SCC0216 Modelagem Computacional em Grafos

Lista de Exercícios 2

- O que são multigrafos? Faça propostas de alteração dos TADs grafo (com matriz e com listas de adjacências) para possibilitar o uso de multigrafos, adaptando a estrutura de dados e as funções relacionadas.
- 2. Responda: o que são arestas do tipo "ponte" em um grafo? Por que elas são importantes? Cite exemplos reais em que sua identificação é relevante.
- 3. Proponha um algoritmo que identifique pontes em um grafo.
- 4. O que são "vértices de articulação" em um grafo? Qual sua relação com os componentes de um grafo? Cite aplicações da identificação de vértices de articulação em grafos.
- 5. O matemático húngaro Paul Erdös (1913-1996), um dos mais brilhantes do século XX, é considerado o mais prolífico da história. Erdös publicou mais de 1.500 artigos, em colaboração com cerca de outros 450 matemáticos. Em sua homenagem, os matemáticos criaram o "número de Erdös". Todo matemático que publicou um artigo com Erdös tem número de Erdös 1. Os que não possuem número 1, mas escreveram um artigo com alguém que possui número 1, possuem número 2, e assim por diante. Quando nenhuma ligação pode ser estabelecida entre Erdös e um matemático, diz-se que este possui número de Erdös infinito. Por exemplo, o número de Erdos de Albert Einstein é 2; e, talvez surpreendentemente, o número de Erdös de Bill Gates é 4. Considere um subconjunto de 12 matemáticos distintos identificados por A, B, ..., K e L. A lista abaixo informa os que têm artigos em comum:
 - o autor A tem artigos com D e J;
 - o autor B tem artigos com C, D, J e L;
 - o autor C tem artigos com H;
 - o autor D também tem artigos com E;
 - o autor E também tem artigos com I e K.

Erdös tem artigos com os autores A, B, D, G, J e L (e, logicamente, cada um desses autores tem artigo com Erdös; idem para os demais casos). Faça: modele essa situação como um grafo e, com base em tudo que aprendeu, proponha (i) um algoritmo que indique autores que teriam afinidade para trabalharem juntos e (ii) autores que são

elementos chave na produção de publicações, ou seja, autores que, se abandonassem a ciência, teriam um grande impacto na área.

- 6. O sistema de coleta de lixo de uma cidade tem que garantir que, saindo do estacionamento, os caminhões percorram todas as ruas da cidade, coletando os sacos de lixo espalhados pelas calçadas. Suponha que o caminhão de um bairro deve sair de um estacionamento identificado pela letra A e passar por 4 casas identificadas pelas letras de B a E, de forma que colete os sacos de lixo no caminho e, no fim, retorne para o estacionamento. Suponha que:
 - o estacionamento e as casas B e C ficam em quadras consecutivas de uma mesma rua, chamada Rua da Felicidade;
 - as casas D e E ficam em quadras consecutivas da mesma rua, chamada Rua da Tristeza, paralela à Rua da Felicidade;
 - há uma rua que conecta a casa B à casa D (Rua da Amargura);
 - também há ruas conectando a casa E à casa B (Rua da Alegria), à casa C (Rua do Aconchego) e ao estacionamento (Rua da Tormenta).

Modele essa situação como um grafo e, com base no que aprendeu, proponha em que outra localidade do bairro poderia ser incluído um outro estacionamento de caminhões de coleta de lixo, de forma a otimizar o tempo de coleta (já que poderia haver mais um caminhão percorrendo as ruas). Justifique sua decisão com base em conceitos e algoritmos de grafos.

- 7. Construa um algoritmo eficiente que receba um vértice x de um grafo G e calcule o conjunto de vértices do componente de G que contém x.
- 8. As atuais redes sociais podem ser modeladas como grafos. Faça uma proposta de como isso poderia ser feito. Além disso, com base em seus conhecimentos de grafo, proponha um algoritmo que indique possíveis grupos de amigos `próximos´ dentro da rede. Explique que conceitos e técnicas de grafos está usando.