Instructions:

- \bullet The exam is open book. Please finish the exam by your own.
- All the answers should be typed in so that your work will be fully evaluated.
- Please email your finished exam to Prof. Jianliang Qian (email: jqian@msu.edu) by 5PM, Friday, May 1st, 2020.
- No late exam will be accepted.

Page 1 of 9

1. (a) (5 points) For $A \in \mathbf{C}^{m \times n}$, show that

$$||A||_{\infty} \le \sqrt{n} ||A||_2.$$

(b) (5 points) Show that the inequality in part a) is sharp.

2. (10 points) Let $A \in C^{m \times n}$ with $m \ge n$. Show that A^*A is nonsingular if and only if A has full rank.

3. (10 points) Let $A \in C^{m \times m}$, and let \mathbf{a}_j be its jth column. Prove the following inequality:

$$|\det(A)| \le \prod_{j=1}^m \|\mathbf{a}_j\|_2.$$

- 4. (a) (5 points) State the Singular Value Decomposition (SVD) theorem for $A \in \mathbb{C}^{m \times n}$.
 - (b) (5 points) Let $A \in \mathbf{C}^{m \times n}$. Set $\sigma = ||A||_2$. Show that there are vectors $\mathbf{v} \in \mathbf{C}^n$ and $\mathbf{u} \in \mathbf{C}^m$ with $||\mathbf{v}||_2 = ||\mathbf{u}||_2 = 1$ such that $A\mathbf{v} = \sigma \mathbf{u}$.
 - (c) (5 points) Find an SVD of

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 2 \end{bmatrix}.$$

5. (15 points) Let

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 2 & 1 \\ 0 & 2 \end{bmatrix}.$$

Use the QR factorization of A to solve the least-squares problem

$$\min \|A\mathbf{x} - \mathbf{b}\|_2,$$

where $\mathbf{b} = [0, 0, 3, 2]^T$ with T indicating transpose.

6. (15 points) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite and n = j + k. Partition A into the following 2 by 2 blocks:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} is $j \times j$ and A_{22} is $k \times k$. Let R_{11} be the Cholesky factor of A_{11} : $A_{11} = R_{11}^T R_{11}$, where R_{11} is upper triangular with positive main-diagonal entries. Let $R_{12} = \left(R_{11}^{-1}\right)^T A_{12}$ and let $\tilde{A}_{22} = A_{22} - R_{12}^T R_{12}$.

- (a) Prove that A_{11} is positive definite.
- (b) Prove that

$$\tilde{A}_{22} = A_{22} - A_{21} A_{11}^{-1} A_{12}.$$

(c) Prove that \tilde{A}_{22} is positive definite.

7. (10 points) Show that if $A \in \mathbf{R}^{m \times m}$ is symmetric and positive definite, then solving the linear system $A\mathbf{x} = \mathbf{b}$ amounts to computing

$$\mathbf{x} = \sum_{i=1}^{m} \frac{c_i}{\lambda_i} \mathbf{v}_i,$$

where λ_i are the eigenvalues of A and \mathbf{v}_i are the corresponding eigenvectors, and c_i are some constants determined by \mathbf{b} and \mathbf{v}_i .

8. (15 points) Let $A \in \mathbf{C}^{m \times n}, m \geq n$, with linearly independent columns:

$$A=[\mathbf{a}_1,\cdots,\mathbf{a}_n].$$

Find eigenvalues and eigenvectors of the projection matrix

$$P = I - A(A^*A)^{-1}A^*.$$