

SPLC780D

16COM/40SEG Controller/Driver

Preliminary

AUG. 06, 2003

Version 0.1

SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLOGY CO. is believed to be accurate and reliable. However, SUNPLUS TECHNOLOGY CO. makes no warranty for any errors which may appear in this document. Contact SUNPLUS TECHNOLOGY CO. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by SUNPLUS TECHNOLOGY CO. for any infringement of patent or other rights of third parties which may result from its use. In addition, SUNPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Sunplus.

Table of Contents

		<u>PAGE</u>
1.	GENERAL DESCRIPTION	3
2.	FEATURES	3
3.	BLOCK DIAGRAM	3
4.	SIGNAL DESCRIPTIONS	4
	4.1. Ordering Information	4
5.	FUNCTIONAL DESCRIPTIONS	5
	5.1. OSCILLATOR	5
	5.2. CONTROL AND DISPLAY INSTRUCTIONS	5
	5.3. INSTRUCTION TABLE	7
	5.4. 8-BIT OPERATION AND 8-DIGIT 1-LINE DISPLAY (USING INTERNAL RESET)	8
	5.5. 4-BIT OPERATION AND 8-DIGIT 1-LINE DISPLAY (USING INTERNAL RESET)	9
	5.6. 8-BIT OPERATION AND 8-DIGIT 2-LINE DISPLAY (USING INTERNAL RESET)	9
	5.7. RESET FUNCTION	10
	5.8. DISPLAY DATA RAM (DD RAM)	12
	5.9. TIMING GENERATION CIRCUIT	12
	5.10. LCD DRIVER CIRCUIT	12
	5.11. CHARACTER GENERATOR ROM (CG ROM)	12
	5.12. CHARACTER GENERATOR RAM (CG RAM)	12
	5.13. CURSOR/BLINK CONTROL CIRCUIT	16
	5.14. INTERFACING TO MPU	
	5.15. SUPPLY VOLTAGE FOR LCD DRIVE	16
	5.16. REGISTER IR (INSTRUCTION REGISTER) AND DR (DATA REGISTER)	19
	5.17. BUSY FLAG (BF)	
	5.18. ADDRESS COUNTER (AC)	19
	5.19. I/O PORT CONFIGURATION	_
6.	ELECTRICAL SPECIFICATIONS	20
	6.1. ABSOLUTE MAXIMUM RATINGS	_
	6.2. DC CHARAC TERISTICS (VDD = 2.7V TO 4.5V, T _A = 25)	
	6.3. AC CHARACTERISTICS (VDD = 2.7V TO 4.5V, T _A = 25)	
	6.4. DC CHARACTERISTICS (VDD = 4.5V TO 5.5V, TA = 25)	
	6.5. AC CHARACTERISTICS (VDD = 4.5V TO 5.5V, T _A = 25)	
7.	APPLICATION CIRCUITS	
	7.1. R-OSCILLATOR	
	7.2. INTERFACE TO MPU	
	7.3. SPLC780D A PPLICATION CIRCUIT	
	7.4. APPLICATIONS FOR LCD.	
8.	CHARACTER GENERATOR ROM	_
	8.1. SPLC780D - 001	
9.	PACKAGE/PAD LOCATIONS	
	9.1. PAD ASSIGNMENT AND LOCATIONS	
	9.2. PACKAGE CONFIGURATION	
	9.3. PACKAGE INFORMATION	
10).DISCLAIMER	33

16COM/40SEG CONTROLLER/DRIVER

1. GENERAL DESCRIPTION

The SPLC780D, a dot-matrix LCD controller and driver from SUNPLUS, is a unique design for displaying alpha-numeric, Japanese-Kana characters and symbols. The SPLC780D provides two types of interfaces to MPU: 4-bit and 8-bit interfaces. The transferring speed of 8-bit is twice faster than 4-bit. A single SPLC780D is able to display up to two 8character lines. By cascading with SPLC100 or SPLC063, the display capability can be extended. The CMOS technology ensures the power saves in the most efficient way and the performance keeps in the highest rank.

2. FEATURES

- Character generator ROM: 10880 bits

 Character font 5 x 8 dots: 192 characters

 Character font 5 x 10 dots: 64 characters
- Character generator RAM: 512 bits

 Character font 5 x 8 dots: 8 characters

 Character font 5 x 10 dots: 4 characters
- 4-bit or 8-bit MPU interfaces
- Direct driver for LCD: 16 COMs x 40 SEGs
- Duty factor (selected by program):

 1/8 duty: 1 line of 5 x 8 dots

 1/11 duty: 1 line of 5 x 10 dots

 1/16 duty: 2 lines of 5 x 8 dots / line
- Built-in power on automatic reset circuit
- Built-in oscillator circuit (with external resistor)
- Support external clock operation
- Low Power Consumption
- Package form: 80 QFP or bare chip available

3. BLOCK DIAGRAM

4. SIGNAL DESCRIPTIONS

Mnemonic	PIN No.	Туре	Description
VDD	33	I	Power input
VSS	23	I	Ground
OSC1	24	-	Both OSC1 and OSC2 are connected to resistor for internal oscillator circuit. For
OSC2	25		external clock operation, the clock is input to OSC1.
V1 - V5	26 - 30	I	Supply voltage for LCD driving.
Е	38	I	A start signal for reading or writing data.
RW	37	ı	A signal for selecting read or write actions.
			1: Read, 0: Write.
RS	36	I	A signal for selecting registers.
			1: Data Register (for read and write)
			0: Instruction Register (for write),
			Busy flag - Address Counter (for read).
DB0 - DB3	39 - 42	I/O	Low 4-bit data
DB4 - DB7	43 - 46	I/O	High 4-bit data
CL1	31	0	Clock to latch serial data D.
CL2	32	0	Clock to shift serial data D.
М	34	0	Switch signal to convert LCD waveform to AC.
D	35	0	Sends character pattern data corresponding to each common signal serially.
			1: Selection, 0: Non-selection.
SEG1 - SEG22	22 - 1	0	Segment signals for LCD.
SEG23 - SEG40	80 - 63		
COM1 - COM16	47 - 62	0	Common signals for LCD.

4.1. Ordering Information

Product Number	Package Type
SPLC780D-NnnV-C	Chip form
SPLC780D-NnnV-PQ05	Package form - QFP 80L

Note1: Code number is assigned for customer.

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

AUG. 06, 2003

5. FUNCTIONAL DESCRIPTIONS

5.1. Oscillator

SPLC780D oscillator supports not only the internal oscillator operation, but also the external clock operation.

5.2. Control and Display Instructions

Control and display instructions are described in details as follows:

5.2.1. Clear display

	17/11 001	ספט	DR2	DB4	DB3	DB2	DB1	DB0
Code 0	0 0	0	0	0	0	0	0	1

It clears the entire display and sets Display Data RAM Address 0 in Address Counter.

5.2.2. Return home

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	0	0	0	0	1	Х

X: Do not care (0 or 1)

It sets Display Data RAM Address 0 in Address Counter and the display returns to its original position. The cursor or blink goes to the most-left side of the display (to the 1st line if 2 lines are displayed). The contents of the Display Data RAM do not change.

5.2.3. Entry mode set

During writing and reading data, it defines cursor moving direction and shifts the display.

I / D = 1: Increment, I / D = 0: Decrement.

S = 1: The display shift, S = 0: The display does not shift.

I	S = 1	I / D = 1	It shifts the display to the left
	S = 1	I / D = 0	It shifts the display to the right

5.2.4. Display ON/OFF control

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	0	0	1	D	С	В

D = 1: Display on, D = 0: Display off C = 1: Cursor on, C = 0: Cursor off B = 1: Blinks on, B= 0: Blinks off

5.2.5. Cursor or display shift

Without changing DD RAM data, it moves cursor and shifts display.

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Code	0	0	0	0	0	1	S/C	R/L	Х	Х	

S/C	R/L	Description	Address Counter
0	0	Shift cursor to the left	AC = AC - 1
0	1	Shift cursor to the right	AC = AC + 1
1	0	Shift display to the left. Cursor follows the display shift	AC = AC
1	1	Shift display to the right. Cursor follows the display shift	AC = AC

5.2.6. Function set

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	1	DL	Z	F	Х	Х

X: Do not care (0 or 1)

DL: It sets interface data length.

DL = 1: Data transferred with 8-bit length (DB7 - 0).

DL = 0: Data transferred with 4-bit length (DB7 - 4).

It requires two times to accomplish data transferring.

N: It sets the number of the display line.

N = 0: One-line display.

N = 1: Two-line display.

F: It sets the character font.

 $F = 0:5 \times 8$ dots character font.

 $F = 1:5 \times 10$ dots character font.

N	F	No. of Display Lines	Character Font	Duty Factor		
0	0	1	5 x 8 dots	1/8		
0	1	1	5 x 10 dots	1 / 11		
1	Χ	2	5 x 8 dots	1 / 16		

It cannot display two lines with 5 x 10 dots character font.

5.2.7. Set character generator RAM address

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Code	0	0	0	1	а	а	а	а	а	а	
											,

It sets Character Generator RAM Address (aaaaaa)2 to the Address Counter.

Character Generator RAM data can be read or written after this setting.

5.2.8. Set display data RAM address

Code 0 0 1 a a a a a a a		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Code	0	0	1	а	а	а	а	а	а	а

It sets Display Data RAM Address (aaaaaaaa)₂ to the Address Counter.

Display data RAM can be read or written after this setting.

In one-line display (N = 0),

(aaaaaaa)_{2:} (00)₁₆ - (4F)_{16.}

In two-line display (N = 1),

(aaaaaaa)2: (00)16 - (27)16 for the first line,

(aaaaaaa)_{2:} (40)₁₆ - (67)₁₆ for the second line.

5.2.9. Read busy flag and address

When BF = 1, it indicates the system is busy now and it will not accept any instruction until not busy (BF = 0). At the same time, the content of Address Counter (aaaaaaa)2 is read.

5.2.10. Write data to character generator RAM or display data RAM

Code 1 0 d d d d d d d d		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Code	1	0	d	d	d	d	d	d	d	d

It writes data (dddddddd)₂ to character generator RAM or display data RAM.

5.2.11. Read data from character generator RAM or display data RAM

It reads data (dddddddd)₂ from character generator RAM or display data RAM.

To read data correctly, do the following:

- 1). The address of the Character Generator RAM or Display Data RAM or shift the cursor instruction.
- 2). The "Read" instruction.

5.3. Instruction Table

Instruction				Ins	tructi	on C	ode				Description	Execution time
mstruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM	1.52ms
											address to "00H" from AC	
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and	1.52ms
											return cursor to its original position if	
											shifted. The contents of DDRAM are not	
											changed.	
Entry Mode	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and enable	38µs
Set											the shift of entire display	
Display ON/	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of	38μs
OFF Control											cursor(B) on/off control bit.	
Cursor or	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control	38µs
Display Shift											bit, and the direction, without changing of	
											DDRAM data.	
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8bit/4-bit),	38μs
											numbers of display line (N: 2-line/1-line)	
											and, display font type (F:5x10 dots/5x8	
											dots)	
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	38μs
Address												
Set DDRAM	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in counter	38μs
Address												
Read Busy Flag	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not	
and Address											can be known by reading BF. The	
Counter											contents of address counter can also be	
											read.	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM	38µs
											(DDRAM/CGRAM).	
Read Data from	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM	38μs
RAM											(DDRAM/CGRAM).	

Note: "-": don't care

5.4. 8-Bit Operation and 8-Digit 1-Line Display (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power on. (SPLC780D starts initializing)		Power on reset. No display.
2	Function set RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 0 X X		Set to 8-bit operation and select 1-line display line and character font.
3	Display on / off control 0 0 0 0 0 0 1 1 0 0	_	Display on. Cursor appear.
4	Entry mode set 0 0 0 0 0 0 0 0 1 1 0	_	Increase address by one. It will shift the cursor to the right when writing to the DD RAM/CG RAM. Now the display has no shift.
5	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 1 1 1	W_	Write " W ". The cursor is incremented by one and shifted to the right.
6	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1 0 1	WE_	Write " E ". The cursor is incremented by one and shifted to the right.
7	:	:	
8	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1	WELCOME_	Write " E ". The cursor is incremented by one and shifted to the right.
9	Entry mode set 0 0 0 0 0 0 0 0 1 1 1	WELCOME_	Set mode for display shift when writing
10	Write data to CG RAM / DD RAM 1 0 0 0 1 0 0 0 0 0 0 0 0	ELCOME _	Write " "(space). The cursor is incremented by one and shifted to the right.
11	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 0 1 1	LCOME C_	Write " C ". The cursor is incremented by one and shifted to the right.
12	:	:	
13	Write data to CG RAM / DD RAM 1 0 0 1 0 1 1 0 0 1	COMPAMY_	Write " Y ". The cursor is incremented by one and shifted to the right.
14	Cursor or display shift 0	COMPAMY_	Only shift the cursor's position to the left (Y).
15	Cursor or display shift 0	COMPAMY_	Only shift the cursor's position to the left (M).
16	Write data to CG RAM / DD RAM 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0	OMPANY_	Write " N ". The display moves to the left.
17	Cursor or display shift 0 0 0 0 0 0 1 1 1 X X	COMPAMY_	Shift the display and the cursor's position to the right.
18	Cursor or display shift 0 0 0 0 0 0 1 0 1 X X	OMPANY_	Shift the display and the cursor's position to the right.
19	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 0 0 0 0 0	COMPAMY_	Write " " (space). The cursor is incremented by one and shifted to the right.
20	:	:	:
21	Return home 0 0 0 0 0 0 0 0 0 1 0	WELCOME_	Both the display and the cursor return to the original position (address 0).

5.5. 4-Bit Operation and 8-Digit 1-Line Display (Using Internal Reset)

No.				Instr	ucti	on		Display	Operation
1		er or .C78		starts	s initi	alizir	ng)		Power on reset. No display.
2		tion R/W		DB6	DB5	DB4			Set to 4-bit operation.
3	0	0	0	0	1 X	0 X			Set to 4-bit operation and select 1-line display line and character font.
4	0	0	0	0	0	0		_	Display on. Cursor appears.
5	0	0	0	0	0	0		_	Increase address by one. It will shift the cursor to the right when writing to the DD RAM / CG RAM. Now the display has no shift.
6	1	0	0	1	0	1		W_	Write " W ". The cursor is incremented by one and shifted to the right.

5.6. 8-Bit Operation and 8-Digit 2-Line Display (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power on. (SPLC780D starts initializing)		Power on reset. No display.
2	Function set RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 X X		Set to 8-bit operation and select 2-line display line and 5 x 8 dot character font.
3	Display on / off control 0 0 0 0 0 0 1 1 0 0	_	Display on. Cursor appear.
4	Entry mode set 0 0 0 0 0 0 0 1 1 0		Increase address by one. It will shift the cursor to the right when writing to the DD RAM / CG RAM. Now the display has no shift.
5	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 1 1 1	W_	Write " W ". The cursor is incremented by one and shifted to the right.
6	:	:	:
7	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1	WELCOME_	Write " E ". The cursor is incremented by one and shifted to the right.
8	Set DD RAM address 0 0 1 1 0 0 0 0 0 0 0	WELCOME _	It sets DD RAM's address. The cursor is moved to the beginning position of the 2nd line.
9	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME T_	Write " T ". The cursor is incremented by one and shifted to the right.
10	:	:	·
11	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME TO PART_	Write " T ". The cursor is incremented by one and shifted to the right.

No.	Instruction	Display	Operation
12	Entry mode set 0 0 0 0 0 0 0 1 1 1	WELCOME TO PART_	When writing, it sets mode for the display shift.
13	Write data to CG RAM / DD RAM 1 0 0 1 0 1 1 0 0 1	ELCOME O PARTY_	Write " Y ". The cursor is incremented by one and shifted to the right.
14	:	:	:
15	Return home 0 0 0 0 0 0 0 0 0 1 0	WELCOME TO PARTY	Both the display and the cursor return to the original position (address 0).

5.7. Reset Function

At power on, SPLC780D starts the internal auto-reset circuit and executes the initial instructions. The initial procedures are shown as follows:

10

11

Preliminary Version: 0.1

5.8. Display Data RAM (DD RAM)

The 80-bit DD RAM is normally used for storing display data. Those DD RAM not used for display data can be used as general data RAM. Its address is configured in the Address Counter.

The relationships between Display Data RAM Address and LCD's position are depicted as follows.

5.9. Timing Generation Circuit

The timing generating circuit is able to generate timing signals to the internal circuits. In order to prevent the internal timing interface, the MPU access timing and the RAM access timing are generated independently.

5.10. LCD Driver Circuit

Total of 16 commons and 40 segments signal drivers are valid in the LCD driver circuit. When a program specifies the character fonts and line numbers, the corresponding common signals output drive-waveforms and the others still output unselected waveforms.

5.11. Character Generator ROM (CG ROM)

Using 8-bit character code, the character generator ROM generates 5 x 8 dots or 5 x 10 dots character patterns. It also can generate 192's 5 x 8 dots character patterns and 64' s 5 x 10 dots character patterns.

5.12. Character Generator RAM (CG RAM)

Users can easily change the character patterns in the character generator RAM through program. It can be written to 5×8 dots, 8-character patterns or 5×10 dots for 4-character patterns.

The following diagram shows the SPLC780D character patterns:

Correspondence between Character Codes and Character Patterns.

		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
	0	CG RAM (1)															
	1	CG RAM (2)															
	2	CG RAM (3)															
	3	CG RAM (4)															
	4	CG RAM (5)															
nal)	5	CG RAM (6)															
(Hexadecim	6	CG RAM (7)															
aracter Code	7	CG RAM (8)															
to D3) of Ch	8	CG RAM (1)															
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)															
Lo	А	CG RAM (3)															
	В	CG RAM (4)															
	С	CG RAM (5)															
	D	CG RAM (6)															
	E	CG RAM (7)															
	F	CG RAM															

The relationships between Character Generator RAM Addresses, Character Generator RAM Data (character patterns), and Character Codes are depicted as follows:

5.12.1. 5 x 8 dot character patterns

	(er C M D	ode ata))					RAM ress					hara (CG						
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0	
											0	0	0	==	ΞΞ	ΕΞ	1	1	1	1	1	
									1//		0	0	1				0	0	1	0	0	Character
									1//		0	1	0			ΕĒ	0	0	1	0	0	Pattern
	0		0	X	6				1//	0	0	1	1	X	X	==	0	0	1	0	0	Example (1)
0	0	0	0	^	//	0	0	0	10/	///	1	0	0			X = = = = = = = = = = = = = = = = = = =	0	0	1	0	0	
									1//		1	0	1			ΕĒ	0	0	1	0	0	
									1//		1	1	0			ΕĒ	0	0	1	0	0	Cursor
									1//		1	1	1			ΕĒ	0	0	0	0	0	Position
									7		0	0	0	==		ΕĒ	0	1	1	1	0	
									{//		0	0	1		X	X	0	0	1	0	0	Character
									{//		0	1	0	= =		ΕĒ	0	0	1	0	0	Pattern
0	0	0	0	X	0	0		6		//	0	1	1	<u> </u>		ΕΞ	0	0	1	0	0	Example (2)
	U	١	U						}//		1	0	0	_^			0	0	1	0	0	
									} //		1	0	1				0	0	1	0	0	
											1	1	0			ΕĒ	0	1	1	1	0	
											1	1	1	ΞΞ	==	ΕΞ	0	0	0	0	0	
														 				_				
_											_									_	\	
_	_													 				_	_	_	/	

Note1: It means that the bit0~2 of the character code correspond to the bit3~5 of the CG RAM address.

Note2: These areas are not used for display, but can be used for the general data RAM.

Note3: When all of the bit4-7 of the character code are 0, CG RAM character patterns are selected.

Note4: " 1 ": Selected, " 0 " : No selected, " X " : Do not care (0 or 1).

Note5: For example (1), set character code (b2 = b1 = b0 = 0, b3 = 0 or 1, b7-b4 = 0) to display "T". That means character code (00) 16,and (08) 16 can display "T" character.

Note6: The bits 0.2 of the character code RAM is the character pattern line position. The 8th line is the cursor position and display is formed by logical OR with the cursor.

AUG. 06, 2003

5.12.2. 5 X 10 dot character patterns

				ter C						CG Add							acte					
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0	
						1//]			0	0	0	0				1	0	0	0	1	
						1//]			0	0	0	1		ΕĒ		1	0	0	0	1	Character
						1//]			0	0	1	0		ΕĒ		1	0	0	0	1	Pattern
										0	0	1	1		ΕΞ	ΕĒ	1	0	0	0	1	Example (1)
										0	1	0	0		X	X	1	0	0	0	1	
0	0	0	0	Х	0	10	X	0	10/	0	1	0	1	X	EXE	ΕÆ	1	0	0	0	1	
							1			0	1	1	0				1	0	0	0	1	
							1			0	1	1	1			ΕΞ	1	0	0	0	1	
						//	1			1	0	0	0		ΕΞ	ΕĒ	1	0	0	0	1	Cursor
						$/\!\!/$	1			1	0	0	1		- -	ΕĒ	1	1	1	1	1	Position
						\mathbb{Z}	1			1	0	1	0		蒀		0	0	0	0	0	←
						//	1			1	0	1	1				==					
						Y //	1			1	1	0	0									
						* //	1			1	1	0	1	X	X	X	X	X	EXE	EXE	E <u>¥</u>	
						¥//	1			1	1	1	0		ΕĒ						≣≣	
						1//	1		1//	1	1	1	1	==	ĒΞ	ΕΞ	Ξ	Ξ	= =	==	==	
														 					_	_		
	_								_		_									_	$\overline{}$	
	_	_	_						_													

Note1: It means that the bit1~2 of the character code correspond to the bit4~5 of the CG RAM address.

Note2: These areas are not used for display, but can be used for the general data RAM.

Note3: When all of the bit4-7 of the character code are 0, CG RAM character patterns are selected.

Note4: " 1 ": Selected, " 0 ": No selected, " X ": Do not care (0 or 1).

Note5: For example (1), set character code (b2 = b1 = 0, b3 = b0 = 0 or 1, b7-b4 = 0) to display "U". That means all of the character codes (00) 16, (01) 16, (08) 16, and (09) 16 can display "U" character.

Note6: The bits 0-3 of the character code RAM is the character pattern line position. The 11th line is the cursor position and display is formed by logical OR with the cursor.

15

AUG. 06, 2003

5.13. Cursor/Blink Control Circuit

This circuit generates the cursor or blink in the cursor / blink control circuit. The cursor or the blink appears in the digit at the Display Data RAM Address defined in the Address Counter.

When the Address Counter is (07) 16, the cursor position is shown as belows:

16

5.14. Interfacing to MPU

There are two types of data operations: 4-bit and 8-bit operations. Using 4-bit MPU, the interfacing 4bit data is transferred by 4-busline (DB4 to DB7). Thus, DB0 to DB3 bus lines are not used. Using 4-bit MPU to interface 8-bit data requires two times transferring. First, the higher 4-bit data is transferred by 4-busline (for 8-bit operation, DB7 to DB4). Secondly, the lower 4-bit data is transferred by 4-busline (for 8-bit operation, DB3 to DB0). For 8-bit MPU, the 8-bit data is transferred by 8-buslines (DB0 to DB7).

5.15. Supply Voltage for LCD Drive

Different voltages can be supplied to SPLC780D's pins (V5 - 1) for obtaining LCD drive-waveform. The relationships between bias, duty factor and supply voltages are shown as belows:

Duty Factor	1/8, 1/11	1/16
Supply Voltage	1/4	1/5
V1	VDD – 1/4 V _{LCD}	VDD – 1/5 V _{LCD}
V2	VDD - 1/2 V _{LCD}	VDD - 2/5 V _{LCD}
V3	VDD - 1/2 V _{LCD}	$VDD - 3/5 V_{LCD}$
V4	VDD - 3/4 V _{LCD}	VDD – 4/5 V _{LCD}
V5	VDD - V _{LCD}	VDD - V _{LCD}

5.15.1. The power connections for LCD (1/4 Bias, 1/5 Bias) are shown belows:

The bypass-capacitor improves the LCD display quality.

The bias voltage must have the following relations:

VDD > V1 > V2 V3 > V4 > V5.

5.15.2. The relationship between LCD frame's frequency and oscillator's frequency.

(Assume the oscillation frequency is 250KHz, 1 clock cycle time = $4.0\mu s$)

5.15.2.1. 1/8 Duty, TYPE-B waveform

5.15.2.2. 1/11 Duty, TYPE-B waveform

5.15.2.3. 1/16 Duty, TYPE-B waveform

18

5.16. REGISTER --- IR (Instruction Register) and DR (Data Register)

SPLC780D contains two 8bit registers: Instruction Register (IR) and Data Register (DR). Using combinations of the RS pin and the R/W pin selects the IR and DR, see below:

RS	R/W	Operation
0	0	IR write (Display clear, etc.)
0	1	Read busy flag (DB7) and Address Counter
		(DB0 - DB6)
1	0	DR write (DR to Display data RAM or
		Character generator RAM)
1	1	DR read (Display data RAM or Character
		generator RAM to DR)

The IR can be written by MPU, but it cannot be read by MPU.

5.17. Busy Flag (BF)

When RS = 0 and R/W = 1, the busy flag is output to DB7. As the busy flag =1, SPLC780D is in busy state and does not accept any instruction until the busy flag = 0.

5.18. Address Counter (AC)

The Address Counter assigns addresses to Display Data RAM and Character Generator RAM. When an instruction for address is written in IR, the address information is sent from IR to AC. After writing to/reading from Display Data RAM or Character Generator RAM, AC is automatically incremented by one (or decremented by one). The contents of AC are output to DB0 - DB6 when RS = 0 and RW = 1.

5.19. I/O Port Configuration

5.19.1. Input port: E

5.19.2. Input port: R/W, RS

5.19.3. Output port: CL1, CL2, M, D

5.19.4. Input / Output port: DB7 - DB0

6. ELECTRICAL SPECIFICATIONS

6.1. Absolute Maximum Ratings

Characteristics	Symbol	Ratings
Operating Voltage	VDD	-0.3V to +7.0V
Driver Supply Voltage	V _{LCD}	VDD - 12V to VDD + 0.3V
Input Voltage Range	V _{IN}	-0.3V to VDD + 0.3V
Operating Temperature	T _A	-30 to +80
Storage Temperature	Т _{ѕто}	-55 to +125

Note: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational conditions see AC/DC Electrical Characteristics.

6.2. DC Characteristics (VDD = 2.7V to 4.5V, $T_A = 25$)

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Syllibol	Min.	Тур.	Max.	Offic	Test Condition
Operating Current	I _{DD}	-	0.2	0.4	mA	External clock (Note)
Input High Voltage	V _{IH1}	0.7VDD	-	VDD	V	Pins:(E, RS, R/W, DB0 - DB7)
Input Low Voltage	V _{IL1}	-0.3	-	0.55	V	Fills.(L, N3, NVV, DB0 - DB1)
Input High Voltage	V _{IH2}	0.7VDD	-	VDD	V	Pin OSC1
Input Low Voltage	V_{IL2}	-0.2	-	0.2VDD	V	PIII OSCI
Input High Current	l _{IH}	-1.0	-	1.0	μΑ	Pins: (RS, R/W, DB0 - DB7)
Input Low Current	I _{IL}	-5.0	-15	-30	μΑ	VDD = 3.0V
Output High Voltage (TTL)	V _{OH1}	0.75VDD	-	-	٧	l _{OH} = - 0.1mA Pins: DB0 - DB7
Output Low Voltage (TTL)	V _{OL1}	-	-	0.2VDD	V	l _{OL} = 0.1mA Pins: DB0 - DB7
Output High Voltage (CMOS)	V _{OH2}	0.8VDD	-	-	V	l _{OH} = - 40μA, Pins: CL1, CL2, M, D
Output Low Voltage (CMOS)	V _{OL2}	-	-	0.2VDD	٧	$l_{OL} = 40\mu A$, Pins: CL1, CL2, M, D
Driver ON Resistance (COM)	R _{COM}	-	-	20	ΚΩ	$l_0 = \pm 50\mu A$, $V_{LCD} = 4.0V$ Pins: COM1 - COM16
Driver ON Resistance (SEG)	R _{SEG}	-	-	30	ΚΩ	$l_0 = \pm 50 \mu A, V_{LCD} = 4.0 V$ Pins: SEG1 - SEG40
LCD Voltage	V_{LCD}	3.0	-	9.0	V	VDD-V5, 1/4 bias or 1/5 bias

Note: F_{osc} = 250KHz, VDD = 3.0V, pin E = "L", RS, R/W, DB0 - DB7 are open, all outputs are no loads.

20

6.3. AC Characteristics (VDD = 2.7 V to 4.5 V, $T_A = 25$)

6.3.1. Internal clock operation

Characteristics	Svmbol		Limit		Unit	Test Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit	lest Condition	
OSC Frequency	F _{OSC1}	190	270	350	KHz	VDD = 3.0V, Rf = 75KΩ ±2%	

6.3.2. External clock operation

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Syllibol	Min.	Тур.	Max.	Onit	rest Condition
External Frequency	F _{OSC2}	125	250	350	KHz	
Duty Cycle		45	50	55	%	
Rise/Fall Time	tr, tf	-	-	0.2	μs	

6.3.3. Write mode (Writing data from MPU to SPLC780D)

Characteristics	Cumbal		Limit		l lmit	Took Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	t _C	1000	-	-	ns	Pin E
E Pulse Width	t _{PW}	450	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, R/W, E
Data Setup Time	t _{SP2}	195	-	-	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-	-	ns	Pins: DB0 - DB7

6.3.4. Read mode (Reading data from SPLC780D to MPU)

Characteristics	Cumbal		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest Condition
E Cycle Time	t _C	1000	-	-	ns	Pin E
E Pulse Width	t _W	450	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	1	ı	25	ns	Pin E
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, R/W, E
Data Output Delay Time	t _D	1	ı	360	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

6.4. DC Characteristics (VDD = 4.5 V to 5.5 V, $T_A = 25$)

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Syllibol	Min.	Тур.	Max.	Onit	rest condition
Operating Current	l _{DD}	-	0.55	0.8	mA	External clock (Note)
Input High Voltage	V _{IH1}	2.2	-	VDD	V	Pins:(E, RS, R/W, DB0 - DB7)
Input Low Voltage	V _{IL1}	-0.3	-	0.6	V	
Input High Voltage	V_{IH2}	VDD-1	-	VDD	V	Pin OSC1
Input Low Voltage	V _{IL2}	-0.2	-	1.0	V	Pin OSC1
Input High Current	lн	-2.0	-	2.0	μΑ	Pins: (RS, RW, DB0 - DB7) VDD = 5.0V
Input Low Current	l _{IL}	-20	-50	-100	μΑ	
Output High Voltage (TTL)	V _{OH1}	2.4	1	VDD	V	l _{OH} = - 0.1mA Pins: DB0 - DB7
Output Low Voltage (TTL)	V _{OL1}	-	-	0.4	V	$l_{OL} = 0.1 \text{mA}$ Pins: DB0 - DB7
Output High Voltage (CMOS)	V _{OH2}	0.9VDD	-	VDD	V	l_{OH} = - 40 μ A, Pins: CL1, CL2, M, D
Output Low Voltage (CMOS)	V _{OL2}	ı	-	0.1VDD	V	l _{OL} = 40μA, Pins: CL1, CL2, M, D
Driver ON Resistance (COM)	R _{COM}	-	-	20	ΚΩ	$l_{O} = \pm 50 \mu A, V_{LCD} = 4.0 V$ Pins: COM1 - COM16
Driver ON Resistance (SEG)	R _{SEG}	-	-	30	ΚΩ	$I_{O} = \pm 50 \mu A, V_{LCD} = 4.0 V$ Pins: SEG1 - SEG40
LCD Voltage	V_{LCD}	3.0	-	11	V	VDD-V5, 1/4 bias or 1/5 bias

Note: F_{OSC} = 250KHz, VDD = 5.0V, pin E = "L", RS, R/W, DB0 - DB7 are open, all outputs are no loads.

6.5. AC Characteristics (VDD = 4.5 V to 5.5 V, $T_A = 25$)

6.5.1. Internal clock operation

Characteristics	Svmbol		Limit		Unit	Test Condition	
Criaracteristics	Symbol	Min.			Test Condition		
OSC Frequency	F _{OSC1}	190	270	350	KHz	VDD = 5.0V, Rf = 91KΩ ±2%	

6.5.2. External clock operation

Characteristics	Cumhal		Limit		l lmit	Took Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
External Frequency	F _{OSC2}	125	250	350	KHz		
Duty Cycle		45	50	55	%		
Rise/Fall Time	tr, tf	-	-	0.2	μs		

6.5.3. Write mode (Writing Data from MPU to SPLC780D)

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Onit	rest Condition
E Cycle Time	t _C	500	-	-	ns	Pin E
E Pulse Width	t _{PW}	230	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-		20	ns	Pin E
Address Setup Time	t _{SP1}	40	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	-	-	ns	Pins: RS, R/W, E
Data Setup Time	t _{SP2}	80	-	-	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-	-	ns	Pins: DB0 - DB7

6.5.4. Read mode (Reading Data from SPLC780D to MPU)

Characteristics	Cumhal		Limit		Unit	To at O an dition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	t _C	500	-	-	ns	Pin E
E Pulse Width	t _W	230	-	-	ns	Pin E
E Rise/Fall Time	t_R , t_F	·	ı	20	ns	Pin E
Address Setup Time	t _{SP1}	40	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	-	-	ns	Pins: RS, R/W, E
Data Output Delay Time	t _D	-	-	120	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

6.5.5. Interface mode with LCD Driver (SPLC100A1)

Characteristics	Symbol		Limit		Unit	Test Condition
Cital acteristics	Syllibol	Min.	Тур.	Max.		
Clock pulse width high	t _{PWH}	800	-	-	ns	Pins: CL1, CL2
Clock pulse width low	t _{PWL}	800	ı	-	ns	Pins: CL1, CL2
Clock setup time	t _{CSP}	500	-	-	ns	Pins: CL1, CL2
Data setup time	t _{DSP}	300	-	-	ns	Pins: D
Data hold time	t _{HD}	300	ı	-	ns	Pins: D
M delay time	t _D	-1000	-	1000	ns	Pins: M

6.5.6. Write mode timing diagram (Writing Data from MPU to SPLC780D)

6.5.7. Read mode timing diagram (Reading Data from SPLC780D to MPU)

6.5.8. Interface mode with SPLC100A1 timing diagram

7. APPLICATION CIRCUITS

7.1. R-Oscillator

7.2. Interface to MPU

7.2.1. Interface to 8-bit MPU (6805)

7.2.2. Interface to 8-bit MPU (Z80)

7.3. SPLC780D Application Circuit

7.4. Applications for LCD

8. CHARACTER GENERATOR ROM

8.1. SPLC780D - 001

9.2. Package Configuration

QFP 80L Top View

9.3. Package Information

Symbol	Min.	Nom.	Max.	Unit
D	23.20 REF			Millimeter
D1	20.00 REF			Millimeter
Е	17.20 REF			Millimeter
E1	14.00 REF			Millimeter
е	0.80 REF			Millimeter
b	0.30	0.35	0.45	Millimeter
Α	-	-	3.40	Millimeter
A1	0.25	-	-	Millimeter
A2	2.50	2.72	2.90	Millimeter
С	0.11	0.15	0.23	Millimeter
L1	1.60 REF			Millimeter