Online search algorithms

CS4881 Artificial Intelligence Jay Urbain, PhD

Outline

- Online search
- Exploratory search
- Sample applications
- Online search problems
- Online-DFS-Agent
- Online local search
- Random walk
- LTRA*

Online search

- We have concentrated on agents that use offline search algorithms.
 - They compute a complete solution before setting foot in the real world.
 - Then execute the solution without recourse of their percepts.
 - Talk about analysis paralysis!
- In contrast, an online search agent operates by interleaving computation and action.
 - First it takes an action
 - Then it observes the environment and computes the next action.

In what types of environments is online search required?

Online search

- Online search is a good idea in dynamic or semidynamic domains
 - Domains where there is a penalty for sitting around and computing too long.
- Online search is an even better idea for stochastic domains think taxi cab agent!
- In general, offline search would need to come up with an exponentially large contingency plan that considers all possible happenings.
- Online search need only consider what actually does happen. Example:
 - A chess playing agent is well advised to make its first move long before it has figured out the complete course of the game. Why?

Exploratory Search

- Online search is necessary for any exploration problem.
- States and actions are unknown to the agent.
- An agent in this state of ignorance must use its actions as experiments to determine what to do next.
- Requires agent to interleave computation and action.
- Exploration and exploitation as the agent build a model.
- Discovery of how the world works, is in part, an online search process.

Sample Problems

Examples:

- Robot that is placed in a new building and must explore it to build a map that it can use for getting from A to B.
- Methods for escaping from labyrinths!
- Web search agent builds knowledge and structure of the problem as it explores environment to achieve desired goal, receives feedback from user (relevance feedback).
- Newborn exploring their environment:
 - Has many actions, does not know outcomes of actions, and has experience in only a few of the possible states it can reach.
- Model for human language acquisition.
- Adaptive ML for dynamic sensor data.

- Online search problem can be solved only by an agent executing actions, rather than by a purely computational process.
- Assume agent knows the following:
 - ACTIONS(s), which returns a list of actions allowed in state s.
 - The step-cost function c(s, a, s').
 - Note: can not be used until agent knows s'.
 - GOAL-TEST(s).

- Agent cannot access the successors of a state except by actually trying all the actions in the state.
- In maze problem, agent does not know that going Up from (1,1) leads to (1,2).
- Ignorance can be reduced robot explorer might know how its movement actions work, but may be ignorant of the location of obstacles.

Assumptions:

- Agent can recognize state it has visited before.
- Actions are deterministic.
- Agent may have access to admissible heuristic h(s).
- Agent's objective is to reach goal state while minimizing cost.
- Cost is the total path cost agent travels.

- Common to compare online path cost with the cost of the path the agent would take if it knew the search space in advance.
 - Just plug in an informed search algorithm.
 - Known as "competitive ratio"
- In a worst-case scenario what is the best competitive ratio you can achieve?
- In what circumstances would this occur?

- Worst case competitive ratio can be infinite.
 - Some actions can be <u>irreversible</u> can reach dead-end state from which goal state is unreachable.
- Claim:
 - No algorithm can avoid dead ends in all state spaces.
- Adversary argument:
 - Imagine an adversary that constructs the state space while the agent explores it and can put the goals and dead ends wherever it likes.
 - Major research problem in natural terrain robotics staircases, cliffs, ramps.
- For now we assume state space is safely explorable and reversible.

- a) State space that can lead to dead end
- b) Adversary blocks route to goal with wall in 2D environment.

Online search agent

- After each action, agent receives percept (feedback) defining state reached.
- Agent augments it's map of the environment with this information.
- Current map is used to decide where to go next.
- Online agent can only expand a node it occupies
 - Can't just jump around a search tree like A* informed search.
 - Better to expand nodes in local order depth-first search.

```
function Online-DFS-AGENT(s') returns an action
inputs: s', a percept that identifies the current state
static: result, a table, indexed by action and state, initially empty
        unexplored, a table that lists, for each visited state, the actions not yet tried
        unbacktracked, a table that lists, for each visited state, the backtracks not yet tried
        s, a, the previous state and action, initially null
if GOAL-TEST(s') then return stop
if s' is a new state then unexplored[s'] \leftarrow ACTIONS(s')
if s is not null then do
    result[a, s] \leftarrow s'
    add s to the front of unbacktracked[s']
 if unexplored[s'] is empty then
    if unbacktracked[s'] is empty then return stop
    else a \leftarrow an action b such that result[b, s'] = Pop(unbacktracked[s'])
 else a \leftarrow Pop(unexplored[s'])
 s \leftarrow s'
 return a
```

LRTA*-AGENT selects an action according to the value of neighboring states, which are updated as the agent moves about the state space.

```
function ONLINE-DFS-AGENT(s') returns an action
inputs: s', a percept that identifies the current state
persistent: result, a table, indexed by state and action, initially empty
        untried, a table that lists, for each state, the actions not yet tried
        unbacktracked, a table that lists, for each state, the backtracks not yet tried
        s, a, the previous state and action, initially null
if GOAL-TEST(s') then return stop
if s' is a new state (not in untried) then untried[s'] <- ACTIONS(s')
if s is not null then
   result[s, a] <- s'
   add s to the front of the unbacktracked[s']
if untried[s'] is empty then
   if unbacktracked[s'] is empty then return stop
   else a <- an action b such that result[s', b] = POP(unbacktracked[s'])
else a <- POP(untried[s'])</pre>
s <- s'
return a
```

Online-DFS-Agent

- Trace through maze problem with Online-DFS-Agent.
 - How many links in state-space will Online-DFS-Agent visit for worst case scenario in reaching it's goal?
 - Will Online-DFS-Agent work in environments where actions are irreversible?
 - Do any such agents have a bounded competitive ratio?

Online-Local Search

- Like depth-first search, local hill-climbing search has the property of locality in its node expansions.
 - Unfortunately, it can easily leave agent at local maxima.
 - Random restart does not work, since agent can't teleport itself to remote node in search space.

Random Walk

- Random walk randomly selects one of the available actions from the current state.
- Preferences can be given to actions that have not yet been tried.
- Random walk will eventually find a goal or complete its exploration if state-space is finite*.
- Can be very slow, can be surprisingly fast.

*Infinite case is tricky: Complete in 1D & 2D, chance of 0.3405 in 3D – see Hughes 1995.

Random Walk

 Environment where random walk will take exponential many states to the goal. Why?

Random Walk

 Environment where random walk will take exponential many states to the goal. Why?

• At each step, backward progress twice as likely as forward progress.

Learning realtime A*

- Augmenting hill climbing with memory rather than randomness is more effective.
- Idea: store current best estimate h(s) of the cost to reach goal.
- Heuristic estimate h(s) updated as agent gains experience in the state-space.
- Cost to reach goal through a neighbor s' is cost to get to s' + estimated cost to goal – c(s, a, s') + H(s').
- Called learning realtime A* (LTRA*)

Learning realtime A*

LRTA*-AGENT selects an action according to the value of neighboring states, which are updated as the agent moves about the state space.

LRTA*-AGENT selects an action according to the value of neighboring states, which are updated as the agent moves about the state space.

```
function LRTA*-AGENT(s') returns an action
 inputs: s', a percept that identifies the current state
 persistent: result, a table, indexed by state and action, initially empty
         H, a table of cost estimates indexed by state, initially empty
         s, a, the previous state and action, initially null
 if GOAL-TEST(s') then return stop
 if s' is a new state (not in H) then H[s'] <- h(s')
 if s is not null
  result[s, a] <- s'
  H[s] <-
           min LRTA*-COST(s, b, result[s, b], H)
        b (element of) ACTIONS(s)
 a <- an action b in ACTIONS(s') that minimizes LRTA*-COST(s', b, result[s', b], H)
 s <- s'
 return a
function LRTA*-COST(s, a, s', H) returns a cost estimate
 if s' is undefined then return h(s)
 else return c(s, a, s') + H[s']
```

Summary

- Exploration problems arise when the agent has no idea about the states and actions of its environments.
- For safely explorable environments, online search agents can build a map and find a goal if it exists.
- Updating heuristic estimates from experience provides an effective method to escape from local minima.

Summary

- Many opportunities for learning:
 - Agent learns map of environment
 - Learn more accurate estimates of the value of a state.
 - Would be nice if agent could develop general rules it learned from exploring one state space to a similar state space, e.g., what does up mean?
 - More fun ahead!