Deep Reinforcement Learning method for Humanoid Kick Motion

Luckeciano C. Melo

Advisor: Prof. Dr. Adilson

Marques da Cunha

Co-advisor: Prof. Dr. Marcos R.

O. A. Máximo

Summary

- Introduction
- Background
- Deep Learning
- Reinforcement Learning
- Methodology
- Results
- Conclusions and Future Work

Introduction

Examples of Reinforcement Learning

AlphaGo seals 4-1 victory over Go grandmaster Lee Sedol

DeepMind's artificial intelligence astonishes fans to defeat human opponent and offers evidence computer software has mastered a major challenge

Google DeepMind's AlphaGo program triumphed in its final game against South Korean Go grandmaster Lee Sedol to win the series 4-1, providing further evidence of the landmark achievement for an artificial intelligence program.

Play Go very well and without human knowledge

SILVER *et al.* Mastering chess and shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

Introduction Examples of Reinforcement Learning

Humanoid Walk (and Parkour)

Introduction

Examples of Reinforcement Learning

OpenAl Five

Introduction Domain Description

Introduction

Kick - Keyframe

T1 T2 T3

Introdução Objective

Find optimal policies for humanoid robot kick motion through Deep Reinforcement Learning

Background

Reinforcement Learning System

Deep Learning

Neural Networks

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{data}} \log p_{model}(\mathbf{y}|\mathbf{x}) \qquad \nabla_{\mathbf{x}} z = \sum_{j} (\nabla_{\mathbf{x}} Y_{j}) \frac{\partial z}{\partial Y_{j}}$$

Reinforcement Learning Markov Decision Process

A Markov Decision Process, is a tuple (S, A, P, R, γ) , where:

- S is a set of states;
- A is a set of actions;
- P is the state transition probability matrix;
- \mathcal{R} is a reward function, i.e, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$; and
- γ is a discount factor, where $\gamma \in [0, 1]$.

Reinforcement Learning

Value Function

Return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Value Function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

Reinforcement Learning

Generalized Policy Iteration - Control

Policy evaluation Estimate v_{π}

e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$

e.g. Greedy policy improvement

Reinforcement Learning Algorithm: Proximal Policy Optimization

```
Algorithm 1 PPO, Actor-Critic Style

for iteration=1, 2, ... do

for actor=1, 2, ..., N do

Run policy \pi_{\theta_{\text{old}}} in environment for T timesteps

Compute advantage estimates \hat{A}_1, ..., \hat{A}_T

end for

Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT

\theta_{\text{old}} \leftarrow \theta

end for
```

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right]$$

SCHULMAN, J.; WOLSKI, F.; DHARIWAL, P.; RADFORD, A.; KLIMOV, O.Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. Dispon vel em: http://arxiv.org/abs/1707.06347.

Learning -> Optimization Problem

Hypothesis

- Let suppose a policy represented by a neural network with thousands of parameters, where:
 - There is a first training phase, supervised, that copies the keyframe motion to this neural network; and
 - There is a second training phase, using reinforcement learning, which optimizes the neural network motion
- Therefore, we will have a better policy than that based on keyframe representation.

Methodology

Approach - Hybrid Learning Model

Methodology

Approach - Reinforcement Learning

Reinforcement for "Naive" Reward - RNR

$$R(s) = u^T v$$

Reinforcement for Reference Motion - RRR

$$R(s) = w_{ref}^T(\pi - r)$$

- Reinforcement for Initial State Distribution -RISD
- Reinforcement for Early Termination RET

Methodology Supervised Learning - Overview

Methodology Supervised Learning - Dataset

Methodology Supervised Learning - Architecture

TABLE 4.1 – The Network Summary

Layer	Neurons	Activation	Parameters
Dense	75	LeakyReLU	130
Dense	50	LeakyReLU	3800
Dense	23	Linear	1173

Total Parameters 512

Methodology "Pure" Reinforcement Learning - Architecture

TABLE 5.2 – The Reinforcement Learning Network Summary.

Layer	Neurons	Activation	Parameters	
Dense	64	tanh	128	
Dense	64	tanh	4160	
Output	23	Linear	1495	
Noise	23	Linear	23	

Total Parameters	5806
------------------	------

Methodology

Exploration: Gaussian Noise

Methodology Infrastructure

Methodology

Infrastructure

Distributed Training

Methodology Infrastructure

Distributed Training

Computação em nuvem gratuita está disponível para os membros da Intel[®] AI Academy. Use o Intel[®] AI DevCloud equipado com processadores escalonáveis Intel[®] Xeon[®] para treinamento de aprendizado de máquina e aprendizagem profunda e necessidades de computação de inferência.

Methodology

Monitoring by Tensorboard

Distributed Training

Value	Step	Time	Relative
5.8126e+8	1.314k	Thu Oct 25, 15:39:12	5h 58m 47s
5.2756e+6	1.288k	Thu Oct 25, 07:00:38	5h 58m 9s

$$SpeedUp \approx \frac{5.81 * 10^8}{5.27 * 10^6} \approx 110.$$

Distributed Training

Distributed Training

- 740 millions of samples within 8 training hours
 - 92.5 millions of samples per hour
 - 21,4 days of training in real-time per hour of simulation

• 171 days of uninterrupted training in real-time.

Results - Supervised Training

Results Learned Kick

Keyframe

Neural Network

TABLE 5.1 - The Kick Comparison

Kick	Statistics			
Type	Accuracy (%)	Distance (m)		
105000000		Mean	Std	
Original Kick	64.5	8.92	3.82	
Neural Kick	52.6	7.16	4.06	

Bonus: It is possible to mimic motion from opponent teams!

Random policy

RNR

EpRewMean

FIGURE 6.3 - RNR Reward Curve by learning update

Results RNR

RRR

RNR + RRR

EpRewMean

RNR

RNR + RRR - Unbalanced

RNR + RRR + RISD

RNR + RRR + RISD

Resultados

"Supervised" Reinforcement

Results - "Supervised" Reinforcement

Other ideas for pure RL

- Consider the center of pressure from support foot on the ground; the more centralized, the more stable the kick should become;
- Consider the curve that the kick foot does in relation to the torso during the reference motion; and
- Consider torso's coordinates from the reference motion.

HLM + RNR

EpRewMean

HLM + RNR

Resultados

HLM + RNR + RET - Session 1

HLM + RNR + RET - Session 1

HLM + RNR + RET - Session 2

HLM + RNR + RET - Session 2

ì

Numeric Results

TABLE 6.3 – Kick Comparison - General Evaluation

Kick	Statistics				
Type	Accuracy (%)	Distance $X(m)$		Distance Z (m)	
86 (0.00)	3/00° 981 (9800 - 1.1	Mean	Std	Mean	Std
Original Kick	69.0	6.27	5.03	0.16	0.41
Learned Kick	63.0	3.06	4.22	0.09	0.17
HLM+RNR Kick	92.0	6.52	3.89	0.33	0.55
HLM+RNR+RET Kick	92.0	7.60	3.71	0.45	0.49

TABLE 6.4 – Kick Comparison - Effective Evaluation

Kick	Statistics				
\mathbf{Type}	Distance	ce X(m)	Distance Z (m)		
4 5	Mean	Std	Mean	Std	
Original Kick	9.05	3.44	0.21	0.49	
Learned Kick	4.82	4.46	0.12	0.21	
HLM+RNR Kick	7.07	3.55	0.36	0.57	
HLM+RNR+RET Kick	8.26	3.09	0.48	0.49	

Bonus: Nao with Toe

TABLE 6.4 – Kick Comparison - General Evaluation

Kick	Statistics				
Type	Accuracy (%)	Distance $X(m)$		Distance \mathbf{Z} (m)	
		Mean	Std	Mean	Std
Original Kick	69.0	6.27	5.03	0.16	0.41
Learned Kick	63.0	3.06	4.22	0.09	0.17
HLM+RNR Kick	92.0	6.52	3.89	0.33	0.55
HLM+RNR+RET Kick	92.0	7.60	3.71	0.45	0.49
Best Kick Toe	95.0	9.47	3.43	0.66	0.63

TABLE 6.4 – Kick Comparison - Effective Evaluation

Kick	Statistics				
\mathbf{Type}	Distance $X(m)$		Distance Z (n		
	Mean	Std	Mean	Std	
Original Kick	9.05	3.44	0.21	0.49	
Learned Kick	4.82	4.46	0.12	0.21	
HLM+RNR Kick	7.07	3.55	0.36	0.57	
HLM+RNR+RET Kick	8.26	3.09	0.48	0.49	
Best Kick Toe	9.96	2.75	0.69	0.63	

Bônus: Nao with Toe

Conclusions

- It is possible to transfer the knowledge from a keyframe motion to a neural network with a minor residual error;
- It is possible to optimize this neural network to perform better a objective (in this case, humanoid kick motion); and
- Pure RL technique lead to suboptimal policies.

Future Work

- Replicate the methodology from this work in other types of keyframe motion;
- Apply this learning framework in humanoid robot walk;
- Policy Optimization through reference motion improvement;
- Derive theoretically the relation between RL, SL and "Supervised" Reinforcement;
- Explore Intel DevCloud hardware; and
- Development of techniques that improve data efficiency and hyperparameter tuning.