UFV- CCE - DET

EST 105 - 2ª avaliação - 2º semestre de 2017 - 21/out/17

_____ Matrícula:_____

Assinatura:						·	Favor apresentar document				
			s e formul TES DE			as numerac	las de 1 a 7	, total de 30 poi	ntos, FAVOR		
		ÇÃO: A Sapien	,	X) em	qual tu	ırma está n	natriculado	(sua nota será	divulgada no		
	TURMA		HORÁRIO			SALA	SALA PROFESSOR				
()	T1 2ª	10-12	5 <u>a</u>	8-10	PVB310	Moysés				
()	T2 2ª	16-18	5 <u>a</u>	14-16	PVB310	Carol				
()	T3 2ª	8-10	4 <u>a</u>	10-12	PVB109	Paulo				
()	T5 3 ª	16-18	6 <u>a</u>	14-16	PVB310	Camila				
()	T6 2ª	14-16	4 <u>a</u>	16-18	PVB107	Carol/Mo	ysés			
()	T7 4ª	8-10	6ª	<u> 10−12</u>	PVB206	CHOS -	coordenador			
()	T8 2ª	18:30-2	0:10	4ª 20	:30-22:10	PVB210	Eduardo			
()	T9 3ª	10-12	6ª 8	3-10	PVB300	Cecon				
()	T20 =	EST 085	T1 2	² 14-16	PVA284 T2	2 2 2 18:30	-20:10 PVA388	Leísa		

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA!!!.

Nome: _____

FORMULÁRIO

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{j} P(A_j)P(B|A_j)}, \quad P(B) > 0$$
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B^c) = P(A) - P(A \cap B)$$
 $P(A) = 1 - P(A^c)$, A^c é o evento complementar

Leis de DeMorgan: $P(A^c \cap B^c) = P(A \cup B)^c$ e $P(A^c \cup B^c) = P(A \cap B)^c$

$$X \quad v.a.d. \Rightarrow \quad f(x) = P(X = x)$$

$$X$$
 $v.a.c. \Rightarrow \int_{x_1}^{x_2} f(x) dx = P(x_1 \le X \le x_2)$

$$F(x) = P(X \le x)$$

$$f(x|y) = \frac{f(x,y)}{h(y)}, \quad h(y) = \int f(x,y) \ dx, \qquad f(y|x) = \frac{f(x,y)}{g(x)}, \quad g(x) = \int f(x,y) \ dy$$

$$P(x|y) = \frac{P(x,y)}{P(y)}, \quad P(y) = \sum_{x} P(x,y), \qquad P(y|x) = \frac{P(x,y)}{P(x)}, \quad P(x) = \sum_{y} P(x,y)$$

- 1.(8 pontos) Admita que em uma blitz da polícia rodoviária,
 - 15% dos veículos fiscalizados estão com o IPVA atrasado, $\Rightarrow P(A) = 0, 15;$
 - em 11% dos veículos fiscalizados o motorista está com a CNH irregular, $\Rightarrow P(C) = 0, 11$;
 - 17% dos veículos fiscalizados estão com algum problema elétrico, $\Rightarrow P(E) = 0, 17$;
 - em 5% dos veículos fiscalizados os motoristas estão com a CNH irregular e o carro NÃO apresenta problema elétrico, $\Rightarrow P(C \cap E^c) = 0,05$;
 - em 41,18% dos veículos fiscalizados por terem um problema elétrico, também se constata IPVA atrasado, $\Rightarrow P(A \mid E) = 0,4118$.

Pede-se, se um veículo selecionado aleatoriamente for fiscalizado, calcule:

a.(4 pts) A probabilidade condicional do motorista estar com a CNH irregular, dado que foi constatado que há um problema elétrico.

$$P(C|E) = \frac{P(C \cap E)}{P(E)} = \frac{P(C) - P(C \cap E^c)}{P(E)} = \frac{0,11 - 0,05}{0,17} = \frac{0,06}{0,17}$$
$$= \frac{6}{17} = 0,3529$$

b.(4 pts) A probabilidade de se constatar IPVA atrasado ou um problema elétrico.

$$P(A \cup E) = P(A) + P(E) - P(A \cap E)$$

$$= P(A) + P(E) - P(E) P(A \mid E)$$

$$= 0, 15 + 0, 17 - 0, 17 \cdot 0, 4118$$

$$= 0, 32 - 0, 070006$$

$$= 0, 2499$$

2.(5 pontos) Um jogo de azar oferece ao apostador três sequências, $A, B \in C$, cada uma com os números de 1 a 10, conforme a tabela abaixo. O apostador participa deste jogo escolhendo 3 números dentro de cada uma das sequências. O jogo irá sortear dois números de forma completamente aleatória do conjunto $\{1,2,3,4,5,6,7,8,9,10\}$, sendo que o apostador ganhará um prêmio se ele acertar os dois números sorteados dentro de pelo menos uma das sequências.

	Dentro de cada sequência									
Sequência	aposte em três números									
\overline{A}	1	2	3	4	5	6	7	8	9	10
\overline{B}	1	2	3	4	5	6	7	8	9	10
\overline{C}	1	2	3	4	5	6	7	8	9	10

Pede-se: Calcule a probabilidade de um apostador ganhar o prêmio neste jogo de azar, ou seja, $P(A \cup B \cup C)$, sendo A, B e C eventos mutuamente independentes.

$$P(\text{ganhar}) = P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$
$$- P(B \cup C) + P(A \cap B \cap C)$$

 $p = P(A) = P(B) = P(C) = P(A_1 \cap A_2) = \frac{3}{10} \cdot \frac{2}{9}$ em que A_i é o evento acertar o i-ésimo número sorteado, ou equivalentemente

$$p = P(A) = P(B) = P(C) = \frac{\binom{2}{2}\binom{8}{1}}{\binom{10}{3}} = \frac{\binom{3}{2}\binom{7}{0}}{\binom{10}{2}} = \frac{1}{15} = 0,0667$$

temos

$$\begin{split} P\left(\mathrm{ganhar}\right) &= \frac{1}{15} + \frac{1}{15} + \frac{1}{15} - \frac{1}{15} \cdot \frac{1}{15} - \frac{1}{15} \cdot \frac{1}{15} - \frac{1}{15} \cdot \frac{1}{15} + \frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1}{15} \\ &= \frac{3}{15} - 3 \cdot \frac{1}{15^2} + \frac{1}{15^3} = \frac{3}{15} - \frac{3}{225} + \frac{1}{3375} = \frac{631}{3375} = 0,1870 = 18,7\%. \end{split}$$

Outro modo de se resolver

$$\begin{split} P\left(\text{ganhar}\right) &= 1 - P\left(\text{perder}\right) = 1 - P\left(\begin{array}{c} \text{n\~ao acertar 2 n\'ameros em nenhuma} \\ \text{das tr\^es sequ\^encias} \end{array} \right) \\ &= 1 - P\left(A^c \cap B^c \cap C^c\right) \overset{\text{mutuamente}}{=} 1 - P\left(A^c\right) P\left(B^c\right) P\left(C^c\right) \end{split}$$

Como $P(A^c) = P(B^c) = P(C^c)$ temos que

$$P\left(\text{ganhar}\right) = 1 - \left[P\left(A^{c}\right)\right]^{3}$$

Sejam A_0 : {acertar zero número na sequência A} e A_1 : {acertar um número na sequência A}. Logo

$$P ext{(ganhar)} = 1 - [P(A_0 \cup A_1)]^3 = 1 - [P(A_0) + P(A_1) - P(A_0 \cap A_1)]^3$$

= $1 - [P(A_0) + P(A_1)]^3$

e, como

$$P(A_0) = \frac{8}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} = \frac{7}{15} = 0,4666$$
$$P(A_0) = 3 \cdot \frac{8}{10} \cdot \frac{7}{9} \cdot \frac{2}{8} = 0,4666,$$

temos que

$$P(\text{ganhar}) = 1 - (0,4666 + 0,4666)^3 = 1 - (0,9332)^3 = 1 - 0,8126 = 0,1874 = 18,74\%.$$

3.(6 pontos) O desempenho diário, de um certo conjunto de ações, pode ser medido como a porcentagem de crescimento do preço de venda em relação ao dia anterior. Suponha que esse desempenho é uma variável aleatória contínua X com função densidade de probabilidade dada por:

$$f(x) = \begin{cases} \frac{2}{19} (x+4) &, \text{ se } -3 \le x < 0; \\ \frac{2}{19} x &, \text{ se } 0 \le x < 2; \\ 0 &, \text{ para outros valores de } x \end{cases}$$

a. (3 pts) Construa a função de distribuição acumulada F(x).

Para x < -3 temos que $F(x) = P[X \le x] = 0$;

Para $-3 \le x < 0$ temos que

$$F(x) = P[X \le x] = \int_{-3}^{x} \frac{2}{19} (u+4) du = \frac{2}{19} \left(\frac{u^2}{2} + 4u \right) \Big|_{u=-3}^{x}$$
$$= \frac{2}{19} \left[\left(\frac{x^2}{2} + 4x \right) - \left(\frac{(-3)^2}{2} + 4(-3) \right) \right] = \frac{2}{19} \left(\frac{x^2}{2} + 4x + \frac{15}{2} \right);$$

Para $0 \le x < 2$ temos que

$$F(x) = P[X \le x] = \frac{15}{19} + \int_0^x \frac{2u}{19} du = \frac{15}{19} + \frac{2}{19} \left(\frac{u^2}{2}\right) \Big|_{u=0}^x = \frac{15}{19} + \frac{2}{19} \left(\frac{x^2}{2} - \frac{0^2}{2}\right)$$
$$= \frac{x^2 + 15}{19};$$

Para $2 \le x$ temos que $F(x) = P[X \le x] = 1$.

b.(3 pts) Calcule a probabilidade de um dia com desempenho excepcional (superior a 1, 5), dado que o dia teve desempenho positivo. Isto é, calcule a probabilidade condicional $P(X > 1, 5 \mid X > 0)$.

$$P(X > 1, 5 | X > 0) = \frac{P(X > 1, 5; X > 0)}{P(X > 0)} = \frac{P(X > 1, 5)}{P(X > 0)}.$$

Temos que

$$P(X > 0) = 1 - P(X \le 0) = 1 - F(0) = 1 - \frac{15}{19} = \frac{4}{19} = 0,2105,$$

е

$$P(X > 1, 5) = 1 - P(X \le 1, 5) = 1 - F(1, 5) = 1 - \frac{15 + 1, 5^2}{19} = 1 - 0,9079 = 0,0921.$$

Assim

$$P(X > 1, 5 | X > 0) = \frac{0,0921}{0,2105} = 0,4375.$$

4.(6 pontos) Sejam X e Y duas variáveis aleatórias discretas com função de probabilidade bidimensional conjunta P(x, y), dada por:

$$P(x,y) = \begin{cases} k(x+y), & \text{se } x = 1,2,3 \text{ e } y = 1,2; \\ 0, & \text{caso contrário} \end{cases}$$

 $\mathbf{a.(2 pts)}$ Determine o valor de k.

$$1 = \sum_{x} \sum_{y} P(x; y) = \sum_{x} \sum_{y} k(x + y) = k \left(\sum_{x} \sum_{y} x + \sum_{x} \sum_{y} y \right)$$

$$= k \left(\sum_{x} x \sum_{y} 1 + \sum_{x} 1 \sum_{y} y \right)$$

$$= k (6 \cdot 2 + 3 \cdot 3) = 21k$$

$$k = \frac{1}{21}$$

 $\mathbf{b.(2 pts)}$ Determine a distribuição marginal de X.

$$P(x) = \sum_{x} P(x,y) = \frac{1}{21} \sum_{y=1}^{2} (x+y) = \frac{1}{21} \left(\sum_{y=1}^{2} x + \sum_{y=1}^{2} y \right) = \frac{1}{21} \left(x \sum_{y=1}^{2} 1 + 3 \right)$$
$$= \frac{1}{21} (2x+3)$$

 $\mathbf{c.(2 pts)}$ Determine a distribuição condicional de Y dado que X=1.

$$P(Y = y | X = 1) = \frac{P(Y = y; X = 1)}{P(X = 1)}.$$
Como $P(Y = y; X = 1) = \frac{1}{21}(1 + y)$ e $P(X = 1) = \frac{5}{21}$ temos
$$P(Y = y | X = 1) = \frac{\frac{1}{21}(1 + y)}{\frac{5}{21}} = \frac{1}{21} \cdot \frac{21}{5}(1 + y) = \frac{1 + y}{5}.$$

$$\frac{y}{P(Y = y | X = 1)} = \frac{1}{\frac{2}{5}} \cdot \frac{3}{5} = \frac{1}{1}$$

- 5.(5 pontos) Informe se as afirmações apresentadas a seguir são verdadeiras (V) ou falsas (F), corrigindo-as quando assinalar que é falsa. (1,25 pontos cada item assinalado corretamente).
- **a.(**) Se A e B são dois eventos de um mesmo espaço amostral tais que P(A) = 1/3 e P(B|A) = 3/5, então A e B não podem ser eventos mutuamente exclusivos (ou disjuntos).

Verdadeiro. $P(A \cap B) = P(A) P(B|A) = \frac{1}{3} \cdot \frac{3}{5} = \frac{1}{5} \neq 0$, logo $A \in B$ não são mutuamente exclusivos, pois neste caso teríamos $P(A \cap B) = P(\emptyset) = 0$

b.() Se A e B são dois eventos independentes de um mesmo espaço amostral, tais que P(A) = 1/5 e P(B) = 1/6. Então, a probabilidade de que pelo menos um dos dois eventos ocorra é 1/30.

Falso.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{5} + \frac{1}{6} - \frac{1}{5} \cdot \frac{1}{6} = \frac{6+5-1}{30} = \frac{10}{30} = \frac{1}{3} \neq \frac{1}{30}$$

c.() Se A e B são dois eventos de um mesmo espaço amostral tais que P(A) = 1/2, P(B|A) = 1 e P(A|B) = 1/2 então A não pode estar contido em B.

Falso.
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, logo $P(B) = \frac{P(A \cap B)}{P(A|B)} = \frac{P(B|A)P(A)}{P(A|B)} = \frac{1 \cdot \frac{1}{2}}{\frac{1}{2}} = 1$.

Se $A \subset B$ então $P(A) \leq P(B)$, o que se verifica neste caso, pois $P(A) = \frac{1}{2} \leq 1 = P(B)$.

Outra solução - exibindo um contra exemplo, tal como:

Sejam , $S=\{1,2,3,4\},\ A=\{1,2\}$ e $B=\{1,2,3,4\}.$ Temos que $P(A)=\frac{1}{2},$ P(B|A)=1 e $P(A|B)=\frac{1}{2},$ além disso, $A\subset B,$ logo a afirmativa é falsa.

d.() A função densidade de probabilidade de uma variável aleatória contínua X retorna a probabilidade acumulada até um determinado valor x, ou seja, $P(X \le x)$.

Falso. A função que retorna a probabilidade acumulada até um determinado valor é a função de distribuição acumulada F(x) e não a função densidade de probabilidade f(x).