Análise de Dados Ambientais com R

Jônatan Tatsch 2018-04-17

Contents

\mathbf{A}	prese	entação	5		
1	Inti	rodução	7		
_	1.1	Análise de dados meteorológicos	7		
	1.2	Ciência de dados	7		
	1.3	Etapas para abordagem de um problema	7		
	1.4	Programação computacional	8		
	1.5	R	8		
	1.6	Por que o R?	8		
	1.7	Pacotes da comunidade do R	8		
	1.7	Por que um meteorologista usaria o R?	8		
	1.9	R não é perfeito!	9		
		RStudio	9		
		Para saber mais sobre o R	9		
	1.11	rara saber mais sobre o R	9		
2	Instalação do R e RStudio				
	2.1	-	11		
	2.2		14		
	2.3		15		
	2.4		15		
3	Inte	erface do Usuário	21		
•			21		
	0.1				
4	Ope	erações básicas	23		
	$4.\overline{1}$	Formação do solo	23		
	4.2	Propriedades do solo	23		
	4.3	Textura e Estrutura	23		
	4.4	Movimento da água no solo	23		
	4.5		23		
5	-		25		
	5.1	Evapotranspiração de referência			
	5.2	Evapotranspiração da cultura			
	53	Evanotranspiração real	25		

4 CONTENTS

Apresentação

Este material é uma composição das notas de aula da disciplina **Análise de Dados Ambientais com R** do curso de Graduação em METEOROLOGIA oferecido no Departamento de Física da Universidade Federal de Santa Maria (UFSM).

O livro é designado para quem não tem experiência em programação, ou qualquer um com interesse em aprender o R para manipular dados ambientais. O objetivo é prover uma material para ensinar os conceitos básicos de programação necessários para o processamento, a visualização e a análise de dados ambientais com o sistema computacional R. Estes procedimentos são potencializados com o uso do software RStudio, uma interface de desenvolvimento integrado (IDE) para o R.

Neste livro o leitor aprenderá a sintaxe básica da linguagem R (R Core Team, 2018), a importação e exportação de dados, a criação de gráficos, funções, a padronização e organização de conjunto de dados; e finalmente, a confecção de relatórios dinâmicos e reproduzíveis.

O material do livro inclui o uso de dados ambientais de diferentes áreas (meteorologia, climatologia, hidrologia, sensoriamento remoto) em exemplos práticos e em exercícios, para estimular a prática da programação.

O texto é intercalado com trechos de códigos que podem ser reproduzidos e os resultados visualizados no computador do leitor.

Após a introdução ao R apresenta-se as capacidades específicas do R para manipulação de dados. Baseado na experiência do autor são empregados os pacotes mais adequados para cada finalidade, como dplyr e tidyr para o processamento de dados e o ggplot2 para visualização de dados.

A intenção do livro é que após a leitura, o leitor tenha o conhecimento suficiente para desenvolver códigos que automatizem tarefas repetitivas, assim reduzindo o tempo na etapa de preparação de dados. Esta programação mais efetiva permitirá focar mais na análise de dados e na comunicação dos resultados, seja ela na forma de documentos acadêmicos, ou relatórios técnicos em empresas públicas e privadas.

O texto está em formato html para tirar o melhor proveito de recursos de multimídia, da capacidade de busca de texto e links para websites.

O texto é organizado em 5 capítulos:

- 1 Introdução
- 2 Instalação do R e Rstudio
- 3 Interface do Usuário
- 4 Operações Básicas
- 5 Tipos de dados

6 CONTENTS

Introdução

Breve intro.

1.1 Análise de dados meteorológicos

Processo pelo qual adquire-se conhecimento, compreensão e percepção dos fenômenos meteorológicos a partir de observações (dados) qualitativas e quantitativas.

1.2 Ciência de dados

1.3 Etapas para abordagem de um problema

- 1. Questão científica/problema
- 2. Obtenção de dados: coleta/medida do(as) estado/condições da atmosfera
 - Instrumentos e sensores
- 3. **Processamento de dados:** download —> limpeza —> formatação —> transformação —> controle de qualidade
 - ferramenta/software
 - conhecimento em programação
- 4. Análise de dados
 - ferramenta/software
 - conhecimento em programação
- 5. Solução para o problema
 - Proposta de um modelo
 - estatístico, empírico, ou fisicamente baseado
 - conhecimento em programação
- 6. Apresentação/divulgação/publicação

1.4 Programação computacional

1.5 R

- R é o termo usado para se referir a linguagem de programação e ao software que interpreta os scripts escritos usando esta linguagem.
- Comunidade fantástica
- Contribuidores (R-core Team)
- milhares de pessoas usam o R diariamente e ajudam outras pessoas
- Software Livre (GPL), Código aberto e multiplataforma
- Ambiente para Análise de dados interativa

1.6 Por que o R?

- R não é uma GUI (Interface gráfica do usuário) e isso é bom
 - há uma natural resistência e dificuldade ao uso de códigos e scripts
 - scripts favorecem a automatização e reprodutibilidade
 - força você a ter um conhecimneto mais aprofundado do que está fazendo
- Reprodutibilidade
 - qualquer pessoa (inclusive você mesmo no futuro) pode obter os mesmos resultados do mesmo conjunto de dados
 - $-\,$ R é integrado com outras ferramentas de que permitem atualizar seus resultados, figuras e análises automaticamente
- Relatório dinâmicos e interativos
- Acesso ao estado da arte da ciência de dados (Biq Data, Data Mining, Machine Leraning)
- Interface com Fortran, C, C++, Python
- Visualização de dados
- R produz gráficos de alta qualidade
- R trabalha com dados de todas formas e tamanhos
- Extensões para Manipulação de dados

1.7 Pacotes da comunidade do R

Evolução do nº de pacotes disponíveis no CRAN

1.8 Por que um meteorologista usaria o R?

```
A meteorologia é 4D:
```

```
meteorologia <- function(x, y, z, t){
    ...muita coisa para caber em um slide...
}</pre>
```

Logo, requer ferramentas específicas para:

- manipulação de dados espacias
- análise de séries temporais
- importação e ferramentas de SIG
- leitura de dados em formatos específicos (netcdf, binários, grib2, ...)

1.9 R não é perfeito!

- Muitos códigos em R são escritos para resolver um problema;
 - foco nos resultados e não no processo
 - usuários não são programadores
 - códigos deselegantes, lentos e difíceis de entender
- Como o nosso idioma, há muitas exceções para serem lembradas
- R não é muito rápido e códigos mal escritos serão lentos
- São apenas ~20 anos de evolução
- Há muito o que melhorar

1.10 RStudio

RStudio é um ambiente de desenvolvimento integrado livre e de código aberto.

- Multiplataforma (Windos, Linux e Mac)
- ênfase da sintaxe do R, auto-preenchimento de código, identação inteligente
- execução do R diretamente do editor
- manejo de diretórios e projetos
- histórico de gráficos, zoom, atalhos para exportar imagens
- Integrado com knitr
- Integrado com GitHub para controle de versões

1.11 Para saber mais sobre o R

Documentação oficial - Manuais do R traduzidos

Lista de Livros relacionados ao R

• Livros gratuitos (em inglês)

Fóruns:

- lista Brasileira de discussão do programa R: R-br
- stackoverflow

Figure 1.1: RStudio IDE

Instalação do R e RStudio

O R é um software livre, de código fonte aberto e funciona em diversos sistemas operacionais (Linux, Windows e MacOS). O usuário interage com o R pela linha de comando. Essa interação pode ser facilitada por meio de uma interface gráfica como o RStudio.

A seguir descreve-se como instalar o R no Windows e no Linux Ubuntu. A forma de instalação do R no Linux tenta ser mais didática do que prática. Alguns comandos linux básicos serão utilizados, mas mesmo quem não é usuário linux será capaz de entendê-los.

2.1 Instalação

O R pode ser instalado a partir dos binários pré-compilados ou do código fonte. Aqui, descreve-se a instalação do R a partir dos binários

2.1.1 Windows

A forma de instalar o R no Windows é baixar o binário executável da **Rede Abrangente de Arquivos do R** (CRAN). Depois clicar em *Download R for Windows* e *install R for the first time*. Quando este tutorial foi escrito a última versão foi a R 3.4.4.

A instalação do R para Windows a partir do executável acima incluirá na instalação uma GUI chamada RGui.exe, mostrada abaixo.

2.1.2 Linux

2.1.2.1 Ubuntu

Há várias formas de instalar o R no Ubuntu, mas geralmente a versão compilada no repositório default do Ubuntu não é a última. Se isso for problema para você então basta executar:

sudo apt-get install r-base

2.1.2.2 R sempre atualizado

Se você prefere trabalhar com a última versão estável do R, precisamos configurar o Linux Ubuntu para atualizar automaticamente o R. Também uma boa prática definir um diretório para armazenamento dos pacotes utilizados.

Figure 2.1: Interface gráfica do usuário no R para Windows.

2.1. INSTALAÇÃO

O procedimento de instalação requer senha de superusuário do sistema ou de privilégios sudo. Caso não tenha, consulte o administrador do sistema.

Ao utilizar distribuições Linux Ubuntu é importante optar por versões estáveis¹. As versões de Suporte de longo prazo (LTS) mais recentes são:

- 14.04 (abril de 2014, codename trusty)
- 16.04 (abril de 2016, codename xenial)

O R é distribuído na CRAN. Geralmente há duas atualizações ao ano. A versão mais atual é a R version 3.4.4 (2018-03-15). Para que ele seja atualizado automaticamente no Ubuntu precisamos adicionar o repósitório do R mais próximo da nossa região à lista de repositórios do Linux. No nosso caso, o repositório mais próximo é o da UFPR (http://cran-r.c3sl.ufpr.br/).

2.1.2.2.1 Incluindo repositório do R na Lista de repositórios do Ubuntu

A lista de repositórios do sistema é armazenada no arquivo /etc/apt/sources.list. Vamos visualizar o conteúdo desse arquivo. Em um terminal linux (use o atalho Ctr+Alt+t), digite o seguinte comando:

```
$ cat /etc/apt/sources.list | head -15
## # deb cdrom:[Ubuntu 14.04.2 LTS _Trusty Tahr_ - Release amd64 (20150218.1)]/ trusty main restricted
##
## # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
## # newer versions of the distribution.
## # deb http://br.archive.ubuntu.com/ubuntu/ trusty main restricted
## # deb-src http://br.archive.ubuntu.com/ubuntu/ trusty main restricted
## deb-src http://ubuntu.c3sl.ufpr.br/ubuntu/ trusty main restricted
## ## Major bug fix updates produced after the final release of the
## ## distribution.
## deb http://br.archive.ubuntu.com/ubuntu/ trusty-updates main restricted
## deb-src http://br.archive.ubuntu.com/ubuntu/ trusty-updates main restricted
## ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
```

Para descobrir o nome da versão do sistema operacional, digite na terminal linux o seguinte comando²:

team. Also, please note that software in universe WILL NOT receive any

```
$ lsb_release --codename | cut -f2
```

trusty

Precisamos incluir no arquivo sources.list o repositório da UFPR. Assim o gerenciador de pacotes apt 3 fará a atualização do R quando uma nova versão estiver disponível. Ou seja, você estará utilizando sempre versão mais atual do R.

O endereço do repositório da UFPR será inserido na última linha do arquivo sources.list usando alguns comandos linux. Essa tarefa requer privilégios de superusuário. Vamos trocar do seu usuário para o superusuário.

\$ sudo su

Vamos definir no terminal uma variável com o endereço do repositório e o nome de versão do Ubuntu.

repos="deb http://cran-r.c3sl.ufpr.br/bin/linux/ubuntu `lsb_release --codename | cut -f2`/"

Note que a variável repos é uma sequência de caracteres com as seguintes informações:

 $^{^1{\}rm Clique}$ aqui para saber mais sobre as versões do Ubuntu.

²Se o comando lsb_release não funcionar você precisa instalar o pacote lsb-release no sistema. Para isso digite no terminal Linux \$ sudo apt-get install lsb-release.

³o gerenciador de pacotes apt é usado para instalação, atualização e remoção de pacotes em distribuições Debian GNU/Linux.

deb `linkRepositorioSelecionado`/bin/linux/ubuntu `versaoUbuntu`/

O valor da variável repos é mostrado pelo comando: echo \$repos. Certifique-se de que a última palavra corresponde ao nome da sua versão Ubuntu.

Para acrescentar essa informação no final do arquivo sources.list digite no terminal linux:

```
# echo $repos >> /etc/apt/sources.list
```

Feito isso, você pode retornar a sessão de usuário comum, usando o comando abaixo:

exit

2.1.2.2.2 APT protegido

Os arquivos binários do R para Ubuntu na CRAN são assinados com uma chave pública⁴ Para adicionar essa chave ao seu sistema digite os seguintes comandos:

```
$ gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys E084DAB9 e então use essa informação como entrada no apt-key com
```

```
$ gpg -a --export E084DAB9 | sudo apt-key add -
```

Se aparecer a mensagem de que a chave pública foi importada, então não há necessidade de executar os comandos abaixo. Mas caso seja impresso alguma mensagem de erro, outra alternativa pode ser usada para obter a chave, via os comandos:

```
$ gpg --keyserver keyserver.ubuntu.com --recv-key E084DAB9
$ gpg -a --export E084DAB9 | sudo apt-key add -
```

2.1.2.2.3 Atualização da lista de repositórios do Ubuntu e instalação do R

Após fazer as configurações da lista de repositórios e adicionar a chave é necessário fazer a atualização dessa lista (requer poderes de super usuário):

```
$ sudo apt-get update
Agora, pode instalar o binário do R:
$ sudo apt-get install r-base
```

2.2 Diretório para instalação de pacotes

Para termos melhor controle sobre os pacotes do R instalados no sistema é recomendado criar um diretório (/home/usuario/.R/libs) no seu home. O diretório do home pode ser obtido com o comando echo \$HOME.

```
$ mkdir -p `echo $HOME`/.R/libs/
```

Para informar ao **R** onde procurar os pacotes que instalamos criamos um arquivo chamado .Renviron no diretório \$HOME contendo a linha R_LIBS=/home/usuario/.R/libs/, o que pode ser feito com o comando:

```
$ R_LIBS=`echo $HOME/.R/libs/`
$ echo $R_LIBS >> `echo $HOME/.Renviron`
```

Esse caminho fica então visível ao R, o que pode ser verificado executando a função .libPaths() no console do R.

```
$ R
```

⁴Chave pública de autenticação é um meio alternativo de se logar em um servidor ao invés de digitar uma senha. É uma forma mais segura e flexível, mas mais difícil de ser configurada. Esse meio alternativo de fazer login é importante se o computador está visível na internet. Para saber mais veja aqui.

2.3. TESTANDO O R

Figure 2.2: Gráfico da sequência de 10 números.

No console do R:

```
> .libPaths()
[1] "/home/hidrometeorologista/.R/libs" "/usr/local/lib/R/site-library"
[3] "/usr/lib/R/site-library" "/usr/lib/R/library"
```

2.3 Testando o R

Para iniciar o R no Ubuntu, digite R no cursor do terminal:

\$ R

A partir desse momento já começamos uma sessão no R. Vamos gerar uma sequência numérica de 1 a 10 e plotá-la.

```
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> plot(1:10)
```

Vamos sair do R sem salvar os dados da seção.

```
> q(save = "no")
```

2.4 Rstudio no Ubuntu

O R
Studio é um ambiente integrado de desenvolvimento (IDE) construído especificamente para
oR. Assim como o R,o R Studio pode ser baixado gratuitamente e é multiplata
forma.

Para instalação da versão do RStudio para *Desktop*, você precisa saber se seu sistema operacional é 64 ou 32-bit e a versão do Linux Ubuntu. Essas informações podem ser obtidas, respectivamente, pelos comandos:

```
$ arch
```

x86_64

\$	lsb_	release	release		cut	-f2
----	------	---------	---------	--	-----	-----

14.04

Se retornar $\mathbf{x86}$ _64 sua máquina é 64-bit.

Com essa informação e versão do sistema operacional, siga os seguintes passos:

- 1. acesse RStudio
- 2. clique em $Download\ RStudio$
- 3. Procure a opção RStudio Desktop (FREE) e clique download

Products Resources Pric

Choose Your Version of RStudio

RStudio is a set of integrated tools designed to help you be more productive with R. It includes a syntax-highlighting editor that supports direct code execution, and a variety of robust tools for playiewing history, debugging and managing your workspace. Learn More about RStudio features.

	RStudio Desktop Open Source License	RStudio Desktop Commercial License	RStudio Server Open Source License	RStudio Commer
	<u>FREE</u>	\$995 per year	FREE	\$9,995
	DOWNLOAD Learn More	BUY Learn More	DOWNLOAD Learn More	DOW Lear
Integrated Tools for R	•	•	•	
Priority Support		•		
Access via Web Browser			•	
Enterprise Security				
Project Sharing				

5. Selecione sua plataforma

Products Resources

RStudio Desktop 1.1.442 — Release Notes

RStudio requires R 3.0.1+. If you don't already have R, download it here.

Installers for Supported Platforms

Installers	Size	Date	MD5
RStudio 1.1.442 - Windows Vista/7/8/10	85.8 MB	2018-03-12	25a6eb8eca
RStudio 1.1.442 - Mac OS X 10.6+ (64-bit)	74.5 MB	2018-03-12	8961342780
RStudio 1.1.442 - Ubuntu 12.04-15.10/Debian 8 (32-bit)	89.3 MB	2018-03-12	090fcb1fec
RStudio 1.1.442 - Ubuntu 12.04-15.10/Debian 8 (64-bit)	97.4 MB	2018-03-12	2c0805a6a8
RStudio 1.1.442 - Ubuntu 16.04+/Debian 9+ (64-bit)	65.1 MB	2018-03-12	c9eb172938
RStudio 1.1.442 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (32-bit)	88.1 MB	2018-03-12	77ced16b9c
RStudio 1.1.442 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (64-bit)	90.6 MB	2018-03-12	8e6435aa53

Zip/Tarballs

Zip/tar archives	Size	Date	MD5
RStudio 1.1.442 - Windows Vista/7/8/10	122.9 MB	2018-03-12	le10561019
RStudio 1.1.442 - Ubuntu 12.04-15.10/Debian 8 (32-bit)	90 MB	2018-03-12	f74849089f
RStudio 1.1.442 - Ubuntu 12.04-15.10/Debian 8 (64-bit)	98.3 MB	2018-03-12	9badaf8b0f
RStudio 1.1.442 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (32-bit)	88.8 MB	2018-03-12	5c1a42f51b
RStudio 1.1.442 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (64-bit)	91.4 MB	2018-03-12	f19a76c9a4

Source Code

A tarball containing source code for RStudio v1.1.442 can be downloaded from here

clique sobre o link da sua plataforma, p.ex.: RStudio x.xx.xxx - Ubuntu 12.04-15.10/Debian 8 (64-bit)

6. Dependendo da sua versão Ubuntu, ao clicar sobre o arquivo baixado com o botão direito, há a opção de abrir com *Ubuntu Software Center* e então clicar em instalar. Se na versão de seu Desktop não há esta opção ao clicar com botão direito sobre o arquivo instale via **terminal**⁵ com os seguintes

⁵digite 'Ctrl+Alt+t' para abrir um terminal no Linux Ubuntu

comandos:

- \$ cd /local/do/arquivo/baixado
- \$ sudo dpkg -i arquivoBaixado.deb \$ sudo apt-get install -f

Abra o RStudio digitando no terminal:

\$ rstudio &

Agora você está pronto para começar a programar em R aproveitando as facilidades que o RStudio oferece.

Interface do Usuário

knitr::include_graphics('images/SatCloud.gif')

3.1 Pluviometria

Em construção.

Operações básicas

Os solos são caracterizados por uma típica sequência de horizontes que constituem o perfil do solo.

- 4.1 Formação do solo
- 4.2 Propriedades do solo
- 4.2.1 Materiais
- 4.2.2 Hídricas
- 4.3 Textura e Estrutura
- 4.4 Movimento da água no solo
- 4.5 Infiltração
- 4.5.1 Modelo de frente de umedecimento de Green-Ampt

asd

Tipos de dados

A EVAPORAÇÃO ocorre quando uma superfície úmida está exposta a ar relativamente mais seco. Quando parcelas de ar movem-se sobre a superfície elas carregam umidade daquela superfície.

A água evaporada da supefície aumenta a quantidade de vapor d'água no ar. Quando o ar está saturado com vapor d'água a evaporação cessa.

A TRANSPIRAÇÃO é a evaporação da água das folhas das plantas quanto esta move-se do solo, através das plantas e através das folhas para o ar.

As plantas consomem grandes quantidades de água durante o crescimento. Um lavoura de milho de 4000 m² pode consumir 10000-15000 litros de água (2,5 - 3.75 mm) em um dia. Uma árvore sem restrição hídrica pode transpirar 100-150 litros por dia. Os processos meteorológicos próximo a superfície controlam a EVAPORAÇÃO e TRANSPIRAÇÃO. A TRANSPIRAÇÃO é também regulada pela fisiologia das plantas. Quando as plantas cobrem uma pequena porção do solo a evaporação do solo é o fluxo dominante. A TRANSPIRAÇÃO torna-se mais importante com o aumento da cobertura de área das plantas aumenta. Entretanto é dificil distinguir EVAPORAÇÃO de TRANSPIRAÇÃO e os dois termos são frequentemente combinados em EVAPOTRANSPIRAÇÃO.

EVAPORAÇÃO TRANSPIRAÇÃO EVAPOTRANSPIRAÇÃO

- 5.1 Evapotranspiração de referência
- 5.2 Evapotranspiração da cultura
- 5.3 Evapotranspiração real

Bibliography

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.