Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 22 de Agosto de 2024

Auxiliar 1

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. a) Sea $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{C}$ continua de soporte compacto, con Ω abierto no vacío. Demuestre que existe $\psi \in \mathcal{D}(\Omega)$ y $(p_j)_{j \in \mathbb{N}}$ polinomios tal que:

$$\psi p_j \xrightarrow[j\to\infty]{||.||_{\infty}} f$$

- b) Sean $(f_i)_{i\in\mathbb{N}}\subset L^1(\mathbb{R}^n,\mathbb{R}_+)$ tales que:
 - $\forall j \in \mathbb{N}, \int_{\mathbb{R}^n} f_j = 1$
 - $\forall r > 0, \lim_{j \to \infty} \int_{||x|| > r} f_j = 0$

Demuestre que $f_j \xrightarrow[j \to \infty]{} \delta_0$ en $\mathscr{D}'(\mathbb{R}^n)$.

P2. Para $n \geq 3$, sean $F, F^{\varepsilon} \in L^1_{loc}(\mathbb{R}^n, \mathbb{R})$ definidas por:

$$F(x) = \frac{|x|^{2-n}}{\omega_n(2-n)}$$
 $F^{\varepsilon}(x) = \frac{(|x|^2 + \varepsilon^2)^{(2-n)/2}}{\omega_n(2-n)}$

donde $\omega_n = 2\pi^{n/2}/\Gamma(n/2)$ es el volumen de la esfera unitaria.

a) Demuestre que $\Delta F^{\varepsilon}=\varepsilon^{-n}g(x/\varepsilon).$ Donde:

$$g(x) := \frac{n}{\omega_n} (|x|^2 + 1)^{-(n+2)/2}$$

b) Demuestre que:

$$\int_{\mathbb{R}^n} g(x)dx = 1$$

c) Demuestre:

$$\Delta F = \delta$$

- d) Para $\varphi \in \mathcal{D}$, probar que $f = F * \varphi$ satisface $\Delta f = \varphi$.
- e) [**Propuesto**] Para n = 2, demostrar (c) y (d) dadas:

$$F(x) = \frac{1}{2\pi} \log(|x|) \qquad F^{\varepsilon}(x) = \frac{1}{4\pi} \log(|x|^2 + \varepsilon^2)$$

Lema

 $\overline{\text{Sea } f} \in L^1(\mathbb{R}^n, \mathbb{R}) \text{ tal que } \int_{\mathbb{R}^n} f = a \text{ y } f_t(x) = t^{-n} f(x/t). \text{ Entonces, } f_t \xrightarrow[t \to 0]{} a\delta \text{ en } \mathscr{D}'(\mathbb{R}^n).$