CS 413 Homework 6

Sterling Jeppson

March 17, 2021

Problem 9

a. Counterexample. Consider the graph G below:

Since the weight of the only edge adjacent to v_4 in G is 10, it must be that any spanning tree T of G has a bottleneck edge of weight no less than 10. It follows then that every spanning tree of G which has a maximum edge weight of 10 must be a minimum-bottleneck spanning tree. The tree with edge set $E = \{6, 9, 10\}$ is one such tree. However, by Kruskal's algorithm, the edge set of the minimum spanning tree of G is $E = \{6, 8, 10\}$. Hence, not every minimum-bottleneck tree T of G is a minimum spanning tree of G.

b. Proposition. Every minimum spanning tree of G is a minimum-bottleneck tree of G.

Proof. Define b(T) to be the weight of the bottleneck edge of a spanning tree of G. Now let T_1 be a minimum spanning tree of G and suppose that T_1 is not a minimum-bottleneck tree of G. Then there exists a spanning tree T_2 of G, such that $b(T_1) > b(T_2)$. Let e be the bottleneck edge of T_1 . Since T_1 is a tree, removing e will disconnect T_1 . Now using the remaining edges of T_1 , let V_1 be the subset of V(G) which are reachable from one end of e and let V_2 be the subset of V(G) which are reachable from the other end of e. It follows that e is the only edge in T_1 that connects V_1 and V_2 . Hence by the Cut Property, e has the minimum weight of all the edges in G which connects V_1 and V_2 . Since $e \notin T_2$ it must be that there is some other edge in T_2 that connects V_1 and V_2 . But we have just established that e is the edge of minimum weight in G that can do this. And since e is the bottleneck edge of T_1 it must be that e is the edge of e in e that e is the vertical e in e that e is the edge of e in e that e is the vertical e in e that e is the edge of e in e that e is the edge of e in e that e is the vertical e in e that e is the edge of e in e that e is the edge of e in e that e in e that e is the edge of e in e that e is the edge of e in e that e in e that e is the edge of e in e that e in e that e is the edge of e in e that e in e that e is the edge of e in e that e is the edge of e in e that e in e that e is the edge of e in e that e is the edge of e in e that e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e in e that e is the edge of e