Option B: 1 Matrix in 4 vector registers

- An L-word vector register holds a row of C
- 4 registers hold a 4 × L panel of C
- 16 registers hold a $16 \times L$ panel of \boldsymbol{C}
- An L-word vector register holds a row of B
- "Some" combination of registers holds a column of A
- We compute $C_{16 \times L} \leftarrow A_{16 \times 1} \times B_{1 \times L} + C_{16 \times L}$
- Total of 16*L* multiply-adds
- Minimum time = Δ cycles
- Maximum computation rate $R = \frac{16L}{\Delta} = 4L$ madds/cycle
- This is the upper bound with 16 registers for C
- Total of L+16 words loaded ($^{L+16}/_{\Delta}$ words/cycle)
- $\eta = \frac{16L}{L+16} = [\frac{16}{5}, 16)$ madds/word
- This works $\forall L \geq 4$ elements
- Single- and double-precision are compatible $\forall L \geq 8$

Option B: Compute instructions

- rank-1 update (outer product)
 - $C_{4\times L} \leftarrow \pm A_{4\times 1} \times B_{1\times L} \pm C_{4\times L}$
 - Computations: 4*L* madds/instruction
 - Latency: Δ
 - Must dispatch/issue 1 computational instruction/operation every cycle to achieve maximum computation rate (4L madds/cycle)

Option B: Software impact

- Conventional BLAS formatting
 - A panel formatted as column-major $16 \times K$ matrix
 - **B** panel formatted as row-major $K \times L$ matrix
 - C panel does not have to be reformatted
- Easier pre/post-processing of rows/columns of matrices
 - Does not require reformatting data from/to vector format to/from matrix format
 - Although not that critical for matrix multiplication, insert/extract of rows from matrix registers from/to vector registers is useful in other algorithms (e.g., DFT)