

SF1624 Algebra och geometri Tentamen Måndag 23 oktober 2023

Skrivtid: 14:00–17:00 Tillåtna hjälpmedel: Inga Examinator: Maria Saprykina

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng. Till antalet erhållna poäng på del A adderas eventuella bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt.

Betygsgränser vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx	
Total poäng	27	24	21	18	16	15	

För full poäng på en uppgift krävs att lösningen är välpresenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är välmotiverade och tydligt förklarade.

 Del A

1. a) Använd minsta kvadratmetoden för att bestämma en linje y = ax + b som bäst approximerar följande punkter (x, y):

- b) Skissa en figur och förklara med hjälp av bilden vad det är som minimeras.
- 2. Bestäm minsta avståndet från punkten (3, 2, 4) till linjen med parameterform

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad t \in \mathbb{R}.$$

_____ Del B

3. Låt \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 vara standardbasen för \mathbb{R}^3 . Betrakta den linjära avbildningen $F: \mathbb{R}^3 \to \mathbb{R}^2$ som är definierad genom

$$F(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad F(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{och} \quad F(\mathbf{e}_3) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

- a) Bestäm $F(\mathbf{v})$, där $\mathbf{v} = (2, 1, 1)$. (1 p)
- b) Bestäm standardmatrisen A för F. (1 p)
- c) Bestäm dimensionen av nollrummet ker(F) och bildrummet ran(F). (2 p)
- d) Bestäm en bas för nollrummet ker(F). (1 p)
- e) Bestäm alla lösningar till ekvationen $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. (1 p)
- 4. Avbildningen $T: \mathbb{R}^3 \to \mathbb{R}^3$ har matrisen $A = [T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ med avseende på ON-basen

$$\mathcal{B} = \left\{ \begin{bmatrix} 3/5 \\ 4/5 \\ 0 \end{bmatrix}, \begin{bmatrix} -4/5 \\ 3/5 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

a) Bestäm standardmatrisen till T.

(2p)

b) Bestäm samtliga egenvärden och egenvektorer till *T*.

- (2 p) (2 p)
- c) Kan T beskrivas som en projektion, en spegling, en rotation, eller ingetdera?

DEL C

5. Låt \mathcal{P}_2 vara vektorrummet av alla polynom av grad högst 3. Den liniära avbildningen $T \colon \mathcal{P}_2 \to \mathbb{R}$

5. Låt \mathcal{P}_3 vara vektorrummet av alla polynom av grad högst 3. Den linjära avbildningen $T \colon \mathcal{P}_3 \to \mathcal{P}_3$ ges av

 $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_3 + a_2x + a_1x^2 + a_0x^3.$

Hitta alla egenvärden samt bestäm en bas för varje egenrum.

- 6. Låt V vara ett delrum av \mathbb{R}^n och låt X_V vara mängden av alla $n \times n$ -matriser A som uppfyller att A**x** ligger i V om **x** ligger i V.
 - a) Visa att X_V är ett delrum av vektorrummet av alla $n \times n$ -matriser. (2 p)
 - b) Antag att $V = \text{span} \{ \mathbf{e}_1 \} \text{ där } \mathbf{e}_1 = [1 \ 0 \ \dots \ 0]^T$. Bestäm dim X_V . (4 p)