Parallel Computing in TensorFlow

Shusen Wang

TensorFlow Strategies

- MirroredStrategy
- TPUStrategy
- MultiWorkerMirroredStrategy
- CentralStorageStrategy
- ParameterServerStrategy
- OneDeviceStrategy

Parallel Training CNN on MNIST

Find Devices

```
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
```

For example, my server has 1 CPU and 4 GPUs:

- /device:CPU:0
- /device:GPU:0
- /device:GPU:1
- /device:GPU:2
- /device:GPU:3

Mirrored Strategy

```
from tensorflow import distribute

strategy = distribute.MirroredStrategy()
```

Mirrored Strategy

```
from tensorflow import distribute

strategy = distribute.MirroredStrategy()
```

```
# number of processors
m = strategy.num_replicas_in_sync
print('Number of devices: {}'.format(m))
```

Number of devices: 4

```
import tensorflow as tf

def scale(image, label):
   image = tf.cast(image, tf.float32)
   image /= 255
   return image, label
```

```
import tensorflow as tf
def scale(image, label):
    image = tf.cast(image, tf.float32)
    image /= 255
    return image, label
import tensorflow datasets as tfds
datasets, info = tfds.load(name='mnist',
                           with info=True,
                            as supervised=True)
mnist train = datasets['train'].map(scale).cache()
mnist test = datasets['test'].map(scale)
```

```
BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 128
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * m

data_train = mnist_train.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
```

```
BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 128
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * m

data_train = mnist_train.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
data_test = mnist_test.batch(BATCH_SIZE)
```

Build Neural Network

```
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
with strategy.scope():
    model = keras.Sequential()
    model.add(Conv2D(32, 3, activation='relu', input shape=(28, 28, 1)))
    model.add(MaxPooling2D())
    model.add(Conv2D(64, 3, activation='relu'))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(64, activation='relu'))
    model.add(Dense(10, activation='softmax'))
```

Build Neural Network

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	26, 26, 32)	320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	13, 13, 32)	0
conv2d_1 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	5, 5, 64)	0
flatten (Flatten)	(None,	1600)	0
dense (Dense)	(None,	64)	102464
dense_1 (Dense)	(None,	10)	650

Total params: 121,930

Trainable params: 121,930 Non-trainable params: 0

Compile the Model

Train the Model

```
model.fit(data train, epochs=10)
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Evaluate the Model on Test Set

• Reduce: The server gets the result of reduce (e.g., sum, mean, count.)

- Reduce: The server gets the result of reduce (e.g., sum, mean, count.)
- All-Reduce: Every node gets a copies of the result of reduce.

- Reduce: The server gets the result of reduce (e.g., sum, mean, count.)
- All-Reduce: Every node gets a copies of the result of reduce.
 - E.g., all-reduce via reduce+broadcast.

- Reduce: The server gets the result of reduce (e.g., sum, mean, count.)
- All-Reduce: Every node gets a copies of the result of reduce.
 - E.g., all-reduce via reduce+broadcast.
 - E.g., all-reduce via all-to-all communication.

- Reduce: The server gets the result of reduce (e.g., sum, mean, count.)
- All-Reduce: Every node gets a copies of the result of reduce.
 - E.g., all-reduce via reduce+broadcast.
 - E.g., all-reduce via all-to-all communication.
 - E.g., ring all-reduce (this lecture.)

GPU:0

 \mathbf{g}_0

GPU:3

 \mathbf{g}_3

GPU:1

 \mathbf{g}_1

GPU:2

GPU:0

 \mathbf{g}_0

GPU: 3

g₃

GPU:1

 g_1

Goal: Compute $\mathbf{g} = \mathbf{g_0} + \mathbf{g_1} + \mathbf{g_2} + \mathbf{g_3}$ and send it to all the GPUs.

GPU:3

 \mathbf{g}_3

GPU:2

 $\begin{array}{c} \textbf{GPU:0} \\ \textbf{g}_0 \\ \\ \textbf{GPU:1} \\ \\ \textbf{g}_0 + \textbf{g}_1 \\ \end{array}$

GPU:3

 \mathbf{g}_3

GPU:2

GPU:0

 \mathbf{g}_0

GPU:3

GPU:0

 \mathbf{g}_0

GPU:3

 \mathbf{g}_3

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

GPU:0

 \mathbf{g}_0

GPU:1

 $g_0 + g_1$

GPU:0

 \mathbf{g}_0

GPU:3

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2 + \mathbf{g}_3$$

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

GPU:2

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

$$g_0 + g_1$$

GPU:0

 \mathbf{g}_0

GPU:3

$$\mathbf{g} = \mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2 + \mathbf{g}_3$$

GPU:1

$$g_0 + g_1$$

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

GPU:0 g GPU:1 g₀ + g₁

GPU:3

g

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

GPU:0
g
GPU:1
g

GPU:3

g

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

GPU:0

GPU:3

g

$$\mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_2$$

Ring All-Reduce (Naïve Approach)

GPU:0

g

GPU:3

g

Ring All-Reduce (Naïve Approach)

GPU:0

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \mathbf{g}$.

GPU:3

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \mathbf{g}$.

GPU:1

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \mathbf{g}$.

GPU:2

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \mathbf{g}$.

What is wrong with the naïve approach?

- Most computer networks are idle.
- Communication time: $\frac{md}{b}$. (Ignore latency.)
 - m: number of GPUs.
 - *d*: number of parameters.
 - b: network bandwidth.

GPU:3

GPU:0

GPU:1

GPU:2

GPU:0

$$\mathbf{g}_0 = [\mathbf{a}_0; \ \mathbf{b}_0; \ \mathbf{c}_0; \ \mathbf{d}_0]$$

GPU:1

$$\mathbf{g}_1 = [\mathbf{a}_1; \ \mathbf{b}_1; \ \mathbf{c}_1; \ \mathbf{d}_1]$$

GPU:2

$$\mathbf{g}_2 = [\mathbf{a}_2; \ \mathbf{b}_2; \ \mathbf{c}_2; \ \mathbf{d}_2]$$

GPU:3

$$\mathbf{g}_3 = [\mathbf{a}_3; \ \mathbf{b}_3; \ \mathbf{c}_3; \ \mathbf{d}_3]$$

GPU:0	a ₀	b ₀	c ₀	d ₀
GPU:1		b ₁		d ₁
GPU:2	\mathbf{a}_2	b ₂	c ₂	\mathbf{d}_2
GPU:3	a ₃	b ₃	c ₃	d ₃

GPU:0

a₀

 $\mathbf{b}_0 \mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3$

 $|\mathbf{c}_0|$ $|\mathbf{c}_2|$ $|\mathbf{c}_3|$

 $|\mathbf{d}_0|$ $|\mathbf{d}_3|$

GPU:1

 $\begin{vmatrix} \mathbf{a}_0 & \mathbf{a}_1 \end{vmatrix}$

 $|\mathbf{b}_1|$

 $\mathbf{c_0} \mathbf{c_1} \mathbf{c_2} \mathbf{c_3}$

 $\begin{vmatrix} \mathbf{d}_0 & \mathbf{d}_1 \end{vmatrix} = \begin{vmatrix} \mathbf{d}_3 & \mathbf{d}_3 \end{vmatrix}$

GPU:2

 $\begin{vmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 \end{vmatrix}$

 $\mathbf{b_1} \mathbf{b_2}$

c₂

 $\mathbf{d}_0 \mathbf{d}_1 \mathbf{d}_2 \mathbf{d}_3$

GPU:3

 $\begin{vmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{vmatrix}$

 $\begin{vmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{vmatrix}$

 \mathbf{c}_2 \mathbf{c}_3

 \mathbf{d}_3

 $|\mathbf{b_0}|\mathbf{b_1}|\mathbf{b_2}|\mathbf{b_3}|$ GPU: 0 \mathbf{d}_0 \mathbf{d}_3 \mathbf{c}_2 $\mathbf{a}_2 \mathbf{a}_3$ $\mathbf{b_0} \mathbf{b_1} \mathbf{b_2} \mathbf{b_3}$ GPU:1 $\mathbf{d_0} \mathbf{d_1}$ \mathbf{d}_3 $\mathbf{a}_0 | \mathbf{a}_1$ GPU:2 $|\mathbf{b}_1|\mathbf{b}_2$ $|\mathbf{c}_2|$ $\mathbf{a}_0 | \mathbf{a}_1 |$ \mathbf{a}_2 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$ $|\mathbf{b}_1|\mathbf{b}_2|\mathbf{b}_3$ GPU:3 $\mathbf{a}_0 | \mathbf{a}_1$ $\mathbf{a}_2 \mathbf{a}_3$

GPU: 0 $\mathbf{b_0} \mathbf{b_1} \mathbf{b_2} \mathbf{b_3}$ \mathbf{d}_0 \mathbf{d}_3 $|a_0|a_1|a_2|a_3|$ \mathbf{c}_2 $|\mathbf{b}_0|\mathbf{b}_1|\mathbf{b}_2|\mathbf{b}_3|$ GPU:1 $\mathbf{d}_0 \mathbf{d}_1$ \mathbf{d}_3 $\mathbf{a}_0 | \mathbf{a}_1$ \mathbf{c}_2 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$ GPU:2 $|\mathbf{b}_1|\mathbf{b}_2$ $\mathbf{a}_0 |\mathbf{a}_1|$ \mathbf{a}_2 GPU:3 $|\mathbf{b}_1|\mathbf{b}_2|\mathbf{b}_3$ $\mathbf{a}_0 \mathbf{a}_1$ $\mathbf{a}_2 \mathbf{a}_3$

GPU:0

 $\mathbf{b_0} \mathbf{b_1} \mathbf{b_2} \mathbf{b_3}$

 $|\mathbf{c}_0|$ $|\mathbf{c}_2|$ $|\mathbf{c}_3|$

GPU:1

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

 $\begin{vmatrix} \mathbf{b}_0 \end{vmatrix} \mathbf{b}_1 \begin{vmatrix} \mathbf{b}_2 \end{vmatrix} \mathbf{b}_3 \end{vmatrix}$

 $|\mathbf{c}_0| \mathbf{c}_1 |\mathbf{c}_2| \mathbf{c}_3$

 $\begin{vmatrix} \mathbf{d}_0 & \mathbf{d}_1 & \mathbf{d}_3 \end{vmatrix}$

GPU:2

$$\begin{vmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 \end{vmatrix}$$

 $\mathbf{b}_0 \mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3$

 $\mathbf{c}_0 \mid \mathbf{c}_1 \mid \mathbf{c}_2 \mid \mathbf{c}_3$

 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$

1

GPU: 3

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

 $\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3$

 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$

 $\mathbf{b_0} | \mathbf{b_1} | \mathbf{b_2} | \mathbf{b_3} |$ GPU: 0 $\mathbf{a}_2 \mathbf{a}_3$ $\mathbf{b}_0 \mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3$ GPU:1 $\mathbf{c_0} \mathbf{c_1} \mathbf{c_2}$ $\mathbf{d}_0 \mathbf{d}_1$ \mathbf{d}_3 **a**₂ **a**₃ $\mathbf{b_0} \mathbf{b_1} \mathbf{b_2} \mathbf{b_3}$ GPU:2 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$ $\mathbf{c}_0 | \mathbf{c}_1 | \mathbf{c}_2 |$ $\mathbf{a}_0 | \mathbf{a}_1$ \mathbf{a}_2 $|\mathbf{b}_1|\mathbf{b}_2|\mathbf{b}_3|$ GPU:3 $\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$ $\mathbf{a}_0 | \mathbf{a}_1$ $\mathbf{a}_2 \mathbf{a}_3$

GPU:0

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

$$\begin{vmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{c}_0 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{vmatrix}$$

GPU:1

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

$$\begin{vmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{c}_0 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{vmatrix}$$

$$\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$$

1

GPU:2

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

$$\mathbf{b}_0 \mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3$$

$$\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$$

GPU: 3

$$\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$$

$$\begin{vmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{vmatrix}$$

$$\mathbf{c_0} \mathbf{c_1} \mathbf{c_2} \mathbf{c_3}$$

$$\mathbf{d_0} \mathbf{d_1} \mathbf{d_2} \mathbf{d_3}$$

Comparisons

Naïve Algorithm

- Most computer networks are idle.
- Communication time: $\frac{md}{b}$.
 - m: number of GPUs.
 - *d*: number of parameters.
 - b: network bandwidth.

Efficient Algorithm

- No idle computer network.
- Communication time: $\frac{d}{b}$.
 - *d*: number of parameters.
 - b: network bandwidth.

Thank you!