model selection

- > stepwise model selection
- p-value & adjusted R²
- expert opinion

Dr. Mine Çetinkaya-Rundel Duke University

stepwise model selection

- backwards elimination: start with a full model (containing all predictors), drop one predictor at a time until the parsimonious model is reached.
- forward selection: start with an empty model and add one predictor at a time until the parsimonious model is reached.
- criteria:
 - ▶ p-value, adjusted R²
 - ▶ AIC, BIC, DIC, Bayes factor, Mallow's C_p (beyond the scope of this course)

backwards elimination - adjusted R²

- Start with the full model
- Drop one variable at a time and record adjusted R² of each smaller model
- Pick the model with the highest increase in adjusted R²
- Repeat until none of the models yield an increase in adjusted R²

backwards elimination - adjusted R²

step	variables included	removed	adjusted R
FULL	kid_score ~ mom_hs + mom_iq + mom_work + mom_age		0.2098
STEP I	kid_score ~ mom_iq + mom_work + mom_age	[-mom_hs]	0.2027
	kid_score ~ mom_hs + mom_work + mom_age	[-mom_iq]	0.0541
	kid_score ~ mom_hs + mom_iq + mom_age	[-mom_work]	0.2095
	kid_score ~ mom_hs + mom_iq + mom_work	[-mom_age]	0.2109
STEP 2	kid_score ~ mom_iq + mom_work	[-mom_hs]	0.2024
	kid_score ~ mom_hs + mom_work	[-mom_iq]	0.0546
	kid_score ~ mom_hs + mom_iq	[-mom_work]	0.2105

backwards elimination - p-value

- Start with the full model
- Drop the variable with the highest p-value and refit a smaller model
- Repeat until all variables left in the model are significant

backwards elimination - p-value

FULL	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	19.5924	9.2191	2.13	0.0341
mom_hs:yes	5.0948	2.3145	2.20	0.0282
mom_iq	0.5615	0.0606	9.26	0.0000
mom_work:yes	2.5372	2.3507	1.08	0.2810
mom_age	0.2180	0.3307	0.66	0.5101

STEP I	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	24.1794	6.0432	4.00	0.0001
mom_hs:yes	5.3823	2.2716	2.37	0.0183
mom_iq	0.5628	0.0606	9.29	0.0000
mom_work:yes	2.5664	2.3487	1.09	0.2751

STEP 2	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	25.7315	5.8752	4.38	0.0000
mom_hsyes	5.9501	2.2118	2.69	0.0074
mom_iq	0.5639	0.0606	9.31	0.0000

The following model uses data from the American Community Survey to predict income from hours worked per week, race, and gender. Which variable (if any) should be dropped from the model first when doing backwards elimination using the p-value approach?

	Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	2782.5726	6676.5534	0.42	0.6770	
hrs_work	1247.2128	146.2013	8.53	0.0000	
race:black	-9565.3090	6393.2168	-1.50	0.1350	
race:asian	35816.6156	8690.3484	4.12	0.0000	81
race:other	-11112.8617	7213.3220	-1.54	0.1238	
gender:female	-16430.0916	3803.4700	-4.32	0.0000	

don't drop any variables

adjusted R² vs. p-value

- p-value: significant predictors
- adjusted R²: more reliable predictions
- p-value method depends on the (somewhat arbitrary) 5% significance level cutoff
 - ▶ different significance level → different model
 - used commonly since it requires fitting fewer models (in the more commonly used backwards-selection approach)

forward selection - adjusted R²

- Start with single predictor regressions of response vs. each explanatory variable
- Pick the model with the highest adjusted R²
- Add the remaining variables one at a time to the existing model, and pick the model with the highest adjusted R²
- Repeat until the addition of any of the remaining variables does not result in a higher adjusted R²

forward selection - adjusted R²

step	variables included	adjusted R
STEP I	kid_score ~ mom_hs	0.0539
	kid_score ~ mom_work	0.0097
	kid_score ~ mom_age	0.0062
	kid_score ~ mom_iq	0.1991
STEP 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_iq + mom_age	0.1999
	kid_score ~ mom_iq + mom_hs	0.2105
STEP 3	kid_score ~ mom_iq + mom_hs + mom_age	0.2095
	kid_score ~ mom_iq + mom_hs + mom_work	0.2109
STEP 4	kid_score ~ mom_hs + mom_iq + mom_work + mom_age	0.2098

forward selection - p-value

- Start with single predictor regressions of response vs. each explanatory variable
- Pick the variable with the lowest significant p-value
- Add the remaining variables one at a time to the existing model, and pick the variable with the lowest significant p-value
- Repeat until any of the remaining variables
 do not have a significant p-value

expert opinion

- Variables can be included in (or eliminated from) the model based on expert opinion
- If you are studying a certain variable, you might choose to leave it in the model regardless of whether it's significant or yield a higher adjusted R²

final model

```
R
> cog final = lm(kid score ~ mom hs + mom iq + mom work, data = cognitive)
> summary(cog final)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.17944 6.04319 4.001 7.42e-05 ***
mom hsyes 5.38225 2.27156 2.369 0.0183 *
mom iq 0.56278 0.06057 9.291 < 2e-16 ***
mom workyes 2.56640 2.34871 1.093 0.2751
Residual standard error: 18.13 on 430 degrees of freedom
Multiple R-squared: 0.2163, Adjusted R-squared: 0.2109
```

F-statistic: 39.57 on 3 and 430 DF, p-value: < 2.2e-16