Classical Mechanics: A Deep Dive into Newtonian Physics

1 Newton's Laws of Motion

Newton's three laws form the foundation of classical mechanics, explaining how objects move and interact.

First Law (Law of Inertia)

"An object at rest remains at rest, and an object in motion continues in uniform motion unless acted upon by an external force."

- This means that objects resist changes in their state of motion.
- The property of resisting change in motion is called **inertia**.
- Example: If you're in a moving car and the driver suddenly hits the brakes, your body keeps moving forward because of inertia!

Second Law (F = ma)

"The acceleration of an object depends on the net force acting on it and its mass."

- The equation: **F = ma**
 - F = Force (Newton, N)
 - m = Mass (kg)
 - a = Acceleration (m/s²)

Third Law (Action-Reaction)

"For every action, there is an equal and opposite reaction."

- Rocket propulsion works on this principle: gases are expelled downward, and the rocket moves upward.

2 Work, Energy, and Power

Work (W)

- Work is done when a force causes displacement.
- Formula: $W = F \times d \times cos(\theta)$
 - F = Force applied (N)
 - o **d** = Displacement (m)
 - **0** = Angle between force and displacement
- **Example: Lifting a box up requires work, but carrying it horizontally without changing its height does **not** do work against gravity!

Energy (E)

Energy is the ability to do work. It exists in many forms:

- 1. **Kinetic Energy (KE)** Energy of motion.
 - Formula: KE = (1/2)mv²
- 2. Potential Energy (PE) Stored energy due to position.
 - o Formula: PE = mgh
 - Example: A ball held at a height has gravitational potential energy.

Power (P)

Power is the rate at which work is done.

- Formula: **P = W/t**
- Unit: Watt (W)
- Example: A 100W light bulb consumes energy at a rate of 100 joules per second.

3 Momentum and Collisions

Linear Momentum (p)

Momentum measures an object's motion.

- Formula: **p = mv**
- Conservation of Momentum: The total momentum of a system remains constant unless an external force acts on it.
- Example: In billiards, when a cue ball hits another ball, the total momentum before and after the collision is the same.

Types of Collisions

- 1. **Elastic Collision** Kinetic energy is conserved.
 - Example: Two billiard balls colliding.
- 2. **Inelastic Collision** Some kinetic energy is lost as heat/sound.
 - Example: A car crash.
- 3. **Perfectly Inelastic Collision** Objects stick together after the collision.

4 Circular Motion and Gravitation

Centripetal Force (Fc)

Objects moving in a circle require a force directed toward the center of the circle.

- Formula: $Fc = (mv^2)/r$
- Example: The Moon orbits the Earth due to gravitational centripetal force.

Newton's Law of Universal Gravitation

"Every mass attracts every other mass with a force proportional to the product of their masses and inversely proportional to the square of their distance."

- Formula: $\mathbf{F} = \mathbf{G}(\mathbf{m}_1 \mathbf{m}_2)/\mathbf{r}^2$
 - **G** = Gravitational constant $(6.674 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
- Example: The Earth's gravity pulls objects downward with an acceleration of 9.8 m/s².

Special Relativity (Einstein's Magic)

For speeds close to the speed of light ($c = 3 \times 10^8 \text{ m/s}$), Newtonian mechanics breaks down, and Einstein's **Theory of Relativity** takes over.

Time Dilation (Slower Time at High Speeds)

- Time moves slower for objects moving near the speed of light.
- Formula: $t' = t / \sqrt{(1 v^2/c^2)}$
- Example: If an astronaut travels close to the speed of light and returns, they will have aged less than people on Earth!

Mass-Energy Equivalence

Einstein's famous equation: **E = mc**²

- Energy (E) and mass (m) are interchangeable.
- Example: Nuclear reactions release huge amounts of energy from tiny masses!

Fun Fact: The Fastest Thing in the Universe?

The **speed of light (c = 299,792,458 m/s)** is the fastest possible speed. Nothing with mass can travel at light speed because it would require infinite energy. 🚀