绝密 * 启用前

2017 年全国硕士研究生入学统一考试

超越考研数学(二)模拟(一)

(科目代码: 302)

考生注意專项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

-、选择题:1 \sim 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.

- (1) 设函数 f(x) 在点 x = 0 处连续,且 $\lim_{x \to 0} \frac{e^x 1 xf(x)}{\ln(1 + x^2)} = 0$,则().
- (A) f(x) 在点 x = 0 处不可导
- (B) f(x) 在点 x = 0 处可导且 f'(0) = 0
- (C) f(x) 在点 x = 0 处可导且 $f'(0) = \frac{1}{2}$ (D) f(x) 在点 x = 0 处可导且 $f'(0) = -\frac{1}{2}$
- (2) 设函数 f(x) 在[0,1] 上连续,则 $\int_0^1 [\int_x^1 [f(t) + f(x)] dt] dx = ($).

- (A) $\int_0^1 f(x)dx$ (B) $\int_0^1 x f(x)dx$ (C) $\int_0^1 (1-x)f(x)dx$ (D) $\int_0^1 (1-xf(x))dx$
- (3)设函数 $f(x) = \frac{\sin x \cos \frac{\pi}{2} x}{|x|(x^2 + x 2)}$,则 f(x) 的可去间断点、跳跃间断点、第二类间断点分别为().
- (A) x = -2, x = 0, x = 1
- (B) x = 0, x = 1, x = -2
- (C) x = 0, x = -2, x = 1
- (D) x = 1, x = 0, x = -2
- (4) 方程 $\int_{-1}^{x} te^{\cos t} dt = 0$ 的实根个数为 ().
- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (5) 设函数 $f(x,y) = \begin{cases} \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 则下列说法正确的是().
- (A) f(x,y) 在点 (0,0) 处不连续,且偏导数 $f'_{x}(0,0), f'_{y}(0,0)$ 均不存在
- (B) f(x,y) 在点(0,0) 处连续,且偏导数 $f'_{x}(0,0), f'_{y}(0,0)$ 均存在
- (C) f(x,y) 在点(0,0) 处不连续,但偏导数 $f'_x(0,0), f'_y(0,0)$ 均存在
- (D) f(x,y) 在点(0,0) 处可微
- (6) 设 $f(x,y) = ax^2 + 2bxy + 2y^2 + 4x + cy$, 且 $f'_x(x_0,y_0) = f'_y(x_0,y_0) = 0$, 则f(x,y)在该点处 取极值的一个充分条件为(
 - (A) $2b^2 a < 0 \perp a > 0$
- (B) $2b^2 a > 0 \perp a < 0$
- (C) $2b^2 2a > 0 \pm a > 0$ (D) $b^2 2a < 0 \pm a > 0$

数学二模拟一试题

第2页共4页

20、21全程考研资料请加群712760929 超 越 考 研

(7)	已知三阶矩阵。	A 满足 A^2 :	=E,	但 $A \neq \pm E$,	则下列关系式成立的是().
-----	---------	----------------	-----	--------------------	-------------	----

(A) r(A+E)=1

- (B) r(A+E)=2
- (C) $r(A-E)\cdot[r(A-E)-2]=0$ (D) $[r(A+E)-1]\cdot[r(A-E)-1]=0$
- (8) 设三阶矩阵 A 的特征值为 0, 1, -1 ,则下列结论中正确的个数为(
 - ① A 不可逆:

- ②A的主对角线元素之和为0:
- ③ A 的特征值 1. -1 所对应的特征向量正交:
- 4) Ax = 0 的基础解系中含有两个解向量.

- (A) 1 (B) 2
- (C) 3
- (D) 4

二、填空题:9~14 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上.

(9) 设函数 f(x) 在点 x=0 的某个邻域内二阶可导,其反函数为 $y=\varphi(x)$,若 $\lim_{x\to 0}\frac{f(x)+x-1}{x^2}=1$, 则 $\varphi''(1) =$ ______

(10) 极坐标曲线 $r = \sqrt{\cos \theta}$ $(0 \le \theta \le \frac{\pi}{2})$ 与极轴所围成的曲边扇形绕极轴旋转一周所得旋转体的体

积为

- (11) 计算 $\int e^x \frac{1+\sin x}{1+\cos x} dx =$ ______
- (12) 设y = y(x)是二阶常系数线性方程 $y'' + py' + qy = e^{2x}$ 满足初始条件y(0) = y'(0) = 0的特解,

则
$$\lim_{x\to 0} \frac{y(x)}{1-\cos x} = \underline{\hspace{1cm}}.$$

(13) 设函数 f(x,y) 在点 (x_0,y_0) 处的偏导数均存在,且 $f'_x(x_0,y_0)=1$, $f'_y(x_0,y_0)=2$,则极限

$$\lim_{h\to 0}\frac{f(x_0+2h,y_0)-f(x_0,y_0-3h)}{h}=\underline{\hspace{1cm}}.$$

(14)设A 是三阶实对称矩阵,若存在正交阵 $Q = (q_1, q_2, q_3)$,使得 $Q^{-1}AQ = \begin{bmatrix} 2 & & & \\ & 3 & & \\ & & & \end{bmatrix}$,则 $A - q_1 q_1^T$

的特征值是

三、解答题:15~23 小题,共 94 分,请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程 或演算步骤.

- (15) (本题满分 10 分) (I) 当x > 0 时,证明: $x \frac{x^2}{2} < \ln(1+x) < x$;
- (II) 利用 (I) 的结论,求极限 $\lim_{n\to\infty} (1+\frac{1}{n^2})(1+\frac{2}{n^2})\cdots(1+\frac{n}{n^2})$.

数学二模拟一试题

第3页共4页

20、超1全程考研资料请加群71276分929

- (16) (本题满分 10 分) 利用变换 $x = \ln t$ 化简微分方程 $y'' y' + e^{2x}y = e^{3x}$, 并求此方程的通解.
- (17)**(本题满分 10 分)** 求函数 z = f(x, y) = 3xy 7x 3y 在由抛物线 $y = 5 x^2$ 与直线 y = 1 所围成的有界闭区域 D 上的最大值与最小值.

(18) (本题满分 10 分) 设
$$f(x,y) = \begin{cases} xy^2, & x^2 + y^2 \ge 2y, \\ \sqrt{x^2 + y^2}, & \text{其他,} \end{cases}$$
 $D = \{(x,y) | 0 \le x \le 2, x \le y \le 1\},$

$$\vec{x}I = \iint_D f(x,y)d\sigma.$$

- (19) (本题满分 10 分) 设函数 f(x) 在 [a,b]上可导,且 f'(a)(b-a) < f(b) f(a) < 2 [f(atb)] f(a)]
- (I) 记 $F(x) = \frac{f(x) f(a)}{x a} \frac{f(b) f(a)}{b a}$, 证明存在 $x_0 \in (a, b)$, 使得 $F(x_0) = 0$;
- (II) 证明存在 $\xi \in (a,b)$, 使得 $f'(\xi) = \frac{f(\xi) f(a)}{\xi a}$.
- (20) (本题满分 11 分)(I) 求 $\cos(\sin x)$ 的带有皮亚诺余项的四阶麦克劳林公式;
- (II) 设函数 $f(x)=1-\cos(\sin x)+\alpha\ln(1+x^2)$,其中 α 是参数,试讨论当 $x\to 0$ 时,f(x) 是x 的多少阶无穷小?请说明理由.
 - (21) (本题满分 11 分)(I) 设函数 f(x),g(x) 在[a,b] 上连续,证明

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx \ .$$

- (II) 设函数 f(x) 在 [a,b] 上非负连续, $\int_a^b f(x)dx = 1$,证明 $[\int_a^b x f(x)dx]^2 \le \int_a^b x^2 f(x)dx$.
- (22) (本题满分 11 分) 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ a & 1 \\ a+1 & a \end{pmatrix}$, $B = \begin{pmatrix} 0 & b \\ b & 0 \\ a & a \end{pmatrix}$, 且 $a \neq b$. 讨论 a = b 取何值时,矩

阵方程 AX = B 有解? 在 AX = B 有解时, 求其解.

(23)(本题满分 11 分)设
$$A,B,C$$
均为三阶矩阵,且 $AB=-B$, $CA^T=C$. 其中 $B=\begin{pmatrix} -1 & -2 & 1 \\ 1 & 2 & -1 \\ 1 & 2 & -1 \end{pmatrix}$,

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 . (I)求 A ; (II)证明对任意的 3 维列向量 ξ ,必有 $A^{100}\xi = \xi$.

绝密 * 启用前

2017 年全国硕士研究生入学统一考试

超越考研数学(二)模拟(二)

(科目代码: 302)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

			越	考	研					
-,	选择题: 1~8 小题,	每小题 4 分,	共 32 分.	下列每题给出的	四个选项中,	只有一个选项是	是符合要求			
的.	请将所选项前的字母	填在答题纸指	定位置上.							
	(1) 设有曲线 $y = e^{\frac{1}{x}} \arctan \frac{ x }{x-1}$,则下列结论不正确的是().									
	(A)曲线有水平渐	近线 $y = \frac{\pi}{4}$		(B)曲线有z	水平渐近线力	$y = -\frac{\pi}{4}$				
	(C) 曲线有铅直渐;	近线 $x=0$		(D)曲线有	铅直渐近线。	c = 1				
(2) 当 $0 < a < \frac{1}{2e}$ 时,方程 $ax^2 = \ln x$ 的实根个数为().										
	(A) 0 (I	3) 1 (C) 2	(D) 3						
(3) 设函数 $f(x)$ 单调连续, $f(0) = 0$, $\varphi(x)$ 为 $f(x)$ 的反函数,则对任意的 t ,有().										
	dx									
	(C) $\int_0^{\varphi(t)} f(x) dx + \int_0^{\varphi(t)} f(x) dx + \int_0$	$\int_0^t f(x)dx = t\varphi$	p(t)	(D) $\int_0^{f(t)} \varphi(x) dx$	$x + \int_0^t f(x) dx$	t = tf(t)				
	(4)设反常积分 I_1 =	$= \int_0^{+\infty} \max \left\{ \frac{1}{\sqrt{x}} \right\}$	$\{\frac{1}{x^2}\}dx, I$	$f_2 = \int_0^{+\infty} \min \left\{ \frac{1}{\sqrt{x}} \right\}$	$,\frac{1}{x^2}$ } dx ,则	().				
	(A) I_1 和 I_2 都收敛	(B) I ₁ 和	I_2 都发散	(C) I ₁ 收敛,I	7 ₂ 发散 ()	D) I_1 发散, I_2 !	收敛			
(5)设函数 $f(x)$, $g(x)$ 在 $(-\infty, +\infty)$ 内有定义, $f(x)$ 为可导函数,且 $f(x) \neq 0$, $g(x)$ 有不可										
则下	列函数中,必有不可!	导点的函数为	().							
	(A) $g^2(x)$	(B) $\frac{g(x)}{f(x)}$	(C)	f(g(x))	(D) $g(j)$	f(x)				
	(6) 设函数 f(x,y)	在点 (0,0) 处连	E续,且 lin x→0 y→0	$\int_{0}^{1} \frac{f(x,y)}{\sqrt{x^2 + y^2}} = 0 ,$	则 $f(x,y)$ 7	左点(0,0)处 ().			
	(A) 可微且必取极值	Ī		(B)可微	선 目未必取极	值				
	(C) 不可微但必取极	植		(D) 不可	微但未必取	极值				
	(7)设 A 为 n 阶方阵,	将A的第二行	加到第一行	了,再将第二列减 。	去第一列得到	到矩阵 B ,则 A,B	3().			

数学二模拟二试题 第 2 页 共 4 页

(A) 等价未必相似 (B) 等价且相似 (C) 行向量组等价 (D) 列向量组等价

 $oxed{B}$ $oxed{B}$ $oxed{B}$ $oxed{B}$ $oxed{B}$ $oxed{C}$ (8) 设A 为四阶实对称矩阵,其特征值为 $\lambda_1=\lambda_2=1$, $\lambda_3=2$, $\lambda_4=3$,相应的特征向量依次为

 p_1, p_2, p_3, p_4 ,且 p_1, p_2 线性无关,令 $P = (4p_4, 5p_3, p_1 + p_2, p_1 - p_2)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_3 + p_3)$

$$(A) \begin{pmatrix} 4 & & & \\ & 5 & & \\ & & 2 & \\ & & & 0 \end{pmatrix} \qquad (B) \begin{pmatrix} 4 & & & \\ & 5 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 2 & \\ & & & 3 \end{pmatrix} \qquad (D) \begin{pmatrix} 3 & & & \\ & 2 & & \\ & & & 1 \\ & & & 1 \end{pmatrix}$$

- 、填空题:9~14 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上.
 - (9) 设函数 f(x) 连续,且 $f(x) + \frac{2x}{x^2 + 1} \int_0^x f(t) dt = 1$,则 $\int_0^1 f(x) dx =$ ______.
 - (10) 设函数 $\varphi(x) = \int_0^x \frac{\ln(1-t)}{t} dt$,则 $\varphi(x) + \varphi(-x) \frac{1}{2}\varphi(x^2) =$ _______
 - (11) 设函数 f(x,y) 连续,则将极坐标下二次积分

$$\int_0^{\frac{\pi}{6}} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{2\sin\theta}} f(r\cos\theta, r\sin\theta) r dr$$

化为直角坐标系下的二次积分为

- (12) 设f(x)是以4为周期的奇函数,且f'(0) = 2,则 $\lim_{x\to 2} \frac{f(x^3) + f(x^2)}{x-2} =$ _____
- (13) 设 $u = x^2 + y^2 + z^2$, 其中z = z(x, y) 由方程 $xz + e^{yz} = e 1$ 所确定,则 $du|_{(-1,1)} = _____$
- (14) 设A为四阶实对称阵,r(A-4E)=1,A的各行元素之和为0,则 $r(A)=_____.$
- 三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.
- (15) (**本题满分 10 分**) 设函数 z = f(x y, f(x, y)), 其中 f 具有二阶连续偏导数,且 f 在点 (1,1) 处取得极小值 f(1,1) = 0, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(1,1)}$.
- (16) (本题满分 10 分) 设函数 y(x) 是微分方程 y''' 3y'' + 3y' y = 0 的解,且曲线 y = y(x) 在 点(0,0)的曲率圆为 $(x-1)^2+(y-1)^2=2$, 求v(x).

- 超越考研 (17) (本题满分 10 分) 在抛物线 $y=1-x^2$ 上求一点 $P(x_0,y_0)$ (0 < x_0 < 1),使抛物线与它在 P 点处 的切线及两个坐标轴所围图形的面积最小,并求最小面积.
- (18) (**本题满分 10 分**) 计算二重积分 $\iint_{\Omega} [xy + (x^2 + y^2)^{-\frac{5}{2}}] d\sigma$,其中 D 是由直线 y = x, y = 1 及圆 弧 $x^2 + y^2 = 1$ ($x \ge 0, y \ge 0$) 所围成的区域.
- (19) (本题满分10分) 设函数 f(x) 在($-\infty$, $+\infty$) 内有定义. (I) 若 f(x) 在点 x_0 处可导,并取得最 值,证明 $f'(x_0)=0$;(II)若 f(x) 为周期 T(T>0) 的可导周期函数,证明存在 $\xi_1,\xi_2\in[0,T),\xi_1\neq\xi_2$, 使得 $f'(\xi_1) = f'(\xi_2) = 0$.
- (20)(本题满分11分)设炮弹以初速度 v_0 且与水平线成 α 角从炮口射出,如果空气的阻力与速度成 正比,比例系数为k,其中k > 0,炮弹质量为m,求当k = mg时,炮弹飞行过程中的最大速度.(其中 g 为重力加速度).
- (21) (本题满分 11 分)设非负函数 f(x) 在[a,b]上满足 $f''(x) \le 0$,且 f(x) 在点 $x = x_0 \in [a,b]$ 处 取得最大值. (I) 对任意的 $x \in [a,b]$, 证明 $f(x_0) \le f(x) + f'(x)(x_0 - x)$; (II) 对任意的 $x \in [a,b]$, 证明 $f(x) \le \frac{2}{b} \int_a^b f(t) dt$.
- (22)(**本题满分 11 分**)设A为三阶实方阵,三维列向量 $\alpha_1,\alpha_2,\alpha_3$ 满足 $A\alpha_1=\alpha_1+\alpha_2,A\alpha_2=\alpha_2+\alpha_3$, $A\alpha_3 = \alpha_3, \alpha_3 \neq 0$,(I)证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关;(II)证明A必不为实对称矩阵.

(23) (**本题满分 11 分**) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$, 其中 E 为三阶单位阵,

 $A^* \to A$ 的伴随矩阵,求 B^T 的特征值与特征向量.

2017 年全国硕士研究生入学统一考试

超越考研数学(二)模拟(三)

(科目代码: 302)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

- 、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 下列每题给出的四个选项中, 只有一个选项是符合要求 的, 请将所选项前的字母填在答题纸指定位置上,
- (1) 设函数 y = f(x) 在点 x = 0 处的增量 Δy 满足 $\Delta y = 1 e^{2\Delta x} + \Delta x \sin \Delta x$,则当 $\Delta x \to 0$ 时, Δy 是 $dy|_{y=0}$ 的 ().

 - (A) 等价无穷小 (B) 同阶但不等价的无穷小 (C) 高阶无穷小 (D) 低阶无穷小

- (2) 关于定积分的如下结论
- ① $\int_0^a \frac{f(x)}{f(x) + f(a-x)} dx = \frac{a}{2}$, 其中 f(x) 为正值连续函数, a > 0;

则有().

- (A) ①②均正确 (B) ①②均不正确 (C) ①正确,②不正确 (D) ①不正确,②正确
- (3) 设f(x)为正值连续偶函数, $F(x) = \int_0^x t^2 f(x-t)dt$,则下列结论中正确的个数为(
 - ①F(x)为单增的奇函数;
- ②点(0,0)为y = F(x)唯一的拐点;
- ③ F'(x) 为非负的凹函数; ④ F'(x) 只在点 x = 0 处取得最小值.

- (B) 2 (C) 3 (D) 4
- (4) 设 $I_1 = \int_0^{\sqrt{\pi}} \cos x^2 dx$, $I_2 = \int_0^{\pi} \sqrt{x} \cos x dx$,则以下结论正确的是().
- (A) $I_1 > 0, I_2 > 0$ (B) $I_1 > 0, I_2 < 0$ (C) $I_1 < 0, I_2 > 0$ D) $I_1 < 0, I_2 < 0$

- (5) 设函数 $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x, y) \neq (0, 0), \\ 0, & (y, y) \neq (0, 0), \end{cases}$ 则下列结论正确的个数为().
 - ①沿直线 y = kx, k 为任意实数, 极限 $\lim_{\substack{x \to 0 \\ y = kx}} f(x, y)$ 存在;
- ②极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 存在;

- ③偏导数 $f'_x(0,0)$, $f'_v(0,0)$ 存在且相等;
- ④ f(x, y) 在点(0, 0) 处连续.

- (A) 1 (B) 2
- (C) 3
- (D) 4

第2页共4页

超 越 考 研

(6) 设函数
$$f(x) = \begin{cases} (x+1)^2, & x \le 0, \\ e^{-x^2}, & x > 0, \end{cases}$$
则曲线 $y = \int_0^x f(t)dt$ 的拐点个数为().

- (A) 0
- (B) 1
- (C) 2
 - (D) 3
- (7) 齐次线性方程组 Bx = 0 的解都是 Ax = 0 的解的一个充分条件为 ().
- (A) B 的列向量都由 A 的列向量线性表示 (B) A 的列向量都由 B 的列向量线性表示
- (C) B 的行向量都由 A 的行向量线性表示 (D) A 的行向量都由 B 的行向量线性表示

(8) 设
$$\alpha = (a_1, a_2, a_3)^T$$
, $\beta = (b_1, b_2, b_3)^T$, α, β 线性无关,则二次型

$$f(x_1, x_2, x_3) = (a_1x_1 + a_2x_2 + a_3x_3)(b_1x_1 + b_2x_2 + b_3x_3)$$

的规范型为().

- (A) y_1^2 (B) $y_1^2 + y_2^2$ (C) $y_1^2 y_2^2$ (D) $y_1^2 + y_2^2 + y_3^2$

、填空题:9~14 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上.

(9) 设函数
$$f(x) = \frac{1}{1+x^2}$$
,则 $f^{(100)}(0) = \underline{\hspace{1cm}}$

(10)
$$\int_{-1}^{1} x(1+x^{2017})(e^x-e^{-x})dx = \underline{\qquad}.$$

(12) 设函数
$$f(x,y)$$
 在点 (x_0,y_0) 处的偏导数均存在,且 $f'_x(x_0,y_0)=1$, $f'_y(x_0,y_0)=2$,则极限

$$\lim_{h\to 0}\frac{f(x_0+2h,y_0)-f(x_0,y_0-3h)}{h}=\underline{\hspace{1cm}}.$$

(13) 设函数
$$p(x) = \max\{x,1\}$$
,则微分方程 $y' + p(x)y = x$ 的通解为______.

(14) 若
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, E 为三阶单位矩阵,则 $(E + A + A^2)^{-1} = \underline{\qquad}$.

三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.

数学二模拟三试题

第3页共4页

詔

越

考

研

- (15) (本题满分 10 分) 设 $x \ge a \ge 1$,证明: (I) $\ln a \ge \frac{2(a-1)}{a+1}$; (II) $a(x+1) \ln a \ge (a+x)(a-1)$.
- (16) (本题满分 10 分) 已知 $df(x,y) = -(1+e^y)\sin x dx + (\cos x 1 y)e^y dy$, f(0,0) = 2 ,求函数 f(x,y) 的极值.
 - (17) (本题满分 10 分) 设函数 f(x) 和 g(x) 可导,且满足条件 $f'(x) = \frac{1}{2}g(x)$, $g'(x) = \frac{1}{2}f(x)$,

f(0) = 0, $g(x) \neq 0$. (I) 求 $y = \frac{f(x)}{g(x)}$ 的表达式; (II) 求曲线 $y = \frac{f(x)}{g(x)}$ ($x \geq 0$) 绕直线 y = 1 旋转一周 所生成立体的体积.

- (18) (本题满分 10 分) 计算积分 $I = \int_{\frac{\sqrt{3}}{3}}^{\frac{\sqrt{3}}{3}} \frac{dx}{(1+e^{x-\frac{1}{x}})(1+x^2)}$.
- (19) (本题满分 **10** 分) 计算 $\iint_{x^2+y^2 \le \frac{3}{16}} \min \{ \sqrt{\frac{3}{16} x^2 y^2}, 2(x^2 + y^2) \} dx dy .$
- (20) (**本题满分 11 分)** 数列 $\{x_n\}$ 定义如下: $x_1 = 1$, $x_{n+1} = \frac{1}{2}(x_n + \sqrt{x_n^2 + \frac{1}{n^2}})$, $n = 1, 2, \cdots$. 证明数列 $\{x_n\}$ 收敛.
- (21) (**本题满分 11** 分)设当 $0 \le x < 1$ 时,函数 $f(x) = (1-x)\ln(1+x)$. 当 $k \le x < k+1$ 时, $f(x) = a_k f(x-k) , \quad k = 1, 2, \cdots . \quad (\text{I})$ 求常数 $a_k (k = 1, 2, \cdots) , \quad \text{使得 } f(x)$ 在 $[0, +\infty)$ 上可导;(II)求曲 线 y = f(x) $(x \ge 0)$ 与 x 轴所围平面图形的面积 A .
 - (22) (本题满分 11 分) 已知三阶方阵 A 的第一行元素为 a,b,c $(a \neq 0)$,且 AB = O,其中

$$B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 2 \\ 3 & 6 & 10 & 4 \end{pmatrix}$$
. 记 $\xi_1 = \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} -c \\ 0 \\ a \end{pmatrix}$. 证明(I) ξ_1, ξ_2 都为线性方程组 $Ax = 0$ 的解;(II) B

的列向量组与 ξ_1,ξ_2 等价.

- (23) (**本题满分 11 分**) 已知 A 为三阶实对称矩阵,r(A)=2 ,AB=2B ,其中 $B=\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$.
- (I) 求正交阵Q, 使得 $Q^{T}AQ$ 为对角阵; (II) 求 A^{n} .

数学二模拟三试题

第4页共4页