Zadanie: SZC Szczęście

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 14. Dostępna pamięć: 128 MB.

03.03.2018

Na szczęście człowieka żyjącego w Bajtolandii wpływają pewne wydarzenia. Dzielimy je na pozytywne i negatywne. Mieszkaniec Bajtolandii jest szczęśliwy, gdy poziom jego szczęścia jest większy od zera. Wydarzenie ma to do siebie, że jeżeli stało się w czasie t_i , to w t_i -tej sekundzie zmieni samopoczucie człowieka o c_i , a w kolejnych sekundach będzie wpływało na samopoczucie o $\max(c_i-d*k_i,0)$ w przypadku wydarzenia pozytywnego i o $\min(c_i+d*k_i,0)$ w przypadku wydarzenia negatywnego, gdzie k_i oznacza tempo dążenia do zera w kolejnych sekundach i $d\in t_i+1, t_i+2, t_i+3, \ldots$ Samopoczuciem człowieka w czasie t_i nazywamy sumę wpływów wszystkich wydarzeń na czas t_i . Mając dane wydarzenia i pewien okres czasu od 1 do n znajdź długość najdłuższego przedziału czasu, w którym mieszkaniec Bajtolandii będzie przez cały czas szczęśliwy. Za przedział czasu uważamy kolejne sekundy następujące po sobie.

Wejście

W pierwszej linii wejścia znajdują się dwie liczby całkowite n i m $(1 \le n, m \le 5 \cdot 10^5)$, oznaczające odpowiednio koniec przedziału czasu, w którym masz zbadać szczęście mieszkańca Bajtolandii oraz liczbę wydarzeń.

W m kolejnych liniach wejścia znajdują się po trzy liczby całkowite t_i , c_i oraz k_i $(1 \le t_i \le n, -10^9 \le c_i \le 10^9, 1 \le k_i \le |c_i|)$, oznaczające odpowiednio czas wydarzenia, zmianę samopoczucia w czasie t_i oraz tempo dążenia do zera w kolejnych sekundach po czasie t_i .

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita, oznaczająca długość najdłuższego okresu czasu, w którym mieszkaniec Bajtolandii będzie cały czas szczęśliwy.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

10 2 4

1 10 3

3 -2 2

Dla danych wejściowych: poprawnym wynikiem jest:

9 4 1

1 5 5

3 2 2

3 -7 1

5 3 1

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n, m \le 20$	14
2	$n, m \le 1000$	21
3	brak dodatkowych założeń	65