Reed-Solomon Codes I

Qi Zhang

Aarhus University School of Engineering

27/02/2014

1 q-ary Linear Block Codes

2 Introduction of Reed-Solomon Codes

27/02/2014

q-ary Linear Block Codes

- Consider a Galois Field GF(q) with q elements. It is possible to construct codes with symbols from GF(q).
- Here $q = p_{prime}^i$. e.g., $p_{prime} = 2$ and i = 3, $q = 2^3$.
- Such codes are called *q*-ary codes or non-binary codes.
- The concepts and properties developed for binary codes can be applied to *q*-ary codes with a few modifications.
- Consider the *n*-dimension vector space of defined over GF(q):

$$\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$$

with $v_i \in GF(q)$ for $0 \le i < n$.

■ The vector addition is defined as:

$$(u_0, u_1, \ldots, u_{n-1}) + (v_0, v_1, \ldots, v_{n-1}) = (u_0 + v_0, u_1 + v_1, \ldots, u_{n-1} + v_{n-1})$$

where the addition $u_i + v_i$ is carried out in $GF(q)$.

It is similar to the multiplication which is carried out also in GF(q).

Qi Zhang (ASE) Reed-Solomon Codes I 27/02/2014 3 / 12

q-ary Linear Block Codes

- **Definition**: An $C_b(n, k)$ linear block code with symbols from GF(q) is simply a k-dimension subspace of the vector space defined over GF(q).
- A *q*-ary linear block code has all the structure and properties of binary block codes.
- The encoding and decoding of q-ary linear block codes are the same as for binary linear block codes, except that operations and computation followed the rules in GF(q).

4 / 12

Qi Zhang (ASE) Reed-Solomon Codes I 27/02/2014

q-ary Cyclic Codes

- A *q*-ary cyclic code $C_{cyc}(n, k)$ is generated by a polynomial of degree n k over GF(q).
- Namely, the generator polynomial:

$$g(X) = g_0 + g_1X + g_2X^2 + ... + g_{n-k-1}X^{n-k-1} + X^{n-k}$$

where $g_0 \neq 0$ and $g_i \in GF(q)$.

- g(X) is a factor of $X^n + 1$.
- The code polynomial c(X) of degree n-1 or less and it is a multiple of g(X).

5 / 12

Qi Zhang (ASE) Reed-Solomon Codes I 27/02/2014

Introduction of Reed-Solomon Codes

- The generator polynomial g(X) of a t-error correcting binary BCH codes is the minimum-degree polynomial defined over GF(2) and it has roots α , α^2 , ..., α^{2t} from GF(2 m).
- Let $\phi_i(X)$ the minimal polynomial of α^i , then

$$g(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}\$$

- Generalizing binary BCH codes to q-array BCH codes:
 - The generator polynomial of a *t*-error correcting *q*-ary BCH code is the minimum-degree polynomial defined over GF(q) and it has roots α , α^2 , ..., α^{2t} from $GF(q^m)$. Let α be a primitive element in $GF(q^m)$.
 - If let $\phi_i(X)$ be the minimal polynomial of α^i , then

$$g(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}\$$

- Obviously, if q = 2, then it is binary BCH code.
- For q-ary BCH code if m = 1, it is a special family of q-ary BCH code, called Reed-Solomn (RS) codes.

Introduction of Reed-Solomon Codes

- A RS code $C_{RS}(n, k)$ is able to correct t or less errors and is defined over GF(q).
- Comparison of the parameters of Binary BCH codes, q-ary BCH code and RS codes:

	Binary BCH code	RS code
Code length	$n=2^m-1$	n = q - 1
Number of parity check	$n-k \leq mt$	n-k=2t
Minimum distance	$d_{min} \geq 2t + 1$	$d_{min}=2t+1$
Error correct capability	t errors	t errors

- Two important features of RS code:
 - The code length is one less than the size of the code alphabet.
 - The minimum Hamming distance is one greater than the number of parity check symbols.

7 / 12

Qi Zhang (ASE) Reed-Solomon Codes I 27/02/2014

Generator polynomial of Reed-Solomon codes

- The generator polynomial of $C_{RS}(n,k)$ has roots of $\alpha,\alpha^2,\ldots,\alpha^{2t}$;
- Here α is a primitive element of GF(q), $\alpha^{q-1} = 1$;
- So the generator polynomial of $C_{RS}(n,k)$ can be expressed as

$$g(X) = (X + \alpha)(X + \alpha^{2}) \dots (X + \alpha^{2t})$$

= $g_0 + g_1X + g_2X^{2} + \dots + g_{2t}X^{2t}$

- Comparing with the generator polynomial of binary BCH code:
 - In binary BCH code, the coefficients of g(X) are defined over GF(2), in RS code, the coefficients of g(X), g_i , belong to GF(g).
 - The minimal polynomials $\phi_i(X)$ defined over GF(q) are of the simple form $\phi_i(X) = X + \alpha^i$.

Qi Zhang (ASE)

Generator polynomial of RS code

- Generator polynomial comparison of the double error correcting codes binary BCH code $C_{BCH}(15,7)$ and RS code $C_{RS}(15,11)$:
- Both generator polynomials g(X) have roots of $\alpha, \alpha^2, \alpha^3, \alpha^4$.
- Here α is a primitive element of $GF(2^4)$ generated by $p_i(X) = 1 + X + X^4$.
 - Let $\phi_i(X)$ be the minimal polynomial of α^i over GF(2), the generator polynomial of $C_{BCH}(15,7)$ is

$$\begin{split} g(X) &= \phi_1(X)\phi_3(X) \\ &= (X^4 + X + 1)(X^4 + X^3 + X^2 + X + 1) \\ &= \left[(X + \alpha)(X + \alpha^2)(X + \alpha^4)(X + \alpha^8) \right] \left[(X + \alpha^3)(X + \alpha^6)(X + \alpha^9)(X + \alpha^{12}) \right] \end{split}$$

■ The generator polynomial of $C_{RS}(15,11)$ is

$$g(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^3)(X + \alpha^4)$$

- Code rate of $C_{BCH}(15,7)$ is R = 7/15,
- Code rate of $C_{RS}(15, 11)$ is R = 11/15.

Reed-Solomon codes defined over $GF(2^m)$

- Among the generic RS codes, in practice, the RS codes with elements defined over $GF(2^m)$ is often used.
- In such RS code, each element can have a binary representation in the form of a vector with element of GF(2).
- Code polynomial of RS code can be generally expressed as:

$$c(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}$$

- As c(X) = m(X)g(X), generator polynomial is a factor of code polynomial:
- Therefore, the roots of generator polynomial are also the roots of the code polynomial.
- There is $c(\alpha) = c(\alpha^2) = ... = c(\alpha^i) = ... = c(\alpha^{2t}) = 0$
- Substituting α^i into the general code polynomial expression, there is

$$c(lpha^i)=c_0+c_1lpha^i+\ldots+c_{n-1}lpha^{(n-1)i}=0$$
 AARHUS UNIVERS $1\leq i\leq n-k=2t$

Generator polynomial of RS code Example

- **Example 5.2**: Construct the generator polynomial of an RS code $C_{RS}(7,5)$ that operates over the $GF(2^3)$ generated by primitive polynomial $p_i(X) = 1 + X^2 + X^3$.
- Solution:
 - 1 Construct $GF(2^3)$ by the primitive polynomial $p_i(X) = 1 + X^2 + X^3$.
 - 2 Construct the generator polynomial:
 - As n = 7, k = 5, 2t = n k = 2, so the g(X) can be expressed as

$$g(X) = (X + \alpha)(X + \alpha^2)$$

11 / 12

Qi Zhang (ASE) Reed-Solomon Codes I

Generator polynomial of RS code Example

• GF(2³) generated by $p_i(X) = 1 + X^2 + X^3$:

Exponential form	Polynomial form	Vector form
0	0	0 0 0
1	1	100
α	α	0 1 0
α^2	α^2	0 0 1
$lpha^3$	$1+\alpha^2$	101
α^4	$1+\alpha + \alpha^2$	111
$lpha^5$ $lpha^6$	$1+\alpha$	1 1 0
α^6	$\alpha + \alpha^2$	0 1 1

■ The generator polynomial

$$g(X) = (X + \alpha)(X + \alpha^{2})$$
$$= X^{2} + (\alpha + \alpha^{2})X + \alpha^{3}$$
$$= X^{2} + \alpha^{6}X + \alpha^{3}$$

