AMENDMENT TO THE CLAIMS:

The following claim set replaces all prior versions, and listings, of claims in the application:

1-24. (canceled)

25. (previously presented) A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{max} \ge 270$ nm selected from the group consisting of the moieties represented by general formulae:

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

 $\mathsf{R}^{15},\,\mathsf{R}^{16}$ and R^{17} are independently selected from H and $C_1\text{-}C_6\text{-alkyl};$ and

wherein R' is H, OH, straight or branched chain C_1 - C_{20} -alkyl, C_1 - C_{20} -alkoxy or C_2 - C_{20} -alkenyl;

- and wherein in the above definition the symbol "-| " denotes the linkage to the hyperbranched polymer;
- or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone;

and a cosmetically acceptable carrier, and wherein

- the hyperbranched polymer is the polycondensation or polyaddition reaction product of building blocks AB₂, which building block AB₂ is glycidol.
- 26. (previously presented) The composition according to claim 25, wherein the hyperbranched polymer exhibits an average degree of branching ≥ 25%.
- 27. (previously presented) The composition according to claim 25, wherein the hyperbranched polymer has an average molecular weight $M_{\rm w}$ within the range of from 500 to 50,000 g mol⁻¹.

- 28. (previously presented) The composition according to claim 25, wherein the hyperbranched polymer comprises an average number of 2 to 600 dendritic building blocks.
- 29. (previously presented) The composition according to claim 25, wherein the hyperbranched polymer comprises a structure represented by general formula (I) $\{[Q](Y^1)_a\}(LX)_p(Y^2)_h$ (I),

wherein

Y¹ and Y² independently represent UV absorbing chromophores;

{[Q] (Y¹)_g} represents the hyperbranched polymer covalently bonded to g UV absorbing chromophores Y¹;

(LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being

covalently bonded to an UV absorbing chromophore Y², or

- covalently bonded to a capping group, or

- in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

wherein

index g is an integer, wherein $0 \le g \le 100$; index h is an integer, wherein $0 \le h \le p$; and index p is an integer, wherein $0 \le p \le 100$; with the proviso that $g + h \ge 3$.

30. (currently amended) A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{max} \ge 270$ nm selected from the group consisting of the moieties represented by general formulae:

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

 R^{11} and R^{12} are independently H, C_1 - C_6 -alkyl, NO_2 , CO_2 - C_1 - C_6 -alkyl or CN;

Z is $C_1\text{-}C_6\text{-}$ alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

 R^{15} , R^{16} and R^{17} are independently selected from H and C_1 - C_6 -alkyl; and

wherein R' is H, OH, straight or branched chain C₁-C₂₀-alkyl, C₁-C₂₀-alkoxy or C₂-C₂₀-alkenyl;

and wherein in the above definition the symbol "-| " denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone; and a cosmetically acceptable carrier, wherein the hyperbranched polymer comprises a structure represented by general formula (II)

$$\{[(B_k)_l (AB_2)_n] (Y^1)_q\} (LX)_p (Y^2)_h$$
 (II),

wherein

Y¹ and Y² independently represent UV absorbing chromophores;

(LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being

- covalently bonded to an UV absorbing chromophore Y², or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
- covalently bonded to a functional group A of a building block AB₂, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

(AB₂)_n represents n building blocks AB₂, which building block is glycidol, each bearing a functional group A which is the electrophillic carbon atom of the oxirane and 2 independent functional groups B which are represented by

the alcoholate of deprotonated glycidol as well as the alcoholate deliberated upon ring opening, wherein independently each functional group A is

- covalently bonded to a functional group B
- of a further building block AB₂, which building block is glycidol, or
- of the starter unit B_k, or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein independently each functional group B is

- covalently bonded to a functional group A of a further building block AB₂, which building block is glycidol, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

wherein

index g is an integer, wherein $0 \le g \le 100$;

index h is an integer, wherein $0 \le h \le p$, with the proviso that $g + h \ge 3$;

index k is an integer of from 1 to 6;

index I is 0 or 1;

index m is an integer of from 2 to 4;

index n is an integer of from 3 to 100; and

index p is an integer wherein $0 \le p \le 100$. n(m-1)+k.

31. (previously presented) The composition according to claim 30, wherein in the hyperbranched polymer index I is 1, the starting unit B_k is trimethylolpropane and the building block AB_2 is glycidol.

32. (currently amended) The composition according to claim 29, wherein the hyperbranched polymer comprises a structure represented by general formula (III)

$$\{[(B_k)_l (AB_2)_n (C_q)_r] (Y^1)_g\} (LX)_p (Y^2)_h$$
 (III),

wherein

 Y^1 and Y^2 are as defined previously;

LX is as defined previously;

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
- covalently bonded to a functional group C
- of a monomer C₂ or
- of a building block C_q or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;
- (AB₂)_n represents n building blocks AB₂, each bearing a functional group A and 2 independent functional groups B, wherein independently each functional group A is
- covalently bonded to a functional group C
- of a monomer C₂ or
- of a building block Cq, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

and wherein independently each functional group B is

- covalently bonded to a functional group C
- of a monomer C₂ or

POSCHALKO et al Serial No. 10/593,486

March 3, 2011

```
of a building block C<sub>q</sub>, or
          covalently bonded to the proximal end of a linker unit LX, or
         covalently bonded to an UV absorbing chromophore Y1, or
          covalently bonded to a capping group, or
          in its free reactive form;
(C_{\alpha})_r represents
       when index q = 2: r monomers C_2 or
       when index q > 2: r building blocks C_q
each bearing q functional groups C, wherein independently each functional group
       C is
          covalently bonded to a functional group A of a building block AB2, or
          covalently bonded to a functional group B
            of a building block AB<sub>2</sub>, or
            of the starter unit B<sub>k</sub>, or
          covalently bonded to the proximal end of a linker unit LX, or
         covalently bonded to an UV absorbing chromophore Y<sup>1</sup>, or
          covalently bonded to a capping group, or
          in its free reactive form;
wherein
index g is as defined previously;
index h is as defined previously;
index k is an integer of from 1 to 6;
index I is 0 or 1;
```

index m is an integer of from 2 to 4;

index n is an integer of from 3 to 100;

index p is an integer wherein $0 \le p \le 100$; n(m-1)+r(q-1)+k;

index q is an integer of from 2 to 4; and

index r is an integer wherein $1 \le r \le \frac{2n}{q}$. $\frac{nm}{q}$.

- 33. (canceled)
- 34. (previously presented) The composition according to claim 29 or 30, wherein the linker unit LX in the hyperbranched polymer comprises polyethyleneoxide or polypropyleneoxide.
- 35. (previously presented) The composition according to claim 29 or 30, wherein the hyperbranched polymer comprises 1 to 20 capping groups.
- 36. (previously presented) The composition according to claim 35, wherein the capping group is a straight or branched chain ether or ester group with 1 to 20 carbon atoms.