QUESTION 10

Give an example of a family of intervals $A_n, n = 1, 2, ...$ such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number. Prove that your example has the stated property.

Such an example is the family of intervals $A_n = [0, \frac{1}{n}]$

Proof of 1st property: by inspection.

It is clear that $[0, \frac{1}{n+1}] \subset [0, \frac{1}{n}]$ since both intervals have the same left-closed endpoint 0, and considering the right-closed endpoints, $\frac{1}{n+1} < \frac{1}{n}$.

Therefore $(\forall n)(A_{n+1} \subset A_n)$.

Proof of 2nd property: by consideration of $\lim_{n\to\infty}\frac{1}{n}$.

Assume $\lim_{n\to\infty}\frac{1}{n}=L$. Therefore for every real number $\epsilon>0$, there exists a natural number N such that:

$$(\forall n > N)(|\frac{1}{n} - L| < \epsilon) \tag{1}$$

It is clear that

$$(\forall n > N)(\frac{1}{n} < \frac{1}{N})$$

and

$$(\forall \epsilon \in \mathbb{R}, \epsilon > 0)(\frac{1}{\left\lceil \frac{1}{\epsilon} \right\rceil} \le \epsilon)$$

Therefore, choosing $N = \left\lceil \frac{1}{\epsilon} \right\rceil$,

$$(\forall n > N)(|\frac{1}{n} - 0| < \frac{1}{\lceil \frac{1}{\epsilon} \rceil} \le \epsilon)$$

This is the definition of the limit in (1) with L=0. Therefore $\lim_{n\to\infty}\frac{1}{n}=0$.

Therefore $A_{\infty} = [0,0] = \{0\}$, and hence $\bigcap_{n=1}^{\infty} A_n = \{0\}$.