APPLY VOLGORDE VAN EEN SDD-COMPILATIE

Auteur: Gijs Vliegen

Supervisor: Prof. Dr. Luc De Raedt Begeleiders:

Dr. Ir. Jessa Bekker

Dr. Ir. Vincent Derkinderen

Motivatie

Logische circuits hebben toepassingen

- Probabilistische inferentie
- Foutendetectie en foutendiagnose van systemen
- Stochastische beperking-optimalisatie-problemen
- SDD's zijn logische circuits met nuttige eigenschappen

Bij bottom-up compilatie

Tussenresultaten

 Samennemen van twee SDD's mbv. Apply \Rightarrow tussenresultaat

SDD is canoniek

Tussenresultaten te kiezen. eindresultaat gelijk

 α

Heuristiek

Heuristiek

Heuristiek

 α_3

 α_4

 α_{y}

 α_{x}

 α_2

Sentential Decision Diagram α over vtree v

- $\alpha = T$ of $\alpha = \bot$, $\langle T \rangle = Waar$, $\langle \bot \rangle = Onwaar$.
- $\alpha = X$ of $\alpha = \neg X$, $\langle X \rangle = X$, $\langle \neg X \rangle = \neg X$.
- $\alpha = \{(p_1, s_1), \dots (p_n, s_n)\}, \langle \alpha \rangle = \bigvee_{i=1}^n \langle p_i \rangle \wedge \langle s_i \rangle$ Met elke p_1, s_1 een SDD over v^l , v^r .

De formules $\langle p_1 \rangle, \dots, \langle p_n \rangle$ vormen een partitie.

Voorbeeld tussenresultaten

Apply-operatie

Input: 2 SDD's Output: gecombineerde SDD Polynomiale tijdscomplexiteit

 f_2

 f_3

Apply(α , β , \circ) :: α

- 1. If α , $\beta = \bot$, \top of een var X:
- 2. Return $\alpha \circ \beta$
- 3. $\gamma \leftarrow \{\}$
- 4. For (p_i, s_i) in α :
- For (q_i, r_i) in β :
- $p \leftarrow \mathsf{Apply}(p_i, q_i, \Lambda)$
- If $p := \bot$:
- $s \leftarrow \mathsf{Apply}(s_i, r_i, \circ)$

N kinderen

N-2 tussenresultaten

- γ .add((p, s))
- 10. Return γ

Heuristieken

Op basis van de SDD's in subC.

- $|\alpha \circ \beta| \leq |\alpha| * |\beta|$ Kleinste Eerst
- $|\alpha \circ \beta| = \sum el(\alpha \circ \beta, \mathbf{v})$ <u>EL</u>ement bovengrens

Op basis van de **vtree** variabelen:

- Hoog en links eerst: Vtree variabelen VO lgorde
- Laag en links eerst: Inverse VOlgorde RL

Inverse VOIgorde LR

• Laag en rechts eerst: Opsplitsen in deelproblemen

• Volgens de vtree:

Vtree Partitionering

 α_1

- Generatie mbv. CNF's
- r = y/x als moeilijkheidsgraad
- Heuristiek of willekeurig
- Tijdsmeting van compilatie
- Meting van groottes tussenresultaten

Voorlopige resultaten

• Behandelbaar: bepaalde operaties in polytijd.

- Bottom-up compileerbaar door Apply-algoritme
- Theoretisch compacter dan verwante OBDD