Анализ POS кредитов.

Саммари анализа.

- Неожиданный вывод люди, которые были клиентами банка на 7,5% чаще уходили в дефолт. Но таких людей в 3 раза больше, чем не клиентов банка.
- Наибольшее количество дефолтов в категории мобильных телефонов и составляет 113 случаев, что составляет 57% от общего количества дефолтов. При сроках более 12 месяцев и зарплате 20-40k чаще уходят в дефолт.
- В 7 месяце покупали более дешевые товары, тк количество в штуках выше остальных месяцев, а по сумме выдач меньше. И при этом уровень дефолта в 7 месяце значительно ниже.
- С 9 месяца стабильно растёт дефолтность у женщин. (Как далее увидим, со средним специальным образованием). Так же заметим, что в 7 месяце женщины брали меньше кредитов, чем мужчины с меньшим средним чеком.
- Основой POS портфеля являются люди со средним и средним специальным образованием и составляют 60% от общего количества. Как ранее наблюдали, с 9 по 12 месяц рост дефолтов в сегменте со средним специальным образованием.
- Основным регионами выдач являются «других регионов» которые составляют 82% от общего количества выдач.
- В 5 месяце было проседание в выдачах кредитов у мужчин, что сказалась на категории высшего образования. Так же мужчины склонны брать более крупные кредиты с чеками 40-70k (в 2 раза чаще чем женщины, что по году 129 раз).
- Интересно, что людям старше 79 лет выдавались кредиты, уровень дефолтности = 0 , а в 20-25 лет составляет 15%.

В 7 месяце покупали более дешевые товары, тк количество в штуках выше остальных месяцев, а по сумме выдач - меньше. И при этом уровень дефолта в 7 месяце значительно ниже.

11 12

11 12

С 9 месяца стабильно растёт дефолтность у женщин. (Как далее увидим, со средним специальным образованием). Так же заметим, что в 7 месяце женщины брали меньше кредитов, чем мужчины с меньшим средним чеком

Дефолт Нет дефолта

Основой POS портфеля являются люди со средним и средним специальным образованием и составляют 60% от общего количества. Как ранее наблюдали, с 9 по 12 месяц рост дефолтов в сегменте со средним специальным образованием.

Дефолт Нет дефолта

Дефолт Нет дефолта

Москвичи ушли в дефолт в категории остальное, со средним чеком 85.000₽, что на 112% больше среднего по категории в регионах. В Москве люди склонны брать в кредит более дорогую мебель, чем в других регионах(на 97%).

Распределение суммы кредита от возраста по 12 месяцам достаточно стабильное во всех сегментах. В сегменте 30-45 лет с 8 месяца начало увеличиваться количество выдач и в 12 месяце в 2 раза выше, чем в середине года (68шт).

В 5 месяце было проседание в выдачах кредитов у мужчин, что сказалась на категории высшего образования. Так же мужчины склонны брать более крупные кредиты с чеками 40-70k (в 2 раза чаще чем женщины, что по году 129 раз).

Более ответственные люди это мужчины, люди у которых есть дети, в статусе «другое», и в возрасте более 40 лет. Интересно, что людям старше 79 лет выдавались кредиты, уровень дефолтности = 0, а в 20-25 лет составляет 15%.

Наибольшее количество дефолтов в категории мобильных телефонов и составляет 113 случаев, что составляет 57% от общего количества дефолтов. При сроках более 12 месяцев и зарплате 20-40k чаще уходят в дефолт.

Основные показатели дефолта.

Сумма кредита	Дефолт по кредиту	Всего	% дефолта
<10k	27	238	11,3%
>70k	10	114	8,8%
10-20k	56	554	10,1%
20-40k	83	619	13,4%
40-70k	20	198	

Срок кредита	Дефолт по кредиту	Всего	% дефолта
>24	5	46	10,9%
12-24	50	314	15,9%
ДО 12	141	1363	10,3%

Возраст	Дефолт по кредиту	Всего	% дефолта
>40	38	443	8,6%
20-25	55	369	14,9%
25-30	41	334	12,3%
30-45	62	577	10,7%

Категория	Дефолт по кредиту	Всего	% дефолта
Бытовая техника	36	471	7,6%
Компьютеры	8	178	4,5%
Мебель	8	164	4,9%
Мобильные телефоны	113	498	22,7%
Остальное	31	412	7,5%

Платеж к доходу	Дефолт по кредиту	Всего	% дефолта
<10%	150	1178	12,7%
>50%	0	9	0,0%
10-50%	46	536	8,6%

Является клиентом	Дефолт по кредиту	Всего	% дефолта
Клиент банка	145	1042	13,9%
Не клиент банка	51	681	7,5%
Общий итог	196	1723	

Создание модели для снижения дефолта.

Схема действий.

- 1. Сделаем бинизацию числовых признаков (сгруппируем их) для того, чтобы легче было работать.
- 2. Создадим функцию для вероятностей Weight of evidence (woe). И далее на ней будем строить модель.
- 3. Разобьем данные равномерно по группам данных и проверим флаг дефолта в трейне и тесте и в итоге получим по 11% в каждой группе.
- 4. Проверим корреляции между признаками.
- 5. Так как после применения функции woe у нас остались пропущенные значения, заменим их медианами.
- 6. Далее построим несколько моделей для определения лучшего результата.

С логистической регрессией получили ROC AUC 0.7279 и ассuracy score 0.8869

Train:

Запустим подбор по сетке GridSearch и запросим оптимальные параметры: { 'C': 10, 'max_iter': 100, 'penalty': 'l2', 'tol': 0.1. }

При данных параметрах получаем ROC AUC на тесте равным 0.7279. и уравнение регрессии:

$$P = -2.348 + x1*0.0443 + x2*(-0.229) + x3*1.0256 + x4*0.441 + x5*0.450 + x6*0.806 + x7*0.790 + x8*0.502 + x9*0.592 + x10*0.104 + x11*0.281 + x12*0.416 + x13*0.832 + x14*0.535$$

, где х от 1 до 14 – наши признаки.

Месяц выдачи кредита
Сумма кредита
Срок кредита
Возраст клиента
Пол клиента
Образование клиента
Тип товара
Наличие детей у клиента
Регион выдачи кредита
Доход клиента
Семейное положение
Оператор связи
Является ли клиентом банка
Платеж к доходу

С логистической регрессией и полиномиальными фичами во второй степени получили ROCAUC о.690 и accuracy score o.8898

Catboost немного переобучается, но ROC AUC выше и составляет 0.731 и ассигасу score 0.878

Метод композиции слабых моделей AdaBoosting показал лучший ROC AUC 0.7473 и accuracy score 0.878

Качество построенных моделей достаточно низкое из-за малого количества данных, большой смещенности в регионах, категориях.

В качестве рекомендаций и дальнейших исследований:

- 1. Необходимо пересмотреть стратегию выдач кредитов в сегменте мобильных телефонов, т.к. Там сосредоточено более 50% всех дефолтов, в частности женщин со средним специальным и средним образованием проживающих в «других регионах».
- 2. Создать скоркарту с бОльшими весами на образование и категорию, установить катофы на сегмент мобильных телефонов. Тогда отрежем часть выдач, но общий npv будет значительно выше.