Задание 1-2.

Исследовать соотношение вкладов дипольной и недипольных гармоник в магнитосфере.

Выполнил Лапин Ярослав. 28/11/2010.

Данные

Сравнение происходило вдоль орбиты спутника Polar. Использовались те же данные что в и задании 1.1^1 .

Код

```
call recalc (Iyear,Iday,Ihour,min,Isec)

call DIP (xgsm,ygsm,zgsm,dbx,dby,dbz)
call IGRF_GSM (XGSM,YGSM,ZGSM,HXGSM,HYGSM,HZGSM)

diff=SQRT((dbx-HXGSM)**2+(dby-HYGSM)**2+(dbz-HZGSM)**2)
ratio=diff/SQRT((dbx)**2+(dby)**2+(dbz)**2)
r=SQRT((XGSM)**2+(YGSM)**2+(ZGSM)**2)
ratio_percent = 100.0 * ratio
write(2,*) r, diff, ratio_percent
```

Результат

Из графика можно сделать вывод, что на расстояниях больше $4\,R_E$ относительный вклад недипольных членов разложения не превышает 10%, а абсолютное отклонение не превышает $30~\mathrm{nT}$ на расстоянии больше $4.5~R_E$.

Таким образом учёт недипольных членов разложения стоит производить только на расстояниях менее $5~R_E$, при этом так же нужно учесть, что даже на очень близких расстояниях относительное отклонение не превышает 20%, то есть при малом количестве точек из данной области по сравнению с более удалёнными эту погрешность можно проигнорировать, и использовать только дипольный вклад.

 $^{^{1}} https://github.com/JLarky/magnetosphere-magnetic-field/tree/master/task_1.1/$

Однако стоит учитывать, что реальное применение только дипольного вклада вместо IGRF было обусловлено тем, что подсчёт поля IGRF требует больше ресурсов компьютера, но с современными мощностями компьютеров эта проблема уже не так актуальна и зачастую IGRF используется даже в тех областях, где отклонением можно пренебречь.

RMSD of magnetic field module diveded by dipole field module deviation 10% % Distance, Earth radii