ANOVA - Non-Parametric Methods

ANOVA, still

 $\{Y_{ti}\}$ independent with $Y_{ti} \sim Normal(\mu_t, \sigma^2)$ for $t = 1 \dots k$.

Test
$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

The usual statistic:

$$F = M_B/M_W = \frac{\sum_t n_t \; (\bar{Y}_{t\cdot} - \bar{Y}_{\cdot\cdot})^2/(k-1)}{\sum_t \sum_i (Y_{ti} - \bar{Y}_{t\cdot})^2/(\sum_t n_t - k)}$$

P-values: (a) Use the $F(k-1, \sum n_t - k)$ distribution.

(b) Use a permutation test.

Assumptions: (a) Underlying dist'ns are normal with common variance.

(b) Underlying dist'ns are the same.

Non-parametric ANOVA

An alternative approach: the Kruskal-Wallis test.

Rank all of the observations from 1, 2, ..., N.

Let R_{ti} = the rank for observation Y_{ti} .

Let $\bar{R}_{t\cdot} = \sum_i R_{ti}/n_t$ = the average rank for group t.

Null hypothesis, H_0 : the underlying distributions are all the same.

$$\mathsf{E}(\bar{R}_{t\cdot}\mid H_0) = \tfrac{N+1}{2}$$

$$SD(\bar{R}_{t\cdot}\mid H_0) = \sqrt{\frac{(N+1) \ (N-n_t)}{12 \ n_t}}$$

Kruskal-Wallis test statistic

$$\begin{split} H &= \sum_{t} \left(\frac{N - n_t}{N} \right) \, \times \, \left[\frac{\bar{R}_{t\cdot} - E(\bar{R}_{t\cdot} \mid H_0)}{SD(\bar{R}_{t\cdot} \mid H_0)} \right]^2 \\ &= \dots = \frac{12}{N \; (N+1)} \sum_{t} n_t \left[\bar{R}_{t\cdot} - \left(\frac{N+1}{2} \right) \right]^2 \end{split}$$

Under H_0 , and if the sample sizes are large, $H \sim \chi^2(df = k - 1)$.

Alternatively, we could use a permutation test to estimate a P-value.

The function kruskal.test() in R will calculate the statistic.

Note

- In the case of two groups, the Kruskal-Wallis test reduces exactly to the Wilcoxon rank-sum test.
- This is just like how ANOVA with two groups is equivalent to the two-sample t test.

Example

ANOVA Tables

Original scale / 1000:

source	SS	df	MS	F	P-value
between strains	33	20	1.69	1.70	0.042
within strains	124	125	0.99		
total	157	145			

→ permutation P-value = 0.043

log₁₀ scale:

source	SS	df	MS	F	Р
between strains	3.35	20	0.167	2.25	0.0036
within strains	9.29	125	0.074		
total	12.63	145			

 \rightarrow permutation P-value = 0.003

K-W results

The observed Kruskal-Wallis statistic for these data was 41.32.

 \longrightarrow Note that it doesn't matter whether you take logs!

Since there were 21 strains, we can compare this to a χ^2 distribution with 20 degrees of freedom. Thus we obtain the P-value = 0.003.

With a permutation test, I got $\hat{P} = 0.0015$ (on the basis of 10,000 simulations.

In the case of ties...

In the case of ties, we assign the average rank to each.

Example: 3.7 3.5 4.0 4.2 A: 4.3 3.9 4.3 4.5 **C**: 3.1 3.6 4.0 4.3 (1) (2) (3) (4) (5) (6/7) (8) (9/10/11) (12) 10 6.5

Then we apply a correction factor.

Let $N = \sum_t n_t$ and $T_i = no$. observations in the i^{th} set of ties (can be 1).

Let D = 1 –
$$\sum_i (T_i^3 - T_i)/(N^3 - N)$$

Use the statistic H' = H/D.

Note that D \leq 1 and so H' \geq H. For the example, D = 1 $-\frac{(2^3-2)+(3^3-3)}{12^3-12} \approx 0.983$.

Blood coagulation time

Example (continued)

Α	В	С	D	rank	avg rank
			56	1	1
59				2	2.5
			59	3	2.5
60				4	4.5
			60	5	4.5
			61	6	6
62				7	7.5
			62	8	7.5
63				9	10.5
	63			10	10.5
			63	11	10.5
			63	12	10.5
	64			13	13.5
			64	14	13.5
	65			15	15
	66			16	16.5
		66		17	16.5
	67			18	18.5
		67		19	18.5
		68		20	21
		68		21	21
		68		22	21
	71			23	23.5
		71		24	23.5

Example (continued)

Α	62	60	63	59					61
	7.5	4.5	10.5	2.5					6.25
В	63	67	71	64	65	66			66
	10.5	18.5	23.5	13.5	15.0	16.5			16.25
С	68	66	71	67	68	68			68
	21.0	16.5	23.5	18.5	21.0	21.0			20.25
D	56	62	60	61	63	64	63	59	61
	1.0	7.5	4.5	6.0	10.5	13.5	10.5	2.5	7.00

Calculation of K-W test statistic

$$\begin{split} H &= \tfrac{12}{N\;(N+1)} \sum_t \; n_t \; \left[\bar{R}_{t\cdot} - \left(\tfrac{N+1}{2} \right) \right]^2 \\ &= \tfrac{12}{24 \times 25} \; \left\{ 4 \times (6.25 - 12.5)^2 + \dots + 8 \times (7.00 - 12.5)^2 \right\} \\ &= 16.86 \end{split}$$

The ties: $T_i = (122124212232)$

$$D = 1 - \sum_{i} (T_i^3 - T_i) / (N^3 - N) = \ldots = 0.991$$

$$H' = H/D = 16.86 / 0.991 = 17.02$$
 (df = 3) \longrightarrow P-value ≈ 0.0007

A few points

- Calculation of P-values: (avoiding type I errors)
 - F statistic: F distribution (requires normality)
 - \circ K-W statistic: χ^2 distribution (requires large samples)
 - o Either statistic: Permutation tests
- Power: (avoiding type II errors)
 - o K-W statistic more resistant to outliers
 - F statistic more powerful in the case of normality
- K-W statistic: don't need to worry about transformations.

A fake example

Results

			nominal	Permu'n
Dataset	Method	Statistic	P-value	P-value
Α	ANOVA	5.48	0.020	0.017
	K-W	7.64	0.022	0.012
В	ANOVA	2.64	0.112	0.023
	K-W	7.64	0.022	0.012

Distributions

