2 - GAP RESEARCH ANALYSIS

Aliefian Ramadhan (22081010171)

2.1 Tinjauan Penelitian Terdahulu

Sukandar (2024) Klasifikasi Citra MRI Tumor Otak Menggunakan Metode Hibrida CNN-ViT

Penelitian ini dilakukan oleh Ivan Christopher Sukandar di UPN "Veteran" Jawa Timur.

Fokus: klasifikasi citra MRI otak untuk membedakan tumor vs non-tumor menggunakan metode hibrida CNN-ViT.

Hasil utama: akurasi terbaik diperoleh oleh model hibrida CNN-ViT $^{\sim}$ 93% rata-rata, sedangkan CNN saja $^{\sim}$ 90,80%, dan ViT saja $^{\sim}$ 84,80%.

Konfigurasi spesifik: pembagian data 80:10:10, optimizer Adam, learning rate 0.0001

Kelemahan yang bisa dicatat: walaupun hibrida meningkatkan akurasi, penelitian ini tampaknya hanya menguji satu dataset, dan belum secara mendalam membahas aspek efisiensi (waktu pelatihan, parameter), atau pengaruh augmentasi data.

Catatan: penelitian masih berskala tugas klasifikasi (tumor vs non-tumor) dan kombinasi CNN & ViT, tapi belum eksplorasi ViT murni atau analisis lengkap augmentasi.

Laksono, Harliana & Prabowo (2023) — Deteksi Tumor Otak Melalui Penerapan GLCM dan Naïve Bayes Classification

Penelitian oleh Puji Laksono, Harliana & Tito Prabowo di Universitas Nahdlatul Ulama Blitar.

Fokus: klasifikasi citra tumor otak menggunakan metode tekstur (GLCM: Gray Level Cooccurrence Matrix) dan klasifikasi Naïve Bayes.

Hasil: akurasi ~ 80% dengan dataset 253 citra (split training 80% / testing 20%). Presisi dan recall sekitar 85%.

Kelemahan: metode tradisional (fitur tekstur + Naïve Bayes) relatif sederhana dibandingkan deep learning, dan belum mengeksplorasi konteks spasial citra secara mendalam. Juga belum membandingkan beberapa arsitektur deep learning ataupun efektivitas augmentasi data.

Ardiansyah, Qodri, Al Banna & Al-Baihaqi (2025) — Implementasi Deteksi Tumor Otak Menggunakan YOLOv11 dan Flask

- Penelitian oleh AS Widagdo, K N Qodri, D Al Banna & M Z Al-Baihagi
- Fokus: deteksi tumor otak dengan menggunakan algoritma deteksi objek YOLOv11 plus integrasi frontend menggunakan Flask. Teknik augmentasi data juga diterapkan (flip, rotasi 90°, noise) untuk memperluas dataset.
- Hasil: F1-score ~ 0,951 untuk empat kelas (0.902 Glioma, 0.989 Meningioma, 0.915 Pituitary, dan 0.997 Non tumour).
- Kelemahan: model deteksi objek (lokalisasi) berbeda dari tugas klasifikasi sederhana (tumor vs non-tumor) yang menjadi fokusmu; meskipun augmentasi data dibahas, namun arsitektur Transformer (ViT) tidak dibahas

2.2 Analisis Kesenjangan (Gap Analysis)

Dari ketiga penelitian di atas, berikut kesenjangan riset yang muncul:

1. Eksplorasi arsitektur Transformer (ViT) untuk deteksi tumor otak masih terbatas

Penelitian pertama mengombinasikan CNN + ViT, tetapi ViT murni belum dieksplorasi secara maksimal. Penelitian lainnya memakai metode tekstur/klasik atau deteksi objek (YOLO) , tidak menggunakan ViT.

Kesenjangan: kurang studi yang fokus pada ViT sebagai model utama untuk klasifikasi tumor otak.

2. Perbandingan yang kurang menyeluruh antara model (akurasi dan efisiensi)

Penelitian pertama membandingkan CNN, ViT, dan hibrida, tapi hanya akurasi yang dilaporkan; detail efisiensi (waktu pelatihan, parameter, sumber daya) kurang. Penelitian YOLO fokus pada F1-score dan deteksi, bukan perbandingan klasifikasi CNN vs Transformer.

Kesenjangan: kebutuhan untuk evaluasi performa menyeluruh (akurasi + efisiensi) antara model.

3. Augmentasi data dan pengaruhnya terhadap model Transformer belum dibahas mendalam

Penelitian YOLO melakukan augmentasi data, namun tidak fokus pada ViT. Penelitian CNN-ViT tidak secara eksplisit mendalami teknik augmentasi dan pengaruhnya terhadap ViT.

Kesenjangan: perlu analisis sistematik tentang bagaimana augmentasi mempengaruhi performa ViT.

4. Tugas klasifikasi sederhana (tumor vs non-tumor) dengan ViT belum banyak dilakukan

Penelitian CNN-ViT melakukannya, namun hasil untuk ViT sendiri rendah (~84.80%) dan belum dioptimalkan/analisis mendalam. Penelitian YOLO lebih ke deteksi objek multis-kelas, bukan klasifikasi biner.

Kesenjangan: penelitian spesifik untuk klasifikasi biner dengan ViT masih terbatas.

5. Interpretabilitas dan deployment kurang dibahas untuk model ViT

YOLO+Flask membahas integrasi pengguna, namun bukan ViT. CNN-ViT tidak menyebut interpretabilitas atau bagaimana model membuat keputusan.

Kesenjangan: perlu integrasi aspek interpretabilitas (attention maps, saliency) dan potensi deploy-able model ViT.

2.3 Solusi & Posisi Penelitian (Our Solution & Positioning)

Berdasarkan gap di atas, posisi dan solusi penelitan adalah sebagai berikut:

 Posisi penelitian: Kamu akan fokus pada penerapan arsitektur ViT murni (atau varian dengan penyesuaian untuk citra medis) untuk klasifikasi tumor otak (tumor vs non-tumor) menggunakan citra MRI. Sebagai pembanding akan digunakan model CNN konvensional sebagai baseline.

Solusi teknis utama:

- 1. Implementasi ViT yang disesuaikan (patch size, depth, head count) untuk citra MRI kecil/menengah.
- 2. Pembandingan langsung antara CNN vs ViT dalam hal akurasi *dan* efisiensi (waktu pelatihan, parameter, memori).
- 3. Analisis pengaruh teknik augmentasi data (rotasi, flipping, zoom, brightness) terhadap performa ViT.

- 4. Tambahan: interpretabilitas model ViT visualisasi self-attention atau heatmap untuk menjelaskan prediksi.
- Mengisi gap: Dengan cara ini, penelitianmu mengisi kekosongan riset tentang ViT murni dalam klasifikasi tumor otak, membandingkan efisiensi dan akurasi, serta memberikan analisis augmentasi dan interpretabilitas.

2.4 Kontribusi Utama Penelitian

Jika dilaksanakan seperti rencana, penelitianmu akan memberi kontribusi sebagai berikut:

- 1. Kontribusi ilmiah: Menyediakan bukti empiris bahwa arsitektur ViT dapat digunakan efektif untuk klasifikasi tumor otak dari citra MRI, serta bagaimana performanya dibanding CNN.
- 2. Kontribusi metodologis: Menghadirkan pipeline eksperimen yang reproducible (preprocessing, augmentasi, model, evaluasi efisiensi) untuk domain medis.
- 3. Kontribusi praktis: Memberikan rekomendasi teknis kepada peneliti/praktisi medis atau engineer pengolahan citra tentang kapan dan bagaimana menggunakan ViT vs CNN untuk tugas klasifikasi tumor otak.
- 4. Kontribusi aplikasi: Dengan interpretabilitas model, memberikan alat yang lebih dapat dipercaya untuk potensi adopsi klinis atau implementasi sistem pendukung keputusan medis.