Tutorial 2

1. Find the Thevenin's equivalent circuit for the following circuit.

(Ans:
$$V_{th} = 32V, R_{th} = 8 \Omega$$
)

2. Find i₀ in the circuit using source transformation.

(Ans: 1.78A)

3. Use the superposition theorem to find v in the circuit.

(Ans: 10V)

4. Find the Thevenin equivalent circuit at the terminals a & b.

(Ans: $V_{th} = 30V$, $R_{th} = 4 \Omega$)

5. Find the Norton equivalent circuit at the terminals a & b.

(Ans: $I_N = 1A$, $R_N = 4 \Omega$)

6. Find Thevenin equivalent circuit at the terminals a & b.

(Ans: $V_{th} = 30V, R_{th} = 4 \Omega$)

7. Find the Thevenin equivalent of the circuit shown below across terminals a-b. Then find the current through R_L = 6Ω and 36Ω respectively.

(Ans: $V_{th} = 30V$, $R_{th} = 4 \Omega$; $I_{L6} = 3A$, $I_{L36} = 0.75A$)

....xxxx....