FH-Aachen (Standorte Aachen, Jülich, Köln)
Forschungszentrum Jülich
Rechen- und Kommunikationszentrum der RWTH-Aachen

Prof. Dr. W. Hanrath, Prof. Dr. A. Terstegge, B. Sc. M. Politze

Bachelorstudiengang "Scientific Programming" MatSe-Ausbildung C++-Klausur, SS 2012

Datum: 13. Juli 2012 Name: Vorname: Matr.-Nr.: Unterschrift: max. Punktzahl Aufgabe 1) (16)Aufgabe 2) (14)Aufgabe 3) (8)Aufgabe 4) (10)Aufgabe 5) (10)Aufgabe 6)(14)Aufgabe 7) (10)Aufgabe 8) (18)Gesamtpunkte: Note:

Nam	e: MatrNr.:	
Aufg	gabe 1	16 Punkte
a)	Definieren Sie einen Zeiger auf ein double:	
b)	Definieren Sie einen Zeiger auf ein konstantes double:	
c)	Definieren Sie einen konstanten Zeiger auf ein double:	
d)	Definieren Sie einen konstanten Zeiger auf ein konstantes double:	
e)	Definieren Sie eine (statische) 3×4 -Matrix vom Typ double:	
f)	Definieren Sie eine (statische) 3×4 -Matrix von Zeigern auf double:	
g)	Es sei double **A; int n, m; gegeben, wobei die Variablen n und m Werte beinhalten.	jeweils positive
	• Man schreibe ein Programmfragment derart, dass A danach wie ei vom Typ double verwendet werden kann:	ne n×m-Matrix
	• Man schreibe ein Programmfragment, mit dem der für A im letzte allokierte Speicher wieder freigegeben wird:	— n Aufgabenteil

14 Punkte

Das Objekt a vom Typ A ist einige 100 Kilobyte groß.

• 2. Möglichkeit:

Aufruf von f:

Deklaration von f:

a) a soll durch eine Funktion f abgeändert werden. Hierzu soll a in geeigneter Form als Funktionsargument an f übergeben werden. Hierzu gibt es zwei unterschiedliche Möglichkeiten. Zu diesen beiden Möglichkeiten gebe man jeweils eine mögliche Deklaration von f an und einen entsprechenden Aufruf von f: • 1. Möglichkeit: Deklaration von f: Aufruf von f: • 2. Möglichkeit: Deklaration von f: Aufruf von f: b) a soll an eine Funktion f als Funktionsargument übergeben, soll aber innerhalb der Funktion nicht abgeändert werden. Aus Performance-Gründen soll in f keine Kopie von a erzeugt werden. Skizzieren Sie zwei Möglichkeiten (jeweils Funktionsdeklaration und Aufruf), wie das realisiert werden kann: • 1. Möglichkeit: Deklaration von f: Aufruf von f:

8 Punkte

a)	Bear	ntworten Sie folgende Fragen zum Thema Inline-Funktionen:
	(i)	Müssen Inline-Funktionen vor ihrem Aufruf definiert sein? ja nein
	(ii)	Können Inline-Funktionen in einer Headerdatei definiert werden? ja
	(iii)	Können Inline-Funktionen in einer Headerdatei definiert werden, und kann diese Headerdatei dann ohne weitere Vorkehrungen in ein- und demselben Quelltext mehrfach eingebunden werden? ja nein
	(iv)	
	(v)	Sind im Klassenkörper definierte Memberfunktionen automatisch inline? ja nein
	(vi)	Ist es richtig, dass außerhalb des Klassenkörpers definierte Memberfunktionen nicht inline sein können? ja nein
b)	Bear	ntworten Sie folgende Fragen zum Thema Standardparameter einer Funktion:
		Standardparameter einer Funktion sind anzugeben bei der Funktiondefinition: Funktionsdeklaration: Wer kümmert sich um die Umsetzung von Standardparametern einer Funktion: Laufzeitsystem: Compiler:

Auf	fgabe 4	10 Punkte
<pre>clas { pr i pu }; (neb Kons</pre>	e Klasse A sei wie folgt definiert: ss A rivate: int A_komp; ublic: A(int i); een dem aufgeführten parameterbehafteten Konstruktor habe die Klasse A l struktoren!) Was ist bei der Definition einer von A abgeleiteten Klasse B	keine weiteren
	<pre>class B : public A { }; im Hinblick auf B-Konstruktoren zu beachten?</pre>	
b)	Es sei folgende Klassenhirarchie definiert: class B: public A { }; class C: public A { }; class D: public B, public C { };	
c)	 (i) Wie oft ist in einem D-Objekt ein A-Bestandteil vorhanden? 1x (ii) A-Konstruktoren müssen aufgeführt sein: in Initialisierungslisten von B- und C-Konstruktoren in Initialisierungslisten von D-Konstruktoren Es seien folgende Klassenhirarchie definiert: class B: virtual public A { }; class C: virtual public A { }; 	$2\times$
	class D: public B, public C { }; (i) Wie oft ist in einem D-Objekt ein A-Bestandteil vorhanden? 1× (ii) A-Konstruktoren müssen aufgeführt sein: in Initialisierungslisten von B- und C-Konstruktoren in Initialisierungslisten von D-Konstruktoren	2×

10 Punkte

Werfen Sie einen Blick auf folgende Klassendefinition:

```
class Bruch
{ private:
    int zaehler;
    int nenner;
                        // Identifizierung
    int id;
    static int gesamt; // Anzahl aller jemals erzeugten Brueche
    static int aktuell; // Anzahl der aktuellexistierenden Brueche
  public:
    Bruch ( int z = 0; int n = 1);
    Bruch (const Bruch &b);
    "Bruch();
    static void zeigAnzahl();
    void zeig() const;
    void erweitern(int f);
    void kuerzen();
    int ggT() const;
};
```

und beantworten Sie folgende Fragen:

a) Welche der Funktionen besitzt einen this-Zeiger?

	ja	nein
Bruch		
~Bruch		
zeigAnzahl		
erweitern		

- b) Welchen Typ besitzt der this-Zeiger der Funktion kuerzen?
- c) Welchen Typ besitzt der this-Zeiger der Funktion zeig?
- d) Welcher der folgenden Funktionsaufrufe ist erlaubt, welcher nicht?

	erlaubt	nicht erlaubt
<pre>const Bruch b1(2,3); b1.erweitern(4);</pre>		
<pre>const Bruch b2(9,5); b2.zeig();</pre>		
Bruch b3(4,6); int g = b3.ggt();		
Bruch b4(4,6); b4.kuerzen();		

14 Punkte

a) Es sei die Klasse A wie folgt deklariert (und definiert):

```
class A {
  public:
  A(int i) { /* ... */ }
  A( const A& a) { /* ... */ }
  ...
};
```

Erläutern Sie zu den durch ① bis ⑦ markierten Stellen in folgendem Programmfragment, was an dieser Stelle geschieht (welche Konstruktoren aufgerufen werden) bzw. was an dieser Stelle falsch ist!

```
int main(void)
{
  Aa;
           //
  A b(7);
           //
                 (3)
           11
  A c=b;
  A d=8;
  A e(b); //
           11
  e = 4;
           11
  e = c;
}
```

b) Von obiger Klasse A werde wie folgt die Klasse B abgeleitet:

```
class B : public A {
  public:
  B(void) { /* ... */ }
  B(int i) { /* ... */ }
  ...
};
```

Erläutern Sie zu den durch ① bis ③ markierten Stellen in folgendem Programmfragment, was an dieser Stelle geschieht (welche Konstruktoren—auch die der Klasse A—aufgerufen werden) bzw. was an dieser Stelle falsch ist!

10 Punkte

Erläutern Sie folgende Begriffe:

Methoden)?				
	9	Lik.		
	ii.			
Was ist eine <i>rein</i>	virtuelle Methode	(wie wird sie ver	einbart, was ist	deren Bedeutung
3				
Was ist eine <i>abst</i> r	rakte Basisklasse?			
			Ŀ	

Aufgabe 8 18 Punkte

Entwerfen und implementieren Sie eine template-Klasse

```
template <typename T>
class Feld
{ ...
};
```

zur Realisierung eines Feldes vom Type T mit Indexüberprüfung.

Genauere Anforderungen:

- a) Konstruktor mit unsigned-Argument für die Feldlänge, eigentliches Feld ist dynamisch anzulegen und die Klasse soll zur Vererbung geeignet sein.
- b) Wegen der dynamischen Komponente sind folgende Methoden vernünftig zu implementieren:

(i) Destruktor: "Feld();

(ii) Copy-Konstruktor: Feld(const Feld &o);

(iii) Move-Konstruktor: Feld(Feld &&o);

(iv) Zuweisung mit Copy-Semantik: Feld & operator=(const Feld &o);

(v) Zuweisung mit Move-Semantik: Feld & operator=(Feld &&o);

c) Feldzugriffs-Operatorfunktionen [] mit int-Argument, bei negativem oder zu großem Index ist eine entsprechende Exception auszulösen! (Exception-Schnittstelle angeben!)

Definieren Sie hierzu eine entsprechende Hierarchie von Fehlerklassen:

und lösen Sie in den Feldzugriffs-Operatorfunktionen entsprechende Exceptions aus!

d) Zusatzfrage: Welchen Unterschied in der Fehlerbehandlung haben folgende beiden Ansätze:

(i) globale Fehlerklassen:

```
class Feld_Fehler {};
class Feld_Unterlauf: public Feld_Fehler {};
class Feld_Ueberlauf: public Feld_Fehler {};

template <typename T>
class Feld
{ ... }
...

template <typename T>
class Feld
{ ... }
...

template <typename T>
class Feld
{
   public:
    class Feld_Fehler {};
   class Feld_Unterlauf: public Feld_Fehler {};
   class Feld_Ueberlauf: public Feld_Fehler {};
...
}
```