Álgebra

Licenciatura em Ciências da Computação/Licenciatura em Matemática - 2° ano

Exercícios - Folha 10 2020/21

- 66. Sejam A um anel e I um ideal de A. Prove que:
 - (a) os subanéis do anel quociente A/I são todos os anéis quociente B/I, em que B é um subanel de A que contem I:
 - (b) os ideais do anel quociente A/I são todos os anéis quociente J/I, em que J é um ideal de A que contém I.
- 67. Sejam A e B dois anéis com identidade. Prove que o conjunto dos ideais do anel com identidade $A \times B$ é

$$\mathcal{I}\left(A\times B\right)=\left\{ I\times J:I\text{ \'e ideal de }A\text{ e }J\text{ \'e ideal de }B\right\} .$$

- 68. Considere o anel $\mathbb{Z} \times \mathbb{Z}$. Indique:
 - (a) um ideal maximal;
 - (b) um ideal primo que não seja maximal;
 - (c) um ideal próprio não nulo que não seja primo.
- 69. Considere os anéis \mathbb{Z} e $\mathbb{Z} \times \mathbb{Z}$ e a aplicação $\alpha : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por $\alpha (m,n) = m$, para todo $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.
 - (a) Mostre que α é um epimorfismo de anéis.
 - (b) Determine Nuc α .
- 70. Sejam A um anel, I um ideal de A e $\varphi:A\to A/I$ o epimorfismo canónico. Prove que:
 - (a) se A_1 é subanel de A, então $\varphi\left(A_1\right) = \left(A_1 + I\right)/I;$
 - (b) se $\overline{B} = B/I$ é subanel de A/I, então $\varphi^{-1}(\overline{B}) = B$.
- 71. Um anel A diz-se um anel simples se não tiver outros ideais para além dos ideais $\{0_A\}$ e A.

Prove que um anel A é um anel simples se e só se todo o morfismo não nulo de domínio A é um monomorfismo.

- 72. Sejam A e A' dois anéis e $\varphi:A\to A'$ um epimorfismo. Prove que se $u\in A$ é a identidade de A, então $\varphi(u)$ é a identidade de A'.
- 73. Sejam A um anel, I_1 e I_2 ideais de A e $\varphi:A\longrightarrow A/I_1\times A/I_2$ a aplicação definida por $\varphi(a)=(a+I_1,a+I_2)$, para todo $a\in A$. Mostre que:
 - (a) φ é morfismo de anéis.
 - (b) Nuc $\varphi = I_1 \cap I_2$.
 - (c) Se $I_1 + I_2 = A$, então,

$$A/(I_1 \cap I_2) \cong A/I_1 \times A/I_2.$$