Analysis of Algorithms: Sorting algorithms (Selection sort and Quicksort)

Garrett Dancik, PhD Fall 2024

Course Notes: https://gdancik.github.io

What do we mean by Sorting?

- One of the most common operations in computer science is to sort data numerically or alphabetically
- We have seen previously that sorted data can be searched much more efficiently than unsorted data. Why?
- In addition, for presentation purposes, elements such as names, states, ages, GPAs, etc, are often displayed in sorted order (numeric data may be sorted from low to high or high to low; when we say that numeric data is sorted we will mean low to high)

• The list above in sorted order is: 3, 11, 15, 18, 19, and 21

Selection sort

- Find the maximum element in the list (all *n* elements)
 - Swap this maximum element with the last element in the list
- Find the next maximum element in the list (first n-1 elements)
 - Swap this maximum element with the second to last element in the list
- Find the next maximum element in the list (first n-2 elements)
 - Swap this maximum element with the third to last element in the list
- This process repeats until we are down to the first element. This is the minimum element, which is now the first element in the list

• We search all n = 6 elements for the maximum, and swap this maximum element with the last one in the list (the 6^{th} one)

The max is 21 \rightarrow swap this with the last element

11 19	18	3	15	<mark>21</mark>
-------	----	---	----	-----------------

• We search the first n-1=5 elements for the maximum, and swap this maximum element with the 5th one (or the second to last one)

The max is 19 \rightarrow swap this with the 5th element

• We search the first n-2=4 elements for the maximum, and swap this maximum element with the 4th one

The max is 18 \rightarrow swap this with the 4th element

• We search the first n - 3 = 3 elements for the maximum, and swap this maximum element with the 3^{rd} one

The max is $15 \rightarrow$ swap this with the 3rd element

• We search the first n - 4 = 2 elements for the maximum, and swap the maximum element with the 2^{nd} one

• Once we have only 1 element left (we are finding the max of just the 1st element), then we are done. The list is now sorted.

- end = n 1
- while *end* > 0 :
 - Set max_index to the index of the maximum element between values[0] through values[end]
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

- end = n 1
- while *end* > 0 :
 - Set max_index to the index of the maximum element between values[0] through values[end]
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

- Set max_index to 0
- Set i to 0
- While i <= end:
 - If values[i] > values[max_index]:
 - set max_index to i
 - set i = i + 1

- end = n 1
- while *end* > 0 :
 - Set max index to 0
 - Set *i* to 0
 - While *i* <= end:
 - If values[i] > values[max_index]:
 - set max_index to I
 - Set i = i + 1
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

Executed n-1 times (while loop)

Executed up to n-1 times each time (while loop)

This suggests an order of magnitude of n^2

- end = n 1
- while *end* > 0 :
 - Set max index to 0
 - Set *i* to 0
 - While *i* <= end:
 - If values[i] > values[max_index]:
 - set max_index to I
 - Set i = i + 1
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

Assume that n = 4

end	# iterations of inner while loop		
3	4		
2	3		
1	2		
0	-		

In general, for a list of size *n*, the total number of inner loop iterations is:

$$2 + 3 + 4 + \dots + n$$

This is n(n+1)/2 - 1, which has an order of magnitude of n^2 .

Quicksort algorithm

- Quicksort(arr, low, high) :
 - While low < high:
 - pi = partition (arr, low, high)
 - Quicksort(arr, low, pi 1)
 - Quicksort(arr, pi + 1, high)

Call Quicksort on L1

Call Quicksort on L2

Partition step:

- select a pivot
- move pivot to correct location
 - all elements less than pivot are moved to its left
 - all elements greater than pivot are moved to its right
- Return partition index

Partition algorithm

- Inputs:
 - arr (the list/array)
 - low (index of lower element),
 - high (index of last element, which will be the pivot)
- Set *left* = *low*
- Set pivot = arr[high]
- Set right = high 1
- While *left* <= *right*:
 - Increase left by 1 until arr[left] > pivot (or left > right)
 - Decrease right by 1 until arr[right] <= pivot (or left > right)
 - If *left < right*, swap *arr*[*left*] and arr[*right*]
 - Increase left by 1
 - Decrease right by 1
- Swap arr[left] and arr[high]
- Return left

Quicksort example

Quicksort example

Quicksort running times

- The worst case occurs if the original data is sorted, then the partition will keep the pivot in the last element and we will call quicksort on L1 = list containing all elements but the last one; L2 has no elements. The running time is $\theta(n^2)$
- Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Quicksort running times

- The *best case* occurs when the partitions are evenly balanced. In this case the number of sub-list pairs that get sorted is $\log n$. The running time is $\theta(n \log n)$.
- Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

The total number of elements we look at is approximately 11 x $|\log n|$ which is $\theta(n \log n)$

Selection sort and Quicksort algorithms

	Selection sort		Quicksort	
	Time	Additional Space	Time	Additional Space
Best	$\theta(n^2)$	$\theta(1)$	$\theta(n\log n)$	$\theta(\log n)$
Worst	$\theta(n^2)$	$\theta(1)$	$\theta(n^2)$	$\theta(n)$
Average	$\theta(n^2)$	$\theta(1)$	$\theta(n\log n)$	$\theta(\log n)$

• Which algorithm is the *best*?

When a function is called, information is stored in the *call stack*

print(y)

Call stack


```
a = 1
def f(x):
b = 2
return b+x
y = f(a)
→ print(y)
```

In quicksort, recursive function calls are stored on the stack,

- *n* times in the worst case
- roughly log n times in the best/average case.