Calculus II

1 Vector Calculus

 $\mathbb R$ represents the set of real numbers.

 \mathbb{R}^2 represents a 2 dimensional real plane.

Normally elements of $\mathbb R$ are known as scalers.

We can

- \cdot add (or subtract) two vectors
- \cdot if $c \in \mathbb{R}$ and $v \in \mathbb{R}^2$, $c\vec{v}$
- $u = (u_1, u_2) \text{ and } v = (v_1, v_2)$

$$u.v = u_1.v_1 + u_2.v_2$$

Theorem

$$u.v = |u||v|\cos(\theta)$$

where θ is the angle between \vec{u} and \vec{v} and |u| is the length of vector \vec{u}

$$w^{2} = u^{2} + v^{2} - 2|u||v|\cos(\theta)\dots(1)$$

$$\vec{w} = \vec{v} - \vec{u}$$

$$w = (v_{1} - u_{1}, v_{2} - u_{2})$$

$$w^{2} = (v_{1} - u_{1})^{2} + (v_{2} - u_{2})^{2}$$

$$w^{2} = v_{1}^{2} - 2v_{1}u_{1} + u_{1}^{2} + v_{2}^{2} - 2v_{2}u_{2} + u_{2}^{2}$$

$$w^{2} = v^{2} + u^{2} - 2v_{1}u_{1} - 2v_{2}u_{2} \dots (2)$$
now, as $(1) = (2)$

$$u^{2} + v^{2} - 2|u||v|\cos(\theta) = v^{2} + u^{2} - 2v_{1}u_{1} - 2v_{2}u_{2}$$

$$|u||v|\cos(\theta) = v_{1}u_{1} + v_{2}u_{2}$$

$$|u||v|\cos(\theta) = \vec{u}.\vec{v}$$

Hence proved.

Unit Vectors

If $\vec{v} \in \mathbb{R}^2$ is a vector. then,

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

projections

If \vec{u} and \vec{v} are vectors in \mathbb{R}^2 and θ is the angle between them:

let \vec{w} be the projection of \vec{u} on \vec{v}

$$\vec{w} = |u|\cos(\theta)\hat{v}$$

$$\vec{w} = \frac{|u|\cos(\theta)|v|\vec{v}}{|v|^2}$$

$$\vec{w} = \frac{\vec{u}.\vec{v}}{|\vec{v}|^2}\vec{v}$$