Fully Convolutional Networks for Semantic Segmentation

Jonathan Long, Evan Shelhamer & Trevor Darrell (2015)

Proceedings of the IEEE

발표: 문동지

Semantic Segmentation = Pixel Level Classification

Deep Learning(CNN) Image Classification 잘한다 Sematic Segmentation은 결국 Pixel level의 Classification이다 Image Classification으로 Sematic Segmentation을 할 수 있겠다

Other Computer Vision Tasks

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 11 - 8 May 10, 2018

Image & Object Segmentation

Image Segmentation

Group pixels into regions that share some similar properties

Superpixels (Ren ICCV 2003

Segmenting Images into meaningful objects

Object-level segmentation

: accurate localization and recognition

Semantic Segmentation

Semantic Segmentation

- Label every pixel: recognize the class of every pixel
- Do not differentiate instances

Semantic Segmentation = Pixel Level Classification

Classification / Semantic Segmentation

Fully convolutional

convolution

Semantic Segmentation Idea: Fully Convolutional

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: ???

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: "Unpooling"

Upsampling Via Decovolution

(Blue: Input, Green: Output)

- Convolution is a process getting the output size smaller
- Thus, the name, deconvolution, is coming from when we want to have upsampling to get the output size larger (But the name, deconvolution, is misinterpreted as reverse process of convolution, but it is not)
- And it is also called, up convolution, and transposed convolution
- And it is also called fractional stride convolution when fractional stride is used

FCN - CNN (AlexNet, VGG, GoogLeNet)

	FCN-	FCN-	FCN-
	AlexNet	VGG16	GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

Skip Connection

Classification

Conv1

Pool1

112 x 112 x 64

Conv2

Pool1

56 x 56 x 128

Conv3

Pool3

"tabby cat"

Segmantation

224 x 224 x 3

Conv1

Pool1

112 x 112 x 64

Conv2

Pool1

56 x 56 x 128

Conv3

Pool3

32x Upsample
Softmax

위치정보 파악

Fusing for FCN-16s and FCN-8s

Comparison of skip FCNs

on a subset of PASCAL VOC 2011

	pixel	mean	mean	f.w.
		acc.		
FCN-32s-fixed	83.0	59.7	45.4	72.0
FCN-32s-fixed FCN-32s FCN-16s	89.1	73.3	59.4	81.4
FCN-16s	90.0	75.7	62.4	83.0
FCN-8s	90.3	75.9	62.7	83.2

Fully convolutional segmentation nets

state-of-the-art performace on PASCAL

	Pintor	1110011	1110 011		go om.
	acc.	acc.	IU	IU	acc.
Liu <i>et al</i> . [25]	76.7	-	-	-	-
Tighe <i>et al</i> . [36]	-	-	-	-	90.8
Tighe <i>et al</i> . [37] 1	75.6	41.1	-	-	-
Tighe <i>et al</i> . [37] 2	78.6	39.2	-	-	-
Farabet <i>et al</i> . [9] 1	72.3	50.8	-	-	-
Farabet et al. [9] 2	78.5	29.6	-	-	-
Pinheiro et al. [31]	77.7	29.8	-	-	-
FCN-16s	85.2	51.7	39.5	76.1	94.3

pixel mean mean f.w. geom.

Relative to prior state-of-the-art SDS:

- 30% relative improvement for mean IoU
- 286× faster

^{*}Simultaneous Detection and Segmentation Hariharan et al. ECCV14