Assignment 8

01-04-2019

- (1) Let $a, b, c \in \mathbb{Z}$. Prove or disprove:
 - (a) If c|(a+b), then c|a or c|b.
 - (b) If c|a or c|b, then c|ab.
 - (c) If c|ab, then c|a or c|b.
- (2) Let $W = \mathbb{Z} \cap [-100, \infty)$. Show that every non-empty subset of W has a least element.
- (3) Let $a_0 = 1$, and for $n \in \mathbb{N}$, let $a_n = \sqrt{2a_{n-1}}$.
 - (a) Show that for each $n \in \mathbb{N}$, $a_{n+1} \ge a_n$. HINT: Use induction on n.
 - (b) Show that the set $\{a_n : n \in \mathbb{N}\}$ is bounded above.
 - (c) Show that the sequence $\{a_n\}_{n\in\mathbb{N}}$ is convergent and find its limit.
- (4) Prove or disprove: Let (a_n) and (b_n) be two convergent sequences of real numbers with limits a and b respectively. If $a_n < b_n$ for all $n \in \mathbb{N}$, then a < b.
- (5) Show that the sequence $(p^{1/n})$ converges to 1 for all p > 0. HINT: First prove for p > 1 by finding the limit of $a_n = (p^{1/n}) - 1$.
- (6) (a) Let $a \in (-1, \infty)$ and $n \in \mathbb{N}$. Show that $(1+a)^n \ge 1 + na$.
 - (b) Show that the sequence $a_n = (1 + 1/n)^n$ is strictly increasing.
 - (c) Show that the sequence $b_n = (1 + 1/n)^{n+1}$ is strictly decreasing.
 - (d) Show that both (a_n) and (b_n) converge to the same limit which lies in (2,4).
- (7) Let $A \subset \mathbb{R}$ be bounded above and $\alpha = \text{lub}(A)$. Show that there is a sequence (a_n) in A, which converges to α .
- (8) Let (a_n) be a bounded sequence. Recall the definition of limit inferior and limit superior defined in class. Show that

$$\operatorname{glb}(a_n) \le \lim \inf(a_n) \le \lim \sup(a_n) \le \operatorname{lub}(a_n).$$

- (9) Let $a, b \in \mathbb{Z}$, $L = \{c \in \mathbb{Z} | \exists k, l \in \mathbb{Z} (c = ka + lb) \}$, and $C = \{c \in \mathbb{N} | c | a \text{ and } c | b \}$.
 - (a) Identify L and C when (a, b) = (1)(2, 3)(2)(4, 6)(3)(4, 8).
 - (b) Show that if $c \in L$, then for all $n \in \mathbb{Z}$, $nc \in L$.
 - (c) Show that if $c \in C$ and d|c, then $d \in C$.
 - (d) Prove or disprove: For $a, b \in \mathbb{N}, L \cap C \neq \emptyset$.