FCC Test Report

for

Evoluent Vertical Mouse 3 Wireless – Right Hand

Trade Name : Evoluent

Model Number: VM3W-R

FCC ID : TUQ0360WR

Report Number: RF-H180-0712-108

Date of Receipt: Dec. 13, 2007

Date of Report : Feb. 5, 2008

Prepared for

K-WELL INTERNATIONAL CORP.

10F, NO. 57, Sec. 4, Jhonghsiao E. Rd., Da-An Dist., Taipei City, Taiwan.

Prepared by

Central Research Technology Co. EMC Test Laboratory

11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by any U.S. government agency. The test result in the report applies only to the sample tested.

Certification of Compliance

Equipment under Test : Evoluent Vertical Mouse 3 Wireless – Right Hand

Model No. : VM3W-R

FCC ID : TUQ0360WR

Manufacturer : K-WELL INTERNATIONAL CORP.

Applicant : K-WELL INTERNATIONAL CORP.

Address : 10F, NO. 57, Sec. 4, Jhonghsiao E. Rd., Da-An Dist.,

Taipei City, Taiwan.

: 47 CFR part 15, Subpart C Applicable Standards

Date of Testing : Feb. 4, 2008

Deviation : N/A

Condition of Test Sample : Prototype

We, Central Research Technology Co., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

: Cathy Chen, DATE: Feb. 5, 7008

(Cathy Chen/Technical Manager)

T. Y. Ch. , DATE: Feb. t, 2008 PREPARED BY

APPROVED BY

(Tsun-Yu Shih/Laboratory Head)

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Contents

1.	Gen	eral Description	4
	1.1	General Description of EUT	4
	1.2	Test Methodology	4
	1.3	Applied standards	5
	1.4	The Support Units	8
	1.5	Layout of the Setup	8
	1.6	Test Capability	9
	1.7	Measurement Uncertainly	11
2.	Field	d strength of Fundamental	12
	2.1	Limits for Field strength of Fundamental	12
	2.2	Test Instruments	13
	2.3	Test Procedures	14
	2.4	Test Configurations	15
	2.5	Test Results	16
3.	Radi	iated Emission Measurement	21
	3.1	Limit for Radiated Emission Measurement	21
	3.2	Test Instruments	22
	3.3	Test Procedures	23
	3.4	Test Configuration	24
	3.5	Test Results	25
Atı	achm	nent 1 – Photographs of the Test Configurations	
Att	achm	nent 2 – External Photographs of EUT	

Attachment 3 – Internal Photographs of EUT

1. General Description

1.1 General Description of EUT

Equipment Under Test: Evoluent Vertical Mouse 3 Wireless – Right Hand

Model No. : VM3W-R

Power in : 3.0Vdc

Test Voltage : 3.0Vdc (1.5Vdc Battery*2)

Manufacturer : K-WELL INTERNATIONAL CORP.

Channel Numbers : 3

Frequency Range : 2403MHz~2478MHz Fundamental Frequency : 2403, 2453, 2478 MHz

Function Modulation : FSK

Function Description :

The EUT is used to transmit control command only. Please refer to the user's manual for the details.

1.2 Test Methodology

For this E.U.T., the radiated emissions measurement performed according to the procedures illustrated in ANSI C63.4:2003 and other required were illustrated in separate sections of this test report for detail.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.3 Applied standards

(1) Field strength of Fundamental

According to 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength	Field Strength	
Frequency	of Fundamental (mV/m)	of Harmonics (uV/m)	
902 – 928 MHz	50	500	
2400 – 2483.5 MHz	50	500	
5725 – 5875 MHz	50	500	
24.0 – 24.25 GHz	250	2500	

(2) Radiation emission

According to 15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Page :5/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(3) Radiated emission limits, general requirements.

According to 15.209, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(uV/m)	(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Page :6/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(5) Conducted Limit

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
rrequeries or Emission (minz)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Teade Name	PowerCode	Supported by lab.
NA	*	*	*	*	*

1.5 Layout of the Setup

Transmitter	

Connecting Cables:

No.	Cable	Length	Shielded	Ferrite Core	Shielded Backshell	Supported by lab.	Note
N/A	*	*	*	*	*	*	*

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it.

For radiated emission, measurement of radiated emission from digital circuit is performed with normal transmitting.

Page :8/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4.

Test Room	Type of Test Room	Descriptions
□ TR1	10m semi-anechoic chamber	
	(23m×14m×9m)	Complying with the NSA requirements in
□ TR10	3m semi-anechoic chamber	Complying with the NSA requirements in documents CISPR 22 and ANSI C63.4.
LIKIU	$(9m \times 6m \times 6m)$	For the radiated emission measurement.
☑ TR11	3m semi-anechoic chamber	1 of the fadiated emission measurement.
<u> </u>	$(9m \times 6m \times 6m)$	
□ TR4	Shielding Room	For the RF conducted emission
□ IR4	(5m×3m×3m)	measurement.
□ TR5	Shielding Room	For the conducted emission
ц ткэ	(8m×5m×4m)	measurement.

Page :9/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited/filed/authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark	
	USA	NVLAP	200575-0	ISO/IEC 17025	
	R.O.C.	TAF	0905	ISO/IEC 17025	
Accreditation	(Taiwan)	IAF	0905	130/IEC 17023	
Certificate			SL2-IN-E-0033,		
Certificate	R.O.C.	BSMI	SL2-IS-E-0033,	ISO/IEC 17025	
	(Taiwan)	DOIVII	SL2-R1/R2-E-0033,	130/IEC 17023	
			SL2-A1-E-0033		
	USA	FCC	474046, TW1021	Test facility list	
	USA	FCC	474040, 1 1 1 1 0 2 1	& NSA Data	
Site Filing	Canada	IC	4699A-1,-2,-3	Test facility list	
Document	Callaua	IC	4099A-1,-2,-3	& NSA Data	
	lanan	VCCI	R-1527,C-1609,T-131	Test facility list	
	Japan	VCCI	R-1527,C-1609,1-151	& NSA Data	
Authorization Certificate	Germany	TUV	10021687-2007	ISO/IEC 17025	

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Measurement Uncertainly

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2. The values are less than U_{cispr} in table 1 of CISPR 16-4-2 and which are shown as below.

Test Item	Measurement Uncertainty		
Radiated Emission: (30MHz~200MHz)	Horizontal: 3.3dB;Vertical: 3.4dB		
Radiated Emission: Hor (200MHz~1GHz)		Horizontal: 3.7dB;Vertical: 3.7dB	
Radiated Emission: (above 1GHz)	Horiz	ontal: 4.4dB;Vertical: 4.4dB	
Line Conducted Emission	ESH2-Z5	4.3 dB	
	ENV 4200	4.5 dB	

Page :11/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2. Field strength of Fundamental

Result: PASS

2.1 Limits for Field strength of Fundamental

Fundamental Frequency	Peak	Average
□ 902 – 928 MHz	500mV/m (114dBuV/m)	50mV/m (94dBuV/m)
☑ 2400 – 2483.5 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 5725 – 5875 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 24.0 – 24.25 GHz	2500 mV/m (128dBuV/m)	250 mV/m (108dBuV/m)

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date	
Spectrum	R&S	FSP 7/	Aug 5,, 2007	Aug 5, 2008	
эрээл эл	7 13.3	100106	7 tag 0,, 200.		
Horn Antenna	EMCO	3117/	Feb. 12, 2007	Feb. 12, 2008	
Tiom Antenna	EIVICO	57408	Feb. 12, 2007		
Pre-Amplifier	MITEQ	JS4-00101800- 28-5A/742229	July 31, 2007	July 31, 2008	
TR11 Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	July 1, 2007	July 1, 2008	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required

Instrument Setting

RBW	VBW	Detector	Trace	Comment
1MHz	3MHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature: 27°C; Relative Humidity: 68%

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine higher emission level and record it.
- g. Then measure frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. Set the spectrum detector to be Peak or Average to find out the maximum level occurred.
- i. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- j. Change the receiving antenna to another polarization to measure radiated emission by following step e. to i. again.

11, Lane 41, Fushuen St., Jur TEL.: 886-2-25984542 FAX.: 886-2-25984546

Test Configurations 2.4

Page :15/45

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.5 Test Results

Test Mode : Transmitter

Test Distance : 3m Tester : Bill

Frequency (MHz)	Polarization	Reading Data (dBuV)		Factor	Output Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
(2)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
2403	V	87.63	68.13	4.76	92.40	72.90	113.98	93.98	21.58	21.08
	Н	90.05	70.55	4.76	94.81	75.31	113.98	93.98	19.17	18.67
2453	V	88.33	68.83	4.90	93.23	73.73	113.98	93.98	20.75	20.25
	Н	91.06	71.56	4.90	95.96	76.46	113.98	93.98	18.02	17.52
2478	V	85.79	66.29	4.85	90.64	71.14	113.98	93.98	23.34	22.84
	Н	89.03	69.53	4.85	93.89	74.39	113.98	93.98	20.09	19.59

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier

2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Output Field Strength

4. The average value of fundamental frequency is:

Average = Peak value + 20log(Duty cycle)

Where the duty factor is calculated from following formula:

20log(Duty Cycle)=
$$20log \frac{0.35}{2.96 + 0.35}$$
 =-19.5dB

please see page 20 for plotted duty cycle.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2403MHz

Vertical Polarization

Horizontal Polarization

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2453MHz

Vertical Polarization

Horizontal Polarization

Page :18/45

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

FAX.: 886-2-25984546

2478MHz

Vertical Polarization

Horizontal Polarization

Page :19/45

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Duty Cycle

Page :20/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3. **Radiated Emission Measurement**

Result: PASS

Limit for Radiated Emission Measurement 3.1

Limit for Harmonics Radiation Emission Measurement

Fundamental Frequency	Field Strength of Harmonics
□ 902 – 928 MHz	500 uV/m (54dBuV/m)
☑ 2400 – 2483.5 MHz	500 uV/m (54dBuV/m)
□ 5725 – 5875 MHz	500 uV/m (54dBuV/m)
□ 24.0 – 24.25 GHz	2500 uV/m(68dBuV/m)

Limit for Other Emissions except Harmonics

Frequency (MHz)	Quasi-peak (dBμV/m)				
30 to 88	40				
88 to 216	43.5				
216 to 960	46				
960 to 1000	54				
Frequency (MHz)	Peak (dBμV/m)	Average (dBμV/m)			
Above 1000	74 54				

Note 1- The lower limit shall apply at the transition frequency.

Note 2- Additional provisions may be required for cases where interference occurs.

TEL.: 886-2-25984542

FAX.: 886-2-25984546

3.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date	
EMI Test Receiver	R&S	ESCS 30/ 836858/020	July 28, 2007	July 28, 2008	
Spectrum	R&S	FSP 7/ 100106	Aug 5, 2007	Aug 5, 2008	
Broadband Antenna	EMCO	HL-562/ 830547/010	Dec. 11, 2007	Dec. 11, 2008	
Horn Antenna	EMCO	3117/ 57408	Feb. 12, 2007	Feb. 12, 2008	
Pre-Amplifier	MITEQ	JS4-00101800- 28-5A/742229	July 31, 2007	July 31, 2008	
Pre-Amplifier	Mini Circuit	ZKL-2/ 001	Sept. 6, 2007	March 6, 2008	
Pre-Amplifier	Mini Circuit	ZKL-2/ 002	Sept. 6, 2007	March 6, 2008	
TR11 Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	July 1, 2007	July 1, 2008	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required

Instrument Setting

RBW	VBW	Detector Trace		Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	1MHz	Peak	Maxhold	Above 1GHz Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz Average

Climatic Condition

Ambient Temperature: 27°C; Relative Humidity: 68%

Page :22/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per CISPR 16-1 to find out the maximum level occurred.
- i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.
- j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.
- If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.
- m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate A.V. value will be measured and presented.

3.4 Test Configuration

Radiated Emission Measurement below 1000MHz

Radiated Emission Measurement above 1000MHz

3.5 Test Results

Band Edge

Test Mode : Transmitter

Test Distance : 3m Tester : Bill

Test Range Polariza	Polarization	on Frequency (MHz)	Reading Data (dBuV)		Correction Factor	Emission (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
			PK.	AV.	(dB/m)	PK.	AV.	PK.	AV.	PK.	AV.
Lowest	V	2400.00	61.53	25.08	4.75	66.29	29.84	74	54	7.71	24.16
	Н	2400.00	64.41	25.61	4.75	69.17	30.37	74	54	4.83	23.63
Highest	V	2483.50	61.48	22.90	4.84	66.32	27.75	74	54	7.68	26.25
	Н	2483.50	59.45	23.82	4.84	64.29	28.66	74	54	9.71	25.34

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission Level
- 4. "*": The emission is too low to be measured.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Lowest Channel, Vertical

Lowest Channel, Horizontal

Highest Channel, Vertical

Highest Channel, Horizontal

Radiated Emission Measurement

Below 1000MHz

Test Mode : 2403MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :29/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :30/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :31/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :32/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.

Page :33/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Above 1000MHz

Test Mode : 2403MHz, Transmitter

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

Page :34/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance: 3m Tester: Bill

Polarization: Horizontal Frequency Range: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

Page :40/45

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Bill

Polarization: Vertical **Frequency Range**: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 1GHz ~ 4GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

Test Distance : 3m Tester : Bill

Polarization: Horizontal Frequency Range: 4GHz ~ 8GHz

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.

No signal can be detected from 8GHz to 25GHz, so the graphs are omitted above 8GHz.