MA0102 Outils mathématiques II Lundi 8 octobre 2018 Durée : 1 h 30 mn

Documents, portables, calculatrices interdits.

Les exercices peuvent être traités dans l'ordre qui vous convient. Il est possible d'admettre le résultat d'une question avant de passer à la suivante.

Une réponse non justifiée ne sera pas prise en compte.

Questions de cours

1. Soit $q \in \mathbb{C}$. Soit $n \in \mathbb{N}$. Que vaut la somme suivante?

$$S_n = \sum_{j=0}^n q^j.$$

2. Soient P et Q deux énoncés logiques. Rappeler la définition de $P \Longrightarrow Q$ (P implique Q), au moyen des connecteurs "et (\land)", "ou (\lor)", "non (\neg)". Donner ensuite sa table de vérité.

Exercice 1 Calculs

1. Simplifier l'expression suivante, en précisant sur quel sous-ensemble de \mathbb{R} elle est définie. Le résultat ne doit plus être sous forme d'une fraction.

$$a = \frac{e^x(e^{2x} + e^x)}{1 + \frac{e^x - 1}{x + 1}}.$$

2. Dériver la fonction f suivante, qui est définie et dérivable sur $\mathbb R$:

$$f(x) = \frac{e^x - 1}{e^{3x} + 3e^x}.$$

3. Simplifier les expressions suivantes, en précisant sur quel domaine elles sont définies (il ne doit plus rester de |x|):

(i)
$$a(x) = (|x| + 2)^2 - 4|x|$$
, (ii) $b(x) = |x|\sqrt{1 + \frac{1}{x^2}}$.

4. Calculer la somme S_n suivante, définie pour $n \in \mathbb{N}^*$. Le signe Σ doit disparaître et il ne doit rester qu'au plus 4 termes, dépendant éventuellement de n.

$$n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n \frac{1}{k} - \frac{1}{k+2}.$$

5. Simplifier les produits suivants :

(i)
$$p_1 = \frac{7!}{3!5!}$$
;

(ii)
$$p_n = \frac{n!(n+2)!}{(n-1)!(n+1)!}$$
 pour $n \ge 1$;

(iii)
$$p'_n = \prod_{k=1}^n \frac{k(k+2)}{(k+1)^2}$$
 pour $n \ge 1$.

Exercice 2 Logique

- 1. Écrire avec des quantificateurs et des connecteurs les phrases suivantes, puis leur négation.
 - (a) "Quel que soit le nombre réel x, il est le logarithme népérien d'un nombre réel y."
 - (b) "Le carré d'un nombre complexe est encore un nombre complexe."
- 2. Les assertions suivantes sont-elles équivalentes? On pourra s'interroger sur leur véracité.
 - (a) $\forall x \in \mathbb{R}$, $((\sin(x) > 0) \text{ ou } (\sin(x) \le 0))$;
 - (b) $(\forall x \in \mathbb{R}, \sin(x) > 0)$ ou $(\forall x \in \mathbb{R}, \sin(x) < 0)$.
- 3. Si les lettres P, Q, R désignent des assertions, donner la table de vérité de
 - (a) $(P \wedge Q) \vee (P \Longrightarrow R)$; (b) $(R \wedge (P \vee Q)) \vee R$.

(b)
$$(R \wedge (P \vee Q)) \vee R$$
.

Exercice 3 Logique

1. Soit f une fonction définie sur \mathbb{R} . On dit que f est "uniformément continue sur \mathbb{R} " si elle vérifie la propriété suivante :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in \mathbb{R}^2, \ ((|x - y| < \eta) \Longrightarrow (|f(x) - f(y)| < \varepsilon)).$$

- (a) Soit $c \in \mathbb{R}$. Montrer que la fonction constante égale à c sur \mathbb{R} est uniformément continue sur \mathbb{R} .
- (b) Comment s'exprime le fait qu'une fonction n'est pas uniformément continue sur R?
- 2. Prouver que l'assertion P suivante est fausse :

$$\forall (a, b, c) \in \mathbb{C}^3, \ (a + b + c)^2 = a^2 + b^2 + c^2.$$

On pourra écrire sa négation et prouver que sa négation est vraie.