NCERT QUESTIONS WITH SOLUTIONS

EXERCISE: 7.1

1. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Sol. Given : In quadrilateral ACBD, AC = AD and AB bisect $\angle A$.

To prove : $\triangle ABC \cong \triangle ABD$ Proof : In $\triangle ABC$ and $\triangle ABD$

AC = AD (Given) AB = AB (Common)

 $\angle CAB = \angle DAB$ (AB bisect $\angle A$)

∴ $\triangle ABC \cong \triangle ABD$ (by SAS criteria) BC = BD (by CPCT)

2. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$
- **Sol.** In \triangle ABD and \triangle BAC,

AD = BC (Given) $\angle DAB = \angle CBA$ (Given)

AB = AB (Common side)

∴ By SAS congruence rule, we have $\triangle ABD \cong \triangle BAC$ Also, by CPCT, we have

BD = AC and $\angle ABD = \angle BAC$

3. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

Sol. Given:

AD and BC are equal perpendiculars to line AB.

To prove : CD bisects AB Proof : In \triangle OAD and \triangle OBC

AD = BC (Given)

 \angle OAD = \angle OBC (Each 90°)

 $\angle AOD = \angle BOC$

(Vertically opposite angles)

 $\Delta OAD \cong \Delta OBC$ (AAS rule) OA = OB (by CPCT)

- : CD bisects AB
- 4. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that ΔABC ΔCDA .

Sol. In \triangle ABC and \triangle CDA

 $\angle CAB = \angle ACD$ (Pair of alternate angle)

 \angle BCA = \angle DAC (Pair of alternate angle)

(ASA criteria)

AC = AC (Common side)

 $\triangle ABC \cong \triangle CDA$

5. Line ℓ is the bisector of an angle $\angle A$ and B is any point on ℓ . BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that:

- (i) ΔAPB ΔAQB
- (ii) BP = BQ or B is equidistant from the arms of $\angle A$
- **Sol.** Given : line ℓ is bisector of angle A and B is any point on ℓ . BP and BQ are perpendicular from B to arms of $\angle A$ To prove :
- (i) $\Delta APB \cong \Delta AQB$
- (ii) BP = BQ Proof:
- (i) In $\triangle APB$ and $\triangle AQB$

$$\angle BAP = \angle BAQ$$

(ℓ is bisector)

$$AB = AB$$

(common)

$$\angle BPA = \angle BQA$$

(Each 90°)

$$\therefore \quad \Delta APB \cong \Delta AQB$$

(AAS rule)

(ii)
$$\triangle APB \cong \triangle AQB$$

$$BP = BQ$$

(By CPCT)

6. In figure, AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.

Sol. Given :
$$AC = AE$$

$$AB = AD$$
,

$$\angle BAD = \angle EAC$$

To prove : BC = DE

Proof : In \triangle ABC and \triangle ADE

$$AB = AD$$

(Given)

$$AC = AE$$

(Given)

$$\angle BAD = \angle EAC$$

Add ∠DAC to both

$$\Rightarrow$$
 $\angle BAD + \angle DAC = \angle DAC + \angle EAC$

$$\angle BAC = \angle DAE$$

$$\triangle$$
 ABC \cong \triangle ADE

(SAS rule)

$$BC = DE$$

(By CPCT)

- 7. AB is a line segment and P is its mid-point.
 D and E are points on the same side of AB such that ∠BAD = ∠ABE and ∠EPA = ∠DPB. Show that
- (i) $\Delta DAP \Delta EBP$
- (ii) AD = BE

Sol.
$$\angle EPA = \angle DPB$$

(Given)

$$\Rightarrow$$
 $\angle EPA + \angle DPE = \angle DPB + \angle DPE$

$$\Rightarrow$$
 $\angle APD = \angle BPE$

...(1)

Now, in $\triangle DAP$ and $\triangle EBP$, we have

AP = PB (: P is mid point of AB)

$$\angle PAD = \angle PBE$$

$$\begin{cases}
\because \angle PAD = \angle BAD, \angle PBE = \angle ABE \\
\text{and we are given that } \angle BAD = \angle ABE
\end{cases}$$

Also,
$$\angle APD = \angle BPE$$
 (By 1)

 \triangle DAP \cong \triangle EBP(By ASA congruence)

$$\Rightarrow$$
 AD = BE

(By CPCT)

In right triangle ABC, right angled at C, M 8. is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:

- $\triangle AMC \cong \triangle BMD$ (i)
- ∠DBC is a right angle. (ii)
- (iii) $\triangle DBC \cong \triangle ACB$
- (iv) $CM = \frac{1}{2}AB$
- **Sol.** (i) In $\triangle AMC \cong \triangle BMD$,

(:: M is mid point of AB)AM = BM

 \angle AMC = \angle BMD

(Vertically opposite angles)

CM = DM

(Given)

- (By SAS congruence) $\Delta AMC \cong \Delta BMD$ *:* .
- $\angle AMC = \angle BMD$, (ii)
- $\angle ACM = \angle BDM$

(By CPCT)

- CA || BD
- \angle BCA + \angle DBC = 180°
- $\angle DBC = 90^{\circ}$

 $(:: \angle BCA = 90^{\circ})$

(iii) In \triangle DBC and \triangle ACB,

$$DB = AC (:: \Delta BMD \cong \Delta AMC)$$

 $\angle DBC = \angle ACB$

 $(Each = 90^\circ)$

BC = CB

(Common side)

 $\Delta DBC \cong \Delta ACB$ (By SAS congruence)

- (iv) In $\triangle DBC \cong \triangle ACB$
- \Rightarrow CD = AB

... (1)

CM = DM

(given)

$$\Rightarrow$$
 CM = DM = $\frac{1}{2}$ CD

CD = 2 CM

... (2)

From (1) and (2),

$$2 \text{ CM} = AB$$

$$\Rightarrow$$
 CM = $\frac{1}{2}$ AB

EXERCISE: 7.2

In an isosceles triangle ABC, with AB = AC, 1. the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:

(i)
$$OB = OC$$

(ii) AO bisects ∠A.

Sol.

In $\triangle ABC$, OB and OC are bisectors of $\angle B$ (i) and $\angle C$.

$$\therefore \angle OBC = \frac{1}{2} \angle B \qquad \dots (1)$$

$$\angle OCB = \frac{1}{2} \angle C$$
 ... (2)

Also, AB = AC

(Given)

 $\angle B = \angle C$

... (3)

From (1), (2), (3), we have \angle OBC = \angle OCB

Now, in \triangle OBC, we have \angle OBC = \angle OCB

OB = OC

(Sides opposite to equal angles are equal)

- $\angle OBA = \frac{1}{2} \angle B$ and $\angle OCA = \frac{1}{2} \angle C$ (ii)
- \angle OBA = \angle OCA

$$(:: \angle B = \angle C)$$

AB = AC and OB = OC

- $\Delta OAB \cong \Delta OAC$ (SAS congruence criteria)
- \angle OAB = \angle OAC
- A0 bisects $\angle A$. \Rightarrow
- 2. In \triangle ABC, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Sol. Given: In $\triangle ABC$, AD is perpendicular bisector of BC.

To Prove : \triangle ABC is isosceles \triangle with

AB = AC

Proof: In ΔADB and ΔADC

 $\angle ADB = \angle ADC$

(Each 90°)

(AD is \perp bisector of BC) DB = DC

AD = AD

(Common)

 $\triangle ADB \cong \triangle ADC$

(By SAS rule)

AB = AC

(By CPCT)

- \triangle ABC is an isosceles \triangle with AB = AC
- 3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.

Sol. In \triangle ABE and \triangle ACF, we have

$$\angle$$
BEA = \angle CFA

 $(Each = 90^\circ)$

 $\angle A = \angle A$

(Common angle)

$$AB = AC$$

(Given)

 $\triangle ABE \cong \triangle ACF$

(By AAS congruence criteria)

BE = CF \Rightarrow

(By CPCT)

- ABC is a triangle in which altitudes BE and 4. CF to sides AC and AB are equal (See figure). Show that
- $\triangle ABE \cong \triangle ACF$ (i)
- AB = AC, i.e., ABC is an isosceles triangle. (ii)

Sol. (i) In \triangle ABE and \triangle ACF,

we have $\angle A = \angle A$

(Common)

$$\angle AEB = \angle AFC$$

 $(Each = 90^\circ)$

$$BE = CF$$

(Given)

 $\triangle ABE \cong \triangle ACF$ (By AAS congruence) *:*. $\triangle ABE \cong \triangle ACF$

$$\Rightarrow$$
 AB = AC

(ii)

AB = AC

(By CPCT)

ABC and DBC are two isosceles triangles 5. on the same base BC (see figure). Show that $\angle ABD = \angle ACD$.

Sol. Given: ABC and BCD are two isosceles triangle on common base BC.

To prove : $\angle ABC = \angle ACD$

Proof: ABC is an isosceles

Triangle on base BC

- \therefore $\angle ABC = \angle ACB$... (1)
- \therefore DBC is an isosceles Δ on base BC.

$$\angle DBC = \angle DCB$$

Adding (1) and (2)

$$\angle ABC + \angle DBC = \angle ACB + \angle DCB$$

- \Rightarrow $\angle ABD = \angle ACD$
- 6. ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that ∠BCD is a right angle.

- **Sol.** In $\triangle ABC$, AB = AC
- \Rightarrow $\angle ACB = \angle ABC$

In ΔACD,

$$AD = AB$$

(By construction)

- \Rightarrow AD = AC
- \Rightarrow $\angle ACD = \angle ADC$

...(2)

Adding (1) and (2),

$$\angle$$
ACB + \angle ACD = \angle ABC + \angle ADC

 \Rightarrow $\angle BCD = \angle ABC + \angle ADC$

In ΔDBC,

$$\angle ABC + \angle BCD + \angle CDB = 180^{\circ}$$

- \Rightarrow 2 \angle BCD = 180°
- \Rightarrow $\angle BCD = 90^{\circ}$

7. ABC is a right angled triangle in which $\angle A$ = 90° and AB = AC. Find $\angle B$ and $\angle C$.

Sol.

In AABC

$$AB = AC$$

$$\angle B = \angle C$$

(angles opposite to equal sides are equal)

In AABC

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$90^{\circ} + \angle B + \angle C = 180^{\circ}$$

$$\angle B + \angle C = 90^{\circ}$$

from (1) and (2)

$$\angle B = \angle C = 45^{\circ}$$

8. Show that the angles of an equilateral triangle are 60° each.

Sol.

 \triangle ABC is equilateral triangle.

$$\Rightarrow$$
 AB = BC = CA

Now, AB = BC

$$\Rightarrow$$
 BA = BC

$$\Rightarrow$$
 $\angle C = \angle A$

Similarly,
$$\angle A = \angle B$$
 ... (2)

From (1) and (2),

$$\angle A = \angle B = \angle C$$

Also,
$$\angle A + \angle B + \angle C = 180^{\circ} ... (4)$$

$$\Rightarrow$$
 $\angle A = \angle B = \angle C = \frac{1}{3} \times 180^{\circ} = 60^{\circ}$

EXERCISE: 7.3

1. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$
- (iv) AP is the perpendicular bisector of BC.
- **Sol.** (i) In \triangle ABD and \triangle ACD,

$$AB = AC$$
 (: $\triangle ABC$ is isosceles)

$$DB = DC$$
 (: $\triangle DBC$ is isosceles)

AD = AD (Common side)

- \triangle ABD \cong \triangle ACD (By SSS congruence rule)
- (ii) Now, $\triangle ABD \cong \triangle ACD$

$$\Rightarrow$$
 ∠BAD = ∠CAD (By CPCT) ...(1)
In ΔABP and ΔACP,

$$AB = AC$$

(: \triangle ABC is isosceles)

$$\Rightarrow$$
 $\angle BAP = \angle CAP$ (

$$AP = AP$$

(common side)

$$\triangle$$
 ABP \cong \triangle ACP (By SAS congruence rule)

(iii)
$$\triangle ABD \cong \triangle ACD$$
 (Proved above)

$$\angle BAD = \angle CAD$$

(by CPCT)

$$\angle ADB = \angle ADC$$

(by CPCT)

$$180 - \angle ADB = 180 - \angle ADC$$

$$\Rightarrow$$
 $\angle BDP = \angle CDP$

AP bisects $\angle A$ as well as $\angle D$

(iv)
$$\triangle ABP \cong \triangle ACP$$
 (Proved above)

$$\Rightarrow$$
 BP = CP

(By CPCT)

$$\Rightarrow$$
 AP bisects BC

$$\angle APB = \angle APC$$

$$\angle$$
APB + \angle APC = 180°

$$2\angle APB = 180^{\circ}$$

$$\angle APB = 90^{\circ}$$

AP is perpendicular bisector of BC

- **2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
- (i) AD bisects BC
- (ii) AD bisects ∠A
- **Sol.** Given : AD is an altitude of an isosceles triangle ABC in which AB = AC.

To Prove:

- (i) AD bisect BC.
- (ii) AD bisect $\angle A$.

Proof : (i) In right ΔADB and right $\Delta ADC.$

$$Hyp.AB = Hyp.AC$$

$$\angle ADB = \angle ADC$$

 $\triangle ADB \cong \triangle ADC$

(Each 90°)

(Common)

(RHS rule)

$$\Rightarrow$$
 BD = CD

(By CPCT)

- \Rightarrow AD bisect BC
- (ii) $\triangle ADB \cong \triangle ADC$

$$\angle BAD = \angle CAD$$

(By CPCT)

- \Rightarrow AD bisect $\angle A$
- 3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see figure). Show that :

- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$
- **Sol.** (i) BM = $\frac{1}{2}$ BC (:: M is mid-point of BC)

 $QN = \frac{1}{2} QR$ (: N is mid-point of QR)

 \Rightarrow BM = QN (: BC = QR is given)

Now, in \triangle ABM and \triangle PQN, we have

AB = PQ

(Given)

BM = QN

(Proved)

AM = PN

(Given)

- $\triangle ABM \cong \triangle PQN$ (SSS congruence criteria)
- (ii) $\triangle ABM \cong \triangle PQN$
- \Rightarrow $\angle ABM = \angle PQN$

$$\angle B = \angle Q$$

(By CPCT)

Now, in \triangle ABC and \triangle PQN,

$$AB = PQ$$
, $\angle B = \angle Q$ and $BC = QR$

 $\Rightarrow \Delta ABC \cong \Delta PQN$

[by SAS congruence]

- **4.** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Sol.** Given BE and CF are two altitude of \triangle ABC.

To prove : \triangle ABC is isosceles.

Proof : In right \triangle BEC and right \triangle CFB

side BE = side CF

(Given)

Hyp.BC = Hyp CB

(Common)

 $\angle BEC = \angle BFC$

(Each 90°)

 $\Delta BEC \cong \Delta CFB$

(RHS Rule)

 $\angle BCE = \angle CBF$

(By CPCT)

AB = AC

(Side opp. to equal angles are equal)

 \triangle ABC is isosceles.

5. ABC is an isosceles triangle with AB = AC.

Draw AP \perp BC to show that \angle B = \angle C

Sol.

In $\triangle APB$ and $\triangle APC$

AB = AC

(Given)

 $\angle APB = \angle APC$

 $(Each = 90^\circ)$

AP = AP

(common side)

Therefore, by RHS congruence criteria, we have

wenave

 $\triangle APB \cong \triangle APC$

 \Rightarrow $\angle ABP = \angle ACP$

(By CPCT)

 \Rightarrow $\angle B = \angle C$

EXERCISE: 7.4

1. Show that in a right angled triangle, the hypotenuse is the longest side.

Sol.

 \triangle ABC is right angled at B.

AC is hypotenuse.

Now, $\angle B = 90^{\circ}$

and
$$\angle A + \angle C = 90^{\circ}$$

- \Rightarrow $\angle A < 90^{\circ}$ and $\angle C < 90^{\circ}$
- \Rightarrow $\angle B > \angle A$ and $\angle B > \angle C$
- \Rightarrow AC > BC and AC > AB.
- \therefore Hypotenuse AC is the longest side of the right angled \triangle ABC.
- 2. In figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \angle PBC < \angle QCB. Show that AC > AB

Sol. Sides AB and AC of \triangle ABC are extended to points P and Q

To prove : AC > AB

Proof: $\angle PBC < \angle QCB$ (Given)

$$180^{\circ} - \angle PBC > 180^{\circ} - \angle QCB$$

 \Rightarrow AC > AB

(sides opposite to greater angle is longer)

3. In fig, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Sol. $\angle B < \angle A$ in $\triangle OAB$

- \Rightarrow OA < OB
- ...(1)

Also, $\angle C < \angle D$ in $\triangle OCD$

- \Rightarrow OD < OC
- ...(2)

Adding (1) and (2),

$$OA + OD < OB + OC$$

 \Rightarrow AD < BC

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

Sol.

In quadrilateral ABCD, AB is the smallest side and CD is the longest side. Join AC and BD.

In ΔABC,

BC > AB

(∵ AB is smallest side)

- $\Rightarrow \angle 1 > \angle 3$
- ... (1)

In ΔACD,

CD > AD

(∵ CD is longest side)

- \Rightarrow $\angle 2 > \angle 4$
- ... (2)

Adding (1) and (2), we have

$$\angle 1 + \angle 2 > \angle 3 + \angle 4$$

 \Rightarrow $\angle A > \angle C$

Similarly, we can prove that $\angle B > \angle D$

5. In figure, PR > PQ and PS bisects \angle QPR. Prove that \angle PSR > \angle PSQ.

Sol. Given: PR > PQ, PS bisect $\angle QPR$.

To prove : $\angle PSR > \angle PSQ$

 $Proof: In \, \Delta PQR$

$$PR > PQ$$
 (Given)

$$\angle PQR > \angle PRQ$$

(angle opposite to longer side is greater)

and
$$\angle PQS > \angle PRS$$
 ... (1)

PS bisects ∠QPR

$$\Rightarrow$$
 $\angle QPS = \angle RPS$... (2)

From (1) and (2)

$$\angle PQS + \angle QPS > \angle PRS + \angle RPS$$

$$\angle PSR > \angle PSQ$$

(by exterior angle property)

Hence proved.

- **6.** Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
- Sol. Let us have AB as the perpendicular line segment and AP is any other line segment. Now $\triangle ABP$ is right angled and AP is hypotenuse.

Here,
$$\angle B > \angle P$$
 (*

$$(:: \angle B = 90^\circ)$$

$$\Rightarrow$$
 AP > AB

Thus, perpendicular line segment is smallest.