

206 Discrete Structures II

Konstantinos P. Michmizos

Computational Brain Lab

Computer Science | Rutgers University | NJ, USA

Preview...

How many integer solutions to the following equation?

$$x_1 + x_2 + \dots + x_k = n$$

 $x_1, x_2, \dots, x_k \ge 0$

So Far

- Proofs/Induction
- Sum Rule
- Partition Method
- Difference Method
- Bijection Method
- Product Rule
- Generalized product rule
- Permutation/Combinations
- Inclusion-Exclusion / Pigeonhole Principle
- Combinatorial Proofs and Binomial Coefficients

Last Class

- Permutations
- Combinations

Today

• Nothing

Permutations Formula

• Distinctly ordered sets are called permutations (arrangements). The number of permutations of n objects taken k at a time is given by:

$$P_k^n = \frac{n!}{(n-k)!}$$

N = number of objects

K = number of positions

Combinations Formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• If we have *n* objects and we want to choose *k* of them, we can find the total number of combinations by using the formula on the left

Permutations - Recap

- Permutations
 - Permute r out of n distinct objects without repetitions
 - Permute r out of n distinct objects with repetitions

$$\frac{1}{\sqrt{n}} = \frac{n!}{(n-x)!}$$

What is the question we are asking here?

- Have *n* colors. Want to paint *k* tiles. How many ways?
 - Can reuse colors any number of times.

Permutations without Repetitions

• If 10 horses race, how many orderings of the top 3 finishers are there?

Permutations

A maths debating team consists of 4 speakers.

• In how many ways can all 4 speakers be arranged in a row for a photo?

Solution: 4x3x2x1 = 4! or 4P_4

 How many ways can the captain and vice-captain be chosen?

Solution: 4x3 = 12 or $^{4}P_{2}$

Permutations

A flutter on the horses
There are 7 horses in a race.

• In how many different orders can the horses finish?

Solution: $_{7x6x5x4x3x2x1} = 7! \text{ or } ^{7}P_{7}$

• How many trifectas (1st, 2nd and 3rd) are possible?

Solution: $7x6x5 = 210 \text{ or } ^7P_3$

In how many ways can 5 boys and 4 girls be arranged on a bench if

- there are no restrictions?
 - Solution: 9! or $9P_9$
- boys and girls alternate?

Solution: A boy will be on each end

BGBGBGB =
$$5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1$$

= $5! \times 4!$ or ${}^{5}P_{5} \times {}^{4}P_{4}$

In how many ways can 5 boys and 4 girls be arranged on a bench if

Solution: Boys & Girls or Girls & Boys

=
$$5! \times 4! + 4! \times 5! = 5! \times 4! \times 2$$

or ${}^{5}P_{5} \times {}^{4}P_{4} \times 2$

d) Anne and Jim wish to stay together?

Solution: (AJ) _ _ _ _ _ =
$$2 \times 8!$$
 or $2 \times {}^{8}P_{8}$

If we have **n** elements of which **x** are alike of one

kind, *y* are alike of another kind, *z* are alike of another kind, then the <u>number of ordered</u> <u>selections or permutations</u> is given by:

<u>n!</u> x! y! z!

How many permutations of the word **PARRAMATTA** are possible?

Solution:

P

AAAA

RR

M

TT

10 letters but note repetition (4 A's, 2 R's, 2 T's)

No. of <u>10!</u> arrangements = <u>4! 2! 2!</u>

= 37 800

How many arrangements of the letters of REMAND are possible if:

there are no restrictions?

Solution: ${}^{6}P_{6} = 720$ or 6!

they begin with RE?

Solution : $RE_{-} = {}^{4}P_{4} = 24$ or 4!

they do not begin with RE?

Solution: Total - (b) = 6! - 4! = 696

How many arrangements of the letters of REMAND are possible if:

they have RE together in order?

Solution:
$$(RE)_{-}$$
 _ _ _ = $^{5}P_{5}$ = 120 or 5!

they have REM together in any order?

```
Solution: (REM)_{-} = {}^{3}P_{3} \times {}^{4}P_{4} = 144
```

R, E and M are not to be together?

```
Solution: Total - (e) = 6! - 144 = 576
```

There are 6 boys who enter a boat with 8 seats, 4 on each side. In how many ways can

 two boys A and B sit on the port side and another boy W sit on the starboard side?

Solution:
$$A \& B = {}^{4}P_{2}$$

$$W = {}^4P_1$$

Others =
$5P_3$

Total =
$${}^4P_2 \times {}^4P_1 \times {}^5P_3$$

From the digits 2, 3, 4, 5, 6

how many numbers greater than 4,000 can be formed?

Solution:
$$5 \text{ digits (any)} = {}^5P_5$$

4 digits (must start with digit \geq 4) = ${}^{3}P_{1} \times {}^{4}P_{3}$

Total =
$${}^{5}P_{5} + {}^{3}P_{1} \times {}^{4}P_{3}$$

how many 4 digit numbers would be even?

Even (ends with 2, 4 or 6) =
$$_{-}$$
 $^{3}P_{1}$

$$= {}^{4}P_{3} \times {}^{3}P_{1}$$