ตัวอย่างการแสดงผล ADC1_CH10 0x000001F5 Vin = 0.40 V
ค่าที่น้อยที่สุดที่แปลงได้ คือ ADC1_CH13 0x00000000 Vin = 0.00 V
ค่าที่มากที่สุดที่แปลงได้ คือ ADC1_CH13 0x00000FFF Vin = 3.30 V
ทำไมค่าที่แปลงได้สูงสุดจึงไม่ใช่ 0xFFFFFFFF

โมคูล ADC1 แปลงสัญญาณแอนะล็อกเปนสัญญาณคิจิตอลควยวิธี Successive Approximation โดยมีความละเอียคในการแปลงสูงสุด 12 บิตหรือ 3 ไบต์ จึงได้คาสูงสุดแค่ 0x00000FFF

4. การลดการแกว่งของค่าที่แปลงจากโมดูล ADC ด้วยวิธีหาค่าเฉลี่ย

จงเขียนโปรแกรมลดการแกว่งของค่าที่แปลงจากโมดูล ADC ด้วยวิธีหาค่าเฉลี่ย โดยใช้ฟังก์ชัน average_8 และ average_16 ดังรูปที่ 6.3 โดยให้สร้างตัวแปรโกลบอล adc_avg_8 และ adc_avg_16 ขึ้นมาเพื่อเก็บผลลัพธ์ของ ฟังก์ชันทั้งสอง โดยตอนส่งการทดลองให้แสดงกราฟเปรียบเทียบค่าที่อ่านได้จากโมดูล ADC และค่าเฉลี่ยทั้งสองในโปรแกรม STM32CubeMonitor ดังรูปที่ 6.2

5. การแสดงผลที่ได้จากโมดูล ADC เป็นช่วงๆ ด้วย LED

จงเขียนโปรแกรมเพื่อแสดงระดับของสัญญาณที่ได้จาก ADC ออกทาง LED จำนวน 4 ดวงที่ต่อเพิ่มจากบอร์ดทดลอง กำหนดให้ต่อ LED ที่ขา GPIO ใดก็ได้ โดยให้แบ่งระดับสัญญาณที่เป็นไปได้ออกเป็น 5 ระดับ เมื่อสัญญาณอยู่ระดับใดก็ให้ LED ติดดังตารางที่ 7.1 และให้ส่งค่าที่แปลงได้ออกทางพอร์ต UART ดังเช่นในการทดลองข้อ 3

ตารางที่ 7.1 แสดงระดับสัญญาณและและการติดสว่างของ LED

ระดับ	ผล		
1	ไม่มี LED ติด		
2	LED0 ติด		
3	LED0 LED1 ติด		
4	LED0 LED1 LED2 ติด		
5	LED0 LED1 LED2 LED3 ติด		

บันทึกผล

ระดับ	ช่วงของผลการแปลงจาก ADC
1	0x00000000 - 0x00000333 หรือ 0 - 819
2	0x00000334 - 0x00000666 หรือ 820 - 1638
3	0x00000667 - 0x00000999 หรือ 1639 - 2457
4	0x0000099A - 0x00000CCC หรือ 2458 - 3276
5	0x00000CCD - 0x00000FFF หรือ 3277 - 4095

6. การใช้งาน ADC ร่วมกับ DMA เพื่อแปลงหลายช่องสัญญาณ (Multichannel ADC with DMA)

จงใช้ตัวต้านทานปรับค่าได้จำนวน 2 ตัว <u>ให้ตัวต้านทานแต่ละตัวต่อเข้ากับ ADC1 จำนวน 4 ช่องสัญญาณ</u> พร้อม แสดงผลการแปลงออกทาง UART3 โดยกำหนดให้ใช้ DMA ในการถ่ายโอนข้อมูลจาก ADC เมื่อ DMA ทำการถ่ายโอน ครึ่งหนึ่งแล้วให้ LD2 ติดค้าง และเมื่อถ่ายโอนข้อมูลอีกครึ่งที่เหลือเสร็จให้ LD2 ดับ

สามารถเลือกใช้ขาไหนของ ADC1 ก็ได้ โดยให้หลีกเลี่ยงขาที่มีการต่อใช้งานและมีสถานะทางไฟฟ้าแล้ว (ขาสีน้ำเงิน) เช่น PA7 เป็นต้น สามารถปรับความถี่ในการแสดงผล ความถี่การทำงานของ ADC และระยะเวลาในการ sampling ข้อมูล ได้ตามสะดวก

สำหรับบอร์ด STM32F429Disc1 ใช้ UART1

ใบตรวจการทดลองที่ 5

Microcontroller Application and Development 2564

		วัน/เดือน/ปี	3/10/2021	กลุ่มที่	
1. รหัสเ	มักศึกษา <u> </u>	62010694	ชื่อ-นามสกุล	นายภากรณ์ ธนประชานนท์	
2. รหัสเ	นักศึกษา _		ชื่อ-นามสกุล		
3. รหัสนักศึกษา			ชื่อ-นามสกุล		
ลายเซ็น	ผู้ตรวจ	3277 - 4095			
การทดล	าองข้อ 3&	4 ผู้ตรวจ	วันที่ตรวจ	□ W □ W+1	
การทดล	าองข้อ 5 ผุ้	ุ์ตรวจ	_ วันที่ตรวจ 🗀] w □ w+1	
การทดล	าองข้อ 6 ผุ้	(์ตรวจ	_ วันที่ตรวจ 🗀] w □ w+1	
	ท้ายการท ด	สัญญาณ Analog ที่ ch	annel 1 ของ AE D-Disc1 ใช้บา PA	DC2 ต้องเชื่อมสัญญาณเข้ามาที่ขาใด (ระเ .1 จะได้ ADC2_IN1	
				u	
2. จาก	าการทดลอ	วงข้อ 5 หากเปลี่ยน Dat	a alignment เป็	น Left alignment จงหาช่วงของทั้ง 5 ร	ะดับที่ทำให้ผล
การ	ทำงานเหม็	วือนเดิม			
3.					
	ระดับ ช่วงของผลการแปลงจาก A		างจาก ADC	ช่วงของผลการแปลงจาก ADC	
		(จากการทดลองข้อ 5)		(กรณีตั้งค่าเป็น Left Alignment)	
	1	0x00000000 - 0x00000333 หรือ 0 - 819		0x00000000 - 0x00003330 หรือ 0 - 13104	
	2	0x00000334 - 0x00000666 หรือ 820 - 1638		0x00003340 - 0x00006660 หรือ 13120 - 26208	
	3	0x00000667 - 0x00000999) หรือ 1639 - 2457	0x00006670 - 0x00009990 หรือ 26224 - 39312	
	4	0x0000099A - 0x00000CC	C หรือ 2458 - 3276	0x000099A0 - 0x0000CCC0 หรือ 39328 - 52416	

0x00000CCD - 0x00000FFF หรือ 3277 - 4095 0x0000CCD0 - 0x0000FFF0 หรือ 52432 - 65520

5