Sensors and Instrumentation (EEL208)

by

Dr. Saikat Sahoo
Department of Mechatronics

Indian Institute of Technology Bhilai

- ☐ Thermal equilibrium
- ☐ Disturbance in thermal equilibrium energy exchange
- ☐ Conduction, convection and radiation
- ☐ Minimizing the error
- ☐ Equilibrium and predictive temperature measurement

Fundamentals of thermal sensors

- ☐ Thermal capacity and resistance
- \square Resistance between the body and sensor (R₁) should be as small as possible
- \square Resistance between the sensor and the environment (R_2) should be as large as possible
- \square Making R_1 small
- \square Making R_2 large

Fundamentals of thermal sensors

- ☐ Dynamic case
- ☐ Assumption1: R2 is very high (infinite)
- ☐ Assumption2: Object temperature does not change after sensor is

attached

☐ Heat transfer

- ☐ Most accurate temperature sensor
- ☐ Governing equation

$$R_t = R_0(1 + \alpha t)$$

- \square Material used: platinum ($\alpha = 3.94 \times 10^{-3} / \deg C$)
- \square Purity of platinum can be measure by, $\frac{R_{100}}{R_0} > 1.39$
- \square Non-linearity of platinum = 0.76% of the full-scale deflection

Types and range

RTD	Range	Remarks
Platinum	100 to 650 deg C	Good linearity and chemical inertness
Nickel	-180 to 430 deg C	Susceptible to corrosion and
Copper	-200 to 260 deg C	oxidation
Tungsten	-270 to 1100 deg C	

Temperatureresistance relationship

RTD circuits

- ☐ Wheatstone bridge
- ☐ Adjustable resistance made of manganin (lowest temperature coefficient of resistance)
- ☐ Issues with simple Wheatstone bridge
 - > Contact resistance
 - > Long connecting wire
 - > Self heating effect

3-wire method of temperature measurement

- ☐ Three-wire method of temperature measurement
- ☐ It resolves the contact resistance and lead wire issues

3-wire method of temperature measurement (contact resistance compensation)

$$I_4R_4 = I_2[R_2 + (1-f)R_3]$$

$$I_4 R_t = I_2 (R_1 + f R_3)$$

$$R_t = R_4 rac{rac{R_1}{R_3} + f}{rac{R_2}{R_3} + 1 - f}$$

3-wire method of temperature measurement (lead wire resistance compensation)

$$egin{align} I_4(R_4+R_L) &= I_2\left[R_2+R_3(1-f)
ight] \ I_4(R_t+R_L) &= I_2(R_1+fR_3) \ & rac{R_t+R_L}{R_4+R_L} = rac{rac{R_1}{R_3}+f}{rac{R_2}{R_3}+1-f} \ \end{aligned}$$

4-wire method of temperature measurement or Muller bridge

- ☐ Three-wire method cannot eliminate the lead resistance issue
- ☐ It completely resolves the lead wire issue and contact resistance issue

https://www.tc.co.uk/rtd-pt100-information/rtd-bridge-measuring-systems.pdf

Construction of platinum RTD

- ☐ Evacuated tube of stainless steel
- ☐ Least strain platinum coil arrangement
- ☐ Mica better electrical insulation

https://electronicscoach.com/resistance-thermometer.html

Muller bridge

At position A of the switches

- ☐ Point 1 is connected to 2'
- □ Point 2 is connected to 1'
- ☐ Point 4 is connected to 5

At balance

$$R_{P1A} + R_2 = R_t + R_1$$

Muller bridge

At position B of the switches

- □ Point 1 is connected to 1'
- ☐ Point 2 is connected to 2'
- ☐ Point 3 is connected to 5

At balance

$$R_{P1B} + R_1 = R_t + R_2$$

Muller bridge

Adding two equations

$$R_t = \frac{R_{P1A} + R_{P1B}}{2}$$

Introduction

- ☐ Temperature-sensitive resistor
- ☐ Resistance change is inversely proportional to temperature
- ☐ Semiconductor material: Oxides of nickel, cobalt, or manganese
- ☐ Governing equation

$$R_T = R_0 e^{\beta(\frac{1}{T} - \frac{1}{T_0})}$$

 $\beta \rightarrow$ Material constant (3000 to 5000 K)

Properties

Sensitivity of the thermistor

$$egin{aligned} rac{dR}{dT} &= R_0 e^{eta \left(rac{1}{T} - rac{1}{T_0}
ight)} \cdot \left(-eta \cdot rac{1}{T^2}
ight) \ & rac{dR}{dT} = R \cdot \left(-rac{eta}{T^2}
ight) \end{aligned}$$
 $S = rac{\Delta R/R}{\Delta T}$

$$S = rac{1}{R} \cdot R \cdot \left(-rac{eta}{T^2}
ight)$$
 $S = -rac{eta}{T^2}$

Properties

- ☐ Sensitivity of the thermistor is much higher than platinum RTD
- ☐ Size: 0.125 mm to 1.5 mm
- ☐ Time constant is very small
- ☐ Shape: disk, wafers, flakes and rods
- ☐ Resistance varies from a few **ohm to kilo ohms** even **mega ohms**
- ☐ Minimum resistance should be set carefully

Bolton 2008

Signal conditioning circuit

- ☐ Wheatstone bridge
- ☐ Potentiometer circuit
- ☐ Linearity issue (using parallel resistance)
- ☐ Lead wire issue can be neglected
- ☐ Self-heating error

Signal conditioning circuit

☐ Self-heating error

Example: Let R_T =5000 Ω is capable of dissipating 1 mW/°C above the ambient temperature. Thus, if the temperature is to be determined with an accuracy of 0.5°C, the power to be dissipated should be limited to less than 0.5 mW.

$$I = \sqrt{(P/R_t)} = 316 \,\mu A$$

Application

☐ Temperature switch circuit

Bolton 2008

Application

- ☐ Wien bridge oscillator
- ☐ Power supply/ SMPS

Thermocouple

Introduction

- ☐ Thermocouples working principle
- ☐ Three emfs are present in a thermocouple circuit
 - > Seebeck effect
 - > Peltier effect
 - > Thompson effect
- ☐ Two laws of thermocouple
 - ☐ Law of intermediate metal
 - ☐ Law of intermediate temperature
- ☐ Why are no two metals used to make a thermocouple?

Thermocouple

Introduction

- ☐ Thermocouples working principle
- ☐ Governing equation
- ☐ Three emfs are present in a thermocouple circuit
 - > Seebeck effect
 - > Peltier effect
 - > Thompson effect
- ☐ Two laws of thermocouple
 - ☐ Law of intermediate metal
 - ☐ Law of intermediate temperature
- ☐ Why are no two metals used to make a thermocouple?

Thermocouple

Characteristics

- ☐ Range: -200 to 2000 deg C
- ☐ Linearity: non-linear characteristic
- \square Sensitivity: 40 μV /°C
- ☐ Stability: inertness (reduction, oxidation, etc)

Thermocouple

K Type thermocouple

Positive: Chromel

Negative: Alumel

Can be represented by: Eighth-degree polynomial

Application: -200°C to 1300°C. The main application is around 700 to 1200 °C

Voltage swing over range (mV): 56.0

Lead wires:

- •(+): Iron, Copper
- •(-): Cu-Ni alloy, Constantan

Thermocouple

T Type thermocouple

Positive: Copper

Negative: Constantan

Can be represented by: Eighth-degree polynomial

Application: -200°C to 350°C. Beyond this temperature, oxidation of copper will

occur.

Voltage swing over range (mV): 26.0 (For -184°C to 400°C)

Lead wires:

•(+): Cu

•(-): Constantan

Thermocouple

S Type thermocouple

Positive: Platinum / 10% Rhodium

Negative: Platinum

Can be represented by: Second / Third degree polynomial

Application: Main features are its chemical inertness and stability at high temperatures in oxidizing atmospheres. Reducing atmospheres cause rapid deterioration at high temperatures, ranging from 0°C to 1538°C.

Voltage swing over range (mV): 16.0

Lead wires: (+): Copper; (-): Copper-Nickel alloy

Thermocouple

R Type thermocouple

Positive: Platinum / 13% Rhodium

Negative: Platinum

Can be represented by: Second / Third degree polynomial

Application:

0°C to 1593°C

Voltage swing over range (mV): 18.7

Lead wires:

•(+): Copper

•(-): Copper-Nickel alloy

Thermocouple

B Type thermocouple

Positive: Platinum / 30% Rhodium

Negative: Platinum / 6% Rhodium

Can be represented by: Eighth degree polynomial

Application: 38°C to 1800°C

Voltage swing over range (mV): 13.6

Lead wires:

•(+): Copper

•(-): Copper-Nickel alloy

Thermocouple

E Type thermocouple

Positive: Chromel

Negative: Constantan

Can be represented by: Ninth degree polynomial

Application:

0°C to 982°C

Voltage swing over range (mV): 75; Highest sensitivity

Lead wires: (+): Iron; (-): Constantan

Thermocouple

Туре	Material	Temperature Range (°C)	Sensitivity (µV/°C)	Accuracy	Key Features	Applications
K	Chromel- Alumel	-200 to 1260	~41	±2.2°C or ±0.75%	Inexpensive, stable, oxidation resistant.	General-purpose, furnaces, oxidizing atmospheres.
J	Iron- Constantan	-40 to 750	~52	±2.2°C or ±0.75%	Low cost, better in reducing atmospheres, prone to rust.	Industrial, short- term high temperature.
Т	Copper- Constantan	-200 to 350	~43	±1.0°C or ±0.75%	Accurate at low temperatures, corrosion resistant.	Cryogenics, food processing, low- temperature research.

Thermocouple

Туре	Material	Temperature Range (°C)	Sensitivity (µV/°C)	Accuracy	Key Features	Applications
E	Chromel- Constantan	-200 to 900	~68	±1.7°C or ±0.5%	High sensitivity, suitable for low- temperature applications.	Laboratory, medical equipment.
N	Nicrosil- Nisil	-270 to 1300	~39	±2.2°C or ±0.75%	Excellent high- temperature stability, resistant to oxidation.	High- temperature furnaces, aerospace.
S	Platinum- Rhodium (10%)	0 to 1450	~10	±1.5°C or ±0.25%	Highly stable, suitable for long- term use in oxidizing environments.	Laboratory, glass production, metallurgy.

Thermocouple

Туре	Material	Temperature Range (°C)	Sensitivity (µV/°C)	Accuracy	Key Features	Applications
R	Platinum- Rhodium (13%)	0 to 1450	~10	±1.5°C or ±0.25%	Similar to Type S but with higher rhodium content for better stability.	High-accuracy laboratory measurements.
В	Platinum- Rhodium (30%/6%)	0 to 1700	~7	±1.5°C or ±0.5%	Extremely stable at high temperatures, limited use below 50°C.	Steel and ceramic industries, very high temperatures.

Thermocouple

Signal conditioning circuit

- ☐ Cold junction compensation
 - ➤ Maintain the cold junction at a constant temperature
 - > Or use a thermostatically controlled oven
 - > Subtracting the voltage equivalent to the temperature change
 - ➤ Junction diode (2.2 mV/deg C)
 - > AD 590

Thermocouple

Signal conditioning circuit

Cold junction compensation

Type	R _a (ohm)
J	52.3
K	41.2
Е	61.4
T	40.2
S, R	5.76

Thermocouple

Desirable properties of thermocouple

- ☐ Relatively large thermal emf
- ☐ Precision of calibration
- ☐ Resistance to corrosion and oxidation
- ☐ Inter-changeability

Thermocouple

Thermopile

- ☐ Amplify the output of the circuit
- ☐ Time constant increases

Thermocouple

Application of thermocouple

- ☐ Isolated thermocouple measurement
 - Good stability in low temperature
 - > Accuracy

Thermocouple

Thermocouple to frequency conversion

- ☐ Reduce signal distortion over a long distances
- ☐ Improve noise immunity
- ☐ Ease of digital processing
- □ Voltage to frequency converter (v to f) AD537

Thermocouple

Temperature as a function of voltage readings

		B		-E	<i></i> J		/К
mV	°c	°C/mV `	c,°c	°C/mV	°C	°C/mV	°C
-10.000	_				_		
- 5.000	_		- 94.4	21.70	- 109.1	25.10	- 153.7
- 2.000	- 		- 35.3	18.40	- 40.8	21.10	- 53.1
- 1.000			- 17.3	17.60	- 20.1	20.40	- 25.9
0.000	+ 42.0	4°/μV	0.0	17.06	0.0	19.84	0.0
+ 1.000	449.6	220	16.8	16.64	19.6	19.25	÷ 25.0
+ 2.000	634.2	160	33.2	16.21	38.9	19.08	+ 49.5
+ 5.000	1018.2	109	80.3	15.19	95.1	18.43	+ 122.0
+10.000	1491.8	87	153.0	14.02	186.0	18.03	246.3
+20.000	_		286.7	12.90	366.5	18.13	485.0
+30.000			413.2	12.47	546.3	17.57	720.8
+40.000	_		537.1	12.36	713.9	15.94	967.5
+50.000	-		661.1	12.47	870.2	15.79	1232.3
+60.000			787.0	12.71	1035.0	16.95	
+70.000	-		915.9	13.09	-		

Thermocouple

Thermoelectric voltage

°C	0	1	2	3	4	5	6	7	8	9	10	°C
				Ther	moelectr	ic Voltage	e in Milliv	olts				
210	-8.095											-210
200	-7.890	-7.912	-7.934	-7.955	-7.976	-7.996	-8.017	-8.037	-8.057	-8.076	-8.095	-200
190	-7.659	-7.683	-7.707	-7.731	-7.755	-7.778	-7.801	-7.824	-7.846	-7.868	-7.890	-190
180	-7.403	-7.429	-7.456	-7.482	-7.508	-7.534	-7.559	-7.585	-7.610	-7.634	-7.659	-180
170	-7.123	-7.152	-7.181	-7.209	-7.237	-7.265	-7.293	-7.321	-7.348	-7.376	-7.403	-170
160	-6.821	-6.853	-6.883	-6.914	-6.944	-6.975	-7.005	-7.035	-7.064	-7.094	-7.123	-160
150	-6.500	-6.533	-6.566	-6.598	-6.631	-6.663	-6.695	-6.727	-6.759	-6.790	-6.821	-150
140	-6.159	-6.194	-6.229	-6.263	-6.298	-6.332	-6.366	-6.400	-6.433	-6.467	-6.500	-140
130	-5.801	-5.838	-5.874	-5.910	-5.946	-5.982	-6.018	-6.054	-6.089	-6.124	-6.159	-130
120	-5.426	-5.465	-5.503	-5.541	-5.578	-5.616	-5.653	-5.690	-5.727	-5.764	-5.801	-120
110	-5.037	-5.076	-5.116	-5.155	-5.194	-5.233	-5.272	-5.311	-5.350	-5.388	-5.426	-110
100	-4.633	-4.674	-4.714	-4.755	-4.796	-4.836	-4.877	-4.917	-4.957	-4.997	-5.037	-100
-90	-4.215	-4.257	-4.300	-4.342	-4.384	-4.425	-4.467	-4.509	-4.550	-4.591	-4.633	-90
-80	-3.786	-3.829	-3.872	-3.916	-3.959	-4.002	-4.045	-4.088	-4.130	-4.173	-4.215	-80
-70	-3.344	-3.389	-3.434	-3.478	-3.522	-3.566	-3.610	-3.654	-3.698	-3.742	-3.786	-70
-60	-2.893	-2.938	-2.984	-3.029	-3.075	-3.120	-3.165	-3.210	-3.255	-3.300	-3.344	-60
-50	-2.431	-2.478	-2.524	-2.571	-2.617	-2.663	-2.709	-2.755	-2.801	-2.847	-2.893	-50
-40	-1.961	-2.008	-2.055	-2.103	-2.150	-2.197	-2.244	-2.291	-2.338	-2.385	-2.431	-40
-30	-1.482	-1.530	-1.578	-1.626	-1.674	-1.722	-1.770	-1.818	-1.865	-1.913	-1.961	-30
-20	-0.995	-1.044	-1.093	-1.142	-1.190	-1.239	-1.288	-1.336	-1.385	-1.433	-1,482	-20
-10	-0.501	-0.550	-0.600	-0.650	-0.699	-0.749	-0.798	-0.847	-0.896	-0.946	-0.995	-10
0	0.000	-0.050	-0.101	-0.151	-0.201	-0.251	-0.301	-0.351	-0.401	-0.451	-0.501	0

Thermocouple

Thermoelectric voltage

0	0.000	0.050	0.101	0.151	0.202	0.253	0.303	0.354	0.405	0.456	0.507	0
10	0.507	0.558	0.609	0.660	0.711	0.762	0.814	0.865	0.916	0.968	1.019	10
20	1.019	1.071	1.122	1.174	1.226	1.277	1.329	1.381	1.433	1.485	1.537	20
30	1.537	1.589	1.641	1.693	1.745	1.797	1.849	1.902	1.954	2.006	2.059	30
40	2.059	2.111	2.164	2.216	2.269	2.322	2.374	2.427	2.480	2.532	2.585	40
50	2.585	2.638	2.691	2.744	2.797	2.850	2.903	2.956	3.009	3.062	3.116	50
60	3.116	3.169	3.222	3.275	3.329	3.382	3.436	3.489	3.543	3.596	3.650	60
70	3.650	3.703	3.757	3.810	3.864	3.918	3.971	4.025	4.079	4.133	4.187	70
80	4.187	4.240	4.294	4.348	4.402	4.456	4.510	4.564	4.618	4.672	4.726	80
90	4.726	4.781	4.835	4.889	4.943	4.997	5.052	5.106	5.160	5.215	5.269	90

Thermocouple

Numerical 1

With a cold junction of -14°C an iron-constantan thermocouple produces an emf of 4.82 mV. Calculate the temperature of the hot junction.

Ans: 78.8 deg C

Type J (Iron-Constantan) Thermocouple Table for 0 C Reference

	0	5	10	15	20	25	30	35	40	45
-150	-6.50	-6.66	-6.82	-6.97	-7.12	-7.27	-7.40	-7.54	-7.66	-7.78
-100	-4.63	-4.83	-5.03	-5.23	-5.42	-5.61	-5.80	-5.98	-6.16	-6.33
-50	-2.43	-2.66	-2.89	-3.12	-3.34	3.56	- 3.78	- 4.00	- 4.21	-4.42
- 0	0.00	-0.25	-0.50	-0.75	-1.00	-1.24	-1.48	-1.72	-1.96	-2.20
+0	0.00	0.25	0.50	0.76	1.02	1.28	1.54	1.80	2.06	2.32
50	2.58	2.85	3.11	3.38	3.65	3.92	4.19	4.46	4.73	5.00
100	5.27	5.54	5.81	6.08	6.36	6.63	6.90	7.18	7.45	7.73
150	8.00	8.28	8.56	8.84	9.11	9.39	9.67	9.95	10.22	10.50
200	10.78	11.06	11.34	11.62	11.89	12.17	12.45	12.73	13.01	13.28
250	13.56	13.84	14.12	14.39	14.67	14.94	15.22	15.50	15.77	16.05
300	16.33	16.60	16.88	17.15	17.43	17.71	17.98	18.26	18.54	18.81
350	19.09	19.37	19.64	19.92	20.20	20.47	20.75	21.02	21.30	21.57
400	21.85	22.13	22.40	22.68	22.95	23.23	23.50	23.78	24.06	24.33
450	24.61	24.88	25.16	25.44	25.72	25.99	26.27	26.55	26.83	27.11
500	27.39	27.67	27.95	28.23	28.52	28.80	29.08	29.37	29.65	29.94
550	30.22	30.51	30.80	31.08	31.37	31.66	31.95	32.24	32.53	32.82
600	33.11	33.41	33.70	33.99	34.29	34.58	34.88	35.18	35.48	35.78
650	36.08	36.38	36.69	36.99	37.30	37.60	37.91	38.22	38.53	38.84
700	39.15	39.47	39.78	40.10	40.41	40.73	41.05	41.36	41.68	42.00

Thermocouple

Numerical 2

At a temperature of 447°C an iron-constantan thermocouple produces an emf of 8.11 mV. Calculate the temperature of the cold junction.

 $0 \rightarrow 447 = 24.444 \text{ mV}$

X to 447 = 8.11 mV

0 to 300 = 16.327 mV

0 to 301 = 16.383 mV

Ans: 300.1 deg C

Thermocouple

Numerical 3

The emf of an iron-constantan thermocouple was found to be 44.40 mV with a cold junction of 0°C. If the cold junction changes to 100°C, what emf would the thermocouple produce?

Thermocouple

Numerical 4

An iron-constantan thermocouple is placed in a known temperature of 400°F. If the thermocouple produces an emf of 10.81 mV, what is the temperature of the cold junction?

Thermocouple

Numerical 5

Two different thermocouples (A and B) are connected in series. The Seebeck coefficients are: $S_A = 30 \,\mu V/^{\circ} \text{C}$, $S_B = 50 \,\mu V/^{\circ} \text{C}$.

The hot junction is at 500 deg C and the cold junction is at 25 deg C. Calculate the total EMF generated by the system.

Ans: 38 mV

Thermocouple

Numerical 6

A thermocouple reads an EMF of 15 mV when the hot junction is at 400 deg C. The Seebeck coefficient is $50 \,\mu\text{V/deg}$ C. Determine the reference junction temperature.

Ans: 100 deg c

Thermocouple

Numerical 7

For a non-linear thermocouple, where $a=40~\mu\text{V/deg}$ C and $b=0.02~\mu\text{V/deg}$ C. Calculate the EMF when the hot junction is at 300 deg C and the cold junction is at 0 deg C.

Ans: 13.8mV

Thermocouple

Numerical 8

A platinum RTD, PT100 measures 100Ω at 0° C and 138.5Ω at 100° C. Calculate temperature when resistance is 110Ω

Ans: 119.25 ohm

Thermocouple

Numerical 9

For a thermistor, β =3140 K and the resistance at 27deg C is known to be 1050. If the thermistor is used for measuring a temperature of 6 deg C, find the resistance of the thermistor.

Ans: 2308.95 ohm

Thank you for your attention!