Nan	ne :			• • • • • • • • • • • • • • • • • • • •		
Roll			•••••			
Invi	gilato	or's S	ignature :			
CS/BCA/SEM-2/BM-201/2013						
2013						
MATHEMATICS						
<i>Time Allotted</i> : 3 Hours						Full Marks: 70
The figures in the margin indicate full marks.						
Candidates are required to give their answers in their own words						
as far as practicable.						
GROUP – A						
(Multiple Choice Type Questions)						
1. Choose the correct alternatives for any <i>ten</i> of the following :						
						10 × 1 = 10
	i) A m notoni and bounded sequence is					
		a)	convergent	b)		divergent
		c)	oscillatory	d)		none of these.
	ii)	The sequence $\{r^n\}$ is oscillatory when				
		a)	<i>r</i> > 1	b)		<i>r</i> < 1
		c)	-1 < <i>r</i> < 1	d)		none of these.

CS/BCA/SEM-2/BM-201/2013

iii) Eliminating A and B from y = A + Bx, the differential equation is obtained as

a)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$$

$$b) \qquad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = 0$$

c)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0$$

d) none of these.

iv) The order and degree of the equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} = a\frac{dy}{dx}$ is

d) 3, 3

v) The P.I. of
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx}$$
 $y = e^x$ is

a)
$$\frac{e^x}{3}$$

b) $\frac{e^x}{2}$

c)
$$\frac{e^x}{6}$$

d) none of these.

vi) The series $\sum_{n=1}^{\infty} n^{\frac{1}{p}}$ is convergent if

a)
$$p \ge 1$$

b)
$$p < 1$$

c)
$$p > 1$$

d) $p \le 1$.

- vii) If the series $\sum_{n=1}^{\infty} u_n$ is convergent, then
 - a) $\lim_{n \to \infty} u_n = 0$ b) $\lim_{n \to \infty} u_n > 1$
 - c) $\lim_{n \to \infty} u_n < 1$
- d) none of these.
- viii) The series $1 1 + 1 1 + \dots$ is
 - convergent with sum 0 a)
 - convergent with sum 1 b)
 - divergent c)
 - oscillatory. d)
- The vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in \boldsymbol{V}_3 are ix)
 - linearly dependent a)
- b) linearly independent
- b th (a) and (b) c)
- d) none of these.
- The basis of a vector space contains x)
 - a) linearly independent vectors
 - linearly dependent vectors b)
 - c) scalars only
 - none of these. d)

CS/BCA/SEM-2/BM-201/2013

xi) The values of k for which the vectors (1, 2, 1), (k, 1, 1) & (1, 1, 2) in R^3 are linearly independent are

a)
$$k \neq -\frac{2}{3}$$

b)
$$k \neq \frac{2}{3}$$

c)
$$k \neq -\frac{3}{2}$$

d) none of these.

xii) T is a transformation from R^2 to R^3 defined by $T(x_1, x_2) = (x_1, x_1^2 + 2, -x_1)$. Then the image of (1, 2) is

b)
$$(0, 3, -1)$$

xiii) If (3, 1) = x (1, 2) + y (0, 3) then the values of x and yare respectively a) (3,-5) b) (3,1)

a)
$$(3, -5)$$

c)
$$\left(3, -\frac{5}{3}\right)$$

d)
$$\left(3,-\frac{5}{2}\right)$$
.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Solve (x + y)dy + (x - y)dx = 0.
- 3. Find the general and singular solutions of

$$y - xp + p^2 = 0, \quad p = \frac{\mathrm{d}y}{\mathrm{d}x}.$$

2153

4. Test the convergence of the series

$$x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots, \ x > 0$$

5. Define monotone sequence. When is a monotone sequence convergent? Is the following sequence convergent?

$$\left\{\frac{3n+1}{n+2}\right\}$$

- 6. Prove that the intersection of two subspaces of a vector space is a subspace.
- 7. Find the space generated by (1, 3, 0), (2, 1, -2). Examine whether (4, 7, -2) lies in this space.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Find the basis and dimension of the subspace W of R^3 where $W = \{(x, y, z) \in R^3 : x + y + z = 0\}$.
 - b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$.

c) Solve
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = x^2e^{3x}$$
.

- Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ which maps 9. a) the basis vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) of R^3 to the vectors (1, 2, 1), (1, 1, 2), (2, 1, 1) respectively. Find Ker(T) and Im(T). 8
 - Solve: $(x^2D^2 xD 3)y = x^2 \log x$. b) 7
- Define basis and dimension of a vector space. Find a 10. a) basis and the dimension of $S \cap T$ where S and T are subspaces of R^3 defined by

$$S = \{(x, y, z) \in R^3 : 2x + y + 3z = 0\}$$

$$T = \{(x, y, z) \in R^3 : x + 2y + z = 0\}$$

$$2 + 1 + 6$$

- Examine whether the vectors (1, 2, 2), (2, 1, 2), (2, 2, 1) b) are linearly independent in R^3 . 6
- Test the convergence of the following series: 11. a)

i)
$$\frac{6}{1.3.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + \dots$$

i)
$$\frac{6}{1.3.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + \dots$$

ii)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$$
 5 + 5

Show that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges b) conditionally. 5

6

CS/BCA/SEM-2/BM-201/2013

12. Solve the following:

 3×5

- a) $(xy \sin xy + \cos xy)ydx + (xy \sin xy \cos xy)xdy = 0$
- b) $y = px + \sqrt{a^2p^2 + b^2}$, $p = \frac{dy}{dx}$
- c) $\frac{d^2y}{dx^2} y = \sin x$
- 13. a) Solve $(x^3 3xy^2)dx + (y^3 3x^2y)dy = 0$ 5
 - b) Find the representative matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (x-2y,y-2z,z-2x)\,.$
 - c) Show that $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + .$ is a divergent series. 5
