Problem: Find all integer solutions to the equation

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}.$$

Solution: We will show that all solutions are of the form:

$$x = k \cdot a \cdot (a+b)$$

$$y = k \cdot b \cdot (a+b)$$

$$z = k \cdot a \cdot b,$$

where k, a, and b are arbitrary non-zero integers, $a + b \neq 0$.

We can rewrite the given equation as

$$z = \frac{xy}{x+y},$$

so it suffices to find all pairs of integers x, y such that $x + y \mid xy$.

<u>Lemma:</u> Let r and s be relatively prime positive integers. Then $r \pm s$ and rs are relatively prime.

<u>Proof:</u> Suppose not; then there exists an integer k > 1 such that $k \mid r \pm s$ and $k \mid rs$. We have

$$k \mid r \pm s \Rightarrow k \mid r^2 \pm rs \Rightarrow k \mid r^2$$
.

Similarly, $k \mid s^2$.

Let p > 1 be any prime factor of k, so that $p \mid r^2$ and $p \mid s^2$. Now simply note that for any positive integer m, $p \nmid m \Rightarrow p \nmid m^2$. Hence, we must have $p \mid r$ and $p \mid s$, which contradicts our assumption that r and s are relatively prime. So $r \pm s$ and rs must be relatively prime. //

Let x and y be integers such that $x + y \mid xy$. We clearly cannot have x + y = 0. If |x + y| = 1, then we have the solution sets

$$x = c$$

$$y = -(c+1)$$

$$z = c \cdot (c+1)$$

and

$$x = c + 1$$

$$y = -c$$

$$z = -c \cdot (c + 1),$$

where c is an integer, $c \neq 0, 1$.

We now assume |x+y| > 1. Let $n = \gcd(|x|, |y|)$. Suppose that |x| and |y| are relatively prime. Then by the lemma, |x+y| and |xy| are relatively prime, a contradiction, since $x+y \mid xy$ and |x+y| > 1.

Hence, n > 1. Choose integers a, b such that x = na and y = nb. This gives:

$$(na + nb) \mid (na) \cdot (nb)$$

$$\Leftrightarrow n \cdot (a + b) \mid n^2 \cdot a \cdot b$$

$$\Leftrightarrow a + b \mid n \cdot a \cdot b.$$

Since $n = \gcd(|x|, |y|)$, |a| and |b| must be relatively prime. So by the lemma, the above holds if and only if $a + b \mid n$. Put $n = k \cdot (a + b)$. This gives the solution set:

$$x = k \cdot a \cdot (a+b)$$

$$y = k \cdot b \cdot (a+b)$$

$$z = k \cdot a \cdot b.$$

Finally, note that the previous two solution sets are contained within this one (for the first set, take k = -1, a = c, b = -(c + 1); for the second set, take k = 1, a = c + 1, b = -c). Hence, this is the entire family of solutions, as desired.

∞ Michael Viscardi ∞

 $\mathrm{May}\ 20,\ 2004$