Contents

L	Mea	Measure space 1.1 Defining measure spaces			
	1.1				
		1.1.1	Measure space	-	
		1.1.2	Axioms for measures	-	
	1.2 Examples of measure spaces		ples of measure spaces	2	
		1.2.1	The counting measure	2	
		1.2.2	The probability measure	2	

1 Measure space

1.1 Defining measure spaces

1.1.1 Measure space

In a metric space, the structure was defining a value for each two elements of the set.

In a measure space, the structure defines a value of subsets of the set.

A measure space includes the set X, subsets of the set, Σ , and a function μ which maps from Σ to \mathbb{R} .

1.1.1.1 Sigma algebra

Requirement for Σ .

1.1.2 Axioms for measures

1.1.2.1 Measures are non-negative

 $\forall E \in \Sigma : \mu(E) \ge 0$

1.1.2.2 The measure for the null set is 0.

$$\mu()=0$$

1.1.2.3 Disjoint sets are additive

$$\mu(\vee_{k=1}^{\infty} E_k) = \sum \mu(E_k)$$

Where all elements E_k are disjoint. That is, they have no elements in common.

1.2 Examples of measure spaces

1.2.1 The counting measure

 $\mu(E)$

This provides the number of elements in E.

1.2.2 The probability measure

This is discussed in more detail in Statistics.