Computer Problem Set 8

Local volatility and the Dupire formula

The present problem set is attached to Chapter 10 of the lectures notes. We denote by C(T,K) the time 0-price of a European call option with maturity T and strike K. We shall denote C_T , C_K and C_{KK} the corresponding partial derivative with respect to T, with respect to K, and second partial derivative with respect to K, respectively. We recall the Dupire formula

$$\sigma^{2}(T,K) = 2\frac{C_{T}(T,K) + rKC_{K}(T,K)}{K^{2}C_{KK}(T,K)}.$$
 (1)

In terms of the implied volatilities I(T,K), obtained by inversion of the Black-Scholes formula C^{BS} , i.e. $C(T,K) = C^{BS}(T,K,I(T,K))$, this formula reduces to

$$\sigma^{2}(T,K) = \frac{\frac{I}{T} + 2I_{T} + 2rKI_{K}}{K^{2} \left(\frac{1}{K^{2}IT} + 2\frac{\mathbf{d}_{+}}{KI\sqrt{T}}I_{K} + \frac{\mathbf{d}_{+}\mathbf{d}_{-}}{I}I_{K}^{2} + I_{KK}\right)}$$
(2)

where d_{\pm} is the standard function involved in the Black-Scholes formula, and subscripts indicate again partial derivatives.

The file optionprices.txt contains call options prices $C(T_i, K_j)$ for a spot price $S_0 = 100$, spot interest rate r = 0, maturities $T_i := i\frac{T}{n}$, n = 8, T = 0.9, i = 0, ..., n, and strikes $K_j := 80 + j10^{-1}$, j = 0, ..., 400.

- 1. Provide an approximation $\bar{\sigma}^2(T_i, K_j)$ of the Dupire local volatility function by using the Dupire formula (1). Comment on the encountered numerical difficulties, if any.
- 2. We next turn to an alternative approximation method of the Dupire local volatility function.
 - (a) Deduce from the provided data the corresponding implied volatilities $I(T_i, K_j), i = 0, ..., n$ and j = 0, ..., 400.
 - (b) Provide an alternative approximation $\hat{\sigma}^2(T_i, K_j)$ of the Dupire local volatility function by using the Dupire formula (2).
 - (c) Build a program which produces a linear interpolation in the variables (T, K) of the points $T_i \hat{\sigma}^2(T_i, K_i)$, i = 0, ..., n, j = 0, ..., 400.
- 3. We finally verify numerically the validity of the Dupire formula. Consider the local volatility model $d\hat{S}_t = \hat{S}_t \hat{\sigma}(t, S_t) dB_t$, where B is a Brownian motion under the risk-neutral measure \mathbb{Q} .
 - (a) By using an Euler discretization scheme for the process \hat{S} , provide Monte-Carlo approximations of $\hat{C}(T_i, K_j)$, $i = 0, \ldots, n, j = 0, \ldots, 400$.
 - (b) Compare the data $\hat{C}(T_i, K_j) := \mathbb{E}[(\hat{S}_{T_i} K_j)^+]$ to the initial data $C(T_i, K_j)$.