

DE-C3: Dynamic Energy-Aware Compression for Computing-In-Memory-Based Convolutional Neural Network Acceleration

Speaker: Guan-Wei Wu

Advisor: Prof. An-Yeu (Andy) Wu

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Date: 2023/09/07

Outline

- Background
- Introduction of Computing-In-Memory (CIM)
- Challenges of Recent CIM-Based Compression
- Proposed DE-C3 Framework
- Experimental Results
- Conclusions

Background

Background

- Von Neumann Architecture
 - Processing unit and memory unit are separated
- CNNs require frequent data transfers between processing unit and memory unit

Background

- Computing-In-Memory (CIM)
 - Weights of CNNs are stored in memory crossbar
 - Memory crossbar provides basic operations

Most operations in CNNs are vector-matrix multiplications (VMMs)

- Most operations in CNNs are vector-matrix multiplications (VMMs)
 - Essentially perform multiply-and-accumulate (MAC) operations

- Most operations in CNNs are vector-matrix multiplications (VMMs)
 - Essentially perform multiply-and-accumulate (MAC) operations
- CIM parallelly computes VMMs by performing MAC in crossbar
 - Reduce energy consumption

- Mapping from CNNs to CIM architecture
 - Input voltage, weight conductance, output current

- Mapping from CNNs to CIM architecture
 - Input voltage, weight conductance, output current
- Typical CIM architecture and operation units (OUs)

Challenges of Recent CIM-Based Compression

Challenges of Recent CIM-Based Compression

- Energy consumption per each layer can be very different
 - Larger size of feature maps in shallower layers
 - Smaller size of weight matrices in shallower layers

An OU in ℓ^{th} layer consumes: $\frac{E^{\ell}}{\# \ of \ OUs} \ (\mu J)$

Challenges of Recent CIM-Based Compression

- Identify the input-dependent redundancy and detect critical input component
- Apply dual-path processing for dynamic inference
 - ♦ DE-C3 provides dual-precision quantization and pruning compression modes

DNN+NeuroSim estimates layer-wise energy consumption for models trained on different bit width under CIM architecture

A pair of bit width pair is given to each layer manually by the arranger

Each bit width pair corresponds to two energy values of different precisions from DNN+NeuroSim

Each bit width pair corresponds to two energy values of different precisions from DNN+NeuroSim

Each DE-C3 layer takes the input feature map and the energy information into account

- The weights are divided into the MSB and LSB parts
- The mask filters OU regions related to importance partial sums on weight matrix

- \diamond A special case occurs when lb in bit width pair (hb, lb) is 0
- There is no LSB part of weights in this mode and the mask will be directly applied on the MSB partial sums to obtain the final output

The overall objective function includes two parts of loss functions

- lacktriangle The loss function contains L_{CE} and L_{NENR}
- \star L_{CE} represents the cross-entropy loss between predicted and ground truth labels, while L_{NENR} represents the sum of layer-wise energy cost

$$L_E^{\ l} = E_l^{\ l} + (E_h^{\ l} - E_l^{\ l}) \times (1 - spar^l)$$

$$L_{total} = L_{CE} + \alpha \times L_{ENER}$$

- \diamond The loss function contains L_{CE} and L_{NENR}
- \star L_{CE} represents the cross-entropy loss between predicted and ground truth labels, while L_{NENR} represents the sum of layer-wise energy cost

*
$$L_{ENER} = \sum_{l=1}^{L} L_{E}^{l}$$
 $L_{E}^{l} = E_{l}^{l} + (E_{h}^{l} - E_{l}^{l}) \times (1 - spar^{l})$

$$\begin{array}{c} \bullet \quad L_{total} = L_{CE} + \alpha \times L_{ENER} \\ \hline \\ \alpha \text{ acts as a } \\ \text{controller} \end{array}$$

Experimental Results

Experimental Setting

Hardware Setting				
Simulator	NeuroSim v1.3			
OU Size	16			
ADC Resolution	[4, 5, 6]			
Bit Width	[8, 6, 4, 2, 1, 0]			
Technology Node	22nm ReRAM			

Software Setting				
Learning Rate	0.1			
Batch Size	128			
α (L_{ENER} portion)	[1e-7, 1e-8, 1e-9]			
Epoch	100			
Optimizer	SGD			
Scheduler	$lr \times 0.1$ at 50 th , 75 th epoch			

	OU-Based	Energy- Aware	Dynamic	Hybrid Compression
MARS	0	X	X	X
T-EAP	0	0	X	X
DE-C3	0	0	0	0

Experimental Results

- The performance of accuracy-energy trade-off
- Pareto front with a more upper-left position performs better

Conclusions

Conclusions

- CIM enables basic MAC operations to complete VMMs on the memory crossbar and break the memory wall bottleneck
- Our proposed DE-C3 framework leverages layer-wise energy consumption in dual-path processing to enable dynamic inference
 - ❖ The energy consumption can be reduced up to 2.3× for ResNet-20 and 3.4× for VGG-8
- More details can be found in our paper

References

- [1] https://en.wikipedia.org/wiki/Von Neumann architecture
- [2] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, "A method to estimate the energy consumption of deep neural networks," in *2017 51st asilomar conference on signals, systems, and computers*. IEEE, 2017, pp. 1916–1920.
- [3] C.-Y. Chang, Y.-C. Chuang, K.-C. Chou, and A.-Y. Wu, "T-eap: Trainable energy-aware pruning for nvm-based computing-in-memory architecture," in *2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS)*. IEEE, 2022, pp. 78–81.
- [4] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and R. Feris, "Blockdrop: Dynamic inference paths in residual networks," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018, pp. 8817–8826.
- Y. Zhang, R. Zhao, W. Hua, N. Xu, G. E. Suh, and Z. Zhang, "Precision gating: Improving neural network efficiency with dynamic dual-precision activations," *arXiv preprint arXiv:2002.07136*, 2020.

This is the end of my presentation Thanks for your listening

Q & A