GRAPH

A graph is a nonempty set of points called vertices and a set of line segments joining pairs of vertices called edges.

GRAPH

Formally, a graph G consists of two finite sets:

- (i) A set V=V(G) of vertices (or points or nodes)
- (ii) A set E=E(G) of edges.

where each edge corresponds to a pair of vertices.

We have five vertices labeled by v_1, v_2, v_3, v_4, v_5 .

We have edges e_1, e_2, \ldots, e_6 .

- e_1 edge is for vertices v_1 and v_2 .
- e_2 and e_3 end points v_1 and v_4 .
- e_4 has end points v_2 and v_4 .

- e_5 has end points v_2 and v_4 .
- e₆ is a loop.
- v₅ is isolated vertex.

1- An edge connects either one or two vertices called its endpoints (edge e₁ connects vertices v₁ and v₂ described as {v₁, v₂}).

2- An edge with just one endpoint is called a loop. Thus a loop is an edge that connects a vertex to itself (e.g., edge e₆)

3- Two vertices that are connected by an edge are called adjacent, and a vertex that is an endpoint of a loop is said to be adjacent to itself.

- An edge is said to be incident on each of its endpoints.
- A vertex on which no edges are incident is called isolated (e.g., v₅)

Two distinct edges with the same set of end points are said to be parallel.
 (e₂ & e₃ are parallel).

Define the following graph formally by specifying its vertex set, its edge set, and a table giving the edge endpoint function.

Vertex Set = $\{v_1, v_2, v_3, v_4\}$ Edge Set = $\{e_1, e_2, e_3\}$

Edge - endpoint function:

Edge	Endpoint
e ₁	$\{v_1, v_2\}$
e ₁	$\{v_1, v_3\}$
e ₁	{v ₃ }

For the graph shown below

- Find all edges that are incident on v₁.

- Find all vertices that are adjacent to v₃.
- Find all loops.
- Find all parallel edges.
- Find all isolated vertices.

- Find all edges that are incident on v1.

 v_1 is incident with edges e_1 , e_2 and e_7 .

- Find all vertices that are adjacent to v₃.

Vertices adjacent to v_3 are v_1 and v_2 .

- Find all loops.

Loops are e_1 and e_3 .

- Find all parallel edges.

Only edges e4 and e5 are parallel.

- Find all isolated vertices.

The only isolated vertex is v₄ in this Graph.

Draw picture of Graph H having vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ and edge set $\{e_1, e_2, e_3, e_4\}$ with edge endpoint function.

Edge	Endpoint
e ₁	$\{v_1\}$
e_2	$\{v_2, v_3\}$
e ₃	$\{v_{2},v_{3}\}$
e ₄	$\{v_1, v_5\}$

$$V(H) = \{v_1, v_2, v_3, v_4, v_5\}$$
 and
$$E(H) = \{e_1, e_2, e_3, e_4\}$$

with edge endpoint function.

Edge	Endpoint
e ₁	$\{v_1\}$
e ₂	$\{v_{2,}v_{3}\}$
e ₃	$\{v_{2,}v_{3}\}$
e ₄	$\{v_{1,}v_{5}\}$

SIMPLE GRAPH

A simple graph is a graph that does not have any loop or parallel edges.

$$V(H) = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E(H) = \{e_1, e_2, e_3, e_4\}$$

DEGREE OF A VERTEX

Let G be a graph and "v" a vertex of G. The degree of "v", denoted deg(v), equals the number of edges that are incident on "v", with an edge that is a loop counted twice.

The total degree of G is the sum of the degrees of all the vertices of G.

For the graph given below

 $deg(v_1) = 0$, since v_1 is isolated vertex.

For the graph given below

 $deg(v_2) = 2$, since v_2 is incident on e_1 and e_2 .

For the graph given below

 $deg(v_3) = 4$, since v_3 is incident on e_1 , e_2 and the loop e_3 .

Total degree of
$$G = deg(v_1) + deg(v_2) + deg(v_3)$$

= $0 + 2 + 4$
= 6

HANDSHAKING THEOREM

If G is any graph, then the sum of the degrees of all the vertices of G equals twice the number of edges of G.

Specifically, if the vertices of G are v_1 , v_2 , ..., v_n , where n is a positive integer, then

The Total degree of G = deg(v1) + deg(v2) + ... + deg(vn)= 2. (the number of edges of G)

Draw a graph with the specified properties or explain why no such graph exists.

- (i) Graph with four vertices of degrees 1, 2, 3 and 3.
- (ii) Graph with four vertices of degrees 1, 2, 3 and 4.
- (iii) Simple graph with four vertices of degrees 1, 2, 3 and 4.

(i) Graph with four vertices of degrees 1, 2, 3 and 3.

Total degree of graph =
$$1 + 2 + 3 + 3$$

= 9 an odd integer

Hence by Hand-Shaking Theorem, first graph is not possible.

(ii) Graph with four vertices of degrees 1, 2, 3 and 4.

Total degree of graph =
$$4 + 3 + 2 + 1$$

= 10 an even integer

There are many solutions two of them are given.

$$Deg(a) = 1$$

$$Deg(c) = 3$$

$$Deg(b) = 1$$

$$Deg (d) = 4$$

$$Deg(a) = 1$$

$$Deg(c) = 3$$

$$Deg (b) = 2$$

$$Deg(d) = 4$$

Suppose a graph has vertices of degrees 1, 1, 4, 4 and 6. How many edges does the graph have ?

SOLUTION

The total degree of graph

$$= 1 + 1 + 4 + 4 + 6$$

 $= 16$

Number of edges of graph = 16/2 = 8

EXERCISE

In a group of 15 people, is it possible for each person to have exactly 3 friends?

COMPLETE GRAPH

A complete graph on "n" vertices is a simple graph in which each vertex is connected to every other vertex and is denoted by K_n.

EXERCISE

For the complete graph K_n, find

- (i) The degree of each vertex.
- (ii) The total degrees.
- (iii) The number of edges.

REGULAR GRAPH

A graph G is regular of degree k or k-regular if every vertex of G has degree k.

In other words, a graph is regular if every

vertex has the same degree.

0 - regular

1 - regular

2 - regular

Draw two 3-regular graphs with six vertices.

SOLUTION

3-regular graph

3-regular graph

BIPARTITE GRAPH

A bipartite graph G is a simple graph whose vertex set can be partitioned into two mutually disjoint non empty subsets A and B such that the vertices in A may be connected to vertices in B, but no vertices in A are connected to vertices in A and no vertices in B are connected to vertices in B.

$$A = \{ v_1, v_2, v_3 \}$$

$$B = \{ v_4, v_5 \}$$

$$A = \{ v_1, v_2, v_3 \}$$

$$B = \{ v_4, v_5, v_6 \}$$

DETERMINING BIPARTITE GRAPHS

The following labeling procedure determines whether a graph is bipartite or not.

- 1 Label any vertex "a".
- 2 Label all vertices adjacent to "a" with the label "b".
- 3 Label all vertices that are adjacent to "a" vertex just labeled "b" with label "a".

DETERMINING BIPARTITE GRAPHS

4 - Repeat steps 2 and 3 until all vertices got a distinct label (a bipartite graph).

If there is a conflict i.e., a vertex is labeled with "a" and "b" (not a bipartite graph).

Find which of the following graphs are bipartite. Redraw the bipartite graph so that its bipartite nature is evident.

The graph is not bipartite.

There is no conflict that is there are no adjacent vertex which have same label.

$$A = \{ a_1, a_2 \}$$

$$B = \{ b_1, b_2, b_3 \}$$

COMPLETE BIPARTITE GRAPH

A complete bipartite graph on (m+n)vertices denoted $K_{m,n}$ is a simple graph whose vertex set can be partitioned into two mutually disjoint non empty subsets A and B containing m and n vertices respectively, such that each vertex in set A is connected (adjacent) to every vertex in set B, but the vertices within a set are not connected.

COMPLETE BIPARTITE GRAPH

K 2,3

K 3, 3