- a i) R_1 is not a function since the input for 4 has more than one output $R_1(4) = (4,2), (4,3)$
- a ii) The function is not onto/surjective since every value in the domain cannot be mapped to a corresponding value in the range $Range(R_1) \neq A$
- a iii) The function is not one-to-one/bijective since every value in the domain cannot be mapped perfectly to a single corresponding value in the range. $R_1(4) = (4,2),(4,3)$
- a iv) R_1 is everywhere defined as value in the domain is mapped to some or other value in the range $Domain(R_1) = A$
- b i) R_2 is a function since no element in the domain maps to more than one element in the range.
- b ii) The function is not onto/surjective since every value in the domain cannot be mapped to a corresponding value in the range $Range(R_2) \neq A$
- b iii) The function is not one-to-one/bijective since every value in the domain cannot be mapped to a single corresponding value in the range. $Range(R_2) \neq Domain(R_2)$
- b iv) R_3 is everywhere defined as value in the domain is mapped to some or other value in the range $Domain(R_3) = A$

a) $Domain(f(x)) = \mathbb{Z}$

Therefore, f is everywhere defined

b) The function $f:A\to B$ is onto/surjective if there exists an inverse function $g:B\to A$ such that the composition function $f\circ g:B\to B$ equals the identity function $1_B:B\to B$

If
$$f(x) = \frac{1}{10 + \sqrt{x}}$$

 $f^{-1}(x) \Rightarrow x = \frac{1}{\sqrt{y} + 10}$
 $\Rightarrow x(10 + \sqrt{y}) = 1$
 $\Rightarrow x10 + x\sqrt{y} = 1$
 $\Rightarrow x\sqrt{y} = 1 - x10$
 $\Rightarrow \sqrt{y} = \frac{1 - 10x}{x}$
 $\Rightarrow y = \frac{(1 - 10x)^2}{x^2}$

Then f(x) = y

Therefore f is onto/surjective

c) Suppose f(a) = f(b)

Then:

$$f(a) = f(b) \quad \Longleftrightarrow \frac{1}{10 + \sqrt{a}} = \frac{1}{10 + \sqrt{b}}$$
$$\Rightarrow 10 + \sqrt{a} = 10 + \sqrt{b}$$
$$\Rightarrow \sqrt{a} = \sqrt{b}$$
$$\Rightarrow a = b$$

Therefore f is one-to-one

d) f is invertible because f is one-to-one

$$f^{-1}(x) \Rightarrow x = \frac{1}{10 + \sqrt{y}}$$

$$\Rightarrow x(10 + \sqrt{y}) = 1$$

$$\Rightarrow x\sqrt{y} + x10 = 1$$

$$\Rightarrow x\sqrt{y} = 1 - x10$$

$$\Rightarrow \sqrt{y} = \frac{1 - 10x}{x}$$

$$\Rightarrow y = \frac{(1 - 10x)^2}{x^2}$$

Therefore f is invertible as $f^{-1} = \frac{(1-10x)^2}{x^2}$

a)
$$f(n) = 10$$

 $f(2n) = 10$

Running time is constant, it's not affected by the input size.

b)
$$f(n) = 5n + 6$$

 $f(2n) = 5(2n) + 6$
 $= 2f(n)$

Running time is linear. When an algorithm accepts 2n input size, it would perform 2n or two times as many operations as well.

c)
$$f(n) = 6n^{2}$$

$$f(2n) = 6(2n)^{2}$$

$$f(2n) = 6(4n)^{2}$$

$$= 4f(n)$$

Running time is quadratic. When an algorithm accepts 2n input size, it would perform 4n or four times as many operations as well.

d)
$$f(n) = 2^n$$

 $f(2n) = 2^{(2n)}$
 $f(2n) = (2^n)^2$
 $= f(n)^2$

Running time is exponential. When an algorithm accepts 2n input size, it would perform n^2 or the number of original operations squared as well.

a) Suppose n^2 is $O(n^2 \log n)$

Then there exist constants k > 0 and C > 0 such that:

$$n^2 \le Cn^2 \log n$$
 for all $n \ge k$

Now

$$\frac{n^2}{n^2 \log n} \le C$$

$$\frac{1}{\log n} \le C$$

$$1 \le C \log n$$

Which holds true for arbitrary values like $\mathcal{C}=4$ and k=3 Therefore, n^2 is $O(n^2 \log n)$

b) Suppose $O(n^2 \log n)$ is n^2

Then there exists n>0 and $\mathcal{C}>0$ such that:

 $n^2 \log n \le C n^2$ for all $n \ge \mathbb{N}$

Now

 $n^2 \log n \le C n^2$

 $\log n \le C$

But we know $\log n$ is not a bound function (of the form $|f(x)| \le M$) Therefore $n^2 \log n$ is not asymptotically bounded by $O(n^2)$

Therefore, the inequality is false and $n^2 \log n$ is not $O(n^2)$

a)
$$Domain(f(x)) = \mathbb{Z}$$

Therefore, f is everywhere defined

The function $f\colon A\to B$ is onto/surjective if there exists an inverse function $g\colon B\to A$ such that the composition function $f\circ g\colon B\to B$ equals the identity function $1_B\colon B\to B$

If
$$f(a) = a + 2$$

 $f^{-1}(a) \Rightarrow a = b + 2$

Then f(a) = b

Therefore f is onto/surjective

Suppose
$$f(a) = f(b)$$

 $\Rightarrow a + 2 = b + 2$
 $\Rightarrow a = b$

Therefore f is one-to-one

Therefore, f is a permutation

b)
$$Domain(f(x)) = \mathbb{Z}$$

Therefore, f is everywhere defined

The function $f:A\to B$ is onto/surjective if there exists an inverse function $g:B\to A$ such that the composition function $f\circ g:B\to B$ equals the identity function $1_B:B\to B$

If
$$f(a) = a^2 - 2a$$

 $f^{-1}(a) \Rightarrow a = b^2 + 2b$
 $\Rightarrow 0 = b^2 + 2b - a$

Then $Range(f) = \{a \in \mathbb{Z} \mid a \ge -1\}$

Solve using quadratic equation formula:

$$y_1, y_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$y_1, y_2 = \frac{-2 \pm \sqrt{2^2 - 4(1)(-x)}}{2(1)}$$

$$y_1, y_2 = \pm \sqrt{x + 1} - 1$$

$$y_1 = \sqrt{x + 1} - 1 \text{ and } y_2 = -\sqrt{x + 1} - 1$$

Therefore f is not onto/surjective Therefore, f is not a permutation

a)
$$(2 3) \circ (4 5 6) \circ (1 3 6 7)$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 6 & 7 & 1 & 8 \end{pmatrix}$$

Question 7

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 7 & 3 & 4 & 8 & 1 \end{pmatrix}$$

a)
$$p(1) = 5$$
 $p(2) = 6$ $p(3) = 2$ $p(4) = 7$ $p(5) = 3$ $p(6) = 4$ $p(7) = 8$ $p(8) = 1$

b)
$$p = (15326478)$$

c)
$$p = (18)(17)(14)(16)(12)(13)(15)$$

- d) p is odd with an odd number of transpositions
- e) $p \circ p$
- f) Using transpositions: p = (18)(17)(14)(16)(12)(13)(15)

Unordered	
(18)	$1 \rightarrow 8$
(17)	8 → 7
(14)	$7 \rightarrow 4$
(16)	$4 \rightarrow 6$
(12)	$6 \rightarrow 2$
(13)	$2 \rightarrow 3$
(15)	3 → 5

Ordered	
(18)	$1 \rightarrow 8$
(13)	$2 \rightarrow 3$
(15)	$3 \rightarrow 5$
(16)	$4 \rightarrow 6$
Missing	$5 \rightarrow 1$
(12)	$6 \rightarrow 2$
(14)	$7 \rightarrow 4$
(17)	8 → 7

$$p^{-1} = (83561247)$$

g)
$$p = (15326478)$$

 $Period(p) = 8$

Let A be a permutation on (1,2,3,4,5,6) with period 5 Therefore $A=(2\ 3\ 4\ 5\ 1)$

Question 9

a) $R_1 = \{(a,b) | a modulo b \le 1 \}$

	1	2	3	4	5
1	Χ	Χ			
2	X	X	Χ		
3		Χ	X		
4					
5					

 R_1 is not reflexive as $(4,4),(5,5) \notin R_1$ Therefore R_1 is not a partial order

b) $R_2 = \{(a, b) | a modulo b \le 1 \}$

	1	2	3	4	5
1	Χ	Χ			Χ
2		X	Χ		
3		Χ	X		
4				Χ	
5		X			X

 R_2 is reflexive as $(a,a) \in R_2$

 $\ensuremath{\textit{R}}_2$ is not symmetric as for every value, the value in the transposed position is not equal

 $\stackrel{\cdot}{R_2}$ is antisymmetric as it is reflexive and not symmetric

 R_2 is transitive: as $(5,2) \in R_2$ and $(1,2) \in R_2$ and $(1,5) \in R_2$

Therefore R_1 is a partial order

$$R_{72} = \{1,2,3,4,6,8,9,12,18,24,36,72\}$$

Question 11

Question 12 $R = \{(a,b) a modulo b \le 1\}$						
	a	b	С	d		
a	Χ	Χ	X	Χ		
b		X	Χ	Χ		
С			X			
٦				V		

Question 13

Question 14

Question 15

Question 16

	J	,'	3	V
x'	1	1	1	0
x	1	0	0	0