MATH 592	2/5/2024
Exam: 4 problems	
(1) Equivalence of category	
Example: Groupoid P: Ohj (P morphism from any object to a Group G: One object, morphisms: Hu GIT equiverbent cartegories?) = {0,1}. There is precisely one
troup &: One object, moghins:	2/2 (additiger = composition).
Mu 6,1 egraverlent certegrass.	orly one mosphisms 1-1
Solution: Jo grade go	g = Id, G one morphisms 1-1 f = Ido o = Id*

Sheleston of T: Auf (0) = de 5 (not unique) Nod somoghic group, Nod equisalent Codegovies. Aut 6(*) = 7/2 Subeleton of 6 Problem 2: Exhibit a (W-structure on the gave X (to be given).

Example: X=[0,1]ⁿ.
Solution: Strategy1:

cells = faces of the cabe k-cells = $\{(\xi_1, ... + t_n) | \xi_i = 0 \text{ or } \xi_i = 1\}$ $I_k = \{(\xi_1 \varphi) | \xi \in \{1, ... + t_n\} | \{\xi = k, \varphi : \Lambda - \lambda (0, 1)\} \} = \sum_{i=1}^{n-1} {n \choose i} k$ when $i \notin \{1, ... + t_n\} | \{\xi = k\}$

Addaching may of the h-cell concesponding to (5, 4) is: al lead $(b_1, \dots b_n) \mapsto (u_1, \dots u_n)$ one word.

=0 or 1 S = di, < iz< . . < ih} Model of 5k-1 = Dk:

2 [0,1]k = [0,1]k $u_i = \varphi(i)$ if S Ui, = fg' By universalist, ged a continuous by jestion $X \rightarrow [0,1]^n$ Strategy $2:[0,1]^n \cong D^n$. We only need 3 alls:
-ulti-: les mes plus. 0 /5 ~ 5 ~ 5 m-1

Alfadring nig 5ⁿ⁻² -, i (migne md may) Attaching my of the m-all: Id: 5"-1" 1 (2) D2 Special case for m = 1 one 1-cell.

3) Applying Scifent- Van Kamper Heorem dicectly. $Z = ((s' \times [0,1])) \perp ([-2,2] \times [-2,2]) \times \{(z,1) \in \mathbb{R}^2 \mid z^2 + 1^2 < 1\})$ unil place

in ((z,1) ~ (ze vin/5,1), (x+iy,0) ~ (x,y), (z,2) ~ (z,-2)

Find $\pi_1(2)$, (2), (2)

U = Complement of 3(7,1)} V= complement of T. open dish = 5 (5/2-a 201/2) $\simeq \operatorname{path} \times \operatorname{open} \operatorname{dish}$ $\simeq \operatorname{path} \times \operatorname{open} \operatorname{dish}$ (x,y) > T((U) Anner: (x,y,b xyx4,16)

on the exam is not a finial knot. $\{s^{3};X\}$ \neq $\{s^{3},s^{1}\}$ \neq $\{s^{3};X\}$ \in $\{s^{3},s^{1}\}$ f:X=51

Poscussion: Tomanom Et15281 1-281 more exam-type problems?