Chapter 10

stevenjin8

November 7, 2020

Exercises

Exercise 1

Marginalizing out X gives

$$\begin{split} p(A:F) &= \sum_{x'} p(A:F|X=x') \\ &= p(A)p(B)p(C)p(E) \sum_{x'} p(E,F|C,D,X=x')p(X=x'|A:D) \\ &= p(A)p(B)p(C)p(D)p(E,F|A:D) \\ &= p(A)p(B)p(C)p(D)p(F|A:E)p(E|A:D). \end{split}$$

It follows that the graph G' is

Note that we can reverse $E \to F$.

We know that this is a minimal I-map because removing any edges creates conditional independence assumptions not made by G:

Edge removed in G'	New CI in G'	Counterexample in G
$A \to E$	$A \perp_{G'} E B,C,D$	$A \to X \to E$
$A \to F$	$A \perp_{G'} F B,C,D,E$	$A \to X \to F$
$B \to E$	$B \perp_{G'} E A,C,D$	$B \to X \to E$
$B \to F$	$B \perp_{G'} F A, C, D, E$	$B \to X \to F$
$C \to E$	$C \perp_{G'} E A,B,D$	$C \to X \to E$
$C \to F$	$C \perp_{G'} F A, B, D, E$	$C \to X \to F$
$D \to E$	$D \perp_{G'} E A,B,C$	$D \to X \to E$
$D \to F$	$D \perp_{G'} F A, B, C, E$	$D \to X \to F$
$E \to F$	$E \perp_{G'} F A,B,C,D$	$E \leftarrow X \rightarrow F$

The first row of the above table can be read as: removing the $A \to E$ edge in G' creates the conditional independence $A \perp_{G'} E|B,C,D$; however, this CI is not held in G because of the $A \to X \to E$ path.

Note that $A \perp_{G'} E|B,C,D$ rather than $A \perp_{G'} E|B,C,D,F$ because of Berkson's paradox (this also applies for all above CIs conditioned on three nodes).

This exercise highlights the power of hidden nodes: G' has 50% more edges than G, despite having fewer nodes.

Exercise 3

Let
$$Y_i = \operatorname{ch}(X_i)$$
, $B_i = \operatorname{pa}(X_i)$, $Z_i = \operatorname{copa}(X_i)$, and $U_i = X_{-i} \setminus (Z_i \cup Z_i \cup B_i)$.

$$\begin{split} p(X_i|X_{-i}) &= \frac{p(X_i, X_{-i})}{p(X_{-i})} \\ &\propto p(X_i, X_{-i}) \\ &= p(X_i, B_i, Y_i, Z_i, U_i) \\ &= p(Y_i|X_i, Z_i)p(X_i|B_i)p(B_i, Z_i, U_i) \\ &\propto p(Y_i|X_i, Z_i)p(X_i|B_i) \\ &= p(X_i|B_i) \prod_{y \in Y_i} p(y|pa(y)). \end{split}$$