Review Sheet Anna Chernobai

CONFIDENCE INTERVALS

	Cases	Distribution: Normal or t	(1-α)% Confidence Interval
A.	Confidence Interval for μ (population mean)		
	(1) σ known	Normal	$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
	(2) σ unknown, n≥30	Normal (<u>or</u> <i>t</i> : d.f.=n-1)	$\overline{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
	(3) σ unknown, n<30	t d.f.=n-1	$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
B.	Confidence Interval for μ_1 - μ_2 (difference in population means)		
	$(1) \sigma_1$ and σ_2 known	Normal	$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	(2) σ_1 and σ_2 unknown, $n_1 \ge 30$ and $n_2 \ge 30$	Normal $(\underline{\text{or }} t: d.f.= n_1+n_2-2)$	$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
	(3) σ ₁ and σ ₂ unknown, n ₁ <30 and n ₂ <30	t d.f.=n ₁ +n ₂ -2	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Notations:

 $\overline{x} =$ Sample mean

 $\mu = Population mean$

s = Sample standard deviation $\sigma = Population standard deviation$