Digital microsystems design

Lab 3

Memory map

• x86/x64

Exercise

- Design the memory map for a 32 bits microprocessor system with 32 address lines using the following memory requirements:
 - 512 MB EEPROM, using 128 M x 16 bits memories
 - 1 GB SRAM, using 64 M x 32 bits memories
 - 2 GB DRAM, using 256 M x 8 bits memories

Overview

- External connectivity of a microprocessor
 - Memory / I/O connectivity

- How much memory the processor can access?
 - Max amount of memory = 2 ^ address bus width of the processor
 - 2^32 = 2^2 x 2^30 = 4 GB
 - Address space of the processor:
 - 0000_0000h FFFF_FFFh

- How many circuits are needed?
 - No of circuits = size of the required memory / size of the available memory circuits
 - No of EEPROM circuits = 512 MB / (128 M x 16 bits) = = 512 MB / 256 MB = 2
 - No of SRAM circuits = ...
 - No of DRAM circuits = ...

- How many memory blocks are required?
 - Circuits have to be grouped into blocks in order to match the data bus width of the processor
 - No of circuits per bloc = processor data bus width / memory data bus width
 - No of blocks = no of circuits / no of circuits per block
 - No of EEPROM circuits per block = 32 / 16 = 2
 - No of EEPROM blocks = 2 / 2 = 1
 - No of SRAM blocks ...
 - No of DRAM blocks ...

• Visualize the systems (block diagram)

- 16 bits processors have to implement both:
 - 16 bits transfers
 - 8 bits transfers
- 8086: /BHE and A0

BHE	A ₀	Characteristics
0	0	Whole word
0	1	Upper byte from/to odd address
1	0	Lower byte from/to even address
1	1	None

- 16 bits transfers even address (A0 = 0, /BHE = 0)
- 8 bits transfers
 - Odd address (A0 = 1, /BHE = 0)
 - Even address (A0 = 0, /BHE = 1)

- 32 bits data bus
 - 32 bits transfers
 - 16 bits transfers
 - 8 bits transfers

- Hardware organization of physical address space (32 bits)
 - 32 bits memory block

- 1 byte
 - Address 4xk

• Address 4xk+1

- 1 word
 - Address 4xk

- 1 double word
 - Address 4xk

- Misaligned double-word data transfer
 - Address 4xk+2 the processor will perform 2 bus cycles

- Characterize each block
 - Selection is made at block level, not at the circuit level
 - Size, number of address lines, range of addresses
 - EEPROM block: 512 MB = 2^9 x 2^20 = 2^29
 - 29 address lines
 - Size of the block: 2^29 = 1 000...00 = 20000000 H

• Address range: 0000_0000H - 1FFF_FFFFH

- Characterize each block
 - SRAM

- Characterize each block
 - DRAM

• Memory map

Solution

```
EPROM
no of blocks = 1
В1
512 \text{ MB} = 2000 0000 \text{h}
SRAM = 4 circuits
no of circuit per block = 32 /32 = 1
no of SRAM blocks = 4 / 1 = 4
B2, B3, B4, B5
256 \text{ MB} = 2^8 * 2^20 = 2^28 = 1000 0000h
DRAM = 8 circuits
no of circuits per block = 32 / 8 = 4
no of DRAM blocks = 8 / 4 = 2
B6, B7
4 * 256 MB = 1 GB = 2^30 = 4000 0000h
Memory map
    Start address - Ending address
B1 0000 0000h
                - 1FFF FFFFh
B2 2000 0000h
               2FFF_FFFFFh
B3 3000 0000h
                - 3FFF FFFFh
   4000 0000h

    4FFF FFFFh

   5000_0000h

    5FFF FFFFh

   8000 0000h

    BFFF FFFFh

    C000 0000h
                  - FFFF FFFFh
```

Next

- Decoding table
- Memory decoder