

7 from the first oxide and consisting substantially of
8 lithium, nickel, cobalt, a metal other than nickel and
9 cobalt, and oxygen, and said third oxide being different
10 from the first and second oxides and consisting
11 substantially of lithium, cobalt and oxygen or of lithium,
12 cobalt, a metal other than cobalt, and oxygen.

1 **35.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said first oxide
3 is an oxide derived via substitution of other element for
4 a part of manganese in a lithium-manganese complex oxide,
5 said second oxide is an oxide derived via substitution of
6 cobalt and other element for a part of nickel in a
7 lithium-nickel complex oxide, and said third oxide is a
8 lithium-cobalt complex oxide or an oxide derived via
9 substitution of other element for a part of cobalt in said
10 lithium-cobalt complex oxide.

1 **36.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said first oxide
3 is a lithium-manganese complex oxide represented by the
4 compositional formula $\text{Li}_x\text{Mn}_{2-y}\text{M}_1y\text{O}_{4+z}$ (where M₁ is at least one
5 element selected from the group consisting of Al, Co, Ni,
6 Mg and Fe, $0 \leq x \leq 1.2$, $0 < y \leq 0.1$ and $-0.2 \leq z \leq 0.2$).

1 **37.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said second
3 oxide is represented by the compositional formula

4 $\text{Li}_a\text{M}_2\text{b}\text{Ni}_c\text{Co}_d\text{O}_2$ (where M2 is at least one element selected
5 from the group consisting of Al, Mn, Mg and Ti, $0 < a <$
6 1.3 , $0.02 \leq b \leq 0.3$, $0.02 \leq d/(c + d) \leq 0.9$ and $b + c + d$
7 $= 1$).

1 **38.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said third oxide
3 is represented by the compositional formula $\text{Li}_e\text{M}_3\text{fCo}_{1-f}\text{O}_2$
4 (where M3 is at least one element selected from the group
5 consisting of Al, Mn, Mg and Ti, $0 < e < 1.3$ and $0 \leq f \leq$
6 0.4).

1 **39.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 36, characterized in that M1 in the first
3 oxide's compositional formula $\text{Li}_x\text{Mn}_{1-y}\text{M}_1\text{yO}_{4+z}$ is at least one
4 of Al and Mg.

1 **40.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 37, characterized in that M2 in the second
3 oxide's compositional formula $\text{Li}_a\text{M}_2\text{b}\text{Ni}_c\text{Co}_d\text{O}_2$ is Mn.

1 **41.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 40, characterized in that $0.1 \leq d/(c + d)$
3 ≤ 0.5 is satisfied in the second oxide's compositional
4 formula $\text{Li}_a\text{M}_2\text{b}\text{Ni}_c\text{Co}_d\text{O}_2$.

1 **42.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 38, characterized in that said third oxide

3 is represented by the compositional formula $\text{Li}_e\text{M}_{3f}\text{Co}_{1-f}\text{O}_2$
4 (where M₃ is at least one element selected from the group
5 consisting of Mg and Ti, $0 < e < 1.3$ and $0.02 \leq f \leq 0.2$).

1 **43.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said first,
3 second and third oxides are mixed in the ratio by weight of
4 (first oxide) to (second oxide + third oxide) = 20:80 -
5 80:20.

1 **44.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 43, characterized in that said second and
3 third oxides are mixed in the ratio by weight of (second
4 oxide) to (third oxide) = 90:10 - 10:90.

1 **45.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said first oxide
3 has a mean particle diameter of 5 - 30 μm .

1 **46.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said second
3 oxide has a mean particle diameter of 3 - 15 μm .

1 **47.** (new) The nonaqueous electrolyte secondary battery as
2 recited in claim 34, characterized in that said third oxide
3 has a mean particle diameter of 3 - 15 μm .