Chapitre V : Dérivation

I - Tangente à une courbe et nombre dérivé

a) Activité

Dans le repère ci-contre, on a tracé les droites d_1 et d_2 .

- 1. (a) Donner, par lecture graphique, les équations des droites d_1 et d_2 .
 - (b) Construire, dans le même repère, les droites T_1 , T_2 et T_3 d'équations respectives $y=2x+2,\ y=-4x+17$ et y=5.
- 2. On définit sur \mathbb{R} la fonction f par $f(x) = -x^2 + 4x + 1$.
 - (a) À l'aide du tableau de valeurs de la calculatrice, construire dans le repère ci-contre la courbe \mathscr{C}_f représentative de f.
 - (b) Quelle particularité ont toutes les droites tracées dans le repère par rapport à cette courbe \mathcal{C}_f ?

b) Tangente à une courbe

Soit $\mathscr C$ la courbe représentative, dans le plan rapporté à un repère, d'une fonction f définie sur un intervalle I.

On considère un point A de la courbe \mathscr{C} , d'abscisse a.

Au voisinage de A, on peut approcher la courbe \mathscr{C} par sa tangente en A: cette tangente est une approximation de la courbe en ce point.

Pour x voisin de a, la courbe $\mathscr C$ et la droite sont « presque confondues ».

 $\underbrace{\text{Exercice}}_{\text{cont}} \text{Le plan est rapport\'e à un repère orthonormal } (O; \ \vec{\imath}, \ \vec{\jmath}).$

 \mathscr{C} est la courbe représentative d'une fonction f définie sur [-2;4].

- T_1 et T_2 sont respectivement les tangentes à $\mathscr C$ aux points d'abscisses $-\frac{3}{2}$ et 2.
- En $x = -\frac{1}{2}$, \mathscr{C} admet une tangente parallèle à l'axe des abscisses.
- 1. Déterminer les valeurs de $f'\left(-\frac{3}{2}\right)$, f'(2) et $f'\left(-\frac{1}{2}\right)$.
- 2. La tangente à $\mathscr C$ au point d'abscisse 0 passe par le point de coordonnées $\left(-\frac{1}{2};2\right)$. Déterminer f'(0).

3. Une équation de la tangente à $\mathscr C$ au point d'abscisse -2 est y=3x+6. Déterminer f'(-2).

II - Fonction dérivée

Soit f une fonction définie sur un intervalle I. Si f admet, pour tout réel x de I, un nombre dérivé, on dit que f est dérivable sur I et on note f'(x) le nombre dérivé de f en tout x de I. On définit ainsi sur I une fonction f'.

On admettra les résultats suivants :

On admitted to resulting survaines.		
Fonction f	Nombre dérivé $f'(x)$ en x	
$ullet$ constante, définie sur $\mathbb R$		
$f(x) = a \text{ (où } a \in \mathbb{R})$		
\bullet affine, définie sur $\mathbb R$		
f(x) = ax + b (où a et b sont réels)		

Fonction f	Nombre dérivé $f'(x)$ en x
$ullet$ carré, définie sur $\mathbb R$	
$f(x) = x^2$	
$ullet$ cube, définie sur $\mathbb R$	
$f(x) = x^3$	
\bullet polynôme du second degré, défini sur $\mathbb R$	
$f(x) = ax^2 + bx + c \ (a, b \text{ et } c \text{ réels}, a \neq 0)$	
\bullet polynôme de degré 3, défini sur $\mathbb R$	
$f(x) = ax^3 + bx^2 + cx + d \ (a, b, c, d \text{ réels}, a \neq 0)$	

Exercice: Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - x + 1$ et \mathscr{C} sa courbe représentative dans un repère orthonormé du plan.

Déterminer une équation de la tangente à $\mathscr C$ au point d'abscisse 1.

Exercice: On donne le tableau de variation d'une fonction f définie sur [-1;7]:

Préciser, en fonction du nombre réel x appartenant à [-1, 7], le signe de f'(x).

Exercice:

Une entreprise fabrique et commercialise un produit. Sa capacité de production, sur un mois, lui permet de réaliser entre 0 et 13 tonnes de ce produit. On désigne par x le nombre de tonnes de produit fabriqué par l'entreprise en un mois.

Le coût de production, exprimé en milliers d'euros, est donné par :

$$C(x) = x^3 - 15x^2 + 75x.$$

Cette entreprise vend l'intégralité de ce qu'elle produit au prix de 36,75 milliers d'euros la tonne.

La recette, pour x tonnes produites, est notée R(x), exprimée en milliers d'euros. On donne ci-contre la représentation graphique $\mathscr C$ de la fonction C sur l'intervalle [0;13].

1. Calculer C'(x) et vérifier que $C'(x) = 3(x-5)^2$.

En déduire que la fonction C est croissante sur l'intervalle [0; 13].

- 2. (a) Donner l'expression de R(x) en fonction de x et représenter la fonction R dans le même repère que \mathscr{C} .
 - (b) Déterminer graphiquement l'intervalle auquel doit appartenir x pour que l'entreprise réalise un bénéfice.

- 3. Dans cette question, on se propose de déterminer la valeur de x permettant d'obtenir un bénéfice maximum.
 - (a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle [0; 13]. Montrer que $B(x) = -x^3 + 15x^2 - 38.25x$.
 - (b) Calculer B'(x) où B' désigne la dérivée de la fonction B. Montrer que B'(x) = -3(x-8.5)(x-1.5).
 - (c) Déterminer le signe de B'(x) pour x appartenant à l'intervalle [0; 13] puis dresser le tableau de variations de la fonction B sur cet intervalle.
 - (d) Quelle est la valeur de x qui assure un bénéfice maximum? Quelle est alors le bénéfice maximal que peut réaliser cette entreprise?