Materials 5b - Revisiting the timing

Laura Gáti

October 15, 2019

Define some objects:

$$f_t = \hat{\mathbb{E}}_t(z_{t+1})$$
 one-period-ahead forecast formed at time t (1)

$$FE_t = z_{t+1} - f_t$$
 one-period-ahead forecast realized at time $t+1$ (2)

$$= ALM(t+1) - PLM(t+1) \tag{3}$$

$$\theta_t = \hat{\mathbb{E}}_{t-1}(z_t) - \mathbb{E}_{t-1}(z_t)$$
 CEMP's criterion (4)

$$= PLM(t) - \mathbb{E}_{t-1} ALM(t) \tag{5}$$

 $PLM: \hat{\mathbb{E}}_t z_{t+1} = \bar{z}_{t-1} + bs_t$

Morning: morning of time t available: $\mathcal{I}_t^m = \{\bar{z}_{t-1}, s_t, k_{t-1}, FE_{t-2}\}$

- 1. Form all future expectations using $PLM_1 \rightarrow z_t$ realized
- 2. Form $\theta_t \to k_t$ realized, $\to FE_{t-1}$ realized
- 3. Evening: Update $\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(FE_{t-1})$

where
$$FE_{t-1} = z_t - f_{t-1} = z_t - (\bar{z}_{t-2} + bs_{t-1})$$
, so:

$$\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(z_t - (\bar{z}_{t-2} + bs_{t-1}))$$

 \rightarrow evening of time t available: $\mathcal{I}^e_t = \{\bar{z}_t, s_t, k_t, FE_{t-1}\}$

Issue # 1: Updating of \bar{z} is a function of last period's \bar{z} , \bar{z}_{t-2} , (i.e. not the one available to use this morning). The formulation I've had so far, updating based on $\bar{z}_{t-1} + bs_{t-1}$ is what I've called an "assessment forecast": it combines the \bar{z}_{t-1} you used this morning with s_{t-1} you used yesterday morning. Is that legitimate?

The second issue will be about the criterion. Recall:

$$\theta_t = \hat{\mathbb{E}}_{t-1}(z_t) - \mathbb{E}_{t-1}(z_t)$$
$$= PLM(t) - \mathbb{E}_{t-1} ALM(t)$$

Recall: $PLM : \hat{\mathbb{E}}_t z_{t+1} = \bar{z}_{t-1} + bs_t$

$$ALM_{t} = \operatorname{stuff} \times \bar{z}_{t-1} + \operatorname{stuff} \times s_{t}$$

$$\theta_{t} = \bar{z}_{t-2} + bs_{t-1} - \mathbb{E}_{t-1}(\operatorname{stuff} \times \bar{z}_{t-1} + \operatorname{stuff} \times s_{t})$$

Issue #2: I had this issue before, but it's not clear what the RE of \bar{z} is. In particular, I don't know what the index of \mathbb{E}_{t-1} refers to: the morning of t-1 or the evening?

- If it's the morning, then $\mathbb{E}_{t-1}(\bar{z}_{t-1}) = \bar{z}_{t-2}$
 - $\rightarrow \theta_t = \mathcal{F}(\bar{z}_{t-2}, s_{t-1})$ where \mathcal{F} denotes "function"
- If it's the evening, then $\mathbb{E}_{t-1}(\bar{z}_{t-1}) = \bar{z}_{t-1}$

$$\rightarrow \theta_t = \mathcal{F}(\bar{z}_{t-2}, \bar{z}_{t-1}, s_{t-1})$$

The "evening" assumption isn't cool because the criterion depends on the intercept at several time periods, the "morning" assumption isn't cool because just like in Issue #1, we need access to yesterday morning's estimate of the intercept.