4.11 For clarity's sake, we can visualise ϕ as:

$$\boldsymbol{\phi} = \begin{bmatrix} [\phi_1]^T & [\phi_2]^T & \dots & [\phi_m]^T \dots & [\phi_M]^T \end{bmatrix}^T$$

where each $[\phi_m]^T$ is an L sized vector, looking something like $[0 \dots 1 \dots 0]$, with one 1 and (L-1) 0s since it is a 1-of-L binary coding scheme.

We can use ϕ_{ml} to represent the coding scheme such that $\phi_{ml} = 0$ or 1.

The class conditional distributions are of the form:

$$p(\boldsymbol{\phi}|\mathcal{C}_k) = \prod_{m=1}^{M} \prod_{l=1}^{L} \mu_{kml}^{\phi_{ml}}$$

where μ_{kml} is the probability of $\phi_{ml} = 1$ given class k.

The likelihood function is then given by:

$$p(\boldsymbol{\Phi}|\ldots\mu_{ml}\ldots) = \prod_{i=1}^{N} \prod_{m=1}^{M} \prod_{l=1}^{L} \mu_{kml}^{\phi_{iml}}$$

Substituting into (4.63) then gives:

$$a_k(\phi) = \sum_{m=1}^{M} \sum_{l=1}^{L} \{\phi_{ml} \ln \mu_{kml}\} + \ln p(C_k)$$

which is a linear function of the components of ϕ .