Revisão 2º Bimestre - Matemática Aplicada à Administração

Leitura de dados

Variáveis são características ou informações para descrever, categorizar ou medir algo

Variáveis qualitativas - descrevem características não numéricas

- **Nominal** sem ordem ou hierarquia entre categorias
 - Ex: gênero; cor; setores da empresa
- **Ordinal** com ordem ou hierarquia entre categorias
 - Ex: nível de satisfação de clientes; urgência de tarefas; classificação de produtos

Variáveis quantitativas - representam quantidades ou valores numéricos

- Discreta valores inteiros, contáveis
 - Ex: número de funcionários; idade; reclamações no mês; quantidade de produtos vendidos no mês
- **Contínua** valores mensuráveis que podem conter decimais
 - Ex: tempo de produção; tempo de atendimento; distância para realizar entregas; quantidade de óleo produzido no mês; peso dos produtos;

Leitura de dados

Tabela de frequência

- Organizar dados brutos;
- Resumir informações;
- Identificar padrões ou tendências
- Frequências
 - absolutas (número de vezes) ou
 - **relativas** (proporção do número de vezes em relação ao total)

Distribuição de frequência				
Esporte	Frequência absoluta	Frequência relativa	Frequência percentual	
Futebol	20	0.40	40.00%	
Vôlei	15	0.30	30.00%	
Basquete	10	0.20	20.00%	
Natação	5	0.10	10.00%	
Total	50	1.00	100.00%	

Leitura de dados

Tabulação cruzada

- Serve para organizar e analisar a relação entre duas variáveis

Categoria do	Regiões				
produto	Região Norte	Região Sul	Região Leste	Total	
Eletrônicos	30	20	15	65	
Roupas	25	35	20	80	
Móveis	10	15	10	35	
Total	65	70	45	180	

Gráfico de barras empilhadas

- Representam e comparam duas variáveis no mesmo gráfico
- Exibem a frequência relativa em cada barra. Cada barra é dividida em segmentos que representam porcentagens
- Compara proporções entre categorias e dentro de cada barra

■ Bom ■ Muito Bom ■ Excelente

Medidas de posição

Média

 Representa um valor que resume o conjunto de dados, obtido pela soma de todos os valores dividida pela quantidade de elementos.

Mediana

- O valor que está no centro quando os dados são organizados em ordem crescente.
- Divide o conjunto de dados em dois (abaixo da mediana e acima da mediana)

Moda

O valor que mais se repete em um conjunto de dados.

Quartis

- Dividem os dados em quatro partes iguais, ajudando a entender a distribuição em percentis (Q1, Q2, Q3)
- **Q1** (25%): limite inferior, **Q2** (50%): mediana, **Q3** (75%): limite superior.
- Os quartis ajudam a entender a distribuição completa dos dados, como os limites entre as vendas mais altas, médias e baixas.

Medidas de dispersão

Amplitude

(VALOR MÁXIMO - VALOR MÍNIMO)

 Mede a dispersão dos dados pela diferença entre o maior e o menor valor. Quanto maior essa diferença, maior será a variação dos dados

Amplitude Interquartil

(Q3 - Q1)

- Mede a dispersão dos valores centrais do conjunto de dados pela diferença entre o terceiro quartil e o primeiro quartil

Variância

- Mede o quão afastados os valores estão da média, mostrando a dispersão de dados em relação ao centro da distribuição
- É pouco usada na prática pois seu valor está elevado ao quadrado, ficando em uma unidade diferente dos dados originais

Desvio padrão

- Também mede a dispersão dos dados em relação à média, mas na mesma unidade que o conjunto de dados.
- É calculado pela Raiz Quadrada da variância.

Probabilidade

Probabilidade é o ramo da matemática que estuda as chances de algo acontecer.

A probabilidade de um evento pode variar de 0 (impossível) a 1 (certo).

Fórmula básica da probabilidade:

P (E) = número de casos favoráveis / número total de casos possíveis

Exemplos:

- A chance de tirar o número 6 num dado: 1 caso favorável em seis casos possíveis, logo 1/6 de chances.
- A chance de tirar um Ás de um baralho: 4 casos favoráveis em 52 casos possíveis, logo 4/52 chances

Probabilidade

Como as empresas usam probabilidade?

- Controle de estoque
 - Um mercado analisa as vendas para prever quais produtos têm maior chance de acabar e se preparar.
- Promoções e descontos
 - Lojas analisam a chance de um cliente comprar um item com desconto antes que ele fique obsoleto.
- Planejamento financeiro
 - Empresas usam probabilidade para prever receitas e custos futuros, ajudando a evitar surpresas financeiras.
- Seguros
 - Seguradoras calculam a probabilidade de acidentes para definir preços de planos de seguro.

Tomada de decisões

- A probabilidade do evento acontecer é alta ou baixa?
- O impacto do evento é alto ou baixo?
- O custo para se prevenir é alto ou baixo?

Valor do dinheiro no tempo - Juros

Juros são a remuneração pelo uso do dinheiro ao longo do tempo.

Credor é quem empresta o dinheiro; os juros representam uma remuneração pelo risco do empréstimo, lucro pretendido e compensação por se abrir mão do capital temporariamente

Devedor é quem pega o dinheiro emprestado; os juros são o valor pago pelo empréstimo tomado

Inflação

- O aumento dos preços reduz o poder de compra do dinheiro ao longo do tempo

Valor do dinheiro no tempo - Juros

Diagrama de Fluxo de Caixa

- Permite a visualização das movimentação de entradas e saídas de dinheiro em um período de tempo Exemplo:
 - Segunda-feira: Compra de ingredientes no valor de R\$ 500,00;
 - Terça-feira: Venda total de lanches no dia, gerando R\$ 400,00;
 - Quarta-feira: Pagamento da conta de energia de R\$ 150,00;
 - Quinta-feira: Venda total do dia, gerando R\$ 350,00;
 - Sexta-feira: Pagamento do aluguel no valor de R\$ 300,00

Valor do dinheiro no tempo - Juros

Juros Simples

 Sempre calculados sobre o capital inicial, sem que haja acumulação de juros sobre juros.

Juros Compostos

 São incorporados ao capital a cada período, fazendo com que os novos juros sejam calculados sobre um valor crescente

	Saldo no início de cada ano	Juros apurados	Saldo no final de cada ano	Valor anual dos juros	
Ano 1	1.000,00	0,10 x 1.000,00 = 100,00	1.100,00	100,00	Juros
Ano 2	1.100,00	0,10 x 1.000,00 = 100,00	1.200,00	100,00	Simples
Ano 3	1.200,00	0,10 x 1.000,00 = 100,00	1.300,00	100,00	
Ano 4	1.300,00	0,10 x 1.000,00 = 100,00	1.400,00	100,00	
Ano 5	1.400,00	0,10 x 1.000,00 = 100,00	1.500,00	100,00	
	Saldo no início de cada ano	Juros apurados	Saldo no final de cada ano	Valor anual dos juros	
Ano 1	1.000,00	0,10 x 1.000,00 = 100,00	1.100,00	100,00	
Ano 2	1.100,00	0,10 x 1.100,00 = 110,00	1.210,00	110,00	Juros
Ano 3	1.210,00	0,10 x 1.210,00 = 121,00	1.331,00	121,00	Compostos
Ano 4	1.331,00	0,10 x 1.331,00 = 131,10	1.464,10	131,10	
Ano 5	1.464,10	0,10 x 1.464,10 = 146,41	1.610,51	146,41	

Exemplo inflação

Imagine que três pessoas receberam R\$ 5.000,00 em momentos diferentes da vida:

Pessoa A: recebeu R\$ 5.000,00 aos 18 anos, mas guardou o dinheiro em casa e só decidiu usá-lo aos 30 anos.

Pessoa B: recebeu R\$ 5.000,00 aos 18 anos e investiu o dinheiro em um fundo que rendeu 8% ao ano.

Pessoa C: recebeu R\$ 5.000,00 aos 30 anos e gastou imediatamente em uma viagem.

- 1. Após 12 anos, como o dinheiro da Pessoa A foi afetado pelo tempo? O que pode ter acontecido com o poder de compra dela?
- 2. O que aconteceu com o dinheiro da Pessoa B, que investiu? Como os juros influenciaram o valor ao longo do tempo?
- 3. A Pessoa C tomou uma decisão diferente. O que pode ser uma consequência financeira desse tipo de escolha?
- 4. O que esses cenários mostram sobre o efeito do tempo no valor do dinheiro?

A empresa DigitalFlex, do setor de tecnologia, realizou um levantamento sobre a satisfação dos clientes atendidos por diferentes departamentos (Suporte Técnico, Financeiro e Comercial) em três turnos (manhã, tarde e noite).

Departamento	Manhã	Tarde	Noite
Suporte Técnico	50	62	47
Financeiro	40	38	29
Comercial	55	48	42

Com base nos dados apresentados na tabela cruzada, assinale a alternativa correta:

- A) O Financeiro liderou em avaliações positivas no turno da manhã entre os três departamentos.
- B) O turno da tarde concentrou o maior número de avaliações positivas registradas no mês.
- C) O Suporte Técnico apresentou o menor número total de avaliações positivas entre os setores.
- D) O turno da noite acumulou mais avaliações positivas do que o turno da manhã da empresa.
- E) O Comercial foi o departamento com mais avaliações positivas no turno da tarde.

Uma rede de farmácias registrou o total de vendas nos primeiros cinco meses do ano para análise de desempenho. O gestor deseja calcular a média das vendas registradas de janeiro a maio, utilizando a função correta no Excel. Os dados estão organizados na planilha conforme mostrado:

	Α	В	С	D	E	F
1	MÊS	JAN	FEV	MAR	ABR	MAI
2	VENDAS	12000	15000	18000	17000	16000

Qual das fórmulas a seguir resulta corretamente na média de vendas mensais?

- A) = MÉDIA(A2:F2)
- B) = MED(B2:F2)
- C) =MÉDIA(B1;F1)
- D) =MÉDIA(B2:F2)
- E) = MED(B1:F2)

A gerente de uma rede de lojas deseja premiar os vendedores com os melhores resultados do último mês. Ela pretende usar uma função no Excel para destacar os colaboradores com os maiores valores de venda, levando em conta como esses dados estão distribuídos. Os dados de vendas foram organizados em uma planilha do Excel, conforme o exemplo a seguir:

	Α	В	С
1	Nome	Loja	Vendas (R\$)
2	Felipe	Lapa	5.200
3	Adriana	Mooca	8.100
4	Bruno	Tatuapé	7.400
5	Carla	Santana	4.900
6	Denise	Pinheiros	10.500
7	Eduardo	Lapa	9.000
8	Fernanda	Mooca	4.700
9	Gustavo	Barra Funda	6.300

Com base no texto e na tabela, a função do Excel que melhor atende à necessidade da gerente é:

A) =MÉDIA(C2:C9). Esta fórmula calcula o valor médio das vendas no período.
 B) =MED(C2:C9). Esta fórmula retorna o valor

central da distribuição de vendas.

C) =MODO(C2:C9). Esta fórmula mostra o valor mais recorrente entre os registrados.

D) =QUARTIL(C2:C9;1). Esta fórmula identifica os resultados que estão na base da distribuição.

resultados que estão na base da distribuição.

E) =QUARTIL(C2:C9;3). Esta fórmula indica o ponto que delimita os resultados mais elevados do grupo.

Durante uma análise de produtividade semanal dos funcionários de uma indústria automotiva paulista, foram coletados os dados referentes ao número de tarefas concluídas por colaborador. A equipe de gestão utilizou a tabela a seguir para estudar a consistência do desempenho entre os profissionais e identificar possíveis padrões de dispersão dos dados.

Estatística

Mínimo

Valor

8

10

12

15

20

tabela, a amplitude interquartii e sua analise mais adequada estad expressas em.	_
A) A amplitude interquartil é 2, sinalizando uma dispersão mínima entre o	1º Quartil (Q1)
primeiro quartil e a mediana, sugerindo alta consistência do desempenho.	Mediana (Q2)
B) A amplitude interquartil é 5, demonstrando que os valores centrais estão	3º Quartil (Q3)
distribuídos em uma faixa reduzida, inferior à metade da amplitude total. C) A amplitude interquartil é 8, indicando um afastamento considerável entre	Máximo
a mediana e o valor máximo, sugerindo variabilidade elevada.	IVIAXIIIIO
D) A amplitude interquartil é 12, expressando a distância total entre o menor	

Considerando a situação apresentada e com base nos dados apresentados na

tabela, a amplitude interquartil e sua análise mais adequada estão expressas em:

E) A amplitude interquartil é 15, revelando grande oscilação entre o primeiro

e o maior valor da amostra, representando ampla dispersão.

quartil e o valor máximo, refletindo instabilidade no desempenho.