

## Feuille n°1: Variable Complexe

## Exercice 1 : Résolution des équations

$$\cos z = 3$$

Indication: utiliser la définition de  $\cos z$  et en déduire une équation du second degré vérifiée par  $Z = e^{iz}$ . Déterminer Z, déterminer son module et son argument et en déduire z.

## Exercice 2 : Etude des déterminations de la "fonction multiforme"

$$\varphi(z) = arctg\sqrt{1-z}$$

# Domaine de définition de $\varphi$

On décompose  $\varphi$  sous la forme  $\varphi = f \circ g \circ h$  avec  $h(z) = \sqrt{1-z}, g(z) = \frac{i-z}{i+z}$  et  $f(z) = \frac{1}{2i} \log z$ . Définir la détermination de f qui admet pour coupure la demi-droite  $]-\infty,0]$  et qui prend des valeurs imaginaires pures sur la demi-droite  $]0,+\infty[$ . Avec cette définition de f, on doit avoir  $g[h(z)] \notin ]-\infty,0]$ . En posant u=h(z), montrer que  $g(u) \in ]-\infty,0] \Leftrightarrow u_1=0$  et  $u_2 \geq 1$  avec  $u=u_1+iu_2$ . Définir la détermination de h(z) qui admet pour coupure  $[1,+\infty[$  prenant la valeur 1 en z=0. Montrer qu'avec les déterminations précédentes, le domaine de définition de  $\varphi$  est le plan complexe privé de la demi-droite  $[2,+\infty[$ .

## Détermination de $\varphi(1+i)$

Montrer qu'avec les déterminations précédentes, on a

$$\varphi(1+i) = \frac{\pi}{4} - \frac{i}{2}\ln\left(1+\sqrt{2}\right)$$

#### Exercice 3 : Conditions de Cauchy et dérivabilité

Soit la fonction définie par

$$f(z) = \sqrt{|xy|}$$

avec  $x=\frac{z+\overline{z}}{2}$  et  $y=\frac{z-\overline{z}}{2i}$ . Montrer que les conditions de Cauchy sont vérifiées pour la fonction f au point z=0. Montrer que la fonction f n'est pas dérivable en z=0 (on pourra calculer  $\lim_{z\to 0}\frac{f(z)-f(0)}{z-0}$  lorsque y=x>0 et lorsque y=x<0). Commentaires.