Drinking Water Surveillance Program

KITCHENER WELL SUPPLY

Annual Report 1989

April 12, 199,

KITCHENER WELL SUPPLY

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1989

Cette publication technique n'est disponible qu'en anglais.

January 1991

Copyright: Queen's Printer for Ontario, 1991
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 1355

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

KITCHENER WELL SUPPLY 1989 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1989, 65 plants were being monitored.

The Kitchener Well Supply source consists of many wells. Three locations were sampled on the DWSP; K70, an induced infiltration system located on the east side of Kitchener adjacent to the Grand River, K21 (Mannheim East/West), a high capacity overburden well field located at the western city limit of Kitchener, and Strange Street Reservoir, one of the first well fields developed in Kitchener located near the city-centre.

Samples were taken of raw and treated water from the K70 well, raw water from the K21 well and treated water from the Mannheim Reservoir, treated water from the Strange Street well and water from one house in the distribution system. The Kitchener Well Supply was sampled for the presence of approximately 180 parameters monthly. Parameters were divided into the following groups: Bacteriological, Inorganic and Physical (Laboratory Chemistry, Field Chemistry and Metals) and Organic (Chloroaromatics, Chlorophenols, Pesticides and PCB, Phenolics, Polyaromatic Hydrocarbons, Specific Pesticides and Volatiles). Chlorophenols and Specific Pesticides were analyzed in June and November only.

A summary of results is shown in Table A.

Inorganic and Physical parameters were below any applicable health related guidelines.

Samples wete analyzed monthly for the presence of approximately 110 Organics. Levels did not exceed health related guidelines.

During 1989, the DWSP sampling results indicated that the Kitchener well supply produced generally good quality water and this was maintained in the distribution.

TABLE A

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE BY SCAII (1988)

SCAN TESTS POS	ESTS		TIVE	PANNHE ESTS P	MANHHEIM RESERVOIR	17 LVE	TESTS	K21 RAW MANNHEIN RESERVOIR SITE 1 STRANGE ST RESERVOIR TIVE XPOSITIVE TESTS POSITIVE XPOSITIVE TESTS POSITIVE XPOSITIVE	ST TIVE TE	RANGE STS P	STRANGE ST RESERVOIR TESTS POSITIVE XPOSITIVE TESTS POSITIVE XPOSITIVE TESTS	IVE	STS PC	K70 RAW	1 4	ESTS P	K70 TREATED POSITIVE XPOSITIVE	D SITIVE
BACTERIOLOGICAL	23		~	*	0	•	*	10	27	×	۲	6	*	٥	ĸ	я	-	7
CHEMISTRY (FLD)	92	ກ	28	20	07	8	8	15	35	58	87	8	77	58	8	8	8	8
CHEMISTRY (LAB)	252	\$	Z.	222	167	8	3	369	23	252	<u>\$</u>	7	252	8	11	222	\$	11
METALS	288	140	3	288	150	25	3	340	8	288	172	20	288	153	53	288	155	53
CHLOROAROMATICS	83	0	0	154	0	0	99	0	0	154	0	0	154	0	0	154	0	0
CHLOROPHENOLS	12	0	0	12	0	0	•			12	0	0	12	0	0	12	0	0
РАМ	191	0	0	191	0	0	٠			191	0	0	192	0	0	192	0	0
PESTICIDES & PCS	904	0	0	387	0	0	, K	0	0	387	0	0	387	7	0	387	2	•
PHENOL I CS	12	n	ĸ	12	4	33	٠			12	4	33	12	7	28	12	•	20
SPECIFIC PESTICIDES	99	0	0	3	0	0	12	0	0	3	0	0	\$	0	0	2	0	0
VOLATILES	37.8	-	0	348	22	•	348	57	•	348	39	=	34.8	-	0	35	9	Ξ
TOTAL	1806	34.7		ž.	383		2008	ž		1802	677		1769	391		1805	097	

NO KNOWN WEALTH RELATED GUIDELINE WAS EXCEEDED

A POSITIVE VALUE DEMOTES THAT THE RESULT IS CREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A "-" INDICATES THAT NO SAMPLE WAS TAKEN

DRINKING WATER SURVEILLANCE PROGRAM

KITCHENER WELL SUPPLY 1989 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1989, 65 plants were being monitored.

The DWSP was initiated in Kitchener in the spring of 1987. An annual report was published for 1987 and 1988 (ISSN 0840-5190).

This report contains information and results for 1989.

In order to accommodate the increasing number of plants on the DWSP and to facilitate the timely completion of the 1989 annual reports, plants with two or more years of published data will receive an abbreviated annual report. This report maintains the same general format as in previous years but does not include a comprehensive discussion of results. For more detail on the parameters analyzed and discussion of results, consult the 1987 and 1988 reports.

PLANT DESCRIPTION

The Kitchener Well Supply source consists of many wells. Three locations were sampled on the DWSP; K70, an induced infiltration system located on the east side of Kitchener adjacent to the Grand River; K21 (Mannheim East/West), a high capacity overburden well field located at the western city limit of Kitchener; and Strange Street Reservoir, one of the first well fields developed in Kitchener located near the city-centre.

The K21 (Mannheim East/West) has flows for day of sampling ranging from 28.9 x 1000 m^3/day to 39.0 x 1000 m^3/day . K70 (Recharge well) has flows on the day of sampling ranging from 2.1 x 1000 m^3/day to 3.0 x 1000 m^3/day . The Strange Street reservoir has flows ranging from 4.5 x 1000 m^3/day to 9.8 x 1000 m^3/day . These three wells are disinfected with chlorine.

The Kitchener Well Supply serves a population of approximately 144,000 people.

The sample location is shown in Figure 1. General information is presented in Table 2.

FIGURE 1

DRINKING WATER SURVEILLANCE PROGRAM SITE LOCATION MAP KITCHENER WELL SUPPLY SYSTEM

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT

IN-PLANT MONITORING KITCHENER WELL SUPPLY 1989

PARAMETER	LOCATION	FREQUENCY
Chlorine residual total	Treated	daily

TABLE 2

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT GENERAL INFORMATION

KITCHENER WELL SUPPLY

LOCATION: REGIONAL MUNICIPALITY OF WATERLOO

C/O MARSLAND CENTER 20 ERB STREET WEST WATERLOO, ONTARIO

N2J 4G7

SOURCE: GROUNDWATER

DESIGN CAPACITY: 100 X 1000 M3/DAY

OPERATION: MUNICIPALITY

SYSTEM MANAGER: R. MACDONALD

MINISTRY REGION: WEST CENTRAL

DISTRICT OFFICER: D.R. IRELAND

MUNICIPALITY POPULATION SERVED

KITCHENER/WATERLOO 144,000

SAMPLING AND ANALYSES

Plant operating personnel perform analyses on parameters for process control listed in Table 1.

Samples were taken from raw well K21, the treated Mannheim reservoir and one distribution location. The K70 recharge well was sampled for raw and treated water and the Strange Street well supply was sampled for treated water only at the reservoir. The Kitchener Well Supply locations were sampled for the presence of approximately 180 parameters on a monthly basis. Samples for Specific Pesticide and Chlorophenol analysis were taken in June and November only. Polyaromatic Hydrocarbons and Phenolics are only analyzed in the raw and treated water at the plant. As of August 1989, the analysis of Triazine pesticides was dropped from the distribution sample. Laboratory analysis was conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field Chemistry measurements were recorded on the day of sampling and were entered on the DWSP database as submitted by plant personnel.

Table 3 contains information on the sample day retention time, flow rate and chlorine dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment (MOE) laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

General

Water quality is judged by comparison with the Ontario Drinking Water Objectives (ODWOs) as defined in the 1984 publication (ISBN

0-7743-8985-0). The Province of Ontario has health related and aesthetic objectives for 49 parameters. These are currently under review. When an ODWO is not available, guidelines/limits from other agencies are consulted. The Parameters Listing System (PALIS), recently published (ISBN 0-7729-4461-X) by the MOE, catalogues and keeps current over 1750 guidelines for 650 parameters from agencies throughout the world.

Many of the compounds detected are naturally occurring or are treatment by-products.

IN THIS REPORT, DISCUSSION IS LIMITED TO THE TREATED AND DISTRIBUTED WATER AND ADDRESSES ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES AND ORGANIC PARAMETERS WITH POSITIVE RESULTS.

Inorganic and Physical

Colour

The aesthetic ODWO of 5.0 True Colour Units (TCU) was exceeded six times in the K70 treated samples to a maximum of 6.5 TCU.

Hardness

The aesthetic ODWO for hardness indicates that a level of between 80 and 100 mg/L as the equivalent quantity of calcium carbonate is appropriate and water supplies with a hardness greater than 200

mg/L is considered poor. Hardness values at the Kitchener supplies are consistently above 200 mg/L and range to a high of 490 mg/L.

Other parameters associated with hardness, calcium, magnesium and conductivity are also above the respective aesthetic limits.

Iron

Iron values exceeded the ODWO maximum desirable concentration (MDC) of 300 μ g/L in one distribution sample in September at 370 μ g/L.

Manganese

Manganese values exceeded the ODWO Maximum Desirable Concentration (MDC) of 50 μ g/L in twenty-two treated and distribution samples to a high of 260 μ g/L.

Organic Parameters

Atrazine

Atrazine was reported at positive levels two times in the K70 treated water to a maximum of 550 ng/L. Health and Welfare Canada has an interim Maximum Acceptable Concentration (IMAC) for Atrazine in drinking water of 60,000 ng/L.

1.1 Dichloroethane

1,1 Dichloroethane was reported at 1.2 ng/L in the September distribution sample. There is no drinking water guideline

available.

1,1,1-Trichloroethane

1,1,1-Trichloroethane was reported in all twelve treated samples from the Strange Street Reservoir. All values, ranging from .72 ug/L to 1.04 ug/L were below the United States Environmental Protection Agency's Maximum Contaminant Level (MCL) for 1,1,1-Trichloroethane in drinking water of 200 ug/L.

Trihalomethanes

Trihalomethanes (THMs) are acknowledged to be produced during the water treatment process and will always occur in chlorinated surface waters. THMs are comprised of Chloroform chlorodibromomethane, and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for the total THMs. All Total THM occurrences in the treated and distributed samples, ranging from traces to 28.7 ug/L, were well below the ODWO of 350 ug/L.

CONCLUSIONS

The repeated finding of quantifiable levels of 1,1,1-Trichloroethane and traces of Trichloroethylene in the Strange Street Reservoir indicates low level contamination of the reservoir through one or more of its source wells.

The frequency of Atrazine detected in the K70 samples suggests that the source of this contaminant is the Grand River.

The results listed in this report for 1989 are consistent with results reported for previous years.

The Regional Municipality of Waterloo is presently addressing the comments made in the conclusion of the 1988 DWSP annual report.

A water treatment facility is under construction.

The treated water was generally of good quality and this was maintained in the distribution system.

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1989

SAMPLE DAY CONDITIONS

TREATMENT CHEMICAL DOSAGES (MG/L)

92.00 27.00 01.26 97.00 92.00 97.00 99.00 74.00 69.00 00.51 00.24 90.54 TIME(HRS) (1000M3) SODIUM HYPOCHLORITE PRE-CHLORINATION 2.5 K70 RECHARGE WELL DELAY * FLOW 05.40 01.95 02.02 92.00 04.05 04.55 04.05 05.40 02.52 02.02 TIME(HRS) (1000M3) SODIUM HYPOCHLORITE PRE-CHLORINATION 37.9 34.8 36.9 28.9 35.6 33.4 29.3 29.4 32.8 36.1 36.4 DELAY * FLOW K21 (MANNHEIM) .2 9. JUN 20 JUL 18 AUG 22 AUG 23 SEP 19 OCT 17 NOV 21 JAN 17 APR 18 MAY 16 FEB 14 MAR 21 DATE

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME

TABLE 4

SCAN	PARAMETER	K70 RAW TOTAL POSITIVE TRACE	K70 ITIVE	K70 RAW	TOTAL P	K70 TREATED TOTAL POSITIVE TRACE	EATED	STRANGE ST RESERVOIR TOTAL POSITIVE TRACE	ST RESER		TOTAL PC	K21 RAW TOTAL POSITIVE TRACE		MANNHE TOTAL PC	MANNHEIM RESERVOIR TOTAL POSITIVE TRACE TOTAL POSITIVE TRACE	NOIR TRACE	TOTAL PC	SITIVE	SITE 1
																			1 6 6 6 9
BACTERIOLOGICAL	FECAL COLIFORM MF	12	-	0	•	٠	•			•	Ξ	0	0	-	0	0	٠	٠	٠
	STANDRD PLATE CNT MF			•	12	-	0	12	M	0	-	0	0	Ξ	0	0	12	7	0
	TOTAL COLIFORM MF	12	4	0	12	0	0	12	-	0	12	0	0	12	0	0	12	0	0
	T COLIFORM BCKGRD MF	12	7	0	12	0	0	12	m	0	12	-	0	12	0	0	12	m	0
*TOTAL SCAN BACTERIOLOGICAL	OGICAL	×	٥	0	*	-	0	×	7	0	×	-	0	25	0	0	%	10	0
*TOTAL GROUP BACTERIOLOGICAL	JLOGI CAL	%	٥	0	%	-	0	%	7	0	*	-	0	%	0	0	%	10	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												1							
CHEMISTRY (FLD)	FLD CHLORINE (COMB)		٠	•	12	12	0	Ξ	0	0	-	0	0	89	S	0	17	m	0
	FLD CHLORINE FREE		٠	•	12	12	0	=	9	0	-	0	0	89	4	0	15	-	0
	FLD CHLORINE (TOTAL)		٠	•	12	12	0	12	٥	0	-	0	0	10	8	0	17	M	0
	FLO PH	12	12	0	12	12	0	12	12	0	Ξ	=	0	12	Ξ	0	22	22	0
	FLD TEMPERATURE	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	75	22	0
*TOTAL SCAN CHEMISTRY (FLD)	(FLD)	77	54	0	8	8	0	58	87	0	56	23	0	20	07	0	66	51	0
CHEMISTRY (LAB)	ALKALINITY	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	CALCTUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	CYANIDE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	CHLORIDE	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	COLOUR	12	12	0	12	11	-	12	2	7	12	0	0	12	0	10	54	10	14
	COMDUCTIVITY	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0

TABLE 4

		SITE																	
			K70	K70 RAW		K70 TREATED		STRANGE ST RESERVOIR	RESERV	DIR		K21 RAW	RAW	MANNHE	MANNHEIM RESERVOIR	VOIR		S	SITE 1
SCAM	PARAMETER	TOTAL POSITIVE TRACE	ITIVE TI		TOTAL POSITIVE TRACE	ITIVE TR		TOTAL POSITIVE TRACE	TIVE TR		TOTAL POSITIVE TRACE	ITIVE TR		TOTAL PO	TOTAL POSITIVE TRACE		TOTAL P	TOTAL POSITIVE TRACE	RACE
CHEMISTRY (LAB)	FLUORIDE	12	12	0	12	12	0	12	Ξ	-	12	12	0	12	10	2	7,7	24	0
	HARDNESS	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	IONCAL	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	LANGELIERS INDEX	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	MAGNESIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	SODIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	AMMONIUM TOTAL	12	7	2	12	m	м	12	2	M	12	0	2	12	0	2	54	-	7
	NITRITE	12	2	10	12	r	80	12	-	=	12	12	0	12	-	10	54	7	17
	TOTAL MITRATES	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	23	-
	NITROGEN TOT KJELD	12	12	0	12	12	0	12	4	80	12	0	12	12	-	=	54	17	7
	Н	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	PHOSPHORUS FIL REACT	12	0	7	12	2	2	12	0	80	12	0	9	12	0	9	•	٠	٠
	PHOSPHORUS TOTAL	12	0	Ξ	12	0	Ξ	12	0	10	12	0	7	12	0	٥			٠
	SULPHATE	12	15	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	TURBIDITY	12	٥	m	12	6	m	12	12	0	12	Ξ	-	12	=	-	5%	23	-
*TOTAL SCAN CHEMISTRY (LAB)	(LAB)	252	8	33	252	196	25	252	2	87	252	2	47	252	167	5	777	2	7.7
																		3	
METALS	SILVER	12	0	m	12	0	2	12	0	m	12	0	2	12	0	7	7,7	0	10
	ALUMINUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	ARSENIC	12	0	Ξ	12	0	12	12	2	7	12	0	Ξ	12	0	10	54	7	15
	BARIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	54	54	0
	BORON	12	12	0	12	12	0	12	12	0	12	=	-	12	Ξ	-	54	22	2

TABLE 4

		SITE																		
SCAN	PARAMETER	TOTAL	K70 RAW TOTAL POSITIVE TRACE	K70 RAW		K7 L POSIT	K70 TREATED TOTAL POSITIVE TRACE		STRANGE ST RESERVOIR TOTAL POSITIVE TRACE	RESERVI IVE TR		K21 RAW TOTAL POSITIVE TRACE	K21 RAW		MANNHEIM RESERVOIR TOTAL POSITIVE TRACE	MANNHEIM RESERVOIR		SITE 1 TOTAL POSITIVE TRACE	SI ITIVE I	SITE 1 TRACE
METALS	BERYLLIUM	12		0 11	_	5	-	٥	12	2	6	12	-	10	12	-	٥	72	-	20
	CADMIUM	12			,	2	0	9	12	0	60	12	0	m	12	0	~	5%	0	13
	COBALT	12		0		12	0	80	12	0	12	12	0	9	12	0	4	54	0	10
	CHROMIUM	12			0 12	2	10	2	12	=	-	12	Ξ	0	12	11	-	54	22	0
	COPPER	12	-			12	12	0	12	=	-	12	0	12	12	11	-	57	57	0
	IROM	12				12	0	0	12	12	0	12	0	0	12	0	7	5%	14	9
	MERCURY	12		1 4		2	0	2	12	-	. 4	12	-	4	12		2	12	0	9
	MANGANESE	12				2	=	-	12	12	0	12	12	0	12	12	0	72	54	0
	MOLYBDENUM	12		12 0	12	2	12	0	12	=	-	12	12	0	12	Ξ	-	57	23	-
	NICKEL	12		1 8		2	2	9	12	2	7	12	n	2	12	m	0	54	12	9
	LEAD	12				2	12	0	12	9	9	12	9	4	12	2	9	54	23	1
	ANTIMONY	12	=		1 12	2		-	12	=	-	12	=	-	12	=	-	57	22	2
	SELENIUM	12				2		10	12	0	٥	12	0	9	12	0	7	57	0	16
	STRONTIUM	12				~	12	0	12	12	0	12	12	0	12	12	0	54	57	0
	TITANIUM	12		12 0		2	12	0	12	12	0	12	12	0	12	12	0	54	5%	0
	THALLIUM	12		9 0		2	0	80	12	0	٥	12	0	80	12	-	7	54	0	6
	URANIUM	12		12 0		2		0	12	12	0	12	12	0	12	12	0	54	57	0
	VANADIUM	12				~		12	12	4	80	12	0	12	12	0	12	54	2	22
	ZINC	12	12	0 2	12	~	12	0	12	12	0	12	12	0	12	12	0	54	54	0
*TOTAL SCAN METALS		288	153	£ m	288		155 8	82	288	221	8	288	140	85	288	150	ĸ	264	340	139
*TOTAL GROUP INORGANIC & PHYSICAL	IIC & PHYSICAL	564	372	2 112	009		411 11	113		399	131	266	342	122	280	357	124	1101	260	186
									,			3 3 2 2 2								
CHLOROAROMATICS	HEXACHLOROBUTAD I ENE	11		0 0	11	_	0	0	11	0	0	12	0	0	Ξ	0	0	12	0	0

TABLE 4

		SITE	Š			i i												
SCAN	PARAMETER	TOTAL	TOTAL POSITIVE TRACE	E TRACE	TOTAL	TOTAL POSITIVE TRACE		TOTAL POSITIVE TRACE	TRACE	TOTAL	K21 RAW TOTAL POSITIVE TRACE		MANNHEIM RESERVOIR TOTAL POSITIVE TRACE	RESERV		SITE 1 TOTAL POSITIVE TRACE	SITIVE T	SITE 1 TRACE
CHLOROAROMATICS	123 TRICHLOROBENZENE	Ξ	0	0	=	0		11 0	0	12	0	0	11	0	0	12	0	0
	1234 T-CHLOROBENZENE	=	0	0	1	0	_	11 0	0	12	0	0	11	0	0	12	0	0
	1235 T-CHLOROBENZENE	11	0	0	11	0	0	11 0	0	12	0	0	11	0	0	12	0	0
	124 TRICHLOROBENZENE	11	0	0	11	0	0	11 0	0	12	0	0	11	0	0	12	0	0
	1245 T-CHLOROBENZENE	Ξ	0	0	11	0	0	11 0	0	12	0	0	11	0	0	12	0	0
	135 TRICHLOROBENZENE	Ξ	0	0	11	0	0	11 0	0	12	0	0	Ξ	0	0	12	0	0
	HCB	Ξ	0	0	Ξ	0	0	11 0	0	12	0	0	=	0	0	12	0	0
	HEXACHLOROETHANE	Ξ	0	0	Ξ	0	0	11 0	0	12	0	0	=	0	0	12	0	0
	OCTACHLOROSTYRENE	Ξ	0	0	Ξ	0	0	11 0	0	12	0	0	=	0	0	12	0	0
	PENTACHLOROBENZENE	Ξ	0	0	1	0	0	11 0	0	12	0	0	=	0	0	12	0	0
	236 TRICHLOROTOLUENE	Ξ	0	0	11	0	0	11 0	0	12	0	0	=	0	0	12	0	0
	245 TRICHLOROTOLUENE	Ξ	0	0	=	0	0	11 0	0	12	0	0	1	0	0	12	0	0
	26A TRICHLOROTOLUENE	Ξ	0	0	=	0	0	11 0	0	12	0	0	Ξ	0	0	12	0	0
*TOTAL SCAN CHICROARCHATICS	MATICS	154	-	-	154	c	-	727	c	148	c	c	15,	c	c	971	•	c
		3	•	•	2				>	3		•	5	>	>	8	•	>
CHLOROPHENOLS	234 TRICHLOROPHENOL	2	0	0	2	0		2 0	0	2	0	0	2	0	0			
	2345 T-CHLOROPHENOL	2	0	0	2	0	_	2 0	0	2	0	0	2	0	0	•	•	•
	2356 T-CHLOROPHENOL	2	0	0	2	0	0	2 0	0	2	0	0	2	0	0		٠	
	245-TRICHLOROPHENOL	2	0	0	2	0	0	2 0	0	2	0	0	2	0	0			•
	246-TRICHLOROPHENOL	2	0	0	2	0	0	2 0	0	2	0	0	2	0	0			
	PENTACHLOROPHENOL	2	0	0	2	0	0	0 2	0	2	0	0	2	0	0		٠	•
*TOTAL SCAN CHLOROPHENOLS	HOLS	12	0	0	12	0	0	12 0	0	12	0	0	12	0	0	0	0	0

TABLE 4

		SITE																		
SCAN	PARAMETER	TOTAL	K70 RAW TOTAL POSITIVE TRACE	K70 RAW		TAL POS	K70 TREATED TOTAL POSITIVE TRACE		STRANGE ST RESERVOIR TOTAL POSITIVE TRACE	RESERVI		K21 RAW TOTAL POSITIVE TRACE	K21 RAW		MANNHEI DTAL POS	MANNHEIM RESERVOIR TOTAL POSITIVE TRACE		TOTAL PO	SITE 1 TOTAL POSITIVE TRACE	SITE 1 TRACE
РАН	PHENANTHRENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0			
	ANTHRACENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	•
	FLUORANTHENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	٠	٠	
	PYRENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	•	٠	٠
	BENZO(A)ANTHRACENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	•	٠	
	CHRYSENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	٠
	DIMETH. BENZ(A)ANTHR	5		0	0	2	0	0	7	0	0	4	0	0	4	0	0	•	٠	٠
	BENZO(E) PYRENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	•	٠	٠
	BENZO(B) FLUORANTHEN	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	٠	٠	•
	PERYLENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		•	•
	BENZOCK) FLUORANTHEN	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	٠
	BENZO(A) PYRENE	7		0	0	7	0	0	7	0	0	7	0	0	7	0	0	•	٠	٠
	BENZO(G, H, I) PERYLEN	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	٠
	DIBENZO(A, H) ANTHRAC	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	٠
	INDENO(1,2,3-C,0) PY	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	
	BENZO(B) CHRYSENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0		٠	٠
	CORONENE	12		0	0	12	0	0	12	0	0	12	0	0	12	0	0	•	٠	٠
*TOTAL SCAN PAH		192		0	0	192	0	0	191	0	0	191	0	0	191	0	0	0	0	0
PESTICIDES & PCB	ALDRIN	=		0	0	11	0	0	11	0	0	12	0	0	11	0	0	12	0	0
	ALPHA BHC	=		0	0	=	0	0	=	0	-	12	0	0	=	0	0	12	0	0
	BETA BHC	Ξ		0	0	=	0	0	=	0	0	12	0	0	=	0	0	15	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE OF RESULTS (1989)

PESTICIDES & SCAN

		SITE																	
			*	K70 RAW		K70 TREATED		STRANGE ST RESERVOIR	ST RESER	VOIR		K21 RAW	MAS	MANNHEIM RESERVOIR	ESERVO	18		SITE	-
	PARAMETER	TOTAL	TOTAL POSITIVE TRACE	TRACE	TOTAL	POSITIVE TRACE	RACE	TOTAL POSITIVE TRACE	SITIVE		TOTAL POSITIVE TRACE	TIVE TR		TOTAL POSITIVE TRACE	VE TRA		TOTAL POSITIVE TRACE	IVE TRA	ш.
PCB	LINDANE	=	0	0	Ξ	0	0	11	0	0	12	0	0	-	0	0	12	0	. 0
	ALPHA CHLORDANE	=	0	0	11	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	GAMMA CHLORDANE	11	0	0	=	0	0	=	0	0	12	0	0	11	0	0	12	0	0
	OIELDRIN	11	0	0	1	0	0	1	0	0	12	0	0	11	0	0	12	0	0
	METHOXYCHLOR	1	0	0	=	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	ENDOSULFAN 1	Ξ	0	0	Ξ	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	ENDOSULFAN 11	=	0	0	Ξ	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	ENDRIN	11	0	0	Ξ	0	0	=	0	0	12	0	0	=	0	0	12	0	0
	ENDOSULFAN SULPHATE	11	0	0	Ξ	0	0	=	0	0	12	0	0	1	0	0	12	0	0
	HEPTACHLOR EPOXIDE	#	0	0	Ξ	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	HEPTACHLOR	11	0	0	=	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	MIREX	1	0	0	Ξ	0	0	=	0	0	12	0	0	11	0	0	12	0	0
	OXYCHLORDANE	=	0	0	Ξ	0	0	=	0	0	12	0	0	11	0	0	12	0	0
	ОРООТ	1	0	0	Ξ	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	PCB	=	0	0	1	0	0	Ξ	0	0	12	0	0	11	0	0	12	0	0
	000	=	0	0	Ξ	0	0	Ξ	0	0	12	0	0	1	0	0	12	0	0
	PPODE	-1	0	0	=	0	0	Ξ	0	0	12	0	0	1	0	0	12	0	0
	PPOOT	11	0	0	Ξ	0	0	=	0	0	12	0	0	=	0	0	12	0	0
	AMETRINE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	ATRAZINE	12	2	9	12	2	9	12	0	0	12	0	0	12	0	0	7	0	0
	ATRATONE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	CYANAZINE (BLADEX)	12	0	0	12	0	0	12	0	0	12	0	-	12	0	0	7	0	0
	D-ETHYL ATRAZINE	12	0	7	12	0	2	12	0	0	12	0	0	12	0	0	7	0	0
	D-ETHYL SIMAZINE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0

TABLE 4

		SITE							1			Š	3	1	OTOMOGRAPH DESCRIPTION	9		5	C17E 1
SCAN	PARAMETER	K70 RAW TOTAL POSITIVE TRACE	K 70 RAW TIVE TRACE		OTAL PO	KZU TREALED TOTAL POSITIVE TRACE		SIKANGE SI KESEKUJIK TOTAL POSITIVE TRACE	CESEKVO IVE TRA		TOTAL POSITIVE TRACE	TIVE TRACE	- 1	TOTAL POSITIVE TRACE	ITIVE TR		TOTAL POSITIVE TRACE	TIVE	RACE
PESTICIDES & PCB	PROMETONE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	PROPAZINE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	PROMETRYNE	12	0	0	12		0	12	0	0	12	0	0	12	0	0	7	0	0
	METRIBUZIN (SENCOR)	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	SIMAZINE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	ALACHLOR (LASSO)	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
	METOLACHLOR	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	7	0	0
*TOTAL SCAN PESTICIDES & PCB	S & PCB	387	2	10	387	2	Ξ	387	0	-	807	0	-	387	0	0	343	0	0
PHENOL I CS	PHENOLICS	12	7	4	12	9	2	12	4	2	12	۳	2	12	4	2	٠	٠	
*TOTAL SCAN PHENOLICS		12	7	4	12	9	2	12	4	٧.	12	m	\$	12	4	2	0	0	0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	1 1 1	1
SPECIFIC PESTICIDES	TOXAPHENE	=	0	0	Ξ	0	0	Ξ	0	0	12	0	0	Ξ	0	0	12	0	0
	2,4,5-T	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0		٠	٠
	2,4-0	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0			•
	2,4-08	2	0	0	7	0	0	2	0	0	2	0	0	7	0	0		٠	
	2,4 D PROPIONIC ACID		0	0	7	0	0	2	0	0	2	0	0	2	0	0			٠
	DICAMBA		0	0	2	0	0	2	0	0	2	0	0	7	0	0			٠
	PICHLORAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		•	
	SILVEX	2	0	0	2	0	0	2	0	0	2	0	0	2	0	0		•	

TABLE 4

		SITE															
SCAN	PARAMETER	K70 RAW TOTAL POSITIVE TRACE	K70 RAW		K70 TREATED TOTAL POSITIVE TRACE	K70 TREATED	STRANGE TOTAL PO	STRANGE ST RESERVOIR TOTAL POSITIVE TRACE		K21 RAW TOTAL POSITIVE TRACE	K21 RAW VE TRACE	2	MANNHEIM RESERVOIR TOTAL POSITIVE TRACE	RVOIR	TOTAL	SITE 1 TOTAL POSITIVE TRACE	SITE 1 TRACE
SPECIFIC PESTICIDES	DIAZINON	2	0	0	2	0	2	0	0	2	0 0	2	0	0			
	DICHLOROVOS	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0		•	•
	CHLORPYRIFOS	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0		٠	•
	ETHION	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	٠	٠
	AZINPHOS-METHYL	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0		٠	٠
	MALATHION	2	0	0	2		2	0	0	2	0 0	2	0	0	٠	٠	•
	MEVINPHOS	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	٠	٠	•
	METHYL PARATHION	2	0	0	2	0 0	7	0	0	2	0 0	2	0	0	٠	•	•
	METHYLTRITHION	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	•	•
	PARATHIOM	2	0	0	2		2	0	0	2	0 0	2	0	0	٠	•	•
	PHORATE	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	٠	•	•
	RELDAN	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	٠	٠
	ROHNEL	2	0	0	2		2	0	0	2	0 0	2	0	0	٠		•
	AMINOCARB	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0		٠	٠
	BENONYL	-	0	0	-		-	0	0	-	0 0	-	0	0	٠	٠	•
	BUX	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	٠	٠	٠
	CARBOFURAN	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	٠	٠	•
	CICP	2	0	0	2		2	0	0	2	0 0	2	0	0	•	٠	•
	DIALLATE	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	٠	٠	٠
	EPTAM	2	0	0	2		2	0	0	2	0 0	2	0	0	٠	٠	٠
	190	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	٠	٠
	PROPOXUR	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	٠	•
	CARBARYL	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•		٠
	BUTYLATE	2	0	0	2	0 0	2	0	0	2	0 0	2	0	0	•	٠	٠

TABLE 4

		SITE																
SCAN	PARAMETER	K70 RAW TOTAL POSITIVE TRACE	K70 RAW TIVE TRACE		K70 TREATED TOTAL POSITIVE TRACE	K70 TREATED ITIVE TRACE		STRANGE ST RESERVOIR TOTAL POSITIVE TRACE	SERVOI E TRAC		K21 RAW TOTAL POSITIVE TRACE	K21 RAW	HANH	MANNHEIM RESERVOIR TOTAL POSITIVE TRACE		SITE 1 TOTAL POSITIVE TRACE	SITE 1	- B
*TOTAL SCAN SPECIFIC PESTICIDES	C PESTICIOES	ž	0	0	8	0	0	3	0	0	0 59	0	2	0	0	12	0	0
VOLATILES	BENZENE	12	0	0	12	0	0	12			12 0	0	12	0	-	12	-	-
	TOLUENE	12	0	-	12	0	4	12	_		12 0	-	12	0	m	12		1 40
	ETHYLBENZENE	12	0	7	12	0	0	12	_	6 1	12 0	2	12	0	m	12	0	· 10
	P-XYLENE	12	0	0	12	0	0	12	_	1	12 0	0	12	0	0	12	0	0
	M-XYLENE	12	0	0	12	0	0	12	_	-	12 0	0	12	0	0	12	0	0
	O-XYLENE	12	0	0	12	0	0	12	~	9	12 0	0	12	0	-	12	0	-
	STYRENE	12	-	9	12	0	٥	12	_	1	12 1	٥	12	0	80	12	0	0
	1,1 DICHLOROETHYLENE	12	0	0	12	0	0	12	_		12 0	0	12	0	0	12	0	0
	METHYLENE CHLORIDE	12	0	0	12	0	0	12	0	0	12 0	0	12	0	0	12	0	0
	T1, 20 I CHLOROE THY LENE	12	0	0	12	0	0	12	_	0	12 0	0	12	0	0	12	0	0
	1,1 DICHLOROETHANE	12	0	0	12	0	0	12	-	7	12 0	0	12	0	0	12	-	9
	CHLOROFORM	12	0	-	12	12	0	12	_	9	12 0	2	12	m	٥	12	M	40
	111, TRICHLOROETHANE	12	0	7	12	0	2	12 12		0	12 0	4	12	0	0	12	0	7
	1,2 DICHLOROETHANE	12	0	0	12	0	0	12	_	0	12 0	0	12	0	0	12	0	0
	CARBON TETRACHLORIDE	12	0	0	12	0	0	12	_	-	12 0	0	12	0	0	12	0	0
	1,2 DICHLOROPROPANE	12	0	0	12	0	0	12	_	-	12 0	0	12	0	0	12	0	0
	TRICHLOROETHYLENE	12	0	0	12	0	0	12	-	_	12 0	0	12	0	0	12	0	0
	DICHLOROBROMOMETHANE	12	0	0	12	Ξ	-	12	8	-	12 0	-	12	60	4	12	e ec	4
	112 TRICHLOROETHANE	12	0	0	12	0	0	12	_	0	12 0	0	12	0	· c	1 2		
	CHLOROD I BROMOME THANE	12	0	0	12	9	2	12		-	12 0	-	12	60	. 4	12	, ,	· 10
	T-CHLOROETHYLENE	12	0	0	12	0	0	12 (-	12 0	0	12	0	0	12	. 0	0

TABLE 4

PROGRAM KITCHENER WELL SUPPLY

DRINKING W

_	
4	
KIICHENEK	
5	
2	
KA	
PROGRAM	
SURVEILLANCE	
⋛	
뿕	
ž	
~	
WATER	
ŝ	

		SITE																	
SCAN	PARAMETER	TOTAL F	K70 RAW TOTAL POSITIVE TRACE	K70 RAW E TRACE	TOTAL PC	K70 TREATED TOTAL POSITIVE TRACE	NTED	STRANGE ST RESERVOIR TOTAL POSITIVE TRACE	RESERVI LIVE TR	DIR ACE T	K21 RAW TOTAL POSITIVE TRACE	K21 RAW	RAW ACE T	MANNHEIM RESERVOIR TOTAL POSITIVE TRACE	RESER	ACE	SITE 1 TOTAL POSITIVE TRACE	SITE	E 1 ACE
T T T T T T T T T T T T T T T T T T T	:	12		-	12	0	-	12 0 12 0 11 12 5 5 12 0 0 12 0 11 12 2 9	2	2	12	0	0	12	0	Ξ	12	2	6
VOLATILES	1122 T-CHI DEDETHANE	1 2	0	0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	CHI DOORENZENE	5	0	0	12	0	-	12	0	0	12	0	0	12	0	0	12	0	0
	1 4 DICHIOPORFNZENE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	1 3 DICHIOROBENZENE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	1 2 DICHI DODRENZENE	1 2		0	12	0	0	12	0	-	12	0	0	12	0	0	12	0	0
	ETHI YEME DIROCHIDE	: 2		0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	TOTL TRINALOMETHANES	12	0	0	15	=======================================	-	12	2	7	12	0	-	12	м	٥	12	m	6
STOTAL SCAN VOLATILES		348	-	12	348	07	54	348	39	20	348	-	21	348	22	53	348	57	29
*TOTAL GROUP ORGANIC		1169	10	56	1169	84	70	1168	£3	87	1204	4	27	1168	92	28	871	75	29
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
TOTAL		1769	391	138	1805	097	153	1802	677	218	1806	347	149	<u>3</u>	383	182	2008	ž	253

KEY TO TABLE 5 and 6

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 1*. MAC for Bacteriological Analyses
 Poor water quality is indicated when :
 - total coliform counts > 0 < 5
 - P/A Bottle Test is present after 48 hours
 - Aeromonas organisms are detected in more than 25% of samples in a single submission or in successive submissions from the same sampling site
 - Pseudomonas Aeruginosa, Staphylococcus Aureus and members of the Fecal Streptococcus group should not be detected in any sample
 - Standard Plate Count should not exceed 500 organisms per ml at 35 °C within 48 hours
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Maximum Desirable Concentration (MDC)
 - 4. Aesthetic or Recommended Operational Guideline
 - hardness levels between 80 and 100 mg/L as calcium carbonate are considered to provide an acceptable balance between corrosion and incrustation, water supplies with a hardness >200 mg/L are considered poor and those in excess of 500 mg/L are unacceptable.
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO) (for xylenes, a total)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
 - 5. Maximum Contaminant Level Goal (MCLG)
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- H USSR MAXIMUM PERMISSIBLE CONCENTRATION
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

INTERPRETATION OF DATA

The interpretation of analytical results that are obtained from measurements near the limit of detection of the measurement process is subject to greater uncertainty than those at higher concentrations. The principle areas of concern relate to whether the substance has actually been detected, whether it has been properly identified, and whether it is an artifact of the measurement process. In other words, false positives can be caused by the instrumentation or the test procedures used, when in fact these compounds are not present in the sample.

There are several methods to treat data from such measurements:

1. Exclude the low-level data because of this uncertainty factor. Studies of long-term environmental trends and modelling may however, be adversely affected by the exclusion of such data.

2. Qualify these data so the user is aware of the greater uncertainty associated with their use.

For the Drinking Water Surveillance Program, measurements near the limit of detection of the measurement process are reported with the code "<T". Results qualified by "W" indicate a zero measurement. These results are reported for purposes of modelling and long-term trend analysis and no significance should be attributed to a single determination of a substance below "T" (a single determination may well be a false positive). Repeat analysis or additional data are needed before it can be stated with certainty that the substance in question was truly present. On the other hand, it is less likely that repeated detection of a substance at or near the limit of detection at a specific location is solely due to an artifact in the measurement system, and more likely represents a true positive. The average of such data however, is still only an estimate of the amount of substance present subject to the possible biases of the method used.

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurable Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!cs	No Data: Contamination Suspected
!IL	No Data: Sample Incorrectly Labelled
!IS	No Data: Insufficient Sample
!IV	No Data: Inverted Septum
! LA	No Data: Laboratory Accident
! LD	No Data: Test Queued After Sample Discarded

```
!IS
          No Data: Insufficient Sample
         No Data: Laboratory Accident
! LA
         No Data: Test Queued After Sample Discarded
!LD
         No Data: No Authorization To Perform Reanalysis
!NA
!NP
         No Data: No Procedure
         No Data: Sample Not Received
!NR
         No Data: Obscured Plate
!OP
          No Data: Quality Control Unacceptable
! QU
! PE
          No Data: Procedural Error - Sample Discarded
          No Data: Sample pH Outside Valid Range
! PH
!RE
          No Data: Received Empty
          No Data: See Attached Report (no numeric results)
!RO
!SM
          No Data: Sample Missing
          No Data: Send Separate Sample Properly Preserved
!SS
         No Data: Indeterminant Interference
!UI
!TX
          No Data: Time Expired
          Approximate, Total Count Exceeded 300 Colonies
A3C
          Additional Peak, Large, Not Priority Pollutant
APL
          Additional Peak, Less Than, Not Priority Pollutant
APS
          Possible Contamination, Improper Cap
CIC
          Calculated Result Only
CRO
          Test Performed On Preserved Sample
PPS
RMP
          P and M-Xylene Not Separated
RRV
          Rerun Verification
          Reported Value Unusual
RVU
          Several Peaks, Small, Not Priority Pollutant
SPS
          Unreliable: Could Not Confirm By Reanalysis
UCR
          Unreliable: Contamination Suspected
UCS
          Unreliable: Indeterminant Interference
UIN
```

Positive After X Number of Hours

XP

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1989

1	KZ1 KAW	MANNHEIM RESERVOIR	311E 1	SINANGE SI KESENYOIN	200	2
TYPE		STANDING	FREE FLOW		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BACTERIOLOGI FECAL COLIFORM MF (CT/100ML)	L)	DET*N LIMIT # 0	GUIDELINE = 0 (A1)			
NAU	0 106	•		•	0 106	
FEB	0 124			•	0 124	
MAR				•	0 106	
APR					0 124	•
HAY	0				0	
NOT	0				0 (
יחר.	0				0 (
AUG		0			0	
SEP	0				0	
0007	0	•	•		0	
NOV	0				(
DEC	0		•		0	
STANDRD PLATE CNT MF (CT/ML	()	DET'N LIMIT = 0	GUIDELINE = 500/ML (A1)			
3		3 (2)	\$ (#)	<=> 0		2 <=>
2 0	•	(x) (51 124	<=> 0		<=> 0
0 0		<=> 7	\$ <=>	3 <=>		3 (x)
400		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 (2)	<=> 0		3 <=>
N N		(=> 0	2 <=>	1 <=> 1		<=> 9
		(x) (. 145	59		 (3)
		<=>	. 22	11		(x> 0
Alic	÷		. 19	10		(E)
S S S S S S S S S S S S S S S S S S S		(E)	. 420	1 <=>		(x) 9
OCT		3 <=>	. 50	4=> 6		- (x)
200		<#> 7	777	\ <=>		\$ <=>
		. (-		•

TYPE	STANDING	FREE FLOW	8 9 9 9 9 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		
1					
TOTAL COLIFORM MF (CT/100ML)	DET'N LIMIT × U	GUIDELINE = 5/100AL(A1)			
c	, 0 104	0 106	0 106	0 106	0 106
		0 12%	0 124	0 124	0 124
0	. 5710	100	100	1 106	0 106
0	0 106	901 0	200	25.	0 13/
APR 0 124	0 124	0 124	0 124	47 /	* 0
		0	0	o (.
	0	0	m	D	> (
		0	0	0	o (
		0	0	0	0
	•	· c	c	-	0
				. c	o
		o ·	5 (4 0	
		0	0		> 0
0		0	0	0	>
				, , , , , , , , , , , , , , , , , , , ,	
T COLIFORM BCKGRD MF (CT/100ML)	DET'N LIMIT = 0	GUIDELINE = N/A			
	701 0	25 106	0 106	0 106	0 106
0		761 0	0 124	0 124	0 124
0	. 57 0	701 0	1 2 2	1 106	0 106
	0 106	0010	200	761.7	721 0
0	0 124	771 0	*71 0	77.	
		0	0	- 0	o c
		-	540 ASC	.	o c
		0	8,	- 6	> C
		-	~ (- -	o
		0	.		, c
		0	.	o 6	
NON NON		o (.	٠ .	
		o	5	o)

K70 TREATED

K70 RAW

STRANGE ST RESERVOIR

SITE 1

K21 RAW MANNHEIM RESERVOIR

SITE		2	1	to to Lond to	6	
TYPE	2	70	311E -	STRANGE ST RESERVOIR	K/U KAW	K/O TREATED
	ST	STANDING	FREE FLOW			
CHEMISTRY (FLD) FLD CHLORINE (COMB) (MG/L)	DET*N LIMIT = N/A	/	GUIDELINE = N/A		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MAL				100		100
FEB						100
MAR	.100		. 100	100		100
APR .	000.	.100	.100	.100		100
MAY	.200			.100		.200
, NUL	.100	000.	000.	.010		.300
	.200	.000	000°	.100		.200
AUG	• !	000.	000	000.		.100
SEP	.100	000	000	.100		.300
	000	000	000.	.100	•	.300
NOV DEC	000.	00. 00.	000.	000.		.200
FLD CHLORINE FREE (MG/L)	DET'N LIMIT = N/A	/ A	GUIDELINE = N/A			9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4				000		900
	•	٠		001.		000
MAR	300		.100	200		2007
WAP.	300			007	•	9
MAY	.100		• •	.200		007
. NUL	.200	000	000	.010		007
	000.	000.	000.	000.		007
AUG	• •	000	000	000	•	.300
SEP	000.	000.	000.	000		.100
	000.	000.	000.	000.		007
DEC	•	000.	000.	000.		.100
FLD CHLORINE (TOTAL) (MG/L)	DET'N LIMIT = N/A	/A	GUIDELINE = N/A	0 L B P P P P P P P P P P P P P P P P P P	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24	100			200		002
FE8	100			.200		200
MAR	007		.200	.300		.800
APR	.300	.100	.100	.500		.700
MAY	.300	•	•	.300		009.
, NUL	.300	000.	000.	.020	•	.700
	.200	000.	000°	.100		009.
AUG .000	• •	000.	000.	000°		00%
SEP	.100	000	000.	.100		007
	000	000	000.	.100		. 700
NON.	000.	000.	000	000.		.500
DEC		000.	000.	000	,	002

S	SITE		alco	CITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
-	TYPE KAW	HANNIE IN RESE	4004				
			STANDING	FREE FLOW		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FLO PH (DMNSLESS)		N+130	DET'N LIMIT = N/A	GUIDELINE = 6.5-8.5(A4)		•	
:	4	7 500	7 500	7.300	7.500	7.500	7.500
NYP I	7 300	007.2	2.500	7.300	7,100	7.300	7.500
15.0	2 500	2 500	2.500	7.400	7,300	7.500	7.500
MAK	2 300	2 500	2 500	7.400	7,300	7.300	7.500
APR	2 500	7 300			7,300	7.500	7.500
MAY	7 300	7 500	7.500	7,500	7,300	7.300	7.500
NO.	2 500	7 500	2 500	7.500	7,300	7.500	7.500
JOI.	006.7	00:	7.500	7.500	7.300	7.500	7.400
AUG	. 600	2 500	7 500	2.400	7,300	7.400	7.400
SEP	7 500	7 500	2 500	7.500	7.500	7.600	7.500
100	2 500	7 500	2 500	7.500	7.100	7.500	7.500
DEC	7.300	7.500	7.500	7.500	7.300	7.300	7.500
FLO TEMPERATURE (DEG.C	().53	N- 130	DET'N LIMIT = N/A	GUIDELINE = 15 (A1)			
741	8.500	8.000	17,000	000.6	000.6	000.6	8.000
K C U	0000	8,000	16.000	8.000	000.6	8.000	7.000
168	000.4	000	15.000	8.000	10.000	8.000	2.000
MAK	000	13.000	15.000	8.000	000.6	15.000	15.000
X	000.0	1000		٠	14.000	7.000	8.000
MAT	000.0	000 0	18.000	13,000	10.000	11.000	11.000
	200:0	0000	18.000	14,000	10.000	13.000	14.000
700	000.4	000.6	20 000	16.000	10,000	16.000	15.000
AUG	000.4	00.6	20 000	16.000	10,000	16.000	16.000
SEP	2.000	000	18 000	15,000	10.000	14.000	15.000
100	7.000	000.0	000	13 000	0000	12,000	12,000
VON	8,000 8,000	000.8	15.000	9.000	8.000	10.000	000.6
DEC	000.0						

			1	-	TO A WILLIAM TO THE PARTY OF TH	MUN OIN	2000
	TYPE		STANDING	FREE FLOW			
						3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
ALKALINITY (MG/L	CHEMISTRY (LAB)	DET'N LIMIT = .200	.200	GUIDELINE = 30-500 (A4)			
JAN	286.300	278.700	336.300	316,900	336.000	233.100	231,100
FEB	281.200	269.700	328.900	299,900	331.800	231.600	232.300
MAR	241.100 USD	245.000 USD	239.000 USD	239.600 USD	272.100	224.300	235.600
APR	273.500	263.500	321.900	295.700	326.600	217.500	219.000
MAY	268.500	259.200	249.700	253.100	315.800	183.400	225.400
NOC	247.200	243.200	276.700	236.000	301.200	226.400	229.400
JUL	277.100	272.900	280.200	278.200	329.000	229.000	227.900
AUG	271.500	266.000	298.200	265.100	315.400	217.000	217.300
SEP	272.000	266.400	295.900	292.000	326.500	209.400	209.200
OCT	282.000	273.500	300.600	271.400	322.000	210.000	209.500
NOV	282.600	272.100	315.700	274.500	313.400	215.300	214.700
DEC	244.800	264.500	271.300	245.600	305.600	218.400	223.100
CALCIUM (MG/L	(DET'N LIMIT = .100	.100	GUIDELINE = 100 (F2)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAK	89.000	92.000	137.000	121.000	130.000	79.600	82.600
FEB	91.800	96.200	145.000	118.000	128.000	79.800	81.000
MAR	89.200	97.200	107.000	105.000	124.000	83.200	83.000
APR	85.800	91.200	147.000	125.000	134.000	77.600	78.400
MAY	90.800	91.800	007.76	000.9%	131.000	76.800	79.400
NO.	90.000	96.600	148.000	98.000	130.000	76.400	000.5
JOE	W. 400	200	000.401	001.00	132,000	70.800	007.67
AUG	90.400	02.500	130 000	138 000	130,000	40 Ann	000
or T	92.20	007 86	143 000	101.000	134,000	70.200	20.00
3	89.600	92.600	146.000	93.000	129.000	71.200	71.600
DEC	89.100	92.500	91.000	91.400	133.200	76.000	76.900
CHLORIDE (MG/L		DET*N LIMIT = .200	.200	GUIDELINE = 250 (A3)		7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	16.500	20.300	104.000	73.900	87.900	41.900	42.500
FEB	16.500	21.000	97.000	000.39	86.600	37.700	38.600
MAR	16.000	20.000	31.700	35.800	86.500	48.600	007.67
APR	15.400	19.800	107.000	67.600	87.800	33.500	33.900
MAY	15.300	20.000	19.700	19.800	91.200	36.100	37.000
JUN	15.900	22.700	38 .200	29.700	95.600	35.500	36.500
JUL	16.000	22.000	31.000	25.000	89.300	33.400	34.100
AUG	16.200	21.000	99.500	25.000	87.500	34.000	34.600
SEP	16.400	20.500	78.400	92.200	000.000	36.900	37.400
001	16.300	30 300	000.000	30.00	00/.48	36.700	11 100
MON	007.01	20.500	000.001	50.100	20.00	25.100	20.00

							2000
144			STANDING	FREE FLOW			
COLOUR (HZU)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OET'N LIMIT * .5	5. *	GUIDELINE * 5.0 (A3)	8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
JAN	BOL	108	3.000	1.500 <t< td=""><td>2.000 <t< td=""><td>000**</td><td>3.000</td></t<></td></t<>	2.000 <t< td=""><td>000**</td><td>3.000</td></t<>	000**	3.000
FEB		108	7.000	1,500 <t< td=""><td>2.500</td><td>3.500</td><td>2,000 <1</td></t<>	2.500	3.500	2,000 <1
MAR	1.000 <7	1,000 <t< td=""><td>1.500 <t< td=""><td>1,500 <t< td=""><td>5.000</td><td>7.000</td><td>3.000</td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1,500 <t< td=""><td>5.000</td><td>7.000</td><td>3.000</td></t<></td></t<>	1,500 <t< td=""><td>5.000</td><td>7.000</td><td>3.000</td></t<>	5.000	7.000	3.000
APR	.500 <t< td=""><td>.500 <t< td=""><td>3.500</td><td>3.000</td><td>3.000</td><td>4.500</td><td>3.500</td></t<></td></t<>	.500 <t< td=""><td>3.500</td><td>3.000</td><td>3.000</td><td>4.500</td><td>3.500</td></t<>	3.500	3.000	3.000	4.500	3.500
MAY	1.000 <t< td=""><td>1,000 <t< td=""><td>1.000 <t< td=""><td>1.000 <7</td><td>4.000</td><td>5,000</td><td>4.000</td></t<></td></t<></td></t<>	1,000 <t< td=""><td>1.000 <t< td=""><td>1.000 <7</td><td>4.000</td><td>5,000</td><td>4.000</td></t<></td></t<>	1.000 <t< td=""><td>1.000 <7</td><td>4.000</td><td>5,000</td><td>4.000</td></t<>	1.000 <7	4.000	5,000	4.000
NON	.500 <t< td=""><td>1,000 <t< td=""><td>3.500</td><td>1,000 <t< td=""><td>2.000 <1</td><td>5.500</td><td>5.500</td></t<></td></t<></td></t<>	1,000 <t< td=""><td>3.500</td><td>1,000 <t< td=""><td>2.000 <1</td><td>5.500</td><td>5.500</td></t<></td></t<>	3.500	1,000 <t< td=""><td>2.000 <1</td><td>5.500</td><td>5.500</td></t<>	2.000 <1	5.500	5.500
JUL							
AUG		.500 <t< td=""><td>3.000</td><td>.500 <t< td=""><td>1.500 <t< td=""><td>7.000</td><td>6.500</td></t<></td></t<></td></t<>	3.000	.500 <t< td=""><td>1.500 <t< td=""><td>7.000</td><td>6.500</td></t<></td></t<>	1.500 <t< td=""><td>7.000</td><td>6.500</td></t<>	7.000	6.500
SEP	.500 <1	.500 <t< td=""><td>2.500</td><td>3,500</td><td>1,000 <1</td><td>7.000</td><td>6.500</td></t<>	2.500	3,500	1,000 <1	7.000	6.500
0001		1,000 <t< td=""><td>7.000</td><td>1,000 <1</td><td>2.000 <t< td=""><td>5 500</td><td>2 500</td></t<></td></t<>	7.000	1,000 <1	2.000 <t< td=""><td>5 500</td><td>2 500</td></t<>	5 500	2 500
NOV		1500 ×1	7 000	500 ×I	1 500 /1	000	900.7
DEC	.500 <t< td=""><td>.500 <t< td=""><td>.500 <1</td><td>.500 <1</td><td>2.000 <1</td><td>6.000</td><td>5.500</td></t<></td></t<>	.500 <t< td=""><td>.500 <1</td><td>.500 <1</td><td>2.000 <1</td><td>6.000</td><td>5.500</td></t<>	.500 <1	.500 <1	2.000 <1	6.000	5.500
ACTOR NAME OF A PARTY	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				8 4 5 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
מייייייייייייייייייייייייייייייייייייי		- IIII - I	-	GUIDELINE = 400 (FZ)			
JAN	642	659	1173	266	1044	099	229
FEB	642	657	1173	276	1040	659	3 39
MAR	588	622	200	717	286	269	71.2
APR	079	652	1184	89%	1049	617	729
MAY	619	659	622	625	1020	653	\$29
NOC	591	630	1089	929	1007	612	622
JUL	929	929	725	989	1025	598	009
AUG	919	637	1116	999	\$	225	575
SEP	627	652	1009	1077	1032	586	589
OCT	645	671	1154	728	1043	593	595
MOV	079	657	1157	899	1023	593	26%
0EC	585	639	922	617	1015	909	619
FLUORIDE (MG/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = .01	.01	GUIDELINE = 2.400 (A1)	0 5 7 8 8 8 6 5 5 8 8 6 8 8 8 8 8 8 8 8 8 8 8	P	
JAN	.120	.080	.160	.100	.080	.120	.120
FEB	. 120	.080	.100	.100	.080	140	91.
MAR	.100	080.	.080	.080	080	120	001
APR	.080	080	.100	090	080	190	100
MAY	.100	080	080	080	100	080	120
JUN	.080	. 040 ·T	090	090	.020	98	090
JUL	. 100	.080	080	080.	.080	.160	160
AUG	.100	.080	.100	080	080	140	.140
SEP	.100	090.	.100	.080	.080	.140	.140
OCT	.100	.040 <t< td=""><td>.100</td><td>.080</td><td>.100</td><td>.160</td><td>.140</td></t<>	.100	.080	.100	.160	.140
NON	.100	080	.100	080.	080	.120	.120

	K21 RAW	MANNHEIM RESERVOIR	^	SILE I	SINAMUE SI RESERVOIR	000	
	TYPE		STANDING	FREE FLOW			
HARDNESS (MG/L	~	DET'N LIMIT = .500	.500	GUIDELINE = 80-100 (A4)	14.)		
2	000 7££	337.000	512,000	452.000	480.000	298.000	308,000
27.5	342.000	346,000	535.000	437,000	473.000	299.000	299.000
MAR	340,000	351,000	385,000	381.000	760.000	311.000	310,000
APR	332,000	338.000	537.000	455.000	488.000	284.000	285.000
MAY	341,000	338,000	343.000	347.000	481.000	284.000	291.000
	340.000	349.000	539,000	362.000	478.000	281.000	278.000
	340.000	347,000	377.000	363.000	489.000	274.000	271.000
Alle	342.000	345,000	534.000	359,000	483.000	258.000	261.000
SED CED	340.000	351,000	481,000	507,000	477.000	256.000	257.000
1	000 27%	355,000	531,000	369.000	490.000	259.000	258.000
30	118 000	349 000	538,000	340.000	476.000	265.000	268.000
DEC	332.300	333.900	330,100	330.600	784.000	279.200	279.100
IONCAL (DMNSLESS	(:	DET'N LIMIT = N/A	N/A	GUIDELINE = N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
JAN	3,597	4.032	5.690	3.689	1.753	3.250	.059
FFB	-234	.401	169.	2.035	1.067	2.207	2.252
MAR	11.720	10.170	14.150	10.800	8.007	2.0%	1.1%
APP	271	000	57.3.	1.315	1.984	.757	.742
MAY	3,435	866	5.289	5.875	1.573	906	989.
NON	9.404	7.225	9.978	8.423	5.269	796.	2.736
JUL	1.189	.424	.316	866.	1.523	5962	1.233
AUG	2.257	.554	3.884	2.610	3.498	1.866	1.076
SEP	1.687	2.590	2.453	3.270	.403	686	.340
OCT	1,035	1.669	2.951	1.022	3.539	1.206	1.439
MOV	1.574	2.129	2.888	2.763	2.516	2.904	1.417
DEC	2.996	3.098	5.670	1.567	4.829	2.843	4.486
LANGELIERS INDEX (DMNSLESS)	((DMNSLESS)	DET'N LIMIT = N/A	H/A	GUIDELINE = N/A			
JAN	.73	35.	706.	.713	786.	769.	%.
FEB	1.098	1.060	1.239	1.121	1.125	.922	0%6*
MAR	1.163	1.164	.982	1.024	1.169	1.165	1.344
APR	1.067	1,117	1.305	1.199	1.248	.985	- 362
MAY	1,255	1.274	1.230	1.213	1.365	568.	1.210
JUN	988	1.028	1.137	1.030	1.082	1.076	1.017
JUL	1.116	1.221	1.237	1.223	1,302	1.089	1.063
AUG	1.108	1.150	1.166	1.145	1.199	1.064	7.044
SEP	1.159	1.241	1.184	1,141	1,325	1.016	1.036
OCT	1.274	1.285	1,155	1.190	1.312	1.10	0.00
NON	1.270	1.177	1.185	1.162	1.165	01.1	/00.1
					9000	040	4 473

	TYPE KAW	The state of the s	10	SIIE	SIKANGE SI KESEKVUIR	K/U RAW	K/O TREATED
			STANDING	FREE FLOW			
MAGNESIUM (MG/L	^	DET'N LIMIT = .050	.050	GUIDELINE = 30 (F2)	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 9 9 8 4 9 9 6 1 8
JAK	27.300	26.100	70.900	36.800	37.800	24, 100	26 800
FEB	27.400	25,600	41.900	34.400	37,200	24.300	23,700
MAR	28.400	26.400	28.800	29.000	36.600	25.000	25.000
APR	28.700	26.900	41.500	35.000	37,700	21.800	21.600
MAY	27.700	26.400	26.100	26.200	37,500	22.200	22.600
JUN	28.000	26.100	41.400	28.000	37,000	21.900	21.700
JUL	27.700	26.500	28.200	27.200	37.300	20.600	20.400
AUG	28.200	26.100	42.400	27.200	37,100	20.300	20.000
SEP	27.600	26.100	37.800	39.700	37.300	19.800	20.100
OCT	28.000	26.600	42.200	28.300	37.900	20,400	20.100
MOV	27.700	26.200	42.400	26.300	37.200	21.100	21.500
DEC	26.700	25.000	25.000	24.850	36.750	21.750	21.200
SODIUM (MG/L		DET'N LIMIT × .200	.200	GUIDELINE = 200 (C3)	d		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	8.800	9.200	51.200	36.200	40.200	24.000	24.000
FEB	8.600	000.6	000.67	31.600	39.400	20.600	21 200
MAR	8.600	000.6	16.800	17,600	39,800	28.000	28.400
APR	8.600	8.800	52.800	33.400	38,500	19, 100	19.600
MAY	8.800	8.600	000.6	8.800	007.07	22,200	22.600
JUN	8.600	10.200	47.800	13.600	43.000	22.000	22.600
JUL	000.6	10.000	14.800	11.600	39.200	22.000	22.600
AUG	8.600	9.200	51.200	11.600	009.07	22.200	22.400
SEP	8.800	000.6	38.400	44.200	39.600	24.200	24.600
DCT	9.200	9.800	51.400	15.400	41.400	24.000	24.800
MOV	9.200	8.800	50.200	0.600	40.800	20.600	21.000
DEC	7.000	9.700	7.300	9.800	39.100	17.600	17.400
6 0 0 0 0 0 0 0 0 0 0 0	AMMONIUM TOTAL (MG/L	(MG/L)	DET.	DET'N LIMIT = 0.002	GUIDELINE = .05 (F2)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
JAK	.004 <t< td=""><td>T> 400.</td><td>.004 <1</td><td>.012</td><td>.004 <⊺</td><td>.002 <₹</td><td></td></t<>	T> 400.	.004 <1	.012	.004 <⊺	.002 <₹	
FEB	BOL	BOL	108	1> 900.	108	.002 <t< td=""><td>1> 00.</td></t<>	1> 00.
MAR	BOL	BDL	BOL	108	108	108	
APR	BOL	BOL	80 F	B0L	108	108	
KAY	108	BOL	108	108	100	5	នីនិ
NOI	801	BOL	BOL	801	108	108	. E
JUL	.00% <t< td=""><td>108</td><td>.002 <1</td><td>.004 <1</td><td>010.</td><td>.012</td><td>I OB</td></t<>	108	.002 <1	.004 <1	010.	.012	I OB
AUG	BOL	.004 <1	1> 000,	1> 000.	.012	.030	.030
SEP	BOL	BOL	B0L	1> 900.	T> 400.	.044	.042
OCT	BOL	B0L	BOL	BOL	.008 <t< td=""><td>.018</td><td>.020</td></t<>	.018	.020
NOV	BOL	B0L	BOL	BOL	108	BOL	801

							BC4 074	22122
	TYPE		TO WELL WAS A STATE OF THE STAT	5	-	SINAMUL SI MESERADIR		
			S	STANDING	FREE FLOW			
NITRITE (MG/L	^		DET'N LIMIT = 0.001	0.001	GUIDELINE = 1.000 (A1)			
JAN	9.	80	.002 <⊺		.003 <⊺		.003 <t< td=""><td>.003 <t< td=""></t<></td></t<>	.003 <t< td=""></t<>
FEB	600.	٥	.001 <t< td=""><td>.001 <t< td=""><td>.002 <t< td=""><td>.001 <t< td=""><td>.001 <t< td=""><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<>	.001 <t< td=""><td>.002 <t< td=""><td>.001 <t< td=""><td>.001 <t< td=""><td>BOL</td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>.001 <t< td=""><td>.001 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	.001 <t< td=""><td>.001 <t< td=""><td>BOL</td></t<></td></t<>	.001 <t< td=""><td>BOL</td></t<>	BOL
MAR	.00	0	.003 <t< td=""><td>500.</td><td>.003 <t< td=""><td></td><td>.004 <t< td=""><td>T> 200.</td></t<></td></t<></td></t<>	500.	.003 <t< td=""><td></td><td>.004 <t< td=""><td>T> 200.</td></t<></td></t<>		.004 <t< td=""><td>T> 200.</td></t<>	T> 200.
APR	.00	0	.002 <t< td=""><td>.003 <t< td=""><td>.003 <1</td><td></td><td></td><td></td></t<></td></t<>	.003 <t< td=""><td>.003 <1</td><td></td><td></td><td></td></t<>	.003 <1			
MAY	8.	9	.001 <t< td=""><td></td><td>.001 <t< td=""><td>. 100.</td><td></td><td></td></t<></td></t<>		.001 <t< td=""><td>. 100.</td><td></td><td></td></t<>	. 100.		
NOL	e.	٥	.002 <t< td=""><td>.005</td><td>.003 <1</td><td></td><td>.003 <t< td=""><td></td></t<></td></t<>	.005	.003 <1		.003 <t< td=""><td></td></t<>	
JUL	.00	2	.003 <t< td=""><td>.005</td><td>.003 <1</td><td></td><td>.004 <1</td><td>.005</td></t<>	.005	.003 <1		.004 <1	.005
AUG	.00	3	200.	,024	800.	.010	200.	900.
SEP	8.	7	.001 <t< td=""><td>.005</td><td>210.</td><td></td><td>.002 <t< td=""><td></td></t<></td></t<>	.005	210.		.002 <t< td=""><td></td></t<>	
DCT	8.	9	.001 <t< td=""><td></td><td>T> 100.</td><td></td><td>.011</td><td>.001 <t< td=""></t<></td></t<>		T> 100.		.011	.001 <t< td=""></t<>
NOV	8.	9	BOL	.001 <t< td=""><td>. 001 <t< td=""><td>.002 <t< td=""><td>.002 <1</td><td>.001 <t< td=""></t<></td></t<></td></t<></td></t<>	. 001 <t< td=""><td>.002 <t< td=""><td>.002 <1</td><td>.001 <t< td=""></t<></td></t<></td></t<>	.002 <t< td=""><td>.002 <1</td><td>.001 <t< td=""></t<></td></t<>	.002 <1	.001 <t< td=""></t<>
DEC	8.	2	.002 <⊺		.002 <t< td=""><td></td><td>.003 <t< td=""><td>900.</td></t<></td></t<>		.003 <t< td=""><td>900.</td></t<>	900.
TOTAL NITRATES (MG/L	(MG/L)		DET'N LIMIT =	= .020	GUIDELINE = 10.000 (A1)	(1		
JAN	79.	2	3.340	.220	1.250	.415	3.380	3.460
FEB	8.	2	3.460	.215	1.570	.415	3.110	3.090
MAR	79.	2	3.410	2.860	2.680	.415	3.030	3.060
APR	3.	2	3,150	.015 <t< td=""><td>1.260</td><td>.500</td><td>3.430</td><td>3.510</td></t<>	1.260	.500	3.430	3.510
MAY	099.	0	3.160	3.080	3.080	.405	13.400	2.410
JUN	69.	2	4.050	.18	3.620	.395	.985	026.
JUL	.62	2	3.500	3.050	3.370	.385	.575	.573
AUG	599.	2	3.400	.170	3,380	.415	.273	.260
SEP	59.		3.270	1.120	509.	.360	.225	.245
OCT	579.	2	3.660	.200	3.080	007.	.380	.380
NOV	999	0	3.540	<u>.</u>	3.820	.410	1.830	1.840
DEC	3.60	0	3.560	3.490	3.510	.410	2.610	2.620
NITROGEN TOT KJELD (MG/L	TO (MG/L	^	DET'N LIMIT = .020	.020	GUIDELINE = N/A			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	50.	.050 <t< td=""><td>.080 <t< td=""><td>.200</td><td>.140</td><td>.100</td><td>.300</td><td>.280</td></t<></td></t<>	.080 <t< td=""><td>.200</td><td>.140</td><td>.100</td><td>.300</td><td>.280</td></t<>	.200	.140	.100	.300	.280
FEB	80.	10 <t< td=""><td>T> 090.</td><td>.120</td><td>T> 000.</td><td>.090 cT</td><td>.240</td><td>.230</td></t<>	T> 090.	.120	T> 000.	.090 cT	.240	.230
MAR	70.	0 <t< td=""><td></td><td>.120</td><td>.100</td><td>.090 <t< td=""><td>.280</td><td>.250</td></t<></td></t<>		.120	.100	.090 <t< td=""><td>.280</td><td>.250</td></t<>	.280	.250
APR	50.	0 <t< td=""><td></td><td>.090 ×T</td><td>.050 <t< td=""><td>.090 <t< td=""><td>.300</td><td>062.</td></t<></td></t<></td></t<>		.090 ×T	.050 <t< td=""><td>.090 <t< td=""><td>.300</td><td>062.</td></t<></td></t<>	.090 <t< td=""><td>.300</td><td>062.</td></t<>	.300	062.
MAY	.00	.0 <t< td=""><td>T> 090.</td><td>.100</td><td>.130</td><td>.140</td><td>.290</td><td>.250</td></t<>	T> 090.	.100	.130	.140	.290	.250
NOC	. 8	0 <t< td=""><td></td><td>.170</td><td>.100</td><td>.100</td><td>.260</td><td>.240</td></t<>		.170	.100	.100	.260	.240
JUL	.05	0 <t< td=""><td></td><td>.120</td><td>.090 <t< td=""><td>.100</td><td>.270</td><td>.250</td></t<></td></t<>		.120	.090 <t< td=""><td>.100</td><td>.270</td><td>.250</td></t<>	.100	.270	.250
AUG	.00	.0 <t< td=""><td>1> 080.</td><td>.120</td><td>.090 <⊺</td><td>.080 <⊺</td><td>.280</td><td>.270</td></t<>	1> 080.	.120	.090 <⊺	.080 <⊺	.280	.270
SEP	79.	.040 <t< td=""><td>.070 ×T</td><td>.130</td><td>.150</td><td>.070 <t< td=""><td>.290</td><td>.270</td></t<></td></t<>	.070 ×T	.130	.150	.070 <t< td=""><td>.290</td><td>.270</td></t<>	.290	.270
OCT	9.	.0 <t< td=""><td>.080 ×T</td><td>.120</td><td>.120</td><td>. 090 ×T</td><td>.240</td><td>.230</td></t<>	.080 ×T	.120	.120	. 090 ×T	.240	.230
MOV	3.	0 <t< td=""><td>.150</td><td>.140</td><td>.100</td><td>.090 ×T</td><td>.320</td><td>.320</td></t<>	.150	.140	.100	.090 ×T	.320	.320
DEC	8.	T> 0,	.070 <t< td=""><td>.080 <⊤</td><td>.070 <t< td=""><td>.050 <t< td=""><td>.300</td><td>.300</td></t<></td></t<></td></t<>	.080 <⊤	.070 <t< td=""><td>.050 <t< td=""><td>.300</td><td>.300</td></t<></td></t<>	.050 <t< td=""><td>.300</td><td>.300</td></t<>	.300	.300

TVDE			,		SINAMUL SI ALSERVOIR	200	ATO INCALED
			STANDING	FREE FLOW			
PH (DMNSLESS)		DET'N LIMIT = N/A	N/A	GUIDELINE = 6.5-8.5(A4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	u e e s e e e e e e e e e e e e e e e e	
JAN	7.820	7.820	7,740	7.620	7.840	7.900	7,000
FEB	8,160	8.120	8.060	8.060	7.990	8.130	8.140
MAR	8.300	8.260	8.050	8,100	8.130	8.370	8.530
APR	8.170	8.210	8.130	8.120	8, 100	8.230	8.200
MAY	8.340	8.370	8.330	8.300	8.240	8 220	017 8
, MAI	8,110	8.130	8.020	8.140	7.980	8,310	8 250
	8 190	8 280	8 250	8 250	C 21 C	01218	200
AUG	8.190	8.220	8.030	8 200	020	8 350	0.300 8 420
A PE	8 240	8 300	000 8	8 040	100	0000 a	4/0
OCT	8 110	3 330	8 020	8 250	8 170	0300	007
100	0.00	0.00	0.020	057.0	02-0	01*:0	0.400
DEC	8.370	8.300	8.380	8.300	8.110	8.490	8.370
PHOSPHORUS FIL REACT (MG/L	(HG/L)	DET'N LIMIT = .0005	.0005	GUIDELINE = N/A			
JAN	.001 <t< td=""><td>1> 000.</td><td></td><td></td><td>.001 <1</td><td>1> 000.</td><td>.003</td></t<>	1> 000.			.001 <1	1> 000.	.003
FEB	.001 <t< td=""><td>.001 <t< td=""><td></td><td></td><td></td><td>T> 100</td><td>.001 <t< td=""></t<></td></t<></td></t<>	.001 <t< td=""><td></td><td></td><td></td><td>T> 100</td><td>.001 <t< td=""></t<></td></t<>				T> 100	.001 <t< td=""></t<>
MAR	.000 ×T	.001 <1			.002 <1	T> 000	.002
APR		.001 <t< td=""><td></td><td>•</td><td>1> 100.</td><td>T> 100.</td><td>.001 <t< td=""></t<></td></t<>		•	1> 100.	T> 100.	.001 <t< td=""></t<>
MAY		.001 <t< td=""><td>•</td><td>•</td><td>. 001 <t< td=""><td>.002 <⊺</td><td>.002 <1</td></t<></td></t<>	•	•	. 001 <t< td=""><td>.002 <⊺</td><td>.002 <1</td></t<>	.002 <⊺	.002 <1
NOF	108	BOL	•		T> 000.	BOL	108
JUL	108	BOL	٠	•	108	801	BOL
AUG	108	BOL	•	•	BOL	BOL	BOL
SEP	.001 <t< td=""><td>T> 000.</td><td>٠</td><td>•</td><td>T> 000.</td><td>.001 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<>	T> 000.	٠	•	T> 000.	.001 <t< td=""><td>.002 <t< td=""></t<></td></t<>	.002 <t< td=""></t<>
0CT	108	108			.002 <t< td=""><td>.001 <⊤</td><td></td></t<>	.001 <⊤	
MOV	BOL	NO8		•	108	108	108
DEC	108	108			108	100	108
PHOSPHORUS TOTAL (MG/L	۲ ،	DET'N LIMIT = .002	.002	GUIDELINE = .40 (F2)			8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
JAN	.002 <t< td=""><td>.002 <1</td><td></td><td></td><td>.003 <₹</td><td>.003 <1</td><td>.006 <⊺</td></t<>	.002 <1			.003 <₹	.003 <1	.006 <⊺
FEB	108	BOL	٠		BOL	BOL	
MAR	108	BOL	٠		.003 <t< td=""><td>.003 <t< td=""><td>.004 <t< td=""></t<></td></t<></td></t<>	.003 <t< td=""><td>.004 <t< td=""></t<></td></t<>	.004 <t< td=""></t<>
APR	.002 <t< td=""><td>.002 <t< td=""><td>٠</td><td>•</td><td>.004 <t< td=""><td>.004 <t< td=""><td>.006 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>٠</td><td>•</td><td>.004 <t< td=""><td>.004 <t< td=""><td>.006 <t< td=""></t<></td></t<></td></t<></td></t<>	٠	•	.004 <t< td=""><td>.004 <t< td=""><td>.006 <t< td=""></t<></td></t<></td></t<>	.004 <t< td=""><td>.006 <t< td=""></t<></td></t<>	.006 <t< td=""></t<>
MAY	108	BOL	٠		.003 <1	.002 <t< td=""><td>.004 ∧</td></t<>	.004 ∧
JUN	.005 <t< td=""><td>T> 900.</td><td>•</td><td>٠</td><td>.008 <t< td=""><td>.007 <t< td=""><td>.008 <t< td=""></t<></td></t<></td></t<></td></t<>	T> 900.	•	٠	.008 <t< td=""><td>.007 <t< td=""><td>.008 <t< td=""></t<></td></t<></td></t<>	.007 <t< td=""><td>.008 <t< td=""></t<></td></t<>	.008 <t< td=""></t<>
JUL	.002 <t< td=""><td>.002 <⊺</td><td>٠</td><td>•</td><td>.003 <1</td><td>.005 <t< td=""><td>.006 <⊺</td></t<></td></t<>	.002 <⊺	٠	•	.003 <1	.005 <t< td=""><td>.006 <⊺</td></t<>	.006 <⊺
AUG	BOL	.002 <t< td=""><td>•</td><td></td><td>108</td><td>.003 <t< td=""><td>.005 <t< td=""></t<></td></t<></td></t<>	•		108	.003 <t< td=""><td>.005 <t< td=""></t<></td></t<>	.005 <t< td=""></t<>
SEP	.002 <t< td=""><td>.004 <t< td=""><td></td><td>•</td><td>.003 <1</td><td>.005 <t< td=""><td>.006 <t< td=""></t<></td></t<></td></t<></td></t<>	.004 <t< td=""><td></td><td>•</td><td>.003 <1</td><td>.005 <t< td=""><td>.006 <t< td=""></t<></td></t<></td></t<>		•	.003 <1	.005 <t< td=""><td>.006 <t< td=""></t<></td></t<>	.006 <t< td=""></t<>
OCT	T> 400.	. 004 ×T	•	٠	.008 <t< td=""><td>.007 <t< td=""><td>.005 <t< td=""></t<></td></t<></td></t<>	.007 <t< td=""><td>.005 <t< td=""></t<></td></t<>	.005 <t< td=""></t<>
MOV	DO3 <t< td=""><td>T> 500</td><td></td><td></td><td>D04 ×1</td><td>1005 × T</td><td>005 <t< td=""></t<></td></t<>	T> 500			D04 ×1	1005 × T	005 <t< td=""></t<>
	-		•				

	SITE	W21 0AU	O TOWNS	2	1	atovassa to sousate	720	VZO TOGATEO
	TYPE			STANDING	FREE FLOW			
SULPHATE (MG/L	(DET'N LIMIT = .200	. 200	GUIDELINE = 500. (A3)			
NAL	52.340		50.240	166,500	121.400	111,500	54.990	24.660
89	52.500		49.920	163.400	114.700	104.600	53,550	53,680
MAR	52,430		49.210	72.930	76.040	106.250	57.770	57.650
APR	52.310		50.430	169.660	121.340	105.700	43.730	43.680
MAY	53.220		52,130	53,710	52.090	110.000	50.120	76.760
NOP	53,500		53.880	165.500	040.049	104.300	49.810	49.740
JUL	51.060		51.480	08.940	57.610	104.120	04.970	44.880
AUG	53.570		53,140	174.880	59.670	106.610	44.600	44.330
SEP	53.290		52.130	134.130	154.360	107.320	47.350	47.370
000	53.540		51.640	175.310	69.880	106.410	49.720	48.880
NON	53.340		50.450	165.780	51.530	104.110	48.370	47.390
DEC	54.230		52.150	52,110	52.100	105,130	50.540	50.450
TURBIDITY (FTU	(DET'N LIMIT = .02	1.02	GUIDELINE = 1.00 (A1)			
MAI	029		0%6	099		.480	0.470	.280
EB	. 930		075	.890		067	4.300	.310
MAR	.430		097.	.630		.510	.450	.300
APR	780		1.210 USD	4.000 USD		1.300 USD	.440	.760
MAY	.320		.250 <1	084.		09%.	097.	.520
JUN	.880		.420	1.780 RRV		.580	1.030	.500
JUL	.350		097.	.840		.470	.210	.430
AUG	007.		.920	1.500		.920	099.	.630
SEP	.630		.610	.650		.630	.380	.570
000	.450		.950	.850		1.050	.130 <t< td=""><td>. 190 <t< td=""></t<></td></t<>	. 190 <t< td=""></t<>
NOV	.200		089.	1.050	.240	.640	1> 090.	.080 <⊤
DEC	> 500 -	cl.	.450	.540		.350	.090 ⋅1	ı> 090.

	TYPE	200000000000000000000000000000000000000		-	SINGRAL SI ALSEATOIR	MAN DIA	ATO IREALED
	-						
		σ	STANDING	FREE FLOW			
SILVER (µg/L	METALS)	DET'N LIMIT = .020	.020	GUIDELINE = 50, (A1)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
JAN	901	80F	108	108	BOL	B01	108
FEB	. 090 ×T	BOL	.030 <t< td=""><td>BOL</td><td>.040 <t< td=""><td>T> 090.</td><td>. 120 <t< td=""></t<></td></t<></td></t<>	BOL	.040 <t< td=""><td>T> 090.</td><td>. 120 <t< td=""></t<></td></t<>	T> 090.	. 120 <t< td=""></t<>
MAR	T> 070.	.070 <t< td=""><td>T> 090.</td><td>.040 ×T</td><td>.080 <t< td=""><td>.030 <t< td=""><td>T> 090.</td></t<></td></t<></td></t<>	T> 090.	.040 ×T	.080 <t< td=""><td>.030 <t< td=""><td>T> 090.</td></t<></td></t<>	.030 <t< td=""><td>T> 090.</td></t<>	T> 090.
APR	108	BOL	T> 040.	BOL	BOL	80,5	BOL
MAY	.060 ×T	.100 <t< td=""><td>.100 <t< td=""><td>108</td><td>BOL</td><td>108</td><td>BOL</td></t<></td></t<>	.100 <t< td=""><td>108</td><td>BOL</td><td>108</td><td>BOL</td></t<>	108	BOL	108	BOL
NOF	.050 <₹	BOL	120 <1	.030 <t< td=""><td>.070 <t< td=""><td>.040 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	.070 <t< td=""><td>.040 <t< td=""><td>BOL</td></t<></td></t<>	.040 <t< td=""><td>BOL</td></t<>	BOL
JUL	BOL	BOL	BOL	BOL	BDL	108	BOL
AUG	.040 ×T	BOL	.080 <1	BOL	BOL	BOL	108
SEP	108	108	BOL	BOL	BOL	BOL	BOL
100	BOL	BOL	.040 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	BOL	BOL	BOL	BOL
NOV DEC	80L 80L	80L	.030 <t BDL</t 	108 100	108 108	BOL	108 80 F
ALUMINUM (#g/L		DET'N LIMIT = .050	.050	GUIDELINE = 100.(A4)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	2.800	1.700	3.800	1.900	2.600	1.800	1.500
FEB	7.500	7.800	8.000	8.600	5.900	3.600	3.200
MAR	7.600	7.000	7.800	7.100	7.800	4.400	4.300
APR	12.000	11.000	14.000	12.000	13.000	007.9	9.400
HAY	5.300	5.200	5.800	5.700	5.700	3.400	3.300
JUN	12.000	11.000	17.000	12.000	14.000	7.900	8.200
JUL	18.850	16.850	18.000	16.810	15.000	8.800	9.500
AUG	17.000	25.000	22.000	17.000	22.000	12.000	12.000
SEP	11.000	5.000	12.000	13.000	13.000	200	7.300
200	6.100	3.500	004.8	2.600	9.500	007.4	001.4
DEC	6.500	5.700	9.900	6.000	7.300	5.000	007.7
ARSENIC (µg/L		DET'N LIMIT = 0.050	0.050	GUIDELINE = 50.0 (A1)	b b b b b b b b b b b b b b b b b b b	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	.210 <7	B0L	T> 041.	108	150 <1	BOL	.090 <t< td=""></t<>
FEB	1> 057.	1> 0 </td <td>00.1</td> <td>1.000 <1</td> <td>D 000</td> <td></td> <td></td>	00.1	1.000 <1	D 000		
MAR	1> 009°	. 700 <t< td=""><td>T> 079.</td><td>.820 <t< td=""><td>1.200</td><td></td><td></td></t<></td></t<>	T> 079.	.820 <t< td=""><td>1.200</td><td></td><td></td></t<>	1.200		
APR	T> 046.	.620 <t< td=""><td>1.000 <t< td=""><td>.620 <t< td=""><td>.320 <t< td=""><td></td><td></td></t<></td></t<></td></t<></td></t<>	1.000 <t< td=""><td>.620 <t< td=""><td>.320 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	.620 <t< td=""><td>.320 <t< td=""><td></td><td></td></t<></td></t<>	.320 <t< td=""><td></td><td></td></t<>		
MAY	.420 <t< td=""><td>.800 <t< td=""><td>.810 <t< td=""><td>1> 027.</td><td>.610 <t< td=""><td>1.160 <1</td><td></td></t<></td></t<></td></t<></td></t<>	.800 <t< td=""><td>.810 <t< td=""><td>1> 027.</td><td>.610 <t< td=""><td>1.160 <1</td><td></td></t<></td></t<></td></t<>	.810 <t< td=""><td>1> 027.</td><td>.610 <t< td=""><td>1.160 <1</td><td></td></t<></td></t<>	1> 027.	.610 <t< td=""><td>1.160 <1</td><td></td></t<>	1.160 <1	
N :		108	1.200	TOP!	1.100		
JUL .		1> 017.	. 000.	1> 000.	2 000.		15 067
AUG		15 0/9.	1.700	1> 0%0.	1.400		
SEP	1> 0.36.	> 015.	200.	2,002	1.200		
3 8		1, 063.	2 400	7 665	1 500		
AO _K		12020	20.5	200.	86.		

	TYDE						
	3		STANDING	FREE FLOW			
BARIUM (µg/L	(DET'N LIMIT = 0.020	= 0.020	GUIDELINE * 1000. (A1)			
IAN	110.000	63.000	120,000	100,000	130.000	27.000	27.000
FEB	120.000	120.000	120.000	110.000	150.000	30.000	27.000
MAR	110.000	110.000	83.000	91.000	130.000	28.000	28.000
APR	110.000	110.000	130.000	110.000	130.000	26.000	25.000
MAY	100.000	100.000	81.000	86.000	130.000	27.000	27.000
JUN	120.000	120.000	140.000	100.000	140.000	30.000	29.000
JUL	118.000	119.000	104.000	105.000	130.000	27.000	27.000
AUG	120.000	110.000	140.000	97.000	150.000	29.000	30.000
SEP	110.000	110,000	110.000	110,000	150.000	28.000	27.000
OCT	110.000	110.000	120.000	89.000	130,000	28.000	27.000
NO.	120.000	110.000	120,000	96.000	140.000	25,000	26.000
DEC	110.000	110.000	80.000	100.000	150.000	31.000	29.000
BORON (µg/L	(DET'N LIMIT	= 0.200	GUIDELINE * 5000. (A1)			
JAN	96.000	30.000	85.000	75.000	110.000	83.000	73.000
FEB	140.000	150.000	65.000	170.000	150.000	74.000	25,000
MAR	210.000	210.000	230.000	230.000	260.000	200.000	200.000
PR	570.000	570,000	560,000	640.000	000.069	410.000	450.000
MAY	30.000	54.000	64.000	65.000	73.000	58.000	58.000
NOL	57.000	48.000	77.000	000.09	79.000	65.000	65.000
JUL	91.900	63.500	89.000	86.700	100.000	77.000	29.000
AUG	87.000	110.000	110.000	57.000	130.000	95.000	110.000
SEP	76.000	41.000	89.000	98.000	110.000	57.000	24.000
oct	22.000	23.000	27.000	21.000	41.000	44.000	38.000
NOV	53.000	53.000	45.000	22.000	85.000	23.000	24.000
DEC	15.000 <t< td=""><td>14.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <7</td><td>38.000</td><td>900.99</td><td>37.000</td></t<></td></t<></td></t<>	14.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <7</td><td>38.000</td><td>900.99</td><td>37.000</td></t<></td></t<>	11.000 <t< td=""><td>12.000 <7</td><td>38.000</td><td>900.99</td><td>37.000</td></t<>	12.000 <7	38.000	900.99	37.000
BERYLLIUM (#g/L	\r \	DET'N LIMIT	= 0.010	GUIDELINE = N/A			
JAN	7> 072.	108	T> 090.	.080 <⊤			T> 070.
FEB	T> 004.	.420 <t< td=""><td>T> 050.</td><td>.300 <1</td><td>.310 <t< td=""><td></td><td>108</td></t<></td></t<>	T> 050.	.300 <1	.310 <t< td=""><td></td><td>108</td></t<>		108
MAR		.430 <t< td=""><td></td><td>.620</td><td>.530</td><td></td><td>.380 <t< td=""></t<></td></t<>		.620	.530		.380 <t< td=""></t<>
APR	380 <1			T> 044.	.730		.550
HAY	.030 <1	.170 <t< td=""><td>150 <1</td><td>.250 <t< td=""><td>.360 <t< td=""><td>.170 <t< td=""><td>.280 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	150 <1	.250 <t< td=""><td>.360 <t< td=""><td>.170 <t< td=""><td>.280 <t< td=""></t<></td></t<></td></t<></td></t<>	.360 <t< td=""><td>.170 <t< td=""><td>.280 <t< td=""></t<></td></t<></td></t<>	.170 <t< td=""><td>.280 <t< td=""></t<></td></t<>	.280 <t< td=""></t<>
IUN	1> 000				.210 <t< td=""><td></td><td>.210 <t< td=""></t<></td></t<>		.210 <t< td=""></t<>
יחו	340 <t< td=""><td></td><td></td><td></td><td>.330 <t< td=""><td></td><td></td></t<></td></t<>				.330 <t< td=""><td></td><td></td></t<>		
AUG	.240 <t< td=""><td></td><td></td><td></td><td>.360 <t< td=""><td></td><td></td></t<></td></t<>				.360 <t< td=""><td></td><td></td></t<>		
SEP	.230 <1			.180 <t< td=""><td>.210 <t< td=""><td></td><td>.060 <t< td=""></t<></td></t<></td></t<>	.210 <t< td=""><td></td><td>.060 <t< td=""></t<></td></t<>		.060 <t< td=""></t<>
DCT	1> 0%0 ·						
NOV	.110 <t< td=""><td>.180 <₹</td><td>.020 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td></t<></td></t<>	.180 <₹	.020 <t< td=""><td>B0L</td><td></td><td>BOL</td><td></td></t<>	B0L		BOL	

	K21 RAW	MANNHEIM RESERVOIR	SI	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
			STANDING	FREE FLOW			
CADMIUM (µg/L	^	DET'N LIMIT = 0.050	= 0.050	GUIDELINE = 5.000 (A1)	5 2 3 3 4 4 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
JAN	BDL	, BDL	T> 090.	801	BDI	i de	ida
FEB	.260 <t< td=""><td>80 L</td><td>.150 <t< td=""><td>.150 <7</td><td>140 <1</td><td>80F</td><td>108</td></t<></td></t<>	80 L	.150 <t< td=""><td>.150 <7</td><td>140 <1</td><td>80F</td><td>108</td></t<>	.150 <7	140 <1	80F	108
MAR	BDL	T> 0%0.		BOL	1> 080	108	BD1
APR		BOL		.120 <t< td=""><td></td><td>BOL</td><td>BD1</td></t<>		BOL	BD1
MAY	.060 <⊤	BDL	.100 <t< td=""><td>BDL</td><td></td><td>801</td><td>1> 090.</td></t<>	BDL		801	1> 090.
NON	BDL	BDL	.200 <t< td=""><td>BDL</td><td></td><td>.080 <1</td><td></td></t<>	BDL		.080 <1	
JUL	BDL	BDL	BOL	BDL		.150 <1	. 120 <t< td=""></t<>
AUG	. 100 <t< td=""><td>BDL</td><td>.180 <t< td=""><td>.090 <1</td><td></td><td>.210 <1</td><td>.210 <t< td=""></t<></td></t<></td></t<>	BDL	.180 <t< td=""><td>.090 <1</td><td></td><td>.210 <1</td><td>.210 <t< td=""></t<></td></t<>	.090 <1		.210 <1	.210 <t< td=""></t<>
SEP	BOL	.060 <1		.070 <t< td=""><td></td><td>.070</td><td>. 130 <t< td=""></t<></td></t<>		.070	. 130 <t< td=""></t<>
OCT OCT	BOL	BOL	1> 070.	BOL		108	108
MOV	BOL	BOL	BOL	108	108	108	.080 ×T
DEC	108	BOL	BOL	BOL	B01	108	BOL
COBALT (µg/L	^	DET'N LIMIT = 0.020	= 0.020	GUIDELINE = N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P	
JAN		.100 <t< td=""><td>.300 <t< td=""><td>.240 <₹</td><td>.510 <1</td><td>160 <1</td><td>180 <t< td=""></t<></td></t<></td></t<>	.300 <t< td=""><td>.240 <₹</td><td>.510 <1</td><td>160 <1</td><td>180 <t< td=""></t<></td></t<>	.240 <₹	.510 <1	160 <1	180 <t< td=""></t<>
FEB	.230 <7	.230 <t< td=""><td>.300 <t< td=""><td>.310 <t< td=""><td>T> 046.</td><td>1> 062.</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>.310 <t< td=""><td>T> 046.</td><td>1> 062.</td><td>.310 <t< td=""></t<></td></t<></td></t<>	.310 <t< td=""><td>T> 046.</td><td>1> 062.</td><td>.310 <t< td=""></t<></td></t<>	T> 046.	1> 062.	.310 <t< td=""></t<>
MAR		B01	BOL	BOL		1> 060	170 <1
APR	108	BDL	BOL	BOL	.200 <t< td=""><td>BOL</td><td>108</td></t<>	BOL	108
MAY		.320 <t< td=""><td>.360 <t< td=""><td>.380 <t< td=""><td>.750 <1</td><td>.390 <1</td><td>.330 <1</td></t<></td></t<></td></t<>	.360 <t< td=""><td>.380 <t< td=""><td>.750 <1</td><td>.390 <1</td><td>.330 <1</td></t<></td></t<>	.380 <t< td=""><td>.750 <1</td><td>.390 <1</td><td>.330 <1</td></t<>	.750 <1	.390 <1	.330 <1
NON	BOL	BOL	8 01	BOL	.250 <t< td=""><td>.050 <t< td=""><td>T> 090.</td></t<></td></t<>	.050 <t< td=""><td>T> 090.</td></t<>	T> 090.
JUL		.200 <1	.250 <t< td=""><td>.250 <t< td=""><td>.270 <1</td><td>.050 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	.250 <t< td=""><td>.270 <1</td><td>.050 <t< td=""><td>BOL</td></t<></td></t<>	.270 <1	.050 <t< td=""><td>BOL</td></t<>	BOL
MG	BOL	BDL	BOL	108	.130 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
SEP		BOL	B 0L	BOL	1> 071.	1> 0%0 .	T> 040.
201	.070 × T	BOL	T> 040.	.080 <t< td=""><td></td><td>.230 <1</td><td>.200 <1</td></t<>		.230 <1	.200 <1
20	BOL	BOL	B 0L	BOL		BOL	BOL
)EC	108	NOR.	108	108	.420 <t< td=""><td>.160 <t< td=""><td>.190 <t< td=""></t<></td></t<></td></t<>	.160 <t< td=""><td>.190 <t< td=""></t<></td></t<>	.190 <t< td=""></t<>
CHROMIUM (µg/L	•	DET'N LIMIT = 0.100	= 0.100	GUIDELINE = 50. (A1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
JAN	16.000	3.900	10.000	10.000	13.000	10.000	8.900
FEB	23.000	24.000	2.600	24.000	27.000	11.000	1.200
4AR	19.000	19.000	20.000	20.000	22.000	17,000	16.000
APR	18.000	18.000	18.000	21,000	22.000	13.000	14.000
MY.	6.800	17,000	18.000	19.000	21.000	17,000	17.000
NON	12.000	10,000	13.000	13,000	14.000	11,000	11.000
JUL	16.220	15.480	15.270	15.740	20.000	13.000	13,000
AUG	15.000	12.000	16.000	8.100	19.000	12.000	14.000
SEP	18.000	8.500	19.000	20.000	23.000	7.800	7.100
OCT OCT	3.200	4.200	9.800	2.400	5.600	7.100	7.600
MOV	0.000	6.100	1.400	1.200	8.100	BOL	.950 <t< td=""></t<>
			200	100	* 500	, , , ,	

	K21 RAW	MANNHEIM RESERVOIR	SII	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
			STANDING	FREE FLOW			
COPPER (µg/L	(DET'N LIMIT = .100	.100	GUIDELINE = 1000 (A3)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAL	T> 020	6.100	150.000	13.000	3,200	3,300	130,000
FEB	1> 006	2.700	110.000	12.000	007.7	3.700	170.000
MAR	.910 <⊺	2.700	000.96	10.000	2.200	3.900	140.000
APR	.820 <t< td=""><td>1.800</td><td>110.000</td><td>8.400</td><td>1.800</td><td>3.000</td><td>130.000</td></t<>	1.800	110.000	8.400	1.800	3.000	130.000
MAY	1> 009.	4.300	78.000	7.500	2.300	3.300	140.000
JUN	.950 <⊺	1.800	120.000	11.000	1.800	4.300	130.000
JUL	.780 <t< td=""><td>1.670</td><td>76.000</td><td>11.450</td><td>2.400</td><td>5.600</td><td>130.000</td></t<>	1.670	76.000	11.450	2.400	5.600	130.000
AUG	1.000 <1	1.500	130,000	12,000	2,900	5.400	120.000
SFD	1> 077	1.600	110.000	17.000	2.800	5.400	140.000
DCT.	1> 089	1.200	110.000	12.000	4.300	4.400	90.00
NON	610 <t< td=""><td>1.100</td><td>000 66</td><td>009.6</td><td>2.000</td><td>3.900</td><td>110.000</td></t<>	1.100	000 66	009.6	2.000	3.900	110.000
0EC	1> 055.	1.000 <t< td=""><td>26.000</td><td>7.000</td><td>2,500 <1</td><td>4.200 <t< td=""><td>49.000</td></t<></td></t<>	26.000	7.000	2,500 <1	4.200 <t< td=""><td>49.000</td></t<>	49.000
IRON (µg/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET*N LIMIT = 4.000	4.000	GUIDELINE = 300. (A3)			
MAI	108	16.000 <t< td=""><td>260.000</td><td>99,000</td><td>110.000</td><td>BOL</td><td>108</td></t<>	260.000	99,000	110.000	BOL	108
FFB	108	108	250.000	54,000	110.000	BOL	B0L
MAR	108	108	57,000	6.700 <t< td=""><td>110.000</td><td>BOL</td><td>B01</td></t<>	110.000	BOL	B01
APR	108	BOL	330,000	130.000	110.000	B01	108
MAY	B0L	BOL	BOL	BOL	80.000	BOL	B01
JUN	BOL	15.000 <t< td=""><td>310,000</td><td>25.000 <1</td><td>110.000</td><td>BOL</td><td>BOL</td></t<>	310,000	25.000 <1	110.000	BOL	BOL
JUL	BOL	9.290 <1	95.000	BOL	100.000	BOL	B0L
AUG	BOL	7.100 <t< td=""><td>190,000</td><td>18.000 <t< td=""><td>120.000</td><td>BOL</td><td>80F</td></t<></td></t<>	190,000	18.000 <t< td=""><td>120.000</td><td>BOL</td><td>80F</td></t<>	120.000	BOL	80F
SEP	B0L	7.400 <t< td=""><td>190.000</td><td>370.000</td><td>120.000</td><td>BOL</td><td>108</td></t<>	190.000	370.000	120.000	BOL	108
OCT	BOL	7.100 <t< td=""><td>320,000</td><td>26.000 <1</td><td>220.000</td><td>BOL</td><td>108</td></t<>	320,000	26.000 <1	220.000	BOL	108
MOV	BOL	5.400 <t< td=""><td>330.000</td><td>16.000 <1</td><td>110.000</td><td>13.000 <t< td=""><td>108</td></t<></td></t<>	330.000	16.000 <1	110.000	13.000 <t< td=""><td>108</td></t<>	108
DEC	108	BOL	6.200 <t< td=""><td>108</td><td>110.000</td><td>108</td><td>BDL</td></t<>	108	110.000	108	BDL
MERCURY (µg/L		DET*N LIMIT = 0.010	0.010	GUIDELINE = 1.000 (A1)	0		
JAN	108	108		108	B0L	B0L	BOL
FEB	BDL	B0L		BOL	80L	BOL	BOL
MAR	BOL	B01	٠	.020 <t< td=""><td>BDL</td><td>108</td><td>108</td></t<>	BDL	108	108
APR	BOL	.020 <t< td=""><td></td><td>BOL</td><td>B0L</td><td>BOL</td><td>108</td></t<>		BOL	B0L	BOL	108
MAY	BOL	B01		BOL	BOL	108	108
JUN	B0L	B0L		BOL	B01	BOL	108
JUL	801	BOL		108	.020 <t< td=""><td>.020 <t< td=""><td>.020 <t< td=""></t<></td></t<></td></t<>	.020 <t< td=""><td>.020 <t< td=""></t<></td></t<>	.020 <t< td=""></t<>
AUG	T> 050.	.040 <t< td=""><td></td><td>.040 <t< td=""><td>.040 <t< td=""><td>. 040 cT</td><td>.040 <t< td=""></t<></td></t<></td></t<></td></t<>		.040 <t< td=""><td>.040 <t< td=""><td>. 040 cT</td><td>.040 <t< td=""></t<></td></t<></td></t<>	.040 <t< td=""><td>. 040 cT</td><td>.040 <t< td=""></t<></td></t<>	. 040 cT	.040 <t< td=""></t<>
SEP	.030 <t< td=""><td>.030 <t< td=""><td></td><td>T> 040.</td><td>T> 040.</td><td>.040 <t< td=""><td></td></t<></td></t<></td></t<>	.030 <t< td=""><td></td><td>T> 040.</td><td>T> 040.</td><td>.040 <t< td=""><td></td></t<></td></t<>		T> 040.	T> 040.	.040 <t< td=""><td></td></t<>	
OCT	070.	.070		.050 <t< td=""><td>090.</td><td>090.</td><td>T> 050.</td></t<>	090.	090.	T> 050.
NOV	.020 <t< td=""><td>.020 <t< td=""><td></td><td>.030 <t< td=""><td>BOL</td><td>BOL</td><td></td></t<></td></t<></td></t<>	.020 <t< td=""><td></td><td>.030 <t< td=""><td>BOL</td><td>BOL</td><td></td></t<></td></t<>		.030 <t< td=""><td>BOL</td><td>BOL</td><td></td></t<>	BOL	BOL	
					1 000	1	-

	K21 RAU	MANNHEIM RESERVOIR	SITE	E 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	# A		STANDING	FREE FLOW			
MANGANESE (#9/L	•	DET'N LIMIT = .050	.050	GUIDELINE = 50.0 (A3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	11,000	072"	58,000	000.09	97.000	2,600	2,300
FEB	12.000	5.900	26.000	61.000	110.000	2,200	2.800
MAR	11.000	3.400	45.000	35.000	91.000	.920	.820
APR	009.6	4.200	130.000	69.000	000.06	.630	T> 097.
MAY	9.700	28.000	27.000	5.700	93.000	089.	009.
JUK	11.000	12.000	120.000	77.000	110.000	1.300	1.200
JUL	11.600	12.570	000.79	63.700	110.000	4.200	7.000
AUG	12.000	11,000	150.000	51.000	120.000	38,000	39.000
SEP	12.000	12.000	93.000	260.000	130.000	77.000	74.000
001	11,000	12.000	110.000	000.69	110.000	83.000	84.000
MOV	11,000	11.000	130,000	13.000	100,000	32,000	32.000
DEC	11.000	9.800	20.000	9.700	110.000	2.400	2.100
MOLYBDENUM (µg/L	(DET'N LIMIT = 0.020	0.020	GUIDELINE = N/A	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JAN	.800	.560	1> 087.	.560	.520	.760	.580
FFR	1,100	096	.840	. 950	076	1,100	096
MAR	1,000	096.	.830	.920	.980	.900	.920
APR	.880	.720	.710	.740	.680	.680	089.
MAY	.780	.270 <1	.890	.910	.780	.730	.920
NON	.910	089.	.840	006.	.810	.870	.820
JUL	1.060	.810	1.040	066.	0%6	1.400	1.300
AUG	076.	.750	.970	.780	.800	1.800	1.800
SEP	.730	009.	069.	069.	.620	1.800	1.800
DCT	.750	009.	099.	.620	.610	1.700	1.700
NOV	.670	.530	.610	.510	.570	1.100	1.000
DEC	.750	.550	.580	.530	.500 <t< td=""><td>069.</td><td>.830</td></t<>	069.	.830
NICKEL (µg/L		DET'N LIMIT = 0.100	0.100	GUIDELINE = 50. (F3)			
JAK	.330 <7	B0L	9.300	T> 076.	1.300 <1	.860 <⊺	1.000 <t< td=""></t<>
FEB	2,100	2.300	10.000	3.200	2.400	1.500 <t< td=""><td>.650 <1</td></t<>	.650 <1
MAR	.800 <t< td=""><td>108</td><td>4.200</td><td>108</td><td>BOL</td><td>1.100 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<>	108	4.200	108	BOL	1.100 <t< td=""><td>1.400 <t< td=""></t<></td></t<>	1.400 <t< td=""></t<>
APR	BOL	108	1.900 <t< td=""><td>801</td><td>B01</td><td>BOL</td><td>BOL</td></t<>	801	B01	BOL	BOL
MAY	3.800	6.100	6.100	6.000	7.100	7.800	2.400
JUN	BOL	B0L	6.300	.450 <t< td=""><td>1.600 <t< td=""><td>1.800 <t< td=""><td>2.900</td></t<></td></t<></td></t<>	1.600 <t< td=""><td>1.800 <t< td=""><td>2.900</td></t<></td></t<>	1.800 <t< td=""><td>2.900</td></t<>	2.900
JUL	3.030	2.950	6.260	3.000	1,400 <t< td=""><td>T> 089°</td><td>1.300 <t< td=""></t<></td></t<>	T> 089°	1.300 <t< td=""></t<>
AUG	BOL	BOL	7.600	108	108	. 110 <t< td=""><td>BOL</td></t<>	BOL
SEP	BOL	BOL	2.900	.490 <1	BOL	.830 <t< td=""><td>T> 017.</td></t<>	T> 017.
001	BOL	BOL	.590 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	108	BOL	BOL	BOL
NOV	B0L	801	2.800	801	.400 <t< td=""><td>108</td><td>108</td></t<>	108	108
614	100	ICA	810 <t< td=""><td>ED!</td><td>IOB</td><td>740 AT</td><td>1 KOO 1</td></t<>	ED!	IOB	740 AT	1 KOO 1

^	TYPE						
LEAD (#9/L) JAN FEB MAR			STANDING	FREE FLOW			
FEBN ARB		DET'N LIMIT = 0.050	= 0.050	GUIDELINE * 50. (A1)			
FEB MAR	** 000	1, 010	000	0	1,001	120 cT	Ķ
MAR	120.	210	000.8	058:	7 007	270	1.600
A A K	120	017	900.9	200	150 AT	270	770
	0/2	065.	00.00	06.	7 001	0/7:	1 200
APR	016.	1, 0,00	20.000	004.	2001.	0.00	007.
HAY	.650	. 730	000.4	005.	024.	.320	004.
NON	.260	.220	10.000	.710	.210	.210	1.400
JUL	.220	.290	5.380	0%6.	.130 <t< td=""><td>097.</td><td>1.000</td></t<>	097.	1.000
AUG	.410	.120 <t< td=""><td>7.600</td><td>.650</td><td>.230</td><td>.350</td><td>1.300</td></t<>	7.600	.650	.230	.350	1.300
SFP	-110 <t< td=""><td>.050 <t< td=""><td>2.400</td><td>.320</td><td>.040 <t< td=""><td>.110 <t< td=""><td>.580</td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>2.400</td><td>.320</td><td>.040 <t< td=""><td>.110 <t< td=""><td>.580</td></t<></td></t<></td></t<>	2.400	.320	.040 <t< td=""><td>.110 <t< td=""><td>.580</td></t<></td></t<>	.110 <t< td=""><td>.580</td></t<>	.580
130	200 <t< td=""><td>150 <t< td=""><td>8 100</td><td>320</td><td>1.300</td><td>.190 <⊺</td><td>089</td></t<></td></t<>	150 <t< td=""><td>8 100</td><td>320</td><td>1.300</td><td>.190 <⊺</td><td>089</td></t<>	8 100	320	1.300	.190 <⊺	089
200	100	030	2 400	270	240	280	.880
DEC	.070	108	1.800	.160 <⊺	.180 <t< td=""><td>0.20</td><td>.850</td></t<>	0.20	.850
ANTIMONY (#g/L)		DET'N LINIT = .050	.050	GUIDELINE = 146. (D4)			
JAN	.330	.300	067	.360	.260	.300	.300
FFB	700	.550	.610	009.	07.	009.	.570
MAR	.510	.670	089.	.550	067	067	.570
APR	084	.410	.620	.430	.410	.500	.540
MAY	.760	069.	1.100	.620	.550	ez.	.630
JUN	.610	.710	.930	079.	069.	.630	.750
JUL	.620	.520	0%6	.630	.530	00.	.730
AUG	099.	009.	8£.	.580	009.	.520	.580
SEP	007.	0.27	.540	.390	.380	.360	007
OCT	.390	.390	.560	.420	380	.380	.430
NOV	.260	.260	097.	300	.320		
DEC	.360 <t< td=""><td>T> 004.</td><td>.500 <t< td=""><td>T> 004.</td><td>.360 <1</td><td>T> 00%.</td><td>.420 <t< td=""></t<></td></t<></td></t<>	T> 004.	.500 <t< td=""><td>T> 004.</td><td>.360 <1</td><td>T> 00%.</td><td>.420 <t< td=""></t<></td></t<>	T> 004.	.360 <1	T> 00%.	.420 <t< td=""></t<>
SELENIUM (#9/L)	1	DET'N LIMIT = 0.200	= 0.200	GUIDELINE = 10. (A1)			
JAN	.370 <1	790 <1	T> 067.	T> 015.	1,300 <7	.430 <t< td=""><td>T> 010.</td></t<>	T> 010.
FFB	1,700 <t< td=""><td>2.800 <t< td=""><td>1,400 <t< td=""><td>2,000 <t< td=""><td>3.700 <t< td=""><td>BOL</td><td>T> 058.</td></t<></td></t<></td></t<></td></t<></td></t<>	2.800 <t< td=""><td>1,400 <t< td=""><td>2,000 <t< td=""><td>3.700 <t< td=""><td>BOL</td><td>T> 058.</td></t<></td></t<></td></t<></td></t<>	1,400 <t< td=""><td>2,000 <t< td=""><td>3.700 <t< td=""><td>BOL</td><td>T> 058.</td></t<></td></t<></td></t<>	2,000 <t< td=""><td>3.700 <t< td=""><td>BOL</td><td>T> 058.</td></t<></td></t<>	3.700 <t< td=""><td>BOL</td><td>T> 058.</td></t<>	BOL	T> 058.
MAD	1 700 st	3, 100 <t< td=""><td>3.600 <t< td=""><td>6.600 <t< td=""><td>4,300 <t< td=""><td>1.900 <t< td=""><td>2.700 <1</td></t<></td></t<></td></t<></td></t<></td></t<>	3.600 <t< td=""><td>6.600 <t< td=""><td>4,300 <t< td=""><td>1.900 <t< td=""><td>2.700 <1</td></t<></td></t<></td></t<></td></t<>	6.600 <t< td=""><td>4,300 <t< td=""><td>1.900 <t< td=""><td>2.700 <1</td></t<></td></t<></td></t<>	4,300 <t< td=""><td>1.900 <t< td=""><td>2.700 <1</td></t<></td></t<>	1.900 <t< td=""><td>2.700 <1</td></t<>	2.700 <1
ADB	2 400 ×T	2 900 ×I	6.000 <t< td=""><td>5.800 <1</td><td>3.800 <t< td=""><td>2.800 <t< td=""><td>2.200 <t< td=""></t<></td></t<></td></t<></td></t<>	5.800 <1	3.800 <t< td=""><td>2.800 <t< td=""><td>2.200 <t< td=""></t<></td></t<></td></t<>	2.800 <t< td=""><td>2.200 <t< td=""></t<></td></t<>	2.200 <t< td=""></t<>
2 2 2	1 400 41	3 100 cT	T> 004 A	T> 005.7	8.400 <t< td=""><td>1.800 <t< td=""><td>2.600 <1</td></t<></td></t<>	1.800 <t< td=""><td>2.600 <1</td></t<>	2.600 <1
	5 6	1 700 <1	2.300 <t< td=""><td>108</td><td>2.900 <1</td><td>2.500 <t< td=""><td>1.700 <t< td=""></t<></td></t<></td></t<>	108	2.900 <1	2.500 <t< td=""><td>1.700 <t< td=""></t<></td></t<>	1.700 <t< td=""></t<>
	ig	5	108	108	1.300 <1	801	1,100 <t< td=""></t<>
AllG	2.300 <t< td=""><td>108</td><td>2.200 <t< td=""><td>1.500 <t< td=""><td>2.900 <1</td><td>1.600 <t< td=""><td>2.800 <1</td></t<></td></t<></td></t<></td></t<>	108	2.200 <t< td=""><td>1.500 <t< td=""><td>2.900 <1</td><td>1.600 <t< td=""><td>2.800 <1</td></t<></td></t<></td></t<>	1.500 <t< td=""><td>2.900 <1</td><td>1.600 <t< td=""><td>2.800 <1</td></t<></td></t<>	2.900 <1	1.600 <t< td=""><td>2.800 <1</td></t<>	2.800 <1
SFP	108	BOL	1.200 <t< td=""><td>BOL</td><td>80F</td><td>BOL</td><td>108</td></t<>	BOL	80F	BOL	108
OCT	168	108	108	108	B0L	B0L	108
MOV	TG8	1.300 <1	2,100 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>BOL</td><td>1.500 <1</td></t<></td></t<>	BOL	1.600 <t< td=""><td>BOL</td><td>1.500 <1</td></t<>	BOL	1.500 <1
DEC	108	5	BDI	1,200 <t< td=""><td>801</td><td>801</td><td>1.200 <t< td=""></t<></td></t<>	801	801	1.200 <t< td=""></t<>

		KZI KAW MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAU	KZO TREATED
	TYPE						
			STANDING	FREE FLOW			
STRONTIUM (µg/L	^	III K.130	DET'N LIMIT = .050	GUIDELINE = N/A	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JAN	240.000	120.000	1200,000	850.000	550.000	520 000	520 000
FEB	270,000	210.000	1300,000	930,000	690.000	680-000	900.036
MAR	260.000	200.000	810.000	570.000	290,000	580.000	000.009
APR	240.000	180.000	1100.000	820.000	590,000	490,000	000 067
MAY	240.000	200,000	470.000	260.000	550,000	000 067	200 000
NOR	270.000	220,000	1300.000	460.000	740.000	580.000	580 000
JUL	257.000	210,000	635.000	453.000	680.000	550 000	550 000
AUG	290,000	210.000	1500.000	000 007	233.533	200:000	200.000
SEP	270.000	200.000	1200 000	1300 000	230.000	200.000	200,000
000	250.000	200.000	1400.000	200:000	620.000	200.000	200.000
MON	250.000	200 000	1400 000	270 000	000:030	510,000	490.000
DEC	250.000	190.000	360.000	200.000	000.069	550.000	540.000
TITANIUM (Ag/L	(DET'N LIMIT &	41T = .050	GUIDELINE = N/A			
JAN	17.000	11.000	20.000	17.000	19.000	13.000	11.000
FEB	14.000	14.000	16.000	18,000	16.000	006.6	11.000
MAR	14.000	15.000	15.000	15.000	18.000	11,000	13.000
APR	15.000	16.000	21.000	19,000	20.000	12,000	13.000
MAY	18.000	17.000	19.000	18.000	20.000	13.000	11.000
NOC	22.000	21.000	27.000	22.000	26.000	16.000	17,000
JUL	20.980	20.000	21.800	21.100	24.000	13.000	14.000
AUG	21.000	18.000	29.000	21.000	29.000	17,000	16.000
SEP	12.000	10.000	14.000	15.000	15.000	8.500	8.500
DCT	17.000	15.000	21.000	16.000	19.000	10.000	11,000
MOV	11.000	11.000	15.000	11.000	15.000	6.800	7.200
DEC	13.000	12.000	12.000	13.000	19.000	10.000	9.700
THALLIUM (#g/L	^	DET'N LIP	DET'N LIMIT = .010	GUIDELINE = 13. (04)	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
JAN	B0L	108	BOL	BOL		.020 <	.020 <₹
FEB	T> 011.	.020 <t< td=""><td>.060 <₹</td><td>1> 001.</td><td>.030 <t< td=""><td>.030 <t< td=""><td>801</td></t<></td></t<></td></t<>	.060 <₹	1> 001.	.030 <t< td=""><td>.030 <t< td=""><td>801</td></t<></td></t<>	.030 <t< td=""><td>801</td></t<>	801
MAR		80F	108	BOL	BOL	BOL	BOL
APR	.080 <1	.020 <t< td=""><td>.030 <⊤</td><td>BOL</td><td></td><td>BOL</td><td>1> 060.</td></t<>	.030 <⊤	BOL		BOL	1> 060.
MAY	1,160 <₹	.220	1,160 <₹	BOL	.030 <t< td=""><td>.030 <t< td=""><td>.050 <↑</td></t<></td></t<>	.030 <t< td=""><td>.050 <↑</td></t<>	.050 <↑
NO.	.030 <1	108	BOL	BOL		BOL	.040 <t< td=""></t<>
707	1> 001.	.100 <t< td=""><td>120 <1</td><td>. 060 <t< td=""><td>.050 <₹</td><td>.030 <7</td><td>.060 <1</td></t<></td></t<>	120 <1	. 060 <t< td=""><td>.050 <₹</td><td>.030 <7</td><td>.060 <1</td></t<>	.050 <₹	.030 <7	.060 <1
AUG	.040 «T	108	. 040 ×T	BOL	.070 <₹	801	.040 <t< td=""></t<>
SEP	108	.020 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>.030 <t< td=""><td>BOL</td></t<></td></t<>	BOL	BOL	BOL	.030 <t< td=""><td>BOL</td></t<>	BOL
0C1	.020 <⊤	BOL	.020	BOL	.030 <⊺	BDL	T> 0%0.
MOV	.030 <t< td=""><td>BOL</td><td>.030 <t< td=""><td>108</td><td>.040 <t< td=""><td>.070 <t< td=""><td>070 <7</td></t<></td></t<></td></t<></td></t<>	BOL	.030 <t< td=""><td>108</td><td>.040 <t< td=""><td>.070 <t< td=""><td>070 <7</td></t<></td></t<></td></t<>	108	.040 <t< td=""><td>.070 <t< td=""><td>070 <7</td></t<></td></t<>	.070 <t< td=""><td>070 <7</td></t<>	070 <7
							, ,

	TYPE		STANDING	FREE FLOW			
URANIUM (#g/L		DET'N LIMIT = .020	= .020	GUIDELINE * 20. (A2)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	026	.590	1.600	1.300	1.500	.700	.720
FEB	1,400	1.400	2.000	1.700	2.000	1.100	1.300
MAR	1.200	1.200	1.200	1.200	1.600	0%6.	0%6
APR	1.100	1.200	1.700	1.400	1.700	006.	.880
MAY	1.000	1.100	1.100	096.	1.700	.950	.890
NON	1.300	1.500	1.900	1.500	1.900	.950	.930
JUL	1.330	1,580	1.610	1.610	1.800	006.	.920
AUG	1,100	1.300	1.700	1.400	1.700	.820	.850
SEP	.850	0%6.	1.300	1.200	1.400	.500	087
DCT	950	1,100	1.500	1.200	1.500	.620	.590
100	020	1.200	1.500	1.200	1.500	.630	0.49
DEC	0%.	1.200	066.	1,000	1.500	.850	.860
VANADIUM (µg/L	^	DET'N LIMIT = .050	* .050	GUIDELINE * N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, a c c c c c c c c c c c c c c c c c c	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
MA	.330 <1	180 <1	.240 <t< td=""><td>.210 <1</td><td>.280 <⊺</td><td>.220 <t< td=""><td>.210 <t< td=""></t<></td></t<></td></t<>	.210 <1	.280 <⊺	.220 <t< td=""><td>.210 <t< td=""></t<></td></t<>	.210 <t< td=""></t<>
		240 <1	7×0×7	240 <t< td=""><td>.330 <t< td=""><td>.250 <1</td><td>.220 <t< td=""></t<></td></t<></td></t<>	.330 <t< td=""><td>.250 <1</td><td>.220 <t< td=""></t<></td></t<>	.250 <1	.220 <t< td=""></t<>
MAR	280 <1	220 <1	100 <1	.100 <t< td=""><td>. 150 <t< td=""><td>.130 <t< td=""><td>.110 <t< td=""></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>.130 <t< td=""><td>.110 <t< td=""></t<></td></t<></td></t<>	.130 <t< td=""><td>.110 <t< td=""></t<></td></t<>	.110 <t< td=""></t<>
APR	.280 <1	.180 <1		.110 <t< td=""><td>.150 <t< td=""><td>.160 <1</td><td>.170 <t< td=""></t<></td></t<></td></t<>	.150 <t< td=""><td>.160 <1</td><td>.170 <t< td=""></t<></td></t<>	.160 <1	.170 <t< td=""></t<>
××.	.410 <1	.310 <t< td=""><td>.220 <t< td=""><td>.270 <t< td=""><td>.710</td><td>.520</td><td>.430 <t< td=""></t<></td></t<></td></t<></td></t<>	.220 <t< td=""><td>.270 <t< td=""><td>.710</td><td>.520</td><td>.430 <t< td=""></t<></td></t<></td></t<>	.270 <t< td=""><td>.710</td><td>.520</td><td>.430 <t< td=""></t<></td></t<>	.710	.520	.430 <t< td=""></t<>
NON	.300 <1	,130 <t< td=""><td></td><td>.090 <⊺</td><td>.200 <1</td><td>.210 <t< td=""><td></td></t<></td></t<>		.090 <⊺	.200 <1	.210 <t< td=""><td></td></t<>	
101	.390 <t< td=""><td>.250 <1</td><td></td><td>.230 <t< td=""><td>.500 <t< td=""><td>.360 <⊺</td><td>.390 <t< td=""></t<></td></t<></td></t<></td></t<>	.250 <1		.230 <t< td=""><td>.500 <t< td=""><td>.360 <⊺</td><td>.390 <t< td=""></t<></td></t<></td></t<>	.500 <t< td=""><td>.360 <⊺</td><td>.390 <t< td=""></t<></td></t<>	.360 <⊺	.390 <t< td=""></t<>
OC.	.360 <⊺	.250 <t< td=""><td>T> 074.</td><td>.230 <t< td=""><td>.610</td><td>.370 <1</td><td></td></t<></td></t<>	T> 074.	.230 <t< td=""><td>.610</td><td>.370 <1</td><td></td></t<>	.610	.370 <1	
SEP	.420 <t< td=""><td>.290 <1</td><td></td><td>.560</td><td>099.</td><td>.390 <1</td><td>.370 <1</td></t<>	.290 <1		.560	099.	.390 <1	.370 <1
CT	.260 <⊺	.170 <1	. 150 <t< td=""><td>.090 <⊺</td><td>.260 <₹</td><td>1.70 <1</td><td></td></t<>	.090 <⊺	.260 <₹	1.70 <1	
100	.430 <t< td=""><td>.350 <1</td><td>069°</td><td>.300 <t< td=""><td>50 50</td><td>.210 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<>	.350 <1	069°	.300 <t< td=""><td>50 50</td><td>.210 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<>	50 50	.210 <t< td=""><td>.120 <t< td=""></t<></td></t<>	.120 <t< td=""></t<>
DEC	.340 <t< td=""><td>.340 <t< td=""><td>.230 <1</td><td>.270 <⊺</td><td>.270 <1</td><td></td><td></td></t<></td></t<>	.340 <t< td=""><td>.230 <1</td><td>.270 <⊺</td><td>.270 <1</td><td></td><td></td></t<>	.230 <1	.270 <⊺	.270 <1		
ZINC (#9/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LINIT * .001	* .001	GUIDELINE * 5000. (A3)			
HAL	7.600	1.400	58.000	8.000	24.000	4.700	3.800
FEB	7.700	7,100	45.000	7.100	28.000	5.000	4.300
MAR	7.900	5.900	27.000	2.900	17.000	5.500	5.200
APR	7.200	5.100	27.000	5.900	12.000	3.300	3.200
WAY.	7.600	8.600	14.000	009.7	14.000	5.000	5.300
A	7.900	5.500	45.000	7.500	13.000	5.100	5.100
	7.980	5.390	20.590	6.840	14.000	7.400	6.300
AUG	7.800	009.7	39.000	5.100	13.000	2.900	5.300
SEP	9.600	3.900	21.000	906.9	13.000	000.9	2.400
DCT	9.400	4.500	20.000	4.700	14.000	5.900	5.200
MOV	9,000	3,500	20.000	3,200	11.000	4.100	3.500

	K21 RAW	MANNHEIM RESERVOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE	SM COMMENT	FREE FLOW			
1		DATORY	TREE TLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	PESTICIDES & PCB					
ALPHA BHC (NG/L	^	. DET'N LIMIT = 1.000	GUIDELINE = 700 (G)			
JAN	BDL	. 801	BDL	BDL	BDL	108
FEB	BDL	. BDL	BDL	BDL	BDL	80F
MAR	BDL	BDL .	B0L	BDL	108	BOL
APR	BDL	BDL .	8DL	BDL	BDL	B0L
MAY	BDL	. 801	108	BDL	BOL	BDL
NOF	BOL		BDL	BDL	BDL	BOL
JUL	108	. 108	BOL	80L	BOL	108
AUG	BOL	. 801	108	100	101	100
SEP	108	. BOL	B0L	1.000 < T	BOL	BOL
DCT	108	. BOL	BOL	B01	BOL	8 01
NOV	BOL	. BOL	BOL	BOL	108	80F
DEC	B0L	ILA .	108	BOL	BOL	B0L
ATRAZINE (NG/L	(DET'N LIMIT = 50.00	GUIDELINE * 60000 (83)	. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 0 e e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
JAN	80L	. 801	BOL	B0L	108	90
FEB	BOL	. BOL	108	B01	BOL	BOL
MAR	BOL	BOL .	BOL	BOL	BOL	900
APR	BOL	. BOL	BOL	BOL	290.000 <1	275.000 <t< td=""></t<>
MAY	BOL	. BOL	108	BOL	320.000 <t< td=""><td>380.000 <t< td=""></t<></td></t<>	380.000 <t< td=""></t<>
JUN	BOL	. 801	BOL	BOL	1270.000	550,000
JUL	NO8	. 801	BOL	BOL	190.000 <t< td=""><td>260.000 <t< td=""></t<></td></t<>	260.000 <t< td=""></t<>
AUG	B01	. 801		BOL	000.069	550.000
SEP	108	. BOL	•	BOL	801	B DL
OCT	108	. 801		108	210.000 <t< td=""><td>370.000 <t< td=""></t<></td></t<>	370.000 <t< td=""></t<>
MOV	108	. BOL	•	B 0L	340.000 <t< td=""><td>380.000 <1</td></t<>	380.000 <1
DEC	BOL	. BDL	•	BOL	340.000 <t< td=""><td>380,000 <t< td=""></t<></td></t<>	380,000 <t< td=""></t<>
CYANAZINE (BLADEX) (NG/L	K) (NG/L)	DET'N LIMIT = 100.00	GUIDELINE = 10000 (83)			
JAN	B0L		BOL	108	BOL	801
FEB	BOL	901	BOL	BOL	BOL	B01
MAR	BDL	. BOL	BOL	BOL	BOL	108
APR	BOL	. 801	B01	B0L	BOL	BOL
MAY	BOL	. 801	B0L	BOL	BOL	900
JUN	BOL	. 900	108	BOL	108	BOL
JUL	BOL	. BOL	BOL	BOL	BOL	900
AUG	BOL	BDL .	•	B0L	BOL	BOL
SEP	BOL	. 901		BOL	BOL	BOL
OCT	B0L	. 801	•	BOL	BOL	80F
MOV	BOL	. BOL		BOL	BOL	B0L

	BOL	BOL	BOL	BOL	340.000 <t< td=""><td>270.000 <1</td><td>BOL</td><td>320.000 <1</td><td>BOL</td><td>B01</td><td>230.000 <t< td=""><td>230.000 <t< td=""></t<></td></t<></td></t<>	270.000 <1	BOL	320.000 <1	BOL	B01	230.000 <t< td=""><td>230.000 <t< td=""></t<></td></t<>	230.000 <t< td=""></t<>
0 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 9	BOL	BOL	BDL	BOL	310.000 <t< td=""><td>BOL</td><td>BOL</td><td>430.000 <t< td=""><td>108</td><td>BOL</td><td>200.000 <t< td=""><td>240.000 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	BOL	430.000 <t< td=""><td>108</td><td>BOL</td><td>200.000 <t< td=""><td>240.000 <t< td=""></t<></td></t<></td></t<>	108	BOL	200.000 <t< td=""><td>240.000 <t< td=""></t<></td></t<>	240.000 <t< td=""></t<>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BOL	BOL	B0L	BOL	BOL	BOL	B0L	B0L	B0L	BOL	108
:	BOL	B0L	BOL	BOL	B0L	BOL	B0L					
DET'N LIMIT = N/A	. BOL .	. BDL .	. BOL .	BDL .	. 801	. BOL	. 801	. 108	. BDL	BDL	. BDL	. BDL
(BOL	BOL	BOL	BOL	BDL	BDL	BOL	BDL	BOL	BDL	BOL	BOL
D-ETHYL ATRAZINE (MG/L	AN	EB	AR	a	AY	N	=	50		CI	36	EC
) DET'N LIMIT * N/A) DET'N LIMIT = N/A 80L 80L .) DET'N LIMIT = N/A BOL BDL BDL .) DET'N LIMIT = N/A BOL BOL BOL BOL BOL BOL BOL) DET'N LIMIT = N/A BOL BOL BOL BOL BOL BOL BOL BOL BOL) DET'N LIMIT = N/A BDL) DET'N LIMIT = N/A BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL) DET'N LIMIT = N/A BOL BOL BOL BOL) DET'N LIMIT = N/A BOL) DET'N LIMIT = N/A BDL) DET'N LIMIT = N/A BOL BOL BOL BOL) DET'N LIMIT = N/A BOL

	SITE	K21 RAU	MANNHEIM RESERVOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		STANDING	FREE FLOW		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PHENOLICS (#9/L)			, DET'N LIMIT = 0.2	GUIDELINE = 2.00 (A3)			
A P B B B B B B B B B B B B B B B B B B	.600 .600 .600 .600 .600 .600 .600 .600	ל ל ל ל ל	.600 <t .200="" .500="" .800="" .900="" .900<="" 1,200="" 1,600="" 2,000="" 2,200="" 801="" <t="" bbl="" td=""><td></td><td>1.000 600 1.000 1.000 1.800 1.800 1.600</td><td>1.200 1.600 1.600 1.000 <1 1.000 <1 1.600 1.600 1.200 1.200 1.200 <1 80L</td><td>1,200 1,200 600 <f 2,200 600 <f 1,600 1,600 1,600 1,600 1,600</f </f </td></t>		1.000 600 1.000 1.000 1.800 1.800 1.600	1.200 1.600 1.600 1.000 <1 1.000 <1 1.600 1.600 1.200 1.200 1.200 <1 80L	1,200 1,200 600 <f 2,200 600 <f 1,600 1,600 1,600 1,600 1,600</f </f

REAZEME (Ag/L) STAMOLNG FREE FLOAT JAM BOL BOL <th></th> <th>K21 RAW</th> <th>MANNHEIM RESERVOIR</th> <th>SITE 1</th> <th>STRANGE ST RESERVOIR</th> <th>K70 RAW</th> <th>K70 TREATED</th>		K21 RAW	MANNHEIM RESERVOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
VOLATILES			STANDING	FREE FLOW			
BOL		VOLATILES)	DET'N LIMIT = .050	GUIDELINE = 5.0 (81)			
BDL	JAN	B0L	. Bor	NOB	B0L	BOL	B01
BOL BOL BOL BOL	FEB	BDL	BDL .	.050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td></t<>	BDL	BDL	BDL
BOL BOL BOL	MAR	108	B0L .	BDL	BOL	BOL	108
BOL BOL BOL BOL	APR	BOL	. BOL .	. 200 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td></t<>	BDL	BDL	BDL
BOL	MAY	BDL	. BDL	BDL	BDL	BDL	BDL
BOL BOL BOL BOL	NOL	B0L	. BDL	BDL	BDL	BDL	BDL
BOL	JUL	BOL	108	108	108	BOL	BDL
BOL BOL BOL BOL BOL BOL	AUG	B01		108 108	Bol	TO BOT	801
BOL BOL BOL	SEP	BOL	. 050 <1	1> 050.	POL	BOL	10 E
BOL BOL BOL	OC.	J08 8	HOL I	108	108	300	70
BDL	DEC	80F		108 100	BOL	108	B 26
BDL	TOLUENE (µg/L	,	DET'N LIMIT = .050	GUIDELINE = 24.0 (84)			
BDL	74	i G	<u> </u>	T> 050.	100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
BDL	FEB	108	108	B0L	POP	B 00	BOL
BDL	MAR	BOL	. BOL	BDL	.100 <t< td=""><td>BOL</td><td>. 100 <t< td=""></t<></td></t<>	BOL	. 100 <t< td=""></t<>
BDL .150 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .100 < 7 .10	APR	BOL	. 108	T> 050.	T> 001.	.050 <t< td=""><td>BOL</td></t<>	BOL
. 050 < f 801	MAY	BOL	. 150 <t< td=""><td>1> 001.</td><td>.150 <t< td=""><td>BOL</td><td>108</td></t<></td></t<>	1> 001.	.150 <t< td=""><td>BOL</td><td>108</td></t<>	BOL	108
BDL	NOC	. 050 ×T	108	1> 050 ·	.050 <t< td=""><td>Bot</td><td>BOL .</td></t<>	Bot	BOL .
BDL	JUL	BDL	900	T> 001.	150 <t< td=""><td>Tog</td><td>T> 050.</td></t<>	Tog	T> 050.
901 801 801 801 801 801 801 801 801 801 8	AUG	108	. 050 ct	108	108	108	1> 050.
BOL	SEP SC1	108 108	108	108	100	NO.	DSO <t< td=""></t<>
DET** 150 ct 15	3 %	100		12	12.5	108	i GB
) DET'N LIMIT = .050 GJIDELINE = 2.4 (84) .050 <t .050="" .050<="" <t="" td=""><td>DEC</td><td>108</td><td>. 150 <1</td><td>.200 <t< td=""><td>BOL</td><td>108</td><td>BOL</td></t<></td></t>	DEC	108	. 150 <1	.200 <t< td=""><td>BOL</td><td>108</td><td>BOL</td></t<>	BOL	108	BOL
. 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 7 . 050	ETHYLBENZENE (#g/L	(DET'N LIMIT = .050	GUIDELINE = 2.4 (84)			6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
B01 B01	JAN	.050 <t< td=""><td>. 050 .</td><td>T> 050.</td><td>.100 <7</td><td>.050 <1</td><td>B0L</td></t<>	. 050 .	T> 050.	.100 <7	.050 <1	B0L
B01 B01	FEB	BOL	. BOL	T> 050.	.100 <	BOL	BOL
. 100 <7	MAR	B01.	. BOL	T> 050.	.100 <1	B 0.	BOL
801 801 9050 c7 9 901 801 801 801 801 801 801 801 801 801 8	APR	.100 <t< td=""><td>. 050 <1</td><td>T> 001.</td><td>.250 <t< td=""><td>.150 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	. 050 <1	T> 001.	.250 <t< td=""><td>.150 <t< td=""><td>BOL</td></t<></td></t<>	.150 <t< td=""><td>BOL</td></t<>	BOL
108 . 108 108 108 108 108 108 108 108 108 108	MAY	108	. 050 <t< td=""><td>BOL</td><td>. 100 <t< td=""><td>BOL</td><td>B01</td></t<></td></t<>	BOL	. 100 <t< td=""><td>BOL</td><td>B01</td></t<>	BOL	B01
108 . 108 108 108 108 108 108 108 108 108 108	NO.	B0L	. 108	HOL	108	Bol	- BO
108 . 108 108 108 109 109 109 109 109 109 109 109 109 109	JUL	108	. 108) BO	T> 050.	108	BDL 8001
108 . 108 108 108 108 108 108 108 108 108 108	AUG	BOL	709	HOL.	BOL	101	ار ا
	SEP	B01	108	108 108 108 108 108 108 108 108 108 108	BDL See	BUL	108
	001	108 109 109	108	108	ADI.	POL BDI	100
P. CC.	AOM C		- POL	80L	100	108	100

M-XYLENE (µg/L	TYPE				STANFOR STANFORM	NA O CA	ATO INCALED
XYLENE (µg/L							
XYLENE (µg/L			STANDING	FREE FLOW			
Ne.	^		DET'N LIMIT = .100	GUIDELINE = 300 (84)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
250		BOL	BDL	BDL	.200 <t< td=""><td>108</td><td>801</td></t<>	108	801
FEB		108	. 108	BDL	BDL	BOL	108
MAR		BDL	. 801	B0L	.300 <t< td=""><td>BOL</td><td>108</td></t<>	BOL	108
APR		BOL	. 801	BDL	.300 <t< td=""><td>80,</td><td>B01</td></t<>	80,	B01
MAY		BOL	. BOL	B0L	.300 <1	BDL	108
NOC		B0L	BDL .	B0L	B0L	BDL	B01
JUL		108	BDL .	801	B0L	BOL	108
AUG		108	. BOL	BDL	B0L	BOL	108
SEP		BDL	. BOL	BDL	B0L	BOL	BOL
OCT		BOL	. BOL	801	801	BOL	108
MOV		BOL	108	108	801	108	9
DEC		BOL	. 108	BDL	108	108	BOL
O-XYLENE (#g/L	^	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0ET'N LIMIT = .050	GUIDELINE = 300 (84)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
JAN		B01	. 108	108	.100 <₹	801	BOI
FFB		108	108	IGN	T> 050	108	i Ga
MAD		108	l de	108	100 <1	BUI	i da
APR		BDI	108	108	150 <t< td=""><td>108</td><td>2 2</td></t<>	108	2 2
MAY		801	108	108	100 <1	108	i G
JUN		BOL	. 801	BOL	.050 <1	108	B01
JUL		108	. BOL	B01.	108	BOL	B01
AUG		108	. BOL	B0L	BOL	BOL	BDL
SEP		108	. BOL .	B0L	BOL	BOL	BOL
OCT		BOL	. BOL	B0L	B0L	BOL	BOL
MOV		108	. BOL	B0L	80F	BOL	108
DEC		BOL	. 050 <t< td=""><td>.050 <t< td=""><td>B0L</td><td>108</td><td>108</td></t<></td></t<>	.050 <t< td=""><td>B0L</td><td>108</td><td>108</td></t<>	B0L	108	108
STYRENE (µg/L	^	8 8 8 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8	DET'N LIMIT = .050	GUIDELINE = 46.5 (02)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN			. 108	.500 <t< td=""><td>108</td><td>₹50 <₹</td><td>.100 <⊺</td></t<>	108	₹50 <₹	.100 <⊺
FEB		.150 <t< td=""><td>. 100 <t< td=""><td>.450 <t< td=""><td>B0L</td><td>.100 <⊤</td><td>BOL</td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.450 <t< td=""><td>B0L</td><td>.100 <⊤</td><td>BOL</td></t<></td></t<>	.450 <t< td=""><td>B0L</td><td>.100 <⊤</td><td>BOL</td></t<>	B0L	.100 <⊤	BOL
MAR			.100 <t< td=""><td>T> 050.</td><td>108</td><td>BOL</td><td>BOL</td></t<>	T> 050.	108	BOL	BOL
APR			. BDL	.050 <	BOL	.850 UCS	.200 <t< td=""></t<>
MAY			.050 <₹	.100 <7	801	BOL	801
JUN		.150 <t< td=""><td>.200 <1</td><td>.200 <t< td=""><td>.050 <t< td=""><td>.150 <t< td=""><td>. 150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.200 <1	.200 <t< td=""><td>.050 <t< td=""><td>.150 <t< td=""><td>. 150 <t< td=""></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.150 <t< td=""><td>. 150 <t< td=""></t<></td></t<></td></t<>	.150 <t< td=""><td>. 150 <t< td=""></t<></td></t<>	. 150 <t< td=""></t<>
JUL			.200 <₹	.200 <t< td=""><td>1> 009.</td><td>.350 <₹</td><td>.150 <t< td=""></t<></td></t<>	1> 009.	.350 <₹	.150 <t< td=""></t<>
AUG			. 801	. 150 <t< td=""><td>.050 <t< td=""><td>BOL</td><td>.150 <t< td=""></t<></td></t<></td></t<>	.050 <t< td=""><td>BOL</td><td>.150 <t< td=""></t<></td></t<>	BOL	.150 <t< td=""></t<>
SFP			. 100 <t< td=""><td>T> 050.</td><td>. 150 <t< td=""><td>108</td><td>.100 <t< td=""></t<></td></t<></td></t<>	T> 050.	. 150 <t< td=""><td>108</td><td>.100 <t< td=""></t<></td></t<>	108	.100 <t< td=""></t<>
DCT		.100 <⊺	. 100 · T	108	.050 <t< td=""><td>.150 <⊤</td><td>150 <1</td></t<>	.150 <⊤	150 <1
MOV			. 150 <1	108	.100 <t< td=""><td>.100 <t< td=""><td>.100 <⊤</td></t<></td></t<>	.100 <t< td=""><td>.100 <⊤</td></t<>	.100 <⊤
DEC		200 <t< td=""><td>g</td><td>IGB</td><td>ION</td><td>log l</td><td>.050 ×T</td></t<>	g	IGB	ION	log l	.050 ×T

TYPE		MANAGETH RESERVOIR	- 3116			200
		STANDING	NG FREE FLOW			
1,1 DICHLOROETHANE (µg/L	^	DET'N LIMIT = .100	GUIDELINE = N/A			
AN	BDL	BDL	.500 <1	.200 <t< td=""><td>BOL</td><td>BDL</td></t<>	BOL	BDL
FEB	BOL	BOL	. 800 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BDL</td></t<></td></t<>	.100 <t< td=""><td>BOL</td><td>BDL</td></t<>	BOL	BDL
IAR	BDL	B0L	. 300 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td></t<>	B0L	BOL	B0L
IPR	BDL	BOL	. × 008.	. 100 <t< td=""><td>B0L</td><td>BOL</td></t<>	B0L	BOL
IAY	BOL	BOL	. BOL	.200 <t< td=""><td>B0L</td><td>BOL</td></t<>	B0L	BOL
JUN NO	BDL	BOL	. 200 · T	B0L	BOL	B0L
JI.	BDL	BOL	. 80L	.200 ≺⊺	BOL	B0L
AUG	BOL	B0L	. BDL	.100 <t< td=""><td>BDL</td><td>BOL</td></t<>	BDL	BOL
EP	BOL	B0L	1.200	BOL	BOL	BOL
OCT OCT	BOL	108		BOL	BOL	108
NON	BOL	108	108	BOL	80 L	BOL
EC	BOL	108	. 801	.200 <t< td=""><td>708</td><td>108</td></t<>	708	108
CHLOROFORM (µg/L)	0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = .100	GUIDELINE = 350 (A1+)			
IAN	BOL	. 100 <t< td=""><td>T> 004.</td><td>T> 007.</td><td>BOL</td><td>13.900</td></t<>	T> 004.	T> 007.	BOL	13.900
FEB	BDL	.100 <t< td=""><td>. 801</td><td>.500 <t< td=""><td>.200 <t< td=""><td>12.800</td></t<></td></t<></td></t<>	. 801	.500 <t< td=""><td>.200 <t< td=""><td>12.800</td></t<></td></t<>	.200 <t< td=""><td>12.800</td></t<>	12.800
MAR	108	2.700	1.600	1.500	108	14.300
PR	B01.	2.000	2.700	2.900	108	19.200
IAY	B01.	1.800	1.200	2.000	BDL	16.400
No	108	.500 <1	. 700 <1	T> 004.	108	10.400
JUL	.300 <t< td=""><td>.300 <1</td><td>. 500 .</td><td>T> 004.</td><td>BOL</td><td>9.500</td></t<>	.300 <1	. 500 .	T> 004.	BOL	9.500
UG	.300 <t< td=""><td>.300 <t< td=""><td></td><td>.300 <1</td><td>BOL</td><td>6.100</td></t<></td></t<>	.300 <t< td=""><td></td><td>.300 <1</td><td>BOL</td><td>6.100</td></t<>		.300 <1	BOL	6.100
EP	BOL	.300 <1	. 500 <t< td=""><td>.300 <1</td><td>BOL</td><td>9.100</td></t<>	.300 <1	BOL	9.100
OCT	B01	.300 <1	. 300 <1	T> 004.	BOL	6.200
NON	BOL	T> 004.	. 300 <1	T> 004.	108	3.400
DEC	108	.500 <t< td=""><td>1> 005.</td><td>T> 004.</td><td>BOL</td><td>7.400</td></t<>	1> 005.	T> 004.	BOL	7.400
111, TRICHLOROETHANE (#9/L	٦)	DET*N LIMIT = .020	GUIDELINE = 200 (01)			
JAN	801	80L	. 801	006	B0L	BOL
FEB	80F	80F	. 801	086.	BOL	108
UAR	.060 <1	B01.	108	.980	BOL	BOL
IPR	.040 <t< td=""><td>B01</td><td>. 801</td><td>.820</td><td>BOL</td><td>BOL</td></t<>	B01	. 801	.820	BOL	BOL
(AY	BOL	801		1.040	.040 <t< td=""><td>T> 040.</td></t<>	T> 040.
JUN	.060 <t< td=""><td>108</td><td>. BOL</td><td>1.000</td><td>.020 <1</td><td>80r</td></t<>	108	. BOL	1.000	.020 <1	80r
JUL	BOL	B01.	. 801	.860	BOL	BOL
NUG	B01.	801	. Bol.	006.	BOL	BOL
SEP	B01.	B0L	. 801	.720	BOL	BOL
DCT .	BOL	BOL	. BOL	.780	BOL	.060 <t< td=""></t<>
AOA	T> 0A0	i GB	108	.800	BOL	BOL
	3	1				

	K21 RAW	MANNHEIM RESERVOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
		STANDING	FREE FLOW			
TRICHLOROETHYLENE (µg/L	(hg/L)	, DET'N LIMIT = .100	GUIDELINE = 5.0 (01)	0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 9 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
JAN	BOL	. 801	108	.300 <t< td=""><td>IQ8</td><td>BOI</td></t<>	IQ8	BOI
FEB	108	. 801	BDL	.300 <t< td=""><td>108</td><td>801</td></t<>	108	801
MAR	108	. BOL .	BOL	.300 <t< td=""><td>BDL</td><td>BOL</td></t<>	BDL	BOL
APR	BDL	. BDL	BDL	.300 <t< td=""><td>BDL</td><td>BOL</td></t<>	BDL	BOL
MAY	BDL	. BOL	BDL	.300 <t< td=""><td>BOL</td><td>B01</td></t<>	BOL	B01
JUN	108	. 108	BDL	.300 <1	BOL	BOL
JUL	BDL	. 108	108	.300 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
AUG	BDL	. BOL	108	.300 <t< td=""><td>BDL</td><td>108</td></t<>	BDL	108
SEP	BDL	. 108	BOL	.200 <1	BOL	108
OCT	BOL	. 108	108	.200 <1	BOL	BOL
NOV	BDL	. 108	108	.300 <t< td=""><td>BOL</td><td>B01</td></t<>	BOL	B01
DEC	108	. 108	108	108	BOL	108
DICHLOROBROMOMETHANE (#g/L	NE (#g/L)	DET'N LIMIT = .050	GUIDELINE = 350 (A1+)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 0 0 7 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0	9 E E E E E E E E E E E E E E E E E E E
JAN	B0L	.300 <⊺	.250 <t< td=""><td>1.900</td><td>80F</td><td>6.850</td></t<>	1.900	80F	6.850
FEB	BOL	. 250 <t< td=""><td>.200 <t< td=""><td>1.300</td><td>BOL</td><td>7.450</td></t<></td></t<>	.200 <t< td=""><td>1.300</td><td>BOL</td><td>7.450</td></t<>	1.300	BOL	7.450
MAR	BOL	1.750	2,550	3.400	BOL	7.550
APR	80L	2.800	4.500	6.300	BOL	7.600
MAY	. 108	2.550	1.900	4.900	BOL	7.100
NOC	BOL	.800 <t< td=""><td>. 700</td><td>.650</td><td>BOL</td><td>4.150</td></t<>	. 700	.650	BOL	4.150
JUL	.100 <t< td=""><td>. 007.</td><td>.700</td><td>.350 <1</td><td>BOL</td><td>2.750</td></t<>	. 007.	.700	.350 <1	BOL	2.750
AUG	BOL	. T> 004.	T> 004.	.250 <1	BOL	.000
SEP	BOL	. 550	.550	.350 <t< td=""><td>BOL</td><td>1.050</td></t<>	BOL	1.050
000	BOL	. 650	.550	T> 004.	BOL	1.500
NOV	BOL	.800	. 700	.550	801	.650
DEC	108	1.050	T> 005.	009.	108	T> 058.
CHLORODIBROMOMETHANE (#g/L	NE (#g/L)	DET'N LIMIT = .100	GUIDELINE = 350 (A1+)	9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
NAL	108	.500 <1	T> 004.	3.900	108	1.900
FEB	801	.500 <t< td=""><td>.300 <⊤</td><td>2.600</td><td>BOL</td><td>2.500</td></t<>	.300 <⊤	2.600	BOL	2.500
MAR	BOL	2.100	4.000	5.900	BOL	2,100
APR	BOL	3.300	7,100	8.900	BOL	1.900
MAY	80L	3.100	2.900	7.700	BOL	1.800
JUN	BOL	1.300	1.000	1.000	BOL	1,100
JUL	.100 <t< td=""><td>1.100</td><td>1.000</td><td>.500 <t< td=""><td>BOL</td><td>T> 009.</td></t<></td></t<>	1.100	1.000	.500 <t< td=""><td>BOL</td><td>T> 009.</td></t<>	BOL	T> 009.
AUG	108	. 700 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <1</td></t<></td></t<>	T> 007.	.300 <t< td=""><td>BOL</td><td>.200 <1</td></t<>	BOL	.200 <1
SEP	108	. 800 <t< td=""><td>T> 004.</td><td>.500 <t< td=""><td>BOL</td><td>.200 <t< td=""></t<></td></t<></td></t<>	T> 004.	.500 <t< td=""><td>BOL</td><td>.200 <t< td=""></t<></td></t<>	BOL	.200 <t< td=""></t<>
OCT	108	1.100	1.100	.500 <t< td=""><td>BOL</td><td>.500 <t< td=""></t<></td></t<>	BOL	.500 <t< td=""></t<>
NOV	108	1.500	1.300	T> 000.	BOL	801
200	100	•	1007	T. 004		-

	M21 PAU	MANNETH DECEDANTE	CITE 4	CLOSED CT DECEMBER	I DAII	֡
TYPE		STATE OF SERVICE	3116	SIRANGE SI RESERVOIR	AYO KAW	K/U IKEAIEU
		STANDING	FREE FLOW			
T-CHLORDETHYLENE (49/L	^	0ET'N LIMIT = .050	GUIDELINE = 10.0 (C2)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	BOL		108	.050 <	BDL	B01
FEB	BDL	BDL	108	801	108	BDL
MAR	BDL	BDL	108	.100 <⊺	BDL	BDL
APR	BDL	BDL	BDL	BDL	BDL	B0L
MAY	BOL	BDL .	108	BDL	BDL	109
NOC	BDL	BDL .	BDL	BDL	BDL	80L
יחר	BDL	. BDL	BOL	BDL	BDL	BOL
AUG	BDL	. 108	108	B0L	BDL	80F
SEP	BDL		108	BOL	80r	BOL
0CT	BDL	. 108	BOL	BOL	BDL	B 01
NOV	108		108	BOL	BDL	BOL
DEC	BOL	. 801	BOL	.050 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
BROMOFORM (#9/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = .200	GUIDELINE = 350 (A1+)		1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	BDL	. 600 <1	T> 004.	3.600	BOL	BOL
FEB	BDL	. 400 <t< td=""><td>.200 <t< td=""><td>3.000</td><td>BDL</td><td>.200 <1</td></t<></td></t<>	.200 <t< td=""><td>3.000</td><td>BDL</td><td>.200 <1</td></t<>	3.000	BDL	.200 <1
MAR	108	.800 <t< td=""><td>3.000</td><td>007.7</td><td>BOL</td><td>BOL</td></t<>	3.000	007.7	BOL	BOL
APR	BOL	1.000 <t< td=""><td>000.4</td><td>3.000</td><td>BOL</td><td>BOL</td></t<>	000.4	3.000	BOL	BOL
HAY	108	1.000 <t< td=""><td>1.400 <t< td=""><td>3.000</td><td>BOL</td><td>BOL</td></t<></td></t<>	1.400 <t< td=""><td>3.000</td><td>BOL</td><td>BOL</td></t<>	3.000	BOL	BOL
NOF	BDL	.800 <1	T> 004.	.800 <t< td=""><td>BDL</td><td>TON.</td></t<>	BDL	TON.
יותר	BDL	. 600 <1	T> 009.	BOL	BOL	BOL
AUG	BDL	. 400 <t< td=""><td>T> 004.</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	T> 004.	BOL	BOL	BOL
SEP	BDL	. 600 <1	BOL	.200 <t< td=""><td>108</td><td>BOL</td></t<>	108	BOL
000	80r	.800 <1	T> 008.	T> 004.	BOL	108
NOV	BDL	. BOL	1.000 <t< td=""><td>T> 009.</td><td>109</td><td>BOL</td></t<>	T> 009.	109	BOL
DEC	108	.800 <t< td=""><td>1> 009.</td><td>1> 009.</td><td>108</td><td>BOL</td></t<>	1> 009.	1> 009.	108	BOL
CHLOROBENZENE (#9/L		DET'N LIMIT = .100	GUIDELINE = 1510 (D3)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0
JAN	BOL	801	108	108	B01	BOL
FEB	801	801	108	BOL	BOL	BOL
MAR	BOL	. BDL	BOL	BDL	BDL	.200 <1
APR	80F	. JOB	108	BOL	108	BOL
MAY	BOL	108	BDL	BOL	BOL	BOL
JUN	BOL	BDL .	108	BOL	BOL	BOL
JUL	801	BDL .	BOL	BOL	BOL	BOL
AUG	BOL	. 108	108	BOL	BDL	B01
SEP	108	BDL .	BOL	BOL	BOL	BOL
100	BOL	108	108	BOL	BOL	801
NOV	80F	BOL	BOL	BOL	BDL	BOL

SITE	6					
TYPE	KZ1 RAW	MANNHE IM RESERVOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
		STANDING	FREE FLOW			
1,2 DICHLOROBENZENE (µg/L	٦)	, DET'N LIMIT = .050	GUIDELINE = 200 (81)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JAN	BDL	BDL	BOL	BDL	B01	BOL
FEB	108	BDL	BOL	BDL	B0L	BOL
MAR	BDL	. 80L	BOL	BDL	BOL	BOL
APR	BOL	BDL .	BDL	BOL	BDL	BDL
MAY	BOL	BDL .	B0L	BOL	801	BOL
NOC	BOL	. BDL	108	B0L	BOL	BDL
JUL	BOL	BDL	108	801	BDL	BDL
AUG	BDL	. BDL	108	108	BDL	80F
SEP	BOL	. BOL	BOL	.050 <t< td=""><td>BDL</td><td>108</td></t<>	BDL	108
OCT	BOL	BOL	BOL	BOL	BDL	BDL
MOV	BOL	. BOL	BOL	BOL	BOL	BOL
DEC	BOL	. BOL	BOL	108	BOL	BOL
TOTL TRINALOMETHANES (µg/L	٥/١)	DET'N LIMIT = .500	GUIDELINE = 350 (A1)			0 0 0 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5
JAN	BOL	1.500 <t< td=""><td>1.450 <t< td=""><td>10.100</td><td>108</td><td>22.650</td></t<></td></t<>	1.450 <t< td=""><td>10.100</td><td>108</td><td>22.650</td></t<>	10.100	108	22.650
FEB	BOL	1.250 <t< td=""><td>T> 007.</td><td>7.400</td><td>BOL</td><td>22.950</td></t<>	T> 007.	7.400	BOL	22.950
MAR	BOL	7.350	11.150	15.200	BOL	23.950
APR	BOL	8.100	18.300	21.100	BOL	28.700
MAY	BOL	8.450	7.400	17.600	BOL	25.300
JUN	BOL	3.400 <t< td=""><td>2.800 <t< td=""><td>2.850 <t< td=""><td>BOL</td><td>21.650</td></t<></td></t<></td></t<>	2.800 <t< td=""><td>2.850 <t< td=""><td>BOL</td><td>21.650</td></t<></td></t<>	2.850 <t< td=""><td>BOL</td><td>21.650</td></t<>	BOL	21.650
JUL	.500 <t< td=""><td>2.700 <1</td><td>2.800 <t< td=""><td>1.250 <t< td=""><td>108</td><td>12.850</td></t<></td></t<></td></t<>	2.700 <1	2.800 <t< td=""><td>1.250 <t< td=""><td>108</td><td>12.850</td></t<></td></t<>	1.250 <t< td=""><td>108</td><td>12.850</td></t<>	108	12.850
AUG	BOL	1.800 <t< td=""><td>1.800 <t< td=""><td>.850 <t< td=""><td>108</td><td>7.200</td></t<></td></t<></td></t<>	1.800 <t< td=""><td>.850 <t< td=""><td>108</td><td>7.200</td></t<></td></t<>	.850 <t< td=""><td>108</td><td>7.200</td></t<>	108	7.200
SEP	BOL	2.250 <t .<="" td=""><td>1,450 <t< td=""><td>1.150 <t< td=""><td>BOL</td><td>7.350</td></t<></td></t<></td></t>	1,450 <t< td=""><td>1.150 <t< td=""><td>BOL</td><td>7.350</td></t<></td></t<>	1.150 <t< td=""><td>BOL</td><td>7.350</td></t<>	BOL	7.350
000	BOL	2.850 <t .<="" td=""><td>2.750 <1</td><td>1.700 <t< td=""><td>BOL</td><td>8.200</td></t<></td></t>	2.750 <1	1.700 <t< td=""><td>BOL</td><td>8.200</td></t<>	BOL	8.200
NON	BOL	2.700 <1	3.300 <t< td=""><td>2.450 <t< td=""><td>BOL</td><td>4.050 <t< td=""></t<></td></t<></td></t<>	2.450 <t< td=""><td>BOL</td><td>4.050 <t< td=""></t<></td></t<>	BOL	4.050 <t< td=""></t<>
DEC	BOL	3.650 <t< td=""><td>2.250 <1</td><td>2.200 <t< td=""><td>B0L</td><td>5.350</td></t<></td></t<>	2.250 <1	2.200 <t< td=""><td>B0L</td><td>5.350</td></t<>	B0L	5.350

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS TRACE LEVELS OF TOLUENE ARE ARTIFACTS DERIVEDD FROM THE ANALYTICAL METHODOLOGY

Table 0		
	D	ETECTION
SCAN/PARAMETER	UNIT	LIMIT GUIDELINE
BACTERIOLOGICAL		
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0 0 (A1)
STANDARD PLATE COUNT MEMBRANE	CT/ML	0 500/ML(A1)
FILTRATION		
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0 5/100mL(A1)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0 N/A
GUI 000400447700		
CHLOROAROMATICS		
HEXACHLOROBUTAD I ENE	NG/L	1.000 450. (D4)
1,2,3-TRICHLOROBENZENE	NG/L	5.000 10000 (1)
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.000 10000 (1)
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.000 10000 (1)
1,2,4-TRICHLOROBENZENE	NG/L	5.000 10000 (1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.000 38000 (D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.000 10000 (D4)
HEXACHLOROBENZENE	NG/L	1.0 10. (C1)
HEXACHLOROETHANE	NG/L	1.000 1900. (D4)
OCTACHLOROSTYRENE	NG/L	1.000 N/A
PENTACHLOROBENZENE	NG/L	1.000 74000 (D4)
2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE	NG/L NG/L	5.000 N/A 5.000 N/A
2,6,A-TRICHLOROTOLUENE	NG/L	5.000 N/A
E,O,A TRIONEDROTOEDENE	, -	3,000
CHLOROPHENOLS		
2,3,4-TRICHLOROPHENOL	NG/L .	50. N/A
2,3,4,5-TETRACHLOROPHENOL	NG/L	50. N/A
2,3,5,6-TETRACHLOROPHENOL	NG/L	50. N/A
2,4,5-TRICHLOROPHENOL	NG/L	50. 2600000 (D4)
2,4,6-TRICHLOROPHENOL	NG/L	50. 2000. (B4)
PENTACHLOROPHENOL	NG/L	50. 30000. (B4)
CHEMISTRY (FLD)		
FIELD COMBINED CHLORINE RESIDUAL	MG/L	N/A N/A
FIELD FREE CHLORINE RESIDUAL	MG/L	N/A N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L	N/A N/A
FIELD PH	DMSNLESS	
FIELD TEMPERATURE	°c	N/A 6.5-8.5(A4) N/A <15 OC(A1)
FIELD TURBIDITY	FTU	N/A 1.0 (A1)
CHEMISTRY (LAB)		
ALVALITATIV	NC /I	200 70-500/4/3
ALKALINITY CALCIUM	MG/L MG/L	.200 30-500(A4) .100 100. (F2)
CYANIDE	MG/L	.001 .20(A1)
CHLORIDE	MG/L	.200 250. (A3)
COLOUR	TCU	.5 5.0 (A3)
CONDUCTIVITY	UMHO/CM	1. 400. (F2)
FLUORIDE	MG/L	.01 2.4 (A1)
HARDNESS	MG/L	.50 BO-100(A4)
MAGNESIUM	MG/L	.05 30. (F2)
SODIUM	MG/L	.20 200. (C3)
AMMONIUM TOTAL	MG/L DE	.002 .05(F2) TECTION
SCAN/PARAMETER	UNIT	LIMIT GUIDELINE
NITRITE	MG/L	.001 1.0 (A1)
TOTAL NITRATES	MG/L	.02 10. (A1)
NITROGEN TOTAL KJELDAHL	MG/L	.02 N/A
РН	DMSNLESS	N/A 6.5-8.5(A4)
PHOSPHORUS FIL REACT	MG/L	.0005 N/A
PHOSPHORUS TOTAL SULPHATE	MG/L MG/	.002 .40(F2) L .200 500. (A3)
TOTAL SOLIDS	MG/L	1. 500. (A3)
TURBIDITY	FTU	.02 1.0 (A1)
	1 1 10	

ANTIMONY	UG/L	.050	10.	(F3)
ARSENIC	UG/L	.050	50.	(A1)
BARIUM	UG/L			
			1000.	(A1)
BORON	UG/L		5000.	(A1)
BERYLLIUM	UG/L	.010	0.7	20 (H)
CADMIUM	UG/L	.050	5.0	(A1)
COBALT	UG/L		1000.	(H)
CHROMIUM	UG/L			(A1)
COPPER	UG/L	.100	1000.	(A3)
IRON	UG/L	5.0	300.	(A3)
MERCURY	UG/L	.01		(A1)
MANGANESE	UG/L	.050		(A3)
MOLYBDENUM	UG/L	.020	500.	(H)
NICKEL	UG/L	.100	50.	(F3)
LEAD	UG/L	.020	50.	(A1)
SELENIUM	UG/L	.200		(A1)
SILVER	UG/L	.020		(A1)
STRONTIUM	UG/L	.100	2000.	(H)
THALLIUM	UG/L	.010	13.	(D4)
TITANIUM	UG/L	.100		,
				(43)
URANIUM	UG/L	.020		(A2)
VANADIUM	UG/L	.020	100.	(H)
ZINC	UG/L	.020	5000.	(A3)
DHENOTICS				
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	.2	2.0	(A3)
PESTICIDES & PCB				
ALDRIN	NG/L	1.0	700.	(A1)
AMETRINE	NG/L	50. 3	00000.	(D3)
ATRAZINĖ	NG/L		60000.	(B3)
		1.0	700.	
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L			(G)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300.	(G)
GAMMA HEXACHLOROCYCLOHEXANE(LINDANE)	NG/L	1.0	4000.	(A1)
ALPHA CHLORDANE	NG/L	2.0	7000.	(A1)
GAMMA CHLORDANE		2.0	7000.	
	NG/L			(A1)
BLADEX	NG/L	100.	10000.	(B3)
				, ,
DIELDRIN	NG/L	2.0	700.	(A1)
DIELDRIN	NG/L	2.0	700.	(A1)
DIELDRIN METHOXYCHLOR	NG/L NG/L	2.0 5.0 9	700.	(A1) (B1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1)	NG/L NG/L NG/L	2.0 5.0 9 2.0	700. 000000. 74000.	(A1) (B1) (D4)
DIELDRIN METHOXYCHLOR	NG/L NG/L	2.0 5.0 9 2.0	700.	(A1) (B1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1)	NG/L NG/L NG/L	2.0 5.0 9 2.0	700. 000000. 74000.	(A1) (B1) (D4)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN	NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0	700. 200000. 74000. 74000. 200.	(A1) (B1) (D4) (D4)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11)	NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0	700. 200000. 74000. 74000.	(A1) (B1) (D4) (D4)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN	NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0	700. 200000. 74000. 74000. 200.	(A1) (B1) (D4) (D4) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE	NG/L NG/L NG/L NG/L NG/L)NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION	700. 000000. 74000. 74000. 200. N/A	(A1) (B1) (D4) (D4) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE	NG/L NG/L NG/L NG/L NG/L)NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION	700. 700000. 74000. 74000. 200. N/A	(A1) (B1) (D4) (D4) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE	NG/L NG/L NG/L NG/L)NG/L UNIT	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT	700. 000000. 74000. 74000. 200. N/A GUIDE	(A1) (B1) (D4) (D4) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0	700. 000000. 74000. 74000. 200. N/A GUIDE 3000.	(A1) (B1) (D4) (D4) (A1) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500.	700. 000000. 74000. 74000. 200. N/A GUIDE	(A1) (B1) (D4) (D4) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0	700. 000000. 74000. 74000. 200. N/A GUIDE 3000.	(A1) (B1) (D4) (D4) (A1) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 1.0 500. 5.0	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. 50000. N/A	(A1) (B1) (D4) (D4) (A1) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 0 DETECTION LIMIT 1.0 500. 5.0 2.0	700. 700000. 74000. 74000. 200. N/A GUIDE 3000. 3000. 50000. N/A N/A	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (A1) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR MIEEX OXYCHLOROANE O,P-DOT	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 5.0	700. 200000. 74000. 74000. 200. N/A GUIDE 3000. 3000. 50000. N/A N/A 30000.	(A1) (B1) (D4) (D4) (D4) (A1) (A1) (A1) (A1) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR MIREX OXYCHLORDANE O,P-DOT PCB	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 0ETECTION LIMIT 1.0 500. 5.0 2.0	700. 200000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A N/A 30000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (A1) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR MIEEX OXYCHLOROANE O,P-DOT	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 5.0	700. 200000. 74000. 74000. 200. N/A GUIDE 3000. 3000. 50000. N/A N/A 30000.	(A1) (B1) (D4) (D4) (D4) (A1) (A1) (A1) (A1) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR MIREX OXYCHLORDANE O,P-DOT PCB	NG/L NG/L NG/L NG/L)NG/L UNIT NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0	700. 200000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A N/A 30000.	(A1) (B1) (D4) (D4) (C04) (A1) (A1) (A1) (B3) (A1) (A2)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLOROANE O,P-DDT PCB O,P-DDD PPDDE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0	700. 700000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A N/A 30000. 3000. N/A 30000.	(A1) (B1) (D4) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPDDE PPDDT	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 5.0 2.0 5.0 20.0 5.0	700. 700000. 74000. 74000. 74000. 8000. 8000. 3000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000.	(A1) (B1) (D4) (D4) (C04) (A1) (A1) (A1) (B3) (A1) (A2)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOD PPODE PPODE PPODT ATRATONE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 0ETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0 5.0 1.0	700. 700000. 74000. 74000. 74000. N/A GUIDE 3000. 3000. N/A 30000. N/A 30000. N/A 30000. N/A	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A1) (B3) (A1) (A2) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPDDE PPDDT	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 0ETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0 5.0 1.0	700. 700000. 74000. 74000. 74000. 8000. 8000. 3000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000. 8000.	(A1) (B1) (D4) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOD PPODE PPODE PPODT ATRATONE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0	700. 700000. 74000. 74000. 74000. N/A GUIDE 3000. 3000. N/A 30000. N/A 30000. N/A 30000. N/A	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A1) (B3) (A1) (A2) (A1)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPDDE PPDDT ATRATONE ALACHLOR PROMETONE	NG/L NG/L NG/L NG/L NG/L UNIT NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	700. 700000. 74000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. 30000. N/A 30000. 30000. N/A 35000. 52500.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A1) (A2) (A1) (A2) (A1) (A1) (A2)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOD PPODE PPODE PPODT ATRATONE ALACHLOR PROMETONE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 5.0 5.0 5.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	700. 700000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. 3000. N/A 30000. N/A 35000. 16000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (A1) (A2)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB ATRATONE ALACHLOR PCOMETONE PROMETONE PROMETONE PROMETTYNE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	700. 070000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000.	(A1) (B1) (D4) (O4) (A1) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (A1) (A2) (A2) (A3) (A3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPDDE PPDDT ATRATONE ALACHLOR RATRATONE ALACHLOR PROMETONE SENCOR (METRIBUZIN)	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 20.0 5.0 500. 500. 500.	700. 700000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. 3000. N/A 30000. N/A 35000. 16000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (A1) (A2)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB ATRATONE ALACHLOR PCOMETONE PROMETONE PROMETONE PROMETTYNE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 20.0 5.0 5.0 50. 50. 50. 50.	700. 070000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000.	(A1) (B1) (D4) (O4) (A1) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (A1) (A2) (A2) (A3) (A3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB O,P-DOD PPODE PPODT ATRATONE ALACHLOR ALACHLOR PROMETONE PROMETONE PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 20.0 5.0 500. 500. 500.	700. 000000. 74000. 200. 8/A GUIDE 3000. 3000. 8/A 30000. 8/A 30000. 8/A 30000. 8/A 30000. 10000. 82500. 16000. 80000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1) (A2) (A1) (A1) (A2) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPDDE PPDDT ATRATONE ALACHLOR RATRATONE ALACHLOR PROMETONE SENCOR (METRIBUZIN)	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 20.0 5.0 500. 500. 500.	700. 000000. 74000. 200. 8/A GUIDE 3000. 3000. 8/A 30000. 8/A 30000. 8/A 30000. 8/A 30000. 10000. 82500. 16000. 80000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1) (A2) (A1) (A1) (A2) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDD PPODE PPODT ATRATONE ALACHLOR PROMETONE PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 20.0 5.0 20.0 5.0 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. N/A 30000. 10000. 10000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1) (A2) (A1) (A1) (A2) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB O,P-DOD PPODE PPDDT ATRATONE ALACHLOR PROMETONE PROMETONE PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 2.0 5.0 20.0 5.0 5.0 5.0 50. 50. 50. 50.	3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 30000. 30000. 30000. 10000. 10000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1) (A2) (A1) (A1) (A2) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB ATRATONE ALACHLOR PROMETONE PROPAZINE PROMETYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0 5.0 5.0 50. 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000.	(A1) (B1) (D4) (D4) (A1) (A1) (B3) (A1) (A2) (A3) (A2) (B3) (B2) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB O,P-DDT ATRATONE ALACHLOR PROMETONE PROPAZINE PROMETONE PROPAZINE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 5.0 5.0 20.0 5.0 50. 50. 50. 50. 50.	3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 30000. 30000. 30000. 10000. 10000.	(A1) (B1) (D4) (D4) (A1) (A1) (A1) (B3) (A1) (A2) (A1) (A2) (A1) (A1) (A2) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB ATRATONE ALACHLOR PROMETONE PROPAZINE PROMETYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 5.0 2.0 5.0 20.0 5.0 50. 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000.	(A1) (B1) (D4) (D4) (A1) (A1) (B3) (A1) (A2) (A3) (A2) (B3) (B2) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB O,P-DOD PPODE PPODT ATRATONE ALACHLOR PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 500. 500. 5.0 2.0 5.0 5.0 5.0 50. 50. 50. 50. 50. 50.	3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 30000. 30000. 1000. 1000. 1000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB ATRATONE ALACHLOR PROMETONE PROPAZINE PROMETRYME SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHENE BENZO(A)ANTHRACENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 2.0 5.0 20.0 5.0 50. 50. 50. 50. 50. 50.	3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB ATRATONE ALACHLOR PROMETONE PROMETINE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHYSENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 20.0 5.0 50. 50. 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. N/A 30000. 10000. 80000. 10000. 10000. N/A 42000. N/A	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB O,P-DOD PPODE PPODE PPODE PPODE PROMETONE RATONE ALACHLOR PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHRENE ANTHRACENE FLUORANTHRENE ENZO(A)ANTHRACENE CHRYSENE DIMETHYL BENZO(A)ANTHRACENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 0ETECTION LIMIT 1.0 500. 5.0 20.0 5.0 50. 50. 50. 50. 50. 50. 50. 50.	3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 3000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000. 30000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II) ENDRIN ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DDT PCB O,P-DDT PCB ATRATONE ALACHLOR PROMETONE PROMETINE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHYSENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 DETECTION LIMIT 1.0 500. 5.0 20.0 5.0 50. 50. 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. 3000. 30000. 30000. 30000. 10000. 10000. 10000. N/A 42000.	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)
DIELDRIN METHOXYCHLOR ENDOSULFAN 1 (THIODAN 1) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN 2 (THIODAN 11) ENDOSULFAN SULPHATE(THIODAN SULPHATE SCAN/PARAMETER HEPTACHLOR EPOXIDE HEPTACHLOR METOLACHLOR MIREX OXYCHLORDANE O,P-DOT PCB O,P-DOT PCB O,P-DOD PPODE PPODE PPODE PPODE PROMETONE RATONE ALACHLOR PROMETONE PROMETRYNE SENCOR (METRIBUZIN) SIMAZINE POLYAROMATIC HYDROCARBONS PHENANTHRENE ANTHRACENE FLUORANTHRENE ANTHRACENE FLUORANTHRENE ENZO(A)ANTHRACENE CHRYSENE DIMETHYL BENZO(A)ANTHRACENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	2.0 5.0 9 2.0 4.0 4.0 4.0 0ETECTION LIMIT 1.0 500. 5.0 20.0 5.0 50. 50. 50. 50. 50. 50. 50. 50.	700. 000000. 74000. 74000. 200. N/A GUIDE 3000. 3000. N/A 30000. N/A 30000. 10000. 80000. 10000. 10000. N/A 42000. N/A	(A1) (B1) (D4) (D4) (C4) (A1) (A1) (A2) (A1) (A2) (A1) (A2) (B3) (B3) (B3) (B3)

PERYLENE	NG/L	10.0	N/A	
BENZO(K)FLUORANTHENE	NG/L	1.0	N/A	
		5.0	10.	(B1)
BENZO(A)PYRENE	NG/L			(01)
BENZO(G,H,I)PERYLENE	NG/L	20.0	N/A	
DIBENZO(A, H)ANTHRACENE	NG/L	10.0	N/A	
INDENO(1,2,3-C,D)PYRENE	NG/L	20.0	N/A	
BENZO(B)CHRYSENE	NG/L	2.0	N/A	
	NG/L	10.0	N/A	
CORONENE	NG/ C	10.0	,	
SPECIFIC PESTICIDES				
			5000	(44)
TOXAPHENE	NG/L	N/A	5000.	(A1)
2,4,5-TRICHLOROBUTYRIC ACID	NG/L	50.	200000.	(84)
(2,4,5-T)				
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000.	(A1)
	NG/L	200.	18000.	(83)
2,4-DICHLORORPHENOXYBUTYRIC ACID	NG/L	100.	N/A	,,
2,4-D PROPIONIC ACID				4043
DICAMBA	NG/L	100.	120000.	
PICLORAM	NG/L	100.	190000.	(83)
SILVEX (2,4,5-TP)	NG/L	50.	10000.	(A1)
DIAZINON	NG/L	20.	20000.	(81)
	NG/L	20.	N/A	
DICHLOROVOS				
DURSBAN	NG/L	20.	N/A	
ETHION	NG/L	20.	35000.	(G)
GUTHION (AZINPHOSMETHYL)	NG/L	N/A	20000.	(81)
MALATHION	NG/L		190000.	(B1)
	NG/L	20.	N/A	
MEVINPHOS		50.		(A1)
METHYL PARATHION	NG/L			(KI)
METHYLTRITHION	NG/L	20.	N/A	
	DI	ETECTION		
SCAN/PARAMETER	UNIT	LIMI	T GUIDE	LINE
PARATHION	NG/L	20.	50000.	(B1)
PHORATE (THIMET)	NG/L	20.	2000.	(B3)
	NG/L	20.	N/A	
RELDAN		20.	N/A	
RONNEL	NG/L			
AMINOCARB	NG/L	N/A	N/A	
BENONYL	NG/L	N/A		
BUX (METALKAMATE)	NG/L	2000.		
CARBOFURAN	NG/L	2000.	90000.	(B1)
CICP (CHLORPROPHAM)	NG/L		350000.	(G)
	NG/L	2000.		(H)
DIALLATE		2000.		4
EPTAM	NG/L			
IPC	NG/L	2000.		
PROPOXUR (BAYGON)	NG/L	2000.		
SEVIN (CARBARYL)	NG/L	200.		(B1)
SUTAN (BUTYLATE)	NG/L	2000.	245000.	(D3)
VOLATILES				
BENZENE	UG/L	. (50 5.	0 (81)
TOLUENE	UG/L	. (050 24.	0 (B4)
ETHYLBENZENE	UG/L			4 (B4)
	UG/L		100 300.	
PARA-XYLENE			100 300.	
META-XYLENE	UG/L			
ORTHO-XYLENE	UG/L		050 300.	
1,1-DICHLOROETHYLENE	UG/L			0 (D1)
ETHLYENE DIBROMIDE	UG/L			05 G)
METHYLENE CHLORIDE	UG/L		500 50.	(B1)
	UG/L		100 70.	(D5)
TRANS-1,2-DICHLOROETHYLENE		•	100 N/A	
1,1-DICHLOROETHANE	UG/L	•	100 350.	
CHLOROFORM	UG/L			
1,1,1-TRICHLOROETHANE	UG/L		020 200.	
1,2-DICHLOROETHANE	UG/L		050 5.	0 (D1)
CARBON TETRACHLORIDE	UG/L			0 (81)
1,2-DICHLOROPROPANE	UG/L		050 6.	0 (D5)
	UG/L		100 50.	
TRICHLOROETHYLENE	UG/L		050 350.	
DICHLOROBROMOMETHANE				60(D4)
1,1,2-TRICHLOROETHANE	UG/L			
CHLOROD I BROMOMET HANE	UG/L		100 350.	
TETRACHLOROETHYLENE	UG/L			.0 (C2)
BROMOFORM			200 350.	(A1+)
	UG/L			
1.1.2.2° IE KAUHLUKUE I HANE	UG/L UG/L		050 0.	17(04)
1,1,2,2-TETRACHLOROETHANE	UG/L			.17(D4) . (D5)
CHLOROBENZENE	UG/L UG/L		100 60.	(D5)
CHLOROBENZENE 1,4-DICHLOROBENZENE	UG/L UG/L UG/L		100 60. 100 1.	(D5) .0 (84)
CHLOROBENZENE	UG/L UG/L		100 60.	(D5) (0 (84)

1,2-DICHLOROBENZENE TRIFLUOROCHLOROTOLUENE TOTAL TRIHALOMETHANES STYRENE UG/L .050 3.0 (84)
UG/L .100 N/A
UG/L .500 350. (A1)
UG/L .05 140. \ (05)

