Natural Language Processing with PyTorch

IMPLEMENTING RECURRENT NEURAL NETWORKS (RNNS) IN PYTORCH

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Modifying neurons to endow them with state and memory

Understand Recurrent Neural Networks (RNNs)

Mitigate problems of vanishing and exploding gradients in training RNNs

Working with long-memory recurrent cells

Use RNNs in language modeling

Prerequisites and Course Outline

Prerequisites

Comfortable programming in Python
Good understanding of neural networks
Used PyTorch to build and train neural networks

Prerequisite Courses

Foundations of PyTorch

Building Your First PyTorch Solution

Image Classification with PyTorch

Course Outline

Recurrent neural networks (RNNs)

Binary classification using words

Multi-class classification using characters

Sentiment analysis using word embeddings

Sequence-to-sequence models

RNNs and Natural Language Processing

$$y = f(x)$$

Machine Learning

Machine learning algorithms seek to "learn" the function f that links the features and the labels

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

f(x) = doSomethingReallyComplicated(x)

ML algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Sometimes **time** relationships in data have special meaning

$$y_t = f(x_t, y_{t-1})$$

Learning the Past

Relationships where past values of the effect variable drive current values are called auto-regressive

$$y_t = f(x_t, y_{t-1})$$

Learning the Past

The output at one time instance depends on the current input at that time instance

$$y_t = f(x_t, y_{t-1})$$

Learning the Past

And on the output from the previous time instance

Feed-forward networks cannot learn from the past

Recurrent neural networks can

Text Is Sequential Data

Predict the next word in a sequence (autocomplete)

"The tallest building in the world is ..."

Language translations

"how are you" -> "Comment allez-vous"

Text classification, sentiment analysis, natural language processing

"This is not the worst restaurant not by a long way"

RNNs are great at learning sequential data

Simplest Feed-forward Neuron

Simplest Recurrent Neuron

 y_t = Output at time t Depends upon

- y_{t-1} = Output at time t 1
- x_t = New inputs available only at time t

Output of a Layer Fed to Next Layer

Regular neuron: input is feature vector, output is scalar

$$Y = Wx + b$$

Recurrent neuron: output is vector too

Input: $[X_0, X_1, ...X_t]$

Output: $[Y_0, Y_1, ...Y_t]$

Memory and State

Recurrent neurons remember the past

They possess 'memory'

The stored state could be more complex than simply y_{t-1}

The internal state is represented by ht

Now, each neuron has two weight vectors W_x , W_y

Now, each neuron has two weight vectors

$$W_X$$
, W_Y

Now, each neuron has two weight vectors

$$W_x$$
, W_y

Output of neuron as a whole is given as

$$y_t = \Phi(X_t W_x + y_{t-1}W_y + b)$$

(Φ is the activation function)

Training a Recurrent Neural Network

Layer of Recurrent Neurons

A layer of neurons forms an RNN cell - basic cell, LSTM cell, GRU cell (more on these later)

Layer of Recurrent Neurons

The cells unrolled through time form the layers of the neural network

The actual training of a neural network happens via Gradient Descent Optimization

Minimizing Loss

Minimizing Loss

Minimizing Loss

Gradient Descent

Back propagation allows the weights and biases of the neurons to converge to their final values

Back Propagation

This is an iterative process Fails either if:

- gradients don't change at all
- gradients change too fast

3PTT

BPTT is the tweaked version of Back Propagation for RNN training

Need as many layers as past time periods

Vanishing and Exploding Gradients

Layer of Recurrent Neurons

Back Propagation Through Time (BPTT)

Back Propagation

This is an iterative process Fails either if:

- gradients don't change at all
- gradients change too fast

3PTT

BPTT is the tweaked version of Back Propagation for RNN training

Need as many layers as past time periods

$$y_t = f(x_t, y_{t-1}, y_{t-2})$$

Learning the (Recent) Past

Unrolling the RNN through time helps learn the past

$$y_t = f(x_t, y_{t-1}, y_{t-2}, y_{t-1000})$$

Learning the Distant Past

The unrolled RNN will be very, very deep - many layers to train, the gradient has to be propagated a long way

$$y_t = f(x_t, y_{t-1}, y_{t-2}, y_{t-1000})$$

Learning the Distant Past

The unrolled RNN will be very, very deep - many layers to train, the gradient has to be propagated a long way

Recurrent neural networks may be unrolled very far back in time

They're prone to the vanishing and exploding gradients issue

Vanishing Gradient Problem

Exploding Gradient Problem

Vanishing and Exploding Gradients

Back propagation fails if:

- gradients are vanishing
- gradients are exploding

Training RNNs

Training RNNs poses some specific challenges

Coping with Vanishing/Exploding Gradients

Proper initialization

Non-saturating activation function

Batch normalization

Gradient clipping

3PTT

If output relies on distant past Vanishing/exploding gradients very likely

One option - truncated BPTT

Truncated BPTT

Simply truncate input sequence E.g. predict stock movement tomorrow:

- Use only last week's data
- Do not use data for last year at all
- Daily data for last week, monthly before that

Truncated BPTT

Truncated BPTT can kill prediction performance

What if stock move tomorrow depends on stock move on last quarter-ending date?

Use **long-memory** cells to store additional state in neuron

Long-memory Cells

Simplest Recurrent Neuron

Simplest Recurrent Neuron

Long Memory Recurrent Neuron

Long Memory RNNs

Increase the amount of state in neuron Effect is to increase memory of neuron Could explicitly add:

- long-term state (c)
- short-term state (h)

Long memory neurons have several advantages over basic RNNs

Long Memory RNNs

Advantages in Training

Faster training, nicer gradients

Advantages in Prediction

No need to truncate BPTT

Long-term Dependencies in Text

The gap between the relevant information needed to predict the next word is small

Long-term Dependencies in Text

I've lived in France a long time. I first went there as a tourist, then applied for a job and I've been here ever since. I now speak fluent

The context for which language to predict here is much farther back in the sentence

Long-term Dependencies in Text

I've lived in France a long time. I first went there as a tourist, then applied for a job and I've been here ever since. I now speak fluent

As this gap grows, RNNs become unable to learn to connect the information

Long/Short-Term Memory Cell (**LSTM**) - a popularly used long memory cell in RNNs

Basic RNN Cell

LSTM Cells

Functionally like basic RNN cell

Performance far better

Amazing success at long-term patterns

Long text sequences, time series

Variants

Peephole connections: LSTM cells that store state for more than 1 period

Gated Recurrent Unit (GRU): Simplified LSTM with better performance

- Only 1 state vector
- Fewer internal gates and NNs

Summary

Modifying neurons to endow them with state and memory

Understand Recurrent Neural Networks

Mitigate problems of vanishing and exploding gradients in training RNNs

LSTM and GRU neurons in RNNs

Use RNNs in language modeling