Design Assignment on Building an IC TESTER

Prepared for

Dr. K R Anupama

Department of Electrical and Electronics Engineering

Ву

Manu Singh 2015B4A70708G

Alish Dipani 2016A7PS0005G

Ravishankar Joshi 2016A7PS0006G

Revanth Harinarthini 2016A7PS0015G

Shaunak Bhanarkar 2016A7PS0029G

Submitted in the partial fulfilment of the requirements of the course CS F241 - Microprocessor Programming and Interfacing

BITS Pilani K K Birla Goa Campus

April 2018

Problem Statement

Design a Microprocessor based Tester to test the logical functioning of the following chips:

- 7400
- 7408
- 7432
- 7486
- 747266

The IC to be tested will be inserted in a 14 pin ZIF socket.

The IC number is to be entered via a keyboard. The keyboard has keys 0-9, backspace, enter and test.

The user places the IC in the ZIF socket closes it – then enters the IC No, followed by enter key.

The IC No. is displayed on the 7-segment display.

The testing will start once the user presses "TEST" key.

After Test the result PASS/FAIL must be displayed on the 7-segment display.

Assumptions

The following assumptions have been considered in the designing of the IC Tester:

- Only "TEST" key will be pressed after "ENTER" key.
- If IC is not entered properly, or ZIF Socket is not closed, then "FAIL" will be displayed.
- First key pressed is always a digit.

User Guide

- 1. Enter the IC in the ZIF Socket and lock it.
- 2. Enter the IC number by pressing the keys on the keypad.
- 3. Press "ENTER" key on the keypad.
- 4. IC number will be displayed.
- 5. Press "TEST" key on the keypad.
- 6. If the IC is valid, "PASS" will be displayed.
- 7. Else, "FAIL" will be displayed.
- 8. In case a wrong digit is typed, use "BACKSPACE" key to erase that digit.

List of ICs and Components Used

Component	Quantity
8086 (Microprocessor)	1
8284A	1
8255A	2
74LS138 (3:8 Decoder)	2
NL7SZ19 (2:4 Decoder)	2
LS373	3
LS244	1
LS245	2
6116 (2KB RAM)	2
2716 (2KB ROM)	4
7-Segment Anode Display	6
Switch	17
14 pin ZIF Socket	1
10K ohm Resistor	4
150 ohm Resistor	10
690 ohm Resistor	6
2N2905 (BJT)	10

Connections

System Bus of 8086

Memory Interfacing

4K ROM starting at 00000H 4K RAM starting at 01000H 4K ROM starting at FF000H

Number of Chips

2K ROM Chips (chip number) = 4 2K RAM Chips (chip number) = 2

Memory Allocation

ROM1 (even):	00000Н,	00002H,	00004H,	,	OOFFEH
ROM1 (odd):	00001H,	00003H,	00005H,	,	OOFFFH
RAM1 (even):	01000H,	01002H,	01004H,	,	O1FFEH
RAM1 (odd):	01001H,	01003H,	01005H,	,	O1FFFH
ROM2 (even):	FFOOOH,	FF002H,	FF004H,	,	FFFFEH
ROM2 (odd):	FF001H,	FF003H,	FF005H,	,	FFFFFH

ROM1: 00000H - 00FFFH

A19	9 A18 A17 A16		A15	A14	A13	A12	A11	• • •	AO	
0	0	0	0	0	0	0	0	0	• • •	0
0	0	0	0	0	0	0	0	1		1

RAM1: 01000H - 01FFFH

A19	A18	A17	A16	6 A15 A14		A13 A12		A11	•••	АО
0	0	0	0	0	0	0	1	0	• • •	0
0	0	0	0	0	0	0	1	1		1

ROM2: FF000H- FFFFFH

A19	A18	A17	A16	6 A15 A14		A13 A12		A11	• • •	АО
1	1	1	1	1	1	1	1	0	•••	0
1	1	1	1	1	1	1	1	1	•••	1

Input-Output Interfacing

I/O Allocation

8255A(1): 00000H, 00002H, 00004H, 00006H

8255A(2): 00008H 0000AH 0000CH 0000EH

8255A(1): 00000H - 00007H

A19	A18	A17	• • •	A6	A5	A4	А3	A2	A1	AO
0	0	0	• • •	0	0	0	0	0	0	0
0	0	0	•••	0	0	0	0	1	1	1

8255A(2): 00008H - 0000FH

A19	A18	A17	• • •	A6 A5 A4 A3		А3	A2	A1	АО	
0	0	0	• • •	0	0	0	1	0	0	0
0	0	0	•••	0	0	0	1	1	1	1

I/O Pins of ICs to be tested

IC	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7400	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7408	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7432	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7486	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
747266	1A	1B	1Y	2Y	2A	2B	GND	3A	3B	3Y	4Y	4A	4B	VCC

Flow Chart

