

PRACE Course: Intermediate MPI

Day 1

9/11/2022

1 Extra: Simpson's Rule

Computing the area under the curve of f(x) where $x \in [a, b]$ can be done using the Simpson's rule:

$$\int_{a}^{b} f(x)dx \sim \frac{h}{3}(f(x_0) + 4\sum_{i=1,3,\dots}^{n-1} f(x_i) + 2\sum_{i=2,4,\dots}^{n-2} f(x_i) + f(x_n))$$

where $x_0 = a$, $x_n = b$ and $h = \frac{b-a}{n}$ with n-1 equidistant points between a and b.

The interval [a, b] is partitioned into the set $\{a = x_0, x_1, x_2, ..., x_{n-1}, b = x_n\}$ so that there are n sub-intervals of equal width h where n is an even number. The shaded area bounded by the parabolas is approximately equal to the area bounded by y = f(x).

Find the integral of $f(x) = \sin(x) * \sin(x)$ from $0 \to 90$. Compare with the actual result: $\int_0^{90} \sin^2(x) = \pi/4$.

The serial code is given (simpson_serial.c / simpson_serial.f90). Parallelise using MPI as follows.

- 1. Process 0 reads in a, b, and n, and sends them to all other processes.
- 2. The interval [a, b] is distributed among processes. Each process calculates its sub-interval: $[a_{local}, b_{local}]$ which is split up into n_{local} sub-intervals of width h_{local} .
- 3. Calculate the values of $sin^2(x)$ where x is in radians in the range [a_{local} , b_{local}] every h_{local} degrees. The value of the pts and the value of the function at these pts as arrays. Use the provided function (or subroutine) to convert degrees to radians.
- 4. Each process applies Simpson's function over its local interval divided into local subintervals.
- 5. Local approximated areas found by each process are summed at process 0 to a final estimation value.
- 6. Compare the approximated area with the exact value of integral with different number of processes.