Recuperatorio Primer Parcial Computación 3 - 2024

Simulación de Dinámica Molecular en 2D

En este ejercicio, simularemos un sistema de partículas en dos dimensiones utilizando el método de Monte Carlo y por qué no Euler también. Nuestro objetivo es observar la distribución de posiciones y velocidades de las partículas en una caja y calcular sus propiedades energéticas.

Consignas

- 1. Generar un conjunto de partículas en una caja 2D: Inicialmente, las partículas tienen posiciones y velocidades aleatorias.
- 2. Simular el comportamiento de las partículas en equilibrio térmico: Actualizar las posiciones y velocidades de las partículas durante la simulación.
- 3. Calcular propiedades energéticas: Determinar la energía cinética y potencial del sistema.
- 4. Visualizar los resultados: Mostrar la distribución de posiciones y velocidades de las partículas.

Descripcion del sistema y pasos a seguir

- 1. Posiciones: Las partículas están distribuidas aleatoriamente dentro de una caja bidimensional.
- 2. Velocidades: Las velocidades de las partículas siguen una distribución normal y están escaladas por la temperatura del sistema para simular equilibrio térmico.

Inicialización

- En el contexto de simulaciones de dinámica molecular y física computacional, la temperatura se usa a menudo en términos de kT, donde k es la constante de Boltzmann $1{,}38e23\frac{J}{K}$ y T es la temperatura en kelvins. Para simplificar los calculos, usaremos kt = 1.0^{-1}
- Generar n partículas con posiciones aleatorias en un rango de [-1, 1] en ambas direcciones (x, y), es decir, create dos vectores de n partículas con

¹Para simulaciones más precisas y completas, especialmente en aplicaciones reales, es necesario considerar las constantes físicas adecuadas y las unidades

las coordenadas aleatoreas x e y.

 Asignar a cada partícula una velocidad inicial aleatoria, multiplicada por la raíz cuadrada de la temperatura, es decir, nuevamente dos vectores con las velocidades en x e y para n partículas

Simulación

- Actualizar las posiciones del vector de partículas en función de sus velocidades actuales.
- Asumir que no hay fuerzas externas actuando sobre las partículas (modelo simplificado).
- No es necesario actualizar las velocidades de las partículas (ya que en este modelo, las velocidades permanecen sin cambios porque las fuerzas son cero, aunque podés dejarlo escrito en tu algoritmo).

Cálculo de Energías

Energía Cinética: Calculada como $(K = \frac{1}{2}mv^2)$, donde (v) es la velocidad de cada partícula.

Energía Potencial: Calculada como $(U = \frac{1}{2}kx^2)$, donde (x) es la posición de cada partícula en la caja.

Visualización

Graficar las posiciones finales de las partículas en la caja. No es necesario grafiques el paso a paso.

Mostrar la distribución de las componentes de velocidad en los ejes x e y.