3 Markov's inequality states that, if X is a random variable that takes as only non negative values, then for any value a>0, To prove: With mean 4, and variance o? $P(X-\mu \geq \tau) \leq \frac{\sigma^2}{\sigma^2 + \tau^2}$, $\tau > 0$ $P(x-\mu \geq \tau) \geq 1-\sigma^2$, $\tau < 0$ Proof: We have that,

En (ase: $\tau > 0$)

Clearly, for $P[(x-\mu)^2 \ge \tau^2] = P[|x-\mu|^2 \ge \tau], -1$ $\forall \tau > 0$ Let Y be a random variable such that, der Now; & ar tools de on B P[x-μ ≥τ] «= P[Y≥τ] $= P[X-\mu \geq \tau] = P[Y+\alpha \geq \tau+\alpha], \text{ for some } \alpha > 0 - 2$ Now, clearly by using 1, $P[Y+\alpha \geq T+\alpha] \leq P[(Y+\alpha)^2 \geq (T+\alpha)^2]$ Now, as per Markov's Inequality, $P[X \ge a] \le E(X)$ $\Rightarrow P[(Y+\alpha)^2 \leq (\tau+\alpha)^2] \leq \frac{E[(Y+\alpha)^2]}{(\tau+\alpha)^2}$

using
$$(2)$$
, (3) , and (4) , (4)

10-10/3 2

Substituting,
$$\alpha = \frac{\sigma^2}{\tau}$$
 in \Im ,
$$P(x-\mu \ge \tau) \le \frac{\sigma^2}{\tau^2 + \sigma^2}$$

NOW,

Case: T<0

We proceed as in the previous, with $\beta=-T>0$, and $\alpha \ge 0$.

$$= P(x-\mu < \tau) = P(\bullet Y < -\beta)$$

$$= P(-Y > \beta) \le \frac{\sigma^2}{\beta^2 + \sigma^2}$$
Hence, $P(x-\mu < \tau) \le \frac{\sigma^2}{\tau^2 + \sigma^2}$ [: $\beta = -\tau$]

. Taking compliment,
$$P(x-\mu \geq T) \geq 1 - \frac{\sigma^2}{T^2 + \sigma^2}$$

Hence, proved.