TSA parţial, 22 aprilie 2019, ora 12

Radu Ştefan

Subjecte

AIS (ACSE), Univ Politehnică din București

I. (1p) Fie

Numărul 1	Numărul 2
$P(s) = \frac{1}{s^2 + s} \operatorname{sir}(\mathbf{t}) = \sin \omega t, \ 1 \le \omega \le 2;$	$P(s) = \frac{1}{s^2 + s + 1}$ şi $\mathbf{n}(\mathbf{t}) = \sin \omega t$, $100 \le \omega$.

Determinați un compensator C(s) = K > 0 care să asigure

	Numărul 2
o amplitudine maximă a erorii mai mică de 0.05;	o putere medie a ieşirii mai mică decât $\sqrt{2}/20$.

II. (1p) Fie un SRA cu $P(s) = \frac{s-2}{(s-1)(s+2)}$ şi C(s) un compensator stabilizator oarecare.

a) (0.5p) Ce puteți spune despre

Numărul 1	Numărul 2
suprareglajul răspunsului la intrare	
treaptă a sistemului în buclă închisă?	lui <i>P</i> (<i>s</i>)?

Evaluare cantitativă.

b) (0.5p) Fie

Numărul 1 Numărul 2
$$G(s) = \frac{s+1}{(0.1s+1)(10s+1)}; G(s) = \frac{10}{s^2+s+1}.$$

Explicaţi cu ajutorul teoremei lui Bode care este legătura între panta caracteristicii de înaltă frecvenţă şi defazajul total.

III. (0.5p) Determinaţi o funcţie de transfer în buclă deschisă L(s) care asigură stabilitatea în buclă închisă şi care verfică

Numărul 1	Numărul 2
$\ W_T T\ _{\infty} < 1, \ W_T(s) = \frac{s+1}{0.1s+10};$	$\ W_SS\ _{\infty} < 1, \ W_S(s) = \frac{0.1s + 10}{s + 1}.$