Discrete Mathematics

XU Ming (徐鸣)

Department of Computer Science, East China Normal University

June 10, 2016

XU Ming (ECNU) Lecture 3 June 10, 2016 1 / 24

Chapter 2 NUMBER THEORY

- 2.1 最大公因数和最小公倍数
- 2.2 素数
- 2.3 一次同余方程
- 2.4 RSA公钥密码体制*

Outline of §-1 GCDs and LCMs

- 2.1.1 整除, 同余, 最大公因数和最小公倍数
- 2.1.2 欧几里得算法
- 2.1.3 最大公因数和最小公倍数的性质

整除

Definition (整除)

设a,b≠0为整数.

b整除 a: 存在整数 q, 使得 $a = b \cdot q$, 记为 $b \mid a$; 否则 $b \mid a$.

b是a的因数(约数, 因子, factor), a是b的倍数: b | a;

b 是 a 的真因数 (proper factor): b | a 并且 |a| > |b|.

注意零除的问题:

- 任何数不能除以0:
- 任何整数都是0的因数,但0不是任何整数的因数;
- 0是任何整数的倍数,但0没有倍数.

整除

Definition (整除)

设 a, b ≠ 0 为整数.

b整除 a: 存在整数 q, 使得 $a = b \cdot q$, 记为 $b \mid a$; 否则 $b \mid a$.

b是a的因数(约数,因子, factor), a是b的倍数: b | a;

b 是 a 的真因数 (proper factor): b | a 并且 |a| > |b|.

注意零除的问题:

- 任何数不能除以0:
- 任何整数都是0的因数,但0不是任何整数的因数;
- 0是任何整数的倍数,但0没有倍数.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Definition (同余和同余式)

设 a, b 为整数, m 为非零整数.

a 和 b 模 m 同余 (congruent): $m \mid (a - b)$, 记为同余式 $a \equiv b \mod m$.

显然, 我们有 $a \equiv b \mod m$ 当且仅当 $a \mod m = b \mod m$.

XU Ming (ECNU)

Definition (同余和同余式)

设a,b为整数,m为非零整数.

a 和 b 模 m 同余 (congruent): $m \mid (a - b)$, 记为同余式 $a \equiv b \mod m$.

显然, 我们有 $a \equiv b \mod m$ 当且仅当 $a \mod m = b \mod m$.

XU Ming (ECNU)

Example

$$10 \equiv 4 \mod 3$$

$$24 \equiv 0 \mod 8$$
.

Remark

注意 = 和 = 的区别:

因为 $4 \mod 3 = 7 \mod 3 = 1$, 所以 $7 \equiv 4 \mod 3$.

但4 ≠ 7.

Example

$$10 \equiv 4 \mod 3$$

$$24 \equiv 0 \mod 8$$
.

Remark

注意 = 和 = 的区别:

因为4 $mod 3 = 7 \mod 3 = 1$, 所以 $7 \equiv 4 \mod 3$.

但4≠7.

Theorem (同余关系是等价关系)

- 自反性: a ≡ a mod m.
- ② 对称性: $a \equiv b \mod m \Leftrightarrow b \equiv a \mod m$.
- ③ 传递性: $a \equiv b \mod m, b \equiv c \mod m \Rightarrow a \equiv c \mod m$.

XU Ming (ECNU)

Theorem (模算术运算的性质)

- ① $\exists a \equiv b \mod m, c \equiv d \mod m,$ 则 $a \pm c \equiv b \pm d \mod m.$
- ② 若 $a \equiv b \mod m$, $c \equiv d \mod m$, 则 $a \cdot c \equiv b \cdot d \mod m$.
- ③ 若 $a \cdot c \equiv b \cdot c \mod m$, 则 $a \equiv b \mod \frac{m}{(c,m)}$; 特别地, 当(c,m) = 1时, 有 $a \equiv b \mod m$. (其中(c,m)表示c和m的最大公因数.)

8/24

XU Ming (ECNU) Lecture 3 June 10, 2016

同余

同余式与通常的等式具有许多相似的性质

Theorem (按模运算)

Example

计算2³⁴⁰ mod 31, 3⁵ mod 7, 和2³⁴⁰ mod 11.

- $2^{340} = (2^5)^{68}$, $2^{340} \mod 31 = (32 \mod 31)^{68} \mod 31 = 1^{68} \mod 31 = 1$.
- ② $3^5 = 3 \times 9^2$, $3^5 \mod 7 = (3 \times (9 \mod 7)^2) \mod 7 = (3 \times 4) \mod 7 = 5$.
- $3 2^{340} \mod 11 = (2^{10} \mod 11)^{34} \mod 11 = 1^{34} \mod 11 = 1.$

XU Ming (ECNU) Lecture 3 June 10, 2016 9 / 24

◆□▶ ◆□▶ ◆三 ▶ ◆□ ◆○○○

同余

同余式与通常的等式具有许多相似的性质

Theorem (按模运算)

Example

计算2³⁴⁰ mod 31, 3⁵ mod 7, 和2³⁴⁰ mod 11.

- ① $2^{340} = (2^5)^{68}$, $2^{340} \mod 31 = (32 \mod 31)^{68} \mod 31 = 1^{68} \mod 31 = 1$.
- ② $3^5 = 3 \times 9^2$, $3^5 \mod 7 = (3 \times (9 \mod 7)^2) \mod 7 = (3 \times 4) \mod 7 = 5$.
- 3 $2^{340} \mod 11 = (2^{10} \mod 11)^{34} \mod 11 = 1^{34} \mod 11 = 1$.

XU Ming (ECNU) Lecture 3 June 10, 2016 9 / 24

最大公因数

Definition (公因数, 最大公因数)

设整数 $a_1, a_2, ..., a_n$ (n ≥ 2) 不全为零,

- 公因数: 各个数的公共因数;
- 最大公因数 (greatest common divisor, GCD): 最大的公因数, 记为 (a₁, a₂,..., a_n) 或 gcd(a₁, a₂,..., a_n);
- $a_1, a_2, ..., a_n$ 互素(互质) (co-prime): $(a_1, a_2, ..., a_n) = 1$.

Remark

最大公因数一定是正整数,因为若d是公因数,则-d也是公因数.

Example

(24, -28) = 4, (24, -28, 0) = 4, (0, 0) = ?

XU Ming (ECNU) Lecture 3 June 10, 2016 10 / 24

最大公因数

Definition (公因数, 最大公因数)

设整数 $a_1, a_2, ..., a_n$ ($n \ge 2$) 不全为零,

- 公因数: 各个数的公共因数;
- 最大公因数 (greatest common divisor, GCD): 最大的公因数, 记为 (a₁, a₂,..., a_n) 或 gcd(a₁, a₂,..., a_n);
- $a_1, a_2, ..., a_n$ 互素(互质) (co-prime): $(a_1, a_2, ..., a_n) = 1$.

Remark

最大公因数一定是正整数,因为若d是公因数,则-d也是公因数.

Example

$$(24, -28) = 4, (24, -28, 0) = 4, (0, 0) = ?.$$

XU Ming (ECNU) Lecture 3 June 10, 2016 10 / 24

最小公倍数

Definition (公倍数, 最小公倍数)

设整数 $a_1, a_2, ..., a_n$ (n ≥ 2) 不全为零,

- 公倍数: 各个数的公共倍数;
- 最小公倍数 (least common multipler, LCM): 最小的正公倍数, 记为 $[a_1, a_2, \ldots, a_n]$ 或 $lcm(a_1, a_2, \ldots, a_n)$.

Remark

从定义中, 我们已限定了最小公倍数是正整数.

Example

 $[24, -28] = 4 \cdot 6 \cdot 7, (24, -28, 0) = ?, (0, 0) = ?$

40 440 45 45 4 5 400

XU Ming (ECNU) Lecture 3 June 10, 2016 11 / 24

最小公倍数

Definition (公倍数, 最小公倍数)

设整数 $a_1, a_2, ..., a_n (n \ge 2)$ 不全为零,

- 公倍数: 各个数的公共倍数;
- **最小公倍数** (least common multipler, LCM): 最小的正公倍数, 记为 [a₁, a₂,...,a_n] 或 lcm(a₁, a₂,...,a_n).

Remark

从定义中, 我们已限定了最小公倍数是正整数.

Example

 $[24, -28] = 4 \cdot 6 \cdot 7, (24, -28, 0) = ?, (0, 0) = ?.$

XU Ming (ECNU) Lecture 3 June 10, 2016 11 / 24

最大与最小

任何公因数都是最大公因数的因数,

任何公倍数都是最小公倍数的倍数.

TIPS: 这两条性质可分别用来定义最大公因数和最小公倍数.

PROBLEM: 如何求最大公因数?——欧几里得算法.

XU Ming (ECNU)

最大与最小

任何公因数都是最大公因数的因数,

任何公倍数都是最小公倍数的倍数.

TIPS: 这两条性质可分别用来定义最大公因数和最小公倍数.

PROBLEM: 如何求最大公因数?—欧几里得算法.

XU Ming (ECNU)

Theorem (带余除法)

设 a, b ≠ 0 为整数. 存在整数 q和 r, 使得

$$a = b \cdot q + r \quad (0 \le r < b);$$

并且q和r由a和b唯一决定.

一些术语

在上式中, 若 r = 0, 则称 q 是 a 被 b 除的完全商 (quotient); 否则 (r ≠ 0), q 是不完全商 (partial quotient), r 是余数 (remainder).

QUIZ: 证明 b 整除 a 当且仅当 a 被 b 除的余数为零.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Theorem (带余除法)

设 a, b ≠ 0 为整数. 存在整数 q 和 r, 使得

$$a = b \cdot q + r \quad (0 \le r < b);$$

并且q和r由a和b唯一决定.

一些术语:

在上式中, 若 r = 0, 则称 $q \neq a$ 被 b 除的完全商 (quotient); 否则 $(r \neq 0)$, $q \neq 0$ (remainder).

QUIZ: 证明 b 整除 a 当且仅当 a 被 b 除的余数为零.

◆□▶◆□▶◆□▶◆□▶ □ め९○

Theorem (带余除法)

设a,b≠0为整数. 存在整数q和r,使得

$$a = b \cdot q + r \quad (0 \le r < b);$$

并且q和r由a和b唯一决定.

一些术语:

在上式中, 若 r = 0, 则称 q 是 a 被 b 除的完全商 (quotient); 否则 ($r \neq 0$), q 是不完全商 (partial quotient), r 是余数 (remainder).

QUIZ: 证明 b 整除 a 当且仅当 a 被 b 除的余数为零.

Example

- ① $\frac{255}{15} = 17$, \mathbb{P} $255 = 15 \times 17 + 0$. 所以, $15 \mid 255$, 255 被 15 除的完全商是 17, 余数是 0.
- ② $\frac{418}{15} = 27.8666 \cdots$, \mathbb{P} 418 = $15 \times 27 + 13$. 所以, $15 \nmid 418$, 418 被 15除的不完全商是 27, 余数是 13.
- ③ $\frac{-81}{15}$ = -5.4, 即 -81 = 15 × (-6) + 9. 所以, 15 ∤ -81, -81 被15除的不完全商是-6, 余数是 9.

XU Ming (ECNU) Lecture 3 June 10, 2016 14 / 24

欧几里德算法的依据:

设
$$a, b \in \mathbb{Z}$$
不全为零,则有 $a = b \cdot q + c \Rightarrow (a, b) = (b, c)$.

Algorithm 1 Euclidean Algorithm

Require: $a, b \in \mathbb{Z}$ satisfying $a \ge b \ge 0$.

Ensure: (*a*, *b*).

1: while b > 0 do

2. c = 2 mod h

3. $a \leftarrow b$ and $b \leftarrow c$

4: end while

5: return a.

The algorithm is terminating, because in each loop b is **ranking** by at least 1 and the **invariant** $b \ge 0$ should be preserved.

欧几里德算法的依据:

设 $a,b \in \mathbb{Z}$ 不全为零,则有 $a = b \cdot q + c \Rightarrow (a,b) = (b,c)$.

Algorithm 2 Euclidean Algorithm

Require: $a, b \in \mathbb{Z}$ satisfying $a \ge b \ge 0$.

Ensure: (a, b).

1: while b > 0 do

2: $c \leftarrow a \mod b$.

3: $a \leftarrow b$ and $b \leftarrow c$.

4: end while 5: return a.

The algorithm is terminating, because in each loop b is **ranking** by at least 1 and the **invariant** $b \ge 0$ should be preserved.

XU Ming (ECNU) Lecture 3 June 10, 2016 15 / 24

欧几里德算法

反复进行带余除法,直到某次余数为0.

b除 a:
$$a = b \cdot q_0 + r_0$$
, $0 < r_0 < |b|$
 r_0 除 a: $b = r_0 \cdot q_1 + r_1$, $0 < r_1 < r_0$
 r_1 除 r_0 : $r_0 = r_1 \cdot q_2 + r_2$, $0 < r_2 < r_1$
...
 r_{n-1} 除 r_{n-2} : $r_{n-2} = r_{n-1} \cdot q_n + r_n$, $0 < r_n < r_{n-1}$

$$(a,b)=(b,r_0)=(r_0,r_1)=\ldots=(r_{n-1},r_n)=r_n,\quad (r_0>r_1\cdots>r_n>0).$$

 $r_n \Re r_{n-1} : r_{n-1} = r_n \cdot q_{n+1}$

XU Ming (ECNU) Lecture 3 June 10, 2016 16 / 24

Example

求435和377的最大公因数,并表示为435和377的线性组合

(1) 进行辗转相除法

(2) 把辗转相除的过程倒推回去

$$433 = 1 \cdot 377 + 5$$
$$377 = 6 \cdot 58 + 29$$
$$58 = 2 \cdot 29 + 0$$
$$(435, 377) = (377, 58)$$
$$= (58, 29)$$
$$= 29$$

$$29 = 377 - 6 \cdot 58$$
$$= 377 - 6 \cdot (435 - 1 \cdot 377)$$
$$= 7 \cdot 377 - 6 \cdot 435$$

Example

求435和377的最大公因数,并表示为435和377的线性组合

(1) 进行辗转相除法

(2) 把辗转相除的过程倒推回去

$$433 = 1 \cdot 377 + 58$$
$$377 = 6 \cdot 58 + 29$$
$$58 = 2 \cdot 29 + 0$$
$$(435, 377) = (377, 58)$$
$$= (58, 29)$$
$$= 29$$

$$29 = 377 - 6 \cdot 58$$
$$= 377 - 6 \cdot (435 - 1 \cdot 377)$$
$$= 7 \cdot 377 - 6 \cdot 435$$

Example

求435和377的最大公因数,并表示为435和377的线性组合

(1) 进行辗转相除法

(2) 把辗转相除的过程倒推回去

$$433 = 1 \cdot 377 + 58$$

$$377 = 6 \cdot 58 + 29$$

$$58 = 2 \cdot 29 + 0$$

$$(435,377) = (377,58)$$

$$= (58,29)$$

$$= 29$$

$$29 = 377 - 6 \cdot 58$$

$$= 377 - 6 \cdot (435 - 1 \cdot 377)$$

$$= 7 \cdot 377 - 6 \cdot 435$$

扩展的欧几里德算法

扩展的欧几里德算法

 $a,b\in\mathbb{Z}$,不全为零,在欧几里德算法完成后,可以通过回代求出整数s,和t.使得

$$(a,b)=s\cdot a+t\cdot b.$$

Example

 $a,b,c \in \mathbb{Z}$, $c \mid a \cdot b$, (c,a) = 1, 证明: $c \mid b$.

XU Ming (ECNU)

扩展的欧几里德算法

扩展的欧几里德算法

 $a,b\in\mathbb{Z}$,不全为零,在欧几里德算法完成后,可以通过回代求出整数s,和t.使得

$$(a,b)=s\cdot a+t\cdot b.$$

Example

 $a,b,c \in \mathbb{Z}, c \mid a \cdot b, (c,a) = 1$, 证明: $c \mid b$.

XU Ming (ECNU)

设整数 a₁, a₂,..., a_n (n ≥ 2) 不全为零,

- $(a_1, a_2, \ldots, a_n) = (|a_1|, |a_2|, \ldots, |a_n|).$
- ◎ 任意变换各整数的位置, (a1, a2,...,an)的值保持不变.
- a₁, a₂,...,a_n的公因数是(a₁, a₂,...,a_n)的因数.
- $(a_1, a_2, \ldots, a_n) = ((a_1, a_2), \ldots, a_n).$
- **⑤** 对于任意的 $m \in \mathbb{N}$, $(m \cdot a_1, m \cdot a_2, ..., m \cdot a_n) = m \cdot (a_1, a_2, ..., a_n)$.
- ② 对于任意的 $x_1, x_2, \ldots, x_n \in \mathbb{Z}$, $(a_1, a_2, \ldots, a_n) = (a_1 + a_i \cdot x_1, a_2 + a_i \cdot x_2, \ldots, a_{i-1} + a_i \cdot x_{i-1}, a_i, a_{i+1} + a_i \cdot x_{i+1}, a_{i+2} + a_i \cdot x_{i+2}, \ldots, a_n + a_i \cdot x_n)$.
- ③ 存在 $x_1, x_2, ..., x_n \in \mathbb{Z}$, 使 得 $(a_1, a_2, ..., a_n) = a_1 \cdot x_1 + a_2 \cdot x_2 + ... + a_n \cdot x_n$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなぐ

19 / 24

XU Ming (ECNU) Lecture 3 June 10, 2016

素因数分解计算法

设正整数 a1, a2,..., an 有素因数分解:

$$a_{1} = p_{1}^{\alpha_{11}} \cdot p_{2}^{\alpha_{12}} \cdot \dots \cdot p_{k}^{\alpha_{1k}}$$

$$a_{2} = p_{1}^{\alpha_{21}} \cdot p_{2}^{\alpha_{22}} \cdot \dots \cdot p_{k}^{\alpha_{2k}}$$

$$\dots$$

$$a_{n} = p_{1}^{\alpha_{n1}} \cdot p_{2}^{\alpha_{n2}} \cdot \dots \cdot p_{k}^{\alpha_{nk}},$$

则有:

$$(a_1, a_2, \dots, a_n) = p_1^{\alpha_1} \cdot p_2^{\delta_2} \cdot \dots \cdot p_k^{\delta_k}$$

$$[a_1, a_2, \dots, a_n] = p_1^{\gamma_1} \cdot p_2^{\gamma_2} \cdot \dots \cdot p_k^{\gamma_k},$$

其中 $\delta_i = \min(\alpha_{1i}, \alpha_{2i}, \ldots, \alpha_{ni}), \gamma_i = \max(\alpha_{1i}, \alpha_{2i}, \ldots, \alpha_{ni}).$

- 4 ロ b 4 個 b 4 恵 b 4 恵 b 9 Q (?)

XU Ming (ECNU)

Example

非零整数 a₁, a₂,..., a_n, n ≥ 2, 证明: (a₁, a₂,..., a_n) = ((a₁, a₂,..., a_{n-1}), a_n).

Example

整数 a_1, a_2, \dots, a_n , $(n \ge 2)$, 不全为零, 证明: $(a_1, a_2, \dots, a_n) = d \Rightarrow (\frac{a_1}{d}, \frac{a_2}{d}, \dots, \frac{a_n}{d}) = 1$.

Example

非零整数 a₁, a₂,..., a_n, n ≥ 2, 证明: (a₁, a₂,..., a_n) = ((a₁, a₂,..., a_{n-1}), a_n).

Example

整数 a₁, a₂,..., a_n, (n ≥ 2), 不全为零, 证明: (a₁, a₂,..., a_n) = d ⇒ (a₁, a₂,..., a_n) = 1.

Example

 $n \in \mathbb{N}$, 证明: $(n-1, n^2 + n + 4) \mid 6$.

Example

0,1,...,10中的哪些数可表示为12m+20n的形式,其中m和n是整数?

Example

 $n \in \mathbb{N}$, 证明: $(n-1, n^2+n+4) \mid 6$.

Example

0,1,...,10中的哪些数可表示为12m+20n的形式,其中m和n是整数?

最小公倍数的基本性质

设整数 $a_1, a_2, ..., a_n$ ($n \ge 2$) 不全为零,

- ② 任意变换各整数的位置, [a1, a2,...,an] 的值保持不变.
- a₁, a₂,..., a_n 的公倍因数是 [a₁, a₂,..., a_n] 的倍数.
- 对于任意的 m ∈ N, [m · a₁, m · a₂,..., m · a_n] = m · [a₁, a₂,...,a_n].
- (a₁, a₂) · [a₁, a₂] = |a₁ · a₂|.(可否推广到 n 个数的情况?)

Hint: 可由最大公倍数的素因数分解计算法得到

XU Ming (ECNU) Lecture 3 June 10, 2016 23 / 24

最小公倍数的基本性质

设整数 $a_1, a_2, ..., a_n (n \ge 2)$ 不全为零,

- ② 任意变换各整数的位置, [a1, a2,...,an] 的值保持不变.
- a₁, a₂,...,a_n 的公倍因数是 [a₁, a₂,...,a_n] 的倍数.
- 对于任意的 m ∈ N, [m · a₁, m · a₂,..., m · a_n] = m · [a₁, a₂,...,a_n].
- (a₁, a₂) · [a₁, a₂] = |a₁ · a₂|.(可否推广到 n 个数的情况?)

Hint: 可由最大公倍数的素因数分解计算法得到.

23 / 24

XU Ming (ECNU) Lecture 3 June 10, 2016

Homework

• PP. 32–33: Exercises *2,4,7,11.

