PATENT ABSTRACTS OF JAPAN

(11) Publication number:

60-126881

(43) Date of publication of application: 06.07.1985

(51) Int. CI.

H01S 3/18

(21) Application number: 58-233666

(71) Applicant : HITACHI LTD

(22) Date of filing:

13, 12, 1983

(72) Inventor : TSUJI SHINJI

KAJIMURA TAKASHI

KAYANE NAOKI

FUJISAKI YOSHIHISA

KASHIWADA YASUTOSHI

HTRAO MOTONAO

(54) SEMICONDUCTOR LASER DEVICE

(57) Abstract:

PURPOSE: To enable optical communication extending over a long distance by juxtaposing a plurality of laser light-emitting sections controlled in a transverse mode on the same surface, optically coupling each laser light-emitting section in a Bragg reflection region having periodicity and obtaining a longitudinal single mode enabling operation at a high output.

CONSTITUTION: A semiconductor laser device is constituted by a laser light-emitting section 1 consisting of laser light-emitting sections la~le controlled in a transverse mode and a diffraction grating section 2. Several laser light-emitting section la~le is formed in such a manner that a diffraction grating 31 is prepared on an N type crystal 3, a guide layer 4 is formed, the guide layer 4 is removed selectively through etching by an etching liquid, and an active layer 5, an antimeltback layer 6, a clad layer 7 and a P type

surface layer 8 are grown in succession through an epitaxial method. A P type layer 71, an N type layer 72 and a surface layer 73 are shaped as a laser crystal, and a P type electrode 9 and an N type electrode 10 are evaporated and shaped on both surfaces.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

⑲ 日本国特許庁(JP)

①特許出願公開

⊕ 公開特許公報(A) 昭60-126881

@Int_Cl.4

識別記号

庁内整理番号

母公開 昭和60年(1985)7月6日

H 01 S 3/18

7377-5F

審査請求 未請求 発明の数 1 (全3頁)

図発明の名称 半導体レーザ装置

②特 願 昭58-233666

②出 願 昭58(1983)12月13日

砂発 明 者 辻 伸 二 国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内

砂発 明 者 梶 村 俊 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

砂発 明 者 茅 根 直 樹 国分寺市東恋ヶ窪 1 丁目280番地 株式会社日立製作所中 央研究所内

砂発 明 者 藤 崎 芳 久 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

の出 関 人 株式会社日立製作所の代 理 人 弁理士 中村 純之助

所 東京都千代田区神田駿河台4丁目6番地

最終頁に続く

明 細 書

1. 発明の名称

半導体レーザ装置

2. 特許請求の範囲

横モード制御された複数個のレーザ発光部を同一面上に並置し、上記各レーザ発光部を周期性を有するプラッグ反射領域で光学的に結合した半導体レーザ装置。

3. 発明の詳細な説明

〔発明の利用分野〕

本発明は光通信用光源や分光用光源に用いられる高出力半導体レーザ装置に関するものである。

[発明の背景]

半導体レーザ装置の高出力化をはかる従来の手段としては、複数個の半導体レーザ案子を並置し、かつこれらのレーザ案子同志を光学的に結合して達成させることがよく知られている。しかし単一モードの半導体レーザ装置では単なる光学的結合により高出力化することが困難であり実用化され

ていない。

〔発明の目的〕

本発明は、高出力動作が可能な縦単―モードの 半導体レーザ装置を得ることを目的とする。

· [発明の概要]

上記の目的を達成するために本発明による半導体レーザ装置は、横モード制御された複数個のレーザ発光部を同一面上に並置し、上記各レーザ発光部を周期性を有するブラッグ反射領域で光学的に結合したものである。

〔発明の実施例〕.

つぎの本発明の実施例を図面とともに説明する。 第1図は本発明による半導体レーザ装置の一製施例を示す平面図、第2図は上記実施例の A - A 断面図、第3図は上記実施例の B - B 断面図である。 上記実施例に示す半導体レーザ装置はレーザ発光 部1と回折格子部2とにより構成されている。レーザ発光部1はそれぞれ横モード制御されたレー ザ発光部1a~1eからなり、各レーザ発光部に おける断面構造の一例を第2図に示す。本実施例

はn型InP結晶3上に、He-Cdレーザによる干渉 蘇光法を用いてピッチ 2300Å、深さ 800Å の回折 格子31を作成したのち、液相エピタキシャル法を 用いて InGaAsPガイド層 4 (アンドープ、厚さ0.2 ~0.4 µm、組成 19~1.3 µm 相当)を形成した。つぎ に第1の H₂SO4 系エッチング液 (H₂SO4:H₂O: H₂O₂=1:1:8)を用いて InGaAsP ガイド層 4 を 選択的にエッチングして除去したのち、上記除去 部についてはさらに第2のH2SO4系エッチング液 (H2SO4:H2O:H2O2=5:1:1) を用いてエッチン グして回折格子31を消失させた。この結晶に再度 液相エピタキシャル法を用いて、 InGaAsP 活性層 5 (アンドープ、厚さ 0.1~0.2 μm 、組成 lg~1.5 μm 相当)、 InGaAsPアンチメルトバック層 6 (アン ドープ、厚さ 0.1 μm 、組成 λg~1.3 μm 相当)、 p 型 InP クラッド層 7 (2n ドープ、キャリア渡度 1 ×10 ¹⁸ cm ⁻³、厚さ 3~4 μm)、p型 InGaAsP表面層 8 (Zn ドープ、キャリア設度 5×10¹⁸cm⁻⁵厚さ0.2 Lm、 組成 18~1.15 μm 相当)を順次成長させて、レーザ 発光部1にダブルヘテロ構造を形成した。その後

上記実施例におけるレーザ発光部 1 が 20 個のBH 構造部からなる半導体レーザ装置において、出力 が 100 mW までの単一モード動作が可能であった。

上記実施例では n型 InP 結晶 3 上に回折格子31 を形成し、 InGaAsPガイド暦 4 を設けたのち、上 記ガイド層4を選択的にエッチングで除去し、こ の除去部の回折格子31を再度エッチングして除い た結晶に、液相エピタキシャル法により活性層 5、 アンチメルトバック層6、クラッド層7、岩面層 8 を順次樹層して半導体レーザ装置を形成したが 他の方法、例えばn型InP結晶3上にガイド層4、 活性層5、アンチメルトバック層6、クラッド層 7、表面層8を液相エピタキシャル法で順次積層 したのち、選択エッチングにより部分的に上記活 性層5までを除去し、この除去した部分に回折格 子31を形成して InGaAsPガイド層 4 を積層し、そ の上に上記各半導体層を順次積層して埋込むこと によって半導体レーザ装置を形成しても、上記実 施例と同じ構造を有するため同様の作用効果が得 られる。

·上記レーザ発光部1に幅64mのストライプ状の SiO2 膜を間隔 5~50 μm ごとに形成し、このSiO2 膜をマスクにして Brメタノール溶液で蝕刻したの ち液相エピタキシャル法で積層する通常のBHレ ーザ装置形成法と同様の手法で、第3図にB-B 断面図として示すようなフィラメント状発光部を 屈折率が小さい結晶で囲まれたBH構造を得た。 このBH 構造の埋込み部は p型 InP 層71 (2n ドー プ、キャリア濃度 1×10¹⁸cm⁻³、厚さ 0.8 μm)、n型 InP 層 72 (Teドープ、キャリア濃度 1×10¹⁸cm⁻³、 厚さ 2~3 μm)、InGaAsP 表面層 73 (アンドープ、 厚さ 0.2~0.3 μm、組成 λg~1.15 μm相当とした。上 |記のレーザ結晶を作成したのち、p側電極 9 (Au /Cr) および n 側電極 10(Au/Sn) を蒸着により 形成し、へき朋を行って半導体レーザ装置を形成 した。上記の構造により同一面上に並置され横モ ード制御されたレーザ発光部が、その光電界がお よぶ範囲で、周期性を有するブラッグ領域で結合 されているため、縦単一モードのレーザ発振を高 出力化することができる。

また上記実施例は InGaAsP/InP 系について記したが、例えば GaA&As/GaAs 系など結晶の材料は限定しない。

〔発明の効果〕

本発明による半導体レーザ装置は、横モード制御された複数個のレーザ発光部を同一面上に並置し、上記各レーザ発光部を周期性を有するブラッグ反射領域で光学的に結合したことにより、結合された上記レーザ発光部の数に対応して経単ーモードのレーザ発振を高出力化することができるよのといてきる。

4. 図面の簡単な説明

第1 図は本発明による半導体レーザ装置の一実 施例を示す平面図、第2 図は上記実施例の A - A 断面図、第3 図は上記実施例の B - B 断面図であ る。

1 a、1 b、1 c、1 d、1 e … レーザ発光部、31 …回 折格子(ブラッグ反射領域)。

*** 3 图**

第1頁の続き ②発 明 者 柏 田 泰 利 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内 ②発 明 者 平 尾 元 尚 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内 Priority Applications (No Type Date): JP 83241263 A 19831221

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 60133779 A 3

Title Terms: INTEGRATE; CIRCUIT; TYPE; SEMICONDUCTOR*; LASER; OPTICAL;

GUIDE; FORMING; DIFFRACTED; LATTICE; OPTICAL; RESONANCE; AXIS; DIRECTION;

DIFFERENTIAL; NOABSTRACT

Derwent Class: U12; V08

International Patent Class (Additional): H01S-003/18

File Segment: EPI

1/5/4 (Item 4 from file: 351)

DIALOG(R)File 351:Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

004373677

WPI Acc No: 1985-200555/198533*

Semiconductor*laser device for optical communication - has emission

portions controlled inlateral*mode on same plane and optically

connected using diffraction* grating NoAbstract Dwg 3/3

Patent Assignee: HITACHI LTD (HITA)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 60126881 A 19850706 JP 83233666 A 19831213 198533 B

Priority Applications (No Type Date): JP 83233666 A 19831213

Title Terms: SEMICONDUCTOR*; LASER; DEVICE; OPTICAL; COMMUNICATE; EMIT;

PORTION; CONTROL; LATERAL; MODE; PLANE; OPTICAL; CONNECT; DIFFRACTED;

GRATING; NOABSTRACT

Derwent Class: U12; V08

International Patent Class (Additional): H01S-003/18

File Segment: EPI

1/5/5 (Item 1 from file: 347)

DIALOG(R)File 347:JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

06736914 **Image available**

OPTICAL SIGNAL DETECTOR AND OPTICAL PICKUP DEVICE

PUB. NO.: 2000-322761 [JP 2000322761 A]

PUBLISHED: November 24, 2000 20001124)*

INVENTOR(s): NISHINO SEIJI

SHIONO TERUHIRO

HOSOMI TETSUO

APPLICANT(s): MATSUSHITA ELECTRIC IND CO LTD

APPL. NO.: 11-128581 [JP 99128581]

FILED: May 10, 1999 (19990510)

⑲ 日本国特許庁(JP)

①特許出願公開

母 公 開 特 許 公 報 (A) 昭60 - 126881

@Int_Cl.4

明

者

砂発

識別記号

庁内整理番号

母公開 昭和60年(1985)7月6日

H 01 S 3/18

7377-5F

審査請求 未請求 発明の数 1 (全 3 頁)

劉発明の名称 半導体レーザ装置

②特 願 昭58-233666

❷出 顧 昭58(1983)12月13日

砂発 明 者 辻 伸 二 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

750元が7 70発 明 者 梶 村 俊 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中・

央研究所内

砂発 明 者 茅 根 直 樹 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

> 夢 勞 久 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

の出願人 株式会社日立製作所の代理人 弁理士 中村 純之助 最終頁に続く 東京都千代田区神田駿河台4丁目6番地

明・細書

1. 発明の名称

・半導体レーザ装置

2. 特許請求の範囲

横モード制御された複数個のレーザ発光部を同一面上に並置し、上記各レーザ発光部を周期性を有するブラッグ反射領域で光学的に結合した半導体レーザ装置。

3. 発明の詳細な説明

(発明の利用分野)

本発明は光通信用光源や分光用光源に用いられる高出力半導体レーザ装置に関するものである。

〔 発明の背景〕

半導体レーザ装置の高出力化をはかる従来の手段としては、複数個の半導体レーザ案子を並置し、かつこれらのレーザ案子同志を光学的に結合して達成させることがよく知られている。しかし単一モードの半導体レーザ装置では単なる光学的結合により高出力化することが困難であり実用化され

ていない。

〔 発明の目的 〕

本発明は、高出力動作が可能な縦単一モードの半導体レーザ装置を得ることを目的とする。

・〔発明の概要〕

上記の目的を達成するために本発明による半導体レーザ装置は、機モード制御された複数個のレーザ発光部を同一面上に並置し、上記各レーザ発光部を周期性を有するブラッグ反射領域で光学的に結合したものである。

〔発明の実施例〕.

つぎの本発明の実施例を図面とともに説明する。 第1図は本発明による半導体レーザ装置の一実施 例を示す平面図、第2図は上記実施例の A - A 断 面図、第3図は上記実施例の B - B 断面図である。 上記実施例に示す半導体レーザ装置はレーザ発光 、部1と回折格子部2とにより構成されている。レ ーザ発光部1はそれぞれ横モード制御されたレー ザ発光部1。~1。からなり、各レーザ発光部に おける断面構造の一例を第2図に示す。本実施例

はn型InP結晶3上に、He-Cdレーザによる干渉 露光法を用いてピッチ 2300Å、深さ 800Å の回折 格子31を作成したのち、液相エピタキシャル法を 用いて InGaAsPガイド層4(アンドープ、厚さ0.2 ~0.4 μm、組成 λ8~1.3 μm 相当)を形成した。つぎ に第1の H2SO4 系エッチング液 (H2SO4: H2O: H₂O₂=1:1:8)を用いて InGaAsP ガイド層 4 を 選択的にエッチングして除去したのち、上記除去 部についてはさらに第2のH2SO4系エッチング液 (H2SO'4:H2O:H2O2=5:1:1) を用いてエッチン グレて回析格子31を消失させた。この結晶に再度 液相エピタキシャル法を用いて、 InGaAsP 活性層 5. (フンドープ、厚さ 0.1~0.2 μm 、組成 λg~1.5 μm 相当)、InGaAsPアンチメルトバック層6(アン ドープ、厚さ 0.1 μm 、組成 λg~1.3 μm 相当)、 p 型 InP クラッド層 7 (Zn ドープ、キャリア渡度 1 ×10 ¹⁸ cm ⁻⁵、厚さ 3~4 μm)、 p型 InGaAsP表面層 8 (Zn ドープ、キャリア濃度 5×10¹⁸ cm⁻³厚さ0.2 μm、 組成 18~1.15 μm 相当)を順次成長させて、レーザ 発光部1にダブルヘテロ構造を形成した。その後

上記実施例におけるレーザ発光部 1 が 20 個のBH 構造部からなる半導体レーザ装置において、出力が100 mW までの単一モード動作が可能であった。

上記実施例では n型 InP 結晶 3 上に回折格子31 . を形成し、 InGaAsPガイド層 4 を設けたのち、上 記ガイド層4を選択的にエッチングで除去し、こ の除去部の回折格子31を再度エッチングして除い た結晶に、液相エピタキシャル法により活性層 5、 アンチメルトバック層6、クラッド層7、表面層 8を順次根層して半導体レーザ装置を形成したが、 他の方法、例えば n 型 InP 結晶 3 上にガイド層 4、 括性層5、アンチメルトバック層6、クラッド層 7、 表面層 8 を液相エピタキシャル法で順次積層 したのち、選択エッチングにより部分的に上記活 性層 5 までを除去し、この除去した部分に回折格 子31を形成して InGaAsPガイド層 4 を積層し、そ の上に上記各半導体層を順次積層して埋込むこと によって半導体レーザ装置を形成しても、上記実 施例と同じ構造を有するため同様の作用効果が得 Sha.

・上記レーザ発光部1に幅 6μm のストライプ状 の SiOz 膜を間隔 5~50 μm ごとに形成し、この 5iOz 膜をマスクにしてBrメタノール溶液で蝕刻したの ち液相エピタキシャル法で積層する通常のBHレ ーザ装置形成法と同様の手法で、第3図にB-B 断面図として示すようなフィラメント状発光部を 屈折率が小さい結晶で囲まれたBH構造を得た。 このBH 構造の埋込み部は p型 InP 層71 (Zn ドー プ、キャリア濃度 1×10¹⁸cm⁻³、厚さ 0.8 μm)、n 型 InP層 72 (Teドープ、キャリア濃度 1×10¹⁸cm-3、 厚さ 2~3 μm)、InGaAsP表面層 73 (アンドープ、 厚さ 0.2~0.3 μm、組成 λg~1.15 μm相当とした。上 記のレーザ結晶を作成したのち、p側電極 9(Au /Cr)および n 側電極 10(Au/Sn) を蒸着により 形成し、へき崩を行って半導体レーザ装置を形成 した。上記の構造により同一面上に並置され機モ ード制御されたレーザ発光部が、その光電界がお よぶ範囲で、周期性を有するブラッグ領域で結合 されているため、縦単一モードのレーザ発振を高 出力化することができる。

また上記実施例は InGaAsP/InP 系について記したが、例えば GaALAs/GaAs 系など結晶の材料は限定しない。

[発明の効果]

本発明による半導体レーザ装置は、横モード制御された複数個のレーザ発光部を同一面上に立っった。 上記各レーザ発光部を周期性を有するブラッグ反射領域で光学的に結合したことにより、結合された上記レーザ発光部の数に対応して縦単ったった。 でルた上記レーザ発光部の数に対応でしてができる。 地流に用いた場合にはIOM 証以上の最近に対応に対応に対応に対応に対したができる。

4. 図面の簡単な説明

第1図は本発明による半導体レーザ装置の一実施例を示す平面図、第2図は上記実施例のA-A 断面図、第3図は上記実施例のB-B断面図である。

1 a、1 b、1 c、1 d、1 e … レーザ発光部、31 …回 折格子(ブラッグ反射領域)。

水 3 図

第1頁の続き

②発 明 者 柏 田 泰 利 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内

②発 明 者 平 尾 元 尚 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内