Sectema Hamilton-Cayley ie. $P(A) = O_n \Leftrightarrow A^n = \sigma_1 A^{n-1} + \dots + (-1)^n I_m \sigma_n = O_n$. Notam M=A-XIn PA(x)-det M=(-1)"(x"-v,x"-1+...+vm(-1)") $M \cdot M^* = I_n \cdot det M = (-1)^m (x^n - \sigma_n x^{n-1} + ... + \sigma_m (-1)^n) I_n = \otimes$ Mx = xn-1 Bm-1 + xn-2 Bm-2 + ... + xB1 + B0 $(A-XI_n)(X^{n-1}B_{m-1}+X^{n-2}B_{m-2}+...+XB_1+B_0)=$ $AB_o = (H)^{2n} \sigma_n \overline{I}_n$ -Bo+ AB1 = (-1) - Th In A $= B_1 + A B_2 = (-1)^{2n-2} \sigma_{n-2} T_n / t^2$ $B_{n-2} + A B_{m-1} = (-1)^{n+1} \nabla_i \prod_n$ $\left(-B_{n-4} \right) = (-1)^n L_n \cdot \left(A^n \right)$ On = (-1) [A'-σ, A"+ + (-1) ς, In] $\Rightarrow A^{n} - \sigma_{n} A^{n-1} + \dots + (-1)^{n} \nabla_{n} \Gamma_{n} = 0_{n}$ In farticular, f = 0: $A^2 = 0$: $A^2 = 0$: A = 0: √2 = det A

From Acullynin (R) S(A) = { x = R" | AX = 0} CR" subspatiu vectoriai Dem 8 (A) = m- /29 (A) $\begin{array}{c} \forall x,y \in S(A) & \Longrightarrow ax + by \in S(A) \\ \forall a,b \in \mathbb{R} & \Longrightarrow d \end{array}$ AX = 0 \Rightarrow $A(aX + bY) = 0 <math>\Rightarrow$ $5(A) \subset \mathbb{R}^{n}$ AY = 0 subspect Fre ng A = 12 Fora a restrange generalitates, 21, Ar - variable puncipale) $a_{n+1} + a_{11}$, $a_n = a_p$ | variable secondare, p = n-n. (2, = <1, 2, + + 0/1) } Lan = dr. 21+ . + dry +p tol sect (z,, xz, 2+, , 2p) = = 2, (21, , ×n1, 1,0,,0)++ } (25, , xp, 0, ,0,1)

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{p}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{1}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{1}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{1}, y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text{ for pention } (A)$$

$$\mathcal{R} = \{y_{2}\} \ \text$$