1 Multiple Choice Questions (Encircle the correct answer choice)

1.	For any complex number z , it is	always true that $ z $ is equal to
	(a) $ z $ (b) $ -z $ (c)	
2.	If z_1 and z_2 are any two com	
•		(b) $ z_1+z_2 \leq z_1 + z_2 $
		(d) $ z_1+z_2 \geq z_1 + z_2 $
3.	If z_1 and z_2 are two complex numbers	
	(a) $\overline{z_1 + z_2} = \overline{z_1 + z_2}$	_ _
	(c) $ z_1 z_2 = z_1 z_2 $	
4.	The numbers which can be put	in the form of $\frac{p}{q}$ $p, q \in \mathbb{Z}, q \neq 0$ are
	(a) Rational numbers	(b) Irrational numbers
	(c) Natural numbers	(d) Integers
_		
5.	The numbers which cannot be	written in the form of $\frac{p}{q}$, $p, q \in \mathbb{Z}$,
	$q \neq 0$ are	
	(a) Rational numbers	
	(c)Complex numbers	(d)Whole numbers
6.	A decimal which has only a fini	te numbers of digits in its decimal
	part is called.	
	(a) Terminating decimal	(b) Non-terminating decimal
•	(c) Recurring decimal	(d) Non recurring
7.	A decimal in which one or more	digits repeat indefinitely in its
	decimal part is called	
	(a) Terminating decimal	(b) Periodic decimal
_	(c) Infinite set	(d) Repeated number
8.	Every recurring decimal is	
	(a) a rational number	(b) an Irrational number
^	(c) a prime integer	(d) a whole number
y .	A non terminating and a non i	
		(b) an Irrational number
10	(c) Periodic number	(d) a sequence
10.		(a) an Integer (d) a nuima integer
11.		(c) an Integer (d) a prime integer
11.		(c) Natural number (d) None
:		(c) reacutat number (u) reone
12.	$\frac{22}{7}$ is	
	(a) Rational (b) Irrational	(c) an Integ r (d) a whole number

13.	π is the ratio	
٠.	(a) circumference of circle length of diameter	(b) circumference of circle
	· ·	length of Kadius
	(c) length of diameter circumference of circle	(d) length of Radius circumference of circle
•	circumference of circle	circumference of circle
14.	Every Integer is also a	
	(a) a rational number	(b) an Irrational number
	(c) a Natural number	_(d) a decimal number
15.	If n is a prime number, then	\sqrt{n} is
	(a) a rational number	(b) an Irrational number
	(c) an Integer	(d) periodic number
16.	If n is a negative number, the	$n\sqrt{n}$ is
	(a) a rational number	(b)an Irrational number
	(c) only negative integer	(d) a pure Imaginary
17 .	The number '0' is	
	(a)a rational number	(b) an integer
	(c) Even number	(d) all of these
18.	The number '0' is	
	(a) a non positive integer	(b) a non negative integer
	(c) Real number (d) whole	number (e) all of these
19.	If $a, b \in \mathbb{R}$ and $(a + b) \in \mathbb{R}$ then	this property of real numbers is
	(a) Closure property w. r. t, + (b)Commutative property w. r. t +
	(c) Associative property w. r. t	+ (d) Additive property
20 .	For $a, b \in R$ if $a + b = b + a$, th	en this property is called
	(a) Closure property w. r. t + (b) commutative property w. r. t +
		+ (d) Distributive property
21.	Multiplicative Inverse of 0 is	
	(a) 0 (b) Any real number	
22.	If a is any non-zero real number	, then its multiplicative inverse is
-	(a) $-a$ (b) $\frac{1}{a}$ (c)	(d) Not defined
റൗ		
40.	For all $a \in \mathbb{R}$, $a = a$ is pro	(c) Transitive (d) Trichotomy
24	For all $a, b \in \mathbb{R}$, $a = b \Rightarrow b = a$	
24.		
95	(a) Reflexive (b) Transitive	
<i>4</i> 0.	For a , b , $c \in \mathbb{R}$ if $c = b$, $b = c \Rightarrow (a)$ Triphotomy	
96		(c) cancellation (d) symmetric
<i>2</i> 0.	For $a, b, c \in R$ $a = b \Rightarrow a + c = b$	
0.7	(a) Transitive (b) Trichotomy	·
21,	For $a, b, c \in R \ a + c = b + c \Rightarrow a$	
	Intilled and appears that I lead to be a second	IN COMPOSITORIOR (A) Addition

```
28. For a, b, c \in R a = b \Rightarrow ac = bc, then it is ... property
      (a) Commutative (b) Closure (c) Transitive (d) Multiplicative
29. For a, b, c \in R and a > b, b > c \Rightarrow a > c, then it is ... property
      (a)Transitive (b)Trichotomy (c) Cancellation
                                                           (d) Inverse
30. For a, b \in R, if a < b and c > 0, then which is true
      (a) a + c > b + c (b) ac > bc (c) ac < bc
31. For a, b c \in R if a > b and c < 0, then
                                      (c) ac < bc (d) a - b < 0
      (a) a+c < b+c (b) ac > bc
32. If a > 0 and b < 0, then
                        (b) ab < 0 (c) a + b \ge 0 (d) a - b < 0
      (a) ab > 0
33. The set \{1, -1\} is closed w. r. t
                                                                (d) None
      (a) Addition (b) Multiplication
                                             (c) Subtraction
34. The set {1} has closure property w. r. t
                                                                (d) None
     (a) Addition
                       (b) Subtraction
                                             (c) Division
35. a(b+c-d) = ab + ac - ad is ----- property
     (a)Left distributive (b)Right distributive (c)Associative (d)none
36. If a < b then
    (a) a < b (b) \frac{1}{a} < \frac{1}{b} (c) \frac{1}{a} > \frac{1}{b} (d) a - b > 0
37. If \frac{a}{b} = \frac{ka}{kb}, k \neq 0, this rule is called
  (a) Rules of product of fractions (b) Golden rule of fraction
  (c) Rules of Quotient of fractions (d) principle for equality of fraction
38. If n is an even Integer, then (i)^n is equal to
                    (b)-i
                                      (c) \pm 1
                                                      (\mathbf{d}) \pm i
39. If n is an odd number then (i) n is equal to
                   (b)-i
                                      (c) \pm 1
                                                        (d) \pm i
     (a) i
40. If n is an integral multiple of 4, then (i) n is equal to
     (a) 1 (b) -1
                                     (c) \pm 1
41. If a + ib = c + id, then it must be true that
     (a) a = c \& b = d
                                     (b) a = -c & b = d
      (c) a = d \& b = c
                                     (d) ad = bc
42. If a + ib is complex number , then its conjugate is
                                       (c) \sqrt{a^2+b^2}
     (a) a - ib
                    (b) -a - ib
                                                          (d) ab
43. If z is any real number, then its conjugate is
     (a) a real number (b)complex number (c) any Integer (d) zero
44. If k is any real number and a + ib is a complex number, then
     (a) |k(a+ib)| = ka+ib
                                       (b) |k(a+ib)| = ka - ikb
     (c) |k(a+ib)| = \sqrt{k^2(a^2+b^2)} (d) None of these
45. The additive identity in set of complex num ers is
    (a) (0, 0)
                      (b) (0, 1)
                                       (c)(1,0)
                                                       (d) (1, 1)
```

40	6 73	**		•
46.	The multiplicativ			
	(a) (0, 0)			(d) (1, 1)
47.	The additive Inve			
	_ ·		(c) $(-a, -b)$	(a) (-a, b)
48.	The multiplicative	•		
	(a) $(\frac{a}{a^2 + b^2}, \frac{a}{a^2})$	$\frac{b}{10}$	(b) $(\frac{a}{a^2+h^2})$,	$\frac{-b}{3+t}$
			$a_1 + b_2$	$a^2 + b^2$
	(c) $(\frac{-a}{a^2+b^2}, \frac{a^2}{a^2})$	$\frac{b}{10}$	(d) $(\frac{a}{\sqrt{a^2+b^2}})$	$\frac{-b}{\sqrt{-b}}$
-	$a_1 \cdot a_2 + b_2 \cdot a_2$	$(+b^2)$	$\sqrt{a^2+b^2}$	$\sqrt{a^2+b^2}$
49 .	(0, 1) is equal to			
	(a) 1	(b) i	$(\mathbf{c})-i$	(d) 0
50 .	$(0, 1)^2$ is equal to			
	(a) 1	(b) -1	(c) i	(\mathbf{d}) $-i$
	$(0, 1)^3$ is equal to			
	(a) 1	(b) -1	(e) <i>i</i> •	(d)-i
52.	$(0, 1)^4$ is equal to	the state of the s		
	(a) 1	(b) –1	(c) i	(d)-i
53.	$(-i)^{19}$ is equal to			
	(a) i	(b)-i	(c) 1	(d)-1
	$\frac{-21}{2}$			
54 .	$(-1)^2$ is equal to			
	(a) i	` '	(c) 1	(d) -1
55.	(0, 3) (0, 5) is equ		·	
	(a) 15		The state of the s	(d) 8 <i>i</i>
56 .	The sum of two co			
	(a) a real number		(b) an imagi	nary number
_ <u>-</u> _			(d) not defir	
57.	The product of two			
•			(b) an imagi	
			er (d) not defin	ed
58.	The multiplicative		• •	
	(a) $(\frac{-4}{27}, \frac{-7}{27})$	b) $(\frac{4}{27}, \frac{-7}{27})$	(c) $(\frac{-4}{\sqrt{65}}, \frac{-7}{\sqrt{65}})$ (d) $\left(\frac{4}{2} - \frac{7}{2}\right)$
	``', `65 '65 '	65 '65 '	``√65 '√65 ′ `	~``√65 ′√65 ′
59 .	Factors of $3(x^2+y^2)$			
٠,	(a) $3(x+y)(x-y)$		(b) $3(x + iy)$	(x-iy)
	(c) $\sqrt{3} (x + iy)(x -$	iy)	(d) none	
	•			
bŲ.	Real part of $\frac{2+i}{i}$	- is equal to		
,		·		1 -
	(a) 1 (b	9) 2	(c) -1	(d) $\frac{7}{2}$
61.	Imaginary part of	$(-2+3i)^3$ is eq	ual to	
	/ N. O.	, - +-,,	() 00	A. A.

62.	If R is the set of real numbers, t	
	(a) Cartesian plane	(b) Argand diagram
	(c) Ordered pair	(d) real line
	The geometrical plane on which	coordinate system has been
	specified is called	
	(a) Coordinate plane or real pla	ne (b) Argand diagram
	(c)Cartesian plane	(d) Real line
64.	If a point A of a coordinate plan	e corresponds to the ordered pair
٠	(a, b), then a and b are called	
	(a) Coordinates of point A	(b) Value of point A
	(c)Abscissa of point A	(d) ordinates of point A
65.	If point A of the coordinate plane	e corresponds to the ordered pair
	(a, b) then,	
	(a) a is abscissa of point A	(b) b is ordinate of point A
	(c) a & b are coordinates of po	
66.	The modulus value of a complex nun	· · · · · · · · · · · · · · · · · · ·
	(a) x- axis (b) y- axis	(c) origin (d) (x, y)
67.	If $z = x + iy$, then $ z =$	
-	(a) $\sqrt{x^2 + y^2}$ (b) $\sqrt{x^2 - y^2}$	(c) $x - iy$ (d) $x^2 + y^2$
68.	If $z_1 = 2 + 3i$, $z_2 = 1 - i$ then $ z $, , ,
	(a) $\sqrt{13}$ (b) $\sqrt{26}$	
go.	The correct statement of De Mo	
Up.		ver's Theorem is
	$(\cos \theta + i \sin \theta)^n$ is equal to	(h) (and m (h) i aim m (h)
	(a) $(\cos \theta + i \sin \theta)^{n+1}$	(b) $(\cos n \theta + i \sin n \theta)$
- 4.	(c) $(n \cos \theta + i n \sin \theta)$	(d) $(\cos n \theta - i \sin n \theta)$
70.	Polar form of $1 + i\sqrt{3}$ is	
	(a) $2(\cos 60^{\circ} + i \sin 60^{\circ})$	(b) $2 (\cos 60^{\circ} - i \sin 60^{\circ})$
	(c) $2(\cos 30^{\circ} + i \sin 30^{\circ})$	(d) $\cos 60^{\circ} + i \sin 60^{\circ}$
71.	Real part of $(x+iy)^n$ is	
٠.	(a) $\cos n \theta$	(b) $\sin n \theta$
100	(c) $r^n \cos n \theta$	(d) $r^n \sin n \theta$
72.	Polar form of $(\sqrt{3} + i)$ is	
. •	π	π . π
.*	(a) $2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$	(b) $2(\cos\frac{\pi}{6}-i\sin\frac{\pi}{6})$
	π π	
•	(c) $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$	(d) $2(\cos\frac{\pi}{3}-i\sin\frac{\pi}{3})$.
77 GI≃		
13.	If z is a real number, then	
	(a) $z = z$ (b) $z = z $ (c)	zz = z (d) $z = -z$
74.	If $\overline{z} = 3 - 5i$, then $ z ^2$ is equal	to
٠.		(a) 16 (d) none

(a) i

Multiple Choice Questions

(d) -i

(Encircle the correct answer choice)

(c) = 1

(a) A = B (b) $A \neq B$ (e) $A \cap B = \emptyset$ $(d) A \cup B = \emptyset$ If (1 - 1) correspondence can be established in two sets A and

B, then it must be true that (a) A = B (b) $A \sim B$ (a) A | B = 0 (d) A∩B≠ ø

8. The set N of natural numbers and O of odd number are

(b) 1

1. If $A \subseteq B$ and $B \subseteq A$ then which is true

(a) $N \sim O$ (b) $N \cap O = \emptyset$ (c) $N \cup O = O$ (d) none of these

7. 1		
4.	The set N and Z are	
	(a) Equivalent sets	(b) Equal sets
	(c) Disjoint sets	(d) finite sets
5.	Which of the following is tru	le
	(a) $N \subset Z$ (b) $Z \subset Q$	(c) $Q \subset R$ (d) all of these
6.		en number of subsets in S are
	(a) m^2 (b) 2^m	
	If A⊆ B. then	
		(b) A∩B = ø
	(c) B - A = A - B	(b) $A \cap B = \phi$ (d) $A \cap B \neq \phi$
	If a set S has no proper subs	
O1		
٠.	(a) a singleton set (c) an infinite set	(c) not a set
	If a set S has one proper sub	` '
Ø.		
	(a) a singleton set	(b) empty set
10	(c) an infinite set	then number of elements in D (E)
‡Λ·		then number of elements in P (S)
4.4	(a) n ^g (b) 2"	
Ŧ ¥:	The set of all subsets of a set	
	(a) Power set	(b) Subset
10		(d) Infinite set
Ŧ W :	If S = { }, then order of set	
10		c) Infinite set (d) not defined
	The Power set of an empty	
	(a) No elements (c) Infinity many elements	(b) One element
1.4	(c) infinity many elements	(a) I wo elements
	If $n(S) = m$, then $n(P(S))$	
	(a) m ³ (b) 2 ^m	
ŦĠı	The set of all elements und	er consideration is called
	(a) Universe of discourse (c) an infinite set	(D) Universe
10	The set of real numbers bet	. (a) Finite set
	The set of real numbers bet	
4 FF	Tabular form of (,) , a C	(c) finite set (c) a group
¥ f :	Tabular form of (x) x = G	漢
1 8	(A) (U) (D) ()	(c) all Rational (d) {2}
1 B:	Which of the following is tra	10
- '	(a) a € { { a } } (c) ¢ ⊆ { { a } }	(D) Ø ('O')
	(e) p = {{ a }}	(d) p = { p}
19.	The set builder form of AUB	is equal to
	(a) (x xeAn x e B)	(b) (x xeAv x e B)
	4 4 4 1 4 491	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

```
20. The set builder form of A \cap B is equal to
        (a) \{x \mid x \in A \land x \in B\}
                                                   (b) \{x \mid x \in A \lor x \in B\}
        (c) \{x \mid x \in A \land x \notin B\}
                                                  (d) \{x \mid x \in B \land x \notin A\}
 21. The set builder form of A – B is equal to
                                                  (b) \{x \mid x \in A \lor x \in B\}
        (a) \{x \mid x \in A \land x \in B\}
                                                 (d) \{x \mid x \in B \land x \notin A\}
        (c) \{x \mid x \in A \land x \notin B\}
 22. The set builder form of B - A is equal to
        (a) \{x \mid x \in A \land x \in B\}
                                                   (b) \{x \mid x \in A \lor x \in B\}
       (c) \{x \mid x \in A \land x \notin B\}
                                                   (d) \{x \mid x \in B \land x \notin A\}
23. If A \cap B = \emptyset, then A and B are
       (a) Disjoint sets
                                                   (b) over lapping sets
       (c) Equal sets
                                                   (d) Equivalent sets.
24. If A \cap B \neq \emptyset then A and B are
                                                  (b) over lapping sets
       (a) Disjoint sets
       (c) Equal sets
                                                  (d) Equivalent sets
25. In set builder form Ac is written as
                                               (b) \{x \mid x \in U \lor x \in A\}
       (a) \{x \mid x \in U \land x \in A\}
       (c) \{x \mid x \in U \land x \notin A\}
                                                (d) \{x \mid x \in A \land x \notin U\}
26. If a set consists of those elements of A which are not in B, then the set is
       (a) AUB
                           (b) \mathbf{A} \cap \mathbf{B}
                                                (c) A - B
                                                                    (d) B - A
27. Let A and B are two non empty sets and U be a universal set, then A - B
                                                (c) U
       (a) A \cap B^c
                           (b) B - A
28. If A \cap B \neq \phi i,e sets A and B are disjoint, then n (A \bigcup B) is equal to
       (a) n(A) + n(B)
                                                (b) n (A). n (B)
       (c) n(A) + n(B) - n(A \cap B)
                                                (d) n(A \cap B)
 29. If A \cap B \neq \emptyset i.e sets A and B are overlapping, then n (A \cup B) is
    equal to
                                                (b) n (A) n (B)
        (a) n(A) + n(B)
        (c) n(A) + n(B) - n(A \cap B)
                                                (d) n(A \cap B)
30. If A \subseteq B, then n (A \cup B) is equal to
       (a) n(A)
                         (b) n(B)
                                                (c) n (A | B)
                                                                        (d) 0
31. If B \subseteq A, then n (A \cup B) is equal to
                       (b) n(\mathbf{B})
       (a) n (A)
                                                (c) n (A \cap B)
32. If A \cap B = \emptyset, then n (A \cap B) is equal to
      (a) n (A)
                                               (c) n (A \cap B)
                          (b) n(B)
33. If A \cap B \neq \phi i.e. A and B are overlapping sets, then n (A \cap B)
                                              (b) n(A) + n(B)
       (a) 0 -
       (c) n (A) n (B)
                                              (d) cannot be determined
34. If A \subseteq B, then n (A \cap B) is equal to
       (a) n(A)
                                                                      (d) n(A). n(B)
                       (b) n(B)
                                           (c) n(A) + n(B)
```

35.	If $B \subseteq A$ then, $n (A \cap B)$ is equal	al to	
	(a) $n(A)$ (b) $n(B)$	· · · · · · · · · · · · · · · · · · ·	(d) $n(A)$. $n(B)$
36.	If A and B are Disjoint sets i.e. A	$\bigcap B = \phi$, then n	(A B) is equal to
	(a) n (A)	(b) n (B)	
	(c) $n(A) + n(B) - n(A \cup B)$	(d) $n(A) - r$	ı (B)
37 .	If A and B are disjoint sets	i,e $A \cap B = \phi$, t	then $n (B - A)$
		(b) n (A) n (and the second of the second o
	(c) $n(A) + n(B) - n(A \cup B)$		
38.	If $A \subseteq B$, then $n (A - B)$ is equ	al to	
	(a) n (A) (b) n (B)	(c) n (A)	B) (d) 0
	If $B \subseteq A$, then $n (B-A)$ is equal		
٠,	(a) n (A) (b) n (B)	(c) n (A∩	B) (d) 0
40.	If $B \subseteq A$, $A - B \neq \emptyset$, then n	(A - B)	
٠.	(a) $n(A)$ (b) $n(B)$	(c) $n(A) -$	n (B) (d) 0
41.	Which of following is true		
•	(a) $AU \phi = A$. (b) $A \cap \phi = \phi$	(c) $A - \phi = A$	(d) All of these
42.	Which of following is true		
	(a) $\phi - A = \phi$	b) AUA=A	
	(c) $A \cap A = A$	$\mathbf{d}) \mathbf{A} - \mathbf{A} = \boldsymbol{\phi}$	(e) all of these
43.	Which of following is true		*
	(a) $A \bigcup U = U$ (b)	A − U = <i>\phi</i>	
	(c) $A \cap U = A$ (d)	U-A=A'	(e) all of these
44.	If $A \cup B = A$, then		
	(a) $A \subseteq B$ (b) $B \subseteq A$	(c) $A = \phi$	(d) None of these
45.	De Morgan's Laws are		
	(a) $(A \cup B)' = A' \cup B'$	$(b)(A \cup B)' = A$	A'∩B'
-	$(c)(A \cup B)' = A' + B'$	(d) (AUB) '=(A	A∩B) ′
46 .	De Morgan's Laws are		
	(a) $(A \cap B)^c = A^c \cap B^c$	$(b)(A \cap B) =$	A° UB°
	(c) $(A \cap B) \circ = A \circ B \circ$	(d) $(A \cap B)^c =$	(A∪B) °
47 .	The way of drawing conclusion	ns form a limite	d number of *
	observations is called		
~	(a) An Induction	(b) deduction	r.
10	(c) proposition	(d) postulate	
48.	The way of drawing conclusio	ns form premise	s believed to be
-	true is called (a) an Induction	(h) doduction	
	(c) proposition	(b) deduction (d) postulate	
	(a) brohogingin	(a) hosintare	

49.	A statement which is accept to find other conclusion is	ed to be true without proof and used called.
	(a) An Induction	
	(c) proposition	(d) postulate
50 .		is regarded as true or false is called
		(b) Non Aristotelian logic
	(c) Proposition	(d) postulate
51.	The logic in which there is a	scope of more than two possibilities
•	is called.	AN Main Authoriting Four
		(b) Non Aristotelian logic
.		(d) postulate
9Z.		ecided as true or false is called
	(a) proposition	(b) postulate
. .	(c) compound proposition	
53.	the state of the s	denote negation of a proposition is
	$(a) \sim (b) \rightarrow$	
54.	If $p \rightarrow q$ is a conditional, th	
	•	ion (c) consequence (d) conjunction
55 .	If $p \to q$ is a Implication,	
		sion (c) antecedent (d) converse
56 .	•	combine propositions is called
•	(a) Connective	(b)Negation
	(c) operator	(d) compound proposition
57.	If p and q be two proposition	
	(a) Conjunction	(b) disjunction
	(c) conditional	(d) Bi conditional
58.	If p and q be two proposition	s, then $p \rightarrow q$ is
	(a) Conjunction	(b) disjunction
	(c) conditional	(d) Bi conditional
59 ,	If p and q be two proposition	s, than $p \leftrightarrow q$ is
	(a) conjunction	(b) disjunction
	(c) conditional	(d) Bi conditional
60 .	A compound proposition whi	ch is always true is called
	• (a) Tautology	(b) contradiction
	(c) Absurdity	(d) contingency
61.	A compound proposition which is	s neither always true nor false is called
	(a) Tautology	(b) contradiction
* * *	(c) Absurdity	(d) contingency
62.	A compound proposition whi	ch is always wrong is called
	(a) Tautology	(b) absurdity
	(c) contingency	(d) Equivalence
63.	If p be proposition, then $(p \lor$	and the state of t
		(c) contingency (d) Equivalence

 $(\mathbf{d}) \sim (p \vee q) = \sim p \wedge \sim q$

(c) $\sim (p \lor q) = \sim p \lor \sim q$

78.	If p and q are two propositions, then truth set of $p \vee q$ is
	(a) $P \cap Q$ (b) $P \cup Q$ (c) $P - Q$ (d) $Q - P$
19.	If p and q are two propositions then truth set of $p \wedge q$ is
	(a) $P \cap Q$ (b) $P \cup Q$ (c) $P - Q$ (d) $Q - P$
ov.	If p and q be two propositions, then truth set of $p \rightarrow q$ is (a) $P(1 \mid Q)$ (b) $P(Q)$ (c) $P = Q$ (d) $P(Q)$
. 01	(a) $P' \cup Q$ (b) $P' \cap Q$ (c) $P = Q$ (d) $P \cap Q'$
91.	Truth set of $p \leftrightarrow q$ is (a) $P' \cap Q'$ (b) $P' \cup Q'$ (c) $P = Q$ (d) $P \cup Q$
00	
04.	If p is a proposition, then truth set of $\sim p$ is (a) P' (b) \bigcup (c) ϕ (d) None
0.0	
83.	Truth set of a tautology is
•	(a) Universal set (b) ϕ (c) True (d) False
84.	Truth set of a contradiction is
	(a) Universal set (b) ϕ (c) True (d) False
85.	Logical form of $A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$ is
	(a) $p \lor (q \land r) = (p \lor q) \land r$ (b) $p \lor (q \land r) = (p \lor q) \land (p \lor r)$
	(e) $p \land (q \lor r) = (p \land q) \lor (p \land r)$ (d) $p \land (q \lor r) = (p \land q) \lor r$
	If set A has 2 elements and B has 4 elements, then number of
	elements in $A \times B$ is
Λ #	(a) 6 (b) 8 (c) 16 (d) None of These
87.	Every subset of Cartesian product A × B is called
Q Q	(a) Relation (b) Function (c) Domain (d) Range
00.	The empty set { } being the subset of A×B is
	(a) Binary relation (b) Function (c) Ordered pair (d) None of these
89.	If $f: A \rightarrow B$ be a function, then it is an into function if
	(a) Range = B (b) Range \subset B
,	(c) Range is not repeated (d) Domain $\neq A$
90.	A function $f: A \rightarrow B$ is called an on to if
	(a) Domain ⊂ A (b) Range ⊂ B
	(c) Range = B (d) Domain \sim Range
	A function $f: A \rightarrow B$ is $(1-1)$ if
	 (a) Domain ⊂ A (b) Range ⊂ B (c) Domain = Range (d) Range is not repeated
92. .	A function $f: A \rightarrow B$ is $(1-1)$ and onto if
	(a) Domain = A (b) Range \subseteq B
44	(c) Domain = Range (d)Range = B and Range is not repeated
93.	A $(1-1)$ function is also called Function
0.4	(a) Injective (b) Surjective (c) Bijective (d) Inverse
	An onto function is also called Function
	(a) Injective (b) Surjective (c) Bijective (d) Inverse

95.	A $(1-1)$ and on to function is also called Function
	(a) Injective (b) Surjective (c) Bijective (d) Inverse
96.	Inverse of a function Exists only if it is
	(a) Injective (b) Bijective (c) Surjective (d) all of these
97 .	The function $f = \{(x, y) \mid y = mx + c\}, m \& c \text{ are real number is }$
	(a) Linear (b) Quadratic (c) A circle (d) A point
98.	The function $f = \{(x, y) \mid y = ax^2 + bx + c, a \neq 0\}$ is
	(a) Linear (b) Quadratic (c) A circle (d) A point
99.	Inverse of line is
	(a) a line (b) a parabola (c) a point (d) not defined
100.	If $y = \sqrt{x}$, $x \ge 0$ is a function, then its inverse is
	(a) a line (b) a parabola (c) a point (d) not a function
101.	The function $f = \{(x, y) \mid y = x\}$ is
2	(a) Identity function (b) Null function (c) not a function (d) similar function
	(c) not a function (d) similar function
102.	If a set A has 2 elements and B has 3 elements, then different
	relations in A× B are
	(a) 5 (b) 6 (c) 8 (d) 64
103.	If a set A has 2 elements and B has 3 elements, then different
	function in A× B are
· .	(a) 6 (b) 8 (c) 9 (d) not defined
104.	If a set A has m elements and B has n elements, than relations in $A \times B$
	(a) $m \times n$ (b) $2^{m \times n}$ (c) $m + n$ (d) $(m \times n)^2$
105.	If a set S has n elements, then different relations is A
	$\sim 2n$
100	(a) $2n$ (b) 2^{2n} (c) n^2 (d) 2^n
106.	The Inverse function of $\{(x, y) \mid y = m \ x + c\}$ is
	(a) $\{(y, x) \mid x = my + c\}$ (b) $\{(x, y) \mid x = my + c\}$
105	(c) $\{(y, x) \mid y = mx\}$ (d) not a function
107.	An operation which is performed on a single number is called
	(a)Unary operation (b)Binary operation
100	(c) Relation (d) function
108.	Squaring a number is
	(a) unary operation (b) Binary operation
100	(c) relation (d) function
TAS.	Which of the following is not a binary operation
	(a) + (b) + (c) $$ (d) -
110.	For a non empty set G, a function from $G \times G \rightarrow G$ is called
	(a) Binary operation (b) Unary operation
	(c) Groupied (d) Binary relation

```
111. Any subset of G \times G is called
        (a) Binary operation
                                            (b)relation
       (c)function
                                            (d)Cartesian product
112. The set \{1, -1, i, -i\} is closed w.r. t
        (a) +
                     (b) -
                                     (c) \times
                                                    (d) *
113. The set of odd number is not closed w. r. t
                      (b) \times
                                     (c) -
114. Let S be a not empty set and * is binary operation in it. If
       closure property holds in S, then S is
        (a) Groupied
                         (b) Semi group
                                            (c) Monoid
                                                          (d) Group
115. If N is set of natural number, then (N, +) is
        (a) Groupied (b) Semi group
                                            (c) Monoid
                                                           (d) Group
       If W is the set of whole numbers, than (W, +) is
116.
                                            (c) Monoid
        (a) Groupied (b) Semi group
                                                         (d) Group
117. If N is set of natural number, then (N, \times) or (N, \cdot) is
        (a) Groupied
                        (b) Semi group
                                           (c) Monoid
                                                          (d) Group
118. For a non empty sets S, (P(S), \cap) is
        (a) Groupied
                        (b) Semi group
                                           (c) Monoid
                                                          (d) Group
119. For a non empty sets S, (P(S), \bigcup) is
                        (b) Semi group (c) Monoid
        (a) Groupied
                                                           (d) Group
120. If Z is set of Integers, than (Z, ·) is
        (a) Groupied
                        (b) Semi group (c) Monoid
                                                           (d) Group
121. If R is the set of real numbers, then (R, +) is
      (a) Groupied
                       (b) Semi group
                                          (c) Monoid
                                                           (d) Group
122. If Q is the set of rational numbers, than (Q, \cdot)
        (a) Groupied (b) Semi group (c) Monoid
                                                          (d) Group
123. If S is non empty set. Then identity element in P(S), w.r. t \cap
                       (b) S
                                   (c) \{ \phi \}
        (a) { }
                                                     (d) does not exist
124. If S is non empty set. Than identity element in P(S), w.r. t U
                      (b) S
                                    (c) \{ \phi \}
                                                     (d) does not exist
       (a) { }
125. The set of non-zero real numbers w. r. t multiplication is
       (a) Groupied (b) Semi group
                                         (c) Monoied
                                                           (d) Group
126. Identity element in (C, +) is
       (a) (0, 0)
                       (b) (0, 1)
                                          (c) (1,0)
                                                        (d) (1,1)
127. Identity element in (C, \cdot) is
       (a) (0, 0)
                       (b) (0, 1)
                                          (c) (1, 0)
                                                         (d) (1, 1)
128. The set of first elements of ordered pairs in a relation is called its:
    (a) domain
                    (b) range
                                  (c) co-domain
                                                   (d) relation
129.
      If A and B are disjoint sets then:
       (a) A \cup B = \emptyset (b) A \cap B = \emptyset (c) A \subset B
                                                     (d) A - B = \phi
       If S = \{1, 2, 3, 4, 5, 6\} then n(S) equals:
130.
       (a) 2^6
                       (b) 6
                                        (c) 6!
                                                     (d) - 6
```

	· · · · · · · · · · · · · · · · · · ·
131.	If $A = \phi$, then $P(A)$ is:
	(a) Empty set (b) $\{0\}$ (c) $\{\phi\}$ (d) none of these
132.	The graph of linear function is:
	(a) circle (b) straight line (c) parabola (d) triangle
133.	A system of linear equations involves at least equation(s):
	(a) 1 (b) 2 (c) 3 (d) 4
134.	If $A \subseteq B$, then $A \cap B$ is equal to:
	(a) ϕ (b) A (c) B (d) -A
135.	If $A = \{1, 2, 3\}$, $B = \{3, 4\}$, then $A - B$ is:
. ,	(a) {4} (b) {1, 2} (c) {1, 4} (d) {3}
136.	The number of elements in a set B is 4, the number of elements in P(B
;	(a) 16 (b) 12 (c) 8 (d) 4
137.	The number of all subsets of a set having three elements is:
	(a) 4 (b) 6 (c) 8 (d) 10
138.	Set of all possible sub sets of a set S is called:
	(a) equivalent set (b) empty set (c) power set (d) sub set
139.	Set of integers is a group w.r.t:
	(a) addition (b) multiplication (c) subtraction (d) division
140.	f is function from A to B. Domain of f is equal to:
	(a) any subset of A (b) $A \times B$ (c) A (d) B
141.	Every function is a:
	(a) relation (b) inverse function
	(c) one to one (d) none of these
142.	Inverse of any element of a group is:
	(a) not unique (b) unique
	(c) has many inverses (d) none of these
Una	apter - 3 Multiple Choice Questions
•	(Encircle the correct answer choice)
1. A	rectangular array of numbers enclosed by a pair of brackets is called a
	(a) matrix (b) Row (c) column (d) determinant
2. Ti	ne horizontal lines of numbers in a matrix are called
	(a) Rows (b) column (c) column matrix (d) Row matrix
3. Th	ne vertical lines of numbers in a matrix are called
	(a) Rows (b) columns (c) column matrix (d) Row matrix
	a matrix A has m rows and n column, then order of A is
	(a) $m \times n$ (b) $n \times m$ (c) $m + n$ (d) m^n
	ne element a_{ij} of any matrix A is present in
	(a) i^{th} row and j^{th} column (b) i^{th} column and j^{th} row
	(c) $(i+j)$ th row and column (d) $(i-j)$ th row and column

```
6. Any matrix A is called real if all ai are
      (a) real numbers (b) Imaginary numbers
                                                   (c) 0 (d) 1
 7. If any matrix A has only one row then it is called
      (a) row matrix
                               (b)column matrix
      (c)Square matrix
                                  (d)Rectangular matrix
8. If any matrix A has only one column, then it is called
                                · (b) column matrix
      (a) row matrix
    (c) Square matrix
                                 (d) Rectangular matrix
9. If a matrix A has same numbers of rows and column, then A is called
     (a) row matrix
                                  (b)column matrix
     (c)Square matrix
                                  (d) Rectangular matrix
10. If any matrix A has different numbers of rows and column, then A is
                                  (b) column matrix
     (a) row matrix
     (c) Square matrix
                                  (d) Rectangular matrix
11. Any matrix of order m \times 1 is called
     (a) row matrix
                                  (b) column matrix
     (c) Square matrix
                            (d) Rectangular matrix
12. Any matrix of order 1 \times n is called
     (a) row matrix
                                 (b) column matrix
     (c) Square matrix
                                 (d) Rectangular matrix
13. For the square matrix A = [a_{ij}]_{n \times n}, the elements
       a11, a22, a33 ann are
    (a) principal diagonal or leading diagonal (b) Secondary diagonal
      (c) central row
                                              (d) central column
14. For the matrix A = [a_{ij}]_{n \times n}, the elements
       a_{1n}, a_{2n-1}, a_{3n-2}, a_{4n-3},... a_{n-1} form
      (a) Main diagonal
                                   (b) Leading diagonal
      (c) principal diagonal (d) Secondary diagonal
15. For the square matrix A = \{a_{ij}\}. If all a_{ij} = 0, i \neq j and at least one
       \alpha_{ij} \neq 0, i = j, than A is called
       (a) Diagonal matrix
                                   (b) Scalar matrix
       (c) Identity matrix
                                   (d) Null matrix
16. For the square matrix A = [a_{ij}]. If all a_{ij} = 0, i \neq j and all a_{ij} = k.
       (non zero) for i=j, then A is called
       (a) Diagonal matrix (b) Scalar matrix
       (c) Identity matrix
                                   (d) Null matrix
17. If all off diagonal elements are zeros and at least one of the
   leading diagonal is non zero, then matrix is called
       (a) Diagonal matrix
                                   (b) Scalar matrix
      (c) Identity matrix
                                 (d) Null matrix
18. The matrix [7] is
                                  (b) Row matrix
       (a) square matrix
       (c)column matrix
                                   (d) all of these
```

19.	If A is a matrix of order $m \times n$, than the matrix of order $n \times n$ is called
	(a) Transpose of A (b) Inverse of A
	(c)Main diagonal of A (d) Echelon form of A
20.	Two matrix A and B are said to be conformable for addition if
	(a)number of columns in A= number of rows in B
٠,	(b) number of rows in B = number of columns in A
	(c) rows of $A = \text{columns of } B$ (d) order of $A = \text{order of } B$
21.	If $[a_{ij}] = A$, and $[b_{ij}] = B$, then $A = B$ if and only if
	(a) order of A = order of B (b) $a_{ij} = b_{ij}$, $i = j$ only
	(c) $a_{ij} = b_{ij}$ ($i \neq j$ only) (d) $a_{ij} = b_{ij}$ for all $i \& j$
22.	For any two matrices A and B. (A + B)t is equal to
	(a) $A^{t} + B^{t}$ (b) $(A+B)$ (c) $A^{t} B^{t}$ (d) $B^{t} A^{t}$
23.	(AB) tis equal to
• •	(a) $B^t A^t$ (b) $A^t B^t$ (c) $A B$ (d) $(B A)^t$
24.	$(k, AB)^{t} =$
	(a) $\mathbf{k} \mathbf{A}^{t} \mathbf{B}^{t}$ (b) $\mathbf{k} \mathbf{B}^{t} \mathbf{A}^{t}$ (c) $\mathbf{k}(\mathbf{B}\mathbf{A})^{t}$ (d) $\mathbf{k}^{t} (\mathbf{A}\mathbf{B})$
25.	Let A be any matrix and n is an Integer, then $A + A + A + + t$
	n terms
	(a) A^n (b) $n A$ (c) A^{n-1} (d) $(n+1) A$
26 .	Two matrix A and B are conformable for multiplication AB if
	(a) number of columns in $A = number of rows in B$
•	(b) number of rows in $B = number of columns in A$
	(c) number of rows in A= number of rows in B
	(d) number of columns in $A = number of columns in B$
27 .	If A is a matrix of order m \times n and B of order n \times q, then order o
	AB is
	(a) $m \times q$ (b) $n \times n$ (c) $m \times m$ (d) $q \times m$
28 .	If A is of order 2×3 and B of order 4×2, then order of AB
	(a) 2×2 (b) 3×4 (c) 4×3 (d) Non
29 .	If A is of order 2×3 and B of order 4×2, then order of BA
	(a) 2×2 (b) 3×4 (c) 4×3 (d) Non
30.	If AB = BA, then which is true
	(a) A and B are multiplicative inverse of each other
	(b) One of A or B is null matrix
	(c) One of A or B is identity matrix (d) all of these
31.	For any square matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $ A $ is equal to (a) $ab - cd$ (b) $ad - bc$ (c) $ac - bd$ (d) $bc - ad$ If $A = \begin{bmatrix} -7 \end{bmatrix}$, than $ A $ is equal to
	(a) $ab-cd$ (b) $ad-bc$ (c) $ac-bd$ (d) $bc-ad$
32.	If $A=[-7]$, than $ A $ is equal to
1.5	(a) 7 (b) 7 (a) (b) 7

33.	3. If A is any square matrix of or (a) $ k A $ (b) $ k A $	and the second of the second o	
84.	 If A is any square matrix and A (a) Additive Inverse of A (c) Transpose of A 	B = BA = I. the (b) Multiplica (d) determines	n B is called tive Inverse of
95	6. If $A+B=B+A=0$, then B is c		II VI A
99:	(a) Additive Inverse of A (c) Transpose of A		ive Inverse of A
•	(c) Transpose of A	(a) determinan	COLA
36.	3. If adjoint of $A = \begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$, T	hen matrix A	
٠	(a) $\begin{bmatrix} -1 & -2 \\ 4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$,	
37.	LIf A is a non-singular matrix, th	ien A ⁼¹	•
•	(a) $\frac{1}{ A }$ Adj. A (b) $\frac{-1}{ A }$ adj. A	(c) Adj.A	d) 1 A adj. A
88.	I. If AX = B, then X is equal to		
	· · · · · · · · · · · · · · · · · · ·	(c) B A=1 (c	i) all of these
39 .	. Inverse of a matrix exist if it is		
	(a)Singular	(b) Non-singular	
		(d)Rectangular	
40.	. Which of the property does not h		
44	(a) Associative (b) Commutative		
	 Let A= [aij] be a square matrix as obtained by deleting ith row and j 	-	
	ay is equal to	Wording of the	* ********** **
	(a) M_{ij} (b) $(-1)^{i+j} M_{ij}$	(c) (-1) ^{i,j} M _{ij}	(d) (-1)i+jaij
	i. Let A= [aij] be a square matrix a:	\mathbf{d} , M_{ij} is the det	erminant
	obtained by deleting the row and J	th column of A	Then cofactor
	of ay is equal to	/A / 45: 1/	AND AND AND A
49	(a) My (b) (=1)** My		
	. For any square matrix A, It is al		
·:	(A) $A=A^1$ (b) $=A=\overline{A}$	(6) $ \mathbf{A} = \mathbf{A}^{\perp} $	$(d) A^{-1} = \frac{1}{A}$
	For any triangular matrix A, A (a)Product of leading diagonal eler	is equal to	
•	(b)Sum of leading diagonal elemen	•	
	(c)Product of secondary diagonal e		
	(d) Product of both diagonal eleme		

45. P	. If all entries of a square matrix then value of $ kA $ is equal to		
	. (a) k A (b) k A	(c) A	$(d) k^3 A $
46.	. For any non singular matrix A	I, It is true that	
	(a) $A^{-1} = A$ (b) $ A = A$	(c) $(A^{-1})^t = (A^t)^t$)= (d) Non
47.	. For any non singular matrix A,		
	(a) $(A^{-1})^{-1} = A$ (b) $(A^{t})^{t} = A$	(c) $\overline{A} = A$	(d) all of these
48.	For any non-singular Matric		
	(a) $(AB)^{-1} = B^{-1}A^{-1}$	(b) (AB) =B ! A	1
	(a) $(AB)^{-1} = B^{-1}A^{-1}$ (c) $AB = BA$	(d) all of these	
49.	A square matrix $A = [a_{ij}]$ for which		
	(a) Upper Triangular	(b) lower Trian	gular
•		(d) Hermition	Swies
80.	A square matrix $A = [aij]$ for which		han A leasled
901		(b) lower Trian	•
	(c) Symmetric	·	å miar.
Z1	A triangular matrix is always a	(d) Hermition	
O T.			4
; .		(b) Scalar matr	11X
		(d) all of these	
97.	Any square matrix A is called		/ IX A A = 1 T
.	(a) $ A = 0$ (b) $ A \neq 0$		(a) $AA^{-1} = 1$
99.	A non empty set F is called fie		Year of the second
	(a) F is a an abelian group und		
	(b) F- (0) is an abelian group un		
	(c) Right distributive property		all of these
54.	Which of the following sets is a fi		
	• • • • • • • • • • • • • • • • • • • •		all of these
55.	Which of the following sets is not	a field	
	(a) R (b) Q	(c) C (d)	Z
56.	The system of linear Equations	involving the se	me variables
	are equivalent if they have		
((a)Number of equations = number	of variables (b)	same solutions
((c)different solutions	(d)infinity	many solutions
	A square matrix A is symmet		
	(a) $A^{l} = A$ (b) $A^{l} = A$		1) (
AS.	A square matrix A is skew sy		#/ \12 / — — F%
- U	for At - A Alt At - A		4. / A., A
# A	(a) $A^{i} = A$ (b) $A^{i} = A$	$(6) (A)^{n} \equiv A (6)$	1):(A)! =.= A;
98.	A COMMON MACHINE A 10 LICENSIST.		
	(a) A = A (b) A = A	$(6) (\overline{A})^{!} \equiv A (6)$	$(\overline{A})^{\sharp} = A$
60.	A square matrix, Allegrew, Ag	rmitian if	
	(a) A! ■ A (b) A! ■ = A	(a) (A) = A (a	1) (A) = A

61.	The main diagonal elements of a sl	kew symmetric matrix must be
	(a)1	(b)0
	(c) any non zero number	(d) any complex number
62.	The main diagonal elements of a sl	kew Hermitian matrix must be
	(a) 1	(b) 0
-	(c) any non zero number	(d) any complex number
63,	In echelon form of a matrix, the	e first non zero entry is called
•	(a) leading entry	(b) first entry
	(c) Preceding entry	(d)Diagonal entry
64.	The additive inverse of a matrix	exist only if it is
	(a) singular	(b) non singular
	(c)null matrix	(d) any matrix of order $m \times n$
65 .	The multiplicative inverse of a	matrix exist only if it is
·	(a) singular	(b) non singular
•	(c)null matrix	(d) any matrix of order $m \times n$
	[a b] 2 3	
66.	If $\begin{vmatrix} a & b \\ 0 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 1 & -9 \end{vmatrix}$ then	
	0 / 1 -9	
	(a) $a = -3$ (b) $a = b$	(a) $a = \frac{1}{a}$ (d) $a = \frac{-1}{a}$
	$(a) \ a = b \qquad (b) \ a = b$	(c) $a - 3$ (a) $a - 3$
67.	The number of non zero rows in eche	
	(a) order of a matrix	(b)Rank of a matrix
	(c)leading	(d)leading row
68.	If A is any square matrix then	A +At is a
	(a) Symmetric	(b)skew symmetric
•	(c)Hermitian	(d)skew hermitian
69.	If A is any square matrix then	$A - A^t$ is a
	(a) Symmetric	(b)skew symmetric
	(c)Hermitian	d)skew hermitian
70.	If A is any square matrix then	$A + (\overline{A})^{t}$ is a
		b)skew symmetric
		d)skew hermitian
71	If A is any square matrix then	
, 1.		(b)skew symmetric
٠.	· · · · · · · · · · · · · · · · · · ·	d)skew hermitian
	If A is symmetric (skew symme	
		(b) non-singular
		(d) Anti symmetric
	In a homogeneous system of linear of	the control of the co
100		(b)non trivial solution
		(d)Non
74	If $AX = O$, then $X = O$	/
	(a) I (b) O ((c) A^{-1} (d) not possible

75.	If a system of linear equ called a/an	ations have no	o solution at all, then it is
	(a) Consistent system (c) Trivial system		Inconsistent system Non Trivial system
76.	The value of λ for which		
	does not possess the uniqu		
	(a) 4 (b) - 4		(d) any real number
77.	If the system $x + 2y = 0$; then λ is		
	(a) 4 (b) -4	$(c) \pm 4$	(d) any real number
78.	$\operatorname{If} \begin{bmatrix} 2x+3 & 1 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} -1+x \\ -3 \end{bmatrix}$	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$, then $x =$	
	(a) 3 (b) -3	(c) 4	(d) -4
•	[1	2 4]	
79.	The cofactor A ₂₂ of -1	2 5 is	
,	The cofactor A_{22} of $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$	1 -1	
	(a) 0 (b) -1	(c) 1	(d) 2
80.	If $A = [a \ v]_{s \times s}$, then Is A	· · · · · · ·	
	(a) A (b) A^{-1} (c)		
	If all the entries of a row	of a square ma	atrix A are zero, then
	A equals:	(-) 0	7.35 LA L
•	(a) 1 (b) -1	(C) U	$(\mathbf{d}) - \mathbf{A} $
82.	If $\begin{vmatrix} x & 4 \\ 5 & 10 \end{vmatrix} = 0 \Rightarrow x$ equals	;	
	(a) 2 (b) 4	· · · · · · · · · · · · · · · · · · ·	(d) 8
88.	The inverse of unit matri		
			metric (d) rectangular
84.	Transpose of a row matri	ix is:	
٠.	(a) diagonal matrix		(b) zero matrix
	(c) column matrix		(d) scalar matrix
<u> </u>			

Multiple Choice Questions

(Encircle the correct answer choice)

1. The equation $ax^2 + bx + 9 = 0$ will be quadratic if

(a) a = 0, $b \neq 0$ (b) $a \neq 0$ (c) a = b = 0(d) b =any real number

2. solution set of the equation $x^2 - 4x + 4 = 0$ is

(a) $\{2, -2\}$ (b) $\{2\}$ (c) $\{-2\}$ (d) $\{4, -4\}$


```
14. 16\omega^4 + 16\omega^8 =
                                                          (d) -1
                    (b) -16
       (a) 0
                                      (c) 16
 15. (-1+\sqrt{-3})^5 + (-1-\sqrt{-3})^5 is equal to
     (a) 0
                      (b) 32
                                     (c) -32
                                                         (d) - 1
 16. The sum of all four forth roots of unity is
      (a) unity
                      - (b) () -
                                      (c) -1
                                                         (d) Non
 17. The product of all four forth roots of unity is
                       (b) 0
       (a) unity
                                    (c) -1
                                                         (d) Non
18. The sum of all four forth roots are 16 is
       (a) 16
                       (b) -16
                                   (c) 0
                                                         (d) 1
19. The Product of all four forth roots of 81 is
       (a) -81
                       (b) 81
                                     (c) 0
                                                     (d) 1
20. The complex cube roots of unity are ..... each other
       (a) Additive inverse of
                                       (b) Equal to each other
       (c) Conjugate of each other (d) Non of these
21. The complex cube roots of unity are ..... each other
      (a) Multiplicative inverse of each other (b) Reciprocal of each other
       (c) Square of each other
                                            (d) all of these
22. The complex forth roots of unity are ... each other
      (a) Additive inverse (b) equal to (c) square of (d) Non
23. If sum of all cube roots unity is equal to x^2 + 1, than x is equal to
      (a)-1
                      (b) 0
                                     (c) \pm i
24. If product of all cube roots of unity is equal to p^2+1, then p is
      (a) -1
                      (b) 0.
                                      (c) \pm i
                                                     (d) 1
25. The complex forth roots of unity are .... each other
      (a) Multiplicative Inverse
                                     (b) complex conjugate
      (c)Additive inverse
                                      (d) all of these
26. The expression a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 a_n \neq 0 is a polynomial
   of degree n, if n is any
       (a) Integer
                                       (b) non-negative integer
       (c) Positive Integer
                                     (d) Real number
27. The expression x^2 + \frac{1}{x} - 3 is
       (a) polynomial of degree 2
                                    (b) polynomial of degree 3
       (c) polynomial of degree 1
                                      (d) not a polynomial
28. If f(x) is divided by x-a; then Divided = (Divisor) (....) + Remainder
       (a) Divisor
                     (b) Dividend
                                      (c) Quotient (d) f(a)
    If f(x) is divided by x-a, then by remainder theorem, Remainder is
                   (b) f(-a) (c) f(a) + R
       (a) f(a)
                                                        (d) x - a = R
30. The polynomial (x-a) is a factor of f(x) if and only if
       (a) f(a) = 0 (b) f(a) = R (c) quotient = R (d) x = -a
```

-		
31.	$x-2$ is a factor of x^2-kx	+4, if k is
• . :	(a) 2 (b) 4	(c) $k = 8$ (d) -4
32.	If $x = -2$ is a root of $kx^4 - 1$	
	(a) 2 (b) -2	(c) 1 $(d) - 1$
33.	$x + a$ is a factor of $x^n + a^n$	when n is
	(a) any integer	
		(d) any real number
34.	$x-a$ is a factor of x^n-a^n , if	n is
•	(a) any integer (c) any odd integer	(b) any positive integer
	(c) any odd integer	(d) any real number
35.	Sum of roots of $ax^2 - bx - c =$	$= 0 \text{ is } (a \neq 0)$
	(a) $\frac{b}{a}$ (b) $\frac{-b}{a}$	(c) $\frac{c}{a}$ (d) $\frac{-c}{a}$
	u u	a a
36.	Product of $ax^2 - bx - c = 0$ is	
•	(a) $\frac{b}{a}$ (b) $\frac{-b}{a}$	(c) $\frac{c}{a}$ (d) $\frac{-c}{a}$
	u u	•
37.	sum of roots of any quadra	
	(a) $\frac{coefficient \ of \ x^2}{coefficient \ of \ x}$	(b) coefficient of x
1.7	coefficient of x	coefficient of x2
	(c) $-\frac{coeffiant\ of\ x}{coeffciant\ of\ x^2}$	(d) $\frac{\text{constant term}}{\text{coefficient of } x^2}$
38.	Product of roots of any qua	
	(a) coefficient of x^2	(b) coefficient of x
	(a) $\frac{coefficient\ of\ x^2}{coefficient\ of\ x}$	(b) $\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$
. •	·	
	(c) $-\frac{coeffiant \ of \ x}{coeffciant \ of \ x^2}$	(d) $\frac{\text{constant term}}{\text{coefficient of } x^2}$
39.	If sum of roots of $7x^2 + px =$	
4.0	(a) 7 (b) 49	(c) -49 (d) q
40.	If product of roots of $7x^2 - y$	
4-4	(a) 7 (b) -7	(c) P (d) 49
41.	If 2 and -5 are roots of a que	dratic equation , then equation is
	(a) $x^2 - 3x - 10 = 0$	$(b) x^2 - 3x + 10 = 0$
40	$(c) x^{2} + 3x = 10 = 0.$	(d) $x^2 + 3x + 10 = 0$ unt of roots of a quadratic equation
42.	it o and P are sum and prod	not of roots of a quadratic equation.
	unen equation is	(b) and + Cont D = 0
	(e) $x^2 + Sx - P = 0$	(b) $x^{3} + Sx + P = 0$ (d) $x^{3} = Sx = P = 0$
	(E) M. HM. I A	$(a) x = 3x = P = 0$ $(a) x = 2x + A = 0$, then value of $\alpha + \beta$
₹¥:		
	(a) $\frac{2}{3}$ (b) $\frac{-2}{3}$	(e) $\frac{1}{2}$ (d) $\frac{1}{2}$
•	7 3 7 3	g g

```
44. If p and q are the roots of 8x^2 - 3x - 16 = 0 then pq is equal to
         (a) 2
                          (b) -2
                                                           (d) None
                                             (c) p + q
 45. If ax^2 + bx + c = 0, then discriminant is
                         (b) \sqrt{b^2 + 4ac}
         (a) \sqrt{b^2 - 4ac}
                                             (c) b^2 - 4ac
                                                            (d) b^2 + 4ac
 46. If roots of ax^2 + bx + c = 0, (a \ne 0) are real, then
        (a) b^2 - 4ac \ge 0
                                              (b) b^2 - 4ac < 0
       (c) b^2 - 4ac \neq 0
                                             (d) b^2 - 4ac \le 0
 47. The roots of ax^2 + bx + c = 0 are imaginary, if
        (a) b^2 - 4ac > 0
                                             (b) b^2 - 4ac < 0
        (c) b^2 - 4ac = 0
                                             (d) b^2 - 4ac \neq 0
     The roots of ax^2 + bx + c = 0 are equal, if
       (a) b^2 - 4ac > 0
                                             (b) b^2 - 4ac < 0
       (c) b^2 - 4ac = 0
                                             (d) b^2 + 4ac = 0
49. If discriminant is positive and perfect square, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
       (c) Rational & distinct
                                        (d) irrational and distinct
50. If discriminant is positive and not perfect square, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
       (c) Rational & distinct
                                       (d) irrational and distinct
51. If discriminant is negative, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
       (c) Rational & distinct
                                        (d) irrational and distinct
52. If discriminant is zero, then roots are
       (a) Real & distinct
                                       (b) Real & equal
       (c) Rational & unequal
                                       (d) None of these
      The roots of 2x^2 - bx + 8 = 0 are imaginary, if
53.
        (a) b^2 < 64 (b) b^2 > 64
                                       (c) b^2 = 64
                                                      (d) b = \pm 8
54. The equation of the form ax^2+bx+c=0 where a, b, c \in R a \neq 0, is called
       (a) Reciprocal equation
                                        (b) Quadratic equation
       (c) Exponential equation
                                       (d) polynomial expression
55. Quadratic equation is also called
       (a) 2<sup>nd</sup> degree polynomial equation
                                            (b) Polynomial expression
       (c) Radical equation
                                           (d) All of these
56. Degree of Quadratic equation is
       (a) 0
                       (b) 1
                                                    (d) None
                                        (c) 2
57. Graph of quadratic equation is
       (a) Straight line
                           (b) Circle
                                       (c) Square
                                                         (d) Parabola
58. Basic techniques for solving quadratic equations is/are
                           (b) 2
                                           (c) 3
                                                            (d) 4
     To solve ax^2 + bx + c = 0 where a, b, c \in R \& a \neq 0, we can use
59.
     (a) Factorization
                                    (b)Completing square
      (c) Quadratic formula
                                       (d) All of these
```

	OBJECTI	/C PAIN 20	
60.	The equation of the form $(x+a)$ Where $a+b=c+d$, can be (a) Reciprocal equation (c) Exponential equation (c)	e converted into b) Quadratic equ	
61.	For any $n \in \mathbb{Z}$, ω^n is equivalen	t to one of	
	(a) 1, ω , ω^2 (b) ω , ω^2		(d) 1, ω^2
62.	$\omega^{28} + \omega^{29} + 1 =$		
	(a) 0 (b) 1	(c) - 1	(d) ω
63.	Four forth roots of unity are		
	(a) ± 1 , $\pm i$ (b) 0, ω, ω^2 (c) 1	$, \frac{-1+i\sqrt{3}}{2}, \frac{1-i-2}{2}$	$\frac{\sqrt{3}}{}$,0 (d)Non
64.	Synthetic division is a process of	f	
	(a) addition (b) multiplication	(c) subtraction	(d) division
65 .	$x^2 + x - 6 = 0$ has roots:		
	(a) Real (b) Equal		(d) Trivial
66.	Roots of equation $x^2 + 2x + 3 = 0$		× 75
.=	(a) real (b) equal		(d) imaginary
67.	If the roots $px^2 + qx + 1 = 0$ are 6	equal, then: $(a) c^2 - 4n = 0$	$(d) n^2 + 4n = 0$
60	(a) $q^2 + 4p = 0$ (b) $p^2 + 4q = 0$ A quadratic equation $Ax^2 + Bx + 1$	C = 0 becomes 1	(u <i>) p 4q -</i> 0 inear equation if
	(a) $C = 0$ (b) $A = 0$		

(a) C = 0

Multiple Choice Questions

(c) B = 0

(Encircle the correct answer choice)

(b) A = 0

1. An open sentence formed by using sign of '=' is called a /an (a) equation (b) formula (c) Rational fraction (d) Theorem 2. If an equation is true for all values of the variable, then it is called (a) a conditional equation (b) an identity (c) proper rational fraction (d) All of these 3. If an equation is true only for particular values of the variable, then it is (a) a conditional equation (b) an identity (d) a formula (c) proper rational fraction 4. $(x+3)(x+4) = x^2 + 7x + 12$ is a / an (b) identity (a) conditional equation (d) Linear factors (c) proper fraction 5. $\sin^2\theta + \cos^2\theta$ is a/an (b) identity (a) conditional equation (d) Theorem (c) proper fraction

6.	To express a single rational funct	ion as a sum of two or more
	single rational functions is called	
	(a) partial fractions	(b) partial fraction resolution
	(c) proper fraction	(d) Improper fraction
7.	When a single rational fraction is	expressed as a sum of two or
	more single rational fractions, the	en each single fraction is called
	(a) partial fractions	(b) partial fraction resolution
	(c) proper fraction	(d) Improper fraction
8.	The value of a, when $(a+b)^2 = a^2 + 2$	
		(b) any real number
	(c) only positive number	(d) cannot be determined
9.	If $\begin{vmatrix} 7x & 3x \\ 2x^2 & p \end{vmatrix} = 7xp - 6x^3$ is a/an	
	$ 2x^2 p $	
	(a) equation (b) identity	
10	. The quotient of two polynomials	$\frac{p(x)}{x}$ $\alpha(x) \neq 0$ is called
¥V.	· The quotient of two polynomian	q(x), $q(x) = 0$ is called
	. (a) Rational fraction	(b)An irrational fraction
-	(c) Proper fraction	(d) Partial fraction
	p(x)	
11.	. A fraction $\frac{p(x)}{q(x)}$ is a proper fraction	ion if
	(a) degree of $p(x) < \text{degree of } q(x)$ (b)	
	(c) degree of $p(x) > $ degree of $p(x)$ (d)	$degree of p(x) \ge degree of q(x)$
12	. A fraction $\frac{p(x)}{q(x)}$ is an improper i	rational fraction if
	q(x)	
٠.	(a) degree of $p(x)$ < degree of $q(x)$	(b) degree of $p(x)$ = degree of $q(x)$
	(c) degree of $p(x) \le$ degree of $p(x)$	(d)degree of $p(x) \ge$ degree of $q(x)$
13.	A mixed form of fraction is	
	(a)an integer + improper fraction	
•	(b)a polynomial + improper fraction	
	(c) a polynomial + proper fraction	
• •	(d)a polynomial + rational fraction	
14.	When a rational fraction is separated	into partial fractions, then kesuit is
•	always (a) a conditional equations	(b) an identity
	(c) a partial fraction	(d) an improper fraction
•	· · · •	
15.	The partial fractions of $\frac{x^2 - 10x + 1}{(x - 1)(x^2 - 5x)}$	are of the form +6)
•		
	(a) $\frac{A}{x-1} + \frac{Bx+C}{x-3} + \frac{Dx+E}{x-2}$	(b) $\frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$ (d) None of these
٠.	(c) $Ax + B$	(d) None of these

16.
$$\frac{x^2 - 5x + 7}{(x - 1)(x^2 - 1)} = \frac{A}{x - 1} + \dots$$

(a)
$$\frac{B}{x+1}$$

(a)
$$\frac{B}{x+1}$$
 (b) $\frac{B}{(x-1)^2} + \frac{C}{x+1}$ (c) $\frac{B}{x-1} + \frac{C}{x+1}$ (d) $\frac{Dx+E}{x^2-1}$

$$(c)\frac{B}{x-1} + \frac{C}{x+1}$$

$$(d) \frac{Dx + E}{x^2 - 1}$$

17. The number of partial fraction of $\frac{x^3}{x(x+1)(x^2-1)}$ are

- (c) 4
- (d) none of these

18. The number of partial fraction of $\frac{x^5}{x(x+1)(x^2-4)}$ free

- (a) 3
- (b) 4
- (c) 5
- (d) 6

19. The number of partial fraction of $\frac{x^4}{x^3-1}$ are

- (d) none of these

(a) 1 (b) 2 (c) 3 (d) none **20.** If, $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$, then B is equal to

- (b) -3 (c) 4

-21. If $\frac{x^2-10x+13}{(x-1)(x^2-5x+6)} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{x-1}$, then C is equal to

If $\frac{2x^2+x^2-x-3}{x(2x+3)(x-1)} = \frac{A}{x} + \frac{8}{2x+3} + \frac{C}{x-1}$, then A is equal to (b) 2 (c) x

- (d) none of these

23. Partial fractions of $\frac{x^2+1}{(x-1)(x+1)}$ are of the form

$$(a) \frac{Ax + B}{x^2 - 1}$$

$$(b) \frac{A}{x-1} + \frac{B}{x+1}$$

(a)
$$\frac{Ax+B}{x^2-1}$$
 (b) $\frac{A}{x-1} + \frac{B}{x+1}$ (c) $1 + \frac{A}{x-1} + \frac{B}{x+1}$ (d) $1 + \frac{Ax+B}{x^2-1}$

(d)1 +
$$\frac{Ax+B}{x^2-1}$$

24. If $\frac{1}{(x+1)^2(x^2-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3}$, then A =

- (a) $\frac{1}{9}$ (b) $-\frac{1}{2}$ (c) $-\frac{1}{9}$

25. A quadratic factor which can not be written as a product of linear factors with real coefficients is called

- (a) an irreducible factor
- (b) reducible factor
- (c) an irrational factor
- (d) an improper factor

Which is a reducible factor

- (a) $x^3 6x^2 + 8x$ (b) $x^2 + 16x$ (c) $x^2 + 5x 6$ (d) all of these

27. Particle fraction of $\frac{1}{r^2-1}$ =

(a)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (b) $\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$

(b)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(c)
$$-\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (d) $-\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$

(d)
$$-\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

28. Partial fraction of $\frac{x^2+1}{x^3+1}$ will be of the form

(a)
$$\frac{A}{x-1} - \frac{B}{x^2 - x + 1}$$
 (b) $\frac{A}{x+1} - \frac{B}{x^2 - x + 1}$ (c) $\frac{A}{x+1} + \frac{Bx+c}{x^2 - x + 1}$ (d) $\frac{A}{x+1} - \frac{Bx+c}{x^2 - x - 1}$

(b)
$$\frac{A}{x+1} - \frac{B}{x^2 - x + 1}$$

(c)
$$\frac{A}{x+1} + \frac{Bx+c}{x^2-x+1}$$

(d)
$$\frac{A}{x+1} - \frac{Bx+c}{x^2-x-1}$$

- 29. Number of partial fractions of the fraction $\frac{1}{x(x-1)^3}$ are:
 - (a) 1
- (c) 3
- 30. Conditional equation 2x + 3 = 0 holds when x is equal to:

(a)
$$-\frac{3}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{1}{3}$

- 31. The quotient of two polynomials $\frac{P(x)}{O(x)}$, $Q(x) \neq 0$ with no common

factor is called:

- (a) algebraic relation
- (b) rational fraction
- (c) partial fraction
- (d) polynomial
- 32. The partial fractions of $\frac{1}{(x+1)(x-1)}$ are:

(a)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$
 (b) $\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$

(b)
$$\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$$

(c)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$

(c)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (d) $-\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$

Chapter - 6

Multiple Choice Questions

(Encircle the correct answer choice)

- 1. An arrangement of numbers according to some definite rule is called

 - (a) Sequence (b) Combination (c) Series
- (d) Permutation

18. Arithmetic mean between c and d is
(a) $\frac{c+d}{2}$ (b) $\frac{c+d}{2cd}$ (c) $\frac{2cd}{c+d}$ (d) $\frac{2}{c+d}$
19. If $a_{n-1}a_n$, a_{n+1} are in A.P then $a_n =$
(a) $\frac{a_{n-1}+a_{n+1}}{2}$ (b) $\frac{a_{n+1}-a_{n-1}}{2}$ (c) $a_{n+1}-a_{n-1}$ (d) $\frac{a_{n-1}-a_{n+1}}{2}$
20. The Arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is
(a) $4\sqrt{2}$ (b) $\frac{4}{\sqrt{2}}$ (c) $\sqrt{2}$ (d) none of these
21. The sum of terms of a sequence is called
(a) Partial sum (b) Series (c) Finite sum (d) none of these
22. Forth partial sum of the sequence $\{n^2\}$ is (a) 16 (b) 1 + 4 + 9 + 16 (c) 8 (d) 1 + 2 + 3 + 4
23. Sum of n term of an Arithmetic series S_n is equal to
and the companies of the companies of the contract of the cont
(a) $\frac{n}{2}[2a + (n-1)d]$ (b) $\frac{n}{2}[a + (n-1)d]$
(c) $\frac{n}{2} [2a + (n+1) d]$ (d) $\frac{n}{2} (2a+1)$
24. Sum of n term of an Arithmetic series in S_n is equal to
(a) $\frac{n}{2}$ $(a_1 + a_n)$ (b) $\frac{n}{2}$ $(a_1 - 1)$ (c) $\frac{a + a_n}{2}$ (d) $n(a_1 + a_n)$
25. For any G.P the common ratio r is equal to
(a) $\frac{a_n}{a_{n+1}}$ (b) $\frac{a_{n-1}}{a_n}$ (c) $\frac{a_n}{a_{n-1}}$ (d) $a_{n+1} - a_n$ for $n \in \mathbb{N}, n > 1$
26. No term of a G.P is
(a) 0 (b) 1 (c) negative (d) imaginary number 27. The general term of a G. P is
(a) $a_n = ar^{n-1}$ (b) $a_n = ar^n$ (c) $a_n = ar^{n+1}$ (d) $a_n = \frac{a}{r^n-1}$
28. If a, G, b are in G.P, then
(a) $G = ab$ (b) $G = \pm \sqrt{ab}$ (c) $G = \frac{a+b}{2}$ (d) $G = \frac{2ab}{a+b}$
29. If a, G, b are in G.P, then G is called
(a) common ratio (b) Geometric mean
(c) centre (d) Geometric series 30. If G_1 , G_2 , G_3 , G_n be Geometric means between a and b , then $G = a$
$\underline{\underline{f}}$
(a) $\sqrt{G_1 G_2 \dots G_n}$ (b) $(G_1 G_2 \dots G_n)^n$
(c) $\frac{G_1 + G_2 + + G_n}{n}$ (d) $\frac{1}{n}$ (G ₁ , G ₂ ,, G _n)

31. Sum of n term of a geometric series S_n is equal to

(a)
$$\frac{a(1-r^n)}{1-r}$$
 (b) $\frac{a(1-r^{n-1})}{1-r}$

$$(c)\frac{a(r^n-1)}{1-r}$$

(c) $\frac{a(r^{n}-1)}{1-r}$ (d) ar^{n-1} , for $r \neq 1$

32. The sum of infinite geometric series is valid if

(a)
$$|r| > 1$$

(b)
$$|r| = 1$$

(a)
$$|r| > 1$$
 (b) $|r| = 1$ (c) $|r| \ge 1$ (d) $|r| < 1$

33. For the series $1+5+25+125+\ldots+\infty$, the sum is

$$(a) - 4$$

(c)
$$\frac{1-5^n}{-4}$$

(d) not defined

34. An infinite geometric series is convergent if

(a)
$$|r| > 1$$
 (b) $|r| = 1$ (c) $|r| \ge 1$

(b)
$$|r| = 1$$

(c)
$$|r| > 1$$

(d)
$$|r| < 1$$

35. An infinite geometric series is Divergent if

(a)
$$|r| < 1$$

(b)
$$|r| \neq 1$$

(c)
$$r = 0$$

(d)
$$|r| > 1$$

36. If sum of a series is defined, then it is called

(a) Convergent series

(b) Divergent series

(c) finite series

(d) Geometric series

37. If sum of a series in not defined, then it is called

(a) Convergent series

(b) Divergent series

(c) finite series

(d) Infinite series

38. If the series $\frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \dots$ is convergent, then

(a)
$$|x| \leq 2$$

(a)
$$|x| \le 2$$
 (b) $|x| \le 1$

(c)
$$0 < x < 2$$
 (d) $|x| \ge 2$

39. If the series $\frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + ...$ is Divergent, then

$$(a) \mid \frac{2}{3}x \mid < 1$$

(a)
$$|\frac{2}{3}x| < 1$$
 (b) $\frac{2}{3}|x| < 1$ (c) $|x| \ge 1$ (d) $|\frac{2}{3}x| \ge 1$

(c)
$$|x| \ge 1$$

$$(d) \mid \frac{2}{3}x \mid \geq 1$$

40. The interval in which series $1 + 2x + 4x^2 + 8x^3 + ...$ is convergent is

(a)
$$-2 \le x \le 2$$

(b)
$$-\frac{1}{2} < x < \frac{1}{2}$$

(a)
$$-2 < x < 2$$
 (b) $-\frac{1}{2} < x < \frac{1}{2}$ (c) $|2x| > 1$ (d) $|x| < 1$

41. If the reciprocals of the terms of a sequence form an A.P, then it is

- (a) Harmonic sequence
- (b) Arithmetic sequence
- (c) Reciprocal sequence
- (d) series

42. The n^{th} term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$ is

(a)
$$\frac{1}{3n-1}$$
 (b) $3n-1$

(b)
$$3n - 1$$

(c)
$$2n + 1$$

(c)
$$2n+1$$
 (d) $\frac{1}{3n+1}$

43. General term of an H.P is

(a)
$$a_n = \frac{1}{a + (n+1) d}$$

(b)
$$a_n = \frac{1}{a + (n-1) d}$$

(c)
$$a_n = \frac{1}{a+nd}$$

(d)
$$a_n = a + (n \ 1) d$$

44.	. Harmonic mea	in between 2	and 8 is		
	(a) 5	(b) $\frac{16}{5}$	$(c) \pm 4$	$(d) \frac{5}{16}$	
45.	If A,G, and H	are Arithmet	tic, Geometric	and Harmoi	nic means
	between two pe	sitive numbe	er, then		,
	(a) $G^2 = A H$		(b) A, G, H	are in G.P	
	(c) $A > G > H$	••	(d) all of the		
46.	If A, G, and H				onic means
	between two ne	· ·			
	(a) $G^2 = A H$	1	(b) A, G, H a	are in GP	
	(c) $A < G < H$	* *	(d) all of the		$\varphi_{i} = \varphi_{i} = \varphi_{i} \circ f_{i} = \emptyset$
47	If a and b are	•	* * .		•
7,1	(a) A< G <h< td=""><td></td><td></td><td>. C.</td><td></td></h<>			. C.	
	(a) $A = G = H$		(b) A > G > I		
40	* = * =		(d) $A \ge G \ge H$	•	
48.	If a and b are				
•	(a) A< G <h< td=""><td></td><td>(b) $A > G > I$</td><td></td><td>•</td></h<>		(b) $A > G > I$		•
			(d) $A \leq G \leq H$		
49.	If a and b have		the state of the s		
	(a) an imagin	ary number	(b) non zero	real numbe	r i i i i i i i i i i i i i i i i i i i
	(c) Real num	ber	(d) Negative		
	If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ i				
OU.	$a^n + b^n$	s A.M Detwe	en a & b, then	n is equal	to
		<u>.</u> .		1	
-	(a) 0	(b) -1	(c) 1	$(d)\frac{1}{2}$	
		•			•
51.	If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is	s G.M betwee	en $a & b$, then	n is equal	to.
	<i>u</i> " + <i>u</i> " .			•	
	(a) 0	(b) - 1	(c) 1	(d) $\frac{1}{2}$,
		73.7		- L	
52	If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ is	H M between	an a A h than		ŧo.
D #1	$a^n + b^n$	tt int Derme	and or o' men	ı wıs ednar	10
-	(a) 0	4	17.X & 17.X X	1 1	As a second
	(a) 0	(0)-1	(c) 1	$(a) \frac{\pi}{2}$	
		,,,,,,	1 1	1	
58.	If a, ar2, ar4	form a G. F	then a are	$\frac{1}{ar^4}$ is	
	(a) an A . P		(b) a G .P	er	,
		•		al agairage	· · · · · · · · · · · · · · · · · · ·
# 4	(c) an H. P		(d) a reciproc	ar sedneuca	
94,	$\sum n$ is equal to		94	. 4.50	
	(a) $\frac{n(n+1)}{n(n+1)}$	(b) $\frac{n(n+1)(2)}{n(n+1)(2)}$	$\frac{n+1)}{} (e) \frac{n^{2}($	$\frac{n+1)^3}{2} \qquad (d)$) nº
		6	(4)	2	, 18
55.	$\sum n^2$ is equal to			-	* * * * * * * * * * * * * * * * * * *
• • • •	$(n) \frac{n(n+1)}{n}$	n(n + 1)(2	$\frac{n+1)}{n} \text{(e) } \frac{n^9}{n}$	$n+1)^2$	n^2
		(B) <u>e</u>	(e) ===	0 (0) n=

56.	$\sum n^3$ is equal t	to		
	(n) $\frac{n(n+1)}{n(n+1)}$	b) $\frac{n(n+1)(2n+1)}{6}$	$n^2(n+1)^2$	(d) $\frac{n(n+1)^2}{n(n+1)^2}$
	(a) 2 (^{b)} 6	4	(u) 2
57.	$If S_n = (n+1)^2$	then S2n is equ		
	(a) $2n + 1$		(b) $4n^2 + 4n$	
٠,	(c) $(2n-1)^2$			determined
58 .		${ m A.Ms}$ between a ${ m d}$	b is equal to	
÷.	(a) $n\left(\frac{a+b}{2}\right)$	(***	(b) $n(a+b)$	
- :	(a) $n\left(\frac{1}{2}\right)$			
	(c) $n [a + (n -$	- 1) d l	(d) $a + (n-1)$) d
	•	A.Ms between 2 &		
	· ·	(b) 50		(d) 10
60 .		e +ve distinct real		e G.M. betweer
		their A.M.		
٠		han A.M.		
61.		a-d, a , $a+d$ are		
			(b) geometric p	rogression
	(c) harmonic j	progression	(d) harmonic s	eries
62 .	If $ r < 1$, the	$n, S_n =$		
	$a_1(1-r^n)$	$a_1(r''-1)$	$a_1(r^n-1)$	$a_1(1-r^n)$
	(a) $\frac{1-r}{1-r}$	(b) $\frac{a_1(r''-1)}{1-r}$	r-1	r-1
63		tations, AH equa	_	
	(a) A ²	`	(c) G ²	$(d) -G^2$
64	•	, then a_n is equa	• • • • • • • • • • • • • • • • • • • •	
V T.				(d) $2n + 1$
C E		(b) $2n-3$		(u) 2/6 · 1
00.		tation <i>n</i> th term o		n=1)d
	(c) $a_n = a_1 + a_n$	+1)d	(d) $a_n = a_1 + (a_1 + a_2)$	a = 1
	G. M between		(4) 4, 41	
.		i (b) 4 or -4	(c) $16 \text{ or } -16$	(d) 3 or -5
67.		-2 and 8 equals:		(-7
•••				
	(a) $\frac{5}{16}$	(b) $\frac{-16}{3}$	(c) _	(d) $\frac{16}{16}$
00	•	**	<i>J</i>	10
00.	$n^{ m th}$ term of $\Lambda.1$	The same of the sa		
٠.	(a) $a_1 + nd$	(b) $a_1 + (n-1)d$	(c) $na_1 + d$	(d) $\frac{a_1}{1} + d$
				n
gg.	Fifth term of	1 1 1 is		
.	I Holl octile Of	3 5 7		
-	(a) 1/9	(b) 9	(c) 1/11	(d) 11

-		
	OBJECTIVE PART	35
70.	$\frac{1}{2}, \frac{1}{7}, \frac{1}{12}, \dots$ is:	
71.	(a) An A.P (b) G.P (c) H.P If G_1 , G_2 , G_n are n geometric then $(G_1 . G_2$	(d) Harmonic series means between a and b ,
•	(a) $\frac{a+b}{2}$ (b) $\frac{2ab}{a+b}$ (c) \sqrt{ab}	(d) $\frac{a+b}{2ab}$
72 .	Harmonic mean between two numbers	
,	(a) $\frac{a+b}{2}$ (b) $\pm \sqrt{ab}$ (c) $\frac{2ab}{a+b}$	$(d)\frac{a+b}{2ab}$
73.	General term of a sequence is $(-1)^n n^2$. (a) -4 (b) -16 (c) 16	
Cl	napter - 7 Multiple Ch	oice Questions
	(Encircle the correct ansu	
1.	The factorial notation was introduced by	,
	(a) Christian kramp (b) Newton	the state of the s
	n! = n(n-1) (n-2) 3.2.1 is defined or	
•	(a) positive integer (b) an ir	
		e number
3.	0! is equal to	
4.	(a) 0 (b) 1 (c) -1	(d) not defined
4.	(-1)! is equal to	(d) not defined
Ę.	(a) 0 (b) 1 (c) -1	(a) not defined

C	hapter - 7	Multiple Cl	noice Questions
•	المستحدث الم	ne correct ans	
1.	The factorial notation w	as introduced l	ру
	(a) Christian kramp	(b) Newton	(c) Candy (d) Boyal
2.	$n! = n(n-1) (n-2) \dots 3.5$	2.1 is defined of	only when n is
• • •	(a) positive integer	(b) an	integer
	(c) Real number	(d) who	ole number
3.	0! is equal to		
	(a) 0 (b) 1	(c) - 1	(d) not defined
4.	(-1)! is equal to		
			(d) not defined
5 .	The factorial form of		
	(a) $\frac{12!}{9!}$ (b) 12!	(c) $(\frac{12}{9})$! (d) (12!) (9!)
6.	The factorial form of n (r	$(n-1)(n-2)\dots$	(n-r+1) is
	(a) $\frac{n!}{(n-r)!}$ (b) $\frac{n!}{n-r!}$		
7.	The factorial form of 6.5	.4 is	
٠.	(a) $(\frac{6}{3})!$ (b) 6!	(c) 5!	(d) None of these
8.	If an event A can occurs number of way that both	and the second s	
	(a) $p' + q$ (b) $p. q$	\' (c) (pq)!	$(\mathbf{d})(p+q)!$
9.	An arrangement of n objects	according to son	ne definite order is called
	(a) Combination (c) factorial	(b) permuta	ation
	(c) factorial	(d) ordered	arrangement

10. An arrangemen	t of n objects	,without any ord	ler is called
(a) Combination	o n	(b) permutati(d) ordered ar	on
(c) factorial		(d) ordered ar	rangement
11. An arrangemen any order is	t of n objects	taking r out of t	hen at a time withou
	(h) "P.	(c) $(n+r)!$	(d)(nr)!
12. An arrangemen	t of n objects	taking r out of t	hen at a time, with
some definit	e order is		(1) ()
(a) ${}^{n}C_{r}$	(b) $^{n}P_{r}$	(c) $(n+r)!$	(a) (nr) i
13. 8.7.6 is equa	l to		$\mathcal{L}_{\mathcal{A}} = \{ (x,y) \in \mathcal{A} \mid x \in \mathcal{A} \mid x \in \mathcal{A} \mid x \in \mathcal{A} \} $
(a) 8P_3	(b) 8C_3	(c) 8P_5	(d) °C ₅
14. In a permutation	on " P_r or $P(n,$	r), it is always	true that
(a) $n \ge r$	(b) $n < r$	(c) $n \leq r$	(d) $n < 0, r < 0$
15. Different signals	of 5 flags of di	fferent colures , us	ing 3 at a time is
(a) 60	(b) 5	(c) 120	(d) 10
16. If $r = n$, then "	Pr is equal to		
(a) r!	(b) (<i>n</i> - <i>r</i>)!	(c) 1	(d) 0
17. ¹⁰ P ₇ is equal to			
(a) 10	(b) 720	(c) 120	(d) non of these
18. If these are p li	ke object of o	ne kind $$ and q li $$	se object of 2 nd kind
out of n objects.	then differen	nt permutation a	re
	$\frac{n!}{(pq)!}$ (b) $\frac{n!}{(pq)!}$		(d) n! - 1
19. Different circul			re
(a) n!	(b) $(n-1)$	(c) $(n+1)!$	(d) $n! - 1$
20 The number of	wave that a r	ecklace of n bear	ds of different colure
be made is			
(a) n!	(b) $\frac{n!}{n!}$	(c) $\frac{n!-1}{2}$	(d) $\frac{(n-1)!}{2}$
	·	the state of the s	
21. The numbers of	permutation	is of the word PA	NAMA are
(a) 120	(b) 20	(c) 10	(d) 60
22. The numbers of word starts wit	f permutation h P is	of the word PAI (c) 10	NAMA when each
(a) 120	(b) 20	(c) 10	(d) 60
23. 5 Persons can	be seated at a	round table in v	vays
(a) 120	(b) 24	(c) 720	(d) 12
24. "Pr is equal to			1.
n!	\cdot n	<u> </u>	n
(a) $\frac{1}{r!}$	(b) $r!(n-r)$	(c) $\frac{n!}{(n \cdot r)!}$	(a) $\overline{r!(n+r)!}$
of legens of to			
n!	n!	(e) $\frac{n!}{(n-r)!}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(a) 	(b) $r!(n-r)$	(e) $\overline{(n-r)!}$	$\frac{(\alpha)}{r!(n+r)!}$

26. (Complementary co			, i
	$(a) {}^{n}C_{r} = {}^{n}C_{r-1}$	(b) ${}^nC_r = {}^nC_r$	$_{n-r} (c) {}^{n}C_{r+1} = {}^{n}C_{r}$	$r-1$ (d) $^nC_r=^nI$
27. I	f ${}^{n}C_{8}={}^{n}C_{12}$, ther	n is equal to		
•	(a) 8		(c) 20	(d) 4
28. 7	The number of Tri			
	(a) nC_3		(c) ${}^{n}P_{3}-n$	(d) ${}^{n}C_{3}-n$
29.	$n-1C_r + n-1C_{r-1}$:	■.		
	(a) $n-1C_r$	(b) **C**	(c) $n-1C_{r-1}$	(d) ${}^{n}C_{r-1}$
30 .	$nC_7 + nC_8 =$		•	
	(a) $n+1C_7$	•		(d) *C ₉
31. T	he number of Dia	gonals of a 5 s	sided polygon is 🔻	
	(a) 5.	(b) 20	(c) 15	(d) 10
32. T	he number of Tri	angles of a 5	sided Polygon is	
:	(a) 5		(c) 15	` ' .
33. A	hockey 11 out of	15 players be	selected, differen	t teams if a
par	rticular players m			
	(a) $^{15}C_{11}$	(b) $^{15}P_{11}$	(c) $^{14}C_{10}$	(d) $^{14}C_{10}$
34. T	'he set of all possi			is
	(a) Sample space	e	(b) Event	
•	(c) Simple Even	it	(d) Random I	Experiment
35. A	ny particular out	come of an exp	periment is called	•
	(a) Sample space	e	(b) an Event	
	(c) a Trial		(d) Random Va	
3 6. A	fair coin is tossed	d, the probabil	ity of getting a he	ead or tail is
$= \frac{e^{-f_0}}{e^{f_0}}$	(a)1 (t	o) 0	(c) $\frac{1}{2}$	d) $\frac{1}{4}$
37. F	or two events A ar	d B if A∩B=	ϕ , then events A ar	id B are called
	(a) mutually ex	clusive	(b) not mutually	exclusive
	(c) Overlapping		(d) dependent eve	ents
	A and B are mutua			
	(a) 0 (b) 1	(c) between	en 0 and 1 (d) r	not defined
39.			ual chance of occ	
	the events are			
	(a) Equally like	ly	(b) Not equally li	kely
4	(c) Dependent		(d) not mutually	exclusive
40. I	f E be an event of	a sample spac	e S, then	
,	n(E)	(1) O . TO(TS) 4.		
	(a) $P(E) = \frac{n(E)}{n(S)}$	$(b) \ 0 < P(E) <$	1 (c) P(E) > 1 (c)	i) all of these
	f E be an event of	And the second second		
	(a) $P(E) = \frac{n(S)}{n(E)}$		$(b)0 \le P(E) \le 1$	
•	$(a) \cap P(F) < 1$		(d) all of these	

42. If an event always occurs, then i	
(a) Null event	(b) possible event
(c) certain event	(b) possible event (d) independent event -
43. If E is a certain event, then (a) $P(E) = 0$ (b) $P(E) = 1$	
44. If E is an impossible event, then $(a) P(E) = 0 (b) P(E) = 1$	(c) $P(E) \neq 0$ (d) $0 < P(E) < 1$
45. Non occurrence of an event E is	
· · · · · · · · · · · · · · · · · · ·	(c) E ^c (d) all of these
46. If E be an event of a sample space	ce S. then
(a) $P(E)=1+P(\overline{E})$	b) $P(\overline{E})=1+P(E)$
(c) $P(E)=1-P(\overline{E})$ (d) $P(\overline{E}) = 1 - P(E)$
47. Let $S = \{1, 2, 3,, 10\}$ the probabilit	y that a number is divisible by 4 is
(a) $\frac{2}{5}$ (b) $\frac{1}{5}$	
48. There are 5 green and 3 red ball	s in a box. One ball is taken, the
probability that ball is green	
(a) $\frac{3}{8}$ (b) 1	$\frac{15}{2}$ (d) $\frac{15}{2}$
•	0
49. These are 5 green and 3 red bal probability of getting a black	
(a) 0 (b) 1 . (c)	$\frac{15}{8}$ (d) $\frac{15}{64}$
50. Three dice are rolled simultaneo	usly, then $n(S)$ is equal to
(a) 36 (b) 18 (c)	216 (d) 6
51. A coin is tossed 5 times, then n (
(a) 32 (b) 25 (c)	
52. A bag contain 40 balls out of whi	ich 15 are black, then probabilit
of a ball not black is	
(a) $\frac{3}{8}$ (b) $\frac{5}{8}$ (c)	$\frac{15}{9}$ (d) $\frac{15}{64}$
53. Two teams A and B are playing team A dose not loose is	
(a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c)	1 (d) 0
54. If $P(E) = \frac{7}{12}$, $n(S) = 8400$, $n(E) = 8400$	E) is equal to
(a) 108 (b) 4900 (c)	144 (d) 14400
55. A die is rolled, the probability of	getting 3 or 5 is
(a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c)	$\frac{15}{36}$ (d) $\frac{1}{36}$

EC	A dia ia malla:	l tha muchahi	عدمه عم سند	9 an an aria	
90.				ing 3 or an eve	
	(a) $\frac{1}{12}$	(b) $\frac{2}{3}$	(c) $\frac{1}{3}$	(d) non o	f these
57.	A coin is toss	ed 4 times, th	en probab	lity that at lea	st one head
		in 4 tosses is			
		•	•	3	
	(a) $\frac{1}{16}$	(b) $\frac{15}{16}$	(c) $\frac{1}{4}$	(d) $\frac{3}{4}$	
58.	If A and B ar	e disjoint ever	nt, then P(A ∪B) is equa	lto
	(a) P(A) +	P(B)	(b)]	P(A). P(B)	
	(c) $P(A) +$	$P(B) - P(A \cap I)$	3) (d)	P(A∩B)	•
59 .				en P(A UB) is	equal to
-		+ P(B)	the second second		
		$+ P(B) - P(A \cap$			
60					JB) is equal to
00,	_		_		ייי וייי sednat היי וייד ה
	(a) $\frac{3}{5}$	(b) $\frac{2}{5}$	(c) $\frac{9}{100}$	(d) 0	•
	· · · · · · · · · · · · · · · · · · ·	t i ga	,	ř.	
61.			occurrence	or non occurrence	ce of each other
•	then, these			_	
				Dependent ev	
	(c) Equal (Different ever	
62 .	If two event	effect the occ	urrence o	r non occurren	ce of each
•	other, then	these are call	ed	•	
	(a)Indeper	dent events	(b)	Dependent ev	ents
	(c) Equal e			Different ever	
63.]	If A, B and C	are Independ		then P(A∩B∩	
				P(A). $P(B)$. $P(C)$	
	(c) $P(A \cup A)$	BÙ <i>Ć</i>)		none	-
64		are disjoint	events the	en P(AUBUC	hie consol to
U-T. 1					
•	(a) P(A) = (a) P(A) P(A) P(A) P(A) P(A) P(A) P(A) P(A	r(D) + r(C)	(0) <i>P(A). P(B) .P(</i>) none	()
				and the second s	
65.]	$If P(A) = \frac{5}{7},$	$P(B) = \frac{7}{9}, P($	A`∩B) is e	qual to	
3 * -	5	3		94	
	(a) $\frac{3}{9}$	(b) $\frac{3}{4}$	(c)	94 63 (d) Noi	ne of these
•				•	
66. I	f A and B are t	wo independe	nt events ,P	$(A \cap B) = \frac{1}{169}, P(A$	$A = \frac{1}{13} , P(B) =$
	$\sqrt{-1}$	$a \cdot \frac{1}{a}$	7 V a.	$(d) \frac{12}{169}$	
·	(a) $\overline{13}$	(b) $\overline{2097}$	(c) 1	$^{(d)}$ $\overline{169}$	
67. 7	The number of	ways for sitting	4 persons	in a train on a	straight sofa is
	(a) 24	(b) 6	(c) 4		ne of these
68 1				sofa, the total	
	(a) 24	The second secon		(d) None	

69.	of card that it is a			g cards. The pro	Dabinty
	(a) $\frac{2}{13}$		•	(d) $\frac{17}{13}$	
70.	If ${}^{n}C_{6} = {}^{n}C_{12}$, then	n equals			
	(a) 18	(b) 12.	(c) 6	(d) 20	••
71.	For independent				
	(a) P(A) + P(B)		(b) P(A) -		
•	(c) P(A) . P(B)		(d) $\frac{P(A)}{P(B)}$		
72.	If $\binom{n}{12} = \binom{n}{8}$, th	en the value	$e ext{ of } n =$		
-	(a) 15	(b) 16	(c) 18	(d) 20	
73.	If A and B are di	A CONTRACTOR OF THE CONTRACTOR		•	
	(a) P(A) + P(B)		(b) P(A) +	$P(B) - P(A \cap B)$)
	(c) P(A) - P(B)	$+ P(A \cap B)$	(d) P(A)*	$P(B) - P(A \cap B)$	
74.	With usual notat				
Ē		(b) 0	(c) 0 !	(d) n!	
75 .	If ${}^nc_6 = {}^nc_8$ then,	n equals:			
	(a) 20	(b) 24	(c) 14	(d) -14	•
76.	Sample space for	tossing a co	oin is:		
	. (a) {H}				
77.	Probability of no	n-occurrence	of an event	E is equal to:	
	(a) $1 - P(E)$ (b) $P(E) + \frac{n(n)}{n(n)}$	$\frac{s}{E}$ (c) $\frac{n(s)}{n(E)}$) (d) 1+ P(E)	
					•
Ch	apter - 8	Mu	ltiple Choic	e Questions	
	(Encir	rcle the cor	rect answer	choice)	_
1. 7	and the second s	u > 3u + 4 is	the state of the s		•
٠.	(a) $n=0$	(b) <i>i</i>			
0 7	$(c) \ n \geq 2$	• • •	i is any posit	ave integer	•
Z.	The statement 3^n			(d) = = e	
о п	(a) $n=2$				•
ø.	The general term o	T MIC OTHORN	rat cyhatteioi	15 (15 T N)" 18	

4. The number of terms in the expansion of $(a + b)^n$ are

(b) n + 1

```
5. In the expansion (a + x)^n, the sum of exponents of a and x is
       (a) n
                       (b) n-1
                                        (c) n+1 (d) 2n
 6. The (r+1) th term in the expansion of (a+x)^n is
      (c) \binom{n}{x} a^{n-r+1} x^{r+1}
 7. In the expansion (a + x)^n the exponent of 'a'
       (a) decreases from n to 0
                                         (b) Increases from 0 to n
       (c) remains n every where
                                        (d) becomes n at the end
8. In the expansion (a + x)^n the exponent of 'x'
       (a) decreases from n to 0
                                               (b) Increases from 0 to n
       (c) remains n every where
                                          (d) becomes 0 at the end
9. Middle term/s in the expansion of (a + b)^{11} is/are
                (b) T<sub>5</sub> & T<sub>6</sub>
                                         (c) T_6 \& T_7
                                                              (d) T<sub>5</sub>
10. Middle term/s in the expansion of (a-3x)^{14} is/are
                      (b) T<sub>8</sub>
                                         (c) T_6 \& T_7
      6^{th} term of the expansion (a+2x)^{13} is
      (a) \binom{13}{5}a^8. x^5. (b) \binom{13}{5}a^8. 2^5. x^5. (c) \binom{13}{8}a^5. x^8. (d) \binom{13}{8}a^5. 2^8. x^8
      4th term from the end in the expansion of (a + b)^9 is
12.
         (a) T_6
                  (b) T_4
                                        (c) T<sub>7</sub>
                                                          (d) non of these
13. The term independent of x in the expansion of (a + 2x)^n is
      (a) first term (b) Middle term (c) last term (d) 2<sup>nd</sup> last term
14. The coefficient of the last term in the expansion of (2-x)^7 is
       (a) 1
                      (b) -1 (c) 7
15. Sum of all binomial coefficients in the expansion of (a + x) is
         (a) 2^{n}
                       (b) 2^{n-1}
                                       (c) 2^{n+1}
                                                         (d) n + 1
16. Sum of odd binomial coefficients in the expansion of (a + x)^n is
         (a) 2^n
                       (b) 2^{n-1}
                                        (c) 2^{n+1}
                                                          (d) n + 1
17. Sum of even binomial coefficients in the expansion of (a + x) is
         (a) 2^n
                       (b) 2^{n-1}
                                        (c) 2^{n+1}
                                                         (d) n + 1
            (b) 2^{n+1} (c) 2^{n-1} (d) cannot be determined
                 +\binom{2n}{2}+\ldots+\binom{2n}{2n} is equal to
                                       (c) 2^{2n-1}
          (a) 2^n
                        (b) 2^{2n}
```

2 0,	If n is odd, the middle term/s in $(a + x)^n$ is/are
	(a) $(\frac{n+1}{2})^{\text{th}}$ (b) $(\frac{n}{2}+1)^{\text{th}}$
,	(c) $(\frac{n+1}{2})^{\text{th}} \& (\frac{n+3}{2})^{\text{th}}$ (d) $(\frac{n}{2}+1)^{\text{th}} \& (\frac{n}{2}+2)^{\text{th}}$
21.	If n is even the middle terms in $(a + x)^n$ is
	(a) $(\frac{n+1}{2})^{\text{th}}$ (b) $(\frac{n}{2}+1)^{\text{th}}$
	(c) $(\frac{n+1}{2})^{\text{th}} & (\frac{n+3}{2})^{\text{th}}$ (d) $(\frac{n}{2}+1)^{\text{th}} & (\frac{n}{2}+2)^{\text{th}}$.
22.	Which term of $(x + 2)^8$ is independent of x
	(a) First (b) Second (c) Middle (d)Last
23.	The series $(1+x)^n$ is valid if
	(a) $x < 1$ (b) $-1 < x < 1$ (c) $x > 1$ (d) $x = 1$
24.	$1 + x + x^2 + x^3 + \dots$ is equal to
	(a) $(1+x)^{-1}$ (b) $(1-x)^{-1}$ (c) $(1+x)^{-2}$ (d) $(1-x)^{-2}$
25.	$1 - x + x^2 - x^3 + \dots$ is equal to
	(a) $(1+x)^{-1}$ (b) $(1-x)^{-1}$ (c) $(1+x)^{-2}$ (d) $(1-x)^{-2}$
26.	When n is negative or fraction, then general term of $(1+x)^n$ is
	(a) $T_r = \frac{n(n-1)(n-2)(n-r+1)}{r!} x^r$
	n(n-1)(n-2) (n-r+1)
· .	(b) $T_{r+1} = \frac{n(n-1)(n-2)(n-r+1)}{r!} x^r$
	(n)
	(c) $T_r = n(n-1)(n-2) 3.2.1. x^r$ (d) $T_{r+1} = {n \choose r} x^r$
• •	
27.	If $T_{r+1} \neq \begin{pmatrix} 10 \\ r \end{pmatrix}$ $(-2)^r (x)^{10-2r}$, The term independent of x is
	(a) 10 th (b) 5 th (c) 4 th (d) 6 th
28.	The sum of exponents of a and b in every term of the expansion $(a + b)^{a}$ in
*	(a) 1 (b) 0 (c) $2n$ (d) n
29.	The expansion of $(1-2x)^{-2}$ is valid if
	(a) $ x < 0$ (b) $ x < \frac{1}{2}$ (c) $ x < 2$ (d) $ x < 1$
30.	$n^2 > n + 3$ is true for:
	(a) $n \ge 3$ (b) $n \ge 1$ (c) $n \ge 2$ (d) $n \ge -1$
31.	If n is odd number, then middle term in expansion $(a + x)^n$ is:
	(a) $\frac{n+1}{2}$ (b) $\frac{n+3}{2}$ (c) $\frac{n-1}{2}$ (d) $\frac{n+1}{2}$ and $\frac{n+3}{2}$

OBJECTIVE PART The expansion $(1-4x)^{-2}$ is valid if: (a) $|x| < \frac{1}{4}$ (b) $|x| > \frac{1}{4}$ (c) -1 < x < 1 (d) |x| < -133. The middle term in the expansion of $(a+b)^n$ is $(\frac{n}{2}+1)$; then n is: (a) odd (b) even (c) prime (d) none of these 34. Number of terms in the expansion of $(1 + x)^n$ is: (b) n/2(c) n-1(d) n + 1The number of terms in the expansion of $(a + b)^{20}$ is: (a) 18 (b) 20 (d) 19° Chapter - 9 Multiple Choice Questions (Encircle the correct answer choice) 1. Two rays with a common starting point form: (a) Triangle (b) Angle (c) Radian (d) Minute 2. The common starting point of two rays is called: (b) Initial point (a) Origin (c) Vertex (d) All of these 3. If the rotation of angle is counter clockwise, then angle is: (a) Negative (b) Positive (c) Non-negative (d) None of these 4. If the initial ray OA rates in anti-clockwise direction in such a way that it coincides with itself, the angle then formed is: (a) 180° (b) 270° (c) 300° 5. One Rotation in anticlockwise direction is equal to (a) 180° (b) 270° (c) 360° (d) 90°

6. Straight line angle is equal to

(a) $\frac{1}{2}$ rotation (b) π radian (c) 180° (d) All of these

7. One right angle is equal to is equal to

(a) $\frac{\pi}{2}$ radian (b) 90° (c) $\frac{1}{4}$ rotation (d) All of these

8. 1º is equal to

(a) 30 minute (b) 60 minute (c) $\frac{1}{60}$ minute (d) $\frac{1}{2}$ minute

9. 1° is equal to

(a) 360'' (b) 3600'' (c) $\left(\frac{1}{360}\right)$ (d) 60''

10.	60th part of 1° is equal to	en de la companya de La companya de la co	
	(a) One Second (b) One minutes	ute (c) 1 Radian	(d) π Radian
11.	60th part of 1' is equal to		
	(a)) 1' (b)) 1"	(c) 60"	(d) 3600"
12.	3600th part of 1° is equal to		
•	(a) 1' (b), 1"	(c)) 60"	(d)) 3600"
13.	Sexagesimal system, is also calle	d:	
	(a) German sys' tem	(b) English s	ystem
	(c) C.G.S systr _{em}	(d) S I syster	n
14.	16°30' is equal to		
	(a) 16.5° (b) $\frac{32^{\circ}}{2}$	(c) 16.05°	(d)16.2°
15.	Conversion of 21.256° to D°m's"	form is:	
	(a)21°, 25/, 6" (b) 21°, 40° 27"		(d) 21°, 30′, 2
16.	The an gle subtended at the cent	re of the circle by	an arc whose
	ler gth is equal to the radius of		
	(a) 1 Degree (b) 1'		
17.	The system of angular measurer	nent in which an	gle is measure
	in radian is called:		
-	(a) Sexagesimal system	(b) Circular sys	stem
	(c) English system	(d)Gradient sy	stem
18	. Relation between the length of a	n arc of a circle a	nd the circula
	measure of its central angle is		
-			$a \cdot a = 1$
2	(a) $\ell = \frac{r}{\theta}$ (b) $\theta = \ell r$	$(c) \theta = - $	$\frac{u}{2}$
19	. With usual notations, if $\ell = 6 \mathrm{cm}$		
	(a) cm (b) cm ²	(c) No unit	(d)cm ³
20	. 1º is equal to		
,		(180)°	π
	(a) $\left(\frac{\pi}{180}\right)^{\circ}$ (b) $\frac{180}{\pi}$ radian	(c) 180	d) $\frac{n}{100}$ radian
		(π)	180
21	. 1º is equal to		
•	(a) 0.175 rad (b) 0.0175 rad	(c) 1.75 rad	d)0.00175 rad
22	. 1 Radian is equal to		
•	(a) $\frac{\pi}{180}$ rad (b) $\frac{180}{\pi}$ rad	(180)°	$(\pi)^{\circ}$
٠: .	(a) $\frac{180}{180}$ rad (b) $\frac{1}{\pi}$ rad	(c) $\left(\frac{\pi}{\pi}\right)$	$(a) \left(\frac{180}{180} \right)$
09			
23	 1 radian is equal to (a) 57.296° (b) 5.7296° 	(a) 175 970	'd) 17 5970
O A	? modion	(6) 110.21	(u) 11.0210
44	. 3 radian (a) 171.8880 (b) 1200	(c) 300°	d)270º
•	(8) (000	. LOLOUO '	(w) = 1 V

25.	$105^{\circ} = \dots ra$	dian		
:	(a) $\frac{7\pi}{12}$	(b) $\frac{2\pi}{3}$	(c) $\frac{5\pi}{12}$	(d) $\frac{5\pi}{6}$
26.	3" = radian			
		π	41π	27721π
٠	(a) ${270}$	(b) $\frac{\pi}{216000}$	$(c) \overline{720}$	(d) ${32400}$
27.	$\frac{\pi}{4}$ radian =	deg		
	(a) 45°	(b) 30°	(c) 60°	(d) 75°
28.	Circular measure	of angle between	the hands of a w	atch at 4-o clock are
	(a) 45 ⁰	(b) 120°	c) $\frac{3\pi}{2}$	(d) 270°
29.	If $\ell = 1.5$ cm δ	k r = 2.5 c, then	θ is equal to	
	(a) $\frac{3}{5}$	(b) $\frac{5}{3}$	(c) 3.75	(d) None
30.	If $\theta = 45^{\circ}$, $r =$	18 mm , then ℓ :		
· .		(b) $\frac{2}{9}\pi$		(d) 810 mm
21	Area of sector of	of circle of radius	rie.	
01.		(b) $\frac{1}{2}r\theta^2$		(d) $\frac{1}{2r^2\theta}$
32 .	Angles with san	ne initial and te	rminal sides ar	e called:
•	(a) Acute ang		(b) Allied an	
	(c) Contermin	nal angles	(d) Quad rent	tal angle
33.	If angle θ is in d			
		$k \in \mathbb{Z}$		
0.4	$(c) \theta + 90^{\circ} k,$	•	(d) None of t	
34.	If angle θ is in r (a) $\theta + 2k\pi$, k		e conterminal v (b) $\theta + k\pi$.	
	$(c) - \theta + 2k\pi$		$(\mathbf{d}) - (\mathbf{\theta} + 2\pi)$	
35.	\- /			nate system and its
	•	ng the positive x-		
•	(a) Acute ang	le	(b) Conterm	inal angle
	(c) Angle in s	tandard position	ı (d) Quadren	tal angle
36.	An angle is in st			
	(a) at origin			(d) in 1 st Quadran
		e terminal side o	it an angle talls	on <i>x</i> -axis or <i>y</i> -axi
	then it is called:	al amela	(b) Od	tal angla
	(a) Cotermina		(b) Quadran	· -

38.	0^{0} , 90^{0} , 180^{0} , 270^{0} & 360^{0} are:	a '		
	(a) Coterminal angle	(b) Quadra	ntal angle	
	(c) Allied angles	(d)None of	these	
39 .	$\sin^2\theta + \cos^2\theta$ is equal to .			
٠	(a) 0 (b) 1	(c) -1	(d) $Sec^2 \theta$	
40 .	$1+ \tan^2\theta$ is equal to			•
	(a) $\operatorname{Cosec2} \theta$ (b) $\operatorname{Sin}^2 \theta$	(c) $\sec^2 \theta$	(d) Cot ² θ	
41.	$\csc^2 \theta - \cot^2 \theta$ is equal to			
	(a) 0 (b) 1	(c) -1	(d) 2	
42 .	If $\sin \theta < 0 \& \cos \theta > 0$, then the term	minal arm of	angle lies in	Quad.
	(a) I (b) II	(c) 111	(d) IV	
43.	If $\cot \theta > 0$ & $\csc \theta > 0$, then the te	rminal arm o	i angle lies in .	Quad
	(a) I (b) II	(C) III	(a) IV	. O
44.	If $\tan \theta < 0$ & $\csc \theta > 0$, then the (a) I (b) II	terminal arm	i of angle lies if	ı Quad
: AE				Oned
40.	If $\sec \theta < 0$ & $\sin \theta < 0$, then the term (a) I (b) II			. Quau
16	In right angle Triangle, the mea			to 300 is
40.	(a) Half of Hypotenuse	on the Half of	hase	10 00 10.
	(c) Double of base	(d) None of	f these	
47	The point (0, 1) lies on terminal			
***	(a) 0 (b) 90°	(c) 180°	(d) 270°	
48.	The point $(-1, 0)$ lies on termina			
	(a) 0 (b) 90°	(c) 180°	(d) 270°	
49.	The point $(0, -1)$ lies on termina	l side of ang	de:	
	(a) 0 (b) 90°			• •
	$2 \sin 45^{\circ} + \frac{1}{2} \csc 45^{\circ} =$			
50.	$2 \sin 45^{\circ} + - \csc 45^{\circ} =$			
	$\sqrt{2}$ \sim 3		(4) 4	
	(a) $\sqrt{\frac{2}{3}}$ (b) $\frac{3}{\sqrt{2}}$	(c) -1	(d) 1	•
51	Domain of $\sin \theta$ is			
	(a) R	(b) $\theta \in \mathbb{R}$	but $\theta \neq n\pi$, n	∈ Z
				. •
	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	Z (d) None	e of these	
52	Domain of $\cos \theta =$	•		•
	(a) R	(b) θ ∈	R but $\theta \neq n\pi$,	$n \in \mathbf{Z}$
	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	Z (d) None	e of these	
53	Domain of $\tan \theta =$			•
	(a) $\theta \in \mathbb{R}$ but but $\theta \neq n\pi$, $n \in \mathbb{Z}$	(b) R		
	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	Z (d) $n\pi$,	$n \in \mathbb{Z}$	

54. Domain cot $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$\theta \in \mathbb{R}$$
 but $\theta \neq (2n+1)$ $\frac{\pi}{2}$, $n \in \mathbb{Z}$ (d) $\mathbb{R} - \{0\}$

55. Domain of sec $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$R - (1,1)$$

(d)
$$\theta \in \mathbb{R}$$
 but $\theta \neq (2 n+1) \frac{\pi}{2}$, $n \in \mathbb{Z}$

56. Domain of cosec $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$\theta \in R$$
 but $\theta \neq (2 n+1) \frac{\pi}{2}$, $n \in Z$ (d) $R - [1,1]$

57. Domain of $\sin^2\theta + \cos^2\theta = 1$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in R$$
 but $\theta \neq n \pi$, $n \in Z$

(c)
$$\theta \in R$$
 but $\theta \neq (2 \cdot n + 1) \frac{\pi}{2}$, $n \in Z$ (d) $R - [1, 1]$

58. Sec θ cosec θ sin θ cos θ =

(c)
$$\sin \theta$$

(d)
$$\cos \theta$$

59. (Sec θ + tan θ) (sec θ - tan θ) =

(b)
$$\sec^2 \theta$$

(c)
$$tan^2\theta$$

(d)
$$1-2 \tan^2\theta$$

$$60. \ \frac{1-\sin\theta}{\cos\theta} =$$

(a)
$$\frac{\cos \theta}{1-\sin \theta}$$
 (b) $\frac{\cos \theta}{1+\sin \theta}$ (c) $\frac{\sin \theta}{1-\cos \theta}$ (d) $\frac{\sin \theta}{1+\cos \theta}$

(b)
$$\frac{\cos \theta}{1 + \sin \theta}$$

(c)
$$\frac{\sin\theta}{1-\cos\theta}$$

(d)
$$\frac{\sin\theta}{1+\cos\theta}$$

61. Which of the following is not quadrental angle

(b)
$$-90^{\circ}$$

(c)
$$-180^{\circ}$$

62. Which of the following is quadrental angle

(a)
$$300^{\circ}$$

(b)
$$-90^{\circ}$$

(c)
$$-250^{\circ}$$

63. Which of the following is quadrental angle

(a)
$$-180^{\circ}$$

(b)
$$-90^{\circ}$$

(c)
$$-270^{\circ}$$

Chapter - 10

Multiple Choice Questions

(Encircle the correct answer choice)

Distance between the points $P_1(x_1, y_1) \& P_2(x_2, y_2)$ is:

(a)
$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

(b)
$$d = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

(c)
$$d = \sqrt{(x_1 - x_2)^2 + (y_2 - y_1)^2}$$

(b) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$

(d) $\sin \alpha \cos \beta - \cos \alpha \sin \beta$

(b) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$ (d) $\sin \alpha \cos \beta - \cos \alpha \sin \beta$

(b) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$

(d) $\sin \alpha \cos \beta - \cos \alpha \sin \beta$

(b) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$

(d) $\sin \alpha \cos \beta - \cos \alpha \sin \beta$

2.	Distance between the points A (3, 8) & (5, 6) is:				
	(a) $2\sqrt{2}$ (b) 3 (c)	4 (d) $\sqrt{2}$			
3.	Fundamental law of Trigonometry	is, $\cos(\alpha - \beta) =$			
	(a) $\cos \alpha \cos \beta + \sin \alpha \sin \beta$	(b) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$			
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$	(d) $\sin \alpha \cos \beta - \cos \alpha \sin \beta$			
4	one (or R) is actual to				

 $\cos (\alpha - \beta)$ is equal to

(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$ (c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$

5. $\cos (\alpha + \beta)$ is equal to

(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$ (c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$

6. $\sin (\alpha - \beta)$ is equal to

(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$ (c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$

7. $\sin (\alpha + \beta)$ is equal to

(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$

(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$

8. $\cos(\frac{\pi}{2}-\beta)$ is equal to

(a) Cos B

(b) $-\cos \beta$

(c) $\sin \beta$

 $(d) - \sin \beta$

9. $\cos{(\beta + \frac{\pi}{2})}$ is equal to

(a) $\cos \beta$ (b) $-\cos \beta$

(c) Sin β

10. $\sin (\beta - \frac{\pi}{2})$ is equal to

(a) Cos β (b) ~ cos β 11. $\cos(2\pi - \theta)$ is equal to

(a) $\cos \theta$

(b) -- $\cos \theta$

(c) $\sin \theta$

(c) $\sin \beta$

 $(d) - \sin\theta$

(d) $-\sin \beta$

12. $\sin (2\pi - \theta)$ is equal to

(a) $\cos \theta$

(b) $-\cos\theta$

(c) $\sin \theta$ (d) $-\sin \theta$

13. Tan $(\alpha + \beta)$ is equal to

 $(c) \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$

14. Tan $(\alpha - \beta)$ is equal to

(a) $\frac{\tan \alpha - \tan \beta}{\beta}$ $1 - \tan \alpha \tan \beta$

(b) $\frac{\tan \alpha + \tan \beta}{1 + \tan \alpha \tan \beta}$

15.	i. Angles associated with basic angles of measure θ to a right angle or its multiple are called:				
· ·	(a) Conterminal angles(c) Allied angles	(b) Angle in (d) Obtuse a	standard positions ngles		
16.	$\sin\left(\frac{\pi}{2}-\theta\right)$ is equal to				
	(a) $\cos \theta$ (b) $\sin \theta$	(c) –cos θ	(d) $-\sin\theta$		
17.	$\sin\left(\frac{\pi}{2} + \theta\right)$ is equal to	1000			
	(a) $\cos \theta$ (b) $\sin \theta$	(c) -cos θ	(d) $-\sin\theta$		
18.	$\cos\left(\frac{\pi}{2}-\theta\right)$ is equal to				
	(a) $\cos \theta$ (b) $\sin \theta$	(c) –cos θ	(d) $-\sin\theta$		
19.	$\cos\left(\frac{\pi}{2} + \theta\right)$ is equal to				
٠.	(a) $\cos \theta$ (b) $\sin \theta$, (c) –cos θ	(d) $-\sin\theta$		
20.	$\tan\left(\frac{\pi}{2}-\theta\right)$ is equal to				
	(a) $\cot \theta$ (b) $\tan \theta$	(c) $-\cot \theta$	(d) - tan θ		
21.	$\tan\left(\frac{\pi}{2} + \theta\right)$ is equal to				
	(a) $\cot \theta$ (b) $\tan \theta$	(c) $-\cot \theta$	(d) –tan θ		
22.	$\sin (\pi - \theta)$ is equal to				
-	(a) $\sin \theta$ (b) $\cos \theta$	(c) $-\sin\theta$	(d) $-\cos\theta$		
23.	$\sin(\pi + \theta)$ is equal to		4 N A		
0.4	(a) $\sin \theta$ (b) $\cos \theta$	(c) $-\sin\theta$	(d) $-\cos\theta$		
	$\cos (\pi - \theta)$ is equal to (a) $\sin \theta$ (b) $\cos \theta$	(a) sin A	(d) 000 A		
	$\cos (\pi + \theta)$ is equal to	(c) - siii 0	(d) $-\cos\theta$		
20.	(a) $\sin \theta$ (b) $\cos \theta$	(c) $-\sin\theta$	(d) $-\cos\theta$		
26.	$\tan (\pi - \theta)$ is equal to	(0) 5111 0	(4) 0000		
	(a) $\tan \theta$ (b) $-\cot \theta$	(c) $-\tan\theta$	(d) $\cot \theta$		
27 .	$\tan (\pi + \theta)$ is equal to				
	(a) $\tan \theta$ (b) $-\cot \theta$	(c) $-\tan\theta$	(d) $\cot \theta$		
28.	$\sin\left(\frac{3\pi}{2}-\theta\right)$ is equal to				
w.,	(a) $\sin \theta$ (b) $\cos \theta$	(c) $\sin \theta$	$(d) - \cos \theta$		
29.	$\sin\left(\frac{3\pi}{2}+\theta\right)$ is equal to				
· .	(a) $\sin\theta$ (b) $\cos\theta$	(c) $\sin \theta$	$(d) - \cos \theta$		

30.
$$\cos\left(\frac{3\pi}{2} + \theta\right)$$
 is equal to

(a) $\sin\alpha$ (b) $\cos\theta$ (c) $\sin\theta$ (d) $-\cos\theta$

31. $\cos\left(\frac{3\pi}{2} - \theta\right)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $\sin\theta$ (d) $-\cos\theta$

32. $\tan\left(\frac{3\pi}{2} + \theta\right)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

33. $\tan\left(\frac{3\pi}{2} - \theta\right)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

34 $\sin(2\pi - \theta)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

35. $\sin(2\pi + \theta)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

36. $\cos(2\pi + \theta)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

37. $\tan(2\pi - \theta)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

38. $\tan(2\pi + \theta)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

39. $\cos 315^{\circ}$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$

40. $\sin 540^{\circ}$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{3}}$ (d) -1

42. $\sec(-300^{\circ})$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{3}}$ (d) -1

42. $\sec(-300^{\circ})$ is equal to

(a) 1 (b) 2 (c) 0 (d) -1

43. $\sin(180 + \alpha)$. $\sin(90 - \alpha)$ is equal to

(a) $\sin(3\pi)$ (c) $\cos(3\pi)$ (d) $-\cos(3\pi)$

44. If α, β and γ are the angles of Δ ABC, then $\sin(\alpha + \beta)$ is equal to (a) $\sin\gamma$ (b) $-\sin\gamma$ (c) $\cos\gamma$ (d) $-\cos\gamma$

45. If
$$\alpha$$
, β and γ are the angles of Δ ABC, then $\cos \frac{(\alpha + \beta)}{2} =$

(a)
$$\sin \frac{\pi}{2}$$

(b)
$$-\sin\frac{\pi}{2}$$
 (c) $\cos\frac{\pi}{2}$ (d) $-\cos\frac{\pi}{2}$

(c)
$$\cos \frac{\pi}{2}$$

$$(d) - \cos \frac{\pi}{2}$$

46. If
$$\alpha$$
, β and γ are the angles of Δ ABC, then $\cos{(\alpha+\beta)}$ is equal to

(b)
$$-\sin \gamma$$

$$(d) - \cos \gamma$$

47.
$$\frac{\cos 11^{0} + \sin 11^{0}}{\cos 11^{0} - \sin 11^{0}} =$$

(a)
$$\tan 56^{\circ}$$
 (b) $\tan 34^{\circ}$

(b)
$$\tan 34^{\circ}$$

(c)
$$\cot 56^{\circ}$$

48. $\sin 2\alpha$ is equal to

(a)
$$\cos^2\alpha - \sin^2\alpha$$

(c)
$$2 \sin \alpha \cos \alpha$$

49.
$$\cos 2\alpha$$
 is equal to

(a)
$$\cos^2 \alpha - \sin^2 \alpha$$

(c)
$$1 - 2 \sin^2 \alpha$$

50. tan
$$2 \alpha$$
 is equal to

(a)
$$\frac{2\tan\alpha}{1+\tan2\alpha}$$

(c)
$$\frac{2\tan^2\alpha}{1-\tan^2\alpha}$$

(b)
$$1 + \cos^2 2 \alpha$$

(d)
$$2 \sin 2 \alpha \cos 2 \alpha$$

(b)
$$2\cos^2\alpha - 1$$

(b)
$$\frac{2\tan\alpha}{1-\tan^2\alpha}$$

(d)
$$\frac{2\tan^2\alpha}{1-\tan^2\alpha}$$

51,
$$\cos \frac{\alpha}{2} =$$

(a)
$$\pm \sqrt{\frac{1+\sin\alpha}{2}}$$
 (b) $\pm \sqrt{\frac{1-\cos\alpha}{2}}$ (c) $\pm \sqrt{\frac{1+\cos\alpha}{2}}$ (d) $\pm \sqrt{\frac{1-\sin\alpha}{2}}$

(c)
$$\pm \sqrt{\frac{1+\cos\alpha}{2}}$$

(d)
$$\pm \sqrt{\frac{1-\sin\alpha}{2}}$$

52.
$$\sin \frac{\alpha}{2}$$
 is equal to

(a)
$$\pm \sqrt{\frac{1+\sin\alpha}{2}}$$
 (b) $\pm \sqrt{\frac{1-\cos\alpha}{2}}$ (c) $\pm \sqrt{\frac{1+\cos\alpha}{2}}$ (d) $\pm \sqrt{\frac{1-\sin\alpha}{2}}$

$$(c) \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

(d)
$$\pm \sqrt{\frac{1-\sin\alpha}{2}}$$

53. $\sin 3\alpha$ is equal to

(a)
$$3 \sin \alpha - 4\sin^3 \alpha$$

(c)
$$4 \sin \alpha - 3 \sin^3 \alpha$$

54. $\cos 3 \alpha$ is equal to

(a)
$$3\cos\alpha - 4\cos\alpha$$

(c)
$$4\cos^3 \alpha - 3\cos \alpha$$

$$55. \quad \frac{1-\cos\alpha}{\sin\alpha} =$$

(a)
$$\tan \frac{\alpha}{2}$$

(b)
$$\cos \frac{\alpha}{2}$$

(b)
$$3 \sin \alpha + 4 \sin^3 \alpha$$

(d) 4 Sin
$$\alpha$$
 + 3 sin³ α

(b)
$$3\cos^3\alpha + 4\cos\alpha$$

(d)
$$4\cos^3\alpha + 4\cos\alpha$$

(a)
$$\tan \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\alpha}{2}$ (d) $\sec \frac{\alpha}{2}$

56.
$$(\sin \alpha + \sin \beta)$$
 is equal to

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$
 (b) $2 \cos{\left(\frac{\alpha+\beta}{2}\right)} \sin{\left(\frac{\alpha-\beta}{2}\right)}$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
 (d) $-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$

57.
$$\sin \alpha - \sin \beta =$$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$
 (b) $2 \cos{\left(\frac{\alpha+\beta}{2}\right)} \sin{\left(\frac{\alpha-\beta}{2}\right)}$

(d)
$$-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$$

58.
$$\cos \alpha + \cos \beta =$$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(a)
$$2 \sin{(\frac{\alpha+\beta}{2})} \cos{(\frac{\alpha-\beta}{2})}$$
 (b) $2 \cos{(\frac{\alpha+\beta}{2})} \sin{(\frac{\alpha-\beta}{2})}$

(d)
$$-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$$

59.
$$\cos \alpha - \cos \beta =$$

(a)
$$2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(b)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

(d)
$$-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$$

$$60. \quad 2\sin 7\theta \cos 3\theta =$$

(a)
$$\sin 10\theta + \sin 4\theta$$

(c)
$$\cos 10\theta + \cos 4\theta$$

(b)
$$\sin 5\theta + \sin 2\theta$$

(d)
$$\cos 5\theta - \cos 2\theta$$

 $2\cos 5\theta \sin 3\theta$ is equal to

(a)
$$\sin \theta - \sin 2\theta$$

(c)
$$\sin 4\theta - \sin \theta$$

(b)
$$\sin 8\theta + \sin 2\theta$$

(d)
$$\sin 4\theta + \sin \theta$$

62. $2 \sin 7\theta \sin 2\theta$ is equal to

(a)
$$\cos \theta - \cos \theta$$

(c)
$$\sin 9\theta + \sin 5\theta$$

(b)
$$\cos 9\theta - \cos 5\theta$$

(d)
$$\sin 9\theta + \sin 5\theta$$

63. $\sin 12^{\circ} \sin 46^{\circ}$ is equal to

(a)
$$\frac{1}{2}$$
 (cos340 - cos580)

(b)
$$\frac{1}{2}$$
 (cos580 – cos340)

(c)
$$(\cos 58^{\circ} - \cos 34^{\circ})$$

(d)
$$\frac{1}{2}$$
 (cos580 + cos340)

64. Which is the allied angle:

(a)
$$90^{\circ} + \theta$$
 (b) $60^{\circ} + \theta$

(b)
$$60^{\circ} + \theta$$

(a)
$$\frac{1}{2}$$

(b)
$$\frac{\sqrt{3}}{2}$$

(c)
$$45^{\circ} + \theta$$
 (d) $30^{\circ} + \theta$

(c)
$$-\frac{1}{2}$$
 (d) $-\frac{\sqrt{3}}{2}$

(d)
$$-\frac{\sqrt{3}}{2}$$

66. 2 sinx cosx is equal to: (c) $\sin x/2 \cos x/2$ (d) none of these (a) $\sin x$ (b) $\sin 2x$ The value of $\cos(\alpha - 2\pi)$ is equal to: (a) $-\cos \alpha$ (b) $-\sin \alpha$ (c) $\cos \alpha$ (d) $\sin \alpha$ 68. The value of $\sin 7\pi$ is equal to: (a) 0(b) 1 (c) -1(d) 1/2Chapter - 11 Multiple Choice Questions Encircle the correct answer choice) 1. Domain of $y = \sin x$ is (a) - x < x < x $(b)-1\leq x\leq 1$ (d) $x \ge 1$, $x \le -1$ $(c) - \infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ 2. Domain of $y = \cos x$ is $(a) - \infty < x < \infty$ $(b)-1\leq x\leq 1$ (c) $-\infty \le x \le \infty$, $x \ne n \pi$, $n \in \mathbb{Z}$ (d) $x \ge 1$, $x \le -1$ 3. Domain of y = Tan x is $(a) - \infty < x < \infty$ $(b) - \infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 4. Domain of $y = \cot x$ is $(a) - \infty < x < \infty$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 5. Domain of $y = \sec x$ is (a) $-\infty < x < \infty$ (b) $-\infty < x < \infty, x \neq n \pi, n \in \mathbb{Z}$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ **6.** Domain of $y = \csc x$ is (b) $-\infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ $(a) - \infty < x < \infty$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 7. Range of $y = \sin x$ is (a) R (b) $-1 \le y \le 1$ (c) $(-\infty, 1) \cup (1, \infty)$ (d) -1 < y < 18. Range of $y = \cos x$ is (a) R (b) [-1, 1] (c) -1 < y < 1 (d) $(-\infty, 1) \cup (1, \infty)$ Range of $y = \tan x$ is (a) $(-\infty, \infty)$ (b) [-1, 1] (c) Q (d) $R - \{0\}$ 10. Range of $y = \cot x$ is

(a) R

(b) R - [-1, 1] (c) $R - \{0\}$ (d) Z

11.	Range of y (a) R (c) $-1 \le y$	(b) y=	≥ 1 or $y \leq -1$	
12.	Range of y (a) R	= Cosec x is (b) $y =$	$\geq 1 \text{ or } y \leq -1$	
	measure of t	e number which when a the angle gives the same	added to the original value of the function	n is called
14.	(a) Doma Period of si	• • • • • •	(c) co domain	(d) perio
	(a) π	(b) 2π	(c) -2π	(d) $\frac{\pi}{2}$
15.	Period of ec	osec θ is	•	
	(a) π	(b) 2π	(c) -2π	$(d) \frac{3\pi}{2}$
16.	Period of ta	$\mathbf{n} \; \boldsymbol{\theta} \; \mathbf{is}$		Q #F
	(a) π	(b) 2 π	(c) -2π	(d) $\frac{3\pi}{2}$
17.	Period of c	ot θ is		o –
• •	(a) π	(b) 2 π	(c) -2π	$(d) \frac{3\pi}{2}$
18.	Period of se	$ec \theta is$		0 –
	(a) π	(b) 2π	(c) -2π	(d) $\frac{3\pi}{2}$
19.	Period of co	osθ is	€	
	(a) π	(b) 2π	(c) -2π	(d) $\frac{3\pi}{2}$
20 .]	period of sir	1 3x is		-
	(a) π	(b) 2π	(c) $\frac{2\pi}{3}$	(d) 6π
21.]	Period of co	s 2x is		
• .	(a) 2π	(b) π	(c) 4 π	(d) $\frac{\pi}{2}$
22. I	Period of ta	n 4 x		
٠	(a) $\frac{\pi}{4}$	(b) 4 π	(c) 8 π	(d) $\frac{\pi}{2}$
23. I	Period of co	t 3 <i>x</i> is		
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) 3π

<u> </u>		OBJECTIV	EPART 55	
24.	Period of sec	2x is		
,	(a) π	(b) 2π	(c) $\frac{\pi}{2}$	(d) 4π
25.	Period of cose	c 3x is		
	(a) π	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) 3 π
26.	Period of $\sin \frac{x}{3}$	is		•
•	(a) 2π	$(h) \frac{2\pi}{3}$	(c) 6 π	(d) 3π
27.	Period of $\cos \frac{x}{6}$	is		•
	(a) 12 π	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) 3 π
28.	Period of $\cot \frac{x}{2}$			
	(a) 2 π	(b) $\frac{\pi}{2}$	(c) π	(d) $\pi/4$
29.	Period of 3 cos	$\frac{x}{5}$ is		
	(a) $\frac{10\pi}{3}$	(b) $\frac{6\pi}{5}$	(c) 10 π	(d) $\frac{5 \pi}{3}$
30.	Period of 2 cos	$\operatorname{ec} \frac{x}{4}$ is		
	(a) 2π	(b) 4 π	(c) $\frac{\pi}{2}$	(d) 8 π
31.	Period of 3 ta	$n \frac{x}{7}$ is		•
	(a) $\frac{7\pi}{3}$	(b) 7 π	(c) $\frac{14\pi}{3}$	(d) 14π
32.	(a) Breaks s	- .	ctions have (b) sharp cor (d) smooth c	
33.	The graph of final (a) $x = 1 & x$	unction $y = \sin 2x$ = -1	2x, will be between (b) $y = 1 & y$	en the lines = -1
34.		ine function in th	(d) $y = 2 \& y$ he interval $[0, 2\pi]$] is called
35.		Function $y = 2sir$ = -1	n (c) its continuing (x, y) will be between (x, y) by (x, y)	en the lines $= -1$

36. The trigonometric functions repeat their values after adding or subtracting 2π in basic angle x. This behavior is called (b) periodicity (c) continuity (d) range (a) period Chapter - 12 Multiple Choice Questions (Encircle the correct answer choice) A "Triangle" has: (a) Two elements (b) 3 Elements (d) 6 Elements (c) 4 Elements 2. At the top of a cliff 80m high the angle of depression of a beat is α . If the distance between the boat and foot of clif is $80\sqrt{3}$ m, then angle α is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{3\pi}{4}$ When we look an object above the horizontal ray, the angle formed is (a) Angle of Elevation (b) Angle of depression (d) Angle of reflection (c) Angle of incidence 4. When we look an object below the horizontal ray, the angle formed is (a) Angle of Elevation (b) Angle of depression (c) Angle of incidence (d) Angle of reflection 5. A Triangle which is not right is called: (a) Oblique triangle (b) Isosceles triangle (c) Scalene triangle (d) Right Isosceles triangle 6. To solve an oblique triangle, we use: (a) Law of sines (b) Law of cosines (c) Law of tangents (d) All of these 7. In any triangle ABC, $\frac{b^2+c^2-a^2}{2bc}$ (a) Cos a (b) Sin α (c) Cos B (d) Cos y 8. Which can be reduced to Pythagoras theorem: (a) Law of sines (b) Law of cosines (c) Law of tangents (d)Half angle formulas 9. In any triangle ABC, if $\beta = 90^{\circ}$, then $b^2 = c^2 + a^2 - 2ac \cos \beta$ becomes: (a) Law of sin (b) Law of Tangents (c) Pythagoras Theorem (d) None of these 10. In any triangle ABC, Law of of tangent is: (a) $\frac{a-b}{a+b} = \frac{\tan(\alpha-\beta)}{\tan(\alpha+\beta)}$ (b) $\frac{a-b}{a-b} = \frac{\tan(\alpha+\beta)}{a}$ (c) $\frac{a-b}{a+b} = \frac{\tan(\frac{\alpha-\beta}{2})}{\tan(\frac{\alpha+\beta}{2})}$. (d) $\frac{a-b}{a+b} = \frac{\tan(\frac{\alpha+\beta}{2})}{\tan(\frac{\alpha-\beta}{2})}$

11. In any triangle ABC,
$$\sqrt{\frac{(s-b)(s-c)}{bc}}$$
 =

(a)
$$\sin \frac{\alpha}{2}$$

(b)
$$\cos \frac{\alpha}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

(d)
$$\sin \frac{\gamma}{2}$$

12. In any triangle ABC, $\sqrt{\frac{(s-a)(s-c)}{ac}}$ is equal to

(a)
$$\sin \frac{\alpha}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

(c)
$$\sin \frac{\beta}{2}$$

(d)
$$\sin \frac{\gamma}{2}$$

13. In any triangle ABC, $\sqrt{\frac{(s-a)(s-b)}{ab}} = \frac{a}{ab}$

(a)
$$\sin \frac{\alpha}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

(c)
$$\sin \frac{\beta}{2}$$

(d)
$$\sin \frac{\gamma}{2}$$

14. In any triangle ABC, $\cos \frac{\alpha}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(c)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

15. In any triangle ABC, $\cos \frac{\beta}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(e)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

16. In any triangle ABC, $\cos \frac{\gamma}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(c)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(d)
$$\sqrt{\frac{s(s-c)}{ab}}$$

17. In any triangle ABC, with usual notations, s is equal to

(a)
$$a+b+c$$

(b)
$$\frac{a+b+c}{2}$$

(a)
$$a + b + c$$
 (b) $\frac{a+b+c}{2}$ (c) $\frac{a+b+c}{3}$ (d) $\frac{abc}{2}$

(d)
$$\frac{abc}{2}$$

18. $\sqrt{\frac{s(s-a)}{(s-b)(s-c)}} =$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\tan \frac{\alpha}{2}$ (d) $\cot \frac{\alpha}{2}$

(b)
$$\cos \frac{\alpha}{2}$$

(c)
$$\tan \frac{\alpha}{2}$$

(d)
$$\cot \frac{\alpha}{2}$$

19. $\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} =$

(a)
$$\sin \frac{\beta}{2}$$

(b)
$$\cos \frac{\beta}{2}$$

(a)
$$\sin \frac{\beta}{2}$$
 (b) $\cos \frac{\beta}{2}$ (c) $\tan \frac{\beta}{2}$ (d) $\cot \frac{\beta}{2}$

(d)
$$\cot \frac{\beta}{2}$$

20. In any triangle ABC, $\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$	is equal to
(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$	(c) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$
21. In any triangle ABC, $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$	is equal to
(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$	(c) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$
22. In any triangle ABC, $\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$	
(a) $\tan \frac{\beta}{2}$ (b) $\tan \frac{\gamma}{2}$	(c) $\tan \frac{\gamma}{2}$ (d) $\sec \frac{\gamma}{2}$
23. In any triangle ABC, $\sqrt{\frac{(s+a)(s+c)}{s(s+c)}}$	<u>b)</u> ≈
(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$	(c) $\tan \frac{\gamma}{2}$ (d) None of these
24. We can solve an oblique triangle, (a) One side and two angles are known (c) Two sides and their included angles are	(b)Three sides are known are known (d)All (a),(b) and (c)
25. To solve an oblique Triangle when given, we can use:	n measure of three sides are
(a) Hero Formula	(b) Law of Cosines
(a) Hero Formula(c) Law of Tangents	(d) Pythagoras theorem
26. The smallest angle of Δ ABC, when a	= 37.34, b= 3.24 , and c $= 35.06$ is
	(d) cannot be determined
27. Area of Triangle in terms of meas	ure of two sides and their
included angle is:	
(a) $\frac{1}{2}bc\sin\alpha$ (b) $\frac{1}{2}ca\sin\beta$	(c) $\frac{1}{2}ab\sin\gamma$ (d) All of these
28. In any triangle ABC, Area of Tri	angle is:
(a) $bc \sin \alpha$ (b) $\frac{1}{2} ca \sin \alpha$	(c) $\frac{1}{2}ab\sin\gamma$ (d) $\frac{1}{2}ab\sin\beta$
29. Area of Triangle in terms of measure	of one side and two angles is:
$(a)\frac{1}{2}\frac{a^2\sin\beta\sin\gamma}{\sin\alpha}$	$(b) \frac{1}{2} \frac{b^2 \sin \alpha \sin \gamma}{\sin \beta}$
$\frac{(\alpha)}{2} \frac{1}{\sin \alpha}$	$\frac{(b)}{2} \frac{1}{\sin \beta}$
(c) $\frac{1}{2} \frac{c^2 \sin \alpha \cdot \ln \beta}{1 + \sin \beta}$	(d) All of these

30. In any triangle ABC, Hero's formula is

	(a) $\Delta = s$ (s a) (s b) (s c) (b) $\Delta = \sqrt{(s-a)(s-b)(s-c)}$
	(c) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ (d) $\Delta = \frac{a+b+c}{2}$
31	. In any triangle ABC, with usual notations, which one of them is not true
	(a) $\Delta = \frac{1}{2}ab\sin\gamma$ (b) $\Delta = \frac{1}{2}bc\sin\alpha$
	(c) $\Delta = \frac{1}{2} \frac{a \sin \beta \sin \gamma}{\sin \alpha}$ (d) $\Delta^2 = s (s \ a) (s \ b) (s \ c)$
32	The circle passing through the three vertices of a Trianlge is called (a) Circum Circle (b) In-circle (c) Ex- centre (d) Escribed circle
33.	. The point of intersection of the right bisectors of the sides of the
-	Trianlge is called:
*	(a)circum centre (b)In centre (c)Escribed centre (d)ortho centre
34	(c)Escribed centre (d)ortho centre Radius of the circle which passes through the vertices of a Triangle is:
O.Z.	(a) Circum Radius (b) In-Radius
٠.	(c) e- Radius (d) Diameter
35.	. In any triangle ABC, with usual notations, $\frac{a}{2\sin\alpha}$ =
	(a) r (b) r_1 (c) R (d) Δ
,	
36.	In any triangle ABC, with usual notations, $\frac{s}{\sin \beta} = \frac{s}{\sin \beta}$
	(a) $2 r$ (b) $2 r_1$ (c) $2R$ (d) ΔS
37.	In any triangle ABC, with usual notations, $\sin \gamma =$
	(a) R (b) $\frac{c}{2R}$ (c) $\frac{2R}{c}$ (d) $\frac{R}{2}$
38.	. In any triangle ABC, with usual notations, $R =$
-,	
	(a) $\frac{abc}{\Delta}$ (b) $\frac{abc}{4\Delta}$ (c) $\frac{4\Delta}{abc}$ (d) $\frac{\Delta}{abc}$
39.	. In any triangle ABC, with usual notations, $abc =$
•	(a) R (b) Rs (c) $4R\Delta$ (d) $\frac{\Delta}{s}$
40.	The circle drawn inside a Triangle touching its three sides internally is
	(a) Inscribed circle (b) unit circle
	(c) circum circle (d) Escribed circle
41.	The point of intersection of the bisectors of angles of the Triangle is:
	(a) In centre (b) e-centre
	(c) circum centre (d) Ex - centre

42. In Radius is denoted by
(a) R (b) r (c) r_1 (d) s
43. In any triangle ABC, with usual notations, in radius r is equal:
(a) $\frac{s}{\Delta}$ (b) $\frac{\Delta}{s}$ (c) $s\Delta$ (d) $\frac{a}{2\sin\alpha}$
44. A circle which touches one side of the Triangle externally and
other two produced sides internally is
(a) Escribed circle (b) Ex-circle (c) e-circle (d) all of these
45. The point where the internal bisector of one and the external
bisector of the other two angles of the Triangle meet is called (a) Escribed centre (b) Ex-centre (c) e-centre (d) all of these
46. In any triangle ABC, with usual notations, $\frac{\Delta}{s-a}$:
(a) R (b) r (c) r_1 (d) Sin α
47. In any triangle ABC, with usual notations, r_3 is equal to
(a) $\frac{\Delta}{s-a}$ (b) $\frac{\Delta}{s-b}$ (c) $\frac{\Delta}{s-c}$ (d) $\frac{s-a}{\Delta}$
48. In any triangle ABC, with usual notations, $r:R:r_1$
(a) 1: 2: 3 (b) 3: 2: 1 (c) 1:3: 2 (d) 1:1: 1
49. In any triangle ABC, with usual notations, Law of Sine is:
(a) $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$ (b) $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$
(c) $a : \sin \alpha = b : \sin \beta = c : \sin \gamma$ (d) All of these
50. The area of triangle ABC is
(a) $\frac{1}{2}bc\sin\beta$ (b) $\frac{1}{2}bc\sin\gamma$ (c) $\frac{1}{2}bc\sin\alpha$ (d) $\frac{1}{2}bc\sin(\alpha+\beta+\gamma)$
51. For a circum circle, R =
(a) $\frac{abc}{4\Delta}$ (b) $\frac{a}{4s\Delta}$ (c) $\frac{abc}{\Delta}$ (d) $\frac{4\Delta}{abc}$
52. In a triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, then α equals:
(a) 90° (b) 180° (c) 150° (d) 105°
53. With usual notation r_3 equals
(a) $\frac{\Delta}{s-a}$ (b) $\frac{\Delta}{s-b}$ (c) $\frac{\Delta}{s-c}$ (d) $\frac{\Delta}{s+a}$
54. With usual notations, $\frac{\Delta}{}$ is equal to:
(a) r (b) r_1 (c) r_2 (d) r_3
55. With usual notation rais anual to
(a) Δ (b) Δ (c) $\frac{s-b}{}$ (d) $\frac{s}{}$
(a) (b) (c)

Chapter - 13

Multiple Choice Questions

(Encircle the correct answer choice)

Note: Here we are dealing with principal function or capital function i.e.

- Instead of sin x, we use Sin x.
 Instead of cos x, we use Cos x
 Instead of tan x we use Tan x etc. While in chapter 11, General functions were discussed and symbols sinx, tanx etc. were used.
- 2. Here we are restricting the domain to make the function (1-1), so that its inverse is to be calculated.
- 3. Inverse of general Trigonometric functions does not exist. It exists only when function is (1-1), to make the function (1-1), we restrict the domain of the function and we call the function principal or capital functions. We denote the principal functions as:

$$y = \operatorname{Sin} x$$
, $y = \operatorname{Cos} x$, $y = \operatorname{See} x$
 $y = \operatorname{Cosec} x$, $y = \operatorname{Tan} x$, $y = \operatorname{Cot} x$

1. If $y = \sin x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}.$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(b)
$$0 \le x \le \pi$$

(d)
$$[-\frac{\pi}{2}, \frac{\pi}{2}], x \neq 0$$

2. If $y = \cos x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}.$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(b)
$$0 \le x \le \pi$$

(d)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \neq 0$$

3. If $y = \operatorname{Sec} x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(b)
$$0 \le x \le \pi$$

(d)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \neq 0$$

4. If $y = \operatorname{Cosec} x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

(b)
$$0 \le x \le \pi$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(d)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \neq 0$$

```
5. If y = \operatorname{Tan} x, then domain is
```

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $0 < x < \pi$ (d) $0 \le x \le \pi$

6. If
$$y = \cot x$$
, then domain is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $0 < x < \pi$ (d) $0 \le x \le \pi$

7. If
$$y = \sin x$$
, then range is

(a)
$$-1 \le y \le 1$$
 (b) $(-\infty, +\infty)$ or R (c) $y \le -1$ or $y \ge 1$ (d) $y < -1$ or $y > 1$

8. If
$$y = \cos x$$
, then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

9. If
$$y = \text{Tan } x$$
, Then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

10. If,
$$y = \cot x$$
, then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

11. If
$$y = \operatorname{Cosec} x$$
, then range is (a) $-1 \le y \le 1$ (b) $(-\infty, +\infty)$ or R

(a)
$$-1 \le y \le 1$$
 (b) $(-\infty, +\infty)$ or -1 or $y > 1$

12. If
$$y = \operatorname{Sec} x$$
, then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

13. If
$$y = \sin^{-1}x$$
, then domain is

(a)
$$-1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

14. If
$$y = \cos^{-1} x$$
, then Domain is

(a)
$$-1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

15. If
$$y = \text{Tan}^{-1} x$$
, then domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

16. If
$$y = \cot^{-1} x$$
, then Domain is

(a)
$$-1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

17. If
$$y = See^{-1}x$$
, then Domain is

(a)
$$-1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

18. If
$$y = \operatorname{Cosec}^{-1}x$$
, then Domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1 \text{ or } y > 1$$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(c)
$$y \le -1$$
 or $y \ge 1$ (d) $y < 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$.

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

19. If $y = \operatorname{Sin}^{-1} x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

20. If $y = \cos^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

21. If $y = \text{Tan}^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

22. If $y = \cot^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

23. If $y = See^{-1}x$, then range is

(a)
$$0 \le y \le \pi$$
, $y \ne \frac{\pi}{2}$ (b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$

(c)
$$0 < y < \pi$$
 (d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

24. If $y = \operatorname{Cosec}^{-1}x$, then range is

(a)
$$0 \le y \le \pi$$
, $y \ne \frac{\pi}{2}$ (b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$

(c)
$$0 < y < \pi$$
 (d) $-\frac{\pi^*}{2} < y < \frac{\pi}{2}$

25. Inverse of a function exist only if it is

- (a) trigonometric function (b) (1-1) function
- (c) onto function (d) an into function

26. If $y = \sin^{-1}x$, then which is not true

- (a) $x = \sin y$ (b) domain of Inverse function is value of x
- (c) $y = (Sin)^{-1}$ (d) range of Inverse function is value of y

27. $\sin^{-1}x =$

(a)
$$\frac{\pi}{2} - \cos^{-1}x$$
 (b) $\frac{\pi}{2} - \sin^{-1}x$ (c) $\frac{\pi}{2} + \cos^{-1}x$ (d) $\frac{\pi}{2} - \csc^{-1}x$

28. $\cos^{-1}x = \dots$

(a)
$$\frac{\pi}{2} - \cos^{-1}x$$
 (b) $\frac{\pi}{2} - \sin^{-1}x$ (c) $\frac{\pi}{2} - \sec^{-1}x$ (d) $\frac{\pi}{2} + \cos^{-1}x$

29. Cosec $^{-1}x = \dots$

(a)
$$\frac{\pi}{2} - \sec^{-1}x$$
 (b) $\frac{\pi}{2} - \csc^{-1}x$ (c) $\frac{\pi}{2} + \csc^{-1}x$ (d) $\frac{\pi}{2} - \sin^{-1}x$

30. Sec
$$^{-1}x =$$

(a)
$$\frac{\pi}{2}$$
 - $\csc^{-1}x$ (b) $\frac{\pi}{2}$ - $\sec^{-1}x$ (c) $\frac{\pi}{2}$ - $\cos^{-1}x$ (d) $\frac{\pi}{2}$ + $\sec^{-1}x$

31. Tan
$$-1x =$$

(a)
$$\frac{\pi}{2} - \tan^{-1}x$$
 (b) $\frac{\pi}{2} - \cot^{-1}x$ (c) $\frac{\pi}{2} + \tan^{-1}x$ (d) $\frac{\pi}{2} + \cot^{-1}x$

32. Cot
$$^{-1}$$
 $x = \dots$

(a)
$$\frac{\pi}{2} - \tan^{-1}x$$
 (b) $\frac{\pi}{2} - \cot^{-1}x$ (c) $\frac{\pi}{2} + \tan^{-1}x$ (d) $\frac{\pi}{2} + \cot^{-1}x$

33. Sin
$$(\cos^{-1}\frac{\sqrt{3}}{2}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$

34.
$$Cos(Tan^{-1}0) =$$

(a) 0 (b) 1 (c)
$$\frac{\pi}{2}$$
 (d) -1

35. Sec
$$[\sin^{-1}(-\frac{1}{2})] = \dots$$

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $-\frac{2}{\sqrt{3}}$

36.
$$\sin^{-1}(\frac{1}{2}) =$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

37.
$$\cos^{-1}(\frac{1}{2}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

38.
$$Tan^{-1}(-\frac{1}{3}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

39. Tan
$$^{-1}(\sqrt{3}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

$$(a)\frac{\pi}{\Delta}$$

$$(a)\frac{\pi}{4} \qquad (b) - \frac{\pi}{4}$$

(e)
$$\frac{3\pi}{4}$$

$$(d)-\frac{3\pi}{4}$$

41. Tan Tan $^{-1}(-1) =$

$$(a) -1$$

(c)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{4}$$
 (d) $-\frac{\pi}{4}$

42. Cos (Sin $^{-1}\frac{1}{\sqrt{2}}$) =

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{\sqrt{3}}{2}$

(b)
$$\frac{\sqrt{3}}{2}$$

(e)
$$\frac{1}{2}$$

(d)
$$\frac{1}{\sqrt{2}}$$

48. Sec (Cos⁻¹ $\frac{1}{2}$) =

(a) 2 (b)
$$\frac{\sqrt{3}}{2}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{2}{\sqrt{3}}$$

44. Tan $\cos^{-1} \frac{\sqrt{3}}{2} =$

(a)
$$\sqrt{3}$$

(a)
$$\sqrt{3}$$
 (b) $\frac{1}{\sqrt{3}}$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{6}$$

45. Cosec $(Tan^{-1}(-1)) = ...$

(a)
$$\frac{1}{\sqrt{2}}$$

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $-\frac{1}{\sqrt{2}}$

(c)
$$\sqrt{2}$$

(d)
$$-\sqrt{2}$$

46. Sin $(\sin^{-1}\frac{1}{2}) = \dots$

(a)
$$\frac{1}{2}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\sqrt{3}}{2}$$

47. Tan $(\sin^{-1}(-\frac{1}{2})) = \dots$

(a)
$$\sqrt{3}$$

(b)
$$-\sqrt{3}$$

(a)
$$\sqrt{3}$$
 (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$

$$(d) - \frac{1}{\sqrt{3}}$$

48. Sin -1A + Sin -1B is equal to

(a)Sin
$$^{-1}(A\sqrt{1-B^2}+B\sqrt{1-A^2})$$

(a)Sin⁻¹(A
$$\sqrt{1-B^2}$$
 + B $\sqrt{1-A^2}$) (b)Sin⁻¹(A $\sqrt{1-B^2}$ -B $\sqrt{1-A^2}$)

(c) Sin⁻¹(B
$$\sqrt{1-A^2}$$
) - (A $\sqrt{1-B^2}$) (d)Sin⁻¹(AB $\sqrt{(1-A^2)(1-B^2)}$

49. $\sin^{-1} A - \sin^{-1} B = ...$

(a)Sin⁻¹(A
$$\sqrt{1-B^2}$$
 + B $\sqrt{1-A^2}$) (b)Sin⁻¹(A $\sqrt{1-B^2}$ -B $\sqrt{1-A^2}$)

(b)Sin
$$^{-1}(A\sqrt{1-B^2}-B\sqrt{1-A^2})$$

(c)Sin⁻¹ (B
$$\sqrt{1-A^2}$$
) - (A $\sqrt{1-B^2}$) (d)Sin⁻¹ (AB $\sqrt{(1-A^2)(1-B^2)}$

(d)Sin⁻¹ (AB
$$\sqrt{(1-A^2)(1-B^2)}$$

50.
$$Cos^{-1} A + Cos^{-1} B =$$

(a)
$$\cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)})$$

(c)Cos⁻¹(AB +
$$\sqrt{(1+A^2)(1+B^2)}$$
)

51.
$$\cos^{-1}A - \cos^{-1}B = \dots$$

(a)
$$\cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)})$$

(c)Cos⁻¹(AB +
$$\sqrt{(1+A^2)(1+B^2)}$$
)

52.
$$Tan^{-1}A + Tan^{-1}B =$$

(a) Tan
$$^{-1}(\frac{A-B}{1+AB})$$

(c) Tan
$$^{-1}(\frac{A-B}{1-AB})$$

(a) Tan
$$^{-1}(\frac{A-B}{1+AB})$$

(c) Tan
$$\cdot 1(\frac{A-B}{1-AB})$$

54. 2 Tan
$$-1$$
A =

(a) Tan
$$^{-1}(\frac{A}{1-A^2})$$

(c) Tan
$$^{-1}(\frac{2A}{1+A^2})$$

55. Sin
$$^{-1}$$
 (-x) =

(a)
$$-\sin^{-1} x$$
 (b) $\sin^{-1} x$

56. $Cos^{-1}(-x)$

(a)
$$\cos^{-1}x$$
 (b)

(b)
$$\sin^{-1} x$$

57.
$$Tan^{-1}(-x) = \dots$$

(a)
$$- \text{Tan}^{-1}x$$
 (b) $\pi - \tan^{-1}x$

58.
$$2 \sin^{-1} A = \dots$$

(a)
$$\sin^{-1}(2A \sqrt{1-A^2})$$

(c) Sin⁻¹ (2A
$$\sqrt{1+A^2}$$
)

59.
$$2\cos^{-1}A =$$

(a)
$$Cos^{-1}(2A^2-1)$$

(c)
$$\cos^{-1}(2A-1)$$

60. Cosec
$$^{-1}$$
 ($-x$) =

(a)
$$-\text{Cosec}^{-1} x$$

(c)
$$\pi - \operatorname{Cosec}^{-1} x$$

(b)Cos⁻¹(AB +
$$\sqrt{(1-A^2)(1-B^2)}$$
)

(d)
$$\cos^{-1}(AB - \sqrt{(1+A^2)(1+B^2)})$$

(b)Cos⁻¹(AB +
$$\sqrt{(1-A^2)(1-B^2)}$$
)

(d)Cos⁻¹(AB -
$$\sqrt{(1+A^2)(1+B^2)}$$

(b) Tan
$$^{-1}(\frac{A+B}{1-AB})$$

(d) Tan
$$^{-1}(\frac{A+B}{1+AB})$$

(b) Tan
$$^{-1}(\frac{A+B}{1-AB})$$

(d) Tan
$$^{-1}(\frac{A+B}{1+AB})$$

(b)
$$Tan^{-1}(\frac{2A}{1-A})$$

(d)
$$Tan^{-1}(\frac{A}{1+A^2})$$

(c)
$$\pi - \sin^{-1} x$$
 (d) $\pi - \sin x$

(c)
$$\pi - \cos^{-1} x$$
 (d) $- \cos^{-1} x$

(c)
$$\cot^{-1}x$$
 (d) $Tain^{-1}x$

(b)
$$\sin^{-1}(A \sqrt{1-A^2})$$

(d)
$$\cos^{-1}(2A\sqrt{1-A^2})$$

(b)
$$Cos^{-1} (1-2A^2)$$

(d)
$$Cos^{-1}(2A^2+1)$$

(d)
$$\pi - \sin^{-1} x$$

- **61.** Sec⁻¹ (-x)
 - (a) $Cos^{-1}x$
- (b) $Sec^{-1} x$ (c) $\pi Sec^{-1} x$
 - $(d) Sec^{-1} x$

- **62.** $\cot^{-1}(-x) = \dots$

 - (a) $= \cot^{-1}x$ (b) $\pi \tan^{-1}x$ (c) $\pi \cot^{-1}x$
- (d) $Tan^{-1} x$

- **63.** $Tan \left| \cos^{-1} \frac{\sqrt{3}}{2} \right| =$
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\sqrt{3}$

- (d) $\frac{2}{\sqrt{2}}$

- 64. $Tan^{-1}\left|\frac{2A}{1-A^2}\right|$ is equal to:

 - (a) $Tan^{-1}A$ (b) $Tan^{-1}\left(\frac{2}{A}\right)$ (c) $2Tan^{-1}A$ (d) $Tan^{-1}\left(\frac{A}{2}\right)$

- **65.** $Tan^{-1}(2A) =$

 - (a) $Tan^{-1}\left(\frac{A}{2}\right)$ (b) $Tan^{-1}\left(\frac{2}{A}\right)$ (c) $2Tan^{-1}A$ (d) Non of these

Chapter - 14

Multiple Choice Questions

(Encircle the correct answer choice)

- 1. An equation containing at least one trigonometric function is called:
 - (a) Trigonometric function
- (b) Trigonometric equation
- (c) Trigonometric value
- (d) Periodic equation
- 2. If Sin $x = \frac{1}{2}$, then solution in the interval $[0, 2\pi]$ is:

- (a) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (b) $\{\frac{\pi}{6}, \frac{7\pi}{6}\}$ (c) $\{\frac{\pi}{2}, \frac{4\pi}{2}\}$ (d) $\{\frac{\pi}{2}, \frac{2\pi}{2}\}$
- 3. If $\cos x = \frac{1}{2}$, then reference angle is:

- (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{6}$ (c) $\frac{\pi}{6}$
- 4. If Sin $x = -\frac{1}{2}$, then reference angle is:

 - (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

5. General Solution of $\tan x = 1$ is:

(a)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi\}$$

(a)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi\}$$
 (b) $\{\frac{\pi}{4} + 2n\pi, \frac{5\pi}{4} + 2n\pi\}$

(c)
$$\{\frac{\pi}{4} + n \pi, \frac{3\pi}{4} n \pi\}$$

(c)
$$\{\frac{\pi}{4} + n \pi, \frac{3\pi}{4} n \pi\}$$
 (d) $\{\frac{\pi}{4} + 2n \pi, \frac{3\pi}{4} + 2n \pi\}, n \in \mathbb{Z}$

If $\tan 2x = -1$, then solution in the interval $[0, \pi]$ is:

(a)
$$\frac{\pi}{8}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{3\pi}{8}$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{3\pi}{8}$$

(d)
$$\frac{3\pi}{4}$$

7. If $\sin x + \cos x = 0$, then value of $x \in [0, 3\pi]$

(a)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$

(b)
$$\{\frac{\pi}{4}, \frac{7\pi}{4}\}$$

(a)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$
 (b) $\{\frac{\pi}{4}, \frac{7\pi}{4}\}$ (c) $\{\frac{3\pi}{4}, \frac{7\pi}{4}\}$ (d) $\{\frac{\pi}{4}, \frac{-\pi}{4}\}$

(d)
$$\left\{\frac{\pi}{A}, \frac{-\pi}{A}\right\}$$

8. If Sin 2 $x = \frac{\sqrt{3}}{2}$, then $x \in [0, \pi]$ is

(a)
$$\{\frac{\pi}{6}, \frac{5\pi}{6}\}$$
 (b) $\{\frac{\pi}{6}, \frac{\pi}{12}\}$ (c) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (d) $\{\frac{\pi}{6}, \frac{\pi}{3}\}$

(b)
$$\{\frac{\pi}{6}, \frac{\pi}{12}\}$$

(c)
$$\{\frac{\pi}{6}, \frac{5\pi}{6}\}$$

(d)
$$\{\frac{\pi}{6}, \frac{\pi}{3}\}$$

9. General solution of the equation $1 + \cos x = 0$ is:

(a)
$$\{\pi + 2 n \pi\}$$

(b)
$$\{\pi + n\pi\}, n \in \mathbb{Z}$$

(c)
$$\{-\pi + n \pi\}$$

General solution of $4 \sin x - 8 = 0$ is: 10,

(a)
$$\{\pi + 2 n \pi\}$$

(b)
$$\{\pi+n \ \pi\}, n \in \mathbb{Z}$$

(c)
$$\{-\pi + n \pi\}$$

11. If $\sin x = \cos x$, then value of x is:

(a)
$$\{\frac{\pi}{4}\}$$

(b)
$$\{\frac{\pi}{4}, \frac{5\pi}{4}\}$$

(c)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$

(a)
$$\{\frac{\pi}{4}\}$$
 (b) $\{\frac{\pi}{4}, \frac{5\pi}{4}\}$ (c) $\{\frac{\pi}{4}, \frac{3\pi}{4}\}$ (d) $\{\frac{3\pi}{4}, \frac{5\pi}{4}\}$

12 If $\cot \theta = \frac{1}{\sqrt{2}}$, then value of θ in $[0, \pi]$ is:

(a)
$$\frac{\pi}{3}$$

(b)
$$\frac{\pi}{6}$$

(a)
$$\frac{\pi}{3}$$
. (b) $\frac{\pi}{6}$ (c) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$

13 Solution of equation $2 \sin x + \sqrt{3} = 0$ in 4th Quadrant is:

(a)
$$\frac{\pi}{3}$$

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{-\pi}{3}$

(c)
$$\frac{-\pi}{6}$$

(d)
$$\frac{11\pi}{6}$$

14. If $\sin x = \cos x$, then General solution is:

(a)
$$\{\frac{\pi}{\Delta} + n\pi, n \in \mathbb{Z}\}$$

(b)
$$\{\frac{\pi}{\Lambda} + 2n\pi, n \in \mathbb{Z}\}$$

(c)
$$\{\frac{\pi}{\Delta} + n\pi, \frac{5\pi}{\Delta} + n\pi, n \in Z\}$$

(c)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi, n \in \mathbb{Z}\}\$$
 (d) $\{\frac{\pi}{4} + 2n\pi, \frac{5\pi}{4} + 2n\pi, n \in \mathbb{Z}\}\$

15.	If $\cos^2 x = \frac{1}{2}$, then value of x in [0, 2π] are:
	(a) $\{\frac{2\pi}{3}, \frac{4\pi}{3}\}$ (b) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$
	(c) $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{6}\}$ (d) $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\}$
16.	If $4 \sin^2 x = 3$, then value of x in $[0, \pi]$ is:
	(a) $\{\frac{\pi}{3}, \frac{2\pi}{3}\}$ (b) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (c) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$ (d) $\{\frac{2\pi}{3}, \frac{5\pi}{6}\}$
17.	For the general solution, we first find the solution in the
	interval whose length is equal to its:
10	(a) range (b) domain (c) co-domain (d) period
18.	All trigonometric function are function (a) periodic (b) continues (c) injective (d) bijective
19.	
,	(a) one solution only (b) two solutions
	(c) infinity many solutions (d) No real solution
20.	If $\sin 2x = \cos x$, then values of x in $[0,\pi]$ are:
	(a) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (b) $\{\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}\}$ (c) $\{\frac{\pi}{2}, \frac{\pi}{6}\}$ (d) $\{\frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}\}$
21	If $\sin x = 0$, then solution set is:
	(a) $\{0\}$ (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2\pi, n \in \mathbb{Z}\}$
22.	If $\sin = 1$, then solution set is:
	(a) $\{\frac{\pi}{2}\}\$ (b) $\{\frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi, n \in \mathbb{Z}\}$
	(c) $\{\frac{\pi}{2} + 2n\pi\}$ (d) $\{n\pi, n \in \mathbb{Z}\}$
23.	If $\cos x = 1$, then solution set is:
	(a) $\{0\}$ (b) $\{\pi\}$ (c) $\{2 \ n\pi, \ n \in \mathbb{Z}\}$ (d) $\{\frac{\pi}{2} + 2 \ n \ \pi, \ n \in \mathbb{Z}\}$
24.	If $\cos x = 0$, then solution set is:
•	(a) $\{\frac{\pi}{2}\}$ (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2}+2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$
25 .	If $\tan x = 0$, then solution set is:
0.0	(a) $\{0\}$ (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2\pi, n \in \mathbb{Z}\}$
26 .	If cot $x = 0$, then solution set is:
* .	(a) $\{\frac{\pi}{2}\}$ (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

If $\csc x = 1$, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

If $\sec x = 1$, then solution set is: 28.

(a)
$$\{0\}$$
 (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, \in \mathbb{Z}\}$

29. If $\sin x = -1$, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{-\frac{3\pi}{2}\}$ (c) $\{-\frac{\pi}{2}+n\pi, n\in \mathbb{Z}\}$ (d) $\{2n\pi, n\in \mathbb{Z}\}$

30. If $\cos x = -1$, then solution set is:

(a)
$$\{\pi\}$$
 (b) $\{\pi + n\pi, n \in Z\}$ (c) $\{\pi + 2n\pi, n \in Z\}$ (d) $\{2n\pi, n \in Z\}$

31. If $\csc = -1$, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{-\frac{3\pi}{2}\}$ (c) $\{-\frac{\pi}{2} + n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

If $\sec x = -1$, then solution set is = 32.

(a)
$$\{0\}$$
 (b) $\{\pi\}$ (c) $\{2n\pi, n \in Z\}$ (d) $\{\pi + 2n\pi, n \in Z\}$

If $\tan 4x = 1$, then value of x in $[0, 2\pi]$ is:

(a)
$$\{\frac{\pi}{4}, \frac{5\pi}{4}\}$$
 (b) $\{\frac{\pi}{16}, \frac{5\pi}{16}\}$ (c) $\{\frac{\pi}{8}, \frac{5\pi}{8}\}$ (d) $\{\frac{\pi}{8}, \frac{\pi}{16}\}$

One solution of $\sec x = -2$ is:

(a)
$$\frac{2\pi}{3}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{4\pi}{5}$ (d) $\frac{-\pi}{3}$

35. If $\cos \theta = -\frac{1}{2}$ and $\sin \theta = \frac{-\sqrt{3}}{2}$, then θ is:

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{2\pi}{3}$ (c) $\frac{4\pi}{3}$ (d) $\frac{5\pi}{3}$

36. Sin $2x = \frac{\sqrt{3}}{2}$ has two values of x in the interval:

(a)
$$[0, \frac{\pi}{2}]$$
 (b) $[0, 2\pi]$ (c) $[-\pi, \frac{\pi}{2}]$ (d) $\left[\frac{-\pi}{2}, 0\right]$

37. Solution of $\sin x = \frac{1}{2}$ in $[0, \pi]$ is:

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}, \frac{5\pi}{6}$ (d) $\frac{-\pi}{6}$

ANSWERS

Chapter - 1

ANSWERS KEY

```
(1) d
        (2) b
                (3) d
                       (4) a
                              (5) b
                                      (6) a (7) b (8) a (9) b (10) a
(11) b
       (12) a
              (13) a (14) a (15) b
                                     (16) d (17) d (18) e (19) a (20) b
(21) c
               (28) a (24) c (25) a (26) d (27) c (28)d (29) a (80) c
       (22) b
(31) c (32) b (33) b (34) c (35) a (36) c (37) b (38) c (39) d (40) a
                             (45) a (46) c (47) d (48) a (49) b (50) b
(41) a (42) a
              (43) a
                      (44) c
(51) d (52) a
              (53) a
                      (54) b (55) b (56) a (57) a (58) c (59) b (60) a
                             (65) d (66) c (67) a (68) b (69) b (70) a
(61) b (62) a
              (63) a (64) a
                              (75) c (76) a (77) b (78) b (79) a (80) a
(71) c (72) a
              (73) a (74) b
(81) c (82) c
              (83) b
                      (84) a
```

Chapter-2

ANSWER KEY

```
(8) b (9) a
(1) a
        (2) b (3) a
                        (4) a (5) d (6) b (7) a
                                                                        (10) b
(11) a (12) a (13) b (14) b (15) a (16) a (17) a (18) c (19) b
                                                                        (20) a
(21) c (22) d (23) a (24) b (25) c (26) c (27) a (28) a (29) c
                                                                        (30) b
(31) a, (32) d (33) d (34) a (35) b (36) a (37) a
                                                        (38) d (39) d
                                                                        (40) c
(41) d (42) e (43) e (44) b (45) b (46) b (47) a (48) b (49) d
                                                                       (50) a
(51) b (52) a (53) a (54) a (55) b (56) a (57) a
                                                        (58) c (59) d
                                                                        (60) a
(61) d (62) b (63) a (64) b (65) a (66) b (67) c
                                                       (68) b (69) a
                                                                        (70) b
(71) a (72) a (73) a (74) a (75) a
                                       (76) b (77) d (78) b (79) a (80) d
(81) c (82) a (83) a (84) b (85) b (86) b (87) a (88) a (89) b (90) c (91) d (92) d (98) a (94) b (95) c (96) c (97) a (98) b (99) a (100) d
(101) a (102) b (103) c (104)b (105) b (106) b (107) a (108) a (109) c (110) a
(111) b (112) c (113) a (114) a (115) b (116) c (117) c (118) c (119) c (120) c
(121) c (122) c (123) b (124) a (125) d (126) a (127) c (128)a (129) b (130) b
(131) c (132) b (133) a (134) b (135) b (136)a (137) c (138) c (139)a (140)c,a
(141)a (142) b
```

Chapter- 3

ANSWERS KEY

```
(2) a
               (3)b (4) a (5) a (6) a (7) a (8) b (9) c
                                                                  (10) d
(11) b (12) a (13) a (14) d (15) a (16) b (17) a (18) d (19) a
                                                                 (20) d
(21) d (22) a (23) a (24) b (25) b (26) a (27) a (28) d (29) c
                                                                (30) d
(31) b (32) b (33) d (34) b (35) a (36) d (37) a (38) a (39) b
                                                                (40) b
(41) a (42) d (43) c (44) a (45) d (46) c (47) d (48) d (49) a
                                                                 (50) b
(51) d (52) a (53) d (54) d (55) d (56) b (57) a (58) b (59) c
                                                               (60) d
(61) b (62) b (63) a (64) d (65) b (66) a (67) b (68) a (69) b
                                                                 (70) c
(71) d (72) c (73) a (74) b (75) b (76) a (77) a (78) d (79) b
                                                                 (80) a
(81) c (82) a (83) a (84) c
```

Chapter- 4

ANSWERS KEY

```
(1) b (2) b (3) a (4) a (5) a (6) c (7) c (8) b (9) a (10) c (11) c (12) a (13) c (14) b (15) c (16) b (17) c (18) c (19) a (20) c (21) d (22) a (23) c (24) b (25) d (26) b (27) d (28) c (29) a (30) a (31) b (32) d (33) c (34) a (35) a (36) d (37) c (38) d (39) c (40) a (41) c (42) a (43) a (44) b (45) c (46) a (47) b (48) c (49) c (50) d (51) b (52) b (53) a (54) b (55) a (56) c (57) d (58) c (59) d (60) b (61) a (62) a (63) a (64) d (65) a (66) d (67) c (68) b
```

Chapter- 5

ANSWERS KEY

(1) a (2) b (3) a (4) b (5) b (6) b (7) a (8) b (9) b (10) a (11) a (12) d (13) c (14) b (15) b (16) b (17) c (18) d (19) b (20) a (21)a (22) a (23) c (24) a (25) a (26) d (27) b (28) c (29) d (30) a (31) b (32) a

Chapter-6

ANSWERS KEY

```
(1) a (2) b (3) c (4) a (5) c (6) d (7) a . (8) d (9) b (10) a (11) b (12) a (13) d (14) b (15) b (16) a (17) a (18) a (19) a (20) b (21) b (22) b (23) a (24) a (25) c (26) a (27) a (28) b (29) b (30) b (31) a (32) d (33) d (34) d (35) d (36) a (37) b (38) a (39) d (40) b (41) a (42) a (43) a (44) b (45) d (46) d (47) a (48) b (49) a (50) a (51) d (52) b (53) b (54) a (55) b (56) c (57) b (58) a (59) a (60) a (61) a (62) a (63) c (64) a (65) d (66) a (67) b (68) b (69) c (70) c (71) c (72) c (73) c
```

Chapter- 7

ANSWERS KEY

```
(1) a (2) a (3) b (4) d (5) a (6) a (7) c (8) b (9) b (10) b (11) a (12) b (13) a (14) a (15) a (16) a (17) d (18) c (19) b (20) d (21) a (22) b (23) b (24) c (25) b (26) b (27) c (28) a (29) b (30) b (31) a (32) b (33) c (34) a (35) b (36) a (37) a (38) a (39) a (40) a (41) b (42) c (43) b (44) a (45) b (46) c (47) b (48) b (49) a (50) c (51) a (52) b (53) b (54) b (55) b (56) b (57) a (58) a (59) c (60) b (61) a (62) b (63) b (64) a (65) a (66) a (67) a (68) b (69) c (70) a (71) c (72) d (73) a (74) d (75) c (76) d (77) a
```

Chapter - 8

ANSWERS KEY

```
(1) c (2) d (3) b (4) b (5) a (6) b (7) a (8) b (9) c (10) b (11) a (12) c (13) a (14) b (15) a (16) b (17) b (18) b (19) b (20) c (21) b (22) d (23) b (24) b (25) a (26) b (27) d (28) d (29) b (30) a
```

(31) d (32) a (33) b (34) d (35) c

Chapter- 9

ANSWERS KEY

```
(4) d
(1) b
       (2) c
               (3) b
                               (5) c (6) d (7) d
                                                     (8) b (9) b (10) b
       (12) b (13) b (14) a
(11) b
                             (15) c (16) c (17) b (18) e (19) c (20) d
(21) b
       (22) c (23) a
                     (24) a
                             (25) a 26) b (27) a (28) b (29) a (30) a
(31) a
       (32) c (33) b (34) a (35) c (36) a (37) b (38) b (39) b (40) c
(41) b
       (42) d (43) a
                     (44) b
                             (45) c (46) a (47) b (48) c (49) d
                                                                 (50) b
(51) a
       (52) a (53) c (54) b (55) d (56) b (57) a (58) a (59) a
                                                                 (60) b
(61) d
       (62) b (63) d
```

Chapter- 10

ANSWERS KEY

```
(4) a (5) b (6) d (7) c
       (2) a
               (3) b
                                                    (8) c
                                                           (9) d
                                                                  (10) b
(11) a (12) d (13) d (14) b
                             (15) c (16) a (17) a (18) b (19) d
                                                                  (20) a
(21) c (22) a (23) c (24) d
                             (25) d (26) c (27) a (28) d (29) d (30) c
(31) d (32) d (33) b (34) c
                            (35) a (36) b (37) c (38) a
                                                           (39) c
                                                                  (40) b
(41) a (42) b (43) a (44) a
                            (45) a
                                     (46) d (47) a (48) c (49) d
                                                                   (50) b
(51) c (52) b (53) a (54) c
                             (55) a
                                      (56) a (57) b (58) c (59) d (60) a
(61) a (62) a (63) b (64) a
                            (65) b
                                     (66) b (67) c (68) a
```

Chapter- 11

ANSWERS KEY

```
(1) a (2) a (3) c (4) b (5) c (6) b (7) b (8) b (9) a (10) a (11) b (12) b (13) d (14) b (15) b (16) a (17) a (18) b (19) b (20) c (21) b (22) a (23) b (24) a (25) c (26) c (27) a (28) a (29) c (30) d (31) b (32) d (33) b (34) d (35) d (35) b
```

Chapter- 12

ANSWERS KEY

```
(1) d
        (2) b (3) a (4) b
                              (5) a (6) d (7) a
                                                   (8) b
                                                         (9) c
                                                                 (10) c.
       (12) c (13) d (14) c (15) b (16) d (17) b 18) d (19) d (20) d
(11) a
(21) c.
       (22) a (23) d (24) d (25) b
                                    (26) b (27) d (28) c (29) d (30) c
       (32) a (33) a (34) a (35) c
(31) c
                                    (36) c (37) b (38) b (39) c (40) a
       (42) b (43) b (44) d (45) d (46) c (47) c (48) a (49) d (50) c
(41) a
       (52) d (53) a (54) c (55) a
(51) a
```

Chapter- 13

ANSWERS KEY

```
(1) a (2) b (3) c (4) d (5) b (6) c (7) a (8) a (9) b (10) b (11) c (12) c (13) a (14) a (15) b (16) b (17) c (18) c (19) a (20) b (21) c (22) d (23) a (24) b (25) b (26) a (27) a (28) b (29) a (30) a (31) b (32) a (33) b (34) b (35) a (36) a (37) d (38) a (39) d (40) c (41) a (42) d (43) a (44) b 45) d (46) a (47) d (48) a (49) b (50) a (51) b (52) a (53) b (54) b (55) a (56) c (57) a (58) a (59) a (60) a (61) c (62) c (68) a (64) c (65) d
```

Chapter- 14

ANSWERS KEY

(1) b (2) a (3) a (4) c (5) a (6) a (7) c (8) d (9) a (10) d (11) b (12) a (13)b (14) c (15) d (16) a (17) d (18) a (19) c (20) b (21) c (22) c (23)c (24) c (25) c (26) c (27) c (28) d (29) a (30) c (31) a (32) d (33) b (34) a (35) c (36) a (37) c