COSI 127b Introduction to Database Systems

Lecture 11: E/R (cont), Theoretical DB Design

What a DBMS Manages

1. Data Organization

• Logical: Relational Data Model, Database Design Techniques

2. Data Retrieval

• Logical: Query Languages: RA, TRC, SQL

3. Data Integrity

• Logical: Transactions, Integrity Constraints

Review: Good DB Design

Three Approaches:

- 1. Ad hoc:
 - use Entity-Relationship Model to model data requirements
 - translate ER design into relational schema

Issue: How to tell if design is "good"?

- 2. Theoretical:
 - construct universal relations (e.g., Borrower-All)
 - decompose above using known functional dependencies

Issue: Time-Consuming and Complex

- 3. Practical:
 - use ER Model to produce 1st cut DB design
 - use FDs to refine and verify

Review: E/R Cheat Sheat

Review: E/R Cheat Sheat

E/R	Relational Schema
Entity Sets $\underline{\underline{a}_{\underline{1}}}$ $\underline{a}_{\underline{n}}$	

E/R	Relational Schema
Entity Sets $\underline{\underline{a}_{\underline{1}}}$ $\underline{a}_{\underline{n}}$	$E = (\underline{a_1},, a_n)$

E/R	Relational Schema
Entity Sets $\underline{\underline{a}_1}$ \underline{a}_n	$E = (\underline{a}_1,, a_n)$
Relationship Sets	

E/R	Relational Schema	
Entity Sets $\underline{\underline{a}_{\underline{1}}}$ $\underline{a}_{\underline{n}}$	$E = (\underline{a_1},, a_n)$	
Relationship Sets $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R = (\underline{a_1, b_1, c_1,, c_n})$ $a_1: E_1's \text{ key}$ $b_1: E_2's \text{ key}$ $c_1,, c_k: \text{ attributes of } R$	

Not the whole story for Relationship Sets ...

What about...

Could have: $R = (\underline{a_1, b_1}, c_1, ..., c_k)$ but...

- a_1 is a key for $E_1 = (\underline{a_1}, ..., \underline{a_n})$
- a_1 is also a key for R

Instead:

- Ignore R
- Add $b_1, c_1, ..., c_k$ to E_1 instead (i.e. $E_1 = (\underline{a}_1, ..., \underline{a}_n, b_1, c_1, ..., c_k)$)

Rule of Thumb

Fewer tables good, as long as no redundancy

Relationship Cardinality	Relational Schema
$\underbrace{a_1}$ \cdots $\underbrace{a_n}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n:m	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, c_1,, c_k)$
n:1	

Relationship Cardinality	Relational Schema
$\frac{E_1}{a_1}$?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n:m	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_m)$ $R = (\underline{a_1}, \underline{b_1}, c_1,, c_k)$
n:1	$E_1 = (\underline{a_1},, a_n, b_1, c_1,, c_k)$ $E_2 = (\underline{b_1},, b_m)$

Relationship Cardinality	Relational Schema
$\underbrace{a_1}$ \cdots $\underbrace{a_n}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n:m	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_m)$ $R = (\underline{a_1}, \underline{b_1}, \underline{c_1},, \underline{c_k})$
n:1	$E_1 = (\underline{a}_1,, a_n, b_1, c_1,, c_k)$ $E_2 = (\underline{b}_1,, b_m)$
1:n	

Relationship Cardinality	Relational Schema	
$\underbrace{a_1}$ \cdots $\underbrace{a_n}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n:m	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, \underline{c}_1,, \underline{c}_k)$	
n:1	$E_1 = (\underline{a}_1,, a_n, b_1, c_1,, c_k)$ $E_2 = (\underline{b}_1,, b_m)$	
1:n	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_m, a_1, c_1,, c_k)$	

Relationship Cardinality	Relational Schema
$\frac{E_1}{a_1}$?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n:m	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, \underline{c}_1,, \underline{c}_k)$
n:1	$E_1 = (\underline{a}_1,, a_n, b_1, c_1,, c_k)$ $E_2 = (\underline{b}_1,, b_m)$
1:n	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m, a_1, c_1,, c_k)$
1:1	

Relationship Cardinality	Relational Schema
$\underbrace{a_1}$ \cdots $\underbrace{a_n}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n:m	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_m)$ $R = (\underline{a_1}, \underline{b_1}, \underline{c_1},, \underline{c_k})$
n:1	$E_1 = (\underline{a}_1,, a_n, b_1, c_1,, c_k)$ $E_2 = (\underline{b}_1,, b_m)$
1:n	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m, a_1, c_1,, c_k)$
1:1	Treat as n:1 or 1:n

 Account

 bname
 acct no
 balance

 Downtown
 A-101
 500

 Mianus
 A-215
 700

 Perry
 A-102
 400

 R.H.
 A-305
 350

 Brighton
 A-201
 900

 Redwood
 A-222
 700

 Brighton
 A-217
 750

5

6

Depositor		
cname	acct_no	
Johnson Smith Hayes Turner Johnson Jones Lindsay	A-101 A-215 A-102 A-305 A-201 A-217 A-222	

Customer		
cname	cstreet	ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn	Main North Main North Park Putnam Nassau Spring Alma Sand Hill	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside
Brooks Green	Senator Walnut	Brooklyn Stanford

Branch		
bname	bcity	assets
Downtown	Brooklyn	9M
Redwood	Palo Alto	2.1M
Perry	Horseneck	1.7M
Mianus	Horseneck	0.4M
R.H.	Horseneck	8M
Pownel	Bennington	0.3M
N. Town	Rye	3.7M
Brighton	Brooklyn	7.1M

Borrower		
cname	lno	
Jones Smith Hayes Jackson Curry Smith Williams Adams	L-17 L-23 L-15 L-14 L-93 L-11 L-17 L-16	

Loan		
bname	<u>lno</u>	amt
Downtown Redwood Perry Downtown Mianus R.H.	L-17 L-23 L-15 L-14 L-93 L-11	1000 2000 1500 1500 500 900
Perry	L-16	1300

3

Branch		
bname	bcity	assets
Downtown Redwood Perry Mianus R.H. Pownel N. Town Brighton	Brooklyn Palo Alto Horseneck Horseneck Horseneck Bennington Rye Brooklyn	9M 2.1M 1.7M 0.4M 8M 0.3M 3.7M 7.1M

2

Customer		
<u>cname</u>	cstreet	ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn Brooks	Main North Main North Park Putnam Nassau Spring Alma Sand Hill Senator	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside Brooklyn

Branch		
bname	bcity	assets
Downtown Redwood Perry Mianus R.H. Pownel N. Town Brighton	Brooklyn Palo Alto Horseneck Horseneck Horseneck Bennington Rye Brooklyn	9M 2.1M 1.7M 0.4M 8M 0.3M 3.7M 7.1M

2

Customer		
<u>cname</u>	cstreet	ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn Brooks Green	Main North Main North Park Putnam Nassau Spring Alma Sand Hill Senator Walnut	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside Brooklyn Stanford

Loan		
bname	<u>lno</u>	amt
Downtown	L-17	1000
Redwood	L-23	2000
Perry	L-15	1500
Downtown	L-14	1500
Mianus	L-93	500
R.H.	L-11	900
Perry	L-16	1300

3

Branch		
bname	bcity	assets
Downtown Redwood Perry Mianus R.H. Pownel N. Town Brighton	Brooklyn Palo Alto Horseneck Horseneck Horseneck Bennington Rye Brooklyn	9M 2.1M 1.7M 0.4M 8M 0.3M 3.7M 7.1M

Borrower		
cname	lno	
Jones Smith Hayes Jackson Curry Smith Williams Adams	L-17 L-23 L-15 L-14 L-93 L-11 L-17	

Loan		
bname	<u>lno</u>	amt
Downtown	L-17	1000
Redwood	L-23	2000
Perry	L-15	1500
Downtown	L-14	1500
Mianus	L-93	500
R.H.	L-11	900
Perry	L-16	1300

1

3

Customer		
cname	cstreet	ccity
Jones Smith Hayes Curry Lindsay Turner Williams	Main North Main North Park Putnam Nassau	Harrison Rye Harrison Rye Pittsfield Stanford Princeton
Adams Johnson Glenn Brooks Green	Spring Alma Sand Hill Senator Walnut	Pittsfield Palo Alto Woodside Brooklyn Stanford

5

Account		
bname <u>acct_no</u>		balance
Downtown Mianus Perry R.H. Brighton Redwood Brighton	A-101 A-215 A-102 A-305 A-201 A-222 A-217	500 700 400 350 900 700 750

Branch		
<u>bname</u> bcity assets		assets
Downtown Redwood Perry Mianus R.H. Pownel	Brooklyn Palo Alto Horseneck Horseneck Horseneck Bennington	9M 2.1M 1.7M 0.4M 8M 0.3M
N. Town Brighton	Rye Brooklyn	3.7M 7.1M

Borrower		
cname	lno	
Jones	L-17	
Smith	L-23	
Hayes	L-15	
Jackson	L-14	
Curry	L-93	
Smith	L-11	
Williams	L-17	
7 -1	T 1 C	

4

 Loan

 bname
 lno

 Downtown
 L-17

 Redwood
 L-23

 Perry
 L-15

 Downtown
 L-14

 Mianus
 L-93

 R.H.
 L-11

Perry

3

amt

1300

Customer		
<u>cname</u>	cstreet	ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn Brooks Green	Main North Main North Park Putnam Nassau Spring Alma Sand Hill Senator Walnut	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside Brooklyn Stanford

Account		
bname	acct_no	balance
Downtown	A-101	500
Mianus	A-215	700
Perry	A-102	400
R.H.	A-305	350
Brighton	A-201	900
Redwood	A-222	700
Brighton	A-217	750

Depositor		
cname	acct_no	
Johnson Smith Hayes Turner Johnson Jones Lindsay	A-101 A-215 A-102 A-305 A-201 A-217 A-222	

Customer		
<u>cname</u> cstreet		ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn Brooks Green	Main North Main North Park Putnam Nassau Spring Alma Sand Hill Senator Walnut	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside Brooklyn Stanford

Branch		
bname bcity		assets
Downtown Redwood Perry Mianus R.H. Pownel N. Town Brighton	Brooklyn Palo Alto Horseneck Horseneck Bennington Rye Brooklyn	9M 2.1M 1.7M 0.4M 8M 0.3M 3.7M 7.1M

Borrower		
cname	lno	
Jones Smith Hayes Jackson Curry Smith Williams Adams	L-17 L-23 L-15 L-14 L-93 L-11 L-17	

Loan		
bname	<u>lno</u>	amt
Downtown	L-17	1000
Redwood	L-23	2000
Perry	L-15	1500
Downtown	L-14	1500
Mianus	L-93	500
R.H.	L-11	900
Perry	L-16	1300

E/R	Relational Schema
Weak Entity Sets	
$\begin{array}{c c} E_1 & \hline \\ \hline a_1 & \dots & b_m \\ \hline \end{array}$	

E/R	Relational Schema
Weak Entity Sets	
$\begin{array}{c c} E_1 & \hline \\ \hline a_1 & \dots & a_n \\ \hline \end{array}$	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{a_1}, \underline{b_1},, \underline{b_m})$

E/R	Relational Schema
Multivalued Attributes	
Emp name dept	

E/R	Relational Schema
Multivalued Attributes	
Emp name dept	<pre>Emp = (ssn,name) Emp-Depts = (ssn,dept) ssn name 001 Smith</pre>

Subclasses example:

Method 1:

```
Account = (\underline{acct no}, balance)

SAccount = (\underline{acct no}, interest)

CAccount = (\underline{acct no}, overdraft)
```

Method 2:

```
SAccount = (<u>acct no</u>, balance, interest)
CAccount = (<u>acct no</u>, balance, overdraft)
```

Q: When is method 2 not possible?

A: When subclassing is partial

Good DB Design

Three Approaches:

- 1. Ad hoc:
 - use Entity-Relationship Model to model data requirements
 - translate ER design into relational schema

Issue: How to tell if design is "good"?

- 2. Theoretical:
 - construct universal relations (e.g., Borrower-All)
 - decompose above using known functional dependencies

Issue: Time-Consuming and Complex

- 3. Practical:
 - use ER Model to produce 1st cut DB design
 - use FDs to refine and verify

Good DB Design

Three Approaches:

- 1. Ad hoc:
 - use Entity-Relationship Model to model data requirements
 - translate ER design into relational schema

Issue: How to tell if design is "good"?

- 2. Theoretical:
 - construct universal relations (e.g., Borrower-All)
 - decompose above using known functional dependencies

Issue: Time-Consuming and Complex

- 3. Practical:
 - use ER Model to produce 1st cut DB design
 - use FDs to refine and verify

Review: Functional Dependencies

In General:

$$A_1$$
, ..., $A_n \rightarrow B$

Informally:

If 2 tuples agree on their values for A_1 , ..., A_n , then they will also agree on their values for B

Formally:

```
\forall t, u (t[A_1] = u[A_1] \land ... \land t[A_n] = u[A_n]) \Rightarrow t[B] = u[B])
```

Review: Deriving FDs

FD Sources:

- 1. Key Constraints (e.g.: bname → Branch)
- 2. Known "many-to-one" (n::1) relationships
 - e.g.: beer → manufacturer, beer → price
- 3. Laws of Physics
 - e.g.: time, room → course
- 4. Trial-and-error
 - given R = (A, B, C), see which of the following make sense:

Idea: Some FDs are implied by others

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

e.g., lno → bname + bname → bcity implies

Idea: Some FDs are implied by others

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17	Jones	Main	Harrison	Downtown	1000	Brooklyn Palo Alto Horseneck Brooklyn	9M
L-23	Smith	North	Rye	Redwood	2000		2.1M
L-15	Hayes	Main	Harrison	Perry	1500		1.7M
L-17	Jackson	Senator	Brooklyn	Downtown	1000		9M
L-93	Curry	Walnut	Stanford	Mianus	500	Horseneck	0.4M
L-11	Smith	North	Rye	R.H.	900	Horseneck	8M
L-16	Adams	Spring	Pittsfield	Perry	1300	Horseneck	1.7M

e.g., lno → bname + bname → bcity implies lno → bcity

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

```
Q: Is \{ \text{lno} \rightarrow \text{bname}, \text{bname} \rightarrow \text{bcity} \}
\text{equivalent to}
\{ \text{lno} \rightarrow \text{bname}, \text{bname} \rightarrow \text{bcity}, \text{lno} \rightarrow \text{bcity} \} ?
```

```
{ Ino → bname, bname → bcity}

=
{lno → bname, bname → bcity, lno → bcity}

?
=
{lno → bname bcity, bname → bcity, lno → bcity}
```

```
{lno → bname, bname → bcity}
  {lno → bname, bname → bcity, lno → bcity}
{lno → bname bcity, bname → bcity, lno → bcity}
{lno → bname bcity, bname → bcity, lno → lno}
```

```
{lno → bname, bname → bcity}
  {lno → bname, bname → bcity, lno → bcity}
                       \equiv
{lno → bname bcity, bname → bcity, lno → bcity}
                       {lno → bname bcity, bname → bcity, lno → lno}
```

Given FD sets over R, F and G, how to decide if $F \equiv G$?

• Idea: Compare sets of FDs that F, G imply (closures)

$$F \equiv G \text{ if and only if } F^+ = G^+$$

E.g., Given:

$$R = (A, B, C, D, E, H)$$

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Is
$$F \equiv G$$
? (Is $F^+ = G^+$?)

Computing FD Closures

Algorithm 1: Using Attribute Closures

- Z^+ = set of attributes determined by <u>set of attributes</u>, Z
- can use attribute closures to compute F⁺ by determining:

$$Z \rightarrow Z^+$$

for all subsets of attributes, Z

Example:

for
$$F = \{ AC \rightarrow B, B \rightarrow A \} :$$
compute
$$F^{+} = \{ A \rightarrow A^{+}, B \rightarrow B^{+}, C \rightarrow C^{+},$$

$$AB \rightarrow AB^{+}, AC \rightarrow AC^{+}, BC \rightarrow BC^{+},$$

$$ABC \rightarrow ABC^{+} \}$$

Computing FD Closures

Algorithm 1: Using Attribute Closures

- Z^+ = set of attributes determined by set of attributes, Z
- can use attribute closures to compute F⁺ by determining:

$$Z \rightarrow Z^+$$

for all subsets of attributes, Z

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result	
0	{C,D}	

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result	
0	{C,D}	

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

```
Att-Closure ({C,D},F):
```

Iteration #	result	
0	{C,D}	

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B, E }

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C,D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, (B \rightarrow CE), A \rightarrow E, AC \rightarrow H, (D \rightarrow B)\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, (D \rightarrow B), A \rightarrow E, AC \rightarrow H, (B \rightarrow CE)\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F *affect the result?*

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \ \mathbf{D} \rightarrow \mathbf{B}, \ \mathbf{A} \rightarrow \mathbf{E}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F *affect the result?*

Iteration #	result
0	{C,D}
1	{C,D,B}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \ \mathbf{D} \rightarrow \mathbf{B}, \ \mathbf{A} \rightarrow \mathbf{E}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F *affect the result?*

Iteration #	result
0	{C,D}
1	{C,D,B, E }

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F *affect the result?*

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

Does the order of FD's in F affect the result?

Att-Closure ({C,D},F):

Iteration #	result
0	{C,D}
1	{C,D,B}
2	{C,D,B,E}
3	{C,D,B,E}

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

A: No, but may change the # of passes of the algorithm required to reach "stability".

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Iteration #	result
0	{A,C,D}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Iteration #	result
0	{A,C,D}
1	

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Iteration #	result
0	{A,C,D}
1	{A,C,D,B,E,H}

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Iteration #	result
0	{A,C,D}
1	{A,C,D,B,E,H}
2	

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Att-Closure ({A,C,D},F):

Iteration #	result
0	{A,C,D}
1	{A,C,D,B,E,H}
2	{A,C,D,B,E,H}

After iteration 1,

ACD+ = R.

Must be in stable state

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

What is ACD^+ ? (the closure of {A,C,D} wrt F)

Att-Closure ({A,C,D},F):

Iteration #	result
0	{A,C,D}
1	{A,C,D,B,E,H}
2	{A,C,D,B,E,H}

After iteration 1,

ACD+ = R.

Must be in stable state

$$F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}$$

Is $\{A,C,D\}$ (ACD) a superkey of R = (A,B,C,D,E,H)?

A: Yes, because $ACD^+ \rightarrow R$

Is $\{A,C,D\}$ (ACD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

1.
$$ACD^+ \rightarrow R$$
 must be a superkey

must be minimal (subtracting any attribute makes it not a key)

We Answered this Earlier

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is CD^+ ? (the closure of $\{C, D\}$ wrt F)

Att-Closure ({C,D},F):

Iteration #	result
0	{C,D}
1	{C,D,B,E}
2	{C,D,B,E}

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

Is $\{A,C,D\}$ (ACD) a superkey of R = (A,B,C,D,E,H)?

A: Yes, because $ACD^+ \rightarrow R$

Is $\{A,C,D\}$ (ACD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

1.
$$ACD^+ \rightarrow R$$
 must be a superkey

must be minimal (subtracting any attribute makes it not a key)

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is AC^+ ? (the closure of $\{A,C\}$ wrt F)

```
Att-Closure ({A,C},F):
```

Iteration #	result			
0	{A,C}			

$$F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}$$

Is $\{A,C,D\}$ (ACD) a superkey of R = (A,B,C,D,E,H)?

A: Yes, because $ACD^+ \rightarrow R$

Is $\{A,C,D\}$ (ACD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

1. $ACD^{+} \rightarrow R$ must be a superkey
2. $CD^{+} \not\rightarrow R$ 3. $AC^{+} \not\rightarrow R$ 4. $AD^{+} \not\rightarrow R$ must be minimal (subtracting any attribute makes it not a key)

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, D \rightarrow B, A \rightarrow E, AC \rightarrow H, B \rightarrow CE\}
```

What is AD^+ ? (the closure of $\{A, D\}$ wrt F)

```
Att-Closure ({A,D},F):
```

Iteration #	result			
0	{A,D}			

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

Is $\{A,C,D\}$ (ACD) a superkey of R = (A,B,C,D,E,H)?

A: Yes, because $ACD^+ \rightarrow R$

Is $\{A,C,D\}$ (ACD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

1.
$$ACD^{+} \rightarrow R$$
 must be a superkey
2. $CD^{+} \not\rightarrow R$
3. $AC^{+} \not\rightarrow R$
4 must be minimal (subtracting any attribute makes it not a key)

Therefore, ACD is not a candidate key of R

Exercise

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

Is $\{A,D\}$ (AD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

```
1. AD^+ \rightarrow R must be a superkey

2. A^+ \not\rightarrow R must be minimal (subtracting any attribute makes it not a key)
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

What is A^+ ? (the closure of $\{A\}$ wrt F)

Att-Closure ({A},F):

Iteration #	result
0	{ A }
1	{A,B,C,E,H}
2	{A,B,C,E,H}

 $A^+ \neq R$

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

Is $\{A,D\}$ (AD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

1.
$$AD^+ \rightarrow R$$
2. $A^+ \not\rightarrow R$
3. $D^+ \not\rightarrow R$

must be a superkey

must be minimal (subtracting any attribute makes it not a key)

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{D} \rightarrow \mathbf{B}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{B} \rightarrow \mathbf{CE} \}
```

What is D^+ ? (the closure of $\{D\}$ wrt F)

Att-Closure ({D},F):

Iteration #	result
0	{D}
1	{D,B}
2	{D,B,C,E}
3	{D,B,C,E}

 $D^+ \neq R$

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

Is $\{A,D\}$ (AD) a candidate key of R = (A,B,C,D,E,H)?

A: Conditions that must be true for the answer to be yes:

Therefore, AD is a candidate key of R

Deriving FDs: FD Closures (F⁺)

$$F \equiv G \text{ if and only if } F^+ = G^+$$

E.g., Given:

$$R = (A, B, C, D, E, H)$$

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Is
$$F \equiv G$$
? (Is $F^+ = G^+$?)

Computing FD Closures

Algorithm 1: Using Attribute Closures

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN
Result ← {}
Atts ← <all attributes appearing in FDs in F>
FOREACH Z ⊆ Atts DO
Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result
END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
Result = \{\}
```

END

```
F = \{ \textbf{A} \rightarrow \textbf{BC}, \ \textbf{B} \rightarrow \textbf{CE}, \ \textbf{A} \rightarrow \textbf{E}, \ \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{BC}, \ \textbf{B} \rightarrow \textbf{CE}, \ \textbf{A} \rightarrow \textbf{E}, \ \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{BC}, \ \textbf{B} \rightarrow \textbf{CE}, \ \textbf{A} \rightarrow \textbf{E}, \ \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{BC}, \ \textbf{B} \rightarrow \textbf{CE}, \ \textbf{A} \rightarrow \textbf{E}, \ \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{AC} \rightarrow \textbf{AC} \rightarrow \textbf{H}, \ \textbf{D} \rightarrow \textbf{B} \}
= \{ \textbf{A} \rightarrow \textbf{AC} \rightarrow \textbf{AC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \} \cup \{ \textbf{C} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \} \cup \{ \textbf{C} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \rightarrow \textbf{CC} \} \cup \{ \textbf{C} \rightarrow \textbf{CC} \} \cup \{ \textbf{C} \rightarrow \textbf{CC} \} \cup \{ \textbf{C} \rightarrow \textbf{CC} \rightarrow \textbf{C
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
Result =  \{\{A \rightarrow A+\} \cup \{B \rightarrow B+\} \cup \{C \rightarrow C+\} \cup \{D \rightarrow D+\} \cup \{E \rightarrow E+\} \cup \{H \rightarrow H+\} \cup \{AB \rightarrow (AB)+\} \cup \{AC \rightarrow (AC)+\} \cup \{AD \rightarrow (AD)+\} \cup \{AE \rightarrow (AE+\} \cup \{AH \rightarrow (AH)+\} \cup \{BC \rightarrow (BC)+\} \cup \{BD \rightarrow (BD)+\} \cup \{BE \rightarrow (BE)+\} \cup \{BH \rightarrow (BH)+\} \cup \{CD \rightarrow CDBE\} \cup \{CE \rightarrow (CE)+\} \cup \{CH \rightarrow (CH)+\} \cup \{DE \rightarrow (DE)+\} \cup \{DH \rightarrow (DH)+\} \cup \{EH \rightarrow (EH)+\} \cup ...
```

```
F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
F = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

```
F^{+} = \{ \{A \rightarrow A+\} \cup \{B \rightarrow B+\} \cup \{C \rightarrow C+\} \cup \{D \rightarrow D+\} \cup \{E \rightarrow E+\} \cup \{H \rightarrow H+\} \cup \{AB \rightarrow (AB)+\} \cup \{AC \rightarrow (AC)+\} \cup \{AD \rightarrow (AD)+\} \cup \{AE \rightarrow (AE+\} \cup \{AH \rightarrow (AH)+\} \cup \{BC \rightarrow (BC)+\} \cup \{BD \rightarrow (BD)+\} \cup \{BE \rightarrow (BE)+\} \cup \{BH \rightarrow (BH)+\} \cup \{CD \rightarrow CDBE\} \cup \{CE \rightarrow (CE)+\} \cup \{CH \rightarrow (CH)+\} \cup \{DE \rightarrow (DE)+\} \cup \{DH \rightarrow (DH)+\} \cup \{EH \rightarrow (EH)+\} \cup \{ABC \rightarrow (ABC)+\} \cup \{ABD \rightarrow (ABD)+\} \cup \{ABE \rightarrow (ABE)+\} \cup \{ABH \rightarrow (ABH)+\} \cup \{ACD \rightarrow ACDBEH\} \cup \{ACE \rightarrow (ACE)+\} \cup \{ACH \rightarrow (ACH)+\} \cup \{ADE \rightarrow (ADE)+\} \cup \{ADH \rightarrow (ADH)+\} \cup \{ADH \rightarrow (ABH)+\} \cup \{BCH \rightarrow (BCH)+\} \cup \{BCH \rightarrow (BCH)+\} \cup \{BCH \rightarrow (CEH)+\} \cup \{CDE \rightarrow (CDE)+\} \cup \{CDH \rightarrow (CDH)+\} \cup \{CEH \rightarrow (CEH)+\} \cup \{CEH \rightarrow (ABCH)+\} \cup \{ABCD \rightarrow (ABCD)+\} \cup \{ACDE \rightarrow (ACDE)+\} \cup \{ACCH \rightarrow (ACCH)+\} \cup \{ADCH \rightarrow (ADCH)+\} \cup \{ABCD \rightarrow (ABCDE)+\} \cup \{ABCD \rightarrow (ABCDE)+\} \cup \{ABCDH \rightarrow (BCDH)+\} \cup \{ABCDE \rightarrow (ABCDEH)+\} \cup \{ABCDEH \rightarrow (ABCDEH)+\} \cup \{ABCDEH \rightarrow (ABCDEH)+\} \cup \{ABCDEH \rightarrow (ABCDEH)+\} \cup \{ABCDEH \rightarrow (ABCDEH)+\} \cup \{ABCDEH)+\} \cup \{ABCDEH \rightarrow (ABCDEH)+\} \cup \{ABCDEH)+\} \cup \{ABCDE
```

```
G = \{ A \rightarrow BH, B \rightarrow CE, D \rightarrow B \}
```

Computing FD Closures

Algorithm 1: Using Attribute Closures

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN
Result ← {}
Atts ← <all attributes appearing in FDs in F>
FOREACH Z ⊆ Atts DO
Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result
END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX → WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then X -> YZ

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M		

- justifies trivial FDs: e.g.,
 - $\{lno\} \subseteq \{lno\}$ implies:

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Borrower-All										
lno	cname	cstreet	ccity	bname	amt	bcity	assets	lno		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M	L-17 L-23 L-15 L-17 L-93 L-11 L-16		

- justifies trivial FDs: e.g.,
 - $\{lno\} \subseteq \{lno\} \text{ implies: } lno \rightarrow lno$

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Borrower-All										
lno	cname	cstreet	ccity	bname	amt	bcity	assets	lno		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M	L-17 L-23 L-15 L-17 L-93 L-11 L-16		

- justifies trivial FDs: e.g.,
 - $\{lno\} \subseteq \{lno\} \text{ implies: } lno \rightarrow lno$
 - {lno} ⊆ {lno, cname} implies: lno cname → lno

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then X -> Y

- 2. Augmentation
 - if $X \rightarrow Y$

then **WX** → **WY**

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then X -> Z

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then X -> YZ

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Augmentation: if $X \rightarrow Y$ then $WX \rightarrow WY$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

- e.g.,
 - bname → bcity implies:

Augmentation: if $X \rightarrow Y$ then $WX \rightarrow WY$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

- e.g.,
 - bname → bcity implies: cname bname → cname bcity

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then $X \rightarrow YZ$

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

- e.g.,
 - lno → bname and bname → bcity implies:

Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

- e.g.,
 - lno → bname and bname → bcity implies: lno → bcity

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subset X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then $X \rightarrow YZ$

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Union: if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

	Borrower-All								
lno	cname	cstreet	ccity	bname	amt	bcity	assets		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M		

- e.g.,
 - lno → bname and lno → amt implies:

Union: if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$

	Borrower-All								
lno	cname	cstreet	ccity	bname	amt	bcity	assets		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M		

- e.g.,
 - lno → bname and lno → amt implies: lno → bname amt

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then $X \rightarrow YZ$

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Decomposition: if $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

- e.g.,
 - bname → bcity assets implies:

Decomposition: if $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

	Borrower-All								
lno	cname	cstreet	ccity	bname	amt	bcity	assets		
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M		

- e.g.,
 - bname → bcity assets implies: bname → bcity, bname → assets

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subset X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then X -> Z

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then $X \rightarrow YZ$

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$ then $WX \rightarrow Z$

Pseudotransitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$ then $WX \rightarrow Z$

Borrower-All								
lno	cname	cstreet	ccity	bname	amt	bcity	assets	
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M	

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M			

- e.g.,
 - bcity assets → bname and cname bname → lno implies:

Pseudotransitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$ then $WX \rightarrow Z$

	Borrower-All									
lno	cname	cstreet	ccity	bname	amt	bcity	assets			
L-17	Jones	Main	Harrison	Downtown	1000	Brooklyn	9М			
L-23	Smith	North	Rye	Redwood	2000	Palo Alto	2.1M			
L-15	Hayes	Main	Harrison	Perry	1500	Horseneck	1.7M			
L-17	Jackson	Senator	Brooklyn	Downtown	1000	Brooklyn	9м			
L-93	Curry	Walnut	Stanford	Mianus	500	Horseneck	0.4M			
L-11	Smith	North	Rye	R.H.	900	Horseneck	8M			
L-16	Adams	Spring	Pittsfield	Perry	1300	Horseneck	1.7M			

- e.g.,
 - bcity assets → bname and cname bname → lno implies:
 cname bcity assets → lno

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then X -> YZ

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Computing FD Closures

Algorithm 2: Using Armstrong's Axioms

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result 
F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result 
Result 
Result 
B

RETURN Result

END
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN
Result 
F
REPEAT UNTIL STABLE
IF for any of Armstrong's Axioms (if A then B),
A matches part of Result THEN
Result 
Result 
RETURN Result

END
```

```
F = \{ A \rightarrow BC, \\ B \rightarrow CE, \\ A \rightarrow E, \\ AC \rightarrow H, \\ D \rightarrow B \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result ← F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result ← Result ∪ B

RETURN Result

END
```

```
\mathbf{F}^{+} = \{ (1) \ A \rightarrow BC, \\ (2) \ B \rightarrow CE, \\ (3) \ A \rightarrow E, \\ (4) \ AC \rightarrow H, \\ (5) \ D \rightarrow B,
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN
Result 
F
REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),
A matches part of Result THEN
Result 
Result 
Result 
END
```

```
F^{+} = { (1) A \rightarrow BC,
 (2) B \rightarrow CE,
 (3) A \rightarrow E,
 (4) AC \rightarrow H,
 (5) D \rightarrow B,
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN
Result 
F
REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),
A matches part of Result THEN
Result 
Result 
Result 
Result 
END
```

```
\mathbf{F}^{+} = \{ \begin{array}{cccc} (1) & \mathbb{A} \rightarrow \mathbb{BC}, \\ (2) & \mathbb{B} \rightarrow \mathbb{CE}, \\ (3) & \mathbb{A} \rightarrow \mathbb{E}, \\ (4) & \mathbb{AC} \rightarrow \mathbb{H}, \\ (5) & \mathbb{D} \rightarrow \mathbb{B}, \\ \end{array} \\ \hline (6) & \mathbb{A} \rightarrow \mathbb{B}, \\ (6) & \mathbb{A} \rightarrow \mathbb{C}, \end{array} \qquad \begin{array}{ccccc} Decomposition \\ \text{if } \mathbf{X} \rightarrow \mathbf{YZ} \text{ then } \mathbf{X} \rightarrow \mathbf{Y} \text{ and } \mathbf{X} \rightarrow \mathbf{Z} \\ \end{array}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result 
F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result 
Result 
Result 
END
```

```
\mathbf{F^{+}} = \{ (1) \ A \rightarrow BC, \\ (2) \ B \rightarrow CE, \\ (3) \ A \rightarrow E, \\ (4) \ AC \rightarrow H, \\ (5) \ D \rightarrow B, \\ (6) \ A \rightarrow B, \\ (6) \ A \rightarrow C, \\ (8) \ A \rightarrow CE, 
Transitivity
if \mathbf{X} \rightarrow \mathbf{Y} and \mathbf{Y} \rightarrow \mathbf{Z}, then \mathbf{X} \rightarrow \mathbf{Z}
decomposition (1)
decomposition (1)
transitivity (6), (2)
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result 
F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result 
Result 
Result 
END
```

```
(1) A \rightarrow BC,
                                Decomposition
    (2) B \rightarrow CE
                                      if X \rightarrow YZ then X \rightarrow Y and X \rightarrow Z
    (3) A \rightarrow E,
    (4) AC \rightarrow H,
    (5) D \rightarrow B
    (6) A \rightarrow B
                                    decomposition (1)
                                   decomposition (1)
    (7) A \rightarrow C
    (8) A \rightarrow CE
                                    transitivity (6), (2)
    (9) B \rightarrow C_{\bullet}
                                   decomposition (2)
    (10) B \rightarrow E,
                                    decomposition (2)
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN

Result 
F

REPEAT UNTIL STABLE

IF for any of Armstrong's Axioms (if A then B),

A matches part of Result THEN

Result 
Result 
Result 
END
```

```
(1) A \rightarrow BC,
                              Pseudotransitivity
   (2) B \rightarrow CE
                                      if X \rightarrow Y and WY \rightarrow Z, then WX \rightarrow Z
   (3) A \rightarrow E,
   (4) AC \rightarrow H,
   (5) D \rightarrow B
   (6) A \rightarrow B
                                  decomposition (1)
                                  decomposition (1)
   (7) A \rightarrow C
                                  transitivity (6), (2)
   (8) A \rightarrow CE
   (9) B \rightarrow C,
                                  decomposition (2)
                                  decomposition (2)
   (10) B \rightarrow E
                                  pseudotransitivity (7), (4) ...}
    (11) A \rightarrow H,
```

Computing F⁺ With Attribute Closures

```
F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN

Result ← {}

Atts ← <all attributes appearing in FDs in F>

FOREACH Z ⊆ Atts DO

Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result

END
```

```
 F^{+} = \\ \{ \{A \rightarrow A+\} \ \cup \ \{B \rightarrow B+\} \ \cup \ \{C \rightarrow C+\} \ \cup \ \{D \rightarrow D+\} \ \cup \ \{E \rightarrow E+\} \ \cup \ \{H \rightarrow H+\} \ \cup \ \{AB \rightarrow (AB)+\} \ \cup \ \{AC \rightarrow (AC)+\} \ \cup \ \{AD \rightarrow (AD)+\} \ \cup \ \{AE \rightarrow (AE+\} \ \cup \ \{AH \rightarrow (AH)+\} \ \cup \ \{BC \rightarrow (BC)+\} \ \cup \ \{BD \rightarrow (BD)+\} \ \cup \ \{BE \rightarrow (BE)+\} \ \cup \ \{BH \rightarrow (BH)+\} \ \cup \ \{CD \rightarrow CDBE\} \ \cup \ \{CE \rightarrow (CE)+\} \ \cup \ \{CH \rightarrow (CH)+\} \ \cup \ \{DE \rightarrow (DE)+\} \ \cup \ \{ABH \rightarrow (ABH)+\} \ \cup \ \{ABC \rightarrow (ABC)+\} \ \cup \ \{ABD \rightarrow (ABD)+\} \ \cup \ \{ABE \rightarrow (ABE)+\} \ \cup \ \{ABH \rightarrow (ABH)+\} \ \cup \ \{ADH \rightarrow (ADH)+\} \ \cup \ \{AEH \rightarrow (AEH)+\} \ \cup \ \{BCD \rightarrow (BCD)+\} \ \cup \ \{BCD \rightarrow (BCE)+\} \ \cup \ \{BCH \rightarrow (BCH)+\} \ \cup \ \{BCH \rightarrow (BCH)+\} \ \cup \ \{ABCD \rightarrow (ABCD)+\} \ \cup \ \{ABCD \rightarrow (ABCD)+\} \ \cup \ \{ABCD \rightarrow (ABCD)+\} \ \cup \ \{ABCD \rightarrow (ABCD+\} \ \cup \ \{ABCDH \rightarrow (BCDH)+\} \ \cup \ \{ABCDE \rightarrow (ABCDE)+\} \ \cup \ \{ABCDE \rightarrow (ABCDE)+\} \ \cup \ \{ABCDE \rightarrow (BCDE)+\} \ \cup \ \{ABC
```

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

ALGORITHM FD-Closure (F: {FDs})

-- using Armstrong's Axioms

BEGIN

Result ← F

```
REPEAT UNTIL STABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF for any of Armstrong's Axioms (if A then B),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  A matches part of Result THEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Result ← Result ∪ B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RETURN Result
F<sup>+</sup> =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               END
                                                       \{\{A \rightarrow A+\} \cup \{B \rightarrow B+\} \cup \{C \rightarrow C+\} \cup \{D \rightarrow D+\} \cup \{E \rightarrow E+\} \cup \{H \rightarrow H+\} \cup \{B \rightarrow B+\} \cup \{B \rightarrow B+\}
                                                       \{AB \rightarrow (AB) +\} \cup \{AC \rightarrow (AC) +\} \cup \{AD \rightarrow (AD) +\} \cup \{AE \rightarrow (AE +\} \cup \{AH \rightarrow (AH) +\} \cup \{AB \rightarrow (AB) +\}
                                                       \{BC \rightarrow (BC)+\} \cup \{BD \rightarrow (BD)+\} \cup \{BE \rightarrow (BE)+\} \cup \{BH \rightarrow (BH)+\} \cup \{CD \rightarrow CDBE\} \cup \{BC \rightarrow (BC)+\} \cup \{BD \rightarrow (BD)+\} \cup \{BD \rightarrow
                                                       \{CE \rightarrow (CE) +\} \cup \{CH \rightarrow (CH) +\} \cup \{DE \rightarrow (DE) +\} \cup \{DH \rightarrow (DH) +\} \cup \{EH \rightarrow (EH) +\} \cup \{CE \rightarrow (CE) +\} \cup \{CE \rightarrow (CE) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH \rightarrow (CH) +\} \cup \{CH) +\} \cup \{C
                                                       \{ABC \rightarrow (ABC) +\} \cup \{ABD \rightarrow (ABD) +\} \cup \{ABE \rightarrow (ABE) +\} \cup \{ABH \rightarrow (ABH) +\} \cup \{ABC \rightarrow (ABC) +\} \cup \{ABC \rightarrow (AB
                                                       \{ACD \rightarrow ACDBEH\} \cup \{ACE \rightarrow (ACE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ADE \rightarrow (ADE) +\} \cup \{ACH \rightarrow (ACH) +\} \cup \{ACH \rightarrow (ACH
                                                       \{ADH \rightarrow (ADH) +\} \cup \{AEH \rightarrow (AEH) +\} \cup \{BCD \rightarrow (BCD) +\} \cup \{BCE \rightarrow (BCE) +\} \cup \{AEH \rightarrow (BCE) +\} \cup \{BCE \rightarrow (BC
                                                       \{BCH \rightarrow (BCH) +\} \cup \{BDE \rightarrow (BDE) +\} \cup \{BDH \rightarrow (BDH) +\} \cup \{BEH \rightarrow (BEH) +\} \cup \{BCH \rightarrow (BCH) +\} \cup \{BCH \rightarrow (BC
                                                       \{CDE \rightarrow (CDE) +\} \cup \{CDH \rightarrow (CDH) +\} \cup \{CEH \rightarrow (CEH) +\} \cup \{DEH \rightarrow (DEH) +\} \cup \{CEH \rightarrow (CEH) +\} \cup \{CEH) +\} 
                                                       \{ABCD \rightarrow (ABCD) +\} \cup \{ABCE \rightarrow (ABCE) +\} \cup \{ABCH \rightarrow (ABCH) +\} \cup \{ABDE \rightarrow (ABDE) +\} \cup \{ABCD \rightarrow (ABCD) +\} \cup \{ABC
                                                       \{ABEH \rightarrow (ABEH) +\} \cup \{ACDE \rightarrow (ACDE) +\} \cup \{ACEH \rightarrow (ACEH) +\} \cup \{ADEH \rightarrow (ADEH) +\} \cup \{ADE
                                                       \{BCDE \rightarrow (BCDE) +\} \cup \{BCDH \rightarrow (BCDH) +\} \cup \{BDEH \rightarrow (BDEH) +\} \cup \{CDEH \rightarrow (CDEH) +\} \cup \{BCDE \rightarrow (BCDE) +\} \cup \{BCD
                                                       \{ABCDE \rightarrow (ABCDE) +\} \cup \{ABCDH \rightarrow (ABCDH) +\} \cup \{BCDEH \rightarrow (BCDEH) +\} \cup \{ABCDE \rightarrow (BCDEH) +\} \cup (ABCDEH) +\} \cup \{ABCDE \rightarrow (BCDEH) +\} \cup (ABCDE \rightarrow (BCDEH) +\} \cup (ABCDE
                                                       \{ABCDEH \rightarrow (ABCDEH) + \} \}
```

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN
Result 
F
REPEAT UNTIL STABLE
IF for any of Armstrong's Axioms (if A then B),
A matches part of Result THEN
Result 
Result 
RETURN Result

END
```

```
F^{+} = { (1) A \rightarrow BC,
 (2) B \rightarrow CE,
 (3) A \rightarrow E,
 (4) AC \rightarrow H,
 (5) D \rightarrow B,
 (6) A \rightarrow B,
 (7) A \rightarrow C,
 (8) A \rightarrow CE,
 (9) B \rightarrow C,
 (10) B \rightarrow E,
 (11) A \rightarrow H,
```

Usually use Armstrong's Axioms selectively to make a point

```
decomposition (1)
decomposition (1)
transitivity (6),(2)
decomposition (2)
decomposition (2)
pseudotransitivity (7),(4) ...}
```

Another way to show that $F^+ = G^+ (F \equiv G)$:

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Strategy: User Armstrong's Axioms to show:

- 1. $G \subseteq F^+$, and
- 2. $F \subseteq G^+$

Intuition:

$$\begin{bmatrix}
 G^+ \subseteq F^+ \\
 F^+ \subseteq G^+
 \end{bmatrix} \implies F^+ = G^+$$

Another way to show that $F^+ = G^+ (F \equiv G)$:

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Strategy: User Armstrong's Axioms to show:

- 1. $G \subseteq F^+$, and
- 2. $F \subseteq G^+$

Another way to show that $F^+ = G^+ (F \equiv G)$:

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Strategy: User Armstrong's Axioms to show...

- 1. $f \in G \Rightarrow f \in F^+$, and
- 2. $f \in F \Rightarrow f \in G^+$

Another way to show that $F^+ = G^+$ (F = G):

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Strategy: User Armstrong's Axioms to show...

1.
$$f \in G \Rightarrow f \in F^+$$

To prove (1), must show:

- a) 'A \rightarrow BH' \in F⁺
- b) 'B \rightarrow CE' \in F⁺
- c) $D \rightarrow B' \in F^+$

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) 'A \rightarrow BH' \in \mathbb{F}^+
```

Proof:

```
F^{+} = \{ 1. \mathbf{A} \rightarrow \mathbf{BC}, \\ 2. \mathbf{B} \rightarrow \mathbf{CE}, \\ 3. \mathbf{A} \rightarrow \mathbf{E}, \\ 4. \mathbf{AC} \rightarrow \mathbf{H}, \\ 5. \mathbf{D} \rightarrow \mathbf{B},
```

. . .]

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) 'A \rightarrow BH' \in \mathbb{F}^+
```

Proof:

```
F^{+} = \{ 1. A \rightarrow BC, \\ 2. B \rightarrow CE, \\ 3. A \rightarrow E, \\ 4. AC \rightarrow H, \\ 5. D \rightarrow B, \\ 6. A \rightarrow C, \\ 7. A \rightarrow B,
```

```
Decomposition
```

if $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$

```
decomposition (1) decomposition (1)
```

...}

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) 'A \rightarrow BH' \in \mathbb{F}^+
```

```
F^{+} = \{ 1. A \rightarrow BC, \\ 2. B \rightarrow CE, \\ 3. A \rightarrow E, \\ 4. AC \rightarrow H, \\ 5. D \rightarrow B, \\ 6. A \rightarrow C, \\ 7. A \rightarrow B, \\ 8. A \rightarrow H,
```

```
Pseudotransitivity

if \mathbf{X} \to \mathbf{Y} and \mathbf{WY} \to \mathbf{Z}, then \mathbf{WX} \to \mathbf{Z}
```

```
decomposition (1)
decomposition (1)
pseudotransitivity (6,4)
... }
```

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) 'A \rightarrow BH' \in \mathbb{F}^+
```

```
F^{+} = \{ 1. A \rightarrow BC, \\ 2. B \rightarrow CE, \\ 3. A \rightarrow E, \\ 4. AC \rightarrow H, \\ 5. D \rightarrow B, \\ 6. A \rightarrow C, \\ 7. A \rightarrow B, \\ 8. A \rightarrow H, \\ 9. A \rightarrow BH,
```

```
Union if X \rightarrow Y and X \rightarrow Z then X \rightarrow YZ
```

```
decomposition (1)
decomposition (1)
pseudotransitivity (6,4)
union (7,8) ... }
```

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) 'A \rightarrow BH' \in \mathbb{F}^+
```

```
F^{+} = \{ 1. A \rightarrow BC, \\ 2. B \rightarrow CE, \\ 3. A \rightarrow E, \\ 4. AC \rightarrow H, \\ 5. D \rightarrow B, \\ 6. A \rightarrow C, \\ 7. A \rightarrow B, \\ 8. A \rightarrow H, \\ 9. A \rightarrow BH, \\ union (7,8) ... \}
```

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) '\mathbf{A} \rightarrow \mathbf{BH'} \in \mathbb{F}^+ (9)
b) '\mathbf{B} \rightarrow \mathbf{CE'} \in \mathbb{F}^+
c) '\mathbf{D} \rightarrow \mathbf{B'} \in \mathbb{F}^+
```

```
F^{+} = \{ 1. A \rightarrow BC,
2. B \rightarrow CE,
3. A \rightarrow E,
4. AC \rightarrow H,
5. D \rightarrow B,
6. A \rightarrow C,
7. A \rightarrow B,
8. A \rightarrow H,
9. A \rightarrow BH,
4. AC \rightarrow C
4.
```

Strategy: User Armstrong's Axioms to show...

To prove (1), must show:

```
a) \mathbf{'A} \rightarrow \mathbf{BH'} \in \mathbb{F}^+ (9)
b) \mathbf{'B} \rightarrow \mathbf{CE'} \in \mathbb{F}^+ (2)
c) \mathbf{'D} \rightarrow \mathbf{B'} \in \mathbb{F}^+ (5)
```

```
F^{+} = \{ 1. A \rightarrow BC, \\ 2. B \rightarrow CE, \\ 3. A \rightarrow E, \\ 4. AC \rightarrow H, \\ 5. D \rightarrow B, \\ 6. A \rightarrow C, \\ 7. A \rightarrow B, \\ 8. A \rightarrow H, \\ 9. A \rightarrow BH,  decomposition (1)  pseudotransitivity (6,4) \\ pseudotransitivity (6,4) \\ quad union (7,8) ... \}
```

Another way to show that $F^+ = G^+ (F \equiv G)$:

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

$$G = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

Strategy: User Armstrong's Axioms to show...

```
1. f \in G \Rightarrow f \in F^+, and 2. f \in F \Rightarrow f \in G^+
```