Given the data in Table, reduce the dimension from 2 to 1 using the
 Principal Component Analysis (PCA) algorithm.

Feature	Example 1	Example 2	Example 3	Example 4
X ₁	4	8	13	7
X ₂ •	11	4	5	14

Step 1: Calculate Mean

$$\bar{X}_1 = \frac{1}{4}(4+8+13+7) = 8,$$

$$\bar{X}_2 = \frac{1}{4}(11+4+5+14) = 8.5.$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$Cov(X_1, X_1) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{1k} - \bar{X}_1)$$

$$= \frac{1}{3} ((4-8)^2 + (8-8)^2 + (13-8)^2 + (7-8)^2)$$

$$= 14$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$Cov(X_1, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{2k} - \bar{X}_2)$$

$$= \frac{1}{3}((4-8)(11-8.5) + (8-8)(4-8.5)$$

$$+ (13-8)(5-8.5) + (7-8)(14-8.5)$$

$$= -11$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

S _	$Cov(X_1, X_1)$	$Cov(X_1, X_2)$
5 =	$Cov(X_2,X_1)$	$ \begin{bmatrix} \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_2) \end{bmatrix} $

$$Cov(X_2, X_1) = Cov(X_1, X_2)$$

= -11

$$Cov(X_2, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{2k} - \bar{X}_2)(X_{2k} - \bar{X}_2)$$

$$= \frac{1}{3} ((11 - 8.5)^2 + (4 - 8.5)^2 + (5 - 8.5)^2 + (14 - 8.5)^2)$$

$$= 23$$

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$
$$= \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

Step 3: Eigenvalues of the covariance matrix

The characteristic equation of the covariance matrix is,

$0 = \det(S - \lambda I)$	l	0	L
$= \begin{vmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{vmatrix}$	0	1	
$= (14 - \lambda)(23 - \lambda) - (-11) \times (-11)$ $= \lambda^2 - 37\lambda + 201$		<u>9</u>	X

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$
 $\overline{X_2} = 8.5$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

Step 3: Eigenvalues of the covariance matrix

The characteristic equation of the covariance matrix is,

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$0 = \det(S - \lambda I)$$

$$= \begin{vmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{vmatrix}$$

$$= \frac{(14 - \lambda)(23 - \lambda) - (-11) \times (-11)}{\lambda^2 - 37\lambda + 201}$$

$$\lambda = \frac{1}{2}(37 \pm \sqrt{565})$$

$$= 30.3849, 6.6151$$

$$= \lambda_1, \lambda_2 \quad (\text{say})$$

$$X_1 = 8$$

$$\overline{X_2} = 8.5$$

$$= \lambda_1, \lambda_2 \quad (\text{say})$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \underbrace{(S - \lambda \ I) \ U}_{14 - \lambda} \quad \underbrace{-11}_{23 - \lambda} \quad \underbrace{]\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}}_{25}$$
$$= \begin{bmatrix} (14 - \lambda) u_1 - 11u_2 \\ -11u_1 + (23 - \lambda) u_2 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \underbrace{(S - \lambda \ I) \ U}_{14 - \lambda} \quad \underbrace{-11}_{23 - \lambda} \quad \underbrace{]\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}}_{14 - \lambda}$$

$$= \begin{bmatrix} (14 - \lambda) u_1 - 11 u_2 \\ -11 u_1 + (23 - \lambda) u_2 \end{bmatrix}$$

$$(14 - \lambda)u_1 - 11u_2 = 0$$

-11u₁ + $(23 - \lambda)u_2 = 0$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$$

$$u_1 = 11t$$
, $u_2 = (14 - \lambda)t$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$$

$$u_1 = 11t, \quad u_2 = (14 - \lambda)t$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_{1}	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

- To find the first principal components, we need only compute the eigenvector corresponding to the largest eigenvalue.
- In the present example, the largest eigenvalue is λ_1 .
- So, we compute the eigenvector corresponding to λ_1 .

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}.$$

 To find a unit eigenvector, we compute the length of U₁ which is given by,

$$||U_1|| = \sqrt{11^2 + (14 - \lambda_1)^2}$$

= $\sqrt{11^2 + (14 - 30.3849)^2}$
= 19.7348

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}$$
.

· To find a unit eigenvector, we compute the length of

$$\begin{array}{l} \text{U}_1 \text{ which is given by,} \\ = u_1 = \begin{bmatrix} 11/\|U_1\| \\ (14-\lambda_1)/\|U_1\| \end{bmatrix} \\ \|U_1\| = \sqrt{11^2 + (14-\lambda_1)^2} \\ = \sqrt{11^2 + (14-30.3849)^2} \\ = 19.7348 \end{array} \\ = \begin{bmatrix} 11/19.7348 \\ (14-30.3849)/19.7348 \end{bmatrix} \\ = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}$$

To find a unit eigenvector, we compute the length of

U₁ which is given by,
$$e_1 = \begin{bmatrix} 11/\|U_1\| \\ (14 - \lambda_1)/\|U_1\| \end{bmatrix}$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$= \sqrt{11^2 + (14 - 30.3849)^2}$$

$$= 19.7348$$

$$= \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 5: Computation of first principal

components

$$\underline{e_1^T \begin{bmatrix} X_{1k} - \bar{X}_1 \\ X_{2k} - \bar{X}_2 \end{bmatrix}}$$

$$e_{1}^{T}\begin{bmatrix} X_{1k} - \bar{X}_{1} \\ X_{2k} - \bar{X}_{2} \end{bmatrix} = \begin{bmatrix} 0.5574 & -0.8303 \end{bmatrix} \begin{bmatrix} X_{11} - \bar{X}_{1} \\ X_{21} - \bar{X}_{2} \end{bmatrix} \qquad e_{2} = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} \qquad S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$
$$= 0.5574(X_{11} - \bar{X}_{1}) - 0.8303(X_{21} - \bar{X}_{2}) \qquad \lambda_{1} = 30.3849$$

=-4.30535

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$$
 $S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 5: Computation of first principal components

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

Feature	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14
First Principle Components	-4.3052	3.7361	5.6928	-5.1238

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 6: Geometrical meaning of first principal components

2			
5	$(X_1, X$	2)	
1 2	•		_

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad \overline{X_1} = 8$$
$$\overline{X_2} = 8.5$$

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$
 $\overline{X_1} = 8$ $\overline{X_2} = 8.5$
 $e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$ $S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 6: Geometrical meaning of first principal components

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

Step 6: Geometrical meaning of first principal components

X_{2}	
14 (7,14)	
12 (4.11)	
10 4,11)	
8 (\bar{X}_1, \bar{X}_2)	
6	,
4 (8,4) • (13,5))
2	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0 2 4 6 8 10 12 14 X_1	

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad \overline{X_1} = \mathbf{8}$$

$$\overline{X_2} = \mathbf{8}.5$$

$$K_2 = 8.5$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$