Redes Bayesianas: Clasificación supervisada (III)

Aritz Pérez¹ Borja Calvo²

Basque Center for Applied Mathematics

UPV/EHU

Donostia, Febrero de 2015

Bibliografía

 K.P. Murphy (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Estructuras sesgadas para la clasificación

- Pocos parámetros y mucha información discriminativa
- Dependencias importantes $d(X_i; C|X_S)$
- Dependencias algo menos importantes $d(X_A; X_B | C)$

Información discriminativa y dependencias importantes

Información discriminativa y dependencias importantes

Estructuras sesgadas para la clasificación

• Qué estructura es preferible para la clasificación?

Muchos parámetros

- Modela todas las dependencias importantes
- Con suficientes datos modela $p(c|\mathbf{x})$ de forma perfecta
- Número de parámetros exponencial en n
- Riesgo alto de sobreajuste

Naïve Bayes

- Suposición: $i(X_i; X_j | C)$
- Modela las dependencias más importantes $\{d(X_i; C|\mathbf{X}_S)\}$
- Número de parametros lineal en n
- Poco riesgo de sobreajuste

Estructuras sesgadas para la clasificación

Naïve Bayes aumentado a árbol

- Romper con la suposición del naïve Bayes
- Permitir que cada predictora tenga un padre (además de la clase): árbol
- Algoritmo de filtrado eficiente y óptimo
- Existen otras generalizaciones, e.g. limitar el máximo número de padres