Minicurso Introdução à Simuladores Robóticos: Robótica Móvel com CoppeliaSim

Mateus Pincho de Oliveira Breno Henrique Martins

Universidade Federal de Campina Grande - UFCG Departamento de Engenharia Elétrica - DEE Capítulo Estudantil IEEE RAS UFCG

6 de junho de 2024

Duas tarefas são centrais quando estamos tratando de robôs móveis:

Duas tarefas são centrais quando estamos tratando de robôs móveis:

Navegação

- ► Tarefa com alto nível de complexidade
- Responsável pelo planejamento e tomada de decisões
- ► Entender (Perceber) o mundo a sua volta

Duas tarefas são centrais quando estamos tratando de robôs móveis:

Navegação

- Tarefa com alto nível de complexidade
- Responsável pelo planejamento e tomada de decisões
- Entender (Perceber) o mundo a sua volta

Locomoção

- Tarefa com baixo nível de complexidade
- Responsável por responder aos comandos
- Atuar sobre o espaço

Um robô móvel irá atuar e perceber o espaço em sua volta a partir de diferentes mecanismos de locomoção.

 Robôs móveis são projetados tendo em visto o tipo de ambiente em que eles irão se locomover

Figura: Diferentes tipos de robôs móveis

Para entender a robótica móvel e saber como controlar robôs móveis, é preciso primeiro entender como eles se movimentam.

Para entender a robótica móvel e saber como controlar robôs móveis, é preciso primeiro entender como eles se movimentam.

Cinemática

- Ramo responsável por estudar como que os robôs se locomovem
- ► Não considera forças e torques (Dinâmica)
- Considerar o robô como um sistema mecânico

A cinemática de um robô é dividida em duas categorias:

A cinemática de um robô é dividida em duas categorias:

Cinemática Direta

Dado os valores das variáveis de controle, qual é a velocidade final do robô?

Para o caso de estudo deste minicurso, as variáveis de controle são as velocidades de giro das rodas do robô

A cinemática de um robô é dividida em duas categorias:

Cinemática Inversa

Dada a velocidade final do robô, qual deve ser os valores das variáveis de controle?

Cinemática - Conceitos-chave

Posição

Vetor posição do Robô

$$\mathbf{X} = (x, y)$$

Configuração - Pose Orientação do Robô no espaço

$$q = (x, y, \theta)$$

Cinemática - Conceitos-Chave

Figura: Posição e Orientação de um robô no espaço

Modelo Cinemático

Como calcular as velocidades do robô em função da velocidade de seus atuadores?

Existe um modelo matemático que nos responde esta pergunta!

Robô de tração diferencial

Este é o mecanismo mais simples de movimentação.

- Duas rodas motrizes paralelas mais uma roda boba para prover equilíbrio.
- A pose do robô será função das velocidades de giro do motor.

Modelo cinemático

Velocidades angulares de roda ω_R e ω_I

Velocidades lineares de rpda

 V_R e V_L

Figura: Modelo simplificado do nosso robô

Podemos assumir que o nosso robô se movimenta em torno de uma trajetória circular:

- ▶ Para ir para frente: $R = \infty$
- Para girar em torno do próprio eixo: R = 0
- ▶ Para curvas: $V_L <> V_R$

Lembre-se que $v = \omega \cdot r$. Como as rodas estão sobre o mesmo eixo, o robô possui a mesma velocidade angular. Logo:

$$V_R = \omega \cdot \left(R + \frac{L}{2}\right)$$

$$V_L = \omega \cdot \left(R - \frac{L}{2}\right)$$

Lembre-se que $v = \omega \cdot r$. Como as rodas estão sobre o mesmo eixo, o robô possui a mesma velocidade angular. Logo:

$$V_R = \omega \cdot \left(R + \frac{L}{2}\right)$$

$$V_L = \omega \cdot \left(R - \frac{L}{2}\right)$$

Atenção!!

Este ω não se refere à velocidade de giro das rodas, mas sim do robô como um sistema mecânico completo.

Substituindo e resolvendo para ω :

$$\omega = \frac{V_R - V_L}{L} = \frac{r \cdot (\omega_R - \omega_L)}{L}$$

$$v = \frac{V_R + V_L}{2} = \frac{r \cdot (\omega_R + \omega_L)}{2}$$

Finalmente!

Encontramos agora as velocidades do robô em função

Figura: Representação do modelo cinemático no plano 2D

O modelo cinemático completo é dado por:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} r\cos\theta/2 & r\cos\theta/2 \\ r\sin\theta/2 & r\sin\theta/2 \\ r/L & -r/L \end{bmatrix} \begin{bmatrix} \omega_R \\ \omega_L \end{bmatrix}$$

Conclusões

A partir de dados fornecidos pelo robô, é possível calcular a velocidade de translação e rotação do corpo.

E se fosse ao contrário?

E se fosse ao contrário?

Cinemática inversa

Qual deveria ser as velocidades necessárias nas rodas para que o robô se movimente com uma determinada velocidade?

E se fosse ao contrário?

Cinemática inversa

Qual deveria ser as velocidades necessárias nas rodas para que o robô se movimente com uma determinada velocidade?

$$\omega_R = \frac{2 \cdot v + \omega \cdot L}{2 \cdot r}$$

$$\omega_L = \frac{2 \cdot v - \omega \cdot L}{2 \cdot r}$$

Modelo cinemático - Restrições do modelo

Existe uma restrição imposta ao modelo cinemático de tração diferencial:

Modelo cinemático - Restrições do modelo

Existe uma restrição imposta ao modelo cinemático de tração diferencial:

Restrição não-Holonômica

Impede a velocidade ou aceleração instantânea em certas direções.

Modelo cinemático - Outros modelos cinemáticos

Figura: Rodas holonômicas

Figura: Modelo de robô holonômico

Como é possível aplicarmos as equações do modelo cinemático para controlar o nosso robô?

- ► Mostramos apenas o robô se movimentando
- Como podemos unir o modelo que virmos ontem com uma aplicação prática?

Hoje nós iremos estudar sobre o controle cinemático! O que é isso ?

- Para que seja possível que levemos nosso robô a um estado desejado, precisamos controlar o seu estado atual e o levar para o estado desejado
- ► Controle de manutenção vs. Controle de completude

Podemos ver o controle da seguinte forma:

Ou de uma forma mais matemática:

$$y = h(x, u)$$

Sendo:

- y a saída do meu sistema
- x o estado atual do meu sistema
- u a entrada do meu sistema

Controle cinemático - Malha Aberta vs. Malha Fechada

Existem dois tipos de controle:

Figura: Controle de malha aberta

Figura: Controle de malha fechada

Controle cinemático - Controlador On & Off

Sua estratégia de controle é baseada em ligar e desligar de acordo com as medições feitas pelo sistema.

- Sensor que mede diretamente a variável de estado desejada
- Atuador que pode aumentar ou diminuir a variável de estado
- Ação constante contrária ao problema

Controle cinemático - Controlador On & Off

Figura: Representação da ação do controlador na cena do Coppelia

Percebe-se que este tipo de controle é muito ineficiente e não atinge a estabilidade

► Como melhorar?

Controle cinemático - Controle Proporcional

É preciso que o meu controlador atue de forma proporcional ao que o meu sensor está medindo!

Erro

Diferença entre o estado atual e o estado desejado

$$e = r - b$$

Controle cinemático - Controle Proporcional

O objetivo do nosso controlador proporcional será de minimizar este erro!

 Quanto mais o nosso erro, mais o nosso controlador deve atuar (e vice-versa!)

A entrada de controle u é dada por:

$$u = K_p \cdot e$$

 K_p é a nossa constante de proporcionalidade

Controle Cinemático - Controlador Proporcional

Surgem mais alguns problemas...

Oscilações

Pode não ser possível controlar totalmente as oscilações apenas ajustando-se o ganho proporcional.

Universidade Federal de Campina Grande IEEE Student Branch

Controle Cinemático - Controlador Proporcional

Termo derivativo

Adicionaremos um novo termo na nossa entrada de controle que será responsável por dissipar esta energia acumulada do sistema.

$$u = K_p \cdot e + K_d \cdot \frac{de}{dt}$$

Controle Cinemático - Controlador Proporcional

Surge novos problemas...

Perceba que o sistema ainda não é estável

Como podemos fazer o erro convergir para zero?

Solução

Acumular (somar) o erro ao longo do tempo e então compensá-lo quando se tornar significativamente grande.

Controle Cinemático - Controlador Proporcional

Adicionar um termo que acumula o erro durante o tempo e o corrige!

► Termo integrativo

Juntando todos os termos, nossa entrada de controle é:

$$u = K_p \cdot e + K_i \cdot \int e \cdot dt + K_d \cdot \frac{de}{dt}$$

Controle Cinemático - Visão geral

Figura: Visão geral do controlador PID

Como programar um controlador para levar o nosso robô de um ponto à outro ?

Considerando um certo robô e seu modelo cinemático, o objetivo é determinar um conjunto de entradas (velocidades) apropriadas para levar ele de uma posição/configuração inicial até uma final?

Resolvendo este problema em malha aberta

Mas...

- ► E se o caminho fosse mais complexo?
- Não é possível calcular com precisão todos estes caminhos que o robô deverá fazer
- ► Desconsidera desvios e derrapagens

Figura: Visão Geral do nosso Problema A Student Dispero de la Ele Robotica & Automation Society

Transformação

Iremos transformar o nosso problema de coordenadas cartesianas para coordenadas polares

Quais informações nosso controlador precisa saber?

Posição

Para decidir a velocidade do veículo

Direção

Para alinhar o veículo com a posição alvo

Orientação

Para ajustar ao ângulo final desejado

Seja α o ângulo entre o eixo X_R e o vetor \hat{x} que liga a origem do referencial do robô (centro do eixo) até a posição alvo.

Se α pertence ao intervalo de $-\frac{\pi}{2}$ até $\frac{\pi}{2}$, o erro da posição do robô no plano polar será:

$$\rho = \sqrt{\Delta x^2 + \Delta y^2}$$

$$\alpha = -\theta + atan2(\Delta x, \Delta y)$$

$$\beta = \theta_G - atan2(\Delta x, \Delta y)$$

Temos então a seguinte lei de controle:

$$v = K_{\rho} \cdot \rho$$

$$\omega = K_{\alpha} \cdot \alpha + K_{\beta} \cdot \beta$$

Mas lembre-se que:

$$\omega_{R} = \frac{2 \cdot v + \omega \cdot L}{2 \cdot r}$$

$$\omega_{L} = \frac{2 \cdot v - \omega \cdot L}{2 \cdot r}$$

E se o goal estiver átras do robô?

Redefinimos a nossa frente! v = -v

Obrigado!

Mateus Pincho de Oliveira Breno Henrique Martins

Universidade Federal de Campina Grande - UFCG Departamento de Engenharia Elétrica - DEE Capítulo Estudantil IEEE RAS UFCG

6 de junho de 2024

