Лабораторная работа №5.8.1

Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного тела

Автор работы: Хоружий Кирилл

От: 15 сентября 2021 г.

Цель работы

- 1. В рамках модели абсолютно черного тела (АЧТ), с помощью пирометра и термопары, исследовать тепловое излучение накаленных тел с различной испускательной способностью.
- 2. Определить постоянные Планка и Стефана-Больцмана.

Оборудование

Пирометр с исчезающей нитью, термопара, лампа накаливания, АЧТ, блок питания, два цифровых вольтметра.

Основные формулы

Закон Стефана-Больцмана:

$$W = \varepsilon_T S \sigma T^4.$$

Выражение для постоянной Стефана-Больцмана:

$$\sigma = \frac{2\pi^5 k^4}{15h^3c^2}$$

Экспериментальная установка

Описание установки. 1 – блок питания; 2 – тумблер включения питания образцов; 3 – тумблер нагрева нити пирометра; 4 – кнопка "Нагрев нити"; 5 – кнопка "охлаждение нити"; 6 – тумблер переключения образцов; 7 – регулятор мощности нагрева образцов; 8 – окуляр пирометра; 9 – корпус пирометра; 10 – объектив пирометра; 11 – переключение диапазонов; 12 – ручка смещения красного светофильтра; 13 – регулировочный винт; 14 – вольтметр (напряжение на лампе накаливания); 15 – амперметр (ток через образцы); 16 – вольтметр в цепи термопары; 17 – модель АЧТ; 18 трубка с кольцами из материалов с различной излучательной способностью; 19 – лампа накаливания; 20 – неоновая лампочка.

Описание образцов. В работе исследуются:

- *Модель абсолютно чёрного тела* керамическая трубка, закрытая с одного конца и окружённая для теплоизоляции внешним кожухом. Температура в трубке измеряется с помощью термопары хромель-алюмель.
- Керамическая трубка с набором колец из различных материалов, нагреваемая изнутри нихромовой спиралью. Материалы колец имеют различную излучательную способность.
- Вольфрамовая нить электрической лампочки.

Рис. 1: Схема экспериментальной установки

Измерения

Изучение работы пирометра. Нагрев АЧТ до красного каления (дождавшись стабилизации температуру, судя по показаниям термопары), с помощью пирометра измерим температуру $t_{\rm pyr}$, сравним её с температурой, полученной по термопаре $t_{\rm therm}$:

$$t_{\rm therm}(45.89 {\rm MB}) = 1150~{\rm ^{\circ}C}, \hspace{0.5cm} t_{\rm pyr} = [1137, 1140, 1144, 1155]~{\rm ^{\circ}C} = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}MB}) = 1150~{\rm ^{\circ}C}, \hspace{0.5cm} t_{\rm pyr} = [1137, 1140, 1144, 1155]~{\rm ^{\circ}C} = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}MB}) = 1150~{\rm ^{\circ}C}, \hspace{0.5cm} t_{\rm pyr} = [1137, 1140, 1144, 1155]~{\rm ^{\circ}C} = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.991, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.995, 0.995, 1.004] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.995, 0.995, 0.995, 0.995, 0.995, 0.995] \\ t_{\rm therm}(45.89 {\rm ^{\circ}C}) = [0.989, 0.995, 0.$$

Ошибка не превышает 2%, так что показанаиям пирометра, по крайней мере для AЧТ в этом диапазоне можно верить.

Изучение яркостной температуры накаленных тел. Источником нагреваем керамическую трубку с кольцами из различных материалов. Пирометром измерели² яркостную температуру поверхности трубки $t_{\rm surf}$ и каждого из колец $t_{\rm ring}^{(1)}, t_{\rm ring}^{(2)}$:

$$t_{\rm surf} = (850 \pm 10) \, {\rm ^{\circ}C}, \, t_{\rm ring}^{(1)} \approx 794 \, {\rm ^{\circ}C}, \, t_{\rm ring}^{(2)} \approx 710 \, {\rm ^{\circ}C}.$$

Несовпадение яркостной тепературы обусловлено зависимостью мощности излучения от спектрального коэффициента поглощения, которой, видимо, различен для различных материалов второго образца.

Проверка закона Стефана-Больцмана. Теперь источником нагревается вольфрамовая нить лампы накаливания. С помощью пирометра измерялась яркостная температура нити $t_{\rm thr}$ (в самом ярком месте). Параллельно снимались значения цифровыми мультиметрами снимались значения тока I и напряжения U на онной. Результаты можно найти в таблице №1.

m /	1 TT		1 0	1
Таршица	1. I/I3M6D6H	ие яркостной температурь	т вольфрамовой нити	как функции мошности
таолица .	T. FISMODOI	me aphoeinon remnepary pb	i boliboppamobon imin,	Kan dynnaun mominocin

U, B	I, A	N, B _T	ΔN , Bt	t, °C	Δt , °C
1.65	0.481	0.79	0.02	866	35
1.74	0.491	0.85	0.02	900	37
2.24	0.540	1.21	0.02	1000	40
2.57	0.572	1.47	0.03	1100	43
3.31	0.638	2.11	0.04	1200	46
3.29	0.635	2.09	0.04	1300	49
4.00	0.696	2.78	0.06	1400	52
4.74	0.754	3.57	0.07	1450	53
4.84	0.759	3.67	0.07	1500	55
4.59	0.742	3.41	0.07	1500	55
5.32	0.798	4.25	0.08	1600	58
6.13	0.857	5.25	0.11	1688	60
5.86	0.837	4.90	0.10	1700	61
7.00	0.915	6.40	0.13	1792	63
7.72	0.963	7.43	0.15	1800	64
7.51	0.949	7.13	0.14	1833	64
9.22	1.053	9.71	0.19	1900	67

Погрешность измерения пирометра на основе предыдующих измерений была положена $\sim 3\% \pm 10$, для мультиметров взят $\sim 1\%$ от показаний.

Измерение яркостной температуры неоновой лампочки. Включив неоновую лампочку, пирометром измерим её яркостную температуру t_{Ne} :

$$t_{\rm Ne} = (874 \pm 27) \, ^{\circ}{\rm C},$$

что, очевидно $\gg 30$ °C. Ну, так совпало, что переход электронов между энергетическими уровнями неона имеет длину волны схожую, с излучением АЧТ на измеренной температуре.

¹Коэффициент перевода: 25.07 °С/мВ.

 $^{^2}$ Измерения проводлиоись несколько раз, что и обеспечило оценку погрешности каждого из измерений.

Обработка данных

В логарифмическом масштабе построим $\ln(U \times I)[\ln(t_{\rm surf})]$. Начиная с температуры $t_{\rm surf} \sim 1500$ °C (красная точка на графике) вольфрамовая нить светилась почти полностью, начиная с этой температуры приближаем из соображений

$$UI = W = \varepsilon_T BT^n, \quad \Rightarrow \quad \ln W = \ln(\varepsilon_T B) + n \ln(T).$$

Лабораторный практикум предлагает игнорировать зависимость $\varepsilon_T(t_{\text{surf}})$, однако это вносит достаточно существенные изменения, поэтому данные из таблицы лабораторного пракикума (таблица №1, стр. 236) восттановили зависимость $\varepsilon_T(T)$.

Рис. 2: Приближение зависимости $W(t_{\text{surf}})$

Значения $\chi^2=2.8$ говорит об адекватности приближения в рамках данной погрешности. Итого, находим значение для n

$$n = 4.8 \pm 0.4,$$

что, учетом погрешности, сходится с ожиданиями.

Теперь определим постоянную Стефана-Бльцмана. Основной вклад в погрешность даёт температура в силу T^4 . Также наблюдается постоянный сдвиг, скорее всего связанный с неточностью указанной $S=0.36~{\rm cm}^2,$ измерить которую не представляется возможным (значение лучше сходится с табличным при $S=0.27~{\rm cm}^2$).

Рис. 3: Сравнение полученных значений постоянной Стефана-Больцмана с табличным значением

Результаты

Постоянная Стефана-Больцмана. Табличное значение постоянной Стефана-Больцмана $\sigma_{\rm table}=5.7\times 10^{-8}~{\rm Br/(m^2~T^4)}$. Полученное значение составило

$$\sigma_{\rm meas} = (4.8 \pm 0.7) \times 10^{-8} \ {\rm Br/(m^2 \ T^4)},$$

что, с учётом погрешности, чуть ниже табличного значения, что скорее всего объясняется некорректным значением S.

Постоянная Планка. Благодаря кубическому корню, чуть лучше обстоят дела с постоянной Планка:

$$\sigma = \frac{2\pi^5 k^4}{15h^3 c^2}, \quad \Rightarrow \quad h = \sqrt[3]{\frac{2\pi^5 k^4}{15c^2}} \cdot \sqrt[3]{\frac{1}{\sigma}}, \quad \Rightarrow \quad h_{\text{meas}} = (7.0 \pm 0.4) \times 10^{-34} \, \text{Дж} \cdot \text{c},$$

что, кстати, замечательно сходится³ с табличным значением $h_{\rm table} = 6.6 \times 10^{-34} \; \text{Дж} \cdot \text{с}.$

Выводы

С помощью пирометра исследована яркостная температура накаленных тел с различной испускательной способностью. Определено значение постоянной Стефана-Больцмана

$$\sigma_{\text{meas}} = (4.8 \pm 0.7) \times 10^{-8} \text{ Br/(M}^2 \text{ T}^4),$$

и постоянной Планка

$$h_{\text{meas}} = (7.0 \pm 0.4) \times 10^{-34} \, \text{Дж} \cdot \text{c},$$

что частично совпадает с табличными значениями в пределах погрешности.

Измерение постоянной Стефана-Больцмана проблематично для измерения в силу зависимости от T^{-4} , которая сама по себе определяется с большой неточностью. Также в рамках этой работы не представляется возможным определить площадь, с которой происходит излучение, от чего эксперимент носит скорее наблюдательный характер.

³Сыграло округление вверх погрешности.