Automatic calibration of the NAM rainfall-runoff model using multiple objectives

NAM rainfall-runoff model

- Simulates the land phase of the hydrological cycle
- Lumped, conceptual type of model
- 9 model parameters (basic NAM)

Calibration objective

- Overall calibration objective: Selection of model parameters so that the model as closely as possible simulates the hydrological behaviour of the catchment
- Constrained by:
 - Data availability
 - Model structural errors
 - Data errors

Observed vs. simulated hydrograph

Definition of calibration objectives

- A good agreement between average simulated and recorded catchment runoff (good water balance)
- A good overall agreement of the shape of the hydrograph
- A good agreement of peak flows
- A good agreement for low flows
- ⇒ Calibration problem is multi-objective
- ⇒ Trade-off between different objectives

Formulation of multi-objective calibration problem

Optimisation problem

$$Min\{F_1(\theta), F_2(\theta), ..., F_p(\theta)\}$$
 , $\theta \in \Theta$

- Pareto optimal (non-dominated) set of solutions
 - (1) Parameter space divided into "good" (Pareto optimal) and "bad" solutions
 - (2) None of the "good" solutions can be said to "better" than any of the other "good" solutions

Pareto front

Aggregated objective function

Euclidian distance measure

$$F_{agg}(\theta) = \left[(F_1(\theta) + A_1)^2 + (F_2(\theta) + A_2)^2 + \dots + (F_p(\theta) + A_p)^2 \right]^{1/2}$$

- Estimation of entire Pareto front:
 Optimisation with different transformation constants
- Estimation of single optimum:
 - User defined transformation constants
 - Balanced measure

Example of output

Estimated Pareto front

Range of parameter values along the Pareto front

Range of simulated hydrographs along the Pareto front

Summary and conclusions

- Careful formulation of calibration objectives is important
- The calibration problem is in general multi-objective
 ⇒ numerical performance measure should reflect various
 objectives
- In general, no unique optimal set of parameter values exists
 - ⇒ multi-objective equivalence of parameter sets (Pareto optimal solutions)
 - ⇒ single solution according to priorities of the different objectives
- Choice of numerical optimisation algorithm less important

Specifications:

- Calibration parameters
- Range of parameters
- Objective functions
- Stopping criterion

Initial parameters

Calibrated parameters

