A posteriori error estimates based on multilevel decompositions with large problems on the coarsest level

Additional numerical experiments

P. Vacek, J. Papež and Z. Strakoš

This pdf present numerical results for additional test cases to supplement the experiments in the paper

P. Vacek, J. Papež and Z. Strakoš, A posteriori error estimates based on multilevel decompositions with large problems on the coarsest level,

where a detailed description and discussion is present.

2Dpeak problem

$$-\Delta u = f$$

 $u = 0$ on the boundary

Discretization: continuous Galerkin Finite Elements P1

Multigrid hierarchy generated by discretizing the problem on a sequence of uniformly refined meshes

$$h_{\Omega} = \sqrt{2}$$

 $\min_{K \in T_0} h_K = 0.12856486930664487$

Manufactured solution:

$$u = x(x-1)y(y-1)e^{-100\left(\left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2\right)}$$

4.1e-02

Galerkin solution on the coarsest level

```
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOfIterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.1;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual setting		
coarsest-level DoFs	finest-level DoFs	
100	441	
100	1 849	
100	7 569	
100	30 625	
100	123 201	
100	494 209	
100	1 979 649	
100	7 924 225	

$$I_1 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^J \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \mathbf{r}_0^* \mathbf{A}_0^{-1} \mathbf{r}_0 \right)^{\frac{1}{2}}}{\|\nabla (u_J - v_J)\|}$$

$$I_{2} = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} (\mathbf{r}_{j}^{*} \mathbf{D}_{j}^{-1} \mathbf{r}_{j})^{\frac{1}{2}} + (\mathbf{r}_{0}^{*} \mathbf{A}_{0}^{-1} \mathbf{r}_{0})^{\frac{1}{2}} \right)}{\|\nabla (u_{J} - v_{J})\|}$$

with

 $C_{\text{numexp}} = 1.184153650441326$


```
J = 3; % vcycleNumberOfLevels
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOfIterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.1;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual settings		
coarsest-level DoFs	finest-level DoFs	
100	1 849	
441	7 569	
1 849	30 625	
7 569	123 201	
30 625	494 209	
123 201	1 979 649	
494 209	7 924 225	

$$I_3 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \eta \right)^{\frac{1}{2}}}{\left\| \nabla (u_J - v_J) \right\|}$$

where $\eta \approx \mathbf{r}_0^* A_0^{-1} \mathbf{r}_0$ computed using

- (i) direct solver
- (ii) 4 iterations of CG
- (iii) by replacing $oldsymbol{A}_0$ with its diagonal
- (iv) using CG with adaptive number of iterations

$$C_{\text{numexp}} = 1.184153650441326$$

Number of CG iterations used when computing η

2Dshell problem

$$-\Delta u = 0$$
 $u = 100$ on the inner boundary $u = -10$ on the outer boundary

Discretization: continuous Galerkin Finite Elements P1

Multigrid hierarchy generated by discretizing the problem on a sequence of uniformly refined meshes

$$\begin{split} h_{\Omega} &= 1 \\ \min_{K \in T_0} h_K &= 0.09771455584161245 \end{split}$$

Galerkin solution on the coarsest triangulation

```
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOflterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.1;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual sett			gs
coarsest-level	DoFs	finest-level DoFs	,
	111	5	15
	111	2 2	02
	111	9 0	92
	111	36 9	36
	111	148 8	80
	111	597 7	92
	111	2 395 7	12
	111	9 591 9	36

$$I_1 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \mathbf{r}_0^* \mathbf{A}_0^{-1} \mathbf{r}_0 \right)^{\frac{1}{2}}}{\left\| \nabla (u_J - v_J) \right\|}$$

$$I_{2} = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} (\mathbf{r}_{j}^{*} \mathbf{D}_{j}^{-1} \mathbf{r}_{j})^{\frac{1}{2}} + (\mathbf{r}_{0}^{*} \mathbf{A}_{0}^{-1} \mathbf{r}_{0})^{\frac{1}{2}} \right)}{\left\| \nabla (u_{J} - v_{J}) \right\|}$$

with

$$C_{\text{numexp}} = 1.386793086895968$$


```
J = 3; % vcycleNumberOfLevels
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOfIterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.1;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual settir		
	coarsest-level DoFs	finest-level DoFs
	111	2 202
	515	9 092
	2 202	36 936
	9 092	148 880
	36 936	597 792
	148 880	2 395 712
	597 792	9 591 936

$$I_3 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \eta \right)^{\frac{1}{2}}}{\left\| \nabla (u_J - v_J) \right\|}$$

where $\eta \approx \mathbf{r}_0^* A_0^{-1} \mathbf{r}_0$ computed using

- (i) direct solver
- (ii) 4 iterations of CG
- (iii) by replacing $oldsymbol{A}_0$ with its diagonal
- (iv) using CG with adaptive number of iterations

 $C_{\text{numexp}} = 1.386793086895968$

Number of CG iterations used when computing η

3Dshell problem

$$-\Delta u = 0$$
 $u = 100$ on the inner boundary $u = -10$ on the outer boundary

Discretization: continuous Galerkin Finite Elements P1

Multigrid hierarchy generated by discretizing the problem on a sequence of uniformly refined meshes The initial mesh was generated in HyTeG*

$$h_{\Omega} = 1$$

 $\min_{K \in T_0} h_K = 0.13832808829250579$

clip of Galerkin solution on the coarsest triangulation

```
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOfIterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.5;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual settings		
coarsest-level DoFs	finest-level DoFs	
642	7 686	
642	71 694	
642	614 430	
642	5 079 102	

$$I_1 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \mathbf{r}_0^* \mathbf{A}_0^{-1} \mathbf{r}_0 \right)^{\frac{1}{2}}}{\|\nabla (u_J - v_J)\|}$$

$$I_{2} = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} (\mathbf{r}_{j}^{*} \mathbf{D}_{j}^{-1} \mathbf{r}_{j})^{\frac{1}{2}} + (\mathbf{r}_{0}^{*} \mathbf{A}_{0}^{-1} \mathbf{r}_{0})^{\frac{1}{2}} \right)}{\|\nabla (u_{J} - v_{J})\|}$$

with

$$C_{\text{numexp}} = 1.842461635385764$$


```
J = 2; % vcycleNumberOfLevels
vcycleRelativeTolerance = 1e-11;
vcycleMaximumNumberOfIterations = 1000;
smoother = GSSmoother(3,3);
% define coarsest level solver
stoppingCriterion.name = 'res2norm';
stoppingCriterion.relative = true;
stoppingCriterion.tolerance = 0.5;
coarsestLevelSolver = CGSolver(stoppingCriterion);
```

Sizes of the problem in individual settings		
coarsest-level DoFs	finest-level DoFs	
642	7 686	
7 686	71 694	
71 694	614 430	
614 430	5 079 102	

$$I_3 = \frac{C_{\text{numexp}} \left(\sum_{j=1}^{J} \mathbf{r}_j^* \mathbf{D}_j^{-1} \mathbf{r}_j + \eta \right)^{\frac{1}{2}}}{\left\| \nabla (u_J - v_J) \right\|}$$

where $\eta pprox \mathbf{r}_0^* A_0^{-1} \mathbf{r}_0$ computed using

- (i) direct solver
- (ii) 4 iterations of CG
- (iii) by replacing $oldsymbol{A}_0$ with its diagonal
- (iv) using CG with adaptive number of iterations

$$C_{\text{numexp}} = 1.842461635385764$$

Number of CG iterations used when computing η

