Einführung in Python

Rebecca Breu

Verteilte Systeme und Grid-Computing JSC Forschungszentrum Jülich

Oktober 2008

Inhalt

Teil 1:

Einführung
Datentypen I
Statements
Funktionen
Input/Output
Module und Pakete
Fehler und Ausnahmen

Teil 2:

Datentypen II

Objektorientierte Programmierung

Pythons Standardbibliothek

Neues in Python 2.5

Teil 3:

Fortgeschrittene Techniken

wxPython

Zusammenfassung und Ausblick

Einführung in Python

Rebecca Breu

Verteilte Systeme und Grid-Computing JSC Forschungszentrum Jülich

Oktober 2008

Inhalt — Teil 1

Einführung

Datentypen I

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Einführung

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Was ist Python?

Python: dynamische Programmiersprache, welche verschiedene Programmierparadigmen unterstützt:

- prozedurale Programmierung
- objektorientierte Programmierung
- funktionale Programmierung

Standard: Python-Bytecode wird im Interpreter ausgeführt (ähnlich Java)

→ plattformunabhängiger Code

Warum Python?

- Syntax ist klar, leicht zu lesen & lernen (fast Pseudocode)
- intuitive Objektorientierung
- volle Modularität, hierarchische Pakete
- Fehlerbehandlung mittels Ausnahmen
- dynamische, "High Level"-Datentypen
- umfangreiche Standard-Bibliothek für viele Aufgaben
- einfache Erweiterbarkeit durch C/C++, Wrappen von C/C++-Bibliotheken

Schwerpunkt: Programmiergeschwindigkeit!

Ist Python schnell genug?

- für rechenintensive Algorithmen: evtl. besser Fortran, C, C++
- für Anwenderprogramme: Python ist schnell genug!
- Großteil der Python-Funktionen sind in C geschrieben
- Performance-kritische Teile k\u00f6nnen jederzeit in C/C++ ausgelagert werden
- erst analysieren, dann optimieren!

Hallo Welt!

```
#!/usr/bin/env python

# Dies ist ein Kommentar
print "Hallo Welt!"
```

```
$ python hallo_welt.py
Hallo Welt!
$
```

```
$ chmod 755 hallo_welt.py
$ ./hallo_welt.py
Hallo Welt!
$
```


Hallo User

```
#!/usr/bin/env python
name = raw_input("Wie heisst du? ")
print "Hallo", name
```

```
$ ./hallo_user.py
Wie heisst du? Rebecca
Hallo Rebecca
$
```


Starke und dynamische Typisierung

Starke Typisierung:

- Objekt ist genau von einem Typ! String ist immer String, int immer int
- Gegenbeispiel C: char kann als short betrachtet werden, void * kann alles sein

Dynamische Typisierung:

- keine Variablendeklaration
- Variablennamen können nacheinander unterschiedliche Datentypen zugewiesen werden
- Erst zur Laufzeit werden Eigenschaften eines Objekts untersucht

Starke und dynamische Typisierung

```
zahl = 3
print zahl, type(zahl)
print zahl + 42
zahl = "Rebecca"
print zahl, type(zahl)
print zahl + 42
```

```
3 <type 'int'>
45
Rebecca <type 'str'>
Traceback (most recent call last):
  File "test.py", line 6, in ?
    print zahl + 42
TypeError: cannot concatenate 'str' and
'int' objects
```

Interaktiver Modus

Der Interpreter kann im interaktiven Modus gestartet werden:

```
$ python
Python 2.4.1 (#1, Oct 13 2006, 16:58:04)
[GCC 4.0.2 20050901 (prerelease) ...
Type "help", "copyright", "credits" or ...
>>> print "hallo welt"
hallo welt
>>> a = 3 + 4
>>> print a
7
>>> 3 + 4
7
>>>
```


Dokumentation

Online-Hilfe im Interpreter:

- help(): allgemeine Hilfe zu Python
- help(obj): Hilfe zu einem Objekt, z.B. einer Funktion oder einem Modul
- dir(): alle belegten Namen
- dir(obj): alle Attribute eines Objekts

Offizielle Dokumentation: http://docs.python.org/

Dive into Python: http://diveintopython.org/

Dokumentation

```
>>> help(dir)
Help on built-in function dir:
. . .
>>> a = 3
>>> dir()
['__builtins__', '__doc__', '__file__',
'__name__', 'a']
>>> help(a)
Help on int object:
. . .
```


Datentypen I

Einführung

Datentypen I

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Numerische Datentypen

- int: entspricht long in C
- long: unbegrenzter Wertebereich
- float: enspricht double in C
- complex: komplexe Zahlen

```
a = 1
b = 1L
c = 1.0; c = 1e0
d = 1 + 0j
```

Integers werden bei Bedarf automatisch in long umgewandelt!

Operatoren auf Zahlen

- Grundrechenarten: +, -, *, /
- Div- und Modulo-Operator: //, %, divmod(x, y)
- Betrag: abs(x)
- Runden: round(x)
- Konvertierung: int(x), long(x), float(x), complex(re [, im=0])
- Konjugierte einer komplexen Zahl: x.conjugate()
- Potenzen: x ** y, pow(x, y)

Ergebnis einer Verknüpfung unterschiedlicher Datentypen ist vom Typ des "größeren" Datentyps.

Strings

Datentyp: str

- s = 'spam', s = "spam"
- Mehrzeilige Strings: s = """spam"""
- keine Interpretation von Escape-Sequenzen: s = r"spam"
- Strings aus anderen Datentypen erzeugen: str(1.0)

```
>>> print "sp\nam"
sp
am
>>> print r"sp\nam"
sp\nam
>>> s = """hallo
... welt"""
>>> print s
hallo
welt
```

String-Methoden

- Vorkommen von Substrings z\u00e4hlen:
 s.count(sub [, start[, end]])
- beginnt/endet s mit einem Substring?
 s.startswith(sub[, start[, end]]),
 s.endswith(sub[, start[, end]])
- s in Groß-/Kleinbuchstaben: s.upper(), s.lower()
- Leerraum entfernen: s.strip([chars])
- an Substrings trennen: s.split([sub [,maxsplit]])
- Position eines Substrings finden:
 s.index(sub[, start[, end]])
- einen Substring ersetzen: s.replace(old, new[, count])

Weitere Methoden: help(str), dir(str)

Listen

Datentyp: list

- s = [1, "spam", 9.0, 42], s = []
- Element anhängen: s.append(x)
- um zweite Liste erweitern: s.extend(s2)
- Vorkommen eines Elements zählen: s.count(x)
- Position eines Elements: s.index(x[, min[, max]])
- Element an Position einfügen: s.insert(i, x)
- Element an Position löschen und zurückgeben: s.pop([i])
- Element löschen: s.remove(x)
- Liste umkehren: s.reverse()
- Sortieren: s.sort([cmp[, key[, reverse]]])
- Summe der Elemente: sum(s)

Operationen auf Sequenzen

Stings und Listen haben viel gemeinsam: Sie sind Sequenzen.

- Ist ein Element in s enhalten/nicht enthalten?
 x in s, x not in s
- Sequenzen aneinanderhängen: s + t
- Sequenzen vervielfältigen: n * s, s * n
- i-tes Element: s[i], von hinten: s[-i]
- Subsequenz: s[i:j], mit Schrittweite k: s[i:j:k]
- Subsequenz von Anfgang/bis Ende: s[:-i], s[i:], s[:]
- Länge: len(s)
- kleinstes/größtes Element: min(s), max(s)
- Zuweisungen: (a, b, c) = s
 → a = s[0], b = s[1], c = s[2]

Sequenzen

- Auch eine Sequenz: Datentyp tuple: a = (1, 2, 3)
- Listen sind veränderbar
- Strings und Tupel sind nicht veränderbar
 - Keine Zuweisung s[i] = ...
 - Kein Anhängen und Löschen von Elementen
 - Funktionen wie upper liefern einen neuen String zurück!

```
>>> s1 = "spam"
>>> s2 = s1.upper()
>>> s1
'spam'
>>> s2
'SPAM'
```


Referenzen

- In Python ist alles eine Referenz auf ein Objekt!
- Vorsicht bei Zuweisungen:

```
>>> s1 = [1, 2, 3, 4]

>>> s2 = s1

>>> s2[1] = 17

>>> s1

[1, 17, 3, 4]

>>> s2

[1, 17, 3, 4]
```

Flache Kopie einer Liste: s2 = s1[:] oder s2 = list(s1)

Wahrheitswerte

Datentyp bool: True, False

Werte, die zu False ausgewertet werden:

- None
- False
- 0 (in jedem numerischen Datentyp)
- leere Strings, Listen und Tupel: '', (), []
- leere Dictionaries: {}
- leere Sets

Andere Objekte von eingebauten Datentypen werden stets zu True ausgewertet!

```
>>> bool([1, 2, 3])
True
>>> bool("")
False
```

Statements

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmer

Das if-Statement

```
if a == 3:
    print "Aha!"
```

- Blöcke werden durch Einrückung festgelegt!
- Standard: Einrückung mit vier Leerzeichen

```
if a == 3:
    print "spam"
elif a == 10:
    print "eggs"
elif a == -3:
    print "bacon"
else:
    print "something else"
```


Vergleichsoperatoren

- Vergleich des Inhalts: ==, <, >, <=, >=, !=
- Vergleich der Objektidentität: a is b, a is not b
- Und/Oder-Verknüpfung: a and b, a or b
- Negation: not a

```
if not (a==b) and (c<3):
    pass</pre>
```


Conditional Expressions

Kurze Schreibweise für bedingte Zuweisung. Statt:

```
if zahl < 0:
    s = "Negativ"
else:
    s = "Positiv"</pre>
```

kann man schreiben:

```
s = "Negativ" if zahl < 0 else "Positiv"
```


for-Schleifen

```
for i in range (10):
   print i # 0, 1, 2, 3, ..., 9
for i in range(3, 10):
  print i # 3, 4, 5, ..., 9
for i in range(0, 10, 2):
  print i # 0, 2, 4, ..., 8
else.
  print "Schleife komplett durchlaufen."
```

- Schleife vorzeitig beenden: break
- nächster Durchlauf: continue
- else wird ausgeführt, wenn die Schleife nicht vorzeitig verlassen wurde

Über Sequenzen kann man direkt (ohne Index) iterieren:

```
for item in ["spam", "eggs", "bacon"]:
    print item
```

Auch die range-Funktion liefert eine Liste:

```
>>> range(0, 10, 2)
[0, 2, 4, 6, 8]
```

Benötigt man doch Indices:

```
for (i, char) in enumerate("hallo welt"):
    print i, char
```


while-Schleifen

```
while i < 10:
    i += 1</pre>
```

Auch hier können break und continue verwendet werden.

Ersatz für do-while-Schleife:

```
while True:
    # wichtiger Code
if bedingung:
    break
```


Funktionen

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Funktionen

```
def addiere(a, b):
    """Gibt die Summe von a und b zurueck."""
    summe = a + b
    return summe
```

```
>>> ergebnis = addiere(3, 5)
>>> print ergebnis
8
>>> help(addiere)
Help on function addiere in module __main__:
addiere(a, b)
    Gibt die Summe von a und b zurueck.
```


Rückgabewerte und Parameter

- Funktionen können beliebige Objekte als Parameter und Rückgabewerte haben
- Typen der Rückgabewerte und Parameter sind nicht festgelegt
- Funktionen ohne expliziten Rückgabewert geben None zurück

```
def hallo_welt():
    print "Hallo Welt!"

a = hallo_welt()
print a
```

```
$ mein_programm.py
Hallo Welt
None
```

Mehrere Rückgabewerte

Mehrere Rückgabewerte werden mittels Tupel oder Listen realisiert:

```
def foo():
    a = 17
    b = 42
    return (a, b)

ret = foo()
(x, y) = foo()
```


Keywords und Defaultwerte

Man kann Parameter auch in anderer Reihenfolge als definiert angeben:

```
def foo(a, b, c):
    print a, b, c

foo(b=3, c=1, a="hallo")
```

Defaultwerte festlegen:

```
def foo(a, b, c=1.3):
    print a, b, c

foo(1, 2)
foo(1, 17, 42)
```


Funktionen sind Objekte

Funktionen sind Objekte und können wie solche zugewiesen und übergeben werden:

```
>>> def foo(fkt):
... print fkt(33)
...
>>> foo(float)
33.0
```

```
>>> a = float
>>> a(22)
22.0
```


Input/Output

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

String-Formatierung

Stringformatierung ähnlich C:

```
print "Die Antwort ist %i." % 42
s = "%s: %3.4f" % ("spam", 3.14)
```

- Integer dezimal: d, i
- Integer oktal: o
- Integer hexadezimal: x, X
- Float: f, F
- Float in Exponentialdarstellung: e, E, g, G
- Einzelnes Zeichen: c
- String: s

Ein %-Zeichen gibt man als %% aus.

Kommandozeilen-Eingaben

Benutzer-Eingaben:

```
eingabe = raw_input("Gib was ein: ")
```

Kommandozeilen-Parameter:

```
import sys
print sys.argv
```

```
$ ./params.py spam
['params.py', 'spam']
```


Dateien

```
datei1 = open("spam", "r")
datei2 = open("/tmp/eggs", "wb")
```

- Lesemodus: r
- Schreibmodus: w
- Binärdateien behandeln: b
- Schreibmodus, an Daten am Ende anhängen: a
- Lesen und schreiben: r+

```
for line in datei1:
print line
```


Operationen auf Dateien

• mehrere Zeilen lesen: f.readlines([sizehint])

lesen: f.read([size])7eile lesen: f.readline()

datei.close()

```
schreiben: f.write(str)
mehrere Zeilen schreiben: f.writelines(sequence)
Datei schließen: f.close()
datei = open("test", "w")
lines = ["spam\n", "eggs\n", "ham\n"]
datei.writelines(lines)
```

Python wandelt \n automatisch in den richtigen Zeilenumruch um!

Module und Pakete

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Module importieren

Funktionen, Klassen und Objekte, die thematisch zusammengehören, werden in Modulen gebündelt.

```
import math
s = math.sin(math.pi)
```

```
import math as m
s = m.sin(m.pi)
```

```
from math import pi as PI, sin
s = sin(PI)
```

```
from math import *
s = sin(pi)
```


Module

- Hilfe: dir(math), help(math)
- Module werden gesucht in (siehe sys.path):
 - dem Verzeichnis der aufrufenden Datei
 - Verzeichnissen aus der Umgebungsvariablen PYTHONPATH
 - installationsbedingten Verzeichnissen

```
>>> import sys
>>> sys.path
['', '/usr/lib/python24.zip',
   '/usr/lib/python2.4',
   '/usr/lib/python2.4/site-packages', ...]
```


Pakete importieren

Module können zu hierarchisch strukturierten Paketen zusammengefasst werden.

```
import email
msg = email.mime.text.MIMEText("Hallo Welt!")
```

```
from email.mime import text as mtext
msg = mtext.MIMEText("Hallo Welt!")
```

```
from email.mime.text import MIMEText
msg = MIMEText("Hallo Welt!")
```


Eigene Module

Jedes Python-Programm kann als Modul importiert werden.

```
"""Mein erstes Modul: mein_modul.py"""

def add(a, b):
    """Addiere a und b."""
    return a + b

print add(2, 3)
```

```
>>> import mein_modul
5
>>> mein_modul.add(17, 42)
59
```

Top-Level-Anweisungen werden beim Import ausgeführt!

Eigene Module

Sollen Anweisungen nur beim direkten Ausführen, aber nicht beim Importieren ausgeführt werden:

```
def add(a, b):
    return a + b

def main():
    print add(2, 3)

if __name__ == "__main__":
    main()
```

Sinnvoll z.B. für Tests.

Eigene Pakete

```
    numeric

    _ __init__.py
      linalg
- __init__.py
- decomp.py
       eig.py
solve.py
```

- Pakete sind Unterordner
- In jedem Paket-Ordner: __init__.py (kann leer sein)

```
import numeric
numeric.foo() #Aus __init__.py
numeric.linalg.eig.foo()
```

```
from numeric.linalg import eig
eig.foo()
```


Fehler und Ausnahmen

Einführung

Datentypen

Statements

Funktionen

Input/Output

Module und Pakete

Fehler und Ausnahmen

Syntax Errors, Indentation Errors

Fehler beim Parsen: Programm wird nicht ausgeführt. Z.B.:

- Klammerungsfehler
- Falsche oder fehlende Semikolons, Doppelpunkte, Kommas
- Einrückungsfehler

```
print "Ich laufe..."

def add(a, b)
   return a + b
```


Ausnahmen

Ausnahmen (Exceptions) treten zur Laufzeit auf:

```
import math
print "Ich laufe..."
math.foo()
```

```
$ ./test.py
Ich laufe...
Traceback (most recent call last):
   File "test.py", line 3, in ?
     math.foo()
AttributeError: 'module' object has no
attribute 'foo'
```


Ausnahmen behandeln

```
try:
    s = raw_input("Gib eine Zahl ein: ")
    zahl = float(s)
except ValueError:
    print "Das ist keine Zahl!"
```

- except-Block wird ausgeführt, wenn Code im try-Block eine passende Ausnahme wirft
- danach läuft Programm normal weiter
- nicht behandelte Ausnahmen führen zum Programmabbruch

Verschiedene Ausnahmen abfangen:

```
except (ValueError, TypeError, NameError):
```


Ausnahmen behandeln

```
try:
    s = raw_input("Gib eine Zahl ein: ")
    zahl = 1/float(s)
except ValueError:
    print "Das ist keine Zahl!"
except ZeroDivisionError:
    print "Man kann nicht durch Null teilen!"
except:
    print "Was ist hier passiert?"
```

- Mehrere except-Statements für verschiedene Ausnahmen
- Letztes except kann ohne Ausnahme-Typ verwendet werden: Fängt alle verbleibenen Ausnahmen ab
 - Vorsicht: Kann ungewollte Programmierfehler verdecken!

Ausnahmen behandeln

- else wird ausgeführt, wenn keine Ausnahme auftrat
- finally wird in jedem Fall ausgeführt

```
try:
    f = open("spam")
except IOError:
    print "Cannot open file"
else:
    print f.read()
    f.close()
finally:
    print "Ende von try."
```


Ausnahme-Objekte

Auf das Ausnahme-Objekt zugreifen:

```
try:
    f = open("spam")
except IOError, e:
    print e.errno, e.strerror
    print e
```

```
$ python test.py
2 No such file or directory
[Errno 2] No such file or directory: 'spam'
```


draw()

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter.

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter.

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter.

- Funktion ruft Unterfunktionen auf.
- Unterfunktion wirft Ausnahme.
- Wird Ausnahme behandelt?
- Nein: Gib Ausnahme an aufrufende Funktion weiter.

Ausnahmen auslösen

Ausnahmen weiterreichen:

```
try:
    f = open("spam")
except IOError:
    print "Fehler beim Oeffnen!"
    raise
```

Ausnahmen auslösen:

```
def gauss_solver(matrix):
    # Wichtiger Code
    raise ValueError("Matrix singulaer")
```


Viel Spaß mit

Einführung in Python

Rebecca Breu

Verteilte Systeme und Grid-Computing JSC Forschungszentrum Jülich

Oktober 2008

Datentypen II

Datentypen II

Objektorientierte Programmierung

Pythons Standardbibliothek

Neues in Python 2.5

Datentypen II

Datentypen II

Objektorientierte Programmierung

Pythons Standardbibliothek

Neues in Python 2.5

Pythons Standardbibliothek

Sets

Set (Menge): ungeordnet, doppelte Elemente werden nur einmal gespeichert

- s = set([sequence])
- Teilmenge: s.issubset(t), s <= t, echte T.: s < t
- Obermenge: s.issuperset(t), s >= t, echte O.: s > t
- Vereinigung: s.union(t), s | t
- Schnittmenge: s.intersection(t), s & t
- Differenz: s.difference(t), s t
- Symmetrische Differenz: s.symmetric_difference(t), s ^ t
- Kopie: s.copy()

Wie für Sequenzen gibt es auch: x in set, len(set), for x in set, add, remove

Dictionaries

Dictionary: Zuordnung Schlüssel \rightarrow Wert

```
>>> d = { "spam": 1, "eggs": 17}
>>> d["eggs"]
17
>>> d["bacon"] = 42
>>> d
{'eggs': 17, 'bacon': 42, 'spam': 1}
```

Über Dictionaries iterieren:

```
for key in d:
    print key, a[key]
```


Operationen auf Dictionaries

- Eintrag löschen: del
- alle Einträge löschen: a.clear()
- Kopie: a.copy()
- Ist Schlüssel enthalten? a.has_key(k), k in a
- Liste von (key, value)-Tupeln: a.items()
- Liste aller Schlüssel: a.keys()
- Liste aller Werte: a.values()
- Eintrag holen: a.get(k[, x])
- Eintrag löschen und zurückgeben: a.pop(k[, x])
- Eintrag löschen und zurückgeben: a.popitem()

Objektorientierte Programmierung

Datentypen I

Objektorientierte Programmierung

Pythons Standardbibliothek

Neues in Python 2.5

Objektorientierte Programmierung

- Bisher: prozedurale Programmierung
 - Daten
 - Funktionen, die Daten als Parameter entgegennehmen und Ergebnis zurückliefern
- Alternative: Fasse zusammengehörige Daten und Funktionen zusammen zu eigenen Datentypen
- $\bullet \to \mathsf{Erweiterung}$ von Strukturen/Datenverbünden aus C/Fortran

Einfache Klassen als Structs verwenden

```
class Punkt:
    pass

p = Punkt()
p.x = 2.0
p.y = 3.3
```

- Klasse: Eigener Datentyp (hier: Punkt)
- Objekt: Instanz der Klasse (hier: p)
- Attribute (hier x, y) können dynamisch hinzugefügt werden

Klassen

```
class Punkt:
    def __init__(self, x, y):
        self.x = x
        self.y = y

p = Punkt(2.0, 3.0)
print p.x, p.y
p.x = 2.5
p.z = 42
```

 __init__: Wird automatisch nach Erzeugung eines Objekts aufgerufen

Pythons Standardbibliothek

Methoden auf Objekten

```
class Punkt:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    def norm(self):
        n = math.sqrt(self.x**2 + self.y**2)
        return n
p = Punkt(2.0, 3.0)
print p.x, p.y, p.norm()
```

- Methodenaufruf: automatisch das Objekt als erster Parameter
- ullet o wird üblicherweise self genannt
- Achtung: Kein Überladen von Methoden möglich!

Objekte in Strings konvertieren

Standard-Rückgabe von str(...) für eigene Objekte:

```
>>> p = Punkt(2.0, 3.0)
>>> print p # --> print str(p)
<__main__.Punkt instance at 0x402d7a8c>
```

```
def __str__(self):
    return "(%i, %i)" % (self.x, self.y)
```

```
>>> print p
(2, 3)
```


Objekte in Strings konvertieren

Standard-Rückgabe von str(...) für eigene Objekte:

```
>>> p = Punkt(2.0, 3.0)
>>> print p # --> print str(p)
<__main__.Punkt instance at 0x402d7a8c>
```

```
def __str__(self):
    return "(%i, %i)" % (self.x, self.y)
```

```
>>> print p
(2, 3)
```


Objekte vergleichen

Standard: == prüft Objekte eigener Klassen auf Identität.

```
>>> p1 = Punkt(2.0, 3.0)
>>> p2 = Punkt(2.0, 3.0)
>>> p1 == p2
False
```

```
>>> p1 == p2
True
>>> p1 is p2 # Identitaet pruefen
False
```

Objekte vergleichen

Standard: == prüft Objekte eigener Klassen auf Identität.

```
>>> p1 = Punkt(2.0, 3.0)
>>> p2 = Punkt(2.0, 3.0)
>>> p1 == p2
False
```

```
def __eq__(self, other):
    return (self.x == other.x) and
           (self.y == other.y)
```

```
>>> p1 == p2
True
>>> p1 is p2 # Identitaet pruefen
False
```

Objekte vergleichen

Weitere Vergleichsoperatoren:

```
• <: __lt__(self, other)
```

Alternativ: __cmp__(self, other), gibt zurück:

- negativen Integer, wenn self < other
- null, wenn self == other
- positiven Integer, wenn self > other

Datentypen emulieren

Man kann mit Klassen vorhandene Datentypen emulieren:

```
• Zahlen: int(myobj), float(myobj), Rechenoperationen, ...
```

```
• Funktionen: myobj(...)
```

```
• Sequenzen: len(myobj), myobj[...], x in myobj, ...
```

```
• Iteratoren: for i in myobj
```

Siehe dazu Dokumentation:

http://docs.python.org/ref/specialnames.html

Klassenvariablen

Haben für alle Objekte einer Klasse stets den gleichen Wert:

```
class Punkt:
    anzahl = 0 #Anzahl aller Punkt-Objekte
    def __init__(self, x, y):
        self.__class__.anzahl += 1
        . . .
```

```
>>> p1 = Punkt(2, 3); p2 = Punkt(3, 4)
>>> p1.anzahl
2
>>> p2.anzahl
2
>>> Punkt.anzahl
2
```


Klassenmethoden und statische Methoden

```
class Spam:
    spam = "I don't like spam."
    @classmethod
    def cmethod(cls):
        print cls.spam
    @staticmethod
    def smethod():
        print "Blah blah."
```

```
Spam.cmethod()
Spam.smethod()
s = Spam()
s.cmethod()
s.smethod()
```

Vererbung

Oft hat man verschiedene Klassen, die einander ähneln. Vererbung erlaubt:

- Hierarchische Klassenstruktur (Ist-ein-Beziehung)
- Wiederverwenden von ähnlichem Code

Beispiel: Verschiedene Telefon-Arten

- Telefon
- Handy (ist ein Telefon mit zusätzlichen Funktionen)
- Fotohandy (ist ein Handy mit zusätzlichen Funktionen)

Vererbung

```
class Telefon:
    def telefonieren(self):
        pass

class Handy(Telefon):
    def sms_schicken(self):
        pass
```

Handy erbt jetzt Methoden und Attribute von Telefon.

```
h = Handy()
h.telefonieren() # Geerbt von Telefon
h.sms_schicken() # Eigene Methode
```


Methoden überschreiben

In der abgeleiteten Klasse können die Methoden der Elternklasse überschrieben werden:

```
class Handy(Telefon):
    def telefonieren(self):
        suche_funkverbindung()
        Telefon.telefonieren(self)
```


Mehrfachvererbung

Klassen können von mehreren Elternklassen erben. Bsp:

- Fotohandy ist ein Telefon
- Fotohandy ist eine Kamera

```
class Fotohandy(Handy, Kamera):
    pass

h = Fotohandy()
h.telefonieren() # geerbt von Handy
h.fotografieren() # geerbt von Kamera
```

Attribute werden in folgender Reihenfolge gesucht: Fotohandy, Handy, Elterklasse von Handy (rekursiv), Kamera, Elternklasse von Kamera (rekursiv).

Private Attribute

- In Python gibt es keine privaten Variablen oder Methoden.
- Konvention: Attribute, auf die nicht von außen zugegriffen werden sollte, beginnen mit einem Unterstrich: _foo.
- Um Namenskonflikte zu vermeiden: Namen der Form __foo werden durch _klassenname__foo ersetzt:

```
class Spam:
   __eggs = 3
```

```
>>> dir(Spam)
>>> ['_Spam__eggs', '__doc__', '__module__']
```


Properties

Sollen beim Zugriff auf eine Variable noch Berechnungen oder Überprüfungen durchgeführt werden: Getter und Setter

```
class Spam(object):
   def init (self):
        self. value = 0
   def get_value(self):
        return self._value
   def set_value(self, value):
        if value <= 0: self._value = 0
        else: self._value = value
    value = property(get_value, set_value)
```


Properties

Auf Properties wird wie auf gewöhnliche Attribute zugegriffen:

```
>>> s = Spam()
>>> s.value = 6  # set_value(6)
>>> s.value  # get_value()
>>> 6
>>> s.value = -6  # set_value(-6)
>>> s.value = # get_value()
>>> s.value  # get_value()
```

- Getter und Setter können nachträglich hinzugefügt werden, ohne die API zu verändern.
- Zugriff auf _value immer noch möglich

Datentypen I

Objektorientierte Programmierung

Pythons Standardbibliothek

Neues in Python 2.5

Pythons Standardbibliothek

"Batteries included": umfassende Standardbibliothek für die verschiedensten Aufgaben

Mathematik: math

- Konstanten: e, pi
- Auf- und Abrunden: floor(x), ceil(x)
- Exponentialfunktion: exp(x)
- Logarithmus: log(x[, base]), log10(x)
- Potenz und Quadratwurzel: pow(x, y), sqrt(x)
- Trigonometrische Funktionen: sin(x), cos(x), tan(x)
- Kovertierung Winkel ↔ Radiant: degrees(x), radians(x)

```
>>> import math
>>> math.sin(math.pi)
1.2246063538223773e-16
>>> math.cos(math.radians(30))
0.86602540378443871
```

Zufall: random

- Zufällige Integers: randint(a, b), randrange([start,] stop[, step])
- Zufällige Floats (Gleichverteilg.): random(), uniform(a, b)
- Andere Verteilungen: expovariate(lambd), gammavariate(alpha, beta), gauss(mu, sigma), ...
- Zufälliges Element einer Sequenz: choice(seq)
- Mehrere eindeutige, zufällige Elemente einer Sequenz: sample(population, k)
- Sequenz mischen: shuffle(seq[, random])

```
>>> s = [1, 2, 3, 4, 5]
>>> random.shuffle(s)
>>> s
[2, 5, 4, 3, 1]
>>> random.choice("Hallo Welt!")
'e'
```

Operationen auf Verzeichnisnamen: os.path

- Pfade: abspath(path), basename(path), normpath(path), realpath(path)
- Pfad zusammensetzen: join(path1[, path2[, ...]])
- Pfade aufspalten: split(path), splitext(path)
- Datei-Informationen: isfile(path), isdir(path), islink(path), getsize(path),...
- Home-Verzeichnis vervollständigen: expanduser(path)
- Umgebungsvariablen vervollständigen: expandvars(path)

```
>>> os.path.join("spam", "eggs", "ham.txt")
'spam/eggs/ham.txt'
>>> os.path.splitext("spam/eggs.py")
('spam/eggs', '.py')
>>> os.path.expanduser("~/spam")
'/home/rbreu/spam'
>>> os.path.expandvars("/bla/$TEST")
'/bla/test.py'
```

Dateien und Verzeichnisse: os

- Working directory: getcwd(), chdir(path)
- Dateirechte ändern: chmod(path, mode)
- Benutzer ändern: chown(path, uid, gid)
- Verzeichnis erstellen: mkdir(path[, mode]), makedirs(path[, mode])
- Dateien löschen: remove(path), removedirs(path)
- Dateien umbenennen: rename(src, dst), renames(old, new)
- Liste von Dateien in Verzeichnis: listdir(path)

Verzeichnislisting: glob

Liste von Dateien in Verzeichnis, mit Unix-artiger Wildcard-Vervollständigung: glob(path)

```
>>> glob.glob("python/[a-c]*.py")
['python/confitest.py',
   'python/basics.py',
   'python/curses_test2.py',
   'python/curses_keys.py',
   'python/cmp.py',
   'python/button_test.py',
   'python/argument.py',
   'python/curses_test.py']
```


Dateien und Verzeichnisse: shutil

Higher Level-Operationen auf Dateien und Verzeichnissen.

- Datei kopieren: copyfile(src, dst), copy(src, dst)
- Rekursiv kopieren; copytree(src, dst[, symlinks])
- Rekursiv löschen: rmtree(path[, ignore_errors[, onerror]])
- Rekursiv verschieben: move(src, dst)

Andere Prozesse starten: subprocess

Pythons Standardbibliothek

Einfaches Ausführen eines Programmes:

```
p = subprocess.Popen(["ls", "-l", "mydir"])
returncode = p.wait() # Auf Ende warten
```

Zugriff auf die Ausgabe eines Programmes:

```
p = Popen(["ls"], stdout=PIPE, stderr=STDOUT)
p.wait()
output = p.stdout.read()
```

Pipes zwischen Prozessen (1s -1 | grep txt)

```
p1 = Popen(["ls", "-l"], stdout=PIPE)
p2 = Popen(["grep", "txt"], stdin=p1.stdout)
```


Threads: threading

Programmteile gleichzeitig ablaufen lassen mit Thread-Objekten:

```
class Counter(threading.Thread):
    def __init__(self):
        threading. Thread. __init__(self)
        self.counter = 0
    def run(self): # Hauptteil
        while self.counter < 10:
            self.counter += 1
            print self.counter
counter = Counter()
counter.start() # Thread starten
# hier etwas gleichzeitig tun...
counter.join() # Warte auf Ende des Threads
```

Threads: threading

- Problem, wenn zwei Threads gleichzeitig auf das gleiche Objekt schreibend zugreifen wollen!
- ullet Verhindern, dass Programmteile gleichzeitig ausgeführt werden mit Lock-Objekten
- Locks haben genau zwei Zustände: locked und unlocked

Threads: threading

- Kommunikation zwischen Threads: Z.B. mittels Event-Objekten
- Events haben zwei Zustände: gesetzt und nicht gesetzt
- ähnlich Locks, aber ohne gegenseitigen Ausschluss

Bsp: Event, um Threads mitzuteilen, dass sie sich beenden sollen. Methoden auf Event-Objekten:

- Status des Events abfragen: isSet()
- Setzen des Events: set()
- Zurücksetzten des Events: clear()
- Warten, dass Event gesetzt wird: wait([timeout])

Zugriff auf Kommandozeilenparameter: optparse

- ullet Einfach: Liste mit Parametern o sys.argv
- Komfortabler für mehrere Optionen: OptionParser

```
parser = optparse.OptionParser()
parser.add_option("-f", "--file",
                  dest="filename",
                  default="out.txt",
                  help="output file")
parser.add_option("-v", "--verbose",
                  action="store_true",
                  dest="verbose",
                  default=False,
                  help="verbose output")
(options, args) = parser.parse_args()
print options.filename, options.verbose
print args
```

Zugriff auf Kommandozeilenparameter: optparse

So wird ein optparse-Programm verwendet:

```
$ ./test.py -f aa bb cc
aa False
['bb', 'cc']
```


Konfigurationsdateien: ConfigParser

Einfaches Format zum Speichern von Konfigurationen u.A.: Windows INI-Format

```
[font]
font = Times New Roman
# Kommentar (oder: ! als Kommentarzeichen)
size = 16

[colors]
font = black
pointer = %(font)s
background = white
```


Konfigurationsdateien: ConfigParser

Config-Datei lesen:

```
parser = ConfigParser.SafeConfigParser()
parser.readfp(open("config.ini", "r"))
print parser.get("colors", "font")
```

Weitere Parser-Methoden:

- Liste aller Sections: sections()
- Liste aller Optionen: options(section)
- Liste aller Optionen und Werte: items(section)
- Werte lesen: get(sect, opt), getint(sect, opt), getfloat(sect, opt), getboolean(sect, opt)

Konfigurationsdateien: ConfigParser

Config-Datei schreiben:

```
parser = ConfigParser.SafeConfigParser()
parser.add_section("colors")
parser.set("colors", "font", "black")
parser.write(open("config.ini", "w"))
```

Weitere Parser-Methoden:

- Section hinzufügen: add_section(section)
- Section löschen: remove_section(section)
- Option hinzufügen: set(section, option, value)
- Option entfernen: remove_option(section, option)

CSV-Dateien: csv

CSV: Comma-seperated values

- Tabellendaten im ASCII-Format
- Spalten durch ein festgelegtes Zeichen (meist Komma) getrennt

```
reader = csv.reader(open("test.csv", "rb"))
for row in reader:
    for item in row:
        print item
```

```
writer = csv.writer(open(outfile, "wb"))
writer.writerow([1, 2, 3, 4])
```


CSV-Dateien: csv

Mit verschiedenen Formaten (Dialekten) umgehen:

```
reader(csvfile, dialect='excel') # Default
writer(csvfile, dialect='excel_tab')
```

Einzelne Formatparameter angeben:

```
reader(csvfile, delimiter=";")
```

Weitere Formatparameter: lineterminator, quotechar, skipinitialspace, ...

Objekte serialisieren: pickle

Beliebige Objekte in Dateien speichern:

```
obj = {"hallo": "welt", "spam":1}
pickle.dump(obj, open("bla.bin", "wb"))
# ...
obj = pickle.load(open("bla.bin", "rb"))
```

Objekt in String unwandeln (z.B. zum Verschicken über Streams):

```
s = pickle.dumps(obj)
# ...
obj = pickle.loads(s)
```


Persistente Dictionaries: shelve

Ein Shelve benutzt man wie ein Dictionary, es speichert seinen Inhalt in eine Datei.

```
d = shelve.open("bla")
d["spam"] = "eggs"
d["bla"] = 1
del d["foo"]
d.close()
```


Leichtgewichtige Datenbank: sqlite3

Datenbank in Datei oder im Memory, ab Python 2.5 in der stdlib.

```
conn = sqlite3.connect("bla.db")
c = conn.cursor()
c.execute("""CREATE TABLE Friends
             (vorname TEXT, nachname TEXT)""")
c.execute("""INSERT INTO Friends
             VALUES ("Max", "Mueller") """)
conn.commit()
```

```
c.execute("""SELECT * FROM Friends""")
for row in c: print row
c.close(); conn.close()
```

Leichtgewichtige Datenbank: sqlite3

String-Formatter sind unsicher, da beliebiger SQL-Code eingeschleust werden kann!

```
# Never do this!
symbol = "Max"
c.execute("... WHERE name = '%s'" % symbol)
```

Stattdessen die Platzhalter der Datenbank-API benutzen:

```
c.execute("... WHERE name = ?", symbol)
```


Tar-Archive: tarfile

Pythons Standardbibliothek

Ein tgz entpacken:

```
tar = tarfile.open("spam.tgz")
tar.extractall()
tar.close()
```

Ein tgz erstellen:

```
tar = tarfile.open("spam.tgz", "w:gz")
tar.add("/home/rbreu/test")
tar.close()
```


Log-Ausgaben: logging

Flexible Ausgabe von Informationen, kann schnell angepasst werden.

```
import logging
logging.debug("Very special information.")
logging.info("I am doing this and that.")
logging.warning("You should know this.")
```

```
WARNING:root:You should know this.
```

- Messages bekommen einen Rang (Dringlichkeit): CRITICAL, ERROR, WARNING, INFO, DEBUG
- Default: Nur Messages mit Rang WARNING oder höher werden ausgegeben

Log-Ausgaben: logging

Pythons Standardbibliothek

Beispiel: Ausgabe in Datei, benutzerdefiniertes Format, feineres Log-Level:

```
logging.basicConfig(level=logging.DEBUG,
  format="%(asctime)s %(levelname)-8s %(message)s",
  datefmt="%Y-%m-%d %H:%M:%S",
  filename='/tmp/spam.log', filemode='w')
```

```
$ cat /tmp/spam.log
2007-05-07 16:25:14 DEBUG Very special information.
2007-05-07 16:25:14 INFO I am doing this and that.
2007-05-07 16:25:14 WARNING You should know this.
```

Es können auch verschiedene Loginstanzen gleichzeitig benutzt werden, siehe Python-Dokumentation.

Reguläre Ausdrücke: re

Einfaches Suchen nach Mustern:

```
>>> re.findall(r"\[.*?\]", "a[bc]g[hal]def")
['[bc]', '[hal]']
```

Ersetzen von Mustern:

```
>>> re.sub(r"\[.*?\]", "!", "a[bc]g[hal]def") 'a!g!def'
```

Wird ein Regex-Muster mehrfach verwendet, sollte es aus Geschwindigkeitsgründen compiliert werden:

```
>>> pattern = re.compile(r"\[.*?\]")
>>> pattern.findall("a[bc]g[hal]def")
['[bc]', '[hal]']
```


Reguläre Ausdrücke: re

Umgang mit Gruppen:

Flags, die das Verhalten des Matching beeinflussen:

```
>>> re.findall("^a", "abc\nAbc", re.I|re.M)
>>> ['a', 'A']
```

- re.I: Groß-/Kleinschreibung ingnorieren
- re.M: ^ matcht am Anfang jeder Zeile (nicht nur am Anfang des Strings)
- re.S: . matcht auch Zeilenumbruch

Sockets: socket

Client-Socket erstellen und mit Server verbinden:

Mit dem Server kommunizieren:

```
sock.send("fz-juelich.de" + "\n")
print sock.recv(4096) # Antwort lesen
sock.close()
```


Sockets: socket

Server-Socket erstellen:

```
server_socket = socket.socket(socket.AF_INET)
server_socket.bind(("localhost", 6666))
```

Auf Client-Verbindungen warten und sie akzeptieren:

```
server_socket.listen(1)
(sock, address) = server_socket.accept()
```

Mit dem Client kommunizieren:

```
sock.send("Willkommen!\n")
# ...
```


XML-RPC-Client: xmlrpclib

- XML-RPC: Remote Procedure Call via XML und HTTP
- unabhänging von Plattform und Programmiersprache

```
import xmlrpclib
s = xmlrpclib.Server("http://localhost:8000")
print s.add(2,3)
print s.sub(5,2)
```

Konvertierungen für die gängigen Datentypen geschehen automatisch: Booleans, Integer, Floats, Strings, Tupel, Listen, Dictionaries mit Strings als Keys, ...

XML-RPC-Server: SimpleXMLRPCServer

from SimpleXMLRPCServer import SimpleXMLRPCServer

```
# Methoden, die der Server zur Verfuegung
# stellen soll:
class MyFuncs:
   def add(self, x, y):
        return x + y
   def sub(self, x, y):
        return x - y
# Erstelle und starte Server:
server = SimpleXMLRPCServer(("localhost", 8000))
server.register_instance(MyFuncs())
server.serve_forever()
```

Neues in Python 2.5

Pythons Standardbibliothek

Neues in Python 2.5

Conditional Expressions

Kurze Schreibweise für bedingte Zuweisung. Statt:

```
if zahl < 0:
    s = "Negativ"
else:
    s = "Positiv"</pre>
```

kann man schreiben:

```
s = "Negativ" if zahl<0 else "Positiv"
```


Das with-Statement

Einige Objekte bieten Kontext-Management an. Damit können try... finally-Blöcke einfacher geschrieben werden:

```
from __future__ import with_statement
with open("test.txt") as f:
    for line in f:
        print line
```

Nach dem with-Block ist das Dateiobjekt stets wieder geschlossen, auch wenn im Block eine Exception auftrat.

Datentypen II

Partielle Funktionsanwendung

Pythons Standardbibliothek

```
import functools
def add (a, b):
    return a + b
add_ten = functools.partial(add, b=10)
add_ten(42)
```


Pythons Standardbibliothek

Datentypen II

Viel Spaß mit

Einführung in Python

Rebecca Breu

Verteilte Systeme und Grid-Computing JSC Forschungszentrum Jülich

Oktober 2008

Inhalt — Teil 3

Fortgeschrittene Techniken

wxPython

Zusammenfassung und Ausblick

Fortgeschrittene Techniken

Fortgeschrittene Techniken

wxPython

Zusammenfassung und Ausblick

Funktionsparameter aus Listen und Dictionaries

```
def spam(a, b, c, d):
    print a, b, c, d
```

Man kann positionale Parameter aus Listen erzeugen:

```
>>> args = [3, 6, 2, 3]
>>> spam(*args)
3 6 2 3
```

Man kann Keyword-Paramter aus Dictionaries erzeugen:

```
>>> kwargs = {"c": 5, "a": 2, "b": 4, "d":1}
>>> spam(**kwargs)
2 4 5 1
```


Funktionen mit beliebigen Parametern

```
def spam(*args, **kwargs):
    for i in args:
        print i
    for i in kwargs:
        print i, kwargs[i]
```

```
>>> spam(1, 2, c=3, d=4)

1

2

c 3

d 4
```


List Comprehension

wxPvthon

Abkürzende Schreibweise zum Erstellen von Listen aus for-Schleifen. Statt:

```
a = []
for i in range(10):
    a.append(i**2)
```

kann man schreiben:

```
a = [i**2 for i in range(10)]
```

Mit Bedingung:

```
a = [i**2 for i in range(10) if i != 4]
```


Anonyme Funktionen: Lambda

```
>>> f = lambda x, y: x + y
>>> f(2, 3)
4
>>> (lambda x: x**2)(3)
9
```

Nützlich, wenn einfache Funktionen als Parameter übergeben werden sollen.

```
1 = ["alice", "Bob"]
1.sort()
1.sort(lambda a,b: cmp(a.upper(), b.upper()))
```


Мар

Anwenden einer Funktion auf alle Elemente einer Liste:

```
>>> 1 = [1, 4, 81, 9]

>>> map(math.sqrt, 1)

[1.0, 2.0, 9.0, 3.0]

>>> map(lambda x: x * 2, 1)

[2, 8, 162, 18]
```

Wenn die Funktion mehr als einen Parameter nimmt, kann je zusätzlichem Parameter eine weitere Liste übergeben werden:

```
>>> map(math.pow, a, [1, 2, 3, 4])
[1.0, 16.0, 531441.0, 6561.0]
```


Filter

Wie Map, jedoch enthält die Egebnisliste nur die Elemente, welche wahr sind:

```
>>> 1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> filter(lambda x: x % 2, 1)
[1, 3, 5, 7, 9]
```


Zip

Zusammenfügen mehrer Sequenzen zu einer Liste von Tupeln:

```
>>> zip("ABC", "123")
[('A', '1'), ('B', '2'), ('C', '3')]
>>> zip([1, 2, 3], "ABC", "XYZ")
[(1, 'A', 'X'), (2, 'B', 'Y'), (3, 'C', 'Z')]
```


Iteratoren

Was passiert, wenn for auf einem Objekt aufgerufen wird?

```
for i in obj:

pass
```

- Auf obj wird die __iter__-Methode aufgerufen, welche einen Iterator zurückgibt
- Auf dem Iterator wird bei jedem Durchlauf next() aufgerufen
- Eine StopIteration-Ausnahme beendet die for-Schleife

Iteratoren

```
class Reverse:
    def __init__(self, data):
        self.data = data
        self.index = len(data)
    def __iter__(self):
        return self
    def next(self):
        if self.index == 0:
            raise StopIteration
        self.index = self.index - 1
        return self.data[self.index]
```

```
>>> for char in Reverse("spam"):
... print char,
...
m a p s
```

Generatoren

Einfache Weise, Iteratoren zu erzeugen:

- Werden wie Funktionen definiert
- yield-Statement, um Daten zurückzugeben und beim nächsten next-Aufruf dort weiterzumachen

```
def reverse(data):
    for index in range(len(data)-1, -1, -1):
        yield data[index]
```

```
>>> for char in reverse("spam"):
... print char,
...
m a p s
```


Generator-Audrücke

Ähnlich zu List Comprehensions kann man anonyme Iteratoren erzeugen:

```
>>> data = "spam"
>>> for c in (data[i] for i in
... range(len(data)-1, -1, -1)):
... print c,
...
m a p s
```


Dynamische Attribute

Erinnerung: Man kann Attribute von Objekten zur Laufzeit hinzufügen:

```
class Empty:
    pass

a = Empty()
a.spam = 42
a.eggs = 17
```

Und entfernen:

```
del a.spam
```


getattr, setattr

Man kann Attribute von Objekten als Strings ansprechen:

```
import math
f = getattr(math, "sin")
print f(x) # sin(x)
```

```
a = Empty()
setattr(a, "spam", 42)
print a.spam
```

Nützlich, wenn man z.B. Attributnamen aus User-Input oder Dateien liest.

wxPython

Fortgeschrittene Techniken

wxPython

Zusammenfassung und Ausblick

Grafische Benutzeroberflächen (GUIs)

Verbreitete GUI-Toolkits mit Bindings für (u.A.) Python:

- Tk: In Python's Standardbibliothek, simpel (ungeeignet für komplexe Anwendungen), veraltetes Aussehen
- GTK: z.B. Gnome Desktop, GIMP, Eclipse, ...
- QT: KDE Desktop, Skype, Scribus, ...

Alle werden auf den gängingen Betriebssystemen unterstützt.

 wxWidgets: Benutzt Windows-, Mac OS-Bibliotheken oder GTK → Look and Feel des jeweiligen Betriebssystems

Die wxPython-Demo

/usr/share/doc/wx2.8-examples/examples/wxPython/demo.py

Kurze Beschreibung aller Features mit Live-Demo und Beispiel-Code

Hello World

```
import wx
class MainFrame(wx.Frame):
   def __init__(self):
      wx.Frame.__init__(self, parent=None,
                         title="Hello World")
      self.Show(True)
app = wx.PySimpleApp()
frame = MainFrame()
app.MainLoop()
```

Erzeugt ein leeres Fenster mit Titel "Hello World".

Die Basis: Application und Top Level Windows

Application:

- Kern eines wx-Programms, betreibt die Hauptschleife
- Hauptschleife verarbeitet alle Events (Mausbewegung, Tastaturanschlag, ...)
- PySimpleApp: Für einfache Anwendungen mit nur einem Top Level Window

Zur Application gehört mindestens ein Top Level Window:

- Präsentiert dem Anwender die wichtigsten Datan und Kontrollelemente
- Wird das letzte Top Level Window geschlossen, beendet sich die Application (die Hauptschleife wird verlassen)

Das allgemeinste Widget: wx.Frame

- parent: Ist None f
 ür Top Level Windows
- id: Integer; Automatische Generierung mit -1 (zu bevorzugen)
- title: Fenstertitel, wird in Titelleiste angezeigt
- pos: Integer-Tupel (x, y); (-1, -1) lässt das unterliegende System entscheiden
- size: Integer-Tupel (width, height); (-1, -1) lässt das unterliegende System entscheiden

Widgets in ein Frame einfügen

Etwas Text in unserem Fenster:

Widgets in ein Frame einfügen

- Panel: Container, welcher beliebig viele weitere Widgets enthalten kann.
- Parent-Beziehungen legen fest, welches Widget in welchem Widget dargestellt wird

Nicht-editierbarer Text: StaticText

- label: Der darzustellende Text
- pos bezieht sich auf die Position innerhalb des Parent-Widgets
- style: wx.ALIGN_CENTER, wx.ALIGN_LEFT, wx.ALIGN_RIGHT
- Auch mehrzeiliger Text möglich
- Einige Methoden:
 - SetLabel: Text nachträglich ändern
 - SetForegroundColour, SetBackgroundColour
 - SetFont

Auf Benutzeraktionen reagieren

```
class MainFrame(wx.Frame):
   def __init__(self):
      wx.Frame.__init__(parent=None)
      panel = wx.Panel(parent=self)
      button = wx.Button(parent=panel,
                          label="&Click me")
      self.Bind(wx.EVT_BUTTON, self.on_button),
                button)
      self.Show(True)
   def on_button(self, evt):
      print "You pressed the button!"
```

Der Button kann mit Alt+C "geclickt" werden (wg. &C...)

Ereignisgesteuerte Programmierung

- Herkömmliche Programme laufen linear ab
- GUI-Programme: Anwender kann Bedienelemente zu beliebiger Zeit in beliebiger Reihenfolge bedienen
- GUI-Programm reagiert auf den Anwender
- → Hauptschleife wartet auf Events und leitet diese an passende Event-Handler weiter

MainFrame soll alle Button-Events vom Widget button mit der Methode onButton behandeln.

Events und die Widget-Hierarchie

```
class MainFrame(wx.Frame):
   def __init__(self):
      . . .
      self.Bind(wx.EVT_BUTTON,
                self.on_buttonF, button)
      button.Bind(wx.EVT_BUTTON,
                   self.on_buttonB, button)
   def on_buttonF(self, evt):
      print "You pressed the button!"
   def on_buttonB(self, evt):
      print "You pressed me!"
```


Events und die Widget-Hierarchie

- Widget generiert Event
- Hat das Widget passenden Event-Handler?
 - ja: behandle Event
 - nein: Sende Event an das Parent-Widget
- Hat das Parent-Event passenden Event-Handler? . . .
- → Nur onButtonB wird ausgeführt!

Behandeltes Event wird weiter propagieren mit Skip:

```
def on_buttonB(self, evt):
    print "You pressed me!"
    evt.Skip()
```

ightarrow onButtonB und onButtonF werden ausgeführt

Widgets anordnen mit Sizern

Widgets per Hand anordnen hat Nachteile:

- Unpraktikabel für viele Widgets
- Widgets haben für unterschiedliche Standard-Schriften unterschiedlieche Ausmaße
- Muss angepasst werden, wenn die Fenstergröße verändert wird

\rightarrow Sizer

- Nehmen mehrere Widgets auf
- Ordnen sie nach vorgegebenen Regeln in einem Panel an
- Ordnen sie automatisch neu

Widgets anordnen mit Sizern

```
# Sizer erstellen:
panel = wx.Panel(parent=self)
box = wx.BoxSizer(wx.HORIZONTAL)
panel.SetSizer(box)

# Widgets einfuegen:
button = wx.Button(parent=panel, label="Spam")
box.Add(button, proportion=1, flag=wx.CENTER)
```

Es können beliebig viele Widgets mit Add in den Sizer eingefügt werden, jedes mit eigenen Platzierungs-Regeln.

Widgets anordnen mit Sizern

```
Add(widget, proportion=0, flag=0, border=0)
```

- proportion: Verhältnis, in dem der freie Platz zwischen Widgets aufgeteilt wird (nur bei BoxSizern.)
- flag: Bestimmt Ausrichtung dieses Wigets und seines Rahmens:
 - wx.ALIGN_TOP, wx.ALIGN_BOTTOM, wx.ALIGN_LEFT, wx.ALIGN_RIGHT, wx.ALIGN_CENTER: Aurichtung des Widgets
 - wx.ALIGN_EXPAND: Widget wird gestreckt
 - wx.ALL, wx.TOP, wx.BOTTOM wx.LEFT, wx.RIGHT: An welchen Seiten ein Rahmen eingefügt werden soll
 - Flags können mit | kombiniert werden: flag=wx.ALIGN_CENTER|wx.ALL
- border: Rahmen (Freiraum) um das Widget in Pixeln

BoxSizer und GridSizer

BoxSizer(wx.HORIZONTAL) # oder wx.VERTICAL

BoxSizer: Widgets werden in einer horizontalen oder vertikalen Reihe angeordnet.

```
GridSizer(rows, cols, hgap, vgap)
```

GridSizer: Widgets werden in einem regelmäßigen Gitter angeordnet.

- rows, cols: Anzahl der Zeilen und Spalten an Widgets
- hgap, vgap: Horizontaler/Vertikaler Abstand zwischen Widgets in Pixeln

FlexGridSizer und GridBagSizer

```
grid = wx.FlexGridSizer(3, 3, 5, 5)
grid.AddGrowableRow(idx=2, proportion=1)
grid.AddGrowableCol(idx=2, proportion=1)
```

FlexGridSizer: Wie GridSizer, aber:

- Zeilen/Spalten mit unterschiedlichen Höhen/Breiten möglich
- Zeilen/Spalten können flexibel in Höhen/Breiten wachsen, ähnlich BoxSizer

GridBagSizer:

- Bei Add kann die Zelle angeben werden, in welche das Widget einfegügt wird
- Widgets können über mehrere Zellen gehen

Texteingaben mit TextCtrl

- automatisch Standard-Tastaturkürzel: Ctrl-x, Ctrl-v, . . .
- value: Der anfängliche Inhalt des Textfeldes
- style:
 - wx.TE_CENTER, wx.TE_LEFT, wx.TE_RIGHT: Ausrichtung des Textes
 - wx.TE_MULTILINE: Mehrzeilige Texteingabe zulassen
 - wx.TE_PASSWORD: Text wird durch Sternchen verborgen
 - ...

Texteingaben mit TextCtrl

Einige Methoden von TextCtrl:

- GetValue, SetValue: Textinhalt lesen/setzen
- GetStringSelection: Den markierten Textbereich lesen
- Clear: Textinhalt löschen

Auswahl mit Checkboxen

- Statusabfrage mit der Methode IsChecked
- Betätigung der Checkbox löst wx.EVT_CHECKBOX aus
- Liste von Checkboxen: Voneinander unabhängige Checkboxen, es können beliebig viele Boxen ausgewählt werden

Einzel-Auswahl mit RadioBox

Aus einer Liste von Optionen kann nur eine ausgewählt werden.

- Statusabfrage mit der Methode GetStringSelection
- Betätigung der Checkbox löst wx.EVT_RADIOBOX aus
- Mit zusätzlichen Parametern des Konstruktors kann Anzahl Zeilen/Spalten bestimmt werden:
 - majorDimension: Anzahl Zeilen oder Spalten
 - style: wx.RA_SPECIFY_COLS oder wx.RA_SPECIFY_ROWS

Auswahl mit ListBox

- Statusabfrage mit der Methode GetStringSelection oder GetSelections
- Betätigung der Listbox löst wx.EVT_LISTBOX aus
- Verschiedene Styles:
 - wx.LB_SINGLE: Anwender kann nur eine Option auf einmal auswählen
 - wx.EXTENDED: Anwender kann einen Bereich auswählen
 - wx.MULTIPLE: Anwender kann beliebig viele Optionen auswählen

Modale Dialoge

Modaler Dialog: Kleines Popup-Fenster, welches die restliche Anwendung blockiert.

```
msg = wx.MessageDialog(parent=panel,
            message="Are you ok?",
            caption="Question",
            style=wx.YES_NO|wx.ICON_QUESTION)
value = msg.ShowModal()
if value == wx.ID_YES:
   print "That's fine!"
else:
   print "I'm sorry."
```


MessageDialog

Stellt ein (optionales) Icon, einen Text und Buttons dar.

Style-Optionen:

- wx.YES_NO, wx.OK, wx.CANCEL: Dargestellte Buttons
- wx.ICON_ERROR, wx.ICON_INFORMATION, wx.ICON_QUESTION: Dargestelltes Icon

TextEntryDialog

Für kurze Eingaben vom Anwender.

Weitere Dialoge:

- wx.PasswordEntryDialog
- wx.SingleChoiceDialog (Stellt eine ListBox dar)

FileDialog

- Wichtigste Style-Optionen: wx.OPEN oder wx.SAVE
- Ähnlich: DirDialog für Verzeichnisse

Menüs und Menüleiste: MenuBar

Vorgehensweise für eine vollständige Menüleiste:

- MenuBar erstellen und dem Frame zuordnen
- Einzelne Menüs erstellen und der MenuBar hinzufügen
- Items zu den einzelnen Menüs hinzufügen
- Event Handler erstellen und den Items zuordnen

```
class MainFrame(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self, parent=None)
        menubar = wx.MenuBar()
        self.SetMenuBar(menubar)
```


Menüs in die Menüleiste einfügen

- Mnemonic Shortcuts mit & im Item-Namen
- Accelerator Shortcuts mit \t im Item-Namen
- Hilfetext wird in der Statuszeile angezeigt
- AppendSeparator() zum Unterteilen der Items mit einer Linie

Statuszeile: StatusBar

```
class MainFrame(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self, parent=None)
        self.CreateStatusBar()
        self.SetStatusText("Hallo Welt")
```

- Hilfetext der Menü-Items wird automatisch angezeigt
- Setzen des angezeigten Textes mit SetStatusText

Weitere Möglichkeiten

- Toolbars mit wx.ToolBar
- Tabs und gesplittete Fenster: wx.NoteBook, wx.SplitterWindow
- Flexible Listen und Tabellen: wx.ListCtrl, wx.grid.Grid
- Baumdarstellungen: TreeCtrl
- Schriften und Schrift-Auswahldialoge: wx.Font, wx.FontDialog
- Farben und Farb-Auswahldialoge: wx.Colour, wx.ColourDialog
- Umgang mit Bildern und Grafik; Zeichnen
- \bullet ... \rightarrow wxPython-Demo

Dokumentation:

- http://www.wxpython.org/onlinedocs.php
- Buch: wxPython in Action

Bekannte wxPython-Anwendungen

- wxGlade: GUI-Designer für wxWidgets
- Boa Constructor: Python-IDE und GUI-Designer für wxWidgets
- SPE: Python-IDE und GUI-Designer für wxWidgets
- DrPython: Python-IDE
- BitTorrent: Bittorrent-Client
- wxRemind: Graphisches Frontend für den Linux-Kalender Remind

Zusammenfassung und Ausblick

Fortgeschrittene Techniken

wxPython

Zusammenfassung und Ausblick

Zusammenfassung

Wir haben kennengelernt:

- verschiedene Datentypen (tw. "High Level")
- die wichtigsten Statements
- Funktionsdeklaration und -Benutzung
- Module und Pakete
- Fehler und Ausnahmen, Behandlung selbiger
- objektorientierte Programmierung
- einige häufig verwendete Standardmodule

Offene Punkte

Nicht behandelte, tw. fortgeschrittene Themen:

- Closures, Dekoratoren (Funktionswrapper)
- Metaklassen
- Weitere Standardmodule: Mail, WWW, XML, Zeit&Datum,
 ... → http://docs.python.org/lib/modindex.html
- Profiling, Debugging, Unittesting
- Third Party-Module: Grafik, Webprogrammierung,
 Datenbanken, ... → http://pypi.python.org/pypi

Web-Programmierung

- CGI-Scripte: Modul cgi aus Standardbibliothek
- Webframeworks: Django, TurboGears, Pylons, ...
- Templatesysteme: Cheetah, Genshi, Jinja, ...
- Content Management Systeme (CMS): Zope, Plone, Skeletonz, . . .
- Wikis: MoinMoin, . . .

The MoinMoin Wiki Engine

Overview

MoinMoin is an advanced, easy to use and extensible WikiEngine with a large community of users. Said in a few words, it is about collaboration on easily editable web pages. MoinMoin is Free Software licensed under the GPL.

- If you want to learn more about wiki in general, first read about WikiWikiWeb, then about WhyWikiWorks and the WikiNature.
- . If you want to play with it, please use the WikiSandBox.
- MoinMoinFeatures documents why you really want to use MoinMoin rather than another wiki engine.
- . MoinMoinScreenShots shows how it looks like. You can also browse this wiki or visit some other MoinMoinWikis.

NumPy + SciPy + Matplotlib = Pylab

Ein Ersatz für MatLab: Matritzenrechnung, numerische Funktionen, Plotten, ...


```
A = \mathsf{matrix} ([[1, 2], [2, 1]]); \ b = \mathsf{array} ([1, -1]) \mathsf{matshow}(A) (\mathsf{eigvals}, \mathsf{eigvecs}) = \mathsf{eig}(A) x = \mathsf{linalg}.\mathsf{solve}(A, b)
```


Und mehr...

- ipython: Eine komfortablere Python-Shell
- Scons: Ein Build-System ähnlich Make/autoconf/automake oder Ant
 - basiert auf Python, nutzt Python-Syntax
 - Built-in-support für viele Programmiersprachen, LaTeX, ...
 - plattformunabhängig
- Python und andere Programmiersprachen:
 - Jython: Python-Code in der Java VM ausführen
 - Ctypes: C-Libraries mit Python ansprechen (ab 2.5 in der stdlib)
 - SWIG: C- und C++ -Libraries mit Python ansprechen
- PIL: Python Imaging Library für Bildmanipulation

PyCologne

PyCologne: Python User Group Köln

- Trifft sich jeden zweiten Mittwoch im Monat am Rechenzentrum der Uni Köln
- URL: http://wiki.python.de/pyCologne

Viel Spaß mit

