A continuación, verificaremos que, como se establece en el Teorema C, VAR(XII) = ZI.

 $VAR(Y_1) = UAR\{\frac{1}{2}(X_1 + X_2)\} = \frac{1}{2}VAR(X_1 + X_2)$ $= \frac{1}{2}\{UAR(X_1) + UAR(X_2) + 2COU(X_1, X_2)\}$ $= \frac{1}{2}\{1 + 1 + 2\rho\} = 1 + \rho = \lambda_1$ $VAR(Y_2) = UAR\{\frac{1}{\sqrt{2}}(X_1 - X_2)\} = \frac{1}{2}VAR(X_1 - X_2)$ $= \frac{1}{2}(1 + 1 - 2\rho) = 1 - \rho = \lambda_2$

Teorema: Dado un vector aleatorio X tal que IE(X)=IM y $VAR(X)=\overline{\Sigma}$, sec $Y=I\Gamma'(X-IM)$ la transformación de Componentes Principales. Entonces:

- (1) IE(Y;)=0; \J=1,2,--,P.
- (2) VAR(Y;) = > j ; + j=1,2,...,p.
- (3) COV (Vi, Vij) = 0; Vi+j i,je{1,...,p}.

(5)
$$\sum_{j=1}^{p} VAR(Y_j) = traza(Z)$$

Dom

1)
$$E[X_j] = X_j' (E(X-IM) = X_j' (IM-IM) = 0$$

$$Y_j = X_j' (X-IM)$$

Pero por el Teorema (Evando B = I)

Si $\lambda_1,...,\lambda_p$ son los valores propios de BA=A entonal $\lambda_p \leq \frac{2\pi^2 A}{\pi c^2 \pi c} \leq \lambda_1$ $\lambda_{29} \neq 0$; $x \in \mathbb{R}^p$.

En particular si 1129/1=1 7p = 209' A 209 = >1.

Si di es el vector propio (normalizado) de

A=I, asociado a 2j entonces

Lo que implica que
$$\mathcal{F}_{j}^{i} \subseteq \mathcal{F}_{j}^{i} = \lambda_{j} \mathcal{F}_{i}^{i} =$$

$$= \mathbb{E}[X_i X_j] = \mathbb{E}[X_i'(X_{-M})(X_{-M})' X_j']$$

$$= \mathcal{Y}_i' \mathbb{E}[(X_{-M})(X_{-M})'] \mathcal{Y}_j'$$

$$= \mathcal{Y}_i' \mathbb{E}[X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathcal{Y}_i' \mathbb{E}[X_j' = \mathcal{Y}_j' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_j' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i' X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i' X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i' X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i' X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

$$= \mathbb{E}[X_i' X_j'] = \mathbb{E}[X_i' X_j' = \mathcal{Y}_i' \Gamma \Lambda \Gamma' \mathcal{Y}_j']$$

Pero làs columnas de 17 (los vectores propios de Σ .) son ortogonales y con norma 1

$$\partial^{u_{i}} \Pi = (0,0,...,1,0,...,0)$$

$$\mathcal{H}_{i}^{i}$$
 $\Gamma \Lambda \Gamma' \mathcal{H}_{i}^{i} = \begin{cases} 0 & i \neq j \\ \lambda_{i} & i = j \end{cases}$ de aqui se siquen λ_{i}^{i} λ

- (4) Se sique de que $\lambda_1 = \lambda_2 = \cdots = \lambda_p$ y se tiene (2)
- (5) Es resultado del siguiente teorem à para matrices

Teor: Sea Al una matriz de d'inansiones pxp con valores propios 21, ---, 2p, entonces $trazo(A) = \frac{2}{2} 2i$

(t) l'vérse por ejemplo: Magnus y Neudecker

Matrix différential calculus with Applications

in Statistics and Econometrics Wiley

(1999).

(6) Es resultado del siguiente resultado

Tear: Sea A una matriz de dimensiones

pxp con valores propios 21,...,2p,
entonces

$$|A| = \int_{0}^{\pi} \lambda_{j}$$
véase (†)