

Please amend the claims as follows:

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of the claims in the application:

Listing of Claims:

Claims 1-9 (Previously Canceled)

Claim 10. (Currently Amended) A method in a wireless communication system, comprising:
designating a multi-carrier forward link having a plurality of forward link frequency bins;
and
designating a reverse link having at least one reverse link frequency bin,
wherein the forward link frequency bins and the at least one reverse link frequency bin are
designated such that bandwidth of the forward link can be allocated differently from
bandwidth of the reverse link, and further wherein the forward link frequency bins and
the at least one reverse link frequency bin comprise signals obtained by code spreading in
the time domain.

Claim 11. (Previously Presented) The method of claim 10 further comprising:
selecting a first forward link frequency bin from the plurality of forward link frequency
bins for forward link transmission, the first forward link frequency bin having an
associated first reverse link frequency bin; and
selecting a second reverse link frequency bin for reverse link transmission corresponding
to the forward link transmission wherein the second reverse link frequency bin is
different from the first reverse link frequency bin.

Claim 12. (Previously Presented) The method of claim 11 wherein the selecting a second
reverse link frequency bin is based on loading of the system.

Claim 13. (Previously Presented) The method of claim 11, further comprising:
selecting a third reverse link frequency bin for reverse link transmission corresponding to
the forward link transmission, wherein the third reverse link frequency bin is
different from the first and second reverse link frequency bins.

Claim 14. (Previously Presented) The method in accordance with claim 10, wherein said
plurality of forward link frequency bins comprise three frequency bins.

Claim 15. (Previously Presented) The method in accordance with claim 10, wherein said
plurality of forward link frequency bins are adjacent frequency bins.

Claim 16. (Previously Presented) The method in accordance with claim 11, wherein said
multi-carrier forward link is adapted for transmission of a plurality of code channels, wherein one
of said plurality of code channels is used to communicate power control information for said
second reverse link frequency bin.

Claim 17. (Previously Presented) A method of allocating bandwidth for forward and reverse
link transmissions in a wireless communication system, comprising:

receiving communications on a multi-carrier forward link, the multi-carrier forward link
having a plurality of forward link frequency bins, the reverse link having at least
one frequency bin,

wherein the forward link bins and the at least one reverse link frequency bins are configured such
that the allocation of bandwidth for the forward and reverse link transmissions can be
varied, and further wherein the forward link frequency bins and the at least one reverse
link frequency bin comprise signals obtained by code spreading in the time domain.

Claim 18. (Previously Presented) The method of claim 17, further comprising:
receiving by a first device a communication on a forward link frequency bin, the forward
link frequency bin having an associated first reverse link frequency bin; and

transmitting by a second device via a second reverse link frequency bin, wherein said second reverse link frequency bin is different from the first reverse link frequency bin.

Claim 19. (Previously Presented) The method as in claim 18, further comprising:
receiving by the first device an indication of a reverse link frequency bin.

Claim 20. (Previously Presented) An apparatus in a wireless communication system, comprising:

a first means for transmitting information on a multi-carrier forward link, wherein said multi-carrier forward link comprises a plurality of forward link frequency bins; and

a second means for designating a reverse link frequency bin, wherein said first and second means configure the frequency bins so as to enable differential allocation of bandwidth for forward link and reverse link transmissions, and further wherein the forward link frequency bins and the at least one reverse link frequency bin comprise signals obtained by code spreading in the time domain.

Claim 21. (Previously Presented) The apparatus of claim 20, further comprising:
means for selecting a first forward link frequency bin from the plurality of forward link frequency bins for the forward link transmission, the first forward link frequency bin having an associated first reverse link frequency bins; and
means for selecting a second reverse link frequency bin for the reverse link transmission corresponding to the forward link transmission, wherein the second reverse link frequency bin is different from the first reverse link frequency bin.

Claim 22. (Previously Presented) The method of claim 10, wherein the designations of the forward and reverse link includes allocating more bandwidth for the forward link than the reverse link.

Claim 23. (Previously Presented) The method of claim 10, wherein the designation of the forward link includes configuring the forward link as a cdma2000 3X forward link.

Claim 24. (Previously Presented) The method of claim 23, wherein the forward link includes first, second, and third carriers.

Claim 25. (Previously Presented) The method of claim 24, wherein said first, second, and third carriers occupy first, second, and third adjacent frequency bins, respectively.

Claim 26. (Previously Presented) The method of claim 25, wherein the designation of the reverse link includes configuring the reverse link as a cdma2000 1X reverse link.

Claim 27. (Previously Presented) The method of claim 26, wherein the reverse link includes a fourth carrier.

Claim 28. (Previously Presented) The method of claim 27, wherein the fourth carrier is located in a frequency range similar to the second frequency bin.