Question 1 – Memory Management

A linked list is the most appropriate data structure for this scenario because number of element required are not fixed and and we need a linear data structure.

Test cases

Test case id	Test scenario	Test steps	Test inputs	Expected result	Actual result	Pass/ Fail
1	Allocate P1 600k	 Enter command A Enter process id Enter size of the process 	processID = P1 size = 600	Allocate P1 of size: 600	As Expected	Pass
2	Allocate P2 1000k	 Enter command A Enter process id Enter size of the process 	processID = P2 size = 1000	Allocate P2 of size: 1000	As Expected	Pass
3	Allocate P3 300k	 Enter command A Enter process id Enter size of the process 	processID = P3 size = 300	Allocate P3 of size: 300	As Expected	Pass
4	Terminate P2	1. Enter command R 2. Enter process id	processID = P2	Release P2	As Expected	Pass
5	Allocate P4 700k	 Enter command A Enter process id Enter size of the process 	processID = P4 size = 700	Allocate P4 of size: 700	As Expected	Pass
6	Terminate P1	1. Enter command R 2. Enter process id	processID = P1	Release P1	As Expected	Pass
5	Allocate P5 400k	 Enter command A Enter process id Enter size of the process 	processID = P5 size = 400	Allocate P5 of size: 400	As Expected	Pass

```
Allocate System of size: 400

-- Memory Snapshot : START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: Free, Start: 400, End: 2600, Size: 2200, IsFree: 1
-- Memory Snapshot : END --
```

Figure 1 – Initial memory

```
Enter command:A
Enter process id: P1
Enter memory size: 600
Allocate P1 of size: 600

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P1, Start: 400, End: 1000, Size: 600, IsFree: 0
Process: Free, Start: 1000, End: 2600, Size: 1600, IsFree: 1
-- Memory Snapshot: END --
```

Figure 2 – Screenshot of test case 1

```
Enter command:A
Enter process id: P2
Enter memory size: 1000
Allocate P2 of size: 1000

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P1, Start: 400, End: 1000, Size: 600, IsFree: 0
Process: P2, Start: 1000, End: 2000, Size: 1000, IsFree: 0
Process: Free, Start: 2000, End: 2600, Size: 600, IsFree: 1
-- Memory Snapshot: END --
```

Figure 3 – Screenshot of test case 2

```
Enter command: A
Enter process id: P3
Enter memory size: 300
Allocate P3 of size: 300

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P1, Start: 400, End: 1000, Size: 600, IsFree: 0
Process: P2, Start: 1000, End: 2000, Size: 1000, IsFree: 0
Process: P3, Start: 2000, End: 2300, Size: 300, IsFree: 0
Process: Free, Start: 2300, End: 2600, Size: 300, IsFree: 1
-- Memory Snapshot: END --
```

Figure 4 – Screenshot of test case 3

```
Enter command:R
Enter process id: P2
Release P2

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P1, Start: 400, End: 1000, Size: 600, IsFree: 0
Process: Free, Start: 1000, End: 2000, Size: 1000, IsFree: 1
Process: P3, Start: 2000, End: 2300, Size: 300, IsFree: 0
Process: Free, Start: 2300, End: 2600, Size: 300, IsFree: 1
-- Memory Snapshot: END --
```

Figure 5 – Screenshot of test case 4

```
Enter process id: P4
Enter memory size: 700
Allocate P4 of size: 700

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P1, Start: 400, End: 1000, Size: 600, IsFree: 0
Process: P4, Start: 1000, End: 1700, Size: 700, IsFree: 0
Process: Free, Start: 1700, End: 2000, Size: 300, IsFree: 1
Process: P3, Start: 2000, End: 2300, Size: 300, IsFree: 0
Process: Free, Start: 2300, End: 2600, Size: 300, IsFree: 1
-- Memory Snapshot: END --
```

Figure 6 – Screenshot of test case 5

```
Enter command:R
Enter process id: P1
Release P1

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: Free, Start: 400, End: 1000, Size: 600, IsFree: 1
Process: P4, Start: 1000, End: 1700, Size: 700, IsFree: 0
Process: Free, Start: 1700, End: 2000, Size: 300, IsFree: 1
Process: P3, Start: 2000, End: 2300, Size: 300, IsFree: 0
Process: Free, Start: 2300, End: 2600, Size: 300, IsFree: 1
-- Memory Snapshot: END --
```

Figure 7 – Screenshot of test case 6

```
Enter command:A
Enter process id: P5
Enter memory size: 400
Allocate P5 of size: 400

-- Memory Snapshot: START --
Process: System, Start: 0, End: 400, Size: 400, IsFree: 0
Process: P5, Start: 400, End: 800, Size: 400, IsFree: 0
Process: Free, Start: 800, End: 1000, Size: 200, IsFree: 1
Process: P4, Start: 1000, End: 1700, Size: 700, IsFree: 0
Process: Free, Start: 1700, End: 2000, Size: 300, IsFree: 1
Process: P3, Start: 2000, End: 2300, Size: 300, IsFree: 0
Process: Free, Start: 2300, End: 2600, Size: 300, IsFree: 1
-- Memory Snapshot: END --
```

Figure 8 – Screenshot of test case 7