

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Equivalência entre Portas Lógicas
 - o Simplificação de Expressões Booleanas
- Exercícios de Simplificação de Expressões
 Booleanas
- o Formas de Onda
- Simplificação de Expressões Booleanas por Mapa de Karnaugh

Revisão

- o Equivalência entre Portas Lógicas
- o Simplificação de Expressões Booleanas

Equivalência entre Portas Lógicas

Motivação:

- 1. Otimização na utilização dos circuitos integrados
- 2. Redução do número de componentes
- 3. Minimização de custos

Considere a expressão a seguir:

$$S = [A + (B.C)] \cdot A$$

Como é o circuito dessa expressão?

Circuito da Expressão

$$S = [A + (B.C)] \cdot A$$

Circuito da Expressão

$$S = [A + (B.C)] . A$$

Equivalência entre Portas Lógicas

1. <u>Inversor a partir de uma Porta NAND:</u>

Ligando as entradas A e B em curto-circuito \Rightarrow A=B sempre \Rightarrow corresponde a um <u>INVERSOR</u>

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NAND:

Circuito da Expressão

$$S = [A + (B.C)] \cdot A$$

Usando a equivalência entre NOT e NAND pode-se eliminar o CI da porta NOT

Equivalência entre Portas Lógicas

2. <u>Inversor a partir de uma Porta NOR:</u>

Equivalência entre Portas Lógicas

2. Inversor a partir de uma Porta NOR:

Equivalência entre Portas Lógicas

3. Porta NOR a partir de AND e INVERSORES:

Equivalência entre Portas Lógicas

4. Porta OR a partir de NAND e INVERSORES:

Modificando 2º Teorema de DeMorgan $\Rightarrow \overline{A+B} = \overline{A}.\overline{B}$

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

Equivalência entre Portas Lógicas

5. Porta NAND a partir de OR e INVERSORES:

Equivalência entre Portas Lógicas

6. Porta AND a partir de NOR e INVERSORES:

Modificando 1º Teorema de DeMorgan $\Rightarrow \overline{A.B} = \overline{A+B}$

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Solução:

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Circuito correspondente à expressão simplificada (1 fio)

Aula de Hoje

- Resolução de Exercícios de Simplificação
- o Formas de Onda
- o Mapa de Karnaugh
- Simplificação de Expressões Booleanas por Mapa de Karnaugh

Exercícios

Simplifique as expressões:

- 1. $S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.\overline{C}+A.\overline{B}.C$
- 2. $S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.C+\overline{A}.B.\overline{C}+A.\overline{B}.\overline{C}+A.B.\overline{C}$
- 3. $S=(A+B+C).(\overline{A}+\overline{B}+C)$
- 4. $S=[(\overline{A.C})+B+D]+C.(\overline{A.C.D})$

Simplifique as expressões:

1.
$$S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.\overline{C}+A.\overline{B}.C$$

$$S=\overline{A}.\overline{C}.(\overline{B}+B)+A.\overline{B}.C$$

$$S=\overline{A}.\overline{C}+A.\overline{B}.C$$

Circuito Simplificado:

- · 3 Inversores
- · 2 ANDs
- · 1 OR de 2 entradas

Circuito Original:

- · 6 Inversores
- · 3 ANDs
- · 1 OR de 3 entradas

Simplifique as expressões:

2.
$$S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.C+\overline{A}.B.\overline{C}+A.\overline{B}.\overline{C}+A.B.\overline{C}$$

C em evidência

$$S=\overline{C}.(\overline{A}.\overline{B}+\overline{A}.B+A.\overline{B}+A.B)+\overline{A}.B.C$$

$$S=\overline{C}.[\overline{A}.(\overline{B}+B)+A.(\overline{B}+B)]+\overline{A}.B.C$$

$$S=\overline{C}.[\overline{A}+A]+\overline{A}.B.C$$

$$S=\overline{C}+\overline{A}.B.C$$

Circuito Original:

- · 9 Inversores
- · 5 ANDs
- · 1 OR de 5 entradas

Circuito Simplificado:

- · 2 Inversores
- · 1 AND
- · 1 OR de 2 entradas

Simplifique as expressões:

3.
$$S=(A+B+C).(\overline{A}+\overline{B}+C)$$

$$S=A.\overline{A}+A.\overline{B}+A.C+\overline{A}.B+B.\overline{B}+B.C+\overline{A}.C+\overline{B}.C+C.C$$

din

Simplifique as expressões:

3.
$$S=C.(A+B+\overline{A}+\overline{B}+1)+A.\overline{B}+\overline{A}.B$$

Simplifique as expressões:

4.
$$S=[(\overline{A.C})+B+D]+C.(\overline{A.C.D})$$

 $S=C.\overline{D}+\overline{A}.C$

Aplica DeMorgan
$$S = [(\overline{A} + \overline{C}) + B + D] + C.(\overline{A} + \overline{C} + \overline{D})$$

$$S = [\overline{A}.\overline{C}.\overline{B}.\overline{D}] + C.\overline{A} + C.\overline{C} + C.\overline{D}$$

$$S = A.C.\overline{B}.\overline{D} + C.\overline{A} + C.\overline{D}$$

$$S = C.\overline{D}[A.\overline{B} + 1] + \overline{A}.C$$
Distributiva
$$C.\overline{D} \text{ em evidência}$$

Formas de Onda

Mostram o comportamento de uma função lógica durante um intervalo de tempo

Exemplo:

Porta OR

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Tabela Verdade: Representa uma situação <u>estática</u>

Mostra todos os valores que as entradas podem
assumir, mas <u>não mostra a variação</u> desses valores
durante um intervalo de <u>tempo</u>

Formas de Onda

Representação dinâmica da função lógica

Exemplo: Porta OR

A	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Exercícios

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

1. Porta AND

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

1. Porta AND

A	В	5
0	0	0
0	1	0
1	0	0
1	1	1

Exercícios

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

2. Porta OR

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

2. Porta OR

A	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Exercícios

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

3. Porta NOR

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

3. Porta NOR

A	В	5
0	0	1
0	1	0
1	0	0
1	1	0

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

4. Porta NAND

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

4. Porta NAND

A	В	5
0	0	1
0	1	1
1	0	1
1	1	0

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

5. Porta XOR

Faça os diagramas de formas de onda da saída para os seguintes circuitos:

5. Porta XOR

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de Karnaugh

Mapa de Karnaugh

- É uma representação gráfica (visual) da tabela verdade
- É usado para simplificar expressões ou circuitos lógicos

Nomenclatura do Mapa de Karnaugh

	A	В	S
$A=0,B=0 \Rightarrow \overline{A} \ \overline{B}$	0	0	1
$A=0,B=1 \Rightarrow \overline{A} B$	0	1	0
$A=1,B=0 \Rightarrow A \overline{B}$	1	0	1
$A=1,B=1 \Rightarrow A B$	1	1	0

Mapa de Karnaugh para 2 variáveis

TV para 2 variáveis

A B S
 O O S₁
 O 1 S₂
 O S₃

54

Mapa de Karnaugh para 2 variáveis

Cada quadrante do Mapa de Karnaugh corresponde a uma linha da Tabela Verdade

Mapa de Karnaugh para 2 variáveis

TV para 2 variáveis

A	В	S
0	0	S ₁
0	1	S ₂
1	0	S ₃
1	4	

Mapa de Karnaugh para 2 variáveis

O "endereço" de cada quadrante só muda em 1 bit em relação ao seu vizinho

Exemplo

Caso 1:

Caso 2:

Caso 3:

Caso 4:

0	0	1
0	1	0
1	0	1
1	1	0

B

5

Expressão da Tabela Verdade $S=\overline{A}.\overline{B}+A.\overline{B}$

Simplificação da Expressão por <u>Álgebra de Boole</u>

$$S=\overline{A}.\overline{B}+A.\overline{B}$$

$$S=\overline{B}.(\overline{A+A})$$

Os dois termos da expressão diferem apenas pela variável A

Isso indica que a expressão independe de $A \Rightarrow pode-se$ eliminar A da expressão

Exemplo

Caso 1: 0 0 1

Caso 2: 0 1 0

Caso 3: 1 0 1

Caso 4: | 1

Expressão da Tabela Verdade $S=\overline{A}.\overline{B}+A.\overline{B}$

Simplificação da Expressão por Mapa de Karnaugh

No mapa, os termos adjacentes podem ser agrupados para simplificar a expressão (igual à Álgebra, mas de forma visual)

O termo agrupado elimina uma variável \Rightarrow S= \overline{B}

0

(B é o "endereço" do par de "1s", ou seja, a intersecção das variáveis que não " mudam")

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

1)

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

S=A.B+A.B+A.B

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5
0	0	1
0	1	1
1	0	1
1	1	0

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5	
0	0	1	
0	1	1	S=A.B+A.B
1	0	1	
1	1	0	

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5
0	0	1
0	1	0
1	0	1
1	1	1

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5	
0	0	1	
0	1	0	$S=\overline{A}.\overline{B}+A.\overline{B}+A.B$
1	0	1	
1	1	1	

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5
0	0	1
0	1	1
1	0	0
1	1	0

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5	
0	0	1	
0	1	1	$S=\overline{A}.\overline{B}+\overline{A}.B$
1	0	0	
1	1	0	

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	S
0	0	1
0	1	1
1	0	1
1	1	1

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

5)

A	В	5
0	0	1
0	1	1
1	0	1
1	1	1

S=A.B+A.B+A.B

Simplificação da Expressão por <u>Álgebra de Boole</u>

$$S=\overline{A}.(\overline{B}+B)+A.(\overline{B}+B)$$

$$S=\overline{A}+A$$

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

S=A.B+A.B

Termos Isolados (I) $I_1 = A\overline{B}$

Obs.: Não houve simplificação

S=AB+AB

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Formas de Onda
- Simplificação de Expressões Booleanas por Mapa de Karnaugh

Próxima Aula

o Mapa de Karnaugh de 3 e 4 variáveis

