Assignment -4

PROJECT NAME	Natural disaster intensity analysis using artificial intelligence
NAME	Praveena Malar
	Renuka Malar
	Sharon Sheltto
	Subha
ROLL NO	950919106016
	950919106017
	950919106018
	950919106019
TEAM ID	PNT2022TMID49983

1. Import the necessary libraries

import pandas as pdimport numpy as np

import matplotlib.pyplot as pltimport

seaborn as sns

from sklearn.model_selection import

 $train_test_splitfrom\ sklearn.preprocessing\ import$

LabelEncoder from keras.models import Model

from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embeddingfrom

keras.optimizers import RMSprop

from keras.preprocessing.text import

Tokenizerfrom keras.preprocessing import

sequence from keras.utils import pad_sequences

from keras.utils import to_categorical from

keras.callbacks import EarlyStopping

2. Read dataset and do pre-processing

(i) Read dataset

df = pd.read_csv('/content/spam.csv',delimiter=',',encoding='latin-1')
df.head()

Unnamed: Unnamed: Unnamed:

v1 v22 3 4

2 3 4

0 ham Go until jurong point, crazy.. Available only ... NaN NaN NaN 1 ham Ok lar...Joking wif u oni... NaN NaN

NaN 2 spamFree entry in 2 a wkly comp to win FA Cup

3 ham U dun say so early hor... U c already then say... NaN NaN NaN 4 ham Nah I don't think he goes to usf, he lives aro... NaN NaN NaN

(ii) Preprocessing the dataset

```
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True) df.info()
                  <class 'pandas.core.frame.DataFrame'>RangeIndex:
                  5572 entries, 0 to 5571
                 Data columns (total 2 columns):
                    # Column Non-Null Count Dtype
                      0
                                      v1 5572 non-null object
                                      v2 5572 non-null object dtypes: object(2) memory usage:
                      1
                   87.2+ KB
X = df.v2
Y = df.v1le = LabelEncoder() Y =
     le.fit transform(Y)
Y = Y.reshape(-1,1)
X_{train}, X_{test}, Y_{train}, Y_{test} = train_{test}, train_{te
max\_words = 1000
max len = 150
tok = Tokenizer(num words=max words) tok.fit on texts(X train)
sequences = tok.texts_to_sequences(X_train)
sequences matrix = pad sequences(sequences,maxlen=max len)
3,4. Create model and Add Layers(LSTM ,Dense-(Hidden Layers), Output)
inputs = Input(name='inputs',shape=[max len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer) layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer) layer = Dropout(0.5)(layer)
layer = Dense(1,name='out layer')(layer) layer =
Activation('sigmoid')(layer) model =
Model(inputs=inputs,outputs=layer)model.summary()
                 Model: "model"
```

5. Compile the model

model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy']) 7. Train

and Fit the model

```
model.fit(sequences_matrix,Y_train,batch_size=128,epochs=10,
      validation split=0.2)
   Epoch 1/10
   Epoch 30/30 Epoch 30/30
                                 [========] - 8s
    2/10
                                 263ms/step - loss: 0.0572 - accurac
   263ms/step - loss: 0.0036 - accurac 3/10 Epoch
    4/10
    30/30 Epoch
                       ====1 5/10
                                           accurac
   263ms/step
                                              0.0018 0.0022 accurac
    30/30 Epoch
            ======]
            6/10
    30/30 Epoch
                    7/10
                             261ms/step
                                     - loss: - loss: - accurac -
```

```
310ms/step - loss: 0.0020 - accurac
     30/30
                    Epoch 8/10
                                                               9/10
     30/30 Epoch
                 [=======
     261ms/step
                                                   0.0015 0.0015 - accurac -
                                        264ms/step
     ======]
                                       - loss: - loss:
     10/10
                                                               accurac
                                             263ms/step - loss: 0.0021 - accurac
     30/30
     [=======] - 8s
     <keras.callbacks.History at 0x7f2b60b5f110>
6. Save the model
model.save('sms_classifier.h5')
 Preprocessing the Test Dataset
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = pad_sequences(test_sequences, maxlen=max_len)
```

7. Testing the model

Accuracy: 0.977