Figura 8.3.1 Construcción de (a) una curva cerrada simple orientada $\mathbf{c}_1 - \mathbf{c}_2$ (b) a partir de dos curvas simples orientadas.

hipótesis (II), f(x, y, z) es independiente de C. Vamos a demostrar que $\mathbf{F} = \operatorname{grad} f$. En efecto, elegimos \mathbf{c} para que sea la trayectoria mostrada en la Figura 8.3.2, de modo que

$$f(x,y,z) = \int_0^x F_1(t,0,0) dt + \int_0^y F_2(x,t,0) dt + \int_0^z F_3(x,y,t) dt,$$

donde $\mathbf{F} = (F_1, F_2, F_3)$.

Se sigue del teorema fundamental del cálculo que $\partial f/\partial z = F_3$. Podemos repetir este proceso usando otras dos trayectorias de (0, 0, 0) a (x, y, z) [por ejemplo, trazando los segmentos que unen (0, 0, 0) a (0, y, 0), luego a (x, y, 0) y hasta (x, y, z)], y podemos demostrar de forma similar que $\partial f/\partial x = F_1$ y $\partial f/\partial y = F_2$ (véase el Ejercicio 26). Por tanto, $\nabla f = \mathbf{F}$.

En tercer lugar, la condición (III) implica la condición (IV), ya que, como se ha probado en la Sección 4.4,

$$\nabla \times \nabla f = \mathbf{0}.$$

Finalmente, sea \mathbf{c} una representación de una curva cerrada C y sea S cualquier superficie cuya frontera es \mathbf{c} (si \mathbf{F} tiene puntos singulares, seleccionamos S para evitarlos). La Figura 8.3.3 indica que probablemente siempre podremos encontrar tal superficie; sin embargo, una demostración formal de esto requiere el desarrollo de ideas matemáticas más sofisticadas de las que aquí podemos presentar. Por el teorema de Stokes,

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS = \iint_{S} (\text{curl } \mathbf{F}) \cdot \mathbf{n} \ dS.$$

Puesto que $\nabla \times \mathbf{F} = \mathbf{0}$, esta integral es nula, por lo que la condición (IV) \Rightarrow condición (I).

Figura 8.3.2 Una trayectoria que une (0, 0, 0) a (x, y, z).

