Lösung der Aufgabe 1

a)
$$r \cdot p = \frac{h}{2\pi}$$
, also $p = \frac{h}{2\pi \cdot r}$;

$$E_{kin} = \frac{mv^2}{2} = \frac{(mv)^2}{2m} = \frac{p^2}{2m} = \frac{1}{2m} \cdot (\frac{h}{2\pi \cdot r})^2 = \frac{h^2}{8\pi^2 m \cdot r^2} \quad \text{und } m = m_e$$

$$\begin{split} b) \quad E(r) &= E_{kin} - E_{pot} = -\frac{h^2}{8\pi^2 m_e r^2} - \frac{1}{4\pi\epsilon_o} \cdot \frac{e^2}{r} \\ &= \frac{dE}{dr} = \frac{h^2}{8\pi^2 m_e} \cdot (-\frac{2}{r^3}) - \frac{e^2}{4\pi\epsilon_o} \cdot (-\frac{1}{r^2}) = \frac{-2h^2\epsilon_o + e^2\pi \cdot m_e \cdot r}{8\pi^2 m_e r^3\epsilon_o} \\ &= \frac{dE}{dr} = 0 : -2h^2\epsilon_o + e^2 \cdot 2\pi m_e \, r = 0 \\ &\Rightarrow \qquad r = r_o = \frac{h^2}{\pi m_e e^2} = \frac{(6.626 \cdot 10^{-34})^2 \cdot 8.854 \cdot 10^{-12}}{\pi \cdot 9.109 \cdot 10^{-31} \cdot (1.602 \cdot 10^{-19})^2} = 5.293 \cdot 10^{-11} \, \, \text{m} \end{split}$$

$$E(r_0) = -2,179 \cdot 10^{-18} \text{ J} = E_0$$

c)
$$r_1 = r_o - 0.035 \cdot r_o = 0.965 \cdot r_o = 5.108 \cdot 10^{-11} \text{ m}$$

 $E(r_1) = -2.176 \cdot 10^{-18} \text{ J} = E_1$ $\Delta E = E_1 - E_o = 3 \cdot 10^{-21} \text{ J}$
 $\Delta E_{ges} = N_A \cdot \Delta E = 6 \cdot 10^{26} \cdot 3 \cdot 10^{-21} = 1.8 \cdot 10^6 \text{ m}^3$

$$V_o = N_A \cdot \frac{4}{3} \pi r_o^3 = 3.74 \cdot 10^{-4} \text{ m}^3$$

 $\Delta V = 0.1 V_o = 3.74 \cdot \text{k} \cdot 10^{-5} \text{ m}^3$

$$\Delta E = \overline{p} \cdot \Delta V$$
 $\overline{p} = \frac{\Delta E}{\Delta V} = 4.8 \cdot 10^{10} \text{ Pa} = 0.48 \text{ Mbar}$

Lösung der Aufgabe 2:

a)
$$P = \frac{U^2}{R}$$
, $R_B = \frac{U^2}{P} = \frac{230^2}{100} \Omega = 529 \Omega = R_{3000^\circ}$

$$J_B = \frac{U}{R_B} = k0,435 \text{ A}$$

$$R = \rho \cdot \frac{\ell}{A} \text{mit} \quad \rho_{\text{Wolfram}20} = 5,3 \cdot 10^{-8} \quad \text{und} \quad \rho_{\text{Wolfram}3000} = 113 \cdot 10^{-8} \text{ (FoSa S.177)}$$

$$\text{also folgt} \quad \frac{R_E}{R_B} = \frac{5,3 \cdot 10^{-8}}{113 \cdot 10^{-8}} = 0,0469...; R_E = 0,0469 \cdot 529 \Omega = 24,81... \Omega$$

$$J_E = \frac{U}{R_B} = 9,27 \text{ A} \qquad \text{Einschaltstrom}$$

$$J_E = \frac{U}{R_E} = 9,27 \text{ A}$$
 Einschaltstrom

b)
$$P = A \sigma T^4$$
 (Stefan-Bolzmann)

$$A = \frac{P}{\sigma T^4} = \frac{100}{5.67 \cdot 10^{-8} \cdot 0.3273^4} \quad m^2 = 1,54 \cdot 10^{-5} \text{ m}^2 = 15,4 \text{ mm}^2$$

c) wegen
$$2\pi R \ \ell = A$$
 und $\frac{\rho \ \ell}{r^2 \pi} = R$ ist $\frac{2\pi \, r}{A} = \frac{R \, r^2 \pi}{\rho}$ und damit
$$r^3 = \frac{A \rho}{2R \, \pi^2} = \frac{1,54 \cdot 10^{-5} \cdot 113 \cdot 10^{-8}}{2 \cdot 529 \cdot \pi^2} \quad , \quad r = 1,2 \cdot 10^{-5} \ m = 0,012 \ mm; \quad \ell = \frac{A}{2\pi \, r} = 0,21 \ m$$

d)
$$U = 12 \text{ V}$$
; $R_B = \frac{U^2}{P} = 1,44 \Omega$; $A = 1,54 \cdot 10^{-5} \text{ m}^2$
wie in c) $r^3 = \frac{1,54 \cdot 10^{-5} \cdot 113 \cdot 10^{-8}}{2 \cdot 1,44 \pi^2}$; $r = 8,5 \cdot 10^{-5} \text{ m}$
 $\ell = \frac{A}{2\pi r} = \frac{1,54 \cdot 10^{-5}}{2\pi \cdot 8.5 \cdot 10^{-5}} \text{ m} = 0,029 \text{ m} = 2,9 \text{ cm}$

Lösung der Aufgabe 3:

a) Affinitätsrichtung ist
$$\overrightarrow{PP'} = \begin{pmatrix} -4 \\ -6 \end{pmatrix} - \begin{pmatrix} 0 \\ 6 \end{pmatrix} = \begin{pmatrix} -4 \\ -12 \end{pmatrix} \propto \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Abbildungsgleichungen
$$x' = a_1x + b_1y + c_1$$

 $y' = a_2x + b_2y + c_2$

Abbildungsgleichungen $x' = a_1x + b_1y + c_1$ $y' = a_2x + b_2y + c_2$ Da der Ursprung auf der Affinitätsachse liegt, ist die Abbildung Ursprungsabbildung, d.h. $c_1 = c_2 = a_1x + a_2x + a_2x + a_3x + a_4x + a_5x +$

Abbildung des Punktes (0/6) :
$$-4 = 6b_1$$
 \rightarrow $b_1 = -\frac{2}{3}$ $b_2 = -1$

Die Gleichungen
$$x = a_1x - \frac{2}{3}y \Leftrightarrow (a_1 - 1)x - \frac{2}{3}y = 0$$
 (Fixpunktbedingung) $y = a_2x - y = 0$ ergeben beide die Gleichung der Fixpunktgeraden $x + 2y = 0$, also ist $a_2 = -1$ und

Die Abbildungsgleichungen lauten
$$x' = \frac{2}{3}x - \frac{2}{3}y$$

$$y' = -x - y$$
Umkehrabbildungen : aus $\frac{3}{2}x' = x - y$ und $y' = -x - y$ folgt
$$\begin{vmatrix} x = \frac{3}{4}x' - \frac{1}{2}y' \\ y = -\frac{3}{4}x' - \frac{1}{2}y' \end{vmatrix}$$

Einsetzen in die Gleichung des Kreises :
$$(\frac{3}{4}X' - \frac{1}{2}y')^2 + (-\frac{3}{4}X' - \frac{1}{2}y')^2 = 9$$

Man erhält $\frac{x^2}{8} + \frac{y^2}{18} = 1$, also eine Ellipse mit dem Mittelpunkt (0|0) den Halbachsen a = $2 \cdot \sqrt{2}$ und b = $3 \cdot \sqrt{2}$.

b)
$$x^2y' + 2xy = 0$$
 (homogene Gleichung)

$$y' = -\frac{2y}{x}$$
, also $\frac{dy}{y} = -\frac{2}{x}$

Die Integration ergibt :
$$\ln |y| = -2 \cdot \ln |x| + c = \ln \left| \frac{1}{x^2} \right| + \ln k = \ln \frac{k}{x^2}$$
 also $y = \frac{k}{x^2}$

$$y' = -\frac{2y}{x} - \frac{4}{x^2}$$
 (inhomogene Gleichung)

Man erhält als Tabelle für die Steigungen in den Gitternetzpunkten :

y∖x	0	1	2	3	4
-3	-	2	2	1.55	1.25
-2	-	0	1	0.88	0.75
-1	-	-2	0	0.22	0.25
0	-	-4	-1	-0.4	-0.3
1	-	-6	-2	-1.1	-0.8
2	-	-8	-3	-1.8	-1.3
3	-	-10	-4	-2.4	-1.8

die Funktion mit der Gleichung

$$y = \frac{\text{const}}{x^2} - \frac{4}{x}$$
Graph (TI-89):

Richtungsfeld:

Lösung der Aufgabe 4:

a) Definitionsbereich $D = \mathbb{C} \setminus \{1\}$

_ - ((·)

Fixpunkte: $z = \frac{Z + Z}{Z}$

$$z^2 - z = z + 1$$
 \Rightarrow $z^2 - 2z - 1 = 0$

Lösungen der Gleichung durch quadratisches Ergänzen:

$$z^2 - 2z + 1 = 2$$

 $(z-1)^2 = 2 \text{ cis } 0^\circ$

$$z - 1 = \sqrt{2}cis \ 0^{\circ}$$
 also $z_1 = \sqrt{2} + 1$

und z - 1 =
$$\sqrt{2}$$
cis 180° also z₂ = $-\sqrt{2}$ + 1

Umkehrfunktion

$$W = \frac{1}{z - 1}$$

$$(z - 1) \cdot w = z + 1$$

$$z \cdot w - z = w + 1$$

$$z \cdot (w - 1) = w + 1$$

$$z = \frac{w + 1}{w - 1}$$

Die Gleichung der Umkehrfunktion hat dieselbe

algebraische Form wie die Ausgangsfunktion.

b) Reelle Achse der z-Ebene : $z - \overline{z} = 0$; Umkehrabbildung eingesetzt :

$$\frac{w+1}{w-1} - \frac{\overline{w}+1}{\overline{w}-1} = 0$$

$$(w+1)\cdot(\,\overline{W}-1)-(\,\overline{W}+1)\cdot(w-1)=0$$

$$w \overline{W} - w + \overline{W} - 1 - w \overline{W} + \overline{W} - w + 1 = 0$$

$$2(\overline{W} - w) = 0$$

 $\overline{W} - w = 0$ Reelle Achse der w-Ebene

Die reelle Achse ist keine Fixpunktgerade, z.B. wird der Punkt z = 2 auf den Punkt w = 3 abgebildet? (Es gibt nur zwei Fixpunkte).

Imaginäre Achse der z-Ebene : $z + \overline{Z} = 0$; Umkehrabbildung eingesetzt :

$$\frac{W+1}{W-1} + \frac{\overline{W}+1}{\overline{W}-1} = 0$$

$$(w+1) \cdot (\overline{W}-1) + (\overline{W}+1) \cdot (w-1) = 0$$

$$w\overline{W}-w+\overline{W}-1+w\overline{W}-\overline{W}+w-1=0$$

$$2w\overline{W}=2$$

$$w\overline{W}=1$$
Einheitskreis der w-Ebene

c)
$$z_0 = 0$$
 $w_0 = \frac{0+1}{0-1} = -1$
$$z_1 = i \qquad w_1 = \frac{i+1}{i-1} = \frac{(i+1)^2}{i^2-1} = -\frac{1}{2} \cdot 2i = -i$$

$$z_2 = 2 \cdot i \qquad w_2 = \frac{2i+1}{2i-1} = \frac{-4+4i+1}{-4-1} = \frac{3}{5} - \frac{4}{5}i$$

$$z_3 = 3 \cdot i \qquad w_3 = \frac{3i+1}{3i-1} = \frac{-9+6i+1}{-9-1} = \frac{\frac{4}{5} - \frac{3}{5}i}{2}i$$

$$z_n = n \cdot i \qquad w_n = \frac{ni+1}{ni-1} = \frac{(1-n^2)+2n \cdot i}{-n^2-1}$$

d) Es ist
$$\lim_{n\to\infty} \frac{1-n^2+2ni}{-n^2-1} = \lim_{n\to\infty} \frac{\frac{1}{n^2}-1+\frac{2i}{n}}{-1-\frac{1}{n^2}} = 1$$

Die positive imaginäre Achse wird also auf den Halbkreis unterhalb der reellen Achse der w-Ebene abgebildet.

e)	<u>z-Ebene</u>	<u>w-Ebene</u>
	positive imaginäre Achse	Einheits-Halbkreis unter der reellen Achse
	reelle Achse	reelle Achse
	r > 1	r > 1
	0 ≤ r < 1	r ≤ -1
	-1 ≤ r < 0	-1 < r ≤ 0
	r < -1	0 < r < 1

Der Wert z = 1 + i wird auf den Wert $w = 1 - 2 \cdot i$ abgebildet.

Der erste Quadrant der z-Ebene wird als auf die unter der reellen Achse der w-Ebene liegende Halbebene abgebildet, ausgenommen die Werte im Einheitskreis der w-Ebene.

