Mathematics Developers Survey

Nejc Ilenic

Where in the world and in which domain should a data scientist start his / her career?

Annual Developer Survey

Annual Developer Survey

from January 7 to January 25, 2016

filter occupation group of mathematics developers

Annual Developer Survey

dataset may not be a representative sample from the population

Number of respondents per country

country

Job satisfaction comparison

'How satisfied are you with your current job(s)?'

Job satisfaction comparison

'I hate my job' 'I'm somewhat dissatisfied with my job' 'I'm neither satisfied nor dissatisfied' 'I'm somewhat satisfied with my job' 'I love my job'

Multinomial-Dirichlet model

$$n \text{ trials, } k \text{ categories}$$

$$y_i \in \{0, ..., n\}, \sum y_i = n$$

$$\theta \in k\text{-simplex}$$

$$y|\theta \sim \text{multinomial}(\theta)$$
 $\theta \sim \text{Dirichlet}(\alpha)$
 $\theta|y \sim \text{Dirichlet}(\alpha + y)$

MCMC diagnostics (France)

5000 iterations 400 warmup

se_mcmc:

theta[1]: 0.00024 theta[2]: 0.00051 theta[3]: 0.00057 theta[4]: 0.00080 theta[5]: 0.00074

n_eff: 4600

Posterior predictive check: log odds of 'I love my job'

90% CIs for posterior probabilities of 'I love my job'

How job satisfaction depends on other factors?

outcome as an ordinal variable

model: ordinal logistic regression

Explanatory variables

age: continuous

gender: dummy

purchasing power: continuous

Purchasing power

compensation [\$] / Big Mac index

i.e. how many Big Macs per year

Explanatory variables

works remotely: dummy

values unit testing: dummy

commits code once a day: dummy

Explanatory variables

works in a big company (>99 employees): dummy

has PhD: dummy

Posterior predictive check

Explanatory variables: pearson correlation coefficients

90% Cls for posterior regression coefficients

Purchasing power comparison: observed densities

Purchasing power comparison

hierarchical normal model

within group variability assumed constant across groups

Posterior predictive check: means

90% CIs for purchasing power posterior means

Number of respondents per industry

90% CIs for posterior probabilities of 'I love my job'

90% CIs for purchasing power posterior means

age and working in a big company negatively correlated with job satisfaction

suspect working remotely positively correlated with job satisfaction

quite certain **purchasing power** positively correlated with job satisfaction

mean **purchasing power** highest in Australia and United States

mean purchasing power highest in Finance / Banking (much higher than in education)