Total No. of	Questions	:	8]
--------------	-----------	---	------------

P3663	

SEAT No.:	
-----------	--

[Total No. of Pages: 4

[6001]-4905

F.E. (All Branches)

BASIC ELECTRICAL ENGINEERING (2019 Credit Pattern) (Semester - I/II) (103004)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of non-programable calculator is allowed.
- Q1) a) Define impedance. Draw the impedance triangle for R-L & R-C series circuit. [4]
 - b) Obtain the expression for current and power, when voltage $v = V_m$ sin ω t is applied across purely inductive circuit. [6]
 - c) The series circuit having resistance $10~\Omega$, inductance 0.1~H and capacitance $150~\mu F$ is connected to 1-phase, 200~V, 50~Hz AC supply, Calculate
 - i) Inductive reactance X
 - ii) Capacitive reactance X
 - iii) Net reactance X
 - iv) Impedance Z
 - v) Current drawn by the circuit
 - vi) Power factor
 - vii) Active power P
 - viii) Reactive power Q.

OR

Q2) a) If 200 V, 50 Hz supply is applied across the resistance of 10 Ω , find equation for voltage & current. [4]

P.T.O.

b)	Derive the expression for power, when voltage v = Vm sin ωt is applied across R-L series circuit. [6]
c)	The series circuit having resistance 10 Ω and capacitance 150 μF draws a current of 9.4 A from 1-phase, 50 Hz AC supply. Calculate -
	i) Capacitive reactance
	ii) impedance
	iii) power factor
	iv) supply voltage
	v) Active power and
	vi) reactive power. [8]
Q3) a)	v) Active power and vi) reactive power. [8] Define i) Balanced load
	i) Balanced load
	ii) Unbalanced load and
	iii) Phase sequence. [3]
b)	Derive the EMF equation of single phase transformer. [6]
c)	Derive the relation between i) phase voltage and line voltage ii) phase current and line current in case of balanced STAR connected 3-ph
	inductive load. Assume phase sequence RYB. Draw the circuit diagram & necessary phasor diagram. [8]
	OR OR
Q4) a)	Define the voltage regulation and efficiency of transformer along with
	formula. [3]
b)	The maximum flux density in core of a 250/1000 V, 50 Hz, 1-ph transformer is 1.2 T. If EMF/turn is 10 V, calculate i) Primary & secondary
	number of turns ii) area of cross section of core. [6]
	6.1
	28.1
[6001]-4	2

- Three identical impedances each of $6 + j8 \Omega$ are connected in star across c) 3-ph, 400 V, 50 Hz ac supply. Determine. [8]
 - i) phase voltage
 - ii) phase current and line current
 - iii) power factor, 3-ph active, reactive and apparent power
- State and explain KCL & KVL **Q5**) a)

[4]

Calculate the current flowing through 4 Ω (AB) for the circuit shown in b) fig 5b, using Kirchhoff's Laws. All resistances are in Ω **[6]**

Derive the equations to convert Delta connected resistive circuit into c) equivalent Star circuit.

Explain the practical current source by means of **Q6**) a)

- Symbol of representation i)
- ii) Value of internal resistance
- iii) Graphs between V and I
- Calculate the current flowing through 4 Ω (PQ) for the circuit shown in b) fig 6b, using Superposition Theorem. All resistances are in Ω **[6]**

[6001]-4005

Calculate the current flowing through 4 Ω (PQ) for the circuit shown in c) fig 6b, using Thevenin's Theorem. [8] Define resistance of the material & state factors on which it depends.[3] **Q7**) a) Explain construction and working principle of Lithium ion battery. b) Derive an expression for insulation resistance of a single core cable with c) the necessary diagram. [8] OR **Q8**) a) State the material used for positive plate, negative plate & electrolyte for lead acid battery. [3] The current flowing at the instant of switching 240 V, 40 Watt lamp is 2 b) A. The TCR of tungsten filament is 0.0055 per degree Celsius at 20°C. Determine. i) temperature of filament of the lamp ii) working current If α_1 and α_2 are the RTC of a conducting material at t_1^0 C and t_2^0 C respectively prove that & hence, obtain As To Page 1 of State $\alpha_{t} = \alpha_{0} / (1 + \alpha_{0}.t)$ [8] [6001]-4005