Course No. – AS 5570

Principles of Guidance for Autonomous Vehicles

Assignment 2

Due Date: <u>September 18, 2024</u> (For Computer Assignments: Sept 25, 2024)

Part I: Deviated PP (DPP)

- 1) Consider a δ -angle Deviated Pure Pursuit (DPP)-guided pursuer with speed V_P against a maneuvering target with speed V_T and turn rate $\dot{\alpha}_T = c_T \dot{\theta}$. Consider three cases of $\nu = V_P/V_T \leq 1$. For each of these three cases consider $c_T \leq 1$. For each of these 9 cases:
 - i. Obtain the trajectory on the (V_{θ}, V_R) -space.
 - ii. In cases of successful capture:
 - i. What are the conditions of successful capture?
 - ii. Identify the capture region in terms of V_{R_0} and V_{θ_0} .
 - iii. Derive the expression of t_f .
 - iii. In other cases (no capture):
 - i. Derive the expressions of t_{miss} and R_{miss} .
 - iv. Derive expressions of $R(\psi)$ and $a_P(\psi)$. Obtain final values of R and a_P for $\mu \ge 1$, where $\nu \cos \delta = \mu \cos \psi_{CC}$, where ψ_{CC} is the value of ψ in collision course with speed ratio ν .
 - v. Obtain the value of $a_{P_{max}}$, and find at which value of ψ , $a_P(\psi) = a_{P_{max}}$.
 - vi. Compare the set of values of ν for PP and DPP for which the final value of a_P is finite.
- 2) Consider the initial engagement geometry in Question 3 on Page 121-122 of NPTEL lecture series. Consider speed ratios $\nu = 0.8, 1, 1.5$. For each of these three cases consider $c_T = 0,0.8,1,1.5$, where $\dot{\alpha}_T = c_T \dot{\theta}$. Solve Question 3 with all these set-ups.
 - (Part A: A1, A2, A5 Computer assignment; Part B: B1 Computer assignment; Part C: to be done after A1-A5 and B1 after Computer assignment)

Part II: Line-Of-Sight (LOS) Guidance

3) NPTEL lecture series Questions 1 (A, B) and 2 A on Page 138-139 (Consider 10 kms of downrange and 1 km of altitude). (Computer assignment)

- 4) Consider an engagement geometry: Target's altitude h = constant, $\alpha_T = \pi$. Also, V_P , V_T are constants such that $V_P > V_T$. Suppose the pursuer is on the LOS guidance course and following LOS guidance command.
 - i. Derive the followings:

i.
$$\left(\frac{dR_P}{d\theta}\right)^2 + R_P^2 = \frac{(vh)^2}{\sin^4 \theta}$$

ii.
$$\cot \theta - \cot \theta_0 = -\frac{V_T}{h}t$$

iii.
$$a_P = 2 \frac{V_P V_T}{h} \sin^2 \theta \left[1 + \frac{R_P \sin \theta \cos \theta}{\sqrt{(\nu h)^2 - (R_P \sin^2 \theta)^2}} \right]$$

ii. Show that

i.
$$\alpha_{P_f} = \theta_f + \sin^{-1}\left(\frac{1}{v}\sin\theta_f\right)$$

ii.
$$a_{P_f} = 2 \frac{v_P^2}{vh} \sin^2 \theta_f \left[1 + \frac{\cos \theta_f}{\sqrt{v^2 - \sin^2 \theta_f}} \right]$$

- iii. Let $V_P = 300$ m/sec, $V_T = 200$ m/sec, h = 1500 m, $\alpha_T = \pi$, $X_{P_0} = [0, 0]^T$ m, $X_{T_0} = [5000, 1500]^T$ m. It is also desired to satisfy the followings.
 - i. $a_{P_f} < 6g$, which approximately implies $0 < \theta_f < 0.24\pi$ or $0.6\pi < \theta_f < \pi$
 - ii. $t_f < 20 \text{ sec}$

Then, what is the set of achievable impact angles (defined as $\alpha_{T_f} - \alpha_{P_f}$)?

5) Consider an LOS-guided pursuer with speed V_P be on LOS guidance course against a constantly maneuvering target such that its position is given as $X_T(t) = [c \cos \omega t, c \sin \omega t]^T$ and $V_P > c\omega$. Consider following three cases.

i.
$$X_{P_0} = [0, 0]^T$$

ii.
$$X_{P_0} = [-c, 0]^T$$

Obtain pursuer's trajectory: $R_P(\theta)$, $X_P(t)$.