

# Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

| Nome: | RA: |
|-------|-----|
|       |     |

Experimento 2 – Análise analítica, experimental e numérica de uma viga carregada em balanço.

### > Visão geral do procedimento:

- Fixação da estrutura no dispositivo.
- Carregar a estrutura.
- Ler e registrar a deformação específica e a flecha, obtidas experimentalmente.
- Calcular a tensão e a flecha analiticamente e comparar o erro.
- Simular numericamente por elementos finitos e comparar o erro.

### Parte 1: Preparação da superfície e colagem do extensômetro elétrico (strain gage SG)

Viga em balanço sob flexão – Esquema de ¼ de ponte com 3 fios:



Parte 2: Verificação experimental

Análise de tensões, deformações e deslocamentos.

✓ Etapa 1: Procedimentos de aquisição de dados no laboratório



Obs.: Desenho CAD: L = 195 mm, b = 32 mm, h = 4.8 mm.



# Análise Experimental de Tensões

- Dados preliminares para coletar na peça:

| Estrutura:                | 1 –        |
|---------------------------|------------|
| Viga em balanço           | L =        |
| Material da peça:         | <i>I</i> = |
| Liga de Alumínio 6061-T6  | <i>t</i> = |
| Extensômetro (SG):        | h          |
| PA-XX-250BA-120L.         | b =        |
| Indicador de deformações: | h          |
| P3 (Micro-Measurements).  | h =        |
| Relògio comparador:       | 20         |
| Mitutovo centesimal       | x = 30  mm |

- Adotar:

$$g = 9.81 \text{ m/s}^2$$
  $E = 69.000 \text{ N/mm}^2$   $V = 0.33$   $\sigma_{\lim} = \sigma_{esc} = 280 \text{ N/mm}^2$   $\mu d = 10^{-6} d$ 

- ✓ Etapa 2: Procedimento de medição
- Aplicar as cargas  $P_1$ ,  $P_2$  e  $P_3$ .
- Medir e registrar as deformações específicas.
- Medir os deslocamentos transversais (flechas).

| Massa aplicada <i>m</i> [kg] | Carga aplicada P [N] | Deformação $arepsilon$ [ $\mu$ d] | Flecha experimental y [mm] |
|------------------------------|----------------------|-----------------------------------|----------------------------|
| $m_1 = 2,786$                | P <sub>1</sub> =     | $\varepsilon_1 =$                 | <i>y</i> <sub>1</sub> =    |
| $m_2 = 3,786$                | P <sub>2</sub> =     | <i>E</i> <sub>2</sub> =           | <i>y</i> <sub>2</sub> =    |
| $m_3 = 4,786$                | P <sub>3</sub> =     | <i>E</i> <sub>3</sub> =           | <i>y</i> <sub>3</sub> =    |

- ✓ Etapa 3: Análise experimental a partir das leituras dos extensômetros:
  - $\succ$  Calcular a tensão normal  $\sigma$  no ponto de fixação do extensômetro a partir da deformação específica lida (Lei de *Hooke*).

$$\sigma = \varepsilon \cdot E$$

| Tensão Experimental σ [MPa] |
|-----------------------------|
| $\sigma_1 =$                |
| $\sigma_2 =$                |
| $\sigma_3$ =                |



## Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

### Parte 3: Análise teórica - Método Analítico (Resistência dos Materiais):

✓ **Etapa 1**: Características geométricas da seção: Momento de Inércia  $I_{z:}$ 

$$I_z = \frac{bh^3}{12} =$$

✓ Etapa 2: Tensão normal máxima  $\sigma$  na seção l – posição do SG (strain gage):

$$|M| = P \cdot l$$

$$\sigma = \frac{M}{I_z} \cdot y = \frac{M}{\underline{bh^3}} \cdot \frac{h}{2} = \frac{M}{W_z} = \frac{6 \cdot P \cdot l}{b \cdot h^2} =$$

✓ **Etapa 3**: Deslocamento transversal (flecha *y*) na seção *x*, usando o Método de Integração da Equação Diferencial da Linha Elástica (E.D.L.E):

$$\frac{d^2y}{dx^2} = \frac{d\varphi}{dx} = -\frac{M}{EI}$$

$$y = \frac{P}{EI} \left( \frac{x^3}{6} - \frac{L^2}{2} x + \frac{L^3}{3} \right)$$

## Parte 4: Comparação dos resultados analíticos com os resultados experimentais

> Resultados dos erros calculados:

| Tensão Analítica<br>σ [MPa] | Erro [%] | Flecha Analítica<br>y [mm] | Erro [%] |
|-----------------------------|----------|----------------------------|----------|
| $\sigma_1 =$                |          | <i>y</i> <sub>1</sub> =    |          |
| $\sigma_2 =$                |          | y <sub>2</sub> =           |          |
| $\sigma_3 =$                |          | <i>y</i> <sub>3</sub> =    |          |

### Parte 5: Comparação dos resultados analíticos com os resultados simulados (MEF)

Resultados dos erros calculados:

| Tensão Numérica<br>σ [MPa] | Erro [%] | Flecha Numérica<br>y [mm] | Erro [%] |
|----------------------------|----------|---------------------------|----------|
| $\sigma_1 =$               |          | <i>y</i> <sub>1</sub> =   |          |
| $\sigma_2 =$               |          | <i>y</i> <sub>2</sub> =   |          |
| $\sigma_3 =$               |          | <i>y</i> <sub>3</sub> =   |          |