Las circunferencias de Gershgorin son circunferencias que acotan los discos

$$D_i = \{ z \in \mathbb{C} \colon |z - a_{ii}| \le r_i \}$$

• Teorema de las circunferencias de Gershgorin

Sea A una matriz de $n \times n$ y sea D_i definida por la ecuación (8.8.9). Entonces, cada valor característico de A está contenido en al menos uno de los discos D_i . Esto es, si los valores característicos de A son $\lambda_1, \lambda_2, \ldots, \lambda_n$, entonces

$$\{\lambda_1, \lambda_2, \dots, \lambda_k\} \subset \bigcup_{i=1}^n D_i$$

AUTOEVALUACIÓN 8.8

I) ¿Qué ecuación se satisface por $A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$?

a)
$$A^2 - 3A + 2I = 0$$

b)
$$A^2 - 2A = 0$$

c)
$$A^2 + 2A - 3I = 0$$

d)
$$A^2 + 3A + 2I = 0$$

II) Según el teorema de Gershgorin, los valores característicos de $\begin{pmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \\ 3 & 4 & 2 \end{pmatrix}$ se

encuentran dentro de las circunferencias con centro en (2, 0) cuyo radio mayor es

b) 8

c) $\sqrt{34}$

d) 10

Respuestas a la autoevaluación

PROBLEMAS 8.8

De los problemas 1 al 10:

- a) Encuentre la ecuación característica $p(\lambda) = 0$ de la matriz dada.
- **b)** Verifique que p(A) = 0.
- c) Utilice el inciso b) para calcular A^{-1} .

1.
$$\begin{pmatrix} 9 & 8 \\ 3 & -8 \end{pmatrix}$$

2.
$$\begin{pmatrix} 3 & -2 \\ -5 & 3 \end{pmatrix}$$

3.
$$\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$$

4.
$$\begin{pmatrix} 7 & -8 & 7 \\ 1 & 4 & -7 \\ 7 & -3 & 1 \end{pmatrix}$$

5.
$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}$$

6.
$$\begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix}$$