Modelagem Inteligente de Perda de Percurso Utilizando Transceptores LoRa

Rafael S. Macêdo, Matheus H. A. Miranda, João Paulo S. H. Lima, Álvaro A. de Medeiros Universidade Federal de Juiz de Fora

Motivação

 Crescimento do número de dispositivos conectados a internet graças a Internet das Coisas (IoT)

Motivação

- Tecnologia LoRa
 - resistência à interferência
 - longo alcance
 - baixo consumo
- Modelagem do canal
 - redução de custo com equipamento
 - viabilidade da tecnologia para o cenário
 - previsão de cobertura

Objetivo

- Realizar a modelagem do canal
 - Modelo de perda de percurso usando rede neural

Rafael S. Macêdo (UFJF)

Equipamento de baixo custo

Sistema de Medição - Transmissor

- Arduino UNO
- módulo LoRa 433 MHz SX1278
- Usados os parâmetros:¹
 - Potência = 10 dBm
 - FS = 12
 - BW = 125 kHz
 - CR = 4/8
- Antena monopolo
- Altura de 4 metros do chão

¹ J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo, "On the coverage of lpwans: range evaluation and channel attenuation model for lora technology," em 14th International Conference on ITS Telecommunications (ITST), Dec 2015, pp. 55–59.

Sistema de Medição - Receptor

- Arduino UNO
- módulo GPS
- módulo cartão SD
- módulo LoRa 433MHz SX1278
- Usados os parâmetros:²
 - -FS = 12
 - BW = 125 kHz
 - CR = 4/8
- Antena monopolo
- Altura de 1,5 metros do chão

² J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo, "On the coverage of Ipwans: range evaluation and channel attenuation model for lora technology," em 14th International Conference on ITS Telecommunications (ITST), Dec 2015, pp. 55–59.

Rede neural - Modelo

- Utilizado o pacote Estimator TensorFlow
- Distância entre transmissor e Receptor como entrada (Xi)
- Valor de RSSI como saída (Yi)
- Algoritmo k-fold
 - separação de dados em grupos
 - 6 neurônios ocultos
- Função de ativação sigmoide
- métrica de desempenho EQM

Ambiente com visada sem muitos obstáculos (a)

Ambiente sem visada com obstrução de prédios (b)

Ambiente misto com obstrução devido à topografia e à vegetação (c)

Metodologia - modelos

- ITU-Advanced Suburban Macro-LoS³
 - Cenário (a)
- ITU-Advanced Suburban Macro-NLoS⁴
 - Cenários (b) e (c)
- 3GPP ⁵
 - Cenários (a), (b) e (c)
- Log-distance ⁶
 - Cenários (a), (b) e (c)

$$P_L(d) = P_0 + 10 \cdot n \cdot \log_{10}(\frac{d}{d_0})$$

^{3, 4, 5, 6} A. F. Molisch, Wireless communications. John Wiley & Sons, 2012, vol. 34.

Ambiente com visada sem muitos obstáculos (a)

Ambiente sem visada com obstrução de prédios (b)

 Ambiente misto com obstrução devido à topografia e à vegetação (c)

Tabela 1: Parâmetros encontrados para o modelo Log-distance.

Cenário	n	P_0
(a)	2.2972	50.3351
(b)	3.0362	49.4207
(c)	2.8705	46.3310

Tabela 2: Valores de EQM entre os modelos.

Cenário	Log-distance	3GPP	ITU-Advanced	Rede neural
(a)	17.8603	190.2911	719.3946	11.6076
(b)	20.8307	575.7243	512.9012	11.0018
(c)	16.3454	321.7144	365.3563	12.8178

Conclusões

- É possível fazer uma caracterização de canal com transceptores LoRa
- Modelo proposto pela rede neural se adapta melhor
- Os resultados contribuem para modelagem do ambiente para implementação da tecnologia LoRa

Obrigado

rafael.macedo2016@engenharia.ufjf.br