Multiphase Flows – WS 2022/23 Problem Session 3: Phase Change & Phase Equilibrium

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

Agenda

- Problem Session I: Navier-Stokes Equations and Single-Phase Shock Tube
- Problem Session 2: Multiphase Shock Tube
- Problem Session 3 (Today): Multiphase Shock Tube with Phase Change

Step-Wise Solution

Solution of hyperbolic part (HLLC solver)

Updating of pressure by means of mixture SG-EOS

Bisection method for relaxation of Gibbs free energies (Phase change model)

Phase Change Step in Multiphase Euler-Euler Model

- Condition for phase equilibrium: $g_{v}(p,T) = g_{l}(p,T)$
- \blacktriangleright During phase change step: mixture density ρ and mixture internal energy e are constant
- \triangleright Only vapor mass fraction Y_v changes
- Relations for $p(\rho, e, Y_v)$ and $T(p, \rho, Y_v)$ already derived in Problem Session 2
- To be solved: $g_v(Y_v) = g_l(Y_v)$ (iteratively by bisection or Newton method)
- Stiffened-gas equation for Gibbs free energy:

$$g(p,T) = (\gamma c_v - q')T - c_v T \ln \left(\frac{T^{\gamma}}{(p+p_{\infty})^{\gamma-1}}\right) + q$$

(q'given as qvp or qvl in code)

Solution Steps in p-v Diagram

Problem 1: Multiphase Shock Tube with Phase Change

The two-phase solver tube from Problem Session 2 does not yet include phase change.

- a) Include phase change by means of inter-phase mass transfer. Assume instantaneous phase equilibrium. Update the equilibrium mass fraction Y_v directly using the bisection method (already contained in the functions gibbs Relaxation and bisection Gibbs Energies).
- b) Simulate the shock tube with the initial conditions of Problem Session 2. Which differences do you observe? Characterize the new wave pattern. Where does the phase change occur?

Problem 1: Wave Propagation

Problem 1: Wave Propagation

Thank you for your attention

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

http://www.itv.rwth-aachen.de

