VECTOR OPERATORS ∇ , \times , \bullet

Vector:
$$\overline{A} = \hat{x}A_x + \hat{y}A_y + \hat{z}A_z$$

Vector Dot Product:
$$\overline{A} \bullet \overline{B} = A_X B_X + A_y B_y + A_z B_z = |\overline{A}| |\overline{B}| \cos \theta$$

Vector Cross Product:
$$\overline{A} \times \overline{B} = \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix} = |\overline{A}||\overline{B}|\sin\theta$$

$$= \hat{x} \Big(\mathsf{A}_y \mathsf{B}_z - \mathsf{A}_z \mathsf{B}_y \Big) + \hat{y} \Big(\mathsf{A}_z \mathsf{B}_x - \mathsf{A}_x \mathsf{B}_z \Big) + \hat{z} \Big(\mathsf{A}_x \mathsf{B}_y - \mathsf{A}_y \mathsf{B}_x \Big)$$

**"Del" (
$$\nabla$$
) Operator:** $\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$

Gradient of
$$\phi$$
:
$$\nabla \phi = \hat{x} \frac{\partial \phi}{\partial x} + \hat{y} \frac{\partial \phi}{\partial y} + \hat{z} \frac{\partial \phi}{\partial z}$$

Divergence of A:
$$\nabla \bullet \overline{A} = \frac{\partial A_X}{\partial X} + \frac{\partial A_Y}{\partial Y} + \frac{\partial A_Z}{\partial Z}$$

"Curl of
$$\overline{A}$$
": $\nabla \times \overline{A} = \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ A_X & A_y & A_z \end{vmatrix}$

PHYSICAL SIGNIFICANCE OF $\nabla \bullet$, $\nabla \times$

 $\nabla \bullet \overline{D}$ is the "divergence of the vector field \overline{D} "

Gauss's divergence theorem:
$$\int_{V} (\nabla \cdot \overline{A}) dv = \iint_{S} (\overline{A} \cdot \hat{n}) da$$

Gauss's Law, Differential Form:
$$\nabla \cdot \overline{D} = \rho$$

$$\int_{V} (\nabla \cdot \overline{D}) dv = \iint_{S} (\overline{D} \cdot \hat{n}) da = \int_{V} \rho \ dv$$

 $\nabla \times \overline{E}$ is the "curl of the vector field \overline{E} "

Stokes's theorem:
$$\oint_C \overline{E} \cdot d\overline{s} = \iint_A (\nabla \times \overline{E}) \cdot \hat{n} da$$

Faraday's Law, Differential Form:
$$\nabla \times \overline{E} = -\frac{\partial B}{\partial t}$$

$$\oint_{C} \overline{E} \cdot d\overline{s} = \iint_{A} (\nabla \times \overline{E}) \cdot \hat{n} \, da = -\iint_{A} \frac{\partial \overline{B}}{\partial t} \cdot \hat{n} \, da = \oint_{C} \overline{E} \cdot d\overline{s}$$

MAXWELL'S EQUATIONS

Integral Form:

$$\overline{D} = \varepsilon \overline{E}, \ \overline{B} = \mu \overline{H} \quad \iint_{S} \overline{B} \bullet \hat{n} da = 0$$

$$\oint_{c} \overline{E} \cdot d\overline{s} = -\frac{\partial}{\partial t} \iint_{A} \overline{B} \cdot \hat{n} da$$

$$\nabla \bullet \overline{\mathbf{D}} = \rho$$

$$\Leftrightarrow$$
 0

$$\triangle \bullet \underline{B} = 0$$

$$\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$$

$$\oint_{C} \overline{H} \cdot d\overline{s} = \iint_{A} \overline{J} \cdot \hat{n} da + \frac{\partial}{\partial t} \iint_{A} \overline{D} \cdot \hat{n} da$$

$$\nabla \times \overline{\mathbf{H}} = \overline{\mathbf{J}} + \frac{\partial \overline{\mathbf{D}}}{\partial \mathbf{t}}$$

- E Electric field
- H Magnetic field
- B Magnetic flux density
- D Electric displacement
- J Electric current density
- ρ Electric charge density

[volts/meter, V m⁻¹]

[amperes/meter, A m⁻¹]

[Tesla, T]

[ampere sec/m², A s m⁻²]

[amperes/m², A m⁻²]

[coulombs/m³, C m⁻³]

MAXWELL'S EQUATIONS: VACUUM SOLUTION

Gauss's Law Relations

Constitutive

Faraday's Law:
$$\nabla \times \bar{\mathbf{E}} = -\frac{\partial \bar{\mathbf{B}}}{\partial t}$$
 $\nabla \cdot \bar{\mathbf{D}} = \mathbf{A}$ $\nabla \cdot \bar{\mathbf{D}} = \mathbf{A}$ $\nabla \cdot \bar{\mathbf{D}} = \mathbf{A}$ $\nabla \cdot \bar{\mathbf{B}} = 0$ $\nabla \cdot \bar{\mathbf{B}} = 0$

$$\nabla \bullet \overline{\mathsf{D}} = \mathsf{p}$$

$$\bar{D} = \varepsilon_o \bar{E}$$

$$\nabla \times \vec{H} = \vec{\lambda} + \frac{\partial D}{\partial t}$$

$$\nabla \bullet \overline{\mathsf{B}} = 0$$

$$\bar{B} = \mu_o \bar{H}$$

EM Wave Equation:

Eliminate
$$\overline{H}$$
: $\nabla \times (\nabla \times \overline{E}) = -\mu_0 \frac{\partial}{\partial t} (\nabla \times \overline{H})$

Use identity:
$$\nabla \times (\nabla \times \overline{A}) = \nabla (\nabla \cdot \overline{A}) - \nabla^2 \overline{A}$$

Yields:
$$\nabla(\nabla \cdot \overline{E}) - \nabla^2 \overline{E} = -\mu_0 \frac{\partial}{\partial t} (\nabla \times \overline{H}) = -\mu_0 \epsilon_0 \frac{\partial^2 \overline{E}}{\partial t^2}$$

$$EM \ Wave \ Equation^1 \quad \nabla^2 \overline{E} - \mu_0 \epsilon_0 \frac{\partial^2 \overline{E}}{\partial t^2} = 0$$

$$\nabla^2 \overline{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \overline{E}}{\partial t^2} = 0$$

Second derivative in space ∞ second derivative in time, therefore solution is any f(r,t) with identical dependencies on r,t

¹Laplacian Operator:
$$\nabla \bullet (\nabla \phi) = \nabla^2 \phi = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\phi$$

WAVE EQUATION SOLUTION

Many are possible \Rightarrow Try Uniform Plane Wave (UPW), \neq f(x,y)

Example: Try:
$$E = \hat{y} E_y(z)$$
 in $\nabla^2 \overline{E} - \mu_0 \epsilon_0 \frac{\partial^2 \overline{E}}{\partial t^2} = 0$

$$\Rightarrow \nabla^2 E_y = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) E_y$$
Yields: $\frac{\partial^2 E_y}{\partial z^2} - \mu_o \epsilon_o \frac{\partial^2 E_y}{\partial t^2} = 0$

Trial solution: $E_v(z,t) = E_+(t-z/c)$; $E_+(arg) = arb$. function of (arg)

Test solution: $c^{-2} E''_{+}(t - z/c) - \mu_0 \epsilon_0 E''_{+}(t - z/c) = 0$ iff: $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \approx 3 \times 10^8 \text{ [m s}^{-1}\text{] in vacuum (velocity of light)}$

UNIFORM PLANE WAVE IN Z-DIRECTION

Example:
$$E_y(z,t) = E_+(t-z/c)$$
 [V/m]

$$Func(arg) = Func^*[(-c)(arg)] = Func^*(z - ct)$$

E.G.:
$$E_y(z,t) = E_+ \cos[\omega(t-z/c)] = E_+ \cos(\omega t - kz),$$
 where $k = \omega/c = \omega\sqrt{\mu_0 \epsilon_0}$

To find magnetic fields:

Faraday's Law:
$$\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$$
 $\Rightarrow \overline{H} = -\int (\nabla \times \overline{E}) \mu_o^{-1} dt$

$$\nabla \times \overline{E} = \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ E_{x_0} & E_{y} & E_{z_0} \end{vmatrix} = -\hat{x}\partial E_{+} \cos(\omega t - kz)/\partial z$$
$$= -\hat{x} kE_{+} \sin(\omega t - kz)$$

$$\overline{H} = \hat{x} \int (k/\mu_o) E_+ \sin(\omega t - kz) dt = -\hat{x} (E_+/\eta_o) \cos(\omega t - kz)$$

$$k = \omega \sqrt{\mu_o \epsilon_o}$$
 , $\eta_o = \sqrt{\mu_o / \epsilon_o}$

UNIFORM PLANE WAVE: EM FIELDS

EM Wave in z direction:

$$\overline{E}(z,t) = \hat{y}E_{+}\cos(\omega t - kz) , \quad \overline{H}(z,t) = -\hat{x}(E_{+}/\eta_{O})\cos(\omega t - kz)$$

Linearity implies superposition of $n\rightarrow\infty$ waves, all θ,ϕ

ELECTROMAGNETIC AND OTHER WAVES

A "wave" is a fixed disturbance propagating through a medium

Medium	Α	В	A energy	B energy
String	stretch	velocity	potential	kinetic
Acoustic	pressure	velocity	potential	kinetic
Ocean	height	velocity	potential	kinetic
Electromagnetic	H	E	magnetic	electric

Role of Maxwell's Equations and Fields

The fields \overline{E} , \overline{H} and the displacement and flux densities \overline{D} , \overline{B} permit division of electromagnetics into the Maxwell and Lorentz equations

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.