ゼミノート #2

七条彰紀

2018年4月19日

以降は, curve と言えば

smooth, complete, reduced and connected scheme of dimension 1 over $\mathbb C$

のことである. [2] II, 6.7 より, 以上の意味での curve は projective である.

[1] では "curve"の定義に "curve"を用いているので些か定義を定め難い. このノートでは,通常要求される irreducibility は要求しないことにした. これは [1] Exercise 1.7 に現れる xy=0 を除外しないためである. また, (geometric) genus of curve は通常 g で表す.

1 Moduli spaces we'll be concerned with

以降で考えていく moduli space を簡単に紹介する.

1.1 \mathcal{M}_g :: the coarse moduli space of curves of genus g.

これまで議論してきた.まだ存在は示されていない.trivial automorphism しか持たない curve に対応する M_g の点全体を M_g^0 と書くことにする.これは M_g の開集合であることが知られている.

1.2 $\mathcal{M}_{g,n}$:: the coarse moduli space of pairs of curve of genus g and n distinct points.

 $C_q = \mathcal{M}_{q,1}$ もここで述べる.

corve of genus g :: C と C の n 個の互いに異なる点 :: p_1,\ldots,p_n を合わせた順序組 (C,p_1,\ldots,p_n) の moduli space を $\mathcal{M}_{g,n}$ と呼ぶ.

[1] によれば、圏点をつけた条件(互いに異なる点の順序組)は、 $\mathcal{M}_{d,g}$ の compactification を考える上で必要である。また、curve :: C と、互いに異なるとは限らない点の順序無し組の組 $(C,\{p_1,\ldots,p_n\})$ の coarse moduli space を構成することも出来る.

 (C, p_1, \ldots, p_n) から n 点 p_1, \ldots, p_n の情報を忘れると、標準的な射 $\mathcal{M}_{q,n} \to \mathcal{M}_q$ が得られる.

1.3 $\mathcal{P}_{d,g}$:: the coarse moduli space of pairs of curve of genus g and line bundle of degree d.

 $\mathcal{P}_{d,g}$ は, curve of genus g とその上の line bundle of degree d の組 (C,\mathcal{L}) から \mathcal{L} の情報を忘れれば, 標準的な射 $\phi: \mathcal{P}_{d,g} \to \mathcal{M}_g$ が得られる.

■ 次の同型が存在する.

$$\mathcal{P}_{d,g} \cong \mathcal{P}_{d+(2g-2),g}, \quad \mathcal{P}_{d,g} \cong \mathcal{P}_{-d,g}$$
 $(C,\mathcal{L}) \mapsto (C,L\otimes K_C), \quad (C,\mathcal{L}) \mapsto (C,L^{-1}).$

このことと Exercise 2.6 から、互いに同型にならない $\mathcal{P}_{d,g}$ は、各 g に対して丁度 g-1 個ある $^{\dagger 1}$.

$$\mathcal{P}_{0,q}, \mathcal{P}_{1,q}, \dots, \mathcal{P}_{d-1,q}.$$

2 Constructions of \mathcal{M}_q

2.1 Generally Steps of Construction of Moduli Space.

moduli space の構成方法はある程度決まった手順がある. ここではそれを述べる.

まず、対象 X と付随する情報 (extra data) の組たちを、何らかの大きい空間 W の点に対応させる.多くの場合で対象の同型類と点の対応は 1:1 ではなく、1:3 となっている.1 つの対象の同型類 [X] に :: 対応する W の点たちが成す集合 $S_{[X]}$ を観察する.この集合 $S_{[X]}$ を何らかの群 G の W への作用に拠る軌道と考えることが出来れば $(S_{[X]}=Gw$ なる $w\in W$ が存在すれば)、求める moduli space は商空間 W/G として実現できる.

まとめると、moduli space を構成する際には以下の4つの要素を中心に考えることに成る.

Extra Data 分類対象 (Object) に付随させる情報.

Container Space 扱いやすい空間.

Correspondance 組 (Object, Extra Data) と Container Space の点の対応.

Group Container Space に作用し、1 つの Object に対応する点の集合が 1 つの軌道である群.

例 2.1

([3]) k :: field とし,moduli space of hypersurface of degree d in \mathbb{P}^n_k を構成しよう。H :: hypersurface of degree d in \mathbb{P}^n_k は,次のような形の $k[x_1,\ldots,x_n]$ の斉次 d 次多項式で定まる.

$$\sum_{|\alpha|=d} a_{\alpha} x^{\alpha}.$$

ただし α は多重添字である.そして多項式はその係数 a で定まる (Correspondance).

a は $k^{\oplus N}(N:=\binom{n+d}{d})$ の元である. したがって H は \mathbb{A}^N_k (Container Space) の点 $(a_{(d,0,\dots,0)},\dots,a_{(0,\dots,0,d)})$ に対応する. しかし,a に正則行列 $g\in GL_{n+1}(k)$ (Group) を作用させた a' も,H と同型な hypersurface に対応する(g の作用のさせ方はここで述べない). 逆に H の同型な hypersurface に対応する \mathbb{A}^N の点の全体は, $GL_{n+1}(k)$ による a の軌道として得られる.よって $\mathbb{A}^N_k/GL_{n+1}(k)$ がもとめる moduli space である.

以下では \mathcal{M}_g :: the coarse moduli space of smooth curves of genus g の構成方法の概略を述べる. 分類 対象 (Object) に付随させる情報. 方法は大きく分けて 3 つある. 最初の二つは解析的な方法で,最後のものは完全に代数的である.

 $^{^{\}dagger 1}$ \mathbb{Z} を $s:d\mapsto d+(2g-2)$ と $t:d\mapsto -d$ の二つの自己同型で生成される群で割る. s が生成する群は $(2g-2)\mathbb{Z}(<\mathbb{Z})$ と同型で、t が生成する群は $\mathbb{Z}/2\mathbb{Z}$ と同型。よって $\#(\mathbb{Z}/(2g-2)\mathbb{Z}\times(\mathbb{Z}/2\mathbb{Z})))=(2g-2)/2=g-1$.

2.2 The Teichmüller approach

Extra Data Normalized set of generators for $\pi_1(C)$,

or Homeomorphism which C^{an} to standard compact orientable surface X_0 .

Container Space :: $T_q \subseteq \mathbb{C}^{3g-3}$.

Group Γ_G :: Group of diffeomorphisms of X_0 , modulo isotopy.

この方法で構成された M_g は analytic variety になる.

この方法の利点は、 M_g の位相を扱いやすいことと、 M_g に自然な計量を入れられることである.

2.3 The Hodge theory approach

Extra Data 1. Symplectic basis of $H_1(C, \mathbb{Z}) :: \{a_1, \dots, a_g, b_1, \dots, b_g\},\$

2. Basis of $H^0(C, K_C) :: \{\omega_1, \ldots, \omega_q\},\$

3. The intersection pairing.

Container Space $\mathfrak{c}_g \subseteq \mathfrak{h}_g$.

Correspondance $P = [\int_{b_i} \omega_j]_{i,j} \in \mathfrak{h}_g$

Group $Sp_{2q}(\mathbb{Z})$:: Symplectic group.

ここで \mathfrak{h}_a は次のように定義される.

$$\mathfrak{h}_g = \left\{ \tau \in M_{g \times g}(\mathbb{C}) \mid \tau^T = \tau, \Im(\tau) :: \text{ positive difinite.} \right\}$$

これは Siegel upper-halfspace of dimension g と呼ばれている。 \mathfrak{h}_1 が通常の upper-halfplane と一致することに注意。 b_1,\ldots,b_g の選び方によって $P=[\int_{b_i}\omega_j]_{i,j}$ は変わるが,これは以下の $Sp_{2g}(\mathbb{Z})$ による作用に対応する.

$$Sp_{2g}(\mathbb{Z}) = \left\{ \gamma \in GL_{2g}(\mathbb{Z}) \mid \gamma^T \Omega \gamma = \Omega \right\}, \text{ where } \Omega = \begin{bmatrix} 0 & I_g \\ -I_q & 0 \end{bmatrix}.$$

構成方法から、 \mathcal{M}_g は $\mathcal{A}_g = \mathfrak{h}_g/Sp_{2g}(\mathbb{Z})$ に含まれる。 \mathcal{A}_g は coarse moduli space for abelian varieties of dimension g である。

この方法は $Sp_{2g}(\mathbb{Z})$ が Γ_g よりも分かりやすいという点で Teichmüller approach に優っている.しかし \mathfrak{c}_g の方は把握が難しく,「 \mathfrak{c}_g はどのようなものか」という問は the Schottky problem と呼ばれている.これについては様々な考察がなされているが, \mathfrak{c}_g の具体的な記述は得られていない.

この方法の別の利点は、compactification of \mathcal{A}_g :: $\tilde{\mathcal{A}_g}^{\dagger 2}$ が自然に得られるということである。compactification of \mathcal{M}_g :: $\tilde{\mathcal{M}_g}$ は $\tilde{\mathcal{A}_g}$ での \mathcal{M}_g の閉包として得られる。 $\tilde{\mathcal{M}_g}$ を用いた議論によって, \mathcal{M}_g が projective でも affine でも無いことが分かる(TODO: ここでの \mathcal{M}_g って scheme ではないでのは?)。

2.4 The geometric invariant theory (G.I.T.) approach

 $n \ge 3$ を任意にとって固定する.

 $^{^{\}dagger 2}$ A_a を analytic open subset として含む compact analytic variety の事.

Extra Data (Nothing.)

Container Space $K \subseteq \mathcal{H}_{2(q-1)n,q,N} \ (N := (2n-1)(g-1)-1).$

Group $PGL_{N+1}(\mathbb{C})$.

 $\mathcal{H}_{2(g-1)n,g,N}$ は subscheme of degree 2(g-1)n and genus g in \mathbb{P}^N の Hilbert scheme である. この方法の利点は、代数的であることの他に二つある.

- 1. \mathcal{M}_g が quasiprojective algebraic variety として得られる.
- 2. compactification of \mathcal{M}_g についての考察が自然に得られる.

compactification of \mathcal{M}_g を得る方法として,K の $\mathcal{H}_{2(g-1)n,g,N}(=:\mathcal{H})$ での閉包を取って $PGL_{N+1}(\mathbb{C})$ で割る,ということが思いつく.しかしこれで得られるのは K の compactification でなく,K を含む集合 \tilde{K} の compactification である.これらの包含関係は $K \subset \tilde{K} \subset \operatorname{cl}_{\mathcal{H}}(K)$ となる.

この拡張が必要な理由は、次のように説明される: 次のような $t \in \mathbb{A}^1 - \{0\}$ でパラメトライズされる family of smooth curves を考える. has only nodes as singularities and has only finitely many automor- phisms.

$$C: y^2z = x^3 - t^2axz - t^3bz^3$$
 where $a, b, t \in \mathbb{C}, t \neq 0$.

 $t \neq 0$ ならば $C_t \cong C_1$ となる.しかし C_0 は cuspidal curve となる. $C \to \mathbb{A}^1 - \{0\}$ に対応する j-invariant map を $\chi: \mathbb{A}^1 - \{0\} \to \mathbb{A}^1$ とすると, $t \to 0$ で χ の値は \mathbb{A}^1_j の外側の点に収束してしまう.なので $\mathcal{M}_1 = \mathbb{A}^1_j$ をコンパクト化するには, C_0 に対応する点を \mathcal{M}_1 に加えなければならない.なお,この曲線族は a,b の値を 変えることで任意の楕円曲線を含むものに成る.

では \tilde{K} に含まれる曲線は何だろうか,ということになるが,これは (Deligne-Mumford) stable curve と呼ばれるものである.

定義 2.2

stable curve とは、以下を満たす曲線 (scheme of dimension 1 over C) である.

- 1. 完備 (=proper),
- 2. 連結,
- 3. 特異点は高々 2 重点 (node),
- 4. 自己同型群が有限位数.

ここで再び曲線族 $C \to \mathbb{A}^1_t$ を考える. これは $C_t \cong C_1(t \neq 0)$ かつ $C_1 \not\cong C_0$ となっている. そこで $C_1 \not\sim C_0$ とすると, jump phenomenon が起きる. したがって任意の \mathbb{C} 上の楕円曲線 (C_1) と cuspidal curve (C_0) :: $y^2 = x^3$ は「同値」なものとして扱わなければならない. では楕円曲線と cuspidal curve の関係は何かというと, これが degeneration である.

stable *n*-pointed curve も定義できる.

定義 2.3

stable n-pointed curve とは、以下を満たす曲線 C (scheme of dimension 1 over \mathbb{C})

- 1. 完備 (=proper),
- 2. 連結,
- 3. 特異点は高々 2 重点 (node),

と、n 個の互いに異なる C の点 p_1,\ldots,p_n の組であって、 $\sigma(p_i)=p_i$ を満たすような自己同型 $\sigma:C\to C$ が有限個しか存在しないものである.

これは stable curve と n 個の点の組で,

参考文献

- [1] Joe Harris and Ian Morrison. *Moduli of Curves (Graduate Texts in Mathematics)*. Springer, 1998 edition, 8 1998.
- [2] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [3] 向井茂. モジュライ理論〈1〉. 岩波書店, 12 2008.