# CS1101 Discrete Structures 1

**Chapter 05 Induction and Recursion** 



# Chapter 5: Induction and Recursion

- Mathematical Induction.
- Strong Induction.
- Recursive Definitions.
- Recursive Algorithms.

2





4

#### **Recursion:**

The process of defining an object in terms of itself.

## **Recursively Defined Functions:**

#### **Basis Step**

Specify the value of the function at the first point.

#### **Recursive Step**

Specifying how terms in the function are found from previous terms.

## Example 1:

We use two steps to define a function with the set of *nonnegative* integers as its domain:

#### 1) Basis Step:

Specify the value of the function at zero.

$$f(0) = 0$$

#### 2) Recursive Step:

Give a rule for finding its value at an integer from its values at smaller integers.

$$f(n + 1) = f(n) + 1$$
, for integer  $n \ge 0$  (i.e., nonnegative integers)

## **Example 2:**

The sequence of powers of 2 is given by  $a_n = 2^n$  for n = 0, 1, 2, ...

## Example 2:

**Explicit Formula** 

The sequence of powers of 2 is given by  $a_n = 2^n$  for n = 0, 1, 2, ...

## Example 2 – Answer:

**Explicit Formula** 

- The sequence of powers of 2 is given by  $a_n = 2^n$  for n = 0, 1, 2, ...
- 1) Basis Step:
- Specify the value of the sequence at zero.
- $a_0 = 2^0 = 1$

#### 2) Recursive Step:

Give a rule for finding a term of the sequence from the previous one.

$$a_{n+1} = 2a_n$$
, for  $n = 0, 1, 2, ...$ 

## Example 2 – Answer:

**Explicit Formula** 

- The sequence of powers of 2 is given by  $a_n = 2^n$  for n = 0, 1, 2, ...
- 1) Basis Step:
- Specify the value of the sequence at zero.
- $a_0 = 2^0 = 1$

#### 2) Recursive Step:

Give a rule for finding a term of the sequence from the previous one.

$$a_{n+1} = 2a_n$$
, for  $n = 0, 1, 2, ...$ 

Recursive Formula

## **Example 3:**

Suppose that f is defined recursively by

$$f(0) = 3,$$
  
 $f(n + 1) = 2f(n) + 3.$ 

Find f(1), f(2), f(3), and f(4).

#### Example 3 – Answer:

Suppose that *f* is defined recursively by

$$f(0) = 3,$$
  
 $f(n + 1) = 2f(n) + 3.$ 

Find f(1), f(2), f(3), and f(4).

Solution: From the recursive definition it follows that

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9,$$

$$f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21,$$

$$f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45,$$

$$f(4) = 2f(3) + 3 = 2 \cdot 45 + 3 = 93.$$

## Example 4:

Give a recursive definition of the factorial function n!

13

## Example 4 – Answer:

Give a recursive definition of the factorial function n!

#### 1) Basis Step:

Specify the value of the function at zero.

$$f(0) = 1$$

#### 2) Recursive Step:

Give a rule for finding its value at an integer from its values at smaller integers.

$$f(n+1) = (n+1) \cdot f(n)$$
, for  $n = 0, 1, 2, ...$ 

## Example 5:

Recall from Chapter 2 that the Fibonacci numbers,  $f_0, f_1, f_2, ...$ , are defined by the equations  $f_0 = 0$ ,  $f_1 = 1$ , and

$$f_n = f_{n-1} + f_{n-2}$$

#### Find:

 $f_2$ 

 $f_3$ 

 $f_4$ 

 $f_{5}$ 

## Example 5 – Answer:

Recall from Chapter 2 that the Fibonacci numbers,  $f_0, f_1, f_2, ...$ , are defined by the equations  $f_0 = 0$ ,  $f_1 = 1$ , and

$$f_n = f_{n-1} + f_{n-2}$$

#### Find:

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$
  
 $f_3 = f_2 + f_1 = 1 + 1 = 2$   
 $f_4 = f_3 + f_2 = 2 + 1 = 3$   
 $f_5 = f_4 + f_3 = 3 + 2 = 5$ 

## Example 6:

Give a recursive definition of

$$\sum_{k=0}^{n} a_k.$$

## Example 6 – Answer:

Solution: The first part of the recursive definition is

$$\sum_{k=0}^{0} a_k = a_0.$$

The second part is

$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^n a_k\right) + a_{n+1}.$$

#### **Definition:**

Recursive definitions play an important role in the study of strings. (More information: *The theory of formal languages*).

The set  $\Sigma^*$  of strings over the alphabet  $\Sigma$  is defined recursively by

#### 1) Basis Step:

 $\lambda \in \Sigma^*$  (where  $\lambda$  is the empty string containing no symbols).

#### 2) Recursive Step:

If  $w \in \Sigma^*$  and  $x \in \Sigma$ , then  $wx \in \Sigma^*$ .

## Example 7:

If  $\Sigma = \{0, 1\}$ , the strings found to be in  $\Sigma^*$ , the set of all bit strings, are  $\lambda$ , specified to be in  $\Sigma^*$ in the basis step, 0 and 1 formed during the first application of the recursive step, 00, 01, 10, and 11 formed during the second application of the recursive step, and so on.

 $\lambda$ , 0, 1, 00, 01, 10, 11, ...

## Example 8:

If  $\Sigma = \{a, b\}$ , show that aab is in  $\Sigma^*$ .

## Example 8 – Answer:

If  $\Sigma = \{a, b\}$ , show that aab is in  $\Sigma^*$ .

#### 1) Basis Step:

 $\lambda \in \Sigma^*$  (where  $\lambda$  is the empty string containing no symbols).

#### 2) Recursive Step:

If  $w \in \Sigma^*$  and  $x \in \Sigma$ , then  $wx \in \Sigma^*$ .

Since  $\lambda \in \Sigma^*$  and  $\alpha \in \Sigma$  then  $\lambda \alpha \in \Sigma^*$  (i.e.,  $\alpha \in \Sigma^*$ )

## Example 8 – Answer:

If  $\Sigma = \{a, b\}$ , show that aab is in  $\Sigma^*$ .

#### 1) Basis Step:

 $\lambda \in \Sigma^*$  (where  $\lambda$  is the empty string containing no symbols).

#### 2) Recursive Step:

If  $w \in \Sigma^*$  and  $x \in \Sigma$ , then  $wx \in \Sigma^*$ .

Since  $\lambda \in \Sigma^*$  and  $a \in \Sigma$  then  $\lambda a \in \Sigma^*$  (i.e.,  $a \in \Sigma^*$ ) Since  $a \in \Sigma^*$  and  $a \in \Sigma$  then  $aa \in \Sigma^*$ 

## Example 8 – Answer:

If  $\Sigma = \{a, b\}$ , show that aab is in  $\Sigma^*$ .

#### 1) Basis Step:

 $\lambda \in \Sigma^*$  (where  $\lambda$  is the empty string containing no symbols).

#### 2) Recursive Step:

If  $w \in \Sigma^*$  and  $x \in \Sigma$ , then  $wx \in \Sigma^*$ .

Since  $\lambda \in \Sigma^*$  and  $\alpha \in \Sigma$  then  $\lambda \alpha \in \Sigma^*$  (i.e.,  $\alpha \in \Sigma^*$ )

Since  $a \in \Sigma^*$  and  $a \in \Sigma$  then  $aa \in \Sigma^*$ 

Since  $aa \in \Sigma^*$  and  $b \in \Sigma$  then  $aab \in \Sigma^*$ 

#### **Definition:**

Two strings can be combined via the operation of concatenation. Let  $\Sigma$  be a set of symbols and  $\Sigma^*$  the set of strings formed from symbols in  $\Sigma$ . We can define the concatenation of two strings, denoted by  $\cdot$ , recursively as follows.

#### 1) Basis Step:

If  $w \in \Sigma^*$ , then  $w \cdot \lambda = w$ , where  $\lambda$  is the empty string.

#### 2) Recursive Step:

If  $w_1 \in \Sigma^*$  and  $w_2 \in \Sigma^*$  and  $x \in \Sigma$ , then  $w_1 \cdot (w_2 x) = (w_1 \cdot w_2) x$ .

#### **Definition:**

#### 1) Basis Step:

If  $w \in \Sigma^*$ , then  $w \cdot \lambda = w$ , where  $\lambda$  is the empty string.

#### 2) Recursive Step:

If  $w_1 \in \Sigma^*$  and  $w_2 \in \Sigma^*$  and  $x \in \Sigma$ , then  $w_1 \cdot (w_2 x) = (w_1 \cdot w_2) x$ .

The concatenation of the strings  $w_1$  and  $w_2$  is often written as  $w_1w_2$  rather than  $w_1 \cdot w_2$ .

**Ex.** If  $w_1 = discrete$  and  $w_2 = mathematics$ Then  $w_1w_2 = discrete mathematics$ 

## Example 9:

Give a recursive definition of l(w), the length of the string w.

27

## Example 9 – Answer:

Give a recursive definition of l(w), the length of the string w.

Solution: The length of a string can be recursively defined by

$$l(\lambda) = 0;$$

$$l(wx) = l(w) + 1$$
 if  $w \in \Sigma^*$  and  $x \in \Sigma$ .

#### **Definition:**

An algorithm is called *recursive* if it solves a problem by reducing it to an instance of the same problem with smaller input.

Dr. Hatim Alsuwat

## Example 1:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

30

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

```
0! = 1
1! = 1
2! = 1 \cdot 2 = 2
3! = 1 \cdot 2 \cdot 3 = 6
4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24
.
```

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

$$0! = 1$$
  
 $1! = 1$   
 $2! = 1 \cdot 2 = 2$   
 $3! = 1 \cdot 2 \cdot 3 = 6$   
 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$   
 $0! = 1$   
 $1! = (0!) \cdot 1$   
 $2! = (1!) \cdot 2 = 2$   
 $3! = (2!) \cdot 3 = 6$   
 $4! = (3!) \cdot 4 = 24$   
 $\cdot$ 

32

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

$$0! = 1$$
 $1! = 1$ 
 $2! = 1 \cdot 2 = 2$ 
 $3! = 1 \cdot 2 \cdot 3 = 6$ 
 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$ 
.

$$0! = 1$$
 $1! = (0!) \cdot 1$ 
 $2! = (1!) \cdot 2 = 2$ 
 $3! = (2!) \cdot 3 = 6$ 
 $4! = (3!) \cdot 4 = 24$ 

$$0! = 1$$
 $n! = (n - 1)! \cdot n$ 
Where  $n = 1, 2, 3, ...$ 

33

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

$$0! = 1$$

$$4! = ?$$

$$0! = 1$$

$$n! = (n-1)! \cdot n$$

Where 
$$n = 1, 2, 3, ...$$

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

$$0! = 1$$
 $4! = 3! \cdot 4$ 
 $4! = 2! \cdot 3 \cdot 4$ 
 $4! = 1! \cdot 2 \cdot 3 \cdot 4$ 
 $4! = 0! \cdot 1 \cdot 2 \cdot 3 \cdot 4$ 
 $4! = 1 \cdot 1 \cdot 2 \cdot 3 \cdot 4 = 24$ 

$$0! = 1$$
 $n! = (n - 1)! \cdot n$ 
Where  $n = 1, 2, 3, ...$ 

## Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

## A Recursive Algorithm for Computing n!.

```
procedure factorial(n): nonnegative integer) if n = 0 then return 1 else return n \cdot factorial(n - 1) {output is n!}
```

$$0! = 1$$
 $n! = (n - 1)! \cdot n$ 
Where  $n = 1, 2, 3, ...$ 

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ {output is n!}

| n | return |
|---|--------|
| 4 |        |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

 $\{\text{output is } n!\}$ 

| n | return |
|---|--------|
| 4 |        |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ 

{output is n!}

| n | return         |
|---|----------------|
| 4 | $4 \cdot f(3)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ {output is n!}

| n | return         |
|---|----------------|
| 3 | $4 \cdot f(3)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

{output is n!}

| n | return         |
|---|----------------|
| 3 | $4 \cdot f(3)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ 

 $\{\text{output is } n!\}$ 

| n | return                 |
|---|------------------------|
| 3 | $4 \cdot 3 \cdot f(2)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

procedure factorial(n): nonnegative integer) if n = 0 then return 1 else return  $n \cdot factorial(n - 1)$ {output is n!}

| n | return                 |
|---|------------------------|
| 2 | $4 \cdot 3 \cdot f(2)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

{output is n!}

| n | return                 |
|---|------------------------|
| 2 | $4 \cdot 3 \cdot f(2)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ 

| DIDC I CU |      | 10 | Jucion |  |
|-----------|------|----|--------|--|
| output    | is n | !} |        |  |

| n | return              |
|---|---------------------|
| 2 | 4 · 3 · 2<br>· f(1) |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

procedure factorial(n): nonnegative integer) if n = 0 then return 1 else return  $n \cdot factorial(n - 1)$ {output is n!}

| n | return                |
|---|-----------------------|
| 1 | 4 · 3 · 2<br>· $f(1)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

**procedure** *factorial*(*n*: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

 $\{\text{output is } n!\}$ 

| n | return                |
|---|-----------------------|
| 1 | 4 · 3 · 2<br>· $f(1)$ |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ {output is n!}

| n | return                                   |  |  |
|---|------------------------------------------|--|--|
| 1 | $4 \cdot 3 \cdot 2 \cdot 1$ $\cdot f(0)$ |  |  |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

procedure factorial(n): nonnegative integer) if n = 0 then return 1 else return  $n \cdot factorial(n - 1)$ {output is n!}

| n | return                                                                       |  |  |
|---|------------------------------------------------------------------------------|--|--|
| 0 | $\begin{array}{ c c c } 4 \cdot 3 \cdot 2 \cdot 1 \\ \cdot f(0) \end{array}$ |  |  |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

 $\{\text{output is } n!\}$ 

| n | return                                   |  |  |
|---|------------------------------------------|--|--|
| 0 | $4 \cdot 3 \cdot 2 \cdot 1$ $\cdot f(0)$ |  |  |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing *n*!.

procedure factorial(n: nonnegative integer)

if n = 0 then return 1

else return  $n \cdot factorial(n-1)$ 

 $\{\text{output is } n!\}$ 

| n | return               |  |  |
|---|----------------------|--|--|
| 0 | 4 · 3 · 2 · 1<br>· 1 |  |  |

### Example 1 – Answer:

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

#### A Recursive Algorithm for Computing n!.

**procedure** factorial(n): nonnegative integer) **if** n = 0 **then return** 1 **else return**  $n \cdot factorial(n - 1)$ {output is n!}

| n | return                               |  |  |
|---|--------------------------------------|--|--|
| 0 | $4 \cdot 3 \cdot 2 \cdot 1$ $1 = 24$ |  |  |

#### Example 2:

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

Dr. Hatim Alsuwat 53

#### Example 2 – Answer:

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
a^{0} = 1
a^{1} = a
a^{2} = a \cdot a
a^{3} = a \cdot a \cdot a
a^{4} = a \cdot a \cdot a \cdot a
.
```

#### Example 2 – Answer:

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{2} = a \cdot a$$

$$a^{3} = a \cdot a \cdot a$$

$$a^{4} = a \cdot a \cdot a \cdot a$$
.

 $a^{0} = 1$   $a^{1} = a \cdot a^{0}$   $a^{2} = a \cdot a^{1}$   $a^{3} = a \cdot a^{2}$   $a^{4} = a \cdot a^{3}$ 

•

•

•

### Example 2 – Answer:

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{2} = a \cdot a$$

$$a^{3} = a \cdot a \cdot a$$

$$a^{4} = a \cdot a \cdot a \cdot a$$
.

$$a^{0} = 1$$

$$a^{1} = a \cdot a^{0}$$

$$a^{2} = a \cdot a^{1}$$

$$a^{3} = a \cdot a^{2}$$

$$a^{4} = a \cdot a^{3}$$
.

$$a^{0} = 1$$
 $a^{n} = a \cdot a^{n-1}$ 
Where  $n = 1, 2, 3, ...$ 

### Example 2 – Answer:

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

### A Recursive Algorithm for Computing $a^n$ .

```
procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

$$a^{0} = 1$$
 $a^{n} = a \cdot a^{n-1}$ 
Where  $n = 1, 2, 3, ...$ 

### Example 2 – Answer:

| a | n | return |
|---|---|--------|
| 2 | 3 |        |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| a | n | return |
|---|---|--------|
| 2 | 3 |        |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
```

```
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| а | n | return           |
|---|---|------------------|
| 2 | 3 | $2 \cdot p(2,2)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| а | n | return           |
|---|---|------------------|
| 2 | 2 | $2 \cdot p(2,2)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a): nonzero real number, n: nonnegative integer) if n = 0 then return 1 else return a \cdot power(a, n - 1) {output is a^n}
```

### Example 2 – Answer:

| а | n | return           |
|---|---|------------------|
| 2 | 2 | $2 \cdot p(2,2)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
```

```
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| а | n | return                   |
|---|---|--------------------------|
| 2 | 2 | $2 \cdot 2 \cdot p(2,1)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| a | n | return                    |
|---|---|---------------------------|
| 2 | 1 | $2 \cdot 2 \cdot p (2,1)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a): nonzero real number, n: nonnegative integer) if n = 0 then return 1 else return a \cdot power(a, n - 1) {output is a^n}
```

### Example 2 – Answer:

| а | n | return                   |
|---|---|--------------------------|
| 2 | 1 | $2 \cdot 2 \cdot p(2,1)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

# A Recursive Algorithm for Computing $a^n$ .

```
procedure power(a: nonzero real number, n: nonnegative integer)
```

```
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| a | n | return                           |
|---|---|----------------------------------|
| 2 | 1 | $2 \cdot 2 \cdot 2 \cdot p(2,0)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then return 1

else return a \cdot power(a, n - 1)

{output is a^n}
```

# Example 2 – Answer:

| а | n | return                           |
|---|---|----------------------------------|
| 2 | 0 | $2 \cdot 2 \cdot 2 \cdot p(2,0)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

# Example 2 – Answer:

| a | n | return                           |
|---|---|----------------------------------|
| 2 | 0 | $2 \cdot 2 \cdot 2 \cdot p(2,0)$ |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
```

```
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| а | n | return        |
|---|---|---------------|
| 2 | 0 | 2 · 2 · 2 · 1 |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

```
A Recursive Algorithm for Computing a^n.
```

```
procedure power(a: nonzero real number, n: nonnegative integer)
```

```
if n = 0 then return 1
else return a \cdot power(a, n - 1)
{output is a^n}
```

### Example 2 – Answer:

| a | n | return        |
|---|---|---------------|
| 2 | 0 | 2 · 2 · 2 · 1 |

Give a recursive algorithm for computing  $a^n$ , where a is a nonzero real number and n is a nonnegative integer.

# A Recursive Algorithm for Computing $a^n$ .

**procedure** power(a: nonzero real number, n: nonnegative integer) **if** n = 0 **then return** 1 **else return**  $a \cdot power(a, n - 1)$ {output is  $a^n$ }

$$2^3 = 2 \cdot 2 \cdot 2 \cdot 1 = 8$$

### Example 3:

Construct a recursive version of a binary search algorithm.

### Example 3 – Answer:

#### A Recursive Binary Search Algorithm.

```
procedure binary search(i, j, x: integers, 1 \le i \le j \le n)
m := |(i+j)/2|
if x = a_m then
      return m
else if (x < a_m \text{ and } i < m) then
      return binary search(i, m - 1, x)
else if (x > a_m \text{ and } j > m) then
      return binary search(m + 1, j, x)
else return ()
{output is location of x in a_1, a_2, ..., a_n if it appears; otherwise it is 0}
```

Dr. Hatim Alsuwat

Dr. Hatim Alsuwat