

Happiest Countries in the World

Bogdanovich Alena DA_2023

Планирование работ

ДАТА	ОПИСАНИЕ
21.09.2023	Предзащита идеи
25.09.2023	Сбор данных, определение метрик
02.10.2023	Оценка качества и объема данных
05.10.2023	Обработка, очистка данных
10.10.2023	Анализ данных, расчет показателей, поиск взаимосвязей
17.10.2023	Визуализация данных
24.10.2023	Выводы исследования
31.10.2023	Оформление презентации
17.11.2023	Защита проекта

Цели и задачи проекта

Какая страна самая счастливая в мире?

Какие факторы больше влияют на счастье страны?

Как менялся показатель счастья с течением времени?

Инструменты и методы

Веб-приложение с открытым исходным кодом Jupyter notebook.

GitHub — крупнейший веб-сервис для хостинга IT-проектов и их совместной разработки.

Язык программирования Python и его библиотеки (Pandas, Openpyxl, Matplotlib, NumPy, Seaborn, Statsmodels).

Язык структурированных запросов (SQL) - язык программирования для хранения и обработки информации в реляционной базе данных.

Apache Superset — открытое программное обеспечение для исследования и визуализации данных.

Сбор данных

Данные в формате csv и xlsx для проекта загружены c сайта https://worldhappiness.report:

- WHR2023.csv
- DataForTable2.1WHR2023.xlsx

Просмотр данных, определение метрик

Для прочтения файла csv загружаем библиотеку Pandas:

```
import pandas as pd
happiness2023 = pd.read_csv("WHR2023.csv")
```

Подробно в 2023report.ipynb

Для прочтения файла xlsx загружаем дополнительно библиотеку Openpyxl:

!pip install openpyxl

happiness = pd.read_excel("DataForTable2.1WHR2023.xlsx")

Подробно в happiness_total.ipynb

Оценка качества и объема данных

Отчет 2005-2022:

Узнаем какой самый ранний год представлен в данной таблице. Также проверим последний год.

Отчет 2023: happiness2023.shape (137, 19) happiness2023.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 137 entries, 0 to 136 Data columns (total 19 columns): # Column Non-Null Count Dtype 137 non-null 0 Country name object 1 Ladder score 137 non-null float64 2 Standard error of ladder score float64 137 non-null 3 upperwhisker 137 non-null float64 4 lowerwhisker 137 non-null float64 5 Logged GDP per capita 137 non-null float64 137 non-null float64 6 Social support 7 Healthy life expectancy 136 non-null 8 Freedom to make life choices 137 non-null float64 9 Generosity 137 non-null float64 10 Perceptions of corruption 137 non-null float64 11 Ladder score in Dystopia 137 non-null float64 12 Explained by: Log GDP per capita 137 non-null float64 13 Explained by: Social support 137 non-null float64 14 Explained by: Healthy life expectancy 136 non-null float64 15 Explained by: Freedom to make life choices 137 non-null float64 16 Explained by: Generosity 137 non-null 17 Explained by: Perceptions of corruption 137 non-null float64 18 Dystopia + residual 136 non-null float64

happiness.year.min(), happiness.year.max() (2005, 2022) happiness.shape (2199, 11) happiness.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2199 entries, 0 to 2198 Data columns (total 11 columns): # Column Non-Null Count Dtype -----0 Country name 2199 non-null object 2199 non-null int64 2 Life Ladder 2199 non-null float64 3 Log GDP per capita 2179 non-null float64 2186 non-null float64 4 Social support 5 Healthy life expectancy at birth 2145 non-null float64 6 Freedom to make life choices 2166 non-null float64 2126 non-null float64 7 Generosity 8 Perceptions of corruption 2083 non-null float64 9 Positive affect 2175 non-null float64 10 Negative affect 2183 non-null float64 dtypes: float64(9), int64(1), object(1) memory usage: 189.1+ KB

Подробно в 2023report.ipynb

Подробно в happiness_total.ipynb

Обработка/очистка данных

Отчет 2023:

Подробно в 2023report.ipynb

Удалим столбцы с лишними данными.

happiness2023 = happiness2023.drop(columns = ['Standard error of ladder score', 'upperwhisker', 'lowerwhisker', ...], axis = 1)

Переименуем столбцы датасета.

happiness2023.rename(columns = { 'Country name': 'Страна', 'Ladder score': 'Рейтинг', 'Logged GDP per capita': 'ВВП на душу населения', 'Social support': 'Социальная поддержка', 'Healthy life expectancy': 'Ожидаемая продолжительность здоровой жизни', 'Freedom to make life choices': 'Свобода жизненного выбора', 'Generosity': 'Щедрость', 'Perceptions of corruption': 'Восприятие коррупции'}, inplace = True)

 Сохраним обработанный датасет в csv-файл для дальнейшего анализа.

happiness2023.to_csv('happiness2023.csv', index=False)

 Проверим наличие нулевых значение в датасете и удалим при наличии.

happiness2023.isnull().sum()

happiness2023 = happiness2023.dropna()

Отчет 2005-2022: Подробно в happiness_total.ipynb

Удалим столбцы с лишними данными.

happiness = happiness.drop(columns = ['Positive affect', 'Negative affect'], axis = 1)

Переименуем столбцы датасета как в отчете 2023 года.

happiness.rename(columns = { 'Country name': 'Страна', 'year': 'Год', 'Life Ladder': 'Рейтинг', 'Log GDP per capita': 'ВВП на душу населения', 'Social support': 'Социальная поддержка', 'Healthy life expectancy at birth': 'Ожидаемая продолжительность здоровой жизни', 'Freedom to make life choices': 'Свобода жизненного выбора', 'Generosity': 'Щедрость', 'Perceptions of corruption': 'Восприятие коррупции'}, inplace = True)

 В отчете 2023 года добавим столбец с годом и заполним его.

happiness2023['Год'] = 2023

Объединим отчеты с 2005 года по 2023 год.

happiness_total = pd.concat([happiness, happiness2023])

Проверим количество строк объединенного отчета.

happiness.count(), happiness2023.count(), happiness_total.count()

Отчет 2023:

 Получим первичное представление о статистических характеристиках нашего датасета.

happiness2023.describe()

 Для изучения отношений между числовыми столбцами датасета загрузим библиотеки NumPy, Matplotlib и Seaborn.

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

sns.pairplot(happiness2023, corner=True)

 Для значений из диаграмм, в которых видна линейная зависимость, нарисуем тепловую карту.

 $df_1 = happiness2023[['Рейтинг', 'ВВП на душу населения', 'Социальная поддержка', 'Ожидаемая продолжительность здоровой жизни', 'Свобода жизненного выбора']]$

sns.heatmap(df_1.corr(), annot=True, cmap='BrBG')

Подробно в 2023report.ipynb

Отчет 2023:

Для пар с самой сильной корреляцией применим линейную регрессию используя библиотеку Statsmodels и входящий в нее модуль линейной регрессии Linear Regression.

!pip install statsmodels

import statsmodels.formula.api as smf

Рейтинг и Социальной поддержка

```
df_2 = df_1[['Рейтинг', 'Социальная поддержка']]
df_2.rename(columns = { 'Рейтинг': 'Score', 'Социальная поддержка': 'SocialSupport'}, inplace = True)
model = smf.ols('Score ~ SocialSupport', data = df_2)
result = model.fit()
print(result.summary())
```

ВВП на душу населения и Ожидаемая продолжительность здоровой жизни

```
df_3 = df_1[['BBП на душу населения', 'Ожидаемая продолжительность здоровой жизни']]
```

df_3.rename(columns = { 'ВВП на душу населения':'GDP', 'Ожидаемая продолжительность здоровой жизни':'HealthyLife'}, inplace = True)

```
model = smf.ols('HealthyLife ~ GDP' ,data = df_3)
result = model.fit()
print(result.summary())
```

Подробно в 2023report.ipynb

OLS Regression Results

Dep. Variable:	Score R-squared:			0.702		
Model:		OLS	Adj. R-squared:		0.700	
Method:	Least Squares F-statistic:			316.2		
Date:	Thu,	Thu, 26 Oct 2023 Prob (F-statistic):		4.49e-37		
Time:		13:06:37 Log-Likelihood:		-128.23		
No. Observations:		136	AIC:		260.5	
Df Residuals:		134	BIC:			266.3
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err		P> t		
Intercept	-0.3577					
SocialSupport	7.3904	0.416	17.781	0.000	6.568	8.212
Omnibus:		2.196	Durbin-Watson:		1.419	
Prob(Omnibus):			Jarque-Bera (JB):		2.190	
Skew:			Prob(JB):			0.334
Kurtosis:			Cond. No.			12.7

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:		HealthyLif	fe	R-sq	uared:		0.701
Model:		Ol	.5	Adj.	R-squared:		0.699
Method:	L	east Square	25	F-st	atistic:		314.9
Date:	Thu,	26 Oct 202	23	Prob	(F-statistic)	:	5.47e-37
Time:		13:06:5	59	Log-	Likelihood:		-348.17
No. Observations:		13	36	AIC:			700.3
Df Residuals:		13	34	BIC:			706.2
Df Model:			1				
Covariance Type:		nonrobus	st				
					P> t		
Intercept 27.							
GDP 3.9	9799	0.224	17	.744	0.000	3.536	4.424
Omnibus:		17.21	12	Durb	in-Watson:		1.725
Prob(Omnibus):		0.00	90	Jarq	ue-Bera (JB):		70.484
Skew:		0.09	94	Prob	(JB):		4.95e-16
Kurtosis:		6.52	22	Cond	. No.		76.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Отчет 2005-2023:

 Узнаем сколько стран за все годы оценки счастья с мире попадали в рейтинги и их названия.

happiness_total['Страна'].value_counts()

happiness_total['Страна'].unique()

 Посмотрим как изменялся максимальный, минимальный и средний уровень счастья в разные годы.

happiness_total.groupby(['Год']).agg({'Рейтинг': ['max', 'min', 'mean']})

happiness_total.plot(kind='scatter', x='Год', y='Рейтинг')

[41]:				Рейтинг
		max	min	mean
	Год			
	2005	8.018934	4.718734	6.446164
	2006	7.672449	3.202429	5.196935
	2007	7.834233	3.280247	5.418291
	2008	7.970892	2.807855	5.418554
	2009	7.683359	3.407508	5.457640
	2010	7.770515	3.229129	5.496782
	2011	7.788232	2.936221	5.424088
	2012	7.776209	3.164491	5.443612
	2013	7.593794	2.687553	5.393302
	2014	7.507559	2.838959	5.386267
	2015	7.603434	2.701591	5.400948
	2016	7.659843	2.693061	5.396381
	2017	7.788252	2.661718	5.460421
	2018	7.858107	2.694303	5.498683
	2019	7.780348	2.375092	5.570995
	2020	7.889350	2.633753	5.727539
	2021	7.794378	2.178809	5.636193
	2022	7.728998	1.281271	5.585126
	2023	7.804000	1.859000	5.539796

Отчет 2005-2023:

Выберем в помощью .loc и текстового среза нужные столбцы:

```
df_1 = happiness_total.loc[:,'Страна':'Рейтинг']
```

Создадим на основании нового датафрейма сводную таблицу:

```
df_pivot = df_1.pivot_table('Рейтинг', index='Год', columns='Страна', aggfunc = 'max').reset_index()
```

▶ Выберем данные по странам, которые входили в head(5) и tail(5) отчета 2023 года, а также Беларусь:

df = df_pivot.loc[:,('Год','Finland','Denmark','Iceland','Israel', 'Netherlands', 'Congo (Kinshasa)', 'Zimbabwe', 'Sierra Leone', 'Lebanon', 'Afghanistan', 'Belarus')]

Заполним ячейки, которые не имеют значение, когда страна не попадала в рейтинг:

df.fillna(0, inplace=True)

Отчет 2005-2023:

Построим графики отдельно для каждой группы, чтобы увидеть изменение рейтинга по годам.

```
plt.figure(figsize=(16,8))
plt.plot(df['Год'], df['Finland'], marker='o')
plt.plot(df['Год'], df['Denmark'], marker='o')
plt.plot(df['Год'], df['Iceland'], marker='o')
plt.plot(df['Год'], df['Israel'], marker='o')
plt.plot(df['Год'], df['Netherlands'], marker='o')
plt.plot(df['Год'], df['Congo (Kinshasa)'], marker='o')
plt.plot(df['Год'], df['Zimbabwe'], marker='o')
plt.plot(df['Год'], df['Sierra Leone'], marker='o')
plt.plot(df['Год'], df['Lebanon'], marker='o')
plt.plot(df['Год'], df['Afghanistan'], marker='o')
plt.plot(df['Год'], df['Belarus'], marker='o')
plt.xlabel('Год')
plt.vlabel('Рейтинг')
plt.title('Изменение рейтинга по годам и странам')
plt.legend(['Finland', 'Denmark', 'Iceland', 'Israel', 'Netherlands', 'Congo (Kinshasa)', 'Zimbabwe', 'Sierra Leone', 'Lebanon', 'Afghanistan', 'Belarus'])
```

Подробно в Change_score_year_country.ipynb


```
SELECT "Год" AS "Год",

max("Рейтинг") AS "МАХ(Рейтинг)",

min("Рейтинг") AS "MIN(Рейтинг)",

AVG("Рейтинг") AS "AVG(Рейтинг)"

FROM tres. "Happiness"

GROUP BY "Год"

ORDER BY "МАХ(Рейтинг)";
```



```
SELECT "Страна" AS "Страна",
count("Страна") AS "COUNT(Страна)",
max("Рейтинг") AS "МАХ(Рейтинг)",
FROM tres. "Happiness"
WHERE "Год" = 2023
GROUP BY "Страна"
ORDER BY "COUNT(Страна)";
```



```
SELECT "Год" AS "Год",
   "Страна" AS "Страна",
   max("Рейтинг") AS "МАХ(Рейтинг)"
FROM tres."Happiness"
JOIN
(SELECT "Страна" AS "Страна",
   max("Рейтинг") AS mme_inner_
 FROM tres. "Happiness"
 WHERE "Год" = 2023
 GROUP BY "Страна"
 ORDER BY mme_inner_
WHERE "Год" = 2023
GROUP BY "Год",
           'Страна"
ORDER BY "МАХ(Рейтинг)";
```


рейтингов по годам и странам.

SELECT "Год" AS "Год",

"Страна" AS "Страна",

max("Рейтинг") AS "МАХ(Рейтинг)"

FROM tres. "Нарріпеss"

GROUP BY Страна"

"Год"

ORDER BY "МАХ(Рейтинг)";

Выводы исследования

- Самой счастливой страной в мире является Финляндия. Как видно из исследования она, как и Дания, имели самые высокие рейтинги за всю историю вычислений.
- ▶ В пятерку лидеров по счастью в 2023 году вошли страны Северной Европы и Израиль. На показатель счастья согласно анализа в большей мере влияет Социальная поддержка, а не уровень ВВП. Так самые богатые страны занимают более низкие места в рейтинге.
- Показатель счастья в среднем снижается. В рейтинги попадают страны с очень низкими значениями.

Погода не оказывает большого влияния на счастье, также как и уровень богатства. Сильное чувство общественной поддержки и взаимного доверия делает людей более счастливыми.