

LOGICA PROPOZIŢIONALĂ

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- ▶ Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- ► Andrei este deștept.
- ► Marţienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ▶ Pleacă!

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm p, q, r, \ldots sau p_1, p_2, p_3, \ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. <math>r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este marți, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este marți. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este marți și nu avem curs de logică.

2

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

g = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Logica propoziționala LP - Limbajul

Definiția 1.1

Limbajul logicii propoziționale LP este format din:

- o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ▶ conectori logici: \neg (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulţimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Logica propoziționala LP - Limbajul

Definiția 1.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Logica propoziționala LP - Limbajul

Definiția 1.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

7

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 1.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează *Form*. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- ▶ Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

Formule

Exemple:

- $ightharpoonup v_1 \neg
 ightharpoonup (v_2), \ \neg v_1 v_2 \ \text{nu sunt formule} \ .$
- $((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$, $(\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $ightharpoonup \varphi = v$, unde $v \in V$;
- $\varphi = (\neg \psi)$, unde ψ este formulă;
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 1.5

Multimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

__

4

Principiul inducției pe formule

Propoziția 1.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \boldsymbol{P} , atunci și $(\neg \varphi)$ are proprietatea \boldsymbol{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \boldsymbol{P} , atunci $(\varphi \to \psi)$ are proprietatea \boldsymbol{P} .

Atunci orice formulă φ are proprietatea \boldsymbol{P} .

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $\varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, φ și ψ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Principiul inducției pe formule

Propoziția 1.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- *V* ⊂ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Dem.: Definim următoarea proprietate ${\bf P}$: pentru orice formulă φ , φ are proprietatea ${\bf P}$ ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 1.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$

$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- ▶ Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedența mai mare decât ceilalți conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

14

Principiul recursiei pe formule

Propoziția 1.8 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A$$
. $G_{-}: A \to A$. $G_{-}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Dem.: Exercițiu suplimentar.

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: \mathit{Form} \to \mathbb{N}$ definită astfel: pentru orice formulă φ ,

 $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v

$$c(\neg \varphi) = c(\varphi) + 1$$
 pentru orice formulă φ

$$c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$$
 pentru orice formule φ, ψ .

În acest caz,
$$A = \mathbb{N}$$
, $G_0: V \to A$, $G_0(v) = 0$,

$$G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$$

$$G_{\rightarrow}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\rightarrow}(m,n) = m+n+1.$$

Principiul recursiei pe formule

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exerciţiu.

Principiul recursiei pe formule

Propoziția 1.9 (Principiul recursiei pe formule - varianta 2)

Fie A o mulțime și funcțiile $G_0: V \rightarrow A$,

$$G_{\neg}: A \times Form \rightarrow A$$
, $G_{\rightarrow}: A \times A \times Form \times Form \rightarrow A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.

(R1) $F(\neg \varphi) = G_{\neg}(F(\varphi), \varphi)$ pentru orice formulă φ .

(R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi), \varphi, \psi)$ pentru orice formule φ, ψ .

Dem.: Exercițiu suplimentar.

Subformule

Definiția 1.10

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează $SubForm(\varphi)$.

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

SubForm(
$$\varphi$$
) = { $v_1, v_2, (v_1 \rightarrow v_2), (\neg v_1), \varphi$ }.

Subformule

Definiție alternativă

Mulţimea $SubForm(\varphi)$ poate fi definită și recursiv:

$$SubForm(v) = \{v\}$$

$$SubForm(\neg \varphi) = SubForm(\varphi) \cup \{\neg \varphi\}$$

$$SubForm(\varphi \rightarrow \psi) = SubForm(\varphi) \cup SubForm(\psi) \cup \{\varphi \rightarrow \psi\}.$$

În acest caz,

SubForm : Form
$$\rightarrow 2^{Form}$$
, deci $A = 2^{Form}$,

şi

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

$$G_{\neg}: A \times Form \rightarrow A,$$
 $G_{\neg}(\Gamma, \varphi) = \Gamma \cup \{\neg \varphi\},$

$$\textit{G}_{\rightarrow}:\textit{A}\times\textit{A}\times\textit{Form}\times\textit{Form}\rightarrow\textit{A},\quad \textit{G}_{\rightarrow}(\Gamma,\Delta,\varphi,\psi)=\Gamma\cup\Delta\cup\{\varphi\rightarrow\psi\}.$$

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr: 1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$eg: \{0,1\}
ightarrow \{0,1\}, \qquad egin{array}{c|c} \hline
ho & \lnot
ho \ \hline 0 & 1 \ 1 & 0 \ \hline \end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \Longleftrightarrow p \le q$.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

р	q	$p \lor q$	р	q	$p \wedge q$	р	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1 0	0	0	1	0
1	1 0 1	1	1	0	0	1	1 0 1	0
1	1	1	1	1	1	1	1	1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ $\Rightarrow p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Evaluări

Definiția 1.11

O evaluare (sau interpretare) este o funcție $e:V \to \{0,1\}.$

Teorema 1.12

Pentru orice evaluare $e:V \to \{0,1\}$ există o unică funcție

$$e^+$$
: Form $\rightarrow \{0,1\}$

care verifică următoarele proprietăți:

- $e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Dem.: Aplicăm Principiul Recursiei pe formule (Propoziția 1.8) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p$ și $G_{\rightarrow} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Propoziția 1.13

Dacă $e:V\rightarrow\{0,1\}$ este o evaluare, atunci pentru orice formule $\varphi,\ \psi,$

$$\begin{split} e^{+}(\varphi \lor \psi) &= e^{+}(\varphi) \lor e^{+}(\psi), \\ e^{+}(\varphi \land \psi) &= e^{+}(\varphi) \land e^{+}(\psi), \\ e^{+}(\varphi \leftrightarrow \psi) &= e^{+}(\varphi) \leftrightarrow e^{+}(\psi). \end{split}$$

Dem.: Exercițiu.

25