نام و نام خانوادگی: حسین محمدی

تاریخ: ۱۴۰۲/۰۱/۲۹

شماره دانشجویی: ۴۰۱۲۰۸۷۲۹

- ۱. نیمه هادی ها چه موادی هستند و چه کاربردی در زندگی روزمره ما دارند؟
- ۲. منحنی های دستور کار را رسم و تفسیر کنید. شکاف انرژی و جریان معکوس و ثابت اتا را بیابید.
 - ۳. الائیده گی را چگونه تغییر دهیم تا منحنی I-V اتصال به رفتار خطی نزدیکتر شود؟
- با توجه به ویژگی یکسو کنندگی پیوندگاه pn، اگر یک ولتاژ متغییر سینوسی به دایود اعمال شود شکل جریان خروجی را رسم کنید؟
 - o. خواص نوری نیمه هادی ها چگونه اند.
 - ٦. ظرفیت خازنی دیود بر حسب ولتاژ بایاس را رسم و تفسیر کنید.

سوال اول:

نیمرساناها دسته ای از مواد هستند که مطابق اسمشان، رسانششان بین مواد رسانا و نارسانا قرار می گیرد. از ویژگی های مهم نیمرسانا که آن را از سایر مواد متمایز می کند اینها هستند:

- اً. با افزایش دما، رسانششان افزایش می یابد (یا مقاومتشان کمتر می شود.) که دقیقا برعکس رساناهاست.
- ۲. رسانش الکتریکی نیمرساناها را می توان با روشهایی مانند آلایش یا دروازه سازی، تغییر داد و مواد با رسانش متنوع تری ساخت. (برخلاف رساناها که چنین کاری برایشان امکان پذیر نیست.)
 - ۳. نیمرساناها معمولا رسانش گرمایی بالایی دارند و برای ساخت کولرها از آن استفاده می شود.

کاربردهای آن در زندگی روزمره به وفور یافت می شود:

- همین دیود ها که با اتصال نیمرسانای نوع n به p بدست می آید.
- با اتصال های pnp یا npn به ترانزیستور می رسیم که قلب تپنده ی مدارهای مجتمع است و تمامی فناوری های مدرن بر مبنای ترانزیستور است؛ از تلفن همراه تا سامانه های هوشمند بزرگتر.
 - در لامپ های LED از نیمرساناهای خاصی استفاده می شود.

سوال دوم:

در آزمایش اول به سراغ تعیین جریان اشباع و ثابت دیود رفتیم.

نمودار ۱: لگاریتم جریان بر حسب ولتاژ junction برای آزمایش اول.

همانطور که در دستور کار دیدیم، با شیب و عرض از مبدا این نمودار می توان ثوابت ذکر شده را محاسبه کرد.

$$Ln I = Ln I_{\cdot} + \frac{eV}{\eta KT}$$

در سربرگ اول فایل اکسل، شیب و عرض از مبدا و خطاهایشان را داریم:

شيب نمودار	14.23654	-9.45894	عرض از مبدا
خطای عرض از مبدا	0.606245	0.4131	خطای شیب نمودار

جدول ۱: شیب و عرض از مبدا نمودار جریان forward بر حسب ولتاژ junction، به همراه خطاهایشان.

پس با در دست داشتن ثوابت به دست می آوریم:

$$I_{\cdot} = (\forall / \land \cdot \pm \forall / \not \circ \not \circ) \times \lor \cdot^{-\Delta} A = (\forall \land \pm \forall \not \circ / \not \circ) \mu A$$

و برای محاسبه ی ثابت دیود، دمای کوره را اندازه گرفتیم، در حالتی که کوره خاموش بود، دمایش ۲۹۸ درجه کلوین معادل ۲۵ درجه سلسیوس بود؛ یس:

$$\eta = \frac{e}{KT} \times \left(\frac{1}{mu}\right) = (7/778 \pm \cdot / \cdot 117)$$
 بی بعد

توجه شود که به نظر می رسد خط نمودار ۱ شکسته شده و برای جریان های کمتر از یک میلی آمپر، و بیشتر از یک میلی آمپر، خطی صاف داریم؛ علت می تواند غیر ایده آل بودن دیود باشد؛

همچنین می توانستیم برای این دو ناحیه ثابت دیود را جداگانه حساب کنیم. (این کار را در فایل اکسل در همان سربرگ اول انجام داده ایم و نتایج را همانجا می توانید مشاهده کنید.)

در آزمایش دوم، ثابت دمایی و انرژی شکاف را می خوانیم:

نمودار ۲: نمودار ولتاژ اتصال بر حسب دمای کوره.

برای محاسبه ی انرژی شکاف از روابط جریان و رابطه انرژی شکاف مطابق دستور کار استفاده می کنیم $\eta= au, m=1$ برای سیلیسیم.)

$$I = KT^{m}e^{-\frac{eV}{\eta KT}}$$

$$V_{Go} = V - T\frac{dV}{dT} - \frac{m\eta KT}{e}$$

پس بایستی شیب نمودار V-V را بدست آوریم و سپس مطابق رابطه بالا انرژی شکاف را محاسبه کنیم:

شیب نمودار	-0.00169	1.150414	عرض از مبدا
خطای عرض از مبدا	1.74E-05	0.005546	خطای شیب نمودار

جدول ۲: شیب و عرض از مبدا نمودار ولتاژ junction بر حسب دمای کوره.

و با استفاده از مقدار $\frac{dV}{dT}$ انرژی گپ را بدست می آوریم؛ این محاسبات در اکسل و سربرگ دوم انجام شده.

1/17ev انرژی شکاف تقریبا ev ابدست می آید و مقدار حقیقی انرژی شکاف سیلیسیم ev در دمای اتاق است؛ ولی از نمودار زیر روند تغییرات انرژی شکاف با دما را خیلی نامنظم مشاهده می کنیم.

نمودار ۳: نمودار انرژی شکاف سیلیسم بر حسب دمای کوره.

مطابق انتظار از تئوری، می بایستی با افزایش دما انرژی شکاف کمتر می شود؛ چون به علت اغتشاشات گرمایی داخل سیستم و تحرک گرمایی الکترون ها در دمای بالاتر؛ شکاف انرژی که فاصله بین بالاترین و پایین ترین الکترون در نوار ظرفیت و رسانش است؛ کاهش می یابد. اما در این آزمایش ممکن است داده گیری ما اشتباه باشد که این روند را مشاهده نمی کنیم. در آزمایش سوم هم به بررسی رابطه ی بین ولتاژ بایاس و ظرفیت خازن پیوندگاه می پردازیم:

نمودار ۴: نمودار ظرفیت خازن پیوندگاه بر حسب قدرمطلق ولتاژ بایاس.

رابطه ی معکوس مشاهده می کنیم؛ چرا که عرض ناحیه ی تهی گاه میان PN افزایش می یابد و مطابق رابطه ی ظرفیت یک خازن تخت(که رابطه معکوس با فاصله ی میان دو صفحه دارد)، ظرفیت خازن پیوندگاه کم می شود.

سوال سوم:

با افزایش آلایندگی، نمودار I-V به نمودار خطی نزدیک تر می شود، زیرا الکترون و حفره ها به حدی زیادی می شوند که نیمرسانا مانند یک رسانا می شود.

از رابطه η بزرگتر می شود و در I=I هم وقتی که آلایندگی بالا باشد؛پارامتر η بزرگتر می شود و در تقریب خطی، رابطه جریان برحسب ولتاژ خطی است و به یک رسانای اهمی نزدیک تر می شویم.

سوال چهارم:

با توجه به خاصیت یکسو کنندگی در دیود، در صورتی که ولتاژ منفی باشد، بایاس معکوس داریم که جریان ناچیزی عبور می کند و می توانیم آن را به تقریب صفر در نظر بگیریم و درصورتی که ولتاژ مثبت باشد، دیود مثل مقاومت عمل کرده و جریان عبوری تابعی خطی از ولتاژ است.

شکل زیر خواسته ی سوال است:

شکل ۱ : جریان بر حسب زمان در یک مدار(در عدم حضور دیود و در حضور دیود یکسو کننده.)

سوال پنجم:

چون انرژی گپ در نیمرساناها نسبتا کم است؛ خواص نوری آنها متفاوت از رساناها یا نارساناهاست؛ به این صورت که اگر فوتونی با انرژی برابر انرژی گپ به الکترون لایه ی ظرفیت بتابد، آن را به لایه رسانش می برد و باعث ایجاد جریان می شود؛ این همان چیزی است که در پدیده فوتوالکتریک می بینیم.

برعکس آن نیز ممکن است، یعنی با ترکیب یک الکترون وحفره، الکترون به لایه ی ظرفیت می رود؛ انرژی به صورت فوتون از دست می رود.

به همین دلیل از نیمه هادی ها در ساخت سلول خورشیدی و LED ها استفاده می شود.

سوال ششم:

در پاسخ به سوال دوم انجام شده است.