数理情報科学研究2

1415048 城山賢人

何かあれば学籍番号のアドレスまで. p.433 上部の資料

Exercise.

Let
$$A=\begin{bmatrix}A_{11}&A_{12}\\A_{12}^*&A_{22}\end{bmatrix}\in M_n$$
 be positive semidefinite. If either $A_{11}=0$ or $A_{22}=0$, explain why $A_{12}=0$.

方針

Observation 7.1.10を使う. 証明が参考になる.

Proof.

 $A_{11}\in M_k^{\ \forall}k\in\{1,2,\ldots,n-1\}$ として良い。 $A_{11}=0$ のとき,Aの対角成分は全て $(a_{kk}=)0$ であるから,Observation 7.1.10. より,このとき $A_{12}=0$.同様に $A_{22}=0$ のときについても $A_{12}=0$. \square

補題

Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{bmatrix} \in M_n$ be positive semidefinite. Then for each diagonal components in the block matrix, A_{11} and A_{22} is also positive semidefinite.

Proof.

$$A_{11} \in M_k$$
とする $\forall k \in \{1, 2, \dots, n-1\}$. $\forall \xi \in C^k, \xi \neq 0$ をとる。このとき $x = \begin{bmatrix} \xi \\ 0 \end{bmatrix} \in C^n$ に対して、 $x^*Ax = x^* \begin{bmatrix} A_{11}\xi \\ A_{12}\xi \end{bmatrix} = \xi^*A_{11}\xi \geq 0$. $\xi(\neq 0)$ は任意だったから, A_{11} は半正定置行列である。同様に、 A_{22} に対しては $x' = \begin{bmatrix} 0 \\ \xi' \end{bmatrix} \in C^n$ 、 $\xi' \in C^{(n-k)}$ 、 $\xi' \neq 0$ を取れば良い。 \Box

帰納的に、 $A_{kk}\in M_k$ 、 $\forall k\in\{1,2,\ldots,n-1\}$ なるブロック行列の各成分はAに関する正定値性が保存される.(証明は略)

Exercise.

Let $A \in M_n$ be positive semidefinite. Partition $A = [a_1 \dots a_n]$ according to its columns, let $\alpha \subset \{1, 2, \dots, n\}$ be any nonempty index set, and let $j \in \{1, 2, \dots, n\}$ be column index. Explain why $a_i[\alpha]$ is in the column space of $A[\alpha]$.

Hint: Permutation similarity preserves positive definiteness; see (7.1.8).

方針

- 1. $A' = C^*AC$ でブロック行列に分割し $A'_{11} = A[\alpha]$ となるように基本変形を施す.
- ... α これこ マスロップログロロ の $\alpha_{11} = A[\alpha]$ になるよつに基本変形を施す。 2. Observation 7.1.10. とp.432中段のExerciseを用いて $a_j[\alpha]$ が A'_{11} の線形結合で表せることを示す。

$$A' = \begin{bmatrix} A'_{11} (=A[lpha]) & A'_{12} \ A'^*_{12} & A'^*_{22} \end{bmatrix} = C^*AC$$
となる基本行列のまとまり, C , $C^* (=C)$ をかける. このとき $A' (=C^*AC)$ は,Observation 7.1.10.と,Observation 7.1.8. (a) より正定置性は保たれる.

Exercise.

Partition
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \in M_n$$
, in which $A_{11} \in M_k$ and $k \in \{1, 2, \dots, n-1\}$. Following statements are equivalent.

- (a) A has the column inclusion property.
- (c) For each $k \in \{1, 2, ..., n\}$, every column of A_{12} is a linear combination of the columns of A_{11} .

これより、 A_{12} の列は A_{11} の列の線形結合で表せる。つまり A_{12} の列はそれぞれ、 A_{11} の列空間に属する。 $a_i[lpha]$ はこのとき A_{11} または A_{12} の列である。 A_{11} の列は A_{11} の列空間に属するので, $a_j[lpha] \in \mathit{Im}(A[lpha])$.

Exercise.

Write $A \in M_n$ as A = H + iK, in which H and K are Hermitian. If $x \in M_n$, explain why the following statements are equivalent:

- (a) $x^*Ax = 0$
- (b) $x^*A^*x = 0$
- (c) $x^*Hx = O$, $x^*Kx = O$

補題

Each $A \in M_n$ can be written uniquely as A = H + iK, in which both H and K are Hermitian. It can be also be written uniquely as A = H + S, in which H is Hermitian and S is skew Hermitian.

歪エルミート行列

 $A\in M_n$ に対し,その随伴行列を A^* で表すとき,Aが歪エルミート行列ならば, $A^*=-A$.

Proof. A を $A = \frac{1}{2}(A + A^*) + i[\frac{i}{2}(A - A^*)]$ で表す. このとき $H = \frac{1}{2}(A + A^*)$, $K = \frac{1}{2}(A - A^*)$ とおく. 一意性について, あるエルミート行列,E,F を用いてA = E + iF と表せるとすると, $A + A^* = (E + iF) + (E + iF)^* = E + iF + E - iF = 2E$ よって, $E = \frac{1}{2}(A + A^*) = H$ このときF = K. \square

方針

- 1. 任意の正方行列がエルミート行列と歪エルミート行列の和で一意に書けることを示す。
- 2. (a) ⇔ (b) を示す.
- 3. (a) ⇔ (c) を示す.

Proof.

1.は補題参照.

 $x^*Ax = 0$

$$\Rightarrow (x^*Ax)^* = (Ax)^*x^{**} = x^*A * x = 0$$
. 逆も同様.

(a) ⇔ (c)

1. (a) \Rightarrow (c)

$$x^*Ax = O, x^*A^*x = O$$

 $\Rightarrow x^*(H+iK)x = x^*(Hx+iKx) = x^*Hx+ix^*Kx$. ここで、
 $H = \frac{1}{2}(A+A^*), K = \frac{1}{2}(A-A^*)$ であるから、
 $x^*Hx = \frac{1}{2}x^*(A+A^*)x = \frac{1}{2}x^*Ax + \frac{1}{2}x^*A^*x = O$
同様に、 $x^*Kx = O$

2. (c) \Rightarrow (a)

$$x^*Hx = O$$
, $x^*Kx = O$ のとき, $\frac{1}{2}x^*Hx + \frac{i}{2}x^*Kx = O$, よって, $\frac{1}{2}x^*Hx + \frac{i}{2}x^*Kx = x^*(H + iK)x^* = x^*Ax = O$. \square

A = H + Sの場合も同様に示される.