vdots$$

$$x_n = a\cos(\omega t + (n-1)\delta).$$

$$X = A\cos(\omega t + \alpha)$$

and same relative phase

$$x_1 = a\cos(\omega t),$$

$$x_2 = a\cos(\omega t + \delta),$$

$$x_3 = a\cos(\omega t + 2\delta),$$

$$\vdots$$

$$x_n = a\cos(\omega t + (n-1)\delta).$$

$$X = A\cos(\omega t + \alpha)$$

What are A and α ?

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

Observe that
$$\sin\left(\frac{n\delta}{2}\right) = \frac{A}{2R}, \quad \sin\left(\frac{\delta}{2}\right) = \frac{a}{2R}.$$

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

Observe that
$$\sin\left(\frac{n\delta}{2}\right) = \frac{A}{2R}$$
, $\sin\left(\frac{\delta}{2}\right) = \frac{a}{2R}$.
$$A = 2R\sin\left(\frac{n\delta}{2}\right)$$
,

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

Observe that
$$\sin\left(\frac{n\delta}{2}\right) = \frac{A}{2R}$$
, $\sin\left(\frac{\delta}{2}\right) = \frac{a}{2R}$.
$$A = 2R\sin\left(\frac{n\delta}{2}\right), \quad a = 2R\sin\left(\frac{\delta}{2}\right),$$

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

Observe that
$$\sin\left(\frac{n\delta}{2}\right) = \frac{A}{2R}, \quad \sin\left(\frac{\delta}{2}\right) = \frac{a}{2R}.$$

$$A = 2R\sin\left(\frac{n\delta}{2}\right), \quad a = 2R\sin\left(\frac{\delta}{2}\right),$$

$$\alpha = \angle OPS - \angle OPQ.$$

and same relative phase

$$X = A\cos(\omega t + \alpha).$$

Geometric method:

Observe that
$$\sin\left(\frac{n\delta}{2}\right) = \frac{A}{2R}, \quad \sin\left(\frac{\delta}{2}\right) = \frac{a}{2R}.$$

$$A = 2R\sin\left(\frac{n\delta}{2}\right), \quad a = 2R\sin\left(\frac{\delta}{2}\right),$$

$$\alpha = \angle OPS - \angle OPQ.$$

$$A = a\frac{\sin(n\delta/2)}{\sin(\delta/2)}, \quad \alpha = (n-1)\frac{\delta}{2}.$$

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$Z = ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta} \dots + ae^{i\omega t + (n-1)\delta}.$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f) = 1 + f + f^2 + \dots + f^{n-1}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f) = 1 + f + f^{2} + \dots + f^{n-1}$$

$$fS(f) = f + f^{2} + \dots + f^{n}.$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f) = 1 + f + f^{2} + \dots + f^{n-1}$$

$$fS(f) = f + f^{2} + \dots + f^{n}.$$

Subtracting,
$$S(f) = \frac{1 - f^n}{1 - f}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f)=1+f+f^2+\ldots+f^{n-1}$$

$$fS(f)=f+f^2+\ldots+f^n.$$
 Subtracting,
$$S(f)=\frac{1-f^n}{1-f}=\frac{1-e^{in\delta}}{1-e^{i\delta}}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f)=1+f+f^2+\ldots+f^{n-1}$$

$$fS(f)=f+f^2+\ldots+f^n.$$
 Subtracting,
$$S(f)=\frac{1-f^n}{1-f}=\frac{1-e^{in\delta}}{1-e^{i\delta}}=\frac{e^{in\delta/2}(e^{-in\delta/2}-e^{in\delta/2})}{e^{i\delta/2}(e^{-i\delta/2}-e^{i\delta/2})}$$

and same relative phase

Using Complex Exponentials:
$$Z(t) = X(t) + iY(t) = Ae^{i(\omega t + \alpha)}$$

$$\begin{split} Z &= ae^{i\omega t} + ae^{i\omega t + \delta} + ae^{i\omega t + 2\delta}... + ae^{i\omega t + (n-1)\delta}. \\ &= ae^{i\omega t}(1 + f + f^2 + ... + f^{n-1}) \quad \text{where } f = e^{i\delta}. \end{split}$$

$$S(f) = 1 + f + f^2 + \ldots + f^{n-1}$$

$$fS(f) = f + f^2 + \ldots + f^n.$$
 Subtracting,
$$S(f) = \frac{1 - f^n}{1 - f} = \frac{1 - e^{in\delta}}{1 - e^{i\delta}} = \frac{e^{in\delta/2}(e^{-in\delta/2} - e^{in\delta/2})}{e^{i\delta/2}(e^{-i\delta/2} - e^{i\delta/2})} = e^{i(n-1)\delta/2} \frac{\sin(n\delta/2)}{\sin(\delta/2)}.$$

and same relative phase

When n is very large and δ very small, $\alpha \sim n\delta/2$,

$$X = na \frac{\sin \alpha}{\alpha} \cos(\omega t + n\delta/2)$$

Amplitude depends

on δ as a

"sinc" function.

and same relative phase

When n is very large and δ very small, $\alpha \sim n\delta/2$,

$$X = na \frac{\sin \alpha}{\alpha} \cos(\omega t + n\delta/2)$$

Amplitude depends

on δ as a

"sinc" function.

This is the pattern for diffraction from a thin slit!

$$\omega_1 = 2$$

$$\omega_2 = 3.5$$

 $x_1 = A\cos(\omega_1 t), \quad x_2 = A\cos(\omega_2 t);$

 $\omega_2 = 3.5$

$$x_1 = A\cos(\omega_1 t), \quad x_2 = A\cos(\omega_2 t);$$

Resultant wave is a complicated function of time:

$$x = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t\right)\cos\left(\frac{\omega_1 + \omega_2}{2}t\right).$$

$$x_1 + x_2$$

 $\omega_2 = 6$

$$x_1 = A\cos(\omega_1 t), \quad x_2 = A\cos(\omega_2 t);$$

Resultant wave is a complicated function of time:

$$x = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t\right)\cos\left(\frac{\omega_1 + \omega_2}{2}t\right).$$

Periodic with period T only if T_1 and T_2 are commensurate:

if
$$n_1T_1 = n_2T_2 = T$$

for integer n_1 and n_2 .

 $\omega_2 = 6$

$$x_1 + x_2$$

$$x_1 = A\cos(\omega_1 t), \quad x_2 = A\cos(\omega_2 t);$$

Resultant wave is a complicated function of time:

$$x = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t\right)\cos\left(\frac{\omega_1 + \omega_2}{2}t\right).$$

Periodic with period T only if T_1 and T_2 are commensurate:

if
$$n_1T_1 = n_2T_2 = T$$

for integer n_1 and n_2 .

Here,
$$T = T_1 = 3T_2$$

$$\omega_1 = 5$$

$$\omega_2 = 5.5$$

$$x = x_1 + x_2 = A(\cos \omega_1 t + \cos \omega_2 t) = 2A \cos \left(\frac{\omega_1 - \omega_2}{2}t\right) \cos \left(\frac{\omega_1 + \omega_2}{2}t\right)$$

If $\omega_1 \sim \omega_2$, this is an oscillation of frequency $\omega_1 \sim \omega_2 \sim \frac{\omega_1 + \omega_2}{2}$ (average),

$$\omega_1 = 5$$

$$\omega_2 = 5.5$$

$$x_1 + x_2, \, \omega_b = 0.25$$

$$x = x_1 + x_2 = A(\cos \omega_1 t + \cos \omega_2 t) = 2A \cos \left(\frac{\omega_1 - \omega_2}{2}t\right) \cos \left(\frac{\omega_1 + \omega_2}{2}t\right)$$

If $\omega_1 \sim \omega_2$, this is an oscillation of frequency $\omega_1 \sim \omega_2 \sim \frac{\omega_1 + \omega_2}{2}$ (average),

with an envelop of frequency $\frac{|\omega_1 - \omega_2|}{2}$.

Simple Harmonic Motion

$$\omega_1 = 5$$

$$\omega_2 = 5.5$$

$$x_1 + x_2, \, \omega_b = 0.25$$

$$x = x_1 + x_2 = A(\cos \omega_1 t + \cos \omega_2 t) = 2A \cos \left(\frac{\omega_1 - \omega_2}{2}t\right) \cos \left(\frac{\omega_1 + \omega_2}{2}t\right)$$

If $\omega_1 \sim \omega_2$, this is an oscillation of frequency $\omega_1 \sim \omega_2 \sim \frac{\omega_1 + \omega_2}{2}$ (average),

with an envelop of frequency $\frac{|\omega_1 - \omega_2|}{2}$.

Amplitude oscillates with frequency $\Delta \omega = |\omega_1 - \omega_2|$: beat frequency.

Simple Harmonic Motion Multiple vibrations of same frequency Beats 11/

$$x = A_1 \sin(\omega t),$$

$$y = A_2 \sin(\omega t),$$

$$x = A_1 \sin(\omega t),$$

$$y = A_2 \sin(\omega t),$$

$$x = A_1 \sin(\omega t),$$
$$y = A_2 \sin(\omega t),$$

$$x = A_1 \sin(\omega t),$$
$$y = A_2 \sin(\omega t),$$

$$x = A_1 \sin(\omega t),$$
$$y = A_2 \sin(\omega t),$$

$$x = A_1 \sin(\omega t),$$

$$y = A_2 \sin(\omega t),$$

1. In phase:

$$x = A_1 \sin(\omega t),$$
$$y = A_2 \sin(\omega t),$$

Resultant motion is a straight line with slope

$$\frac{y}{x} = \frac{A_2}{A_1}$$

1. In phase:

$$x = A_1 \sin(\omega t),$$

$$y = A_2 \sin(\omega t),$$

Resultant motion is a straight line with slope

$$\frac{y}{x} = \frac{A_2}{A_1}$$

2. Out of phase by $\pi/2$:

$$x = A_1 \cos(\omega t)$$

$$y = A_2 \sin(\omega t)$$

Resultant motion traces the ellipse

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1.$$

2. Out of phase by $\pi/2$:

$$x = A_1 \cos(\omega t)$$

$$y = A_2 \sin(\omega t)$$

Resultant motion traces the ellipse

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1.$$

In general,

$$x = A_1 \cos(\omega t), \quad y = A_2 \cos(\omega t + \delta).$$

In general,

$$x = A_1 \cos(\omega t), \quad y = A_2 \cos(\omega t + \delta).$$

Let
$$\frac{x}{A_1} = \tilde{x}$$
 and $\frac{y}{A_2} = \tilde{y}$,

we get
$$\tilde{x}^2 + \tilde{y}^2 - 2\tilde{x}\tilde{y}\cos\delta = \sin^2\delta$$
,

In general,

$$x = A_1 \cos(\omega t), \quad y = A_2 \cos(\omega t + \delta).$$

Let
$$\frac{x}{A_1} = \tilde{x}$$
 and $\frac{y}{A_2} = \tilde{y}$,

we get $\tilde{x}^2 + \tilde{y}^2 - 2\tilde{x}\tilde{y}\cos\delta = \sin^2\delta$, —an ellipse

In general,

$$x = A_1 \cos(\omega t), \quad y = A_2 \cos(\omega t + \delta).$$

Let
$$\frac{x}{A_1} = \tilde{x}$$
 and $\frac{y}{A_2} = \tilde{y}$,

we get $\tilde{x}^2+\tilde{y}^2-2\tilde{x}\tilde{y}\cos\delta=\sin^2\delta$, —an ellipse which degenerates into a straight line for $\delta=0,\pi$.

In general,

$$x = A_1 \cos(\omega t), \quad y = A_2 \cos(\omega t + \delta).$$

Let
$$\frac{x}{A_1} = \tilde{x}$$
 and $\frac{y}{A_2} = \tilde{y}$,

we get $\tilde{x}^2+\tilde{y}^2-2\tilde{x}\tilde{y}\cos\delta=\sin^2\delta$, —an ellipse which degenerates into a straight line for $\delta=0,\pi$.

If $A_1=A_2$, you get a circle for $\delta=\pi/2$.

Lissajous figures: same frequency

Changing δ from 0 through 2π .

Perpendicular vibrations with different frequencies

$$\omega_1 = 2, \omega_2 = 3$$

Perpendicular vibrations with different frequencies

$$\omega_1 = 2, \omega_2 = 3$$

Perpendicular vibrations with different frequencies

