Série 3 Exercice 8

David Wiedemann

27 mars 2022

1

Indeed, let $\frac{a}{b} \in \mathbb{Q}$ in reduced form such that $\nu_p(\frac{a}{b}) = 0$. By the definition of p-adic valuation, this means that we may suppose both a and b share no common factors with p, then $\frac{b}{a}$ also shares no common factor with p and hence $\nu_p(\frac{b}{a}) = 0$, implying $\frac{b}{a} \in R_{\nu}$.

Finally, $\frac{a}{b} \cdot \frac{b}{a} = \frac{1}{1}$ which finally implies that $\frac{a}{b}$ is invertible in R_{ν} .

$\mathbf{2}$

First we show that all (p^n) are distinct ideals of R, indeed suppose there exists $a, b \in \mathbb{N}$ such that $(p^a) = (p^b)$, without loss of generality suppose a < b.

Hence, there exists an element $\frac{x}{y} \in \mathbb{Q}$ with $\nu_p(\frac{x}{y}) \geq 0$ such that $\frac{x}{y}p^b = p^a$. As \mathbb{Q} is a field, this implies that $\frac{x}{y} = p^{a-b}$ which means $\frac{x}{y}$ has a negative valuation which contradicts our hypothesis.

Now we show that the ideals mentionned in the exercise are indeed all the ideals of R.

Let I be an non-zero ideal of R.

Define $a = \inf_{x \in I \setminus \{0\}} \{\nu(x)\}$. Since $\nu|_{I \setminus \{0\}}$ has codomain \mathbb{N} , this infimum exists and is attained by some element $y \in I$.

Note that we may write $y = p^a \frac{d}{c}$ where d and c are coprime to p.

By part 1, we know that $\frac{d}{c}$ is invertible, hence implying that (since I is an ideal) $p^a \in I$.

We pretend that $I = (p^a)$, to do this, we show the double inclusion. First, note that, since by construction $p^a \in I$, we immediatly get that $(p^a) \subset I$ since (p^a) is the smallest ideal containing p^a .

Furthermore, let $x \in I$, then by definition of $a, \nu(x) \ge a$.

We may then write $x = p^{\nu(x)} \frac{d}{c} = p^a p^{\nu(x)-a} \frac{d}{c}$ where d and c are coprime to p, this implies that $x \in (p^a)$.

Hence, if I is a non-zero ideal, I is of the form p^n for some n and since these ideals are disjoint, we have characterised all of them.

3

Using the exercise of week 2, we know that $\mathbb{Z} \subset R$.

Hence consider the composition $\mathbb{Z} \stackrel{\iota}{\hookrightarrow} R \stackrel{q_R}{\longmapsto} R/(p^n)$ where ι is the inclusion morphism and q_R is the canonical projection morphism. Furthermore define $q: \mathbb{Z} \to \mathbb{Z}/(p^n)$ to be the canonical projection.

We now pretend that $\ker(q_R \circ \iota) = \ker q = (p^n)$.

Indeed if $a \in \ker q = (p^n)$, then $p^n | a$ hence $p^n | \iota(a) \implies q_R(\iota(a)) = 0$.

Similarly, now suppose $r \in \ker(q_R \circ \iota)$, this means that $\iota(r) \in \ker q_R =$ (p^n) (where now $(p^n) \subset R$).

Hence there exists $\frac{a}{b} \in R$ (where we suppose gcd(a,b) = 1 without loss of generality) such that $p^n \frac{a}{b} = \iota(r)$.

Now, since $\frac{a}{b} \in R$, $\nu(\frac{a}{b}) \geq 0$ which implies in particular that b is coprime to

Hence, since $\iota(r)$ is an integer, $\frac{a}{b}$ has to be an integer which implies b=1. Thus $p^n a = \iota(r) \implies p^n a = r \text{ (in } \mathbb{Z}), \text{ ie. } r \in (p^n) \subset \mathbb{Z}.$

Hence applying the universal property of the quotient ring, we get an induced morphism as such:

We pretend that it is now sufficient to show that $q_R \circ \iota$ is surjective to show that ϕ is indeed an isomorphism.

Before showing that $q_R \circ \iota$ is surjective, we show how this implies ϕ is an isomorphism.

Indeed, if $q_R \circ \iota$ is surjective, then

$$R_{p^n} \simeq \operatorname{Im} q_R \circ \iota \underset{\text{by first isom. theorem}}{\simeq} \mathbb{Z} \operatorname{ker} q_R \circ \iota \underset{\text{since } \ker q_r \circ \iota = (p^n)}{\simeq} \mathbb{Z}_{p^n}$$

We now show that $q_R \circ \iota$ is surjective.

Let $[p^i \frac{a}{b}] \in \mathbb{R}_{(p^n)}$, where, again, we assume $\frac{a}{b}$ is in reduced form and shares no factors with p.

To show this, we must find an integer $d \in \mathbb{Z}$ such that

$$\frac{a}{b}p^i - d = kp^n, \quad k \in R$$

where by abuse of notation, we regard d as included in R.

Indeed, then $q_R(\frac{a}{b}p^i) = q_R(d)$ which will imply that $q_R \circ \iota$ is surjective.

Using that p^n and b are coprime, choose x and d integers such that $xp^n + db = ap^i$, such x and d always exist because of Bezout's theorem.

Now set $k = \frac{x}{b}$, note that $k \in R$ since b is coprime to p.

It is now immediatly verified that

$$\frac{a}{b}p^i - d = kp^n$$

Since

$$ap^i = kp^nb + db = xp^n + db$$

Hence $\frac{a}{b}p^i$ has a representative in \mathbb{Z} which in turn implies that $q_R \circ \iota$ is surjective, concluding our proof.

4

To show this, we proceed by contradiction.

So suppose there exist two different prime numbers $p \neq q$ such that $R_p \simeq R_q$. Note that an isomorphism of rings induces a bijection between the set of ideals which respects inclusion.

To declutter this proof, I prove this at the end of the document.

So let $\psi: R_p \to R_q$ be the isomorphism we assume to exist, using part 2, we know that all ideals of R_p are of the form (p^n) .

Furthermore, we notice that these ideals are nicely ordered:

$$(p) \supseteq (p^2) \supseteq \dots$$

Applying ϕ to this chain yields a chain of ideals in R_q

$$\phi((p)) \supseteq \phi((p^2)) \supseteq \dots$$

Using the result cited above, this immediatly implies that $\psi((p^i)) = (q^i)$. In particular, (p) is a maximal ideal and ϕ takes maximal ideals to maximal ideals, hence we get that $\phi(p) = (q)$.

Since R_p and R_q are supposed isomorphic, we would need to have that $R_{p/(p)} \simeq R_{q/(q)}$ are isomorphic.

Indeed, consider $q_q \circ \psi : R_p \to R_{q/(q)}$ the composition of the isomorphism with the canonical quotient map and $q_p : R_p \to R_{p/(p)}$ since $(p) = \psi^{-1}((q))$ and $q_q \circ \psi$ is surjective, we conclude by the first isomorphism theorem that

$$R_{p/(q)} \simeq R_{q/(q)}$$
.

Using part 3, this would imply that $\mathbb{Z}_{(q)} \simeq \mathbb{Z}_{(p)}$ which is a contradiction, since they are not even in bijection as sets.

We now show the result cited at the beginning of part 4. So let $\phi:A\to B$ be an isomorphism of rings and let $I\subset A$ be an ideal, then $\phi(I)$ is an ideal since :

- Clearly $\phi(I)$ is an additive subgroup since $\phi(0) = 0 \in \phi(I)$ and $\phi(a) + \phi(b) = \phi(a+b) \in \phi(I)$.
- $-\det \lambda \in B \text{ and } \phi(a) \in \phi(I), \text{ then } \lambda \phi(a) = \phi(\phi^{-1}(\lambda))\phi(a) = \phi(\underbrace{\phi^{-1}(\lambda)a}) \in \phi(I).$

This correspondence is clearly a bijection between the ideals of A and B since ϕ is a bijection and the correspondence obviously preserves inclusions since maps of set preserve inclusions.

In particular, if m is a maximal ideal, then $\phi(m)$ is maximal since if $B \supseteq J \supseteq \phi(m)$, then $A \supseteq \phi^{-1}(J) \supseteq m$.