

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

For this question, let μ and ν be probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

Lemma 1. The function $x \mapsto \nu(B-x)$ is $\mathcal{B}(\mathbb{R}^d)$ measurable for any $B \in \mathcal{B}(\mathbb{R}^d)$.

Proof. Let $B \in \mathcal{B}(\mathbb{R}^d)$ and $s(x) = \nu(B - x)$. Then,

$$s(x) = \int_{\mathbb{R}^d} \chi_{B-x} d\nu$$
$$= \int_{\mathbb{R}^d} \chi_B(y+x) d\nu(y).$$

The function $(x,y) \mapsto \chi_B(y+x)$ is a composition of a continuous function, $(x,y) \mapsto y+x$ and a measurable function $x \mapsto \chi_B(x)$. Hence the function $(x,y) \mapsto \chi_B(y+x)$ is $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R}^d)$ measurable, and so by Tonelli's theorem s is $\mathcal{B}(\mathbb{R}^d)$ measurable.

Lemma 2. The convolution measure $\mu \star \nu(B) = \int_{\mathbb{R}^d} \nu(B-x) \ d\mu(x)$ is well defined and finite.

Proof. Since $\mu \star \nu(B)$ is defined as an integral of a positive measurable function, the integral exists. Since $\nu(B-x) \leq 1$, we have $\mu \star \nu(B) \leq 1$.

Theorem 1. If there exists some bounded F such that $\mu \star \nu(F) = 1$, then there are bounded sets G and H such that $\mu(G) = 1$ and $\nu(H) = 1$. Similar results hold where "bounded" is replaced with "finite" or "countable".

Proof. Suppose that there exists a bounded set $F \in \mathcal{B}(\mathbb{R}^d)$ such that $\mu \star \nu(F) = 1$, but for any bounded set $B, \mu(B), \nu(B) < 1$. Then,

$$\mu \star \nu(F) = \int \nu(F - x) \ d\mu(x)$$

$$< \int 1 \ d\mu$$

$$= 1$$

since F - x is bounded for any x. This is a contradiction. Hence we must have that ν attains the value 1 on some bounded set.

By symmetry, μ must also take the value 1 on some bounded set.

An identical argument holds if "bounded" is replaced by "finite" or "countable".

Question 2

For this question, μ and ν are σ -finite positive measures on a measurable space (Ω, \mathcal{F}) .

Theorem 2. The following are equivalent:

- 1. μ and ν have exactly the same null sets.
- 2. $\mu \ll \nu$ and $\nu \ll \mu$.
- 3. There is an \mathcal{F} -measurable function g with $0 < g < +\infty$ such that $\nu(A) = \int_A g \ d\mu$ for all $A \in \mathcal{F}$.

Proof. First we prove $(1) \Rightarrow (2)$.

Assume that μ and ν have exactly the same null sets. Then if $\mu(A) = 0$, then $\nu(A) = 0$. That is $\nu \ll \mu$. Similarly, $\mu \ll \nu$.

Now we prove $(2) \Rightarrow (3)$.

Assume that $\nu \ll \mu$.

By the Radon-Nikodym Theorem, there is an \mathcal{F} -measurable function g such that $\nu(A) = \lambda(A) + \int_A g \ d\mu$, where λ is a measure mutually singular to μ . Suppose that $\mu(A) = 0$, then $\nu(A) = 0$ by assumption, hence $\lambda(A) = 0$. Thus $\lambda \ll \mu$ and $\lambda \perp \mu$, so $\lambda = 0$.

Suppose that $g = \infty$ only on a null set. Then we can modify g to g = 0 on this set since g is determined only up to μ -almost everywhere equivalence.

Suppose there is some set A with $\mu(A) > 0$ and $g(A) = {\infty}$.

Since ν is σ -finite, there exists B with $\nu(B) < \infty$ and $\nu(A \cap B) > 0$.

Hence $g(A \cap B) = \{\infty\}$, and we cannot have $\mu(A \cap B) = 0$ because then $\nu(A \cap B) = 0$.

But then $\nu(A \cap B) = \infty$, but this is a contradiction. Hence $g < \infty$ μ -almost everywhere.

Now suppose there is some set C with $\mu(C) > 0$ and $g(C) = \{0\}$. Hence $\nu(C) = 0$, but since $\mu \ll \nu$ this is a contradiction.

Now we prove that $(3) \Rightarrow (1)$.

Suppose that $\mu(A) = 0$. Then clearly since $\nu(A) = \int_A g \ d\mu(A)$, we have $\nu(A) = 0$.

Now suppose that $\nu(A) = 0$. Now,

$$\nu(A) \ge \frac{1}{n}\mu(A \cap g^{-1}([1/n, \infty))$$

Hence $\mu(A \cap g^{-1}([1/n, \infty)) = 0$. But since g > 0, we have

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap g^{-1}([1/n, \infty)).$$

Hence $\mu(A) = 0$. Thus μ and ν have the same null sets so (1) is proved.

Theorem 3. Suppose that μ is a σ -finite positive measure on (Ω, \mathcal{F}) . Then there is a finite positive measure ν on (Ω, \mathcal{F}) such that $\nu \ll \mu$ and $\mu \ll \nu$.

Proof. Suppose that $\{A_k\}_{k=1}^{\infty}$ is a disjoint sequence of sets with $A = \bigcup_k A_k$ and $0 < \mu(A_k) < \infty$. This can be chosen since μ is σ -finite.

Now define,

$$\nu(A) = \sum_{k=1}^{\infty} \frac{1}{2^k \mu(A_k)} \mu(A \cap A_k)$$

for $A \in \mathcal{F}$. This sum converges since each term is bounded by $1/2^k$, so the sum is bounded by a geometric series.

We wish to show that ν is a probability measure on (Ω, \mathcal{F}) and than $\mu \ll \nu$ and $\nu \ll \mu$.

Note that $\nu(\Omega) = 1$ and $\nu(\emptyset) = 0$.

Suppose that $\{B_k\}_{k=1}^{\infty}$ is a disjoint sequence of sets in \mathcal{F} . Then

$$\nu(\bigcup_{k} B_k) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2^j \mu(A_j)} \mu(B_k \cap A_j)$$

Then since this is a sum of positive numbers, we can change the order of summation by Tonelli's theorem,

$$\nu(\bigcup_{k} B_k) = \sum_{k=1}^{\infty} \nu(B_k).$$

Hence ν is countably additive, so is a measure on (Ω, \mathcal{F}) .

Now we wish to show that $\nu \ll \mu$. Suppose that $\mu(A) = 0$. Then clearly $\mu(A_k \cap A) = 0$ for all k, so $\nu(A) = 0$. Thus $\nu \ll \mu$.

Now to show that $\mu \ll \nu$, let $\nu(A) = 0$, then $\mu(A_k \cap A) = 0$ for all k. Hence,

$$\mu(A) = \sum_{k=1}^{\infty} \mu(A_k \cap A) = 0.$$

Thus $\mu \ll \nu$.

Question 3

For this question, X is a d-dimensional random vector with law μ and characteristic function $\hat{\mu}(u)$.

Lemma 3. The characteristic function of cX is $\hat{\mu}(cu)$, for any $c \in \mathbb{R}$.

Proof. This is a simple computation. By definition, the characteristic function of cX is

$$\mathbf{E}(e^{i\langle u,cX\rangle})$$

But since $\langle u, cX \rangle = \langle cu, X \rangle$, this is simply $\hat{\mu}(cu)$.

Theorem 4. If X has moments up to order n, then $\hat{\mu}$ is differentiable at 0 up to nth order, and $\frac{\partial^{\alpha}}{\partial u^{\alpha}}\hat{\mu}(u)|_{u=0} = i^{|\alpha|} \mathbf{E}(X^{\alpha})$ for multi-indices α , with $|\alpha| \leq n$.

Proof. Suppose that X has moments up to order n. Then we can say that,

$$\frac{\partial}{\partial u_i} \mathbf{E}(e^{i\langle u, X \rangle}) = i \mathbf{E}(X_j e^{i\langle u, X \rangle})$$

by the Dominated convergence theorem, since $\mathbf{E}(|X_j|) < \infty$. Hence, by induction,

$$\frac{\partial^{\alpha}}{\partial u^{\alpha}} \mathbf{E}(e^{i\langle u, X \rangle}) = i^{|\alpha|} \mathbf{E}(X^{\alpha} e^{i\langle u, X \rangle}).$$

for all multi-indices α with $|\alpha| \leq n$ by the Dominated convergence theorem. This shows that the derivative exists.

So we simply evaluate this at zero to obtain the required result. \Box

Now we let X be a random variable with Lebesgue density

$$f(x) = \frac{C}{(1+x^2)\log(e+x^2)}$$

for some normalising constant C > 0. Let $\hat{\mu}$ be the characteristic function of X.

Lemma 4. $\mathbf{E}(X)$ is not defined. That is, X does not have moments up to order

Proof. Note that

$$1 + x^2 \le 2x^2$$
$$\log(e + x^2) \le \log(2x^2)$$

for x > 2, hence

$$\frac{Cx}{(1+x^2)\log(e+x^2)} \ge \frac{C}{2x\log(2x^2)}$$

for x > 2. Thus the integral,

$$\int_{\lceil} 2, \infty) \frac{Cx}{(1+x^2) \log(e+x^2)} \; d\lambda(x)$$

where λ is Lebesgue measure, is bounded from below by

$$\int_{[}2,\infty)\frac{C}{2x\log(2x^2)}\ d\lambda(x).$$

We use the change of variable $u = \sqrt{2}x$ to compute this as

$$\frac{C}{2} \int_{\mathbb{I}} 2\sqrt{2}, \infty) \frac{1}{u \log(u)} \ d\lambda(u).$$

However the integrand has antiderivative $\log(\log(u))$, which is unbounded. Hence the integral is infinite.

Thus, the integral

$$\int_{\mathbb{R}} \frac{Cx}{(1+x^2)\log(e+x^2)} \ d\lambda(x)$$

is not defined.

So $\mathbf{E}(X)$ is not defined.

Lemma 5. $\hat{\mu}$ is differentiable at 0.

Proof. By definition,

$$\hat{\mu}(u) = \int_{\mathbb{R}} \frac{Ce^{iux}}{(1+x^2)\log(e+x^2)} \; d\lambda(x).$$

where λ is Lebesgue measure.

Using integration by parts, we rewrite this as

$$\hat{\mu}(u) = \int_{\mathbb{R}} \frac{iuCe^{iux}}{[(1+x^2)\log(e+x^2)]^2} \left[2x\log(e+x^2) + (1+x^2)\frac{2x}{e+x^2} \right] d\lambda(x)$$

If we differentiate the integrand with respect to u, we get

$$F(x) := iC \frac{e^{iux} - xue^{iux}}{[(1+x^2)\log(e+x^2)]^2} \left[2x\log(e+x^2) + (1+x^2)\frac{2x}{e+x^2} \right].$$

We wish to show that this is in $L^1(\mathbb{R},\lambda)$. Write F(x) as

$$F(x) = iC(F_1(x) + F_2(x) + F_3(x) + F_4(X)).$$

Where,

$$\begin{split} F_1(x) &:= \frac{2e^{iux}x\log(e+x^2)}{[(1+x^2)\log(e+x^2)]^2} \\ F_2(x) &:= \frac{-2x^2ue^{iux}\log(e+x^2)}{[(1+x^2)\log(e+x^2)]^2} \\ F_3(x) &:= \frac{2x(1+x^2)e^{iux}}{(e+x^2)[(1+x^2)\log(e+x^2)]^2} \\ F_4(x) &:= \frac{-2x^2(1+x^2)ue^{iux}}{(e+x^2)[(1+x^2)\log(e+x^2)]^2} \end{split}$$

So we can separately show that $F_1, F_2, F_3, F_4 \in L^1(\mathbb{R}, \lambda)$.

First, see that

$$|F_1(x)| \le 2 \frac{x}{(1+x^2)^2 \log(e+x^2)}$$

 $\le 2 \frac{x}{(1+x^2)^2}$

so $F_1 \in L^1(\mathbb{R}, \lambda)$.

Now,

$$|F_2(x)| \le 2u \frac{x^2}{(1+x^2)^2 \log(e+x^2)}$$

$$\le 2u \frac{x^2}{(1+x^2)^2}$$

$$\le 2u \frac{1}{1+x^2}.$$

So $F_2 \in L^1(\mathbb{R}, \lambda)$.

For F_3 ,

$$|F_3(x)| \le 2 \frac{x}{(e+x^2)(1+x^2)\log(e+x^2)^2}$$

 $\le 2 \frac{x}{(1+x^2)^2}$

So $F_3 \in L^1(\mathbb{R}, \lambda)$.

Now F_4 ,

$$|F_4(x)| \le 2u \frac{x^2}{(e+x^2)(1+x^2)\log(e+x^2)^2}$$

 $\le 2u \frac{1}{e+x^2}$

Hence $F_4 \in L^1(\mathbb{R}, \lambda)$.

Thus, $F \in L^1(\mathbb{R}, \lambda)$.

Hence, by the dominated convergence theorem, $\hat{\mu}'(u)$ exists, so $\hat{\mu}$ is differentiable at 0.

Question 4

For this question, μ is the binomial distribution Bin(n,p), and ν is the Poisson distribution with mean $\lambda > 0$.

Lemma 6. The characteristic function of a Bernoulli random variable with probability p is

$$1 - p + pe^{iu}$$

Proof. This is a simple computation, if X takes the value 1 with probability p and 0 with probability 1-p, then

$$\mathbf{E}(e^{iuX}) = 1 - p + pe^{iu}.$$

Lemma 7. $\hat{\mu}(u) = (1 - p + pe^{iu})^n$.

Edward McDonald

Proof. A sum of n independent Bernoulli random variables with probability p is $\operatorname{Bin}(n,p)$ distributed. So,

$$\mu = \operatorname{Bern}(p)^{\star n}$$

Hence,

$$\hat{\mu}(u) = (1 - p + pe^{iu})^n.$$

Lemma 8. $\hat{\nu}(u) = \exp(\lambda(e^{iu} - 1)).$

Proof. We can compute,

$$\hat{\nu}(u) = \sum_{k=0}^{\infty} \frac{e^{iuk} e^{-\lambda} \lambda^k}{k!}$$

So we write this as,

$$\hat{\nu}(u) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{(e^{iu}\lambda)^k}{k!}$$
$$= e^{-\lambda} \exp(\lambda e^{iu})$$
$$= \exp(\lambda (e^{iu} - 1)).$$

Lemma 9. Suppose that $q_n \to \lambda \in \mathbb{C}$ is a sequence of complex numbers. Then

$$\lim_{n \to \infty} \left(1 + \frac{q_n}{n} \right)^n = e^{\lambda}$$

Proof. Fix n large enough such that $|q_n|/n < 1/2$.

Since q_n is a convergent sequence, it is bounded. Let M be large enough such that $|q_n| < M$ for all n.

Re-write $\left(1 + \frac{q_n}{n}\right)^n$ as $\exp(n \log(1 + \frac{q_n}{n}))$.

The branch of the logarithm taken here is complex differentiable in the set $\mathbb{C} \setminus (-\infty, 0]$. Since $|q_n|/n < 1$, the above is valid.

So it is sufficient to show that,

$$\lim_{n \to \infty} n \operatorname{Log}\left(1 + \frac{q_n}{n}\right) = \lambda$$

Edward McDonald

The $z\mapsto \text{Log}(1+z)$ function is complex differentiable in the unit disc, and has a power series representation

$$Log(1+z) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{z^k}{k}$$

which converges uniformly on compact subsets of the open unit disc $\{z\in\mathbb{C}:|z|<1\}.$

Now, since $|q_n|/n < 1$, we have

$$n \operatorname{Log}(1 + \frac{q_n}{n}) = q_n + \sum_{k=2}^{\infty} (-1)^{k-1} \frac{q_n^k}{kn^{k-1}}$$

Now we consider the tail of the left hand side, let

$$L_n := \sum_{k=2}^{\infty} (-1)^{k-1} \frac{q_n^k}{kn^{k-1}}$$

By the triangle inequality,

$$|L_n| \le \sum_{k=2}^{\infty} \frac{M^k}{kn^{k-1}}$$

Thus,

$$|L_n| \le M \sum_{k=1}^{\infty} \left(\frac{M}{n}\right)^k$$
$$= M \frac{M/n}{(1 - M/n)}$$

Hence, $L_n \to 0$ as $n \to \infty$. Thus, the limit

$$\lim_{n\to\infty} n \log(1 + \frac{q_n}{n})$$

exists, and equals $\lim_{n\to\infty} q_n = \lambda$.

Hence, the limit

$$\lim_{n \to \infty} \left(1 + \frac{q_n}{n} \right)^n$$

exists, and equals e^{λ} .

Now we let $\{p_n\}_{n=1}^{\infty}$ be a monotone decreasing sequence, such that $np_n \to \lambda$. We let $\mu_n = \text{Bin}(n, p_n)$.

Theorem 5. There is weak convergence, $\mu_n \to \nu$.

Proof. By Lévy's continuity theorem, it is sufficient to show pointwise convergence of characteristic functions, $\hat{\mu}_n(u) \to \hat{\nu}(u)$ for all u. That is, we must show

$$\lim_{n \to \infty} (1 - p_n + p_n e^{iu})^n = \exp(\lambda (e^{iu} - 1)).$$

Rewrite $\hat{\mu}_n(u)$ as

$$\left(1 + \frac{np_n(e^{iu} - 1)}{n}\right)^n$$

Now by lemma 9, we see

$$\lim_{n \to \infty} \hat{\mu}_n(u) = \exp(\lambda(e^{iu} - 1)).$$

Thus the result follows.

Theorem 6. For $k \in \mathbb{N}$, we have the pointwise convergence

$$\mu_n(\lbrace k \rbrace) \to \nu(\lbrace k \rbrace).$$

Proof. Let $F_n(x) = \mu_n(-\infty, x]$ be the cumulative distribution function of μ_n , and $G(x) = \nu(-\infty, x]$

Weak convergence implies that $F_n(x) \to G(x)$ at all points of continuity x. μ_n and ν are discrete, so the points of continuity are $\mathbb{R} \setminus \mathbb{N}$.

Now let $k \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \mu_n \{k\} = \lim_{n \to \infty} F_n(k+1/2) - F_n(k-1/2)$$
$$= G(k+1/2) - G(k-1/2)$$
$$= \nu \{k\}.$$

Question 5

Now we let $(\Omega, \mathcal{F}, \mathbf{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$ where λ is Lebesgue measure.

For $\omega \in [0,1]$, we let $d_n(\omega)$ be the *n* binary digit of ω , where we take the binary expansion containing infinitely many ones. Let

$$B_n = \{ \omega \in [0,1] : d_n(\omega) = 0 \}.$$

Lemma 10. $P(B_n) = 1/2$.

Proof. See that,

$$B_n = \bigcup_{k=0}^{2^{n-1}} k/2^{n-1} + [0, 2^{-n}]$$

So $B_n \in \mathcal{B}([0,1])$.

See that $B_n^c = \{ \omega \in [0, 1] : d_n(\omega) = 1 \}.$

So that $B_n^c = B_n + 2^{-n}$. Since Lebesgue measure is translation invariant, we have $\mathbf{P}(B_n^c) = \mathbf{P}(B_n)$. Since $\mathbf{P}(\Omega) = \mathbf{P}(B_n) + \mathbf{P}(B_n^c) = 1$, we have $\mathbf{P}(B_n) = 1/2$. \square

Lemma 11. The events $\{B_n\}_{n=1}^{\infty}$ form an infinite sequence of independent events.

Proof. Suppose we have some finite subset, $\{B_{n(k)}\}_{k=1}^m$. Then let

$$B = \bigcap_{k=1}^{m} B_{n(k)}$$

See that,

$$\bigcap_{k=2}^{m} B_{n(k)} = \left(B_{n(1)} \cap \bigcap_{k=2}^{m} B_{n(k)} \right) \cup \left(B_{n(1)}^{c} \cap \bigcap_{k=2}^{m} B_{n(k)} \right).$$

But $B_{n(1)}^c = B_{n(1)} + 2^{-n(1)}$.

Hence,

$$\mathbf{P}\left(\bigcap_{k=2}^{m} B_{n(k)}\right) = 2\mathbf{P}\left(\bigcap_{k=1}^{m} B_{n(k)}\right).$$

So by induction,

$$\mathbf{P}\left(\bigcap_{k=2}^{m} B_{n(k)}\right) = 2^{-m} = \prod_{k=1}^{m} \mathbf{P}(B_{n(k)}).$$

Hence the sequence $\{B_n\}_{n=1}^{\infty}$ is independent.

Remark 1. Precisely the same arguments would work if we replaced binary digits with decimal digits.

Theorem 7. Given any finite sequence of digits, the probability that a randomly sampled number in [0,1] contained that sequence infinitely many times is 1.

Proof. Suppose that the sequence has length L. Let E_n be the event that the sequence occurs in the nLth position. Then the E_n form an independent sequence of independent events, each with probability 10^{-L} . Then since

$$\sum_{n=1}^{\infty} \mathbf{P}(E_n) = \infty.$$

Hence, by the Borel-Cantelli lemma, the probability that infinitely many of the E_n occur is 1.

Question 6

Lemma 12. Let s be a continuous solution to the functional equation

$$4s(2x) = 3s(x) + s(-x).$$

for x in a neighbourhood of 0. Then s is constant.

Proof. For any constant c, if s is a solution to the functional equation then so is s + c. So we may assume without loss of generality that s(0) = 0.

Suppose that $s(x) \neq 0$ for some $x \neq 0$. We may assume that s(x) > 0 since if s is a solution, then so is -s.

Suppose $s(x) > \varepsilon > 0$. Then

$$3s(x/2) + s(-x/2) > 4\varepsilon.$$

Hence since the average of (s(x/2), s(x/2), s(x/2), s(-x/2)) is larger than ε , at least one of these numbers must exceed ε Hence at least one of s(x/2), s(-x/2) exceeds ε .

Thus we have a sequence of numbers approaching 0 which all exceeds ε . But this contradicts s(0) = 0 and continuity.

Lemma 13. Suppose that f is a solution of the functional equation

$$f(2x) = f(x)^3 f(-x)$$

for x in a neighbourhood of 0, with f(0) = 1, and f is assumed to be twice continuously differentiable in a neighbourhood of the origin.

Then $f(x) = \exp(Ax^2 + Bx)$ for parameters A and B.

Proof. Since f(0) = 1, and f is continuous, then we may restrict x sufficiently small such that f(x) > 0. Hence $L(x) := \log(f(x))$ is well defined, and

$$L(2x) = 3L(x) + L(-x).$$

Differentiating twice, we have

$$4L''(2x) = 3L''(x) + L''(-x)$$

But by lemma 12, we have L''(x) is constant.

Thus, L is a quadratic, so $f(x) = \exp(Ax^2 + Bx + C)$ for constants A,B and C. We see C = 0 since f(0) = 1.

Theorem 8. Suppose that X and Y are independent identically distributed random variables, with finite variances.

Also assume that X + Y and X - Y are independent.

Then X and Y are Gaussian.

Proof. Let $\varphi(u)$ be the characteristic function of X and Y. Then the characteristic function of X+Y is $\varphi(u)^2$, and the characteristic function of X-Y is $\varphi(u)\varphi(-u)$. The characteristic function of 2X is $\varphi(2u)$. Since 2X=X+Y+X-Y, and X+Y and X-Y are independent, we have

$$\varphi(2u) = \varphi(u)^3 \varphi(-u)$$

and $\varphi(0)=1$. Since X and Y have finite variances, φ is twice continuously differentiable in a neighbourhood of 0. Thus, by lemma 13 we have $\varphi(u)=\exp(Au^2+Bu)$ for some parameters A and B.

This is the characteristic function of a Gaussian random variable. \Box