Sistem Instrumentasi Elektronika - Modul $4\,$

Gabriel SH

Contents

Libraries	3
Read Exported Data	3
Global Variables	3
4.1 Filter Orde 2	4
4.1.1 Butterworth	4
4.1.1 a) Frequency Response	4
4.1.1 b) Time Domain	6
$\mathrm{F}=10~\mathrm{Hz}$	6
$F = 100 \text{ Hz} \dots \dots$	9
$F = 1000 \; Hz \dots $	11
$F = 10000 \text{ Hz} \dots \dots$	14
4.1.2 Bessel	16
4.1.2 a) Frequency Response	16
4.1.2 b) Time Domain	17
$\mathrm{F}=10~\mathrm{Hz}$	17
$F = 100 \text{ Hz} \dots \dots$	20
$F = 1000 \; Hz \dots $	23
$F = 10000 \; Hz \; \dots $	26
4.1.3 Chebychev	29
4.1.3 a) Frequency Response	29
Max Ripple	30
4.1.3 b) Time Domain	31
$\mathrm{F}=10~\mathrm{Hz}$	31
$F = 100 \text{ Hz} \dots \dots$	34
$F = 1000 \; Hz \dots $	37
$F = 10000 \; \mathrm{Hz} \; \ldots \; $	40
4.1.4 Perbandingan Respon Frekuensi	43
4.2 Filter Orde 3	44
4.2.1 Butterworth	44
4.2.1 a) Frequency Response	44
4.2.1 b) Time Domain	45
$F = 10 \text{ Hz} \dots \dots$	45
$F = 100 \text{ Hz} \dots \dots$	48
$F = 1000 \; Hz \dots \dots \dots \dots \dots \dots \dots \dots \dots $	51
$F = 10000 \; Hz \; \dots $	54
4.2.2 Bessel	57
4.2.2 a) Frequency Response	57
4.2.2 b) Time Domain	58

$\mathrm{F}=10\;\mathrm{Hz}$	58
F = 100 Hz	31
$F = 1000 \text{ Hz} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	34
$F = 10000 \text{ Hz} \dots \dots$	37
4.2.3 Chebychev	70
4.2.2 a) Frequency Response	70
Max Ripple	71
4.2.2 b) Time Domain	73
$\mathrm{F}=10~\mathrm{Hz}$	73
$F = 100 \text{ Hz} \dots \dots$	76
$F = 1000 \text{ Hz} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	79
$F = 10000 \text{ Hz} \dots \dots$	32
4.2.4 Perbandingan Respon Frekuensi	34
Perbandingan Semua Filter	3 5

Libraries

```
library(ggplot2) # Plotting
library(patchwork) # Plotting extension
library(tidyverse) # Table operations
```

Read Exported Data

```
freq_resp <- read.csv("Exports/HPF_FreqResponse.csv")
time_domain_10Hz <- read_csv("Exports/HPF_10Hz.csv")
time_domain_100Hz <- read_csv("Exports/HPF_100Hz.csv")
time_domain_1000Hz <- read_csv("Exports/HPF_1000Hz.csv")
time_domain_10000Hz <- read_csv("Exports/HPF_10000Hz.csv")</pre>
```

Global Variables

```
CUTOFF <- 1000  # cutoff 1000 Hz
MAG_3dB <- -3  # -3dB point
```

4.1 Filter Orde 2

Mengambil data filter orde 2.

```
freq_resp_2 <- freq_resp %>%
  dplyr::select(FREQ, Butterworth2, Bessel2, Chebychev2)
```

4.1.1 Butterworth

4.1.1 a) Frequency Response

Mengambil data untuk respon frekuensi Butterworth orde 2 saja.

```
butter2_freq <- freq_resp_2 %>%
  dplyr::select(FREQ, Butterworth2)
```

Respon Frekuensi High Pass Filter Butterworth Orde 2

Butterworth High Pass Filter - Orde 2

Frekuensi Cutoff = 1000Hz

4.1.1 b) Time Domain

Mengambil data untuk Butterworth orde 2 saja.

```
butter2_10Hz <- time_domain_10Hz %>%
   dplyr::select(TIME, Vin, Butterworth2)

butter2_100Hz <- time_domain_100Hz %>%
   dplyr::select(TIME, Vin, Butterworth2)

butter2_1000Hz <- time_domain_1000Hz %>%
   dplyr::select(TIME, Vin, Butterworth2)

butter2_10000Hz <- time_domain_10000Hz %>%
   dplyr::select(TIME, Vin, Butterworth2)
```

F = 10 Hz

Plot sinyal $V_{input} \& V_{out}$ saat f = 10Hz

```
plot_all_signal <-
  ggplot(butter2_10Hz) +
    geom_line(aes(x = TIME * 1000, y = Vin, color = "Vin")) +
    geom_line(aes(x = TIME * 1000, y = Butterworth2, color = "Vout")) +
    xlab("Time (ms)") +
    ylab("Voltage (V)") +
    scale_color_manual(name = "Legend",
                       labels = c("Vin", "Vout"))
plot_vout <-
  ggplot(butter2_10Hz) +
    geom_line(aes(x = TIME * 1000, y = Butterworth2), color = "blue") +
    xlab("Time (ms)") +
    ylab("Voltage (V)")
plot_all_signal / plot_vout +
  plot_annotation(title = "Butterworth HPF Orde 2",
                  subtitle = "frekuensi input = 10 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

Butterworth HPF Orde 2

frekuensi input = 10 Hz

Zoom ke V_{out} lebih dekat, namun dengan mengambil data untuk syarat t:

t > 5ms

Zoom in Vout frekuensi input = 10 Hz

Dari grafik tersebut, dapat terlihat bahwa V_{PEAK} adalah (dalam volt):

vpeak

[1] -0.00449706

F = 100 Hz

Plot sinyal $V_{input} \& V_{out}$ saat f = 100Hz

```
plot_all_signal <-</pre>
  ggplot(butter2_100Hz) +
    geom_line(aes(x = TIME * 1000, y = Vin, color = "Vin")) +
    geom_line(aes(x = TIME * 1000, y = Butterworth2, color = "Vout")) +
    xlab("Time (ms)") +
    ylab("Voltage (V)") +
    scale_color_manual(name = "Legend",
                       labels = c("Vin", "Vout"))
plot_vout <-
  ggplot(butter2_100Hz) +
    geom_line(aes(x = TIME * 1000, y = Butterworth2), color = "blue") +
    xlab("Time (ms)") +
    ylab("Voltage (V)")
plot_all_signal / plot_vout +
  plot_annotation(title = "Butterworth HPF Orde 2",
                  subtitle = "frekuensi input = 100 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

Butterworth HPF Orde 2

frekuensi input = 100 Hz

Zoom ke V_{out} lebih dekat, namun dengan mengambil data untuk t > 5ms, agar zoom tidak terpengaruh oleh overshoot yang besar di awal.

Zoom in Vout

Dari grafik tersebut, dapat terlihat bahwa V_{PEAK} adalah (dalam volt):

vpeak

[1] 0.0463392

F = 1000 Hz

Subset data untuk 0ms < t < 25ms

```
butter2_1000Hz <- butter2_1000Hz %>%
dplyr::filter(TIME * 1000 < 25)
```

Plot sinyal $V_{input} \& V_{out}$ saat f = 1000Hz

```
# Semua sinyal di stack
plot_all_signal <-</pre>
  ggplot(butter2_1000Hz) +
   geom_line(aes(x = TIME * 1000, y = Vin, color = "Vin")) +
   geom_line(aes(x = TIME * 1000, y = Butterworth2, color = "Vout")) +
   xlab("Time (ms)") +
   ylab("Voltage (V)") +
   labels = c("Vin", "Vout"))
plot_vout <-
  ggplot(butter2_1000Hz) +
   geom_line(aes(x = TIME * 1000, y = Butterworth2), color = "blue") +
   xlab("Time (ms)") +
   ylab("Voltage (V)")
plot_all_signal / plot_vout +
  plot_annotation(title = "Butterworth HPF Orde 2",
                subtitle = "frekuensi input = 1 kHz") +
  plot_layout(guides = "collect") &
 theme_linedraw()
```

Butterworth HPF Orde 2

frekuensi input = 1 kHz

Zoom in Vout

frekuensi input = 1 kHz

Dari grafik tersebut, dapat terlihat bahwa ${\cal V}_{PEAK}$ adalah (dalam volt):

vpeak

[1] 3.55269

F = 10000 Hz

Subset data untuk 0ms < t < 1ms

```
butter2_10000Hz <- butter2_10000Hz %>%
dplyr::filter(TIME * 1000 < 1)
```

Plot sinyal V_{input} & V_{out} saat f = 10000Hz

HPF Butterworth orde 2

Frekuensi input = 10 kHz


```
# ambil data untuk t < 0.5 ms
zoomin <- butter2_10000Hz %>%
    dplyr::filter(TIME * 1000 < 0.50)

vpeak <- max(zoomin*Butterworth2)</pre>
```

Zoom in Vout

frekuensi input = 10 kHz

Dari grafik tersebut, dapat terlihat bahwa V_{PEAK} adalah (dalam volt):

vpeak

[1] 5.01627

4.1.2 Bessel

Mengambil data untuk respon frekuensi filter tipe Bessel orde 2 saja.

```
bessel2_freq <- freq_resp_2 %>%
  dplyr::select(FREQ, Bessel2)
```

4.1.2 a) Frequency Response

Bessel High Pass Filter Orde 2

Cutoff = 1000 Hz

4.1.2 b) Time Domain

Subset data untuk Bessel filter saja.

```
bessel2_10Hz <- time_domain_10Hz %>% dplyr::select(TIME, Vin, Bessel2)
```

F = 10 Hz

Bessel HPF @F = 10 Hz

Orde 2

Untuk mendapatkan peak, maka sebaiknya di subset dahulu untuk t > 5ms (perkiraan)

```
bessel2_10Hz <- bessel2_10Hz %>%
   dplyr::filter( TIME * 1000 > 5)

vpeak <- max(bessel2_10Hz$Bessel2)

ggplot(bessel2_10Hz) +
   geom_line(aes(TIME * 1000, Bessel2), color = "blue") +
   geom_hline(yintercept = vpeak, color = "red", linetype = 4) +</pre>
```

Zoom In Vout Bessel HPF Orde 2

F = 10 Hz

Dari grafik tersebut, kurang lebih nila
i ${\cal V}_{peak}$ output adalah:

vpeak

[1] -0.00418491

F = 100 Hz

Subset data untuk Bessel filter saja.

```
bessel2_100Hz <- time_domain_100Hz %>%
  dplyr::select(TIME, Vin, Bessel2)
```

```
p1 <-
ggplot(bessel2_100Hz) +
  geom_line(aes(x = TIME * 1000, y = Vin, color = "Vin")) +
  geom_line(aes(x = TIME * 1000, y = Bessel2, color = "Vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout"))
p2 <-
ggplot(bessel2_100Hz) +
  geom_line(aes(x = TIME * 1000, y = Bessel2), color = "blue")
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Bessel HPF @F = 100 Hz",
                  subtitle = "Orde 2") &
  xlab("Time (ms)") &
  ylab("Voltage (V)") &
  theme_linedraw()
```

Bessel HPF @F = 100 Hz

Orde 2

Untuk mendapatkan peak, maka sebaiknya di subset dahulu untuk t > 5ms (perkiraan)

```
bessel2_100Hz <- bessel2_100Hz %>%
  dplyr::filter( TIME * 1000 > 5)

vpeak <- max(bessel2_100Hz$Bessel2)</pre>
```

Zoom In Vout Bessel HPF Orde 2

F = 100 Hz

Dari grafik tersebut, kurang lebih nila
i ${\cal V}_{peak}$ output adalah:

vpeak

[1] 0.0772873

F = 1000 Hz

Subset data untuk Bessel filter saja, lalu mengambil data untuk rentang t:

```
0 \le t \le 10ms
```

```
bessel2_1000Hz <- time_domain_1000Hz %>%
  dplyr::select(TIME, Vin, Bessel2) %>%
  dplyr::filter(TIME * 1000 <= 10)</pre>
```

Bessel HPF @F = 1000 Hz

Orde 2

Untuk mendapatkan peak, maka sebaiknya di subset dahulu untuk t > 2.5ms (perkiraan)

```
bessel2_1000Hz <- bessel2_1000Hz %>%
    dplyr::filter( TIME * 1000 > 2.5)

vpeak <- max(bessel2_1000Hz$Bessel2)</pre>
```

Zoom In Vout Bessel HPF Orde 2

F = 1000 Hz

Dari grafik tersebut, kurang lebih nila
i ${\cal V}_{peak}$ output adalah:

vpeak

[1] 3.55056

F = 10000 Hz

Subset data untuk Bessel filter saja, lalu mengambil data untuk rentang t:

```
0 \leq t \leq 1ms
```

```
bessel2_10000Hz <- time_domain_10000Hz %>%
  dplyr::select(TIME, Vin, Bessel2) %>%
  dplyr::filter(TIME * 1000 <= 1)</pre>
```

Bessel HPF @F = 10000 Hz

Orde 2

Untuk mendapatkan peak, maka sebaiknya di subset dahulu untuk t > 0.25ms (perkiraan)

```
bessel2_10000Hz <- bessel2_10000Hz %>%
    dplyr::filter( TIME * 1000 > 0.25)

vpeak <- max(bessel2_10000Hz$Bessel2)

ggplot(bessel2_10000Hz) +</pre>
```

Zoom In Vout Bessel HPF Orde 2

0.6

Time (ms)

8.0

1.0

Dari grafik tersebut, kurang lebih nila
i ${\cal V}_{peak}$ output adalah:

0.4

vpeak

[1] 4.99587

4.1.3 Chebychev

4.1.3 a) Frequency Response

Mengambil data untuk Chebychev saja.

```
cheby2_freq <- freq_resp %>%
  dplyr::select(FREQ, Chebychev2)
```

Plot respon frekuensi, juga disertakan garis bantu untuk cutoff frequency.

HPF Filter Chebychev Orde 2

Cutoff = 1000 Hz

Max Ripple

Ripple maksimum pada Chebychev didapatkan melalui fungsi .max() dari kolom Chebychev2. Dan frekuensi saat ripple didapat dengan melakukan filter() data, dengan syarat $G_{dB} = ripple$, lalu mengambil kolom FREQ saja.

```
ripple <- max(cheby2_freq$Chebychev2)
freq_at_ripple <- cheby2_freq %>%
   dplyr::filter(Chebychev2 == ripple) %>%
   dplyr::select(FREQ) %>%
   as.numeric()

ripple
```

[1] 2.96181

```
freq_at_ripple
```

[1] 1584.893

Lokasi peak ripple Chebychev HPF orde 2

Cutoff = 1000 Hz

4.1.3 b) Time Domain

F = 10 Hz

Subset data untuk time domain saja:

```
cheby2_10Hz <- time_domain_10Hz %>%
  dplyr::select(TIME, Vin, Chebychev2)
```

Plot perbandingan input dan output.

```
p1 <-
ggplot(cheby2_10Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev2, color = "vout")) +
  labs(x = "Time (ms)",
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  theme_linedraw()
p2 <-
ggplot(cheby2_10Hz) +
  geom_line(aes(TIME * 1000, Chebychev2), color = "blue") +
  labs(x = "Time (ms)",
  theme_linedraw()
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev 3-dB HPF orde 2",
                  subtitle = "Frekuensi input = 10 Hz")
```

Chebychev 3-dB HPF orde 2

Frekuensi input = 10 Hz

Zoom in ke Vout saja, dengan melakukan subset data untuk syarat t:

t>5ms

```
cheby2_10Hz %>%
  dplyr::filter(TIME * 1000 > 5) -> cheby2_10Hz
```

Untuk mendapatkan V_{peak} maka menggunakan max()

```
vpeak <- max(cheby2_10Hz$Chebychev2)
vpeak</pre>
```

[1] -0.00474113

Vout Chebychev HPF orde 2

F = 100 Hz

Subset data untuk time domain saja:

```
cheby2_100Hz <- time_domain_100Hz %>% dplyr::select(TIME, Vin, Chebychev2)
```

Plot perbandingan input dan output.

```
p1 <-
ggplot(cheby2_100Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev2, color = "vout")) +
  labs(x = "Time (ms)",
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  theme_linedraw()
p2 <-
ggplot(cheby2_100Hz) +
  geom_line(aes(TIME * 1000, Chebychev2), color = "blue") +
  labs(x = "Time (ms)",
  theme_linedraw()
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev 3-dB HPF orde 2",
                  subtitle = "Frekuensi input = 100 Hz")
```

Chebychev 3-dB HPF orde 2

Frekuensi input = 100 Hz

Zoom in ke Vout saja, dengan melakukan subset data untuk syarat t:

t>5ms

```
cheby2_100Hz %>%
  dplyr::filter(TIME * 1000 > 5) -> cheby2_100Hz
```

Untuk mendapatkan V_{peak} maka menggunakan max()

```
vpeak <- max(cheby2_100Hz$Chebychev2)
vpeak</pre>
```

[1] 0.0217318

Vout Chebychev HPF orde 2

F = 1000 Hz

Subset data untuk time domain saja, dengan syarat t:

t < 10ms

```
cheby2_1000Hz <- time_domain_1000Hz %>%
  dplyr::select(TIME, Vin, Chebychev2) %>%
  dplyr::filter(TIME * 1000 < 10)</pre>
```

Plot perbandingan input dan output.

```
p1 <-
ggplot(cheby2_1000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev2, color = "vout")) +
  labs(x = "Time (ms)",
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  theme_linedraw()
ggplot(cheby2_1000Hz) +
  geom_line(aes(TIME * 1000, Chebychev2), color = "blue") +
  labs(x = "Time (ms)",
  theme_linedraw()
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev 3-dB HPF orde 2",
                  subtitle = "Frekuensi input = 1000 Hz")
```

Chebychev 3-dB HPF orde 2

Frekuensi input = 1000 Hz

Zoom in ke Vout saja, dengan melakukan subset data untuk syarat t:

t>1ms

```
cheby2_1000Hz %>%
  dplyr::filter(TIME * 1000 > 1) -> cheby2_1000Hz
```

Untuk mendapatkan V_{peak} maka menggunakan \max ()

```
vpeak <- max(cheby2_1000Hz$Chebychev2)
vpeak</pre>
```

[1] 3.65289

Vout Chebychev HPF orde 2

F = 10000 Hz

Subset data untuk time domain saja, dengan syarat t:

t < 2ms

```
cheby2_10000Hz <- time_domain_10000Hz %>%
  dplyr::select(TIME, Vin, Chebychev2) %>%
  dplyr::filter(TIME * 1000 < 2)</pre>
```

Plot perbandingan input dan output.

```
p1 <-
ggplot(cheby2_10000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev2, color = "vout")) +
  labs(x = "",
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  theme_linedraw()
ggplot(cheby2_10000Hz) +
  geom_line(aes(TIME * 1000, Chebychev2), color = "blue") +
  labs(x = "Time (ms)",
  theme_linedraw()
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev 3-dB HPF orde 2",
                  subtitle = "Frekuensi input = 10 kHz")
```

Chebychev 3-dB HPF orde 2

Frekuensi input = 10 kHz

Zoom in ke Vout saja, dengan melakukan subset data untuk syarat t:

t>1ms

```
cheby2_10000Hz %>%
  dplyr::filter(TIME * 1000 > 1) -> cheby2_10000Hz
```

Untuk mendapatkan V_{peak} maka menggunakan \max ()

```
vpeak <- max(cheby2_10000Hz$Chebychev2)
vpeak</pre>
```

[1] 5.06595

```
ggplot(cheby2_10000Hz) +
  geom_line(aes(TIME * 1000, Chebychev2), color = "blue") +
  geom_hline(aes(yintercept = vpeak), color = "black", linetype = 4) +

# plot information
labs(title = "Vout Chebychev HPF orde 2",
      subtitle = "F = 1000 Hz",
      x = "Time (ms)",
      y = "Voltage (V)") +
theme_linedraw()
```

Vout Chebychev HPF orde 2

4.1.4 Perbandingan Respon Frekuensi

Plot frequency response ketiga filter orde 2, sumbu-x logaritmis, juga disertakan garis bantu untuk frekuensi cutoff & lokasi gain 3 dB.

```
ggplot(freq_resp_2) +
    scale_x_log10() +
    geom_line(aes(FREQ, Butterworth2, color = "Butterworth")) +
    geom_line(aes(FREQ, Bessel2, color = "Bessel")) +
    geom_line(aes(FREQ, Chebychev2, color = "Chebychev 3-dB")) +

# Garis bantu
geom_hline(yintercept = -3, color = "blue", linetype = 4) +
geom_vline(xintercept = 1000, color = "blue", linetype = 4) +

# plot information
labs(title = "Perbandingan HPF orde 2",
    subtitle = "Cutoff = 1000 Hz",
    x = "Frequency (Hz)",
    y = "Gain (dB)")
```

Perbandingan HPF orde 2 Cutoff = 1000 Hz

4.2 Filter Orde 3

 ${\bf Mengambil\ data\ filter\ orde\ 3.}$

```
freq_resp_3 <- freq_resp %>%
  dplyr::select(FREQ, Butterworth3, Bessel3, Chebychev3)
```

4.2.1 Butterworth

4.2.1 a) Frequency Response

Butterworth HPF orde 3

Cutoff = 1000 Hz

4.2.1 b) Time Domain

F = 10 Hz

Mengambil data untuk 10 Hz.

```
butter3_10Hz <- time_domain_10Hz %>%
  dplyr::select(TIME, Vin, Butterworth3)
```

```
p1 <- ggplot(butter3_10Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Butterworth3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(butter3_10Hz) +
  geom_line(aes(TIME * 1000, Butterworth3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Butterworth Orde 3",
                  subtitle = "Frekuensi input = 10 Hz") +
  plot_layout(guides = "collect") &
 theme linedraw()
```

HPF Butterworth Orde 3

Frekuensi input = 10 Hz

Zoom in ke ${\cal V}_{out}$ dengan melakukan subset data untuk syarat t:

t > 25ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
butter3_10Hz <- butter3_10Hz %>%
   dplyr::filter(TIME * 1000 > 25)

vpeak <- max(butter3_10Hz$Butterworth3)
vpeak</pre>
```

[1] 0.153273

Zoom in Vout Butterworth HPF Orde 3

Frekuensi input = 10 Hz

F = 100 Hz

Mengambil data untuk 100 Hz.

```
butter3_100Hz <- time_domain_100Hz %>%
  dplyr::select(TIME, Vin, Butterworth3)
```

```
# output & input di stack
p1 <- ggplot(butter3_100Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Butterworth3, color = "vout")) +
  scale_color_manual(name = "Legend",
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(butter3_100Hz) +
  geom_line(aes(TIME * 1000, Butterworth3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Butterworth Orde 3",
                  subtitle = "Frekuensi input = 100 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Butterworth Orde 3

Frekuensi input = 100 Hz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t > 25ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
butter3_100Hz <- butter3_100Hz %>%
   dplyr::filter(TIME * 1000 > 25)

vpeak <- max(butter3_100Hz$Butterworth3)
vpeak</pre>
```

[1] 0.158482

Zoom in Vout Butterworth HPF Orde 3

F = 1000 Hz

Mengambil data untuk 100 Hz, dengan waktu t:

t < 10ms

```
butter3_1000Hz <- time_domain_1000Hz %>%
  dplyr::select(TIME, Vin, Butterworth3) %>%
  dplyr::filter(TIME * 1000 < 10)</pre>
```

```
p1 <- ggplot(butter3_1000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Butterworth3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(butter3_1000Hz) +
  geom_line(aes(TIME * 1000, Butterworth3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Butterworth Orde 3",
                 subtitle = "Frekuensi input = 1000 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Butterworth Orde 3

Frekuensi input = 1000 Hz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t>2.5ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
butter3_1000Hz <- butter3_1000Hz %>%
   dplyr::filter(TIME * 1000 > 2.5)

vpeak <- max(butter3_1000Hz*Butterworth3)
vpeak</pre>
```

[1] 3.72844

```
ggplot(butter3_1000Hz) +
  geom_line(aes(TIME * 1000, Butterworth3), color = "blue") +
  geom_hline(yintercept = vpeak, color = "red", linetype = 4) +

labs(title = "Zoom in Vout Butterworth HPF Orde 3",
      subtitle = "Frekuensi input = 1000 Hz",
      x = "Time (ms)",
      y = "Voltage (V)") +
  theme_linedraw()
```

Zoom in Vout Butterworth HPF Orde 3

Frekuensi input = 1000 Hz

F = 10000 Hz

Mengambil data untuk 100 Hz, dengan waktu t:

t < 2ms

```
butter3_10000Hz <- time_domain_10000Hz %>%
  dplyr::select(TIME, Vin, Butterworth3) %>%
  dplyr::filter(TIME * 1000 < 2)</pre>
```

```
p1 <- ggplot(butter3_10000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Butterworth3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(butter3_10000Hz) +
  geom_line(aes(TIME * 1000, Butterworth3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Butterworth Orde 3",
                 subtitle = "Frekuensi input = 10000 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Butterworth Orde 3

Frekuensi input = 10000 Hz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t > 1ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
butter3_10000Hz <- butter3_10000Hz %>%
  dplyr::filter(TIME * 1000 > 1)

vpeak <- max(butter3_10000Hz$Butterworth3)
vpeak</pre>
```

[1] 5.11806

Zoom in Vout Butterworth HPF Orde 3

Frekuensi input = 10000 Hz

4.2.2 Bessel

4.2.2 a) Frequency Response

Mengambil data frequency response dari filter Bessel.

```
bessel3_freq <- freq_resp %>%
  dplyr::select(FREQ, Bessel3)
```

Plot respon frekuensi.

Bessel HPF Orde 3

Cutoff = 1000 Hz

4.2.2 b) Time Domain

F = 10 Hz

Mengambil data untuk 10 Hz.

```
bessel3_10Hz <- time_domain_10Hz %>%
  dplyr::select(TIME, Vin, Bessel3)
```

```
p1 <- ggplot(bessel3_10Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Bessel3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(bessel3_10Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Bessel Orde 3",
                  subtitle = "Frekuensi input = 10 Hz") +
  plot_layout(guides = "collect") &
 theme linedraw()
```

HPF Bessel Orde 3

Frekuensi input = 10 Hz

Zoom in ke ${\cal V}_{out}$ dengan melakukan subset data untuk syarat t:

t > 25ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
bessel3_10Hz <- bessel3_10Hz %>%
   dplyr::filter(TIME * 1000 > 25)

vpeak <- max(bessel3_10Hz*Bessel3)
vpeak</pre>
```

[1] 0.153918

```
ggplot(bessel3_10Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  geom_hline(yintercept = vpeak, color = "red", linetype = 4) +

labs(title = "Zoom in Vout Bessel HPF Orde 3",
      subtitle = "Frekuensi input = 10 Hz",
      x = "Time (ms)",
      y = "Voltage (V)") +
  theme_linedraw()
```

Zoom in Vout Bessel HPF Orde 3

F = 100 Hz

Mengambil data untuk 100 Hz.

```
bessel3_100Hz <- time_domain_100Hz %>%
  dplyr::select(TIME, Vin, Bessel3)
```

```
# output & input di stack
p1 <- ggplot(bessel3_100Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Bessel3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(bessel3_100Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Bessel Orde 3",
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Bessel Orde 3

Frekuensi input = 100 Hz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t > 25ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
bessel3_100Hz <- bessel3_100Hz %>%
  dplyr::filter(TIME * 1000 > 25)

vpeak <- max(bessel3_100Hz$Bessel3)
vpeak</pre>
```

[1] 0.168192

```
ggplot(bessel3_100Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  geom_hline(yintercept = vpeak, color = "red", linetype = 4) +

labs(title = "Zoom in Vout Bessel HPF Orde 3",
      subtitle = "Frekuensi input = 100 Hz",
      x = "Time (ms)",
      y = "Voltage (V)") +
  theme_linedraw()
```

Zoom in Vout Bessel HPF Orde 3

Frekuensi input = 100 Hz

F = 1000 Hz

Mengambil data untuk 1000 Hz, dan hanya mengambil untuk t:

t < 10ms

```
bessel3_1000Hz <- time_domain_1000Hz %>%
  dplyr::select(TIME, Vin, Bessel3) %>%
  dplyr::filter(TIME * 1000 < 10)</pre>
```

```
p1 <- ggplot(bessel3_1000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Bessel3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(bessel3_1000Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Bessel Orde 3",
                  subtitle = "Frekuensi input = 1000 Hz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Bessel Orde 3

Frekuensi input = 1000 Hz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t>2.5ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
bessel3_1000Hz <- bessel3_1000Hz %>%
   dplyr::filter(TIME * 1000 > 2.5)

vpeak <- max(bessel3_1000Hz$Bessel3)
vpeak</pre>
```

[1] 3.70712

```
ggplot(bessel3_1000Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  geom_hline(yintercept = vpeak, color = "red", linetype = 4) +

labs(title = "Zoom in Vout Bessel HPF Orde 3",
      subtitle = "Frekuensi input = 1000 Hz",
      x = "Time (ms)",
      y = "Voltage (V)") +
  theme_linedraw()
```

Zoom in Vout Bessel HPF Orde 3

Frekuensi input = 1000 Hz

F = 10000 Hz

Mengambil data untuk 10000 Hz, dan hanya mengambil untuk t:

t < 2ms

```
bessel3_10000Hz <- time_domain_10000Hz %>%
  dplyr::select(TIME, Vin, Bessel3) %>%
  dplyr::filter(TIME * 1000 < 2)</pre>
```

```
p1 <- ggplot(bessel3_10000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Bessel3, color = "vout")) +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout")) +
  xlab("") +
  ylab("Voltage (V)")
p2 <- ggplot(bessel3_10000Hz) +
  geom_line(aes(TIME * 1000, Bessel3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_annotation(title = "HPF Bessel Orde 3",
                 subtitle = "Frekuensi input = 10 kHz") +
  plot_layout(guides = "collect") &
  theme_linedraw()
```

HPF Bessel Orde 3

Frekuensi input = 10 kHz

Zoom in ke V_{out} dengan melakukan subset data untuk syarat t:

t>0.5ms

Dan sekaligus mendapatkan nilai V_{peak} :

```
bessel3_10000Hz <- bessel3_10000Hz %>%
    dplyr::filter(TIME * 1000 > 0.5)

vpeak <- max(bessel3_10000Hz$Bessel3)
vpeak</pre>
```

[1] 5.17626

Zoom in Vout Bessel HPF Orde 3

Frekuensi input = 10 kHz

4.2.3 Chebychev

4.2.2 a) Frequency Response

Mengambil data respon frekuensi untuk filter Chebychev.

```
cheby3_freq <- freq_resp %>%
  dplyr::select(FREQ, Chebychev3)
```

Plot untuk respon frekuensi.

Chebychev HPF Orde 3

Cutoff = 1000 Hz

Max Ripple

Karena max ripple sepertinya bersifat menuju Gain (dB) -3dB, maka fungsi yang digunakan adalah min(), dan diaplikasikan untuk mencari magnitude dengan lokasi frekuensi:

```
f > 1100 Hz
```

Menggunakan 1100 Hz agar daerah dekat cutoff (-3 dB) tidak ikut di scan oleh fungsi min().

```
ripple <- cheby3_freq %>%
    dplyr::filter(FREQ > 1100) %>%
    min()

freq_at_ripple <- cheby3_freq %>%
    dplyr::filter(Chebychev3 == ripple) %>%
    dplyr::select(FREQ) %>%
    as.numeric()
```

[1] -3.10983

```
freq_at_ripple
```

[1] 1995.262

Chebychev HPF Orde 3

Cutoff = 1000 Hz

4.2.2 b) Time Domain

F = 10 Hz

Mengambil data untuk filter Chebychev orde 3

```
cheby3_10Hz <- time_domain_10Hz %>%
  dplyr::select(TIME, Vin, Chebychev3)
```

```
# Plot Vout & Vin di stack
p1 <-
ggplot(cheby3_10Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev3, color = "vout")) +
  xlab("") +
  ylab("Voltage (V)") +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout"))
ggplot(cheby3_10Hz) +
  geom_line(aes(TIME * 1000, Chebychev3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev HPF Orde 3",
  theme linedraw()
```

Frekuensi input = 10 Hz

Zoom in ke V_{out} dengan cara melakukan subset data untuk t:

t > 25ms

Sekaligus mendapatkan V_{peak} :

```
cheby3_10Hz <- cheby3_10Hz %>%
  dplyr::filter(TIME * 1000 > 25)

vpeak <- max(cheby3_10Hz %Chebychev3)
vpeak</pre>
```

[1] 0.439579

Frekuensi input = 10 Hz

F = 100 Hz

Mengambil data untuk filter Chebychev orde 3.

```
cheby3_100Hz <- time_domain_100Hz %>%
  dplyr::select(TIME, Vin, Chebychev3)
```

```
# Plot Vout & Vin di stack
p1 <-
ggplot(cheby3_100Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev3, color = "vout")) +
  xlab("") +
  ylab("Voltage (V)") +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout"))
ggplot(cheby3_100Hz) +
  geom_line(aes(TIME * 1000, Chebychev3), color = "blue") +
  xlab("Time (ms)") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev HPF Orde 3",
                  subtitle = "Frekuensi input = 100 Hz") &
  theme_linedraw()
```

Frekuensi input = 100 Hz

Zoom in ke V_{out} dengan cara melakukan subset data untuk t:

t>25ms

Sekaligus mendapatkan V_{peak} :

```
cheby3_100Hz <- cheby3_100Hz %>%
  dplyr::filter(TIME * 1000 > 25)

vpeak <- max(cheby3_100Hz Chebychev3)
vpeak</pre>
```

[1] 0.440882

F = 1000 Hz

Mengambil data untuk filter Chebychev orde 3, dengan syarat t:

t < 10ms

```
cheby3_1000Hz <- time_domain_1000Hz %>%
  dplyr::select(TIME, Vin, Chebychev3) %>%
  dplyr::filter(TIME * 1000 < 10)</pre>
```

```
# Plot Vout & Vin di stack
p1 <-
ggplot(cheby3_1000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev3, color = "vout")) +
  xlab("") +
  ylab("Voltage (V)") +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout"))
ggplot(cheby3_1000Hz) +
  geom_line(aes(TIME * 1000, Chebychev3), color = "blue") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev HPF Orde 3",
                  subtitle = "Frekuensi input = 1000 Hz") &
  theme_linedraw()
```

Frekuensi input = 1000 Hz

Zoom in ke V_{out} dengan cara melakukan subset data untuk t:

t>2.5ms

Sekaligus mendapatkan V_{peak} :

```
cheby3_1000Hz <- cheby3_1000Hz %>%
  dplyr::filter(TIME * 1000 > 2.5)

vpeak <- max(cheby3_1000Hz$Chebychev3)
vpeak</pre>
```

[1] 4.09061

Frekuensi input = 1000 Hz

F = 10000 Hz

Mengambil data untuk filter Chebychev orde 3, dengan syarat t:

t < 5ms

```
cheby3_10000Hz <- time_domain_10000Hz %>%
  dplyr::select(TIME, Vin, Chebychev3) %>%
  dplyr::filter(TIME * 1000 < 5)</pre>
```

```
# Plot Vout & Vin di stack
p1 <-
ggplot(cheby3_10000Hz) +
  geom_line(aes(TIME * 1000, Vin, color = "vin")) +
  geom_line(aes(TIME * 1000, Chebychev3, color = "vout")) +
  xlab("") +
  ylab("Voltage (V)") +
  scale_color_manual(name = "Legend",
                     labels = c("Vin", "Vout"))
ggplot(cheby3_10000Hz) +
  geom_line(aes(TIME * 1000, Chebychev3), color = "blue") +
  ylab("Voltage (V)")
p1 / p2 +
  plot_layout(guides = "collect") +
  plot_annotation(title = "Chebychev HPF Orde 3",
                  subtitle = "Frekuensi input = 10000 Hz") &
  theme_linedraw()
```

Frekuensi input = 10000 Hz

Zoom in ke V_{out} dengan cara melakukan subset data untuk t:

t>1ms

Sekaligus mendapatkan V_{peak} :

```
cheby3_10000Hz <- cheby3_10000Hz %>%
    dplyr::filter(TIME * 1000 > 1)

vpeak <- max(cheby3_10000Hz$Chebychev3)
vpeak</pre>
```

[1] 5.26553

Frekuensi input = 10000 Hz

4.2.4 Perbandingan Respon Frekuensi

Plot frequency response ketiga filter orde 3, sumbu-x logaritmis, juga disertakan garis bantu untuk frekuensi cutoff & lokasi gain 3 dB.

```
ggplot(freq_resp) +
    scale_x_log10() +
    geom_line(aes(FREQ, Butterworth3, color = "Butterworth")) +
    geom_line(aes(FREQ, Bessel3, color = "Bessel")) +
    geom_line(aes(FREQ, Chebychev3, color = "Chebychev 3-dB")) +

# Garis bantu
geom_hline(yintercept = -3, color = "blue", linetype = 4) +
geom_vline(xintercept = 1000, color = "blue", linetype = 4) +

# plot information
labs(title = "Perbandingan HPF orde 3",
    subtitle = "Cutoff = 1000 Hz",
    x = "Frequency (Hz)",
    y = "Gain (dB)")
```

Perbandingan HPF orde 3

Perbandingan Semua Filter

```
ggplot(freq_resp) +
scale_x_log10() +
geom_line(aes(FREQ, Butterworth2, color = "Butterworth Orde 2")) +
geom_line(aes(FREQ, Bessel2, color = "Bessel Orde 2")) +
geom_line(aes(FREQ, Chebychev2, color = "Chebychev 3-dB Orde 2")) +
geom_line(aes(FREQ, Butterworth3, color = "Butterworth Orde 3")) +
geom_line(aes(FREQ, Bessel3, color = "Bessel Orde 3")) +
geom_line(aes(FREQ, Chebychev3, color = "Chebychev 3-dB Orde 3")) +

# Garis bantu frekuensi cutoff & -3dB point
geom_hline(yintercept = -3, color = "red", linetype = 4) +
geom_vline(xintercept = 1000, color = "red", linetype = 4) +

# plot information
labs(title = "Perbandingan HPF",
    subtitle = "Cutoff = 1000 Hz",
    x = "Frequency (Hz)",
    y = "Gain (dB)")
```

Perbandingan HPF

