

- Tramos horarios
- Generadores
 - + Generación máxima por tramo
 - + Generación actual por tramo
 - + Coste fijo por tramo
 - + Coste variable por tramo
 - + Número de tramos de descanso
 - + Renovable o fósil
- Consumidor
 - + Consumo por tramo

DESCRIPCIÓN DEL PROBLEMA

- Multiobjetivo
 - + Bajo coste desperdiciado
 - Toda la energía de más o menos se convierte en coste del generador más caro
 - + Alto uso de energías renovables
 - Uso efectivo, la desperdiciada no se tiene en cuenta

ALGORÍTMO GENÉTICO

- Codificación de los individuos
 - + Lista de porcentajes de generación por tramo horario
 - + Información del problema
- Pasos
 - + Selección
 - Ruleta
 - 50% por coste y 50% por uso de renovables
 - + Cruce
 - Un punto
 - Dos puntos
 - + Mutación
 - Un solo porcentaje
 - + Reemplazo
 - Eliminación de población antigua
 - Elitista equilibrado
- Reparación

ALGORÍTMO GENÉTICO

- Factor de selección
 - + Número de seleccionados frente a población total
- Factor de cruce
 - + Número de cruces
- Número máximo de individuos por población
- Número máximo de antigüedad generacional
- Probabilidad de mutación
- Parada
 - + Falta de mejora en múltiples iteraciones

ENFRIAMIENTO SIMULADO

- Misma codificación
- Vecinos
 - + Inversa de la probabilidad
 - + Apagado / encendido
 - + Aleatorio
- Parámetros
 - + Temperatura inicial
 - + Ratio de enfriamiento
 - + Individuo inicial
- Parada
 - + Baja temperatura

- Python
- Modelo
 - + Clase generador
 - Guarda parámetros
 - Funciones
 - + Reparaciones
 - + Mutaciones
 - + Cruce

IMPLEMENTACIÓN

- Modelo
 - + Clase individuo
 - Generadores y demandas
 - Función fitness
 - + Tupla (coste, generación renovable)
 - Función vecinos
 - + Clase población
 - Conjunto de individuos
 - Parámetros de control
 - Frontera de Pareto
 - Selección y remplazo
 - Función evolución

- Experimentación
 - + Clase runner
 - Seleccionar los parámetros escogidos
 - Guardar información de las iteraciones
 - + Visualizador
 - Guarda gráficos con los resultados
 - + Fitness / iteración
 - + Frontera Pareto
 - + Distribución del fitness

EVALUACIÓN – ALGORÍTMO GENÉTICO

EVALUACIÓN ALGORÍTMO GENÉTICO

- Rápida convergencia
 - + Coste baja más rápidamente
- Claro trade-off
- Naturaleza estocástica
- Resultados aceptables pero sub-optimos

EVALUACIÓN – ENFRIAMIENTO SIMULADO

EVALUACIÓN ENFRIAMIENTO SIMULADO

- Convergencia más lenta
- Rápida maximización de generación renovable
- Valores subóptimos
- Mayor equilibrio entre objetivos
- Baja dispersión en las iteraciones

CONCLUSIONES

- Convergencia rápida al inicio
- Trade-off equilibrado entre objetivos
- Algoritmo genético
 - + Más lento en ejecución
 - + Más rápido en convergencia
 - + Resultados equilibrados
 - + Poca diversidad de soluciones

- Enfriamiento simulado
 - + Rápida ejecución
 - + Lenta convergencia
 - + Resultados más variados
 - + Probablemente mejor
- No hay técnica única

