Proof. (Proof of Lemma 4.0.1)

Proof of existence

Let $a, b \in \mathbb{N}$. Consider the set

$$B = \{kb \mid k \in \{0, 1, 2, \dots\}\}.$$

Then $B \subseteq \mathbb{N}$. Also $0 \in B$ so $\emptyset \neq B$. Moreover, there exists $q \in \mathbb{Z}$ such that $qb \in B$ and a < qb since $a < (a+1)b \in B$. Let

$$C = \{ q \in \mathbb{Z} \mid a < qb \}.$$

Then $a+1 \in C$. Since $C \neq \emptyset$ and $C \subseteq \mathbb{Z}$ it follows that C has a least element, say $q_0 + 1$ by the Well-ordering principle. Hence

$$q_0b \le a < (q_0 + 1)b \Rightarrow q_0b \le a < q_0b + b$$
$$\Rightarrow 0 < a - q_0b < b.$$

By letting $r = a - q_0 b$ we get that $a = q_0 b + r$ and $0 \le r < b$ as desired.

Proof of Uniqueness

Assume $a = q_1b + r_1$ and $a = q_2b + r_2$ where $0 \le r_1, r_2 < b$. Then $q_1b + r_1 = q_2b + r_2$ which implies $(q_1 - q_2)b = r_2 - r_1$. Since $r_2 - r_1$ is a multiple of b and $r_2 - r_1 < b$ it must be the case that $r_2 - r_1 = 0$ which implies $q_1 - q_2 = 0$. Therefore $r_1 = r_2$ and $q_1 = q_2$.

Lemma 4.0.1 can be extended to all integers as in Problem 4.0.4. In both cases, a common mistake made when finding q and r it to pick r to be negative. This happens exactly when the q chosen is too large. If the q chosen is too small then the r will be too large.