The result is shown as follows:

par	AB	RMS	par	AB	RMS
μ_1	0.033	0.079	λ_{21}	0.036	0.245
μ_2	0.043	0.094	λ_{31}	0.192	0.214
μ_3	0.006	0.085	λ_{52}	0.004	0.023
μ_4	0.054	0.032	λ_{62}	0.032	0.149
μ_5	0.010	0.040	λ_{72}	0.102	0.179
μ_6	0.001	0.145	λ_{93}	0.010	0.086
μ_7	0.078	0.096	b	0.095	0.163
μ_8	0.039	0.056	γ_1	0.017	0.038
μ_9	0.028	0.029	γ_2	0.075	0.112

par	AB	RMS	par	АВ	RMS
$\psi_{\epsilon 4}$	0.034	0.121	ψ_δ	0.024	0.059
$\psi_{\epsilon 5}$	0.006	0.059	ϕ_{11}	0.034	0.130
$\psi_{\epsilon 6}$	0.038	0.096	ϕ_{22}	0.027	0.106
$\psi_{\epsilon7}$	0.077	0.040	ϕ_{12}	0.020	0.113

2. a. Let $y_i^* = (y_{i1}^*, y_{i2}^*, y_{i3}^*)^T$ be the lovere continuous random vector corresponds to the dichotomous random vector $(z_{i1}, z_{i2}, z_{i5})^T$. For $y_i = (y_{ik}, y_{i3}, y_{i3})^T$, and denote And for k=4,...,7. Jik $\propto \exp\{y_{ik}v_{ik}-l_{q}(i+e^{v_{ik}})\}$ with $b(v_{ik})=l_{q}(1+e^{v_{ik}})$ and $v_{ik}=l_{q}\frac{P_{ik}}{1-P_{ik}}$. Then the measurement equation i.

And the structural equation is.

$$V_{(a)}^{i} = L_{(a)} z_{(a)}^{i} + z_{(a)}^{i}$$

To tackle the identification publish, we fix $\alpha_{m,1}^{(9)}$ and $\alpha_{m,bm}^{(9)}$ are preasigned values. And we can salece the first group as the reference group, and identify is ordered corresponded variables by tixing both end throtholds as above. For any m, and 9 ± 1 , we have impose the restriction:

Abo, we doubt precision some fixed value to some appropriate postions of $\Lambda_{E}^{(q)}$, $\Lambda_{K}^{(q)}$, the (1.1) elements of $\Lambda_{K}^{(q)}$ is 1.

- b. 1) Prior distribution for nonconstrained parameters in different groups are naturally assumed to be independent. So, in estimating the accostrained parameters, we need to specify its own prior distribution, and the date in the corresponding group one used.
 - For constrained parameters, only are plin distribution for these constrained parameters is used needed, and all the data in the groups should be contined in the estimation. Under this situation, we may not take a joint prior distribution for the forther loading matrix and the unique variones of the error measurement.

C. To In Bayesian analysis. testing invariance over the groups is equivalent to model comparison. Therefore, we can use Bayes factor or DIC for testing the invariance. Take Boyes factors as example.

$$B_{12} = \frac{P(X, Z \mid M_1)}{P(X, Z \mid M_2)}$$

where (X,Z) is the observed down ser. Let t be a path in [0,1] to link M_1 and M_2 , and $0=too,< t_{(1)}<\cdots< t_{(S)}< t_{(C+1)}=1$ be tixed grids in [0,1]. $U(\theta,\alpha,Y,\Omega,X,Z,t)=d\log p(Y,\Omega,X,Z,\theta,\alpha,t)/dt$

Then.
$$\log \hat{\beta}_{hz} = \frac{1}{2} \sum_{s=0}^{2} (t_{(SH)} - t_{(s)}) \left(\hat{U}_{(SH)} + \hat{U}_{(s)} \right),$$
where $\hat{U}_{(s)} = \frac{1}{3} \sum_{j \geq 1} U(\theta^{(j)}, \alpha^{(j)}, Y^{(j)}, X, z, t_{(s)})$

as gare production. The is not as he would be reallest as me in it ago