MODÉLISATION, ENRICHISSEMENT SÉMANTIQUE ET DIFFUSION D'UN CORPUS TEXTUEL SEMI-STRUCTURÉ: LE CAS DES CATALOGUES DE VENTE DE MANUSCRITS.

Paul, Hector Kervegan 25 septembre 2022

Introduction Problématique

Introduction Plan

- 1 La structure du texte comme méthode d'approche
 - Structure, document physique et encodage numérique
 - La spécificité d'un corpus "semi-structuré"
- 2 Sous quels angles aborder cette problématique?
 - Modéliser un corpus semi-structuré
 - Analyser le texte à partir de sa structure: la résolution d'entités nommées
 - Recomposer et diffuser le texte via une API
- 3 Le traitement automatique du texte comme chaîne éditoriale continue
 - L'enrichissement progressif du texte
 - La résolution d'entités nommées: mettre le texte en réseau
 - Recomposer le texte et créer des documents via une API

Sous quels angles aborder cette problématique? Recomposer et diffuser le texte via une API

Une chaîne éditoriale continue L'enrichissement progressif du texte

Une chaîne éditoriale continue La résolution d'entités nommées: mettre le texte en réseau

Une chaîne éditoriale continue Recomposer le texte et créer des documents via une API

Conclusion

There Is No Largest Prime Number The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

 \blacksquare Suppose p were the largest prime number.

4 But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- \blacksquare Suppose p were the largest prime number.
- 2 Let q be the product of the first p numbers.
- 4 But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- \blacksquare Suppose p were the largest prime number.
- **2** Let q be the product of the first p numbers.
- **3** Then q+1 is not divisible by any of them.
- 4 But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.