Key Constants & Values

- Charge (q): 1.602×10^{-19} C
- Thermal Voltage (V_T): at 300K, $V_T = kT/q \approx 25 \text{ mV}$
- Intrinsic Silicon (n_i): at 300K, $\approx 1.5 \times 10^{10}$ cm⁻³
- Permittivity of Si (ϵ_s): 1.04×10^{-12} F/cm
- CVD Model: $V_D \approx 0.7 \text{ V (Silicon)}$

1 Chapter 3: Semiconductors

Intrinsic Semiconductors

- Pure silicon. $n = p = n_i$
- Mass Action Law: $np = n_i^2$

Doped Semiconductors

- **n-type:** Doped with Donors $(N_D, \text{ e.g., P})$.
 - Majority: electrons $(n_n \approx N_D)$
 - Minority: holes $(p_n = n_i^2/N_D)$
- **p-type:** Doped with Acceptors $(N_A, \text{ e.g., B})$.
 - Majority: holes $(p_p \approx N_A)$
 - Minority: electrons $(n_p = n_i^2/N_A)$

Current Flow

• Drift Current: Due to E-field.

$$J_{drift} = q(n\mu_n + p\mu_p)E$$

• **Diffusion Current:** Due to ∇ concentration.

$$J_p = -qD_p \frac{dp}{dr} \quad J_n = qD_n \frac{dn}{dr}$$

Einstein Relation

Connects mobility (μ) and diffusion (D).

$$D_n = V_T \mu_n$$
 $D_p = V_T \mu_p$

Conductivity & Resistivity

• Conductivity (σ) :

$$\sigma = q(n\mu_n + p\mu_p)$$

• Resistivity (ρ) :

$$\rho = \frac{1}{\sigma} = \frac{1}{q(n\mu_n + p\mu_p)}$$

2 Chapter 4: Diodes

pn Junction (Open Circuit)

- **Depletion Region:** Forms at junction, clear of carriers.
- Built-in Voltage (V_0) :

$$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

• Depletion Width (W): $(V_R \text{ is reverse bias})$

$$W = \sqrt{\frac{2\epsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$$

• Drift current I_S balances diffusion current I_D .

Diode I-V Models

1. Exponential (Shockley):

$$i_D = I_S(e^{v_D/(nV_T)} - 1)$$

 $(I_S \approx 10^{-15} \text{ A}, n \approx 1-2, V_T \approx 25 \text{ mV})$. For $v_D \gg V_T$, $i_D \approx I_S e^{v_D/(nV_T)}$.

- 2. CVD (Constant Voltage Drop):
 - ON: $v_D = 0.7 \text{ V } (0.7 \text{V battery})$
 - OFF: $i_D = 0$ (open circuit)
- 3. Ideal Diode:
 - ON: $v_D = 0$ V (short circuit)
 - OFF: $i_D = 0$ (open circuit)

Small-Signal Model (at bias Q)

- 1. Find DC bias current I_D .
- 2. Replace diode with small-signal resistance (r_d) :

$$r_d = \frac{nV_T}{I_D}$$

Zener Diode (Breakdown)

- Operates in reverse breakdown for voltage regulation.
- Model: $V_Z = V_{Z0} + r_z I_Z$

Diode Capacitance

• Junction (C_i) : Reverse bias.

$$C_j = \frac{C_{j0}}{(1 + V_R/V_0)^m}$$

• **Diffusion** (C_d) : Forward bias.

$$C_d = \left(\frac{\tau_T}{V_T}\right) I_D$$

Rectifiers & Peak Detector

- Rectifiers: HW (1 diode), FW-CenterTap (2 diodes), FW-Bridge (4 diodes).
- Peak Rectifier (with Filter C): Capacitor C smooths output.
- Ripple Voltage (V_r) :

$$V_r \approx \frac{V_p}{fCR_L} = \frac{I_L}{fC}$$
 (HW)

$$V_r \approx \frac{V_p}{2fCR_L} = \frac{I_L}{2fC}$$
 (FW)

• Diode Current (avg):

$$i_{D,avg} \approx I_L (1 + \pi \sqrt{2V_p/V_r})$$

3 Chapter 5: MOSFETs

(Tables 5.1 & 5.2 provided on exam)

MOSFET Parameters

- Threshold Voltage: V_t $(V_{tn} > 0, V_{tp} < 0)$
- Oxide Capacitance: $C_{ox} = \epsilon_{ox}/t_{ox}$
- Process Transconductance: $k_n' = \mu_n C_{ox}, \ k_p' = \mu_p C_{ox}$
- Transistor Transconductance: $k_n = k'_n(W/L)$
- Overdrive Voltage (V_{OV}) :
 - NMOS: $V_{OV} = V_{GS} V_{tn}$
 - PMOS: $|V_{OV}| = V_{SG} |V_{tp}|$

Regions (NMOS)

- 1. Cutoff:
 - Cond: $V_{GS} < V_{tn}$
 - Current: $i_D = 0$
- 2. Triode (Linear):
 - Cond: $V_{GS} \ge V_{tn}$ AND $V_{DS} < V_{OV}$
 - Current: $i_D = k_n \left[(V_{GS} V_{tn}) V_{DS} \frac{1}{2} V_{DS}^2 \right]$
 - Small V_{DS} : $r_{DS} = 1/(k_n V_{OV})$
- 3. Saturation (Amplifier):
 - Cond: $V_{GS} \ge V_{tn}$ AND $V_{DS} \ge V_{OV}$
 - Current: $i_D = \frac{1}{2}k_n(V_{GS} V_{tn})^2 = \frac{1}{2}k_nV_{OV}^2$

Regions (PMOS)

Use V_{SG} , V_{SD} , $|V_{tp}|$, k_p .

- 1. Cutoff: $V_{SG} < |V_{tp}| \to i_D = 0$
- 2. Triode: $V_{SG} \ge |V_{tp}|$ AND $V_{SD} < |V_{OV}|$

$$i_D = k_p \left[(V_{SG} - |V_{tp}|)V_{SD} - \frac{1}{2}V_{SD}^2 \right]$$

3. Saturation: $V_{SG} \ge |V_{tp}|$ AND $V_{SD} \ge |V_{OV}|$

$$i_D = \frac{1}{2}k_p(V_{SG} - |V_{tp}|)^2 = \frac{1}{2}k_p|V_{OV}|^2$$

Channel-Length Modulation (λ)

- Models $\uparrow i_D$ with $\uparrow v_{DS}$ in saturation.
- $i'_D = i_D(1 + \lambda v_{DS})$
- Output Resistance (r_o) :

$$r_o = \frac{V_A}{I_D} \approx \frac{1}{\lambda I_D} \quad (V_A = 1/\lambda)$$

4 Problem-Solving Steps (HW)

DC Analysis of Diode Circuits

- 1. Assume a state for each diode (ON/OFF).
- 2. Model: ON \rightarrow 0.7V source (CVD), OFF \rightarrow open circuit.
- 3. Solve the linear circuit for i_D and v_D .
- 4. Check assumptions:
 - Assumed ON \rightarrow Check if $i_D > 0$.
 - Assumed OFF \rightarrow Check if $v_D < 0.7 \text{ V}$.
- 5. If wrong, change state and re-solve.

DC Analysis of MOSFET Circuits

- 1. Assume region (usually Saturation).
- 2. Write i_D equation for that region.
- 3. Write KVL/KCL for the circuit (e.g., for V_G, V_S, V_D).
- 4. Substitute relationships (e.g., $V_{OV} = V_{GS} V_{tn}$).
- 5. Solve system for i_D and node voltages.
- 6. Check assumption:
 - Saturation: $V_{DS} \ge V_{OV}$ (NMOS)
 - Triode: $V_{DS} < V_{OV}$ (NMOS)
 - (Use V_{SD} , $|V_{OV}|$ for PMOS)
- 7. If wrong, re-assume region and re-solve.