2^{ième} année CPI

Contrôle intermédiaire

ANA 3

- Il sera tenu compte de la présentation et de la rédaction dans l'évaluation.
- Documents et calculatrice interdits.
- Durée de l'épreuve : 2 heures.

Partie 1:

Exercice 1 (4 points):

En utilisant la transformée de Laplace, résoudre l'EDO suivante :

$$\begin{cases} y''(t) + 4y(t) = 6\sin(t), \\ y(0) = 6, \ y'(0) = 0. \end{cases}$$

Exercice 2 (5 points):

Soit f la fonction définie sur \mathbb{R} et donnée par :

$$f(t) = \begin{cases} \sin t & \text{si } t \in]0, \pi[\\ 0 & \text{sinon.} \end{cases}$$

- 1) Calculer la transformée de Fourier de f sur $\mathbb{R} \setminus \{-1, 1\}$.
- 1) Calculer la transformée de Fourier de j sur $\mathbb{E} \setminus \mathbb{I}^{-1}$, \mathbb{I}_j .
 2) En utilisant le TIF en 0 trouver la valeur de l'intégrale: $\int_{-1}^{+\infty} \frac{\cos(\pi x) + 1}{1 x^2} dx.$

Exercice 3 (6 points):

 $\overline{\text{Soit } F \text{ la fonction suivante}}$:

$$F(x) = \int\limits_0^1 \ln(1+t^x)dt.$$

- 1) Pour $x \ge 0$ montrer que F est bien définie.
- 2) Montrer que $\forall x \in \mathbb{R}^+ : F(-x) = F(x) + x$, en déduire le domaine de définition
- 3) Montrer que F est continue sur $[0, +\infty[$, en déduire que F est continue sur
- 4) Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R} .

Bon courage

Nom:

Prénom:

Groupe:

Partie 2: Répondre ici sur la feuille

Exercice1: (2,5 points)

I- Soient D un ensemble non vide de \mathbb{R}^n , $X_0 \in \mathbb{R}^n$.

Répondre par vrai ou faux sans justifier:

- a) Int(Int(D)) = Int(D).
- b) Ext(D) = Fr(Int(D)).
- c) Si X_0 est un point d'accumulation de D alors c'est un point intérieur à D.

II- Soient $X_1=(0,0)$ et Ω le domaine de \mathbb{R}^2 donné par :

$$\Omega = \{(x, y) \in \mathbb{R}^2 / 0 \le x \le 1 \text{ et } 0 < y < x\}.$$

1) Représenter Ω .

- 2) Répondre par vrai ou faux sans justifier:
- a) Ω est un ouvert de \mathbb{R}^2 .
- b) Ω est un fermé.
- c) X_1 est un point d'accumulation.
- d) X_1 est un point intérieur.
- e) X_1 un point frontière de D.

Exercice2: (2,5 points)

Résoudre dans $\mathcal{L}^1(\mathbb{R}) \cap \mathcal{C}^1(\mathbb{R}) : y * y = y$

Un corrigé:

Partie1:

Exercice1: En utilisant la TL: $\mathcal{L}(y''(t)) + 4\mathcal{L}(y(t)) = 6\mathcal{L}(\sin t); y(0) = 6,$ y'(0) = 0. sachant que: $\mathcal{L}(y''(t)) = x^2Y(x) - xy(0) - y'(0)$ et $\mathcal{L}(\sin t) = \frac{1}{x^2 + 1}$ donc: $x^2Y(x) - 6x + 4Y(x) = \frac{6}{x^2 + 1} \iff (x^2 + 4)Y(x) = \frac{6}{x^2 + 1} + 6x =$ $Y(x) = \frac{6}{(x^2 + 1)(x^2 + 4)} + \frac{6x}{(x^2 + 4)}$ on décompose d'abord: $\frac{1}{(u+1)(u+4)} = \frac{a}{(u+1)} + \frac{b}{(u+4)} = \frac{(a+b)u + 4a + b}{(u+1)(u+4)}$ on trouve $a = \frac{1}{3}, b = \frac{1}{3}$ ie: $Y(x) = \frac{2}{(x^2 + 1)} - \frac{2}{(x^2 + 4)} + \frac{6x}{(x^2 + 4)}$ on passe alors à la TL inverse:

Exercice2:

1) \bigstar Montrons que $f \in \mathcal{L}^1(\mathbb{R})$:

$$\rightarrow$$
 f est continue sur \mathbb{R} (faire un graphe ou les limites en 0)

$$\rightarrow \int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \sin t dt$$
 intégrale propre le convergente. Donc $f \in \mathcal{L}^{1}(\mathbb{R})$.

$$\bigstar \mathcal{F}(f)\left(x\right) = \int\limits_{-\infty}^{+\infty} e^{-ixt} f(t) dt = \int\limits_{0}^{\pi} e^{-ixt} \sin t dt = \int\limits_{0}^{\pi} \cos \left(xt\right) \sin t dt - i \int\limits_{0}^{\pi} \sin \left(xt\right) \sin t dt$$

$$I_1 = \cos(x\pi) + 1 - x \left(\left[\sin(xt)\sin t \right]_0^{\pi} - x \int_0^{\pi} \cos(xt)\sin t dt \right)$$

ie
$$I_1 = \cos(x\pi) + 1 + x^2 I_1 \iff I_1 = \frac{\cos(x\pi) + 1}{(1 - x^2)}, \ x \in \mathbb{R} \setminus \{-1, 1\}$$

$$\rightarrow I_2 = \int_0^{\pi} \sin(xt)\sin tdt \stackrel{\text{IPP}}{=} [-\sin(xt)\cos t]_0^{\pi} + x \int_0^{\pi} \cos(xt)\cos tdt$$

$$I_2 = \sin(x\pi) + x \left(\left[\cos(xt)\sin t\right]_0^{\pi} + x \int_0^{\pi} \sin(xt)\sin tdt \right)$$

ie
$$I_2 = \sin(x\pi) + x^2 I_2 \iff I_2 = \frac{\sin(x\pi)}{(1-x^2)}, \ x \in \mathbb{R} \setminus \{-1, 1\}$$

On aurait pu aussi faire deux IPP à $\int e^{-ixt} \sin t dt$.

Conclusion:
$$\mathcal{F}(f)(x) = I_1 - iI_2 = \frac{\cos(x\pi) + 1}{(1 - x^2)} - i\frac{\sin(x\pi)}{(1 - x^2)}, \ x \in \mathbb{R} \setminus \{-1, 1\}.$$

2) Comme f est continue en 0 et admet une dérivée à droite et à gauche de ce point, en effet:

$$\Rightarrow \lim_{t \to 0^+} \frac{f(t) - f(0)}{t - 0} = \lim_{x \to 0^+} \frac{\sin t}{t} = 1 \in \mathbb{R}.$$

$$\Rightarrow \lim_{t \to 0^-} \frac{f(t) - f(0)}{t - 0} = \lim_{x \to 0^-} \frac{0}{t} = 0 \in \mathbb{R}.$$
Donc on peut appliquer le TIF en 0:

$$f\left(0\right) = \frac{1}{\pi} \lim_{A \to +\infty} \int_{-A}^{A} e^{i0t} \mathcal{F}\left(f\right)\left(x\right) dx = \frac{1}{2\pi} \lim_{A \to +\infty} \left(\int_{-A}^{A} \underbrace{\frac{\cos\left(x\pi\right) + 1}{\left(1 - x^{2}\right)}}_{\text{paire}} dx - i \int_{-A}^{A} \underbrace{\frac{\sin\left(x\pi\right)}{\left(1 - x^{2}\right)}}_{\text{impaire}} dx \right)$$

On obtient:
$$0 = f(0) = \frac{1}{\pi} \lim_{A \to +\infty} \int_{0}^{A} \frac{\cos(x\pi) + 1}{(1 - x^2)} dx = \frac{1}{2\pi} \int_{0}^{+\infty} \frac{\cos(x\pi) + 1}{(1 - x^2)} dx.$$

Donc
$$\int_{0}^{+\infty} \frac{\cos(x\pi) + 1}{(1 - x^2)} dx = 0.$$

Exercice3:

1) Soit $f(t,x) = \ln(1+t^x) = \ln(1+e^{x\log t})$ donc $f \in R_{loc}[0,1]$ selon t et f > 0. Pour $x \ge 0$, On sait que $\log(1+u) \le u \ \forall u > 0$ (on peut utiliser d'autres

comparaisons) donc
$$f(t,x) \le t^x = \frac{1}{t^{-x}}$$
, or $\int_0^1 \frac{1}{t^{-x}} dt$ converge pour $-x < 1$ ie

$$x > -1$$

donc d'aprés le critère de comparaison $\int f(t,x)dt$ converge (on a préparé la CD

pour la question3).

Donc F est bien définie sur \mathbb{R}^+ .

2) Montrons que: pour tout $x \in D$, F(-x) = F(x) + x:

$$F(-x) = \int_{0}^{1} \ln(1+t^{-x})dt = \int_{0}^{1} \ln(\frac{t^{x}+1}{t^{x}})dt = \int_{0}^{1} (\ln(1+t^{x}) - x\log t) dt$$

Comme $\int \log t dt$ converge (intégrale de Bertrand) alors:

$$F(-x) = \int_{0}^{1} (\ln(1+t^{x})dt - x \log t) dt$$

or
$$\int_{0}^{1} \log t dt = \left[t \log t \right]_{0}^{1} - \int_{0}^{1} dt = -\lim_{t \to 0} \left(t \log t \right) - 1 = -1$$

Donc: F(-x) = F(x) - x(-1) = F(x) + x.

Déduction: Pour $x \leq 0$ on a F(x) = F(-x) - x et $(-x) \geq 0$ donc F(x) est définie.

Conclusion: $D_F = \mathbb{R}$.

3) Utilisons le théorème de conservation de la continuité sur $[0, +\infty[\times]0, 1]$:

→ Montrons la convergence dominée:

On a que $f(t,x) \leq t^x$ et elle est décroissante en x, en effet:

$$\frac{\partial t^x}{\partial x} = \frac{\partial e^{x \log t}}{\partial x} = (\log t) \cdot t^x \le 0, \text{ et donc:}$$

 $f(t,x) \leq 1 = \varphi(t) \ \forall x \in [0,+\infty[\text{ avec } \int_{0}^{1} \varphi(t) \, dt \text{ converge (Intégrale de Riemann, propre)}.$

On en conclut que $\int_{0}^{1} f(t,x)dt$ vérifie la convergence dominée sur tout $[0,+\infty[$.

 \rightsquigarrow La fonction f est continue par morceaux selon t car c'est la composée, somme et le produit de fonctions continues (expo et log).

 \leadsto La fonction f est continue selon x car c'est la composée, somme et le produit de fonctions continues (expo et polynôme).

Donc F est continue sur tout $[0, +\infty[$, et pour tout $x \in]-\infty, 0]$ F(x) = F(-x)-x:

on en déduit qu'elle est continue comme somme de fonctions continues

Conclusion:
$$F$$
 est continue sur \mathbb{R} .
4) $\frac{\partial f}{\partial x}(t,x) = \frac{\log t \cdot t^x}{(1+t^x)}$

Utilisons le théorème de conservation de la continuité sur $[0, +\infty[\times]0, 1]$:

→ Montrons la convergence dominée:

On a que
$$\left| \frac{\partial f}{\partial x}(t,x) \right| = \frac{\left| \log t \right| . t^x}{(1+t^x)} \le \left| \log t \right| = \psi(t) \ \forall x \in \mathbb{R} \text{ avec } \int_{0}^{1} \psi(t) \, dt \text{ converge}$$

(Intégrale de Bertrand, $\alpha = 0$).

On en conclut que $\int_{a}^{1} \frac{\partial f}{\partial x}(t,x)dt$ vérifie la convergence dominée sur tout \mathbb{R} .

 \rightarrow La fonction $\frac{\partial f}{\partial x}$ est continue par morceaux selon t car c'est la composée, somme et le produit de fonctions continues (expo et log).

 \rightarrow La fonction $\frac{\partial f}{\partial x}$ est continue selon x car c'est la composée, somme et le produit de fonctions continues (expo et polynôme).

Conclusion: F est de classe C^1 sur \mathbb{R} .

Partie2:

Exercice1: 0,25 pts pour chaque réponse et 0,5 pour le graphe.

Exercice2:
$$y * y = y$$
 donne $\mathcal{F}(y) . \mathcal{F}(y) = \mathcal{F}(y) \iff \mathcal{F}(y) (\mathcal{F}(y) - 1)$

Remarque: Comme $\mathcal{F}(y)$ est continue alors on ne peut pas avoir un x telle que $\mathcal{F}(y)(x) = 0$ et $\mathcal{F}(y)(x) = 1$ en même temps.

<u>1er cas:</u> supposons $\mathcal{F}(y) = 0$ (paire), appliquons ensuite le TIF puisque $y \in C^1(\mathbb{R})$:

$$y(a) = \frac{1}{\pi} \int_{0}^{+\infty} \cos(ax) \cdot \mathcal{F}(y)(x) dx = 0 \text{ donc } y \equiv 0 \text{ est une solution de l'quation}$$

proposée.

<u>1ème cas:</u> supposons $\mathcal{F}(y)=1$ (paire), appliquons encore le TIF puisque $y\in C^{1}(\mathbb{R})$:

pour
$$a \neq 0$$
: $y(a) = \frac{1}{\pi} \int_{0}^{+\infty} \cos(ax) \cdot \mathcal{F}(y)(x) dx = \frac{1}{\pi} \int_{0}^{+\infty} \cos(ax) dx = \lim_{A \to +\infty} \frac{1}{a\pi} \left[\sin(ax) \right]_{0}^{A}$

n'existe pas

Cette solution est donc rejetée (inutile de voir le cas a = 0).