O plano

Seja $A(x_1, y_1, z_1)$ um ponto pertencente ao plano π e $\vec{n} = (a, b, c), \vec{n} \neq \vec{0}$, um vetor **ortogonal (normal) ao plano** pi.

[[eqgeralplano.png]]

Como $\vec{n} \perp \pi$, \vec{n} é ortogonal a todo vetor representado em π , então um ponto P(x,y,z) percente a π se, e somente se, o vetor \overrightarrow{AP} é ortogonal a \vec{n} . A partir disso obtem-se a equação geral do plano:

$$ax + by + cz + d = 0$$

sendo que:

$$d = -ax_1 - by_1 - cz_1$$

Um caso específico é quando um plano π intercepta os eixos coordenados nos pontos (p,0,0), (0,q,0) e (0,0,r), com $p \cdot q \cdot r \neq 0$. Se isso ocorre, então π admite também a equação segmentária do plano:

$$\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1$$

Essa equação é equivalente à equação geral para esses planos, porém pode ser mais conveniente encontrá-la em determinados contextos.

Uma outra forma de obter a equação geral de um plano é através do [[Produto misto|produto misto]]. Seja $A(x_0,y_0,z_0)$ um ponto pertencente a um plano π e $\vec{u}=(a_1,b_1,c_1)$ e $\vec{u}=(a_1,b_1,c_1)$ dois vetores paralelos a π , e não paralelos entre si. Sendo P(x,y,z) um ponto qualquer do plano π , \overrightarrow{AP} , \vec{u} e \vec{v} são coplanares, portanto o produto misto deles é nulo, ou seja:

$$(\overrightarrow{AP}, \overrightarrow{u}, \overrightarrow{v}) = 0$$

Assim, podemos obter uma equação geral do plano mantendo as incógnitas do ponto P e desenvolvendo o produto misto.

Equação vetorial e equações paramétricas do plano

Seja $A(x_0,y_0,z_0)$ um ponto pertencente a um plano π e $\vec{u}=(a_1,b_1,c_1)$ e $\vec{u}=(a_1,b_1,c_1)$ dois vetores paralelos a π , e não paralelos entre si.

[[eqvetorialplano.png]]

Para todo ponto P do plano, os vetores \overrightarrow{AP} , \overrightarrow{u} e \overrightarrow{v} são **coplanares**, chamamos os vetores \overrightarrow{u} e \overrightarrow{v} de vetores diretores de π . A partir disso obtem-se a equação vetorial do plano:

$$(x, y, z) = (x_0, y_0, z_0) + h(a_1, b_1, c_1) + t(a_2, b_2, c_2), \quad h, t \in \mathbb{R}$$

Pela condição de igualdade, podemos definir as equações paramétricas de π com parâmetros h e t:

$$\begin{cases} x = x_0 + a_1 h + a_2 t \\ y = y_0 + b_1 h + b_2 t \\ z = z_0 + c_1 h + c_2 t \end{cases} h, t \in \mathbb{R}$$

Equação vetorial de um paralelogramo

Dados os pontos não colineares $A, B \in C$, os vetores $\overrightarrow{AB} \in \overrightarrow{AC}$ determinam o paralelogramo cuja equação vetorial é

$$P = A + h(\overrightarrow{AB}) + t(\overrightarrow{AC}) \quad h, t \in [0, 1]$$

[[eqvetorialparalelogramo.png]]

Casos particulares da equação geral do plano

Caso um ou mais coeficientes da equação $geral\ do\ plano\ ax+by+cz+d=0$ seja nulo, o plano ocupará uma posição particular em relação aos eixos ou planos coordenados.

- 1. Se d=0, então o plano passa pela origem.
- 2. Se o coeficiente de apenas uma coordenada for nulo, então o plano é paralelo ao eixo dessa coordenada, ou seja, o plano é paralelo ao eixo da variável ausente na equação.
- 3. Se dois coeficientes duas coordenadas forem nulos, então o plano é paralelo ao plano formado pelos eixos dessas coordenadas. Por exemplo: $\pi:z=k:\pi//xOy$

Ângulo de dois planos

Sejam os planos π_1 e π_2 com vetores normais \vec{n}_1 e $\vec{n}_2,$ respectivamente:

[[anguloplanos.png]]

O ângulo de dois planos π_1 e π_2 é o menor ângulo que um vetor normal a π_1 forma com um vetor normal a π_2 . Sendo θ esse ângulo, tem-se:

$$\cos \theta = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}||\vec{n_2}|} \quad 0 \le \theta \le \frac{\pi}{2}$$

Planos perpendiculares

Sejam os planos π_1 e π_2 com vetores normais \vec{n}_1 e $\vec{n_2},$ respectivamente.

[[planosperpendiculares.png]]

Então, a **perpendicularidade dos planos** depende diretamente da **perpendicularidade entre seus vetores normais.**

$$\pi_1 \perp \pi_2 \Leftrightarrow \vec{n_1} \perp \vec{n_2} \Leftrightarrow \vec{n_1} \cdot \vec{n_2} = 0$$

Paralelismo e perpendicularismo entre reta e plano

Seja r uma reta com vetor diretor \vec{v} e um plano π , sendo \vec{n} um vetor normal a π .

[[parperpretaplano.png]]

Então, o paralelismo e a perpendicularidade entre um plano e uma reta depende diretamente do paralelismo e da perpendicularidade entre o vetor diretor da reta e o vetor normal ao plano.

$$r//\pi \Leftrightarrow \vec{v} \perp \vec{n} \Leftrightarrow \vec{v} \cdot \vec{n} = 0$$

$$r \perp \pi \Leftrightarrow \vec{v} / / \vec{n} \Leftrightarrow \vec{v} = \alpha \vec{n}$$

Reta contida em um plano

Uma reta r está contida no plano π se qualquer uma das duas condições forem verdadeiras:

- 1. Dois pontos A e B de r forem também de π
- 2. $\vec{v} \cdot \vec{n} = 0$, em que \vec{v} é um vetor diretor de r e \vec{n} um vetor normal a π e $A \in \pi$, sendo $A \in r$.

[[retacontidanoplano.png]]

Intersecção de dois planos

A interseção entre dois planos é definida por uma reta r que contém os pontos em comum entre os dois planos. Existem dois procedimentos para encontrar a intersecção entre dois planos:

1. Como r está contida nos dois planos, as coodernadas de qualquer ponto $(x,y,z)\in r$ devem satisfazer, simultâneamente, as equações de ambos os planos. Sendo assim podemos definir r como um sistema de duas equações: as equações dos planos.

2. Podemos definir um ponto A que esteja contido em ambos os planos e um vetor \vec{v} que seja simultaneamente ortogonal aos vetores normais dos dois planos, ou seja, \vec{v} é definido pelo [[Produto vetorial|produto vetorial]] entre os vetores normais dos dois planos. A partir disso podemos [[A reta#Equação vetorial|definir a reta através de um ponto e um vetor]].

[[intersecaodoisplanos.png]]

Intersecção de reta com plano

Para determinar a intersecção de uma reta r com um plano π basta encontrar um ponto A tal que $A \in r$ e $A \in \pi$ simultaneamente. Isso pode ser feito substituindo cada uma das variáveis da equação geral do plano pela uma [[A reta#Equações paramétricas|equação paramétrica da reta]] correspondente àquela coordenada. Dessa forma é possível encontrar um parâmetro t que indica qual ponto da reta r pertence também ao plano π .

created: 10/04/2021 modified: 10/04/2021