POINT NORMAL TRIANGLES

Rick van Veen Laura Baakman December 14, 2015

Advanced Computer Graphics

OVERVIEW

./img/1_single/recap_overview.png

OVERVIEW

./img/1_single/recap_inputToGeom.png

GEOMETRY

enhancement: emphasize vertices better

img/1_single/inputPrimitive_emphGeometry.

input primitive

GEOMETRY - VERTEX COEFFICIENTS

img/1_single/geometry_1.png

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

$$b_{030} = P_1$$
 $b_{030} = P_2$

$$b_{003} = P$$

control net

GEOMETRY - VERTEX COEFFICIENTS

img/1_single/geometry_1.png

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

$$b_{030} = P_1$$
 $b_{030} = P_2$
 $b_{003} = P_3$

control net

GEOMETRY - VERTEX COEFFICIENTS

img/1_single/geometry_1.png

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

$$b_{300} = P_1,$$

 $b_{030} = P_2,$

$$b_{003} = P_3$$

control net

GEOMETRY - TANGENT COEFFICIENTS

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N_1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N_1}{3}$$

normal projection

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N_1}{3},$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N_1}{3}$$

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$
$$V = (P_1 + P_2 + P_3)/3,$$

center control point

GEOMETRY - CENTER COEFFICIENT

img/1_single/geometry_3.png

center control point

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3,$$

$$b_{111} = E + (E - V)/2$$

GEOMETRY - RESULT

enhancement: Set result slide to plain

img/1_single/geometry_4.png

OVERVIEW

 $./{\tt img/1_single/recap_geomToShading.png}$

CUBIC BÉZIER PATCH

img/1_single/cubicPatch.png

$$w = 1 - u - v$$

$$u, v, w \ge 0$$

$$b(u, v) = \sum_{i+j+k=3} b_{ijk} \frac{3!}{i!j!k!} u^i v^j w^k$$

OVERVIEW

./img/1_single/recap_inputToNormals.png

NORMALS

enhancement: emphasize normals more

img/1_single/inputPrimitive_emphNormal.png

input primitive

NORMALS - THEORY

img/1_single/linearVsQuadraticNormals_line

linear

quadratio

NORMALS - THEORY

img/1_single/linearVsQuadraticNormals_line

img/1_single/linearVsQuadraticNormals_quad

quadratic

NORMALS - EXAMPLE

NORMALS - THEORY

img/1_single/computingNormals.png

$$V_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

 $h_{110} = N_1 + N_2 - V_{12}(P_2 - P_1)$

NORMALS - THEORY

img/1_single/computingNormals.png

$$V_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

$$h_{110} = N_1 + N_2 - V_{12}(P_2 - P_1)$$

NORMALS - RESULT

enhancement: Set result slide to plain

img/1_single/normals.png

OVERVIEW

./img/1_single/recap_normalsToShading.png

QUADRATIC PATCH

img/1_single/quadraticPatch.png
$$u, v, w \ge 0$$

$$w = 1 - u - v$$

$$\text{png} \quad u, v, w \ge 0$$

$$n(u, v) = \sum_{i+j+k=2} n_{ijk} u^i v^j w^k$$

LEVEL OF DETAIL

./img/1_single/lodExpanation.png (u, v, w)

LEVEL OF DETAIL

OVERVIEW

 $./{\tt img/1_single/recap_overview.png}$

PROPERTIES

"PN triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles." ¹

¹Vlachos et al.

CONTINUITY

PN triangles have:²

- C^1 continuity in the vertex points
- \cdot C^0 continuity along the edges
- C^{∞} everywhere else

²liao and Alexander

SHARP EDGES

SEPARATE NORMALS

HARDWARE - PIPELINES

img/3_pipeline/pipelineDifferences_oldOpenGL.png

2001

HARDWARE - PIPELINES

img/3_pipeline/pipelineDifferences_oldOpenGL.png

2001

img/3_pipeline/pipelineDifferences_newOpenGL.png

2015

./img/4_conclusion/fi/hanlgres_udotNoPospong

TRIANGLES

PN TRIANGLES

QUESTIONS?

TRIANGLES

PN TRIANGLES

REFERENCES

- beamengoonaintiander pidlfp J Alexander. "Parallel feature-preserving mesh smoothing". In: Computational Science and Its Applications—ICCSA 2005. Springer, 2005, pp. 1180–1189.
- beamencoonadrariat Mekipgaffd. Crack-free point-normal triangles using adjacent edge normals. 2010.
- beamexixtochersteicale "And Fed PN triangles". In: Proceedings of the 2001 symposium on Interactive 3D graphics. ACM. 2001, pp. 159–166.