

# Tutorial 5: Drift-diffusion models

BAMB! Summer School Tutorial 5

#### Tutorial overview

- Hour 1: Simulating the DDM by hand
  - Construct a DDM from first principles
- Hour 2: Simulating the DDM using PyDDM
  - Use efficient and higher-accuracy methods to perform simulations
- Hour 3: Fitting the DDM to data
  - Use PyDDM to fit the DDM to monkey random dot motion data
- Hour 4: Generalized drift diffusion models (GDDMs)
  - Create variants of the DDM which are specialized to specific tasks or encapsulate distinct strategies



# Hour 1: Simulating the DDM by hand

- Basic algorithm
  - 1. Set x to starting point
  - •2. Set:

$$x_{t+1} = x_t + [\text{drift}]\Delta t + [\text{noise}]z_t\sqrt{\Delta t}$$
  
 $z_i \sim N(0, 1)$ 

- 3. Check if x crosses a boundary. If so, you are done
- •4. Otherwise, go to (2)



Time



## Hour 2: Simulating the DDM using PyDDM

 Use more efficient methods to simulate the probability distribution of a trajectory's position instead of one trial at a time







|                                               | PyDDM                                           | HDDM                              | EZ-Diffusion                          | CHaRTr                                               | DMAT                                              | fast-dm                                            |
|-----------------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Language                                      | Python3                                         | Python2/3                         | Matlab, R,<br>Javascript, or<br>Excel | Requires both R and C                                | Matlab                                            | Command line                                       |
| Solver                                        | Fokker-Planck,<br>analytical                    | Analytical<br>numerical<br>hybrid | None                                  | None (Monte Carlo)                                   | Analytical numerical<br>hybrid                    | Fokker-Planck                                      |
| Task parameters                               |                                                 |                                   | _                                     |                                                      |                                                   |                                                    |
| Time dependence of drift/noise                | Any function                                    | Constant                          | Constant                              | Any function                                         | Constant                                          | Constant                                           |
| Position dependence of drift/noise            | Any function                                    | Constant                          | Constant                              | Any function                                         | Constant                                          | Constant                                           |
| Bounds                                        | Any function                                    | Constant                          | Constant                              | Any function                                         | Constant                                          | Constant                                           |
| Parameter<br>dependence on task<br>conditions | Any relationship for<br>any parameter           | Regression<br>model               | Categorical                           | Categorical                                          | Linear                                            | Categorical                                        |
| Across-trial variability                      |                                                 |                                   |                                       |                                                      |                                                   | _                                                  |
| Across-trial drift variability                | Slow discretization (via extension)             | Normal<br>distribution            | None                                  | Any distribution                                     | Normal distribution                               | Normal distribution                                |
| Across-trial starting point variability       | Any distribution                                | Uniform<br>distribution           | None                                  | Any distribution                                     | Uniform distribution                              | Uniform distribution                               |
| Across-trial non-<br>decision variability     | Any distribution                                | Uniform<br>distribution           | None                                  | Any distribution                                     | Uniform distribution                              | Uniform distribution                               |
| Model simulation and                          | l fitting                                       |                                   |                                       |                                                      |                                                   |                                                    |
| Hierarchical fitting                          | No                                              | Yes                               | No                                    | No                                                   | No                                                | No                                                 |
| Fitting methods                               | Any numerical (default: differential evolution) | MCMC                              | Analytical                            | Any numerical                                        | Nelder-Mead                                       | Nelder-Mead                                        |
| Objective function                            | Any function (default: likelihood)              | Likelihood                        | Mean/stdev RT<br>and P(correct)       | Any sampled (e.g.<br>quantile maximum<br>likelihood) | Quantile maximum<br>likelihood or chi-<br>squared | Likelihood, chi-<br>squared, Kolmogorov<br>Smirnov |
|                                               |                                                 |                                   |                                       |                                                      |                                                   |                                                    |

Uniform and

undecided guesses

Uniform

Any distribution(s)

Mixture model

Uniform

None

(extendable)

None

## DDM libraries

#### How PyDDM works:

- Construct a Model from its components
- Model components:
  - Drift rate
  - Noise
  - Bound
  - Starting point
  - Non-decision time
  - Mixture model coefficient



### Many model components are built-in:

- Each component can be:
  - A constant value (e.g. 3)
  - A fittable parameter, given by a name (e.g., "param1")
  - A function which depends on:
    - Parameters
    - Conditions
    - Magic arguments



#### Parameters and conditions

- Parameters: Have the same value for the entire dataset
  - E.g. bound height
- Conditions: May change from trial to trial
  - E.g. strength of motion coherence



### Three objects to remember in PyDDM

- Model: Created by gddm() function
  - May need to call "fit" before using if there are parameters
- Solution: Called using model.solve(conditions={...})
- Sample: RT and choice data, either experimental data or simulated data



#### Hour 3: Fitting the DDM to data

- Dataset: Monkeys performing the random dot motion task (Roitman and Shadlen, 2002)
- Several levels of motion coherence





#### Hour 4: Generalized DDMs (GDDMs)

- Construct a more complex model or model more complex tasks
- Magic arguments:
  - •Time in the simulation t
  - Positions of the decision variable X
  - A vector of all simulation times T



## Example GDDMs









