

Bố Cục

Tổng quan đề tài

Cơ sở lí thuyết

Tổng quan & Tiền xử lí dữ liệu

\/ Ap dụng giải thuật

Kết luận & Đánh giá

TỔNG QUAN ĐỀ TÀI

Sơ lược về đề tài

Mục tiêu & Phương pháp nghiên cứu

CƠ SỞ LÍ THUYẾT

BANG được sử dụng để xử lý tập dữ liệu lớn để so sánh về mật độ dựa trên các mạng lưới ô nhằm tìm trung tâm và kết hợp các lưới ô xung quanh giúp gia tăng hiệu suất

- BANG-Structure chia không gian giá trị thành các phần nhỏ hơn và quản lý các điểm dữ liệu bằng một tập hợp các khối hình chữ nhật xung quanh chúng
- Kết quả của quá trình gom cụm là việc tạo ra một Dendrogram như biểu đồ bên trái

BANG-Structure

Cấu trúc BANG phân chia không gian giá trị thành các khối hình chữ nhật và quản lý các điểm dữ liệu thông qua tập hợp giúp tạo ra một cấu trúc có tổ chức để hiệu quả phân chia mẫu bao gồm các thành phần sau:

- Thư mục lưới
- Vùng lưới
- Khối dữ liệu
- Vùng khối

Density Index Algorithm

Thuật toán này được sử dụng trong BANG-Clustering dùng để tính toán chỉ số mật độ cho từng khối dữ liệu trong không gian giá trị

$$V_B = \prod e_{B_i}$$
 , $i = 1,2,3,...,k$

Sau khi tính xong thể tích của khối, nhóm tiến hành tính chỉ số mật độ của khối

$$D_B = \frac{P_B}{V_B}$$

Erich Schikuta and Martin Erhart, The BANG-Clustering System: Grid-Based Data Analys

Sắp xếp các khối theo chỉ số mật độ giảm dần. Từ đó xây dựng các trung tâm cụm mới hoặc nhóm với các cụm hiện có

Neighbors

Trong cấu trúc BANG, có hai loại "neighborhood" có thể được phân biệt là "normal neighborhood" và "refined neighborhood".

Dendrogram

Dendrogram được tính toán trực tiếp bởi thuật toán phân cụm BANG.

Nếu R1 là lân cận của R2 và R2 là lân cận của R3

- R1 > R2 > R3, thì xây dựng với R1, R2, và R3 một cụm (tìm kiếm lân cận bắt đầu từ R3).
- R1 > R2 < R3, thì xây dựng với R1, R2, và R3 một cụm (tìm kiếm lân cận bắt đầu từ R2).

Phương Pháp Thực Hiện o

Bước 2 Tính mật độ các khối dữ liệu

Bước 3

Sắp xếp khối dữ liệu theo chỉ số mật độ

Bước 4 Xác định khối trung tâm

Bước 6 Lặp lại quá trình

'Country Socioeconomic Data' được lấy từ Kaggle, bộ dữ liệu cung cấp 1 loạt thông tin về hình thái kinh tế xã hội. Bộ dữ liệu bao gồm 10 thuộc tính với 167 quan sát, tương đương với 167 quốc gia

Thuộc tính	Mô tả	
country	Tên quốc gia	
child_mort	Tỷ lệ tử vong của trẻ em đưới 5 tuổi trên 1000 trẻ em	
exports	Xuất khẩu hàng hóa và dịch vụ, tính theo % trên tổng GDP	
health	Tổng chi tiêu y tế theo % tuổi trong Tổng GDP	
imports	Nhập khẩu hàng hóa và dịch vụ. Tính theo % tuổi trong Tổng GDP	
income	Thu nhập ròng mỗi người	
inflation	Đo lường tốc độ tăng trưởng hàng năm của Tổng GDP	
life_expec	Số năm trung bình mà một đứa trẻ mới sinh có thể sống được nếu mô hình tử vong hiện tại được giữ nguyên	
total_fer	Số con mà mỗi phụ nữ sẽ sinh ra nếu tỷ suất sinh theo độ tuổi hiện tại không đổi	
gdpp	GDP bình quân đầu người. Được tính bằng Tổng GDP chia cho tổng dân số.	

	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
0	Afghanistan	90.2	55.30	41.9174	248.297	1610	9.44	56.2	5.82	553
1	Albania	16.6	1145.20	267.8950	1987.740	9930	4.49	76.3	1.65	4090
2	Algeria	27.3	1712.64	185.9820	1400.440	12900	16.10	76.5	2.89	4460
3	Angola	119.0	2199.19	100.6050	1514.370	5900	22.40	60.1	6.16	3530
4	Antigua and Barbuda	10.3	5551.00	735.6600	7185.800	19100	1.44	76.8	2.13	12200

BỘ DỮ LIỆU	COUNTRY	TRƯỚC	KHI	χử	LÝ	MISSING	VALUES
country	0						
child_mort	0						
exports	0						
health	0						
imports	0						
income	0						
inflation	0						
life_expec	0						
total_fer	0						
gdpp	0						
dtype: int6	54						

Chuẩn hóa dữ liệu định lượng bằng StandardScaler()

```
pca = IncrementalPCA(n_components=2)
# Putting feature variable to X
X = df.drop(['country'],axis=1)
# Putting response variable to y
y = df['country']
pca.fit(X)
```

IncrementalPCA

IncrementalPCA(n_components=2)

Giảm chiều dữ liệu

	0	1
0	-3.261996	0.661249
1	1.278561	-1.302147
2	0.847099	0.528581
3	-2.154828	3.190433
4	3.083267	2.047718
		•••
106	-1.049480	-0.096031
107	-0.605183	-0.817434
108	-0.295497	-0.835275
109	-1.930999	1.433658
110	-2.910195	1.470137
111 ro	ws × 2 colur	nns

• Chạy giải thuật và trực quan phân cụm Đối với thư viện pyclustering, các thuật toán phân nhóm yêu cầu tính toán khoảng cách giữa các điểm dữ liệu phải theo dạng số, nên phải xóa hoặc chuyển sang giá trị định lượng để phục vụ tiếp cho công việc chạy mô hình

```
data = df_pca.iloc[:,:].values
data
array([[-3.26199558, 0.66124889],
        1.27856065, -1.30214717],
        0.84709947, 0.5285812 ],
        -2.15482828, 3.19043318],
         3.08326668, 2.04771828],
        0.35956019, -1.19054485],
        1.51146601, 1.12415075],
       -1.37125973, -1.31774923],
        2.63950226, 0.9319004],
        1.11133214, -0.99444023],
       -2.95154199, -0.40260878],
       -0.17403817, -1.0131912 ],
        -0.80039719, -0.5952445 ],
```



```
__init__()
def pyclustering.cluster.bang.bang.__init__ (
                                                data.
                                                levels.
                                                ccore = False.
                                             ** kwargs
Create BANG clustering algorithm.
Parameters |
        [in] data
                       (list): Input data (list of points) that should be clustered.
                       (uint): Amount of levels in tree that is used for splitting (how
        [in] levels
                       many times block should be split). For example, if amount of
                       levels is two then surface will be divided into two blocks and
                       each obtained block will be divided into blocks also.
                       (bool): Reserved positional argument - not used yet.
       [in] **kwargs Arbitrary keyword arguments (available arguments: 'observe').
```

```
# Prepare algorithm's parameters.
levels = 8

# Create instance of BANG algorithm.
bang_instance = bang(data, levels, metric='euclidean')
bang_instance.process()
```

• Để hoàn thành phân cụm cần sử dụng hàm process() để thực hiện giải thuật và trả các về các thông tin đầu ra.

```
clusters = bang_instance.get_clusters()
noise = bang_instance.get_noise()
directory = bang_instance.get_directory()
dendrogram = bang_instance.get_dendrogram()
```

```
for i, cluster in enumerate(clusters):
    print(f'Cum {i + 1}: Số lượng điểm {len(cluster)}')

Cụm 1: Số lượng điểm 102

Cụm 2: Số lượng điểm 3

Cụm 3: Số lượng điểm 2

Cụm 4: Số lượng điểm 1

Cụm 5: Số lượng điểm 1

Cụm 6: Số lượng điểm 1

Cụm 7: Số lượng điểm 1
```

Để dễ hình dung hơn sự phân bố theo dạng lưới ô tiếp tục tiến hành việc vẽ những biểu đồ bằng các hàm thuộc lớp thư viện bang_visualizer().

show_clusters(
)

Phân tích cụm cho bộ dữ liệu gốc dựa trên kết quả nhãn

Yếu tố kinh

Phân tích cụm cho bộ dữ liệu gốc dựa trên kết quả nhãn

2. Yếu tố dân số

+-					L	+
ĺ	Cluster	Bigger	Smaller	Minus	Per > mean	Per < 0
+-	+			+	h	++
	0	73	29	22	71.56862745098039	21.568627450980394
	1	2	1	1	66.6666666666666	33.333333333333
	2	2	0	0	100.0	0.0
	all	77	30	23	71.96261682242991	21.49532710280374
+-	+		+	+	<u> </u>	+

2. So sánh với thuật toán phân cụm HAC

2. So sánh với thuật toán phân cụm HAC

/	+/	+/	+	4	+
Cluster	Bigger	Smaller	Minus	Per > mean	Per < 0
0	22	8	0	73.3333333333333	0.0
1 /	17	4	0	80.95238095238095	0.0
2 /	2 /	9	3	18.181818181818183	27.272727272727
3 /	13	19	3	40.625	9.375
4	11	6	1 1	64.70588235294117	5.88235294117647
all	65	46	7	58.55855855856	6.306306306306306
/	+/	4/	4/	4/	+

2. So sánh với thuật toán phân cụm K-Means

2. So sánh với thuật toán phân cụm K-Means

Cluster	+ Bigger	+ Smaller	Minus	Per > mean	Per < 0
0	30	14	0	68.18181818181817	0.0
1	12	9	0	57.14285714285714	0.0
2	27	19	0	58.69565217391305	0.0
all	69	42	0	62.16216216216216	0.0

3. Độ phức tạp Big-O Notation

Bước 1: Khởi tạo cấu trúc

Bước 2: Tính thất độ của các khối dữ liệu

$O[n^2]$	log	(n)]

Names	#Instances	#Features	#Classe:
Mickey	1200	2	3
Gu	1050	2	2
Jain	373	2	2
ThreeD	1300	2	3
DiffD	863	2	4
Moons	1000	2	2
Shape3	2250	2	3
Handl	715	2	3
Yinyang	3200	2	5
T4	7326	2	6
T7	9208	2	9
SF	16,384	2	4
ORL	100	10,307	10
Dermatology	366	34	6
Control	600	60	6
Dig	1797	64	10
Optdigits	5620	64	10
Satimage	6435	36	6

Hình X. Các tập dữ liệu được sử dụng trong thực nghiệm

Hình X. Biểu đồ đường so sánh thời gian chạy của các thuật toán khác nhau

......

Kết luận & Đánh giá

Bài đồ án đã khảo sát các chỉ số kinh tế-xã hội của các quốc gia trên thế giới và sử dụng thuật toán phân cụm BANG để phân loại chúng vào các nhóm có đặc điểm tương tự. Bài đồ án đã đạt được một số kết quả vì đã phân cụm các nước có tương đòng với nhau thành các nhóm

THANK YOU

