

D3
⑨ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHE
PATENT- UND
MARKENAMT

Gebrauchsmusterschrift

⑩ DE 200 19 350 U 1

⑪ Int. Cl. 7:

G 09 F 13/04

H 01 J 65/04

F 21 S 2/00

F 21 V 8/00

// (F21S 2/00, F21Y

105:00) F21Y 101:02

⑥ Innere Priorität:

199 60 728. 1 16. 12. 1999

⑦ Inhaber:

Patent-Treuhand-Gesellschaft für elektrische
Glühlampen mbH, 81543 München, DE

⑧ Vorrichtung zur schattenfreien Hinterleuchtung von grossflächigen Displays

⑨ Vorrichtung zur schattenfreien Hinterleuchtung von
grossflächigen Displays, bestehend aus mindestens zwei
flächigen Hauptlichtquellen (2), die jeweils von einem
Rahmen (7) umgeben sind, wobei mindestens zwei Rah-
menabschnitte aneinanderstoßen, dadurch gekennzeich-
net, daß zumindest auf einen Teil der aneinanderstoßen-
den Rahmenabschnitte eine oder mehrere Hilfslichtquel-
len (5) aufgesetzt sind.

DE 200 19 350 U 1

DE 200 19 350 U 1

14.11.00

**Patent-Treuhand-Gesellschaft
für elektrische Glühlampen mbH., München**

Vorrichtung zur schattenfreien Hinterleuchtung von großflächigen Displays

Technisches Gebiet

Die Erfindung geht aus von einer Vorrichtung zur schattenfreien Hinterleuchtung von großflächigen Displays gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um Werbedisplays, beispielsweise für Städtereklamen.

Stand der Technik

Aus der DE-A 25 27 711 ist bereits eine Vorrichtung zur schattenfreien Hinterleuchtung von großflächigen Displays bekannt. Es handelt sich dabei um einen kleinflächigen Bilderrahmen, der als sog. LUMEX-Leuchtrahmen ausgeführt sein kann. Dabei kommen jedoch großvolumige Leuchtkästen mit konventionellen Leuchtstofflampen zum Einsatz, die außerdem eine temperaturabhängige Leuchtdichte besitzen, die so gering ist, daß keine Bilder auf Normalpapier als zu hinterleuchten-
der Gegenstand verwendet werden können. Die verwendete Lichtquelle besteht aus einer oder mehreren parallel angeordneten linearen T2-Leuchtstofflampen. Außerdem besitzen derartige Leuchtstofflampen eine relativ geringe Lebensdauer von weniger als 15 000 Std.

Andererseits ist aus der DE-A 198 17 476 eine Leuchtstofflampe auf Basis dielektrisch behinderter Entladungen bekannt, die als Flachstrahler mit Rahmen ausgeführt ist. Eine ähnliche Technik ist in DE-A 198 17 479 beschrieben, wobei mehrere Flachstrahler mit ihren Rahmenteilen aneinander stoßen und getrennt angesteuert werden können.

Dieses Konzept aneinander stoßender Rahmenteile kann verwendet werden, um großflächige Displays zu schaffen, deren Fläche nicht durch einen einzigen Flachstrahler abgedeckt werden soll oder kann. Im Falle großflächiger Displays ist dabei

DE 200 19 350 U1

• 14.11.00 •

- 2 -

eher eine einheitliche als getrennte Steuerung der verschiedenen Flachstrahler erwünscht. Nachteilig dabei ist, daß die die leuchtenden Flächen umgebenden Rahmenanteile als dunkles Raster den homogenen Gesamteindruck der großen Fläche stören. Um diese Abdunklung abzumildern werden bisher Diffusoren zur Verteilung des Lichts vorgeschlagen. Jedoch ist damit ein erheblicher Lichtverlust verbunden.

Darstellung der Erfindung

Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur möglichst homogenen Hinterleuchtung von großflächigen Displays gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die einen Lichtverlust weitgehend vermeidet.

10 Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.

Die vorliegende Erfindung ermöglicht die gleichmäßige Hinterleuchtung von Displays mit hoher Leuchtdichte. Wenn mehrere Lichtquellen (im folgenden Hauptlichtquellen) aneinander gefügt werden, um größere Flächen zu hinterleuchten, ergibt sich die Problematik des Abfalls der Leuchtdichte an der vom Rahmen gebildeten Fuge zur nächsten Lichtquelle. Diese Fuge kann überbrückt werden, indem darauf Hilfslichtquellen befestigt werden. Diese können die Fuge als Ganzes oder am einzelnen Rahmen orientiert verdecken.

20 Aufgrund der erzielbaren hohen Leuchtdichte können jetzt sogar Papierbilder anstatt der bisher verwendeten, wesentlich teureren sog. „Duratrans“-Bilder verwendet werden. Im Prinzip eignet sich jede flächige Lichtquelle als Hauptlichtquelle, beispielsweise lineare, bzw. mäanderförmig oder U-förmig gebogene Leuchtstofflampen.

25 Vorteilhaft werden flächenhafte Leuchtstofflampen auf Basis dielektrisch behinderter Entladungen verwendet, die einen hohen Lichtstrom auch bei niedriger Temperatur ermöglichen und die eine sehr hohe Lebensdauer von ca. 30 000 Std. besitzen. Damit läßt sich ein flacher Aufbau (Größenordnung 12 mm Einbautiefe) erzielen, der konventionellen mäanderförmig oder U-förmig gebogenen Leuchtstofflampen weit überlegen ist.

DE 2001 19 350 U1

14.11.00

- 3 -

Erfindungsgemäß wird die Fuge, die als dunkler Streifen zwischen zwei Flächenlampen oder als Rasterung zwischen Arrays von Flächenlampen erscheint, dadurch vermieden, daß eine separate Hilfslichtquelle, deren Form insgesamt dem Streifen bzw. der Rasterung angepaßt ist, auf den Rahmen aufgesetzt ist. Insbesondere 5 eigen sich dafür dünne langgestreckte Leuchtstofflampen oder Neonlampen oder bevorzugt auch eine oder mehrere, vorzugsweise linear anordnete LEDs, insbesondere weiße LEDs. Letztere haben den Vorzug hoher Lebensdauer, die sogar die von flächenhaften Leuchtstofflampen auf Basis dielektrisch behinderter Entladungen übertreffen. Die Spannungsversorgung der LEDs kann beispielsweise über das 10 elektronische Vorschaltgerät der zugeordneten Hauptlichtquelle realisiert werden, da hier ohnehin eine Mindestspannung von 12 V erforderlich ist. Damit ist es möglich, leuchtende Flächen beliebiger Größe, insbesondere für Hinterleuchtungen bei Städtereklamen, zu realisieren.

Im einzelnen besteht die Vorrichtung zur schattenfreien Hinterleuchtung von großflächigen Displays aus mindestens zwei flächigen Hauptlichtquellen, die jeweils von einem Rahmen umgeben sind, wobei mindestens zwei Rahmenabschnitte aneinanderstoßen. Zumindest auf einen Teil der aneinanderstoßenden Rahmenabschnitte sind eine oder mehrere Hilfslichtquellen aufgesetzt. 15

Die Hauptlichtquellen sind vorteilhaft Leuchtstofflampen auf Basis dielektrisch behinderter Entladungen; die Hilfslichtquellen bilden eine oder mehrere LEDs. 20

Ein homogener Gesamteindruck ergibt sich, wenn die Leuchtdichte von Haupt- und Hilfslichtquelle weniger als 30% voneinander differiert. Eine Abstimmung beider Arten von Lichtquellen ist beispielsweise möglich, indem die Einstellung ihrer Leuchtdichten elektronisch geregelt ist. Bevorzugt werden etwaige Unterschiede in der 25 Leuchtdichte zwischen der flächigen Hauptlichtquelle und der als Rahmenaufhellung dienenden Hilfslichtquelle durch entsprechende elektrische oder elektronische Filterung nahezu vollständig (auf weniger als 10% Differenz) ausgeglichen.

Eine kostengünstige Alternative zum Erzielen einer möglichst homogenen Leuchtdichte bei einer großen Fläche ist, daß eine gemeinsame Diffusorplatte über alle 30 Lichtquellen gelegt ist.

DE 200 19 3850 U1

14-11-00

- 4 -

In einer besonders bevorzugten Ausführungsform wird eine lineare Folge von mehreren, typisch 10 bis 30 LEDs verwendet, die vorteilhaft auf einer einzigen Platine angeordnet sein können.

- Die Vorrichtung kann ferner Mittel, insbesondere mindestens ein Vorschaltgerät,
5 zum Betreiben der Lichtquellen umfassen. Insbesondere für LEDs als Hilfslichtquelle gilt, daß die Betriebsspannung zum Betreiben mindestens der Hilfslichtquelle vom Mittel zum Betreiben der Hauptlichtquelle, meist ein Vorschaltgerät, abgegriffen werden kann.

Figuren

- Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
10

- Figur 1 ein großflächiges Display
Figur 2 ein Schnitt durch das Display von Figur 1
Figur 3 ein weiteres Ausführungsbeispiel für ein großflächiges Display

Beschreibung der Zeichnung

- In Figur 1 ist ein großflächiges Werbedisplay 1 für Städtereklame gezeigt. Typische Abmessungen sind $1,7 \times 1,2 \text{ m}^2$. Zur Hinterleuchtung werden mehrere flächige Leuchtstofflampen 2 auf Basis dielektrisch behinderter Entladungen verwendet, deren typische Größe bei $20 \times 30 \text{ cm}^2$ liegt. Sie bestehen aus einer rechteckigen leuchtenden Fläche 8, die von einem Rahmen 7 umgeben ist.
15

- Die zwischen den leuchtenden Flächen der Leuchtstofflampen 2 befindlichen dunklen Fugen 3 sind durch die aneinander grenzenden umlaufenden Rahmen 7 der einzelnen Leuchtstofflampen (gebildet aus vier Rahmenabschnitten) gebildet. Sie tragen jeweils Platinen 4, auf denen pro Rahmenabschnitt ca. 25 LEDs 5 linear aneinander gereiht sind (schematisch sind weniger LEDs dargestellt). Die Leuchtdichte der Leuchtstofflampen 2 und der LEDs 5 ist elektronisch geregelt (mittels EVG 6)
20 und exakt aufeinander abgestimmt. Sie beträgt etwa $15\,000 \text{ cd/m}^2$.
25

In einer anderen Ausführungsform (Figur 2) ist die Leuchtdichte von Hauptlichtquelle und Hilfslichtquelle unterschiedlich, weil auf eine elektronische Regelung verzichtet

DE 2001 19 350 U1

14-11-00

- 5 -

wird. Die unterschiedliche Leuchtdichte beider Lichtquellentypen wird jedoch durch einen über das ganze Display gelegten Diffusor 10 auf 10% angeglichen. Diese Lösung verringert zwar die Leuchtdichte, sie ist aber deutlich kostengünstiger, da die elektronische Regelung eingespart wird. Angesichts der gegenüber anderen Realisierungen deutlich höheren Leuchtdichte einer geeigneten Hauptlichtquelle kann dieser Verlust in Kauf genommen werden.

Im Detail zeigt Figur 2, daß die Fuge 3 als Ganzes, also über beide vertieft ausgeführte Rahmenenteile 7 hinweg, von einer Platine 4 mit LEDs 5 überdeckt ist.

Eine andere Ausführungsform zeigt Figur 3, in der die Platine 14 mit den LEDs 15 jedem einzelnen Rahmenabschnitt 7 zugeordnet ist.

Insbesondere können die LEDs 15 der beiden benachbarten Rahmenenteile 7 in diesem Fall gegeneinander versetzt sein, um die Gleichmäßigkeit der Leuchtdichte zu verbessern.

DE 200 19350 U1

14.11.00

- 6 -

Ansprüche

1. Vorrichtung zur schattenfreien Hinterleuchtung von großflächigen Displays, bestehend aus mindestens zwei flächigen Hauptlichtquellen (2), die jeweils von einem Rahmen (7) umgeben sind, wobei mindestens zwei Rahmenabschnitte aneinanderstoßen, dadurch gekennzeichnet, daß zumindest auf einen Teil der aneinanderstoßenden Rahmenabschnitte eine oder mehrere Hilfslichtquellen (5) aufgesetzt sind.
5
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Hauptlichtquelle eine Leuchtstofflampe auf Basis dielektrisch behinderter Entladungen ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Hilfslichtquelle eine oder mehrere LEDs sind.
- 10 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Leuchtdichte von Haupt- und Hilfslichtquelle weniger als 30% voneinander differiert.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Einstellung der Leuchtdichte elektronisch geregelt ist.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine gemeinsame Dif-
15 fusorplatte (10) über alle Lichtquellen gelegt ist.
7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vorrichtung ferner Mittel, insbesondere mindestens ein Vorschaltgerät (6), zum Betreiben der Lichtquellen umfaßt.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Betriebsspannung zum Betreiben mindestens einer Hilfslichtquelle vom Mittel zum Betreiben einer Hauptlichtquelle abgegriffen wird.
20

DE 20019350 U1

14.11.00

DE 20019350 U1

• 14'11:00 •

FIG. 3

DE 200 19350 U1

THIS PAGE BLANK (USPTO)