Exercise 1: a simple example of the adjoint method

We consider the ordinary differential equation

$$\begin{cases}
-bu''(x) + cu'(x) = f(x) & x \in]0, 1[\\ u(0) = u(1) = 0
\end{cases}$$
(1)

We want to identify the two parameters b and c using an observation $u_{obs}(x)$.

Give a mathematical formulation for this inverse problem, and a method for solving it using an adjoint approach.

Exercise 2: control of the initial condition of an ODE with an adjoint method

Let the ordinary differential equation

$$\begin{cases} u'(t) = f(u(t)) & t \in]0, T[\\ u(0) = a \end{cases}$$
 (2)

We want to identify the initial condition a using an observation d of u(T).

Give a mathematical formulation for this inverse problem, and a method for solving it using an adjoint approach.

Exercise 3: control of the Burgers' equation

Let the Burgers' equation

$$\begin{cases}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = f & x \in]0, L[, t \in [0, T]] \\
u(0, t) = \psi_1(t) & t \in [0, T] \\
u(L, t) = \psi_2(t) & t \in [0, T] \\
u(x, 0) = u_0(x) & x \in [0, L]
\end{cases}$$
(3)

This equation can be interpreted as a 1-D version of the Navier-Stokes equations. Note the non-linear advection term.

1. We want to identify simultaneously the initial condition u_0 and the boundary conditions ψ_1, ψ_2 . We have observations $u_{\text{obs}}(x,t)$ in $L^2([0,L]\times]0,T[)$, and we want to minimize

$$J(u_0, \psi_1, \psi_2) = \frac{1}{2} \int_0^T \int_0^L (u - u_{\text{obs}})^2 dx dt$$

Write the optimality system leading to the computation of $u_0^*, \psi_1^*, \psi_2^*$.

2. We now assume that the diffusion coefficient ν is unknown. How is the optimality system modified?

Exercise 4: control of a diffusion coefficient

We consider the diffusion equation

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K(x) \frac{\partial u}{\partial x} \right) & x \in]0, 1[, t \in [0, T]] \\ u(0, t) = u(1, t) = 0 & \forall t \in [0, T] \\ u(x, 0) = u_0(x) \text{ given on } [0, 1] \end{cases}$$

$$(4)$$

The coefficient K is a function of $C^1(]0,1[)$, and is time independent.

Let $u_{\text{obs}}(x,t)$ an observation in $L^2(]0,1[\times]0,T[)$. K is supposed to be unknown, and we want to estimate it given the observation u_{obs} . Let:

$$J(K) = \frac{1}{2} \int_0^T \int_0^1 (u_K - u_{\text{obs}})^2 dx dt$$

where u_K is the solution (assumed to be unique) of Eq.(4). The optimal value K^* is determined by $J(K^*) = \min J(K)$.

- 1. Determine the optimality system leading to the estimation of K^* .
- **2.** Let $\Lambda = (\lambda_1, \dots, \lambda_n) \in \mathbf{R}^n$. We seek now for K(x) under the form: $K(x) = \sum_{i=1}^n \lambda_i e_i(x)$ where the e_i are given functions in $\mathcal{C}^1(]0,1[)$. J becomes a function of Λ . Give the expression of the gradient of J w.r.t. Λ .

Exercise 5: control with constraint

We consider the problem of the control of the initial condition, given a constraint. We want this initial condition to satisfy an additional condition, corresponding for instance to some physical equilibrium.

1. Let the Burgers' equation

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = f \qquad x \in]0, L[, t \in [0, T]]$$

with the initial condition $u(x,0) = u_0(x)$ and the boundary conditions u(0,t) = u(L,t) = 0. We want to control u_0 by minimizing the cost function

$$J(u_0) = \frac{1}{2} \int_0^T \int_0^L (u - u_{\text{obs}})^2$$

with the constraint of a null averaged value : $\int_0^L u_0(x) dx = 0$.

How can this problem be solved using a Lagrange multiplier?

2. The previous method is generalized to the following model (discretized in space):

$$\begin{cases} \frac{dX}{dt} = M(X) \\ X(t=0) = U \end{cases}$$

where the state variable X, of dimension n, represents the values of the variables at the model gridpoints. Thus X is a function from [0,T] to \mathbf{R}^n , which is assumed to be \mathcal{C}^1 . The observation is a given function Y_{obs} , from [0,T] to \mathbf{R}^m (X is not fully observed). The observation operator $H \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^m)$ (i.e. linear application from \mathbf{R}^n to \mathbf{R}^m) is assumed to be time independent. We define the cost function:

$$J(U) = \frac{1}{2} \int_{0}^{T} \|HX - Y_{\text{obs}}\|^{2}$$

and we want to minimize J(U) with the linear constraint GU = 0, where $G \in \mathcal{L}(\mathbf{R}^p, \mathbf{R}^n)$.

Find the optimality condition minimizing J and satisfying the constraint. (indication: use a Lagrange multiplier $\lambda \in \mathbf{R}^p$).

3. Another method, called penalty method, consists in defining the function

$$J_{\varepsilon}(U) = J(U) + \frac{1}{\varepsilon} \|GU\|^2$$

and minimizing $J_{\varepsilon}(U)$ without contrainst.

- **a.** Write the optimality conditions.
- **b.** What happens when ε tends to 0?
- **c.** How could this penalty method be applied to question 1?

Exercise 6: equivalence between Kalman filter and 4D-Var

We consider a dynamical system \mathbf{x} , in finite dimension, which is modelled by

$$\mathbf{x}^{t}(t_{k+1}) = \mathbf{M}(t_k, t_{k+1})\mathbf{x}^{t}(t_k) + \mathbf{e}(t_k)$$

where \mathbf{x}^t is the state vector (exponent ^t stands for true), and where the t_k are successive instants. The model M is linear. $e(t_k)$ is the forecast error (or model error) at time t_k . It is assumed to be unbiased, with a known covariance matrix \mathbf{Q}_k , and uncorrelated in time ($\mathbf{e}(t_k)$ and $\mathbf{e}(t_l)$ are independent for $k \neq l$).

Observations \mathbf{y}_k are available at time t_k , with an error ε_k , unbiased, and which covariance matrix is \mathbf{R}_k . These observations are linked to $\mathbf{x}(t_k)$ by the linear observation operator \mathbf{H}_k : $\mathbf{y}_k = \mathbf{H}_k \mathbf{x}^t(t_k) + \varepsilon_k \text{ with } E(\varepsilon_k \varepsilon_k^T) = \mathbf{R}_k$

With the usual hypotheses related to the independence of the errors, we can define the Kalman **filter** by the algorithm:

<u>Initialization</u>:

$$\mathbf{x}^a(t_0) = \mathbf{x}_b$$

$$\mathbf{P}^a(t_0) = \mathbf{P}_b$$

where \mathbf{x}_b is an approximation of the initial state, with \mathbf{P}_b the corresponding error covariance matrix.

Step k (forecast - correction):

$$\mathbf{x}^{f}(t_{k+1}) = \mathbf{M}(t_k, t_{k+1})\mathbf{x}^{a}(t_k)$$

$$\mathbf{P}^{f}(t_{k+1}) = \mathbf{M}(t_k, t_{k+1})\mathbf{P}^{a}(t_k)\mathbf{M}^{T}(t_k, t_{k+1}) + \mathbf{Q}_k$$
(KF1)

$$\mathbf{P}^{f}(t_{k+1}) = \mathbf{M}(t_k, t_{k+1})\mathbf{P}^{a}(t_k)\mathbf{M}^{T}(t_k, t_{k+1}) + \mathbf{Q}_k$$
 (KF2)

$$\mathbf{x}^{a}(t_{k+1}) = \mathbf{x}^{f}(t_{k+1}) + \mathbf{K}_{k+1} \left[\mathbf{y}_{k+1} - \mathbf{H}_{k+1} \mathbf{x}^{f}(t_{k+1}) \right]$$

$$\mathbf{K}_{k+1} = \mathbf{P}^{f}(t_{k+1}) \mathbf{H}_{k+1}^{T} \left[\mathbf{H}_{k+1} \mathbf{P}^{f}(t_{k+1}) \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1} \right]^{-1}$$

$$\mathbf{P}^{a}(t_{k+1}) = \mathbf{P}^{f}(t_{k+1}) - \mathbf{K}_{k+1} \mathbf{H}_{k+1} \mathbf{P}^{f}(t_{k+1})$$
(KF3)

(KF4)

$$\mathbf{K}_{k+1} = \mathbf{P}^{f}(t_{k+1})\mathbf{H}_{k+1}^{T} \left[\mathbf{H}_{k+1}\mathbf{P}^{f}(t_{k+1})\mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1} \right]^{-1}$$
 (KF4)

$$\mathbf{P}^{a}(t_{k+1}) = \mathbf{P}^{f}(t_{k+1}) - \mathbf{K}_{k+1} \mathbf{H}_{k+1} \mathbf{P}^{f}(t_{k+1})$$
 (KF5)

where exponents f et a respectively stand for *forecast* and *analysis*.

A variational approach to this inverse problem is the 4D-Var, which consists in minimizing

the cost function:

$$J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T P_b^{-1} (\mathbf{x}_0 - \mathbf{x}_b) + \frac{1}{2} \sum_{k=1}^{N} (\mathbf{y}_k - \mathbf{H}_k \mathbf{x}_k)^T \mathbf{R}_k^{-1} (\mathbf{y}_k - \mathbf{H}_k \mathbf{x}_k)$$

with
$$\mathbf{x}_k = \mathbf{x}(t_k) = \mathbf{M}(t_0, t_k)\mathbf{x}_0$$
.

The aim of this exercise is to demonstrate that, when the model is perfect $(\mathbf{Q}_k = 0, \forall k)$, the 4D-Var and the Kalman filter lead to the same estimation \mathbf{x}_N at the final time (and only at the final time!).

a. We consider a single step of the Kalman filter, with observations available at time t_1 . Demonstrate that \mathbf{x}_1^a is the value obtained by the minimization of

$$J_1(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{P}_b^{-1} (\mathbf{x}_0 - \mathbf{x}_b) + \frac{1}{2} (\mathbf{y}_1 - \mathbf{H}_1 \mathbf{x}_1)^T \mathbf{R}_1^{-1} (\mathbf{y}_1 - \mathbf{H}_1 \mathbf{x}_1)$$

b. We now consider two successive steps, with observations available at times t_1 and t_2 . We start by minimizing the function $J_1(\mathbf{x}_0)$ associated with the problem defined on $[t_0, t_1]$. Let \mathbf{x}_0^a the value corresponding to its minimum, and \mathbf{P}_0^a its error covariance matrix (inverse of the Hessian matrix at the optimum). We perform then a second minimization, using the results of the first minimization in a new background term:

$$J_2(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^a)^T (\mathbf{P}_0^a)^{-1} (\mathbf{x}_0 - \mathbf{x}_0^a) + \frac{1}{2} (\mathbf{y}_2 - \mathbf{H}_2 \mathbf{x}_2)^T \mathbf{R}_2^{-1} (\mathbf{y}_2 - \mathbf{H}_2 \mathbf{x}_2)$$

Show that: $J_1(\mathbf{x}_0) = J_1(\mathbf{x}_0^a) + \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^a)^T (\mathbf{P}_0^a)^{-1} (\mathbf{x}_0 - \mathbf{x}_0^a).$ Then show that: $J(\mathbf{x}_0) = J_1(\mathbf{x}_0^a) + J_2(\mathbf{x}_0).$

c. Give some form of equivalence between the Kalman filter and the 4D-Var.

Exercise 7: Control of the Lorenz model

The Lorenz model (1963) is a nonlinear system of three ordinary differential equations. It is very famous in meteorological and climate sciences as a simple example of a chaotic system having an attractor. Its expression is:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(y - x) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = \beta x - y - xz \\ \frac{\mathrm{d}z}{\mathrm{d}t} = -\gamma z + xy \end{cases} \quad t \in [0, T]$$

where x, y et z are functions of t, and where α , β and γ are fixed parameters. The initial condition is $(x(0), y(0), z(0)) = (x_0, y_0, z_0).$

1. Let suppose than we observe z(t) continuously during a time period [0,T]. We denote this (noisy) observation by $z_{\text{obs}}(t)$, and we define a cost function to be minimized

$$J_o(x_0, y_0, z_0) = \frac{1}{2} \int_0^T (z(t) - z_{\text{obs}}(t))^2 dt$$

We want to apply the adjoint method to get the expression of the gradient of J_o .

- **1.a.** What is the expression for the Gâteaux derivative of J_o ?
- **1.b.** What is the tangent linear model corresponding to the Lorenz model?
- **1.c.** Writing this tangent linear model in matrix form

$$\frac{\mathrm{d}\hat{X}}{\mathrm{d}t} = A\hat{X} \qquad \text{with } \hat{X}(t) = \begin{pmatrix} \hat{x}(t) \\ \hat{y}(t) \\ \hat{z}(t) \end{pmatrix} \text{ and } A \text{ a matrix},$$

find the associated adjoint system (be careful in the definition of the scalar product).

- **1.d.** What is the gradient of J_o ?
- 2. How are the preceding results modified if one controls the coefficients α, β, γ instead of the initial condition?
- 3. Another approach to determine the adjoint system in question 1 consists in considering the inverse problem as the minimization of $J_o(x, y, z, x_0, y_0, z_0)$ under the constraint that the Lorenz model equations be satisfied.
 - **3.a.** Write the Lagrangian function associated to this problem.
- **3.b.** Modify its expression by integration by part, and compute its gradient w.r.t. the different variables.
 - **3.c.** Show that, at the optimum, we get the adjoint model derived in question 1.

Exercise 8: control of the initial condition in a 1D shallow water model

We consider the linear shallow water equations:

$$\begin{cases} \frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} + ru = f \\ \frac{\partial h}{\partial t} + V \frac{\partial h}{\partial x} + D \frac{\partial u}{\partial x} + Gu = 0 \end{cases} x \in]0, L[, t \in]0, T[$$

with periodic boundary conditions, and with initial conditions $(u_0(x), h_0(x))$.

u is the velocity, h is the height of the free surface with regard to a reference level, V and D are constant values of velocity and surface height (around which the nonlinear shallow water equations were linearized), g is the gravity parameter, $r \geq 0$ is a friction coefficient, G is the topographic gradient, and f is an external forcing field.

We assume that
$$h$$
 is fully observed, and that u is not observed.
Let $J_o(u_0, h_0) = \frac{1}{2} \int_0^T \int_0^L (h - h^{\text{obs}})^2$

Use the adjoint method to estimate the gradient of J.