

deeplearning.ai

Convolutional Neural Networks

Pooling layers

사용하는 이유

- representation 크기를 줄여 계산속도 빠르게 하려고
- feature 를 좀 더 robust하게 디텍팅하게 해주려고

Pooling layer: Max pooling

this particular feature가 vertical edge일 수도, eye일 수도, cat일 수도 있는데 여튼 분명한건 그 feature가 왼쪽 상단 사분면에 존재한다는 점이다. 고로 max pooling의 효과는 feature가 필터 내 해당 영역 어디에서든지 detected 되면 맥스풀링 아웃풋에 보존해서 남겨두는 역할을 하는 것이다. 3 9 3 3 2

이 4x4 입력을 some set of features라고, the activations in some layer of the NN 이라고 생각해보자.

그러면 큰 숫자는 particular feature가 detected 된거라는 의미일 수 있다.

Hyperparameters (of max pooling):

- f = 2

-s = 2

근데 솔직히 말하면 사람들이 맥스풀링을 사용하는 이유는 그냥 실험에서 결과가 잘 나와서 그런거지 뭔가 underlined reason이 있어서 그런건 아니다.

맥스풀링의 한가지 흥미로운 속성은 얘는 hyperparameters는 가지지만 학습할 parameter는 없다는 점이다. f랑 s만 정해지면 gradient descent가 바꿀게 아무것도 없음. Andrew Ng

Pooling layer: Max pooling

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Summary of pooling

Hyperparameters:

f: filter size

s:stride

Max or average pooling

일반적으로 쓰이는건_아래것들

is very very rarely used

No parameters to learn.

$$N_{H} \times N_{W} \times N_{C}$$

$$N_{H} - f + 1$$

$$\times N_{C}$$

$$\times N_{C}$$