ST 705 MIDTERM

March 2, 2020

NAME:

STUDENT ID:

- You have **75 minutes** to complete this exam.
- This is a closed book, closed notes exam.
 - 1. (3 points) Let $A \in \mathbb{R}^{n \times p}$ with rank(A) = p. Further, suppose $X \in \mathbb{R}^{n \times q}$ with column(X) = column(A). Show that there exists a unique matrix S so that X = AS.
 - 2. (3 points) If the least squares estimator $\lambda' \hat{\beta}$ is the same for all solutions $\hat{\beta}$ to the normal equations, then $\lambda' \beta$ is estimable.
 - 3. Consider the least squares line $y = c \cdot t + d$ corresponding to the m observations $(t_1, y_1), \dots, (t_m, y_m)$.
 - (a) (3 points) Show that the normal equations take the form

$$\bigg\{c\Big(\sum t_i^2\Big)+d\Big(\sum t_i\Big)=\sum t_iy_i\bigg\}\bigcap\bigg\{c\Big(\sum t_i\Big)+md=\sum y_i\bigg\}.$$

- (b) (3 points) Show that the least squares line must pass through the point (\bar{t}, \bar{y}) , where \bar{t} and \bar{y} are the averages of the t_i and y_i , respectively.
- 4. (3 points) Suppose that the $m \times n$ matrix A has the form

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

where A_1 is an $n \times n$ nonsingular matrix, and m > n. Define $A^+ := (A'A)^{-1}A'$, and prove that $||A^+||_2 \le ||A_1^{-1}||_2$.

5. (3 points) Suppose that there exists a solution to the system of equations Ax = c. Then the general form of a solution is

$$x_z = Gc + (I - GA)z,$$

where z is an arbitrary vector of appropriate dimension and $G := (A'A)^g A'$ (do NOT need to show). Find the z that minimizes the Euclidean norm of x_z .