Datenstrukturen und Algorithmen

Vorlesung 7

Überblick

- Vorige Woche:
 - Repräsentierungen für schwachbesetzte Matrix, Stack, Queue, Prioritätsschlange, Deque
 - Einfach verkettete Listen auf Arrays

- Heute betrachten wir:
 - Doppelt verkettete Listen auf Arrays
 - Heap

Verkettete Listen auf Arrays - Beispiel

elems

next

	78	11	6	59	19		44		
7	6	5	-1	8	4	9	2	10	-1

Head = 3

firstEmpty = 1

SLLA – Repräsentierung

• Die Repräsentierung einer einfach verketteten Liste auf einem Array (SLLA) ist:

SLLA:

elems: TElem[]

next: Integer[]

cap: Integer

head: Integer

firstEmpty: Integer

DLLA

- Ähnlich kann man auch eine doppelt verkettete Liste ohne Pointer definieren, mit Hilfe von Arrays
- Für DLLA besprechen wir eine andere Möglichkeit von Repräsentierung für verkettete Listen auf Arrays:
 - Die Grundidee ist gleich, man benutzt Indexe in dem Array für die Links zwischen den Elementen
 - Wir benutzten dieselbe Information, aber es wird anders strukturiert
 - Es ähnelt mehr der verketteten Listen mit dynamischer Allokation

DLLA - Knoten

- Man kann eine Knotenstruktur auch mit Hilfe von Arrays definieren
- Ein Knoten (für eine doppelt verkettete Liste) enthält die Daten und die Links zu dem vorigen und nächsten Knoten:

DLLANode:

info: TElem

next: Integer

prev: Integer

DLLA

- Um die Liste zu repräsentieren brauchen wir jetzt ein Array von DLLANodes
- Da es sich um eine doppelt verkettete Liste handelt, speichern wir den Head und den Tail der Liste

DLLA:

nodes: DLLANode[]

cap: Integer

head: Integer

tail: Integer

firstEmpty: Integer

size: Integer //nicht verpflichtend, aber manchmal nützlich

DLLA – Speicherplatz allokieren und freigeben

• Damit die Repräsentierung und Implementierung ähnlich zu dynamisch allokierte verkettete Listen sind, kann man auch die Funktionen *allocate* und *free* definieren

```
function allocate(dlla) is:
//pre: dlla ist ein DLLA
//post: ein neues Element wird allokiert und die Position wird zurückgegeben
    newElem ← dlla.firstEmpty
    if newElem \neq -1 then
        dlla.firstEmpty ← dlla.nodes[dlla.firstEmpty].next
        if dlla.firstEmpty \neq -1 then
           dlla.nodes[dlla.firstEmpty].prev \leftarrow -1
        end-if
        dlla.nodes[newElem].next \leftarrow -1
        dlla.nodes[newElem].prev \leftarrow -1
    end-if
    allocate ← newElem
end-function
```

DLLA – Speicherplatz allokieren und freigeben

```
subalgorithm free (dlla, pos) is:
//pre: dlla ist ein DLLA, pos ist eine ganze Zahl
//post: die Position pos wurde freigegeben
    dlla.nodes[pos].next ← dlla.firstEmpty
    dlla.nodes[pos].prev \leftarrow -1
    if dlla.firstEmpty \neq -1 then
       dlla.nodes[dlla.firstEmpty].prev ← pos
    end-if
    dlla.firstEmpty \leftarrow pos
end-subalgorithm
```

DLLA - insertPosition

```
subalgorithm insertPosition(dlla, elem, pos) is:
//pre: dlla ist ein DLLA, elem ist ein TElem, pos ist eine ganze Zahl
//post: das Element elem wird in dlla an der Position pos eingefügt
    if pos < 1 or pos > dlla.size +1 then
       @throw Exception
    end-if
    newElem ← allocate(dlla)
    if newElem = -1 then
       @resize
       newElem ← allocate(dlla)
    end-if
    dlla.nodes[newElem].info ← elem
    if pos = 1 then
       if dlla.head = -1 then
           dlla.head ← newElem
           dlla.tail ← newElem
       else
```

//Fortsetzung auf der nächsten Folie ...

DLLA - insertPosition

```
dlla.nodes[newElem].next ← dlla.head
           dlla.nodes[dlla.head].prev ← newElem
           dlla.head ← newElem
       end-if
    else
       nodC ← dlla.head
       posC \leftarrow 1
       while nodC \neq -1 and posC < pos - 1 execute
           nodC ← dlla.nodes[nodC].next
           posC \leftarrow posC + 1
       end-while
       if nodC \neq -1 then
           nodNext ← dlla.nodes[nodC].next
           dlla.nodes[newElem].next ← nodNext
           dlla.nodes[newElem].prev ← nodC
           dlla.nodes[nodC].next ← newElem
//Fortsetzung auf der nächsten Folie ...
```

DLLA - insertPosition

Komplexität: O(n)

DLLA - Iterator

• Der Iterator für DLLA enthält als aktuelle Element den Index für den aktuellen Knoten aus dem Array

DLLAlterator:

list: DLLA

currentElement: Integer

DLLAIterator - init

```
subalgorithm init(it, dlla) is:
//pre: dlla ist ein DLLA
//post: it ist ein DLLAIterator für dlla
    it.list ← dlla
    it.currentElement ← dlla.head
end-subalgorithm
```

- Für ein (ADT) (dynamisches) Array wird *currentElement* mit 1 initialisiert bei dem Erstellen des Iterators.
- Für DLLA muss das *currentElement* zu dem Listenkopf zeigen (dieser kann sich auf Position 1 oder auf einer anderen Position befinden)

DLLAlterator - getCurrent

```
subalgorithm getCurrent(it) is:
//pre: it ist ein DLLAlterator, it ist gültig
//post: e ist ein TElem, e ist das aktuelle Element aus it
//throws ein Exception falls it nicht gültig ist
       if it.currentElement = -1 then
          @throw Exception
       end-if
       getCurrent ← it.list.nodes[it.currentElement].info
end-subalgorithm
```

Komplexität: $\Theta(1)$

DLLAIterator - next

```
subalgoritm next (it) is:
//pre: it ist ein DLLAIterator, it ist gültig
//post: das aktuelle Element aus it wird zu dem nächsten Element verschoben
//throws ein Exception falls it nicht gültig ist
       if it.currentElement = -1 then
          @throw Exception
       end-if
        it.currentElement ← it.list.nodes[it.currentElement].next
end-subalgorithm
```

- Für ein (dynamisches) Array wird currentElement mit 1 inkrementiert wenn man zu dem nächsten Element geht.
- Für DLLA muss man die Links folgen.
- Komplexität: $\Theta(1)$

DLLAIterator - valid

```
function valid (it) is:
//pre: it ist ein DLLAIterator
//post: valid gibt den Wert wahr zurück falls das aktuelle Element gültig
// ist, falsch ansonsten
       if it.currentElement = -1 then
          valid ← False
       else
          valid ← True
       end-if
end-function
```

Komplexität: $\Theta(1)$

Binärer Heap (auch Halde oder Haufen)

• Binäre Heaps sind eine einfache und effiziente Implementierung von Prioritätswarteschlangen (priority queues)

• Ein binärer Heap ist ein "Hybrid" zwischen dynamisches Array und Binärbaum

• Ein binärer Heap ist ein Array, welches man als "fast vollständigen" binären Baum mit besonderen Eigenschaften auffassen kann

Binärer Heap

 Nehmen wir an, dass folgendes Array auf der unteren Zeile Positionen und auf der oberen Zeile Elemente enthält:

 Man kann dieses Array als Binärbaum visualisieren, indem jeder Knoten genau zwei Kinder hat, außer der letzten zwei Niveaus, wo die Knoten von links nach rechts ausgefüllt werden

Array visualisiert als Binärbaum

3	6	14	1	51	2	21	34	22	23	67	85	44	31
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Binärer Heap

- Wenn die Elemente des Arrays a_1 , a_2 , a_3 , ... a_n sind, dann gilt Folgendes:
 - a₁ stellt die Wurzel dar
 - Die Kinder der Wurzel entsprechen a₂ und a₃
 - Die Kinder von Knoten *i* haben Indizes 2 * *i* und 2 * *i* + 1 (falls diese Zahlen in 1..*n* liegen).
 - Der Vorgänger eines Knotens i, mit $2 \le i \le n$, hat den Index [i/2].

Binärer Heap

- Ein binären Heap **ist ein Array**, das als Binärbaum visualisiert werden kann und, dass zusätzlich die *Heap-Struktur* und *Heap-Eigenschaft* besitzt
 - Heap-Struktur: ein Binärbaum, in welchem jeder Knoten genau zwei Kinder hat, außer der letzten zwei Niveaus, wo die Knoten von links nach rechts ausgefüllt werden
 - Heap-Eigenschaft: $a_i \ge a_{2*i}$ (falls $2*i \le n$) und $a_i \ge a_{2*i+1}$ (falls $2*i+1 \le n$)
 - Ein Baum erfüllt die Heap-Eigenschaft bezüglich einer Vergleichsrelation "≥" auf den Schlüsselwerten genau dann, wenn für jeden Knoten u des Baums gilt, dass u.wert ≥ v.wert für alle Knoten v aus den Unterbäumen von u (man kann jedwelche Vergleichsrelation auswählen)

• Nein. Es hat die Heap-Struktur, aber nicht die Heap-Eigenschaft!

• Nein. Es hat die Heap-Eigenschaft, aber nicht die Heap-Struktur!

Binärer Heap

- Sind folgende Arrays gültige Heaps? Falls die Antwort negativ ist, dann wandle diese in gültige Heaps um durch das Vertauschen zweier Elemente.
 - a) [70, 10, 50, 7, 1, 33, 3, 8]
 - b) [1, 2, 4, 8, 16, 32, 64, 65, 10]
 - c) [10, 12, 104, 60, 13, 102, 101, 80, 90, 14, 15, 16]

Binärer Heap

- In Abhängigkeit von der gewählten Vergleichsrelation erhält man nun einen Baum, der entweder das Minimum oder das Maximum in der Wurzel enthält:
 - Ein binärer Baum, der die Heap-Eigenschaft mit der Relation "≥" erfüllt, wird als **Max-Heap** bezeichnet.
 - Ein binärer Baum, der die Heap-Eigenschaft mit der Relation "≤" erfüllt, wird als **Min-Heap** bezeichnet.
- Der Baum, der ein binärer Heap mit Größe n repräsentiert, besitzt eine Höhe von log_2n

Heap - Operationen

- Ein Heap kann als Repräsentierung für eine Prioritätswarteschlange benutzt werden und enthält zwei spezifische Operationen:
 - Füge ein neues Element in einen Heap ein (so dass man die Struktur des Heaps und die Heap-Eigenschaft behaltet)
 - Lösche ein Element man löscht immer nur die Wurzel des Heaps und kein anderes Element

Heap - Repräsentierung mit dynamischem Array

Heap:

cap: Integer

len: Integer

elems: TElem[]

- Für die Implementierung nehmen wir an, dass es um eine Max-Heap geht
- Bei Bedarf kann man eine allgemeine, abstrakte Relation definieren

• Sei der folgende Max-Heap:

• Füge das Element 55 in den Heap ein

• Um die Heap-Struktur zu behalten, fügen wir den neuen Knoten als das rechte Kind von dem Knoten mit Wert 14 ein (am Ende des Arrays)

• Die Heap-Eigenschaft ist nicht erfüllt: 14 hat als Kind ein Knoten mit Wert 55 (in einem Max-Heap sollte jeder Knoten größer als seine Kinder sein)

- Um die Heap-Eigenschaft zu bewahren, beginnt man die Einträge der Knoten zu vertauschen:
 - Man lässt den neuen Knoten durch sukzessives Vertauschen mit seinem Vaterknoten so weit im Baum "hochsteigen", bis die Heap-Eigenschaft wiederhergestellt ist (bubble-up)

• Nach dem *bubble-up*:


```
subalgorithm add(heap, e) is:
//heap - ein Heap
//e - das Element, das eingefügt werden muss
       if heap.len = heap.cap then
         @ resize
       end-if
       heap.elems[heap.len+1] \leftarrow e
       heap.len ← heap.len + 1
       bubble-up(heap, heap.len)
end-subalgorithm
```

```
subalgorithm bubble-up (heap, p) is:
//heap - ein Heap
//p - Position von der man den neuen Knoten hochsteigen muss
    poz \leftarrow p
    elem ← heap.elems[p]
    parent \leftarrow p / 2
    while poz > 1 and elem > heap.elems[parent] execute
      //der Vaterknoten wird nach unten verschoben
      heap.elems[poz] ← heap.elems[parent]
      poz ← parent
      parent \leftarrow poz / 2
    end-while
    heap.elems[poz] ← elem //wir haben die richtige Position des Elementes gefunden
end-subalgorithm
```

- Komplexität: $O(log_2n)$ da wir pro Ebene des Baumes nur konstanten Aufwand investieren und der Baum logarithmische Höhe besitzt
- Gibt es einen besten Fall, in dem die Komplexität besser ist als log_2n ?

• Aus einem Heap kann man nur die Wurzel löschen

• Um die Heap-Struktur zu behalten, ersetzt man die Wurzel durch das letzte Element aus dem Array

 Die Heap-Eigenschaft ist nicht erfüllt: die Wurzel ist nicht mehr das größte Element

• Nun lassen wir die neue Wurzel im Heap durch Vertauschen mit dem größten Kind so weit in den Heap "absinken", bis die Heap-Eigenschaft wieder erfüllt ist (bis der Knoten größer als beide Kinder ist oder ein Blatt ist) (bubble-down)

• Nach dem bubble-down:


```
function remove(heap) is:
//heap - ist ein Heap
   if heap.len = 0 then
       @ error - leeren Heap
   end-if
   deletedElem ← heap.elems[1]
   heap.elems[1] ← heap.elems[heap.len]
   heap.len ← heap.len - 1
   bubble-down(heap, 1)
   remove ← deletedElem
end-function
```

```
subalgorithm bubble-down(heap, p) is:
//heap - ist ein Heap
//p - Position von der man den neuen Knoten absinken muss
    poz \leftarrow p
    elem ← heap.elems[p]
    while poz < heap.len execute
       maxChild \leftarrow -1
       if poz * 2 \le \text{heap.len then}
       //es gibt ein linkes Kind
          maxChild ← poz*2
       end-if
       if poz^*2+1 \le heap.len and heap.elems[2*poz+1] > heap.elems[2*poz] then
       //der Knoten hat zwei Kinder und das rechte ist größer
          maxChild \leftarrow poz*2 + 1
       end-if
//Fortsetzung auf der nächsten Folie
```

```
if maxChild \neq -1 and heap.elems[maxChild] > elem then
           tmp ← heap.elems[poz]
           heap.elems[poz] ← heap.elems[maxChild]
           heap.elems[maxChild] ← tmp
           poz ← maxChild
      else
          poz ← heap.len + 1
          //um die while-Schleife zu stoppen
       end-if
   end-while
end-subalgorithm
```

• Komplexität: $O(log_2n)$

Übungen

- Fange mit einem leeren Max-Heap an und füge, in der gegebenen Reihenfolge, folgende Werte ein: 8, 27, 13, 15*, 32, 20, 12, 50*, 29, 11*. Zeichne den Heap neu nachdem die Elemente markiert mit * eingefügt werden. Lösche 3 Elemente aus dem Heap und zeichne den Heap neu nach jeder Löschoperation.
- Fange mit einem leeren Min-Heap an und füge, in der gegebenen Reihenfolge, folgende Werte ein: 15, 17, 9, 11, 5, 19, 7. Lösche alle Elemente aus dem Heap der Reihe nach. Zeichne den Heap neu nach jeder zweiten Löschoperation.

Denk darüber nach

- Wo kann man in einem Max-Heap:
 - Das größte Element des Arrays finden?
 - Das kleinste Element des Arrays finden?