Optimalizace a teorie her Úvod do strategických her

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

Úvod do teorie her

- Více subjektů v rozhodovacím procesu.
- Rozhodnutí každého z nich může ovlivnit výsledek ostatních.

Aplikace:

- Bezdrátové sítě
- Umělá inteligence
- Kryptografie
- Ekonomie
- Biologie

:

Základní dělení her:

- strategické × extenzivní
- ullet kooperativní imes nekooperativní

Úvod do teorie her

Definice

Strategická hra s $n \in \mathbb{N}$ hráči je trojice

$$G = (N, (S_i)_{i=1}^n, (u_i)_{i=1}^n),$$

kde

- $N = \{1, ..., n\}$ je konečná množina hráčů,
- S_i je neprázdná množina strategií i-tého hráče,
- $u_i: S_1 \times \cdots \times S_n \to \mathbb{R}$ je funkce užitku (výplatní funkce) i-tého hráče.

Terminologie a značení:

- Prvek z S_i ... strategie i-tého hráče.
- Prvek z $S := S_1 \times \cdots \times S_n \dots$ strategický profil.
- S . . . množina strategických profilů.

Příklady strategických her

Příklad (Vězňovo dilema)

Hra je daná tabulkou:

$$\begin{array}{c|cc} P & Z \\ P & -5; -5 & 0; -10 \\ Z & -10; 0 & -1; -1 \end{array}$$

Příklad (Panna nebo orel)

Hra je daná tabulkou:

	P	O
P	10; -10	-10;10
O	-10;10	10; -10

Příklady strategických her

Příklad (Manželský spor)

Hra je daná tabulkou:

$$\begin{array}{c|c} D & H \\ D & 2;3 & -1;-1 \\ H & 0;0 & 3;2 \end{array}$$

Příklad (Kámen-nůžky-papír)

Hra je daná tabulkou:

$$\begin{array}{c|cccc} K & N & P \\ K & 0;0 & 1;-1 & -1;1 \\ N & -1;1 & 0;0 & 1;-1 \\ P & 1;-1 & -1;1 & 0;0 \end{array}$$

Příklady strategických her

Příklad (Cournotův model oligopolu)

- \bullet $N = \{1, \ldots, n\}$ a $S_i = [0, \infty)$ pro každé $i \in N$.
- $ullet q_i \in S_i \dots$ množství vyrobeného zboží i-tou firmou.
- ullet $P(\sum_{i\in N}q_i)$... cena jednotkového množství výrobku na trhu.
- $C_i(q_i)$... náklady i-té firmy na výrobu množství q_i .
- $u_i(q_1,\ldots,q_n)=P(\sum_{i\in N}q_i)q_i-C_i(q_i)$... funkce užitku i-té firmy.

- Jaký je "racionální" strategický profil hry?
- Budeme hledat takový strategický profil, kde žádný hráč nezíská výhodu pouze změnou své strategie.

Definice

Nechť $G=(N,(S_i)_{i=1}^n,(u_i)_{i=1}^n)$ je strategická hra. Strategický profil $\hat{\sigma}=(\hat{\sigma}_1,\ldots,\hat{\sigma}_n)\in S$ se nazve Nashovo equilibrium hry G, jestliže pro každé $i\in N$ a každé $\sigma_i\in S_i$ je

$$u_i(\hat{\sigma}_1,\ldots,\hat{\sigma}_n) \geq u_i(\hat{\sigma}_1,\ldots,\hat{\sigma}_{i-1},\sigma_i,\hat{\sigma}_{i+1},\ldots,\hat{\sigma}_n)$$

V případě her dvou hráčů definice Nashova equilibria říká, že

- $\mathbf{0} \ u_1(\hat{\sigma}_1,\hat{\sigma}_2) \geq u_1(\sigma_1,\hat{\sigma}_2)$ pro každé $\sigma_1 \in S_1$;
- $u_2(\hat{\sigma}_1, \hat{\sigma}_2) \geq u_2(\hat{\sigma}_1, \sigma_2)$ pro každé $\sigma_2 \in S_2$.

Příklad (Vězňovo dilema)

$$\begin{array}{c|cc} P & Z \\ P & -5; -5 & 0; -10 \\ Z & -10; 0 & -1; -1 \end{array}$$

Jediným Nashovým equilibriem je strategický profil (P, P).

Příklad (Panna nebo orel)

$$\begin{array}{c|cccc} P & O \\ \hline P & 10; -10 & -10; 10 \\ O & -10; 10 & 10; -10 \\ \end{array}$$

V této hře neexistuje Nashovo equilibrium.

Příklad (Manželský spor)

$$\begin{array}{c|cc}
D & H \\
D & 2; 3 & -1; -1 \\
H & 0; 0 & 3; 2
\end{array}$$

Strategické profily (D,D) a (H,H) jsou jediná Nashova equilibria v této hře.

- Nashovo equilibrium nevede k "maximalizaci zisku", ale k rovnováze.
- Jak jsme viděli na příkladech, Nashovo equilibrium nemusí být určeno jednoznačně, dokonce ani nemusí existovat.

Tvrzení

Nechť $G=(N,(S_i)_{i=1}^n,(u_i)_{i=1}^n)$ je strategická hra a $\hat{\sigma}\in S$. Pak následující tvrzení jsou ekvivalentní:

- $\hat{\sigma}$ je Nashovo equilibrium.
- 2 Pro každé $i \in N$ je

$$\hat{\sigma}_i \in \operatorname*{argmax}_{\sigma_i \in S_i} u_i(\hat{\sigma}_1, \dots, \hat{\sigma}_{i-1}, \sigma_i, \hat{\sigma}_{i+1}, \dots, \hat{\sigma}_n).$$

Důkaz: Plyne přímo z definice Nashova equilibria.

Příklad (Cournotův model oligopolu)

Αť

- $N=\{1,2\}$ (tj. uvažujeme model duopolu) a $S_1=S_2=[0,\infty).$
- $C_1(q_1) = cq_1 \text{ a } C_2(q_2) = cq_2, \text{ kde } c > 0.$
- $P(q_1 + q_2) = a b(q_1 + q_2)$, kde a > c a b > 0.
- $u_1(q_1, q_2) = [a b(q_1 + q_2)]q_1 cq_1$ a $u_2(q_1, q_2) = [a b(q_1 + q_2)]q_2 cq_2$.

Jediné Nashovo equilibrium je $(\hat{q}_1, \hat{q}_2) = \left(\frac{a-c}{3b}, \frac{a-c}{3b}\right)$ a

$$u_1(\hat{q}_1, \hat{q}_2) = u_2(\hat{q}_1, \hat{q}_2) = \frac{(a-c)^2}{9b}.$$

Srovnejme tento výsledek s modelem monopolu. Funkce užitku $u(q)=q(a-c-bq),\ q\in[0,\infty),$ má jediný bod maxima $\hat{q}=\frac{a-c}{2b}$ a $u(\hat{q})=\frac{(a-c)^2}{4b}.$

Definice

Hra dvou hráčů s nulovým součtem je strategická hra

$$G = (\{1, 2\}, (S_1, S_2), (u_1, u_2))$$

taková, že pro každé $(\sigma_1,\sigma_2)\in S_1 imes S_2$ je

$$u_1(\sigma_1, \sigma_2) + u_2(\sigma_1, \sigma_2) = 0.$$

- Hráči mají zcela opačné zájmy.
- Stačí zadat jen jednu funkci užitku, neboť $u_1 = -u_2$.
- Je zbytečné uvádět množinu $\{1,2\}$ všech hráčů.
- Zjednodušené značení hry dvou hráčů:

$$G = (S_1, S_2, u),$$

kde $u = u_1$.

Definice

Ať $G = (S_1, S_2, u)$ je hra dvou hráčů s nulovým součtem.

lacksquare Dolní cena hry G je číslo

$$\underline{v} := \sup_{\sigma \in S_1} \inf_{\tau \in S_2} u(\sigma, \tau).$$

 ${f 2}$ Horní cena hry ${\cal G}$ je číslo

$$\overline{v} := \inf_{\tau \in S_2} \sup_{\sigma \in S_1} u(\sigma, \tau).$$

- 3 Řekneme, že $v \in \mathbb{R}$ je cena hry G, jestliže $v = \underline{v} = \overline{v}$.
- ullet První hráč nemůže "získat" méně než \underline{v} .
- Druhý hráč nemůže "prohrát" více než \overline{v} .
- Platí $v < \overline{v}$.

Definice

Ať $G=(S_1,S_2,u)$ je hra dvou hráčů s nulovým součtem a v je její cena. Řekneme, že

- $\hat{\sigma} \in S_1$ je optimální strategie prvního hráče, jestliže $v = \inf_{\tau \in S_2} u(\hat{\sigma}, \tau)$;
- ② $\hat{\tau} \in S_2$ je optimální strategie druhého hráče, jestliže $v = \sup_{\sigma \in S_1} u(\sigma, \hat{\tau}).$

Příklad

 $\mathsf{Hra}\ G$ je dána tabulkou:

$$\begin{array}{c|cc}
C & D \\
C & 1; -1 & 2; -2 \\
D & 3; -3 & 4; -4
\end{array}$$

Příklad (Pokračování)

G je hra dvou hráčů s nulovým součtem, a proto stačí zadat tabulku: $\,$

$$\begin{array}{c|cc}
C & D \\
A & 1 & 2 \\
B & 3 & 4
\end{array}$$

Tedy
$$G=(S_1,S_2,u)$$
, kde $S_1=\{A,B\}$, $S_2=\{C,D\}$, $u(A,C)=1$, $u(A,D)=2$, $u(B,C)=3$ a $u(B,D)=4$.

Platí:

- $v = \underline{v} = \overline{v} = 3$;
- optimální strategie 1. hráče je B;
- ullet optimální strategie 2. hráče je C.

Příklad (Panna nebo orel)

G je hra dvou hráčů s nulovým součtem, a proto stačí zadat tabulku:

	P	O
P	10	-10
O	-10	10

Platí:

- $\underline{v} = -10$;
- $\overline{v} = 10$;
- v neexistuje;
- optimální strategie prvního a druhého hráče neexistují.

Příklad

Uvažme hru $G=(S_1,S_2,u)$ dvou hráčů s nulovým součtem, kde $S_1=S_2=(0,1)$ a $u(\sigma,\tau)=\sigma\tau.$

Platí:

- $v = \underline{v} = \overline{v} = 0$;
- ullet optimální strategie prvního hráče je každá strategie z $S_1.$
- optimální strategie druhého hráče neexistuje.

Tvrzení

Ať $G=(S_1,S_2,u)$ je hra dvou hráčů s nulovým součtem taková, že S_1 a S_2 jsou konečné. Jestliže existuje cena hry G, pak existuje optimální strategie prvního a také druhého hráče.

Důkaz: Viz přednáška.

Jaký je vztah Nashova equilibria a strategického profilu složeného z optimálních strategií?

Definice

Nechť $f:M\times N\to\mathbb{R}$. Řekneme, že $(\hat{x},\hat{y})\in M\times N$ je sedlový bod funkce f, jestliže pro každé $x\in M$ a každé $y\in N$ je

$$f(x,\hat{y}) \le f(\hat{x},\hat{y}) \le f(\hat{x},y)$$

Sedlový bod z předchozí definice se přesněji nazývá sedlový bod typu maxmin.

Tvrzení

Ať $G=(S_1,S_2,u)$ je hra dvou hráčů s nulovým součtem a $(\hat{\sigma},\hat{\tau})\in S_1\times S_2$. Potom $(\hat{\sigma},\hat{\tau})$ je Nashovo equilibrium hry G právě tehdy, když $(\hat{\sigma},\hat{\tau})$ je sedlový bod funkce u.

Důkaz: Viz přednáška.

Věta (O Nashově equilibriu a optimálních strategií)

Nechť $G = (S_1, S_2, u)$ je hra dvou hráčů s nulovým součtem

- Je-li $(\hat{\sigma}, \hat{\tau}) \in S_1 \times S_2$ Nashovo equilibrium hry G, pak $v = u(\hat{\sigma}, \hat{\tau})$ je cena hry G, $\hat{\sigma}$ je optimální strategie prvního hráče a $\hat{\tau}$ je optimální strategie druhého hráče.
- ② Jestliže v je cena hry G, $\hat{\sigma}$ je optimální strategie prvního hráče a $\hat{\tau}$ je optimální strategie druhého hráče, pak $v=u(\hat{\sigma},\hat{\tau})$ a $(\hat{\sigma},\hat{\tau})$ je Nashovo equilibrium.

Důkaz: Viz přednáška.

Z předchozí věty plyne, že jsou-li $(\hat{\sigma}_1,\hat{\tau}_1)$ a $(\hat{\sigma}_2,\hat{\tau}_2)$ Nashova equilibria, pak také $(\hat{\sigma}_1,\hat{\tau}_2)$ a $(\hat{\sigma}_2,\hat{\tau}_1)$ jsou Nashova equilibria a $u(\hat{\sigma}_1,\hat{\tau}_1)=u(\hat{\sigma}_1,\hat{\tau}_2)=u(\hat{\sigma}_2,\hat{\tau}_1)=u(\hat{\sigma}_2,\hat{\tau}_2)$. Toto neplatí pro obecné hry dvou hráčů (viz např. Manželský spor).

- Chceme vybírat strategie s určitou pravděpodobností.
- Omezíme se na tzv. konečné hry.

Definice

Nechť $G = (N, (S_i)_{i=1}^n, (u_i)_{i=1}^n)$ je strategická hra. Řekneme, že G je konečná, jestliže pro každé $i \in N$ je S_i konečná množina.

Mezi konečné hry patří Vězňovo dilema, Manželský spor,...

Definice

Nechť $G=(N,(S_i)_{i=1}^n,(u_i)_{i=1}^n)$ je konečná strategická hra $N=\{1,\dots,n\}$ a pro každé $i\in N$ je $S_i=\{\sigma_1^i,\dots,\sigma_{m_i}^i\}$. Smíšené rozšíření G je strategická hra $\overline{G}=(N,(\Delta S_i)_{i=1}^n,(U_i)_{i=1}^n)$, kde pro každé $i\in N$ je

- $\Delta S_i = \left\{x \in \mathbb{R}_+^{m_i} \ \middle| \ \sum_{j=1}^{m_i} x_j = 1 \right\}$ množina všech smíšených strategií (loterií) nad S_i ,
- $U_i:\Delta S_1\times\cdots\times\Delta S_n\to\mathbb{R}$ je daná předpisem $U_i(p^1,\ldots,p^n)=\sum_{j_1=1}^{m_1}\cdots\sum_{j_n=1}^{m_n}u_i(\sigma^1_{j_1},\ldots,\sigma^n_{j_n})p^1_{j_1}\ldots p^n_{j_n}.$
- Prvek σ_k^i ztotožňujeme s prvkem v $\mathbb{R}_+^{m_i}$, který má na k-té pozici jedničku a všude jinde nuly.
- Prvky z ΔS_i , které mají na jedné pozici jedničku a na ostatních nulu nazýváme čisté strategie.

Příklad (Panna nebo orel)

Připomeňme, že tato hra G (dvou hráčů s nulovým součtem) je dána tabulkou:

$$\begin{array}{c|cccc}
 P & O \\
 P & 10 & -10 \\
 O & -10 & 10
\end{array}$$

- Množiny strategií jsou $S_1=S_2=\{P,O\}$ a funkce užitku jsou u_1,u_2 (kde $u_2=-u_1$).
- Označme $\sigma_1 = P, \sigma_2 = O$ strategie prvního hráče a $\tau_1 = P, \tau_2 = O$ strategie druhého hráče.
- ullet Pro $p\in \Delta S_1$ a $q\in \Delta S_2$ je

$$U_1(p,q) = 10p_1q_1 - 10p_1q_2 - 10p_2q_1 + 10p_2q_2.$$

• Protože $u_2 = -u_1$, je $U_2 = -U_1$.

Příklad (Panna nebo orel – pokračování)

- ullet Smíšené rozšíření hry G je hra $\overline{G}=(\Delta S_1,\Delta S_2,U_1).$
- ullet Položíme-li $p_1 = x$ a $q_1 = y$, pak $x, y \in [0, 1]$, $p_2 = 1 x$ a $q_2 = 1 y$.
- ullet Místo funkce U_1 tak můžeme uvažovat jen funkci

$$\widetilde{U}(x,y) = 10(4xy - 2x - 2y + 1).$$

- \bullet Místo \overline{G} můžeme ekvivalentně vyšetřovat hru $\Gamma = ([0,1],[0,1],\widetilde{U}).$
- ullet Existuje Nashovo equilibrium hry Γ (a odtud hry \overline{G})?
- Cena hry Γ je v=0, optimální strategie prvního hráče je $x=\frac{1}{2}$ a optimální strategie druhého hráče je $y=\frac{1}{2}$.
- Nashovo equilibrium hry Γ je proto $\left(\frac{1}{2},\frac{1}{2}\right)$.
- $\bullet \ \left(\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \text{ je Nashovo equilibrium hry } \overline{G}.$

Věta (Nashova věta)

Smíšené rozšíření konečné strategické hry má nejméně jedno Nashovo equilibrium.

Důkaz: Vynecháváme.

