Lang's Algebra Chapter 3 Solutions

Amanuel Tewodros

July 10, 2025

(1) By the second isomorphism theorem, we have

$$\frac{U}{U \cap W} \cong \frac{U + W}{W}.$$

For two vector spaces, $X \supseteq Y$ over a field K, we have $\dim X/Y = \dim X - \dim Y$. Thus $\dim U - \dim U \cap W = \dim U + W - \dim W$.

(2) Let M be a module over a commutative ring R. Let I be a maximal ideal of R. We first show that for any proper ideal \mathfrak{a} of R and basis set $\{x_1, x_2, \dots\}$, of M,

Lemma 1.

$$\frac{M}{\mathfrak{a}M} \cong \bigoplus_{i} \frac{A}{\mathfrak{a}} (x_i + \mathfrak{a} x_i).$$

Proof. $\mathfrak{a}M$ is submodule of M because $\mathfrak{a}M \subseteq M$ by R-closure property of \mathfrak{a} . It immediatly follows that $\mathfrak{a}M = \bigoplus_i \mathfrak{a}x_i$. By linear independence of x_i , $(\sum_i r_i x_i)$ mod $\mathfrak{a}x_j = (r_j \mod \mathfrak{a})x_j + \sum_{i \neq j} r_i x_i$. Therefore, $M/\mathfrak{a}M = \bigoplus_i Ax_i/\mathfrak{a}x_i$. By the isomorphism $x_i \mapsto 1_A \mapsto (x_i + \mathfrak{a}x_i)$, $Ax_i/\mathfrak{a}x_i \cong A/\mathfrak{a} \cong A/\mathfrak{a}(x_i + \mathfrak{a}x_i)$. \square

Taking $\mathfrak a$ as a maximal ideal of R in the above lemma, we see that $M/\mathfrak a M$ is a direct product of vector spaces over the field $A/\mathfrak a$ and thus admit a basis of the same cardinality as that of M. Because the dimension of a vector space is independent of the basis choice, M also has a fixed dimension.

(3) Let $\{x_1, \ldots, x_m\}$ form the basis set of R over k and let $1_R = k_1 x_1 + \ldots k_m x_m$ for $k_i \in k$. For any element $a \in R$, define the sequences $\{y_1, \ldots, y_m\} \subseteq k$, $\{f_1, f_2, \ldots, f_m\} \subseteq R$ as:

$$f_1 = a, \quad y_1 = w_{1,1}^{-1} k_1$$

 $f_{i+1} = f_i y_i - k_i x_i, \quad y_i = k_i w_{i,i}^{-1},$

,where $f_i = \sum_i w_{i,j} x_j$. By construction, $a^{-1} = \sum_i y_i x_i$. Thus R is a field.

(4) Direct Sums

(a) First, we show the equivalence of the two statements of the theorem. Suppose there is φ such that $g \circ \varphi = \operatorname{id}$. By the injectivness of the composition, $\operatorname{Im} \varphi \cap \ker g = \{0\}$. But by exactness, $\ker g = \operatorname{Im} f$. We can unambiguously define $\psi(u)$ to be the inverse image of $f^{-1}(u')$ where $u' \equiv u \mod \operatorname{Im} \varphi$ and u' = f(x) for some $x \in M'$ because if $f(x) = f(y) \mod \operatorname{Im} \varphi$, $f(x - y) \in \operatorname{Im} \varphi$ and by injectivity of f, x = y. Since $M/\operatorname{Im} f \cong M'' = \operatorname{Im} \varphi$, ψ is defined in all of M. Similarly, if the second statement is true, $\ker \psi \cap \operatorname{Im} f = \{0\}$ because $\psi \circ f$ is injective. By exactness, $\operatorname{Im} f = \ker g$. We can then define $\varphi(u) = u'$ where $u' = y \mod \ker \psi$ and g(y) = u for some y. φ is well-defined because if $g(y_1) = g(y_2)$ for $y_1 \neq y_2$, then $y_1 \neq y_2 \mod \ker \varphi$.

Now suppose $x \in M$. $x - \varphi(u) \in \operatorname{Im} f$ for exactly one u by the argument mentioned previously. Thus we can express x = r + s where $r = \varphi(u) \in \operatorname{Im} \varphi$ and $s = x - \varphi(u) \in \operatorname{Im} f$. This implies $M = \operatorname{Im} f \oplus \operatorname{Im} \varphi$. By bijectivness of $g \circ \varphi$, $\operatorname{Im} \varphi \cong M''$. By contrast, if $M = \operatorname{Im} f \oplus N$ for some N, with isomorphism $t : N \to M''$. We can define $g : M \to M''$ as g(u) = u' such that there is $u = y \mod N$ and $t^{-1}(u') = y$. This definition is unambiguous because $N \cap \operatorname{Im} f = \{0\}$. Since $g \circ t^{-1} = \operatorname{id}$, the sequence splits.

Finally, we complete the details of proposition 3.2. We have just shown $M = \operatorname{Im} f \circ \operatorname{Im} \varphi$. By exactness, $\operatorname{Im} f = \ker g$. Also, $\operatorname{Im} f \cong M'$ and $\operatorname{Im} \varphi \cong M''$ by injectivness of f and φ resp. This proves $M \cong M' \oplus M''$. We can write $x \in M$ as f(u) + x - f(u) where $x - f(u) \in \ker \psi$. u is then uniquely determined by x as $\ker \psi \cap \operatorname{Im} f = \{0\}$ by bijectivness of $\psi \circ f$. This shows $M = \operatorname{Im} f \oplus \ker \psi$.

(b) First, we note that φ_i is injective because othewise the composition $\psi_i \circ \varphi_i$ wouldn't be injectice, a contradiction. This implies, for every valid i, there is a submodule $E'_i = \operatorname{Im} \varphi_i$ of E that is isomorphic to E_i . Moreover, if $c \in \operatorname{Im} \varphi_i \cap \operatorname{Im} \varphi_j$ for $i \neq j$, then $\psi_i(c) = \psi_j(c) = 0$, forcing c to be 0. These statements prove

$$\bigoplus_{i=1}^n E_i' \subseteq E.$$

The inverse inclusion follows as follows. Let $x \in E$, then $x = \sum_{i=1}^{n} \varphi_i(\psi_i(x))$, but $\varphi_i(\psi_i(x)) \in E'_i$. Therefore $x \in \bigoplus_i E'_i$.

Let $x = x_1 + \cdots + x_m$ where $x_i \in E'_i$. The map definied by $x \mapsto (\psi x_i)_{1 \le i \le m}$ is therefore an isomorphism and the inverse map is given by $(\psi x_i)_i \mapsto \sum_i x_i$.

(5) Let $v_m' = a_1v_1 + \cdots + a_mv_m$. Since $a_m \neq 0$, v_m' , and by the assumption that $\{v_i\}$ is linearly independent over \mathbb{R} , the set $\{v_1, \ldots, v_{m-1}, v_m'\}$ is linearly independent over \mathbb{Z} . We also note that, $v_m' - \sum_{i=1}^{m-1} a_iv_i \in A$, thus we can safely assume $a_1 = \cdots = a_{m-1} = 0$.

To show, the set spans A, we consider A/A_0 . Suppose, there is $av_m \in A/A_0$ such that $av_m \neq nv_m'$ for all $n \in \mathbb{Z}$. Let r,s be two integers such that $|ra_m + sa| < a_m$. Since contradicts minimality of a_m , it must be the case that $a_m \mid a$.. Therfore $A/A_0 = \mathbb{Z}v_m'$.