Homework 1: Md Mahin, 1900421

- 1. (Question:10 points) Let B be a 4×4 matrix to which we apply the following operations
 - (a) double column 1
 - (b) halve row 3
 - (c) add row 3 to row 1
 - (d) interchange columns 1 and 4
 - (e) subtract row 2 from each of the other rows
 - (f) replace column 4 by column 3
 - (g) delete column 1
 - Write the result as a product of eight matrices.
 - Write it again as a product ABC of three matrices.

Let a 4*4 matrix
$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix}$$

Answer: Let a 4*4 matrix $B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix}$ and It's identity matrix $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ as every operation on B

(a) **double column 1** =
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) halve row
$$\mathbf{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix}$$

(c) add row 3 to row
$$\mathbf{1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix}$$

(d) interchange columns 1 and 4 =
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

(e) subtract row 2 from each of the other rows =
$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix}$$

(f) replace column 4 by column 3=
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(g) delete column
$$\mathbf{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• (Question)Write the result as a product of eight matrices.

Answer: To write the result as the product of eight matrices, row operations will be in the left of our matrix B and column operations will be in right.

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• (Question)Write it again as a product ABC of three ma-

$$\begin{pmatrix} 1 & -1 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1/2 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 2 & 9 & 6 \\ 1 & 5 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -3 & -5 & 1/2 \\ 6 & 10 & 7 \\ -5 & -7 & 5/2 \\ -1 & -8 & 1 \end{pmatrix}$$

2. (4 points) (Question) What is the rank of the matrix M =

$$\begin{pmatrix} 1 & 2 & 4 & 4 \\ 3 & 4 & 8 & 0 \end{pmatrix} ?$$

To calculate the rank, first we need to calculate the reduced row ech-

First Step: subtracting -3 times row 1 from row 2:

$$\begin{pmatrix}
1 & 2 & 4 & 4 \\
0 & -2 & -4 & -12
\end{pmatrix}$$

Second Step: adding row 2 with row 1:

$$\begin{pmatrix}
1 & 0 & 0 & -8 \\
0 & -2 & -4 & -12
\end{pmatrix}$$

Third Step: multiplying row 2 with -1/2:

$$\begin{pmatrix}
1 & 0 & 0 & -8 \\
0 & 1 & 2 & 6
\end{pmatrix}$$

As there are two non zero diagonal of the matrix, the rank of the matrix is 2.

3. (Question:)(6 points) The Pythagorean theorem asserts that for a set of n orthogonal vectors $\{x_i\}$,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2$$

(a) (Question:)Prove this in the case n=2 by an explicit computation of $||x_1 + x_2||^2$

Answer:

From vector definition we know that,

$$||x|| = \sqrt{x \cdot x}$$
 So, we can write,

$$||x_1 + x_2||^2 = (x_1 + x_2).(x_1 + x_2)$$

$$||x_1 + x_2||^2 = (x_1 + x_2).(x_1 + x_2)$$

$$||x_1 + x_2||^2 = x_1.x_1 + x_1.x_2 + x_2.x_1 + x_2.x_2$$

$$||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2 + 2(x_1.x_2)$$

3

$$|x_1 + x_2|^2 = ||x_1||^2 + ||x_2||^2 + 2(x_1 \cdot x_2)$$

$$||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2 + 2.x_1.x_2\cos(\theta)$$

Now, as the vectors are orthogonal, $\theta = 90^\circ$ and so, $\cos(\theta) = 0$
So, we can write,
 $||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2$

(b) (Question)Show that this computation also establishes the general case, by induction.

Answer: Previously we have proved, for n = 2, $\{x_i\}$,

$$\left\| \sum_{i=1}^{2} x_i \right\|^2 = \sum_{i=1}^{2} \|x_i\|^2$$

So, for n=3,

$$\left\| \sum_{i=1}^{3} x_i \right\|^2 = \sum_{i=1}^{3} \|x_i\|^2$$

or,
$$||x_1 + x_2 + x_3||^2 = ||x_1||^2 + ||x_2||^2 + ||x_3||^2$$
 we can write,
$$||x_1 + x_2 + x_3||^2 = (x_1 + x_2 + x_3).(x_1 + x_2 + x_3)$$

$$||x_1 + x_2 + x_3||^2 = x_1.x_1 + x_1.x_2 + x_1.x_3 + x_2.x_1 + x_2.x_2 + x_2.x_3 + x_3.x_1 + x_3.x_2 + x_3.x_3$$

$$||x_1 + x_2 + x_3||^2 = ||x_1||^2 + ||x_2||^2 + ||x_2||^2 + 2(x_1.x_2) + 2(x_2.x_3) + 2(x_3.x_1)$$

$$||x_1 + x_2 + x_3||^2 = ||x_1||^2 + ||x_2||^2 + ||x_3||^2$$

So, it is proven that if the equation is true for 2 and 3. Now, let's assume the equation is true for n = n - 1. It is,

$$\left\| \sum_{i=1}^{n-1} x_i \right\|^2 = \sum_{i=1}^{n-1} \|x_i\|^2$$

for $x_1....x_{n-1}$ orthogonal vectors. Now, for another orthogonal vector x_n to the vectors $x_1....x_{n-1}$, let assume, $x_1 = \left\|\sum_{i=1}^{n-1} x_i\right\|^2$ and $x_2 = x_n$, then, $\|x_1 + x_2\|^2 = \|x_1\|^2 + \|x_2\|^2$ or, $\|x_1 + x_2\|^2 = \left\|\sum_{i=1}^{n-1} x_i\right\|^2 + \|x_n\|^2$

So, we can write,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2$$

[Proved]

- 4. (Question)(6 points) Let $A \in \mathbb{R}^{m \times m}$ be symmetric. An eigenvector of A is a nonzero vector $x \in \mathbb{R}^m$ such that $Ax = \lambda x$ for some $\lambda \in R$, the corresponding eigenvalue.
 - (a) (Question:)Prove that all eigenvalues are real.

Here given that, $A \in \mathbb{R}^{m \times m}$ is a symmetric matrix and $Ax = \lambda x$ for some $\lambda \in R$. For symmetric matrix we know, $A = A^T = A^*$ Given,

 $Ax = \lambda x$

 $Ax^* = \lambda x^*$ [Complex conjugating both sides]

 $x^*A^* = \lambda^*x^*$

 $x^*A = \lambda^* x^* [As \ A = A^*]$

 $x^*Ax = \lambda^*x^*x$ [Multiplying x in both sides]

 $x^* \lambda x = \lambda^* x^* x [As, Ax = \lambda x]$

 $x^*\lambda x - \lambda^* x^* x = 0$

 $(\lambda - \lambda^*)x^*x = 0$

Now, as, x^*x can not become zero, as x is a non zero vector,

$$(\lambda - \lambda^*) = 0$$

So, we can write,

 $\lambda = \lambda^*$

So, hence all eigenvalues are real. [Proved]

(b) (Question:)Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are orthogonal.

Answer:

Let's, for two distinct eigenvectors x and y

$$Ax = \lambda_1 x \tag{1}$$

and

$$Ay = \lambda_2 y \tag{2}$$

where, λ_1 and λ_2 are distinct eigenvalues for two vectors.

Multiplying y^* on the left, first equation becomes,

$$y^*Ax = y^*\lambda_1 x$$

$$y^*Ax = \lambda_1 y^*x$$

Taking, complex conjugated of the equation,

$$y^*Ax^* = \lambda_1 y^*x^*$$

$$x^*A^*y = \lambda_1 x^*y$$

So,

$$x^*Ay = \lambda_1 x^* y \tag{3}$$

Multiplying x^* on the left, second equation becomes,

$$x^*Ay = x^*\lambda_2 y$$

So,

$$x^*Ay = \lambda_2 x^* y \tag{4}$$

From equation three and four,

$$\lambda_1 x^* y = \lambda_2 x^* y$$

$$\lambda_1 x^* y - \lambda_2 x^* y = 0$$

$$(\lambda_1 - \lambda_2)x^*y = 0$$

Since, $(\lambda_1! = \lambda_2)$, so, $x^*y = 0$, and thus they are orthogonal. [Proved]

5. (Question)6 points) If u and v are m-vectors, the matrix $A = I + uv^*$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha uv^*$ for some scalar α , and give an expression for α . For what u and v is A singular? If it is singular, what is null(A)?

Answer:

Given that A is non singular and $A = I + uv^*$. If, A is non singular then A^{-1} exists and the determinate of A! = 0.

Lets consider, $A^{-1} = I + \alpha u v^*$

Now, we know, $AA^{-1} = I[Where, I is the identity matrix]$

So,
$$(I + uv^*)(I + \alpha uv^*) = I$$

or,
$$I + uv^* + \alpha uv^* + uv^*\alpha uv^* = I$$

or,
$$uv^* + \alpha uv^* + \alpha u(v^*u)v^* = 0$$

or,
$$uv^* + \alpha uv^* + \alpha u(v^*u)v^* = 0$$

or,
$$uv^*(1 + \alpha + \alpha v^*u) = 0$$

That implies that,
$$(1 + \alpha + \alpha v^* u) = 0$$

or $\alpha = -\frac{1}{2}$ [Answer 1]

or,
$$\alpha = -\frac{1}{1+v^*u}$$
 [Answer 1]

Here, we can see that, if A^{-1} exists, there exists a constant α . However, if $v^*u = -1$, α becomes undefined. So, at that point A becomes singular. So, A is singular if, $v^*u = -1$.[Answer 2]

Now, if A is singular, let for the vector u,

$$Au = (I + uv^*)u$$

or,
$$Au = Iu + uv^*u$$

or,
$$Au = u + u(-1)$$

or,
$$Au = u - u$$

or,
$$Au = 0$$

Thus, u vector is the null space of A if it is singular [Answer 3].

6. (Answer 6:)(5 points) Let $\|.\|_{w}$ denote any norm on \mathbb{R}^{m} and also the induced matrix norm on $\mathbb{R}^{m\times m}$. Show that $\rho(A)\leq$ ||A||, where $\rho(A)$ is the spectral radius of A, that is largest absolute value of $|\lambda|$ of an eigenvalue λ of A.

Answer:

We know,
$$Ax = \lambda x$$

or,
$$||Ax|| = ||\lambda x||$$

We know, from the properties of metrics norm,

$$\|\lambda A\| = |\lambda| \|A\|$$

and

$$||Ax|| <= ||A|| \, ||x||$$

from here we can write,

$$||\lambda x|| <= ||A|| \, ||x||$$

or,
$$|\lambda| \|x\| <= \|A\| \|x\|$$

as, x is eigenvector, x! = 0,

So,
$$|\lambda| \ll ||A||$$

Given,
$$\rho(A) = \lambda$$

or,
$$\rho(A) \leq ||A||[Proved]$$

7. (Question)(15 points) Determine SVDs of the following matrices(by hand calculations)

(a)SVD of :
$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
Answer:

Let,
$$A = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$

For SVD, we know, $A = U\Sigma V^T$

Now,
$$A^T A = V \Sigma^T \Sigma V$$

$$= \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}$$
Now,

$$det(A^{T}A - \lambda I) = \begin{pmatrix} 9 - \lambda & 0\\ 0 & 4 - \lambda \end{pmatrix}$$

We can write, $(9 - \lambda)(4 - \lambda) = 0$

or,
$$\lambda = 9$$
 or $\lambda = 4$

For,
$$\lambda = 4$$

$$A^T A - 4I = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

So,
$$5x_1 + 0x_2 = 0$$

So,
$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

For, $\lambda = 9$

For,
$$\lambda = 9$$

$$A^{T}A - 4I = \begin{pmatrix} 0 & 0 \\ 0 & -5 \end{pmatrix} = 0$$

So, $0x_1 - 5x_2 = 0$

So,
$$0x_1 - 5x_2 = 0$$

So,
$$v_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

So, our
$$V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = V^*$$

$$\Sigma = \begin{pmatrix} \sqrt{9} & 0 \\ 0 & \sqrt{4} \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Again,
$$AV = U\Sigma$$

Again,
$$AV = U\Sigma$$

$$AV = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

So,
$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A = U\Sigma V^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(b)**SVD** of :
$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Answer:
$$\text{Let, } A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

For SVD, we know, $A = U\Sigma V^T$ Now, $A^T A = V \Sigma^T \Sigma V$

$$= \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$$
$$\text{Now},$$

$$det(A^T A - \lambda I) = \begin{pmatrix} -\lambda & 0\\ 0 & 4 - \lambda \end{pmatrix}$$

We can write,

$$(-\lambda)(4-\lambda)=0$$

or,
$$\lambda = 0$$
 or $\lambda = 4$

For,
$$\lambda = 4$$

$$A^T A - 4I = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

So,
$$-4x_1 + 0x_2 = 0$$

So,
$$v_1 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

For, $\lambda = 0$

For,
$$\lambda = 0$$

$$A^{T}A - 0I = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} = 0$$

So, $0x_1 + 4x_2 = 0$

So,
$$0x_1 + 4x_2 = 0$$

So,
$$v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

So,
$$v = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

and,
$$v^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Now,

$$\Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{aligned} & \text{Again, } AV = U\Sigma \\ & AV = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} . \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & AV = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \text{So, } U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \text{So,Finally,} \\ & A = U\Sigma V^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} . \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} . \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{aligned}$$

(c)**SVD** of:
$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Answer:

Let,
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

For SVD, we know, $A = U\Sigma V^T$

Now, $A^T A = V \Sigma^T \Sigma V$

$$= \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Now,

$$det(A^T A - \lambda I) = \begin{pmatrix} 1 - \lambda & 1\\ 1 & 1 - \lambda \end{pmatrix}$$

We can write,

$$(1 - \lambda)(1 - \lambda) - 1 = 0$$

 $1 - 2\lambda + \lambda^2 - 1 = 0$

$$\lambda(\lambda - 2) = 0$$

or,
$$\lambda = 0$$
 or $\lambda = 2$

For,
$$\lambda = 0$$

$$A^TA - 0I = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$$

Using ow echelon form:
$$=\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$So, x_1 + x_2 = 0$$

or,
$$x_1 = -x_2$$

So,
$$v_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

For, $\lambda = 2$

For,
$$\lambda = 2$$

$$A^T A - 2I = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = 0$$

Using ow echelon form:
$$=\begin{pmatrix} -1 & 1\\ 0 & 0 \end{pmatrix}$$

So,
$$-x_1 + x_2 = 0$$

or, $x_1 = x_2$

or,
$$x_1 = x_2$$

So,
$$v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

So,
$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}$$

Again
$$AV = II\Sigma$$

Again,
$$AV = U\Sigma$$

$$AV = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \text{ So, } U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A = U\Sigma V^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

8. (Question:)(12 points) Write a Matlab program which, given a real 2×2 matrix A, plots the right singular vectors v_1 and v_2 in the unit circle and also the left singular vectors u_1 and u_2 in the appropriate ellipse, as in Figure 4.1. Apply your program to the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ and also to the 2×2 matrices of Exercise 7.

Answer:

For Matrix: $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$

Answer:

For Matrix: $\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$

Answer:

For Matrix: $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

9. (Answer)(6 points) Consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

Using the SVD, work out(on paper) the exact values of $\sigma_{min}(A)$ and $\sigma_{max}(A)$ for this matrix.

Answer:

Given,

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

So,

$$A^T A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

So,

$$A^T A = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$$

Now,
$$det(A^TA - \lambda I) = \begin{pmatrix} 1 - \lambda & 2 \\ 4 & 8 - \lambda \end{pmatrix}$$

or, $(1 - \lambda)(8 - \lambda) - 4 = 0$

or,
$$8 - 8\lambda - \lambda + \lambda^2 - 4 = 0$$

or,
$$\lambda^2 - 9\lambda + 4 = 0$$

or,
$$\lambda = \frac{9+\sqrt{65}}{2} or \frac{9-\sqrt{65}}{2}$$

So, Largest value $\sigma_{max}(A)$ is $\frac{9+\sqrt{65}}{2}$ and the smallest value $\sigma_{min}(A)$ is $\frac{9-\sqrt{65}}{2}$.

10. (Question:)(8 points) Suppose $A \in \mathbb{R}^{m \times m}$ has an SVD $A = U\Sigma V^*$. find an eigenvalue decomposition of the $2m \times 2m$ symmetric matrix

$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}$$

Please note: If the coloumns of a matrix $X \in \mathbb{R}^{m \times m}$ contain linearly independent eigen vectors of $A \in \mathbb{R}^{m \times m}$, the eigenvalue decomposition of A is

$$A = X\Sigma X^{-1}$$

where Σ is an $m \times m$ diagnol matrix whose entries are the eigenvalue of A.

Answer:

Given, $A = U\Sigma V^*$.

So, we can write, $AV = U\Sigma$

and
$$A^*U = V\Sigma$$

By solving the linear equation, we can write,

$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} \cdot \begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} U \Sigma \\ V \Sigma \end{pmatrix}$$

Same way, it can be written that,

$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} \cdot \begin{pmatrix} U \\ -V \end{pmatrix} = \begin{pmatrix} -U\Sigma \\ V\Sigma \end{pmatrix}$$

From above two equation we can write,

$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} = \begin{pmatrix} U & -U \\ V & V \end{pmatrix}$$

or,
$$\begin{pmatrix} U\Sigma & U\Sigma \\ V\Sigma & -V\Sigma \end{pmatrix} = \begin{pmatrix} U & -U \\ V & V \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix}$$

$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} = \begin{pmatrix} U & -U \\ V & V \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \begin{pmatrix} U & -U \\ V & V \end{pmatrix}^{-1}$$
Here, $X = \begin{pmatrix} U & -U \\ V & V \end{pmatrix}$ and $XX^T = 2I$

So,
$$\frac{1}{\sqrt{2}}X$$
 is unitary.
So, Eigen decomposition is,
$$\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} = \frac{1}{\sqrt{2}}X\begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix}\frac{1}{\sqrt{2}}X^T$$

11. (Question:)(8 points) Consider the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Answer the following questions by hand calculation. (Question:) What is the orthogonal projector P onto range(A), and what is the image under P of the vector (1,2,3)*? Answer:

Given,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The orthogonal projector P onto range(A) is,

$$P = A(A^T A)^{-1} A$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$So, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

(Question:) What is the orthogonal projector P onto range(B), and what is the image under P of the vector $(1,2,3)^*$? Given.

$$B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The orthogonal projector P onto range(A) is,

$$P = B(B^T B)^{-1} B$$

$$P = B(B^{T}B)^{T}B$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{6} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \\ \frac{5}{6} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{5}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{pmatrix}$$

So,
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & \frac{1}{3} & \frac{1}{6}\\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3}\\ \frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{pmatrix} \cdot \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 2\\0\\2 \end{pmatrix}$$

12. (Question)(6 points) Let A be a matrix with the property that coloumns 1,3,5,7,... are orthogonal to columns 2,4,6,8,.... In a reduced QR fatorization A = QR, what special structure does R possess? You may assume that A has full rank. Answer:

For a given matrix with vectors $a_1, a_2...$ we can construct orthogonal vectors $q_1, q_2...$ using the Gram-Schmidt Orthogonalization. Here we know,

$$v_j = a_j - (q_1^* a_j) q_1 - (q_2^* a_j) q_2 - \dots - (q_{i-1}^* a_j) q_{j-1}$$

 $v_j=a_j-(q_1^*a_j)q_1-(q_2^*a_j)q_2-....-(q_{j-1}^*a_j)q_{j-1}$ If we normalize, our new orthogonal vectors takes the following form,

$$q_1 = \frac{a_1}{r_{11}}$$

$$q_2 = \frac{a_2 - r_{12}q_1}{r_{22}}$$

$$q_3 = \frac{a_3 - r_{13}q_1 - r_{23}q_2}{r_{33}}$$

$$q_4 = \frac{a_4 - r_{14}q_1 - r_{24}q_2 - r_{34}q_3}{r_{44}}$$
...
$$q_n = \frac{a_n - \sum_{i=1}^{n-1} r_{in}q_n}{r_{nn}}$$

Without normalization, we can write,

$$\begin{array}{l} q_1=a_1\\ \text{so, } q_2=a_2-r_{12}q_1=a_2-\frac{span(a_2,q_1)}{\|q_1\|}q_1=a_2-\frac{a_2.a_1}{\|a_1\|}a_1\\ \text{Here, as } a_2,a_1 \text{ orthogonal, their dot product is zero. So, } r_{12}=0 \text{ and,}\\ q_2=a_2\\ \text{similarly, } q_3=a_3-r_{13}q_1-r_{23}q_2=a_3-\frac{span(a_3,q_1)}{\|q_1\|}q_1-\frac{span(a_3,q_2)}{\|q_2\|}q_2\\ =a_3-\frac{span(a_3,a_1)}{\|a_1\|}a_1-\frac{span(a_3,a_2)}{\|a_2\|}a_2\\ \text{Here, as } a_3,a_2 \text{ orthogonal, their dot product is zero. So, } r_{23}=0 \text{ and,}\\ q_3=a_3-r_{13}q_1\\ \text{or, } r_{13}=\frac{a_3.a_1}{\|a_1\|}\\ \end{array}$$

Similarly, for $q_4 = a_4 - r_{24}q_2$ and the terms $r_{14} = r_{34} = 0$ and $r_{24} = \frac{a_4.a_2)}{\|a_2\|}$ and $r_{44} = \left\|a_4 - \frac{a_4.a_2)}{\|a_2\|}\right\|$

Here we can easily see that, $q1 \in (a1), q3 \in span(a1, a3), ..., q2k1 \in$ span(a1, ..., a2k1), and similarly $q2 \in (a2), q4 \in span(a2, a4), ..., q2k \in$ span(a2,...,a2k). So, here we can write, on the other hand, if we consider the normalization,

for
$$q_1$$
, $r_{11} = ||a_1||$, q_2 , $r_{22} = ||a_2||$, q_2 , $r_{33} = ||a_3 - \frac{a_3 \cdot a_1}{||a_1||}||$... and $r_{nn} = ||a_n - \sum_{i=1}^{n-1} \frac{a_n \cdot a_i}{||a_i||}||$, where n and i have to be odd or even at the

same time.

As a result our matrix R takes an upper triangular check-board metrics form like this,

$$R = \begin{pmatrix} \|a_1\| & 0 & \frac{a_3.a_1}{\|a_1\|} & 0 & \dots \\ 0 & \|a_2\| & 0 & \frac{a_4.a_2}{\|a_2\|} & \dots \\ 0 & 0 & \left\|a_3 - \frac{a_3.a_1}{\|a_1\|}\right\| & 0 & \dots \\ 0 & 0 & 0 & \left\|a_4 - \frac{a_4.a_2}{\|a_2\|}\right\| & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

where.

if $i = j : r_{ij}! = 0$

if i < j and both i or j are odd or even: $r_{ij}! = 0$

if $i > j : r_{ij} = 0$ and

else, $r_{ij} = 0$

13. (Answer:)(8 points) Write a MATLAB function [Q,R]=mgs(A) that computes a reduced QR factorization $A=\hat{Q}\hat{R}$ of an $m\times n$ matrix A with $m\geq n$ using modified Gram-Schmidit orthogonalization. The output variables are a matrix $Q\in\mathbb{R}^{m\times n}$ with orthonormal coloumns and a triangular matrix $R\in\mathbb{R}^{n\times n}$. Use your MGS QR factorization to solve the linear system Ax=b where

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 5 & 6 \\ 9 & 8 & 7 \end{pmatrix}, b = \begin{pmatrix} 13 \\ 32 \\ 46 \end{pmatrix}$$

```
Matrix A =
[[1 3 2]
[4 5 6]
[9 8 7]]
Vector B =
[[13]
[32]
[46]]
Q Matrix=
[[ 0.10101525  0.83541209 -0.54026156]
[ 0.40406102  0.46178558  0.78961305]
 [ 0.90913729 -0.2980616 -0.29091007]]
R Matrix=
[[9.89949494 9.59644917 8.99035765]
          2.43067136 2.35510645]
 [0.
 [0.
           0. 1.62078469]]
Dot of QR=
[[1. 3. 2.]
[4. 5. 6.]
 [9. 8. 7.]]
Solution of X=
[[1.]
 [2.]
 [3.]]
Process finished with exit code 0
```