# Optimization: Julia and JuMP Software for Analytics, Day 2

Instructor: Emma Gibson

August 28, 2019

# Agenda for today

- ▶ Introduction to Julia
- Julia practical
- Introduction to optimization
- ► Linear optimization practical
- Mixed-integer optimization practical
- Project work

#### Software

#### Essential installations for today:

- Julia
- Gurobi
- Jupyter
- Julia packages

If you made it through the preassignment, well done!

#### LIKELIHOOD YOU WILL GET CODE WORKING BASED ON HOU YOU'RE SUPPOSED TO INSTALL IT:



Source: xkcd.com



#### Julia



- ► High-level, high-performance, open-source dynamic language for technical computing
- Developed at MIT over the last decade
- Gives users the convenience of a dynamic language without compromising on efficiency

#### Julia benchmarks



Source: https://julialang.org/benchmarks/

## Dynamic vs. compiled languages

**Compiled languages** like C are optimized for speed, but they are not very flexible (no interactive coding).

**Dynamic languages** like Python are a more popular choice for data scientists, but they are slower.

**Julia** has the best of both worlds: code is compiled just before execution for speed and flexibility.



## Learning Julia

The best way to learn a new coding language is to practice!

#### Official documentation

Julia is a new language that is actively maintained and developed. Help files and documentation for the latest version are available at https://docs.julialang.org/en/v1/index.html

#### Other sources of information

Sites like stackoverflow.com can be great resources, but may be out-of-date when a new version is released.



## Learning Julia

#### Things to remember:

- Comments are your friend
- Save regularly
- Use some kind of version control
- Check license restrictions before trying something new
- Ask questions / be kind



Source: xkcd.com

# Why optimization?

Optimization is a powerful tool for solving real-world problems. You've probably already encountered optimization several times today:

- Logistics and transportation
- Supply chain and manufacturing
- ▶ Revenue management
- Advertising
- Machine learning and artificial intelligence

# Optimization structure

Optimization problems have three main components:

- Decision variables (the solution we want to calculate)
- ► An objective function (to measure how good a solution is)
- ► Constraints (restrictions on the type of solution we want) Example:

# $\min_{\mathbf{x}} f(\mathbf{x})$ subject to: $a_1(\mathbf{x}) \le b_1$ $a_2(\mathbf{x}) \ge b_2$ $a_3(\mathbf{x}) = b_3$ $\mathbf{x} > 0$

# Optimization terminology

- ► Minimize or maximize do we want f(x) to be high or low?
- Feasible solution: a solution that does not break any constraints
- ▶ Infeasible: there is no solution that satisfies all the constraints (e.g.  $x \le 0$  and x = 2)
- Optimal solution: the best feasible solution
- ▶ Unbounded: best objective value is infinite (e.g.  $\max x$  s.t.  $x \ge 0$ )

#### Types of problems

Optimization problems can be classified into a few different categories based on the type of functions and variables used in the model:

- Linear: everything is linear/affine
- Quadratic: quadratic objective and constraints
- Conic: variables and constraints lie in cones
- Convex: constraints and objective are convex
- Nonlinear: everything else
- ▶ (Mixed) Integer: (some) variables restricted to integer values

## Linear optimization

In a linear model, the objective and constraints are all linear functions of the decision variables:

$$\min_{\mathbf{x}} c_1 x_1 + c_2 x_2 + c_3 x_3$$
subject to:
$$a_1 x_1 + a_2 x_2 + a_3 x_3 \le b$$

$$\mathbf{x} \ge 0$$

#### Linear optimization

Linear models are simple but powerful. Over the years, many researchers have developed efficient algorithms for solving linear problems.

- Simplex algorithm (1947)
- ► Ellipsoid method (1970)
- Interior point method (1984)

However, solving the model is just one part of the process!

## Optimization steps

1. Identify a problem (human)

2. Create a mathematical model (human)

3. Collect data (human)

4. Optimize the model (algorithm)

5. Validate, improve

(human)



Source: xkcd.com

# Optimization solvers

It takes a great deal of work to translate real-world problems into something that a computer can understand. Luckily, you don't need to be an expert mathematician or programmer to solve optimization models!

There are many solvers available to find solutions to your models.









## Optimization solvers

We don't need to understand the algorithms that optimization solvers use, but it helps to know a little bit about each solver so that we can select the best one for our problem.

#### Solver criteria:

- 1. Type of problem (linear, quadratic, integer etc.)
- 2. Software constraints (operating system, dependencies)
- 3. Hardware constraints
- Cost and licensing
- 5. Documentation, language, interface

#### Interacting with solvers

Solvers need us to write out our problem in a way that matches their inputs. In reality, we don't want to write a new version of our problem for every solver. Instead, we'll use an Algebraic Modeling Language (AML).

- AMLs let us write human-readable code to describe our variables and constraints.
- ► Constraints are translated into the correct inputs required by the solver.
- ► The solver outputs are translated into a familiar format that we can use to access the results.

#### **JuMP**

Today we'll learn to use JuMP, an AML that runs in Julia.

#### Why JuMP?

- ► JuMP is free and open-source, with performance comparable to commercial options
- Integrates with many commercial and free solvers
- It's embedded in Julia, so we don't need a separate language for optimization problems
- Developed by ORC students and often used for ORC research and classes