

Rajshahi University of Engineering & Technology Heaven's Light is Our Guide

Target Class Oriented Subspace Detection for Effective Hyperspectral Image Classification

Presented By

Md. Tanvir Ahmed

Roll: 123086

Supervised by

Dr. Md. Ali Hossain

Assistant Professor

Department of CSE

December 9, 2017

Outline

- **Remote Sensing**
- Hyperspectral Images
- Challenges of Hyperspectral Images
- Motivations and Objectives
- Proposed Method
- Dataset Description
- Feature Extraction
- Feature Selection
- Experimental Procedure
- Experimental Results
- Classification
- Conclusion
- Future Work
- References

Remote Sensing

❖ What is remote sensing?

- ❖ Acquisition of information about an object without making physical contact with the object
- Used in geography, land surveying, military, intelligence and planning

☐ Types:

- ☐ Passive Remote Sensing
- ☐ Active Remote Sensing

Remote Sensing (Con't)

Figure: Electromagnetic Spectrum

- ❖ Visible and infrared range of wavelengths represents only part of the story in remote sensing
- ❖ Can also image the earth in microwave range

Figure: Surveillance aircraft

Figure: Remote sensing satellite

Hyperspectral Images

Figure: 3D view of Hyperspectral data cube [5]

Figure: Technical characteristics of digital image data [2]

Challenges of Hyperspectral Images

- Curse of dimensionality
- **❖** High correlation among data
- ❖ All the feature are not equally important

Figure: Correlation among bands

Figure: Curse of dimensionality

Motivations and Objectives

- > Extract only relevant features and find an effective subspace
- ➤ Address curse of dimensionality
- ➤ Improve classification accuracy

Proposed Method

Target Class Oriented Subspace Detection (TCOSD)

Collaboration of feature mining through feature extraction and feature selection

***** Feature Extraction:

Principal Component Analysis (PCA)

***** Feature Selection:

Normalized Mutual Information (NMI)

& Classification:

Kernel Support Vector Machine (KSVM)

Dataset Description

❖ Dataset: AVIRIS 92AV3C

Spectral Resolution:

 $0.4 \mu \,\mathrm{m}$ - $2.5 \,\mu \,\mathrm{m}$

Spatial Resolution: 30m

*** Band:** 220

Classes:16

Data Set: Captured Date:

June 12, 1992 Indian Pine Test Site 3 Version 1.0

220 Band AVIRIS
Hyperspectral Image
Each band has 145 x 145
=21025 pixel

- 1. Alfalfa
- 2. Com-notill
- 3. Corn-min
- 4. Com
- 5. Grass/Pasture
- 6. Grass/Trees
- 7. Grass/pasture-mowed
- 8. Hay-windrowed
- 9. Oats
- 10. Soybeans-notill
- 11. Soybeans-min
- 12. Soybean-clean
- 13. Wheat
- 14. Woods
- 15. Bldg-Grass-Tree-Drives
- 16. Stone-steel towers

Feature Extraction

- Feature means unique measurable characteristics of an image/observed object (e.g., each band)
- Feature extraction means creating new features which have the essence of original features.
- Feature extraction helps to obtain relevant information from large dataset.

Principal Component Analysis(PCA)

- Perform orthogonal transformation
- Data are ordered based on high variance
- Dimensionality reduced by taking only first few components
- Classification accuracy Increased from the original set

Feature extraction using Principal Component Analysis(PCA)

- Principal Component Analysis (PCA) is a process of reduction input dimensionality.
 PC2 can be removed
- Transformed data is uncorrelated

Feature extraction using Principal Component Analysis(PCA)(Con't)

All the steps we need to perform Principal Component Analysis[1]:

- **Step 1:** Input the image
- **Step 2:** Subtract the mean
- **Step 3:** Calculate the covariance matrix
- Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix
- Step 5: Choose components and form a feature vector

FeatureVector = (eig1, eig2, eig3,..., eign)

• **Step 6:** Derive the new data set

FinalData = RowFeatureVector x RowDataAdjust

Original Band

Cumulative variance of Transformed data

After principal component analysis first 10 components have 99.65% variance of the total

Figure: Cumulative variance

Limitations of PCA

- ❖ PCA doesn't consider the class structure of input data and depends solely on the global variance. Assumes high variance means high information
- ❖ Here though PC 8 has high variance but it contains less information of image contents.
- ❖ On the other hand PC 9 has low variance but it contains more information of image contents.

PC 8

Feature Selection

Normalized Mutual Information

$$I(\mathbf{X}, \mathbf{Y}) = \sum_{y=1}^{L_1} \sum_{x=1}^{L_2} P(x, y) \log \frac{P(x, y)}{P(x)P(y)} \dots (1) \qquad \mathbf{Y} = \mathbf{E}^T \mathbf{X} \dots (5)$$

$$\hat{I}(\mathbf{X}, \mathbf{Y}) = \frac{I(\mathbf{X}, \mathbf{Y})}{\sqrt{I(\mathbf{X}, \mathbf{X})} \sqrt{I(\mathbf{Y}, \mathbf{Y})}} \dots (2) \qquad \hat{I}(\mathbf{Y}, \mathbf{C}) = \frac{I(\mathbf{Y}, \mathbf{C})}{\sqrt{I(\mathbf{Y}, \mathbf{Y})} \sqrt{I(\mathbf{C}, \mathbf{C})}} \dots (6)$$

$$\hat{I}(\mathbf{X}, \mathbf{C}) = \frac{I(\mathbf{X}, \mathbf{C})}{\sqrt{I(\mathbf{X}, \mathbf{X})} \sqrt{I(\mathbf{C}, \mathbf{C})}} \dots (3) \qquad \hat{R}(\mathbf{Y}_i, k) = \hat{I}(\mathbf{Y}_i, \mathbf{C}) - \frac{1}{k} \sum_{\mathbf{Y} = S_k} \hat{I}(\mathbf{Y}_i, \mathbf{Y}), \mathbf{Y}_i \notin S_k$$

$$\hat{R}(\mathbf{X}_{i},k) = \hat{\mathbf{I}}(\mathbf{X}_{i},\mathbf{C}) - \frac{1}{k} \sum_{\mathbf{X}=S_{k}} \hat{\mathbf{I}}(\mathbf{X}_{i},\mathbf{X}), \mathbf{X}_{i} \notin S_{k} \quad \dots \dots (4)$$

Normalized Mutual Information

Figure: NMI between Class labels and Original Image bands

Figure: NMI between Class labels and Principal Components

Method	Order of selected features
Org+NMI	Band: 27,1,167,3,139,14,2,8
PCA	PC: 1,2,3,4,5,6,7,8
PCA+NMI	PC: 1,4,3,5,9,6,2,15

Table: Selected Component of Standard Approaches Studied

Experimental Procedure

The algorithm of proposed TCOSD method is summarized as follows:

- **Step 1:** Perform PCA and extract features of the input data set.
- Step 2: Extract the training data and training label from the

PCA features.

- **Step 3:** Consider one class as target at a time, i.e, make a class as target and all other class as background.
- **Step 4:** Apply NMI between the training labels and the principal components.
- **Step 5:** Select the best principal component based on the high value of NMI. List the selected subset.
- **Step 6:** Apply the Eq. (7) for selecting multiple features based on NMI for the target class.
- **Step 7:** Apply the selected features to the KSVM classifier.
- **Step 8:** Repeat step 3 to 6 by making another class as target and the remaining as background.

Experimental Results

Target class	Order of selected features
Hay-windrowed	PC: 4,1,17,5,12,3,16,2
Soybean-notil	PC: 1,17,16,11,20,14,13,3
Woods	PC: 1,16,17,3,15,11,5,20
Wheat	PC: 6,19,17,3,12,16,11,5
Grass/trees	PC: 4,9,5,6,16,17,2,1
Soybean-min	PC: 1,17,16,3,5,12,11,9
Corn-min	PC: 1,17,16,5,11,3,20,19
Stone-steel	PC: 3,4,1,17,16,10,5,11
Alfalfa	PC: 4,17,15,20,3,16,6,12
Grass/Pasture	PC: 9,3,17,6,16,11,1,15
Corn-notill	PC: 1,17,2,16,11,18,20,19
Soybean-clean	PC: 1,15,17,3,16,20,12,11
Corn	PC: 1,19,17,16,18,8,11,3
Bldg-Grass	PC: 15,16,17,3,18,11,19,4

Table: Selected features for each target class with proposed method (TCOSD)

Classification

Kernel support vector machine (KSVM)[3] classifier is used to asses the performance of the proposed TCOSD method.

Steps of classification:

Step 1: Get train and test data

Step 2: Scale data set into 0 to 1

Step 3: Calculate best C and g (kernel width)for RBF kernel of SVM

10 fold cross validation was used

Step 4: Assess the test sample accuracy

 Radial basis function (RBF) kernel was used

Class name	Train	Test
Hay-windrowed	187	77
Soybean-notil	128	105
Woods	367	341
Wheat	54	78
Grass/trees	249	115
Soybean-min	253	115
Corn-min	253	115
Stone-steel	36	30
Alfalfa	24	24
Grass/Pasture	156	92
Corn-notill	172	60
Soybean-clean	96	78
Corn	30	15
Bldg-Grass	40	12
Total	1900	1179

Conclusion

- ❖ 14 classes are selected
- Selecting first 8 features for proposed TCOSD gives 96.57% accuracy

Data set	С	g
Org+NMI	10	2.85
PCA	19	2.40
PCA+NMI	16	0.7
TCOSD (Proposed)	5	0.75

Data set	Classification Result (First 8 features only)
Org+NMI	72.26%
PCA	89.90%
PCA+NMI	93.12%
TCOSD (Proposed)	96.57%

Figure: Comparison of classification result of Proposed TCOSD and standard approaches studied

Future Work

- * This method needs some further improvement to handle the complex class relationships where only a few feature may not capable to complete the task.
- ❖ Selection will be performed by introducing adaptive thresholding T.

Acknowledgement

Special thanks to
Professor Dr. David A. Landgrebe, Purdue University
For the dataset and MUltiSpec

References

- [1]L. I. Smith, "A tutorial on Principal Component Analysis", February 26,2002.
- [2]J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis 4th edition, Verlag: Springer 2006.
- [3] C. Hsu, C. Chang, and C. Lin, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan, "A Practical Guide to Support Vector Classication", Initial version: 2003, Last updated: May 19, 2016.
- [4]M. A. Hossain, X. Jia and M. Pickering, "Subspace detection using a mutual-information measure for hyperspectral image classification," IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 2, pp. 424-428, Feb. 2014.
- [5][Online]https://en.wikipedia.org/wiki/Hyperspectral_imaging

References

- [6] M. A. Hossain, X. Jia and M. Pickering, "Improved feature selection based on a mutual information measure for hyperspectral image classification," *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Munich, Germany, pp. 3058-3061, Jul. 2012.
- [7]M. A. Hossain, M. Pickering and X. Jia, "Unsupervised feature extraction based on a mutual information measure for hyperspectral image classification," *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Vancouver, Canada, pp. 1720-1723, Jul. 2011.

The End

Thank You