1

Digital Signal Processing

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

Aakash Kamuju AI21BTECH11001

1 Aug 2022

Contents		
1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	7
7	FFT	8
8	Exercises	12
Abstract—This manual provides a simple introduction to digital signal processing.		
1. Software Installation		

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2. Digital Filter

2.1 Download the sound file from

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/Sound_Noise. way

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('codes/
    Sound Noise.wav')
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
    polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
```

output_signal = signal.filtfilt(b, a,
 input_signal)
#output_signal = signal.lfilter(b, a,
 input_signal)

2.4 The output of python script the Problem 2.3 in is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3. Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

Solution: The following code yields Fig. 3.1

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/3.1.py

Fig. 3.1.

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 5.3.

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/xnyn.py

(3.1) Fig. 3.2.

4. Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z\{x(n-1)\} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

resulting in (4.2). Similarly, it can be shown that

$$Z\{x(n-k)\} = z^{-k}X(z)$$
 (4.6)

4.2 Obtain X(z) for x(n) define in problem 3.1. **Solution:** From (4.1),

$$X(z) = Z\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.7)

$$= \sum_{n=0}^{\infty} x(n)z^{-n}$$
 (4.8)

$$= 1 \cdot z^{-1} + 2 \cdot z^{-2} + 3 \cdot z^{-3} + 4 \cdot z^{-4} + 2 \cdot z^{-5} + 1 \cdot z^{-6}$$
(4.9)

$$=\frac{z^5 + 2z^4 + 3z^3 + +4z^2 + 2z + 1}{z^6} \quad (4.10)$$

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.11}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.12)

$$\implies H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
(4.13)

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.15)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.16)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.17}$$

and from (4.15),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.18)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.19}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.20}$$

Solution: From (4.1),

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=-\infty}^{\infty} u(n) \left(\frac{a}{z}\right)^{-n}$$
 (4.21)

From (4.15),

$$\mathcal{Z}\lbrace a^n u(n)\rbrace = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^{-n}$$
 (4.22)

$$=\frac{1}{1-\frac{a}{5}}\tag{4.23}$$

$$= \frac{1}{1 - az^{-1}} \quad |z| > |a| \qquad (4.24)$$

using the formula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.25)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time* Fourier Transform (DTFT) of x(n).

Solution:

$$H(e^{\mathsf{J}^{\omega}}) = H(z = e^{\mathsf{J}^{\omega}}) \tag{4.26}$$

$$=\frac{1+e^{-2j\omega}}{1+\frac{1}{2}e^{-j\omega}}\tag{4.27}$$

$$= \frac{2\left(1 + e^{-2j\omega}\right)}{2 + e^{-j\omega}} \tag{4.28}$$

$$= \frac{2(1 + \cos 2\omega - J\sin 2\omega)}{2 + \cos \omega - J\sin \omega}$$
 (4.29)

$$= \frac{2\left|\left(2\cos^2\omega - J\sin 2\omega\right)\right|}{\left|2 + \cos\omega - J\sin\omega\right|}$$
 (4.30)

$$= \frac{2\sqrt{4\cos^4\omega + 4\sin^2\omega\cos^2\omega}}{\sqrt{(2+\cos\omega)^2 + \sin^2\omega}}$$
(4.31)

$$=\frac{4\cos\omega}{\sqrt{5+4\cos\omega}}\tag{4.32}$$

$$= \frac{4\cos\omega}{\sqrt{5 + 4\cos\omega}}$$

$$|H(e^{J\omega})| = \frac{|4\cos\omega|}{\sqrt{5 + 4\cos\omega}}$$
(4.32)

Since $|H(e^{j\omega})|$ is function of cosine we can say it is periodic. And from the plot 4.6 we can say that it is symmetric about $\omega =$ 0 (even function) and it is periodic with period 2π . You can find the same from the theoritical expression $|H(e^{j\omega})|$,

$$H(e^{j\omega}) = H(e^{j(-\omega)})$$
 (cos is an even function) (4.34)

(4.43)

And to find period, the period of $|\cos(\omega)|$ is π and the period of $\sqrt{5 + 4\cos(\omega)}$ is 2π . So the period of division of both will be 2π . This gives us the period of $|H(e^{j\omega})|$ as 2π The following code plots Fig. 4.6.

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/hn.py

Fig. 4.6. $|H(e^{j\omega})|$

4.7 Express h(n) in terms of $H(e^{j\omega})$ Solution:

$$\int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.35)$$

$$= \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}e^{j\omega n}d\omega \qquad (4.36)$$

$$=\sum_{k=-\infty}^{\infty}h(k)\int_{-\pi}^{\pi}e^{j\omega(n-k)}d\omega$$
 (4.37)

Now,

$$\int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega = \begin{cases} \int_{-\pi}^{\pi} d\omega & n-k=0\\ \frac{\exp(j\omega(n-k))}{j(n-k)} \Big|_{-\pi}^{\pi} & n-k \neq 0 \end{cases}$$
(4.38)

$$= \begin{cases} 2\pi & n-k=0\\ 0 & n-k\neq 0 \end{cases}$$
 (4.39)

$$=2\pi\delta(n-k)\tag{4.40}$$

Thus,

$$\int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n}d\omega = 2\pi \sum_{k=-\infty}^{\infty} h(k)\delta(n-k)$$

$$= 2\pi h(n) * \delta(n) \qquad (4.41)$$

Therefore, h(n) is given by the inverse DTFT

 $=2\pi h(n)$

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.44)$$

5. Impulse Response

5.1 Using long division, find

(IDTFT) of $H(e^{j\omega})$

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.13).

Solution:

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

Substitute
$$z^{-1} = x$$

$$\frac{2x - 4}{x^2 + 1}$$

$$-x^2 - 2x$$

$$-2x + 1$$

$$2x + 4$$

$$\implies 1 + z^{-2} = \left(1 + \frac{1}{2}z^{-1}\right)\left(-4 + 2z^{-1}\right) + 5 \tag{5.3}$$

$$\implies H(z) = -4 + 2z^{-1} + \frac{5}{1 + \frac{1}{2}z^{-1}}$$
 (5.4)

On applying the inverse Z-transform on both sides of the equation

$$H(z) \stackrel{\mathcal{Z}}{\rightleftharpoons} h(n)$$
 (5.5)

$$-4 \stackrel{\mathcal{Z}}{\rightleftharpoons} -4\delta(n) \tag{5.6}$$

$$2z^{-1} \stackrel{\mathcal{Z}}{\rightleftharpoons} 2\delta(n-1) \tag{5.7}$$

$$\frac{5}{1 + \frac{1}{2}z^{-1}} \stackrel{\mathcal{Z}}{\rightleftharpoons} 5\left(-\frac{1}{2}\right)^n u(n) \tag{5.8}$$

(5.9)

Therefore,

$$h(n) = -4\delta(n) + 2\delta(n-1) + 5\left(-\frac{1}{2}\right)^n u(n) \quad (5.10)$$

(5.16)

5.2 Find an expression for h(n) using H(z), given that in (4.20), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.11)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.13),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.12)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.13)

using (4.20) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution:

The following code plots

Fig. 5.3.

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/5.3. py

$$\lim_{n \to \infty} h(n) = \lim_{n \to \infty} \left(-\frac{1}{2} \right)^n u(n) + \lim_{n \to \infty} \left(-\frac{1}{2} \right)^{n-2} u(n-2)$$
(5.14)

$$h(n) = \begin{cases} 5\left(\frac{-1}{2}\right)^n & n \ge 2\\ \left(\frac{-1}{2}\right)^n & 0 \le n < 2\\ 0 & n < 0 \end{cases}$$
 (5.15)

Maximum value and minimum value are always bounded in this case. h(n) is bounded

5.4 Is it convergent? Justify using the ratio test. **Solution:**

$$h(n+1) = \left(-\frac{1}{2}\right)^{n+1} u(n+1) + \left(-\frac{1}{2}\right)^{n-1} u(n-1)$$

According to ratio test, L is given by $\lim_{n\to\infty} \left| \frac{h(n+1)}{h(n)} \right|$, if L < 1 then h(n) is convergent.

$$L = \lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\left(-\frac{1}{2}\right)^{n+1} u(n+1) + \left(-\frac{1}{2}\right)^{n-1} u(n-1)}{\left(-\frac{1}{2}\right)^{n} u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)} \right|$$
(5.17)

$$= \left| \frac{-\frac{1}{2} + -\frac{1}{2}^{-1}}{1 + -\frac{1}{2}^{-2}} \right| \tag{5.19}$$

$$= \left| \frac{-\frac{1}{2} - 2}{1 + 4} \right| \tag{5.20}$$

$$= \left| \frac{-\frac{5}{2}}{5} \right| \tag{5.21}$$

$$=\frac{1}{2} (5.22)$$

As L < 1, h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.23}$$

Is the system defined by (3.2) stable for the impulse response in (5.11)?

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=0}^{\infty} h(n)$$

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.24)
(5.25)

$$= 2\left(\frac{1}{1+\frac{1}{2}}\right) \tag{5.26}$$

$$= \frac{4}{2} \tag{5.27}$$

As $\sum_{n=-\infty}^{\infty} h(n) = \frac{4}{3}$ is less than ∞ , the system defined by (3.2) is stable for the impulse response in (5.1).

5.6 Verify the above result using a python code. **Solution:** The following code determines if it is convergent or not:

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/5.5. py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.28)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. ??.

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/5.7. py

Computing,

$$h(0) = 1$$

 $h(1) = -\frac{1}{2}h(0)$
 $h(2) = -\frac{1}{2}h(1) + 1$
Parallely, $h(n) = -\frac{1}{2}h(n-1)$

Fig. 5.7. h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n=-\infty}^{\infty} x(k)h(n-k)$$
 (5.29)

Comment. The operation in (5.29) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 5.3.

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/5.8. py

Fig. 5.8. y(n) from the definition of convolution

5.9 Express the above convolution using a toeplitz matrix. **Solution:**

$$\mathbf{y} = \mathbf{x} \otimes \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & \dots & 0 \\ h_2 & h_1 & \dots & 0 \\ h_3 & h_2 & h_1 & \dots & 0 \\ h_{m-1} & \dots & h_2 & h_1 \\ h_m & h_{m-1} & \dots & h_2 & h_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & h_m \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$(5.31)$$

$$\mathbf{y} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 & 0 & 0 & 0 \\ \frac{-1}{3} & \frac{-1}{2} & 1 & 0 & 0 & 0 \\ \frac{-5}{4} & \frac{-1}{2} & 1 & 0 & 0 & 0 \\ \frac{-5}{8} & \frac{5}{4} & \frac{-1}{2} & 1 & 0 & 0 \\ \frac{-5}{30} & \frac{5}{16} & \frac{8}{8} & \frac{4}{4} & \frac{-1}{2} & 1 \\ \frac{-5}{32} & \frac{5}{16} & \frac{5}{8} & \frac{5}{4} & \frac{-1}{2} & 1 \\ 0 & \frac{5}{64} & \frac{-5}{32} & \frac{5}{16} & \frac{5}{8} & \frac{4}{4} & \frac{-1}{2} \\ 0 & 0 & \frac{5}{64} & \frac{-5}{32} & \frac{5}{16} & \frac{5}{8} & \frac{4}{4} \\ 0 & 0 & 0 & \frac{5}{64} & \frac{-5}{32} & \frac{5}{16} & \frac{5}{8} \\ 0 & 0 & 0 & 0 & \frac{5}{64} & \frac{-5}{32} & \frac{5}{16} \\ 0 & 0 & 0 & 0 & \frac{5}{64} & \frac{-5}{32} & \frac{1}{16} \\ 0 & 0 & 0 & 0 & \frac{5}{64} & \frac{-5}{32} \\ 0 & 0 & 0 & 0 & 0 & \frac{5}{64} & \frac{5}{32} \\ 0 & 0 & 0 & 0 & 0 & \frac{5}{64} & \frac{5}{32} \end{pmatrix}$$

$$(5.32)$$

And this is what we got in (5.29)

5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.33)

Solution: Substitute $k \rightarrow n - k$ then

$$y(n) = x(n) * h(n)$$
 (5.34)
= $\sum_{n=-\infty}^{\infty} x(k)h(n-k) = \sum_{n=-\infty}^{\infty} x(n-k)h(k)$ (5.35)

6. DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

and H(k) using h(n). Solution: The following code plots Fig. 6.1.

Fig. 6.1. X(k), H(k) from the DFT

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/xkhkdft.py

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: The following code plots Fig. 6.2.

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/ykdft.py

Fig. 6.2. Y(k) from the DFT

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 5.3.

wget https://github.com/kamujuaakash/ EE3900/blob/main/codes/yndft.py

Fig. 6.3. y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the below python code for the plot 6.4,

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/6.4. py

Then run the following command,

python3 6.4.py

Fig. 6.4. The plot of y(n) using IFFT

7. FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFTmatrix is defined as

$$\mathbf{F}_N = \begin{bmatrix} W_N^{mn} \end{bmatrix}, \quad 0 \le m, n \le N - 1 \tag{7.3}$$

where W_N^{mn} are the elements of \mathbf{F}_N .

3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \begin{pmatrix} W_8^0 & W_8^1 & W_8^2 & W_8^3 \end{pmatrix} \tag{7.6}$$

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: From (7.2),

$$W_N = e^{-j2\pi/N} \tag{7.8}$$

Consider,

$$W_N^2 = \left(e^{-j2\pi/N}\right)^2 \tag{7.9}$$

$$= e^{-j2\pi/(N/2)} (7.10)$$

$$=W_{N/2}$$
 (7.11)

Hence proved.

6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.12}$$

Solution: From the eq (7.5),

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.13}$$

Clearly P_4 is an elementary matrix of I_4 , so on multiplication with a matrix it will interchange the rows/columns of matrix depending on positions of unit vectors.

From that it follows,

$$\mathbf{P}_4^2 = \mathbf{I}_4 \tag{7.14}$$

So it is similar to prove that,

$$\mathbf{F}_4 \mathbf{P}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix}$$
 (7.15)

Now from (7.3),

$$\mathbf{F}_2 = \begin{bmatrix} W_2^{0.0} & W_2^{0.1} \\ W_2^{1.0} & W_2^{1.1} \end{bmatrix} \tag{7.16}$$

$$= \begin{bmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{bmatrix} \tag{7.17}$$

Using the result (7.11), we can write

$$\mathbf{F}_2 = \begin{bmatrix} W_4^0 & W_4^0 \\ W_4^0 & W_4^2 \end{bmatrix} \tag{7.18}$$

And \mathbf{D}_2 is a diagonal matrix,

$$\mathbf{D}_2 = diag(W_4^0, W_4^1) \tag{7.19}$$

$$= diag(1, W_4) (7.20)$$

Then,

$$\mathbf{D}_{2}\mathbf{F}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & W_{4}^{1} \end{bmatrix} \begin{bmatrix} W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} \end{bmatrix}$$
(7.21)
$$= \begin{bmatrix} W_{4}^{0} & W_{4}^{0} \\ W_{4}^{1} & W_{4}^{3} \end{bmatrix}$$
(7.22)

And for $k \in \mathcal{N}$ and N be a even integer we know that,

$$W_N^{Nk} = 1 \tag{7.23}$$

$$W_N^{Nk+N/2} = -1 (7.24)$$

Using that we can write,

$$-\mathbf{D}_2\mathbf{F}_2 = \begin{bmatrix} W_4^2 & W_4^6 \\ W_4^3 & W_4^9 \end{bmatrix}$$
 (7.25)

And from (7.3),

$$\mathbf{F}_{4} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9} \end{bmatrix}$$
(7.26)

And

$$\mathbf{F}_{4}\mathbf{P}_{4} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{1} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{4} & W_{4}^{2} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{6} & W_{4}^{3} & W_{4}^{9} \end{bmatrix}$$
(7.27)

This is same as,

$$\begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_2 \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_2 \mathbf{F}_2 \end{bmatrix} \tag{7.28}$$

$$\Longrightarrow \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix}$$
 (7.29)

Hence proved.

7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.30)$$

Solution: As we saw earlier, it is similar to prove that

$$\mathbf{F}_{N}\mathbf{P}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix}$$
(7.31)

Assuming that N is even, consider LHS

$$\mathbf{F}_{N}\mathbf{P}_{N} = \begin{bmatrix} W_{N}^{0\times0} & W_{N}^{0\times2} & ... & W_{N}^{0\times1} & W_{N}^{0\times3} ... \\ W_{N}^{1\times0} & W_{N}^{1\times2} & ... & W_{N}^{1\times1} & W_{N}^{1\times3} ... \\ ... & ... & ... & ... \\ W_{N}^{N/2\times0} & W_{N}^{N/2\times2} & ... & W_{N}^{N/2\times1} & W_{N}^{N/2\times3} ... \\ ... & ... & ... & ... \\ W_{N}^{N-1\times0} & W_{N}^{N-1\times2} & ... & W_{N}^{N-1\times1} & W_{N}^{N-1\times3} ... \end{bmatrix}$$

$$(7.32)$$

On multiplying with P_N (permutation matrix), the odd-numbered columns of \mathbf{F}_N shifted towards left.

Now we can divide the above matrix (7.32), into four sub-matrices as,

$$= \begin{bmatrix} \begin{bmatrix} W_N^{n \times 2m} \end{bmatrix} & \begin{bmatrix} W_N^{n \times (2m+1)} \end{bmatrix} \\ \begin{bmatrix} W_N^{(n+\frac{N}{2}) \times (2m)} \end{bmatrix} & \begin{bmatrix} W_N^{(n+\frac{N}{2}) \times (2m+1)} \end{bmatrix} \end{bmatrix}$$
(7.33)

where, $0 \le n, m \le \frac{N}{2} - 1$

$$= \begin{bmatrix} \left[\left(W_{N}^{n \times m} \right)^{2} \right] & \left[W_{N}^{n} \left(W_{N}^{n \times m} \right)^{2} \right] \\ \left[W_{N}^{Nm} \left(W_{N}^{n \times m} \right)^{2} \right] & \left[W_{N}^{Nm+N/2} W_{N}^{n} \left(W_{N}^{n \times m} \right)^{2} \right] \end{bmatrix}$$

$$(7.34)$$

Using (7.23), (7.24) and (7.11)

$$= \begin{bmatrix} \begin{bmatrix} W_{\frac{N}{2}}^{n \times m} \end{bmatrix} & \begin{bmatrix} W_N^n W_{\frac{N}{2}}^{n \times m} \end{bmatrix} \\ \begin{bmatrix} W_{\frac{N}{2}}^{n \times m} \end{bmatrix} & \begin{bmatrix} -W_N^n W_{\frac{N}{2}}^{n \times m} \end{bmatrix} \end{bmatrix}$$
(7.35)

Now from def (7.3) and (7.6), we can write,

$$= \begin{bmatrix} \mathbf{F}_{\frac{N}{2}} & \mathbf{D}_{\frac{N}{2}} \mathbf{F}_{\frac{N}{2}} \\ \mathbf{F}_{\frac{N}{2}} & -\mathbf{D}_{\frac{N}{2}} \mathbf{F}_{\frac{N}{2}} \end{bmatrix}$$
(7.36)

$$\implies \mathbf{F}_{N} \mathbf{P}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix}$$
(7.37)

Hence proved.

Note: If we want to do the above matrix decomposition recursively the value of N should in the form of 2^k .

8. Find

$$\mathbf{P}_4\mathbf{x} \tag{7.38}$$

Solution: Let **x**,

$$\mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$
 (7.39)

and P_4 is 4 - point permutation matrix. So,

$$\mathbf{P}_{4}\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$
(7.40)

$$= \begin{bmatrix} x(0) \\ x(2) \\ x(1) \\ x(3) \end{bmatrix}$$
 (7.41)

9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.42}$$

where \mathbf{x}, \mathbf{X} are the vector representations of x(n), X(k) respectively.

Solution: From (7.1),

$$X(k) = \sum_{n=0}^{N-1} x(n)W^{kn}$$
 (7.43)

Now we will try to convert the above expression into matrix equations,

$$X(0) = \sum_{n=0}^{N-1} x(n)W^{0.n}$$
 (7.44)

$$= \begin{pmatrix} W^{0.0} \\ W^{0.1} \\ W^{0.2} \\ W^{0.(N-1)} \end{pmatrix}^{T} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{pmatrix}$$
(7.45)

$$X(1) = \begin{pmatrix} W^{1.0} \\ W^{1.1} \\ W^{1.2} \\ W^{1.(N-1)} \end{pmatrix}^{T} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{pmatrix}$$
(7.46)

.

$$X(N-1) = \begin{pmatrix} W^{(N-1)\times 0} \\ W^{(N-1)\times 1} \\ W^{(N-1)\times 2} \\ W^{(N-1)\times (N-1)} \end{pmatrix}^{T} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{pmatrix}$$
(7.47)

 $\mathbf{X} =$

$$\begin{bmatrix} W_{N}^{0\times0} & W_{N}^{0\times1} & \dots & W_{N}^{0\times N-1} \\ \dots & \dots & \dots & \dots \\ W_{N}^{N-1\times0} & W_{N}^{N-1\times1} & \dots & W_{N}^{N-1\times N-1} \end{bmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \dots \\ x(N-1) \end{pmatrix}$$
(7.48)

From def (7.3),

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.49}$$

Hence proved.

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.50)
$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.51)

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.52)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.53)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
(7.54)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.55)

$$P_{8} \begin{vmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{vmatrix} = \begin{vmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{vmatrix}$$
 (7.56)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.57)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.58)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.59)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.62)

Solution: The 8-point FFT can be expressed as,

$$X(k) = \sum_{0}^{7} x(n)e^{\frac{-2\pi kn}{8}}$$

$$= \sum_{0}^{3} x(2n)e^{\frac{-2\pi kn}{4}} + \sum_{1}^{3} e^{\frac{-2\pi k(2n+1)}{8}}$$

$$= \sum_{0}^{3} x(2n)e^{\frac{-2\pi kn}{4}} + e^{\frac{-2\pi k}{8}} \sum_{1}^{3} x(2n)e^{\frac{-2\pi kn}{4}}$$

Call these 4 - point FFTs as X_1 and X_2 ,

$$X(k) = X_1(k) + W_8^k X_2(k)$$
 (7.66)

Now consider,

$$X(k+4) = X_1(k+4) + W_8^{k+4} X_2(k+4)$$
 (7.67)
= $X_1(k) - W_8^k X_2(k)$ (7.68)

Since the twiddle factors along with X_1 and X_2 are of 4-point $X_1(k+4) = X_1(k)$ and $X_2(k+4) = X_2(k)$.

With that (7.68) we can see how (7.50) and (7.51) are derived.

Now consider these 4-point FFTs,

$$X_1(k) = \sum_{0}^{1} x(4n)e^{\frac{-j2\pi nk}{2}} + e^{\frac{-j2\pi k}{4}} \sum_{0}^{1} x(4n+2)e^{\frac{-j2\pi nk}{2}}$$
(7.69)

$$= X_3(k) + W_4^k X_4(k) (7.70)$$

where, $X_3(k)$ and $X_4(k)$ are 2-point FFTs of $x_1(n) = x_1(4n)$ and $x_2(n) = x(4n + 2)$. And you can see that,

$$X_1(k+2) = X_3(k) - W_4^k X_4(k)$$
 (7.71)

With that we can see how we got (7.10) and (7.53).

And similarly we can write the 2-point FFTs from $X_2(k)$ as $X_5(k)$ and $X_6(k)$ of subsequences x(4n + 1) and x(4n + 3).

With that we can get (7.54) and (7.55).

Mathematically we can write these 2-point FFTs as,

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.73)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.74)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.75)

where, the subsequences required for each 2-point FFT can be obtained from (7.56), (7.57) and (7.58).

11. For

(7.65)

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{pmatrix} \tag{7.76}$$

compute the DFT using (7.42)

Solution: Download the below python code,

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/ X_k_dft.py

Then run the following command on terminal,

$$python 3\ X_k_dft.py$$

The plot of DFT can be seen in Fig 7.11

12. Repeat the above exercise using the FFT after zero padding **x**.

Solution: Download the below python code,

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/ X k fft.py

Fig. 7.11. DFT using DFT matrix

Then run the following command on terminal,

The plot of DFT can be seen in Fig 7.13

Fig. 7.12. FFT using Matrix decompostion

13. Write a C program to compute the 8-point FFT. **Solution:** Download the C code from the following link

Then run the following command,

Download the below python code which uses fft.dat file from the C code.

Then run the following command for the plot,

You will get output of DFT of x(n).

Fig. 7.13. FFT using C code

14. Compare FFT and Convolution for Input Signal.

Fig. 7.14. Time Comparison

8. Exercises

Answer the following questions by looking at the python code in Problem 2.3

8.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k)$$
 (8.1)

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** On taking the *Z*-transform on both sides of the difference equation

$$\sum_{m=0}^{M} a(m) z^{-m} Y(z) = \sum_{k=0}^{N} b(k) z^{-k} X(z)$$
 (8.2)

$$\implies H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b(k) z^{-k}}{\sum_{m=0}^{M} a(m) z^{-m}}$$
 (8.3)

For obtaining the discrete Fourier transform, put $z = J^{\frac{2\pi i}{I}}$ where I is the length of the input signal and $i = 0, 1, \dots, I - 1$

Download the following Python code that does the above

8.2 Repeat all the exercises in the previous sections for the above a and b

Solution: The polynomial coefficients obtained are

$$\mathbf{a} = \begin{pmatrix} 1.000 \\ -2.519 \\ 2.561 \\ -1.206 \\ 0.220 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 0.003 \\ 0.014 \\ 0.021 \\ 0.014 \\ 0.003 \end{pmatrix} \tag{8.4}$$

The difference equation is then given by

$$\mathbf{a}^{\mathsf{T}}\mathbf{y} = \mathbf{b}^{\mathsf{T}}\mathbf{x} \tag{8.5}$$

where

$$\mathbf{y} = \begin{pmatrix} y(n) \\ y(n-1) \\ y(n-2) \\ y(n-3) \\ y(n-4) \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x(n) \\ x(n-1) \\ x(n-2) \\ x(n-3) \\ x(n-4) \end{pmatrix}$$
(8.6)

Download the following Python code

wget https://github.com/kamujuaakash/ EE3900/blob/main/Simulation/codes/8.2. py

Fig. 8.2. Plot of y(n)

Fig. 8.2. Plot of $|H(e^{j\omega})|$

8.3 What is the sampling frequency of the input signal?

Solution: The sampling frequency of the input signal is $44\,100\,\text{Hz} = 44.1\,\text{kHz}$

8.4 What is the type, order and cutoff frequency of the above Butterworth filter?

Solution:

Type: low-pass

Order: 4

Cutoff frequency: $4000 \,\text{Hz} = 4 \,\text{kHz}$

8.5 Modify the code with different input parameters to get the best possible output.

Fig. 8.2. Plot of h(n)

Solution:

Order: 10 Cutoff frequency: 3000 Hz = 3 kHz