Flight Delay Prediction

Outline

- Introduction
- Data Pre-processing and Analysis
- Modelling Techniques
- Results
- Conclusion

Introduction

- Travel by air has become natural choice for business or personal
- Punctuality has become an important factor of travel
- Concern for improvement in delays
- Better quality of on-time airline performance

Data Set Info

- Number of records: Approx 1 Million
- For analysis purpose, we used 5000 sampled data
- Number of variables : 31
- Building Model (Train: 80% / Test: 20%)

Data Preprocessing

- Firstly, we analysed the number of missing values and their importance
- Removed NA values for building well-structured data
- Feature selection: Most significant attributes chosen (departure time and arrival time, the origin and destination airports, distance, taxi-in time, taxi-out time, elapsed time in air, delay time, if cancelled, distribution of delay time among multiple reasons)

Shows that Southwest Airlines runs most of the airplanes in US in 2015

Airline Flight Volume

Shows Tuesday, Saturday and Friday as the busiest days

Scheduled flights in a week

Reasons why a flight could get delayed

Attributes Details

```
DAY_OF_WEEK
                DEPARTURE_DELAY
                                     TAXI_OUT
                                                       AIR_TIME
                                                                       DISTANCE
Min.
       :1.000
                Min.
                       :-13.00
                                  Min.
                                                   Min.
                                                         : 18.0
                                                                    Min.
                                                                           : 67.0
                                         : 1.00
                                                                    1st Qu.: 392.5
1st Qu.:2.000
                1st Qu.: 17.00
                                  1st Qu.: 12.00
                                                   1st Qu.: 63.0
Median :4.000
                Median : 37.00
                                  Median : 16.00
                                                   Median :101.5
                                                                    Median : 690.0
                                                           :119.5
Mean
       :3.969
                Mean
                       : 51.81
                                  Mean
                                         : 20.98
                                                   Mean
                                                                    Mean
                                                                          : 845.4
3rd Qu.:5.000
                 3rd Qu.: 66.25
                                  3rd Qu.: 24.00
                                                    3rd Qu.:149.0
                                                                    3rd Qu.:1076.0
       :7.000
                        :436.00
                                         :143.00
                                                           :425.0
                                                                           :3417.0
Max.
                Max.
                                  Max.
                                                   Max.
                                                                    Max.
   TAXI_IN
                  ARRIVAL_DELAY
                                      CANCELLED SECURITY_DELAY
                                                                   AIRLINE_DELAY
       : 1.000
                  Min.
                          : 15.00
                                    Min.
                                           :0
                                                Min.
                                                        : 0.0000
                                                                   Min.
                                                                          : 0.00
Min.
1st Qu.:
          4.000
                  1st Qu.: 23.00
                                    1st Qu.:0
                                                1st Qu.: 0.0000
                                                                   1st Qu.:
                                                                             0.00
Median :
          6.000
                  Median : 36.00
                                    Median :0
                                                Median : 0.0000
                                                                   Median: 2.00
      : 8.824
                  Mean
                        : 56.29
                                    Mean
                                          :0
                                                Mean
                                                        : 0.1856
                                                                   Mean
                                                                         : 16.85
Mean
3rd Qu.: 9.000
                  3rd Qu.: 65.25
                                    3rd Qu.:0
                                                3rd Qu.: 0.0000
                                                                   3rd Qu.: 18.00
       :118.000
                          :445.00
                                           :0
                                                        :98.0000
                                                                          :377.00
Max.
                  Max.
                                    Max.
                                                Max.
                                                                   Max.
LATE_AIRCRAFT_DELAY WEATHER_DELAY
Min.
       : 0.00
                    Min.
                            : 0.000
1st Qu.:
         0.00
                    1st Qu.:
                              0.000
Median: 5.00
                    Median :
                              0.000
       : 23.17
Mean
                    Mean
                              2.613
3rd Qu.: 29.00
                     3rd Qu.:
                              0.000
       :436.00
                            :231.000
Max.
                    Max.
```

Predictive Task

- Feature addition: We classified the values in ARRIVAL_DELAY greater than 20 mins as delayed flights and ARRIVAL_DELAY less than 20 min as non-delayed flights. Filled the column "Delayed" with Yes or No.
- Ran a cross-validation of count of 12 for each model

```
control <- trainControl(method="cv", number=12)
metric <- "Accuracy"</pre>
```

Predictive Models used

- Naïve bayes
 - Used this as a baseline for our analysis
- SVM
- Random Forest
- KNN
- Linear Regression

Naïve Bayes

```
model.naiveBayes <- naiveBayes(Delayed~., data=train, metric=metric, trControl=control)
prediction.NB <- predict(model.naiveBayes, test)</pre>
nba.acc=confusionMatrix(prediction.NB, test$Delayed)$overall[1]
confusionMatrix(prediction.NB, test$Delayed)
    Confusion Matrix and Statistics
             Reference
    Prediction No Yes
              28 14
          Yes 1 136
                  Accuracy : 0.9162
                    95% CI : (0.8656, 0.9523)
        No Information Rate: 0.838
        P-Value [Acc > NIR] : 0.001677
                     Kappa: 0.7386
     Mcnemar's Test P-Value: 0.001946
               Sensitivity: 0.9655
               Specificity: 0.9067
            Pos Pred Value : 0.6667
            Neg Pred Value: 0.9927
                Prevalence: 0.1620
            Detection Rate: 0.1564
       Detection Prevalence: 0.2346
         Balanced Accuracy: 0.9361
           'Positive' Class: No
```

SVM

```
#SVM
model.svm <- train(Delayed~., data=train, method="svmRadial", metric=metric, trControl=control)
prediction.svm <- predict(model.svm, test)</pre>
confusionMatrix(prediction.svm, test$Delayed)
tuneResult <- tune(svm, Delayed ~. , data=train,
                    ranges = list(epsilon = seq(0,0.1,0.01), cost = 2^{(2:9)}
tunedModel <- tuneResult$best.model
tunedModelPrediction <- predict(tunedModel, test)</pre>
confusionMatrix(tunedModelPrediction, test$Delayed)
 > confusionMatrix(prediction.svm, test$Delayed)
                                                 > confusionMatrix(tunedModelPrediction, test$Delayed)
 Confusion Matrix and Statistics
                                                  Confusion Matrix and Statistics
           Reference
                                                           Reference
 Prediction No Yes
                                                  Prediction No Yes
        Yes 29 150
                                                        Yes 29 150
               Accuracy: 0.838
                                                                Accuracy : 0.838
                 95% CI : (0.7757, 0.8887)
                                                                  95% CI : (0.7757, 0.8887)
     No Information Rate: 0.838
                                                     No Information Rate : 0.838
     P-Value [Acc > NIR] : 0.5494
                                                     P-Value [Acc > NIR] : 0.5494
                  Kappa: 0
                                                                   Kappa: 0
  Mcnemar's Test P-Value: 1.999e-07
                                                  Mcnemar's Test P-Value: 1.999e-07
             Sensitivity: 0.000
                                                             Sensitivity: 0.000
             Specificity: 1.000
                                                             Specificity: 1.000
          Pos Pred Value : NaN
                                                          Pos Pred Value: NaN
          Neg Pred Value: 0.838
                                                          Neg Pred Value: 0.838
              Prevalence: 0.162
                                                              Prevalence: 0.162
          Detection Rate: 0.000
                                                          Detection Rate: 0.000
    Detection Prevalence : 0.000
                                                    Detection Prevalence: 0.000
       Balanced Accuracy: 0.500
                                                       Balanced Accuracy: 0.500
        'Positive' Class : No
                                                         'Positive' Class : No
```

With this classification plot, we can understand the relation between Day of week and Distance. With this plot, we can see that Day of week 1, and distance from (0-1250) chances of the flight being delayed is more than others. For the range distance of 750-1250, there is more chance of flight being delayed for the entire week.

Random Forest

```
#RF
model.rf <- train(Delayed~., data=train, method="rf", metric=metric, trControl=control)</pre>
prediction.rf <- predict(model.rf, test)</pre>
confusionMatrix(prediction.rf, test$Delayed)
                   > confusionMatrix(prediction.rf, test$Delayed)
                   Confusion Matrix and Statistics
                             Reference
                   Prediction No Yes
                          No 29 0
                          Yes 0 150
                                  Accuracy: 1
                                    95% CI : (0.9796, 1)
                       No Information Rate: 0.838
                       P-Value [Acc > NIR] : 1.818e-14
                                     Kappa: 1
                    Mcnemar's Test P-Value : NA
                               Sensitivity: 1.000
                               Specificity: 1.000
                            Pos Pred Value: 1.000
                            Neg Pred Value : 1.000
                                Prevalence: 0.162
                            Detection Rate: 0.162
                      Detection Prevalence: 0.162
                         Balanced Accuracy: 1.000
```

'Positive' Class: No

```
KNN
```

Accuracy: 0.8436 95% CI: (0.7819, 0.8935) No Information Rate: 0.838 P-Value [Acc > NIR]: 0.46868

Kappa : 0.2846

Mcnemar's Test P-Value : 0.01402

Sensitivity: 0.27586 Specificity: 0.95333 Pos Pred Value: 0.53333 Neg Pred Value: 0.87195 Prevalence: 0.16201 Detection Rate: 0.04469

Detection Prevalence: 0.08380 Balanced Accuracy: 0.61460

'Positive' Class: No

Linear Regression

```
#Building various models for comparison
l_model1 = lm(ARRIVAL_DELAY ~. , data=flights_v01_train)
l_model2 = lm(ARRIVAL_DELAY ~DEPARTURE_DELAY+TAXI_IN , data=flights_v01_train)
1_model3 = lm(ARRIVAL_DELAY ~DEPARTURE_DELAY+TAXI_IN+SECURITY_DELAY , data=flights_v01_train)
l_model4 = lm(ARRIVAL_DELAY ~DEPARTURE_DELAY+TAXI_IN+SECURITY_DELAY+WEATHER_DELAY , data=flights_v01_train)
l_model5 = lm(ARRIVAL_DELAY ~DEPARTURE_DELAY+TAXI_IN+DISTANCE , data=flights_v01_train)
print(anova(l_model1, l_model2, l_model3, l_model4,l_model5))
> print(anova(l_model1, l_model2, l_model3, l_model4,l_model5))
Analysis of Variance Table
Model 1: ARRIVAL_DELAY ~ DAY_OF_WEEK + DEPARTURE_DELAY + TAXI_OUT + AIR_TIME +
    DISTANCE + TAXI_IN + CANCELLED + SECURITY_DELAY + AIRLINE_DELAY +
    LATE_AIRCRAFT_DELAY + WEATHER_DELAY
Model 2: ARRIVAL_DELAY ~ DEPARTURE_DELAY + TAXI_IN
Model 3: ARRIVAL_DELAY ~ DEPARTURE_DELAY + TAXI_IN + SECURITY_DELAY
Model 4: ARRIVAL_DELAY ~ DEPARTURE_DELAY + TAXI_IN + SECURITY_DELAY +
    WEATHER_DELAY
Model 5: ARRIVAL_DELAY ~ DEPARTURE_DELAY + TAXI_IN + DISTANCE
            RSS Df Sum of Sq
                                         Pr(>F)
  Res.Df
                                                                       Confusion Matrix and Statistics
     709 64973
     717 239122 -8
                     -174149 237.5440 < 2.2e-16 ***
                                                                                 Reference
     716 239045 1
                        77 0.8348 0.3611909
                                                                       Prediction 0 1
                        2220 24.2211 1.069e-06 ***
     715 236826 1
                                                                                0 17 15
                       -1400 15.2760 0.0001018 ***
     716 238226 -1
                                                                                1 11 137
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                                      Accuracy : 0.8556
                                                                                        95% CI : (0.7956, 0.9034)
                                                                           No Information Rate : 0.8444
                                                                           P-Value [Acc > NIR] : 0.3872
                                                                                         Kappa : 0.4805
                                                                        Mcnemar's Test P-Value: 0.5563
                                                                                   Sensitivity: 0.60714
                                                                                   Specificity: 0.90132
                                                                                Pos Pred Value: 0.53125
                                                                                Neg Pred Value : 0.92568
                                                                                    Prevalence: 0.15556
```

Detection Rate: 0.09444

Detection Prevalence: 0.17778
Balanced Accuracy: 0.75423

'Positive' Class : 0

Performance Comparison

Model	Accuracy	Precision	Recall	F1- score
Naïve Bayes	0.92	o.68	0.97	0.80
Random Forest	1.00	1.00	1.00	1.00
Support Vector Machine	0.84	NaN	0.0	NaN
k-NN	0.82	0.533	0.28	0.37
Linear Regression	o.86	0.53	0.61	0.58

Conclusion

- With regression model, we found several attributes to be statistically significant like Departure Delay, Taxi In, Taxi Out, etc.
- We found out relationships between variables which helped us conclude that Wednesday flights are more likely to be on time.
- With SVM we pattern recognition where we found that distance from 750-1250 means more chance of delay
- With our analysis, we can say that if we travel on weekdays, though air traffic is less we will reach on time

References

- DOT's Bureau of Transportation Statistics Dataset from kaggle.com
- Website: http://usatoday3o.usatoday.com/travel/flights/2007-12-20-flight-delays_N.htm
- Michael Ball, Cynthia Barnhart, Martin Dresner, Mark Hansen, Kevin Neels, Amedeo Odoni, Everett Peterson, Lance Sherry, Antonio A Trani, and Bo Zou. 2010. Total delay impact study: a comprehensive assessment of the costs and impacts of flight delay in the United States. (2010).
- Juan Jose Rebollo and Hamsa Balakrishnan. 2014. Characterization and prediction of air traffic delays. Transportation research part C: Emerging technologies 44(2014), 231–241.

Thank You!