Algebraic Topology

October 23, 2019

1 Introduction

The fundamental problem of topology is to establish whether or not there exist continuous functions f, g going from a topological space X to another space Y and back again. For example, in the case of this torus and double-torus, we know from Geometry that such functions cannot exist by considering the Euler characteristic, but in general this is a hard problem.

If such f,g continuous functions exist, then we say the two spaces are homeomorphic. Basic idea of algebraic topology is that we want to associate to any topological space X a group G(X), and for every continuous function $f:X\to Y$ a group homomorphism $G(f):G(X)\to G(Y)$ with $G(\mathrm{id})=\mathrm{id}$ and $G(f\circ g)=G(f)\circ G(g)$. Thus if $f:X\to Y$ is a homeomorphism with inverse $g:Y\to X$, then $G(g)\circ G(f)=\mathrm{id}$, $G(f)\circ G(g)=\mathrm{id}$, so G(f) is an is an isomorphism.

Extension problem: Let X be a topological space, $A \subseteq X$ a subspace, and $f: A \to Y$ a continuous function. Does there exist a continuous function $F: X \to Y$ with $F|_A = f$

Theorem 1.1. There is no continuous function

$$f: D^n \to S^{n-1}$$
 with $f|_{S^{n-1}} = \mathrm{id}$

By hand, we can see why this fails for e.g. n=1,2, but it gets hard to generalise. Eventually, we will construct G with $G(D^n)=0, G(S^{n-1})=\mathbb{Z}$. Then, if we have $S^{n-1}\to D^n\to S^{n-1}$ with composition being the identity, then we have maps $\mathbb{Z}\to 0\to \mathbb{Z}$ being the identity.

Here, the green and red loops are the "same" loop, whilst the blue one is distinct

Conventions

A topological space will be referred to as a **space** A continuous function $f: X \to Y$ will be called a **map**

2 The Fundamental Group

The idea here is that, if X is a space, $x_0 \in X$ a fixed point, called the **basepoint**, we consider loops based at x_0 , i.e. maps $\gamma : [0,1] \to X$ with $\gamma(0) = \gamma(1) = x_0$.

For example, if we let our space $X = \mathbb{R}^2 \setminus \{0\}$

Then the **fundamental group** $\pi_1(X) = \pi_1(X, x_0)$ is defined to be the set of loops based at x_0 modulo "deforming loops". Multiplication in this group $\gamma_1 \cdot \gamma_2$ is given by first traversing γ_1 and then γ_2 . But what do we mean by "deforming" a loop?

Let $f_0, f_1: X \to Y$ be maps. A **homotopy** between f_0 and f_1 is a map

$$F: X \times I \to Y$$
 where $I = [0, 1]$ and $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$

We often write $f_{\tau}(x) = F(x, \tau), f_{\tau} : X \to Y$.

If such F exists, we say f_0 and f_1 are **homotopic**.

Example: Let $Y \subseteq \mathbb{R}^2$ be a convex set. Then any $f_0, f_1 : X \to Y$ are homotopic, via $F(x,t) = \overline{tf_1(x) + (1-t)f_0(x)} \in Y$ by convexity.

If f_0 is homotopic to f_1 , we write $f_0 \simeq f_1$, or $f_0 \simeq_F f_1$ if we want to be explicit about the homotopy we are using.

Suppose $f_0 \simeq_F f_1$, both functions $X \to Y$. If $Z \subseteq X$ and $f_0(z) = F(z,t) = f_1(z) \forall z \in Z, t \in I$, then we say f_0 is homotopic to f_1 relative to Z.

Lemma 2.1. Let $Z \subseteq X, Y$ be spaces. Then \simeq relative to Z is an equivalence relation on the set of maps $X \to Y$.

Proof.

• Reflexive: $f_0 \simeq f_0$ via $F(x,t) = f_0(x) \forall x, t$

• Symmetric: Given $f_0 \simeq_F f_1$, then $f_1 \simeq f_0$ via F'(x,t) = f(x,1-t)

• Transitive: If $f_0 \simeq_{F_0} f_1$, $f_1 \simeq_{F_1} f_2$, then $f_0 \simeq_F f_2$ with:

$$F(x,t) = \begin{cases} F_0(x,2t) & t \le 1/2 \\ F_1(x,2t-1) & t \ge 1/2 \end{cases}$$

All homotopies are relative to Z.

A homotopy equivalence $f: X \to Y$ is a map with a homotopy inverse $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y, g \circ f = \mathrm{id}_X$. We then write $X \simeq Y$.

Remark: Most (all?) invariants in the course are homotopy invariants

Examples:

- 1. Let * be the one point space, $f: \mathbb{R}^n \to *$ be the constant map, and let $g: * \to \mathbb{R}^n; x \mapsto \mathbf{0}$. Then $f \circ g = \mathrm{id}_*$, and $g \circ f(x) = 0 \forall x \in \mathbb{R}^n$. Now $g \circ f \simeq \mathrm{id}_{\mathbb{R}^n}$ via F(x,t) = tx.
- 2. Let $f: S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$ be the inclusion map, and $g: \mathbb{R}^n \setminus \{0\} \to S^{n-1}; x \mapsto \frac{x}{|x|}$ (i.e. map x to the intersection of $\overrightarrow{\mathbf{0}x}$ with S^{n-1}). Then $g \circ f = \mathrm{id}_{S^{n-1}}$ and $f \circ g \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ via $F(x,t) = (1-t)x + t \cdot \frac{x}{|x|}$

If $X \simeq *$, then we say X is **contractible**.

Let $f: X \to Y, g: Y \to X$ be maps. If $g \circ f = \mathrm{id}_X$, then we say X is a **retract** of Y, and g is a **retraction**. If in addition $f \circ g \simeq \mathrm{id}_Y$ relative to f(X), then we say X is a **deformation retract** of Y. Hence, in example 2, we see that S^{n-1} is a deformation retract of \mathbb{R}^n .

Lemma 2.2. Homotopy equivalence of spaces is an equivalence relation.

Proof. Reflexivity and symmetry are trivial from the definition.

Suppose $X \simeq Y, Y \simeq Z$ via:

We want to show $f' \circ f$, $g \circ g'$ induces a homotopy equivalence

Now $(g \circ g') \circ (f' \circ f) = g \circ (g' \circ f') \circ f$. We know already that $g' \circ f' \simeq_{F'} \mathrm{id}_Y$, and so:

$$(x,t) \mapsto g(F'(f(x),t)) = \begin{cases} g(g'(f'(f(x)))) & t = 0\\ g(f(x)) & t = 1 \end{cases}$$

is a homotopy, as $g \circ (g' \circ f') \circ f \simeq g \circ f$, and since $X \simeq Y$, $g \circ f \simeq \operatorname{id}_X$. Hence $(g \circ g') \circ (f' \circ f) \simeq \operatorname{id}_X$ via transitivity of homotopy equivalence for maps. Similarly $(f' \circ f) \circ (g \circ g') \simeq \operatorname{id}_Z$

Loops and π_1

If X is a space, a **path** in X is a map $\gamma: I \to X$, where $I = [0,1] \subseteq \mathbb{R}$. If $\gamma(0) = x_0, \gamma(1) = x_1$ then we say γ is a path **from** x_0 **to** x_1 .

We say γ_1 and γ_2 are **homotopic** if $\gamma_1 \simeq \gamma_2$ relative to $\{0,1\}$, and we write $[\gamma]$ for the homotopy equivalence class of γ .

If X is a space with points $x, y, z \in X$, and γ_1 is a path from x to y, γ_2 is a path from y to z, then:

• The *concatenation* of γ_1 and γ_2 is the path from x to z given by

$$(\gamma_1 \cdot \gamma_2)(s) = \begin{cases} \gamma_1(2s) & 0 \le s \le 1/2\\ \gamma_2(2s-1) & 1/2 \le s \le 1 \end{cases}$$

- The constant path at x is the path $c_x(s) = x \forall s \in I$
- The *inverse of* γ_1 is $\overline{\gamma_1}(s) = \gamma_1(1-s)$, a path from y to x.

Theorem 2.3. Let X be space, and $x_0 \in X$. Let $\pi_1(X, x_0)$ be the set of homotopy classes of loops in X with endpoint x_0 (we say they are **based** at x_0). Then $\pi_1(X, x_0)$ forms a group under the product $[\gamma_1][\gamma_2] = [\gamma_1 \cdot \gamma_2]$, with identity c_{x_0} and inverses $[\gamma_1]^{-1} = [\overline{\gamma_1}]$.

This group is called the fundamental group of X (based at x_0).

To prove this, we will need the following lemmas:

Lemma 2.4. If $\gamma_0 \simeq \gamma_1$ to y and $\delta_0 \simeq \delta_1$ from y, then $\gamma_0 \cdot \delta_0 \simeq \gamma_1 \cdot \delta_1$ and $\overline{\gamma_0} \simeq \overline{\gamma_1}$

Proof. Suppose $\gamma_0 \simeq_F \gamma_1$, and $\delta_0 \simeq_G \delta_1$. Set:

$$H(s,t) = \begin{cases} F(2s,t) & 0 \le s \le 1/2 \\ G(2s-1,t) & 1/2 \le s \le 1 \end{cases}$$

Then $\gamma_0 \cdot \delta_0 \simeq_H \gamma_1 \cdot \delta_1$

Let
$$F'(s,t) = F(1-s,t)$$
. Then $\overline{\gamma_0} \simeq_{F'} \overline{\gamma_1}$.

Lemma 2.5. Let α, β, γ be paths from w to x to y to z in X.

Then:

- 1. $(\alpha \cdot \beta) \cdot \gamma \simeq \alpha \beta \cdot \gamma$
- 2. $\alpha \cdot c_x \simeq \alpha \simeq c_w \cdot \alpha$
- 3. $\alpha \cdot \overline{\alpha} \simeq c_w$

Proof. First, given a path $\delta: I \to X$, a **reparametrization** of δ is a path $\delta \circ \phi$ where $\phi: I \to I$ is a map with $\phi(0) = 0, \phi(1) = 1$. Note that ϕ needn't be monotonic, and that $\delta \simeq \delta \circ \phi$ via $F(s,t) = \delta(t\phi(s) + (1-t)s)$, and this homotopy is relative to $\{0,1\}$.

1. Now we reparametrize $(\alpha \cdot \beta) \cdot \gamma$ via the function ϕ whose plot is:

Note that $((\alpha \cdot \beta) \cdot \gamma) \circ \phi = \alpha \cdot (\beta \cdot \gamma)$, so $(\alpha \cdot \beta) \cdot \gamma \simeq \alpha \cdot (\beta \cdot \gamma)$.

2. Reparametrize α via:

i.e. do c_w for the first half of the time, then do α , so $\alpha \simeq c_w \cdot \alpha$. Likewise, we can get $\alpha \simeq \alpha \cdot c_x$ using the reparametrization

3. use the homotopy:

$$F(s,t) = \begin{cases} \alpha(2s) & 0 \le s \le t/2 \\ \alpha(t) & t/2 \le s \le 1 - t/2 \\ \alpha(2 - 2s) & 1 - t/2 \le s \le 1 \end{cases}$$

So $c_w \simeq \alpha \cdot \bar{\alpha}$, as we have c_w at t = 0 and $\alpha \cdot \bar{\alpha}$ at t = 1.

Then theorem 1.3 giving the existence of $\pi_1(X, x_0)$ follows from the previous two lemmas.

Example: $X = \mathbb{R}^n$, $x_0 = 0$. If γ is a loop based at 0, then $\gamma \simeq c_0$ via the straight line homotopy, and so $\pi_1(\mathbb{R}^n, 0) = 0$.

Formal Properties of π_1

Lemma 2.6. Let $f: X \to Y$ be a map with $f(x_0) = y_0$. Then there is a homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ given by $f_*([\gamma]) = [f \circ \gamma]$.

Furthermore:

- 1. If $f \simeq f'$ relative to x_0 , then $f'_* = f_*$.
- 2. If $g: Y \to Z$ with $g(y_0) = z_0$, then $g_* \circ f_* = (g \circ f)_*$
- 3. $(\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X,x_0)}$

Proof. f_* is well-defined: if $\gamma_1 \simeq_F \gamma_2$, then $f \circ \gamma_1 \simeq_{f \circ F} f \circ \gamma_2$. Then $f \circ (\gamma_1 \cdot \gamma_2) = (f \circ \gamma_1) \cdot (f \circ \gamma_2)$ by definition, and so we have a group homomorphism.

1. If $f \simeq_F f'$ relative to x_0 , then for γ a loop based at x_0 , $(s,t) \mapsto F(\gamma(s),t)$ is a homotopy between $f \circ \gamma$ and $f' \circ \gamma$.

2. and 3. are immediate by definition.

Lemma 2.7. let X be a space, $x_0, x_1 \in X$ and α a path from x_0 to x_1 . Then there is a group isomorphism $\alpha_\# : \pi_1(X, x_0) \to \pi_1(X, x_1)$ via $\alpha_\#([\gamma]) = [\bar{\alpha} \cdot \gamma \cdot \alpha]$.

Furthermore,

- 1. If $\alpha \simeq \alpha'$ relative to $\{0,1\}$, then $\alpha_{\#} = \alpha'_{\#}$.
- 2. $(c_{x_0})_{\#} = \mathrm{id}_{\pi_1(X,x_0)}$
- 3. If β is a path from x_2 to x_2 , then $(\alpha \cdot \beta)_{\#} = \beta_{\#} \circ \alpha_{\#}$
- 4. If $f: X \to Y$ and $y_1 = f(x_1)$, then $(f \circ \alpha)_{\#} \circ f_* = f_* \circ \alpha_{\#}$.

Proof. Well-defined: If $\gamma_1 \simeq_F \gamma_2$ then $\bar{\alpha} \cdot \gamma_1 \cdot \alpha \simeq \bar{\alpha} \cdot \gamma_2 \cdot \alpha$ via:

	$\overline{\alpha}$	γ_2	α
t	Trivial Homotopy	F	Trivial Homotopy
	\overline{lpha}	γ_1	α
	\xrightarrow{s}		

This is indeed a group homomorphism: for loops γ , δ based at x_0 ,

$$\bar{\alpha} \cdot \gamma \cdot \alpha) \cdot (\bar{\alpha} \cdot \delta \cdot \alpha) \simeq (\bar{\alpha} \cdot \gamma) \cdot (\alpha \cdot \bar{\alpha}) \cdot (\delta \cdot \alpha)$$

$$\simeq (\bar{\alpha} \cdot \gamma)(c_{x_0})(\delta \cdot \alpha)$$

$$\simeq (\bar{\alpha} \cdot \gamma) \cdot (\delta \cdot \alpha)$$

$$\simeq \bar{\alpha} \cdot (\gamma \cdot \delta) \cdot \alpha$$

Thus $\alpha_{\#}(\gamma \cdot \delta) = \alpha_{\#}(\gamma) \cdot \alpha_{\#}(\delta)$. Also $\bar{\alpha_{\#}} = (\alpha_{\#})^{-1}$ - this is easy to check. Thus $\alpha_{\#}$ is a group isomorphism.

1. If $\alpha \simeq_F \alpha'$

gives $\alpha_{\#}(\gamma) \simeq \alpha'_{\#}(\gamma)$

2. Immediate since c_{x_0} is the identity in $\pi_1(X, x_0)$.

3.

$$(\alpha \cdot \beta)_{\#}(\gamma) = \alpha \cdot \beta \cdot \gamma \cdot \alpha \cdot \beta$$
$$= \bar{\beta} \cdot (\bar{\alpha} \cdot \gamma \cdot \alpha \cdot \beta)$$
$$= \bar{\beta} \cdot \alpha_{\#}(\gamma) \cdot \beta$$
$$= \beta_{\#}(\alpha_{\#}(\gamma))$$

4.

$$((f \circ \alpha)_{\#} \cdot f_{*})(\gamma) = (f \circ \alpha)_{\#}(f \cdot \gamma)$$

$$= (f \circ \alpha)_{\#}(f \cdot \gamma)$$

$$= \overline{f \cdot \alpha} \cdot (f \circ \gamma) \cdot (f \circ \alpha)$$

$$= f \circ (\bar{\alpha} \cdot \gamma \cdot \alpha)$$

$$= f_{*}(\alpha_{\#}(\gamma))$$

A path connected space X is **simply connected** if $\pi_1(x, x_0) = 0$ for any, and hence all, $x_0 \in X$.

Our aim here is to prove that π_1 is a **homotopy invariant**, i.e. that homotopy equivalent spaces have the same fundamental group. We will start with the following lemma:

Lemma 2.8. Let $x_0 \in X$ and $f, g: X \to Y$ with $f \simeq_F g$. Set $x(t) = F(x_0, t)$ so that $\alpha(0) = f(x_0)$ and $\alpha(1) = g(x_0)$. Then the diagram:

commutes, i.e. we have $\alpha_{\#} \circ f_* = g_*$.

Proof. We need to check that, for a loop γ based at x_0 , $\overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha \simeq g \circ \gamma$.

Let $G: I \times I \to Y$ defined by $G(s,t) = F(\gamma(s),t)$. For t = 0, this is $f \circ \gamma$, and for t = 1, this is $g \circ \gamma$. Now consider two paths in $I \times I$:

$$a(t) = (t, 1); b = b_1 \cdot b_2 \cdot b_3$$
 where:
 $b_1(t) = (0, 1 - t), b_2(t) = (t, 0), b_3(t) = (1, t)$

Then $(G \circ a)(s) = G(s,1) = g \circ \gamma(s)$, whilst $G \circ b = \overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha$.

Now, since $I \times I$ is convex, we have that $a \simeq_H b$, and so $G \circ H$ is the desired homotopy between $g \circ \gamma$ and $\overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha$.

Theorem 2.9. If $f: X \to Y$ is a homotopy equivalence, then $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is a homomorphism for any $x_0 \in X$.

Proof. We'll show that f_* is a bijection:

Let $g: Y \to X$ be a homotopic inverse to f, with $\mathrm{id}_X \simeq_F g \circ f$. Let $\alpha: I \to X$ given by $\alpha(t) = F(x_0, t)$.

Note that $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0)); g: \pi_1(Y, f(x_0)) \to \pi_1(X, g(f(x_0)))$

Then $g_* \circ f_* = (g \circ f)_* = \alpha_\# \circ (\mathrm{id}_X)_* = \alpha_\#$. $\alpha_\#$ is an isomorphism, and so f_* is injective.

If $\operatorname{id}_Y \simeq_G f \circ g$ let $\beta(t) = G(f(x_0), t)$ Then $f_* \circ g_* = (g \circ f)_* = \beta_\# \circ (\operatorname{id}_Y)_* = \beta_\#$, an isomorphism, and hence f_* is surjective.

Corollary 2.10. Contractible spaces are simple connected.

Proof. If X is contractible, there exists some $x_0 \in X$ and a homotopy F between id_X and $X \to \{x_0\}$. So $F(x,\cdot)$ is a path from any $x \in X$ to x_0 , so X is path connected. Since X is homotopic to $\{x_0\}$, $\pi_1(X,x_0) \cong \pi_1(\{x_0\},x_0) = 0$.

Covering Spaces

Let $p: \hat{X} \to X$ be a map. An open set $U \subseteq X$ is **evenly covered** if there exists a set Δ_U with the discrete topology and there is a homeomorphism:

$$p^{-1}(U) \xrightarrow{\cong} U \times \Delta_U$$

such that the following diagram commutes:

$$p^{-1}(U) \xrightarrow{\cong} U \times \Delta_U$$

$$\downarrow p \qquad \downarrow U \qquad (x, \delta) \mapsto x$$

We write, for $\delta \in \Delta_0$, $U_{\delta} = U \times \{\delta\}$ and $p_{\delta} = p|_{U_{\delta}}$. So $p_{\delta} : U_{\delta} \to U$ is a homeomorphism.

Note that we can canonically identify Δ_U with $p^{-1}(x)$ for any $x \in U$, Note also that $p^{-1}(U) \cong \coprod_{\delta \in \Delta_U} U_{\delta}$, where \coprod denotes disjoint union.

If every point of X has an open neighbourhood which is evenly covered, then we say that p is a **covering map** and \hat{X} is a **covering space** of X.

Examples:

- 1. $\hat{X} = X \times \Delta$ for Δ a set with the discrete topology, e.g. $\hat{I} = I \times \{1, 2, 3\}$. Then \hat{X} is a covering space of X, the identity map on the first element is a covering map.
- 2. $\hat{X} = \mathbb{R}, X = S^1 \subseteq \mathbb{C}$, the unit circle, with $p : \mathbb{R} \to S^1$ and $p(t) = \exp(2\pi \mathfrak{i} \cdot t)$. Them p is a covering map:

let $U = S \setminus \{p\}$. We can define a branch of the logarithm $\log : \mathbb{C} \setminus \{rp : r \geq 0\} \to \mathbb{C}$. Then every point $\hat{z} \in p^{-1}(U)$ can be written uniquely as $\hat{z} = k + \frac{\log z}{2\pi i}$ for some $k \in \mathbb{Z}$.

Thus $p^{-1}(U) \cong U \times \mathbb{Z}$, via $\hat{z} \mapsto \left(\frac{\log z}{2\pi i}, k\right)$, and so each proper subset of S^1 is evenly covered, however S^1 as a whole is not evenly covered, since $p^{-1}(S^1)$ is not a union of copies of S^1 .

- 3. $\hat{X} = X = S^1 \subseteq \mathbb{C}$, the unit circle, with $p(z) = z^n$.
 - p is a covering map by choosing a branch of the nth root on proper open subsets of S^1
- 4. Let $\hat{X} = S^2$, and let $G = \mathbb{Z}/2\mathbb{Z}$ act on S^2 by the antipodal map $z \mapsto -z$. Then let $X = \hat{X}/G = \hat{X}/\sim$, where $x \sim y \iff x = \pm y$.

Then X is \mathbb{RP}^2 , the real projective plane. If $x \in X$, let U be an open neighbourhood of x disjoint from its negation. Then the image of U in X is evenly covered.

We say a covering map $p: \hat{X} \to X$ is **n-sheeted** if $\#p^{-1}(x) = n$ for all $x \in X$, and call n the **degree** of p.

Lifting Properties

Let $p: \hat{X} \to X$ be a covering map, and $f: Y \to X$ b a mp. A **lift** of f to \hat{X} is a map $\hat{f}: Y \to \hat{X}$ such that the following diagram commutes:

A space X is **locally path connected** if for every $x \in X$ and $U \subseteq X$ open neighbourhood of x, there exists a neighbourhood $V \subseteq U$ of x which is path connected.

Lemma 2.11 (Uniqueness of Lifting). Let $p: \hat{X} \to X$ be a covering map and $\hat{f}_1, \hat{f}_2: Y \to \hat{X}$ be two lifts of $f: Y \to X$ with Y connected and locally path connected.

If there exists some $x_0 \in Y$ with $\hat{f}_1(x_0) = \hat{f}_2(x_0)$, then $\hat{f}_1 = \hat{f}_2$.

Proof. We will show that the set $S := \{y \in Y : \hat{f}_1(y) = \hat{f}_2(y)\}$ is both open and closed. By assumption we have $x_0 \in S$, so $S \neq \emptyset$. Since Y is connected, we must have then that S = Y as otherwise S and $Y \setminus S$ would disconnect Y.

Let $y_1 \in Y$ be an arbitrary point, and let $U \subseteq X$ be an open neighbourhood of $f(y_1)$ which is evenly covered by p. Let $V \subseteq f^{-1}(U)$ be an open neighbourhood of y_1 which is path connected. We then want to show that, if $y_1 \in S$ then all of $V \subseteq S$, and otherwise $V \subseteq Y \setminus S$.

Let $y \in V$ be arbitrary and let α be a path from $y_1 \to y$. Then $\hat{f}_i \circ \alpha$ is a path from $\hat{f}_i(y_1) \to \hat{f}_i(y)$ for i = 1, 2.

Note that $p \circ \hat{f}_1 \circ \alpha(t) = f(\alpha(t)) \in U$, and so $\hat{f}_i(y)$ and $\hat{f}_i(y_1)$ lie in the same component of $p^{-1}(U)$, say U_{δ_i}

If $y_1 \in S$, then $\hat{f}_1(y_1) = \hat{f}_2(y_1)$, so $\delta_1 = \delta_2$, and so $\hat{f}_1(y) = p_{\delta_1}^{-1}(f(y)) = p_{\delta_2}^{-1}(f(y)) = \hat{f}_2(y)$, so $y \in S$, and hence all of $V \subseteq S$.

Otherwise $y_1 \notin S$, then $\hat{f}_1(y_1) \neq \hat{f}_2(y_1)$. Each U_{δ_i} contains a unique point of $p^{-1}(\{f(y_1)\})$, and we must have $\delta_1 \neq \delta_2$.

So $\hat{f}_1(y) \neq \hat{f}_2(y)$, so $y \notin S$, and in general $V \subseteq Y \setminus S$.

Hence S is open, $Y \setminus S$ is open, and we are done

Let $\gamma: I \to X$ be a path from $x_0 \in X$ and $p: \hat{X} \to X$ be a covering map. A lift of γ at (or from) $\hat{x_0}$ is a lift $\hat{\gamma}$ of γ with $\hat{x_0} = \hat{\gamma}(0)$. In particular, $p(\hat{x_0}) = p(\hat{\gamma}(0)) = \gamma(0) = x_0$.

Lemma 2.12 (Path Lifting Lemma). Let $p: \hat{X} \to X$ be a covering map, and let $\gamma: I \to X$ be a path from x_0 . Then for any choice of $\hat{x_0} \in p^{-1}(x_0)$, there exists a unique lift $\hat{\gamma}$ of γ from $\hat{x_0}$.

Proof. Uniqueness follows from the previous lemma showing uniqueness of lifts. For existence, let $S = \{t \in I | \gamma|_{[0,t]} \text{ lifts to path from } \hat{x_0} \text{ in } \hat{X}\}$. Note $o \in S$. If we show that S is open and closed, then since I is connected, S = I. Note that if $t \in S$, then $[0,t] \subseteq S$.

Let $t_0 \in I$, and let U be an evenly covered neighbourhood of $\gamma(t_0)$. Let $V \subseteq \gamma^{-1}(U)$ be an open interval containing t_0 . Let $t \in V$ and suppose first that $t_0 \in S$. If $t \leq t_0$, then $t \in S$, so instead assume that $t > t_0$. Since $\gamma|_{[0,t_0]}$ has a lift $\hat{\gamma} : [0,t_0] \to \hat{X}$, and we have $\hat{\gamma}(t_0) \in U_{\delta}$ for some $\delta \in \Delta_U$.

Recall that we have a homeomorphism $p_{\delta}: U_{\delta} \to U$ where $p_{\delta} = p|_{U_{\delta}}$. Hence the path:

$$s \mapsto \begin{cases} \hat{\gamma}(s) & 0 \le s \le t_0 \\ p_{\delta}^{-1} \circ \gamma & t_0 \le s \le t \end{cases}$$

is a lift of $\gamma|_{[0,t]}$. Hence $t \in S$, and so $V \subseteq S$, and so S is open.

If $t_0 \notin S$, $t \in V$, $t \ge t_0$ and $t \in S$, contradicting $t_0 \notin S$. If $t < t_0$ by the previous argument above we have a contradiction as then $t_0 \in S$. So $V \subseteq I \setminus S$, and hence S must also be closed.

Corollary 2.13. Let $p: \hat{X} \to X$ be a covering map with X path connected. Then p is n-sheeted for some $n \in \mathbb{N} \cup \{\infty\}$. In fact, $p^{-1}(x)$ and $p^{-1}(y)$ have the same cardinality for all pairs $x, y \in X$.

Proof. Let γ be a path from x to y in X. If $\hat{x} \in p^{-1}(x)$, let $\hat{\gamma}_{\hat{x}}$ be the lift of γ from x. Then map \hat{x} to $\hat{\gamma}_{\hat{x}}(1)$. The path $\overline{\gamma}$ similarly gives a map $p^{-1}(y) \to p^{-1}(x)$, inverse to the first map.

For example to show that the composition $p^{-1}(x) \to p^{-1}(y) \to p^{-1}(x)$ is the identity, we need to show that, for $\hat{x} \in p^{-1}(x)$, $(\hat{\overline{\gamma}})_{\hat{\gamma}_{\hat{x}}(1)}(1) = \hat{x}$. But $\hat{\gamma}_{\hat{x}} \cdot (\hat{\overline{\gamma}})_{\overline{\gamma}_{\hat{x}}(1)}$ is a lift of $\gamma \cdot \overline{\gamma}$, and $\hat{\gamma}_{\hat{x}} \cdot \overline{(\hat{\gamma}_{\hat{x}})}$ is also a lift of $\gamma \cdot \overline{\gamma}$, and so by uniqueness, $(\hat{\overline{\gamma}})_{\overline{\gamma}_{\hat{x}}(1)} = \overline{\hat{\gamma}_{\hat{x}}}$. Hence $(\hat{\overline{\gamma}})_{\hat{\gamma}_{\hat{x}}(1)}(1) = \overline{\hat{\gamma}}_{\hat{x}}(1) = \hat{\gamma}_{\hat{x}}(0) = \hat{x}$.

Lemma 2.14 (Homotopy Lifting Lemma). Let $p: \hat{X} \to X$ be a covering map and $g_0: Y \to X$ a map with Y locally path connected. Let $F: Y \times I \to X$ be a homotopy with $F(y,0) = f_0(y)$ for all $y \in Y$. Let $\hat{f}_0: Y \to \hat{X}$ be a lift of Y. Then there is a unique lit \hat{F} of F to \hat{X} so that $\hat{F}(y,0) = \hat{f}_0(y)$.

Proof. For each $y \in Y$, we obtain a path γ_y given by $\gamma_y(t) = F(y,t)$ from $f_0(y)$. By the path lifting lemma, each γ_y lifts uniquely to a path $\hat{\gamma}_y$ from $\hat{f}_0(y)$. Now define:

$$\hat{F}(y,t) = \hat{\gamma}_y(t)$$

This clearly is a lift of F in the sense that

$$(p \circ \hat{F})(y,t) = p(\hat{\gamma}_y(t)) = \gamma_y(t) = F(y,t)$$

but is \hat{F} continuous.

We will construct a different map $\tilde{F}: Y \times I \to \hat{X}$ which is continuous by construction, and then we will show that $\hat{F} = \tilde{F}$.

Fix $y_0 \in Y$. The for each $t \in I$ we have an evenly covered neighbourhood U_t of $F(y_0, t) \in X$. Then $F^{-1}(U_t) \subseteq Y \times I$ is an open neighbourhood of (y_0, t) . We can find an open neighbourhood of (y_0, t) in $F^{-1}(U_t)$ of the form $V_t \times (t - \epsilon_t, t + \epsilon_t)$ with V_t path connected.

Note that these neighbourhoods cover $Y \times I$, and as $\{y_0\} \times I$ is compact, there is a finite subcover $\{J_i\}$ of $\{(t-\epsilon_t,t+\epsilon_t)|t\in I\}$. Then, if $J_i=(t_i-\epsilon_{t_i},t_i+\epsilon_{t_i})$, we can find a path connected subset $V\subseteq \cap_i V_{t_i}$ containing y_0 . Hence we may assume there is a path-connected neighbourhood V of y_0 in Y, and a finite number of intervals J_i covering I such that $F(V\times J_i)$ is contained in an evenly covered neighbourhood U_i of X.