Tackling Climate Change with Machine Learning Workshop at ICML 2021

A Reinforcement Learning Approach to Home Energy Management for Modulating Heat Pumps and Photovoltaic Systems

Technische Universität Berlin Production and Operations Management Group

Motivation

Climate Change

European Union:

- At least 55% CO₂ reduction by 2030
- Carbon neutrality by 2050

Renewable Energy Sources

Germany:

- 19% of final consumption in 2020
- 45% of electricity consumption in 2020

Demand Response

Opportunities:

- Frequency/voltage regulation
- Self-consumption of local renewable generation
- Benefits from dynamic prices

Buildings globally:

- 30% of energy consumption
- 28% of CO₂ emissions

Sector coupling critical:

Heating: 65%

Hot water: 14%

of energy consumption

Flexibility:

demand and supply adjustments via PV, heat pumps, and storage technologies

Umweltbundesamt (2021), Dengiz et al. (2019), Kazmi et al. (2019) pics: unsplash.com + https://www.extremetech.com, eurostat 2016

Smart Home - Energy Management System (SHEMS)

Overall prices in Germany:

- Electricity: ~0.30 €/kWh
- Grid feed-in: max. 0.10 €/kWh and continuously decreasing

Objectives:

- Maximize self-sufficiency
- Stay within comfort bounds
- Make some extra profit selling excess electricity (need better incentives to do that system beneficially)

Decision Variables

Exogenous Factors

Image: VDI Nachrichten

Some advertisement for more background...

Applied Energy 278 (2020) 115661

Contents lists available at ScienceDirect

Applied Energy

An optimal home energy management system for modulating heat pumps and photovoltaic systems

Lissy Langer*, Thomas Volling

Technische Universität Berlin, Work Group Production and Operations Management (POM), Straße des 17.Juni 135, 10623 Berlin, Germany

Publication: https://doi.org/10.1016/j.apenergy.2020.115661

Arxiv: https://arxiv.org/pdf/2009.02349.pdf Code: https://github.com/lilanger/SHEMS

Articl

An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime

Lissy Langer [®]

Working Group Production and Operations Management (POM), Technische Universität Berlin, Office ID H 85, Straße des 17. Juni 135, 10623 Berlin, Germany; langer@pom.tu-berlin.de

Publication: https://doi.org/10.3390/en13205348 Code: https://github.com/lilanger/PEERS

Initial publication:

- Detailed description of building model and input data
- Model Predictive Control (MPC) model formulation
- Rolling Horizon implementation
- Derivation of demand fulfillment priorities

Extension:

- Model Predictive Control (MPC) model formulation
- Small peer-to-peer network implementation
- Detailed German levy regime (taxes, surcharges,...) implementation

exogenous

Reinforcement Learning implementation

Uncertainties:

 Exogenous demand and generation implemented via real world traces

Setup:

- State space:

 [SOC_b, SOC_{fh}, SOC_{hw} d_e, d_{fh}, d_{hw}, g_e, t_{out}, h]
- Fulfillment priorities from MPC results
 - Results in much smaller action space (2 instead of 10 dimensions)
- Slack variables cover mismatches

Actions (continuous):

- Battery: Discharging + Charging = [-1, +1]
- Heat Pump: Hot water + Floor heating = [-1, +1]

DDPG SHEMS workflow and networks

Workflow of the DDPG algorithm applied in SHEMS.

Some preliminary results...

pv→d e

On a day in summer...

0.0

0

24

12

6

18

Some preliminary results...

On a day in winter...

→hp

→b →d_e - ge - SOC_b

b max

Now with higher heating and hot water demand

Conclusions

- Still some finetuning to be done
- KPIs are not that informative at some point, digging deep into the actions more helpful
- One can easily get lost in hyperparameter tuning
- Tuning the simulation environment is key, expert knowledge and common sense is essential
- Simple rules can be quite tough benchmarks to beat!

Electricity
costs

Selfsufficiency

	Optimum	Rule – Always charge with 70% SOC	DDPG
Summer Test	141€	129€	130€
Winter Test	-102€	-153€	-157€
Summer Test	100%	99%	97%
Winter Test	65%	46%	44%

Faculty VII Economics & Management

Working Group Production and Operations Management Lissy Langer (langer@pom.tu-berlin.de) H 85, Straße des 17. Juni 135, 10623 Berlin

