Многомерные биллиардные книжки и их топологические свойства

Кибкало Владислав Александрович МГУ имени М.В. Ломоносова; Московский центр фунд. и прикл. матем slava.kibkalo@gmail.com

Секция: Геометрия

Топологический подход к интегрируемым гамильтоновым системам, развитый в работах А. Т. Фоменко и его научной школы [1]. Недавно класс интегрируемых биллиардов в областях, ограниченных софокусными квадриками, был существенно расширен В. В. Ведюшкиной, что позволило промоделировать биллиардами широкий класс слоений и особенностей интегрируемых систем с 2 степенями свободы. А именно, был построен класс биллиардных книжек, склеенных (по гладким граничным дугам) из двумерных софокусных областей с плоской метрикой. Ребра (1-клетки) оснащены циклическими перестановками, а вершины (0-клетки) — условиями коммутирования.

Автором предложено и изучено многомерное обобщение биллиардных книжек для софокусного семейства $\sum_{i=1}^n x_i^2/(a_i-\lambda)=1$ квадрик в \mathbb{R}^n . Такая книжка есть CW-комплекс X^n с проекцией $\pi:X^n\to\mathbb{R}^n$, являющейся изометрией на замыкании каждой п-мерной клетки \bar{e}^n . Каждая n-1-мерная клетка e_i^{n-1} проецируется на одну из квадрик $\lambda=\lambda_i$, возможно, вырожденную (при $\lambda=a_i$) и оснащается циклической перестановкой на множестве n-клеток, в чью границу входит. Каждая клетка e^k отвечает связному пересечению n-k-квадрик, каждой из которых отвечает перестановка, составленная из циклических перестановок тех клеток, чьи гиперграни проецируются на эту квадрику.

Теорема 1. Многомерная биллиардная книжка и система биллиарда на ней корректно определяются циклическими перестановками на гипергранях e^{n-1} при условии коммутирования перестановок, отвечающих n-2-мерным клеткам. Биллиардный поток остается непрерывен вблизи траекторий, проходящих через точки клеток e^k для k < n-1.

С помощью новых систем удалось реализовать биллиардами (с точностью до послойного гомеоморфизма) особенности определенных классов, встречающиеся в интегрируемых системах с 3 и более ст. св. (реализация инвариантов седловых особенностей в системах с 2 ст. св. обсуждается в [3]).

Теорема 2. Многомерными билллиардными книжками топологически реализуются невырожденные особенности коранга 1 интегрируемых систем с п ст. св., а также (при добавлении к системе билларда центрального потенциала Гука) седловые и седлофокусные особенности ранга 0 интегрируемых систем с 3 степенями свободы.

Работа выполнена при поддержке РНФ, проект 22-71-10106.

- [1] Alexey Bolsinov, Anatoly Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Publ. house "Udmurt Univ.", Izhevsk, 1999.
- [2] V. V. Vedyushkina, I. S. Kharcheva, Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems, Sb. Math., 209:12 (2018), 1690–1727.
- [3] Anatoly Fomenko, Vladislav Kibkalo, Saddle Singularities in Integrable Hamiltonian

 ${\it Systems: Examples\ and\ Algorithms}, \ {\it Understanding\ Complex\ Systems}, \ {\it Springer,\ Cham}, \ 2021.$