

Junyoung Park

SYSTEMS INTELLIGENCE Lab

Industrial and Systems Engineering (ISysE)

KAIST

Wind Farm Power Estimation Task

Wind Farm Power Estimation Task

Wind farm X size (m)

800

1000

- Farm-level power estimationWind-farm power = ??
- Turbine-level power estimationWind turbine powers = ??

Wind Farm Power Estimation Task

- Farm-level power estimation
 Wind-farm power = ??
- Turbine-level power estimationWind turbine powers = ??

Wind Farm and Its Graph Representation

WInd Farm Layout

$$G = (N, E, g)$$

Node features $N = \{free\ flow\ wind\ speed\}_{\forall i \in turbine\ index}$ Edge features $E = \{(the\ down-stream\ wake\ distance\ d,)\}_{\forall (i,j)^*}$ Global features $g = \{free\ flow\ wind\ speed\}$

i, j are turbine index

 $* \forall (i,j) \in interaction turbines$

Details on Edge Features

WInd Farm Layout

$$G = (N, E, g)$$

Edge features
$$E = \left\{ \begin{pmatrix} \text{the down-stream wake distance } \boldsymbol{d}, \\ \text{the radial-wake distance } \boldsymbol{r} \end{pmatrix} \right\}_{\forall (i,j)}$$

Neural Network in EXTREMELY High Level View

Neural network is a function approximator that has trainable parameter θ such that $y \approx \hat{y}$ as accurate as possible

Why Graph Representation?

WInd Farm Layout

$$\mathcal{G}=(N,E,g)$$

VS.

		X coord.	Y coord.
#. Turbines	ТО	850	713
	T1	303	587
	T2	569	775
	Т3	642	290
	T4	217	97

Matrix (Tensor) Representations

Why Graph Representation?

			X coord.	Y coord.
#. Turbines		T0	850	713
		T1	303	587
		T2	569	775
		T3	642	290
	,	T4	217	97

1. MLP/CNN's input size tends to be fixed.

2. Input data has no natural order.

e.g.) time-series has time index!

Which turbine should be the first input?

Spatial/Temporal Adjacency does not imply 'related'

Convolution operation presumes that 'Nearby pixels are somewhat related'. Since we **share** the convolution filters

RNNs presumes that

'Nearby inputs are somewhat related'.

Since we **share** the RNN blocks.

Figure source <Left: https://github.com/vdumoulin/conv_arithmetic>, <Right: https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9>

Graph Neural Network

Attention based approaches

Relational inductive bias (GN block)

Image source https://becominghuman.ai/lets-build-a-simple-neural-net-f4474256647f?gi=743618029571

Share edge update function f and node update function g for updating graph represented data

Share edge update function f and node update function g for updating graph represented data

Share edge update function f and node update function g for updating graph represented data

Share edge update function f and node update function g for updating graph represented data

Share edge update function f and node update function g for updating graph represented data

Physics-induced Graph Neural Network On Wind Power Estimations

GN (Graph Neural) Block

Graph Neural (GN) Block *Node'*₀ features $Node_0$ features Edge update Edge'_{0,1} features $f(\cdot;\theta_0)$ $Edge_{0,1}$ features network Node update $f(\cdot;\theta_1)$ network N_2 Global features Global features Global update $f(\cdot:\theta_2)$ network $\left(N_3\right)$ gUpdate graph \mathcal{G}' Input graph \mathcal{G}

GN Block – Edge update steps

GN Block – Edge update steps

GN Block – Edge update steps

GN Block – Node update steps

Aggregation function: any function obeys 'input-order invariant' and 'input-number invariant' properties. e.g., Mean, Max, Min, etc.

GN Block – Node update steps

GN Block – Global feature update

Revisit Aggregation Method

Aggregation function: any function that obeys 'input-order invariant' and 'input-number invariant' properties. e.g., Mean, Max, Min, etc.

Weighted "__" ≈ Attention (in Deep Learning)

Figure source <Agile Amulet: Real-Time Salient Object Detection with Contextual Attention>

Consider weighted Aggregations

<Robot soccer>

<Visualized weights>

Figure source <Left: https://www.youtube.com/watch?v=HHINOTDglIE> , <Right: VAIN: Attentional Multi-agent Predictive Modeling>

How can we get the <u>weights</u>?

Learn to weight!

GN Block – Edge update steps Revisit

Physics-induced Attention

JK park, and K.H. law suggest the continuous deficit factor $\delta u(d, r, \alpha)$ as

$$\delta u(d, r) = 2\alpha \left(\frac{R_0}{R_0 + \kappa d}\right)^2 \exp\left(-\left(\frac{r}{R_0 + \kappa d}\right)^2\right)$$

 R_0 : Rotor diameter

d: Down-stream wake distance

r: Radial wake – distnance

 α , κ : Tunable parameters

Figure source < Cooperative wind turbine control for maximizing wind farm power using sequential convex programming by Jinkyoo Park, Kincho H.Law >

Physics-induced Attention

$$\delta u(d, r) = 2\alpha \left(\frac{R_0}{R_0 + \kappa d}\right)^2 \exp\left(-\left(\frac{r}{R_0 + \kappa d}\right)^2\right)$$

 $\delta u(d,r)$ indicates 'How much the down stream turbine is affected Due to the upstream turbines' \rightarrow Weighting Factor W!

However, they tuned the parameters α , κ to the observed data

Figure source < Cooperative wind turbine control for maximizing wind farm power using sequential convex programming by Jinkyoo Park, Kincho H.Law >

Physics-induced Attention

Let neural network **learn** α , κ , R_0 !

Physics-induced Graph Neural Network On Wind Power Estimations

Physics-induced Graph Neural Network On Wind Power Estimations

Graph Dense Layer

Graph Dense Layer

Graph Dense Layer

Graph Dense Layer

How to train your PGNN

We use mean-squared-error as a loss function of PGNN

Lovely but Dreadful Exponential functions

Numerical over-flow

Simple approximation for exponential functions

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\approx \sum_{k=0}^{D} \frac{x^k}{k!}$$
We set D = 5

Bottom side of power-series approximation

The suggested approximation works (relatively) properly when x is small.

Question?

"why don't you use Taylor's expansion?" Answer:

"You may encounter exponential again!"

Scale-only normalization

Instead of using raw down stream distance d and radial wake distance r as inputs,

$$d' = \frac{d}{\sigma(d)} \times \max(0, s_d)$$
 $r' = \frac{d}{\sigma(r)} \times \max(0, s_r)$

 s_d , s_r are learnable parameters

Dissect Scale-only normalization

Instead of using raw down stream distance d and radial wake distance r as inputs,

$$d' = \frac{d}{\sigma(d)} \times \max(0, s_d)$$
(3)

- (1) Why did you not subtract means?
 - → We want the scaled values to be positive
- (2) What are max(0, s) for?
 - \rightarrow Since s's are learnable parameters, w/o max(0, s) d' could be negative
- (3) How do you get $\sigma(\cdot)$?
 - \rightarrow We employed EWMA to get $\mu(\cdot)$, $\sigma(\cdot)$ estimation
- (4) Why do you multiply max(0, s) again?
 - \rightarrow If 'not scaling' was the best, then we let the scaling method recover the original values d. Same intuition Batch Normalization did.

Approximated weighting function

Training Procedure

sample $s \sim U(5.0m/s, 15.0m/s), \theta \sim U(0^{\circ}, 360^{\circ})$

Generalization Tests

Generalization over environmental factors

- wind directions, wind speeds

Generalization over wind farm layouts

Generalization Over Environmental Factors

Wind speed = 8.0 m/s

Error = 0.0172

Error = 0.022

Generalization Over Layouts

- We sample 20 wind farm layouts, and estimate average estimation errors.
- Each layout has 20 wind turbines in it.

Qualitative Analysis on Physics-induced Bias

$$W_{4,1} = f(inputs; \theta_3)$$

$$Edge'_{4,1} = W_{4,1} \times f(Edge_{4,1} \ Node_4, Node_1, g; \theta_0)$$

$$\int_{Data} \int_{R_0}^{R_0} \int_{R_0}^{R_$$

Qualitative Analysis on Physics-induced Bias

PGNN achieved 11% smaller validation error than DGNN

Case Study on Inferred Weights

Case Study on a Regularized Grid Layout

Junyoung Park

SYSTEMS INTELLIGENCE Lab

Industrial and Systems Engineering (ISysE)

KAIST

Normalizing powers

