Bone Plate Sizing and Factors for Long-Bone Stabilization

Benjamin S. Kelley

Human Body Components

- Articulating long bones
- Passive ligaments
- Active muscles
- Forces
- Broader and complex systems to make everything work together

Elbow jt reaction force when an object is held away from the body

Bone Properties

- Non-deformable
- Long
- Load bearing
- Round
- Hollow
- Linear elastic

Stress & Loading

Longitudinal

$$-\sigma = F/A$$

Torsion

$$- T = Tr/I_p$$

- Bending
 - $-\sigma = My/I$

Bending Stress Distribution

$$\sigma = \frac{M \cdot y}{I}$$

- M= bending moment
- y= distance from neutral axis
- I= (second) moment of inertia

$$I_x = \int y^2 dA$$

$$I_p = \int r^2 dA$$

$$\sigma = \frac{M \cdot y}{I}$$

Moments of Inertia

About the centroidal or neutral axis

For a rectangle

$$- I_X = \int y^2 dA = \frac{bh^3}{12}$$

• For an annulus

$$I_{p} = \int r^{2} dA = \frac{\pi}{2} (R_{2}^{4} - R_{1}^{4})$$
 100% 400% 700% Resistance to bending

Long Bone Fractures

- Bending moment probably involved
- Compression probably involved
- Probably near the middle
- Fracture indicates break vs. crack
- Result is a butterfly fracture
- Now how do we repair or "plate it"?
- Use a "compression" bone plate

Fracture Anatomy

- Bone weaker in tension so tension fails first
- Crack propagates, bearing area reduced, and eventually opposite side fails in compression
- Result is butterfly fracture

Bone Plate Uses

Bone Plate Examples

Bone Plate Xrays

Bone Plate Tools

Bone Plate Modifications

Contouring Tower

Bending Press

Bone Plates

Bone Screws

Specialized Bone Screws

10-mm locking bolt (Sharma)

DynaFix® Hydroxyapatite Bone Screws

Bone Healing

Secondary- Callus formation (natural)

- Inflammation & interfragmentary stabilization
- Bony bridge if proper immobilization
- Remodeling- Wolff's Law

Primary- Contact (Haversian remodeling)

- Revascularization
- Reconstitution of intercortical union
- Must be aligned, stable, and adequate blood supply
- Longer period, but immediate stabilization (if plated)

Plate Purpose

- Provide compression force/stress across the face of the fracture.
 - Must preload plate through compression (tension) and curvature (bending)
 - Prevents fracture from opening
- Provide stabilization/immobilization
 - Stabilize fracture and other pieces
 - Immediate load-bearing capacity

Plate Location & Shaping

- Plate is located on the tension side
- Plate is pre-bent so to provide compression across fracture site
- Screw insertion causes plate to be in tension so fracture is under compression
- Plate is sized so that neutral axis is at the plate/bone interface

Neutral Axis Location

- 1. Where areas above/below are equal?
- 2. Center of mass?
- 3. Center of least potential energy?
- 4. Where stiffness above/below are equal?
- 5. Center of area?
- 6. Where (second) moment of inertia equal?

Stiffness & Neutral Axis

- Neutral Axis experiences no elongation
- Mechanical stiffness on both sides equal
- Stiffness depends on geometry
 - Area
 - Distance away
- Stiffness depends on Young's Modulus
 - Assume linear elastic
- Stiffness equals: E·I

Manipulating I & Properties

For Bone/Plate construct

$$- E_{p} \cdot I_{p} = E_{b} \cdot I_{b}$$

$$-$$
 E_p≈ 10·E_b

For bone geometry

$$- R_2 - R_1 \approx 1/5 \cdot R_2$$

To adjust I, use Parallel Axis Theorem

$$I_{interface} = I_{centroid} + A \cdot d^2$$

d = distance from centroid plane to interface plane

In setting E·I equal for the bone and for the plate

- Geometry of bone known (or assumed)
 - So I_{bone} can be calculated
- Geometry of plate yet to be determined/selected
 - So I_{plate} can be determined, but not specifically b or t
- Young's Modulus of plate and of bone known
 - $10 \cdot E_{bone} = E_{plate}$

Plate Properties

- From the simple plates we've seen
 - Rectangular cross section
 - About 3-7 times wider than thick
- Other relevant assumptions
 - 10•E_{bone} = E_{plate}
 - R_2 - R_1 ≈ 1/5· R_2 (for the bone)