

Introduzione alla scrittura scientifica

La scrittura matematica

Mirko Polato 12 luglio 2017

Università degli Studi di Padova

SOMMARIO

- 1. La modalità matematica
- 2. Notazione di base
- 3. Operazioni "avanzate"
- 4. Ambienti "avanzati"
- 5. Teoremi e dimostrazioni

La modalità matematica

LA MODALITÀ MATEMATICA

La modalità matematica è una forma di ambiente che permette di inserire formule matematiche in modo molto semplice.

Esistono principalmente due modi per "attivare" tale modalità:

inline mode utilizzando il simbolo speciale \$ per aprire e per chiudere la modalità. Le formule vengono visualizzare in linea con il testo. Alternativamente usare \((per aprire e \) per chiudere

display mode utilizzando \$\$ per aprire e per chiudere la modalità. Le formule vengono visualizzare in blocco al centro della pagina. Alternativamente usare \[per aprire e \] per chiudere

ESEMPIO DI MODALITÀ MATEMATICA

Sorgente ET_EX

- 1 La terna \$x,y,z\$ \`{e} detta pitagorica se
- $x^2+y^2=z^2$. %equivalente con \(e \)

Risultato

Una terna x, y, z è detta pitagorica se $x^2 + y^2 = z^2$.

Sorgente ETFX

- La terna \$x,y,z\$ \`{e} detta pitagorica se
- $$$x^2+y^2=z^2.$$$ %equivalente con \[e \]

Risultato

Una terna x, y, z è detta pitagorica se

$$x^2 + y^2 = z^2.$$

3

Notazione di base

APICI E PEDICI

Capita spesso nella notazione matematica di avere a che fare con esponenti (o apici) e indici (o pedici). All'interno della modalità matematica è possibile ottenerli molto facilmente rispettivamente con i simboli ^ e _.

Sorgente ETFX

```
1 x_1 + x_2 = y^2 
2 y^{a+b} = x_1 + x_2^2
```

Risultato

$$x_1 + x_2 = y^2$$

$$y^{a+b} = x_1 + x_2^2$$

Le parentesi graffe {} sono necessarie solo se ciò che sta a apice/pedice è formato da più simboli. In tal caso, se omesse il risultato ottenuto non sarà quello sperato.

DECORAZIONE DEL TESTO

Comando	Effetto
xyz	XYZ
\mathnormal{xyz}	xyz
\mathtbf{xyz}	xyz
\mathit{xyz}	XYZ
\mathrm{xyz}	xyz
$mathsf\{xyz\}$	XYZ
\mathtt{xyz}	xyz

Tabella 1: Tipologie di decorazione del testo nella modalità matematica.

Questi comandi possono essere usati in cascata.

OPERATORI BINARI

Comando	Effetto	
+	+	
_	_	
\times	×	
\cdot		
/	/	
\div	÷	
\oplus	\oplus	
\ominus	\ominus	
\otimes	\otimes	
\vee	\vee	
\wedge	\wedge	

Comando	Effetto
=	=
\neq	\neq
<	<
>	>
\leq	\leq
\geq	\geq
\approx	\approx

PARENTESI

Comando	Effetto
()	()
[]	[]
\{\}	{}
\langle \rangle	$\langle \rangle$

Se il contenuto delle parentesi è troppo grande, per adattare le parentesi usare i comandi \left e \right.

```
Sorgente ET<sub>E</sub>X
```

```
Non così $(\sqrt{\frac{A}{B}})$, ma
così $\left(\sqrt{\frac{A}{B}}\right)$.
```

Non così
$$(\sqrt{\frac{A}{B}})$$
, ma così $(\sqrt{\frac{A}{B}})$.

OPERATORI INSIEMISTICI E ALTRI SIMBOLI UTILI

Comando Effet	
\cup	U
\cap	\cap
\in	\in
\notin	∉
\subset	\subset
\subseteq	\subseteq
\equiv	=
\emptyset	Ø
\setminus	\

Comando	Effetto
\infty	∞
\exists	\exists
\nexists	∄
\neg	\neg
\forall	\forall
\rightarrow	\rightarrow
\leftarrow	\leftarrow
\leftrightarrow	\leftrightarrow
\pm	\pm
\mp	Ŧ

LETTERE GRECHE

Effetto	Comando	Effetto
α A	\nu N	ν N
βB	\xi \Xi	$\xi \Xi$
$\gamma \Gamma$	0 0	00
$\delta\Delta$	\pi \Pi	$\pi\Pi$
$\epsilon \varepsilon E$	\rho \varrho P	$\rho \varrho P$
ζZ	\sigma \Sigma	$\sigma \Sigma$
ηE	\tau T	au T
$\theta\vartheta\Theta$	\upsilon \Upsilon	$v\Upsilon$
ıl	\phi \varphi \Phi	$\phi \varphi \Phi$
κK	\chi X	χX
$\lambda \Lambda$	\psi \Psi	$\psi\Psi$
μ M	\omega \Omega	$\omega\Omega$
	$\begin{array}{c} \alpha A \\ \beta B \\ \gamma \Gamma \\ \delta \Delta \\ \epsilon \varepsilon E \\ \zeta Z \\ \eta E \\ \theta \vartheta \Theta \\ \iota I \\ \kappa K \\ \lambda \Lambda \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SPAZIATURA

Comando	Spiegazione	Esempio	Effetto
	spazio standard	1.1	
∖!	spazio "negativo"	\!	
١,	spazio fine		
\:	spazio medio	\:	
\;	spazio grande	\;	
	spazio <i>extra</i>		
\qquad	spazio <i>extra</i> doppio	\qquad	

Tabella 2: Diversi tipi di spaziatura nella modalità matematica.

FONT ALTERNATIVI

Spesso per indicare insiemi si utilizzano *font* calligrafici o "particolari" per insiemi *standard* come ad esempio l'insieme dei numeri naturali.

Per questi casi, LT_EX offre di *default* due comandi: \mathcal e \mathbb¹.

```
Sorgente ETEX
```

```
$\mathcal{U} = \texttt{insieme universo}$ \\
$\mathbb{R} = \texttt{insieme dei numeri reali}$
```

```
\mathcal{U}= insieme universo \mathbb{R}= insieme dei numeri reali
```

¹Necessita del pacchetto **amsfonts**

Operazioni "avanzate"

ALTRI OPERATORI

Operatore	Comando	Effetto
Radice quadrata	\sqrt{x+y}	$\sqrt{x+y}$
Radice ennesima	$\sqrt[n]{x+y}$	$\sqrt[n]{X+y}$
Frazione	$\frac{a}{b}$	<u>a</u> b
Derivata	\partial f(x)	$\partial f(x)$
Negazione booleana	\bar{b}	Б
Coeff. Binomiale ²	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	$\binom{n}{k}$
Arr. eccesso	\lceil x \rceil	$\lceil X \rceil$
Arr. difetto	\lfloor x \rfloor	$\lfloor x \rfloor$
Vettori	\vec{v}	V

Tabella 3: Operatori "avanzati" della modalità matematica.

²Necessita del pacchetto **amsmath**

OPERATORI CON LIMITI

Operatore	Comando	Effetto
Sommatoria	\sum_{i=0}^n	$\sum_{i=0}^{n}$
Produttoria	$\displaystyle \frac{i=0}^n$	$\prod_{i=0}^{n}$
Integrale	\int_0^{∞}	\int_0^∞
Limite	<pre>\lim_{x \rightarrow 0}</pre>	$\lim_{x\to 0}$

Tabella 4: Operatori con limiti della modalità matematica.

IL COMANDO LIMITS

Per ottenere limiti posizionati al di sotto e/o sopra dell'operatore, usare il comando **limits**.

Operatore	Comando	Effetto
Sommatoria	\sum\limits_{i=0}^n	$\sum_{i=0}^{n}$
Produttoria	$\prod\limits_{i=0}^n$	$\prod_{i=0}^{n}$
Integrale	$\left\langle \frac{0^{\frac{1}{2}}}{1}\right\rangle$	\int_{0}^{∞}
Limite	\lim\limits_{x \rightarrow 0}	lim x→0

Tabella 5: Esempio di utilizzo del comando limits.

IL COMANDO SUBSTACK

È possibile avere più condizioni/limiti con l'utilizzando del comando substack all'interno del limite.

```
Sorgente LTEX

1  $$
2  \sum_{i=0}^n\sum_{j=0}^n ij =
3  \sum_{\substack{i=0\\j=0}}^n ij
4  $$
```

$$\sum_{i=0}^{n} \sum_{j=0}^{n} ij = \sum_{\substack{i=0\\i=0}}^{n} ij$$

Ambienti "avanzati"

L' AMBIENTE EQUATION

Come si può notare dagli esempi precedenti, usando \$\$ otteniamo formule centrate nel foglio ma senza alcuna numerazione.

Per ottenere la numerazione automatica delle formule si utilizza l'ambiente **equation**.

```
Sorgente MEX

1 \begin{equation}
2 x^2+y^2=z^2
3 \end{equation}
```

$$x^2 + y^2 = z^2 (1)$$

L' AMBIENTE ALIGN

Capita a volte di aver bisogno di scrivere formule matematiche su più righe ma allineate in un qualche modo (e.g., sul simbolo =).

È possibile fare ciò con il comando align.

```
Sorgente ET<sub>E</sub>X

1 \begin{align}
2 (a+b)(a-b) &= a^2 - ab + ab + b^2 \\
3 &= a^2 - b^2
4 \end{align}
```

$$(a+b)(a-b) = a^2 - ab + ab - b^2$$
 (2)

$$=a^2-b^2\tag{3}$$

L' AMBIENTE CASES

L'ambiente **cases** viene comodo quando si vogliono aggiungere casistiche all'interno della formulazione.

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

L' AMBIENTE MULTLINE

Di *default* non è possibile andare accapo con una formula matematica, ma all'interno dell'ambiente **multiline** questo ci è concesso.

```
Sorgente ETFX
```

```
1 \begin{multline}

2 (a-2b)^3+(2a-b)^3-9(a-b)^3 =

3 a^3-6a^2b+12ab^2-8b^3+8a^3+\\
4 -12a^2b+6ab^2-b^3-9(a^3-3a^2b+3ab^2-b^3)

5 \end{multline}
```

$$(a-2b)^3 + (2a-b)^3 - 9(a-b)^3 = a^3 - 6a^2b + 12ab^2 - 8b^3 + 8a^3 + -12a^2b + 6ab^2 - b^3 - 9(a^3 - 3a^2b + 3ab^2 - b^3)$$
 (4)

Teoremi e dimostrazioni

IL PACCHETTO AMSTHM

Il pacchetto **amsthm** fa parte della famiglia di pacchetti AMS (American Mathematical Society) che offrono diverse funzionalità nella modalità matematica.

In particolare **amsthm** offre alcune migliorie per quanto riguarda la definizioni di teoremi (lemmi, proposizioni etc.).

L'inclusione di tale pacchetto avviene nel modo classico.

Sorgente ET_EX

\usepackage{amsthm}

DEFINIZIONE DI UN TEOREMA

Per prima cosa bisogna creare un nuovo ambiente che diverrà il nostro ambiente-teorema.

Sorgente ETFX

\newtheorem{nome-ambiente}{etichetta}

dove nome-ambiente è il nome che daremo all'ambiente che crea i teoremi, mente etichetta è il termine che vogliamo identifichi il teorema.

Ad esempio:

Sorgente ET_EX

\newtheorem{mytheorem}{Teorema}

Aggiunta di un teorema

Una volta definito il nostro ambiente per i teoremi possiamo aggiungerli al nostro documento.

```
Sorgente LT<sub>E</sub>X

1 \begin{mytheorem}
2 Questo è il mio primo teorema.
3 \end{mytheorem}
```

Risultato

Teorema 1. Questo è il mio primo teorema.

AGGIUNTA DI UNA DIMOSTRAZIONE

Per aggiungere una dimostrazione è sufficiente utilizzare l'ambiente **proof**.

```
Sorgente ET<sub>E</sub>X

begin{proof}
Questo dimostra il teorema.
kend{proof}
```

Risultato

 $Dimostrazione. \ \, {\it Questo dimostra il teorema}. \ \, \Box$

È tempo di fare pratica!

ALCUNI RIFERIMENTI UTILI

· Queste slide

http://www.math.unipd.it/~mpolato/didattica/latex/lesson_2.pdf

· OEIS

http://oeis.org/wiki/List_of_LaTeX_mathematical_symbols - Lista di simboli con corrispettivi comandi;

Detexify

http://detexify.kirelabs.org/classify.html - Applicazione
che suggerisce il comando sulla base del simbolo manoscritto;

Math mode guide - http://tug.ctan.org/obsolete/info/math/voss/mathmode/Mathmode.pdf - Guida sulla modalitàmatematica (in inglese).