AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 4: More on SVD; Projectors

Xiangmin Jiao

SUNY Stony Brook

Outline

Singular Value Decomposition (NLA§4-5)

Projectors (NLA§6)

Xiangmin Jiao Numerical Analysis I 2 / 18

Singular Value Decomposition (SVD)

• Given $A \in \mathbb{R}^{m \times n}$, its *SVD* is

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

- If $A \in \mathbb{C}^{m \times n}$, then its SVD is $A = U \Sigma V^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- Singular values are diagonal entries of Σ , with entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$
- Left singular vectors of A are column vectors of U
- Right singular vectors of A are column vectors of V and are the preimages of the principal semiaxes of AS
- SVD plays prominent role in data analysis and matrix analysis

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): $\hat{U} \in \mathbb{R}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^T$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): $\hat{U} \in \mathbb{R}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^T$$

Furthermore, notice that

$$A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^T$$

so we can keep only entries of U and V corresponding to nonzero σ_i .

Existence of SVD

Theorem

(Existence) Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.

Proof: Let $\sigma_1=\|A\|_2$. There exists $v_1\in\mathbb{R}^n$ with $\|v_1\|_2=1$ and $\|Av_1\|_2=\sigma_1$. Let U_1 and V_1 be orthogonal matrices whose first columns are $u_1=Av_1/\sigma_1$ (or any unit-length vector if $\sigma_1=0$) and v_1 , respectively. Note that

$$U_1^T A V_1 = S = \begin{bmatrix} \sigma_1 & \omega^T \\ 0 & B \end{bmatrix}. \tag{1}$$

Furthermore, $\omega = 0$ because $||S||_2 = \sigma_1$, and

$$\left\| \left[\begin{array}{cc} \sigma_1 & \omega^T \\ 0 & B \end{array} \right] \left[\begin{array}{cc} \sigma_1 \\ \omega \end{array} \right] \right\|_2 \geq \sigma_1^2 + \omega^T \omega = \sqrt{\sigma_1^2 + \omega^T \omega} \left\| \left[\begin{array}{cc} \sigma_1 \\ \omega \end{array} \right] \right\|_2,$$

implying that $\sigma_1 \geq \sqrt{\sigma_1^2 + \omega^T \omega}$ and $\omega = 0$.

Existence of SVD Cont'd

We then prove by induction using (1). If m=1 or n=1, then B is empty and we have $A=U_1SV_1^T$. Otherwise, suppose $B=U_2\Sigma_2V_2^T$, and then

$$A = \underbrace{U_1 \begin{bmatrix} 1 & 0^T \\ 0 & U_2 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sigma_1 & 0^T \\ 0 & \Sigma_2 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 1 & 0^T \\ 0 & V_2^T \end{bmatrix}}_{V^T} V_1^T,$$

where U and V are orthogonal.

Uniqueness of SVD

Theorem

(Uniqueness) The singular values $\{\sigma_j\}$ are uniquely determined. If A is square and the σ_j are distinct, the left and right singular vectors are uniquely determined **up to signs**.

Geometric argument: If the lengths of semiaxes of a hyperellipse are distinct, then the semiaxes themselves are determined by the geometry up to signs.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

• Question: What if we change the sign of a singular vector?

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If v_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of A, implying that σ_1 is not a simple singular value.

Once σ_1 , u_1 , and v_1 are determined, the remainder of SVD is determined by the space orthogonal to v_1 . Because v_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

- Question: What if we change the sign of a singular vector?
- Question: What if σ_i is not distinct?

SVD vs. Eigenvalue Decomposition

• Eigenvalue decomposition of nondefective matrix A is $A = X\Lambda X^{-1}$

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix A is $A = X \Lambda X^{-1}$
- Differences between SVD and eigenvalue decomposition
 - Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - ▶ Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

SVD vs. Eigenvalue Decomposition

- Eigenvalue decomposition of nondefective matrix A is $A = X \Lambda X^{-1}$
- Differences between SVD and eigenvalue decomposition
 - ► Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
 - ► Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
 - Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

Similarities

- Singular values of A are square roots of eigenvalues of AA^T and A^TA , and their eigenvectors are left and right singular vectors, respectively
- ► Singular values of Hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to signs)
- ▶ This relationship can be used to compute singular values by hand

Matrix Properties via SVD

- Let r be number of nonzero singular values of $A \in \mathbb{R}^{m \times n}$
 - ► rank(A) is r
 - $range(A) = span\{u_1, u_2, \dots, u_r\}$
- 2-norm and Frobenius norm
 - $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sum_i \sigma_i^2}$
- Determinant of matrix
 - For $A \in \mathbb{R}^{m \times m}$, $|\det(A)| = \prod_{i=1}^m \sigma_i$

Matrix Properties via SVD

- Let r be number of nonzero singular values of $A \in \mathbb{R}^{m \times n}$
 - ► rank(A) is r
 - ightharpoonup range(A) = span{ u_1, u_2, \ldots, u_r }
- 2-norm and Frobenius norm
 - $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sum_i \sigma_i^2}$
- Determinant of matrix
 - ▶ For $A \in \mathbb{R}^{m \times m}$, $|\det(A)| = \prod_{i=1}^m \sigma_i$
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later

Xiangmin Jiao

Outline

1 Singular Value Decomposition (NLA§4-5)

Projectors (NLA§6)

Xiangmin Jiao Numerical Analysis I 11 / 18

Projectors (Projection Matrices)

- A projector (aka projection matrix) satisfies $P^2 = P$. They are also said to be idempotent.
 - Orthogonal projector
 - Oblique projector
- An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 , where S_1 and S_2 are orthogonal.
 - $S_1 = \operatorname{range}(P)$
 - $ightharpoonup S_2 = \operatorname{null}(P)$
- Example: $\begin{bmatrix} 0 & 0 \\ \alpha & 1 \end{bmatrix}$
 - is an oblique projector if $\alpha \neq 0$,
 - is orthogonal projector if $\alpha = 0$.

Orthogonal Projector

Theorem

A projector P is orthogonal if and only if $P = P^T$.

Note: An alternative definition of *orthogonal projection* is $P^2 = P$ and $P = P^T$, and it projects onto S = range(P).

Proof.

Orthogonal Projector

Theorem

A projector P is orthogonal if and only if $P = P^T$.

Note: An alternative definition of *orthogonal projection* is $P^2 = P$ and $P = P^T$, and it projects onto S = range(P).

Proof.

"If" direction: If $P=P^T$, then $(Px)^T(I-P)y=x^T(P-P^2)y=0$. "Only if" direction: Use SVD. Suppose P projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{q_1,\ldots,q_n\}$ be orthonormal basis of S_1 and $\{q_{n+1},\ldots,q_m\}$ be a basis for S_2 . Let Q be unitary matrix whose fth column is f0, and we have f1, and f2, and f3, and f4, and f5, and f7, and f8, and f9, and f9, and f9. So f9, and f9, and f9. So f9. So

Question: Are orthogonal projectors orthogonal matrices?

Complementary Projectors

- Complementary projectors: P vs. I-P. We write I-P as P_{\perp}
- What space does I P project?

Complementary Projectors

- Complementary projectors: P vs. I-P. We write I-P as P_{\perp}
- What space does I P project?
 - ► Answer: null(*P*).
 - ▶ range(I P) \supseteq null(P) because $Pv = 0 \Rightarrow (I P)v = v$.
 - ▶ range(I P) ⊆ null(P) because for any v $(I P)v = v Pv \in \text{null}(P)$.
- A projector separates \mathbb{R}^m into two complementary subspace: range space and null space (i.e., range(P) + null(P) = \mathbb{R}^m and range(P) \cap null(P) = $\{0\}$ for projector $P \in \mathbb{R}^{m \times m}$)
- It projects onto range space along null space
 - ▶ In other words, x = Px + r, where $r \in \text{null}(P)$
- Question: Are range space and null space of projector orthogonal to each other?

Uniqueness of Orthogonal Projector

- Orthogonal projector for a subspace is unique
- In other words, for $S \subseteq \mathbb{R}^n$ be a subspace, if P_1 and P_2 are each orthogonal projector onto S, then $P_1 = P_2$
- Proof: For any $z \in \mathbb{R}^n$,

$$||(P_1 - P_2)z||_2^2 = z^T (P_1 - P_2)(P_1 - P_2)z$$

$$= z^T P_1 (P_1 - P_2)z - z^T P_2 (P_1 - P_2)z$$

$$= z^T P_1 (I - P_2)z + z^T P_2 (I - P_1)z$$

$$= (P_1 z)^T (I - P_2)z + (P_2 z)^T (I - P_1)z$$

$$= 0$$

Therefore, $||P_1 - P_2||_2 = 0$, and $P_1 = P_2$.

Projections with Orthonormal Basis

- Given unit vector q, $P_q = qq^T$ and $P_{\perp q} = I P_q$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_j are orthonormal, $P = QQ^T = \sum_j q_j q_j^T$ is orthogonal projector onto range(Q)
- SVD-related projections
 - ▶ Suppose $A = U\Sigma V^T \in \mathbb{R}^{m \times n}$ is SVD of A, and r = rank(A)
 - Partition U and V to

$$U = \begin{bmatrix} U_r | \tilde{U}_r \end{bmatrix}, \quad V = \begin{bmatrix} V_r | \tilde{V}_r \end{bmatrix}$$

▶ What do $U_r U_r^T$, $\tilde{U}_r \tilde{U}_r^T$, $V_r V_r^T$, and $\tilde{V}_r \tilde{V}_r^T$ project onto, respectively?

Projections with Orthonormal Basis

- Given unit vector q, $P_q = qq^T$ and $P_{\perp q} = I P_q$
- Given any matrix $Q \in \mathbb{R}^{m \times n}$ whose columns q_j are orthonormal, $P = QQ^T = \sum_j q_j q_j^T$ is orthogonal projector onto range(Q)
- SVD-related projections
 - ▶ Suppose $A = U\Sigma V^T \in \mathbb{R}^{m \times n}$ is SVD of A, and r = rank(A)
 - Partition U and V to

$$U = \begin{bmatrix} U_r | \tilde{U}_r \end{bmatrix}, \quad V = \begin{bmatrix} V_r | \tilde{V}_r \end{bmatrix}$$

- ▶ What do $U_r U_r^T$, $\tilde{U}_r \tilde{U}_r^T$, $V_r V_r^T$, and $\tilde{V}_r \tilde{V}_r^T$ project onto, respectively?
 - ★ Answer: range(A), null(A^T), range(A^T), null(A)

Projection with Arbitrary Basis

- For arbitrary vector a, we write $P_a = \frac{aa^T}{a^Ta}$ and $P_{\perp a} = I P_a$
- Given any matrix $A \in \mathbb{R}^{m \times n}$ that has full rank and $m \ge n$. Let $A = U \Sigma V^T$ be its SVD

$$P = UU^T = A(A^TA)^{-1}A^T$$

is orthogonal projection onto range(P)

- $(A^TA)^{-1}A^T$ is called the *pseudo-inverse* of A, denoted as A^+
- Therefore,

$$P = UU^T = AA^+$$

- In addition, $A^+A = I$
- Note: If m < n, $A^+ = A^T (AA^T)^{-1}$, and $AA^+ = I$ and A^+A is orthogonal projection onto range(A^T)

Distance Between Subspaces

- Suppose S_1 and S_2 are subspaces of \mathbb{R}^n , $\dim(S_1) = \dim(S_2)$, and P_i is orthogonal projection onto S_i
- The distance between S_1 and S_2 is

$$\mathsf{dist}(S_1, S_2) = \|P_1 - P_2\|_2$$

• Suppose $W = [W_1|W_2], Z = [Z_1|Z_2]$ are $n \times n$ orthogonal matrices. If $S_1 = \text{range}(W_1)$ and $S_2 = \text{range}(Z_1)$, then

$$\mathsf{dist}(S_1, S_2) = \|W_1^T Z_2\|_2 = \|Z_1^T W_2\|_2$$

(proof omitted here)

- In general, $0 \leq \operatorname{dist}(S_1, S_2) \leq 1$
- If subspaces are lines or planes, $dist(S_1, S_2)$ is sine of angle between them