Potenzreihen

 \mathbf{Def} Eine Potenzreihe mit dem Mittelpunkt z_0 ist eine Reihe der Form

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n,$$

wobei $z_0, c_n \in \mathbb{C}, n = 0, 1, 2, ...$

Lemma Falls die Reihe $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ für $z=z_1$ konvergiert, so konvergiert sie auch für alle z mit $|z-z_0| < |z_1-z_0|$, und zwar absolut.

Def Die Zahl $R := \sup\{|z - z_0| : \sum_{n=0}^{\infty} c_n (z - z_0)^n \text{ konvergiert }\}$ heißt Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} c_n (z - z_0)^n$.

Satz Hat die Potenzreihe $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ den Konvergenzradius R, dann gilt:

- 1) Für z mit $|z-z_0| < R$ konvergiert die Reihe absolut.
- 2) Für z mit $|z z_0| > R$ divergiert die Reihe.
- 3) Für z mit $|z z_0| = R$ ist keine allgemeine Aussage möglich.

Satz (Formeln zur Berechnung des Konvergenzradius)

Für den Konvergenzradius R der Potenzreihe $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ gelten folgende Formeln:

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|, \qquad \text{falls } \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| \text{ in } \overline{\mathbb{R}} \text{ existiert.}$$

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}} \qquad \text{(Cauchy-Hadamard Formel)}.$$

Dabei werde vereinbart $\frac{1}{0} := +\infty$, $\frac{1}{+\infty} := 0$ und Limes superior einer nach oben unbeschränkten Folge ist $+\infty$.

Def Die Exponentialfunktion ist definiert für $z \in \mathbb{C}$ als

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Def Für $z \in \mathbb{C}$ definieren wir

$$\cos z := \frac{\exp(iz) + \exp(-iz)}{2}, \quad \sin z := \frac{\exp(iz) - \exp(-iz)}{2i}.$$