$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt{s_{NN}}$ (GeV)	Cumulant	Total syst.	DCA	nHitsFit	$N_{\sigma,p}$	m^2	Efficiency
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.7	C_1	2.42	0.85	0.78	0.99	0.028	1.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.03	0.72	0.60	0.82	0.032	1.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.65	0.60	0.97	0.54	0.31	1.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	16.20	5.56	12.54	6.40	2.68	5.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.5	C_1	2.82	1.76	1.03	1.13	0.033	1.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	2.34	1.44	0.73	0.99	0.020	1.37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	1.36	0.64	0.20	0.85	0.035	0.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	7.37	2.28	4.10	4.94	2.60	1.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.5	C_1	1.72	0.77	0.54	0.76	0.03	1.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	1.60	0.69	0.49	0.74	0.021	1.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	1.16	0.52	0.44	0.51	0.047	0.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	8.06	2.89	3.10	5.41	0.71	4.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.6	C_1	1.46	0.60	0.62	0.56	0.045	1.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	1.46	0.62	0.62	0.57	0.041	1.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	0.68	0.36	0.26	0.23	0.13	0.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	3.65	0.86	1.99	2.58	0.59	0.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	C_1	1.20	0.51	0.53	0.47	0.025	0.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	1.44	0.67	0.63	0.57	0.027	0.96
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	0.62	0.33	0.27	0.23	0.035	0.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	3.10	1.58	1.36	1.80	0.38	1.36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	C_1	0.94	0.39	0.45	0.35	0.026	0.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	1.48	0.67	0.67	0.59	0.033	0.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	0.51	0.29	0.21	0.17	0.04	0.313
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	3.35	1.00	2.76	1.43	0.20	0.65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.4	C_1	0.98	0.47	0.39	0.53	0.02	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	1.95	1.02	0.77	1.05	0.04	1.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	0.51	0.27	0.19	0.27	0.01	0.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_4	1.42	0.53	0.22	1.20	0.10	0.49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.4	C_1	$1.\overline{04}$	0.45	0.49	$0.\overline{35}$		0.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_2	2.15	1.05	1.087	0.79	0.11	1.31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_3	0.58	0.14	0.22	0.30	0.081	0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_4	3.99	2.40	2.30	1.38	1.21	1.23
C_3 0.39 0.24 0.18 0.19 0.074 0.14	200	$\overline{C_1}$	0.39	0.19	$0.\overline{24}$	0.11	0.01	0.22
C_3 0.39 0.24 0.18 0.19 0.074 0.14		C_2	2.42	1.11	1.53	0.77	0.087	1.31
C_4 4.89 2.69 3.07 1.80 1.41 1.42		C_3	0.39	0.24	0.18	0.19	0.074	0.14
		C_4	4.89	2.69	3.07	1.80	1.41	1.42

Table 1: Total systematic uncertainty as well as the absolute uncertainties from individual sources, such as DCA and nHitsFit, for net-proton C_n in 0–5% central Au+Au collisions at $\sqrt{s_{NN}}=7.7$ - 200 GeV. The total systematic uncertainties are obtained by adding the uncertainties from individual sources in quadrature.