การประยุกต์จำนวนเชิงซ้อน

ชื่อกิจกรรม: Logo design with $\mathbb C$

จุดประสงค์ของกิจกรรม:

- 1. นักเรียนสามารถเขียนกราฟของ z=(a,b) หรือ z=a+bi ได้ถูกต้อง
- 2. นักเรียนสามารถเขียนกราฟของ $z+w,\ z-w$ และ zw ได้ถูกต้อง
- 3. นักเรียนสามารถเขียนกราฟของ $|z-a| \leq r, \, r|z-a| < r, \, |z-a| = r, \, |z-a| > r \,$ ได้ถูกต้อง
- 4. นักเรียนสามารถออกแบบ Logo โดยการประยุกต์ใช้ความรู้เรื่องจำนวนเชิงซ้อนได้ถูกต้อง

สมรรถนะทางคณิตศาสตร์ของผู้เรียน :

F5 ทำสถานการณ์หรือปัญหาให้ง่ายขึ้นหรือแยกย่อยสถานการณ์หรือปัญหา เพื่อให้สามารถวิเคราะห์ทาง คณิตศาสตร์ได้

E6 บอกวิธีการแก้ปัญหา การแสดง และ/หรือสรุปและนำเสนอผลลัพธ์ตามลำดับขั้นตอน

14 ใช้ความรู้ในการพิจารณาว่าสถานการณ์ในชีวิตจริงส่งผลกระทบต่อผลลัพธ์และการคำนวณตามขั้นตอนหรือแบบ จำลองทางคณิตศาสตร์ เพื่อที่จะตัดสินใจได้ว่าควรปรับปรุงหรือนำผลลัพธ์ไปประยุกต์ใช้

R15 วิเคราะห์ความเหมือนและความแตกต่างระหว่างแบบจำลองการคำนวณและปัญหาทางคณิตศาสตร์ที่เป็น แบบจำลอง

1. Before you start

ในระนาบเชิงซ้อน ถ้า $a\in\mathbb{C}$ และ $r\in\mathbb{R}$ แล้ว $\left\{z\in\mathbb{C}\ \middle|\ |z-a|\leq r\right\}$ คือ เซตของจุดทั้งหมดในระนาบ เชิงซ้อนที่มีระยะห่างจาก a น้อยกว่าหรือเท่ากับ r ซึ่งก็คือ เซตของจุดทั้งหมดที่อยู่ภายในและบนวงกลมที่มี a เป็น จุดศูนย์กลาง รัศมี r หน่วย

2. วัสดุ อุปกรณ์ สื่อการสอน

- (1) Smart devices เช่น Notebook, PC, Tablet, iPad, Smart phone
- (2) Web app Math Playground workshop 1 และ 2

3. วิธีดำเนินกิจกรรม

- (1) ให้นักเรียนแบ่งกลุ่มกลุ่มละ 3 4 คน
- (2) ให้นักเรียนอ่านใบความรู้ เรื่อง จำนวนเชิงซ้อน จากนั้นร่วมกันอภิปรายกันภายในกลุ่ม
- (3) ครูแจกใบกิจกรรม Workshop (แบบ pdf และ/หรือ paper) ในกิจกรรม Logo design with $\mathbb C$ ให้นักเรียนแต่ละกลุ่ม
- (4) นักเรียนทำกิจกรรมตามกิจกรรม Workshop 1 โดยใช้ Web app Math Playground 1 พร้อมบันทึกผลใน Report
- (5) นักเรียนทำกิจกรรมตามกิจกรรม Workshop 2 โดยใช้ Web app Math Playground 2 พร้อมบันทึกผลใน Report
- (6) นักเรียนแต่ละกลุ่มออกมานำเสนอการผลงานของกลุ่มตนเอง

4. แนวทางการวัดและประเมินผล

วิธีการวัดและประเมินผล

- (1) ตรวจใบกิจกรรม
- (2) สังเกตการณ์มีส่วนร่วมในกิจกรรม

เครื่องมือ

- (1) ใบกิจกรรม
- (2) แบบประเมินทักษะและกระบวนการ
- (3) แบบประเมินคุณลักษณะอันพึงประสงค์

เกณฑ์การวัดและประเมินผล

- (1) นักเรียนสามารถหาความสูงของวัตถุ โดยการประยุกต์ใช้ความรู้เรื่องตรีโกณมิติได้ถูกต้อง
- (2) นักเรียนผ่านเกณฑ์การประเมินทักษะและกระบวนการ ระดับ 2 ขึ้นไป
- (3) นักเรียนผ่านเกณฑ์การประเมินคุณลักษณะอันพึงประสงค์ ระดับ 2 ขึ้นไป

1. ด้านความรู้

นักเรียนสามารถหาความสูงของวัตถุ โดยการประยุกต์ใช้ความรู้เรื่องตรีโกณมิติได้ถูกต้อง

2. ด้านทักษะกระบวนการ

คะแนน	การแก้ปัญหาและเชื่อมโยงความรู้
3	ดำเนินการแก้ปัญหาสำเร็จ สามารถเชื่อมโยงความรู้ หลักการและวิธีการทางคณิตศาสตร์เพื่อปฏิบัติ
(ดีมาก)	กิจกรรมได้อย่างถูกต้องและรวดเร็ว
2	ดำเนินการแก้ปัญหาสำเร็จ สามารถเชื่อมโยงความรู้ หลักการและวิธีการทางคณิตศาสตร์เพื่อปฏิบัติ
(ดี)	กิจกรรมได้อย่างถูกต้อง
1	ดำเนินการแก้ปัญหาสำเร็จบางส่วน สามารถเชื่อมโยงความรู้ หลักการและวิธีการทางคณิตศาสตร์
(พอใช้)	ปฏิบัติกิจกรรมได้ถูกต้องบางส่วน
0	ดำเนินการแก้ปัญหาไม่สำเร็จ ไม่สามารถเชื่อมโยงความรู้ หลักการและวิธีการทางคณิตศาสตร์ เพื่อ
(ปรับปรุง)	ปฏิบัติกิจกรรมได้อย่างถูกต้อง

3. ด้านคุณลักษณะอันพึงประสงค์

ч ч	
คะแนน	มีวินัย ใฝ่เรียนรู้ มุ่งมั่นในการทำงาน
3	เข้าเรียนตรงเวลา ปฏิบัติตามข้อตกลง ตรงต่อเวลาในการปฏิบัติกิจกรรม รับผิดชอบในการทำงาน
(ดีมาก)	ตั้งใจเรียน เอาใจใส่ในการเรียน มีส่วนร่วมในการเรียนรู้และเข้าร่วมกิจกรรม มีความตั้งใจและพยายาม
	ในการทำงานที่ได้รับมอบหมาย มีความอดทนและไม่ท้อแท้ต่ออุปสรรคเพื่อให้งานสำเร็จ
2	เข้าเรียนตรงเวลา ปฏิบัติตามข้อตกลง ตรงต่อเวลาในการปฏิบัติกิจกรรม ตั้งใจเรียน เอาใจใส่ในการ
(ดี)	เรียน มีความตั้งใจและพยายามในการทำงานที่ได้รับมอบหมาย มีความอดทน
1	เข้าเรียนช้า ปฏิบัติตามข้อตกลง ปฏิบัติกิจกรรมช้ากว่ากำหนด มีส่วนร่วมในกิจกรรม มีความตั้งใจและ
(พอใช้)	พยายามในการทำงานที่ได้รับมอบหมาย
0	เข้าเรียนช้า ไม่ปฏิบัติตามข้อตกลง ปฏิบัติกิจกรรมช้ากว่ากำหนด ไม่เข้าร่วมกิจกรรม ไม่ทำงานที่ได้รับ
(ปรับปรุง)	มอบหมาย

ใบความรู้

เรื่อง จำนวนเชิงซ้อน

บทนิยาม 1 จำนวนเชิงซ้อน (Complex Number) คือ คู่อันดับ (a,b) เมื่อ $a,b\in\mathbb{R}$ เขียนแทนด้วยสัญลักษณ์ $\mathbb C$ และกำหนดการเท่ากัน การบวกและการคูณของจำนวนเชิงซ้อน ดังนี้

สำหรับจำนวนเชิงซ้อน (a,b) และ (c,d) เมื่อ $a,b,c,d\in\mathbb{R}$

[1. การเท่ากัน] (a,b)=(c,d) ก็ต่อเมื่อ a=c และ b=d

[2. การบวก] (a,b) + (c,d) = (a+c,b+d)

[3. การคูณ] $(a,b) \cdot (c,d) = (ac - bd, ad + bc)$

บทนิยาม 2 สำหรับ $z\in\mathbb{C}$ ซึ่ง z=(a,b) เมื่อ $a,b\in\mathbb{R}$ จะเรียก a ว่า ส่วนจริง (real part) ของ z และแทนด้วย $\mathrm{Re}(z)$ และเรียก b ว่า ส่วนจินตภาพ (imaginary part) ของ z และแทนด้วย $\mathrm{Im}(z)$

จำนวนเชิงซ้อน (-1,0) คือ จำนวนจริง -1 ซึ่งเขียนแทน จำนวนเชิงซ้อน (0,1) ด้วยสัญลักษณ์ i จะได้ว่า $i^2=-1$ ดังนั้น สำหรับ $z\in\mathbb{C}$ จะได้ว่า

$$z = (a, b)$$

$$= (a, 0) + (0, b)$$

$$= (a, 0) + (b, 0)(0, 1)$$

$$= a + bi$$

นั่นคือ z=(a,b) สามารถเขียนแทนได้ด้วยสัญลักษณ์ $\ a+bi$

สำหรับจำนวนเชิงซ้อน (a,b) และ (c,d) เมื่อ $a,b,c,d\in\mathbb{R}$

[1. การเท่ากัน] a+bi=c+di ก็ต่อเมื่อ a=c และ b=d

[2. การบวก] (a+bi) + (c+di) = (a+c) + (bi+di)= (a+c) + (b+d)i

[3. การคูณ]

$$(a+bi) \cdot (c+di) = (a+bi)(c+di)$$

$$= a(c+di) + bi(c+di)$$

$$= ac + adi + bci + bdi^{2}$$

$$= ac + (ad+bc)i + bd(-1)$$

$$= (ac-bd) + (ad+bc)i$$

สมบัติที่เกี่ยวข้องกับการบวกและการคูณของจำนวนเชิงซ้อน ถ้า $z_1,z_2,z_3\in\mathbb{C}$ แล้ว จะได้ว่า

[4. การสลับที่] $z_1+z_2=z_2+z_1$ และ $z_1z_2=z_2z_1$

[5. การเปลี่ยนหมู่] $z_1+(z_2+z_3)=(z_1+z_2)+z_3$ และ $z_1(z_2z_3)=(z_1z_2)z_3$

[6. การแจกแจง] $z_1(z_2+z_3)=z_1z_2+z_1z_3$

บทนิยาม 3 การลบกันของจำนวนเชิงซ้อน

สำหรับ
$$z,w\in\mathbb{C}$$
 แล้ว $z-w=z+(-w)$

บทนิยาม 4 การหารกันของจำนวนเชิงซ้อน

สำหรับ
$$z,w\in\mathbb{C}$$
 ซึ่ง $w\neq(0,0)$ แล้ว $z\div w=rac{z}{w}=zw^{-1}$

กราฟและค่าสัมบูรณ์ของจำนวนเชิงซ้อน

ให้ $z\in\mathbb{C}$ เมื่อ z=(a,b) หรือ z=a+bi และ $a,b\in\mathbb{R}$ ซึ่ง a เป็นส่วนจริงและ b เป็นส่วนจินตภาพ อาจ แทน z ด้วยจุดบนระนาบในระบบมุมฉากโดยเรียกแกนนอน ว่า แกนจิง (real axis) และเรียกแกนนอนว่า แกนจินตภาพ (imaginary axis) และเรียกระนาบที่เกิดจากแกนทั้งสองว่า ระนาบเชิงซ้อน (complex plan) และเพื่อความสะดวกจะใช้ แกน X แทน แกนจิง และแกน Y แทนแกนจินตภาพ

บทนิยาม 6 ค่าสัมบูรณ์ของจำนวนเชิงซ้อน

สำหรับ $z\in\mathbb{C}$ ซึ่ง z=(a,b) หรือ z=a+bi เมื่อ $a,b\in\mathbb{R}$ จะได้ว่า ค่าสัมบูรณ์ (absolute value/modulus) ของ จำนวนเชิงซ้อน z คือ $\sqrt{a^2+b^2}\in\mathbb{R}$ และเขียนแทนด้วยสัญลักษณ์ |z|

การเขียนกราฟแสดง $z\in\mathbb{C}$ ในระนาบเชิงซ้อน

ถ้า $a\in\mathbb{C}$ และ $r\in\mathbb{R}$ แล้ว $\left\{z\in\mathbb{C}\ \middle|\ |z-a|\leq r\right\}$ คือ เซตของจุด ทั้งหมดในระนาบเชิงซ้อนที่มีระยะห่างจาก a น้อยกว่าหรือเท่ากับ r ซึ่งก็คือ เซตของจุดทั้งหมดที่อยู่ภายในและบนวงกลมที่มี a เป็น จุดศูนย์กลาง รัศมี r หน่วย

QR code สำหรับ Web app Math Playground (WMP)

Workshop 1

Workshop 2

Workshop 1

จงตอบคำถามต่อไปนี้

จาก Playground 1. กราฟของจำนวนเชิงซ้อน $(z \in \mathbb{C})$

1) จงเขียนกราฟที่ทำให้ |z| = 5 มา 3 ตัวอย่าง

(1)

(2)

จาก Playground 2. กราฟการบวก การลบ ของจำนวนเชิงซ้อน

2) จงเขียนกราฟที่ทำให้ z+w=3+i และ z-w=-3+3i

พิจารณา
$$z+w=3+i$$
 และ $z-w=-3+3i$ นำ $(1)+(2)$ จะได้ $2z=4i$ หรือ $z=2i$ แทนค่า $z=2i$ ลงใน (1) จะได้ว่า $2i+w=3+i$ หรือ $w=3-i$

จาก Playground 3. กราฟการคูณของจำนวนเชิงซ้อน

3) ถ้า z=i แล้ว มุมระหว่าง w กับ zw เท่ากับกื่องศา จงเขียนกราฟแสดงเหตุผล, |w| และ |zw| มีความ สัมพันธ์กันอย่างไร

จากกราฟให้ $ar{a}$ แทน w และให้ $ar{b}$ แทน zw พิจารณา

$$\bar{a} \cdot \bar{b} = a_x \cdot b_x + a_y \cdot b_y = (-4) \cdot 0 + 0 \cdot (-4) = 0 + 0 = 0$$

$$\mid \bar{a} \mid = \sqrt{a_x^2 + a_y^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16 + 0} = \sqrt{16} = 4$$

$$\mid \bar{b} \mid = \sqrt{b_x^2 + b_y^2} = \sqrt{0^2 + (-4)^2} = \sqrt{0 + 16} = \sqrt{16} = 4$$

$$\cos \theta = \frac{\bar{a} \cdot \bar{b}}{\mid \bar{a} \mid \cdot \mid \bar{b} \mid} = \frac{0}{4 \cdot 4} = 0$$
 นั่นคือ $\theta = 90^\circ$

จะได้ว่า มุมระหว่าง w กับ zw เท่ากับ 90°

จาก Playground 3. กราฟการคูณของจำนวนเชิงซ้อน

4) ถ้า z=-2 แล้ว มุมระหว่าง w กับ zw เท่ากับกี่องศา จงเขียนกราฟแสดงเหตุผล, |w| และ |zw| มีความ สัมพันธ์กันอย่างไร

จากกราฟให้ $ar{a}$ แทน w และให้ \Bar{b} แทน zw

$$\bar{a} \cdot \bar{b} = a_x \cdot b_x + a_y \cdot b_y = 0 \cdot 0 + 1 \cdot (-2) = 0 - 2 = -2$$

$$\begin{array}{l} \mid \bar{a} \mid = \sqrt{a_x^2 + a_y^2} = \sqrt{0^2 + 1^2} = \sqrt{0 + 1} = \sqrt{1} = 1 \\ \mid \bar{b} \mid = \sqrt{b_x^2 + b_y^2} = \sqrt{0^2 + (-2)^2} = \sqrt{0 + 4} = \sqrt{4} = 2 \\ \cos \theta = \frac{\bar{a} \cdot \bar{b}}{\mid \bar{a} \mid \cdot \mid \bar{b} \mid} = \frac{-2}{1 \cdot 2} = -1 \qquad$$
นั่นคือ $\theta = 180^\circ$

ดังนั้น จะได้ว่า มุมระหว่าง w กับ zw เท่ากับ 180°

จาก Playground 3. กราฟการคูณของจำนวนเชิงซ้อน

5) ถ้าต้องการให้มุมระหว่าง w กับ zw เท่ากับ 45° ต้องกำหนดให้ z เท่ากับเท่าใด จงเขียนกราฟแสดงเหตุผล

จากกราฟให้ $ar{a}$ แทน w และให้ $\ ar{b}$ แทน zw

พิจารณา

$$\bar{a} \cdot \bar{b} = a_x \cdot b_x + a_y \cdot b_y = 0 \cdot (-2) + 1 \cdot 2 = 0 + 2 = 2$$

$$|\bar{a}| = \sqrt{a_x^2 + a_y^2} = \sqrt{0^2 + 1^2} = \sqrt{0 + 1} = \sqrt{1} = 1$$

$$|\bar{b}| = \sqrt{b_x^2 + b_y^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$

$$\cos \theta = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}| \cdot |\bar{b}|} = \frac{2}{1 \cdot 2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

นั่นคือ
$$\theta=45^\circ$$

ดังนั้น จะได้ว่า z=lpha+lpha i เมื่อ $lpha\in\mathbb{R}^+$

รายชื่อสมาชิกในกลุ่ม

- 1.
- 2.
- 3.
- 4.

Workshop 2

จาก Playground 1. - 4.

1) จงเขียนกราฟของ อสมการ/สมการ ต่อไปนี้

1.1)
$$|z - (1+2i)| \le 2$$

1.3)
$$|z + (3-2i)| = 2$$

1.2)
$$|z - (1-2i)| < 2$$

1.4)
$$|z + (2+2i)| > 2$$

จาก Playground 5.

2) จงเขียนกราฟที่ทำให้ $|z| \geq 3$ และ |z-2| < 2

จากกราฟให้ ${f A}$ แทน เซตของจุดบนระนาบที่สอดคล้องกับ $|z| \geq 3$

จะได้ว่า $\mathbf{A} \cap \mathbf{B}$ แทนบริเวณส่วนที่แรเงา

จาก Playground 5.

3) จงเขียนกราฟที่ทำให้ $|z| \geq 3$ หรือ |z-2| < 2

จากกราฟให้ ${f A}$ แทน เซตของจุดบนระนาบที่สอดคล้องกับ $|\,z\,| \geq 3$

จะได้ว่า $\mathbf{A} \cup \mathbf{B}$ แทนบริเวณส่วนที่แรงา

4) จงหาความสัมพันธ์ (อสมการ และ/หรือ สมการ) ที่ทำให้กราฟในระนาบเดียวกันมีลักษณะดังนี้

จะได้ว่าเซตของจุดข้างต้นสอดคล้องกับ ${f A} \cup {f B} \cap {f C} \cap {f D} \cap {f E} \cup {f F}$

5) จงนำเครื่องมือข้างต้นเพื่อ**ออกแบบ logo** พร้อมทั้งเขียนชุดของความสัมพันธ์ (อสมการ และ/หรือ สมการ) อย่างน้อย 6 ความสัมพันธ์

รายชื่อสมาชิกในกลุ่ม

- 1.
- 2.
- 3.
- 4.