UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 PRACTICA 5

Tema

- -Relaciones y Funciones.
- $-Imagen\ y\ Pre-imagen\ de\ conjuntos.$
- $-Functiones\ Sobreyectivas\ y/o\ Inyectivas.$
- $-Dominio\ y\ Recorrido\ de\ funciones.$

Problema 1. Determinar el dominio y recorrido de la relación \mathcal{R} representada por

- (a) $R = \{(x, y) \in \mathbb{R}^2 : x^2 + 2y^2 = 8\}$
- (b) $R = \{(x, y) \in \mathbb{R}^2 : 4x^2 y^2 = 16\}$ (En práctica)
- (c) $R = \{(x, y) \in \mathbb{R}^2 : x y^2 = 15\}$

¿Indique algunos subconjuntos de \mathbb{R}^2 , sobre los cuales \mathcal{R} es una función? Defina dicha función.

Problema 2. Considere la relación binaria \mathcal{R} definida por

$$x \mathcal{R} y \iff y = 8 - 2x$$

- en (i) $\mathbb{N} \times \mathbb{N}$ (ii) $\mathbb{Z} \times \mathbb{N}$ (iii) $\mathbb{N} \times \mathbb{Z}$
 - a) Determinar $Dom(\mathcal{R})$, $Rec(\mathcal{R})$ y $R=Gr(\mathcal{R})$ en cada caso. Representar gráficamente R.
 - b) Encontrar un subconjunto $M \subseteq \mathbb{N} \times \mathbb{N}$ tal que $M \cap R = \phi$
 - c) Sea $\mathbb{P}=\{n\in\mathbb{N}:n\text{ es par}\}$ ¿Es posible encontrar $M\subseteq\mathbb{N}\times(\mathbb{N}-\mathbb{P})$ tal que $M\subset R$?

(En práctica)

Problema 3. Considere la función $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} \frac{n}{2} & \text{si n es par} \\ \frac{n+1}{2} & \text{si n es impar} \end{cases}$$

y los siguientes subconjuntos de N.

$$\mathbf{A} = \{ n \in \mathbb{N} : \quad n \le 10 \quad \text{ y } n \text{ es divisible por 3} \}$$

$$\mathbf{B} = \{ n \in \mathbb{N} : n \le 13 \quad \text{y } n \text{ es divisible por 6} \}$$

$$C = \{n \in \mathbb{N} : n \le 20 \text{ y } n \text{ es número primo } \}$$

Encontrar:

- a) la imagen f(A);
- b) la pre-imagen $f^{-1}(B)$;

c)
$$\xi f^{-1}(B) \subset f^{-1}(A)$$
? o $\xi f^{-1}(B) \subseteq f^{-1}(A)$? o bien $\xi f^{-1}(A) \subseteq f^{-1}(B)$?

- d) todos los $x \in C$ tal que f(x) = 5;
- e) Encontrar $f^{-1}(\{1\})$ y $f^{-1}(\{4\})$.

(En práctica)

Problema 4. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 - 2x + 2$

- a) ¿Qué desigualdad se debe resolver para determinar la imagen recíproca $f^{-1}([0,+\infty[)]$?
- b) Determinar $f^{-1}(\{0\})$ y $f^{-1}([1,2])$.

Problema 5. Formular los siguientes problemas como imagen recíproca de un subconjunto $Y \subseteq \mathbb{R}$ por una función f adecuada. En cada caso determinar $f^{-1}(Y)$.

- a) Encontrar $x \in \mathbb{R}$ tal que $x^2 1 \ge 2$
- b) Encontrar $x \in \mathbb{R}^+$, $x \neq 1$ tal que

$$1 \le \frac{x(x-1)}{x+1} \le 2.$$

c) Encontrar $x \in \mathbb{N}$ tal que $1 \le x^2 \le \sqrt{3}$.

Problema 6. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 - 1$. Dar ejemplos de conjuntos no vacíos $B \subseteq \mathbb{R}$ tal que

- a) $f^{-1}(B) = \phi$
- b) $f^{-1}(B)$ tiene cardinalidad 1.

Problema 7. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = x - 3. Dar ejemplos de conjuntos no vacíos $B \subseteq \mathbb{R}$ tal que

- a) $f^{-1}(B) = [1, 2]$
- b) $f^{-1}(B) = \mathbb{R} [1, 2].$

Problema 8. Sea $f:A\to B$ una función y M,N dos subconjuntos no vacíos del codominio.

- a) Probar que $f^{-1}(M-N) = f^{-1}(M) f^{-1}(N)$.
- b) Considere la función definida en el Problema anterior para determinar la imagen recíproca $f^{-1}(\{x \in \mathbb{R} : |x| > 1\})$
- c) Considere la función f y los conjuntos A y B definidos en el Problema 3. Calcule e interprete (i) A B y (ii) $f^{-1}(A B)$.

(En práctica)

Problema 9. Considere una función $f: A \longrightarrow B$. Probar las siguientes propiedades de la imagen e imagen recíproca de conjuntos por f.

a) Para todo $X, \tilde{X} \subseteq A:$ $f(X \cap \tilde{X}) \subseteq f(X) \cap f(\tilde{X}).$

La igualdad se obtiene si f es sobreyectiva.

b) Para todo $Y, \tilde{Y} \subseteq B$: $f^{-1}(Y \cap \tilde{Y}) = f^{-1}(Y) \cap f^{-1}(\tilde{Y}).$

Problema 10. Considere las funciones

$$f: \mathbb{N} \to \mathbb{N}; \quad n \longmapsto f(n) = 2n, \qquad g: \mathbb{N} \to \mathbb{P}; \quad n \longmapsto g(n) = 2n$$

$$h: \mathbb{Z} \to \mathbb{N} \cup \{0\}; \quad n \longmapsto h(n) = \begin{cases} 2n - 2 & \text{si } n > 0 \\ 0 & \text{si } n = 0 \\ -2n & \text{si } n < 0 \end{cases}$$

Decidir si ellas son inyectivas, sobreyectivas o biyectivas, respectivamente. (En práctica)

Problema 11. En los siguientes problemas determine Dominio y Recorrido de las funciones reales, definidas por:

(a)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R} - \{0\}$$
$$x \longmapsto f(x) = \frac{1}{1-x}$$

(b)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = 2x^2 - 2x - 4$$

$$(c) \qquad \begin{array}{ccc} f:Dom(f)\subseteq\mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f(x)=x^2-5x+6 \end{array}$$

(d)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = \frac{x^2 - 1}{x^2 + 2x - 3}$$

(e)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \ln(x^2 - 9)$$

$$(f) \qquad \begin{array}{ccc} f: Dom(f) \subseteq \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f(x) = \log_2(5 - x^2) \end{array}$$

$$(g) f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = \sqrt{\log(2x+3)}$$

(En práctica (a) y (d))