2191.
$$\int_{a}^{b} \frac{dx}{x} \quad (0 < a < b).$$

2192. Вычислить интеграл Пуассона

$$\int_{b}^{\pi} \ln (1-2\alpha \cos x + \alpha^2) dx$$

при: a) $|\alpha| < 1$; б) $|\alpha| > 1$.

У к а з а н н е. Воспользоваться разложением многочлена $\alpha^{2n}-1$ на квадратичные множители.

2193. Пусть функцин f(x) и $\phi(x)$ непрерывны на $\{a, b\}$. Доказать, что

$$\lim_{\max |\Delta x_i| \to 0} \sum_{i=0}^{n-1} f(\xi_i) \varphi(\theta_i) \Delta x_i = \int_a^b f(x) \varphi(x) dx,$$

THE $x_i \leq \xi_i \leq x_{i+1}, x_i \leq \theta_i \leq x_{i+1} \ (i = 0, 1, ..., n-1)$ H $\Delta x_i = x_{i+1} - x_i \ (x_0 = a, x_n = b).$

2193. 1. Пусть f(x) ограничена и монотонна на [0, 1]. Доказать, что

$$\int_{0}^{1} f(x) dx - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = O\left(\frac{1}{n}\right).$$

2193.2. Пусть функция f(x) ограничена и выпукла сверху (см. 1312) на сегменте $\{a, b\}$. Доказать, что

$$(b-a)\frac{f(a)+f(b)}{2} \leq \int_a^b f(x) dx \leq (b-a)f\left(\frac{a+b}{2}\right).$$

2193.3. Пусть $f(x) \in C^{(3)}$ [1, $+\infty$) и f(x) > 0, f''(x) > 0, f''(x) < 0 при $x \in [1, +\infty)$. Доказать, что

$$\sum_{k=1}^{n} f(k) = \frac{1}{2} f(n) + \int_{1}^{n} f(x) dx + O(1)$$

при $n \to \infty$.

2193.4. Пусть $f(x) \in C^{(1)}[a, b]$ н

$$\Delta_n = \int_a^b f(x) dx - \frac{b-a}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right).$$