?. Which of the following statements about two sets X and Y is not logically equivalent to the others?

(A)
$$(\sim Y) \subseteq (\sim X)$$
 (B) $X \subseteq Y$ (C) $(\sim X) \cap Y = \emptyset$ (D) $X \cap (\sim Y) = \emptyset$ Answer: $\boxed{\mathbb{C}}$

The other three are logically equivalent. (D) says there are no elements in both $\sim Y$ and X which is equivalent to saying all of $\sim Y$'s elements are in $\sim X$ (A) or all of X's elements are in Y (B).

?. Suppose X, Y and Z are sets, $|X \cup Y \cup Z| = 12$, |X| = 8, |Y| = 5, |Z| = 3, $|X \cap Y| = 3$, $|X \cap Z| = 1$ and $|Y \cap Z| = 0$. How many elements belong to X but do not belong to Y or Z?

Answer: D

Since $|Y \cap Z| = 0$, we know $|X \cap Y \cap Z| = 0$ and $|(\sim X) \cap Y \cap Z| = 0$. From the usual Venn diagram of 3 sets we get $|X \cap Y \cap (\sim Z)| = 3$ and $|X \cap (\sim Y) \cap Z| = 1$. From that we deduce $|X \cap (\sim Y) \cap (\sim Z)| = 4$.

- ?. Suppose $R = \{(1,3), (2,2), (2,4), (3,3), (4,2), (4,4)\}$ is a relation on the set $S = \{1,2,3,4\}$. Then R is
- (A) Reflexive (B) Symmetric (C) Antisymmetric (D) Transitive Answer: $\boxed{\mathsf{D}}$
- (A) fails since there is no (1,1). (B) fails since $(1,3) \in R$ but $(3,1) \notin R$. (C) fails since $(2,4) \in R$ and $(4,2) \in R$. (D) holds by checking all cases.
- ?. Suppose $R = \{(1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 1), (4, 4)\}$ is a relation on the set $S = \{1, 2, 3, 4\}$. Then R will be an equivalence relation when we add the two elements
- (A) (3,1) and (3,2), (B) (4,2) and (4,3), (C) (3,1) and (4,3), (D) (1,2) and (2,1),

Answer: C

Just to satisfy the symmetry property we need these pairs. All the other possibilities leave out at least one of these two pairs.