Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 1 "Ряды Фурье"

по дисциплине Частотные методы

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

1 Задание. Вещественные функции.

Придумать числа $a,\,b,\,t_0,\,t_1,\,t_2$ такие, что $a,\,b>0$ и $t_2>t_1>t_0>0$. Пусть $a=1,\,b=2;\,t_0=\pi,\,t_1=2\pi,\,t_2=3\pi$. Рассмотрим следующие функции $f:\mathbb{R}\to\mathbb{R}$:

1.1 Квадратная волна.

Периодическая функция с периодом $T=t_2-t_0=3\pi-\pi=2\pi$ такая, что

$$f(t) = \begin{cases} a, \ t \in [t_0, t_1), \\ b, \ t \in [t_1, t_2) \end{cases} = \begin{cases} 1, \ t \in [\pi, 2\pi), \\ 2, \ t \in [2\pi, 3\pi) \end{cases}$$
 (1)

1.1.1 График функции

 $Puc.\ 1.\ \Gamma paфик функции f(t).$

1.1.2 Частичные суммы Фурье

Рассмотрим частичные суммы Фурье F_N и G_N вида

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos\left(\omega_n t\right) + b_n \sin\left(\omega_n t\right) \right) , \qquad (2)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t} , \qquad (3)$$

где $\omega_n = 2\pi \frac{n}{T}$.

Перепишем формулы выше с учетом того, что $T=2\pi,$ следовательно $\omega_n=2\pi\frac{n}{2\pi}=n$:

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(nt) + b_n \sin(nt) \right) , \qquad (4)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int}.$$
 (5)

Перейдем к разложению по формуле 4. f(x) определена на $[\pi, 3\pi]$, преобразуем:

$$\pi \le t \le 3\pi \to \pi - 2\pi \le t - 2\pi \le 3\pi - 2\pi \to -\pi \le t - 2\pi \le \pi \tag{6}$$

Новая переменная $x=t-2\pi.$ Выразим $t=x+2\pi$ и запишем новую функцию $\phi(x)=f(x+2\pi).$

$$\phi(x) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx)) , \qquad (7)$$

где a_0, a_n, b_n – коэффициенты Фурье:

1.1.3 Вычисление коэффициентов a_n, b_n и c_n

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) dx,$$
 (8)

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \cos(nx) dx, \tag{9}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \sin(nx) dx, \tag{10}$$

Проведем обратную замену $x = t - 2\pi$:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos\left(n(t - 2\pi)\right) + b_n \sin\left(n(t - 2\pi)\right) \right)$$
 (11)

Воспользуемся периодичностью синуса и косинуса:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt))$$
 (12)

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{3\pi} f(t)dt,$$
 (13)

$$a_n = \frac{1}{\pi} \int_{-\pi}^{3\pi} f(t) \cos(nt) dt, \tag{14}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{3\pi} f(t) \sin(nt) dt, \qquad (15)$$

Вычислим значения коэффициентов:

$$a_0 = \frac{1}{\pi} \left(\int_{\pi}^{2\pi} 1 dt + \int_{2\pi}^{3\pi} 2 dt \right) = \frac{1}{\pi} (\pi + 2\pi) = 3, \tag{16}$$

$$a_n = \frac{1}{\pi} \left(\int_{\pi}^{2\pi} \cos(nt)dt + 2 \int_{2\pi}^{3\pi} \cos(nt)dt \right)$$
 (17)

Отдельно вычислим неопределенный интеграл:

$$\int \cos(nt)dt = \left| u = nt, t = \frac{u}{n}, dt = \frac{du}{n} \right| = \int \frac{\cos(u)du}{n} = \frac{\sin u}{n} + C = \frac{\sin(nt)}{n} + C$$
(18)

Отсюда получим

$$a_n = \frac{1}{\pi} \left(\frac{\sin(nt)}{n} \Big|_{\pi}^{2\pi} + 2 \frac{\sin(nt)}{n} \Big|_{2\pi}^{3\pi} \right) = 0$$
 (19)

$$b_{n} = \frac{1}{\pi} \left(\int_{\pi}^{2\pi} \sin(nt)dt + 2 \int_{2\pi}^{3\pi} \sin(nt)dt \right) = -\frac{1}{\pi} \left(\frac{\cos(nt)}{n} \Big|_{\pi}^{2\pi} + 2 \frac{\cos(nt)}{n} \Big|_{2\pi}^{3\pi} \right) =$$

$$= -\frac{1}{\pi} \left(\frac{\cos(2\pi n) - \cos(\pi n)}{n} + 2 \frac{\cos(3\pi n) - \cos(2\pi n)}{n} \right) =$$

$$= -\frac{1}{\pi} \left(\frac{1 - \cos(\pi n)}{n} + 2 \frac{\cos(3\pi n) - 1}{n} \right) = -\frac{1}{\pi} \left(\frac{1 - (-1)^{n}}{n} + 2 \frac{(-1)^{n} - 1}{n} \right) =$$

$$= -\frac{1}{\pi} \left(\frac{(-1)^{n} - 1}{n} \right) = \frac{1 - (-1)^{n}}{\pi n}$$
(20)

Примеры вычисления первых значений b_n :

$$b_1 = \frac{1 - (-1)^1}{\pi} = \frac{2}{\pi} \tag{21}$$

$$b_2 = \frac{1 - (-1)^2}{2\pi} = 0 (22)$$

$$b_3 = \frac{1 - (-1)^3}{3\pi} = \frac{2}{3\pi} \tag{23}$$

$$b_0 = \frac{1}{\pi} \left(\int_{\pi}^{2\pi} \sin(0)dt + 2 \int_{2\pi}^{3\pi} \sin(0)dt \right) = 0$$
 (24)

Запишем получившуюся частичную сумму:

$$F_N(t) = \frac{3}{2} + \sum_{n=1}^{N} \left(\frac{1 - (-1)^n}{\pi n} \sin(nt) \right) , \qquad (25)$$

Перейдем к рассмотрению следующей частичной суммы:

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int}.$$
 (26)

Где соответствующий коэффициент:

$$c_n = \frac{1}{T} \int_{h}^{h+T} f(t)e^{-i\omega_n t} dt = \frac{1}{2\pi} \int_{\pi}^{3\pi} f(t)e^{-int} dt = \frac{1}{2\pi} \left(\int_{\pi}^{2\pi} e^{-int} dt + 2 \int_{2\pi}^{3\pi} e^{-int} dt \right)$$
(27)

При n = 0 коэффициент будет равен:

$$c_0 = \frac{1}{2\pi} \left(\int_{\pi}^{2\pi} e^0 dt + 2 \int_{2\pi}^{3\pi} e^0 dt \right) = \frac{3}{2}$$
 (28)

Отдельно вычислим неопределенный интеграл:

$$c_n = \int e^{-int} dt = \frac{-1}{in} \int e^{-int} d(-int) = -\frac{e^{-int}}{in} + C$$
 (29)

$$c_n = -\frac{1}{2\pi} \left(\frac{e^{-int}}{in} \Big|_{\pi}^{2\pi} + 2 \left. \frac{e^{-int}}{in} \right|_{2\pi}^{3\pi} \right) = \frac{e^{-in\pi} + e^{-2in\pi} - 2e^{-3in\pi}}{2in\pi}$$
(30)

В итоге полученое разложение:

$$G_N(t) = \sum_{n=-N}^{N} \frac{e^{-in\pi} + e^{-2in\pi} - 2e^{-3in\pi}}{2in\pi} e^{int}.$$
 (31)

- 1.1.4 Программа для вычисления коэффициентов Фурье
- **1.1.5** Построение графиков частичных сумм F_N, G_N

...

1.1.6 Равенство Парсеваля

1.2 Любая четная периодическая функция.

$$f(t) = 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) \tag{32}$$

1.2.1 График функции

 $Puc.\ 2.\ \Gamma paфик функции f(t).$

1.2.2 Частичные суммы Фурье

Рассмотрим частичные суммы Фурье F_N и G_N вида

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(\omega_n t) + b_n \sin(\omega_n t)) , \qquad (33)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t} , \qquad (34)$$

где $\omega_n = 2\pi \frac{n}{T}$.

Аналогично, $T = 2\pi$, следовательно, $\omega_n = n$:

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(nt) + b_n \sin(nt) \right) , \qquad (35)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int}, \qquad (36)$$

1.2.3 Вычисление коэффициентов a_n, b_n и c_n

Запишем формулы для вычислия коэффициентов a_n, b_n и c_n :

$$a_n = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} 4 \cos\left(\sin^2\left(\frac{t}{2}\right)\right) \cos(nt) dt$$
 (37)

$$b_n = \frac{2}{T} \int_{h}^{h+T} f(t)\sin(nt)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right)\sin(nt)dt$$
 (38)

$$c_n = \frac{1}{T} \int_{h}^{h+T} f(t)e^{-i\omega_n t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right)e^{-int} dt$$
 (39)

Вычисление интеграллов в данном случае возможно только численно, так как интегралы, содержащиеся в коэффициентах являются неберущимися. Найдем первые 3 значения:

n=0:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) dt = 6.58868$$
 (40)

$$b_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) \sin(0 \cdot t) dt = 0$$
 (41)

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) e^{-i\cdot 0\cdot t} dt = 3.29434 \tag{42}$$

n = 1:

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right)\cos(t)dt = 0.929197$$
 (43)

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) \sin(t)dt = 0 \tag{44}$$

$$c_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) e^{-it} dt = 0.464599$$
 (45)

n = 2:

$$a_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right)\cos(2t)dt = -0.21486$$
 (46)

$$b_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) \sin(2t)dt = 0 \tag{47}$$

$$c_2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} 4\cos\left(\sin^2\left(\frac{t}{2}\right)\right) e^{-2it} dt = -0.10743$$
 (48)

- 1.2.4 Программа для вычисления коэффициентов Фурье
- **1.2.5** Построение графиков частичных сумм F_N , G_N

• • •

1.2.6 Равенство Парсеваля

1.3 Любая нечетная периодическая функция.

$$f(t) = \sin^3(x) \tag{49}$$

1.3.1 График функции

Puc. 3. График функции <math>f(t).

1.3.2 Частичные суммы Фурье

Рассмотрим частичные суммы Фурье F_N и G_N вида

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(\omega_n t) + b_n \sin(\omega_n t)) , \qquad (50)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t}, \qquad (51)$$

где $\omega_n = 2\pi \frac{n}{T}$.

Аналогично, $T=2\pi,$ следовательно, $\omega_n=n$:

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(nt) + b_n \sin(nt) \right) , \qquad (52)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int}, \qquad (53)$$

1.3.3 Вычисление коэффициентов a_n, b_n и c_n

Запишем формулы для вычислия коэффициентов a_n, b_n и c_n :

$$a_0 = \frac{2}{T} \int_{h}^{h+T} f(t)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^3(t)dt = 0$$
 (54)

$$a_n = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^3(t) \cos(nt) dt = 0$$
 (55)

$$b_n = \frac{2}{T} \int_{h}^{h+T} f(t) \sin(nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^3(t) \sin(nt) dt$$
 (56)

$$c_n = \frac{1}{T} \int_{b}^{h+T} f(t)e^{-i\omega_n t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin^3(t)e^{-int} dt$$
 (57)

Найдем численные значения коэффициентов для первых нескольких n.

n=0:

$$a_0 = 0 (58)$$

$$b_0 = 0 (59)$$

$$c_0 = 0 \tag{60}$$

$$n = 1$$
:

$$a_1 = 0 (61)$$

$$b_1 = \frac{3}{4} \tag{62}$$

$$c_1 = -\frac{3i}{8} \tag{63}$$

$$n = 2$$
:

$$a_2 = 0 \tag{64}$$

$$b_2 = 0 (65)$$

$$c_2 = 0 \tag{66}$$

$$n = 3$$
:

$$a_3 = 0 \tag{67}$$

$$b_3 = -\frac{1}{4} \tag{68}$$

$$c_3 = \frac{i}{8} \tag{69}$$

1.3.4 Программа для вычисления коэффициентов Фурье

1.3.5 Построение графиков частичных сумм F_N, G_N

•••

1.3.6 Равенство Парсеваля

•••

1.4 Любая периодическая функция, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной.

$$f(t) = \cos(t+1) \tag{70}$$

1.4.1 График функции

Puc. 4. График функции f(t).

- 1.4.2 Частичные суммы Фурье
- 1.4.3 Вычисление коэффициентов a_n, b_n и c_n
- 1.4.4 Программа для вычисления коэффициентов Фурье
- 1.4.5 Построение графиков частичных сумм F_N, G_N

1.4.6 Равенство Парсеваля