Oblig 1

Greger Svenn

March 17, 2016

Code and report can also be found on $\operatorname{GitHub:}$

https://github.com/andergsv/MEK4250.git

Ex. 1

a)

Given

$$u = \cos(k\pi x)\sin(l\pi y) \tag{1}$$

we can compute the \mathbf{H}^p norm using definition 2.13 from the lecture notes that states

$$||u||_{H^p} = \sqrt{\sum_{|\alpha| \le p} \int_{\Omega} |\partial^{\alpha} u|^2 dx} \equiv \sqrt{\sum_{|\alpha| \le p} ||\partial^{\alpha} u||_{L^2(\Omega)}^2}$$
 (2)

The L^2 norm of the weak derivative. Since a strong derivative of u exists, Lemma 2.2 says this is a weak derivative.

$$\left\| \frac{\partial^{i+j} u}{\partial x^i \partial y^j} \right\|_{L^2}^2 = (k\pi)^{2i} (l\pi)^{2j} \int_{x=0}^1 \int_{y=0}^1 f(x)^2 g(y)^2 dy dx \tag{3}$$

where f(x) and g(y) is either cos(...) or sin(...) depending on the derivative. Then we either get

$$\int_{0}^{1} \sin^{2}(k\pi x) dx = \frac{x}{2} - \frac{\sin(2k\pi x)}{4\pi k} \Big|_{0}^{1} = \frac{1}{2}$$

$$\int_{0}^{1} \cos^{2}(k\pi x) dx = \frac{x}{2} + \frac{\sin(2k\pi x)}{4\pi k} \Big|_{0}^{1} = \frac{1}{2}$$
(4)

Same goes for y, and we get

$$\left\| \frac{\partial^{i+j} u}{\partial x^i \partial u^j} \right\|_{L^2}^2 = \frac{1}{4} (k\pi)^{2i} (l\pi)^{2j} \tag{5}$$

Results from (5) into (2)

$$||u||_{H^p} = \frac{1}{2} \sum_{i=0}^p \sum_{j=0}^{p-i} (k\pi)^i (l\pi)^j$$
 (6)

b)
Numerical error, P1:

h	1	k	L^2	H^1
		1	0.03278	0.43659
	1	10	0.67903	16.40373
		100	193.30469	2769.29874
		1	0.67979	16.14985
8	10	10	0.66706	26.48145
		100	43.85056	1081.55841
		1	191.31130	2760.51942
	100	10	39.00197	1062.02533
		100	159.35642	3226.28568
		1	0.00846	0.21817
	1	10	0.24096	9.09787
		100	262.27749	3507.09006
		1	0.24528	9.17928
16	10	10	0.36554	17.54645
		100	23.04633	873.59319
		1	262.03735	3505.99874
	100	10	22.10786	871.93565
		100	246.86184	4686.20099
	1	1	0.00213	0.10906
		10	0.07831	4.60585
		100	2.93137	281.67015
	10	1	0.07865	4.62356
32		10	0.17819	10.60237
		100	2.44710	266.89592
	100	1	3.07984	281.57721
		10	2.65025	269.12035
		100	2.69686	376.36441
		1	0.00053	0.05452
	1	10	0.02092	2.28079
		100	4.68789	433.69968
		1	0.02091	2.28339
64	10	10	0.05490	5.43986
		100	4.01373	405.62311
		1	4.68872	433.25750
	100	10	4.01968	405.33294
		100	3.58881	540.46687

Numerical error, P2:

h	1	k	L^2	H^1
		1	0.00057	0.03318
	1	10	0.33168	8.91002
		100	289.69571	3780.34116
		1	0.32986	9.01115
8	10	10	0.43561	19.12452
		100	32.02358	1119.41619
		1	289.59195	3779.65941
	100	10	32.74071	1121.76166
		100	293.24615	5321.28087
		1	0.00007	0.00839
	1	10	0.02528	2.18345
		100	91.92350	1219.85991
		1	0.02531	2.20724
16	10	10	0.08960	6.92035
		100	9.07023	383.82845
		1	91.89877	1219.79809
	100	10	8.70218	386.28122
		100	90.47492	1648.49621
	1	1	0.00001	0.00211
		10	0.00288	0.56873
		100	5.90687	556.63276
	10	1	0.00289	0.57230
32		10	0.01021	1.97795
		100	5.12436	521.09486
	100	1	5.90325	556.31812
		10	5.12085	520.79710
		100	4.72230	689.09240
	1	1	0.00000	0.00058
		10	0.00035	0.14421
		100	1.80292	186.50476
		1	0.00035	0.14469
64	10	10	0.00114	0.51839
		100	1.58037	178.85308
	100	1	1.80305	186.59945
		10	1.57998	178.94446
		100	1.47096	288.59719

 $\mathbf{c})$

Considering

$$||u - u_h||_1 \le C_\alpha h^\alpha \tag{7}$$

and

$$||u - u_h||_0 \le C_\beta h^\beta \tag{8}$$

The expected convergence rate for L^2 error is 2 for for first order polynomials and 3 for second order. For H^1 we expect 1 for P1 and 2 for P2.

. Rewriting (7) and (8) as follows

$$log(||u - u_h||_p) = log(C) + \alpha log(h)$$
(9)

we can find the convergence rates, β and α , and C using least square method.

I've got the following estimates for C_{α} , C_{β} , α and β for all k and l

error norm		β	C_{eta}
<i>T</i> 2	P1	1.77219875142	199.641306082
	P2	2.57094220334	393.651742315

error norm		α	C_{α}
H^1	P1	0.922950793267	892.842058168
11	P2	1.49059681803	1512.36220975

For k = l = 1:

error norm		β	C_{eta}
12	P1	1.98036792982	1.0223300868
L	P2	3.0153973461	0.105098152287

error norm		α	C_{α}
H^1	P1	1.00043640421	2.47126276095
11	P2	1.9922681715	1.05057103854

The convergence rates when k=l=1 is as expected. For frequencies lager than number of elements we get bad results.

Ex. 2

a)

$$-\mu \Delta u + u_x = 0 \tag{10}$$

$$u(0,y) = 0, u(1,y) = 1$$
 (11)

$$\frac{\partial u(x,0)}{\partial n} = \frac{\partial u(x,1)}{\partial n} = 0 \tag{12}$$

(10) can be solved by separation of variables, u(x,y) = X(x)Y(y):

$$-\mu X''Y - \mu XY'' + X'Y = 0$$

$$\frac{X''}{X} - \frac{1}{\mu} \frac{X'}{X} = -\frac{Y''}{Y} = \lambda$$
(13)

Solving $Y'' + \lambda Y = 0$ with boundary conditions, gives us the following solution

$$Y(y) = A\cos(\sqrt{\lambda}x) \tag{14}$$

If (14) are to fulfil the BC at $y=1,\,\sqrt{\lambda}$ needs to be of the form $n\pi$ where n=0,1,2...

By choosing $\sqrt{\lambda} = 0$, we get

$$Y = A \tag{15}$$

Since Y is a constant our problem is now reduced to an ODE of the form

$$X'' - \frac{1}{\mu} = 0 \tag{16}$$

which has the solution

$$X(x) = \frac{1 - e^{\frac{x}{\mu}}}{1 - e^{\frac{1}{\mu}}} \tag{17}$$

Now u = AX(x). Combining (17) and (11) we get A = 1. This means

$$u = X(x) = \frac{1 - e^{\frac{x}{\mu}}}{1 - e^{\frac{1}{\mu}}} \tag{18}$$

b), c)

μ	h	L2	H1	α_{L2}	α_{H1}
1.0	8	0.00140247771262	0.0375213286623		0.999843163008
	16	0.000350756920914	0.0187654641213	1.99975900004	
1.0	32	8.76983292529e-05	0.00938336199838		
	64	2.1925161506e-05	0.00469176097199		
	8	0.0237537287128	0.767085862122		0.97703269627
0.1	16	0.0061772884875	0.398103773843	1.97534705635	
0.1	32	0.00156135223788	0.201040560876	1.97004700000	
	64	0.000391472930963	0.100776905796		
	8	0.23793404436	7.23834618036	1.464865403	0.427313340823
0.01	16	0.103935591962	6.68437984751		
0.01	32	0.0381861200365	5.00716129578	1.404000400	
	64	0.0112593871861	2.969491496		
	8	0.973209783522	25.4293684955		
0.0015	16	0.343073702629	19.3988155863	1.23061747096	0.149569580962
	32	0.15386822893	18.2879241561	1.23001747090	
	64	0.0740360746411	18.3564801216		
0.001	-	NaN	NaN	NaN	NaN
0.0001	_	NaN	NaN	NaN	NaN

We can see, from the table above, that we get good results for large μ . As $\mu \to 0$ the results gets worse.

\mathbf{d})

When introducing false diffusion as $\mu \to 0$ using the *Streamkine diffusion/Petrov-Galerkin* method, we now expect a convergence rate of 0.5 for L^2 and 1.5 for H^1 .

μ	h	L2	H1	L2 α	Η1 α
1.0	8	0.00817327386546	0.0445180433635		0.98816006649
	16	0.00396967669845	0.0225772790049	1.02400069631	
	32	0.00195639004967	0.0113698584674		
	64	0.000971209372729	0.00570543611502		
	8	0.116799775258	1.0067518284		0.808047892246
0.1	16	0.0633185477355	0.622054684915	$\begin{bmatrix} 0.928034747153 \end{bmatrix}$	
0.1	32	0.0331298022384	0.351779744504	0.920034141133	
	64	0.0169821128053	0.188199945818		
	8	0.190538358416	4.58810309565		0.117182252988
0.01	16	0.129228319526	5.39419191334	0.690381217075	
0.01	32	0.0795713397148	4.89193806113	0.090301217079	
	64	0.0454392595226	3.61573898911		
0.0015	8	0.184075039798	4.6876624363		
	16	0.131288176206	6.63832047093	0.48364535762	-0.480191675456
	32	0.0943653123066	9.39242690883	0.40304333702	
	64	0.0672192167908	12.6635884144		

The convergence is as expected for small μ for L2, not for H1. Not sure why.

Code

```
from dolfin import *
  3 set_log_active (False)
         import numpy as np
        def Hp(k, l, p):
                s = 0
                 for i in range (p+1):
                        for j in range (p+1-i):
                               s += 0.5 * (k*np.pi)**i * (l*np.pi)**j
                 return s
13
         def bc1(x,on_boundary):
                return (near(x[0], 0) \text{ or } near(x[0], 1)) and on_boundary
         k1 = [1, 10, 100]
19 | 11 = [1, 10, 100]
        h1 = [8, 16, 32, 64]
_{21} Pe = [1, 2]
_{23}|H1 = []
        L2 = []
          for p in Pe:
                bd = open('table%s.txt' %p,'w')
27
                 bd.write(\begin{tabular}{|c|c|c|c|c|}\hspace{0.1cm} \hspace{0.1cm} \hspace{0.1c
                 bd.write('\hline%cline\{1-1\}\cline\{4-5\}\n')
29
                 bd.write('h & l & k &$L^2$&$H^1$ \\\\n')
                bd.write('\hline \n')
31
               H = []

L = []
33
                 meshsize = []
35
                 for h in h1:
                         bd.write('\multirow\{9\}\{*\}\{\setminus \text{textbf}\{\%s\}\}' %h)
                          for l in l1:
                                 bd.write(' & \multirow{3}{*}{%s}' %l)
                                 for k in k1:
41
```

```
mesh = UnitSquareMesh(h, h)
             mesh size.append(mesh.hmin())
43
            \begin{array}{lll} V = & FunctionSpace\left(\frac{mesh}{mesh}, \ 'CG', \ p\right) \\ V2 = & FunctionSpace\left(\frac{mesh}{mesh}, \ 'CG', \ p+2\right) \end{array}
45
             bc = DirichletBC(V, Constant(0), bc1)
             u = TrialFunction(V)
49
             v = TestFunction(V)
51
             f = Expression( 'pi*pi * sin(k*pi*x[0])*cos(l*pi*x[1])*
       (k*k + l*l)', k = k, l = l)
53
            F = inner(grad(u), grad(v))*dx - f*v*dx
             u_{-} = Function(V)
57
             solve(lhs(F) = rhs(F), u_-, bc)
59
             u_ex = Expression(`sin(k*pi*x[0])*cos(l*pi*x[1])`,k = k,
        1 = 1)
             u_e = interpolate(u_ex, V2)
61
             ud = abs(u_- - u_-e)
63
            \#L2\_norm = errornorm(u_-, u_-e)
            L2\_norm = sqrt(assemble(ud**2*dx))
67
            #H1_norm= errornorm(u_, u_e, 'H1')
            H1\_norm = sqrt(assemble(ud*ud*dx+ inner(grad(ud), grad(ud)))
69
       ud))*dx))
            H. append (H1_norm)
7
            L. append (L2_norm)
73
             if k ==1:
               bd.write('& %s
                                    & \%0.5 f & \%0.5 f \\\\\ \cline{3-5}\n'
       %(k, L2_norm, H1_norm))
             e \, l \, i \, f \ k \ == 100 \colon
77
               bd.write('&& %s
                                     & \%0.5 f & \%0.5 f \\\\\ \cline{2-5}\n'
        \%(k, L2\_norm, H1\_norm))
             else:
79
               bd.write('&& %s
                                     & \%0.5 f & \%0.5 f \\\\\ \cline{3-5}\n'
        %(k, L2_norm, H1_norm))
81
        bd.write('\\hline \\hline \n')
     \mathrm{H1.append}\left(\mathrm{H}\right)
     L2.append(L)
     H1.append(meshsize)
85
87
     bd.write('\\end{tabular}')
     bd.close()
```

```
91 for j in [H1, L2]:
93
      for i in range (2):
        A = np.zeros((2,2))
        b = np.zeros(2)
        A[0][0] = len(H1[i*2])
        A[0][1] = sum(np.log(H1[2*i+1]))
97
        A\,[\,1\,]\,[\,0\,]\ =\ {\color{red} {\rm sum}}\,(\,{\rm np}\,.\,{\color{red} {\rm log}}\,(\,{\rm H1}\,[\,2*\,i\,+1]\,)\,)
99
        A[1][1] = sum(np.log(H1[2*i+1])**2)
101
        if j == L2:
           b[1] = sum(np.log(H1[2*i+1])*np.log(j[i]))
103
           b[0] = sum(np.log(j[i]))
105
           b[1] = sum(np.log(H1[2*i+1])*np.log(j[2*i]))
           b[0] = sum(np.log(j[2*i]))
        logC, alpha = np.linalg.solve(A,b)
107
        print 'alpha/beta:', alpha, 'C:', np.exp(logC)
109
   #print A, hi
```

Ex1.py

```
from dolfin import *
  set_log_active (False)
  import numpy as np
  def alpha(error, hval):
   A = np. zeros((2,2))
    b = np.zeros(2)
    A[0][0] = len(error)
    A[0][1] = sum(np.log(hval))
10
    A[1][0] = sum(np.log(hval))
    A[1][1] = sum(np.log(hval)**2)
12
    b[1] = sum(np.log(hval)*np.log(error))
    b[0] = sum(np.log(error))
    logC, alpha = np.linalg.solve(A,b)
    return alpha
18
20
  def left (x, on_boundary):
    return near (x[0], 0) and on_boundary
  def right (x, on_boundary):
    return near(x[0], 1) and on_boundary
  mu1 = [1., 0.1, 0.01, 0.0015, 0.001, 0.0001]
  h1 = [8, 16, 32, 64]
  P = 1
30
  PrintTexTable = False
  task_d = True
32
  if PrintTexTable == True:
    print '$\\mu\ & h & L2 & H1 & L2 \\alpha\ & H1 \\
36
     alpha$\\\\ \hline;
  #for h in h1:
38
  for mu in mul:
    t = 0
40
    H1_{error} = []
    L2-error = []
    hval = []
    for h in h1:
44
      mesh = UnitSquareMesh(h, h)
46
      beta = 0.5*mesh.hmin()
48
      50
```

```
bc = [DirichletBC(V, Constant(0), left), DirichletBC(V,
       Constant(1), right)]
54
       u = TrialFunction(V)
       v = TestFunction(V)
       L = v + beta * v.dx(0) #SUPG Testfunction
       f = Constant(0)
60
       u_{-} = Function(V)
62
       if task_d == True:
64
         FSD = mu*inner(grad(u), grad(L))*dx + u.dx(0)*L*dx - f*L*
         solve(lhs(FSD) = rhs(FSD), u_-, bc)
66
       else:
         F = mu*inner(grad(u), grad(v))*dx + u.dx(0)*v*dx - f*v*dx
68
         solve(lhs(F) = rhs(F), u_-, bc)
       u_ex = Expression('(1-exp(x[0]/mu))/(1-exp(1/mu))', mu = mu)
70
       u_e = interpolate(u_ex, V2)
72
       ud = abs(u_- - u_-e)
       #print ud
74
       L2\_norm = errornorm(u\_, u\_e)
       H1\_norm = errornorm(u\_, u\_e, 'H1')
       H1_error.append(H1_norm)
80
       L2_error.append(L2_norm)
       hval.append(mesh.hmin())
82
       if PrintTexTable == True:
84
         if t==0:
           print '\multirow{4}{*} {%s} &' %mu,h,'&',L2_norm,' &',
86
      H1\_norm, ' & \multirow{6}{*} {L2} & \multirow{4}{*} {H1} \\\
      \setminus cline \{2-4\},
           t+=1
         else:
88
           print '&',h,'&', L2_norm,'&', H1_norm, '&', '&', '\\\
       cline \{2-4\},
90
       \#plot(u_-, interactive=True)
     if PrintTexTable == True:
92
       print '\hline \hline
94
     else:
96
       L2alpha = alpha(L2_error, hval)
       H1alpha = alpha(H1\_error, hval)
98
       print 'mu: ', mu, ' L2alpha: ', L2alpha, '
                                                         H1alpha:',
       H1alpha
100
```

```
print mu
for n in range(len(h1)):
    if n>0:
        print 'L2:', np.log(L2_error[n]/L2_error[n-1]) / np.log(
        hval[n]/hval[n-1])
        print 'H1:',np.log(H1_error[n]/H1_error[n-1]) / np.log(
        hval[n]/hval[n-1])

#plot(ud, interactive=True)
```

Ex2.py