LECTURE 8: CLUSTERING ALGORITHMS

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao

Purdue University

September 12, 2018

CLUSTERING

Given a large dataset, group data points into 'clusters'.

Data points in the same cluster are similar in some sense.

E.g. cluster students scores (to decide grade)

CLUSTERING

Given a large dataset, group data points into 'clusters'.

Data points in the same cluster are similar in some sense.

E.g. cluster students scores (to decide grade)

Applications:

Compression/feature-extraction/exploration/visualization

simpler representation of complex data

Image segmentation, community detectn, co-expressed genes

CLUSTERING (CONTD.)

We are given N data vectors $(\mathbf{x}_1, \dots, \mathbf{x}_N)$ in \Re^d . Let c_i be the cluster assignment of observation x_i :

$$c_i \in \{1 \cdots K\}$$

Equivalently, we can use one-hot (or 1-of-K) encoding:

$$r_{ic} = \begin{cases} 1, & \text{if } c_i = c \\ 0, & \text{otherwise} \end{cases}$$

Observe: $r_{ic} \ge 0$ and $\sum_{c=1}^{K} r_{ic} = 1$ just like a probability vector.

However, r_{ic} is binary: we will relax this in later lectures.

CLUSTER PARAMETERS

Associate cluster *i* with parameter $\theta_i \in \Re^d$ (cluster prototype).

Write
$$\theta = \{\theta_1, \dots, \theta_K\}$$
, $C = \{c_1, \dots, c_N\}$ (or $R = \{r, \dots, r_N\}$).

CLUSTER PARAMETERS

Associate cluster *i* with parameter $\theta_i \in \Re^d$ (cluster prototype).

Write
$$\boldsymbol{\theta} = \{\theta_1, \dots, \theta_K\}$$
, $\mathbf{C} = \{c_1, \dots, c_N\}$ (or $\mathbf{R} = \{\mathbf{r}, \dots, \mathbf{r}_N\}$).

Problem: Given data $(\mathbf{x}_1, \dots, \mathbf{x}_N)$ find $\boldsymbol{\theta}$ and \mathbf{C} .

Define a loss-function $L(\theta, C)$, and minimize it.

CLUSTER PARAMETERS

Associate cluster *i* with parameter $\theta_i \in \Re^d$ (cluster prototype).

Write
$$\boldsymbol{\theta} = \{\theta_1, \dots, \theta_K\}$$
, $\mathbf{C} = \{c_1, \dots, c_N\}$ (or $\mathbf{R} = \{\mathbf{r}, \dots, \mathbf{r}_N\}$).

Problem: Given data $(\mathbf{x}_1, \dots, \mathbf{x}_N)$ find $\boldsymbol{\theta}$ and \mathbf{C} .

Define a loss-function $L(\theta, C)$, and minimize it.

Start by defining a distance (or similarity measure) $d(\mathbf{x}, \boldsymbol{\theta})$:

$$d(\mathbf{x}, \boldsymbol{\theta}) = \sum_{j=1}^{d} (x_j - \theta_j)^2$$
 Squared Euclidean or L_2 dist.
 $d(\mathbf{x}, \boldsymbol{\theta}) = \sum_{j=1}^{d} |x_j - \theta_j|$ L_1 distance

CLUSTERING LOSS FUNCTION

We want all members of a cluster to be close to the prototype.

$$\sum_{i \text{ s.t. } c_i = c} d(\mathbf{x}_i, \boldsymbol{\theta}_c) = \sum_{i=1}^{N} r_{ic} d(\mathbf{x}_i, \boldsymbol{\theta}_c) \text{ should be small for each } c.$$

Overall loss function:

$$L(\boldsymbol{\theta}, C) = \sum_{c=1}^{K} \sum_{is.t.c_i = c1} d(\mathbf{x}_i, \boldsymbol{\theta}_c)$$
$$= \sum_{c=1}^{K} \sum_{i=1}^{N} r_{ic} d(\mathbf{x}_i, \boldsymbol{\theta}_c)$$

Optimize over both:

- · cluster assignments (discrete)
- · cluster parameters (continuous)

Minimizing $L(\theta, C)$ is hard $(O(N^{DK+1}))$.

Minimizing $L(\theta, C)$ is hard $(O(N^{DK+1}))$.

Instead, use heuristic greedy (local-search) algorithms.

When $d(\cdot,\cdot)$ is Euclidean, the most popular is Lloyd's algorithm.

Minimizing $L(\theta, C)$ is hard $(O(N^{DK+1}))$.

Instead, use heuristic greedy (local-search) algorithms. When $d(\cdot, \cdot)$ is Euclidean, the most popular is Lloyd's algorithm.

If we had the cluster parameters $heta^*$, can we solve for $extsf{C}$?

$$C_{ont} = \operatorname{argmin} L(\theta^*, C)$$

If we had the cluster assignments C^* , can we solve for θ ?

$$\theta_{opt} = \operatorname{argmin} L(\theta, C^*)$$

Start with an initialialization of the parameters, call it θ_0 . Assign observations to nearest clusters, giving R_0 .

Repeat for *i* in 1 to *N*:

- · Recalculate cluster means, θ_i
- · Recalculate cluster assignments, R_i

Coordinate-descent.

Start with an initialialization of the parameters, call it θ_0 . Assign observations to nearest clusters, giving R_0 .

Repeat for *i* in 1 to *N*:

- · Recalculate cluster means, θ_i
- · Recalculate cluster assignments, R_i

Coordinate-descent.

Resulting algorithm has complexity O(INKD)

 $[{\sf demo}]$

QUESTIONS

Does this algorithm converge to a global minimum?

Does it converge at all?

What is the convergence criteria?

LIMITATIONS

Local optima: Sensitive to initialization.

Solution: Run many times and pick the best clustering.

Empty clusters.

Solution: discard them, or use heuristics to assign

observations to them

Choosing K.

Solution: search over a set of K's, penalizing larger values.

Requires circular clusters.

Solution: use some other method

VARIATIONS TO K-MEANS

Modify distance functions.

L₁ distance: k-medians

Modify the algorithm.

L₁ distance: k-medoids (exemplar-based)

k-means is a partitioning algorithm that assigns each observation to a unique cluster.

k-means is a partitioning algorithm that assigns each observation to a unique cluster.

k-means is a partitioning algorithm that assigns each observation to a unique cluster.

k-means is a partitioning algorithm that assigns each observation to a unique cluster.

- k-means is a partitioning algorithm that assigns each observation to a unique cluster.
- Often is is natural to view data as having a hierarchical structure

- k-means is a partitioning algorithm that assigns each observation to a unique cluster.
- Often is is natural to view data as having a hierarchical structure

TWO APPROACHES:

Top-down (divisive) clustering:

 Initialize all observations into a single cluster, and divide clusters sequentially.

Bottom-up (agglomerative) clustering:

- Initialize each observation in its own cluster, and merge clusters sequentially.
- · More flexible, and more common.

Pick a distance function (e.g. Euclidean).

Pick a distance function (e.g. Euclidean).

Pick a linkage criterion defining distance between two clusters:

· Single linkage: $d(A, B) = \min_{x \in A, y \in B} d(x, y)$.

Pick a distance function (e.g. Euclidean).

- Single linkage: $d(A, B) = \min_{x \in A, y \in B} d(x, y)$.
- · Complete linkage: $d(A, B) = \max_{x \in A, y \in B} d(x, y)$.

Pick a distance function (e.g. Euclidean).

- Single linkage: $d(A, B) = \min_{x \in A, y \in B} d(x, y)$.
- · Complete linkage: $d(A, B) = \max_{x \in A, y \in B} d(x, y)$.
- · Centroid linkage: $d(A, B) = d(C_A, C_B)$ (C_A : centroid of A).

Pick a distance function (e.g. Euclidean).

- Single linkage: $d(A, B) = \min_{x \in A, y \in B} d(x, y)$.
- · Complete linkage: $d(A, B) = \max_{x \in A, y \in B} d(x, y)$.
- · Centroid linkage: $d(A, B) = d(C_A, C_B)$ (C_A : centroid of A).
- Average linkage: $d(A, B) = \frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x, y)$.

Pick a distance function (e.g. Euclidean).

- Single linkage: $d(A, B) = \min_{x \in A, y \in B} d(x, y)$.
- · Complete linkage: $d(A, B) = \max_{x \in A, y \in B} d(x, y)$.
- Centroid linkage: $d(A, B) = d(C_A, C_B)$ (C_A : centroid of A).
- Average linkage: $d(A, B) = \frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x, y)$.