Assignments and Activities - 2

Task 1: Test your understanding

Question 1: On which side of the neuronal membrane are Na^+ ions more abundant?

Question 2: When the membrane is at the potassium equilibrium potential, in which direction (in or out) is there a net movement of potassium ions?

Task 2: Simulating the equation (computational neuroscience)

Use The Nernst/Goldman equation simulator

- (web flash version discontinued http://www.nernstgoldman.physiology.arizona.edu/)
- local (only for Windows) flash version can be downloaded from: https://alexandria.physik3.unigoettingen.de/downloads/lecture basics of computational neuroscience/

- or download from course repository

- of download from course repository	
a. Describe the relationship between the internal and external ion concentrations and t equilibrium potential for each ion $(K^+, Na^+ \text{ and } Cl^-)$.	the

b. Describe the re membrane potent	lationship between the permeability of each ion $(K^+, Na^+ \text{ and } Cl^-)$ and the ial.
c. What effect doe	es temperature have on the simulations?

Task 3: Draw me a Brain Ep. 2

Draw this (<u>link to editable drawing here</u>):

Your turn:		