Fatgraphs of $M_{0,5}$

Automatically generated by FatGHoL 5.4 (See: http://fatghol.googlecode.com/)

2012-02-09

There are a total of 290 undecorated fatgraphs in the Kontsevich graph complex of $M_{0,5}$, originating 31262 marked ones.

Contents

Notation	2
Fatgraphs with 4 edges / 1 vertex	3
Fatgraphs with 5 edges / 2 vertices	6
Fatgraphs with 6 edges / 3 vertices	26
Fatgraphs with 7 edges / 4 vertices	83
Fatgraphs with 8 edges / 5 vertices	196
Fatgraphs with 9 edges / 6 vertices	272
Markings of fatgraphs with trivial automorphisms	311

Notation

We denote $G_{m,j}$ the j-th graph in the set of undecorated fatgraphs with m edges; the symbol $G_{m,j}^{(k)}$ denotes the k-th inequivalent marking of $G_{m,j}$.

Fatgraph vertices are marked with lowercase latin letters "a", "b", "c", etc.; edges are marked with an arabic numeral starting from "1"; boundary cycles are denoted by lowercase greek letters " α ", " β ", etc.

Automorphisms are specified by their action on the set of vertices, edges, and boundary cycles: for each automorphism A_k , a table line lists how it permutes vertices, edges and boundary cycles relative to the identity morphism A_0 . The automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated with a "†" symbol in the automorphism table; those that reverse the orientation of the marked fatgraphs are distinguished with a "‡" sign.

If a fatgraph is orientable, a "Markings" section lists all the inequivalent ways of assigning distinct numbers $\{0, \ldots, n-1\}$ to the boundary cycles; this is of course a set of representatives for the orbits of \mathfrak{S}_n under the action of $\mathrm{Aut}(G)$.

A separate section lists the differential of marked fatgraphs; graphs with null differential are omitted. If no marked fatgraph has a non-zero differential, the entire section is dropped.

Boundary cycles are specified using a "sequence of corners" notation: each corner is represented as $^pL^q$ where L is a latin letter indicating a vertex, and $p,\ q$ are the attachment indices of the incoming and outgoing edges, respectively. Attachment indices match the Python representation of the vertex: e.g., if a=Vertex([0,0,1]), the two legs of edge 0 have attachment indices 0 and 1, and the boundary cycle enclosed by them is represented by the (single) corner $^0a^1$.

Fatgraphs with 4 edges / 1 vertex

There are 3 unmarked fatgraphs in this section, originating 420 marked fatgraphs (210 orientable, and 210 nonorientable).

The Fatgraph $G_{4,0}$ (non-orientable, 30 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^1a^2 o {}^5a^6 o {}^3a^4 o {}^7a^0) \ \gamma &= (^2a^3) \ \delta &= (^4a^5) \ \epsilon &= (^6a^7) \end{aligned}$$

Automorphisms

A_0										
						γ				
${A_2}^{\ddagger}$	a	2	3	0	1	δ	β	ϵ	α	γ
$A_3^{\dagger \ddagger}$	a	3	0	1	2	ϵ	β	α	γ	δ

	$G_{4,0}^{(0)}$	$G_{4,0}^{(1)}$	$G_{4,0}^{(2)}$	$G_{4,0}^{(3)}$	$G_{4,0}^{(4)}$	$G_{4,0}^{(5)}$	$G_{4,0}^{(6)}$	$G_{4,0}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{4,0}^{(8)}$	$G_{4,0}^{(9)}$	$G_{4,0}^{(10)}$	$G_{4,0}^{(11)}$	$G_{4,0}^{(12)}$	$G_{4,0}^{(13)}$	$G_{4,0}^{(14)}$	$G_{4,0}^{(15)}$
α	0	0	0	0	0	0	0	0

	(contin	nued.)						
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{4,0}^{(16)}$	$G_{4,0}^{(17)}$	$G_{4,0}^{(18)}$	$G_{4,0}^{(19)}$	$G_{4,0}^{(20)}$	$G_{4,0}^{(21)}$	$G_{4,0}^{(22)}$	$G_{4,0}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{4,0}^{(24)}$	$G_{4,0}^{(25)}$	$G_{4,0}^{(26)}$	$G_{4,0}^{(27)}$	$G_{4,0}^{(28)}$	$G_{4,0}^{(29)}$		
α	1	1	1	1	1	1		
β	0	0	0	0	0	0		
γ	2	2	3	3	4	4		
δ	3	4	2	4	2	3		
ϵ	4	3	4	2	3	2		

The Fatgraph $G_{4,1}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^4a^5 o {}^0a^1)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^3a^4)$
 $\delta = ({}^5a^6 o {}^7a^0)$
 $\epsilon = ({}^6a^7)$

Markings

Fatgraph $G_{4,1}$ only has the identity automorphism, so the marked fatgraphs $G_{4,1}^{(0)}$ to $G_{4,1}^{(120)}$ are formed by decorating boundary cycles of $G_{4,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,2}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^4a^5
ightarrow {}^0a^1) \ eta = ({}^1a^2
ightarrow {}^3a^4) \ \gamma = ({}^2a^3) \ \delta = ({}^5a^6
ightarrow {}^7a^0) \ \epsilon = ({}^6a^7)$$

Automorphisms

A_0	a	0	1	2	3	α	β	γ	δ	ϵ
A_1^{\ddagger}	a	2	3	0	1	α	δ	ϵ	β	γ

	$G_{4,2}^{(0)}$	$G_{4,2}^{(1)}$	$G_{4,2}^{(2)}$	$G_{4,2}^{(3)}$	$G_{4,2}^{(4)}$	$G_{4,2}^{(5)}$	$G_{4,2}^{(6)}$	$G_{4,2}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{4,2}^{(8)}$	$G_{4,2}^{(9)}$	$G_{4,2}^{(10)}$	$G_{4,2}^{(11)}$	$G_{4,2}^{(12)}$	$G_{4,2}^{(13)}$	$G_{4,2}^{(14)}$	$G_{4,2}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	3	4	1	2	2	2	3	3
δ	4	3	4	4	3	4	2	4
ϵ	1	1	2	1	4	3	4	2
	$G_{4,2}^{(16)}$	$G_{4,2}^{(17)}$	$G_{4,2}^{(18)}$	$G_{4,2}^{(19)}$	$G_{4,2}^{(20)}$	$G_{4,2}^{(21)}$	$G_{4,2}^{(22)}$	$G_{4,2}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	0	0	3	4	0	2

	(contin	nued.)						
δ	2	3	3	4	4	3	4	4
ϵ	3	2	4	3	0	0	2	0
	$G_{4,2}^{(24)}$	$G_{4,2}^{(25)}$	$G_{4,2}^{(26)}$	$G_{4,2}^{(27)}$	$G_{4,2}^{(28)}$	$G_{4,2}^{(29)}$	$G_{4,2}^{(30)}$	$G_{4,2}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	0	0
δ	3	4	1	4	1	3	3	4
ϵ	4	3	4	1	3	1	4	3
	$G_{4,2}^{(32)}$	$G_{4,2}^{(33)}$	$G_{4,2}^{(34)}$	$G_{4,2}^{(35)}$	$G_{4,2}^{(36)}$	$G_{4,2}^{(37)}$	$G_{4,2}^{(38)}$	$G_{4,2}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	3	4	0	1	1	1	2	2
δ	4	3	4	4	2	4	1	4
ϵ	0	0	1	0	4	2	4	1
	$G_{4,2}^{(40)}$	$G_{4,2}^{(41)}$	$G_{4,2}^{(42)}$	$G_{4,2}^{(43)}$	$G_{4,2}^{(44)}$	$G_{4,2}^{(45)}$	$G_{4,2}^{(46)}$	$G_{4,2}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	0	0	2	4	0	1
δ	1	2	2	4	4	2	4	4
ϵ	2	1	4	2	0	0	1	0
	$G_{4,2}^{(48)}$	$G_{4,2}^{(49)}$	$G_{4,2}^{(50)}$	$G_{4,2}^{(51)}$	$G_{4,2}^{(52)}$	$G_{4,2}^{(53)}$	$G_{4,2}^{(54)}$	$G_{4,2}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	0	0
δ	2	3	1	3	1	2	2	3
ϵ	3	2	3	1	2	1	3	2
	$G_{4,2}^{(56)}$	$G_{4,2}^{(57)}$	$G_{4,2}^{(58)}$	$G_{4,2}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	2	3	0	1				
δ	3	2	3	3				
ϵ	0	0	1	0				

Fatgraphs with 5 edges / 2 vertices

There are 21 unmarked fatgraphs in this section, originating 4224 marked fatgraphs (2112 orientable, and 2112 nonorientable).

The Fatgraph $G_{5,0}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^4a^5 o \ ^1a^2 o \ ^1b^2 o \ ^2a^3 o \ ^2b^0 o \ ^6a^0) \ \gamma &= (^3a^4) \ \delta &= (^5a^6) \ \epsilon &= (^0b^1) \end{aligned}$$

Markings

Fatgraph $G_{5,0}$ only has the identity automorphism, so the marked fatgraphs $G_{5,0}^{(0)}$ to $G_{5,0}^{(120)}$ are formed by decorating boundary cycles of $G_{5,0}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,1}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}b^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{5}a^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{4}a^{5})$
 $\epsilon = ({}^{2}b^{3})$

Markings

Fatgraph $G_{5,1}$ only has the identity automorphism, so the marked fatgraphs $G_{5,1}^{(0)}$ to $G_{5,1}^{(120)}$ are formed by decorating boundary cycles of $G_{5,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,2}$ (120 orientable markings)


```
Fatgraph([
   Vertex([2, 3, 2, 0, 0, 1, 1]),# a
   Vertex([4, 4, 3]), # b
])
```

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{4}a^{5}
ightarrow {}^{6}a^{0})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{5}a^{6})$
 $\epsilon = ({}^{0}b^{1})$

Markings

Fatgraph $G_{5,2}$ only has the identity automorphism, so the marked fatgraphs $G_{5,2}^{(0)}$ to $G_{5,2}^{(120)}$ are formed by decorating boundary cycles of $G_{5,2}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,3}$ (120 orientable markings)

$$lpha = ({}^2a^3 o {}^3a^4 o {}^2b^0 o {}^0a^1 o {}^1b^2)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^4a^5 o {}^6a^0)$
 $\delta = ({}^5a^6)$
 $\epsilon = ({}^0b^1)$

Markings

Fatgraph $G_{5,3}$ only has the identity automorphism, so the marked fatgraphs $G_{5,3}^{(0)}$ to $G_{5,3}^{(120)}$ are formed by decorating boundary cycles of $G_{5,3}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,4}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^3b^0 o {}^0a^1 o {}^1b^2)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^3a^4 o {}^5a^0 o {}^0b^1)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^2b^3)$

Markings

Fatgraph $G_{5,4}$ only has the identity automorphism, so the marked fatgraphs $G_{5,4}^{(0)}$ to $G_{5,4}^{(120)}$ are formed by decorating boundary cycles of $G_{5,4}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,5}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{3}a^{4}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3})$
 $\gamma = ({}^{4}a^{5}
ightarrow {}^{6}a^{0})$
 $\delta = ({}^{5}a^{6})$
 $\epsilon = ({}^{0}b^{1})$

Markings

Fatgraph $G_{5,5}$ only has the identity automorphism, so the marked fatgraphs $G_{5,5}^{(0)}$ to $G_{5,5}^{(120)}$ are formed by decorating boundary cycles of $G_{5,5}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,6}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3b^0 o {}^0a^1 o {}^1b^2) \ eta = ({}^1a^2 o {}^3a^4 o {}^5a^0 o {}^0b^1) \ \gamma = ({}^2a^3) \ \delta = ({}^4a^5) \ \epsilon = ({}^2b^3)$$

Markings

Fatgraph $G_{5,6}$ only has the identity automorphism, so the marked fatgraphs $G_{5,6}^{(0)}$ to $G_{5,6}^{(120)}$ are formed by decorating boundary cycles of $G_{5,6}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,7}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{4}b^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{4}a^{0})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{1}b^{2})$
 $\epsilon = ({}^{3}b^{4})$

Markings

Fatgraph $G_{5,7}$ only has the identity automorphism, so the marked fatgraphs $G_{5,7}^{(0)}$ to $G_{5,7}^{(120)}$ are formed by decorating boundary cycles of $G_{5,7}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,8}$ (120 orientable markings)

$$lpha = ({}^2a^3 o {}^3b^0 o {}^0a^1 o {}^1b^2)$$
 $eta = ({}^1a^2 o {}^0b^1)$
 $\gamma = ({}^3a^4 o {}^5a^0)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^2b^3)$

Markings

Fatgraph $G_{5,8}$ only has the identity automorphism, so the marked fatgraphs $G_{5,8}^{(0)}$ to $G_{5,8}^{(120)}$ are formed by decorating boundary cycles of $G_{5,8}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,9}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{4}b^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}b^{3}
ightarrow {}^{2}a^{3}
ightarrow {}^{4}a^{0}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{1}b^{2})$
 $\epsilon = ({}^{3}b^{4})$

Automorphisms

	$G_{5,9}^{(0)}$	$G_{5,9}^{(1)}$	$G_{5,9}^{(2)}$	$G_{5,9}^{(3)}$	$G_{5,9}^{(4)}$	$G_{5,9}^{(5)}$	$G_{5,9}^{(6)}$	$G_{5,9}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	1	2	3	2	4	3
_	$G_{5,9}^{(8)}$	$G_{5,9}^{(9)}$	$\alpha^{(10)}$	$C^{(11)}$	$G_{5,9}^{(12)}$	$\alpha^{(13)}$	$C^{(14)}$	$G_{5,9}^{(15)}$
α	0 5,9	0 5,9	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
C	$G_{5,9}^{(16)}$	$G_{5,9}^{(17)}$	$G_{5,9}^{(18)}$	$\alpha^{(19)}$	$G_{5,9}^{(20)}$	$G_{5,9}^{(21)}$	$\alpha^{(22)}$	$G_{5,9}^{(23)}$
	$G_{5,9}$	$G_{5,9}$	$G_{5,9}$	$G_{5,9}$	$G_{5,9}$		$G_{5,9}$	G _{5,9}
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	(25)	3	2	3	1	$G_{5,9}^{(30)}$	1 (31)
	$G_{5,9}^{(24)}$	$G_{5,9}^{(25)}$	$G_{5,9}^{(26)}$	$G_{5,9}^{(27)}$	$G_{5,9}^{(28)}$	$G_{5,9}^{(29)}$		$G_{5,9}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{5,9}^{(32)}$	$G_{5,9}^{(33)}$	$G_{5,9}^{(34)}$	$G_{5,9}^{(35)}$	$G_{5,9}^{(36)}$	$G_{5,9}^{(37)}$	$G_{5,9}^{(38)}$	$G_{5,9}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	0	0	2	4	0	0	2	3
ϵ	4	3	4	2	4	2	3	2
	$G_{5,9}^{(40)}$	$G_{5,9}^{(41)}$	$G_{5,9}^{(42)}$	$G_{5,9}^{(43)}$	$G_{5,9}^{(44)}$	$G_{5,9}^{(45)}$	$G_{5,9}^{(46)}$	$G_{5,9}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	0	0	3	4	1	1	3	4
ϵ	3	2	4	3	4	3	4	3
	$G_{5,9}^{(48)}$	$G_{5,9}^{(49)}$	$G_{5,9}^{(50)}$	$G_{5,9}^{(51)}$	$G_{5,9}^{(52)}$	$G_{5,9}^{(53)}$	$G_{5,9}^{(54)}$	$G_{5,9}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	0	0	1	0	1	0	2	1
ϵ	4	3	4	4	3	3	4	4
J	$G_{5,9}^{(56)}$	$G_{5,9}^{(57)}$	$G_{5,9}^{(58)}$	$G_{5,9}^{(59)}$	J	3	-	-
C'	3	3	3	3				
α	J	J	J	S				

	(contin	nued.)		
β	1	1	2	2
γ	0	2	0	1
δ	2	0	1	0
ϵ	4	4	4	4

The Fatgraph $G_{5,10}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^3a^4
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^2a^3
ightarrow {}^2b^0
ightarrow {}^1b^2) \ \gamma &= ({}^4a^5
ightarrow {}^6a^0) \ \delta &= ({}^5a^6) \ \epsilon &= ({}^0b^1) \end{aligned}$$

Markings

Fatgraph $G_{5,10}$ only has the identity automorphism, so the marked fatgraphs $G_{5,10}^{(0)}$ to $G_{5,10}^{(120)}$ are formed by decorating boundary cycles of $G_{5,10}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,11}$ (60 orientable markings)


```
Fatgraph([
    Vertex([3, 0, 3, 4, 4]),# a
    Vertex([1, 0, 1, 2, 2]),# b
])
```

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{4}a^{0})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{4}b^{0}
ightarrow {}^{2}b^{3})$
 $\epsilon = ({}^{3}b^{4})$

Automorphisms

A_0												
A_1^{\ddagger}	b	a	0	3	4	1	2	α	δ	ϵ	β	γ

	$G_{5,11}^{(0)}$	$G_{5,11}^{(1)}$	$G_{5,11}^{(2)}$	$G_{5,11}^{(3)}$	$G_{5,11}^{(4)}$	$G_{5,11}^{(5)}$	$G_{5,11}^{(6)}$	$G_{5,11}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{5,11}^{(8)}$	$G_{5,11}^{(9)}$	$G_{5,11}^{(10)}$	$G_{5,11}^{(11)}$	$G_{5,11}^{(12)}$	$G_{5,11}^{(13)}$	$G_{5,11}^{(14)}$	$G_{5,11}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	3	4	1	2	2	2	3	3
δ	4	3	4	4	3	4	2	4
ϵ	1	1	2	1	4	3	4	2
	$G_{5,11}^{(16)}$	$G_{5,11}^{(17)}$	$G_{5,11}^{(18)}$	$G_{5,11}^{(19)}$	$G_{5,11}^{(20)}$	$G_{5,11}^{(21)}$	$G_{5,11}^{(22)}$	$G_{5,11}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	0	0	3	4	0	2
δ	2	3	3	4	4	3	4	4
ϵ	3	2	4	3	0	0	2	0
	$G_{5,11}^{(24)}$	$G_{5,11}^{(25)}$	$G_{5,11}^{(26)}$	$G_{5,11}^{(27)}$	$G_{5,11}^{(28)}$	$G_{5,11}^{(29)}$	$G_{5,11}^{(30)}$	$G_{5,11}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	0	0
δ	3	4	1	4	1	3	3	4
ϵ	4	3	4	1	3	1	4	3

	(contin	nued.)						
	$G_{5,11}^{(32)}$	$G_{5,11}^{(33)}$	$G_{5,11}^{(34)}$	$G_{5,11}^{(35)}$	$G_{5,11}^{(36)}$	$G_{5,11}^{(37)}$	$G_{5,11}^{(38)}$	$G_{5,11}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	3	4	0	1	1	1	2	2
δ	4	3	4	4	2	4	1	4
ϵ	0	0	1	0	4	2	4	1
	$G_{5,11}^{(40)}$	$G_{5,11}^{(41)}$	$G_{5,11}^{(42)}$	$G_{5,11}^{(43)}$	$G_{5,11}^{(44)}$	$G_{5,11}^{(45)}$	$G_{5,11}^{(46)}$	$G_{5,11}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	0	0	2	4	0	1
δ	1	2	2	4	4	2	4	4
ϵ	2	1	4	2	0	0	1	0
	$G_{5,11}^{(48)}$	$G_{5,11}^{(49)}$	$G_{5,11}^{(50)}$	$G_{5,11}^{(51)}$	$G_{5,11}^{(52)}$	$G_{5,11}^{(53)}$	$G_{5,11}^{(54)}$	$G_{5,11}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	0	0
δ	2	3	1	3	1	2	2	3
ϵ	3	2	3	1	2	1	3	2
	$G_{5,11}^{(56)}$	$G_{5,11}^{(57)}$	$G_{5,11}^{(58)}$	$G_{5,11}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	2	3	0	1				
δ	3	2	3	3				
ϵ	0	0	1	0				

The Fatgraph $G_{5,12}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 3, 1, 2, 2]),# a
   Vertex([0, 3, 4, 4]),  # b
])
```

$$lpha = ({}^2a^3
ightarrow {}^0a^1
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^3b^0
ightarrow {}^1b^2) \ \gamma = ({}^3a^4
ightarrow {}^5a^0) \ \delta = ({}^4a^5) \ \epsilon = ({}^2b^3)$$

Markings

Fatgraph $G_{5,12}$ only has the identity automorphism, so the marked fatgraphs $G_{5,12}^{(0)}$ to $G_{5,12}^{(120)}$ are formed by decorating boundary cycles of $G_{5,12}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,13}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{0}b^{1}) \ \gamma = ({}^{2}a^{3}
ightarrow {}^{2}b^{3}
ightarrow {}^{4}b^{0}
ightarrow {}^{4}a^{0}) \ \delta = ({}^{3}a^{4}) \ \epsilon = ({}^{3}b^{4})$$

Automorphisms

	$G_{5,13}^{(0)}$	$G_{5,13}^{(1)}$	$G_{5,13}^{(2)}$	$G_{5,13}^{(3)}$	$G_{5,13}^{(4)}$	$G_{5,13}^{(5)}$	$G_{5,13}^{(6)}$	$G_{5,13}^{(7)}$
α	Ó	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{5,13}^{(8)}$	$G_{5,13}^{(9)}$	$G_{5,13}^{(10)}$	$G_{5,13}^{(11)}$	$G_{5,13}^{(12)}$	$G_{5,13}^{(13)}$	$G_{5,13}^{(14)}$	$G_{5,13}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{5,13}^{(16)}$	$G_{5,13}^{(17)}$	$G_{5,13}^{(18)}$	$G_{5,13}^{(19)}$	$G_{5,13}^{(20)}$	$G_{5,13}^{(21)}$	$G_{5,13}^{(22)}$	$G_{5,13}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{5,13}^{(24)}$	$G_{5,13}^{(25)}$	$G_{5,13}^{(26)}$	$G_{5,13}^{(27)}$	$G_{5,13}^{(28)}$	$G_{5,13}^{(29)}$	$G_{5,13}^{(30)}$	$G_{5,13}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{5,13}^{(32)}$	$G_{5,13}^{(33)}$	$G_{5,13}^{(34)}$	$G_{5,13}^{(35)}$	$G_{5,13}^{(36)}$	$G_{5,13}^{(37)}$	$G_{5,13}^{(38)}$	$G_{5,13}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{5,13}^{(40)}$	$G_{5,13}^{(41)}$	$G_{5,13}^{(42)}$	$G_{5,13}^{(43)}$	$G_{5,13}^{(44)}$	$G_{5,13}^{(45)}$	$G_{5,13}^{(46)}$	$G_{5,13}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{5,13}^{(48)}$	$G_{5,13}^{(49)}$	$G_{5,13}^{(50)}$	$G_{5,13}^{(51)}$	$G_{5,13}^{(52)}$	$G_{5,13}^{(53)}$	$G_{5,13}^{(54)}$	$G_{5,13}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{5,13}^{(56)}$	$G_{5,13}^{(57)}$	$G_{5,13}^{(58)}$	$G_{5,13}^{(59)}$				
α	3	3	3	3				
					1			

	(contin	nued.)		
β	4	4	4	4
γ	1	1	2	2
δ	0	2	0	1
ϵ	2	0	1	0

The Fatgraph $G_{5,14}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^4a^5
ightarrow {}^6a^0
ightarrow {}^0b^1) \ \delta &= ({}^3a^4) \ \epsilon &= ({}^5a^6) \end{aligned}$$

Markings

Fatgraph $G_{5,14}$ only has the identity automorphism, so the marked fatgraphs $G_{5,14}^{(0)}$ to $G_{5,14}^{(120)}$ are formed by decorating boundary cycles of $G_{5,14}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,15}$ (60 orientable markings)


```
Fatgraph([
    Vertex([3, 1, 0, 4, 4]),# a
    Vertex([3, 0, 1, 2, 2]),# b
])
```

$$lpha = ({}^4b^0 o {}^0a^1 o {}^2b^3) \ eta = ({}^1a^2 o {}^1b^2) \ \gamma = ({}^2a^3 o {}^0b^1 o {}^4a^0) \ \delta = ({}^3a^4) \ \epsilon = ({}^3b^4)$$

Automorphisms

A_0	a	b	0	1	2	3	4	α	β	γ	δ	ϵ
A_1^{\ddagger}	b	a	1	0	4	3	2	γ	β	α	ϵ	δ

	$G_{5,15}^{(0)}$	$G_{5,15}^{(1)}$	$G_{5,15}^{(2)}$	$G_{5,15}^{(3)}$	$G_{5,15}^{(4)}$	$G_{5,15}^{(5)}$	$G_{5,15}^{(6)}$	$G_{5,15}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{5,15}^{(8)}$	$G_{5,15}^{(9)}$	$G_{5,15}^{(10)}$	$G_{5,15}^{(11)}$	$G_{5,15}^{(12)}$	$G_{5,15}^{(13)}$	$G_{5,15}^{(14)}$	$G_{5,15}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{5,15}^{(16)}$	$G_{5,15}^{(17)}$	$G_{5,15}^{(18)}$	$G_{5,15}^{(19)}$	$G_{5,15}^{(20)}$	$G_{5,15}^{(21)}$	$G_{5,15}^{(22)}$	$G_{5,15}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{5,15}^{(24)}$	$G_{5,15}^{(25)}$	$G_{5,15}^{(26)}$	$G_{5,15}^{(27)}$	$G_{5,15}^{(28)}$	$G_{5,15}^{(29)}$	$G_{5,15}^{(30)}$	$G_{5,15}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0

	(contin							
	$G_{5,15}^{(32)}$	$G_{5,15}^{(33)}$	$G_{5,15}^{(34)}$	$G_{5,15}^{(35)}$	$G_{5,15}^{(36)}$	$G_{5,15}^{(37)}$	$G_{5,15}^{(38)}$	$G_{5,15}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{5,15}^{(40)}$	$G_{5,15}^{(41)}$	$G_{5,15}^{(42)}$	$G_{5,15}^{(43)}$	$G_{5,15}^{(44)}$	$G_{5,15}^{(45)}$	$G_{5,15}^{(46)}$	$G_{5,15}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	0	4	1	3	1	4	0
	$G_{5,15}^{(48)}$	$G_{5,15}^{(49)}$	$G_{5,15}^{(50)}$	$G_{5,15}^{(51)}$	$G_{5,15}^{(52)}$	$G_{5,15}^{(53)}$	$G_{5,15}^{(54)}$	$G_{5,15}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{5,15}^{(56)}$	$G_{5,15}^{(57)}$	$G_{5,15}^{(58)}$	$G_{5,15}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{5,16}$ (120 orientable markings)

$$egin{aligned} lpha &= ({}^2a^3
ightarrow {}^0a^1
ightarrow {}^0b^1) \ eta &= ({}^1a^2) \ \gamma &= ({}^2b^0
ightarrow {}^3a^4) \ \delta &= ({}^4a^5
ightarrow {}^6a^0
ightarrow {}^1b^2) \ \epsilon &= ({}^5a^6) \end{aligned}$$

Markings

Fatgraph $G_{5,16}$ only has the identity automorphism, so the marked fatgraphs $G_{5,16}^{(0)}$ to $G_{5,16}^{(120)}$ are formed by decorating boundary cycles of $G_{5,16}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,17}$ (60 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0b^1) \ eta &= ({}^1a^2
ightarrow {}^4b^0
ightarrow {}^2b^3) \ \gamma &= ({}^2a^3
ightarrow {}^1b^2
ightarrow {}^4a^0) \ \delta &= ({}^3a^4) \ \epsilon &= ({}^3b^4) \end{aligned}$$

Automorphisms

	$G_{5,17}^{(0)}$	$G_{5,17}^{(1)}$	$G_{5,17}^{(2)}$	$G_{5,17}^{(3)}$	$G_{5,17}^{(4)}$	$G_{5,17}^{(5)}$	$G_{5,17}^{(6)}$	$G_{5,17}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{5,17}^{(8)}$	$G_{5,17}^{(9)}$	$G_{5,17}^{(10)}$	$G_{5,17}^{(11)}$	$G_{5,17}^{(12)}$	$G_{5,17}^{(13)}$	$G_{5,17}^{(14)}$	$G_{5,17}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{5,17}^{(16)}$	$G_{5,17}^{(17)}$	$G_{5,17}^{(18)}$	$G_{5,17}^{(19)}$	$G_{5,17}^{(20)}$	$G_{5,17}^{(21)}$	$G_{5,17}^{(22)}$	$G_{5,17}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{5,17}^{(24)}$	$G_{5,17}^{(25)}$	$G_{5,17}^{(26)}$	$G_{5,17}^{(27)}$	$\alpha^{(28)}$	$G_{5,17}^{(29)}$	$\alpha^{(30)}$	$G_{5,17}^{(31)}$
α	2	2	$G_{5,17}^{(25)}$	$G_{5,17}$	$G_{5,17}$	2	$G_{5,17}$	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	2	1	4	0
	$G_{5,17}^{(32)}$	$G_{5,17}^{(33)}$	$G_{5,17}^{(34)}$	$G_{5,17}^{(35)}$	$G_{5,17}^{(36)}$	$G_{5,17}^{(37)}$	$G_{5,17}^{(38)}$	$G_{5,17}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{5,17}^{(40)}$	$G_{5,17}^{(41)}$	$G_{5,17}^{(42)}$	$G_{5,17}^{(43)}$	$G_{5,17}^{(44)}$	$G_{5,17}^{(45)}$	$G_{5,17}^{(46)}$	$G_{5,17}^{(47)}$
α	3	3	$G_{5,17}$	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{5,17}^{(48)}$	$G_{5,17}^{(49)}$	$G_{5,17}^{(50)}$	$G_{5,17}^{(51)}$	$G_{5,17}^{(52)}$	$G_{5,17}^{(53)}$	$G_{5,17}^{(54)}$	$G_{5,17}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{5,17}^{(56)}$	$G_{5,17}^{(57)}$	$G_{5,17}^{(58)}$	$G_{5,17}^{(59)}$				
α	4	4	4	4				
0.	-	-	-	-	İ			

	(contin	nued.)		
β	1	1	2	2
γ	3	3	3	3
δ	0	2	0	1
ϵ	2	0	1	0

The Fatgraph $G_{5,18}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3a^4
ightarrow {}^0a^1
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^2b^0) \ \gamma = ({}^2a^3
ightarrow {}^1b^2) \ \delta = ({}^4a^5
ightarrow {}^6a^0) \ \epsilon = ({}^5a^6)$$

Markings

Fatgraph $G_{5,18}$ only has the identity automorphism, so the marked fatgraphs $G_{5,18}^{(0)}$ to $G_{5,18}^{(120)}$ are formed by decorating boundary cycles of $G_{5,18}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,19}$ (120 orientable markings)


```
Fatgraph([
    Vertex([0, 2, 1, 3, 4, 4]),# a
    Vertex([3, 1, 2, 0]), # b
])
```

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^2b^3) \ eta &= ({}^1a^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1) \ \delta &= ({}^3b^0
ightarrow {}^3a^4
ightarrow {}^5a^0) \ \epsilon &= ({}^4a^5) \end{aligned}$$

Markings

Fatgraph $G_{5,19}$ only has the identity automorphism, so the marked fatgraphs $G_{5,19}^{(0)}$ to $G_{5,19}^{(120)}$ are formed by decorating boundary cycles of $G_{5,19}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,20}$ (12 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1
ightarrow {}^1b^2)$$
 $eta = ({}^1a^2
ightarrow {}^0b^1)$
 $\gamma = ({}^2a^3
ightarrow {}^4b^0)$
 $\delta = ({}^3a^4
ightarrow {}^3b^4)$
 $\epsilon = ({}^2b^3
ightarrow {}^4a^0)$

Automorphisms

A_0	a	b	0	1	2	3	4	α	β	γ	δ	ϵ
A_1^{\ddagger}	a	b	2	0	4	1	3	β	γ	δ	ϵ	α
$A_2{}^{\ddagger}$	a	b	4	2	3	0	1	γ	δ	ϵ	α	β
A_3^{\ddagger}	a	b	3	4	1	2	0	δ	ϵ	α	β	γ
$A_4{}^{\ddagger}$	a	b	1	3	0	4	2	ϵ	α	β	γ	δ
A_5^{\ddagger}	b	a	0	2	1	4	3	β	α	ϵ	δ	γ
A_6^{\ddagger}	b	a	1	0	3	2	4	α	ϵ	δ	γ	β

A_7^{\ddagger}	b	a	3	1	4	0	2	ϵ	δ	γ	β	α
${A_8}^{\ddagger}$	b	a	4	3	2	1	0	δ	γ	β	α	ϵ
A_9^{\ddagger}	b	a	2	4	0	3	1	γ	β	α	ϵ	δ

Markings

	$G_{5,20}^{(0)}$	$G_{5,20}^{(1)}$	$G_{5,20}^{(2)}$	$G_{5,20}^{(3)}$	$G_{5,20}^{(4)}$	$G_{5,20}^{(5)}$	$G_{5,20}^{(6)}$	$G_{5,20}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{5,20}^{(8)}$	$G_{5,20}^{(9)}$	$G_{5,20}^{(10)}$	$G_{5,20}^{(11)}$				
α	$G_{5,20}^{(8)}$ 0	$G_{5,20}^{(9)}$	$G_{5,20}^{(10)}$ 0	$G_{5,20}^{(11)}$ 0				
α β								
	0	0	0	0				
β	0 2	0 2	0	0 3				

Fatgraphs with 6 edges / 3 vertices

There are 65 unmarked fatgraphs in this section, originating 14520 marked fatgraphs (7260 orientable, and 7260 nonorientable).

The Fatgraph $G_{\rm 6,0}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^3a^4 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^4a^5 o {}^2b^0 o {}^1b^2)$$
 $eta = ({}^2a^3)$
 $\gamma = ({}^5a^0)$
 $\delta = ({}^0b^1)$
 $\epsilon = ({}^0c^1)$

Automorphisms

A_0														
$A_1^{\dagger \ddagger}$	a	С	b	3	4	5	0	1	2	α	γ	β	ϵ	δ

	$G_{6,0}^{(0)}$	$G_{6,0}^{(1)}$	$G_{6,0}^{(2)}$	$G_{6,0}^{(3)}$	$G_{6,0}^{(4)}$	$G_{6,0}^{(5)}$	$G_{6,0}^{(6)}$	$G_{6,0}^{(7)}$
α	o [°]	0	o [°]					
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{6,0}^{(8)}$	$G_{6,0}^{(9)}$	$G_{6,0}^{(10)}$	$G_{6,0}^{(11)}$	$G_{6,0}^{(12)}$	$G_{6,0}^{(13)}$	$G_{6,0}^{(14)}$	$G_{6,0}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{6,0}^{(16)}$	$G_{6,0}^{(17)}$	$G_{6,0}^{(18)}$	$G_{6,0}^{(19)}$	$G_{6,0}^{(20)}$	$G_{6,0}^{(21)}$	$G_{6,0}^{(22)}$	$G_{6,0}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{6,0}^{(24)}$	$G_{6,0}^{(25)}$	$G_{6,0}^{(26)}$	$G_{6,0}^{(27)}$	$G_{6,0}^{(28)}$	$G_{6,0}^{(29)}$	$G_{6,0}^{(30)}$	$G_{6,0}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0

	(continued.)										
	$G_{6,0}^{(32)}$	$G_{6,0}^{(33)}$	$G_{6,0}^{(34)}$	$G_{6,0}^{(35)}$	$G_{6,0}^{(36)}$	$G_{6,0}^{(37)}$	$G_{6,0}^{(38)}$	$G_{6,0}^{(39)}$			
α	2	2	2	2	3	3	3	3			
β	1	1	3	3	0	0	0	0			
γ	4	4	4	4	1	1	2	2			
δ	0	3	0	1	2	4	1	4			
ϵ	3	0	1	0	4	2	4	1			
	$G_{6,0}^{(40)}$	$G_{6,0}^{(41)}$	$G_{6,0}^{(42)}$	$G_{6,0}^{(43)}$	$G_{6,0}^{(44)}$	$G_{6,0}^{(45)}$	$G_{6,0}^{(46)}$	$G_{6,0}^{(47)}$			
α	3	3	3	3	3	3	3	3			
β	0	0	1	1	1	1	2	2			
γ	4	4	2	2	4	4	4	4			
δ	1	2	0	4	0	2	0	1			
ϵ	2	1	4	0	2	0	1	0			
	$G_{6,0}^{(48)}$	$G_{6,0}^{(49)}$	$G_{6,0}^{(50)}$	$G_{6,0}^{(51)}$	$G_{6,0}^{(52)}$	$G_{6,0}^{(53)}$	$G_{6,0}^{(54)}$	$G_{6,0}^{(55)}$			
α	4	4	4	4	4	4	4	4			
β	0	0	0	0	0	0	1	1			
γ	1	1	2	2	3	3	2	2			
δ	2	3	1	3	1	2	0	3			
ϵ	3	2	3	1	2	1	3	0			
	$G_{6,0}^{(56)}$	$G_{6,0}^{(57)}$	$G_{6,0}^{(58)}$	$G_{6,0}^{(59)}$				'			
α	4	4	4	4							
β	1	1	2	2							
γ	3	3	3	3							
δ	0	2	0	1							
ϵ	2	0	1	0							

The Fatgraph $G_{\rm 6,1}$ (120 orientable markings)


```
Fatgraph([
   Vertex([0, 0, 1, 3, 4]),# a
   Vertex([3, 1, 2, 2]), # b
   Vertex([5, 5, 4]), # c
])
```

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{3}a^{4}
ightarrow {}^{4}a^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,1}$ only has the identity automorphism, so the marked fatgraphs $G_{6,1}^{(0)}$ to $G_{6,1}^{(120)}$ are formed by decorating boundary cycles of $G_{6,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,2}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4a^5 o {}^1c^2 o {}^2a^3 o {}^0a^1 o {}^1b^2 o {}^5a^0 o {}^2b^0 o {}^2c^0)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^3a^4)$
 $\delta = ({}^0b^1)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,2}$ only has the identity automorphism, so the marked fatgraphs $G_{6,2}^{(0)}$ to $G_{6,2}^{(120)}$ are formed by decorating boundary cycles of $G_{6,2}$ with all permutations

of (0, 1, 2, 3, 4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,3}$ (120 orientable markings)


```
Fatgraph([
   Vertex([0, 0, 1, 4, 5, 5]),# a
   Vertex([4, 1, 2]),  # b
   Vertex([3, 3, 2]),  # c
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{3}a^{4}
ightarrow {}^{5}a^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{4}a^{5})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,3}$ only has the identity automorphism, so the marked fatgraphs $G_{6,3}^{(0)}$ to $G_{6,3}^{(120)}$ are formed by decorating boundary cycles of $G_{6,3}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,4}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^1c^2 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^3c^0 o {}^0b^1)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,4}$ only has the identity automorphism, so the marked fatgraphs $G_{6,4}^{(0)}$ to $G_{6,4}^{(120)}$ are formed by decorating boundary cycles of $G_{6,4}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,5}$ (40 orientable markings)

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}c^{2} o {}^{1}a^{2} o {}^{1}b^{2} o {}^{3}a^{0} o {}^{3}b^{0} o {}^{3}c^{0})$
 $\gamma = ({}^{2}a^{3} o {}^{0}c^{1} o {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{2}c^{3})$

Automorphisms

A_0	a	b	С	0	1	2	3	4	5	α	β	γ	δ	ϵ
A_1^{\ddagger}	b	С	a	2	3	4	5	0	1	δ	β	γ	ϵ	α
$A_2{}^{\ddagger}$	С	a	b	4	5	0	1	2	3	ϵ	β	γ	α	δ

	$G_{6,5}^{(0)}$	$G_{6,5}^{(1)}$	$G_{6,5}^{(2)}$	$G_{6,5}^{(3)}$	$G_{6,5}^{(4)}$	$G_{6,5}^{(5)}$	$G_{6,5}^{(6)}$	$G_{6,5}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,5}^{(8)}$	$G_{6,5}^{(9)}$	$G_{6,5}^{(10)}$	$G_{6,5}^{(11)}$	$G_{6,5}^{(12)}$	$G_{6,5}^{(13)}$	$G_{6,5}^{(14)}$	$G_{6,5}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{6,5}^{(16)}$	$G_{6,5}^{(17)}$	$G_{6,5}^{(18)}$	$G_{6,5}^{(19)}$	$G_{6,5}^{(20)}$	$G_{6,5}^{(21)}$	$G_{6,5}^{(22)}$	$G_{6,5}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,5}^{(24)}$	$G_{6,5}^{(25)}$	$G_{6,5}^{(26)}$	$G_{6,5}^{(27)}$	$G_{6,5}^{(28)}$	$G_{6,5}^{(29)}$	$G_{6,5}^{(30)}$	$G_{6,5}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3

	(continued.)											
	$G_{6,5}^{(32)}$	$G_{6,5}^{(33)}$	$G_{6,5}^{(34)}$	$G_{6,5}^{(35)}$	$G_{6,5}^{(36)}$	$G_{6,5}^{(37)}$	$G_{6,5}^{(38)}$	$G_{6,5}^{(39)}$				
α	1	1	1	1	2	2	2	2				
β	3	3	4	4	0	0	1	1				
γ	0	0	0	0	1	1	0	0				
δ	2	4	2	3	3	4	3	4				
ϵ	4	2	3	2	4	3	4	3				

The Fatgraph $G_{6,6}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{5}a^{0}
ightarrow {}^{2}c^{0}) \ eta = ({}^{1}a^{2}
ightarrow {}^{4}a^{5}
ightarrow {}^{2}b^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}b^{2}) \ \gamma = ({}^{2}a^{3}) \ \delta = ({}^{0}b^{1}) \ \epsilon = ({}^{0}c^{1})$$

Markings

Fatgraph $G_{6,6}$ only has the identity automorphism, so the marked fatgraphs $G_{6,6}^{(0)}$ to $G_{6,6}^{(120)}$ are formed by decorating boundary cycles of $G_{6,6}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,7}$ (120 orientable markings)


```
Fatgraph([
   Vertex([0, 0, 1, 4, 3]),# a
   Vertex([3, 1, 2, 2]), # b
   Vertex([5, 5, 4]), # c
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}b^{0}
ightarrow {}^{4}a^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,7}$ only has the identity automorphism, so the marked fatgraphs $G_{6,7}^{(0)}$ to $G_{6,7}^{(120)}$ are formed by decorating boundary cycles of $G_{6,7}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,8}$ (120 orientable markings)


```
Fatgraph([
   Vertex([0, 0, 1, 4, 1, 2]),# a
   Vertex([3, 3, 2]),  # b
   Vertex([5, 5, 4]),  # c
])
```

$$egin{aligned} &lpha = (^0a^1) \ η = (^1a^2 o ^2b^0 o ^4a^5 o ^5a^0 o ^1b^2) \ &\gamma = (^2a^3 o ^3a^4 o ^1c^2 o ^2c^0) \ &\delta = (^0b^1) \ &\epsilon = (^0c^1) \end{aligned}$$

Markings

Fatgraph $G_{6,8}$ only has the identity automorphism, so the marked fatgraphs $G_{6,8}^{(0)}$ to $G_{6,8}^{(120)}$ are formed by decorating boundary cycles of $G_{6,8}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,9}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^1b^2) \ eta = ({}^1a^2) \ \gamma = ({}^3a^4 o {}^5a^0 o {}^0b^1) \ \delta = ({}^4a^5) \ \epsilon = ({}^0c^1)$$

Markings

Fatgraph $G_{6,9}$ only has the identity automorphism, so the marked fatgraphs $G_{6,9}^{(0)}$ to $G_{6,9}^{(120)}$ are formed by decorating boundary cycles of $G_{6,9}$ with all permutations

of (0, 1, 2, 3, 4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,10}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{0})$
 $\gamma = ({}^{5}b^{0}
ightarrow {}^{3}b^{4})$
 $\delta = ({}^{4}b^{5})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,10}$ only has the identity automorphism, so the marked fatgraphs $G_{6,10}^{(0)}$ to $G_{6,10}^{(120)}$ are formed by decorating boundary cycles of $G_{6,10}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,11}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^1b^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^4b^0 o {}^0c^1 o {}^2b^3)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,11}$ only has the identity automorphism, so the marked fatgraphs $G_{6,11}^{(0)}$ to $G_{6,11}^{(120)}$ are formed by decorating boundary cycles of $G_{6,11}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,12}$ (120 orientable markings)

$$lpha = ({}^2b^0 o {}^2c^0 o {}^0a^1 o {}^1c^2 o {}^1b^2)$$
 $eta = ({}^1a^2 o {}^3a^4 o {}^5a^0 o {}^0b^1)$
 $\gamma = ({}^2a^3)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,12}$ only has the identity automorphism, so the marked fatgraphs $G_{6,12}^{(0)}$ to $G_{6,12}^{(120)}$ are formed by decorating boundary cycles of $G_{6,12}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,13}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3a^4 o {}^2a^3 o {}^0a^1 o {}^1b^2 o {}^0c^1 o {}^2b^0)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^3c^0 o {}^1c^2 o {}^4a^0)$
 $\delta = ({}^0b^1)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,13}$ only has the identity automorphism, so the marked fatgraphs $G_{6,13}^{(0)}$ to $G_{6,13}^{(120)}$ are formed by decorating boundary cycles of $G_{6,13}$ with all

The Fatgraph $G_{6,14}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^1a^2 o \ ^3a^0 o \ ^3b^0 o \ ^0c^1 o \ ^1b^2) \ \gamma &= (^2a^3 o \ ^3c^0 o \ ^1c^2 o \ ^0b^1) \ \delta &= (^2b^3) \ \epsilon &= (^2c^3) \end{aligned}$$

Markings

Fatgraph $G_{6,14}$ only has the identity automorphism, so the marked fatgraphs $G_{6,14}^{(0)}$ to $G_{6,14}^{(120)}$ are formed by decorating boundary cycles of $G_{6,14}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,15}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^1a^2 o {}^0a^1 o {}^1b^2 o {}^0c^1 o {}^2b^3)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^3c^0 o {}^1c^2 o {}^0b^1)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,15}$ only has the identity automorphism, so the marked fatgraphs $G_{6,15}^{(0)}$ to $G_{6,15}^{(120)}$ are formed by decorating boundary cycles of $G_{6,15}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,16}$ (120 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{4}b^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\gamma = ({}^{1}b^{2})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,16}$ only has the identity automorphism, so the marked fatgraphs $G_{6,16}^{(0)}$ to $G_{6,16}^{(120)}$ are formed by decorating boundary cycles of $G_{6,16}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,17}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2} o {}^{0}a^{1} o {}^{2}b^{3} o {}^{3}b^{0} o {}^{1}c^{2} o {}^{2}c^{0} o {}^{0}b^{1})$$
 $eta = ({}^{2}a^{3} o {}^{4}a^{0})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{1}b^{2})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,17}$ only has the identity automorphism, so the marked fatgraphs $G_{6,17}^{(0)}$ to $G_{6,17}^{(120)}$ are formed by decorating boundary cycles of $G_{6,17}$ with all

The Fatgraph $G_{6,18}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^0c^1 o {}^0b^1)$$
 $eta = ({}^2a^0 o {}^3c^0 o {}^1c^2)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,18}$ only has the identity automorphism, so the marked fatgraphs $G_{6,18}^{(0)}$ to $G_{6,18}^{(120)}$ are formed by decorating boundary cycles of $G_{6,18}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,19}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{4}a^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{3}a^{4}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,19}$ only has the identity automorphism, so the marked fatgraphs $G_{6,19}^{(0)}$ to $G_{6,19}^{(120)}$ are formed by decorating boundary cycles of $G_{6,19}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,20}$ (120 orientable markings)

$$lpha = ({}^2a^3 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^1b^2)$$
 $eta = ({}^1a^2 o {}^0b^1)$
 $\gamma = ({}^3a^4 o {}^5a^0)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,20}$ only has the identity automorphism, so the marked fatgraphs $G_{6,20}^{(0)}$ to $G_{6,20}^{(120)}$ are formed by decorating boundary cycles of $G_{6,20}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,21}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{4}a^{0})$
 $\gamma = ({}^{3}a^{4})$
 $\delta = ({}^{3}b^{0})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,21}$ only has the identity automorphism, so the marked fatgraphs $G_{6,21}^{(0)}$ to $G_{6,21}^{(120)}$ are formed by decorating boundary cycles of $G_{6,21}$ with all

The Fatgraph $G_{6,22}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 1, 4, 5, 5]),# a
   Vertex([1, 2, 0]), # b
   Vertex([0, 2, 3, 3]), # c
])
```

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^2b^0) \ eta = ({}^2a^3 o {}^4a^0) \ \gamma = ({}^3a^4) \ \delta = ({}^0c^1 o {}^1b^2) \ \epsilon = ({}^2c^3)$$

Markings

Fatgraph $G_{6,22}$ only has the identity automorphism, so the marked fatgraphs $G_{6,22}^{(0)}$ to $G_{6,22}^{(120)}$ are formed by decorating boundary cycles of $G_{6,22}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,23}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}a^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,23}$ only has the identity automorphism, so the marked fatgraphs $G_{6,23}^{(0)}$ to $G_{6,23}^{(120)}$ are formed by decorating boundary cycles of $G_{6,23}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,24}$ (120 orientable markings)

$$lpha = ({}^4b^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^2a^3 o {}^1c^2 o {}^2c^0 o {}^0b^1)$$
 $eta = ({}^3a^0)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,24}$ only has the identity automorphism, so the marked fatgraphs $G_{6,24}^{(0)}$ to $G_{6,24}^{(120)}$ are formed by decorating boundary cycles of $G_{6,24}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,25}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1)$$
 $eta = ({}^4a^0 o {}^1a^2 o {}^2b^3 o {}^2a^3 o {}^3b^0 o {}^1c^2 o {}^2c^0 o {}^0b^1)$
 $\gamma = ({}^3a^4)$
 $\delta = ({}^1b^2)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,25}$ only has the identity automorphism, so the marked fatgraphs $G_{6,25}^{(0)}$ to $G_{6,25}^{(120)}$ are formed by decorating boundary cycles of $G_{6,25}$ with all

The Fatgraph $G_{6,26}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^3c^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^1c^2 o {}^0b^1)$$
 $eta = ({}^2a^0 o {}^0c^1)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,26}$ only has the identity automorphism, so the marked fatgraphs $G_{6,26}^{(0)}$ to $G_{6,26}^{(120)}$ are formed by decorating boundary cycles of $G_{6,26}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{\rm 6,27}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1})$$
 $eta = ({}^{1}c^{2} o {}^{1}a^{2} o {}^{1}b^{2} o {}^{3}a^{0} o {}^{3}b^{0} o {}^{3}c^{0})$
 $\gamma = ({}^{2}a^{3} o {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{2}c^{3})$

Automorphisms

A_0														
$A_1^{\dagger \ddagger}$	a	С	b	4	2	1	5	0	3	γ	β	α	ϵ	δ

Markings

	$G_{6,27}^{(0)}$	$G_{6,27}^{(1)}$	$G_{6,27}^{(2)}$	$G_{6,27}^{(3)}$	$G_{6,27}^{(4)}$	$G_{6,27}^{(5)}$	$G_{6,27}^{(6)}$	$G_{6,27}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,27}^{(8)}$	$G_{6,27}^{(9)}$	$G_{6,27}^{(10)}$	$G_{6,27}^{(11)}$	$G_{6,27}^{(12)}$	$G_{6,27}^{(13)}$	$G_{6,27}^{(14)}$	$G_{6,27}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin							
	$G_{6,27}^{(16)}$	$G_{6,27}^{(17)}$	$G_{6,27}^{(18)}$	$G_{6,27}^{(19)}$	$G_{6,27}^{(20)}$	$G_{6,27}^{(21)}$	$G_{6,27}^{(22)}$	$G_{6,27}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,27}^{(24)}$	$G_{6,27}^{(25)}$	$G_{6,27}^{(26)}$	$G_{6,27}^{(27)}$	$G_{6,27}^{(28)}$	$G_{6,27}^{(29)}$	$G_{6,27}^{(30)}$	$G_{6,27}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{6,27}^{(32)}$	$G_{6,27}^{(33)}$	$G_{6,27}^{(34)}$	$G_{6,27}^{(35)}$	$G_{6,27}^{(36)}$	$G_{6,27}^{(37)}$	$G_{6,27}^{(38)}$	$G_{6,27}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{6,27}^{(40)}$	$G_{6,27}^{(41)}$	$G_{6,27}^{(42)}$	$G_{6,27}^{(43)}$	$G_{6,27}^{(44)}$	$G_{6,27}^{(45)}$	$G_{6,27}^{(46)}$	$G_{6,27}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	0	4	1	3	1	4	0
	$G_{6,27}^{(48)}$	$G_{6,27}^{(49)}$	$G_{6,27}^{(50)}$	$G_{6,27}^{(51)}$	$G_{6,27}^{(52)}$	$G_{6,27}^{(53)}$	$G_{6,27}^{(54)}$	$G_{6,27}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{6,27}^{(56)}$	$G_{6,27}^{(57)}$	$G_{6,27}^{(58)}$	$G_{6,27}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{\rm 6,28}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{5}a^{0})$
 $\gamma = ({}^{4}a^{5}
ightarrow {}^{2}b^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{0}b^{1})$
 $\epsilon = ({}^{0}c^{1})$

Automorphisms

A_0														
$A_1^{\dagger \ddagger}$	a	С	b	3	4	5	0	1	2	γ	β	α	ϵ	δ

Markings

	$G_{6,28}^{(0)}$	$G_{6,28}^{(1)}$	$G_{6,28}^{(2)}$	$G_{6,28}^{(3)}$	$G_{6,28}^{(4)}$	$G_{6,28}^{(5)}$	$G_{6,28}^{(6)}$	$G_{6,28}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,28}^{(8)}$	$G_{6,28}^{(9)}$	$G_{6,28}^{(10)}$	$G_{6,28}^{(11)}$	$G_{6,28}^{(12)}$	$G_{6,28}^{(13)}$	$G_{6,28}^{(14)}$	$G_{6,28}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin	rued.)						
	$G_{6,28}^{(16)}$	$G_{6,28}^{(17)}$	$G_{6,28}^{(18)}$	$G_{6,28}^{(19)}$	$G_{6,28}^{(20)}$	$G_{6,28}^{(21)}$	$G_{6,28}^{(22)}$	$G_{6,28}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,28}^{(24)}$	$G_{6,28}^{(25)}$	$G_{6,28}^{(26)}$	$G_{6,28}^{(27)}$	$G_{6,28}^{(28)}$	$G_{6,28}^{(29)}$	$G_{6,28}^{(30)}$	$G_{6,28}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{6,28}^{(32)}$	$G_{6,28}^{(33)}$	$G_{6,28}^{(34)}$	$G_{6,28}^{(35)}$	$G_{6,28}^{(36)}$	$G_{6,28}^{(37)}$	$G_{6,28}^{(38)}$	$G_{6,28}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{6,28}^{(40)}$	$G_{6,28}^{(41)}$	$G_{6,28}^{(42)}$	$G_{6,28}^{(43)}$	$G_{6,28}^{(44)}$	$G_{6,28}^{(45)}$	$G_{6,28}^{(46)}$	$G_{6,28}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	$O_{(49)}$	4	1	3	1	4	0
	$G_{6,28}^{(48)}$	$G_{6,28}^{(49)}$	$G_{6,28}^{(50)}$	$G_{6,28}^{(51)}$	$G_{6,28}^{(52)}$	$G_{6,28}^{(53)}$	$G_{6,28}^{(54)}$	$G_{6,28}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0 (59)	1	0	2	1
	$G_{6,28}^{(56)}$	$G_{6,28}^{(57)}$	$G_{6,28}^{(58)}$	$G_{6,28}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{6,29}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\gamma = ({}^{4}b^{0}
ightarrow {}^{2}b^{3})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,29}$ only has the identity automorphism, so the marked fatgraphs $G_{6,29}^{(0)}$ to $G_{6,29}^{(120)}$ are formed by decorating boundary cycles of $G_{6,29}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,30}$ (120 orientable markings)

$$lpha = ({}^2a^3 o {}^0a^1 o {}^0b^1) \ eta = ({}^1a^2 o {}^2b^0 o {}^2c^0 o {}^1c^2 o {}^1b^2) \ \gamma = ({}^3a^4 o {}^5a^0) \ \delta = ({}^4a^5) \ \epsilon = ({}^0c^1)$$

Markings

Fatgraph $G_{6,30}$ only has the identity automorphism, so the marked fatgraphs $G_{6,30}^{(0)}$ to $G_{6,30}^{(120)}$ are formed by decorating boundary cycles of $G_{6,30}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,31}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{0}c^{1}
ightarrow {}^{4}a^{0})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{2}b^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{0}b^{1})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,31}$ only has the identity automorphism, so the marked fatgraphs $G_{6,31}^{(0)}$ to $G_{6,31}^{(120)}$ are formed by decorating boundary cycles of $G_{6,31}$ with all

The Fatgraph $G_{6,32}$ (120 orientable markings)

Boundary cycles

$$\begin{split} \alpha &= (^{1}a^{2} \rightarrow \ ^{0}b^{1} \rightarrow \ ^{0}a^{1} \rightarrow \ ^{0}c^{1} \rightarrow \ ^{1}b^{2}) \\ \beta &= (^{2}a^{0} \rightarrow \ ^{3}c^{0} \rightarrow \ ^{1}c^{2}) \\ \gamma &= (^{4}b^{0} \rightarrow \ ^{2}b^{3}) \\ \delta &= (\ ^{3}b^{4}) \\ \epsilon &= (^{2}c^{3}) \end{split}$$

Markings

Fatgraph $G_{6,32}$ only has the identity automorphism, so the marked fatgraphs $G_{6,32}^{(0)}$ to $G_{6,32}^{(120)}$ are formed by decorating boundary cycles of $G_{6,32}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{\rm 6,33}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}a^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{2}c^{3})$

Automorphisms

A_0														
$A_1^{\dagger \ddagger}$	a	С	b	4	2	1	5	0	3	γ	β	α	ϵ	δ

Markings

	$G_{6,33}^{(0)}$	$G_{6,33}^{(1)}$	$G_{6,33}^{(2)}$	$G_{6,33}^{(3)}$	$G_{6,33}^{(4)}$	$G_{6,33}^{(5)}$	$G_{6,33}^{(6)}$	$G_{6,33}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,33}^{(8)}$	$G_{6,33}^{(9)}$	$G_{6,33}^{(10)}$	$G_{6,33}^{(11)}$	$G_{6,33}^{(12)}$	$G_{6,33}^{(13)}$	$G_{6,33}^{(14)}$	$G_{6,33}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin	nued.)						
	$G_{6,33}^{(16)}$	$G_{6,33}^{(17)}$	$G_{6,33}^{(18)}$	$G_{6,33}^{(19)}$	$G_{6,33}^{(20)}$	$G_{6,33}^{(21)}$	$G_{6,33}^{(22)}$	$G_{6,33}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,33}^{(24)}$	$G_{6,33}^{(25)}$	$G_{6,33}^{(26)}$	$G_{6,33}^{(27)}$	$G_{6,33}^{(28)}$	$G_{6,33}^{(29)}$	$G_{6,33}^{(30)}$	$G_{6,33}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{6,33}^{(32)}$	$G_{6,33}^{(33)}$	$G_{6,33}^{(34)}$	$G_{6,33}^{(35)}$	$G_{6,33}^{(36)}$	$G_{6,33}^{(37)}$	$G_{6,33}^{(38)}$	$G_{6,33}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{6,33}^{(40)}$	$G_{6,33}^{(41)}$	$G_{6,33}^{(42)}$	$G_{6,33}^{(43)}$	$G_{6,33}^{(44)}$	$G_{6,33}^{(45)}$	$G_{6,33}^{(46)}$	$G_{6,33}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	$O_{(49)}$	4	1	3	1	4	0
	$G_{6,33}^{(48)}$	$G_{6,33}$	$G_{6,33}^{(50)}$	$G_{6,33}^{(51)}$	$G_{6,33}^{(52)}$	$G_{6,33}^{(53)}$	$G_{6,33}^{(54)}$	$G_{6,33}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	$O_{(57)}$	1	0	1	0	2	1
	$G_{6,33}^{(56)}$	$G_{6,33}$	$G_{6,33}^{(58)}$	$G_{6,33}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{6,34}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{4}b^{0}
ightarrow {}^{2}a^{3}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,34}$ only has the identity automorphism, so the marked fatgraphs $G_{6,34}^{(0)}$ to $G_{6,34}^{(120)}$ are formed by decorating boundary cycles of $G_{6,34}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,35}$ (120 orientable markings)

$$lpha = ({}^3a^4 o {}^5a^0 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^0b^1)$$
 $eta = ({}^1a^2 o {}^2b^0)$
 $\gamma = ({}^2a^3 o {}^1b^2)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,35}$ only has the identity automorphism, so the marked fatgraphs $G_{6,35}^{(0)}$ to $G_{6,35}^{(120)}$ are formed by decorating boundary cycles of $G_{6,35}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,36}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^0c^1 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^0b^1 o {}^3c^0 o {}^1c^2 o {}^4a^0)$
 $\delta = ({}^3a^4)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,36}$ only has the identity automorphism, so the marked fatgraphs $G_{6,36}^{(0)}$ to $G_{6,36}^{(120)}$ are formed by decorating boundary cycles of $G_{6,36}$ with all

The Fatgraph $G_{6,37}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^3a^4 o {}^1c^2 o {}^2a^3 o {}^0b^1 o {}^5a^0 o {}^2c^0)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,37}$ only has the identity automorphism, so the marked fatgraphs $G_{6,37}^{(0)}$ to $G_{6,37}^{(120)}$ are formed by decorating boundary cycles of $G_{6,37}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,38}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{4}b^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}b^{3})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,38}$ only has the identity automorphism, so the marked fatgraphs $G_{6,38}^{(0)}$ to $G_{6,38}^{(120)}$ are formed by decorating boundary cycles of $G_{6,38}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,39}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{5}c^{0}
ightarrow {}^{3}c^{4}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{4}c^{5})$

Markings

Fatgraph $G_{6,39}$ only has the identity automorphism, so the marked fatgraphs $G_{6,39}^{(0)}$ to $G_{6,39}^{(120)}$ are formed by decorating boundary cycles of $G_{6,39}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,40}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}a^{3}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\gamma = ({}^{3}a^{0}
ightarrow {}^{4}b^{0}
ightarrow {}^{2}b^{3})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,40}$ only has the identity automorphism, so the marked fatgraphs $G_{6,40}^{(0)}$ to $G_{6,40}^{(120)}$ are formed by decorating boundary cycles of $G_{6,40}$ with all

The Fatgraph $G_{6,41}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1)$$
 $eta = ({}^1a^2
ightarrow {}^2a^3
ightarrow {}^1b^2
ightarrow {}^1c^2
ightarrow {}^2c^0)$
 $\gamma = ({}^3a^4
ightarrow {}^5a^0
ightarrow {}^0b^1)$
 $\delta = ({}^4a^5)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,41}$ only has the identity automorphism, so the marked fatgraphs $G_{6,41}^{(0)}$ to $G_{6,41}^{(120)}$ are formed by decorating boundary cycles of $G_{6,41}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,42}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 1, 0, 5, 5]),# a
   Vertex([1, 2, 0]),  # b
   Vertex([4, 2, 3, 3]), # c
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}b^{0})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{1}b^{2}
ightarrow {}^{0}c^{1}
ightarrow {}^{4}a^{0})$
 $\delta = ({}^{3}a^{4})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,42}$ only has the identity automorphism, so the marked fatgraphs $G_{6,42}^{(0)}$ to $G_{6,42}^{(120)}$ are formed by decorating boundary cycles of $G_{6,42}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,43}$ (120 orientable markings)


```
Fatgraph([
    Vertex([2, 3, 1, 0, 5, 5]),# a
    Vertex([1, 2, 0]), # b
    Vertex([4, 4, 3]), # c
])
```

$$lpha = ({}^{1}a^{2} o {}^{0}b^{1} o {}^{0}a^{1} o {}^{1}c^{2} o {}^{2}c^{0})$$
 $eta = ({}^{2}a^{3} o {}^{2}b^{0})$
 $\gamma = ({}^{3}a^{4} o {}^{5}a^{0} o {}^{1}b^{2})$
 $\delta = ({}^{4}a^{5})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,43}$ only has the identity automorphism, so the marked fatgraphs $G_{6,43}^{(0)}$ to $G_{6,43}^{(120)}$ are formed by decorating boundary cycles of $G_{6,43}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,44}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^5c^0
ightarrow {}^3c^4
ightarrow {}^0a^1
ightarrow {}^1b^2) \ eta = ({}^1a^2
ightarrow {}^2c^3
ightarrow {}^0c^1
ightarrow {}^0b^1) \ \gamma = ({}^2a^0
ightarrow {}^2b^0) \ \delta = ({}^1c^2) \ \epsilon = ({}^4c^5)$$

Automorphisms

Markings

	$G_{6,44}^{(0)}$	$G_{6,44}^{(1)}$	$G_{6,44}^{(2)}$	$G_{6,44}^{(3)}$	$G_{6,44}^{(4)}$	$G_{6,44}^{(5)}$	$G_{6,44}^{(6)}$	$G_{6,44}^{(7)}$
α	0	0	0 0	0	0	0	0	0
α β	1	1	1	1	1	1	2	2
	2	2	3	3	4	4	1	1
$\frac{\gamma}{\delta}$	3	4	2	4	2	3	3	4
		3	4	2	3	2	4	3
ϵ	4		\sim (10)				$\alpha(14)$	
	$G_{6,44}^{(8)}$	$G_{6,44}^{(9)}$		$G_{6,44}^{(11)}$	$G_{6,44}^{(12)}$	$G_{6,44}^{(13)}$		$G_{6,44}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
€	(16)	$G_{6,44}^{(17)}$	$G_{6,44}^{(18)}$	1	(20)	2	(22)	(23)
	$G_{6,44}^{(16)}$			$G_{6,44}^{(19)}$	$G_{6,44}^{(20)}$	$G_{6,44}^{(21)}$	$G_{6,44}^{(22)}$	$G_{6,44}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,44}^{(24)}$	$G_{6,44}^{(25)}$	$G_{6,44}^{(26)}$	$G_{6,44}^{(27)}$	$G_{6,44}^{(28)}$	$G_{6,44}^{(29)}$	$G_{6,44}^{(30)}$	$G_{6,44}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{6,44}^{(32)}$	$G_{6,44}^{(33)}$	$G_{6,44}^{(34)}$	$G_{6,44}^{(35)}$	$G_{6,44}^{(36)}$	$G_{6,44}^{(37)}$	$G_{6,44}^{(38)}$	$G_{6,44}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{6,44}^{(40)}$	$G_{6,44}^{(41)}$	$G_{6,44}^{(42)}$	$G_{6,44}^{(43)}$	$G_{6,44}^{(44)}$	$G_{6,44}^{(45)}$	$G_{6,44}^{(46)}$	$G_{6,44}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{6,44}^{(48)}$	$G_{6,44}^{(49)}$	$G_{6,44}^{(50)}$	$G_{6,44}^{(51)}$	$G_{6,44}^{(52)}$	$G_{6,44}^{(53)}$	$G_{6,44}^{(54)}$	$G_{6,44}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
,	•	J	_	_	J	J	•	

	(contin	nued.)						
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{6,44}^{(56)}$	$G_{6,44}^{(57)}$	$G_{6,44}^{(58)}$	$G_{6,44}^{(59)}$!	'	!
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{6,45}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} &lpha = ({}^3b^0
ightarrow {}^0a^1) \ η = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^1b^2) \ &\gamma = ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^4a^0) \ &\delta = ({}^3a^4) \ &\epsilon = ({}^0c^1) \end{aligned}$$

Markings

Fatgraph $G_{6,45}$ only has the identity automorphism, so the marked fatgraphs $G_{6,45}^{(0)}$ to $G_{6,45}^{(120)}$ are formed by decorating boundary cycles of $G_{6,45}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,46}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3, 3]),# a
   Vertex([1, 2, 4]),  # b
   Vertex([0, 4, 5, 5]),  # c
])
```

Boundary cycles

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^3c^0
ightarrow {}^1c^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^4a^0) \ \delta &= ({}^3a^4) \ \epsilon &= ({}^2c^3) \end{aligned}$$

Markings

Fatgraph $G_{6,46}$ only has the identity automorphism, so the marked fatgraphs $G_{6,46}^{(0)}$ to $G_{6,46}^{(120)}$ are formed by decorating boundary cycles of $G_{6,46}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,47}$ (120 orientable markings)


```
Fatgraph([
    Vertex([1, 0, 2]), # a
    Vertex([0, 4, 2, 3, 3]),# b
    Vertex([1, 4, 5, 5]), # c
])
```

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{4}b^{0}
ightarrow {}^{2}b^{3})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{3}b^{4})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,47}$ only has the identity automorphism, so the marked fatgraphs $G_{6,47}^{(0)}$ to $G_{6,47}^{(120)}$ are formed by decorating boundary cycles of $G_{6,47}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,48}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^0a^1 o {}^0c^1 o {}^2b^3) \ eta = ({}^1a^2 o {}^3c^0 o {}^1c^2 o {}^1b^2) \ \gamma = ({}^2a^0 o {}^0b^1) \ \delta = ({}^3b^4) \ \epsilon = ({}^2c^3)$$

Markings

Fatgraph $G_{6,48}$ only has the identity automorphism, so the marked fatgraphs $G_{6,48}^{(0)}$ to $G_{6,48}^{(120)}$ are formed by decorating boundary cycles of $G_{6,48}$ with all

The Fatgraph $G_{6,49}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3]), # a
   Vertex([1, 2, 0]), # b
   Vertex([3, 4, 4, 5, 5]),# c
])
```

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^4c^0 o {}^2a^3 o {}^0b^1 o {}^3a^0 o {}^0c^1 o {}^2c^3)$
 $\delta = ({}^1c^2)$
 $\epsilon = ({}^3c^4)$

Markings

Fatgraph $G_{6,49}$ only has the identity automorphism, so the marked fatgraphs $G_{6,49}^{(0)}$ to $G_{6,49}^{(120)}$ are formed by decorating boundary cycles of $G_{6,49}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,50}$ (120 orientable markings)


```
Fatgraph([
  Vertex([1, 0, 2, 4, 3]),# a
  Vertex([1, 2, 0]), # b
  Vertex([3, 4, 5, 5]), # c
])
```

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^0b^1 o {}^3c^0 o {}^1c^2 o {}^4a^0)$
 $\delta = ({}^3a^4 o {}^0c^1)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,50}$ only has the identity automorphism, so the marked fatgraphs $G_{6,50}^{(0)}$ to $G_{6,50}^{(120)}$ are formed by decorating boundary cycles of $G_{6,50}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,51}$ (120 orientable markings)


```
Fatgraph([
    Vertex([1, 0, 2, 3, 4, 3]),# a
    Vertex([1, 2, 0]), # b
    Vertex([5, 5, 4]), # c
])
```

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^5a^0 o {}^0b^1)$
 $\delta = ({}^4a^5 o {}^3a^4 o {}^1c^2 o {}^2c^0)$
 $\epsilon = ({}^0c^1)$

Markings

Fatgraph $G_{6,51}$ only has the identity automorphism, so the marked fatgraphs $G_{6,51}^{(0)}$ to $G_{6,51}^{(120)}$ are formed by decorating boundary cycles of $G_{6,51}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,52}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^0b^1 o {}^0c^1 o {}^4a^0)$
 $\delta = ({}^3a^4 o {}^3c^0 o {}^1c^2)$
 $\epsilon = ({}^2c^3)$

Markings

Fatgraph $G_{6,52}$ only has the identity automorphism, so the marked fatgraphs $G_{6,52}^{(0)}$ to $G_{6,52}^{(120)}$ are formed by decorating boundary cycles of $G_{6,52}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,53}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3]), # a
   Vertex([1, 2, 0]), # b
   Vertex([4, 3, 4, 5, 5]),# c
])
```

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^3a^0 o {}^0c^1 o {}^1c^2 o {}^0b^1)$
 $\delta = ({}^4c^0 o {}^2c^3)$
 $\epsilon = ({}^3c^4)$

Markings

Fatgraph $G_{6,53}$ only has the identity automorphism, so the marked fatgraphs $G_{6,53}^{(0)}$ to $G_{6,53}^{(120)}$ are formed by decorating boundary cycles of $G_{6,53}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,54}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^1c^2
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^2c^3
ightarrow {}^0c^1
ightarrow {}^0b^1) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0) \ \delta &= ({}^5c^0
ightarrow {}^3c^4) \ \epsilon &= ({}^4c^5) \end{aligned}$$

Markings

Fatgraph $G_{6,54}$ only has the identity automorphism, so the marked fatgraphs $G_{6,54}^{(0)}$ to $G_{6,54}^{(120)}$ are formed by decorating boundary cycles of $G_{6,54}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,55}$ (120 orientable markings)


```
Fatgraph([
   Vertex([0, 2, 1, 3, 4]),# a
   Vertex([3, 1, 2, 0]), # b
   Vertex([5, 5, 4]), # c
])
```

$$lpha = ({}^{0}a^{1} \rightarrow {}^{2}b^{3})$$
 $eta = ({}^{1}a^{2} \rightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3} \rightarrow {}^{0}b^{1})$
 $\delta = ({}^{3}b^{0} \rightarrow {}^{4}a^{0} \rightarrow {}^{3}a^{4} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}c^{0})$
 $\epsilon = ({}^{0}c^{1})$

Markings

Fatgraph $G_{6,55}$ only has the identity automorphism, so the marked fatgraphs $G_{6,55}^{(0)}$ to $G_{6,55}^{(120)}$ are formed by decorating boundary cycles of $G_{6,55}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,56}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}c^{2}
ightarrow {}^{5}a^{0})$
 $\epsilon = ({}^{4}a^{5})$

Markings

Fatgraph $G_{6,56}$ only has the identity automorphism, so the marked fatgraphs $G_{6,56}^{(0)}$ to $G_{6,56}^{(120)}$ are formed by decorating boundary cycles of $G_{6,56}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,57}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{4}b^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{2}b^{3})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{3}b^{4})$

Markings

Fatgraph $G_{6,57}$ only has the identity automorphism, so the marked fatgraphs $G_{6,57}^{(0)}$ to $G_{6,57}^{(120)}$ are formed by decorating boundary cycles of $G_{6,57}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,58}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 3, 2, 0]),# a
   Vertex([4, 2, 3, 1]),# b
   Vertex([0, 4, 5, 5]),# c
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{2}b^{3})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{3}a^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2})$
 $\epsilon = ({}^{2}c^{3})$

Markings

Fatgraph $G_{6,58}$ only has the identity automorphism, so the marked fatgraphs $G_{6,58}^{(0)}$ to $G_{6,58}^{(120)}$ are formed by decorating boundary cycles of $G_{6,58}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,59}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 4, 3, 0]), # a
   Vertex([0, 3, 2, 5, 5]),# b
   Vertex([4, 1, 2]), # c
])
```

$$egin{aligned} & lpha = ({}^0a^1
ightarrow {}^0c^1) \ & eta = ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1b^2) \ & \gamma = ({}^2a^3
ightarrow {}^0b^1) \ & \delta = ({}^3a^0
ightarrow {}^4b^0
ightarrow {}^1c^2
ightarrow {}^2b^3) \ & \epsilon = ({}^3b^4) \end{aligned}$$

Markings

Fatgraph $G_{6,59}$ only has the identity automorphism, so the marked fatgraphs $G_{6,59}^{(0)}$ to $G_{6,59}^{(120)}$ are formed by decorating boundary cycles of $G_{6,59}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,60}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1
ightarrow {}^1c^2) \ eta = ({}^1a^2
ightarrow {}^0c^1) \ \gamma = ({}^2a^3
ightarrow {}^2c^0
ightarrow {}^1b^2) \ \delta = ({}^3a^4
ightarrow {}^5a^0
ightarrow {}^0b^1) \ \epsilon = ({}^4a^5)$$

Markings

Fatgraph $G_{6,60}$ only has the identity automorphism, so the marked fatgraphs $G_{6,60}^{(0)}$ to $G_{6,60}^{(120)}$ are formed by decorating boundary cycles of $G_{6,60}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,61}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{3}c^{0}
ightarrow {}^{0}b^{1}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3}) \ \delta = ({}^{4}b^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{2}b^{3}) \ \epsilon = ({}^{3}b^{4})$$

Markings

Fatgraph $G_{6,61}$ only has the identity automorphism, so the marked fatgraphs $G_{6,61}^{(0)}$ to $G_{6,61}^{(120)}$ are formed by decorating boundary cycles of $G_{6,61}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{\rm 6,62}$ (non-orientable, 20 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^3c^0
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1) \ \delta &= ({}^3a^0
ightarrow {}^3b^0
ightarrow {}^1c^2) \ \epsilon &= ({}^2c^3
ightarrow {}^2b^3) \end{aligned}$$

Automorphisms

A_0	a	b	С	0	1	2	3	4	5	α	β	γ	δ	ϵ
$A_1^{\dagger \ddagger}$	a	С	b	4	2	1	5	0	3	γ	δ	α	β	ϵ
${A_2}^{\ddagger}$	b	С	a	3	0	5	1	2	4	γ	β	ϵ	δ	α
$A_3^{\dagger \ddagger}$	b	a	С	2	5	0	4	3	1	ϵ	δ	γ	β	α
$A_4^{\dagger \ddagger}$	С	b	a	5	4	3	2	1	0	α	δ	ϵ	β	γ
A_5^{\ddagger}	С	a	b	1	3	4	0	5	2	ϵ	β	α	δ	γ

Markings

	$G_{6,62}^{(0)}$	$G_{6,62}^{(1)}$	$G_{6,62}^{(2)}$	$G_{6,62}^{(3)}$	$G_{6,62}^{(4)}$	$G_{6,62}^{(5)}$	$G_{6,62}^{(6)}$	$G_{6,62}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,62}^{(8)}$	$G_{6,62}^{(9)}$	$G_{6,62}^{(10)}$	$G_{6,62}^{(11)}$	$G_{6,62}^{(12)}$	$G_{6,62}^{(13)}$	$G_{6,62}^{(14)}$	$G_{6,62}^{(15)}$
α	0	0	0	0	1	1	1	1

	(contin	nued.)						
β	2	2	3	3	0	0	0	0
γ	3	4	1	2	2	2	3	3
δ	4	3	4	4	3	4	2	4
ϵ	1	1	2	1	4	3	4	2
	$G_{6,62}^{(16)}$	$G_{6,62}^{(17)}$	$G_{6,62}^{(18)}$	$G_{6,62}^{(19)}$				
α	1	1	2	2				
β	0	0	0	0				
γ	4	4	3	4				
δ	2	3	1	1				
ϵ	3	2	4	3				

The Fatgraph $G_{6,63}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1) \ eta = ({}^1a^2
ightarrow {}^1b^2) \ \gamma = ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^5a^0
ightarrow {}^2c^0) \ \delta = ({}^3a^4
ightarrow {}^1c^2) \ \epsilon = ({}^4a^5
ightarrow {}^0c^1)$$

Automorphisms

A_0															
A_1	†‡	a	С	b	3	5	4	0	2	1	δ	ϵ	γ	α	β

Markings

	$\alpha^{(0)}$	$\alpha^{(1)}$	$\alpha^{(2)}$	$\alpha^{(3)}$	$\alpha^{(4)}$	$\alpha^{(5)}$	$\alpha^{(6)}$	$\alpha^{(7)}$
	$G_{6,63}^{(0)}$	$G_{6,63}^{(1)}$	$G_{6,63}^{(2)}$	$G_{6,63}^{(3)}$	$G_{6,63}^{(4)}$	$G_{6,63}^{(5)}$	$G_{6,63}^{(6)}$	$G_{6,63}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	$4 \qquad \qquad C^{(14)}$	3
	$G_{6,63}^{(8)}$	$G_{6,63}^{(9)}$	$G_{6,63}^{(10)}$	$G_{6,63}^{(11)}$	$G_{6,63}^{(12)}$	$G_{6,63}^{(13)}$	$G_{6,63}^{(14)}$	$G_{6,63}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{6,63}^{(16)}$	$G_{6,63}^{(17)}$	$G_{6,63}^{(18)}$	$G_{6,63}^{(19)}$	$G_{6,63}^{(20)}$	$G_{6,63}^{(21)}$	$G_{6,63}^{(22)}$	$G_{6,63}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{6,63}^{(24)}$	$G_{6,63}^{(25)}$	$G_{6,63}^{(26)}$	$G_{6,63}^{(27)}$	$G_{6,63}^{(28)}$	$G_{6,63}^{(29)}$	$G_{6,63}^{(30)}$	$G_{6,63}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{6,63}^{(32)}$	$G_{6,63}^{(33)}$	$G_{6,63}^{(34)}$	$G_{6,63}^{(35)}$	$G_{6,63}^{(36)}$	$G_{6,63}^{(37)}$	$G_{6,63}^{(38)}$	$G_{6,63}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	4	3	2	4	4	2	2	3
ϵ	0	0	4	2	0	0	3	2
	$G_{6,63}^{(40)}$	$G_{6,63}^{(41)}$	$G_{6,63}^{(42)}$	$G_{6,63}^{(43)}$	$G_{6,63}^{(44)}$	$G_{6,63}^{(45)}$	$G_{6,63}^{(46)}$	$G_{6,63}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	3	2	3	4	4	3	3	4
ϵ	0	0	4	3	1	1	4	3
	$G_{6,63}^{(48)}$	$G_{6,63}^{(49)}$	$G_{6,63}^{(50)}$	$G_{6,63}^{(51)}$	$G_{6,63}^{(52)}$	$G_{6,63}^{(53)}$	$G_{6,63}^{(54)}$	$G_{6,63}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	4	3	4	4	3	3	4	4
ϵ	0	0	1	0	1	0	2	1

	(contin	nued.)		
	$G_{6,63}^{(56)}$	$G_{6,63}^{(57)}$	$G_{6,63}^{(58)}$	$G_{6,63}^{(59)}$
α	3	3	3	3
β	1	1	2	2
γ	0	2	0	1
δ	4	4	4	4
ϵ	2	0	1	0

The Fatgraph $G_{6,64}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1
ightarrow {}^0c^1) \ eta = ({}^1a^2
ightarrow {}^1b^2) \ \gamma = ({}^2a^3
ightarrow {}^3c^0
ightarrow {}^0b^1) \ \delta = ({}^2c^3
ightarrow {}^3a^4) \ \epsilon = ({}^1c^2
ightarrow {}^4a^0)$$

Markings

Fatgraph $G_{6,64}$ only has the identity automorphism, so the marked fatgraphs $G_{6,64}^{(0)}$ to $G_{6,64}^{(120)}$ are formed by decorating boundary cycles of $G_{6,64}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Fatgraphs with 7 edges / 4 vertices

There are 103 unmarked fatgraphs in this section, originating 22560 marked fatgraphs (11280 orientable, and 11280 nonorientable).

The Fatgraph $G_{7,0}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1)$$
 $eta = ({}^2d^0 o {}^3a^4 o {}^4a^0 o {}^1a^2 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^1b^2 o {}^1d^2)$
 $\gamma = ({}^2a^3 o {}^0b^1)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,0}$ only has the identity automorphism, so the marked fatgraphs $G_{7,0}^{(0)}$ to $G_{7,0}^{(120)}$ are formed by decorating boundary cycles of $G_{7,0}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7.0}^{(0)}) = -G_{6.0}^{(4)}$	$D(G_{7,0}^{(11)}) = -G_{6,0}^{(7)}$
$D(G_{7,0}^{(1)}) = -G_{6,0}^{(2)}$	$D(G_{7.0}^{(12)}) = -G_{6.0}^{(16)}$
$D(G_{7,0}^{(2)}) = -G_{6,0}^{(5)}$	$D(G_{7,0}^{(13)}) = -G_{6,0}^{(14)}$
$D(G_{7,0}^{(3)}) = -G_{6,0}^{(0)}$	$D(G_{7,0}^{(14)}) = -G_{6,0}^{(17)}$
$D(G_{7,0}^{(4)}) = -G_{6,0}^{(3)}$	$D(G_{7,0}^{(15)}) = -G_{6,0}^{(12)}$
$D(G_{7,0}^{(5)}) = -G_{6,0}^{(1)}$	$D(G_{7,0}^{(16)}) = -G_{6,0}^{(15)}$
$D(G_{7,0}^{(6)}) = -G_{6,0}^{(10)}$	$D(G_{7,0}^{(17)}) = -G_{6,0}^{(13)}$
$D(G_{7,0}^{(7)}) = -G_{6,0}^{(8)}$	$D(G_{7,0}^{(18)}) = -G_{6,0}^{(22)}$
$D(G_{7,0}^{(8)}) = -G_{6,0}^{(11)}$	$D(G_{7,0}^{(19)}) = -G_{6,0}^{(20)}$
$D(G_{7,0}^{(9)}) = -G_{6,0}^{(6)}$	$D(G_{7,0}^{(20)}) = -G_{6,0}^{(23)}$
$D(G_{7,0}^{(10)}) = -G_{6,0}^{(9)}$	$D(G_{7,0}^{(21)}) = -G_{6,0}^{(18)}$

$D(G_{7,0}^{(22)}) = -G_{6,0}^{(21)}$	$D(G_{7,0}^{(60)}) = -G_{6,0}^{(12)}$
$D(G_{7,0}^{(23)}) = -G_{6,0}^{(19)}$	$D(G_{7,0}^{(61)}) = -G_{6,0}^{(17)}$
$D(G_{7,0}^{(24)}) = -G_{6,0}^{(28)}$	$D(G_{7,0}^{(62)}) = +G_{6,0}^{(15)}$
$D(G_{7,0}^{(25)}) = -G_{6,0}^{(26)}$	$D(G_{7,0}^{(63)}) = +G_{6,0}^{(13)}$
$D(G_{7,0}^{(26)}) = -G_{6,0}^{(29)}$	$D(G_{7,0}^{(64)}) = +G_{6,0}^{(14)}$ $D(G_{7,0}^{(64)}) = +G_{6,0}^{(14)}$
$D(G_{7,0}^{(27)}) = G_{6,0}^{(24)}$ $D(G_{7,0}^{(27)}) = -G_{6,0}^{(24)}$	$D(G_{7,0}^{(65)}) = +G_{6,0}^{(16)}$ $D(G_{7,0}^{(65)}) = +G_{6,0}^{(16)}$
$D(G_{7,0}^{(28)}) = G_{6,0}^{(27)}$ $D(G_{7,0}^{(28)}) = -G_{6,0}^{(27)}$	$D(G_{7,0}^{(66)}) = +G_{6,0}^{(18)}$ $D(G_{7,0}^{(66)}) = -G_{6,0}^{(18)}$
$D(G_{7,0}^{(29)}) = -G_{6,0}^{(25)}$ $D(G_{7,0}^{(29)}) = -G_{6,0}^{(25)}$	$D(G_{7,0}^{(67)}) = G_{6,0}^{(23)}$ $D(G_{7,0}^{(67)}) = -G_{6,0}^{(23)}$
$D(G_{7,0}^{(30)}) = -G_{6,0}^{(8)}$ $D(G_{7,0}^{(30)}) = -G_{6,0}^{(8)}$	$D(G_{7,0}^{(68)}) = -G_{6,0}^{(21)}$ $D(G_{7,0}^{(68)}) = +G_{6,0}^{(21)}$
$D(G_{7,0}^{(31)}) = -G_{6,0}^{(10)}$ $D(G_{7,0}^{(31)}) = -G_{6,0}^{(10)}$	$D(G_{7,0}^{(69)}) = +G_{6,0}^{(19)}$ $D(G_{7,0}^{(69)}) = +G_{6,0}^{(19)}$
$D(G_{7,0}^{(32)}) = -G_{6,0}$ $D(G_{7,0}^{(32)}) = +G_{6,0}^{(7)}$	
	$D(G_{7,0}^{(70)}) = +G_{6,0}^{(20)}$
$D(G_{7,0}^{(33)}) = +G_{6,0}^{(9)}$ $D(G_{7,0}^{(34)}) = +G_{6,0}^{(6)}$	$D(G_{7,0}^{(71)}) = +G_{6,0}^{(22)}$
$D(G_{7,0}^{(34)}) = +G_{6,0}^{(6)}$	$D(G_{7,0}^{(72)}) = -G_{6,0}^{(24)}$
$D(G_{7,0}^{(35)}) = +G_{6,0}^{(11)}$	$D(G_{7,0}^{(73)}) = -G_{6,0}^{(29)}$
$D(G_{7,0}^{(36)}) = -G_{6,0}^{(14)}$	$D(G_{7,0}^{(74)}) = +G_{6,0}^{(27)}$
$D(G_{7,0}^{(37)}) = -G_{6,0}^{(16)}$	$D(G_{7,0}^{(75)}) = +G_{6,0}^{(25)}$
$D(G_{7,0}^{(38)}) = +G_{6,0}^{(13)}$	$D(G_{7,0}^{(76)}) = +G_{6,0}^{(26)}$
$D(G_{7,0}^{(39)}) = +G_{6,0}^{(15)}$	$D(G_{7,0}^{(77)}) = +G_{6,0}^{(28)}$
$D(G_{7,0}^{(40)}) = +G_{6,0}^{(12)}$	$D(G_{7,0}^{(78)}) = -G_{6,0}^{(0)}$
$D(G_{7,0}^{(41)}) = +G_{6,0}^{(17)}$	$D(G_{7,0}^{(79)}) = -G_{6,0}^{(5)}$
$D(G_{7,0}^{(42)}) = -G_{6,0}^{(20)}$	$D(G_{7,0}^{(80)}) = +G_{6,0}^{(3)}$
$D(G_{7,0}^{(43)}) = -G_{6,0}^{(22)}$	$D(G_{7,0}^{(81)}) = +G_{6,0}^{(1)}$
$D(G_{7,0}^{(44)}) = +G_{6,0}^{(19)}$	$D(G_{7,0}^{(82)}) = +G_{6,0}^{(2)}$
$D(G_{7,0}^{(45)}) = +G_{6,0}^{(21)}$	$D(G_{7,0}^{(83)}) = +G_{6,0}^{(4)}$
$D(G_{7,0}^{(46)}) = +G_{6,0}^{(18)}$	$D(G_{7,0}^{(84)}) = -G_{6,0}^{(6)}$
$D(G_{7,0}^{(47)}) = +G_{6,0}^{(23)}$	$D(G_{7,0}^{(85)}) = -G_{6,0}^{(11)}$
$D(G_{7,0}^{(48)}) = -G_{6,0}^{(26)}$	$D(G_{7,0}^{(86)}) = +G_{6,0}^{(9)}$
$D(G_{7,0}^{(49)}) = -G_{6,0}^{(28)}$	$D(G_{7,0}^{(87)}) = +G_{6,0}^{(7)}$
$D(G_{7,0}^{(50)}) = +G_{6,0}^{(25)}$	$D(G_{7,0}^{(88)}) = +G_{6,0}^{(8)}$
$D(G_{7,0}^{(51)}) = +G_{6,0}^{(27)}$	$D(G_{7,0}^{(89)}) = +G_{6,0}^{(10)}$
$D(G_{7,0}^{(52)}) = +G_{6,0}^{(24)}$	$D(G_{7,0}^{(90)}) = -G_{6,0}^{(19)}$
$D(G_{7,0}^{(53)}) = +G_{6,0}^{(29)}$	$D(G_{7,0}^{(91)}) = -G_{6,0}^{(21)}$
$D(G_{7,0}^{(54)}) = -G_{6,0}^{(2)}$	$D(G_{7,0}^{(92)}) = +G_{6,0}^{(23)}$
$D(G_{7,0}^{(55)}) = -G_{6,0}^{(4)}$	$D(G_{7,0}^{(93)}) = +G_{6,0}^{(18)}$
$D(G_{7,0}^{(56)}) = +G_{6,0}^{(1)}$	$D(G_{7,0}^{(94)}) = +G_{6,0}^{(22)}$
$D(G_{7,0}^{(57)}) = +G_{6,0}^{(3)}$	$D(G_{7,0}^{(95)}) = +G_{6,0}^{(20)}$
$D(G_{7,0}^{(58)}) = +G_{6,0}^{(0)}$	$D(G_{7,0}^{(96)}) = -G_{6,0}^{(25)}$
$D(G_{7,0}^{(59)}) = +G_{6,0}^{(5)}$	$D(G_{7,0}^{(97)}) = -G_{6,0}^{(27)}$
· ',0 / 0,0	(1,0 / 0,0

$$\begin{array}{ll} D(G_{7,0}^{(98)}) = + G_{6,0}^{(29)} & D(G_{7,0}^{(109)}) = - G_{6,0}^{(9)} \\ D(G_{7,0}^{(99)}) = + G_{6,0}^{(24)} & D(G_{7,0}^{(110)}) = + G_{6,0}^{(110)} \\ D(G_{7,0}^{(100)}) = + G_{6,0}^{(28)} & D(G_{7,0}^{(111)}) = + G_{6,0}^{(6)} \\ D(G_{7,0}^{(101)}) = + G_{6,0}^{(26)} & D(G_{7,0}^{(112)}) = + G_{6,0}^{(10)} \\ D(G_{7,0}^{(102)}) = - G_{6,0}^{(1)} & D(G_{7,0}^{(113)}) = + G_{6,0}^{(8)} \\ D(G_{7,0}^{(103)}) = - G_{6,0}^{(3)} & D(G_{7,0}^{(114)}) = - G_{6,0}^{(13)} \\ D(G_{7,0}^{(104)}) = + G_{6,0}^{(5)} & D(G_{7,0}^{(115)}) = - G_{6,0}^{(15)} \\ D(G_{7,0}^{(106)}) = + G_{6,0}^{(4)} & D(G_{7,0}^{(116)}) = + G_{6,0}^{(12)} \\ D(G_{7,0}^{(107)}) = + G_{6,0}^{(2)} & D(G_{7,0}^{(118)}) = + G_{6,0}^{(16)} \\ D(G_{7,0}^{(108)}) = - G_{6,0}^{(7)} & D(G_{7,0}^{(119)}) = + G_{6,0}^{(14)} \\ D(G_{7,0}^{(119)}) = - G_{6,0}^{(7)} & D(G_{7,0}^{(119)}) = + G_{6,0}^{(14)} \\ D(G_{7,0}^{(119)}) = - G_{6,0}^{(7)} & D(G_{7,0}^{(119)}) = + G_{6,0}^{(14)} \\ \end{array}$$

The Fatgraph $G_{7,1}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^2b^3 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^1c^2 o {}^3b^4 o {}^2c^0 o {}^1d^2 o {}^1b^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^4b^0)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,1}$ only has the identity automorphism, so the marked fatgraphs $G_{7,1}^{(0)}$ to $G_{7,1}^{(120)}$ are formed by decorating boundary cycles of $G_{7,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7,1}^{(0)}) = -G_{6,0}^{(1)} - G_{6,0}^{(4)}$	$D(G_{7,1}^{(37)}) = +G_{6,0}^{(15)} - G_{6,0}^{(16)}$
$D(G_{7,1}^{(1)}) = G_{6,0}^{(0)} - G_{6,0}^{(2)}$ $D(G_{7,1}^{(1)}) = -G_{6,0}^{(0)} - G_{6,0}^{(2)}$	$D(G_{7,1}^{(38)}) = +G_{6,0}^{(12)} + G_{6,0}^{(13)}$ $D(G_{7,1}^{(38)}) = +G_{6,0}^{(12)} + G_{6,0}^{(13)}$
	$D(G_{7,1}) = +G_{6,0} + G_{6,0}$
$D(G_{7,1}^{(2)}) = -G_{6,0}^{(3)} - G_{6,0}^{(5)}$	$D(G_{7,1}^{(39)}) = +G_{6,0}^{(15)} - G_{6,0}^{(16)}$
$D(G_{7,1}^{(3)}) = -G_{6,0}^{(0)} - G_{6,0}^{(2)}$	$D(G_{7,1}^{(40)}) = +G_{6,0}^{(12)} + G_{6,0}^{(13)}$
$D(G_{7,1}^{(4)}) = -G_{6,0}^{(3)} - G_{6,0}^{(5)}$	$D(G_{7,1}^{(41)}) = -G_{6,0}^{(14)} + G_{6,0}^{(17)}$
$D(G_{7,1}^{(5)}) = -G_{6,0}^{(1)} - G_{6,0}^{(4)}$	$D(G_{7,1}^{(42)}) = -G_{6,0}^{(20)} + G_{6,0}^{(23)}$
$D(G_{7,1}^{(6)}) = -G_{6,0}^{(7)} - G_{6,0}^{(10)}$	$D(G_{7,1}^{(43)}) = +G_{6,0}^{(21)} - G_{6,0}^{(22)}$
$D(G_{7,1}^{(7)}) = -G_{6,0}^{(6)} - G_{6,0}^{(8)}$	$D(G_{7,1}^{(44)}) = +G_{6,0}^{(18)} + G_{6,0}^{(19)}$
$D(G_{7,1}^{(8)}) = -G_{6,0}^{(9)} - G_{6,0}^{(11)}$	$D(G_{7,1}^{(45)}) = +G_{6,0}^{(21)} - G_{6,0}^{(22)}$
$D(G_{7,1}^{(9)}) = -G_{6,0}^{(6)} - G_{6,0}^{(8)}$	$D(G_{7,1}^{(46)}) = +G_{6,0}^{(18)} + G_{6,0}^{(19)}$
$D(G_{7,1}^{(10)}) = -G_{6,0}^{(9)} - G_{6,0}^{(11)}$	$D(G_{7,1}^{(47)}) = -G_{6,0}^{(20)} + G_{6,0}^{(23)}$
$D(G_{7,1}^{(11)}) = -G_{6,0}^{(7)} - G_{6,0}^{(10)}$	$D(G_{7,1}^{(48)}) = -G_{6,0}^{(26)} + G_{6,0}^{(29)}$
$D(G_{7,1}^{(12)}) = G_{6,0}^{(13)} - G_{6,0}^{(16)}$ $D(G_{7,1}^{(12)}) = -G_{6,0}^{(13)} - G_{6,0}^{(16)}$	$D(G_{7,1}^{(49)}) = +G_{6,0}^{(27)} - G_{6,0}^{(28)}$ $D(G_{7,1}^{(49)}) = +G_{6,0}^{(27)} - G_{6,0}^{(28)}$
$D(G_{7,1}) = -G_{6,0} - G_{6,0}$ $D(G^{(13)}) = G^{(12)} - G^{(14)}$	$D(G_{7,1}) = +G_{6,0} - G_{6,0}$ $D(G^{(50)}) + G^{(24)} + G^{(25)}$
$D(G_{7,1}^{(13)}) = -G_{6,0}^{(12)} - G_{6,0}^{(14)}$	$D(G_{7,1}^{(50)}) = +G_{6,0}^{(24)} + G_{6,0}^{(25)}$
$D(G_{7,1}^{(14)}) = -G_{6,0}^{(15)} - G_{6,0}^{(17)}$	$D(G_{7,1}^{(51)}) = +G_{6,0}^{(27)} - G_{6,0}^{(28)}$
$D(G_{7,1}^{(15)}) = -G_{6,0}^{(12)} - G_{6,0}^{(14)}$	$D(G_{7,1}^{(52)}) = +G_{6,0}^{(24)} + G_{6,0}^{(25)}$
$D(G_{7,1}^{(16)}) = -G_{6,0}^{(15)} - G_{6,0}^{(17)}$	$D(G_{7,1}^{(53)}) = -G_{6,0}^{(26)} + G_{6,0}^{(29)}$
$D(G_{7,1}^{(17)}) = -G_{6,0}^{(13)} - G_{6,0}^{(16)}$	$D(G_{7,1}^{(54)}) = -G_{6,0}^{(2)} + G_{6,0}^{(5)}$
$D(G_{7,1}^{(17)}) = -G_{6,0}^{(13)} - G_{6,0}^{(16)} \ D(G_{7,1}^{(18)}) = -G_{6,0}^{(19)} - G_{6,0}^{(22)}$	$D(G_{7,1}^{(55)}) = +G_{6,0}^{(3)} - G_{6,0}^{(4)}$
$D(G_{7,1}^{(19)}) = -G_{6,0}^{(18)} - G_{6,0}^{(20)}$	$D(G_{7,1}^{(56)}) = +G_{6,0}^{(0)} + G_{6,0}^{(1)}$
$D(G_{7,1}^{(20)}) = -G_{6,0}^{(21)} - G_{6,0}^{(23)}$	$D(G_{7,1}^{(57)}) = +G_{6,0}^{(3)} - G_{6,0}^{(4)}$
$D(G_{7,1}^{(21)}) = -G_{6,0}^{(18)} - G_{6,0}^{(20)}$	$D(G_{7,1}^{(58)}) = +G_{6,0}^{(0)} + G_{6,0}^{(1)}$
$D(G_{7,1}^{(22)}) = -G_{6,0}^{(21)} - G_{6,0}^{(23)}$	$D(G_{7,1}^{(59)}) = -G_{6,0}^{(2)} + G_{6,0}^{(5)}$
$D(G_{7,1}^{(23)}) = -G_{6,0}^{(19)} - G_{6,0}^{(22)}$	$D(G_{7,1}^{(60)}) = -G_{6,0}^{(12)} + G_{6,0}^{(16)}$
$D(G_{7,1}^{(24)}) = -G_{6,0}^{(25)} - G_{6,0}^{(28)}$	$D(G_{7,1}^{(61)}) = +G_{6,0}^{(13)} - G_{6,0}^{(17)}$
$D(G_{7,1}^{(25)}) = -G_{6,0}^{(24)} - G_{6,0}^{(26)}$	$D(G_{7,1}^{(62)}) = +G_{6,0}^{(14)} + G_{6,0}^{(15)}$ $D(G_{7,1}^{(62)}) = +G_{6,0}^{(14)} + G_{6,0}^{(15)}$
$D(G_{7,1}^{(25)}) = -G_{6,0}^{(24)} - G_{6,0}^{(26)}$	$D(G_{7,1}^{(63)}) = +G_{6,0}^{(13)} + G_{6,0}^{(17)}$
$D(G_{7,1}^{(26)}) = -G_{6,0}^{(27)} - G_{6,0}^{(29)}$	$D(G_{7,1}^{(63)}) = +G_{6,0}^{(13)} - G_{6,0}^{(17)}$
$D(G_{7,1}^{(27)}) = -G_{6,0}^{(24)} - G_{6,0}^{(26)} \ D(G_{7,1}^{(28)}) = -G_{6,0}^{(27)} - G_{6,0}^{(29)}$	$D(G_{7,1}^{(64)}) = +G_{6,0}^{(14)} + G_{6,0}^{(15)}$
$D(G_{7,1}^{(25)}) = -G_{6,0}^{(27)} - G_{6,0}^{(25)}$	$D(G_{7,1}^{(65)}) = -G_{6,0}^{(12)} + G_{6,0}^{(16)}$
$D(G_{7,1}^{(29)}) = -G_{6,0}^{(25)} - G_{6,0}^{(28)}$	$D(G_{7,1}^{(66)}) = -G_{6,0}^{(18)} + G_{6,0}^{(22)}$
$D(G_{7,1}^{(30)}) = -G_{6,0}^{(8)} + G_{6,0}^{(11)}$	$D(G_{7,1}^{(67)}) = +G_{6,0}^{(19)} - G_{6,0}^{(23)}$
$D(G_{7,1}^{(31)}) = +G_{6,0}^{(9)} - G_{6,0}^{(10)}$	$D(G_{7,1}^{(68)}) = +G_{6,0}^{(20)} + G_{6,0}^{(21)}$
$D(G_{7,1}^{(32)}) = +G_{6,0}^{(6)} + G_{6,0}^{(7)}$	$D(G_{7,1}^{(69)}) = +G_{6,0}^{(19)} - G_{6,0}^{(23)}$
$D(G_{7,1}^{(33)}) = +G_{6,0}^{(9)} - G_{6,0}^{(10)}$	$D(G_{7,1}^{(70)}) = +G_{6,0}^{(20)} + G_{6,0}^{(21)}$
$D(G_{7,1}^{(34)}) = +G_{6,0}^{(6)} + G_{6,0}^{(7)}$	$D(G_{7,1}^{(71)}) = -G_{6,0}^{(18)} + G_{6,0}^{(22)}$
$D(G_{7,1}^{(35)}) = -G_{6,0}^{(8)} + G_{6,0}^{(11)}$	$D(G_{7,1}^{(72)}) = -G_{6,0}^{(24)} + G_{6,0}^{(28)}$
$D(G_{7,1}^{(36)}) = -G_{6,0}^{(14)} + G_{6,0}^{(17)}$	$D(G_{7,1}^{(73)}) = +G_{6,0}^{(25)} - G_{6,0}^{(29)}$
$\mathcal{L}(\odot_{7,1}) - \odot_{6,0} + \odot_{6,0}$	$\mathcal{L}(G_{7,1}) = \pm G_{6,0} = G_{6,0}$

$$\begin{array}{lll} D(G_{7,1}^{(74)}) = +G_{6,0}^{(26)} + G_{6,0}^{(27)} & D(G_{7,1}^{(75)}) = +G_{6,0}^{(26)} - G_{6,0}^{(29)} \\ D(G_{7,1}^{(75)}) = +G_{6,0}^{(26)} - G_{6,0}^{(29)} & D(G_{7,1}^{(98)}) = +G_{6,0}^{(26)} + G_{6,0}^{(27)} \\ D(G_{7,1}^{(75)}) = +G_{6,0}^{(26)} + G_{6,0}^{(27)} & D(G_{7,1}^{(98)}) = +G_{6,0}^{(26)} + G_{6,0}^{(27)} \\ D(G_{7,1}^{(77)}) = -G_{6,0}^{(24)} + G_{6,0}^{(28)} & D(G_{7,1}^{(100)}) = +G_{6,0}^{(26)} + G_{6,0}^{(26)} \\ D(G_{7,1}^{(79)}) = -G_{6,0}^{(0)} + G_{6,0}^{(4)} & D(G_{7,1}^{(101)}) = -G_{6,0}^{(25)} + G_{6,0}^{(26)} \\ D(G_{7,1}^{(79)}) = +G_{6,0}^{(2)} - G_{6,0}^{(5)} & D(G_{7,1}^{(101)}) = -G_{6,0}^{(25)} + G_{6,0}^{(26)} \\ D(G_{7,1}^{(79)}) = +G_{6,0}^{(2)} - G_{6,0}^{(3)} & D(G_{7,1}^{(101)}) = -G_{6,0}^{(25)} + G_{6,0}^{(26)} \\ D(G_{7,1}^{(81)}) = +G_{6,0}^{(10)} - G_{6,0}^{(5)} & D(G_{7,1}^{(101)}) = +G_{6,0}^{(4)} - G_{6,0}^{(5)} \\ D(G_{7,1}^{(83)}) = +G_{6,0}^{(2)} + G_{6,0}^{(3)} & D(G_{7,1}^{(104)}) = +G_{6,0}^{(4)} + G_{6,0}^{(5)} \\ D(G_{7,1}^{(104)}) = -G_{6,0}^{(6)} + G_{6,0}^{(4)} & D(G_{7,1}^{(105)}) = +G_{6,0}^{(4)} + G_{6,0}^{(5)} \\ D(G_{7,1}^{(81)}) = -G_{6,0}^{(6)} + G_{6,0}^{(4)} & D(G_{7,1}^{(105)}) = +G_{6,0}^{(4)} + G_{6,0}^{(5)} \\ D(G_{7,1}^{(81)}) = +G_{6,0}^{(8)} + G_{6,0}^{(9)} & D(G_{7,1}^{(101)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(81)}) = +G_{6,0}^{(8)} + G_{6,0}^{(9)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(11)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(21)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(21)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(20)} & D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(10)} \\ D(G_{7,1}^{(11)}) = +G_{6,0}^{(10)} + G_{6,0}^{(20)} & D(G_{7,1}^{(11)})$$

The Fatgraph $G_{7,2}$ (120 orientable markings)

$$lpha = ({}^2d^0 o {}^1c^2 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^3b^0 o {}^3c^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,2}$ only has the identity automorphism, so the marked fatgraphs $G_{7,2}^{(0)}$ to $G_{7,2}^{(120)}$ are formed by decorating boundary cycles of $G_{7,2}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7,2}^{(0)}) = -G_{6,1}^{(62)}$	$D(G_{7,2}^{(74)}) = -G_{6,0}^{(36)}$
$D(G_{7,2}^{(1)}) = -G_{6,1}^{(64)}$	$D(G_{7,2}^{(75)}) = -G_{6,0}^{(41)}$
$D(G_{7,2}^{(24)}) = -G_{6,0}^{(38)}$	$D(G_{7,2}^{(76)}) = -G_{6,0}^{(49)}$
$D(G_{7,2}^{(25)}) = -G_{6,0}^{(40)}$	$D(G_{7,2}^{(77)}) = -G_{6,0}^{(51)}$
$D(G_{7,2}^{(26)}) = -G_{6,0}^{(44)}$	$D(G_{7,2}^{(78)}) = -G_{6,0}^{(54)}$
$D(G_{7,2}^{(27)}) = -G_{6,0}^{(46)}$	$D(G_{7,2}^{(79)}) = -G_{6,0}^{(59)}$
$D(G_{7,2}^{(28)}) = -G_{6,0}^{(50)}$	$D(G_{7,2}^{(80)}) = -G_{6,0}^{(60)}$
$D(G_{7,2}^{(29)}) = -G_{6,0}^{(52)}$	$D(G_{7,2}^{(96)}) = -G_{6,0}^{(31)}$
$D(G_{7,2}^{(48)}) = -G_{6,0}^{(32)}$	$D(G_{7,2}^{(97)}) = -G_{6,0}^{(33)}$
$D(G_{7,2}^{(49)}) = -G_{6,0}^{(34)}$	$D(G_{7,2}^{(98)}) = -G_{6,0}^{(37)}$
$D(G_{7,2}^{(50)}) = -G_{6,0}^{(42)}$	$D(G_{7,2}^{(99)}) = -G_{6,0}^{(39)}$ $D(G_{7,2}^{(99)}) = -G_{6,0}^{(39)}$
$D(G_{7,2}^{(51)}) = -G_{6,0}^{(47)}$	
$D(G_{7,2}^{(52)}) = -G_{6,0}^{(48)}$	$D(G_{7,2}^{(100)}) = -G_{6,0}^{(43)}$
$D(G_{7,2}^{(53)}) = -G_{6,0}^{(53)}$	$D(G_{7,2}^{(101)}) = -G_{6,0}^{(45)}$
$D(G_{7,2}^{(54)}) = -G_{6,0}^{(56)}$	$D(G_{7,2}^{(102)}) = -G_{6,0}^{(55)}$
$D(G_{7,2}^{(55)}) = -G_{6,0}^{(58)}$	$D(G_{7,2}^{(103)}) = -G_{6,0}^{(57)}$
$D(G_{7,2}^{(72)}) = -G_{6,0}^{(30)}$	$D(G_{7,2}^{(104)}) = -G_{6,1}^{(61)}$
$D(G_{7,2}^{(73)}) = -G_{6,0}^{(35)}$	$D(G_{7,2}^{(105)}) = -G_{6,1}^{(63)}$

The Fatgraph $G_{7,3}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^2b^3
ightarrow {}^4b^0
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^0b^1
ightarrow {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^0c^1
ightarrow {}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,3}$ only has the identity automorphism, so the marked fatgraphs $G_{7,3}^{(0)}$ to $G_{7,3}^{(120)}$ are formed by decorating boundary cycles of $G_{7,3}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

. (0). (34)	. (11). (37)
$D(G_{7,3}^{(0)}) = -G_{6,0}^{(34)}$	$D(G_{7,3}^{(11)}) = -G_{6,0}^{(37)}$
$D(G_{7,3}^{(1)}) = -G_{6,0}^{(32)}$	$D(G_{7,3}^{(12)}) = -G_{6,0}^{(46)}$
$D(G_{7,3}^{(2)}) = -G_{6,0}^{(35)}$	$D(G_{7,3}^{(13)}) = -G_{6,0}^{(44)}$
$D(G_{7,3}^{(3)}) = -G_{6,0}^{(30)}$	$D(G_{7,3}^{(14)}) = -G_{6,0}^{(47)}$
$D(G_{7,3}^{(4)}) = -G_{6,0}^{(33)}$	$D(G_{7,3}^{(15)}) = -G_{6,0}^{(42)}$
$D(G_{7,3}^{(5)}) = -G_{6,0}^{(31)}$	$D(G_{7,3}^{(16)}) = -G_{6,0}^{(45)}$
$D(G_{7,3}^{(6)}) = -G_{6,0}^{(40)}$	$D(G_{7,3}^{(17)}) = -G_{6,0}^{(43)}$
$D(G_{7,3}^{(7)}) = -G_{6,0}^{(38)}$	$D(G_{7,3}^{(18)}) = -G_{6,0}^{(52)}$
$D(G_{7,3}^{(8)}) = -G_{6,0}^{(41)}$	$D(G_{7,3}^{(19)}) = -G_{6,0}^{(50)}$
$D(G_{7,3}^{(9)}) = -G_{6,0}^{(36)}$	$D(G_{7,3}^{(20)}) = -G_{6,0}^{(53)}$
$D(G_{7,3}^{(10)}) = -G_{6,0}^{(39)}$	$D(G_{7,3}^{(21)}) = -G_{6,0}^{(48)}$

$$\begin{array}{ll} D(G_{7,3}^{(22)}) = -G_{6,0}^{(51)} & D(G_{7,3}^{(29)}) = -G_{6,0}^{(55)} \\ D(G_{7,3}^{(23)}) = -G_{6,0}^{(49)} & D(G_{7,3}^{(30)}) = -G_{6,1}^{(64)} \\ D(G_{7,3}^{(24)}) = -G_{6,0}^{(58)} & D(G_{7,3}^{(31)}) = -G_{6,1}^{(62)} \\ D(G_{7,3}^{(25)}) = -G_{6,0}^{(56)} & D(G_{7,3}^{(33)}) = -G_{6,0}^{(60)} \\ D(G_{7,3}^{(27)}) = -G_{6,0}^{(54)} & D(G_{7,3}^{(34)}) = -G_{6,1}^{(63)} \\ D(G_{7,3}^{(28)}) = -G_{6,0}^{(57)} & D(G_{7,3}^{(35)}) = -G_{6,1}^{(61)} \end{array}$$

The Fatgraph $G_{7,4}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{2}d^{0} o {}^{1}a^{2} o {}^{1}b^{2} o {}^{3}a^{0} o {}^{3}b^{0} o {}^{1}c^{2} o {}^{2}c^{0} o {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{3} o {}^{0}c^{1} o {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,4}$ only has the identity automorphism, so the marked fatgraphs $G_{7,4}^{(0)}$ to $G_{7,4}^{(120)}$ are formed by decorating boundary cycles of $G_{7,4}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$$\begin{array}{lll} D(G_{7,4}^{(0)}) = -G_{6,0}^{(34)} - G_{6,0}^{(48)} & D(G_{7,4}^{(21)}) = -G_{6,0}^{(34)} - G_{6,0}^{(48)} \\ D(G_{7,4}^{(1)}) = -G_{6,0}^{(32)} - G_{6,0}^{(42)} & D(G_{7,4}^{(22)}) = -G_{6,0}^{(34)} - G_{6,0}^{(48)} \\ D(G_{7,4}^{(2)}) = -G_{6,0}^{(35)} - G_{6,0}^{(49)} & D(G_{7,4}^{(22)}) = -G_{6,0}^{(35)} - G_{6,0}^{(49)} \\ D(G_{7,4}^{(3)}) = -G_{6,0}^{(30)} - G_{6,0}^{(36)} & D(G_{7,4}^{(23)}) = -G_{6,0}^{(56)} - G_{6,0}^{(49)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(33)} - G_{6,0}^{(33)} & D(G_{7,4}^{(25)}) = -G_{6,0}^{(56)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(30)} - G_{6,0}^{(30)} & D(G_{7,4}^{(25)}) = -G_{6,0}^{(56)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(30)} - G_{6,0}^{(50)} & D(G_{7,4}^{(27)}) = -G_{6,0}^{(56)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(30)} - G_{6,0}^{(50)} & D(G_{7,4}^{(27)}) = -G_{6,0}^{(55)} - G_{6,1}^{(61)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(30)} - G_{6,0}^{(36)} & D(G_{7,4}^{(23)}) = -G_{6,0}^{(55)} - G_{6,1}^{(61)} \\ D(G_{7,4}^{(10)}) = -G_{6,0}^{(30)} - G_{6,0}^{(36)} & D(G_{7,4}^{(33)}) = -G_{6,0}^{(62)} \\ D(G_{7,4}^{(11)}) = -G_{6,0}^{(30)} - G_{6,0}^{(30)} & D(G_{7,4}^{(33)}) = -G_{6,0}^{(62)} \\ D(G_{7,4}^{(12)}) = -G_{6,0}^{(36)} - G_{6,0}^{(53)} & D(G_{7,4}^{(33)}) = -G_{6,0}^{(55)} - G_{6,1}^{(61)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(52)} & D(G_{7,4}^{(34)}) = -G_{6,0}^{(55)} - G_{6,1}^{(61)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(52)} & D(G_{7,4}^{(34)}) = -G_{6,0}^{(55)} - G_{6,1}^{(51)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(34)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(34)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(34)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(34)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(14)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(44)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(30)} - G_{6,0}^{(45)} & D(G_{7,4}^{(44)}) = -G_{6,1}^{(55)} \\ D(G_{7,4}^{(4)}) = -G_{6,0}^{(45)}$$

The Fatgraph $G_{7,5}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}b^{0}
ightarrow {}^{4}a^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{2}d^{0}
ightarrow {}^{3}a^{4}
ightarrow {}^{1}d^{2}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,5}$ only has the identity automorphism, so the marked fatgraphs $G_{7,5}^{(0)}$ to $G_{7,5}^{(120)}$ are formed by decorating boundary cycles of $G_{7,5}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

(0) (48)	(18) (46)
$D(G_{7,5}^{(0)}) = +G_{6,0}^{(48)}$	$D(G_{7,5}^{(18)}) = +G_{6,0}^{(46)}$
$D(G_{7,5}^{(1)}) = +G_{6,0}^{(42)}$	$D(G_{7,5}^{(19)}) = +G_{6,0}^{(40)}$
$D(G_{7,5}^{(2)}) = +G_{6,0}^{(49)}$	$D(G_{7,5}^{(20)}) = +G_{6,0}^{(47)}$
$D(G_{7,5}^{(3)}) = +G_{6,0}^{(36)}$	$D(G_{7,5}^{(21)}) = +G_{6,0}^{(34)}$
$D(G_{7,5}^{(4)}) = +G_{6,0}^{(43)}$	$D(G_{7,5}^{(22)}) = +G_{6,0}^{(41)}$
$D(G_{7,5}^{(5)}) = +G_{6,0}^{(37)}$	$D(G_{7,5}^{(23)}) = +G_{6,0}^{(35)}$
$D(G_{7,5}^{(6)}) = +G_{6,0}^{(50)}$	$D(G_{7,5}^{(27)}) = +G_{6,0}^{(60)}$
$D(G_{7,5}^{(7)}) = +G_{6,0}^{(44)}$	$D(G_{7.5}^{(29)}) = +G_{6.1}^{(61)}$
$D(G_{7,5}^{(8)}) = +G_{6,0}^{(51)}$, ,
$D(G_{7,5}^{(9)}) = +G_{6,0}^{(30)}$	$D(G_{7,5}^{(33)}) = +G_{6,0}^{(54)}$
$D(G_{7,5}^{(10)}) = +G_{6,0}^{(45)}$	$D(G_{7,5}^{(35)}) = +G_{6,0}^{(55)}$
$D(G_{7,5}^{(11)}) = +G_{6,0}^{(31)}$	$D(G_{7,5}^{(37)}) = +G_{6,1}^{(62)}$
$D(G_{7,5}^{(12)}) = +G_{6,0}^{(52)}$	$D(G_{7,5}^{(39)}) = +G_{6,0}^{(56)}$
$D(G_{7,5}^{(13)}) = +G_{6,0}^{(38)}$	$D(G_{7,5}^{(40)}) = +G_{6,1}^{(63)}$
$D(G_{7,5}^{(14)}) = +G_{6,0}^{(53)}$	$D(G_{7,5}^{(41)}) = +G_{6,0}^{(57)}$
$D(G_{7,5}^{(15)}) = +G_{6,0}^{(32)}$	$D(G_{7,5}^{(43)}) = +G_{6,1}^{(64)}$
$D(G_{7,5}^{(16)}) = +G_{6,0}^{(39)}$	$D(G_{7,5}^{(45)}) = +G_{6,0}^{(58)}$
$D(G_{7,5}^{(17)}) = +G_{6,0}^{(33)}$	$D(G_{7,5}^{(47)}) = +G_{6,0}^{(59)}$

The Fatgraph $G_{7,6}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^3
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^1c^2
ightarrow {}^3b^4
ightarrow {}^2c^0) \ eta = ({}^2a^0) \ \gamma = ({}^2d^0
ightarrow {}^4b^0
ightarrow {}^1d^2
ightarrow {}^0b^1) \ \delta = ({}^0c^1) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,6}$ only has the identity automorphism, so the marked fatgraphs $G_{7,6}^{(0)}$ to $G_{7,6}^{(120)}$ are formed by decorating boundary cycles of $G_{7,6}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,7}$ (120 orientable markings)

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3b^0 o {}^3c^0) \ eta = ({}^2a^0) \ \gamma = ({}^2d^0 o {}^2b^3 o {}^1d^2 o {}^0c^1 o {}^1b^2) \ \delta = ({}^2c^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,7}$ only has the identity automorphism, so the marked fatgraphs $G_{7,7}^{(0)}$ to $G_{7,7}^{(120)}$ are formed by decorating boundary cycles of $G_{7,7}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7,7}^{(0)}) = +G_{6,0}^{(46)} \ D(G_{7,7}^{(1)}) = +G_{6,0}^{(52)}$	$D(G_{7,7}^{(18)}) = +G_{6,0}^{(39)}$ $D(G_{7,7}^{(19)}) = +G_{6,0}^{(45)}$
$D(G_{7,7}^{(4)}) = +G_{6,0}^{(52)}$ $D(G_{7,7}^{(2)}) = +G_{6,0}^{(40)}$ $D(G_{7,7}^{(2)}) = +G_{6,0}^{(40)}$ $D(G_{7,7}^{(3)}) = +G_{6,0}^{(50)}$ $D(G_{7,7}^{(4)}) = +G_{6,0}^{(44)}$ $D(G_{7,7}^{(6)}) = +G_{6,0}^{(47)}$ $D(G_{7,7}^{(6)}) = +G_{6,0}^{(53)}$ $D(G_{7,7}^{(8)}) = +G_{6,0}^{(53)}$ $D(G_{7,7}^{(8)}) = +G_{6,0}^{(34)}$ $D(G_{7,7}^{(9)}) = +G_{6,0}^{(48)}$	$D(G_{7,7}^{(19)}) = +G_{6,0}^{(45)}$ $D(G_{7,7}^{(20)}) = +G_{6,0}^{(33)}$ $D(G_{7,7}^{(21)}) = +G_{6,0}^{(43)}$ $D(G_{7,7}^{(22)}) = +G_{6,0}^{(31)}$ $D(G_{7,7}^{(23)}) = +G_{6,0}^{(37)}$ $D(G_{7,7}^{(26)}) = +G_{6,1}^{(64)}$ $D(G_{7,7}^{(32)}) = +G_{6,1}^{(62)}$ $D(G_{7,7}^{(32)}) = +G_{6,0}^{(58)}$
$D(G_{7,7}^{(10)}) = +G_{6,0}^{(32)}$ $D(G_{7,7}^{(11)}) = +G_{6,0}^{(42)}$ $D(G_{7,7}^{(12)}) = +G_{6,0}^{(41)}$ $D(G_{7,7}^{(13)}) = +G_{6,0}^{(51)}$ $D(G_{7,7}^{(14)}) = +G_{6,0}^{(35)}$ $D(G_{7,7}^{(15)}) = +G_{6,0}^{(49)}$ $D(G_{7,7}^{(16)}) = +G_{6,0}^{(30)}$ $D(G_{7,7}^{(17)}) = +G_{6,0}^{(36)}$	$D(G_{7,7}^{(34)}) = +G_{6,0}^{(56)}$ $D(G_{7,7}^{(38)}) = +G_{6,0}^{(54)}$ $D(G_{7,7}^{(40)}) = +G_{6,0}^{(54)}$ $D(G_{7,7}^{(41)}) = +G_{6,0}^{(60)}$ $D(G_{7,7}^{(42)}) = +G_{6,1}^{(63)}$ $D(G_{7,7}^{(44)}) = +G_{6,0}^{(57)}$ $D(G_{7,7}^{(46)}) = +G_{6,0}^{(56)}$ $D(G_{7,7}^{(47)}) = +G_{6,0}^{(61)}$

The Fatgraph $G_{7,8}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^1b^2 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^4b^0 o {}^0c^1 o {}^2b^3)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,8}$ only has the identity automorphism, so the marked fatgraphs $G_{7,8}^{(0)}$ to $G_{7,8}^{(120)}$ are formed by decorating boundary cycles of $G_{7,8}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$$\begin{split} D(G_{7,8}^{(0)}) &= +G_{6,0}^{(34)} + G_{6,0}^{(48)} \\ D(G_{7,8}^{(1)}) &= +G_{6,0}^{(31)} + G_{6,0}^{(37)} \\ D(G_{7,8}^{(1)}) &= +G_{6,0}^{(32)} + G_{6,0}^{(42)} \\ D(G_{7,8}^{(2)}) &= +G_{6,0}^{(35)} + G_{6,0}^{(42)} \\ D(G_{7,8}^{(2)}) &= +G_{6,0}^{(36)} + G_{6,0}^{(49)} \\ D(G_{7,8}^{(3)}) &= +G_{6,0}^{(30)} + G_{6,0}^{(36)} \\ D(G_{7,8}^{(3)}) &= +G_{6,0}^{(30)} + G_{6,0}^{(36)} \\ D(G_{7,8}^{(4)}) &= +G_{6,0}^{(31)} + G_{6,0}^{(37)} \\ D(G_{7,8}^{(5)}) &= +G_{6,0}^{(31)} + G_{6,0}^{(37)} \\ D(G_{7,8}^{(5)}) &= +G_{6,0}^{(31)} + G_{6,0}^{(50)} \\ D(G_{7,8}^{(6)}) &= +G_{6,0}^{(30)} + G_{6,0}^{(42)} \\ D(G_{7,8}^{(7)}) &= +G_{6,0}^{(30)} + G_{6,0}^{(42)} \\ D(G_{7,8}^{(7)}) &= +G_{6,0}^{(38)} + G_{6,0}^{(44)} \\ D(G_{7,8}^{(7)}) &= +G_{6,0}^{(36)} + G_{6,0}^{(51)} \\ D(G_{7,8}^{(18)}) &= +G_{6,0}^{(41)} + G_{6,0}^{(51)} \\ D(G_{7,8}^{(19)}) &= +G_{6,0}^{(40)} + G_{6,0}^{(50)} \\ D(G_{7,8}^{(19)}) &= +G_{6,0}^{(40)} + G_{6,0}^{(53)} \\ D(G_{7,8}^{(12)}) &= +G_{6,0}^{(40)} + G_{6,0}^{(53)} \\ D(G_{7,8}^{(12)}) &= +G_{6,0}^{(36)} + G_{6,0}^{(43)} \\ D(G_{7,8}^{(12)}) &= +G_{6,0}^{(47)} + G_{6,0}^{(53)} \\ D(G_{7,8}^{(12)}) &= +G_{6,0}^{(47)} + G_{6,0}^{(52)} \\ D(G_{7,8}^{(12)}) &= +G_{6,0}^{(47)} + G$$

```
\begin{array}{ll} D(G_{7,8}^{(22)}) = +G_{6,0}^{(41)} + G_{6,0}^{(51)} & D(G_{7,8}^{(33)}) = +G_{6,0}^{(54)} + G_{6,0}^{(60)} \\ D(G_{7,8}^{(23)}) = +G_{6,0}^{(35)} + G_{6,0}^{(49)} & D(G_{7,8}^{(33)}) = +G_{6,1}^{(54)} + G_{6,1}^{(60)} \\ D(G_{7,8}^{(24)}) = +G_{6,0}^{(58)} & D(G_{7,8}^{(35)}) = +G_{6,0}^{(55)} + G_{6,1}^{(61)} \\ D(G_{7,8}^{(25)}) = +G_{6,0}^{(59)} & D(G_{7,8}^{(39)}) = +G_{6,1}^{(56)} \\ D(G_{7,8}^{(27)}) = +G_{6,0}^{(54)} + G_{6,0}^{(60)} & D(G_{7,8}^{(39)}) = +G_{6,1}^{(56)} \\ D(G_{7,8}^{(28)}) = +G_{6,0}^{(57)} & D(G_{7,8}^{(40)}) = +G_{6,1}^{(57)} \\ D(G_{7,8}^{(29)}) = +G_{6,0}^{(55)} + G_{6,1}^{(61)} & D(G_{7,8}^{(43)}) = +G_{6,1}^{(57)} \\ D(G_{7,8}^{(30)}) = +G_{6,1}^{(64)} & D(G_{7,8}^{(43)}) = +G_{6,1}^{(58)} \\ D(G_{7,8}^{(31)}) = +G_{6,1}^{(62)} & D(G_{7,8}^{(47)}) = +G_{6,0}^{(59)} \end{array}
```

The Fatgraph $G_{7,9}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3a^4 o {}^2a^3 o {}^0a^1 o {}^1b^2 o {}^0c^1 o {}^2b^0) \ eta = ({}^1a^2) \ \gamma = ({}^2d^0 o {}^2c^0 o {}^1d^2 o {}^1c^2 o {}^4a^0) \ \delta = ({}^0b^1) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,9}$ only has the identity automorphism, so the marked fatgraphs $G_{7,9}^{(0)}$ to $G_{7,9}^{(120)}$ are formed by decorating boundary cycles of $G_{7,9}$ with all permutations of (0, 1, 2, 3, 4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7,9}^{(0)}) = +G_{6,0}^{(3)}$	$D(G_{7,9}^{(30)}) = -G_{6,0}^{(6)}$
$D(G_{7,9}^{(1)}) = +G_{6,0}^{(5)}$	$D(G_{7,9}^{(31)}) = -G_{6,0}^{(7)}$
$D(G_{7,9}^{(2)}) = +G_{6,0}^{(1)}$	$D(G_{7,9}^{(32)}) = -G_{6,0}^{(11)}$
$D(G_{7,9}^{(3)}) = +G_{6,0}^{(4)}$	$D(G_{7,9}^{(33)}) = -G_{6,0}^{(9)}$
$D(G_{7,9}^{(4)}) = +G_{6,0}^{(0)}$	$D(G_{7,9}^{(34)}) = -G_{6,0}^{(12)}$
$D(G_{7,9}^{(5)}) = +G_{6,0}^{(2)}$	$D(G_{7,9}^{(35)}) = -G_{6,0}^{(13)}$
$D(G_{7,9}^{(6)}) = +G_{6,0}^{(9)}$	$D(G_{7,9}^{(36)}) = -G_{6,0}^{(17)}$
$D(G_{7,9}^{(7)}) = +G_{6,0}^{(11)}$	$D(G_{7,9}^{(37)}) = -G_{6,0}^{(15)}$
$D(G_{7,9}^{(8)}) = +G_{6,0}^{(7)}$	$D(G_{7,9}^{(38)}) = -G_{6,0}^{(18)}$
$D(G_{7,9}^{(9)}) = +G_{6,0}^{(10)}$	$D(G_{7,9}^{(39)}) = -G_{6,0}^{(19)}$
$D(G_{7,9}^{(10)}) = +G_{6,0}^{(6)}$	$D(G_{7,9}^{(40)}) = -G_{6,0}^{(23)}$
$D(G_{7,9}^{(11)}) = +G_{6,0}^{(8)}$	$D(G_{7,9}^{(41)}) = -G_{6,0}^{(21)}$
$D(G_{7,9}^{(12)}) = +G_{6,0}^{(15)}$	$D(G_{7,9}^{(42)}) = -G_{6,0}^{(24)}$
$D(G_{7,9}^{(13)}) = +G_{6,0}^{(17)}$	$D(G_{7,9}^{(43)}) = -G_{6,0}^{(25)}$
$D(G_{7,9}^{(14)}) = +G_{6,0}^{(13)}$	$D(G_{7,9}^{(44)}) = -G_{6,0}^{(29)}$
$D(G_{7,9}^{(15)}) = +G_{6,0}^{(16)}$	$D(G_{7,9}^{(45)}) = -G_{6,0}^{(27)}$
$D(G_{7,9}^{(16)}) = +G_{6,0}^{(12)}$	$D(G_{7,9}^{(46)}) = -G_{6,0}^{(0)}$
$D(G_{7,9}^{(17)}) = +G_{6,0}^{(14)}$	$D(G_{7,9}^{(47)}) = -G_{6,0}^{(1)}$
$D(G_{7,9}^{(18)}) = +G_{6,0}^{(21)}$	$D(G_{7,9}^{(48)}) = -G_{6,0}^{(5)}$
$D(G_{7,9}^{(19)}) = +G_{6,0}^{(23)}$	$D(G_{7,9}^{(49)}) = -G_{6,0}^{(3)}$
$D(G_{7,9}^{(20)}) = +G_{6,0}^{(19)}$	$D(G_{7,9}^{(50)}) = -G_{6,0}^{(14)}$
$D(G_{7,9}^{(21)}) = +G_{6,0}^{(22)}$	$D(G_{7,9}^{(51)}) = -G_{6,0}^{(16)}$
$D(G_{7,9}^{(22)}) = +G_{6,0}^{(18)}$	$D(G_{7,9}^{(52)}) = -G_{6,0}^{(20)}$
$D(G_{7,9}^{(23)}) = +G_{6,0}^{(20)}$	$D(G_{7,9}^{(53)}) = -G_{6,0}^{(22)}$
$D(G_{7,9}^{(24)}) = +G_{6,0}^{(27)}$	$D(G_{7,9}^{(54)}) = -G_{6,0}^{(26)}$
$D(G_{7,9}^{(25)}) = +G_{6,0}^{(29)}$	$D(G_{7,9}^{(55)}) = -G_{6,0}^{(28)}$
$D(G_{7,9}^{(26)}) = +G_{6,0}^{(25)}$	$D(G_{7,9}^{(56)}) = -G_{6,0}^{(2)}$
$D(G_{7,9}^{(27)}) = +G_{6,0}^{(28)}$	$D(G_{7,9}^{(57)}) = -G_{6,0}^{(4)}$
$D(G_{7,9}^{(28)}) = +G_{6,0}^{(24)}$	$D(G_{7,9}^{(58)}) = -G_{6,0}^{(8)}$
$D(G_{7,9}^{(29)}) = +G_{6,0}^{(26)}$	$D(G_{7,9}^{(59)}) = -G_{6,0}^{(10)}$

The Fatgraph $G_{7,10}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 1, 2, 0]),# a
   Vertex([4, 2, 3, 3]),# b
   Vertex([4, 0, 5]), # c
   Vertex([6, 6, 5]), # d
])
```

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^1a^2 o \ ^3a^0 o \ ^3b^0 o \ ^0c^1 o \ ^1b^2) \ \gamma &= (^2d^0 o \ ^2a^3 o \ ^0b^1 o \ ^1c^2 o \ ^2c^0 o \ ^1d^2) \ \delta &= (^2b^3) \ \epsilon &= (^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,10}$ only has the identity automorphism, so the marked fatgraphs $G_{7,10}^{(0)}$ to $G_{7,10}^{(120)}$ are formed by decorating boundary cycles of $G_{7,10}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,11}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 1, 2, 0]),# a
   Vertex([5, 2, 3]), # b
   Vertex([4, 4, 3]), # c
   Vertex([5, 0, 6, 6]),# d
])
```

$$egin{aligned} & lpha = (^0a^1) \ & eta = (^1a^2
ightarrow ^2c^0
ightarrow ^3a^0
ightarrow ^1c^2
ightarrow ^0d^1
ightarrow ^2b^0
ightarrow ^1b^2) \ & \gamma = (^2a^3
ightarrow ^3d^0
ightarrow ^1d^2
ightarrow ^0b^1) \ & \delta = (^0c^1) \ & \epsilon = (^2d^3) \end{aligned}$$

Markings

Fatgraph $G_{7,11}$ only has the identity automorphism, so the marked fatgraphs $G_{7,11}^{(0)}$ to $G_{7,11}^{(120)}$ are formed by decorating boundary cycles of $G_{7,11}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,12}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^1a^2 o {}^0a^1 o {}^1b^2 o {}^0c^1 o {}^2b^3) \ eta = ({}^2a^0) \ \gamma = ({}^2d^0 o {}^2c^0 o {}^1d^2 o {}^1c^2 o {}^0b^1) \ \delta = ({}^3b^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,12}$ only has the identity automorphism, so the marked fatgraphs $G_{7,12}^{(0)}$ to $G_{7,12}^{(120)}$ are formed by decorating boundary cycles of $G_{7,12}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$a_{(0)} = a_{(10)}$	$\nabla (\alpha^{(34)}) \qquad \alpha^{(18)}$
$D(G_{7,12}^{(0)}) = +G_{6,0}^{(10)}$	$D(G_{7,12}^{(34)}) = -G_{6,0}^{(18)}$
$D(G_{7,12}^{(1)}) = +G_{6,0}^{(8)}$	$D(G_{7,12}^{(35)}) = -G_{6,0}^{(23)}$
$D(G_{7,12}^{(2)}) = +G_{6,0}^{(16)}$	$D(G_{7,12}^{(36)}) = +G_{6,0}^{(27)} + G_{6,0}^{(39)} + G_{6,0}^{(44)}$
$D(G_{7,12}^{(3)}) = +G_{6,0}^{(14)}$	$D(G_{7,1,2}^{(37)}) = +G_{6,0}^{(25)} + G_{6,0}^{(38)} + G_{6,0}^{(45)}$
$D(G_{7,12}^{(4)}) = +G_{6,0}^{(22)}$	$D(G_{7,12}^{(38)}) = -G_{6,0}^{(6)}$
$D(G_{7,12}^{(5)}) = +G_{6,0}^{(20)}$	$D(G_{7,12}^{(39)}) = -G_{6,0}^{(11)}$
$D(G_{7,12}^{(6)}) = +G_{6,0}^{(4)}$	$D(G_{7,12}^{(40)}) = -G_{6,0}^{(12)}$
$D(G_{7,12}^{(7)}) = +G_{6,0}^{(2)}$	$D(G_{7,12}^{(41)}) = -G_{6,0}^{(17)}$
$D(G_{7,12}^{(8)}) = +G_{6,0}^{(17)}$	$D(G_{7,12}^{(42)}) = -G_{6,0}^{(25)} + G_{6,0}^{(35)} + G_{6,0}^{(48)}$
$D(G_{7,12}^{(9)}) = +G_{6,0}^{(12)}$	$D(G_{7,12}^{(43)}) = -G_{6,0}^{(27)} + G_{6,0}^{(34)} + G_{6,0}^{(49)}$
$D(G_{7,12}^{(10)}) = +G_{6,0}^{(23)}$	$D(G_{7,12}^{(44)}) = -G_{6,0}^{(1)} + G_{6,0}^{(59)}$
$D(G_{7,12}^{(11)}) = +G_{6,0}^{(18)}$	$D(G_{7,12}^{(45)}) = -G_{6,0}^{(3)} + G_{6,0}^{(58)}$
$D(G_{7,12}^{(12)}) = +G_{6,0}^{(5)}$	$D(G_{7,12}^{(46)}) = -G_{6,0}^{(20)}$
$D(G_{7,12}^{(13)}) = +G_{6,0}^{(0)} + G_{6,1}^{(64)}$	$D(G_{7,12}^{(47)}) = -G_{6,0}^{(22)}$
$D(G_{7,12}^{(14)}) = +G_{6,0}^{(11)}$	$D(G_{7,12}^{(48)}) = -G_{6,0}^{(24)} + G_{6,0}^{(33)} + G_{6,0}^{(42)}$
$D(G_{7,12}^{(15)}) = +G_{6,0}^{(6)}$	$D(G_{7,12}^{(49)}) = -G_{6,0}^{(29)} + G_{6,0}^{(32)} + G_{6,0}^{(43)}$
$D(G_{7,12}^{(16)}) = +G_{6,0}^{(21)}$	$D(G_{7,12}^{(50)}) = -G_{6,0}^{(0)} + G_{6,0}^{(57)}$
$D(G_{7,12}^{(17)}) = +G_{6,0}^{(19)}$	$D(G_{7,12}^{(51)}) = -G_{6,0}^{(5)} + G_{6,0}^{(56)}$
$D(G_{7,12}^{(18)}) = +G_{6,0}^{(3)} + G_{6,1}^{(63)}$	$D(G_{7,12}^{(52)}) = -G_{6,0}^{(14)}$
$D(G_{7,12}^{(19)}) = +G_{6,0}^{(1)} + G_{6,1}^{(62)}$	$D(G_{7,12}^{(53)}) = -G_{6,0}^{(16)}$
$D(G_{7,12}^{(20)}) = +G_{6,0}^{(9)}$	$D(G_{7,12}^{(54)}) = -G_{6,0}^{(26)} + G_{6,0}^{(31)} + G_{6,0}^{(36)}$
$D(G_{7,12}^{(21)}) = +G_{6,0}^{(7)}$	$D(G_{7,12}^{(55)}) = -G_{6,0}^{(28)} + G_{6,0}^{(30)} + G_{6,0}^{(37)}$
$D(G_{7,12}^{(22)}) = +G_{6,0}^{(15)}$	$D(G_{7,12}^{(56)}) = -G_{6,0}^{(2)} + G_{6,0}^{(55)} + G_{6,0}^{(60)}$
$D(G_{7,12}^{(23)}) = +G_{6,0}^{(13)}$	$D(G_{7,12}^{(57)}) = -G_{6,0}^{(4)} + G_{6,0}^{(54)} + G_{6,1}^{(61)}$
$D(G_{7,12}^{(24)}) = +G_{6,0}^{(28)} + G_{6,0}^{(47)} + G_{6,0}^{(52)}$	$D(G_{7,12}^{(58)}) = -G_{6,0}^{(8)}$
$D(G_{7,12}^{(25)}) = +G_{6,0}^{(26)} + G_{6,0}^{(46)} + G_{6,0}^{(53)}$	$D(G_{7,12}^{(59)}) = -G_{6,0}^{(10)}$
$D(G_{7,12}^{(26)}) = -G_{6,0}^{(13)}$	$D(G_{7,12}^{(60)}) = +G_{6,0}^{(6)}$
$D(G_{7,12}^{(27)}) = -G_{6,0}^{(15)}$	$D(G_{7,12}^{(61)}) = +G_{6,0}^{(7)}$
$D(G_{7,12}^{(28)}) = -G_{6,0}^{(19)}$	$D(G_{7,12}^{(62)}) = +G_{6,0}^{(12)}$
$D(G_{7.12}^{(29)}) = -G_{6.0}^{(21)}$	$D(G_{7,12}^{(63)}) = +G_{6,0}^{(13)}$
$D(G_{7,12}^{(30)}) = +G_{6,0}^{(29)} + G_{6,0}^{(41)} + G_{6,0}^{(50)}$	$D(G_{7,12}^{(64)}) = +G_{6,0}^{(18)}$
$D(G_{7,12}^{(31)}) = +G_{6,0}^{(24)} + G_{6,0}^{(40)} + G_{6,0}^{(51)}$	$D(G_{7,12}^{(65)}) = +G_{6,0}^{(19)}$
$D(G_{7,12}^{(32)}) = -G_{6,0}^{(7)}$	$D(G_{7,12}^{(66)}) = +G_{6,0}^{(0)}$
$D(G_{7,12}^{(33)}) = -G_{6,0}^{(9)}$	$D(G_{7,12}^{(67)}) = +G_{6,0}^{(1)}$
,12,	,

$$\begin{array}{lll} D(G_{7,12}^{(68)}) = +G_{6,0}^{(14)} & D(G_{7,12}^{(94)}) = +G_{6,0}^{(15)} \\ D(G_{7,12}^{(95)}) = +G_{6,0}^{(15)} & D(G_{7,12}^{(95)}) = +G_{6,0}^{(18)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(20)} & D(G_{7,12}^{(95)}) = +G_{6,0}^{(26)} -G_{6,0}^{(40)} +G_{6,0}^{(41)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(21)} & D(G_{7,12}^{(97)}) = +G_{6,0}^{(22)} -G_{6,0}^{(50)} +G_{6,0}^{(51)} \\ D(G_{7,12}^{(72)}) = +G_{6,0}^{(2)} & D(G_{7,12}^{(97)}) = +G_{6,0}^{(20)} -G_{6,0}^{(50)} +G_{6,0}^{(51)} \\ D(G_{7,12}^{(72)}) = +G_{6,0}^{(8)} & D(G_{7,12}^{(91)}) = +G_{6,0}^{(20)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(8)} & D(G_{7,12}^{(91)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(8)} & D(G_{7,12}^{(91)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(8)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(80)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(80)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(71)}) = +G_{6,0}^{(80)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(80)} \\ D(G_{7,12}^{(81)}) = +G_{6,0}^{(10)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(101)} \\ D(G_{7,12}^{(81)}) = +G_{6,0}^{(10)} & D(G_{7,12}^{(101)}) = +G_{6,0}^{(101)} \\ D(G_{7,12}^{(11)}) = +G_{6,0}^{(10)} & D(G_{7,12}^{(110)}) = -G_{6,0}^{(101)} \\ D(G_{7,12}^{(110)}) = +G_{6,0}^{(100)} & D(G_{7,12}^{(110)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = +G_{6,0}^{(100)} & D(G_{7,12}^{(110)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = -G_{6,0}^{(100)} & D(G_{7,12}^{(110)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = -G_{6,0}^{(100)} & D(G_{7,12}^{(110)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = -G_{6,0}^{(100)} & D(G_{7,12}^{(111)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = -G_{6,0}^{(100)} & D(G_{7,12}^{(112)}) = -G_{6,0}^{(100)} \\ D(G_{7,12}^{(81)}) = -G_{6,0}^{(81)} & D(G_{7,12}^{(111)}) = -G_{6,0}^{(81)} \\ D(G_{7,12}^{(111)}) = -G_{6,0}^{(81)} & D(G_{7,12}^{(112)}) = -G_{6,0}^{(81)} \\ D(G_{7,12}^{(111)}) = -G_{6,0}^{(81)} & D(G_{7,12}^{(112)}) = -G_{6,0}^{(81)} \\ D(G_{7,12}^{(111)}) = -G_{6,0}^{(81)} &$$

The Fatgraph $G_{7,13}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{0})$
 $\gamma = ({}^{3}d^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}d^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,13}$ only has the identity automorphism, so the marked fatgraphs $G_{7,13}^{(0)}$ to $G_{7,13}^{(120)}$ are formed by decorating boundary cycles of $G_{7,13}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$$\begin{split} D(G_{7,13}^{(0)}) &= +G_{6,0}^{(28)} - G_{6,0}^{(34)} + G_{6,0}^{(35)} & D(G_{7,13}^{(11)}) = -G_{6,0}^{(15)} \\ D(G_{7,13}^{(1)}) &= -G_{6,0}^{(24)} - G_{6,0}^{(48)} + G_{6,0}^{(49)} & D(G_{7,13}^{(12)}) = -G_{6,0}^{(15)} + G_{6,1}^{(64)} \\ D(G_{7,13}^{(2)}) &= +G_{6,0}^{(4)} - G_{6,0}^{(58)} + G_{6,0}^{(59)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(1)} + G_{6,0}^{(64)} \\ D(G_{7,13}^{(3)}) &= -G_{6,0}^{(0)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(7)} \\ D(G_{7,13}^{(4)}) &= +G_{6,0}^{(18)} & D(G_{7,13}^{(15)}) = -G_{6,0}^{(10)} \\ D(G_{7,13}^{(5)}) &= -G_{6,0}^{(21)} & D(G_{7,13}^{(15)}) = -G_{6,0}^{(18)} \\ D(G_{7,13}^{(6)}) &= +G_{6,0}^{(26)} - G_{6,0}^{(32)} + G_{6,0}^{(33)} & D(G_{7,13}^{(17)}) = -G_{6,0}^{(20)} \\ D(G_{7,13}^{(7)}) &= -G_{6,0}^{(25)} - G_{6,0}^{(42)} + G_{6,0}^{(43)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(25)} + G_{6,0}^{(40)} - G_{6,0}^{(41)} \\ D(G_{7,13}^{(9)}) &= -G_{6,0}^{(1)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(28)} + G_{6,0}^{(50)} - G_{6,0}^{(51)} \\ D(G_{7,13}^{(10)}) &= +G_{6,0}^{(1)} & D(G_{7,13}^{(21)}) = -G_{6,0}^{(8)} \\ D(G_{7,13}^{(13)}) &= +G_{6,0}^{(1)} & D(G_{7,13}^{(21)}) = -G_{6,0}^{(8)} \\ D(G_{7,13}^{(13)}) &= +G_{6,0}^{(1)} & D(G_{7,13}^{(21)}) = -G_{6,0}^{(8)} \\ D(G_{7,13}^{(13)}) &= -G_{6,0}^{(1)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(1)} \\ D(G_{7,13}^{(13)}) &= -G_{6,0}^{(1)} & D(G_{7,13}^{(13)}) = -G_{6,0}^{(1$$

```
D(G_{7,13}^{(22)}) = +G_{6,0}^{(21)}
                                                                                                   D(G_{7,13}^{(58)}) = +G_{6,0}^{(7)}
D(G_{7,13}^{(23)}) = -G_{6,0}^{(22)}
                                                                                                   D(G_{7,13}^{(59)}) = -G_{6,0}^{(11)}
D(G_{7,13}^{(24)}) = G_{6,0}^{(29)} + G_{6,0}^{(34)} - G_{6,0}^{(35)}
D(G_{7,13}^{(25)}) = -G_{6,0}^{(26)} + G_{6,0}^{(48)} - G_{6,0}^{(49)}
D(G_{7,13}^{(25)}) = +G_{6,0}^{(5)} + G_{6,0}^{(58)} - G_{6,0}^{(59)}
D(G_{7,13}^{(27)}) = G_{6,0}^{(27)} + G_{6,0}^{(27)} - G_{6,0}^{(27)}
                                                                                                   D(G_{7,13}^{(60)}) = +G_{6,0}^{(34)}
                                                                                                   D(G_{7,13}^{(61)}) = +G_{6,0}^{(32)}
                                                                                                   D(G_{7,13}^{(62)}) = +G_{6,0}^{(35)}
D(G_{7,13}^{(27)}) = -G_{6,0}^{(2)}
                                                                                                   D(G_{7,13}^{(63)}) = +G_{6,0}^{(30)}
D(G_{7,13}^{(28)}) = +G_{6,0}^{(19)}
                                                                                                   D(G_{7,13}^{(64)}) = +G_{6,0}^{(33)}
D(G_{7,13}^{(29)}) = -G_{6,0}^{(23)}
                                                                                                   D(G_{7,13}^{(65)}) = +G_{6,0}^{(31)}
D(G_{7,13}^{(30)}) = +G_{6,0}^{(24)} - G_{6,0}^{(30)} + G_{6,0}^{(31)}
                                                                                                   D(G_{7,13}^{(66)}) = +G_{6,0}^{(40)} + G_{6,1}^{(62)}
D(G_{7,13}^{(31)}) = -G_{6,0}^{(27)} - G_{6,0}^{(36)} + G_{6,0}^{(37)}
                                                                                                   D(G_{7,13}^{(67)}) = +G_{6,0}^{(38)} + G_{6,1}^{(64)}
D(G_{7,13}^{(32)}) = +G_{6,0}^{(0)} - G_{6,0}^{(54)} + G_{6,0}^{(51)}
D(G_{7,13}^{(33)}) = -G_{6,0}^{(3)} - G_{6,0}^{(60)} + G_{6,1}^{(61)}
                                                                                                   D(G_{7,13}^{(68)}) = +G_{6,0}^{(41)}
                                                                                                   D(G_{7,13}^{(69)}) = +G_{6,0}^{(36)}
D(G_{7,13}^{(34)}) = +G_{6,0}^{(6)}
                                                                                                   D(G_{7,13}^{(70)}) = +G_{6,0}^{(39)}
D(G_{7,13}^{(35)}) = -G_{6,0}^{(9)}
                                                                                                   D(G_{7,13}^{(71)}) = +G_{6,0}^{(37)}
D(G_{7,13}^{(36)}) = -G_{6,0}^{(0)} + G_{6,1}^{(62)} - G_{6,1}^{(63)}
                                                                                                   D(G_{7,13}^{(72)}) = +G_{6,0}^{(46)}
D(G_{7,13}^{(37)}) = -G_{6,0}^{(2)}
                                                                                                   D(G_{7,13}^{(73)}) = +G_{6,0}^{(44)}
D(G_{7,13}^{(38)}) = -G_{6,0}^{(6)}
                                                                                                   D(G_{7,13}^{(74)}) = +G_{6,0}^{(47)}
D(G_{7,13}^{(39)}) = -G_{6,0}^{(8)}
                                                                                                   D(G_{7,13}^{(75)}) = +G_{6,0}^{(42)}
D(G_{7,13}^{(40)}) = -G_{6,0}^{(12)}
                                                                                                   D(G_{7,13}^{(76)}) = +G_{6,0}^{(45)}
D(G_{7,13}^{(41)}) = -G_{6,0}^{(14)}
                                                                                                   D(G_{7,13}^{(77)}) = +G_{6,0}^{(43)}
D(G_{7,13}^{(42)}) = -G_{6,0}^{(24)} + G_{6,0}^{(38)} - G_{6,0}^{(39)}
                                                                                                   D(G_{7,13}^{(78)}) = +G_{6,0}^{(52)}
D(G_{7,13}^{(43)}) = -G_{6,0}^{(26)} + G_{6,0}^{(44)} - G_{6,0}^{(45)}
                                                                                                   D(G_{7,13}^{(79)}) = +G_{6,0}^{(50)}
D(G_{7,13}^{(44)}) = +G_{6,0}^{(9)}
                                                                                                   D(G_{7,13}^{(80)}) = +G_{6,0}^{(53)}
D(G_{7,13}^{(45)}) = -G_{6,0}^{(10)}
                                                                                                   D(G_{7,13}^{(81)}) = +G_{6,0}^{(48)}
D(G_{7,13}^{(46)}) = +G_{6,0}^{(15)}
                                                                                                   D(G_{7,13}^{(82)}) = +G_{6,0}^{(51)}
D(G_{7,13}^{(47)}) = -G_{6,0}^{(16)}
                                                                                                   D(G_{7,13}^{(83)}) = +G_{6,0}^{(49)}
D(G_{7,13}^{(48)}) = +G_{6,0}^{(27)} + G_{6,0}^{(32)} - G_{6,0}^{(33)}
D(G_{7,13}^{(49)}) = -G_{6,0}^{(28)} + G_{6,0}^{(42)} - G_{6,0}^{(43)}
D(G_{7,13}^{(50)}) = +G_{6,0}^{(3)} + G_{6,0}^{(56)} - G_{6,0}^{(57)}
                                                                                                   D(G_{7,13}^{(84)}) = +G_{6,0}^{(58)}
                                                                                                   D(G_{7,13}^{(85)}) = +G_{6,0}^{(56)}
                                                                                                   D(G_{7,13}^{(86)}) = +G_{6,0}^{(59)}
D(G_{7,13}^{(51)}) = -G_{6,0}^{(4)}
                                                                                                   D(G_{7,13}^{(87)}) = +G_{6,0}^{(54)}
D(G_{7.13}^{(52)}) = +G_{6.0}^{(13)}
D(G_{7,13}^{(53)}) = -G_{6,0}^{(17)}
                                                                                                   D(G_{7,13}^{(88)}) = +G_{6,0}^{(57)}
                                                                                                   D(G_{7,13}^{(89)}) = +G_{6,0}^{(55)}
D(G_{7,13}^{(54)}) = +G_{6,0}^{(25)} + G_{6,0}^{(30)} - G_{6,0}^{(31)}
D(G_{7,13}^{(55)}) = -G_{6,0}^{(29)} + G_{6,0}^{(50)} - G_{6,0}^{(50)}
D(G_{7,13}^{(56)}) = -G_{6,0}^{(29)} + G_{6,0}^{(54)} - G_{6,0}^{(55)}
D(G_{7,13}^{(56)}) = +G_{6,0}^{(1)} + G_{6,0}^{(54)} - G_{6,0}^{(55)}
D(G_{7,13}^{(57)}) = -G_{6,0}^{(5)} + G_{6,0}^{(60)} - G_{6,1}^{(61)}
                                                                                                   D(G_{7,13}^{(91)}) = +G_{6,0}^{(60)}
                                                                                                   D(G_{7,13}^{(92)}) = +G_{6,1}^{(63)}
                                                                                                   D(G_{7,13}^{(93)}) = +G_{6,1}^{(61)}
```

The Fatgraph $G_{7,14}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^0d^1 o {}^2b^0) \ eta = ({}^2a^0) \ \gamma = ({}^3d^0 o {}^1d^2 o {}^0c^1 o {}^1b^2) \ eta = ({}^2c^3) \ \epsilon = ({}^2d^3)$$

Markings

Fatgraph $G_{7,14}$ only has the identity automorphism, so the marked fatgraphs $G_{7,14}^{(0)}$ to $G_{7,14}^{(120)}$ are formed by decorating boundary cycles of $G_{7,14}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

```
D(G_{7,14}^{(22)}) = +G_{6,0}^{(52)}
                                                                                           D(G_{7,14}^{(66)}) = -G_{6,0}^{(56)}
                                                                                           D(G_{7,14}^{(70)}) = -G_{6,0}^{(42)}
D(G_{7,14}^{(25)}) = +G_{6,0}^{(55)}
                                                                                           D(G_{7,14}^{(80)}) = -G_{6,0}^{(41)}
D(G_{7,14}^{(26)}) = +G_{6,0}^{(56)}
                                                                                           D(G_{7,14}^{(82)}) = -G_{6,0}^{(51)}
D(G_{7,14}^{(27)}) = +G_{6,0}^{(57)}
                                                                                           D(G_{7,14}^{(84)}) = -G_{6,0}^{(59)}
                                                                                           D(G_{7,14}^{(86)}) = -G_{6,0}^{(35)}
D(G_{7,14}^{(88)}) = -G_{6,0}^{(49)}
D(G_{7,14}^{(28)}) = +G_{6,0}^{(58)}
D(G_{7,14}^{(29)}) = +G_{6,0}^{(59)}
D(G_{7,14}^{(30)}) = +G_{6,0}^{(60)}
                                                                                           D(G_{7,14}^{(90)}) = -G_{6,0}^{(54)}
                                                                                           D(G_{7,14}^{(92)}) = -G_{6,0}^{(30)}
D(G_{7,14}^{(31)}) = +G_{6,1}^{(61)}
D(G_{7,14}^{(32)}) = -G_{6,0}^{(46)} + G_{6,1}^{(62)}
D(G_{7,14}^{(33)}) = +G_{6,1}^{(63)}
                                                                                           D(G_{7,14}^{(94)}) = -G_{6,0}^{(36)}
D(G_{7,14}^{(95)}) = -G_{6,0}^{(60)}
D(G_{7,14}^{(34)}) = -G_{6,0}^{(52)} + G_{6,1}^{(64)}
                                                                                           D(G_{7,14}^{(98)}) = -G_{6,1}^{(63)}
D(G_{7,14}^{(38)}) = -G_{6,0}^{(40)}
                                                                                           D(G_{7,14}^{(104)}) = -
D(G_{7,14}^{(40)}) = -G_{6,0}^{(50)}
                                                                                           D(G_{7,14}^{(106)})
D(G_{7,14}^{(44)}) = -G_{6,0}^{(38)}
                                                                                           D(G_{7,14}^{(108)}) =
D(G_{7,14}^{(46)}) = -G_{6,0}^{(44)}
                                                                                           D(G_{7,14}^{(110)}) =
D(G_{7,14}^{(56)}) = -G_{6,0}^{(47)}
                                                                                           D(G_{7,14}^{(112)})
D(G_{7,14}^{(58)}) = -G_{6,0}^{(53)}
D(G_{7,14}^{(60)}) = -G_{6,0}^{(58)}
                                                                                           D(G_{7,14}^{(114)}) = -G_{6,0}^{(55)}
                                                                                           D(G_{7,14}^{(116)})
D(G_{7,14}^{(62)}) = -G_{6,0}^{(34)}
D(G_{7,14}^{(64)}) = -G_{6,0}^{(48)}
```

The Fatgraph $G_{7,15}$ (120 orientable markings)

```
Fatgraph([

Vertex([4, 0, 4, 5]), # a

Vertex([0, 1, 1, 2]), # b

Vertex([3, 3, 2]), # c

Vertex([6, 6, 5]), # d

])
```

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{2}d^{0}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,15}$ only has the identity automorphism, so the marked fatgraphs $G_{7,15}^{(0)}$ to $G_{7,15}^{(120)}$ are formed by decorating boundary cycles of $G_{7,15}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{7,15}^{(3)}) = +G_{6,0}^{(60)}$	$D(G_{7,15}^{(43)}) = +G_{6,0}^{(56)}$
$D(G_{7,15}^{(5)}) = +G_{6,1}^{(61)}$	$D(G_{7,15}^{(44)}) = +G_{6,1}^{(63)}$
$D(G_{7,15}^{(12)}) = +G_{6,0}^{(48)}$	$D(G_{7,15}^{(45)}) = +G_{6,0}^{(57)}$
$D(G_{7,15}^{(13)}) = +G_{6,0}^{(42)}$	$D(G_{7,15}^{(48)}) = +G_{6,0}^{(46)} + G_{6,1}^{(64)}$
$D(G_{7,15}^{(14)}) = +G_{6,0}^{(49)}$	$D(G_{7,15}^{(49)}) = +G_{6,0}^{(40)}$
$D(G_{7,15}^{(15)}) = +G_{6,0}^{(36)}$	$D(G_{7,15}^{(50)}) = +G_{6,0}^{(47)}$
$D(G_{7,15}^{(16)}) = +G_{6,0}^{(43)}$	$D(G_{7,15}^{(51)}) = +G_{6,0}^{(34)}$
$D(G_{7,15}^{(17)}) = +G_{6,0}^{(37)}$	$D(G_{7,15}^{(52)}) = +G_{6,0}^{(41)}$
$D(G_{7,15}^{(24)}) = +G_{6,0}^{(50)}$	$D(G_{7,15}^{(53)}) = +G_{6,0}^{(35)}$
$D(G_{7,15}^{(25)}) = +G_{6,0}^{(44)}$	$D(G_{7,15}^{(55)}) = +G_{6,0}^{(58)}$
$D(G_{7,15}^{(26)}) = +G_{6,0}^{(51)}$	$D(G_{7,15}^{(57)}) = +G_{6,0}^{(59)}$
$D(G_{7,15}^{(27)}) = +G_{6,0}^{(30)}$	$D(G_{7,15}^{(60)}) = +G_{6,0}^{(30)}$
$D(G_{7,15}^{(28)}) = +G_{6,0}^{(45)}$	$D(G_{7,15}^{(61)}) = +G_{6,0}^{(31)}$
$D(G_{7,15}^{(29)}) = +G_{6,0}^{(31)}$	$D(G_{7,15}^{(62)}) = +G_{6,0}^{(32)}$
$D(G_{7,15}^{(31)}) = +G_{6,0}^{(54)}$	$D(G_{7,15}^{(63)}) = +G_{6,0}^{(33)}$
$D(G_{7,15}^{(33)}) = +G_{6,0}^{(55)}$	$D(G_{7,15}^{(64)}) = +G_{6,0}^{(34)}$
$D(G_{7,15}^{(36)}) = +G_{6,0}^{(52)} + G_{6,1}^{(62)}$	$D(G_{7,15}^{(65)}) = +G_{6,0}^{(35)}$
$D(G_{7,15}^{(37)}) = +G_{6,0}^{(38)}$	$D(G_{7,15}^{(66)}) = +G_{6,0}^{(36)}$
$D(G_{7,15}^{(38)}) = +G_{6,0}^{(53)}$	$D(G_{7,15}^{(67)}) = +G_{6,0}^{(37)}$
$D(G_{7,15}^{(39)}) = +G_{6,0}^{(32)}$	$D(G_{7,15}^{(68)}) = +G_{6,0}^{(38)}$
$D(G_{7,15}^{(40)}) = +G_{6,0}^{(39)}$	$D(G_{7,15}^{(69)}) = +G_{6,0}^{(39)}$
$D(G_{7,15}^{(41)}) = +G_{6,0}^{(33)}$	$D(G_{7,15}^{(70)}) = +G_{6,0}^{(40)}$

$$\begin{array}{lll} D(G_{7,15}^{(71)}) = + G_{6,0}^{(41)} & D(G_{7,15}^{(83)}) = + G_{6,0}^{(53)} \\ D(G_{7,15}^{(72)}) = + G_{6,0}^{(42)} & D(G_{7,15}^{(84)}) = + G_{6,0}^{(54)} \\ D(G_{7,15}^{(73)}) = + G_{6,0}^{(43)} & D(G_{7,15}^{(85)}) = + G_{6,0}^{(55)} \\ D(G_{7,15}^{(74)}) = + G_{6,0}^{(44)} & D(G_{7,15}^{(86)}) = + G_{6,0}^{(56)} \\ D(G_{7,15}^{(75)}) = + G_{6,0}^{(45)} & D(G_{7,15}^{(87)}) = + G_{6,0}^{(57)} \\ D(G_{7,15}^{(76)}) = + G_{6,0}^{(46)} & D(G_{7,15}^{(88)}) = + G_{6,0}^{(58)} \\ D(G_{7,15}^{(77)}) = + G_{6,0}^{(47)} & D(G_{7,15}^{(89)}) = + G_{6,0}^{(59)} \\ D(G_{7,15}^{(78)}) = + G_{6,0}^{(49)} & D(G_{7,15}^{(91)}) = + G_{6,0}^{(61)} \\ D(G_{7,15}^{(80)}) = + G_{6,0}^{(50)} & D(G_{7,15}^{(91)}) = + G_{6,1}^{(62)} \\ D(G_{7,15}^{(81)}) = + G_{6,0}^{(51)} & D(G_{7,15}^{(93)}) = + G_{6,1}^{(63)} \\ D(G_{7,15}^{(82)}) = + G_{6,0}^{(52)} & D(G_{7,15}^{(94)}) = + G_{6,1}^{(64)} \\ D(G_{7,15}^{(94)}) = + G_{6,1}^{(64)} & D(G_{7,15}^{(94)}) = + G_{6,1}^{(64)} \\ \end{array}$$

The Fatgraph $G_{7,16}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^0c^1 o {}^0b^1) \ eta = ({}^2d^0 o {}^2a^0 o {}^1d^2 o {}^1c^2 o {}^2c^0) \ \gamma = ({}^1b^2) \ eta = ({}^3b^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,16}$ only has the identity automorphism, so the marked fatgraphs $G_{7,16}^{(0)}$ to $G_{7,16}^{(120)}$ are formed by decorating boundary cycles of $G_{7,16}$ with all

Differentials

$$\begin{array}{ll} D(G_{7,16}^{(74)}) = -G_{6,1}^{(64)} & D(G_{7,16}^{(98)}) = -G_{6,0}^{(40)} + G_{6,0}^{(48)} \\ D(G_{7,16}^{(76)}) = +G_{6,1}^{(61)} & D(G_{7,16}^{(100)}) = +G_{6,0}^{(37)} - G_{6,0}^{(50)} \\ D(G_{7,16}^{(80)}) = -G_{6,1}^{(62)} & D(G_{7,16}^{(104)}) = -G_{6,0}^{(38)} + G_{6,0}^{(42)} \\ D(G_{7,16}^{(82)}) = +G_{6,0}^{(60)} & D(G_{7,16}^{(106)}) = +G_{6,0}^{(36)} - G_{6,0}^{(44)} \\ D(G_{7,16}^{(92)}) = -G_{6,0}^{(46)} + G_{6,0}^{(49)} & D(G_{7,16}^{(116)}) = -G_{6,0}^{(47)} + G_{6,0}^{(51)} \\ D(G_{7,16}^{(94)}) = +G_{6,0}^{(43)} - G_{6,0}^{(52)} & D(G_{7,16}^{(118)}) = +G_{6,0}^{(45)} - G_{6,0}^{(53)} \end{array}$$

The Fatgraph $G_{7,17}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}d^{0})$
 $\gamma = ({}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,17}$ only has the identity automorphism, so the marked fatgraphs $G_{7,17}^{(0)}$ to $G_{7,17}^{(120)}$ are formed by decorating boundary cycles of $G_{7,17}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$\begin{array}{lll} D(G_{7,17}^{(0)}) = -G_{6,0}^{(58)} & D(G_{7,17}^{(30)}) = -G_{6,0}^{(54)} + G_{6,1}^{(62)} \\ D(G_{7,17}^{(2)}) = -G_{6,0}^{(34)} + G_{6,0}^{(50)} & D(G_{7,17}^{(32)}) = -G_{6,0}^{(30)} + G_{6,0}^{(38)} \\ D(G_{7,17}^{(4)}) = +G_{6,0}^{(31)} - G_{6,0}^{(48)} & D(G_{7,17}^{(32)}) = +G_{6,0}^{(30)} - G_{6,0}^{(36)} \\ D(G_{7,17}^{(5)}) = +G_{6,0}^{(55)} & D(G_{7,17}^{(31)}) = +G_{6,0}^{(56)} - G_{6,0}^{(60)} \\ D(G_{7,17}^{(8)}) = -G_{6,0}^{(32)} + G_{6,0}^{(44)} & D(G_{7,17}^{(31)}) = -G_{6,0}^{(36)} \\ D(G_{7,17}^{(10)}) = +G_{6,0}^{(30)} - G_{6,0}^{(42)} & D(G_{7,17}^{(41)}) = -G_{6,0}^{(39)} + G_{6,0}^{(47)} \\ D(G_{7,17}^{(10)}) = +G_{6,0}^{(54)} & D(G_{7,17}^{(17)}) = +G_{6,0}^{(54)} - G_{6,0}^{(45)} \\ D(G_{7,17}^{(10)}) = +G_{6,0}^{(54)} & D(G_{7,17}^{(51)}) = -G_{6,0}^{(51)} + G_{6,0}^{(52)} \\ D(G_{7,17}^{(20)}) = -G_{6,0}^{(41)} + G_{6,0}^{(53)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(42)} \\ D(G_{7,17}^{(21)}) = -G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(21)}) = -G_{6,0}^{(50)} & D(G_{7,17}^{(51)}) = -G_{6,0}^{(55)} + G_{6,1}^{(64)} \\ D(G_{7,17}^{(21)}) = -G_{6,0}^{(50)} + G_{6,0}^{(52)} & D(G_{7,17}^{(51)}) = -G_{6,0}^{(55)} + G_{6,1}^{(64)} \\ D(G_{7,17}^{(21)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = -G_{6,0}^{(55)} + G_{6,0}^{(64)} \\ D(G_{7,17}^{(21)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = -G_{6,0}^{(51)} + G_{6,0}^{(61)} \\ D(G_{7,17}^{(21)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(51)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(51)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(51)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(51)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(51)}) = +G_{6,0}^{(50)} - G_{6,0}^{(51)} & D(G_{7,17}^{(51)}) = +G_{6,0}^{(51)} - G_{6,0}^{(51)} \\ D(G_{7,17}^{(51)}) = +G_{6,0}^{(5$$

The Fatgraph $G_{7,18}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^1d^2) \ eta = ({}^2a^3
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^2b^0
ightarrow {}^4a^0
ightarrow {}^1b^2) \ \gamma = ({}^3a^4
ightarrow {}^0b^1) \ eta = ({}^0c^1) \ eta = ({}^0d^1)$$

Markings

Fatgraph $G_{7,18}$ only has the identity automorphism, so the marked fatgraphs $G_{7,18}^{(0)}$ to $G_{7,18}^{(120)}$ are formed by decorating boundary cycles of $G_{7,18}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,19}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{3}
ightarrow {}^{2}d^{0}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{3}b^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,19}$ only has the identity automorphism, so the marked fatgraphs $G_{7,19}^{(0)}$ to $G_{7,19}^{(120)}$ are formed by decorating boundary cycles of $G_{7,19}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,20}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 1, 4, 5]),# a
   Vertex([1, 2, 0]), # b
   Vertex([0, 2, 3, 3]),# c
   Vertex([6, 6, 5]), # d
])
```

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^2b^0) \ eta = ({}^2a^3 o {}^2d^0 o {}^3a^0 o {}^1d^2) \ \gamma = ({}^0c^1 o {}^1b^2) \ \delta = ({}^2c^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,20}$ only has the identity automorphism, so the marked fatgraphs $G_{7,20}^{(0)}$ to $G_{7,20}^{(120)}$ are formed by decorating boundary cycles of $G_{7,20}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,21}$ (120 orientable markings)


```
Fatgraph([
   Vertex([5, 1, 5, 6, 6]),# a
   Vertex([1, 2, 0]),  # b
   Vertex([0, 2, 3]),  # c
   Vertex([4, 4, 3]),  # d
])
```

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^3 o {}^4a^0)$
 $\gamma = ({}^3a^4)$
 $\delta = ({}^0c^1 o {}^1b^2)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,21}$ only has the identity automorphism, so the marked fatgraphs $G_{7,21}^{(0)}$ to $G_{7,21}^{(120)}$ are formed by decorating boundary cycles of $G_{7,21}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,22}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^2c^0) \ eta = ({}^1a^2
ightarrow {}^3a^0
ightarrow {}^3b^0
ightarrow {}^0c^1
ightarrow {}^1b^2) \ \gamma = ({}^2a^3
ightarrow {}^0b^1) \ \delta = ({}^2b^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,22}$ only has the identity automorphism, so the marked fatgraphs $G_{7,22}^{(0)}$ to $G_{7,22}^{(120)}$ are formed by decorating boundary cycles of $G_{7,22}$ with all

The Fatgraph $G_{7,23}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3d^0
ightarrow {}^0a^1
ightarrow {}^1d^2) \ eta = ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^3a^0
ightarrow {}^1c^2
ightarrow {}^0d^1
ightarrow {}^2b^0
ightarrow {}^1b^2) \ \gamma = ({}^2a^3
ightarrow {}^0b^1) \ eta = ({}^0c^1) \ \epsilon = ({}^2d^3)$$

Markings

Fatgraph $G_{7,23}$ only has the identity automorphism, so the marked fatgraphs $G_{7,23}^{(0)}$ to $G_{7,23}^{(120)}$ are formed by decorating boundary cycles of $G_{7,23}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,24}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}d^{0})$
 $\gamma = ({}^{3}b^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,24}$ only has the identity automorphism, so the marked fatgraphs $G_{7,24}^{(0)}$ to $G_{7,24}^{(120)}$ are formed by decorating boundary cycles of $G_{7,24}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,25}$ (120 orientable markings)

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^0d^1 o {}^2b^0)$$
 $eta = ({}^2a^0 o {}^1d^2 o {}^3d^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^2d^3)$

Markings

Fatgraph $G_{7,25}$ only has the identity automorphism, so the marked fatgraphs $G_{7,25}^{(0)}$ to $G_{7,25}^{(120)}$ are formed by decorating boundary cycles of $G_{7,25}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,26}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^2a^3 o {}^3b^0 o {}^1c^2 o {}^2c^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^3a^0)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,26}$ only has the identity automorphism, so the marked fatgraphs $G_{7,26}^{(0)}$ to $G_{7,26}^{(120)}$ are formed by decorating boundary cycles of $G_{7,26}$ with all

The Fatgraph $G_{7,27}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^4b^0 o {}^1a^2 o {}^0a^1 o {}^2b^3 o {}^1c^2 o {}^2c^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0 o {}^0c^1)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,27}$ only has the identity automorphism, so the marked fatgraphs $G_{7,27}^{(0)}$ to $G_{7,27}^{(120)}$ are formed by decorating boundary cycles of $G_{7,27}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,28}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^2a^3 o {}^0a^1 o {}^0b^1 o {}^3a^0 o {}^3b^0 o {}^1c^2 o {}^2c^0 o {}^2b^3 o {}^1d^2)$$
 $eta = ({}^1a^2)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Automorphisms

A_0																
$A_1^{\dagger\ddagger}$	b	a	d	С	2	1	0	5	6	3	4	α	γ	β	ϵ	δ

	$G_{7,28}^{(0)}$	$G_{7,28}^{(1)}$	$G_{7,28}^{(2)}$	$G_{7,28}^{(3)}$	$G_{7,28}^{(4)}$	$G_{7,28}^{(5)}$	$G_{7,28}^{(6)}$	$G_{7,28}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	(8)	(0)	(10)	(11)	(10)	(12)	(14)	(4 =)
	$G_{7,28}^{(8)}$	$G_{7,28}^{(9)}$	$G_{7,28}^{(10)}$	$G_{7,28}^{(11)}$	$G_{7,28}^{(12)}$	$G_{7,28}^{(13)}$	$G_{7,28}^{(14)}$	$G_{7,28}^{(15)}$
α	$G_{7,28}^{(8)}$ 0	$G_{7,28}^{(9)}$	$G_{7,28}^{(10)}$ 0	$G_{7,28}^{(11)}$ 0	$G_{7,28}^{(12)}$ 1	$G_{7,28}^{(13)}$ 1	$G_{7,28}^{(14)}$ 1	$G_{7,28}^{(15)}$ 1
α β	$G_{7,28}$	$G_{7,28}$			$G_{7,28}^{(12)}$ 1	$G_{7,28}^{(13)}$ 1	$G_{7,28}^{(14)}$ 1 0	$G_{7,28}^{(15)}$ 1
	0	0	0	0	1	1	1	1
β	0 2	0 2	0 3	0 3	1 0	1 0	1 0	0

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(contin							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.28}^{(16)}$	$G_{7.28}^{(17)}$	$G_{7.28}^{(18)}$	$G_{7.28}^{(19)}$	$G_{7.28}^{(20)}$	$G_{7.28}^{(21)}$	$G_{7.28}^{(22)}$	$G_{7.28}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1	1			1	1	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	2	2	2	2	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	3	3	4	4	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	2	3	0	4	0	3	0	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ				0				0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.28}^{(24)}$	$G_{7.28}^{(25)}$	$G_{7.28}^{(26)}$	$G_{7.28}^{(27)}$	$G_{7.28}^{(28)}$	$G_{7.28}^{(29)}$	$G_{7.28}^{(30)}$	$G_{7.28}^{(31)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	2		2		2		2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	0	0	0	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	1	1	3	3	4	4	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	3	4	1	4	1	3	0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.28}^{(32)}$	$G_{7.28}^{(33)}$	$G_{7,28}^{(34)}$	$G_{7,28}^{(35)}$	$G_{7,28}^{(36)}$	$G_{7.28}^{(37)}$	$G_{7,28}^{(38)}$	$G_{7,28}^{(39)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	2	2	2	2	3	3	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	1	1	3	3	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	4	4	1	1	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	0	3	0	1	2	4	1	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ	3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,28}^{(40)}$	$G_{7,28}^{(41)}$	$G_{7,28}^{(42)}$	$G_{7,28}^{(43)}$	$G_{7,28}^{(44)}$	$G_{7,28}^{(45)}$	$G_{7,28}^{(46)}$	$G_{7,28}^{(47)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			3	3	3		3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β		0	1		1	1	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	2		4		4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ				0				0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,28}^{(48)}$	$G_{7,28}^{(49)}$	$G_{7,28}^{(50)}$	$G_{7,28}^{(51)}$	$G_{7,28}^{(52)}$	$G_{7,28}^{(53)}$	$G_{7,28}^{(54)}$	$G_{7,28}^{(55)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α						4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β							1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3	3	2	
$egin{array}{c c c c c c c c c c c c c c c c c c c $	δ		3		3	_			3
$egin{array}{c c c c c c c c c c c c c c c c c c c $	ϵ		2		1	2	1	3	0
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,28}^{(56)}$	$G_{7,28}^{(57)}$	$G_{7,28}^{(58)}$	$G_{7,28}^{(59)}$				
$egin{array}{c c c c c c c c c c c c c c c c c c c $		4	4	4	4				
δ 0 2 0 1	β	l							
		3		3					
ϵ 2 0 1 0	δ	0	2		1				
	ϵ	2	0	1	0				

The Fatgraph $G_{7,29}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{3}d^{0}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}d^{2})$$
 $eta = ({}^{2}a^{0}
ightarrow {}^{0}d^{1})$
 $\gamma = ({}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,29}$ only has the identity automorphism, so the marked fatgraphs $G_{7,29}^{(0)}$ to $G_{7,29}^{(120)}$ are formed by decorating boundary cycles of $G_{7,29}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,30}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^2a^3 o {}^1c^2 o {}^2c^0 o {}^2b^3 o {}^1d^2 o {}^1b^2)$$
 $eta = ({}^3a^0)$
 $\gamma = ({}^3b^0)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	4	1	5	6	0	2	3	α	γ	β	ϵ	δ

	$G_{7,30}^{(0)}$	$G_{7,30}^{(1)}$	$G_{7,30}^{(2)}$	$G_{7,30}^{(3)}$	$G_{7,30}^{(4)}$	$G_{7,30}^{(5)}$	$G_{7,30}^{(6)}$	$G_{7,30}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{7,30}^{(8)}$	$G_{7,30}^{(9)}$	$G_{7,30}^{(10)}$	$G_{7,30}^{(11)}$	$G_{7,30}^{(12)}$	$G_{7,30}^{(13)}$	$G_{7,30}^{(14)}$	$G_{7,30}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,30}^{(16)}$	$G_{7,30}^{(17)}$	$G_{7,30}^{(18)}$	$G_{7,30}^{(19)}$	$G_{7,30}^{(20)}$	$G_{7,30}^{(21)}$	$G_{7,30}^{(22)}$	$G_{7,30}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,30}^{(24)}$	$G_{7,30}^{(25)}$	$G_{7,30}^{(26)}$	$G_{7,30}^{(27)}$	$G_{7,30}^{(28)}$	$G_{7,30}^{(29)}$	$G_{7,30}^{(30)}$	$G_{7,30}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0

	(contin	nued.)						
	$G_{7,30}^{(32)}$	$G_{7,30}^{(33)}$	$G_{7,30}^{(34)}$	$G_{7,30}^{(35)}$	$G_{7,30}^{(36)}$	$G_{7,30}^{(37)}$	$G_{7,30}^{(38)}$	$G_{7,30}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,30}^{(40)}$	$G_{7,30}^{(41)}$	$G_{7,30}^{(42)}$	$G_{7,30}^{(43)}$	$G_{7,30}^{(44)}$	$G_{7,30}^{(45)}$	$G_{7,30}^{(46)}$	$G_{7,30}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,30}^{(48)}$	$G_{7,30}^{(49)}$	$G_{7,30}^{(50)}$	$G_{7,30}^{(51)}$	$G_{7,30}^{(52)}$	$G_{7,30}^{(53)}$	$G_{7,30}^{(54)}$	$G_{7,30}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,30}^{(56)}$	$G_{7,30}^{(57)}$	$G_{7,30}^{(58)}$	$G_{7,30}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,31}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 1, 5, 4]),# a
   Vertex([1, 2, 0]), # b
   Vertex([0, 2, 3, 3]),# c
   Vertex([6, 6, 5]), # d
])
```

$$lpha = ({}^2d^0 o {}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^2a^3 o {}^3c^0 o {}^2b^0 o {}^1d^2)$$
 $eta = ({}^3a^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,31}$ only has the identity automorphism, so the marked fatgraphs $G_{7,31}^{(0)}$ to $G_{7,31}^{(120)}$ are formed by decorating boundary cycles of $G_{7,31}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,32}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{1}b^{2}
ightarrow {}^{3}a^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,32}$ only has the identity automorphism, so the marked fatgraphs $G_{7,32}^{(0)}$ to $G_{7,32}^{(120)}$ are formed by decorating boundary cycles of $G_{7,32}$ with all

The Fatgraph $G_{7,33}$ (non-orientable, 60 orientable markings)

Fatgraph([
 Vertex([5, 2, 1]), # a
 Vertex([2, 3, 0]), # b
 Vertex([0, 3, 4, 4]),# c
 Vertex([5, 1, 6, 6]),# d
])

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^3d^0 o {}^2b^0 o {}^1d^2)$$
 $eta = ({}^2a^0 o {}^0d^1)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^2d^3)$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	5	3	2	1	6	0	4	α	γ	β	ϵ	δ

	$G_{7,33}^{(0)}$	$G_{7,33}^{(1)}$	$G_{7,33}^{(2)}$	$G_{7,33}^{(3)}$	$G_{7,33}^{(4)}$	$G_{7,33}^{(5)}$	$G_{7,33}^{(6)}$	$G_{7,33}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1

	(contin	nued.)						
	$G_{7,33}^{(8)}$	$G_{7,33}^{(9)}$	$G_{7,33}^{(10)}$	$G_{7,33}^{(11)}$	$G_{7,33}^{(12)}$	$G_{7,33}^{(13)}$	$G_{7,33}^{(14)}$	$G_{7,33}^{(15)}$
α	Ó	Ó	Ó	Ó	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,33}^{(16)}$	$G_{7,33}^{(17)}$	$G_{7,33}^{(18)}$	$G_{7,33}^{(19)}$	$G_{7,33}^{(20)}$	$G_{7,33}^{(21)}$	$G_{7,33}^{(22)}$	$G_{7,33}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,33}^{(24)}$	$G_{7,33}^{(25)}$	$G_{7,33}^{(26)}$	$G_{7,33}^{(27)}$	$G_{7,33}^{(28)}$	$G_{7,33}^{(29)}$	$G_{7,33}^{(30)}$	$G_{7,33}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0
	$G_{7,33}^{(32)}$	$G_{7,33}^{(33)}$	$G_{7,33}^{(34)}$	$G_{7,33}^{(35)}$	$G_{7,33}^{(36)}$	$G_{7,33}^{(37)}$	$G_{7,33}^{(38)}$	$G_{7,33}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,33}^{(40)}$	$G_{7,33}^{(41)}$	$G_{7,33}^{(42)}$	$G_{7,33}^{(43)}$	$G_{7,33}^{(44)}$	$G_{7,33}^{(45)}$	$G_{7,33}^{(46)}$	$G_{7,33}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,33}^{(48)}$	$G_{7,33}^{(49)}$	$G_{7,33}^{(50)}$	$G_{7,33}^{(51)}$	$G_{7,33}^{(52)}$	$G_{7,33}^{(53)}$	$G_{7,33}^{(54)}$	$G_{7,33}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,33}^{(56)}$	$G_{7,33}^{(57)}$	$G_{7,33}^{(58)}$	$G_{7,33}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,34}$ (120 orientable markings)

Boundary cycles

```
lpha = ({}^2d^0 	o {}^4b^0 	o {}^0c^1 	o {}^1a^2 	o {}^0a^1 	o {}^2b^3 	o {}^1c^2 	o {}^2c^0 	o {}^0b^1 	o {}^1d^2)
eta = ({}^2a^0)
\gamma = ({}^1b^2)
\delta = ({}^3b^4)
\epsilon = ({}^0d^1)
```

Markings

Fatgraph $G_{7,34}$ only has the identity automorphism, so the marked fatgraphs $G_{7,34}^{(0)}$ to $G_{7,34}^{(120)}$ are formed by decorating boundary cycles of $G_{7,34}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,35}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{3}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}) \ eta = ({}^{2}a^{3}
ightarrow {}^{2}d^{0}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}b^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{0}c^{1}) \ \epsilon = ({}^{0}d^{1})$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	0	4	5	6	1	2	3	α	γ	β	ϵ	δ

	$G_{7,35}^{(0)}$	$G_{7,35}^{(1)}$	$G_{7,35}^{(2)}$	$G_{7,35}^{(3)}$	$G_{7,35}^{(4)}$	$G_{7,35}^{(5)}$	$G_{7,35}^{(6)}$	$G_{7,35}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{7,35}^{(8)}$	$G_{7,35}^{(9)}$	$G_{7,35}^{(10)}$	$G_{7,35}^{(11)}$	$G_{7,35}^{(12)}$	$G_{7,35}^{(13)}$	$G_{7,35}^{(14)}$	$G_{7,35}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,35}^{(16)}$	$G_{7,35}^{(17)}$	$G_{7,35}^{(18)}$	$G_{7,35}^{(19)}$	$G_{7,35}^{(20)}$	$G_{7,35}^{(21)}$	$G_{7,35}^{(22)}$	$G_{7,35}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,35}^{(24)}$	$G_{7,35}^{(25)}$	$G_{7,35}^{(26)}$	$G_{7,35}^{(27)}$	$G_{7,35}^{(28)}$	$G_{7,35}^{(29)}$	$G_{7,35}^{(30)}$	$G_{7,35}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0

	(contin	nued.)						
	$G_{7,35}^{(32)}$	$G_{7,35}^{(33)}$	$G_{7,35}^{(34)}$	$G_{7,35}^{(35)}$	$G_{7,35}^{(36)}$	$G_{7,35}^{(37)}$	$G_{7,35}^{(38)}$	$G_{7,35}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,35}^{(40)}$	$G_{7,35}^{(41)}$	$G_{7,35}^{(42)}$	$G_{7,35}^{(43)}$	$G_{7,35}^{(44)}$	$G_{7,35}^{(45)}$	$G_{7,35}^{(46)}$	$G_{7,35}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,35}^{(48)}$	$G_{7,35}^{(49)}$	$G_{7,35}^{(50)}$	$G_{7,35}^{(51)}$	$G_{7,35}^{(52)}$	$G_{7,35}^{(53)}$	$G_{7,35}^{(54)}$	$G_{7,35}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,35}^{(56)}$	$G_{7,35}^{(57)}$	$G_{7,35}^{(58)}$	$G_{7,35}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,36}$ (120 orientable markings)

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^2c^0) \ eta = ({}^1a^2
ightarrow {}^0c^1
ightarrow {}^4a^0) \ \gamma = ({}^2a^3
ightarrow {}^2b^0
ightarrow {}^3a^4
ightarrow {}^1b^2) \ \delta = ({}^0b^1) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,36}$ only has the identity automorphism, so the marked fatgraphs $G_{7,36}^{(0)}$ to $G_{7,36}^{(120)}$ are formed by decorating boundary cycles of $G_{7,36}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,37}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}) \ \gamma = ({}^{4}b^{0}
ightarrow {}^{2}b^{3}) \ \delta = ({}^{3}b^{4}) \ \epsilon = ({}^{0}d^{1})$$

Markings

Fatgraph $G_{7,37}$ only has the identity automorphism, so the marked fatgraphs $G_{7,37}^{(0)}$ to $G_{7,37}^{(120)}$ are formed by decorating boundary cycles of $G_{7,37}$ with all

The Fatgraph $G_{7,38}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{3}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}) \ eta = ({}^{2}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}d^{0}) \ \gamma = ({}^{2}b^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{0}c^{1}) \ \epsilon = ({}^{2}d^{3})$$

Markings

Fatgraph $G_{7,38}$ only has the identity automorphism, so the marked fatgraphs $G_{7,38}^{(0)}$ to $G_{7,38}^{(120)}$ are formed by decorating boundary cycles of $G_{7,38}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,39}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^2c^0) \ eta = ({}^1a^2
ightarrow {}^3a^0
ightarrow {}^0c^1
ightarrow {}^0b^1) \ \gamma = ({}^2a^3
ightarrow {}^3b^0
ightarrow {}^1b^2) \ \delta = ({}^2b^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,39}$ only has the identity automorphism, so the marked fatgraphs $G_{7,39}^{(0)}$ to $G_{7,39}^{(120)}$ are formed by decorating boundary cycles of $G_{7,39}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,40}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{0}) \ eta = ({}^{2}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}d^{0}) \ \gamma = ({}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{2}c^{3}) \ \epsilon = ({}^{2}d^{3})$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	5	3	2	1	6	0	4	α	γ	β	ϵ	δ

	$G_{7,40}^{(0)}$	$G_{7,40}^{(1)}$	$G_{7,40}^{(2)}$	$G_{7,40}^{(3)}$	$G_{7,40}^{(4)}$	$G_{7,40}^{(5)}$	$G_{7,40}^{(6)}$	$G_{7,40}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{7,40}^{(8)}$	$G_{7,40}^{(9)}$	$G_{7,40}^{(10)}$	$G_{7,40}^{(11)}$	$G_{7,40}^{(12)}$	$G_{7,40}^{(13)}$	$G_{7,40}^{(14)}$	$G_{7,40}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,40}^{(16)}$	$G_{7,40}^{(17)}$	$G_{7,40}^{(18)}$	$G_{7,40}^{(19)}$	$G_{7,40}^{(20)}$	$G_{7,40}^{(21)}$	$G_{7,40}^{(22)}$	$G_{7,40}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,40}^{(24)}$	$G_{7,40}^{(25)}$	$G_{7,40}^{(26)}$	$G_{7,40}^{(27)}$	$G_{7,40}^{(28)}$	$G_{7,40}^{(29)}$	$G_{7,40}^{(30)}$	$G_{7,40}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0

	(contin	nued.)						
	$G_{7,40}^{(32)}$	$G_{7,40}^{(33)}$	$G_{7,40}^{(34)}$	$G_{7,40}^{(35)}$	$G_{7,40}^{(36)}$	$G_{7,40}^{(37)}$	$G_{7,40}^{(38)}$	$G_{7,40}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,40}^{(40)}$	$G_{7,40}^{(41)}$	$G_{7,40}^{(42)}$	$G_{7,40}^{(43)}$	$G_{7,40}^{(44)}$	$G_{7,40}^{(45)}$	$G_{7,40}^{(46)}$	$G_{7,40}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,40}^{(48)}$	$G_{7,40}^{(49)}$	$G_{7,40}^{(50)}$	$G_{7,40}^{(51)}$	$G_{7,40}^{(52)}$	$G_{7,40}^{(53)}$	$G_{7,40}^{(54)}$	$G_{7,40}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,40}^{(56)}$	$G_{7,40}^{(57)}$	$G_{7,40}^{(58)}$	$G_{7,40}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,41}$ (120 orientable markings)

$$lpha = ({}^2d^0 o {}^0c^1 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^1c^2 o {}^2c^0 o {}^1b^2 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^4b^0 o {}^2b^3)$
 $\delta = ({}^3b^4)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,41}$ only has the identity automorphism, so the marked fatgraphs $G_{7,41}^{(0)}$ to $G_{7,41}^{(120)}$ are formed by decorating boundary cycles of $G_{7,41}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,42}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}b^{0})$
 $\gamma = ({}^{2}d^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{2}a^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{3}a^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}
ightarrow {}^{1}d^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}d^{1})$

Automorphisms

	$G_{7,42}^{(0)}$	$G_{7,42}^{(1)}$	$G_{7,42}^{(2)}$	$G_{7,42}^{(3)}$	$G_{7,42}^{(4)}$	$G_{7,42}^{(5)}$	$G_{7,42}^{(6)}$	$G_{7,42}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,42}^{(8)}$	$G_{7,42}^{(9)}$	$G_{7,42}^{(10)}$	$G_{7,42}^{(11)}$	$G_{7,42}^{(12)}$	$G_{7,42}^{(13)}$	$G_{7,42}^{(14)}$	$G_{7,42}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,42}^{(16)}$	$G_{7,42}^{(17)}$	$G_{7,42}^{(18)}$	$G_{7,42}^{(19)}$	$G_{7,42}^{(20)}$	$G_{7,42}^{(21)}$	$G_{7,42}^{(22)}$	$G_{7,42}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,42}^{(24)}$	$G_{7,42}^{(25)}$	$G_{7,42}^{(26)}$	$G_{7,42}^{(27)}$	$G_{7,42}^{(28)}$	$G_{7,42}^{(29)}$	$G_{7,42}^{(30)}$	$G_{7,42}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{7,42}^{(32)}$	$G_{7,42}^{(33)}$	$G_{7,42}^{(34)}$	$G_{7,42}^{(35)}$	$G_{7,42}^{(36)}$	$G_{7,42}^{(37)}$	$G_{7,42}^{(38)}$	$G_{7,42}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{7,42}^{(40)}$	$G_{7,42}^{(41)}$	$G_{7,42}^{(42)}$	$G_{7,42}^{(43)}$	$G_{7,42}^{(44)}$	$G_{7,42}^{(45)}$	$G_{7,42}^{(46)}$	$G_{7,42}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{7,42}^{(48)}$	$G_{7,42}^{(49)}$	$G_{7,42}^{(50)}$	$G_{7,42}^{(51)}$	$G_{7,42}^{(52)}$	$G_{7,42}^{(53)}$	$G_{7,42}^{(54)}$	$G_{7,42}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0

	(contin	nued.)						
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{7,42}^{(56)}$	$G_{7,42}^{(57)}$	$G_{7,42}^{(58)}$	$G_{7,42}^{(59)}$				'
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,43}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^0c^1 o {}^1b^2)$
 $\gamma = ({}^2d^0 o {}^3c^0 o {}^2a^3 o {}^0b^1 o {}^3a^0 o {}^1c^2 o {}^1d^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,43}$ only has the identity automorphism, so the marked fatgraphs $G_{7,43}^{(0)}$ to $G_{7,43}^{(120)}$ are formed by decorating boundary cycles of $G_{7,43}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,44}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^3a^4
ightarrow {}^0a^1
ightarrow {}^4a^0
ightarrow {}^1c^2
ightarrow {}^2c^0
ightarrow {}^0b^1
ightarrow {}^1d^2)$$
 $eta = ({}^1a^2
ightarrow {}^2b^0)$
 $\gamma = ({}^2a^3
ightarrow {}^1b^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,44}$ only has the identity automorphism, so the marked fatgraphs $G_{7,44}^{(0)}$ to $G_{7,44}^{(120)}$ are formed by decorating boundary cycles of $G_{7,44}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,45}$ (120 orientable markings)

$$egin{aligned} &lpha = (^2b^0
ightarrow ^0a^1) \ η = (^1a^2
ightarrow ^0c^1
ightarrow ^1b^2) \ &\gamma = (^2d^0
ightarrow ^2a^3
ightarrow ^0b^1
ightarrow ^1c^2
ightarrow ^2c^0
ightarrow ^4a^0
ightarrow ^1d^2) \ &\delta = (^3a^4) \ &\epsilon = (^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,45}$ only has the identity automorphism, so the marked fatgraphs $G_{7,45}^{(0)}$ to $G_{7,45}^{(120)}$ are formed by decorating boundary cycles of $G_{7,45}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,46}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1}) \ eta = ({}^{2}d^{0}
ightarrow {}^{4}b^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{3}b^{4}) \ \epsilon = ({}^{0}d^{1})$$

Markings

Fatgraph $G_{7,46}^{(0)}$ only has the identity automorphism, so the marked fatgraphs $G_{7,46}^{(0)}$ to $G_{7,46}^{(120)}$ are formed by decorating boundary cycles of $G_{7,46}$ with all

The Fatgraph $G_{7,47}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^0d^1
ightarrow {}^3b^0
ightarrow {}^0a^1) \ eta = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^1c^2
ightarrow {}^3d^0
ightarrow {}^2c^0
ightarrow {}^1d^2
ightarrow {}^1b^2) \ \gamma = ({}^2a^0
ightarrow {}^0b^1) \ eta = ({}^0c^1) \ eta = ({}^2d^3)$$

Markings

Fatgraph $G_{7,47}$ only has the identity automorphism, so the marked fatgraphs $G_{7,47}^{(0)}$ to $G_{7,47}^{(120)}$ are formed by decorating boundary cycles of $G_{7,47}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,48}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4c^0 o {}^0a^1 o {}^1b^2) \ eta = ({}^2d^0 o {}^3c^4 o {}^1a^2 o {}^0b^1 o {}^0c^1 o {}^2c^3 o {}^1d^2) \ \gamma = ({}^2a^0 o {}^2b^0) \ \delta = ({}^1c^2) \ \epsilon = ({}^0d^1)$$

b

Markings

Fatgraph $G_{7,48}$ only has the identity automorphism, so the marked fatgraphs $G_{7,48}^{(0)}$ to $G_{7,48}^{(120)}$ are formed by decorating boundary cycles of $G_{7,48}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,49}$ (120 orientable markings)

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}c^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{3}d^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,49}$ only has the identity automorphism, so the marked fatgraphs $G_{7,49}^{(0)}$ to $G_{7,49}^{(120)}$ are formed by decorating boundary cycles of $G_{7,49}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,50}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta &= ({}^2d^0
ightarrow {}^4c^0
ightarrow {}^1a^2
ightarrow {}^0b^1
ightarrow {}^1c^2
ightarrow {}^2c^3
ightarrow {}^1d^2) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0) \ \delta &= ({}^3c^4) \ \epsilon &= ({}^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,50}$ only has the identity automorphism, so the marked fatgraphs $G_{7,50}^{(0)}$ to $G_{7,50}^{(120)}$ are formed by decorating boundary cycles of $G_{7,50}$ with all

The Fatgraph $G_{7,51}$ (non-orientable, 60 orientable markings)

Fatgraph([
 Vertex([1, 0, 5, 4]),# a
 Vertex([0, 1, 2, 4]),# b
 Vertex([3, 3, 2]), # c
 Vertex([6, 6, 5]), # d
])

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}d^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}a^{3})$
 $\gamma = ({}^{3}a^{0}
ightarrow {}^{2}b^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}d^{1})$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	1	0	5	6	4	2	3	α	γ	β	ϵ	δ

	$G_{7,51}^{(0)}$	$G_{7,51}^{(1)}$	$G_{7,51}^{(2)}$	$G_{7,51}^{(3)}$	$G_{7,51}^{(4)}$	$G_{7,51}^{(5)}$	$G_{7,51}^{(6)}$	$G_{7,51}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1

	(contin	nued.)						
	$G_{7,51}^{(8)}$	$G_{7,51}^{(9)}$	$G_{7,51}^{(10)}$	$G_{7,51}^{(11)}$	$G_{7,51}^{(12)}$	$G_{7,51}^{(13)}$	$G_{7,51}^{(14)}$	$G_{7,51}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,51}^{(16)}$	$G_{7,51}^{(17)}$	$G_{7,51}^{(18)}$	$G_{7,51}^{(19)}$	$G_{7,51}^{(20)}$	$G_{7,51}^{(21)}$	$G_{7,51}^{(22)}$	$G_{7,51}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,51}^{(24)}$	$G_{7,51}^{(25)}$	$G_{7,51}^{(26)}$	$G_{7,51}^{(27)}$	$G_{7,51}^{(28)}$	$G_{7,51}^{(29)}$	$G_{7,51}^{(30)}$	$G_{7,51}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0
	$G_{7,51}^{(32)}$	$G_{7,51}^{(33)}$	$G_{7,51}^{(34)}$	$G_{7,51}^{(35)}$	$G_{7,51}^{(36)}$	$G_{7,51}^{(37)}$	$G_{7,51}^{(38)}$	$G_{7,51}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,51}^{(40)}$	$G_{7,51}^{(41)}$	$G_{7,51}^{(42)}$	$G_{7,51}^{(43)}$	$G_{7,51}^{(44)}$	$G_{7,51}^{(45)}$	$G_{7,51}^{(46)}$	$G_{7,51}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,51}^{(48)}$	$G_{7,51}^{(49)}$	$G_{7,51}^{(50)}$	$G_{7,51}^{(51)}$	$G_{7,51}^{(52)}$	$G_{7,51}^{(53)}$	$G_{7,51}^{(54)}$	$G_{7,51}^{(55)}$
α	4	4	4	4	4	4	4	4
$oldsymbol{eta}$	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,51}^{(56)}$	$G_{7,51}^{(57)}$	$G_{7,51}^{(58)}$	$G_{7,51}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,52}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 5, 4]),# a
   Vertex([1, 2, 0]), # b
   Vertex([4, 2, 3, 3]),# c
   Vertex([6, 6, 5]), # d
])
```

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1) \ eta = ({}^2d^0
ightarrow {}^1a^2
ightarrow {}^1b^2
ightarrow {}^2a^3
ightarrow {}^0c^1
ightarrow {}^1d^2) \ \gamma = ({}^3a^0
ightarrow {}^3c^0
ightarrow {}^1c^2
ightarrow {}^0b^1) \ \delta = ({}^2c^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,52}$ only has the identity automorphism, so the marked fatgraphs $G_{7,52}^{(0)}$ to $G_{7,52}^{(120)}$ are formed by decorating boundary cycles of $G_{7,52}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,53}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 5, 2, 3]),# a
   Vertex([1, 2, 0]),  # b
   Vertex([4, 4, 3]),  # c
   Vertex([6, 6, 5]),  # d
])
```

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^2d^0
ightarrow {}^1b^2
ightarrow {}^1d^2
ightarrow {}^2a^3) \ \gamma &= ({}^0b^1
ightarrow {}^4a^0
ightarrow {}^3a^4
ightarrow {}^1c^2
ightarrow {}^2c^0) \ \delta &= ({}^0c^1) \ \epsilon &= ({}^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,53}$ only has the identity automorphism, so the marked fatgraphs $G_{7,53}^{(0)}$ to $G_{7,53}^{(120)}$ are formed by decorating boundary cycles of $G_{7,53}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,54}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^0b^1
ightarrow {}^1d^2) \ eta = ({}^1a^2
ightarrow {}^2b^0) \ \gamma = ({}^2a^3
ightarrow {}^1b^2
ightarrow {}^0c^1
ightarrow {}^4a^0) \ \delta = ({}^3a^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,54}$ only has the identity automorphism, so the marked fatgraphs $G_{7,54}^{(0)}$ to $G_{7,54}^{(120)}$ are formed by decorating boundary cycles of $G_{7,54}$ with all

The Fatgraph $G_{7,55}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^4c^0
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^3c^4
ightarrow {}^1d^2) \ eta = ({}^1a^2
ightarrow {}^2c^3
ightarrow {}^0c^1
ightarrow {}^0b^1) \ \gamma = ({}^2a^0
ightarrow {}^2b^0) \ \delta = ({}^1c^2) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,55}$ only has the identity automorphism, so the marked fatgraphs $G_{7,55}^{(0)}$ to $G_{7,55}^{(120)}$ are formed by decorating boundary cycles of $G_{7,55}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,56}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^3d^0
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta = ({}^1a^2
ightarrow {}^0d^1
ightarrow {}^3c^0
ightarrow {}^1c^2
ightarrow {}^0b^1) \ \gamma = ({}^2a^0
ightarrow {}^2b^0) \ \delta = ({}^2c^3) \ \epsilon = ({}^2d^3)$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	3	2	1	0	6	5	4	β	α	γ	ϵ	δ

	$G_{7,56}^{(0)}$	$G_{7,56}^{(1)}$	$G_{7,56}^{(2)}$	$G_{7,56}^{(3)}$	$G_{7,56}^{(4)}$	$G_{7,56}^{(5)}$	$G_{7,56}^{(6)}$	$G_{7,56}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,56}^{(8)}$	$G_{7,56}^{(9)}$	$G_{7,56}^{(10)}$	$G_{7,56}^{(11)}$	$G_{7,56}^{(12)}$	$G_{7,56}^{(13)}$	$G_{7,56}^{(14)}$	$G_{7,56}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	0	4	4	1	1	0	2
- 1	3	3	4	4	1	1	2	4
δ	1	4	1	3	2	4	1	4

	(contin							
	$G_{7,56}^{(16)}$	$G_{7,56}^{(17)}$	$G_{7,56}^{(18)}$	$G_{7,56}^{(19)}$	$G_{7,56}^{(20)}$	$G_{7,56}^{(21)}$	$G_{7,56}^{(22)}$	$G_{7,56}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,56}^{(24)}$	$G_{7,56}^{(25)}$	$G_{7,56}^{(26)}$	$G_{7,56}^{(27)}$	$G_{7,56}^{(28)}$	$G_{7,56}^{(29)}$	$G_{7,56}^{(30)}$	$G_{7,56}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{7,56}^{(32)}$	$G_{7,56}^{(33)}$	$G_{7,56}^{(34)}$	$G_{7,56}^{(35)}$	$G_{7,56}^{(36)}$	$G_{7,56}^{(37)}$	$G_{7,56}^{(38)}$	$G_{7,56}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{7,56}^{(40)}$	$G_{7,56}^{(41)}$	$G_{7,56}^{(42)}$	$G_{7,56}^{(43)}$	$G_{7,56}^{(44)}$	$G_{7,56}^{(45)}$	$G_{7,56}^{(46)}$	$G_{7,56}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{7,56}^{(48)}$	$G_{7,56}^{(49)}$	$G_{7,56}^{(50)}$	$G_{7,56}^{(51)}$	$G_{7,56}^{(52)}$	$G_{7,56}^{(53)}$	$G_{7,56}^{(54)}$	$G_{7,56}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{7,56}^{(56)}$	$G_{7,56}^{(57)}$	$G_{7,56}^{(58)}$	$G_{7,56}^{(59)}$				
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,57}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1
ightarrow {}^0c^1) \ eta = ({}^2d^0
ightarrow {}^1a^2
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^1b^2
ightarrow {}^1d^2) \ \gamma = ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^4a^0) \ \delta = ({}^3a^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,57}$ only has the identity automorphism, so the marked fatgraphs $G_{7,57}^{(0)}$ to $G_{7,57}^{(120)}$ are formed by decorating boundary cycles of $G_{7,57}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,58}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^3b^0 o {}^0a^1) \ eta = ({}^1a^2 o {}^2d^0 o {}^2b^3 o {}^1d^2 o {}^1b^2) \ \gamma = ({}^2a^3 o {}^3a^0 o {}^0b^1 o {}^1c^2 o {}^2c^0) \ \delta = ({}^0c^1) \ \epsilon = ({}^0d^1)$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	1	0	2	5	6	3	4	α	γ	β	ϵ	δ

	$G_{7,58}^{(0)}$	$G_{7,58}^{(1)}$	$G_{7,58}^{(2)}$	$G_{7,58}^{(3)}$	$G_{7,58}^{(4)}$	$G_{7,58}^{(5)}$	$G_{7,58}^{(6)}$	$G_{7,58}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{7,58}^{(8)}$	$G_{7,58}^{(9)}$	$G_{7,58}^{(10)}$	$G_{7,58}^{(11)}$	$G_{7,58}^{(12)}$	$G_{7,58}^{(13)}$	$G_{7,58}^{(14)}$	$G_{7,58}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,58}^{(16)}$	$G_{7,58}^{(17)}$	$G_{7,58}^{(18)}$	$G_{7,58}^{(19)}$	$G_{7,58}^{(20)}$	$G_{7,58}^{(21)}$	$G_{7,58}^{(22)}$	$G_{7,58}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,58}^{(24)}$	$G_{7,58}^{(25)}$	$G_{7,58}^{(26)}$	$G_{7,58}^{(27)}$	$G_{7,58}^{(28)}$	$G_{7,58}^{(29)}$	$G_{7,58}^{(30)}$	$G_{7,58}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0

	(contin	nued.)						
	$G_{7,58}^{(32)}$	$G_{7,58}^{(33)}$	$G_{7,58}^{(34)}$	$G_{7,58}^{(35)}$	$G_{7,58}^{(36)}$	$G_{7,58}^{(37)}$	$G_{7,58}^{(38)}$	$G_{7,58}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,58}^{(40)}$	$G_{7,58}^{(41)}$	$G_{7,58}^{(42)}$	$G_{7,58}^{(43)}$	$G_{7,58}^{(44)}$	$G_{7,58}^{(45)}$	$G_{7,58}^{(46)}$	$G_{7,58}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,58}^{(48)}$	$G_{7,58}^{(49)}$	$G_{7,58}^{(50)}$	$G_{7,58}^{(51)}$	$G_{7,58}^{(52)}$	$G_{7,58}^{(53)}$	$G_{7,58}^{(54)}$	$G_{7,58}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,58}^{(56)}$	$G_{7,58}^{(57)}$	$G_{7,58}^{(58)}$	$G_{7,58}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,59}$ (120 orientable markings)

$$lpha = ({}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}d^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{3}a^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,59}$ only has the identity automorphism, so the marked fatgraphs $G_{7,59}^{(0)}$ to $G_{7,59}^{(120)}$ are formed by decorating boundary cycles of $G_{7,59}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,60}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^0b^1 o {}^1d^2) \ eta = ({}^1a^2 o {}^4b^0 o {}^2b^3) \ \gamma = ({}^2a^0 o {}^0c^1 o {}^1b^2) \ \delta = ({}^3b^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,60}$ only has the identity automorphism, so the marked fatgraphs $G_{7,60}^{(0)}$ to $G_{7,60}^{(120)}$ are formed by decorating boundary cycles of $G_{7,60}$ with all

The Fatgraph $G_{7,61}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^3d^0
ightarrow {}^3b^0
ightarrow {}^0a^1
ightarrow {}^1d^2) \ eta = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^1b^2) \ \gamma = ({}^2a^0
ightarrow {}^0b^1
ightarrow {}^0d^1) \ \delta = ({}^0c^1) \ \epsilon = ({}^2d^3)$$

Markings

Fatgraph $G_{7,61}$ only has the identity automorphism, so the marked fatgraphs $G_{7,61}^{(0)}$ to $G_{7,61}^{(120)}$ are formed by decorating boundary cycles of $G_{7,61}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,62}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0a^1 o {}^2b^3 o {}^0c^1 o {}^1b^2 o {}^1d^2) \ eta = ({}^1a^2 o {}^3c^0 o {}^1c^2 o {}^0b^1) \ \gamma = ({}^2a^0 o {}^3b^0) \ \delta = ({}^2c^3) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,62}$ only has the identity automorphism, so the marked fatgraphs $G_{7,62}^{(0)}$ to $G_{7,62}^{(120)}$ are formed by decorating boundary cycles of $G_{7,62}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,63}$ (120 orientable markings)

$$lpha = ({}^3d^0 o {}^0a^1 o {}^1d^2 o {}^0c^1 o {}^1b^2)$$
 $eta = ({}^1a^2 o {}^3c^0 o {}^1c^2 o {}^0b^1)$
 $\gamma = ({}^2a^0 o {}^2b^0 o {}^0d^1)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^2d^3)$

Markings

Fatgraph $G_{7,63}$ only has the identity automorphism, so the marked fatgraphs $G_{7,63}^{(0)}$ to $G_{7,63}^{(120)}$ are formed by decorating boundary cycles of $G_{7,63}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,64}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^4b^0 o {}^0a^1 o {}^0c^1 o {}^2b^3) \ eta = ({}^2d^0 o {}^1a^2 o {}^2c^0 o {}^1c^2 o {}^1b^2 o {}^1d^2) \ \gamma = ({}^2a^0 o {}^0b^1) \ \delta = ({}^3b^4) \ \epsilon = ({}^0d^1)$$

Markings

Fatgraph $G_{7,64}$ only has the identity automorphism, so the marked fatgraphs $G_{7,64}^{(0)}$ to $G_{7,64}^{(120)}$ are formed by decorating boundary cycles of $G_{7,64}$ with all

The Fatgraph $G_{7,65}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}d^{0})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{2}d^{3})$

Automorphisms

A_0																
$A_1^{\dagger\ddagger}$	b	a	d	С	5	3	2	1	6	0	4	α	γ	β	ε	δ

	$G_{7,65}^{(0)}$	$G_{7,65}^{(1)}$	$G_{7,65}^{(2)}$	$G_{7,65}^{(3)}$	$G_{7,65}^{(4)}$	$G_{7,65}^{(5)}$	$G_{7,65}^{(6)}$	$G_{7,65}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1

	(contin	rued.)						
	$G_{7,65}^{(8)}$	$G_{7,65}^{(9)}$	$G_{7,65}^{(10)}$	$G_{7,65}^{(11)}$	$G_{7,65}^{(12)}$	$G_{7,65}^{(13)}$	$G_{7,65}^{(14)}$	$G_{7,65}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{7,65}^{(16)}$	$G_{7,65}^{(17)}$	$G_{7,65}^{(18)}$	$G_{7,65}^{(19)}$	$G_{7,65}^{(20)}$	$G_{7,65}^{(21)}$	$G_{7,65}^{(22)}$	$G_{7,65}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{7,65}^{(24)}$	$G_{7,65}^{(25)}$	$G_{7,65}^{(26)}$	$G_{7,65}^{(27)}$	$G_{7,65}^{(28)}$	$G_{7,65}^{(29)}$	$G_{7,65}^{(30)}$	$G_{7,65}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0
	$G_{7,65}^{(32)}$	$G_{7,65}^{(33)}$	$G_{7,65}^{(34)}$	$G_{7,65}^{(35)}$	$G_{7,65}^{(36)}$	$G_{7,65}^{(37)}$	$G_{7,65}^{(38)}$	$G_{7,65}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{7,65}^{(40)}$	$G_{7,65}^{(41)}$	$G_{7,65}^{(42)}$	$G_{7,65}^{(43)}$	$G_{7,65}^{(44)}$	$G_{7,65}^{(45)}$	$G_{7,65}^{(46)}$	$G_{7,65}^{(47)}$
α	3	3	3	3	3	3	3	3
$oldsymbol{eta}$	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{7,65}^{(48)}$	$G_{7,65}^{(49)}$	$G_{7,65}^{(50)}$	$G_{7,65}^{(51)}$	$G_{7,65}^{(52)}$	$G_{7,65}^{(53)}$	$G_{7,65}^{(54)}$	$G_{7,65}^{(55)}$
α	4	4	4	4	4	4	4	4
$oldsymbol{eta}$	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{7,65}^{(56)}$	$G_{7,65}^{(57)}$	$G_{7,65}^{(58)}$	$G_{7,65}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{7,66}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}c^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{3}d^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}d^{1}) \ \delta = ({}^{2}c^{3}) \ \epsilon = ({}^{2}d^{3})$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	5	1	3	2	6	0	4	γ	β	α	ϵ	δ

	$G_{7,66}^{(0)}$	$G_{7,66}^{(1)}$	$G_{7,66}^{(2)}$	$G_{7,66}^{(3)}$	$G_{7,66}^{(4)}$	$G_{7,66}^{(5)}$	$G_{7,66}^{(6)}$	$G_{7,66}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	(0)	(0)	(10)	(11)	(10)	(10)	(4.4)	(
	$G_{7,66}^{(8)}$	$G_{7,66}^{(9)}$	$G_{7,66}^{(10)}$	$G_{7,66}^{(11)}$	$G_{7,66}^{(12)}$	$G_{7,66}^{(13)}$	$G_{7,66}^{(14)}$	$G_{7,66}^{(15)}$
α	$G_{7,66}^{(8)}$ 0	$G_{7,66}^{(9)}$	$G_{7,66}^{(10)}$ 0	$G_{7,66}^{(11)}$ 0	$G_{7,66}^{(12)}$ 0	$G_{7,66}^{(13)}$	$G_{7,66}^{(14)}$ 0	$G_{7,66}^{(15)}$ 0
α β		G _{7,66}			_			
	0	0	0	0	0	0	0	0
β	0 2	0 2	0 2	0 2	0 3	0 3	0 3	3

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(contin							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.66}^{(16)}$	$G_{7.66}^{(17)}$	$G_{7.66}^{(18)}$	$G_{7.66}^{(19)}$	$G_{7.66}^{(20)}$	$G_{7.66}^{(21)}$	$G_{7.66}^{(22)}$	$G_{7.66}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α								Ó
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	3	3	4	4	4	4	4	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	1	1	2	2	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	1	2	2	3	1	3	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ		1		2		1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.66}^{(24)}$	$G_{7.66}^{(25)}$	$G_{7.66}^{(26)}$	$G_{7.66}^{(27)}$	$G_{7.66}^{(28)}$	$G_{7.66}^{(29)}$	$G_{7.66}^{(30)}$	$G_{7.66}^{(31)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1		1		1		1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	0	0	0	0	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	2	2	3	3	4	4	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	3	4	2	4	2	3	0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,66}^{(32)}$	$G_{7,66}^{(33)}$	$G_{7,66}^{(34)}$	$G_{7,66}^{(35)}$	$G_{7,66}^{(36)}$	$G_{7,66}^{(37)}$	$G_{7,66}^{(38)}$	$G_{7,66}^{(39)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α		1	1	1	1		1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	2	2	3	3	3	3	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4		2	2	4	4	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ			0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,66}^{(40)}$	$G_{7,66}^{(41)}$	$G_{7,66}^{(42)}$	$G_{7,66}^{(43)}$	$G_{7,66}^{(44)}$	$G_{7,66}^{(45)}$	$G_{7,66}^{(46)}$	$G_{7,66}^{(47)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		2		2	2	2	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β		4	0		0	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3		4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ		2						4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ				1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,66}^{(48)}$	$G_{7,66}^{(49)}$	$G_{7,66}^{(50)}$	$G_{7,66}^{(51)}$	$G_{7,66}^{(52)}$	$G_{7,66}^{(53)}$	$G_{7,66}^{(54)}$	$G_{7,66}^{(55)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α							3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β		1	3	3			0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	4	4	4	3	3	4	4
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	δ		3	0		0	1	1	
$egin{array}{c c c c c c c c c c c c c c c c c c c $	ϵ				0	1	0	2	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,66}^{(56)}$	$G_{7,66}^{(57)}$	$G_{7,66}^{(58)}$	$G_{7,66}^{(59)}$				
$egin{array}{c c c c c c c c c c c c c c c c c c c $		3	3	3					
$\stackrel{'}{\delta}$ 0 2 0 1	β	1	1	2	2				
				4					
ϵ 2 0 1 0	δ								
	ϵ	2	0	1	0				

The Fatgraph $G_{7,67}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^3d^0 o {}^0a^1 o {}^1d^2 o {}^0c^1 o {}^1b^2)$$
 $eta = ({}^1a^2 o {}^0d^1 o {}^3c^0 o {}^1c^2 o {}^0b^1)$
 $\gamma = ({}^2a^0 o {}^2b^0)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^2d^3)$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	3	2	1	0	6	5	4	β	α	γ	ϵ	δ

	$G_{7,67}^{(0)}$	$G_{7,67}^{(1)}$	$G_{7,67}^{(2)}$	$G_{7,67}^{(3)}$	$G_{7,67}^{(4)}$	$G_{7,67}^{(5)}$	$G_{7,67}^{(6)}$	$G_{7,67}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,67}^{(8)}$	$G_{7,67}^{(9)}$	$G_{7,67}^{(10)}$	$G_{7,67}^{(11)}$	$G_{7,67}^{(12)}$	$G_{7,67}^{(13)}$	$G_{7,67}^{(14)}$	$G_{7,67}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(contin							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.67}^{(16)}$	$G_{7.67}^{(17)}$	$G_{7.67}^{(18)}$	$G_{7.67}^{(19)}$	$G_{7.67}^{(20)}$	$G_{7.67}^{(21)}$	$G_{7.67}^{(22)}$	$G_{7.67}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α						Ó		Ó
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	3	3	4	4	4	4	4	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	1	1	2	2	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	1	2	2	3	1	3	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ		1						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.67}^{(24)}$	$G_{7.67}^{(25)}$	$G_{7.67}^{(26)}$	$G_{7.67}^{(27)}$	$G_{7.67}^{(28)}$	$G_{7.67}^{(29)}$	$G_{7.67}^{(30)}$	$G_{7.67}^{(31)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1		1	1	1		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	2	2	2	2	2	2	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	0	0	3	3	4	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	3	4	0	4	0	3	2	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ					3	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7.67}^{(32)}$	$G_{7.67}^{(33)}$	$G_{7.67}^{(34)}$	$G_{7.67}^{(35)}$	$G_{7.67}^{(36)}$	$G_{7.67}^{(37)}$	$G_{7.67}^{(38)}$	$G_{7.67}^{(39)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1			1		1		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	3	3	3	3	4	4	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	2	2	4	4	0	0	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	0	4	0	2	2	3	0	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,67}^{(40)}$	$G_{7,67}^{(41)}$	$G_{7,67}^{(42)}$	$G_{7,67}^{(43)}$	$G_{7,67}^{(44)}$	$G_{7,67}^{(45)}$	$G_{7,67}^{(46)}$	$G_{7,67}^{(47)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2	2	2	2		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β			3	3	3		3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		0	0	1		4	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ					0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,67}^{(48)}$	$G_{7,67}^{(49)}$	$G_{7,67}^{(50)}$	$G_{7,67}^{(51)}$	$G_{7,67}^{(52)}$	$G_{7,67}^{(53)}$	$G_{7,67}^{(54)}$	$G_{7,67}^{(55)}$
$egin{array}{c c c c c c c c c c c c c c c c c c c $		2			2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β		4						
ϵ 3 1 3 0 1 0 2 1 $G_{7,67}^{(56)}$ $G_{7,67}^{(57)}$ $G_{7,67}^{(58)}$ $G_{7,67}^{(59)}$ $G_{7,67}$				1		3	3	0	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	δ		3	_	3	0	1		2
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ		1		-	1	0	2	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{7,67}^{(56)}$	$G_{7,67}^{(57)}$	$G_{7,67}^{(58)}$					
γ 1 1 2 2		3							
·	β								
	δ	0	2	0	1				
ϵ 2 0 1 0	ϵ	2	0	1	0				

The Fatgraph $G_{7,68}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2d^0 o {}^3c^0 o {}^2a^3 o {}^0b^1 o {}^3a^0 o {}^1c^2 o {}^2c^3 o {}^1d^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,68}$ only has the identity automorphism, so the marked fatgraphs $G_{7,68}^{(0)}$ to $G_{7,68}^{(120)}$ are formed by decorating boundary cycles of $G_{7,68}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,69}$ (120 orientable markings)

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^2c^0 o {}^3a^0 o {}^1c^2 o {}^3d^0 o {}^0d^1 o {}^0b^1 o {}^1d^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^2d^3)$

Markings

Fatgraph $G_{7,69}$ only has the identity automorphism, so the marked fatgraphs $G_{7,69}^{(0)}$ to $G_{7,69}^{(120)}$ are formed by decorating boundary cycles of $G_{7,69}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,70}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^4d^0
ightarrow {}^0b^1
ightarrow {}^1c^2
ightarrow {}^2d^3
ightarrow {}^0d^1
ightarrow {}^2c^0) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0) \ eta &= ({}^1d^2) \ \epsilon &= ({}^3d^4) \end{aligned}$$

Markings

Fatgraph $G_{7,70}$ only has the identity automorphism, so the marked fatgraphs $G_{7,70}^{(0)}$ to $G_{7,70}^{(120)}$ are formed by decorating boundary cycles of $G_{7,70}$ with all

The Fatgraph $G_{7,71}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1) \ eta = ({}^1a^2
ightarrow {}^1b^2) \ \gamma = ({}^2d^0
ightarrow {}^2a^3
ightarrow {}^4a^0
ightarrow {}^1c^2
ightarrow {}^2c^0
ightarrow {}^0b^1
ightarrow {}^1d^2) \ eta = ({}^3a^4
ightarrow {}^0c^1) \ eta = ({}^0d^1)$$

Markings

Fatgraph $G_{7,71}$ only has the identity automorphism, so the marked fatgraphs $G_{7,71}^{(0)}$ to $G_{7,71}^{(120)}$ are formed by decorating boundary cycles of $G_{7,71}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,72}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0
ightarrow {}^0a^1)$$
 $eta = ({}^1a^2
ightarrow {}^1b^2)$
 $\gamma = ({}^2a^3
ightarrow {}^2c^0
ightarrow {}^3a^0
ightarrow {}^1c^2
ightarrow {}^3d^0
ightarrow {}^0b^1
ightarrow {}^1d^2)$
 $\delta = ({}^0d^1
ightarrow {}^0c^1)$
 $\epsilon = ({}^2d^3)$

Markings

Fatgraph $G_{7,72}$ only has the identity automorphism, so the marked fatgraphs $G_{7,72}^{(0)}$ to $G_{7,72}^{(120)}$ are formed by decorating boundary cycles of $G_{7,72}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,73}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}c^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{3}d^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{0}d^{1}
ightarrow {}^{2}c^{3}) \ \epsilon = ({}^{2}d^{3})$$

Markings

Fatgraph $G_{7,73}$ only has the identity automorphism, so the marked fatgraphs $G_{7,73}^{(0)}$ to $G_{7,73}^{(120)}$ are formed by decorating boundary cycles of $G_{7,73}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,74}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^0c^1
ightarrow {}^4a^0) \ \delta &= ({}^2d^0
ightarrow {}^3a^4
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^2c^0) \ \epsilon &= ({}^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,74}$ only has the identity automorphism, so the marked fatgraphs $G_{7,74}^{(0)}$ to $G_{7,74}^{(120)}$ are formed by decorating boundary cycles of $G_{7,74}$ with all

The Fatgraph $G_{7,75}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^3a^0 o {}^3c^0 o {}^0c^1 o {}^0b^1)$
 $\delta = ({}^2d^0 o {}^2c^3 o {}^1d^2 o {}^1c^2)$
 $\epsilon = ({}^0d^1)$

Markings

Fatgraph $G_{7,75}$ only has the identity automorphism, so the marked fatgraphs $G_{7,75}^{(0)}$ to $G_{7,75}^{(120)}$ are formed by decorating boundary cycles of $G_{7,75}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,76}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2a^3 o {}^0b^1 o {}^3a^0 o {}^1c^2 o {}^0d^1 o {}^2c^0)$
 $\delta = ({}^3d^0 o {}^1d^2 o {}^0c^1)$
 $\epsilon = ({}^2d^3)$

Markings

Fatgraph $G_{7,76}$ only has the identity automorphism, so the marked fatgraphs $G_{7,76}^{(0)}$ to $G_{7,76}^{(120)}$ are formed by decorating boundary cycles of $G_{7,76}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,77}$ (120 orientable markings)

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^4c^0
ightarrow {}^1c^2
ightarrow {}^0b^1) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0) \ \delta &= ({}^2d^0
ightarrow {}^3c^4
ightarrow {}^2c^3
ightarrow {}^1d^2) \ \epsilon &= ({}^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,77}$ only has the identity automorphism, so the marked fatgraphs $G_{7,77}^{(0)}$ to $G_{7,77}^{(120)}$ are formed by decorating boundary cycles of $G_{7,77}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,78}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{3}d^{0}
ightarrow {}^{2}c^{3}
ightarrow {}^{1}d^{2})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,78}$ only has the identity automorphism, so the marked fatgraphs $G_{7,78}^{(0)}$ to $G_{7,78}^{(120)}$ are formed by decorating boundary cycles of $G_{7,78}$ with all

The Fatgraph $G_{7,79}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{2}d^{3}
ightarrow {}^{4}d^{0}) \ \epsilon = ({}^{3}d^{4})$$

Markings

Fatgraph $G_{7,79}$ only has the identity automorphism, so the marked fatgraphs $G_{7,79}^{(0)}$ to $G_{7,79}^{(120)}$ are formed by decorating boundary cycles of $G_{7,79}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,80}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1})$$
 $eta = ({}^{1}a^{2} o {}^{2}c^{0} o {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3} o {}^{0}b^{1})$
 $\delta = ({}^{2}d^{0} o {}^{3}a^{4} o {}^{4}a^{0} o {}^{1}c^{2} o {}^{2}b^{0} o {}^{1}d^{2})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,80}$ only has the identity automorphism, so the marked fatgraphs $G_{7,80}^{(0)}$ to $G_{7,80}^{(120)}$ are formed by decorating boundary cycles of $G_{7,80}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,81}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,81}$ only has the identity automorphism, so the marked fatgraphs $G_{7,81}^{(0)}$ to $G_{7,81}^{(120)}$ are formed by decorating boundary cycles of $G_{7,81}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,82}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^4b^0
ightarrow {}^1d^2
ightarrow {}^2c^0) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ \delta = ({}^0c^1
ightarrow {}^1b^2) \ \epsilon = ({}^3b^4)$$

Markings

Fatgraph $G_{7,82}$ only has the identity automorphism, so the marked fatgraphs $G_{7,82}^{(0)}$ to $G_{7,82}^{(120)}$ are formed by decorating boundary cycles of $G_{7,82}$ with all

The Fatgraph $G_{7,83}$ (120 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^{0}a^{1} \rightarrow {}^{2}b^{3}) \\ &\beta = ({}^{1}a^{2} \rightarrow {}^{1}b^{2}) \\ &\gamma = ({}^{2}a^{3} \rightarrow {}^{0}c^{1} \rightarrow {}^{0}b^{1}) \\ &\delta = ({}^{2}d^{0} \rightarrow {}^{3}a^{0} \rightarrow {}^{2}c^{0} \rightarrow {}^{3}b^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{1}d^{2}) \\ &\epsilon = ({}^{0}d^{1}) \end{split}$$

Markings

Fatgraph $G_{7,83}$ only has the identity automorphism, so the marked fatgraphs $G_{7,83}^{(0)}$ to $G_{7,83}^{(120)}$ are formed by decorating boundary cycles of $G_{7,83}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,84}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1})$$
 $eta = ({}^{1}a^{2} o {}^{2}c^{0} o {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{3} o {}^{3}b^{0})$
 $\delta = ({}^{2}d^{0} o {}^{3}a^{0} o {}^{2}b^{3} o {}^{1}c^{2} o {}^{1}b^{2} o {}^{1}d^{2})$
 $\epsilon = ({}^{0}d^{1})$

Markings

Fatgraph $G_{7,84}$ only has the identity automorphism, so the marked fatgraphs $G_{7,84}^{(0)}$ to $G_{7,84}^{(120)}$ are formed by decorating boundary cycles of $G_{7,84}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,85}$ (120 orientable markings)

$$\begin{split} &\alpha = ({}^{0}a^{1} \, \rightarrow \, {}^{0}c^{1}) \\ &\beta = ({}^{1}a^{2} \, \rightarrow \, {}^{2}c^{0} \, \rightarrow \, {}^{1}b^{2}) \\ &\gamma = ({}^{2}a^{3} \, \rightarrow \, {}^{0}d^{1} \, \rightarrow \, {}^{0}b^{1}) \\ &\delta = ({}^{3}a^{0} \, \rightarrow \, {}^{3}d^{0} \, \rightarrow \, {}^{2}b^{0} \, \rightarrow \, {}^{1}d^{2} \, \rightarrow \, {}^{1}c^{2}) \\ &\epsilon = ({}^{2}d^{3}) \end{split}$$

Markings

Fatgraph $G_{7,85}$ only has the identity automorphism, so the marked fatgraphs $G_{7,85}^{(0)}$ to $G_{7,85}^{(120)}$ are formed by decorating boundary cycles of $G_{7,85}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,86}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}d^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}c^{0})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}d^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,86}$ only has the identity automorphism, so the marked fatgraphs $G_{7,86}^{(0)}$ to $G_{7,86}^{(120)}$ are formed by decorating boundary cycles of $G_{7,86}$ with all

The Fatgraph $G_{7,87}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^4c^0
ightarrow {}^2c^3
ightarrow {}^2b^0
ightarrow {}^1d^2) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ eta = ({}^0c^1
ightarrow {}^1b^2) \ eta = ({}^3c^4)$$

Markings

Fatgraph $G_{7,87}$ only has the identity automorphism, so the marked fatgraphs $G_{7,87}^{(0)}$ to $G_{7,87}^{(120)}$ are formed by decorating boundary cycles of $G_{7,87}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,88}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^2d^0
ightarrow {}^3a^4
ightarrow {}^1d^2
ightarrow {}^0b^1) \ \delta &= ({}^2b^0
ightarrow {}^1c^2
ightarrow {}^4a^0) \ \epsilon &= ({}^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{7,88}$ only has the identity automorphism, so the marked fatgraphs $G_{7,88}^{(0)}$ to $G_{7,88}^{(120)}$ are formed by decorating boundary cycles of $G_{7,88}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,89}$ (120 orientable markings)

$$\begin{split} \alpha &= ({}^{0}a^{1} \rightarrow {}^{1}c^{2} \rightarrow {}^{0}b^{1}) \\ \beta &= ({}^{1}a^{2} \rightarrow {}^{3}b^{0} \rightarrow {}^{3}c^{0}) \\ \gamma &= ({}^{2}a^{0} \rightarrow {}^{2}c^{3}) \\ \delta &= ({}^{2}d^{0} \rightarrow {}^{2}b^{3} \rightarrow {}^{1}d^{2} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \epsilon &= ({}^{0}d^{1}) \end{split}$$

Markings

Fatgraph $G_{7,89}$ only has the identity automorphism, so the marked fatgraphs $G_{7,89}^{(0)}$ to $G_{7,89}^{(120)}$ are formed by decorating boundary cycles of $G_{7,89}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,90}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^0b^1
ightarrow {}^1d^2
ightarrow {}^2c^0) \ \gamma &= ({}^2a^0
ightarrow {}^0d^1) \ \delta &= ({}^4b^0
ightarrow {}^0c^1
ightarrow {}^2b^3) \ \epsilon &= ({}^3b^4) \end{aligned}$$

Markings

Fatgraph $G_{7,90}$ only has the identity automorphism, so the marked fatgraphs $G_{7,90}^{(0)}$ to $G_{7,90}^{(120)}$ are formed by decorating boundary cycles of $G_{7,90}$ with all

The Fatgraph $G_{7,91}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^3d^0
ightarrow {}^1d^2
ightarrow {}^0b^1) \ \delta &= ({}^3a^0
ightarrow {}^0d^1
ightarrow {}^2b^0
ightarrow {}^1c^2) \ \epsilon &= ({}^2d^3) \end{aligned}$$

Markings

Fatgraph $G_{7,91}$ only has the identity automorphism, so the marked fatgraphs $G_{7,91}^{(0)}$ to $G_{7,91}^{(120)}$ are formed by decorating boundary cycles of $G_{7,91}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,92}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 2, 1]), # a
   Vertex([2, 3, 0]), # b
   Vertex([5, 3, 4, 1]),# c
   Vertex([5, 0, 6, 6]),# d
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}) \ eta = ({}^{1}a^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{3}c^{0}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3}) \ \delta = ({}^{3}d^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ \epsilon = ({}^{2}d^{3})$$

Markings

Fatgraph $G_{7,92}$ only has the identity automorphism, so the marked fatgraphs $G_{7,92}^{(0)}$ to $G_{7,92}^{(120)}$ are formed by decorating boundary cycles of $G_{7,92}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,93}$ (120 orientable markings)


```
Fatgraph([
    Vertex([4, 2, 1]), # a
    Vertex([5, 3, 0]), # b
    Vertex([0, 3, 4, 1]),# c
    Vertex([2, 5, 6, 6]),# d
])
```

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}d^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}c^{0})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{2}d^{3})$

Markings

Fatgraph $G_{7,93}$ only has the identity automorphism, so the marked fatgraphs $G_{7,93}^{(0)}$ to $G_{7,93}^{(120)}$ are formed by decorating boundary cycles of $G_{7,93}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,94}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0d^1
ightarrow {}^2b^0
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^2d^0
ightarrow {}^1c^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^0c^1
ightarrow {}^4a^0) \ \delta &= ({}^3a^4) \ \epsilon &= ({}^2c^0
ightarrow {}^1d^2
ightarrow {}^1b^2) \end{aligned}$$

Markings

Fatgraph $G_{7,94}$ only has the identity automorphism, so the marked fatgraphs $G_{7,94}^{(0)}$ to $G_{7,94}^{(120)}$ are formed by decorating boundary cycles of $G_{7,94}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,95}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1d^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1) \ \delta &= ({}^3a^0
ightarrow {}^2d^0
ightarrow {}^3b^0
ightarrow {}^1c^2) \ \epsilon &= ({}^0d^1
ightarrow {}^2b^3) \end{aligned}$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	2	6	0	5	4	3	1	ϵ	δ	γ	β	α

	$G_{7,95}^{(0)}$	$G_{7,95}^{(1)}$	$G_{7,95}^{(2)}$	$G_{7,95}^{(3)}$	$G_{7,95}^{(4)}$	$G_{7,95}^{(5)}$	$G_{7,95}^{(6)}$	$G_{7,95}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3

	(contin	nued.)						
	$G_{7,95}^{(8)}$	$G_{7,95}^{(9)}$	$G_{7,95}^{(10)}$	$G_{7,95}^{(11)}$	$G_{7,95}^{(12)}$	$G_{7,95}^{(13)}$	$G_{7,95}^{(14)}$	$G_{7,95}^{(15)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,95}^{(16)}$	$G_{7,95}^{(17)}$	$G_{7,95}^{(18)}$	$G_{7,95}^{(19)}$	$G_{7,95}^{(20)}$	$G_{7,95}^{(21)}$	$G_{7,95}^{(22)}$	$G_{7,95}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,95}^{(24)}$	$G_{7,95}^{(25)}$	$G_{7,95}^{(26)}$	$G_{7,95}^{(27)}$	$G_{7,95}^{(28)}$	$G_{7,95}^{(29)}$	$G_{7,95}^{(30)}$	$G_{7,95}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,95}^{(32)}$	$G_{7,95}^{(33)}$	$G_{7,95}^{(34)}$	$G_{7,95}^{(35)}$	$G_{7,95}^{(36)}$	$G_{7,95}^{(37)}$	$G_{7,95}^{(38)}$	$G_{7,95}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	0	0	2	4	0	0	2	3
ϵ	4	3	4	2	4	2	3	2
	$G_{7,95}^{(40)}$	$G_{7,95}^{(41)}$	$G_{7,95}^{(42)}$	$G_{7,95}^{(43)}$	$G_{7,95}^{(44)}$	$G_{7,95}^{(45)}$	$G_{7,95}^{(46)}$	$G_{7,95}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	0	0	3	4	1	1	3	4
ϵ	3	2	4	3	4	3	4	3
	$G_{7,95}^{(48)}$	$G_{7,95}^{(49)}$	$G_{7,95}^{(50)}$	$G_{7,95}^{(51)}$	$G_{7,95}^{(52)}$	$G_{7,95}^{(53)}$	$G_{7,95}^{(54)}$	$G_{7,95}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	0	0	1	0	1	0	2	1
ϵ	4	3	4	4	3	3	4	4
	$G_{7,95}^{(56)}$	$G_{7,95}^{(57)}$	$G_{7,95}^{(58)}$	$G_{7,95}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	0	2	0	1				
δ	2	0	1	0				
ϵ	4	4	4	4				

The Fatgraph $G_{7,96}$ (120 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^2b^0 \, \to \, {}^0a^1) \\ &\beta = ({}^1a^2 \, \to \, {}^1b^2) \\ &\gamma = ({}^2a^3 \, \to \, {}^4a^0 \, \to \, {}^0b^1 \, \to \, {}^1d^2 \, \to \, {}^2c^0) \\ &\delta = ({}^2d^0 \, \to \, {}^3a^4 \, \to \, {}^1c^2) \\ &\epsilon = ({}^0d^1 \, \to \, {}^0c^1) \end{split}$$

Markings

Fatgraph $G_{7,96}$ only has the identity automorphism, so the marked fatgraphs $G_{7,96}^{(0)}$ to $G_{7,96}^{(120)}$ are formed by decorating boundary cycles of $G_{7,96}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,97}$ (non-orientable, 60 orientable markings)

$$lpha = ({}^2b^0 o {}^0a^1) \ eta = ({}^1a^2 o {}^1b^2) \ \gamma = ({}^2a^3 o {}^0b^1 o {}^3a^0 o {}^2d^3 o {}^2c^0 o {}^1d^2) \ \delta = ({}^0d^1 o {}^0c^1) \ \epsilon = ({}^3d^0 o {}^1c^2)$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	d	С	b	a	4	6	5	3	0	2	1	ϵ	δ	γ	β	α

	$G_{7,97}^{(0)}$	$G_{7,97}^{(1)}$	$G_{7,97}^{(2)}$	$G_{7,97}^{(3)}$	$G_{7,97}^{(4)}$	$G_{7,97}^{(5)}$	$G_{7,97}^{(6)}$	$G_{7,97}^{(7)}$
α	0	0	0	Ó	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,97}^{(8)}$	$G_{7,97}^{(9)}$	$G_{7,97}^{(10)}$	$G_{7,97}^{(11)}$	$G_{7,97}^{(12)}$	$G_{7,97}^{(13)}$	$G_{7,97}^{(14)}$	$G_{7,97}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,97}^{(16)}$	$G_{7,97}^{(17)}$	$G_{7,97}^{(18)}$	$G_{7,97}^{(19)}$	$G_{7,97}^{(20)}$	$G_{7,97}^{(21)}$	$G_{7,97}^{(22)}$	$G_{7,97}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,97}^{(24)}$	$G_{7,97}^{(25)}$	$G_{7,97}^{(26)}$	$G_{7,97}^{(27)}$	$G_{7,97}^{(28)}$	$G_{7,97}^{(29)}$	$G_{7,97}^{(30)}$	$G_{7,97}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3

	(contin							
	$G_{7,97}^{(32)}$	$G_{7,97}^{(33)}$	$G_{7,97}^{(34)}$	$G_{7,97}^{(35)}$	$G_{7,97}^{(36)}$	$G_{7,97}^{(37)}$	$G_{7,97}^{(38)}$	$G_{7,97}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	0	0	2	4	0	0	2	3
ϵ	4	3	4	2	4	2	3	2
	$G_{7,97}^{(40)}$	$G_{7,97}^{(41)}$	$G_{7,97}^{(42)}$	$G_{7,97}^{(43)}$	$G_{7,97}^{(44)}$	$G_{7,97}^{(45)}$	$G_{7,97}^{(46)}$	$G_{7,97}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	0	0	3	4	1	1	3	4
ϵ	3	2	4	3	4	3	4	3
	$G_{7,97}^{(48)}$	$G_{7,97}^{(49)}$	$G_{7,97}^{(50)}$	$G_{7,97}^{(51)}$	$G_{7,97}^{(52)}$	$G_{7,97}^{(53)}$	$G_{7,97}^{(54)}$	$G_{7,97}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	0	0	1	0	1	0	2	1
ϵ	4	3	4	4	3	3	4	4
	$G_{7,97}^{(56)}$	$G_{7,97}^{(57)}$	$G_{7,97}^{(58)}$	$G_{7,97}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	0	2	0	1				
δ	2	0	1	0				
ϵ	4	4	4	4				

The Fatgraph $G_{7,98}$ (120 orientable markings)


```
Fatgraph([
    Vertex([1, 0, 2, 6, 3]),# a
    Vertex([5, 2, 0]), # b
    Vertex([5, 1, 4]), # c
    Vertex([3, 6, 4]), # d
])
```

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1
ightarrow {}^0c^1) \ eta &= ({}^1a^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^1d^2
ightarrow {}^2c^0) \ \delta &= ({}^0d^1
ightarrow {}^3a^4) \ \epsilon &= ({}^2d^0
ightarrow {}^1c^2
ightarrow {}^4a^0) \end{aligned}$$

Markings

Fatgraph $G_{7,98}$ only has the identity automorphism, so the marked fatgraphs $G_{7,98}^{(0)}$ to $G_{7,98}^{(120)}$ are formed by decorating boundary cycles of $G_{7,98}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{7,99}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1}) \ eta = ({}^{1}a^{2}
ightarrow {}^{1}b^{2}) \ \gamma = ({}^{2}a^{3}
ightarrow {}^{3}d^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}c^{0}) \ \delta = ({}^{3}a^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}c^{2}) \ \epsilon = ({}^{2}d^{3}
ightarrow {}^{0}c^{1})$$

Automorphisms

	$\alpha^{(0)}$	$\alpha^{(1)}$	$\alpha^{(2)}$	$\alpha^{(3)}$	$\alpha^{(4)}$	$\alpha^{(5)}$	$\alpha^{(6)}$	$\alpha^{(7)}$
	$G_{7,99}^{(0)}$	$G_{7,99}^{(1)}$	$G_{7,99}^{(2)}$	$G_{7,99}^{(3)}$	$G_{7,99}^{(4)}$	$G_{7,99}^{(5)}$	$G_{7,99}^{(6)}$	$G_{7,99}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	$G_{7,99}^{(11)}$	3	2	$G_{7,99}^{(14)}$	3
	$G_{7,99}^{(8)}$	$G_{7,99}^{(9)}$	$G_{7,99}^{(10)}$		$G_{7,99}^{(12)}$	$G_{7,99}^{(13)}$		$G_{7,99}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,99}^{(16)}$	$G_{7,99}^{(17)}$	$G_{7,99}^{(18)}$	$G_{7,99}^{(19)}$	$G_{7,99}^{(20)}$	$G_{7,99}^{(21)}$	$G_{7,99}^{(22)}$	$G_{7,99}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,99}^{(24)}$	$G_{7,99}^{(25)}$	$G_{7,99}^{(26)}$	$G_{7,99}^{(27)}$	$G_{7,99}^{(28)}$	$G_{7,99}^{(29)}$	$G_{7,99}^{(30)}$	$G_{7,99}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,99}^{(32)}$	$G_{7,99}^{(33)}$	$G_{7,99}^{(34)}$	$G_{7,99}^{(35)}$	$G_{7,99}^{(36)}$	$G_{7,99}^{(37)}$	$G_{7,99}^{(38)}$	$G_{7,99}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	4	3	2	4	4	2	2	3
ϵ	0	0	4	2	0	0	3	2
	$G_{7,99}^{(40)}$	$G_{7,99}^{(41)}$	$G_{7,99}^{(42)}$	$G_{7,99}^{(43)}$	$G_{7,99}^{(44)}$	$G_{7,99}^{(45)}$	$G_{7,99}^{(46)}$	$G_{7,99}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	3	2	3	4	4	3	3	4
ϵ	0	0	4	3	1	1	4	3
	$G_{7,99}^{(48)}$	$G_{7,99}^{(49)}$	$G_{7,99}^{(50)}$	$G_{7,99}^{(51)}$	$G_{7,99}^{(52)}$	$G_{7,99}^{(53)}$	$G_{7,99}^{(54)}$	$G_{7,99}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2

	(contin	nued.)						
δ	4	3	4	4	3	3	4	4
ϵ	0	0	1	0	1	0	2	1
	$G_{7,99}^{(56)}$	$G_{7,99}^{(57)}$	$G_{7,99}^{(58)}$	$G_{7,99}^{(59)}$			'	'
α	3	3	3	3				
β	1	1	2	2				
γ	0	2	0	1				
δ	4	4	4	4				
ϵ	2	0	1	0				

The Fatgraph $G_{7,100}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}c^{0})$
 $\delta = ({}^{3}a^{0}
ightarrow {}^{2}d^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}b^{3})$
 $\epsilon = ({}^{0}d^{1}
ightarrow {}^{0}c^{1})$

Automorphisms

A_0																	
$A_1^{\dagger \ddagger}$	b	a	d	С	0	2	1	5	6	3	4	β	α	δ	γ	ϵ	ĺ

	$G_{7,100}^{(0)}$	$G_{7,100}^{(1)}$	$G_{7,100}^{(2)}$	$G_{7,100}^{(3)}$	$G_{7,100}^{(4)}$	$G_{7,100}^{(5)}$	$G_{7,100}^{(6)}$	$G_{7,100}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,100}^{(8)}$	$G_{7,100}^{(9)}$	$G_{7,100}^{(10)}$	$G_{7,100}^{(11)}$	$G_{7,100}^{(12)}$	$G_{7,100}^{(13)}$	$G_{7,100}^{(14)}$	$G_{7,100}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,100}^{(16)}$	$G_{7,100}^{(17)}$	$G_{7,100}^{(18)}$	$G_{7,100}^{(19)}$	$G_{7,100}^{(20)}$	$G_{7,100}^{(21)}$	$G_{7,100}^{(22)}$	$G_{7,100}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,100}^{(24)}$	$G_{7,100}^{(25)}$	$G_{7,100}^{(26)}$	$G_{7,100}^{(27)}$	$G_{7,100}^{(28)}$	$G_{7,100}^{(29)}$	$G_{7,100}^{(30)}$	$G_{7,100}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{7,100}^{(32)}$	$G_{7,100}^{(33)}$	$G_{7,100}^{(34)}$	$G_{7,100}^{(35)}$	$G_{7,100}^{(36)}$	$G_{7,100}^{(37)}$	$G_{7,100}^{(38)}$	$G_{7,100}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{7,100}^{(40)}$	$G_{7,100}^{(41)}$	$G_{7,100}^{(42)}$	$G_{7,100}^{(43)}$	$G_{7,100}^{(44)}$	$G_{7,100}^{(45)}$	$G_{7,100}^{(46)}$	$G_{7,100}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{7,100}^{(48)}$	$G_{7,100}^{(49)}$	$G_{7,100}^{(50)}$	$G_{7,100}^{(51)}$	$G_{7,100}^{(52)}$	$G_{7,100}^{(53)}$	$G_{7,100}^{(54)}$	$G_{7,100}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1

(continued.)

	$G_{7,100}^{(56)}$	$G_{7,100}^{(57)}$	$G_{7,100}^{(58)}$	$G_{7,100}^{(59)}$
α	3	3	3	3
β	4	4	4	4
γ	1	1	2	2
δ	0	2	0	1
ϵ	2	0	1	0

The Fatgraph $G_{7,101}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$egin{aligned} &lpha = ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ η = ({}^1a^2
ightarrow {}^2d^0
ightarrow {}^3c^0) \ &\gamma = ({}^2a^3
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^0b^1) \ &\delta = ({}^3a^0
ightarrow {}^2b^0) \ &\epsilon = ({}^0d^1
ightarrow {}^2c^3) \end{aligned}$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	С	d	a	b	0	3	4	1	2	6	5	β	α	γ	ϵ	δ

	$G_{7,101}^{(0)}$	$G_{7,101}^{(1)}$	$G_{7,101}^{(2)}$	$G_{7,101}^{(3)}$	$G_{7,101}^{(4)}$	$G_{7,101}^{(5)}$	$G_{7,101}^{(6)}$	$G_{7,101}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{7,101}^{(8)}$	$G_{7,101}^{(9)}$	$G_{7,101}^{(10)}$	$G_{7,101}^{(11)}$	$G_{7,101}^{(12)}$	$G_{7,101}^{(13)}$	$G_{7,101}^{(14)}$	$G_{7,101}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{7,101}^{(16)}$	$G_{7,101}^{(17)}$	$G_{7,101}^{(18)}$	$G_{7,101}^{(19)}$	$G_{7,101}^{(20)}$	$G_{7,101}^{(21)}$	$G_{7,101}^{(22)}$	$G_{7,101}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{7,101}^{(24)}$	$G_{7,101}^{(25)}$	$G_{7,101}^{(26)}$	$G_{7,101}^{(27)}$	$G_{7,101}^{(28)}$	$G_{7,101}^{(29)}$	$G_{7,101}^{(30)}$	$G_{7,101}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{7,101}^{(32)}$	$G_{7,101}^{(33)}$	$G_{7,101}^{(34)}$	$G_{7,101}^{(35)}$	$G_{7,101}^{(36)}$	$G_{7,101}^{(37)}$	$G_{7,101}^{(38)}$	$G_{7,101}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{7,101}^{(40)}$	$G_{7,101}^{(41)}$	$G_{7,101}^{(42)}$	$G_{7,101}^{(43)}$	$G_{7,101}^{(44)}$	$G_{7,101}^{(45)}$	$G_{7,101}^{(46)}$	$G_{7,101}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{7,101}^{(48)}$	$G_{7,101}^{(49)}$	$G_{7,101}^{(50)}$	$G_{7,101}^{(51)}$	$G_{7,101}^{(52)}$	$G_{7,101}^{(53)}$	$G_{7,101}^{(54)}$	$G_{7,101}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{7,101}^{(56)}$	$G_{7,101}^{(57)}$	$G_{7,101}^{(58)}$	$G_{7,101}^{(59)}$				
α	3	3	3	3				
					1			

	(contin			
β	4	4	4	4
γ	1	1	2	2
δ	0	2	0	1
ϵ	2	0	1	0

The Fatgraph $G_{7,102}$ (non-orientable, 60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{3}c^{0}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}d^{1}) \ \delta = ({}^{3}d^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}) \ \epsilon = ({}^{2}d^{3}
ightarrow {}^{2}c^{3})$$

Automorphisms

A_0																
$A_1^{\dagger \ddagger}$	b	a	d	С	5	1	3	2	6	0	4	γ	δ	α	β	ϵ

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} & 0 & & & & \\ & 2 & & & \\ & 1 & & & \\ & 4 & & & \\ & 3 & & & \\ & & G_{7,102} & & \\ & & 0 & & \\ & & 3 & & \\ & & 2 & & \\ & & 4 & & \\ & & 1 & & \\ & & G_{7,102}^{(23)} & & \\ & & 0 & & \\ & & 4 & & \\ \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} & & 1 & & & \\ & & 4 & & & \\ & & 3 & & \\ & & G_{7,102}^{(15)} & & & \\ & & 0 & & & \\ & & 3 & & & \\ & & 2 & & & \\ & & 4 & & & \\ & 2 & & 4 & & \\ & 2 & & 4 & & \\ & & 1 & & \\ & G_{7,102}^{(23)} & & & \\ & 0 & & 4 & & \\ \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{02}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(23)}$ $G_{7,102}^{(23)}$ $G_{4}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{02}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(15)}$ $G_{7,102}^{(23)}$ $G_{7,102}^{(23)}$ $G_{4}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 0 \\ & 3 \\ & 2 \\ & 4 \\ & 1 \\ G_{7,102}^{(23)} \\ & 0 \\ & 4 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 0 \\ & 3 \\ & 2 \\ & 4 \\ & 1 \\ G_{7,102}^{(23)} \\ & 0 \\ & 4 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 2 & 4 \\ 1 & 1 \\ G_{7,102}^{(23)} & 0 \\ 4 & \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 4 & \\ 1 & \\ G_{7,102}^{(23)} & \\ 0 & 4 & \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 \\ G_{7,102}^{(23)} \\ 0 \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{7,102}^{(2)} \ G_{7,102}^{(23)} \ G_{4}^{(23)}$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0 4
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0 4
γ 4 4 1 1 2 2 3	
	3
δ 1 2 2 3 1 3 1	2
ϵ 2 1 3 2 3 1 2	1
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$G_{7,102}^{(31)}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
β 0 0 0 0 0 0 2	2
γ 2 2 3 3 4 4 3	3
δ 3 4 2 4 2 3 0	4
ϵ 4 3 4 2 3 2 4	0
$oxed{G_{7,102}^{(32)} \mid G_{7,102}^{(33)} \mid G_{7,102}^{(34)} \mid G_{7,102}^{(35)} \mid G_{7,102}^{(36)} \mid G_{7,102}^{(37)} \mid G_{7,1}^{(38)}}$	$G_{7,102}^{(39)}$
α 1 1 1 1 1 1 1 1	1
eta 2 2 3 3 3 4	4
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2
δ 0 3 0 4 0 2 0	3
ϵ 3 0 4 0 2 0 3	0
$oxed{G_{7,102}^{(40)}} oxed{G_{7,102}^{(41)}} oxed{G_{7,102}^{(42)}} oxed{G_{7,102}^{(43)}} oxed{G_{7,102}^{(44)}} oxed{G_{7,102}^{(45)}} oxed{G_{7,102}^{(46)}}$	$G_{00}^{(47)} = G_{7,102}^{(47)}$
α 1 1 2 2 2 2 2	2
β 4 4 0 0 0 0 1	1
γ 3 3 3 3 4 4 3	3
δ 0 2 1 4 1 3 0	4
ϵ 2 0 4 1 3 1 4	
$oxed{G_{7,102}^{(48)}} oxed{G_{7,102}^{(49)}} oxed{G_{7,102}^{(50)}} oxed{G_{7,102}^{(51)}} oxed{G_{7,102}^{(51)}} oxed{G_{7,102}^{(53)}} oxed{G_{7,102}^{(53)}} oxed{G_{7,102}^{(54)}}$	$G_{7,102}^{(55)}$
α 2 2 2 2 3	3
β 1 1 3 3 4 4 0	0
γ 4 4 4 4 3 3 4	4
δ 0 3 0 1 0 1 1	2
ϵ 3 0 1 0 1 0 2	1
$oxed{G_{7,102}^{(56)} \mid G_{7,102}^{(57)} \mid G_{7,102}^{(58)} \mid G_{7,102}^{(59)}}$	
α 3 3 3 3	

	(contin			
β	1	1	2	2
γ	4	4	4	4
δ	0	2	0	1
ϵ	2	0	1	0

Fatgraphs with 8 edges / 5 vertices

There are 72 unmarked fatgraphs in this section, originating 16320 marked fatgraphs (8160 orientable, and 8160 nonorientable).

The Fatgraph $G_{8,0}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to ^2b^3 \to {}^1a^2 \to {}^0a^1 \to {}^2c^0 \to {}^3b^0 \to {}^2e^0 \to {}^1c^2 \to {}^0b^1 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^2a^0) \\ \gamma = (^0c^1 \to {}^1b^2) \\ \delta = (^0d^1) \\ \epsilon = (^0e^1) \end{array}$$

Markings

Fatgraph $G_{8,0}$ only has the identity automorphism, so the marked fatgraphs $G_{8,0}^{(0)}$ to $G_{8,0}^{(120)}$ are formed by decorating boundary cycles of $G_{8,0}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$$\begin{array}{lll} D(G_{8,0}^{(0)}) &= G_{7,0}^{(28)} & D(G_{8,0}^{(81)}) &= G_{7,0}^{(80)} & G_{7,0}^{(80)} \\ D(G_{8,0}^{(1)}) &= G_{7,0}^{(24)} & G_{7,0}^{(49)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(80)} & G_{7,0}^{(80)} \\ D(G_{8,0}^{(2)}) &= G_{7,0}^{(22)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(81)} & G_{7,0}^{(81)} \\ D(G_{8,0}^{(3)}) &= G_{7,0}^{(22)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(81)} \\ D(G_{8,0}^{(3)}) &= G_{7,0}^{(22)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(81)} \\ D(G_{8,0}^{(4)}) &= G_{7,0}^{(22)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(62)} \\ D(G_{8,0}^{(4)}) &= G_{7,0}^{(22)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(62)} \\ D(G_{8,0}^{(6)}) &= G_{7,0}^{(62)} & D(G_{8,0}^{(80)}) &= G_{7,0}^{(42)} \\ D(G_{8,0}^{(6)}) &= G_{7,0}^{(62)} & D(G_{8,0}^{(62)}) &= G_{7,0}^{(42)} \\ D(G_{8,0}^{(62)}) &= G_{7,0}^{(62)} & D(G_{8,0}^{(62)}) &= G_{7,0}^{(62)} \\ D(G_{8,0}^{(6$$

$$\begin{array}{lll} D(G_{8,0}^{(76)}) = -G_{7,0}^{(37)} & D(G_{8,0}^{(98)}) = -G_{7,0}^{(12)} - G_{7,0}^{(62)} \\ D(G_{8,0}^{(77)}) = -G_{7,0}^{(61)} & D(G_{8,0}^{(99)}) = -G_{7,0}^{(62)} \\ D(G_{8,0}^{(77)}) = -G_{7,0}^{(61)} & D(G_{8,0}^{(99)}) = -G_{7,0}^{(62)} \\ D(G_{8,0}^{(78)}) = -G_{7,0}^{(42)} - G_{7,0}^{(66)} & D(G_{8,0}^{(100)}) = -G_{7,0}^{(13)} \\ D(G_{8,0}^{(79)}) = -G_{7,0}^{(42)} - G_{7,0}^{(66)} & D(G_{8,0}^{(100)}) = -G_{7,0}^{(63)} \\ D(G_{8,0}^{(80)}) = -G_{7,0}^{(42)} - G_{7,0}^{(66)} & D(G_{8,0}^{(101)}) = -G_{7,0}^{(13)} - G_{7,0}^{(68)} \\ D(G_{8,0}^{(81)}) = -G_{7,0}^{(42)} - G_{7,0}^{(69)} & D(G_{8,0}^{(103)}) = -G_{7,0}^{(18)} - G_{7,0}^{(68)} \\ D(G_{8,0}^{(81)}) = -G_{7,0}^{(43)} - G_{7,0}^{(91)} & D(G_{8,0}^{(103)}) = -G_{7,0}^{(19)} - G_{7,0}^{(92)} \\ D(G_{8,0}^{(83)}) = -G_{7,0}^{(48)} - G_{7,0}^{(91)} & D(G_{8,0}^{(104)}) = -G_{7,0}^{(19)} - G_{7,0}^{(93)} \\ D(G_{8,0}^{(84)}) = -G_{7,0}^{(49)} - G_{7,0}^{(92)} & D(G_{8,0}^{(105)}) = -G_{7,0}^{(19)} - G_{7,0}^{(92)} \\ D(G_{8,0}^{(85)}) = -G_{7,0}^{(49)} - G_{7,0}^{(72)} & D(G_{8,0}^{(106)}) = -G_{7,0}^{(19)} - G_{7,0}^{(92)} \\ D(G_{8,0}^{(88)}) = -G_{7,0}^{(73)} - G_{7,0}^{(92)} & D(G_{8,0}^{(108)}) = -G_{7,0}^{(24)} - G_{7,0}^{(44)} \\ D(G_{8,0}^{(88)}) = -G_{7,0}^{(73)} - G_{7,0}^{(92)} & D(G_{8,0}^{(110)}) = -G_{7,0}^{(25)} - G_{7,0}^{(98)} \\ D(G_{8,0}^{(88)}) = -G_{7,0}^{(73)} - G_{7,0}^{(92)} & D(G_{8,0}^{(110)}) = -G_{7,0}^{(25)} - G_{7,0}^{(98)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(7)} - G_{7,0}^{(92)} & D(G_{8,0}^{(1110)}) = -G_{7,0}^{(75)} - G_{7,0}^{(98)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(7)} - G_{7,0}^{(92)} & D(G_{8,0}^{(1110)}) = -G_{7,0}^{(75)} - G_{7,0}^{(98)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(7)} - G_{7,0}^{(86)} & D(G_{8,0}^{(1114)}) = -G_{7,0}^{(7)} - G_{7,0}^{(80)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(7)} - G_{7,0}^{(80)} & D(G_{8,0}^{(1114)}) = -G_{7,0}^{(7)} - G_{7,0}^{(80)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(7)} - G_{7,0}^{(80)} & D(G_{8,0}^{(115)}) = -G_{7,0}^{(10)} - G_{7,0}^{(80)} \\ D(G_{8,0}^{(91)}) = -G_{7,0}^{(12)} - G_{7,0}^{(12)}$$

The Fatgraph $G_{8,1}$ (120 orientable markings)

$$\begin{array}{l} \alpha = (^{0}a^{1}) \\ \beta = (^{2}d^{0} \rightarrow \ ^{1}a^{2} \rightarrow \ ^{2}c^{0} \rightarrow \ ^{3}a^{0} \rightarrow \ ^{2}e^{0} \rightarrow \ ^{1}c^{2} \rightarrow \ ^{2}b^{0} \rightarrow \ ^{1}b^{2} \rightarrow \ ^{1}e^{2} \rightarrow \ ^{1}d^{2}) \\ \gamma = (^{2}a^{3} \rightarrow \ ^{0}d^{1} \rightarrow \ ^{0}b^{1}) \\ \delta = (^{0}c^{1}) \\ \epsilon = (^{0}e^{1}) \end{array}$$

Markings

Fatgraph $G_{8,1}$ only has the identity automorphism, so the marked fatgraphs $G_{8,1}^{(0)}$ to $G_{8,1}^{(120)}$ are formed by decorating boundary cycles of $G_{8,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,1}^{(0)}) = -G_{7,0}^{(14)} - G_{7,0}^{(38)}$	$D(G_{8,1}^{(22)}) = -G_{7,0}^{(3)}$
$D(G_{8,1}^{(1)}) = -G_{7,0}^{(15)}$	$D(G_{8,1}^{(23)}) = -G_{7,0}^{(57)}$
$D(G_{8,1}^{(2)}) = -G_{7,0}^{(14)} - G_{7,0}^{(38)}$	$D(G_{8.1}^{(24)}) = -G_{7.0}^{(8)} - G_{7.0}^{(32)}$
$D(G_{8.1}^{(3)}) = -G_{7.0}^{(39)}$	$D(G_{8.1}^{(25)}) = -G_{7.0}^{(9)}$
$D(G_{8,1}^{(4)}) = G_{7,0}^{(15)}$ $D(G_{8,1}^{(4)}) = -G_{7,0}^{(15)}$, ,
, ,	$D(G_{8,1}^{(26)}) = -G_{7,0}^{(8)} - G_{7,0}^{(32)}$
$D(G_{8,1}^{(5)}) = -G_{7,0}^{(39)}$	$D(G_{8,1}^{(27)}) = -G_{7,0}^{(33)}$
$D(G_{8,1}^{(6)}) = -G_{7,0}^{(20)} - G_{7,0}^{(44)}$	$D(G_{8,1}^{(28)}) = -G_{7,0}^{(9)}$
$D(G_{8,1}^{(7)}) = -G_{7,0}^{(21)} - G_{7,0}^{(94)}$	$D(G_{8,1}^{(29)}) = -G_{7,0}^{(33)}$
$D(G_{8,1}^{(8)}) = -G_{7,0}^{(20)} - G_{7,0}^{(44)}$	$D(G_{8,1}^{(30)}) = -G_{7,0}^{(22)} - G_{7,0}^{(46)}$
$D(G_{8,1}^{(9)}) = -G_{7,0}^{(45)} - G_{7,0}^{(95)}$	$D(G_{8,1}^{(31)}) = -G_{7,0}^{(23)} - G_{7,0}^{(70)}$
$D(G_{8,1}^{(10)}) = -G_{7,0}^{(21)} - G_{7,0}^{(94)}$	$D(G_{8,1}^{(32)}) = -G_{7,0}^{(22)} - G_{7,0}^{(46)}$
$D(G_{8,1}^{(11)}) = -G_{7,0}^{(45)} - G_{7,0}^{(95)}$	$D(G_{8,1}^{(33)}) = -G_{7,0}^{(47)} - G_{7,0}^{(71)}$
$D(G_{8,1}^{(12)}) = -G_{7,0}^{(26)} - G_{7,0}^{(50)}$	$D(G_{8,1}^{(34)}) = -G_{7,0}^{(23)} - G_{7,0}^{(70)}$
$D(G_{8,1}^{(13)}) = -G_{7,0}^{(27)} - G_{7,0}^{(100)}$	$D(G_{8,1}^{(35)}) = -G_{7,0}^{(47)} - G_{7,0}^{(71)}$
$D(G_{8,1}^{(14)}) = -G_{7,0}^{(26)} - G_{7,0}^{(50)}$	$D(G_{8,1}^{(36)}) = -G_{7,0}^{(28)} - G_{7,0}^{(52)}$
$D(G_{8,1}^{(15)}) = -G_{7,0}^{(51)} - G_{7,0}^{(101)}$	$D(G_{8,1}^{(37)}) = -G_{7,0}^{(29)} - G_{7,0}^{(76)}$
$D(G_{8,1}^{(16)}) = -G_{7,0}^{(27)} - G_{7,0}^{(100)}$	$D(G_{8,1}^{(38)}) = -G_{7,0}^{(28)} - G_{7,0}^{(52)}$
$D(G_{8,1}^{(17)}) = -G_{7,0}^{(51)} - G_{7,0}^{(101)}$	$D(G_{8,1}^{(39)}) = -G_{7,0}^{(53)} - G_{7,0}^{(77)}$
$D(G_{8,1}^{(18)}) = -G_{7,0}^{(2)} - G_{7,0}^{(56)}$	$D(G_{8,1}^{(40)}) = -G_{7,0}^{(29)} - G_{7,0}^{(76)}$
$D(G_{8,1}^{(19)}) = -G_{7,0}^{(3)}$	$D(G_{8,1}^{(41)}) = -G_{7,0}^{(53)} - G_{7,0}^{(77)}$
$D(G_{8,1}^{(20)}) = -G_{7,0}^{(2)} - G_{7,0}^{(56)}$	$D(G_{8,1}^{(42)}) = -G_{7,0}^{(4)} - G_{7,0}^{(58)}$
$D(G_{8,1}^{(21)}) = -G_{7,0}^{(57)}$	$D(G_{8,1}^{(43)}) = -G_{7,0}^{(5)} - G_{7,0}^{(82)}$
,	, , , , , , , , , , , , , , , , , , , ,

$$\begin{array}{ll} D(G_{8,1}^{(44)}) = -G_{7,0}^{(4)} - G_{7,0}^{(58)} & D(G_{8,1}^{(21)}) = +G_{7,0}^{(75)} + G_{7,0}^{(75)} \\ D(G_{8,1}^{(45)}) = -G_{7,0}^{(59)} - G_{7,0}^{(82)} & D(G_{8,1}^{(33)}) = +G_{7,0}^{(53)} + G_{7,0}^{(75)} \\ D(G_{8,1}^{(46)}) = -G_{7,0}^{(50)} - G_{7,0}^{(83)} & D(G_{8,1}^{(41)}) = +G_{7,0}^{(53)} + G_{7,0}^{(75)} \\ D(G_{8,1}^{(41)}) = -G_{7,0}^{(59)} - G_{7,0}^{(63)} & D(G_{8,1}^{(41)}) = +G_{7,0}^{(59)} + G_{7,0}^{(75)} \\ D(G_{8,1}^{(41)}) = -G_{7,0}^{(59)} - G_{7,0}^{(54)} & D(G_{8,1}^{(41)}) = +G_{7,0}^{(59)} + G_{7,0}^{(52)} \\ D(G_{8,1}^{(49)}) = -G_{7,0}^{(1)} - G_{7,0}^{(58)} & D(G_{8,1}^{(88)}) = +G_{7,0}^{(59)} + G_{7,0}^{(52)} \\ D(G_{8,1}^{(59)}) = -G_{7,0}^{(1)} - G_{7,0}^{(58)} & D(G_{8,1}^{(88)}) = +G_{7,0}^{(59)} \\ D(G_{8,1}^{(51)}) = -G_{7,0}^{(5)} - G_{7,0}^{(54)} & D(G_{8,1}^{(88)}) = +G_{7,0}^{(59)} \\ D(G_{8,1}^{(51)}) = -G_{7,0}^{(5)} - G_{7,0}^{(54)} & D(G_{8,1}^{(88)}) = +G_{7,0}^{(59)} \\ D(G_{8,1}^{(51)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(81)}) = +G_{7,0}^{(5)} \\ D(G_{8,1}^{(53)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(81)}) = +G_{7,0}^{(5)} + G_{7,0}^{(83)} \\ D(G_{8,1}^{(53)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(83)} \\ D(G_{8,1}^{(55)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(58)} \\ D(G_{8,1}^{(55)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(50)} \\ D(G_{8,1}^{(55)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(55)} \\ D(G_{8,1}^{(54)}) = -G_{7,0}^{(5)} - G_{7,0}^{(50)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(55)} \\ D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(55)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(5)} + G_{7,0}^{(55)} \\ D(G_{8,1}^{(54)}) = +G_{7,0}^{(54)} + G_{7,0}^{(55)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(54)} + G_{7,0}^{(55)} \\ D(G_{8,1}^{(54)}) = +G_{7,0}^{(54)} + G_{7,0}^{(55)} & D(G_{8,1}^{(54)}) = +G_{7,0}^{(55)} + G_{7,0}^{(55)} \\ D(G_{8,1}^{(54)}) = +G_{7,0}^{(54)} +$$

The Fatgraph $G_{8,2}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^3b^0 o {}^1c^2 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^2b^3 o {}^1e^2 o {}^2e^0 o {}^0c^1 o {}^1b^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,2}$ only has the identity automorphism, so the marked fatgraphs $G_{8,2}^{(0)}$ to $G_{8,2}^{(120)}$ are formed by decorating boundary cycles of $G_{8,2}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$$\begin{array}{lll} D(G_{8,2}^{(0)}) = +G_{7,0}^{(11)} + G_{7,0}^{(32)} & D(G_{8,2}^{(12)}) = +G_{7,0}^{(40)} + G_{7,0}^{(60)} \\ D(G_{8,2}^{(1)}) = +G_{7,0}^{(6)} & D(G_{8,2}^{(13)}) = +G_{7,0}^{(38)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(8)} + G_{7,0}^{(35)} & D(G_{8,2}^{(13)}) = +G_{7,0}^{(36)} + G_{7,0}^{(64)} \\ D(G_{8,2}^{(3)}) = +G_{7,0}^{(30)} & D(G_{8,2}^{(15)}) = +G_{7,0}^{(62)} \\ D(G_{8,2}^{(4)}) = +G_{7,0}^{(30)} & D(G_{8,2}^{(15)}) = +G_{7,0}^{(37)} \\ D(G_{8,2}^{(5)}) = +G_{7,0}^{(33)} & D(G_{8,2}^{(17)}) = +G_{7,0}^{(61)} \\ D(G_{8,2}^{(5)}) = +G_{7,0}^{(7)} + G_{7,0}^{(88)} & D(G_{8,2}^{(19)}) = +G_{7,0}^{(14)} \\ D(G_{8,2}^{(7)}) = +G_{7,0}^{(7)} + G_{7,0}^{(88)} & D(G_{8,2}^{(21)}) = +G_{7,0}^{(12)} + G_{7,0}^{(65)} \\ D(G_{8,2}^{(9)}) = +G_{7,0}^{(31)} + G_{7,0}^{(89)} & D(G_{8,2}^{(21)}) = +G_{7,0}^{(60)} \\ D(G_{8,2}^{(10)}) = +G_{7,0}^{(11)} + G_{7,0}^{(87)} & D(G_{8,2}^{(22)}) = +G_{7,0}^{(13)} \\ D(G_{8,2}^{(11)}) = +G_{7,0}^{(35)} + G_{7,0}^{(85)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(65)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} + G_{7,0}^{(63)} & D(G_{8,2}^{(23)}) = +G_{7,0}^{(63)} \\ D(G_{8,2}^{(23)}) = +$$

$$\begin{array}{lll} D(G_{8,2}^{(2)}) = +G_{7,0}^{(17)} + G_{7,0}^{(38)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(2)} + G_{7,0}^{(8)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(12)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(2)} + G_{7,0}^{(8)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(14)} + G_{7,0}^{(41)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(2)} + G_{7,0}^{(82)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(36)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(36)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(36)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} + G_{7,0}^{(34)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(3)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} + G_{7,0}^{(34)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(3)} + G_{7,0}^{(40)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} + G_{7,0}^{(34)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(3)} + G_{7,0}^{(40)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} + G_{7,0}^{(34)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(3)} + G_{7,0}^{(40)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(3)} + G_{7,0}^{(34)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(3)} \\ D(G_{8,2}^{(3)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(3)} \\ D(G_{8,2}^{(3)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(3)} \\ D(G_{8,2}^{(3)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(40)} \\ D(G_{8,2}^{(3)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} & D(G_{8,2}^{(2)}) = -G_{7,0}^{(4)} + G_{7,0}^{(5)} \\ D(G_{8,2}^{(2)}) = +G_{7,0}^{(4)} + G_{7,0}^{(5)} &$$

$$\begin{array}{ll} D(G_{8,2}^{(100)}) = -G_{7,0}^{(40)} & D(G_{8,2}^{(111)}) = -G_{7,0}^{(50)} + G_{7,0}^{(72)} \\ D(G_{8,2}^{(101)}) = -G_{7,0}^{(41)} & D(G_{8,2}^{(111)}) = -G_{7,0}^{(50)} + G_{7,0}^{(72)} \\ D(G_{8,2}^{(102)}) = +G_{7,0}^{(20)} - G_{7,0}^{(42)} & D(G_{8,2}^{(112)}) = -G_{7,0}^{(52)} + G_{7,0}^{(96)} \\ D(G_{8,2}^{(103)}) = +G_{7,0}^{(20)} - G_{7,0}^{(43)} & D(G_{8,2}^{(112)}) = -G_{7,0}^{(52)} + G_{7,0}^{(96)} \\ D(G_{8,2}^{(104)}) = -G_{7,0}^{(44)} + G_{7,0}^{(66)} & D(G_{8,2}^{(114)}) = +G_{7,0}^{(2)} - G_{7,0}^{(54)} \\ D(G_{8,2}^{(105)}) = -G_{7,0}^{(45)} + G_{7,0}^{(71)} & D(G_{8,2}^{(115)}) = +G_{7,0}^{(4)} - G_{7,0}^{(55)} \\ D(G_{8,2}^{(106)}) = -G_{7,0}^{(46)} + G_{7,0}^{(90)} & D(G_{8,2}^{(116)}) = -G_{7,0}^{(56)} + G_{7,0}^{(78)} \\ D(G_{8,2}^{(107)}) = -G_{7,0}^{(46)} + G_{7,0}^{(95)} & D(G_{8,2}^{(117)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(109)}) = +G_{7,0}^{(26)} - G_{7,0}^{(48)} & D(G_{8,2}^{(119)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = +G_{7,0}^{(28)} - G_{7,0}^{(49)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(49)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(595)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(499)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(499)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(499)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(499)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} - G_{7,0}^{(499)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(108)} - G_{7,0}^{(108)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(58)} + G_{7,0}^{(102)} \\ D(G_{8,2}^{(1199)}) = -G_{7,0}^{(108)} - G_{7,0}^{(108)} - G_{7,0}^{(108)} & D(G_{8,2}^{(1199)}) = -G_{7,0}^{(108)} - G_{7,0}^{(108)} \\$$

The Fatgraph $G_{8,3}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1)$$
 $eta = ({}^1a^2 o {}^2c^0 o {}^3a^0 o {}^1c^2 o {}^0d^1 o {}^2b^0 o {}^1b^2)$
 $\gamma = ({}^2d^0 o {}^2a^3 o {}^0b^1 o {}^2e^0 o {}^1e^2 o {}^1d^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,3}$ only has the identity automorphism, so the marked fatgraphs $G_{8,3}^{(0)}$ to $G_{8,3}^{(120)}$ are formed by decorating boundary cycles of $G_{8,3}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

```
D(G_{8,3}^{(0)}) = +G_{7,0}^{(12)} - G_{7,0}^{(60)}
                                                                                   D(G_{8,3}^{(38)}) = +G_{7,0}^{(49)} - G_{7,0}^{(98)}
D(G_{8,3}^{(1)}) = +G_{7,0}^{(17)}
                                     -\,G_{7,0}^{(61)}
                                                                                   D(G_{8,3}^{(39)}) = +G_{7,0}^{(51)} - G_{7,0}^{(99)}
                                                                                   D(G_{8,3}^{(40)}) = +G_{7,0}^{(73)} - G_{7,0}^{(100)}
D(G_{8,3}^{(2)}) = +G_{7,0}^{(36)}
                                     -\,G_{7,0}^{(62)}
                                                                                   D(G_{8,3}^{(41)}) = +G_{7,0}^{(75)} - G_{7,0}^{(101)}
D(G_{8,3}^{(42)}) = +G_{7,0}^{(1)} - G_{7,0}^{(102)}
D(G_{8,3}^{(3)}) = +G_{7,0}^{(41)}
D(G_{8,3}^{(4)}) = -G_{7,0}^{(64)}
D(G_{8,3}^{(5)}) = -G_{7,0}^{(65)}
                                                                                   D(G_{8,3}^{(43)}) = +G_{7,0}^{(3)}
D(G_{8,3}^{(6)}) = +G_{7,0}^{(18)} - G_{7,0}^{(66)}
                                                                                   D(G_{8,3}^{(44)}) = +G_{7,0}^{(55)}
D(G_{8,3}^{(7)}) = +G_{7,0}^{(23)} - G_{7,0}^{(67)}
                                                                                   D(G_{8,3}^{(45)}) = +G_{7,0}^{(57)}
D(G_{8,3}^{(8)}) = +G_{7,0}^{(42)}
                                                                                   D(G_{8,3}^{(46)}) = +G_{7,0}^{(79)}
                                     -G_{7,0}^{(68)}
D(G_{8,3}^{(9)}) = +G_{7,0}^{(47)} - G_{7,0}^{(69)}
                                                                                   D(G_{8,3}^{(47)}) = +G_{7,0}^{(81)}
D(G_{8,3}^{(10)}) = -G_{7,0}^{(70)} + G_{7,0}^{(91)}
                                                                                   D(G_{8,3}^{(48)}) = +G_{7,0}^{(7)}
D(G_{8,3}^{(11)}) = -G_{7,0}^{(71)} + G_{7,0}^{(93)}
                                                                                   D(G_{8,3}^{(49)}) = +G_{7,0}^{(9)}
D(G_{8,3}^{(12)}) = +G_{7,0}^{(24)} - G_{7,0}^{(72)}
                                                                                   D(G_{8,3}^{(50)}) = +G_{7,0}^{(31)}
D(G_{8,3}^{(13)}) = +G_{7,0}^{(29)} - G_{7,0}^{(73)}
                                                                                   D(G_{8,3}^{(51)}) = +G_{7,0}^{(33)}
D(G_{8,3}^{(14)}) = +G_{7,0}^{(48)} - G_{7,0}^{(74)}
                                                                                   D(G_{8,3}^{(52)}) = +G_{7,0}^{(85)}
D(G_{8,3}^{(15)}) = +G_{7,0}^{(53)} - G_{7,0}^{(75)}
                                                                                   D(G_{8,3}^{(53)}) = +G_{7,0}^{(87)}
D(G_{8,3}^{(16)}) = -G_{7,0}^{(76)} + G_{7,0}^{(97)}
                                                                                   D(G_{8,3}^{(54)}) = +G_{7,0}^{(13)}
D(G_{8,3}^{(17)}) = -G_{7,0}^{(77)} + G_{7,0}^{(99)}
D(G_{8,3}^{(18)}) = +G_{7,0}^{(0)} - G_{7,0}^{(78)}
                                                                                   D(G_{8,3}^{(55)}) = +G_{7,0}^{(15)}
                                                                                   D(G_{8,3}^{(56)}) = +G_{7,0}^{(37)}
D(G_{8,3}^{(19)}) = +G_{7,0}^{(5)} - G_{7,0}^{(79)}
                                                                                   D(G_{8,3}^{(57)}) = +G_{7,0}^{(39)}
D(G_{8,3}^{(20)}) = +G_{7,0}^{(54)} - G_{7,0}^{(80)}
                                                                                   D(G_{8,3}^{(58)}) = +G_{7,0}^{(61)}
D(G_{8,3}^{(21)}) = +G_{7,0}^{(59)} - G_{7,0}^{(81)}
                                                                                   D(G_{8,3}^{(59)}) = +G_{7,0}^{(63)}
D(G_{8,3}^{(22)}) = -G_{7,0}^{(82)}
                                                                                   D(G_{8,3}^{(60)}) = -G_{7,0}^{(75)} - G_{7,0}^{(77)}
D(G_{8,3}^{(23)}) = -G_{7,0}^{(83)}
                                                                                   D(G_{8,3}^{(61)}) = -G_{7,0}^{(99)} - G_{7,0}^{(101)}
D(G_{8,3}^{(24)}) = +G_{7,0}^{(6)} - G_{7,0}^{(84)}
                                                                                   D(G_{8,3}^{(62)}) = -G_{7,0}^{(51)}
                                                                                                                          -G_{7,0}^{(53)}
D(G_{8,3}^{(25)}) = +G_{7,0}^{(11)} - G_{7,0}^{(85)}
                                                                                   D(G_{8,3}^{(63)}) = -G_{7,0}^{(99)} - G_{7,0}^{(101)}
D(G_{8,3}^{(26)}) = +G_{7,0}^{(30)} - G_{7,0}^{(86)}
                                                                                   D(G_{8,3}^{(64)}) = -G_{7,0}^{(51)} - G_{7,0}^{(53)}
D(G_{8,3}^{(27)}) = +G_{7,0}^{(35)} - G_{7,0}^{(87)}
                                                                                   D(G_{8,3}^{(65)}) = -G_{7,0}^{(75)} - G_{7,0}^{(77)}
D(G_{8,3}^{(28)}) = -G_{7,0}^{(88)}
                                                                                   D(G_{8,3}^{(66)}) = -G_{7,0}^{(73)} - G_{7,0}^{(76)}
                                                                                   D(G_{8,3}^{(67)}) = -G_{7,0}^{(97)} - G_{7,0}^{(100)}
D(G_{8,3}^{(29)}) = -G_{7,0}^{(89)}
D(G_{8,3}^{(30)}) = +G_{7,0}^{(19)} - G_{7,0}^{(90)}
                                                                                   D(G_{8,3}^{(68)}) = -G_{7,0}^{(27)} - G_{7,0}^{(29)}
D(G_{8,3}^{(31)}) = +G_{7,0}^{(21)} - G_{7,0}^{(91)}
                                                                                   D(G_{8,3}^{(69)}) = -G_{7,0}^{(97)} - G_{7,0}^{(100)}
D(G_{8,3}^{(32)}) = +G_{7,0}^{(43)} - G_{7,0}^{(92)}
                                                                                   D(G_{8,3}^{(70)}) = -G_{7,0}^{(27)} - G_{7,0}^{(29)}
D(G_{8,3}^{(33)}) = +G_{7,0}^{(45)} - G_{7,0}^{(93)}
                                                                                   D(G_{8,3}^{(71)}) = -G_{7,0}^{(73)} - G_{7,0}^{(76)}
D(G_{8,3}^{(34)}) = +G_{7,0}^{(67)} - G_{7,0}^{(94)}
                                                                                   D(G_{8,3}^{(72)}) = -G_{7,0}^{(49)} - G_{7,0}^{(52)}
D(G_{8,3}^{(35)}) = +G_{7,0}^{(69)} - G_{7,0}^{(95)}
                                                                                   D(G_{8,3}^{(73)}) = -G_{7,0}^{(96)} - G_{7,0}^{(98)}
D(G_{8,3}^{(36)}) = +G_{7,0}^{(25)} - G_{7,0}^{(96)}

D(G_{8,3}^{(37)}) = +G_{7,0}^{(27)} - G_{7,0}^{(97)}
                                                                                   D(G_{8,3}^{(74)}) = -G_{7,0}^{(25)} - G_{7,0}^{(28)}
                                                                                   D(G_{8,3}^{(75)}) = -G_{7,0}^{(96)} - G_{7,0}^{(98)}
```

$$\begin{array}{lll} D(G_{8,3}^{(76)}) = -G_{7,0}^{(25)} - G_{7,0}^{(28)} & D(G_{8,3}^{(98)}) = -G_{7,0}^{(1)} - G_{7,0}^{(4)} \\ D(G_{8,3}^{(77)}) = -G_{7,0}^{(49)} - G_{7,0}^{(52)} & D(G_{8,3}^{(98)}) = -G_{7,0}^{(102)} \\ D(G_{8,3}^{(78)}) = -G_{7,0}^{(48)} - G_{7,0}^{(50)} & D(G_{8,3}^{(98)}) = -G_{7,0}^{(102)} \\ D(G_{8,3}^{(78)}) = -G_{7,0}^{(48)} - G_{7,0}^{(50)} & D(G_{8,3}^{(100)}) = -G_{7,0}^{(1)} - G_{7,0}^{(4)} \\ D(G_{8,3}^{(80)}) = -G_{7,0}^{(72)} - G_{7,0}^{(74)} & D(G_{8,3}^{(101)}) = -G_{7,0}^{(55)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(81)}) = -G_{7,0}^{(72)} - G_{7,0}^{(74)} & D(G_{8,3}^{(103)}) = -G_{7,0}^{(54)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(83)}) = -G_{7,0}^{(72)} - G_{7,0}^{(74)} & D(G_{8,3}^{(103)}) = -G_{7,0}^{(54)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(83)}) = -G_{7,0}^{(48)} - G_{7,0}^{(56)} & D(G_{8,3}^{(105)}) = -G_{7,0}^{(78)} - G_{7,0}^{(80)} \\ D(G_{8,3}^{(83)}) = -G_{7,0}^{(57)} - G_{7,0}^{(59)} & D(G_{8,3}^{(105)}) = -G_{7,0}^{(56)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(88)}) = -G_{7,0}^{(57)} - G_{7,0}^{(59)} & D(G_{8,3}^{(105)}) = -G_{7,0}^{(56)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(88)}) = -G_{7,0}^{(57)} - G_{7,0}^{(59)} & D(G_{8,3}^{(105)}) = -G_{7,0}^{(56)} - G_{7,0}^{(56)} \\ D(G_{8,3}^{(89)}) = -G_{7,0}^{(79)} - G_{7,0}^{(82)} & D(G_{8,3}^{(110)}) = -G_{7,0}^{(33)} - G_{7,0}^{(35)} \\ D(G_{8,3}^{(89)}) = -G_{7,0}^{(79)} - G_{7,0}^{(82)} & D(G_{8,3}^{(113)}) = -G_{7,0}^{(35)} - G_{7,0}^{(35)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(79)} - G_{7,0}^{(82)} & D(G_{8,3}^{(114)}) = -G_{7,0}^{(85)} - G_{7,0}^{(88)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(79)} - G_{7,0}^{(82)} & D(G_{8,3}^{(114)}) = -G_{7,0}^{(85)} - G_{7,0}^{(85)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(79)} - G_{7,0}^{(82)} & D(G_{8,3}^{(114)}) = -G_{7,0}^{(85)} - G_{7,0}^{(85)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(95)} - G_{7,0}^{(85)} & D(G_{8,3}^{(114)}) = -G_{7,0}^{(85)} - G_{7,0}^{(85)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(95)} - G_{7,0}^{(85)} & D(G_{8,3}^{(135)}) = -G_{7,0}^{(95)} - G_{7,0}^{(85)} \\ D(G_{8,3}^{(95)}) = -G_{7,0}^{(95)} - G_{7,0}^{(85)} & D(G_{8,3}^{(114)}) = -G$$

The Fatgraph $G_{8,4}$ (120 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}a^{0})$
 $\gamma = ({}^{2}d^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,4}$ only has the identity automorphism, so the marked fatgraphs $G_{8,4}^{(0)}$ to $G_{8,4}^{(120)}$ are formed by decorating boundary cycles of $G_{8,4}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,4}^{(0)}) = -G_{7,0}^{(31)} - G_{7,0}^{(34)}$	$D(G_{8,4}^{(30)}) = -G_{7,0}^{(36)} - G_{7,0}^{(38)}$
$D(G_{8,4}^{(2)}) = -G_{7,0}^{(7)} - G_{7,0}^{(10)}$	$D(G_{8,4}^{(31)}) = -G_{7,0}^{(60)} - G_{7,0}^{(62)}$
$D(G_{8,4}^{(4)}) = -G_{7,0}^{(7)} - G_{7,0}^{(10)}$	$D(G_{8,4}^{(32)}) = -G_{7,0}^{(12)} - G_{7,0}^{(14)}$
$D(G_{8,4}^{(5)}) = -G_{7,0}^{(31)} - G_{7,0}^{(34)}$	$D(G_{8,4}^{(33)}) = -G_{7,0}^{(60)} - G_{7,0}^{(62)}$
$D(G_{8,4}^{(6)}) = -G_{7,0}^{(30)} - G_{7,0}^{(32)}$	$D(G_{8,4}^{(34)}) = -G_{7,0}^{(12)} - G_{7,0}^{(14)}$
$D(G_{8,4}^{(7)}) = -G_{7,0}^{(84)} - G_{7,0}^{(86)}$	$D(G_{8,4}^{(35)}) = -G_{7,0}^{(36)} - G_{7,0}^{(38)}$
$D(G_{8,4}^{(8)}) = -G_{7,0}^{(6)} - G_{7,0}^{(8)}$	$D(G_{8,4}^{(36)}) = -G_{7,0}^{(69)} - G_{7,0}^{(71)}$
$D(G_{8,4}^{(9)}) = -G_{7,0}^{(84)} - G_{7,0}^{(86)}$	$D(G_{8,4}^{(37)}) = -G_{7,0}^{(93)} - G_{7,0}^{(95)}$
$D(G_{8,4}^{(10)}) = -G_{7,0}^{(6)} - G_{7,0}^{(8)}$	$D(G_{8,4}^{(38)}) = -G_{7,0}^{(45)} - G_{7,0}^{(47)}$
$D(G_{8,4}^{(11)}) = -G_{7,0}^{(30)} - G_{7,0}^{(32)}$	$D(G_{8,4}^{(39)}) = -G_{7,0}^{(93)} - G_{7,0}^{(95)}$
$D(G_{8,4}^{(12)}) = -G_{7,0}^{(63)} - G_{7,0}^{(65)}$	$D(G_{8,4}^{(40)}) = -G_{7,0}^{(45)} - G_{7,0}^{(47)}$
$D(G_{8,4}^{(14)}) = -G_{7,0}^{(39)} - G_{7,0}^{(41)}$	$D(G_{8,4}^{(41)}) = -G_{7,0}^{(69)} - G_{7,0}^{(71)}$
$D(G_{8,4}^{(16)}) = -G_{7,0}^{(39)} - G_{7,0}^{(41)}$	$D(G_{8,4}^{(42)}) = -G_{7,0}^{(67)} - G_{7,0}^{(70)}$
$D(G_{8,4}^{(17)}) = -G_{7,0}^{(63)} - G_{7,0}^{(65)}$	$D(G_{8,4}^{(43)}) = -G_{7,0}^{(91)} - G_{7,0}^{(94)}$
$D(G_{8,4}^{(18)}) = -G_{7,0}^{(61)} - G_{7,0}^{(64)}$	$D(G_{8,4}^{(44)}) = -G_{7,0}^{(21)} - G_{7,0}^{(23)}$
$D(G_{8,4}^{(20)}) = -G_{7,0}^{(15)} - G_{7,0}^{(17)}$	$D(G_{8,4}^{(45)}) = -G_{7,0}^{(91)} - G_{7,0}^{(94)}$
$D(G_{8,4}^{(22)}) = -G_{7,0}^{(15)} - G_{7,0}^{(17)}$	$D(G_{8,4}^{(46)}) = -G_{7,0}^{(21)} - G_{7,0}^{(23)}$
$D(G_{8,4}^{(23)}) = -G_{7,0}^{(61)} - G_{7,0}^{(64)}$	$D(G_{8,4}^{(47)}) = -G_{7,0}^{(67)} - G_{7,0}^{(70)}$
$D(G_{8,4}^{(24)}) = -G_{7,0}^{(37)} - G_{7,0}^{(40)}$	$D(G_{8,4}^{(48)}) = -G_{7,0}^{(43)} - G_{7,0}^{(46)}$
$D(G_{8,4}^{(26)}) = -G_{7,0}^{(13)} - G_{7,0}^{(16)}$	$D(G_{8,4}^{(49)}) = -G_{7,0}^{(90)} - G_{7,0}^{(92)}$
$D(G_{8,4}^{(28)}) = -G_{7,0}^{(13)} - G_{7,0}^{(16)}$	$D(G_{8,4}^{(50)}) = -G_{7,0}^{(19)} - G_{7,0}^{(22)}$
$D(G_{8,4}^{(29)}) = -G_{7,0}^{(37)} - G_{7,0}^{(40)}$	$D(G_{8,4}^{(51)}) = -G_{7,0}^{(90)} - G_{7,0}^{(92)}$

$$\begin{array}{ll} D(G_{8,4}^{(52)}) = -G_{7,0}^{(19)} - G_{7,0}^{(22)} & D(G_{8,4}^{(56)}) = -G_{7,0}^{(18)} - G_{7,0}^{(20)} \\ D(G_{8,4}^{(53)}) = -G_{7,0}^{(43)} - G_{7,0}^{(46)} & D(G_{8,4}^{(57)}) = -G_{7,0}^{(66)} - G_{7,0}^{(68)} \\ D(G_{8,4}^{(54)}) = -G_{7,0}^{(42)} - G_{7,0}^{(44)} & D(G_{8,4}^{(58)}) = -G_{7,0}^{(18)} - G_{7,0}^{(20)} \\ D(G_{8,4}^{(55)}) = -G_{7,0}^{(66)} - G_{7,0}^{(68)} & D(G_{8,4}^{(59)}) = -G_{7,0}^{(42)} - G_{7,0}^{(44)} \end{array}$$

The Fatgraph $G_{8,5}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^0d^1 o {}^2b^0)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^2d^0 o {}^1b^2 o {}^2e^0 o {}^0c^1 o {}^1e^2 o {}^1d^2)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,5}$ only has the identity automorphism, so the marked fatgraphs $G_{8,5}^{(0)}$ to $G_{8,5}^{(120)}$ are formed by decorating boundary cycles of $G_{8,5}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,6}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 2, 1]), # a
   Vertex([2, 3, 0]), # b
   Vertex([6, 3, 4]), # c
   Vertex([5, 5, 4]), # d
   Vertex([6, 0, 7, 7]),# e
])
```

Boundary cycles

$$\begin{split} \alpha &= (^2d^0 \to {}^0e^1 \to {}^1a^2 \to {}^0a^1 \to {}^2c^0 \to {}^1c^2 \to {}^2b^0 \to {}^0b^1 \to {}^1d^2) \\ \beta &= (^2a^0) \\ \gamma &= (^3e^0 \to {}^1e^2 \to {}^0c^1 \to {}^1b^2) \\ \delta &= (^0d^1) \\ \epsilon &= (^2e^3) \end{split}$$

Markings

Fatgraph $G_{8,6}$ only has the identity automorphism, so the marked fatgraphs $G_{8,6}^{(0)}$ to $G_{8,6}^{(120)}$ are formed by decorating boundary cycles of $G_{8,6}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,7}$ (120 orientable markings)


```
Fatgraph([
    Vertex([5, 1, 0]), # a
    Vertex([1, 2, 2, 3]),# b
    Vertex([4, 4, 3]), # c
    Vertex([0, 5, 6]), # d
    Vertex([7, 7, 6]), # e
])
```

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0})$
 $\gamma = ({}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,7}$ only has the identity automorphism, so the marked fatgraphs $G_{8,7}^{(0)}$ to $G_{8,7}^{(120)}$ are formed by decorating boundary cycles of $G_{8,7}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,8}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^3 o {}^3a^0 o {}^1e^2 o {}^2e^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,8}$ only has the identity automorphism, so the marked fatgraphs $G_{8,8}^{(0)}$ to $G_{8,8}^{(120)}$ are formed by decorating boundary cycles of $G_{8,8}$ with all permutations

of (0, 1, 2, 3, 4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,9}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^1e^2
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^2e^0)$$
 $eta = ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^3a^0
ightarrow {}^1c^2
ightarrow {}^0d^1
ightarrow {}^2b^0
ightarrow {}^1b^2)$
 $\gamma = ({}^2a^3
ightarrow {}^0b^1)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,9}$ only has the identity automorphism, so the marked fatgraphs $G_{8,9}^{(0)}$ to $G_{8,9}^{(120)}$ are formed by decorating boundary cycles of $G_{8,9}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,10}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0})$
 $\gamma = ({}^{3}b^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,10}$ only has the identity automorphism, so the marked fatgraphs $G_{8,10}^{(0)}$ to $G_{8,10}^{(120)}$ are formed by decorating boundary cycles of $G_{8,10}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,11}$ (120 orientable markings)

$$lpha = ({}^1c^2 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^0d^1 o {}^2b^0) \ eta = ({}^2d^0 o {}^2a^0 o {}^1e^2 o {}^1d^2 o {}^2e^0) \ \gamma = ({}^0c^1 o {}^1b^2) \ \delta = ({}^2c^3) \ \epsilon = ({}^0e^1)$$

Markings

Fatgraph $G_{8,11}$ only has the identity automorphism, so the marked fatgraphs $G_{8,11}^{(0)}$ to $G_{8,11}^{(120)}$ are formed by decorating boundary cycles of $G_{8,11}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,12}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0e^1 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0 o {}^3e^0 o {}^1e^2)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^2e^3)$

Markings

Fatgraph $G_{8,12}$ only has the identity automorphism, so the marked fatgraphs $G_{8,12}^{(0)}$ to $G_{8,12}^{(120)}$ are formed by decorating boundary cycles of $G_{8,12}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,13}$ (120 orientable markings)

Boundary cycles

```
\begin{array}{l} \alpha = (^2d^0 \to {}^1a^2 \to {}^1e^2 \to {}^0a^1 \to {}^2b^3 \to {}^3b^0 \to {}^2e^0 \to {}^1c^2 \to {}^2c^0 \to {}^0b^1 \to {}^1d^2) \\ \beta = (^2a^0 \to {}^0d^1) \\ \gamma = (^1b^2) \\ \delta = (^0c^1) \\ \epsilon = (^0e^1) \end{array}
```

Markings

Fatgraph $G_{8,13}$ only has the identity automorphism, so the marked fatgraphs $G_{8,13}^{(0)}$ to $G_{8,13}^{(120)}$ are formed by decorating boundary cycles of $G_{8,13}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,14}$ (120 orientable markings)

Boundary cycles

```
\begin{array}{l} \alpha = (^{2}d^{0} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}a^{1} \rightarrow {}^{2}c^{0} \rightarrow {}^{2}a^{3} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}b^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \beta = (^{3}a^{0}) \\ \gamma = (^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \delta = (^{0}d^{1}) \\ \epsilon = (^{0}e^{1}) \end{array}
```

Markings

Fatgraph $G_{8,14}$ only has the identity automorphism, so the marked fatgraphs $G_{8,14}^{(0)}$ to $G_{8,14}^{(120)}$ are formed by decorating boundary cycles of $G_{8,14}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,15}$ (60 orientable markings)

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{3}a^{0}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}b^{2}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Automorphisms

A_0																			
A_1^{\ddagger}	a	d	е	b	С	5	2	1	6	7	0	3	4	γ	β	α	ϵ	δ	

	$G_{8,15}^{(0)}$	$G_{8,15}^{(1)}$	$G_{8,15}^{(2)}$	$G_{8,15}^{(3)}$	$G_{8,15}^{(4)}$	$G_{8,15}^{(5)}$	$G_{8,15}^{(6)}$	$G_{8,15}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,15}^{(8)}$	$G_{8,15}^{(9)}$	$G_{8,15}^{(10)}$	$G_{8,15}^{(11)}$	$G_{8,15}^{(12)}$	$G_{8,15}^{(13)}$	$G_{8,15}^{(14)}$	$G_{8,15}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{8,15}^{(16)}$	$G_{8,15}^{(17)}$	$G_{8,15}^{(18)}$	$G_{8,15}^{(19)}$	$G_{8,15}^{(20)}$	$G_{8,15}^{(21)}$	$G_{8,15}^{(22)}$	$G_{8,15}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,15}^{(24)}$	$G_{8,15}^{(25)}$	$G_{8,15}^{(26)}$	$G_{8,15}^{(27)}$	$G_{8,15}^{(28)}$	$G_{8,15}^{(29)}$	$G_{8,15}^{(30)}$	$G_{8,15}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0

	(contin							
	$G_{8,15}^{(32)}$	$G_{8,15}^{(33)}$	$G_{8,15}^{(34)}$	$G_{8,15}^{(35)}$	$G_{8,15}^{(36)}$	$G_{8,15}^{(37)}$	$G_{8,15}^{(38)}$	$G_{8,15}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{8,15}^{(40)}$	$G_{8,15}^{(41)}$	$G_{8,15}^{(42)}$	$G_{8,15}^{(43)}$	$G_{8,15}^{(44)}$	$G_{8,15}^{(45)}$	$G_{8,15}^{(46)}$	$G_{8,15}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	0	4	1	3	1	4	0
	$G_{8,15}^{(48)}$	$G_{8,15}^{(49)}$	$G_{8,15}^{(50)}$	$G_{8,15}^{(51)}$	$G_{8,15}^{(52)}$	$G_{8,15}^{(53)}$	$G_{8,15}^{(54)}$	$G_{8,15}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{8,15}^{(56)}$	$G_{8,15}^{(57)}$	$G_{8,15}^{(58)}$	$G_{8,15}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{8,16}$ (120 orientable markings)

$$\begin{array}{l} \alpha = (^2d^0 \to {}^1c^2 \to {}^1a^2 \to {}^0a^1 \to {}^0b^1 \to {}^2e^0 \to {}^3c^0 \to {}^2b^0 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^2a^0 \to {}^0d^1) \\ \gamma = (^0c^1 \to {}^1b^2) \\ \delta = (^2c^3) \\ \epsilon = (^0e^1) \end{array}$$

Markings

Fatgraph $G_{8,16}$ only has the identity automorphism, so the marked fatgraphs $G_{8,16}^{(0)}$ to $G_{8,16}^{(120)}$ are formed by decorating boundary cycles of $G_{8,16}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,17}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to {}^1a^2 \to {}^1e^2 \to {}^0a^1 \to {}^2b^3 \to {}^3b^0 \to {}^2e^0 \to {}^1c^2 \to {}^0d^1 \to {}^2c^0 \to {}^0b^1 \to {}^1d^2) \\ \beta = (^2a^0) \\ \gamma = (^1b^2) \\ \delta = (^0c^1) \\ \epsilon = (^0e^1) \end{array}$$

Markings

Fatgraph $G_{8,17}$ only has the identity automorphism, so the marked fatgraphs $G_{8,17}^{(0)}$ to $G_{8,17}^{(120)}$ are formed by decorating boundary cycles of $G_{8,17}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,18}$ (120 orientable markings)

Boundary cycles

```
\begin{array}{l} \alpha = (^2d^0 \to {}^1a^2 \to {}^1e^2 \to {}^0a^1 \to {}^2b^3 \to {}^2e^0 \to {}^1c^2 \to {}^0d^1 \to {}^2c^0 \to {}^0b^1 \to {}^1d^2 \to {}^1b^2) \\ \beta = (^2a^0) \\ \gamma = (^3b^0) \\ \delta = (^0c^1) \\ \epsilon = (^0e^1) \end{array}
```

Markings

Fatgraph $G_{8,18}$ only has the identity automorphism, so the marked fatgraphs $G_{8,18}^{(0)}$ to $G_{8,18}^{(120)}$ are formed by decorating boundary cycles of $G_{8,18}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,19}$ (120 orientable markings)

Boundary cycles

```
\begin{array}{l} \alpha = (^{2}d^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}a^{1} \rightarrow {}^{0}b^{1} \rightarrow {}^{2}e^{0} \rightarrow {}^{3}c^{0} \rightarrow {}^{0}d^{1} \rightarrow {}^{2}b^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \beta = (^{2}a^{0}) \\ \gamma = (^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \delta = (^{2}c^{3}) \\ \epsilon = (^{0}e^{1}) \end{array}
```

Markings

Fatgraph $G_{8,19}$ only has the identity automorphism, so the marked fatgraphs $G_{8,19}^{(0)}$ to $G_{8,19}^{(120)}$ are formed by decorating boundary cycles of $G_{8,19}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,20}$ (120 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{3}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0})$
 $\gamma = ({}^{2}b^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,20}$ only has the identity automorphism, so the marked fatgraphs $G_{8,20}^{(0)}$ to $G_{8,20}^{(120)}$ are formed by decorating boundary cycles of $G_{8,20}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,21}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^1e^2
ightarrow {}^0a^1
ightarrow {}^1d^2
ightarrow {}^2e^0) \ eta = ({}^1a^2
ightarrow {}^3a^0
ightarrow {}^0d^1
ightarrow {}^0b^1) \ \gamma = ({}^2a^3
ightarrow {}^2b^0
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^1b^2) \ \delta = ({}^0c^1) \ \epsilon = ({}^0e^1)$$

Automorphisms

	A_0																			
Ī	A_1^{\ddagger}	a	d	е	b	С	5	2	1	6	7	0	3	4	γ	β	α	ϵ	δ	

Markings

	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	$G_{8,21}^{(0)}$	$G_{8,21}^{(1)}$	$G_{8,21}^{(2)}$	$G_{8,21}^{(3)}$	$G_{8,21}^{(4)}$	$G_{8,21}^{(5)}$	$G_{8,21}^{(6)}$	$G_{8,21}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,21}^{(8)}$	$G_{8,21}^{(9)}$	$G_{8,21}^{(10)}$	$G_{8,21}^{(11)}$	$G_{8,21}^{(12)}$	$G_{8,21}^{(13)}$	$G_{8,21}^{(14)}$	$G_{8,21}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{8,21}^{(16)}$	$G_{8,21}^{(17)}$	$G_{8,21}^{(18)}$	$G_{8,21}^{(19)}$	$G_{8,21}^{(20)}$	$G_{8,21}^{(21)}$	$G_{8,21}^{(22)}$	$G_{8,21}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,21}^{(24)}$	$G_{8,21}^{(25)}$	$G_{8,21}^{(26)}$	$G_{8,21}^{(27)}$	$G_{8,21}^{(28)}$	$G_{8,21}^{(29)}$	$G_{8,21}^{(30)}$	$G_{8,21}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{8,21}^{(32)}$	$G_{8,21}^{(33)}$	$G_{8,21}^{(34)}$	$G_{8,21}^{(35)}$	$G_{8,21}^{(36)}$	$G_{8,21}^{(37)}$	$G_{8,21}^{(38)}$	$G_{8,21}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{8,21}^{(40)}$	$G_{8,21}^{(41)}$	$G_{8,21}^{(42)}$	$G_{8,21}^{(43)}$	$G_{8,21}^{(44)}$	$G_{8,21}^{(45)}$	$G_{8,21}^{(46)}$	$G_{8,21}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	0	4	1	3	1	4	0
	$G_{8,21}^{(48)}$	$G_{8,21}^{(49)}$	$G_{8,21}^{(50)}$	$G_{8,21}^{(51)}$	$G_{8,21}^{(52)}$	$G_{8,21}^{(53)}$	$G_{8,21}^{(54)}$	$G_{8,21}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4

	(contin	nued.)						
δ	0	3	0	1	0	1	1	2
ϵ	3	0		0	1	0	2	1
	$G_{8,21}^{(56)}$	$G_{8,21}^{(57)}$	$G_{8,21}^{(58)}$	$G_{8,21}^{(59)}$			•	,
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	2 0 1		0				

The Fatgraph $G_{8,22}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{0})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0})$
 $\gamma = ({}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,22}$ only has the identity automorphism, so the marked fatgraphs $G_{8,22}^{(0)}$ to $G_{8,22}^{(120)}$ are formed by decorating boundary cycles of $G_{8,22}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,23}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to {}^1a^2 \to {}^0a^1 \to {}^0b^1 \to {}^3b^0 \to {}^2e^0 \to {}^0d^1 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^2a^0) \\ \gamma = (^2b^3 \to {}^2c^0 \to {}^1c^2 \to {}^1b^2) \\ \delta = (^0c^1) \\ \epsilon = (^0e^1) \end{array}$$

Markings

Fatgraph $G_{8,23}$ only has the identity automorphism, so the marked fatgraphs $G_{8,23}^{(0)}$ to $G_{8,23}^{(120)}$ are formed by decorating boundary cycles of $G_{8,23}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

(100) (70)	(110) (05)
$D(G_{8,23}^{(100)}) = +G_{7,0}^{(72)}$	$D(G_{8,23}^{(110)}) = +G_{7,0}^{(25)}$
$D(G_{8,23}^{(101)}) = +G_{7,0}^{(96)}$	$D(G_{8,23}^{(111)}) = +G_{7,0}^{(75)}$
$D(G_{8,23}^{(102)}) = +G_{7,0}^{(48)}$	$D(G_{8,23}^{(112)}) = +G_{7,0}^{(50)}$
$D(G_{8,23}^{(103)}) = +G_{7,0}^{(97)}$	$D(G_{8,23}^{(113)}) = +G_{7,0}^{(100)}$
$D(G_{8,23}^{(104)}) = +G_{7,0}^{(49)}$	$D(G_{8,23}^{(114)}) = +G_{7,0}^{(26)}$
$D(G_{8,23}^{(\dot{1}05)}) = +G_{7,0}^{(\dot{7}3)}$	$D(G_{8,23}^{(115)}) = +G_{7,0}^{(101)}$
$D(G_{8,23}^{(106)}) = +G_{7,0}^{(74)}$	$D(G_{8,23}^{(116)}) = +G_{7,0}^{(27)}$
$D(G_{8,23}^{(\dot{1}07)}) = +G_{7,0}^{(\dot{9}8)}$	$D(G_{8,23}^{(117)}) = +G_{7,0}^{(51)}$
$D(G_{8,23}^{(\dot{1}08)}) = +G_{7,0}^{(\dot{2}4)}$	$D(G_{8,23}^{(\hat{1}\hat{1}8)}) = +G_{7,0}^{(\hat{5}2)}$
$D(G_{8,23}^{(109)}) = +G_{7,0}^{(99)}$	$D(G_{8,23}^{(119)}) = +G_{7,0}^{(76)}$

The Fatgraph $G_{8,24}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to {}^1a^2 \to {}^0a^1 \to {}^0b^1 \to {}^2e^0 \to {}^0c^1 \to {}^0d^1 \to {}^2b^0 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^2a^0) \\ \gamma = (^3c^0 \to {}^1c^2 \to {}^1b^2) \\ \delta = (^2c^3) \\ \epsilon = (^0e^1) \end{array}$$

Markings

Fatgraph $G_{8,24}$ only has the identity automorphism, so the marked fatgraphs $G_{8,24}^{(0)}$ to $G_{8,24}^{(120)}$ are formed by decorating boundary cycles of $G_{8,24}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,24}^{(0)}) = +G_{7,0}^{(28)}$ $D(G_{8,24}^{(1)}) = +G_{7,0}^{(77)}$ $D(G_{8,24}^{(2)}) = +G_{7,0}^{(29)}$ $D(G_{8,24}^{(3)}) = +G_{7,0}^{(53)}$	$D(G_{8,24}^{(15)}) = +G_{7,0}^{(81)}$ $D(G_{8,24}^{(16)}) = +G_{7,0}^{(56)}$ $D(G_{8,24}^{(18)}) = +G_{7,0}^{(2)}$ $D(G_{8,24}^{(20)}) = +G_{7,0}^{(3)}$
$D(G_{8,24}^{(4)}) = +G_{7,0}^{(78)}$ $D(G_{8,24}^{(5)}) = +G_{7,0}^{(102)}$ $D(G_{8,24}^{(6)}) = +G_{7,0}^{(54)}$ $D(G_{8,24}^{(8)}) = +G_{7,0}^{(55)}$	$D(G_{8,24}^{(21)}) = +G_{7,0}^{(57)}$ $D(G_{8,24}^{(22)}) = +G_{7,0}^{(58)}$ $D(G_{8,24}^{(22)}) = +G_{7,0}^{(82)}$ $D(G_{8,24}^{(24)}) = +G_{7,0}^{(4)}$ $D(G_{8,24}^{(24)}) = +G_{7,0}^{(4)}$
$D(G_{8,24}^{(9)}) = +G_{7,0}^{(79)}$ $D(G_{8,24}^{(10)}) = +G_{7,0}^{(80)}$ $D(G_{8,24}^{(12)}) = +G_{7,0}^{(0)}$ $D(G_{8,24}^{(14)}) = +G_{7,0}^{(1)}$	$D(G_{8,24}^{(25)}) = +G_{7,0}^{(83)}$ $D(G_{8,24}^{(26)}) = +G_{7,0}^{(5)}$ $D(G_{8,24}^{(27)}) = +G_{7,0}^{(59)}$ $D(G_{8,24}^{(28)}) = +G_{7,0}^{(84)}$

$D(G_{8,24}^{(30)}) = +G_{7,0}^{(30)}$	$D(G_{8,24}^{(78)}) = +G_{7,0}^{(42)}$
$D(G_{8,24}^{(32)}) = +G_{7,0}^{(31)}$	$D(G_{8,24}^{(79)}) = +G_{7,0}^{(91)}$
$D(G_{8,24}^{(33)}) = +G_{7,0}^{(85)}$	$D(G_{8,24}^{(80)}) = +G_{7,0}^{(43)}$
$D(G_{8,24}^{(34)}) = +G_{7,0}^{(86)}$	$D(G_{8,24}^{(81)}) = +G_{7,0}^{(67)}$ $D(G_{8,24}^{(81)}) = +G_{7,0}^{(67)}$
$D(G_{8,24}^{(36)}) = +G_{7,0}^{(6)}$	$D(G_{8,24}^{(82)}) = +G_{7,0}^{(68)}$ $D(G_{8,24}^{(68)}) = +G_{7,0}^{(68)}$
$D(G_{8,24}^{(38)}) = +G_{7,0}^{(7)}$	$D(G_{8,24}^{(83)}) = +G_{7,0}^{(92)}$ $D(G_{8,24}^{(83)}) = +G_{7,0}^{(92)}$
$D(G_{8,24}^{(39)}) = +G_{7,0}^{(87)}$ $D(G_{8,24}^{(39)}) = +G_{7,0}^{(87)}$	
$D(G_{8,24}^{(40)}) = +G_{7,0}^{(32)}$	$D(G_{8,24}^{(84)}) = +G_{7,0}^{(18)}$
$D(G_{8,24}^{(42)}) = +G_{7,0}^{(8)}$	$D(G_{8,24}^{(85)}) = +G_{7,0}^{(93)}$
$D(G_{8,24}^{(44)}) = +G_{7,0}^{(9)}$	$D(G_{8,24}^{(86)}) = +G_{7,0}^{(19)}$
$D(G_{8,24}^{(45)}) = +G_{7,0}^{(33)}$ $D(G_{8,24}^{(45)}) = +G_{7,0}^{(33)}$	$D(G_{8,24}^{(87)}) = +G_{7,0}^{(69)}$
$D(G_{8,24}^{(46)}) = +G_{7,0}^{(34)}$ $D(G_{8,24}^{(46)}) = +G_{7,0}^{(34)}$	$D(G_{8,24}^{(88)}) = +G_{7,0}^{(44)}$
$D(G_{8,24}^{(47)}) = +G_{7,0}^{(88)}$ $D(G_{8,24}^{(47)}) = +G_{7,0}^{(88)}$	$D(G_{8,24}^{(89)}) = +G_{7,0}^{(94)}$
$D(G_{8,24}^{(48)}) = +G_{7,0}^{(10)}$ $D(G_{8,24}^{(48)}) = +G_{7,0}^{(10)}$	$D(G_{8,24}^{(90)}) = +G_{7,0}^{(20)}$
$D(G_{8,24}^{(49)}) = +G_{7,0}^{(89)}$ $D(G_{8,24}^{(49)}) = +G_{7,0}^{(89)}$	$D(G_{8,24}^{(91)}) = +G_{7,0}^{(95)}$
$D(G_{8,24}^{(50)}) = +G_{7,0}^{(11)}$ $D(G_{8,24}^{(50)}) = +G_{7,0}^{(11)}$	$D(G_{8,24}^{(92)}) = +G_{7,0}^{(21)}$
	$D(G_{8,24}^{(93)}) = +G_{7,0}^{(45)}$
$D(G_{8,24}^{(51)}) = +G_{7,0}^{(35)}$ $D(G^{(52)}) = +G_{8,24}^{(60)}$	$D(G_{8,24}^{(94)}) = +G_{7,0}^{(46)}$
$D(G_{8,24}^{(52)}) = +G_{7,0}^{(60)}$ $D(G_{8,24}^{(54)}) = +G_{7,0}^{(36)}$	$D(G_{8,24}^{(95)}) = +G_{7,0}^{(70)}$
$D(G_{8,24}^{(54)}) = +G_{7,0}^{(36)}$ $D(G_{8,24}^{(56)}) + G_{8,24}^{(37)}$	$D(G_{8,24}^{(96)}) = +G_{7,0}^{(22)}$
$D(G_{8,24}^{(56)}) = +G_{7,0}^{(37)}$ $D(G_{8,24}^{(57)}) = +G_{7,0}^{(61)}$	$D(G_{8,24}^{(97)}) = +G_{7,0}^{(71)}$
$D(G_{8,24}^{(57)}) = +G_{7,0}^{(61)}$ $D(G_{8,24}^{(58)}) = +G_{7,0}^{(62)}$	$D(G_{8,24}^{(98)}) = +G_{7,0}^{(23)}$
$D(G_{8,24}^{(58)}) = +G_{7,0}^{(62)}$ $D(G_{8,24}^{(60)}) = +G_{7,0}^{(12)}$	$D(G_{8,24}^{(99)}) = +G_{7,0}^{(47)}$
$D(G_{8,24}^{(60)}) = +G_{7,0}^{(12)}$ $D(G_{8,24}^{(62)}) = G_{7,0}^{(13)}$	$D(G_{8,24}^{(100)}) = -G_{7,0}^{(80)}$
$D(G_{8,24}^{(62)}) = +G_{7,0}^{(13)}$	$D(G_{8,24}^{(102)}) = -G_{7,0}^{(56)}$
$D(G_{8,24}^{(63)}) = +G_{7,0}^{(63)}$	$D(G_{8,24}^{(104)}) = -G_{7,0}^{(58)}$
$D(G_{8,24}^{(64)}) = +G_{7,0}^{(38)}$	$D(G_{8,24}^{(105)}) = -G_{7,0}^{(82)}$
$D(G_{8,24}^{(66)}) = +G_{7,0}^{(14)}$	$D(G_{8,24}^{(106)}) = -G_{7,0}^{(86)}$
$D(G_{8,24}^{(68)}) = +G_{7,0}^{(15)}$	$D(G_{8,24}^{(108)}) = G_{7,0}^{(32)}$ $D(G_{8,24}^{(108)}) = -G_{7,0}^{(32)}$
$D(G_{8,24}^{(69)}) = +G_{7,0}^{(39)}$ $D(G_{8,24}^{(70)}) = +G_{7,0}^{(40)}$ $D(G_{8,24}^{(71)}) = +G_{7,0}^{(64)}$	$D(G_{8,24}^{(110)}) = -G_{7,0}^{(34)}$ $D(G_{8,24}^{(110)}) = -G_{7,0}^{(34)}$
$D(G_{8,24}^{(8)}) = +G_{7,0}^{(64)}$	$D(G_{8,24}^{(111)}) = -G_{7,0}^{(88)}$
$D(G_{8,24}^{(17)}) = +G_{7,0}^{(17)}$	$D(G_{8,24}^{(111)}) = -G_{7,0}^{(88)}$
$D(G_{8,24}^{(72)}) = +G_{7,0}^{(16)}$ $D(G_{8,24}^{(73)}) = +G_{7,0}^{(65)}$	$D(G_{8,24}^{(112)}) = -G_{7,0}^{(62)}$
$D(G_{8,24}^{(12)}) = +G_{7,0}^{(23)}$	$D(G_{8,24}^{(114)}) = -G_{7,0}^{(38)}$ $D(G_{8,24}^{(116)}) = -G_{7,0}^{(40)}$
$D(G_{8,24}^{(74)}) = +G_{7,0}^{(17)}$	$D(G_{8,24}^{(117)}) = -G_{7,0}^{(18)}$
$D(G_{8,24}^{(75)}) = +G_{7,0}^{(41)}$	$D(G_{8,24}^{(117)}) = -G_{7,0}^{(64)}$
$D(G_{8,24}^{(76)}) = +G_{7,0}^{(66)}$ $D(G_{8,24}^{(77)}) = +G_{7,0}^{(90)}$	$D(G_{8,24}^{(118)}) = -G_{7,0}^{(68)}$
$D(G_{8,24}^{(1)}) = +G_{7,0}^{(90)}$	$D(G_{8,24}^{(119)}) = -G_{7,0}^{(92)}$

The Fatgraph $G_{8,25}$ (30 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to {}^3c^0 \to {}^1c^2 \to {}^0a^1 \to {}^0b^1 \to {}^1a^2 \to {}^2e^0 \to {}^0c^1 \to {}^2c^3 \to {}^2b^0 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^2a^0) \\ \gamma = (^1b^2) \\ \delta = (^0d^1) \\ \epsilon = (^0e^1) \end{array}$$

Automorphisms

A_0	a	b	С	d	е	0	1	2	3	4	5	6	7	α	β	γ	δ	ϵ
A_1^{\ddagger}	b	d	С	е	a	5	0	3	4	6	7	2	1	α	γ	δ	ϵ	β
$A_2{}^{\ddagger}$	d	е	С	a	b	7	5	4	6	2	1	3	0	α	δ	ϵ	β	γ
A_3^{\ddagger}	е	a	С	b	d	1	7	6	2	3	0	4	5	α	ϵ	β	γ	δ

Markings

	$G_{8,25}^{(0)}$	$G_{8,25}^{(1)}$	$G_{8,25}^{(2)}$	$G_{8,25}^{(3)}$	$G_{8,25}^{(4)}$	$G_{8,25}^{(5)}$	$G_{8,25}^{(6)}$	$G_{8,25}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	1	1	1	1	0	0
γ	2	2	3	3	4	4	2	2
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,25}^{(8)}$	$G_{8,25}^{(9)}$	$G_{8,25}^{(10)}$	$G_{8,25}^{(11)}$	$G_{8,25}^{(12)}$	$G_{8,25}^{(13)}$	$G_{8,25}^{(14)}$	$G_{8,25}^{(15)}$
α	1	1	1	1	2	2	2	2
β	0	0	0	0	0	0	0	0
γ	3	3	4	4	1	1	3	3

	(contin	nued.)						
δ	2	4	2	3	3	4	1	4
ϵ	4	2	3	2	4	3	4	1
	$G_{8,25}^{(16)}$	$G_{8,25}^{(17)}$	$G_{8,25}^{(18)}$	$G_{8,25}^{(19)}$	$G_{8,25}^{(20)}$	$G_{8,25}^{(21)}$	$G_{8,25}^{(22)}$	$G_{8,25}^{(23)}$
α	2	2	3	3	3	3	3	3
β	0	0	0	0	0	0	0	0
γ	4	4	1	1	2	2	4	4
δ	1	3	2	4	1	4	1	2
ϵ	3	1	4	2	4	1	2	1
	$G_{8,25}^{(24)}$	$G_{8,25}^{(25)}$	$G_{8,25}^{(26)}$	$G_{8,25}^{(27)}$	$G_{8,25}^{(28)}$	$G_{8,25}^{(29)}$		
α	4	4	4	4	4	4		
β	0	0	0	0	0	0		
γ	1	1	2	2	3	3		
δ	2	3	1	3	1	2		
ϵ	3	2	3	1	2	1		

$D(G_{8,25}^{(0)}) = -G_{7,0}^{(44)}$	$D(G_{8,25}^{(15)}) = -G_{7,0}^{(89)}$
$D(G_{8,25}^{(1)}) = -G_{7,0}^{(94)}$	$D(G_{8,25}^{(16)}) = -G_{7,0}^{(60)}$
$D(G_{8,25}^{(2)}) = -G_{7,0}^{(46)}$	$D(G_{8,25}^{(18)}) = -G_{7,0}^{(14)}$
$D(G_{8,25}^{(3)}) = -G_{7,0}^{(70)}$	$D(G_{8,25}^{(20)}) = -G_{7,0}^{(16)}$
$D(G_{8,25}^{(4)}) = -G_{7,0}^{(74)}$	$D(G_{8,25}^{(21)}) = -G_{7,0}^{(65)}$
$D(G_{8,25}^{(5)}) = -G_{7,0}^{(98)}$	$D(G_{8,25}^{(22)}) = -G_{7,0}^{(66)}$
$D(G_{8,25}^{(6)}) = -G_{7,0}^{(50)}$	$D(G_{8,25}^{(23)}) = -G_{7,0}^{(90)}$
$D(G_{8,25}^{(7)}) = -G_{7,0}^{(100)}$	$D(G_{8,25}^{(24)}) = -G_{7,0}^{(20)}$
$D(G_{8,25}^{(8)}) = -G_{7,0}^{(52)}$	$D(G_{8,25}^{(25)}) = -G_{7,0}^{(95)}$
$D(G_{8,25}^{(9)}) = -G_{7,0}^{(76)}$	$D(G_{8,25}^{(26)}) = -G_{7,0}^{(22)}$
$D(G_{8,25}^{(10)}) = -G_{7,0}^{(84)}$	$D(G_{8,25}^{(27)}) = -G_{7,0}^{(71)}$
$D(G_{8,25}^{(12)}) = -G_{7,0}^{(8)}$	$D(G_{8,25}^{(28)}) = -G_{7,0}^{(72)}$
$D(G_{8,25}^{(14)}) = -G_{7,0}^{(10)}$	$D(G_{8,25}^{(29)}) = -G_{7,0}^{(96)}$

The Fatgraph $G_{8,26}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^{2}b^{0} \rightarrow {}^{0}a^{1}) \\ \beta = (^{1}a^{2} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \gamma = (^{2}d^{0} \rightarrow {}^{2}a^{3} \rightarrow {}^{0}b^{1} \rightarrow {}^{3}a^{0} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \delta = (^{0}d^{1}) \\ \epsilon = (^{0}e^{1}) \end{array}$$

Markings

Fatgraph $G_{8,26}$ only has the identity automorphism, so the marked fatgraphs $G_{8,26}^{(0)}$ to $G_{8,26}^{(120)}$ are formed by decorating boundary cycles of $G_{8,26}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,26}^{(0)}) = -G_{7,0}^{(26)}$	$D(G_{8,26}^{(15)}) = -G_{7,0}^{(41)}$
$D(G_{8,26}^{(1)}) = -G_{7,0}^{(101)}$	$D(G_{8,26}^{(16)}) = -G_{7,0}^{(42)}$
$D(G_{8,26}^{(2)}) = -G_{7,0}^{(28)}$	$D(G_{8,26}^{(17)}) = -G_{7,0}^{(91)}$
$D(G_{8,26}^{(3)}) = -G_{7,0}^{(77)}$	$D(G_{8,26}^{(18)}) = -G_{7,0}^{(18)}$
$D(G_{8,26}^{(4)}) = -G_{7,0}^{(78)}$	$D(G_{8,26}^{(19)}) = -G_{7,0}^{(93)}$
$D(G_{8,26}^{(5)}) = -G_{7,0}^{(102)}$	$D(G_{8,26}^{(20)}) = -G_{7,0}^{(23)}$
$D(G_{8,26}^{(6)}) = -G_{7,0}^{(2)}$	$D(G_{8,26}^{(21)}) = -G_{7,0}^{(47)}$
$D(G_{8,26}^{(8)}) = -G_{7,0}^{(4)}$	$D(G_{8,26}^{(22)}) = -G_{7,0}^{(48)}$
$D(G_{8,26}^{(9)}) = -G_{7,0}^{(83)}$	$D(G_{8,26}^{(23)}) = -G_{7,0}^{(97)}$
$D(G_{8,26}^{(10)}) = -G_{7,0}^{(36)}$	$D(G_{8,26}^{(24)}) = -G_{7,0}^{(24)}$
$D(G_{8,26}^{(12)}) = -G_{7,0}^{(12)}$	$D(G_{8,26}^{(25)}) = -G_{7,0}^{(99)}$
$D(G_{8,26}^{(14)}) = -G_{7,0}^{(17)}$	$D(G_{8,26}^{(26)}) = -G_{7,0}^{(29)}$

 $D(G_{8,26}^{(27)}) = -G_{7,0}^{(53)}$ $D(G_{8,26}^{(28)}) = -G_{7,0}^{(54)}$ $D(G_{8,26}^{(51)}) = -G_{7,0}^{(51)}$ $D(G_{8,26}^{(52)}) = -G_{7,0}^{(55)}$ $D(G_{8,26}^{(53)}) = -G_{7,0}^{(79)}$ $D(G_{8,26}^{(54)}) = -G_{7,0}^{(1)}$ $D(G_{8,26}^{(30)}) = -G_{7,0}^{(0)}$ $D(G_{8,26}^{(32)}) = -G_{7,0}^{(5)}$ $D(G_{8,26}^{(33)}) = -G_{7,0}^{(59)}$ $D(G_{8,26}^{(55)}) = -G_{7,0}^{(81)}$ $D(G_{8,26}^{(34)}) = -G_{7,0}^{(30)}$ $D(G_{8,26}^{(56)}) = -G_{7,0}^{(3)}$ $D(G_{8,26}^{(386)}) = -G_{7,0}^{(6)}$ $D(G_{8,26}^{(38)}) = -G_{7,0}^{(11)}$ $D(G_{8,26}^{(57)}) = -G_{7,0}^{(57)}$ $D(G_{8,26}^{(58)}) = -G_{7,0}^{(31)}$ $D(G_{8,26}^{(39)}) = -G_{7,0}^{(35)}$ $D(G_{8,26}^{(40)}) = -G_{7,0}^{(43)}$ $D(G_{8,26}^{(59)}) = -G_{7,0}^{(85)}$ $D(G_{8,26}^{(60)}) = -G_{7,0}^{(7)}$ $D(G_{8,26}^{(41)}) = -G_{7,0}^{(67)}$ $D(G_{8,26}^{(42)}) = -G_{7,0}^{(19)}$ $D(G_{8,26}^{(61)}) = -G_{7,0}^{(87)}$ $D(G_{8,26}^{(62)}) = -G_{7,0}^{(9)}$ $D(G_{8,26}^{(63)}) = -G_{7,0}^{(33)}$ $D(G_{8,26}^{(64)}) = -G_{7,0}^{(37)}$ $D(G_{8,26}^{(43)}) = -G_{7,0}^{(69)}$ $D(G_{8,26}^{(44)}) = -G_{7,0}^{(21)}$ $D(G_{8,26}^{(45)}) = -G_{7,0}^{(45)}$ $D(G_{8,26}^{(65)}) = -G_{7,0}^{(61)}$ $D(G_{8,26}^{(46)}) = -G_{7,0}^{(49)}$ $D(G_{8,26}^{(66)}) = -G_{7,0}^{(13)}$ $D(G_{8,26}^{(47)}) = -G_{7,0}^{(73)}$ $D(G_{8,26}^{(48)}) = -G_{7,0}^{(25)}$ $D(G_{8,26}^{(67)}) = -G_{7,0}^{(63)}$ $D(G_{8,26}^{(68)}) = -G_{7,0}^{(15)}$ $D(G_{8,26}^{(49)}) = -G_{7,0}^{(75)}$ $D(G_{8,26}^{(50)}) = -G_{7,0}^{(27)}$ $D(G_{8,26}^{(69)}) = -G_{7,0}^{(39)}$

The Fatgraph $G_{8,27}$ (120 orientable markings)

$$\begin{array}{l} \alpha = (^{0}d^{1} \rightarrow {}^{3}b^{0} \rightarrow {}^{0}a^{1}) \\ \beta = (^{2}d^{0} \rightarrow {}^{1}a^{2} \rightarrow {}^{2}b^{3} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2} \rightarrow {}^{1}b^{2}) \\ \gamma = (^{2}a^{0} \rightarrow {}^{0}b^{1}) \\ \delta = (^{0}c^{1}) \\ \epsilon = (^{0}e^{1}) \end{array}$$

Markings

Fatgraph $G_{8,27}$ only has the identity automorphism, so the marked fatgraphs $G_{8,27}^{(0)}$ to $G_{8,27}^{(120)}$ are formed by decorating boundary cycles of $G_{8,27}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,28}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,28}$ only has the identity automorphism, so the marked fatgraphs $G_{8,28}^{(0)}$ to $G_{8,28}^{(120)}$ are formed by decorating boundary cycles of $G_{8,28}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,29}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{3}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,29}$ only has the identity automorphism, so the marked fatgraphs $G_{8,29}^{(0)}$ to $G_{8,29}^{(120)}$ are formed by decorating boundary cycles of $G_{8,29}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,30}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}e^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{3}e^{0}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{2}e^{3})$

Markings

Fatgraph $G_{8,30}$ only has the identity automorphism, so the marked fatgraphs $G_{8,30}^{(0)}$ to $G_{8,30}^{(120)}$ are formed by decorating boundary cycles of $G_{8,30}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,31}$ (120 orientable markings)

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2 o {}^2a^3 o {}^2e^0 o {}^0c^1 o {}^1e^2)$
 $\gamma = ({}^2d^0 o {}^3a^0 o {}^2c^0 o {}^1c^2 o {}^0b^1 o {}^1d^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,31}$ only has the identity automorphism, so the marked fatgraphs $G_{8,31}^{(0)}$ to $G_{8,31}^{(120)}$ are formed by decorating boundary cycles of $G_{8,31}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,32}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0a^1 o {}^1b^2 o {}^2e^0 o {}^0c^1 o {}^1e^2 o {}^1d^2)$$
 $eta = ({}^1a^2 o {}^0d^1 o {}^3c^0 o {}^1c^2 o {}^0b^1)$
 $\gamma = ({}^2a^0 o {}^2b^0)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,32}$ only has the identity automorphism, so the marked fatgraphs $G_{8,32}^{(0)}$ to $G_{8,32}^{(120)}$ are formed by decorating boundary cycles of $G_{8,32}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,33}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}b^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{2}c^{3}
ightarrow {}^{1}e^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{0}d^{1}) \ \epsilon = ({}^{0}e^{1})$$

Automorphisms

A_0																		
A_1 [‡]	b	a	С	е	d	3	2	1	0	6	7	4	5	β	α	γ	ϵ	δ

Markings

	$G_{8,33}^{(0)}$	$G_{8,33}^{(1)}$	$G_{8,33}^{(2)}$	$G_{8,33}^{(3)}$	$G_{8,33}^{(4)}$	$G_{8,33}^{(5)}$	$G_{8,33}^{(6)}$	$G_{8,33}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3

	(contin	nued.)						
	$G_{8,33}^{(8)}$	$G_{8,33}^{(9)}$	$G_{8,33}^{(10)}$	$G_{8,33}^{(11)}$	$G_{8,33}^{(12)}$	$G_{8,33}^{(13)}$	$G_{8,33}^{(14)}$	$G_{8,33}^{(15)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{8,33}^{(16)}$	$G_{8,33}^{(17)}$	$G_{8,33}^{(18)}$	$G_{8,33}^{(19)}$	$G_{8,33}^{(20)}$	$G_{8,33}^{(21)}$	$G_{8,33}^{(22)}$	$G_{8,33}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,33}^{(24)}$	$G_{8,33}^{(25)}$	$G_{8,33}^{(26)}$	$G_{8,33}^{(27)}$	$G_{8,33}^{(28)}$	$G_{8,33}^{(29)}$	$G_{8,33}^{(30)}$	$G_{8,33}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{8,33}^{(32)}$	$G_{8,33}^{(33)}$	$G_{8,33}^{(34)}$	$G_{8,33}^{(35)}$	$G_{8,33}^{(36)}$	$G_{8,33}^{(37)}$	$G_{8,33}^{(38)}$	$G_{8,33}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{8,33}^{(40)}$	$G_{8,33}^{(41)}$	$G_{8,33}^{(42)}$	$G_{8,33}^{(43)}$	$G_{8,33}^{(44)}$	$G_{8,33}^{(45)}$	$G_{8,33}^{(46)}$	$G_{8,33}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{8,33}^{(48)}$	$G_{8,33}^{(49)}$	$G_{8,33}^{(50)}$	$G_{8,33}^{(51)}$	$G_{8,33}^{(52)}$	$G_{8,33}^{(53)}$	$G_{8,33}^{(54)}$	$G_{8,33}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{8,33}^{(56)}$	$G_{8,33}^{(57)}$	$G_{8,33}^{(58)}$	$G_{8,33}^{(59)}$				
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

Differentials

$D(G_{8,33}^{(36)}) = +G_{7,0}^{(12)}$
$D(G_{8,33}^{(37)}) = +G_{7,0}^{(13)}$
$D(G_{8,33}^{(38)}) = +G_{7,0}^{(18)}$
$D(G_{8,33}^{(39)}) = +G_{7,0}^{(19)}$
$D(G_{8,33}^{(40)}) = +G_{7,0}^{(48)}$
$D(G_{8,33}^{(41)}) = +G_{7,0}^{(49)}$
$D(G_{8,33}^{(42)}) = +G_{7,0}^{(62)}$
$D(G_{8,33}^{(43)}) = +G_{7,0}^{(63)}$
$D(G_{8,33}^{(44)}) = +G_{7,0}^{(68)}$
$D(G_{8,33}^{(45)}) = +G_{7,0}^{(69)}$
$D(G_{8,33}^{(46)}) = +G_{7,0}^{(72)}$
$D(G_{8,33}^{(47)}) = +G_{7,0}^{(73)}$
$D(G_{8,33}^{(48)}) = +G_{7,0}^{(86)}$
$D(G_{8,33}^{(49)}) = +G_{7,0}^{(87)}$
$D(G_{8,33}^{(50)}) = +G_{7,0}^{(92)}$
$D(G_{8,33}^{(51)}) = +G_{7,0}^{(93)}$
$D(G_{8,33}^{(52)}) = +G_{7,0}^{(96)}$
$D(G_{8,33}^{(53)}) = +G_{7,0}^{(97)}$
$D(G_{8,33}^{(58)}) = +G_{7,0}^{(0)}$
$D(G_{8,33}^{(59)}) = +G_{7,0}^{(1)}$

The Fatgraph $G_{8,34}$ (120 orientable markings)

$$lpha = ({}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{1}b^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{3}a^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0})$
 $\delta = ({}^{0}c^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,34}$ only has the identity automorphism, so the marked fatgraphs $G_{8,34}^{(0)}$ to $G_{8,34}^{(120)}$ are formed by decorating boundary cycles of $G_{8,34}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(C^{(0)})$ $+C^{(14)}$	$D(C^{(26)})$ $C^{(22)}$
$D(G_{8,34}^{(0)}) = +G_{7,0}^{(14)}$	$D(G_{8,34}^{(26)}) = +G_{7,0}^{(22)}$
$D(G_{8,34}^{(1)}) = +G_{7,0}^{(15)}$	$D(G_{8,34}^{(27)}) = +G_{7,0}^{(23)}$
$D(G_{8,34}^{(2)}) = +G_{7,0}^{(20)}$	$D(G_{8,34}^{(28)}) = +G_{7,0}^{(26)}$
$D(G_{8,34}^{(3)}) = +G_{7,0}^{(21)}$	$D(G_{8,34}^{(29)}) = +G_{7,0}^{(27)}$
$D(G_{8,34}^{(4)}) = +G_{7,0}^{(24)}$	$D(G_{8,34}^{(30)}) = +G_{7,0}^{(32)}$
$D(G_{8,34}^{(5)}) = +G_{7,0}^{(25)}$	$D(G_{8,34}^{(31)}) = +G_{7,0}^{(33)}$
$D(G_{8,34}^{(6)}) = +G_{7,0}^{(38)}$	$D(G_{8,34}^{(32)}) = +G_{7,0}^{(46)}$
$D(G_{8,34}^{(7)}) = +G_{7,0}^{(39)}$	$D(G_{8,34}^{(33)}) = +G_{7,0}^{(47)}$
$D(G_{8,34}^{(8)}) = +G_{7,0}^{(44)}$	$D(G_{8,34}^{(34)}) = +G_{7,0}^{(50)}$
$D(G_{8,34}^{(9)}) = +G_{7,0}^{(45)}$	$D(G_{8,34}^{(35)}) = +G_{7,0}^{(51)}$
$D(G_{8,34}^{(10)}) = +G_{7,0}^{(74)}$	$D(G_{8,34}^{(36)}) = +G_{7,0}^{(56)}$
$D(G_{8,34}^{(11)}) = +G_{7,0}^{(75)}$	$D(G_{8,34}^{(37)}) = +G_{7,0}^{(57)}$
$D(G_{8,34}^{(12)}) = +G_{7,0}^{(80)}$	$D(G_{8,34}^{(38)}) = +G_{7,0}^{(70)}$
$D(G_{8,34}^{(13)}) = +G_{7,0}^{(81)}$	$D(G_{8,34}^{(39)}) = +G_{7,0}^{(71)}$
$D(G_{8,34}^{(14)}) = +G_{7,0}^{(94)}$	$D(G_{8,34}^{(40)}) = +G_{7,0}^{(100)}$
$D(G_{8,34}^{(15)}) = +G_{7,0}^{(95)}$	$D(G_{8,34}^{(41)}) = +G_{7,0}^{(101)}$
$D(G_{8,34}^{(16)}) = +G_{7,0}^{(98)}$	$D(G_{8,34}^{(46)}) = +G_{7,0}^{(4)}$
$D(G_{8,34}^{(17)}) = +G_{7,0}^{(99)}$	$D(G_{8,34}^{(47)}) = +G_{7,0}^{(5)}$
$D(G_{8,34}^{(22)}) = +G_{7,0}^{(2)}$	$D(G_{8,34}^{(48)}) = +G_{7,0}^{(10)}$
$D(G_{8,34}^{(23)}) = +G_{7,0}^{(3)}$	$D(G_{8,34}^{(49)}) = +G_{7,0}^{(11)}$
$D(G_{8,34}^{(24)}) = +G_{7,0}^{(8)}$	$D(G_{8,34}^{(50)}) = +G_{7,0}^{(16)}$
$D(G_{8,34}^{(25)}) = +G_{7,0}^{(9)}$	$D(G_{8,34}^{(51)}) = +G_{7,0}^{(17)}$

$D(G_{8,34}^{(52)}) = +G_{7,0}^{(28)}$	$D(G_{8,34}^{(83)}) = +G_{7,0}^{(100)}$
$D(G_{8,34}^{(53)}) = +G_{7,0}^{(29)}$	$D(G_{8,34}^{(84)}) = +G_{7,0}^{(26)}$
$D(G_{8,34}^{(54)}) = +G_{7,0}^{(34)}$	$D(G_{8,34}^{(85)}) = +G_{7,0}^{(101)}$
$D(G_{8,34}^{(55)}) = +G_{7,0}^{(35)}$	$D(G_{8,34}^{(86)}) = +G_{7,0}^{(27)}$
$D(G_{8,34}^{(30)}) = +G_{7,0}^{(40)}$	$D(G_{8,34}^{(87)}) = +G_{7,0}^{(51)}$
$D(G_{8,34}^{(57)}) = +G_{7,0}^{(41)}$	$D(G_{8,34}^{(88)}) = +G_{7,0}^{(52)}$
$D(G_{8,34}^{(33)}) = +G_{7,0}^{(33)}$	$D(G_{8,34}^{(89)}) = +G_{7,0}^{(76)}$
$D(G_{8,34}^{(59)}) = +G_{7,0}^{(53)}$	$D(G_{8,34}^{(90)}) = +G_{7,0}^{(28)}$
$D(G_{8,34}^{(60)}) = +G_{7,0}^{(58)}$	$D(G_{8,34}^{(91)}) = +G_{7,0}^{(77)}$
$D(G_{8,34}^{(61)}) = +G_{7,0}^{(59)}$	$D(G_{8,34}^{(92)}) = +G_{7,0}^{(29)}$
$D(G_{8,34}^{(02)}) = +G_{7,0}^{(04)}$	$D(G_{8,34}^{(93)}) = +G_{7,0}^{(53)}$
$D(G_{8,34}^{(63)}) = +G_{7,0}^{(63)}$	$D(G_{8,34}^{(94)}) = +G_{7,0}^{(78)}$
$D(G_{8,34}^{(04)}) = +G_{7,0}^{(10)}$	$D(G_{8,34}^{(95)}) = +G_{7,0}^{(102)}$
$D(G_{8,34}^{(65)}) = +G_{7,0}^{(77)}$	$D(G_{8,34}^{(96)}) = +G_{7,0}^{(54)}$
$D(G_{8,34}^{(66)}) = +G_{7,0}^{(82)}$	$D(G_{8,34}^{(98)}) = +G_{7,0}^{(55)}$
$D(G_{8,34}^{(67)}) = +G_{7,0}^{(63)}$	$D(G_{8,34}^{(99)}) = +G_{7,0}^{(79)}$
$D(G_{8,34}^{(68)}) = +G_{7,0}^{(88)}$	$D(G_{8,34}^{(100)}) = +G_{7,0}^{(80)}$
$D(G_{8,34}) = +G_{7,0}'$	$D(G_{8,34}^{(102)}) = +G_{7,0}^{(0)}$
$D(G_{8,34}^{(70)}) = +G_{7,0}^{(72)}$	$D(G_{8,34}^{2}) = +G_{7,0}^{2}$
$D(G_{8,34}^{(71)}) = +G_{7,0}^{(96)}$	$D(G_{8,34}^{(105)}) = +G_{7,0}^{(81)}$
$D(G_{8,34}^{(72)}) = +G_{7,0}^{(48)}$	$D(G_{8,34}^{(106)}) = +G_{7,0}^{(56)}$
$D(G_{8,34}^{(73)}) = +G_{7,0}^{(97)}$	$D(G_{8,34}^{(108)}) = +G_{7,0}^{(2)}$
$D(G_{8,34}^{(74)}) = +G_{7,0}^{(49)}$	$D(G_{8,34}^{(110)}) = +G_{7,0}^{(3)}$
$D(G_{8,34}^{(73)}) = +G_{7,0}^{(73)}$	$D(G_{8,34}^{(111)}) = +G_{7,0}^{(57)}$
$D(G_{8,34}^{(76)}) = +G_{7,0}^{(74)}$	$D(G_{8,34}^{(112)}) = +G_{7,0}^{(58)}$
$D(G_{8,34}^{(77)}) = +G_{7,0}^{(98)}$	$D(G_{8,34}^{(113)}) = +G_{7,0}^{(82)}$
$D(G_{8,34}^{(78)}) = +G_{7,0}^{(24)}$	$D(G_{8,34}^{(114)}) = +G_{7,0}^{(4)}$
$D(G_{8,34}^{(79)}) = +G_{7,0}^{(99)}$	$D(G_{8,34}^{(115)}) = +G_{7,0}^{(83)}$
$D(G_{8,34}^{(80)}) = +G_{7,0}^{(25)}$	$D(G_{8,34}^{(116)}) = +G_{7,0}^{(5)}$
$D(G_{8,34}^{(01)}) = +G_{7,0}^{(10)}$	$D(G_{8,34}^{(117)}) = +G_{7,0}^{(39)}$
$D(G_{8,34}^{(82)}) = +G_{7,0}^{(50)}$	$D(G_{8,34}^{(118)}) = +G_{7,0}^{(84)}$

The Fatgraph $G_{8,35}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^3b^0
ightarrow {}^2e^0
ightarrow {}^1e^2
ightarrow {}^1d^2)$$
 $eta = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^1b^2)$
 $\gamma = ({}^2a^0
ightarrow {}^0b^1
ightarrow {}^0d^1)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,35}$ only has the identity automorphism, so the marked fatgraphs $G_{8,35}^{(0)}$ to $G_{8,35}^{(120)}$ are formed by decorating boundary cycles of $G_{8,35}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,35}^{(0)}) = +G_{7,0}^{(30)}$ $D(G_{8,35}^{(2)}) = +G_{7,0}^{(31)}$ $D(G_{8,35}^{(3)}) = +G_{7,0}^{(85)}$	$D(G_{8,35}^{(17)}) = +G_{7,0}^{(88)} \ D(G_{8,35}^{(18)}) = +G_{7,0}^{(10)} \ D(G_{8,35}^{(19)}) = +G_{7,0}^{(89)}$
$D(G_{8,35}^{(4)}) = +G_{7,0}^{(86)}$ $D(G_{8,35}^{(4)}) = +G_{7,0}^{(86)}$ $D(G_{8,35}^{(6)}) = +G_{7,0}^{(6)}$	$D(G_{8,35}^{(20)}) = +G_{7,0}^{(11)}$ $D(G_{8,35}^{(20)}) = +G_{7,0}^{(11)}$ $D(G_{8,35}^{(21)}) = +G_{7,0}^{(35)}$
$D(G_{8,35}^{(8)}) = +G_{7,0}^{(7)}$ $D(G_{8,35}^{(9)}) = +G_{7,0}^{(87)}$	$D(G_{8,35}^{(22)}) = +G_{7,0}^{(60)}$ $D(G_{8,35}^{(24)}) = +G_{7,0}^{(36)}$
$D(G_{8,35}^{(10)}) = +G_{7,0}^{(32)}$ $D(G_{8,35}^{(12)}) = +G_{7,0}^{(8)}$ $D(G_{8,35}^{(14)}) + G_{7,0}^{(9)}$	$D(G_{8,35}^{(26)}) = +G_{7,0}^{(37)}$ $D(G_{8,35}^{(27)}) = +G_{7,0}^{(61)}$ $D(G_{8,35}^{(28)}) = +G_{62}^{(62)}$
$D(G_{8,35}^{(14)}) = +G_{7,0}^{(9)}$ $D(G_{8,35}^{(15)}) = +G_{7,0}^{(33)}$ $D(G_{8,35}^{(16)}) = +G_{7,0}^{(34)}$	$D(G_{8,35}^{(28)}) = +G_{7,0}^{(62)} \ D(G_{8,35}^{(30)}) = +G_{7,0}^{(13)} \ D(G_{8,35}^{(32)}) = +G_{7,0}^{(13)}$

$D(G_{8,35}^{(33)}) = +G_{7,0}^{(63)}$	$D(G_{8,35}^{(53)}) = +G_{7,0}^{(92)}$
$D(G_{8,35}^{(34)}) = +G_{7,0}^{(38)}$	$D(G_{8,35}^{(54)}) = +G_{7,0}^{(18)}$
$D(G_{8,35}^{(36)}) = +G_{7,0}^{(14)}$	$D(G_{8,35}^{(55)}) = +G_{7,0}^{(93)}$
$D(G_{8,35}^{(38)}) = +G_{7,0}^{(15)}$	$D(G_{8,35}^{(56)}) = +G_{7,0}^{(19)}$
$D(G_{8,35}^{(39)}) = +G_{7,0}^{(39)}$	$D(G_{8,35}^{(57)}) = +G_{7,0}^{(69)}$
$D(G_{8,35}^{(40)}) = +G_{7,0}^{(40)}$	$D(G_{8,35}^{(58)}) = +G_{7,0}^{(44)}$
$D(G_{8,35}^{(41)}) = +G_{7,0}^{(64)}$	$D(G_{8,35}^{(59)}) = +G_{7,0}^{(94)}$
$D(G_{8,35}^{(42)}) = +G_{7,0}^{(16)}$	$D(G_{8,35}^{(60)}) = +G_{7,0}^{(20)}$
$D(G_{8,35}^{(43)}) = +G_{7,0}^{(65)}$	$D(G_{8,35}^{(61)}) = +G_{7,0}^{(95)}$
$D(G_{8,35}^{(44)}) = +G_{7,0}^{(17)}$	$D(G_{8,35}^{(62)}) = +G_{7,0}^{(21)}$
$D(G_{8,35}^{(45)}) = +G_{7,0}^{(41)}$	$D(G_{8,35}^{(63)}) = +G_{7,0}^{(45)}$ $D(G_{8,35}^{(63)}) = +G_{7,0}^{(45)}$
$D(G_{8,35}^{(46)}) = +G_{7,0}^{(66)}$	$D(G_{8,35}^{(64)}) = +G_{7,0}^{(46)}$ $D(G_{8,35}^{(64)}) = +G_{7,0}^{(46)}$
$D(G_{8,35}^{(47)}) = +G_{7,0}^{(90)}$	
$D(G_{8,35}^{(48)}) = +G_{7,0}^{(42)}$	$D(G_{8,35}^{(65)}) = +G_{7,0}^{(70)}$
$D(G_{8,35}^{(49)}) = +G_{7,0}^{(91)}$	$D(G_{8,35}^{(66)}) = +G_{7,0}^{(22)}$
$D(G_{8,35}^{(50)}) = +G_{7,0}^{(43)}$	$D(G_{8,35}^{(67)}) = +G_{7,0}^{(71)}$
$D(G_{8,35}^{(51)}) = +G_{7,0}^{(67)}$	$D(G_{8,35}^{(68)}) = +G_{7,0}^{(23)}$
$D(G_{8,35}^{(52)}) = +G_{7,0}^{(68)}$	$D(G_{8,35}^{(69)}) = +G_{7,0}^{(47)}$

The Fatgraph $G_{8,36}$ (120 orientable markings)

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^2e^0
ightarrow {}^0c^1
ightarrow {}^1e^2
ightarrow {}^1d^2)$$
 $eta = ({}^1a^2
ightarrow {}^3c^0
ightarrow {}^1c^2
ightarrow {}^0b^1)$
 $\gamma = ({}^2a^0
ightarrow {}^2b^0
ightarrow {}^0d^1)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,36}$ only has the identity automorphism, so the marked fatgraphs $G_{8,36}^{(0)}$ to $G_{8,36}^{(120)}$ are formed by decorating boundary cycles of $G_{8,36}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,36}^{(70)}) = +G_{7,0}^{(32)}$	$D(G_{8,36}^{(96)}) = +G_{7,0}^{(14)}$
$D(G_{8,36}^{(71)}) = +G_{7,0}^{(34)}$	$D(G_{8,36}^{(97)}) = +G_{7,0}^{(16)}$
$D(G_{8,36}^{(72)}) = +G_{7,0}^{(38)}$	$D(G_{8,36}^{(98)}) = +G_{7,0}^{(20)}$
$D(G_{8,36}^{(73)}) = +G_{7,0}^{(40)}$	$D(G_{8,36}^{(99)}) = +G_{7,0}^{(22)}$
$D(G_{8,36}^{(74)}) = +G_{7,0}^{(44)}$	$D(G_{8,36}^{(100)}) = +G_{7,0}^{(50)}$
$D(G_{8,36}^{(75)}) = +G_{7,0}^{(46)}$	$D(G_{8,36}^{(101)}) = +G_{7,0}^{(52)}$
$D(G_{8,36}^{(76)}) = +G_{7,0}^{(56)}$	$D(G_{8,36}^{(102)}) = +G_{7,0}^{(60)}$
$D(G_{8,36}^{(77)}) = +G_{7,0}^{(58)}$	$D(G_{8,36}^{(103)}) = +G_{7,0}^{(65)}$
$D(G_{8,36}^{(78)}) = +G_{7,0}^{(62)}$	$D(G_{8,36}^{(104)}) = +G_{7,0}^{(66)}$
$D(G_{8,36}^{(79)}) = +G_{7,0}^{(64)}$	$D(G_{8,36}^{(105)}) = +G_{7,0}^{(71)}$
$D(G_{8,36}^{(80)}) = +G_{7,0}^{(68)}$	$D(G_{8,36}^{(106)}) = +G_{7,0}^{(74)}$
$D(G_{8,36}^{(81)}) = +G_{7,0}^{(70)}$	$D(G_{8,36}^{(107)}) = +G_{7,0}^{(76)}$
$D(G_{8,36}^{(82)}) = +G_{7,0}^{(80)}$	$D(G_{8,36}^{(108)}) = +G_{7,0}^{(84)}$
$D(G_{8,36}^{(83)}) = +G_{7,0}^{(82)}$	$D(G_{8,36}^{(109)}) = +G_{7,0}^{(89)}$
$D(G_{8,36}^{(84)}) = +G_{7,0}^{(86)}$	$D(G_{8,36}^{(110)}) = +G_{7,0}^{(90)}$
$D(G_{8,36}^{(85)}) = +G_{7,0}^{(88)}$	$D(G_{8,36}^{(111)}) = +G_{7,0}^{(95)}$
$D(G_{8,36}^{(86)}) = +G_{7,0}^{(92)}$	$D(G_{8,36}^{(112)}) = +G_{7,0}^{(98)}$
$D(G_{8,36}^{(87)}) = +G_{7,0}^{(94)}$	$D(G_{8,36}^{(113)}) = +G_{7,0}^{(100)}$
$D(G_{8,36}^{(94)}) = +G_{7,0}^{(8)}$	$D(G_{8,36}^{(118)}) = +G_{7,0}^{(2)}$
$D(G_{8,36}^{(95)}) = +G_{7,0}^{(10)}$	$D(G_{8,36}^{(119)}) = +G_{7,0}^{(4)}$

The Fatgraph $G_{8,37}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{2}e^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}
ightarrow {}^{1}e^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{3}b^{0}) \ \delta = ({}^{0}d^{1}) \ \epsilon = ({}^{0}e^{1})$$

Markings

Fatgraph $G_{8,37}$ only has the identity automorphism, so the marked fatgraphs $G_{8,37}^{(0)}$ to $G_{8,37}^{(120)}$ are formed by decorating boundary cycles of $G_{8,37}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{8,37}^{(28)}) = +G_{7,0}^{(24)} \qquad D(G_{8,37}^{(52)}) = +G_{7,0}^{(25)} \\ D(G_{8,37}^{(29)}) = +G_{7,0}^{(29)} \qquad D(G_{8,37}^{(30)}) = +G_{7,0}^{(27)} \\ D(G_{8,37}^{(30)}) = +G_{7,0}^{(30)} \qquad D(G_{8,37}^{(54)}) = +G_{7,0}^{(31)} \\ D(G_{8,37}^{(31)}) = +G_{7,0}^{(35)} \qquad D(G_{8,37}^{(54)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(43)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(45)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(50)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} \qquad D(G_{8,37}^{(61)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} \qquad D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)$		
$D(G_{8,37}^{(29)}) = +G_{7,0}^{(29)} \qquad D(G_{8,37}^{(53)}) = +G_{7,0}^{(27)} \\ D(G_{8,37}^{(30)}) = +G_{7,0}^{(30)} \qquad D(G_{8,37}^{(54)}) = +G_{7,0}^{(27)} \\ D(G_{8,37}^{(31)}) = +G_{7,0}^{(35)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(32)}) = +G_{7,0}^{(43)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(37)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(48)} \qquad D(G_{8,37}^{(57)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(59)}) = +G_{7,0}^{(59)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(59)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(62)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(69)} \qquad D(G_{8,37}^{(62)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} \qquad D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) =$	$D(G_{8,37}^{(27)}) = +G_{7,0}^{(21)}$	$D(G_{8,37}^{(51)}) = +G_{7,0}^{(15)}$
$D(G_{8,37}^{(29)}) = +G_{7,0}^{(29)} \qquad D(G_{8,37}^{(53)}) = +G_{7,0}^{(27)} \\ D(G_{8,37}^{(30)}) = +G_{7,0}^{(30)} \qquad D(G_{8,37}^{(54)}) = +G_{7,0}^{(27)} \\ D(G_{8,37}^{(31)}) = +G_{7,0}^{(35)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(32)}) = +G_{7,0}^{(43)} \qquad D(G_{8,37}^{(55)}) = +G_{7,0}^{(37)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(48)} \qquad D(G_{8,37}^{(57)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(59)}) = +G_{7,0}^{(59)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(59)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(59)} \qquad D(G_{8,37}^{(62)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(69)} \qquad D(G_{8,37}^{(62)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} \qquad D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \qquad D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(75)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)} \\ D(G_{8,37}^{(85)}) =$	$D(G_{8,37}^{(28)}) = +G_{7,0}^{(24)}$	$D(G_{8,37}^{(52)}) = +G_{7,0}^{(25)}$
$\begin{array}{lll} D(G_{8,37}^{(30)}) = +G_{7,0}^{(30)} & D(G_{8,37}^{(54)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(32)}) = +G_{7,0}^{(35)} & D(G_{8,37}^{(53)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(32)}) = +G_{7,0}^{(43)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(45)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(34)}) = +G_{7,0}^{(54)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(59)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(54)} & D(G_{8,37}^{(59)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(59)} & D(G_{8,37}^{(61)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(43)}) = +G_{7,0}^{(97)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(99)} & D(G_{8,37}^{(64)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(75)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(75)} & D(G_{8,37}^{(45)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(75)} & D(G_{8,37}^{(45)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(45)}) = +G_{7,0}^{(45)} & D(G_{8,37}^{(45)}) = +G_{7,0}^{(45)} \\ D(G_{8,37}^{(4$	$D(G_{8,37}^{(29)}) = +G_{7,0}^{(29)}$	
$\begin{array}{lll} D(G_{8,37}^{(31)}) = +G_{7,0}^{(35)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(32)}) = +G_{7,0}^{(43)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(45)} & D(G_{8,37}^{(57)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(34)}) = +G_{7,0}^{(48)} & D(G_{8,37}^{(57)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)} & D(G_{8,37}^{(59)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(59)} & D(G_{8,37}^{(60)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(61)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} & D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(99)} & D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(68)} \\ D(G_{8,37}^{(68)}) =$	$D(G_{8,37}^{(30)}) = +G_{7,0}^{(30)}$	
$\begin{array}{lll} D(G_{8,37}^{(32)}) = +G_{7,0}^{(45)} & D(G_{8,37}^{(56)}) = +G_{7,0}^{(37)} \\ D(G_{8,37}^{(33)}) = +G_{7,0}^{(45)} & D(G_{8,37}^{(56)}) = +G_{7,0}^{(37)} \\ D(G_{8,37}^{(34)}) = +G_{7,0}^{(48)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(56)} & D(G_{8,37}^{(55)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(59)} & D(G_{8,37}^{(61)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} & D(G_{8,37}^{(61)}) = +G_{7,0}^{(57)} \\ D(G_{8,37}^{(39)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} & D(G_{8,37}^{(64)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(64)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(67)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(83)}) = +G_{7,0}^{(83)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(83)}) = +G_{7,0}^{(83)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(48)} & D(G_{8,37}^{(48)}) = +G_{7,0}^{(48)} \\ D(G_{8,37}^{(48)}) =$	$D(G_{8,37}^{(31)}) = +G_{7,0}^{(35)}$	$D(G_{8,37}^{(55)}) = +G_{7,0}^{(33)}$
$\begin{array}{lll} D(G_{8,37}^{(35)}) = +G_{7,0}^{(48)} & D(G_{8,37}^{(57)}) = +G_{7,0}^{(39)} \\ D(G_{8,37}^{(34)}) = +G_{7,0}^{(48)} & D(G_{8,37}^{(57)}) = +G_{7,0}^{(49)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)} & D(G_{8,37}^{(59)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(59)} & D(G_{8,37}^{(69)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(69)}) = +G_{7,0}^{(51)} \\ D(G_{8,37}^{(39)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(62)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(44)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(9)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} & D(G_{8,37}^{(81)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(81)}) $		
$\begin{array}{lll} D(G_{8,37}^{(67)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)} \\ D(G_{8,37}^{(35)}) = +G_{7,0}^{(54)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(37)}) = +G_{7,0}^{(59)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(43)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(43)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(43)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(70)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(48)} \\ D(G_{8,37}^{$	$D(G_{8,37}^{(33)}) = +G_{7,0}^{(45)}$	
$\begin{array}{lll} D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)} & D(G_{8,37}^{(53)}) = +G_{7,0}^{(53)} \\ D(G_{8,37}^{(36)}) = +G_{7,0}^{(54)} & D(G_{8,37}^{(60)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(37)}) = +G_{7,0}^{(59)} & D(G_{8,37}^{(60)}) = +G_{7,0}^{(55)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(60)} & D(G_{8,37}^{(62)}) = +G_{7,0}^{(61)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(9)} & D(G_{8,37}^{(88)}) = +G_{7,0}^{(81)} \\ \end{array}$	$D(G_{8,37}^{(34)}) = +G_{7,0}^{(48)}$	
$\begin{array}{lll} D(G_{8,37}^{(6)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(37)}) = +G_{7,0}^{(59)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(69)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(48)} \\ D(G_{8,37}^{(48)}) = +$	$D(G_{8,37}^{(35)}) = +G_{7,0}^{(53)}$	
$\begin{array}{ll} D(G_{8,37}^{(38)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)} \\ D(G_{8,37}^{(38)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(39)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} \\ D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(68$	$D(G_{8,37}^{(36)}) = +G_{7,0}^{(54)}$	$D(G_{8,37}) = +G_{7,0}$ $D(G^{(60)}) = +G^{(55)}$
$\begin{array}{lll} D(G_{8,37}) = +G_{7,0} \\ D(G_{8,37}^{(39)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(99)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(49)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(49$	$D(G_{8,37}^{(37)}) = +G_{7,0}^{(59)}$	
$\begin{array}{ll} D(G_{8,37}^{(39)}) = +G_{7,0}^{(69)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(69)} \\ D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)} & D(G_{8,37}^{(63)}) = +G_{7,0}^{(63)} \\ D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(73)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \end{array}$	$D(G_{8,37}^{(38)}) = +G_{7,0}^{(67)}$	
$D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)}$ $D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)}$ $D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)}$ $D(G_{8,37}^{(64)}) = +G_{7,0}^{(75)}$ $D(G_{8,37}^{(46)}) = +G_{7,0}^{(75)}$ $D(G_{8,37}^{(66)}) = +G_{7,0}^{(75)}$ $D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)}$ $D(G_{8,37}^{(67)}) = +G_{7,0}^{(81)}$ $D(G_{8,37}^{(49)}) = +G_{7,0}^{(90)}$ $D(G_{8,37}^{(69)}) = +G_{7,0}^{(81)}$ $D(G_{8,37}^{(69)}) = +G_{7,0}^{(81)}$		
$\begin{array}{ll} D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} & D(G_{8,37}^{(65)}) = +G_{7,0}^{(75)} \\ D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} & D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)} \\ D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)} \\ D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} & D(G_{8,37}^{(68)}) = +G_{7,0}^{(85)} \end{array}$	$D(G_{8,37}^{(40)}) = +G_{7,0}^{(97)}$	
$D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)} \qquad D(G_{8,37}^{(80)}) = +G_{7,0}^{(7)}$ $D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} \qquad D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)}$ $D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \qquad D(G_{8,37}^{(67)}) = +G_{7,0}^{(81)}$ $D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} \qquad D(G_{8,37}^{(85)}) = +G_{7,0}^{(85)}$	$D(G_{8,37}^{(41)}) = +G_{7,0}^{(99)}$	
$D(G_{8,37}^{(47)}) = +G_{7,0}^{(3)} \qquad D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)}$ $D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} \qquad D(G_{8,37}^{(68)}) = +G_{7,0}^{(81)}$ $D(G_{8,37}^{(68)}) = +G_{7,0}^{(85)}$ $D(G_{8,37}^{(68)}) = +G_{7,0}^{(85)}$	$D(G_{8,37}^{(46)}) = +G_{7,0}^{(1)}$	
$D(G_{8,37}^{(48)}) = +G_{7,0}^{(7)} D(G_{8,37}^{(67)}) = +G_{7,0}^{(81)} $ $D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} D(G_{8,37}^{(88)}) = +G_{7,0}^{(85)} $		$D(G_{8,37}^{(66)}) = +G_{7,0}^{(79)}$
$D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)} D(G_{8,37}^{(68)}) = +G_{7,0}^{(85)}$		$D(G_{8,37}^{(67)}) = +G_{7,0}^{(81)}$
$D(G_{8,37}^{(50)}) = +G_{7,0}^{(13)}$ $D(G_{8,37}^{(69)}) = +G_{7,0}^{(87)}$	$D(G_{8,37}^{(49)}) = +G_{7,0}^{(9)}$	$D(G_{8,37}^{(68)}) = +G_{7,0}^{(85)}$
	$D(G_{8,37}^{(50)}) = +G_{7,0}^{(13)}$	$D(G_{8,37}^{(69)}) = +G_{7,0}^{(87)}$

The Fatgraph $G_{8,38}$ (120 orientable markings)

$$lpha = ({}^{1}e^{2}
ightarrow {}^{3}e^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{0}e^{1}
ightarrow {}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{2}e^{3})$

Markings

Fatgraph $G_{8,38}$ only has the identity automorphism, so the marked fatgraphs $G_{8,38}^{(0)}$ to $G_{8,38}^{(120)}$ are formed by decorating boundary cycles of $G_{8,38}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,39}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{2}e^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,39}$ only has the identity automorphism, so the marked fatgraphs $G_{8,39}^{(0)}$ to $G_{8,39}^{(120)}$ are formed by decorating boundary cycles of $G_{8,39}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,40}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2]), # a
   Vertex([5, 3, 1]), # b
   Vertex([0, 3, 4, 4]),# c
   Vertex([5, 2, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}d^{1})$
 $\delta = ({}^{2}c^{3})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,40}$ only has the identity automorphism, so the marked fatgraphs $G_{8,40}^{(0)}$ to $G_{8,40}^{(120)}$ are formed by decorating boundary cycles of $G_{8,40}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,41}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2]), # a
   Vertex([2, 3, 1]), # b
   Vertex([0, 5, 4, 4]),# c
   Vertex([3, 5, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^2e^0
ightarrow {}^0c^1
ightarrow {}^1e^2
ightarrow {}^1d^2)$$
 $eta = ({}^1a^2
ightarrow {}^0d^1
ightarrow {}^3c^0
ightarrow {}^1c^2
ightarrow {}^0b^1)$
 $\gamma = ({}^2a^0
ightarrow {}^2b^0)$
 $\delta = ({}^2c^3)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,41}$ only has the identity automorphism, so the marked fatgraphs $G_{8,41}^{(0)}$ to $G_{8,41}^{(120)}$ are formed by decorating boundary cycles of $G_{8,41}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,42}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3]),# a
   Vertex([1, 2, 0]), # b
   Vertex([4, 4, 5]), # c
   Vertex([3, 5, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^2d^0 o {}^2a^3 o {}^2c^0 o {}^3a^0 o {}^2e^0 o {}^1c^2 o {}^0d^1 o {}^0b^1 o {}^1e^2 o {}^1d^2)$
 $\delta = ({}^0c^1)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,42}$ only has the identity automorphism, so the marked fatgraphs $G_{8,42}^{(0)}$ to $G_{8,42}^{(120)}$ are formed by decorating boundary cycles of $G_{8,42}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,43}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1} o {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2} o {}^{0}b^{1} o {}^{2}e^{0} o {}^{1}c^{2} o {}^{2}d^{3} o {}^{3}d^{0} o {}^{2}c^{0} o {}^{1}e^{2} o {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0} o {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,43}$ only has the identity automorphism, so the marked fatgraphs $G_{8,43}^{(0)}$ to $G_{8,43}^{(120)}$ are formed by decorating boundary cycles of $G_{8,43}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,44}$ (120 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^{0}a^{1} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ &\beta = ({}^{0}e^{1} \rightarrow {}^{2}d^{0} \rightarrow {}^{1}a^{2} \rightarrow {}^{3}e^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ &\gamma = ({}^{2}a^{0} \rightarrow {}^{2}b^{0}) \\ &\delta = ({}^{0}d^{1}) \\ &\epsilon = ({}^{2}e^{3}) \end{split}$$

Markings

Fatgraph $G_{8,44}$ only has the identity automorphism, so the marked fatgraphs $G_{8,44}^{(0)}$ to $G_{8,44}^{(120)}$ are formed by decorating boundary cycles of $G_{8,44}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,45}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^{2}b^{0} \rightarrow {}^{0}a^{1}) \\ \beta = (^{1}a^{2} \rightarrow {}^{1}b^{2}) \\ \gamma = (^{2}d^{0} \rightarrow {}^{2}a^{3} \rightarrow {}^{2}c^{0} \rightarrow {}^{3}a^{0} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \delta = (^{0}d^{1} \rightarrow {}^{0}c^{1}) \\ \epsilon = (^{0}e^{1}) \end{array}$$

Markings

Fatgraph $G_{8,45}$ only has the identity automorphism, so the marked fatgraphs $G_{8,45}^{(0)}$ to $G_{8,45}^{(120)}$ are formed by decorating boundary cycles of $G_{8,45}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,46}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1} o {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0} o {}^{3}c^{0} o {}^{1}a^{2} o {}^{0}b^{1} o {}^{2}e^{0} o {}^{1}c^{2} o {}^{1}e^{2} o {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0} o {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1} o {}^{2}c^{3})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,46}^{(0)}$ only has the identity automorphism, so the marked fatgraphs $G_{8,46}^{(0)}$ to $G_{8,46}^{(120)}$ are formed by decorating boundary cycles of $G_{8,46}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,47}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1} o {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0} o {}^{1}a^{2} o {}^{1}e^{2} o {}^{0}b^{1} o {}^{1}c^{2} o {}^{2}c^{0} o {}^{3}e^{0} o {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0} o {}^{2}b^{0})$
 $\delta = ({}^{0}e^{1} o {}^{0}d^{1})$
 $\epsilon = ({}^{2}e^{3})$

Markings

Fatgraph $G_{8,47}$ only has the identity automorphism, so the marked fatgraphs $G_{8,47}^{(0)}$ to $G_{8,47}^{(120)}$ are formed by decorating boundary cycles of $G_{8,47}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,48}$ (120 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^2b^0 \, \to \, {}^0a^1) \\ &\beta = ({}^1a^2 \, \to \, {}^1b^2) \\ &\gamma = ({}^2a^3 \, \to \, {}^0b^1 \, \to \, {}^3a^0 \, \to \, {}^1c^2 \, \to \, {}^0d^1 \, \to \, {}^2c^0) \\ &\delta = ({}^2d^0 \, \to \, {}^1e^2 \, \to \, {}^1d^2 \, \to \, {}^0c^1 \, \to \, {}^2e^0) \\ &\epsilon = ({}^0e^1) \end{split}$$

Markings

Fatgraph $G_{8,48}$ only has the identity automorphism, so the marked fatgraphs $G_{8,48}^{(0)}$ to $G_{8,48}^{(120)}$ are formed by decorating boundary cycles of $G_{8,48}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,49}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{2}d^{0}
ightarrow {}^{2}c^{3}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}e^{0}) \ \epsilon = ({}^{0}e^{1}) \ \$$

Markings

Fatgraph $G_{8,49}$ only has the identity automorphism, so the marked fatgraphs $G_{8,49}^{(0)}$ to $G_{8,49}^{(120)}$ are formed by decorating boundary cycles of $G_{8,49}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,50}$ (120 orientable markings)

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^3d^0
ightarrow {}^0d^1
ightarrow {}^0b^1) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0) \ \delta &= ({}^2d^3
ightarrow {}^1e^2
ightarrow {}^1d^2
ightarrow {}^2e^0) \ \epsilon &= ({}^0e^1) \end{aligned}$$

Markings

Fatgraph $G_{8,50}$ only has the identity automorphism, so the marked fatgraphs $G_{8,50}^{(0)}$ to $G_{8,50}^{(120)}$ are formed by decorating boundary cycles of $G_{8,50}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,51}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{0}e^{1}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{0}d^{1}
ightarrow {}^{3}e^{0}
ightarrow {}^{1}e^{2}) \ \epsilon = ({}^{2}e^{3}) \ \$$

Markings

Fatgraph $G_{8,51}$ only has the identity automorphism, so the marked fatgraphs $G_{8,51}^{(0)}$ to $G_{8,51}^{(120)}$ are formed by decorating boundary cycles of $G_{8,51}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,52}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^2b^3
ightarrow {}^3b^0
ightarrow {}^2e^0
ightarrow {}^2c^0
ightarrow {}^1e^2
ightarrow {}^1d^2) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ \delta = ({}^0c^1
ightarrow {}^1b^2) \ \epsilon = ({}^0e^1)$$

Markings

Fatgraph $G_{8,52}$ only has the identity automorphism, so the marked fatgraphs $G_{8,52}^{(0)}$ to $G_{8,52}^{(120)}$ are formed by decorating boundary cycles of $G_{8,52}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,53}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 4, 3, 0]),# a
   Vertex([5, 3, 2]), # b
   Vertex([4, 1, 2]), # c
   Vertex([0, 5, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

Boundary cycles

$$\begin{split} &\alpha = ({}^{0}a^{1} \rightarrow {}^{0}c^{1}) \\ &\beta = ({}^{1}a^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}b^{2}) \\ &\gamma = ({}^{2}a^{3} \rightarrow {}^{0}d^{1} \rightarrow {}^{0}b^{1}) \\ &\delta = ({}^{2}d^{0} \rightarrow {}^{3}a^{0} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}b^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ &\epsilon = ({}^{0}e^{1}) \end{split}$$

Markings

Fatgraph $G_{8,53}$ only has the identity automorphism, so the marked fatgraphs $G_{8,53}^{(0)}$ to $G_{8,53}^{(120)}$ are formed by decorating boundary cycles of $G_{8,53}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,54}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 2, 1]), # a
   Vertex([2, 3, 0]), # b
   Vertex([5, 3, 4, 1]),# c
   Vertex([0, 5, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

$$lpha = ({}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}d^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,54}$ only has the identity automorphism, so the marked fatgraphs $G_{8,54}^{(0)}$ to $G_{8,54}^{(120)}$ are formed by decorating boundary cycles of $G_{8,54}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,55}$ (120 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^2d^0 \to {}^0a^1 \to {}^0c^1 \to {}^0b^1) \\ &\beta = ({}^1a^2 \to {}^2b^0 \to {}^2e^0 \to {}^1c^2 \to {}^2c^3 \to {}^1e^2 \to {}^1d^2) \\ &\gamma = ({}^2a^0 \to {}^0d^1) \\ &\delta = ({}^3c^0 \to {}^1b^2) \\ &\epsilon = ({}^0e^1) \end{split}$$

Markings

Fatgraph $G_{8,55}$ only has the identity automorphism, so the marked fatgraphs $G_{8,55}^{(0)}$ to $G_{8,55}^{(120)}$ are formed by decorating boundary cycles of $G_{8,55}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,56}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^1e^2
ightarrow {}^2c^0
ightarrow {}^2b^0
ightarrow {}^3e^0
ightarrow {}^1d^2) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ \delta = ({}^0e^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ \epsilon = ({}^2e^3)$$

Markings

Fatgraph $G_{8,56}$ only has the identity automorphism, so the marked fatgraphs $G_{8,56}^{(0)}$ to $G_{8,56}^{(120)}$ are formed by decorating boundary cycles of $G_{8,56}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,57}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0a^1 o {}^1c^2 o {}^0b^1)$$
 $eta = ({}^1a^2 o {}^3b^0 o {}^1d^2 o {}^2c^0)$
 $\gamma = ({}^2a^0 o {}^0d^1)$
 $\delta = ({}^2b^3 o {}^1e^2 o {}^2e^0 o {}^0c^1 o {}^1b^2)$
 $\epsilon = ({}^0e^1)$

Markings

Fatgraph $G_{8,57}$ only has the identity automorphism, so the marked fatgraphs $G_{8,57}^{(0)}$ to $G_{8,57}^{(120)}$ are formed by decorating boundary cycles of $G_{8,57}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,58}$ (120 orientable markings)

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}d^{0}
ightarrow {}^{2}a^{3}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\delta = ({}^{3}a^{0}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}c^{2})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,58}$ only has the identity automorphism, so the marked fatgraphs $G_{8,58}^{(0)}$ to $G_{8,58}^{(120)}$ are formed by decorating boundary cycles of $G_{8,58}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,59}$ (120 orientable markings)

Boundary cycles

$$\alpha = ({}^{0}a^{1} \rightarrow {}^{1}c^{2} \rightarrow {}^{0}b^{1})$$

$$\beta = ({}^{1}a^{2} \rightarrow {}^{0}d^{1} \rightarrow {}^{2}b^{0} \rightarrow {}^{3}c^{0})$$

$$\gamma = ({}^{2}a^{0} \rightarrow {}^{2}c^{3})$$

$$\delta = ({}^{2}d^{0} \rightarrow {}^{1}b^{2} \rightarrow {}^{2}e^{0} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2})$$

$$\epsilon = ({}^{0}e^{1})$$

Markings

Fatgraph $G_{8,59}$ only has the identity automorphism, so the marked fatgraphs $G_{8,59}^{(0)}$ to $G_{8,59}^{(120)}$ are formed by decorating boundary cycles of $G_{8,59}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,60}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^0e^1
ightarrow {}^2b^0
ightarrow {}^1d^2
ightarrow {}^2c^0) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ \delta = ({}^3e^0
ightarrow {}^1e^2
ightarrow {}^0c^1
ightarrow {}^1b^2) \ \epsilon = ({}^2e^3)$$

Markings

Fatgraph $G_{8,60}$ only has the identity automorphism, so the marked fatgraphs $G_{8,60}^{(0)}$ to $G_{8,60}^{(120)}$ are formed by decorating boundary cycles of $G_{8,60}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,61}$ (120 orientable markings)


```
Fatgraph([
   Vertex([4, 2, 1]), # a
   Vertex([5, 3, 0]), # b
   Vertex([0, 3, 4, 1]),# c
   Vertex([2, 5, 6]), # d
   Vertex([7, 7, 6]), # e
])
```

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{3}c^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}c^{3})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,61}$ only has the identity automorphism, so the marked fatgraphs $G_{8,61}^{(0)}$ to $G_{8,61}^{(120)}$ are formed by decorating boundary cycles of $G_{8,61}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,62}$ (120 orientable markings)


```
Fatgraph([
   Vertex([5, 2, 1]), # a
   Vertex([6, 4, 0]), # b
   Vertex([0, 4, 3]), # c
   Vertex([5, 1, 3]), # d
   Vertex([2, 6, 7, 7]),# e
])
```

$$lpha = ({}^{0}e^{1}
ightarrow {}^{2}d^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{1}e^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{3}e^{0}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{0}d^{1})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{2}e^{3})$

Markings

Fatgraph $G_{8,62}$ only has the identity automorphism, so the marked fatgraphs $G_{8,62}^{(0)}$ to $G_{8,62}^{(120)}$ are formed by decorating boundary cycles of $G_{8,62}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,63}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}d^{1}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{2}d^{0}
ightarrow {}^{1}c^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1}
ightarrow {}^{3}a^{0}
ightarrow {}^{2}e^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}e^{2})$
 $\delta = ({}^{2}c^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}e^{1})$

Markings

Fatgraph $G_{8,63}$ only has the identity automorphism, so the marked fatgraphs $G_{8,63}^{(0)}$ to $G_{8,63}^{(120)}$ are formed by decorating boundary cycles of $G_{8,63}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,64}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}e^{1}
ightarrow {}^{2}d^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}e^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}d^{1})$
 $\delta = ({}^{2}c^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{2}e^{3})$

Markings

Fatgraph $G_{8,64}$ only has the identity automorphism, so the marked fatgraphs $G_{8,64}^{(0)}$ to $G_{8,64}^{(120)}$ are formed by decorating boundary cycles of $G_{8,64}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,65}$ (60 orientable markings)

Boundary cycles

$$egin{aligned} & lpha = (^0d^1
ightarrow ^0a^1) \ & eta = (^1a^2
ightarrow ^2d^0
ightarrow ^2c^0
ightarrow ^1e^2
ightarrow ^1b^2) \ & \gamma = (^2a^3
ightarrow ^0b^1) \ & \delta = (^3a^0
ightarrow ^2b^0
ightarrow ^1d^2
ightarrow ^1c^2
ightarrow ^2e^0) \ & \epsilon = (^0e^1
ightarrow ^0c^1) \end{aligned}$$

Automorphisms

A_0	1					l .													
A_1^{\ddagger}	a	d	е	b	С	6	2	1	5	7	3	0	4	γ	δ	α	β	ϵ	

	$G_{8,65}^{(0)}$	$G_{8,65}^{(1)}$	$G_{8,65}^{(2)}$	$G_{8,65}^{(3)}$	$G_{8,65}^{(4)}$	$G_{8,65}^{(5)}$	$G_{8,65}^{(6)}$	$G_{8,65}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,65}^{(8)}$	$G_{8,65}^{(9)}$	$G_{8,65}^{(10)}$	$G_{8,65}^{(11)}$	$G_{8,65}^{(12)}$	$G_{8,65}^{(13)}$	$G_{8,65}^{(14)}$	$G_{8,65}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin	nued.)						
	$G_{8,65}^{(16)}$	$G_{8,65}^{(17)}$	$G_{8,65}^{(18)}$	$G_{8,65}^{(19)}$	$G_{8,65}^{(20)}$	$G_{8,65}^{(21)}$	$G_{8,65}^{(22)}$	$G_{8,65}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,65}^{(24)}$	$G_{8,65}^{(25)}$	$G_{8,65}^{(26)}$	$G_{8,65}^{(27)}$	$G_{8,65}^{(28)}$	$G_{8,65}^{(29)}$	$G_{8,65}^{(30)}$	$G_{8,65}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{8,65}^{(32)}$	$G_{8,65}^{(33)}$	$G_{8,65}^{(34)}$	$G_{8,65}^{(35)}$	$G_{8,65}^{(36)}$	$G_{8,65}^{(37)}$	$G_{8,65}^{(38)}$	$G_{8,65}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{8,65}^{(40)}$	$G_{8,65}^{(41)}$	$G_{8,65}^{(42)}$	$G_{8,65}^{(43)}$	$G_{8,65}^{(44)}$	$G_{8,65}^{(45)}$	$G_{8,65}^{(46)}$	$G_{8,65}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	$O_{(49)}$	4	$\frac{1}{C^{(51)}}$	3	1	4	0
	$G_{8,65}^{(48)}$	$G_{8,65}^{(49)}$	$G_{8,65}^{(50)}$	G _{8,65}	$G_{8,65}^{(52)}$	$G_{8,65}^{(53)}$	$G_{8,65}^{(54)}$	$G_{8,65}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{8,65}^{(56)}$	$G_{8,65}^{(57)}$	$G_{8,65}^{(58)}$	$G_{8,65}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{8,66}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3]),# a
   Vertex([1, 2, 0]), # b
   Vertex([6, 4, 7]), # c
   Vertex([4, 6, 5]), # d
   Vertex([3, 7, 5]), # e
])
```

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1)$$
 $eta = ({}^1a^2 o {}^1b^2)$
 $\gamma = ({}^0e^1 o {}^2a^3 o {}^2c^0 o {}^3a^0 o {}^2e^0 o {}^0b^1 o {}^1d^2)$
 $\delta = ({}^0d^1 o {}^0c^1)$
 $\epsilon = ({}^2d^0 o {}^1e^2 o {}^1c^2)$

Markings

Fatgraph $G_{8,66}$ only has the identity automorphism, so the marked fatgraphs $G_{8,66}^{(0)}$ to $G_{8,66}^{(120)}$ are formed by decorating boundary cycles of $G_{8,66}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,67}$ (60 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2]), # a
   Vertex([2, 3, 1]), # b
   Vertex([0, 3, 7, 5]),# c
   Vertex([6, 4, 7]), # d
   Vertex([4, 6, 5]), # e
])
```

$$\alpha = ({}^{0}a^{1} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2})$$

$$\beta = ({}^{2}d^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}b^{1} \rightarrow {}^{3}c^{0} \rightarrow {}^{1}e^{2})$$

$$\gamma = ({}^{2}a^{0} \rightarrow {}^{2}b^{0})$$

$$\delta = ({}^{2}c^{3} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}d^{2})$$

$$\epsilon = ({}^{0}e^{1} \rightarrow {}^{0}d^{1})$$

Automorphisms

A_0																			
A_1^{\ddagger}	d	е	С	a	b	7	4	6	5	1	3	2	0	δ	β	ϵ	α	γ	

	$G_{8,67}^{(0)}$	$G_{8,67}^{(1)}$	$G_{8,67}^{(2)}$	$G_{8,67}^{(3)}$	$G_{8,67}^{(4)}$	$G_{8,67}^{(5)}$	$G_{8,67}^{(6)}$	$G_{8,67}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,67}^{(8)}$	$G_{8,67}^{(9)}$	$G_{8,67}^{(10)}$	$G_{8,67}^{(11)}$	$G_{8,67}^{(12)}$	$G_{8,67}^{(13)}$	$G_{8,67}^{(14)}$	$G_{8,67}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{8,67}^{(16)}$	$G_{8,67}^{(17)}$	$G_{8,67}^{(18)}$	$G_{8,67}^{(19)}$	$G_{8,67}^{(20)}$	$G_{8,67}^{(21)}$	$G_{8,67}^{(22)}$	$G_{8,67}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,67}^{(24)}$	$G_{8,67}^{(25)}$	$G_{8,67}^{(26)}$	$G_{8,67}^{(27)}$	$G_{8,67}^{(28)}$	$G_{8,67}^{(29)}$	$G_{8,67}^{(30)}$	$G_{8,67}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3

	(contin	nued.)						
	$G_{8,67}^{(32)}$	$G_{8,67}^{(33)}$	$G_{8,67}^{(34)}$	$G_{8,67}^{(35)}$	$G_{8,67}^{(36)}$	$G_{8,67}^{(37)}$	$G_{8,67}^{(38)}$	$G_{8,67}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	4	3	2	4	4	2	2	3
ϵ	0	0	4	2	0	0	3	2
	$G_{8,67}^{(40)}$	$G_{8,67}^{(41)}$	$G_{8,67}^{(42)}$	$G_{8,67}^{(43)}$	$G_{8,67}^{(44)}$	$G_{8,67}^{(45)}$	$G_{8,67}^{(46)}$	$G_{8,67}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	3	2	3	4	4	3	3	4
ϵ	0	0	4	3	1	1	4	3
	$G_{8,67}^{(48)}$	$G_{8,67}^{(49)}$	$G_{8,67}^{(50)}$	$G_{8,67}^{(51)}$	$G_{8,67}^{(52)}$	$G_{8,67}^{(53)}$	$G_{8,67}^{(54)}$	$G_{8,67}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	4	3	4	4	3	3	4	4
ϵ	0	0	1	0	1	0	2	1
	$G_{8,67}^{(56)}$	$G_{8,67}^{(57)}$	$G_{8,67}^{(58)}$	$G_{8,67}^{(59)}$		'	'	
α	3	3	3	3				
β	1	1	2	2				
γ	0	2	0	1				
δ	4	4	4	4				
ϵ	2	0	1	0				

The Fatgraph $G_{8,68}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2, 3]),# a
   Vertex([6, 2, 0]), # b
   Vertex([7, 4, 3]), # c
   Vertex([6, 1, 5]), # d
   Vertex([4, 7, 5]), # e
])
```

$$\begin{split} \alpha &= ({}^{0}d^{1} \rightarrow {}^{2}b^{0} \rightarrow {}^{0}a^{1}) \\ \beta &= ({}^{1}a^{2} \rightarrow {}^{1}b^{2}) \\ \gamma &= ({}^{2}a^{3} \rightarrow {}^{2}d^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}e^{2} \rightarrow {}^{2}c^{0}) \\ \delta &= ({}^{3}a^{0} \rightarrow {}^{1}d^{2} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}e^{0}) \\ \epsilon &= ({}^{0}e^{1} \rightarrow {}^{0}c^{1}) \end{split}$$

Markings

Fatgraph $G_{8,68}$ only has the identity automorphism, so the marked fatgraphs $G_{8,68}^{(0)}$ to $G_{8,68}^{(120)}$ are formed by decorating boundary cycles of $G_{8,68}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,69}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1
ightarrow ^0c^1
ightarrow ^1b^2) \ eta &= (^1a^2
ightarrow ^2c^0
ightarrow ^2e^0
ightarrow ^1d^2) \ \gamma &= (^2a^3
ightarrow ^2d^0
ightarrow ^1e^2
ightarrow ^1c^2
ightarrow ^0b^1) \ \delta &= (^3a^0
ightarrow ^2b^0) \ \epsilon &= (^0e^1
ightarrow ^0d^1) \end{aligned}$$

Markings

Fatgraph $G_{8,69}$ only has the identity automorphism, so the marked fatgraphs $G_{8,69}^{(0)}$ to $G_{8,69}^{(120)}$ are formed by decorating boundary cycles of $G_{8,69}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,70}$ (120 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta &= ({}^1a^2
ightarrow {}^1d^2
ightarrow {}^3c^0
ightarrow {}^2e^0) \ \gamma &= ({}^2a^0
ightarrow {}^2b^0
ightarrow {}^0d^1) \ eta &= ({}^2d^0
ightarrow {}^1e^2
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta &= ({}^0e^1
ightarrow {}^2c^3) \end{aligned}$$

Markings

Fatgraph $G_{8,70}$ only has the identity automorphism, so the marked fatgraphs $G_{8,70}^{(0)}$ to $G_{8,70}^{(120)}$ are formed by decorating boundary cycles of $G_{8,70}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{8,71}$ (30 orientable markings)

Boundary cycles

$$\begin{split} \alpha &= ({}^{0}e^{1} \rightarrow {}^{0}a^{1} \rightarrow {}^{0}c^{1}) \\ \beta &= ({}^{1}a^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}b^{2}) \\ \gamma &= ({}^{2}a^{3} \rightarrow {}^{0}d^{1} \rightarrow {}^{0}b^{1}) \\ \delta &= ({}^{3}a^{0} \rightarrow {}^{2}d^{0} \rightarrow {}^{1}e^{2}) \\ \epsilon &= ({}^{2}b^{0} \rightarrow {}^{1}d^{2} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}e^{0}) \end{split}$$

Automorphisms

A_0	a	b	С	d	е	0	1	2	3	4	5	6	7	α	β	γ	δ	ϵ
A_1^{\ddagger}	a	d	b	е	С	1	4	6	0	3	7	5	2	β	γ	δ	α	ϵ
A_2^{\ddagger}	a	е	d	С	b	4	3	5	1	0	2	7	6	γ	δ	α	β	ϵ
${A_3}^{\ddagger}$	a	С	е	b	d	3	0	7	4	1	6	2	5	δ	α	β	γ	ϵ

	$G_{8,71}^{(0)}$	$G_{8,71}^{(1)}$	$G_{8,71}^{(2)}$	$G_{8,71}^{(3)}$	$G_{8,71}^{(4)}$	$G_{8,71}^{(5)}$	$G_{8,71}^{(6)}$	$G_{8,71}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{8,71}^{(8)}$	$G_{8,71}^{(9)}$	$G_{8,71}^{(10)}$	$G_{8,71}^{(11)}$	$G_{8,71}^{(12)}$	$G_{8,71}^{(13)}$	$G_{8,71}^{(14)}$	$G_{8,71}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2

	(contin	nued.)						
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{8,71}^{(16)}$	$G_{8,71}^{(17)}$	$G_{8,71}^{(18)}$	$G_{8,71}^{(19)}$	$G_{8,71}^{(20)}$	$G_{8,71}^{(21)}$	$G_{8,71}^{(22)}$	$G_{8,71}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{8,71}^{(24)}$	$G_{8,71}^{(25)}$	$G_{8,71}^{(26)}$	$G_{8,71}^{(27)}$	$G_{8,71}^{(28)}$	$G_{8,71}^{(29)}$		
α	1	1	1	1	1	1		
β	2	2	3	3	4	4		
γ	3	4	2	4	2	3		
δ	4	3	4	2	3	2		
ϵ	0	0	0	0	0	0		

Fatgraphs with 9 edges / 6 vertices

There are 26 unmarked fatgraphs in this section, originating 4480 marked fatgraphs (2240 orientable, and 2240 nonorientable).

The Fatgraph $G_{9,0}$ (40 orientable markings)


```
Fatgraph([
   Vertex([1, 2, 1]),# a
   Vertex([2, 3, 0]),# b
   Vertex([6, 3, 4]),# c
   Vertex([5, 5, 4]),# d
   Vertex([0, 6, 7]),# e
   Vertex([8, 8, 7]),# f
])
```

$$lpha = ({}^2d^0 o {}^1f^2 o {}^1a^2 o {}^0a^1 o {}^2f^0 o {}^2c^0 o {}^2e^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1e^2 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^0e^1 o {}^0c^1 o {}^1b^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^0f^1)$

Automorphisms

A_0	1																			
A_1^{\ddagger}	d	С	е	f	b	a	3	5	4	6	7	8	0	2	1	α	δ	γ	ϵ	β
A_2^{\ddagger}	f	е	b	a	С	d	6	8	7	0	2	1	3	4	5	α	ϵ	γ	β	δ

	$G_{9,0}^{(0)}$	$G_{9,0}^{(1)}$	$G_{9,0}^{(2)}$	$G_{9,0}^{(3)}$	$G_{9,0}^{(4)}$	$G_{9,0}^{(5)}$	$G_{9,0}^{(6)}$	$G_{9,0}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,0}^{(8)}$	$G_{9,0}^{(9)}$	$G_{9,0}^{(10)}$	$G_{9,0}^{(11)}$	$G_{9,0}^{(12)}$	$G_{9,0}^{(13)}$	$G_{9,0}^{(14)}$	$G_{9,0}^{(15)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,0}^{(16)}$	$G_{9,0}^{(17)}$	$G_{9,0}^{(18)}$	$G_{9,0}^{(19)}$	$G_{9,0}^{(20)}$	$G_{9,0}^{(21)}$	$G_{9,0}^{(22)}$	$G_{9,0}^{(23)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	0	0
δ	3	4	1	4	1	3	3	4
ϵ	4	3	4	1	3	1	4	3
	$G_{9,0}^{(24)}$	$G_{9,0}^{(25)}$	$G_{9,0}^{(26)}$	$G_{9,0}^{(27)}$	$G_{9,0}^{(28)}$	$G_{9,0}^{(29)}$	$G_{9,0}^{(30)}$	$G_{9,0}^{(31)}$
α	3	3	3	3	3	3	3	3
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	4	4	0	0
δ	2	4	1	4	1	2	2	4
ϵ	4	2	4	1	2	1	4	2

(continued.)

	$G_{9,0}^{(32)}$	$G_{9,0}^{(33)}$	$G_{9,0}^{(34)}$	$G_{9,0}^{(35)}$	$G_{9,0}^{(36)}$	$G_{9,0}^{(37)}$	$G_{9,0}^{(38)}$	$G_{9,0}^{(39)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	0	0
δ	2	3	1	3	1	2	2	3
ϵ	3	2	3	1	2	1	3	2

$D(G_{9,0}^{(0)}) = -G_{8,0}^{(12)} + G_{8,0}^{(60)}$	$D(G_{9,0}^{(20)}) = -G_{8,0}^{(50)}$
$D(G_{9,0}^{(1)}) = -G_{8,0}^{(13)} + G_{8,0}^{(61)}$	$D(G_{9,0}^{(21)}) = -G_{8,0}^{(51)}$
$D(G_{9,0}^{(2)}) = -G_{8,0}^{(14)} + G_{8,0}^{(62)}$	$D(G_{9,0}^{(22)}) = -G_{8,0}^{(52)}$
$D(G_{9,0}^{(3)}) = -G_{8,0}^{(15)} + G_{8,0}^{(63)}$	$D(G_{9,0}^{(23)}) = -G_{8,0}^{(53)}$
$D(G_{9,0}^{(4)}) = -G_{8,0}^{(16)} + G_{8,0}^{(64)}$	$D(G_{9,0}^{(24)}) = -G_{8,0}^{(0)}$
$D(G_{9,0}^{(5)}) = -G_{8,0}^{(17)} + G_{8,0}^{(65)}$	$D(G_{9,0}^{(25)}) = -G_{8,0}^{(1)}$
$D(G_{9,0}^{(6)}) = -G_{8,0}^{(24)} + G_{8,0}^{(66)}$	$D(G_{9,0}^{(26)}) = -G_{8,0}^{(2)}$
$D(G_{9,0}^{(7)}) = -G_{8,0}^{(25)} + G_{8,0}^{(67)}$	$D(G_{9,0}^{(27)}) = -G_{8,0}^{(3)}$
$D(G_{9,0}^{(8)}) = -G_{8,0}^{(26)} + G_{8,0}^{(68)}$	$D(G_{9,0}^{(28)}) = -G_{8,0}^{(4)}$
$D(G_{9,0}^{(9)}) = -G_{8,0}^{(27)} + G_{8,0}^{(69)}$	$D(G_{9,0}^{(29)}) = -G_{8,0}^{(5)}$
$D(G_{9,0}^{(10)}) = -G_{8,0}^{(28)} + G_{8,0}^{(70)}$	$D(G_{9,0}^{(30)}) = +G_{8,0}^{(25)}$
$D(G_{9,0}^{(11)}) = -G_{8,0}^{(29)} + G_{8,0}^{(71)}$	$D(G_{9,0}^{(31)}) = +G_{8,0}^{(24)}$
$D(G_{9,0}^{(12)}) = -G_{8,0}^{(36)}$	$D(G_{9,0}^{(32)}) = -G_{8,0}^{(30)}$
$D(G_{9,0}^{(13)}) = -G_{8,0}^{(37)}$	$D(G_{9,0}^{(33)}) = -G_{8,0}^{(31)}$
$D(G_{9,0}^{(14)}) = -G_{8,0}^{(38)}$	$D(G_{9,0}^{(34)}) = -G_{8,0}^{(32)}$
$D(G_{9,0}^{(15)}) = -G_{8,0}^{(39)}$	$D(G_{9,0}^{(35)}) = -G_{8,0}^{(33)}$
$D(G_{9,0}^{(16)}) = -G_{8,0}^{(40)}$	$D(G_{9,0}^{(36)}) = +G_{8,0}^{(37)}$
$D(G_{9,0}^{(17)}) = -G_{8,0}^{(41)}$	$D(G_{9,0}^{(37)}) = +G_{8,0}^{(36)}$
$D(G_{9,0}^{(18)}) = -G_{8,0}^{(48)}$	$D(G_{9,0}^{(38)}) = -G_{8,0}^{(42)}$
$D(G_{9,0}^{(19)}) = -G_{8,0}^{(49)}$	$D(G_{9,0}^{(39)}) = -G_{8,0}^{(43)}$

The Fatgraph $G_{9,1}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0e^1 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^1f^2 o {}^2f^0 o {}^1b^2 o {}^2e^0 o {}^0c^1 o {}^1e^2)$
 $\delta = ({}^0d^1)$
 $\epsilon = ({}^0f^1)$

Markings

Fatgraph $G_{9,1}$ only has the identity automorphism, so the marked fatgraphs $G_{9,1}^{(0)}$ to $G_{9,1}^{(120)}$ are formed by decorating boundary cycles of $G_{9,1}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$egin{aligned} D(G_{9,1}^{(0)}) &= -G_{8,0}^{(44)} \ D(G_{9,1}^{(1)}) &= -G_{8,0}^{(45)} \ \end{array}$	$D(G_{9,1}^{(12)}) = -G_{8,0}^{(8)}$ $D(G_{9,1}^{(13)}) = -G_{8,0}^{(9)}$
$D(G_{9,1}^{(2)}) = +G_{8,0}^{(49)}$ $D(G_{9,1}^{(3)}) = +G_{8,0}^{(48)}$	$D(G_{9,1}^{(14)}) = +G_{8,0}^{(13)}$ $D(G_{9,1}^{(15)}) = +G_{8,0}^{(12)}$
$D(G_{9,1}^{(4)}) = -G_{8,0}^{(54)}$ $D(G_{9,1}^{(5)}) = -G_{8,0}^{(55)}$	$D(G_{9,1}^{(16)}) = -G_{8,0}^{(18)}$ $D(G_{9,1}^{(17)}) = -G_{8,0}^{(19)}$
$D(G_{9,1}^{(6)}) = -G_{8,0}^{(56)}$	$D(G_{9,1}^{(18)}) = -G_{8,0}^{(20)}$
$D(G_{9,1}^{(7)}) = -G_{8,0}^{(57)}$ $D(G_{9,1}^{(8)}) = +G_{8,0}^{(1)}$	$D(G_{9,1}^{(19)}) = -G_{8,0}^{(21)}$ $D(G_{9,1}^{(20)}) = +G_{8,0}^{(39)}$
$D(G_{9,1}^{(9)}) = +G_{8,0}^{(0)} $ $D(G_{9,1}^{(10)}) = -G_{8,0}^{(6)}$	$D(G_{9,1}^{(21)}) = +G_{8,0}^{(38)}$ $D(G_{9,1}^{(22)}) = +G_{8,0}^{(43)}$
$D(G_{9,1}^{(11)}) = G_{8,0}^{(7)}$ $D(G_{9,1}^{(11)}) = -G_{8,0}^{(7)}$	$D(G_{9,1}^{(23)}) = +G_{8,0}^{(42)}$ $D(G_{9,1}^{(23)}) = +G_{8,0}^{(42)}$

C(24) $C(46)$	$\mathbf{P}(\mathbf{G}(62))$
$D(G_{9,1}^{(24)}) = -G_{8,0}^{(46)}$	$D(G_{9,1}^{(62)}) = +G_{8,0}^{(17)}$
$D(G_{9,1}^{(25)}) = -G_{8,0}^{(47)}$	$D(G_{9,1}^{(63)}) = +G_{8,0}^{(16)}$
$D(G_{9,1}^{(26)}) = +G_{8,0}^{(51)}$	$D(G_{9,1}^{(64)}) = +G_{8,0}^{(21)}$
$D(G_{9,1}^{(27)}) = +G_{8,0}^{(50)}$	$D(G_{9,1}^{(65)}) = +G_{8,0}^{(20)}$
$D(G_{9,1}^{(28)}) = +G_{8,0}^{(55)}$	$D(G_{9,1}^{(66)}) = +G_{8,0}^{(23)}$
$D(G_{9,1}^{(29)}) = +G_{8,0}^{(54)}$	$D(G_{9,1}^{(67)}) = +G_{8,0}^{(22)}$
$D(G_{9,1}^{(30)}) = -G_{8,0}^{(58)}$	$D(G_{9,1}^{(68)}) = +G_{8,0}^{(29)}$
$D(G_{9,1}^{(31)}) = -G_{8,0}^{(59)}$	$D(G_{9,1}^{(69)}) = +G_{8,0}^{(28)}$
$D(G_{9,1}^{(32)}) = +G_{8,0}^{(3)}$	$D(G_{9,1}^{(70)}) = +G_{8,0}^{(33)}$
$D(G_{9,1}^{(33)}) = +G_{8,0}^{(2)}$	$D(G_{9,1}^{(71)}) = +G_{8,0}^{(32)}$
$D(G_{9,1}^{(34)}) = +G_{8,0}^{(7)}$	$D(G_{9,1}^{(72)}) = +G_{8,0}^{(35)}$
$D(G_{9,1}^{(35)}) = +G_{8,0}^{(6)}$	$D(G_{9,1}^{(73)}) = +G_{8,0}^{(34)}$
$D(G_{9,1}^{(36)}) = -G_{8,0}^{(10)}$	$D(G_{9,1}^{(74)}) = +G_{8,0}^{(41)}$
$D(G_{9,1}^{(37)}) = -G_{8,0}^{(11)}$	$D(G_{9,1}^{(75)}) = +G_{8,0}^{(40)}$
$D(G_{9,1}^{(38)}) = +G_{8,0}^{(15)}$	$D(G_{9,1}^{(76)}) = +G_{8,0}^{(45)}$
$D(G_{9,1}^{(39)}) = +G_{8,0}^{(14)}$	$D(G_{9,1}^{(77)}) = +G_{8,0}^{(44)}$
$D(G_{9,1}^{(40)}) = +G_{8,0}^{(19)}$	$D(G_{9,1}^{(78)}) = +G_{8,0}^{(47)}$
$D(G_{9,1}^{(41)}) = +G_{8,0}^{(18)}$	$D(G_{9,1}^{(79)}) = +G_{8,0}^{(46)}$
$D(G_{9,1}^{(42)}) = -G_{8,0}^{(22)}$	$D(G_{9,1}^{(80)}) = -G_{8,0}^{(0)}$
$D(G_{9,1}^{(43)}) = -G_{8,0}^{(23)}$	$D(G_{9,1}^{(81)}) = -G_{8,0}^{(1)}$
$D(G_{9,1}^{(44)}) = +G_{8,0}^{(27)}$	$D(G_{9,1}^{(82)}) = -G_{8,0}^{(2)}$
$D(G_{9,1}^{(45)}) = +G_{8,0}^{(26)}$	$D(G_{9,1}^{(83)}) = -G_{8,0}^{(3)}$
$D(G_{9,1}^{(46)}) = +G_{8,0}^{(31)}$	$D(G_{9,1}^{(84)}) = -G_{8,0}^{(4)}$
$D(G_{9,1}^{(47)}) = +G_{8,0}^{(30)}$	$D(G_{9,1}^{(85)}) = -G_{8,0}^{(5)}$
$D(G_{9,1}^{(48)}) = -G_{8,0}^{(34)}$	$D(G_{9,1}^{(86)}) = +G_{8,0}^{(1)}$
$D(G_{9,1}^{(49)}) = -G_{8,0}^{(35)}$	$D(G_{9,1}^{(87)}) = +G_{8,0}^{(0)}$
$D(G_{9,1}^{(50)}) = +G_{8,0}^{(53)}$	$D(G_{9,1}^{(88)}) = -G_{8,0}^{(6)}$
$D(G_{9,1}^{(51)}) = +G_{8,0}^{(52)}$	$D(G_{9,1}^{(89)}) = -G_{8,0}^{(7)}$
$D(G_{9,1}^{(52)}) = +G_{8,0}^{(57)}$	$D(G_{9,1}^{(90)}) = -G_{8,0}^{(8)}$
$D(G_{9,1}^{(53)}) = +G_{8,0}^{(56)}$	$D(G_{9,1}^{(91)}) = -G_{8,0}^{(9)}$
$D(G_{9,1}^{(54)}) = +G_{8,0}^{(59)}$	$D(G_{9,1}^{(92)}) = +G_{8,0}^{(3)}$
$D(G_{9,1}^{(55)}) = +G_{8,0}^{(58)}$	$D(G_{9,1}^{(93)}) = +G_{8,0}^{(2)}$
$D(G_{9,1}^{(56)}) = +G_{8,0}^{(5)}$	$D(G_{9,1}^{(94)}) = +G_{8,0}^{(7)}$
$D(G_{9,1}^{(57)}) = +G_{8,0}^{(4)}$	$D(G_{9,1}^{(95)}) = +G_{8,0}^{(6)}$
$egin{aligned} D(G_{9,1}^{(58)}) &= +G_{8,0}^{(9)} \ D(G_{9,1}^{(59)}) &= +G_{8,0}^{(8)} \end{aligned}$	$D(G_{9,1}^{(96)}) = -G_{8,0}^{(10)}$
	$D(G_{9,1}^{(97)}) = -G_{8,0}^{(11)}$
$egin{aligned} D(G_{9,1}^{(60)}) &= +G_{8,0}^{(11)} \ D(G_{9,1}^{(61)}) &= +G_{8,0}^{(10)} \end{aligned}$	$egin{aligned} D(G_{9,1}^{(98)}) &= +G_{8,0}^{(5)} \ D(G_{9,1}^{(99)}) &= +G_{8,0}^{(4)} \end{aligned}$
$D(G_{9,1}) = +G_{8,0}$	$D(G_{9,1}) = +G_{8,0}$

```
\begin{array}{ll} D(G_{9,1}^{(100)}) = + G_{8,0}^{(9)} & D(G_{9,1}^{(110)}) = + G_{8,0}^{(13)} \\ D(G_{9,1}^{(101)}) = + G_{8,0}^{(8)} & D(G_{9,1}^{(111)}) = + G_{8,0}^{(12)} \\ D(G_{9,1}^{(102)}) = + G_{8,0}^{(111)} & D(G_{9,1}^{(112)}) = - G_{8,0}^{(18)} \\ D(G_{9,1}^{(103)}) = + G_{8,0}^{(100)} & D(G_{9,1}^{(113)}) = - G_{8,0}^{(19)} \\ D(G_{9,1}^{(104)}) = - G_{8,0}^{(12)} & D(G_{9,1}^{(114)}) = - G_{8,0}^{(20)} \\ D(G_{9,1}^{(105)}) = - G_{8,0}^{(13)} & D(G_{9,1}^{(115)}) = - G_{8,0}^{(21)} \\ D(G_{9,1}^{(106)}) = - G_{8,0}^{(14)} & D(G_{9,1}^{(117)}) = + G_{8,0}^{(115)} \\ D(G_{9,1}^{(107)}) = - G_{8,0}^{(16)} & D(G_{9,1}^{(117)}) = + G_{8,0}^{(19)} \\ D(G_{9,1}^{(109)}) = - G_{8,0}^{(16)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(19)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(1119)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(118)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(118)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\ D(G_{9,1}^{(1119)}) = - G_{8,0}^{(18)} & D(G_{9,1}^{(1119)}) = + G_{8,0}^{(18)} \\
```

The Fatgraph $G_{9,2}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = ({}^2d^0 \to {}^0e^1 \to {}^1a^2 \to {}^0a^1 \to {}^2c^0 \to {}^1c^2 \to {}^2b^0 \to {}^0b^1 \to {}^1d^2) \\ \beta = ({}^2a^0 \to {}^1f^2 \to {}^1e^2 \to {}^2e^0 \to {}^2f^0) \\ \gamma = ({}^0c^1 \to {}^1b^2) \\ \delta = ({}^0d^1) \\ \epsilon = ({}^0f^1) \end{array}$$

Markings

Fatgraph $G_{9,2}$ only has the identity automorphism, so the marked fatgraphs $G_{9,2}^{(0)}$ to $G_{9,2}^{(120)}$ are formed by decorating boundary cycles of $G_{9,2}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{9,2}^{(0)}) = -G_{8,0}^{(22)}$	$D(G_{9,2}^{(38)}) = +G_{8,0}^{(37)}$
$D(G_{9,2}^{(1)}) = -G_{8,0}^{(23)}$	$D(G_{9,2}^{(39)}) = +G_{8,0}^{(36)}$
$D(G_{9,2}^{(2)}) = +G_{8,0}^{(17)}$	$D(G_{9,2}^{(40)}) = -G_{8,0}^{(42)}$
$D(G_{9,2}^{(3)}) = +G_{8,0}^{(16)}$	$D(G_{9,2}^{(41)}) = -G_{8,0}^{(43)}$
$D(G_{9,2}^{(4)}) = +G_{8,0}^{(21)}$	$D(G_{9,2}^{(42)}) = -G_{8,0}^{(44)}$
$D(G_{9,2}^{(5)}) = +G_{8,0}^{(20)}$	$D(G_{9,2}^{(43)}) = -G_{8,0}^{(45)}$
$D(G_{9,2}^{(6)}) = +G_{8,0}^{(23)}$	$D(G_{9,2}^{(44)}) = +G_{8,0}^{(39)}$
$D(G_{9,2}^{(7)}) = +G_{8,0}^{(22)}$	$D(G_{9,2}^{(45)}) = +G_{8,0}^{(38)}$
$D(G_{9,2}^{(8)}) = -G_{8,0}^{(24)}$	$D(G_{9,2}^{(46)}) = +G_{8,0}^{(43)}$
$D(G_{9,2}^{(9)}) = -G_{8,0}^{(25)}$	$D(G_{9,2}^{(47)}) = +G_{8,0}^{(42)}$
$D(G_{9,2}^{(10)}) = -G_{8,0}^{(26)}$	$D(G_{9,2}^{(48)}) = -G_{8,0}^{(46)}$
$D(G_{9,2}^{(11)}) = -G_{8,0}^{(27)}$	$D(G_{9,2}^{(49)}) = -G_{8,0}^{(47)}$
$D(G_{9,2}^{(12)}) = -G_{8,0}^{(28)}$	$D(G_{9,2}^{(50)}) = +G_{8,0}^{(41)}$
$D(G_{9,2}^{(\dot{1}3)}) = -G_{8,0}^{(\dot{2}9)}$	$D(G_{9,2}^{(51)}) = +G_{8,0}^{(40)}$
$D(G_{9,2}^{(14)}) = +G_{8,0}^{(25)}$	$D(G_{9,2}^{(52)}) = +G_{8,0}^{(45)}$
$D(G_{9,2}^{(15)}) = +G_{8,0}^{(24)}$	$D(G_{9,2}^{(53)}) = +G_{8,0}^{(44)}$
$D(G_{9,2}^{(16)}) = -G_{8,0}^{(30)}$	$D(G_{9,2}^{(54)}) = +G_{8,0}^{(47)}$
$D(G_{9,2}^{(17)}) = -G_{8,0}^{(31)}$	$D(G_{9,2}^{(55)}) = +G_{8,0}^{(46)}$
$D(G_{9,2}^{(18)}) = -G_{8,0}^{(32)}$	$D(G_{9,2}^{(56)}) = -G_{8,0}^{(48)}$
$D(G_{9,2}^{(19)}) = -G_{8,0}^{(33)}$	$D(G_{9,2}^{(57)}) = -G_{8,0}^{(49)}$
$D(G_{9,2}^{(20)}) = +G_{8,0}^{(27)}$	$D(G_{9,2}^{(58)}) = -G_{8,0}^{(50)}$
$D(G_{9,2}^{(21)}) = +G_{8,0}^{(26)}$	$D(G_{9,2}^{(59)}) = -G_{8,0}^{(51)}$
$D(G_{9,2}^{(22)}) = +G_{8,0}^{(31)}$	$D(G_{9,2}^{(60)}) = -G_{8,0}^{(52)}$
$D(G_{9,2}^{(23)}) = +G_{8,0}^{(30)}$	$D(G_{9,2}^{(61)}) = -G_{8,0}^{(53)}$
$D(G_{9,2}^{(24)}) = -G_{8,0}^{(34)}$	$D(G_{9,2}^{(62)}) = +G_{8,0}^{(49)}$
$D(G_{9,2}^{(25)}) = -G_{8,0}^{(35)}$	$D(G_{9,2}^{(63)}) = +G_{8,0}^{(48)}$
$D(G_{9,2}^{(26)}) = +G_{8,0}^{(29)}$	$D(G_{9,2}^{(64)}) = -G_{8,0}^{(54)}$
$D(G_{9,2}^{(27)}) = +G_{8,0}^{(28)}$	$D(G_{9,2}^{(65)}) = -G_{8,0}^{(55)}$
$D(G_{9,2}^{(28)}) = +G_{8,0}^{(33)}$	$D(G_{9,2}^{(66)}) = -G_{8,0}^{(56)}$
$D(G_{9,2}^{(29)}) = +G_{8,0}^{(32)}$	$D(G_{9,2}^{(67)}) = -G_{8,0}^{(57)}$
$D(G_{9,2}^{(30)}) = +G_{8,0}^{(35)}$	$D(G_{9,2}^{(68)}) = +G_{8,0}^{(51)}$
$D(G_{9,2}^{(31)}) = +G_{8,0}^{(34)}$	$D(G_{9,2}^{(69)}) = +G_{8,0}^{(50)}$
$D(G_{9,2}^{(32)}) = -G_{8,0}^{(36)}$	$D(G_{9,2}^{(70)}) = +G_{8,0}^{(55)}$
$D(G_{9,2}^{(33)}) = -G_{8,0}^{(37)}$	$D(G_{9,2}^{(71)}) = +G_{8,0}^{(54)}$
$D(G_{9,2}^{(34)}) = -G_{8,0}^{(38)}$	$D(G_{9,2}^{(72)}) = -G_{8,0}^{(58)}$
$D(G_{9,2}^{(35)}) = -G_{8,0}^{(39)}$	$D(G_{9,2}^{(73)}) = -G_{8,0}^{(59)}$
$D(G_{9,2}^{(36)}) = -G_{8,0}^{(40)}$	$D(G_{9,2}^{(74)}) = +G_{8,0}^{(53)}$
$D(G_{9,2}^{(37)}) = -G_{8,0}^{(41)}$	$D(G_{9,2}^{(75)}) = +G_{8,0}^{(52)}$

$$D(G_{9,2}^{(76)}) = +G_{8,0}^{(57)} \qquad D(G_{9,2}^{(105)}) = -G_{8,0}^{(61)}$$

$$D(G_{9,2}^{(77)}) = +G_{8,0}^{(56)} \qquad D(G_{9,2}^{(106)}) = -G_{8,0}^{(62)}$$

$$D(G_{9,2}^{(107)}) = +G_{8,0}^{(59)} \qquad D(G_{9,2}^{(107)}) = -G_{8,0}^{(63)}$$

$$D(G_{9,2}^{(104)}) = -G_{8,0}^{(60)} \qquad D(G_{9,2}^{(109)}) = -G_{8,0}^{(64)}$$

$$D(G_{9,2}^{(109)}) = -G_{8,0}^{(65)} \qquad D(G_{9,2}^{(109)}) = -G_{8,0}^{(65)}$$

The Fatgraph $G_{9,3}$ (60 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^2d^0 \to {}^1f^2 \to {}^1a^2 \to {}^0a^1 \to {}^2f^0 \to {}^2c^0 \to {}^2e^0 \to {}^1c^2 \to {}^2b^0 \to {}^0b^1 \to {}^1e^2 \to {}^1d^2) \\ \beta = (^0e^1 \to {}^2a^0) \\ \gamma = (^0c^1 \to {}^1b^2) \\ \delta = (^0d^1) \\ \epsilon = (^0f^1) \end{array}$$

Automorphisms

A_0																					
A	1‡	b	a	е	f	С	d	6	3	2	1	7	8	0	4	5	α	γ	β	ϵ	δ

	$G_{9,3}^{(0)}$	$G_{9,3}^{(1)}$	$G_{9,3}^{(2)}$	$G_{9,3}^{(3)}$	$G_{9,3}^{(4)}$	$G_{9,3}^{(5)}$	$G_{9,3}^{(6)}$	$G_{9,3}^{(7)}$
α	0	0	0	0	0	0	0	0

	(contin	nued.)						
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{9,3}^{(8)}$	$G_{9,3}^{(9)}$	$G_{9,3}^{(10)}$	$G_{9,3}^{(11)}$	$G_{9,3}^{(12)}$	$G_{9,3}^{(13)}$	$G_{9,3}^{(14)}$	$G_{9,3}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{9,3}^{(16)}$	$G_{9,3}^{(17)}$	$G_{9,3}^{(18)}$	$G_{9,3}^{(19)}$	$G_{9,3}^{(20)}$	$G_{9,3}^{(21)}$	$G_{9,3}^{(22)}$	$G_{9,3}^{(23)}$
α	1	1	1	$G_{9,3}'$ 1	1	1	$G_{9,3}$	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	1	Ω	3	0	2	0
	$G_{9,3}^{(24)}$	$G_{9,3}^{(25)}$	$\alpha^{(26)}$	$\alpha^{(27)}$	$G_{9,3}^{(28)}$	$G_{9,3}^{(29)}$	$\alpha(30)$	$G_{9,3}^{(31)}$
α	$\frac{2}{2}$	2	$G_{9,3}$	$G_{9,3}$	2	2	$G_{9,3}'$ 2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0
		$G_{9,3}^{(33)}$	(- ·)	$G_{9,3}^{(35)}$	$G_{9,3}^{(36)}$	(0=)	$\alpha^{(38)}$	$G_{9,3}^{(39)}$
α	$G_{9,3}^{(32)}$	2^{0}	$G_{9,3}^{(34)}$	$\frac{G_{9,3}}{2}$	3	$G_{9,3}^{(37)}$ 3	$G_{9,3}$	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$\alpha^{(40)}$	$G_{9,3}^{(41)}$	$G_{9,3}^{(42)}$	$\alpha^{(43)}$	$G_{9,3}^{(44)}$	$G_{9,3}^{(45)}$	$\alpha^{(46)}$	$G_{9,3}^{(47)}$
O	G _{9,3} ′	3	3	$G_{9,3}$	3	3	$G_{9,3}^{*}$	3
α β	0	0	1	1	1	1	2	2
	4	4	2	2	4	4	4	4
$\frac{\gamma}{\delta}$	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
C	$G_{9,3}^{(48)}$	$G_{9,3}^{(49)}$	$G_{9,3}^{(50)}$	$G_{9,3}^{(51)}$	$G_{9,3}^{(52)}$	$G_{9,3}^{(53)}$	$G_{9,3}^{(54)}$	$G_{9,3}^{(55)}$
-	$G_{9,3}$		4	4		4	$G_{9,3}$	
α β		4			4		1	1
	0 1	0	0 2	0 2	0	0	2	2
$\frac{\gamma}{\delta}$	2	3	1	3	1	2	0	3
	3	2	3	1	2	1	3	0
ϵ					2	T	3	U
	$G_{9,3}^{(56)}$	$G_{9,3}^{(57)}$	$G_{9,3}^{(58)}$	$G_{9,3}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				

	(continuous)	$\mathit{rued.})$		
δ	0	2	0	1
ϵ	2	0	1	0

Differentials

$$\begin{array}{ll} D(G_{9,3}^{(8)}) = -G_{8,0}^{(66)} & D(G_{9,3}^{(11)}) = -G_{8,0}^{(69)} \\ D(G_{9,3}^{(9)}) = -G_{8,0}^{(67)} & D(G_{9,3}^{(12)}) = -G_{8,0}^{(70)} \\ D(G_{9,3}^{(13)}) = -G_{8,0}^{(68)} & D(G_{9,3}^{(13)}) = -G_{8,0}^{(70)} \end{array}$$

The Fatgraph $G_{9,4}$ (120 orientable markings)

Boundary cycles

$$\begin{array}{l} \alpha = (^{0}e^{1} \rightarrow {}^{2}d^{0} \rightarrow {}^{1}f^{2} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}a^{1} \rightarrow {}^{2}f^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}b^{0} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \beta = (^{2}a^{0}) \\ \gamma = (^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \delta = (^{0}d^{1}) \\ \epsilon = (^{0}f^{1}) \end{array}$$

Markings

Fatgraph $G_{9,4}$ only has the identity automorphism, so the marked fatgraphs $G_{9,4}^{(0)}$ to $G_{9,4}^{(120)}$ are formed by decorating boundary cycles of $G_{9,4}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

$D(G_{9,4}^{(20)}) = +G_{8,0}^{(7)}$	$D(G_{9,4}^{(58)}) = -G_{8,0}^{(12)}$
$D(G_{9,4}^{(21)}) = +G_{8,0}^{(9)}$	$D(G_{9,4}^{(59)}) = +G_{8,0}^{(20)}$
$D(G_{9,4}^{(22)}) = -G_{8,0}^{(6)}$	$D(G_{9,4}^{(60)}) = -G_{8,0}^{(17)}$
$D(G_{9,4}^{(23)}) = +G_{8,0}^{(11)}$	$D(G_{9,4}^{(61)}) = -G_{8,0}^{(21)}$
$D(G_{9,4}^{(24)}) = -G_{8,0}^{(8)}$	$D(G_{9,4}^{(62)}) = +G_{8,0}^{(12)}$
$D(G_{9,4}^{(25)}) = -G_{8,0}^{(10)}$	$D(G_{9,4}^{(63)}) = +G_{8,0}^{(14)}$
$D(G_{9,4}^{(26)}) = +G_{8,0}^{(3)}$	$D(G_{9,4}^{(64)}) = -G_{8,0}^{(13)}$
$D(G_{9,4}^{(27)}) = +G_{8,0}^{(5)}$	$D(G_{9,4}^{(65)}) = +G_{8,0}^{(18)}$
$D(G_{9,4}^{(28)}) = -G_{8,0}^{(2)}$	$D(G_{9,4}^{(66)}) = -G_{8,0}^{(15)}$
$D(G_{9,4}^{(29)}) = +G_{8,0}^{(10)}$	$D(G_{9,4}^{(67)}) = -G_{8,0}^{(19)}$
$D(G_{9,4}^{(30)}) = -G_{8,0}^{(4)}$	$D(G_{9,4}^{(68)}) = +G_{8,0}^{(31)}$
$D(G_{9,4}^{(31)}) = -G_{8,0}^{(11)}$	$D(G_{9,4}^{(69)}) = +G_{8,0}^{(33)}$
$D(G_{9,4}^{(32)}) = +G_{8,0}^{(1)}$	$D(G_{9,4}^{(70)}) = -G_{8,0}^{(30)}$
$D(G_{9,4}^{(333)}) = +G_{8,0}^{(4)}$	$D(G_{9,4}^{(71)}) = +G_{8,0}^{(35)}$
$D(G_{9,4}^{(34)}) = -G_{8,0}^{(0)}$	$D(G_{9,4}^{(72)}) = -G_{8,0}^{(32)}$
$D(G_{9,4}^{(35)}) = +G_{8,0}^{(8)}$	$D(G_{9,4}^{(73)}) = -G_{8,0}^{(34)}$
$D(G_{9,4}^{(36)}) = -G_{8,0}^{(5)}$	$D(G_{9,4}^{(74)}) = +G_{8,0}^{(27)}$
$D(G_{9,4}^{(37)}) = -G_{8,0}^{(9)}$	$D(G_{9,4}^{(75)}) = +G_{8,0}^{(29)}$
$D(G_{9,4}^{(38)}) = +G_{8,0}^{(0)}$	$D(G_{9,4}^{(76)}) = -G_{8,0}^{(26)}$
$D(G_{9,4}^{(39)}) = +G_{8,0}^{(2)}$	$D(G_{9,4}^{(77)}) = +G_{8,0}^{(34)}$
$D(G_{9,4}^{(40)}) = -G_{8,0}^{(1)}$	$D(G_{9,4}^{(78)}) = -G_{8,0}^{(28)}$
$D(G_{9,4}^{(41)}) = +G_{8,0}^{(6)}$	$D(G_{9,4}^{(79)}) = -G_{8,0}^{(35)}$
$D(G_{9,4}^{(42)}) = -G_{8,0}^{(3)}$	$D(G_{9,4}^{(80)}) = +G_{8,0}^{(25)}$
$D(G_{9,4}^{(43)}) = -G_{8,0}^{(7)}$	$D(G_{9,4}^{(81)}) = +G_{8,0}^{(28)}$
$D(G_{9,4}^{(44)}) = +G_{8,0}^{(19)}$	$D(G_{9,4}^{(82)}) = -G_{8,0}^{(24)}$
$D(G_{9,4}^{(45)}) = +G_{8,0}^{(21)}$	$D(G_{9,4}^{(83)}) = +G_{8,0}^{(32)}$
$D(G_{9,4}^{(46)}) = -G_{8,0}^{(18)}$	$D(G_{9,4}^{(84)}) = -G_{8,0}^{(29)}$
$D(G_{9,4}^{(47)}) = +G_{8,0}^{(23)}$	$D(G_{9,4}^{(85)}) = -G_{8,0}^{(33)}$
$D(G_{9,4}^{(48)}) = -G_{8,0}^{(20)}$	$D(G_{9,4}^{(86)}) = +G_{8,0}^{(24)}$
$D(G_{9,4}^{(49)}) = -G_{8,0}^{(22)}$	$D(G_{9,4}^{(87)}) = +G_{8,0}^{(26)}$
$D(G_{9,4}^{(50)}) = +G_{8,0}^{(15)}$	$D(G_{9,4}^{(88)}) = -G_{8,0}^{(25)}$
$D(G_{9,4}^{(51)}) = +G_{8,0}^{(17)}$	$D(G_{9,4}^{(89)}) = +G_{8,0}^{(30)}$
$D(G_{9,4}^{(52)}) = -G_{8,0}^{(14)}$	$D(G_{9,4}^{(90)}) = -G_{8,0}^{(27)}$
$D(G_{9,4}^{(53)}) = +G_{8,0}^{(22)}$	$D(G_{9,4}^{(91)}) = -G_{8,0}^{(31)}$
$D(G_{9,4}^{(54)}) = -G_{8,0}^{(16)}$	$D(G_{9,4}^{(92)}) = +G_{8,0}^{(43)}$
$D(G_{9,4}^{(55)}) = -G_{8,0}^{(23)}$	$D(G_{9,4}^{(93)}) = +G_{8,0}^{(45)}$
$D(G_{9,4}^{(56)}) = +G_{8,0}^{(13)}$	$D(G_{9,4}^{(94)}) = -G_{8,0}^{(42)}$
$D(G_{9,4}^{(57)}) = +G_{8,0}^{(16)}$	$D(G_{9,4}^{(95)}) = +G_{8,0}^{(47)}$

$$\begin{array}{lll} D(G_{9,4}^{(96)}) = -G_{8,0}^{(44)} & D(G_{9,4}^{(108)}) = -G_{8,0}^{(41)} \\ D(G_{9,4}^{(97)}) = -G_{8,0}^{(46)} & D(G_{9,4}^{(109)}) = -G_{8,0}^{(45)} \\ D(G_{9,4}^{(98)}) = +G_{8,0}^{(39)} & D(G_{9,4}^{(110)}) = +G_{8,0}^{(36)} \\ D(G_{9,4}^{(99)}) = +G_{8,0}^{(41)} & D(G_{9,4}^{(1110)}) = +G_{8,0}^{(38)} \\ D(G_{9,4}^{(1001)}) = +G_{8,0}^{(46)} & D(G_{9,4}^{(112)}) = -G_{8,0}^{(37)} \\ D(G_{9,4}^{(101)}) = -G_{8,0}^{(40)} & D(G_{9,4}^{(113)}) = +G_{8,0}^{(42)} \\ D(G_{9,4}^{(103)}) = -G_{8,0}^{(47)} & D(G_{9,4}^{(115)}) = -G_{8,0}^{(43)} \\ D(G_{9,4}^{(105)}) = +G_{8,0}^{(40)} & D(G_{9,4}^{(116)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(105)}) = +G_{8,0}^{(40)} & D(G_{9,4}^{(117)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(105)}) = +G_{8,0}^{(40)} & D(G_{9,4}^{(117)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(105)}) = -G_{8,0}^{(36)} & D(G_{9,4}^{(118)}) = -G_{8,0}^{(57)} \\ D(G_{9,4}^{(1107)}) = +G_{8,0}^{(44)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1107)}) = +G_{8,0}^{(44)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1107)}) = +G_{8,0}^{(44)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1107)}) = +G_{8,0}^{(41)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1107)}) = +G_{8,0}^{(410)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} & D(G_{9,4}^{(1119)}) = +G_{8,0}^{(57)} \\ D(G_{9,4}^{(11110)}) = +G_{8,0}^{(1110)} & D(G_{9,4}^$$

The Fatgraph $G_{9,5}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^0e^1
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^0b^1
ightarrow {}^0c^1
ightarrow {}^2b^0) \ eta = ({}^2a^0
ightarrow {}^1f^2
ightarrow {}^1e^2
ightarrow {}^2e^0
ightarrow {}^2f^0) \ \gamma = ({}^2d^0
ightarrow {}^2c^0
ightarrow {}^1d^2
ightarrow {}^1c^2
ightarrow {}^1b^2) \ \delta = ({}^0d^1) \ \epsilon = ({}^0f^1)$$

Automorphisms

A_0																				
A_1^{\ddagger}	b	а	е	f	С	д	6	3	2	1	7	8	0	4	5	α	γ	В	ϵ	δ

	$G_{9,5}^{(0)}$	$G_{9,5}^{(1)}$	$G_{9,5}^{(2)}$	$G_{9,5}^{(3)}$	$G_{9,5}^{(4)}$	$G_{9,5}^{(5)}$	$G_{9,5}^{(6)}$	$G_{9,5}^{(7)}$
α	o [°]	0						
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{9,5}^{(8)}$	$G_{9,5}^{(9)}$	$G_{9,5}^{(10)}$	$G_{9,5}^{(11)}$	$G_{9,5}^{(12)}$	$G_{9,5}^{(13)}$	$G_{9,5}^{(14)}$	$G_{9,5}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2
	$G_{9,5}^{(16)}$	$G_{9,5}^{(17)}$	$G_{9,5}^{(18)}$	$G_{9,5}^{(19)}$	$G_{9,5}^{(20)}$	$G_{9,5}^{(21)}$	$G_{9,5}^{(22)}$	$G_{9,5}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	3	3	4	4	4	4
δ	2	3	0	4	0	3	0	2
ϵ	3	2	4	0	3	0	2	0
	$G_{9,5}^{(24)}$	$G_{9,5}^{(25)}$	$G_{9,5}^{(26)}$	$G_{9,5}^{(27)}$	$G_{9,5}^{(28)}$	$G_{9,5}^{(29)}$	$G_{9,5}^{(30)}$	$G_{9,5}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	3	3
δ	3	4	1	4	1	3	0	4
ϵ	4	3	4	1	3	1	4	0
	$G_{9,5}^{(32)}$	$G_{9,5}^{(33)}$	$G_{9,5}^{(34)}$	$G_{9,5}^{(35)}$	$G_{9,5}^{(36)}$	$G_{9,5}^{(37)}$	$G_{9,5}^{(38)}$	$G_{9,5}^{(39)}$
α	2	2	2	2	3	3	3	3
β	1	1	3	3	0	0	0	0
γ	4	4	4	4	1	1	2	2
δ	0	3	0	1	2	4	1	4
ϵ	3	0	1	0	4	2	4	1
	$G_{9,5}^{(40)}$	$G_{9,5}^{(41)}$	$G_{9,5}^{(42)}$	$G_{9,5}^{(43)}$	$G_{9,5}^{(44)}$	$G_{9,5}^{(45)}$	$G_{9,5}^{(46)}$	$G_{9,5}^{(47)}$
α	3	3	3	3	3	3	3	3
β	0	0	1	1	1	1	2	2
γ	4	4	2	2	4	4	4	4
δ	1	2	0	4	0	2	0	1
ϵ	2	1	4	0	2	0	1	0
	$G_{9,5}^{(48)}$	$G_{9,5}^{(49)}$	$G_{9,5}^{(50)}$	$G_{9,5}^{(51)}$	$G_{9,5}^{(52)}$	$G_{9,5}^{(53)}$	$G_{9,5}^{(54)}$	$G_{9,5}^{(55)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	2	2

	(contin	nued.)						
δ	2	3	1	3	1	2	0	3
ϵ	3	2	3	1	2	1	3	0
	$G_{9,5}^{(56)}$	$G_{9,5}^{(57)}$	$G_{9,5}^{(58)}$	$G_{9,5}^{(59)}$				
α	4	4	4	4				
β	1	1	2	2				
γ	3	3	3	3				
δ	0	2	0	1				
ϵ	2	0	1	0				

$D(G_{9,5}^{(0)}) = -G_{8,0}^{(56)}$	$D(G_{9,5}^{(16)}) = -G_{8,0}^{(49)}$
$D(G_{9,5}^{(1)}) = -G_{8,0}^{(58)}$	$D(G_{9,5}^{(17)}) = +G_{8,0}^{(54)}$
$D(G_{9,5}^{(2)}) = +G_{8,0}^{(51)}$	$D(G_{9,5}^{(18)}) = -G_{8,0}^{(51)}$
$D(G_{9,5}^{(3)}) = +G_{8,0}^{(53)}$	$D(G_{9,5}^{(19)}) = -G_{8,0}^{(55)}$
$D(G_{9,5}^{(4)}) = -G_{8,0}^{(50)}$	$D(G_{9,5}^{(20)}) = +G_{8,0}^{(60)}$
$D(G_{9,5}^{(5)}) = +G_{8,0}^{(58)}$	$D(G_{9,5}^{(21)}) = +G_{8,0}^{(61)}$
$D(G_{9,5}^{(6)}) = -G_{8,0}^{(52)}$	$D(G_{9,5}^{(22)}) = +G_{8,0}^{(62)}$
$D(G_{9,5}^{(7)}) = -G_{8,0}^{(59)}$	$D(G_{9,5}^{(23)}) = +G_{8,0}^{(63)}$
$D(G_{9,5}^{(8)}) = +G_{8,0}^{(49)}$	$D(G_{9,5}^{(24)}) = +G_{8,0}^{(64)}$
$D(G_{9,5}^{(9)}) = +G_{8,0}^{(52)}$	$D(G_{9,5}^{(25)}) = +G_{8,0}^{(65)}$
$D(G_{9,5}^{(10)}) = -G_{8,0}^{(48)}$	$D(G_{9,5}^{(26)}) = +G_{8,0}^{(66)}$
$D(G_{9,5}^{(11)}) = +G_{8,0}^{(56)}$	$D(G_{9,5}^{(27)}) = +G_{8,0}^{(67)}$
$D(G_{9,5}^{(12)}) = -G_{8,0}^{(53)}$	$D(G_{9,5}^{(28)}) = +G_{8,0}^{(68)}$
$D(G_{9,5}^{(13)}) = -G_{8,0}^{(57)}$	$D(G_{9,5}^{(29)}) = +G_{8,0}^{(69)}$
$D(G_{9,5}^{(14)}) = +G_{8,0}^{(48)}$	$D(G_{9,5}^{(30)}) = +G_{8,0}^{(70)}$
$D(G_{9,5}^{(15)}) = +G_{8,0}^{(50)}$	$D(G_{9,5}^{(31)}) = +G_{8,0}^{(71)}$

The Fatgraph $G_{9,6}$ (120 orientable markings)


```
Fatgraph([
   Vertex([1, 2, 1]),# a
   Vertex([6, 3, 0]),# b
   Vertex([3, 0, 4]),# c
   Vertex([5, 5, 4]),# d
   Vertex([2, 6, 7]),# e
   Vertex([8, 8, 7]),# f
])
```

Boundary cycles

$$\begin{array}{l} \alpha = (^{0}e^{1} \rightarrow {}^{1}f^{2} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}a^{1} \rightarrow {}^{2}f^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{2}e^{0} \rightarrow {}^{0}c^{1} \rightarrow {}^{2}b^{0} \rightarrow {}^{1}e^{2}) \\ \beta = (^{2}a^{0}) \\ \gamma = (^{2}d^{0} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}d^{2} \rightarrow {}^{1}c^{2} \rightarrow {}^{1}b^{2}) \\ \delta = (^{0}d^{1}) \\ \epsilon = (^{0}f^{1}) \end{array}$$

Markings

Fatgraph $G_{9,6}$ only has the identity automorphism, so the marked fatgraphs $G_{9,6}^{(0)}$ to $G_{9,6}^{(120)}$ are formed by decorating boundary cycles of $G_{9,6}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,7}$ (60 orientable markings)


```
Fatgraph([
   Vertex([1, 2, 1]),# a
   Vertex([3, 0, 0]),# b
   Vertex([6, 3, 4]),# c
   Vertex([5, 5, 4]),# d
   Vertex([2, 6, 7]),# e
   Vertex([8, 8, 7]),# f
])
```

$$\begin{array}{l} \alpha = (^{0}e^{1} \rightarrow {}^{2}d^{0} \rightarrow {}^{1}f^{2} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}a^{2} \rightarrow {}^{0}a^{1} \rightarrow {}^{2}f^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}b^{0} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \beta = (^{2}a^{0}) \\ \gamma = (^{1}b^{2}) \\ \delta = (^{0}d^{1}) \\ \epsilon = (^{0}f^{1}) \end{array}$$

Automorphisms

A_0																l					
A_1^{\ddagger}	d	f	е	a	С	b	8	5	4	7	2	1	6	3	0	α	δ	ϵ	β	γ	

	$G_{9,7}^{(0)}$	$G_{9,7}^{(1)}$	$G_{9,7}^{(2)}$	$G_{9,7}^{(3)}$	$G_{9,7}^{(4)}$	$G_{9,7}^{(5)}$	$G_{9,7}^{(6)}$	$G_{9,7}^{(7)}$
α	0	0	o [°]	0				
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,7}^{(8)}$	$G_{9,7}^{(9)}$	$G_{9,7}^{(10)}$	$G_{9,7}^{(11)}$	$G_{9,7}^{(12)}$	$G_{9,7}^{(13)}$	$G_{9,7}^{(14)}$	$G_{9,7}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	3	4	1	2	2	2	3	3
δ	4	3	4	4	3	4	2	4
ϵ	1	1	2	1	4	3	4	2
	$G_{9,7}^{(16)}$	$G_{9,7}^{(17)}$	$G_{9,7}^{(18)}$	$G_{9,7}^{(19)}$	$G_{9,7}^{(20)}$	$G_{9,7}^{(21)}$	$G_{9,7}^{(22)}$	$G_{9,7}^{(23)}$
α	1	1	1	1	1	1	1	1
β	0	0	2	2	2	2	3	3
γ	4	4	0	0	3	4	0	2
δ	2	3	3	4	4	3	4	4
ϵ	3	2	4	3	0	0	2	0
	$G_{9,7}^{(24)}$	$G_{9,7}^{(25)}$	$G_{9,7}^{(26)}$	$G_{9,7}^{(27)}$	$G_{9,7}^{(28)}$	$G_{9,7}^{(29)}$	$G_{9,7}^{(30)}$	$G_{9,7}^{(31)}$
α	2	2	2	2	2	2	2	2
β	0	0	0	0	0	0	1	1
γ	1	1	3	3	4	4	0	0
δ	3	4	1	4	1	3	3	4
ϵ	4	3	4	1	3	1	4	3

	(continued.)												
	$G_{9,7}^{(32)}$	$G_{9,7}^{(33)}$	$G_{9,7}^{(34)}$	$G_{9,7}^{(35)}$	$G_{9,7}^{(36)}$	$G_{9,7}^{(37)}$	$G_{9,7}^{(38)}$	$G_{9,7}^{(39)}$					
α	2	2	2	2	3	3	3	3					
β	1	1	3	3	0	0	0	0					
γ	3	4	0	1	1	1	2	2					
δ	4	3	4	4	2	4	1	4					
ϵ	0	0	1	0	4	2	4	1					
	$G_{9,7}^{(40)}$	$G_{9,7}^{(41)}$	$G_{9,7}^{(42)}$	$G_{9,7}^{(43)}$	$G_{9,7}^{(44)}$	$G_{9,7}^{(45)}$	$G_{9,7}^{(46)}$	$G_{9,7}^{(47)}$					
α	3	3	3	3	3	3	3	3					
β	0	0	1	1	1	1	2	2					
γ	4	4	0	0	2	4	0	1					
δ	1	2	2	4	4	2	4	4					
ϵ	2	1	4	2	0	0	1	0					
	$G_{9,7}^{(48)}$	$G_{9,7}^{(49)}$	$G_{9,7}^{(50)}$	$G_{9,7}^{(51)}$	$G_{9,7}^{(52)}$	$G_{9,7}^{(53)}$	$G_{9,7}^{(54)}$	$G_{9,7}^{(55)}$					
α	4	4	4	4	4	4	4	4					
β	0	0	0	0	0	0	1	1					
γ	1	1	2	2	3	3	0	0					
δ	2	3	1	3	1	2	2	3					
ϵ	3	2	3	1	2	1	3	2					
	$G_{9,7}^{(56)}$	$G_{9,7}^{(57)}$	$G_{9,7}^{(58)}$	$G_{9,7}^{(59)}$									
α	4	4	4	4									
β	1	1	2	2									
γ	2	3	0	1									
δ	3	2	3	3									
ϵ	0	0	1	0									

The Fatgraph $G_{9,8}$ (120 orientable markings)


```
Fatgraph([
    Vertex([1, 0, 2]),# a
    Vertex([2, 3, 1]),# b
    Vertex([6, 3, 4]),# c
    Vertex([5, 5, 4]),# d
    Vertex([0, 6, 7]),# e
    Vertex([8, 8, 7]),# f
])
```

Boundary cycles

$$\begin{array}{l} \alpha = ({}^{0}e^{1} \rightarrow {}^{0}a^{1} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ \beta = ({}^{2}d^{0} \rightarrow {}^{1}f^{2} \rightarrow {}^{1}a^{2} \rightarrow {}^{2}f^{0} \rightarrow {}^{2}c^{0} \rightarrow {}^{2}e^{0} \rightarrow {}^{1}c^{2} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}e^{2} \rightarrow {}^{1}d^{2}) \\ \gamma = ({}^{2}a^{0} \rightarrow {}^{2}b^{0}) \\ \delta = ({}^{0}d^{1}) \\ \epsilon = ({}^{0}f^{1}) \end{array}$$

Markings

Fatgraph $G_{9,8}$ only has the identity automorphism, so the marked fatgraphs $G_{9,8}^{(0)}$ to $G_{9,8}^{(120)}$ are formed by decorating boundary cycles of $G_{9,8}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,9}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^1f^2 o {}^0a^1 o {}^2f^0 o {}^1b^2 o {}^2e^0 o {}^0c^1 o {}^1e^2) \ eta = ({}^2d^0 o {}^0e^1 o {}^1a^2 o {}^2c^0 o {}^1c^2 o {}^0b^1 o {}^1d^2) \ \gamma = ({}^2a^0 o {}^2b^0) \ \delta = ({}^0d^1) \ \epsilon = ({}^0f^1)$$

A_0																				
A_1^{\ddagger}	b	a	е	f	С	d	3	2	1	0	7	8	6	4	5	β	α	γ	ϵ	δ

	$G_{9,9}^{(0)}$	$G_{9,9}^{(1)}$	$G_{9,9}^{(2)}$	$G_{9,9}^{(3)}$	$G_{9,9}^{(4)}$	$G_{9,9}^{(5)}$	$G_{9,9}^{(6)}$	$G_{9,9}^{(7)}$
α	0	0	o [°]	0				
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,9}^{(8)}$	$G_{9,9}^{(9)}$	$G_{9,9}^{(10)}$	$G_{9,9}^{(11)}$	$G_{9,9}^{(12)}$	$G_{9,9}^{(13)}$	$G_{9,9}^{(14)}$	$G_{9,9}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{9,9}^{(16)}$	$G_{9,9}^{(17)}$	$G_{9,9}^{(18)}$	$G_{9,9}^{(19)}$	$G_{9,9}^{(20)}$	$G_{9,9}^{(21)}$	$G_{9,9}^{(22)}$	$G_{9,9}^{(23)}$
α	0	0	0	Ó	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{9,9}^{(24)}$	$G_{9,9}^{(25)}$	$G_{9,9}^{(26)}$	$G_{9,9}^{(27)}$	$G_{9,9}^{(28)}$	$G_{9,9}^{(29)}$	$G_{9,9}^{(30)}$	$G_{9,9}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{9,9}^{(32)}$	$G_{9,9}^{(33)}$	$G_{9,9}^{(34)}$	$G_{9,9}^{(35)}$	$G_{9,9}^{(36)}$	$G_{9,9}^{(37)}$	$G_{9,9}^{(38)}$	$G_{9,9}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{9,9}^{(40)}$	$G_{9,9}^{(41)}$	$G_{9,9}^{(42)}$	$G_{9,9}^{(43)}$	$G_{9,9}^{(44)}$	$G_{9,9}^{(45)}$	$G_{9,9}^{(46)}$	$G_{9,9}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{9,9}^{(48)}$	$G_{9,9}^{(49)}$	$G_{9,9}^{(50)}$	$G_{9,9}^{(51)}$	$G_{9,9}^{(52)}$	$G_{9,9}^{(53)}$	$G_{9,9}^{(54)}$	$G_{9,9}^{(55)}$
α	2	2	2	2	2	2	3	3
β	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0

	(contin	rued.)						
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{9,9}^{(56)}$	$G_{9,9}^{(57)}$	$G_{9,9}^{(58)}$	$G_{9,9}^{(59)}$				'
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{9,10}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^1f^2 o {}^0a^1 o {}^2f^0 o {}^1b^2 o {}^2e^0 o {}^0c^1 o {}^1e^2) \ eta = ({}^2d^0 o {}^1a^2 o {}^2c^0 o {}^1c^2 o {}^0b^1 o {}^1d^2) \ \gamma = ({}^0e^1 o {}^2a^0 o {}^2b^0) \ \delta = ({}^0d^1) \ \epsilon = ({}^0f^1)$$

Markings

Fatgraph $G_{9,10}$ only has the identity automorphism, so the marked fatgraphs $G_{9,10}^{(0)}$ to $G_{9,10}^{(120)}$ are formed by decorating boundary cycles of $G_{9,10}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,11}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^0e^1
ightarrow {}^0a^1
ightarrow {}^0c^1
ightarrow {}^1b^2) \ eta = ({}^2d^0
ightarrow {}^1a^2
ightarrow {}^2c^0
ightarrow {}^1c^2
ightarrow {}^0b^1
ightarrow {}^1d^2) \ \gamma = ({}^2a^0
ightarrow {}^1f^2
ightarrow {}^2f^0
ightarrow {}^2e^0
ightarrow {}^2b^0
ightarrow {}^1e^2) \ \delta = ({}^0d^1) \ \epsilon = ({}^0f^1)$$

Automorphisms

A_0																				
A_1 ‡	b	a	е	f	С	d	6	3	2	1	7	8	0	4	5	α	γ	β	ϵ	δ

	$G_{9,11}^{(0)}$	$G_{9,11}^{(1)}$	$G_{9,11}^{(2)}$	$G_{9,11}^{(3)}$	$G_{9,11}^{(4)}$	$G_{9,11}^{(5)}$	$G_{9,11}^{(6)}$	$G_{9,11}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{9,11}^{(8)}$	$G_{9,11}^{(9)}$	$G_{9,11}^{(10)}$	$G_{9,11}^{(11)}$	$G_{9,11}^{(12)}$	$G_{9,11}^{(13)}$	$G_{9,11}^{(14)}$	$G_{9,11}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	0	0	0	0
γ	4	4	4	4	2	2	3	3
δ	1	3	1	2	3	4	2	4
ϵ	3	1	2	1	4	3	4	2

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(contin							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9.11}^{(16)}$	$G_{9.11}^{(17)}$	$G_{9.11}^{(18)}$	$G_{9.11}^{(19)}$	$G_{9.11}^{(20)}$	$G_{9.11}^{(21)}$	$G_{9.11}^{(22)}$	$G_{9.11}^{(23)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1	1			1	1		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	2	2	2	2	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	3	3	4	4	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	2	3	0	4	0	3	0	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9.11}^{(24)}$	$G_{9.11}^{(25)}$	$G_{9.11}^{(26)}$	$G_{9.11}^{(27)}$	$G_{9.11}^{(28)}$	$G_{9.11}^{(29)}$	$G_{9.11}^{(30)}$	$G_{9.11}^{(31)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	2		2	2	2		2	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	0	0	0	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	1	1	3	3	4	4	3	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	δ	3	4	1	4	1	3	0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,11}^{(32)}$	$G_{9,11}^{(33)}$	$G_{9,11}^{(34)}$	$G_{9,11}^{(35)}$	$G_{9,11}^{(36)}$	$G_{9,11}^{(37)}$	$G_{9,11}^{(38)}$	$G_{9,11}^{(39)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	2	2	2	2	3	3	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	1	1	3	3	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	4	4	1	1	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ		3	0	1	2			4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,11}^{(40)}$	$G_{9,11}^{(41)}$	$G_{9,11}^{(42)}$	$G_{9,11}$	$G_{9,11}^{(44)}$	$G_{9,11}$	$G_{9,11}^{(46)}$	$G_{9,11}^{(47)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	3	3	3	3	3	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β		0			1	1	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	2		4		4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,11}^{(48)}$	$G_{9,11}^{(49)}$	$G_{9,11}^{(50)}$	$G_{9,11}^{(51)}$	$G_{9,11}^{(52)}$	$G_{9,11}^{(53)}$	$G_{9,11}^{(54)}$	$G_{9,11}^{(55)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4			4		4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3		2	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	δ								
$egin{array}{c c c c c c c c c c c c c c c c c c c $	ϵ				1	2	1	3	0
$egin{array}{c c c c c c c c c c c c c c c c c c c $		$G_{9,11}^{(56)}$	$G_{9,11}^{(57)}$	$G_{9,11}^{(58)}$	$G_{9,11}^{(59)}$				
$egin{array}{c c c c c c c c c c c c c c c c c c c $		4	4	4	4				
δ 0 2 0 1	β	l							
ϵ 2 0 1 0	δ								
	ϵ	2	0	1	0				

The Fatgraph $G_{9,12}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1} o {}^{0}c^{1} o {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0} o {}^{1}f^{2} o {}^{1}a^{2} o {}^{2}f^{0} o {}^{0}b^{1} o {}^{2}e^{0} o {}^{1}c^{2} o {}^{2}c^{0} o {}^{1}e^{2} o {}^{1}d^{2})$
 $\gamma = ({}^{0}e^{1} o {}^{2}a^{0} o {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{0}f^{1})$

Automorphisms

A_0																				
A_1^{\ddagger}	b	a	е	f	С	d	6	1	3	2	7	8	0	4	5	γ	β	α	ϵ	δ

	$G_{9,12}^{(0)}$	$G_{9,12}^{(1)}$	$G_{9,12}^{(2)}$	$G_{9,12}^{(3)}$	$G_{9,12}^{(4)}$	$G_{9,12}^{(5)}$	$G_{9,12}^{(6)}$	$G_{9,12}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,12}^{(8)}$	$G_{9,12}^{(9)}$	$G_{9,12}^{(10)}$	$G_{9,12}^{(11)}$	$G_{9,12}^{(12)}$	$G_{9,12}^{(13)}$	$G_{9,12}^{(14)}$	$G_{9,12}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin							
	$G_{9,12}^{(16)}$	$G_{9,12}^{(17)}$	$G_{9,12}^{(18)}$	$G_{9,12}^{(19)}$	$G_{9,12}^{(20)}$	$G_{9,12}^{(21)}$	$G_{9,12}^{(22)}$	$G_{9,12}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{9,12}^{(24)}$	$G_{9,12}^{(25)}$	$G_{9,12}^{(26)}$	$G_{9,12}^{(27)}$	$G_{9,12}^{(28)}$	$G_{9,12}^{(29)}$	$G_{9,12}^{(30)}$	$G_{9,12}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	3	3
δ	3	4	2	4	2	3	0	4
ϵ	4	3	4	2	3	2	4	0
	$G_{9,12}^{(32)}$	$G_{9,12}^{(33)}$	$G_{9,12}^{(34)}$	$G_{9,12}^{(35)}$	$G_{9,12}^{(36)}$	$G_{9,12}^{(37)}$	$G_{9,12}^{(38)}$	$G_{9,12}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	4	4	2	2	4	4	2	2
δ	0	3	0	4	0	2	0	3
ϵ	3	0	4	0	2	0	3	0
	$G_{9,12}^{(40)}$	$G_{9,12}^{(41)}$	$G_{9,12}^{(42)}$	$G_{9,12}^{(43)}$	$G_{9,12}^{(44)}$	$G_{9,12}^{(45)}$	$G_{9,12}^{(46)}$	$G_{9,12}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	3	3	3	3	4	4	3	3
δ	0	2	1	4	1	3	0	4
ϵ	2	0	4	1	3	1	4	0
	$G_{9,12}^{(48)}$	$G_{9,12}^{(49)}$	$G_{9,12}^{(50)}$	$G_{9,12}^{(51)}$	$G_{9,12}^{(52)}$	$G_{9,12}^{(53)}$	$G_{9,12}^{(54)}$	$G_{9,12}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	4	4	4	4	3	3	4	4
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{9,12}^{(56)}$	$G_{9,12}^{(57)}$	$G_{9,12}^{(58)}$	$G_{9,12}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{9,13}$ (60 orientable markings)

Boundary cycles

$$\begin{split} \alpha &= ({}^1f^2 \to {}^0a^1 \to {}^2f^0 \to {}^1b^2 \to {}^2e^0 \to {}^0c^1 \to {}^1e^2) \\ \beta &= ({}^0e^1 \to {}^2d^0 \to {}^1a^2 \to {}^0b^1 \to {}^1c^2 \to {}^2c^0 \to {}^1d^2) \\ \gamma &= ({}^2a^0 \to {}^2b^0) \\ \delta &= ({}^0d^1) \\ \epsilon &= ({}^0f^1) \end{split}$$

Automorphisms

A_0																				
A_1^{\ddagger}	b	a	е	f	С	d	3	2	1	0	7	8	6	4	5	β	α	γ	ϵ	δ

	$G_{9,13}^{(0)}$	$G_{9,13}^{(1)}$	$G_{9,13}^{(2)}$	$G_{9,13}^{(3)}$	$G_{9,13}^{(4)}$	$G_{9,13}^{(5)}$	$G_{9,13}^{(6)}$	$G_{9,13}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,13}^{(8)}$	$G_{9,13}^{(9)}$	$G_{9,13}^{(10)}$	$G_{9,13}^{(11)}$	$G_{9,13}^{(12)}$	$G_{9,13}^{(13)}$	$G_{9,13}^{(14)}$	$G_{9,13}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1

	(contin							
	$G_{9,13}^{(16)}$	$G_{9,13}^{(17)}$	$G_{9,13}^{(18)}$	$G_{9,13}^{(19)}$	$G_{9,13}^{(20)}$	$G_{9,13}^{(21)}$	$G_{9,13}^{(22)}$	$G_{9,13}^{(23)}$
α	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{9,13}^{(24)}$	$G_{9,13}^{(25)}$	$G_{9,13}^{(26)}$	$G_{9,13}^{(27)}$	$G_{9,13}^{(28)}$	$G_{9,13}^{(29)}$	$G_{9,13}^{(30)}$	$G_{9,13}^{(31)}$
α	1	1	1	1	1	1	1	1
β	2	2	2	2	2	2	3	3
γ	0	0	3	3	4	4	0	0
δ	3	4	0	4	0	3	2	4
ϵ	4	3	4	0	3	0	4	2
	$G_{9,13}^{(32)}$	$G_{9,13}^{(33)}$	$G_{9,13}^{(34)}$	$G_{9,13}^{(35)}$	$G_{9,13}^{(36)}$	$G_{9,13}^{(37)}$	$G_{9,13}^{(38)}$	$G_{9,13}^{(39)}$
α	1	1	1	1	1	1	1	1
β	3	3	3	3	4	4	4	4
γ	2	2	4	4	0	0	2	2
δ	0	4	0	2	2	3	0	3
ϵ	4	0	2	0	3	2	3	0
	$G_{9,13}^{(40)}$	$G_{9,13}^{(41)}$	$G_{9,13}^{(42)}$	$G_{9,13}^{(43)}$	$G_{9,13}^{(44)}$	$G_{9,13}^{(45)}$	$G_{9,13}^{(46)}$	$G_{9,13}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	3	3	3	3	3	3
γ	3	3	0	0	1	1	4	4
δ	0	2	1	4	0	4	0	1
ϵ	2	0	4	1	4	0	1	0
	$G_{9,13}^{(48)}$	$G_{9,13}^{(49)}$	$G_{9,13}^{(50)}$	$G_{9,13}^{(51)}$	$G_{9,13}^{(52)}$	$G_{9,13}^{(53)}$	$G_{9,13}^{(54)}$	$G_{9,13}^{(55)}$
α	2	2	2	2	2	2	3	3
$oldsymbol{eta}$	4	4	4	4	4	4	4	4
γ	0	0	1	1	3	3	0	0
δ	1	3	0	3	0	1	1	2
ϵ	3	1	3	0	1	0	2	1
	$G_{9,13}^{(56)}$	$G_{9,13}^{(57)}$	$G_{9,13}^{(58)}$	$G_{9,13}^{(59)}$				
α	3	3	3	3				
β	4	4	4	4				
γ	1	1	2	2				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{9,14}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{0}e^{1}
ightarrow {}^{2}d^{0}
ightarrow {}^{1}f^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{0}d^{1})$
 $\epsilon = ({}^{0}f^{1})$

Markings

Fatgraph $G_{9,14}$ only has the identity automorphism, so the marked fatgraphs $G_{9,14}^{(0)}$ to $G_{9,14}^{(120)}$ are formed by decorating boundary cycles of $G_{9,14}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,15}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{2}d^{0}
ightarrow {}^{1}f^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{0}e^{1}
ightarrow {}^{0}d^{1})$
 $\epsilon = ({}^{0}f^{1})$

Markings

Fatgraph $G_{9,15}$ only has the identity automorphism, so the marked fatgraphs $G_{9,15}^{(0)}$ to $G_{9,15}^{(120)}$ are formed by decorating boundary cycles of $G_{9,15}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,16}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{0}e^{1}
ightarrow {}^{1}a^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{0}d^{1}
ightarrow {}^{1}f^{2}
ightarrow {}^{1}e^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{2}f^{0}) \ \epsilon = ({}^{0}f^{1})$$

Markings

Fatgraph $G_{9,16}$ only has the identity automorphism, so the marked fatgraphs $G_{9,16}^{(0)}$ to $G_{9,16}^{(120)}$ are formed by decorating boundary cycles of $G_{9,16}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,17}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0a^1 o {}^1c^2 o {}^0b^1)$$
 $eta = ({}^1f^2 o {}^1a^2 o {}^2f^0 o {}^2c^0 o {}^2e^0 o {}^2b^0 o {}^1e^2 o {}^1d^2)$
 $\gamma = ({}^2a^0 o {}^0d^1)$
 $\delta = ({}^0e^1 o {}^0c^1 o {}^1b^2)$
 $\epsilon = ({}^0f^1)$

Markings

Fatgraph $G_{9,17}$ only has the identity automorphism, so the marked fatgraphs $G_{9,17}^{(0)}$ to $G_{9,17}^{(120)}$ are formed by decorating boundary cycles of $G_{9,17}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,18}$ (120 orientable markings)


```
Fatgraph([
   Vertex([5, 2, 1]),# a
   Vertex([2, 4, 0]),# b
   Vertex([6, 4, 3]),# c
   Vertex([5, 1, 3]),# d
   Vertex([6, 0, 7]),# e
   Vertex([8, 8, 7]),# f
])
```

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1)$$
 $eta = ({}^1a^2
ightarrow {}^0e^1
ightarrow {}^2b^0
ightarrow {}^1d^2
ightarrow {}^2c^0)$
 $\gamma = ({}^2a^0
ightarrow {}^0d^1)$
 $\delta = ({}^1f^2
ightarrow {}^2f^0
ightarrow {}^1b^2
ightarrow {}^2e^0
ightarrow {}^0c^1
ightarrow {}^1e^2)$
 $\epsilon = ({}^0f^1)$

Markings

Fatgraph $G_{9,18}$ only has the identity automorphism, so the marked fatgraphs $G_{9,18}^{(0)}$ to $G_{9,18}^{(120)}$ are formed by decorating boundary cycles of $G_{9,18}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,19}$ (120 orientable markings)


```
Fatgraph([
    Vertex([5, 2, 1]),# a
    Vertex([6, 4, 0]),# b
    Vertex([0, 4, 3]),# c
    Vertex([5, 1, 3]),# d
    Vertex([2, 6, 7]),# e
    Vertex([8, 8, 7]),# f
])
```

Boundary cycles

$$lpha = ({}^{0}e^{1}
ightarrow {}^{2}d^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{1}f^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{2}c^{0}
ightarrow {}^{2}e^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{0}d^{1})$
 $\delta = ({}^{0}c^{1}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}f^{1})$

Markings

Fatgraph $G_{9,19}$ only has the identity automorphism, so the marked fatgraphs $G_{9,19}^{(0)}$ to $G_{9,19}^{(120)}$ are formed by decorating boundary cycles of $G_{9,19}$ with all permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,20}$ (120 orientable markings)

Boundary cycles

$$lpha = ({}^{0}e^{1}
ightarrow {}^{2}d^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{1}c^{2})$$
 $eta = ({}^{1}f^{2}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{2}e^{0}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}e^{2})$
 $\gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}d^{1})$
 $\delta = ({}^{2}c^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}b^{2})$
 $\epsilon = ({}^{0}f^{1})$

Markings

Fatgraph $G_{9,20}$ only has the identity automorphism, so the marked fatgraphs $G_{9,20}^{(0)}$ to $G_{9,20}^{(120)}$ are formed by decorating boundary cycles of $G_{9,20}$ with all

permutations of (0,1,2,3,4) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{9,21}$ (20 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1f^2 o {}^0a^1 o {}^0b^1 o {}^2e^0 o {}^1c^2)$$
 $eta = ({}^1a^2 o {}^2f^0 o {}^2c^0 o {}^2b^0 o {}^1e^2 o {}^1d^2)$
 $\gamma = ({}^0e^1 o {}^2a^0)$
 $\delta = ({}^0c^1 o {}^1b^2)$
 $\epsilon = ({}^0d^1 o {}^0f^1)$

Automorphisms

A_0	a	b	С	d	е	f	0	1	2	3	4	5	6	7	8	α	β	γ	δ	ϵ
A_1 [‡]	b	a	е	f	С	d	7	3	2	1	6	8	4	0	5	β	α	δ	γ	ϵ
A_2^{\ddagger}	С	d	f	е	b	a	5	0	4	8	6	1	2	3	7	α	β	δ	ϵ	γ
A_3 [‡]	d	С	b	a	f	е	3	8	4	0	2	7	6	5	1	β	α	ϵ	δ	γ
A_4 [‡]	е	f	d	С	a	b	8	7	6	5	4	3	2	1	0	β	α	γ	ϵ	δ
A_5^{\ddagger}	f	е	a	b	d	С	1	5	6	7	2	0	4	8	3	α	β	ϵ	γ	δ

	$G_{9,21}^{(0)}$	$G_{9,21}^{(1)}$	$G_{9,21}^{(2)}$	$G_{9,21}^{(3)}$	$G_{9,21}^{(4)}$	$G_{9,21}^{(5)}$	$G_{9,21}^{(6)}$	$G_{9,21}^{(7)}$
α	_	0	0	0	0	0	0	0
β	1	1	2	2	3	3	4	4

	(contin	nued.)						
γ	2	2	1	1	1	1	1	1
δ	3	4	3	4	2	4	2	3
ϵ	4	3	4	3	4	2	3	2
	$G_{9,21}^{(8)}$	$G_{9,21}^{(9)}$	$G_{9,21}^{(10)}$	$G_{9,21}^{(11)}$	$G_{9,21}^{(12)}$	$G_{9,21}^{(13)}$	$G_{9,21}^{(14)}$	$G_{9,21}^{(15)}$
α	1	1	1	1	1	1	2	2
β	2	2	3	3	4	4	3	3
γ	0	0	0	0	0	0	0	0
δ	3	4	2	4	2	3	1	4
ϵ	4	3	4	2	3	2	4	1
	$G_{9,21}^{(16)}$	$G_{9,21}^{(17)}$	$G_{9,21}^{(18)}$	$G_{9,21}^{(19)}$!	!	
α	2	2	3	3				
β	4	4	4	4				
γ	0	0	0	0				
δ	1	3	1	2				
ϵ	3	1	2	1				

The Fatgraph $G_{9,22}$ (60 orientable markings)

Boundary cycles

$$\begin{split} &\alpha = ({}^{0}a^{1} \rightarrow {}^{0}c^{1} \rightarrow {}^{1}b^{2}) \\ &\beta = ({}^{2}d^{0} \rightarrow {}^{0}f^{1} \rightarrow {}^{1}a^{2} \rightarrow {}^{2}f^{0} \rightarrow {}^{0}b^{1} \rightarrow {}^{1}c^{2} \rightarrow {}^{2}c^{0} \rightarrow {}^{1}e^{2}) \\ &\gamma = ({}^{2}a^{0} \rightarrow {}^{2}b^{0}) \\ &\delta = ({}^{0}e^{1} \rightarrow {}^{0}d^{1}) \\ &\epsilon = ({}^{1}f^{2} \rightarrow {}^{1}d^{2} \rightarrow {}^{2}e^{0}) \end{split}$$

A_0	1															l				
A_1^{\ddagger}	d	е	f	a	b	С	8	5	7	6	4	1	3	2	0	ϵ	β	δ	γ	α

	$G_{9,22}^{(0)}$	$G_{9,22}^{(1)}$	$G_{9,22}^{(2)}$	$G_{9,22}^{(3)}$	$G_{9,22}^{(4)}$	$G_{9,22}^{(5)}$	$G_{9,22}^{(6)}$	$G_{9,22}^{(7)}$
α	0	G _{9,22}	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	1	3
	$G_{9,22}^{(8)}$	$G_{9,22}^{(9)}$	$G_{9,22}^{(10)}$	$G_{9,22}^{(11)}$	$G_{9,22}^{(12)}$	$G_{9,22}^{(13)}$	$G_{9,22}^{(14)}$	$G_{9,22}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{9,22}^{(16)}$	$G_{9,22}^{(17)}$	$G_{9,22}^{(18)}$	$G_{9,22}^{(19)}$	$G_{9,22}^{(20)}$	$G_{9,22}^{(21)}$	$G_{9,22}^{(22)}$	$G_{9,22}^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{9,22}^{(24)}$	$G_{9,22}^{(25)}$	$G_{9,22}^{(26)}$	$G_{9,22}^{(27)}$	$G_{9,22}^{(28)}$	$G_{9,22}^{(29)}$	$G_{9,22}^{(30)}$	$G_{9,22}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,22}^{(32)}$	$G_{9,22}^{(33)}$	$G_{9,22}^{(34)}$	$G_{9,22}^{(35)}$	$G_{9,22}^{(36)}$	$G_{9,22}^{(37)}$	$G_{9,22}^{(38)}$	$G_{9,22}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	0	0	2	4	0	0	2	3
ϵ	4	3	4	2	4	2	3	2
	$G_{9,22}^{(40)}$	$G_{9,22}^{(41)}$	$G_{9,22}^{(42)}$	$G_{9,22}^{(43)}$	$G_{9,22}^{(44)}$	$G_{9,22}^{(45)}$	$G_{9,22}^{(46)}$	$G_{9,22}^{(47)}$
α	1	1	2	2	2	2	2	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	0	0	3	4	1	1	3	4
ϵ	3	2	4	3	4	3	4	3

	(contin	nued.)						
	$G_{9,22}^{(48)}$	$G_{9,22}^{(49)}$	$G_{9,22}^{(50)}$	$G_{9,22}^{(51)}$	$G_{9,22}^{(52)}$	$G_{9,22}^{(53)}$	$G_{9,22}^{(54)}$	$G_{9,22}^{(55)}$
α	2	2	2	2	2	2	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	0	0	1	0	1	0	2	1
ϵ	4	3	4	4	3	3	4	4
	$G_{9,22}^{(56)}$	$G_{9,22}^{(57)}$	$G_{9,22}^{(58)}$	$G_{9,22}^{(59)}$				
α	3	3	3	3				
β	1	1	2	2				
γ	0	2	0	1				
δ	2	0	1	0				
ϵ	4	4	4	4				

The Fatgraph $G_{9,23}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{1}e^{2}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{2}c^{0})$
 $\gamma = ({}^{0}e^{1}
ightarrow {}^{2}a^{0}
ightarrow {}^{2}b^{0})$
 $\delta = ({}^{2}d^{0}
ightarrow {}^{1}f^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1})$
 $\epsilon = ({}^{0}d^{1}
ightarrow {}^{0}f^{1})$

A_0																				
A_1^{\ddagger}	b	a	е	f	С	d	7	1	3	2	6	8	4	0	5	γ	δ	α	β	ϵ

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~(0)	~(1)	~(2)	$G_{9,23}^{(3)}$	~(4)	~(5)	~(6)	~(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,23}^{(0)}$	$G_{9,23}^{(1)}$	$G_{9,23}^{(2)}$		$G_{9,23}^{(4)}$	$G_{9,23}^{(5)}$	$G_{9,23}^{(6)}$	$G_{9,23}^{(7)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			-	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ	4		4	2			4	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,23}^{(\circ)}$	$G_{9,23}^{(9)}$	$G_{9,23}^{(10)}$	$G_{9,23}^{(11)}$	$G_{9,23}^{(12)}$	$G_{9,23}^{(13)}$	$G_{9,23}^{(14)}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β				2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		4			1	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	1	4		3	2	4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,23}^{(16)}$	$G_{9,23}^{(17)}$	$G_{9,23}^{(18)}$		$G_{9,23}^{(20)}$	$G_{9,23}^{(21)}$	$G_{9,23}^{(22)}$	$G_{9,23}^{(23)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α		Ó						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	3	3	4	4	4	4	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	1	1	2	2	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	1	2	2	3	1	3	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ		1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9.23}^{(24)}$	$G_{9.23}^{(25)}$	$G_{9.23}^{(26)}$		$G_{9.23}^{(28)}$	$G_{9.23}^{(29)}$	$G_{9.23}^{(30)}$	$G_{9.23}^{(31)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	1				1	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0	0	0	0	0	0	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	2	2	3	3	4	4	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	3	4	2	4	2	3	0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9.23}^{(32)}$	$G_{9.23}^{(33)}$	$G_{9.23}^{(34)}$	$G_{9.23}^{(35)}$	$G_{9.23}^{(36)}$	$G_{9,23}^{(37)}$	$G_{9.23}^{(38)}$	$G_{9,23}^{(39)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α							1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	2	2	3	3	3	3	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	4	4	2	2	4	4	2	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	0	3	0	4	0	2	0	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ	3	0		0				0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G_{9,23}^{(40)}$	$G_{9,23}^{(41)}$	$G_{9,23}^{(42)}$	$G_{9,23}^{(43)}$	$G_{9,23}^{(44)}$	$G_{9,23}^{(45)}$	$G_{9,23}^{(46)}$	$G_{9,23}^{(47)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α					2	2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	4	4	0	0	0	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	3	3	3	3	4	4	3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2	1	4	1	3	0	4
$\alpha \mid 2 \mid 2 \mid 2 \mid 2 \mid 2 \mid 2 \mid 3 \mid 3$	ϵ		0	4	1	3	1	4	0
$\alpha \mid 2 \mid 2 \mid 2 \mid 2 \mid 2 \mid 2 \mid 3 \mid 3$		$G_{9,23}^{(48)}$	$G_{9,23}^{(49)}$	$G_{9,23}^{(50)}$	$G_{9,23}^{(51)}$	$G_{9,23}^{(52)}$	$G_{9,23}^{(53)}$	$G_{9,23}^{(54)}$	$G_{9,23}^{(55)}$
	α	2	2	2	2	2	2	3	3
	β	1	1	3	3	4	4	0	0
γ 4 4 4 4 3 3 4 4		4	4	4	4	3	3	4	4

	(contin	nued.)						
δ	0	3	0	1	0	1	1	2
ϵ	3	0	1	0	1	0	2	1
	$G_{9,23}^{(56)}$	$G_{9,23}^{(57)}$	$G_{9,23}^{(58)}$	$G_{9,23}^{(59)}$!		'
α	3	3	3	3				
β	1	1	2	2				
γ	4	4	4	4				
δ	0	2	0	1				
ϵ	2	0	1	0				

The Fatgraph $G_{9,24}$ (60 orientable markings)

Boundary cycles

$$lpha = ({}^{0}f^{1}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}f^{0}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}e^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{1}f^{2}
ightarrow {}^{2}e^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{2}c^{0}) \ \epsilon = ({}^{0}e^{1}
ightarrow {}^{0}d^{1})$$

A_0																					
A_1^{\ddagger}	d	е	f	a	b	C	4	5	7	6	0	1	3	2	8	δ	β	ϵ	α	γ	

	$\alpha^{(0)}$	$\alpha^{(1)}$	$\alpha^{(2)}$	$\alpha^{(3)}$	$\alpha^{(4)}$	$\alpha^{(5)}$	$\alpha^{(6)}$	$\alpha^{(7)}$
	$G_{9,24}^{(0)}$	$G_{9,24}^{(1)}$	$G_{9,24}^{(2)}$	$G_{9,24}^{(3)}$	$G_{9,24}^{(4)}$	$G_{9,24}^{(5)}$	$G_{9,24}^{(6)}$	$G_{9,24}^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,24}^{(8)}$	$G_{9,24}^{(9)}$	$G_{9,24}^{(10)}$	$G_{9,24}^{(11)}$	$G_{9,24}^{(12)}$	$G_{9,24}^{(13)}$	$G_{9,24}^{(14)}$	$G_{9,24}^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G_{9,24}^{(16)}$	$G_{9,24}^{(17)}$	$G_{9,24}^{(18)}$	$G_{9,24}^{(19)}$	$G_{9,24}^{(20)}$	$G_{9,24}^{(21)}$	$G_{9,24}^{(22)}$	$G_{9,24}^{(23)}$
α	Ó	Ő	Ő	Ó	Ő	Ó	Ó	Ó
β	3	3	4	4	4	4	4	4
γ	4	4	1	1	2	2	3	3
δ	1	2	2	3	1	3	1	2
ϵ	2	1	3	2	3	1	2	1
	$G_{9,24}^{(24)}$	$G_{9,24}^{(25)}$	$G_{9,24}^{(26)}$	$G_{9,24}^{(27)}$	$G_{9,24}^{(28)}$	$G_{9,24}^{(29)}$	$G_{9,24}^{(30)}$	$G_{9,24}^{(31)}$
α	1	1	1	1	1	1	1	1
β	0	0	0	0	0	0	2	2
γ	2	2	3	3	4	4	0	0
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,24}^{(32)}$	$G_{9,24}^{(33)}$	$G_{9,24}^{(34)}$	$G_{9,24}^{(35)}$	$G_{9,24}^{(36)}$	$G_{9,24}^{(37)}$	$G_{9,24}^{(38)}$	$G_{9,24}^{(39)}$
α	1	1	1	1	1	1	1	1
β	2	2	3	3	3	3	4	4
γ	3	4	0	0	2	4	0	0
δ	4	3	2	4	4	2	2	3
ϵ	0	0	4	2	0	0	3	2
	$G_{9,24}^{(40)}$	$G_{9,24}^{(41)}$	$G_{9,24}^{(42)}$	$G_{9,24}^{(43)}$	$G_{9,24}^{(44)}$	$G_{9,24}^{(45)}$	$G_{9,24}^{(46)}$	$G_{9,24}^{(47)}$
α	$\frac{-9,24}{1}$	$G_{9,24}$	$G_{9,24}$	2	2	2	$G_{9,24}$	2
β	4	4	0	0	0	0	1	1
γ	2	3	1	1	3	4	0	0
δ	3	2	3	4	4	3	3	4
ϵ	0	0	4	3	1	1	1	3
·	$G_{9,24}^{(48)}$	$G_{9,24}^{(49)}$	(50)	$G_{9,24}^{(51)}$	$G_{9,24}^{(52)}$	$G_{9,24}^{(53)}$	$G_{9,24}^{(54)}$	$G_{9,24}^{(55)}$
α	$\frac{G_{9,24}}{2}$	$\frac{G_{9,24}}{2}$	$G_{9,24}^{(66)}$	$^{O_{9,24}}$	$\frac{G_{9,24}}{2}$	$\frac{G_{9,24}}{2}$	3	3
β	1	1	3	3	4	4	0	0
γ	3	4	0	1	0	1	1	2
δ	4	3	4	4	3	3	4	4
	0	0	1	0	1	0	2	1
ϵ	U	U	1	U	1	U	4	1

	(contin	nued.)		
	$G_{9,24}^{(56)}$	$G_{9,24}^{(57)}$	$G_{9,24}^{(58)}$	$G_{9,24}^{(59)}$
α	3	3	3	3
β	1	1	2	2
γ	0	2	0	1
δ	4	4	4	4
ϵ	2	0	1	0

The Fatgraph $G_{9,25}$ (20 orientable markings)

Boundary cycles

$$\begin{split} \alpha &= ({}^2d^0 \, \to \, {}^0a^1 \, \to \, {}^1c^2 \, \to \, {}^0b^1) \\ \beta &= ({}^1a^2 \, \to \, {}^2b^0 \, \to \, {}^1f^2 \, \to \, {}^2e^0) \\ \gamma &= ({}^2a^0 \, \to \, {}^0f^1 \, \to \, {}^0d^1) \\ \delta &= ({}^0e^1 \, \to \, {}^0c^1 \, \to \, {}^1b^2) \\ \epsilon &= ({}^1e^2 \, \to \, {}^1d^2 \, \to \, {}^2f^0 \, \to \, {}^2c^0) \end{split}$$

A_0	a	b	С	d	е	f	0	1	2	3	4	5	6	7	8	α	β	γ	δ	ϵ
A_1^{\ddagger}	b	a	f	е	d	С	5	4	2	6	1	0	3	8	7	β	α	δ	γ	ϵ
${A_2}^{\ddagger}$	С	d	a	b	f	е	8	7	3	2	5	4	6	1	0	α	ϵ	δ	γ	β
A_3^{\ddagger}	d	С	е	f	b	a	4	5	3	6	7	8	2	0	1	ϵ	α	γ	δ	β
$A_4{}^{\ddagger}$	е	f	d	С	a	b	1	0	6	3	8	7	2	5	4	ϵ	β	δ	γ	α
$A_5{}^{\ddagger}$	f	е	b	a	С	d	7	8	6	2	0	1	3	4	5	β	ϵ	γ	δ	α

	$G_{9,25}^{(0)}$	$G_{9,25}^{(1)}$	$G_{9,25}^{(2)}$	$G_{9,25}^{(3)}$	$G_{9,25}^{(4)}$	$G_{9,25}^{(5)}$	$G_{9,25}^{(6)}$	$G_{9,25}^{(7)}$
α	Ő	Ó	Ó	Ő	Ő	Ő	Ó	Ó
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G_{9,25}^{(8)}$	$G_{9,25}^{(9)}$	$G_{9,25}^{(10)}$	$G_{9,25}^{(11)}$	$G_{9,25}^{(12)}$	$G_{9,25}^{(13)}$	$G_{9,25}^{(14)}$	$G_{9,25}^{(15)}$
α	0	0	0	0	1	1	1	1
β	2	2	3	3	2	2	2	2
γ	3	4	1	2	0	0	3	4
δ	1	1	2	1	3	4	0	0
ϵ	4	3	4	4	4	3	4	3
	$G_{9,25}^{(16)}$	$G_{9,25}^{(17)}$	$G_{9,25}^{(18)}$	$G_{9,25}^{(19)}$				
α	1	1	2	2				
β	3	3	3	3				
γ	0	2	0	1				
δ	2	0	1	0				
ϵ	4	4	4	4				

Markings of fatgraphs with trivial automorphisms

This appendix shows the numbering of marked fatgraphs when the base unmarked fatgraph ${\cal G}$ has only the trivial automorphism.

	$G^{(0)}$	$G^{(1)}$	$G^{(2)}$	$G^{(3)}$	$G^{(4)}$	$G^{(5)}$	$G^{(6)}$	$G^{(7)}$
α	0	0	0	0	0	0	0	0
β	1	1	1	1	1	1	2	2
γ	2	2	3	3	4	4	1	1
δ	3	4	2	4	2	3	3	4
ϵ	4	3	4	2	3	2	4	3
	$G^{(8)}$	$G^{(9)}$	$G^{(10)}$	$G^{(11)}$	$G^{(12)}$	$G^{(13)}$	$G^{(14)}$	$G^{(15)}$
α	0	0	0	0	0	0	0	0
β	2	2	2	2	3	3	3	3
γ	3	3	4	4	1	1	2	2
δ	1	4	1	3	2	4	1	4
ϵ	4	1	3	1	4	2	4	1
	$G^{(16)}$	$G^{(17)}$	$G^{(18)}$	$G^{(19)}$	$G^{(20)}$	$G^{(21)}$	$G^{(22)}$	$G^{(23)}$
α	0	0	0	0	0	0	0	0
β	3	3	4	4	4	4	4	4

	(contin	ued.)						
	$G^{(80)}$	$G^{(81)}$	$G^{(82)}$	$G^{(83)}$	$G^{(84)}$	$G^{(85)}$	$G^{(86)}$	$G^{(87)}$
α	3	3	3	3	3	3	3	3
β	1	1	1	1	2	2	2	2
γ	2	2	4	4	0	0	1	1
δ	0	4	0	2	1	4	0	4
ϵ	4	0	2	0	4	1	4	0
	$G^{(88)}$	$G^{(89)}$	$G^{(90)}$	$G^{(91)}$	$G^{(92)}$	$G^{(93)}$	$G^{(94)}$	$G^{(95)}$
α	3	3	3	3	3	3	3	3
β	2	2	4	4	4	4	4	4
γ	4	4	0	0	1	1	2	2
δ	0	1	1	2	0	2	0	1
ϵ	1	0	2	1	2	0	1	0
	$G^{(96)}$	$G^{(97)}$	$G^{(98)}$	$G^{(99)}$	$G^{(100)}$	$G^{(101)}$	$G^{(102)}$	$G^{(103)}$
α	4	4	4	4	4	4	4	4
β	0	0	0	0	0	0	1	1
γ	1	1	2	2	3	3	0	0
δ	2	3	1	3	1	2	2	3
ϵ	3	2	3	1	2	1	3	2
	$G^{(104)}$	$G^{(105)}$	$G^{(106)}$	$G^{(107)}$	$G^{(108)}$	$G^{(109)}$	$G^{(110)}$	$G^{(111)}$
α	4	4	4	4	4	4	4	4
$\boldsymbol{\beta}$	1	1	1	1	2	2	2	2
γ	2	2	3	3	0	0	1	1
δ	0	3	0	2	1	3	0	3
ϵ	3	0	2	0	3	1	3	0
	$G^{(112)}$	$G^{(113)}$	$G^{(114)}$	$G^{(115)}$	$G^{(116)}$	$G^{(117)}$	$G^{(118)}$	$G^{(119)}$
α	4	4	4	4	4	4	4	4
β	2	2	3	3	3	3	3	3
γ	3	3	0	0	1	1	2	2
δ	0	1	1	2	0	2	0	1
ϵ	1	0	2	1	2	0	1	0