2019-2020 学年第一学期《大学物理 II》(课内)期中试卷

(机电学院 2018 级)

			(小山七子	例 2010 级 /			
授	课班号		学号		姓名		
题号 题分	40	1 15	2 15	3 15	4 15	总分	审核
得分	-	-	-				
1,	[空题 (每空 2 分 (1)一个半径 _。 离球心 <i>r</i> 处的	为 R,均匀带有	~		<u> </u>	阅卷	得分 当 r>R 时,
(2)	=)与一个带电正 =	面密度为 σ 的无	限大平面距			E=	;
试 I	两块"无限大 写出各区域的 ^E 区 <i>E</i> 的大小 区 <i>E</i> 的大小	电场强度 <i>E</i> 。(﴿	规定水平向; ; II区 <i>E</i> 的	右为正方向)		σ>0)及−σ, 2σ I II	$1-\sigma$
量	点电荷 q_1 、 q_2 $\oint ar{E} \cdot dar{s} = \underline{\qquad \qquad }$ q_4 ")在闭合面		该式子中的	$ ilde{\it E}$ 为点电荷_			

4、带电量为 q 的一对电偶极子,正负电荷相距为 l,中点为 C,如图放置;已知 AC=d,则图示中 A 处电场强度大小 E=______,方向向_____(填"上"、"下"、"左"、"右");电势 V=_____。

5、如图 $\overline{MN}=2R$,OCD 是以 N 为圆心 R 为半径的半圆弧,在 M 点有一电量为+q 的点电荷,N 点有一电量为-q 的点电荷,O 点电势为______。现将一单位正电荷从 O 点沿半圆

弧轨道 *OCD* 移到 *D* 点,则外力作功为_____。

- 6、由一半径为 R、均匀带有电量 Q 的圆盘产生的电场空间中,在圆心的电场强度大小为 E=________,电势大小为 V=_______。
- 7、在电容为 C_0 的平行板空气电容器中,平行地插入一厚度为两极板距离三分之一的金属板,则电容器的电容 C=_____。

二、计算题(60分)

1、(15分)若电荷均匀地分布在长为L的细棒上,求在棒的垂直平分线上,离棒距离为r处的电场强度。

阅卷	得分

2、(15 分)如图所示为一同轴电缆(由两个很长且彼此绝缘的同轴金属圆柱体构成),设内圆柱的电势为 V_1 ,半径为 R_1 ;外圆柱接地,内外半径分别为 R_2 和 R_3 ,两圆柱体之间及外圆柱之

外均为空气。求(1)内圆柱体的带电线密度;(2)同轴电

缆内的电场强度分布。

阅卷	得分

3、(15 分) 如图所示,有三个点电荷 Q_1 、 Q_2 、 Q_3 沿一条直线等间距分布,间距为 d,且 Q_1 = Q_3 =Q。已知点电荷 Q_1 所受合力为零,求在固

阅卷	得分

定 Q_1 、 Q_3 的情况下,将 Q_2 从点 O 点移到无穷远处外力所做的功。

4、(15分) 如图,在一个半径为 R_1 的金属球 A 外面套有一同心金属球 B。已知球壳 B 的内外半径分别为 R_2 和 R_3 。设 A 球总电量 q,球壳 B 的总电量为 Q。求:

阅卷	得分

- (1) 求球壳B内、外表面上所带的电荷及球A和球壳B的电势;
- (2) 求半径在 R_1 和 R_2 之间的球壳中的电场能量;
- (3) 将金属球 A 接地,求金属球 A 所带的电量 q 。

