HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Pro gradu -tutkielma

Stone-Čech kompaktisointi

Pekka Keipi

Ohjaaja: Erik Elfving 26. helmikuuta 2017

Sisältö

1	Johdanto	2
2	Esitietoja	3
3	Uniformiset rakenteet	4

Luku 1 Johdanto

Luku 2

Esitietoja

Olkoon X joukko ja V,W sen osajoukko
ja. Merkitään tällöin joukkoilla V ja W seuraavasti:

 $V\circ W=\{(x,z)\mid \text{ on olemassa sellainen }y\in X \text{ jolla }(x,y)\in V \text{ ja }(y,z)\in W\}$ ja $W^2=W\circ W.$

Luku 3

Uniformiset rakenteet

Tässä kappaleessa tutustutaan uniformisiin rakenteisiin ja näiden keskeisiin ominaisuuksiin [1].

Määritelmä 3.1. Uniforminen rakenne (tai uniformisuus) joukolle X annetaan karteesisen tulon $X \times X$ potenssijoukon $\mathcal{P}(X \times X)$ osajoukkona \mathcal{U} , jolle pätee

- (U1) Jos $V \in \mathcal{U}$ ja $V \subset W \subset X \times X$ niin $W \in \mathcal{U}$,
- (U2) Jokainen äärellinen leikkaus joukon \mathcal{U} alkioista kuuluu joukkoon \mathcal{U} ,
- (U3) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in \mathcal{U}$ osajoukko,
- (U4) Jos $V \in \mathcal{U}$, niin $V^{-1} = \{(y, x) \mid (x, y) \in V\} \in \mathcal{U}$,
- (U5) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W^2 \subset V$.

Uniformisen rakenteen muodostavia joukkoja $V \in \mathcal{U}$ sanotaan uniformisuuden \mathcal{U} lähistöksi. Joukkoa X joka on varustettu uniformisuudella \mathcal{U} sanotaan univormiseksi avaruudeksi.

Huomautus~3.2. Uniformisuuden \mathcal{U} lähistöön (entourage) $V \in \mathcal{U}$ kuuluvan pisteparin $(x,y) \in V$ pisteiden $x,y \in X$ sanotaan olevan V-lähellä, tarpeeksi lähellä tai mielivaltaisen lähellä toisiaan.

Huomautus 3.3. Mikäli muut ehdot pätevät, voidaan ehdot (U4) ja (U5)) korvata yhtäpitävällä ehdolla

(Ua) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W \circ W^{-1} \subset V$.

Huomautus 3.4. Jos joukko X on tyhjä, niin ehdon (U3) nojalla joukon X uniformiteetti \mathcal{U} on tyhjä. Erityisesti $\{\emptyset\}$ on joukon X ainoa ehdot täyttävä uniformiteetti, jos joukko X on tyhjä.

Määritelmä 3.5. Olkoon X joukko ja joukko $\mathcal{U} \subset X \times X$ sen uniformiteetti. Tällöin lähistöjen joukko $B \subset \mathcal{U}$ on uniformiteetin \mathcal{U} kanta, jos jokaiselle lähistölle $V \in \mathcal{U}$ löytyy kannan alkio $W \in B$, jolla pätee $W \subset V$.

Määritelmä 3.6. Olkoon X joukko. Joukko $B \subset \mathcal{P}(X \times X)$ on joukon X uniformisuuden kanta, jos joukolle B pätee

- (B1) Jos $V_1, V_2 \in B$ niin on olemassa sellainen $V_3 \in B$, jolla $V_3 \subset V_1 \cap V_2$,
- (B2) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in B$ osajoukko,
- (B3) Jos $V \in B$, niin on olemassa sellainen $V' \in B$, jolla $V' \subset V^{-1}$,
- (B4) Jos $V \in B$, niin on olemassa sellainen $W \in B$, jolla $W^2 \subset V$.

Lause 3.7. Uniformisen avaruuden topologia. Olkoon joukko X varustettu uniformisuudella U. Olkoon $x \in X$ alkio ja $V \in \mathcal{U}$ lähistö avaruudessa X. Olkoon

$$V(x) = \{ y \in X \mid (x, y) \in V \} \text{ ja } B(x) = \{ V(x) \mid V \in \mathcal{U} \}$$

joukkoja. Uniformiteetti \mathcal{U} määrää topologian joukolle X niin, että joukko V(x) on (lähistön V määräämä) ympäristö alkiolle x ja joukko B(x) on alkion x kaikkien ympäristöjen joukko kyseisessä topologiassa.

Todistus. Olkoon joukko X varustettu uniformisuudella \mathcal{U} . Olkoon $x \in X$ alkio, $V \in \mathcal{U}$ lähistö avaruudessa X ja joukot V(x) ja B(x) kuten edellä. Alkiolle x pätee $x \in V(x)$, joten joukko V(x) on epätyhjä. Jokaiselle lähistölle $V, W \in \mathcal{U}$ pätee

$$V(x) \cup W(x) = \{ y \in X \mid (x, y) \in V \text{ tai } (x, y) \in W \}$$

= $\{ y \in X \mid (x, y) \in V \cup W \} \in B(x),$

ja

$$V(x) \cap W(x) = \{ y \in X \mid (x, y) \in V \text{ ja } (x, y) \in W \}$$

=\{ y \in X \cdot (x, y) \in V \cdot W \} \in B(x)

sillä määritelmän 3.1 ehtojen (U1) ja (U2) nojalla $V \cup W \in B$ ja $V \cap W \in B$. Tällöin on olemassa yksikäsitteinen topologia, jossa B(x) on alkion x kaikkien ympäristöjen joukko.[1]

Lause 3.8.

Huomautus 3.9.

Lause 3.10.

Määritelmä 3.11.

Kirjallisuutta

- [1] Nicolas Bourbaki: General Topology Part 1, 1. painos, Hermann, 1966.
- [2] Nicolas Bourbaki: General Topology Part 2, 1. painos, Hermann, 1966.
- [3] Jussi Väisälä: Topologia II, 2. korjattu painos, Limes ry, 2005.