EM Algorithm for Latent Variable Models

David S. Rosenberg

New York University

April 24, 2018

Contents

- Latent Variable Models
- EM Algorithm (and Variational Methods) The Big Picture
- Math Prerequisites
- 4 The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$
- Does EM Work?
- O Variations on EM
- Summer Homework: Gaussian Mixture Model (Hints)

Latent Variable Models

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z \mid \theta)$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

Complete and Incomplete Data

- Suppose we observe some data $(x_1, ..., x_n)$.
- To simplify notation, take x to represent the entire dataset

$$x = (x_1, \ldots, x_n),$$

and z to represent the corresponding unobserved variables

$$z = (z_1, \ldots, z_n)$$
.

- An observation of x is called an **incomplete data set**.
- An observation (x,z) is called a **complete data set**.

Our Objectives

• Learning problem: Given incomplete dataset $\mathcal{D} = x = (x_1, \dots, x_n)$, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(\mathcal{D} \mid \theta).$$

• Inference problem: Given x, find conditional distribution over z:

$$p(z_i | x_i, \theta)$$
.

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

Log-Likelihood and Terminology

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x, z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

- We often call p(x, z) the **joint**. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

EM Algorithm (and Variational Methods) – The Big Picture

Big Picture Idea

• Want to find θ by maximizing the likelihood of the observed data x:

$$\hat{\theta} = \arg\max_{\theta \in \Theta} [\log p(x \mid \theta)]$$

- Unfortunately this may be hard to do directly.
- Approach: Generate a family of lower bounds on $\theta \mapsto \log p(x \mid \theta)$.
- For every $q \in \Omega$, we will have a lower bound:

$$\log p(x \mid \theta) \geqslant \mathcal{L}_q(\theta) \qquad \forall \theta \in \Theta$$

• We will try to find the maximum over all lower bounds:

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,max}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left[\sup_{\boldsymbol{q} \in \boldsymbol{\Omega}} \mathcal{L}_{\boldsymbol{q}}(\boldsymbol{\theta}) \right]$$

The Marginal Log-Likelihood Function

The Maximum Likelihood Estimator

Lower Bounds on Marginal Log-Likelihood

Supremum over Lower Bounds is a Lower Bound

Parameter Estimate: Max over all lower bounds

The Expected Complete Data Log-Likelihood

• Marginal log-likelihood is hard to optimize:

$$\max_{\theta} \log p(x \mid \theta)$$

• Typically the complete data log-likelihood is easy to optimize:

$$\max_{\theta} \log p(x, z \mid \theta)$$

• What if we had a **distribution** q(z) for the latent variables z?

The Expected Complete Data Log-Likelihood

- Suppose we have a distribution q(z) on latent variable z.
- Then maximize the expected complete data log-likelihood:

$$\max_{\theta} \sum_{z} q(z) \log p(x, z \mid \theta)$$

- If q puts lots of weight on actual z, this could be a good approximation to MLE
- EM assumes this maximization is relatively easy.
- (This is true for GMM.)

Math Prerequisites

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f : R \to R$ is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Moreover, if f is **strictly convex**, then equality implies that $x = \mathbb{E}x$ with probability 1 (i.e. x is a constant).

• e.g. $f(x) = x^2$ is convex. So $\mathbb{E}x^2 \geqslant (\mathbb{E}x)^2$. Thus

$$\operatorname{Var}(x) = \mathbb{E}x^2 - (\mathbb{E}x)^2 \geqslant 0.$$

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on \mathfrak{X} .
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$\mathrm{KL}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

$$\mathrm{KL}(p\|q) = \mathbb{E}_{x\sim p}\log\frac{p(x)}{q(x)}.$$

Gibbs Inequality
$$(KL(p||q) \ge 0 \text{ and } KL(p||p) = 0)$$

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathfrak{X} . Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

- KL divergence measures the "distance" between distributions.
- Note:
 - KL divergence **not a metric**.
 - KL divergence is **not symmetric**.

Gibbs Inequality: Proof

$$\begin{split} \mathrm{KL}(\rho \| q) &= \mathbb{E}_{p} \left[-\log \left(\frac{q(x)}{p(x)} \right) \right] \\ &\geqslant -\log \left[\mathbb{E}_{p} \left(\frac{q(x)}{p(x)} \right) \right] \quad \text{(Jensen's)} \\ &= -\log \left[\sum_{\{x \mid p(x) > 0\}} p(x) \frac{q(x)}{p(x)} \right] \\ &= -\log \left[\sum_{x \in \mathcal{X}} q(x) \right] \\ &= -\log 1 = 0. \end{split}$$

• Since $-\log$ is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which implies q=p.

The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$

Lower Bound for Marginal Log-Likelihood

• Let q(z) be any PMF on \mathcal{Z} , the support of z:

$$\log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

$$= \log \left[\sum_{z} q(z) \left(\frac{p(x, z \mid \theta)}{q(z)} \right) \right] \quad \text{(log of an expectation)}$$

$$\geqslant \sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)} \right) \quad \text{(expectation of log)}$$

Inequality is by Jensen's, by concavity of the log.

This inequality is the basis for "variational methods", of which EM is a basic example.

The ELBO

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \underbrace{\sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)} \right)}_{\mathcal{L}(q, \theta)}$$

- Marginal log likelihood $\log p(x \mid \theta)$ also called the evidence.
- $\mathcal{L}(q, \theta)$ is the evidence lower bound, or "ELBO".

In EM algorithm (and variational methods more generally), we maximize $\mathcal{L}(q,\theta)$ over q and θ .

MLE, EM, and the ELBO

ullet For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• The MLE is defined as a maximum over θ :

$$\hat{\theta}_{\mathsf{MLE}} = \operatorname*{arg\,max}_{\theta} \left[\log p(x \mid \theta) \right].$$

• In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\mathsf{EM}} pprox rg \max_{\theta} \left[\max_{q} \mathcal{L}(q, \theta) \right]$$

• In EM algorithm, q ranges over all distributions on z.

A Family of Lower Bounds

- For each q, we get a lower bound function: $\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) \ \forall \theta$.
- Two lower bounds (blue and green curves), as functions of θ :

• Ideally, we'd find the maximum of the red curve. Maximum of green is close.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q's and θ 's by "coordinate ascent".
- EM Algorithm (high level):
 - Choose initial θ^{old} .
 - 2 Let $q^* = \operatorname{arg\,max}_q \mathcal{L}(q, \theta^{\text{old}})$
 - **3** Let $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$.
 - Go to step 2, until converged.
- Will show: $p(x \mid \theta^{new}) \ge p(x \mid \theta^{old})$
- Get sequence of θ 's with monotonically increasing likelihood.

EM: Coordinate Ascent on Lower Bound

- Start at θ^{old} .
- ② Find q giving best lower bound at $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

EM: Next Steps

- In EM algorithm, we need to repeatedly solve the following steps:
 - $\arg \max_{q} \mathcal{L}(q, \theta)$, for a given θ , and
 - $arg max_{\theta} \mathcal{L}(q, \theta)$, for a given q.
- We now give two re-expressions of ELBO $\mathcal{L}(q,\theta)$ that make these easy to compute...

ELBO in Terms of KL Divergence and Entropy

• Let's investigate the lower bound:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log \left(\frac{p(z \mid x,\theta)p(x \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log \left(\frac{p(z \mid x,\theta)}{q(z)} \right) + \sum_{z} q(z) \log p(x \mid \theta)$$

$$= -\text{KL}[q(z), p(z \mid x,\theta)] + \log p(x \mid \theta)$$

Amazing! We get back an equality for the marginal likelihood:

$$\log p(x \mid \theta) = \mathcal{L}(q, \theta) + \text{KL}[q(z), p(z \mid x, \theta)]$$

Maximizing over q for fixed θ .

• Find q maximizing

$$\mathcal{L}(q, \theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

- Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.
- Best q is $q^*(z) = p(z \mid x, \theta)$ and

$$\mathcal{L}(q^*, \theta) = -\underbrace{\mathrm{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0} + \log p(x \mid \theta)$$

Summary:

$$\log p(x \mid \theta) = \sup_{q} \mathcal{L}(q, \theta) \qquad \forall \theta$$

• For any θ , sup is attained at $q(z) = p(z \mid x, \theta)$.

Marginal Log-Likelihood **IS** the Supremum over Lower Bounds

sup is over all distributions on z $\log p(x|\theta) = \sup_{\theta} \mathcal{L}(q,\theta)$

Maximum of ELBO is MLE

• Suppose we find a maximum of $\mathcal{L}(q,\theta)$ over all distributions q on z and all $\theta \in \Theta$:

$$\mathcal{L}(q^*, \theta^*) = \sup_{\theta} \sup_{q} \mathcal{L}(q, \theta).$$

(where of course $q^*(z) = p(z \mid x, \theta^*)$.)

- Claim: θ^* is a maximizes $\log p(x \mid \theta)$.
- Proof: Trivial, since $\log p(x \mid \theta) = \sup_{q} \mathcal{L}(q, \theta)$.

Summary: Maximizing over q for fixed $\theta = \theta^{\text{old}}$.

- At given $\theta = \theta^{\text{old}}$, want to find q giving best lower bound.
- Answer is $q^* = p(z \mid x, \theta^{\text{old}})$.
- This gives lower bound $\mathcal{L}(q^*, \theta)$ that is tight (equality) at θ^{old}

$$\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}})$$
 (tangent at θ^{old}).

• And elsewhere, of course, $\mathcal{L}(q^*, \theta)$ is just a lower bound:

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q^*, \theta) \quad \forall \theta$$

Tight lower bound for any chosen θ

For θ^{old} , take $q(z) = p(z \mid x, \theta^{\text{old}})$. Then

- $\bullet \ \log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q, \theta^{\text{old}}). \ [\text{Lower bound is tight at } \theta^{\text{old}}.]$
- 2 $\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) \ \forall \theta$. [Global lower bound].

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Maximizing over θ for fixed q

• Consider maximizing the lower bound $\mathcal{L}(q, \theta)$:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log p(x,z \mid \theta) - \sum_{z} q(z) \log q(z)$$

$$\mathbb{E}[\text{complete data log-likelihood}] \quad \text{no } \theta \text{ here}$$

• Maximizing $\mathcal{L}(q,\theta)$ equivalent to maximizing $\mathbb{E}[\mathsf{complete}|\mathsf{data}|\mathsf{log-likelihood}]$ (for fixed q).

General EM Algorithm

- Choose initial θ^{old} .
- Expectation Step
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. $[q^*]$ gives best lower bound at θ^{old}
 - Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\textbf{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

Go to step 2, until converged.

Does EM Work?

EM Gives Monotonically Increasing Likelihood: By Picture

EM Gives Monotonically Increasing Likelihood: By Math

- Start at θ^{old} .
- ② Choose $q^*(z) = \arg \max_{q} \mathcal{L}(q, \theta^{\text{old}})$. We've shown

$$\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}})$$

3 Choose $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$. So

$$\mathcal{L}(q^*, \theta^{\mathsf{new}}) \geqslant \mathcal{L}(q^*, \theta^{\mathsf{old}}).$$

Putting it together, we get

$$\begin{array}{ll} \log p(x \mid \theta^{\mathsf{new}}) & \geqslant & \mathcal{L}(q^*, \theta^{\mathsf{new}}) & \mathcal{L} \text{ is a lower bound} \\ & \geqslant & \mathcal{L}(q^*, \theta^{\mathsf{old}}) & \text{By definition of } \theta^{\mathsf{new}} \\ & = & \log p(x \mid \theta^{\mathsf{old}}) & \text{Bound is tight at } \theta^{\mathsf{old}}. \end{array}$$

Convergence of EM

- Let θ_n be value of EM algorithm after n steps.
- Define "transition function" $M(\cdot)$ such that $\theta_{n+1} = M(\theta_n)$.
- Suppose log-likelihood function $\ell(\theta) = \log p(x \mid \theta)$ is differentiable.
- Let S be the set of stationary points of $\ell(\theta)$. (i.e. $\nabla_{\theta}\ell(\theta) = 0$)

Theorem

Under mild regularity conditions^a, for any starting point θ_0 ,

- $\lim_{n\to\infty} \theta_n = \theta^*$ for some stationary point $\theta^* \in S$ and
- θ^* is a fixed point of the EM algorithm, i.e. $M(\theta^*) = \theta^*$. Moreover,
- $\ell(\theta_n)$ strictly increases to $\ell(\theta^*)$ as $n \to \infty$, unless $\theta_n \equiv \theta^*$.

^aFor details, see "Parameter Convergence for EM and MM Algorithms" by Florin Vaida in Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf

Variations on EM

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

The "M" Step: Computing

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}).$$

• Either of these can be too hard to do in practice.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\mathsf{new}}) > J(\theta^{\mathsf{old}}).$$

- Can use a standard nonlinear optimization strategy
 - \bullet e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$q^* = \underset{q \in \Omega}{\operatorname{arg\,min}\, \mathrm{KL}[q(z), p(z \mid x, \theta^{\mathrm{old}})]}$$

EM in Bayesian Setting

- Suppose we have a prior $p(\theta)$.
- Want to find MAP estimate: $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta \mid x)$:

$$p(\theta \mid x) = p(x \mid \theta)p(\theta)/p(x)$$

$$\log p(\theta \mid x) = \log p(x \mid \theta) + \log p(\theta) - \log p(x)$$

• Still can use our lower bound on $\log p(x, \theta)$.

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

Maximization step becomes

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} [J(\theta) + \log p(\theta)]$$

• Homework: Convince yourself our lower bound is still tight at θ .

Summer Homework: Gaussian Mixture Model (Hints)

Homework: Derive EM for GMM from General EM Algorithm

- Subsequent slides may help set things up.
- Key skills:
 - MLE for multivariate Gaussian distributions.
 - Lagrange multipliers

Gaussian Mixture Model (k Components)

GMM Parameters

Cluster probabilities:
$$\pi = (\pi_1, \dots, \pi_k)$$

Cluster means:
$$\mu = (\mu_1, ..., \mu_k)$$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

- Let $\theta = (\pi, \mu, \Sigma)$.
- Marginal log-likelihood

$$\log p(x \mid \theta) = \log \left\{ \sum_{z=1}^{k} \pi_z \mathcal{N}(x \mid \mu_z, \Sigma_z) \right\}$$

$q^*(z)$ are "Soft Assignments"

- Suppose we observe n points: $X = (x_1, ..., x_n) \in \mathbb{R}^{n \times d}$.
- Let $z_1, \ldots, z_n \in \{1, \ldots, k\}$ be corresponding hidden variables.
- Optimal distribution q* is:

$$q^*(z) = p(z \mid x, \theta).$$

• Convenient to define the conditional distribution for z_i given x_i as

$$\gamma_i^j := p(z = j \mid x_i)$$

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}$$

Expectation Step

• The complete log-likelihood is

$$\log p(x, z \mid \theta) = \sum_{i=1}^{n} \log [\pi_z \mathcal{N}(x_i \mid \mu_z, \Sigma_z)]$$

$$= \sum_{i=1}^{n} \left(\log \pi_z + \underbrace{\log \mathcal{N}(x_i \mid \mu_z, \Sigma_z)}_{\text{simplifies nicely}} \right)$$

Take the expected complete log-likelihood w.r.t. q*:

$$J(\theta) = \sum_{z} q^{*}(z) \log p(x, z \mid \theta)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{i}^{j} [\log \pi_{j} + \log \mathcal{N}(x_{i} \mid \mu_{j}, \Sigma_{j})]$$

Maximization Step

• Find θ^* maximizing $J(\theta)$:

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_{\text{MLE}}) (x_i - \mu_{\text{MLE}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n},$$

for each $c = 1, \ldots, k$.