CSE 40647/60647 Data Science (Spring 2018) Lecture 23: Frequent Pattern Mining: Evaluation

Quiz:

Given a transaction database:

Transaction ID	Items Bought
T1	{Mango, Onion, Nintendo, Key-chain, Eggs, Yo-yo}
T2	{Doll, Onion, Nintendo, Key-chain, Eggs, Yo-yo}
T3	{Mango, Apple, Key-chain, Eggs}
T4	{Mango, Umbrella, Corn, Key-chain, Yo-yo}
T5	{Corn, Onion, Onion, Key-chain, Ice-cream, Eggs}

or simplified as follows:

Solution:

Transaction ID	Items Bought
T1	MONKEY
T2	DONKEY
T3	MAKE
T4	MUCKY
T5	COKIE

Use **FP-Growth** to find all frequent itemsets and their support if $min_sup = 60\%$:

Solution (continue):	

Use Apriori to double check if your answer is correct.
Use Apriori to double check if your answer is correct. Solution:

This lecture:

- Interestingness measures
 - o Basic measures for association rules
 - Support
 - Confidence
 - o Null-variant measures
 - Chi-square
 - Lift
 - o Null-invariant measures
 - AllConf
 - Jaccard
 - Cosine
 - Kulczynski
 - MaxConf
 - Imbalance Ratio

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	X² and lift are not null-invariant
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	note invariant
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	Jaccard, consine,
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	AllConf,
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	MaxConf, and Kulczynski are null-invariant
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	measures
MaxConf(A, B)	$max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$	[0, 1]	Yes	
max{ s(AUB) / s(A) , s(AUB) / s(B) }				

Notes:

Question: Given a student data base of 100 students:

Student ID	Items
001	Coffee, Tea, Algo.
002	Coffee, Tea, Algo., OS
003	Coffee, Algo., OS
004	Coffee, OS, Data Science
005	Tea, Data Science
006-100	None from {Coffee, Tea, Algo., OS, Data Science}

Fill in the tables below:

	{Algo.}	No {Algo.}
{Coffee}		
No {Coffee}		

	{Algo., OS}	No {Algo., OS}
{Coffee, Tea}		
No {Coffee ,Tea}		

For each of the following association rules, calculate the measures:

Association rule	Support & Confidence	Lift	AllConf	Kulc
{Coffee} →{Algo.}				
{Coffee, Tea} → {Algo., OS}				

	\mathbf{r}		1	
•	1) a	ta c	ทาห	Δ
•	110	14 ("

- o Dimension, dimension level, dimension value, and cells
- o Basic cells, aggregate cells
- o Basic cuboids, aggregate cuboids
- o Schemas for data cube: Star, Snowflake, Constellation
- o Measures for data cube: Distributive, Algebraic, Holistic
- o Operations in data cube: roll up, drill down, slice and dice, pivot
- o Iceberg cube, iceberg cells
- o Closed cell, closed cube

Notes:	

[30] Data warehousing, OLAP, and data cube computation. Suppose the base cuboid of a data cube contains two cells
• $(a_1, a_2, a_3, a_4, a_5, a_6) : 1$, • $(a_1, \mathbf{b_2}, a_3, \mathbf{b_4}, a_5, \mathbf{b_6}) : 1$.
where $a_i \neq b_i$ for any dimension $i \in \{2, 4, 6\}$. Assume each dimension contains no concept hierarchy (i.e., has a single level). (Hint: $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$)
(a) [6] How many nonempty cuboids are there in this data cube?
(b) [6] How many nonempty closed cells are there in this data cube?
(c) [6] How many nonempty aggregated closed cells are there in this data cube? What are they?
(d) [6] How many nonempty aggregated cells are there in this data cube?
(e) [6] If we set minimum support = 2, how many nonempty aggregated cells are there in the corresponding iceberg cube?