An Embedded Scalable Linear Model Predictive Hardware-based Controller using ADMM

Pei Zhang, Joseph Zambreno and Phillip H. Jones

Presenter: Pei Zhang Iowa State University peizhang@iastate.edu

July 3, 2017

Overview

- Related Work
- Background
 - State Space Model
 - Model Predictive Optimal Control
 - Splitting Method
- ADMM Hardware Architecture
 - Architecture Overview
 - Trajectory Setting During Runtime
 - Latency Analysis
- Evaluation
- Conclusion
- Second Section

Quadratic Programming (QP) solutions

MPC can be posed as a Quadratic Programming problem.

QP problems can be solved reliably via various iterative methods.

- Interior-Point Method (IPM)
- Active Set Method (ASM)
- Splitting Method

FPGA-based QP solutions

Compare IPM and ASM in FPGA

- ASM gives lower computing complexity and converges faster when the number of decision variables and constraints are small.
- IPM is a better choice when considering scalability.

State Space Model

A discrete state-space model defines what state a system will be in one-time step into the future:

$$x_{k+1} = Ax_k + Bu_k \tag{1}$$

$$y_k = Cx_k + Du_k \tag{2}$$

- x_k represents the state of the system at time k
- ullet u_k represents the input acting on the system at time k
- y_k represents outputs of the system at time k
- A is a matrix that defines the internal dynamics of the system
- *B* is a matrix that defines how the input acting upon the system impact its state
- ullet C is a matrix that transforms states of the system into outputs (y_k)

Augmented Vector

$$U_{k} = \begin{bmatrix} u_{k} \\ u_{k+1} \\ \vdots \\ u_{k+H_{u}} \end{bmatrix}, \quad \Delta U_{k} = \begin{bmatrix} \Delta u_{k} \\ \Delta u_{k+1} \\ \vdots \\ \Delta u_{k+H_{u-1}} \end{bmatrix}, \quad X_{k} = \begin{bmatrix} x_{k} \\ x_{k+1} \\ \vdots \\ x_{k+H_{p}} \end{bmatrix}$$
(3)

Where:

- H_u : changeable future input horizon. We assume input u_k will be constant after H_u time steps.
- H_p : prediction horizon. Normally, $H_p \ge H_u$.
- $U_k \in \mathbb{R}^{M(H_u+1)}$, $\Delta U_k \in \mathbb{R}^{MH_u}$, $X_k \in \mathbb{R}^{N(H_p+1)}$.

Cost Function

$$\mathbb{C}(k) = \frac{1}{2} \left(\sum_{i=k}^{k+H_p} (x_i^T q_i x_i - 2r_i^T q_i x_i) + \sum_{i=k}^{k+H_u} u_i^T p_i u_i + \sum_{i=k}^{k+H_{u-1}} \Delta u_i^T s_i \Delta u_i \right) + Const \qquad (4)$$

$$\mathbb{C}(k) = \frac{1}{2} \begin{bmatrix} X_k \\ U_k \\ \Delta U_k \end{bmatrix}^T \begin{bmatrix} Q \\ P \\ S \end{bmatrix} \begin{bmatrix} X_k \\ U_k \\ \Delta U_k \end{bmatrix} - R_k^T Q X_k$$
 (5)

Paragraphs of Text

Sed iaculis dapibus gravida. Morbi sed tortor erat, nec interdum arcu. Sed id lorem lectus. Quisque viverra augue id sem ornare non aliquam nibh tristique. Aenean in ligula nisl. Nulla sed tellus ipsum. Donec vestibulum ligula non lorem vulputate fermentum accumsan neque mollis.

Sed diam enim, sagittis nec condimentum sit amet, ullamcorper sit amet libero. Aliquam vel dui orci, a porta odio. Nullam id suscipit ipsum. Aenean lobortis commodo sem, ut commodo leo gravida vitae. Pellentesque vehicula ante iaculis arcu pretium rutrum eget sit amet purus. Integer ornare nulla quis neque ultrices lobortis. Vestibulum ultrices tincidunt libero, quis commodo erat ullamcorper id.

Bullet Points

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

Blocks of Highlighted Text

Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.

Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

Multiple Columns

Heading

- Statement
- ② Explanation
- Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Verbatim

```
Example (Theorem Slide Code)
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

The End