MATH251 - Algebra 2

Summary of Results

Winter, 2024 Notes by Louis Meunier Complete notes

1	Notation	1
2	Vector Spaces, Linear Relations	2
3	Linear Transformations	4
4	Elementary Matrices; Determinant	9
5	Diagonalization	13
6	Inner Product Spaces	15

1 Notation

 \mathbb{F} denotes an arbitrary field; in section 6 we will restrict \mathbb{F} to either \mathbb{R} or \mathbb{C} . Upper case U, V, W will typically denote vector spaces, lower case Greek letters α, β, γ bases, and lower case a, b, c scalars from \mathbb{F} . A subscript (eg $I_V, 0_{\mathbb{F}}$) denote "where" an element comes from (eg identity on V, zero on \mathbb{F}), but will often be omitted.

 $M_{m \times n}(\mathbb{F}) := \{m \times n \text{ matrices with entries in } \mathbb{F}\}; \text{ if } m = n \text{ we denote } M_n(\mathbb{F}). \text{ } GL_n(\mathbb{F}) := \{A \in M_n(\mathbb{F}) : A \text{ invertible } \} \subseteq M_n(\mathbb{F}).$

Important (purely subjectively) results are highlighted with ★ for their use in proofs and other results.

2 Vector Spaces, Linear Relations

Definition 1 (Vector Space). A vector space V defined over a field \mathbb{F} is an abelian group with respect to an addition operation + with identity element $0 \equiv 0_V$, and with an additional scalar multiplication from the field such that for $u, v \in V$ and $a, b \in \mathbb{F}$,

- 1. $1 \cdot v = v$; $1 \in \mathbb{F}$ (identity)
- 2. $a \cdot (b \cdot v) = (\alpha \cdot \beta)v$ (associativity of multiplication)
- 3. (a + b)v = av + bv (distribution of scalar addition over scalar multiplication)
- 4. a(u + v) = au + av (distribution of scalar multiplication over vector addition)

To follow, unless otherwise specified, take V to be an arbitrary vector space.

Proposition 1.
$$0_{\mathbb{F}} \cdot v = 0_V$$
; $-1 \cdot v = -v$; $a \cdot 0_V = 0_V$, $a \in \mathbb{F}$.

Definition 2 (Subspace). $W \subseteq V$, such that W nonempty and W closed under vector addition and scalar multiplication.

Definition 3 (Linear Combination, Span, Spanning Sets). A linear combination of vectors $v_i \in S$ for some set $S \subseteq V$ is a summation $a_1v_1 + \cdots + a_nv_n$ for scalars $a_i \in \mathbb{F}$.

Define Span(
$$\{v_1, ..., v_n\}$$
) := $\{a_1v_1 + \cdots + a_nv_n : a_i \in \mathbb{F}\}$.

We say a set S spans V if Span(S) = V; we say S minimally spanning if $\nexists v \in S : S \setminus \{v\}$ spanning.

Proposition 2. For any set $S \subseteq V$, Span(S) is a subspace, and moreover the smallest subspace containing S (ie, any other subspace containing S must also contain Span(S)).

Sketch. Use the linearity definition of Span(S) on any other subspace containing S.

Definition 4 (Linear Independence). A set $S \subseteq V$ is linearly independent if there is no nontrivial linear combinations equal to 0_V ; conversely, S is linearly dependent if such a linear combination exists. Symbolically, letting $S := \{v_1, \ldots, v_n\}$

S linearly independent
$$\iff (\sum_{i} a_i v_i = 0 \iff a_i \equiv 0)$$

S linearly dependent
$$\iff \exists a_i's$$
, not all zero s.t. $\sum_i a_i v_i = 0$

Remark 1. Recall the a_i 's from a field, so they have inverses unless equal to zero. A common proof technique is to assume one is nonzero, hence has an inverse, and derive a contradiction.

Definition 5 (Maximal Independence). A set *S* maximally independent if it is independent, and $\nexists v \in V$ s.t. $S \cup \{v\}$ still independent.

Theorem 1. For $S \subseteq V$, S minimally spanning $\iff S$ linearly independent and spanning $\iff S$ maximally linearly independent $\iff every \ v \in V$ equals a unique linear combination of vectors in S.

Definition 6 (Basis). If any (hence all) of the above requirements holds, we say *S* a basis for *V*.

Lemma 1 (Steinitz Substitution). Let $Y \subseteq V$ be independent and $Z \subseteq V$ (finite) spanning. Then $|Y| \leq |Z|$ and $\exists Z' \subseteq Z : |Z'| = |Z| - |Y|$, and $Y \cup Z'$ still spanning.

Theorem 2. *If V admits a finite basis, any two bases are equinumerous.*

In such a case, we define $\dim(V) := |\beta|$ for any basis β for V, and put $\dim(V) = \infty$ if V does not admit a finite basis.

Sketch. Immediate corollary of Steinitz Substitution.

Corollary 1 (\star). For V finite dimensional, any independent set I can be completed to a basis β for V such that $I \subseteq \beta$.

Remark 2. Other than the general definitions and equivalent notions of a basis, this corollary is certainly the most important from this section, and is used extensively in proofs to follow.

3 Linear Transformations

Throughout this section, assume V, W are vector spaces and T, S linear transformations unless specified otherwise.

Definition 7 (Linear Transformation). A function $T: V \to W$ is a linear transformation if it respects the vector space structures, namely $T(av_1 + v_2) = aT(v_1) + T(v_2)$ for any $a \in \mathbb{F}$, $v_1, v_2 \in V$.

We let $I_V:V\to V,v\mapsto v$ be the identity transformation. We sometimes call a transformation from a vector space to itself a linear operator.

Proposition 3. T(0) = 0

Theorem 3 (\star). Linear transformations are completely determined by their effects on a basis; if $T_0(v_i) = T_1(v_i)$ for every $v_i \in \beta$ for a basis β of V, then $T_0 \equiv T_1$.

Sketch. Define a transformation as mapping $v := a_1v_1 + \cdots + a_nv_n \mapsto a_1w_1 + \cdots + a_nw_n$ for arbitrary $w_i \in W$. Show that this is linear, and uniquely determined.

Definition 8 (Isomorphism). An isomorphism of vector spaces V, W is a linear transformation $T: V \to W$ that admits a linear inverse T^{-1} . We write $V \cong W$ in this case.

Proposition 4. T isomorphism \iff T linear and bijection.

Theorem 4 (*). If dim(V) = n, $V \cong \mathbb{F}^n$. Moreover, every n-dimensional vector spaces are isomorphic.

Sketch. Define a transformation that maps $v_i \mapsto e_i$ where v_i basis vectors for V and e_i basis vectors for \mathbb{F}^n . Show that this is a linear bijection.

Definition 9 (Kernel, Image). For $T: V \to W$, and put

$$Ker(T) := \{ v \in V : T(v) = 0 \} = T^{-1}\{0\} \subseteq V$$
$$Im(T) := \{ T(v) : v \in V \} = T(V) \subseteq W$$

Proposition 5. Ker(T), Im(T) *subspaces of V , W resp; hence, put* nullity(T) := dim(Ker(T)), rank(T) := dim(Im(T)).

Proposition 6. For $T: V \to W$ and β a basis for V, $T(\beta)$ spans Im(W); hence, $T(\beta)$ spans $W \iff T$ surjective.

Proposition 7 (\star). Let $T: V \to W$; T injective \iff Ker $(T) = \{0\}$ (or, "is trivial") \iff $T(\beta)$ independent for any β -basis for $V \iff$ $T(\beta)$ independent for some β -basis for V.

Remark 3. The second criterion in particular gives a usually quicker way to check injectivity.

Theorem 5 (\star Dimension Theorem). *For* dim(V) < ∞ , nullity(T) + rank(T) = dim(V)

Sketch. Direct proof follows by constructing a basis for Ker(T), completing it to a basis for V, taking $T(\beta)$ and noticing the number of redundant vectors.

Alternatively, the first isomorphism theorem gives that $V/\text{Ker}(T) \cong \text{Im}(T)$ and thus $\dim(V/\text{Ker}(T)) = \dim(V) - \dim(\text{Ker}(T)) = \dim(\text{Im}(T))$ where the second equality needs some proof.

Corollary 2. Let dim(V) = dim(W) = n. Then $T : V \to W$ injective \iff surjective \iff rank(T) = n.

Theorem 6 (First Isomorphism Theorem). $V/\text{Ker}(t) \cong \text{Im}(T)$

Definition 10 (Homomorphism Space). Put $\operatorname{Hom}(V, W) := \{T : V \to W\}$ for T linear. This is a vector space under the natural operations endowed by the linearity of the transforms themselves, ie $(aT_1 + T_2)(v) := a \cdot T_1(v) + T_2(v)$.

Theorem 7. Let β , γ be bases for V, W resp. Then $\{T_{v,w} : v \in \beta, w \in \gamma\}$ where

$$T_{v,w}(v') = \begin{cases} w & v' = v \\ 0 & v' \neq v \end{cases}$$

a basis for Hom(V, W).

Corollary 3. $\dim(\operatorname{Hom}(V, W)) = \dim(V) \cdot \dim(W)$

Sketch. A counting game.

For any discussion of linear transformations represented with matrices, assume V, W finite dimensional.

Definition 11 (* Matrix representation of a linear operator). Let $\dim(V) = n$, $\dim(W) = m$. For a basis $\beta := \{v_1, \dots, v_n\}$ of V and $\gamma := \{w_1, \dots, w_m\}$ and $T: V \to W$, put

$$[T]^{\gamma}_{\beta} := \begin{pmatrix} | & & | \\ [T(v_1)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \end{pmatrix} \in M_{m \times n}(\mathbb{F}),$$

where, if $T(v_i) = a_1 w_1 + \dots + a_m w_m$, we put $[T(v_i)]_{\gamma} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. We call this the coordinate vector of $T(v_i)$ in base γ .

Proposition 8. Let $n = \dim(V)$ and let $I_{\beta} : V \to \mathbb{F}^n$, $v \mapsto [v]_{\beta}$. This is an isomorphism.

Theorem 8 (*). Let $T: V \to W$, β , γ bases for V, W respectively. The following diagram commutes:

$$\begin{array}{ccc}
\bullet V & \xrightarrow{T} & \bullet W \\
I_{\beta} \downarrow & & \downarrow I_{\gamma} \\
\bullet \mathbb{F}^{n} & --- & \bullet \mathbb{F}^{m}
\end{array}$$

ie $I_{\gamma} \circ T = L_{[T]^{\gamma}_{\beta}} \circ I_{\beta}$, where $L_{A}(v) := A \cdot v$.

Moreover, $\operatorname{Hom}(V,W) \to M_{m \times n}(\mathbb{F}), T \mapsto [T]^{\gamma}_{\beta}$ an isomorphism.

Remark 4. This theorem is quite powerful (and has a pretty diagram): any $m \times n$ matrix corresponds to a linear transformation between n- and m-dimensional spaces, and conversely, any such linear transformation can be represented as a matrix. It also allows us to "be a little clever" with our definitions of matrix operations.

Definition 12. For $A \in M_{m \times n}$, $B \in M_{\ell \times m}(\mathbb{F})$, define $B \cdot A := [L_B \circ L_A]$.

Corollary 4. *Matrix multiplication associative.*

Sketch. Indeed, as function composition is.

Corollary 5. For $T: V \to W$, $S: W \to U$ and bases α, β, γ for V, W, U resp., $[S \circ T]_{\alpha}^{\gamma} = [S]_{\beta}^{\gamma} \cdot [T]_{\alpha}^{\beta}$

Corollary 6. For $A \in M_n(\mathbb{F})$, L_A invertible \iff A invertible in which case $L_A^{-1} = L_{A^{-1}}$.

Definition 13 (*T*-invariant subspace). Let $T: V \to V$; $W \subseteq V$ *T*-invariant if $T(W) \subseteq W$.

Proposition 9. $\operatorname{Im}(T^n)$ T-invariant for any $n \in \mathbb{N}$ ie $V \supseteq \operatorname{Im}(T) \supseteq \operatorname{Im}(T^2) \supseteq \cdots \supseteq \operatorname{Im}(T^n) \supseteq \cdots$.

Similarly, $\operatorname{Ker}(T^n)$ T-invariant for any $n \in \mathbb{N}$, ie $\{0\} \subseteq \operatorname{Ker}(T) \subseteq \operatorname{Ker}(T^2) \subseteq \cdots \subseteq \operatorname{Ker}(T^n) \subseteq \cdots$.

Definition 14 (Nilpotent). $T: V \to V$ nilpotent if $T^n = 0$ for some $n \in \mathbb{N}$.

Proposition 10. *If* $T: V \rightarrow V$ *nilpotent,* $T^{\dim(V)} = 0$.

Sketch. Nilpotent $\implies \exists k: T^k = 0$. If $k \leq \dim(V)$ this is clear. If $k > \dim(V)$, use proposition 9.

Definition 15 (Direct Sum). For W_0 , $W_1 \subseteq V$, we write $V = W_0 \oplus W_1$ if $W_0 \cap W_1 = \{0_V\}$ and $V = W_0 + W_1$, and say V the direct sum of W_0 , W_1 .

Theorem 9 (Fitting's Lemma). For V finite dimensional and a linear transformation $T:V\to V$, we can decompose $V=U\oplus W$ such that U,W T-invariant, T_U nilpotent and T_W an isomorphism.

Sketch. Using proposition 9 and the finite dimensions, remark that $\exists N$ such that $W := \text{Im}(T^N) = \text{Im}(T^{N+1})$ and $U := \text{Ker}(T^N) = \text{Ker}(T^{N+1})$. Proceed.

Definition 16 (Dual Space). Let $V^* := \text{Hom}(V, \mathbb{F})$.

Proposition 11. For V finite dimensional, $\dim(V^*) = \dim(V)$; moreover $V^* \cong V$.

Sketch. Follows directly from the more general corollary 3, or, more instructively, by considering the dual basis:

Proposition 12. Let V finite dimensional. For a basis $\beta := \{v_1, \ldots, v_n\}$ for V, the dual basis $\beta^* := \{f_1, \ldots, f_n\}$, where $f_i(v_j) := \delta_{ij} := \begin{cases} 1 & i = j \\ & a \text{ basis for } V^*. \\ 0 & i \neq j \end{cases}$

Definition 17. For each $x \in V$, define $\hat{x} \in V^{**}$ by $\hat{x} : V^* \to \mathbb{F}$, $\hat{x}(f) := f(x)$. For $S \subseteq V$, put $\hat{S} := \{\hat{x} : x \in S\}$.

Theorem 10 (\star). $x \mapsto \hat{x}$, $V \mapsto V^{**}$ a linear injection, and in particular, an isomorphism if V finite dimensional.

Moreover, $V^{**} = \hat{V}$.

Sketch. Isomorphism also follows directly from $V^{**} \cong V^*$ (being the dual of the dual) and \cong being an equivalence relation.

Definition 18 (Annihilator). For $S \subseteq V$ a set, $S^{\perp} := \{ f \in V^* : f|_S = 0 \}.$

Proposition 13. S^{\perp} a subspace of V^* , $S_1 \subseteq S_2 \subseteq V \implies S_1^{\perp} \supseteq S_2^{\perp}$.

Theorem 11. If V finite dimensional and $U \subseteq V$ a subspace, $(U^{\perp})^{\perp} = \hat{U}$.

Definition 19 (Transpose). For $T: V \to W$, define $T^t: W^* \to V^*$, $g \mapsto g \circ T$, ie $T^t(g)(v) = g(T(v))$.

Proposition 14. (1) T^t linear, (2) $\operatorname{Ker}(T^t) = (\operatorname{Im}(T))^{\perp}$, (3) $\operatorname{Im}(T^t) = (\operatorname{Ker}(T))^{\perp}$, and (4) if V, W finite and β , γ bases resp, then $([T]_{\beta}^{\gamma})^t = [T^t]_{\gamma^*}^{\beta^*}$, where A^t represents the typical matrix transpose.

Sketch. Remark that (1), (2), (3) hold for infinite dimensional spaces; (2) is fairly clear, but the converse direction of (3) is a little tricky. (4) is just a pain notationally.

Theorem 12. Let V finite dimensional and $U \subseteq V$ a subspace. Then (1) $\dim(U^{\perp}) = \dim(V) - \dim(U)$ and (2) $(V/U)^* \cong U^{\perp}$ by the map $f \mapsto f_U, f_U : V \to \mathbb{F}, v \mapsto f(v + U)$.

Sketch. For (1), construct a basis for U, complete it, then take the basis and "stare".

Corollary 7. T^t injective \iff T surjective; if V, W finite dimensional, T^t surjective \iff T injective.

Definition 20 (Matrix Rank, C-Rank, R-Rank). For $A \in M_{m \times n}(\mathbb{F})$, define rank(A) := rank(A), c-rank(A) := size of maximally independent subset of columns { $A^{(1)}, \ldots, A^{(n)}$ }, and r-rank(A) := the same definition but for rows.

Proposition 15. rank(A) = c-rank(A) = r-rank(A)

Sketch. First equality should be clear; second follows either from remarking that $rank(A) = rank(A^t) = r-rank(A)$, or by using tools of the next section.

4 ELEMENTARY MATRICES; DETERMINANT

Proposition 16. For $A \in M_{m \times n}(\mathbb{F})$, $b \in \text{Im}(L_A)$, the set of solutions to $A\vec{x} = \vec{b}$ is precisely the coset $\vec{v} + \text{Ker}(L_A)$ where $\vec{v} \in \mathbb{F}^n$ such that $A\vec{v} = \vec{b}$.

Proposition 17. If m < n and $A \in M_{m \times n}(\mathbb{F})$, there is always a nontrivial solution to $A\vec{x} = \vec{0}$.

Definition 21 (Elementary Row/Column Operations). For $A \in M_{m \times n}(\mathbb{F})$, an elementary row (column) operation is one of

- 1. interchanging two rows (columns) of *A*
- 2. multiplying a row (column) by a nonzero scalar
- 3. adding a scalar multiple of one row (column) to another.

Remark each operation is invertible.

Definition 22 (Elementary Matrix). An elementary matrix $E \in M_n(\mathbb{F})$ is one obtained from I_n by a elementary row/column operation.

Proposition 18. *Elementary matrices are invertible.*

Proposition 19. *Let* $T: V \to W$, $S: W \to W$ *and* $R: \to V$ *where* V, W *finite dimensional, and* S, R *invertible. Then* $\operatorname{rank}(S \circ T) = \operatorname{rank}(T) = \operatorname{rank}(T \circ R)$.

In the language of matrices, if $A \in M_{m \times n}(\mathbb{F})$, $P \in GL_m(\mathbb{F})$, $Q \in GL_n(\mathbb{F})$, then rank(PA) = rank(A) = rank(AQ).

Proposition 20. For any two bases α , β for V, there exists a $Q \in GL_n(\mathbb{F})$ such that $[T]_{\alpha}Q = Q[T]_{\beta}$.

Conversely, for any $Q \in GL_n(\mathbb{F})$, there exists bases α , β for V such that $Q = [I]_{\alpha}^{\beta}$.

Corollary 8 (★). *Elementary matrices preserve rank.*

Sketch. Elementary matrices are invertible by proposition 18, so directly apply proposition 19.

Theorem 13 (Diagonal Matrix Form). Every matrix $A \in M_n(\mathbb{F})$ can be transformed into a matrix

$$\begin{bmatrix} I_r & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(n-r) \times (r)} & \mathbf{0}_{(n-r) \times (n-r)} \end{bmatrix}$$

 $via\ row$, $column\ operations$. Moreover, rank(A) = r.

Sketch. By induction. Not very enlightening proof.

Corollary 9. For each $A \in M_n(\mathbb{F})$, there exist $P, Q \in GL_n(\mathbb{F})$ such that B := PAQ of the form above.

Corollary 10. Every invertible matrix a product of elementary matrices.

Definition 23 ((r)ref). A matrix is said to be in row echelon form (ref) if

- 1. All zero rows are at the bottom, ie each nonzero row is above each zero row;
- 2. The first nonzero entry (called a pivot) of each row is the only nonzero entry in its column;
- 3. The pivot of each row appears to the right of the pivot of the previous row.

If all pivots are 1, then we say that *B* is in reduced row echelon form (rref).

Theorem 14. There exist a sequence of row operations 1., 3., to bring any matrix to ref; there exists a sequence of row operations of type 2. to bring a ref matrix to rref. We call such operations "Gaussian elimination".

Theorem 15. Applying Gaussian elimination to the augmented matrix $(A|b) \to (\tilde{A}|\tilde{b})$ in rref, then Ax = b has a solution \iff rank $(\tilde{A}|\tilde{b}) = \text{rank}(\tilde{A}) = \sharp$ non-zero rows of \tilde{A} .

Corollary 11. $Ax = b \iff if(A|b)$ in ref, there is no pivot in the last column.

Lemma 2. Let B be the rref of $A \in M_{m \times n}(\mathbb{F})$. Then, (1) \sharp non-zero rows of $B = \operatorname{rank}(B) = \operatorname{rank}(A) =: r$, (2) for each $i = 1, \ldots, r$, denoting j_i the pivot of the ith row, then $B^{(j_i)} = e_i \in \mathbb{F}^m$; moreover, $\{B^{(j_1)}, \ldots, B^{(j_r)}\}$ linearly independent, and (3) each column of B without a pivot is in the span of the previous columns.

Corollary 12. *The rref of a matrix is unique.*

Remark 5. See here for a "thorough" derivation of the determinant. It won't be repeated here.

Definition 24 (Multilinear). We say a function $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ is multilinear if it is linear in every row ie

$$\delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ c\vec{x} + \vec{y} \\ \vdots \\ \vec{v}_n \end{pmatrix} = c \cdot \delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ c\vec{x} \\ \vdots \\ \vec{v}_n \end{pmatrix} + \delta \begin{pmatrix} \vec{v}_1 \\ \vdots \\ \vec{y} \\ \vdots \\ \vec{v}_n \end{pmatrix}$$

Proposition 21. For $\delta: M_n(\mathbb{F}) \to \mathbb{F}$, if A has a zero row, then $\delta(A) = 0$.

Definition 25 (Alternating). A multilinear form $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ called alternating if $\delta(A) = 0$ for any matrix A with two equal rows.

Proposition 22. Let $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ be alternating and multilinear; then if B obtained from A by swapping two rows $\delta(B) = -\delta(A)$.

Proposition 23. A multilinear $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ is alternating iff $\delta(A) = 0$ for every matrix A with two equal consecutive rows.

Proposition 24. *If* $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ *be an alternating multilinear form. Then for* $A \in M_n(\mathbb{F})$ *,*

$$\delta(A) = \sum_{\pi \in S_n} A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)} \delta(\pi I),$$

where
$$\pi I_n := \begin{pmatrix} - & e_{\pi(1)} & - \\ & \vdots & \\ - & e_{\pi(n)} & - \end{pmatrix}$$
.

Definition 26 (sgn). Denote $\operatorname{sgn}(\pi) := (-1)^{\sharp \pi}$ where $\sharp \pi := \operatorname{parity}$ of $\pi \equiv \operatorname{number}$ of inversions by π .

Corollary 13. If $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ be an alternative multilinear form. Then for $A \in M_n(\mathbb{F})$,

$$\delta(A) = \sum_{\pi \in S_n} sgn(\pi) A_{1\pi(1)} A_{2\pi(2)} \cdots A_{n\pi(n)} \delta(I).$$

Moreover, δ uniquely determined by its value on I_n .

Definition 27 (* Determinant). Let $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ be the unique normalized $(\delta(I_n) = 1)$ alternating multilinear form, ie $\det(A) := \sum_{\pi \in S_n} \operatorname{sgn}(\pi) A_{1\pi(1)} \cdots A_{n\pi(n)}$.

Lemma 3. Let $\delta: M_n(\mathbb{F}) \to \mathbb{F}$ be an alternating multilinear form. Then for any $A \in M_n(\mathbb{F})$ and an elementary matrix E, then $\delta(EA) = c \cdot \delta(A)$ for some non-zero scalar c.

In particular, if E swaps 2 rows, then c = -1; if E multiplies a row by a scalar c, c = c; if E adds a scalar multiple of one row to another, c = 1.

Theorem 16. For $A \in M_n(\mathbb{F})$, $det(A) = 0 \iff A$ noninvertible.

Sketch. Follows from lemma 3 by writing $A' = E_1 \cdots E_k A$ where A' in rref and applying det.

Theorem 17. det(AB) = det(A) det(B) for any $A, B \in M_n(\mathbb{F})$.

Sketch. Consider two cases, where A either invertible or not. In the former, write A as a product of elementary matrices and apply lemma 3.

Corollary 14. $\det(A^{-1}) = (\det(A))^{-1}$ for any $A \in GL_n(\mathbb{F})$.

Corollary 15. $\det(A^t) = \det(A)$ for any $A \in M_n(\mathbb{F})$.

5 Diagonalization

Motivation to keep in mind: linear transformations are icky. How can we represent them more simply on particular subspaces? Namely, scalar multiplication is the simplest linear transformation (verify that is indeed linear) - can we pick subspaces such that T becomes scalar multiplication on these subspaces?

Definition 28 (Linearly Independent Subspaces). For $V_1, \ldots, V_k \subseteq V$, we say $\{V_1, \ldots, V_k\}$ linearly independent if $V_i \cap \sum_{j \neq i} V_j = \{0_V\}$ and call $V_1 \oplus \cdots \oplus V_k$ a direct sum.

Definition 29 (Diagnolizable). We say $T: V \to V$ is diagnolizable if there exists V_i 's such that $V = \bigoplus_{i=1}^k V_i$ and $T|_{V_i}$ is multiplication by a fixed scalar $\lambda_i \in \mathbb{F}$.

Definition 30 (Eigenvalue/vector). For a linear operator $T: V \to V$ and $\lambda \in \mathbb{F}$, we call λ an eigenvalue if there exists a nonzero vector v such that $T(v) = \lambda v$; we call such a v an eigenvector.

Remark 6. *v* must be nonzero! This is important for proofs to go forward.

Definition 31 (Eigenspace). For an eigenvalue λ of $T:V\to V$, let $\mathrm{Eig}_V(\lambda):=\{v\in V:Tv=\lambda v\}$ be the eigenspace of T corresponding to λ .

Proposition 25. $Eig_V(\lambda)$ a subspace of V.

Proposition 26. Trace and determinant are conjugation-invariant; ie for $A, B \in M_n(\mathbb{F})$, if there exists $Q \in GL_n(\mathbb{F})$ such that AQ = QB, tr(A) = tr(B) and det(A) = det(B).

Definition 32 (Trace, Determinant of Transformation). For $T:V\to V$ where V finite dimensional, put $\operatorname{tr}(T):=\operatorname{tr}([T]_\beta)$ and $\operatorname{det}(T):=\operatorname{det}([T]_\beta)$ for some/any basis for V.

Remark 7. This is well-defined; $[T]_{\alpha}$, $[T]_{\beta}$ are conjugate for any two bases α , β .

Proposition 27 (\star). T diagonalizable \iff there exists a basis β for V such that $[T]^{\beta}_{\beta} \iff$ there is a basis for V consisting of eigenvectors for T

Proposition 28. A diagonalizable iff $\exists Q \in GL_n(\mathbb{F})$ such that $Q^{-1}AQ$ diagonal, with the columns of Q eigenvectors of A.

Proposition 29. (1) $v \in V$ an eigenvector of T with eigenvalue $\lambda \iff \operatorname{Ker}(\lambda I - T)$, (2) $\lambda \in \mathbb{F}$ an eigenvalue $\iff \lambda I - T$ not invertible $\iff \det(\lambda I - T) = 0$.

Definition 33 (Characteristic polynomial). For $T: V \to V$, put $p_T(t) = \det(tI_V - T)$. For $A \in M_n(\mathbb{F})$, put $p_A(t) := \det(tI_n - A)$.

Proposition 30 (\star). $p_T(t) = t^n - \operatorname{tr}(T)t^{n-1} + \cdots + (-1)^n \det(T)$, ie p_T a polynomial of degree n and \cdots some polynomials of degree n-2.

Corollary 16. $T: V \to V$ has at most n distinct eigenvalues.

Proposition 31. For eigenvalues $\lambda_1, \ldots, \lambda_k$ and corresponding eigenvectors $v_1, \ldots, v_k, \{v_1, \ldots, v_k\}$ linearly independent. Moreover, the eigenspaces $Eig_T(\lambda_i)$ are linearly independent.

Definition 34 (Geometric, Algebraic Multiplicity). For an eigenvalue λ of $T: V \to V$, put

$$m_g(\lambda) := \dim(\operatorname{Eig}_T(\lambda))$$

and call it the geometric multiplicity of λ , and

$$m_a(\lambda) := \max\{k \geqslant 1 : (t - \lambda)^k | p_T(t) \}$$

and call it the algebraic multiplicity of ${\it T}$.

Proposition 32. If $T: V \to V$ has eigenvalues $\lambda_1, \ldots, \lambda_k$, $\sum_{i=1}^k m_g(\lambda_i) \leq n$; moreover, $\sum_{i=1}^k m_g(\lambda_i) = n \iff T$ diagonalizable.

Proposition 33. $m_g(\lambda) \leq m_a(\lambda)$ for any λ .

Sketch. To prove this, you need to use the fact that the characteristic polynomial of T restricted to any T-invariant subspace of V divides the characteristic polynomial of T. \Box

Definition 35. A polynomial $p(t) \in \mathbb{F}[t]$ splits over \mathbb{F} if $p(t) = a(t - r_1) \cdots (t - r_n)$ for some $a \in \mathbb{F}$, $r_i \in \mathbb{F}$.

Remark 8. For an eigenvalue λ of $T: V \to V$, $\sum_{i=1}^k m_a(\lambda_i) = n$

Theorem 18 (* Main Criterion of Diagonalizability). T diagonalizable iff $p_T(t)$ splits and $m_g(\lambda) = m_a(\lambda)$ for each eigenvalue λ of T.

Definition 36 (*T*-cyclic subspace). For $T:V\to V$ and any $v\in V$, the *T*-cyclic subspace generated by v is the space $\mathrm{Span}(\{T^n(v):v\in\mathbb{N}\})$.

Lemma 4. For V finite dimensional, let $v \in V$ and W := T-cyclic subspace generated by v. Then (1) $\{v, T(v), \ldots, T^{k-1}(v)\}$ is a basis for W where $k := \dim(W)$ and (2) if $T^k(v) = a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v)$, then $p_{T_W}(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0$.

Sketch. For (2), write down $[T_W]_{\beta}$ where β as in part (1).

Theorem 19 (\star Cayley-Hamilton). *T satisfies its own characteristic polynomial, namely* $p_T(T) \equiv 0$.

6 INNER PRODUCT SPACES