

Features

- High resistance to heat and humidity
- Resistance to mechanical shock and pressure
- Accurate dimensions for automatic surface mounting
- Wide impedance range
- RoHS compliant* and halogen free**

MH Series High Current Chip Ferrite Beads

Electrical Specifications

Model Number	Impedance (Ω) at 100 MHz	RDC (mΩ) Max.	IDC (A) Max. 6.0	
MH4532-700Y	70 ±25 %	30		
MH4516-600Y	60 ±25 %	10	6.0	
MH4516-750Y	75 ±25 %	25	3.0	
MH4516-800Y	80 ±25 %	50	3.0	
MH4516-102Y	1000 ±25 %	150	1.5	
MH3261-260Y	26 ±25 %	40	3.0	
MH3261-601Y	600 ±25 %	100	2.0	
MH2029-070Y	7 ±25 %	30	3.0	
MH2029-100Y	10 ±25 %	10	6.0	
MH2029-300Y	30 ±25 %	25	3.0	
MH2029-400Y	40 ±25 %	20	5.0	
MH2029-600Y	60 ±25 %	20	5.0	
MH2029-800Y	80 ±25 %	40	3.0	
MH2029-101Y	100 ±25 %	100	2.0	
MH2029-121Y	120 ±25 %	100	2.0	
MH2029-151Y	150 ±25 %	100	2.0	
MH2029-221Y	220 ±25 %	100	2.0	
MH2029-301Y	300 ±25 %	200	1.0	
MH2029-401Y	400 ±25 %	100	2.0	
MH2029-471Y	470 ±25 %	200	1.0	
MH2029-601Y	600 ±25 %	200	1.0	
MH1608-100Y	10 ±25 %	100	6.0	
MH1608-300Y	30 ±25 %	60	3.0	
MH1608-600Y	60 ±25 %	40	3.0	
MH1608-800Y	80 ±25 %	40	3.0	
MH1608-101Y	100 ±25 %	40	3.0	
MH1608-121Y	120 ±25 %	100	2.0	
MH1608-151Y	150 ±25 %	100	2.0	
MH1608-221Y	220 ±25 %	100	2.0	
MH1608-301Y	300 ±25 %	200	1.0	
MH1608-471Y	470 ±25 %	200	1.0	
MH1608-601Y	600 ±25 %	200	1.0	

General Specifications
Operating Temperature
Storage Temperature55 °C to +125 °C
Storage Condition
+40 °C max. at 70 % RH
Reflow Soldering 230 °C, 50 sec. max. Resistance to Soldering Heat
+260 °C, 5 seconds
Rated CurrentBased on max
temperature rise of +40 °C
Terminal Strength (Force "F" applied for 30 seconds)
4532 Series1.5 F (Kg)
4516 Series1.0 F (Kg)
3261 Series
2029 Series
Materials
Core MaterialFerrite Internal ConductorAg or Ag/Pd TerminalAg/Ni/Sn

^{*} RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

^{**} Bourns follows the prevailing definition of "halogen free" in the industry. Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (Cl) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (Cl) content is 1500 ppm or less.

Applications

■ Power supply lines

FREQUENCY (MHz)

- IC power lines
- Signal lines

MH Series High Current Chip Ferrite Beads **Electrical Specifications (continued)** MH 4532- 700Y MH 4516- 600Y MH 4516- 750Y 1000 1000 1000 IMPEDANCE(Ω) 100 100 IMPEDANCE(\alpha) = IMPEDANCE (\omega) 100 1000 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) MH 4516- 800Y MH 3261- 260Y MH 4516- 102Y 1000 3000 2500 $\mathsf{IMPEDANCE}(\Omega)$ 2000 IMPEDANCE(Ω) IMPEDANCE(Ω) 1500 1000 500 1000 1000 0.1 FREQUENCY(MHz) FREQUENCY (MHz) FREQUENCY (MHz) MH 3261- 601Y MH 2029- 070Y MH 2029- 100Y 800 600 IMPEDANCE(\arrangle) IMPEDANCE(Ω) IMPEDANCE(\alpha) 200 0.1

FREQUENCY (MHz)

FREQUENCY (MHz)

BOURNS

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BOURNS

BOURNS®

Electrical Specifications (continued)

Equivalent Circuit

Recommended Soldering

BOURNS®

Product Dimensions

Recommended Land Pattern

Series	Α	В	С	D	G	н	I
4532	$\frac{4.5 \pm 0.2}{(.177 \pm .008)}$	$\frac{3.2 \pm 0.2}{(.126 \pm .008)}$	$\frac{1.5 \pm 0.2}{(.059 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	3.0 (.118)	3.0 (.118)	<u>1.5</u> (.059)
4516	$\frac{4.5 \pm 0.2}{(.177 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	3.0 (.118)	1.4 (.055)	1.5 (.059)
3261	$\frac{3.2 \pm 0.2}{(.126 \pm .008)}$	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	1.1 ± 0.2 (.043 ± .008)	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	<u>2.0</u> (.079)	1.4 (.053)	<u>1.1</u> (.043)
2029	$\frac{2.0 \pm 0.2}{(.079 \pm .008)}$	$\frac{1.2 \pm 0.2}{(.047 \pm .008)}$	$\frac{0.9 \pm 0.2}{(.035 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	1.0 (.040)	1.0 (.040)	1.0 (.040)
1608	$\frac{1.6 \pm 0.2}{(.063 \pm .008)}$	$\frac{0.8 \pm 0.2}{(.031 \pm .008)}$	$\frac{0.8 \pm 0.2}{(.031 \pm .008)}$	$\frac{0.5 \pm 0.2}{(.020 \pm .008)}$	0.7 (.028)	0.7 (.028)	0.7 (.028)

Reel Dimensions

Series	Pcs. per Reel	Gross Weight (g)	D	E	G	Т
4532	1,000	170	<u>12.0</u> (.472)	<u>8.0</u> (.315)	<u>14.0 + 0</u> (.551 + 0)	<u>16.5</u> (.650)
4516	2,000	180	<u>12.0</u> (.472)	<u>8.0</u> (.315)	<u>14.0 + 0</u> (.551 + 0)	<u>16.5</u> (.650)
3261	3,000	150	<u>8.0</u> (.315)	<u>4.0</u> (.157)	10.0 + 0 (.394 + 0)	<u>12.5</u> (.492)
2029	4,000	120	8.0 (.315)	<u>4.0</u> (.157)	<u>10.0 + 0</u> (.394 + 0)	<u>12.5</u> (.492)
1608	4,000	90	8.0 (.315)	<u>4.0</u> (.157)	$\frac{10.0 + 0}{(.394 + 0)}$	<u>12.5</u> (.492)