

A.E. Eiben

Free University Amsterdam http://www.cs.vu.nl/~gusz/

with special thanks to Ben Paechter

Issues considered

- Experiment design
- Algorithm design
- Test problems
- Measurements and statistics
- Some tips and summary

A.E. Eiben, Experimentation with EC

Experimentation

- Has a goal or goals
- Involves algorithm design and implementation
- Needs problem(s) to run the algorithm(s) on
- Amounts to running the algorithm(s) on the problem(s)
- Delivers measurement data, the results
- Is concluded with evaluating the results in the light of the given goal(s)
- Is often documented (see tutorial on paper writing)

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Goals for experimentation

- Get a good solution for a given problem
- Show that EC is applicable in a (new) problem domain
- Show that my_EA is better than benchmark_EA
- Show that EAs outperform traditional algorithms (sic!)
- Find best setup for parameters of a given algorithm
- Understand algorithm behavior (e.g. pop dynamics)
- See how an EA scales-up with problem size
 See how performance is influenced by percentage.
- See how performance is influenced by parameters
- of the problemof the algorithm
-

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Example: Production Perspective

- · Different destinations each day
- Limited time to run algorithm each day
- Must always be reasonably good route in limited time

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Example: Design Perspective

- Optimising spending on improvements to national road network
- -Total cost: billions of Euro
- -Computing costs negligible
- Six months to run algorithm on hundreds computers
- -Many runs possible
- –Must produce very good result just once

A.E. Eiben, Experimentation with EC

Perspectives of goals

- Design perspective: find a very good solution at least once
- Production perspective: find a good solution at almost every run also
- Publication perspective: must meet scientific standards (huh?)
- Application perspective: good enough is good enough (verification!)

These perspectives have very different implications on evaluating the results (yet often left implicit)

A.E. Eiben, Experimentation with EC

EvoNet Summer School 200

Algorithm design

- Design a representation
- Design a way of mapping a genotype to a phenotype
- Design a way of evaluating an individual
- Design suitable mutation operator(s)
- Design suitable recombination operator(s)
- Decide how to select individuals to be parents
- Decide how to select individuals for the next generation (how to manage the population)
- Decide how to start: initialisation method
- Decide how to stop: termination criterion

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Algorithm design (cont'd)

For a detailed treatment see Ben Paechter's lecture from the 2001 Summer School:

http://evonet.dcs.napier.ac.uk/summerschool2001/problems.html

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Test problems

- 5 DeJong functions
- 25 "hard" objective functions
- Frequently encountered or otherwise important variants of given practical problem
- Selection from recognized benchmark problem repository ("challenging" by being NP--- ?!)
- Problem instances made by random generator

Choice has severe implications on

- generalizability and
- · scope of the results

A.E. Eiben, Experimentation with EC 10

EvoNet Summer School 2002

Bad example

- I invented "tricky mutation"
- Showed that it is a good idea by:
 - Running standard (?) GA and tricky GA
 - On 10 objective functions from the literature
 - Finding tricky GA better on 7, equal on 1, worse on 2 cases
- I wrote it down in a paper
- And it got published!
- Q: what did I learned from this experience?
- Q: is this good work?

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Bad example (cont'd)

- What did I (my readers) did not learn:
 - How relevant are these results (test functions)?
 - What is the scope of claims about the superiority of the tricky GA?
 - Is there a property distinguishing the 7 good and the 2 bad functions?
 - Are my results generalizable? (Is the tricky GA applicable for other problems? Which ones?)

A.E. Eiben, Experimentation with EC

12

Getting Problem Instances 1

- Testing on real data
- Advantages:
 - Results could be considered as very relevant viewed from the application domain (data supplier)
- Disadvantages
 - · Can be over-complicated
 - · Can be few available sets of real data
 - May be commercial sensitive difficult to publish and to allow others to compare
 - · Results are hard to generalize

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Getting Problem Instances 2

- Standard data sets in problem repositories, e.g.:
 - OR-Library
 - http://www.ms.ic.ac.uk/info.html
 - UCI Machine Learning Repository www.ics.uci.edu/~mlearn/MLRepository.html
- Advantage:
 - Well-chosen problems and instances (hopefully)
 - Much other work on these → results comparable
- Disadvantage:
 - · Not real might miss crucial aspect
 - · Algorithms get tuned for popular test suites

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Getting Problem Instances 3

- Problem instance generators produce simulated data for given parameters, e.g.:
 - GA/EA Repository of Test Problem Generators
 http://www.cs.uwyo.edu/~wspears/generators.html
- Advantage:
 - · Allow very systematic comparisons for they
 - can produce many instances with the same characteristics
 - enable gradual traversion of a range of characteristics (hardness)
- Can be shared allowing comparisons with other researchers
- Disadvantage
 - Not real might miss crucial aspect
 - Given generator might have hidden bias

A.E. Eiben, Experimentation with EC

15

EvoNet Summer School 2002

Basic rules of experimentation

■ EAs are stochastic →

never draw any conclusion from a single run

- perform sufficient number of independent runs
- use statistical measures (averages, standard deviations)
- · use statistical tests to assess reliability of conclusions
- EA experimentation is about comparison → always do a fair competition
 - use the same amount of resources for the competitors
 - try different comp. limits (to coop with turtle/hare effect)
 - use the same performance measures

A.E. Eiben, Experimentation with EC

16

EvoNet Summer School 2002

Things to Measure

Many different ways. Examples:

- Average result in given time
- Average time for given result
- Proportion of runs within % of target
- Best result over *n* runs
- Amount of computing required to reach target in given time with % confidence
-

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

What time units do we use?

- Elapsed time?
- Depends on computer, network, etc...
- CPU Time?
 - Depends on skill of programmer, implementation, etc...
- Generations?
 - Difficult to compare when parameters like population size change
- Evaluations?
 - Evaluation time could depend on algorithm, e.g. direct vs. indirect representation

A.E. Eiben, Experimentation with EC

18

- I invented myEA for problem X
- Looked and found 3 other EAs and a traditional benchmark heuristic for problem X in the literature
- Asked myself when and why is myEA better

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2

Better example: experiments

- Found/made problem instance generator for problem X with 2 parameters:
 - n (problem size)
 - k (some problem specific indicator)
- Selected 5 values for k and 5 values for n
- Generated 100 problem instances for all combinations
- Executed all alg's on each instance 100 times (benchmark was also stochastic)
- Recorded AES, SR, MBF values w/ same comp. limit (AES for benchmark?)
- Put my program code and the instances on the Web

32

A.E. Eiben, Experimentation with EC

EvoN

EvoNet Summer School 2002

Better example: evaluation

- Arranged results "in 3D" (n,k) + performance (with special attention to the effect of n, as for scale-up)
- Assessed statistical significance of results
- Found the niche for my_EA:
 - Weak in ... cases, strong in - cases, comparable otherwise
 - Thereby I answered the "when question"
- Analyzed the specific features and the niches of each algorithm thus answering the "why question"
- Learned a lot about problem X and its solvers
- Achieved generalizable results, or at least claims with well-identified scope based on solid data
- Facilitated reproducing my results → further research

A.E. Eiben, Experimentation with EC

EvoNet Summer School 2002

Some tips

- Be organized
- Decide what you want
- Define appropriate measures
- Choose test problems carefully
- Make an experiment plan (estimate time when possible)
- Perform sufficient number of runs
- Keep all experimental data (never throw away anything)
- Use good statistics ("standard" tools from Web, MS)
- Present results well (figures, graphs, tables, ...)
- Watch the scope of your claims
- Aim at generalizable results
- Publish code for reproducibility of results (if applicable)

A.E. Eiben, Experimentation with EC

34

EvoNet Summer School 2002

Summary

- Experimental methodology in EC is weak
 - Lack of strong selection pressure for publications
 - Lack of strong selection pressure for publicatio
 Laziness (seniors), copycat behavior (novices)
- Not much learning from other fields actively using better methodology, e.g.,
 - machine learning (training-test instances)
 - social sciences! (statistics)
- Not much effort into
 - better methodologiesbetter test suites
 - better test suites
 reproducible results (code standardization)
- Much room for improvement: do it!

A.E. Eiben, Experimentation with EC

35