

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 17(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

REC'D 13 JAN 2005
W/17401 and (4) PCT

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed
Dated 9 December 2004

BEST AVAILABLE COPY

30 OCT 03 E848274-4 D02884
P01/7700 0.00-0325304.4

1/77

THE PATENT OFFICE

30 OCT 2003

NEWPORT

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

 Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

P34629-/JDU/BOU

2. Patent application number

(The Patent Office will fill in this part)

0325304.4

30 OCT 2003

3. Full name, address and postcode of the or of each applicant (underline all surnames)

 Seabait Ltd
Woodhorn Village
Ashington, Northumberland
NE63 9NW
United Kingdom

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

7047087001

4. Title of the invention

"A Method for Inducing the Sexual Maturation of Lugworms"

5. Name of your agent (if you have one)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

 165-169 Scotland Street
GLASGOW
G5 8PL

Patents ADP number (if you know it)

1198013

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

Yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description

28

D

Claim(s)

Abstract

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

-

Translations of priority documents

-

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

-

Request for preliminary examination and search (Patents Form 9/77)

-

Request for substantive examination (Patents Form 10/77)

-

Any other documents (please specify)

-

11.

I/We request the grant of a patent on the basis of this application.

Murgitroyd & Co.
SignatureDate
29 October 2003

Murgitroyd & Company

12. Name and daytime telephone number of person to contact in the United Kingdom

BEVERLEY OUZMAN

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 **Method**

2

3 The present invention relates to the aquaculture of
4 marine worms and particularly to the control of
5 sexual maturation of marine worms.

6

7 Marine worms are animals in the Class *Polychaeta* of
8 the Phylum *Annelida* or in the Phylum *Sipunculida*.
9 Such worms are the natural foodstuff for fish,
10 crustaceans and other marine organisms, and
11 therefore find utility as bait for anglers and
12 other fishermen. Additionally certain marine worms
13 have been extensively studied and are recognised as
14 being useful for toxicity testing and other
15 scientific purposes. Marine worms also find
16 utility as a dietary item for aquaculture either in
17 fresh or frozen form or incorporated into food
18 products in a variety of formulations.

19

20 However, the natural supply of marine worms is
21 finite and serious concerns have been raised
22 regarding the potential environmental damage caused

1 by unsustainable over harvest. An environmentally
2 acceptable alternative to collecting marine worms
3 from the wild is their aquaculture to provide a
4 sustainable supply. The aquaculture of marine
5 worms provides the additional benefit of known and
6 quantified content of specified biochemical content
7 and the certifiable absence of specific pathogenic
8 organisms providing aquaculture feeds that may be
9 designated as having Specific Pathogen Free status.

10

11 The aquaculture of the polychaete worms
12 *Arenicolidae* (commonly known as "lugworms") has
13 attracted some interest (see Gambi et al., 1994;
14 Olive 1993), especially since bait digging for
15 these animals was considered to be a cause of
16 environmental damage (see Olive, 1993).

17

18 *Arenicola marina* (lugworm) is an iteroparous
19 polychaete, breeding several times per lifetime,
20 but at annual intervals (Clark and Olive, 1973).
21 *A. marina* is a marine deposit feeder (Jumars, 1993;
22 Fauchald and Jumars, 1979) and ingests sand grains
23 or other substrate at the head of the horizontal
24 section of a J-shaped burrow in which the animal
25 resides.

26

27 An attempt to culture *A. cristata* was described by
28 D'Asaro et al., 1976 but did not lead to commercial
29 aquaculture of any species of lugworm using the
30 methods described. A more successful methodology
31 for the aquaculture of deposit feeding marine worms
32 has since been described in our published

1 International Patent Application No. WO-A-
2 03/007701. The methodology described relates to a
3 method of successfully farming the worms or their
4 larvae, such that the body weight of the worms
5 increases. However, the methodology described in
6 WO-A-03/007701 offers no means to control the
7 breeding period of the worms.

8 D'Asaro describes a method to induce spawning in
9 the lugworm *Arenicola cristata*, by maintaining the
10 broodstock at temperatures of 18 to 32°C. In the
11 wild, female *Arenicola cristata* worms will produce
12 egg masses at frequent intervals throughout the
13 year and D'Asaro describes using temperatures of
14 16-18°C or above to stimulate the release of up to
15 4 egg masses a month for cultured female worms.

16

17 By contrast, the *Arenicola marina* and *Arenicola*
18 *defodiens* populations spawn annually in a discrete
19 period lasting 4 to 5 days. Simultaneous spawning
20 of the local population of a single species in this
21 way is termed "epidemic spawning". The spawning of
22 discrete populations in neighbouring locations may
23 vary by several days or even weeks, whilst the date
24 of spawning - even at a single location - may vary
25 by as much as 4 to 5 weeks in subsequent years.
26 Since *Arenicola marina* exhibits epidemic spawning
27 it has been postulated that external factors could
28 determine, or at least influence, the date of
29 spawning within a single population.

30

31 A study by Watson et al., 2000 examined various
32 external factors (specifically environmental

1 factors) and assessed their influence on the date
2 of spawning within a Scottish population of
3 *Arenicola marina*. The external factors reviewed
4 were the sea and air temperatures, tidal cycle, air
5 pressure, rainfall and windspeed/direction. The
6 study noted that the population studied always
7 spawned on the spring tides and suggested that
8 spawning correlated with the tidal cycle with a
9 semi-lunar periodicity. It was also suggested that
10 a drop in temperature could operate as a cue to
11 spawning, but Watson et al., 2000 concluded that
12 their data did not indicate any threshold
13 temperature or reduction in temperature necessary
14 to induce spawning.

15
16 In conclusion, it is clear from the literature that
17 the lugworms *Arenicola marina* and *Arenicola*
18 *defodiens* reproduce only during a very short period
19 of the year and that the date of spawning is not
20 easily predictable. In terms of the aquaculture of
21 lugworms such as *Arenicola marina* or *Arenicola*
22 *defodiens* that are normally found in temperate or
23 boreal regions, it would be of great benefit to be
24 able to induce the spawning of the worms in order
25 to maintain the farmed population at the levels
26 required.

27
28 We have now found that the careful manipulation of
29 temperature can induce spawning in both male and
30 female marine worms of *Arenicola marina* and
31 *Arenicola defodiens* such that reproduction can be
32 made to occur at all times of the year and this

1 ability to induce sexual maturation represents a
2 significant advance in aquaculture of these worms.

3

4 The present invention thus provides a method of
5 inducing gamete maturation to the point of
6 competence to fertilise or a method of spawning in
7 marine worms of the family Arenicolidae, said
8 method comprising:

9 providing maturing male worms and/or maturing
10 female worms wherein said worms are provided
11 in a housing substrate in sea water at a
12 temperature of 4 to 8°C for a time period of
13 14 to 24 days.

14

15 Preferably the worms are maintained at a
16 temperature of approximately 6°C (eg. 5 to 7°C) for
17 14 to 24 days, usually at least 18 days and
18 typically 20 to 22 days.

19

20 At the end of this time period, the temperature of
21 the sea water is optionally raised to 12 to 14°C.
22 Batches of these worms can then be maintained at a
23 temperature of 12 to 14°C and preferably 14°C for
24 an indefinite period as may be convenient and
25 subjected to the cold temperature treatment as
26 described at a later time, such treatment having...
27 the advantage of again providing sexually maturing
28 animals at convenient times for commercial
29 production.

30

31 Reference is made above to the worms being held at
32 a temperature of 4 to 8°C (preferably 5 to 7°C) for

1 a period of 14 to 24 days. The exact time period
2 will depend upon the condition of the worms for
3 spawning as assessed by measuring the diameter of
4 the coelomic oocytes (eggs) for female worms, or in
5 male worms by measuring the percentage of the
6 groups of male sperm cells (platelets) wherein the
7 sperm tails have differentiated (morulae) in
8 samples of coelomic fluid obtained by biopsy. The
9 biopsy may be carried out by inserting a hypodermic
10 needle into the tail region of the body parallel to
11 the long axis of the body in order to avoid
12 possible damage to the blood vessels and vital
13 organs present in the non-tail region of the
14 animal's body.

15

16 In one embodiment, the present invention induces
17 spawning (i.e. gamete release) of the worms.
18 However, we have found that the effect of
19 temperature of 4 to 8°C promotes the maturation of
20 gametes so that the gametes are ready for release
21 in spawning under appropriate hormonal control.
22 These mature gametes could be harvested from the
23 parent worm such that fertilisation can occur *in*
24 *vitro*. Gamete release can be achieved by the
25 natural release of a hormone or may, if preferred,
26 be achieved by the injection of a homogenate of the
27 prostomium in sterile filtered seawater at a
28 concentration of 1 prostomium equivalent per worm
29 (for females). In the case of male worms gamete
30 release can be induced by injection of 8, 11, 14-
31 eicosatrienoic acid (usually dissolved in methanol
32 and diluted with seawater) to give a final

1 concentration in the body cavity of approximately 1
2 $\times 10^{-4}$ M. Similar procedures are described in the
3 literature (Bentley et al. 1990 and Bentley et al.
4 1996) to induce gamete release from animals ready
5 to spawn during the natural breeding season.
6 The present invention is suitable for maturing
7 female worms and for maturing male worms of the
8 family Arenicolidae. Maturing female worms are
9 defined as female worms observed to possess
10 coelomic eggs having a modal diameter of at least
11 160 microns. Usually the observation is made by
12 coelomic biopsy, a technique routine in the art and
13 as described briefly above. Briefly, a coelomic
14 biopsy involves removal of a sample of coelomic
15 fluid by means of a hypodermic syringe (a 25g
16 hypodermic needle is suitable) and examining the
17 sample taken by light microscope. Maturing male
18 worms are defined as male worms observed to possess
19 a ratio of morulae to spermatocytes of 80% or more.
20 Usually this observation is made by examining a
21 small sample of coelomic fluid obtained as
22 described above on a microscope slide using a x10
23 objective lens and examining approximately 100
24 groups of male germ cells (spermatocytes in the
25 form of platelets or morulae as mentioned above).
26
27 The substrate housing the worms may be any
28 particulate material suitable for a deposit feeding
29 worm. Typically a sandy substrate may be used, but
30 other particulate materials (eg. glass beads)
31 having particles of a similar size could also be

1 used. Sand is preferred due to its wide
2 availability and low cost.

3

4 A suitable depth of substrate is provided to house
5 the worms. A depth of approximately 5cm is
6 sufficient for the worms to form their habitual
7 housing tubes. Whilst greater depths of substrate
8 (for example up to 10cm, even 20 to 40cm) is
9 possible, this increases the associated cost of the
10 procedure. For ease of harvesting the worms the
11 minimum depth of substrate is desirable.

12

13 The sea water used in the present method may be
14 filtered seawater (eg. filtered twice through a
15 filter having $0.34\mu\text{m}$ pore size), a flow through
16 system receiving natural sea water or recirculated
17 in an aquaculture system incorporating
18 biofiltration, a protein skimmer and/or other water
19 treatment devices as are readily available from
20 commercial sources.

21

22 For the purposes of hygiene management, we have
23 found it convenient if the substrate housing the
24 worms contains little or no food material with no
25 additional food material being provided during the
26 time period of 14 to 24 days. The presence of
27 little or no food allows the cleanliness of the
28 water to be easily maintained to a high standard,
29 without affecting the worms adversely since the
30 time period in question is short.

31

1 The method described herein can be used to induce
2 spawning in any species of worm belonging to the
3 family Arenicolidae. Species of particular
4 interest include *Arenicola marina* and *Arenicola*
5 *defodiens*.

6
7 The method is suitable for maturing females and/or
8 maturing males (as defined above) collected from
9 natural populations in the wild or, more
10 preferably, cultured according to the methodology
11 of WO-A-03/007701. Where the worms have been
12 cultured we have found that the best results are
13 obtained using worms maintained (with adequate food
14 supply) at a temperature of 16°C for 3 to 5 months.
15 Good results can also be obtained if the culture
16 temperature is 14°C or more, for a period of at
17 least one month.

18
19 For commercial purposes, it may be desirable to
20 allow male and female worms to spawn in isolation
21 in small containers of sea water and to selectively
22 mix the oocytes and spermatozoa, and to select for
23 fertilised eggs after induced spawning by the
24 methods described above.

25
26 We have found that if there are any unspawned worms
27 remaining at the end of the 14 to 24 day time
28 period referred to above during which the worms are
29 held at a temperature of 4 to 8°C, then these
30 unspawned worms can be induced to spawn by
31 adjusting the temperature of the sea water to 12 to
32 14°C. Generally, increasing the temperature

1 gradually is preferred and we have found that
2 progressively increasing the temperature at a rate
3 of 1°C per hour over a period of 6 to 8 hours is
4 suitable, although the exact rate of temperature
5 increase is not critical. The increase in
6 temperature can conveniently be achieved by
7 transfer of the worms to sea water (for example
8 filtered sea water or re-circulated sea water) at a
9 temperature of 4 to 8°C and wherein the ambient air
10 temperature is 12 to 14°C. For convenience the
11 worms may be placed into portable containers of sea
12 water at the appropriate temperature (4 to 6°C),
13 the container holding the sea-water and worms
14 combination being placed in a controlled
15 temperature room/incubator as appropriate. Under
16 these conditions, the temperature of the sea water
17 is gradually raised to 12 to 14°C, for example
18 13°C. Whilst it is preferable for the worms to be
19 housed individually at this stage (for example in
20 400ml of sea water), it is also possible for the
21 worms to be housed in small groups of up to 20
22 (preferably of 10 or less, more preferably of 6 or
23 less, for example 2, 3, 4 or 5) worms. Desirably
24 the worms will be housed in same-sex groups. The
25 worms housed in this way are examined at
26 approximate intervals (we have found hourly
27 examination to be suitable).
28
29 If female worms are observed to be spawning, the
30 eggs are obtained by placing the females in a tank
31 containing 1 to 3 litres of sea water and allowing
32 the worms to continue to spawn. After the majority

1 of the eggs have been released (as may be
2 determined by the requirement for larvae) the
3 female can be removed and rehoused. Conveniently,
4 a volume of sea water sufficient to provide a
5 concentration of 100,000 eggs per litre is added
6 prior to addition of sperm. (We generally find
7 that a volume of 2 to 4 litres sea water is
8 typically required, depending upon the fecundity of
9 the female.)

10
11 If male worms are observed to be spawning, the
12 sperm is taken into a pipette or syringe before it
13 becomes thoroughly mixed with sea water. This
14 reduces the spontaneous activation of the
15 spermatozoa. A concentrated sperm mixture obtained
16 in this way can be maintained at 5°C for up to 48
17 hours without loss of viability and used as
18 required. The sperm can be introduced into the
19 egg/sea water mixture described above to provide a
20 sperm concentration of 10^5 to 10^6 sperm per
21 millilitre. Sperm concentration can be determined
22 by use of a haematocytometer which is a microscope
23 slide with etched divisions and graduations
24 defining a known volume in the space beneath the
25 cover slip. Typically the concentration of sperm
26 will be calculated from the observation of the
27 average nuclear of sperm seen in a survey of 30
28 defined volumes. The sperm concentration could
29 also be estimated by a man of ordinary skill in the
30 art, by adding approximately the sperm released by
31 a male to 50ml sea water then adding 1ml of this
32 mixture to one litre of egg/sea water mixture.

1 In the event that the female worms are spawning,
2 but the male worms are not, it may be desirable to
3 induce immediate spawning of the male worms, as the
4 unfertilised eggs of the female worms have a
5 limited viability. Immediate spawning of the male
6 worms treated as described above can be achieved by
7 injection of the male worms with the fatty acid 8,
8 11, 14-eicosatrienoic acid, to give a final
9 coelomic concentration of 13 µg/g body mass or an
10 *in vitro* concentration of 4.5×10^{-5} M made by
11 dilution of a methanol solution with fine (eg.
12 0.2µm) filtered sea water or sterile water or
13 distilled water and injected to give a final
14 methanol concentration in the body tissues of 1%
15 v/v.

16

17 Once the sperm and the eggs have been mixed
18 together for a period of approximately 15 minutes,
19 the eggs may be counted (for example by randomised
20 sub-sampling) and transferred to suitable
21 containers (such as shallow plastic trays) at a
22 concentration of approximately 10,000 fertilised
23 eggs/litre. The larvae, once hatched, can then be
24 cultured accordingly, for example as described in
25 WO-A-03/007701.

26

27 The parent worms may be maintained at a temperature
28 of 16 to 20°C, but provided with suitable substrate
29 housing and organic materials as foodstuff.

30 Optionally the worms may be held at a reduced
31 temperature of 6 to 8°C for 2 to 3 days before
32 being returned to culture conditions.

1 Using the methodology described above it is
2 possible to induce sexual maturation in both male
3 and female worms of the family Arenicolidae only a
4 few months after previous spawning of these worms.
5 Such induction of sexual maturation of these
6 animals has no known precedent, the animals
7 spawning only once per annum in the wild.

8
9 Using the methodology described above it is now
10 possible to breed lugworms throughout the whole
11 year.

12
13 The present invention will now be further described
14 with reference to the following non-limiting
15 examples.

16
17 Example 1
18 Induction of Sexual Maturation in the lugworm
19 *Arenicola marina*

20
21 Male and female *Arenicola sp.* were collected from
22 Hauxley beach, Northumberland during the summer of
23 2002. Male and female *Arenicola sp.* were also
24 collected from growth trials that had been carried
25 out at Seabait Ltd, Northumberland, United Kingdom.

26
27 Animals were introduced into concrete culture beds
28 (broodbeds) containing decomposed organic food and
29 sand as described in WO-A-03/007701. The animals
30 were left for several months until required. At a
31 specified time during November/December 2002 a
32 group of approximately 50 of the animals were

1 removed and a coelomic biopsy was performed and
2 maturity status was determined. Selected animals
3 were then transferred into a small box containing
4 sand previously used in broodbeds for *Arenicola* sp.
5 and the small box placed in a controlled
6 temperature room held at $6^{\circ}\text{C} \pm 1^{\circ}\text{C}$. After 21 days
7 at that temperature animals were removed from the
8 substrate and placed into separate pots containing
9 filtered sea water. Any waste material that was
10 depurated was removed with a pipette and discarded.
11 Once rehoused into the separate pots all animals
12 were re-sampled and given a number/code. Animals
13 were then gradually conditioned to 13°C . Sperm was
14 collected from spawning males in concentrated form
15 and stored in labelled glass vials in the
16 refrigerator at approximately 4°C . Females that
17 were spawning were removed from the small housing
18 pots and placed into individual labelled aquarium
19 tanks and the seawater made up to 2 litres using
20 filtered seawater. Each female was allowed to
21 continue spawning in the aquarium tank until the
22 batch-spawning event was deemed complete. At the
23 termination of the spawning event the female was
24 removed from the aquarium tank and returned into
25 the previously labelled pot provided with fresh sea
26 water. (The weight of the animal was recorded if
27 the animal had not commenced spawning before the
28 point of sampling.)

29

30 The water and eggs in the tank were mixed to give a
31 homogenous mixture, from which five to ten samples
32 of 0.5ml were removed and an estimate of the total

1 number of eggs determined (Table 1). All details
2 of provenance and usage were also recorded in this
3 table. Sperm, from two different males (L29♂.8 and
4 L23♂.1; Table 1), was added to the aquarium and the
5 eggs left to fertilise for 10 minutes. Volumes of
6 water from the aquarium tank containing fertilised
7 eggs were then transferred to white, shallow trays
8 and made up to 5 litres which resulted in a final
9 concentration of between 7 to 10,000 eggs per
10 litre. Trays were labelled and held at 13°C±1°C.
11 After 7 to 8 days the total content of the tray was
12 poured into an aquarium tank, which resulted in a
13 homogenous mixture of eggs and water. Six
14 replicate one-millilitre samples were removed from
15 the tank and larval numbers were assessed. Total
16 larval numbers and overall survival was determined
17 for each tray.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 Table 1. Example of data sheet and sampling of
 2 eggs for spawning

3

Female Ref.	L29♀.4	L29♀.5	L29♀.6	L29♀.7
Conditions/temp°C	Cold T/6-8	Cold T/6-8	Cold T/6-8	Cold T/6-8
Cold treatment period (days)	21	21	21	21
Initial wt(g)	3.7	3.9		
Sperm added (ml)	6	6	6	8
Fertilisation time (mins)	10	10	10	10
Count /1ml or 0.5ml	20	40	35	97
	44	46	31	112
	19	47	29	134
	29	57	29	129
	44	42	32	141
Σ	156	232	156	613
Mean	31.2	46.4	31.2	122.6
Sd	12.3	6.6	2.5	17.9
Vol. Of sample (ml)	0.5	0.5	0.5	0.5
Total volume (ml)	2000	2000	2000	2000
Water used (R/F)	R	R	R	R
Total (N)	124800	185600	124800	490400
Trays	3	4	3	10
No./tray	41600	46400	41600	49040

4

5 Larval counts are shown in Table 2.

6

7

8

9

1 Table 2. Results from larval counts

2

Larval Counts (mean of six replicate 1 ml samples)				
Female	L29♀.4	L29♀.5	L29♀.6	L29♀.7
Date	7/1/03	7/1/03	7/1/03	7/1/03
Tray No	7	9	5	14
1				
2	2	14	9	15
3	13	14	9	13
4		13		15
5				7
6				6
7				8
8				7
9				12
Σ	22	50	23	97
μ	7	13	8	11
Total in all trays	36667	62500	38333	53889
Total nominal survival (%)	88.1	134.7	92.1	109.9
Total larvae	110000	250000	115000	538889

3

4

Example 2

5

Re-initiation of maturation in the lugworm

6

Arenicola marina

7

8

A sample of worms which underwent the prescribed

9

treatment of cold and successfully produced and

10

spawned eggs and sperm in November and December

11

2002 as described in Example 1 were reconditioned

12

into enriched broodbeds containing algae (as

1 described in WO-A-03/007701) in December 2002
2 following spawning. After two months in the
3 enriched broodbeds the animals were removed from
4 the bed and placed into a pot of filtered sea water
5 and held at a temperature of 6°C for 48 hours.
6 After this cold treatment the animals were
7 gradually reconditioned into warm water conditions
8 for a further 2 months. Animals were tested
9 periodically using methods of coelomic biopsy for
10 maturity assessment.

11

12 At a late stage of maturation the animals were
13 removed from the broodbed and segregated into
14 individual pots of sea water as described in
15 Example 1. The animals were sampled and then
16 placed into cold conditioning (6°C) for 21 days.
17 The following methodologies were carried out to
18 initiate spawning and the controlled fertilisation
19 of eggs and production of larvae. Spawning was
20 successfully initiated in both males and females.
21 Results from some of the females are presented in
22 Table 3. Larval counts from the samples are
23 presented in Table 4.

24

25

26

27

28

29

30

31

32

1 Table 3. Details of out-of-season spawning by
 2 *Arenicola* sp. after re-initiation of maturation via
 3 cold treatment and growth in enhanced substrates.

4

Female Ref.	L26.?1	L26.?2	L26.?3	L26.?4
Temp. °C	6-8	6-8	6-8	6-8
Cold treatment period (days)	21	21	21	21
Sperm added (ml)	8	8	8	8
Fertilisation time (mins)	10	10	10	10
	36	79	21	8
Count /1ml or 0.5ml	25	67	19	12
	29	73	34	8
	68	92	35	5
	25	55	25	8
Σ	183	366	134	41
Mean	36.6	73.0	26.8	8.2
Sd	18.1	13.8	7.4	2.5
Vol. Of sample (ml)	0.5	0.5	0.5	0.5
Total volume (ml)	2000	2000	2000	2000
Water used (R/F)	R	R	R:F	R
Total (N)	146400	292800	107200	32800
Trays	3	6	3	1
No./tray	48800	48800	35733	32800

5

6 R = recirculated seawater,

7 F = filtered seawater.

8

9

10

1 Table 4. Larval counts/survival of larvae 7 to 8
 2 days after fertilisation (applicable to Table 3)
 3

Larval Counts (mean of six replicate 1ml samples)				
Female	L26.?1	L26.?2	L26.?3	L26.?4
Date				
Tray No.	5	6	5	4
1				
2	7	6	2	
3	4	4	3	
4		6		
5		4		
6		5		
Σ	16	31	10	4
μ	5	5	3	4
Total in all trays	26667	25833	16333	22000
Total survival (%)	55	53	46	67
Total larvae	80000	155000	49000	22000

4

5 Larval survival was lower than those obtained
 6 during the breeding period.

7

8 Example 3

9 Using temperature manipulation to extend the period
 10 of spawning in cultured populations of *Arenicola*
 11 *marina* resulting in spawning up to 6 months later
 12 than the natural breeding season

13

14 It is possible to extend the breeding season of *A.*
 15 *marina* by manipulation of the water temperature of
 16 beds used to house the animals. The final stages

1 of maturation leading to spawning of *A. marina* can
2 be controlled by maintaining the water temperature
3 above 13°C. Dropping the temperature below 13°C
4 initiates final maturation and consequently results
5 in spawning by both males and female *A. marina* at
6 times substantially different to the natural
7 breeding season. This substantially improves the
8 efficiency of the lugworm culture system.

9

10 Some degradation of eggs within the coloemic cavity
11 occurs when females, housed in suitable substrates,
12 are maintained at elevated temperatures
13 (temperatures above 13°C) for prolonged periods of
14 time (in excess of 2 months). There is variation
15 in egg condition within and between females. There
16 is nevertheless a significant production of
17 fertilisable eggs and or sperm outside the breeding
18 season and the embryos and larvae so produced can
19 be reared in the standard culture conditions as
20 previously described (see WO-A-03/007701).

21

22 The observed time of spawning for *Arenicola marina*,
23 in the wild in Northumberland, UK was recorded
24 between October 30, 2002 and November 4, 2002.

25

26 In excess of two hundred animals were each housed
27 in Beds L29, L28, L26, L25, L24 and L23 over the
28 summer period (May to September 2002) and
29 maintained thereafter for various periods of time
30 as described below. The water temperature provided
31 in the beds was maintained above 13°C. The change
32 in maturity status of *A. marina* in each bed was

1 monitored via sampling of worms using method of
 2 coelomic biopsy as described previously. Animals
 3 were assessed and, when deemed suitably mature (see
 4 above) the worms were removed and exposed to a cold
 5 treatment comprising exposure to 6 to 8°C for
 6 periods of up to 21 days.

7

8 Worms were removed from beds at the times presented
 9 in Table 5.

10

11 Table 5. The timing at which worms were removed
 12 from the beds and placed into cold treatment.

13

Month	Bed (worms removed for cold treatment)
November	L25, L29, L26
December	L23, L24
January	L28, L29
February	L24
March	Mature animals were available from L23 but larvae were not produced.
April	Mature animals were available from L23 but larvae were not produced.
May	L23

14

15 By the methods described it was possible to achieve
 16 fertilisation success in eggs derived from these
 17 worms in all months from November 2002 to May 2003
 18 (Mature animals were present in March and April).

19 Survival rates for larvae in May was lower than
 20 might be achieved at other times being
 21 approximately 20-30% but given the high fecundity
 22 of lugworms this nevertheless provides a means by

1 which to obtain substantial numbers of larvae
2 outside the natural breeding season. The standard
3 cold treatment technologies resulted in spawning
4 after the specified 14 to 21 days.

5

6 Tables 6a-c. provide specific examples of
7 treatments producing spawning animals and viable
8 larvae outside the normal breeding season.

9

10 The effectiveness of these treatments may be
11 further improved by keeping the larvae prior to
12 being stocked out to the production system. The
13 larvae of *A. marina* can be held in trays with sand
14 and static or recirculating seawater in excess of 6
15 months with minimum observed mortality (<20%). By
16 combining these approaches larvae can be
17 effectively stocked out to production beds
18 throughout the year.

1 Table 6a.

2 Batch 1 - Examples of females and males used for fertilisation procedures 2002/2003

Batch	Batch 1		
Date	08/11/2002	08/11/2002	08/11/2002
Female Ref.	L26♀14	L26♀15	L26♀16
Origin	L26	L26	L26
Temp. °C	6-8	6-8	6-8
Cold treatment period (days)	14	14	14
Initial wt(g)	6.3	3.4	4.1
Sperm added (ml)	5	5	5
Males	H.♂1a	H.♂B.4	H.♂B.5
	♂♂♂ mix H	H.♂B.5	L26.♂9
Fertilisation time (mins)	10	10	10
Count /1 ml or 0.5 ml	11 8 18 28 8 73 Mean Sd	23 24 24 16 10 97 14.6 8.5	38 45 49 44 37 213 42.6 5.0
vol. of sample (ml)	1.0	1.0	0.5
total volume (ml)	5000	5000	2000
water used (R/F)	R	R	R
Total (N)	73000	97000	170400
Trays	2	2	5
No./tray	36500	48500	34080

1 Table 6b.

2 Batches 3 and 4; Examples of females and males used for fertilisation procedures 2002/2003

Batch	Batch 3			Batch 4		
Date	07/01/2003	08/01/2003	08/01/2003	15/02/2003	16/02/2003	16/02/2003
Female Ref.	L23♀.9	L24♀.8	L24♀.10	L28♀2	L29♀10	L28♀2
Origin	L23	L24	L24			
Temp. °C	6-8	6-8	6-8	6-8	6-8	6-8
Cold treatment period (days)	21	21	21	21	21	21
Initial wt (g)	5.3	12.1	8.5	unk	unk	unk
Sperm added (ml)	6	5	5	6	4	3
Males	L23♂.3	L24♂.5	L24♂.5	L28♂.9	L28♂.9	L28♂.9
	L24♂.1, 7		L28♂.3	L28♂.11	L28♂.11	L28♂.11
Fertilisation time (mins)	10	10	10	15	15	15
Count /1 ml or 0.5 ml	44	17	42	30	70	5
	52	17	71	41	56	7
	43	10	56	39	39	10
	52	23	41	30	44	8
	50	13	54	31	39	14
	241	80	264	171	248	44
Mean	48.2	16	52.8	34.2	49.6	8.8
Sd	4.4	4.9	12.2	5.4	13.4	3.4
vol. of sample (ml)	0.5	0.5	0.5	0.5	0.5	0.5
total volume (ml)	2000	2000	2000	4300	2000	2000
water used (R/F)	R	R	R	F	F	F
Total (N)	192800	64000	211200	294120	198400	35200
Trays	2	1	3	6	4	1
No./tray	96400	64000	70400	49020	49600	35200

Batch	Batch 6		
Date	13/05/2003	13/05/2003	13/05/2003
Female Ref.	L23♀1	L23♀2	L23♀9
Origin	L23	L23	L23
Temp. °C	6-8	6-8	6-8
Cold treatment period (days)	21	21	21
Initial wt (g)	unk	unk	unk
Sperm added (ml)	7	7	7
Males	L23♂.3	L23♂.3	L23♂.3
	ctr0om; 6°C		
Fertilisation time (mins)	20	20	20
Count /1 ml or 0.5 ml	192 109 117 139 171 728 Mean Sd	122 101 111 105 85 524 145.6 35.4	165 112 152 133 141 703 140.6 20.0
vol. of sample (ml)	0.5	0.5	0.5
total volume (ml)	2000	3000	2000
water used (R/F)	R	R	R
Total (N)	582400	628800	562400
Trays	1	4	1
No. /tray	150000	157200	150000

3 Key: L - bed code; unk - unknown; R- recirculated, filtered sea water; F - filtered sea water

1 **References**

2

3 Bentley, M.G., Clark, S., Pacey, A.A. (1990). "The
4 role of arachidonic acid and eicosatienoic acids
5 in the activation of spermatozoa in *Arenicola*
6 *marina* L. *Annelida:Polychaeta*". *Biological*
7 *Bulletin* 178 (1): 1-9.

8

9 Bentley, M.G. and Hardege, J.D. (1996). "The role
10 of the fatty acid hormone in the reproduction of
11 the polychaete *Arenicola marina*". *Invertebrate*
12 *Reproduction and Development* 30 (1-3): 159-165.

13

14 Clark, R. B., and Olive, P. J. W. (1973). "Recent
15 advances in polychaete endocrinology and
16 reproductive biology." *Oceanography and marine*
17 *biology, annual review*, 11, 176-223.

18

19 D'Asaro et al., 1976, in "Lugworm Aquaculture",
20 Report No. 16, State University System of Florida,
21 Sea Grant College Program (FLA Reg. 3:331/16/976) .

22

23 Fauchald, K., and Jumars, P. A. (1979). "The diet
24 of worms: a study of polychaete feeding guilds."
25 *Oceanography and Marine Biology: Annual Review*, 17,
26 193-284.

27

28 Gambi, M. C., Castelli, A., Giangrande, A., Lanera,
29 P., Prevedelli, D., and Zunarelli-Vandini, R.
30 (1994). "Polychaetes of commercial and applied
31 interest in Italy: an overview." *Memoires de la*

1 *Musee nationale d' Histoire naturelle*, 162, 593-
2 603.

3

4 Jumars, P. A. (1993). "Gourmands of mud: diet
5 selection in marine deposit feeders." *Diet*
6 *Selection: An inter-disciplinary Approach to*
7 *Foraging Behaviour*, R. N. Hughes, ed., Blackwell
8 *Scientific*, Oxford, 124-156.

9

10 Olive, P. J. W. (1993). "Management of the
11 exploitation of the Lugworm *Arenicola marina* and
12 the Ragworm *Nereis virens* (Polychaeta) in
13 conservation areas." *Aquatic Conservation: Marine*
14 *and Freshwater Ecosystems*, 3(1), 1-24.

PCT/GB2004/004596

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.