المرجح في المستوي (1)

♦ مرجح نقطتين

lpha+eta
eq 0 حيث: lpha حيث lpha حيث lpha حيث lpha حيث lpha lpha مرجح النقطتين lpha و lpha المرفقتين بالمعاملين lpha و lpha

و α عددان حقیقیان α

تسمى الثنائية (A,α) نقطة مثقلة و تسمى الجملة $\{(A,\alpha);(B,\beta)\}$ جملة نقطتين مثقلتين \circ

(lpha=eta=1:اذا كان lpha=eta=1 نحصل: lpha=eta=1 منتصف lpha=eta نحصل: lpha=eta=1 منتصف lpha=eta=1 بذا كان lpha=eta=1 نحصل: lpha=eta=1 منتصف المحالة: lpha=eta=1 بنات: lpha=1 منتصف المحالة: lpha=1

 $lpha \overrightarrow{MA} + eta \overrightarrow{MB} = (lpha + eta) \overrightarrow{MG}$ الدينا: A مرجح $\{(A, lpha); (B, eta)\}$ مرجح G

 $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MG}$:منتصف $(AB) \Leftrightarrow AB$ منتصف $G \Leftrightarrow AB$

خوأص<u>:</u>

 $k \in \mathbb{R}^*$: حیث $\{(A,k\alpha);(B,k\beta)\}$ مرجع $G \Leftrightarrow \{(A,\alpha);(B,\beta)\}$ حیث $G \Leftrightarrow \{(A,\alpha);(B,\beta)\}$

ه و G على استقامة واحدة $\{(A, lpha); (B, eta)\}$ مرجح G

احداثيا مرجح نقطتين:

 $:\{(A,lpha);(B,eta)\}$ و G مرجع $G(x_G;y_G)$; $B(x_B;y_B)$; $A(x_A;y_A)$

$$x_G = \frac{\alpha x_A + \beta x_B}{\alpha + \beta}$$
 ; $y_G = \frac{\alpha y_A + \beta y_B}{\alpha + \beta}$

نشاء مرجح نقطتين:

$$lpha\overrightarrow{GA} + oldsymbol{eta}\overrightarrow{GB} = \overrightarrow{\mathbf{0}} \Longleftarrow \{(A, lpha); (B, oldsymbol{eta})\}$$
 مرجح G

$$\overrightarrow{AG} = rac{eta}{lpha + eta} \, \overrightarrow{AB}$$
: نكتب \overrightarrow{AG} بدلالة \overrightarrow{AB} وفق القانون (1

(سمكن الاستعانة بمبرهنة طالس) نقسم القطعة $\frac{\beta}{\alpha+\beta}$ الحروب العالمة أم انطلاقا من الطلاقا من الطلاقا من (2

مرجح 3 نقط

$$lpha \overrightarrow{GA} + eta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0} \iff \gamma$$
 و eta , $lpha$ المرفقة بالمعاملات eta و eta مرجح النقط eta

 $lpha+eta+\gamma
eq 0$ و γ أعداد حقيقية حيث: eta , lpha

ABC إذا كان $G=\beta=\gamma$ و النقط $G=\alpha$ و $G=\alpha$ ليست على استقامة واحدة فإن: $G=\alpha$ مركز ثقل المثلث $G=\alpha$

مبرهنة:

 $\alpha \overline{MA} + \beta \overline{MB} + \gamma \overline{MC} = (\alpha + \beta + \gamma) \overline{MG}$ مرجح $G \Leftrightarrow \{(A, \alpha); (B, \beta); (C, \gamma)\}$ مرجح خواص:

 $k \in \mathbb{R}^*$: حيث $\{(A,klpha);(B,keta);(C,k\gamma)\}$ حيث $G \Leftrightarrow \{(A,lpha);(B,eta);(C,\gamma)\}$ حيث $G \Leftrightarrow \{(A,klpha);(B,klpha);(C,\gamma)\}$

 $\{(D, \alpha + \beta); (C, \gamma)\}$ مرجح $\{(A, \alpha); (A, \alpha); (B, \beta)\}$, إذا كانت D مرجح $\{(A, \alpha); (B, \beta); (C, \gamma)\}$ فإن: C مرجح C نقط:

 $: \{(A, lpha); (B, eta); (C, \gamma)\}$ و G عرجع $G(x_G; y_G); C(x_C; y_C); B(x_B; y_B); A(x_A; y_A)$

$$x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}$$
 ; $y_G = \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}$

إنشاء مرجح 3 نقط:

$$lpha\overrightarrow{GA} + eta\overrightarrow{GB} + \gamma\overrightarrow{GC} = \overrightarrow{0} \leftrightharpoons \{(A, lpha); (B, eta); (C, \gamma)\}$$
 مرجح G

$$\overrightarrow{AG} = rac{eta}{lpha + eta + \gamma} \, \overrightarrow{AB} + rac{\gamma}{lpha + eta + \gamma} \, \overrightarrow{AC}$$
: نكتب \overrightarrow{AG} بدلالة \overrightarrow{AG} و فقى القانون (1

$$\frac{\beta}{\alpha+\beta+\gamma} \, \overrightarrow{AB}$$
 و $\frac{\gamma}{\alpha+\beta+\gamma} \, \overrightarrow{AC}$ نرسم الشعاع محصلة مجموع الشعاعين (2

طريقة 2:

- $\alpha + \gamma \neq 0$ ننشيء I مرجح نقطتين بحيث مجموع المعاملين I مثلا I و I
 - G نكتب \overrightarrow{GI} بدلالة \overrightarrow{BI} و ننشيء (2

المرجح في المستوي (2)

مجموعة النقط

			_
	فإن مجموعة النقط هي	إذا كان	
	$oldsymbol{r}=oldsymbol{k}'$ دائرة مركزها $oldsymbol{G}$ و نصف قطرها	$k'>0$ حيث $\left\ \overrightarrow{MG} ight\ =k'$	
دائرة	r=AB دائرة مركزها G و نصف قطرها $r=AB$ دائرة مركزها	$\ \overrightarrow{MG}\ = AB$	0
	[GH] و مركزها منتصف $[GH]$	$(MG)\perp(MH)$	
φ	مجموعة خالية	$k' < 0$ حيث $\left\ \overrightarrow{MG} \right\ = k'$	2
نقطة	(او هي النقطة M منطبقة على G	$\ \overrightarrow{MG}\ = 0$	3
مستقيم	مستقيم محور القطعة [GH]	$\ \overrightarrow{MG}\ = \ \overrightarrow{MH}\ $	4
***	كل النقط من المستوي التي تقع داخل و على محيط الدائرة التي مركزها $r=k'$ و نصف قطرها	$\ \overrightarrow{MG}\ \leq k'$	
جزء من المستوي	كل النقط من المستوي التي تقع خارج الدائرة التي مركزها G و نصف قطرها $r=k'$	$\ \overrightarrow{MG}\ > k'$	6
	[GH] نصف المستوي في جهة النقطة G و حده محور	$\ \overrightarrow{MG}\ < \ \overrightarrow{MH}\ $	

لله العلاقة: لإثبات أن B تنتمي إلى مجموعة النقط يكفي تعويض M بB في العلاقة المعطاة و نتحصل على علاقة صحيحة $m{\#}$

* ملاحظة 2: لإثبات أن شعاع أو علاقة ما مستقلة عن M يكفي استخدام علاقة شال و خواص الأشعة للتخلص من M

♦ اثبات تلاقى مستقيمات

مثال: ABC مثلث و النقط I , I و ABC معرفة كما يلى:

- B بالنسبة إلى ا [AB] بالنسبة الى ا
 - النقطة I تحقق: $\vec{0} = \vec{0}$
 - $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BC}$: النقطة K تحقق •
- 1) أرسم شكلا توضح فيه النقط I, I و K مع التبرير.
- 2) أثبت أن كل نقطة من النقط J, J و J هي مرجح لنقطتين من النقط B, A و C يطلب تحديد المعاملين في كل حالة.
 - (3 قبت أن المستقيمات (CI) , (CI) عقاطعة.

الحل:

- 1) الإنشاء مع التبرير:
- $\overrightarrow{AI} = \frac{3}{2}\overrightarrow{AB} \iff \overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB}$
- $\overrightarrow{AJ} = 3\overrightarrow{AC} \iff \overrightarrow{AJ} = \frac{-3}{2-3}\overrightarrow{AC} \iff 2\overrightarrow{JA} 3\overrightarrow{JC} = \overrightarrow{0}$
 - $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BC}$
 - 2) اثبات المرجح وتحديد المعاملات:

$$-2\overrightarrow{IA} + 3\overrightarrow{BI} + 3\overrightarrow{IA} = \overrightarrow{0} \iff 2\overrightarrow{AI} = 3\overrightarrow{AB} \iff \overrightarrow{AI} = \frac{3}{2}\overrightarrow{AB}$$

 $\{A(1), B(-3)\}$ ومنه I مرجح الجملة: $\overline{IA} - 3\overline{IB} = \overline{0} \iff$

 $\{B(2),C(1)\}$: و X مرجع $\{A(2),C(-3)\}$ و X مرجع $\{A(2),C(-3)\}$ و X

اثبات أن المستقيمات (BI) , (CI) متقاطعة: (3

2-6-3=-7
eq G ((A,2)) موجود لأن: G مرجع G , $\{(A,2);(B,-6);(C,-3)\}$ مرجع

طريقة 1: (باستعمال خاصية التجميع)

$$G \in (IC)$$
 و منه $\{(I,-4);(C,-3)\}$ و مرجح G

$$G \in (JB)$$
 مرجح $\{(J,-1);(B,-6)\}$ و منه G

$$G \in (AK)$$
 و منجع $\{(K, -9); (A, 2)\}$ و منج G

و منه المستقيمات
$$(CI)$$
 , (CI) و منه المستقيمات و منه المستقيمات و منه المستقيمات (AK

في النقطة G

طريقة 2: (باستعمال الارتباط الخطي)

$$2\overrightarrow{GA} - 6\overrightarrow{GB} - 3\overrightarrow{GC} = \overrightarrow{0}$$

$$-7\overrightarrow{GI} + 2\overrightarrow{IA} - 6\overrightarrow{IB} - 3\overrightarrow{IC} = \overrightarrow{0}$$

$$-7\overrightarrow{GI} + 2(\overrightarrow{IA} - 3\overrightarrow{IB}) - 3\overrightarrow{IC} = \overrightarrow{0}$$

$$G \in (IC)$$
 و منه $\overrightarrow{GI} = -\frac{3}{7}\overrightarrow{IC}$

 $G \in (AK)$ و $G \in (JB)$ * بنفس الطريقة نجد و منه المستقيمات (BI) , (CI) متقاطعة في G

❖ مستقيم اولار (Euler): هو المستقيم الذي يشمل مركز ثقل مثلث ومركز الدائرة المحيطة به وملتقى الإرتفاعات فيه.

مرجح نقطتين

ي نسمّي مرجّج الجملة المُثقلة $\{(A,\alpha);(B,\beta)\}$ حيث $\alpha+\beta\neq 0$ النّقطة الوحيدة من المستوي $\alpha+\beta\neq 0$ التي تحقّق:

$$\boxed{\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}}$$

• [AB] فإنّ G هي منتصف القطعة lpha=eta
eq 0

 $oldsymbol{AB}$ ه نستخدم العلاقة: $\overline{AG} = \frac{\beta}{\alpha + \beta} \overline{AB}$ ، ثمّ نستعمل مبرهنة طالس لتقسيم القطعة G

النُقط A ، A و G على استقامة واحدة.

• $k \neq 0$ حيث ($\{(A,k\alpha);(B,k\beta)\}$ مرجّع الجملة المُثقلة ($\{(A,k\alpha);(B,k\beta)\}$ حيث $G \Leftrightarrow \{(A,\alpha);(B,\beta)\}$ • حيث $G \Leftrightarrow \{(A,\alpha);(B,\beta)\}$

• $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$: (a) where $\alpha \overrightarrow{MG}$ and $\alpha \overrightarrow{MG}$ (b) $\alpha \overrightarrow{MG}$

مرجح ثلاث نقط

① نسمّي مربّج الجملة المُثقلة $\{(A,\alpha);(B,\beta);(C,\gamma)\}$ حيث $\alpha+\beta+\gamma\neq 0$ النّقطة الوحيدة من المستوي $\alpha\overrightarrow{GA}+\beta\overrightarrow{GB}+\gamma\overrightarrow{GC}=\overrightarrow{0}$

• إذا كان $\alpha=\beta=\gamma\neq 0$ فإنّ G تُسمّى مركز المسافات المتساوية \bigstar

 $\star\star$ إذا كان $\alpha=\beta=\gamma=1$ فإنّ $\alpha=0$ هي مركز ثقل المثلث ABC (نُقطة تلاقي متوسّطات المثلث)

(3) $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$ الحاصية التالية $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$

 $(A, \alpha); (B, \beta); (C, \gamma)$ و کانت G مرتج الجملة $(A, \alpha); (B, \beta); (C, \gamma)$ و کانت G مرجح الجملة $(A, \alpha); (B, \beta); (C, \gamma)$ و کانت G مرجح الجملة $(A, \alpha); (B, \beta); (C, \gamma); (C,$

مع ($\{(A,k\alpha)\,;(B,k\beta)\,;(C,k\gamma)\}$ مع ($G\Leftrightarrow\{(A,\alpha)\,;(B,\beta)\,;(C,\gamma)\}$ مع ($G\Leftrightarrow\{(A,k\alpha)\,;(B,\beta)\,;(C,\gamma)\}$ مع $k\neq 0$

• $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{GC} = (\alpha + \beta + \gamma) \overrightarrow{MG}$: (a) \overrightarrow{MG} (b) \overrightarrow{MG}

$$\begin{cases} x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma} \\ y_G = \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma} \end{cases}$$
: فقط: $x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}$

﴿ خواص مربِّح ثلاث نُقط تبقى صحيحةً من أجل أربع نقط ، خمس نقط ... n نقطة .

مجموعات النقط

هي	مجموعة النّقط M من المستوي التي تحقّق
r هي دائرة (C) مركزها النّقطة G ونصفُ قطرها	r > 0 $MG = r$
AB نصف قطرها النّقطة G نصف قطرها	MG = AB
الدَّائرة التي قُطرها [GH]	$(MG)\perp (MH)$
كلُّ النَّقط التي تقع داخل الدَّائرة (C) وعلى محيطها	$r>0$ مع $MG\leq r$
كلُّ النَّقط من المستوي ماعدا تلك التي تقع داخل	r>0 مع $MG>r$
الدَّائرة (C) وعلى محيطها المستقيم المحوري للقطعة [HG]	
المستقيم المحوري للقطعة [HG]	MG = MH
المستقيم الذي يشمل G ويوازي (AB)	$k \in \mathbb{R}$ مع $\overrightarrow{MG} = k\overrightarrow{AB}$
نصف المستوي الذي حدُّه محور القطعة [GH] جهةً	MG < MH
G النقطة	

G إذا كان k < 0 المَن اللهِ النَّقط خالية M أي إذا كان M الله الله المُعطاة. M أن نُبت أنَّها تحقق علاقَتها المُعطاة. M لكي نُثبت أنَّها تحقق علاقَتها المُعطاة.

استعمال المرجح لإثبات تلاقي مستقيمات

لكي نثبت أنّ النّقطة G هي نقطة تلاقي المستقيمات (CI) ، (CI) و (AK) يكفي أن نثبت أنّ : CG (AK) . CG (BR) . CG (CR)

: باستعمال الارتباط الخطّي، أو $G \in (AK)$ و $G \in (BJ)$ ، $G \in (CI)$

 $(A,\rho);(K,\lambda)$ و $\{(B,\gamma);(J,\delta)\}$ ، $\{(C,\alpha);(I,\beta)\}$ باستعمال المثقلة $\{(A,\rho);(K,\lambda)\}$ و $\{(B,\gamma);(J,\delta)\}$ باستعمال خاصيّة التجميع ، حيث α ، β ، β ، β ، β ، β ، β ، خاصيّة التجميع ، حيث α

★ مستقيم أويلر: هو المستقيم الذي يشمل نقطة التقاء ارتفاعات المثلث و مركز ثقله و مركز الدائرة المحيطة به.

★★ إذا كان المثلث متقايس الأضلاع فإنّ النّقط الثلاث السابقة منطبقة على بعضها.

سنة **ثانية** ثانوي الشعب: رياضيات | علوم تجريبية | تقني رياضي

ملخص فان المـــرجح

مرجح نقطتين

(lpha+eta
eq 0) تعریف: A و B نقطتین متمایزتین، و B و A عددین حقیقین حیث \clubsuit

نسمى α مرجح النقطتين A و B المرفقين بالمعاملين α و مرجح النقطتين

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$$

- ♦ الثنائية (A; α) تسمى نقطة مثقلة
- الجملة $\{(A; \alpha); (B; \beta)\}$ تسمى جملة نقطتين مثقلتين
- وهذا غير ممكن إذا محكن إذا محكن إذا محكن إذا محكن إذا محكن محكن إذا محكن
 - [AB] منتصف منتصف \overrightarrow{G} والنقطة والمنتصف $\alpha=\beta$ نحصل على
 - نتائج هامـــة: النقطة G وحيدة
 - $\lambda \in \mathbb{R}$ مرجح الجملة $\{(A; \lambda \alpha); (B; \lambda \beta)\}$ حيث G
 - النقط A، B و G على استقامية واحدة
 - lpha $\overrightarrow{MA} + eta$ $\overrightarrow{MB} = (lpha + eta)$ \overrightarrow{MG} من أجل كل نقطة M من المستوي:
 - 🂠 إنشاء مرجح نقطتين: لإنشاء G نعتمد العلاقة:

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$$

المرفقين بالمعاملين α و β على الترتيب $B(x_B;y_B)$ و $B(x_B;y_B)$ المرفقين بالمعاملين α و β على الترتيب α الدينا:

$$y_G = \frac{\alpha y_A + \beta y_B}{\alpha + \beta}$$
 g $x_G = \frac{\alpha x_A + \beta x_B}{\alpha + \beta}$

- - $\boxed{ \|lpha\ \overrightarrow{MA} + eta\ \overrightarrow{MB}\| = \|\lambda\ \overrightarrow{MA} \lambda\ \overrightarrow{MB}\| }$ کل علاقة من الشکل: lpha + eta = 0 کل علاقة من الشکل: $lpha + eta \neq 0$ کل علاقة من الشکل:

دائرة مركزها G ونصف قطرها r حيث:

$$r=rac{|\lambda|}{|lpha+eta|} imes AB$$
 ڪل علاقة من الشكل: $\left\| \left\| rac{\alpha\ \overrightarrow{MA}+eta\ \overrightarrow{MB} \right\|=k}{|lpha+eta\neq0}
ight.$ عدد حقيقي موجب تماما و k عيث عدد حقيقي موجب تماما و k حيث k عيث دائرة مركزها k ونصف قطرها k حيث $r=rac{k}{|lpha+eta|}$

النقطة G مرجح الجملة: $\{(A;\alpha);(B;\beta)\}$ والنقطة G' مرجح الجملة: $\{(A;\alpha');(B;\beta')\}$

مرجح ثلاث نقط

 $(\alpha+\beta+\gamma\neq0)$ تعریف: α و β ، α نسمی β ، α مرجح النقط β ، α و β المرفقة بالمعاملات β ، α و β علی الترتیب حیث

 $\overrightarrow{\alpha GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$

- مفاهیم عامة: \bullet إذا كان $\alpha+\beta+\gamma=0$ فإنّ المرجح غیر موجود
- اذا كان $eta=eta=\gamma
 eq 0$ فإن eta تسمى مركز المسافات المتساوية $lpha=eta=\gamma$
- ABC والنقط B ، A وB والنقط A و B والنقط B و والنقط A و B والنقط A و المثلث B
 - نتائج هامـــة: ullet النقطة G وحيدة
 - $\lambda \in \mathbb{R}$ مرجح الجملة $\{(A; \lambda \alpha); (B; \lambda \beta); (C; \lambda \gamma)\}$ حيث G •
 - lpha $\overrightarrow{MA} + eta$ $\overrightarrow{MB} + \gamma$ $\overrightarrow{GC} = (lpha + eta + \gamma)$ \overrightarrow{MG} من أجل كل نقطة M من المستوي:
 - إنشاء مرجح ثلاث نقط: لإنشاء G نعتمد العلاقة:

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \alpha} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \alpha} \overrightarrow{AC}$$

و $C(x_C;y_C)$ المرفقة بالمعاملات β ، α و β ، α المرفقة بالمعاملات β ، β و β ، β و β على β ، β ، β ، β ، β ، β ، المرفقة بالمعاملات β ، المعاملات β ، المرفقة بالمعاملات β ، المعاملات β ، المرفقة بالمعاملات β ، المرفقة بالمعاملات β ، المرفقة بالمعاملات β ، المرفقة بالمعاملات β ، المعاملات β ، المرفقة بالمعاملات β ، الم

$$y_G = \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}$$
 o $x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}$

إنشاء مرجح ثلاث نقط: لإنشاء G نعتمد العلاقة:

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \alpha} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \alpha} \overrightarrow{AC}$$

- $\{(A;\alpha);(B;\beta)\}$ مرجح G' مرجح $\{(A;\alpha);(B;\beta)\}$ ، إذا كان $\alpha+\beta\neq 0$ وكانت G' مرجح G' مرجح الجملة $\{(G';\alpha+\beta);(C;\gamma)\}$ فإن G' مرجح الجملة $\{(G';\alpha+\beta);(C;\gamma)\}$
- AB مجموعات النقط: lacktriangledown إذا كان lacktriangledown هي: دائرة مركزها G ونصف قطرها AB
 - يث: 0>0 اِذَا كَانَ $||\overrightarrow{MG}||=k$ اَفَانَ مَجْمُوعَةُ النَقْطُ M هي: وَالْمُوْمُ مُرْكُوْهُا M وَنِصْفُ قَطْرُهُا M وَنِصْفُ قَطْرُهُا M
 - \emptyset إذا كان M عيث: M عيث: M فإن مجموعة النقط M هي: مجموعة خالية M فإن مجموعة خالية M وإذا كان M عيث: M
 - G إذا كان $\|\overrightarrow{MG}\|=0$ ، فإن مجموعة النقط M هي: النقطة $\|\overrightarrow{MG}\|=0$
- لإثبات أن النقطة B تنتمي إلى مجموعة النقاط يكفي تعويض M بـ B في العلاقة المعطاة ونتحصل على علاقة صحيحة
 - M يكفي استخدام علاقة شال وخواص الأشعة للتخلص من M يكفي استخدام علاقة شال وخواص الأشعة للتخلص من
- أثبات تلاقي مستقيمات: لاثبات أن مستقيمات تتقاطع في نقطة G يكفي أن نثبت أن هذه النقطة مرجح لنقطتين من كل مستقيم بمعاملات حقيقية
- أثبات استقامية نقط: لاثبات أن ثلاث نقط في استقامية يكفي أن نثبت أن نقطة منها هي مرجح للنقطتين الأخريين بمعاملين حقيقين