

Bakalářská práce Elektronická zátěž do 40 A

ČVUT FEL KME, Aplikovaná elektronika Petr Polášek

9.6.2017

Struktura obhajoby

- 1) Cíl práce
- 2) Základní myšlenky konstrukce
- 3) Princip funkce zátěže
- 4) Zapojení zpětnovazební smyčky
- 5) Digitální řízení
- 6) Mechanická konstrukce
- 7) Změřené parametry
- 8) Ukázka ovládání

1. Cíl práce

Prostudovat problematiku zatěžování zdrojů Navrhnout a realizovat elektronickou zátěž schopnou zatěžovat zdroj s maximálním proudem do 40 A pro napětí do 100 V

2. Základní myšlenky konstrukce

Modularita

Softwarové řízení

Galvanické oddělení výkonových částí obvodů od uživatelské části

Důraz na minimalizaci ceny zařízení

3. Princip funkce zátěže

Elektronická zátěž

Zkoušený zdroj

Požadované režimy funkce zátěže

Režim konstantního proudu

Realizován přímo koncepcí zařízení jako proudové nory

Režim konstantního příkonu

Realizován simulací konstantního příkonu pomocí měření napětí na zatěžovaném zdroji a řízení proudu zátěží

4. Zapojení zpětnovazební smyčky

5. Digitální řízení

Hlídání chybových stavů

Proudové přetížení

Výkonové přetížení

Přehřátí

Napětí zdroje

Řízení zátěže

Simulace konstantního příkonu

Digitální komunikace

Redukce počtu analogových obvodů

6. Mechanická konstrukce

Fotografie bloku zátěže

Fotografie bloku řízení (zepředu)

Fotografie bloku řízení (zezadu)

Krabička

7. Změřené parametry

Udržování konstantního proudu

Udržování konstantního příkonu

Pracovní oblast zátěže

Cíl práce

Prostudovat problematiku zatěžování zdrojů Navrhnout a realizovat elektronickou zátěž schopnou zatěžovat zdroj s maximálním proudem do 40 A pro napětí do 100 V

Děkuji za pozornost

Amass 常州市艾迈斯电子有限公司

版本 VER: 2.0

产品规格书

Product Specification

■产品名称 (Name): 4mm 接线柱 (4mm Binding Post)

■产品型号 (Model): 24.936. *

■基本参数 (Principal Technical Data)

注: 未标注线性尺寸公差按照 GB/T1804-c 级

■典型特性(Typical Characteristic)

主体材质	铜	绝缘体材质	ABS
Body material	Brass	Insulation material	
表面镀层	镀镍	电气性能	30Vac-60Vdc/Max.100A
Surface coating	Nickel plated	Rated voltage/current	