

Table des matières

1 CE DOCUMENT	3
1.1 Versions	3
1.2 Remerciement	3
1.3 Avertissement	
1.4 Contenu	3
1.5 Protocoles supportés	
1.6 Fonctions du module oXs RP2040	
2 Présentation d'oXs RP2040	5
2.1 Vue d'ensemble	5
2.2 Spécifications du module oXs RP2040	
3 Schéma du module oXs RP2040 Full	
4 Réalisation du module oXs RP2040 Full	
4.1 Circuit imprimé	7
4.2 Carte WaveShare RP2040-Zero	7
4.3 Téléchargement du Firmware dans le RP2040	
4.4 Chargement du firmware dans le RP2040	
5 Configuration	
5.1 Connexion au PC	
5.2 Configuration	
5.2.1 Visualiser la configuration du module	
5.2.2 Détails de la configuration	9
5.2.3 Définition du protocole de télémétrie	11
Remarque : les broc <mark>hes e</mark> ntre () signifient qu'elles sont facultatives	11
6 Câblage	12
6.1 Alimentation du module	12
7 Les protocoles	13
7.1 S-Port, Hott, M-Link, Ibus, Jeti Ex	13
7.2 Sbus2, Srxl2, Jeti ExBus, Fbus	13
7.2 ExpressLRS	
8 Utilisation de deux récepteurs	

1 CE DOCUMENT

1.1 Versions

Version du Manuel	Date	Raison de l'évolution	
1.0	11/04/2023	Création	

1.2 Remerciement

Ce projet est basé sur le travail de Michel Strens qui en a réalisé le code.

Merci à lui pour ce formidable travail ainsi que son écoute.

Le code est téléchargeable à l'adresse suivante :

https://github.com/mstrens/oXs on RP2040.

1.3 Avertissement

Je ne suis aucunement responsable des dommages qui pourraient découler de la mauvaise utilisation ou d'un éventuel dysfonctionnement du module oXs RP2040, et/ou du logiciel associé.

Il appartient donc à l'utilisateur final d'en mesurer, d'en assumer les risques et de respecter la législation en vigueur selon le pays d'utilisation.

1.4 Contenu

Ce document décrit la réalisation d'un module de télémétrie oXs RP2040 ainsi que son paramétrage.

1.5 Protocoles supportés

oXs RP2040 est MULTI protocoles.

Il supporte les protocoles de télémétrie RC suivants :

ExpressLRS(CRSF), FRSKY (S-Port ou FBUS), Graupner (HOTT), Multiplex (M-LINK), FLYSKY (IBUS), Futaba ((SBUS2), Spektrum (SRXL2), Jeti Ex, Jeti ExBus.

Ce projet peut être interfacé avec 1 ou 2 récepteurs selon le protocole.

1.6 Fonctions du module oXs RP2040

Ce projet est prévu pour générer :

- des données de télémétrie (par exemple, lorsqu'un contrôleur de vol n'est pas utilisé).
- sorties PWM pour des servos.
- signaux Sbus.

Pour la télémétrie, il peut fournir :

- jusqu'à 4 mesures de tensions analogiques (avec mise à l'échelle et décalage) (en option).
- une mesure RPM; une mise à l'échelle (SCALE4) peut être utilisée pour prendre en compte par ex. le nombre de pâles (facultatif).
- l'altitude et la vitesse verticale lorsqu'il est connecté à un capteur de pression (en option)
- la vitesse anémométrique lorsqu'il est connecté à un capteur de pression différentielle (et un tube de Pitot) (facultatif).
- vitesse verticale compensée lorsqu'il est connecté à un baromètre + un capteur de pression différentielle.
- Pitch et Roll lorsqu'il est connecté à un capteur MP6050 (en option).
- Données GPS (longitude, latitude, vitesse, altitude,...) (en option) Remarque : la vitesse verticale est améliorée lorsque le capteur baro est combiné avec le capteur MP6050.

Il peut également fournir jusqu'à 16 canaux PWM RC à partir d'un CRSF/ELRS ou à partir de 1 ou 2 signaux Sbus (par exemple Frsky ou Jeti).

Il peut également fournir un signal SBUS (par exemple à partir de 1 ou 2 récepteurs ELRS).

Lorsqu'il est connecté à 2 récepteurs, les signaux PWM et Sbus générés seront émis à partir des derniers canaux Rc reçus. Cela fournit donc une sorte de redondance/diversité. Chaque fonction (télémétrie/PWM/SBUS) peut être utilisée seule ou combinée avec les autres.

2.2 Spécifications du module oXs RP2040

Spécification	Valeur / Caractéristique	Mettre le cavalier « tension récepteur » sur «5v» ou «>5v» selon la valeur de la tension fournie par le récepteur		
Alimentation oXs	+5V à +12V			
Protocoles possibles	ELRS / FRSKY (sport + Fbus) / HOTT / JETI Ex/ MPX / FLYSKY / Futaba (SBUS2) / Spektrum (SRXL2)			
Port série USB		Pour configuration avancée à l'aide d'une application type « Terminal série »		
Dimensions	WENTED TO 10 2011-25 161 0 161 115	type « Terminal Serie »		

3 Schéma du module oXs RP2040 Full

4 Réalisation du module oXs RP2040 Full

4.1 Circuit imprimé

La conception du circuit imprimé du décodeur oXs RP2040 a été réalisée sous KiCad.

Le dossier de fabrication est disponible sur GitHub.

4.2 Carte WaveShare RP2040-Zero

Le module de télémétrie utilise un Rasperri Pico de type RP2040-Zero.

RP2040-Zero de Waveshare

4.3 Téléchargement du Firmware dans le RP2040

Le chargement du Firmware (micro-logiciel embarqué) consiste à copier le contenu d'un fichier uf2 dans la mémoire du micro-contrôleur.

Le fichier **OXS.uf2** est à télécharger sur le dépôt GitHub.

4.4 Chargement du firmware dans le RP2040

Le RP2040 doit être connecter à votre PC via son connecteur USB tout en maintenant le bouton BOOT.

Une fenêtre doit s'ouvrir. Il suffit de copier le fichier oXs.uf2 pour charger le firmware dans le RP2040.

5 Configuration

5.1 Connexion au PC

La configuration du module se fait au travers d'un terminal.

Sur Windows, j'utilise **Termite** de Compuphase .

A la connexion du RP2040, vous devriez voir apparaître un port COM qui faudra sélectionner.

5.2 Configuration

5.2.1 Visualiser la configuration du module

Utiliser la touche ENTREE.

Le module doit retourner le résultat suivant :

```
processing cmd
Cmd to execute:
Version = 2.2.12
    Function
                               Pin
                                     Change entering XXX=yyy (yyy=255 to
disable)
Primary channels input = 255 (PRI
                                       = 5, 9, 21, 25
Secondary channels input = 255 (SEC
                                        = 1, 13, 17, 29
Telemetry . . . . . . = 255 (TLM
                                       = 0, 1, 2, \ldots, 29
GPS Rx . . . . . . . = 255 (GPS_RX = 0, 1, 2, ..., 29)
GPS Tx . . . . . . . = 255 (GPS TX = 0, 1, 2, ..., 29)
Sbus OUT . . . . . . . = 255 (SBUS OUT= 0, 1, 2, ..., 29)
RPM . . . . . . . . = 255 (RPM = 0, 1, 2, ..., 29)
                                       = 2, 6, 10, 14, 18, 22, 26)
SDA (I2C sensors) . . . = 255 (SDA
SCL (I2C sensors) . . . = 255 (SCL = 3, 7, 11, 15, 19, 23, 27)
PWM Channels 1, 2, 3, 4 = 255 255 255 255 (C1 / C16= 0, 1, 2, ..., 15)
PWM Channels 5, 6, 7,8 = 255 255 255
PWM Channels 9,10,11,12 = 255 255 255 255
PWM Channels 13,14,15,16 = 255 255 255 255
Voltage 1, 2, 3, 4
                   = 255 255 255 255 (V1 / V4 = 26, 27, 28, 29)
Protocol is Sport (Frsky)
CRSF baudrate = 420000
Voltage parameters:
   Scales: 1.000000 , 1.000000 , 1.000000 , 1.000000
   Offsets: 0.000000 , 0.000000 , 0.000000 , 0.000000
   No temperature sensors are connected on V3 and V4
RPM multiplier = 1.000000
Baro sensor is not detected
Acc/Gyro is not detected
Airspeed sensor is not detected
   No Vspeed compensation channel defined; oXs uses default settings
First analog to digital sensor is not detected
Second analog to digital sensor is not detected
Foreseen GPS type is Ublox (configured by oXs) : GPS is not (yet) detected
Failsafe type is HOLD
Config parameters are OK
Press ? + Enter to get help about the commands
>>
```

5.2.2 Détails de la configuration

PRI Entrée FBUS SBUS ou EXBUS ou SRXL2

SEC Deuxième Entrée FBUS SBUS ou EXBUS ou SRXL2

TLM Sortie Télémétrie S-PORT JETI M-LINK HOTT

GPS RX Connexion RX du GPS

GPS_TX Connexion TX du GPS

SBUS_OUT Sortie SBUS (résultat du meilleur signal entre PRI et SEC)

RPM Entrée tachymètre

C1 à C16 Sortie PWM (servos)

V1 à V4 Entrés analogiques (V1 dédié à la tension d'un accus, V2 au courant consommé, V3 et V4 à deux tensions supplémentaires ou deux températures)

Voici la configuration possible fonction du circuit imprimé réalisé :

```
Version = 2.2.12
    Function
                                    Change entering XXX=yyy (yyy=255 to
                              Pin
disable)
Primary channels input
                           9 (PRI
                                       = 5, 9, 21, 25)
Secondary channels input =
                                       = 1, 13, 17, 29
                           1
                               (SEC
Telemetry . . . . . . =
                           8 (TLM
                                       = 0, 1, 2, \ldots, 29
GPS Rx . . . . . . . . = 13 (GPS RX = 0, 1, 2, ..., 29)
                           12 (GPS TX = 0, 1, 2, ..., 29)
GPS Tx
      . . . . . . . . =
Sbus OUT
                    . . =
                           0 (SBUS OUT= 0, 1, 2, ..., 29)
                           15 (RPM
                                      = 0, 1, 2, ..., 29)
RPM . . . . . . . . =
SDA (I2C sensors) . . . =
                           10 (SDA
                                       = 2, 6, 10, 14, 18, 22, 26
                                      = 3, 7, 11, 15, 19, 23, 27)
SCL (I2C sensors) . . . = 11 (SCL
PWM Channels 1, 2, 3,4 = 2
                                3 4 5 (C1 / C16= 0, 1, 2, ..., 15)
PWM Channels 5, 6, 7,8 = 255
                               255
                                    255 255
PWM Channels 9,10,11,12
                       = 255
                               255
                                    255
                                        255
PWM Channels 13, 14, 15, 16 = 255
                               255
                                    255
                                        255
Voltage 1, 2, 3, 4
                     = 255
                              255 255 255 (V1 / V4 = 26, 27, 28, 29)
```

Dans ce premier tableau, on affecte une fonction à une patte du RP2040.

L'affectation des pattes ne doit bien sûr pas être modifiée car il y aurait incompatibilité avec le circuit imprimé.

Les pattes ayant la valeur 255 ne sont pas définies.

PRI sera toujours égal à la patte 9 (mais il peut être aussi égal à 5, 9, 21 ou 25).

SEC sera toujours égal à la patte 1 (mais il peut aussi être égal à 1, 13, 17 ou 29).

etc...

Mais, en fonction du protocole choisi et des fonctions utilisées, certaines pattes resteront à **255** donc non définies.

Pour définir une patte, il suffit de taper dans le terminal **TLM=8** par exemple ou **TLM=255** pour la désaffecter.

Pour connaître toutes les commandes disponibles, il suffit de taper ? puis ENTREE.

Commands can be entered to change the config parameters - To activate a function, select the pin and enter function code = pin number (e.g. PRI=1) Function Code Valid pins number Primary channels input PRI = 5, 9, 21, 25 = 1, 13, 17, 29 Secondary channels input SEC = 0, 1, 2, ..., 29 Telemetry TLMGPS Rx GPS RX = 0, 1, 2, ..., 29GPS Tx GPS TX = 0, 1, 2, ..., 29 SBUS OUT= 0, 1, 2, ..., 29 Sbus OUT RPM (only for Sport) RPM = 0, 1, 2, ..., 29 = 2, 6, 10, 14, 18, 22, 26 SDA (baro sensor) SDA SCL = 3, 7, 11, 15, 19, 23, 27 SCL (baro sensor) PWM Channels 1, ..., 16 C1 / C16= 0, 1, 2, ..., 15 Voltage 1, ..., 4 V1 / V4 = 26, 27, 28, 29 - To disable a function, set pin number to 255 -To debug on USB/serial the telemetry frames, enter DEBUGTLM=Y or DEBUGTLM=N (default) -To change the protocol, enter PROTOCOL=x where x= S(Sport Frsky), F(Fbus Frsky), C(CRSF/ELRS), H(Hott), M(Mpx), 2(Sbus2 Futaba), J(Jeti), ${\tt E(jeti~Exbus)}$, ${\tt X~(spektrum~SRXL2)}$, or ${\tt I(IBus/Flysky)}$ -To change the CRSF baudrate, enter e.g. BAUD=420000 -To change voltage scales, enter SCALEx=nnn.ddd e.g. SCALE1=2.3 SCALE3=0.123 Enter SCALEx=0 to avoid sending voltage x to the Transmitter (for Frsky or Jeti) -If a TMP36 is used on V3, enter TEMP=1 (if a second one is on V4, enter TEMP=2)-To change voltage offset, enter OFFSETx=nnn.ddd e.g. OFFSET1=0.6789 -To change GPS type: for an Ublox, enter GPS=U (configured by oXs) or E (configured Externally) and for a CADIS, enter GPS=C -To change RPM multiplicator, enter e.g. RPM MULT=0.5 to divide RPM by 2 -To force a calibration of MP6050, enter MPUCAL -To use a channel to setup Airspeed compensation factor and/or to select between the 2 Vspeed, enter the channel with ACC=1...16-To select the failsafe mode to HOLD, enter FAILSAFE=H -To set the failsafe values on the current position, enter SETFAILSAFE -To get the internal telemetry values currently calculated by oXs, enter FV (meaning Field Values) -To test a protocol, you can force the internal telemetry values to some dummy values for dummy positive values, enter FVP; for dummy negative values, enter FVN -To get the current PWM values (in micro sec, enter PWM)-To get the current

En cas d'erreur de configuration le module en fait la remarque, par example :

Error in parameters: a pin is defined for Sbus Out but not for Primary nor Secondary channels input (PRI or SEC)

Note: some changes require a reset to be applied (e.g. to unlock I2C bus)

Attention: error in config parameters

config, just press Enter

5.2.3 Définition du protocole de télémétrie

Selon le protocole, les broches utilisées pour les canaux RC PRIMAIRES/SECONDAIRES et pour la

télémétrie (TLM) varient

Protocole	PRI	SEC	TLM	Commentaire
C(ELRS)	(TX de Rx1)	(TX de Rx2)	(RX de RX1)	
S(Frsky sport)	(Sbus de Rx1)	(Sbus de Rx2)	(Sport de RX1 ou Rx2)	(1)
F(Frsky Fbus)	Fbus de Rx1	(Sbus de Rx2)	Non utilisé	(2)
J(Jeti ex)	(Sbus de Rx1)	(Sbus de Rx2)	(Ex de Rx1 ou Rx2)	
E(Jeti Exbus)	Exbus de Rx1	(Sbus de Rx2)	Non utilisé	(2)
H(Hott)	(Sbus de Rx1)	(Sbus de Rx2)	(tlm de RX1 ou Rx2)	(1)
M(Multiplex)	(Sbus de Rx1)	(Sbus de Rx2)	(tlm de RX1 ou Rx2)	(1)
I(Flysky Ibus)	(Sbus de Rx1)	(Sbus de Rx2)	(Ibus de RX1 ou Rx2)	(1)
L(Spektrum Srxl2)	Srxl de Rx1	Non utilisé	Non utilisé	(2)
2(Futaba Sbus2)	Sbus2 de Rx1	(Sbus de Rx2)	Sbus2 de Rx1 via 1Kohm	(3)

Remarque : les broches entre () signifient qu'elles sont facultatives.

Pour plus de détails, lire le fichier Readme.md .

⁽¹⁾ pour la sécurité, insérez une résistance de 1 kOhm entre la broche TLM et Rx

⁽²⁾ pour la sécurité, insérez une résistance de 1 kOhm entre la broche PRI et Rx

⁽³⁾ Pour Futaba, la broche TLM doit être égale à la broche PRI - 1 et insérer une résistance de 1 kOhm entre PRI et TLM

6 Câblage

6.1 Alimentation du module

Le circuit imprimé est équipé d'un régulateur de tension 5v.

Il peut être mis en ou hors fonction selon l'accu de réception utilisé.

Accus inférieur ou égal à 5V :

Accus supérieur à 5V:

7 Les protocoles

7.1 S-Port, Hott, M-Link, Ibus, Jeti Ex

S-Port PROTOCOL=S

PRI=255 SEC=255 TLM=8

Hott PROTOCOL=H

M-link PROTOCOL=M

Ibus PROTOCOL=I

Jeti Ex PROTOCOL=J

7.2 Sbus2, Srxl2, Jeti ExBus, Fbus

Sbus2 PROTOCOL=2 Fbus PROTOCOL=F

Srxl2 PROTOCOL=L PRI=9 SEC=255 TLM=255

Jeti Exbus PROTOCOL=E

7.2 ExpressLRS

ExpressLRS PROTOCOL=C

PRI=9 SEC=255 TLM=8

8 Utilisation de deux récepteurs

Tous les récepteurs ayant une sortie SBUS sont utilisables indépendamment du type de télémétrie.

On utilise les entrées PRI=9, SEC=1 et SBUS_OUT=0.

Le module version Full n'a pas de sortie PWM directement accessibles sur le circuit imprimé,

mais il est possible de souder des connecteurs sur les pattes 1 à 7 du RP2040.

Il faut alors affecter ces 6 sorties PWM au RP2040.

C1=2 à C6=7.

On peut très bien affecter ces sorties selon nos besoins sachant que le RP2040 supporte un maximum de 16 voies.

Par exemple C9=2 à C14=7.

Les signaux PWM et Sbus générés seront émis à partir des derniers canaux Rc reçus. Cela fournit donc une sorte de redondance/diversité.