Folheações e redução módulo p

Wodson Mendson

Student algebraic geometry seminar - IMPA

19 de fevereiro de 2021

Equações diferenciais holomorfas

Sejam U um aberto de \mathbb{C} e $a_1,...,a_n\in\mathcal{O}_{\mathbb{C}}(U)$.

Equações diferenciais holomorfas

Sejam U um aberto de \mathbb{C} e $a_1,...,a_n \in \mathcal{O}_{\mathbb{C}}(U)$.

Definição

Uma equação diferencial complexa de ordem n sobre U consiste em uma expressão do tipo

$$E[y]: y^{[n]} + a_n y^{[n-1]} + \dots + a_1 y = 0$$

onde $y^{[j]} := \frac{d^j}{diz}$. Uma solução para a equação é uma função holomorfa $f: U \longrightarrow \mathbb{C} \ tal \ que \ E[f] \equiv 0.$

Equações diferenciais holomorfas

Sejam U um aberto de \mathbb{C} e $a_1, ..., a_n \in \mathcal{O}_{\mathbb{C}}(U)$.

Definição

Uma equação diferencial complexa de ordem n sobre U consiste em uma expressão do tipo

$$E[y]: y^{[n]} + a_n y^{[n-1]} + \dots + a_1 y = 0$$

onde $y^{[j]} := \frac{d^j}{diz}$. Uma solução para a equação é uma função holomorfa $f: U \longrightarrow \mathbb{C} \ tal \ que \ E[f] \equiv 0.$

Exemplo

$$y^{[1]} = (\frac{1}{z^2 + 1})y$$

 $em\ U = \mathbb{C} - \{i, -i\}.$

Sistema homogêneo diferencial

Definindo $Y_j=y^{[j-1]}$ para j=1,...,n, resulta um sistema linear homogêneo diferencial $Y^{'}=A(z)Y$ onde $Y=[Y_1,\cdots,Y_n]^t$ e

Sistema homogêneo diferencial

Definindo $Y_j=y^{[j-1]}$ para j=1,...,n, resulta um sistema linear homogêneo diferencial $Y^{'}=A(z)Y$ onde $Y=[Y_1,\cdots,Y_n]^t$ e

$$A(z) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_1(z) & -a_2(z) & -a_3(z) & \cdots & -a_{n-1}(z) & -a_n(z) \end{pmatrix}$$

Definindo $Y_j=y^{[j-1]}$ para j=1,...,n, resulta um sistema linear homogêneo diferencial Y'=A(z)Y onde $Y=[Y_1,\cdots,Y_n]^t$ e

$$A(z) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0\\ 0 & 0 & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 0 & 1\\ -a_1(z) & -a_2(z) & -a_3(z) & \cdots & -a_{n-1}(z) & -a_n(z) \end{pmatrix}$$

Proposição

O mapa $y \mapsto Y$ estabelece uma bijeção entre o \mathbb{C} -espaço vetorial das soluções em U da equação diferencial E[y] com o \mathbb{C} -espaço vetorial de soluções em U do sistema diferencial homogêneo linear $Y^{'}=A(z)Y$.

Teorema

Sejam $U \subset \mathbb{C}$ um aberto simplesmente conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Considere o sistema diferencial $D_A : Y' = A(z)Y$ e fixe $z_0 \in U$ e $Y_0 \in \mathbb{C}^n$. Então, existe única solução $F = (f_1(z), ..., f_n(z))^t$ com $f_i \in \mathcal{O}_{\mathbb{C}}(U)$ tal que $F(z_0) = Y_0$.

Teorema

Sejam $U \subset \mathbb{C}$ um aberto simplesmente conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Considere o sistema diferencial $D_A : Y' = A(z)Y$ e fixe $z_0 \in U$ e $Y_0 \in \mathbb{C}^n$. Então, existe única solução $F = (f_1(z), ..., f_n(z))^t$ com $f_i \in \mathcal{O}_{\mathbb{C}}(U)$ tal que $F(z_0) = Y_0$.

Nas condições acima, existe uma matriz de soluções

$$X(z) = [X_1(z), \cdots, X_n(z)]$$

tal que

• $X_i(z)$ são soluções do sistema D_A para todo i.

Teorema

Sejam $U \subset \mathbb{C}$ um aberto simplesmente conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Considere o sistema diferencial $D_A : Y' = A(z)Y$ e fixe $z_0 \in U$ e $Y_0 \in \mathbb{C}^n$. Então, existe única solução $F = (f_1(z), ..., f_n(z))^t$ com $f_i \in \mathcal{O}_{\mathbb{C}}(U)$ tal que $F(z_0) = Y_0$.

Nas condições acima, existe uma matriz de soluções

$$X(z) = [X_1(z), \cdots, X_n(z)]$$

tal que

- $X_i(z)$ são soluções do sistema D_A para todo i.
- $X(z) \in GL_n(\mathcal{O}_{\mathbb{C}}(U)).$

Teorema

Sejam $U \subset \mathbb{C}$ um aberto simplesmente conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Considere o sistema diferencial $D_A : Y' = A(z)Y$ e fixe $z_0 \in U$ e $Y_0 \in \mathbb{C}^n$. Então, existe única solução $F = (f_1(z), ..., f_n(z))^t$ com $f_i \in \mathcal{O}_{\mathbb{C}}(U)$ tal que $F(z_0) = Y_0$.

Nas condições acima, existe uma matriz de soluções

$$X(z) = [X_1(z), \cdots, X_n(z)]$$

tal que

- $X_i(z)$ são soluções do sistema D_A para todo i.
- $X(z) \in GL_n(\mathcal{O}_{\mathbb{C}}(U)).$
- Toda solução S(z) de D_A se escreve como $S(z) = X(z)S(z_0)$

Teorema

Sejam $U \subset \mathbb{C}$ um aberto simplesmente conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Considere o sistema diferencial $D_A : Y' = A(z)Y$ e fixe $z_0 \in U$ e $Y_0 \in \mathbb{C}^n$. Então, existe única solução $F = (f_1(z), ..., f_n(z))^t$ com $f_i \in \mathcal{O}_{\mathbb{C}}(U)$ tal que $F(z_0) = Y_0$.

Nas condições acima, existe uma matriz de soluções

$$X(z) = [X_1(z), \cdots, X_n(z)]$$

tal que

- $X_i(z)$ são soluções do sistema D_A para todo i.
- $X(z) \in GL_n(\mathcal{O}_{\mathbb{C}}(U)).$
- Toda solução S(z) de D_A se escreve como $S(z) = X(z)S(z_0)$

Problema I. X(z) é algébrica sobre $\overline{\mathbb{Q}}(z)$?

Redução módulo p

Fixemos agora $A(z) \in \mathcal{M}_{n}(\mathbb{Q}(z))$ matriz com coeficientes racionais e considere o sistema diferencial $D_{A}: Y^{'} = A(z)Y$.

Fixemos agora $A(z) \in \mathcal{M}_{n}(\mathbb{Q}(z))$ matriz com coeficientes racionais e considere o sistema diferencial $D_{A}: Y^{'} = A(z)Y$.

Definição

Seja $p \in \mathbb{Z}_{>0}$ primo. Dizemos que o sistema diferencial D_A admite boa redução sobre p se existir $B(z) \in \mathcal{M}_n(\mathbb{Z}_{(p)}(z))$ tal que $B(z) \otimes \mathbb{Q} = A(z)$.

Fixemos agora $A(z) \in \mathcal{M}_{n}(\mathbb{Q}(z))$ matriz com coeficientes racionais e considere o sistema diferencial $D_{A}: Y^{'} = A(z)Y$.

Definição

Seja $p \in \mathbb{Z}_{>0}$ primo. Dizemos que o sistema diferencial D_A admite boa redução sobre p se existir $B(z) \in \mathcal{M}_n(\mathbb{Z}_{(p)}(z))$ tal que $B(z) \otimes \mathbb{Q} = A(z)$.

Definição (Cartier-van der Put)

A n-ésima do sistema diferencial D_A é definida recursivamente pondo:

- $A_0(z) = I_n$.
- $A_{n+1}(z) = A'_{n}(z) + A_{n}(z)A(z)$.

Redução módulo p

Seja p um primo de boa redução para o sistema diferencial D_A .

Seja p um primo de boa redução para o sistema diferencial $\mathcal{D}_A.$

Definição

A redução módulo p do sistema D_A consiste no sistema diferencial obtido sobre $\mathbb{F}_p(z)$ reduzindo todos os coeficientes que ocorrem em A(z) módulo p.

Seja p um primo de boa redução para o sistema diferencial D_A .

Definição

A redução módulo p do sistema D_A consiste no sistema diferencial obtido sobre $\mathbb{F}_p(z)$ reduzindo todos os coeficientes que ocorrem em A(z) módulo p.

Em char > 0 existe um critério essencialmente simples para checar quando um sistema diferencial $D_A: Y^{'} = A(z)Y$ admite uma base de soluções.

Seja p um primo de boa redução para o sistema diferencial D_A .

Definição

A redução módulo p do sistema D_A consiste no sistema diferencial obtido sobre $\mathbb{F}_p(z)$ reduzindo todos os coeficientes que ocorrem em A(z) módulo p.

Em char > 0 existe um critério essencialmente simples para checar quando um sistema diferencial $D_A: Y^{'} = A(z)Y$ admite uma base de soluções.

Teorema (Cartier-van der Put)

Seja $A(z) \in \mathcal{M}_n(\mathbb{F}_p(z))$. Os seguintes são equivalentes:

- D_A admite uma base de soluções algébricas sobre $\mathbb{F}_p(z)$.
- D_A admite uma base de soluções em $\mathbb{F}_p(z)$.
- D_A admite uma base de soluções em $\mathbb{F}_p((z))$.
- $A_p(z) = 0$

No caso do sistema diferencial $E: y^{[1]} = a(z)y$ sobre $\mathbb{F}_p(z)$ temos uma fórmula explicita para a p-curvatura. De fato, é possível mostrar que

$$A_p(z) = A^{[p-1]}(z) + A(z)^p$$

No caso do sistema diferencial $E: y^{[1]} = a(z)y$ sobre $\mathbb{F}_p(z)$ temos uma fórmula explicita para a p-curvatura. De fato, é possível mostrar que

$$A_p(z) = A^{[p-1]}(z) + A(z)^p$$

Teorema (Honda)

Seja $E: y^{[1]} = a(z)y$ um sistema linear homogêneo de **posto** 1 com $a(z) \in \mathbb{Q}(z)$. Os sequintes são equivalentes:

No caso do sistema diferencial $E: y^{[1]} = a(z)y$ sobre $\mathbb{F}_p(z)$ temos uma fórmula explicita para a p-curvatura. De fato, é possível mostrar que

$$A_p(z) = A^{[p-1]}(z) + A(z)^p$$

Teorema (Honda)

Seja $E: y^{[1]} = a(z)y$ um sistema linear homogêneo de **posto** 1 com $a(z) \in \mathbb{Q}(z)$. Os sequintes são equivalentes:

• Solução fundamental de E é algébrica sobre $\mathbb{Q}(z)$.

No caso do sistema diferencial $E: y^{[1]} = a(z)y$ sobre $\mathbb{F}_p(z)$ temos uma fórmula explicita para a p-curvatura. De fato, é possível mostrar que

$$A_p(z) = A^{[p-1]}(z) + A(z)^p$$

Teorema (Honda)

Seja $E: y^{[1]} = a(z)y$ um sistema linear homogêneo de **posto** 1 com $a(z) \in \mathbb{Q}(z)$. Os seguintes são equivalentes:

- Solução fundamental de E é algébrica sobre $\mathbb{Q}(z)$.
- A p-curvatura de $E \otimes \mathbb{F}_p$ é zero para quase todo primo p.

No caso do sistema diferencial $E: y^{[1]} = a(z)y$ sobre $\mathbb{F}_p(z)$ temos uma fórmula explicita para a p-curvatura. De fato, é possível mostrar que

$$A_p(z) = A^{[p-1]}(z) + A(z)^p$$

Teorema (Honda)

Seja $E: y^{[1]} = a(z)y$ um sistema linear homogêneo de **posto** 1 com $a(z) \in \mathbb{Q}(z)$. Os seguintes são equivalentes:

- Solução fundamental de E é algébrica sobre $\mathbb{Q}(z)$.
- A p-curvatura de $E \otimes \mathbb{F}_p$ é zero para quase todo primo p.
- Seja $\omega = a(z)dz \in \Omega^1_{\mathbb{Q}(z)/\mathbb{Q}}$. Então, todos os polos de ω tem ordem 1 e com residuos em \mathbb{Q} .

${\bf Exemplo}$

Considere $E: y^{[']} = \frac{1}{z^2+1}y$. Como os resíduos da função $f(z) = 1/z^2 + 1$ não estão em $\mathbb Q$ concluimos via teorema acima que E não admite base de soluções algébrica sobre $\overline{\mathbb Q}(z)$.

O caso geral é um problema em aberto conhecido como

Conjectura de Grothendieck-Katz I

Seja $E[y]: \sum_{i=1}^{n} a_i(z)y^{[i]}$ um sistem de equações diferenciais sobre $\mathbb C$ onde $a_i(z) \in \mathbb Q(z)$. Então, os seguintes são equivalentes:

- E[y] = 0 admite n-soluções \mathbb{C} -linearmente independentes que são algébricas sobre $\overline{\mathbb{Q}}(z)$.
- Para quase todo primo p o sistema diferencial obtido por redução mod p, E[y] ⊗ F_p, admite n-soluções F_p(z^p)-linearmente independentes que são algébricas sobre F̄_p(z).

O caso geral é um problema em aberto conhecido como

Conjectura de Grothendieck-Katz I

Seja $E[y]: \sum_{i=1}^{n} a_i(z)y^{[i]}$ um sistem de equações diferenciais sobre $\mathbb C$ onde $a_i(z) \in \mathbb Q(z)$. Então, os seguintes são equivalentes:

- E[y] = 0 admite n-soluções \mathbb{C} -linearmente independentes que são algébricas sobre $\overline{\mathbb{Q}}(z)$.
- Para quase todo primo p o sistema diferencial obtido por redução mod p, $E[y] \otimes \mathbb{F}_p$, admite n-soluções $\mathbb{F}_p(z^p)$ -linearmente independentes que são algébricas sobre $\overline{\mathbb{F}}_p(z)$.

Conjectura de Grothendieck-Katz II

Seja X uma variedade projetiva lisa sobre \mathbb{C} e (\mathcal{F}, ∇) uma equação diferencial em X. Suponha que para quase todo primo p a equação diferencial $(\mathcal{F}_p, \nabla_p)$ em X_p , obtida por redução modulo p, possui p-curvatura nula. Então, (\mathcal{F}, ∇) é trivial, módulo recobrimento etale.

Folheações em superfícies: estrutura local

Seja U uma vizinhança de $Q := (0,0) \in \mathbb{C}^2$ e denote por \mathcal{O}_U o anel de germes de funções holomorfas em Q. Sejam \mathcal{M} o ideal maximal x, y um sistema de parâmetros sobre Q.

Folheações em superfícies: estrutura local

Seja U uma vizinhança de $Q := (0,0) \in \mathbb{C}^2$ e denote por \mathcal{O}_U o anel de germes de funções holomorfas em Q. Sejam \mathcal{M} o ideal maximal x, y um sistema de parâmetros sobre Q.

Definição

Um campo holomorfo em U com singularidade isolada em 0 é uma derivação

$$D = a(x, y)\partial_x + b(x, y)\partial_y \in Der_{\mathbb{C}}(\mathbb{C}[[x, y]])$$

tal que $a(x, y), b(x, y) \in \mathcal{O}_U$ e $\mathcal{Z}(a(x, y), b(x, y)) = \{(0, 0)\}.$

area goes em supermeres. estruvara roca.

Seja U uma vizinhança de $Q := (0,0) \in \mathbb{C}^2$ e denote por \mathcal{O}_U o anel de germes de funções holomorfas em Q. Sejam \mathcal{M} o ideal maximal x, y um sistema de parâmetros sobre Q.

Definição

 $Um\ campo\ holomorfo\ em\ U\ com\ singularidade\ isolada\ em\ 0\ \'e\ uma\ derivação$

$$D = a(x, y)\partial_x + b(x, y)\partial_y \in Der_{\mathbb{C}}(\mathbb{C}[[x, y]])$$

tal que $a(x, y), b(x, y) \in \mathcal{O}_U$ e $\mathcal{Z}(a(x, y), b(x, y)) = \{(0, 0)\}.$

Definição

Seja C uma curva analítica irredutível em descrita em torno de (0,0) pela equação f(x,y) = 0. Dizemos que C é invariante por D se $D(f) \in (f)$.

Folheação associada

Campos em $(\mathbb{C}^2, 0)$ 00000

Definição

Seja v um campo em U com singularidade isolada em 0. Para cada $Q \in U - \{(0,0)\}\$ seja $v_O \in T_OU$ a direção determinada pelo campo v. A folheação definida por v em $U - \{(0,0)\}$, denotada por \mathcal{F}_v , é a coleção dos \mathbb{C} -subespaços: $\{\langle v_Q \rangle\}_{Q \in U}$. Uma folha de \mathcal{F}_v é uma curva analítica C em $U - \{(0,0)\}$ tal que $T_{\mathcal{O}}C = v_{\mathcal{O}}$ para todo $Q \in C$.

Folheação associada

Campos em $(\mathbb{C}^2, 0)$ 00000

Definição

Seja v um campo em U com singularidade isolada em 0. Para cada $Q \in U - \{(0,0)\}\$ seja $v_O \in T_OU$ a direção determinada pelo campo v. A folheação definida por v em $U - \{(0,0)\}$, denotada por \mathcal{F}_v , é a coleção dos \mathbb{C} -subespaços: $\{\langle v_Q \rangle\}_{Q \in U}$. Uma folha de \mathcal{F}_v é uma curva analítica C em $U - \{(0,0)\}$ tal que $T_{\mathcal{Q}}C = v_{\mathcal{Q}}$ para todo $Q \in C$.

Figura 1: $\mathcal{F}_v: x\partial_x + y\partial_y$ admite muitas folhas "perto" de (0,0)

Integrais primeiras holomorfas

Uma classe importante de campos são aqueles que admite integrais primeiras holomorfas.

Definição

Seja v um campo holomorfo em $(\mathbb{C}^2,0)$. Dizemos que f adamite uma integral primeira holomofra em torno de Q se existir uma função $f \in \mathcal{O}_X$ $n\tilde{a}o\ constante\ tal\ que\ v(f)=0.$

Uma classe importante de campos são aqueles que admite integrais primeiras holomorfas.

Definição

Seja v um campo holomorfo em $(\mathbb{C}^2,0)$. Dizemos que f adamite uma integral primeira holomofra em torno de Q se existir uma função $f \in \mathcal{O}_X$ $n\tilde{a}o\ constante\ tal\ que\ v(f)=0.$

A existência de integral primeira é uma condição forte para estrutura da folheação \mathcal{F}_v . De fato, não é difícil verificar que

Proposição

Seja \mathcal{F}_v a folheação definida por v em $(\mathbb{C}^2,0)$. Suponha que \mathcal{F}_v admite uma integral primeira holomorfa. Então,

- As folhas de \mathcal{F} são fechadas em $U \{(0,0)\}$.
- Apenas um número finito de folhas se acumulam em torno de 0.

Integrais primeiras holomorfas: Critério topológico

A recíproca da proposição acima é um teorema

Teorema de Mattei-Moussu

Seja \mathcal{F}_v a folheação holomorfa definida por um campo v em $(\mathbb{C}^2,0)$. Suponha que

- Apenas um número finito de folhas se acumulam em (0,0).
- As folhas de \mathcal{F}_v são fechadas em $U \{(0,0)\}.$

Então, \mathcal{F}_v possui integral primeira holomorfa não constante $f: U \longrightarrow \mathbb{C}$

Modelos e redução módulo p

00000

Seja

$$v = a(x, y)\partial_x + b(x, y)\partial_y$$

um campo em $(\mathbb{C}^2,0)$. Escreva $a(x,y) = \sum_{i,j} a_{ij} x^i y^j$, $b(x,y) = \sum_{i,j} b_{ij} x^i y^j$ e denote por $R[v] = \mathbb{Z}[\{a_{i,j}, b_{i,j}\}]$ a \mathbb{Z} -álgebra por adjunção de todos os coeficientes ocorrendo em v.

Modelos e redução módulo p

00000

Seja

$$v = a(x, y)\partial_x + b(x, y)\partial_y$$

um campo em $(\mathbb{C}^2,0)$. Escreva $a(x,y) = \sum_{i,j} a_{ij} x^i y^j$, $b(x,y) = \sum_{i,j} b_{ij} x^i y^j$ e denote por $R[v] = \mathbb{Z}[\{a_{i,j}, b_{i,j}\}]$ a \mathbb{Z} -álgebra por adjunção de todos os coeficientes ocorrendo em v.

Definição

Dizemos que v é de tipo finito sobre \mathbb{Z} se R[v] é uma \mathbb{Z} -álgebra de tipo finito.

Modelos e redução módulo p

Campos em $(\mathbb{C}^2, 0)$ 00000

Seja

$$v = a(x, y)\partial_x + b(x, y)\partial_y$$

um campo em $(\mathbb{C}^2,0)$. Escreva $a(x,y) = \sum_{i,j} a_{ij} x^i y^j$, $b(x,y) = \sum_{i,j} b_{ij} x^i y^j$ e denote por $R[v] = \mathbb{Z}[\{a_{i,j}, b_{i,j}\}]$ a \mathbb{Z} -álgebra por adjunção de todos os coeficientes ocorrendo em v.

Definição

Dizemos que v é de tipo finito sobre \mathbb{Z} se R[v] é uma \mathbb{Z} -álgebra de tipo finito.

Lema

Seja R uma \mathbb{Z} -álgebra de tipo finito e $\mathcal{M} \in SpmR$ um ideal maximal. Então, R/\mathcal{M} é um corpo finito.

Modelos e redução módulo p

Seja

$$v = a(x, y)\partial_x + b(x, y)\partial_y$$

um campo em $(\mathbb{C}^2,0)$. Escreva $a(x,y) = \sum_{i,j} a_{ij} x^i y^j$, $b(x,y) = \sum_{i,j} b_{ij} x^i y^j$ e denote por $R[v] = \mathbb{Z}[\{a_{i,j}, b_{i,j}\}]$ a \mathbb{Z} -álgebra por adjunção de todos os coeficientes ocorrendo em v.

Definição

Dizemos que v é de tipo finito sobre \mathbb{Z} se R[v] é uma \mathbb{Z} -álgebra de tipo finito.

$_{\text{Lema}}$

Seja R uma \mathbb{Z} -álgebra de tipo finito e $\mathcal{M} \in SpmR$ um ideal maximal. Então, R/\mathcal{M} é um corpo finito.

Exemplo

Se $a, b \in \mathbb{C}[x, y]$ então $v = a(x, y)\partial_x + b(x, y)\partial_y$ é de tipo finito.

Lema

Sejam R uma k-algebra comutativa com $char(k) = p > e \ v \in Der_k(R)$. $Ent\tilde{ao}, v^p \in Der_k(R).$

Lema

Sejam R uma k-algebra comutativa com $char(k) = p > e \ v \in Der_k(R)$. $Ent\tilde{ao}, v^p \in Der_k(R).$

De fato, isso se segue da fórmula $v^{j}(fg) = \sum_{k=0}^{j} {j \choose k} v^{k}(f) v^{j-k}(g)$ com j := p.

Lema

Sejam R uma k-algebra comutativa com $char(k) = p > e \ v \in Der_k(R)$. Então, $v^p \in Der_k(R)$.

De fato, isso se segue da fórmula $v^{j}(fg) = \sum_{k=0}^{j} {j \choose k} v^{k}(f) v^{j-k}(g)$ com j := p.

Definição

Sejam R um dominio de tipo finito sobre k e $v \in Der_k(R)$. Dizemos que v é p-fechada se $v^p = \alpha v$ para algum $\alpha \in R$.

Lema

Sejam R uma k-algebra comutativa com $char(k) = p > e \ v \in Der_k(R)$. Então, $v^p \in Der_k(R)$.

De fato, isso se segue da fórmula $v^{j}(fg) = \sum_{k=0}^{j} {j \choose k} v^{k}(f) v^{j-k}(g)$ com i := p.

Definição

Sejam R um dominio de tipo finito sobre $k e v \in Der_k(R)$. Dizemos que $v \notin R$ p-fechada se $v^p = \alpha v$ para algum $\alpha \in R$.

Teorema

Seja R um dominio de tipo finito finito sobre $k e v \in Der_k(R)$. Então, $v \notin$ p-fechada se e somente se admite uma integral primeira não trivial i.e. existe $f \in R - R^p$ tal que v(f) = 0.

Sejam v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$ e $Q \in \mathbf{Spm}(R[v])$ tal que $Q \cap \mathbb{Z} = p\mathbb{Z}$ para algum primo p. Denote por $v_p := v \otimes R/\mathcal{M}$ a redução módulo \mathcal{M} de v. A p-curvatura de v é definida pondo

$$D_p(v) := \frac{v_p \wedge v_p^p}{\partial_x \wedge \partial_y} \in R/\mathcal{M}[[x, y]]$$

Sejam v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$ e $Q \in \mathbf{Spm}(R[v])$ tal que $Q \cap \mathbb{Z} = p\mathbb{Z}$ para algum primo p. Denote por $v_p := v \otimes R/\mathcal{M}$ a redução módulo \mathcal{M} de v. A p-curvatura de v é definida pondo

$$D_p(v) := \frac{v_p \wedge v_p^p}{\partial_x \wedge \partial_y} \in R/\mathcal{M}[[x, y]]$$

Definição

A função aritmética associada ao campo v é definida pondo

$$\mu_v : \mathbf{Spm}(R[v]) \longrightarrow \mathbb{Z}_{>0} \cup \{\infty\} \qquad \mathcal{M} \mapsto ord_0(D_p(v))$$

onde
$$ord_0(D_p(v)) := \sup\{n \in \mathbb{N} \mid D_p(v) \in \langle x, y \rangle^n\}$$

Exemplo

Seja $v_{\alpha} = x\partial_x + \alpha y\partial_y$ um campo em $(\mathbb{C}^2, 0)$ com $\alpha \in \mathbb{C}^*$. É bem conhecido que $\alpha \in \mathbb{Q}$ se e somente se para uma quase todo primo p temos que $\alpha^p = \alpha$ mod p. A p-curvatura nesse caso é dada por

$$D_p(v) = (\overline{\alpha}^p - \overline{\alpha})xy$$

Observação

Se tomarmos $\alpha = -p/q$ com $p, q \in \mathbb{Z}_{>0}$ coprimos seque que v_{α} admite uma integral primeira holomofa. De fato,

$$v_{-p/q}(x^q y^p) = xpx^{p-1}y^q - (p/q)qyx^p y^{q-1} = 0.$$

Nesse caso, a p-curvatura é trivial para todo primo l tal que $l \neq q$.

Um critério aritmético

Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2, 0)$

$$v = a(x, y)\partial_x + b(x, y)\partial_y.$$

Considere a matriz jacobiana associada Jv e denote por α_1 e α_2 os auto-valores associados a Jv(0).

Um critério aritmético

Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$

$$v = a(x, y)\partial_x + b(x, y)\partial_y.$$

Considere a matriz jacobiana associada Jv e denote por α_1 e α_2 os auto-valores associados a Jv(0). Dizemos que 0 é não degenerada se $\alpha_1\alpha_2\neq 0.$

Um critério aritmético

Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$

$$v = a(x, y)\partial_x + b(x, y)\partial_y.$$

Considere a matriz jacobiana associada Jv e denote por α_1 e α_2 os auto-valores associados a Jv(0). Dizemos que 0 é não degenerada se $\alpha_1\alpha_2\neq 0.$

Teorema

Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$. Suponha que 0 seja uma singularidade não degenerada com quociente de autovalores $\alpha \in \mathbb{Q}_{< 0}$. Então, v não admite integral primeira holomorfa $f: U \longrightarrow \mathbb{C}$ se e somente se μ_v é uma função **limitada**.

A idéia é utilizar um algoritmo que simplifica o campo v e comparar as operações que são realizadas sobre \mathbb{C} e sobre \mathbb{F}_p . A comparação é realizada pela seguinte:

Proposição

Seja v um campo holomorfo em $(\mathbb{C}^2,0)$ com parte linear $v_1=ax\partial_x-by\partial_y$ $com \ a,b \in \mathbb{Z} \ coprimes. \ Sejam \ m \in \mathbb{N} \ e \ defina$

$$\mathcal{D}_m := \mathbb{C} - espaço \ dos \ polômios \ em \ \mathbb{C}[x,y] \ de \ grau \leq m.$$

Seja A = diag(a, -b) a matriz associada a parte linear de ev. Defina,

$$L_A^{[m]}: \mathcal{D}_m^2 \longrightarrow \mathcal{D}_m^2 \qquad P_m \mapsto JP_m A\tilde{X} - AP_m \tilde{X}$$

onde $\tilde{X}=(x,y)^t$. Suponha que $L_A^{[m]}$ seja um isomorfismo. Então, $L_{A\otimes\overline{\mathbb{F}_n}}^{[m]}$ é um \mathbb{F}_p isomorfismo para todo primo p tal que $m < \lceil \frac{p - |ab|}{|a - b| + ab} \rceil$

Folheações em variedades complexas

Seja X uma variedade complexa. Uma folheação holomorfa de codimensão um em X consiste em uma coleção $\{(U_i)_{i\in I}, (\omega_i)_{i\in I}, (g_{ij})_{U_{ij}\neq\emptyset}\}$ tais que

- $\{U_i\}_i$ é uma cobertura aberta de X.
- $\omega_i \in \Omega^1_{U_i}$ são 1-formas em U_i satisfazendo condição de integrabilidade $\omega_i \wedge d\omega_i = 0$.
- $\operatorname{codim}(\operatorname{sing}(\omega_i)) > 2 \operatorname{para todo} i$.
- $g_{ij} \in \mathcal{O}_X^*(U_{ij})$ e em U_{ij} temos $\omega_i = g_{ij}\omega_i$.

Folheações em variedades complexas

Seja X uma variedade complexa. Uma folheação holomorfa de codimensão um em X consiste em uma coleção $\{(U_i)_{i\in I}, (\omega_i)_{i\in I}, (g_{ij})_{U_{ij}\neq\emptyset}\}$ tais que

- $\{U_i\}_i$ é uma cobertura aberta de X.
- $\omega_i \in \Omega^1_{U_i}$ são 1-formas em U_i satisfazendo condição de integrabilidade $\omega_i \wedge d\omega_i = 0$.
- $\operatorname{codim}(\operatorname{sing}(\omega_i)) > 2 \operatorname{para todo} i$.
- $g_{ij} \in \mathcal{O}_X^*(U_{ij})$ e em U_{ij} temos $\omega_i = g_{ij}\omega_j$.

Dada uma folheação $\{(U_i, \omega_i, g_{ij})\}$ obtemos naturalmente os seguintes feixes $T_{\mathcal{F}}$ e $N_{\mathcal{F}}^*$ que são definidos em cada aberto U_i pondo

$$T_{\mathcal{F}} := \{ v \in T_X \mid i_v \omega_i = 0 \} \hookrightarrow T_X$$

$$N_{\mathcal{F}}^* := Ann(T_{\mathcal{F}}) = \{ \omega \in \Omega_X^1 \mid i_v \omega = 0 \forall v \in T_{\mathcal{F}} \} \hookrightarrow \Omega_X^1$$

São chamados de o feixe tangente e conormal de \mathcal{F} respectivamente. A condição de integrabilidade implica que $T_{\mathcal{F}}$ é fechado por colchete de Lie.

Folheações holomorfas em $\mathbb{P}^n_{\mathbb{C}}$

Teorema de Chow folheado

Uma folheação holomorfa \mathcal{F} de codimensão 1 de $\mathbb{P}^n_{\mathbb{C}}$ pode ser definida por uma forma homogênea projetiva $\omega_{d+1} = \sum_{i=0}^{n} A_i dx_i$ em \mathbb{C}^{n+1} com $A_i \in \mathbb{C}[x_0, ..., x_n]_{d+1} \ e \ \operatorname{codim} sinq(\omega) > 2.$

 $d := \text{grau da folheação } \mathcal{F}.$

Folheações holomorfas em $\mathbb{P}^n_{\mathbb{C}}$

Teorema de Chow folheado

Uma folheação holomorfa \mathcal{F} de codimensão 1 de $\mathbb{P}^n_{\mathbb{C}}$ pode ser definida por uma forma homogênea projetiva $\omega_{d+1} = \sum_{i=0}^n A_i dx_i$ em \mathbb{C}^{n+1} com $A_i \in \mathbb{C}[x_0,...,x_n]_{d+1}$ e codim $sing(\omega) \geq 2$.

 $d := \text{grau da folheação } \mathcal{F}.$

Figura 2: Folheações de grau 0,1 e 2

Usando a sequencia exata de Euler,

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_{\mathbb{C}}} \longrightarrow \bigoplus \mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}} \longrightarrow 0$$

vemos que uma seção global de $H^0(\mathbb{P}^n_{\mathbb{C}},\Omega^1_{\mathbb{P}^n_{\mathbb{C}}}(d+2))$ se identifica com uma 1-forma homogênea ω em \mathbb{C}^{n+1} de grau d+2 que satisfaz a condição de Euler $i_R\omega=0$ (projetividade) onde

$$R = \sum_{i=0}^{n} x_i \partial_{x_i}.$$

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_{\mathbb{C}}} \longrightarrow \bigoplus \mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}} \longrightarrow 0$$

vemos que uma seção global de $H^0(\mathbb{P}^n_{\mathbb{C}}, \Omega^1_{\mathbb{P}^n_{\mathbb{C}}}(d+2))$ se identifica com uma 1-forma homogênea ω em \mathbb{C}^{n+1} de grau d+2 que satisfaz a condição de Euler $i_R\omega=0$ (projetividade) onde

$$R = \sum_{i=0}^{n} x_i \partial_{x_i}.$$

Assim, o conjunto de folheações de codimensão 1 em $\mathbb{P}^n_{\mathbb{C}}$ se identifica com o seguinte conjunto

$$\mathbb{F}ol_d(\mathbb{P}^n_{\mathbb{C}}) := \{ [\omega] \in \mathbb{P}(H^0(\mathbb{P}^n_{\mathbb{C}}, \Omega^1_{\mathbb{P}^n_{\mathbb{C}}}(d+2))) \mid \omega \wedge d\omega = 0 \text{ e codim}(\operatorname{sing}(\omega)) \geq 2 \}$$

que é um localmente fechado em $\mathbb{P}^N_{\mathbb{C}}$ onde $N=h^0(\mathbb{P}^n,\Omega^1_{\mathbb{P}^n}(d+1)))-1.$

Definição

Seja k um corpo algebricamente fechado e $n \geq 2$. Uma folheação de codimensão 1 de grau d em \mathbb{P}^n_k é um elemento da variedade

$$\mathbb{F}ol_d(\mathbb{P}^n_k) := \{ [\omega] \in \mathbb{P}(H^0(\mathbb{P}^n_k, \Omega^1_{\mathbb{P}^n_k}(d+2))) \mid \omega \wedge d\omega = 0 \ e \ \mathrm{codim}(\mathrm{sing}(\omega)) \geq 2 \}$$

Folheações em \mathbb{P}_{k}^{n}

Definição

Seja k um corpo algebricamente fechado e $n \geq 2$. Uma folheação de codimensão 1 de grau d em \mathbb{P}^n_k é um elemento da variedade

$$\mathbb{F}ol_d(\mathbb{P}^n_k) := \{ [\omega] \in \mathbb{P}(H^0(\mathbb{P}^n_k, \Omega^1_{\mathbb{P}^n_k}(d+2))) \mid \omega \wedge d\omega = 0 \ e \ \mathrm{codim}(\mathrm{sing}(\omega)) \geq 2 \}$$

Assim, uma folheação de codimensão 1 em \mathbb{P}_k^n é representada por 1-forma projetiva

$$\omega = A_0 dx_0 + \dots + A_n dx_n$$

onde $A_0, \dots, A_n \in k[x_0, \dots, x_n]_{d+1}$ e sing $(\mathcal{F}) := \mathcal{Z}(A_0, A_1, \dots, A_n)$ com $\operatorname{codim}(\operatorname{sing}(\mathcal{F})) \geq 2.$

Definição

Seja \mathcal{F} uma folheação de codimensão 1 em \mathbb{P}^n_k definida por ω . Uma hipersuperfície irredutível $X = \mathcal{Z}(F) \subset \mathbb{P}^n_k$ é invariante por \mathcal{F} se

$$\omega \wedge dF \in \langle F \rangle$$

Definição

Seja \mathcal{F} uma folheação de codimensão 1 em \mathbb{P}^n_k definida por ω . Uma hipersuperfície irredutível $X = \mathcal{Z}(F) \subset \mathbb{P}^n_k$ é invariante por \mathcal{F} se

$$\omega \wedge dF \in \langle F \rangle$$

Problema

Seja $\mathcal{F} \in \mathbb{F}ol(\mathbb{P}^n_k)$.

Definição

Seja \mathcal{F} uma folheação de codimensão 1 em \mathbb{P}^n_k definida por ω . Uma hipersuperfície irredutível $X = \mathcal{Z}(F) \subset \mathbb{P}^n_k$ é invariante por \mathcal{F} se

$$\omega \wedge dF \in \langle F \rangle$$

Problema

Seja $\mathcal{F} \in \mathbb{F}ol(\mathbb{P}_k^n)$.

• F admite uma hipersuperfície F-invariante?

Definição

Seja \mathcal{F} uma folheação de codimensão 1 em \mathbb{P}^n_k definida por ω . Uma hipersuperfície irredutível $X = \mathcal{Z}(F) \subset \mathbb{P}^n_k$ é invariante por \mathcal{F} se

$$\omega \wedge dF \in \langle F \rangle$$

Problema

Seja $\mathcal{F} \in \mathbb{F}ol(\mathbb{P}_k^n)$.

- F admite uma hipersuperfície F-invariante?
- Se existir uma solução algébrica, o que podemos dizer sobre o grau?

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^n_k)$ com char(k) = p > d+2. Suponha que \mathcal{F} seja não p-fechada. Então, \mathcal{F} admite uma solução algébrica de grau no máximo pd+d+2.

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^n_k)$ com char(k) = p > d+2. Suponha que \mathcal{F} seja não p-fechada. Então, \mathcal{F} admite uma solução algébrica de grau no máximo pd+d+2.

Teorema (Jouanolou)

Uma folheação genérica de grau d em $\mathbb{P}^2_{\mathbb{C}}$ não admite soluções algébricas.

Teorema

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^n_k)$ com char(k) = p > d + 2. Suponha que \mathcal{F} seja não p-fechada. Então, F admite uma solução algébrica de grau no máximo pd + d + 2.

Teorema (Jouanolou)

Uma folheação genérica de grau d em $\mathbb{P}^2_{\mathbb{C}}$ não admite soluções algébricas.

Teorema (Pereira)

Uma folheação não dicritica em $\mathbb{P}^n_{\mathbb{C}}$ para $n \geq 4$ possui uma solução algébrica.

Limitação do grau

Problema de Poincaré

Sejam k um corpo de característica $p \ge 0$ e \mathcal{F} uma folheação em \mathbb{P}^n_k . Seja $X = \mathcal{Z}(F)$ uma hipersuperfície reduzida que é \mathcal{F} -invariante. Existe uma cota para $\deg(X)$ dependendo apenas de $\deg(\mathcal{F})$?

Limitação do grau

Problema de Poincaré

Sejam k um corpo de caracteristica $p \geq 0$ e \mathcal{F} uma folheação em \mathbb{P}^n_k . Seja $X = \mathcal{Z}(F)$ uma hipersuperfície reduzida que é \mathcal{F} -invariante. Existe uma cota para $\deg(X)$ dependendo apenas de $\deg(\mathcal{F})$?

Caso "fácil":

Proposição

Suponha que X seja não singular e que $p \nmid \deg(\mathcal{F}) + 2$. Então,

$$\deg(X) \le \deg(\mathcal{F}) + 1.$$

Limitação do grau

Problema de Poincaré

Sejam k um corpo de característica $p \geq 0$ e \mathcal{F} uma folheação em \mathbb{P}_k^n . Seja $X = \mathcal{Z}(F)$ uma hipersuperfície reduzida que é \mathcal{F} -invariante. Existe uma cota para deg(X) dependendo apenas de $deg(\mathcal{F})$?

Caso "fácil":

Proposição

Suponha que X seja não singular e que $p \nmid \deg(\mathcal{F}) + 2$. Então,

$$\deg(X) \le \deg(\mathcal{F}) + 1.$$

Teorema de Carnicer

Seja \mathcal{F} uma folheação não discritica em $\mathbb{P}^2_{\mathbb{C}}$. Então, $\deg(X) \leq \deg(\mathcal{F}) + 2$ para qualquer curva algébrica reduzida F-invariante.

p-Curvatura de folheações em \mathbb{P}^2_k

Seja k um corpo algebricamente fechado de caracteristica p > d + 2. Seja \mathcal{F} uma folheação de grau d em \mathbb{P}^2_k definida pela 1-forma projetiva $\omega = \sum_{i=0}^{2} A_i dx_i$. A condição de projetividade $i_R \omega = 0$ implica que existem $L, M, N \in k[x_0, x_1, x_3]_{d+1}$ tais que

$$A_0 = x_2 M - x_1 N$$
 $A_1 = x_0 N - x_2 L$ $A_2 = x_1 L - x_0 M$

Seja k um corpo algebricamente fechado de caracteristica p>d+2. Seja \mathcal{F} uma folheação de grau d em \mathbb{P}^2_k definida pela 1-forma projetiva $\omega=\sum_{i=0}^2 A_i dx_i$. A condição de projetividade $i_R\omega=0$ implica que existem $L,M,N\in k[x_0,x_1,x_3]_{d+1}$ tais que

$$A_0 = x_2 M - x_1 N$$
 $A_1 = x_0 N - x_2 L$ $A_2 = x_1 L - x_0 M$

A tripla (L, M, N) determina um campo vetorial em k^3 : $v = L\partial_{x_0} + M\partial_{x_1} + N\partial_{x_2}$ e tal campo satisfaz

$$i_v\omega = LA_0 + MA_1 + NA_2 = 0$$

Diremos que v é um campo que define \mathcal{F} .

p-Curvatura de folheações em \mathbb{P}^2_k

Seja k um corpo algebricamente fechado de caracteristica p > d + 2. Seja \mathcal{F} uma folheação de grau d em \mathbb{P}^2_k definida pela 1-forma projetiva $\omega = \sum_{i=0}^{2} A_i dx_i$. A condição de projetividade $i_R \omega = 0$ implica que existem $L, M, N \in k[x_0, x_1, x_3]_{d+1}$ tais que

$$A_0 = x_2 M - x_1 N$$
 $A_1 = x_0 N - x_2 L$ $A_2 = x_1 L - x_0 M$

A tripla (L, M, N) determina um campo vetorial em k^3 : $v = L\partial_{x_0} + M\partial_{x_1} + N\partial_{x_2}$ e tal campo satisfaz

$$i_v\omega = LA_0 + MA_1 + NA_2 = 0$$

Diremos que v é um campo que define \mathcal{F} .

Lema

Seja $v' = L' \partial_{x_0} + M' \partial_{x_1} + N' \partial_{x_2}$ outro campo definindo ω . Então, $v = v + qR \ para \ algum \ q \in k[x_0, x_1, x_2]_{d-1}.$

p-Curvatura de folheações em \mathbb{P}^2_k

Proposição

Existe uma bijeção entre o conjunto de 1-formas projetivas $\omega = \sum_{i=0}^{n} A_i dx_i$ e o conjunto de campos de grau d homogêneos $v = L\partial_x + M\partial_y + N\partial_z$ tais que $L_x + M_y + N_z = 0$.

A associação $\omega \mapsto v$ é definida da fórmula:

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

p-Curvatura de folheações em \mathbb{P}^2_k

Proposição

Existe uma bijeção entre o conjunto de 1-formas projetivas $\omega = \sum_{i=0}^{n} A_i dx_i$ e o conjunto de campos de grau d homogêneos $v = L\partial_x + M\partial_y + N\partial_z$ tais que $L_x + M_y + N_z = 0$.

A associação $\omega \mapsto v$ é definida da fórmula:

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

Definição

Seja \mathcal{F} uma folheação em \mathbb{P}^2_k definida pela 1-forma projetiva ω . Seja v o campo associado a ω , dado pela proposição acima. Diremos que v é o campo de Darboux associado a \mathcal{F} .

p-curvatura

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_k)$ definida pela 1-forma projetiva ω com campo de Darboux associado v.

p-curvatura

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_k)$ definida pela 1-forma projetiva ω com campo de Darboux associado v.

Definição

A p-curvatura de \mathcal{F} é o divisor

$$\Delta_{\mathcal{F}} = [i_{v^p}\omega] \in \operatorname{Div}(\mathbb{P}^2_k)$$

Dizemos que \mathcal{F} é p-fechada se $\Delta_{\mathcal{F}} = 0$.

p-curvatura

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_k)$ definida pela 1-forma projetiva ω com campo de Darboux associado v.

Definição

A p-curvatura de \mathcal{F} é o divisor

$$\Delta_{\mathcal{F}} = [i_{v^p}\omega] \in \operatorname{Div}(\mathbb{P}^2_k)$$

Dizemos que \mathcal{F} é p-fechada se $\Delta_{\mathcal{F}} = 0$.

Proposição

Suponha que \mathcal{F} seja não p-fechada e seja $C = \{F = 0\}$ uma curva algebrica reduzida que é \mathcal{F} -invariante. Então, $\Delta_{\mathcal{F}} > [C]$.

De fato, como $\omega \wedge dF \in \langle F \rangle$ temos uma relação do tipo

$$i_{v^p}\omega F - v^p(F)\omega = F\sigma$$

Daí, $F|i_{np}\omega$.

Irredutibilidade e não algebricidade.

Proposição

Seja $\mathcal{F} \in \mathbb{P}^2_{\mathbb{C}}$ uma folheação não dicritica. Assuma que \mathcal{F} pode ser definida por uma 1-forma projetiva

$$\omega = A_0(X, Y, Z)dX + A_1(X, Y, Z)dY + A_2(X, Y, Z)dZ$$

 $com\ A, B, C \in \mathbb{Z}[X, Y, Z]$ e seja $p \in \mathbb{Z}_{>0}$ um número primo. Se $\Delta_{\mathcal{F}_p}$ é irredutível então \mathcal{F} não admite nenhuma solução algébrica.

Irredutibilidade e não algebricidade.

Proposição

Seja $\mathcal{F} \in \mathbb{P}^2_{\mathbb{C}}$ uma folheação não dicritica. Assuma que \mathcal{F} pode ser definida por uma 1-forma projetiva

$$\omega = A_0(X, Y, Z)dX + A_1(X, Y, Z)dY + A_2(X, Y, Z)dZ$$

 $com\ A, B, C \in \mathbb{Z}[X, Y, Z]$ e seja $p \in \mathbb{Z}_{>0}$ um número primo. Se $\Delta_{\mathcal{F}_n}$ é irredutível então \mathcal{F} não admite nenhuma solução algébrica.

Definição

Seja $Q \in \text{sing}(\mathcal{F})$. Dizemos que

- Q é não dicritica se existe apenas um número finito de separatrizes sobre Q.
- \mathcal{F} é não dicritica se $\forall Q \in sing(\mathcal{F})$ é não dicritica.

Suponha que $\mathcal F$ admita uma solução algébrica $C=\mathcal Z(F)$ irredutível.

Suponha que \mathcal{F} admita uma solução algébrica $C = \mathcal{Z}(F)$ irredutível.

Lema

Seja $C = \{F = 0\}$ uma curva algébrica irredutível sobre \mathbb{C} que é \mathcal{F} -invariante. Então existe uma curva algébrica $H = \{G = 0\}$ que é \mathcal{F} -invariante com $G \in \mathbb{Z}[x,y,z]$ irredutível e $G \otimes \mathbb{C}$ reduzido.

Argumento

Suponha que \mathcal{F} admita uma solução algébrica $C = \mathcal{Z}(F)$ irredutível.

Lema

Seja $C = \{F = 0\}$ uma curva algébrica irredutível sobre \mathbb{C} que é \mathcal{F} -invariante. Então existe uma curva algébrica $H = \{G = 0\}$ que é \mathcal{F} -invariante com $G \in \mathbb{Z}[x,y,z]$ irredutível e $G \otimes \mathbb{C}$ reduzido.

• Podemos supor que $F \in \mathbb{Z}[X,Y,Z]$ é irredutível com $F \otimes \mathbb{C}$ reduzido. Pelo teorema de Carnicer temos $\deg(F) \leq d+2$.

Argumento

Suponha que \mathcal{F} admita uma solução algébrica $C = \mathcal{Z}(F)$ irredutível.

Lema

Seja $C = \{F = 0\}$ uma curva algébrica irredutível sobre \mathbb{C} que é \mathcal{F} -invariante. Então existe uma curva algébrica $H = \{G = 0\}$ que é \mathcal{F} -invariante com $G \in \mathbb{Z}[x,y,z]$ irredutível e $G \otimes \mathbb{C}$ reduzido.

- Podemos supor que $F \in \mathbb{Z}[X,Y,Z]$ é irredutível com $F \otimes \mathbb{C}$ reduzido. Pelo teorema de Carnicer temos $\deg(F) \leq d+2$.
- Seja $F_p = F \otimes \mathbb{F}_p$ polinômio obtido por redução módulo p. Observe que F admite um fator irredutível G sobre $\mathbb{F}_p[X,Y,Z]$ tal que a curva algébrica descrita por G é \mathcal{F}_p -invariante. De fato, isso se segue já que estamos assumindo p > d + 2.

Argumento

Suponha que \mathcal{F} admita uma solução algébrica $C = \mathcal{Z}(F)$ irredutível.

Lema

Seja $C = \{F = 0\}$ uma curva algébrica irredutível sobre \mathbb{C} que é \mathcal{F} -invariante. Então existe uma curva algébrica $H = \{G = 0\}$ que é \mathcal{F} -invariante com $G \in \mathbb{Z}[x, y, z]$ irredutível e $G \otimes \mathbb{C}$ reduzido.

- Podemos supor que $F \in \mathbb{Z}[X,Y,Z]$ é irredutível com $F \otimes \mathbb{C}$ reduzido. Pelo teorema de Carnicer temos $deg(F) \leq d+2$.
- Seja $F_p = F \otimes \mathbb{F}_p$ polinômio obtido por redução módulo p. Observe que F admite um fator irredutível G sobre $\mathbb{F}_p[X,Y,Z]$ tal que a curva algébrica descrita por $G \in \mathcal{F}_p$ -invariante. De fato, isso se segue já que estamos assumindo p > d + 2.
- Por outro lado, devemos ter $G|\Delta_{\mathcal{F}_p}$ o que implica a igualdade, já que $\Delta_{\mathcal{F}_n}$ é irredutível.

Suponha que \mathcal{F} admita uma solução algébrica $C = \mathcal{Z}(F)$ irredutível.

Lema

Seja $C = \{F = 0\}$ uma curva algébrica irredutível sobre \mathbb{C} que é \mathcal{F} -invariante. Então existe uma curva algébrica $H = \{G = 0\}$ que é \mathcal{F} -invariante com $G \in \mathbb{Z}[x, y, z]$ irredutível e $G \otimes \mathbb{C}$ reduzido.

- Podemos supor que $F \in \mathbb{Z}[X,Y,Z]$ é irredutível com $F \otimes \mathbb{C}$ reduzido. Pelo teorema de Carnicer temos $deg(F) \leq d+2$.
- Seja $F_p = F \otimes \mathbb{F}_p$ polinômio obtido por redução módulo p. Observe que F admite um fator irredutível G sobre $\mathbb{F}_p[X,Y,Z]$ tal que a curva algébrica descrita por $G \in \mathcal{F}_p$ -invariante. De fato, isso se segue já que estamos assumindo p > d + 2.
- Por outro lado, devemos ter $G|\Delta_{\mathcal{F}_p}$ o que implica a igualdade, já que $\Delta_{\mathcal{F}_n}$ é irredutível.
- Contradição!

Proposição

Seja \mathcal{F} a folheação de Jouanolou de grau 2 em \mathbb{P}^2_k que é definida pela 1-forma

$$\omega = (zx^2 - y^3)dx - (z^3 - xy^2)dy + (yz^2 - x^3)dz$$

Então, \mathcal{F} não admite curva algébrica invariante.

Exemplos

Proposição

Seja \mathcal{F} a folheação de Jouanolou de grau 2 em \mathbb{P}^2_k que é definida pela 1-forma

$$\omega = (zx^2 - y^3)dx - (z^3 - xy^2)dy + (yz^2 - x^3)dz$$

Então, \mathcal{F} não admite curva algébrica invariante.

Demonstração.

Pode-se mostrar que \mathcal{F} é não dicritica. O campo de Darboux definindo \mathcal{F} é dado por $v=z^2\partial_x+x^2\partial_y+y^2\partial_z$. Usando o software Singular resulta

$$\Delta_{\mathcal{F}_5} = i_{v^5}\omega = x^5 z^4 + x^4 y^5 + 2x^3 y^3 z^3 + y^4 z^5$$

é irredutível em $\mathbb{F}_5[x,y,z]$.

Removendo não dicricidade

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$. Dizemos que \mathcal{F} é não degenerada se

$$\#\operatorname{sing}(\mathcal{F}) = d^2 + d + 1.$$

Removendo não dicricidade

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$. Dizemos que \mathcal{F} é não degenerada se

$$\#\operatorname{sing}(\mathcal{F}) = d^2 + d + 1.$$

Observação

É possivel mostrar que \mathcal{F} é não degenerada implica que para todo $Q \in \mathcal{F}$ existe um aberto U em torno de Q tal que a folheação é definida por um campo $v = a(x, y)\partial_x + b(x, y)\partial_y$ com $Jv_1(Q)$ invertível.

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$. Dizemos que \mathcal{F} é não degenerada se

$$\#\operatorname{sing}(\mathcal{F}) = d^2 + d + 1.$$

Observação

É possivel mostrar que \mathcal{F} é não degenerada implica que para todo $Q \in \mathcal{F}$ existe um aberto U em torno de Q tal que a folheação é definida por um campo $v = a(x, y)\partial_x + b(x, y)\partial_y$ com $Jv_1(Q)$ invertível.

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$. Dado $Q \in \operatorname{sing}(\mathcal{F})$ denote por $\alpha_Q := \operatorname{quociente} \operatorname{dos}$ autovalores associados a matriz $Jv_1(Q)$.

$$\alpha_{\mathcal{F}}^{+} := \sup\{|\alpha_{Q}| \mid Q \in \operatorname{sing}(\mathcal{F})\} \quad \alpha_{\mathcal{F}}^{-} := \sup\{|\alpha_{Q}|^{-1} \mid Q \in \operatorname{sing}(\mathcal{F})\}$$
$$\beta_{\mathcal{F}} = \alpha_{\mathcal{F}}^{+} + \alpha_{\mathcal{F}}^{-} + 2$$

Irredutibilidade e não algebricidade II

Proposição

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$ reduzida. Suponha que \mathcal{F} está definida por uma 1-forma primitiva ω sobre \mathbb{Z} . Seja $p \in \mathbb{Z}$ inteiro primo tal que

- $p > 2d\beta^{\frac{1}{2}}_{\tau}$.
- $\Delta_{\mathcal{F}_n}$ é irredutível.

Então, F não admite soluções algébricas.

Irredutibilidade e não algebricidade II

Proposição

Seja $\mathcal{F} \in \mathbb{F}ol_d(\mathbb{P}^2_{\mathbb{C}})$ reduzida. Suponha que \mathcal{F} está definida por uma 1-forma primitiva ω sobre \mathbb{Z} . Seja $p \in \mathbb{Z}$ inteiro primo tal que

- $p > 2d\beta^{\frac{1}{2}}_{\tau}$.
- $\Delta_{\mathcal{F}_n}$ é irredutível.

Então, F não admite soluções algébricas.

O ponto crucial no argumento consite em provar que se existir uma solução algébrica para \mathcal{F} então existe uma curva $\{F=0\}\subset \mathbb{P}^2_{\mathbb{C}}$ invariante por \mathcal{F} com $F \in \mathbb{Z}[x,y,z]$ irredutível e tal que $F \otimes \mathbb{F}_p$ não é um p-fator. Podemos garantir isso usando o teorema do índice de Camacho-Sad:

$$C^{2} = \sum_{Q \in \operatorname{sing}(\mathcal{F}) \cap C} CS(\mathcal{F}, C; Q)$$

Alguns problemas

Seja \mathcal{F} uma folhação em $\mathbb{P}^2_{\mathbb{C}}$. Se $\Delta_{\mathcal{F}_p}$ é irredutível para uma infinidade de primos p não é difícil verificar que \mathcal{F} não admite soluções algébricas.

Alguns problemas

Seja \mathcal{F} uma folhação em $\mathbb{P}^2_{\mathbb{C}}$. Se $\Delta_{\mathcal{F}_n}$ é irredutível para uma infinidade de primos p não é difícil verificar que \mathcal{F} não admite soluções algébricas.

Problema (I)

Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{C}}$ não degenerada com quociente de autovalores $n\tilde{a}o$ racional. Suponha que \mathcal{F} $n\tilde{a}o$ admite soluções algébricas.

• $\Delta_{\mathcal{F}_n}$ é irredutível para uma infinidade de primos p?

Alguns problemas

Seja \mathcal{F} uma folhação em $\mathbb{P}^2_{\mathbb{C}}$. Se $\Delta_{\mathcal{F}_n}$ é irredutível para uma infinidade de primos p não é difícil verificar que \mathcal{F} não admite soluções algébricas.

Problema (I)

Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{F}}$ não degenerada com quociente de autovalores $n\tilde{a}o$ racional. Suponha que \mathcal{F} $n\tilde{a}o$ admite soluções algébricas.

• $\Delta_{\mathcal{F}_n}$ é irredutível para uma infinidade de primos p?

Problema (II)

Seja \mathcal{F} uma folheação de grau 2 em \mathbb{P}^2_k com k de característica p > 3. Suponha que \mathcal{F} não admita retas invariantes e que exista C uma curva irredutível de grau $d_C < p$ que é \mathcal{F} -invariante. É verdade que $sing(C) \subset sing(\mathcal{F})$?

 $k \text{ vs } \mathbb{C}$

Sobre $\mathbb C$ a inclusão $\operatorname{sing}(C) \subset \operatorname{sing}(\mathcal F)$ é conhecida. Por outro lado,

Sobre \mathbb{C} a inclusão $\operatorname{sing}(C) \subset \operatorname{sing}(\mathcal{F})$ é conhecida. Por outro lado,

Exemplo

Seja k um corpo de característica p=3. Considere a folheação em \mathbb{P}^2_k definida pela 1-forma projetiva

$$\omega = zx^{2}(y^{2}z + x^{3})dx - z^{6}dy + (yz^{5} - x^{6} - x^{3}y^{2}z)dz$$

Então, $\mathcal{Z}(y^2z+x^3) \subset \mathbb{P}^2_k$ é invariante por \mathcal{F} e é tal que

$$sing(C) = \{[0:0:1]\} \not\subset sing(\mathcal{F}) = \{[0:1:0]\}.$$

Proposição

Seja $\mathcal F$ uma folheação em $\mathbb P^2_{\mathbb C}$. Então $\#sing(\mathcal F)>0$.

$k \text{ vs } \mathbb{C}$

Proposição

Seja \mathcal{F} uma folheação em $\mathbb{P}^2_{\mathbb{C}}$. Então $\#sing(\mathcal{F}) > 0$.

Proposição

Seja k um corpo de característica p>0. Então, existem folheações em \mathbb{P}^2_k $de \ grau \ p-2 \ que \ s\~ao \ lisas.$

Demonstração.

Seja $C = \mathcal{Z}(F) \subset \mathbb{P}^2_k$ uma curva irredutível lisa de grau p em \mathbb{P}^2_k . A fórmula de Euler implica que

$$\omega := dF = F_x dx + F_y dy + F_z dz$$

define uma folheação lisa em \mathbb{P}_k^2 de grau p-2.

Seja d um inteiro tal que p|d e considere a C a curva em \mathbb{P}^2_k descrita pelo polinômio

$$F = x^{d-1}y + y^{d-1}z + xz^{d-1}$$

Seja \mathcal{F} a folheação definida por d \mathcal{F} . Temos que \mathcal{F} é uma folheação lisa de grau d-2 e admite C como uma curva \mathcal{F} -invariante não singular de grau d.

Exemplo

Seja d um inteiro tal que p|d e considere a C a curva em \mathbb{P}^2_k descrita pelo polinômio

$$F = x^{d-1}y + y^{d-1}z + xz^{d-1}$$

Seja \mathcal{F} a folheação definida por d \mathcal{F} . Temos que \mathcal{F} é uma folheação lisa de $qrau\ d-2\ e\ admite\ C\ como\ uma\ curva\ {\cal F}$ -invariante não singular de $qrau\ d$.

Observação

O problema sobre a continencia $sing(C) \subset sing(\mathcal{F})$ admite aplicações interessantes. Uma reposta afirmativa implica:

Exemplo

Seja d um inteiro tal que p|d e considere a C a curva em \mathbb{P}^2_k descrita pelo polinômio

$$F = x^{d-1}y + y^{d-1}z + xz^{d-1}$$

Seja \mathcal{F} a folheação definida por d \mathcal{F} . Temos que \mathcal{F} é uma folheação lisa de $qrau\ d-2\ e\ admite\ C\ como\ uma\ curva\ {\cal F}$ -invariante não singular de $qrau\ d$.

Observação

O problema sobre a continencia $sing(C) \subset sing(\mathcal{F})$ admite aplicações interessantes. Uma reposta afirmativa implica:

Uma folheação genérica em P²_k de grau d tem p-curvatura reduzida.

Seja d um inteiro tal que p|d e considere a C a curva em \mathbb{P}^2_k descrita pelo polinômio

$$F = x^{d-1}y + y^{d-1}z + xz^{d-1}$$

Seja \mathcal{F} a folheação definida por dF. Temos que \mathcal{F} é uma folheação lisa de grau d-2 e admite C como uma curva \mathcal{F} -invariante não singular de grau d.

Observação

O problema sobre a continencia $sing(C) \subset sing(\mathcal{F})$ admite aplicações interessantes. Uma reposta afirmativa implica:

- Uma folheação genérica em \mathbb{P}^2_k de grau d tem p-curvatura reduzida.
- Problema I admite resposta positiva para folheações de grau 2.

Referências

- Cerveau, D.; Lins Neto, A. Holomorphic foliations in CP(2) having an invariant algebraic curve. Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903.
- Carnicer, Manuel M. The Poincaré problem in the nondicritical case. Ann. of Math. (2) 140 (1994), no. 2, 289–294.
- Ekedahl, Shepherd-Barron, Taylor. A conjecture on the existence of compact leaves of algebraic foliations. Shepherd-Baron's homepage. 1999;1(3):3-1.
- Pereira, Jorge Vitório. Invariant hypersurfaces for positive characteristic vector fields. J. Pure Appl. Algebra 171 (2002), no. 2-3, 295 - 301.

Referências

- Coutinho, S. C. A constructive proof of the density of algebraic Pfaff equations without algebraic solutions. Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1611–1621.
- Serre, Jean-Pierre. How to use finite fields for problems concerning infinite fields. Arithmetic, geometry, cryptography and coding theory, 183–193, Contemp. Math., 487, Amer. Math. Soc., Providence, RI, 2009.
- Pereira, Jorge Vitório. Algebraic separatrices for non-dicritical foliations on projective spaces of dimension at least four. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 3921–3929.

