$\hat{\sigma}[w] \leftarrow \hat{\sigma}[w] + dP[v];$ dequeue $w \leftarrow Q[level]$; for all $v \in P[w]$ do $t[v] \leftarrow \mathsf{Up};$ $\hat{\delta}[v] \leftarrow \delta[v];$ if $w \neq r$ then

Stage 2 - BFS traversal starting at u_{low}

if t[w] = Not-Touched then enqueue $w \to Q_{BFS}$; enqueue $w \to Q[d[w]]$;

> $t[w] \leftarrow \text{Down};$ $d[w] \leftarrow d[v] + 1;$ $dP[w] \leftarrow dP[v];$

for all neighbor w of v do **if** d[w] = (d[v] + 1) **then**

while Q not empty do dequeue $v \leftarrow Q$;

else $dP[w] \leftarrow dP[w] + dP[v];$ Stage 3 - modified dependency accumulation $\delta[v] \leftarrow 0, v \in \forall V; level \leftarrow V;$ while level>0 do while Q[level] not empty do if t[v] = Not-Touched then enqueue $v \to Q[level-1]$;

 $\hat{\delta}[v] \leftarrow \hat{\delta}[v] + \frac{\hat{\sigma}[v]}{\hat{\sigma}[w]} (1 + \hat{\delta}[w]);$ if $t[v] = Up \land (v \neq u_{high} \lor w \neq u_{low})$ then $\hat{\delta}[v] \leftarrow \hat{\delta}[v] - \frac{\sigma[v]}{\sigma[w]} (1 + \delta[w]);$

 $C_B[w] \leftarrow C_B[w] + \hat{\delta}[w] - \delta[w];$

 $level \leftarrow level - 1$; $\sigma[v] \leftarrow \hat{\sigma}[v], v \in \forall V;$ for $v \in V$ do

if $t[v] \neq Not$ -Touched then $\delta[v] \leftarrow \hat{\delta}[v], v \in \forall V$