Universidad de Costa Rica

Escuela de Ingeniería Eléctrica

IE-0624: Laboratorio de Microcontroladores

Laboratorio 4 Estación Metereológica

Gokeh Ávila Blanco, B50747 Marlon Lazo Coronado, B43717

Profesor: MSc. Marco Villalta Fallas

9 de junio de 2022

Índice

1.	Intr	roducción
2 .	Not	a teórica
	2.1.	
	2.2.	Caracteristicas del Microcontrolador
	2.3.	
	2.4.	
	2.5.	Comunicaciones USART
	2.6.	Sensor DHT22
	2.7.	Amplificador operacional OPA188
	2.8.	
	2.9.	
	2.0.	2.9.1. EEPROM.h
		2.9.2. DHT.h
		2.9.3. PCD8544.h
		2.9.4. Servo.h
	2 10	LowPower.h
	2.10.	2.10.1. Adafruit PCD8544
		2.10.1. Adamut 1 CD8544
		2.10.2. Socat 2.10.3. PySerial
		2.10.3. 1 ySerial
		2.10.4. pano.mq.c.cncm
3.	List	ca de componentes y precios
4.	Dise	eño del circuito
5.	Aná	álisis de resultados
6.	Enla	ace al repositorio de Github
7	Con	nclusiones y recomendaciones
٠.	Con	iciusiones y recomendaciones
8.	Ane	
		Datasheet ATmega2560
		Datasheet PCD8544
		Datasheet Hydreon RG-11
		Datasheet Termistor
		Datasheet DHT22
	8.6.	Datasheet OPA188
Ír	ıdic	ce de figuras
	1.	Arduino Mega 2560.[1]
	2.	TQFP-pinout ATmega2560.[2]
	3.	Diagrama esquemático del Hydreon RG-11.[3]
	4.	Caracteristicas eléctricas del Hydreon RG-11.[3]
	5.	Diagrama de bloques de transmisión simplificado.[4]
	6.	Diagrama de bloques de recepción simplificado.[4]
	7.	Caracteristicas eléctricas del DHT22.[5]
	8.	Caracteristicas eléctricas del OPA188.[6]
	9.	circuito de la estación meteorológica
	9. 10.	Sensor de temperatura
	10. 11.	Sensor de viento
	11. 12.	Sensor de luz.
	12. 13.	Sensor de lluvia.
	13. 14.	
		Controlador de dirección para el panel solar
	15.	Circuito para nivel de batería
	16. 17.	Datos recibidos por USART en el script de Python
	11.	Datos recipique poi ubanti en el script de fython

18.	Caso de lluvia	13
19.	Caso de no lluvia	13
20.	Latest telemetry en things board con varias pruebas diferentes	13
21.	Resultados en el dashboard de thingsboard	14
22.	Resultados en el dashboard de thingsboard	14

1. Introducción

En este laboratorio 4 del curso laboratorio de Microcontroladores se utilizó el ambiente de microcontrolador Arduino Mega, para desarrollar el diseño de una estación metereológica. El sistema cuenta con una pantalla LCD modelo PCD8544 donde se pueden visualizar los datos para temperatura, humedad, viento, lluvia y carga de batería. Por otro lado el sistema cuenta con una función para guardar un registro de los datos que se van midiendo, mediante un script de python se simula la función de un shield que recibe los datos que genera el sistema y los transmite a una servidor de Iot para monitorear los datos y representarlos de una manera más amigable al usuario.

2. Nota teórica

2.1. Arduino Mega 2560 Caracteristicas

Arduino Mega es básicamente una placa que contiene integrado un conjunto de elementos para conformar un ambiente en el que se pueda utilizar el microcontrolador ATmega2560, por eso está listo para conectarlo a la computadora y cargarle un firmware que se escribe en lenguaje Arduino (muy parecido a \mathbf{C}) y para el cual se puede utilizar el ambiente de desarrollo de la ID que provee la empresa. Ademas está listo para alimentarlo yase mediante los puertos del PC o mediante baterias en coso que se requiera en lugares distante, como por ejemplo en una estación metereológica [1]

Especificaciones Técnicas				
Microcontrolador	ATmega2560			
Tensión de funcionamiento	5V			
Voltaje de entrada (recomendado)	7-12V			
Voltaje de entrada (límite)	6-20V			
Pines de e/s digitales	54 (15 PWM)			
Pines de entrada analógica	dieciséis			
Corriente cc por pin de e/s	20mA			
Corriente cc para clavija de 3,3 v	$50 \mathrm{mA}$			
Memoria flash	256 KB			
SRAM	8 KB			
EEPROM	4 KB			
Velocidad de reloj	16 MHz			
Led_construido	13			
Longitud	101,52 mm			
Ancho	53,3 mm			
Peso	37 gramos			

Figura 1: Arduino Mega 2560.[1]

2.2. Caracteristicas del Microcontrolador

Es el ATmega2560 es un microcontrolador con características muy avanzadas y que está basado en la arquitectura AVR RISC, ejecuta poderosas instrucciones de ensamblador en un solo ciclo de reloj. Suspropiedades optimizadas le permiten lograr un buen equilibrio entre el consumo de energía y la velocidad de procesamiento.

Figura 2: TQFP-pinout ATmega2560.[2]

Especificaciones Técnicas				
Nombre	Valor			
Tipo de memoria de programa	Destello			
Tamaño de la memoria del programa (KB)	256			
Velocidad de CPU (MIPS/DMIPS)	dieciséis			
SRAM (KB)	8,192			
Datos EEPROM/HEF (bytes)	4,096			
Periféricos de comunicación digital	4-UART, 5-SPI, 1-I2C			
Capturar/Comparar/Periféricos PWM	Captura de 4 entradas, 4 CCP, 16PWM			
Temporizadores	2 de 8 bits, 4 de 16 bits			
Número de comparadores	1			
Rango de temperatura, (°C)	-40 a 85			
Rango de voltaje de funcionamiento (V)	1,8 a 5,5			
Número de pines	100			

2.3. Hydreon RG-11

Debe configurar los interruptores DIP para que el RG-11 se comporte de la manera correcta para su aplicación. Monte el pluviómetro donde obtiene una medición clara de la variable a medir. El brazo de montaje está diseñado para caber sobre una correa de 0.75"(19~mm) de ancho. Dos agujeros de 6.35~mm se colocan a 19~mm. Para aplicaciones de conductos, se puede quitar el brazo de montaje y perforar el orificio de cableado con un taladro escalonado para acomodar un conector de compresión EMT de 1/2 o un estilo similar de conector de conducto.[3]

Figura 3: Diagrama esquemático del Hydreon RG-11.[3]

Parameter	Value		
Input Voltage	Nominal 12 VDC (Range 10 -15 VDC) 50V surge Reverse polarity protected to 50V		
Current Drain	15 mA nominal. (No outputs on, not raining, no heater) about 1.5 mA in micro-power sleep mode. 50 mA with output on. 55 mA - With heater on, 12V DC input.		
Output	Relay closure, Normally Open and Normally Closed contacts. Max load 1A, 24 VDC.		
Operating Temperature range	-40 C to +60C		

Figura 4: Características eléctricas del Hydreon RG-11.[3]

2.4. Protocolo SPI

La transmisión de información entre dispositivos maestro y esclavo se realiza de forma sincrónica a través de una señal de reloj, con cada pulso. La información que se envía consiste en una cadena de bits, en este caso, el Maestro envía bit por bit de información. Para comenzar la transmisión, el Maestro baja la señal del Selector a cero, lo que hace que el esclavo se active y se comienza el trasiego con un pulso de reloj al mismo tiempo que el primer bit es leído. También, el Maestro configura la señal de reloj usando una frecuencia que sea permitida por el esclavo. La intercomunicación que ocurre entre ambos es duplex: el Maestro envía un bit en la línea MOSI y el esclavo lo lee, mientras que el esclavo envía un bit en la línea MISO y el Maestro la lee.[7]

Señales que conforman la interfaz

- SCK: es el relój de sincronización. Con cada pulso se lee o se envía un bit. También llamado TAKT (en alemán).
- MOSI: correspponde a la salida del maestro y entrada del esclavo. También llamada SIMO.
- MISO: es la señal que sale del esclavo hacia el mestro. También conocida por SOMI.
- SC: sirve para seleccionar un esclavo, tambien para que el master active un esclavo. También llamada SSTE.

El reloj puede estar programado de manera que la transmisión del bit se realice en 4 modos diferentes, lo que se conocecomo polaridad y fase de la transmisión:[8]

- 1. Con el flanco de subida sin retraso.
- 2. Con el flanco de subida con retraso.
- 3. Con el flanco de bajada sin retraso.
- 4. Con el flanco de bajada con retraso.

2.5. Comunicaciones USART

USART del acrónimo (Universal Synchronous Asynchronous Receiver TransmitterSe), se le conoce también como interfaz de comunicaciones en serie, funciona mediante operación dúplex, lo que quiere decir que mediante dos pines puede enviar y recibir información al mismo tiempo. Además, puede operar en modo síncrono o asíncrono, por lo que los datos pueden estar o no acompañados de una señal de reloj. El transmisor y el receptor se pueden habilitar de forma independiente, si el puerto serial es habilitado, el USART controla ambos pines, y si alguno se utiliza para enviar o recibir datos, el otro no se puede utilizar como I/O de propósito general. [4]

- Puede recibir y transmitir.
- Funcionamiento asíncrono dúplex completo.
- omunicaciones RS-232 a un puerto serie de PC.
- Temperatura entre 0 y 50 ${}^{\circ}$ C. Margen error 2%.
- ecesita controlador para cambios de nivel

Figura 5: Diagrama de bloques de transmisión simplificado.[4]

Figura 6: Diagrama de bloques de recepción simplificado.[4]

2.6. Sensor DHT22

El DHT22 es un sensor de temperatura y humedad, que no transmite una señal analógica, por el contrario, los datos deben se ser procesados de forma digital, la humedad se censa mediante un circuito capacitivo, y la temperatura la mide mediante un termistor que está en contacto. Su tiempo de muestreo es máximo una vez cada 2 segundos. Se alimenta con un rango entre 3.3-6V.

Model	DHT22
Power supply	3.3-6V DC
Output signal	digital signal via single-bus
Sensing element	Polymer capacitor
Operating range	humidity 0-100%RH; temperature -40~80Celsius
Accuracy	humidity +-2%RH(Max +-5%RH); temperature <+-0.5Celsius
Resolution or sensitivity	humidity 0.1%RH; temperature 0.1Celsius
Repeatability	humidity +-1%RH; temperature +-0.2Celsius
Humidity hysteresis	+-0.3%RH
Long-term Stability	+-0.5%RH/year
Sensing period	Average: 2s
Interchangeability	fully interchangeable
Dimensions	small size 14*18*5.5mm; big size 22*28*5mm

Figura 7: Características eléctricas del DHT22.[5]

2.7. Amplificador operacional OPA188

Los amplificadores operativos de la serie OPAx188 utilizan técnicas de puesta a cero automáticas patentadas por TI para proporcionar un voltaje de compensación bajo (25, mx.) y una desviación casi nula con el tiempo y la temperatura. Estos amplificadores de corriente en miniatura, de alta precisión y baja quietud ofrecen una alta impedancia de entrada y una oscilación de salida de riel a riel dentro de los 15mV de los rieles. El rango de modo común de entrada incluye el riel negativo. Se pueden utilizar suministros individuales o dobles en el rango de +4,0V a +36V(2Va18V).

		OPAx188	UNIT
Supply voltage		±20, 40 (single supply)	V
Signal input terminals	Voltage	(V-) - 0.5 to (V+) + 0.5	V
Signal input terminals	Current ⁽¹⁾	±10	mA
Output short-circuit ⁽²⁾		Continuous	
Operating temperature		-55 to +125	°C
Storage temperature		-65 to +150	°C
Junction temperature		+150	°C
CCD ratings	Human body model (HBM)	1.5	kV
ESD ratings	Charged device model (CDM)	1	kV

Figura 8: Caracteristicas eléctricas del OPA188.[6]

2.8. Servomotores

Un servomotor es un sistema electromecánico que permite controlar con alta precisión una posición angular, la aceleración y velocidad, estas propiedades no se pueden adquirir con facilidad de un motor convencional. Dichas propiedades se logran combinando un sistema de engranajes con sensores pe posición, convirtiendo el movimiento mecánico en pulsos digitales interpretados por un controlador. Sirve como sensor, proporcionando retroalimentación de velocidad y posición. Por lo general se compara el diferencial de la posición para mantener el sistema estable en el valor deseado.

2.9. Librerias y componentes que se utilizaron

2.9.1. **EEPROM.h**

Esta biblioteca permite leer y escribir sobre los registros de la memoria EEPROM de la placa Arduino, dicha memoria es no volátil, por lo que los datos se mantienen si el Arduino se apaga. Para el Arduino uno de cuenta con una memoria EEPROM DE 1024, sin embargo, el Arduino mega como es de esperar tiene mayor capacidad con 4096 bytes. Entre las funciones que provee esta biblioteca se pueden encontrar read(), write(), update(), get() y put().[9]

2.9.2. DHT.h

Respescto al sensor de humedad, el simulIDE no cuenta con el sensor de humedad DHT, por lo que en vez de usar este sensor se usó una fuente de voltaje en su lugar. El sensor de humedad DHT tiene la librería DHT, esta librería es la que permite la comunicación con los sensores DHT11 y DHT22, para efector de nuestro proyecto se decidió utilizar el sensor DHT11, sensores de humedad/temperatura muy útiles para proyectos con Arduino. [?] Sin embargo ya antes se mencionó que el simulador que se está usando en el curso no cuenta con este componente.

2.9.3. PCD8544.h

Uno de los componentes utilizados es la pantalla LCD PCD8544, la cual se utiliza para poder visualizar en una pantalla alguna información del circuito con el que se está trabajando. Estas pantallas son populares por su basto uso, como por ejemplo en los antiguos celulares de la marca Nokia. Hablando ya más de la conexión de la pantalla tenemos que el pin CS se conecta a tierra y el pin RST se conecta al reset del Arduino, el primero de ellos sirve para hacer actualizaciones en la pantalla y el segundo para aplicar la señal de reset, después también se tiene el pin DIN y el D/C, donde el pin de DIN es la entrada de datos seriales y el D/C es el selector de modos.[10]

2.9.4. Servo.h

Esta biblioteca provee del soporte para que se pueda controlar varios tipos de servomotores. Hace un uso cuidadoso de los temporizadores: la biblioteca puede controlar 12 servos usando solo 1 temporizador Esta biblioteca es compatible con las arquitecturas avr, megaavr, sam, samd, nrf52, stm32f4, mbed, mbed_nano, mbed_portenta, mbed_rp2040, por lo que debería poder usarla en el Arduino Mega y Uno, entre otros.[11]

2.10. LowPower.h

La biblioteca Low Power es software libre, puede gestionar los estados de bajo consumo de Spresense, es compatible con las arquitecturas avr por lo que debería poder usarla en la mayoría de placas Arduino, incluida la mega.[12]

2.10.1. Adafruit PCD8544

Tenemos que básicamente esta librería es una librería de control de pantallas LCD PCD8544. [13] Para efectos de este proyecto se utilizó para conectar el Arduino UNO con la pantalla LCD PCD8544 usando el GPIO.

2.10.2. Socat

La utilidad socat es para transferencia de datos bidireccionales entre dos canales de datos independientes. Hay muchos tipos diferentes de canales que socat puede conectar, incluyendo: Archivos, pipes, dispositivos (línea serie, pseudoterminal, etc.), sockets (UNIX, IP4, IP6 - raw, UDP, TCP), sockets SSL, conexiones proxy CONNECT, descriptores de archivos (stdin, etc.), el editor de GNU (readline), programas y combinaciones de dos de ellos. Esta herramienta se considera la versión avanzada de netcat. Hacen cosas similares, pero socat tiene más funcionalidades adicionales, como permitir que varios clientes escuchen en un puerto, o reutilizar conexiones.[14]

2.10.3. PySerial

Basicamente la libreria PySerial sirve para leer los datos de un puerto serial usando Python. En nuestro caso lo utilizamos para leer los datos enviados del Arduino UNO por medio del puerto serial y escribirlos en el archivo .CSV que se mencionó arriba.[15]

2.10.4. paho.mqtt.client

Esta biblioteca contiene funciones que permiten la comunicación con una plataforma Iot, tales como iniciar seción, inscribir un toke, mantener la comunicación (loop), detener y publicar mensajes. La plataforma a la que se ha conectadoe es de uso libre y tiene dominio iot.eie.ucr.ac.cr.

3. Lista de componentes y precios

Componente	Unidad	Precio (\$)
Arduino Mega	1	40.50
LCD PCD8544-4988	1	154
DHT22	1	6.5
Amplificador OPA188	1	1,662
sensor LDR	1	0.47
JL-FSX2 4-20MA	1	4,113.00
Hydreon RG-11	1	80.85
Termistor de $5k\Omega$	1	1.10
Capacitor $100\mu F$	1	0.25
Resistencia 140Ω	1	336
Resistencia $1k\Omega$	1	0.40
Resistencia $10k\Omega$	1	0.82
Resistencia 100Ω	1	0.13
LED rojo	1	0.057
Switch de un polo	1	1,7
Potenciometro $100 \mathrm{k}\Omega$	1	2.15

4. Diseño del circuito

En la imagen de la figura 9 podemos ver el diseño realizado para la estación meteorológica.

Figura 9: circuito de la estación meteorológica

Luego para explicar un poco cada una de las partes del circuito, podemos empezar con la esquina superior izquierda, donde podemos ver el circuito que sirve para medir la temperatura, donde podemos ver que el circuito recibe una alimentación de 5V, luego es necesario crear un nivel de referencia contra el cual podamos comparar el valor medido por el sensor, esto porque los sensores de calor resistivos tienen una resistencia mínima más grande que cero, en este caso tenemos que la resistencia tiene un valor inicial de cien ohms, si usamos una resistencia de $4.9\mathrm{k}\Omega$, entonces vemos que ocupamos una referencia de $100\mathrm{mV}$, y ya por último solo se compara el valor medido vs la referencia y se amplifica para que los valores vayan de $0\mathrm{V}$ a $5\mathrm{V}$.

Figura 10: Sensor de temperatura.

Después tenemos el sensor de velocidad de viento, figura 11, para este sensor lo que se utilizó fue un amplificador de transductancia, o también se les conoce como un convetidor de tensión a corriente, como los valores de corriente que se quieren son de 4mA a 20mA por lo que a partir de la fuente de tensión variable podemos determinar el valor de corriente que llega al pin del Arduino Mega entonces dicha corriente en la que brinda información de la velocidad de viento. Luego si aplicamos la ley de corrientes en el nodo que une el polo positivo del amplificador, podemos demostrar que la corriente de carga depende de la resistencia R, asumiendo que usa el mismo valor de resistencia, y de la tensión de salida, entonces si decimos que la tensión del nodo es V_n tenemos que:

$$I_L = \frac{V_{in} - V_n}{R} + \frac{V_o - V_n}{R}$$

$$I_L R = V_{in} + V_o - 2V_n$$

$$I_L R = V_{in} + 2V_n - 2V_n$$

$$I_L = \frac{V_{in}}{R}$$

Por lo que viendo la ecuación anterior si se varía el valor de la resistencia R se puede variar el valor de la corriente de salida y de la tensión de entrada, y para efectos del circuito de nosotros, si usamos una fuente de tensión variable, entonces obtenemos una corriente variable.

Figura 11: Sensor de viento.

Otro de los sensores es el sensor de Luz o sensor de intensidad luminosa, figura 12, para este sensor debemos considerar que entre menor sea la intensidad luminosa, mayor va a ser la resistencia, y una forma en la que se puede mitigar eso es usando una resistencia fija del mismo valor que la resistencia máxima del sensor y así tendremos una varianza de 0V a 2.5V, ya con lo anterior podemos usar un amplificador no inversor para pasar a un nivel de 0V a 5V y obtener el valor de intensidad luminosa.

Figura 12: Sensor de luz.

Para lo que es el sensor de lluvia, figura 13, tenemos que este sensor básicamente está compuesto por un relé el cual ayuda a cambiar entre un valor de tensión que pasa primero por un divisor, o entre 0V, lo cual estamos utilizando para decir que cuando pasa tensión es igual a que esté lloviendo y si no pasa tensión entonces es porque no está lloviendo.

Figura 13: Sensor de lluvia.

Luego con respecto al control de la posición del panel solar, figura 14, primero debemos mencionar que es necesario poder usar un rango de valores de tensión para que así al ser procesados por el Arduino sea posible obtener los ángulos que van de 0 a 180 grados, por lo que entonces usamos el potenciómetro como divisor de tensiones y entonces así se permite el cambio de tensión respecto a la alimentación, dicha variación de tensión va de 0V a 5V, entonces los ángulos van a cambiar de 0 a 180 grados.

Figura 14: Controlador de dirección para el panel solar.

Y por último para medir la batería se utiliza el circuito de la figura 15, el cual básicamente consiste de un divisor de tensiones, para pasar de [0V, 12V] a [0V, 5V], con lo cual se puede medir el valor de la batería en el Arduino y así determinar cuando la batería está en un estado bajo.

Figura 15: Circuito para nivel de batería.

5. Análisis de resultados

Para esta sección vamos a demostrar el funcionamiento del proyecto con pruebas de imágenes del mismo, en el caso de la comunicación USART basta con enseñar un screen shot del monitor serial con los diferentes datos: velocidad del viento, intensidad luminosa, temperatura, humedad y lluvia. Luego para el sensor de temperatura se resume al siguiente cálculo: Temp = Lectura x 100/1022, donde 1022 es el máximo valor con temperatura máxima, la correcta lectura lo podemos ver en la terminal de bash y en la pantalla LCD. Para el sensor de lluvia para comprobar su funcionamiento de igual manera basta con ver como varía el resultado en la pantalla LCD al variar la posición del relé en el circuito para el sensor de lluvia. Para corroborar el funcionamiento de la parte de la plataforma IOT, things board, podemos ver como se logró realizar la conexión y como se pudo observar los resultados en un dashboard de things board, podemos ver los resultados para temperatura, velocidad de viento, humedad, intensidad luminosa y lluvia. Algo importante a mencionar aquí es que cuando se estaba realizando la parte de things board se estaba probando con el navegador firefox, por lo que hicimos muchas pruebas con diferentes variaciones en el código para ponerlo en formato json distintos, pero luego se fue a consulta con el profesor y nos explicó que el error estaba en el navegador utilizado, por lo que en la imagen de latest telemetry de things board hay varias lecturas de los valores, ver figura 20.

Figura 16: Valores medidos reflejados en la pantalla LCD

```
gokeh@ubuntu:~/Documents/Laboratorios_Microcontroladores/Laboratorio4/Laboratori
o4/src$ python3 to_mqtt.py
Connecting to broker iot.eie.ucr.ac.cr
Subscribing to topic v1/devices/me/telemetry
Connected OK with code 0
{"temperatura":"51","Humedad":"0.00","Luz":"451","Viento":"49.62","Lluvia":"solia","Carga":"0"}
```

Figura 17: Datos recibidos por USART en el script de Python.

Figura 18: Caso de lluvia

Figura 19: Caso de no lluvia

Figura 20: Latest telemetry en things board con varias pruebas diferentes.

Figura 21: Resultados en el dashboard de thingsboard

Figura 22: Resultados en el dashboard de thingsboard

6. Enlace al repositorio de Github

Repositorio laboratorio 4: https://github.com/gokman26/Laboratorio4.git

7. Conclusiones y recomendaciones

■ Tomar en cuenta que con el uso de bibliotecas externas es posible encontrar problemas en el uso de interrupciones por lo que puede ser necesario buscar alternativas a estas bibliotecas.

- La memoria EEPROM, al ser no volátil, permite almacenar datos aunque el microcontrolador sufra una perdida de energía.
- Es relevante considerar que algunos microcontroladores cuenta con varias interrupciones de tiempo y con contadores de diferente tamaño, que se pueden utilizar según la necesidad del proyecto.
- Para la utilización de thingsboard es recomendable usar el navegador de google chrome y no firefox, ya que sino los valores leídos no se ven reflejados en el apartado de Latest Telemetry.
- El uso de plataformas IoT permite monitorear y controlar dispositivos de forma remota. Esto es importante en situaciones donde el dispositivo se encuentra en un lugar de difícil acceso.

Referencias

- [1] A. Store, "Arduino mega 2560 rev3," 2021.
- [2] ATtemel, 8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash. Atmel, 2011.
- [3] H. Corporation, "Model rg-11 optical rain gauge," 2015.
- [4] M. Tecnologi, USART Using the USART in Asynchronous Mode. Microchip Tecnologi, 2001.
- [5] L. Aosong Electronics Co., "Digital-output relative humidity temperature sensor/module," 2013.
- [6] T. Instrument, "0.03-v/°c drift,low-noise,rail-to-railoutput,36-v,zero-driftoperational amplifiers," 2011.
- [7] A. A. Gazi, O., State Machines using VHDL: FPGA Implementation of Serial Communication and Display Protocols. Springer, 2021.
- [8] K. D, "Introducción a la interfaz de periféricos en serie. embedded," 2002. Disponible en: https://web.archive.org/web/20061111110015/http://www.embedded.com/showArticle.jhtml? articleID=9900483.
- [9] D. Arduino.cc, "Biblioteca eeprom," 2022.
- [10] V. García, "Lcd's gráficos (pcd8544)," 2013.
- [11] R. Arduino.cc, "Servo control del dispositivo," 2022.
- [12] R. Arduino.cc, "Low-power," 2022.
- [13] ladyada, "adafruit_pcd8544," 2018.
- [14] by Evans Amoany, "Getting started with socat, a multipurpose relay tool for linux," 2020.
- [15] L. Llamas, "Controlar arduino con python y la librerla pyserial," 2016.

8. Anexos

8.1. Datasheet ATmega2560

Features

- High Performance, Low Power Atmel[®] AVR[®] 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16MHz
 - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 64K/128K/256KBytes of In-System Self-Programmable Flash
 - 4Kbytes EEPROM
 - 8Kbytes Internal SRAM
 - Write/Erase Cycles:10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/ 100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
 - Endurance: Up to 64Kbytes Optional External Memory Space
- Atmel[®] QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix® acquisition
 - Up to 64 sense channels
- JTAG (IEEE std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four 8-bit PWM Channels
 - Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits (ATmega1281/2561, ATmega640/1280/2560)
 - Output Compare Modulator
 - 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)
 - Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)
 - Master/Slave SPI Serial Interface
 - Byte Oriented 2-wire Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
 - 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)
 - 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)
 - RoHS/Fully Green
- Temperature Range:
 - -40°C to 85°C Industrial
- **Ultra-Low Power Consumption**
 - Active Mode: 1MHz, 1.8V: 500μA
 - Power-down Mode: 0.1µA at 1.8V
- Speed Grade:
 - ATmega640V/ATmega1280V/ATmega1281V:
 - 0 4MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V
 - ATmega2560V/ATmega2561V:
 - 0 2MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V
 - ATmega640/ATmega1280/ATmega1281:
 - 0 8MHz @ 2.7V 5.5V, 0 16MHz @ 4.5V 5.5V
 - ATmega2560/ATmega2561:
 - 0 16MHz @ 4.5V 5.5V

8-bit Atmel
Microcontroller
with
64K/128K/256K
Bytes In-System
Programmable
Flash

ATmega640/V ATmega1280/V ATmega1281/V ATmega2560/V ATmega2561/V

Preliminary Summary

1. Pin Configurations

Figure 1-1. TQFP-pinout ATmega640/1280/2560

8.2. Datasheet PCD8544

Philips Semiconductors Product specification

48 × 84 pixels matrix LCD controller/driver

PCD8544

1 FEATURES

- · Single chip LCD controller/driver
- 48 row, 84 column outputs
- Display data RAM 48 × 84 bits
- · On-chip:
 - Generation of LCD supply voltage (external supply also possible)
 - Generation of intermediate LCD bias voltages
 - Oscillator requires no external components (external clock also possible).
- External RES (reset) input pin
- Serial interface maximum 4.0 Mbits/s
- CMOS compatible inputs
- Mux rate: 48
- Logic supply voltage range V_{DD} to V_{SS}: 2.7 to 3.3 V
- Display supply voltage range V_{LCD} to V_{SS}
 - 6.0 to 8.5 V with LCD voltage internally generated (voltage generator enabled)
 - 6.0 to 9.0 V with LCD voltage externally supplied (voltage generator switched-off).
- Low power consumption, suitable for battery operated systems
- Temperature compensation of V_{LCD}
- Temperature range: -25 to +70 °C.

2 GENERAL DESCRIPTION

The PCD8544 is a low power CMOS LCD controller/driver, designed to drive a graphic display of 48 rows and 84 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components and low power consumption.

The PCD8544 interfaces to microcontrollers through a serial bus interface.

The PCD8544 is manufactured in n-well CMOS technology.

3 APPLICATIONS

· Telecommunications equipment.

4 ORDERING INFORMATION

TYPE NUMBER		PACKAGE				
TIPE NOWBER	NAME	DESCRIPTION	VERSION			
PCD8544U	-	chip with bumps in tray; 168 bonding pads + 4 dummy pads	_			

1999 Apr 12 3

Philips Semiconductors Product specification

48×84 pixels matrix LCD controller/driver

PCD8544

5 BLOCK DIAGRAM

4

1999 Apr 12

8.3. Datasheet Hydreon RG-11

RAIN GAUGE CONNECTIONS

EQUIVALENT SCHEMATIC

RAIN GAUGE WIRING EXAMPLES

Specifications

Parameter	Value
Input Voltage	Nominal 12 VDC (Range 10 -15 VDC) 50V surge Reverse polarity protected to 50V
Current Drain	15 mA nominal. (No outputs on, not raining, no heater) about 1.5 mA in micro-power sleep mode. 50 mA with output on. 55 mA - With heater on, 12V DC input.
Output	Relay closure, Normally Open and Normally Closed contacts. Max load 1A, 24 VDC.
Operating Temperature range	-40 C to +60C

DIP Switches

Set the DIP switches for the application according to the tables below. Generally, a few switch positions (5, 6, and 7) set the overall mode of operation, and others (1, 2, 3, 4) adjust the behavior within the modes. In the tables, 1 = Switch on, 0 = Switch off, X = switch in either position.

Software Revision

This manual corresponds to software revision 016. The software revision is printed on a sticker place on the connector block. See www.rainsensors.com (click on "support") for information about differences in software revisions. Differences are generally minor.

Switch 8 is Enable Micro-power Sleep Mode in most applications.

Most applications will use SW 8 off. If micro-power is enabled, the low-power heater is disabled. In micro-power mode, if a long time (about 20 min) has elapsed since the last rain was detected, the unit will enter a less sensitive sleep mode. A large drop will cause it to exit sleep mode and resume normal operation. This is for battery or solar powered applications. Micro-power mode is disabled in Condensation sensing mode and in irrigation mode. Switch 8 must be off for First Flush Controller. The unit will not read the DIP switches during sleep.

OUT LED

The LED in the center of the circuit board turns on when OUT is on, as an aid to debugging.

Condensation

Generally, the RG-11 will sense condensation as if it were rainfall, but this seldom amounts to a significant accumulation of water. The built-in low power heater (DIP SW 8 off) will tend to reduce condensation.

Ambient Light Interference

The RG-11 is almost completely immune to the effects of ambient light, and may freely be mounted in direct sunlight.

Heater Notes

A built-in low power (0.25W) heater extends operation of the device to freezing (32 F or 0C). This is disabled if the micro-power (SW 8) is enabled. Note that this is a very modest amount of power; it will tend to drive off a modest amount of frost, but will not melt ice.

Dark Sensing

Turns output on when it is dusk-- nominally less than 2000 lux. This is for applications such as retracting sun-shields in the evening, when they are not needed. (Only in Mode 1, "It's Raining" applications.)

LED Flicker / Relay Buzz

If the relay and LED remain on for a long period of time (seconds), the LED may flicker, and the relay may make a barely audible buzz. This is because the RG-11 pulse-width modulates the relay drive signal to reduce current consumption. It does this to prevent excessive heat in the RG-11. This does not affect functionality in any way.

J2 Connector

J2 is a pin-field on 0.1" centers, used for programming, development, and testing of the RG-11. Most applications do not connect to J2, and we make this information available only for special applications.

Connector field is 0.025" square pins on 0.1" centers. An example compatible connector is Molex part number 22-01-3067. This is available from Digi-Key as part number WM2004-ND. The necessary crimp-on wire terminals are Molex 08-55-0131 / DigiKey WM4591-

J2 Pin assignments

J2 - 1 GND J2 - 2 +5V OUT

J2 - 3 SW4

J2 - 4 SW1

J2 - 5 SW2

J2 - 6 RS232 and SW 5.

Remote Switching

These connections may be used to remotely operate the corresponding switches, by grounding the connections. This can be used for operator-accessible sensitivity adjustment in wiper control applications.

RS-232 communications

Requires an external resistor. See the "support" link on www.rainsensors.com. Modes that require SW 5 on (It's Raining, Wiper Control and First Flush) cannot use RS-232.

8.4. Datasheet Termistor

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
I _{sen(cont)}	continuous sensor current	in free air; $T_{amb} = 25 ^{\circ}C$	-	40	mA
		in free air; T _{amb} = 150 °C	-	2	mA
T _{amb}	ambient temperature		– 55	+150	°C

6. Characteristics

Table 6. Characteristics

 T_{amb} = 25 °C; in liquid; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R ₂₅	sensor resistance	$I_{sen(cont)} = 1 \text{ mA}$				
		KTY81/110	990	-	1010	Ω
		KTY81/120	980	-	1020	Ω
		KTY81/121	980	-	1000	Ω
		KTY81/122	1000	-	1020	Ω
		KTY81/150	950	-	1050	Ω
		KTY81/210	1980	-	2020	Ω
		KTY81/220	1960	-	2040	Ω
		KTY81/221	1960	-	2000	Ω
		KTY81/222	2000	-	2040	Ω
		KTY81/250	1900	-	2100	Ω
TC	temperature coefficient		-	0.79	-	%/K
R ₁₀₀ /R ₂₅	resistance ratio	T_{amb} = 100 °C and 25 °C	1.676	1.696	1.716	
R ₋₅₅ /R ₂₅	resistance ratio	T_{amb} = -55 °C and 25 °C	0.480	0.490	0.500	
ΔR_{25}	drift of sensor resistance at 25 °C	10000 h continuous operation; T _{amb} = 150 °C				
		KTY81/1 series	-	1.6	-	Ω
		KTY81/2 series	-	3.2	-	Ω
$ au_{th}$	thermal time constant	in still air	<u>[1]</u> -	30	-	s
		in still liquid	<u>[1]</u> -	5	-	s
		in flowing liquid	<u>[1]</u> -	3	-	S

^[1] The thermal time constant is the time taken for the sensor to reach 63.2 % of the total temperature difference. For example, if a sensor with a temperature of 25 °C is moved to an environment with an ambient temperature of 100 °C, the time for the sensor to reach a temperature of 72.4 °C is the thermal time constant.

Table 7. Ambient temperature, corresponding resistance, temperature coefficient and maximum expected temperature error for KTY81/110 and KTY81/120

 $I_{sen(cont)} = 1 \text{ mA}.$

Ambient temperature		Temperature coefficient	KTY81/110				KTY81/120			
(°C)	(°F)	(%/K)	Resistance (Ω)		Temperature	Resistance (Ω)			Temperature	
			Min	Тур	Max	error (K) Min Typ	Тур	Max	error (K)	
-55	-67	0.99	475	490	505	±3.02	470	490	510	±4.02
-50	-58	0.98	500	515	530	±2.92	495	515	535	±3.94
-40	-40	0.96	552	567	582	±2.74	547	567	588	±3.78
-30	-22	0.93	609	624	638	±2.55	603	624	645	±3.62
-20	-4	0.91	669	684	698	±2.35	662	684	705	±3.45
-10	14	0.88	733	747	761	±2.14	726	747	769	±3.27
0	32	0.85	802	815	828	±1.91	793	815	836	±3.08
10	50	0.83	874	886	898	±1.67	865	886	907	±2.88
20	68	0.80	950	961	972	±1.41	941	961	982	±2.66
25	77	0.79	990	1000	1010	±1.27	980	1000	1020	±2.54
30	86	0.78	1029	1040	1051	±1.39	1018	1040	1061	±2.68
40	104	0.75	1108	1122	1136	±1.64	1097	1122	1147	±2.97
50	122	0.73	1192	1209	1225	±1.91	1180	1209	1237	±3.28
60	140	0.71	1278	1299	1319	±2.19	1265	1299	1332	±3.61
70	158	0.69	1369	1392	1416	±2.49	1355	1392	1430	±3.94
80	176	0.67	1462	1490	1518	±2.8	1447	1490	1532	±4.3
90	194	0.65	1559	1591	1623	±3.12	1543	1591	1639	±4.66
100	212	0.63	1659	1696	1733	±3.46	1642	1696	1750	±5.05
110	230	0.61	1762	1805	1847	±3.83	1744	1805	1865	±5.48
120	248	0.58	1867	1915	1963	±4.33	1848	1915	1982	±6.07
125	257	0.55	1919	1970	2020	±4.66	1899	1970	2040	±6.47
130	266	0.52	1970	2023	2077	±5.07	1950	2023	2097	±6.98
140	284	0.45	2065	2124	2184	±6.28	2043	2124	2205	±8.51
150	302	0.35	2145	2211	2277	±8.55	2123	2211	2299	±11.43

8.5. Datasheet DHT22

Aosong Electronics Co., Ltd

Your specialist in innovating humidity & temperature sensors

Digital-output relative humidity & temperature sensor/module DHT22 (DHT22 also named as AM2302)

Capacitive-type humidity and temperature module/sensor

Thomas Liu (Business Manager)

Email: thomasliu198518@yahoo.com.cn

Aosong Electronics Co., Ltd

Your specialist in innovating humidity & temperature sensors

- 1. Feature & Application:
- * Calibrated digital signal *Outstanding long-term stability *Extra components not needed
- * Long transmission distance * Low power consumption *4 pins packaged and fully interchangeable

2. Description:

DHT22 output calibrated digital signal. It utilizes exclusive digital-signal-collecting-technique and humidity sensing technology, assuring its reliability and stability. Its sensing elements is connected with 8-bit single-chip computer.

Every sensor of this model is temperature compensated and calibrated in accurate calibration chamber and the calibration-coefficient is saved in type of programme in OTP memory, when the sensor is detecting, it will cite coefficient from memory.

Small size & low consumption & long transmission distance(20m) enable DHT22 to be suited in all kinds of harsh application occasions.

Single-row packaged with four pins, making the connection very convenient.

3. Technical Specification:

Model	DHT22				
Power supply	3.3-6V DC				
Output signal	digital signal via single-bus				
Sensing element	Polymer capacitor				
Operating range	humidity 0-100%RH; temperature -40~80Celsius				
Accuracy	humidity +-2%RH(Max +-5%RH); temperature <+-0.5Celsius				
Resolution or sensitivity	humidity 0.1%RH; temperature 0.1Celsius				
Repeatability	humidity +-1%RH; temperature +-0.2Celsius				
Humidity hysteresis	+-0.3%RH				
Long-term Stability	+-0.5%RH/year				
Sensing period	Average: 2s				
Interchangeability	fully interchangeable				
Dimensions	small size 14*18*5.5mm; big size 22*28*5mm				

4. Dimensions: (unit----mm)

1) Small size dimensions: (unit----mm)

8.6. Datasheet OPA188

www.ti.com SBOS525 – AUGUST 2011

0.03-µV/°C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS

Check for Samples: OPA188, OPA2188, OPA4188

FEATURES

Low Offset Voltage: 25 µV (max)

Zero-Drift: 0.03 µV/°C
 Low Noise: 8.8 nV/√Hz

0.1-Hz to 10-Hz Noise: 0.25 μV_{PP}

Excellent DC Precision:

PSRR: 142 dB CMRR: 146 dB

Open-Loop Gain: 136 dB Gain Bandwidth: 2 MHz

Quiescent Current: 475 µA (max)
 Wide Supply Range: ±2 V to ±18 V

• Rail-to-Rail Output:

Input Includes Negative Rail

RFI Filtered InputsMicroSIZE Packages

APPLICATIONS

- Bridge Amplifiers
- Strain Gauges
- Test Equipment
- Transducer Applications
- Temperature Measurement
- Electronic Scales
- Medical Instrumentation
- Resister Thermal Detectors
- · Precision Active Filters

DESCRIPTION

The OPAx188 series operational amplifiers use TI proprietary auto-zeroing techniques to provide low offset voltage (25 μ V, max), and near zero-drift over time and temperature. These miniature, high-precision, low quiescent current amplifiers offer high input impedance and rail-to-rail output swing within 15 mV of the rails. The input common-mode range includes the negative rail. Either single or dual supplies can be used in the range of +4.0 V to +36 V (±2 V to ±18 V).

The single version is available in the *MicroSIZE* SOT23-5, MSOP-8, and SO-8 packages; the dual is offered in MSOP-8 and SO-8 packages; the quad is offered in SO-14 and TSSOP-14 packages. All versions are specified for operation from -40°C to +105°C.

Zero-Drift Amplifier Portfolio

VERSION	PRODUCT	OFFSET VOLTAGE (μV)	OFFSET VOLTAGE DRIFT (μV/°C)	BANDWIDTH (MHz)
Single	OPA188 (4 V to 36 V)	25	0.085	2
	OPA333 (5 V)	10	0.05	0.35
Single	OPA378 (5 V)	50	0.25	0.9
	OPA735 (12 V)	5	0.05	1.6
	OPA2188 (4 V to 36 V)	25	0.085	2
Dual	OPA2333 (5 V)	10	0.05	0.35
Duai	OPA2378 (5 V)	50	0.25	0.9
	OPA2735 (12 V)	5	0.05	1.6
Quad	OPA4188 (4 V to 36 V)	25	0.085	2
Quad	OPA4330 (5 V)	50	0.25	0.35

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SBOS525 – AUGUST 2011 www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION(1)

	PACKAGE-	PACKAGE	SPECIFIED TEMPERATURE	PACKAGE	ORDERING	TRANSPORT MEDIA,			
PRODUCT LEAD DESIG		DESIGNATOR	RANGE	MARKING	NUMBER	QUANTITY			
SINGLE									
	SOT23-5	DBV	–40°C to +105°C	TBD	OPA188AIDBVT	Tape and Reel, 250			
					OPA188AIDBVR	Tape and Reel, 3000			
OPA188 ⁽²⁾	SO-8	D	–40°C to +105°C	OPA188A	OPA188AID	Rails, 100			
					OPA188AIDR	Tape and Reel, 2500			
	MSOP-8	DGK	–40°C to +105°C	TBD	OPA188AIDGKT	Tape and Reel, 250			
					OPA188AIDGKR	Tape and Reel, 2500			
DUAL									
	SO-8	D	-40°C to +105°C	2188	OPA2188AID	Rails, 100			
OPA2188					OPA2188AIDR	Tape and Reel, 2500			
OPA2100	MSOP-8	DGK	–40°C to +105°C	2188	OPA2188AIDGKT	Tape and Reel, 250			
	WISOF-6				OPA2188AIDGKR	Tape and Reel, 2500			
QUAD									
OPA4188 ⁽²⁾	SO-14	D	–40°C to +105°C	OPA4188A	OPA4188AID	Rails, 90			
	30-14				OPA4188AIDR	Tape and Reel, 2000			
UFA4188(-)	TSSOP-14	PW	–40°C to +105°C	OPA4188A	OPA4188AIPW	Rails, 90			
	133UF-14				OPA4188AIPWR	Tape and Reel, 2000			

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

		OPAx188	UNIT
Supply voltage		±20, 40 (single supply)	V
Cianal innut to main ala	Voltage	(V-) - 0.5 to $(V+) + 0.5$	V
Signal input terminals	Current ⁽¹⁾	±10	mA
Output short-circuit (2)		Continuous	
Operating temperature		-55 to +125	°C
Storage temperature		-65 to +150	°C
Junction temperature	emperature +150		°C
ESD rotings	Human body model (HBM)	1.5	kV
ESD ratings	Charged device model (CDM)	1	kV

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other conditions beyond those specified is not implied.

⁽²⁾ Product preview device.

⁽²⁾ Short-circuit to ground, one amplifier per package.