REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Enseignement Secondaire et Supérieur

Direction des Examens et de l'Evaluation Service des Examens Honneur Fraternité Justice Série :

Mathématiques/T.M.G.M

Durée : 4H Coefficient : 8/4

Baccalaureat Sciences-physiques session complémentaire 2007

Exercíce 1

On dissout une masse m d'hydroxyde de sodium NaOH dans 200mL d'eau pure pour obtenir une solution aqueuse $S_B de pH=13.6 à 25^{\circ} C$.

- 1.1 Ecrire l'équation de dissolution de l'hydroxyde de sodium dans l'eau.(0.5pt)
- 1.2 Comparer les concentrations des ions H_30^+ et OH^- dans la solution $S_R(0.5pt)$
- 1.3 Trouver la valeur de la concentration C_B de la solution S_B et en déduire la valeur de m.
- 1.4 On prépare à partir de la solution S_B une nouvelle solution S'_B de volume V' = 60 mL et de concentration $C'_B = 10^{-1} \text{mol/L}$. Déterminer le volume V de la solution S_B et le volume V_E d'eau pure utilisés pour préparer la solution S'_B .

- 2 On a tracé sur le document de la figure les courbes représentatives pH=f(t) obtenues en mesurant le pH au cours de l'addition progressive de la solution aqueuse S'_B:
 - à 10mL d'une solution aqueuse d'un acide noté A₁H (courbe 1).
 - à 10mL d'une solution aqueuse d'un acide noté A₂H (courbe 2).
- 2.1 L'observation de ces deux courbes permet-elle de prévoir sans calcul, la force relative des acides étudiés ? Justifier. (0,5pt)
- 2.2 Calculer les concentrations C_1 et C_2 des acides A_1H et A_2H .
- 2.3 Trouver pour l'acide faible la valeur du pKa du couple correspondant.
- 2.4 Le tableau ci-contre donne pour trois indicateurs colorés la zone de virage. Quel indicateur coloré paraît le plus approprié à chaque dosage?

L'indicateur coloré	Zone	de virage
Le bleu de bromothymol	6.2	7.6
L'hélianthine	3.1	4,4
La phénophtaléine	8	10

Exercice 2

Le 2-méthylbutanal noté A et la 3-méthylbutan-2-one noté B sont deux isomères de formule brute $C_5H_{10}O$.

1.1 Donner la formule semi développée de A. Encadrer le groupement fonctionnel. Donner le nom de la fonction.

- 1.2 Le 2-méthylbutanal est oxydé par les ions dichromate $(Cr_2O_7^{2-})$ en milieu acide : La solution prend la teinte verte des ions Cr^{3+} . Ecrire l'équation bilan de la réaction.
- 2 La 3-méthylbutan-2-one a pour formule semi développée : CH₃-C-CH-CH₃
- 2.1 Encadrer le groupement fonctionnel. Donner le nom de la fonction.
- 2.2 Ce composé est obtenu par oxydation d'un alcool. Donner le nom et la formule semi développée de cet alcool.
- 3 Cet alcool lui-même peut être obtenu de façon majoritaire par hydratation d'un hydrocarbure. Donner le nom et la formule semi développée de cet hydrocarbure.pt)
- 4 Citer un test d'identification commun aux deux isomères A et B et citer un autre test permettant de les différencier en précisant avec lequel des deux composés le test est positif.(pt)

Exercíce 3

Les frottements sont négligeables.

On considère un ressort très long à spires non jointives de masse négligeable et de raideur K.

11

O CH₃

(0, 0)

Le ressort est placé sur une table horizontale. On fixe l'une

des extrémités du ressort et on accroche à son autre extrémité un solide ponctuel de masse m. On déplace le solide de sa position d'équilibre d'une distance x_0 =5cm et on l'abandonne sans vitesse initiale.

- 1 . Faire le bilan des forces s'exerçant sur le solide et montrer que le système {ressort+solide+terre} est conservatif.(0.75pt)
- 2 .Pour une position x quelconque donner l'expression de l'énergie mécanique du système en fonction K, m, x et de la vitesse V du solide. (0.75pt)
- 3 Donner cette expression en fonction de K et x_o . Déduire l'expression de Ven fonction de K,m, et x.
- 4 Montrer que l'énergie potentielle élastique du ressort peut s'écrire sous la forme : E_{pe}^- a $V^2 + b$. (0,5pt)
- 5 L'expérience montre que $Ep_e = -0.1 \text{ V}^2 + 2.5.10^{-2}$. Déduire les valeurs de m et de K. (0.75pt) 6 Calculer la vitesse du solide lors du passage par sa position d'équilibre. **(0.75pt)**

Exercíce 4

Une tige MN se déplace sans frottement, sur deux rails P_1 et P_2 rectilignes, horizontaux et parallèles, à la vitesse constante \overrightarrow{V} . La distance séparant les rails

est ℓ et la tige MN est perpendiculaire aux rails (voir figure). On exerce une force $\vec{F} = F\vec{i}$ sur la tige. Le circuit formé des rails, de la tige et de la résistance R est placé dans un champ magnétique uniforme vertical \vec{B} d'intensité B = 0.4T.

- 1. Expliquer pourquoi il apparaît un courant induit dans le circuit. (0.75pt)
- 2. Quel est le sens du courant induit circulant dans la tige ? (0,75pt)

Le circuit est orienté dans le sens du courant induit, montrer que le flux du champ magnétique à travers la surface délimitée par le circuit s'écrit sous la forme : $\Phi = \Phi_0 + at$ où a est une constante que l'on déterminera. (1pt)

- 3. En déduire la f.e.m induite e et l'intensité du courant (On néglige la résistance des rails et de la tige devant R).
- 4. Analyser les forces qui s'exercent sur la tige et en déduire l'intensité F de la force. On donne $R = 2\Omega$; V = 2m/s; l = 12cm.

Exercíce 5

1 Une Source S émettant une radiation monochromatique éclaire deux fentes S_1 et S_2

parallèles distantes de 3mm. On observe les interférences sur un écran E situé à 3m du plan des deux fentes.

 $\begin{array}{c|c}
 & S_1 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$

1.1 Quelle est l'interfrange i si le milieu de la troisième frange brillante est située au dessus de la frange centrale se trouve à la distance d = 3,6mm du milieu de la troisième frange brillante située en dessous.

1.2 En déduire la longueur d'onde de la radiation émise par la source S.

2 La source S émet à présent deux radiations de longueurs d'onde respectives $\lambda_1 = 0.48 \mu m$ et $\lambda_2 = 0.54 \mu m$

2.1 Qu'observe-t-on sur l'écran E?

2.2 A quelle distance de la frange centrale observe-t-on la première coïncidence entre franges brillantes?

3 La source S émet de la lumière blanche.

3.1 Qu'observe-t-on sur l'écran E?

3.2 On place la fente d'un spectroscope dans le plan de l'écran E et parallèlement à la frange centrale et à 4mm de celle-ci.

Quel est le nombre des franges brillantes observées en ce point et leurs longueurs d'ondes?

On rappelle que les limites du spectre visible sont $[0.4 \,\mu$ m; $0.8 \,\mu$ m],(1pt)