

Algorithmie

Les tris

BOULCH Alexandre

Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

Les types de complexité

Deux complexités différentes

- ► La complexité en temps : le nombre d'opérations élémentaires nécessaires pour effectuer l'algorithme
- ► La complexité en espace : la taille de la mémoire nécessaire à l'algorithme

Complexités classiques (en temps)

- ▶ 0(1) : accès aux éléments d'un tableau
- $ightharpoonup 0(\log N)$: requête dans un arbre de recherche
- ▶ 0(N) : parcours d'un tableau
- $ightharpoonup 0(N \log N)$: tris rapides
- ▶ 0(N²) : tris basiques
- $ightharpoonup 0(2^N)$: problèmes difficiles

Dans le cours d'introduction au C++, on a vu deux méthodes pour trouver les termes de la suite de Fibonnacci :

$$\begin{cases} f_0 = f_1 = 1 \\ f_n = f_{n-1} + f_{n-2} \end{cases}$$

La formulation du problème incite à l'utilisation de la récursivité.

```
int fib1(int n){
  if(n<2)
    return 1;
  return fib1(n-1)+fib1(n-2);
}</pre>
```


lci on assimile la complexité au nombre d'additions (nombre d'appels à la fonction).

- ▶ fib1(0):0
- ▶ fib1(1):0
- ▶ fib1(2):1
- ▶ fib1(3):2
- ▶ fib1(4):4
- fib1(5):7
- ▶ fib1(6):12
- ▶ fib1(12) : 20

Notant a(n) le nombre d'additions à faire au rang n:

$$2*a(n-2) \le a(n) \le 2*a(n-1)$$

 $2^{\frac{n}{2}} \le a(n) \le 2^n$

Ceci donne une complexité C(fib1) telle que :

$$O(2^{\frac{n}{2}}) \leq C(fib1) \leq O(2^n)$$

Impossible à calculer pour des n grands.

Une seconde méthode, non récursive :

```
int fib2(int n){
  int fnm2=1,fnm1=1;
  for(int i=2;i<=n;i++) {
    int fn=fnm2+fnm1;
    fnm2=fnm1;
    fnm1=fn;
  }
  return fnm1;
}</pre>
```


lci on a une seule boucle. La boucle se compose d'opérations en temps constant.

La complexité C(fib2) est O(n).

Verdict

Le choix de la méthode d'implémentation peut beaucoup influer sur la performance.

Remarque

La récursivité n'est pas une mauvaise chose, elle est utile quand elle recalcule pas plusieurs fois la même chose.

Complexité exemples

```
https://fr.wikipedia.org/wiki/Analyse_de_la_complexit%C3%A9_des_algorithmes
```


Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

Complexité minimale

Théorème

La complexité minimale d'un algorithme de tri, d'une liste $\{a_1, a_2, ... a_n\}$ à valeur dans un ensemble continu ou de grand cardinal est $O(n \log n)$.

Complexité minimale : preuve

- ► Tout algorithme de tri se base sur des comparaisons et des transpositions (le nombre de comparaisons est ici la complexité).
- ▶ Il doit être capable de trier quelque soit la liste en entrée, *ie* il doit pouvoir envisager les *n*! permutations possibles

Complexité minimale : preuve - Arbre de tri

Lemme

On peut représenter un algorithme de tri sous la forme d'un arbre ou chaque noeud correspond à une comparaison, les arètes aux résultats des comparaisons et chaque feuille à une permutation.

Conséquences

- L'arbre est un arbre binaire, il a 2^h feuilles (h est la hauteur de l'arbre)
- L'arbre a au minimum n! feuilles
- ▶ La hauteur de l'arbre est le nombre de comparaisons nécessaires pour obtenir une liste triée

Complexité minimale : preuve - Arbre de tri - Exemple

Exemple pour n = 3 et pour le tri à bulles : **abc**.

Complexité minimale

Preuve

On a donc la relation suivante :

$$n! \leq 2^h$$

En utilisant la formule de Stirling : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ On obtient :

$$h = O(n \log n)$$

Complexité minimale : exemple

Exemple du calcul de l'histogramme d'une image.

```
int histo [256];
for (int i=0; i<256; i++){
    histo [i] = 0;
}
for (int x=0; x<image.width(); x++){
    for (int y=0; y<image.height(); y++){
        histo [image(x,y)]++;
    }
}</pre>
```

Complexité minimale : exemple

Exemple du calcul de l'histogramme d'une image.

```
int histo [256];
for(int i=0; i<256; i++){
   histo [i] = 0;
}
for(int x=0; x<image.width(); x++){
   for(int y=0; y<image.height(); y++){
      histo [image(x,y)]++;
   }
}</pre>
```

Il faut regarder au minimum une fois chaque pixel : O(n). La complexité minimale n'est pas liée à l'implémentation mais à la tâche à effectuer.

Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

Algorithmes quadratiques : tri à bulles

```
for(int i=N; i>0; i--){
  for(int j=0; j<i-1; j++){
    if(t[j] > t[j+1]){
      swap(t[j], j[j+1])
    }
}
```

Algorithmes quadratiques : tri à bulles

```
for(int i=N; i>0; i--){
  for(int j=0; j<i-1; j++){
    if(t[j] > t[j+1]){
      swap(t[j], j[j+1])
    }
}
```

Complexité

On fait $(N-1)+(N-2)+\ldots+1=\frac{(N-1)(N-2)}{6}$ comparaisons. La complexité du tri à bulles est en $O(N^2)$.

Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

QuickSort : principe

- 1. Prendre un élément (le pivot) et le placer à sa place dans le tableau, de sorte qu'avant lui les éléments soient plus petits, et après lui plus grands.
- 2. On relance l'étape précédente sur chacune des parties du tableau.

8	18	20	2	5	1	14	3	34	21	15	9	7	23	17	13
---	----	----	---	---	---	----	---	----	----	----	---	---	----	----	----

8 18 20 2 5 1 14 3 34 21 15 9 7 23 17 13

 8
 7
 9
 2
 5
 1
 3
 13
 34
 21
 15
 20
 18
 23
 17
 14

Complexité de Quicksort

Quicksort est un tri en $O(N \log(N))$.

Démonstration dans le chapitre 3.

QuickSort : complexité - Pire des cas

Le parcours du tableau implique ${\it N}-1$ comparaison. Donc :

$$C_N = (N-1) + C_i + C_{N-i-1}$$

Si on suppose que i = N - 1 (déjà triée) :

$$C_{\mathsf{N}} = (\mathsf{N}-1) + C_{\mathsf{N}-2}$$

Au rang suivant :

$$C_N = (N-1) + (N-2) + C_{N-3}$$

Au final, on a un tri à bulles :

$$C_n = O(N^2)$$

QuickSort : éviter le pire des cas

Pour eviter le pire des cas en moyenne on utilise généralement :

- un tirage du pivot au hasard
- un pivot au milieu du tableau
- un mélange de la liste au préalable

QuickSort : en pratique

- QuickSort est implémenté dans la STL (#include <algorithm>).
- ▶ Il existe des algorithmes en N log N quoi qu'il arrive (HeapSort, MergeSort ...), mais il sont moins rapide en moyenne.

Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

File de priorité

La file de priorité est une structure de données :

- Accès à l'élément le plus prioritaire en O(1)
- ▶ Ajout d'un élément en O(log N)
- ▶ Retrait d'un élément en $O(\log N)$

Étude au chapitre 4.

HeapSort

HeapSort remplit une file de priorité et puis retire les éléments un par un.

```
void HeapSort(std::vector<double> &v){
    FilePriorite f;
    for(int i=0; i<v.size(); i++){
        f.push(v[i]);
    }
    for(int i=0; i<v.size(); i++){
        v[i] = f.pop();
    }
}</pre>
```

Conclusion

HeapSort est un tri en $O(N \log N)$ dans tous les cas. Cependant en comparaison à QuickSort, il utilise plus de mémoire et est plus long en moyenne.

En pratique c'est QuickSort le plus utilisé.

Heapsort : complexités à retenir

- ► Tri : *O*(*N* log *N*)
- ► Recherche dans un tableau trié : $O(\log N)$
- ▶ Recherche dans un tableau non trié : O(N)

Plan de la séance

Rappels

Complexité Minimale

Algorithmes quadratiques

QuickSort

Heapsort

Recherche dans un tableau

Recherche dans un tableau non trié

Tableau non trié

Pas d'a priori sur la structure du tableau. Il faut regarder chaque élément.

Complexité

O(N)

Recherche dichotomique

Le fait de savoir que le tableau est trié permet de réduire la complexité de la recherche à $O(\log(N))$.

```
int dichotomie(const std::vector<double>& V, double val){
    int a=0, b=v.size()-1;
    while(a<b){
        int c = (a+b)/2;
        if(V[c]==val)
            return c;
        if(V[c]< val)
            a = c+1;
        else
            b = c-1;
    }
    return (V[a]== val) ? a:-1;
}</pre>
```


Exercice - Tri à peigne

Algorithme

Comme le tri à bulle, mais on commence avec un intervalle de N (tri à bulle c'est 1). Puis on réduit l'intervalle par un facteur α (en général, empiriquement, $\alpha=1.3$).

Question

Calculer la complexité du tri à peigne.

Algorithmes de tri.

