Date	÷		
Duco		*************	

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2019

(JUNE-2019 to SEPT.-2019)

Under the guidance of K. Venkanna

MATHEMATICS

TEST CODE: TEST-9-IAS(M)/04-AUG..-2019

Time: 3 Hours

Maximum Marks: 250

INSTRUCTIONS

- This question paper-cum-answer booklet has 50 pages and has
 - 31 PART/SUBPARTquestions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated. "
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly
- Symbols/hotations carry their usual-meanings, unless otherwise indicated.
- All questions carry equal marks
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used
- All rough work should be done in the space provided and scored out 10 finally
- The candidate should respect the instructions given by the invigilator 11.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination half. Do not remove any

LEAD INSTRUCTIONS ON THE LEFT SIDE OF THIS PAGE CARFFULLY

Name	Om	Prake	sh Gul
Roll No	· ·		
Test Co	entre	R.N	

Medium	English	
--------	---------	--

Do not write your Roll Number or	Name
anywhere else in this Question F	aper-
cum-Answer Booklet.	

					The state of the s	_	And in column 2 is not a second
ī	have	read	all	the	instructions	and	shal

abide by them

Signature of the Candidate

I have verified the information filled by the cardidate above

Whenever a question is being attempted, all its parts/ sub-parts must be attempted configurately. This means that before moving on to the heat question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

P.T.O.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

UESTION	No. :	. PAGE NO.	MAX. MARKS . :	· . MARKS.OBTAINED
	(a)			08 7
	(b)			12
1900	(c)	8.20 Ya 00		08 9
	(d)	P 10		09
	(e)			09
	(a)			20 0
8 8	(b)			14
	(c)			13
	(d)-			
	(a)			13 7
	(p)•			08 4
	(c)			08
-	(d)		•	12
V. Sep	(á)	79* *		
TANK TO SERVICE	(b)			
	(c)			
	(d)			
	(a)			09 7
	(b)			08
	(c)	•	17 1 1	08
*5	(d)			09
	(e)			09
	(a)			
	(b)			
	(c)			
	(d)			./
	(a)	3. F		/
	(b)			
	(c)			
	(d)			
	(a)	7.5		11)
	(b)			
	(c)			08 4
	(d)			15
			Total Marks	
		52	*	117

DO NOT WRITE ON THIS SPACE

SECTION - A

(a) Determine whether the following matrices have the same column space :

$$A = \begin{pmatrix} 1 & 3 & 5 \\ 1 & 4 & 3 \\ 1 & 1 & 7 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -3 & -4 \\ 7 & 12 & 17 \end{pmatrix} \tag{10}$$

$$B = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -3 & -4 \\ 7 & 12 & 17 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 7 & -2 & -4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 7 & -2 & -4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 7 & -2 & -4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 7 & -2 & -4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 7 & -2 & -4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 7 & -2 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 23 & 23 & 23 & 24 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 &$$

Since e(a)=3
e(8)=1

A and B count show.

column space.

1. (b) Determine conditions for the consistency of the equations ax + by + cz = p, bx + cy + az = q, cx + ay + bz = rwhen a, b, c are not all zero. solve completely in the case of consistency. [10] a b c | = a (sc-a') - b (b2-ca) 3 ab - a5 - 63 - c3 2 c a = b (5(-a2) - b (26-a1) + c (ag - cr) : pbc - ap - 26 + abk abh. + bcp + acq - ap-62 = a(26-a1) (b-ac) +c (br- (2) agb - ar - bpr+cp2 -1. Cb 1 - c2 c 2 = a (in-a2) - b(18-in) 1+ 1 (as-cy = acx -aig - bir +602 + pas - pch

For unique solution: 1.70 => . a3+5+c2 - 3acc =:0 Jatotc for a #5 #C カ のナッチにもの = abr + bcp +acq -ap - being Solution: 3abc- 93 - 63 - c3 y= 1 = 02 b - ar - 6pr + ck2 + chr Of $z = \Delta s$ = $acr - a^2q - b^2r + bcq + pab$ Rer infinite solution: $b = 0 = \lambda$ (c) Discuss the continuity and differentiability of the following function at (0, 0): $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}; & (x,y) \neq (0,0) \end{cases}$ [10] (x,y)=(0,0)| xy2 -0 | = | xcoso (Ksing) | x2 (y2) 7) | f(my) - f(0,0) | = (x) | coso sin20 | 2 (h) Et : femil) is continueous at (0,0) HOPOZY A(n,E) + (0,0) = lim (10,0) - + (0,0) hopo h

 $f(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0$ $\frac{1000}{f(0,k)} - f(0,0) = h f_{0}(0,0) + k f_{0}(0,0)$ $+ \sqrt{h^{2}+k^{2}} = \sqrt{h^{2}+k^{2}} = \sqrt{h^{2}+k^{2}}$ $\lim_{k \to \infty} \frac{h(0,k)}{h^{2}+k^{2}} = \lim_{k \to \infty} \frac{h^{2}}{h^{2}+k^{2}} = \frac{m}{(1+m^{2})^{3/2}}$ $\lim_{k \to \infty} \frac{h(0,0)}{h^{2}+m^{2}h^{2}} = \lim_{k \to \infty} \frac{m^{2}h^{3}}{h^{2}+m^{2}h^{2}} = \lim_{k \to \infty} \frac{m^{2}h^{2}}{h^{2}+m^{2}h^{2}} = \lim_{k \to \infty} \frac{m^{2}h^{3}}{h^{2}+m^{2}h^{2}} = \lim_{k \to \infty} \frac{m^{2}h^{2}}{h^{2}+m^{2}h^{2}} = \lim_{k \to \infty} \frac{m^{2}h^{2}}{h^{2}+m^{2}h^{$

(d) Find the volume of the portion of the cylinder determined by the equation x² + y² - 2ax = 0, which is intercepted between the planes z = x tan α, z = x tan β.

 $n^2 + y^2 - 2an = 0$ curter of base = (a, 0)rading of base = a

Volume fran-intemp

= I I din dy d 2

= I Jan tong

= 2 Jan Jay [2]

= 2 Jan Jay [2]

n tong

radius of wirde interceptors R-P 3= 1 +4 - 1 = 5.1 = ±6 . Equation of sphere is given by えナダナマナナな、一十二〇 2. (a) (i) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by T(x, y, z) = (x + 2y - z, y + z, z)x+ y - 2z). Find a basis and the dimension of the image U of T. (ii) If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, find out the values of α , β , s.t. $(\alpha I + \beta A)^2 = A$. i) T(x,y,z) = ((x+2y-21, (y+2), (x+y-22)) = n (1,0,1) + y (2,1,1) + z (-1,1,-2) € L { (1,011), (2,1,1), (-1,1,-2)} Now, taking vectore (1,0,1), (2,1,1), (-1,1,2) motrère, ve Rj-> Rg-R,

IMS

BRANCH OFFICE: 105-106, Top Floor, Multierjee Tower, Multieriee Neger, Duth-6
REGIONAL CEFECE: 1-10-237, Brid Floor, Room No. 202 R.N.S. Kancham's Dlue Sapphire Ashon Nager Hydershed JO. Mobile No. 09652351152, 096526115

" Echelon form has only two non-zero rones, so only two kndeburdent rectore :. Pasis = { (.1,0,1) ; (2,1,1)}. dimension of image of T=2 ii) (XI + pA) = A $\Rightarrow \left(\alpha \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \beta \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \right)^{2} = A$ 7 t[x o] + [op p] = [-10] 3. [x p.] = [0, 1] $\begin{bmatrix}
-2x\beta & -k+x^{2}
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}$ 20 x - p - 0 ; 2x p = 1 J X= +B, 2(+B)B=1 =) +2B=1 からさば、ましてい · X = 生 」 生 」 ・ ト = 土」 ・ 土」 ·

2.	(b)	(i)	If u =	x² tan-1	$\frac{y}{x} - y^2$	tan-	$\frac{x}{y}$,	prove	that
			$\partial^2 \mathbf{u}$	$=\frac{x^2-y^2}{x^2+y^2}$					

(ii) Evaluate $\lim_{x \to \frac{1}{2}\pi} (\sin x)^{\tan^2 x}$

i) $\frac{\partial u}{\partial y} = x^{2} \left(\frac{1}{1+y^{2}} \right) \times \frac{1}{x} - 2y + \cos \frac{1}{x} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y^{2}}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{y} \frac{1}{y} \frac{1}{y} \frac{1}{y}$ $= \frac{x^{3}}{x^{2} + y^{2}} - 2y + \cos \frac{1}{y} \frac{1}{$

$$-2y\left(\frac{1}{1+(x)}\right)\left(\frac{1}{y}\right) + (x^{1}+y^{2})(y^{2})$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{3x^{1}-2x^{2}}{(x^{1}+y^{2})} - \frac{2y^{1}}{x^{1}+y^{2}} + \frac{(x^{1}+y^{2})^{2}}{(x^{1}+y^{2})^{2}}$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{3x^{1}-2x^{2}}{(x^{1}+y^{2})} - \frac{2x^{2}}{x^{1}+y^{2}} + \frac{(x^{1}+y^{2})^{2}}{(x^{1}+y^{2})^{2}}$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{3x^{1}-2x^{2}}{(x^{1}+y^{2})} - \frac{2x^{2}}{x^{1}+y^{2}}$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{3x^{1}-2x^{2}}{(x^{1}+y^{2})} - \frac{1}{2x^{2}} \frac{1}{(x^{1}+y^{2})^{2}}$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{1}{(x^{1}+y^{2})} - \frac{1}{2x^{2}} \frac{1}{(x^{1}+y^{2})^{2}} - \frac{1}{2x^{2}} \frac{1}{(x^{1}+y^{2})^{2}}$$

$$= \frac{1}{(x^{1}+y^{2})} \frac{1}{(x^{1}+y^{2})} - \frac{1}{2x^{2}} \frac{1}{(x^{1}+y^{2})} - \frac{1}{2x^{2}} \frac{1}{(x^{1}+y^{2})^{2}} - \frac$$

	14 of 52
2. (c)	Prove that the S. D. between the diagonals of rectangular parallelopiped and the edges not meeting it are
L. T.	$\frac{bc}{\sqrt{(b^2+c^2)}}, \frac{ca}{\sqrt{(c^2+a^2)}}, \frac{ab}{\sqrt{(a^2+b^2)}}$
	where a, b, c are the lengths of the edges.
het	the diagonal la of
then	edgy not meeting to AX
	GC. Af and BC
with	direction ratios a, o, o, o, o, c, and
_ a	,0,0 respectively.
5.0	between OF and GF is
4	(cf) { aî+5+(R) x aî}
Targette.	[aî+1]+(iè) x ai]
	= ((c) (-abk + acj) = bc
d · 2	between OF and AF is
Y	= (ai). { ai+ bj+ck) x (k)}
13	[(aî + bĵ + cic) x cic)
	= ab
D L	ceturem OE and BC = (bj. plainsfri)
	1(a0+63+c2)
	6.6

(a) (i) Show that the vectors v = (1 + i, 2i) and $w_{\bullet} = (1, 1 + i)$ in C^2 are linearly dependent over the complex field C but are linearly independent over the real field R. (ii) Let W be the subspace of \mathbb{R}^3 defined by W = {(a, b, c): a + b + c = 0}. Find a basis and dimension of W. (ii) Suppose U and W are distinct four-dimensional subspaces of a vector space V of dimension 6. Find the possible dimensions of U o W. RL -> R2 - (1-i) R, : Echelon form has only one non-zero , so two victors are linearly depended. Let a (1+i, zi) + 6(1,1+i) =0 for a,600 R > (a+ai+5, ria+6+6i) 20 d atb + ai = 0 & b + (2 a + b) î = 0 3) a+b=0=a 6 two vectors are linearly independent ii) Lt (a,s,c) ew, then (a,b,c) = (a,b,-a-b) = a (1,0,-!) +b(0,1,-€ L2(1,0,-1), (0,1,-1)} C L { L(1,0,-1) , (0,1,-1) } -17 Here celialon form has

both vectors are kinearly independent S = 2(1,0,-1), (0,1,-1)3 1 . Horist dimension of w = 2 w are distinct fourand -5 -: U = W dimensional subspace L. Unw +U, W din (UNW) < 4 HUNDI U NW M dim (UUW) = dim(U) + dim(nd a sutspace of UUW is e 24 +4 - dim (vnw) ≤ 6 1 subspace of din (Unw) > 2 .. possible dimension of UNW = 2.3 3. (b) Prove that $\int_{-\pi/4}^{\pi/4} \log(\sin x + \cos x) dx = -\frac{\pi}{4} \log 2$, [10] I = I log (sein + cosx) dr = My log (-sein + cosn) dr cos'n-sin'n) = | log cost

IMS

HEAD OFFICE 25%, Old Rejinder Neger Market, Debi 40: Ph. 9999187821, 011 45629927 BRANCH OFFICE 105-106, Top Floor Maharipe Tower, Washerjee Reger, Dubi-8 REGIONAL OFFICE 1.16-237, Bud Floor, Room No. 202 RC'S Rennant's Elian Managem Asia

REGIONAL OFFICE 1.16-237, and Floor Rosen No. 202 R.K.S. Kancham's Elius Sepphere Ashin Negar Hyderelied 20. Middle No. 0965255152, 0965264155
www.insekrathis.com S. Email: insekrathis@prink.com

f'(x) =/0

a) en cosa + en sinu =0

equation exsime + = 0, there is atleast one root of the equation . It tanks

3. (d) (i) Find the limiting points of coaxial systems defined by the spheres $x^2 + y^2 + z^2 + 2x + 2y + 4z + 2 = 0$ and $x^2 + y^2 + z^2 + x + y + 2z + 2 = 0$.

(ii) If the plane 2x - y + cz = 0 cuts the cone yz + zx + xy = 0 in perpendicular lines, find the value of c. [16]

radius = (2+1) 2 + (2+1) + (2+1) -2 for thiniting point. $7 = \frac{(2+7)^2}{4(1+7)^2} + \frac{(2+7)^2}{4(1+7$ ヨ ガーリカナをこの ヨカー (4+ 116+ ます 2 + 2 \(\sigma \) · limiting point $= \left(-\frac{(4\pm2\sqrt{3})}{2(3\pm2\sqrt{3})}, -\frac{(4\pm2\sqrt{3})}{2(3\pm2\sqrt{3})}, -\frac{(4\pm2\sqrt{3})}{3\pm2\sqrt{3}}\right)$ - ... 21:- m + cn = 0 , mn + nl + lm = 0 diminating n, nee have (m+x) (m-21) + lm = 0 => -2 (=) + (-1) = + 1= · LILL = 1 = - (1-2 (1/m, + 62) + 4/1/m for perpendicular lines, file +m, me+4, me =0 = like ++ + mine =0 ヨーナー+(ナー) コーモニ

4. (a) (i) Let T be a linear operator on R³ which is represented in the standard ordered basis by the matrix.

$$\mathbf{A} = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^3 each vector of which is characteristic vector of T.

(ii) If A is non-singular, prove that the eigenvalues of A-1 are the reciprocals of the eigenvalues of A. [14+05=19]

	SECTION -	В .		
5. (a) Solve $\frac{dy}{dx} = (x + y + y)$	4)/(x - y - 6)			[10]
Let n=x+h	. , 7 = 1	itk		
1. dy - "	+ 4+4		×+7+	The second secon
du	x-3-6	: dx	x-y+	h-k-6
		nd h-K	-6 = 0	
ter r				- 4
solving, we ge	A h = 1	1 - 3		172-3
100	1 12			
dy = '	X+Y	Let Y	= ux	
a company of the comp	×-4	3) dy	= u +	× au
W.A.		dx		~(^
du du	= X+	- ×	140	
3 u + x du dx	X-		1-4	
	~~~		187	



$$\Rightarrow \times \frac{du}{dx} = \frac{1+u}{1-u} - u \Rightarrow \times \frac{du}{dx} = \frac{1+u}{1-u}$$

$$\Rightarrow \int \frac{1-u}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \frac{1}{2} \frac{1}{1+u^{2}} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{1}{1+u^{2}} du = \int \frac{dx}{x} du$$

$$\Rightarrow \int \frac{dx}{x} du =$$

5. (b) Find the orthogonal trajectories of 
$$r = a(1 + \cos n\theta)$$
.

[10]

an (-1) = In | cosecno - cotno) + c

y -1 2 and In | cosecno - cotno) + c

+ c'

y the and I where c' is arbitrary

constant

(c) If R be the horizontal range and h the greatest height of a projectile, prove that
the initial velocity is

 $[2g(h+\frac{R^2}{16h})]^{1/2}.$ For greatest height:  $3^2 = u^2 - 2gh \quad \text{where}$   $3^2 h = \frac{u^2 \sin^2 \theta}{2g} \quad \frac{\sin^2 \theta}{\sin^2 \theta} \quad \text{where}$   $4^2 = u \sin \theta \quad t \quad -\frac{1}{2}gt^2 = 0 = (u \sin \theta - \frac{1}{2}gt)$   $3^2 + u \sin \theta \quad t \quad +\frac{1}{2}gt^2 = 2u \sin \theta$   $4^2 + u \cos \theta \quad t \quad -\frac{1}{2}(0)t^2 \quad = 2u \sin \theta$   $4^2 + u \cos \theta \quad t \quad -\frac{1}{2}(0)t^2 \quad = 2u \sin \theta$   $4^2 + u \cos \theta \quad t \quad -\frac{1}{2}(0)t^2 \quad = 2u \sin \theta$   $4^2 + u \cos \theta \quad t \quad -\frac{1}{2}(0)t^2 \quad = 2u \sin \theta$ 





(d) A Particle moves along the curve x = 2t², y = t² - 4t, z = 3t - 5, where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction i - 3j + 2k.

velocity = 
$$\frac{dn}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k}$$
  
=  $4t \hat{i} + (2t - 1)\hat{j} + 3\hat{k}$ :  
acceleration =  $\frac{d^{1}x}{dt^{2}} \hat{i} + \frac{d^{1}z}{dt^{2}} \hat{k}$   
=  $4\hat{i} + 2\hat{j}$   
. components of velocity in direction of  $\hat{i} - 2\hat{j} + 2\hat{k}$   
=  $(4t \hat{i} + (2t - 4))\hat{j} + 3\hat{k}$ .  $(\hat{i} - 3\hat{j} + 1)\hat{k}$ 

IMS

HEAD OFFICE 15th, Old Rejinder Neger Market, Delhi 40 Ph. 99/9187425, 011-6542987 BRANCH OFFICE, 106-106, Top Floor Multiperper Tomer, Multiperper Neger, Delhi 8 REGISTRAL OFFICE, 1:50-237, Brid Floor, House No. 20216 XIS New Jeem's Blue Septimer Ashor

were implement com 8 final implementa@gment.com

$$= (4\hat{c} - 2\hat{j} + 3\hat{c}) \cdot (\hat{c} - 3\hat{j} + 2\hat{k}) \text{ at } t = 1$$

$$= 4 + 6 + 6 \cdot = 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 16.$$

$$= 1$$

5. (e) Show that the vector field defined by

 $F = (2 xy - z^3) i + (x^2 + z) j + (y - 3xz^2) k$  is conservative, and find the scalar potential of F.

$$\frac{1}{2} \cdot \frac{\partial \Phi}{\partial x} = 2x(x - 2) - \Phi$$

$$\frac{1}{3y} = 2xy - 2^{3}x + f(y, 2) - D$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + f(y, 2) - D$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2) + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - 2^{3}x + \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - \frac{1}{3}(y, 2) - \frac{1}{3}(y, 2)$$

$$\frac{1}{3y} = x^{2}y - \frac$$

from 1 10 = -522x + 2+

32 = -522x + 2+

32 = -322x + 4 + 9/(2) & from OR

(1) φ = 2 y - 23x + 42 + C AXE = AX (4 4) = 0 . rector field F. is conservative and vector potential = my 2 n + yz + c 6. (a) Solve  $(px^2 + y^2)$   $(px + y) = (p + 1)^2$  by reducing it to Clairaut's form and find its singular solution. [13]



7.	(c)	A particle moves with a central acceleration which varies inversely as the cube
		of the distance. If it be projected from an apse at a distance a from the origin with
		a velocity which is $\sqrt{2}$ times the velocity for a circle of radius a, show that the

equation to its path is 
$$r\cos(\theta/\sqrt{2}) = a$$
: [16]



8. (a) Find (i) the curvature 
$$\kappa$$
, (ii) the torsion  $\tau$  for the space curve  $x = t - t^3/3$ ,  $y = t^2$ ,  $z = t + t^3/3$ .

$$\frac{dR}{dt} = (t - \frac{t^{2}}{3})\hat{i} + t^{2}\hat{j} + (t + \frac{t^{2}}{3})\hat{k}$$

$$\frac{dR}{dt} = (1 - t^{2})\hat{i} + 2i\hat{j} + (1 + t^{2})\hat{k}$$

$$\frac{dR^{2}}{dt^{2}} = -2i\hat{i} + 2\hat{j} + 2i\hat{k}$$

$$\frac{dR^{2}}{dt^{2}} = -2\hat{i} + 2\hat{k}$$

$$\frac{dR^{2}}{dt^{2}} = -2\hat{i} + 2\hat{k$$



8. (b) (i) In what direction the directional derivative of  $\phi = x^2y^2z$  from (1, 1, 2) will be maximum and what is its magnitude? Also find a unit normal vector to the surface  $x^2y^2z = 2$  at the point (1, 1, 2). (ii) Find div F and curl F where  $\mathbf{F} = \text{grad} (x^3 + y^3 + z^3 - 3xyz)$ V) for mariemon directional derevative, direction will be. 4 \$ at (1,1,2). .. V p = 2xy = 1 + 2xy = 3 + exy = 2 = 2(1)(1)(2)( +2(1)(1)(1))+*(1)(1)を = 40 443 世年 magnitude of directional derivation is | ui+yj+k) = 116+16+1 unit normal nector to the surface = V (2/2-2) 1 p(nºytz-2) = 41+49+6 dir F = dir (grad (n)+y3+23-3nyz)) = +2 ( 23+43+23 -3245) 5-4-(46) = 3 t + 3 t + 3 t + 3 t = n'+3'+2' = -32y=



$$= 6x + 6y + 6 = \begin{cases} 2 & 06 = 3x - 3yz \\ 2x + 6y - 6y \\ 3x - 6y - 6y \end{cases}$$

$$= 6x + 6y + 6 = \begin{cases} 2x + 3y - 2y - 6y \\ 3x - 2y - 6y \\ 3x - 2y - 6y - 6y \end{cases}$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$





(d) Verify Stoke's theorem for
 F = y1 + (x - 2xz) j - xyk where S is the surface of sphere x² + y² + z² = a², above the xy-plane.



BRANCH OFFICE 105-106, Top Floor Michaelpes Tourn Multivaries August Debt 5
REGIONAL OFFICE 1-10-237, Bird Floor Room his 202 R.N.S. (American's Effice Suppliers Ashout Suppliers Debt 20 Mobile No. 2945/2351152 The Suppliers Ashout Suppliers Debt 20 Mobile No. 2945/2351152 The Suppliers Ashout Suppliers Debt 20 Mobile No. 2945/2351152 The Suppliers Ashout Suppliers Debt 20 Mobile No. 2945/2351152 The Su

$$= \iint (y \hat{i} + (x - 2\pi z) \hat{j} - ny \hat{i}) \cdot (2\pi \hat{i} + 2y \hat{j} + 12 \frac{1}{2})$$

$$= \iint \frac{2xy}{2} + \frac{2xy}{2} - \frac{2y}{2} + \frac{2}{2} \frac{1}{2}$$

$$= \iint \frac{4xy}{2} - 6xyz \quad ds = \iint \frac{2xy}{2} - \frac{3xy}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

$$= \lim_{n \to \infty} \frac{1}{2} - \frac{1}{2} \frac$$



= g (1-27) + y f - x +2x c). d?  $= \oint (\chi \hat{c} + \gamma \hat{f} - 2Z \hat{e}) \cdot d\hat{r} \begin{cases} \text{let } \chi = a \cos \theta \hat{c} \\ + a \sin \theta \hat{f} \end{cases}$ = ] (a coso î + a simo ĵ - 2 (a) k) (-asimo î + a cose) = ( - at sino coso + at sino coso) do = Q do = d(VXF) de Therefore stakes - theorem verified

### ROUGH SPACE









IMS

DRANCH OFFICE 195-106, Top Floor, Multi-rise Cuebu-60, Fts. 9991 127625, 011-45629967
BRANCH OFFICE 195-106, Top Floor, Multi-rise Tower, Multi-rise Nager, Cuebu-6
REGIONAL OFFICE 1-10-237 Brid Floor, Room No. 30.2 R X'S Kanchan's Blue Sapphers Ashod Nager Hydersbad 20 Mobile No. 0966221
when interfered a com 8 Email interfered grand com

P.T.O.

### INDIA'S No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS



### OUR ACHIEVEMENTS IN IFoS (FROM 2008

OUR RANKERS AMONG TOP 10 IN IFOS





AIR-03



AIR-03 IFoS-2014



AIR-04 IFoS-2014



AIR-04 IFoS-2010









AIR-06 FoS-2015



AIR-07 IFoS-2012



AIR-09 IFoS-2018



AIR-10











AIR-35 AIR-36



AIR-45

















































































































ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING
METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 (Ph.:011-45629987, 9999197625 www.ims4maths.com e-Mail: ims4maths@gmail.com Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.X'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20, Ph.: 9652351152, 9652661152

