Aprendizagem 2023 Homework II – Group 28

Gonçalo Bárias (ist1103124) & Raquel Braunschweig (ist1102624)

Part I: Pen and Paper

Consider the following dataset $(y_3 - y_5)$ are all categorical variables and the domain of y_2 is [0, 1]:

D	y_1	y_2	y_3	y_4	y_5	y_6
X 1	0.24	0.36	1	1	0	Α
X 2	0.16	0.48	1	0	1	Α
X 3	0.32	0.72	0	1	2	Α
X 4	0.54	0.11	0	0	1	В
X 5	0.66	0.39	0	0	0	В
X 6	0.76	0.28	1	0	2	В
X 7	0.41	0.53	0	1	1	В
X 8	0.38	0.52	0	1	0	Α
X 9	0.42	0.59	0	1	1	В

1. Consider x_1 - x_7 to be training observations, x_8 - x_9 to be testing observations, y_1 - y_5 to be input variables and y_6 to be the target variable.

Hint: you can use scipy.stats.multivariate_normal for multivariate distribution calculus

(a) Learn a Bayesian classifier assuming: i) $\{y_1, y_2\}$, $\{y_3, y_4\}$ and $\{y_5\}$ sets of independent variables (e.g., $y_1 \perp \!\!\! \perp y_3$ yet $y_1 \perp \!\!\! \perp y_2$), and ii) $y_1 \times y_2 \in \mathbb{R}^2$ is normally distributed. Show all parameters (distributions and priors for subsequent testing).

As stated by the question prompt, variable sets $\{y_1, y_2\}$, $\{y_3, y_4\}$ and $\{y_5\}$ are independent. Since we have seven training observations, we'll use those to train a Bayesian classifier.

We'll refer to the outcome, which can be A or B, as class.

To estimate $P(\text{class}|y_1, y_2, y_3, y_4, y_5)$, we can use Bayes' theorem:

$$P(\text{class}|y_1, y_2, y_3, y_4, y_5) = \frac{P(y_1, y_2, y_3, y_4, y_5|\text{class}) \times P(\text{class})}{P(y_1, y_2, y_3, y_4, y_5)}$$
(1)

Since we know $\{y_1, y_2\}$, $\{y_3, y_4\}$ and $\{y_5\}$ are independent, we can rewrite $P(y_1, y_2, y_3, y_4, y_5)$ as $P(y_1, y_2) \cdot P(y_3, y_4) \cdot P(y_5)$. Rewriting (1) with this, results in:

$$P(\text{class}|y_1, y_2, y_3, y_4, y_5) = \frac{P(y_1, y_2|\text{class})P(y_3, y_4|\text{class})P(y_5|\text{class}) \times P(\text{class})}{P(y_1, y_2)P(y_3, y_4)P(y_5)}$$
(2)

Given a new observation O, we are able to classify it by calculating P(class|O) for all classes and selecting the class with the highest probability as our prediction.

$$\hat{z} = \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(c|O) \right\} \\
= \underset{c \in \{A,B\}}{\text{arg max}} \left\{ \frac{P(y_1, y_2|c)P(y_3, y_4|c)P(y_5|c) \times P(c)}{P(y_1, y_2)P(y_3, y_4)P(y_5)} \right\} \\
= \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(y_1, y_2|c)P(y_3, y_4|c)P(y_5|c) \times P(c) \right\} \quad \text{(we can remove parameters that don't depend on } c \right)$$
(3)

We can therefore start calculating all these parameters.

Note: Even though $P(y_1, y_2)$, $P(y_3, y_4)$ and $P(y_5)$ are not necessary to apply the model, we'll still calculate them for the sake of showing all parameters.

Calculating P(A), P(B) and all parameters involving y_1 through y_5 is straightforward, since they can be inferred from the table.

We have 3 observations of A and 4 observations of B, out of a total of 7 training observations. Therefore,

$$P(A) = \frac{3}{7} P(B) = \frac{4}{7}$$

In a similar manner we can obtain the probabilities for y_5 ,

$$P(y_5 = 0) = \frac{2}{7}$$
 $P(y_5 = 1) = \frac{3}{7}$ $P(y_5 = 2) = \frac{2}{7}$

Now for the conditional probabilities of y_5 ,

$$P(y_5 = 0 | A) = \frac{1}{3}, \quad P(y_5 = 1 | A) = \frac{1}{3}, \quad P(y_5 = 2 | A) = \frac{1}{3}$$

 $P(y_5 = 0 | B) = \frac{1}{4}, \quad P(y_5 = 1 | B) = \frac{2}{4}, \quad P(y_5 = 2 | B) = \frac{1}{4}$

For the four possible combinations of y_3 and y_4 we can follow the same logic as above,

$$P(y_3 = 0, y_4 = 0) = \frac{2}{7}, P(y_3 = 0, y_4 = 1) = \frac{2}{7}$$

 $P(y_3 = 1, y_4 = 0) = \frac{2}{7}, P(y_3 = 1, y_4 = 1) = \frac{1}{7}$

Finally, considering each class and the four possible combinations of y_3 and y_4 , we can use the table to calculate the following:

$$P(y_3 = 0, y_4 = 0 | A) = \frac{0}{3}, P(y_3 = 0, y_4 = 1 | A) = \frac{1}{3}$$

 $P(y_3 = 1, y_4 = 0 | A) = \frac{1}{3}, P(y_3 = 1, y_4 = 1 | A) = \frac{1}{3}$
 $P(y_3 = 0, y_4 = 0 | B) = \frac{2}{4}, P(y_3 = 0, y_4 = 1 | B) = \frac{1}{4}$
 $P(y_3 = 1, y_4 = 0 | B) = \frac{1}{4}, P(y_3 = 1, y_4 = 1 | B) = \frac{0}{4}$

Calculating now the parameters related to the variable set $\{y_1, y_2\}$. We know that (y_1, y_2) follows a Multivariate Gaussian Distribution. Therefore,

$$P\left((y_1, y_2)|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right) = \mathcal{N}\left((y_1, y_2)|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \tag{4}$$

We can use the observations we have to approximate a value for the 2-dimensional mean vector (μ) and the covariance matrix (Σ).

$$\mu = \frac{1}{7} \sum_{i=1}^{7} \begin{bmatrix} y_{1,i} \\ y_{2,i} \end{bmatrix} = \frac{1}{7} \left(\begin{bmatrix} 0.24 \\ 0.36 \end{bmatrix} + \begin{bmatrix} 0.16 \\ 0.48 \end{bmatrix} + \begin{bmatrix} 0.32 \\ 0.72 \end{bmatrix} + \begin{bmatrix} 0.54 \\ 0.11 \end{bmatrix} + \begin{bmatrix} 0.66 \\ 0.39 \end{bmatrix} + \begin{bmatrix} 0.76 \\ 0.28 \end{bmatrix} + \begin{bmatrix} 0.41 \\ 0.53 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 0.4414 \\ 0.41 \end{bmatrix}$$

$$\Sigma_{00} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} - \mu_1)^2 = \frac{1}{7-1} \left[(0.24 - 0.4414)^2 + \dots + (0.41 - 0.4414)^2 \right] \approx 0.0491$$

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{2,i} - \mu_2)^2 = \frac{1}{7-1} \left[(0.36 - 0.41)^2 + \dots + (0.53 - 0.41)^2 \right] \approx 0.0375$$

$$\Sigma_{01} = \Sigma_{10} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} - \mu_1)(y_{2,i} - \mu_2)$$

$$= \frac{1}{7-1} \left[(0.24 - 0.4414)(0.36 - 0.41) + \dots + (0.41 - 0.4414)(0.53 - 0.41) \right]$$

$$\approx -0.0211$$

$$\Sigma = \begin{bmatrix} \Sigma_{00} & \Sigma_{10} \\ \Sigma_{01} & \Sigma_{11} \end{bmatrix} = \begin{bmatrix} 0.0491 & -0.0211 \\ -0.0211 & 0.0375 \end{bmatrix}$$

Therefore,
$$P(y_1, y_2) \sim \mathcal{N}\left((y_1, y_2) | \boldsymbol{\mu} = \begin{bmatrix} 0.4414 \\ 0.41 \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} 0.0491 & -0.0211 \\ -0.0211 & 0.0375 \end{bmatrix}\right)$$
.

We can repeat the process for both classes (A and B).

Starting with A:

$$\mu = \frac{1}{3} \sum_{i=1}^{3} \begin{bmatrix} y_{1,i} | A \\ y_{2,i} | A \end{bmatrix} = \frac{1}{3} \left(\begin{bmatrix} 0.24 \\ 0.36 \end{bmatrix} + \begin{bmatrix} 0.16 \\ 0.48 \end{bmatrix} + \begin{bmatrix} 0.32 \\ 0.72 \end{bmatrix} \right) = \begin{bmatrix} 0.24 \\ 0.52 \end{bmatrix}$$

$$\Sigma_{00} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} | A - \mu_1)^2 = \frac{1}{3-1} \left[(0.24 - 0.24)^2 + \dots + (0.32 - 0.24)^2 \right] \approx 0.0064$$

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{2,i} | A - \mu_2)^2 = \frac{1}{3-1} \left[(0.36 - 0.52)^2 + \dots + (0.72 - 0.52)^2 \right] \approx 0.0336$$

$$\Sigma_{01} = \Sigma_{10} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} | A - \mu_1) (y_{2,i} | A - \mu_2)$$

$$= \frac{1}{3-1} \left[(0.24 - 0.24) (0.36 - 0.52) + \dots + (0.32 - 0.24) (0.72 - 0.52) \right] \approx 0.0096$$

$$\Sigma = \begin{bmatrix} \Sigma_{00} & \Sigma_{10} \\ \Sigma_{01} & \Sigma_{11} \end{bmatrix} = \begin{bmatrix} 0.0064 & 0.0096 \\ 0.0096 & 0.0336 \end{bmatrix}$$
refore, $P(y_1, y_2 | A) \sim \mathcal{N} \left((y_1, y_2) | \mu = \begin{bmatrix} 0.24 \\ 0.52 \end{bmatrix}, \Sigma = \begin{bmatrix} 0.0064 & 0.0096 \\ 0.0096 & 0.0336 \end{bmatrix}$.

Therefore, $P(y_1, y_2|A) \sim \mathcal{N}\left((y_1, y_2)|\boldsymbol{\mu} = \begin{bmatrix} 0.24 \\ 0.52 \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} 0.0064 & 0.0096 \\ 0.0096 & 0.0336 \end{bmatrix}\right)$.

And now the B:

$$\mu = \frac{1}{4} \sum_{i=1}^{4} \begin{bmatrix} y_{1,i} | \mathbf{B} \\ y_{2,i} | \mathbf{B} \end{bmatrix} = \frac{1}{4} \left(\begin{bmatrix} 0.54 \\ 0.11 \end{bmatrix} + \begin{bmatrix} 0.66 \\ 0.39 \end{bmatrix} + \begin{bmatrix} 0.76 \\ 0.28 \end{bmatrix} + \begin{bmatrix} 0.41 \\ 0.53 \end{bmatrix} \right) = \begin{bmatrix} 0.5925 \\ 0.3275 \end{bmatrix}$$

$$\Sigma_{00} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} | \mathbf{B} - \mu_1)^2 = \frac{1}{4-1} \left[(0.54 - 0.5925)^2 + \dots + (0.41 - 0.5925)^2 \right] \approx 0.0229$$

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{2,i} | \mathbf{B} - \mu_2)^2 = \frac{1}{4-1} \left[(0.11 - 0.3275)^2 + \dots + (0.53 - 0.3275)^2 \right] \approx 0.0315$$

$$\Sigma_{01} = \Sigma_{10} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{1,i} | \mathbf{B} - \mu_1) (y_{2,i} | \mathbf{B} - \mu_2)$$

$$= \frac{1}{4-1} \left[(0.54 - 0.5925)(0.11 - 0.3275) + \dots + (0.41 - 0.5925)(0.53 - 0.3275) \right] \approx -0.0098$$

$$\Sigma = \begin{bmatrix} \Sigma_{00} & \Sigma_{10} \\ \Sigma_{01} & \Sigma_{11} \end{bmatrix} = \begin{bmatrix} 0.0229 & -0.0098 \\ -0.0098 & 0.0315 \end{bmatrix}$$

Therefore, $P(y_1, y_2|\mathbf{B}) \sim \mathcal{N}\left((y_1, y_2)|\boldsymbol{\mu} = \begin{bmatrix} 0.5925 \\ 0.3275 \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} 0.0229 & -0.0098 \\ -0.0098 & 0.0315 \end{bmatrix}\right).$

We now have all the parameters necessary to apply the Bayesian classifier to new observations.

(b) Under a MAP assumption, classify each testing observation showing all of your calculus.

Since we will need the (y_1, y_2) pdf values for the following exercises, let's calculate them using scipy.multivariate_normal, just like it was suggested in the hint:

From the code above we get the following:

$$P(y_1 = 0.38, y_2 = 0.52) \approx 3.6225, \quad P(y_1 = 0.42, y_2 = 0.59) \approx 2.5387$$

 $P(y_1 = 0.38, y_2 = 0.52|A) \approx 0.9847, \quad P(y_1 = 0.38, y_2 = 0.52|B) \approx 1.9623$
 $P(y_1 = 0.42, y_2 = 0.59|A) \approx 0.4031, \quad P(y_1 = 0.42, y_2 = 0.59|B) \approx 1.7285$

Since we are under a Maximum a Posteriori assumption, we can just use the expression at (3) and replace the values for each of the testing observations $(x_8 \text{ and } x_9)$.

Starting with x_8 :

$$P(y_1 = 0.38, y_2 = 0.52|A)P(y_3 = 0, y_4 = 1|A)P(y_5 = 0|A) \times P(A) = 0.9847 \times \frac{1}{3} \times \frac{1}{3} \times \frac{3}{7} \approx 0.04689$$

$$P(y_1 = 0.38, y_2 = 0.52|B)P(y_3 = 0, y_4 = 1|B)P(y_5 = 0|B) \times P(B) = 1.9623 \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} \approx 0.07008$$

$$\hat{z}_{x_8} = \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(y_1 = 0.38, y_2 = 0.52|c)P(y_3 = 0, y_4 = 1|c)P(y_5 = 0|c) \times P(c) \right\}$$

$$= \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(y_1, y_2|A)P(y_3, y_4|A)P(y_5|A) \times P(A); P(y_1, y_2|B)P(y_3, y_4|B)P(y_5|B) \times P(B) \right\}$$

$$= B$$

And **now** with x_9 :

$$P(y_1 = 0.42, y_2 = 0.59|A)P(y_3 = 0, y_4 = 1|A)P(y_5 = 1|A) \times P(A) = 0.4031 \times \frac{1}{3} \times \frac{1}{3} \times \frac{3}{7} \approx 0.0192$$

$$P(y_1 = 0.42, y_2 = 0.59|B)P(y_3 = 0, y_4 = 1|B)P(y_5 = 1|B) \times P(B) = 1.7285 \times \frac{1}{4} \times \frac{2}{4} \times \frac{4}{7} \approx 0.1235$$

$$\hat{z}_{x_9} = \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(y_1 = 0.42, y_2 = 0.59|c)P(y_3 = 0, y_4 = 1|c)P(y_5 = 1|c) \times P(c) \right\}$$

$$= \underset{c \in \{A,B\}}{\text{arg max}} \left\{ P(y_1, y_2|A)P(y_3, y_4|A)P(y_5|A) \times P(A); P(y_1, y_2|B)P(y_3, y_4|B)P(y_5|B) \times P(B) \right\}$$

$$= B$$

Therefore, we conclude that under a MAP assumption, observations x_8 and x_9 will be classified with B and B, respectively.

(c) Consider that the default decision threshold of $\theta = 0.5$ can be adjusted according to

$$f(\mathbf{x}|\theta) = \begin{cases} A, & P(A|\mathbf{x}) > \theta \\ B, & \text{otherwise} \end{cases}$$

Under a maximum likelihood assumption, what thresholds optimize testing accuracy?

Since we know that $P(A|y_1, y_2, y_3, y_4, y_5) + P(A|y_1, y_2, y_3, y_4, y_5)$ must be equal to 1, we need to normalize the values. Therefore, we get these new updated values for the posteriors:

$$P(A|y_1, y_2, y_3, y_4, y_5) = \frac{P(A|y_1, y_2, y_3, y_4, y_5)}{P(A|y_1, y_2, y_3, y_4, y_5) + P(B|y_1, y_2, y_3, y_4, y_5)}$$

$$P(B|y_1, y_2, y_3, y_4, y_5) = \frac{P(B|y_1, y_2, y_3, y_4, y_5)}{P(B|y_1, y_2, y_3, y_4, y_5) + P(A|y_1, y_2, y_3, y_4, y_5)}$$
(5)

Note: To make the equations easier to read, we simplified " $y_1 = 0.38$, $y_2 = 0.52$, $y_3 = 0$, $y_4 = 1$, $y_5 = 0$ " by only writing " x_8 " and " $y_1 = 0.42$, $y_2 = 0.59$, $y_3 = 0$, $y_4 = 1$, $y_5 = 1$ " by only writing " x_9 ", given that those variable values characterize each observation.

On question 1.b) we calculated the following values:

$$P(A) = \frac{3}{7}, \quad P(B) = \frac{4}{7}$$

 $P(x_8|A) \times P(A) \approx 0.04689, \quad P(x_8|B) \times P(B) \approx 0.07008$
 $P(x_9|A) \times P(A) \approx 0.0192, \quad P(x_9|B) \times P(B) \approx 0.1235$

Note: According to the FAQ, we can use the **likelihood** as a **rough proxy for posteriors**. Therefore, from now on we take P(A|x) = P(x|A), assuming the posteriors to be approximated by the likelihood.

This way we need to calculate the likelihoods:

$$P(x_8|A) = 0.10941, \quad P(x_8|B) = 0.12264$$

 $P(x_9|A) = 0.0448, \quad P(x_9|B) = 0.216125$

Now to obtain the posteriori values, we can just replace these previous values on the formula at (5) to normalize the values, assuming P(A|x) = P(x|A) and P(B|x) = P(x|B):

$$P(A|x_8) = \frac{0.10941}{0.10941+0.12264} \approx 0.4715$$
 $P(B|x_8) = \frac{0.12264}{0.12264+0.10941} \approx 0.5285$ $P(A|x_9) = \frac{0.0448}{0.0448+0.216125} \approx 0.1717$ $P(B|x_9) = \frac{0.216125}{0.216125+0.0448} \approx 0.8283$

As we can see, now $P(A|x_8) + P(B|x_8) = 1$ and $P(A|x_9) + P(B|x_9) = 1$, which means we have normalized values.

We want to get the optimal testing accuracy, therefore we want it to be 100%. We know that the formula for the accuracy is given by,

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

, and so we only want to see true positives and true negatives for the fraction to be 1, meaning we need observations x_8 and x_9 to be classified as A and B, respectively. This leads to the conclusion that the following inequalities, when solved will yield us the interval of values that the threshold (θ) can take so that the accuracy is 100%.

$$P(A|x_8) > \theta \Rightarrow x_8$$
 gets classified as A $P(A|x_9) \le \theta \Rightarrow x_9$ gets classified as B $P(A|x_9) \le \theta < P(A|x_8) \Rightarrow 0.1717 \le \theta < 0.4715 \Rightarrow \theta \in [0.1717, 0.4715[$ (6)

- 2. Let y_1 be the target numeric variable, y_2 y_6 be the input variables where y_2 is binarized under an equal-width (equal-range) discretization. For the evaluation of regressors, consider a 3-fold cross-validation over the full dataset $(x_1 x_9)$ without shuffling the observations.
 - (a) Identify the observations and features per data fold after the binarization procedure.

To do the **binarization procedure** with an **equal-width discretization**, we need to divide y_2 into two intervals. Which are:

$$interval_1 = [0, 0.5]$$
 $interval_2 = [0.5, 1]$

Here is the binarization of y_2 based on those intervals:

D	y ₁	<i>y</i> ₂	у3	У4	y 5	У6
$\overline{x_1}$	0.24	0	1	1	0	A
x_2	0.16	0	1	0	1	A
x_3	0.32	1	0	1	2	A
x_4	0.54	0	0	0	1	В
<i>x</i> ₅	0.66	0	0	0	0	В
x_6	0.76	0	1	0	2	В
<i>x</i> ₇	0.41	1	0	1	1	В
x_8	0.38	1	0	1	0	A
<i>x</i> ₉	0.42	1	0	1	1	В

The next step is identifying our folds, which will be three (each with three observations) because we are considering a 3-fold cross-validation without shuffling approach:

$$Fold_1 = x_1 x_2 x_3$$
 $Fold_2 = x_4 x_5 x_6$ $Fold_3 = x_7 x_8 x_9$

So our datasets will be:

		\mathbf{F}	old 1						\mathbf{F}	old 2			
D	y ₁	У2	у 3	У4	<i>y</i> 5	У6	D	y ₁	у2	у 3	У4	<i>y</i> 5	<i>y</i> 6
x_1	0.24	0	1	1	0	A	x_4	0.54	0	0	0	1	В
x_2	0.16	0	1	0	1	A	x_5	0.66	0	0	0	0	В
x_3	0.32	1	0	1	2	A	x_6	0.76	0	1	0	2	В

		F	old 3			
D	У1	У2	у 3	У4	<i>y</i> ₅	У6
<i>x</i> ₇	0.41	1	0	1	1	В
x_8	0.38	1	0	1	0	A
<i>X</i> 9	0.41 0.38 0.42	1	0	1	1	В

(b) Consider a distance-weighted kNN with k = 3, Hamming distance (d), and 1 / d weighting. Compute the MAE of this kNN regressor for the 1^{st} iteration of the cross-validation (i.e. train observations have the lower indices).

The formula for the **weight** (w_i) and the **weighted average** (f), considering that k=3, are the following:

$$w_{i}(x_{new}) = \begin{cases} \frac{1}{d(x_{new}, x_{i})}, & x_{new} \neq x_{i} \\ 1, & \text{otherwise} \end{cases} \qquad \hat{z}_{x_{new}} = f(x_{new}) = \frac{\sum_{i=1}^{n} w_{i}(x_{new}) f(x_{i})}{\sum_{i=1}^{n} w_{i}(x_{new})}$$
(7)

And the formula for the **mean absolute error** is given by:

$$MAE(\hat{z}, z) = \frac{1}{n} \sum_{i=1}^{n} |z_i - \hat{z}_i|$$
 (8)

As stated in the prompt, we will use Folds 1 and 2 for training, reserving Fold 3 for testing. Let's start by computing the **Hamming distances**, for x_7 , x_8 and x_9 :

	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
$\overline{H(x_7,x_j)}$	4		2	2	3	4
$H(x_8,x_i)$	2	4	1	4	3	5
$H(x_9, x_j)$	4	4	2	2	3	4

Now let's determine the **three closest neighbors** (lowest Hamming distance values) for each test observation:

- For x_7 it is x_3 , x_4 and x_5
- For x_8 it is x_1 , x_3 and x_5
- For x_9 it is x_3 , x_4 and x_5

The next step is calculating their **weighted average**. By replacing the formula on (7), we get the following values:

$$\hat{z}_{x_7} = f(x_7) = \frac{\frac{1}{2} \cdot 0.32 + \frac{1}{2} \cdot 0.54 + \frac{1}{3} \cdot 0.66}{\frac{1}{2} + \frac{1}{2} + \frac{1}{3}} = 0.4875$$

$$\hat{z}_{x_8} = f(x_8) = \frac{\frac{1}{2} \cdot 0.24 + \frac{1}{1} \cdot 0.32 + \frac{1}{3} \cdot 0.66}{\frac{1}{2} + \frac{1}{1} + \frac{1}{3}} = 0.36$$

$$\hat{z}_{x_9} = f(x_9) = \frac{\frac{1}{2} \cdot 0.32 + \frac{1}{2} \cdot 0.54 + \frac{1}{3} \cdot 0.66}{\frac{1}{2} + \frac{1}{2} + \frac{1}{3}} = 0.4875$$

Now we have the estimates for the testing observations along with their real values:

$$\hat{z} = (\hat{z}_{x_7}, \hat{z}_{x_8}, \hat{z}_{x_9}) = (0.4875, 0.36, 0.4875)$$

 $z = (0.41, 0.38, 0.42)$

Finally, let's compute the mean absolute error by using the formula on (8):

$$MAE(\hat{z}, z) = \frac{1}{3} (|0.41 - 0.4875| + |0.38 - 0.36| + |0.42 - 0.4875|) = 0.055$$

Part II: Programming and critical analysis

Considering the column_diagnosis.arff dataset available at the course webpage's homework tab. Using sklearn, apply a 10-fold stratified cross-validation with shuffling (random_state=0) for the assessment of predictive models along this section.

- 1. Compare the performance of kNN with k = 5 and Naïve Bayes with Gaussian assumption (consider all remaining parameters for each classifier as sklearn's default):
 - (a) Plot two boxplots with the fold accuracies for each classifier.

```
import matplotlib.pyplot as plt, pandas as pd
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from scipy.io.arff import loadarff
```

```
_{7} # Read the ARFF file and prepare data
8 data = loadarff("./data/column_diagnosis.arff")
9 df = pd.DataFrame(data[0])
10 df["class"] = df["class"].str.decode("utf-8")
x, y = df.drop("class", axis=1), df["class"]
13 # Define cross-validation strategy
14 folds = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
16 # Initialize classifiers
17 knn_predictor = KNeighborsClassifier(n_neighbors=5)
18 nb_predictor = GaussianNB()
20 # Evaluate classifiers
21 knn_accs = cross_val_score(knn_predictor, X, y, cv=folds, scoring="accuracy")
22 nb_accs = cross_val_score(nb_predictor, X, y, cv=folds, scoring="accuracy")
24 # Plot boxplots
25 plt.figure(figsize=(7, 5))
26 b_plot = plt.boxplot(
      [knn_accs, nb_accs], patch_artist=True, labels=["kNN", "Naive Bayes"]
28
30 colors = ["#f8766d", "#00bfc4"]
for patch, color in zip(b_plot["boxes"], colors):
      patch.set_facecolor(color)
33 for median in b_plot["medians"]:
      median.set_color("black")
36 plt.ylabel("Accuracy")
37 plt.grid(axis="y")
38 plt.show()
```


Figure 1: Boxplots with the fold accuracies of kNN (k = 5) and Naïve Bayes

(b) Using scipy, test the hypothesis "kNN is statistically superior to Naïve Bayes regarding accuracy", asserting whether is true.

We'll consider the null hypothesis and alternate hypothesis below and perform a right-tailed test using the accuracies obtained in the previous answer,

```
H_0: \operatorname{accuracy}_{k \text{NN}} = \operatorname{accuracy}_{\text{Na\"{i}ve Bayes}}

H_1: \operatorname{accuracy}_{k \text{NN}} > \operatorname{accuracy}_{\text{Na\"{i}ve Bayes}}
```

```
from scipy.stats import ttest_rel

# Is kNN better than Naive Bayes?
res = ttest_rel(knn_accs, nb_accs, alternative="greater")
print("Is kNN > Naive Bayes? pval =", res.pvalue)
```

Using scipy we get a p-value of, approximately, 0.190428 = 19.0428 %.

This means we cannot reject the hypothesis H_0 at common significance levels (1%, 5% and 10%).

Therefore, we cannot assert that kNN is statistically superior to Naïve Bayes. We also cannot state that the hypothesis on the statement is outright false without checking other statistical tests.

2. Consider two kNN predictors with k=1 and k=5 (uniform weights, Euclidean distance, all remaining parameters as default). Plot the differences between the two cumulative confusion matrices of the predictors. Comment.

```
import numpy as np, matplotlib.pyplot as plt, pandas as pd, seaborn as sns
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from scipy.io.arff import loadarff
```

```
_{7} # Read the ARFF file and prepare data
8 data = loadarff("./data/column_diagnosis.arff")
9 df = pd.DataFrame(data[0])
10 df["class"] = df["class"].str.decode("utf-8")
II X, y = df.drop("class", axis=1), df["class"]
13 # Initialize StratifiedKFold with 10 folds and shuffling
14 folds = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
16 # Create kNN classifiers with k=1 and k=5
17 knn_1 = KNeighborsClassifier(n_neighbors=1)
18 knn_5 = KNeighborsClassifier(n_neighbors=5)
20 labels = ["Hernia", "Normal", "Spondylolisthesis"]
21 \text{ cm}_1, \text{ cm}_5 = \text{np.zeros}((3, 3)), \text{np.zeros}((3, 3))
22 for train_k, test_k in folds.split(X, y):
      X_train, X_test = X.iloc[train_k], X.iloc[test_k]
      y_train, y_test = y.iloc[train_k], y.iloc[test_k]
24
25
      # Fit kNN classifiers and assess
      knn_1.fit(X_train, y_train)
27
      knn_5.fit(X_train, y_train)
      knn_1_pred, knn_5_pred = knn_1.predict(X_test), knn_5.predict(X_test)
      cm_1 += np.array(confusion_matrix(y_test, knn_1_pred, labels=labels))
      cm_5 += np.array(confusion_matrix(y_test, knn_5_pred, labels=labels))
33 # Calculate cumulative confusion matrices
34 \text{ cm\_diff} = \text{cm\_1} - \text{cm\_5}
35 cm_diff_df = pd.DataFrame(cm_diff, index=labels, columns=labels)
37 # Plot the differences
38 plt.figure(figsize=(9, 7))
39 sns.heatmap(
      cm_diff_df, cmap="Purples", annot=True, annot_kws={"fontsize": 14}, fmt="g"
41 )
42 plt.xlabel("Predicted")
43 plt.ylabel("Real")
44 plt.show()
```


Figure 2: Confusion Matrix Differences Between k=1 and k=5 k-Nearest Neighbors (kNN) Classifiers

Upon examination of the difference matrix derived from the cumulative confusion matrices, it is evident that the kNN model with k=5 surpasses the performance of k=1.

For each cell in this matrix, we can determine which model (k=1 or k=5) had the most observations by noting if the cell value is negative or positive. A positive value indicates that k=1 had the most observations, while a negative value indicates that k=5 was the one with more observations.

This superiority of the k=5 model is shown by the negative sum of the main diagonal elements, signifying higher accuracy. Additionally, the fact that the sum of incorrect predictions (false positives and false negatives) is positive suggests that k=5 has fewer miss classifications.

Therefore, utilizing k=5 appears to be the preferable choice over k=1 for this task.

3. Considering the unique properties of column_diagnosis, identify three possible difficulties of Naïve Bayes when learning from the given dataset.

Here are three possible difficulties of Naïve Bayes when learning from the given dataset, in no particular order:

- To apply Naïve Bayes, we assumed that all variables were independent of one another, which might not be case, thus explaining a potential problem that would hinder its accuracy.
- There may be an inadequacy of Gaussian assumption, because the data used (column_diagnosis.arff) isn't very big (around 300 observations, with only some being used for training), and so there isn't much data for probability density function/probability mass function approximations.