Minimum Description Length Principle With An Application For Credit Risk Models

Paul van Leeuwen (paul.vanleeuwen@devolksbank.nl)

16 May 2023

Introduction

What is MDL?

Approach

•0

Introduction

Why this subject?

- Improve current approaches and modelling techniques.
- Stay in the forefront of statistical innovation.
- Connection with other realms of statistics.

What is MDL?

Introduction

- The Minimum Description Length (MDL) principle aims to describe the data and its description mechanism with the smallest possible information 'length'.
- Applications (among else):
 - model selection (e.g. what order of the Markov model family do we want?);
 - deal with overfitting (e.g. how many explanatory variables to include);
 - exploratory data analysis (what prior knowledge can we confirm?).
- Close ties with frequentist statistics, Bayesian statistics, and machine learning.
- Why is MDL relatively unknown?
 - MDL is the intersection of advanced measure theory, information theory, and statistics.
 - For a decent introduction into MDL, see (Grünwald 2007).

What polynomial generated by this dataset?

linear fit $\hat{y} = \beta_0 + \beta_1 x$

quadratric fit $\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$

10th order polynomial fit $\hat{y} = \beta_0 + \beta_1 x + \dots + \beta_{10} x^{10}$

х

How does MDL work?

- Patterns or regularities in the data can be described with less information 'length' compared to the data alone.
- less information 'length' = compression
- Choose the model that gives the shortest description of the data.
- Note that MDL is an approach, not an algorithm.
 - The modeller has to make choices to implement the MDL principle.

Approach

From Data to Model Selection

- From data to code.
- From code to code length.
- From code length to probabilities.
- From probabilities to model selection.

From Data to Code

- Examples:
 - Hello, world could map to 0.
 - aabbaccdaaadd could map to 110100.
- In general, a description method maps a sequence of symbols to a binary sequence.
 - The coding alphabet $\mathbb B$ can be binary ($\mathbb B=\{0,1\}$), the Western alphabet ($\mathbb B=\{a,b,\dots,z\}$), etc.
- Mathematically: a dataset $D = (x_1, ..., x_n)$ with $x_i \in \mathbb{B}$ from a sample space \mathcal{X}^n is mapped to $\{0,1\}^m$ by $C \colon \mathcal{X}^n \mapsto \{0,1\}^m$.
 - In the first examples above, we could have $\mathcal{X}^n = \{x_1\} = \{'\text{Hello}, \text{world'}\}\$ and $C(x_1) = 0$.
- We demand the mapping C to be uniquely decodable.
 - No multiple interpretations allowed.

From Data to Code

- Suppose we would like to encode a binary data sequence of length 2.
- We are not sure what outcome we observe.
- Let $X_i \in \{0,1\}$ be the random variable at position i = 1, 2.
 - The complete data sequence becomes $X_1X_2 \in \{00, 10, 01, 11\}$.
- Every sequence in $\{00, 10, 01, 11\}$ is assigned a code.
- In general, for the binary alphabet, for n positions there are 2ⁿ possible data sequences.
 - For example, when n = 3 we have the data sequences $\{000, 100, 010, \dots, 111\}$.
 - Without loss of generality, every non-binary alphabet can be mapped to the binary alphabet {0,1}.

From Code to Code Length

- Given a data sequence x_i and its corresponding code $C(x_i)$, then we are interested in the code length $L(x_i)$ with $L \colon \mathcal{X}^n \mapsto \mathbb{R}_+$.
- For example, to map an integer from $\{1, \ldots, n\}$ in a uniform way, we need $\lceil \log_2(n) \rceil$ bits.
 - Note that *n* has to be known in advance.
 - For example, take n = 64. Then we have 64 binary data sequences of length $\lceil \log_2(64) \rceil = 6$.
 - Or take n = 10. Then we need $\lceil \log_2(10) \rceil = 4$ bits.
 - Note that 2⁴ = 16 data sequences are possible while we only use 10 of them.
- What coding scheme results in the smallest number of expected bits?

From Code to Code Length

- Recall the data sequences {00, 10, 01, 11}.
- Uniform method: the data sequence is the code.
 - C(00) = 00, C(10) = 10, C(01) = 01, and C(11) = 11.
 - Expected number of bits: 2.
- In general we can do better!
 - That is, $\mathbb{P}[X_i = 1] \neq \frac{1}{2}$ for at least one $i \in \{1, \dots, n\}$.

From Code Length to Probabilities

- Suppose $\mathbb{P}[X_i = 1] = \frac{1}{4}$.
- We reserve code 0 for $X_1X_2 = 00$ so C(00) = 0, C(10) = 100, C(01) = 110, and C(11) = 1110.
- Then the expected number of bits is

$$1 \cdot \frac{3}{4}^2 + 3 \cdot \frac{3}{4} \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} \cdot \frac{3}{4} + 4 \cdot \frac{1}{4}^2 = 1.9375 < 2$$

- This the Shannon-Fano coding scheme.
 - More general, reserve $\lceil -\log_2(p_i) \rceil$ bits for probability p_i corresponding to data sequence i.
 - The Huffman code is optimal and improves on the Shannon-Fano code.
- Main message:

higher probability = smaller code length = less bits required

From Probabilities to Model Selection

- To describe any dataset we need L(D, H) bits.
 - Both the description method *H* and the data *D* require bits.
- The MDL principle employed for model selection is to minimise the sum of
 - the number of bits to encode the description mechanism L(H) and
 - the number of bits to encode, with the description mechanism H, the data observed L(D|H).
- Information 'length' is this sum L(H) + L(D|H).
 - L(H) is the model complexity, L(D|H) is the fit of the data.
- The MDL principle is to choose the model as to minimise this sum.
- Main message:

smaller description length = better model selection

Example of dealing with overfitting (continued)

Bibliography

Grünwald, Peter D. 2007. *The Minimum Description Length Principle*. MIT press.