Faculté des Sciences exactes Département de Maths 2 ème Année STID

Série 1 (2023)

Exercice 1

Soit une population de 4 individus $I=\{\omega_1,\cdots,\omega_4\}$ et d une application définie de $IxI\to\mathbb{R}$ tel que

$$\begin{array}{ll} d\left(\omega_{i},\omega_{i}\right)=0 \text{ pour } i=1,...,4 \\ d\left(\omega_{1},\omega_{2}\right)=d\left(\omega_{2},\omega_{1}\right)=2 \\ d\left(\omega_{1},\omega_{4}\right)=d\left(\omega_{4},\omega_{1}\right)=3 \\ d\left(\omega_{2},\omega_{4}\right)=d\left(\omega_{4},\omega_{2}\right)=4 \end{array} \qquad \begin{array}{ll} d\left(\omega_{1},\omega_{3}\right)=d\left(\omega_{3},\omega_{1}\right)=6 \\ d\left(\omega_{2},\omega_{3}\right)=d\left(\omega_{3},\omega_{2}\right)=3 \\ d\left(\omega_{2},\omega_{4}\right)=d\left(\omega_{4},\omega_{2}\right)=4 \end{array}$$

- 1/d est elle une dissimilarité? Une distance?
- 2/ Donner le tableau des disimilarités ou distances.
- 3/ Même questions pour :

$$d(\omega_{i}, \omega_{i}) = 0 \text{ pour } i = 1, ..., 4$$

$$d(\omega_{1}, \omega_{2}) = d(\omega_{2}, \omega_{1}) = 1$$

$$d(\omega_{1}, \omega_{4}) = d(\omega_{4}, \omega_{1}) = 4$$

$$d(\omega_{2}, \omega_{3}) = d(\omega_{3}, \omega_{1}) = 4$$

$$d(\omega_{2}, \omega_{3}) = d(\omega_{3}, \omega_{2}) = 2$$

$$d(\omega_2, \omega_4) = d(\omega_4, \omega_2) = 3$$

$$d(\omega_3, \omega_4) = d(\omega_4, \omega_3) = 2$$

Exercice 2

On considère 9 points de \mathbb{R}^2 , $E = \{A_1, \dots, A_8\}$ $A_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad A_4 = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \qquad A_5 = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ $A_6 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \qquad A_7 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad A_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad A_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- 1/ Donner le tableau des distances:
- Distance Euclidienne
- Distance L^q (q=1,3)
- Distance Euclidienne normée

Exercice 3

On considère deux variables qualitatives X et Y de modalités respectives $M_1,M_2,\,M_3$ et $N_1,N_2,\,N_3,N_4$

	N_1	N_2	N_3	N_4
M_1	15	10	11	14
M_2	6	1	20	3
M_3	0	7	7	16

- 1/ Donner le tableau des distances de khi-2 entre les lignes
- 2/ Donner le tableau des distances de khi-2 entre les colonnes

Exercice 4

On considère les 8 individus suivants définis par leurs coordonnées respectifs dans un espace de dimension 2.

$$E1 = (0,2)$$

$$E2 = (2,2)$$

$$E3 = (2,3)$$

E4 = (1,1)

E5 = (3,4)

E6 = (1,1)

E7 = (0.8)

E8 = (1.8)

- 1. Pour les différentes distances vues en cours calculer les distances entes les 6 individus E1 à E6
- 2. Pour chaque cas , construire une partition ren utilisant les différentes méthodes vues en cours.
 - 3. Discuter

Exercice 5

Soit le tableau de données correspondant aux réponses (0=non et 1=oui) des individus à 4 questions A, B, C et D

	A	В	С	D
i1	0	1	1	0
i2	0	0	1	1
i3	1	0	0	1
i4	1	1	1	1

1. Donner le tableau des similarités en utilisant l'indice : - Jaccard.

- Dice

- Ochiaia

- Rogers et Taminoto

- Russel Rao

- Yull

En déduire le tableau des dissimilarités.

2. Construire Une partition avec la méthode

a/ Liaison simple

b/ Liaison complète

C/ Liaison myenne

au seuil $\delta = 4, 5$

Exercice 6

Soi le tableau des données quantitatives décrivant 8 eaux minérales sur 5 variables.

	saveur.amère	saveur.sucrée
St Yorre (S^tY)	3.4	3.1
Badoit (B)	3.8	2.6
Vichy (V)	2.9	2.9
Quézac (Q)	3.9	2.6
Arvie (A)	3.1	3.2
Chateau Neuf (C.N)	3.7	2.8
Salvetat (S)	4.0	2.8
Perrier (P)	4.4	2.2

1/Donner le tableau des distances L_1 .

2/ Appliquer l'algorithme de classification hiérarchique ascendante par regroupement progressif en utilisant un indice d'agrégation du lien maximale aux

données précédentes en précisant à chaque étape le nouveau tableau de distances.

- 3/ Dessiner le dendrogramme associé.
- 4/ Extraire une partition à deux classes et une partition à trois classes.
- 5/ Calculer l' inertie inter classes dans les cas des deux partitions. Conclure. Exercice 7

On considère les 6 individus suivants définis par leurs coordonnées respectifs dans un espace de dimension 2.

$$E1 = (1,2)$$
 $E2 = (2,2)$ $E3 = (2,4)$ $E4 = (3,3)$ $E5 = (3,4)$ $E6 = (4,4)$

- 1. Réaliser une classification hiérarchique par passage à l'ultramétrique supérieur de ces individus, en utilisant le tableau des distances L1.
 - a) Donner les inerties intra classe à chaque étape.
 - b) Représenter les dendrogrammes.

Exercice 8

On dispose d'un tableau de données avec 7 individus repérés par 3 variables.

Tab.1 : tableau des données

	V1	V2	V3
I1	1	2	2
I2	2	0	1
I3	2	2	1
I4	8	7	0
I5	7	8	1
I6	6	9	0
I7	2	0	2

- 1/ Donner la matrice des variances covariances.
- 2/ Considérons la partition $\{\{I1, I2, I3, I7\}, \{I4, I5, I6\}\}$
- 3/ Donner les matrices des variances-covariances intra et inter classes.