CP 290 Urban Systems and Network Science

Discussion 2

February 9, 2018

The files for this discussion can be downloaded on BCourses under Files/Discussion2.

1 Small World Networks and Random Graphs

Clustering coefficient: $C_i = \frac{2e_i}{k_i(k_i-1)} = \frac{e_i}{\frac{k_i(k_i-1)}{2}}$, where e_i is the number of edges among node *i*'s neighbors, and $\frac{k_i(k_i-1)}{2}$ is the maximum number of edges possible among its neighbors.

Properties	Small World	Random Graph
Parameters	N, k, p	N, p
Also called	Watts-Strogatz	Erdos-Renyi
Python command	<pre>nx.watts_strogatz_graph(N,k,p)</pre>	<pre>nx.fast_gnp_random_graph(N,p)</pre>
Average degree	$\langle k \rangle = k$	Np
Average path length	very fast decay with p	$pprox rac{\ln N}{\ln < k > 1}$
Clustering coefficient	$C_p = C_0 \times (1-p)^3$	$C = p = \frac{\langle k \rangle}{N-1}$
Average number of links	$\frac{kN}{2}$	$\frac{pN(N-1)}{2}$

1. You are given a network with 2,000 nodes and 6,000 edges. What is its average degree?

Answer:
$$\langle k \rangle = \frac{2E}{N} = 6$$

2. If this network is a RG, what would be the value of p that gives the same value of average degree?

Answer:
$$\langle k \rangle = Np, : p = \frac{\langle k \rangle}{N} = 6/2000 = 0.003$$

3. If this network is a SW network, what would be the value of k that gives the same average degree? What would be the value of p that gives a clustering coefficient of 0.06? Hint: the average clustering coefficient of a SW network with p=0 is given by $\frac{3(< k>-2)}{4(< k>-1)}$.

Answer:
$$k = \langle k \rangle = 6$$

 $C_0 = \frac{3 \times (6-2)}{4 \times (6-1)} = 0.6, C_p = C_0 \times (1-p)^3 = 0.06 \Longrightarrow (1-p)^3 = 0.1$
 $p \approx 0.54$

2 Matplotlib Bootcamp

In this exercise, we will make use of numpy and matplotlib to visualize a dataset. Our dataset contains the Gender Development Index and the Human Development Index (HDI) in 2015 for each country.

See hdi_plots.ipynb and download HDI_data.csv for this exercise.

3 Network Exercise

See the iPython notebooks from Lecture 8.