Quesiti

Numeri reali e successioni

1. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto)

Siano $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ due successioni monotòne limitate. Posto $c_n=a_n+b_n$ per ogni $n\in\mathbb{N}$, allora la succession $(c_n)_{n\in\mathbb{N}}$:

- (A) è convergente.
- (в) è monotòna.
- (c) può essere divergente.
- (D) è illimitata.
- (E) Nessuna delle altre affermazioni è corretta.

2. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti)

Sia
$$E = \left\{ \frac{2n+1}{2n-1} \ : \ n \in \mathbb{N}, n \geq 1 \right\}$$
. Allora:

- \bigcirc E ha minimo.
- (B) E non ha massimo.
- (c) E non è limitato.
- \bigcirc inf E=1.
- (E) Nessuna delle altre affermazioni è corretta.

3. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Sia
$$a_n = \ln\left(\frac{n+15}{n+6}\right)$$
 e $A = \{a_n : n \in \mathbb{N}\}$. Allora:

- (A) $(a_n)_{n\in\mathbb{N}}$ è strettamente crescente.
- (B) $\lim_{n\to\infty} a_n > 0$.
- (c) A ammette un estremo inferiore, ma non un minimo.
- (d) A ammette un estremo superiore, ma non un massimo.
- (E) Nessuna delle altre affermazioni è corretta.

4. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

Quanto vale il
$$\lim_{n\to\infty} \left(e^n - n^{\sqrt{n}} \right)$$
?

- \bigcirc 0.
- (B) 1.
- (c) e.
- $(D) +\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

5. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti) Sia $(a_n)_{n\in\mathbb{N}}$ una successione reale. Per $n\to\infty$, $a_n\to\ell\in\mathbb{R}$ significa

- $(A) \ \forall \delta > 0 \exists M \in \mathbb{N} \text{ tale che } \forall n > M \text{ allora } \ell \delta < a_n < \ell + \delta.$
- (B) $\exists \delta > 0$ tale che definitivamente $\ell \delta < a_n < \ell + \delta$.
- (c) $\forall \epsilon > 0 \exists \delta > 0$ tale che $\forall n > \epsilon$ allora $\ell \delta < a_n < \ell + \delta$.
- (D) $\forall \epsilon > 0 \exists M \in \mathbb{N} \text{ tale che } \forall n > M \text{ allora } |a_n| < \ell + \epsilon.$
- (E) Nessuna delle altre affermazioni è corretta.

6. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto) Quale delle seguenti affermazioni è vera?

- (A) In \mathbb{R} , una successione di numeri razionali non può convergere a $\sqrt{3}$.
- (B) Non esiste alcuna successione di numeri irrazionali il cui limite sia 1.
- (c) In \mathbb{R} , ogni successione convergente è monotòna.
- (D) Se $x, y \in \mathbb{R}$, x < y, esiste $c \in \mathbb{Z}$ tale che x < c < y.
- (E) Nessuna delle altre affermazioni è corretta.
- 7. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto)

Siano $(a_n), (b_n)$ le successioni reali definite (per n intero positivo) nel modo seguente: $a_n = n \ln \left(1 - \frac{1}{n}\right), \quad b_n = \left(1 + \frac{1}{2n}\right)^n$.

- $(A) \lim_{n \to +\infty} a_n = -\infty e \lim_{n \to +\infty} b_n = 1$
- (B) $\lim_{n \to +\infty} a_n = 0$ e $\lim_{n \to +\infty} b_n = \frac{e}{2}$
- $\bigcirc \lim_{n \to +\infty} a_n = -1 \text{ e } \lim_{n \to +\infty} b_n = 0$
- (E) Nessuna delle altre affermazioni è corretta.
- 8. A.A. 2021/22, primo appello (2 affermazioni corrette, 2 punti)

Si consideri la successione $(a_n)_{n\in\mathbb{N}}$ dove

$$a_n = (1 - \sqrt{n}) \cdot \left(e^{\frac{1}{2n+1}} - 1\right).$$

- [A] $(a_n)_{n\in\mathbb{N}}$ è limitata superiormente.
- \Box $a_n > e$ definitivamente.
- [c] $(a_n)_{n\in\mathbb{N}}$ non è limitata inferiormente.
- \Box $a_n < \pi$ definitivamente.
- [E] $(a_n)_{n\in\mathbb{N}}$ è non negativa.

9. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali. Quale delle seguenti affermazioni è vera?

- (A) Se $\lim_{n\to\infty} a_n = 0$, allora vale definitivamente $a_n \ge 0$ oppure $a_n \le 0$.
- (B) Non esiste il limite $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right)$.
- (c) Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\frac{a_{n+1}}{a_n} \to 1$ per $n \to \infty$, allora sicuramente $(a_n)_{n \in \mathbb{N}}$ non tende a zero.
- (\mathbf{p}) Ogni successione definitivamente crescente ammette limite in \mathbb{R} .
- (E) Nessuna delle altre affermazioni è corretta.

10. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Sia $a_n = \ln\left(\frac{n^2+7}{n^2+n}\right)$ e $A = \{a_n : n \in \mathbb{N}, n \ge 1\}$. Allora:

- (A) $(a_n)_{n\geq 1}$ è strettamente crescente.
- (B) $\lim_{n\to\infty} a_n < 0$.
- (c) A ammette estremo inferiore, ma non minimo.
- (D) A ammette estremo superiore, ma non massimo.
- (E) Nessuna delle altre affermazioni è corretta.
- 11. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Sia $A = \{q \in \mathbb{Q} : q^2 \le 2\} \subset \mathbb{R}$. Allora:

- (A) A ha massimo e minimo.
- (B) A ha estremo superiore ma non ha massimo.
- (c) A non ha estremo inferiore.
- (D) A non è limitato.
- (E) Nessuna delle altre affermazioni è corretta.
- 12. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali. Chiamiamo $(a_n)_{n\in\mathbb{N}}$ regolare, se $\lim_{n\to\infty}a_n\in\mathbb{R}\cup\{\pm\infty\}$. Allora

- (A) se $(a_n)_{n\in\mathbb{N}}$ è regolare, allora $(a_n)_{n\in\mathbb{N}}$ è convergente
- (B) se $(a_n)_{n\in\mathbb{N}}$ è regolare, allora $(a_n)_{n\in\mathbb{N}}$ è illimitata
- (c) se $(a_n)_{n\in\mathbb{N}}$ è limitata, allora $(a_n)_{n\in\mathbb{N}}$ è regolare
- (D) se $(a_n)_{n\in\mathbb{N}}$ è illimitata, allora $(a_n)_{n\in\mathbb{N}}$ è regolare
- (\mathbf{E}) se $(a_n)_{n\in\mathbb{N}}$ è definitivamente decrescente, allora $(a_n)_{n\in\mathbb{N}}$ è regolare

13. A.A. 2022/23, prima prova (1 risposta corretta)

L'estremo superiore dell'insieme

$$A = \left\{ \left(1 + \frac{1}{n} \right)^{-n} : n \in \mathbb{N} \setminus \{0\} \right\}$$

- (A) Vale 1.
- \bigcirc Vale e.
- (c) Nessuna delle altre affermazioni è corretta.
- \bigcirc Vale $\frac{1}{2}$.
- \bigcirc Vale e^{-1} .

14. A.A. 2022/23, primo appello (1 risposta corretta)

Il limite

$$\lim_{n \to +\infty} \ln \left(\frac{1}{n} + 1\right) \sin(n)$$

- (A) vale 0.
- (B) vale $\frac{1}{2}$.
- (c) vale 1.
- \bigcirc non esiste in \mathbb{R} .
- (E) Nessuna delle altre è corretta.

15. A.A. 2022/23, secondo appello (1 risposta corretta)

Per $n \in \mathbb{N}$, poniamo $I_n = \left[0, \frac{1}{n+1}\right]$ e $J = \bigcap_{n \in \mathbb{N}} I_n$ (intersezione di tutti gli I_n).

- \bigcirc J è l'insieme vuoto.
- (B) J contiene esattamente un elemento.
- \bigcirc J contiene infiniti elementi.
- \bigcirc Per ogni $n \in \mathbb{N}$ vale l'inclusione $I_n \subset I_{n+1}$
- (E) Nessuna delle altre affermazioni è corretta.

16. A.A. 2022/23, secondo appello (1 risposta corretta)

Definiamo le successioni in \mathbb{R} : $a_n = n \cdot \ln\left(1 + \frac{2}{n}\right)$; $b_n = \left(\frac{2n+1}{2n}\right)^{2n}$ $(n \ge 1)$. Poniamo: $a = \lim_{n \to +\infty} a_n$; $b = \lim_{n \to +\infty} b_n$.

- (A) $a = +\infty$ e b = 1.
- (B) a = 2 e b = 1.
- (c) a = 0 e $b = e^2$.
- (\mathbf{D}) a=2 e b=e.
- (E) Nessuna delle altre affermazioni è corretta.

17. A.A. 2022/23, terzo appello (1 risposta corretta)

Siano
$$a_n = \ln\left(\frac{n+2}{n+1}\right)$$
 e $A = \{a_n : n \in \mathbb{N}\}$. Allora

- $(A) \lim_{n \to +\infty} a_n > 0.$
- (B) $\{a_n\}_{n\in\mathbb{N}}$ è strettamente crescente.
- (c) A ammette un estremo inferiore, ma non un minimo.
- (D) A ammette un estremo superiore, ma non un massimo.
- (E) Nessuna delle altre affermazioni è corretta.

18. A.A. 2022/23, quarto appello (1 risposta corretta)

Consideriamo la successione
$$(a_n)_{n\in\mathbb{N}}$$
 con $a_n = \left(1 - \cos\left(\frac{1}{\sqrt{n+7}}\right)\right) \cdot \sqrt{n+6}$. Allora:

- (A) $a_n > \frac{1}{2}$ definitivamente.
- (B) $a_n < 1$ definitivamente.
- (c) $(a_n)_{n\in\mathbb{N}}$ non è limitata superiormente.
- (D) $(a_n)_{n\in\mathbb{N}}$ non è limitata inferiormente.
- (E) Nessuna delle altre affermazioni è corretta.

19. A.A. 2022/23, quinto appello (1 risposta corretta)

Sia
$$I_n = \left[1 - \frac{1}{n+1}, 1 + \frac{1}{n+1}\right], n \in \mathbb{N}$$
 e si consideri $J = \bigcap_{n \in \mathbb{N}} I_n$ (intersezione di tutti gli I_n). Allora

- (A) $J = \{0\};$
- $(c) J = \{1\};$
- \bigcirc J contiene infiniti punti;
- $\begin{picture}(t) \hline (t) \hline ($

Numeri complessi

20. A.A. 2020/21, prima prova in itinere $\,$ (1 affermazione corretta, 1 punto) L'insieme delle soluzioni dell'equazione in \mathbb{C}

$$z^3 = e^{\frac{i\pi}{2}}$$

- (A) è vuoto.
- (B) contiene infiniti numeri complessi.
- (c) se contiene il numero z_0 , allora contiene anche il numero

$$z_0 \cdot \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right).$$

- (D) non si può determinare esplicitamente.
- (E) Nessuna delle altre affermazioni è corretta.
- 21. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) Il numero $\left(\frac{1+i}{\sqrt{2}}\right)^{17}$ vale:
 - \bigcirc A $\frac{1+i}{\sqrt{2}}$.

 - $\bigcirc -\frac{1+\mathrm{i}}{\sqrt{2}}.$
 - $\bigcirc D \quad \frac{-1+i}{\sqrt{2}}.$
 - (E) Nessuna delle altre affermazioni è corretta.
- 22. A.A. 2020/21, primo appello (almeno 1 affermazione corretta, 2 punti) L'insieme delle soluzioni dell'equazione in $\mathbb C$

$$z^2 = |z| + 1$$

- A è vuoto.
- в è costituito da infiniti elementi.
- c è costituito da numeri puramente immaginari.
- \square giace sulla circonferenza di raggio $\frac{1+\sqrt{5}}{2}$ centrata nell'origine.
- 23. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti) Sia $A=\left\{z\in\mathbb{C}:\ 0\leq|z|\leq2,-\frac{\pi}{2}\leq\arg(z)<0\right\}$. Allora:
 - (A) $i \in A$.
 - (B) $e^{2\pi i} \in A$.
 - \bigcirc 1 i \in A.
 - \bigcirc $-1 i \in A$.

24. A.A. 2020/21, terzo appello (almeno 1 affermazione corretta, 2 punti)

Sia
$$A = \left\{ z \in \mathbb{C} : 1 \le |z| \le 2, -\frac{\pi}{3} \le \arg(z) \le \frac{\pi}{3} \right\}$$
. Allora:

- \land A contiene $(1-i)^2$.
- B A contiene $\left(\frac{1+i\sqrt{3}}{2}\right)^5$.
- c se A contiene z, allora contiene anche \overline{z} .

25. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

Nel campo dei numeri complessi, l'equazione $|z-1|=\overline{z}-\mathrm{i}$

- (A) ammette solo soluzioni reali.
- (B) non ammette soluzioni.
- (c) ha soluzioni reali con parte reale negativa.
- \bigcirc ammette solo la soluzione 1 i.
- (E) Nessuna delle altre affermazioni è corretta.

26. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto)

Poniamo $f : \mathbb{C} \to \mathbb{C}, \ f(z) = z^5$ per ogni $z \in \mathbb{C}$.

- (A) Esiste un elemento nel codominio che ha esattamente 3 controimmagini.
- (B) Esiste un elemento del codominio che ha infinite controimmagini.
- \bigcirc L'immagine di f è \bigcirc .
- \bigcirc f è invertibile.
- (E) Nessuna delle altre affermazioni è corretta.

27. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto)

Consideriamo il numero complesso $z = \frac{(1+i)^6}{(1-i\sqrt{3})^2}$.

- \bigcirc |z|=2
- \bigcirc arg $z = \frac{\pi}{4}$
- (E) Nessuna delle altre affermazioni è corretta.

28. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto) Definiti gli insiemi

$$A = \{ z \in \mathbb{C} : |z| \le 1, \ 0 < \text{Im}(z) \le \text{Re}(z) \}, \qquad B = \{ iz \in \mathbb{C} : z \in A \},$$

allora

- $\stackrel{\frown}{(\mathsf{A})} A$ è contenuto nel secondo quadrante.
- (B) B è contenuto nel terzo quadrante.
- (c) $A \cup B$ è contenuto nel semipiano superiore.
- \bigcirc $A \cup B$ è contenuto nel semipiano inferiore.
- (E) Nessuna delle altre affermazioni è corretta.
- 29. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto) Si consideri la seguente equazione nei numeri complessi:

$$z^2 + |z|^2 - 10 = 8 + 6i.$$

- (A) L'equazione ammette soluzioni $z_1 = 3$ e $z_2 = -3$.
- (B) L'equazione ammette soluzioni $z_1 = 3 + i$ e $z_2 = -3 i$.
- (c) L'equazione non ammette soluzioni in \mathbb{C} .
- (D) L'equazione ammette infinite soluzioni immaginarie.
- (E) Nessuna delle altre affermazioni è corretta.
- 30. A.A. 2021/22, secondo appello (1 risposta corretta, 2 punti) L'equazione |z|=z+1 in $\mathbb C$
 - (A) ammette almeno una soluzione reale.
 - (B) non ammette soluzioni.
 - (c) ammette almeno una soluzione puramente immaginaria.
 - (D) ammette infinite soluzioni.
 - (E) Nessuna delle altre affermazioni è corretta.
- 31. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto) Il numero complesso $z={\rm e}^{({\rm i}+2)^2}$ soddisfa:
 - \bigcirc |z|=1
 - \bigcirc |z| = e
 - (c) $\arg z = \frac{\pi}{3}$
 - \bigcirc arg z=4
 - (E) Nessuna delle altre affermazioni è corretta.

32. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Sia $A = \{z \in \mathbb{C} : 1 \le |z| \le 2, 0 \le \arg(z) \le \frac{\pi}{3}\}$ e $B = \{z \in \mathbb{C} : \operatorname{Re}(z) \le 0 \le \operatorname{Im}(z)\}$. Allora:

- (A) Se $z \in A$, allora $\overline{z} \in B$.
- (B) Se $z \in A$, allora $iz \in B$.
- (c) L'intersezione $A \cap \{iz : z \in B\}$ non è vuota.
- (D) L'intersezione $A \cap \{\overline{z} : z \in B\}$ non è vuota.
- (E) Nessuna delle altre affermazioni è corretta.

33. A.A. 2021/22, terzo appello (1 risposta corretta, 2 punti)

Si consideri l'equazione $z^4 = z \cdot (-4\sqrt{3} + 4i)$ in \mathbb{C} . Allora:

- (A) Se z_0 è una soluzione, allora anche $z_0 \cdot i$ è una soluzione.
- (B) Se z_0 è una soluzione, allora anche $z_0 \cdot \mathrm{e}^{\frac{2\pi}{3}\mathrm{i}}$ è una soluzione.
- (c) Tutte le soluzioni giacciono su una circonferenza centrata nell'origine.
- (\mathbf{D}) $2 \cdot e^{\frac{\pi i}{3}}$ è una soluzione.
- (E) Nessuna delle altre affermazioni è corretta.

34. A.A. 2021/22, quarto appello (1 risposta corretta, 2 punti)

Sia $A = \{z \in \mathbb{C} : |z + |z|| = |z - |z||\}$. Allora:

- $\widehat{A} A = \{ z \in \mathbb{C} : \operatorname{Im} z = 0 \}.$
- $(\mathbf{B}) \ A = \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \}.$
- (c) $A = \emptyset$.
- $(\mathbf{D}) A = \{ z \in \mathbb{C} : \operatorname{Re} z = \operatorname{Im} z \}.$
- (E) Nessuna delle altre affermazioni è corretta.

35. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Si consideri l'equazione $|z^4|+1-2\bar{z}^2=0$ in $\mathbb C$. Allora:

- (A) L'equazione ha 4 soluzioni distinte.
- (B) L'equazione ha soltanto 2 soluzioni reali.
- (c) L'equazione ha soltanto 2 soluzioni puramente immaginarie.
- (D) L'equazione ha soltanto una coppia di soluzioni complesse coniugate.
- (E) Nessuna delle altre affermazioni è corretta.

36. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Si consideri la funzione $f: \mathbb{C} \to \mathbb{C}$ definita da $f(z) = z^2$ per ogni $z \in \mathbb{C}$. Allora

- (A) tutti gli elementi del codominio hanno esattamente 2 controimmagini
- (B) almeno un elemento del codominio ha 4 controimmagini
- (c) almeno un elemento del codominio ha infinite controimmagini
- (D) tutti gli elementi del codominio hanno almeno un controimmagino
- (E) Nessuna delle altre affermazioni è corretta.

37. A.A. 2021/22, quinto appello (1 risposta corretta, 2 punti)

Sia
$$z = \frac{(1+\sqrt{3}i)^9}{(\sqrt{3}+i)^6}$$
. Allora:

$$\bigcirc$$
 $2z - \overline{z} = 7$

$$\overline{(c)}$$
 $z + \overline{z} = 2|z|$

$$\bigcirc$$
 arg $z + \arg \overline{z} = \frac{\pi}{2}$

$$\stackrel{\text{(E)}}{=} \arg z + \arg \overline{z} = \pi$$

38. A.A. 2022/23, prima prova (1 risposta corretta)

Le soluzioni, in C, dell'equazione

$$z^8 = (2+i)^4$$

- (A) Sono tutte e sole le soluzioni dell'equazione $z^2 = 2 + i$.
- (B) Sono tutte puramente reali, cioè, giacciono sull'asse reale.
- © Sono tutte puramente immaginarie, cioè, giacciono sull'asse immaginaria.
- D Sono esattamente 8.
- (E) Nessuna delle altre affermazioni è corretta.

39. A.A. 2022/23, prima prova (1 risposta corretta)

Sia E la regione, nel piano di Gauss, costituita da tutti i numeri complessi z tali che

$$arg(z) + |z| \le 2\pi$$
.

Possiamo affermare che:

- (A) Se $z \in E$, allora anche $\overline{z} \in E$.
- (B) Se $z \in E$, allora anche $iz \in E$.
- (c) $E = \emptyset$.
- (E) Nessuna delle altre affermazioni è corretta.

40. A.A. 2022/23, primo appello (1 risposta corretta)

Si consideri l'equazione $z^3=8,$ con $z\in\mathbb{C}.$ Allora:

- (A) Essa ha esattamente 5 radici.
- (B) Se z_0 è soluzione, anche $\overline{z_0}$ è soluzione.
- (c) Se z_0 è soluzione, allora $Re(z_0) = 0$.
- \bigcirc Tutte le radici hanno modulo $2\sqrt{2}$.
- (E) Nessuna delle altre è corretta.

41. A.A. 2022/23, secondo appello (1 risposta corretta)

Dato $z=x+iy\in\mathbb{C},$ la parte immaginaria di $w=\frac{z^3}{i^5}$ è:

- $\bigcirc -3xy^2 + x^3$
- (B) $3xy^2 x^3$
- (c) $3x^2y y^3$
- D 0
- (E) Nessuna delle altre affermazioni è corretta.

42. A.A. 2022/23, terzo appello (1 risposta corretta)

Sia $A=\{z\in\mathbb{C}:\ 0\leq |z|\leq 2,\ \frac{3\pi}{2}\leq \arg(z)<2\pi\}.$ Allora

- \bigcirc $-1-i \in A$.
- \bigcirc $1-i \in A$.
- (c) $i \in A$.
- \bigcirc $e^{2\pi i} \in A$.
- (E) Nessuna delle altre affermazioni è corretta.

43. A.A. 2022/23, quarto appello (1 risposta corretta)

Siano $A = \{z \in \mathbb{C} : 1 \le |z| \le 2, \operatorname{Re}(z) \le 0, \operatorname{Im}(z) \le 0\}$ e $B = \{z^3 : z \in \mathbb{C}, 0 \le \arg(z) \le \frac{\pi}{3}\}$. Allora:

- (A) $A \cap B$ consiste di un numero infinito di elementi, che giacciono sull'asse immaginaria.
- (B) $A \cap B$ consiste di un numero infinito di elementi, che giacciono sull'asse reale.
- (c) $A \cap B$ consiste di un solo elemento.
- \bigcirc $A \cap B$ è vuoto.
- (E) Nessuna delle altre affermazioni è corretta.

44. A.A. 2022/23, quarto appello (2 risposte corrette)

Consideriamo il numero complesso $z = \frac{(1+i)^3}{(1-\sqrt{3}i)^4}$.

- $\boxed{\mathbf{A}} \ \operatorname{arg}(z) = \frac{\pi}{12}.$
- $\boxed{\mathbf{B}} \arg(z) = -\frac{5\pi}{12}.$
- $c \arg(z) = \pi.$
- |z| < 1.

45. A.A. 2022/23, quinto appello (1 risposta corretta)

Le soluzioni in C dell'equazione

$$z^{10} = (1 - i)^5$$

- $\widehat{(A)}$ sono tutte e sole le soluzioni dell'equazione $z^2 = 1 i$;
- (B) sono esattamente 10;
- (c) sono tutte puramente reali;
- (D) sono tutte puramente immaginarie;
- (E) nessuna delle altre risposte è corretta.

Continuità e limiti di funzioni

46. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto)

La funzione $f(x) = \frac{e^x(x-1)}{x} + 1 \quad \forall x > 0$

- (A) è sempre positiva.
- (B) ammette almeno due zeri.
- (c) ammette uno e un solo zero.
- (D) è sempre negativa.
- (E) Nessuna delle altre affermazioni è corretta.

47. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) La funzione $f(x) = x + \sin(x)$ $\forall x \in \mathbb{P}$

- La funzione $f(x) = x + \sin(x) \quad \forall x \in \mathbb{R}$
 - (B) ammette l'asintoto obliquo y = x + 1 per $x \to +\infty$.

(A) ammette l'asintoto obliquo y = x per $x \to +\infty$.

- (c) ammette l'asintoto obliquo y = x 1 per $x \to +\infty$.
- \bigcirc non ammette l'asintoti obliqui per $x \to +\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

48. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) Dato il parametro $a \in \mathbb{R} \setminus \{0\}$, il limite

$$\lim_{x \to 0} \frac{\sin(e^{ax} - 1)}{\sin(ax)}$$

è uguale a:

- (A) 1.
- \bigcirc a.
- \bigcirc $\frac{1}{a}$.
- D 0.
- (E) Nessuna delle altre affermazioni è corretta.

49. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto)

Sia $f \colon \mathbb{R} \to \mathbb{R}$ una funzione invertibile. Allora:

- $\stackrel{\frown}{(\mathsf{A})} f$ è necessariamente strettamente monotòna.
- $\stackrel{-}{(\mathbf{B})} f$ è necessariamente continua.
- (c) $\lim_{x\to+\infty} f(x) = +\infty$ oppure $\lim_{x\to+\infty} f(x) = -\infty$.
- \bigcirc l'immagine di f può essere limitata.
- $\begin{picture}(t) \hline (t) \hline ($

50. A.A. 2020/21, terzo appello (almeno 1 affermazione corretta, 2 punti)

Sia $f: \mathbb{R} \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}$. Se esiste $L \in \mathbb{R}$ tale che per ogni successione reale $(x_n)_{n \geq 1}$ con $x_n \neq x_0$ vale

$$x_n \to x_0 \text{ per } n \to \infty \implies f(x_n) \to L \text{ per } n \to \infty,$$

allora:

- $|L f(x_0)| < \frac{1}{2}.$
- B Vale anche $f(x_n) \to f(x_0)$ per $n \to \infty$.

- \sqsubseteq Se $f(x_0) = L$, allora f è continua in x per $x \in (x_0 \frac{1}{2}, x_0 + \frac{1}{2})$.
- 51. A.A. 2020/21, quarto appello (almeno 1 affermazione corretta, 2 punti)

La funzione
$$f(x) = \frac{x \ln(x)}{\ln(x) - 3}$$

- A ha un asintoto verticale e nessun altro asintoto.
- B ha un asintoto verticale, un asintoto obliquo e nessun altro asintoto.
- $\operatorname{clim}_{x\to +\infty} \frac{f(x)}{x}$ esiste finito, ma f non ha un asintoto obliquo a $+\infty$.
- non ha asintoti.
- 52. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto)

Siano $I \subseteq \mathbb{R}$ un intervallo, $f: I \to \mathbb{R}$ una funzione continua, J = f(I) l'immagine di f.

- (A) Se I è limitato inferiormente, allora J è limitato inferiormente.
- (B) Se $J = \mathbb{R}$, f è invertibile.
- (c) f assume massimo assoluto e minimo assoluto.
- \bigcirc J è un intervallo.
- (E) Nessuna delle altre affermazioni è corretta.
- 53. A.A. 2021/22, prova in itinere (1 affermazione corretta, 1 punto)

Il limite $\lim_{x\to 0} \frac{\sin(x^3)}{\log_e(1+x^3) + e^{x^3} - 1}$ vale:

- \bigcirc 0
- \bigcirc $\frac{1}{2}$
- (c) 1
- (D) 2
- (E) Nessuna delle altre affermazioni è corretta.
- 54. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

Si consideri la seguente funzione

$$f(x) = x + \sqrt{x^2 - 2x + 5}.$$

- (A) f ammette asintoto orizzontale y = 1 per $x \to +\infty$.
- (B) f ammette asintoto orizzontale y = -1 per $x \to +\infty$.
- (c) f ammette asintoto obliquo y = 2x 1 per $x \to +\infty$.
- (D) f ammette asintoto obliquo y = 2x + 2 per $x \to +\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

 $55.\ A.A.\ 2021/22,\ secondo\ appello \quad (1\ risposta\ corretta,\ 1\ punto)$

Dato il parametro $\alpha > 0$, il limite

$$\lim_{x \to 0} \frac{\sin x}{\left(1 - \cos x\right)^{\alpha}}$$

- (A) vale 0 se e solo se $\alpha < 1$.
- (B) vale 0 se e solo se $\alpha > \frac{1}{2}$.
- (c) vale 0 se e solo se $\alpha < \frac{1}{2}$.
- (D) vale 0 per ogni $\alpha > 0$.
- (E) Nessuna delle altre affermazioni è corretta.

56. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Si consideri il limite

$$\lim_{x \to 0} \frac{\ln(1+x^5)}{3x^2 \sin(x^3)}.$$

Allora:

- (A) Il limite vale 1.
- (B) Il limite vale $\frac{1}{2}$.
- \bigcirc Il limite vale $\frac{1}{3}$.
- \bigcirc Il limite non esiste in \mathbb{R} .
- (E) Nessuna delle altre affermazioni è corretta.

57. A.A. 2021/22, terzo appello (2 risposte corrette, 2 punti)

Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \ln(2 + \arctan(x))$. Allora:

- \Box f è sempre positiva.
- $oldsymbol{\mathsf{B}} f$ ammette uno e un solo zero.
- \triangleright f non ammette alcun asintoto (orizzontale, obliquo o verticale).
- \Box f ammette almeno un asintoto (orizzontale, obliquo o verticale).

58. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Si consideri il limite

$$\lim_{x \to 0} \left(\frac{\sin(x)}{x} - \frac{x}{\sin(x)} \right).$$

Allora:

- (A) Il limite vale $+\infty$.
- (B) Il limite vale 1.
- (c) Il limite vale 0.
- (D) Il limite non esiste.
- (E) Nessuna delle altre affermazioni è corretta.

 $59.\ A.A.\ 2021/22,$ quarto appello $\ (2\ risposte\ corrette,\ 2\ punti)$

Si consideri la funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = |x|e^{-1/x}$. Allora:

- $\lceil \mathsf{B} \rceil$ f è limitata.
- $\[\]$ f non ammette alcun asintoto (orizzontale, obliquo o verticale).
- $\[\[\] f \]$ è pari.

60. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Il limite

$$\lim_{x \to 0} \frac{1}{x} \left(\frac{\log(1+x)}{x} - \frac{x}{\log(1+x)} \right)$$

- (A) non esiste
- \bigcirc vale -1
- (c) vale 1
- \bigcirc vale $+\infty$
- $\stackrel{\frown}{\text{E}}$ vale $-\infty$

61. A.A. 2022/23, primo appello (2 risposte corrette)

Sia data la funzione $f(x) = \ln(1 - \ln|x|)$.

- B Il suo dominio è $(-e,0) \cup (0,e)$.

- $[E] f(x) > 0 \text{ in } (-e, 0) \cup (0, e).$

62. A.A. 2022/23, primo appello (1 risposta corretta)

Sia data la funzione

$$f(x) = \begin{cases} \frac{\ln(1+x)}{e^x - 1} & \text{se } -1 < x < 0 \\ 2x + a & \text{se } x \ge 0 \end{cases}.$$

- (A) Se a = 0, f(x) è continua nel suo dominio.
- (B) Se a = 1, f(x) è continua nel suo dominio.
- (c) Se a = -1, f(x) è continua nel suo dominio.
- (D) Se a = 1/2, f(x) è continua nel suo dominio.
- (E) Nessuna delle altre è corretta.

63. A.A. 2022/23, secondo appello (1 risposta corretta)

Sia $f: [a, b] \to \mathbb{R}$ una qualunque funzione continua.

- (A) Se $f(a) \cdot f(b) > 0$, allora f non ha zeri in [a, b].
- (B) Posto $\lambda = \frac{f(a) + f(b)}{2}$, la funzione $g(x) = f(x) \lambda$ ha uno zero in [a, b].
- \bigcirc Se $f(a) \cdot f(b) < 0$, allora f ha uno zero, e uno solo, in [a,b]
- \bigcirc Se f(a) < f(b) e $c \in (a,b)$, allora $f(c) \in (f(a),f(b))$.
- (E) Nessuna delle altre affermazioni è corretta.

64. A.A. 2022/23, terzo appello (2 risposte corrette)

La funzione

$$f(x) = \frac{x \ln(x)}{\ln(x) - 2}$$

- A ha un asintoto verticale;
- в ha nessun asintoto verticale;
- c ha un asintoto orizzontale;
- de la un asintoto obliquo;
- E ha nessun asintoto orizzontale o obliquo.

65. A.A. 2022/23, quarto appello (1 risposta corretta)

Detta $f: (0, +\infty) \to \mathbb{R}$ la funzione $f(x) = \ln(x) + \frac{1}{x} - 2x$

- (A) è sempre negativa.
- в è sempre positiva.
- (c) ammette almeno uno zero.
- (D) è limitata superiormente.
- (E) Nessuna delle altre affermazioni è corretta.

Derivabilità

66. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile tale che f(0) = 0 e f'(0) = -1. Allora

$$\lim_{x \to 0} \frac{f(x)}{\sqrt{x+1} - \sqrt{1-x}}$$

- \bigcirc vale 0.
- \bigcirc vale $-\infty$.
- (c) vale $+\infty$.
- (D) potrebbe non esistere.
- (E) Nessuna delle altre affermazioni è corretta.

67. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) Data $f(x) = \arctan(x)$, la derivata di g(x) = f(f(x))

(A) è
$$g'(x) = \frac{1}{(1+x^2)(1+(\arctan(x))^2)}$$

(B) è
$$g'(x) = \frac{1}{(1+x^2)^2}$$
.

(c) è
$$g'(x) = \frac{1}{(1+x^2)(1+(\operatorname{tg}(x))^2)}$$
.

- (D) non ha senso calcolarla poichè la composizione non è ben definita.
- (E) Nessuna delle altre affermazioni è corretta.

68. A.A. 2020/21, prima prova in itinere (1 affermazione corretta, 1 punto) Data una funzione $f:(a,b)\to\mathbb{R}$ derivabile, tale che

$$\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) \in \mathbb{R}$$

Allora:

- (a) Esiste $c \in (a, b)$ tale che f'(c) = 0.
- (B) f è derivabile anche in x = a e x = b.
- $\bigodot f$ è necessariamente costante.
- \bigcirc f ammette sicuramente un minimo relativo.

69. A.A. 2020/21, primo appello (almeno 1 affermazione corretta, 2 punti)

Sia $f \colon \mathbb{R} \to \mathbb{R}$ una funzione derivabile. Dal teorema di Lagrange possiamo dedurre che:

$$\triangle$$
 dato un qualsiasi $c \in \mathbb{R}$ esistono $a < c \in b > c$ tali che $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- B dato un qualsiasi coppia $a, b \in \mathbb{R}$ con a < b esiste $c \in (a, b)$ tale che $f'(c) = \frac{f(b) f(a)}{b a}$.
- c se f è strettamente crescente allora f'(x) > 0 per ogni $x \in \mathbb{R}$.
- $\lceil \mathsf{D} \rceil$ se f ammette due zeri allora f' ammetto almeno uno zero.

70. A.A. 2020/21, primo appello (1 affermazione corretta, 2 punti)

Data la funzione $f(x) = x(1 + \ln x)$ per ogni x > 1, abbiamo:

(A)
$$(f^{-1})'(2e) = \frac{1}{3}$$
.

(B)
$$(f^{-1})'(2e) = 3$$
.

$$\bigcirc$$
 $(f^{-1})'(2e) = \frac{1}{3 + \ln 2}.$

$$(D)$$
 $(f^{-1})'(2e) = 3 + \ln 2.$

(E) Nessuna delle altre affermazioni è corretta.

71. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti) La funzione $f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x|x$ è tale che:

(A)
$$f''(0) = 2$$
.

(B)
$$f''(0) = 0$$
.

(c) Non è derivabile 2 volte in
$$x = 0$$
.

$$(D)$$
 $(0,0)$ non è un punto di flesso per il grafico di f .

(E) Nessuna delle altre affermazioni è corretta.

72. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Sia $f: \mathbb{R} \to \mathbb{R}$ con

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{se } x > 0; \\ x^2 + \alpha x + 1 & \text{se } x \le 0. \end{cases}$$

Allora vale al variare di $\alpha \in \mathbb{R}$:

- \widehat{A} f non è derivabile per nessun valore di α .
- $\ \ \ B$ fè derivabile per ogni $\alpha.$
- (c) f è derivabile per $\alpha = \frac{1}{2}$.
- $\begin{picture}(b) \hline \end{picture} f$ è derivabile per $\alpha=1.$
- (E) Nessuna delle altre affermazioni è corretta.

73. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Sia $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ derivabile con

$$\begin{cases} f'(x) > 0 & \text{se } x < 0; \\ f'(x) < 0 & \text{se } x < 0. \end{cases}$$

Allora:

- (A) f potrebbe ammettere un massimo o minimo.
- (B) f ammette almeno un asintoto (orizzontale, obliquo o verticale).
- (c) se f è prolungabile per continuità per x = 0, allora x = 0 diventa un punto estremante.
- (\mathbf{D}) se f non è prolungabile per continuità per x=0, allora f ammette un asintoto verticale.
- (E) Nessuna delle altre affermazioni è corretta.

74. A.A. 2020/21, quarto appello (1 affermazione corretta, 1 punto)

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Allora certamente

- (A) esiste $c \in (a, b)$ tale che f(c) = 0.
- (B) esiste $c \in (a, b)$ tale che f'(c) = 0
- (c) se f(a) = f(b), allora f è una funzione costante.
- \bigcap f assume massimo e minimo in (a, b).
- (E) Nessuna delle altre affermazioni è corretta.

75. A.A. 2021/22, prova in itinere (2 affermazioni corrette, 2 punti) Definiamo $f: \mathbb{R} \to \mathbb{R}$, per ogni $x \in \mathbb{R}$

$$f(x) = \begin{cases} 5x + x^2 \sin \frac{1}{x} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

- f è derivabile in 0 e f'(0) = 0.
- D Per $x \neq 0$, $f'(x) = 5 + 2x \sin \frac{1}{x} \cos \frac{1}{x}$.
- E Per $x \neq 0$, $f'(x) = 5 + 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x}$.

76. A.A. 2021/22, prova in itinere (2 affermazioni corrette, 2 punti) Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione così definita:

$$f(x) = e^{3x^4 + 4x^3}$$

- $|c| x_0 = -1$ è un punto di minimo locale per f.
- E Esiste un punto $a \in (-1,0)$ in cui f''(a) = 0.

77. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

Data la funzione $f(x) = \frac{x^4 + x^2}{2}$, allora esiste $x_0 \in (0,1)$ tale che

- (A) la retta tangente al grafico in $(x_0, f(x_0))$ è parallela all'asse x.
- (B) la retta tangente al grafico in $(x_0, f(x_0))$ è parallela all'asse y.
- (c) la retta tangente al grafico in $(x_0, f(x_0))$ è parallela alla retta y = -x.
- \bigcirc la retta tangente al grafico in $(x_0, f(x_0))$ è parallela alla retta y = x.
- (E) Nessuna delle altre affermazioni è corretta.

78. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

La funzione $f(x) = e^x + mx - 2$ ammette (almeno) 2 zeri se

- $\widehat{(A)} \ m=2.$
- $\stackrel{\bigcirc}{\text{(B)}} m = 1.$
- (c) m = -1.
- $\widehat{(D)} \ m=0.$
- $\stackrel{\frown}{\text{E}}$ m=3.

79. A.A. 2021/22, primo appello (2 affermazioni corrette, 2 punti)

Si consideri la seguente funzione:

$$f(x) = \begin{cases} \ln(1 + \sqrt[3]{x}) \arctan \sqrt[3]{x} & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$

- A f è continua in x = 0.

- $\boxed{\mathsf{E}}$ f presenta un flesso a tangente verticale in x=0.

80. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

Data la funzione $f: \mathbb{R} \to \mathbb{R}$ con

$$f(x) = \begin{cases} \beta x^2 & \text{se } x \le 0, \\ e^{x^2} - \beta & \text{se } x > 0. \end{cases}$$

Per quale valore del parametro $\beta \in \mathbb{R}$ la funzione è derivabile due volte in x = 0?

- $\widehat{(\mathbf{A})} \beta = 0.$
- $\beta = 2.$
- (c) $\beta = 1.$
- \bigcirc $\beta = -1.$
- $\widehat{\mathbf{E}}$ $\beta = -2$.

81. A.A. 2021/22, secondo appello (2 risposte corrette, 2 punti)

Detta $f: \mathbb{R} \to \mathbb{R}$ la funzione $f(x) = e^{\sin x} - \sin x - 1$ possiamo affermare che:

- в x=0 è uno zero di f.
- $\[\] f$ è illimitata.
- $f'(x) = e^{\cos x} \cos x$

82. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

La funzione $f(x) = (1 + \sqrt{x})^{\sqrt{x}}$

(A) è derivabile in tutto il suo dominio escluso il punto x=0.

- (B) è limitata.
- (c) non è monotòna.
- (D) è derivabile in tutto il suo dominio.
- (E) Nessuna delle altre affermazioni è corretta.

83. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

Siano $I = (-\infty, 0) \cup (0, +\infty)$ e $f: I \to \mathbb{R}$ una funzione derivabile 2 volte in I. Allora:

- (A) Se $f''(x) \ge 0$ per ogni $x \in I$, allora f è convessa in I.
- (B) Se $x_0 \in I$ con $f''(x_0) = 0$, allora x_0 è un punto di flesso per f.
- (c) Se $x_0 \in I$ è un punto di flesso per f, allora $f''(x_0) = 0$.
- (D) Se f è concava in $(a,b) \subset I$, allora f''(x) < 0 per ogni $x \in (a,b)$.
- (E) Nessuna delle altre affermazioni è corretta.

84. A.A. 2021/22, terzo appello (1 risposta corretta, 2 punto)

Sia $f:(a,b)\to\mathbb{R}$ derivabile con $\lim_{x\to a^+}f(x)=\lim_{x\to b^-}f(x)\in\mathbb{R}$. Allora:

- (A) Esiste al massimo un $c \in (a, b)$ tale che f'(c) = 0.
- (B) Esiste almeno un $c \in (a, b)$ tale che f'(c) = 0.
- (c) f non può essere costante.
- (D) I limiti $\lim_{x\to a^+} f'(x)$ e $\lim_{x\to b^-} f'(x)$ esistono necessariamente in \mathbb{R} .
- (E) Nessuna delle altre affermazioni è corretta.

85. A.A. 2021/22, terzo appello (2 risposte corrette, 2 punti)

Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ così definita

$$f(x) = \begin{cases} \arctan(x^2)\cos\left(\frac{1}{x^3}\right) & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$

Allora:

- f non è continua in x = 0.
- f è continua ma non derivabile in x=0.

D Per
$$x \neq 0$$
, $f'(x) = \frac{\cos\left(\frac{1}{x^3}\right)}{x^4 + 1} - \frac{\sin\left(\frac{1}{x^3}\right)\operatorname{arctg}(x)}{3x^2}$.

E Per
$$x \neq 0$$
, $f'(x) = \frac{3\sin(\frac{1}{x^3})\arctan(x^2)}{x^4} + \frac{2x\cos(\frac{1}{x^3})}{x^4+1}$.

86. A.A. 2021/22, quarto appello (1 risposta corretta, 2 punti)

Sia $f: [0,1] \to \mathbb{R}$ continua in [0,1], derivabile in (0,1) e tale che f(0) = 0 e f(1) = 1. Allora:

- (A) Esiste al massimo un $c \in (0,1)$ tale che f'(c) = 1.
- (B) Esiste almeno un $c \in (0,1)$ tale che f'(c) = 1.
- (c) f' non si può annullare.
- \bigcirc f ha almeno un punto stazionario in [0,1].
- (E) Nessuna delle altre affermazioni è corretta.

87. A.A. 2021/22, quarto appello (2 risposte corrette, 2 punti)

Si consideri la funzione $f_{\alpha} \colon \mathbb{R} \to \mathbb{R}$ così definita

$$f_{\alpha}(x) = \begin{cases} |x|^{\alpha} \sin\left(\frac{1}{x}\right) & \text{se } x \neq 0, \\ 0 & \text{se } x = 0, \end{cases}$$

dove $\alpha > 0$. Allora:

- B f_{α} è derivabile in x=0 se e solo se $\alpha>2$
- $\lceil \mathsf{c} \rceil$ f_{α} è derivabile in x = 0 se e solo se $\alpha > 1$.
- E Solo una delle altre affermazioni è corretta.

88. A.A. 2021/22, quinto appello (2 risposte corrette, 2 punti)

Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \arctan(\sin x)$. Allora

- lacksquare f è pari

$$\boxed{\mathsf{E}} \ f'(x) = \frac{\cos x}{2 - \cos^2 x}$$

89. A.A. 2021/22, quinto appello (1 risposta corretta, 2 punti)

Sia $f: [-1,1] \to \mathbb{R}$ una funzione derivabile con f' continua, tale che f(-1) = 0, f(0) = 1 e f(1) = -1. Allora

- (A) esiste almeno un $x_0 \in (-1,0)$ tale che $f'(x_0) = 0$
- (B) esiste almeno un $x_0 \in (0,1)$ tale che $f'(x_0) = 0$
- (c) esiste almeno un $x_0 \in (-1,1)$ tale che $f'(x_0) = 0$
- (D) f' non si annulla mai
- (E) Nessuna delle altre affermazioni è corretta.

90. A.A. 2021/22, quinto appello (2 risposte corrette, 2 punti)

Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} x^2 \arctan \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

Allora

- f è continua in $x_0 = 0$
- $\lceil \mathbf{B} \rceil f$ non è derivabile in $x_0 = 0$
- c f è derivabile in $x_0 = 0$ e f'(0) = -1
- $\[\] f$ è derivabile in \mathbb{R} con f' continua

91. A.A. 2022/23, prima prova (Più risposte corrette)

Dato il parametro $\alpha \in \mathbb{R}$, la funzione

$$f(x) = \begin{cases} \cos(\alpha x) & \text{se } x \ge 0, \\ \alpha - \frac{\alpha^2}{2} x^2 & \text{se } x < 0, \end{cases}$$

- \land È derivabile in x = 0 per ogni $\alpha \in \mathbb{R}$.
- B È continua per ogni $\alpha \in \mathbb{R}$, ma non derivabile per alcun valore $\alpha \in \mathbb{R}$.
- \triangleright È inferiormente limitata per ogni $\alpha \in \mathbb{R}$.
- \mathbf{E} È superiormente limitata per ogni $\alpha \in \mathbb{R}$.

92. A.A. 2022/23, secondo appello (2 risposte corrette)

Definiamo per $a \in \mathbb{R}$: $f_a \colon \mathbb{R} \to \mathbb{R}$, $f_a(x) = \begin{cases} \frac{e^x - 1 - x}{x^2} & x > 0 \\ x^2 + ax + 1 & x \le 0 \end{cases}$

- A Per ogni $a \in \mathbb{R}$, f_a è continua.
- B Per ogni $a \in \mathbb{R}$, f_a non è continua.

- \blacksquare Se $a = \frac{1}{6}$, f_a è derivabile.

93. A.A. 2022/23, terzo appello (1 risposta corretta)

Sia $f: [a,b] \to \mathbb{R}$ (con $a,b \in \mathbb{R}$ e a < b) una funzione continua in [a,b] e derivabile in (a,b). Allora

- (A) se f(a) = f(b), allora f è una funzione costante;
- (B) esiste $c \in (a, b)$ tale che f(c) = 0;
- (c) esiste $c \in (a, b)$ tale che f'(c) = 0;
- (\mathbf{D}) se f(a) < f(b) e $c \in (a,b)$, allora $f(c) \in (f(a),f(b))$;
- (E) nessuna delle altre affermazioni è corretta.

94. A.A. 2022/23, terzo appello (1 risposta corretta)

Definiamo (per
$$a \in \mathbb{R}$$
): $f_a : \mathbb{R} \to \mathbb{R}$, $f_a(x) = \begin{cases} \frac{e^x - 1}{x} & x > 0 \\ x^2 + ax + 1 & x \le 0 \end{cases}$

- (A) Per ogni $a \in \mathbb{R}$, f_a è derivabile.
- (B) Se a = 1, f_a è derivabile.
- (c) Per ogni $a \in \mathbb{R}$, f_a è continua e non derivabile.
- (D) Se $a = \frac{1}{2}$, f_a è derivabile.
- (E) Nessuna delle altre affermazioni è corretta.

95. A.A. 2022/23, quarto appello (2 risposte corrette)

Detta
$$f \colon \left(-\frac{1}{2}, \frac{1}{2}\right) \to \mathbb{R}$$
 la funzione $f(x) = \begin{cases} \tan(x^2) \sin\left(\frac{1}{x^3}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$

- $\lceil A \rceil$ f non è continua in x = 0.
- f è continua ma non derivabile in x = 0.

D Per
$$x \neq 0$$
, $f'(x) = \frac{\sin(\frac{1}{x^3})}{\cos^2(x^2)} + \tan(x^2)\cos(\frac{1}{x^3})$.

$$[E] \text{ Per } x \neq 0, \ f'(x) = \frac{2x \sin\left(\frac{1}{x^3}\right)}{\cos^2(x^2)} - \frac{3 \tan(x^2) \cos\left(\frac{1}{x^3}\right)}{x^4}.$$

Taylor

96. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto)

Sia $f: \mathbb{R} \to \mathbb{R}$ quattro volte derivabile in x = 0 e tale che $f(x) = -x^2 + x^3 + o(x^4)$ per $x \to 0$. Allora:

- f''''(0) = 0.
- f'''(0) = 1.

97. A.A. 2020/21, primo appello (1 affermazione corretta, 2 punti)

Il polinomio di Taylor di ordine 3 (centrato in $x_0 = 0$) della funzione $f(x) = e^{e^x - 1}$ è:

- (A) $1 + x + x^2 + \frac{5}{6}x^3$.
- (B) $x + x^2 + \frac{5}{6}x^3$.
- \bigcirc 1 + x + 2x² + $\frac{1}{3}$ x³.
- (D) $x + 2x^2 + \frac{1}{3}x^3$.
- (E) Nessuna delle altre affermazioni è corretta.

98. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti)

Sia $f: (0, +\infty) \to \mathbb{R}, \ f(x) = x^x$. Allora per $x \to 1$:

- (A) f(x) = 1 + (x 1) + o(x 1).
- (B) f(x) = 1 (x 1) + o(x 1).
- (c) $f(x) = 1 + \frac{1}{2}(x-1) + o(x-1)$.
- (D) $f(x) = 1 \frac{1}{2}(x-1) + o(x-1)$.
- (E) Nessuna delle altre affermazioni è corretta.

99. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Sia $f: [-1,1] \to \mathbb{R}$ continua tale che f(x) = x + o(x) per $x \to 0$. Allora:

- (A) f è derivabile in x=0.
- (B) $f(x) = o(1 \cos(x))$ per $x \to 0$.
- (c) $f(x) = o(\sin(x^2))$ per $x \to 0$.
- (\mathbf{p}) x=0 è necessariamente un punto estremante di f.
- (E) Nessuna delle altre affermazioni è corretta.

100. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

Il polinomio di Taylor centrato in zero di ordine 4 di $f(x) = \ln(1 - 2x^2)$ è

- \bigcirc $-2x^2 2x^4$.
- \bigcirc $-2x^2 + 2x^4$.
- \bigcirc $2x^2 2x^4$.
- \bigcirc 2 $x^2 + 2x^4$.
- (E) Nessuna delle altre affermazioni è corretta.

101. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

Il limite $\lim_{x\to 0} \frac{2(x-\sin x)+2\ln\sqrt[3]{1+x^3}}{x^2(\mathrm{e}^x-1)}$ vale

- \bigcirc -1.
- \bigcirc -2.
- \bigcirc 1.
- \bigcirc 2.
- (E) Nessuna delle altre affermazioni è corretta.

102. A.A. 2021/22, secondo appello (2 risposte corrette, 2 punti)

Sia
$$f(x) = e^{1 - e^{2x^3}}$$
.

Detto $P_6(x)$ il polinomio di Taylor di f di grado 6, centrato in $x_0 = 0$, abbiamo che:

- $P_6(x) = 1 2x^3.$
- $P_6(x) = 1 2x^3 + 2x^6.$
- $\lim_{x \to 0} \frac{f(x) 1 + 2x^3}{x^5} = 0.$
- $[E] x_0 = 0 \text{ non è un punto stazionario per } f.$

103. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

La funzione $f: \mathbb{R} \to \mathbb{R}$ così definita

$$f(x) = \cos(\sqrt{2}x) + e^{x^2} - 2$$

è tale che, per $x \to 0$,

- $(A) f(x) = o(x^4).$
- \bigcirc $f(x) \sim x^4$.
- $\bigcirc f(x) \sim x^6.$
- (E) Nessuna delle altre affermazioni è corretta.

104. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

La funzione $f: \mathbb{R} \to \mathbb{R}$ così definita

$$f(x) = (1+x)e^x - (1-x)\cos(x) - x(1+x)^{1/3}$$

è tale che, per $x \to 0$,

- (B) f(x) = x + o(x).
- (c) $f(x) = x^2 + o(x^2)$.
- ① $f(x) = x^4 + o(x^4)$.
- (E) Nessuna delle altre affermazioni è corretta.

105. A.A. 2021/22, quinto appello (2 risposte corrette, 2 punti)

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile quattro volte in $x_0 = 0$ tale che

$$f(x) = 1 - \frac{x^3}{3} + x^4 + o(x^4)$$
 $x \to 0$.

Allora

- $\boxed{\mathsf{A}} \ f \ \text{possiede un punto di massimo in } x_0 = 0$
- B f possiede un punto di minimo in $x_0 = 0$
- $f^{(3)}(0) = -2$
- $[E] f^{(4)}(0) = 1$

106. A.A. 2022/23, primo appello (1 risposta corretta)

Il limite

$$\lim_{x \to 0} \frac{1 - \cos(x^2)}{e^{x^2} - 1 - \sin(x^2)}$$

- (A) non esiste in \mathbb{R} .
- \bigcirc vale -1.
- (c) vale 1.
- \bigcirc vale $+\infty$.
- (E) Nessuna delle altre è corretta.

107. A.A. 2022/23, secondo appello (1 risposta corretta)

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile tale che f(0) = 0, f'(0) = 3.

Poniamo:
$$L = \lim_{x \to 0} \frac{f(x)}{-1 + \sqrt{1 + 2x}}$$

- $\stackrel{\textstyle \frown}{}$ L=3
- (B) I dati non sono sufficienti per determinare L.
- $\widehat{(c)}$ $L = +\infty$
- (D) $L = \frac{3}{2}$
- (E) Nessuna delle altre affermazioni è corretta.

108. A.A. 2022/23, terzo appello (1 risposta corretta)

Il polinomio di MacLaurin di grado 4 della funzione $f(x) = \ln(1 - 3x^2)$ è:

- \bigcirc $-3x^2 + \frac{9}{2}x^4;$
- (B) $3x^2 \frac{9}{2}x^4$;
- \bigcirc $-3x^2 \frac{9}{2}x^4$;
- \bigcirc $3x^2 + \frac{9}{2}x^4;$
- (E) nessuna delle altre affermazioni è corretta.

109. A.A. 2022/23, quarto appello (1 risposta corretta)

Si consideri $\lim_{x\to 0} \frac{2x^2 - x\sin(x)}{x + e^{2x} - e^{3x}}$. Allora:

- (A) il limite vale 1.
- \bigcirc il limite vale -1.
- (c) il limite vale 0.
- \bigcirc il limite non esiste in \mathbb{R} .
- (E) Nessuna delle altre affermazioni è corretta.

110. A.A. 2022/23, quinto appello (1 risposta corretta)

Il polinomio di Taylor centrato in zero di ordine 5 della funzione $f(x) = 2x^3 \cos x - \sin(x^2)$ è:

- (A) $-x^2 + 2x^3 x^5$;
- (B) $x^2 2x^3 x^5$;
- $(c) x^2 + 2x^3 + x^5;$
- $\bigcirc -x^2 2x^3 x^5;$
- (E) nessuna delle altre risposte è corretta.

Integrazione

111. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Con il cambio di variabile $t = \sqrt{x}$, si ottiene:

$$\int_{1}^{3} \frac{1}{(x+1)\sqrt{x}} dx = \frac{\pi}{6}.$$

112. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Sia $f:[a,b]\to\mathbb{R}$ una funzione continua e monotòna crescente. Allora:

113. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Sia $f: [0,1] \to \mathbb{R}$ una funzione continua tale che $\int_0^1 f(x) \, dx = 0$. Allora:

- f(0)f(1) < 0.
- $\exists c \in (0,1) \text{ tale che } f(c) = 0.$

114. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Definiamo $F \colon \mathbb{R} \to \mathbb{R}$:

$$\forall x \in \mathbb{R} \quad F(x) = \int_0^{(x^3 + x)} e^{-t^2} dt$$

Allora:

$$F'(x) = e^{-(x^3+x)^2}$$
.

$$F'(x) = (3x^2 + 1)e^{-(x^3 + x)^2}.$$

 \Box F ha asintoto orizzontale a $+\infty$.

115. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Tra le seguenti affermazioni, segnare quelle corette.

$$\int_{1}^{+\infty} \frac{e^{\frac{1}{x}} - 1}{x^{a}} dx \text{ è convergente se, e solo se, } a > 1.$$

116. A.A. 2020/21, primo appello (1 affermazione corretta, 2 punti)

Il limite
$$\lim_{x \to +\infty} \frac{\int_0^x e^{\sqrt{t}} dt}{e^{\sqrt{x}}}$$

- (A) non esiste.
- \bigcirc vale 0.
- (c) vale 1.
- \bigcirc vale 2.
- (E) Nessuna delle altre affermazioni è corretta.

117. A.A. 2020/21, primo appello (almeno 1 affermazione corretta, 3 punti)

Supponiamo che $f:[1,+\infty)\to [1,+\infty)$ ammetta un asintoto obliquo per $x\to +\infty$. Allora necessariamente:

- B anche la funzione $(f(x))^2$ ammette un asintoto obliquo per $x \to +\infty$.
- c la funzione $x(\ln(f(x)+1) \ln(f(x)))$ ammette un asintoto orizzontale.
- $\ \ \square$ la funzione $\frac{1}{f(x)}$ non è integrabile in senso improprio in $[1,+\infty).$

 $118.\ A.A.\ 2020/21,\ secondo\ appello\quad (1\ affermazione\ corretta,\ 2\ punti)$

$$\int_0^{+\infty} x^{\alpha} \arctan\left(\frac{1}{x}\right) \, dx, \quad \alpha \in \mathbb{R},$$

converge se e solo se

- (B) $\alpha \in (-1,0)$.
- \bigcirc $\alpha \leq -1$.
- \bigcirc $\alpha \geq 1$.

119. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Si consideri l'integrale improprio

$$\int_0^{+\infty} \frac{1}{x^{\alpha} + x^{2-\alpha}} \, dx$$

al variare di $\alpha \in [0,1].$ Allora:

- (A) l'integrale converge se e solo se $\alpha \in [0, 1)$.
- (B) l'integrale converge se e solo se $\alpha \in (0,1)$.
- $\widehat{\mathsf{c}}$ l'integrale non converge per nessun valore di $\alpha \in [0,1]$.
- (D) l'integrale converge solo per $\alpha = 1$.
- (E) Nessuna delle altre affermazioni è corretta.

120. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

L'integrale
$$\int_0^{+\infty} x^2 e^{-x^{\alpha}} dx$$

- (a) converge se e solo se $\alpha \in (0, +\infty)$.
- (B) converge se e solo se $\alpha \in [0, +\infty)$.
- (c) converge per ogni $\alpha \in \mathbb{R}$.
- \bigcirc non converge mai, qualsiasi sia $\alpha \in \mathbb{R}$.
- (E) Nessuna delle altre affermazioni è corretta.

121. A.A. 2021/22, primo appello (1 affermazione corretta, 2 punti)

Il seguente integrale improprio

$$\int_0^{+\infty} \frac{x^2 + \ln(1 + 4x^2)}{(1 + x^3)x^{\alpha}} \ dx$$

con il parametro $\alpha \in \mathbb{R}$ converge se

- (A) $\alpha > 0$.
- $\widehat{\text{B}}$ $\alpha < 3$.
- (c) $0 < \alpha < 3$.
- \bigcirc $\alpha > 3$.
- (E) Nessuna delle altre affermazioni è corretta.

122. A.A. 2021/22, primo appello (2 affermazioni corrette, 2 punti)

Sia $f \colon [0,1] \to \mathbb{R}$ una funzione limitata. Allora

- c se f è integrabile allora la funzione $G(x) = \int_0^{x^2} f(t)dt$ è continua su [0,1].
- $\[\[\] \]$ se f è continua allora f non ammette primitiva.

123. A.A. 2021/22, secondo appello (1 risposta corretta, 2 punti)

L'integrale definito $\int_0^1 \arctan(x) dx$ vale

- (A) $\frac{1}{4}(\pi \ln 2)$.
- (B) $\frac{1}{4}(\pi \ln 4)$.
- \bigcirc $\frac{1}{2}(\pi \ln 2).$
- \bigcirc $\frac{1}{2}(\pi \ln 4).$
- (E) Nessuna delle altre affermazioni è corretta.

124. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

Sia F la funzione integrale $F(x) = \int_1^x \frac{t^{500}}{(t+1)^{502}} dt$ Allora:

- (A) F ha un asintoto verticale per un $x \in (1, +\infty)$.
- (B) F ha un asintoto obliquo per $x \to +\infty$.
- (c) F cambia segno in $(1, +\infty)$.
- (\mathbf{D}) F ha un asintoto orizzontale per $x \to +\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

125. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Per un parametro $\alpha \in \mathbb{R}$, si consideri l'integrale improprio

$$\int_0^1 \frac{\sin(1-x)}{x^\alpha - x^{\alpha+2}} \, dx.$$

Allora:

- (A) L'integrale converge se e solo se $\alpha < 2$.
- (B) L'integrale converge se e solo se $\alpha < 1$.
- (c) L'integrale converge se e solo se $\alpha < 0$.
- \bigcirc L'integrale non converge per alcun valore di α .
- (E) Nessuna delle altre affermazioni è corretta.

126. A.A. 2021/22, terzo appello (2 riposte corrette, 2 punti)

Sia $f: \mathbb{R} \to [0, +\infty)$ continua e si consideri $F: \mathbb{R} \to \mathbb{R}$ con $F(x) = \int_0^x f(t) \, dt$. Allora:

- c F ammette necessariamente un punto estremante.
- \triangleright F potrebbe essere costante su \mathbb{R} .

127. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Sia $f \colon [0,1] \to \mathbb{R}$ integrabile e sia

$$\int_0^1 f(x) \, dx = 1.$$

Allora:

- (A) Se f è continua in [0,1] allora esiste almeno un $x \in [0,1]$ tale che f(x) = 1.
- (B) Esiste sempre almeno un $x \in [0,1]$ tale che f(x) = 1.
- (c) f è non-negativa.
- (D) Se f non è continua in [0,1] allora non esiste mai $x \in [0,1]$ tale che f(x) = 1.
- (E) Nessuna delle altre affermazioni è corretta.

128. A.A. 2021/22, quarto appello (2 riposte corrette, 2 punti)

Si consideri $F: \mathbb{R} \to \mathbb{R}$ così definita $F(x) = \int_0^x e^{-t^2} \sin(t) dt$. Allora:

- $\[\] F$ ha un asintoto orizzontale.
- $\[\]$ F è dispari.
- El Solo una delle altre affermazioni è corretta.

129. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

L'integrabile improprio

$$\int_0^{+\infty} \frac{\arctan(2x)}{1 + 4x^2} \, dx$$

- (a) converge e vale $\frac{\pi}{4}$
- (B) converge e vale $\frac{\pi^2}{4}$
- \bigcirc converge e vale $\frac{\pi^2}{8}$
- \bigcirc converge e vale $\frac{\pi^2}{16}$
- (E) non converge

130. A.A. 2021/22, quinto appello (1 riposta corretta, 1 punto)

Si consideri la funzione $f \colon \mathbb{R} \to \mathbb{R}$ definita da $F(x) = \int_0^x \frac{\mathrm{e}^{-t^2}}{1+t^2} \, dt$. Allora

- \bigcirc F è pari
- (B) F è strettamente monotòna
- (c) F non possiede asintoti orizzontali
- (D) F ammette infiniti punti estremanti
- (E) Nessuna delle altre affermazioni è corretta.

131. A.A. 2022/23, primo appello (1 risposta corretta)

L'integrale $\int_{-1}^{0} \frac{1}{x^2 + 2x + 2} \ dx$ vale

- \bigcirc -1/2.
- \bigcirc 1/4.
- (c) $\pi/4$.
- \bigcirc $\pi/2$.
- (E) Nessuna delle altre è corretta.

132. A.A. 2022/23, primo appello (2 risposte corrette)

Si consideri la funzione

$$f(x) = \frac{(x^3 + 4x + 3)}{(x^4 + 4)\sqrt[4]{x}}.$$

Allora

- $\int_{1}^{2} f(x) dx$ diverge.

133. A.A. 2022/23, secondo appello (1 risposta corretta)

Definiamo: $G(x) = \int_0^{x^2} \log(1+t^4) dt$, $x \in \mathbb{R}$. La derivata G'(x) è data da:

- (a) $G'(x) = \log(1 + x^4)$.
- (B) $G'(x) = \log(1 + x^8)$
- (c) $G'(x) = \log(1 + x^6)$
- \bigcirc $G'(x) = 2x \log(1 + x^8).$
- (E) Nessuna delle altre affermazioni è corretta.

134. A.A. 2022/23, secondo appello (2 risposte corrette)

Definiamo per $a \in \mathbb{R}$ la funzione $f_a \colon (0, +\infty) \to \mathbb{R}$, $f_a(x) = \frac{\arctan\left(\frac{1}{x^2}\right)}{x^a}$. Allora

- $\int_0^1 f(x) dx$ converge, se e solo se a < -1.

135. A.A. 2022/23, terzo appello (1 risposta corretta)

L'integrale

$$\int_0^{+\infty} x^2 e^{-x^{\alpha}} \, dx$$

- $\widehat{(A)}$ converge se e solo se $\alpha \in [0, +\infty)$;
- (B) converge se e solo se $\alpha \in (0, +\infty)$;
- (c) converge se e solo se $\alpha \in \mathbb{R}$;
- (D) non converge per nessun valore di $\alpha \in \mathbb{R}$;
- (E) nessuna delle altre affermazioni è corretta.

136. A.A. 2022/23, quarto appello (1 risposta corretta)

L'integrale $\int_{e}^{e^2} (\ln(x))^2 dx$ vale:

- (A) 2e 1.
- \bigcirc $2e^2$.
- $(c) 2e^2 e.$
- $\bigcirc 2e^2 e + 1.$

137. A.A. 2022/23, quarto appello (1 risposta corretta)

Si consideri la funzione $F(x) = \int_0^x \frac{e^{-\frac{t}{2}}}{\sqrt{1+t^2}} dt$. Allora:

- (A) F ammette un asintoto orizzontale per $x \to +\infty$.
- (B) F non ammette un asintoto orizzontale, ma uno obliquo per $x \to +\infty$.
- \bigcirc F ammette un asintoto orizzontale per $x \to -\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

138. A.A. 2022/23, quinto appello (1 risposta corretta)

Sia $f: [0,1] \to \mathbb{R}$ una qualunque funzione continua.

- (A) Se $f(0) \cdot f(1) > 0$, allora f non ha zeri in [0,1].
- (B) $\int_0^1 f(x)dx = f(\alpha)$ per almeno un $\alpha \in [0,1]$.
- (c) Se $f(0) \cdot f(1) < 0$, allora f ha uno zero, e uno solo, in [0,1].
- (D) Se f(0) < f(1) e $c \in (0,1)$, allora $f(c) \in (f(0), f(1))$.
- (E) Nessuna delle altre risposte è corretta.

139. A.A. 2022/23, quinto appello (2 risposte corrette)

Si consideri la funzione

$$f(x) = \frac{x+2}{(|x|+1)\sqrt[3]{x}}.$$

Allora

- $\int_{1}^{2} f(x) dx$ diverge;
- $\int_0^1 f(x) dx$ converge.

140. A.A. 2022/23, quinto appello (1 risposta corretta)

Posto $F(x) = \int_{x}^{x^3} e^{-t^2} dt, x \in \mathbb{R}$. Avremo

- (A) $F'(x) = 3x^2e^{-x^6} e^{-x^2};$
- (B) $F'(x) = -3x^2e^{-x^6} e^{-x^2}$;
- (c) $F'(x) = e^{-x^6} e^{-x^2};$
- (D) $F'(x) = e^{-x^6} e^{-x^2}$;
- (E) nessuna delle altre risposte è corretta.

Equazioni differenziali

Nota bene: Equazioni differenziali facevano parte del corso fino all'A.A. 2020/21. 141. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto)

Si consideri l'equazione differenziale: $y' - y = e^x$. Allora:

- $| y(x) = e^{-x}$ è una soluzione.
- B $y(x) = (1-x)e^{-x}$ è l'unica soluzione tale che y(1) = 0.
- \square Se $y^*(x)$ è una soluzione, allora $y(x) = ce^x + y^*(x)$ con $c \in \mathbb{R}$ è una soluzione.

142. A.A. 2020/21, primo appello (almeno 1 affermazione corretta, 2 punti)

- Si consideri l'equazione differenziale: $y' = e^{t+y}$. Allora:

 A Si tratta di un'equazione a variabili separabili.
 - B Si tratta di un'equazione lineare.
 - $\lceil c \rceil$ Tutte le soluzioni hanno un asintoto orizzontale per $t \to -\infty$.
 - Tutte le soluzioni hanno un asintoto verticale.

143. A.A. 2020/21, secondo appello (almeno 1 affermazione corretta, 2 punti) Si consideri l'equazione differenziale: $y' = y \ln y$. Allora:

- \square Ogni soluzione è limitata su \mathbb{R} .
- \square Non ha soluzioni limitate su \square .
- \square Ogni soluzione ha un asintoto orizzontale per $t \to +\infty$.
- E Esiste almeno una soluzione costante.

144. A.A. 2020/21, terzo appello (almeno 1 affermazione corretta, 2 punti) Si consideri l'equazione differenziale: $y'=t(1+y^2)$. Allora:

- A Si tratta di un'equazione a variabili separabili.
- B Si tratta di un'equazione lineare.
- D Ogni soluzione ha un asintoto verticale.
- E Esiste una soluzione costante.

145. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

La soluzione del problema di Cauchy

$$\begin{cases} y' - y = x \\ y(0) = 0 \end{cases}$$

ha in x = 0

- (A) un flesso.
- (B) un minimo relativo.
- (c) un massimo relativo.
- (d) Nessuna delle altre affermazioni è corretta.

Serie

Nota bene: Serie numeriche fanno parte del corso dall'A.A. 2021/22. 146. A.A. 2021/22, primo appello (2 affermazioni corrette, 2 punti)

Si consideri la successione $(a_n)_{n\geq 1}$ con

$$a_n = \frac{1}{\sqrt{n}(\sqrt{n}+4)}.$$

- lacksquare la serie $\sum_{n=1}^{\infty} a_n$ converge, ma non converge $\sum_{n=1}^{\infty} (-1)^n a_n$.
- \square la serie $\sum_{n=1}^{\infty} a_n$ non converge.
- \square la serie $\sum_{n=1}^{\infty} (-1)^n a_n$ non converge.
- E Nulla può essere detto sulla convergenza delle serie $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} (-1)^n a_n$.

147. A.A. 2021/22, secondo appello $\,$ (1 risposta corretta, 2 punti)

Al variare del parametro $\alpha \in \mathbb{R}$, la serie

$$\sum_{n=1}^{\infty} \frac{\sin(n^{-3})}{[(n+2)!]^{\alpha}}$$

converge:

- (A) se e solo se $\alpha > 0$.
- (B) se e solo se $\alpha \geq 0$.
- (c) se e solo se $\alpha > 1$.
- (\mathbf{D}) per ogni $\alpha \in \mathbb{R}$.
- (E) Nessuna delle altre affermazioni è corretta.

148. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Si consideri la serie $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}}$, dove $\alpha \in (0, +\infty)$. Allora:

- (A) La serie converge se e solo se $\alpha > 2$.
- (B) La serie converge se e solo se $\alpha > 1$.
- (c) Nulla si può dire sulla convergenza se $\alpha \in (0,1]$.
- \bigcirc La serie converge per ogni α .
- (E) Nessuna delle altre affermazioni è corretta.

149. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Si consideri la serie $\sum_{k=1}^{\infty} a_k$ con $a_k = \frac{3k^2 + 2}{k^4 + 5k^2} \sin(k)$. Allora:

- (a) La serie $\sum_{k=1}^{\infty} |a_k|$ converge.
- (B) La serie $\sum_{k=1}^{\infty} a_k$ converge, ma $\sum_{k=1}^{\infty} |a_k|$ non converge.
- (c) La serie è a segni alterni.
- \bigcirc La serie $\sum_{k=1}^{\infty} a_k$ diverge a $+\infty$.
- (E) Nessuna delle altre affermazioni è corretta.

150. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Si consideri la serie $\sum_{k\geq 0} a_k$ con $a_k = (-1)^k \frac{\sqrt{k}}{k+1}$. Allora

- \bigcirc $\sum_{k>0} |a_k|$ converge
- (B) $\sum_{k\geq 0} a_k$ converge, ma $\sum_{k\geq 0} \lvert a_k \rvert$ non converge
- \bigcirc $\sum_{k>0} a_k$ diverge a $+\infty$
- \bigcirc $\sum_{k>0} a_k$ diverge a $-\infty$
- (E) Nessuna delle altre affermazioni è corretta.

151. A.A. 2022/23, primo appello (1 risposta corretta)

La serie numerica

$$\sum_{n=1}^{+\infty} \left(1 - \cos\left(\frac{1}{n^a}\right) \right), \quad a > 0,$$

converge se e solo se

- (A) a < 1/2.
- (B) a > 1/2.
- (c) a < 1.
- (D) a > 1.
- (E) Nessuna delle altre è corretta.

152. A.A. 2022/23, secondo appello (1 risposta corretta)

Per ogni $n \in \mathbb{N}$, sia $u_n = \sum_{i=0}^n \frac{1}{3^i} = 1 + \frac{1}{3} + \dots + \frac{1}{3^n}$ e $S = \lim_{n \to +\infty} u_n$.

- $\bigcirc S = \frac{3}{2}$
- $\bigcirc \hspace{-.1in} \mathbb{B} \hspace{.1in} S = \tfrac{2}{3}$
- \bigcirc S=0
- (E) Nessuna delle altre affermazioni è corretta.

153. A.A. 2022/23, terzo appello (2 risposte corrette)

Quali delle seguenti serie convergono?

$$\boxed{\mathbf{B}} \sum_{k=1}^{+\infty} \frac{5^k}{4^{k-2}}$$

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{2k+1}$$

154. A.A. 2022/23, quarto appello (1 risposta corretta)

Si consideri la successione $(a_n)_{n\in\mathbb{N}}$ con $a_n = \frac{n^3 - 5\sin(n)}{2^{n+1} + 4n}$.

- (A) la serie $\sum_{n=0}^{\infty} a_n$ converge, ma non converge $\sum_{n=0}^{\infty} (-1)^n a_n$.
- (B) la serie $\sum_{n=0}^{\infty} (-1)^n a_n$ converge, ma non converge $\sum_{n=0}^{\infty} a_n$.
- \bigcirc la serie $\sum_{n=0}^{\infty} a_n$ e la serie $\sum_{n=0}^{\infty} (-1)^n a_n$ non convergono.
- \bigcirc la serie $\sum_{n=0}^{\infty} a_n$ e la serie $\sum_{n=0}^{\infty} (-1)^n a_n$ convergono.

155. A.A. 2022/23, quinto appello (1 risposta corretta)

Il valore della serie numerica $\sum_{k=0}^{\infty} \frac{1}{4^k}$:

- \bigcirc $\dot{e} + \infty;$
- (c) non esiste;
- $\bigcirc \quad \grave{\mathrm{e}} \ \frac{3}{4};$
- $\stackrel{-}{(\epsilon)}$ nessuna delle altre risposte è corretta.

156. A.A. 2022/23, quinto appello (2 risposte corrette) Quali delle seguenti serie converge assolutamente?

$$\begin{bmatrix} A \end{bmatrix} \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}};$$

$$\mathbb{B} \sum_{n=1}^{+\infty} (-1)^n \sin\left(\frac{1}{n^{3/2}}\right);$$

Geometria

157. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto)

Denotiamo con z e z' le seguenti rette in \mathbb{R}^3 :

 τ : retta passante per A = (1, 0, -1) parallela al vettore $(2, 1, a), \tau'$: retta passante per A' = (3, 1, -2) parallela al vettore (b, -1, 1),

- $\lceil \mathsf{a} \rceil \ z, z'$ sono parallele se, e solo se, a = -1 e b = -2.
- $\lceil \mathbf{b} \rceil \ \mathbf{z}, \mathbf{z}'$ sono parallele se, e solo se, a=1 e b=2.
- \square Se z e z' sono parallele, allora z = z'.

158. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto)

In \mathbb{R}^n , siano **u** un vettore unitario e **a** un vettore qualunque. Allora:

- $oxed{b} = \mathbf{a} (\mathbf{a} \cdot \mathbf{u})\mathbf{u}$ è ortogonale al vettore \mathbf{u} .
- $\lceil \mathbf{c} \rceil |\mathbf{a} \cdot \mathbf{u}| = |\mathbf{a}|.$
- $|\mathbf{a} \cdot \mathbf{u}| \le |\mathbf{a}|$

159. A.A. 2020/21, primo appello (1 affermazione corretta, 1 punto)

Il volume del parallelepipedo costruito sui vettori

$$(0,1,1), (1,2,3), (-1,4,0)$$

- (A) vale 0.
- (B) vale 3.
- \bigcirc vale 1.
- (\mathbf{D}) vale $\sqrt{3}$.
- (E) Nessuna delle altre affermazioni è corretta.

160. A.A. 2020/21, primo appello (1 affermazione corretta, 2 punti)

La distanza tra il piano di equazione 3x + 2y - z + 1 = 0 e il punto di intersezione tra le rette di equazioni parametriche

$$\begin{cases} x = 3t + 1 \\ y = -2t \\ z = 5t - 1 \end{cases}$$
 e
$$\begin{cases} x = s + 1 \\ y = 2s \\ z = 3s - 1 \end{cases}$$

- (A) vale 0.
- (B) vale $\frac{5}{\sqrt{14}}$.
- (c) vale 5.
- \bigcirc vale $\frac{\sqrt{5}}{\sqrt{3}}$.
- (E) Nessuna delle altre affermazioni è corretta.

161. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti)

I vettori \vec{u} , \vec{v} , \vec{w} tali che $\vec{u} \cdot (\vec{v} \times \vec{w}) = \alpha$ sono linearmente indipendenti se e solo se

- (A) $\alpha \neq 0$ e $\vec{v} \cdot \vec{w} = 0$.
- (B) $\alpha = 0 \text{ e } \vec{v} \cdot \vec{w} = 0.$
- (c) $\alpha \neq 0$.
- \bigcirc $\alpha = 0.$
- (E) Nessuna delle altre affermazioni è corretta.

162. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti) Il piano che contiene la retta di equazioni

$$\begin{cases} 3x + 2y - 2z = 1\\ x - y = 2 \end{cases}$$

e passa per l'origine ha equazione

- $\widehat{(A)} \ 5x + 5y 4z = 0.$
- (B) 5x 5y + 4z = 0.
- (c) 5x 5y 4z = 0.
- $\bigcirc 5x + 5y + 4z = 0.$
- (E) Nessuna delle altre affermazioni è corretta.

163. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti) Si consideri il punto P=(2,-3,-4) e il piano

$$\pi \colon \begin{cases} x = 2 + 2\lambda + \mu \\ y = -1 - 3\lambda - 2\mu \\ z = 1 + \lambda + 2\mu \end{cases}$$

con $\lambda, \mu \in \mathbb{R}$. Allora:

- (A) P è contenuto nel piano π .
- (B) la distanza $d(\pi, P) = \frac{1}{\sqrt{26}}$.
- © la distanza $d(\pi, P) = \frac{11}{\sqrt{26}}$.
- \bigcirc la distanza $d(\pi, P) = \frac{24}{\sqrt{26}}$.
- (E) Nessuna delle altre affermazioni è corretta.

164. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti) Si consideri i tre punti

$$A = (3,0,3), B = (2,-1,3), C = (1,-3,4)$$

e l'angolo α tra \vec{BA} e \vec{BC} . Allora:

- $(A) \alpha = \frac{\pi}{6}.$
- (c) $\alpha = \frac{2\pi}{3}$.
- $\alpha = \frac{3\pi}{4}$.
- (E) Nessuna delle altre affermazioni è corretta.

165. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

Sia z la retta di equazioni

$$\begin{cases} x + y + z = 1 \\ x - y - z = 0, \end{cases}$$

e sia π il piano di equazione 2x - y - z = 0. Allora:

- (A) τ giace su π .
- (B) τ è parallela a π , e non giace su di esso.
- (c) z è ortogonale a π .
- (\mathbf{D}) \mathbf{z} non è nè parallela, nè ortogonale, a π .
- (E) Nessuna delle altre affermazioni è corretta.

166. A.A. 2021/22, primo appello (1 affermazione corretta, 1 punto)

La retta ε contenente il punto (1,2,3) e ortogonale al piano π contenente i punti (1,0,0), (0,1,0) e (0,0,1) coincide con

- $\widehat{(A)}$ asse x.
- (B) $\tau: (x, y, z) = (1, 2, 3) + \lambda(1, 1, 1)$.
- (c) asse y.
- (D) $\tau: (x, y, z) = (1, 2, 3) + \lambda(-1, 1, -1)$.
- (E) Nessuna delle altre affermazioni è corretta.

167. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

Il prodotto misto $[\vec{u}, \vec{v}, \vec{w}]$ dei vettori

$$\vec{u} = (1, 1, 2), \quad \vec{v} = (2, 2, 0), \quad \vec{w} = (1, 0, 1),$$

vale:

- $\stackrel{\frown}{(A)}$ 4.
- (B) -4.
- (c) 8.
- \bigcirc 0.
- (E) Nessuna delle altre affermazioni è corretta.

168. A.A. 2021/22, secondo appello (2 risposte corrette, 2 punti)

Date le rette z e s di equazioni parametriche

$$\tau: \begin{cases}
 x = 1 + t \\
 y = 2 + 2t \\
 z = 3 + 3t
\end{cases} \quad s: \begin{cases}
 x = -1 + t \\
 y = 2 \\
 z = -3 + 3t
\end{cases}$$

possiamo affermare che:

- $\[\] z \in s \text{ sono sghembe.}$
- в геs sono incidenti.
- c r e s sono ortogonali.
- \Box Il piano di equazione 3x z = 0 è parallelo a entrambe le rette.
- \Box Il piano di equazione x + y z = 0 è parallelo a entrambe le rette.

169. A.A. 2021/22, terzo appello (1 risposta corretta, 2 punti)

Si consideri il piano

$$\pi \colon \begin{cases} x = 1 + 2\lambda + \mu \\ y = -2 - 6\lambda + 2\mu \\ z = -1 - \lambda + 2\mu \end{cases}$$

e il punto A = (3, -1, 2). Allora:

- (A) A giace sul piano π .
- (B) La distanza $d(A, \pi)$ è $\frac{1}{3}$.
- © La distanza $d(A, \pi)$ è $\frac{1}{\sqrt{5}}$.
- (D) La distanza $d(A, \pi)$ è 1.
- (E) Nessuna delle altre affermazioni è corretta.

170. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Siano $\vec{u}, \vec{v}, \vec{w}$ tre vettori in \mathbb{R}^3 . Allora:

- (A) Se $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, allora \vec{v} e \vec{w} sono necessariamente linearmente indipendenti.
- (B) Se $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, allora $\vec{v} = \vec{w}$.
- (c) Se $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, allora \vec{v} e \vec{w} sono necessariamente linearmente dipendenti.
- (D) Se $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, allora \vec{u} , \vec{v} e \vec{w} sono necessariamente linearmente dipendenti.
- (E) Nessuna delle altre affermazioni è corretta.

171. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

L'equazione cartesiana del piano passante per A=(1,-2,1) e parallelo ai vettori $\vec{u}=(1,1,1)$ e $\vec{v}=(-1,0,2)$ è

- $\widehat{(A)} \ 2x 3y + z = 9.$
- (B) 2x + 3y + z = 9.
- (c) 2x 3y z = 9.
- \bigcirc 2x + 3y + z = -9.
- (E) Nessuna delle altre affermazioni è corretta.

172. A.A. 2021/22, quarto appello (1 risposta corretta, 1 punto)

Siano \vec{u}, \vec{v} due vettori in \mathbb{R}^3 tali che $\|\vec{u}\| = 1$, $\|\vec{v}\| = 2$, $\|\vec{u} + \vec{v}\| = 3$. Allora $\|\vec{u} - \vec{v}\|$ vale

- \bigcirc 1.
- (B) 2.
- (c) 0.
- (D) 3.
- (E) Nessuna delle altre affermazioni è corretta.

173. A.A. 2021/22, quinto appello (2 risposte corrette, 2 punti)

Siano \vec{u} e \vec{v} due vettori ortogonali di \mathbb{R}^3 . Allora

$$\boxed{\mathbf{A}} \ \|\vec{u}\| = \|\vec{v}\|$$

$$\|\vec{u}\| = \|\vec{v}\| = 1$$

$$||\vec{u} + \vec{v}|| = ||\vec{u} - \vec{v}||$$

$$\boxed{\mathbf{D}} \ \|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\|$$

E una sola delle altre affermazioni è corretta

174. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Le due rette

$$z: \begin{cases} x = 1 + t \\ y = 4 - t \\ z = t \end{cases}$$
 ed
$$s: \begin{cases} x = 1 - t \\ y = 2 - t \\ z = 2 + t \end{cases}$$

- (A) sono coincidenti
- (B) sono parallele, ma non coincidenti
- (c) sono incidenti in un punto
- (D) sono sghembe
- (E) sono ortogonali

175. A.A. 2022/23, primo appello (1 risposta corretta)

Siano dati i vettori $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$.

- (A) Se $\vec{w} = \vec{u} \times \vec{v}$, allora \vec{u} e \vec{v} sono necessariamente ortogonali.
- (B) Se $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, allora \vec{v} e \vec{w} hanno lo stesso modulo.
- (c) Se $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, allora $\vec{u} \in \vec{v} \vec{w}$ sono linearmente dipendenti.
- (D) Se $\vec{u}, \vec{v}, \vec{w}$ sono complanari, allora \vec{w} e $\vec{u} \times \vec{v}$ sono linearmente dipendenti.
- (E) Nessuna delle altre è corretta.

176. A.A. 2022/23, secondo appello (1 risposta corretta)

Nel triangolo di vertici A = (3,0,3), B = (2,-1,3), C = (1,-3,4), l'angolo del vertice B è:

- \bigcirc A $\frac{\pi}{6}$
- \bigcirc B $\frac{\pi}{4}$
- (c) $\frac{5}{6}\pi$
- $\bigcap_{\mathbf{D}} \frac{\pi}{2}$
- (E) Nessuna delle altre affermazioni è corretta.

177. A.A. 2022/23, terzo appello (1 risposta corretta)

Sia dati due versori (vettori di modulo 1) $\vec{u}, \vec{v} \in \mathbb{R}^3$. Se il loro prodotto scalare $\vec{u} \cdot \vec{v} = -1$, allora i due versori \vec{u} e \vec{v}

- (A) sono ortogonali;
- (B) formano un angolo di $\frac{\pi}{4}$;
- (c) formano un angolo di $-\frac{\pi}{4}$;
- \bigcirc formano un angolo di π ;
- (E) nessuna delle altre affermazioni è corretta.

178. A.A. 2022/23, quinto appello (1 risposta corretta) Siano dati i vettori $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$.

- $(\widehat{\mbox{\ A}})$ Se $\vec{w}=\vec{u}\times\vec{v},$ allora \vec{u} e \vec{v} sono necessariamente ortogonali.
- $(\mathbf{\bar{B}})$ Se $\vec{u}\cdot\vec{v}=\vec{u}\cdot\vec{w},$ allora \vec{v} e \vec{w} hanno lo stesso modulo.
- (c) Se $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, allora \vec{u} e $\vec{v} \vec{w}$ sono linearmente dipendenti.
- (D) Se $\vec{u}, \vec{v}, \vec{w}$ sono complanari, allora \vec{w} e $\vec{u} \times \vec{v}$ sono linearmente dipendenti.
- (E) Nessuna delle altre risposte è corretta.

Curve

179. A.A. 2020/21, seconda prova in itinere (almeno 1 affermazione corretta, 1 punto) Sia γ la curva parametrizzato da $\vec{f}(t)=(1-t,t^2+t,t^2),\,t\in[0,1]$. Allora:

- $\lceil \mathsf{A} \rceil$ γ è una curva piana.
- $\lceil \mathsf{B} \rceil$ γ è regolare.
- $\vec{c} \vec{f}$ è una parametrizzazione per arco.
- $\[\] \gamma$ non ha lunghezza finita.

180. A.A. 2020/21, primo appello (1 affermazione corretta, 2 punti) Il versore binormale della curva di equazioni parametriche

$$\begin{cases} x = e^t \\ y = e^{-t} \\ z = t \end{cases} \quad t \in \mathbb{R}$$

nel punto (1,1,0) è:

(A)
$$\frac{1}{\sqrt{6}}(-1,1,2)$$
.

(B)
$$\frac{1}{\sqrt{6}}(1,-1,-2)$$
.

$$\bigcirc$$
 $\frac{1}{\sqrt{2}}(1,1,0).$

- (D) indefinito poichè la curva non è biregolare.
- (E) Nessuna delle altre affermazioni è corretta.

181. A.A. 2020/21, secondo appello (1 affermazione corretta, 2 punti) La lunghezza del grafico di una funzione $f\colon [a,b]\to \mathbb{R}$ di classe C^1 è

$$(\mathbf{B}) \ \int_a^b \sqrt{1+|f(t)|^2} \, dt.$$

$$\bigcirc \int_a^b \sqrt{|f(t)|^2 + |f'(t)|^2} dt.$$

(E) Nessuna delle altre affermazioni è corretta.

182. A.A. 2020/21, terzo appello (1 affermazione corretta, 2 punti)

Si consideri la curva

$$\gamma \colon \begin{cases} x = \cos(e^t) \\ y = -\sqrt{2}e^t \\ z = \sin(e^t) \end{cases}$$

con $t \in [0,1]$. Allora:

- (A) esiste $t_0 \in [0,1]$ tale che γ non è regolare in t_0 .
- (B) la lunghezza di γ è $\sqrt{3}$ e.
- (c) la lunghezza di γ è $\sqrt{2}(e-1)$.
- \bigcirc la lunghezza di γ è $\sqrt{3}(e-1)$.
- (E) Nessuna delle altre affermazioni è corretta.

183. A.A. 2020/21, quarto appello (1 affermazione corretta, 2 punti)

La lunghezza della curve $\gamma(t)=\left(t-1,1-t^2,2+\frac{2}{3}t^3\right),\,t\in[0,1]$ è:

- $\bigcirc \quad \frac{5}{3}.$
- (E) Nessuna delle altre affermazioni è corretta.

184. A.A. 2021/22, primo appello (1 affermazione corretta, 2 punti)

Si consideri la curva $\gamma \subset \mathbb{R}^3$ avente parametrizzazione data da $\vec{f}(t) = (1, -t, t^2/2)$ per $t \in [0, \sqrt{3}]$. Allora

- (A) γ non è regolare.
- (B) γ è regolare, ma non biregolare.

(c)
$$\int_{\gamma} \frac{y}{(1+2z)^{3/2}} ds = \ln \sqrt{3}$$
.

(E)
$$\int_{\gamma} \frac{y}{(1+2z)^{3/2}} ds = -\ln 2.$$

185. A.A. 2021/22, secondo appello (1 risposta corretta, 1 punto)

La lunghezza della curva avente parametrizzazione

$$\vec{f}(t) = \left(\cos(\ln t), \ \frac{\sqrt{2}}{2}\sin(\ln t), \ \frac{\sqrt{2}}{2}\sin(\ln t)\right) \qquad t \in \left[1, e^{2\pi}\right],$$

vale:

- (A) $2\pi 1$.
- $\stackrel{\textstyle \bigcirc}{}$ 2π .
- $(c) +\infty$.
- \bigcirc $e^{2\pi} 1$.
- (E) Nessuna delle altre affermazioni è corretta.

186. A.A. 2021/22, terzo appello (1 risposta corretta, 1 punto)

Sia γ la curva parametrizzata da $\vec{f}(t) = \left(\frac{2\sqrt{2}}{3}t\sqrt{t}, \ t\sin(t), \ t\cos(t)\right), \ t \in [0,\pi].$ Allora:

- (A) Esiste $t_0 \in [0, \pi]$ tale che γ non è regolare in t_0
- (B) La lunghezza di γ è $\pi(\pi+2)$.
- © La lunghezza di γ è $\frac{\pi(\pi+2)}{2}$.
- (E) Nessuna delle altre affermazioni è corretta.

187. A.A. 2021/22, quarto appello (2 risposte corrette, 2 punti)

Sia γ la curva parametrizzata da $\vec{f}(t) = (t - \sin(t), 1 - \cos(t)), t \in [0, \pi]$. Allora:

- La curva è chiusa, cioè, $\vec{f}(0) = \vec{f}(\pi)$.
- в La curva è regolare.
- C La curva non è regolare.
- $\boxed{\mathbf{E}} \int_{\gamma} \sqrt{y} = \sqrt{2}(\pi 1).$

188. A.A. 2021/22, quinto appello (1 risposta corretta, 1 punto)

Sia γ la curva parametrizzata da $\vec{f}(t) = (2\cos t, 2\sin t, t^2)$, $t \in [0, 1]$. Allora l'integrale di linea

$$\int_{\gamma} \sqrt{x^2 + y^2 + 4z} \, ds$$

vale

- \bigcirc -1
- \bigcirc 0
- © 1
- $\bigcirc \quad \frac{8}{3}$

189. A.A. 2022/23, primo appello (1 risposta corretta)

Sia γ la curva parametrizzata da $\vec{f}(t)=(t^2-1,t,t^2+2),t\in\mathbb{R}$. Inoltre sia $\vec{p}=\vec{f}(0)$ un punto su γ . Allora:

- \bigcirc γ è contenuta nel piano $\pi: x+y-z=-3$.
- (B) γ è contenuta nel piano $\pi: x-z=-3$.
- $\stackrel{\frown}{\text{c}}$ La retta tangente a γ in \vec{p} ha equazione parametrica $(x,y,z)=(1,0,-2)+\lambda(0,1,0)$.
- (D) La retta tangente a γ in \vec{p} ha equazione parametrica $(x,y,z)=(-1,0,2)+\lambda(0,1,1)$.
- (E) Nessuna delle altre è corretta.

190. A.A. 2022/23, terzo appello (1 risposta corretta)

Sia data la curva γ parametrizzata da $\vec{f}(t) = (\cos(e^t), -e^t, \sin(e^t)), t \in [0, 1]$. Allora

- (A) esiste $t_0 \in [0, 1]$ tale che γ non è regolare nel punto $\vec{f}(t_0)$;
- (в) la lunghezza di γ è e-1;
- (c) la lunghezza di γ è $\sqrt{2}(e-1)$;
- \bigcirc la lunghezza di γ è $\sqrt{2}e$;
- (E) nessuna delle altre affermazioni è corretta.

191. A.A. 2022/23, quarto appello (1 risposta corretta)

Si consideri la curva γ con parametrizzazione $\vec{\gamma}(t) = (2\sqrt{2}t - \sin(t), 2\sqrt{2}\sin(t) + t, 3\cos(t)), t \in [0, 2\pi].$

- (A) γ non è regolare per ogni $t \in [0, 2\pi]$.
- (B) γ è regolare, ma non è biregolare per ogni $t \in [0, 2\pi]$.
- (c) la lunghezza di γ vale $6\sqrt{2}\pi$.
- (\mathbf{p}) la lunghezza di γ vale $\sqrt{18}\pi$.
- (E) Nessuna delle altre affermazioni è corretta.

192. A.A. 2022/23, quinto appello (1 risposta corretta)

Sia γ la curva parametrizzata da $\vec{f}(t) = (t^2 + 1, t, t^2 - 1), t \in \mathbb{R}$ e sia $\vec{p} = \vec{r}(0)$. Allora:

- (A) γ è contenuta nel piano π : x-z=-2;
- (B) γ è contenuta nel piano π : x-z=2;
- (c) la retta tangente a γ in \vec{p} ha equazione parametrica $(x, y, z) = (1, 0, 1) + \lambda(0, 1, 0)$;
- (D) la retta tangente a γ in \vec{p} ha equazione parametrica $(x, y, z) = (-1, 0, 1) + \lambda(0, 1, 0)$;
- (E) nessuna delle altre risposte è corretta.

Esercizi a Carta e Penna

Nota bene: Nell'A.A. 2020/21, dimostrazioni non facevano parte della parte scritta.

Studio di Funzione

1. A.A. 2020/21, seconda prova in itinere (12 punti)

Si consideri la funzione:

$$f(x) = (x+1)e^{\frac{x}{x^2-1}}$$
.

- (1) Determinare il dominio di f, gli eventuali zeri ed il segno di f.
- (2) Stabilire se f è continua nel suo dominio e determinare i limiti al bordo del dominio di f.
- (3) Determinare il dominio di definizione della derivata prima e calcolare f'.
- (4) Studiare la monotona di f e determinare gli eventuali punti estremanti, sepcificando se sono assoluti e/o relativi.
- (5) Tracciare un grafico qualitativo della funzione f.
- (6) Sfruttando lo studio di f svolto nei punti precedenti, si tracci un grafico qualitativo della funzione integrale

$$F(x) = \int_{2}^{x} f(t) dt$$

dove l'integrale è da intendersi eventualmente in senso improprio.

2. A.A. 2020/21, primo appello (12 punti)

Data la funzione

$$f(x) = \begin{cases} xe^{3\arctan(\frac{1}{x})} & \text{se } x \neq 0; \\ 0 & \text{se } x = 0. \end{cases}$$

- (1) Stabilire dominio, eventuali zeri e segno.
- (2) Studiare la continuità, e individuare eventuali asintoti.
- (3) Deterimare il dominio della derivata f', e calcolarla. Classificare eventuali punti di non derivabilità.
- (4) Studiare la monotonia di f e determinare gli eventuali punti estremanti, specificando se sono assoluti e/o relativi.
- (5) Tracciare un grafico qualitativo della funzione.
- (6) Determinare le primitive della funzione

$$g(x) = f'(x)e^{-3\arctan(\frac{1}{x})},$$

52

calcolare quindi $\int_0^1 g(x) dx$.

3. A.A. 2020/21, secondo appello (12 punti)

Sia data la funzione

$$f(x) = (1+x)\ln(1+x) + (1-x)\ln(1-x) - 2x^{2}.$$

- (1) Stabilire il dominio, individuare eventuali simmetrie ed eventuali asintoti.
- (2) Studiare la continuità e dire se esistono punti in cui f è prolungabile con continuità.
- (3) Determinare il dominio della derivata prima e calcolarla.
- (4) Studiare la monotonia di f e determinare gli eventuali punti estremanti, specificando se sono assoluti e/o relativi.
- (5) Determinare il dominio della derivata seconda e calcolarla.
- (6) Studiare la convessità e determinare eventuali punti di flesso.
- (7) Tracciare un grafico qualitativo della funzione.
- (8) Provare che il seguente integrale esiste finito e calcolarlo

$$\int_{-1}^{1} f'(y) \, dy.$$

4. A.A. 2020/21, terzo appello (12 punti)

Sia data la funzione

$$f(x) = \operatorname{arctg}\left(\frac{2+x^2}{2-x^2}\right).$$

- (1) Stabilire il dominio, individuare eventuali simmetrie ed eventuali asintoti.
- (2) Studiare la continuità e dire se esistono punti in cui f è prolungabile con continuità.
- (3) Determinare il dominio della derivata prima e calcolarla.
- (4) Studiare la monotonia di f e determinare gli eventuali punti estremanti, specificando se sono assoluti e/o relativi.
- (5) Determinare il dominio della derivata seconda e calcolarla.
- (6) Studiare la convessità e determinare eventuali punti di flesso.
- (7) Tracciare un grafico qualitativo della funzione.
- (8) Calcolare lo sviluppo del polinomio di Taylor al ordine 3 in x=0.

5. A.A. 2020/21, terzo appello (12 punti)

Si consideri la funzione definita da

$$f(x) = \operatorname{arctg}\left(\frac{1}{x}\right) + \ln(1+x^2).$$

- (1) Determinare il dominio D di d, calcolare i limiti al bordo del dominio D e determinare gli eventuali asintoti.
- (2) Studiare la continuità e dire se esistono punti in cui f è prolungabile con continuità.
- (3) Studiare la derivabilità di f, calcolare f' e dire se esistono punti in cui f' è prolungabile con continuità.
- (4) Studiare la monotonia di f e determinare gli eventuali punti estremanti, specificando se sono assoluti e/o relativi.
- (5) Calcolare f''.
- (6) Studiare la convessità di f e determinare eventuali punti di flesso.
- (7) Tracciare un grafico qualitativo della funzione.
- (8) Stabilire se il seguente integrale improprio è convergente:

$$\int_{1}^{\infty} \frac{f(x)}{x^2 \sqrt{x}} \, dx$$

6. A.A. 2021/22, primo appello (6 punti)

Si consideri la seguente funzione:

$$f(x) = \sqrt[3]{\frac{x+2}{x^2+1}}.$$

- (1) Determinare il dominio, gli eventuali zeri ed il segno della funzione f.
- (2) Studiare i limiti al bordo del dominio e determinare gli asintoti.
- (3) Calcolare f' determinandone l'insieme di definizione, studiare i punti di non derivabilità, studiare la monotonia e determinare gli eventuali punti estremanti.
- (4) Tracciare un grafico probabile della funzione f. Non è richiesto lo studio della derivata seconda, ma è richiesto che il grafico tracciato sia coerente con tutte le informazioni ottenibili a prescindere dalla derivata seconda.
- (5) Calcolare il seguente integrale

$$\int_0^{\sqrt{3}} \frac{x+2}{x^2+1} \ dx$$

7. A.A. 2021/22, secondo appello (6 punti)

Si consideri la funzione

$$f(x) = \ln(\ln(x)) - \arctan(\ln(x) - 1)$$

- (1) Determinare il dominio, i limiti agli estremi del dominio e la presenza di eventuali asintoti.
- (2) Calcolare f' determinandone l'insieme di definizione, determinare gli intervalli di monotonia e gli eventuali punti di estremo (locali e globali).
- (3) Stabilire il numero esatto di soluzioni dell'equazione f(x) = 0, giustificando adeguatamente la risposta (si osservi che f(e) = 0).
- (4) Tracciare un grafico qualitativo di f sulla base delle informazioni precedentemente ricavate.
- 8. A.A. 2021/22, terzo appello (6 punti)

Si consideri la funzione

$$f(x) = \frac{\sqrt{1 - |x|}}{1 + x^3}$$

- (1) Determinare il dominio, gli eventuali zeri ed il segno della funzione f.
- (2) Studiare i limiti al bordo del dominio e determinare gli eventuali asintoti.
- (3) Calcolare f' determinandone l'insieme di definizione, studiare i punti di non derivabilità.
- (4) Studiare la monotonia e determinare il numero di punti estremanti, eventualmente usando il teorema degli zeri. Determinare punti di massimo e minimo locale e globale.
- (5) Tracciare un grafico probabile della funzione f. Non è richiesto lo studio della derivata seconda, ma è richiesto che il grafico tracciato sia coerente con tutte le informazioni ottenibili a prescindere dalla derivata seconda.
- 9. A.A. 2021/22, quarto appello (6 punti)

Si consideri la funzione

$$f(x) = e^x \sqrt[3]{1 - e^{-x}}$$

- (1) Determinare il dominio, gli eventuali zeri ed il segno della funzione f. Studiare i limiti al bordo del dominio e determinare gli eventuali asintoti.
- (2) Calcolare f' determinandone l'insieme di definizione, studiare i punti di non derivabilità. Studiare la monotonia di f, determinare i punti estremanti e gli eventuali punti di massimo e minimo locale e globale.
- (3) Calcolare f'' determinandone l'insieme di definizione. Studiare la convessità di f, determinando gli eventuali punti di flesso.
- (4) Tracciare un grafico della funzione f coerente con tutte le informazioni ricavate nei punti precedenti.

10. A.A. 2021/22, quinto appello (6 punti)

Si consideri la funzione

$$f(x) = \frac{x}{1 + x^2} - \arctan x.$$

- (1) Determinare il dominio e le eventuali simmetrie della funzione f. Inoltre, studiare i limiti al bordo del dominio e determinare gli eventuali asintoti.
- (2) Calcolare f' determinandone l'insieme di definizione.
- (3) Studiare la monotonia di f e determinare gli eventuali punti di massimo e minimo locale e globale.
- (4) Calcolare f'' determinandone l'insieme di definizione.
- (5) Studiare la cocavità di f e determinare gli eventuali punti di flesso.
- (6) Tracciare il grafico qualitativo della funzione f.
- 11. A.A. 2022/23, prima prova (6 punti)

Si consideri la funzione

$$f(x) = (x^2 + 12x) e^{-\frac{2}{x}}$$
.

- (1) Determinare il dominio, studiare il segno e stabilire la presenza di eventuali asintoti.
- (2) Calcolare f', trovare tutti i punti stazionari e classificarli. Stabilire inoltre se esistono punti di estremo globale.
- (3) Tracciare un grafico qualitativo di f sulla base delle informazioni ricavate (non è richiesto lo studio di f'').
- 12. A.A. 2022/23, primo appello (6 punti)

Si consideri la funzione

$$f(x) = \frac{\pi}{2} - \frac{1}{2}x - \arctan\left(\frac{1}{x}\right).$$

- (1) Determinare il dominio, i limiti al bordo del dominio e gli eventuali asintoti.
- (2) Calcolare f' determinandone l'insieme di definizione, e studiare la monotonia di f determinando i punti di massimo e minimo locale e globale.
- (3) Calcolate f'' e studiare la concavità di f(x) determinando gli eventuali flessi.
- (4) Tracciare un grafico probabile della funzione f. È richiesto che il grafico tracciato sia coerente con tutte le informazioni ottenute.
- 13. A.A. 2022/23, secondo appello (8 punti)

Si consideri la funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da

$$f(x) = e^{\frac{1}{x}} - 1 - x$$

- (1) Determinare i limiti al bordo del dominio e gli eventuali asintoti. Stabilire se f può essere estesa con continuità a tutto \mathbb{R} .
- (2) Calcolare f' e studiare la monotonia di f determinando gli eventuali punti di estremo. Motivando la risposta, dire quanti sono gli zeri di f.
- (3) Calcolate f'' e studiare la concavità di f determinando gli eventuali flessi.
- (4) Tracciare il grafico qualitativo di f.

14. A.A. 2022/23, terzo appello (8 punti)

Data la funzione

$$f(x) = \sqrt[3]{\frac{(x+1)^5}{x^2}},$$

determinarne

- (1) dominio e limiti agli estremi del dominio;
- (2) eventuali asintoti;
- (3) derivata prima e eventuali punti di massimo e minimo locale;
- (4) grafico qualitativo.
- 15. A.A. 2022/23, quarto appello (8 punti)

Si consideri la funzione

$$f(x) = \arctan\left(\frac{x+2}{x^2-1}\right)$$

- (1) Determinare il dominio, i limiti al bordo del dominio e gli eventuali asintoti. Stabilire se f può essere estesa con continuità a tutto \mathbb{R} .
- (2) Calcolare f' determinandone l'insieme di definizione.
- (3) Studiare la monotonia di f determinando i punti di massimo e minimo locale e globale.
- (4) Tracciare il grafico qualitativo di f.
- 16. A.A. 2022/23, quinto appello (7 punti)

Si consideri la funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da $f(x) = e^{-\frac{1}{x}} - 2 + x$.

- (1) Determinare i limiti al bordo del dominio e gli eventuali asintoti.
- (2) Stabilire se f può essere estesa con continuità a tutto \mathbb{R} .
- (3) Calcolare f' e studiare la monotonia di f.
- (4) Motivando la risposta, dire quanti sono gli zeri di f.
- (5) Calcolare f'' e studiare la concavità di f determinando gli eventuali flessi.
- (6) Tracciare il grafico qualitativo di f.

Geometria

1. A.A. 2022/23, primo appello (6 punti)

Siano dati il punto
$$\vec{q}=(1,1,-1)$$
 e la retta $r: \begin{cases} x=\lambda \\ y=1 \\ z=1+\lambda \end{cases}$, $\lambda \in \mathbb{R}$.

- (1) Determinare la distanza tra r ed \vec{q} .
- (2) Determinare l'equazione parametrica della retta s per \vec{q} sia ortogonale sia incidente ad r.
- (3) Determinare l'equazione cartesiane del piano contenente i punti \vec{q} ed $\vec{o} = (0, 0, 0)$ e parallelo alla retta r.
- 2. A.A. 2022/23, secondo appello (4 punti)

Si consideri la curva γ parametrizzata da

$$\vec{f}(t) = (t^2 + \cos t, \ t^2 - \sin t, \ t^2 + t), \qquad t \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

- (1) Determinare vettore tangente, normale e binormale di γ nel punto P = (1, 0, 0).
- (2) Determinare i punti $Q \in \gamma$ in cui la retta tangente è ortogonale alla retta tangente in P.
- 3. A.A. 2022/23, terzo appello (4 punti)

Nello spazio \mathbb{R}^3 , sia τ la retta passante per A=(1,0,2) e B=(3,4,1) e sia \mathfrak{s} la retta intersezione dei piani x-2y=1 e y+z=0.

- (1) Stabilire se z e s sono incidenti, parallele o sghembe.
- (2) Determinare un piano π che contiene s e che è parallelo ad z.
- (3) Calcolare la distanza tra π ed un punto di ε (scelto a piacere).
- 4. A.A. 2022/23, quarto appello (4 punti)

Si considerino i punti A = (-1, 3, -5), B = (-2, -1, 4) e il piano

$$\pi \colon \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 9 \\ 1 \\ -4 \end{pmatrix}$$

- (1) Calcolare la distanza tra il punto A e il piano π .
- (2) Calcolare gli angoli del triangolo A, B, C, dove C è il punto di proiezione ortogonale di A su π .

58

5. A.A. 2022/23, quinto appello (5 punti)

Siano dati il punto
$$A=(0,1,-1)$$
 e la retta $r\colon \begin{cases} x=-1+\lambda\\ y=1\\ z=1+\lambda \end{cases}$, $\lambda\in\mathbb{R}$.

- (1) Determinare la distanza tra r ed A.
- (2) Determinare l'equazione parametrica della retta s passante per A che è sia ortogonale sia incidente ad r.
- (3) Determinare l'equazione cartesiana del piano contenente i punti A ed B=(-1,0,0) e parallelo alla retta r.

Dimostrazioni

1. A.A. 2021/22, primo appello (6 punti)

Enunciare e dimostrare il Teorema di Lagrange e se nella sua dimostrazione si fa uso del Teorema di Rolle, dimostrare anche quest'ultimo.

- 2. A.A. 2021/22, secondo appello (6 punti)
 - (1) Enunciare il criterio del rapporto per serie numeriche.
 - (2) Enunciare e dimostrare il teorema di Fermat.
- 3. A.A. 2021/22, terzo appello (6 punti)
 - (1) Sia $f: [a, b] \to \mathbb{R}$ una funzione Riemann-integrabile. Provare che la funzione integrale $F(x) = \int_a^x f(t)dt$ è continua in [a, b].
 - (2) Provare con un esempio che F può non essere derivabile in almeno un punto di [a, b].
- 4. A.A. 2021/22, quarto appello (6 punti)
 - (1) Sia π un piano di equazione cartesiana ax + by + cz = d e sia $P = (x_0, y_0, z_0)$ un punto dello spazio. Dimostrare la formula che fornisce la distanza di P da π .
 - (2) Definire geometricamente la distanza di un punto da una retta nello spazio.
- 5. A.A. 2021/22, quinto appello (6 punti)
 - (1) Enunciare il criterio della radice per le serie numeriche.
 - (2) Enunciare e dimostrare il teorema di monotonia per le funzioni derivabili.
- 6. A.A. 2022/23, prima prova (4 punti)
 - (1) Enunciare e dimostrare il teorema del confronto per successioni.
 - (2) Enunciare (ma non dimostrare) il teorema di valori intermedi.
- 7. A.A. 2022/23, primo appello (10 punti)
 - (1) Enunciare e dimostrare la continuità della funzione composta.
 - (2) Enunciare la formula di integrazione per sostituzione.
 - (3) Enunciare e dimostrare il criterio del rapporto per serie numeriche.
- 8. A.A. 2022/23, secondo appello (10 punti)
 - (1) Enunciare e dimostrare il teorema su limiti di successioni monotone.
 - (2) Enunciare la formula della distanza punto tra un punto e un piano.
 - (3) Enunciare e dimostrare la disugualianza di Cauchy-Schwarz.

- 9. A.A. 2022/23, terzo appello (10 punti)
 - (1) Enunciare e dimostrare il teorema sulla unicità del limiti di una successione.
 - (2) Enunciare la formula di De Moivre.
 - (3) Enunciare e dimostrare la continuità della funzione integrale.
- 10. A.A. 2022/23, quarto appello (10 punti)
 - (1) Enunciare e dimostrare l'irrazionalità di $\sqrt{2}$.
 - (2) Enunciare il criterio del confronto per serie numeriche.
 - (3) Enunciare e dimostrare il teorema di Lagrange.
- 11. A.A. 2022/23, quinto appello (10 punti)
 - (1) Enunciare e dimostrare il teorema di Lagrange.
 - (2) Enunciare il teorema di Fermat.
 - (3) Enunciare e dimostrare il teorema della continuità della funzione integrale.