# Statistical and Mathematical Methods for Artificial Intelligence

# Contents

| 1 | Fini | ite numbers                     | 1 |
|---|------|---------------------------------|---|
|   | 1.1  | Sources of error                | 1 |
|   | 1.2  | Error measurement               | 1 |
|   | 1.3  | Representation in base $\beta$  | 1 |
|   | 1.4  | Floating-point                  | 2 |
|   |      | 1.4.1 Numbers distribution      | 2 |
|   |      | 1.4.2 Numbers representation    | 2 |
|   |      | 1.4.3 Machine precision         | 3 |
|   |      | 1.4.4 IEEE standard             | 3 |
|   |      | 1.4.5 Floating-point arithmetic | 3 |

# 1 Finite numbers

### 1.1 Sources of error

Measure error Precision of the measurement instrument.

Arithmetic error Propagation of rounding errors in each step of an algorithm.

**Truncation error** Approximating an infinite procedure into a finite number of iterations.

**Inherent error** Caused by the finite representation of the data (floating-point).



Figure 1: Inherent error visualization

### 1.2 Error measurement

Let x be a value and  $\hat{x}$  its approximation. Then:

Absolute error

$$E_a = \hat{x} - x \tag{1}$$

Note that, out of context, the absolute error is meaningless.

Relative error

$$E_a = \frac{\hat{x} - x}{x} \tag{2}$$

# 1.3 Representation in base $\beta$

Let  $\beta \in \mathbb{N}_{>1}$  be the base. Each  $x \in \mathbb{R} \setminus \{0\}$  can be uniquely represented as:

$$x = sign(x) \cdot (d_1 \beta^{-1} + d_2 \beta^{-2} + \dots d_n \beta^{-n}) \beta^p$$
 (3)

where:

- $0 \le d_i \le \beta 1$
- $d_1 \neq 0$
- starting from an index i, not all  $d_j$   $(j \ge i)$  are equal to  $\beta 1$

Equation (3) can be represented using the normalized scientific notation as:

$$x = \pm (0.d_1 d_2 \dots) \beta^p \tag{4}$$

where  $0.d_1d_2...$  is the **mantissa** and  $\beta^p$  the **exponent**.

# 1.4 Floating-point

A floating-point system  $\mathcal{F}(\beta, t, L, U)$  is defined by the parameters:

- $\beta$ : base
- t: precision (number of digits in the mantissa)
- [L, U]: range of the exponent

Each  $x \in \mathcal{F}(\beta, t, L, U)$  can be represented in its normalized form:

$$x = \pm (0.d_1 d_2 \dots d_t) \beta^p \quad L \le p \le U \tag{5}$$

**Example 1.1.** In  $\mathcal{F}(10, 5, -3, 3)$ ,  $x = 12.\overline{3}$  is represented as:

$$fl(x) = +0.12333 \cdot 10^2$$

#### 1.4.1 Numbers distribution

Given a floating-point system  $\mathcal{F}(\beta, t, L, U)$ , the total amount of representable numbers is:

$$2(\beta-1)\beta^{t-1}(U-L+1)+1$$

Representable numbers are more sparse towards the exponent upper bound and more dense towards the lower bound. It must be noted that there is an underflow area around 0.



Figure 2: Floating-point numbers in  $\mathcal{F}(2,3,-1,2)$ 

#### 1.4.2 Numbers representation

Given a floating-point system  $\mathcal{F}(\beta, t, L, U)$ , the representation of  $x \in \mathbb{R}$  can result in:

**Exact representation** if  $p \in [L, U]$  and  $d_i = 0$  for i > t.

**Approximation** if  $p \in [L, U]$  but  $d_i$  may not be 0 for i > t. In this case, the representation is obtained by truncating or rounding the value.

**Underflow** if p < L. In this case, the values is approximated as 0.

**Overflow** if p > U. In this case, an exception is usually raised.

# 1.4.3 Machine precision

Machine precision  $\varepsilon_{\text{mach}}$  determines the accuracy of a floating-point system. Depending on the approximation approach, machine precision can be computed as:

**Truncation** 
$$\varepsilon_{\text{mach}} = \beta^{1-t}$$

Rounding 
$$\varepsilon_{\text{mach}} = \frac{1}{2}\beta^{1-t}$$

Therefore, rounding results in more accurate representations.

 $\varepsilon_{\text{mach}}$  is the smallest distance among the representable numbers (Figure 3).



Figure 3: Visualization of  $\varepsilon_{\text{mach}}$  in  $\mathcal{F}(2,3,-1,2)$ 

In alternative,  $\varepsilon_{\text{mach}}$  can be defined as the smallest representable number such that:

$$fl(1 + \varepsilon_{mach}) > 1.$$

#### 1.4.4 IEEE standard

IEEE 754 defines two floating-point formats:

Single precision Stored in 32 bits. Represents the system  $\mathcal{F}(2,24,-128,127)$ .

**Double precision** Stored in 64 bits. Represents the system  $\mathcal{F}(2,53,-1024,1023)$ .

As the first digit of the mantissa is always 1, it does not need to be stored. Moreover, special configurations are reserved to represent Inf and NaN.

## 1.4.5 Floating-point arithmetic

Let:

- $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  be a real numbers operation.
- $\oplus : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$  be the corresponding operation in a floating-point system.

To compute  $x \oplus y$ , a machine:

- 1. Calculates x + y in a high precision register (still approximated, but more precise than the storing system)
- 2. Stores the result as fl(x+y)

A floating-point operation causes a small rounding error:

$$\left\| \frac{(x \oplus y) - (x+y)}{x+y} \right\| < \varepsilon_{\text{mach}} \tag{6}$$

Although, some operations may be subject to the **cancellation** problem which causes information loss.

**Example 1.2.** Given x = 1 and  $y = 1 \cdot 10^{-16}$ , we want to compute x + y in  $\mathcal{F}(10, 16, U, L)$ .

$$z = fl(x) + fl(y)$$

$$= 0.1 \cdot 10^{1} + 0.1 \cdot 10^{-15}$$

$$= (0.1 + 0.0 \cdot ... \cdot 0 \cdot 1) \cdot 10^{1}$$

$$= 0.1 \cdot 0 \cdot ... \cdot 0 \cdot 1 \cdot 10^{1}$$

Then, we have that  $fl(z) = 0.1 \underbrace{0.10^{15 \text{ zeros}}}_{10.10} \cdot 10^1 = 1 = x$ .