ESAME DEL 19 SETTEMBRE 2019 - PARTE I

Tempo a disposizione: 1 h 30 min

1. Scrivere un automa a stati finiti che riconosca il linguaggio

$$L = \{ w \in \{0, 1\}^* \mid w \neq 0110 \}$$

2. Trasformare l'espressione regolare $((0+1)(0+1))^*$ in un automa usando l'algoritmo visto a lezione.

3. Trasformare l' ε -NFA ottenuto nell'esercizio 2 in DFA.

4. Sia $\Sigma = \{0,1\}$ e considerate i due seguenti linguaggi:

$$L_1 = \{(01)^n 0 (10)^n \mid n \ge 0\}$$

$$L_2 = \{1^n 0 1^n \mid n \ge 0\}$$

Uno dei due linguaggi è regolare, l'altro linguaggio non è regolare.

- (a) Dire quale dei due linguaggi è regolare e quale non è regolare.
- (b) Per il linguaggio regolare, dare un automa a stati finiti o un'espressione regolare che lo rappresenta.
- (c) Per il linguaggio non regolare, dimostrare la sua non regolarità usando il Pumping Lemma.
- (a) Il linguaggio L_1 è regolare, mentre il linguaggio L_2 non è regolare.

- (b) Il linguaggio L_1 è generato dall'espressione regolare $(01)^*0$
- (c) Supponiamo per assurdo che L sia regolare. Di conseguenza, deve rispettare il Pumping Lemma.
 - $sia \ n > 0$ la lunghezza data dal Pumping Lemma;
 - consideriamo la parola $w = 1^n 01^n$, che appartiene ad L ed è di lunghezza maggiore di n;
 - $sia\ w = xyz\ una\ suddivisione\ di\ w\ tale\ che\ y \neq \varepsilon\ e\ |xy| \leq n;$
 - poiché $|xy| \leq n$, allora xy è completamente contenuta nel prefisso 1^n di w, e quindi sia x che y sono composte solo da 1. Inoltre, siccome $y \neq \varepsilon$, possiamo dire che $y = 1^p$ per qualche valore p > 0. Allora la parola xy^2z è nella forma $1^{n+p}01^n$, e quindi non appartiene al linguaggio perché il numero di 1 nella prima parte della parola è maggiore del numero di 1 nella seconda parte della parola.

Abbiamo trovato un assurdo quindi L non può essere regolare.

5. Costruire una CFG G che genera il linguaggio $L = \{a^n b^m c^k \mid con \ n = m \ o \ m = k \ e \ n, m \ e \ k \ge 0\}$. Dimostrare che per la grammatica G che proponete, vale $L(G) \subseteq L$.

La grammatica G è come segue:

$$\begin{split} S \rightarrow AC \mid BD \\ A \rightarrow aAb \mid \epsilon \\ C \rightarrow cC \mid \epsilon \\ B \rightarrow aB \mid \epsilon \\ D \rightarrow bDc \mid \epsilon \end{split}$$

Per dimostrare che $L(G) \subseteq L$ basta osservare che C genera c^m con $m \ge 0$ e che A genera a^nb^n per $n \ge 0$ e quindi $S \Rightarrow AC \Rightarrow^* a^nb^nc^m$ con n ed m maggiori o uguali a θ . La stringa vuota si ottiene quando n = m = 0. Un ragionamento simile su B e D dimostra che L(G) genera anche $a^nb^mc^m$ per n ed m maggiori o uguali a θ .