Consider for example the field $\mathbb{F}_4 = \mathbb{F}_2[\alpha]$ where $\alpha^2 = \alpha + 1$. Then the polynomial $x^3 + \alpha \in \mathbb{F}_4[x]$ is irreducible. Then let $\mathbb{F}_{64} = \mathbb{F}_4[\beta]$ where $\beta^3 = \alpha$.

Then we can consider the plane [A, B] with $A, B \in \mathbb{F}_{64}$. We can write $A = a_0 + a_1\beta + a_2\beta^2$ and $B = b_0 + b_1\beta + b_2\beta^2$ for $a_i, b_i \in \mathbb{F}_4$.

The plane [A, B] is the set $\{(x, Ax + Bx^4) : x \in \mathbb{F}_{64}\}$. That is, we can choose $x = 1, \beta, \beta^2$ to identify three points contained in the plane. For x = 1, we get $(1, A + B) = (1, 0, 0, a_0 + b_0, a_1 + b_1, a_2 + b_2)$. For $x = \beta$, we get

$$Ax + Bx^4 = A\beta + B\beta\alpha = a_0\beta + a_1\beta^2 + a_2\alpha + b_0\beta\alpha + b_1\beta^2\alpha + b_2\alpha + b_2.$$

So $(\beta, A\beta + B\beta^4)$ corresponds to the point $(0, 1, 0, a_2\alpha + b_2\alpha + b_2, a_0 + b_0\alpha, a_1 + b_1\alpha)$. Finally, for $x = \beta^2$, we have $A\beta^2 + B\beta^8 = A\beta^2 + B\beta^2(\alpha + 1)$.

$$A\beta^{2} + B\beta^{2}(\alpha + 1) = a_{0}\beta^{2} + a_{1}\alpha + a_{2}\beta\alpha + b_{0}\beta^{2}(\alpha + 1) + b_{1} + b_{2}\beta$$

and so $(\beta^2, A\beta^2 + B\beta^8)$ corresponds to the point $(0, 0, 1, a_1\alpha + b_1, a_2\alpha + b_2, a_0 + b_0\alpha + b_0)$. So

$$[A, B] = join\{(1, 0, 0, a_0 + b_0, a_1 + b_1, a_2 + b_2), (0, 1, 0, a_2\alpha + b_2\alpha + b_2, a_0 + b_0\alpha, a_1 + b_1\alpha), (0, 0, 1, a_1\alpha + b_1, a_2\alpha + b_2, a_0 + b_0\alpha + b_0)\}.$$

In particular, the plane

$$[A, 0] = join\{(1, 0, 0, a_0, a_1, a_2), (0, 1, 0, a_2\alpha, a_0, a_1), (0, 0, 1, a_1\alpha, a_2\alpha, a_0)\}.$$

Also define the plane $\Pi_{\infty} = \text{join}\{(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1)\}.$ I claim that $\mathcal{S} = \{[A,0] : A \in \mathbb{F}_{64}\} \cup \{\Pi_{\infty}\}$ is a spread of $\mathbb{P}^5_{\mathbb{F}_4}$. First note that $\#\mathbb{P}^5_{\mathbb{F}_4} = \frac{4^6 - 1}{4 - 1} = 1365$. And $\#\mathbb{P}^2_{\mathbb{F}_4} = 21$. And $1365/21 = \#\mathcal{S}$.

$$\begin{vmatrix} 1 & 0 & 0 & a_0 & a_1 & a_2 \\ 0 & 1 & 0 & \alpha a_2 & a_0 & a_1 \\ 0 & 0 & 1 & \alpha a_1 & \alpha a_2 & a_0 \\ 1 & 0 & 0 & b_0 & b_1 & b_2 \\ 0 & 1 & 0 & \alpha b_2 & b_0 & b_1 \\ 0 & 0 & 1 & \alpha b_1 & \alpha b_2 & b_0 \end{vmatrix} = (a_0 + b_0)^3 + \alpha (a_1 + b_1)^3 + \alpha^2 (a_2 + b_2)^3 + \alpha (a_0 + b_0)(a_1 + b_1)(a_2 + b_2),$$

which we can rewrite as

$$X^3 + \alpha Y^3 + \alpha^2 Z^3 + \alpha XYZ \in \mathbb{F}_4[X, Y, Z].$$

We want to show the only root in \mathbb{F}_4 is (X,Y,Z)=(0,0,0). Suppose $X\neq 0$. Then $X^3=1$. So we have $1+\alpha Y^3+\alpha^2 Z^3+\alpha XYZ$.

For the case \mathbb{F}_2 , we can construct a spread via the field extension $\mathbb{F}_8 \cong \mathbb{F}_2/(x^3+x+1)$ and defining the planes

$$[A, B] = join\{(1, 0, 0, a_0 + b_0, a_1 + b_1, a_2 + b_2),$$

$$(0, 1, 0, a_2 + b_1, a_0 + a_2 + b_1 + b_2, a_1 + b_0 + b_2),$$

$$(0, 0, 1, a_1 + b_1 + b_2, a_1 + a_2 + b_0 + b_1, a_0 + a_2 + b_0 + b_1 + b_2)\}$$

for $A, B \in \mathbb{F}_8$ and the spread comprising

$$[A, 0] = join\{(1, 0, 0, a_0, a_1, a_2),$$

$$(0, 1, 0, a_2, a_0 + a_2, a_1),$$

$$(0, 0, 1, a_1, a_1 + a_2, a_0 + a_2)\}.$$

Do [0,0], [1,0], and Π_{∞} form a "regulus" in $\mathbb{P}_{\mathbb{F}_2}^5$? We have $[0,0]=V(x_3,x_4,x_5)$, $[1,0]=V(x_0+x_3,x_1+x_4,x_2+x_5)$, and $\Pi_{\infty}=V(x_0,x_1,x_2)$. Is there some quadric 4-dimensional hypersurface containing all three planes?

The family

$$I = (x_0x_4 + x_1x_3, x_0x_5 + x_2x_3, x_1x_5 + x_2x_4)$$

contains all three planes. According to Macaulay2, I is codimension 2 and degree 3, so it carves out a cubic threefold containing the planes.

I should further study the plane-bearing properties of cubic threefolds in \mathbb{P}^5_k , for example

$$V(x_0x_4 - x_1x_3, x_0x_5 - x_2x_3, x_1x_5 - x_2x_4).$$

I believe this is isomorphic to the Segre embedding

$$\mathbb{P}^2 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^5$$

where

$$(a_0, a_1, a_2), (b_0, b_1) \mapsto (a_0b_0, a_0b_1, a_1b_0, a_1b_1, a_2b_0, a_2b_1).$$

In this case, we have

$$V(x_0x_3 - x_1x_2, x_0x_5 - x_1x_4, x_2x_5 - x_3x_4),$$

We can look in the Grassmannian of planes in \mathbb{P}^5 . $\mathfrak{Gr}(3,6)$ is 9-dimensional and embeds in \mathbb{P}^{19} via Plücker. According to Macaulay2, the degree of the Plücker embedding of $\mathfrak{Gr}(3,6) \hookrightarrow \mathbb{P}^{19}$ is 42.

i1: loadPackage "SchurRings"

i2: S=schurRing(QQ,s,3)

i3: s₋1^9

The coefficient of the $s_{3,3,3}$ is 42. The $\mathbb{P}^2 \times \mathbb{P}^1$ is some kind of curve in $\mathfrak{Gr}(3,6)$. Is it a curve of degree 3?

Or maybe... we use the Chow rings. $A(\mathbb{P}^2) \cong \mathbb{Z}[L]/(L^3)$ and $A(\mathbb{P}^1) \cong \mathbb{Z}[P]/(P^2)$, and $A(\mathbb{P}^5) \cong \mathbb{Z}[H]/(H^6)$. So we have the function of rings

$$\mathbb{Z}[H]/(H^6) \to \mathbb{Z}[L]/(L^3) \otimes \mathbb{Z}[P]/(P^2)$$

where $A^0(\mathbb{P}^2 \times \mathbb{P}^1)$ is generated by $1 \otimes 1$, A^1 is generated by $L \otimes 1$ and $1 \otimes P$, A^2 is generated by $L^2 \otimes 1$ and $L \otimes P$, and A^3 is generated by $L^2 \otimes P$. Identifying $\ell = L \otimes 1$ and $p = 1 \otimes P$, we have $A(\mathbb{P}^2 \times \mathbb{P}^1) \cong \mathbb{Z}[\ell, p]/(\ell^3, p^2)$. Then for consistency let's write h = H and we have

$$f: \mathbb{Z}[h]/(h^6) \to \mathbb{Z}[\ell, p]/(\ell^3, p^2)$$

where $h \mapsto a\ell + bp$, $h^2 \mapsto a^2\ell^2 + 2ab\ell p$, $h^3 \mapsto 3a^2b\ell^2 p$, and $h^4 \mapsto 0$. We can find a and b through a few tests: $f(h)p = a\ell p$. The class p represents a general plane $\mathbb{P}^2 \times \{*\} \subseteq \mathbb{P}^2 \times \mathbb{P}^1$. Then ℓp is the class of a line contained in a specific section $L \times \{*\}$.

Maybeee... we can construct a specific h whose intersection with the Segre variety is a $\mathbb{P}^2 \times \{*\} \cup \mathbb{P}^1 \times \mathbb{P}^1$. Yeah, take the two classes $\mathbb{P}^2 \times \{*\}, \mathbb{P}^1 \times \mathbb{P}^1 \subseteq \mathbb{P}^2 \times \mathbb{P}^1$: they meet at the line $\mathbb{P}^1 \times \{*\}$. The $\mathbb{P}^1 \times \mathbb{P}^1$ is contained in a \mathbb{P}^3 which must necessarily contain the line $\mathbb{P}^1 \times \{*\}$. Then it is only a matter of including one of the points of $\mathbb{P}^2 \times \{*\}$ not shared by the $\mathbb{P}^1 \times \mathbb{P}^1$, and that extra point extends the \mathbb{P}^3 to a \mathbb{P}^4 , which is the class h. So in fact $f(h) = \ell + p$, and so $h^3 = 3\ell^2 p$, so the degree of the Segre embedding $\mathbb{P}^2 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^5$ is 3.

Similarly, the degree of the Segre embedding $\mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8$ is $(\ell_1 + \ell_2)^4 = 6\ell_1^2\ell_2^2$. In general, the degree of the Segre embedding $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^N$ is $\binom{n+m}{n}$?

Update: 4 March 2025 According to Hirschfeld, (affine) k-dimensional spreads exists in \mathbb{F}_q^n iff k|n.

Following Gorla's presentation on spreads, we find another construction.

Let $n, k \in \mathbb{Z}_+, p = x^k + p_{k-1}x^{k-1} + \cdots + p_0 \in \mathbb{F}_q[x]$ irreducible. Let

$$P = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -p_0 & -p_1 & \cdots & -p_{k-2} & -p_{k-1} \end{pmatrix} \in GL_k(\mathbb{F}_q)$$

be the companion matrix of p. (That is, p(P) = 0 and $\chi_P(\lambda) = p(\lambda)$).

Then $S = \{ \text{rowsp} (0_k \cdots 0_k \ I_k \ A_{i+1} \cdots A_{n/k}) : 1 \leq i \leq n/k, A_j \in \mathbb{F}_q[P] \}$ is a subset of $\mathfrak{Gr}(k,n)$ and a spread of \mathbb{F}_q^n , where 0_k is the $k \times k$ zero-matrix, I_k is the $k \times k$ identity.

Example 1. Let's test this against an easy example: \mathbb{F}_2^2 . Let $p = x^2 + x + 1$ and let

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

be the companion matrix. Then $\mathbb{F}_2[P] = \{0, I_2, P, P + I_2\}$. Here k = 2 and n = 4. Then \mathcal{S} comprises

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

are five two-dimensional subspaces of \mathbb{F}_2^4 (lines in \mathbb{P}_2^3) that compose a spread.

The idea behind the construction is to pad out the left side with as many 0_k 's as needed (possibly none) and then have exactly one I_k followed by whatever A_j 's you've got. When k = n/2 (for $n \in 2\mathbb{Z}$) does this construction agree with the Hopf spread?

Gorla's paper mentions a similar but distinct contruction or partial spreads.

Example 16 from Gorla's paper: We construct a parital spread code of length 7 and dimension 2 over the binary field \mathbb{F}_2 . Let (q, k, n) := (2, 2, 7) and observe that $n \equiv 1 \mod k$. Hence we have r = 1. Take the irreducible monic polynomials $p := x^2 + x + 1$, $p' = x^3 + x + 1$

in $\mathbb{F}_2[x]$ of degree k and k+r, respectively. The compansion matrices of p and p' are as follows:

$$P := M(p) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, P' := M(p') = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

The elements of $C_2(2,7;p,p')$ are the rowspaces of all the matrices of the following forms:

$$\begin{pmatrix} 1 & 0 & A_1 & A_{(2)} \\ 0 & 1 & A_{(2)} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 & B_{(2)} \\ 0 & 0 & 0 & 1 & B_{(2)} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

where A_1 is any matrix in $\mathbb{F}_2[P]$ and $A_{(2)}$ and $B_{(2)}$ denote the last two rows of any $A, B \in \mathbb{F}_2[P']$. It can be checked that $\mathcal{C}_2(2,7;p,p')$ has $2^2 \cdot 2^3 + 2^3 + 1 = 41$ elements, which covers 41*3=123 points of \mathbb{P}_2^6 , whereas \mathbb{P}_2^6 has 127 points. This creates a partial spread of planes in the vector space \mathbb{F}_2^7 , or a partial spread of lines in the projective space $\mathbb{P}_{\mathbb{F}_2}^6$. Note that \mathbb{P}^6 cannot have a complete spread because 6 is odd.

My own examples: since 6 is divisible by both 2 and 3, \mathbb{F}_q^6 contains both k=2- and k=3-spreads. That is, \mathbb{P}^5 contains spreads of \mathbb{P}^1 's and spreads of \mathbb{P}^2 's.

Example 2. We are already familiar with spreads of planes in \mathbb{P}^5 . For this example let q=2. We can use a degree k=3-extension x^3+x+1 . This has companion matrix

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 . The matrix P happens to be a primitive root and so

$$\mathbb{F}_{2}[P] = \{0, I_{3}, P, P^{2}, P^{3}, P^{4}, P^{5}, P^{6}\}$$

$$= \left\{0, I_{3}, P, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\right\}.$$

Now we can cover \mathbb{P}^5 with 9 planes as follows:

$$\begin{pmatrix} 0 & I_3 \end{pmatrix}, \begin{pmatrix} I_3 & 0 \end{pmatrix}, \begin{pmatrix} I_3 & I_3 \end{pmatrix}, \begin{pmatrix} I_3 & P \end{pmatrix}, \begin{pmatrix} I_3 & P^2 \end{pmatrix}, \begin{pmatrix} I_3 & P^3 \end{pmatrix}, \begin{pmatrix} I_3 & P^4 \end{pmatrix}, \begin{pmatrix} I_3 & P^5 \end{pmatrix}, \begin{pmatrix} I_3 & P^6 \end{pmatrix}$$

where for example

$$\begin{pmatrix} I_3 & P^6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

is a plane containing the three points given by the rows.

Example 3. We can also cover \mathbb{P}^5 in lines by using a k=2-degree extension. For example, take the irreducible polynomial $x^2 + x + 1 \in \mathbb{F}_2[x]$. Then the companion matrix is P = $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then we can form

$$\mathbb{F}_2[P] = \{0, I_2, P, P^2\} = \{0, I_2, P, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \}.$$

Thus we can cover \mathbb{P}^5 in 21 lines of the form

$$\begin{pmatrix} 0 & 0 & I_2 \end{pmatrix}, \begin{pmatrix} 0 & I_2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & I_2 & I_2 \end{pmatrix}, \\ \begin{pmatrix} 0 & I_2 & P \end{pmatrix}, \begin{pmatrix} 0 & I_2 & P^2 \end{pmatrix}, \begin{pmatrix} I_2 & 0 & 0 \end{pmatrix}, \\ \begin{pmatrix} I_2 & 0 & I_2 \end{pmatrix}, \begin{pmatrix} I_2 & 0 & P \end{pmatrix}, \begin{pmatrix} I_2 & 0 & P^2 \end{pmatrix}, \\ \begin{pmatrix} I_2 & I_2 & 0 \end{pmatrix}, \begin{pmatrix} I_2 & I_2 & I_2 \end{pmatrix}, \begin{pmatrix} I_2 & I_2 & P \end{pmatrix}, \\ \begin{pmatrix} I_2 & I_2 & P^2 \end{pmatrix}, \begin{pmatrix} I_2 & P & 0 \end{pmatrix}, \begin{pmatrix} I_2 & P & I_2 \end{pmatrix}, \\ \begin{pmatrix} I_2 & P & P \end{pmatrix}, \begin{pmatrix} I_2 & P & P^2 \end{pmatrix}, \begin{pmatrix} I_2 & P^2 & P^2 \end{pmatrix}, \\ \begin{pmatrix} I_2 & P^2 & I_2 \end{pmatrix}, \begin{pmatrix} I_2 & P^2 & P \end{pmatrix}, \begin{pmatrix} I_2 & P^2 & P^2 \end{pmatrix},$$

where for example

$$\begin{pmatrix} I_2 & P^2 & P^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

is the line containing the two points given by the rows.

Example 4. Since n=9 is divisible by k=3, we can create a spread of \mathbb{P}^2 's inside \mathbb{P}^8 . Let q=2 again. Then a cubic extension of \mathbb{F}_2 is under the irreducible polynomial x^3+x+1 . This has companion matrix $P=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. The matrix P happens to be a primitive root and so

$$\mathbb{F}_{2}[P] = \{0, I_{3}, P, P^{2}, P^{3}, P^{4}, P^{5}, P^{6}\} \\
= \left\{0, I_{3}, P, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\right\}.$$

Now we can cover \mathbb{P}^8 with 73 planes as follows:

$$(0 \quad 0 \quad I_3) \text{ (1 plane)},$$

$$(0 \quad I_3 \quad A \in \mathbb{F}_2[P]) \text{ (8 planes)},$$

$$(I_3 \quad B \in \mathbb{F}_2[P] \quad C \in \mathbb{F}_2[P]) \text{ (64 planes)},$$

where for example

$$(I_3 \quad P^3 \quad P^4) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

is the plane containing the three points given by the rows.

I wonder if replacing A with A^T yields a new spread or the same spread? Perhaps a similar deal with the regulus and its opposite.