IN THE CLAIMS:

Claims 1-8 (Cancelled)

- 9. (Original) A process for the production of dimethyl ether, comprising the steps of:
- (a) mixing a gas feed, containing a lower hydrocarbon having 1-4 carbon atoms and 30-70 mole % of CO₂ based on a total mole of the CO₂ and the lower hydrocarbon, with H₂O to obtain a mixed gas having contents of the CO₂, H₂O and lower hydrocarbon satisfying the following condition:

$$0.5 \le ([CO_2] + (H_2O])/[C] \le 2.5$$

wherein $[CO_2]$ represents the moles of the CO_2 , $[H_2O]$ represents the moles of the H_2O and [C] represents the moles of carbon of the lower hydrocarbon;

(b) contacting said mixed gas with a catalyst at a temperature of 600-1,000°C and a pressure of 10-75 atm to produce a synthesis gas with a synthesis gas production efficiency Yf of at least 80 % and a carbon conversion efficiency Cf of at least 50 %,

said synthesis gas production efficiency Yf being represented by the following formula:

$$Yf = \{[CO] + [H_2] / ([C] + [CO_2] + [H_2O])\} \times 100 \%$$

wherein [CO] represents the moles of CO in said synthesis gas, $[H_2]$ represents the moles of H_2 in said synthesis gas, and $[CO_2]$, $[H_2O]$ and [C] are as defined previously,

said carbon conversion efficiency Cf being represented by the following formula:

$$Cf = \{ [CO]/([C] + [CO_2]) \} \times 100 \%$$

wherein [CO], [CO₂] and [C] are as defined previously,

said synthesis gas having a molar ratio of hydrogen to carbon monoxide of 0.5-1.5,

said catalyst having a specific surface area of 5 m²/g or less and comprising a magnesium oxide-containing carrier and at least one catalytic metal selected from the group consisting of rhodium and ruthenium and supported on said carrier in an amount of 10-5,000 ppm, in terms of elemental metal, based on the weight of said carrier;

- (c) reacting said synthesis gas in the presence of one or more catalysts having activities of methanol synthesis, methanol dehydration and CO shift reaction to obtain a product containing dimethyl ether; and
 - (d) separating said dimethyl ether from said product.
- 10. (Original) A process as claimed in claim 9, wherein said gas feed contains 40-60 mole % of CO₂ and wherein said mixed gas satisfies the following condition:

"
$$1 \le ([CO_2] + [H_2O])/[C] \le 2$$

wherein $[CO_2]$, $[H_2O]$ and $[C]$ are as defined in claim 9.

- 11. (Original) A process as claimed in claim 9, wherein said gas feed is discharged overhead from a distillation tower where a raw material feed containing CO₂ and a lower hydrocarbon is distilled at a pressure of 10-80 atm while removing CO₂ from a bottom thereof.
- 12. (Original) A process as claimed in claim 11, wherein said distillation tower is operated at a pressure of 20-50 atm and a tower top temperature of -60°C.
- 13. (Original) A process as claimed in claim 9, wherein step (c) is performed using at least two catalysts selected from the group consisting of a methanol synthesis catalyst, a methanol

dehydration catalyst and a CO shift reaction catalyst.

Respectfully submitted,

George A. Loud

Dated: August 28, 2003

LORUSSO, LOUD & KELLY 3137 Mount Vernon Avenue Alexandria, VA 22305

(703) 739-9393