Norwegian University of Science and Technology Department of Mathematics

Faglig kontakt under eksamen: John Erik Fornæss (464-19-414)

Eksamen i TMA4120, MATEMATIKK 4K KONTINUASJONEKSAMEN

Dato: Mandag 12. August, 2013 Tid: 09.00 - 13:00

Hjelpemidler: (Kode C): Bestemt kalkulator (HP 30S eller Citizen SR-270X) Rottman: Matematisk Formelsamling

Oppgave 1

Hvilke av de følgende funksjonene er realdelen til en analytisk funksjon f? Begrunn svaret og finn f dersom svaret er ja.

a)
$$u(x,y) = e^x \sin y + 3y$$

b)
$$u(x,y) = x^2 + y^2$$

Oppgave 2

Løs ligningen

$$y'' + 2y' - 3y = u(t - 2), y'(0) = y(0) = 0$$

Oppgave 3

La

$$f(z) = \frac{e^z - 1}{(z^2 - 1)\sin z}$$

- a) Finn alle singularitetene
- b) Bereng residuen til f i de singulære punktene.

Oppgave 4

- a) Le f være en odde og periodisk funksjon med periode 2π . La $f(x)=x, 0 \le x \le \frac{\pi}{2}, f(x)=\pi-x, \frac{\pi}{2} \le x \le \pi$. Finn Fourier rekken til f.
- b) Løs varmeligningen

$$\frac{\partial u}{\partial t} = 5 \frac{\partial^2 u}{\partial x^2}$$

med randverdier

$$u(0,t) = 0, u(\pi,t) = 0$$

og

$$u(x,0) = f(x).$$

Oppgave 5

Beregn integralet $\int_{-\infty}^{\infty} \frac{x+3}{x^4+1} dx$

Vis alle estimater

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$