科学计算 MA235

任云玮

目录

1	绪论			2
	1.1	计算机	1数值计算原理	. 2
		1.1.1	计算机基本工作原理	. 2
		1.1.2	实数的存贮方法	. 2
		1.1.3	实数的基本运算原理	. 2
1	1.2	误差的	的来源与估计	. 2
		1.2.1	误差的来源	. 2
		1.2.2	误差和有效数字	. 2
		1.2.3	数值运算误差估计	. 3

1 绪论

- 1.1 计算机数值计算原理
- 1.1.1 计算机基本工作原理
- 1.1.2 实数的存贮方法
- 1.1.3 实数的基本运算原理
- 1.2 误差的来源与估计
- 1.2.1 误差的来源
 - 1. 模型问题。例: 近似地球为球体来计算。
 - 2. 测量误差。例: 测量地球半径时的误差。
 - 3. 方法误差(截断误差)。例:对于 y = f(x),求 $f(x^*)$ 时使用 Taylor 展开。
 - 4. 舍入误差 (rounding-off)。例: 计算机计算时的误差。
- 1.2.2 误差和有效数字
- 1 定义 (绝对误差等) 设 $x \in \mathbf{R}$, x^* 为 x 的近似值。称

$$e(x^*) = x^* - x$$

为 x^* 的绝对误差。其误差上界 ϵ^* 满足

$$|e(x^*)| \le \varepsilon^*$$

- 2 定义 (相对误差等)
- **3 定义 (有效数字)** ¹ 设 $x = + -0.a_1a_2... \times 10^m$, 若在第 n 位舍入, 则得到

$$x^* = + - 0....$$

¹The number of significant

例 设 $\pi = 3.1415926...$,则 $\pi_1 = 3$ 的有效数字为 $n(\pi_1) = 1$,而 n(4) = 0,因为它并非正确的舍入所得。n(3.1416) = 5,n(3.1415) = 4。

4 定义 (有效数字) 若存在最大的 n, 使得

$$|x^* - x| \le \frac{1}{2} \times 10^{m-n}$$

则称有n位有效数字。

5 定理 (误差与有效数字) 若 $x^* = ... \times 10^m$ 有 n 位有效数字,则其相对误差满足

$$\varepsilon_r(x^*) \le \frac{1}{2a_1} \times^{1-n}$$
.

若相对误差满足

$$\varepsilon_r(x^*) \le \frac{1}{2(1+a_1)} \times^{1-n}$$

则 x^* 至少有 n 位有效数字。

证明 (假设 a_1 是精确的。)//todo

1.2.3 数值运算误差估计

设有 $x_1 \Rightarrow x_1^*, x_2 \Rightarrow x_2^*,$ 考虑 $x_1 + x_2 \Rightarrow x_1^* + x_2^*$ (假设运算无误差), 进行估计, 有

$$|(x_1 + x_2) - (x_1^* + x_2^*)| \le \varepsilon(x_1^*) + \dots$$

对于乘法是类似的。

6 定理 (运算误差估计) 设有 $_n\Rightarrow x_n^*,\ ...,$