2024年广东省初中学业水平考试

数学

本试卷共 4 页, 25 小题, 满分 120 分. 考试用时 120 分钟.

注意	意事项:	1.	答卷前,	考生务	必用黑色字迹的钢	笔或组	签字笔将自己的准考	证号	、姓名、考
		2.	位置填涂 作答选择	注自己的 经题时, 〔涂黑;	考场号和座位号. 将 选出每小题答案后	F条形 ,用2	色在"考场号"和"是码粘贴在答题卡"穿路铅笔把答题卡上对争后,再选涂其他答	、形和 应题	马粘贴处". 目选项的答
		3.	, , , –		黑色字迹的钢笔或	签字编	笔作答,答案必须写	在答	题卡各题目
						-	划掉原来的答案,然 E		写上新的答
		4				-	要求作答的答案无效。 旨,将试卷和答题卡·		 交同.
		٠.		V NV 1.1 D V	© 1.11 111. 3 1/4			<i>)</i> Ι.	Д — ·
_,	选择题	<u>[</u> ::	本大题共	10 小题。	, 每小题 3 分, 共	30 分	. 在每小题给出的四个	个选:	项中,只有
一项是符合题目要求的.									
1.	下列各	数□	中,最大的						
	A. 0			B.	-2	C.	π	D.	1
2.	2. 某科技公司 2024年1月~6月共收入 550万元, "550万"用科学计数法表示为								
	A. 5.5	\times 1	0^{5}	B.	5.5×10^{6}	C.	55×10^{5}	D.	0.55×10^{6}
3.	在一次	考证	式中,某个	个学习小	组的5位同学成绩	分别	为 90、88、86、93、	96,	则这个学习小组所
	有同学	的 ^s	平均分为						
	A. 88.	8		B.	90.6	C.	91.4	D.	92.2
4.	已知一个三角形两条边的长度分别为5、8,则第三边的长度不可能为								
	A. 7			B.	9	C.	11	D.	13
5.	已知 a	> 0	, b > 0,	则一次i	函数 $y = -ax + b$ 的	图像	不经过的象限是		
	A. 第	- •					第三象限		
6.	把函数 $y = (x - 5)^2 + 4$ 的图像向左平移 2 个单位长度,平移后得到的函数的解析式为								
	•						$y = (x - 3)^2 + 4$		
7.	已知菱	形的	的两条对角	角线长度	之和为 14,长度之	比为	3:4,则该菱形的周	长为	
	A. 10			B.	20	C.	30	D.	40

8. 如题 8 图,在 $\triangle ABC$ 中, $\angle ABC = 90^\circ$,将 BC 边以 B 为旋转中心顺时针旋转 60° 得到线段 BC',此时点 C'正好落在 AC 上. 若点 C'到 BC 的距离为 $\sqrt{3}$,则 $\triangle ABC$ 的周长为

A. $3 + \sqrt{3}$

B. $3 + 3\sqrt{3}$

C. $6 + \sqrt{3}$

- D. $6 + 2\sqrt{3}$
- 9. 己知 x_1 、 x_2 是方程 $x^2 + 2\sqrt{2026}x + 2024 = 0$ 的两个根 $(x_1 > x_2)$,则 $x_1 x_2$ 的值为
 - A. $2\sqrt{2}$
- B. 4

10. 如题 10图, 在矩形 ABCD中, 点 $E \neq CD$ 上一点 (DE > CE),

连接 AE, 将 $\triangle ADE$ 沿 AE 折叠得到 $\triangle AFE$, EF 交 AB 于点 G,

- C. $4\sqrt{2}$

题 10 图

D. 8

作 $\angle BGE$ 的角平分线 GH 交 BC 于点 H,连接 EH. 若 $EG \bot EH$,

AB = 4, $AD = \sqrt{3}$,则 CH 的长度为

- A. 1
- C. $\frac{\sqrt{3}}{2}$

- B. $\frac{1}{2}$
- D. $\frac{\sqrt{3}}{3}$
- 二、填空题: 本大题共6小题, 每小题3分, 共18分.
- 11. 因式分解: $x^2 4 =$ _____.
- 12. 不等式 $3x 3 \ge x + 1$ 的解集是_____.
- 13. "见贤思齐焉, 见不贤而内自省也."在这个句子中任选一个汉字, 选中"贤"的概率为____
- 14. 一个圆锥底面圆的半径是 10cm, 母线长 30cm, 则该圆锥侧面展开图的圆心角度数为_____
- 15. 己知 $a^2 2a + b(2a + b 2) = 0$,则 a + b 的值为_____.
- 16. 如题 16 图,在平面直角坐标系中,点 A、B 分别为 y 轴正半轴、x 轴 正半轴上的点,连接 AB,将线段 AB 绕点 A 逆时针旋转 90°得到 AC,连接 BC,反比例函数 $y=\frac{k}{x}$ 的图像经过点 C,点 D 为 $\triangle ABC$ 内一点. 若 $BC=4\sqrt{2}$,CD=4, $\angle OBD=45$ °, $OA/\!\!/\!\!/CD$,则 k 的值为_____.

- 三、解答题(一): 本大题共4小题,第17、18题各4分,第19、20题各6分,共20分.
- 17. 计算: $\sin 30^{\circ} + \left|1 \sqrt{2}\right| + \left(\frac{1}{2}\right)^{-2}$.
- 18. 己知 $(a-3)^2 + |b+4| = 0$,求 $(a+b)^{2024}$ 的值.
- 19. 一架无人机执行巡航任务时的飞行高度 h(单位: m)与飞行时间 t(单位: s)满足函数关系式 $h = -0.1t^2 + 10t$,求无人机达到最大高度所需的时间,并求出最大高度.

数学试题 第2页(共4页)

20. 如题 20 图,在一次课外实践活动中,小明打算测量科创楼的高度. 经过测量,小明在明志楼的楼顶 A 处测得 $\angle ADC = 60^{\circ}$, $\angle BAD = 30^{\circ}$. 已知明志楼的高度 AC 为 24m,请你帮助小明求出科创楼的高度 BD.

- 四、解答题(二): 本大题共 3 小题, 第 21 小题 8 分, 第 22、23 小题各 10 分, 共 28 分.
- 21. 雷达是一种利用电磁波探测目标的电子设备,已广泛应用于社会发展. 题 21 图为雷达探测范围示意图,点 O 为雷达探测中心. 已知有一架飞机以 120m/s 的速度匀速从点 A 飞行至点 B,共用时 5s.

- (1) 若飞机距离雷达中心的最小距离为300m, 求雷达的探测半径;
- (2) 在(1)的条件下,求阴影部分的面积.

题 21 图

- 22. 某商家为了迎接 2024 年春节销售旺季,对相关商品的价格进行了调整.已知每盏灯笼的售价为 20元,每副对联的售价为 15元.小明一家购买了 2 盏灯笼和 2 副对联,商家盈利 40元;小红一家购买了 3 盏灯笼和 5 副对联,商家盈利 80元.
 - (1) 求灯笼和对联的进价;
 - (2) 经过调研分析,发现灯笼每盏售价为 15 元的时候,一天可售出 50 盏,平均每盏灯笼的售价提高 1 元时,每天少售出 2 盏.设每盏灯笼的售价为 *a* 元,每天销售灯笼的总利润为 *W* 元,求 *W* 关于 *a* 的函数解析式及其最大利润.

23. 综合与实践

折纸艺术不仅具有艺术审美价值,还蕴含数学运算和空间几何原理;在折叠前需要经过数学运算,才能完成折纸作品.为了探究折纸艺术中蕴含的数学原理,数学实践小组决定开展折纸活动. 素材:一张正方形纸板:

步骤 1: 如题 23-1 图,将正方形纸板沿对角线对折,得到折痕 $AC \setminus BD$,交点为 O:

步骤 2: 如题 23-2 图,将正方形纸板对折,得到折痕 EF,折痕 EF 经过点 O;

步骤 3: 如题 23-3 图,将正方形纸板的 CD 边折叠至 CD'处,得到折痕 CG,点 D'在 EF 上.

- (1)【猜想与证明】猜想 $\angle ACG$ 的度数,并证明你的猜想;
- (2)【实践与运用】若正方形纸板的边长 AB 为 10cm,求 ED'的长度.

数学试题 第3页(共4页)

- 五、解答题(三): 本大题共2小题, 每小题12分, 共24分.
- 24. 如题 24 图,在平面直角坐标系中,抛物线 $y = ax^2 + bx + c$ 从左到右分别交x轴于点 A、B,交 y 轴于点 D(0, 3),顶点为点 C(1, 4). 在抛物线的对称轴上有一点 G,连接 DG,以 DG 为边向下构造正方形 DEFG. 点 G 从点 G 开始以每秒 1 个单位长度的速度向下运动. 设点 G 的运动时间为 t(单位: s, t > 0).
 - (1) 求抛物线的解析式;
 - (2) 连接 CG、BG、BC,当 $\triangle CGB$ 的一个内角为 60°时,求 t 的值;
 - (3) 当抛物线与线段 EF 有交点时,求t 的取值范围.

25. 综合探究

如题 25 图,在 $Rt\triangle ABC$ 中, $\angle ACB = 60^{\circ}$,点 D 为 AC 上一点,过点 A 作 AE//BC,连接 BE、BD, $\angle DBE = 60^{\circ}$,BE 交 AC 于点 F.

- (1)【情境导入】当 $\angle CBD = \angle ABE$ 时,直接写出 $\angle ABE$ 的度数;
- (2) 【思考探究】在(1)的条件下,若 $BD EF = \sqrt{6}$,求 CD的长度;
- (3)【拓展延伸】若 CD=1,设 $S=\frac{S_{\triangle BDF}}{S_{\triangle AFF}}$,AE=n,求 S 关于 n 的函数表达式.

数学试题 第4页(共4页)