# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

# Лабораторная работа 3.4.1 Диа- и парамагнетики

Цель работы: измерение магнитной восприимчивости диа- и парамагнитного образцов.

**Оборудование**: электромагнит, весы, милливеберметр, регулируемый источник постоянного тока, образцы диа- и пара-магнетиков.

**Теоретические сведения**: Известно, что вещество может обладать как собственной намагниченностью, так и изменять свою намагниченность при помещении во внешнее магнитное поле. Микроскопическими источниками магнитного поля в среде являются орбитальное движение электронов в молекулах и атомах, а также собственное вращение (спин) электронов и ядер. При макроскопическом описании свойств среды можно считать, что каждый элемент объёма среды может являться элементарным источником магнитного поля — магнитным диполем. Для описания усреднённых свойств среды используют вектор намагниченности M, равный магнитному моменту единичного объёма вещества.

Величина магнитного поля B в данной точке среды определяется как значение микрополя, усреднённое по малому (элементарному) объёму, содержащему при этом большое количество частиц. B называется индукцией магнитного поля.

Помимо этого, принято вводить вспомогательный вектор H напряженности поля.

$$\boldsymbol{B} = \boldsymbol{H} + 4\pi \boldsymbol{M}$$

В простейшем практически важном случае намагниченность M в каждой точке среды прямо пропорциональна вектору напряжённости магнитного поля H в этой же точке

$$M = \chi H$$

Коэффициент пропорциональности  $\chi$  называется называют магнитной восприимчивостью среды. Вещества, для которых справедлива такая зависимость между намагниченностью и напряженностью, называются парамагнетиками ( $\chi > 0$ ) и диамагнетиками ( $\chi < 0$ ). В парамагнетиках элементарные диполи ориентированы в основном по приложенному полю, а в диамагнетиках – против него.

В итоге для напряженности поля можем записать

$$\boldsymbol{B} = \mu \boldsymbol{H}$$

где  $\mu$  – магнитная проницаемость вещества

$$\mu = 1 + 4\pi\chi$$

### Диамагнетизм

Диамагнетизм ( $\chi < 0$ ) возникает из-за электромагнитной индукции молекулярных токов в электронных оболочках атомов и присущ в той или иной степени всем веществам без исключения. В зависимости от того, обладает ли электрон в атоме начальным моментом импульса  $\boldsymbol{L}$ , механизмы возникновения диамагнетизма несколько отличаются.

1) L = 0. Рассмотрим электрон в состоянии с нулевым орбитальным моментом импульса. С классической точки зрения такое состояние можно представить как симметрично «размазанное» облако заряда вокруг ядра.

Плавно (квазистатически) включим внешнее однородное магнитное поле  ${\pmb B}$ . Согласно закону электромагнитной индукции, величина этого поля на расстоянии r от оси системы определяется соотношением

$$2\pi rE = -\pi r^2 \frac{dB}{dt}$$

отсюда

$$E = -\frac{1}{2}r\frac{dB}{dt}$$

Запишем уравнение моментов для точечного электрона, находящегося на «орбите» радиуса

$$m_e r^2 \frac{d\omega}{dt} = -erE = \frac{1}{2}er^2 \frac{dB}{dt}$$

Интегрируя по времени, найдём, что независимо от расстояния r электрон при включении поля B приобретает угловую скорость вращения

$$\omega_L = \frac{e}{2m_e}B$$

Величину  $\omega_L$  называют ларморовской частотой.

При вращении с ларморовской частотой электрон создаёт магнитное поле, равное полю витка с током  $I_L=e^{\frac{\omega_L}{2\pi}}$ . Этот ток в свою очередь создаёт магнитный момент, по модулю равный

$$m_L = I_L \cdot S = -\frac{e^2 S}{4\pi m_e} B$$

где S – площадь эквивалентного витка. Если полагать, что  $S \sim \pi a^2$ , где a – среднее расстояние электронов до ядра. Тогда для атома, содержащего Z электронов, иммем намагниченность среды  $M = Zn \cdot \Delta m_L$ , где n есть число атомов в единице объёма. Получаем оценку для магнитной восприимчивости

 $\chi_{\mathrm{диа}} \sim -\mu_0 rac{e^2 a^2}{4 m_e} Z n$ 

2)  $L \neq 0$ . Рассмотрим теперь случай, когда электрон исходно обладает некоторым орбитальным моментом импульса L = mvr. Орбитальное движение электрона эквивалентно витку с током, магнитный момент которого  $m_L$  пропорционален L и направлен против него. Его величину можно найти как произведение тока  $e \cdot \frac{v}{2\pi r}$  на площадь «витка»  $\pi r^2$ :  $m_L = \frac{1}{2}evr$ . При включении внешнего магнитного поля B, направленного вдоль z, на электрон начинает действовать момент силы  $m_L \times B$ , и уравнение движения электрона будет иметь вид

$$\frac{dL}{dt} = m_L \times B$$



Рис. 1: Прецессия электронной орбиты в магнитном поле

Его решением является прецессия электронной орбиты с ларморовской угловой частотой:  $\omega_L = \frac{m_L}{L}B = \frac{e}{2m_e}B$ . При этом вектор  $m_L$  описывает конус вокруг вектора B. Эта прецессия не зависит от угла  $\theta$  и приводит к дополнительному вращению электрона вокруг поля B, налагающемуся на его орбитальное движение.

Отсюда следует, что диамагнитная восприимчивость не зависит от температуры или величины поля и возрастает пропорционально порядковому номеру элемента. Видно, что диамагнитный эффект присущ всем веществам независимо от того, имеется у атомов собственный магнитный момент или нет. Однако у некоторых веществ он перекрывается более сильным парамагнитным эффектом.

# Парамагнетизм

Парамагнетизм ( $\chi > 0$ ) характерен для веществ, микроскопические частицы которых (атомы, ионы, молекулы) обладают собственным магнитным моментом в отсутствие внешнего магнитного поля.

В парамагнетиках энергия взаимодействия между соседними магнитными моментами атомов мала по сравнению с тепловой энергией, поэтому в отсутствие внешнего магнитного поля микроскопические магнитные моменты полностью разупорядочены, и намагниченность среды равна нулю. При помещении во внешнее поле магнитным моментам энергетически выгодно ориентироваться преимущественно по полю, что и приводит к парамагнитному эффекту.

Оценим температурную зависимость магнитной восприимчивости парамагнетика в классической модели. Пусть среднее число атомов в единице объёма равно n, а абсолютная величина магнитного момента атома  $\mathfrak{m}_a$ . В магнитном поле с индукцией B энергия магнитного диполя, составляющего с направлением поля угол  $\alpha$ , равна

$$U = -\mathbf{m}_a B \cos \alpha$$

и может меняться в диапазоне от  $-\mathfrak{m}_a B \cos \alpha$  до  $\mathfrak{m}_a B \cos \alpha$ 

Из термодинамики известно, что доля атомов dn, обладающих в условиях равновесия энергией  $U(\alpha)$ , определяется распределением Больцмана:

$$dn \propto e^{-\frac{U(\alpha)}{k_{\rm B}T}} d\alpha$$

Пусть внешнее магнитное поле достаточно мало, так что энергия магнитных моментов атомов в нём много меньше тепловой:  $\mathfrak{m}_a B \ll k_{\rm B} T$ . Число атомов, имеющих положительную ( $\alpha>0$ ) проекцию на направление B, может быть записано как

$$n_{+} = n_0 e^{\mathfrak{m}_a B/k_{\mathrm{B}}T} \approx n_0 \left(1 + \frac{\mathfrak{m}_a B}{k_{\mathrm{B}}T}\right)$$

Для атомов с отрицательной проекцией момента ( $\alpha < 0$ )

$$n_{-} = n_0 e^{\mathfrak{m}_a B/k_{\rm B}T} \approx n_0 \left(1 - \frac{\mathfrak{m}_a B}{k_{\rm B}T}\right)$$

Учитывая условие нормировки  $n_+ + n_- = n$ , найдём:  $n_0 \approx n/2$ .

Величину суммарного магнитного момента единицы объёма можно оценить как

$$M \sim n_+ \mathfrak{m}_a + n_-(-\mathfrak{m}_a) \approx \frac{\mathfrak{m}_a^2 n}{k_{\rm B} T} B$$

Более аккуратное усреднение по углам даст поправочный множитель порядка единицы (в классической модели получается коэффициент 1/3).

Таким образом, парамагнитная восприимчивость равна

$$\chi_{\rm map} \sim \mu_0 \frac{{\mathfrak m}_a^2 n}{3k_{\rm B}T} \propto \frac{1}{T}$$

Температурная зависимость восприимчивости парамагнетиков называется *законом Кюри*.

Методика измерения: Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. Существуют два классических метода таких измерений: метод Фарадея и метод Гюи. В данной работе предлагается использовать метод Гюи. В методе Гюи используется тонкий и длинный стержень, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. Закон изменения



Рис. 2: Расположение образца в зазоре электромагнита

поля — от максимального до нулевого — в этом случае несуществен.

Найдём выражение для силы, действующей со стороны магнитного поля на цилиндрический стержень, помещённый в зазор электромагнита (рис. 1). Пусть площадь сечения образца равна S, его магнитная проницаемость –  $\mu$ , поле в зазоре равно  $B_0$  и образец помещён в зазор на глубину x.

Ток в обмотке электромагнита I поддерживается постоянным, поэтому сила, действующая на образец со стороны магнитного поля равна

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)$$

где  $W_M(x)$  – магнитная энергия системы при I=const в зависимости от смещения образца x. Магнитная энергия может быть рассчитана по формуле:

$$W_M = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV$$

где интегрирование проводится по всему пространству.

Найдём распределение магнитного поля в длинном цилиндре, частично помещённом в зазор электромагнита.

Систему можно условно разбить на 3 части. В области I вне электромагнита поле мало  $B_1 \approx 0$  и его вкладом в энергию можно пренебречь. В части стержня II, погружённой в электромагнит, поле приближённо равно  $B_2 \approx \mu B_0$ . В области III вдали от стержня поле мало отличается от  $B_3 \approx B_0$ . Наконец, в пограничных областях между I и II и между II и III (отмечены пунктиром) распределение поля простыми методами рассчитано быть не может. Найдём изменение магнитной энергии при заданном смещении:



Рис. 3: К вычислению распределения поля в образце

$$dW_M(\Delta x) \approx \frac{B_2^2}{2\mu\mu_0} S dx - \frac{B_3^2}{2\mu_0} S dx = (\mu - 1) \frac{B_0^2}{2\mu_0} S dx$$

Отсюда, сила равна

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} S$$

Знак силы зависит от знака восприимчивости, парамагнетики ( $\chi > 0$ ) втягиваются в зазор электромагнита, а диамагнетики ( $\chi < 0$ ) выталкиваются из него.

## Экспериментальная установка:



Рис. 4: Схема экспериментальной установки

Схема установки изображена на рис. 4. Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного напряжения.

Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра.

При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой — вне зазора, где индукцией магнитного поля можно пренебречь. При помощи аналитических весов определяется перегрузка  $\Delta P = F$  — сила, действующая на образец со стороны магнитного поля.

Силы, действующие на диа- и парамагнитные образцы, очень малы. Небольшие примеси ферромагнетиков (сотые доли процента железа или никеля) способны кардинально изменить результат опыта, поэтому образцы были специально отобраны.

**Обработка данных**: Сначала прокалибруем электромагнит, для этого с помощью милливеберметра снимем зависимость магнитного потока  $\Phi$ , пронизывающего пробную катушку, находящуюся в зазоре, от тока I. Таким образом наёдем зависимость B(I) ( $\Phi = BSN$ ), где SN = 72 см². Данные для калибровки представлены ниже в таблице:

Таблица 1: Данные для калибровки электромагнита

| I, | A | Ф, мВб | I, A | Ф, мВб |
|----|---|--------|------|--------|
| 0, | 3 | 0,75   | 1,8  | 3,9    |
| 0, | 6 | 1,3    | 2,1  | 4,5    |
| 0, | 9 | 2      | 2,4  | 5,05   |
| 1, | 2 | 2,7    | 2,7  | 5,6    |
| 1, | 5 | 3,3    | 3,0  | 6      |

Внешнее сопротивление цепи равно  $r_{\text{внеш}}=5$  Ом, при таком сопротивлении относительная погрешность измерения потока не превышает  $\varepsilon_{\Phi}=1,5\%$ . Погрешность измерения силы тока не превышает 0,5%+2 единицы младшего разряда (0,01 A). По значениям из таблице выше построим график зависимости B(I).



$$k=(276,65\pm 4,92)\ {
m MB6/A}, \quad arepsilon_k=1,78\%$$
  $b=(31,01\pm 4,24)\ {
m MB6}, \quad arepsilon_b=13,69\%$ 

Теперь, с помощью весов, измерим силу, действующую каждый из образцов, при разлтичных значениях силы тока I в катушке (а следовательно и различных значениях индукции B). Причём снимем значения силы при увеличении силы тока, а затем при уменьшении, то есть идя в обратную сторону. Всего в работе использовались четыре образца из различных металлов. Данные по каждому из них представлены в таблицах ниже, абсолютная погрешность измерения диаметра образцов равна  $\sigma_d = 0.1$  мм.

Таблица 2: Параметры образцов

|             | Образец |       |        |        |  |
|-------------|---------|-------|--------|--------|--|
| I, A        | Al      | Cu    | С      | W      |  |
| $m, \Gamma$ | 25,305  | 83353 | 11,859 | 13,843 |  |
| d, MM       | 10,0    | 10,0  | 10,0   | 3,1    |  |

| $\Box$  | 0  | TT         |                | 1          |             |
|---------|----|------------|----------------|------------|-------------|
| Таблица | з. | Данные пл  | и построения   | т графиков | зависимости |
| таолица | Ο. | данные для | 1 HOCT POCHINZ | прафиков   | Japhenmoeth |

|      | Al, up                  | Al, down | Cu, up | Cu, down | C, up | C, down | W, up | W, down |
|------|-------------------------|----------|--------|----------|-------|---------|-------|---------|
| I, A | $\Delta P$ , M $\Gamma$ |          |        |          |       |         |       |         |
| 0,3  | 0                       | 2        | 0      | 0        | -14   | -18     | 0     | 0       |
| 0,6  | 2                       | 4        | 0      | -1       | -36   | -44     | 0     | 0       |
| 0,9  | 5                       | 7        | 0      | -2       | -68   | -72     | 0     | 1       |
| 1,2  | 9                       | 11       | -2     | -3       | -96   | -100    | 1     | 1       |
| 1,5  | 14                      | 17       | -4     | -5       | -122  | -129    | 2     | 2       |
| 1,8  | 20                      | 22       | -6     | -8       | -149  | -156    | 4     | 4       |
| 2,1  | 27                      | 29       | -10    | -11      | -176  | -182    | 7     | 7       |
| 2,4  | 34                      | 36       | -12    | -15      | -199  | -206    | 9     | 10      |
| 2,7  | 42                      | 43       | -16    | -18      | -221  | -225    | 12    | 12      |
| 3,0  | 48                      | 48       | -19    | -21      | -239  | -239    | 14    | 14      |

По данным из таблицы построим графики зависимости  $\Delta P$  от  $B^2$ , где значение  $\Delta P$  берётся среднее арифметическое двух (вверх и вниз). Абсолютная погрешность измерения  $\Delta P$  равна  $\sigma_{\Delta P}=1$  мг.



$$k_{Al} = (66.75 \pm 1.77) \; \mathrm{Mf}/\mathrm{T}\pi^2, \quad \varepsilon_k = 2.65\%$$
  $k_{Cu} = (28.87 \pm 0.56) \; \mathrm{Mf}/\mathrm{T}\pi^2, \quad \varepsilon_k = 1.93\%$ 

Для меди и алюминия рассчитаем магнитную восприимчивость

$$\chi = 2k \cdot \frac{\mu_0}{S}$$

где S – площадь поперечного сечения образца  $S=\pi d^2/4,\,\mu_0$  – магнитная постоянная.

$$\chi_{Al} = (21,41 \pm 0,71) \cdot 10^{-6}, \quad \varepsilon_{\chi} = 3,32\%$$

$$\chi_{Cu} = (-9.26 \pm 0.36) \cdot 10^{-6}, \quad \varepsilon_{\chi} = 2.78\%$$

Относительная погрешность магнитной восприимчивости была найдена по формуле

$$\varepsilon_{\chi}^2 = \varepsilon_k^2 + 4\varepsilon_d^2$$

Сравним полученные значения с табличными:  $\chi_{Al \text{ табл}} = 23 \cdot 10^{-6}$ , полученное для алюминия значение отличается от табличного на  $\sim 7\%$ ;  $\chi_{Cu \text{ табл}} = -1 \cdot 10^{-5}$ , для меди результат отличается от табличного также на  $\sim 7\%$ .

Далее построим аналогичные графики и рассчитаем магнитную восприимчивость для образцов из вольфрама и графита.



$$k_W = (20.90 \pm 0.79) \text{ Mp/Tm}^2, \quad \varepsilon_k = 3.78\%$$
  
 $\chi_W = (69.78 \pm 2.99) \cdot 10^{-6}, \quad \varepsilon_\chi = 4.28\%$ 

Табличое значение магнитной вопсприимчивости для вольфрама  $\chi_{W \text{ табл}} = 55 \cdot 10^{-6}$ , полученная на опыте величина отличается на  $\sim 27\%$ .

Далее найдём  $\chi$  для материала последнего образца – графита.



$$k_C = (298,20 \pm 26,48) \text{ Mp/Tm}^2, \quad \varepsilon_k = 8,88\%$$
 
$$\chi_C = (95,68 \pm 8,71) \cdot 10^{-6}, \quad \varepsilon_\chi = 9,10\%$$

Табличое значение магнитной восприимчивости графита  $\chi_{C \text{ табл}} = 85 \cdot 10^{-6}$  отличается от  $\chi_{\text{эксп}}$  на  $\sim 13\%$ .

Занесём все результаты в таблицу и проанализируем их.

Таблица 4: Результаты вычислений

| Материал                                           | Алюминий | Медь  | Вольфрам | Графит |
|----------------------------------------------------|----------|-------|----------|--------|
| $\chi_{	ext{табл}} \cdot 10^6$                     | 23,0     | -9,26 | 55       | 85     |
| $\chi_{ m skcn} \cdot 10^6$                        | 21,41    | -10   | 69,78    | 95,68  |
| $\varepsilon_{\chi_{\scriptscriptstyle 9KCII}},\%$ | 3,32     | 2,78  | 4,28     | 9,10   |
| Различие, %                                        | 6,91     | 7,4   | 26,87    | 12,56  |

**Вывод:** В данной работе были исследованы пара- и диамагнитные свойства меди, алюминия, вольфрама и графита, а также были вычислены значения магнитной восприимчивости

для каждого из материалов. Результаты эксперимента неплохо совпали с теорией для алюминия и меди (отличие  $\sim 7\%$ ), совпали хуже для графита ( $\sim 13\%$ ) и гораздо хуже для вольфрама ( $\sim 27\%$ ).