Higher order derivatives and applications

Practice Examples

- 1.1 Lagrange's Mean Value Theorem, Local Maxima and Minima of function of one variable
 - Check whether the Mean Value Theorem can be applicable to the function f(x) = x(x-1)(x-2) on the closed interval [0, 3]. If so, find a value of c which satisfies the Mean value theorem in (0, 3).

Answer: 2.

Ι

Check whether the Mean Value Theorem can be applicable to the function $f(x) = \frac{6}{x} - 3$ on the closed interval [1,2]. If so, find a value of c which satisfies Mean value theorem in (1,2).

Answer: $\sqrt{2}$.

Check whether the Mean Value Theorem can be applicable to the function $f(x) = 3x^2 + 5x - 2$ on the closed interval [-1,1]. If so, find a value of c which satisfies Mean value theorem in (-1,1).

Answer: 0.

Check whether the Mean Value Theorem can be applied to the function $x^3 + 24x - 16$ on the closed interval [0, 4]. If so, find a value of c which satisfies the Mean value theorem in (0, 4).

Answer: $\frac{4\sqrt{3}}{3}$.

Check whether the Mean Value Theorem can be applied to the function $f(x) = 8x + e^{-3x}$ on the closed interval [-2,3]. If so, find a value of c which satisfies the Mean value theorem in (-2, 3).

Answer: −1.0973.

Suppose we know that f(x) is continuous and differentiable on the interval [-7,0] that f(-7)=-3 and that $f'(x) \le 2$. What is the largest possible value for f(0)?

Answer: 11.

Find the extreme values of the function $f(x) = x^3 + x^2 - x + 1$.

Answer: 2 and $\frac{22}{27}$.

2 Find the extreme values of the function $f(x) = 2x^3 - 21x^2 + 36x - 20$.

Answer: -3 and -128.

3 Find the extreme values of the function $f(x) = 4x^3 - 21x^2 + 36x + 30$.

Answer: 50 and 201/4.

Find the extreme value of the function $f(x) = a^{x+1} - a^x - x$ (a > 1).

Answer: $\frac{\log[(ae-e)loga]}{loga}$.

- 5 Suppose an open cylinder of given surface area having maximum volume. Prove that its height is equal to the radius of its base.
- Show that semi vertical angle of a cone of given slant height and maximum volume is $\tan^{-1} \sqrt{2}$.
- Successive differentiation: nth derivative of elementary functions: rational, logarithmic, trigonometric, exponential and hyperbolic
 - 1 Find the nth order derivative of the function $y = cos^2 x sin x$.

Answer: $y_n = \frac{1}{4} \left[3^n sin \left(3x + \frac{n\pi}{2} \right) + sin \left(x + \frac{n\pi}{2} \right) \right].$

Find the nth order derivative of the function $y = \frac{1}{6x^2 - 5x + 1}$.

Answer: $y_n = (-1)^{n+1} n! \left[\frac{3^{n+1}}{(1-3x)^{n+1}} - \frac{2^{n+1}}{(1-2x)^{n+1}} \right].$

3 Show that the nth order derivative of the function $y = \log(4x^2 - 9)$ is

	$y_n = (-1)^{n-1}(n-1)! 2^n \left[\frac{1}{(2x-3)^n} + \frac{1}{(2x+3)^n} \right].$
4	Find the n th order derivative of the function $y = \sinh(3x)$.
	Answer: $y_n = \frac{1}{2} [3^n e^{3x} - (-3)^n e^{-3x}].$
5	Find the n th order derivative of the function $y = sin^4 x$.
	Answer: $y_n = -2^{n-1} cos \left(2x + \frac{n\pi}{2}\right) + \frac{4^{n-1}}{2} cos \left(4x + \frac{n\pi}{2}\right).$
6	If $y = x log(\frac{x-1}{x+1})$, show that $y_n = (-1)^{n-2}(n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n}\right]$ for $n \ge 2$.

1.3 Leibnitz rule for the nth order derivatives of product of two functions

If
$$y = acos(logx) + bsin(logx)$$
, then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

If $y = sin^{-1}x$, then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

If $y = (tan^{-1}x)^2$, then show that $(1+x^2)^2y_2 + 2x(x^2+1)y_1 - 2 = 0$.

Find the nth order derivative of the function $y = x^3\log(3x)$.

If $y = e^{acos^{-1}x}$, then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+a^2)y_n = 0$.

If $y = cos^{-1}x$, then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

1.4 Power series expansion of a function: Maclaurin's and Taylor's series expansion.

1	Find the Taylor's series expansion of $f(x) = x^3 - 2x + 4$ about $a = 2$.
	Answer: $f(x) = 8 + 10(x - 2) + 6(x - 2)^2 + (x - 2)^3$.
2	Expand $sin\left(\frac{\pi}{4} + x\right)$ in powers of x. Find the value of $sin 44^{\circ}$.
	Answer: $\sin 44^0 = 0.69467$.

3	Expand $\log \sqrt{\frac{1+x}{1-x}}$ into Maclaurin's series.
	Answer: $\log \sqrt{\frac{1+x}{1-x}} = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$
4	Using Taylor's series, find $\sqrt[3]{27.12}$ correct to four decimal places.
	Answer: $\sqrt[3]{27.12} = 3.00443$.
5	Expand $e^{a \cos bx}$ using Maclaurin's series.
	Answer: $e^{a \cos bx} = e^a - e^a ab^2 \frac{x^2}{2} + e^a ab^4 (1 + 3a) \frac{x^4}{24} - \cdots$

L'Hospital's rule and related applications, Indeterminate forms

Expand $\frac{e^x}{cosx}$ into Maclaurin's series.

1.5

Answer: $\frac{e^x}{\cos x} = 1 + x + x^2 + \frac{2x^3}{3} + \cdots$.

1	Evaluate $\lim_{x \to 1} \frac{x^x - x}{x - 1 - \log x}$.
	Answer: 2.
2	Evaluate $\lim_{x \to y} \frac{x^y - y^x}{x^x - y^y}$.
	Answer: $\frac{1-\log y}{1+\log y}$.
3	Evaluate $\lim_{x \to \infty} \frac{x \log x}{x + \log x}$.
	Answer: ∞.
4	Evaluate $\lim_{x\to 0} \frac{\tan^2 x - x^2}{x^2 \tan^2 x}$.
	Answer: $\frac{2}{3}$.
5	Find the value of a and b if $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$.
	Answer: $a = -\frac{5}{2}$, $b = -\frac{3}{2}$.
6	Evaluate $\lim_{x \to \infty} \frac{\log(1+e^{3x})}{x}$.

	Answer:3.
7	Evaluate $\lim_{x\to 1} (1-x) tan\left(\frac{\pi x}{2}\right)$.
	Answer: $\frac{2}{\pi}$.
8	Evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$.
	Answer: $-\frac{1}{3}$.
9	Evaluate $\lim_{x\to 1} (x-1)^{x-1}$.
	Answer: 1.
10	Prove that $\lim_{x\to 0} x \log x = 0$.
11	Evaluate $\lim_{x \to \frac{\pi}{2}} (secx - tanx) = 0.$
12	Evaluate $\lim_{x\to 0} (\cot x)^{1/\log x}$.
	Answer: e^{-1} .