COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No. 61

Combinational Circuit

Duality & 9 mb banics rulated to boolean function

Combinational CKt

Type of Digital Circuit

- Combinational Circuit
- Sequential Circuit

Combinational CKt

- 1.0/P defends on present i/p only.
- 2. There is no memory.
- 3. There is no feedback

29. H.A., F.A., H.S., F.S., MUX, DeMUX, Decodor, of ff, Counters, Shift registers etc. Encoder etc.

sequential ckt

1 0/P depends on present i/P and partilp values

2. There is memory.

3 Thur is feedback

How to Design Combinational Circuit

- 1. 9 dentify no of i/P lines and no of O/P lines.
- 2. Truth table 6/00 i/Ps (all the combinations of i/P) and 0/Ps.
- 3. Write down U/Ps in SOP 00 POS format.
- 4. Now minimize your O/Ps wing boolean theorems us K-Mab.
- 5. Now implement the 0/Ps uning gates.

Standard Combinational Circuits

- Half Adder
- Half Subtractor
- Full Adder
- Full Subtractor

$$A = a_3 a_2 a_1 a_0 = 1011$$

 $B = b_3 b_2 b_1 b_0 = 0111$

$$\begin{array}{c}
237 \\
392 \\
\hline
10 \\
\hline
0629 \\
\hline
(147)8 = (64 + 32 + 7) \\
(147)8 + (128 + 24 + 4) \\
\hline
(403)_8 = 256 + 0 + 3 \\
\hline
(156)_{10} \\
\hline
(259)_{10}
\end{array}$$

Half Adder

 What is half adder and what are input lines and what are output lines?

Input lines		Output lines		
X	У	S-o/p	C-o/p	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	O	1	

$$S(x,y) = \sum_{i=1}^{n} (1,2) = \pi(0,3)$$

$$= \overline{x}y + x\overline{y} = x \oplus y$$

$$C(x,y) = \sum_{i=1}^{n} 3 = \pi(0,1,2)$$

$$= x \cdot y$$

Implementation using gates:

Using NOR gates:

Full Adder

 What is full adder and what are input lines and what are output lines?

	Input lines			Output lines				
	X	У	Z	S-o/p	C-o/p			
	0	0	0	0	0			
1	0	0	1	1	0			
2	0	1	0	1	0			
3	0	1	1	0	1			
4	1	0	0	1	D			
5	1	0	1	0	1			
6	1	1	0	0	1			
7	1	1	1	1	1			
	C. M. A. D. D. C. M 100 - 100 - 1							

circut

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

 $\Rightarrow = \times \oplus y \oplus 3$
Relf dual boolean function

+ XY

$$C(x, y, z) = \sum (3, 5, 6, 7) = \pi (0, 1, 2, 4)$$

will dual broken f^n
 $= \overline{x}y_3 + x\overline{y}_3 + x\overline{y}_3 + x\overline{y}_3$

$$= xy + y3 + x3$$

$$= xy + 3(x \oplus y)$$

$$= 3(\overline{x}y + n\overline{y})$$

Is when majority i/pwill be at I'o/pwill I and when majority i/pwill be o' 10/p will be o'

Implementation using gates:

=> Circuit II is butter compare circuit-I wirt no of gates und for durigning.

=> Circuit - I has less delay compare to circuit - II.

Using NAND gates:

Using NOR gates:

HA.
$$S(x,y) = \Sigma(1,2)$$

honself dual

$$c^{D} = (x+y)(3+x0y) = (x+y)[3+xy+xy]$$

= $x3+xy+y3+xy=xy+y3+xy$

Note: To implement FA, We require -> 9 (2-i/PNAND gates) or 9 (2-i/P NOR gates).

Full adder using H.A. and OR gate:

F.A
$$\rightarrow$$
 i/P \rightarrow x, y, 3 \rightarrow (x+y+3)
Cout = xy+y3+3x
= xy+3(x \oplus y) \checkmark
= x3+y(x \oplus 3)
= y3+x(y \oplus 3)

$$\#Q. f(x,y,3) = \bar{x}y + y_3 + \bar{x}_3 \longrightarrow self dual or not$$

Homwork Questions

#Q.
$$f(x_1y_13) = \overline{x}\overline{y} + y3 + \overline{x}3 \longrightarrow self duel or not$$

#Q.
$$f_1(x_1y_13) = \Sigma(0,1,2,4)$$

 $f_2(x_1y_13) = \Sigma(0,2,4,6,7)$
 $f_3(x_1y_13) = \Sigma(1,2,3,5,6)$

$$f_4(x,y,3) = \Sigma$$
?
 $f_5(x,y,3) = \Sigma$?
 $y,3) = 2$

2 Minute Summary

-> H.A & F.A.

Thank you

Soldiers!

