OPTIMIZED RESOURCE ALLOCATION FOR A TWO SIDED MARKET

Leena Venugopal, Subramaniam Ganesh Kumar & Subramanian Vellaiyan

Business Intelligence & Analytics

Introduction

- Client is a multi-national global information services organization specializing in corporate legal services.
- Client currently has a customer-vendor management system that allocates the jobs requested by the customers to the vendors, which involves a lot of paperwork.
- The client wants to automate this customer-vendor management system. A platform was created, which can automate the job allocation process by optimizing quality, turnaround, responsiveness and cost of the job.
- This platform can highly reduce the hassle of paperwork involved, the wait time for customers, and the money spent.

Model Design

- Linear programming model was used to allocate jobs optimally based on the scores.
- A basic static linear programming model was formed in excel and using Gurobi optimizer it was extended for dynamic data.

- Forced Ranking method is used for job allocation - Top 4 Vendors.
- When 4 vendors are not available the jobs are allocated to the available vendors.
- Vendors read from the input file are checked-in and ready for job allocation.
- When the maximum score is less than 85 the model waits for 20 minutes for the input to be read.

Methodology

- Unique score creation (Vendor score * job * job priority _score) for maximizing the allocation.
- Jobs are prioritized based on the in time: First in First out approach.
- Different scenarios created to stress test the model.

Allocation of 20 jobs to a pool of 6 vendors based on vendor scores and job			
allocation time			

Inputs				
Yendors	¥1	¥2	¥3	¥4
Quality	50	45	45	40
Cost	25	20	20	20
TAT	15	15	10	10
Responsiv	10	10	10	20 10 10
Score	100	90	85	80

Number of vendors available for allocation	% of the jobs allocated to			
	1st ranked vendor	2nd ranked vendor	3rd ranked vendor	4th ranked vendor
4	60	20	15	5
3	70	20	10	
2	80	20		
1	100			

Constraints

- Vendors can have multiple jobs but one job can have only one vendor
- Allocation constraints were implemented based on forced ranking scenarios

m = Number of Vendors n = Number of Jobs J1...Jn = Jobs V1...Vn = Vendors

Sum of vendors per job should be equal to one.

J1(V1+V2+...+Vn) = 1

J2(V1+V2+...+Vn) = 1

...

...

Jm(V1+V2+...+Vn) = 1

Results

Data

The model needs two input files:

Job Id and their arrival time Scores for individual vendors and respective vendor ID.

Output

The ouput is stored in a text file has the following details Vendor ID, allocated number of jobs for the respective vendor and average vendor score

Scenario 1

Number of Vendors: 6 Number of Jobs: 20 Allocation by the model

endor ID	Count	738 0.928571429
38	3.0	11797 0.886363636
.09	12.0	1000 0.905172414
.065	1.0	109 0.942307692
.85	4.0	1065 0.927197802
lverage ve	ndor score: 93.783	185 0.93404908

Scenario 3

Number of Vendors: 2 Number of Jobs: 20 Allocation by the model

Vendor_ID	Count			
738	16.0		738 0.	95571429
11797	4.0		11797	0.786363636
		02 104		

Scenario 2 Number of Vendors: 3 Number of Jobs: 20

Vendor_ID	Count		
738	2.0	738 0	.78571429
11797	4.0	11797	
1000 14.0	14.0		
		1000	0.865172414
Average ver	ndor score: 8	4.149	

Scenario 4

Number of Vendors: 1 Number of Jobs: 20 Allocation by the model

Future Enhancements

- Jobs are currently allocated on the basis of the arrival time(FIFO). Each job can be prioritized for allocation by assigning weights for the jobs.
- The score of each vendor can be dynamically calculated after the allocation and updated back to the vendor input data
- The allocation is currently at the overall score level.
 Allocation can be prioritized for Quality, cost, turnaround and responsiveness at the individual level incase of tie in the scores.