Part E

O consider the following processes with armival times and buist

process	Assival Time	Burst Time
PI	0	5
P2	1	3
P3	2	6

Calculate the average waiting time using First-come First serverd (FCFS) scheduling.

>> Step 1: compute completion Time(CT)

brocess	Arrival time	(B1) BARST LIME	Completion time
PI	٥	5	0+5=5
P2	1	3	8=842
P3	2	E	8+6=14
,			

step 2: compute Turnaround Time (TAT)

THIS CIST			
process	Arrival Time	EBMIPICHION Time(ct)	TIME (TAT)
	0	5	5-0-5
PI		8	8-1-7
P2	2	14	14-2=12
P3			

Step 8: compute wouthing Time (w1)

process	turnaround Time (TAT)	GUTST rime (BT)	woulting time(w1)
PI	5	5	2,5,2 E O
P2	7	3	7-3 =4
P3	12	6	12-6 = 6

STEP4: Compute Average Wouting Time (AWT)

$$=\frac{10}{3}$$
 $AWT = 3.33.$

(2) Consider the following processes with arrival times and burst times:

process	Arrival Time	Burst Time
PI	0	3
P2	1	5
P3	2	1.
P4	3	LP

Calculate the average turnoround time using shortest Tob First (STF) Scheduling.

Step 1:

2291089	Arrival Time (AT)	BRUSH LIWE(BI)
PI	0	3
P2	The second section is	2605-1 (65)
P3	2	1
P4	3	4

Step2: Determine the execution order and completion time.

1) At Time 0, Only PI is available - Execute PI (BT=3).

Completion time (CT) of PI = 0+3=3

2) At Time 3, the available processes are P2 (Bt=5), \$3 (BT=1), P4 (BT=4)

Shortest Burst Time = P3(BT=1) -> execute P3. Completion time (C1) of P3 = 3+1 = 4

3) At time 4, the available processes are P2(BT=5),

Shorrest BUGST Time = P4 (BT=4) -> execute P4 (Ompletion Time ((T) OF P4 = 4+4 = 8

4) AT Hime 8, only P2 remains -> execute p2 (BT =5).

Completion time (CT) of P2 = 8+5=13.

at a man and a main to admin

The execution order is PI-183 -> P4 -> P2.

Step 3: Compute Turnoround Time (TAT)

Process	Herival Time (AT)	Completion	buchanaut (141) Smir
PI	0	3	3-0=3
P2 P3	١	13	13-1=12
P4	3	4	4-2=2

STEP4: Compute Average Turnoround Time (ATAT)

3) Consider the following processes with arrival Times burst times, and priorities (lower number indicates higher priority).

Draipe	received T	ine Burst T	ine	priority
		-		3
		27		
P3		•		1.
PLA	3	2		2.
	1	" a Lowente		stilliging pri

Calculate the average waiting time using priority scheduling.

=> Step1: sorted processes by Arrival Time and execute based on priority

process	Arrival Time	BURST TIME	priority
Pı	0	G	3
P2	1 -	4	1
P3	2	٦.,	کو
P4	3	2	2

Step 2: Determination execution order and completion time (CT):

1) AT the time 0, only PI is available -> execute PI(BT=6).

Completion time (ct) of PI = 0+6=6

2) AT the time of the available processes are pr(Priority=1)

Highest Priority (1000est Priority) = P2 (Priority =1) = P2 (Priority =1) = P2 (Priority =1)

completion Time (ct) of PZ = 644 = 10.

3) AT the time 10 the available processes are P3 (priority=4) and P4 (Priority=2).

Completion time (CT) of PH= 10+2=12

Completion Time (cr) Off3 = 12+7=19

execution order is PI - P2 - P4 - P3.

Steps: Compute turn around time (TAT)

rocess	Actival time (AT)	Completion time	Turnaround Time (TAT)
PI	0	G	6-0=6
P2	1-1-	,10	10-1=9
P3	2	19	19-2=17
P4	3.	12	12-3=9

step4: compute waiting time (WT)

process	Turnamound Time	BURST Timp	CociHing Timp
P2	9	4	9-4=5
P3	17	Server Tong	17-7=10
P4	.9	2	9-2=7

Step 5: compute Average woulding time (Awr)

AWTE S.S ms

4	consider the fullowing processes with arrival times and board the time quantum for Round Robin Scheduling is 2 unit	unst times,
	process recival Time Burst time	
A	Process Vering	

LOCKZ				
PI	Ō			4
P2		,	,	5
P3	2			2
P4	3			3

Calculate the average turnaround time using Round Robin

Step 1: Given Dato

process	Arrival rime	Burst Time
Pl	0 (1-1)	4019
P2	1	5
P3	2	2
P4	3	3.

Time quantum = 2 units.

Step 2: Gant Chart:

1) At time = 0, PI Starts execution for 2 Units (Remaining burst time : 2).

Gant chast: [PICO-2)]

2) At time = 2, P2 arrives and starts execution for 2 units (Remalining burst Home: 3)

Gantt Chast: [P1(0-2), P2(2-4)]

3) At time = 4, p3 arrives and executes for 2 units (rompleted) (fant+ chost: [91(0-2), P2(2-4), P3 (4-6)]

4) At time = 6, P4 ornives and executes for 2 units (Remaining time) Const. Chang (Par (n. 2), P2 (2-4), P3 (4-6), P4 (6-8)]

```
5) At time = 8, PI resumes execution for 2 units (completed)
          Gant Chart: [P1(0-2), P2 (2-4), P3 (4-6), P4 (6-8) P1(849)
DA+ time = 10, p2 recourses execution for 2 units ( pencuining burst time
     Gant Chart: [P1(0-2), P2(2-4), P3(4-6), P4 (6-8), P1(8-10)
                 P2 (10-12)]
7) At time = 12, PH resumes execution for 1 Unit (completed)
     Gantt chart: [PI [0-2), P2 (2-4), P3 (4-6), P4 (6-8), P1 (8-10),
          P2 (10-12), P4 (12-13)]
  8) At time = 13, 82 regumes execution for 1 unit (completed)
    Gant+ (host: [p1(0-2), p2(2-4), p3(4-6), p4 (6-8), p1(8-1))
       P2 (10-12), P4 (12-13) P2(13-14)]
          (ompletion time (CF) (alculation
               Completion time (CT)
     Process
                    10
       19
                    14
  P2
                    6
       P3
                    13
       94
          Turnaround time (TAT) calculation
                  TAT = CT - Agrival Time.
             Assival time (AT) completion Time (CT) (TUSTIC SOUNTIME (TAT)
    process
                                  10
    P
                          14-1=13
         P2 -
     P3
                                13
    99
                                              13-3=10
```

Steps: prerage Turnaround Time calculation

Average TAT =
$$\frac{2}{10}$$
 Total processes
$$= \frac{10}{4}$$

$$= \frac{31}{4}$$
ATAT = $\frac{3}{2}$ Units.

(5) consider a program that uses the fork() system coulto Coeate a child process, Initially the parent process has a variable x with a value of 5. After Forking both the Parent and Child processes increment the value of x by 1 what win be the final values of x in the parent and Child processes after the Pork () (all ?

STEP by STEP EXECUTION:

Danitial Condition:

The parent process has a variable x=5.

2) Forking:

- The forker call coeates a new child process. . Both the parent and child inherit the same initial state

recening x=5 in both processes.

- However, each process gets its own separate copy ofx.
- 3) Intrementing X:
- The process of powent increments its copy of x-1 x=6.
 - The child process also increments its own copy of X-1×=6.

Final raises of x:

- In the parent process X = 6
- In the child process x=6.