

CT1 S1 Anskey AI M - There are important questions in it

Artificial Intelligence (SRM Institute of Science and Technology)

Scan to open on Studocu

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Register No:

Vadapalani, Chennai – 600 026

CONTINOUS LEARNING (THEORY) ASSESSMENT- I EVEN SEMESTER, 2020- 2021 B.Tech COMPUTER SCIENCE AND ENGINEERING

18CSC305J- ARTIFICIAL INTELLIGENCE

Time: 45Mins SEMESTER-VI MAXIMUM MARKS: 25

COURSE LEARNING RATIONALE:

CLR-1: Provide a broad understanding of the basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems.

CLR-2: Gain knowledge in problem formulation and building intelligent agents

COURSE LEARNING OUTCOME:

CLO-1: Formulate a problem and build intelligent agents

CLO-2: Apply appropriate searching techniques to solve a real world problem

	Answer the MCQ's	CLO.	K.N
	$PART - A (15 \times 1 = 15 Marks)$		О.
1.	Artificial Intelligence is about a) Playing a game on Computer b) Making a machine intelligent c) Programming on Machine with your Own Intelligence d) Putting your intelligence in Machine	CLO1	K1
2.	If the following states in the diagram represents states of a vacuum cleaner, which of the below mentioned sequence helps it to reach the goal state {7 or 8}? 1 2 3 4 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CLO2	K2

3.	What is state space? a. The whole problem b. Your Definition to a problem c. Problem you design d. Representing your problem with variable and parameter An AI agent perceives from the environment using	CLO1	K1
1.	a. Sensors a. Perceiver b. Actuators c. Both a and c	CLOT	Ki
5.	The "imitation game" was originally called by its creator as a. LISP b. Cybernetics c. Turing Test d. Logic Theorist	CLO2	K1
6.	Given below are the Production Rules for Water Jug Problem. 1. (x,y) -> (4,y) Fill the 4-gallon jug 2. (x,y) -> (x,3) Fill the 3-gallon jug 3. (x,y) -> (x-d, y) Pour water out from the 4-gallon jug 4. (x,y) -> (x,y-d) Pour water from the 3-gallon jug 5. (x,y) -> (0,y) Empty the 4-gallon jug 6. (x,y) -> (x,0) Empty the 3-gallon jug 7. (x,y) -> (4,y-(4-x)) Pour water from the 3-gallon jug into the 4-gallon jug until the 4-gallon jug is full 8. (x,y) -> (x - (3-y), 3) Pour water from the 4-gallon jug is full. 9. (x,y) -> (x+y, 0) Pour all water from the 3-gallon jug to the 4-gallon jug 10.(x,y) -> (0, x+y) Pour all water from the 4-gallon jug to the 3-gallon jug 11.(0,2) -> (2,0) Pour 2 Gallon of water from the 3-gallon jug 12.(2, y) -> (0,y) Pour 2 Gallon of water from the 4-gallon jug to the 4-gallon jug 12.(2, y) -> (0,y) Pour 2 Gallon of water from the 4-gallon jug to ground. Given the initial state is (0,0) and goal state is (2,0) . Identify the correct sequence to solve the problem . a. (0,0),R9,R7,R2,R3,R6,R8 b. (0,0),R1,R2,R5,R7,R11,R12 c. (0,0),R1,R8,R6,R10,R1,R7,R8 d. (0,0),R2,R9,R2,R7,R5,R9	CLO2	K2
7.		CLO2	K2

	Consider the 8-Puzzle problem given below.		
	1 2 3		
	7 8 4		
	6 5		
	1 2 3 1 2 3		
	7 8 4 6 5 7 4 6 8 5		
	0 0 5		
	A B C		
	1 2 3		
	8 4		
	7 6 5		
	Goal State		
	To reach the Goal state, the "h value" for the states A,B and C are:		
	To reach the Goal state, the in value for the states A,B and C are.		
	a) 4,5,6		
	b) 6,4,5 c) 5,4,6		
	d) 5,5,4		
8.	A fully observable problem belongs to the category of	CLO1	K1
	A. Multi-state problem B. Two-state problem		
	C. Single-state problem		
	D. Three-state problem		
9.	A production rule has	CLO2	K1
	a. A set of Rule	=====	_
	b. A sequence of steps c. Both (a) and (b)		
	d. Arbitrary representation to problem		
10	The action 'STACK(A D)' of a maket agree as if at	CI O2	W2
10.	The action 'STACK(A, B)' of a robot arm specify to a. Place block B on Block A	CLO2	K2
	b. Place blocks A, B on the table in that order		
	c. Place blocks B, A on the table in that order		
	d. Place block A on block B		
11.	While playing Toy problem, its environment is controlled.	CLO2	K2
	Consider the following statements with regard to Tic-tac-toe problem,		

	 i. The player who puts respective mark in a horizontal or vertical line only wins the game ii. The player who puts respective mark in a horizontal or vertical or diagonal line wins the game iii. It is a 3*3 grid & three player game iv. It is a two-player game a. Statements (ii),(iii) are correct b. Statements (ii),(iv) are correct c. Statements (i),(iii) are correct d. Statements (i),(iii) are correct 		
12.	The PEAS in the task environment is about a) Peer, Environment, Actuators, Sense b) Performance, Environment, Actuators, Sensors c) Perceiving, Environment, Actuators, Sensors d) Performance, Environment, Actual, Sensing	CLO1	K1
13.	Which agent deals with the happy and unhappy state? a.Utility-based agent b. Model-based agent c. Goal-based Agent d. Learning Agent	CLO1	K1
14.	Which of the Following problems can be modeled as CSP? a. Monkey Banana Problem b. Camel Banana Problem c. Map coloring Problem d. Missionaries and Cannibal Problem	CLO2	K2
15.	To overcome the need to backtrack in constraint satisfaction problem can be eliminated by a. Forward Searching b. Constraint Propagation c. Backtrack after a forward search d. Omitting the constraints and focusing only on goals	CLO2	K2
	PART – B Answer all questions (5 x 2 = $\frac{1}{2}$	10 Marks	`
16.	What are the components of a problem? List the problem characteristics.	CLO1	K1
	Components of problem Components of problem		121
	The initial state that the agent starts in /Starting state which agent knows itself.		
	A description of the possible actions/operators available to the agent.		

	• successor refer to any state reachable from a given state by a single action.		
	• state space of the problem—the set of all states reachable from the initial state by any sequence of actions.		
	• A path in the state space is a sequence of states connected by a sequence of actions.		
	goal test, which determines whether a given state is a goal state.		
	A path cost function that assigns a numeric cost to each path.		
	• The step cost of taking action a to go from one state 's' to reach state 'y' is denoted by c(s, a, y).		
	problem characteristics		
	1. Is the problem decomposable ?		
	2. Can Solution steps be ignored or undone?		
	3. Is the Universe Predictable?		
	4. Is a good solution absolute or relative?		
	5. Is the solution a state or a path?		
	6. What is the role of knowledge?		
	7. Does the task require interaction with a person?		
17.	Write the agent program for model – based reflex agent.	CLO1	K2
	function Reflex-Agent-With-State(percept) returns action		
	static: state, a description of the current world state		
	rules, a set of condition-action rules		
	$state \leftarrow \text{UPDATE-STATE}(state, percept)$		
	$rule \leftarrow \text{RULE-MATCH}(state, rules)$		
	$action \leftarrow \text{RULE-ACTION}[rule]$		
	state ← UPDATE-STATE(state, action) return action		
	Tetal II denon		
18.	Solve the crypt arithmetic puzzle. EAT + HOT =OATS	CLO2	K2

 $D_i = \{Red, Green, Blue\}$

Given graph cannot be colored with given 3 colors – Red , Green , Blue

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyse, K5 - Evaluate, K6 - Create