Busca Binária x Busca Sequencial

A busca binária e a busca sequencial, são, provavelmente, os métodos de busca mais conhecidos e utilizados no mundo todo. Através do resultado que obtivemos com nossos algoritmos durante o trabalho, podemos mostrar nossas conclusões, através desse exemplo.

Para podermos demonstrar a diferença de velocidade de procura entra a Busca Binária e a Busca Sequencial, utilizaremos o seguinte vetor:

4	15	29	41	42	64	68	75	85	89
111	113	115	135	165	169	177	199	206	207
207	214	233	237	246	251	255	273	303	311
318	327	330	341	367	382	390	391	393	398
403	442	457	464	506	517	522	539	545	557
557	560	574	577	578	582	584	586	587	594
623	625	630	630	638	647	651	662	667	672
674	692	719	721	735	741	758	767	784	812
830	833	839	846	854	859	862	865	877	886
901	905	929	943	958	965	974	977	989	990

Os números com fundo verde 457, serão os números utilizados nos métodos de busca.

O que estaremos verificando aqui, é o número de comparações que cada método de busca precisa para encontrar determinado número.

OBS: O número de comparações é contado por cada IF que o programa é obrigado a passar. Não importa necessariamente entrar no escopo do IF, então, mesmo se o programa comparou mas não entrou no IF, comparação++;

Utilizaremos:

- O vetor de 100 posições;
- > P = posição em que determinado número está no vetor;
- ➤ N = número a ser buscado;

Como podemos ver no gráfico, a busca sequencial pode ser ótima e péssima, dependendo de onde está o número a ser buscado.

No seu melhor caso, onde N=4, o resultado é excelente, em apenas uma comparação ele retornará a posição 0. Porém, se N=990, ele terá que percorrer todo o vetor para achá-lo, sendo o tamanho do vetor o número de comparações que será realizada. E isso só piora, conforme o tamanho do vetor aumenta.

Já na busca binária, os resultados são bem diferentes!

Utilizando uma abordagem mais inteligente, de dividir para conquistar, o algoritmo fará no seu pior caso (onde N = 990) 20 comparações, uma melhora extremamente considerável. No melhor, quando N = 557, ou seja, quando na primeira iteração, o número buscado já se encontra exatamente no meio do vetor, apenas 2 comparações serão feitas.

O Gráfico abaixo, mostra a porcentagem de casos que cada método de busca se sobressai acima do outro.

- A busca sequencial, com apenas 16% dos casos, só é melhor que a binária, nas duas primeiras posições buscadas.
- > Já a binária, mostra que em 84% dos casos, será melhor que sua concorrente, ou seja, em 11, de 15 casos testados, a busca binária prova que será mais eficiente.

