Semiconductor Device Simulation Approaches for Massively Parallel Computing Architectures

Karl Rupp^{1,2}, Tibor Grasser², Ansgar Jüngel³

 Freelance Computational Scientist
 Institute for Microelectronics
 Institute for Analysis and Scientific Computing TU Wien, Austria

MS: Computational and Numerical Methods in Electronics SIAM CSE, Atlanta, February 27th, 2017

Semiconductor Device Simulation

Selection of Semiclassical Models

Drift-diffusion model

Hydrodynamic model

Energy transport model

...

Scalability of Linear Solvers

Contents

The Spherical Harmonics Expansion Method

Comparison to Monte Carlo Shared-memory parallelization

Solution on Distributed Memory Machines

Preconditioner blueprints Node-level parallel ILU

Semiconductor Devices in 3D: FinFET

Electron Energy Distribution?

Electron Energy Distribution?

Spherical Harmonics Expansion Method

Spherical Symmetries

Maxwell distribution of carriers at equilibrium Dispersion relation (Herring-Vogt transform, approx.)

S.-M. Hong and C. Jungemann (2009)

Spherical Harmonics Expansion Method

Spherical Symmetries

Maxwell distribution of carriers at equilibrium Dispersion relation (Herring-Vogt transform, approx.)

Spherical Harmonics Expansion (SHE)

$$f(\boldsymbol{x}, \boldsymbol{k}, t) \simeq \sum_{l=0}^{L} \sum_{m=-l}^{l} f_{l,m}(\boldsymbol{x}, E, t) Y_{l,m}(\theta, \varphi)$$

New unknowns: $f_{l,m}(x, E, t)$

Solution in five-dimensional (x, E, t)-space

S.-M. Hong and C. Jungemann, *J Comput Electron* (2009): Fifth-order, three-dim. (x, E)-space, 26 GB memory, 12 hours

Preconditioner for Iterative Linear Solvers

No fast general-purpose parallel preconditioner available Physics-based parallel block preconditioner developed

Scaling of Solution Variables

Exponential decay with energy: $f(E_i) \sim \exp(-\frac{E_i}{k_{\rm B}T})$

Rescale unknowns: $\tilde{f}(E_i) = \exp(\frac{E_i}{k_{\rm B}T})f(E_i)$

New system: $\tilde{A}\tilde{x} = ADD^{-1}x = b$

Row normalization: $\hat{A}\tilde{x} = P\tilde{A}\tilde{x} = Pb$

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Part 2

Current Work:
Development of a Parallel Preconditioner
for (Heterogeneous) Distributed Memory Machines

Distributed SHE

Blueprint

Keep block-Jacobi based on total energies Map total energies to MPI ranks

Requires fine-grained parallel preconditioner per block

Parallel ILU

```
Sequential parallel for i=2..n for k=1..i-1, (i,k) in A a_{ik}=a_{ik}/a_{kk} for j=k+1..n, (i,j) in A a_{ij}=a_{ij}-a_{ik}a_{kj} parallel for (sweep = 1, 2, ...) parallel for (i,j) in A if (i > j) l_{ij}=(a_{ij}-\sum_{k=1}^{j=1}l_{ik}u_{kj})/u_{jj} else u_{ij}=a_{ij}-\sum_{k=1}^{l}l_{ik}u_{kj}
```

Fine-Grained Parallel ILU Setup

Proposed by Chow and Patel (SISC, vol. 37(2)) for CPUs and MICs Massively parallel (one thread per row)

Preconditioner Application

Truncated Neumann series:

$$\mathbf{L}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{L})^k, \quad \mathbf{U}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{U})^k$$

Parallel ILU

Conclusion

SHE Method

Viable alternative to Monte Carlo

Full 3D device simulations possible

Convergence behavior similar to drift-diffusion model

Open source simulator: ViennaSHE

Large-Scale Solution

Physics-based block-Jacobi preconditioner

Replication of spatial mesh on all MPI ranks

Fine-grained parallel ILU

Combine functionality in PETSc and ViennaCL libraries

