

Master Of Data Science

INDIVIDUAL ASSIGNMENT

COURSE CODE : WQD7003

COURSE TITLE : DATA ANALYTICS

MATRIC NUMBER : 22120931

CLASS : 1

LECTURER : Dr. SAW SHIER NEE

1. SAS Workflow process

The figure above shows the modelling pipeline used in this individual assignment. Firstly, breast.csv dataset is loaded using the "File Import" node. Next, the data is partitioned into training and validation sets with a 50:50 split using the "Data Partition" node to ensure an even distribution for model training and validation. Then, multiple modelling nodes such as Decision Tree, Regression and Neural Network are connected to the "Data Partition".

For the Decision Tree model, two versions are created to allow comparison between a basic and a more finely tuned Decision Tree model. One model is with the default setting and another model with a specific parameter of a maximum depth of 10, leaf size of 8, 4 surrogate rules and 3 splits.

In the case of the Neural Network model, one model is configured with default settings and another is using the "Back Prop" training technique. Changing the training technique can be done by clicking the "Optimization" of the Property Panel.

On the other hand, two types of Logistic Regression models are configured. One with default settings and another using the Stepwise regression method. The Stepwise method is selected from the Property Panel.

Lastly, the modelling nodes are connected to the Model Comparison node. This is to evaluate and compare the performance of all the models created. Also, the comparison helps identify the best-performing model, providing a comprehensive view of how different modelling techniques and parameter settings impact overall model performance.

2. Results

i) Decision Tree

Below is the rules created with default settings:

The classification results below show that for the training data show that only 6 counts of malignant cases are misclassified as benign, while benign cases have no misclassifications. For the validation data, the misclassification counts are 12 for malignant cases predicted as benign and 10 for benign cases predicted as malignant.

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	178	6
	Malignant	0	99

		Target	
		Benign	Malignant
Outcome	Benign	169	12
	Malignant	10	95

ii) Decision Tree (3 Splits)

Below is the rules created:

The classification results below show that for the training data show that only 4 counts of malignant cases are misclassified as benign, and 4 counts of benign cases are misclassified as malignant. For the validation data, the misclassification rates are slightly higher compared to the training data, with 13 counts of malignant cases being predicted as benign and 14 counts of benign cases being predicted as malignant.

Classification Table

Data Role=TRAIN Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	97.7528	97.7528	174	61.4841
M	В	2.2472	3.8095	4	1.4134
В	M	3.8095	2.2472	4	1.4134
M	M	96.1905	96.1905	101	35.6890

Data Role=VALIDATE Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	92.6966	92.1788	165	57.6923
M	В	7.3034	12.1495	13	4.5455
В	M	12.9630	7.8212	14	4.8951
M	M	87.0370	87.8505	94	32.8671

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	174	4
	Malignant	4	101

Validate Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	165	13
	Malignant	14	94

iii) Neural Network

The model achieved a perfect classification rate on the training data but experienced an 8.39% misclassification rate on the validation data.

In the classification result below, the training set accurately predicted both malignant and benign cases. However, the model showed slight misclassifications in the validation set with 12 counts for both malignant cases being incorrectly predicted as benign and benign cases being incorrectly classified as malignant.

Classification Table

Data Role=TRAIN Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
B	B	100	100	178	62.8975
M	M	100	100	105	37.1025

Data Role=VALIDATE Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	93.2961	93.2961	167	58.3916
M	В	6.7039	11.2150	12	4.1958
В	M	11.2150	6.7039	12	4.1958
M	M	88.7850	88.7850	95	33.2168

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	178	0
	Malignant	0	105

		Target	
		Benign	Malignant
Outcome	Benign	167	12
	Malignant	12	95

iv) Neural Network (Backdrop)

Similar to Neural Network with default settings, the model achieved a perfect classification rate on the training data but experienced an 8.39% misclassification rate on the validation data.

In the classification result below, the training set accurately predicted both malignant and benign cases. However, the model showed slight misclassifications in the validation set with 12 counts for both malignant cases being incorrectly predicted as benign and benign cases being incorrectly classified as malignant. The result here is similar to Neural Network using default settings.

Classification Table

Data Role=TRAIN Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
B	B	100	100	178	62.8975
M	M	100	100	105	37.1025

Data Role=VALIDATE Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	93.2961	93.2961	167	58.3916
M	В	6.7039	11.2150	12	4.1958
В	M	11.2150	6.7039	12	4.1958
M	M	88.7850	88.7850	95	33.2168

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	178	0
	Malignant	0	105

		Target	
		Benign	Malignant
Outcome	Benign	167	12
	Malignant	12	95

v) Logistic Regression

The model achieved a perfect classification rate on the training data but experienced a 10.49% misclassification rate on the validation data.

In the classification result below, the training set accurately predicted both malignant and benign cases. However, there are some misclassifications in the validation set with 13 counts of malignant cases incorrectly predicted as benign and 17 counts of benign cases incorrectly classified as malignant.

Classification Table

Data Role=TRAIN Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
B	B	100	100	178	62.8975
M	M	100	100	105	37.1025

Data Role=VALIDATE Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	92.5714	90.5028	162	56.6434
M	В	7.4286	12.1495	13	4.5455
В	M	15.3153	9.4972	17	5.9441
M	M	84.6847	87.8505	94	32.8671

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	178	0
	Malignant	0	105

		Target	
		Benign	Malignant
Outcome	Benign	162	13
	Malignant	17	94

vi) Logistics Regression (StepWise)

The model showed a misclassification rate of 2.12% on the training data and a 5.94% misclassification rate on the validation data.

In the classification result below, there are some misclassifications observed in both sets. In the training set, 4 counts of malignant cases were incorrectly predicted as benign and 2 counts of benign cases were incorrectly classified as malignant. On the other hand, 8 counts of malignant cases were incorrectly predicted as benign and 9 counts of benign cases were incorrectly classified as malignant in the validation set.

Classification Table

Data Role=TRAIN Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	97.7778	98.8764	176	62.1908
M	В	2.2222	3.8095	4	1.4134
В	M	1.9417	1.1236	2	0.7067
M	M	98.0583	96.1905	101	35.6890

Data Role=VALIDATE Target Variable=diagnosis Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
В	В	95.5056	94.9721	170	59.4406
M	В	4.4944	7.4766	8	2.7972
В	M	8.3333	5.0279	9	3.1469
M	M	91.6667	92.5234	99	34.6154

Train Confusion Matrix:

		Target	
		Benign	Malignant
Outcome	Benign	176	4
	Malignant	2	101

		Target	
		Benign	Malignant
Outcome	Benign	170	8
	Malignant	9	99

vii) Model Comparison

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

					Valid:	
			Valid:	Average	Train:	Average
Selected	Model		Misclassification	Squared	Misclassification	Squared
Model	Node	Model Description	Rate	Error	Rate	Error
Y	Reg2	Regression (Stepwise)	0.05944	0.018768	0.021201	0.049497
	Tree	Decision Tree	0.07692	0.020491	0.021201	0.075044
	Neural	Neural Network	0.08392	0.000015	0.000000	0.078533
	Neural2	Neural Network (Backdrop)	0.08392	0.000015	0.000000	0.078533
	Tree2	Decision Tree (3 splits)	0.09441	0.020784	0.028269	0.078126
	Reg	Regression	0.10490	0.000006	0.000000	0.099700

The figure above shows that the Logistic Regression model with default setting and both Neural Network models performed very well in the training data with zero misclassification rate. This suggests that these models were able to effectively learn from the training data and accurately classify the instances. On the other hand, the Decision Tree model with 3 splits shows a slightly higher misclassification rate of 2.83% in the training data compared to the Decision Tree model with default settings. This suggests that increasing the complexity of the Decision Tree model by adding more splits can lead to a slightly higher misclassification rate. Additionally, the Decision Tree model with default settings and the Logistic Regression model using the Stepwise method has a similar misclassification rate of 2.12%.

In the validation data, all models exhibit higher misclassification rates compared to the training data. For the validation data, Logistic Regression with default settings showed the highest misclassification rate of 10.49%. The lowest misclassification rate in the validation data is the Logistics Regression model using the Stepwise method with 5.94%.

Both Neural Network model has a similar misclassification rate on the training data and validation data.

In terms of the overfitting model, the Logistic Regression with Default Settings model shows that it has overfitted the training date since it has a zero misclassification rate on the training data but had the highest misclassification rate of 10.49% on the validation data. Furthermore, both Decision Tree models also show overfitting issues due to an overly high misclassification rate of validation data compared to training data.

In conclusion, models that perform well on both training and validation data with low misclassification rates are preferred. In my opinion, the Logistic Regression model using the Stepwise regression method appears to be the best-performing model based on the figure above. It achieved a reasonable misclassification rate in both datasets. However, further improvement and fine-tuning may be necessary to enhance the performance of the models on the validation data.

 ${\tt Model \ Selection \ based \ on \ Valid: \ Misclassification \ Rate \ (_VMISC_)}$

Model		Data		Target	False	True	False	True
Node	Model Description	Role	Target	Label	Negative	Negative	Positive	Positive
Tree2	Decision Tree (3 splits)	TRAIN	diagnosis		4	174	4	101
Tree2	Decision Tree (3 splits)	VALIDATE	diagnosis		13	165	14	94
Reg	Regression	TRAIN	diagnosis			178		105
Reg	Regression	VALIDATE	diagnosis		13	162	17	94
Neural	Neural Network	TRAIN	diagnosis			178		105
Neural	Neural Network	VALIDATE	diagnosis		12	167	12	95
Tree	Decision Tree	TRAIN	diagnosis		6	178		99
Tree	Decision Tree	VALIDATE	diagnosis		12	169	10	95
Reg2	Regression (Stepwise)	TRAIN	diagnosis		4	176	2	101
Reg2	Regression (Stepwise)	VALIDATE	diagnosis		8	170	9	99
Neural2	Neural Network (Backdrop)	TRAIN	diagnosis			178		105
Neural2	Neural Network (Backdrop)	VALIDATE	diagnosis		12	167	12	95

The figure above is the summarisation of the confusion matrix for all the models.

Train Confusion Matrix:

		Target		
		Benign	Malignant	
Outcome	Benign	178	6	Decision Tree
	Malignant	0	99	
Outcome	Benign	174	4	Decision Tree (3 Splits)
	Malignant	4	101	
Outcome	Benign	178	0	Neural Network
	Malignant	0	105	
Outcome	Benign	178	0	Neural Network (Back Prop)
	Malignant	0	105	
Outcome	Benign	178	0	Logistics Regression
	Malignant	0	105	
Outcome	Benign	176	4	Logistics Regression (StepWise)
	Malignant	2	101	

		Target		
		Benign	Malignant	
Outcome	Benign	169	12	Decision Tree
	Malignant	10	95	
Outcome	Benign	165	13	Decision Tree (3 Splits)
	Malignant	14	94	
Outcome	Benign	167	12	Neural Network
	Malignant	12	95	
Outcome	Benign	167	12	Neural Network (Back Prop)
	Malignant	12	95	
Outcome	Benign	162	13	Logistics Regression
	Malignant	17	94	
Outcome	Benign	170	8	Logistics Regression (StepWise)
	Malignant	9	99	