1 закон термодинамики

- **1.** Идеальный газ участвует в изотермическом процессе. Первый закон термодинамики для этого процесса имеет вид:
 - **A)** $Q = \Delta U + A$; **B)** $Q = \Delta U$; **B)** Q = A; Γ) $\Delta U + A = 0$.
- **2.** Идеальный газ участвует в изохорном процессе. Первый закон термодинамики для этого процесса имеет вид:
 - **A)** $Q = \Delta U + A$; **B)** $Q = \Delta U$; **B)** Q = A; Γ) $\Delta U + A = 0$.
- 3. График процесса изменения состояния идеального газа представлен на рисунке. В процессе перехода из состояния 1 в состояние 2 газу было передано количество теплоты $Q=580~\rm{Д}ж$. Определите приращение внутренней энергии ΔU и работу A, совершенную силой давления газа.

- **4.** Герметично закрытый сосуд с газом охладили, поместив его в лед. Определите знаки (нуль, больше или меньше нуля) изменения внутренней энергии газа ΔU , работы газа A, и количества теплоты полученного газом Q.
- **5.** Идеальному газу сообщили Q=8 кДж теплоты. При этом его внутренняя энергия увеличилась на $\Delta U=14$ кДж. Найдите работу A, которую совершил газ.
- **6.** Какое количество теплоты Q сообщено водороду, если он при изотермическом расширении совершил работу A = 4190 Дж?
- 7. Над идеальным газом совершена работа A' = 100 Дж, при этом его внутренняя энергия возросла на $\Delta U = 250$ Дж. Какое количество теплоты Q получил газ в этом процессе?
- **8.** Идеальному газу сообщают количество теплоты Q = 4,0 кДж. Определите приращение внутренней энергии газа ΔU , если на совершение работы силой давления газа идет $\alpha = 42$ % сообщаемого газу количества теплоты.
- **9.** При адиабатном расширении v = 4 молей идеального одноатомного газа его температура понизилась на $|\Delta T| = 15$ К. Какую работу А совершил газ?
- **10.** При изобарном нагревании газа (p = $100~{\rm k\Pi a}$) ему передали Q = $800~{\rm Дж}$ теплоты. При этом его внутренняя энергия увеличилась на $\Delta U = 700~{\rm Дж}$. Чему равно изменение объема ΔV газа?
- **11.** При адиабатическом сжатии температура гелия возросла на $\Delta T = 2$ К. Определите количество вещества гелия ν , если при сжатии внешними силами была совершена работа A' = 99 Дж.
- **12.** Одноатомный идеальный газ в количестве v=4 молей поглощает количество теплоты Q=2 кДж. При этом температура газа повышается на $\Delta T=20$ К. Чему равна работа A, совершенная газом в этом процессе?
- **13.** Газ изобарно (p = 100 кПа) нагревается так, что его объем увеличивается на $\Delta V = 4$ л. На сколько изменилась внутренняя энергия ΔU газа, если он получил Q = 3.2 кДж теплоты?

- **14.** В закрытом сосуде объемом V = 2 л находится гелий, плотность которого равна $\rho = 2$ кг/м³. Какое количество теплоты Q надо сообщить гелию, чтобы повысить его температуру на $\Delta T = 10$ К? Молярная масса гелия M = 4 г/моль.
- **15.** При адиабатном расширении m = 20 г гелия (M = 4 г/моль) его температура понизилась на $|\Delta T| = 20$ К. Какую работу А совершил газ?
- **16.** В герметичном сосуде вместимостью V = 11,2 дм³ содержится одноатомный газ при давлении p = 100 кПа. Какое количество теплоты Q необходимо сообщить газу, чтобы давление в сосуде увеличилось в n = 3 раза?
- **17.** Значение температуры идеального одноатомного газа, количество вещества которого $\nu=20$ моль, изобарно изменили. Определите сообщенное газу количество теплоты Q, если значение начальной температуры газа $T_1=300~{\rm K},$ а занимаемый им объем увеличился в $\alpha=3,0$ раза по сравнению с первоначальным.
- **18.** Одноатомный идеальный газ, находящийся в закрытом сосуде с объемом V=8 л, нагревают так, что его давление взрастает с $p_1=1\cdot10^5$ Па до $p_2=2\cdot10^5$ Па. Какое количество теплоты Q передано газу?
- **19.** При изобарном расширении m=60 г гелия (M=4 г/моль) его объём увеличили в два раза. Начальная температура газа $T_1=400$ К. Определите количество теплоты Q, сообщённое газу.
- **20.** В баллоне объёмом $V_1 = 8$ л находится идеальный одноатомный газ под давлением $p_1 = 120$ кПа. Газу сообщают Q = 2160 Дж теплоты. Какое давление p_2 установится в сосуде?
- 21. График процесса перехода идеального одноатомного газа из состояния 1 в состояние 2 представлен на рисунке. Определите количество теплоты Q, сообщенное газу.

- **22.** Если в процессе изобарного расширения идеальному одноатомному газу сообщили количество теплоты Q = 600 Дж, то чему равно увеличение внутренней энергии ΔU ?
- 23. График процесса перехода идеального одноатомного газа из состояния 1 в состояние 2 представлен на рисунке. Определите количество теплоты Q, сообщенное газу.

- **24.** Идеальный газ, количество вещества которого v = 0.5 моль, из состояния с температурой $T_1 = 100 \text{ K}$ расширяется изобарно, а затем изохорно переходит в состояние с начальной температурой. Во сколько раз изменится при этом объем газа, если для перевода газа из начального состояния в конечное к нему подвели количество теплоты Q = 831 Дж?
- 25. Идеальный одноатомный газ совершает процесс, график которого изображён на рисунке. Найдите количество теплоты О, сообщённое газу, если $p_0 = 1.10^5$ Па, $V_0 = 4$ л.
- 3p0 4Vo V
- 26. Найдите, какое количество теплоты О надо сообщить идеальному одноатомному газу для его нагревания от $t_1 = 20$ °C до $t_2 = 100$ °C, если он находится в вертикальном цилиндрическом сосуде, закрытом сверху подвижным поршнем с площадью поперечного сечения $S = 20 \text{ cm}^2$ и массой m = 5 кг. Первоначальный объем газа $V_1 = 5$ л, атмосферное давление $p_0 = 100 \text{ кПа. Трением пренебречь.}$
- 27. Идеальный одноатомный газ совершает процесс, график которого изображён на рисунке. Найдите количество теплоты Q, сообщённое газу, если $p_0 = 1.10^5$ Па, $V_0 = 2$ л.
- 3p0 0 Vo 4Vo V
- 28. Идеальный одноатомный газ в количестве v = 10 моль переходит из состояния 1 в состояние 3 так, как показано н рисунке. Найдите количество теплоты О, сообщённое газу.

Ответы

- 3. $\Delta U = 0$, A = 580 Дж;
- **4.** $\Delta U < 0$, A = 0, Q < 0;
- **5.** A = -6 кДж:

- **6.** $Q = 4190 \, \text{Дж}$;
- 7. Q = 150 Дж; 8. $\Delta U = 2.32 \text{ кДж};$
- **9.** $A = 747.9 \ Дж;$
- **10.** $\Delta V = 0.001 \text{ m}^3$; **11.** v = 4 моль; **12.** A = 102.8 Дж;
- **13.** $\Delta U = 2800 \; \text{Дж}$:
- **14.** $Q = 124,65 \, \text{Дж}$; **15.** $A = 831 \, \text{Дж}$; **16.** $Q = 3360 \, \text{Дж}$;
- **17.** Q = 249,3 кДж;

- **18.** Q = 1200 Дж; **19.** Q = 124,7 кДж; **20.** $p_2 = 300$ кПа; **21.** Q = -14750 Дж;

- **22.** $\Delta U = 360$ Дж;
- **23.** Q = 5750 Дж;
- **25.** Q = 1800 Дж;
- **26.** Q = 428,125 Дж; **27.** Q = 2100 Дж; **28.** Q = -4155 Дж.