Kepler's Laws of Motion

- 1609 in Astronomica Nova (The New Astronomy)
- First Law A planet orbits the Sun in an ellipse, with the Sun at one focus of the ellipse.
- Second Law A line connecting a planet to the Sun sweeps out equal areas in equal time intervals
 - Several areas associated with the time interval of "six" are shown
 - They all have equal areas

Kepler's Third Law of Motion

From *Harmonica Mundi* (1619) (Harmony of the Worlds)

Ellipses

Ellipses – actual orbits

Ellipses – actual orbits

September 2012

Newton's Laws of Motion

- Brachistochrone problem...
- 1st Law Law of inertia
 - An object at rest remains at rest and an object in uniform motion remains in uniform motion unless acted upon by an unbalanced force.
 - An *inertial reference frame* is needed for 1st law to be valid
 - A non-inertial reference frame is being accelerated (e.g. In car going around a curve you feel a fictitious force)
- $2^{\text{nd}} \text{ Law} \mathbf{a} = \mathbf{F}_{\text{net}}/\text{m} \text{ or } \mathbf{F}_{\text{net}} = \mathbf{ma}$
 - The net force (sum of all forces) acting on an object is proportional to the object's mass and its resultant acceleration.
 - Inertial mass, m, does not appear to be different from gravitational mass
- 3rd Law
 - For every action there is an equal but opposite reaction

Universal Law of Gravitation

Shell theorems for gravity:

-) The Force on *m* due to a uniform shell of mass is the same as the force due to a point mass at the center of the shell with the same total mass as the shell.
-) The force of gravity inside of a uniform shell is zero.

Conic Sections

- All are possible in celestial mechanics
- Orbits are Ellipses

$$r = constant$$
 $e = 0$ Circle

$$r = \frac{a(1 - e^2)}{1 + e \cos \theta} \qquad 0 \le e < 1 \quad \text{ellipse}$$

$$r = \frac{2p}{1 + \cos \theta}$$
 $e = 1$ parabola

$$r = \frac{a(e^2 - 1)}{1 + e \cos \theta}$$
 e > 1 hyperbola

Beyond Newton

- Gravity passed every test until ~1890s
- Newton's gravity and motion is incorrect when ...

Work by gravity depends on direction of net force vector relative to the direction of motion.

