Module 6: Variant calling, SNPs and short indels

Presented by:

Carla Daniela Robles Espinoza

Laboratorio Internacional de Investigación sobre el Genoma Humano Universidad Nacional Autónoma de México

Based on slides by: **Petr Danecek**

Next Generation Sequencing Bioinformatics Course 22-27 January 2023 - Santiago - Chile

FACULTAD DE CIENCIAS BIOLOGICAS PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

WELLCOME GENOME CAMPUS

SETENCE ING

ADVANCED

COURSES+

SCIENTIFIC

CONFERENCES

HTS workflow

Library preparation

- · DNA extraction
- fragmentation
- · adapter ligation
- amplification

Sequencing

- · base calling
- · de-multiplexing

Data processing

- · read mapping
- · variant calling
- variant filtering

Analysis

- · Variant annotation
- ٠ ..

Variant types

SNPs/SNVs ... Single Nucleotide Polymorphism/Variation

ACGTTTAGCAT ACGTTCAGCAT

MNPs ... Multi-Nucleotide Polymorphism

ACGT CCAGCAT ACGT TT AGCAT

Indels . . . short insertions and deletions

ACGTTTAGCA- TT ACGTT- AGCAGTT

SVs ... Structural Variation

Some terminology

The goal is to determine the genotype at each position in the genome

Genotype

- · in the broad sense . . . genetic makeup of an organism
- $\boldsymbol{\cdot}$ in the narrow sense \ldots the combination of alleles at a position

Reference and alternate alleles - R and A

Diploid organism

- · two chromosomal copies, three possible genotypes
 - · RR .. homozygous reference genotype
 - · RA .. heterozygous
 - · AA .. homozygous alternate

Reference genome:	AGACTTGGC	CCCTCCCCATTC	AAGGTCTTC
Sequenced genome:	AGACTTGGCC AGACTTGGCT	CCATCCCCATTC	CAGGTCTTC CAGGTCTTC
	1	†	\
VCF notation Alternate allele dosage	C/C R R 0/0	A/C A R 1/0	C/C A A 1/1
Alternate allele dosage	0	1	2

Germline vs somatic mutation

Germline mutation

· heritable variation in the germ cells

Somatic mutation

· variation in non-germline tissue, tumors. . .

Germline vs somatic mutation

Germline mutation

· heritable variation in the germ cells

Somatic mutation

· variation in non-germline tissue, tumors. . .

Germline variant calling

- expect the following fractions of alternate alleles in the pileup:
 - 0.0 for RR genotype (plus sequencing errors)
 - 1.0 for AA (plus sequencing errors)
 - 0.5 for RA (random variation of binomial sampling)

Somatic

 any fraction of alt AF possible - subclonal variation, admixture of normal cells in tumor sample

Use fixed allele frequency threshold to determine the genotype

alt AF	genotype	
$ \begin{bmatrix} 0, 0.2) \\ [0.2, 0.8] \\ (0.8, 1] \end{bmatrix} $	RR homozygous reference RA heterozygous AA homozygous variant	

Use fixed allele frequency threshold to determine the genotype

 $\begin{array}{lll} \text{Allelic counts} & \begin{array}{lll} R: 2344525662767587878888276655333 \\ A: 0000010004000300010000500000000 \end{array} \end{array}$

Predicted dosage 00000100010001000000010000000

1) Filter base calls by quality e.g. ignore bases Q < 20

Phred quality score

 $\mathsf{Q} = -10\log_{10}P_{\mathsf{err}}$

Quality	Error probability	Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%
40 (Q40)	1 in 10000	99.99%

Use fixed allele frequency threshold to determine the genotype

- 1) Filter base calls by quality e.g. ignore bases Q < 20
- 2) Filter reads with low mapping quality

alt AF	genotype
$[0, 0.2) \\ [0.2, 0.8] \\ (0.8, 1]$	RR homozygous reference RA heterozygous AA homozygous variant

Use fixed allele frequency threshold to determine the genotype

1) Filter base calls by quality e.g. ignore bases Q < 20

- 2) Filter reads with low mapping quality

Problems:

- ▶ undercalls hets in low-coverage data
- ▶ throws away information due to hard quality thresholds
- ▶ gives no measure of confidence

Real life calling models

More sophisticated models apply a statistical framework

$$P(G|D) = \frac{P(D|G) \, P(G)}{P(D)}$$
 Posterior Normalization

to determine:

1. the most likely genotype $g \in \{RR, RA, AA\}$ given the observed data D

$$g = \operatorname{argmax} P(G|D)$$

2. and the genotype quality

$$Q = -10 \log_{10}[1 - P(GID)]$$

Important terms you may encounter

Genotype likelihoods

- · which of the three genotypes RR, RA, AA is the data most consistent with?
- · calculated from the alignments, the basis for calling
- · takes into account:
 - base calling errors
 - · mapping errors
 - · statistical fluctuations of random sampling
 - · local indel realignment (base alignment quality, BAQ)

Prior probability

- how likely it is to encounter a variant base in the genome?
- some assumptions are made
 - allele frequencies are in Hardy-Weinberg equilibrium $P(\mathsf{RA}) = 2f \ (1 f), \ P(\mathsf{RR}) = (1 f)^2, \ P(\mathsf{AA}) = f^2$
- · can take into account genetic diversity in a population

$$P(G|D) = \frac{P(D|G) P(G)}{P(D)}$$

Variant calling example

Inputs

- · alignment file
- · reference sequence

Outputs

· VCF or BCF file

Example

bcftools mpileup -f ref.fa aln.bam | bcftools call -mv

Tips

bcftools mpileup

- increase/decrease the required number (-m) and the fraction (-F) of supporting reads for indel calling
- the -Q option controls the minimum required base quality (30)
- BAQ realignment is applied by default and can be disabled with -B
- streaming the uncompressed binary BCF (-ou) is much faster than the default text VCF

bcftools call

- decrease/increase the prior probability (-P) to decrease/increase sensitivity

General advice

- · take time to understand the options
- · play with the parameters, see how the calls change

Factors to consider in calling

Many calls are not real, a filtering step is necessary

False calls can have many causes

- contamination
- · PCR errors
- · sequencing errors
 - · homopolymer runs
- · mapping errors
 - · repetitive sequence
 - · structural variation
- · alignment errors
 - · false SNPs in proximity of indels
 - · ambiguous indel alignment

Callable genome

Large parts of the genome are still inaccessible

- · the Genome in a Bottle high-confidence regions:

 - cover 89% of the reference genomeare short intervals scattered across the genome

Callable genome

Large parts of the genome are still inaccessible

- the Genome in a Bottle high-confidence regions:
 - · cover 89% of the reference genome
 - · are short intervals scattered across the genome

If possible, include only "nice" regions: for many analyses (e.g. population genetic studies) difficult regions can be ignored

Maximum depth

Q: Why is the sequencing depth thousandfold the average in some regions?

Maximum depth

Q: Why is the sequencing depth thousandfold the average in some regions? A. The reference genome is not complete. This sample was sequenced to 30x coverage, we can infer it has ~30 copies of this region.

Maximum depth

Q: Why is the sequencing depth thousandfold the average in some regions? A. The reference genome is not complete. This sample was sequenced to 30x coverage, we can infer it has ~30 copies of this region.

Filter calls with a too high (for example, 2x the average in WGS)

Mapping errors

Q: RNA-seq (top) and DNA data (bottom) from the same sample has been mapped onto the reference genome. Can you explain the novel SNVs?

Mapping errors

Q: RNA-seq (top) and DNA data (bottom) from the same sample has been mapped onto the reference genome. Can you explain the novel SNVs?

A. The reads were mapped to a pseudogene and originate in a paralog with 92% identity

Mapping errors

Q: RNA-seq (top) and DNA data (bottom) from the same sample has been mapped onto the reference genome. Can you explain the novel SNVs?

A. The reads were mapped to a pseudogene and originate in a paralog with 92% identity

Beware of mapping errors, especially when aligning RNA-seq data on the genome

Strand bias

Q: Is this a valid call?

Strand bias

Q: Is this a valid call?

A. No, it is a mapping artifact, the call is supported by forward reads only.

Strand bias

Q: Is this a valid call?

A. No, it is a mapping artifact, the call is supported by forward reads only.

Filter extremely biased calls using annotations generated by your caller (e.g. Fisher or rank-sum test) $\,$

Change the display in IGV to reveal artifacts

Change the display in IGV to reveal artifacts

First sort by variant base...

Change the display in IGV to reveal artifacts

Display soft-clipped bases...

Too many soft-clipped reads in a region suggest mapping errors, beware!

Variant distance bias

Q: Can you explain what happened here?

Q: Can you explain what happened here?
A: Processed transcript with introns spliced out.

Q: Can you explain what happened here?

A: Processed transcript with introns spliced out.

Better to use a splice-aware mapper when working with RNA-seq data, or filter most extreme cases using annotations such as VDB

Reproducibility

Reproducibility

Mind the biological variability. If possible, validate and replicate

False SNPs caused by incorrect alignment

Pairwise alignemnt artefacts can lead to false SNPs

- · multiple sequence alignment is better, but very expensive
- · instead: base alignment quality (BAQ) to lower quality of misaligned bases

```
Aligned reads

aggttttataaaac----aaataatt
ttataaaacaaataattaagtctaca
caaat---aattaagtctacagagcaac
aat---aattaagtctacagagcaact
t---aattaagtctacagagcaact
```

Q: How many SNPs are real?

False SNPs caused by incorrect alignment

Pairwise alignemnt artefacts can lead to false SNPs

- · multiple sequence alignment is better, but very expensive
- · instead: base alignment quality (BAQ) to lower quality of misaligned bases

```
All reads, except this one, are aligned incorrectly

Aligned reads

All reads, except this one, are aligned incorrectly

ttataaaac AAATaattaagtctaca

CAAT - - - - aattaagtctacagagcaact

AAT - - - - aattaagtctacagagcaact

T - - - aattaagtctacagagcaacta

Reference seq

aggtttataaaac AAATaattaagtctacagagcaacta

Aaggtttataaaac AAATaattaagtctacagagcaacta

Insertion
```

Q: How many SNPs are real?
A: None.

What do good SNPs look like?

Q: Is this call real? There are many reads with MQ=0.

$Q{:}\ ls\ this\ call\ real?\ There\ are\ many\ reads\ with\ MQ{=}0.$

Sorting the reads by MQ reveals the variant is also supported by many high-quality reads $\,$

How to estimate the quality of called SNPs?

Transitions vs transversions ratio, known as ts/tv

• transitions are 2-3x more likely than transversions

How to estimate the quality of called SNPs?

Transitions vs transversions ratio, known as ts/tv

• transitions are 2-3x more likely than transversions

How to estimate the quality of called SNPs?

Transitions vs transversions ratio, known as ts/tv

• transitions are 2-3x more likely than transversions

Whole human genome ~ 2.1 Whole human exome ~ 2.8

Indel calling challenges

The sequencing error rate is elevated in microsatellites

Low reproducibility across callers

 37.1% agreement between HapCaller, SOAPindel and Scalpel Narzisi et al. (2014) Nat Methods, 11(10):1033

Reads with indels are more difficult to map and align

- · the aligner can prefer multiple mismatches rather than a gap
- · indel representation can be ambiguous

CTTTAATTCAGACATTAGATTTCTTCTC
CTTTAATTCAGACATTAGATTTCTTCTCTTA
CTTTAATTCAGACA-------TTAGATTTCTTCTCTTAACTGCTT
CTTTAATTCAGACATTAGATTTCTTC--TA-----TTAACTGCTT

CTTTAATTCAGACATTAGATTTCTTCTTCTTAGATTTCTTCTTAACTGCTT

Indel calling challenges

The sequencing error rate is elevated in microsatellites

Low reproducibility across callers

 37.1% agreement between HapCaller, SOAPindel and Scalpel Narzisi et al. (2014) Nat Methods, 11(10):1033

Reads with indels are more difficult to map and align

- · the aligner can prefer multiple mismatches rather than a gap
- · indel representation can be ambiguous

CTTTAATTCAGACA-----TTAGATTTCTTCTC
CTTTAATTCAGACA-----TTAGATTTCTTCTCTTA
CTTTAATTCAGACA----TTAGATTTCTTCTCTTAACTGCTT
CTTTAATTCAGACA----TTAGATTTCTTCTTATTAACTGCTT

CTTTAATTCAGACATTAGATTTCTTCTCTTAGATTTCTCTCTTAACTGCTT

Future of variant calling

Current approaches

- · rely heavily on the supplied alignment, but aligners see one read at a time
- · largely site based, do not examine local haplotype and linked sites

Local de novo assembly based variant callers

- · call SNPs, indels, MNPs and small SV simultaneously
- · can remove alignment artefacts
- eg GATK haplotype caller, Scalpel, Octopus

Variation graphs

· align to a graph rather than a linear sequence

Iqbal et al (2012) Nat Genet 44(2):226

Functional annotation

VCF can store arbitrary INFO tags (per site) and FORMAT tags (per sample)

- Describe genomic context of the variant (e.g. coding, intronic, UTR)
- Predict functional consequence (e.g. synonymous, missense, start lost)

Several tools for annotating a VCF, only few are haplotype-aware

- BCFtools/csq http://github.com/samtools/bcftools
- VEP Haplosaurus http://github.com/willmclaren/ensembl-vep

Excercise time!

- Open your VM
- Open a terminal window.
- Go to course_data/variant_calling

```
cd course_data/variant_calling/
```

Open the exercises, which are in Github or in:

```
/home/manager/course_data/variant_calling/practical/ \
variant_calling.pdf
```

Follow the instructions!