ディジタルメディア処理2

担当: 井尻 敬

主成分分析

- データ群から最もばらつきの大きな軸を見つける
- データの次元圧縮に利用できる
- •パターン認識,画像処理,そのほか様々な分野で使われる

2

主成分分析

ある21人のテスト点数とその散布図 (横:数学 縦:社会)が下図の通り

最もばらつきの大きな方向 を考えてみる

主成分分析

- ・入力データ: $\mathbf{x}_i \in \mathbb{R}^2$, i = 1, 2, ..., N
- ・平均が原点となるよう平行移動する $\mathbf{x'}_i = \mathbf{x}_i \frac{1}{N} \Sigma_i \mathbf{x}_i$

※井尻が適当に作った 嘘 データ です

主成分分析

- ある単位ベクトル u を考える
- uにデータ点を射影した距離の2乗平均は

$$\frac{1}{N} \sum_{i} (\mathbf{u}^T \mathbf{x'}_i)^2$$

これを最大化する u を探す! ※計算法後述

→最もデータがばらつく方向が分かる

社会

主成分分析

- ある単位ベクトル u を考える
- uにデータ点を射影した距離の2乗平均は

$$\frac{1}{N} \sum_{i} (\mathbf{u}^T \mathbf{x'}_i)^2$$

これを最大化する u を探す! ※計算法後述

→最もデータがばらつく方向が分かる

主成分分析

余談:『距離の平均』はゼロになる

• uにデータ点を射影した距離の平均は 以下の通り

$$\frac{1}{N} \sum_{i} \mathbf{u}^{T} \mathbf{x'}_{i}$$

※この値は0 → 証明せよ

主成分分析

例) 右表のデータに対して,

$$\frac{1}{N} \sum_{i} (\mathbf{u}^T \mathbf{x'}_i)^2$$

を最大化するu を計算すると

$$\mathbf{u} = (0.63, 0.78)$$

が得られた、この方向uを第一主成分と呼ぶ

各データをu に射影する

(数学, 社会) の点が (80, 70)なら, (数学, 社会) の平均値は(73, 71)なので

射影値 = (80-73)*0.63 +(70-71)*0.78

= 3.63

数学	社会	第1主成分得点
80	63	-1.7
95	91	29.6
100	100	39.8
64	51	-21.1
34	25	-60.3
89	79	16.5
94	93	30.5
78	78	8.8

この射影値を**第一主成分得点**と呼び,この例では『学力』に対応すると考えられる

主成分分析 - 小休止

最もばらつきの大きい方向(第一主成分)を発見しその方向にデータを射影して第一主成分得点を取得した…

数学 残ってる主な疑問

- → uと直交する方向にもデータはばらついている けど無視していいの?
- → 射影によってデータ量が失われたのでは?
- → ばらつき方向uはどうやって計算するの?

主成分分析 - 第n主成分

データ点のばらつきが最も大きい方向を**第1主成分**, その方向への射影を**第1主成分得点**と呼ぶ

第1主成分と直交し,かつ,データ点のばらつきが 最も大きい方向を**第2主成分**とよび,その方向への 射影を**第2主成分得点**と呼ぶ

同様に**第n主成分・第n主成分得点**が定義される

※主成分は、主成分ベクトルや負荷量ベクトルなどとも呼ばれる

例) 左図では・・・

第1主成分得点 $(\mathbf{u}_1 \land \mathcal{O}$ 射影)は『学力』を表現第2主成分得点 $(\mathbf{u}_2 \land \mathcal{O}$ 射影)は『文系指向』を表現しているように考えられるかも知れない(意味づけは解析者が実施)

主成分分析 - 第n主成分

数学	社会	第1主成分得点	第2主成分得点
80	63	-1.7	-10.3
95	91	29.6	-4.4
100	100	39.8	-2.6
64	51	-21.1	-5.4
34	25	-60.3	1.6
89	79	16.5	-7.3
94	93	30.5	-2.3
78	78	8.8	0.7
55	44	-32.2	-2.8
60	62	-15.1	4.7
46	39	-41.8	1.1
80	79	10.8	-0.2
73	87	12.6	10.3
68	77	1.7	7.9
75	79	7.7	3.7
76	77	6.7	1.6
66	57	-15.2	-3.2
78	82	11.9	3.2
74	79	7.0	4.4
71	80	5.9	7.4
78	64	-2.2	-8.1

主成分分析 - 小休止

最もばらつきの大きい方向(**主成分**)を発見しその方向にデータを射影して**主成分得点**を取得した...

残ってる主な疑問

- → uと直交する方向にもデータはばらついている けど無視していいの? → 場合による(n次元 データには第n主成分まで存在する)
- → 射影によってデータ量が失われたのでは?
- → ばらつき方向uはどうやって計算するの?

主成分分析 -

第1主成分の計算

入力点群: $\hat{\mathbf{x}}_i \in R^d, i = 1, 2, ..., N$

平均值: $\mathbf{m} = \frac{1}{N} \sum_{i} \hat{\mathbf{x}}_{i}$

平行移動: $\mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{m}$

以下の最大値問題を求めたい

$$\underset{||\mathbf{u}||=1}{\operatorname{argmax}} \sum_{i} (\mathbf{u}^T \mathbf{x}_i)^2$$

主成分分析 -第1主成分の計算

入力点群: $\hat{\mathbf{x}}_i \in R^d, i = 1, 2, ..., N$

平均値: $\mathbf{m} = \frac{1}{N} \sum_{i} \hat{\mathbf{x}}_{i}$

平行移動: $\mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{m}$

以下の最大値問題を求めたい

$$\underset{||\mathbf{u}||=1}{\operatorname{argmax}} \sum_{i} (\mathbf{u}^T \mathbf{x}_i)^2$$

準備:

行列 $\mathbf{A} = \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \in R^{d \times d}$ を考えると、この行列は対称行列であり、半正定置性を持つ. (\rightarrow 証明せよ)

Aの固有値を $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ とし、長さ1で互いに直交する固有ベクトルを $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_d$ とする.

すると…

$$V^{T}AV = diag(\lambda_1, \lambda_2, ..., \lambda_d)$$
$$V = (v_1, v_2, ..., v_d)$$

と対角化できる.

主成分分析 -第1主成分の計算

入力点群: $\hat{\mathbf{x}}_i \in R^d, i = 1, 2, ..., N$

平均値: $\mathbf{m} = \frac{1}{N} \sum_{i} \hat{\mathbf{x}}_{i}$

平行移動: $\mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{m}$

以下の最大値問題を求めたい

$$\underset{||\mathbf{u}||=1}{\operatorname{argmax}} \sum_{i} (\mathbf{u}^T \mathbf{x}_i)^2$$

コスト関数を以下の通り変形する,

$$\sum_{i} (\mathbf{u}^{T} \mathbf{x}_{i})^{2} = \sum_{i} \mathbf{u}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{u}$$

$$= \mathbf{u}^{T} (\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}) \mathbf{u}$$

$$\mathbf{A} = \sum_{i} \mathbf{u}^{T} \mathbf{x}_{i}^{T} \mathbf{x}_{i}^{T}$$

 $\mathbf{A} = \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ と置いてさらに変形,

$$\mathbf{u}^{T} A \mathbf{u} = (\mathbf{V} \mathbf{V}^{T} \mathbf{u})^{T} A (\mathbf{V} \mathbf{V}^{T} \mathbf{u})$$

$$= (\mathbf{V}^{T} \mathbf{u})^{T} \mathbf{V}^{T} A \mathbf{V} (\mathbf{V}^{T} \mathbf{u})$$

$$= (\mathbf{V}^{T} \mathbf{u})^{T} \operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{d}) (\mathbf{V}^{T} \mathbf{u})$$

$$\leq (\mathbf{V}^{T} \mathbf{u})^{T} \operatorname{diag}(\lambda_{1}, \lambda_{1}, \dots, \lambda_{1}) (\mathbf{V}^{T} \mathbf{u})$$

$$= \lambda_{1} (\mathbf{V}^{T} \mathbf{u})^{T} (\mathbf{V}^{T} \mathbf{u})$$

$$= \lambda_{1}$$

等号成立は $\mathbf{V}^T\mathbf{u} = (1,0,0,\cdots,0)$ のとき、つまり $\mathbf{u} = \mathbf{v}_1$ のとき最大値となる.最大値は λ_1 .

主成分分析 -第**2**主成分の計算

入力点群: $\hat{\mathbf{x}}_i \in R^d, i = 1, 2, ..., N$

平均值: $\mathbf{m} = \frac{1}{N} \sum_{i} \hat{\mathbf{x}}_{i}$

平行移動: $\mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{m}$

以下の最大値問題を求めたい

$$\underset{||\mathbf{u}||=1}{\operatorname{argmax}} \sum_{i} (\mathbf{u}^T \mathbf{x}_i)^2$$

ただし, $\mathbf{u}^T \mathbf{v}_1 = 0$ を満たすものとする

先と同様にコスト関数を変形する,

$$\sum_{i} (\mathbf{u}^{T} \mathbf{x}_{i})^{2} = \mathbf{u}^{T} (\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}) \mathbf{u}$$

$$= (\mathbf{V} \mathbf{V}^{T} \mathbf{u})^{T} \mathbf{A} (\mathbf{V} \mathbf{V}^{T} \mathbf{u})$$

$$= (\mathbf{V}^{T} \mathbf{u})^{T} \operatorname{diag}(\lambda_{1}, \lambda_{2}, ..., \lambda_{d}) (\mathbf{V}^{T} \mathbf{u})$$

ここで条件 $\mathbf{u}^T \mathbf{v}_1 = 0$ より $\mathbf{V}^T \mathbf{u} = (0, u_2, u_3, ...)^T$ の形をしているので、

=
$$(\mathbf{V}^T \mathbf{u})^T \operatorname{diag}(0, \lambda_2, ..., \lambda_d) (\mathbf{V}^T \mathbf{u})$$

 $\leq (\mathbf{V}^T \mathbf{u})^T \operatorname{diag}(0, \lambda_2, ..., \lambda_2) (\mathbf{V}^T \mathbf{u})$
= λ_2

∀V^Tu=(0 1 0 ··· 0)のとき

等号成立は $\mathbf{V}^T\mathbf{u}=(0,1,0,\cdots,0)$ のとき、つまり $\mathbf{u}=\mathbf{v}_2$ のとき最大値となる.最大値は λ_2 .

主成分分析 -

第n主成分の計算

入力点群: $\hat{\mathbf{x}}_i \in R^d, i = 1, 2, ..., N$

平均值: $\mathbf{m} = \frac{1}{N} \sum_{i} \hat{\mathbf{x}}_{i}$

平行移動: $\mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{m}$

以下の最大値問題を求めたい

$$\underset{\mathbf{u}=1}{\operatorname{argmax}} \sum_{i} (\mathbf{u}^{T} \mathbf{x}_{i})^{2}$$

ただし $\mathbf{u}^T \mathbf{v}_1 = \mathbf{u}^T \mathbf{v}_2 = \cdots = \mathbf{u}^T \mathbf{v}_{n-1} = 0$ を満たす

先と同様に計算すると…

 $\mathbf{u} = \mathbf{v}_{\mathbf{n}}$ のときに最大値を取ることが分かる.

つまり…

第n主成分は、行列 $\mathbf{A} = \sum_i \mathbf{x}_i \mathbf{x}_i^T$ の第n固有ベクトルと等しくなる.

また行列 Aに1/Nをかけると、分散共分散 行列と呼ばれる

$$\frac{1}{N}\mathbf{A} = \frac{1}{N}\sum_{i} \mathbf{x}_{i}\mathbf{x}_{i}^{T} = \frac{1}{N}\sum_{i} (\hat{\mathbf{x}}_{i} - \mathbf{m})(\hat{\mathbf{x}}_{i} - \mathbf{m})^{T}$$

※対角成分に各軸方向の分散が並び、非対 角成分に共分散成分が並ぶ

主成分分析 - 分散共分散行列を理解する

得られた第1/2主成分は、ばらつきの大きな軸へ射影したものなので… ⇒ データ点群を平均を中心に回転したと考えてよい

20

主成分分析 - 分散共分散行列を理解する

元データの分散共分散行列

$$\sum_{i} (\mathbf{x}_i - \mathbf{m}) (\mathbf{x}_i - \mathbf{m})^T$$

= \mathbf{V} diag $(\lambda_1, \lambda_2, ..., \lambda_d) \mathbf{V}^T$

$$= \begin{pmatrix} 0.63 & 0.78 \\ 0.78 & -0.63 \end{pmatrix} \begin{pmatrix} 552.8 & 0 \\ 0 & 28.2 \end{pmatrix} \begin{pmatrix} 0.63 & 0.78 \\ 0.78 & -0.63 \end{pmatrix}^T$$

回転したデータの分散共分散行列

$$\sum_{i} \mathbf{V}^{T} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{V}^{T} (\mathbf{x}_{i} - \mathbf{m}))^{T}$$

= $\mathbf{V}^T \mathbf{V} \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_d) \mathbf{V}^T \mathbf{V}$

 $= \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$

 $=\begin{pmatrix} 552.8 & 0 \\ 0 & 28.2 \end{pmatrix}$

※先のデータの数値を入れて 計算したものを提示しています

主成分分析 - 分散共分散行列を理解する

$$\sum_{i} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{x}_{i} - \mathbf{m})^{T}$$

= \mathbf{V} diag $(\lambda_1, \lambda_2, ..., \lambda_d) \mathbf{V}^T$

 $=\begin{pmatrix} 0.63 & 0.78 \\ 0.78 & -0.63 \end{pmatrix} \begin{pmatrix} 552.8 & 0 \\ 0 & 28.2 \end{pmatrix} \begin{pmatrix} 0.63 & 0.78 \\ 0.78 & -0.63 \end{pmatrix}^T$

回転したデータの分散共分散行列 $\sum_{i} \mathbf{V}^{T} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{V}^{T} (\mathbf{x}_{i} - \mathbf{m}))^{T}$

 $\sum_{i} \mathbf{v} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{v} (\mathbf{x}_{i} - \mathbf{m}))$

 $= \mathbf{V}^T \mathbf{V} \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_d) \mathbf{V}^T \mathbf{V}$

= diag($\lambda_1, \lambda_2, ..., \lambda_d$)

 $=\begin{pmatrix} 52.8 & 0 \\ 0 & 28.2 \end{pmatrix}$

主成分分析 - 小休止

最もばらつきの大きい方向(**主成分**) を発見しその方向にデータを射影して **主成分得点**を取得した...

残ってる主な疑問

- ・ uと直交する方向にもデータはばらついている けど無視していいの? →場合による(n次元 データには第n主成分まで存在する)
- 射影によってデータ量が失われたのでは?
- ・ ばらつき方向uはどうやって計算するの?→分散共分散行列の固有ベクトルを求めればok

主成分分析 - 次元圧縮への応用

例)

3次元データ点群が下図の通り分布している

分布にはあまり偏りがないため、すべての主成分得点の数値が比較的大きな値に

		points	
х	у		Z
0.8	86	-2.00	4.57
0.8	6	0.27	2.78
-1.1	.9	0.73	-4.73
3.2	2	1.17	4.63
0.3	13	-1.07	-3.13
0.0	13	0.49	3.68
2.3	6	0.51	-1.73
-2.1	.6	-0.07	-0.87
0.4	2	1.27	0.90
0.1	.5	-1.02	-1.12
0.9	15	-0.20	0.01
2.2	6	-0.23	0.81
0.8	6	0.23	1.87
-2.2	8	-0.47	-3.74
0.6	7	-0.14	0.08
0.4	12	0.58	-0.15

	pca	
1	2	3
-4.74	-0.42	-1.81
-2.94	0.12	0.40
4.85	0.03	0.67
-5.31	1.98	1.28
2.88	1.02	-1.12
-3.60	-0.90	0.68
1.05	2.70	0.43
1.33	-1.91	0.04
-0.99	0.20	1.35
0.98	0.35	-1.00
-0.30	0.88	-0.17
-1.40	1.94	-0.21
-2.06	0.35	0.33
4.13	-1.32	-0.45
-0.29	0.59	-0.10
0.01	0.44	0.63

24

PCA PLOT 3D.py

主成分分析 - 次元圧縮への応用

例) 3次元データ点群が下図の平面上に通り分布している データ点は平面に乗っているため,第1主成分の寄与が大きく 第3主成分は寄与しない偏った分布

		points	
х		у	Z
1.3	30	-2.07	-2.8
0.6	51	0.36	1.3
-0.6	55	-0.33	-1.3
-1.6	51	-0.71	-3.0
-0.3	32	-2.74	-5.8
1.0)4	2.45	5.9
-0.4	19	-1.58	-3.6
-1.8	35	-0.36	-2.5
-0.7	74	-0.73	-2.2
0.0)2	2.57	5.1
0.2	27	1.55	3.3
-0.5	57	-2.86	-6.2
-0.5	59	-0.42	-1.4
-1.1	15	0.27	-0.6
-1.6	52	2.08	2.5
-0.0)1	1.02	2.02
0.7	73	-2.72	-4.70

pca			
	3	2	1
	0.00	1.58	-3.32
	0.00	0.52	1.45
	0.00	-0.69	-1.30
	0.00	-1.63	-3.08
	0.00	-0.01	-6.37
	0.00	0.67	6.52
	0.00	-0.34	-3.95
	0.00	-1.92	-2.53
	0.00	-0.73	-2.29
	0.00	-0.40	5.81
	0.00	0.00	3.77
	0.00	-0.24	-6.87
	0.00	-0.61	-1.44
	0.00	-1.29	-0.44
	0.00	-2.04	3.13
	0.00	-0.22	2.31
	0.00	1.09	-5.30

主成分分析 - 次元圧縮への応用

n次元データの次元を圧縮することを考える

- k次元まで圧縮する
- 情報量の欠落を抑えられるいい感じの『**k**』を選択したい (平面に縮退しているような軸は削除しつつも,分散の大きな軸は利用したい)
- → 寄与率を利用する

寄与率 =
$$\frac{k$$
番目の方向までの分散 $= \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{N} \lambda_i}$

※第k主成分方向の分散は λ_i となる 例)寄与率が 0.8 以上になる最小のkを選択する

主成分分析 - まとめ

1.入力データ

2. 平均値が原点

3. 分散共分散行列 を計算し固有解析

$$\mathbf{A} = \sum_{i} (\mathbf{x}_i - \mathbf{m})(\mathbf{x}_i - \mathbf{m})^T$$

4. 各点を固有ベクトルに 射影し主成分得点を取得

- 分散共分散行列の固有ベクトルが **主成分**ベクトルに対応
- 主成分ベクトルへ射影すると主成 分得点が得られる
- 下例では**学力・文系指向**を説明 (分

数学	社会	第1主成分	第2主成分
80	63	-1.7	-10.3
95	91	29.6	-4.4
100	100	39.8	-2.6
64	51	-21.1	-5.4
34	25	-60.3	1.6
89	79	16.5	-7.3
94	93	30.5	-2.3
78	78	8.8	0.7
55	44	-32.2	-2.8
60	62	-15.1	4.7
46	39	-41.8	1.1
80	79	10.8	-0.2
73	87	12.6	10.3
68	77	1.7	7.9
75	79	7.7	3.7
76	77	6.7	1.6
66	57	-15.2	-3.2
78	82	11.9	3.2
74	79	7.0	4.4
71	80	5.9	7.4
78	64	-2.2	-8.1

28

主成分分析の画像処理応用

- •特徴ベクトルの次元圧縮
 - •特徴ベクトル群から寄与率の高い主成分のみ抽出し、低次元化してか ら計算(識別など)を行なう.
 - 情報量をあまり落とさずに、計算量・メモリ量などの削減が可能
- 画像の圧縮・編集・牛成
 - ・同じクラスタに属する画像群(例,顔画像)を仮定する
 - ・ 画像群を高次元データと考え主成分を計算
 - →

 寄与率の高い軸と主成分値のみを記憶する事で圧縮
 - →主成分値を修正して画像を編集

PCAによる画像の次元圧縮

- 例として顔データのPCA圧縮をしてみる
- AT&Tデータセットを利用 https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
- 40人 * 10枚 = 400枚の写真群 (PCAするには少し小さいが。。。)
- サイズは 92 x 112

PCAによる画像の次元圧縮

• 92 x 112 pixelの写真を, 10304次元ベクトルに変換

PCAによる画像の次元圧縮

- 分散共分散行列は10304 x 10304に
- ・400個の固有値・固有ベクトルが取得できる

 $% \sum_i (\mathbf{x}_i - \mathbf{m}) (\mathbf{x}_i - \mathbf{m})^T$ のrankは最大でN=400なので次元数分の軸は得られない

各軸は

PCAによる画像の次元圧縮

- ・元画像は, 平均値 + Σ 主成分x主成分係数 の形で表現できる
- ・後半の主成分は寄与が少ない(はず)ので、切り捨てても影響が少ない(のでは?)

PCAによる画像の次元圧縮

• 実際に50個, 100個, …, 300個の主成分を利用して再構築してみた

顔の向きもそろっているデータを利用するともっと速く収束すると思う

オートエンコーダ 自己符号化器

参考資料

- 深層学習
- ・(機械学習プロフェッショナルシリーズ)単行本
- ・岡谷 貴之

オートエンコーダー(自己符号化器)とは

- ニューラルネットの一種
- 目的出力を伴わない入力だけの訓練データを利用した教師なし学習
- データをよく表す特徴の獲得を目指す

概要:下図のようなネットワークを考える

27

38

オートエンコーダの概要

- N個の入力データ $x_i \in R^d$
- ・全入力 \mathbf{x}_i に対し、その出力 \mathbf{z}_i がなるべく等しくなるよう重み・バイアス項を学習する
- ・つまりデータ \mathbf{x}_i から、 \mathbf{W} , \mathbf{b} , $\bar{\mathbf{W}}$, $\bar{\mathbf{b}}$ を学習
- ※中間層の次元がdより小さい場合, $\mathbf{x}_i = \mathbf{z}_i$ を必ず満たすことは不可能
- ・全データに対して,入力と近い出力が得られるような学習が行えたら…
- \rightarrow 元データ \mathbf{x}_i の情報をあまり落とさずに次元削減ができたことになる

オートエンコーダの概要

- N個の入力データ $\mathbf{x}_i \in \mathbb{R}^d$
- ・全入力 \mathbf{x}_i に対し、その出力 \mathbf{z}_i がなるべく等しくなるよう重み・バイアス項を学習する
- つまりデータ x_i から、 W_i , \bar{b} , \bar{W} , \bar{b} を学習

※中間層の次元がdより小さい場合, $\mathbf{x}_i = \mathbf{z}_i$ を必ず満たすことは不可能

- ・全データに対して,入力と近い出力が得られるような学習が行えたら…
- \rightarrow 元データ \mathbf{x}_i の情報をあまり落とさずに次元削減ができたことになる

符号化

 $\mathbf{y} = \mathbf{f}(\mathbf{W}\mathbf{x} + \mathbf{b})$

複合化

 $\mathbf{z} = \bar{\mathbf{f}} \big(\bar{\mathbf{W}} \mathbf{y} + \bar{\mathbf{b}} \big)$

多層自己符号化器

- •中間層と出力層のみでなく、複数の層を積み重ねた自己符号化器
- 複雑な分布を持ったデータの特徴抽出に利用される

自己符号化器の例

- Mnist: URL: http://yann.lecun.com/exdb/mnist/
 - パターン認識の勉強によく利用される**手書き数字画像**データセット
 - 数字は画像の中心に配置され、数字のサイズは正規化されている
 - 各画像のサイズは 28x28
 - データ数: トレーニング用:60000文字 / テスト用:10000文字

30

自己符号化器の例

・Mnist を自己符号化器で符号化してみる

• データの次元: 784 = 28x28

・中間層の次元:30・訓練データ数:60000・活性化関数:恒等関数

• epochs=50, batch size=20

自己符号化器の例

•自己符号化器を利用したときの興味は、戻せたかどうか? では無くて学習された重み係数(特徴量)

これを画像に直すと…

まとめ

- •オートエンコーダ(自己符号化器)とは…
 - 入力データになるべく似たデータを出力するニューラルネット
 - •目的出力を伴わない入力だけの訓練データを利用した教師なし学習
 - データをよく表す特徴の獲得を目指す
 - ・バイアス項 b=0, 活性化関数を恒等写像とした場合主成分分析と実質的に同じ
- 応用例
 - 次元圧縮
 - 深層学習の前処理に利用