

GUIDE-Walk 2.0

Autonomes Blindenführersystem mit Kl

Bestandteile:

Jetson Nano

Der Single-Board-Computer Jetson Nano von Nvidia ist der Zentralcomputer des Blindenführersystems.

Akkupack

Das Gerät wird durch einen 12V/6A-Akku mit Strom versorgt.

Hülle

Die Hülle beinhaltet alle Komponenten. Sie misst 12,9 x 12 x 6,4cm und wurde mit einem 3D-Drucker gedruckt.

Weitere Informationen:

guide-walk.netlify.app

Bewegungssensor

Der Sensor EM7180-USFS erfasst die Bewegungen des Trägers sowie Temperatur und Luftdruck.

Entfernungssensor

Der ToF-Sensor LiDAR Lite v3 misst mit Laserstrahlen die Entfernung zu potenziellen Hindernissen.

Kameramodul

Die RaspberryPi-Kamera nimmt Bilder von der unmittelbaren Umgebung des Trägers auf.

Seite 2: Funktionen, Bilder und die Struktur der Kl

GUIDE-Walk 2.0

Autonomes Blindenführersystem mit Kl

Funktionen:

- Warnung vor Hindernissen (Passanten, Autos, Fahrräder, Busse...)
- Erkennung von Stühlen, Bänken und Mülleimern
- Fußgängerampel-Erkennung und -Navigation
- Durchsage von Uhrzeit und Wetterdaten
- Intuitive Gestensteuerung
- Standby-Modus f
 ür l
 ängere Akkulaufzeit
- Einstellbare Distanzrückmeldung
- Eigenoptimierung mit Bewegungsdaten

Features der tragbaren Box:

Kompakte Größe, robuster und leicht bedienbarer Magnetverschluss, Stabilisierung durch Sicherheitsnadeln, Markierung aller relevanten Stellen mit Blindenschrift oder anderen tastbaren Zeichen, einfache Demontage und Reparatur durch Befestigung der Komponenten mit Schrauben

GUIDE-Walk 2.0

Autonomes Blindenführersystem mit Kl

Tests und Ergebnisse:

Genauigkeit der KI: 74,9%

Reaktionszeit: ca. 0,15s

Performance der KI: 9 Bilder/s

Akkulaufzeit: 7-8h

Genauigkeit des Entfernungssensors: **±2cm**

Zukunftspläne:

Das System soll in Zukunft mit SMD-Komponenten auf einer selbst entworfenen Platine realisiert werden:

Unterstützer:

VIELEN DANK!

