Package 'ETRep'

November 4, 2024

Type Package

Title Analysis of Elliptical Tubes Under the Relative Curvature Condition

Version 0.1.0

Maintainer Mohsen Taheri < Mohsen Taheri Shalmani@gmail.com >

Description Analysis of elliptical tubes with applications in biological modeling. The package is based on the refer-

ences: Taheri, M., Pizer, S. M., & Schulz, J. (2024) ``The Mean Shape under the Relative Curvature Condition." arXiv <doi:10.48550/arXiv.2404.01043>. Mohsen Taheri Shalmani (2024) ``Shape Statistics via Skeletal Structures", PhD Thesis, University of Stavanger, Norway <doi:10.13140/RG.2.2.34500.23685>. Key features include constructing discrete elliptical tubes, calculating transformations, validating structures under the Relative Curvature Condition, computing means, and generating simulations. Supports intrinsic and non-intrinsic mean calculations and transformations, size estimation, plotting, and random sample generation based on a reference tube.

License MIT + file LICENSE

URL https://github.com/MohsenTaheriShalmani/Elliptical_Tubes

Depends R (>= 4.0.0)

Author Mohsen Taheri [aut, cre]

Encoding UTF-8

LazyData true

Imports rgl, shapes, Morpho, matlib, RiemBase, RSpincalc, rotations, SphericalCubature, Rvcg, fields, Matrix, pracma, truncnorm, ggplot2, reshape2, dplyr, ptinpoly

RoxygenNote 7.3.2

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-04 12:40:13 UTC

Contents

	check_Tube_Legality	2
	colon3D	3
	create_Elliptical_Tube	3
	intrinsic_Distance_Between2tubes	5
	intrinsic_mean_tube	
	intrinsic_Transformation_Elliptical_Tubes	
	nonIntrinsic_Distance_Between2tubes	
	nonIntrinsic_mean_tube	
	nonIntrinsic_Transformation_Elliptical_Tubes	
	plot_Elliptical_Tube	
	simulatedColons	
	simulate_etube	
	tube_A	
	tube_B	
Index	1	15
		_
chec	k_Tube_Legality Check the Legality of an Elliptical Tube (ETRep)	

Description

Checks the validity of a given ETRep based on the Relative Curvature Condition (RCC) and principal radii such that forall i a_i>b_i.

Usage

```
check_Tube_Legality(tube)
```

Arguments

tube List containing ETRep details.

Value

Logical value: TRUE if valid, FALSE otherwise.

Examples

```
# Load tube
data("colon3D")
check_Tube_Legality(tube = colon3D)
```

colon3D 3

colon3D

Data

Description

A colon sample as an elliptical tube.

Usage

colon3D

Format

A list containing the information of an e-tube

Source

Generated and stored in the package's 'data/' folder.

```
create_Elliptical_Tube
```

Create a Discrete Elliptical Tube (ETRep)

Description

Constructs a discrete elliptical tube (ETRep) based on specified parameters.

```
create_Elliptical_Tube(
  numberOfFrames,
  method,
  materialFramesBasedOnParents = NA,
  initialFrame = diag(3),
  initialPoint = c(0, 0, 0),
  EulerAngles_Matrix = NA,
  ellipseResolution = 10,
  ellipseRadii_a,
  ellipseRadii_b,
  connectionsLengths,
  plotting = TRUE,
  add = FALSE
)
```

Arguments

numberOfFrames Integer, specifies the number of consecutive material frames. method String, either "basedOnEulerAngles" or "basedOnMaterialFrames", defines the material frames method. materialFramesBasedOnParents Array (3 x 3 x numberOfFrames) with pre-defined material frames. initialFrame Matrix 3 x 3 as the initial frame initialPoint Real vector with three elemets as the initial point EulerAngles_Matrix Matrix of dimensions numberOfFrames x 3 with Euler angles to define material ellipseResolution Integer, resolution of elliptical cross-sections (default is 10). ellipseRadii_a Numeric vector for the primary radii of cross-sections. ellipseRadii_b Numeric vector for the secondary radii of cross-sections. connectionsLengths Numeric vector for lengths of spinal connection vectors. plotting Logical, enables plotting of the ETRep (default is TRUE). add Logical, enables overlay plotting

Value

List containing tube details (orientation, radii, connection lengths, boundary points, etc.).

Examples

```
numberOfFrames<-15
EulerAngles_alpha<-c(rep(0,numberOfFrames))</pre>
EulerAngles_beta<-c(rep(-pi/20, numberOfFrames))</pre>
EulerAngles_gamma<-c(rep(0,numberOfFrames))</pre>
EulerAngles_Matrix<-cbind(EulerAngles_alpha,
                           EulerAngles_beta,
                           EulerAngles_gamma)
tube <- create_Elliptical_Tube(numberOfFrames = numberOfFrames,</pre>
                                method = "basedOnEulerAngles",
                                EulerAngles_Matrix = EulerAngles_Matrix,
                                ellipseResolution = 10,
                                ellipseRadii_a = rep(3, numberOfFrames),
                                ellipseRadii_b = rep(2, numberOfFrames),
                                connectionsLengths = rep(4, numberOfFrames),
                                plotting = FALSE)
 # Plotting
 plot_Elliptical_Tube(tube = tube,plot_frames = FALSE,
                       plot_skeletal_sheet = TRUE,
                       plot_r_project = FALSE,
                       plot_r_max = FALSE,add = FALSE)
```

intrinsic_Distance_Between2tubes

Calculating the intrinsic distance between two ETReps

Description

Calculating the intrinsic distance between two ETReps

Usage

```
intrinsic_Distance_Between2tubes(tube1, tube2)
```

Arguments

tube1 List containing ETRep details.tube2 List containing ETRep details.

Value

Numeric

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_Distance_Between2tubes(tube1 = tube_A, tube2 = tube_B)
```

intrinsic_mean_tube

Calculate Intrinsic Mean of ETReps

Description

Computes the intrinsic mean of a set of ETReps.

Usage

```
intrinsic_mean_tube(tubes, type = "sizeAndShapeAnalysis", plotting = TRUE)
```

Arguments

tubes List of ETReps.

type String, "ShapeAnalysis" or "sizeAndShapeAnalysis" (default is "sizeAndSha-

peAnalysis").

plotting Logical, enables visualization of the mean (default is TRUE).

Value

List representing the mean ETRep.

Examples

```
#Example 1
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_mean<-
  intrinsic_mean_tube(tubes = list(tube_A, tube_B),
                      plotting = FALSE)
# Plotting
plot_Elliptical_Tube(tube = intrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
#Example 2
data("simulatedColons")
intrinsic_mean<-
  intrinsic_mean_tube(tubes = simulatedColons,
                      plotting = FALSE)
# Plotting
plot_Elliptical_Tube(tube = intrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
```

```
intrinsic_Transformation_Elliptical_Tubes

*Intrinsic Transformation Between Two ETReps*
```

Description

Performs the intrinsic transformation from one ETRep to another.

```
intrinsic_Transformation_Elliptical_Tubes(
  tube1,
  tube2,
  type = "sizeAndShapeAnalysis",
  numberOfSteps = 5,
  plotting = TRUE,
```

```
colorBoundary = "blue"
)
```

Arguments

tube1 List containing details of the first ETRep.tube2 List containing details of the second ETRep.

type String defining the type of analysis as sizeAndShapeAnalysis or shapeAnalysis

numberOfSteps Integer, number of transformation steps.

plotting Logical, enables visualization during transformation (default is TRUE).

colorBoundary String defining the color of the e-tube

Value

List containing intermediate ETReps.

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
numberOfSteps <- 10</pre>
transformation_Tubes<-
 intrinsic_Transformation_Elliptical_Tubes(
    tube1 = tube_A, tube2 = tube_B,
   numberOfSteps = numberOfSteps,
    plotting = FALSE)
# Plotting
for (i in 1:length(transformation_Tubes)) {
 plot_Elliptical_Tube(tube = transformation_Tubes[[i]],
 plot_frames = FALSE,plot_skeletal_sheet = FALSE
  ,plot_r_project = FALSE,
 plot_r_max = FALSE,
 add = FALSE)
}
```

nonIntrinsic_Distance_Between2tubes

Calculating the non-intrinsic distance between two ETReps

Description

Calculating the non-intrinsic distance between two ETReps

```
nonIntrinsic_Distance_Between2tubes(tube1, tube2)
```

Arguments

tube1 List containing ETRep details.tube2 List containing ETRep details.

Value

Numeric

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_Distance_Between2tubes(tube1 = tube_A, tube2 = tube_B)
```

nonIntrinsic_mean_tube

Calculate Non-Intrinsic Mean of ETReps

Description

Computes the non-intrinsic mean of a set of ETReps.

Usage

```
nonIntrinsic_mean_tube(tubes, type = "sizeAndShapeAnalysis", plotting = TRUE)
```

Arguments

tubes List of ETReps.

type String, "ShapeAnalysis" or "sizeAndShapeAnalysis" (default is "sizeAndSha-

peAnalysis").

plotting Logical, enables visualization of the mean (default is TRUE).

Value

List representing the mean ETRep.

Examples

```
# Plotting
plot_Elliptical_Tube(tube = nonIntrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
#Example 2
data("simulatedColons")
nonIntrinsic_mean<-
 nonIntrinsic_mean_tube(tubes = simulatedColons,
                         plotting = FALSE)
# Plotting
plot_Elliptical_Tube(tube = nonIntrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
```

nonIntrinsic_Transformation_Elliptical_Tubes

Non-intrinsic Transformation Between Two ETReps

Description

Performs the non-intrinsic transformation from one ETRep to another.

Usage

```
nonIntrinsic_Transformation_Elliptical_Tubes(
  tube1,
  tube2,
  type = "sizeAndShapeAnalysis",
  numberOfSteps = 4,
  plotting = TRUE,
  colorBoundary = "blue",
  add = FALSE
)
```

Arguments

plotting

tube1 List containing details of the first ETRep.

tube2 List containing details of the second ETRep.

type String defining the type of analysis as sizeAndShapeAnalysis or shapeAnalysis numberOfSteps Integer, number of transformation steps.

Logical, enables visualization during transformation (default is TRUE).

10 plot_Elliptical_Tube

```
colorBoundary String defining the color of the e-tube add Logical, enables overlay plotting
```

Value

List containing intermediate ETReps.

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
numberOfSteps <- 10</pre>
transformation_Tubes<-
 nonIntrinsic_Transformation_Elliptical_Tubes(
    tube1 = tube_A, tube2 = tube_B,
   numberOfSteps = numberOfSteps,
   plotting = FALSE)
# Plotting
for (i in 1:length(transformation_Tubes)) {
 plot_Elliptical_Tube(tube = transformation_Tubes[[i]],
 plot_frames = FALSE,plot_skeletal_sheet = FALSE
  ,plot_r_project = FALSE,
 plot_r_max = FALSE,
 add = FALSE)
}
```

Description

Plots a given ETRep with options for boundary, material frames, and projection visualization.

```
plot_Elliptical_Tube(
   tube,
   plot_boundary = TRUE,
   plot_r_max = FALSE,
   plot_r_project = TRUE,
   plot_frames = TRUE,
   frameScaling = NA,
   plot_spine = TRUE,
   plot_normal_vec = FALSE,
   plot_skeletal_sheet = TRUE,
   decorate = TRUE,
   colSkeletalSheet = "blue",
```

simulatedColons 11

```
colorBoundary = "blue",
  add = FALSE
)
```

Arguments

tube List containing ETRep details.

Logical, enables plotting of the boundary (default is TRUE). plot_boundary

plot_r_max Logical, enables plotting of max projection size (default is FALSE).

plot_r_project Logical, enables plotting of projection along normals (default is TRUE).

plot_frames Logical, enables plotting of the material frames (default is TRUE).

frameScaling Numeric, scale factor for frames.

plot_spine Logical, enables plotting of the spine.

plot_normal_vec

Logical, enables plotting of the normals.

plot_skeletal_sheet

Logical, enables plotting of the surface skeleton.

decorate Logical, enables decorate the plot

colSkeletalSheet

String, defining the color of the surface skeleton

String, defining the color of the e-tube colorBoundary Logical, enables overlay plotting

add

Value

Graphical output.

Examples

```
# Load tube
data("colon3D")
plot_Elliptical_Tube(tube = colon3D,
                     plot_frames = FALSE,
                     add=FALSE)
```

simulatedColons

Data

Description

Simulated samples of e-tubes, modeled after a reference structure resembling a colon.

Usage

simulatedColons

12 simulate_etube

Format

Five simulated samples of elliptical tubes, modeled after a reference structure resembling a colon.

Source

Generated and stored in the package's 'data/' folder.

simulate_etube

Simulate Random Elliptical Tubes (ETReps)

Description

Generates random samples of ETReps based on a reference tube with added variation.

Usage

```
simulate_etube(
  referenceTube,
  numberOfSimulation,
  sd_v = 10^-10,
  sd_psi = 10^-10,
  sd_x = 10^-10,
  sd_a = 10^-10,
  sd_b = 10^-10,
  rangeSdScale = c(1, 2),
  plotting = TRUE
)
```

Arguments

referenceTube List containing ETRep information as the reference. numberOfSimulation

Integer, number of random samples.

sd_vStandard deviations for various parameters.sd_psiStandard deviations for various parameters.sd_xStandard deviations for various parameters.sd_aStandard deviations for various parameters.sd_bStandard deviations for various parameters.

rangeSdScale Numeric range for random scaling.

plotting Logical, enables visualization of samples (default is FALSE).

Value

List of random ETReps.

tube_A

Examples

```
# Load tube
data("colon3D")
#Set Parameters
sd_v<-sd_psi<-1e-03
sd_x<-sd_a<-sd_b<-1e-04
numberOfSimulation<-3</pre>
random_Tubes<-
  simulate_etube(referenceTube = colon3D,
                 numberOfSimulation = numberOfSimulation,
                 sd_v = sd_v,
                 sd_psi = sd_psi,
                 sd_x = sd_x,
                 sd_a = sd_a,
                 sd_b = sd_b,
                 rangeSdScale = c(1, 2),
                 plotting = FALSE)
# Plotting
rgl::open3d()
for (i in 1:numberOfSimulation) {
  plot_Elliptical_Tube(tube = random_Tubes[[i]],
                       plot_frames = FALSE,
                       plot_skeletal_sheet = FALSE,
                       plot_r_project = FALSE,
                       plot_r_max = FALSE,
                       add = TRUE)
}
```

tube_A

Data

Description

A tube with 204 elliptical cross-sections.

Usage

tube_A

Format

A list containing the information of an e-tube with 204 elliptical cross-sections

Source

Generated and stored in the package's 'data/' folder.

14 tube_B

tube_B Data

Description

A tube with 204 elliptical cross-sections.

Usage

tube_B

Format

A list containing the information of an e-tube with 204 elliptical cross-sections

Source

Generated and stored in the package's 'data/' folder.

Index

```
* datasets
    colon3D, 3
    \verb|simulatedColons|, 11|
    tube_A, 13
    tube_B, 14
check_Tube_Legality, 2
colon3D, 3
create_Elliptical_Tube, 3
intrinsic_Distance_Between2tubes, 5
intrinsic_mean_tube, 5
intrinsic\_Transformation\_Elliptical\_Tubes,
        6
nonIntrinsic_Distance_Between2tubes, 7
nonIntrinsic_mean_tube, 8
nonIntrinsic\_Transformation\_Elliptical\_Tubes,
plot_Elliptical_Tube, 10
simulate_etube, 12
simulatedColons, 11
tube_A, 13
tube_B, 14
```