# CS & IT ENGINEERING

THEORY OF COMPUTATION

Regular Languages



Lecture No.- 02

## Recap of Previous Lecture







Topic

**Regular Expression** 

Topic

Construction of Regular Expression

Topic

**DFA States** 

## **Topics to be Covered**







O(Finite danguage Every finite in Regular may be (Regular) Every Infinite danguages I may hot be Regular



#### **Topic: Theory of Computation**









#### **Topic: Regular Language Detection**



#### Which of these Languages are Regular

1. 
$$L = \{a^nb^nc^n \mid 1 \le n \le 100 c\}$$

2. 
$$L = \{a^nb^m \mid n + m = 10\}$$

3. 
$$L = \{a^nb^m \mid n-m=5\}$$

4. 
$$L = \{a^nb^m \mid n * m = 100\} \xrightarrow{finite} \{equal \}$$

5. 
$$L = \{a^nb^m \mid n = 2m + 1\}$$

6. 
$$L = \{a^nb^m \mid n > m\}$$

7. 
$$L = \{a^n b^m \mid n > a_m a_m \}$$

Infinite Language De pendency exist Dependency not exist non Regular Regular



#### **Topic: Regular Language Detection**



8. 
$$L = \{a^nb^m | n > m \text{ (or) } n < m\} = \{a^nb^m | n + m\} = Non Regular$$

11. 
$$L = \{a^n b^{2m} c^{3k}\}$$
 n, mm  $k \ge 0\}$ 

12. 
$$L = \{a^n b^{m^2} c^{k^3} | n, mk \ge 1\}$$
 -NO Dependency Non Regular

13. 
$$L = \{a^n b^{m^2} c^{k^3} | n, mk \ge 1\}$$

14. 
$$L = \left\{ \frac{a^{2^n}}{a^{3^n}} \middle| n \ge 0 \right\}$$

(Q) Which of the following in Regular? a) L= {(m2/2) m,n≥1} No Common det Non Regular (b) 1= {(n!) m! ck! | m, r, k > 1} -> Non Regular (C) [= {(an lm) (m+n) | m,n≥1} Dependent > Mon Regular (a) c= { and by ck lover. K lover. Finite > Regular



Common diff

(0) which of the following in Regular

(a) 
$$L = \{a^n b^m | n \ge m \text{ and } n \le m\} = \{a^n b^n | n \ge i\}$$

(b) 
$$L = \{a^{n}b^{m} | n > m (on) n < m\} = \{a^{n}b^{m}|n \neq m\}$$

$$Q = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p_m | u > m \text{ (and } u < w\} = \{a, p$$

(d) NWG

(a) Which of the following in Non Regular 2) L= {a^bm | (n+m) ig even} = (aa) (bb) + a(aa) b(bb) (b) L={a^bm/(n+m)ig odd}=(aa)\*b(bb)\*+a(aa)\*(bb) (C) [= { a per | U= M\_ } = { a per possible boundary Blow Board a) L= { 2m 13n | n, m > 10 dependency} Regular



## **Topic: Regular Language Detection**





16. 
$$L = \{a^{n^n} | n \ge 1\}$$
  $\longrightarrow \{a', a^2, a^3, \dots\}$   $\longrightarrow N$  on Regular

18. 
$$L = \left\{ a^{100^{100^{100}}} \right\} \longrightarrow \left\{ 1 \right\} = finite \right\} \longrightarrow \text{Regular}$$

19. 
$$L = \{(a^P)^* | p \text{ is prime number}\}$$

20. 
$$L = \{a^p \mid p \text{ is prime number}\}$$

(a) Which of the following in Non Regular?

(b) Which of the following in Non Regular?

(c) Which of the following in Non Regular?

(d) Which of the following in Non Regular?

(e) L= fak | K in even number } Regular (b) L= { am Mary odd number} -> Regular (C) [= { (b) } | b in brime vamper)  fatatatatatat-3-->
L= fat prime number) -> Non Regular

If a danguage if formed over 1 symbol.

If Common différence exist (A.P)-> Régular

(0) Which of the following in Regular! (a) [= { a | n = 1} = { a | a | a | a | a | a | a | - - } - Non Regular (b) d = { an | nz|} -> { a', a², a³, a'--} -> Non Regular  $\frac{1}{2} \left\{ \frac{1}{2} \left( \frac{1}{2} \left$ 

(a) which of the following y Regular?

(b) which of the following y Regular?

(c) which of the following y Regular?

(d) L= {1, 2, 4, 8, 16 - - - 2 - - } = {1 | n > 0} > Non Regular all these numbers written in Unary (b) [= {00,000,1000c au these numbers written in binary) (10) > Regular

(c) [= d 3, | v=0) -> Mw Sedinar.

a) Nous

Drood [1, 1111, 18 - - - ] = No Common diff ) Non Reg binary? 1, 2, 4, 8 - - - } 00000 10000



#### **Topic: Regular Language Detection**



21. 
$$L = \{a^k | k \text{ is even number}\} - \frac{Regular}{}$$

(22) 
$$L = \{ ww^R \mid w \not\models (a+b)^* \} \longrightarrow Non Regular$$

23. 
$$L = \left\{ ww^R \middle| \begin{array}{l} w \in \{a, b\}^* \\ w \in \{a, b\}^* \end{array} \right\}$$

24. 
$$L = \{wbw^R | w \in \{a\}^*\}$$

25. 
$$L = \{x | x \in \{a, b\}^* \ n_a(x) \ \text{mod } 3 = n_b(x) \ \text{mod } 2\}$$

26. 
$$L = \{x | x \in \{a, b\}^* n_a(x) \mod 2 > n_b(x) \mod 3\}$$

27. 
$$L = \{x | x \in \{a, b\}^* \ n_a(x) \ \text{mod } 3 \neq n_b(x) \ \text{mod} 3\} \}$$

28. 
$$L = \{x | x \in \{a, b, c\}^* n_a(x) \neq n_b(x)\}$$

Palindrome danguages L= { W W W W W R malayalam)
WR

 $L = \{WW^{R}\} W \in (0)^{k} \rightarrow \text{Regular}$   $W \in (a+b)^{k} \rightarrow \text{Non Regular}$ Dependency

(3) 
$$L = \left\{ WWX \left| W, X \in (a+b)^{+} \right\} \right\}$$

(A) 
$$L = \{W \times W^R | W_1 \times \{(a+b)^t\}$$

$$(5) L = \{ wwrwr|we(a+b)t \}$$



$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_1 \times e(a+b) \\
U_2 \times e(a+b)
\end{array}$$

$$\begin{array}{ll}
U_2 \times e(a+b) \\
U_3 \times e(a+b)
\end{array}$$

$$\left\{ \begin{array}{l} W(X)W^{R} \\ W = (a+b)^{*} \\ W = (a+b)^{*} \\ W = 0 \end{array} \right\}$$

$$W = 0$$

$$W =$$

$$\begin{array}{cccc}
(a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* & (a+b)^* \\
W = & (a+b)^* & (a+b)^*$$

(a+b) U a b = (a+b)

Super 
$$a = a$$



### 2 mins Summary



Topic One

Topic Two

Topic Three

Topic Four

Topic Five



## THANK - YOU