Le misure in psicologia sono significanti? Il caso del test della Torre di Londra

Ottavia M. Epifania, Luca Stefanutti, Pasquale Anselmi, Andrea Brancaccio, Debora de Chiusole

Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata, Università di Padova

Convegno AIP-Sezione Sperimentale 2023 Simposio: Crisi di replicabilità o crisi di validità? L'importanza delle misure

19 Settembre 2023

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable.

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Goal configuration

Starting configuration

Goal configuration

Item difficulty influenced by:

- Number of moves
- Number of alternative paths
- Hierarchy of the starting/goal configuration

The Tower of London Test (ToL Test) Shallice (1982)

- 12 problems
- Same starting configuration
- More than one attempt per item

Problem	Minimum moves	Alternative paths
Example	2	1
1	2	1
2	2	1
3	3	2
4	3	1
5	4	2
6	4	1
7	4	1
8	4	1
9	5	2
10	5	1
11	5	1
12	5	2

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Meaningfulness ☐The case in point ☐Scoring systems

Scoring	Attempts	Response times	Item score	Total score
Shallice 1	✓	✓	0-1	0-12
Shallice 2	×	\checkmark	0-3	0-36
Anderson et al.	\checkmark	\checkmark	0-9	0-108
Kirkorian et al.	✓	×	0-3	0-36

Scoring	Attempts	Response times	Item score	Total score
Shallice 1	√	✓	0-1	0-12
Shallice 2	×	✓	0-3	0-36
Anderson et al.	✓	✓	0-9	0-108
Kirkorian et al.	√		0-3	

Shallice 2 – SH2

Anderson et al. – AN

For each of the 12 items:

Assign	if time is
3	$\leq 15 \text{ s}$
2	$15 \dashv 30 \text{ s}$
1	$30 \dashv 60 \text{ s}$
0	> 60 s

For each of the 12 items:

Assign	if time is
9	$\leq 6 \text{ s}$
8	$6 \dashv 10 \text{ s}$
7	$11 \dashv 20 \text{ s}$
6	$21 \dashv 40 \text{ s}$
5	$41 \dashv 60 \text{ s}$
0	$> 60 \mathrm{\ s}$

Both scorings are based on the discretization of the response times \rightarrow There should not be differences in the **order** of the total score of the respondents according to the scoring method

Both scorings are based on the discretization of the response times \rightarrow There should not be differences in the **order** of the total score of the respondents according to the scoring method

Real data application

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Is it really bad...?

Respondents $i, j \in \{1, \dots N\}$

• AN Comparison (Δ_{AN}): The standardized AN score of each subject i is compared against the standardized AN score of every other subject j

$$\Delta_{AN_{ij}} = z_{AN_i} - z_{AN_j}$$

• SH2 Comparison (Δ_{SH2}): The standardized SH2 score of each subject i is compared against the standardized SH2 score of every other subject j

$$\Delta_{\mathrm{SH2}_{ij}} = z_{\mathrm{SH2}_i} - z_{\mathrm{SH2}_j}$$

$$\Delta_{\rm AN} > 2 \& \Delta_{\rm SH2} \approx 0$$

	$z_{\rm AN}$	$z_{\rm SH2}$	Accuracy	Time (sd)
sbj1	-1.55	0.43	0.75	24.10 (15.60)
sbj2	0.72	0.43	0.75	14.51 (9.22)
	Α.			

	Δ_{AN}	$\Delta_{ m SH2}$
sbj1 - sbj2	2.27	0.00

$\Delta_{\rm AN} \approx 0 \& \Delta_{\rm SH2} > 2$

	$z_{\rm AN}$	z_{SH2}	Accuracy	Time (sd)
sbj3	-0.15	1.55	0.75	11.14 (4.96)
sbj4	0.20	-0.70	0.58	10.72 (8.60)

	Δ_{AN}	$\Delta_{ m SH2}$
sbj3 - sbj4	-0.35	2.25

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Highlights

- Different scoring systems → The focus is shifted: Fast and furious or slow and steady?
- Different scoring systems might favor a cognitive theory over a contrasting one (raising also replicability issues)

But

What if the performance of the respondents could suggest the most appropriate scoring system? Currently underway

Thank you! ottavia.epifania@unipd.it