Neste PDF repondo a pergunta do item 2, investigando através do método de efeitos fixos, controlando por Unidade Federativa e ano. Os dados vão de 2004 – 2021. A base de frotas foi obtida a partir da Base dos Dados, baixadas através do BigQuery. A variáveis econômicas, foram extraídas do sidrar, pacote oficial do Sidra no Rstudio.

Tabela 1 – Quadro de variáveis utilizadas e fontes

Nome no banco	Definição / Transformação	Fonte
ln_vol_pc	ln(volume anual/pop)	ANP + Sidrar
<pre>ln_pib_pc_real</pre>	Log do PIB per capita (deflacionado)	Sidrar
alr_ind	$\ln(s_{ind}/s_{serv})$ – ALR indústria/serviços (shares em proporção)	Sidrar (PIB setorial)
alr_agro	$\ln(s_{agro}/s_{serv})$ – ALR agro/serviços (shares em proporção)	Sidrar (PIB setorial)
log(auto_pc)	Log de automóveis por habitante	Senatran
log(moto_pc)	Log de motos por habitante	Senatran
trator_pc	Tratores por habitante (nível)	Senatran
caminhao_pc	Caminhões por habitante (nível)	Senatran
onibus_pc	Ônibus por habitante (nível)	Senatran

A Tabela 2 expõe os resultados da estimação dos determinantes. Há limitações, pois as variáveis de preço não foram usadas devido à insuficiência de dados na Base dos Dados (via BigQuery), o que limita a função de demanda especificada e leva à omissão de variável relevante, além da ausência de ln(PrecoEtanol/PrecoGasolina), relevante para captar o efeito de substituição, uma vez que gasolina e etanol são bens substitutos. Além disso, não fiz testes estatísticos para validar o modelo, portanto, a rigor, estou evidenciando correlações.

Tabela 2 – Determinantes do consumo per capita por combustível (painel UF– ano, FE de UF e ano)

	Gasolina	Etanol	Diesel
ln PIB per capita	0.566***	0.081	0.570***
	(0.119)	(0.760)	(0.065)
ALR (Ind/Serv.)	-0.236***	0.253*	-0.057.
	(0.048)	(0.111)	(0.031)
ALR (Agro/Serv.)	-0.008	-0.186	-0.013
	(0.036)	(0.228)	(0.021)
ln Autos per capita	0.154	0.543	_
	(0.100)	(0.470)	
ln Motos per capita	0.947***	_	_
	(0.126)		
ln Tratores per capita	_	_	0.035
			(0.024)
ln Caminhões per capita	-	-	0.157
			(0.102)
ln Ônibus per capita	_	_	0.512***
			(0.134)
FE: UF	Sim	Sim	Sim
FE: Ano	Sim	Sim	Sim
Erro-padrão	Driscoll–Kraay	Driscoll-Kraay	Driscoll–Kraay

Notas: Erros-padrão entre parênteses. Sinalização: * p < 0.05, ** p < 0.01, *** p < 0.001; ponto indica p < 0.10. "_" = variável não incluída no modelo.

MEstados consomem mais combustível quando a renda cresce, a frota é intensa e a economia local exige muitos deslocamentos. Em geral, renda mais alta aumenta o uso de gasolina (0,566) e, sobretudo, de diesel (0,570). Onde há muitas motos por habitante, a gasolina sobe bastante (0,947). A estrutura produtiva também pesa: áreas industriais e logísticas tendem a puxar diesel, regiões ligadas à bioenergia favorecem o etanol (0,253), economias de serviços dispersos costumam elevar a gasolina (-0,236).

Nos meus resultados, isso aparece com nitidez. Para gasolina per capita, renda positiva (0,566) e efeito muito forte de motos por habitante (0,947); automóveis também positivos (0,154), mas com menos precisão. Onde a indústria ganha peso frente aos serviços, a gasolina cai (-0,236). Para etanol per capita, maior presença industrial está associada a maior consumo (0,253), típico de localidades com usinas.

Para diesel per capita, a renda segue puxando forte (0,570) e, com as variáveis de frota pesada em log, fica claro o papel do transporte coletivo: mais ônibus

por habitante está associado a mais diesel (0,512), com efeito robusto. Caminhões por habitante aparecem com sinal positivo (0,157), mas ainda com pouca precisão; tratores têm efeito pequeno (0,035) e impreciso.

Retrato final: consomem mais gasolina os Estados com renda em alta (0,566), muitas motos (0,947), perfil de serviços (-0,236); consomem mais etanol os municípios industriais ligados à indústria (0,253); consomem mais diesel os polos logísticos e aqueles com forte uso de transporte coletivo a diesel (0,512). Consomem menos gasolina os centros compactos com bom transporte público; menos etanol onde falta rede e base sucroenergética; menos diesel onde não há função logística.