MP-1 TUTORIAL-13

1. Demonstrate the Discrete Optimization using Cutting Plane method.

QUESTION:

Max z=x1+x2

Subject To: 3x1+2x2 <= 5

X2<=2 X1,x2>=0

Tutorial -13

PMohith

Max
$$Z = X_1 + X_L$$

Subject To:

 $3X_1 + 2X_L = 5$
 $X_1 < 2$

and $X_1 \cdot X_L > 2$

The problem is converted to canonical form by adding slack variables, surplus and antificial variables as appropriate.

Max
$$z = \chi_1 + \chi_2 + OS_1 + OS_2$$

Subject TO
 $3\chi_1 + 2\chi_2 + S_1 = 5$
 $\chi_2 + S_2 = 2$ $\chi_1, \chi_2, S_1, S_2 > = 0$

$$CB_1$$
 C_1 C_1 C_2 C_3 C_4 C_5 C_5 C_5 C_5 C_5 C_5 C_6 C_6 C_7 C_7

CBi Gi I I O O

B·V
$$x_1$$
 a_2 s_1 s_2 s_{01}

I x_1 1 $2/3$ $1/3$ 0 $5/3$

O s_2 0 0 1 2

Cj-2y 0 $1/3$ $-1/3$ 0

Leaving = 52 Entering = 22 key demet = 1

CB; Cj 1 1 0 0

B·V
$$x_1$$
 x_2 s_1 s_2 s_0

1 x_1 1 0 $\frac{1}{3}$ $-\frac{2}{3}$ $\frac{1}{3}$

1 x_2 0 1 0 1 2

2j 1 1 $\frac{1}{3}$ $\frac{1}{3}$

G-2j 0 0 $-\frac{1}{3}$ $-\frac{1}{3}$

since all y-y L=0

Hence non-integer optimal solution is arrived with value of variables ab-

$$x_1 = \frac{1}{3}$$
 $x_2 = \frac{9}{2}$
Max $z = \frac{5}{3}$

To obtain integer valued solution we proceed to construct Gomory's fractional cut, with the CShelfscotner, - now as follows.

0.3333 = 1 x, + 0.3333 s, -0.6667 s₂

$$0+0.3333 - (1+0)x_{1} + (0-(0.33333)s_{1} + (-1+0.3333)s_{2}$$
The fractional cut will become
$$-0.3333 = sg_{1} - 0.3333s_{1} - 0.3333s_{2}$$

$$(ut-1)$$

Adding this constraint at the bottom of optimal simplen table

since all g-zj c=0

Hence integer optimal solution is arrived with value of variables as

Max 2 = 2

The integer optimal solution found after