# GLOBAL SEMICONDUCTOR SHORTAGE

# Abhishikt Emmanuel Prakash

CHRIST (Deemed to be University) - Bengaluru



Q

**ECONOMY** 

# Shortage of semiconductors, dubbed the 'new oil,' could dent GDP growth, boost inflation

PUBLISHED THU, APR 22 2021-4:55 PM EDT



WATCH LIVE

#### **KEY POINTS**

- A variety of factors have converged to make coveted semiconductors scarce.
- Goldman Sachs says the GDP hit from the shortage could be 0.5% this year while price increases could hit 3% for affected goods.
- TS Lombard economist Rory Green calls semis the "new oil" for the global impact that disruptions can cause.



China laid out seven "frontier" technologies in its 14th Five Year Plan. These are areas that China will focus research on and include semiconductors and brain-computer fusion.

Yuichiro Chino | Moment | Getty Images

**INTRODUCTION:** A variety of factors have converged to make the coveted computer chips scarce. Soaring demand coupled with supply bottlenecks have led to a situation in which orders for everything from cars to televisions to touch-screen computers and more are on backup for six months or more. The market for semiconductors has been volatile in the last 2 years and experts predict supply chain challenges across the semiconductor industry will extend to late 2023 and early 2024.

In this statistical analysis, we will analyse the current semiconductor market scenario from a financial perspective using various statistical tools. This analysis is done using a secondary dataset named "Semiconductor shortage" provided by <u>kaggle</u>. The dataset carries semiconductor market data from 1985 to 2021.

#### THE DATASET HAS 10 COLUMNS Each one is as follows

Date: given in dd/mm/yy format.

**Producer Price Index(By Industry in \$):** It is a group of indexes that calculates and represents the average movement in selling prices from domestic production over time. **Import and Export Price Index:** measure the change in prices of goods and services purchased from abroad by U.S. consumers and businesses (imports) and sold to foreign buyers

No. of employed peoples in the semiconductor industry: employment indicator. Export Price Index (End-use excluding without semiconductors): measure the change in prices of goods and services purchased from abroad by U.S. consumers and businesses (imports) and sold to foreign buyers but without including semiconductor.

**Relative Importance Weights**: (Contribution to the Total Industrial Production Index % WISE)

**Import Price Index(End Use):** Capital Goods, Excluding Computers, Peripherals, and Semiconductors.

**Export Price Index(End Use):** Capital Goods, Excluding Computers, Peripherals, and Semiconductors

Industrial Production: Non-Energy Excluding Motor Vehicles & Parts, Computers,

Communications Equipment, and Semiconductors

**Intel share price:** Maximum share price of Intel each year

**OBJECTIVE 1:** Study the change in average movement in selling prices from domestic production over time, over a period of 36 years.

#### **PROCEDURE:**

- Keeping the cursor within the dataset go to insert
- Insert pivot table
- Select date for rows
- Select producer price in value
- Click on "i", and change value to average
- Now pivot table is generated
- Go to data tab
- Go to data analysis
- Select summary statistics
- Select input range
- Select output range
- Click OK

- Summary statistics is generatedSelect the desired column
- Go to insert
- Select 2D line graphGraph is generated

|            | Average of Producer Price Index(By Industry in |
|------------|------------------------------------------------|
| Row Labels | \$)                                            |
| 1985       | 100.525                                        |
| 1986       | 102.4416667                                    |
| 1987       | 102.6333333                                    |
| 1988       | 104.0333333                                    |
| 1989       | 105.1083333                                    |
| 1990       | 104.8916667                                    |
| 1991       | 104.9333333                                    |
| 1992       | 104.6083333                                    |
| 1993       | 105.325                                        |
| 1994       | 104.7666667                                    |
| 1995       | 102.55                                         |
| 1996       | 99.30833333                                    |
| 1997       | 95.13333333                                    |
| 1998       | 91.85                                          |
| 1999       | 90.09166667                                    |
| 2000       | 88.75833333                                    |
| 2001       | 86.38333333                                    |
| 2002       | 84.85833333                                    |
| 2003       | 81.08333333                                    |
| 2004       | 78.26666667                                    |
| 2005       | 76.49166667                                    |
| 2006       | 75.14166667                                    |
| 2007       | 70.2                                           |
| 2008       | 66.26666667                                    |
| 2009       | 65.39166667                                    |
| 2010       | 63.85833333                                    |
| 2011       | 61.55                                          |
| 2012       | 59.51666667                                    |
| 2013       | 59.23333333                                    |
| 2014       | 58.775                                         |
| 2015       | 58.38333333                                    |
| 2016       | 57.33333333                                    |
| 2017       | 56.80833333                                    |
| 2018       | 55.975                                         |
| 2019       | 55.34166667                                    |

| 2020        | 54.7666667 |
|-------------|------------|
| 2021        | 54.5222    |
| Grand Total | 80.851181  |

# Producer Price Index(By Industry in \$)

| Mean               | 80.851181  |
|--------------------|------------|
| Standard Error     | 0.91353317 |
| Median             | 82.25      |
| Mode               | 105.3      |
| Standard Deviation | 19.2059349 |
| Sample Variance    | 368.867937 |
| Kurtosis           | -1.6217461 |
| Skewness           | -0.0290287 |
| Range              | 51.9       |
| Minimum            | 53.8       |
| Maximum            | 105.7      |
| Sum                | 35736.222  |
| Count              | 442        |



## **INFERENCE:**

The above analysis indicates that for the past 35 years the producer price, which is essentially the selling price for semiconductors has been decreasing, while the average producer price for the past 35 years is 80.85.

**OBJECTIVE 2:** Study the change in industrial production of non-energy semiconductors over a period of 36 years.

## **PROCEDURE:**

- Keeping the cursor within the dataset go to insert
- Insert pivot table
- Select date for rows
- Select industrial production, in value
- Click on "i", and change value to average
- Now pivot table is generated
- Go to data tab
- Go to data analysis
- Select summary statistics
- Select input range
- Select output range
- Click OK
- Summary statistics is generated
- Select the desired column
- Go to insert
- Select 2D line graph
- Graph is generated

|            | Average of Industrial Production: Non-Energy Excluding Motor Vehicles |
|------------|-----------------------------------------------------------------------|
| Row Labels | & Parts, Computers, Communications Equipment, and Semiconductors      |
| 1985       | 82.19283333                                                           |
| 1986       | 84.1911                                                               |
| 1987       | 88.15076667                                                           |
| 1988       | 92.01890833                                                           |
| 1989       | 92.59428333                                                           |
| 1990       | 93.191175                                                             |
| 1991       | 90.89070833                                                           |
| 1992       | 92.57068333                                                           |
| 1993       | 94.41559167                                                           |
| 1994       | 97.74721667                                                           |
| 1995       | 100.1887                                                              |
| 1996       | 101.7829833                                                           |
| 1997       | 106.6155167                                                           |
| 1998       | 110.366625                                                            |
| 1999       | 110.7131667                                                           |
| 2000       | 111.6729417                                                           |
| 2001       | 106.779125                                                            |
| 2002       | 106.087875                                                            |
| 2003       | 105.7138667                                                           |
| 2004       | 107.9435833                                                           |
| 2005       | 111.5686917                                                           |
| 2006       | 113.4969667                                                           |
| 2007       | 115.4312917                                                           |

| 2008               | 109.7288    |
|--------------------|-------------|
| 2009               | 94.8584     |
| 2010               | 98.257825   |
| 2011               | 100.2446667 |
| 2012               | 101.8611083 |
| 2013               | 101.7720417 |
| 2014               | 102.31865   |
| 2015               | 101.1579083 |
| 2016               | 99.64334167 |
| 2017               | 99.9999167  |
| 2018               | 100.9291917 |
| 2019               | 98.77105    |
| 2020               | 93.01331667 |
| 2021               | 97.91566    |
| <b>Grand Total</b> | 100.4654464 |
|                    | <del></del> |

# Industrial Production: Non-Energy Excluding Motor Vehicles & Parts, Computers, Communications Equipment, and Semiconductors

| Mean               | 100.4654464  |
|--------------------|--------------|
| Standard Error     | 0.387685538  |
| Median             | 100.4375     |
| Mode               | #N/A         |
| Standard Deviation | 8.15062167   |
| Sample Variance    | 66.4326336   |
| Kurtosis           | -0.454907465 |
| Skewness           | -0.175513804 |
| Range              | 34.6931      |
| Minimum            | 81.43        |
| Maximum            | 116.1231     |
| Sum                | 44405.7273   |
| Count              | 442          |



#### **INFERENCE:**

From the above statistic we can conclude that the average industrial production of semiconductors has been almost constant for the past 35 years, which might be a reason for the shortage because it is evident, with time the demand for semiconductors has been increasing but since the production has been constant, a shortage was evident.

**SUGGESTIONS:** The industrial production should be increased with increasing demand, else we might have to face more of such shortages in future.

**OBJECTIVE 3:** Study the change in number of employees over a period of 36 years.

#### **PROCEDURE:**

- Keeping the cursor within the dataset go to insert
- Insert pivot table
- Select date for rows
- Select number of employees in value
- Click on "i", and change value to average
- Now pivot table is generated
- Go to data tab
- Go to data analysis
- Select summary statistics
- Select input range
- Select output range
- Click OK
- Summary statistics is generated
- Select the desired column
- Go to insert
- Select 2D line graph
- Graph is generated

|            | Average of No. of employed peoples in semiconductor |
|------------|-----------------------------------------------------|
| Row Labels | industry                                            |
| 1985       | 635.7583333                                         |
| 1986       | 601.55                                              |
| 1987       | 593.2166667                                         |
| 1988       | 611.575                                             |
| 1989       | 601.4333333                                         |
| 1990       | 573.85                                              |
| 1991       | 546.475                                             |
| 1992       | 519.575                                             |
| 1993       | 519.5083333                                         |
| 1994       | 535.2166667                                         |
| 1995       | 570.9666667                                         |
| 1996       | 606.6                                               |
| 1997       | 639.8333333                                         |
| 1998       | 650.025                                             |

| 1999               | 630.6083333 |
|--------------------|-------------|
| 2000               | 676.225     |
| 2001               | 645.225     |
| 2002               | 524.4166667 |
| 2003               | 461.0583333 |
| 2004               | 454.1416667 |
| 2005               | 451.875     |
| 2006               | 457.85      |
| 2007               | 447.5       |
| 2008               | 431.75      |
| 2009               | 378.25      |
| 2010               | 369.4416667 |
| 2011               | 383.1       |
| 2012               | 383.05      |
| 2013               | 374.9       |
| 2014               | 367.3083333 |
| 2015               | 369.5833333 |
| 2016               | 367.1583333 |
| 2017               | 362.1583333 |
| 2018               | 369.125     |
| 2019               | 375.975     |
| 2020               | 370.1666667 |
| 2021               | 371.98      |
| <b>Grand Total</b> | 493.2063348 |

# No. of employed peoples in semiconductor industry

| Mean               | 493.2063348  |
|--------------------|--------------|
| Standard Error     | 5.12230305   |
| Median             | 462.65       |
| Mode               | 374.7        |
| Standard Deviation | 107.6902546  |
| Sample Variance    | 11597.19093  |
| Kurtosis           | -1.429685823 |
| Skewness           | 0.190605791  |
| Range              | 354.7        |
| Minimum            | 359.8        |
| Maximum            | 714.5        |
| Sum                | 217997.2     |
| Count              | 442          |



#### **INFERENCE:**

From the above visualization we can say that the number of employees in the semiconductor industry has been decreasing from 1985 to 2008. After that till 2021 the number of employees has hardly changed, this indicates due to some factors the human labour required was reducing till 2008 but after that the effect of the factor has reduced.

**OBJECTIVE 4:** Visualise impact of semiconductor market on major manufacturer Intel's share price.

#### **PROCEDURE:**

- Keeping the cursor within the dataset go to insert
- Insert pivot table
- Select date for rows
- Select number of employees in value
- Click on "i", and change value to average
- Now pivot table is generated
- Go to data tab
- Go to data analysis
- Select summary statistics
- Select input range
- Select output range
- Click OK
- Summary statistics is generated
- Select the desired column
- Go to insert
- Select 2D line graph
- Graph is generated

|            | Max. of Intel share |  |
|------------|---------------------|--|
| Row Labels | price               |  |
| 1985       | 0.666667            |  |
| 1986       | 0.666667            |  |

| 1987               | 1.302083  |
|--------------------|-----------|
| 1988               | 1.148438  |
| 1989               | 1.117188  |
| 1990               | 1.609375  |
| 1991               | 1.851563  |
| 1992               | 2.835938  |
| 1993               | 4.59375   |
| 1994               | 4.546875  |
| 1995               | 9.640625  |
| 1996               | 17.640625 |
| 1997               | 25.375    |
| 1998               | 31.421875 |
| 1999               | 44.5      |
| 2000               | 75.625    |
| 2001               | 37.671875 |
| 2002               | 36.200001 |
| 2003               | 34.419998 |
| 2004               | 34.330002 |
| 2005               | 28.620001 |
| 2006               | 26.48     |
| 2007               | 27.790001 |
| 2008               | 26.280001 |
| 2009               | 21.26     |
| 2010               | 24.200001 |
| 2011               | 25.450001 |
| 2012               | 29.26     |
| 2013               | 25.809999 |
| 2014               | 37.68     |
| 2015               | 36.959999 |
| 2016               | 38.25     |
| 2017               | 47.540001 |
| 2018               | 57.009998 |
| 2019               | 59.990002 |
| 2020               | 67.629997 |
| 2021               | 68.199997 |
| <b>Grand Total</b> | 75.625    |
|                    |           |



**INFERENCE:** From the past two years i.e. from 2019 to 2021 the growth in share price can be seen stabilizing this could be a result of the semiconductor shortage in the global market creating fear amongst investors.

**OBJECTIVE 5:** Pie chart to visualize for what part of the time over a period of 42 years shows what level of contribution to the global market has been made by the US.

#### **PROCEDURE:**

- Keeping the cursor within the dataset go to insert
- Insert pivot table
- Select date for rows
- Select number of employees in value
- Click on "i", and change value to average
- Now pivot table is generated
- Go to data tab
- Go to data analysis
- Select summary statistics
- Select input range
- Select output range
- Click OK
- Summary statistics is generated
- Select the desired column
- Go to insert
- Select pie chart
- Pie chart is generated

| Row Labels            | Count of Contribution remark |     |
|-----------------------|------------------------------|-----|
| GOOD CONTRIBUTION     |                              | 147 |
| LOW CONTRIBUTION      |                              | 111 |
| MODERATE CONTRIBUTION |                              | 184 |





**OBJECTIVE 6:** Regression analysis model where number of employees is a dependent variable and producer price, export price and import price are independent variables.

**INFERENCE:** For most part of time there has been a moderate contribution made by the US.

# **PROCEDURE:**

- Go to data tab
- Go to data analysis
- Select regression
- Select Y range as the number of employees
- Select X range as the producer price, export price and import price which are independent variables
- Select output range
- Click OK

#### **RESULT:**

# SUMMARY OUTPUT

| Regression Statistics |             |  |  |
|-----------------------|-------------|--|--|
| Multiple R            | 0.929300225 |  |  |
| R Square              | 0.863598908 |  |  |
| Adjusted R Square     | 0.862664654 |  |  |
| Standard Error        | 39.90869861 |  |  |
| Observations          | 442         |  |  |

| С          | df  | SS          | MS          | F          | Significanc<br>e F |
|------------|-----|-------------|-------------|------------|--------------------|
| Regression | 3   | 4416756.752 | 1472252.251 | 924.372666 | 5.21E-189          |
| Residual   | 438 | 697604.4505 | 1592.704225 |            |                    |
| Total      | 441 | 5114361.202 |             |            |                    |

|             | Coeffici<br>ents | Standar<br>d Error | t Stat  | P-value | Lower<br>95% | Upper<br>95% | Lower<br>95.0% | <i>Upper</i> 95.0% |
|-------------|------------------|--------------------|---------|---------|--------------|--------------|----------------|--------------------|
|             | -                |                    | -       |         | -            | -            | -              | -                  |
|             | 48.7303          | 13.7181            | 3.55226 | 0.0004  | 75.6918      | 21.768       | 75.691         | 21.768             |
| Intercept   | 8297             | 0863               | 6883    | 2338    | 8331         | 883          | 883            | 883                |
| Producer    |                  |                    |         |         |              |              |                |                    |
| Price       |                  |                    |         |         |              |              |                |                    |
| Index(By    |                  |                    |         |         |              |              |                |                    |
| Industry    | 10.8312          | 0.42305            | 25.6024 | 4.7218  | 9.99980      | 11.662       | 9.9998         | 11.662             |
| in \$)      | 7776             | 5927               | 7252    | E-89    | 5807         | 7497         | 0581           | 7497               |
| Export      |                  |                    |         |         |              |              |                |                    |
| Price       |                  |                    |         |         |              |              |                |                    |
| Index(End   |                  |                    |         |         |              |              |                |                    |
| Use of      |                  |                    |         |         |              |              |                |                    |
| semicond    | 1.36401          | 0.19295            | 7.06922 | 6.1873  | 0.98478      | 1.7432       | 0.9847         | 1.7432             |
| uctors)     | 0539             | 0602               | 1474    | E-12    | 6415         | 3466         | 8642           | 3466               |
| Import      |                  |                    |         |         |              |              |                |                    |
| Price       |                  |                    |         |         |              |              |                |                    |
| Index(in \$ |                  |                    |         |         |              |              |                |                    |
| End Use     |                  |                    |         |         |              |              |                |                    |
| of          | -                |                    | -       |         | -            | -            | -              | -                  |
| semicond    | 4.58298          | 0.24522            | 18.6888 | 9.718E  | 5.06495      | 4.1010       | 5.0649         | 4.1010             |
| uctors)     | 7382             | 578                | 4821    | -58     | 2873         | 219          | 529            | 219                |

# **INFERENCE:**

- Since p value of producer price is less than 0.05, producer price is significant in determining the number of employees.
- Since p value of export price is less than 0.05, export price is significant in determining the number of employees.
- Since p value of import price is less than 0.05, import price is significant in determining the number of employees.
- This means 86.35% of the proportion variance of no. of employees can be explained by the independent variables producer price, export price and import price.
- Since the value of significance F is lesser than 0.05, we can conclude that overall model is a good fit.

• R square value indicates that 86.35% of the proportion variance of no. of employees can be explained by the independent variables producer price, export price and import price.

**OBJECTIVE 7:** Correlation between number of employees and the export price

#### **PROCEDURE:**

- Go to data tab
- Go to data analysis
- Select correlation
- Select input range
- Select output range
- Click OK

#### **RESULT:**

|                              | No. of employees in industry | Export Price<br>Index |
|------------------------------|------------------------------|-----------------------|
| No. of employees in industry | 1                            |                       |
| Export Price Index           | 0.74643827                   | 1                     |

#### **INFERENCE:**

There is a strong positive correlation between number of employees in the semiconductor industry, and the export price of semiconductors. Which means if the number of employees in the industry is less than the export price also is down and vice-verse.

**SUGGESTION:** To lower the export price automation or other techniques to reduce human workforce can be applied.

**OBJECTIVE 8:** F- test between import price and export price

H0: The variance export price and the variance import price are equal.

H1: The variance export price and the variance import price are not equal.

#### **PROCEDURE:**

- Go to data tab
- Go to data analysis
- Select F-test for two sample variance
- Select input range variable 1
- Select input range variable 2
- Select output range
- Click OK

|      | Import Price Index (End Use): Capital Goods, Excluding Computers, Peripherals, and Semiconductors | Export Price Index (End use excluding without semiconductors) |
|------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Mean | 105.0104072                                                                                       | 110.6447964                                                   |

| Variance         | 104.5594379 | 3774.836129 |
|------------------|-------------|-------------|
| Observations     | 442         | 442         |
| df               | 441         | 441         |
| F                | 0.027699067 |             |
| P(F<=f) one-tail | 0           |             |
| F Critical one-  | 0.854856424 |             |
| tail             |             |             |

**INFERENCE:** Since P value is less than 0.05, hence we accept the null hypothessi that variance of the two variables is same.

**OBJECTIVE 9:** t-test between export price and the import price.

H0: The mean export price and the mean import price are equal.

H1: The mean export price and the mean import price are not equal.

## **RESULT:**

|                     | Export Price Index(End Use of semiconductors) | Import Price Index(in \$ End Use of semiconductors) |
|---------------------|-----------------------------------------------|-----------------------------------------------------|
| Mean                | 98.4040724                                    | 102.1187783                                         |
| Variance            | 1429.258441                                   | 1358.511551                                         |
| Observations        | 442                                           | 442                                                 |
| Pearson             |                                               |                                                     |
| Correlation         | 0.961975245                                   |                                                     |
| Hypothesized        |                                               |                                                     |
| Mean Difference     | 0                                             |                                                     |
| df                  | 441                                           |                                                     |
| t Stat              | -7.55460549                                   |                                                     |
| P(T<=t) one-tail    | 1.2229E-13                                    |                                                     |
| t Critical one-tail | 1.6483162                                     |                                                     |
| P(T<=t) two-tail    | 2.44579E-13                                   |                                                     |
| t Critical two-tail | 1.965357827                                   |                                                     |

## **INFERENCE:**

Since p value for two tail is 2.44579E-13 < 0.05, we reject the null hypothesis, hence we can say, that the mean export and import price are not equal.

# **CONCLUSION:**

\*\*\*\*THANKYOU\*\*\*\*