

First Results from the Neutron Generator Test at ProtoDUNE

ProtoDUNE DRA Meeting 6 October 2021

Yashwanth Bezawada (Yash)
Junying Huang
University of California, Davis

OUTLINE

- ➤ Pulsed Neutron System
- ➤ DDG Test at ProtoDUNE
- Clustering Using DBScan
- ➤ Removing Cosmic Backgrounds
- > MC Simulations
- ➤ Comparing Data and Simulations
- **→** Conclusions

Neutrons for Calibration

- Argon has a near transparency to neutrons of energy 57 keV due to anti-resonance section
- Can travel ~30 m in natural liquid argon
- Fractional energy loss of 4.8% per scatter for the neutrons above this dip
- But the only experiment performed did not see the anti-resonance

Fig. (left) Simulated spread of 57 keV neutrons in the DUNEsize module (work done by J. Wang)

Fig. ARTIE Preliminary results for the neutron cross section in liquid argon at the anti-resonance dip

• Neutron captures in liquid argon (^{40}Ar - 99.6%) release distinct 6.1 MeV gamma ray cascade

$$n + {}^{40}Ar \rightarrow {}^{41}Ar + 6.1 \; MeV$$

How can we use Neutrons?

Fig. A schematic of the proposed PNS system (Investigating a simplified design)

Pulsed Neutron Source (PNS)

Deuterium-Deuterium neutron generator (DDG) produces 2.5 MeV neutrons

$${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n + Q(2.5 MeV)$$

Advantages

- External Deployment: No contamination to liquid Ar
- Adjustable neutron yield, pulse width and pulse rate
- Broad coverage: Neutrons travel long distances in liquid Ar
- Fixed energy deposition: 6.1 MeV gamma cascade can be used as "standard candle"
 - Signal also resembles Supernova Neutrino Burst (SNB) signal, thus acting as a "fake" SNB event trigger
- Frequent calibration runs can be conducted, due to the ease of deployment

DDG Test - Setup

APA Numbering

5	6	4
3	2	1

DD Generator is deployed at a roof feedthrough near APA 5

Location of the roof feedthrough

DDG Test - Data Taking

- Data taking was done over 10 days with different trigger modes and neutron intensities
- Random Trigger Mode:
 - DDG Off: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG Off: E = 350 V/cm; 5 Hz Trigger Frequency
 - DDG On: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG On: E = 350 V/cm; 5 Hz Trigger Frequency
- •Pulsed Trigger Mode (Only for DDG On):
 - E = 350 V/cm, 5% duty Cycle, ~175 μs pulse width, ~4 Hz
 - E = 0 V/cm, 5% duty Cycle, ~175 μs pulse width, ~4 Hz

(For more information refer to Mattia's talk on DD generator operation, Collaboration Meeting Sep 2020)

Motivation For DDG Analysis

- Understanding the neutron spread in ProtoDUNE-SP
- Remove cosmic events from the DDG run
- 3D space point reconstruction to test the neutron transport model
- Check the agreement between MC simulation and Data
- Energy reconstruction of the neutron capture events in the DDG run

Reconstructing Raw Data

- We are using "protoDUNE_SP_keepup_decoder_reco.fcl" to reconstruct the raw data
- We are using the following Modules:
 - "hitpdune" for extracting hits
 - "reco3d" for extracting spacepoints
 - "dbcluster3d" for clustering spacepoints

```
# Space point finder
reco3d: @local::protodunespdata_spacepointsolver
# Hit disambiguation
hitpdune: @local::pdune_disambigfromsp
#3d dbscan
dbcluster: @local::protodunespmc_dbcluster3d
```


Fig. Hits from the collection plane for an event in the run 11668 (DDG-off). The empty spaces are induction planes.

APA-5 (14400-14900 Channel IDs) is the nearest to the DD Generator

Spacepoint Clustering Using DBScan 3D

Run Number: 11711 – Pulsed Trigger Run (E = 350 V/cm Field)

Fig. Y vs Z plot of spacepoints for one event. Clustering is performed on the reconstructed 3D spacepoints.

- Minimum points per slice is set to 3
- Epsilon (neighborhood radius) is set to 2cm
- Cosmic rays partially removed by a cut on slice size

Determining the Slice Size Cutoff

Fig. Slice Size vs Number of Slices Plots

- We use a slice size cutoff of <=13 to remove some cosmics.
- 5000 events included.

Note: We recently found a bug in the MC simulations. We have fixed it and waiting for the results

Removing Cosmic Backgrounds

Simulations

- Updated the Geant4 physics list in LArSoft
- Modified the LArSoft geometry to include the polyethylene shield around the DDG
- Text file generator: 1500 neutrons with
 2.5 MeV per event
- Using "protodune_corsika_cmc" for cosmic ray
- Using "protodunesp_39ar" for Ar39
- Same reconstruction chain as data (Work by Junying Huang)

Fig. Simulation confirms that gammas from neutron capture are seen

Comparing Data and Simulations

Fig. Number of Slices on Y-axis and vertical position on X-axis.

- DDG off data is subtracted from DDG on data
- The resulting slices (clusters) are the contribution from the DDG
- Chi-square minimization used to fit the data with MC simulations
- Excluded bins up to 50 cm and from 550 cm to ignore the edge effects

$$\chi^{2} = \sum_{i=bins} \frac{\left[\left(D_{on,i} - D_{off,i} \right) - \beta \left(MC_{on,i} - MC_{off,i} \right) \right]^{2}}{D_{on,i} - D_{off,i}}$$

 $D_{on,i}: \mathsf{DDG} \ \mathsf{on} - \mathsf{Data}$ $MC_{on,i}: \mathsf{DDG} \ \mathsf{on} - \mathsf{MC}$ $D_{off,i}$: DDG off – Data $MC_{off,i}$: DDG off - MC

What can we conclude from this?

Fig. Plot with data and the fit. Number of neutron candidates on Y-axis and vertical position on X-axis.

- Expect to see more activity at the top
- Good agreement between data and MC, except at the edges
- Possible inefficiency at the top of the detector
- Excess neutron candidates at the bottom, in data

The fit parameter, $\beta = 0.74$

Note: Also see the machine-learning-based analysis result (done by L. Uboldi and P. Sala, CERN)

Conclusions

- Key features in Data are also seen in Monte Carlo simulations
- Used DBScan to remove cosmic backgrounds
- Used MC Simulations to fit Data
- Need to know why there is an inefficiency at the top of the detector

To Do List:

- Need to associate gammas to single neutron captures
 - Plan to use machine learning techniques to identify neutron captures
- Energy reconstruction of the single neutron captures

Back Up Slides

Cosmic Removal Using Pandora

Run Number: 11711 – Pulsed Trigger Run (E = 350 V/cm Field)

- Using Pandora to tag track hits and shower hits
 - Using "pandoraTrack" and "pandoraShower" modules

Fig. Peak Time vs Channel ID plot for one event. Hits tagged as Track or Shower are removed. It is not perfect, but it does a good job at removing cosmics.

Cosmic Removal – Hits near Tracks

- •We want to remove/tag hits which are within 20cm from a track/shower hit
- •Wire Pitch is 4.7mm; This turns into ± 42 Channel ID
- •Electron Drift Velocity is 0.16 cm/μs and sampling rate is 2 MHz; This turns into ± 250 tick units in Peak Time

Fig. Peak Time vs Channel ID plot for one event. Hits tagged as Track or Shower are removed. Additionally, all hits within 20cm of a track/shower hit

Argon Resonant Transport Interaction Experiment (ARTIE)

 Experiment to measure the depth of the anti-resonance section at 57 keV in the neutron-argon total cross section

Neutrons

LAr Target

Vacuum

Detector

Cross section is calculated using:

$$\sigma(E) = -\frac{m_{Ar}}{\rho_{eff} d} \ln T(E)$$

 m_{Ar} : Mass of an Ar atom

d: Target thickness

 ho_{eff} : Effective density of Ar

T(E): Transmission Coefficient

LAr Dewar