ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ ОПТИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ НА ОСНОВЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Методические указания к лабораторным работам по курсу «Оптическая информатика»

Содержание

Введение	3
Краткие теоретические сведения	4
Задание	8
Варианты	9

Введение

Данная лабораторная работа содержит сведения о применении быстрого преобразования Фурье (БПФ) и его адаптации для оптических систем.

Необходимо реализовать оптическое преобразование Фурье, используя алгоритм БПФ и стандартные методы численного интегрирования, сравнить результаты и убедиться, что они совпадают.

Также необходимо изучить некоторые свойства преобразования Фурье с помощью аналитических выводов и численного моделирования.

Краткие теоретические сведения

Рассматривается оптическая система, изображённая на рисунке 1.

Рисунок 1 – Схема оптической системы

Будем считать, что на вход системе падает плоская волна, тождественно равная единице. Квадратная апертура ограничиваетвходной пучок, так что мы считаем его равным нулю за пределами апертуры. В отверстии апертуры находится дифракционный оптический элемент (ДОЭ). Линза расположена между апертурой и экраном на фокусном расстоянии от них.

Для упрощения будем рассматривать только те случаи, когда $\lambda f = \mathbf{1}$, где λ — длина волны, f —фокусное расстояние линзы. Тогда оператор распространения запишется в виде преобразования Фурье в конечных пределах (или финитного преобразования Фурье):

$$F_a(u,v) = \mathbf{F}_a[f(x,y)](u,v) = \iint_{[-a,a]^2} f(x,y)e^{-2\pi i(ux+vy)} dxdy,$$
(1)

где f(x,y) — финитная функция ($\sup pf = [-a;a]^2$), задающая вид оптического распределения после прохождения ДОЭ, $[-a;a]^2$ — квадратная область внутри апертуры, $F_a(u,v)$ —спектр, F_a — оператор преобразования Фурье в конечных пределах.

Обычное преобразование Фурье отличается от финитного лишь тем, что интегрирование в последнем случае осуществляется по конечной области.

Так как входное распределение перед апертурой равно единице, а при прохождении через ДОЭ эффекты дифракции упрощаются до обыкновенного умножения, то входное распределение f(x,y) будет совпадать с функцией пропускания ДОЭ.

Важно: мы считаем толщину апертуры и ДОЭ в приближении бесконечно малой величиной.

Прежде чем приступать к двумерной задаче (т.к. функции зависят от двух переменных), рассмотрим более простую – одномерную:

$$F_a(u) = \mathcal{F}_a[f(x)](u) = \int_{-a}^{a} f(x)e^{-2\pi i ux} dx$$
(2)

Для расчёта такого преобразования можно воспользоваться алгоритмом быстрого преобразование Фурье (БПФ). Он не рассматривается в данном пособии, поэтому можно использовать готовую реализацию. Однако, при реализации финитного преобразования Фурье по формуле (2) через БПФ следует учитывать нижеописанные замечания.

Предположим, что после дискретизации функции $f^{(x)}$ получается вектор \mathbf{f} размерности N :

$$\mathbf{f} = (f_0 \quad f_1 \quad \dots \quad f_{N-1})^T \tag{3}$$

где T —символ транспонирования. Здесь и далее подразумевается, что количество отсчётов чётно.

Классически дискретное преобразования Фурье записывается для периодических функций в виде:

$$\mathbf{F} = \left(\sum_{n=0}^{N-1} f_n e^{\frac{-2\pi i}{N}kn}\right)_{k=0,1,\dots,N-1},\tag{4}$$

где \mathbf{F} – спектр дискретного преобразования Фурье. Формула (4) аппроксимирует следующий интеграл:

$$\int_0^{2a} f(x)e^{-2\pi i ux} dx \tag{5}$$

Иными словами, классическое преобразование Фурье подразумевает, что пределы интегрирования начинаются с нуля, в то время как наше преобразование Фурье центрировано.

Если продолжить функцию $f^{(x)}$ с периодом на всю числовую прямую, то для того чтобы дискретное преобразование (4) аппроксимировало интеграл (2), а не (5), необходимо поменять местами первую и вторую половины компонентов вектора (3).

Замечание: классическое прямое преобразование Фурье (4) не учитывает шаг дискретизации h_x , поэтому после применения операции БПФ необходимо умножить результат на h_x .

После выполнения БПФ мы получаем вектор значений, но он будет определён для функции, заданной на промежутке [0;2b], где b предстоит определить. Поскольку нас интересует центрированная система, необходимо снова поменять местами первую и вторую половины компонентов полученного вектора, получив итоговый вектор \mathbf{F} . Тогда область задания функции $F_{\alpha}(u)$ изменится на [-b;b].

При использовании БПФ будет выполняться соотношение: $h_x h_u = \frac{1}{N}$, где h_{u-} шаг дискретизации по оси u .Отсюда видно, что:

$$b = \frac{N}{4a}. (6)$$

Из формулы (6) следует: чем больше точек дискретизации взять, тем больше будет область задания функции $F_a(u)$. При малых N аппроксимация будет плохой, а при больших N промежуток [-b,b] может быть настолько большим, что важных деталей функции мы просто не увидим.

В этом случае поступают следующим образом: исходный вектор ${\bf f}$ и слева, и справа дополняют одинаковым количеством нулей, зачастую много большим, чем N.Будем считать, что после дополнения нулями вектор стал иметь размерность ${\bf M}$. После выполнения алгоритма ${\bf F}$ будет также иметь размерность ${\bf M}$, а функция $F_a(u)$ по-прежнему определена на промежутке $[-b_ib]$.

Если же теперь «вырезать» центральную часть вектора \mathbf{F} , оставив N элементов, то область задания функции $F_a(u)$ станет равной $[-b_ib]$, где

$$\overline{b} = \frac{N^2}{4a!}.\tag{7}$$

Таким образом, мы получаем алгоритм реализации оптического преобразования Фурье в конечных пределах через использование БПФ:

- 1. Провести дискретизацию входной функции f(x)в вектор \mathbf{f} с размерностью N .
- 2. Дополнить вектор ${\bf f}$ и слева, и справа необходимым числом нулей до размерности ${\it M}$
- 3. Разбить вектор f на две половины и поменять их местами.
- 4. Выполнить БП Φ от ${f f}$ и умножить результат на шаг ${f h}_{x}$, получив вектор ${f F}$.
- 5. Разбить вектор \mathbf{F} на две половины и поменять их местами.
- 6. «Вырезать» центральную часть вектора ${\bf F}$, оставив центральные ${\bf N}$ элементов.
- 7. Пересчитать область задания функции $F_a(u)$ по формуле (7).

Если область $\llbracket -\overline{b}_i \overline{b} \rrbracket$ оказалась слишком большой (полезная часть спектра плохо видна) или слишком маленькой (спектр не умещается), можно соответственно изменить число дополняемых нулей на шаге 2.

Замечание: некоторые реализации БПФ не требуют, чтобы число M было целой степенью двойки, а сами добавляют дополнительные нули, нарушая симметрию. Это может привести к появлению в результатах расчёта неправильного фазового набега. Так что **необходимо удостовериться**, что число M является степенью двойки.

Вернёмся теперь к формуле (1). Поскольку в формуле имеется двумерная входная функция и двумерное преобразование Фурье, то после дискретизации функций мы будем получать матрицу \mathbf{f} . Алгоритм нахождения преобразования Фурье от неё можно свести к одномерному случаю: необходимо применить вышеописанный алгоритм к каждой строке этой матрицы, получив новую матрицу, а затем применить его к каждому столбцу полученной матрицы.

Примечание: седьмой шаг, нахождение области задания $F_a(u, v)$, следует выполнить только один раз.

Задание

- 1. Реализовать одномерное финитное преобразование Фурье с помощью применения алгоритма БПФ.
- 2. Построить график гауссова пучка e^{-sx^2} , s—задаваемая константа. Здесь и далее для каждого графика следует строить отдельно графики амплитуды и фазы.
- 3. Убедиться в правильностиреализации преобразования, подав на вход гауссов пучок e^{-sx^2} —собственную функцию преобразования Фурье. На выходе тоже должен получиться гауссов пучок, но другого масштаба (построить график на правильной областиопределения $[-\tilde{b}_s \tilde{b}]$). Рекомендуемая входная область: [-a,a] = [-5,5].
- 4. Реализовать финитное преобразование Фурье стандартным методом численного интегрирования (например, методом прямоугольников). Важно: необходимо вычислить интеграл для каждого дискретного значения *и*, чтобы получить результат в виде вектора. На вход преобразования вновь следует подавать гауссов пучок.
- 5. Построить результаты двух разных реализаций преобразования на одном изображении (одно для амплитуды, одно для фазы) и убедиться, что они совпадают.
- 6. Используя первую реализацию преобразования, подать на вход световое поле, отличное от гауссова пучка, в соответствии со своим вариантом. Построить графики самого пучка и результата преобразования.
- 7. Рассчитать аналитически результат преобразования своего варианта поля и построить график на одной системе координат с результатом, полученным в предыдущем пункте.
- 8. Выполнить пункты 1-3 и 6-7 для двумерного случая. Графики изменятся на двумерные изображения, одномерные функции следует заменить на двумерные, равные произведению соответствующих одномерных функций. Например, гауссов пучок поменяется на $e^{-sx^2-py^2}$, s, p—задаваемые константы.

Варианты

Γ.	No	Входное поле	Примечание
			Для аналитики применитьне финитное преобразование.
	1	$\mathbf{sinc}(\pi_x)$	Использовать значения интегрального синуса, либо
		·	другие свойства преобразования Фурье.
	2	1	Для аналитики применитьне финитное преобразование.
	2	$\frac{1+x^2}{1+x^2}$	Использовать лемму Жордана и теорему о вычетах.
	3	$\exp(2\pi ix) + \exp(-5\pi ix)$	Для аналитики применить финитное преобразование.
	1	at (x)	Для аналитики применить не финитное
4	4	$\operatorname{rect}\left(\frac{\pi}{4}\right)$	преобразование.
			Для аналитики применить не финитное
	5	$x^3 \exp(-x^2)$	преобразование. Использовать свойства
		•	преобразования Фурье.
			-
			Для аналитики применить не финитное
	6		преобразование. Можно использовать понятие
			полиномов Эрмита и мод Гаусса-Эрмита.
\vdash			Для аналитики применить финитное преобразование.
	7	x^2	Использовать свойства преобразования Фурье.
F			Для аналитики применить финитное преобразование.
	8	$xsin(3\pi x)$	Использовать свойства преобразования Фурье.
	0	(x-1)	Для аналитики применить не финитное
	9	$rect\left(\frac{x-1}{4}\right)$	преобразование.
			Для аналитики применить не финитное
	10	$\exp(2ix^3)$	преобразование. Использовать понятие функции Эйри
			или луча Эйри и свойства преобразования Фурье.
	11	trates	Для аналитики применить не финитное
	1 1	tri(x)	преобразование. Использовать свойство свёртки.
	12	exp(- x)	Для аналитики применить не финитное
			преобразование.
13		$x^2 \exp(i3x)$	Для аналитики применить не финитное
			преобразование. Использовать значения интегрального
1.4	-	4	синуса, либо другие свойства преобразования Фурье.
14		1	Для аналитики применить не финитное
		$\overline{4+x^2}$	преобразование. Использовать лемму Жордана и
15		arms mind a gray (2 min)	теорему о вычетах.
		$\exp(-\pi i x) + \exp(3\pi i x)$	Для аналитики применить финитное преобразование.
16			Для аналитики применить не финитное
17	-	w2 ovr (~~2)	преобразование.
1/		$x^2 \exp(-x^2)$	Для аналитики применить не финитное преобразование. Использовать свойства
			преобразования Фурье.
18	+		Преооразования Фурье. Для аналитики применить не финитное
10			преобразование. Можно использовать понятие
			полиномов Эрмита и мод Гаусса-Эрмита.
19		xexp(-i2x)	Для аналитики применить финитное преобразование.
1)		ACAP(LEA)	Использовать свойства преобразования Фурье.
20	+	$\sin(4\pi x)$	Для аналитики применить финитное преобразование.
20			Использовать свойства преобразования Фурье.
	ı		

Ŋ	№ Входное поле	Примечание
21	$\operatorname{rect}\left(\frac{x+2}{2}\right)$	Для аналитики применить не финитное преобразование.
22	$\exp(ix^3)$	Для аналитики применить не финитное преобразование. Использовать понятие функции Эйри или луча Эйри и свойства преобразования Фурье.
23	$\operatorname{tr}\left(\frac{x}{2}\right)$	Для аналитики применить не финитное преобразование. Использовать свойство свёртки.
24	$\exp\left(-\frac{ x }{2}\right)$	Для аналитики применить не финитное преобразование.

Варианты:

- 1 Арзамасцева
- 2 Баринова
- 3 Башаров
- 4 Ведерников
- 5 Величко
- 6 Гаврилов
- 7 Гаврилова
- 8 Голоднюк
- 9 Голубев
- 10 Горьков
- 11 Губаев
- 12 Гурлина
- 13 Кибиткина
- 14 Кошелев
- 15 Майоров
- 16 Макаревич
- 17 Малышкин
- 18 Рудинская
- 19 Савченко
- 20 Скиданова
- 21 Чернов
- 22 Чувашев