NOIP 模拟题 Day2

Colin

1 题目概况

中文题目名称	排序	花花的森林	最短路
英文题目名称	sort	forest	sp
输入文件名	sort.in	forest.in	sp.in
输出文件名	sort.out	forest.out	sp.out
每个测试点时限	1秒	1秒	1秒
测试点数目	20	10	10
每个测试点分值	5	10	10
附加样例文件	有	有	有
题目类型	传统	传统	传统
运行内存上限	128M	128M	128M

2 注意事项

- 考试时间: 3.5 小时。
- 评测在 windows 下进行。
- 评测时将开启-O2优化。
- 部分题目涉及大规模文件操作,请尽可能提升程序输入输出操作的效率。

NOIP 模拟 Day2 3. 排序

3 排序

3.1 题意描述

众所周知,熟练掌握至少一种排序算法是参加NOIP的必备技能。常见的排序算法有冒泡排序、归并排序、快速排序、奇偶排序、猴子排序、梳排序、鸡尾酒排序、臭皮匠排序等。

在这里,介绍一种利用栈进行排序的方法。例如,当数组中的元素为1,3,2时,我们可以利用栈对其进行排序:1入栈;3入栈;3出栈;2入栈;2出栈;1出栈。在这个例子中,出栈序列是3,2,1,因而实现了对数组的排序。

遗憾的是,在不打乱入栈顺序的前提下,有时仅仅借助一个栈是不能实现对数组的完全排序。例如给定数组 2, 1, 3,借助一个栈,能获得的字典序最大的出栈序列是 3, 1, 2。(2 入 栈; 1 入栈; 3 入栈; 3 出栈; 1 出栈; 2 出栈)

现请你借助一个栈,在不打乱入栈顺序的情况下,对数组进行从大到小排序。当无法完全 排序时,请输出字典序最大的出栈序列。

3.2 输入格式

输入共2行。

第一行包含一个正整数 n,表示入栈序列长度。

第二行包含 n 个整数,表示入栈序列。输入数据保证给定的序列是 1 到 n 的全排列,即不会出现重复数字。

3.3 输出格式

输出仅一行,共 n 个整数,表示字典序最大的出栈序列。

3.4 样例输入

5

21534

3.5 样例输出

 $5\ 4\ 3\ 1\ 2$

3.6 样例解释

2 入栈; 1 入栈; 5 入栈; 5 出栈; 3 入栈; 4 入栈; 4 出栈; 3 出栈; 1 出栈; 2 出栈

NOIP 模拟 Day2 3. 排序

3.7 数据规模与约定

- 对于 40% 的数据: $N \le 10$;
- 另有 20% 的数据: $N \le 10^3$;
- 另有 20% 的数据: $N \le 10^5$;
- 对于 100% 的数据: $N \le 10^6$ 。

NOIP 模拟 Day2 4. 花花的森林

4 花花的森林

4.1 题意描述

花花有一棵带 n 个顶点的树 T, 每个节点有一个点权 a_i 。

有一天,他认为拥有两棵树更好一些。所以,他从 T 中删去了一条边。

第二天,他认为三棵树或许又更好一些。因此,他又从他拥有的某一棵树中去除了一条 边。

如此往复。每一天,花花都会删去一条尚未被删去的边,直到他得到了一个包含了n棵只有一个点的树的森林。

定义一条简单路径¹的权值为路径上点权之和,一棵树的直径为树上权值最大的简单路径。 花花认为树最重要的特征就是它的直径。所以他想请你算出任一时刻他拥有的所有树的直径 的乘积。因为这个数可能很大,他要求你输出乘积对 10⁹ + 7 取模之后的结果。

4.2 输入格式

输入的第一行包含一个整数 n,表示树 T 上顶点的数量。

下一行包含 n 个空格分隔的整数 a_i ,表示顶点的权值。

之后的 n-1 行中,每一行包含两个用空格分隔的整数 x_i 和 y_i ,表示节点 x_i 和 y_i 之间连有一条边,编号为 i。

再之后 n-1 行中,每一行包含一个整数 k_i ,表示在第 j 天里会被删除的边的编号。

4.3 输出格式

输出n行。

在第 i 行,输出删除 i-1 条边之后,所有树直径的乘积对 10^9+7 取模的结果。

4.4 样例输入

3

1 2 3

1 2

13

2

1

¹顶点不重复出现的路径

NOIP 模拟 Day2 4. 花花的森林

4.5 样例输出

6

9

6

4.6 样例解释

初始,树的直径为 6 (由节点 2、1 和 3 构成的路径)。在第一天之后,得到了两棵直径都为 3 的树。第二天之后,得到了三棵直径分别为 1,2,3 的树,乘积为 6。

4.7 数据规模与约定

- 对于 40% 的数据: $N \le 100$;
- 另有 20% 的数据: *N* ≤ 1000;
- 另有 20% 的数据: $N \le 10^4$;
- 对于 100% 的数据: $N \le 10^5, a_i \le 10^4$.

NOIP 模拟 Day2 5. 最短路

5 最短路

5.1 题意描述

H 国有 n 个城市。n 个城市间有 m 条双向道路连接。n 个城市两两连通,且每一条道路最多在一个环内。

现在花花有 q 组询问,每次询问一对城市间的最短路径长度。

5.2 输入格式

输入第一行包括 3 个非负整数 n, m, q。

接下来 m 行,每行包括 3 个非负整数 u_i, v_i, l_i ,表示编号为 u_i 和 v_i 的城市间有一条长度 为 l_i 的双向道路连接。

接下来 q 行,每行包括 2 个正整数 u_i 和 v_i ,表示询问城市 u_i 和 v_i 间的最短路径长度。

5.3 输出格式

输出包含q行,每行包含一个非负整数,表示城市 u_i 和 v_i 间的最短路径长度。

5.4 样例输入

- $9\ 10\ 2$
- 1 2 1
- 1 4 1
- 3 4 1
- 2 3 1
- 3 7 1
- 782
- 792
- 153
- 164
- 5 6 1
- 19
- 5 7

5.5 样例输出

5

6

NOIP 模拟 Day2 5. 最短路

5.6 数据规模与约定

测试点编号	$\mid n \mid$	q	环的个数
0	≤ 100	≤ 10	0
1	≤ 100	≤ 100	0
2	≤ 100	≤ 500	0
3	≤ 100	≤ 1000	0
4	≤ 1000	≤ 500	0
5	≤ 1000	≤ 1000	1
6	$\leq 10^4$	≤ 5000	0
7	$\leq 10^4$	$\leq 10^4$	1
8	$\leq 10^{5}$	$\leq 10^{5}$	≤ 10
9	$\leq 10^{5}$	$\leq 10^{5}$	无限制

对于 100% 的数据: $1 \le l_i \le 10000$ 。