

Computational statistics for whole brain CLARITY analysis using the Open Connectome Project

Anish K. Simhal¹, Will Gray Roncal⁴, Kunal A. Lillaney³, Kwame Kutten², Michael I. Miller², Joshua T. Vogelstein², Randal Burns³, Li Ye⁵, Raju Tomer⁵, Karl Deisseroth⁵, Guillermo Sapiro¹

¹Dept. of Electrical and Computer Engineering, Duke University ²Dept. of Biomedical Engineering, Johns Hopkins University, ³Dept. of Computer Science, Johns Hopkins University, ⁴ Applied Physics Lab, Johns Hopkins University, ⁵Dept. of Bioengineering, Stanford University

Challenge

• Statistically differentiate between three classes of mouse brains

Figure 1: Source: Author

Background

The CLARITY brain clearing technique is a method for studying neurological diseases by observing structure [5].

Figure 2: Effect of 'brain clearing' technique on a mouse brain. Source: New York Times

After the clearing process, each volume is imaged using light sheet microscopy.

Figure 3: Mouse brain imaged with light sheet microscopy. Source: New York Times

Methods

• Ingest data into the Open Connectome Project (OCP)

Figure 4: How OCP was used in this analysis. Source: Author

The data was hosted on servers at John Hopkins University. Using the MATLAB API, we queried data as needed for the analysis [1].

• Register and Align to the Allen Mouse Brain Atlas
Each CLARITY volumes was aligned to the Allen Mouse Brain
Atlas using non-linear transformations [4].

Figure 5: Coronal slice of the mouse brain atlas, indicative of the average atlas slice. Source: Allen Institute for Brain Science

 Compute Haralick Features for each Region of Interest (ROI)

For each CLARITY Volume

- Normalize volume (subtract mean, divide by standard deviation)
- Extract ROI
- Calculate 3D Co-Occurrence Matrix and Haralick Features [3]
- Vectorize ROI and calculate mean, standard deviation

Cluster and evaluate the features using the Adjusted Rand Index (ARI).

Results

- Demonstrated statistical differences between the various classes
- Small number of features (1-3) are sufficient for accurate classification

Figure 6: First row: Nucleus Accumbens under the 3 conditions. Second row: three pairwise comparison plots demonstrating accurate class separation. Source: Author

Acknowledgments

This work was supported by the following grants:

- NIH NINS/NIMH 1R01NS092474 (TRA)
- NIH 1R01DA036400 (BIGDATA)
- NIH/NIBIB 1R01EB016411 (CRCNS)
- DARPA N66001ŋ14ŋ1ŋ4028
- NIMH
- DARPA NeuroFAST

References

- [1] Burns, R., et al. (2013). The Open Connectome Project Data Cluster: scalable analysis and vision for high-throughput neuroscience. In Proceedings of the 25th International Conference on Scientific and Statistical Database Management (p. 27). ACM.
- [2] Gorman, J. (2013, April 10). Brains as Clear as JellO. New York Times. Retrieved July 23, 2015, nytimes.com
- [3] Haralick, R., Shanmugam, K., Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics IEEE Trans. Syst., Man, Cybern., 610-621.
- [4] Lein, E.S. et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain, Nature 445: 168-176. doi: 10.1038/nature05453
- [5] Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols. June 2014