Next Generation Computing Models

Quantum Computing
Il principio di indeterminazione di Heisenberg
e un qubit

1

1

principio di indeterminazione di Heisenberg

- nella meccanica quantistica il principio stabilisce l'impossibilità di determinare con precisione a priori illimitata i valori di due variabili incompatibili, che specificano lo stato di una particella
 - es. posizione e velocità
- indaghiamo il principio usando il quantum computing

due basi

- usiamo due basi per descrivere lo stesso qubit
 - la base costituita dai vettori |0⟩ e |1⟩
 - e la base costituita da $|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ e $|-\rangle = \frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle$

3

$|+\rangle$ e $|-\rangle$ è una base

• in primo luogo $|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ è effettivamente uno stato

- infatti
$$\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

• e anche $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$ è effettivamente uno stato

- infatti
$$\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

$|+\rangle$ e $|-\rangle$ è una base

- inoltre |+> e |->sono perpendicolari tra loro
- per dimostrarlo basta calcolare il loro prodotto scalare $\langle +|-\rangle = {1 \choose \sqrt{2}} {1 \choose \sqrt{2}} {1 \choose \sqrt{2}}$ e osservare che ha valore nullo

5

5

due misure

- dato un qubit $|\psi\rangle$, possiamo misurarlo sia usando la base $|0\rangle$ e $|1\rangle$ sia usando la base $|+\rangle$ e $|-\rangle$
- la prima misura la chiamiamo *bit-value* e la seconda *sign-value*

6

posizione e velocità

• immaginiamo ora che il bit-value corrisponda alla *posizione* e che il sign-value corrisponda alla *velocità*

7

posizione e velocità

• è possibile in un certo istante conoscere *posizione* e *velocità* di un qubit?

8

conoscenza perfetta del bit-value

• perchè si possa conoscere perfettamente il bitvalue di $|\psi\rangle$ occorre che esso sia $|0\rangle$ oppure $|1\rangle$

9

conoscenza perfetta del sign-value

• perchè si possa conoscere perfettamente il signvalue di $|\psi\rangle$ occorre che esso sia $|+\rangle$ oppure $|-\rangle$

10

conoscenza perfetta di entrambi

- se possiamo conoscere perfettamente il signvalue di $|\psi\rangle$, es. perchè esso è molto vicino a $|0\rangle$, allora abbiamo molta incertezza sul sign-value
 - è $|+\rangle$ con probabilità $^{1}/_{2}$ e $|-\rangle$ con probabilità $^{1}/_{2}$

11