ESC 201AT: Introduction to Electronics

Lecture 4: Dependent Sources

B. Mazhari professor, Dept. of EE IIT Kanpur

Strain Gauge

NIE Strain Gauge, $120\pm0.3\Omega,10.0$ mm,G.F.-2.11 $\pm1\%$

$$\frac{\Delta R_{SG}}{R_{SG}} = \frac{1}{50} \cdot E \ (\%)$$

$$V_0 = \frac{R_{SG}}{R_1 + R_{SG}} \times V_{SS}$$

$$\frac{\Delta R_{SG}}{R_{SG}} = 0.02 \cdot E \text{ (\%)} \qquad V_0 = \frac{R_{SG}}{R_1 + R_{SG}} \times V_{SS} \qquad V_0 = \frac{R_{SGO} + \Delta R_{SG}}{R_1 + R_{SGO} + \Delta R_{SG}} \times V_{SS}$$

$$V_0 = \frac{R_{SGO}}{R_1 + R_{SGO}} \times \frac{1 + \Delta R_{SG}/R_{SGO}}{1 + \Delta R_{SG}/(R_1 + R_{SGO})} \times V_{SS} \qquad V_0 = 0.5 \times V_{SS} \times \frac{1 + 0.02 \times E}{1 + 0.01 \times E}$$

$$V_0 \cong 0.5 \times V_{SS} \times (1 + 0.02 \times E) \times (1 - 0.01 \times E)$$

$$V_0 \cong 0.5 \times V_{SS} \times (1 + 0.02 \times E - 0.01 \times E - 0.0002 \times E^2)$$

$$V_0 \cong 0.5 \times V_{SS} \times (1 + 0.01 \times E)$$

$$V_0 \cong 0.5 \times V_{SS} + 0.05 \times V_{SS} \times E$$

$$V_0 \cong 0.5 \times V_{SS} + 0.05 \times V_{SS} \times E$$

Need a model for the amplifier

Circuit Analysis

Apply KVL and KCL

Use mathematical model of circuit elements

Solve the resulting system of Equations

Output Resistance

Input Resistance

Dependent Voltage Source

Voltage Controlled Voltage Source (VCVS)

$$v_{IN} = v_S$$
; $v_O = 100v_{IN} \times \frac{1k}{1k+1k} \Rightarrow \frac{v_O}{v_S} \approx 50$

Ideal Transistor Characteristics

Voltage Controlled Current Source (VCCS)

Ideal MOS Transistor Characteristics

VCCS

cccs

CCVS

Determine the current through the 2 k resistor in the circuit shown below

$$V_{SS} \stackrel{+}{=} \begin{array}{c} + V_{X} - V_{1} \\ \hline 10 \Omega \\ \hline - 10 V \end{array} \longrightarrow \begin{array}{c} 0.1 \times V_{X} \end{array} \stackrel{\Rightarrow}{\downarrow} \begin{array}{c} 0.4A \\ \hline 20 \Omega \end{array}$$

$$\frac{V_{SS} - V_1}{10} + 0.1V_X - \frac{V_1}{20} = 0 V_X = V_{SS} - V_1 \Rightarrow V_1 = 8 V$$

Note that current goes to zero if independent supply voltage is reduced to zero. If there is no independent voltage or current source in the circuit, then all voltages and currents will be zero

Equivalent Circuit of a BJT Amplifier

Determine voltage gain Vo/Vs

$$v_{\pi} = v_{S}$$

$$v_{O} = -0.1v_{\pi} \times 100k||1K$$

$$\frac{v_{O}}{v_{S}} \approx -100$$