Clasificación eficiente usando la Característica de Euler

Erik Amézquita ¹ Mario Canul ² Antonio Rieser ³ erik.amezquita@cimat.mx

¹DEMAT. UGto

²CIMAT

³CONACYT-CIMAT

16 de agosto de 2017

Vistazo general

- Objetivo general
- 2 Introducción
- 3 Homología simplicial
- 4 La gráfica CE
- 5 Clasificación y aprendizaje de máquina
- 6 Datos arqueológicos a tratar
- 7 Resultados
- 8 Conclusiones

Pregunta, Problema y Objetivo

- ¿Puede la topología decirnos algo de estas máscaras?
- Clasificación eficiente de objetos no sujeta a subjetividades del usuario.
- Establecer criterios de clasificación basados en características geométricas y topológicas del objeto.
- Usar la idea de **gráfica de característica de Euler (CE)** como sugirieron Richardson y Weirman en el 2014 en [5].

Un invariante para poliedros

La característica Euler en poliedros se define como:

$$\chi = \#(\text{v\'ertices}) - \#(\text{aristas}) + \#(\text{caras})$$

$$\chi = |V| - |E| + |F|$$

(a)
$$\chi = 8 - 12 + 6 = 2$$

(b)
$$6 - 12 + 8 = 2$$

(b)
$$6 - 12 + 8 = 2$$
 (c) $20 - 30 + 12 = 2$

Con todos los poliedros esféricos

Los topólogos ven el mundo hecho de hule

Triangular prism

Cube

Hexagonal prism

Truncated Icosahedron

Gyrobifastigium

Triángulos en todas las dimensiones

Simplejos y Complejos Simpliciales. Recuerden que deben ir bien pegados siguiendo ciertas reglas.

Al *n*-simplejo genérico lo denotaremos como $\sigma = (v_0, v_1, v_2, \dots, v_n)$

Orientación

Cada simplejo de dimensión mayor a 0 tiene exactamente dos orientaciones posibles. Consideremos (A, B, C) = (C, A, B) = (B, C, A).

- Dos simplejos tienen la misma orientación si de un nombre puedo pasar al otro con una permutación par. Si a (A, B, C) aplicamos (123), obtenemos (C, A, B). Y (123) = (13)(12).
- Un objeto es orientable si lo podemos triangular de manera coherente.
- Si σ, τ son el mismo simplejo pero con orientación opuesta, $\sigma + \tau = 0$.

Cadenas de la frontera

- $C_0 = \langle V \rangle$, el grupo abeliano libre generado por el conjunto de vértices.
- $C_1 = \langle E \rangle$, el grupo abeliano libre generado por el conjunto de aristas.
- etc...

La frontera

Es la función $\partial: C_{n+1} \to C_n$ dada por

$$\partial(v_0, v_1, \dots, v_n) = \sum_{i=0}^n (-1)^i (v_0, \dots, \hat{v}_i, \dots, v_n).$$

Así tenemos flechas

$$\cdots \to \mathit{C}_2 \to \mathit{C}_1 \to \mathit{C}_0$$

y podemos decir algo de ciclos y fronteras.

(a) 2-complejo

(b) toro

- Los ciclos $Z_k = \ker \partial \subset C_n$: son aquellos cuya frontera se anula.
- Las fronteras $B_k = \partial(C_{n+1}) \subset C_n$: son las fronteras de todas las n+1-cadenas.
- La frontera de una frontera siempre se anula: $\partial^2 = \partial \circ \partial = 0$.
- Por ende $B_k \triangleleft Z_k$.
- Hacemos cociente y obtenemos el k-ésimo grupo de homología

$$H_k = Z_k/B_k$$
.

- Esto nos dice que dos ciclos son homólogos si su diferencia es una frontera.
- H_k al ser un grupo abeliano finito, puede ser descrito como $F \oplus T$ donde F es la suma directa finita de copias de \mathbb{Z} y T es un grupo abeliano cuyos elementos tienen orden finito.
- El rango de F es el k-ésimo número de Betti β_k .

Mejor con dibujos: el toro

El H_1 del toro es $\mathbb{Z} \oplus \mathbb{Z}$. Eso quiere decir que $\beta_1 = 2$. Todo puede reducirse a dos ciclos, el longitudinal y el latitudinal. El resto de ciclos pueden escribirse como combinación lineal de éstos dos.

Betti 0

Si dos puntos, v, w, están en la misma componente conexa de mi complejo, entonces son homólogos.

El chivo de Euler

- β_0 es realmente el número de componentes conexas del complejo.
- β_1 es el número de 1-ciclos (agujeros de dimensión 1) salvo homología.
- β_2 es el número de 2-ciclos (agujeros de dimensión 2, el sentido tradicional) salvo homología.
- etc...

La característica de Euler equivale a:

$$\chi = \sum_{i=0}^{n} (-1)^i \beta_i.$$

Análisis de Datos: La filtración

Fijamos una función de filtración g para los vértices y luego la extendemos al resto de las k-celdas:

$$g_k(\ \{v_0,v_1,\ldots,v_k\}\) = \min_{0\leq i\leq k}\{\ g(v_i)\ \}$$

$$Una \ \mathrm{función}\ g:\ V_0 \to [a,b]$$

$$V_0 \ \mathrm{el}\ \mathrm{conjunto}\ \mathrm{de}\ \mathrm{vérti}$$

$$\mathrm{ces}:\ [a,b]\ \mathrm{intervalo}\ \mathrm{fijo}$$

ces; [a, b] intervalo fijo.

Umbralización

El intervalo [a,b] es dividido en T umbrales equiespaciados $a=t_0 < t_1 < t_2 < \ldots < t_T = b$. Consideramos la CE en el i-ésimo intervalo:

$$\chi_i = \sum_{k=0}^n (-1)^k \mid V_k^{(i)} \mid$$

No. de k celdas c_k tales que $g_k(c_k) \geq t_i$

La GCE

La gráfica de característica de Euler (GCE) es simplemente comparar χ_i vs t_i

Algorítmicamente hablando I

Los valores numéricos g(v) ya están calculados para todo vértice v.

```
1: Input: g, T
 2: \chi[T] \leftarrow 0
                                                                                       \triangleright Valores \chi_i
 3: for all k=1 \rightarrow n do
                                                                                     dimensiones
     H[T] \leftarrow 0
                                                                                      ▶ histograma
 4:
    for all i=1 \to N_k do
                                                                                          ▷ k-celdas
               g_k \leftarrow \min g
               b \leftarrow bin(g_k)
 7:
                                                                                        \triangleright |g_k \times T|
               H[b] = H[b] + 1
 8:
         c \leftarrow 0
 g.
     for all i = T \rightarrow 1 do

    □ umbrales

10.
               c \leftarrow c + H[i]
11:
               \chi[i] \rightarrow \chi[i] + (-1)^k c
12:
```

13: **return** χ

Algoritmicamente hablando II

Figura: El algoritmo es eficiente al computar los valores del histograma H[T] una única vez

El algoritmo tiene complejidad $O(N(V+T)) \approx O(V)$, V número de vértices.

Support Vector Machine (SVM)

- Método supervisado: conjunto de entrenamiento y conjunto de prueba.
- Caso separable binario: puntos $\vec{x_i} \in \mathbb{R}^n$ que pertenecen a clase $y_i \in \{1, -1\}$.
- Dividas por el hiperplano $\langle \vec{w}, \vec{x} \rangle + b = 0$.

Entrenamiento

Se cumplen las condiciones

$$\langle \vec{w}, \vec{x_i} \rangle + b \ge 1 \text{ para } y_i = +1,$$
 (1a)

$$\langle \vec{w}, \vec{x_i} \rangle + b \le 1 \text{ para } y_i = -1.$$
 (1b)

Ello se combina como

$$y_i(\langle \vec{w}, \vec{x_i} \rangle + b) - 1 \ge 0 \quad \forall i.$$
 (2)

- Los vectores de soporte son aquellos donde se da la igualdad.
- Éstos definen hiperplanos H_1, H_2 .
- La distancia entre éstos es $\frac{1}{||\vec{w}||}$.
- Minimizar ||w|| dada la restricción (2).

Prueba y Kernel

- Dado un punto \vec{x} , su clase es $sgn(\langle \vec{w}, \vec{x} \rangle + b)$.
- $\Phi : \mathbb{R}^n \to \mathcal{H}$ espacio de Hilbert.
- $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(\vec{x}, \vec{y}) \mapsto \langle \Phi(\vec{x}), \Phi(\vec{y}) \rangle_{\mathcal{H}}$.
- $K(\vec{x}, \vec{y}) = (\langle \vec{x}, \vec{y} \rangle + 1)^p$ da un clasificador polinomial de grado p.

Observaciones

- La cantidad de familias es fija. Todos los elementos están forzados a caer en alguna de ellas.
- Todavía hay subjetividad al momento de determinar el conjunto de pruebas.
- Se necesitan muchos datos para que la máquina deduzca el patrón correctamente. Se recomienda una proporción entrenamiento:prueba de 7:3.

USVM: SVM No Supervisado en el caso separable sencillo

- Problema de Márgen Máximo (MMP): Consideramos todas las etiquetas posibles. Elegimos la que maximiza el margen con SVM tradicional.
- Problema del Hiperplano Más Lejano (FHP): Suponemos que el plano pasará por el origen.

En promedio, estamos bien

Hallamos un \vec{w} tal que en promedio determina un hiperplano que está alejado de la mayoría de puntos.

1: **Input:**
$$\{\vec{x_i}\}_{i=1}^n \in \mathbb{R}^d, ||\vec{x_i}|| \leq 1$$

2:
$$\tau_1(i) = 1$$

3:
$$j = 1$$

4: while
$$\sum_{i} \tau_{j}(i) \geq \frac{1}{n}$$
 do

5:
$$A_j \leftarrow \text{matriz } n \times d \text{ cuya } i\text{-}\text{\'esima columna es } \sqrt{\tau_j(i)}\vec{x}_i$$

6: $\vec{w_i} \leftarrow \text{vector singular derecho principal de } A_i$.

7:
$$\sigma_j(i) = |\langle \vec{x}_i, \vec{w}_j \rangle|$$

8:
$$\tau_{j+1}(i) = c^{-\sigma_j^2(i)} \tau_j(i)$$

9:
$$+ + i$$

10:
$$\vec{w}' = \sum_{i} g_{j} \vec{w}(j)$$

$$\triangleright g_j \mathcal{N}(0,1)$$

11: **return**
$$\vec{\vec{w}} = \vec{w}'/||\vec{w}'||$$

Análisis de datos

El principal problema afrontado fue dar una nueva clasificación al conjunto de 128 máscaras digitalizadas por el Instituto Nacional de Antropología e Historia (INAH.) Acorde a la clasificación de máscaras manejada por el INAH, las 128 se dividen en 9 familias distintas, por lo que se buscó dar una clasificación en 9 grupos.

Figura: Familia 2 en la clasificación original

Figura: Muestra de la familia 9 en la clasificación original

Primeras GCEs

Al usar curvaturas como filtraciones, las GCEs asociadas de las máscaras no muestran patrones claros.

Figura: Gráficas de CE para curvatura media e Índice de Forma en T=256 umbrales. Cada una de las 9 familias originales fue trazada con un color distinto

Las proyecciones como filtración

Aprovechamos que cada máscara está encajada en el cubo $[-1,1]^3$ con centro de masa en el origen. Las filtraciones fueron las distancias de cada vértice a los planos $x=1,\ y=1,\ z=1.$

(a) Horizontal

(b) Vertical

(c) Frontal

La GCE a partir de la concatenación de las **tres proyecciones principales** con 64 umbrales por proyección proveé de un mejor prospecto para obtener una clasificación coherente de objectos.

De las GCEs al SVM

- El SVM usó la mitad del conjunto de máscaras como entrenamiento y el resto como prueba. Se obtuvo una nueva clasificación.
- El número de especímenes por familia es más homogéneo. Ahora únicamente dos de las nueve familias contiene menos de 10 representantes.
- De los siete grupos restantes, se eligieron 8 representantes de cada una y se graficaron sus GCEs.
- Colores distintos se refieren a items distintos.

Familia 2 (clasificación nueva)

Clasificación eficiente de objetos

Familia 3 (clasificación nueva)

Familia 5 (clasificación nueva)

Familia 9 (clasificación nueva)

Figura: GCEs de las cuatro familias previas después de remover outliers.

Figura: GCEs tomando 8 miembros de cada familia acorde a la nueva clasificación, eliminando aquellos cuya GCE sobresalga del resto.

Comentarios Finales

- El cómputo de la GCE es una operación sencilla de complejidad y memoria lineales. Procesa rápidamente objetos de decenas de miles de vértices.
- Debido a su rapidez, este algoritmo hace pensar en aplicaciones en tiempo real de reconocimiento de patrones de superficies y objetos en general, no necesariamente piezas arqueológicas.
- Una mayor cantidad de máscaras puede proveer de mejores conjuntos de entrenamientos y por ende, mejores clasificaciones.
- Más especímenes permitirán también experimentar con métodos de clasificación no supervisada.

Referencias

M.A. Armstrong Basic Topology Springer-Verlag (1983).

C. Burges "A Tutorial on Support Vector Machines for Pattern Recognition". *Data Mining and Knowledge Discovery* Vol.2 pp.121-167, 1998.

Z. Karnin et. al., "Unsupervised SVMs: On the Complexity of the Furthest Hyperplane Problem." *JMLR: Workshop and Conference Proceedings* Vol. 23 (2012) 2.1 - 2.17

V. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces Cambridge University Press (2016).

E. Richardson, M. Weirman, "Efficient classification using the Euler Characteristic". *Pattern Recognition Letters* Vol.49, pp.99-106, 2014.

Agradecimientos

Instituto Nacional de Antropología e Historia