UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería de Sistemas e Informática

"REPRESENTACIONES CROMOSÓMICAS"

PRÁCTICA S08

ALUMNO:

NILTON RAMOS ENCARNACION

DOCENTE:

• JOHAN MAX LOPEZ HEREDIA

NUEVO CHIMBOTE – PERÚ

2025

1. COMPARACIÓN DE REPRESENTACIONES

Comparación de Distribuciones de Notas por Representación

1.1 Representación Binaria

ESTRUCTURA			JRA		VENTAJAS	DESEMPEÑO		
Vector	de	117	bits	(39	Simple de implementar	Mayor d	lificultad	para
alumno	alumnos × 3 bits)				cumplir rest	ricciones (f	itness	
						inicial -100	0)	
					Directa interpretación (1 bit	Distribución	n desigual	(12-
					activo por alumno)	13-14 alum	nos)	
						Desviación	estándar	alta
						(0.7815)		

1.2 Representación Permutacional

ESTRUCTURA	VENTAJAS	DESEMPEÑO
Permutación de 39 índices	Convergencia más rápio	da Mejor adaptación a
	(mejora de 55.8% en fitnes	s) restricciones
	Perfecto equilibrio (13-13-	Mantiene diversidad
	alumnos)	genética efectiva

Baja desviació	ón estándar	
(0.0363)		

1.3 Representación Real

ESTRUCTURA	VENTAJAS	DESEMPEÑO	
Vector de 117 valores reales	Flexibilidad en asignaciones	Fitness estable pero inferior	
(pesos probabilísticos)		(-1.0911)	
	Buen equilibrio (13-13-13	Similar equilibrio que	
	alumnos)	permutacional (desv. 0.0363)	
	Permite ajustes finos (sigma	Mayor capacidad para	
	variable)	manejar restricciones	
		complejas	

1.4 Resultados y conclusiones de las actividades realizadas

La representación permutacional destacó como la más efectiva para este problema, logrando rápida convergencia y soluciones equilibradas, mientras que la representación real ofreció mayor flexibilidad para restricciones complejas, aunque con mayor costo computacional. La representación binaria básica mostró limitaciones, pero demostró ser adaptable en extensiones del problema (como 4 exámenes), donde se evidenció que el crecimiento exponencial en complejidad exige ajustes en parámetros y operadores genéticos especializados. En conclusión, la elección óptima depende del contexto: permutacional para equilibrio estricto, real para flexibilidad y binaria para extensiones con modificaciones adecuadas.

ACTIVI	DAD 1	ACTIVIDAD 2	ACTIVIDAD 3
Mejor	equilibrio:	Distribución perfecta (13-13-	Robustez ante variaciones de
Permutacional y Real (desv.		13)	sigma (0.05 a 0.2)
0.0363 vs 0.781	15 binaria)		

Convergencia más rápida:	Desviación estándar	Mantenimiento de equilibrio
Permutacional (55.8%	reducida (0.0363 vs 0.7242	(desv. constante 0.0363)
mejora en fitness)	original)	
Efectividad: La	Demostró que, con ajustes	Capacidad para explorar
representación binaria básica	adecuados, cualquier	espacio de búsqueda sin
falló en cumplir restricciones	representación puede ser	perder calidad
básicas	efectiva	
ACTIVIDAD 4	ACTIVIDAD 6	
Incorporó exitosamente	Requirió expansión a 156	
nuevas restricciones	bits	
Mantuvo equilibrio en	Logró equilibrio perfecto	
promedios	(10-10-10-9)	
Mostró la importancia de	Mostró que el aumento	
diseñar operadores	dimensional ralentiza	
específicos para restricciones	convergencia (51.7% mejora	
	en 50 gen)	

1.5 Reflexión sobre cuándo y por qué usar cada tipo de representación.

BINARIA	PERMUTACIONAL	REAL	
Problemas con restricciones	Problemas de ordenamiento	Problemas con restricciones	
simples	o asignación estricta	complejas	
Cuando la interpretación	Cuando se requiera	Cuando se necesite	
"uno-de-N" es natural	convergencia rápida	flexibilidad en asignaciones	
Espacios de búsqueda	Restricciones de tamaño fijo	Optimización multi-objetivo	
pequeños o medianos	por grupo		
Ejemplo: Asignación a	Ejemplo: Scheduling, rutas,	Ejemplo: Asignación con	
categorías mutuamente	distribución equilibrada	múltiples criterios	
excluyentes		ponderados	