(19) 日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—246428

(P2002-246428A)

(43)公開日 平成14年8月30日(2002.8.30)

(51) Int. Cl. 7	· 識別記号	FΙ		
H01L 21/66		H01L 21/66	В	2G003
G01R 1/06		G01R 1/06	A	2G011.
	·		E	2G132
31/26		31/26	J	4M106
31/28		H01R 11/01	501 F	
	審査請求	未請求 請求項	iの数10 OL (全2	4頁) 最終頁に続く
(21)出願番号	特願2001-370367(P2001-370367)	(71)出願人 0	000004178	
			ジェイエスアール株式	会社
(22)出願日	平成13年12月4日(2001.12.4)	J	東京都中央区築地2丁	目11番24号
		(72)発明者 #	井上 和夫	
(31)優先権主張番号	特願2000-374561(P2000-374561)	J	東京都中央区築地2丁	目11番24号 ジェイ
(32)優先日	平成12年12月8日(2000.12.8)		エスアール株式会社内	•
(33)優先権主張国	日本(JP)	(72)発明者 3	五十嵐 久夫	
		J	東京都中央区築地2丁	目11番24号 ジェイ
			エスアール株式会社内	

(74)代理人 100078754

最終頁に続く

(54) 【発明の名称】異方導電性シートおよびウエハ検査装置

(57)【要約】

【課題】 小型で、検査用回路基板の使用寿命が短くならず、多数の被検査電極の検査を一括して行うことができ、良好な電気特性を有し、高機能集積回路の電気的検査が可能なウエハ検査装置およびこれに用いる異方導電性シートの提供。

【解決手段】 異方導電性シートは、貫通孔が形成された絶縁性シート体と、当該貫通孔内に配置された弾性異方導電膜とよりなり、絶縁性シート体は弾性率が 1×1 0° $\sim 1\times1$ 0° P a、線熱膨張係数が 3×1 0° $\sim 3\times1$ 0° K^{-1} 、飽和磁化が0. 1 w b / m° 未満の材料よりなり、弾性異方導電膜は、複数の導電路形成部と、これらの間に形成された絶縁部とよりなり、導電路形成部は数平均粒子径が3 0 ~ 1 5 0 μ m の導電性粒子が充填され、導電性粒子は、表面に厚みが2 0 n m以上の貴金属よりなる被覆層が形成され、導電路形成部の各々はデュロメーター硬さが1 5 ~ 4 5 τ 、導電路形成部間における電気抵抗が1 0 M Ω 以上である。

弁理士 大井 正彦

【特許請求の範囲】

【請求項1】 厚み方向に伸びる貫通孔が形成された絶縁性シート体と、

この絶縁性シート体の貫通孔内に配置され、当該貫通孔 の周辺部に支持された弾性異方導電膜とよりなり、

前記絶縁性シート体は、弾性率が1×10°~1×10°Paで、線熱膨張係数が3×10°°~3×10°°K°°で、飽和磁化が0.1wb/m°未満の材料よりなり、前記弾性異方導電膜は、それぞれ厚み方向に伸び、面方向に沿って互いに離間して配置された複数の導電路形成 10部と、これらの導電路形成部の間に形成された絶縁部とよりなり、当該導電路形成部は、弾性高分子物質中に数平均粒子径が30~150μmの磁性を示す導電性粒子が密に充填されてなり、当該導電性粒子は、表面に厚みが20nm以上の貴金属よりなる被覆層が形成されてなり、

前記導電路形成部の各々は、デュロメーター硬さが15 ~ 45 であり、互いに隣接する導電路形成部間における電気抵抗が10 M Ω 以上であることを特徴とする異方導電性シート。

【請求項2】 厚み方向に伸びる複数の貫通孔が形成された絶縁性シート体と、

この絶縁性シート体の各貫通孔内に配置され、当該貫通 孔の周辺部に支持された複数の弾性異方導電膜とよりな り、

前記絶縁性シート体は、弾性率が1×10⁶~1×10¹⁶ Paで、線熱膨張係数が3×10⁶⁶~3×10⁶⁶ K¹⁶ で、飽和磁化が0.1 w b / m⁶⁶ 未満の材料よりなり、前記弾性異方導電膜の各々は、厚み方向に伸びる導電路形成部と、当該導電路形成部の周囲に形成された絶縁部 30 とよりなり、当該導電路形成部は、弾性高分子物質中に数平均粒子径が30~150 μmの磁性を示す導電性粒子が密に充填されてなり、当該導電性粒子は、表面に厚みが20 n m以上の貴金属よりなる被覆層が形成されてなり、

前記弾性異方導電膜の各々における導電路形成部は、デュロメーター硬さが15~45であり、互いに隣接する弾性異方導電膜の導電路形成部間における電気抵抗が10MΩ以上であることを特徴とする異方導電性シート。

【請求項3】 導電路形成部を40gの荷重で厚み方向 40 に加圧した場合における当該導電路形成部の許容電流値 が3A以上であることを特徴とする請求項1または請求 項2に記載の異方導電性シート。

【請求項4】 導電路形成部をその歪み率が10%となるよう厚み方向に加圧した場合における当該導電路形成部の許容電流値が1A以上であることを特徴とする請求項1乃至請求項3のいずれかに記載の異方導電性シート。

【請求項5】 導電路形成部を40gの荷重で厚み方向 に加圧した状態で測定される当該導電路形成部の厚み方 50

【請求項6】 導電路形成部を歪み率が10%となるよう厚み方向に加圧した状態で測定される当該導電路形成部の厚み方向における電気抵抗が0.1 Ω以下であり、温度100℃の環境下で、導電路形成部を歪み率が10%となるよう厚み方向に加圧した状態で当該導電路形成部に1Aの電流を300時間印加させた後に測定される当該導電路形成部の厚み方向における電気抵抗が0.1 Ω以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の異方導電性シート。

【請求項7】 ウエハに形成された多数の集積回路の電 20 気的検査を行うためのウエハ検査装置であって、

多数の入出力端子が配置された入出力端子部を有するコントローラーと、

一面に前記コントローラーの入出力端子のパターンに対応するパターンに従って多数の引出端子が配置された引出端子部を有し、引出端子の各々が前記コントローラの入出力端子に対向するよう配置された検査用回路基板と、

この検査用回路基板の一面または他面上に配置され、当 該検査用回路基板における回路によって前記引出端子の 各々に電気的に接続された、検査対象であるウエハにお ける集積回路の被検査電極に接触される多数の接触子を 有する接触部材と、

前記コントローラーの入出力端子部と前記検査用回路基板の引出端子部との間に配置された、当該入出力端子の各々と当該引出端子の各々とを電気的に接続するコネクターとを具えてなり、

前記コネクターは、請求項1乃至請求項6のいずれかに 記載の異方導電性シートよりなることを特徴とするウエ ハ検査装置。

【請求項8】 コネクターは、請求項1乃至請求項6の いずれかに記載の異方導電性シートの複数が検査用回路 基板の引出端子部の表面に沿って並ぶよう配置されてな ることを特徴とする請求項7に記載のウエハ検査装置。

【請求項9】 ウエハに形成された多数の集積回路の電気的検査を行うためのウエハ検査装置であって、

多数の入出力端子が配置された入出力端子部を有するコントローラーと、

一面に多数の引出端子が配置された引出端子部を有する 検査用回路基板と、

この検査用回路基板の他面上に配置され、当該検査用回

路基板における回路によって前記引出端子の各々に電気 的に接続された、検査対象であるウエハにおける集積回 路の被検査電極に接触される多数の接触子を有する接触 部材と、

一面に前記コントローラーの入出力端子のパターンに対 応するパターンに従って多数の一面側接続用電極が配置 された一面側接続用電極部を有すると共に、他面に前記 検査用回路基板の引出端子のパターンに対応するパター ンに従って多数の他面側接続用電極が配置された他面側 接続用電極部を有し、当該一面側接続用電極の各々が前 10 記コーントローラーの入出力端子に対向し、かつ、当該 他面側接続用電極の各々が前記検査用回路基板の引出端 子に対向するよう配置された接続用回路基板と、

前記コントローラーの入出力端子部と前記接続用回路基 板の一面側接続用電極部との間に配置された、当該入出 力端子の各々と当該一面側接続用電極の各々とを電気的 に接続する第1のコネクターと、

前記検査用回路基板の引出端子部と前記接続用回路基板 の他面側接続用電極部との間に配置された、当該引出端 子の各々と当該端面側接続用電極部の各々とを電気的に 20 接続する第2のコネクターとを具えてなり、

前記第1のコネクターおよび前記第2のコネクターの少 なくとも一方は、請求項1乃至請求項6のいずれかに記 載の異方導電性シートよりなることを特徴とするウエハ 検査装置。

【請求項10】 第1のコネクターおよび第2のコネク ターの少なくとも一方は、請求項1乃至請求項6のいず れかに記載の異方導電性シートの複数が接続用回路基板 の一面側接続用電極部または他面側接続用電極部の表面 に沿って並ぶよう配置されてなることを特徴とする請求 30 項9に記載のウエハ検査装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ウエハ検査装置お よびこのウエハ検査装置に好適に用いることができる異 方導電性シートに関し、更に詳しくは、ウエハに形成さ れた多数の集積回路の一部若しくは全部について一括し てプローブ試験を行うためのウエハ検査装置、またはウ エハに形成された多数の集積回路の全部について一括し てバーンイン試験を行うためのウエハ検査装置、および 40 これらのウエハ検査装置に好適に用いることができる異 方導電性シートに関するものである。

[0002]

【従来の技術】一般に、半導体集積回路装置の製造工程 においては、ウエハ上に多数の集積回路を形成した後、 これらの集積回路の各々についてプローブ試験が行われ る。次いで、このウエハを切断することによって半導体 チップが形成され、この半導体チップが適宜のパッケー ジ内に収納されて封止され、更に、パッケージ化された 半導体集積回路装置の各々について、バーンイン試験が 50 ゴピン」と称される長さ方向に弾性的に圧縮し得る多数

行われる。而して、半導体集積回路装置の品質保証を行 うためには、バーンイン試験によって、当該半導体集積 回路装置の電気的特性の検査を行うことのみならず、半 導体チップ自体の電気的特性の検査を行うことが極めて 重要である。また、近年、半導体チップ自体を集積回路 装置として用い、当該半導体チップよりなる回路装置を 例えばプリント回路基板上に直接実装する実装法が開発 されており、そのため、半導体チップ自体の品質保証を 行うことが要請されている。

【0003】然るに、半導体チップは微小なものであっ てその取扱いが不便なものであるため、半導体チップよ りなる回路装置の検査を行うためには、長い時間を要 し、また、検査コストが相当に高くなる。このような理 由から、最近において、半導体チップよりなる回路装置 の電気的特性の検査をウエハの状態で行うWLBI(W afer Level Burn-in) 試験が注目さ れている。

【0004】図13は、多数の集積回路が形成されたウ エハについてWLBIテストを行うための従来のウエハ 検査装置の一例における構成の概略を示す説明用断面図 である。このウエハ検査装置は、多数の入出力端子87. が配置された入出力端子部86を有するコントローラー 85を有する。このコントローラー85は、ウエハ1の 検査を所定の温度で行うためのウエハ1の温度制御、ウ エハ1の検査を行うための電源供給、信号の入出力制御 およびウエハ1からの出力信号を検出して当該ウエハ1 における集積回路の良否の判定を行うためのものであ

【0005】コントローラー85の下方には、円板状の 検査用回路基板80が設けられている。この検査用回路 基板80の一面(図において上面)における周縁部に は、コントローラー85における入出力端子87のパタ ーンに対応するパターンに従って多数の引出端子82が 配置されてなる引出端子部81が形成されている。検査 用回路基板80の一面における中央部には、当該検査用 回路基板80における回路によって当該引出端子81の 各々に電気的に接続された多数の検査電極(図示省略) が配置されてなる検査電極部(図示省略)が形成されて いる。そして、検査用回路基板80は、引出端子82の 各々がコントローラー85の入出力端子87に対向する よう、適宜の保持部材によって保持された状態で配置さ れている。また、検査用回路基板80の一面における検 **査電極部上には、検査対象であるウエハ1における集積** 回路の被検査電極(図示省略)に接触される多数の接触 子(図示省略)を有する接触部材83が配置され、この 接触部材83の接触子の各々は、検査用回路基板80の 検査電極の各々に電気的に接続されている。

【0006】検査用回路基板80の引出端子部81とコ ントローラー85の入出力端子部86との間には、「ポ の接続ピン84aが配列されてなるコネクター84が、 適宜の加圧機構(図示省略)によってコントローラー8 5の入出力端子87の各々に接続ピン84aが長さ方向 に加圧された状態で配置されており、このコネクター8 4によって、検査用回路基板80の引出端子82とコン トローラー85の入出力端子87とが電気的に接続され ている

【0007】図14は、多数の集積回路が形成されたウエハについてWLBIテストを行うための従来のウエハ検査装置の他の例における構成の概略を示す説明用断面 10 図である。このウエハ検査装置においては、検査用回路基板80よりも大きい面積の一面(図において上面)を有するコントローラー95が設けられており、このコントローラー95の一面における中央部上に、検査用回路基板80が配置され、この検査用回路基板80における検査電極部(図示省略)上に、多数の接触子(図示省略)を有する接触部材83が配置されている。

【0008】コントローラー95の一面における周縁部 には、多数の入出力端子97が配置されてなる入出力端 子部96が形成され、検査用回路基板80の引出端子部 20 81およびコントローラー95の入出力端子部96上に は、引出端子82および入出力端子97の各々のパター ンに対応するパターンに従って配置された多数の接続端 子91,92を有するフレキシブルプリント配線板より なるコネクター90が、当該接続端子91、92の各々 が引出端子82および入出力端子97の各々に対向する よう配置され、異方導電性接着剤93、94によって、 コネクター90が検査用回路基板80の引出端子部81 およびコントローラー95の入出力端子部96に固定さ れると共に、コネクター90の接続端子91、92の各 30 々が、検査用回路基板80の引出端子82およびコント ローラー95の入出力端子97の各々に電気的に接続さ れている。

【0009】図13または図14に示すウエハ検査装置においては、検査対象であるウエハ1が加熱板を兼ねたウエハホルダー88に保持され、当該ウエハホルダー88が適宜の手段によって下方に加圧されることにより、ウエハ1上に形成された全ての集積回路の被検査電極の各々に、接触部材83の接触子の各々が接触し、これにより、所要の電気的接続が達成される。そして、ウエハ40ホルダー88によってウエハ1が所定の温度に加熱され、この状態で長時間保持された後、ウエハ1についての所要の電気的検査(バーンイン試験)が行われる。

【0010】一方、ウエハ上に形成された集積回路に対して行われるプローブ試験においては、一般に、ウエハ上に形成された多数の集積回路のうち例えば16個または32個の集積回路について一括してプローブ試験を行い、順次、その他の集積回路についてプローブ試験を行う方法が採用されている。而して、近年、検査効率を向上させ、検査コストの低減化を図るために、ウエハ上に50

形成された多数の集積回路のうち例えば64個、124 個または全部の集積回路について一括してプローブ試験 を行うことが要請されている。

【0011】図15は、ウエハに形成された多数の集積 回路についてプローブ試験を行うための従来のウエハ検 査装置の一例における構成の概略を示す説明用断面図で ある。このウエハ検査装置における検査用回路基板80 は、一面(図において上面)にコントローラー85にお ける入出力端子87に対応して多数の引出端子82が配 置されてなる引出端子部81を有し、他面に当該検査用 回路基板80における回路によって当該引出端子82の 各々に電気的に接続された多数の検査電極(図示省略) が配置されてなる検査電極部(図示省略)を有し、当該 検査用回路基板80は保持部材74によって保持されて いる。検査用回路基板80の他面における検査電極部上 には、検査対象であるウエハ1における集積回路の被検 査電極(図示省略)に接触される多数の接触子(図示省 略)を有する接触部材83が配置され、この接触部材8 3の接触子の各々は、検査用回路基板80の検査電極の 各々に電気的に接続されている。また、接触部材83の 下方には、検査対象であるウエハ1が載置される、加熱 板を兼ねたウエハトレイ89が配置されている。

【0012】コントローラー85と検査用回路基板80との間には、接続用回路基板75が設けられている。この接続用回路基板75は、その一面(図において上面)にコントローラー85における入出力端子87のパターンに対応するパターンに従って多数の一面側接続用電極76を有し、他面に検査用回路基板80における引出端子82のパターンに対応するパターンに従って多数の多数の他面側接続用電極79が配置されてなる他面側接続用電極部78を有し、当該接続用回路基板75は、一面側接続用電極77の各々がコントローラー85の入出力端子87に対向し、かつ、他面側接続用電極79が検査用回路基板80の引出端子82の各々に対向するよう、保持部材74によって保持された状態で配置されている。

[0013] コントローラー85の入出力端子部86と接続用回路基板75の一面側接続用電極部76との間には、長さ方向に弾性的に圧縮し得る多数の接続ピン71が配列されてなる第1のコネクター70が、適宜の加圧機構(図示省略)によって接続ピン71が長さ方向に加圧された状態で配置されており、この第1のコネクター70によって、コントローラー85の入出力端子87と接続用回路基板75の一面側接続用電極77とが電気的に接続されている。検査用回路基板80の引出端子部81と接続用回路基板75の他面側接続用電極部78との間には、長さ方向に弾性的に圧縮し得る多数の接続ピン73が配列されてなる第2のコネクター72が、加圧機構によって接続ピン73が長さ方向に加圧された状態で配置されており、この第2のコネクター72によって、

検査用回路基板80の引出端子82と接続用回路基板7 5の他面側接続用電極79とが電気的に接続されてい る。

【0014】図15に示すウエハ検査装置においては、 検査対象であるウエハ1がウエハトレイ89上に載置さ れ、当該ウエハトレイ89が適宜の手段によって上方に 移動されることにより、ウエハ1に形成された一部の集 積回路の被検査電極の各々に、接触部材83の接触子の 各々が接触し、これにより、所要の電気的接続が達成さ れる。そして、ウエハトレイ89によってウエハ1が所 10 定の温度に加熱され、この状態で、ウエハ1についての 所要の電気的検査(プローブ試験)が行われる。

【0015】しかしながら、図13万至図15に示す従 来のウエハ検査装置においては、それぞれ以下のような 問題がある。

(1) 図13および図15に示すウエハ検査装置におい ては、検査用回路基板80の引出端子82の各々に対す るコントローラー85の入出力端子87の安定な電気的 接続を達成するために、接続ピンの各々を例えば1個当 たり0.8N(約0.08kgw)程度の加圧力で加圧 20 することが必要であり、従って、例えば検査用回路基板 80の引出端子82の数が例えば5000個である場合 には、全体で4000N程度の加圧力が必要となる。そ のため、このような加圧力を作用させるための加圧機構 は必然的に大型のものとなり、また、検査用回路基板8 0の保持部材についても、大きな加圧力に耐え得る大が かりなものが必要となって、ウエハ検査装置全体が相当 に大型のものとなる、という問題がある。

【0016】また、検査用回路基板80の引出端子82 の各々が接続ピンによって大きい加圧力で加圧されるこ 30 とによって、当該引出端子82の各々が損傷しやすくな るため、検査用回路基板80の使用寿命が短くなり、延 いては、検査コストが増大する、という問題がある。ま た、機構上の制約から、接続ピンの長さを小さくするこ とには限界があり、実際上接続ピンには3cm程度の長 さが必要とされる。そのため、検査用回路基板80とコ ントローラー85との離間距離が相当に長いものとなる 結果、ウエハ検査装置の高さ方向の寸法を小さくするこ とが困難であり、この点からも、ウエハ検査装置全体の 小型化を図ることができない、という問題がある。特 に、最近においては、複数のウエハの検査を小さい作業 スペースで並行して行うために、例えば図13に示す各 構成部品からなる検査ユニットの複数が積み重ねられて なるウエハ検査装置が提案されており、このようなウエ ハ検査装置においては、各検査ユニットの高さ方向の寸 法が大きいと、ウエハ検査装置全体が相当に巨大なもの となるため、各検査ユニットの高さ方向の寸法を小さく することは、装置の小型化を図るうえで極めて重要であ る。また、接続ピンとして長さが相当に大きいものが必 要であることから、信号伝送系の距離が相当に長くなる 50

ため、高速処理が必要とされる高機能の集積回路の電気 的検査に対応することが困難である、という問題があ る。

【0017】(2)図14に示すウエハ検査装置におい ては、フレキシブルプリント配線板よりなるコネクター 90によって、検査用回路基板80の引出端子82がコ ントローラー95の入出力端子97の各々に電気的に接 続されることから、引出端子82を高密度で配置するこ とが困難であり、従って、当該検査用回路基板80に は、引出端子82を例えば2000個程度しか形成する ことができないため、多数の被検査電極について一括し て検査を行うことが困難である、という問題がある。ま た、コネクター90の接続端子91と検査用回路基板8 0の引出端子82との電気的接続およびコネクター90 の接続端子92とコントローラー95の入出力端子97 との電気的接続が、異方導電性接着剤93,94によっ て行われているために接触抵抗が相当に大きいものとな り、従って、良好な電気特性が得られない、という問題 がある。

[0018]

【発明が解決しようとする課題】本発明は、以上のよう な事情に基づいてなされたものであって、その目的は、 ウエハに形成された多数の集積回路の電気的検査を行う ウエハ検査装置において、装置全体の小型化が可能で、 検査用回路基板の使用寿命が短くなることがなく、多数 の被検査電極についての検査を一括して行うことがで き、良好な電気特性を有し、高機能の集積回路の電気的 検査を行うことができるウエハ検査装置、およびこのウ エハ検査装置に好適に用いることができる異方導電性シ ートを提供することにある。

[0019]

40

【課題を解決するための手段】本発明の異方導電性シー トは、厚み方向に伸びる貫通孔が形成された絶縁性シー ト体と、この絶縁性シート体の貫通孔内に配置され、当 該貫通孔の周辺部に支持された弾性異方導電膜とよりな り、前記絶縁性シート体は、弾性率が1×10°~1× 10' Paで、線熱膨張係数が3×10-6~3×10-6 K-'で、飽和磁化が0.1wb/m'未満の材料よりな り、前記弾性異方導電膜は、それぞれ厚み方向に伸び、 面方向に沿って互いに離間して配置された複数の導電路 形成部と、これらの導電路形成部の間に形成された絶縁 部とよりなり、当該導電路形成部は、弾性髙分子物質中 に数平均粒子径が30~150μmの磁性を示す導電性 粒子が密に充填されてなり、当該導電性粒子は、表面に 厚みが20nm以上の貴金属よりなる被覆層が形成され てなり、前記導電路形成部の各々は、デュロメーター硬 さが15~45であり、互いに隣接する導電路形成部間 における電気抵抗が10MΩ以上であることを特徴とす

【0020】また、本発明の異方導電性シートは、厚み

Q

方向に伸びる複数の貫通孔が形成された絶縁性シート体 と、この絶縁性シート体の各貫通孔内に配置され、当該 貫通孔の周辺部に支持された複数の弾性異方導電膜とよ りなり、前記絶縁性シート体は、弾性率が1×10°~ 1×10¹ Paで、線熱膨張係数が3×10⁻¹~3×1 0 K で、飽和磁化が0.1wb/m 未満の材料よ りなり、前記弾性異方導電膜の各々は、厚み方向に伸び る導電路形成部と、当該導電路形成部の周囲に形成され た絶縁部とよりなり、当該導電路形成部は、弾性高分子 物質中に数平均粒子径が30~150 µmの磁性を示す 10 導電性粒子が密に充填されてなり、当該導電性粒子は、 表面に厚みが20mm以上の貴金属よりなる被覆層が形 成されてなり、前記弾性異方導電膜の各々における導電 路形成部は、デュロメーター硬さが15~45であり、 互いに隣接する弾性異方導電膜の導電路形成部間におけ る電気抵抗が10ΜΩ以上であることを特徴とする。

【0021】本発明の異方導電性シートにおいては、前 記導電路形成部を40gの荷重で厚み方向に加圧した場 合における当該導電路形成部の許容電流値が3A以上で あることが好ましい。また、前記導電路形成部をその歪 20 み率が10%となるよう厚み方向に加圧した場合におけ る当該導電路形成部の許容電流値が1A以上であること が好ましい。また、本発明の異方導電性シートにおいて は、前記導電路形成部を40gの荷重で厚み方向に加圧 した状態で測定される当該導電路形成部の厚み方向にお ける電気抵抗が0.1Ω以下であり、温度100℃の環 境下で、導電路形成部を40gの荷重で厚み方向に15 分間加圧し、次いで、加圧を解除した状態で5分間保持 するサイクルを3000回繰り返した後において、当該 導電路形成部を40gの荷重で厚み方向に加圧した状態 で測定される当該導電路形成部の厚み方向における電気 抵抗が0.1Ω以下であることが好ましい。また、本発 明の異方導電性シートにおいては、前記導電路形成部を 歪み率が10%となるよう厚み方向に加圧した状態で測 定される当該導電路形成部の厚み方向における電気抵抗 が0.1Ω以下であり、温度100℃の環境下で、導電 路形成部を歪み率が10%となるよう厚み方向に加圧し た状態で当該導電路形成部に1Aの電流を3000時間 印加させた後に測定される当該導電路形成部の厚み方向 における電気抵抗が 0. 1 Ω以下であることが好まし

【0022】本発明のウエハ検査装置は、ウエハに形成された多数の集積回路の電気的検査を行うためのウエハ検査装置であって、多数の入出力端子が配置された入出力端子部を有するコントローラーと、一面に前記コントローラーの入出力端子のパターンに対応するパターンに従って多数の引出端子が配置された引出端子部を有し、当該引出端子の各々が前記コントローラの入出力端子に対向するよう配置された検査用回路基板と、この検査用回路基板の一面または他面上に配置され、当該検査用回

路基板における回路によって前記引出端子の各々に電気的に接続された、検査対象であるウエハにおける集積回路の被検査電極に接触される多数の接触子を有する接触部材と、前記コントローラーの入出力端子部と前記検査用回路基板の引出端子部との間に配置された、当該入出力端子の各々と当該引出端子の各々とを電気的に接続するコネクターとを具えてなり、前記コネクターは、前記異方導電性シートよりなることを特徴とする。

【0023】このようなウエハ検査装置においては、前記コネクターは、前記異方導電性シートの複数が前記検査用回路基板の引出端子部の表面に沿って並ぶよう配置されてなることが好ましい。

【0024】また、本発明のウエハ検査装置は、ウエハ に形成された多数の集積回路の電気的検査を行うための ウエハ検査装置であって、多数の入出力端子が配置され た入出力端子部を有するコントローラーと、一面に多数 の引出端子が配置された引出端子部を有する検査用回路 基板と、この検査用回路基板の他面上に配置され、当該 検査用回路基板における回路によって前記引出端子の各 々に電気的に接続された、検査対象であるウエハにおけ る集積回路の被検査電極に接触される多数の接触子を有 する接触部材と、一面に前記コントローラーの入出力端 子のパターンに対応するパターンに従って多数の一面側 接続用電極が配置された一面側接続用電極部を有すると 共に、他面に前記検査用回路基板の引出端子のパターン に対応するパターンに従って多数の他面側接続用電極が 配置された他面側接続用電極部を有し、当該一面側接続 用電極の各々が前記コーントローラーの入出力端子に対 向し、かつ、当該他面側接続用電極の各々が前記検査用 回路基板の引出端子に対向するよう配置された接続用回 路基板と、前記コントローラーの入出力端子部と前記接 続用回路基板の一面側接続用電極部との間に配置され た、当該入出力端子の各々と当該一面側接続用電極の各 々とを電気的に接続する第1のコネクターと、前記検査 用回路基板の引出端子部と前記接続用回路基板の他面側 接続用電極部との間に配置された、当該引出端子の各々 と当該端面側接続用電極部の各々とを電気的に接続する 第2のコネクターとを具えてなり、前記第1のコネクタ ーおよび前記第2のコネクターの少なくとも一方は、前 40 記異方導電性シートよりなることを特徴とする。

【0025】このようなウエハ検査装置においては、前記第1のコネクターおよび前記第2のコネクターの少なくとも一方は、前記異方導電性シートの複数が前記接続用回路基板の一面側接続用電極部または他面側接続用電極部の表面に沿って並ぶよう配置されてなることが好ましい。

[0026]

【作用】本発明の異方導電性シートによれば、弾性率が 特定の値の絶縁性シート体を有するものであるため、当 該絶縁性シート体の周縁部を保持したときに大きく変形 することがなく、当該異方導電性シートの接続対象電極に対する位置合わせ作業を容易に行うことができる。また、絶縁性シート体は線熱膨張係数が小さい材料よりなるため、温度環境の変化に対しても良好な電気的接続状態を安定に維持することができる。また、弾性異方導電膜における導電路形成部には、特定の導電性粒子が充填されており、しかも、当該導電路形成部のデュロメーター硬さが特定の範囲にあるため、高い導電性が得られると共に、接続対象電極に対する安定な電気的接続状態が得られる。また、導電路形成部間における電気抵抗が1 10 0 M Ω 以上であるため、接続対象電極に対して高い接続信頼性が得られる。従って、本発明の異方導電性シートは、ウエハ検査装置に好適に用いることができる。

【0027】本発明のウエハ検査装置によれば、検査用回路基板とコントローラーとを電気的に接続するためのコネクターが、特定の異方導電性シートにより構成されていることにより、検査用回路基板の引出端子とコントローラーの入出力端子との電気的接続が小さい加圧力で確実に達成されるため、加圧機構として大型のものを用いることが不要となると共に、検査用回路基板の保持部材として大がかりなものが不要となる。また、検査用回路基板とコントローラーとの離間距離が短いため、当該ウエハ検査装置の高さ方向の寸法を小さくすることができる。従って、ウエハ検査装置全体の小型化を図ることができる。

【0028】また、検査用回路基板の引出端子に作用さ れる加圧力が小さいため、当該引出端子が損傷すること がなく、当該検査用回路基板の使用寿命が短くなること がない。また、検査用回路基板の引出端子は、特定の異 方導電性シートによって電気的に接続されることによ り、当該引出端子を髙密度で配置することができ、従っ て、多数の引出端子を形成することができるので、多数 の被検査電極についての検査を一括して行うことができ る。また、特定の異方導電性シートによる電気的接続は 接触抵抗が小さく、しかも、安定した接続状態を達成す ることができるため、良好な電気特性が得られる。ま た、検査用回路基板の引出端子とコントローラーの入出 力端子とが特定の異方導電性シートを介して電気的に接 続されているため、信号伝送系の距離が短く、従って、 高速処理が必要とされる高機能の集積回路の電気的検査 40 についても対応することができる。

[0029]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

[異方導電性シート] 図1は、本発明に係る異方導電性シートの一例を示す平面図であり、図2は、図1に示す異方導電性シートのX-X断面図である。この異方導電性シート31は、厚み方向に伸びる断面が略扇状の貫通孔33を有する、平面が略扇状の絶縁性シート体32と、この絶縁性シート体32の貫通孔33内に配置さ

れ、当該貫通孔33の周辺部に支持された弾性異方導電 膜34とにより構成されている。また、図示の例では、 絶縁性シート体32の周縁部に当該異方導電性シート3 1を位置合わせして配置するための複数の位置決め用孔 Kが形成されている。弾性異方導電膜34においては、 それぞれ厚み方向に伸びる複数の導電路形成部35が、 接続対象電極のパターンに対応するパターンに従って面 方向に互いに離間して配置され、これらの導電路形成部 35の各々は、それらの間に介在された絶縁部36によ って相互に絶縁されている。図示の例では、導電路形成 部35の各々には、絶縁部36の両面の各々から突出す る突出部分35A, 35Bが形成されている。導電路形 成部35の各々は、絶縁性の弾性高分子物質中に磁性を 示す導電性粒子Pが厚み方向に配向した状態で密に含有 されて構成され、絶縁部36は、絶縁性の弾性高分子物 質により構成されている。

12

【0030】絶縁性シート体32は、弾性率が1×10 °~1×10' Pa、好ましくは5×10°~5×10 Paで、線熱膨張係数が3×10 °~3×10 °K-'、好ましくは3.5×10 °~2.5×10 °K-'で、飽和磁化が0.1wb/m'未満、好ましくは0.05wb/m'未満の材料によって構成されている。

【0031】絶縁性シート体32を構成する材料の弾性率が1×10 Pa未満である場合には、当該異方導電性シート31が撓み易いものとなるため、後述するウエハ検査装置におけるコネクターとして使用する場合において、当該異方導電性シート31の周縁部を保持して所定の位置に配置することが困難となる。一方、絶縁性シート体32を構成する材料の弾性率が1×10 Paを超える場合には、当該絶縁性シート体32が極めて硬いものであるため、後述するウエハ検査装置におけるコネクターとして使用する場合において、当該異方導電性シート31の周縁部を保持して所定の位置に配置する際に、絶縁性シート体32が回路基板等に接触したときに、当該回路基板が損傷しやすくなる。

【0032】また、絶縁性シート体32を構成する材料の線熱膨張係数が3×10°K'を超える場合には、後述するウエハ検査装置におけるコネクターとして使用した際に、ウエハを加熱することによって異方導電性シート31の周辺の温度が上昇したときに、当該異方導電性シート31の熱膨張によって導電路形成部35と接続対象電極との位置ずれが生じるため、良好な電気的接続状態を安定に維持することが困難となる。

【0033】また、絶縁性シート体32を構成する材料の飽和磁化が0.1wb/m 以上である場合には、後述する製造方法において、弾性異方導電膜を形成するための成形材料層に磁場を作用させたときに、当該成形材料層中の導電性粒子が絶縁性シート体32上に保持されたままの状態となり、そのため、得られる弾性異方導電

膜は、絶縁性シート体上不必要な導電性粒子が存在する ことによって、所要の絶縁性を確保することが困難とな る。

【0034】絶縁性シート体32を構成する材料の具体例としては、ポリイミド、ポリエステル、ポリアミド等の機械的強度の高い樹脂材料、ガラス繊維補強型エポキシ樹脂、ガラス繊維補強型ポリエステル樹脂、ガラス繊維補強型ポリイミド樹脂等のガラス繊維補強型複合樹脂材料、エポキシ樹脂等にシリカ、アルミナ、ボロンナイトライド等の無機材料を充填した複合樹脂材料などを挙10 けることができる。また、絶縁性シート体32の厚みは、0.05~2mmであることが好ましく、より好ましくは0.1~1mmである。この厚みが0.05mm未満である場合には、十分に高い強度を有する絶縁性シート体32が得られない。一方、この厚みが2mmを超える場合には、弾性異方導電膜34における導電路形成部35の厚みが相当に大きいものとなって、良好な導電性を有する導電路形成部35を得ることが困難となる。

【0035】弾性異方導電膜34における導電路形成部 35および絶縁部36を構成する弾性高分子物質として 20 は、架橋構造を有するものが好ましい。かかる架橋弾性 高分子物質を得るための硬化性の高分子物質形成材料と しては、種々のものを用いることができ、その具体例と しては、シリコーンゴム、ポリブタジエンゴム、天然ゴ ム、ポリイソプレンゴム、スチレン-ブタジエン共重合 体ゴム、アクリロニトリループタジエン共重合体ゴムな どの共役ジエン系ゴムおよびこれらの水素添加物、スチ レンーブタジエンージエンプロック共重合体ゴム、スチ レンーイソプレンブロック共重合体などのブロック共重 合体ゴムおよびこれらの水素添加物、クロロプレン、ウ 30 レタンゴム、ポリエステル系ゴム、エピクロルヒドリン ゴム、エチレンープロピレン共重合体ゴム、エチレンー プロピレンージエン共重合体ゴム、軟質液状エポキシゴ ムなどが挙げられる。これらの中では、シリコーンゴム が、成形加工性および電気特性の点で好ましい。

【0036】シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。液状シリコーンゴムは、その粘度が歪速度10'secで10'ポアズ以下のものが好ましく、縮合型のもの、付加型のもの、ピニル基やヒドロキシル基を含有するものなどのい40ずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メチルビニルシリコーン生ゴム、メチルフェニルビニルシリコーン生ゴムなどを挙げることができる。

【0037】これらの中で、ビニル基を含有する液状シリコーンゴム(ビニル基含有ポリジメチルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、ジメチルビニルクロロシランまたはジメチルビニルアルコキシシランの存在下において、加水分解および縮合反応させ、例えば引続き溶解ー沈殿の繰り返しによる分別を行うことにより得られる。また、

ビニル基を両末端に含有する液状シリコーンゴムは、オ クタメチルシクロテトラシロキサンのような環状シロキ サンを触媒の存在下においてアニオン重合し、重合停止 剤として例えばジメチルジピニルシロキサンを用い、そ の他の反応条件(例えば、環状シロキサンの量および重 合停止剤の量)を適宜選択することにより得られる。こ こで、アニオン重合の触媒としては、水酸化テトラメチ ルアンモニウムおよび水酸化n-プチルホスホニウムな どのアルカリまたはこれらのシラノレート溶液などを用 いることができ、反応温度は、例えば80~130℃で ある。このようなビニル基含有ポリジメチルシロキサン は、その分子量Mw(標準ポリスチレン換算重量平均分 子量をいう。以下同じ。)が10000~40000の ものであることが好ましい。また、得られる異方導電性 シート31の耐熱性の観点から、分子量分布指数(標準 ポリスチレン換算重量平均分子量Mwと標準ポリスチレ ン換算数平均分子量Mnとの比Mw/Mnの値をいう。 以下同じ。)が2以下のものが好ましい。

【0038】一方、ヒドロキシル基を含有する液状シリ コーンゴム(ヒドロキシル基含有ポリジメチルシロキサ ン)は、通常、ジメチルジクロロシランまたはジメチル ジアルコキシシランを、ジメチルヒドロクロロシランま たはジメチルヒドロアルコキシシランの存在下におい て、加水分解および縮合反応させ、例えば引続き溶解ー 沈殿の繰り返しによる分別を行うことにより得られる。 また、環状シロキサンを触媒の存在下においてアニオン 重合し、重合停止剤として、例えばジメチルヒドロクロ ロシラン、メチルジヒドロクロロシランまたはジメチル ヒドロアルコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および重合停止剤の量) を適宜選択することによっても得られる。ここで、アニ オン重合の触媒としては、水酸化テトラメチルアンモニ ウムおよび水酸化n-ブチルホスホニウムなどのアルカ りまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば80~130℃である。

【0039】このようなヒドロキシル基含有ポリジメチルシロキサンは、その分子量Mwが10000~40000のものであることが好ましい。また、得られる異方導電性シート31の耐熱性の観点から、分子量分布指数が2以下のものが好ましい。本発明においては、上記のビニル基含有ポリジメチルシロキサンおよびヒドロキシル基含有ポリジメチルシロキサンのいずれか一方を用いることもでき、両者を併用することもできる。

【0040】上記の高分子物質形成材料中には、当該高分子物質形成材料を硬化させるための硬化触媒を含有させることができる。このような硬化触媒としては、有機過酸化物、脂肪酸アゾ化合物、ヒドロシリル化触媒などを用いることができる。硬化触媒として用いられる有機過酸化物の具体例としては、過酸化ベンゾイル、過酸化ジタミル、過酸化ジタ

ーシャリーブチルなどが挙げられる。硬化触媒として用 いられる脂肪酸アゾ化合物の具体例としては、アゾビス イソプチロニトリルなどが挙げられる。ヒドロシリル化 反応の触媒として使用し得るものの具体例としては、塩 化白金酸およびその塩、白金-不飽和基含有シロキサン コンプレックス、ピニルシロキサンと白金とのコンプレ ックス、白金と1,3-ジピニルテトラメチルジシロキ サンとのコンプレックス、トリオルガノホスフィンある いはホスファイトと白金とのコンプレックス、アセチル レックスなどの公知のものが挙げられる。硬化触媒の使 用量は、高分子物質形成材料の種類、硬化触媒の種類、 その他の硬化処理条件を考慮して適宜選択されるが、通 常、高分子物質形成材料100質量部に対して3~15 質量部である。

【0041】また、高分子物質形成材料中には、必要に 応じて、通常のシリカ粉、コロイダルシリカ、エアロゲ ルシリカ、アルミナなどの無機充填材を含有させること・ ができる。このような無機充填材を含有させることによ り、後述する成形材料のチクソトロピー性が確保され、 その粘度が高くなり、しかも、導電性粒子の分散安定性 が向上すると共に、硬化処理されて得られる異方導電性 シート31の強度が高くなる。このような無機充填材の 使用量は、特に限定されるものではないが、あまり多量 に使用すると、後述する製造方法において、磁場による 導電性粒子Pの配向を十分に達成することができなくな るため、好ましくない。

【0042】導電路形成部35を構成する磁性を示す導 電性粒子Pは、磁性を示す芯粒子の表面に貴金属よりな る被覆層が形成されてなるものである。ここで、芯粒子 30 によって求められる。 を構成する材料としては、鉄、ニッケル、コバルトまた はこれらの合金などの強磁性体金属よりなるもの、非磁 性金属粒子若しくはガラスビーズなどの無機物質粒子ま たはポリマー粒子の表面に強磁性体金属のメッキを施し たものなどを用いることができる。また、被覆層を構成

によって求められる。

(二) また、被覆層による被覆率Nは、導電性粒子の重 量に対する被覆層の重量の比であるから、この被覆率N は、

N=m/(Mp+m) ·········式(4) によって求められる。

(ホ) この式(4) の右辺における分子・分母をMpで

によって求められる。

(へ) そして、式(3)に式(5)を代入すると、 $t = 1 / (Sw \cdot \rho \cdot (1 - N) / N) = (1 / (Sw$ $\cdot \rho$) $\times [N/(1-N)]$ が導かれる。

【0046】また、被覆層の被覆率Nは、2.5~50 50 さらに好ましくは4~20質量%、特に好ましくは4.

する貴金属としては、金、銀、白金、パラジウム、ロジ ウム、イリジウムおよびこれらの合金などを用いること ができる。芯粒子の表面に導電性金属を被覆する手段と しては、特に限定されるものではないが、例えば無電解 メッキ、置換メッキ、電気メッキ等の湿式法、スパッタ リング等の乾式法などにより行うことができる。

【0043】導電性粒子Pにおける被覆層の厚みは20 nm以上とされ、好ましくは30nm以上、より好まし くは50 nm以上である。この被覆層の厚みが20 nm アセテート白金キレート、環状ジエンと白金とのコンプ 10 以上であれば、当該導電性粒子はその導電性が十分に高 いものとなるため、厚み方向に高い導電性を有する導電 路形成部が確実に得られる。ここで、導電性粒子の被覆 層の厚みは、下記数式によって算出されるものをいう。

[0044]

【数1】

 $t = \{1/(Sw \cdot \rho)\} \times [N/(1-N)\}$

〔但し、t は被覆層の厚み(m)、Swは芯粒子のBE T比表面積 (m¹/kg)、ρは被覆層を形成する貴金 属の比重(kg/m³)、Nは被覆層による被覆率(被 20 覆層の重量/導電性粒子の重量)を示す。]

【0045】上記の数式は、次のようにして導かれたも のである。

(イ) 芯粒子の重量をMp(kg)とすると、芯粒子の 表面積S(m¹)は、

S=Sw·Mp ·······式(1)

によって求められる。

(ロ)被覆層の重量をm(kg)とすると、当該被覆層 の体積V(m³)は、

 $V=m/\rho$ ·······式(2)

(ハ) ここで、被覆層の厚みが導電性粒子の表面全体に わたって均一なものであると仮定すると、t=V/Sで あり、これに上記式(1)および式(2)を代入する と、被覆層の厚みtは、

 $t = (m/\rho) / (Sw \cdot Mp) = m/(Sw \cdot \rho \cdot Mp) \quad \dots \quad \exists \quad (3)$

割ると、N=(m/Mp)/(1+m/Mp)となり、 両辺に(1+m/Mp)をかけると、N(1+m/M)p) = m/Mp、更には、N+N(m/Mp) = m/M40 pとなり、N(m/Mp)を右辺に移行すると、N=m /Mp-N (m/Mp) = (m/Mp) (1-N) とな り、両辺を(1-N)で割ると、N/(1-N)=m/Mpとなり、従って、芯粒子の重量Mpは、

質量%であることが好ましく、より好ましくは3~30 質量%、さらに好ましくは3.5~25質量%、特に好 ましくは4~20質量%である。被覆される貴金属が金 である場合には、その被覆率は、3~30質量%である ことが好ましく、より好ましくは3.5~25質量%、

40

18

5~10質量%である。

【0047】また、導電性粒子Pの数平均粒子径は、3 $0\sim150\mu$ mとされ、好ましくは $40\sim120\mu$ m、 より好ましくは50~100μmとされる。導電性粒子 Pの数平均粒子径が30μm未満である場合には、導電 路形成部に形成される導電路において、導電性粒子同士 の接点数が多いため、導電性粒子間の接触抵抗の総和が 相当に大きくなる結果、厚み方向に高い導電性が得られ ない。一方、導電性粒子Pの数平均粒子径が150μm を超える場合には、導電路形成部に含有される導電性粒 10 子の数が少ないため、導電路形成部間において導電性の バラツキが生じやすく、また、導電路形成部の硬度が高 くなりやすく、接続対象電極に対する安定な電気的接続 が得られない。

【0048】また、導電性粒子Pの含水率は、5%以下 であることが好ましく、より好ましくは3%以下、さら に好ましくは2%以下、とくに好ましくは1%以下であ る。このような条件を満足する導電性粒子Pを用いるこ とにより、後述する製造方法において、成形材料層を硬 化処理する際に、当該成形材料層内に気泡が生ずること 20 が防止または抑制される。

【0049】また、導電性粒子Pの表面がシランカップ リング剤などのカップリング剤で処理されたものを適宜 用いることができる。導電性粒子の表面がカップリング 剤で処理されることにより、当該導電性粒子Pと弾性高 分子物質との接着性が高くなり、その結果、得られる導 電路形成部35は、繰り返しの使用における耐久性が高 いものとなる。カップリング剤の使用量は、導電性粒子 Pの導電性に影響を与えない範囲で適宜選択されるが、 導電性粒子Pの表面におけるカップリング剤の被覆率

(導電性芯粒子の表面積に対するカップリング剤の被覆 面積の割合)が5%以上となる量であることが好まし く、より好ましくは上記被覆率が7~100%、さらに 好ましくは10~100%、特に好ましくは20~10 0%となる量である。

【0050】このような導電性粒子Pは、導電路形成部 35において体積分率で30~60%、好ましくは35 ~50%となる割合で含有されていることが好ましい。 この割合が30%未満の場合には、十分に電気抵抗値の 小さい導電路形成部35が得られないことがある。一 方、この割合が60%を超える場合には、得られる導電 路形成部は脆弱なものとなりやすく、導電路形成部とし て必要な弾性が得られないことがある。

【0051】導電路形成部35の各々は、そのデュロメ 一夕一硬さが15~45とされ、好ましくは20~40 とされる。このデュロメーター硬さが15未満である場 合には、導電路形成部35を加圧した状態で高温環境下 に長時間保持すると、当該導電路形成部35に大きな永 久歪みが生じるため、良好な電気的接続状態を維持する ことが困難となる。一方、このデュロメーター硬さが4 50 電気抵抗R。が0.1Ωを超える場合には、当該異方導

5を超える場合には、小さい加圧力では、導電路形成部 35が十分に変形しないため、当該導電路形成部に電気 抵抗の小さい導電路が形成されず、その結果、安定な電 気的接続状態を達成することが困難となる。本発明にお いて、「デュロメーター硬さ」とは、JIS K625 3のデュロメーター硬さ試験に基づいて、タイプAデュ ロメーターによって測定されたものをいう。

【0052】また、互いに隣接する導電路形成部35間 における電気抵抗が10ΜΩ以上とされ、好ましくは2 0 M Ω以上とされる。この電気抵抗が10 M Ω未満であ る場合には、接続対象電極に対する接続信頼性が低いも のとなる。

【0053】また、導電路形成部35を40gの荷重で 厚み方向に加圧した場合における当該導電路形成部35 の許容電流値が3A以上であることが好ましい。また、 導電路形成部35をその歪み率が10%となるよう厚み 方向に加圧した場合における当該導電路形成部35の許 容電流値が1A以上であることが好ましい。ここで、導 電路形成部の許容電流値とは、室温環境下に、導電路形 成部を厚み方向に加圧した状態において、当該導電路形 成部に20秒間電流を印加した後に、当該導電路形成部 における電気抵抗が 0. 1 Ωを超えない最大の電流値を いう。上記の許容電流値が過小である場合には、当該異 方導電性シートを例えばウエハの電気的検査に用いる場 合において、当該検査に必要な値の電流を印加させたと きに、導電路形成部35が発熱して早期に故障しやすく なり、長い使用寿命が得られない。そのため、故障した 異方導電性シートを新たなものに交換する作業を頻繁に 行わなければならず、検査効率の低下を招く。

【0054】本発明の異方導電性シートにおいては、導 電路形成部を40gの荷重で厚み方向に加圧した状態で 測定される当該導電路形成部の厚み方向における電気抵 抗(以下、「電気抵抗R.」ともいう。)が0.1Ω以 下であることが好ましく、より好ましくは0.08Ω以 下である。この電気抵抗R.が0.1Ωを超える場合に は、当該異方導電性シートを例えばウエハの電気的検査 に用いる場合において、当該検査に必要な値の電流を印 加させたときに、導電路形成部35が発熱して損傷しや すくなり、長い使用寿命が得られない。そのため、故障 した異方導電性シートを新たなものに交換する作業を頻 繁に行わなければならず、検査効率の低下を招く。

【0055】また、温度100℃の環境下で、導電路形 成部を40gの荷重で厚み方向に15分間加圧し、次い で、加圧を解除した状態で5分間保持するサイクルを3 000回繰り返した後において、当該導電路形成部を4 0 gの荷重で厚み方向に加圧した状態で測定される当該 導電路形成部の厚み方向における電気抵抗(以下、「電 気抵抗R。」ともいう。)が 0.1Ω 以下であることが 好ましく、より好ましくは0.08Ω以下である。この

電性シートを例えばウエハの電気的検査に用いる場合に おいて、当該検査に必要な値の電流を印加させたとき に、導電路形成部35が発熱して損傷しやすくなり、長 い使用寿命が得られない。そのため、故障した異方導電 性シートを新たなものに交換する作業を頻繁に行わなけ ればならず、検査効率の低下を招く。

【0056】また、導電路形成部を歪み率が10%とな るよう厚み方向に加圧した状態で測定される当該導電路 形成部の厚み方向における電気抵抗(以下、「電気抵抗 R.」ともいう。)が 0.1Ω 以下であることが好まし く、より好ましくは0.08Ω以下である。この電気抵 抗R、が0.1Ωを超える場合には、当該異方導電性シ ートを例えばウエハの電気的検査に用いる場合におい て、当該検査に必要な値の電流を印加させたときに、導 電路形成部35が発熱して損傷しやすくなり、長い使用 寿命が得られない。そのため、故障した異方導電性シー トを新たなものに交換する作業を頻繁に行わなければな らず、検査効率の低下を招く。

【0057】また、温度100℃の環境下で、導電路形 成部を歪み率が10%となるよう厚み方向に加圧した状 20 態で当該導電路形成部に1Aの電流を3000時間印加 させた後に測定される当該導電路形成部の厚み方向にお ける電気抵抗(以下、「電気抵抗R。」ともいう。)が 0. 1Ω以下であることが好ましく、より好ましくは 0. 08 Ω以下である。この電気抵抗 R。が 0. 1 Ωを 超える場合には、当該異方導電性シートを例えばウエハ の電気的検査に用いる場合において、当該検査に必要な 値の電流を印加させたときに、導電路形成部35が発熱 して損傷しやすくなり、長い使用寿命が得られない。そ のため、故障した異方導電性シートを新たなものに交換 する作業を頻繁に行わなければならず、検査効率の低下 を招く。

【0058】また、上記の電気抵抗R、、電気抵抗 R、、電気抵抗R、-および電気抵抗R。の各々は、当該 異方導電性シートの全ての導電路形成部についての変動 係数が50%以下であることが好ましい。この変動係数 が50%を超える場合には、当該異方導電性シートは、 導電路形成部間における導電性のバラツキが大きいもの となるため、高い接続信頼性が得られないことがある。 【0059】弾性異方導電膜34の全厚(図示の例では 40 導電路形成部35における厚み)は、0.3~3mmで あることが好ましく、より好ましくは0. 4~2. 5 m mである。この厚みが0.3mm以上であれば、十分な 強度を有する弾性異方導電膜34が確実に得られる。一 方、この厚みが3mm以下であれば、所要の導電性を有 する導電路形成部35が確実に得られる。導電路形成部 35における突出部分35A,35Bの突出高さは、そ の合計が当該導電路形成部分35の厚みの20%以上で あることが好ましく、より好ましくは25%以上であ

Bを形成することより、当該導電路形成部35が小さい 圧力で十分に圧縮されるため、良好な導電性が確実に得 られる。

【0060】このような異方導電性シート31は、例え ば以下のようにして製造することができる。先ず、厚み 方向に伸びる貫通孔33が形成された絶縁性シート体3 2を作製する。ここで、絶縁性シート体32の貫通孔3 3を形成する方法としては、打ち抜き型を用いる方法、 パンチング加工法、ドリル加工法、ルーター加工法、レ 10 ーザー加工法等の物理的な加工方法、化学エッチング法 などの化学的な加工方法などを利用することができる。 次いで、硬化処理によって絶縁性の弾性高分子物質とな る液状の高分子物質形成材料中に、磁性を示す導電性粒 子が分散されてなる流動性の成形材料を調製する。そし て、図3に示すように、弾性異方導電膜成形用の金型5 0を用意し、この金型50における下型56の上面にス ペーサー55Bを介して絶縁性シート体32を位置合わ せして配置し、この絶縁性シート体32上にスペーサー 55Aを介して上型51を位置合わせして配置すると共 に、上型51、下型56、スペーサー55A, 55Bお よび絶縁性シート体32によって形成される成形空間内 に、調製した成形材料を充填して成形材料層34Aを形 成する。

【0061】ここで、金型50について説明すると、上 型51においては、強磁性体基板52の下面に、非磁性 体基板53が例えばネジ機構(図示省略)によって固定 されて配置されている。この非磁性体基板53の上面に は、形成すべき弾性異方導電膜34の導電路形成部35 の配置パターンに対掌なパターンに従って、後述する磁 性部材54Aが収容される多数の磁性部材収容用凹所5 3 Aが形成され、非磁性体基板53の下面には、形成す べき弾性異方導電膜34の導電路形成部35の配置パタ ーンに対掌なパターンに従って、当該導電路形成部35 の突出部分35Aを形成するための突出部分形成用凹所 53日が形成されている。そして、非磁性体基板53の 磁性部材収容用凹所53A内には、当該磁性部材収容用 凹所53Aの径に適合する径を有する球状の磁性部材5 4Aが収容され、更に、磁性部材54Aを磁性部材収容 用凹所53A内に固定するための柱状の蓋材54Bが、 当該磁性部材収容用凹所53Aの開口を塞ぐよう設けら れている。一方、下型56においては、強磁性体基板5 7の上面に、非磁性体基板58が例えばネジ機構(図示 省略)によって固定されて配置されている。この非磁性 体基板58の下面には、形成すべき弾性異方導電膜34 の導電路形成部35の配置パターンと同一のパターンに 従って、磁性部材59Aが収容される多数の磁性部材収 容用凹所58Aが形成され、非磁性体基板58の上面に は、形成すべき弾性異方導電膜34の導電路形成部35 の配置パターンと同一のパターンに従って、当該導電路 る。このような突出高さを有する突出部分35A、35 50 形成部35の突出部分35Bを形成するための突出部分

形成用凹所 5 8 Bが形成されている。そして、非磁性体基板 5 8 の磁性部材収容用凹所 5 8 A内には、当該磁性部材収容用凹所 5 8 Aの径に適合する径を有する球状の磁性部材 5 9 Aが収容され、更に、磁性部材 5 9 Aを磁性部材収容用凹所 5 8 A内に固定するための柱状の蓋材 5 9 Bが、当該磁性部材収容用凹所 5 8 Aの開口を塞ぐよう設けられている。

【0062】上型51および下型56の各々における強磁性体基板52,57および磁性部材54A,59Aを構成する材料としては、鉄、ニッケル、コバルトまたは10これらの合金などを用いることができる。また、上型51および下型56の各々における非磁性体基板53,58を構成する材料としては、銅、真鍮等の銅合金、アルミニウム、ジュラルミン等のアルミウニム合金などを用いることができる。また、蓋材54B,59Bを構成する材料としては、強磁性体材料を用いることが好ましく、その具体例としては、鉄、ニッケル、コバルトまたはこれらの合金などを挙げることができる。

【0063】次いで、上型51における強磁性体基板5 2の上面および下型56における強磁性体基板57の下 20 面に、電磁石または永久磁石を配置し、強度分布を有す る平行磁場、すなわち上型51の磁性部材54Aとこれ に対応する下型56の磁性部材59Aとの間において大 きい強度を有する平行磁場を成形材料層34Aの厚み方 向に作用させる。その結果、成形材料層34Aにおいて は、図4に示すように、当該成形材料層34A中に分散 されている導電性粒子Pが、上型51の磁性部材54A とこれに対応する下型56の磁性部材59Aとの間に位 置する部分に集合すると共に、厚み方向に並ぶよう配向 する。そして、この状態において、成形材料層34Aを 30 硬化処理することにより、上型51の磁性部材54Aと これに対応する下型56の磁性部材59Aとの間に配置 された導電性粒子Pが密に含有された導電路形成部35 と、これらの導電路形成部35の間に介在された、導電 性粒子Pが全くあるいは殆ど存在しない絶縁部36とよ りなる異方導電膜34が、絶縁性シート体32の貫通孔 33にその周辺部に固定支持された状態で形成され、以 て、異方導電性シート31が製造される。

【0064】以上において、成形材料層34Aに作用される平行磁場の強度は、上型51の磁性部材54Aとこ 40れに対応する下型56の磁性部材59Aとの間において平均で0.02~2.0Tとなる大きさが好ましい。ここで、絶縁性シート体32が飽和磁化が0.1wb/m以上の材料よりなるものである場合には、成形材料層34Aにおける絶縁性シート体32上に位置する部分にも大きい強度の磁場が作用されるため、当該部分に導電性粒子Pが残存するおそれがある。成形材料層34Aの硬化処理は、平行磁場を作用させたままの状態で行うこともできるが、平行磁場の作用を停止させた後に行うこともできる。成形材料層34Aの硬化処理は、使用され 50

る材料によって適宜選定されるが、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、成形材料層34Aを構成する高分子物質用材料などの種類、導電性粒子Pの移動に要する時間などを考慮して適宜設定される。

【0065】弾性異方導電膜34を成形するための金型 としては、図3に示す金型50の代わりに図5に示す金 型60を用いることができる。この金型60について具 体的に説明すると、この金型60は、上型61および下 型66が互いに対向するよう配置されて構成されてい る。上型61においては、強磁性体基板62の下面に、 目的とする異方導電性シート31の導電路形成部35の 配置パターンに対掌なパターンに従って強磁性体層63 が形成され、この強磁性体層63以外の個所には、当該 強磁性体層63の厚みより大きい厚みを有する非磁性体 層64が形成されている。一方、下型66においては、 強磁性体基板6.7の上面に、目的とする異方導電性シー ト31の導電路形成部35の配置パターンと同一のパタ ーンに従って強磁性体層68が形成され、この強磁性体 層68以外の個所には、当該強磁性体層68の厚みより 大きい厚みを有する非磁性体層69が形成されている。 上型61および下型66の各々における強磁性体基板6 2,67および強磁性体層63,68を構成する材料と しては、鉄、ニッケル、コバルトまたはこれらの合金な どを用いることができる。また、上型61および下型6 6の各々における非磁性体部分64,69を構成する材 料としては、銅などの非磁性金属、ポリイミドなどの耐 熱性樹脂、放射線硬化性樹脂などを用いることができ

【0066】図6は、本発明に係る異方導電性シートの 他の例を示す平面図であり、図7は、図6に示す異方導 電性シートのX-X断面図である。この異方導電性シー ト31は、それぞれ厚み方向に伸びる断面が円形の複数 の貫通孔33を有する、平面が略扇状の絶縁性シート体 32と、この絶縁性シート体32の貫通孔33の各々に 配置され、当該貫通孔33の周辺部に支持された複数の 弾性異方導電膜34とにより構成されている。また、図 示の例では、絶縁性シート体32の周縁部に当該異方導 電性シート31を位置合わせして配置するための複数の 位置決め用孔Kが形成されている。弾性異方導電膜34 は、それぞれ厚み方向に伸びる導電路形成部35と、こ の導電路形成部35の周囲に形成された絶縁部36とに より構成されている。図示の例では、導電路形成部35 の各々には、絶縁部36の両面の各々から突出する突出 部分35A、35Bが形成されている。導電路形成部3 5の各々は、絶縁性の弾性高分子物質中に磁性を示す導 電性粒子Pが厚み方向に配向した状態で密に含有されて 構成され、絶縁部36は、絶縁性の弾性高分子物質によ り構成されている。

【0067】この異方導電性シート31においては、互

いに隣接する弾性異方導電膜34の導電路形成部35間 における電気抵抗が10ΜΩ以上とされ、好ましくは2 OMΩ以上とされる。この電気抵抗が10MΩ未満であ る場合には、接続対象電極に対する接続信頼性が低いも のとなる。その他の具体的な構成は、図1および図2に 示す異方導電性シート31と基本的に同様である。

【0068】上記のような異方導電性シート31によれ ば、弾性率が特定の値の絶縁性シート体3.2を有するも のであるため、当該絶縁性シート体31の周縁部を保持 したときに大きく変形することがなく、当該異方導電性 10 シート31の接続対象電極に対する位置合わせ作業を容 易に行うことができる。また、絶縁性シート体32は線 熱膨張係数が小さい材料よりなるため、温度環境の変化 に対しても良好な電気的接続状態を安定に維持すること ができる。また、弾性異方導電膜34における導電路形 成部35には、特定の導電性粒子Pが充填されており、 しかも、当該導電路形成部35のデュロメーター硬さが 特定の範囲にあるため、高い導電性が得られると共に、 接続対象電極に対する安定な電気的接続状態が得られ る。また、導電路形成部35間における電気抵抗が10 MΩ以上であるため、接続対象電極に対して高い接続信 頼性が得られる。

【0069】〔ウエハ検査装置〕図8は、本発明に係る ウエハ検査装置の一例における構成を示す説明用断面図 であって、このウエハ検査装置は、多数の集積回路が形 成されたウエハについてWLBIテストを行うためので ある。図8に示すウエハ検査装置は、ウエハ1の検査を 所定の温度で行うためのウエハ1の温度制御、ウエハ1 の検査を行うための電源供給、信号の入出力制御および ウエハ1からの出力信号を検出して当該ウエハ1におけ 30 る集積回路の良否の判定を行うためのコントローラー4 0を有する。このコントローラー40は、その下面に、 適宜のパターンに従って多数の入出力端子42が配置さ れた入出力端子部41を有する。

【0070】コントローラー40の下方には、円板状の 検査用回路基板10が設けられている。この検査用回路 基板10の一面(図8において上面)における周縁部に は、図9にも拡大して示すように、コントローラー40 における入出力端子42のパターンに対応するパターン に従って配置された多数の引出端子16を有する引出端 40 子部15が形成され、検査用回路基板10の一面におけ る中央部には、当該検査用回路基板10における回路に よって当該引出端子16の各々に電気的に接続された多 数の検査電極(図示省略)を有する検査電極部(図示省 略)が形成されている。そして、検査用回路基板10 は、引出端子16の各々がコントローラー40の入出力 端子42に対向するよう、適宜の保持部材によって保持 された状態で配置されている。

【0071】コントローラー40における入出力端子4 2のピッチ(中心間距離)すなわち検査用回路基板10 50 するためのコネクター30が、異方導電性シート31に

における引出端子16のピッチは、0.5~5mmであ ることが好ましく、より好ましくは1~2mmである。 このようなピッチで引出端子16が形成されることによ り、コントローラー40の入出力端子42と検査用回路 基板10の引出端子16との所要の電気的接続を確実に 達成することができると共に、引出端子16を高い密度 で配置することが可能であるため、検査対象であるウエ ハ1の被検査電極数に応じた多数の引出端子16を形成 することができる。

【0072】検査用回路基板10の一面における検査電 極部上には、検査対象であるウエハ1における集積回路 の被検査電極(図示省略)に接触される多数の接触子

(図示省略)を有する接触部材20が配置され、この接 触部材20の接触子の各々は、検査用回路基板10の検 査電極の各々に電気的に接続されている。接触部材20 の具体的な構成は、特に限定されるものではなく、例え ばプレードまたはピンよりなる接触子が配列されてなる もの、接触子が異方導電性シートよりなるもの、絶縁性 シートにその厚み方向に貫通して伸びる金属体よりなる 接触子が配置されてなるシート状コネクターよりなるも の、異方導電性シートとシート状コネクターが積層され てなるものなどを採用することができる。

【0073】検査用回路基板10の引出端子部15とコ ントローラー40の入出力端子部41との間には、図1 に示す異方導電性シート31よりなるコネクター30が 配置されている。具体的には、図9に示すように、コネ クター30は、平面が略扇状の複数の異方導電性シート 31 (一点鎖線で示す) が、検査用回路基板10の引出 端子部15の表面に円周方向に沿って並ぶよう配置され て構成されている。このコネクター30は、適宜の加圧 機構によって当該コントローラー40の入出力端子部4 1に加圧された状態とされており、これにより、検査用 回路基板10の引出端子16とコントローラー40の入 出力端子42とが電気的に接続されている。ここで、コ ネクター30に作用される加圧力は、コントローラー4 0の入出力端子42の1個当たり0.1~1N(0.0 1~0. 1 kgw) である。

【0074】上記のウエハ検査装置においては、接触部 材20の上方において、検査対象であるウエハ1が加熱 板を兼ねたウエハホルダー21によって保持され、ウエ ハホルダー21が適宜の手段によって下方に加圧される ことにより、ウエハ1の被検査電極の各々に、接触部材 20の接触子の各々が接触し、これにより、所要の電気 的接続が達成される。そして、ウエハホルダー21によ ってウエハ1が所定の温度に加熱され、この状態で長時 間保持された後、ウエハ1についての所要の電気的検査 (バーンイン試験) が行われる。

【0075】このようなウエハ検査装置によれば、検査 用回路基板10とコントローラー40とを電気的に接続

26

より構成されていることにより、検査用回路基板10の 引出端子16とコントローラー40の入出力端子42と の電気的接続が小さい加圧力で確実に達成されるため、 加圧機構として大型のものを用いることが不要となると 共に、検査用回路基板10の保持部材として大がかりな ものが不要となる。また、検査用回路基板10とコント ローラー40との離間距離が短いため、ウエハ検査装置 の高さ方向の寸法を小さくすることができる。従って、 ウエハ検査装置全体の小型化を図ることができる。

【0076】また、検査用回路基板10の引出端子16 に作用される加圧力が小さいため、当該引出端子16が 損傷することがなく、当該検査用回路基板10の使用寿 命が短くなることがない。また、検査用回路基板10の 引出端子16は、異方導電性シート31によって電気的 に接続されるため、当該引出端子16を高密度で配置す ることができ、従って、検査用回路基板10に多数の引 出端子16を形成することができるので、多数の被検査 電極についての検査を一括して行うことができる。ま た、異方導電性シート31による電気的接続は接触抵抗 が小さく、しかも、安定した接続状態を達成することが 20 できるため、良好な電気特性が得られる。また、検査用 回路基板10の引出端子16とコントローラー40の入 出力端子42とが異方導電性シート31により電気的に 接続されているため、信号伝送系の距離が短く、従っ て、高速処理が必要とされる高機能の集積回路の電気的 検査についても対応することができる。

【0077】また、コネクター30は、複数の異方導電 性シート31が検査用回路基板10の引出端子部15の 表面に沿って並ぶよう配置されて構成されているため、 検査用回路基板10に対する異方導電性シート31の位 30 置合わせ作業が容易となる。また、コネクター30を構 成する異方導電性シート31の各々は面積の小さいもの でよく、このような異方導電性シート31は高い歩留り で容易に製造することが可能であるため、製造コストの 低減化を図ることができる。しかも、異方導電性シート 31に故障がある場合には、当該異方導電性シート31 のみを新たなものに交換すればよく、コネクター30全 体を交換することが不要となるため、メンテナンスにか かるコストが小さい。従って、ウエハの検査コストの低 減化を図ることができる。

【0078】また、コネクター30を構成する異方導電 性シート31は弾性率が特定の値の絶縁性シート体32 を有するものであるため、当該絶縁性シート体31の周 縁部を保持したときに大きく変形することがなく、当該 異方導電性シート31の位置合わせ作業を容易に行うこ とができる。また、異方導電性シート31における絶縁 性シート体32は線熱膨張係数が小さい材料よりなるた め、温度環境の変化に対してもコントローラー40と検 査用回路基板10との良好な電気的接続状態を安定に維 持することができる。また、異方導電性シート31の弾 50

性異方導電膜34における導電路形成部35には、特定 の導電性粒子Pが充填されており、しかも、当該導電路 形成部35のデュロメーター硬さが特定の範囲にあるた め、高い導電性が得られると共に、コントローラー40 および検査用回路基板10に対する安定な電気的接続状 態が得られる。また、導電路形成部35間における電気 抵抗が10ΜΩ以上であるため、コントローラー40お よび検査用回路基板10に対して高い接続信頼性が得ら れる。

【0079】図10は、本発明に係るウエハ検査装置の 一例における構成を示す説明用断面図であって、このウ エハ検査装置は、ウエハ上に形成された多数の集積回路 の各々についてプローブ試験を行うためのである。この ウエハ検査装置における検査用回路基板10は、一面 (図において上面) にコントローラー40における入出 力端子42に対応して多数の引出端子16が配置されて なる引出端子部15を有し、他面に当該検査用回路基板 10における回路によって当該引出端子16の各々に電 気的に接続された多数の検査電極(図示省略)が配置さ れてなる検査電極部(図示省略)を有し、当該検査用回 路基板10は保持部材45によって保持されている。検 査用回路基板10の他面における検査電極部上には、検 査対象であるウエハ1における集積回路の被検査電極 (図示省略)に接触される多数の接触子(図示省略)を 有する接触部材20が配置され、この接触部材20の接 触子の各々は、検査用回路基板10の検査電極の各々に

電気的に接続されている。また、接触部材20の下方に

は、検査対象であるウエハ1が載置される、加熱板を兼

ねたウエハトレイ22が配置されている。 【0080】コントローラー40における入出力端子4 2のピッチ(中心間距離) すなわち接続用回路基板25 における一面側接続用電極27のピッチは、1~5mm であることが好ましく、より好ましくは2~3mmであ る。また、接続用回路基板25における他面側接続用電 極29のピッチ(中心間距離)すなわち検査用回路基板 10における引出端子16のピッチは、0.5~3mm であることが好ましく、より好ましくは1~2mmであ る。このようなピッチで引出端子16が形成されること により、接続用回路基板25の他面側接続用電極29と 検査用回路基板10の引出端子16との所要の電気的接 続を確実に達成することができると共に、引出端子16 を高い密度で配置することが可能であるため、検査対象 であるウエハ1の被検査電極数に応じた多数の引出端子 16を形成することができる。

【0081】コントローラー40と検査用回路基板10 との間には、接続用回路基板25が設けられている。こ の接続用回路基板25は、その一面(図において上面) にコントローラー40における入出力端子42のパター ンに対応するパターンに従って多数の一面側接続用電極 27が配置されてなる一面側接続用電極部26を有し、

他面に検査用回路基板10における引出端子16のパターンに対応するパターンに従って多数の多数の他面側接続用電極29が配置されてなる他面側接続用電極部28を有し、当該接続用回路基板25は、一面側接続用電極27の各々がコントローラー40の入出力端子42の各々に対向し、かつ、他面側接続用電極29の各々が検査用回路基板10の引出端子16の各々に対向するよう、保持部材45によって保持された状態で配置されている。

【0082】コントローラー40の入出力端子部41と 10接続用回路基板25の一面側接続用電極部26との間には、図1に示す異方導電性シート31よりなる第1のコネクター30A配置されている。具体的には、第1のコネクター30Aは、平面が略扇状の複数の異方導電性シート31が、接続用回路基板25の一面側接続用電極部26の表面に円周方向に沿って並ぶよう配置されて構成されている。第1のコネクター30Aは、適宜の加圧機構によって当該コントローラー40の入出力端子部41に加圧された状態とされており、これにより、接続用回路基板25の一面側接続用電極27とコントローラー420の入出力端子42とが電気的に接続されている。

【0083】検査用回路基板10の引出端子部15と接続用回路基板25の他面側接続用電極部28との間には、図1に示す異方導電性シート31よりなる第2のコネクター30Bが配置されている。具体的には、第2のコネクター30Bは、平面が略扇状の複数の異方導電性シート31が、検査用回路基板10の引出端子部15の表面に円周方向に沿って並ぶよう配置されて構成されている。第2のコネクター30Bは、適宜の加圧機構によって当該接続用回路基板25の他面側接続用電極29に30加圧された状態とされており、これにより、接続用回路基板25の他面側接続用電極29と検査用回路基板10の引出端子16とが電気的に接続されている。

【0084】以上において、第1のコネクター30Aおよび第2のコネクター30Bに作用される加圧力は、コントローラー40の入出力端子42または接続用回路基板25の他面側接続用電極29の1個当たり $0.1\sim1$ N($0.01\sim0.1$ kgw)である。

【0085】図10に示すウエハ検査装置においては、 検査対象であるウエハ1がウエハトレイ22上に載置さ 40 れ、当該ウエハトレイ22が適宜の手段によって上方に 移動されることにより、ウエハ1の被検査電極の各々 に、接触部材20の接触子の各々が接触し、これにより、所要の電気的接続が達成される。そして、ウエハト レイ22によってウエハ1が所定の温度に加熱され、この状態で、ウエハ1についての所要の電気的検査(プローブ試験)が行われる。

【0086】このようなウエハ検査装置によれば、コントローラー40と接続用回路基板25とを電気的に接続するための第1のコネクター30Aが、異方導電性シー 50

ト31により構成され、接続用回路基板25と検査用回 路基板10とを電気的に接続するための第2のコネクタ -30Bが異方導電性シート31により構成されている ことにより、コントローラー40の入出力端子42と接 続用回路基板25の一面側接続用電極27との電気的接 続および接続用回路基板25の他面側接続用電極29と 検査用回路基板10の引出端子16との電気的接続が小 さい加圧力で確実に達成されるため、加圧機構として大 型のものを用いることが不要となると共に、接続用回路 基板25および検査用回路基板10の保持部材45とし て大がかりなものが不要となる。また、コントローラー 40と接続用回路基板25との離間距離および接続用回 路基板25と検査用回路基板10との離間距離が短いた め、ウエハ検査装置の高さ方向の寸法を小さくすること ができる。従って、ウエハ検査装置全体の小型化を図る ことができる。

【0087】また、接続用回路基板25の一面側接続用 電極27および検査用回路基板10の引出端子16に作 用される加圧力が小さいため、当該一面側接続用電極2 7および当該引出端子16が損傷することがなく、当該 接続用回路基板25および当該検査用回路基板10の使 用寿命が短くなることがない。また、検査用回路基板1 0の引出端子16は、異方導電性シート31によって電 気的に接続されるため、当該引出端子16を高密度で配 置することができ、従って、検査用回路基板10に多数 の引出端子16を形成することができるので、多数の被 検査電極についての検査を一括して行うことができる。 また、異方導電性シート31による電気的接続は接触抵 抗が小さく、しかも、安定した接続状態を達成すること ができるため、良好な電気特性が得られる。また、コン トローラー40の入出力端子42と接続用回路基板25 の一面側接続用電極27とが異方導電性シート31によ り電気的に接続され、当該接続用回路基板25の他面側 接続用電極29と検査用回路基板10の引出端子16と が異方導電性シート31により電気的に接続されている ため、信号伝送系の距離が短く、従って、高速処理が必 要とされる高機能の集積回路の電気的検査についても対 応することができる。

【0088】また、第1のコネクター30Aは、複数の 異方導電性シート31が接続用回路基板25の一面側接 続用電極部26の表面に沿って並ぶよう配置されて構成 され、第2のコネクター30Bは、検査用回路基板10 の引出端子部15の表面に沿って並ぶよう配置されて構 成されているため、接続用回路基板25または検査用回 路基板10に対する異方導電性シート31の位置合わせ 作業が容易となる。また、第1のコネクター30Aおよ び第2のコネクター30Bを構成する異方導電性シート 31の各々は面積の小さいものでよく、このような異方 導電性シート31は高い歩留りで容易に製造することが 可能であるため、製造コストの低減化を図ることができ

る。しかも、異方導電性シート31に故障がある場合に は、当該異方導電性シート31のみを新たなものに交換 すればよく、第1のコネクター30A全体または第2の コネクター30B全体を交換することが不要となるた め、メンテナンスにかかるコストが小さい。従って、ウ エハの検査コストの低減化を図ることができる。

【0089】また、第1のコネクター30Aおよび第2 のコネクター30Bを構成する異方導電性シート31は 弾性率が特定の値の絶縁性シート体32を有するもので あるため、当該絶縁性シート体32の周縁部を保持した 10 ときに大きく変形することがなく、当該異方導電性シー ト31の位置合わせ作業を容易に行うことができる。ま た、異方導電性シート31における絶縁性シート体32 は線熱膨張係数が小さい材料よりなるため、温度環境の 変化に対してもコントローラー40と接続用回路基板2 5との良好な電気的接続状態を安定に維持することがで きると共に、接続用回路基板25と検査用回路基板10 との良好な電気的接続状態を安定に維持することができ る。また、異方導電性シート31の弾性異方導電膜34 における導電路形成部35には、特定の導電性粒子Pが 20 充填されており、しかも、当該導電路形成部35のデュ ロメーター硬さが特定の範囲にあるため、高い導電性が 得られると共に、コントローラー40、接続用回路基板 25および検査用回路基板10に対する安定な電気的接 続状態が得られる。また、導電路形成部35間における 電気抵抗が10ΜΩ以上であるため、コントローラー4 0、接続用回路基板25および検査用回路基板10に対 して高い接続信頼性が得られる。

【0090】本発明のウエハ検査装置は、上記の実施の 形態に限定されず、種々の変更を加えることが可能であ 30 る。例えば、図8に示すウエハ検査装置においては、検 査用回路基板10の他面(図において下面)に検査電極 が形成され、当該検査用回路基板10の他面上に接触部 材20が配置され、この接触部材20の下方に、検査対 象であるウエハ1が載置されるウエハトレイが設けられ た構成であってもよい。また、図10に示すウエハ検査 装置においては、第1のコネクター30Aおよび第2の コネクター30Bの一方が異方導電性シート31よりな り、他方が例えば接続ピンが配列されてなる構成であっ てもよい。

[0091]

【実施例】以下、本発明の具体的な実施例について説明 するが、本発明はこれらに限定されるものではない。

【0092】〔金型の作製例1〕厚みが3.0mmの真 **鍮板を用意し、ドリリング装置によって、非磁性体基板** の一面に、径が1.0mmで深さ;2.7mmの断面円 形の複数の磁性部材収容用凹所をX-X方向(図1また は図6に示すX-X方向に対応する方向を意味する。以 下同じ。) において2mmのピッチで形成すると共に、 非磁性体基板の他面に、径が0. 8mmで深さが0. 2 50 磁性部材とこれに対応する下型の磁性部材との間に1テ

mmの断面円形の複数の突出部分形成用凹所をX-X方 向において2mmのピッチで形成することにより、非磁 性体基板を作製した。この非磁性体基板における各磁性 部材収容用凹所内に、鉄よりなる直径が1. 0mmの球 状の磁性部材を配置し、更に、厚み:1.7mmで径が 1. 0 mmの円柱状の蓋材を、磁性部材収容用凹所の各 々における開口を塞ぐよう配置した。そして、この非磁 性体基板を、厚みが6mmの鉄よりなる強磁性体基板上 に配置し、ネジ機構によって固定することにより、上型 を作製すると共に、この上型と同様にして下型を作製 し、以て図3に示す構成の金型を製造した。この金型を 「金型a」とする。

【0093】〔金型の作製例2〕厚みが6mmの鉄板を 用意し、この鉄板の一面に対して、ドライフィルムレジ ストおよび塩化第二鉄を用いてフォトエッチング処理を 施すことにより、厚みが5. 9mmの鉄よりなる強磁性 体基板上に厚みが0.1mmで径が0.5mmの円板状 の複数の強磁性体層がX-X方向において1.27mm のピッチで一体に形成されてなる中間体を作製した。こ の中間体の一面における強磁性体層以外の領域に、レジ ストによって厚みが0.2mmの非磁性体層を形成する ことにより、上型を作製すると共に、この上型と同様に して下型を作製し、以て図5に示す構成の金型を製造し た。この金型を「金型b」とする。

【0094】〈実施例1〉厚みが0.4mmのガラス繊 維補強型エポキシ樹脂(弾性率:2×10°Pa, 線熱 膨張係数:1.5×10 K1, 飽和磁化:0wb/m ¹) よりなり、径が1. 8 mmの断面円形の多数の貫通 孔がX-X方向において2.0mmのピッチで形成され てなる絶縁性シート体を作製すると共に、厚みが0.6 mmのステンレス(SUS-304)よりなり、径が 1. 95mmの断面円形の多数の貫通孔がX-X方向に おいて2.0mmのピッチで形成されてなるスペーサー 2 枚を作製した。一方、付加型液状シリコーンゴム「K E-2000-30」(信越化学工業株式会社製) 16 gに数平均粒子径が120μmの導電性粒子6gを添加 して混合することにより、弾性異方導電膜成形用の成形 材料を調製した。ここで、導電性粒子としては、ニッケ ルよりなる芯粒子の表面に厚みが125nmの金よりな 40 る被覆層が形成されてなるものを用いた。

【0095】次いで、金型aにおける下型の上面にスペ ーサーを介して絶縁性シート体を位置合わせして配置 し、この絶縁性シート体上にスペーサーを介して上型を 位置合わせして配置すると共に、上型、下型、2枚のス ペーサーおよび絶縁性シート体によって形成される成形 空間内に、調製した成形材料を充填して成形材料層を形 成した。そして、上型における強磁性体基板の上面およ び下型における強磁性体基板の下面に、電磁石を配置し て作動させることにより、成形材料層に対して、上型の スラの平行磁場を作用させながら、100℃、1.5時間の条件で硬化処理を行うことにより、絶縁性シート体の貫通孔の各々に弾性異方導電膜を形成し、以て異方導電性シートを製造した。

【0096】〈実施例2〉厚みが0.2mmのポリイミ ド樹脂(弾性率:6×10'Pa, 線熱膨張係数:1. 0×10⁻¹ K⁻¹, 飽和磁化: 0wb/m¹) よりなり、 径が1.0mmの断面円形の多数の貫通孔がX-X方向 において1.27mmのピッチで形成されてなる絶縁性 シート体を作製すると共に、厚みが0.1mmのリン青 10 銅よりなり、径が1.2mmの断面円形の多数の貫通孔 がX-X方向において1.27mmのピッチで形成され てなるスペーサー2枚を作製した。一方、付加型液状シ リコーンゴム「KE-2000-20」(信越化学工業 株式会社製) 16gに数平均粒子径が40μmの導電性 粒子8.8gを添加して混合することにより、弾性異方 導電膜成形用の成形材料を調製した。ここで、導電性粒 子としては、ニッケルよりなる芯粒子の表面に厚みが8 4 nmの金よりなる被覆層が形成されてなるものを用い た。

【0097】次いで、金型bにおける下型の上面にスペーサーを介して絶縁性シート体を位置合わせして配置し、この絶縁性シート体上にスペーサーを介して上型を位置合わせして配置すると共に、上型、下型、2枚のスペーサーおよび絶縁性シート体によって形成される成形空間内に、調製した成形材料を充填して成形材料層を形成した。そして、上型における強磁性体基板の上面および下型における強磁性体基板の下面に、電磁石を配置して作動させることにより、成形材料層に対して、上型の磁性部材とこれに対応する下型の磁性部材との間に1テ 30スラの平行磁場を作用させながら、100℃、1.5時間の条件で硬化処理を行うことにより、絶縁性シート体の貫通孔の各々に弾性異方導電膜を形成し、以て異方導電性シートを製造した。

【0098】〈実施例3〉厚みが0.2mmのポリイミド樹脂(弾性率: $6\times10^\circ$ Pa,線熱膨張係数: $1.0\times10^\circ$ K $^{-1}$,飽和磁化:0 wb $^{-1}$ 》よりなり、35 mm $\times12.5$ mmの断面矩形の貫通孔が形成されてなる絶縁性シート体を作製すると共に、厚みが0.1 mmのリン青銅よりなり、35.5 mm $\times13.0$ mm 40 の断面矩形の貫通孔が形成されてなるスペーサー2枚を作製した。一方、付加型液状シリコーンゴム「KE-2000-20」(信越化学工業株式会社製)16 gに数平均粒子径が 60μ mの導電性粒子11.6 gを添加して混合することにより、弾性異方導電膜成形用の成形材料を調製した。ここで、導電性粒子としては、ニッケルよりなる芯粒子の表面に厚みが75 nmの金よりなる被覆層が形成されてなるものを用いた。

【0099】次いで、金型bにおける下型の上面にスペーサーを介して絶縁性シート体を位置合わせして配置

し、この絶縁性シート体上にスペーサーを介して上型を位置合わせして配置すると共に、上型、下型、2枚のスペーサーおよび絶縁性シート体によって形成される成形空間内に、調製した成形材料を充填して成形材料層を形成した。そして、上型における強磁性体基板の上面および下型における強磁性体基板の下面に、電磁石を配置して作動させることにより、成形材料層に対して、上型の磁性部材とこれに対応する下型の磁性部材との間に1テスラの平行磁場を作用させながら、100℃、1.5時間の条件で硬化処理を行うことにより、絶縁性シート体の貫通孔の各々に弾性異方導電膜を形成し、以て異方導電性シートを製造した。

【0100】〈比較例1〉厚みが0.1mmのコバール(弾性率:1.5×10¹¹Pa,線熱膨張係数:5×10¹¹Pa,線熱膨張係数:5×10¹¹K¹¹,飽和磁化:1.4wb/m¹¹)よりなり、径が1.0mmの断面円形の多数の貫通孔がX-X方向において1.27mmのピッチで形成されてなるシート体を作製すると共に、厚みが0.15mmのリン青銅よりなり、径が1.2mmの断面円形の多数の貫通孔がX-X方向において1.27mmのピッチで形成されてなるスペーサー2枚を作製した。上記のシート体およびスペーサーを用いたこと以外は実施例2と同様にして異方導電性シートを製造した。

【0101】(比較例2)付加型液状シリコーンゴム「KE-2000-30」(信越化学工業株式会社製) 16gに数平均粒子径が 10μ mの導電性粒子6gを添加して混合することにより、弾性異方導電膜成形用の成形材料を調製した。ここで、導電性粒子としては、ニッケルよりなる芯粒子の表面に厚みが10nmの金よりなる被覆層が形成されてなるものを用いた。この成形材料を用いたこと以外は実施例1と同様にして異方導電性シートを製造した。

【0102】(比較例3)付加型液状シリコーンゴム「KE-2000-30」(信越化学工業株式会社製)16gに数平均粒子径が200 μ mの導電性粒子6gを添加して混合することにより、弾性異方導電膜成形用の成形材料を調製した。ここで、導電性粒子としては、ニッケルよりなる芯粒子の表面に厚みが15nmの金よりなる被覆層が形成されてなるものを用いた。この成形材料を用いたこと以外は実施例1と同様にして異方導電性シートを製造した。

【0103】〈比較例4〉付加型液状シリコーンゴム「KE-2000-60」(信越化学工業株式会社製)16gに数平均粒子径が120μmの導電性粒子6gを添加して混合することにより、弾性異方導電膜成形用の成形材料を調製した。ここで、導電性粒子としては、ニッケルよりなる芯粒子の表面に厚みが125nmの金よりなる被覆層が形成されてなるものを用いた。この成形材料を用いたこと以外は実施例1と同様にして異方導電50性シートを製造した。

【0104】〈比較例5〉付加型液状シリコーンゴム 「KE-1950-10」(信越化学工業株式会社製) 16gに数平均粒子径が40μmの導電性粒子8.8g を添加して混合することにより、弾性異方導電膜成形用 の成形材料を調製した。ここで、導電性粒子としては、 ニッケルよりなる芯粒子の表面に厚みが84nmの金よ りなる被覆層が形成されてなるものを用いた。この成形 材料を用いたこと以外は実施例2と同様にして異方導電 性シートを製造した。

【0105】実施例1~3および比較例1~5に係る異... 方導電性シートにおける各部の寸法、導電路形成部にお ける導電性粒子の割合および導電路形成部のデュロメー ター硬さを下記表1に示す。

[0106]

【表 1】

					実施例1	実施例2	実施例3	比較例1	比較例 2	比較例 3	比較例 4	比較例 5
絶 厚み (mm)		0.4	0. 2	0. 2	0. 2	0.4	0.4	0.4	0. 2			
緑	貫	数 形状		複数	複数	1	複数	複数	複数	複数	複数 円形	
性	通			円形	円形	矩形	円形	円形	円形	円形		
シ	孔	径または幅(mm)		1. 8	1. 0	3 5 × 12. 5	1. 0	1. 8	1. 8	1. 8	1. 0	
1	材料	弹性率(Pa) 線熱膨張係数(K ⁻¹) 飽和磁化(wb/m²)		2 × 1 0 9	6 × 1 0 g	6 × 1 0 9	1.5 × 1 0 !!	2 × 1 0 9	2 × 1 0 9	2 × 1 0 *	6 × 1 0 9	
ŀ	の			15×10-5	10×10-5	10×10-5	5 × 1 0-0	15×10-5	15×10-5	15×10-5	10×10-	
体	特性			0	0	0	1, 4	0	0	0	0	
		突出高さ(mm)		0.8	0. 5	0.5	0.5	0.8	0.8	0.8	0. 5	
-254 1	3.00			2. 0	0.6	0. 6	0.6	2. 0	2. 0	2. 0	0.6	
弾	導			0. 2	0. 1	0. 1	0. 1	0. 2	0. 2	0. 2	0. 1	
性	X - X 方向におけるピッチ(四m)		2. 0	1. 27	1. 27	1. 27	2. 0	2. 0	2. 0	1. 27		
異士	路		数工	P均粒子径 (μm)	120	4 0	6 0	4 0	1 0	200	1 2 0	4 0
方	形	電	被	厚み (nm).	1 2 5	8 4	75	8 4	4. 7	1 5	1 2 5	8 4
導	成	導電性粒子	覆層	被覆率 (質量%)	. 8	1 5	1 0	1 5	4	0.1	8	1 5
電	部	1	含1	有割合(体積%)	2 5	3 0	3 5	3 0	2 5	2 5	3 0	3 0
膜		デュロメーター硬さ		3 3	2 4	2 5	2 5	3 2	3 4	6 2	1 3	
	絶	最高の	の厚ん	% (mm)	1. 6	0.4	0.4	0.4	1. 6	1. 6	1. 6	0.4

【0107】〔異方導電性シートの評価〕実施例1~3 および比較例1~5に係る異方導電性シートに対して、 下記の試験1および試験2を行い、また、実施例1~3 および比較例5に係る異方導電性シートに対して、下記 の試験3および試験4を行った。

【0108】試験1:一面に異方導電性シートの導電路 形成部のパターンと同一のパターンに従って形成された 複数のパターン電極を有する一方の試験用電極板および 一面に異方導電性シートの導電路形成部のパターンと対 **掌なパターンに従って形成された複数のパターン電極を 40** 有する他方の試験用電極板を用意し、一方の試験用電極 板上に異方導電性シートをその導電路形成部の各々が当 該一方の試験用電極板のパターン電極上に位置するよう 位置合わせした状態で配置し、この異方導電性シート上 に、他方の試験用電極板をそのパターン電極の各々が異 方導電性シートの導電路形成部上に位置するよう位置合 わせして配置した。次いで、100℃の環境下におい て、他方の試験用電極板によって異方導電性シートをそ の厚み方向に導電路形成部1個当たりの荷重が40gと

該導電路形成部における厚み方向の電気抵抗(以下、

「導通抵抗」という。) および隣接する導電路形成部間 の電気抵抗(以下、「絶縁抵抗」という。)を測定し た。この測定が終了した後、他方の試験用電極板による 異方導電性シートの加圧を解除し、この状態で5分間保 持した。この操作を1サイクルとして合計で3000サ イクル繰り返した。1サイクル目における導通抵抗の平 均値、最大値、最小値および絶縁抵抗の最小値、並びに 3000サイクル目の導通抵抗の平均値、最大値、最小 値および絶縁抵抗の最小値を下記表2に示す。

【0109】試験2:図11に示すように、一面におけ る中央領域に異方導電性シート31の導電路形成部35 のパターンと同一のパターンに従って形成された複数の パターン電極101を有し、当該一面における周縁領域 に、当該パターン電極101の各々にプリント配線(図 示省略) によって電気的に接続された複数のリード電極 102を有する一方の試験用電極板100と、一面全面 に金メッキよりなる共通電極106が形成された他方の 試験用電極板105とを用意し、一方の試験用電極板1 なるよう加圧し、この状態で15分間保持した後に、当 50 00上に異方導電性シート31をその導電路形成部35

の各々が当該一方の試験用電極板100のパターン電極 101上に位置するよう位置合わせした状態で配置し、 この異方導電性シート31上に、他方の試験用電極板1 05を配置し、一方の試験用電極板100における各リ ード電極102および他方の試験用電極板105におけ る共通電極106を、電圧計110に電気的に接続する と共に、この電圧計110とは並列に、定電流制御装置 116を介して直流電源115に電気的に接続した。次 いで、室温環境下において、他方の試験用電極板105 によって異方導電性シート31をその厚み方向に導電路 形成部35の1個当たりの荷重が40gとなるよう加圧 し、この状態で、直流電源115および定電流制御装置 116によって異方導電性シート31の導電路形成部3 5の一つに3Aの直流電流を20秒間印加した後、当該 導電路形成部35における電圧を電圧計110によって

測定した。この電圧の測定を全ての導電路形成部35に 対して順次行った。そして、導電路形成部35に印加し た直流電流を I、 (=3A) とし、測定した導電路形成 部35の電圧の値(V)をV」として、下記の数式によ り、導通抵抗R, を求めた。また、上記試験1と同様に して異方導電性シート31の導電路形成部35を300 0回押圧した後、当該異方導電性シート31の導通抵抗 R, を上記と同様にして求めた。この導通抵抗R,の値 が100mQ以下のとき、当該導電路形成部の許容電流 値が3A以上である。導通抵抗R、の平均値を下記表2 に示す。

【数 2 】 R₁ = V₁ / I₁ [0110] 【表2】

					試 题	1					試	2
	1 サイクル目					3 0 0 0 サイクル目					導通抵抗 R 1 (m Ω)	
		導 通	抵抗		絶縁抵抗	導通抵抗 艳糊				絶縁抵抗	E抗	
	平均值 (mΩ)	最大值 (mΩ)	最小值 (mΩ)	変動係数 (%)	の最小値 (Ω)	平均値 (mΩ)	最大値 (mΩ)	最小値 (mΩ)	変動係数 (%)	の最小値 (Ω)	初期	3000 回加圧後
実施例 1	5 6	7 5	4 3	1 2	> 1 0 M	5 8	8 5	4 5	1 8	> 1 0 M	4 5	7 4
実施例 2	6 7	8 8	5 0	1 4	> 1 0 M	6 9	9 4	5 3	18	> 1 0 M	6 5	8 8
実施例3	6 1	8 0	47	1 6	> 1 0 M	6 1	8 9	5. 0	1 9	> 1 0 M	6 0	8 3
比較例1		測定	不可		8		試	験せ	ず		親 斌	ᄔᄬ
比較例 2	263	3 7 6	178	3 4	> 1 0 M	4 6 8	5 8 9	294	5 4	> 1 0 M	3 5 8	687
比較例3	6 3	9 8	4 4	3 8	> 1 0 M	9 4	188	6 1	5 8	> 1 0 M	6 6	157
比較例 4	107	1 2 1	9 6	1 8	> 1 0 M	110	1 3 0	98	2 5	> 1 0 M	103	1 1 8
比較例 5	6 2	8 2	4 9	1 7	> 1 0 M	268	2 4 2	1 3 6	5 6	> 1 0 M	6 5	489

【0111】試験3:一面に異方導電性シートの導電路 形成部のパターンと同一のパターンに従って形成された 複数のパターン電極を有する一方の試験用電極板および 一面全面に金メッキよりなる電極が形成された他方の試 験用電極板を用意し、一方の試験用電極板上に異方導電 性シートをその導電路形成部の各々が当該一方の試験用 電極板のパターン電極上に位置するよう位置合わせした 状態で配置し、この異方導電性シート上に、他方の試験 用電極板を配置した。次いで、100℃の環境下におい 40 て、他方の試験用電極板によって異方導電性シートをそ の厚み方向に導電路形成部の歪み率が10%となるよう 加圧し、当該導電路形成部における導通抵抗および絶縁 抵抗を測定した。更に、異方導電性シートに対する加圧 を3000時間保持した後、当該導電路形成部における 導通抵抗および絶縁抵抗を測定した。初期の導通抵抗の 平均値、最大値、最小値および絶縁抵抗の最小値、並び に3000時間経過後の導通抵抗の平均値、最大値、最 小値および絶縁抵抗の最小値を下記表3に示す。

る中央領域に異方導電性シート31の導電路形成部35 のパターンと同一のパターンに従って形成された複数の パターン電極101を有し、当該一面における周縁領域 に、当該パターン電極101の各々にプリント配線(図 示省略)によって電気的に接続された複数のリード電極 102を有する一方の試験用電極板100と、一面全面 に金メッキよりなる共通電極106が形成された他方の 試験用電極板105とを用意し、一方の試験用電極板1 00上に異方導電性シート31をその導電路形成部35 の各々が当該一方の試験用電極板100のパターン電極 101上に位置するよう位置合わせした状態で配置し、 この異方導電性シート31上に、他方の試験用電極板1 05を配置し、一方の試験用電極板100における各リ 一ド電極102および他方の試験用電極板105におけ る共通電極106を、電圧計110に電気的に接続する と共に、この電圧計110とは並列に、定電流制御装置 116を介して直流電源115に電気的に接続し、更 に、一方の試験用電極100と他方の試験用電極105 【0112】試験4:図12に示すように、一面におけ 50 との間に、異方導電性シート31の全厚の90%の厚み

を有する電気的に絶縁性のスペーサー120を配置し た。次いで、室温環境下において、他方の試験用電極板 105によって異方導電性シート31をその厚み方向に 加圧し、当該他方の試験用電極板105の共通電極10 6をスペーサー120に接触させた。この状態におい て、異方導電性シート31における導電路形成部35の 歪み率は10%である。次いで、直流電源115および 定電流制御装置116によって異方導電性シート31の 導電路形成部35の一つに1Aの直流電流を20秒間印 加した後、当該導電路形成部35における電圧を電圧計 10 110によって測定した。この電圧の測定を全ての導電 路形成部35に対して順次行った。そして、導電路形成 部35に印加した直流電流をI、(=1A)とし、測定

した導電路形成部35における電圧の値(V)をV, と して、下記の数式により、導通抵抗R、を求めた。ま た、上記試験3と同様にして異方導電性シート31の導 電路形成部35を3000時間加圧した後、当該異方導 電性シート31の導通抵抗R,を上記と同様にして求め た。この導通抵抗R,の値が100mΩ以下のとき、当 該導電路形成部35の許容電流値が1A以上である。導 通抵抗R, の平均値を下記表3に示す。

[0113]【数3】R, $=V_1/I_1$ [0114] 【表3】

				· ·	試整	8 3					試 験 4		
	初 期						3 0 0 0 時間経過後					導通抵抗R ₂ (mΩ)	
:	導 通 抵 抗				拖禄抵抗	導通抵抗 製				艳緑抵抗	初期	3 0 0 0	
	平均值 (mΩ)	最大値 (mΩ)	最小值 (mΩ)	変動係数 (%)	の最小値 (Ω)	平均値 (mΩ)	最大値 (mΩ)	最小值 (mΩ)	変動係数	の最小値 (Ω)	19J <i>A</i> 9)	時間加圧後	
実施例1	5 1	7 6	4 1	1 3	> 1 0 M	5 4	8 0	4 3	1 8	> 1 0 M	4 4	5 9	
実施例 2	6 5	8 4	4 8	1 4	> 1 0 M	7 4	8 8	. 5 8	1 9	> 1 0 M	6 3	7 8	
実施例3	5 8	7 9	4 5	1 5	> 1 0 M	6 4	8 3	5 3	1 8	> 1 0 M	6 1	7 4	
比較例 1		-		_	-	-	, -	_		-	_	_	
比較例 2	-	-	-	_	_	-	-	-	-	_		-	
比較例 3	_	_	_	_	_	-	-	_	_	_	_	_	
比較例4	-	-	_	-	-	-	_	_	-	_	_	_	
比較例 5	6 2	7 6	47	1 6	> 1 0 M	268	281	261	2 1	> 1 0 M	5 9	4 6 8	

【0115】表2および表3から明らかなように、実施 30 例1~3に係る異方導電性シートによれば、良好な電気 的接続状態が得られると共に、高温環境下において長時 間使用した場合でも、良好な電気的接続状態が安定に維 持されることが理解される。これに対し、比較例1に係 る異方導電性シートは、弾性異方導電膜を支持するシー ト体がコバールよりなるため、導電路形成部間の電気抵 抗が低いものであった。また、比較例2に係る異方導電 性シートは、導電路形成部中に含有される導電性粒子の 粒子径が小さく、また、被覆層の厚みが小さいものであ るため、厚み方向の導電性が低いものであった。また、 比較例3に係る異方導電性シートは、導電路形成部中に 含有される導電性粒子の粒子径が大きいものであるた め、長時間使用した場合には、厚み方向の電気抵抗が上 昇し、良好な電気的接続状態を維持することができない ものであった。また、比較例4に係る異方導電性シート は、導電路形成部のデュロメーター硬さが高いものであ るため、小さい加圧力では厚み方向に十分に高い導電性 が得られないものであった。また、比較例5に係る異方 導電性シートは、導電路形成部のデュロメーター硬さが 低いものであるため、長時間使用した場合には、導電路 50 シートは、ウエハ検査装置に好適に用いることができ

形成部に永久歪みが生じ、良好な電気的接続状態を維持 することができないものであった。更に、この異方導電 性シートにおいては、当該弾性異方導電膜中に含まれる 低分子量成分が電極に付着する、という問題があった。

【発明の効果】本発明の異方導電性シートによれば、弾 性率が特定の値の絶縁性シート体を有するものであるた め、当該絶縁性シート体の周縁部を保持したときに大き く変形することがなく、当該異方導電性シートの接続対 象電極に対する位置合わせ作業を容易に行うことができ る。また、絶縁性シート体は線熱膨張係数が小さい材料 よりなるため、温度環境の変化に対しても良好な電気的 接続状態を安定に維持することができる。また、弾性異 方導電膜における導電路形成部には、特定の導電性粒子 が充填されており、しかも、当該導電路形成部のデュロ メーター硬さが特定の範囲にあるため、高い導電性が得 られると共に、接続対象電極に対する安定な電気的接続 状態が得られる。また、導電路形成部間における電気抵 抗が10MQ以上であるため、接続対象電極に対して高 い接続信頼性が得られる。従って、本発明の異方導電性

【0117】また、本発明のウエハ検査装置によれば、 ウエハに形成された多数の集積回路の電気的検査を行う ウエハ検査装置において、装置全体の小型化が可能で、 検査用回路基板の使用寿命が短くなることがなく、多数 の被検査電極についての検査を一括して行うことがで き、良好な電気特性を有し、高機能の集積回路の電気的 検査を行うことができる。

【図面の簡単な説明】

【図1】本発明に係る異方導電性シートの一例を示す平 10 面図である。

【図2】図1に示す異方導電性シートのX-X断面図で

【図3】弾性異方導電膜成形用の金型の一例における構 成を示す説明用断面図である。

【図4】 金型内に形成された成形材料層に強度分布を有 する平行磁場が作用された状態を示す説明用断面図であ

【図5】弾性異方導電膜成形用の金型の他の例における 構成を示す説明用断面図である。

【図6】本発明に係る異方導電性シートの他の例を示す 平面図である。

【図7】図6に示す異方導電性シートのX-X断面図で

【図8】本発明に係るウエハ検査装置の一例における構 成を示す説明用断面図である。

【図9】検査用回路基板における引出端子部の一部を拡 大して示す説明図である。

【図10】本発明に係るウエハ検査装置の他の例におけ る構成を示す説明用断面図である。

【図11】実施例において、試験2を行うための装置の 構成を示す説明図である。

【図12】実施例において、試験4を行うための装置の 構成を示す説明図である。

【図13】従来のウエハ検査装置の一例における構成を 示す説明用断面図である。

【図14】従来のウエハ検査装置の他の例における構成 を示す説明用断面図である。

【図15】従来のウエハ検査装置の更に他の例における 構成を示す説明用断面図である。

【符号の説明】

1 ウエハ

10 検査用回路基板

15 引出端子部

16 引出端子

20 接触部材

21 ウエハホルダー

22 ウエハトレイ

25 接続用回路基板

26 一面側接続用電極部

27 一面側接続用電極 28 他面側接続用電極部

29 他面側接続用電極

30 コネクター

30A 第1のコネクター

30B 第2のコネクター

31 異方導電性シート

32 絶縁性シート体

33 貫通孔

3 4 弾性異方導電膜

34A 成形材料層

35 導電路形成部

35A、35B 突出部分

36 絶縁部

40 コントローラー

41 入出力端子部

42 入出力端子

45 保持部材

50 金型

5 1 上型

52 強磁性体基板

53 非磁性体基板

53A 磁性部材収容用凹所

53B 突出部分形成用凹所

54A 球状の磁性部材 54B 蓋材

55A, 55B スペーサー

56 下型

57 強磁性体基板

58 非磁性体基板

58A 磁性部材収容用凹所

58B 突出部分形成用凹所

20 59A 球状の磁性部材 59B 蓋材 -

60 金型

61 上型

62 強磁性体基板

63 強磁性体層

64 非磁性体層

6 6 下型 67 強磁性体基板

68 強磁性体層

69 非磁性体層

70 第1のコネクター 71 接続ピン

72 第2のコネクター 73 接続ピン

74 保持部材

30

75 接続用回路基板

7 6 一面側接続用電極部

77 一面側接続用電極

78 他面側接続用電極部

7 9 他面側接続用電極

80 検査用回路基板

81 引出端子部

82 引出端子 8 4 コネクター 83 接触部材 84a 接続ピン

85 コントローラー

86 入出力端子部

8 7 入出力端子

88 ウエハホルダー

89 ウエハトレイ

90 コネクター

91,92 接続端子

93,94 異方導電性接着剤 40

95 コントローラー

96 入出力端子部

97 入出力端子

P 導電性粒子

100 一方の試験用電極板

101 パターン電極

102 リード電極

105 他方の試験用電極板

106 共通電極

110 電圧計

115 直流電源 120 スペーサー 116 定電流制御装置 K 位置決め用孔

【図9】

【図10】

【図12】

【図14】

【図13】

【図15】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

H 0 1 R 11/01

501

G 0 1 R 31/28

S \mathbf{K}

Fターム(参考) 2G003 AA10 AG04 AG07 AG08 AH04 2G011 AB06 AB08 AC14 AE03 AF04 2G132 AA00 AF10 AJ05 AL03 AL09 4M106 AA01 AC13 AD01 AD08 AD09 AD10 AD30 BA01 DD01 DD09

DD10 DH44