Quadratic Reciprocity via Quadratic and Cyclotomic Fields

Tushar Muralidharan

Australian National University

November 2023

Table of Contents

Introduction

2 A Proof

Table of Contents

Introduction

2 A Proof

What is Quadratic Reciprocity?

We say that a is a quadratic residue modulo n if a is congruent to a perfect square modulo n; that is, if $x^2 \equiv a \mod n$ for some integer x.

Definition

Let p be an odd prime. For any integer a, the $Legendre\ symbol\ \left(\frac{a}{p}\right)$ is defined by

What is Quadratic Reciprocity?

Definition

Let p be an odd prime. For any integer a, the $Legendre\ symbol\ \left(\frac{a}{p}\right)$ is defined by

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{otherwise.} \end{cases}$$

Theorem (Quadratic Reciprocity Law)

Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Why Should We Care?

It is among the deepest and most beautiful results of elementary number theory and the beginning of a line of reciprocity theorems that culminate in the very general Artin reciprocity law, perhaps the most impressive theorem in all number theory.

> Ireland and Rosen, A Classical Introduction to Modern Number Theory

Why Should We Care?

Theorem (Quadratic Reciprocity Law)

Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

If we know whether p is a quadratic residue modulo q, then we can deduce whether q is a quadratic residue modulo p.

Why Should We Care?

Theorem (Quadratic Reciprocity Law)

Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

If we know whether p is a quadratic residue modulo q, then we can deduce whether q is a quadratic residue modulo p.

If p and q are distinct odd primes, at least one of which is congruent to 1 modulo 4, then p is a quadratic residue modulo q if and only if q is a quadratic residue modulo p; otherwise exactly one of p and q is a quadratic residue modulo the other.

Table of Contents

Introduction

2 A Proof

A Proof

We follow the proof of David Hilbert, given in his seminal work *Theory of Algebraic Number Fields* in 1896.

Definition

Let ζ_n be a primitive *n*-th root of unity. Then the *n*-th cyclotomic field is $\mathbb{Q}(\zeta_n)$.

Let p be an odd prime. This is where our proof starts. Later on, we'll choose an arbitrary distinct odd prime q.

Definition

Let ζ_n be a primitive *n*-th root of unity. Then the *n*-th cyclotomic field is $\mathbb{Q}(\zeta_n)$.

Let p be an odd prime. This is where our proof starts. Later on, we'll choose an arbitrary distinct odd prime q.

Theorem

There is an isomorphism

$$\mathsf{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) o (\mathbb{Z}/p\mathbb{Z})^{\times}$$

which sends the automorphism σ_a satisfying $\sigma_a(\zeta_p) = \zeta_p^a$ to the residue $a \mod p$.

We have $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong C_{p-1}$. This a cyclic group of even order, so there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ (the square elements) with order (p-1)/2. By the Fundamental Theorem of Galois Theory, this corresponds to a unique quadratic extension K of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$.

We have $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})\cong (\mathbb{Z}/p\mathbb{Z})^\times\cong C_{p-1}$. This a cyclic group of even order, so there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ (the square elements) with order (p-1)/2. By the Fundamental Theorem of Galois Theory, this corresponds to a unique quadratic extension K of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$.

We have $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})\cong (\mathbb{Z}/p\mathbb{Z})^\times\cong C_{p-1}$. This a cyclic group of even order, so there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ (the square elements) with order (p-1)/2. By the Fundamental Theorem of Galois Theory, this corresponds to a unique quadratic extension K of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$.

We've shown that $\mathbb{Q}(\zeta_p)$ contains a unique quadratic subfield. Write $K = \mathbb{Q}(\sqrt{p^*})$ for some squarefree integer p^* .

We have the following result from Stevenhagen [1].

Theorem

A prime p ramifies in a number field K if and only if p divides the discriminant Δ_K .

We have the following result from Stevenhagen [1].

Theorem

A prime p ramifies in a number field K if and only if p divides the discriminant Δ_K .

We've seen that

$$\Delta_{\mathbb{Q}(\zeta_p)} = \Delta(\Phi_p) = (-1)^{(p-1)/2} N_{\mathbb{Q}(\zeta_p)/\mathbb{Q}}(\Phi_p'(\zeta_p)) = (-1)^{(p-1)/2} p^{p-2},$$

where $\Phi_p(X) = \frac{X^p-1}{X-1} = \sum_{i=0}^{p-1} X^i$. In particular, p is the only prime that divides the discriminant. The theorem tells us that p is the only prime that ramifies in $\mathbb{Q}(\zeta_p)$. Then p is the only possible prime that can ramify in $\mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta_p)$. The theorem tells us that $\Delta_{\mathbb{Q}(\sqrt{p^*})}$ cannot have any prime divisors other than p. What is $\Delta_{\mathbb{Q}(\sqrt{p^*})}$?

Theorem

Let $d \neq 1$ be a squarefree integer and $K = \mathbb{Q}(\sqrt{d})$ the corresponding quadratic field. Then we have

$$\mathcal{O}_{\mathcal{K}} = egin{cases} \mathbb{Z}[\sqrt{d}] & \textit{if } d \equiv 2 \textit{ or } 3 \bmod 4 \\ \mathbb{Z}[rac{1+\sqrt{d}}{2}] & \textit{if } d \equiv 1 \bmod 4. \end{cases}$$

Theorem

Let $d \neq 1$ be a squarefree integer and $K = \mathbb{Q}(\sqrt{d})$ the corresponding quadratic field. Then we have

$$\mathcal{O}_{\mathcal{K}} = egin{cases} \mathbb{Z}[\sqrt{d}] & \textit{if } d \equiv 2 \textit{ or } 3 \bmod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \textit{if } d \equiv 1 \bmod 4. \end{cases}$$

Theorem

For a squarefree integer $d \neq 1$, the corresponding quadratic field $K = \mathbb{Q}(\sqrt{d})$ has discriminant

$$\Delta_{\mathcal{K}} = \begin{cases} 4d & \text{if } d \equiv 2 \text{ or } 3 \mod 4 \\ d & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Theorem

For a squarefree integer $d \neq 1$, the corresponding quadratic field $K = \mathbb{Q}(\sqrt{d})$ has discriminant

$$\Delta_{\mathcal{K}} = \begin{cases} 4d & \text{if } d \equiv 2 \text{ or } 3 \mod 4 \\ d & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Consider our quadratic subfield $K = \mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta_p)$. Recall that $\Delta_{\mathbb{Q}(\sqrt{p^*})}$ cannot have any prime divisors other than p, so we must have $p^* \equiv 1 \mod 4$.

Theorem

For a squarefree integer $d \neq 1$, the corresponding quadratic field $K = \mathbb{Q}(\sqrt{d})$ has discriminant

$$\Delta_K = \begin{cases} 4d & \text{if } d \equiv 2 \text{ or } 3 \mod 4 \\ d & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Consider our quadratic subfield $K=\mathbb{Q}(\sqrt{p^*})\subset\mathbb{Q}(\zeta_p)$. Recall that $\Delta_{\mathbb{Q}(\sqrt{p^*})}$ cannot have any prime divisors other than p, so we must have $p^*\equiv 1 \mod 4$. Since at least one prime divides p^* , we must have $p\mid p^*$.

Theorem

For a squarefree integer $d \neq 1$, the corresponding quadratic field $K = \mathbb{Q}(\sqrt{d})$ has discriminant

$$\Delta_K = \begin{cases} 4d & \text{if } d \equiv 2 \text{ or } 3 \mod 4 \\ d & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Consider our quadratic subfield $K=\mathbb{Q}(\sqrt{p^*})\subset\mathbb{Q}(\zeta_p)$. Recall that $\Delta_{\mathbb{Q}(\sqrt{p^*})}$ cannot have any prime divisors other than p, so we must have $p^*\equiv 1 \mod 4$. Since at least one prime divides p^* , we must have $p\mid p^*$. Then since p^* was assumed to be squarefree, we must have $p^*=\pm p$. Moreover,

$$p^* = \begin{cases} p & \text{if } p \equiv 1 \pmod{4} \\ -p & \text{if } p \equiv 3 \pmod{4} \end{cases} = (-1)^{(p-1)/2} p$$

so we have identified K.

- 《四片《御片《草片《草片》 基二》

The Next Step

Let q be an odd prime distinct from p. This is the second arbitrary prime in the theorem. No primes other than p are ramified in $\mathbb{Q}(\sqrt{p^*})$, so q must be either split or inert.

We have the following result regarding quadratic fields from Stevenhagen [1].

Theorem

Let $d \neq 1$ be squarefree and p an odd prime. Then p is split in $\mathbb{Q}(\sqrt{d})$ for $\left(\frac{d}{p}\right) = 1$, inert for $\left(\frac{d}{p}\right) = -1$, and ramified for $\left(\frac{d}{p}\right) = 0$.

Hence, q splits in $K = \mathbb{Q}(\sqrt{p^*})$ if and only if $\left(\frac{p^*}{q}\right) = 1$.

Some Useful Facts

Recall that H was defined to be the unique subgroup of square elements of $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong C_{p-1}$. By the isomorphism

$$\mathsf{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \to (\mathbb{Z}/p\mathbb{Z})^{\times},$$

we may identify H with the (nonzero) quadratic residues in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

Some Useful Facts

Recall that H was defined to be the unique subgroup of square elements of $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong C_{p-1}$. By the isomorphism

$$\mathsf{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \to (\mathbb{Z}/p\mathbb{Z})^{\times},$$

we may identify H with the (nonzero) quadratic residues in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Also,

By the Fundamental Theorem of Galois Theory, $H \cong \operatorname{Gal}(\mathbb{Q}(\zeta_p)/K)$.

Therefore, an automorphism $\sigma_q \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is in $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/K)$ if and only if q is a quadratic residue modulo p, i.e., $\left(\frac{q}{p}\right)=1$.

Therefore, an automorphism $\sigma_q \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is in $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/K)$ if and only if q is a quadratic residue modulo p, i.e., $\left(\frac{q}{p}\right) = 1$.

Now, the Galois group of the quadratic extension $\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$ has two elements: the identity map and the conjugation map $\sqrt{p^*} \mapsto -\sqrt{p^*}$. We identify $\operatorname{Gal}(\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}) = \{\pm 1\}$.

Therefore, an automorphism $\sigma_q \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is in $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/K)$ if and only if q is a quadratic residue modulo p, i.e., $\left(\frac{q}{p}\right) = 1$.

Now, the Galois group of the quadratic extension $\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$ has two elements: the identity map and the conjugation map $\sqrt{p^*}\mapsto -\sqrt{p^*}$. We identify $\mathrm{Gal}(\mathbb{Q}(\sqrt{p^*})/\mathbb{Q})=\{\pm 1\}$.

Consider an automorphism σ_q in $\mathrm{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. Let σ_q' be the restriction of σ_q on $\mathbb{Q}(\sqrt{p^*})$. Then σ_q' is the corresponding automorphism in $\mathrm{Gal}(\mathbb{Q}(\sqrt{p^*})/\mathbb{Q})$. By Stevenhagen [1] (involving additional definitions), an element σ_q' in $\mathrm{Gal}(\mathbb{Q}(\sqrt{p^*})/\mathbb{Q})$ is the identity if and only if q splits in $\mathbb{Q}(\sqrt{p^*})$, i.e. $\left(\frac{p^*}{q}\right)=1$. However, the former condition is true if and only if σ_q fixes $K=\mathbb{Q}(\sqrt{p^*})$, i.e. $\left(\frac{q}{p}\right)=1$.

The equivalence

$$\left(\frac{p^*}{q}\right) = 1 \iff \left(\frac{q}{p}\right) = 1,$$

where

$$p^* = egin{cases} p & ext{if } p \equiv 1 \pmod{4} \ -p & ext{if } p \equiv 3 \pmod{4} \end{cases} = (-1)^{(p-1)/2}p$$

is what we need.

Since the Legendre symbol is multiplicative, we have

$$\left(\frac{p^*}{q}\right) = \left(\frac{-1}{q}\right)^{(p-1)/2} \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right),$$

where we have used that -1 is a square modulo p only if 4 divides p-1, so that $\left(\frac{-1}{q}\right)=(-1)^{(p-1)/2}$. This completes the proof of quadratic reciprocity.

Final Remarks

• The two Legendre symbols $\left(\frac{p^*}{q}\right)$ and $\left(\frac{q}{p}\right)$ secretly encoded information about the order of the Frobenius element σ_q .

Final Remarks

- The two Legendre symbols $\left(\frac{p^*}{q}\right)$ and $\left(\frac{q}{p}\right)$ secretly encoded information about the order of the Frobenius element σ_q .
- The quadratic reciprocity law is sometimes accompanied by the supplementary result

References

P. Stevenhagen (2019) Number Rings, Universiteit Leiden.