## Week 06 R Workshop

Elmer V Villanueva October 14, 2019

## New functions and packages

- dnorm() draw
- pnorm() know cut-pts, calculate prob pnorm(q=4.6, mean=3.4, sd=0.6, lower.tail=FALSE)
- qnorm() know prob, calculate cut-pts qnorm(p=0.1, mean=3.4, sd=0.6, lower.tail=FALSE)
- curve() draw
- polygon() draw

## Set your working directory

```
setwd("D:/git/DPH101-xjtlu/Y3/week06_lec_10.14")
```

## Case 1: Birth weights in the USA

It is not surprising that babies with low birth weights are at risk for developmental difficulties, but extraordinarily large babies also face a higher than normal risk of medical problems. In the United States the average full term single birth baby has a weight of 3.4 kg with a standard deviation of 0.6 kg. We will assume that the distribution of birth weights is Gaussian.

#### Question 1

Babies below 2.5 kg in weight are considered to be high risk/low birth weight deliveries. What percentage of births would be in this category?

#### Solution

```
Given \mu = 3.4, \sigma = 0.6, find P(x < 2.5).
```

First, visualise the problem. This takes a two steps. We draw the normal curve. Then, we identify the area of interest.

## **Distribution of Birth Weights**



We can calculate the probability of the shaded area as follows:

```
pnorm(q=2.5, mean=3.4, sd=0.6, lower.tail=TRUE)
```

## [1] 0.0668072

#### Question 2

Babies above 4.6 kg in weight are considered to be high risk/high birth weight deliveries. What percentage of births would fall in this category?

#### Solution

Given  $\mu = 3.4$ ,  $\sigma = 0.6$ , find P(x > 4.6).

Visualise the problem.

```
coord.y <- c(0,dnorm(seq(4.6,5.2,0.01), mean=3.4, sd=0.6),0)
polygon(coord.x,coord.y,col='red')</pre>
```

## **Distribution of Birth Weights**



Calculate the probability

```
pnorm(q=4.6, mean=3.4, sd=0.6, lower.tail=FALSE)
```

## [1] 0.02275013

#### Question 3

Suppose a new study claims that only the middle 80% of the birth weights should be considered normal. What would be the new cut-off points for low and high weight risk deliveries?

#### Solution

Find the lower and upper bounds of the middle 80%.

Visualise the problem.

```
curve(dnorm(x, mean=3.4, sd=0.6),
    xlim=c(1.6,5.2),
    main="Distribution of Birth Weights",
    xlab="Weight (kg)",
```

```
ylab="Density")

coord.x <- c(2.63,seq(2.63,4.17,0.01),4.17)
coord.y <- c(0,dnorm(seq(2.63,4.17,0.01), mean=3.4, sd=0.6),0)
polygon(coord.x,coord.y,col='red')</pre>
```

## **Distribution of Birth Weights**



Calculate the cut-points.

```
qnorm(p=0.1, mean=3.4, sd=0.6, lower.tail=TRUE)
## [1] 2.631069
qnorm(p=0.1, mean=3.4, sd=0.6, lower.tail=FALSE)
## [1] 4.168931
```

#### Case 2: Serum cholesterol

The National Health and Nutrition Examination Survey of 1988-1994 (NHANES III) estimated the mean serum cholesterol level of 183 mg/dl for women aged 20-29 years. The estimated standard deviation was approximately 37 mg/dl. Use these estimates as the mean and standard deviation for the U.S. population.

#### Question 1

If a simple random sample of size 60 is drawn from this population, what is the mean of the sampling distribution? The standard error?

#### Solution

The mean of the sampling distribution will be the mean of the population. That is,  $\mu_{\bar{x}} = 183 \ mg/dl$ . The standard error will be the standard deviation of the population divided by the square root of the sample size. That is,  $\sigma_{\bar{x}} = 37/\sqrt{60} = 4.8 \ mg/dl$ 

```
37<mark>/</mark>sqrt(60)
```

```
## [1] 4.776679
```

#### Question 2

If a simple random sample of size 60 is drawn from this population, find the probability that the sample mean serum cholesterol level will be between 170 and 195 mg/dl.

#### Solution

Given  $\mu = 183$ ,  $\sigma = 37$  and n = 60, find the probability that the sample mean serum cholesterol is between 170 and 195.

Visualise the problem.

# Sampling Distribution of Serum Cholesterol US Females Aged 20–29 Years



Calculate the probability.

```
pnorm(q=195, mean=183, sd=37/sqrt(60), lower.tail=TRUE) -
    pnorm(q=170, mean=183, sd=37/sqrt(60), lower.tail=TRUE)
```

## [1] 0.9907523

## THE END