Transfer Learning

Transfer Learning

http://weebly110810.weebly.com/3 96403913129399.html

http://www.sucaitianxia.com/png/cartoon/200811/4261.html

Dog/Cat Classifier

Data not directly related to the task considered

Similar domain, different tasks domain: feature space/probability

Different domains, same task

task: label space/objective predictive function

Why?

http://www.bigr.nl/website/structure/main.php?page=resear chlines&subpage=project&id=64

http://www.spear.com.hk/Translation-company-Directory.html

Task Considered

Data not directly related

Speech Recognition

You Tube English Chinese

Image Recognition

Medical Images

Text Analysis

Specific domain

Webpages

数据少/标记数据少

Transfer Learning

Example in real life

研究生 on-line

漫畫家 on-line 真城/高木

爆漫王

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled		unlabeled	
Target Data	labelled	Mod	el Fine-tuning		
	unlabeled		Warning: differer different literatur		

Model Fine-tuning

transfer Learning 是用来 做one-shot learning的一种 方式

One-shot learning: only a few examples in target domain

- Task description

- Source data: (x^s, y^s) A large amount
- Example: (supervised) speaker adaption
 - Target data: audio data and its transcriptions of specific user
 - Source data: audio data and transcriptions from many speakers
- Idea: training a model by source data, then finetune the model by target data
 - Challenge: only limited target data, so be careful about **overfitting**

Conservative Training

Layer Transfer

there is sufficient data)

Layer Transfer 运用之妙,存乎一心

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers 往往相似
 - Image: usually copy the first few layers

语音到发音方式 往往不同,但是 发音方式到词汇 往往相似

先整体train,再fix前面几层,train后面的部分:由于前后不配,很有可能坏掉

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, "How transferable are features in deep neural networks?", NIPS, 2014

如果source和target 差别比较大,最好只 用前面的几层,不要太多

Layer Transfer - Image

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, "How transferable are features in deep neural networks?", NIPS, 2014

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning 只关心targe source doma Multitask Learning 同时care	t结果好不好,fine-tune后 in 坏掉就坏掉		
	unlabeled				

Multitask Learning

传统的ML不容易mul ti -task

 The multi-layer structure makes NN suitable for multitask learning

Multitask Learning

- Multilingual Speech Recognition

<u>Similar idea in translation</u>: Daxiang Dong, Hua Wu, Wei He, Dianhai Yu and Haifeng Wang, "Multi-task learning for multiple language translation.", ACL 2015

Multitask Learning - Multilingual

Huang, Jui-Ting, et al. "Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers." *ICASSP, 2013*

Progressive Neural Networks

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	unlabeled	Domain-adversarial training			

Task description

SOURCE

TARGET

- Source data: (x^s, y^s) Training data Target data: (x^t) Testing data

Domain-adversarial training

不同的domain, feature很不一样(t-SNE降维)

Domain-adversarial training

如果都是0,就可以实现domain classifier的要求,但是只有doamain classifier是不够的,要有label predictor

Domain-adversarial training

Maximize label classification accuracy + minimize domain classification accuracy

Maximize label classification accuracy

classification accuracy

This is a big network, but different parts have different goals.

Domain-adversarial training

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Domain-adversarial training

填充了gap

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	Domain-adversarial training Zero-shot learning				

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

- Source data: $(x^s, y^s) \longrightarrow$ Training data
- Target data: (x^t) Testing data

Different tasks

 x^t :

 y^s :

cat

dog

•••••

强机所难

In speech recognition, we can not have all possible words in the source (training) data.

How we solve this problem in speech recognition?
对于训练集没有的词,预测的不是word,而是phoneme,然后再加l exi con去查字典

Representing each class by its attributes

class

Training

Database 丰富且唯一确

attributes

	furry	4 legs	tail	•••
Dog	0	0	0	
Fish	Χ	Χ	0	
Chimp	0	Χ	Χ	
ch	i mp没 ^z	有尾巴		

sufficient attributes for one to one mapping

Representing each class by its attributes

to one mapping

Attribute embedding

f(*) and g(*) can be NN. Training target:

 $f(x^n)$ and $g(y^n)$ as close as possible

What if we don't have database

Attribute embedding + word embedding

$$f^*, g^* = arg \min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*, g^* = arg \min_{f,g} \sum_n max \left(0, k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m)\right)$$

$$\text{Margin you defined} \quad + \max_{m \neq n} f(x^n) \cdot g(y^m)$$

$$\text{Zero loss:} \quad k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m) < 0$$

$$\underbrace{f(x^n) \cdot g(y^n)}_{m \neq n} - \max_{m \neq n} f(x^n) \cdot g(y^m) > k$$

$$f(x^n) \text{ and } g(y^n) \text{ as close} \qquad f(x^n) \text{ and } g(y^m) \text{ not as close}$$

Convex Combination of Semantic Embedding

Only need off-the-shelf NN for ImageNet and word vector 不用嵌入空间

Test Image	ConvNet	DeViSE	ConSE(10)
plan cow	lion ne, carpenter's plane boy boot gerhead, loggerhead turtle se	elephant turtle turtleneck, turtle, polo-neck flip-flop, thong handcart, pushcart, cart, go-cart	California sea lion Steller sea lion Australian sea lion South American sea lion eared seal
titi, koa Ilan	etan mastiff titi monkey la, koala bear, kangaroo bear na w, chow chow	kernel littoral, littoral zone, sands carillon Cabernet, Cabernet Sauvignon poodle, poodle dog	dog, domestic dog domestic cat, house cat schnauzer Belgian sheepdog domestic llama, Lama peruana

Example of Zero-shot Learning

Training

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, arXiv preprint 2016

Example of Zero-shot Learning

More about Zero-shot learning

- Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell, "Zero-shot Learning with Semantic Output Codes", NIPS 2009
- Zeynep Akata, Florent Perronnin, Zaid Harchaoui and Cordelia Schmid, "Label-Embedding for Attribute-Based Classification", CVPR 2013
- Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov, "DeViSE: A Deep Visual-Semantic Embedding Model", NIPS 2013
- Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S. Corrado, Jeffrey Dean, "Zero-Shot Learning by Convex Combination of Semantic Embeddings", arXiv preprint 2013
- Subhashini Venugopalan, Lisa Anne Hendricks, Marcus Rohrbach, Raymond Mooney, Trevor Darrell, Kate Saenko, "Captioning Images with Diverse Objects", arXiv preprint 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled 半监督		
Target Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina , Alexis Battle , Honglak Lee , Benjamin Packer , Andrew Y. Ng, Self-taught learning: transfer learning from unlabeled data, ICML, 2007		
	Domain-adversarial training Zero-shot learning		Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self-taught clustering", ICML 2008		

Self-taught learning

原来是sparse coding 现在多是auto-encoder

- Learning to extract better representation from the source data (unsupervised approach)
- Extracting better representation for target data

O T T T					
Domain	Unlabeled data	Labeled data	Classes	Raw features	
Image	10 images of outdoor	Caltech101 image classifi-	101	Intensities in 14x14 pixel	
classification	scenes	cation dataset		patch	
Handwritten char-	Handwritten digits	Handwritten English char-	26	Intensities in 28x28 pixel	
acter recognition	("0"-"9")	acters ("a"-"z")		character/digit image	
Font character	Handwritten English	Font characters ("a"/"A" –	26	Intensities in 28x28 pixel	
recognition	characters ("a"-"z")	"z"/"Z")		character image	
Song genre	Song snippets from 10	Song snippets from 7 dif-	7	Log-frequency spectrogram	
classification	genres	ferent genres		over 50ms time windows	
Webpage	100,000 news articles	Categorized webpages	2	Bag-of-words with 500 word	
classification	(Reuters newswire)	(from DMOZ hierarchy)		vocabulary	
UseNet article	100,000 news articles	Categorized UseNet posts	2	Bag-of-words with 377 word	
classification	(Reuters newswire)	(from "SRAA" dataset)		vocabulary	

Acknowledgement

• 感謝劉致廷同學於上課時發現投影片上的錯誤