CSCI 462 Introduction to Cryptography

Exam: Midterm Examination Duration: 75 minutes Instructor: Monika Polak

03/06/2019

Full	Name	(printed):	
------	------	------------	--

Instructions:

- The exam contains 9 pages. The last page is a scrap paper. Please make sure you have all pages.
- The exam contains a total of 29 points.
- The midterm is closed book and notes but you may use one page with your own notes (letter-sized paper).
- If you require clarification of a question, please raise your hand.

True or False (5 points)

For each of the following statements, <u>circle</u> TRUE if the statement is true. <u>Circle</u> FALSE if the statement is false.

- 1. TRUE / FALSE DES is an example of Feistel Network.
- 2. TRUE / FALSE $11_{Hex} \oplus FF_{Hex} = EE_{Hex}$.
- 3. TRUE / FALSE AES is a byte-oriented cipher.
- 4. TRUE / FALSE A stream cipher can be built from a block cipher.
- 5. TRUE / FALSE Encryption using Cipher Block Chaining mode (CBC) cannot be parallelized but decryption can be.
- 6. TRUE / FALSE Trivium is a secure stream cipher.
- 7. TRUE / FALSE Meet in the middle attack against 3DES requires 2¹¹³ encryptions/decryptions.
- 8. TRUE / FALSE $\,$ Key Whitening can be used to make all weak ciphers secure.
- 9. TRUE / FALSE $\;$ S-boxes are the only nonlinear elements of AES.
- 10. TRUE / FALSE A stream cipher algorithm defines how to encrypt/decrypt arbitrary-length messages.

Multiple Choice and Short Answer (11 points)

Indicate the correct response for each question.

1. (1 point) Encrypt message CAT using Caesar cipher with key K=10.

Α	В	С	D	Е	F	G	Н	-1	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Ζ
13	14	15	16	17	18	19	20	21	22	23	24	25

Answer:

- 2. (1 point) The sentence: "Assures that private or confidential information is not made available or disclosed to unauthorized individuals", describes:
 - (a) Data confidentiality
 - (b) Authentication
 - (c) Integrity
 - (d) Non-Repudiation
- 3. (1 point) Compute

$$\frac{2}{5} \mod 7$$

Answer:

4. (1 point) What is the output of the following DES S-box for the input 101011.

S_1																
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

Answer:

5. (1 point) There are elements in \mathbb{Z}_9 without a multiplicative inverse. Which elements are these?

Answer:

6. (1 point) Compute

$$6^{100}\cdot 12\ mod\ 5$$

Answer:

7. (1 point) Let n = 17. Use Blum-Blum-Shub generator to compute the first 3 bits of the generated output with seed $x_0 = 5$.

Answer:

8. (1 point)

Given a block cipher with a key length of 80 bits and block size of 50 bits, as well as 2 plaintext-ciphertext pairs $(x_1, y_1), (x_2, y_2)$, the expected number of false keys that encrypt all plaintexts to the corresponding ciphertexts is:

- (a) 2^{30}
- (b) $1/2^{30}$
- (c) 2^{120}
- (d) $2^{80}/2^{50}$

9. (1 point) Consider permutation *P*:

Consider the following bit sequence as the input data 111 100 011. Write down the permuted output.

Answer:

- 10. (2 points) Assume a password consisting of 5 letters, where each letter is encoded by the ASCII scheme (7 bits per character, i.e., 128 possible characters).
 - a) What is the size of the key space that can be constructed by such passwords?
 - b) What is the corresponding key length in bits?

Open problems (13 points)

1. (6 points = 4 + 1 + 1 points) Draw a diagram representing the linear feedback shift register (LFSR) described by the following polynomial:

$$P(x) = x^4 + x^3 + x^2 + 1.$$

- a) What is the maximum sequence length generated by an LFSR of degree 4?
- **b)** The LFSR is initialized with the value $(s_4, s_3, s_2, s_1, s_0) = (1, 1, 0, 1, 1)$. What are the first three keystream bits that are generated?

2. (4 points) Computations in $GF(2^8)$, where the irreducible polynomial is the one used by AES, $P(x) = x^8 + x^4 + x^3 + x + 1$. Let

$$A(x) = x^3 + 1$$
, $B(x) = x^3 + x^2 + 1$.

Compute:

a) A(x) + B(x).

b) $A(x) \cdot B(x)$.

Show the details of your work. Your answer must be in the form of a polynomial.

3. (3 points) List three differences between DES and AES.

i)

ii)

iii)

SCRAP PAPER