No-Wait Job Shop Scheduling Problem (NWJSSP)

El NWJSSP consiste en la asignación de un conjunto de trabajos a un conjunto de máquinas (recursos), donde cada trabajo tiene un conjunto de operaciones que, una vez iniciadas deben ser procesadas inmediatamente, una tras otra hasta la finalización del trabajo.[1]

Metodología - Representación basada en retardos

trabajo J, es igual a d,.

Se propone una representación basada en retardos Un cromosoma es representado de la siguiente manera: $c = [(d_1,J_1),(d_2,J_2),\ldots,(d_n,J_n)], \quad donde \quad d_i \quad es \quad el \quad retardo asociado al trabajo J_i .$

Es decir, el tiempo de inicio de la primera operación del

3

Metodología - Representación basada en retardos

Ejemplo:

c = [(0, 0), (16, 1), (17, 2), (38, 3), (3, 4), (44, 5)]
representa una solución factible a la instancia ft06 (fisher, 1963).

Metodología - Representación basada en retardos

$$c = [(0, 0), (16, 1), (17, 2), (38, 3), (3, 4), (44, 5)]$$

Se empleó una adaptación al algoritmo UMDAc, denominado FUMDAN (a Feasible UMDAc implementation for NWJSSP).

Esta adaptación, toma el algoritmo base de UMDAc y fue ajustado para el problema de No-wait Job Shop Scheduling Problem, donde se destacan 3 cambios principales:

- Los individuos iniciales del algoritmos son generados de manera aleatoria acotada entre 0 y (Max Start - Job Makespan_i), donde:
 - Max Start corresponde a la suma de todas las operaciones de todos los trabajos.
 - Job Makespan_j corresponde a la suma de todas las operaciones del trabajo j-ésimo.

- 2. Se empleó una función auxiliar llamada MAKE FEASIBLE SOLUTION la cual dado cualquier cromosoma, regresa un calendario válido, esto lo consigue de la siguiente forma:
 - Calendariza el trabajo J_i con su tiempo de retardo d_i si no se genera ninguna colisión en el calendario.

- En caso de que al calendarizar el trabajo J_i genere una colisión, calendariza el trabajo lo más cercano al 0 de tal manera que no genere colisiones.

3. Los individuos al finalizar una generación son reemplazados utilizando una distribución normal truncada

$$TN(\mu_j, \sigma_j^2, 0, \textit{Max Start})$$

acotada entre 0 y *Max Start*, donde *Max Start* corresponde al menor *Makespan* encontrado por el algoritmo.

1: $Max \ Start \leftarrow \sum_{j \in J} o_{j\mu_{jn_j}}$ 2: $Job\ Makespan_j \leftarrow \sum o_{j\mu_{jn_i}}$ ⊳ Suma de todas las operaciones del trabajo j-esimo 3: $P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max \ Start - Job \ Makespan_i)$ ▶ TN Distribución Normal Truncada 4: for generación i = 1 hasta $i \leq$ Generaciones do for Individuo en Población do 5: Make Feasible Solution(Individuo) 6: end for 7: Calcular Makespan de cada individuo en P 8: if Makespan del mejor individuo < Max Start then 9: $Max Start \leftarrow Makespan del mejor individuo$ 10: end if 11: Seleccionar n individuos de P utilizando Selección por torneo 12: Estimar μ_j y σ_i^2 para cada tiempo de retardo de cada Trabajo j 13: $P \leftarrow TN(\mu_i, \sigma_i^2, 0, Max Start)$ ▶ TN Distribución Normal Truncada 14: 15: end for

1: $Max \ Start \leftarrow \sum_{j \in J} o_{j\mu_{jn_j}}$

 \triangleright Suma de todas las operaciones de todos los trabajos


```
1: Max \ Start \leftarrow \sum_{i \in J} o_{j\mu_{jn_i}}
                                        2: Job Makespan_j \leftarrow \sum o_{j\mu_{jn_j}}

⊳ Suma de todas las operaciones del trabajo j-esimo

3: P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max \ Start - Job \ Makespan_i) TN Distribución Normal Truncada
4: for generación i = 1 hasta i \leq Generaciones do
       for Individuo en Población do
 5:
          Make Feasible Solution(Individuo)
6:
       end for
 7:
       Calcular Makespan de cada individuo en P
8:
       if Makespan del mejor individuo < Max Start then
9:
          Max Start \leftarrow Makespan del mejor individuo
10:
       end if
11:
       Seleccionar n individuos de P utilizando Selección por torneo
12:
       Estimar \mu_j y \sigma_j^2 para cada tiempo de retardo de cada Trabajo j
13:
       P \leftarrow TN(\mu_i, \sigma_i^2, 0, Max Start)
                                                          ▶ TN Distribución Normal Truncada
14:
15: end for
```

⊳ Suma de todas las operaciones del trabajo j-esimo

2: $Job\ Makespan_j \leftarrow \sum o_{j\mu_{jn_j}}$ > Suma de 3: $P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max\ Start - Job\ Makespan_j)$

▷ TN Distribución Normal Truncada


```
1: Max \ Start \leftarrow \sum_{j \in J} o_{j\mu_{jn_i}}
                                         2: Job Makespan<sub>j</sub> \leftarrow \sum o_{j\mu_{jn_i}}

⊳ Suma de todas las operaciones del trabajo j-esimo

3: P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max \ Start - Job \ Makespan_i)
                                                           ▶ TN Distribución Normal Truncada
4: for generación i = 1 hasta i < Generaciones do
       for Individuo en Población do
5:
          Make Feasible Solution(Individuo)
6:
       end for
       Calcular Makespan de cada individuo en P
8:
9:
       if Makespan del mejor individuo < Max Start then
          Max Start \leftarrow Makespan del mejor individuo
10:
       end if
11:
       Seleccionar n individuos de P utilizando Selección por torneo
12:
       Estimar \mu_j y \sigma_i^2 para cada tiempo de retardo de cada Trabajo j
13:
       P \leftarrow TN(\mu_i, \sigma_i^2, 0, Max Start)
                                                           ▶ TN Distribución Normal Truncada
14:
15: end for
```

1: $Max \ Start \leftarrow \sum_{j \in J} o_{j\mu_{jn_j}}$ 2: Job Makespan_j $\leftarrow \sum o_{j\mu_{jn_i}}$ ⊳ Suma de todas las operaciones del trabajo j-esimo 3: $P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max \ Start - Job \ Makespan_i)$ ▶ TN Distribución Normal Truncada 4: for generación i = 1 hasta i < Generaciones dofor Individuo en Población do 5: Make Feasible Solution(Individuo) 6: end for Calcular Makespan de cada individuo en P8: if Makespan del mejor individuo < Max Start then 9: $Max Start \leftarrow Makespan del mejor individuo$ 10: end if 11: Seleccionar n individuos de P utilizando Selección por torneo 12: Estimar μ_j y σ_i^2 para cada tiempo de retardo de cada Trabajo j 13: $P \leftarrow TN(\mu_i, \sigma_i^2, 0, Max Start)$ ▶ TN Distribución Normal Truncada 14: 15: end for

```
1: Max \ Start \leftarrow \sum_{j \in J} o_{j\mu_{jn_i}}
                                         2: Job Makespan<sub>j</sub> \leftarrow \sum o_{j\mu_{jn_i}}

⊳ Suma de todas las operaciones del trabajo j-esimo

3: P \leftarrow TN(\mu_0, \sigma_0^2, 0, Max \ Start - Job \ Makespan_i)
                                                            ▶ TN Distribución Normal Truncada
4: for generación i = 1 hasta i \leq Generaciones do
       for Individuo en Población do
5:
           MAKE FEASIBLE SOLUTION(Individuo)
6:
       end for
       Calcular Makespan de cada individuo en P
8:
9:
       if Makespan del mejor individuo < Max Start then
           Max Start \leftarrow Makespan del mejor individuo
10:
       end if
11:
       Seleccionar n individuos de P utilizando Selección por torneo
12:
       Estimar \mu_j y \sigma_i^2 para cada tiempo de retardo de cada Trabajo j
13:
       P \leftarrow TN(\mu_i, \sigma_i^2, 0, Max Start)
                                                            ▶ TN Distribución Normal Truncada
14:
15: end for
```


- 12: Seleccionar n individuos de P utilizando Selección por torneo
- 13: Estimar μ_j y σ_j^2 para cada tiempo de retardo de cada Trabajo j
- 14: $P \leftarrow TN(\mu_j, \sigma_j^2, 0, Max Start)$ > TN Distribución Normal Truncada
- 15: end for

Algorithm 2 MAKE FEASIBLE SOLUTION

```
1: Ordenar el cromosoma c = ((d_1, J_1), (d_2, J_2), \dots (d_n, J_n)) de acuerdo al tiempo de retardo
   d_i con criterio de desempate J_i
2: while No se hayan calendarizado todos los trabajos do
       Intentar calendarizar el trabajo J_i con tiempo de retardo d_i y verificar colisiones
3:
       if No existe colisiones then
4:
           Continuar con el trabajo J_{i+1}
5:
       else
6:
           Calendarizar J_i lo mas cercano a 0
           Actualizar d_i para el trabajo J_i
8:
       end if
9:
10: end while
```

Lenguaje de programación: Python

Versión: 3.10.4

Sistema operativo: Arch Linux

Kernel: 5.17.1

Procesador: Ryzen 5 5600g, 3.9 GHz

Memoria RAM: 16GB DDR4

- ft06 (6 x 6) - ft10(10 x 10) - la05 (10 x 5) - la33 (30 x 10) - la40 (15 x 15)

cada instancia se realizaron 20 ejecuciones.

de Lawrence (1984)[2] y Fisherman & Thompson (1963)[3]. Para

El algoritmo fue evaluado en 5 instancias:

El rendimiento del algoritmo se midió utilizando:

Desviación relativa porcentual PRD (Percentage Relative Deviation)

$$PRD = rac{Best_{alg} - BKS}{BKS} imes 100\%$$

 Desviación Relativa Porcentual Promedio APRD (Average Percentage Relative Deviation)

$$APRD = rac{Avg_{alg} - BKS}{BKS} imes 100\%$$

Donde:

- BKS, es la mejor solución conocida del problema.

- $Best_{alg}$, corresponde a la mejor solución generada por el algoritmo de todas las ejecuciones.
- $\mathit{Avg}_{\mathit{alg}}$, corresponde al promedio de las mejores soluciones generadas por el algoritmo.

Resultados

Nombre	(n,m)	BKS	Avg Value	Std Value	Avg Time	Std Time	Best	PRD	APRD
ft06	(6,6)	73 [4]	73.45	1.56	33.76s	3.58s	73	0.00	0.62
la05	(10,5)	777 [4]	995.40	20.63	69.42s	3.01s	954	22.78	28.11
ft10	(10,10)	1607 [4]	1871.15	41.35	139.26s	3.37s	1814	12.88	16.44
la40	(15,15)	2580 [5]	3719.40	170.14	417.52s	64.77s	3444	33.49	44.16
la33	(30,10)	3413 [5]	12639.0 5	439.02	331.22s	25.36s	11733	243.77	270.32

Tabla 1. Resultados obtenidos por el algoritmo

Conclusión

El algoritmo parece funcionar en instancias pequeñas como se pudo observar al probarlo en la instancia "ft06" de tamaño 6 × 6, donde además se pudo observar que requirió un tamaño de población pequeño y a su vez pocas generaciones, lo cual se traduce a pocas llamadas de la función de evaluación de aptitud. Sin embargo en problemas medianos y grandes los resultados obtenidos no fueron los esperados, obteniendo valores de PRD entre 12 % y 33 % para problemas medianos, e inclusive llegando a valores por encima de los 240 % en instancias grandes, lo cual se traduce que el algoritmo obtuvo resultados significativamente lejanos a la mejor solución conocida.

Referencias

- [1] V. M. Valenzuela-Alcaraz, M. Cosío-León, A. D. Romero-Ocaño, and C. A. Brizuela, "A cooperative coevolutionary algorithm approach to the no-wait job shop scheduling problem," Expert Systems with Applications, vol. 194, p. 116498, 2022.
- [2] S. Lawrence, "An experimental investigation of heuristic scheduling techniques (supplement)," Graduate School of Industrial Administration, Carnegie-Mellon University, 1984.
- [3] H. Fisher and G. L. Thompson, "Probabilistic learning combinations of local job-shop scheduling rules," Industrial Scheduling, pp. 225-251, 1963.
- [4] A. Mascis and D. Pacciarelli, "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, vol. 143, pp. 498-517, 2002.
- [5] K.-C. Ying and S.-W. Lin, "Solving no-wait job-shop scheduling problems using a multi-start simulated annealing with bi-directional shift timetabling algorithm," Computers and Industrial Engineering, vol. 146, pp. 498-517, 2020.