Linear Algebra Done Right 8A

1. 设 $T \in \mathcal{L}(V)$.试证明:若dim null $T^4 = 8$, dim null $T^6 = 9$,那么对任意整数 $m \ge 5$ 都有dim null $T^m = 9$.

Proof.

根据**8.1**有null $T^4 \subseteq$ null $T^5 \subseteq$ null T^6 ,于是 $8 \leqslant$ dim null $T^5 \leqslant 9$. 如果dim null $T^5 = 8$,则有null $T^4 =$ null T^5 ,根据**8.2**应有null $T^6 =$ null T^4 ,矛盾.于是dim null $T^5 = 9$.

2. 设 $T \in \mathcal{L}(V), m \in \mathbb{N}^*, v \in V, T^{m-1}v \neq \mathbf{0}$ 且 $T^mv = \mathbf{0}$.试证明: $v, Tv, \cdots, T^{m-1}v$ 线性无关.

Proof.

考虑 $a_0, \cdots, a_{m-1} \in \mathbb{F}$ 使得

$$a_0v + a_1Tv + \dots + a_{m-1}T^{m-1}v = \mathbf{0}$$

在等式两端作用 T^{m-1} 可得 $a_0T^{m-1}v=\mathbf{0}$,由于 $T^{m-1}v\neq\mathbf{0}$,则 $a_0=0$.于是我们有

$$a_1 T v + \dots + a_{m-1} T^{m-1} v = \mathbf{0}$$

在等式两端作用 T^{m-2} ,同理可得 $a_1=0$.

依次递推可知 $a_0 = \cdots = a_{m-1} = 0$,于是 $v, Tv, \cdots, T^{m-1}v$ 线性无关.

3. 设 $T \in \mathcal{L}(V)$.试证明 $V = \text{null } T \oplus \text{range } T$ 当且仅当 $\text{null } T = \text{null } T^2$.

Proof.

⇒:显然null $T \subseteq \text{null } T^2$.又有

$$T^2v = \mathbf{0} \Rightarrow T(Tv) = \mathbf{0} \Rightarrow$$