

SEARCH

Change the convolutional activation function to each of these options.

Values

"relu", "selu",
"elu", "tanh"

SEARCH

Vary the learning rate and batch size of the standard convolutional network.

Values

Learning rate: 0.01, 0.001, 0.0001, 0.00001 Batch Size: 128, 256, 512, 1024, 2048

SEARCH

Change the number of convolutional filters in the first layer. Double the number of filters in each subsequent layer.

Values

Filters: 8, 16, 32, 48, 64, 128

SEARCH

Use two Dense hidden layers before the output Dense layer. Vary the neuron count.

Values

First Dense Neuron Count: 128, 256, 512 Second Dense Neuron Count: 512, 256, 128

SEARCH

Compare
Max Pooling,
Average Pooling,
and Strided
Convolutions
for spatial
dimensionality
reduction.

Values

MaxPooling2D, AveragePooling2D, Conv2D(..., stride=(2,2))

SEARCH

Retrain the network with 1 year's worth of examples removed from the training data.

Values

 $valid_dates.year$!= 2011, 2012, 2013, 2014, 2015

SEARCH

Use 2 convolutional layers between each pooling layer. Vary the ratio of the number of filters used between the first and second layer.

Values

same, 2x first, 0.5x first

SEARCH

Use SpatialDropout2D layers after each convolutional layer and vary the dropout rate.

Values

0.1, 0.2, 0.3, 0.4, 0.5

SEARCH

Place
BatchNormalization
layers after each
convolutional
layer. Vary
the momentum
parameter.

Values

momentum=0.5, 0.9, 0.99, 0.999

SEARCH

Add 12 kernel regularizers to each Conv2D and Dense layer. Vary the 12 strength.

Values

strength=0.1, 0.01, 0.001, 0.0001

SEARCH

Change the optimizer. Use the same learning rate and batch size for each.

Values

SGD, Adam, RMSprop, Adadelta, Nadam

SEARCH

Vary the number of Conv2D-Activation-MaxPooling2D layer sets.

Values

1, 2, 3, 4

SEARCH

Use 2 input fields instead of 3. Vary the combinations of inputs used.

Values

(refl, u), (refl, v), (u, v)

SEARCH

Change the kernel_initializer and bias_initializer for each Conv2D and Dense layer.

Values

glorot_uniform, he_uniform, lecun_uniform, he_normal

SEARCH

Vary the width of the convolutional filters in each layer.

Values

(3,3), (5,5), (7,7), (9,9)

SEARCH

Rescale the spatial dimension of the input with Average Pooling 2D or Upsampling 2D layers after the input layer.

Values

AveragePooling2D: size=(2,2), (4,4) Upsampling2D: size=(2,2), (4,4)

SEARCH

Replace the Conv2D layers with SeparableConv2D layers. Vary the depth_multiplier parameter.

Values

depth_multiplier= 1, 2, 4, 8

SEARCH

Use GaussianDropout layers after each Conv2D layer. Vary the dropout rate.

Values

rate=0.1, 0.2, 0.3, 0.4, 0.5

SEARCH

Add 11 kernel regularizers to each Conv2D and Dense layer. Vary the 11 strength.

Values

strength=0.1, 0.01, 0.001, 0.0001

SEARCH

Use the SGD optimizer and vary the learning_rate and momentum parameters.

Values

learning_rate=0.1, 0.01, 0.001, 0.0001 momentum=0.9, 0.99, 0.999

SEARCH

Vary the number of Conv2D-Activation-AveragePooling2D layer sets.

Values

1, 2, 3, 4

SEARCH

Use 1 input field instead of 3.

Values

refl, u, v

SEARCH

Change how the input values are scaled. $scaled = a + \frac{x - x_{min}(b-a)}{x_{max} - x_{min}}$

Values

Min-Max Scaling from a=0 to b=1, Min-Max Scaling from a=-1 to b=1.

SEARCH

After each pooling layer, use 2 parallel Conv2D layers with different widths and Concatenate them afterward.

Values

(3, 3) and (5,5); (1, 1) and (3, 3)

SEARCH

Place a Flatten layer after the input and replace all Conv2D and Pooling layers with 3 Dense layers with ReLU. Vary the hidden neuron count.

Values

(512, 256, 128), (512, 512, 512), (128, 256, 512)

SEARCH

Remove all pooling layers. Use 4 convolution filters where the filter width doubles with each layer.

Values

start filter width=(3, 3), (5, 5), (7, 7)

SEARCH

Use GaussianNoise layers after each Conv2D layer. Vary the noise standard deviation.

Values

 $\begin{array}{l} {\rm standard} \\ {\rm deviation}{=}0.1, \\ 0.01,\, 0.001 \end{array}$

0