Problema 1

Considere uma onda plana com comprimento $\lambda=533$ nm que incide numa fenda dupla. A separação entre fendas é de 1.2 mm. O padrão de interferência produzido num alvo é tal que a distância entre o centro de uma risca de intensidade máxima e uma risca escura é de 1.1 mm. Determine a distância entre a fenda e o alvo.

Problema 2

Considere um ecrã formado por duas fendas separadas por uma distância d onde se incide um feixe de luz monocromática de comprimento de onda λ , com um ângulo Ψ com respeito à direcção perpendicular, tal como ilustrado na figura. A uma distância $L\gg d$ do ecrã existe um alvo onde pode ser observado o resultante padrão de interferência do feixe de luz com o ecrã.

- a) Suponha que se mede a distância entre o terceiro e o sexto mínimos no alvo como sendo Δz . Ignorando a largura de cada fenda e admitindo que $\Psi=0$, determine λ em função de Δz , L, e d.
- b) Mostre que, quando $\Psi=0$, a diferença de fase resultante entre as ondas que saem da dupla fenda é dada por

$$\delta = \frac{2\pi d}{\lambda} \sin \theta \,,$$

onde θ é o ângulo com respeito à linha perpendicular entre o alvo e o ecrã.

c) Determine a diferença de fase δ para um ângulo Ψ arbitrário.

Problema 3

Obtenha o padrão de interferência para uma fenda "real", i.e. uma fenda com espessura não nula.

Problema 4

Considere uma dupla fenda "real", onde cada fenda tem largura a e a distância entre as duas fendas é b. Faz-se incidir um feixe paralelo com comprimento de onda λ , como ilustrado na figura.

O padrão de interferência é projetado muito longe das fendas e a sua distribuição em função de $\sin\psi$ pode-se observar abaixo.

- ullet A partir do padrão de interferência estime os valores de a e b em unidades de λ
- Considere que se afastam as fendas de modo a que a distância entre elas seja 2b, mantendo-se fixa a largura das mesmas. Faça um esboço da intensidade em função de $\sin \psi$ e compare com o observador anteriormente.

Problema 5

Uma fibra óptica consiste num cilindro de material com índice de refracção n_f (n=v/c onde v é a velocidade de propagação da onda nesse meio) coberto com uma capa, também cilíndrica, com índice de refracção n_c . Considere um raio de luz incidente a partir do ar (indíce de refracção n_a) com ângulo θ relativamente à normal à face plana do cilindro (ver figura).

- a) Determine, justificando, a relação entre os índices de refracção n_f e n_c para que reflecção total no interface cilindro-capa seja possível.
- b) Determine, em função apenas de n_a , n_f e n_c , os ângulos θ para os quais o raio incidente se propaga sem perdas (ou seja, sem refracção para a capa) ao longo da fibra óptica.

