Chapter 4.1, Problem 1E

Step-by-step solution

```
Step 1 of 12
```

Let V be the set of all ordered pairs of real numbers, addition and scalar multiplication operations on $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ are defined as follows. $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$ (1) $k\mathbf{u} = (0, ku_2)$ (2)

Step 2 of 12

Step 3 of 12

It is need to explain the reason for V is closed under addition and scalar multiplication.

and u_1, u_2, v_1, v_2 are real numbers, so $u_1 + v_1, u_2 + v_2$ and ku_2 are also real numbers.

On V, the addition and scalar multiplication are defined as components of real numbers

Step 4 of 12

 $=(u_1+v_1,u_2+v_2)\in V$ Since $u_1,u_2,v_1,v_2\in\Box$

Therefore, V is closed under addition.

So $u_1 + v_1, u_2 + v_3 \in \square$

Step 5 of 12

Step 6 of 12

Step 7 of 12

Step 8 of 12

Step 9 of 12

Step 10 of 12

By using (2)

Step 11 of 12

Step 12 of 12

Axiom 4: There is an object $\mathbf{0}$ in V, called zero vector for V, such that

(a) Let $\mathbf{u} = (-1, 2)$, $\mathbf{v} = (3, 4)$, and k = 3

As $\mathbf{u} = (-1, 2)$ and $\mathbf{v} = (3, 4)$, we have that, $\mathbf{u} + \mathbf{v} = (-1, 2) + (3, 4)$

=(-1+3,2+4) [From (1), $(u_1,u_2)+(v_1,v_2)=(u_1+v_1,u_2+v_2)$]

Need to compute $\mathbf{u} + \mathbf{v}$ and $k\mathbf{u}$.

=(2,6)

And

 $k\mathbf{u} = 3(-1,2)$

=(0,3(2)) [From (2), $k(u_1,u_2)=(0,ku_2)$]

=(0,6)

Therefore, $\mathbf{u} + \mathbf{v} = (2,6)$ and $k\mathbf{u} = (0,6)$.

(b)

Thus, $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2) \in \square$ and $k\mathbf{u} = (0, ku_2) \in \square$. By general real numbers properties, it is clear that V is closed under addition and scalar multiplication.

(C)

Addition operation on V is defined as, $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$ Need to find the axioms hold for V by using the addition operation.

Let $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2)$ **Axiom 1:** Since $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2) \in V$ So

 $\mathbf{u} + \mathbf{v} = (u_1, u_2) + (v_1, v_2)$ (Since the set of real numbers are closed)

Axiom 2: Let $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2) \in V$

Then

= v + u

 $\mathbf{u} + \mathbf{v} = (u_1, u_2) + (v_1, v_2)$

 $=(u_1+v_1,u_2+v_2)$

 $=(v_1+u_1,v_2+u_2)$

 $=(u_1+(v_1+w_1),u_2+(v_2+w_2))$

 $=(u_1,u_2)+(v_1+w_1,v_2+w_2)$

 $\mathbf{0} + \mathbf{u} = (0,0) + (u_1, u_2)$

 $=(u_1,u_2)$

= u

So $-u_1, -u_2 \in \square$

 $=(0+u_1,0+u_2)$

Therefore, $\mathbf{0}$ is the additive identity of V.

And since u_1, u_2 are real numbers.

 $\mathbf{u} + (-\mathbf{u}) = (u_1, u_2) + (-u_1, -u_2)$

=(0,0)

=0

 $=(u_1-u_1,u_2-u_2)$

 $k(\mathbf{u} + \mathbf{v}) = (0, k(u_2 + v_2))$ By using (2)

 $=(0,ku_2)+(0,kv_2)$

 $=(0, ku_2 + kv_2)$ Simplifying

 $= k\mathbf{u} + k\mathbf{v}$ By using (2)

 $=(0,ku_2+mu_2)$ Simplifying

 $=(0,ku_2)+(0,mu_2)$

Let $\mathbf{u} = (u_1, u_2) \in V$ and k, m are any scalars

By the definition in (2), $m\mathbf{u} = (0, mu_2)$

 $=(0,(km)u_2)$

 $=(km)(\mathbf{u})$

 $k(m\mathbf{u}) = (0, k(mu_2))$ By using (2)

 $=(0,kmu_2)$ Simplification

 $= k\mathbf{u} + m\mathbf{u}$

(Since the set of real numbers are commutative) $=(v_1,v_2)+(u_1,u_2)$

Therefore, the commutative property holds on V. Axiom 3: Let $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2), \mathbf{w} = (w_1, w_2) \in V$

Then $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = ((u_1, u_2) + (v_1, v_2)) + (w_1, w_2)$ $=(u_1+v_1,u_2+v_2)+(w_1,w_2)$ $=((u_1+v_1)+w_1,(u_2+v_2)+w_2)$ (Since the set of real numbers are Associative)

 $=(u_1,u_2)+((v_1,v_2)+(w_1,w_2))$ $= \mathbf{u} + (\mathbf{v} + \mathbf{w})$ Therefore, associative law is satisfied in V.

Axiom 5: For each $\mathbf{u} \in V$, there is an object $-\mathbf{u} \in V$, called negative of \mathbf{u} such that u + (-u) = (-u) + u = 0

Thus, for every $\mathbf{u} \in V$, there is an additive inverse $-\mathbf{u} \in V$.

Now

Need to show that axioms 7,8, 9 are also satisfied in V. **Axiom 7**: For every, $\mathbf{u}, \mathbf{v} \in V$ and k is any scalar, $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ Let $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2) \in V$ and k be any scalar Then

(d)

Hence $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$

Axiom 8: For every, $\mathbf{u} \in V$ and k, m are any scalars, $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ Let $\mathbf{u} = (u_1, u_2) \in V$ and k, m are any scalars $(k+m)\mathbf{u} = (0,(k+m)u_2)$ By using (2)

Hence $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ **Axiom 9**: For every $\mathbf{u} \in V$ and k, m are any scalars, $k(m\mathbf{u}) = (km)\mathbf{u}$

Hence $k(m\mathbf{u}) = (km)\mathbf{u}$ Thus, V satisfies the axioms 7, 8, and 9.

Now

Need to show that axiom 10 is failed on V. **Axiom 10:** For every $u \in V$, lu = uLet $\mathbf{u} = (u_1, u_2) \in V$ By definition in (2),

 $=(0,1u_2)$ [From (2), $k(u_1,u_2)=(0,ku_2)$] $=(0,u_2)$

 $1\mathbf{u} = 1(u_1, u_2)$

 $\neq (u_1, u_2)$ Hence the Axiom 10 does not hold on V. Therefore, V is not a Vector Space under the given operations.

(e)

Chapter 4.1, Problem 2E

Step-by-step solution

```
Step 1 of 8
```

Let V be the set of all ordered pairs of real numbers and addition and scalar multiplication defined as shown below:

 $\mathbf{u} = (u_1, u_2) \text{ and } \mathbf{v} = (v_1, v_2)$

$$\mathbf{u} = (u_1, u_2)$$
 and $\mathbf{v} = (v_1, v_2)$
 $\mathbf{u} + \mathbf{v} = (u_1 + v_1 + 1, u_2 + v_2 + 1)$ and $k\mathbf{u} = (ku_1, ku_2)$

Step 2 of 8

(a)

Let $\mathbf{u} = (0,4)$ and $\mathbf{v} = (1,-3)$

Now find the vector $\mathbf{u} + \mathbf{v}$.

 $\mathbf{u} + \mathbf{v} = (0,4) + (1,-3)$ given

$$= (0+1+1,4-3+1)$$
 definition
= (2,2) simplification

Therefore, $\mathbf{u} + \mathbf{v} = (2,2)$.

Now find the vector $k\mathbf{u}$, here k=2

 $2\mathbf{u} = 2(0,4)$

=(0,8)Therefore, $2\mathbf{u} = (0,8)$

Step 3 of 8

(b)

Show that $(0,0) \neq \mathbf{0}$. That is, the vector (0,0) is not identity element in V.

Suppose (0,0) is identity element in V , then it should be satisfies

 $(u_1,u_2)+(0,0)=(u_1,u_2).$

Now consider
$$(u_1, u_2) + (0, 0)$$

 $(u_1, u_2) + (0, 0) = (u_1 + 0 + 1, u_2 + 0 + 1)$ (Definition)

$$= (u_1 + 1, u_2 + 1)$$

$$\neq (u_1, u_2)$$

Therefore, (0,0) is not an identity element in V. Hence, $(0,0) \neq 0$

Step 4 of 8

Show that (-1,-1) = 0.

(c)

Suppose (-1,-1) is identity element in $\mathcal V$, then it should be satisfies

That is, (-1,-1) is the identity element in V.

 $(u_1,u_2)+(-1,-1)=(u_1,u_2).$

Now consider
$$(u_1, u_2) + (-1, -1)$$
.
$$(u_1, u_2) + (-1, -1) = (u_1 - 1 + 1, u_2 - 1 + 1) \qquad \text{(Definition)}$$

 $=(u_1,u_2)$

Hence, (-1,-1)=0

Therefore, (-1,-1) is the identity element in V.

Comments (1)

Anonymous

$(-1,-1) \rightarrow (1,1)$

(d)

Define $-\mathbf{u}$ as $-\mathbf{u} = (-u_1 - 2, -u_2 - 2)$ such that $\mathbf{u} + (-\mathbf{u}) = (u_1, u_2) + (-u_1 - 2, -u_2 - 2)$

=
$$(u_1 - u_1 - 2 + 1, u_2 - u_2 - 2 + 1)$$
 Deifinition
= $(-1, -1)$

$$= 0 From part (c)$$
sider $(-\mathbf{u}) + \mathbf{u}$

 $=(-u_1-2+u_1+1,-u_2-2+u_2+1)$

Now consider $(-\mathbf{u}) + \mathbf{u}$. $\mathbf{u} + (-\mathbf{u}) = (-u_1 - 2, -u_2 - 2) + (u_1, u_2)$

$$= (-1, -1)$$
$$= 0$$

Therefore, $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$

Step 6 of 8

Step 7 of 8

Deifinition

From part (c)

Step 5 of 8

Consider $(k+m)\mathbf{u}$. $(k+m)\mathbf{u} = (1+2)(3,4)$

(e)

=3(3,4)=(9,12)

Let k = 1, m = 2 and $\mathbf{u} = (3, 4)$

Consider ku + mu $k\mathbf{u} + m\mathbf{u} = 1(3,4) + 2(3,4)$

$$= (10,13)$$
Therefore, $(k+m)\mathbf{u} \neq k\mathbf{u} + m\mathbf{u}$

=(3,4)+(6,8)

=(3+6+1,4+8+1)

Step 8 of 8

 $k(\mathbf{u} + \mathbf{v}) = 2((3,4) + (-1,5))$

=2(3-1+1,4+5+1)

Let $k = 2, \mathbf{u} = (3, 4)$ and $\mathbf{v} = (-1, 5)$.

=2(3,10)

Consider $k(\mathbf{u} + \mathbf{v})$

=
$$(6,20)$$

Consider $k\mathbf{u} + k\mathbf{v}$
 $k\mathbf{u} + k\mathbf{v} = 2(3,4) + 2(-1,5)$

=(6,8)+(-2,10)

=(6-2+1,8+10+1)=(5,19)

Therefore, $k(\mathbf{u} + \mathbf{v}) \neq k\mathbf{u} + k\mathbf{v}$.

Therefore, the set V does not satisfies the vector space axioms $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ and

 $k(\mathbf{u}+\mathbf{v})=k\mathbf{u}+k\mathbf{v}$.

Chapter 4.1, Problem 11E

Step-by-step solution

```
Step 1 of 11
```

Consider that V be the set of all pairs of real numbers of the form (1,x) with the operations (1, y) + (1, y') = (1, y + y') and k(1, y) = (1, ky).

Then, $V = \{(1, x) : x \in \}$.

The objective is to determine whether the set V equipped with the given operations is a vector space or not.

Step 2 of 11

Let $u = (1, x_1)$ and $v = (1, x_2) \in V$. Then,

Axiom 1:

 $u+v=(1,x_1)+(1,x_2)$

$$= (1, x_1 + x_2)$$
 By definition.

$$\in V$$
 As if $x_1 \in x_2$

$$\in V \qquad \text{As if } x_1 \in \ , x_2 \in \ , \text{then } x_1 + x_2 \in \ .$$
 So, if u and $v \in V$, then $u + v \in V$.

Step 3 of 11

Let $u = (1, x_1)$ and $v = (1, x_2) \in V$. Then,

Axiom 2:

 $u+v=(1,x_1)+(1,x_2)$ = $(1, x_1 + x_2)$ By definition. = $(1, x_2 + x_1)$ The set is commutative.

$$= (1, x_1 + x_2)$$

 $=(1,x_2)+(1,x_1)$ By definition. = v + u

Thus, u + v = v + u, i.e. the commutative property holds.

Step 4 of 11

Let $u = (1, x_1), v = (1, x_2),$ and $w = (1, x_3) \in V$. Then,

= $(1, x_1 + x_2) + (1, x_3)$ By definition.

 $=(1,(x_1+x_2)+x_3)$ By definition.

$(u+v)+w=((1,x_1)+(1,x_2))+(1,x_3)$

Step 5 of 11

Step 6 of 11

is associative.

Axiom 3:

= $(1,x_1)+((1,x_2)+(1,x_3))$ By definition.

 $=(1, x_1 + (x_2 + x_3))$ The set

So,
$$(u+v)+w=v+(u+w)$$
, i.e. the associative property holds.

Axiom 4:

 $\Rightarrow y = 0$

= u + (v + w)

Let $u = (1, x) \in V$ and $0 = (1, y) \in V$ such that

(1,x)+(1,y)=(1,x)

u+0=u

(1, x + y) = (1, x) $\Rightarrow x + y = x$

So, 0 = (1,0) is the zero element in V.

Axiom 5:

Let $u = (1, x) \in V$ and $v = (1, y) \in V$ such that

(1,x)+(1,y)=(1,0)(1, x + y) = (1, 0)

u + v = 0

 $\Rightarrow x + y = 0$ $\Rightarrow y = -x$

So, v = (1, -x) is the inverse element of u in V.

Step 7 of 11

Step 8 of 11

Step 9 of 11

Step 10 of 11

Step 11 of 11

By definition

=(1,kx)+(1,mx) By definition

$\in V$ So, if $u \in V$ and $k \in$, then $ku \in V$.

Axiom 6:

ku = k(1, x)

=(1,kx)

Let $u = (1, x) \in V$ and $k \in$. Then,

By definition.

Axiom 7: Let $u = (1, x), v = (1, y) \in V$ and $k \in$. Then,

=(1,kx+ky) By definition =(1,kx)+(1,ky) By definition

=
$$k(1,x)+k(1,y)$$
 By definition
= $ku+kv$

k(u+v) = k((1,x)+(1,y))

=k(1,x+y) By definition

So, k(u+v)=ku+kv.

(k+m)u = (k+m)(1,x)

=(1,(k+m)x)

=(1,kx+mx)

Let $u = (1, x) \in V$ and $k, m \in$. Then,

Axiom 8:

= k(1,x) + m(1,x) By definition

= ku + mu

So,
$$(k+m)u = ku + mu$$
.

Axiom 9:

k(mu) = k(m(1,x))

$$= (1, kmx)$$

$$= km(1, x)$$
 By definition

= k(1, mx) By definition

Let $u = (1, x) \in V$ and $k, m \in$. Then,

=(km)u

So, k(mu)=(km)u.

Let $u = (1, x) \in V$. Then, 1u = 1(1, x)

Axiom 10:

=(1,1x)By definition =(1,x)

=u

So, 1u = u.

Thus, all the above axioms satisfy all the properties of a vector space.

Therefore, the set (V,+,.) is a **vector space** with the given operations.