Exercício 1 (Lema de Klingenberg, [dC79], Cap. X, Exer. 1) Seja M uma variedade Riemanniana completa com curvatura seccional $K \leq K_0$ onde K_0 é uma constante positiva. Sejam p, $q \in M$ e seja γ_0 e γ_1 duas geodésicas distinas unindo p a γ_1 e com γ_2 duas que γ_3 é homotópica a γ_1 , isto é, existe uma família contínua de curvas γ_1 , γ_2 te [0,1] tal que γ_3 e γ_4 e γ_4 e γ_4 . Prove que existe γ_4 to [0,1] tal que

$$\ell(\gamma_0) + \ell(\alpha_{t_0}) \geqslant \frac{2\pi}{\sqrt{K_0}}$$

Dúvida Como estão construídos os levantamentos das curvas perto de γ_0 ? Em [dC79] simplesmente se afirma que é claro que podemos levantar as curvas perto de γ_0 , mas que não será possível levantar a homotopia completa.

Eu só sei que podemos levantar γ_0 e γ_1 usando as velocidades delas e o fato de que \exp_p manda esses vetores em essas curvas; mas as outras curvas da homotopia não são geodésicas e esse argumento não aplica.

Para entender melhor a construção consultei [dC12]. Cap. 5., sec. 6. Prop. 2, que estabelece a existência e unicidade dos levantamentos de curvas (ou "caminhos") no caso das aplicações de recobrimento. A prova da unicidade parece válida para homeomorfismos locais, e como é parecida ao argumento de achar um conjunto aberto e fechado dentro do intervalo (como na sugestão do nosso exercício), achei bom passar em limpo. Mas **pode pular**, essa prova não é importante para a discussão que segue.

Unicidade de levantamentos para aplicações de recobrimentos Seja $\pi: \tilde{\mathbb{B}} \to \mathbb{B}$ é homeomorfismo local, $\alpha: [0,\ell] \to \mathbb{B}$ um caminho em \mathbb{B} e $\tilde{\mathfrak{p}}_0 \in \tilde{\mathbb{B}}$ um ponto de $\tilde{\mathbb{B}}$ tal que $\pi(\tilde{\mathfrak{p}}_0) = \alpha(0) = \mathfrak{p}_0$. Se existe um levantamento $\tilde{\alpha}: [0,\ell] \to \tilde{\mathbb{B}}$ de α com origem em $\tilde{\mathfrak{p}}_0$, ele é único.

Demostração. Suponha que existe outro levantamento $\tilde{\beta}:[0,\ell]\to \tilde{B}$ de α com origem em \tilde{p}_0 . Seja $A\subset [0,\ell]$ o conjunto de pontos onde $\tilde{\alpha}$ e $\tilde{\beta}$ coincidem. Ele é fechado porque se pegamos uma sequência de pontos dentro de ele, por continuidade tanto de $\tilde{\alpha}$ quanto de $\tilde{\beta}$ o ponto limite irá ficar dentro de A.

Para ver que é aberto considere um ponto $t \in A \subset I$. Vamos mostrar que existe uma vizinhança dele totalmente contida em A. Defina $\tilde{\mathfrak{p}}:=\tilde{\alpha}(t)=\tilde{\beta}$ (que vale porque pegamos $t \in A$). Pegue uma vizinhança V de $\tilde{\mathfrak{p}}$ onde π seja um homeomorfismo. Como $\tilde{\alpha}$ e $\tilde{\beta}$ são contínuas, as imagens inversas de V sob $\tilde{\alpha}$ e $\tilde{\beta}$ podem ser intersectadas para produzir uma vizinhança I_t de t.

Só falta ver que $\tilde{\alpha}$ e $\tilde{\beta}$ coincidem em I_t . Como $\tilde{\alpha}$ e $\tilde{\beta}$ são levantamentos, sabemos que $\pi \circ \tilde{\alpha} = \pi \circ \tilde{\beta}$. Como π é um homeomorfismo em V, podemos inverter ele para concluir que $\tilde{\alpha} = \tilde{\beta}$ nessa vizinhança.

Porém o que realmente nos compete aqui é a existência dos levantamentos. O problema é que isso não vale para difeomorfismos (ou homeomorfismos) locais arbitrários. A prova de existência de levantamentos em [dC12] para aplicações de recobrimento pode ser resumida assim:

- (a) Para cada $t \in I$ podemos considerar uma **vizinhança distinguida** de $\alpha(t)$. Ou seja, uma vizinhança de $V_t \ni \alpha(t)$ tal que $\pi^{-1}(U_t)$ é uma união disjunta de abertos de \tilde{M} onde π se restringe a um homeomorfismo. Note que isso não existe em nosso caso; apenas podemos garantir a existência de uma vizinhança de $\alpha(t)$ onde π se restringe a um difeomorfismo.
- (b) Usando a compacidade do intervalo junto com a continuidade de α podemos cobrir o caminho $\alpha(I)$ com uma quantidade finita de abertos.
- (c) Considere o primeiro deles, I_0 . Como π se restringe a um homeomorfismo nessa vizinhança, podemos levantar esse pedacinho da curva α como sendo simplesmente a preimagem de $\alpha(I_0)$ sob π a algum dos abertos disjuntos que são a preimagem da vizinhança distinguida. Isso vale para nosso difeomorfismo local na preimagem do aberto em que exp $_{\mathfrak{p}}$ é um difeomorfismo.
- (d) Considere agora I_1 , o seguinte intervalo. Deve existir um ponto $t \in I_1 \cap I_0$. A imagem inversa de π em V_1 é uma união disjunta de abertos distinguidos, **um dos quais deve intersectar** V_0 simplesmente por definição de conjunto. O lance é que **toda** a imagem inversa de V_0 é uma união de abertos distinguidos e por isso podemos garantir que um deles intersecta o aberto distinguido onde começamos nosso levantamento.

No caso de \exp_p , embora podemos garantir que existe um aberto onde \exp_p se

restringe a um homeomorfismo, não temos como garantir que essa vizinhança intersecta vizinhança onde começou o levantamento.

Continuando com a construção, como π se restringe a um homeomorfismo em V_1 podemos definir um levantamento novamente como a imagem inversa sob π .

Como já provamos unicidade e **os levantamentos coincidem num ponto**, o segundo levantamento coincide com o primeiro na interseção $I_0 \cap I_1$.

(e) Podemos fazer esse processo para o número de intervalos, que é finito, obtendo um único levantamento de α .

Finalmente vamos dar uma olhada à prova do levantamento de homotopias para homeomorfismos locais com a propriedade de levantamento de curvas, Prop. 3 em [dC12], Cap. 5, Sec. 6. A estratégia é clara: dada uma homotopia no espaço base, definimos a homotopia no espaço total como sendo o levantamento de cada uma das curvas na base usando fortissimamente a propriedade de levantamento de curvas. A prova consiste em provar unicidade (análoga à unicidade de levantamentos de curvas) e a continuidade da homotopia levantada.

Então parece que essa prova não vai ajudar no nosso caso: **não vejo como garantir o** levantamento de nenhuma curva além de γ_0 ou γ_1 , mesmo que esteja perto de γ_0 com respeito ao parâmetro da homotopia.

References

- [dC79] M.P. do Carmo. *Geometria Riemanniana*. Escola de geometria diferencial. Instituto de Matemática Pura e Aplicada, 1979.
- [dC12] M.P. do Carmo. *Geometria diferencial de curvas e superfícies*. Textos universitários. SBM, 2012.