Testing probability distributions using conditional samples

(when testers get to be picky)

Clément Canonne* Dana Ron[†] Rocco Servedio*

 * Columbia University

[†]Tel-Aviv University

March 8th, 2013

Plan of the talk

- Introduction
- 2 Testing Uniformity
- Tools and subroutines
- 4 Back to uniformity
- Conclusion

Background and motivation

What is distribution testing?

Property testing

Given a big, hidden "object" X one can only access by local, expensive inspections (e.g., oracle queries), and a property \mathcal{P} , the goal is to check in sublinear number of inspections if (a) X has the property or (b) X is "far" from all objects having the property.

3 / 35

¹wrt to some specified metric, and parameter $\varepsilon > 0$ given to the tester.

Background and motivation

What is distribution testing?

Property testing

Given a big, hidden "object" X one can only access by local, expensive inspections (e.g., oracle queries), and a property \mathcal{P} , the goal is to check in sublinear number of inspections if (a) X has the property or (b) X is "far" from all objects having the property.

Testing distributions (standard model)

X is an unknown probability distribution D over some N-element set; the testing algorithm has blackbox sample access to D.

¹wrt to some specified metric, and parameter $\varepsilon > 0$ given to the tester.

In more details.

Distance criterion: total variation distance ($\propto L_1$ distance)

$$\mathsf{d}_{\mathrm{TV}}(D_1,D_2) \stackrel{\mathrm{def}}{=} \frac{1}{2} \|D_1 - D_2\|_1 = \frac{1}{2} \sum_{i \in [N]} |D_1(i) - D_2(i)|.$$

Definition (Testing algorithm)

Let \mathcal{P} be a property of distributions over [N], and ORACLE_D be some type of oracle which provides access to D. A $q(\varepsilon, N)$ -query ORACLE testing algorithm for \mathcal{P} is an algorithm T which, given ε , N as input parameters and oracle access to an ORACLE_D oracle, and for any distribution D over [N], makes at most $q(\varepsilon, N)$ calls to ORACLE_D, and:

- if $D \in \mathcal{P}$ then, w.p. at least 2/3, T outputs ACCEPT;
- if $d_{TV}(D, P) \ge \varepsilon$ then, w.p. at least 2/3, T outputs REJECT.

Comments

A few remarks

tester is randomized;

Comments

- tester is randomized;
- ullet "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon);$

Comments

- tester is randomized;
- ullet "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon);$
- 2/3 is completely arbitrary;

Comments

- tester is randomized;
- "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon)$;
- 2/3 is completely arbitrary;
- extends to several oracles and distributions;

Comments

- tester is randomized;
- "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,\varepsilon)$;
- 2/3 is completely arbitrary;
- extends to several oracles and distributions;
- our measure is the sample complexity (not the running time).

Concrete example: testing uniformity

Property \mathcal{P} ("being \mathcal{U} , the uniform distribution over [N]") \Leftrightarrow set $\mathcal{S}_{\mathcal{P}}$ of distributions with this property $(\mathcal{S}_{\mathcal{P}} = {\mathcal{U}})$ Distance to \mathcal{P} :

$$\mathsf{d}_{\mathrm{TV}}(D,\mathcal{S}_{\mathcal{P}}) = \min_{D' \in \mathcal{S}_{\mathcal{P}}} \mathsf{d}_{\mathrm{TV}}(D,D') \mathop{=}_{\mathsf{here}} \mathsf{d}_{\mathrm{TV}}(D,\mathcal{U})$$

General outline

- Oraw a bunch of samples from D;
- "Process" them, for instance by counting the number of points drawn more than once (collisions);
- **3** Compare the result to what one would expect from the uniform distribution \mathcal{U} ;
- Reject if it differs too much; accept otherwise.

Background and motivation

Well, it's more or less settled.

Fact

In the standard sampling model, most (natural) properties are "hard" to test; that is, require a strong dependence on N (at least $\Omega(\sqrt{N})$).

Background and motivation

Well, it's more or less settled.

Fact

In the standard sampling model, most (natural) properties are "hard" to test; that is, require a strong dependence on N (at least $\Omega(\sqrt{N})$).

Example

Testing uniformity has $\Theta(\sqrt{N}/\varepsilon^2)$ sample complexity [GR00, BFR $^+$ 10, Pan08], equivalence to a known distribution $\tilde{\Theta}(\sqrt{N}/\varepsilon^2)$ [BFF $^+$ 01, Pan08]; equivalence of two unknown distributions $\Omega(N^{2/3})$ [BFR $^+$ 10, Val11] (and essentially matching upperbound)...

More power to the tester

In a lot of natural applications, the tester has more control over the "experiment" it is running — e.g., by tuning the conditions or the settings to influence the outcome, effectively restricting its range. This is not captured by the SAMP model; to mend this, we consider a new model where the testing algorithm can ask for a specific range of outcomes, and get a draw conditioned on it being in that domain.

More power to the tester

In a lot of natural applications, the tester has more control over the "experiment" it is running – e.g., by tuning the conditions or the settings to influence the outcome, effectively restricting its range. This is not captured by the SAMP model; to mend this, we consider a new model where the testing algorithm can ask for a specific range of outcomes, and get a draw conditioned on it being in that domain.

Definition (COND oracle)

Fix a distribution D over [N]. A COND oracle for D, denoted COND_D , is defined as follows: The oracle is given as input a *query set* $S \subseteq [N]$ that has D(S) > 0, and returns an element $i \in S$, where the probability that element i is returned is $D_S(i) = D(i)/D(S)$, independently of all previous calls to the oracle.

Remark

• generalizes the SAMP oracle (S = [N]), but allows adaptiveness;

9 / 35

Remark

- generalizes the SAMP oracle (S = [N]), but allows adaptiveness;
- variants of the (general) COND oracle, which only allow some specific types of subsets to be queried: PCOND (either [N] or sets $\{i,j\}$) and ICOND (only intervals);

Remark

- generalizes the SAMP oracle (S = [N]), but allows adaptiveness;
- variants of the (general) COND oracle, which only allow some specific types of subsets to be queried: PCOND (either [N] or sets $\{i,j\}$) and ICOND (only intervals);
- not defined for sets S with zero probability under D;

Remark

- generalizes the SAMP oracle (S = [N]), but allows adaptiveness;
- variants of the (general) COND oracle, which only allow some specific types of subsets to be queried: PCOND (either [N] or sets $\{i,j\}$) and ICOND (only intervals);
- not defined for sets S with zero probability under D;
- similar model independently introduced by Chakraborty et al. [CFGM13].

Remark

- generalizes the SAMP oracle (S = [N]), but allows adaptiveness;
- variants of the (general) COND oracle, which only allow some specific types of subsets to be queried: PCOND (either [N] or sets $\{i,j\}$) and ICOND (only intervals);
- not defined for sets S with zero probability under D;
- similar model independently introduced by Chakraborty et al. [CFGM13].

Question

Do COND oracles enable more efficient testing algorithms than SAMP oracles? And what does it reveal about testing distributions?

Our results

Question

Do COND oracles enable more efficient testing algorithms than SAMP oracles?

Our results

Question

Do COND oracles enable more efficient testing algorithms than SAMP oracles? Yes, they do.

Our results

Comparison of the COND and SAMP models on several testing problems

Problem	Our results		Standard model
	$COND_D$	$\Omega\left(\frac{1}{\varepsilon^2}\right)$	
Is D uniform?	$PCOND_D$	$\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$	
	$ICOND_D$	$\tilde{O}\left(\frac{\log^3 N}{\varepsilon^3}\right)$	$\Theta\left(\frac{\sqrt{N}}{\varepsilon^2}\right)$ [GR00, BFR+10, Pan08]
		$\Omega\left(\frac{\log N}{\log\log N}\right)$	
Is $D = D^*$?	$COND_D$	$\tilde{O}\left(rac{1}{arepsilon^4} ight)$	
	$PCOND_D$	$\tilde{O}\left(\frac{\log^4 N}{\varepsilon^4}\right)$	$ ilde{\Theta} \left(rac{\sqrt{N}}{arepsilon^2} ight) ext{ [BFF}^+01, ext{ Pan08]}$
		$\Omega\left(\sqrt{\frac{\log N}{\log\log N}}\right)$	
Are D_1, D_2 equivalent?	$COND_{D_1,D_2}$	$\tilde{O}\left(\frac{\log^5 N}{\varepsilon^4}\right)$	$ ilde{O}igg(rac{\mathit{N}^{2/3}}{arepsilon^{8/3}}igg) ext{ [BFR}^+10]$
	$PCOND_{D_1,D_2}$	$\tilde{O}\left(\frac{\log^6 N}{\varepsilon^{21}}\right)$	$\Omegaig(extstyle{ extstyle N}^{2/3} ig)$ [BFR $^+$ 10, Val11]
How far is D from U ?	PCOND _D	$ ilde{O}\Big(rac{1}{arepsilon^{20}}\Big)$	$O\left(\frac{1}{\varepsilon^2} \frac{N}{\log N}\right)$ [VV11, VV10b] $\Omega\left(\frac{N}{\log N}\right)$ [VV11, VV10a]

Table: The upper bounds for the first 3 problems are for testing the property, while the last one involves estimating the total variation distance to uniformity to within an additive $\pm \varepsilon$.

Rest of the talk

Plan for rest of talk:

- testing uniformity: an upper bound (with pairwise queries)
- testing uniformity: a lower bound
- introducing tools: ESTIMATE-NEIGHBORHOOD and APPROX-EVAL
- testing uniformity, again: a (glimpse at) interval queries.

Testing Uniformity (1)

Why bother with N?

Theorem (Testing Uniformity with PCOND)

There exists a $\tilde{O}(1/\varepsilon^2)$ -query PCOND_D tester for uniformity, i.e. it accepts w.p. at least 2/3 if $D = \mathcal{U}$ and rejects w.p. at least 2/3 if $d_{\mathrm{TV}}(D,\mathcal{U}) \geq \varepsilon$.

Testing Uniformity (1)

Why bother with N?

Theorem (Testing Uniformity with PCOND)

There exists a $\tilde{O}(1/\varepsilon^2)$ -query PCOND_D tester for uniformity, i.e. it accepts w.p. at least 2/3 if $D = \mathcal{U}$ and rejects w.p. at least 2/3 if $d_{TV}(D, \mathcal{U}) \geq \varepsilon$.

High-level idea

Intuitively, if D is ε -far from uniform, it must have (a) a lot of points "very light"; and (b) a lot of weight on points "very heavy". Sampling $O(1/\varepsilon)$ points both uniformly and according to D, we obtain who both light and heavy ones; and use PCOND to compare them.

Testing Uniformity (1)

Why bother with N?

Theorem (Testing Uniformity with PCOND)

There exists a $O(1/\varepsilon^2)$ -query PCOND_D tester for uniformity, i.e. it accepts w.p. at least 2/3 if $D = \mathcal{U}$ and rejects w.p. at least 2/3 if $d_{\mathrm{TV}}(D,\mathcal{U}) \geq \varepsilon$.

High-level idea

Intuitively, if D is ε -far from uniform, it must have (a) a lot of points "very light"; and (b) a lot of weight on points "very heavy". Sampling $O(1/\varepsilon)$ points both uniformly and according to D, we obtain whp both light and heavy ones; and use PCOND to compare them.

Not good enough $(O(1/\varepsilon^4)$ queries) \leadsto refine this approach to get $\tilde{O}(1/\varepsilon^2)$.

Testing Uniformity (2)

Getting our hands dirty.

Algorithm 1: PCOND_D-TEST-UNIFORM

```
1: Set t = \log(\frac{4}{6}) + 1.
2: Select q = \Theta(1) points i_1, \ldots, i_q uniformly
                                                                                   {Reference points}
 3: for i = 1 to t do
        Call the SAMP<sub>D</sub> oracle s_i = \Theta(2^j t) times to obtain points h_1, \ldots, h_{s_i}
        distributed according to D
                                                                         {Try to get a heavy point}
        Draw s_i points \ell_1, \dots, \ell_{s_i} uniformly from [N] {Try to get a light point}
 5:
        for all pairs (x, y) = (i_r, h_{r'}) and (x, y) = (i_r, \ell_{r'}) do
 6:
           Call Compare D(\{x\}, \{y\}, \Theta(\varepsilon 2^j), 2, \exp^{-\Theta(t)}).
7:
           if it does not return a value in [1-2^{j-5}\frac{\varepsilon}{4},1+2^{j-5}\frac{\varepsilon}{4}] then
8:
9.
              output REJECT (and exit).
           end if
10:
        end for
11.
12: end for
13: Output ACCEPT
```

Testing Uniformity (3)

Proof (Outline).

Sample complexity by the setting of t, q and the calls to COMPARE Completeness unless COMPARE fails to output a correct value, no rejection Soundness Suppose D is ε -far from \mathcal{U} ; refinement of the previous approach by bucketing low and high points:

$$H_{j} \stackrel{\text{def}}{=} \left\{ h \left| \left(1 + 2^{j-1} \frac{\varepsilon}{4} \right) \frac{1}{N} \leq D(h) < \left(1 + 2^{j} \frac{\varepsilon}{4} \right) \frac{1}{N} \right. \right\}$$

$$L_{j} \stackrel{\mathrm{def}}{=} \left\{ \ \ell \ \bigg| \ \left(1 - 2^{j} \frac{\varepsilon}{4}\right) \frac{1}{N} < D(\ell) \leq \left(1 - 2^{j-1} \frac{\varepsilon}{4}\right) \frac{1}{N} \ \right\}$$

for $j \in [t-1]$, with also H_0, L_0, H_t, L_t to cover everything; each loop iteration on I.3 "focuses" on a particular bucket.

+ Chernoff and union bounds.

Testing Uniformity – Lower Bound (1)

Theorem (Testing Uniformity with COND)

Any COND_D algorithm for testing whether $D = \mathcal{U}$ versus $d_{\mathrm{TV}}(D,\mathcal{U}) \geq \varepsilon$ must make $\Omega(1/\varepsilon^2)$ queries.

Testing Uniformity – Lower Bound (1)

Theorem (Testing Uniformity with COND)

Any COND_D algorithm for testing whether $D = \mathcal{U}$ versus $d_{\mathrm{TV}}(D, \mathcal{U}) \geq \varepsilon$ must make $\Omega(1/\varepsilon^2)$ queries.

Remark

As PCOND is a restriction of COND, the previous upper bound was essentially optimal.

Testing Uniformity – Lower Bound (2)

High-level idea.

Reduce it to the problem of distinguishing between a fair and a biased coin, by defining a "no-instance" D_{no} s.t.

- **1** D_{no} is ε -far from \mathcal{U} ;
- ② any q-query tester \mathcal{A} which distinguishes D_{no} from \mathcal{U} can be turned into a tester \mathcal{A}' distinguishing between (1) a sequence of q fair coin tosses and (2) a sequence of q (4ε)-biased coin tosses.

However, it is known that distinguishing between these two scenarios requires $\Omega(1/\varepsilon^2)$ coin tosses.

Figure: The no-instance D_{no} .

Testing Uniformity – Lower Bound (3)

The reduction: how to simulate COND $_D$ from coin tosses

To run \mathcal{A} from \mathcal{A}' , we must simulate COND_D (D either \mathcal{U} or D_{no}) to provide the former with samples, given the corresponding coin tosses.

At step $1 \le t \le q$, A chooses to query $S \subset [N]$ (according to the (t-1)previous answers it got from the simulation). A' behaves as follows:

- sets $S_0 \stackrel{\text{def}}{=} S \cap [1, \frac{N}{2}], S_1 \stackrel{\text{def}}{=} S \cap [\frac{N}{2} + 1, N];$
- gets bit b_t , and draws $\sigma \sim \begin{cases} \mathsf{Bern}(u_t) & \text{if } b_t = 1 \\ \mathsf{Bern}(v_t) & \text{o.w.} \end{cases}$
- draws s u.a.r. from S_{σ} ;
- gives (S, s) to A.

(†) for a right choice of u_t , v_t depending on $|S_0|$, $|S_1|$, ε

Testing Uniformity – Summary

- $\Theta(\sqrt{N}/\varepsilon^2)$ with SAMP: counting collisions [GR00, BFR⁺10, Pan08]
- ullet $\tilde{O}(1/arepsilon^2)$ with PCOND: comparing random pairs of points
- $\Omega(1/\varepsilon^2)$ with COND: reducing to fair vs. biased coin

Testing Uniformity – Summary

- $\Theta(\sqrt{N}/\varepsilon^2)$ with SAMP: counting collisions [GR00, BFR⁺10, Pan08]
- ullet $\tilde{O}(1/arepsilon^2)$ with PCOND: comparing random pairs of points
- ullet $\Omega(1/arepsilon^2)$ with COND: reducing to fair vs. biased coin

Remark

Testing with ICOND will require a logarithmic dependence on N.

- COMPARE Low-level procedure: compares the relative weight of sets X, Y, given some accuracy parameter η .
- ESTIMATE-NEIGHBORHOOD On input a point $i \in [N]$ and parameter γ , estimates the weight under D of the γ -neighborhood of i that is, points with probability mass within a factor $(1+\gamma)$ of D(i).
- APPROX-EVAL Given $i \in [N]$ and accuracy parameter η , returns an approximation of D(i) succeeds whp for most points i.

"Comparison is the death of joy." - Mark Twain.

The low-level tool COMPARE

Given as input two disjoint subsets X,Y, parameters $\eta \in (0,1]$, $K \geq 1$, and $\delta \in (0,1/2]$, and COND access to D, the procedure COMPARE either outputs a value $\rho > 0$, High or Low, s.t:

- If $D(X)/K \le D(Y) \le K \cdot D(X)$ then w.p. 1δ it outputs a value $\rho \in [1 \eta, 1 + \eta]D(Y)/D(X)$;
- If $D(Y) > K \cdot D(X)$ then w.p. 1δ it outputs either High or a value $\rho \in [1 \eta, 1 + \eta] D(Y) / D(X);$
- If D(Y) < D(X)/K then w.p. 1δ it outputs either Low or a value $\rho \in [1 \eta, 1 + \eta]D(Y)/D(X)$.

Compare performs $O\left(\frac{K \log(1/\delta)}{n^2}\right)$ COND queries on $X \cup Y$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q ()

Definition (γ -Neighborhood)

$$U_{\gamma}(x) \stackrel{\mathrm{def}}{=} \Big\{ y \in [N] : \ \frac{1}{1+\gamma} D(x) \leq D(y) \leq (1+\gamma) D(x) \Big\}, \qquad \gamma \in [0,1]$$

Definition (γ -Neighborhood)

$$U_{\gamma}(x) \stackrel{\mathrm{def}}{=} \Big\{ y \in [\mathsf{N}] : \ \frac{1}{1+\gamma} D(x) \leq D(y) \leq (1+\gamma) D(x) \Big\}, \qquad \gamma \in [0,1]$$

Goal

Given a point $x \in [N]$ and a parameter γ , get an approximation of $D(U_{\gamma}(x))$ – i.e., "how much weight does D put on points like x?"

The (slightly) higher-level subroutine ESTIMATE-NEIGHBORHOOD

Given as input a point x, parameters $\gamma, \beta, \eta, \delta \in (0, 1/2]$ and PCOND_D access, the procedure ESTIMATE-NEIGHBORHOOD outputs a pair $(\hat{w}, \alpha) \in [0, 1] \times (\gamma, 2\gamma)$ such that, for θ small:

- If $D(U_{\alpha}(x)) \geq \beta$, then w.p. 1δ we have $\hat{w} \in [1 \eta, 1 + \eta] \cdot D(U_{\alpha}(x))$, and $D(U_{\alpha + \theta}(x) \setminus U_{\alpha}(x)) \leq \eta \beta / 16$;
- ② If $D(U_{\alpha}(x)) < \beta$, then w.p. 1δ we have $\hat{w} \leq (1 + \eta) \cdot \beta$, and $D(U_{\alpha+\theta}(x) \setminus U_{\alpha}(x)) \leq \eta \beta/16$.

Estimate-Neighborhood performs $\tilde{O}\left(\frac{\log(1/\delta)}{\gamma^2\eta^4\beta^3\delta^2}\right)$ queries.

The (slightly) higher-level subroutine ESTIMATE-NEIGHBORHOOD

Given as input a point x, parameters $\gamma, \beta, \eta, \delta \in (0, 1/2]$ and PCOND_D access, the procedure ESTIMATE-NEIGHBORHOOD outputs a pair $(\hat{w}, \alpha) \in [0, 1] \times (\gamma, 2\gamma)$ such that, for θ small:

- If $D(U_{\alpha}(x)) \geq \beta$, then w.p. 1δ we have $\hat{w} \in [1 \eta, 1 + \eta] \cdot D(U_{\alpha}(x))$, and $D(U_{\alpha + \theta}(x) \setminus U_{\alpha}(x)) \leq \eta \beta / 16$;
- ② If $D(U_{\alpha}(x)) < \beta$, then w.p. 1δ we have $\hat{w} \leq (1 + \eta) \cdot \beta$, and $D(U_{\alpha+\theta}(x) \setminus U_{\alpha}(x)) \leq \eta \beta/16$.

Estimate-Neighborhood performs $\tilde{O}\left(\frac{\log(1/\delta)}{\gamma^2\eta^4\beta^3\delta^2}\right)$ queries.

Remark

Does not estimate exactly $D(U_{\gamma}(x))$.

26 / 35

EVAL oracle

A δ -EVAL_D simulator for D is a randomized procedure ORACLE such that w.p. $1 - \delta$ the output of ORACLE on input $i^* \in [N]$ is $D(i^*)$.

(Approximate) EVAL oracle

An (ε, δ) -approximate EVAL_D simulator for D is a randomized procedure ORACLE such that w.p. $1 - \delta$ the output of ORACLE on input $i^* \in [N]$ is a value $\alpha \in [0, 1]$ such that $\alpha \in [1 - \varepsilon, 1 + \varepsilon]D(i^*)$.

(Approximate) EVAL oracle

An (ε, δ) -approximate EVAL_D simulator for D is a randomized procedure ORACLE s.t for each ε , there is a fixed set $S^{(\varepsilon)} \subseteq [N]$ with $D(S^{(\varepsilon)}) < \varepsilon$ for which the following holds. For all $i^* \in [N]$, ORACLE(i^*) is either a value $\alpha \in [0,1]$ or Unknown, and furthermore:

- (i) If $i^* \notin S^{(\varepsilon)}$ then w.p. 1δ the output of ORACLE on input i^* is a value $\alpha \in [0,1]$ such that $\alpha \in [1-\varepsilon, 1+\varepsilon]D(i^*)$;
- (i) If $i^* \in S^{(\varepsilon)}$ then w.p. 1δ the procedure either outputs Unknown or outputs a value $\alpha \in [0,1]$ such that $\alpha \in [1-\varepsilon, 1+\varepsilon]D(i^*)$.

(Approximate) EVAL oracle

An (ε, δ) -approximate EVAL_D simulator for D is a randomized procedure ORACLE s.t for each ε , there is a fixed set $S^{(\varepsilon)} \subseteq [N]$ with $D(S^{(\varepsilon)}) < \varepsilon$ for which the following holds. For all $i^* \in [N]$, ORACLE(i^*) is either a value $\alpha \in [0,1]$ or Unknown, and furthermore:

- (i) If $i^* \notin S^{(\varepsilon)}$ then w.p. 1δ the output of ORACLE on input i^* is a value $\alpha \in [0,1]$ such that $\alpha \in [1-\varepsilon, 1+\varepsilon]D(i^*)$;
- (i) If $i^* \in S^{(\varepsilon)}$ then w.p. 1δ the procedure either outputs Unknown or outputs a value $\alpha \in [0,1]$ such that $\alpha \in [1-\varepsilon, 1+\varepsilon]D(i^*)$.

The high-level blackbox APPROX-EVAL

There is an algorithm APPROX-EVAL which uses $\tilde{O}\left(\frac{(\log N)^5 \cdot (\log(1/\delta))^2}{\varepsilon^3}\right)$ calls to COND_D, and is an (ε, δ) -approximate EVAL_D simulator.

Applications

Testing equivalence of two unknown distributions D_1 , D_2

Blackbox access to D_1 and D_2 (two oracles); distinguish $D_1 = D_2$ vs. $d_{\text{TV}}(D_1, D_2) \geq \varepsilon$.

³(extension of the original results)

Applications

Testing equivalence of two unknown distributions D_1 , D_2

Blackbox access to D_1 and D_2 (two oracles); distinguish $D_1 = D_2$ vs. $d_{\text{TV}}(D_1, D_2) \geq \varepsilon$.

In the language of property testing: $\mathcal{S}_{\mathcal{P}} = \{ (D, D) \mid D \text{ distribution } \}$, with metric over pairs of distributions $d((D, D'), (P, P')) \stackrel{\mathrm{def}}{=} d_{\mathrm{TV}}(D, P) + d_{\mathrm{TV}}(D', P')$.

³(extension of the original results)

Applications

Testing equivalence of two unknown distributions D_1 , D_2

Blackbox access to D_1 and D_2 (two oracles); distinguish $D_1 = D_2$ vs. $d_{\mathrm{TV}}(D_1, D_2) \geq \varepsilon$.

In the language of property testing: $\mathcal{S}_{\mathcal{P}} = \{ (D, D) \mid D \text{ distribution } \}$, with metric over pairs of distributions $d((D, D'), (P, P')) \stackrel{\text{def}}{=} d_{\text{TV}}(D, P) + d_{\text{TV}}(D', P')$.

Two different approaches:

- with PCOND and ESTIMATE-NEIGHBORHOOD finding "representatives" points for both distributions;
- with COND and APPROX-EVAL adapting an EVAL algorithm from [RS09].

Other uses: estimating distance to uniformity

(ESTIMATE-NEIGHBORHOOD), testing monotonicity³ (APPROX-EVAL)...

29 / 35

³(extension of the original results)

Testing Uniformity with ICOND

Main message

ICOND algorithms are weaker than PCOND ones for this: while poly(log $N, 1/\varepsilon$) queries are enough, $\tilde{\Omega}(\log N)$ are necessary.

Testing Uniformity with ICOND

Main message

ICOND algorithms are weaker than PCOND ones for this: while poly(log $N,1/\varepsilon$) queries are enough, $\tilde{\Omega}(\log N)$ are necessary.

Overview

Upper bound sort of binary descent on random points (custom-tailored version of APPROX-EVAL), to spot deviations from 1/N;

Lower bound family of "no-instances" + LB against non-adaptive + hybrid argument to get LB against adaptive.

Upper Bound

Figure: Idea of the "binary descent" on i: get an estimate of D(i) by multiplying estimates at each branching, each time rejecting if ratio between weight of two subintervals is far from $\frac{1}{2}$. Repeat for $\Theta(1/\varepsilon)$ points drawn from D.

Conclusion

- new model for studying probability distributions
- arises naturally in a number of settings
- allows significantly more query-efficient algorithms
- generalizing to other structured domains? (e.g., the Boolean hypercube $\{0,1\}^n$)
- what about distribution learning in this framework
- more properties? (entropy, independence, monotonicity[†]...)

The end.

Thank you.

References I

T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, *Testing random variables for independence and identity*, Proceedings of FOCS, 2001, pp. 442–451.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, *Testing that distributions are close*, Proceedings of FOCS, 2000, pp. 189–197.

______, Testing closeness of discrete distributions, Tech. Report abs/1009.5397, 2010, This is a long version of [BFR⁺00].

S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah, *On the power of conditional samples in distribution testing*, Proceedings of ITCS, 2013, To appear.

O. Goldreich and D. Ron, *On testing expansion in bounded-degree graphs*, Tech. Report TR00-020, ECCC, 2000.

L. Paninski, A coincidence-based test for uniformity given very sparsely sampled discrete data, IEEE-IT **54** (2008), no. 10, 4750–4755.

R. Rubinfeld and R. A. Servedio, *Testing monotone high-dimensional distributions*, RSA **34** (2009), no. 1, 24–44.

P. Valiant, *Testing symmetric properties of distributions*, SICOMP **40** (2011), no. 6, 1927–1968.

References II

G. Valiant and P. Valiant, *A CLT and tight lower bounds for estimating entropy*, Tech. Report TR10-179, ECCC, 2010.

______, Estimating the unseen: A sublinear-sample canonical estimator of distributions, Tech. Report TR10-180, ECCC, 2010.

_____, Estimating the unseen: an $n/\log(n)$ -sample estimator for entropy and support size, shown optimal via new CLTs, Proceedings of STOC, 2011, See also [VV10a] and [VV10b], pp. 685–694.