The Relative Eigenvector and Pure Tensor Problems

Alex Ryba, Queens College, CUNY

Groups, Nilpotence and Tensors 2023 Colorado State University, 04/29/2023

Let A and B be matrices with the same size. A relative eigenvector v with relative eigenvalue λ satisfies $vB = \lambda vA$.

Let A and B be matrices with the same size. A relative eigenvector v with relative eigenvalue λ satisfies $vB = \lambda vA$.

Problem (Relative Eigenvectors)

Find the relative eigenvectors and the corresponding relative eigenspaces for matrices A and B.

Let A and B be matrices with the same size. A relative eigenvector v with relative eigenvalue λ satisfies $vB = \lambda vA$.

Problem (Relative Eigenvectors)

Find the relative eigenvectors and the corresponding relative eigenspaces for matrices A and B.

The Eigenvector Problem: B is square and A = I.

Let A and B be matrices with the same size. A relative eigenvector v with relative eigenvalue λ satisfies $vB = \lambda vA$.

Problem (Relative Eigenvectors)

Find the relative eigenvectors and the corresponding relative eigenspaces for matrices A and B.

The Eigenvector Problem: B is square and A = I.

Definition

If matrices A, B over k have same size, v is a relative eigenvector if vA and vB lie in a 1-dimensional space.

The difference is that we add the nullspace of *A* to the set of relative eigenvectors.

Definition

A simultaneous eigenvector v for A_1, A_2, \ldots, A_n satisfies: $vA_1 = \lambda_1 v, \qquad vA_2 = \lambda_2 v, \qquad \ldots, \qquad vA_n = \lambda_n v.$

Definition

A simultaneous eigenvector v for A_1, A_2, \ldots, A_n satisfies:

$$vA_1 = \lambda_1 v, \qquad vA_2 = \lambda_2 v, \qquad \dots, \qquad vA_n = \lambda_n v.$$

Alternative: vI, vA_1 , vA_2 , ..., vA_n span a 1-dimensional space.

Definition

A simultaneous eigenvector v for A_1, A_2, \ldots, A_n satisfies:

$$vA_1 = \lambda_1 v, \qquad vA_2 = \lambda_2 v, \qquad \dots, \qquad vA_n = \lambda_n v.$$

Alternative: vI, vA_1 , vA_2 , ..., vA_n span a 1-dimensional space.

Problem (Relative Eigenvectors)

Given $a_i: X \to Y$, $1 \le i \le n$, find all vectors x such that xa_1, xa_2, \ldots, xa_n lie in a 1-dimensional space.

Definition

A simultaneous eigenvector v for A_1, A_2, \ldots, A_n satisfies:

$$vA_1 = \lambda_1 v, \qquad vA_2 = \lambda_2 v, \qquad \dots, \qquad vA_n = \lambda_n v.$$

Alternative: vI, vA_1 , vA_2 , ..., vA_n span a 1-dimensional space.

Problem (Relative Eigenvectors)

Given $a_i: X \to Y$, $1 \le i \le n$, find all vectors x such that xa_1, xa_2, \ldots, xa_n lie in a 1-dimensional space.

Alternative: there exist scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ and a vector y with:

$$xa_1 = \lambda_1 y, \qquad xa_2 = \lambda_2 y, \qquad \dots, \qquad xa_n = \lambda_n y.$$

Definition

A simultaneous eigenvector v for A_1, A_2, \ldots, A_n satisfies: $vA_1 = \lambda_1 v, \quad vA_2 = \lambda_2 v, \quad \ldots, \quad vA_n = \lambda_n v.$

Alternative: vI, vA_1 , vA_2 , ..., vA_n span a 1-dimensional space.

Problem (Relative Eigenvectors)

Given $a_i: X \to Y$, $1 \le i \le n$, find all vectors x such that xa_1, xa_2, \ldots, xa_n lie in a 1-dimensional space.

Alternative: there exist scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ and a vector y with:

$$xa_1 = \lambda_1 y, \qquad xa_2 = \lambda_2 y, \qquad \dots, \qquad xa_n = \lambda_n y.$$

If a_1 has a right inverse r, this reduces to a simultaneous eigenvector problem. Here, $yr = \frac{xa_1r}{\lambda_1} = \frac{x}{\lambda_1}$. Hence, x is a simultaneous eigenvector for the maps a_2r , a_3r , ... a_nr .

A typical element in $Y \otimes Z$ is a finite sum $\sum y_i \otimes z_i$, where $y_i \in Y, z_i \in Z$.

A typical element in $Y \otimes Z$ is a finite sum $\Sigma y_i \otimes z_i$, where $y_i \in Y, z_i \in Z$.

Definition

A pure tensor in $Y \otimes Z$ is a special element $y \otimes z$.

A typical element in $Y \otimes Z$ is a finite sum $\Sigma y_i \otimes z_i$, where $y_i \in Y, z_i \in Z$.

Definition

A pure tensor in $Y \otimes Z$ is a special element $y \otimes z$.

Problem (Pure Tensors)

Given k-vector spaces Y and Z and $X \leq Y \otimes Z$. Find all pure tensors in $X \otimes \overline{k}$.

A typical element in $Y \otimes Z$ is a finite sum $\Sigma y_i \otimes z_i$, where $y_i \in Y, z_i \in Z$.

Definition

A pure tensor in $Y \otimes Z$ is a special element $y \otimes z$.

Problem (Pure Tensors)

Given k-vector spaces Y and Z and $X \leq Y \otimes Z$. Find all pure tensors in $X \otimes \overline{k}$.

Let b_1, \ldots, b_n be a basis of the dual space of Z. We have maps:

$$a_i = 1 \otimes b_i : Y \otimes Z \to Y \otimes k \cong Y.$$

A pure tensor $x=y\otimes z$ is a relative eigenvector for the maps $a_1,\ldots a_n$. Because images $xa_i=(a_i(z))y$ are proportional. Conversely, if an element of $Y\otimes Z$ has proportional images under these maps then it is a pure tensor.

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

Then the *G*-invariant algebra $C = C_A(B)$ is non-trivial.

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

Then the *G*-invariant algebra $C = C_A(B)$ is non-trivial.

B and C contain commuting non-trivial irreducible G-submodules I and J.

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

Then the *G*-invariant algebra $C = C_A(B)$ is non-trivial.

B and C contain commuting non-trivial irreducible G-submodules I and J.

Options for I and J are parameterized by $v_I \in \overline{k}^m$, $v_J \in \overline{k}^n$, where m and n are the multiplicities of I and J in the module Soc(A).

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

Then the *G*-invariant algebra $C = C_A(B)$ is non-trivial.

B and C contain commuting non-trivial irreducible G-submodules I and J.

Options for I and J are parameterized by $v_I \in \overline{k}^m$, $v_J \in \overline{k}^n$, where m and n are the multiplicities of I and J in the module Soc(A).

I and J commute iff $v_I \otimes v_J$ lies in a computable subspace $X \leq k^m \otimes k^n$, a Pure Tensor Problem.

In a recent J. Alg. paper, I prove that an absolutely irreducible kG-module V either has a tensor decomposition $V \cong U \otimes W$ or is induced iff $A = \operatorname{Hom}_k(V, V)$ has a proper G-invariant subalgebra B.

Then the *G*-invariant algebra $C = C_A(B)$ is non-trivial.

B and C contain commuting non-trivial irreducible G-submodules I and J.

Options for I and J are parameterized by $v_I \in \overline{k}^m$, $v_J \in \overline{k}^n$, where m and n are the multiplicities of I and J in the module Soc(A).

I and J commute iff $v_I \otimes v_J$ lies in a computable subspace $X \leq k^m \otimes k^n$, a Pure Tensor Problem.

A similar approach detects embeddings of finite groups into exceptional groups of Lie type.

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

Let $\dim(X) = I, \dim(Y) = m, \dim(Z) = n$, and pick b_Y, b_Z as bases of Y and Z.

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

Let $\dim(X) = I, \dim(Y) = m, \dim(Z) = n$, and pick b_Y, b_Z as bases of Y and Z.

An $I \times mn$ matrix M_X gives a basis of X relative to $b_Y \otimes b_Z$.

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

Let $\dim(X) = I, \dim(Y) = m, \dim(Z) = n$, and pick b_Y, b_Z as bases of Y and Z.

An $I \times mn$ matrix M_X gives a basis of X relative to $b_Y \otimes b_Z$.

The column nullspace N_X of M_X is an $nm \times (nm - l)$ matrix with: $M_X N_X = 0$.

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

Let $\dim(X) = I, \dim(Y) = m, \dim(Z) = n$, and pick b_Y, b_Z as bases of Y and Z.

An $I \times mn$ matrix M_X gives a basis of X relative to $b_Y \otimes b_Z$.

The column nullspace N_X of M_X is an $nm \times (nm - l)$ matrix with: $M_X N_X = 0$.

The pure tensors in $X \otimes \overline{k}$ satisfy:

$$((y_1,y_2,\ldots,y_m)\otimes(z_1,z_2,\ldots,z_n))N_X=0.$$

The Pure Tensor Problem: Identify pure tensors in $X \leq Y \otimes Z$.

Let $\dim(X) = I, \dim(Y) = m, \dim(Z) = n$, and pick b_Y, b_Z as bases of Y and Z.

An $I \times mn$ matrix M_X gives a basis of X relative to $b_Y \otimes b_Z$.

The column nullspace N_X of M_X is an $nm \times (nm - l)$ matrix with: $M_X N_X = 0$.

The pure tensors in $X \otimes \overline{k}$ satisfy:

$$((y_1,y_2,\ldots,y_m)\otimes(z_1,z_2,\ldots,z_n))N_X=0.$$

mn - l (quadratic) polynomial conditions on n + m unknowns.

Linear Method

Linear Method

The Relative Eigenvector Problem for 2 maps: Given a and b:

 $X \rightarrow Y$, compute the relative eigenvectors with $vb = \lambda va$.

Linear Method

The Relative Eigenvector Problem for 2 maps: Given a and b: $X \to Y$, compute the relative eigenvectors with $vb = \lambda va$.

A (linear) recursion: In the base case, map a has a right inverse r. We have the eigenvector problem for the map br.

Otherwise, write N for the non-zero nullspace of a and M for its image Nb. Both a and b map N to M, so there are induced maps $[a], [b]: X/N \to Y/M$. A relative eigenvector x for a and b maps to a relative eigenvector x+N for [a] and [b]. The following lemma shows that relative eigenvectors lift back from [a] and [b] to a and b.

Otherwise, write N for the non-zero nullspace of a and M for its image Nb. Both a and b map N to M, so there are induced maps $[a], [b]: X/N \to Y/M$. A relative eigenvector x for a and b maps to a relative eigenvector x+N for [a] and [b]. The following lemma shows that relative eigenvectors lift back from [a] and [b] to a and b.

Lemma

Suppose that x + N is a relative eigenvector for [a] and [b] with $(x + N)[b] = \lambda(x + N)[a]$. Then the set of lifting vectors $x^{\dagger} \in x + N \subset X$ for which $x^{\dagger}b = \lambda x^{\dagger}a$ is a (non-empty) coset of $N(a) \cap N(b)$.

Otherwise, write N for the non-zero nullspace of a and M for its image Nb. Both a and b map N to M, so there are induced maps $[a], [b]: X/N \to Y/M$. A relative eigenvector x for a and b maps to a relative eigenvector x+N for [a] and [b]. The following lemma shows that relative eigenvectors lift back from [a] and [b] to a and b.

Lemma

Suppose that x + N is a relative eigenvector for [a] and [b] with $(x + N)[b] = \lambda(x + N)[a]$. Then the set of lifting vectors $x^{\dagger} \in x + N \subset X$ for which $x^{\dagger}b = \lambda x^{\dagger}a$ is a (non-empty) coset of $N(a) \cap N(b)$.

Proof. Let x^* be any lift of x + N to X. Let $y = x^*a$. We have

$$(x+N)[b] = \lambda(x+N)[a] = \lambda(y+M).$$

So, $x^*b = \lambda y + m$, with $m \in M = Nb$. Pick $n \in N$ with nb = m. Let $x^{\dagger} = x^* - n$. Then $x^{\dagger}a = y$ and $x^{\dagger}b = x^*b - nb = \lambda y + m - m = \lambda x^{\dagger}a$.

The Relative Eigenvector Problem: Given

 $a_1, a_2, \ldots, a_n : X \to Y$, compute the set of vectors x such that xa_1, xa_2, \ldots, xa_n is contained in a 1-space. This is NP-Hard.

The Relative Eigenvector Problem: Given

 $a_1, a_2, \ldots, a_n : X \to Y$, compute the set of vectors x such that xa_1, xa_2, \ldots, xa_n is contained in a 1-space. This is NP-Hard.

Problem (Relative Eigenvector Decision)

Given a set of matrices with entries in the field k, does there exists a relative eigenvector whose first coordinate is 1 and whose other coordinates belong to k?

The Relative Eigenvector Problem: Given

 $a_1, a_2, \ldots, a_n : X \to Y$, compute the set of vectors x such that xa_1, xa_2, \ldots, xa_n is contained in a 1-space. This is NP-Hard.

Problem (Relative Eigenvector Decision)

Given a set of matrices with entries in the field k, does there exists a relative eigenvector whose first coordinate is 1 and whose other coordinates belong to k?

This clearly belongs to NP. To prove that it's in NPC we can construct a reduction from:

Problem (CNF SAT)

Is there a truth assignment that satisfies a boolean formula given in conjunctive normal form (CNF)?

Problem (CNF SAT)

Is there a truth assignment that satisfies a boolean formula given in conjunctive normal form (CNF)?

A formula in CNF is a conjunction of clauses, each of which is a disjunction of terms. The terms are selected from n variables and their negations. The following is an example with 2 clauses, 4 variables and 5 terms:

$$(X_1 \vee \overline{X_2} \vee X_3) \wedge (\overline{X_1} \vee X_4).$$
 (1)

Problem (CNF SAT)

Is there a truth assignment that satisfies a boolean formula given in conjunctive normal form (CNF)?

A formula in CNF is a conjunction of clauses, each of which is a disjunction of terms. The terms are selected from n variables and their negations. The following is an example with 2 clauses, 4 variables and 5 terms:

$$(X_1 \vee \overline{X_2} \vee X_3) \wedge (\overline{X_1} \vee X_4).$$
 (1)

From a formula that uses n variables, m clauses and ℓ terms we construct an instance of the Relative Eigenvector Decision Problem that uses $1+n+\ell+m$ matrices with size $(\ell+1)(2n+1)\times(2n+2)$ and entries in the field F_2 .

Questions

Questions

Is the following NPC?

Problem (Relative Eigenvector Decision)

Given a set of matrices does there exist a relative eigenvector?

Questions

Is the following NPC?

Problem (Relative Eigenvector Decision)

Given a set of matrices does there exist a relative eigenvector?

Is the following NPC? Does it lead to special relative eigenvector problems?

Problem (Tensor Decomposition)

Given an absolutely irreducible matrix group, does there exist a tensor decomposition?

