Predicting Diabetes from Telephone Interviews

Joe Hardin Introduction to Machine Learning: Supervised Learning University of Colorado – Boulder

What is Diabetes

Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body 30 not responding properly to the insulin produced - Wikipedia

 In 2019, diabetes resulted in approximately 4.2 million deaths. It is the 7th leading cause of death globally. - Wikipedia

Learning about the disease and actively participating in the treatment is important, since complications are far less common and less severe in people who have well-managed blood sugar levels. - Wikipedia

BRFSS

Q

Behavioral Risk Factor Surveillance System

CDC > BRFSS

About BRFSS

Print

The Behavioral Risk Factor Surveillance System (BRFSS) is the nation's premier system of health-related telephone surveys that collect state data about U.S. residents regarding their health-related risk behaviors, chronic health conditions, and use of preventive

services. Established in 1984 with 15 states, BRFSS now collects data in all 50 states as well as the District of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world.

By collecting behavioral health risk data at the state and local level, BRFSS has become a powerful tool for targeting and building health promotion activities. As a result, BRFSS users have increasingly demanded more data and asked for more questions on the survey. Currently, there is a wide sponsorship of the BRFSS survey, including most divisions in the CDC National Center for Chronic Disease Prevention and Health Promotion; other CDC centers; and federal agencies, such as the Health Resources and Services Administration, Administration on Aging, Department of Veterans Affairs, and Substance Abuse and Mental Health Services Administration.

Screenshot from: https://www.cdc.gov/brfss/about/index.htm

Purpose

Can we identify individuals at high risk for having diabetes from the answers given in the BRFSS?

$$egin{aligned} Accuracy &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$
 $Precision = rac{TP}{TP + FP}$ $Recall = rac{TP}{TP + FN}$ $F1\text{-}score = rac{2 imes Precision imes Recall}{Precision + Recall}$

BRFSS Continued

- 2015 Phone Script can be found here : https://www.cdc.gov/brfss/questionnaires/pdf-ques/2015-brfss-questionnaire-12-29-14.pdf
- Potential sources of bias:
 - Only interviewed people with landlines in their residence (potential to bias by age, housing security, other factors)
 - Only conducted in English (may under count certain populations in the USA)
 - Methodology selects for people who answer unknown numbers and have the time to answer 20-58 questions (less clear if this sub population is more prevalent in some groups compared to others)
 - People's perception of the truth, not necessarily an objective TRUTH

Data Exploration

Behavioral Risk Factor Surveillance System

Full Dataset uploaded by the CDC to Kaggle

Public health surveys of 400k people from 2011-2015

Diabetes Health Indicators Dataset

253,680 survey responses from cleaned BRFSS 2015 + balanced dataset

Alex Teboul put uploaded a clean dataset with all the responders in 2015 who answered all core questions to Kaggle

Data Exploration Continued

Section 1: Health Status	/pe oat64 oat64
Section 2: Healthy Days — Health-Related Quality of Life	at64 at64
Section 3: Health Care Access	at64 at64
Section 4: Hypertension Awareness	at64 at64
Section 5: Cholesterol Awareness	at64 at64
Section 6: Chronic Health Conditions	at64 at64
Section 7: Demographics	at64 at64
Section 8: Tobacco Use	at64 at64
Section 0: Alcohol Consumption # COCUIIII NOTI-NUCL COURT	at64 at64
Section 9. Alcohol Consumption	at64
Section 10: Fruits and Vegetables	at64
Coction 12: Arthritic Burdon	
Section 12: Artifilitis Burden	-104
Section 14: Immunization	at64
	at64
	at64
5 Smoker 253680 non-null flo	at64
y:Binary(#0) 5 Smoker 6 Stroke 253680 non-null flo	at64
7 HeartDiseaseorAttack 253680 non-null flo	at64
8 PhysActivity 253680 non-null flo	at64
	at64
X • 21 10 Veggies 253680 non-null flo	at64
11 HvyAlcoholConsump 253680 non-null flo	at64
12 AnyHealthcare 253680 non-null flo	at64
features 13 NoDocbcCost 253680 non-null flo	at64
14 GenHlth 253680 non-null flo	at64
15 MentHlth 253680 non-null flo	at64
	at64
TT L Z L 17 DiffWalk 253680 non-null flo	at64
	at64

Age

Education

Income

253680 non-null

253680 non-null

253680 non-null

float64

float64

float64

Data Exploration Continued

- Unbalanced Data
- 0 Non Diabetic
- 1 Prediabetic/Diabetic
- BFRSS was trinary
- ~16% Positive

Data Exploration Continued

Supervised Machine Learning Methodology

```
%%time
#Cell runtime -- 45 seconds
steps = [('over', RandomOverSampler()), ('model', DecisionTreeClassifier())]
pipeline = Pipeline(steps=steps)
# evaluate pipeline
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=2)
scores = pd.DataFrame.from_dict( cross_validate(pipeline, data[x], data[y], cv=cv,
                          scoring=('f1',
                                   'recall',
                                   'precision',
                                   'precision_micro'.
                                   'accuracy',
                                   'roc_auc'),
                         return_train_score=True))
scores = scores.mean(axis=0)
pp.pprint(scores)
```

Logistic Regression

	Unbalanced	With Oversampling
F1 Score – Train	0.242	0.433
F1 Score – Test	0.241	0.433
Recall Score – Train	0.156	0.766
Recall Score – Test	0.156	0.766
Precision Score – Train	0.536	0.312
Precision Score – Test	0.535	0.311
Accuracy Score – Train	0.864	0.732
Accuracy Score – Test	0.863	0.732
ROC_AUC – Train	0.822	0.823
ROC_AUC - Test	0.822	0.823

- Oversampling Increased Recall decreased Precision
- Both Unbalanced and Oversampled data were scaled before model was trained.

Single Decision Tree

	Unbalanced	With Oversampling
F1 Score – Train	0.979	0.971
F1 Score – Test	0.307	0.291
Recall Score – Train	0.960	0.997
Recall Score – Test	0.323	0.298
Precision Score – Train	0.999	0.946
Precision Score – Test	0.293	0.285
Accuracy Score – Train	0.994	0.992
Accuracy Score – Test	0.797	0.798
ROC_AUC – Train	0.999	0.999
ROC_AUC – Test	0.598	0.589

Clearly Overfit – Further Tuning Required

Random Forest

	Unbalanced	With Oversampling
F1 Score – Train	0.979	0.97
F1 Score – Test	0.254	0.352
Recall Score – Train	0.964	0.997
Recall Score – Test	0.173	0.307
Precision Score – Train	0.995	0.944
Precision Score – Test	0.487	0.412
Accuracy Score – Train	0.994	0.991
Accuracy Score – Test	0.859	0.842
ROC_AUC – Train	0.999	0.999
ROC_AUC – Test	0.798	0.793

Clearly Overfit – Further Tuning Required

AdaBoost

	Unbalanced	With Oversampling
F1 Score – Train	0.28	0.445
F1 Score – Test	0.279	0.445
Recall Score – Train	0.188	0.772
Recall Score – Test	0.187	0.771
Precision Score – Train	0.547	0.313
Precision Score – Test	0.544	0.313
Accuracy Score – Train	0.865	0.732
Accuracy Score – Test	0.865	0.732
ROC_AUC – Train	0.827	0.827
ROC_AUC – Test	0.826	0.826

Tuning Random Forest Model

```
depths = range(2,5)
alphas = np.logspace(-2,0,10)
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=1)
manualGrid = pd.DataFrame(columns = ['Depth', 'Alpha', 'Scores'])
for depth in depths:
    for alpha in alphas:
        steps = [('over', RandomOverSampler()), ('model', RandomForestClassifier(max_depth = depth, ccp_alpha
        pipeline = Pipeline(steps=steps)
        scores = pd.DataFrame.from_dict( cross_validate(pipeline, data[x], data[y], cv=cv,
                          scoring=('f1',
                                  'recall' .
                                   'precision',
                                   'precision_micro'.
                                  'accuracy',
                                  'roc_auc'),
                         return_train_score=True))
        scores = scores.mean(axis=0)
        print( " Depth : " , depth , " Alpha : " , alpha)
        manualGrid[len(manualGrid)] = [depth, alpha, scores]
        pp.pprint(scores)
```

Random Forest – Revisited

	Unbalanced	With Oversampling	Oversampling Tuning
F1 Score – Train	0.979	0.97	0.423
F1 Score – Test	0.254	0.352	0.423
Recall Score – Train	0.964	0.997	0.757
Recall Score – Test	0.173	0.307	0.756
Precision Score – Train	0.995	0.944	0.294
Precision Score – Test	0.487	0.412	0.293
Accuracy Score – Train	0.994	0.991	0.713
Accuracy Score – Test	0.859	0.842	0.712
ROC_AUC – Train	0.999	0.999	0.803
ROC_AUC – Test	0.798	0.793	0.802

Conclusion

Can we identify individuals at high risk for having diabetes from the answers given in the BRFSS?

- The best model tried (Adaboost with Oversampling) give the below results (cv=3)
- Depends on Stakeholder feedback

$$egin{aligned} Accuracy &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$
 $Precision = rac{TP}{TP + FP}$ $Recall = rac{TP}{TP + FN}$ $F1 ext{-}score = rac{2 imes Precision imes Recall}{Precision + Recall}$