# Lecture 6 Householder Reflectors and Givens Rotations

MIT 18.335J / 6.337J

Introduction to Numerical Methods

Per-Olof Persson

September 26, 2006

# **Gram-Schmidt as Triangular Orthogonalization**

 Gram-Schmidt multiplies with triangular matrices to make columns orthogonal, for example at the first step:

$$\begin{bmatrix}
v_1 & v_2 & \cdots & v_n
\end{bmatrix}
\begin{bmatrix}
\frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\
1 & 1 & & \\
& & 1
\end{bmatrix} = \begin{bmatrix}
q_1 & v_2^{(2)} & \cdots & v_n^{(2)}
\end{bmatrix}$$

After all the steps we get a product of triangular matrices

$$A\underbrace{R_1 R_2 \cdots R_n}_{\hat{R}^{-1}} = \hat{Q}$$

"Triangular orthogonalization"

# Householder Triangularization

 The Householder method multiplies by unitary matrices to make columns triangular, for example at the first step:

$$Q_1A = egin{bmatrix} r_{11} & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \cdots & \mathbf{x} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{x} & \cdots & \mathbf{x} \end{bmatrix}$$

After all the steps we get a product of orthogonal matrices

$$\underbrace{Q_n \cdots Q_2 Q_1}_{Q^*} A = R$$

"Orthogonal triangularization"

# **Introducing Zeros**

- ullet  $Q_k$  introduces zeros below the diagonal in column k
- Preserves all the zeros previously introduced

#### **Householder Reflectors**

• Let  $Q_k$  be of the form

$$Q_k = \begin{bmatrix} I & 0 \\ 0 & F \end{bmatrix}$$

where I is  $(k-1)\times(k-1)$  and F is  $(m-k+1)\times(m-k+1)$ 

ullet Create Householder reflector F that introduces zeros:

$$x = \begin{bmatrix} \times \\ \times \\ \times \\ \vdots \\ \times \end{bmatrix} \qquad Fx = \begin{bmatrix} \|x\| \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \|x\|e_1$$

#### **Householder Reflectors**

• Idea: Reflect across hyperplane H orthogonal to  $v = \|x\|e_1 - x$ , by the unitary matrix

$$F = I - 2\frac{vv^*}{v^*v}$$

Compare with projector

$$P_{\perp v} = I - \frac{vv^*}{v^*v}$$



#### **Choice of Reflector**

- We can choose to reflect to any multiple z of  $||x||e_1$  with |z|=1
- $\bullet$  Better numerical properties with large  $\|v\|$  , for example

$$v = \operatorname{sign}(x_1) ||x|| e_1 + x$$

• Note: sign(0) = 1, but in MATLAB, sign(0) = 0



# The Householder Algorithm

- Compute the factor R of a QR factorization of  $m \times n$  matrix A ( $m \ge n$ )
- Leave result in place of A, store reflection vectors  $v_k$  for later use

#### Algorithm: Householder QR Factorization

for 
$$k = 1$$
 to  $n$ 

$$x = A_{k:m,k}$$

$$v_k = \text{sign}(x_1) ||x||_2 e_1 + x$$

$$v_k = v_k / ||v_k||_2$$

$$A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^* A_{k:m,k:n})$$

# Applying or Forming Q

- Compute  $Q^*b=Q_n\cdots Q_2Q_1b$  and  $Qx=Q_1Q_2\cdots Q_nx$  implicitly
- ullet To create Q explicitly, apply to x=I

## Algorithm: Implicit Calculation of $Q^*b$

for 
$$k=1$$
 to  $n$  
$$b_{k:m}=b_{k:m}-2v_k(v_k^*b_{k:m})$$

### Algorithm: Implicit Calculation of Qx

for 
$$k=n$$
 downto  $1$  
$$x_{k:m}=x_{k:m}-2v_k(v_k^*x_{k:m})$$

# **Operation Count - Householder QR**

Most work done by

$$A_{k:m,k:n} = A_{k:m,k:n} - 2v_k(v_k^* A_{k:m,k:n})$$

- Operations per iteration:
  - 2(m-k)(n-k) for the dot products  $v_k^*A_{k:m,k:n}$
  - (m-k)(n-k) for the outer product  $2v_k(\cdots)$
  - (m-k)(n-k) for the subtraction  $A_{k:m,k:n} \cdots$
  - -4(m-k)(n-k) total
- Including the outer loop, the total becomes

$$\sum_{k=1}^{n} 4(m-k)(n-k) = 4\sum_{k=1}^{n} (mn-k(m+n)+k^2)$$

$$\sim 4mn^2 - 4(m+n)n^2/2 + 4n^3/3 = 2mn^2 - 2n^3/3$$

#### **Givens Rotations**

Alternative to Householder reflectors

- A Givens rotation  $R=\begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$  rotates  $x\in\mathbb{R}^2$  by  $\theta$
- ullet To set an element to zero, choose  $\cos heta$  and  $\sin heta$  so that

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ x_j \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_j^2} \\ 0 \end{bmatrix}$$

or

$$\cos \theta = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \qquad \sin \theta = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$

#### **Givens QR**

Introduce zeros in column from bottom and up

• Flop count  $3mn^2-n^3$  (or 50% more than Householder QR)