Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2022-2023

Elettronica digitale (2^a parte)

(cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html https://en.wikipedia.org/wiki/Programmable logic device)

Famiglie logiche

Famiglie logiche più diffuse e usate

- CMOS (Complementary MOS)
- NMOS (MOSFET a canale n)
- TTL (Transistor-Transistor Logic)
- ECL (Emitter Coupled Logic)

transistor **FET**

transistor **BJT**

Le porte logiche possono essere fabbricate con le varie tecnologie in un singolo chip con stesse funzioni, compatibili

numero di porte

SSI small scale integration (1-10 gates)

MSI medium scale integration (10-100 gates)

LSI large scale integration (~ 10³)

VLSI very large scale integration (~ 10⁶)

ULSI ultra large scale integration (> 10⁶)

Famiglie logiche

- TTL: Transistor-Transistor Logic, basato sul BJT
 - output: '1' logico: $V_{OH} > 3.3 \text{ V}$; '0' logico: $V_{OL} < 0.35 \text{ V}$
 - input: '1' logico: $V_{IH} > 2.0 \text{ V}$; '0' logico: $V_{IL} < 0.8 \text{ V}$
 - zona "morta" fra 0.8V e 2.0 V
- CMOS: Complimentary MOSFET
 - output: '1' logico: $V_{OH} > 4.7 \text{ V}$; '0' logico: $V_{OL} < 0.2 \text{ V}$
 - input: '1' logico: $V_{IH} > 3.7 \text{ V}$; '0' logico: $V_{IL} < 1.3 \text{ V}$
 - zona "morta" fra 1.3V e 3.7 V

L'uscita di un CMOS è TTL-compatibile

Confronto famiglie logiche

	TTL	CMOS	ECL
tensione massima di alimentazione	5	5	-5.2
valore massimo V _{in} identificato come O	0.8	1.3	-1.4
valore minimo V _{in} identificato come 1	2.0	3.7	-1.2
valore massimo V _{out} identificato come O	0.35	0.2	-1.7
valore minimo V _{out} identificato come 1	3.3	4.7	-0.9

Nomenclatura circuiti

SN74ALS245N

significa che è fatto dalla Texas Instruments (SN), è un TTL con range di temperatura commerciale (74), è della famiglia "Advanced Low-power Schottky" (ALS), ed è un buffer bi-direzionale a 8 bit, in un package plastico di tipo through-hole DIP (N).

Full Adder

Full Adder - NAND

Logica programmabile

Simplified programmable logic device

fra loro)

Logica programmabile

Simplified programmable logic device

leggermente

dopo gli altri

Reti Logiche e Sequenziali

- No feedback, in ogni istante l'output è funzione degli input
 - Tutti i circuiti analizzati fino adesso sono reti logiche

- L'output è funzione dell'input corrente e dell'output precedente
- I (possibili) cambi di output sono definiti dal segnale di clock
 - Il circuito ha "memoria" dei suoi stati precedenti

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

- Asincrono: il cambio di stato dell'output avviene in corrispondenza al cambio di stato degli input
- Stato R=0, S=0 proibito:

 $Q_n=1$ $\overline{Q_n}=1$: situazione anomala, è necessario evitare che il FF sia in questo stato

Flip Flop SR (NOR)

SR NOR latch [edit]

While the R and S inputs are both low, feedback maintains the Q and \overline{Q} outputs in a constant state, with \overline{Q} the complement of Q. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced high, and stays high when S returns to low; similarly, if R is pulsed high while S is held low, then the Q output is forced low, and stays low when R returns to low.

SR latch operation^[3]

	Cha	aracter	Excitation table				
s	R	Q _{next}	Action	Q	Q _{next}	s	R
0	0	Q	Hold state	0	0	0	Χ
0	1	0	Reset	0	1	1	0
1	0	1	Set	1	0	0	1
1	1	Х	Not allowed	1	1	Х	0

R	S	R'	S'	Q_n	\overline{Q}_n
X	X	1	1	Q_{n-1}	\overline{Q}_{n-1}
0	1	1	0	1	0
1	0	0	1	0	1
1	1	non consentito			

ENABLE: gate che abilita la porta:

PRESET e CLEAR: gate per definire lo stato iniziale del FF

R	S	R'	S'	Q_n	\overline{Q}_n	
X	X	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

ENABLE = 0: S'=R'=1: FF Mantiene lo stato attuale, non risponde a variazioni di S e R

R	S	R'	S'	Q_n	\overline{Q}_n
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}
0	1	1	0	1	0
1	0	0	1	0	1
1	1	non consentito			

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- **Sincrono**: il cambio di stato avviene solamente quando il segnale di enable

R	S	R'	S'	Q_n	\overline{Q}_n
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}
0	1	1	0	1	0
1	0	0	1	0	1
1	1	non consentito			

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e nQ avviene solamente quando il segnale di enable è positivo

R	S	R'	S'	Q_n	\overline{Q}_n
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}
0	1	1	0	1	0
1	0	0	1	0	1
1	1	non consentito			

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e nQ avviene solamente quando il segnale di enable è positivo
- Gli ingressi di Preset e Clear devono essere tenuti alti durante il funzionamento. Possono essere usati per definire lo stato iniziale del FF quando il segnale EN è basso (EN=0)

Flip Flop D

D Flip Flop

- Grazie all'invertitore, si ha solamente S=1, R=0 oppure S=0, R=1 -> assimilabile a un unico input "D"
- Il DATO (D) viene trasferito su Q solo se il segnale di enable è alto
 - Latch FF, Level Triggered

Master Slave Flip Flop D

MASTER-SLAVE D Flip Flop

- Clk=1 --> S e R sono settati da D.
- Clk=0 --> Q e nQ sono settati da S e R.
- Il dato è trasferito a Q in un intero ciclo di clock
 - Edge Triggered

Sistemi Logici Complessi

porte logiche + flip flop + memorie/registri --> Sistemi logici complessi

FSM (Finite State Machine): sistema che può trovarsi in un numero finito di stati che può cambiare mediante transizioni triggerate da eventi esterni

Backup

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

- quando V_s è ~ 0 il transitor è in cut-off
 → I_B~0
 → I_C~0
 → V_{out} è "pulled up"
 verso V_{CC}
- quando V_s è "grande" il transitor va in saturazione

→
$$I_C$$
 è massima
→ V_{out} ~0
(dato che V_{CC} - V_{out} = R_C * I_{C})

Interruttori MOSFET

- i MOSFET, utilizzati nei circuiti di logica, agiscono come interruttori controllati con un voltaggio
 - n-channel MOSFET è chiuso (conduce) quando è applicato un voltaggio positivo (+5V), aperto quando il voltaggio è nullo
 - p-channel MOSFET è aperto quando è applicato un voltaggio positivo (+5V), chiuso (conduce) quando il voltaggio è nullo

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

logica NMOS (MOSFET)

Invertitore (NOT) MOSFET:

- OV come input "apre" il FET in basso (n-channel) ma "chiude" quello in alto (p-channel) → l'output è a +5V
- 5V come input "chiude" il FET in basso (n-channel) ma "apre" quello in alto (p-channel) → l'output è a 0V

 \rightarrow l'effetto netto è l'inversione logica: $0 \rightarrow 5$; $5 \rightarrow 0$

NAND MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → uscita "alta"
- Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → uscita "bassa"
- IN A a 5V, IN B a 0V:
 - alto a sinistra OFF, più basso ON
 - alto a destra ON, in mezzo OFF
 - → uscita "alta"

• IN A a 0V, IN B a 5V:

opposto rispetto a prima

→ uscita "alta"

AB C 0 0 1 0 1 1

NAND

 $\begin{array}{c|c}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$

NOR MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → output "alto"
- → Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → output "basso"
- IN A a 5V, IN B a 0V:
 - basso a sinistra OFF, basso destra ON
 - più alto ON, in mezzo OFF
 - → output "basso"

AΒ

IN A a 0V, IN B a 5V:

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

NOR

opposto rispetto a prima

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

→ output "basso"_A

1 1 (

Sottofamiglie TTL

