Word embeddings

Mannu Malhotra

Agenda

- Introduction to text classification and the dataset.
- Data representation: Count vectors
- Hands-on on count vectors.
- Data representation: TFIDF
- Hands-on TFIDF.
- Data representation: "Word embeddings" the holy grail.
 - Introduction to word embeddings
 - Learning word embeddings
- Hands-on on word embeddings
- Implement skip gram

A problem on text classification!

Representation of text data

- Counter vectorization
- TF-IDF vectorization
- Word embeddings

Count vectorization / One hot encoding

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

Counter vectorization:

Hands on

Count vectors

- What is wrong?
 - Some words are useless (stopwords).
 - Output
 How relevant a term is to a document?

TF-IDF

- TF: Term frequency
- IDF: Inverse document frequency.

- Importance of a term frequency of the term in a document.
- Importance of a term 1 / 💢 frequency of the term in all the document

$$TF(i,j) = \frac{\text{Term i frequency in document j}}{\text{Total words in document j}}$$

$$IDF(i) = \log_2 \left(\frac{\text{Total documents}}{\text{documents with term i}} \right)$$

TFIDF

Hands on

Word embeddings:

- What is the problem with existing representations:
 - Sparse representation.
 - No similarity betweens words.
 - Train: The movie is awesome; Test: The movie is good.
 - No featurized representation.

Word embeddings:

- What are word embeddings:
 - Featurized representation of words.

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gerder	- (l	-0.95	0.97	0.00	0.01
Royal	0.0	0.62	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	6.09	0.01	0.02	0.01	0.95	0.97

Word Embeddings

- What are word embeddings?
 - A matrix of size |V| * num_of_features
 - Embedding matrix, one-hot vector, embedding vector.
 - Embedding vector = Embedding matrix (dot product) one-hot vector

Visualizing Words Embeddings:

• If we visualize after dimension reduction:

Words Embeddings:

- Train: The movie is awesome; Test: The movie is good.
- Embeddings:
 - Awesome: [.54, .02, .93, .80,]
 - o Good: [.50, .05, .90, .85,]

Word Embeddings: How do we use them

- Transfer learning:
 - Download pre trained word embeddings.
 - Transfer embeddings on the new task with your dataset.

Word Embeddings: How to learn embeddings?

How do we find the feature representation scores?

"A word is known by the company it keeps."

Target/context pairs:

I want a glass of orange juice to go along with my cereal.

Word embeddings: skip gram

Step 1: Create source-target pairs.

Word embeddings: skip gram

- Step 2: Convert to it one hot encoding.
- Step 3: Feed it to two layers NN: A multiclass classification problem.
 - Hidden layer: 300 neurons
 - Softmax layer: |V| neurons
- Step 4: Train the NN with source-target pairs.
 - Intitution: Ask the model to predict target given source word.
- Wait? What is 300 here?
 - Features: latent variables

Word embeddings

- Weights of the hidden layer: |v| *
 300
- Voilà!! We got the embeddings matrix.

Word Embeddings: Problem with Skip Gram

- Softmax for |v| units can be really slow!
- Too many weights:
 - |V| = 10,000, latent variables = 300.
 - # of weights = 3 million weights.
- Gradient descent can be really slow.
 - # of training samples are in billions.
 - Expensive softmax operations.

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime}^{\top}v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime}^{\top}v_{w_I}\right)}$$

Word Embeddings: Negative sampling

- Idea: Divide 10000 class softmax to 10000 binary classification problem.
- Step 1: Create 1 positive + k negative samples.

I want a glass of orange juice to go along with my cereal.

Context	hrow	target?
orange	juice	1
orange	king	0
Dronge	book	0
Orange	the	0
Orange	st.	0

• Step 2: For every pair train K+1 binary classifier.

Word embeddings

- But wait the dimension of the data representation increased.
- How do we input it to the model now?
- Two ways:
 - Mean embeddings.
 - o IDF embeddings.

$$\begin{split} X_{mean-embeddings} &= \frac{1}{|document|} \sum_{word}^{document} W2V[word] \\ X_{TFIDF-embeddings} &= \frac{1}{|document|} \sum_{word}^{document} W2V[word] * IDF[word] \end{split}$$

- Which one to use when?
 - Mean: Good for documents with high intra document similarity and low inter document similarity.
 - IDF: Good for documents with low intra document similarity and high inter document similarity.

Word embeddings

Hands on