VSEPR Theory and Molecular Shapes

Valence-Shell Electron-Pair Repulsion (VSEPR) Theory

- The molecular shape is the three-dimensional arrangement of nuclei joined by the bonding groups.
- VSEPR Theory allows us to predict the shapes of molecules based on the number of electron groups around a central atom.
- Basic principle: "To minimize repulsions, each group of valence electrons around a central atom is located as far as possible from the others."

Valence-Shell Electron-Pair Repulsion (VSEPR) Theory

- An "electron group" is any number of electrons that occupies a localized region around an atom.
- A single bond, double bond, triple bond, lone pair, or single electron all count as a single group.
- Only electron groups around the central atom affect shape; electrons on atoms other than the central atom do not.

Factors Affecting Bond Angles

Lone (or Non-bonding) Pairs

A lone pair repels bonding pairs more strongly than bonding pairs repel each other. This decreases the angle between the bonding pairs.

Double Bonds

The ideal angle is 120°.

A double bond has greater electron density than a single bond, and repels the single bond electrons more than they repel each other.

Electronic Shape vs Molecular Shape

- The **electronic shape** or **electronic geometry** is defined by both bonding and nonbonding (lone pairs) electron groups.
- The *molecular shape* or *molecular geometry* is the three-dimensional arrangement of the atoms only. Lone pairs are ignored while determining this shape.
- Molecular shape is classified using the designation:

A = central atom

 $AX_m E_n$ X = surrounding atom

E = nonbonding electrons or lone pair

m and **n** are integers

Common Molecular Shapes with Two, Three and Four Electron Groups

e⁻ Group arrangement (no. of groups)

Molecular shape (class)

No. of bonding groups

Bond angle

Common Molecular Shapes with Five and Six Electron Groups

e Group arrangement (no. of groups)

Molecular shape (class)

No. of bonding groups

Bond angle

Molecular Shape with Two Electron Groups

Examples: CS₂, HCN, BeF₂, CO₂

Molecular Shapes with Three Electron Groups

Examples: SO₂, O₃, PbCl₂, SnBr₂

Molecular Shapes with Four Electron Groups

Examples: CH₄, SiCl₄, SO₄²⁻, CIO₄-

Examples: H₂O, OF₂, SCI₂

Axial and Equatorial Positions

 A five electron-group system has two different positions for electron groups, and two ideal bond angles.

Equatorial-equatorial repulsions are *weaker* than axial-equatorial repulsions.

 Where possible, lone pairs in a five electron-group system occupy equatorial positions to minimize repulsion.

Molecular Shapes with Five Electron Groups

Molecular Shapes with Six Electron Groups

Examples: BrF₅, TeF₅⁻, XeOF₄

The Four Steps in Converting a Molecular Formula to a Molecular Shape

Step 1 Draw Lewis structure. Molecular **Formula** Step 2 Count all e groups around Lewis the central atom. structure **Step 3** Note positions of any lone **Electron**pairs and double bonds. group arrangement Step 4 Count bonding and nonbonding e groups **Bond** separately. angles Molecular shape $(AX_m E_n)$

Examining Shapes with Two, Three, or Four Electron Groups

PROBLEM: Draw the molecular shape and predict the bond angles (relative to the ideal bond angles) of **(a)** PF₃ and **(b)** COCl₂.

SOLUTION:

(a) For PF₃, there are 26 valence electrons. The Lewis structure is

There are four electron groups around P, giving a tetrahedral electron-group arrangement. **The ideal bond angle is therefore 109.5°.**

There is one lone pair and three bonding pairs, so the actual bond angle will be **less than 109.5°**.

(a) The molecular shape for PF_3 is trigonal pyramidal (AX_3E).

Draw the molecular shape and predict the bond angles (relative to the ideal bond angles) of **(a)** PF₃ **(b)** COCl₂

F. georetry - Trigoral Planar M. georetry - Trigoral Planar

Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity

 Overall molecular polarity depends on both shape and bond polarity (electronegativity difference between the atoms).

The polarity of a molecule is measured by its dipole moment (μ), which is given in the unit Debye (D).

Dipole Moment

A quantitative measure of the polarity of a bond is its dipole moment (μ), which is the product of the charge Q and the distance r between the charges.

$$\mu = Q \times r$$

Q is the charge, r is the distance between charges,

 The presence of polar bonds does not always result in a polar molecule; we must also consider shape and the atoms surrounding the central atom

- A molecule is polar if
- ✓ it contains one or more polar bonds and
- ✓ the individual bond dipoles do not cancel

Example: H₂O

The \triangle EN between H (EN = 2.1) and O (EN = 3.5) makes each H-O bond polar.

H₂O has a V shaped (bent) geometry and the individual bond polarities do **not** cancel. This molecule has an **overall molecular polarity**. The O is partially negative while the H atoms are partially positive.

Example: CO₂

The \triangle EN between C (EN = 2.5) and O (EN = 3.5) makes each C=O bond polar.

 CO_2 is linear, the bond angle is 180° , and the individual bond polarities therefore cancel. The molecule has *no net dipole moment* ($\mu = 0$ D).

Molecules with the same shape may have different polarities.

Individual bonds are polar, but the **bond polarities cancel**.

Individual bonds are polar and bond polarities do not cancel.

Non-polar Molecule

Polar Molecule

Use the molecular shape and EN values to predict whether the molecule is polar:

(a) Ammonia, NH₃

- **(b)** Boron trifluoride, BF₃
- (c) Carbonyl sulfide, SCO

The Effect of Molecular Polarity on Physical Properties

The cis and trans isomers of C₂H₂Cl₂

- The cis isomer is polar while the trans isomer is not.
- The boiling point of the cis isomer is 13°C higher than that of the trans
 isomer.

Valence Bond (VB) Theory for Main-Group Elements

Valence Bond (VB) Theory for Main-Group Elements

- Both VB theory and VSEPR model are extensively used for the molecules of main-group elements.
- VB theory and VSEPR model go hand-in-hand we use the VB theory to explain bonding and the VSEPR model to explain the observed shapes of the molecules.
- According to VB theory, the atomic orbitals first mix together to form hybrid orbitals. The process is referred to as hybridization.

The hybrid orbitals then overlap with the orbitals of the adjacent atoms to form covalent bonds.

Why do we need *hybrid orbitals* to explain bond-formation??

The atomic p orbitals are perpendicular to each other, and so they fail to describe the different shapes of molecules.

 p_y orbital p_z orbital

■ The **mixed atomic orbitals** or **hybrid orbitals** can efficiently describe the various shapes of the molecules *on most occasions*.

Key Features of Hybrid Orbitals

- The *number* of hybrid orbitals formed *equals* the number of atomic orbitals mixed.
- e.g. four sp³ hybrid orbitals are formed by mixing four different atomic orbitals one s and three p orbitals.

- The number of hybrid orbitals matches the number of electrongroups.
- Single/Double/Triple bonds and lone electron pairs count as electron-groups.

The shape and orientation of a hybrid orbital maximizes overlap with the other atom in the bond and minimizes electron-electron repulsion.

How do I predict the hybridization of the central atom?

- 1. Draw the Lewis structure of the molecule.
- 2. Count the number of lone pairs AND the number of atoms bonded to the central atom

of Lone Pairs +

# of Bonded Atoms	Hybridization	Examples
2	sp	$BeCl_2$
3	sp ²	BF_3
4	sp ³	CH ₄ , NH ₃ , H ₂ O
5	sp³d	PCI ₅
6	sp³d²	SF ₆

10-31

Predicting the Hybrid Orbitals

Methane (CH₄)

Electronic Shape: Tetrahedral

Molecular Shape: Tetrahedral

Hybrid Orbitals:

Water (H₂O)

Electronic Shape: Tetrahedral

Molecular Shape: Bent (or V-shaped)

Four sp3

Hybrid Orbitals:

Sulfur tetrafluoride (SF₄)

Electronic Shape: Trigonal bipyramidal

Molecular Shape: Seesaw

Hybrid Orbitals:

sp hybrid orbitals

10-33

sp² hybrid orbitals

Boron trifluoride (BF₃)

sp³ hybrid orbitals

Methane (CH₄)

Another Example of sp³ hybrid orbitals

10-36

sp³d hybrid orbitals

Phosphorus pentachloride (PCI₅)

sp³d² hybrid orbitals

Table 11.1 Composition and Orientation of Hybrid Orbitals

	Linear	Trigonal Planar	Tetrahedral	Trigonal Bipyramidal	Octahedral
Atomic orbitals mixed	one s one p	one s two p	one s three p	one s three p one d	one s three p two d
Hybrid orbitals formed	two sp	three sp ²	four <i>sp</i> ³	five <i>sp</i> ³ <i>d</i>	six <i>sp</i> ³ <i>d</i> ²
Unhybridized orbitals remaining	two p	one p	none	four <i>d</i>	three d
Orientation					

Figure 11.8 From molecular formula to hybrid orbitals.

Postulating Hybrid Orbitals in a Molecule

PROBLEM: Use partial orbital diagrams to describe how mixing of the atomic orbitals of the central atom(s) leads to hybrid orbitals in each of the following:

- (a) Methanol, CH₃OH (b) Sulfur tetrafluoride, SF₄
- PLAN: We use the molecular formula to draw the Lewis structure and determine the electron-group arrangement around each central atom. We then postulate the type of hybrid orbitals required and write a partial orbital diagram.

SOLUTION:

(a) CH₃OH

The electron-group arrangement is tetrahedral around both the C and the O atoms.

C has four half-filled sp^3 orbitals.

isolated C atom

hybridized C atom

isolated O atom

The O atom has two half-filled sp^3 orbitals and two filled with lone pairs.

hybridized O atom

2s

Write down the hybrid orbitals for the central atom(s) in the following:

(a) Methanol, CH₃OH

(b) Sulfur tetrafluoride, SF₄

Limitations of the Hybridization Model

Hybridization is not always consistent with observed molecular shapes.
 This is particularly true for the bonding of **Period 3** elements.

The bond angle in H_2S is closer to the angle between unhybridized p orbitals.

Often the difficulty in explaining the molecular shapes for **Period 3** elements using the hybridization model is that **d-orbitals** do not always hybridize effectively with **s** and **p orbitals**, which are much lower in energy and more stable.

Orbital Overlap Sigma (σ) and Pi (π) Covalent Bonds

Sigma (σ) Bond

- A sigma (σ) bond is formed by end-to-end or head-on overlap of orbitals.
- All single bonds are σ bonds.

Pi (π) Bond

- A $pi(\pi)$ bond is formed by **sideways** overlap of **unhybridized p orbitals**.
- A π bond is weaker than a σ bond because sideways overlap is less effective than end-to-end overlap.
- A double bond always consists of one σ bond and one π bond.

Triple Bond

• A triple bond always consists of one σ bond and two π bonds.

- a) Describe the types of bonds and orbitals in acetone, $(CH_3)_2CO$.
- b) How many σ bonds and π bonds are there?

$$\sigma$$
 bonds = 9

$$\pi$$
 bonds = 1

Restriction of Rotation around a Pi (π) Bond

- Rotation is restricted around a π **bond** since the overlap gets disrupted.
- Also, 180° rotation causes the two overlapping p orbitals to be out-of-phase.
- Structural (cis-trans) isomers have different physical and chemical properties.

cis-1,2-Dichloroethylene

In both the *cis* and *trans* isomers, the *p* orbitals overlap in phase. However, rotation would make them go out-of-phase.

trans-1,2-Dichloroethylene

Difference in Sigma and Pi bond

	Sigma (σ) M0		Pi (π) M 0
1.	It is formed by head to head overlapping of atomic orbitals.	1.	It is formed by the sidewise overlapping of p_v or p_x atomic orbitals.
2.	The overlap is along internuclear axis.	2.	The overlap is perpendicular to internuclear axis.
3.	As a result of this strong bond is formed.	3.	As a result of this weak bond is formed.
4.	This orbital is symmetrical to rotation about the line joining the two nuclei.	4.	This orbital is not symmetrical to rotation about the line joining the two nuclei.
5.	The region of overlap is greater.	5.	The region of overlap is lesser.

10-52

Thank you.

Any Questions?

