

Fuyu Tang, Master of Finance, 2022 Songhao Li, Master of Finance, 2022 Tianyi Guo, Master of Finance, 2022

> Cambridge, MA March 9, 2021

Our Sponsor

Fidelity Investments Inc., commonly referred to as Fidelity, earlier as Fidelity Management & Research or FMR, is an American multinational financial services corporation based in Boston, Massachusetts.

The company was established in 1946 and is one of the largest asset managers in the world with \$4.9 trillion in assets under management as of June 2020 and a combined total customer asset value number of \$8.3 trillion.

Financial Solutions:

Financial Solutions aims to apply <u>quantitative methods</u> to problems that impact tax management, account structure optimization, corporate benefit analysis, and other client objectives. We use the analysis to provide systematic and analytical financial planning and investment management <u>advice to Fidelity customers</u> across many distribution channels.

Brad KovalSenior Associate, Investment and Advice at Fidelity Investments

Andrew Bachman
Senior Associate, Investment and Advice at Fidelity Investments

Andrey Lyalko
Vice President, Investment and Advice at Fidelity Investments

Michael Rusinak CFP®

Director, Financial Solutions at Fidelity Investments

Content

01 Overview

- · Portfolio Insurance: background, motivation, methodology
- Agenda

02 OBPI

- · What is OBPI
- · Strategy Insight and Performance Measurement
- · Basic Results on Measure Ratio

03 CPPI

- · CPPI: foundation idea & different models
- Exploration: commodity-CPPI strategies

04 Back-testing Results using Monte Carlo

- · Return Simulation and Results
- Strategy Entering Time Simulation and Results

Portfolio Insurance

Background

Portfolio Insurance:

Minimum guarantee level + upside potential

Why Researching Portfolio Insurance?

- 1. Unpredicted market downturns: Covid-19
- 2. Aging population, early retirement: Fidelity customers without income sources
- 3. Limited choice, high cost, and inefficiency

Portfolio Insurance

Our Methodology & Research Journey

One Methodology: Exploration

New topic for both the student team and sponsor team: start from scratch and explore obstacles and improvements

Two Resourceful Advisors: Sponsors and Faculties

We want to thank Brad, Drew, Andrey, Michael, Prof. Rao, Prof. Vartak, and Pierre for the great advice and enjoyable meetings!

Three Major Parts:

Option Based Portfolio Insurance (**OBPI**):

- Theory & Implement Problems
- Main idea of Adjusted Strategy
- Put-based & Call-based; Hist vol & Implied vol
- Intuitive, conventional, but complex

Constant Proportion Portfolio Insurance (CPPI):

- Foundation idea & different types
- Exploration and investment strategies
- Easy to implement, interpret, and individualize

Monte-Carlo simulation:

- Return Simulation: Higher volatility ⇔ higher strategy return
- Entering Time Simulation: Put-based OBPI's domination
- OBPI vs. CPPI

What is OBPI

Option-Based Portfolio Insurance Strategy

What is OBPI

How to implement

Put-based OBPI:

- ON shares stock and N Put options (maturity T/strike price K)
- *Solve strike K and multipler N:*

$$N * (S_t + Put(0, S_t, K)) = V_t$$
$$N * K = p * V_t$$

where V_t is portfolio value at time t, p is the floor ratio.

• The insured amount is $V_T = n(S_T + \max(K - S_T, 0))$.

Call-based OBPI:

- \circ B_0 Bills and N European call options(maturity T/strike price K).
- Solve strike K and multipler N:

$$N * Call(0, S_t, K) + B_t = V_t$$
$$N * K = p * V_t$$

 \supset The insured amount is $V_T = B_0 * e^{rT}$

$$\frac{C(0,S_0,K,sigma)}{K} = \frac{1-pe^{-rT}}{p}$$

$$N = \frac{V_0}{S_0 + P(0,S_0,K(p),sigma)}$$

Two kinds of volatility input:

Hist Vol: SMA based on stock returns

Implied Vol: Implied by traded index options (strike price K nearest to the equivalent strike price of synthetic put/option)

Replicate option using stock and bond.

Insight of OBPI

Basic Strategy

- T = 1 month and p = 0.8
- Keep floor as $p * peak value of V_t$ in the past

- T=1 month and p = 0.95
- Once the portfolio value goes below the floor, the calculated strike price will be infinite
- it is too slow to recover

Strategy Main Idea

Recover $p * V_t$ in each T **K**eep portfolio value drop by less than (1-p) in each T **]**

- T=6 months as sub-investment horizon.
- Reinvest current V_t at the end of T and update the floor to be $p * V_t$
- Rebalance monthly. Replicate the put/call option using stock and bond.
- Implement strategy using Put-based OBPI/Call-based OBPI & hist/implied

StrategyInsight

- S&P 500 Index
- Implement: Put-based
- Volatility Input: Hist Vol
- Floor_ratio P: 0.98
- T = 6 months

- When the market goes down, the portfolio value is protected. When the market goes up, the portfolio goes up slowly but still maintains potential.
- In new strategy, the portfolio value recovers faster when market recovers.

Strategy

How to Measure Performance

 $\frac{\sum_{i=1}^{M} 1_{\{if \ successfully \ protect \ at \ the \ end \ of \ T\}}}{total \ Number \ of \ T}$

The minimum of portfolio value during the whole investment horizon.

 $\frac{\sum_{i=1}^{M} precentage \ of \ value \ below \ floor}{total \ Number \ of \ T}$

 $\frac{\sum_{i=1}^{M} 1_{\{if \ option \ exercises\}}}{total \ number \ of \ T}$

Put-based v.s. Call-based

S&P 500 Hist Data

- S&P 500 Index
- Implement: Put-based v.s. Call-based
- Volatility Input: Hist Vol
- Floor_ratio P: 0.99
- T = 6 months

	Protection Success Ratio	Realized Floor	WAD
Put-based	86%	94.78%	-0.018
Call-based	72%	97.6%	-0.02

Different Floor

Insight

- Choose floor ratio p as 99%, 98% and 95%, which means the return during 6-month period will not be less than 1%, 2% and 5%.
- 1999/01-2019/12, choose M=42 6-month periods to run the strategy.

Measure Indicator

Protection Success Ratio

Put-based Protection Success Ratio

	99%	98%	95%
Hist vol	83.33%	83.33%	85.71%
Implied vol	78.57%	83.33%	92.86%

Call-based Protection Success Ratio

	99%	98%	95%
Hist vol	64.28%	66.67%	83.33%
Implied vol	66.67%	64.28%	83.33%

- Put-based higher protection success ratio, especially when p is large (e.g. 99%)
- No obvious difference between implied vol and hist vol.
- But when p is small, PSR (put implied) is larger than PSR(put hist)

Measure Indicator

Realized Floor

Put-based Realized Floor

	99%	98%	95%
Hist vol	94.78%	87.95%	75.67%
Implied vol	93.77%	88.36%	82.71%

Call-based Realized Floor

	99%	98%	95%
Hist vol	97.6%	91.79%	79.75%
Implied vol	96.24%	88.96%	82.46%

- Call-based higher realized floor, especially when p is large (e.g. 99%)
- No obvious difference between implied vol and hist vol.
- But when p is small, RF (implied) is larger than RF(hist).

Back-testing Results of ratio

Explanation

- Results in **PSR** and **RF** are the **same** with previous slides.
- Call-based——lower WAD, better than Put-based.
- Implied vol improves WAD a lot in both put_based and call_based situation

Take-away of OBPI

- Call-based performs better if you want to achieve a higher return.
- Put-based performs better if you are really riskyaverse.
- However, If you care more about the magnitude of down rather than if we protect sucessfully, choose call-based.
- Implied vol improves PSR and RF only when p is lower, maybe because we have protected it very well when p is higher.

Call-based

Higher Realized Floor. Lower Protection Success Ratio but Lower WAB

Put-based

Lower Realized Floor. Higher Protection Success Ratio but Higher WAB

Implied vol Improve WAB a lot. When p is lower, it also improve PSR and RF.

CPPI (Constant Proportion Portfolio Insurance)

- Introduced by Black and Jones (1987)
- Dynamically allocate between two assets

I. Abstract allocation:

- <u>Floor</u>: lowest acceptable portfolio value
- Cushion: excess value over floor

II. Investment Decision:

Invest Multiple * Cushion in risky asset Invest the rest in risk-free asset

Example:

Value = 1.1, *Floor* = 0.8, *multiple* = 2 -> Cushion = Value - Floor = 0.3;*Risky investment = Cushion * multiple = 0.6* Risk-free investment = $Total\ Value - Risky = 0.5$

Interpretation:

If the risky asset falls less by 50% this month: "survive" above the floor!

CPPIIntroduction

Parameters: Floor and Multiple

Family of CPPI:

• Floor:

Predetermined value; Grow with risk-free rate; Proportion of highest historical value; two-stage floor;...

• Multiple:

Constant, rule-of-thumb; VaR backed; Dynamic, implied vol/historical vol...

Our approach:

CPPI Basic CPPI

Basic CPPI:

Floor: pre-determined initial value and grows with risk-free rate

Multiple: pre-determined constant

Floor depends extremely on when the strategy started

Start with bull: too **low** floor and too **aggressive** after few years, "securitized"

Start with bear: too **high** floor and too **conservative** after few years, "monetized"

Thoughts:

Floor growing with the risk-free rate is too brutal force

Can the floor "consider" the market dynamism or portfolio performance?

Dynamic Floor CPPI

Dynamic Floor CPPI (*TIPP, Brennan and Schwartz, 1988*): **Floor**: a <u>proportion</u> of the historical peak portfolio value **Multiple**: pre-determined constant

Improvements:

- 1. The floor does not depend on entering time
- 2. No substantial drawdown (60% in basic CPPI)

Thoughts:

- 1. Drawdown from peak -> floor can be too high as a proportion (70%) of the peak.
- 2. CPPI strategy implies selling low and buy high

 t_0

 t_1

Dynamic Double Floor CPPI

Dynamic Double Floor CPPI (margin CPPI, Boulier & Kanniganti, 2005):

Floor: two stage, an extra "margin" that can be released **Multiple**: pre-determined constant

Released half of the margin to cushion, and thus increase risky asset holding

Compare with Dynamic CPPI: performance and exposures

Improvements:

Extra holdings when you lose cushion by half: Prevents strategy being monetized + buy "some" when cheap

Thoughts:

Now it is the time to improve the constant multiple!

VaR (Implied Vol) CPPI

Value-at-Risk CPPI (Hamidi, Maillet, & Prigent, 2008)

Floor: Double Dynamic (Two Stage)

Multiple: Dynamic, such that VaR = Cushion

Example: next month worst 1% case of S&P return believed to be -18% - set multiple = 1/0.18 = 5.56

Using VIX as S&P 500 30-day volatility predictor -> assume normal, pick VaR level -> multiple

(Compare with constant-multiple CPPI: performance and exposures)

Improvements:

- 1. **Low-vol** market **high** multiple & equity exposure **High-vol** market **low** multiple & equity exposure
- 2. Better risk management interpretation

CPPI Comparison

Implied Volatility CPPI: different VaR levels

Takeaways of CPPI:

A powerful portfolio insurance strategy family that is easy to **implement**, **interpret**, and **individualize**

Exploration – commodity CPPI

Motivations, Objectives, and Warning

Inspired by the CPPI-type dynamic allocation rule, but replacing <u>risk-free cash</u> with <u>commodities</u>

Motivations

- 1. Some clients prefer stable equity exposures & do not want cash in their portfolio
- 2. Commodities are believed to be **natural hedge** against equities

Objectives

- 1. Limit minimum equity exposure (80%) invest $\underline{20\%}$ in strategy and $\underline{80\%}$ in equity
- 2. Choose the right commodity: correlation, post-crisis performance...

Warning:

Minimum equity + risky commodities: no longer "insurance"

Exploration – commodity CPPI

Some Performances

Exploration – commodity CPPI

Some Performances

Takeaways of commodity CPPI Strategies:

- 1. Reasonable & functional dynamic allocation rule that <u>maintains high equity exposure</u> and <u>enhances equity performance</u>
- 2. Not all commodity works: a good filtering method can be <u>analyzing correlation</u> & looking into <u>post-crisis performance</u>

Assumptions and Scenario Settings

Assumptions:

- 1) Pre-known mean and volatility of returns over investment horizon
- 2) Returns follow normal distribution

<u>Step 1</u> From two uniform distribution based on parameters from historical returns, a monthly mean return and a volatility of **risky asset** are generated.

Step 2 Randomly Sample Parameters: Generate 9 scenarios.

<u>Step 3</u> Implement 4 strategies over T = 360 observations (30-year horizon). Summarize performance and risk.

<u>Step 4</u> New run repeated from <u>Step 1</u> on, for a total of N = 1,000 simulated paths under each scenario.

	[0.25%, 0.58%]	[-0.09%, 0.25%]	[-0.42%, -0.09%]			
[15.4%, 20.9%]	hmhs	mmhs	lmhs			
[9.8%, 15.4%]	hmms	mmms	lmms			
[4.2%, 9.8%]	hmls	mmls	lmls			

Results and Comparison Between Different Scenarios

Note

hmhs - high mu high sigma
hmms - high mu medium sigma
hmls - high mu low sigma
mmhs - medium mu high sigma
mmms - medium mu unedium sigma
mmls - medium mu low sigma
lmhs - low mu high sigma
lmms - low mu nigh sigma
lmms - low mu medium sigma

Imls - low mu low sigma

Basic CPPI: high volatility along the paths

Dynamic / Dynamic Double CPPI: higher stability over time, but larger scenario-wise divergence

Time-Variant Multiple CPPI: higher expected end-of-time portfolio value along with higher volatility, highest scenario-wise divergence

Results and Comparison Between Different Scenarios

As the preset floor ratio gets higher, OBPI strategy tends to offer **higher stability over time** as well as **smaller scenario-wise divergence**. Put-based OBPI generally offers higher stability over time than the correspondent call-based OBPI.

hmhs - high mu high sigma
hmms - high mu medium sigma
hmls - high mu low sigma
mmhs - medium mu high sigma
mmms - medium mu medium sigma
mmls - medium mu low sigma
lmhs - low mu high sigma
lmms - low mu medium sigma

Imls - low mu low sigma

Results and Comparison Between Different Strategies

Features of end-of-time portfolio value

CPPI family:

- o Higher end-of-time portfolio values
- o Along with higher volatilities over time (especially with highly volatile risky asset returns)

OBPI family:

- o Less satisfactory average end-of time portfolio value
- Outperforms CPPI in terms of portfolio value volatility

Results and Comparison Between Different Strategies

Parameters

Number of Simulation = 100 times

Strategies Last = 60 months

Simulation Horizon = Recent 30 years

Strategies

CPPI Family

CPPI # basic
dCPPI # dynamic floor
d2CPPI # dynamic double floor
d2vCPPI # time-varying multiple

OBPI Family

OBPI_Put # put-based historical vol OBPI_Call # call-based historical vol OBPI_Put_imp # put-based implied vol OBPI_Call_imp # call-based implied vol

Rankings, Comparison and Client Preference

Using End of Time Portfolio Value and SR as criteria, we would also like to know how our clients might want to choose from different family of strategies.

```
Utility Function A U=\operatorname{mean}(\operatorname{Ptval})-\gamma\operatorname{std}(\operatorname{Ptval}) Utility Function B U=\operatorname{mean}(SR)-\gamma\operatorname{std}(SR)^2 Utility Function C U=\operatorname{mean}(SR)-\gamma\operatorname{std}(SR)
```

Best Strategy

Gamma (Risk Averse Param)	-5~-1	-0.8~-0.2	0	0.2	0.4	0.6	0.8	1	1.2	1.4~3.4	3.6	3.8	4	4.2	4.4	4.6	4.8	5
Utility Function A	cppi	d2vcppi		obpi	_put		d2cppi	obpi_	_call			obp	oi_ca	11(ir	np)			
Utility Function B	cppi		obpi_put								obpi_put(imp)							
Utility Function C	cppi		obpi_put											obpi	_put((imp)		

Adding Commodities

Parameters

Number of Simulation = 100 times
Strategies Last = 60 months
Simulation Horizon = Recent 30 years

Sharpe Ratio of 4 DCPPI Strategies with Commodities - Simulated Start Time

17.5

Strategies

CPPI Family

dCPPI

dynamic floor

dCPPIgold

dynamic floor with gold hedging

dCPPIsilver

 $\begin{tabular}{ll} \# \ dynamic \ floor \ with \ silver \ hedging \\ dCPPIoil \end{tabular}$

dynamic floor with crude oil hedging

End of Time Portfolio Value of 4 DCPPI Strategies with Commodities - Simulated Start Time

Adding Commodities

Key Takeaways:

	Pros	Cons
CPPI	 Higher End-of-time Portfolio values as compared to OBPI Flexibility in adding commodities that prevent portfolio from crashing 	 Extensions on basic CPPI diverge more across different return scenarios Bring along higher volatilities, especially when the underlying risky asset returns have high volatility in themselves
OBPI	 Higher stability over time as well as smaller scenario-wise divergence Put-based OBPI covers the main risk preference of our clients' according to utility models 	 Less satisfactory average End-of time Portfolio value Less variation in form or flexibility in underlying assets

