GhostML: a mini-ML with global references and ghost terms

```
\begin{array}{lll} prog & ::= & typedecl^* & vardecl^* & t & & program \\ typedecl & ::= & type & id & \alpha, ..., \alpha & = \tau & & type & declaration \\ vardecl & ::= & val & id : ref & \tau & & global & reference & declaration \\ \end{array}
```

GhostML Programs

```
\begin{array}{lll} \tau & ::= & \alpha & & \text{type variable} \\ & \mid & \varepsilon \left(\tau, \ldots, \tau\right) & & \text{datatype constructor} \\ & \mid & \tau \rightarrow \tau & & \text{function type} \\ & \mid & \inf \mid \mathsf{bool} \mid \mathsf{Prop} \mid \ldots & & \mathsf{build\text{-in types}} \\ \sigma & ::= & \forall \overline{\alpha}. \tau & & \mathsf{type scheme} \end{array}
```

GhostML Types and Schemes

$$v ::= x$$
 variable
$$| op$$
 build-in constants and operands $(1, true, +, \lor, ...)$
$$| C(v, ..., v)$$
 constructor application
$$| fun x \rightarrow t$$
 function

GhostML Values

t	::=	v	value
		t(t)	application
		$C(t,\ldots,t)$	constructor application
		$\mathtt{let}\; x = t\; \mathtt{in}\; t$	local binding
		$\mathtt{letrec}\ f\ x = t$	recursive function
		! x	global reference access
		x := t	global reference assignment
		if t then t else t	conditional expression
		match t with $p \to t, \ldots, p \to t$ end	pattern-matching

GhostML Terms

$$p ::= x$$
 variable pattern $C(p,...,p)$ constructor pattern

GhostML Patterns

Operational Semantics

$$\frac{t_1|_{\sigma} \quad \rightsquigarrow \quad t_1'|_{\sigma'}}{t_1 \ t_2|_{\sigma} \quad \rightsquigarrow \quad t_1' \ t_2|_{\sigma'}} \tag{E-Appleft}$$

$$\frac{t_2|_{\sigma} \quad \rightsquigarrow \quad t_2'|_{\sigma'}}{v \ t_2|_{\sigma} \quad \rightsquigarrow \quad v \ t_2'|_{\sigma'}} \tag{E-Appright)}$$

$$(\mathbf{fun}\; \varepsilon x_{\tau} \to t)v|_{\sigma} \;\; \rightsquigarrow \;\; t[x \leftarrow v|_{\sigma} \qquad \quad (\mathbf{E-AppRedex})$$