Bengali Spoken Digit Classification: A Hidden Markov Model Approach

By
Dibyendu Das
Under the Guidance Of
Dr. Sujoy Biswas

M.Sc in Big Data Analytics
Ramakrishna Mission Vivekananda Educational and Research Institute

Dataset Description

Dataset Description

- A dataset containing 600 audio file (.wav format) was created for the experiment.
- Eight people from various parts of the State were asked to give their voice recordings Using "QuickRec" App.

Bengali word	Bengali pronuncia tion	English word	English numerical
শূল্য	shun-no	zero	0
এক	a-k	one	1
দুই	du-i	two	2

Preprocessing and Feature Extraction

Discrete Representation of Signal:

Analog-to-digital conversion has two steps:

Preprocessing data and MFCC Feature Extraction:

Preemphasis:

- The spectrum for voiced segments has more energy at lower frequencies than higher frequencies. This is called spectral tilt
- Spectral tilt is caused by the nature of the glottal pulse

Spectral slice from the vowel [aa]

Windowing:

Common window shapes:

rectangular
$$w[n] = \begin{cases} 1 & 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$hamming \quad w[n] = \begin{cases} 0.54 - 0.46\cos(\frac{2\pi n}{L}) & 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$0.4999 - 0.4999 -$$

Time (s)

Time (s)

DFT:

Mel Scale:

- Human hearing is not equally sensitive to all frequency bands
- Less sensitive at higher frequencies, roughly > 1000 Hz
- I.e. human perception of frequency is non-linear:

A mel is a unit of pitch

Definition: Pairs of sounds perceptually equidistant in pitch Are separated by an equal number of mels

Mel (f) = 1127 ln
$$\left(1+(f/100)\right)$$

The Cepstrum: IDFT

Speech = Convolution of vocal tract frequency response with glottal pulse

The Cepstrum:

Feature:

- The cepstral coefficients do not capture energy
- So we add an energy feature
- Also, we know that speech signal is not constant
- So we want to add the changes in features (the slopes).
- We call these delta features

$$d(t) = rac{c(t+1) - c(t-1)}{2}$$
 c(t) = cepstral value at time t

12 MFCC 12 Δ MFCC 12 ΔΔ MFCC 1 ENERGY 1 Δ ENERGY 1 ΔΔ ENERGY

We also add double-delta acceleration feature

HMM Architecture

Our main goal:

"What is the most likely word out of all words in the language L given some acoustic input O?"

Overall Architecture:

Example:

Result Analysis

Total Data = 600 Train Data = 478 Test Data = 122

Number Of States	Number Of Mixture	Number Of Iteration	Training Accuracy	Testing Accuracy
3	2	100	64%	43%
5	2	100	77%	55%
7	2	100	82%	61%
10	2	100	91%	67%

Changing Parameters:

Number Of States	Number Of Mlxture	Number Of Iteration	Training Accuracy	Testing Accuracy
10	3	100	96%	68%
10	4	100	90%	71%
10	8	100	96%	74%
10	9	400	96%	76%

Any Questions

