Chapter 6: Lines and Angles

Key Concepts & Results

Important Definitions:

- * Complementary Angles: Two angles whose sum is 90°
- \$\text{\$\text{\$}} \text{ Supplementary Angles: Two angles whose sum is 180°}
- 🕻 Adjacent Angles: Two angles with a common arm and vertex
- \$\frac{1}{2}\$ Linear Pair: Adjacent angles that form a straight line (sum = 180°)
- > Vertically Opposite Angles: Angles opposite to each other when two lines intersect and always equal!

Angle Relationships

Postulates & Theorems You Must Know:

- If a ray stands on a line, the adjacent angles form a linear pair and are supplementary
- 2 Vertically opposite angles formed by two intersecting lines are equal
- 3 A transversal intersecting two parallel lines gives:
 - Corresponding angles = equal
 - Alternate interior angles = equal
 - ✓ Co-interior (same side interior) angles = supplementary
- 4 Lines parallel to the same line are parallel to each other
- 5 Sum of the angles of a triangle = 180°
- 6 Exterior angle of a triangle = sum of two opposite interior angles

Example:

If $\angle A = 50^{\circ}$ and $\angle B = 60^{\circ}$, then exterior $\angle C = 110^{\circ}$

Multiple Choice Questions (Concept-Based)

- 🔟 If two angles are in ratio 2:3 and are interior angles on same side of transversal → greater angle = 108° 🗸
- Triangle with angle sum condition:

If one angle = sum of other two → triangle is a Right triangle ✓

- 3 Triangle with exterior angle = 105° and two equal interior angles \rightarrow each = 37.5° ✓
- 4 Triangle with angles in 5:3:7 ratio → obtuse triangle (one angle > 90°) ✓
- 5 Given one angle = 130° in a triangle, the angle between bisectors of other two = 50° ✓

Reasoning-Based Short Questions

Q: Can a triangle have all angles < 60°?

A: X No! Total must be 180°; 3 angles < 60° can't add to 180°.

Q: Can a triangle have 2 obtuse angles?

A: X No! One obtuse angle is > 90°, so two such angles exceed 180°.

Q: Triangle angles 45°, 64°, 72° — Possible?

A: \checkmark Yes, 45+64+72 = 181° \times Too much! So only one triangle can be drawn if sum = 180°.

Application-Based Examples

Q: If two adjacent angles are equal, are they right angles?

A: Yes, if adjacent + supplementary → Each must be 90°

Q: If one angle of intersecting lines is 90°, what about others?

A: All are 90°, as they're vertically opposite and supplementary 🗸

Q: If two lines are ⊥ to same line → they are parallel

Geometry Diagrams & Results (Explained)

- lacktriangle Fig 6.6 Two lines I and m are \perp to the same line n
- V So, l // m
- $lue{}$ Fig 6.7 AB, CD, and EF intersect at O. Given \angle COE = 2y, \angle AOE = 5y
- → Apply angle sum: ∠COE + ∠AOE + ∠AOD = 180°
- → Find y, then confirm values
- $lue{}$ Fig 6.12 and 6.13 Given BA # ED and BC # EF
- → Prove angle equal or supplementary using parallel line properties
- Fig 6.14 Given DE ∥ QR, and bisectors are drawn
- ightarrow Use angle properties to find \angle APB

Long Answer Thinking Problems

- Ray Reflection with Perpendicular Mirrors (Fig 6.15)
 - Use geometry of reflections and perpendicularity
 - $\angle 1 + \angle 4 = 90^{\circ}$ and $\angle 2 + \angle 3 = 90^{\circ}$
 - → Total = 180°, so reflected ray // incident ray 🗸

Triangle Angle Sum:

• $\angle A + \angle B + \angle C = 180^{\circ}$ (Standard theorem — proven via parallel lines and transversal)

$\square \angle BOC = 90^{\circ} + \frac{1}{2} \angle A$:

- When angle bisectors of B and C intersect at O
- Use triangle sum + bisector properties → proof follows step by step

_

Final Summary Table

Concept	Rule/Value
Vertically Opposite Angles	Always Equal
Linear Pair	Sum = 180°
Angles of Triangle	Sum = 180°
Exterior Angle of Triangle	= Sum of opposite interior angles
Alternate Interior / Corresponding Angles	Equal (for parallel lines + transversal)
Co-interior Angles	Supplementary
Lines ⊥ to same line	// to each other