ALEVELS P3 MARKING SCHEME

DIFFERENTIAL EQUATIONS
WITH PROOF (SIMPLE)
DE2

1 (i) Separate variables correctly and attempt to integrate both sides
$$\frac{M1}{A1}$$
 Obtain term $\ln x$, or equivalent $\frac{1}{A}k^2$ but $\frac{1$

M1(dep*)

7

2

1

A1

B1

B1

BI

Rearrange and make h the subject

(iii) State that the maximum height is h = 9

State that the time taken is 60 years

Obtain answer $h = 9 - (4 - \frac{1}{15}t)^{\frac{1}{2}}$, or equivalent

(iv) Substitute h = 9/2 and obtain t = 19.1 (accept 19, 19.0 and 19.2)

B1

M1

A1

A1

M1

A1

M1

A1

M1

cwo A1

[1]

[9]

(i) State $\frac{dA}{dt} = k\sqrt{2A-5}$

Obtain 63

Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent

Obtain = kt or equivalent

Obtain C = 3 or equivalent

Obtain k = 0.4 or equivalent

Use t = 10 and A = 27 to find k

(ii) Separate variables correctly and attempt integration of each side

Use t = 0 and A = 7 to find value of arbitrary constant

Substitute t = 20 and values for C and k to find value of A

10	(i)	State $\frac{dV}{dt} = 80 - kV$	B1	
		Correctly separate variables and attempt integration of one side Obtain $a \ln(80 - kV) = t$ or equivalent	M1 M1*	
		Obtain $-\frac{1}{k}\ln(80 - kV) = t$ or equivalent	A1	
		Use $t = 0$ and $V = 0$ to find constant of integration or as limits Obtain $-\frac{1}{k}\ln(80 - kV) = t - \frac{1}{k}\ln 80$ or equivalent	M1 (dep*) A1	
		Obtain given answer $V = \frac{1}{k} (80 - 80e^{-kt})$ correctly	A1	[7]
	(ii)	Use iterative formula correctly at least once Obtain final answer 0.14 Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign	M1 A1	
		change in the interval (0.135, 0.145)	A1	[3]
	(iii)	State a value between 530 and 540 cm ³ inclusive	B1	
		State or imply that volume approaches 569 cm ³ (allowing any value between 567 and 571 inclusive)	B1	[2]
11	(i)	State or imply $\frac{dN}{dt} = kN(1 - 0.01N)$ and obtain the given answer $k = 0.02$	B1	1
	(ii)	Separate variables and attempt integration of at least one side Integrate and obtain term 0.02 <i>t</i> , or equivalent	M1 A1	
		Carry out a relevant method to obtain A or B such that $\frac{1}{N(1-0.01N)} = \frac{A}{N} + \frac{B}{1-0.01}$	$\frac{1}{N}$, or	
		equivalent	M1*	
		Obtain $A = 1$ and $B = 0.01$, or equivalent Integrate and obtain terms $\ln N - \ln(1 - 0.01N)$, or equivalent	A1 A1√	
		Evaluate a constant or use limits $t = 0$, $N = 20$ in a solution with terms $a \ln b \ln(1 - 0.01N)$, $ab \neq 0$	N and M1(dep*)	
		Obtain correct answer in any form, e.g. $\ln N - \ln(1 - 0.01N) = 0.02t + \ln 25$	A1	
		Rearrange and obtain $t = 50 \ln(4N/(100 - N))$, or equivalent	A1	8
	(iii)	Substitute $N = 40$ and obtain $t = 49.0$	B1	1
12	(i)	State $\frac{\mathrm{d}N}{\mathrm{d}t} = k(N-150)$	B1	[1]
	(ii)	Substitute $\frac{dN}{dt} = 60$ and $N = 900$ to find value of k	M1	
		Obtain $k = 0.08$	A1	
		Separate variables and obtain general solution involving $ln(N-150)$	M1*	
		Obtain $ln(N-150) = 0.08t + c$ (following their k) or $ln(N-150) = kt + c$ Substitute $t = 0$ and $N = 650$ to find c	A1√ don M1*	
		Obtain $\ln(N - 150) = 0.08t + \ln 500$ or equivalent	dep M1* A1	
		Obtain $N = 500e^{0.08t} + 150$	A1	[7]
	(iii)	Either Substitute $t = 15$ to find N or solve for t with $N = 2000$ Obtain Either $N = 1810$ or $t = 16.4$ and conclude target not met	M1 A1	[2]

13 (i)	State equation $\frac{dy}{dx} = \frac{1}{2}xy$	B1	[1]
(ii)	Separate variables correctly and attempts to integrate one side of equation Obtain terms of the form $a \ln y$ and bx^2 Use $x = 0$ and $y = 2$ to evaluate a constant, or as limits, in expression containing	M1 A1	
	$a \ln y \text{ or } bx^2$	M1	
	Obtain correct solution in any form, e.g. $\ln y = \frac{1}{4}x^2 + \ln 2$	A1	
	Obtain correct expression for y, e.g. $y = 2e^{\frac{1}{4}x^2}$	A1	[5]
(iii)	Show correct sketch for $x \ge 0$. Needs through $(0, 2)$ and rapidly increasing positive gradient.	B1	[1]
14(i)	State $\frac{dy}{dt} = -\frac{2y}{(1+t)^2}$, or equivalent		B1
	Separate variables correctly and attempt integration of one side		M1
	Obtain term ln y, or equivalent		A1
	Obtain term $\frac{2}{(1+t)}$, or equivalent		A1
	Use $y = 100$ and $t = 0$ to evaluate a constant, or as limits in an expression containing to the form $a \ln y$ and $\frac{b}{1+t}$	rms of	M1
	Obtain correct solution in any form, e.g. $\ln y = \frac{2}{1+t} - 2 + \ln 100$		A1
		Total:	6
(ii)	State that the mass of B approaches $\frac{100}{e^2}$, or exact equivalent		B1
	State or imply that the mass of A tends to zero		B1
		Total:	2

15(i)	Justify the given differential equation	B1
	Total:	1
(ii)	Separate variables correctly and attempt to integrate one side	B1
	Obtain term kt, or equivalent	B1
	Obtain term $-\ln(50-x)$, or equivalent	B1
	Evaluate a constant, or use limits $x = 0$, $t = 0$ in a solution containing terms $a \ln(50-x)$ and bt	M1*
	Obtain solution $-\ln(50-x) = kt - \ln 50$, or equivalent	A1
	Use $x = 25$, $t = 10$ to determine k	DM1
	Obtain correct solution in any form, e.g. $\ln 50 - \ln (50 - x) = \frac{1}{10} (\ln 2)t$	A1
	Obtain answer $x = 50(1 - \exp(-0.0693t))$, or equivalent	A1
	Total:	8

16(i)	Fully justify the given statement	B1	
		1	
(ii)	Separate variables and attempt integration of at least one side Obtain terms $\ln y$ and $\frac{1}{2}x$	B1 B1	
	Use $x = 4$, $y = 3$ to evaluate a constant or as limits in a solution with terms $a \ln y$ and bx , where $ab \neq 0$	M1	
	Obtain correct solution in any form	A1	1
	Obtain answer $y = 3e^{\frac{1}{2}x-2}$, or equivalent	A1	
		5	

State equation $\frac{dy}{dx} = k \frac{y^2}{x}$, or equivalent	B1
Separate variables correctly and integrate at least one side	B1
Obtain terms $-\frac{1}{y}$ and $k \ln x$	B1 + B1
Use given coordinates correctly to find k and/or a constant of integration C in an equation containing terms $\frac{a}{y}$, $b \ln x$ and C	M1
Obtain $k = \frac{1}{2}$ and $c = -1$, or equivalent	A1 + A1
Obtain answer $y = \frac{2}{2 - \ln x}$, or equivalent, and ISW	A1

8 .

18(i)	State $\frac{dN}{dt} = ke^{-0.02t} N$ and show $k = -0.01$	B1
		1
(ii)	Separate variables correctly and integrate at least one side	B1
	Obtain term ln N	B1
	Obtain term $0.5e^{-0.02t}$	B1
	Use $N = 1000$, $t = 0$ to evaluate a constant, or as limits, in a solution with terms $a \ln N$ and $be^{-0.02t}$, where $ab \neq 0$	M1
	Obtain correct solution in any form e.g. $\ln N - \ln 1000 = 0.5 \left(e^{-0.02t} - 1 \right)$	A1
	Substitute $N = 800$ and obtain $t = 29.6$	A1
		6
(iii)	State that N approaches $\frac{1000}{\sqrt{e}}$	B1
		1