MA 222: Elementary Number Theory and Algebra Mid semester examination Model solutions and marking scheme

1. Determine the last two digits in the decimal representation of 3⁴⁰⁰⁰⁰⁰⁰⁴. [1]

Solution. Since gcd(3, 100) = 1, we have $3^{\phi(100)} = 3^{40} \equiv 1 \pmod{100}$. Now, $3^{40000004} = 3^{40000000} \times 3^4 \equiv 81 \pmod{100}$. Hence, the last two digits are 81.

2. Find the remainder of 65^{123456} when it is divided by 10000. [3]

Solution. We have $10000 = 10^4 = 2^4 \times 5^4$. Now,

$$65^{123456} \equiv 1 \pmod{2^4}$$
 and $65^{123456} \equiv 0 \pmod{5^4}$.

[1]

Hence, $x_0 = 65^{123456}$ is a simultaneous solution of the congruences $x \equiv 1 \pmod{2^4}$ and $x \equiv 0 \pmod{5^4}$.

Now, applying CRT, we find another simultaneous solution x_1 of the congruences $x \equiv 1 \pmod{2^4}$ and $x \equiv 0 \pmod{5^4}$. Let $m_1 = 2^4$, $m_2 = 5^4$, $a_1 = 1$, $a_2 = 0$. Then, we have $b_1 \equiv (5^4)^{-1} \equiv 1 \pmod{2^4}$ and $b_2 \equiv (2^4)^{-1} \equiv 586 \pmod{5^4}$ (since $a_2 = 0$, so we need not evaluate b_2). Hence,

$$x_1 = (5^4 \times 1 \times 1) + (2^4 \times 586 \times 0) = 5^4 = 625.$$

[1]

Thus, $65^{123456} = x_0 \equiv x_1 \equiv 625 \pmod{10000}$. Hence, the required remainder is 625. [1]

3. Let $\{a_1, a_2, \ldots, a_{101}\}$ and $\{b_1, b_2, \ldots, b_{101}\}$ be complete residue systems modulo 101 such that $a_{101} \equiv b_{101} \equiv 0 \pmod{101}$. Can $\{a_1b_1, a_2b_2, \ldots, a_{101}b_{101}\}$ be a complete residue system modulo 101?

Solution. Suppose that $\{a_1b_1, a_2b_2, \dots, a_{101}b_{101}\}$ is a complete residue system modulo 101. By Wilson's theorem, we have $a_1a_2\cdots a_{100}\equiv b_1b_2\cdots b_{100}\equiv 100!\equiv -1\pmod{101}$. Hence, $a_1b_1a_2b_2\cdots a_{100}b_{100}\equiv 1\pmod{101}$.

But, $a_{101}b_{101} \equiv 0 \pmod{101}$, so again by Wilson's theorem $a_1b_1a_2b_2\cdots a_{100}b_{100} \equiv 100! \equiv -1 \pmod{101}$, a contradiction. Hence, $\{a_1b_1, a_2b_2, \dots, a_{101}b_{101}\}$ can't be a complete residue system modulo 101.

4. Let $a_1 = 3$ and $a_{n+1} = 3^{a_n}$ for $n \ge 1$. Prove that $a_4 \equiv a_3 \pmod{100}$. [2]

Solution. We have $a_1 = 3$, $a_2 = 3^3$, $a_3 = 3^{3^3}$ and $a_4 = 3^{3^{3^3}}$. We have $\phi(100) = \phi(4)\phi(25) = 2 \times 20 = 40$. By Euler's theorem, we have $3^{40} \equiv 1 \pmod{100}$, and hence

$$3^{3^4} = 3^{81} = 3^{2 \times 40 + 1} \equiv 3 \pmod{100}.$$
 [1]

Now, $a_4 = 3^{3^3} = \left(3^{3^4}\right)^{3^{3^3-4}} \equiv 3^{3^{3^3-4}} = 3^{3^{23}} \pmod{100}$. Applying this repeatedly, we have

$$a_4 = 3^{3^{3^3}} = 3^{3^{27}} \equiv 3^{3^{23}} \equiv 3^{3^{19}} \equiv \dots \equiv 3^{3^7} \equiv 3^{3^3} = a_3 \pmod{100}.$$
 [1]

5. Solve the congruence $x^2 + x + 47 \equiv 0 \pmod{343}$. [3]

Solution. We have $343 = 7^3$. We first consider the equation $f(x) = x^2 + x + 47 \equiv 0 \pmod{7}$, equivalently, $x^2 + x - 2 \equiv 0 \pmod{7}$. We find that $x \equiv 1 \pmod{7}$ and $x \equiv 5 \pmod{7}$ are the only solutions of $x^2 + x - 2 \equiv 0 \pmod{7}$.

Now, f'(x) = 2x + 1 and $f'(1) = 3 \not\equiv 0 \pmod{7}$ and $f'(5) = 11 \not\equiv 0 \pmod{7}$. Thus, $a_1 = 1$ and $b_1 = 5$ are both non-singular roots of $x^2 + x + 47 \equiv 0 \pmod{7}$. [1]

By Hensel's lemma, $a_1 = 1$ lifts to $a_2 = a_1 - f(a_1) \times \overline{f'(a_1)} = 1 - 49 \times 5 \equiv 1 \pmod{7^2}$. Hence, $a_3 = a_2 - f(a_2) \times \overline{f'(a_1)} = 1 - 49 \times 5 \equiv 99 \pmod{7^3}$ is a required solution. [1]

Now, $b_1 = 5$ lifts to $b_2 = b_1 - f(b_1) \times \overline{f'(b_1)} = 5 - 77 \times 2 \equiv 47 \pmod{7^2}$. Hence, $b_3 = b_2 - f(b_2) \times \overline{f'(b_1)} = 47 - 2303 \times 2 \equiv 243 \pmod{7^3}$ is the other required solution.

6. Find all the *finite* subsets of \mathbb{Z} which are *monoids* under multiplication. [1]

Solution.
$$\{0\}, \{1\}, \{1, -1\}, \{-1, 0, 1\}, \text{ and } \{0, 1\}.$$

7. Prove that every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic. [2]

Solution. Let $H = \langle a_1, a_2, \dots, a_m \rangle$ be a finitely generated subgroup of $(\mathbb{Q}, +)$. Then, $H = a_1 \mathbb{Z} + a_2 \mathbb{Z} + \dots + a_m \mathbb{Z}$.

Let
$$a_i = \frac{p_i}{q_i}$$
. Let $\ell = \text{lcm}(q_1, q_2, \dots, q_m)$.
Then, $H \leq \frac{1}{\ell} \mathbb{Z}$. Since $\frac{1}{\ell} \mathbb{Z} = \langle \frac{1}{\ell} \rangle$ is cyclic, so H is also cyclic. [1]

8. What is the value of α for which $\{\alpha, 1, 3, 9, 19, 27\}$ becomes a cyclic group under multiplication modulo 56?

Solution. We have

$$3^2 = 9$$
, $3^3 = 27$, $3^4 = 81 \equiv 25 \pmod{56}$, $3^5 \equiv 19 \pmod{56}$, $3^6 \equiv 1 \pmod{56}$.

Hence,
$$\alpha = 25$$
.

9. Let G be a group and $x \in G$. If o(x) = 5, can the centralizer of x and the centralizer of x^3 be equal?

Solution. Let
$$a \in G$$
. If $ax = xa$, then $ax^3 = xax^2 = x^2ax = x^3a$. If $ax^3 = x^3a$, then $ax = ax^6 = x^3ax^3 = x^6a = xa$. Hence, $C_G(x) = C_G(x^3)$.

```
10. Let G be a group and a \in G be an element of order 30. Find all the distinct left cosets
    of \langle a^9 \rangle in \langle a \rangle.
                                                                                                            [2]
    Solution. We have o(a^9) = 10. Hence, there are 3 distinct left cosets of \langle a^9 \rangle in \langle a \rangle. We
    have \langle a^9 \rangle = \{a^{3k} : k = 0, 1, 2, \dots, 9\}.
                                                                                                            [1]
    Hence, the distince left cosets are \langle a^9 \rangle, a \langle a^9 \rangle and a^2 \langle a^9 \rangle.
                                                                                        [1]
                                                                                                            11. Let f \in S_7. If f^5 = (2\ 3\ 4\ 1\ 6\ 5\ 7), then find f.
                                                                                                            [2]
    Solution. We have 7 = o(f^5) = \frac{o(f)}{\gcd(5,o(f))}. Hence, o(f) is a multiple of 7. In S_7, possible
    orders of elements are 1, 2, 3, 4, 5, 6, 7, 10, 12. Hence, o(f) = 7, and f = f^{15}.
                                                                                                            [1]
    Now, f^{10} = (2\ 3\ 4\ 1\ 6\ 5\ 7)(2\ 3\ 4\ 1\ 6\ 5\ 7) = (1\ 5\ 2\ 4\ 6\ 7\ 3) and
    f^{15} = (2\ 3\ 4\ 1\ 6\ 5\ 7)(1\ 5\ 2\ 4\ 6\ 7\ 3) = (1\ 7\ 4\ 5\ 3\ 6\ 2). Hence, f = (1\ 7\ 4\ 5\ 3\ 6\ 2). [1]
                                                                                                            12. Let G be a group. If a \in G is the only element of order 2, then prove that a lies in the
    center of G.
                                                                                                            [2]
    Solution. Let x \in G. Then o(a) = o(xax^{-1}).
                                                                                                            [1]
    Since a is the only element of order 2, so xax^{-1} = a for every x \in G. That is, xa = ax
    for every x \in G. Hence, a is in the center of G
                                                                                  [1]
                                                                                                            [1]
13. (a) Write down all the elements of S_4 of order 4.
                                                                                                            [2]
     (b) Write down all the subgroups of S_4 of order 4.
    Solution. (a) An element of S_4 has order 4 if and only if it is a 4-cycle. There are six
          4-cycles which are (1\ 2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 3\ 4\ 2), (1\ 3\ 2\ 4), (1\ 4\ 2\ 3), (1\ 4\ 3\ 2).
                                                                                                            [1]
     (b) The six elements of order 4 give 3 cyclic subgroups of order 4, which are
           \{(1), (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2)\},\
           \{(1), (1\ 2\ 4\ 3), (1\ 4)(2\ 3), (1\ 3\ 4\ 2)\},\
           \{(1), (1\ 3\ 2\ 4), (1\ 2)(3\ 4), (1\ 4\ 2\ 3)\}.
                                                                                                            [1]
          There are four non-cyclic subgroups of order 4 in S_4, which are
           \{(1), (1\ 2), (3\ 4), (1\ 2)(3\ 4)\},\
           \{(1), (13), (24), (13)(24)\},\
           \{(1), (14), (23), (14)(23)\},\
           \{(1), (14)(23), (13)(24), (12)(34)\}.
                                                                                                            [1]
                                                                                                            [2]
14. Determine all the group homomorphisms f: \mathbb{Z}_4 \to S_3.
    Solution. Method 1: Since \mathbb{Z}_4 is cyclic, so if f:\mathbb{Z}_4\to S_3 is a homomorphism, then
    f(k) = kf(1) for any k \in \mathbb{Z}_4. Since o(f(1))|4 and S_3 has no element of order 4, so
    o(f(1)) = 1 or o(f(1)) = 2.
                                                                                                            [1]
    Thus, we have 4 homomorphisms from \mathbb{Z}_4 to S_3, namely
    f_1:1\mapsto(1)
    f_2: 1 \mapsto (1\ 2)
```

 $f_3: 1 \mapsto (1\ 3)$ $f_4: 1 \mapsto (2\ 3).$ [1]Method 2: We know that $|\operatorname{Im}(f)|$ divides $|\mathbb{Z}_4| = 4$ and $|\operatorname{Im}(f)|$ divides $|S_3| = 6$. Hence, $|\operatorname{Im}(f)| = 1$ or $|\operatorname{Im}(f)| = 2$. The rest follows similarly as shown in Method-1.

15. Give an example of a non-abelian group all of whose subgroups are normal. [2]

Solution. Let
$$Q_8 = \{I, -I, A, -A, B, -B, C, -C\}$$
, where $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Let H be a subgroup of Q_8 . Then $|H| = 1, 2, 4, 8$. If $|H| = 1, 8$, then H is a normal

subgroup of Q_8 . If |H| = 4, then it has index 2, and hence normal. [1]

If
$$|H|=2$$
, then $H=\{I,-I\}$. If $x\in Q_8$, then $xH=\{x,-x\}=Hx$. Hence, H is normal. $\qquad \qquad [1]$

16. Does there exist an onto homomorphism from $(\mathbb{Q}, +)$ to $(\mathbb{Z}, +)$? [2]

Solution. Let $f:(\mathbb{Q},+)\to(\mathbb{Z},+)$ be an onto homomorphism. Since f is onto, let $q\in\mathbb{Q}$ be such that f(q) = 1. [1]

Since f is a homomorphism, so 1 = f(q) = f(q/2 + q/2) = 2f(q/2). But, f(q/2) is an integer, and hence 2f(q/2) = 1 is a contradiction. This proves that there can't be any onto homomorphism from $(\mathbb{Q}, +)$ to $(\mathbb{Z}, +)$. [1]