Now, consider the following equation:

$$\frac{x}{5} = 9$$

If we multiply each side by 5, we are left with x isolated on the left and a value of 45 on the right.

$$(5)\left(\frac{x}{5}\right) = (9)(5)$$
$$x = 45$$

In all cases, whatever operation is performed on the left side of the equation must also be performed on the right side.

Factoring

Some useful formulas for factoring an equation are given in **Table 3.** As an example of a common factor, consider the equation 5x + 5y + 5z = 0. This equation can be expressed as 5(x + y + z) = 0. The expression $a^2 + 2ab + b^2$, which is an example of a perfect square, is equivalent to the expression $(a + b)^2$. For example, if a = 2 and b = 3, then $2^2 + (2)(2)(3) + 3^2 = (2 + 3)^2$, or $(4 + 12 + 9) = 5^2 = 25$. Finally, for an example of the difference of two squares, let a = 6 and b = 3. In this case, $(6^2 - 3^2) = (6 + 3)(6 - 3)$, or (36 - 9) = (9)(3) = 27.

Table 3 Factoring Equations

ax + ay + az = a(x + y + z)	common factor
$a^2 + 2ab + b^2 = (a+b)^2$	perfect square
$a^2 - b^2 = (a+b)(a-b)$	difference of two squares

Quadratic Equations

The general form of a quadratic equation is as follows:

$$ax^2 + bx + c = 0$$

In this equation, *x* is the unknown quantity and *a*, *b*, and *c* are numerical factors known as *coefficients*. This equation has two roots, given by the following:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 \ge 4ac$, the value inside the square-root symbol will be positive or zero and the roots will be real. If $b^2 < 4ac$, the value inside the square-root symbol will be negative and the roots will be imaginary numbers. In problems in this physics book, imaginary roots should not occur.