Thema: Residuenkalkül

Abgabe: Donnerstag, 12. Dezember 2019

Besprechung: Dienstag, 17. Dezember 2019

Aufgabe 1. (a) Man zeige für $a \in \mathbb{R}$ und R > 0 die Gleichheit

$$\int_0^{2\pi} \frac{R - a \cos t}{R^2 - 2aR \cos t + a^2} dt = \begin{cases} \frac{2\pi}{R} & \text{falls } R > |a|, \\ 0 & \text{falls } R < |a|. \end{cases}$$

(b) Man berechne das Integral

$$\int_0^\infty \frac{dx}{(x^2+1)(x^2+4)}.$$

Hinweis: Man kann die Symmetrie der Integranden verwenden, um den Integrationsbereich zu ändern.

Aufgabe 2. Sei $\Omega \subset \mathbb{C}$ ein sternförmiges Gebiet, $f, h : \Omega \to \mathbb{C}$ holomorph und $\gamma : [a, b] \to \Omega$ eine stückweise stetig differenzierbare, positiv orientierte , geschlossene Jordan-Kurve. Man zeige:

(a) Ist $z_0 \in \Omega$ eine Nullstelle der Ordnung m von f (d.h. $f^{(j)}(z_0) = 0$ für $j = 0, \ldots, m-1$ und $f^{(m)}(z_0) \neq 0$), dann hat $\frac{f'}{f}$ in z_0 einen Pol der Ordnung 1, und es gilt

$$\operatorname{Res}_{z_0}\left(\frac{f'}{f}\right) = m.$$

Hinweis: Man zeige und nutze $f(z) = (z - z_0)^m g(z)$ mit $g(z_0) \neq 0$.

(b) Es gelte $f(\gamma(t)) \neq 0$ für alle $t \in [a, b]$. Man zeige daß

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

gleich der Zahl der Nullstellen von f in $I(\gamma)$, gezählt mit Vielfachheit, ist.

Hinweis: Sie dürfen benutzen, daß es nur endlich viele Nullstellen von f in $I(\gamma)$ gibt, und daß jede dieser Nullstellen von endlicher Ordnung ist.

(c) Man zeige den Satz von Rouché: Falls

$$|h(\gamma(t))| < |f(\gamma(t))|$$
 für alle $t \in [a, b]$,

so haben f und f + h innerhalb von $I(\gamma)$ gleichviele Nullstellen (gezählt mit Vielfachheit).

Hinweis: Man zeige, daß

$$F: [0,1] \to \mathbb{N}_0, s \mapsto \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) + sh'(z)}{f(z) + sh(z)} dz$$

stetig ist.

Aufgabe 3. Man zeige folgende Gleichheit

$$\int_0^\infty \frac{\cos x}{1+x^2} dx = \frac{\pi}{2e}.$$

Hinweis: Man kann sich überlegen, daß $\int_0^\infty \frac{\cos x}{1+x^2} dx = \frac{1}{2} \Re \int_{-\infty}^\infty \frac{e^{ix}}{1+x^2} dx$ ist (Begründung!), und den Residuensatz anwenden.

Aufgabe 4. Sei $U \subset \mathbb{C}$ offen, $a \in U$. Seien weiter $g: U \to \mathbb{C}$ holomorph, und $f: U \setminus \{a\} \to \mathbb{C}$ eine holomorphe Funktion, die in a einen Pol höchstens erster Ordnung hat. Man zeige, daß

$$\operatorname{Res}_a(fg) = g(a)\operatorname{Res}_a(f).$$

Man gebe ein Beispiel an, das zeigt, daß diese Gleichung im Allgemeinen nicht gilt, falls f einen Pol zweiter Ordnung hat.