The Weil group

Enzo Giannotta

February 16, 2024

Contents

1	Introduction	1
2	2 Notation	2
3	Unramified extensions	2
4	Tamely ramified extensions	4
5	6 An example	5
6	The Weil group	6
A	A Hensel's Lemma	14
В	B The universal property of the projective limit	14
		nce mathematics is and the Devil exists not prove it.
		André Weil

1 Introduction

Given a local field F, we can consider a separable closure F^{sep} of F. We have already seen that the Galois group $\operatorname{Gal}(F^{\text{sep}}/F)$ is a profinite group with the krull topology; we call this group the **absolute Galois group** of F, and denote it by G_F . This group encapsulates the arithmetic information of F, so it is natural for us to study it. A very fruitful technique to study groups is studying its representations, i.e., studying group homomorphisms $G_F \to \operatorname{Aut}_F(V)$, where V is an F-vector space (not necessarily finite dimensional) and $\operatorname{Aut}_F(V)$ is its group of F-automorphisms; typically we take $F = \mathbb{C}$ and restrict ourselves to continuous representations, for example, when V has $\dim_{\mathbb{C}}(V) = 1$ we want $G_F \to \operatorname{Aut}_{\mathbb{C}}(V) \cong \mathbb{C}^\times$ to be continuous with the usual topology on \mathbb{C}^\times ; in this case the image is finite! In other words, we don't have many representations of G_F . This presents a problem, because having a richer availability of representations would help us understand better the group

 G_F ; a solution: constructing a subgroup \mathcal{W}_F of G_F , with a topology (different from the subspace topology!) such that it is a locally compact topological group with a neighbourhood basis for the identity made of compact open subgroups (this is called a **locally profinite group**); \mathcal{W}_F will be called the **Weil group** of F; being locally profinite means that we have "more" representations.

2 Notation

Let L/F be an algebraic field extension of a local non-archimedean field F^1 , such that if $|\cdot|_v$ is the absolute value of F, it can be extended uniquely by the absolute value $|\cdot|_w$ of L. In this context, let $\mathcal{O}_F = \{x \in F \mid |x|_v \leq 1\}$ the **valuation ring** of F; it has only one non zero prime ideal $\mathfrak{p}_F = \{x \in F \mid |x|_v < 1\}$, generated by one element \mathcal{O}_F (it is not unique, nor canonical), named a **uniformizer** of F. Similarly, we have for L the objects $\mathcal{O}_L, \mathfrak{p}_L$ and \mathcal{O}_L . We can form the **residual field** of F, and similarly of L, it is the quotient $\kappa_F = \mathcal{O}_F/\mathfrak{p}_F$. The inclusion $\mathcal{O}_F \subset \mathcal{O}_L$ induces an embedding $\kappa_F \subset \kappa_L$. Notice that κ_L/κ_F is algebraic because L/F is. By definition of local non-archimedean field, we have that κ_F is a finite field, say \mathbb{F}_q (in particular, F is perfect); the characteristic of κ_P is a prime P > 0, called the **residual characteristic** of F, therefore $\#\kappa_F = q = p^r$ for some $r \in \mathbb{N}$.

When $L = F^{\text{sep}}$, we have $\kappa_L = \overline{\kappa}_F$, i.e., the algebraic closure of κ_F .

3 Unramified extensions

Definition 3.1. A finite algebraic extension L/F is said to be **unramified**, if

$$[L:F] = [\kappa_L:\kappa_F].$$

When L/F is not necessarily finite, we will say that it is **unramified** if it is the union of finite unramified subextensions K/F of L.

Consider an automorphism $\sigma \in \operatorname{Gal}(L/F)$, then $\sigma : \mathcal{O}_L \to \sigma_L$ is well defined and $\sigma(\mathfrak{p}_L) = \mathfrak{p}_L$. Therefore, quotient by \mathfrak{p}_L induces a κ_F -automorphism $\overline{\sigma} : \kappa_L \to \kappa_L, \overline{\sigma}([x]) = [\sigma(x)]$ in $\operatorname{Gal}(\kappa_L/\kappa_F)$. In other words, we have an homomorphism:

$$\operatorname{Gal}(L/F) \longrightarrow \operatorname{Gal}(\kappa_L/\kappa_F)$$

 $\sigma \longmapsto \overline{\sigma}.$

In fact, it's not hard to see that it is surjective. In general, when L/F is not unramified, this map is not injective, however:

Observation 3.2. Let L/F be a finite unramified extension. Then $\sigma \mapsto \overline{\sigma}$ is an isomorphism between $\operatorname{Gal}(L/F)$ and $\operatorname{Gal}(\kappa_L/\kappa_F)$, because both groups have the same cardinality.

¹That is, F is a finite extension of the p-adic numbers \mathbb{Q}_p or a finite separable extension of the field of Laurent series $\mathbb{F}_q((t))$ with variable t and coefficients in the finite field with $q=p^r$ elements \mathbb{F}_q .

Proposition 3.3. Let L and K be to algebraic extensions of F. If L/F is unramified, then LK/K is too. If $L' \subset L$ is a subextension, then L'/F is unramified.

Moreover, if L/K and K/F are both algebraic and unramified, then L/F is algebraic and unramified.

Proof. Without loss of generality we may assume that L/F is finite. Then κ_L/κ_F is also finite, and because it is separable, there exists a primitive element $\beta=\overline{\alpha}\in\kappa_L$, with $\alpha\in\mathcal{O}_L$ and $\overline{\alpha}$ is its residual class, such that $\kappa_L=\kappa_F(\beta)=\kappa_F(\overline{\alpha})$. Let $f\in\mathcal{O}_F$ be the minimal polynomial of α over F and $\overline{f}(X)\in\kappa_F[X]$ its reduction $\operatorname{mod}\mathfrak{p}_F$. Because

$$\left[\kappa_L:\kappa_F
ight]\leqslant \deg \overline{f}=\deg f=\left[F(lpha):F
ight]\leqslant \left[L:F
ight]\stackrel{L/F ext{ is unramified}}{=}\left[\kappa_L:\kappa_F
ight],$$

we can conclude that each inequality is in fact an equality and that $L = F(\alpha)$ and \overline{f} is the minimal polynomial of $\overline{\alpha}$ over κ_F .

Thus, we have $LK = K(\alpha)$. So, in order to prove that $K(\alpha)/K$ is unramified, let $g \in \mathcal{O}_K$ be the minimal polynomial of α over K and $\overline{g} \in \kappa_K$ its reduction $\operatorname{mod} \mathfrak{p}_K$. \overline{g} must be irreducible over κ_K , if not, Hensel's Lemma A would imply that g is reducible over \mathcal{O}_K . We obtain:

$$\lceil \kappa_{K(\alpha)} : \kappa_K \rceil \leqslant \lceil K(\alpha) : K \rceil = \deg g = \deg \overline{g} = \lceil \kappa_K(\overline{\alpha}) : \kappa_K \rceil \leqslant \lceil \kappa_{K(\alpha)} : \kappa_K \rceil.$$

This implies $[K(\alpha):K] = [\kappa_{K(\alpha)}:\kappa_K]$, i.e., $K(\alpha)/K$ is unramified.

If K/F is a subextension of an unramified extension L/F, then it follows from what we have just proven that L/K is unramified, hence so is K/F by the formula for the degree.

Let L/K and K/F be two algebraic unramified extensions. Without loss of generality, we may assume that both are finite. Then L/F is unramified because degrees of field (and residue field) extensions are multiplicative.

Corollary 3.4. The composition of two unramified extensions is unramified.

Proof. Without loss of generality, it is enough to show that given to finite unramified extensions L/F and L'/F, then LL'/F is also unramified. Last proposition implies that LL'/L' is unramified. Also, L'/K is unramified, then again, by last proposition (last part), we have that LL'/F is unramified.

Definition 3.5. Let L/F be an algebraic extension. Then the composition of all unramified subextensions of L over F is again unramified, and it is the unique maximal unramified subextension of L over F, denoted by $L^{\mathrm{ur}} \subset L$.

In particular, when $L = F^{\text{sep}}$, we will write F^{ur} instead of L^{ur} ; we will simply call it the **maximal unramified extension** of F (in F^{sep}).

Proposition 3.6. Let L/F be an algebraic extension. Then

$$\kappa_L$$
ur = κ_L .

In particular, when $L = F^{\text{sep}}$, we have

$$\kappa_{F^{\mathrm{ur}}} = \kappa_{F^{\mathrm{sep}}} = \overline{\kappa}_{F}.$$

Proof. Let $\overline{\alpha} \in \kappa_L$ with $(\alpha \in \mathcal{O}_L)$, we have to show that $\overline{\alpha} \in \kappa_{L^{\mathrm{ur}}}$. Let $\overline{f} \in \kappa_F[X]$ be the minimal polynomial of $\overline{\alpha}$ in κ_F and $f \in \mathcal{O}_F[X]$ a monic polynomial such that $\overline{f} = f$ mod \mathfrak{p}_F . Then f(X) must be irreducible because \overline{f} is, and by Hensel's Lemma A, it has a root α in L such that $\overline{\alpha} \equiv \alpha \mod \mathfrak{p}_L$, i.e., $[F(\alpha) : F] = [\kappa_F(\overline{\alpha}) : \kappa_F]$. This means that $F(\alpha)/F$ is unramified, so that $F(\alpha) \subset L^{\mathrm{ur}}$, thus $\overline{\alpha}$ is in fact inside $\kappa_{F^{\mathrm{ur}}}$.

Observation 3.7. F^{ur} contains all the roots of unity of order m coprime to $p = \mathrm{Char}\kappa_F$ because the separable polynomial $X^m - 1$ splits completely over $\overline{\kappa}_F$, thus over F^{ur} thanks to Hensel's Lemma (see the Appendix A). Because κ_F is finite, the subextensions of F^{ur}/F are generated by this roots of unity because $\overline{\kappa_F}/\kappa_F$ is.

Conversely, if L/F is a finite unramified extension of degree $m\geqslant 1$ with $L\subset F^{\rm sep}$, then in the first paragraph in the proof of Proposition 3.3, we actually prove that $L=F(\alpha)$ for some $\alpha\in F$ such that its minimal polynomial f is the lift of the minimal polynomial \overline{f} of $\overline{\alpha}$, and $\kappa_L=\kappa_F(\overline{\alpha})$. Because κ_F is a finite field of order q, and κ_L/κ_F is a finite extension of degree [L:F]=m, $\overline{\alpha}$ is a primitive (q^m-1) -th root of unity, so is α .

In summary, there is a 1-1 correspondence between finite subextensions of F^{ur} over F of degree $m \geqslant 1$ and extensions of F generated by a primitive (q^m-1) -th root of unity, say ζ_{q^m-1} , more specifically: $F(\zeta_{q^m-1})$.

4 Tamely ramified extensions

Now we will weaken the definition of unramified extension and get analogous results as the previous section. The proofs can be found in Chapter II, Section 7 of [Neu13].

Definition 4.1. A finite algebraic extension L/F is said to be **tamely ramified**, if

$$p \nmid [L:L^{\mathrm{ur}}].$$

When L/F is not necessarily finite, we will say that it is **tamely ramified** if every finite subextension L'/L^{ur} has $p \nmid [L':L^{ur}]$.

Observation 4.2. Note that when L/F is finite, both definitions coincide with the usual ones related to the *ramification index* e(L/F) of F over L:

$$L/F$$
 is unramified \Leftrightarrow $e(L/F)=1$, L/F is tamely ramified \Leftrightarrow $p\nmid e(L/F)$.

Proposition 4.3. Every finite extension L/F is tamely ramified if and only if L/L^{ur} is generated by radicals:

$$L = L^{\mathrm{ur}}(\sqrt[m_1]{a_1}, \ldots, \sqrt[m_r]{a_r}) \quad with \ p
mid m_i.$$

Corollary 4.4. Let L and K be to algebraic extensions of F. If L/F is tamely ramified, then LK/K is too. If $L' \subset L$ is a subextension, then L'/F is tamely ramified.

Corollary 4.5. The composition of two tamely ramified extensions is tamely ramified.

Definition 4.6. Let L/F be an algebraic extension. Then the composition of all tamely ramified subextensions is again tamely ramified, and it is the unique maximal tamely ramified subextension of L over F, denoted by $L^{\text{tr}} \subset L$.

In particular, when $L = F^{\text{sep}}$, we will write F^{tr} instead of L^{tr} ; we will simply call it the **maximal tamely ramified extension** of F (in F^{sep}).

Proposition 4.7. Let L/F be an algebraic extension. Then

$$\kappa_{L^{\mathrm{tr}}} = \kappa_{\cdot}$$

In particular, when $L = F^{\text{sep}}$, we have $\kappa_{F^{\text{ur}}} = \overline{\kappa}_F$.

In summary, we have the following diagram:

5 An example

Example 5.1. If $F = \mathbb{Q}_p$ and $L = \mathbb{Q}_p(\zeta_n)$, where ζ_n is a primitive n-th root of unity such that $n = n'p^m, p \nmid n'$. Then $L^{\mathrm{ur}} = \mathbb{Q}_p(\zeta_{n'})$ and $L^{\mathrm{tr}} = L^{\mathrm{ur}}(\zeta_p)$. Moreover, $\mathbb{Q}_p^{\mathrm{ur}} = \mathbb{Q}_p(\zeta_n : p \nmid n)$, and $\mathbb{Q}_p^{\mathrm{tr}} = \mathbb{Q}_p^{\mathrm{ur}}(\sqrt[m]{p} : p \nmid m)$.

In order to give a detailed proof of the example, we will need some previous results:

Proposition 5.2. Let $L := F(\zeta)$, where ζ is a primitive n-th root of unity. Suppose $p \nmid n$. Then, the extension L/F is unramified of degree f, where f is the smallest natural number such that $q^f \equiv 1 \mod n$.

Proof. If $\phi(X)$ is the minimal polynomial of ζ over F, then the reduction $\overline{\phi}(X)$ is the minimal polynomial of $\overline{\zeta} = \zeta \mod \mathfrak{p}_L$ over κ_F . Indeed, being a divisor of $X^n - \overline{1}$, $\overline{\phi}$ is separable, and by Hensel's Lemma A cannot split into factors. Both ϕ and $\overline{\phi}$ have the same degree, so $[L:K] = [\kappa_F(\overline{\zeta}):\kappa] = [\kappa_L:\kappa_F] =: f$. Therefore, L/F is unramified. The polynomial $X^n - 1$ splits over \mathscr{O}_L and thus (because $p \nmid n$) over κ_L into distinct linear factors, so that $\kappa_F = \mathbb{F}_{q^f}$ contains the group μ_n of n-th roots of unity and is generated by it. Consequently, f is the smallest number such that $\mu_n \subset \mathbb{F}_{q^f}^{\times}$, i.e., such that $n \mid q^f - 1$.

Proposition 5.3. Let ζ be a primitive p^m -th root of unity. Then $\mathbb{Q}_p(\zeta)/\mathbb{Q}_p$ is totally ramified of degree $\varphi(p^m) := (p-1)p^{m-1}$.

Proof. Let $\xi = \zeta^{p^{m-1}}$, it is a primitive *p*-th root of unity, i.e.,

$$\xi^{p-1} + \xi^{p-2} + \dots + 1 = 0$$
,

hence,

$$\zeta^{(p-1)p^{m-1}} + \zeta^{(p-2)p^{m-1}} + \dots + 1 = 0.$$

Denote $\phi(X) := X^{(p-1)p^{m-1}} + X^{(p-2)p^{m-1}} + \cdots + 1$, then $\zeta - 1$ is a root of the equation $\phi(X+1) = 0$. But this is irreducible by Eisenstein criterion: $\phi(1) = p$ and

$$\phi(X) \equiv \frac{X^{p^m-1}}{X^{p^{m-1}}-1} = (X-1)^{p^{m-1}(p-1)} \mod p.$$

It follows that $[\mathbb{Q}_p(\zeta):\mathbb{Q}_p] = \varphi(p^m)$.

Now, let's prove the example:

Proof of the example. Let $F=\mathbb{Q}_p$ and $L=\mathbb{Q}_p(\zeta_n)$ with $n=n'p^m$ for some n' coprime with p. Let $K:=\mathbb{Q}_p(\zeta_{p^m})$, notice that because n' and p^m are coprime, then $L=K(\zeta_{n'})^2$, thus by Proposition 5.2, L/K is an unramified extension of degree f, where f is the smallest number such that $q_K^f\equiv 1 \mod n'$, where q_K is the cardinality of κ_K ; however, by Proposition 5.3, K/F is totally ramified, that means that $q_L=\#\kappa_L=\#\kappa_F=p$ (in fact, it means that $[\kappa_L:\kappa_F]=[L:K]=f$). In other words, f is the smallest number such that $p^f\equiv 1 \mod n'$. Again, by Proposition 5.2, $\mathbb{Q}_p(\zeta_{n'})/\mathbb{Q}_p$ is an unramified extension of degree f', where f' is the smallest natural number such that $p^f'\equiv 1 \mod n'$, i.e., f'=f. Finally, to see that $L^{\mathrm{ur}}=\mathbb{Q}_p(\zeta_{n'})$, it is enough to show that L^{ur}/F has the same index over F as $\mathbb{Q}_p(\zeta_{n'})$. Indeed, by Proposition 3.6, $[\kappa_{L^{\mathrm{ur}}}:\kappa_F]=[\kappa_L:\kappa_F]=f$, but L^{ur}/F is unramified, so $[\kappa_{L^{\mathrm{ur}}}:\kappa_L]=[L^{\mathrm{ur}}:F]$. This concludes that $\mathbb{Q}_p(\zeta_{n'})=L^{\mathrm{ur}}$.

By what we have already discussed and because last proposition says that $[K:L] = (p-1)p^{m-1}$, we have $[L:F] = f(p-1)p^{m-1}$.

Proposition 5.3, implies that $F(\zeta_p)$ is tamely ramified because it has degree p-1, which is coprime to p; therefore $L^{\mathrm{ur}}(\zeta_p) \subset L^{\mathrm{tr}}$. In order to see that there is in fact equality, notice that L^{tr}/F is tamely ramified, in particular $L^{\mathrm{tr}}/L^{\mathrm{ur}}(\zeta_p)$ too. It divides $[L:L^{\mathrm{ur}}(\zeta_p)]=p^{m-1}$. But tamely ramified extensions have degree prime to p (the characteristic of its residual field), so $[L^{\mathrm{tr}}:L^{\mathrm{ur}}(\zeta_p)]=1$, i.e. $L^{\mathrm{tr}}=L^{\mathrm{ur}}(\zeta_p)$.

The last assertion of the example is a particular case of Observation 3.7 and Proposition 4.3.

6 The Weil group

Again we introduce the profinite group with its Krull topology $G_F := \operatorname{Gal}(F^{\operatorname{sep}}/F)$ with F a local field; the sets $\operatorname{Gal}(F^{\operatorname{sep}}/E) \subset G_F$ with E/F finite and $E \subset F^{\operatorname{sep}}$ are open. Remember that it is the projective limit $\varprojlim_E \operatorname{Gal}(E/F)$ over the finite Galois extensions E/F with $E \subset F^{\operatorname{sep}}$.

²use Bezout's identity: $\alpha n' + \beta p^m = 1$ for some $\alpha, \beta \in \mathbb{Z}$.

Observation 6.1. Because $F^{\mathrm{ur}} = \lim_{E \longrightarrow E} E/F$ is the direct limit of the finite unramified extensions E/F with $E \subset F^{\mathrm{sep}}$ and taking Galois groups is a contra-variant functor, one can check that

$$\operatorname{Gal}(F^{\mathrm{ur}}/F) = \varprojlim_{E \text{ unramified }/F} \operatorname{Gal}(E/F).$$

Proof. Indeed, consider $H = \operatorname{Gal}(F^{\operatorname{ur}}/F)$ as a topological group with its Krull topology; we have homomorphisms $\psi_E : H \to \operatorname{Gal}(E/F), \sigma \mapsto \sigma|_E$ indexed by the preordered (in fact directed) set of unramified finite extensions of F inside F^{sep} , ordered by inclusion; more over, they are continuous $(\operatorname{Gal}(E/F))$ has the discrete topology): let $\tau \in \operatorname{Gal}(E/F)$ be extended to $\widetilde{\tau} \in \operatorname{Gal}(F^{\operatorname{ur}}/F)$, then $\psi_E^{-1}(\tau) = \widetilde{\tau} \operatorname{Gal}(F^{\operatorname{ur}}/E)$, which is a basic open of the Krull topology.

Let $T_E := \operatorname{Gal}(E/F)$, we form the projective system $(T_E, \varphi_{E \subset E'})$, with the restriction maps $\varphi_{E \subset E'} : \operatorname{Gal}(E'/F) \to \operatorname{Gal}(E/F)$, $\sigma \mapsto \sigma\big|_E$. Obviously (H, ψ_E) is compatible with the projective system $(T_E, \varphi_{E \subset E'})$, i.e., the next diagram commutes:

$$T_{E'} \stackrel{\psi_E'}{\stackrel{\psi_E}{\longrightarrow}} T_E$$

Therefore, by the Universal property of the projective limit B, there is a unique map $\psi: H \to \varprojlim_{E/F \text{ finite unramified}} T_E$ such that for each E/F finite unramified, the diagram

also commutes. Being p_E the projection to the E-th coordinate in the Cartesian product $\prod_{E/F \text{ finite unramified}} \operatorname{Gal}(E/F) \supset \varprojlim_{E/F} T_E$, the last diagram says that

$$(\psi(\sigma))_E = \sigma \big|_E, \quad \forall \sigma \in H = \operatorname{Gal}(F^{\operatorname{ur}}/F).$$

Also, it is guaranteed that $\psi: E \to \varprojlim_E T_E$ is continuous (see the last part of the Appendix B).

Now we show that ψ is a bijection:

Injectivity: Suppose $\sigma \in H$ is in $\operatorname{Ker} \psi$, then for any $x \in F^{\operatorname{ur}}$, we have that there is a finite unramified extension E such that $x \in E$, because F^{ur} is unramified and by the definition of unramified extension. Then

$$\sigma(x)=(\sigma\big|_E)(x)=(\psi(\sigma))_E(x)=(p_E(\psi(\sigma)))(x)=x,$$

because $\psi(\sigma)$ is the identity element in $\varprojlim_E T_E$. Because x was arbitrary, this proves that σ is the identity element in $H = \operatorname{Gal}(F^{\operatorname{ur}}/F)$, therefore ψ is injective.

Surjectivity: ψ is a continuous and H is compact (it is a profinite group), so the image of ψ is compact, then is closed because $\varprojlim_E T_E$ is Hausdorff (it is also a profinite group by definition). Therefore, it is enough show that the image of ψ is dense to show surjectivity. Indeed, the basic opens in the product topology are of the form

$$\prod_{E \in S} \{\sigma_E\} \times \prod_{E \notin S} T_E,$$

where S is a finite set of finite unramified extensions E/F; because the set of indices are directed by the inclusion, we may assume that S contains a maximal element E' such that $E \subset E'$ is an unramified extension of F if and only if $E \in S$. Therefore, the basic opens of $\varprojlim_F T_E$ are of the form

$$U_{E'} := \left(\prod_{E \subset E'} \{ auig|_E\} imes \prod_{E \mathrel{
optimizer} E} T_E
ight) \cap arprojlim_E T_E,$$

where E' is some finite unramified extension of F and $\tau \in \operatorname{Gal}(E'/F)$. Now, clearly any extension $\widetilde{\tau}$ to F^{ur} of τ satisfies that $\psi(\widetilde{\tau}) \in U_{E'}$, i.e., the image of ψ intersects the basic open $U_{E'}$. This proves that the image of ψ is dense, therefore ψ is surjective.

Finally, ψ is a closed map because it is continuous with domain a compact space and codomain a Hausdorff space. This show that the bijective continuous map ψ is in fact an homeomorphism.

Because the finite unramified extensions E/F are in 1-1 correspondence with finite extensions over κ_F of degree $m \ge 1$, which we know have cyclic Galois group canonically generated by the *Frobenius automorphism* $x \mapsto x^q$ with $q = \#\kappa_F$, we can see that

$$\operatorname{Gal}(F^{\operatorname{ur}}/F) \cong \varprojlim_{m} \mathbb{Z}/m\mathbb{Z} = \widehat{\mathbb{Z}}.$$

(Remember that the profinite topological group $\widehat{\mathbb{Z}}$ is the **profinite integers**).

In particular, there exists a unique element $\Phi_F \in \operatorname{Gal}(F^{\mathrm{ur}}/F)$ which coincides with the inverse of the Frobenius automorphism in each $\operatorname{Gal}(E/F)$. We will call it *the* **geometric Frobenius**.³ More explicitly, for any finite unramified extension E/F we have

$$\Phi_F^{-1}(x) \equiv x^q \mod \mathfrak{p}_E, \quad \forall x \in \mathscr{O}_E, \tag{1}$$

where $q = \#\kappa_F$, equivalently,

$$\Phi_F(x) \equiv x^{q^{f-1}} \mod \mathfrak{p}_E, \quad \forall x \in \mathscr{O}_E,$$

where f = [E : F] = #Gal(E/F).

Definition 6.2. Lets take the restriction map

$$U: G_F = \operatorname{Gal}(F^{\operatorname{sep}}/F) \longrightarrow \operatorname{Gal}(F^{\operatorname{ur}}/F) \ \sigma \longmapsto \sigma ig|_{F^{\operatorname{ur}}}.$$

Then, we say that $\varphi \in G_F$ is a **geometric Frobenius element** (over F), if $U(\varphi) = \Phi_F$.

³We could have chosen Φ_F as the unique element which coincides with the Frobenius automorphism in each Gal(E/F), however, we will take the convention of using the geometric Frobenius.

WARNING 6.3. φ is not unique! In fact, if we fix a choice φ_0 of geometric Frobenius element, then all the other geometric elements are of the form $\mathscr{I}_F \cdot \varphi_0$, where $\mathscr{I}_F := \operatorname{Gal}(F^{\operatorname{sep}}/F^{\operatorname{ur}})$ is the **inertia group** of F.

Notice that the inertia group \mathscr{I}_F is a closed subgroup of G_F , thus it is a profinite group with the subspace topology (which is the Krull topology).

Proposition 6.4. For each $t \ge 1, p \nmid t$, F^{ur} has a unique finite extension E_t/F^{ur} of degree t. It is of the form

$$E_t = F^{\mathrm{ur}}(\sqrt[t]{\omega_F}).$$

Moreover,

$$\operatorname{Gal}(E_t/F^{\operatorname{ur}}) \longrightarrow \mu_t(F^{\operatorname{ur}}) \ \sigma \longmapsto rac{\sigma(\sqrt[t]{\overline{\omega}_F})}{\sqrt[t]{\overline{\omega}_F}}$$

is a canonical isomorphism.⁴

Proof. If $E = F(\sqrt[t]{\omega_F})$ then $\bar{\omega} := \sqrt[t]{\omega_F}$ has minimal polynomial $X^t - \bar{\omega}_F$, which is an Eisenstein polynomial, thus irreducible, so E/F is a finite extension of degree t.

Conversely, suppose E/F^{ur} is a finite extension of degree t coprime to p. By Proposition 3.6, $t=[E:F^{\mathrm{ur}}]=[\kappa_E,\kappa_{F^{\mathrm{ur}}}]$, so E/F^{ur} is *totally ramified*, this means that $t=e(E/F^{\mathrm{ur}})$, i.e., $u\varpi_F=\varpi_E^t$ for some unit $u\in \mathscr{O}_E^\times$ (ϖ_F is an uniformizer of F^{ur} because F^{ur}/F is unramified).

Now consider $f(X)=X^t-u\in \mathcal{O}_E[X]$, because $\overline{f}\in \kappa_E[X]$ is separable $(p\nmid t)$ and $\kappa_E=\kappa_{F^{\mathrm{ur}}}=\overline{\kappa}_F$ (Proposition 3.6) \overline{f} has a root in κ_E , Hensel's Lemma A implies that there is a root r of f in \mathcal{O}_E . Let $\varpi=\varpi_E/r$. Then $|\varpi|_E=1$, so it is an uniformizer of E and $L=F^{\mathrm{ur}}(\varpi)$; also, $\varpi^t=\varpi_E^t/r^t=\varpi_E^t/u=\varpi_F$, i.e., $L=F^{\mathrm{ur}}(\sqrt[t]{\varpi_F})$ as desired.

To see that $\sigma \mapsto \frac{\sigma(\sqrt[t]{\varpi_F})}{\sqrt[t]{\varpi_F}}$ is an isomorphism, notice that the right side is a group of cardinality $t = [E_t : F^{\mathrm{ur}}] = \#\mathrm{Gal}(E_t/F^{\mathrm{ur}})$ because $X^t - 1$ has all its roots in F^{ur} : indeed, the polynomial $X^t - \overline{1}$ is separable and has all of its roots in $\overline{\kappa}_F = \kappa_{F^{\mathrm{ur}}}$ which can be lifted by Hensel's Lemma A to roots in F^{ur} . Therefore it is enough to show that this morphism is injective, which is immediate by what we have just already proven: E_t is generated by $\sqrt[t]{\varpi_F}$ over F^{ur} . Finally, notice that the morphism is well defined: $\frac{\sigma(\sqrt[t]{\varpi_F})}{\sqrt[t]{\varpi_F}}$ is a root of $X^t - 1$.

Observation 6.5. Because $F^{\mathrm{tr}} = \lim_{E \longrightarrow E} / F^{\mathrm{ur}}$ is the direct limit of the finite extensions E/F^{ur} with degree coprime to p and $E \subset F^{\mathrm{sep}}$, then taking Galois, one can easily check that

$$\operatorname{Gal}(F^{\operatorname{tr}}/F^{\operatorname{ur}}) = \varprojlim_{t \text{ coprime to } p} \operatorname{Gal}(E_t/F^{\operatorname{ur}}) \cong \varprojlim_{p \nmid t} \mu_t(F^{\operatorname{ur}}),$$

in virtue of the previous proposition. More over, this implies

$$\operatorname{Gal}(F^{\operatorname{tr}}/F^{\operatorname{ur}}) \cong \varprojlim_{\ell \neq p} \mathbb{Z}_{\ell},$$

where \mathbb{Z}_{ℓ} are the ℓ -adic integers.

⁴In general, $\mu_t(K)$ denotes the multiplicative group of t-th roots of unity in field K. If p denotes the characteristic of K, when $p \nmid t$ and K contains all the roots of $X^t - 1$, then $\mu_t(K) \cong \mathbb{Z}/t\mathbb{Z}$. This happens in our case $K = F^{\mathrm{ur}}$).

Proof. The proof is completely analogous to that of Observation 6.1.

Definition 6.6. We write $\mathscr{P}_F := \operatorname{Gal}(F^{\operatorname{sep}}/F^{\operatorname{tr}})$ for the **wild inertia group** of F. Notice that unramified extensions are tamely ramified, thus $F^{\operatorname{ur}} \subset F^{\operatorname{tr}}$, and then $\mathscr{P}_F \subset \mathscr{I}_F$.

Notice that the wild inertia group \mathscr{P}_F of F is a closed subgroup of G_F , thus it is a profinite group with the subspace topology (which is the krull topology).

Proposition 6.7. The group \mathcal{P}_F is a pro-p-group.

Proof. Indeed, \mathcal{P}_F is a projective limit of finite *p*-groups:

$$\mathscr{P}_F = \varprojlim_{p
mid t} \mathrm{Gal}(E_t/F^{\mathrm{ur}}),$$

and Proposition 6.4 says that $\operatorname{Gal}(E_t/F^{\mathrm{ur}}) \cong \mu_t(F^{\mathrm{ur}}) \cong \mathbb{Z}/t\mathbb{Z}$. Therefore \mathscr{P}_F is a pro-p-group by definition (see [RV98]).

Proposition 6.8. \mathscr{P}_F is the unique p-Sylow subgroup of \mathscr{I}_F .

Proof. In order to see that \mathscr{P}_F is the unique p-Sylow subgroup of \mathscr{I}_F , it is enough to show that $\mathscr{P}_F \lhd \mathscr{I}_F$ and that $[\mathscr{I}_F : \mathscr{P}_F]$ is coprime with p as a supernatural number. Indeed, \mathscr{P}_F is normal in G_F because F^{tr}/F is Galois, and $[\mathscr{I}_F : \mathscr{P}_F]$ is coprime with p because $\mathscr{I}_F/\mathscr{P}_F$ is the projective limit $\varprojlim_{\ell \neq p} \mathbb{Z}_\ell$ of pro- ℓ -groups with $\ell \neq p$.

Definition 6.9. The **Weil group** \mathcal{W}_F , at least algebraically, is the subgroup of G_F defined as the inverse image of $U^{-1}(\langle \Phi_F \rangle)$. In other words,

$$W_F = \mathscr{I}_F \cdot \langle \varphi \rangle$$
,

where φ is a Frobenius element (notice that W_F doesn't depend on the choice of φ).

Observe that W_F is the semi-direct product of \mathscr{I}_F and $\langle \varphi \rangle$: \mathscr{I}_F is normal because is the kernel of the map U, and $\mathscr{I}_F \cap \langle \varphi \rangle = \{1\}$. In particular every element $\sigma \in W_F$ can be uniquely written as $\sigma = i\varphi^n$ for some $i \in \mathscr{I}_F$ and $n \in \mathbb{Z}$.

Proposition 6.10. The Weil group has the following properties:

- 1. W_F is dense in G_F .
- 2. $W_F \lhd G_F$.
- 3. Because W_F is a group, to define a topology in W_F , it is enough to define a neighbourhood basis for the identity of W_F : these open sets will be those of \mathscr{I}_F in its subspace topology respect to G_F .

Whats more, this topology makes W_F a locally profinite group, and the inclusion $\iota_F: W_F \hookrightarrow G_F$ is continuous.

4. We have a continuous homomorphism

$$||\cdot||_F : \mathscr{W}_F \longrightarrow \mathbb{Q}^{\times} \subset \mathbb{R}^{\times}$$

$$\sigma \longmapsto ||\sigma||_F := q^{-v_F(\sigma)},$$

where $v_F(\sigma)$ denotes the integer n such that $U(\sigma) = \Phi_F^n$.

Proof. In what follows, we will identify $\widehat{\mathbb{Z}}$ with $\operatorname{Gal}(F^{\mathrm{ur}}/F)$ and \mathbb{Z} with \mathcal{W}_F via U.

- (a) Let $\sigma \in G_F$. Then $U(\sigma) \in \mathbb{Z}$ has an element of \mathbb{Z} arbitrarily near because $\mathbb{Z} \subset \mathbb{Z}$ is dense. By basic properties of the Krull topology, to show that \mathcal{W}_F is dense in G_F , it is enough to show that there is an element of \mathcal{W}_F inside $\sigma \operatorname{Gal}(F^{\operatorname{sep}}/E)$ for any finite Galois extension E/F. But $U(\operatorname{Gal}(F^{\operatorname{sep}}/E)) = \operatorname{Gal}(F^{\operatorname{ur}}/E \cap F^{\operatorname{ur}}) = \operatorname{Gal}(F^{\operatorname{ur}}/E^{\operatorname{ur}})$; this last group is open in the Krull topology because E^{ur}/F is a finite extension, thus it contains an element of \mathbb{Z} . Taking preimage, we see that $\sigma \operatorname{Gal}(F^{\operatorname{sep}}/E)$ contains an element of \mathcal{W}_F . This proves the first assertion.
- (b) Obvious: $\mathcal{W}_F = U^{-1}(\mathbb{Z})$ and \mathbb{Z} is normal in $\widehat{\mathbb{Z}}$.
- (c) Notice that around each element $x = i\varphi^n \in W_F$ with $i \in \mathscr{I}_F$ a neighbourhood basis for x is $\{U \cdot \varphi^n\}_U$ with U ranging over the open sets around i in the subspace topology of \mathscr{I}_F .

First, it is a topological group because the map

$$W_F \times W_F \longrightarrow W_F$$
$$(x, y) \longmapsto xy^{-1}$$

is continuous, indeed, if $x = i\varphi^n$ with $i \in \mathcal{I}_F$ and $y = j\varphi^m$ with $j \in \mathcal{I}_F$ and

$$xy^{-1} = i\varphi^n\varphi^{-m}j^{-1} = i\varphi^{n-m}j^{-1} = i(\varphi^{n-m}j^{-1}\varphi^{m-n})\varphi^{n-m},$$

then it is enough to check that there are open subsets of \mathscr{I}_F , say U and V, such that $(U\varphi^n)\cdot (V\varphi^m)\subset W\cdot \varphi^{n-m}$ for any $W\ni i(\varphi^{n-m}j^{-1}\varphi^{m-n})$ open subset of \mathscr{I}_F . Indeed, we can find such U and V because the map

$$\begin{aligned} \mathscr{I}_F \times \mathscr{I}_F &\longrightarrow \mathscr{I}_F \\ (i,j) &\longmapsto i \varphi^{n-m} j^{-1} \varphi^{m-n} \end{aligned}$$

is continuous for any $n, m \in \mathbb{Z}$ fixed.

It is locally compact because any $x=i\varphi^n\in \mathcal{W}_F$ is in the open compact neighbourhood $\mathscr{I}_F\varphi^n$: the topology that we gave \mathscr{W}_F was so that \mathscr{I}_F is a topological subspace, and \mathscr{I}_F has the induced topology of the profinite group G_F , thus \mathscr{I}_F is also compact because it is closed in G_F ; by construction of \mathscr{W}_F , \mathscr{I}_F is open. What is more, a basis of open subgroups of \mathscr{I}_F form a neighbourhood basis of the identity in \mathscr{W}_F ; open subgroups in topological groups are closed, therefore these open subgroups are compact in the subspace topology of \mathscr{I}_F , because \mathscr{I}_F is. This proves that \mathscr{W}_F is locally profinite.

Notice that the map $v_F : W_F \to \mathbb{Z}, i\phi^n \mapsto n$ is continuous with the discrete topology of \mathbb{Z} . Also, if we identify $\widehat{\mathbb{Z}}$ with $\operatorname{Gal}(F^{\operatorname{ur}}/F)$, we have that the subspace

topology of $\mathbb Z$ in $\widehat{\mathbb Z}$ is the discrete topology. Finally, to see that $\iota_F: \mathscr W_F \hookrightarrow G_F$ is continuous, let $\sigma\operatorname{Gal}(F^{\operatorname{sep}}/E)$ be a basic open set in G_F with E/F finite Galois extension, then $U(\sigma\operatorname{Gal}(F^{\operatorname{sep}}/E)) = \sigma\big|_{F^{\operatorname{ur}}}\operatorname{Gal}(F^{\operatorname{ur}}/E^{\operatorname{ur}})$ is open in $\operatorname{Gal}(F^{\operatorname{ur}}/F)$, thus identifying it with $\widehat{\mathbb Z}$, we have that $\mathscr W_F \cap \iota_F^{-1}(\sigma\operatorname{Gal}(F^{\operatorname{sep}}/E))$ corresponds via the continuous map $\mathscr W_F \to \mathbb Z$ with the preimage of $\sigma\big|_{F^{\operatorname{ur}}}\operatorname{Gal}(F^{\operatorname{ur}}/E^{\operatorname{ur}}) \cap \mathbb Z$, therefore it is open.

(d) In the last paragraph we have seen that $v_F : \mathcal{W}_F \to \mathbb{Z}$ is continuous (\mathbb{Z} has the discrete topology). The map $\mathbb{Z} \to \mathbb{R}^\times, n \mapsto q^{-n}$ is again continuous, therefore the composition $||\cdot||_F : \sigma \mapsto q^{-v_F(\sigma)}$ is continuous.

Remark 6.11.

- 1. W_F doesn't have the subspace topology in G_F , indeed, if so \mathscr{I}_F would be open in G_F , thus of finite index (G_F is compact), however, it is not the case: U has infinite image.
- 2. \mathscr{I}_F is a maximal compact subgroup of \mathscr{W}_F , indeed, $\mathscr{W}_F/\mathscr{I}_F$ is isomorphic to \mathbb{Z} as a discrete topological group (by last paragraph of item (c) the homeomorphism is induced by $v_F:\mathscr{W}_F\to\mathbb{Z}$), so if there was a compact subgroup $W\subset\mathscr{W}_F$ such that $W\supsetneq\mathscr{I}_F$, then it would be mapped to a nontrivial compact subgroup of \mathbb{Z} , thus finite because \mathbb{Z} is discrete, but \mathbb{Z} doesn't have non trivial finite subgroups.

Proposition 6.12. Let E/F be a finite extension with $E \subset F^{\text{sep}}$. Then $G_E \hookrightarrow G_F$ induces a homeomorphism

$$\mathscr{W}_E \stackrel{\sim}{\longrightarrow} W_F \cap G_E =: \mathscr{W}_F^E.$$

whats more, W_F^E is an open subgroup of finite index in W_F , and it is normal if and only if E/F is Galois; when this happens, $W_F/W_F^E \cong G_F/G_E \cong \operatorname{Gal}(E/F)$. Conversely, if W is a open subgroup of finite index of W_F , then $W = W_F^E$ for some finite extension E/F with $E \subset F^{\operatorname{sep}}$.

Proof. Obviously it is a bijection.

Now, let f = f(E/F) be the residual degree of E over F. We have that $f = [\kappa_E : \kappa_F]$, thus Frobenius elements in G_E correspond with f-powers of Frobenius elements in G_F . Therefore, we can see that basic open sets from both sides correspond to open sets in the other side. This proves that is a homeomorphism.

The map of homogeneous spaces $\mathcal{W}_F/\mathcal{W}_F^E \to G_F/G_E$ induced by taking quotients is injective, and by density of the Weil group it is surjective, so it is a bijection. The fact that \mathcal{W}_F^E is open in \mathcal{W}_F comes from the continuity of ι_F , and that it has finite index is due to the beginning of this paragraph: $[\mathcal{W}_F:\mathcal{W}_F^E] = [G_F:G_E] = [E:F] < +\infty$. If E/F is Galois, $G_E \lhd G_F$, then $\mathcal{W}_F^E \lhd \mathcal{W}_F$. Conversely, is $\mathcal{W}_F^E \lhd \mathcal{W}_F$ then $G_E \lhd G_F$ by density, i.e., E/F is Galois.

Let $W \subset \mathcal{W}_F$ be an open subgroup of finite index. Let $I = \mathscr{I}_F \cap W$; it is an open subgroup (therefore also closed) of \mathscr{I}_F , then by compactness of \mathscr{I}_F , we have that I has finite index t in \mathscr{I}_F . Because $\mathscr{I}_F = \operatorname{Gal}(F^{\operatorname{sep}}/F^{\operatorname{ur}})$, Galois correspondence

implies that there exists a finite extension E of F^{ur} , such that $I = \mathrm{Gal}(F^{\mathrm{sep}}/E)$. Let $\varphi_F \in \mathrm{Gal}(F^{\mathrm{ur}}/F)$ be the geometric Frobenius, write $E = F^{\mathrm{ur}}(\alpha)$ for some primitive element $\alpha \in E$, we can extend φ_F as the identity on α , and then extend it again as an element of $\mathrm{Gal}(F^{\mathrm{sep}}/F)$; by construction, it will be a geometric Frobenius element $\varphi \in G_F$, such that $\varphi(\alpha) = \alpha$.

Now, because W has finite index in \mathscr{W}_F , there is an integers $r\geqslant 1$, such that $\varphi\in W$. Let n be the minimum integer such that $i\varphi^n\in W$, for some $i\in\mathscr{F}_F$. We affirm that $W=I\cdot\langle\varphi^n\rangle$. The inclusion \supset is clear. For the converse, let $\sigma=i\varphi^j$ with $i\in\mathscr{F}_F$; write j=qn+s, then $i\varphi^s=\sigma(\varphi^n)^{-q}\in W$, so by minimality of n,s=0 and $n\mid j$, i.e. $\varphi^j\in\langle\varphi^n\rangle$; in particular, $i=\sigma(\varphi^n)^{-q}\in W$ so $i\in W\cap\mathscr{F}_F=I$. This proves the other inclusion \subset .

Finally, let $L \subset F^{\mathrm{ur}}$ be an unramified extension of F of degree n. We will prove that $W = \mathcal{W}_F^T = \mathcal{W}_F \cap G_T$, where $T := L(\alpha)$ (Notice that T/F is finite). Indeed, first we will show that $W \subset G_T$, then we will show that $[\mathcal{W}_F : W] \leq [\mathcal{W}_F : \mathcal{W}_F \cap G_T]$:

1. For this, it is enough to show that if $x \in L$ and $y = \alpha$ then $\sigma(x) = x$ and $\sigma(y) = y$ for all $\sigma \in W$. Because $W = I \langle \varphi^n \rangle$, it is enough to show this for $\sigma \in I = \operatorname{Gal}(F^{\operatorname{sep}}/F^{\operatorname{ur}}(\alpha))$ and $\sigma = \varphi^n$. First, suppose $\sigma \in I$:

$$\sigma(x) = x$$
 because $x \in L \subset F^{ur}$,

and

$$\sigma(y) = y$$
 because $I = \text{Gal}(F^{\text{sep}}/F^{\text{ur}}(\alpha))$.

Then, suppose $\sigma=\varphi^n$, on one hand, L/F is an unramified extension of degree n, and because φ^{-n} acts as $z\mapsto z^{q^n}\equiv z\mod \mathfrak{p}_L$ (see (1)), i.e. the identity automorphism in $\mathrm{Gal}(\kappa_L/\kappa_F)$ and the map $\mathrm{Gal}(L/F)\to \mathrm{Gal}(\kappa_L/\kappa_L)$ is an isomorphism because L/F is unramified (see Observation 3.2), we have that φ^{-n} restricted to L is the trivial automorphism, so φ^n too, therefore

$$\sigma(x) = x$$
.

On the other hand, we chose at the beginning φ such that $\varphi(\alpha) = \alpha$, in other words:

$$\varphi(y) = y$$
, therefore $\sigma(y) = y$.

2. Lets compute $[\mathcal{W}_F, \mathcal{W}_F^T]$, by what we have already proven,

$$[\mathscr{W}_F,\mathscr{W}_F^T]=[G_F:G_T]=[T:F]=[L(lpha):L][L:F]\geqslant t[L:F]=tn.$$

But

$$[\mathscr{W}_F:W]=[\mathscr{W}_F:I\langle\varphi^n\rangle]=[\mathscr{I}_F:I][\langle\varphi\rangle:\langle\varphi^n\rangle]=[E:F^{\mathrm{ur}}]n=tn.$$

Therefore $[W_F: W] \leq [W_F, W_F^T]$, so $W = W_F^T$.

A Hensel's Lemma

Let F be a *complete* field with respect to a non-archimedean absolute value $|\cdot|_v$ (for example if F is a local non-archimedean field). We will say that a polynomial $f \in \mathcal{O}_F[X]$ is **primitive**, if its reduction $\operatorname{mod} \mathfrak{p}_F$ in $\kappa_F[X]$ is not the zero polynomial, i.e.

$$\max\{|a_0|_v,...,|a_n|_v\}=1,$$

where $f(X) = a_0 + a_1 X + \cdots + a_n X^n \in \mathcal{O}_F[X]$.

Theorem A.1 (Hensel's Lemma). If a primitive polynomial $f \in \mathcal{O}_F[X]$ admits a mod \mathfrak{p}_F factorization

$$f(X) \equiv \overline{g}(X)\overline{h}(X) \mod \mathfrak{p}_F$$

into relatively prime polynomials $\overline{g}, \overline{h} \in \kappa_F[X]$, then f admits a factorization

$$f(X) = g(X)h(X)$$

into polynomials $g,h \in \mathcal{O}_F[X]$ such that $\deg(g) = \deg(\overline{g})$ and

$$g(X) \equiv \overline{g}(X) \mod \mathfrak{p}_F \quad and \quad h(X) \equiv \overline{h}(X) \mod \mathfrak{p}_F.$$

Proof. See [Neu13][Hensel's Lemma (4.6)].

Remark A.2. We cannot guarantee that the degree of g and h coincide with the degree of \overline{g} and \overline{h} , respectively, at the same time because the degree of f may diminish when taking $\operatorname{mod} \mathfrak{p}_F$: being primitive doesn't imply that the principal coefficient of f is not divisible by \mathfrak{p}_F . However, if we assume that the principal coefficient of f is not divisible by \mathfrak{p}_F , i.e. it is in \mathcal{O}_F^{\times} (for example when f is monic), we can deduce that if $\deg g = \deg \overline{g}$, then from

$$\deg g + \deg h = \deg f = \deg \overline{f} = \deg \overline{g} + \deg \overline{h}$$

we have $\deg h = \deg \overline{h}$.

B The universal property of the projective limit

Let I be a preordered set of indices and let $\{G_i\}_{i\in I}$ be a family of sets. Assume further that for every pair of indices $i, j \in I$ with $i \leq j$, we have an associated mapping $\varphi_{ij}: G_j \to G_i$, subject to the following conditions:

- (i) $\varphi_{ii} = \operatorname{Id}_{G_i}$ for all $i \in I$.
- (ii) $\varphi_{ij} \circ \varphi_{jk} = \varphi_{ik}$ for all $i \leq j \leq k$ in I.

Then the system (G_i, φ_{ij}) is called a **projective** (or **inverse**) system.

Definition B.1. Let (G_i, φ_{ij}) be a projective system of sets. Then we define the **projective limit** (or **inverse limit**) of the system, denoted by $\varprojlim_i G_i$, by

$$arprojlim_i G_: = \left\{ \, (g_i)_i \in \prod_{i \in I} G_i \, \middle| \, i \leqslant j \Rightarrow \varphi_{ij}(g_j) = g_i \,
ight\}.$$

Note that $\varprojlim_i G_i$ is a subset of the direct product $\prod_{i \in I} G_i$, thus it comes equipped with projection maps $p_j : \varprojlim_i G_i \to G_j$ for all $j \in I$. Furthermore, we have the next universal property:

Theorem B.2 (Universal property of the projective limit). Let H be a nonempty set together with maps $\psi_i: H \to G_i$ for all $i \in I$ such that they are compatible with the projective system (G_i, φ_{ij}) , more precisely, for each pair $i, j \in I$ with $i \leq j$, the following diagram commutes:

$$G_j \stackrel{\psi_j}{\stackrel{\psi_i}{\longrightarrow}} G_i$$

Then there exists a unique map $\psi: H \to \underline{\lim}_i G_i$ such that for each $i \in I$ the diagram

$$H \xrightarrow{\psi} \varprojlim_{i} G_{i}$$

$$\downarrow^{p_{i}}$$

$$\downarrow^{p_{i}}$$

$$G_{i}$$

also commutes.

This construction was done in the category of sets, but replacing the inverse system (G_i, φ_{ij}) with topological groups and morphisms φ_{ij} of topological groups, and giving $\varprojlim_i G_i \subset \prod_{i \in I} G_i$ the subspace topology of the product topology results in a topological group in its own right, enjoying the same universal property as before, but where the set H is a topological group and all the maps are morphisms in the category of topological groups.

References

- [Neu13] Jürgen Neukirch. *Algebraic number theory*, volume 322. Springer Science & Business Media, 2013.
- [RV98] Dinakar Ramakrishnan and Robert J Valenza. Fourier analysis on number fields, volume 186. Springer Science & Business Media, 1998.