

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA

BAIN 036 ÁLGEBRA LINEAL PARA INGENIERÍA Guía de Ejercicios Nº 1

1.- a) Sean
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 2 \end{bmatrix}$$
 $B = \begin{bmatrix} -2 & 0 \\ 1 & 4 \\ -7 & 5 \end{bmatrix}$ y $C = \begin{bmatrix} -1 & 1 \\ 4 & 6 \\ -7 & 3 \end{bmatrix}$

- (i) Calcule 3A, 2C-5A, 7C-B+2A
- (ii) Encuentre una matriz D tal que 2A+B-D sea la matriz cero de orden 3×2 .

b) Si
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & 5 \\ 0 & 1 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 0 & 5 \\ 7 & -6 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 0 & 2 \\ 3 & 1 & 0 \\ 0 & -2 & 4 \end{bmatrix}$

- (i) Calcule 2A-B+2C, A-B-C
- (ii) Encuentre una matriz E tal que $A \cdot C 2B 4E$ sea la matriz identidad de orden 3×3 .

2.- Calcule
$$A^2, A^3, A^4$$
 si $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. ¿Podría hallar A^n , para $n \ge 4$, $n \in \mathbb{N}$?

3.- Considere las matrices elementales filas de orden 3, siguientes: F_{23} , $F_{(-5)1}$, $F_{2+(-3)1}$, $F_{3+(2)1}$

y las matrices
$$A = \begin{bmatrix} 1 & -2 & 4 & 0 & 5 \\ 1 & 0 & 2 & -1 & 1 \\ -2 & 0 & -1 & 1 & 0 \end{bmatrix}$$
 y $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 1 \end{bmatrix}$.

- a) Escriba explícitamente cada una de estas matrices elementales, y exprese cada una de ellas como la imagen por una operación elemental fila de la identidad.
- b) Calcule $F_{23} \cdot F_{(-5)} \cdot A$ y $F_{2+(-3)} \cdot F_{3+(2)} \cdot B$
- c) Calcule $f_{23}\left(f_{(-5)\,1}(A)\right)$ y $f_{2+(-3)\,1}\left(f_{3+(2)\,1}(B)\right)$
- d) ¿Qué concluye de los cálculos anteriores?
- **4.-** Halle las inversas de las matrices:

c) $\begin{bmatrix} I_k & U \\ 0 & I_l \end{bmatrix}$, donde I_k, I_l son matrices identidad de ordenes k y l respectivamente,

- 5.-Pruebe que:
 - $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$; A,B,C matrices no singulares. a)
 - $(kA)^{-1} = \frac{1}{k}A^{-1}$, para A matriz no singular y $k \in \mathbb{R}$, $k \neq 0$.
 - Si A es matriz 2×1 y B matriz 1×2 entonces $A \cdot B$ es singular. c)
- Una matriz cuadrada A se llama INVOLUTIVA si $A^2 = I$ y se llama IDEMPOTENTE si $A^2 = A$. 6.-Demuestre que si A es involutiva entonces:
 - a) A es no singular.
 - $\frac{1}{2}(I+A)$ y $\frac{1}{2}(I-A)$ son idempotentes y $\frac{1}{2}(I+A)\cdot\frac{1}{2}(I-A)=0$
 - Halle condiciones para que una matriz $A \in M_2$ sea involutiva.
- 7.-Resuelva las ecuaciones matriciales. Use matrices inversas cuando sea posible; si no es posible, resuelva usando incógnitas.
 - a) $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \cdot X = \begin{vmatrix} 3 & 5 \\ 5 & 9 \end{vmatrix}$

- b) $X \cdot \begin{vmatrix} 3 & -2 \\ 5 & -4 \end{vmatrix} = \begin{vmatrix} -1 & 2 \\ -5 & 6 \end{vmatrix}$
- c) $\begin{bmatrix} 3 & -1 \\ 5 & -2 \end{bmatrix} \cdot X \cdot \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 16 \\ 9 & 10 \end{bmatrix}$ d) $\begin{bmatrix} 2 & -3 \\ 4 & -6 \end{bmatrix} \cdot X = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$
- 8.-Halle las matrices escalón reducida por filas equivalentes a las matrices siguientes, e indique el rango de cada una:
 - a) $\begin{vmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \end{vmatrix}$

- b) $[2 \ 0 \ -5 \ 4]$ c) $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

- d) $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$ e) $\begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 2 & 1 & 2 \\ 2 & -1 & 2 & 5 \\ 5 & 6 & 3 & 2 \end{bmatrix}$
- **9.-** Sea $A = \begin{vmatrix} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{vmatrix}$

Halle una matriz escalón reducida por filas R, equivalente por fila a A, y una matriz invertible 3×3 , P tal que R = PA.

- 10.- Describa todas las posibles matrices 2×2 que son escalón reducida por filas. Idem para 2×3 , 3×2 y 3×3 .
- 11.- Halle det A y det A^T . Compruebe que son iguales en cada caso :

$$\mathbf{a}) A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ 0 & 2 & 4 \end{bmatrix}$ c) $A = \begin{bmatrix} x & y \\ u & v \end{bmatrix}$ d) $A = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$

$$A = \begin{bmatrix} x & y \\ u & v \end{bmatrix}$$

$$A = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$

12.- a) Sea A una matriz cuadrada de orden impar, tal que : $a_{ij} = -a_{ji}$, $\forall_{i,j}$. Pruebe que detA=0. (Indicación : Observe que $A^T = -A$ y de ahí se obtiene det $A = -\det A$).

b) Pruebe que :
$$\begin{vmatrix} a+d & 3a & b+2a & b+d \\ 2b & b+d & c-b & c-d \\ a+c & c-2d & d & a+3d \\ b-d & c-d & a+c & a+b \end{vmatrix} = 0$$

- c) Sea $A \in M_2(\mathbb{R})$. Pruebe que adj(adj(A)) = A.
- d) Sea $A \in M_n(\mathbb{R})$ no singular. Pruebe que $\det(A^{-1}) = (\det A)^{-1}$.
- e) Sea C matriz elemental columna. Calcule $\det C$, para cada caso y muestre que $\det C \neq 0$.
- f) Los números 204, 255 y 527 son divisibles por 17.

Pruebe, sin calcular, que $\begin{vmatrix} 2 & 0 & 4 \\ 2 & 5 & 5 \\ 5 & 2 & 7 \end{vmatrix}$ es divisible por 17.

13.- Calcule los determinantes siguientes:

a)
$$\begin{vmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{vmatrix}$$
 b) $\begin{vmatrix} 1 & -1 & 1 & -1 \\ 2 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix}$ c) $\begin{vmatrix} a & 0 & 0 & 0 & 0 \\ 0 & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & c \\ 0 & e & 0 & 0 & 0 \\ 1 & 0 & 0 & d & 0 \end{vmatrix}$

14.- Resuelva las ecuaciones

a)
$$\begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^{n-1} \end{vmatrix} = 0$$
b)
$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1-x & 1 & \dots & 1 \\ 1 & 1 & 2-x & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & (n-1)-x \end{vmatrix} = 0$$

15.-Resuelva los sistemas de ecuaciones lineales no homogéneos:

a)
$$x_1 - 2x_2 + x_3 - 3x_4 = 1$$

a)
$$x_1 - 2x_2 + x_3 - 3x_4 = 1$$

b) $x_1 + x_2 + x_3 = 4$
 $2x_1 + 5x_2 - 2x_3 = 3$ c) $x_1 + x_2 + x_3 + x_4 = 0$
 $x_1 + x_2 + x_3 - x_4 = 4$
 $x_1 + x_2 - x_3 + x_4 = -4$
 $x_1 - x_2 + x_3 + x_4 = 2$ d) $x_1 + x_2 + 2x_3 + x_4 = 5$
 $x_1 + x_2 + 2x_3 + x_4 = 5$
 $x_1 + x_2 + x_3 + x_4 = 2$

16.-Resuelva los sistemas de ecuaciones lineales homogéneos:

a)
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 0 \\ 2x_1 + 5x_2 + 6x_3 = 0 \end{cases}$$
 b)
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 0 \\ x_1 - 4x_2 + 5x_3 = 0 \end{cases}$$
 c)
$$\begin{cases} x + 2y - 3z = 0 \\ 2x + 5y + 2z = 0 \\ 3x - y - 4z = 0 \\ 4x + y - 7z = 0 \end{cases}$$

17.-Determine valores de k, en cada caso, para que los sistemas lineales no homogeneos siguientes tengan: i) solución única. ii) infinitas soluciones. iii) ninguna solución.

18.-Determine valores de k, en cada caso, para que los sistemas lineales homogeneos siguientes solución no trivial tengan: i) sólo solución trivial ii)

Para el sistema $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$. Determine condiciones acerca de a, b, c, d, e, f para que tenga: 19.-

- a) Solución única b) Infinitas soluciones c) Ninguna solución

20.-Pruebe que:

- Si en un sistema de ecuaciones lineales homogeneo, los coeficientes de una de las a) incógnitas son todos cero, entonces el sistema tiene solución no trivial.
- Si el sistema AX=B, $B \neq 0$, de n ecuaciones con n incógnitas tiene solución única, b) entonces:

AX=C tendrá también solución única, cualquiera sea la matriz columna C.

Si AX=B es sistema de m ecuaciones con n incógnitas, consistente y C es una solución c) particular, entonces:

(D es solución de AX=B) \Leftrightarrow (D=C+S, donde S es una solución del "sistemas homogéneo asociado" AX=0).

21.-Considere el sistema de ecuaciones: a)

$$x_{2} + 2x_{3} + 2x_{4} = 1$$

$$x_{1} + x_{2} + 2x_{3} + 3x_{4} = -1$$

$$2x_{1} + 2x_{2} + 2x_{3} + 3x_{4} = 2$$

$$2x_{1} + 3x_{2} + 3x_{3} + 3x_{4} = 0$$

Resuélvalo usando el siguiente método:

- 1.- Expréselo en la forma AX=B.
- 2.- Pruebe que A es no-singular y calcule A^{-1} .
- 3.-"Despeje" X de la ecuación multiplicando por A^{-1} por la izquierda.

b) Aplique el método anterior para resolver los sistemas :

i)
$$AX = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 ii) $AX = \begin{bmatrix} -1 \\ 5 \\ 4 \end{bmatrix}$ iii) $AX = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$, donde $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

22.- Resuelva usando Regla de Cramer, para las incógnitas indicadas, o probar que no existe solución única: