

Motivation

- Turbulence drives how small particles behave in natural & engineered flows
- Particle clustering influences... (etc.,)
 - Cloud formation
 - Pollutant dispersion
 - Planetary accretion
- Modeling these clusters helps predict how particle concentration changes across flow regimes

Introduction

CHALLENGES

- Each simulation yields a distribution of cluster volumes—complex to model directly
- We summarize with 4 central statistical moments:
 - \circ Mean (μ) \rightarrow central tendency
 - Standard deviation (σ) \rightarrow spread
 - \circ Skewness (y) \rightarrow asymmetry
 - Kurtosis (κ) → tail heaviness

GOAL

- Predict $(\mu, \sigma, \gamma, \kappa)$ from 3 turbulence parameters:
 - Re (Reynolds #) → turbulence intensity
 - Fr (Froude #) → gravitational acceleration
 - St (Stokes #) → particle characteristic

Use **Generalized Additive Models (GAMs)** (to predict each moment)

Combines:

- Interpretability of linear regression
- Flexibility of nonlinear smoothing

Which...

Allows **direct interpretation** of how each turbulence parameter **affects** the cluster-volume distribution

Exploratory Data Analysis (pt.1)

Findings:

- Re takes on only three discrete values
- Fr assumes two levels
- St varies continuously between 0 and 3
- Mix of categorical and continuous predictors -> Re as factor and model smooth nonlinear effects for Fr and St
- Response statistics are heavily right skewed

Exploratory Data Analysis (pt.2)

Findings:

- Increasing St generally raises all moments
- Re shows decreasing mu and sigma
- Fr exhibits mild decline across all moments

Exploratory Data Analysis (pt.3)

Pairwise Correlations:

- Fr has strongest positive correlation with output moments
- Re exhibits negative correlation with mu and sigma
- St shows weak correlations

Data Processing & Feature Transformation

Step 1

Compute 4 moments (μ , σ , γ , κ) from E[X], E[X²], E[X³], E[X⁴]

Step 2

Replace non-finite values with $\varepsilon = 1e-10$

Step 3

Apply transformations:

- Fr, St: logit-transform \rightarrow (0, 1) range $\rightarrow \mathbb{R}$
- Re: treated as categorical to capture discrete turbulence regimes

Purpose: Mitigate scale differences & stabilize model estimation

Model Specification

Each response variable fitted with separate GAM:

Mean:
$$\mu = \beta_0 + f_1(Re) + s_1(Fr) + s_2(St) + \varepsilon_{\mu}$$
,
Standard deviation: $\sigma = \beta_0 + f_1(Re) + s_1(Fr) + s_2(St) + \varepsilon_{\sigma}$,
Skewness: $\gamma = \beta_0 + f_1(Re) + s_1(Fr) + s_2(St) + \varepsilon_{\gamma}$,
Kurtosis: $\kappa = \beta_0 + f_1(Re) + s_1(Fr) + s_2(St) + \varepsilon_{\kappa}$,

Interpretation:

f1(Re): categorical regime effects
s1, s2: smooth nonlinear functions

Choice of Smoothing Parameters

- Basis dimensions k = 3 for Fr, k = 5 for St
- Smaller $k \rightarrow$ interpretability; larger $k \rightarrow$ flexibility
- Estimated using REML for automatic smoothness control
- Balanced to avoid overfitting given small sample size (n = 89)

Model Fitting & Evaluation

Key Steps:

- Trained 4 GAMs on 89 simulations from data-train.csv
- Compared to linear baselines (factor(Re), (Fr), (St))
- Linear models capture only additive trends; GAMs add smooth nonlinear effects
- Evaluated with 10-fold CV using RMSE across folds

Findings:

- GAMs → lower RMSE for all moments, especially γ & κ
- Cross-validation mitigates split bias

Model Fitting and Evaluation

Method:

$$\hat{y}_{i,\text{lower}} = \hat{y}_i - 1.96 \,\text{SE}(\hat{y}_i), \qquad \hat{y}_{i,\text{upper}} = \hat{y}_i + 1.96 \,\text{SE}(\hat{y}_i)$$

- Built 95 % confidence intervals using predict(..., se.fit = TRUE)
- Provides interpretable uncertainty bounds for new parameter settings

Model Diagnostics

Model Justification

- Strong nonlinearities among Re, Fr, St → GAMs capture them naturally
- Re as factor → distinct turbulence regimes
- Smooth terms visualize physical effects of gravity and particle inertia
- Framework balances accuracy + interpretability

Model Comparison (10-Fold CV):

Target <chr></chr>	RMSE_Linear <dbl></dbl>	RMSE_GAM <dbl></dbl>	MAE_Linear <dbl></dbl>	MAE_GAM <dbl></dbl>	R2_Linear <dbl></dbl>	R2_GAM <dbl></dbl>
mu	0.017	0.017	0.013	0.013	0.843	0.841
sigma	7.465	6.732	5.610	5.826	0.548	0.589
skew	87.688	55.078	75.579	44.760	0.377	0.729
kurt	29858.128	19803.580	25328.453	15519.667	0.348	0.710

Highlights:

- Major RMSE drop for γ and $\kappa \rightarrow$ captures complex nonlinear patterns
- Similar performance for μ and $\sigma \rightarrow$ nearly linear behavior
- Supports EDA findings of nonlinear Re & St effects

Prediction Uncertainty

Table 1: Summary of predicted moments and average 95% confidence interval widths.

	Mean (\hat{y})	SD of \hat{y}	Mean CI Width	CI Range
μ (Mean)	0.05	0.04	0.018	[-0.02, 0.12]
σ (Std. dev.)	3.44	5.8	7.2	[-8.9, 12.3]
γ (Skewness)	150.0	85.1	59.1	[12.5, 381.8]
κ (Kurtosis)	37128	30400	21514	[-16437, 91778]

- 95% confidence intervals are narrow for lower order moments of mu and sigma
- Intervals widen substantially for higher order moments
- Consistent with physical intuition that tail related features of cluster volume distributions are harder to estimate under changing turbulence regimes

