Problem 1: Let $\mathcal{B} = \mathcal{P}(\{P_1, ..., P_n\})$ be the power set of the partitions of Ω . We can construct \mathcal{F}_P to be the union of the partitions in every set in \mathcal{B} . Or

$$\mathcal{F}_P = \{ \bigcup_{i=1}^j a_i | a_i \in A, A \in \mathcal{B}, \text{ where } |A| = j \}$$

This is the smallest σ -algebra containing each of the subsets P_i .

- (a) \mathcal{F}_P is non-empty because \mathcal{B} contains \emptyset , so \mathcal{F}_P does as well.
- (b) \mathcal{F}_P is compliment closed. Let $B \in \mathcal{F}_P$. Then, $B = \bigcup_{i \in \mathcal{J}} P_i$ for some $\mathcal{J} \subseteq \{1, ..., n\}$ by how \mathcal{F}_P is constructed.

We know that $B \cup B^C = \Omega$. So

$$(\bigcup_{i \in \mathcal{I}} P_i) \cup B^C = \Omega$$

Since the the P_i 's are partitions, then

$$B^C = \bigcup_{j \notin \mathcal{J}} P_j$$

We know that $\bigcup_{j\notin\mathcal{J}} P_j$ is in \mathcal{F}_P by construction. So, $B^C \in \mathcal{F}_P$ and \mathcal{F}_P is compliment closed.

- (c) By construction, \mathcal{F}_P is countable \cup closed
- (d) Since $P_i \cap P_j = \emptyset$ for $i \neq j$, \mathcal{F}_P is countable \cap closed

Since there are 2^n elements in the power set \mathcal{B} and there is a one to one correspondence between elements in \mathcal{B} and \mathcal{F}_P , there are 2^n subsets of Ω in \mathcal{F}_P .

Also, this must be the smallest σ -algebra because the smallest sigma algebra only contains the union of all the partitions of Ω .

Problem 2: (\Rightarrow) Assume that f is measurable. We know for all $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}_P$.

Let $e \in E$. Since \mathcal{E} is a power set, $\{e\} \in \mathcal{E}$. So $f^{-1}(\{e\}) \in \mathcal{F}_P$ and $f^{-1}(\{e\}) = \bigcup_{i \in \mathcal{I}} P_i$ for some $\mathcal{I} \subseteq \{1, ..., n\}$. Let $P_j \subseteq \bigcup_{i \in \mathcal{I}} P_i$ for the same index set \mathcal{I} . Then, for all $p \in P_j$, f(p) = e. Therefore the restriction of f to each P_j is a constant function.

 (\Leftarrow) Assume that for each $i=1,...,n, f|_{P_i}$ is a constant function. We want to show that f is measurable.

Let $A \in \mathcal{E}$. Let $A' \subseteq A$ where $A' = A \cap Im(f)$. Then, $f^{-1}(A') = \bigcup \{P_i | f(P_i) = e, \forall e \in A'\}$ or in other words union of the set of partitions whose image maps to an element of A. Note that $f^{-1}(A') = f^{-1}(A)$ because the elements not in Im(f) map to the empty set, and the union of the empty set to another set S is S.

Since \mathcal{F}_P contains all the unions of the partitions, $f^{-1}(A) \in \mathcal{F}_P$.

Problem 3: (\Rightarrow) Assume X_1 is measurable with respect to \mathcal{F}_{X_0} . So, we know that for all $A \in \mathcal{E}_1, X_1^{-1}(A) \in \mathcal{F}_{X_0}$. Since $\mathcal{F}_{X_0} := \{X_0^{-1}(B) | B \in \mathcal{E}_0\}$ that means for all A there exists a $B \in \mathcal{E}_0$ such that $X_1^{-1}(A) = X_0^{-1}(B)$.

Therefore, we can define h by the following. Let $x_0 \in X_0$. Then, $h(x_0) = X_1(\omega)$ for some $\omega \in \Omega$ where $X_0(\omega) = x_0$. We can assume that this ω exists by the problem statement.

 (\Leftarrow) Let $A \in \mathcal{E}_1$. We know that $X_1^{-1}(A) = (h \circ X_0)^{-1}(A)$.

The preimage of $h \circ X_0$ is defined by the following

$$(h \circ X_0)^{-1}(A) = \{\omega \in \Omega | h(X_0(\omega)) \in A\}$$

Another way to write this is

$$= \{ \omega \in \Omega | X_0(\omega) \in h^{-1}(A) \}$$

where

$$h^{-1}(A) = \{x_0 \in E_0 | h(x_0) \in A\}$$

This shows that $h^{-1}(A) \subseteq E_0$. Since, (E_0, \mathcal{E}_0) is a discrete space, every subset of E_0 must be contained in the space. Hence, $h^{-1}(A) \in \mathcal{E}_0$ and $X_0^{-1}(h^{-1}(A)) \in \mathcal{F}_{X_0}$

Note, $X_0^{-1} \circ h^{-1} = X_1^{-1}$. Hence, $X_1^{-1}(A) \in \mathcal{F}_{X_0}$. Therefore, X_1 is measurable with respect to \mathcal{F}_{X_0}

Problem 4: (a) \mathbb{P}_X is non-negative.

Let $A \in \mathcal{E}$. Because X is a measureable function, we know that $X^{-1}(A) \in \mathcal{F}$. Since \mathbb{P} is a probability measure over (Ω, \mathcal{F}) that means $\mathbb{P}(X^{-1}(A)) \geq 0$. Thus, for all $A \in \mathcal{E}$, $\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A)) \geq 0$.

(b) \mathbb{P}_X satisfies countable additivity.

First, we prove that the pre-image of disjoint sets are also disjoint.

Let $A_i, A_j \in \mathcal{E}$ and $A_i \cap A_j = \emptyset$. Then, by definition of preimage we know that

$$X^{-1}(A_i) = \{ \omega \in \Omega | X(\omega) \in A_i \}$$

$$X^{-1}(A_i) = \{ \omega \in \Omega | X(\omega) \in A_i \}$$

Let $\omega \in X^{-1}(A_i) \cap X^{-1}(A_j)$. Then, $X(\omega) \in A_i \cap A_j$. However, we assume that $A_i \cap A_j = \emptyset$. Thus, there cannot exist such ω , showing that $X^{-1}(A_i) \cap X^{-1}(A_j) \subseteq \emptyset$ and $X^{-1}(A_i) \cap X^{-1}(A_j) = \emptyset$

Another useful fact to know is that

$$X^{-1}(\bigcup_{i\in\mathcal{I}}A_i)=\bigcup_{i\in\mathcal{I}}X^{-1}(A_i)$$

This can be proven just by stating the definition of the two sides. Using these two facts, we get that

$$X^{-1}(\bigsqcup_{i\in\mathcal{I}}A_i) = \bigsqcup_{i\in\mathcal{I}}X^{-1}(A_i)$$

Now, we want to show that for $A_1, A_2, \dots \in \mathcal{E}$ such that $A_i \cap A_j = \emptyset$ for $i \neq j$, that

$$\mathbb{P}_X(\bigsqcup_{i\in\mathcal{I}}A_i) = \sum_{i\in\mathcal{I}}\mathbb{P}_X(A_i)$$

Using the definition of \mathbb{P}_X ,

$$\mathbb{P}_X(\bigsqcup_{i\in\mathcal{I}}A_i)=\mathbb{P}(X^{-1}(\bigsqcup_{i\in\mathcal{I}}A_i))$$

Using our lemma,

$$\mathbb{P}(X^{-1}(\bigsqcup_{i\in\mathcal{I}}A_i)) = \mathbb{P}(\bigsqcup_{i\in\mathcal{I}}X^{-1}(A_i))$$

Since, $X^{-1}(A_i) \in \mathcal{F}$ because X is measurable,

$$\mathbb{P}(\bigsqcup_{i\in\mathcal{I}}X^{-1}(A_i))=\sum_{i\in\mathcal{I}}\mathbb{P}(X^{-1}(A_i))$$

Using the definition of \mathbb{P} , we find

$$\sum_{i \in \mathcal{T}} \mathbb{P}(X^{-1}(A_i)) = \sum_{i \in \mathcal{T}} \mathbb{P}_X(A_i)$$

Thus, \mathbb{P}_X is countable additive.

- (c) $\mathbb{P}_X(\emptyset) = 0$. We know that $X^{-1}(\emptyset_{\mathcal{E}}) = \emptyset_{\Omega}$. So, $\mathbb{P}(\emptyset_{\Omega}) = \mathbb{P}(X^{-1}(\emptyset_{\mathcal{E}})) = \mathbb{P}_X(\emptyset_{\mathcal{E}}) = 0$
- (d) $\mathbb{P}_X(E) = 1$. We know that

$$X^{-1}(E) = \{ \omega \in \Omega | X(\omega) \in E \}$$

By the definition of X, for all ω , $X(\omega) \in E$, so $X^{-1}(E) = \Omega$. Hence, $\mathbb{P}_X(E) = \mathbb{P}(X^{-1}(E)) = \mathbb{P}(\Omega) = 1$