# **U6.** Contours

#### **SJK002 Computer Vision**

Master in Intelligent Sytems





#### Index

- Definitions
- Representation of curves
- Curve fitting
  - Error measures
  - Linear piecewise fitting
  - Other fittings
- Regression
  - Robust regression
- Hough transform



#### **Definitions**

- Contour representation:
  - Simple and compact
  - Precise
  - Adequate to make operations easier
- Definitions:
  - Border list:
    - Set of ordered points
  - Contour:
    - Set of borders or curve
  - Frontier:
    - Closed contour that includes a region



### **Geometry of a curve**

#### Representation types:

• Explicit 
$$y = f(x)$$

• Implicit 
$$f(x,y) = 0$$

• Parametric 
$$p(u) = (x(u), y(u))$$



#### **Definitions:**

$$t(u) = \frac{p'(u)}{|p'(u)|}$$

• Normal vector 
$$n(u) = p''(u)$$

$$k = \frac{1}{r}$$

$$\int_{u_1}^{u_2} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} \, du$$



### **Digital curves**

Basic representation:

$$p_i = (x_i, y_i)$$
 (border points)

#### **Definitions:**

K-slope (angle)

$$p_{i-k/2} \to p_{i+k/2}$$



Left K-slope

$$p_{i-k} \to p_i$$



Right K-slope

$$p_i \rightarrow p_{i+k}$$





#### **Digital curves**

# K-curvature: Difference between left K-slope and right K-slope



#### Contour length:

$$S = \sum_{i=2}^{n} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$



### Representations: chain code

| 2 | 3 | 4 |
|---|---|---|
| 1 | • | 5 |
| 8 | 7 | 6 |





$$(x_1, y_1) \rightarrow 5, 6, 6, 7, 6$$

- Easy for rotations multiple of 45°
- Dervative is invariant to rotations



### **Curve fitting**

- Types of fitting:
  - Interpolation: Curve goes through all points
  - Approximation: Curve pass near to points but not necessarily through them
- If all points are considered valid:

#### Curve model:

- Linear segments
- Circular arcs, conic sections, cubic "splines", ...
- If there are "outliers":

#### Robust regression:

- Least Median Squares
- Ransac
- Model selection:
  - Depending on application



#### **Error** measures

Distance of point i to the curve

 $d_i$ 

Maximum Absolut Error

$$MAE = \max_{i} |d_i|$$

Normalized Maximum Error

$$\varepsilon = \frac{\max_i |d_i|}{S}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} d_i^2$$



### **Linear segments**



For two vertices:

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\underbrace{x(y_1 - y_2)}_{a} + \underbrace{y(x_2 - x_1)}_{b} + \underbrace{y_2 x_1 - y_1 x_2}_{c} = 0$$

$$a x + b y + c = 0$$



# **Vertices selection (Top-down)**





### **Vertices selection (Bottom-up)**



Add pixels to the segment while fitting error is less than a threshold





### Split & merge

#### Algorithm:

- Top-down division
- Union of adjacent segments using the "normalized error" measure
- Repeat until no changes

#### Observations:

- After a union step, a segment could be divided at a different point
- The use of normalized error in the union step allows merging into a single segment



#### Circular arcs

Circumference:  $(x - x_0)^2 + (y - y_0)^2 = r^2$ 





#### **Conic sections**

$$f(x,y) = ax^2 + 2hxy + by^2 + 2ex + 2gy + c = 0$$



- Each conic section is defined by:
  - 2 points (nodules)
  - 2 tangents (at the nodules)
  - 1 additional point of the curve



### Cubic splines

- Spline:
  - Piecewise curve of any type of function
- Cubic spline: order 3 polynomial
  - Very much used
  - It enforces continuity of the tangent at the nodules

$$p(u) = (x(u), y(u)) = a_0 + a_1 u + a_2 u^2 + a_3 u^3$$

$$\begin{cases} u \in [0,1] \\ a_0, a_1, a_2, a_3 \text{ are vectors} \end{cases} (a_{ix}, a_{iy})$$



### Regression

- Requires:
  - Definition of a model
  - Definition of an error mesure between samples and model
- Example: Linear regression minimizing Least Square Error (LSE).
- Problem: One or several "outliers" can affect the fitting in a significant way



### **Robust regression**

- Try several subsets of points puntos and choose the one with better result (minimum error).
- Least Median Squares Regression:
  - Choose a random subset of points
  - Fit the model to the point subset
  - Calculate the median of the square errors
  - Repeat until the error is less than a threshold or until the maximum number of iterations is reached



U6. Contours



#### Ransac

- Ransac (Random sample consensus) algorithm:
  - Choose a random subset of points
  - Fit the subset of points to the chosen model
  - Calculate the number K of samples such that they fit to the model according to an error threshold
  - Estimate the fitting error using the *K* inliers
  - Repeat until K is big enough (success) or until the maximum number of iterations is reached (fail)



### **Hough transform**

$$y = mx + c$$

$$c = -mx + y$$





Original x-y spacen-c parameters space

Line → Point

Point → Line



### **Hough transform**

Problem:  $m \in [-\infty, \infty]$ 

Solution: use normal form of a line equation

$$x\cos\theta + y\sin\theta = \rho$$







#### Hough transform: algorithm

- Discretize the parameter space (rho-theta)
- Consider each cell as an accumulator initialized to zero
- For each *edgel* (x,y) increment the cell accumulators that hold the previous equation
- •The cell accumulators with máximum values define the parameters of the model







# **Hough transform: detection process**





# **Hough transform: example**







U6. Contours



### Hough transform: other geometries

- Circumference  $(x-a)^2 + (y-b)^2 = r^2$
- Ellipsis  $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$
- Any type of curve that can be analytically expressed



#### Círcumferences: naïve method





# **Circumferences: example**





# **Ellipsis detection**



Original



**Borders** 



Detected ellipsis (in white)



#### **Hough transform**

#### Advantages:

- Robust to noise and occlusions
- Robust to presence of other forms
- Detection of multiple instances at the same time

#### Disadvantages:

- Detection of false positives
- Computational cost
- Resolution of accumulator space
- Peak localization



#### Hough transform: computational cost

- Computational cost depends on:
  - Image size
  - Accumulator space size
    - N⁰ parameters and resolution
  - Number of edgels and amount of noise
- Some strategies to reduce cost:
  - Pre-calculate sinus and co-sinus values
  - Multi-resolution: start with little resolution
  - Divide image into sub-images
  - Combinatorial Hough transform
  - Parallelize the implementation



### **Combinatorial Hough transform**





#### **Accumulator space size**

- What is the appropriate size of the accumulator space?
  - Too small:
    - Low precision
    - More tolerance to noise
  - Too big
    - A lot of computational resources





# **Peak sparsity**









#### **Peak detection**

- Smooth accumulator space before peak search
- Use clustering techniques
- "Eliminate" detected peaks after each iteration
- How many peaks? Which ones are "true" peaks?
  - Set a threshold for cell votes
  - Prior knowledge
  - Problem constrains



### **Detection of line segments**

- There are two problems after the line detection:
  - Each peak represents a line, not a segment
  - Estimated/found parameters are according to accumulator resolution
- Strategies:
  - For each Hough space cell, keep edgels, not only votes
  - "Explore" image near the line



# HT: complete example

