Food web motifs and the functioning of complex ecosystems

Timothée Poisot

Theoretical Ecosystem Ecology, UQAR

Variation in motif composition

Functioning?

The model

$$\frac{dN_i}{dt} = N_i \left[r \left(1 - \frac{N_i}{K} \right) - \sum_{j \in pred} \alpha N_j \right]$$

$$\frac{dN_i}{dt} = N_i \left[\sum_{j \in prev} \beta N_j - \sum_{j \in pred} \alpha N_j - \delta \right]$$
(2)

The model

Simulations

- ▶ Each species starts with $N_i \in [0, 1]$, at random
- ► We run the system well over equilibrium (10⁴ time steps)
- ▶ We record the total biomass of the system
- Repeat 10 times for each of the 180 webs
- Average over the 10 replicates presented in the figures

Exploitative competition

Apparent competition

Types of competition

Competition type ratio

Omnivory decreases biomass production

Synthesis of the results – biomass production

Motif	Df	F value	Pr(>F)
Expl. comp. (S4)	1	1287.82	***
Omnivory (S2)	1	112.18	***
Lin. chain (S1)	1	91.22	***
Loop (S3)	1	26.41	***
App. comp. (S5)	1	11.69	***
Residuals	1774		$R^2 = 0.46$

Synthesis of the results – productivity

Df	F value	Pr(>F)
1	1013.00	***
1	258.20	***
1	42.69	***
1	2.28	0.13
1	0.53	0.46
1103		$R^2 = 0.54$
	1 1 1 1 1	1 1013.00 1 258.20 1 42.69 1 2.28 1 0.53

Biomass production and productivity

